

© CHARUSAT 2021 Page **62** of **170**

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF TECHNOLOGY&ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS341: ARTIFICIAL INTELLIGENCE

Credit and Hours:

Teaching Scheme	Theory	Practical	Total	Credit
Hours/week	3	2	5	4
Marks	100	50	150	

Pre-requisite courses:

• Data Structures & Algorithms

Outline of the Course:

Sr No.	Title of the unit	Minimum number of Hours
1.	Introduction to AI, Problems, Problems Space and Search,	10
	Heuristic Techniques	
2.	Logic and Programming Languages in AI	05
3.	Knowledge Representation and Rules	04
4.	Reasoning	06
5.	Weak Slot-And-Filler Structure and Game Playing and	10
	Planning	
6.	NLP and Text Analytics and Neural Networks	06
7.	Expert Systems and Optimization Techniques and AI &	04
	ML Tools	

Total Hours (Theory): 45

Total Hours (Lab): 30

Total Hours: 75

© CHARUSAT 2021 Page **63** of **170**

Detailed Syllabus:

1. Introduction to AI

10 Hours 20 %

What is AI, Applications of AI, characteristics, advantages and disadvantages.

Problems, Problems Space and Search, Heuristic Search

Techniques

Defining The Problems as a State Space Search, Production

Systems, Problem Characteristics, Production System

Characteristics, Issues In The Design Of Search Programs,

Heuristic Search Techniques:

Hill Climbing, A*, AO*, Simulated Annealing, Branch and

Bound, Nearest Neighbour, Blind Search Techniques: DFS, BFS,

Best First Search, Control Strategies.

2 Logic and Programming Languages in AI

05 Hours 15 %

Logic:

Propositional Logic, Predicate Logic and Fuzzy Logic, Monotonic and non-Monotonic

Programming Languages:

Introduction to Prolog: Syntax & Numeric Function, Basic List

Manipulation Functions In Prolog, Functions, Predicates &

Conditional, Input, Output & Local Variables, Iteration &

Recursion, Property Lists & Arrays. GUI Version of Prolog.

Python Programming: Syntax, Data Type, Libraries

: NumPy, Numba, NumExpr, SciPy, AstroPy, Pandas, SymPy,

MatplotLib, Jupyter, Ipython

3. Knowledge Representation

04Hours 10 %

Knowledge Representation:

Knowledge Representations And Mappings, Approaches To

Knowledge Representation.

Representing Knowledge using Rules

Procedural Versus Declarative Knowledge, Logic Programming,

© CHARUSAT 2021 Page **64** of **170**

Forward Versus Backward Reasoning.

4 Reasoning 06Hours 10 %

Symbolic Reasoning Under Uncertainty and Statistical Reasoning:

Introduction To Non-monotonic Reasoning, Logics For Nonmonotonic Reasoning

Statistical Reasoning

Probability And Bays' Theorem, Certainty Factors And Rule-Base Systems, Bayesian Networks, Dempster-Shafer Theory

5. Weak Slot-And-Filler Structure and Game Playing and 10 Hours 20 % Planning

Weak Slot-And-Filler Structure:

Semantic Nets, Frames, Ontology, OWL, Reasoner

Game Playing and Planning:

Introduction: Games as Search Problems, Perfect Decisions in Two-Person Games, Imperfect Decisions, Alpha-Beta Pruning, Games That Include an Element of Chance, State-of-the-Art Game Programs: Chess, Checkers or Draughts, Othello, Backgammon, Go

The Blocks World, Components Of A Planning System, Goal Stack Planning, Nonlinear Planning Using Constraint Posting, Hierarchical Planning, Reactive Systems.

6. NLP and Text Analytics and Neural Networks 06 Hours 15 % NLP and Text Analytics:

Introduction, Syntactic Processing, Semantic Analysis, Semantic Analysis, Discourse And Pragmatic Processing, Text Analytics, Text pre-processing, Bag of Words, Word Cloud, Machine Translation, sentiment analysis

Neural Networks

Introduction: Simple Perceptron, Hopfield Network, Learning In Neural Network, Application Of Neural Networks, Recurrent Networks, Deep Neural Network, Convolution Network, Restricted Boltzmann machine, Transfer learning

© CHARUSAT 2021 Page **65** of **170**

7. Expert Systems and Optimization Techniques and AI & ML 04 Hours 10 % Tools

Expert Systems:

An Introduction To Expert System, Explanation Facilities, Expert

System Developments Process, Knowledge Acquisition.

Optimization Techniques and AI & ML Tools:

Genetic Algorithm (GA), Ant Colony Optimization (ACO),

Particle Swarm Optimization(PSO), Honey Bee

AI, Machine Learning and Data Analytics Tools

Course Outcome (COs):

At the end of the course, the students will be able to

CO1	Understand the various searching techniques, constraint satisfaction problem and example problems- game playing techniques.
CO2	Apply these techniques in applications, which involve perception, reasoning and learning.
СОЗ	Demonstrate fundamental understanding of the history of artificial intelligence (AI) and its foundations.
CO4	Demonstrate awareness and a fundamental understanding of various applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
CO5	Demonstrate proficiency-developing applications in an 'AI language', expert system shell, or data-mining tool.
CO6	Demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1	1	1	1	1	-	-	2	2	2	3
CO2	2	2	-	-	-	-	-	1	2	1	1	1	2	-
СОЗ	3	1	1	-	-	1	1	-	-	-	-	-	2	-
CO4	3	2	3	3	-	-	-	1	2	2	2	2	3	3
CO5	3	2	2	2	3	2	2	-	-	-	-	-	2	-
CO6	2	1	1	-	-	3	-	-	-	-	2	2	3	3

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

© CHARUSAT 2021 Page **66** of **170**

Recommended Study Material:

Text Books:

- "Artificial Intelligence" -By Elaine Rich and Kevin Knight (2nd Edition) Tata Mcgraw-Hill.
- Stuart J. Russell and Peter Norvig, Artificial Intelligence 3e: A Modern Approach,
 3rd Edition. Person
- 3. Introduction to Prolog Programming By Carl Townsend

Reference Books:

- "Artificial Intelligence and Expert System, Development"-By D.W.Rolston, Mcgraw-Hill International Edition.
- 2. "Artificial Intelligence And Expert Systems "By D.W.Patterson
- "PROLOG Programming For Artificial Intelligence" By Ivan Bratko, Addison-Wesley
- 4. "Programming with PROLOG" –By Klocksin and Mellish.

© CHARUSAT 2021 Page **67** of **170**

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF TECHNOLOGY&ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS350: OPERATING SYSTEM

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit
Hours/week	3	2	-	5	4
Marks	100	50	-	150	

Pre-requisite courses:

• Introduction to computer and computer architecture.

Outline of the course:

Sr.	Title of the unit	Minimum number of
No.		hours
1.	Introduction	02
2.	Process Management	04
3.	Inter process Communication	08
4.	Deadlock	06
5.	Memory Management	08
6.	Input Output Management	07
7.	File Systems	06
8.	Unix/Linux File System	04

Total hours (Theory): 45

Total hours (Lab): 30

Total hours: 75

© CHARUSAT 2021 Page **68** of **170**

	Deta 1.	niled Syllabus: Introduction	02 Hours	05%
	1.1	What is an OS? Evolution of OS		
	1.2	OS Services		
	1.3	Types of OS		
	1.4	Concepts of OS		
	1.5	Different Views Of OS		
	2.	Process Management	04 Hours	08%
	2.1	Process, Process Control Block, Process States,		
	2.2	Threads, Types of Threads and Dispatching, Concurrent Threads		
_	3.	Inter process Communication	08 Hours	15%
	3.1	Race Conditions, Critical Section, Co-operating Thread/Mutual Exclusion		
	3.2	Hardware Solution, Strict Alternation, Peterson's Solution		
	3.3	The Producer Consumer Problem, Semaphores, Event Counters,		
		Monitors		
	3.4	Message Passing and Classical IPC Problems: Reader's & Writer Problem,		
		Dinning Philosopher Problem.		
	4.	Deadlock	06 Hours	15%
	4.1	Deadlock Problem, Deadlock Characterization		
	4.2	Deadlock Detection, Deadlock recovery		
	4.3	Deadlock avoidance: Banker's algorithm for single & multiple		
		resources		
	4.4	Deadlock Prevention.		
	4.5	CPU Scheduling, Protection: Address space, Address Translation		
	5.	Memory Management	08 Hours	18%
	5.1	Paging: Principle of Operation, Page Allocation, H/W Support For Paging		
	5.2	Multiprogramming with Fixed partitions		
	5.3	Segmentation		
	5.4	Swapping		
	5.5	Virtual Memory: Concept, Performance Of Demand Paging, Page		
		Replacement Algorithms, Thrashing and Working Sets		
	6.	Input Output Management	07 Hours	14%
	6.1	I/O Devices, Device Controllers, Direct Memory Access		

© CHARUSAT 2021 Page **69** of **170**

- 6.2 Principles of Input/output S/W: Goals of The I/O S/W, Interrupt Handler, Device Driver, Device Independent
- 6.3 I/O Software Disks: RAID levels, Disks Arm Scheduling Algorithm, Error Handling.

7. File Systems 06 Hours 15%

- 7.1 File Naming, File Structure, File Types, File Access, File Attributes, File Operations, Memory Mapped Files
- 7.2 Directories: Hierarchical Directory System, Pathnames, Directory Operations,
- 7.3 File System Implementation, Contiguous Allocation, Linked List Allocation, Linked List Using Index, Inodes

8. Unix/Linux File System

04 Hours 10%

- 8.1 Buffer Cache, Inodes, The system calls: ialloc, ifree, namei, alloc and free
- 8.2 Mounting and Unmounting, files systems, Network File systems
- 8.3 EXT file system in Linux

Course Outcome (COs):

At the end of the course, the students will be able to

CO1	Visualize and understand Operating system functionality and working of OS.								
	Understanding of functionality, services of operating system and differentiate between								
	different types of OS.								
CO2	Define thread and process. Visualize how processes and threads are managed by the								
	operating systems. Simulate and analyze various process scheduling algorithms. Explain								
	and analyze different Inter process communication techniques								
CO3	Describe deadlock and classify detection, recovery, prevention and avoidance algorithms.								
	Test scenarios to report deadlock								
CO4	Compare and evaluate various memory management schemes. Simulate and analyze								
	Memory management algorithms. Identify and describe the role of I/O								
	devices.								
CO5	Understand the file systems. Understand the secondary storage and simulate disk								
	scheduling algorithm.								
CO6	Understand the basic commands of Linux file systems								
L	·								

Course Articulation Matrix:

	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	2	-	-	-	-	-	-	1	-	-
CO2	3	2	-	-	2	-	-	-	-	-	-	-	1	-
CO3	3	2	-	-	2	-	-	-	-	-	-	-	1	-

© CHARUSAT 2021 Page **70** of **170**

CO4	3	2	-	-	2	-	-	-	-	-	=	=	1	-
CO5	3	2	-	-	2	-	-	-	-	-	-	-	1	-
CO6	3	2	-	-	2	-	-	-	-	-	-	1	1	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial

(High) If there is no correlation, put "-"

Recommended Study Material:

***** Text Books:

- 1. Modern Operating Systems -By Andrew S. Tanenbaum, Third Edition PHI
- 2. Operating System Concepts Avi Silberschatz, Peter Baer Galvin, Greg Gagne, Ninth Edition, Wiley

***** Reference Books:

- 1. Operating Systems, D.M. Dhamdhare, TMH
- Operating Systems Internals and Design Principles , William Stallings , Seventh Edition, Prentice Hall
- 3. Unix System Concepts & Applications, Sumitabha Das, TMH
- 4. Unix Shell Programming, Yashwant Kanitkar, BPB Publications

© CHARUSAT 2021 Page **71** of **170**

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF TECHNOLOGY&ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS351: DESIGN & ANALYSIS OF ALGORITHMS

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit	
Hours/week	3	2	-	5	4	
Marks	100	50	-	150	·	

Pre-requisite courses:

• Computer Programming.

Outline of the course:

Sr.	Title of the unit	Minimum number of
No.		hours
1.	To derive time and space complexity of algorithm.	03
2.	Analysis of Algorithm	06
3.	Greedy Algorithm	07
4.	Divide and Conquer Algorithm	07
5.	Dynamic Programming	08
6.	Exploring Graphs	04
7.	Backtracking & Branch & Bound	05
8.	String Matching and Introduction to NP- Completeness	05

Total hours (Theory): 45

Total hours (Lab): 30

Total hours: 75

© CHARUSAT 2021 Page **72** of **170**

Det	ailed Syllabus:									
1.	Basics of Algorithms and Mathematics	03 Hours	05 %							
1.1	What is an algorithm?									
1.2	Performance Analysis, Model for Analysis - Random Access									
	Machine (RAM), Primitive Operations									
1.3	Time Complexity and Space Complexity									
2.	Analysis of Algorithm	06 Hours	14 %							
2.1	The efficiency of algorithm, average and worst case									
	analysis, elementary operation									
2.2	Asymptotic Notation									
2.3	Analyzing control statement									
2.4	Analyzing Algorithm using Barometer									
2.5	Solving recurrence Equation									
2.6	Sorting Algorithm									
3.	Greedy Algorithm	07 Hours	16 %							
3.1	General Characteristics of greedy algorithms									
3.2	Problem solving using Greedy algorithm									
3.3	Making change problem									
3 4	Graphs: Minimum Spanning trees (Kruskal's algorithm									

4. Divide and Conquer Algorithm 07 Hours 16 %

Graphs: Shortest paths; The Knapsack Problem; Job

4.1 Multiplying large Integers Problem

4.2 Binary Search

3.5

4.3 Sorting (Merge Sort, Quick Sort)

4.4 Matrix Multiplication

Prim's algorithm

Scheduling Problem

4.5 Exponential

© CHARUSAT 2021 Page **73** of **170**

5.	Dynamic Programming	08 Hours	18 %
5.1	Introduction, The Principle of Optimality		
5.2	Problem Solving using Dynamic Programming – Calculating		
	the Binomial Coefficient		
5.3	Making Change Problem		
5.4	Assembly Line-Scheduling		
5.4	Knapsack Problem		
5.5	Shortest Path		
5.6	Matrix Chain Multiplication		
5.7	Longest Common Subsequence		
6.	Exploring Graphs & Backtracking	04 Hours	09 %
6.1	An introduction using graphs and games,		
6.2	Traversing Trees – Preconditioning Depth First Search-		
	Undirected Graph; Directed Graph, Breath First Search,		
	Applications of BFS & DFS		
7.	Backtracking & Branch & Bound	05 Hours	12%
7.1	Backtracking -The Knapsack Problem; The Eight queens		
	problem, General Template		
7.2	Brach and Bound -The Assignment Problem; The Knapsack		
	Problem, The min-max principle		
8.	String Matching and Introduction to NP-Completeness	05 Hours	10%
8.1	The naïve string matching algorithm		
8.2	The Rabin-Karp algorithm		
8.3	The class P and NP Problems		
8.4	Polynomial reduction		
8.5	NP- Completeness Problem		
8.6	NP-Hard problems		
Cor	rrse Outcome (COs):		
A 4 41			

At the end of the course, the students will be able to

CO1	Analyze the asymptotic performance of algorithms.
CO2	Derive time and space complexity of different sorting algorithms and compare them to
	choose application specific efficient algorithm.

© CHARUSAT 2021 Page **74** of **170**

CO3	Understand and analyze the problem to apply design technique from divide and conquer,
	dynamic programming, backtracking, branch and bound techniques and understand how
	the choice of algorithm design methods impact the performance
	of programs.
CO4	Understand and apply various graph algorithms for finding shorted path and
	minimum spanning tree.
CO5	Synthesize efficient algorithms in common engineering design situations.
CO6	Understand the notations of P, NP, NP-Complete and NP-Hard.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
CO2	2	2	-	-	-	-	-	-	-	-	-	2	2	-
CO3	3	3	3	3	2	-	-	-	-	-	-	2	2	-
CO4	2	3	3	1	-	=	-	-	=	-	-	-	2	-
CO5	1	-	1	-	-	-	-	-	-	-	-	2	1	1
CO6	3	1	ı	-	-	-	-	-	-	-	ı	-	1	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)If there is no correlation, put "-"

Recommended Study Material:

***** Text Books:

 Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest and Clifford Stein, MIT Press

***** Reference Books:

- 1. Fundamental of Algorithms by Gills Brassard, Paul Bratley, Pentice Hall of India.
- 2. Fundamental of Computer Algorithms by Ellis Horowitz, Sartazsahni and sanguthevar Rajasekarm, Computer Sci.P.
- 3. Design & Analysis of Algorithms by P H Dave & H B Dave, Pearson Education.

***** Web Materials:

© CHARUSAT 2021 Page **75** of **170**

- 1. http://www.stanford.edu/class/cs161/
- 2. http://www.itl.nist.gov/div897/sqg/dads/
- 3. http://highered.mcgraw-hill.com/sites/0073523402/

© CHARUSAT 2021 Page **76** of **170**