Grundbegriffe der Informatik Aufgabenblatt 9

Matr.nr.:							
Nachname:							
Vorname:							
Tutorium:	Nr.			Name des Tutors:			
Ausgabe:	23. E	Dezem	nber :	2015			
Abgabe:	15. Januar 2015, 12:30 Uhr						
	im C	GBI-Br	iefka	aster	im	. Un	tergeschoss
	von	Gebäi	ude 5	50.34	L		
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet							
abgegeben werden.							
Vom Tutor auszufüllen:							
erreichte Pu	nkte						
Blatt 9:					/ 1	7	(Physik: 17)
Blätter 1 – 9:				/	159	9	(Physik: 136)

Aufgabe 9.1 (2 + 2 + 2 + 2 + 1 + 2 = 11) Punkte)

Für jede positive ganze Zahl $n \in \mathbb{N}_+$ sei $G_n = (V_n, E_n)$ der gerichtete Graph mit der Knotenmenge $V_n = \{0,1\}^n$ und der Kantenmenge

$$E_n = \{(x, y) \in V_n^2 \mid \exists i \in \mathbb{Z}_n \colon (x_i \neq y_i \land \forall k \in \mathbb{Z}_n \setminus \{i\} \colon x_k = y_k)\}.$$

- a) Zeichnen Sie G_1 , G_2 und G_3 jeweils in ein kartesisches Koordinatensystem der entsprechenden Dimension.
- b) Geben Sie einen geschlossenen arithmetischen Ausdruck für $|E_n|$ an. Dabei bedeutet *geschlossen*, dass in dem Ausdruck weder das Summenzeichen \sum noch das Produktzeichen \prod vorkommt.
- c) Geben Sie für jede positive ganze Zahl $n \in \mathbb{N}_+$ eine Einbettung f_n von G_n in G_{n+1} an, das heißt, eine injektive Abbildung $f_n \colon V_n \to V_{n+1}$ derart, dass

$$\forall x \in V_n \ \forall y \in V_n \colon \left((x,y) \in E_n \to (f_n(x), f_n(y)) \in E_{n+1} \right).$$

- d) Geben Sie einen Pfad $p=(v_0,v_1,v_2,v_3)$ von (0,0,0) nach (1,1,1) in G_3 an. Geben Sie außerdem einen Pfad q von (0,0,0,0) nach (1,1,1,1) in G_4 an, der den Pfad $(f_3(v_0),f_3(v_1),f_3(v_2),f_3(v_3))$ als Teilpfad enthält, wobei f_3 die Einbettung von G_3 in G_4 aus der vorangegangenen Teilaufgabe sei.
- e) Geben Sie für jede positive ganze Zahl $n \in \mathbb{N}_+$ einen geschlossenen arithmetischen Ausdruck für

$$\gamma_n = \min\{|p| \mid p \text{ ist Pfad in } G_n \text{ von } (0,0,\ldots,0) \text{ nach } (1,1,\ldots,1)\}$$

an.

f) Geben Sie für jede positive ganze Zahl $n \in \mathbb{N}_+$ einen Graph-Isomorphismus φ_n von G_n nach G_n an, der nicht die identische Abbildung ist.

Lösung 9.1

b)
$$|E_n| = 2^{n-1} \cdot n$$

Es sei $n \in \mathbb{N}_+$. Der Graph G_n hat genau 2^n Knoten. Jeder dieser Knoten hat Grad n, das heißt, genau n inzidente Kanten. Die Kantenzahl beträgt somit

$$\frac{\sum_{x\in V_n} n}{2} = \frac{2^n \cdot n}{2} = 2^{n-1} \cdot n.$$

Wir müssen $\sum_{x \in V_n} n$ durch 2 dividieren, da wir im Ausdruck $\sum_{x \in V_n} n$ jede Kante doppelt zählen, einmal je inzidenten Knoten (und jede Kante, die keine Schlinge ist, ist zu genau zwei verschiedenen Knoten inzident).

c) Für jedes $n \in \mathbb{N}_+$ ist

$$f_n: V_n \to V_{n+1},$$

 $x \mapsto (x,0),$

eine Einbettung von G_n in G_{n+1} .

- d) Ein möglicher Pfad p ist ((0,0,0),(1,0,0),(1,1,0),(1,1,1)). Ein möglicher Pfad q ist ((0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)).
- e) $\gamma_n = n$ Um von (0,0,...,0) nach (1,1,...,1) in G_n zu kommen müssen genau n bits von 0 auf 1 kippen.
- f) Für jedes $n \in \mathbb{N}_+$ ist

$$\varphi_n \colon V_n \to V_n,$$

 $(x,0) \mapsto (x,1),$
 $(x,1) \mapsto (x,0),$

ein Isomorphismus von G_n nach G_n . Für n=1 degeneriert (x,0) zu 0 und (x,1) zu 1.

g) $\xi_n = n$

Tatsächlich genügt es n Kanten aus G_n zu entfernen, damit der entstehende Graph unzusammenhängend wird: Man wähle einfach einen Knoten und entferne alle zu diesem Knoten inzidenten Kanten.

Das man mit einer kleineren Anzahl an Kanten nicht auskommt, ist schwerer einzusehen.

h) Die Kantenmenge

$$F_n = \{\{x,y\} \in E_n \mid \sigma_n(x) < \sigma_n(y) \land \tau_n(x) \le \tau_n(y)\}$$

leistest das Gewünschte.

Aufgabe 9.2 (1 + 1 + 2 + 2 = 6 Punkte)

Hinweis: Benutzen Sie in dieser Aufgabe die Definition von "Zyklus" aus dem aktualisierten Skript: Ein Zyklus ist ein geschlossener Pfad, dessen Länge größer als oder gleich 1 ist.

Ein sogenannter DAG (engl. *directed acyclic graph*) ist ein gerichteter Graph, der keine Zyklen enthält.

- a) Geben Sie einen DAG mit 4 Knoten an, der
 - kein Baum ist, und
 - einen Teilgraphen mit 4 Knoten enthält, der ein Baum ist.
- b) Geben Sie einen DAG mit 6 Knoten und 9 Kanten an, der keinen Pfad der Länge 2 enthält.
- c) Begründen Sie, warum jeder Baum ein DAG ist.
- d) Es sei G = (V, E) ein DAG und es seien $x, y \in V$ zwei Knoten von G mit der Eigenschaft: $(x, y) \in E^*$ und $(y, x) \in E^*$. Beweisen Sie: x = y.

Lösung 9.2

c) Es ist zu zeigen, dass ein Baum keine Zyklen enthält.

Angenommen ein Graph G=(V,E) ist ein Baum mit Wurzel $r\in V$ und er enthält einen Zyklus $p=(v_0,\ldots,v_n)$, also $n\geq 1$ und $v_0=v_n$.

Da G ein Baum ist, gibt es einen Pfad von q von r zu v_0 . Wenn man diesen Pfad um die Folge v_1, \ldots, v_n verlängert, erhält man wiederum einen Pfad von r zu v_0 , der aber länger als also verschieden von q ist.

Also gibt es mindestens zwei Pfade von r nach v_0 im Widerspruch zur Annahme, dass G ein Baum ist.

d) Wäre $x \neq y$, dann gäbe es wegen $(x,y) \in E^*$ einen Pfad (v_0,\ldots,v_n) mit $x=v_0,y=v_n$ und $n\geq 1$, wegen $(y,x)\in E^*$ gäbe es einen Pfad (v'_0,\ldots,v'_m) mit $y=v'_0,x=v'_m$ und $m\geq 1$.

Dann wäre aber $(v_0, \ldots, v_n, v'_1, \ldots, v'_m)$ ein Pfad von x nach x einer Länge ≥ 1 im Widerspruch zu der Tatsache, dass G ein DAG ist.