EE604: Image Processing

DR. TUSHAR SANDHAN

Instructor

- Dr. Tushar Sandhan
 - o Office: EE dept, ACES 408
 - Other details: https://home.iitk.ac.in/~sandhan/
 - Teaching, creating assignments and exams
 - Evaluating theory questions

Instructor

- Dr. Tushar Sandhan
 - o Office: EE dept, ACES 408
 - Other details: https://home.iitk.ac.in/~sandhan/
 - Teaching, creating assignments and exams
 - Evaluating theory questions
- Teaching assistants (TA)
 - o Programming assignments, MCQ, numerical Qs evaluation
 - Dedicated TA for responding email, forum queries
 - Attendance and TA management

- Not about CNN
- Not about Deep learning
- Not about Photography
- Not about Photoshop
- Not about Painting
- Not about using any imaging software

- Not about CNN
- Not about Deep learning
- Not about Photography
- Not about Photoshop
- Not about Painting
- Not about using any imaging software

- Not about CNN
- Not about Deep learning
- Not about Photography
- Not about Photoshop
- Not about Painting
- Not about using any imaging software

- Not about CNN
- Not about Deep learning
- Not about Photography
- Not about Photoshop
- Not about Painting
- Not about using any imaging software

- Not about CNN
- Not about Deep learning
- Not about Photography
- Not about Photoshop
- Not about Painting
- Not about using any imaging software

- Not about CNN
- Not about Deep learning
- Not about Photography
- Not about Photoshop
- Not about Painting images digitally
- Not about using any imaging software

- Not about CNN
- Not about Deep learning
- Not about Photography
- Not about Photoshop
- Not about Painting images digitally
- Not about using any imaging software

- Not about CNN
- Not about Deep learning
- Not about Photography
- Not about Photoshop
- Not about Painting images digitally
- Not about using any imaging software

Introduction

Introduction

- Image
 - How an image is being made
 - Biological visual systems
 - Image formation models

Introduction

- Image
 - How an image is being made
 - Biological visual systems
 - Image formation models

- Processing
 - Image feature representations
 - Color and multi-resolution signal processing
 - Segmentation, denoising, compression

Topics

- EE604: Image Processing
 - Human visual system
 - Elements of visual perception
 - Image formation models
 - Sampling and quantization
 - Image enhancement
 - Spatial domain
 - Frequency domain
 - Color image processing
 - Edge detection
 - Parametric
 - Non-parametric

Topics

- EE604: Image Processing
 - Human visual system
 - Elements of visual perception
 - Image formation models
 - Sampling and quantization
 - Image enhancement
 - Spatial domain
 - Frequency domain
 - Color image processing
 - Edge detection
 - Parametric
 - Non-parametric

- EE604: Image Processing
 - Multi-resolution analysis
 - Image segmentation
 - ML algorithms
 - Image denoising
 - Image feature spaces
 - Image quality measures
 - Image compression
 - Morphological image processing

Reference Materials

- 'Digital Image Processing', R.C. Gonzalez and R.E. Woods
- IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
- IEEE International Conference on Computer Vision (ICCV)
- IEEE Transactions on Image Processing (TIP)
- IEEE International Conference on Image Processing (ICIP)

Prerequisites

- Basics of Linear Algebra
- Basic python programming
- Imp: Fourier Transform
- Imp: Integrity

Prerequisites

- Basics of Linear Algebra
- Basic python programming
- Imp: Fourier Transform
- Imp: Integrity

```
# Python inline script to find the max
a=2;b=4
maximum = lambda a, b:a if a > b else b
print(f'{maximum(a,b)} is a max value')
```

Prerequisites

- Basics of Linear Algebra
- Basic python programming
- Imp: Fourier Transform
- Imp: Integrity

Do not get involved in academic misconduct or <u>plagiarism</u>.

"<u>Plagiarism</u> is the representation of another author's art, thoughts, ideas, programming code, designs or expressions as one's own original work."

```
# Python inline script to find the max
a=2;b=4
maximum = lambda a, b:a if a > b else b
print(f'{maximum(a,b)} is a max value')
```

Attendance

- No weightage
- No daily attendance

But

Attendance

- No weightage
- No daily attendance
- But
- sometimes random draws
 - o If drawn for i^{th} class: $\alpha_i = -1\%$
- Others can fill (online form) the sample space for random draws
 - o If correct sample: $\rho_i = +0.5\%$
- Final attendance
 - o Percentage: = min(5, max(-10, $\sum_i \alpha_i + \sum_i \rho_i$))

Grading Policy

- Relative grading
- A* (10), A (10), B+ (9), B (8)
- C+ (7), C (6), D+ (5), D (4), E (0), F (0), I (0)
- Assignment-1 [10%]
- Assignment-2 [10%]
- Random Rapid Quizzes [16%]
- Mid-term [30%]
- End-term/Project [30%]
 - o either of these (once decided no choice i.e. same for all)

Grading Policy

- Relative grading
- A* (10), A (10), B+ (9), B (8)
- C+ (7), C (6), D+ (5), D (4), E (0), F (0), I (0)
- Assignment-1 [10%]
- Assignment-2 [10%]
- Random Rapid Quizzes [16%]
- Mid-term [30%]

o either of these (once decided no choice i.e. same for all)

Some portion is flexible, so might be added to some exams, quizzes etc.

sandhan@iitk.ac.in

Assignment due dates

- Lot of complications for extending due dates
 - Due to large class size
 - TAs have other work (research, courses) apart from this course
 - Unfair for those who sincerely submit on time
- Enough time will be given for each assignment

- If delayed submission 'allowed' in any of the assignments then only with some penalty.
 - o means timely submissions are always getting rewarded

Vulnerabilities

- PG (36 credits/sem)
- UG (54~67 credits/sem)
 - Need special mentions

Vulnerabilities

- PG (36 credits/sem)
- UG (54~67 credits/sem)
 - Need special mentions
- UG Batches
 - Y20 (BT-MT)
 - Y20 (BT)
 - Y21 (completed summer projects)
 - Y21 (new)

Vulnerabilities

- PG (36 credits/sem)
- UG (54~67 credits/sem)
 - Need special mentions
- UG Batches
 - Y20 (BT-MT)
 - Y20 (BT)
 - Y21 (completed summer projects)
 - Y21 (new)
- Vulnerable population (if not sincere)
 - Y20 (BT)
 - Y21 (new)

Add-drop

- Possibility of group projects
- Interdependence of students via attendance
- Course logistics become difficult if flexible dropping allowed

Add-drop

- Possibility of group projects
- Interdependence of students via attendance
- Course logistics become difficult if flexible dropping allowed

- So irrespective of the academic calendar specifications, "this course <u>dropping will not be accepted after 6th August"</u>
- Remember last date to drop the course is 6th August. (and not after midterm)
 (either drop early, or ride the tide till the end)

Biometrics

Biometrics

- Healthcare, biomedical image processing
 - Cancer detection

- Healthcare, biomedical image processing
 - Cancer detection

OCR

o aramaic

> الله المحتون المعدد عمد الله مراوه الله المحدد المعدد المعدد المالا المعدد ا

الأقرار المحدد المحدد

Remote sensing

Image credit: NASA Image credit: Marita Thushari

Remote sensing

Image credit: NASA Image credit: Marita Thushari

Remote sensing

Image credit: NASA Image credit: Marita Thushari

Circuits to metals

Nature to biology

Autonomous navigation

Drones to satellites

Julian Webb Kodak

Julian Webb Kodak

References

- Image processing

References

Image processing

- ☐ 'Digital Image Processing', R.C. Gonzalez and R.E. Woods
- ☐ IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
- ☐ IEEE International Conference on Computer Vision (ICCV)
- ☐ IEEE Transactions on Image Processing (TIP)
- ☐ IEEE International Conference on Image Processing (ICIP)