

CONTINUING (1.53(b)) UTILITY PATENT APPLICATION **TRANSMITTAL**

(Only for continuing applications under 37 CFR 1.53(b))

Attorney Docket No.
1046.1028D2/DSG

First Named Inventor: Tetsuya NISHI

Title:

POLARIZATION CONTROL OPTICAL SPACE SWITCH

Express Mail Label No.

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

ADDRESS TO:

Assistant Commissioner for Patents

S&H Form: PTO/SB/0

Box Patent Application Washington, DC 20231

- 1. [X] Fee Transmittal Form
- Specification, Claims & Abstract [Total Pages: 121] 2. [X]
- 3. [X] Drawing(s) (35 USC 113) [Total Sheets: 31]
- Oath or Declaration 4. [X] [Total Pages: 2]
 - a. [] Newly executed (original or copy)
 - b. [X] Copy from a prior application (37 CFR 1.63(d)) (see Box 18)
- This application is filed by fewer than all the inventors named in the prior nonprovisional application. 5. []
 - a. [] DELETE the following inventor(s) named in the prior nonprovisional application:
 - b. [] The inventor(s) to be deleted are set forth on a separate sheet attached hereto.
- 6. [X] Incorporation by Reference (usable if Box 4b is checked)

The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.

- 7. [] Microfiche Computer Program (Appendix)
- Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary) 8. []
 - a. [] Computer Readable Copy
 - Paper Copy (identical to computer copy)
 - Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

- 9. [] Assignment Papers (cover sheet & document(s))
- 10. [] 37 CFR 3.73(b) Statement (when there is an assignee) [] Power of Attorney
- English Translation Document (if applicable) 11. []
- 12. [X] Foreign priority benefit under 35 U.S.C. §119 is claimed.
 - a. [X] Certified Copy of Priority Document(s) filed in prior application No. <u>08/200,657</u>.
 - Certified Copy of Priority Document(s) enclosed.
 - c. [] Certified Copy of Priority Document(s) to follow.
- Information Disclosure Statement (IDS)/PTO-1449[] Copies of IDS Citations 13. [X]
- 14. [X] Preliminary Amendment
 - a. [X] enclosed herewith.
 - incorporated herein (see Box 18).
- 15. [X] Return Receipt Postcard (MPEP 503) (Should be specifically itemized)
- 16. [] Small Entity Statement(s) [] Statement filed in prior application, status still proper and desired.
- 17. [] Other:

					S&H FORM: PTO/SB/05 (9/99	
18. CONTI	NUING APPLICAT	ION, check appropriate box a	and supply the requi	site informat	ion below:	
[] Continuation	on [X] Divisional [] C	ontinuation-in-part (CIP)	of prior applicat	ion No: <u>08</u>	<u>3/200,657</u>	
Prior application	on information: Exam	niner: R. Shafer				
		oup/Art Unit: _2872	-			
	0.0	2012				
		* * *				
Preliminary Amendment:						
[X] Cancel in this application original claims 2-22 of the prior application before calculating the filing fee (At least one original independent claim must be retained for filing purposes.)						
[X] Amend the specification by inserting before the first line the sentence:						
This allowe		nal of application number	08/200,657, file	ed <u>Februa</u>	<u>ry 23, 1994,</u> now	
19. NEW CORRESPONDENCE ADDRESS * CUSTOMER NO. 21,171						
Telephone: (2	02) 434-1500	STAAS & HALSEY 700 Eleventh Street Suite 500 Washington, DC 2	, N.W.	Fac	simile: (202) 434-1501	
	20. SIG	NATURE OF ATTOR	RNEY OR AG	ENT		
NAME	Deborah S. Gladst	ein	REGISTRAT	ION NO.	43,636	
SIGNATURE	Dobrah	8 D. O.	DATE	8/2/	סס	

© 1998 Staas & Halsey

[Page 2 of 2]

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Tetsuya NISHI, et al.

Serial No.: Div. of Serial No. 08/200,657

Group Art Unit:

Filed: August 2, 2000

Examiner:

For: POLARIZATION CONTROL OPTICAL SPACE SWITCH

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Before examination of the above-identified application, please amend the application as follows:

IN THE CLAIMS:

Please CANCEL claim 1 without prejudice or disclaimer.

Please ADD claims 34-42 as follows:

--34. (NEW) A polarization control optical space switch comprising:

a plurality of polarization control optical switches cascaded together;

wherein each polarization control optical switch includes:

a polarization controller that is capable of changing the

polarization of light incident thereon by one of applying voltage thereto and not applying

voltage thereto;

an element to change the optical path of light from said

Page 2

polarization controller;

a delay plate to change the polarization of light incident thereon;

and

a second element to change the optical path of light from said

delay plate; and

a final polarization control optical switch including:

a polarization controller that is capable of changing the polarization of light incident thereon by one of applying voltage thereto and not applying voltage thereto; and

an element to change the optical path of light from said polarization controller,

wherein said polarization control optical space switch has a plurality of inputs and the same number of outputs, and

wherein to switch light from one input to one output requires controlling only a single element making up said polarization controllers.

- 35. (NEW) A polarization control optical space switch according to claim 34, wherein said delay plate includes segments that do not delay light incident thereon.
- 36. (NEW) A polarization control optical space switch according to claim 34, wherein said element to change the optical path of light from said

polarization controller and the second element to change the optical path of light from said delay plate only change the optical path of p-polarized light.

- 37. (NEW) A polarization control optical space switch according to claim 34, wherein said element to change the optical path of light from said polarization controller and the second element to change the optical path of light from said delay plate only change the optical path of s-polarized light.
- 38. (NEW) A polarization control optical space switch according to claim 34, wherein said element to change the optical path of light from said polarization controller changes the optical path by moving light incident at the i-th input thereto to one of the (i-1)th and (i+1)th output.
- 39. (NEW) A polarization control optical space switch according to claim 34, wherein said second element to change the optical path of light from said delay plate changes the optical path by moving light incident at the i-th input thereto to one of the (i-1)th and (i+1)th output.
- 40. (NEW) A polarization control optical space switch according to claim 34, wherein said element to change the optical path of light from said polarization controller is a downward polarizing beam splitter, which reflects incident light

Page 4

with a predetermined polarization input on the i-th input to the (i+1)th output.

- 41. (NEW) A polarization control optical space switch according to claim 34, wherein said second element to change the optical path of light from said delay plate is an upward polarizing beam splitter, which reflects incident light with a predetermined polarization input on the i-th input to the (i-1)th output.
- 42. (NEW) A polarization control optical space switch according to claim 34, wherein the element to change the optical path of light from said polarization controller is constructed from a polarizing beam splitter array consisting of a combination of polarizing beam splitters.--

Page 5

REMARKS

This Preliminary Amendment is submitted to improve the form of the claims as originally-filed.

It is respectfully requested that this Preliminary Amendment be entered in the above-referenced application.

If any further fees are required in connection with the filing of this Preliminary Amendment, please charge same to our Deposit Account No. 19-3935.

Respectfully submitted,

STAAS & HALSEY LLP

By:

Deborah S. Gladstein Registration No. 43,636

700 Eleventh Street, N.W. Suite 500 Washington, D.C. 20001 (202) 434-1500

Date: August 2, 2000

POLARIZATION CONTROL OPTICAL SPACE SWITCH BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to an optical space switch that is used to set up a path between a fiber-optic transmission path on the incident side and a fiber-optic transmission path on the output side.

(2) Description of the Prior Art

information transmission systems using optical fibers as information transmission paths, the need has been increasing particularly for a polarization control optical space switch that performs switching to direct light information in the form of a light signal, without converting it into an electrical signal, from an input fiber-optic transmission path to a selected output fiber-optic transmission path.

Fig. 31 is a diagram showing the configuration of a prior art polarization control optical space switch.

This polarization control optical space switch has n inputs and n outputs, and performs light path switching for light information which entered as p-polarized light.

The polarization control optical space switch shown

25 comprises n² switch elements, SW11 - SWnn, arranged as a

matrix of n rows and n columns.

On the input side of this polarization control

20

5

10

15

25

optical space switch are arranged n input fibers Ii (i = 1, 2, ..., n). Furthermore, a lens L and a polarizer Pi (i = 1, 2, ..., n) are arranged between each input fiber Ii and each input light path to the polarization control optical space switch.

The lens L is a converging lens that converges the light information emerging from the input fiber.

The polarizer Pi is an element that allows light information which entered as p-polarized light to pass through it.

Lenses L, the number of which is equal to the number of output light paths, are arranged on the output side of the polarization control optical space switch. On the output side of the lenses L, there are arranged n output fibers Oi (i = 1, 2, 3, ..., n), one for each lens L.

The light information output from the input fiber Ii is converged by the lens L and enters the polarizer Pi.

If the incident light information is p-polarized

light, the light information is allowed to pass through
the polarizer Pi and enters the first row of switch
elements SWil (i = 1, 2, ... n).

Light information output from the n-th column of switch elements SWnj (j = 1, 2, ..., n) is converged by the lens L and enters the output fiber Oi.

In the above configuration, each switch element SWij is constructed from a combination of a polarization

20

25

splitter and two polarization control elements formed from liquid crystals. The two polarization control elements are placed on the incident and reflected sides, respectively, of the polarization splitter.

The polarization splitter transmits incident light information in the rectilinear forward direction when its polarizing direction is p-polarization, and reflects incident light information in a vertical direction when its polarizing direction is s-polarization.

The structure is such that an external voltage can be applied as desired to the polarization control elements.

The polarization control elements each function to retain the polarizing direction of the incident light information when no voltage is applied, and to rotate the polarizing direction of the incident light information through $\pi/2$ when voltage is applied.

For example, consider a case in which the light information incident on the switch element SW11 is to be passed to the switch element SW12. Since the light information incident on the switch element SW11 is p-polarized light, voltage is not applied to the polarization control element on the incident side. In this case, the light information incident on the switch element SW11 first enters the polarization control element on the incident side. The light information with its p-polarization state retained is passed through

10

15

25

the polarization control element on the incident side and enters the polarization splitter.

The polarization splitter transmits the incident p-polarized light in the rectilinear forward direction for input to the switch element SW12.

On the other hand, if the light information incident on the switch element SW11 is to be directed to the switch element SW21, voltage is applied to the polarization control elements on both the incident and reflected sides. In this case, the p-polarized light incident on the switch element SW11 first enters the polarization control element on the incident side. The polarization control element on the incident side then rotates the incident p-polarized light to convert it into s-polarized light which is input into the polarization splitter.

The polarization splitter reflects the incident spolarized light vertically downward for input into the polarization control element on the reflected side.

The polarization control element on the reflected side rotates the incident s-polarized light to convert it into p-polarized light which is input to the switch element SW21.

The switch element SW21 then allows the p-polarized light incident from the switch element SW11 to pass through it, so that the light is directed to the switch element SW31. The p-polarized light is thus input to

the switch element SWn1.

The switch element SWnl transmits the incident ppolarized light in the rectilinear forward direction,
directing the light to the output fiber O1. Thus, by
applying a voltage to the polarization control elements
on both the incident and reflected sides of the switch
element SWll, a path is set up between the input fiber
Il and the output fiber O1.

By externally controlling the polarization control elements of each switch element SWij in this manner, a path can be set up between a desired input fiber and output fiber.

In the prior art polarization control optical space switch, since each switch element is formed at an intersection of the matrix, two polarization control elements must be controlled per switch element when setting a connection path.

The prior art polarization control optical space switch has the further problem that the number of switch elements for light to pass through varies depending on the path to be set, resulting in differences in the transmission loss and crosstalk from path to path.

In view of the above problems, it is an object of the present invention to provide a polarization control optical space switch wherein the number of switch elements for light to pass through is always the same independently of the path to be set, thus suppressing

25

15

20

5

differences in the transmission loss and crosstalk.

SUMMARY OF THE INVENTION

The polarization control optical space switch of the present invention comprises a combination of a plurality of polarization control optical switches.

Each polarization control optical switch comprises a polarization control means and a light path routing element.

The polarization control means contains elements,

one for each light path, for rotating the polarizing
direction of input light through 90° or otherwise
retaining it with no introduction of rotation.

The light path routing element routes the light information output from the polarization control means in accordance with the polarizing direction of the light information.

More particularly, the polarization control means is constructed from a combination of: an element which, when voltage is applied, rotates the polarizing direction of input light information through 90°, and when voltage is applied, does not rotate the polarizing direction of input light information; and an element which, when voltage is applied, does not rotate the polarizing direction of input light information, and when voltage is not applied, rotates the polarizing direction of input light information and when voltage is not applied, rotates the polarizing direction of input light information through 90°.

In each polarization control optical switch, a light

20

25

15

5

15

20

25

signal incident along an input light path is first entered into the polarization control means.

The polarization control means rotates the polarizing direction of the light information through 90° or does not rotate it, depending on an external control signal.

The light information output from the polarization control means enters the light path routing element.

The light path routing element transmits the

incident light information in the rectilinear forward

direction or routes it to another light path, depending

on the polarizing direction of the light information.

With the above sequence of operations, the polarization control optical switches direct the light information input from a plurality of input light paths to respectively selected output light paths.

A plurality of such polarization optical switches are combined to implement the polarization control optical space switch of the present invention.

According to the polarization control optical space switch of the invention, when light information input from a plurality of input light paths is to be output on respectively selected output light paths, light information input from any input light path can be output on a selected output light path by controlling only one polarization control optical switch.

Furthermore, provisions are made so that any light

information input into the polarization control optical space switch is passed through the same number of switch elements regardless of the path set for it.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 is a diagram showing the basic configuration of the polarization control optical space switch according to the present embodiment.
 - Fig. 2 is a diagram showing the functional configuration of the polarization control optical space switch according to the present embodiment.
 - Fig. 3 is a diagram showing the hardware configuration of a polarization control optical switch according to Embodiment 1.
- Fig. 4(a) shows an operational example (1) in Embodiment 1.
 - Fig. 4(b) shows an operational example (2) in
 Embodiment 1.
- Fig. 5 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 1.
 - Fig. 6 is a diagram showing an alternative configuration of the polarization control optical space switch in Embodiment 1.
- Fig. 7 is a diagram showing the hardware

 25 configuration of a polarization control optical switch according to Embodiment 2.

- Fig. 8 is a diagram showing the hardware configuration of a polarization control optical switch according to Embodiment 3.
- Fig. 9 is a diagram showing the hardware

 5 configuration of a polarization control optical space switch according to Embodiment 3.
 - Fig. 10 is a diagram showing the hardware configuration of a polarization control optical switch according to Embodiment 4.
- Fig. 11 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 4.
- Fig. 12 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 5.
 - Fig. 13 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 6.
- Fig. 14 is a diagram showing the hardware

 20 configuration of a polarization control optical space
 switch according to Embodiment 7.
 - Fig. 15 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 8.
- Fig. 16 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 9.

Fig. 17 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 10.

Fig. 18 is a diagram showing the hardware

5 configuration of a polarization control optical space
switch according to Embodiment 11.

Fig. 19 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 12.

10 Fig. 20 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 13.

Fig. 21 is a diagram showing the hardware configuration of a polarization control optical space switch according to Embodiment 14.

Fig. 22 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 15.

Fig. 23 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 16.

Fig. 24 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 17.

Fig. 25 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 18.

Fig. 26 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 19.

Fig. 27 is a diagram showing connections between switches in the space-division optical switching network.

Fig. 28 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 20.

Fig. 29 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 21.

Fig. 30 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 22.

Fig. 31 is a diagram showing the basic configuration of a prior art polarization control optical space switch.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

20 [EMBODIMENT]

15

25

(Basic configuration of the polarization control optical space switch)

Fig. 1 is a diagram showing the basic configuration of the polarization control optical space switch of the present embodiment.

This polarization control optical space switch is an implementation of an optical space switch having four

inputs and four outputs, and comprises four polarization control optical switches 1 in cascade, each having four inputs and four outputs.

Each polarization control optical switch 1 comprises

a polarization controller 1a and a light path routing
element 1b.

The polarization controller 1a consists of four polarization control elements, one for each of light paths #0 - #3.

10 Each polarization control element, when deenergized, rotates the polarizing direction of incident light information through 90°, and when energized, allows the incident light information to pass through it without change in its polarizing direction.

The light path routing element 1b routes the light information input, from the polarization controller 1a, to an appropriate output light path according to the polarizing direction of the light information.

The operation of the polarization control optical space switch will now be described with reference to Fig. 2.

Fig. 2 shows the functional configuration of a polarization control optical space switch (pi-loss type switch module) subsumed under the present invention.

As shown, the polarization control optical space switch has a four-input, four-output configuration.

This polarization control optical space switch comprises

10

15

20

25

16 switch elements S00 - S33 arranged as a matrix of four rows and four columns (hereinafter called a 4 x 4 matrix). Each of the switch elements, S00 - S33, corresponds to one polarization control element in each polarization controller 1a. The switch elements, S00 - S33, are crossbar switch elements. Each switch element, in the normal deenergized state, is put in the cross state.

When performing light path switching, a voltage is applied to an appropriate switch element selected from SOO - S33, to cause it to change from the cross state to the bar state (through state).

For example, when light information from an input light path #i is to be directed to an output light path #j, a voltage is applied to a switch element Sij located at a crosspoint where the input light path #i and output light path #j intersect. This causes the switch element Sij to change from the cross state to the bar state. a specific example, when the light information from the input light path #0 is to be directed to the output light path #2, a voltage is applied to the switch element So2 located at a cross point where the input light path #0 and output light path #2 intersect. application of the voltage, the switch element S_{02} is caused to change from the cross state to the bar state. In this state, the light information is passed through the switch elements, S_{02} , S_{12} , S_{32} , and S_{22} , in this order,

and is output onto the output light path #2.

Similarly, if the light information from the input light path #2 is to be directed to the output light path #1, voltage should be applied to the switch element S_{21} . Upon application of the voltage, the switch element S_{21} is caused to change from the cross state to the bar state. In this state, the light information is passed through the switch elements, S_{20} , S_{21} , S_{01} , and S_{11} , in this order, and is output onto the output light path #1.

In this manner, light path switching can be accomplished just by controlling only one switch element, and along any path thus set, the light information passes through four switch elements. serves to suppress variations in the light information loss and crosstalk, making it possible to perform control for light information amplification and crosstalk reduction in a uniform and simplified manner.

In the case of a polarization control optical space switch comprising m2 switch elements, S00 - Smm, arranged as a matrix of m rows and m columns, light path switching can be achieved by applying a voltage to a single switch element selected from SOO - Smm. polarization control optical space switch, light information passes through m switch elements along any path.

The hardware configuration of the polarization control optical switch implementing the above functional

10

5

15

20

25

15

20

25

configuration will be described below.

[Embodiment 1]

(Hardware configuration of the polarization control optical switch)

Fig. 3 shows the hardware configuration of a polarization control optical switch according to Embodiment 1.

The polarization control optical switch 1 shown in Fig. 3 is a hardware implementation of m switch elements arranged in each column in an m (rows) x m (columns) matrix in the functional configuration shown in Fig. 2.

The polarization control optical switch 1 comprises a light path routing element 1b and a polarization controller 1a placed on the input side of the light path routing element 1b.

The polarization controller la performs two functions: one is to transmit incident light information without change in its polarizing direction; and the other is to rotate its polarizing direction through 90° for output. Switching between these two functions is accomplished by the presence or absence of voltage application. For example, the polarization controller la may be so configured that when no voltage is applied, the incident light information is transmitted without change in its polarizing direction, and when voltage is applied, the polarizing direction is rotated through 90° during the passage through the polarization controller

10

15

20

25

Alternatively, the polarization controller la may be so configured that when no voltage is applied, the polarizing direction of incident light information is rotated through 90°, and when voltage is applied, the light information is transmitted without change in its polarizing direction. In the case of the polarization controller la used in the polarization control optical switch 1 shown in Fig. 3, the polarizing direction of incident light information is rotated through 90° when no voltage is applied, while when voltage is applied, the incident light information is transmitted without change in its polarizing direction. Further, the polarization controller la comprises polarization control elements, PLCO - PLCm-1, the number of which is equal to the number (m) of input light paths .

The light path routing element 1a comprises a polarization splitter 2, a reflected-side $\lambda/4$ wavelength plate 3, a reflected-side reflection block 5, a transmitted-side $\lambda/4$ wavelength plate 4, and a transmitted-side reflection block 6.

The polarization splitter 2 transmits the light information (p-polarized light) whose polarizing direction is parallel to the plane of incidence, and reflects the light information (s-polarized light) whose polarizing direction is perpendicular to the plane of incidence.

The reflected-side $\lambda/4$ wavelength plate 3 is placed

10

15

20

25

on the output side of the light information reflected from the polarization splitter 2. The reflected-side $\lambda/4$ wavelength plate 3 has the function of rotating the polarizing direction of the incident light information through $\pi/4$ and directing it to the reflected-side reflection block 5.

The reflected-side reflection block 5 is located rearwardly of the reflected-side $\lambda/4$ wavelength plate 3. The reflected-side reflection block 5 has a shape designed to reflect the incident light from any light path into an adjacent light path. For example, the incident light information from the first-stage light path is reflected into the second-stage light path adjacent to it, the incident light information from the second-stage light path is reflected into the first-stage light path, the incident light information from the third-stage light path is reflected into the fourth-stage light path adjacent to it, and the incident light information from the fourth-stage light path is reflected into the third-stage light path is reflected into the third-stage light path.

The transmitted-side $\lambda/4$ wavelength plate 4 is placed on the output side of the light information transmitted by the polarization splitter 2. The transmitted-side $\lambda/4$ wavelength plate 4 has the function of rotating the polarizing direction of the incident light information through $\pi/4$ and directing it to the transmitted-side reflection block 6.

The transmitted-side reflection block 6 is located on the output side of the transmitted-side $\lambda/4$ wavelength plate 4. The transmitted-side reflection block 6 has a shape designed to reflect the incident 5 light from the uppermost and lowermost light paths back into the same light paths as the input paths, and reflect the incident light from any other light path into an adjacent light path. For example, the transmitted-side reflection block 6 reflects the 10 incident light information from the first-stage light path back into the first-stage light path, the same path as the input light path, and the incident light information from the fourth-stage light path back into the fourth-stage light path, the same path as the input 15 light path. Further, the transmitted-side reflection block 6 reflects the incident light information from the second-stage light path into the third-stage light path, and the incident light information from the third-stage light path into the second-stage light path.

20 (Operation of the polarization control optical switch)

The operation of the polarization control optical switch 1 will be described below, taking an example when m=4.

In the normal deenergized state, the polarization control elements, PLCO - PLC3, rotate the p-polarized light input from the respective input light paths, #0 -

20

#3, to convert it into s-polarized light, which is then input into the polarization splitter 2 (see Fig. 4(a)).

The polarization splitter 2 reflects the s-polarized light input from any of the input light paths #0 - #3.

5 The light information thus reflected by the polarization splitter 2 enters the reflected-side reflection block 5 via the reflected-side $\lambda/4$ wavelength plate 3.

The reflected-side reflection block 5 shifts the

light path for the light information by one light path
and reflects the incident light into an adjacent light
path.

The light information reflected by the reflected-side reflection block 5 is again passed through the reflected-side $\lambda/4$ wavelength plate 3 before entrance into the polarization splitter 2.

Since the light information is passed through the reflected-side $\lambda/4$ wavelength plate 3 twice during the round trip, the polarizing direction of the light information is rotated and converted from s-polarized light into p-polarized light.

The light information converted from s-polarized light to p-polarized light is transmitted through the polarization splitter 2 for output.

In Fig. 3, the incident light from the input light path #0 is output on the output path #1', the incident light from the light path #1 is output on the output

10

15

20

25

path #0', the incident light from the light path #2 is output on the output light path #3, and the incident light from the input light path #3 is output on the output light path #2'. The polarization control optical switch 1 corresponds to the 4 switch element array in the first column in the functional configuration shown in Fig. 2.

In the functional configuration shown in Fig. 2, switching the light information from the input light path #0 to the output light path #2 is accomplished by voltage-controlling the switch element SO2, but in the actual hardware configuration, this is done by voltage-controlling the polarization control element PLCO. With this voltage control, the polarization control element PLCO transmits the incident light information without rotating its polarizing direction, i.e, the p-polarized light is input into the polarization splitter 2 with its p-polarization state retained.

The polarization splitter 2 transmits the p-polarized light incident from the polarization control element PLCO, for input into the transmitted-side $\lambda/4$ wavelength plate 4.

The transmitted-side $\lambda/4$ wavelength plate 4 rotates the polarizing direction of the p-polarized light through 1/4 π , for input into the transmitted-side reflection block 6.

Since the transmitted-side reflection block 6

10

15

20

reflects the light information incident along the input light path #0, the uppermost light path, without shifting its light path, the light information is fed back into the input path #0.

The light information reflected by the transmitted-side reflection block 6 is again passed through the transmitted-side $\lambda/4$ wavelength plate 4 before entrance into the polarization splitter 2. Since the light information is passed through the transmitted-side $\lambda/4$ wavelength plate 4 twice during the round trip, the information light is rotated and converted from p-polarized light into s-polarized light. The light information is then reflected by the polarization splitter 2 and output onto the output light path #0'. This output path corresponds to the dotted line shown in

the switch element SO2 in Fig. 2.

Thus, in the polarization control optical switch 1,

by applying a voltage to a designated polarization control element selected from PLCO - PLC3, the light information incident from each of the four input paths can be directed to a desired output light path.

(Hardware configuration of the polarization control optical space switch)

Fig. 5 shows the hardware configuration of a

25 polarization control optical space switch corresponding
to the functional configuration shown in Fig. 2.

This polarization control optical space switch is

interposed between four input light paths and four output light paths, and comprises four polarization control optical switches 1A, 1B, 1C, and 1D.

The polarization control optical switch 1A is an implementation of the four-stage switch element array arranged in the first column in Fig. 2, the polarization control optical switch 1B is an implementation of the four-stage switch element array arranged in the second column in Fig. 2, the polarization control optical 10 switch 1C is an implementation of the four-stage switch element array arranged in the third column in Fig. 2, and the polarization control optical switch 1D is an implementation of the four-stage switch element array arranged in the fourth column in Fig. 2.

15 The polarization control optical switches 1A and 1C each have the same configuration as that of the polarization control optical switch 1 shown in Fig. 3.

The reflected-side reflection block 5 in the polarization control optical switch 1B has the same shape as that of the transmitted-side reflection block 6 in the polarization control optical switch 1A.

Also, the transmitted-side reflection block 6 in the polarization control optical switch 1B has the same shape as that of the reflected-side reflection block 5 in the polarization control optical switch 1A.

The function of the polarization control optical switch 1D in the fourth column is just to transmit the

20

25

5

15

20

incident light through it; therefore, the light path routing element 1b in it consists only of a polarization splitter 2.

(Operation of the polarization control optical space 5 switch)

The operation of the polarization control optical space switch of Embodiment 1 will be described below.

When the light information from the input light path #0 is to be directed to the output light path #2, for example, voltage is applied to the polarization control element PLCO, corresponding to the input light path #0, in the polarization control optical switch 1A. In this situation, the polarization control element PLCO allows the p-polarized light information input along the input light path #0 to pass through with its p-polarization state retained, for input into the polarization splitter 2. The polarization splitter 2 allows the p-polarized light incident along the input light path #0 to pass through it and enter the transmitted-side $\lambda/4$ wavelength plate 4.

The transmitted-side $\lambda/4$ wavelength plate 4 rotates the polarizing direction of the p-polarized light through 1/4 π , and passes the output light to the transmitted-side reflection block 6.

25 The transmitted-side reflection block 6 reflects the p-polarized light from the input light path #0 back into the same light path #0 without shifting its light path.

The light reflected back into the light path #0 is once again passed through the transmitted-side $\lambda/4$ wavelength plate 4 and thus converted into s-polarized light.

The s-polarized light exiting the transmitted-side $\lambda/4$ wavelength plate 4 enters the polarization splitter 2 which reflects the s-polarized light into the light path #0'.

The s-polarized light reflected into the light path

#0' enters the polarization controller 1a of the

polarization control optical switch 1B, where it is

converted into p-polarized light before entrance into

the polarization splitter 2.

The polarization splitter 2 transmits the p- polarized light to the transmitted-side $\lambda/4$ wavelength plate 4.

The transmitted-side $\lambda/4$ wavelength plate 4 rotates the polarizing direction of the p-polarized light through 1/4 π , and passes the output light to the transmitted-side reflection block 6.

The transmitted-side reflection block 6 reflects the light information incident along the light path #0' into the light path #1'. The reflected light enters the transmitted-side $\lambda/4$ wavelength plate 4.

The transmitted-side $\lambda/4$ wavelength plate 4 rotates the polarizing direction of the light information through 1/4 π , thereby converting the light information

20

into s-polarized light.

The s-polarized light is reflected by the polarization splitter 2 and is output onto the light path #1''.

Next, in the polarization control optical switch 1C, the s-polarized light incident from the light path #1'' is converted by the polarization controller 1a into p-polarized light.

The light information converted to the p-polarized light enters the polarization splitter 2.

The polarization splitter 2 transmits the p-polarized light to the transmitted-side $\lambda/4$ wavelength plate 4.

The transmitted-side $\lambda/4$ wavelength plate 4 rotates the polarizing direction of the p-polarized light through 1/4 π , and passes the output light to the transmitted-side reflection block 6.

The transmitted-side reflection block 6 reflects the light information incident along the light path #1'' into the light path #2".

The reflected light information is passed by the light path #2" and once again enters the transmitted-side $\lambda/4$ wavelength plate 4.

The transmitted-side $\lambda/4$ wavelength plate 4 rotates the polarizing direction of the light information through 1/4 π , thereby converting the light information into s-polarized light. The s-polarized light once

10

15

20

25

again enters the polarization splitter 2.

The polarization splitter 2 reflects the s-polarized light incident along the light path #2" into the light path #02.

The s-polarized light output on the light path #02 enters the polarization control optical switch 1D.

In the polarization control optical switch 1D, the polarization controller 1a converts the s-polarized light incident along the light path #02 into p-polarized light, which is input into the polarization splitter 2.

The polarization splitter 2 transmits the ppolarized light incident along the light path #02 and
output it on the output light path #2. The incident
light from the input light path #0 is thus output on the
output light path #2.

Likewise, when the incident light from the input light path #2 is to be directed to the output light path #3, the switch element S23 in Fig. 2 should be controlled by voltage application. This switch element is located at the third column in the fourth row in the polarization optical space switch shown in Fig. 2, which means that, in the case of the polarization control optical space switch in Fig. 5, the voltage should be applied to the polarization controller PLC3 in the polarization control optical switch 1C.

As described, according to Embodiment 1, when light information incident from an input light path is to be

10

15

directed to a desired light path, voltage should be applied to only one polarization controller.

Furthermore, since all light information always passes through the same number (m) of polarization control optical switches, 1A, 1B, 1C, and 1D (hereinafter collectively referred to as the polarization control optical switch 1), regardless of the path set up between the input and output paths, the amount of loss due to transmission through the polarization control optical switch 1 and the value of crosstalk are kept constant.

(Alternative hardware configuration of the polarization control optical space switch)

Fig. 6 shows an alternative configuration of the polarization control optical space switch corresponding to the functional configuration shown in Fig. 2.

The polarization control optical space switch shown is interposed between four input light paths and four output light paths, and comprises three polarization control optical switches 1A, 1B, and 1C.

The polarization control optical switches, 1A, 1B, and 1C, respectively, are identical in configuration to the polarization control optical switches, 1A, 1B, and 1C, shown in Fig. 5.

That is, in the polarization control optical space

25 switch shown in Fig. 5, the polarization control optical switch 1D placed in the fourth column is only provided to transmit the light information incident from the

polarization control optical switch 1C. Accordingly, the polarization control optical switch 1D may be omitted.

The operation of this polarization control optical space switch is the same as that of the polarization control optical space switch shown in Fig. 5, and therefore, description thereof is not repeated here.

[Embodiment 2]

5

15

20

25

(Hardware configuration of the polarization control optical switch)

Fig. 7 shows the configuration of a polarization control optical switch 1 according to Embodiment 2.

The polarization control optical switch 1 has eight input light paths and eight output light paths.

The light path routing element 1b of this polarization control optical switch 1 comprises: a polarization splitter 20 which transmits p-polarized light and reflects s-polarized light; a reflected-side $\lambda/4$ wavelength plate 30 placed on the output side of light information reflected by the polarization splitter 20; a reflected-side reflection block 50 placed on the output side of the reflected-side $\lambda/4$ wavelength plate 30; a transmitted-side $\lambda/4$ wavelength plate 40 placed on the output side of light information transmitted by the polarization splitter 20; and a transmitted-side reflection block 60 placed on the output side of the transmitted-side $\lambda/4$ wavelength plate 40.

The polarization controller 1a of the polarization control optical switch 1 comprises eight polarization control elements PLCO - PLC7. The polarization control elements, PLCO - PLC7, are so set that when no voltage is applied, p-polarized light is converted into spolarized light, while when voltage is applied, ppolarized light is transmitted with its p-polarization state retained.

The polarization splitter 20 reflects s-polarized light, while allowing p-polarized light to pass through.

The transmitted-side $\lambda/4$ wavelength plate 40 and reflected-side $\lambda/4$ wavelength plate 30 each have the function of rotating the polarizing direction of light information through $\pi/4$.

The transmitted-side reflection block 60 has a shape designed to reflect light information incident along the uppermost light path (light path #0 in the first column) and lowermost light path (light path #7 in the eighth column) back into the same light paths that the light information entered (i.e., the light information incident along the light path #0 is reflected back into the light path #0, and the light information from the light path #7 back into the light path #7), and to reflect light information incident along other light

25 paths (light paths #1 - #6) into respectively adjacent light paths. More specifically, the shape of the transmitted-side reflection block 60 is such that the

5

10

15

20

10

15

20

25

light information incident along the light path #1 in the second column is reflected into the light path #2 in the third column adjacent to it, the light information incident along the light path #2 in the third column is reflected into the light path #1 in the second column adjacent to it, the light information incident along the light path #3 in the fourth column is reflected into the light path #4 in the fifth column adjacent to it, the light information incident along the light path #4 in the fifth column is reflected into the light path #3 in the fourth column adjacent to it, the light information incident along the light path #5 in the sixth column is reflected into the light path #6 in the seventh column adjacent to it, and the light information incident along the light path #6 in the seventh column is reflected into the light path #5 in the sixth column adjacent to it.

On the other hand, the reflected-side reflection block 50 has a shape designed to reflect light information incident along any light path into a light path adjacent to it. That is, the shape of the reflected-side reflection block 50 is such that the light information incident along the light path #0 in the first column is reflected into the light path #1 in the second column adjacent to it, the light information incident along the light path #1 in the second column is reflected into the light path #1 in the second column is

10

15

20

adjacent to it, the light information incident along the light path #2 in the third column is reflected into the light path #3 in the fourth column adjacent to it, the light information incident along the light path #3 in the fourth column is reflected into the light path #2 in the third column adjacent to it, the light information incident along the light path #4 in the fifth column is reflected into the light path #5 in the sixth column adjacent to it, the light information incident along the light path #5 in the sixth column is reflected into the light path #4 in the fifth column adjacent to it, the light information incident along the light path #6 in the seventh column is reflected into the light path #7 in the eighth column adjacent to it, and the light information incident along the light path #7 in the eighth column is reflected into the light path #6 in the seventh column adjacent to it.

By arranging eight such polarization control optical switches 1 in cascade, a polarization control optical space switch having eight inputs and eight outputs can be constructed.

[Embodiment 3]

(Hardware configuration of the polarization control optical switch)

25 Fig. 8 shows the hardware configuration of a polarization control optical switch according to Embodiment 3.

10

15

20

25

This polarization control optical switch has four inputs and four outputs.

As in Embodiment 1, the polarization control optical switch 1 comprises a polarization controller 1a and a light path routing element 1b.

The polarization controller la works to rotate, or not rotate, the polarizing direction of incident light through 90°, depending on the presence or absence of voltage application. More specifically, the polarization controller la consists of polarization control elements, PLCO - PLC3, the number of which is equal to the number of input light paths. Each of the polarization control elements, PLCO - PLC3, works to rotate, or not rotate, the polarizing direction of incident light information through 90°, depending on the presence or absence of voltage application.

For example, in the configuration of Fig. 8, the polarization control elements PLCO and PLC2, placed in the light paths #0 and #1 respectively, work to rotate the polarizing direction of incident light information through π/2 when no voltage is applied to them. That is, with no voltage applied, the polarization control elements, PLCO and PLC2, each work to convert p-polarized light into s-polarized light and vice versa. On the other hand, when voltage is applied, the polarization control elements, PLCO and PLC2, do not rotate the polarizing direction of incident light

20

information. That is, with voltage applied, the polarization control elements, PLCO and PLC2, each work to transmit p-polarized light with its p-polarization state retained and s-polarized light with its s-polarization state retained.

The polarization control elements PLC1 and PLC3,

placed in the light paths #1 and #3 respectively, work

to output p-polarized light with its p-polarization

state retained, and s-polarized light with its s
polarization state retained, when no voltage is applied

to them. When voltage is applied, the polarization

control elements, PLC1 and PLC3, each work to convert p
polarized light into s-polarized light and vice versa.

The light path routing element 1b is provided to

implement the cross connections between the rows and
columns of switch elements in the functional
configuration shown in Fig. 2.

The light path routing element 1b comprises a polarized light downward routing element 7, a polarized light upward routing element 8 and a $\lambda/2$ wavelength plate array 9 interposed between them.

The polarized light routing elements 7 and 8 in Embodiment 3 are each constructed from a birefringent panel formed from calcite or the like.

The polarized light downward routing element 7
transmits incident light information in the rectilinear
forward direction when the light information is p-

10

15

20

25

polarized light, and diffracts incident light information toward the light path one path downward when the light information is s-polarized light. More specifically, when p-polarized light is incident along a light path #i, the polarized light downward routing element 7 outputs the p-polarized light on the light path #i, and when s-polarized light is incident along the light path #i, outputs the s-polarized light on the light path #i, outputs the s-polarized light on the

By contrast, the polarized light upward routing element 8 transmits incident light information in the rectilinear forward direction when the light information is p-polarized light, and diffracts incident light information toward the light path one path upward when the light information is s-polarized light. More specifically, when p-polarized light is incident along the light path #i, the polarized light upward routing element 8 outputs the p-polarized light on the light path #i, and when s-polarized light is incident along the light path #i, outputs the s-polarized light on the light path #i, outputs the s-polarized light on the light path #(i-1).

The $\lambda/2$ wavelength plate array 9 has a width equivalent to five light paths, and consists of light-transmitting members on top and bottom, and a $\lambda/2$ wavelength plate sandwiched between these light-transmitting members and having a width equivalent to three light paths. The top light transmitting member is

15

located in the light path #0, and the $\lambda/2$ wavelength plate in the light paths #1 - #3.

The light-transmitting members are each formed from glass or like material, through which incident light information is transmitted without change in its polarizing direction.

The $\lambda/2$ wavelength plate is an element through which the polarizing direction of incident light information is rotated through $\pi/2$. More specifically, when the incident light information is p-polarized light, the $\lambda/2$ 10 wavelength plate rotates this light information so that it emerges as s-polarized light. Furthermore, when the incident light information is s-polarized light, the $\lambda/2$ wavelength plate rotates this light information so that it emerges as p-polarized light.

(Operation of the polarization control optical switch)

The operation of the polarization control optical switch will be described below.

- 20 With no voltage applied to the polarization controller la, when p-polarized light is input along the input light path #0, the polarization control element PLCO rotates the p-polarized light so that it emerges as s-polarized light.
- The s-polarized light output from the polarization 25 control element PLCO enters the polarized light downward routing element 7.

20

25

The polarized light downward routing element 7 shifts the light path for the s-polarized light downward by one path, i.e., to the light path #1 for output.

The s-polarized light output on` the light path #1 by the polarized light downward routing element 7 enters the $\lambda/2$ wavelength plate array 9.

The $\lambda/2$ wavelength plate array 9 rotates the spolarized light so that it emerges as p-polarized light.

The p-polarized light output from the $\lambda/2$ wavelength plate array 9 enters the polarized light upward routing element 8.

The polarized light upward routing element 8 transmits the p-polarized light incident along the light path #1 in the rectilinear forward direction. Thus, when no voltage is applied to the polarization control element PLCO, the p-polarized light input from the light path #0 is output on the light path #1.

Next, switch operation will be described below for the case in which voltage is applied to the polarization control element PLCO.

The p-polarized light incident along the light path #0 enters the polarization control element PLCO.

The polarization control element PLCO, with voltage applied to it, transmits the p-polarized light without changing its p-polarization state.

The p-polarized light output from the polarization control element PLCO enters the polarized light downward

25

routing element 7.

The polarized light downward routing element 7 transmits the incident p-polarized light in the rectilinear forward direction.

The p-polarized light output from the polarized light downward routing element 7 enters the uppermost light path in the $\lambda/2$ wavelength plate array 9.

The $\lambda/2$ wavelength plate array 9 allows the p-polarized light incident along the uppermost light path to pass through it with its polarizing direction retained.

The p-polarized light output from the $\lambda/2$ wavelength plate array 9 is input to the polarized light upward routing element 8.

15 The polarized light upward routing element 8
transmits the incident p-polarized light in the
rectilinear forward direction. Thus, when voltage is
applied to the polarization control element PLCO, the ppolarized light input from the light path #0 is output
20 on the light path #0.

Thus, by controlling the voltage application to each of the polarization control elements PLCO - PLC3, light information entered from any of the light paths #0 - #3 can be output on a desired light path selected from #0 - #3.

(Configuration of the polarization control optical space switch)

15

20

25

The configuration of a polarization control optical space switch will be described below which employs the polarization control optical switch 1 of Embodiment 3.

Fig. 9 shows the configuration of the polarization control optical space switch according to Embodiment 3.

This polarization control optical space switch comprises four polarization control optical switches, 1A, 1B, 1C, and 1D, in cascade, thereby implementing a four-input, four-output optical space switch.

The polarization control optical switch 1A, located at the first stage as viewed from the input side, is identical in configuration to the polarization control optical switch 1 shown in Fig. 8.

The polarization control optical switches 1B and 1C, located at the second and third stages respectively, differ from the polarization control optical switch 1A in the setting of the polarization controller 1a. More specifically, the polarization controller 1a in the polarization control optical switch 1A is so set that when no voltage is applied, the polarization control element PLC1 positioned in the light path #1 and the polarization control element PLC3 positioned in the light path #3 transmit incident light information without changing its polarizing direction, whereas in the second-stage and third-stage polarization control optical switches 1B and 1C, all the four polarization control elements PLCO - PLC3 are so set as to rotate p-

10

15

20

polarized light to convert it to s-polarized light and vice versa, when no voltage is applied.

The polarization control optical switch 1D at the fourth stage comprises a polarization controller 1a and a polarized light downward routing element 7. In the polarization controller 1a, the polarization control element PLCO positioned in the light path #0 and the polarization control element PLC2 positioned in the light path #2 are so set as to transmit p-polarized light as p-polarized light, and s-polarized light as s-polarized light, when no voltage is applied. On the other hand, when voltage is applied, the polarization control elements PLCO and PLC2 rotate p-polarized light to convert it to s-polarized light and vice versa.

The polarization control element PLC1 positioned in the light path #1 and the polarization control element PLC3 positioned in the light path #3 are so set as to rotate p-polarized light to convert it to s-polarized light and vice versa, when no voltage is applied. On the other hand, when voltage is applied, the polarization control elements PLC1 and PCL3 transmit p-polarized light as p-polarized light and s-polarized light as s-polarized light.

The polarized light downward routing element 7 has

the function of transmitting light information, entering along the light paths #0 - #3, through to the respective light paths #0 - #3 when the polarizing direction of the

light information is p-polarization.

(Operation of the polarization control optical space switch)

The operation of the polarization control optical space switch will be described below.

It is assumed that in the polarization control optical space switch of this embodiment, all light information input along the input light paths #0 - #3 is p-polarized light.

The following description deals specifically with a case in which a path is set up between the input light path #0 and the output light path #1.

To set up a path between the input light path #0 and the output light path #1, voltage should be applied to the switch element SO1 located at the third column in the third row in the functional configuration shown in Fig. 2.

In this embodiment, this means that voltage should be applied to the polarization control element PLC2 (indicated by hatching in Fig. 9) in the polarization control optical switch 1C located at the third stage of the polarization control optical space switch.

This polarization control element PLC2, when in the energized state, transmits p-polarized light as p-polarized light and s-polarized light as s-polarized light.

Light information incident along the light path #0

20

25

15

20

first enters the polarization control optical switch 1A at the first stage.

In the first-stage polarization control optical switch 1A, the light information incident along the light path #0 enters the polarization control element PLCO.

The polarization control element PLCO rotates the light information to convert it from p-polarized light to s-polarized light.

The light information output from the polarization control element PLCO enters the light path routing element 1b.

In the light path routing element 1b, the light information from the light path #0 is routed to the light path #1 by the polarized light downward routing element 7.

The light information output from the polarized light downward routing element 7 is passed along the light path #1 and enters the $\lambda/2$ wavelength plate array 9.

The $\lambda/2$ wavelength plate array 9 rotates the polarizing direction of the light information to convert it from s-polarized light to p-polarized light, which is input to the polarized light upward routing element 8.

The polarized light upward routing element 8 allows the light information to travel straight ahead along the light path #1.

The light information passed along the light path #1 then enters the polarization control optical switch 1B at the second stage.

In the second-stage polarization control optical switch 1B, the light information from the light path #1 enters the polarization control element PLC1.

The polarization control element PLC1 rotates the light information (p-polarized light) incident along the light path #1, to convert it to s-polarized light, which is input to the light path routing element 1b.

In the light path routing element 1b, the light information from the light path #1 enters the polarized light downward routing element 7.

The polarized light downward routing element 7 routes the light information from the light path #1 to the light path #2 prior to input to the $\lambda/2$ wavelength plate array 9.

The $\lambda/2$ wavelength plate array 9 rotates the light information (s-polarized light) incident along the light path #2, to convert it to p-polarized light, which is input to the polarized light upward routing element 8.

The polarized light upward routing element 8 transmits the light information (p-polarized light) along the light path #2 without changing its light path.

The light information (p-polarized light) output along the light path #2 from the second-stage polarization control optical switch 1B enters the

25

20

10

10

20

polarization control optical switch 1C at the third stage.

In the third-stage polarization control optical switch 1C, the light information incident along the light path #2 enters the polarization control element PLC2 that is placed under voltage control.

The polarization control element PLC2, placed in the energized state, transmits the incident light information (p-polarized light), with its p-polarization state retained, to the light path routing element 1b.

In the light path routing element 1b, the light information enters the polarized light downward routing element 7.

The polarized light downward routing element 7 transmits the light information (p-polarized light) along the light path #2 to the $\lambda/2$ wavelength plate array 9 without changing its light path.

The $\lambda/2$ wavelength plate array 9 rotates the light information (p-polarized light) incident along the light path #2, to convert it to s-polarized light, which is input to the polarized light upward routing element 8.

The polarized light upward routing element 8 routes the light information (s-polarized light) from the light path #2 to the light path #1 for output.

The light information (s-polarized light) output along the light path #1 from the third-stage polarization control optical switch 1C enters the

15

20

polarization control optical switch 1D at the fourth stage.

In the fourth-stage polarization control optical switch 1D, the light information incident along the light path #1 enters the polarization control element PLC1.

The polarization control element PLC1 rotates the light information (s-polarized light) incident along the light path #1, to convert it to p-polarized light, which is input to the polarized light downward routing element 7.

The polarized light downward routing element 7 transmits the light information (p-polarized light) along the light path #1, so that the light information is output on the output light path #1.

Thus, a path has been set up between the input light path #0 and the output light path #1.

As described, according to the polarization control optical space switch of Embodiment 3, the path setup between an input light path #i and an output light path #j can be accomplished by controlling only one polarization control element PLC.

[Embodiment 4]

(Hardware configuration of the polarization control optical switch)

Fig. 10 shows the configuration of a polarization control optical switch according to Embodiment 4.

15

20

25

The polarization control optical switch 1 shown has four inputs and four outputs, and is designed to set up a path for light information which entered as p-polarized light.

5 The polarization control optical switch 1 comprises a polarization controller 1a and a light path routing element 1b.

As in the foregoing Embodiment 3, the polarization controller la consists of four polarization control elements PLCO - PLC3. In the polarization controller 1a shown here, the polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to transmit incident light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of incident light information through 90° when voltage is applied. On the other hand, the polarization control elements PLC1 and PCL3, positioned in the light paths #1 and #3 respectively, are so set as to rotate the polarizing direction through 90° when no voltage is applied, and to transmit the incident light without rotating its polarizing direction when voltage is applied.

The light path routing element 1b consists of a polarized light upward routing element 70, a $\lambda/2$ wavelength plate array 9, and a polarized light downward routing element 80, coupled in cascade in this order

from the input side.

5

10

15

20

The polarized light upward routing element 70 transmits incident light information in the rectilinear forward direction when the polarizing direction of the light information is p-polarization, and diffracts incident light information toward the light path one path upward when the polarizing direction of the light information is s-polarization.

By contrast, the polarized light downward routing element 80 diffracts incident light information toward the light path one path downward when the polarizing direction of the light information is s-polarization, and transmits incident light information in the rectilinear forward direction, without diffracting it, when the polarizing direction of the light information is p-polarization.

The $\lambda/2$ wavelength plate array 9 consists of light-transmitting members on top and bottom, each equivalent to one-light-path width, and a $\lambda/2$ wavelength plate equivalent to three-light-path width, sandwiched between the light-transmitting members. The top light-transmitting member is located in the light path #0, and the $\lambda/2$ wavelength plate of three-light-path width in the light paths #1 - #3.

The polarized light upward routing element 70 and the polarized light downward routing element 80 are each constructed from a birefringent plate, as in the

20

foregoing Embodiment 3.

(Configuration of the polarization control optical space switch)

The configuration of a polarization control optical space switch will be described below which employs the polarization control optical switch 1 of Embodiment 4.

Fig. 11 shows the configuration of the polarization control optical space switch according to Embodiment 4.

This polarization control optical space switch

comprises four polarization control optical switches,

la, lb, lc, and ld, in cascade, thereby implementing a

four-input, four-output optical space switch.

The polarization control optical switch 1A, located at the first stage as viewed from the input side, is identical in configuration to the polarization control optical switch 1 shown in Fig. 10.

The polarization control optical switches 1B and 1C, located at the second and third stages respectively, include polarization control elements PLCO - PLC3, each of which rotates the polarizing direction of incident light information through 90° when no voltage is applied, and transmits incident light information without rotating its polarizing direction when voltage is applied.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a and a polarized light upward routing element 70.

25

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3, respectively. The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, rotate the polarizing direction of light information through $\pi/2$ when no voltage is applied, but transmit light information without rotating its polarizing direction when voltage is applied.

The polarized light upward routing element 70 has the function of transmitting light information, incident along the light paths #0 - #3, through to the respective light paths #0 - #3 when the polarizing direction of the light information is p-polarization.

The operation of this polarization control optical space switch is the same as that of the foregoing Embodiment 3, and therefore, description thereof is not repeated here.

[Embodiment 5]

20 (Configuration of the polarization control optical space switch)

Fig. 12 shows the configuration of a polarization control optical space switch according to Embodiment 5.

while the polarization control optical space switch in the foregoing Embodiment 3 is designed to set up a path for p-polarized light information, the polarization control optical space switch 1 described hereinafter is

20

25

designed to set up a path for s-polarized light information.

The polarization control optical space switch 1 comprises four polarization control optical switches, 1A - 1D, coupled in cascade, as in the foregoing Embodiment 3.

The polarization control optical switch 1A at the first stage consists of a polarization controller 1a and a light path routing element 1b.

10 As in Embodiment 3, the light path routing element 1b consists of a polarized light downward routing element 10, a λ/2 wavelength plate array 9, and a polarized light upward routing element 11. The functions of these parts are the same as those described in Embodiment 3.

The polarization controller 1a consists of polarization control elements PLCO - PLC3, one for each light path.

The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to transmit light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of light information through $\pi/2$ when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to rotate the polarizing

25

direction of light information through $\pi/2$ when no voltage is applied, and to transmit light information without rotating its polarizing direction when voltage is applied.

5 The polarization control optical switch 1B at the second stage also consists of a polarization controller 1a and a light path routing element 1b.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3, respectively. These polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of light information through π/2 when no voltage is applied, and to transmit light information without rotating its polarizing direction when voltage is applied.

The light path routing element 1b is identical in configuration to the one used in the first-stage polarization control optical switch 1A.

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a and a polarized light downward routing element 10.

The polarization controller 1a in the fourth stage consists of polarization control elements PLCO - PLC3

10

25

corresponding to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to rotate the polarizing direction of light information through $\pi/2$ when no voltage is applied, and to transmit light information without rotating its polarizing direction when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to transmit light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of light information through $\pi/2$ when voltage is applied.

The polarized light downward routing element 10 has the function of transmitting light information, incident along the light paths #0 - #3, through to the respective light paths #0 - #3 when the polarizing direction of the light information is s-polarization.

20 [Embodiment 6]

(Configuration of the polarization control optical space switch)

Fig. 13 shows the configuration of a polarization control optical space switch according to Embodiment 6.

While the polarization control optical space switch in the foregoing Embodiment 4 is designed to set up a path for p-polarized light information, the polarization

15

control optical space switch described hereinafter is designed to set up a path for s-polarized light information.

The polarization control optical space switch

5 comprises four polarization control optical switches,
1A, 1B, 1C, and 1D, coupled in cascade, as in the
foregoing Embodiment 4.

The polarization control optical switch 1A at the first stage consists of a polarization controller 1a and a light path routing element 1b.

As in Embodiment 4, the polarized light routing element 1b consists of a polarized light upward routing element 10, a $\lambda/2$ wavelength plate array 9, and a polarized light downward routing element 110. The functions of these parts are the same as those described in Embodiment 4.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to rotate the polarizing direction of light information through π/2 when no voltage is applied, and to transmit light information without rotating its polarizing direction when voltage is applied.

On the other hand, the polarization control elements

PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to transmit light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of light information through $\pi/2$ when voltage is applied.

The polarization control optical switch 1B at the second stage consists of a polarization controller 1a and a light path routing element 1b.

The polarization controller 1a consists of four polarization control elements PLCO - PLC3. These polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of input light information through π/2 when no voltage is applied, and to transmit input light information without rotating its polarizing direction when voltage is applied.

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch at the fourth stage consists of a polarization controller 1a and a polarized light upward routing element 100.

The polarization controller 1a consists of

25 polarization control elements PLCO - PLC3 corresponding
to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2,

20

5

10

15

20

positioned in the light paths #0 and #2 respectively, are so set as to transmit light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of light information through $\pi/2$ when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to rotate the polarizing direction of light information through $\pi/2$ when no voltage is applied, and to transmit light information without rotating its polarizing direction when voltage is applied.

The polarized light upward routing element 100 has the function of deflecting light information, incident along the light paths #0 - #3, through to the respective light paths #0 - #3 when the polarizing direction of the light information is s-polarization.

In Embodiments 3 to 6, the polarized light routing element has been described as being constructed from a birefringent plate. Embodiments 7 to 10 hereinafter described each deal with an example in which a polarizing beam splitter (PBS) is used as the polarized light routing element.

[Embodiment 7]

25 (Configuration of the polarization control optical space switch)

Fig. 14 shows the configuration of a polarization

10

20

25

control optical space switch according to Embodiment 7.

This polarization control optical space switch has four inputs and four outputs, and is an implementation of a switch for setting a path for light information whose polarizing direction is p-polarization, as in Embodiment 3.

The polarization control optical space switch comprises four polarization control optical switches, 1A, 1B, 1C, and 1D, in cascade, implementing a four-input, four-output optical space switch.

The polarization control optical switch 1A, located at the first stage as viewed from the input side, has four inputs and four outputs.

This polarization control optical switch 1A consists

of a polarization controller 1a and a light path routing
element 1b.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to transmit input light information without rotating its polarizing direction when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1

10

15

20

25

and #3 respectively, are so set as to transmit input light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied.

The light path routing element 1b in the first stage consists of a downward polarizing beam splitter array 12, a $\lambda/2$ wavelength plate array 9, and an upward polarizing beam splitter array 13, coupled in cascade in this order from the input side.

The downward polarizing beam splitter array 12 consists of five polarizing beam splitters. The upper four polarizing beam splitters are positioned in the light paths #0 - #3 respectively. The function of this downward polarizing beam splitter array 12 is such that when the polarizing direction of input light information is p-polarization, the light information is transmitted in the rectilinear forward direction, and when the polarizing direction of input light information is spolarization, the light information is reflected into the light path one path downward. For example, spolarized light incident along the light path #0 is reflected vertically downward by the polarizing beam splitter located in the first row. The s-polarized light is then reflected by the polarizing beam splitter in the second row and output on the light path #1.

The $\lambda/2$ wavelength plate array 9 is identical in

10

15

20

function and configuration to the one used in Embodiment 3.

The upward polarizing beam splitter array 13 consists of five polarizing beam splitters. The upper four polarizing beam splitters are positioned in the light paths #0 - #3 respectively. The function of this upward polarizing beam splitter array 13 is such that when the polarizing direction of input light information is p-polarization, the light information is transmitted in the rectilinear forward direction, and when the polarizing direction of input light information is s-polarization, the light information is reflected into the light path one path upward.

The polarization control optical switch 1B at the second stage consists of a polarization controller 1a and a light path routing element 1b.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. These polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to transmit input light information without rotating its polarizing direction when voltage is applied.

The light path routing element 1b is identical in configuration to the one used in the first-stage polarization control optical switch 1A.

10

15

20

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a and a downward routing element 7.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to transmit input light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied.

On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to transmit input light information without rotating its polarizing direction when voltage is applied.

25 The downward routing element 7 is identical in configuration to the one in the fourth-stage polarization control optical switch 1D according to

Embodiment 3. The downward routing element 7 has the function of transmitting light information, incident along the light paths #0 - #3, through to the respective light paths #0 - #3 when the polarizing direction of the light information is p-polarization.

[Embodiment 8]

5

15

25

(Configuration of the polarization control optical space switch)

Fig. 15 shows the configuration of a polarization

10 control optical space switch according to Embodiment 8.

This polarization control optical space switch has four inputs and four outputs, and is an implementation of a switch for setting a path for light information whose polarizing direction is p-polarization, as in Embodiment 4.

The polarization control optical space switch comprises four polarization control optical switches, 1A, 1B, 1C, and 1D, in cascade, implementing a four-input, four-output optical space switch.

20 The polarization control optical switch 1A, located at the first stage as viewed from the input side, has four inputs and four outputs.

This first-stage polarization control optical switch 1A consists of a polarization controller 1a and a light path routing element 1b.

The polarization controller la consists of polarization control elements PLCO - PLC3 corresponding

10

15

20

25

to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to transmit input light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to transmit input light information without rotating its polarizing direction when voltage is applied.

The light path routing element 1b in the first stage consists of an upward polarizing beam splitter array 120, a $\lambda/2$ wavelength plate array 9, and a downward polarizing beam splitter array 130, coupled in cascade in this order from the input side.

The upward polarizing beam splitter array 120 consists of five polarizing beam splitters. Of these polarizing beam splitters, the polarizing beam splitter in the second row is positioned in the light path #0, the third-row polarizing beam splitter in the light path #1, the fourth-row polarizing beam splitter in the light path #2, and the fifth-row polarizing beam splitter in the light path #3. The function of this upward

10

20

25

polarizing beam splitter array 120 is such that when the polarizing direction of input light information is p-polarization, the light information is transmitted in the rectilinear forward direction, and when the polarizing direction of input light information is s-polarization, the light information is reflected into the light path one path upward. For example, s-polarized light incident along the light path #0 is reflected vertically upward by the polarizing beam splitter located in the second row. The s-polarized light is then reflected by the polarizing beam splitter in the first row into a light path parallel to the light paths #0 - #3.

The $\lambda/2$ wavelength plate array 9 is identical in function and configuration to the one used in Embodiment 3.

The downward polarizing beam splitter array 130 consists of five polarizing beam splitters. Of these polarizing beam splitters, the lower four polarizing beam splitters are positioned in the light paths #0 - #3 respectively. The function of this downward polarizing beam splitter array 130 is such that when the polarizing direction of input light information is p-polarization, the light information is transmitted in the rectilinear forward direction, and when the polarizing direction of input light information is s-polarization, the light information is reflected into the light path one path

downward.

5

10

15

20

25

The polarization control optical switch 1B at the second stage consists of a polarization controller 1a and a light path routing element 1b. The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. These polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to transmit input light information without rotating its polarizing direction when voltage is applied. The light path routing element 1b in the second stage is identical in configuration and function to the one used in the first-stage polarization control optical switch 1A.

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a and an upward routing element 70. The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively,

10

15

25

are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to transmit input light information without rotating its polarizing direction when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to transmit input light information without rotating its polarizing direction when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied.

The upward routing element 70 has the function of transmitting light information, incident along the light paths #0 - #3, through to the respective light paths #0 - #3 when the polarizing direction of the light information is p-polarization.

[Embodiment 9]

(Configuration of the polarization control optical space switch)

Fig. 16 shows the configuration of a polarization control optical space switch according to Embodiment 9.

This polarization control optical space switch has four inputs and four outputs, and is an implementation of a switch for setting a path for light information whose polarizing direction is s-polarization.

The polarization control optical space switch comprises four polarization control optical switches,

10

15

20

25

1A, 1B, 1C, and 1D, in cascade, implementing a four-input, four-output optical space switch.

The polarization control optical switch 1A, located at the first stage as viewed from the input side, has four inputs and four outputs. This polarization control optical switch 1A consists of a polarization controller 1a and a light path routing element 1b.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The light path routing element 1b in the first stage consists of a downward polarizing beam splitter array 12, a $\lambda/2$ wavelength plate array 9, and an upward polarizing beam splitter array 13, coupled in cascade in this order from the input side. The functions and

10

15

25

configurations of these parts are the same as those described in Embodiment 7.

The polarization control optical switch 1B at the second stage consists of a polarization controller la and a light path routing element 1b. The polarization controller la consists of polarization control elements PLCO - PLC3, one for each path. These polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied. This light path routing element 1b is identical in configuration and function to the one used in the first-stage polarization control optical switch 1A.

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a and a downward routing element 7.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as

10

15

25

to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied.

The downward routing element 7 has the function of deflecting light information, incident along the light paths #0 - #3, into the respective light paths #0 - #3 when the polarizing direction of the light information is s-polarization.

[Embodiment 10]

(Configuration of the polarization control optical space switch)

Fig. 17 shows the configuration of a polarization 20 control optical space switch according to Embodiment 10.

This polarization control optical space switch has four inputs and four outputs, and is an implementation of a switch for setting a path for light information whose polarizing direction is s-polarization, as in Embodiment 6.

The polarization control optical space switch comprises four polarization control optical switches,

1A, 1B, 1C, and 1D, in cascade, implementing a fourinput, four-output optical space switch.

The polarization control optical switch 1A, located at the first stage as viewed from the input side, has four inputs and four outputs.

This first-stage polarization control optical switch 1A consists of a polarization controller 1a and a light path routing element 1b.

The polarization controller 1a consists of 10 polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to rotate the polarizing direction of input light 15 information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3. positioned in the light paths #1 and #3 respectively. 20 are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied.

The light path routing element 1b in the first stage
25 is identical in configuration and function to the one
described in Embodiment 8.

The polarization control optical switch 1B at the

10

20

25

second stage consists of a polarization controller 1a and a light path routing element 1b.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. These polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied. This light path routing element 1b is identical in configuration and function to the one used in the first-stage polarization control optical switch 1A.

The polarization control optical switch 1C at the
third stage is identical in function and configuration
to the second-stage polarization control optical switch
1B.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a and an upward routing element 70.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate

the polarizing direction of input light information through $\pi/2$ when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The upward routing element 70 has the function of deflecting light information, incident along the light paths #0 - #3, into the respective light paths #0 - #3 when the polarizing direction of the light information is s-polarization.

In the above Embodiments 7 to 10, the polarized light routing element has been described as being constructed from a polarizing beam splitter (PBS).

Embodiments 11 to 14 hereinafter described each deal with an example in which a liquid-crystal hologram is used as the polarized light routing element.

20 [Embodiment 11]

(Configuration of the polarization control optical space switch)

Fig. 18 shows the configuration of a polarization control optical space switch according to Embodiment 11.

This polarization control optical space switch has four inputs and four outputs, and is an implementation of a switch for setting a path for light information

10

5

15

25

15

20

25

whose polarizing direction is p-polarization, as in Embodiment 7.

The polarization control optical space switch comprises four polarization control optical switches, 1A, 1B, 1C, and 1D, in cascade.

The polarization control optical switch 1A, located at the first stage as viewed from the input side, has four inputs and four outputs.

This first-stage polarization control optical switch

10 1A consists of a polarization controller 1a and a light
path routing element 1b.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to rotate the polarizing direction of input light information through π/2 when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through π/2 when voltage is applied.

The light path routing element 1b in the first stage

20

consists of a downward liquid-crystal hologram 14, a $\lambda/2$ wavelength plate array 9, and an upward liquid-crystal hologram 15, coupled in cascade in this order from the input side.

The function of the downward liquid-crystal hologram

14 is such that when the polarizing direction of input
light information is p-polarization, the light
information is transmitted in the rectilinear forward
direction, and when the polarizing direction of input
light information is s-polarization, the light
information is shifted to the light path one path
downward.

The $\lambda/2$ wavelength plate array 9 is identical in function and configuration to the one used in Embodiment 7.

The function of the upward liquid-crystal hologram 15 is such that when the polarizing direction of input light information is p-polarization, the light information is transmitted in the rectilinear forward direction, and when the polarizing direction of input light information is s-polarization, the light information is shifted to the light path one path upward.

The polarization control optical switch 1B at the
25 second stage consists of a polarization controller 1a
and a light path routing element 1b. The polarization
controller 1a consists of polarization control elements

20

25

PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. These polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The light path routing element 1b is identical in configuration and function to the one used in the first-stage polarization control optical switch 1A.

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch 1D at the

fourth stage consists of a polarization controller 1a

and a downward liquid-crystal hologram 14.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through #1/2 when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively,

10

15

20

25

are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The downward liquid-crystal hologram 14 has the function of transmitting light information, incident along the light paths #0 - #3, through to the respective light paths #0 - #3 when the polarizing direction of the light information is p-polarization. As an alternative, the fourth-stage polarization control optical switch 1D may be constructed with a polarization controller 1a and an upward liquid-crystal hologram 15.

(Operation of the polarization control optical space switch)

The operation of the polarization control optical space switch in Embodiment 11 will be described below.

The following description deals with the operation of the polarization control optical space switch when setting a path between the input light path #0 and the output light path #2.

In the functional configuration of Fig. 2, when setting a path between the input light path #0 and the output light path #2, the switch element SO2 located at the first column in the first row is switched from the cross to the bar state. Accordingly, in the hardware configuration shown in Fig. 18, voltage is applied to the polarization control element PLCO located in the

15

20

25

first row of the polarization controller la in the first stage of the polarization control optical space switch.

The p-polarized light incident along the light path #0 first enters the polarization control optical switch 1A at the first stage.

In the first-stage polarization control optical switch 1A, the p-polarized light enters the polarization control element PLCO.

Since the polarization control element PLCO is in

the energized state, the incident p-polarized light is
allowed to pass through it without change and enter the
downward liquid-crystal hologram 14 in the light path
routing element 1b.

The downward liquid-crystal hologram 14 transmits the p-polarized light in the rectilinear forward direction through to the $\lambda/2$ wavelength plate array 9.

Since the $\lambda/2$ wavelength plate array 9 has a light-transmitting member located at the position corresponding to the light path #0, the p-polarized light is transmitted in the rectilinear forward direction and enters the upward liquid-crystal hologram 15.

The upward liquid-crystal hologram 15 transmits the p-polarized light in the rectilinear forward direction through to the second-stage polarization control optical switch 1B.

In the second-stage polarization control optical

10

15

20

switch 1B, the p-polarized light incident along the light path #0 enters the polarization control element PLCO.

The polarization control element PLCO rotates the ppolarized light incident along the light path #0, to
convert it into s-polarized light, which is input into
the light path routing element 1b.

In the light path routing element 1b in the second stage, the s-polarized light incident along the light path #0 enters the downward liquid-crystal hologram 14.

The downward liquid-crystal hologram 14 shifts the light path for the s-polarized light from the light path #0 downward by one path, i.e., to the light path #1, along which the s-polarized light enters the $\lambda/2$ wavelength plate array 9.

Since the $\lambda/2$ wavelength plate array 9 has a $\lambda/2$ wavelength plate at the position corresponding to the light path #1, the s-polarized light is rotated and converted into p-polarized light, which is input into the upward liquid-crystal hologram 15.

The upward liquid-crystal hologram 15 transmits the p-polarized light, incident along the light path #1, in the rectilinear forward direction through to the third-stage polarization control optical switch 1C.

In the third-stage polarization control optical switch 1C, the p-polarized light incident along the light path #1 enters the polarization control element

PLC1.

5

20

25

The polarization control element PLC1 rotates the p-polarized light incident along the light path #1, to convert it into s-polarized light, which is input into the light path routing element 1b in the third stage.

In the light path routing element 1b in the third stage, the s-polarized light incident along the light path #1 enters the downward liquid-crystal hologram 14.

The downward liquid-crystal hologram 14 shifts the light path for the s-polarized light from the light path #1 downward by one path, i.e., to the light path #2, along which the s-polarized light enters the $\lambda/2$ wavelength plate array 9.

Since the λ/2 wavelength plate array 9 has a λ/2

15 wavelength plate at the position corresponding to the
light path #2, the s-polarized light is rotated and
converted into p-polarized light, which is input into
the upward liquid-crystal hologram 15.

The upward liquid-crystal hologram 15 transmits the p-polarized light, incident along the light path #2, in the rectilinear forward direction through to the fourth-stage polarization control optical switch 1D.

In the fourth-stage polarization control optical switch 1D, the p-polarized light incident along the light path #2 enters the polarization control element PLC2.

The polarization control element PLC2 transmits the

p-polarized light without change, to the downward liquid-crystal hologram 14.

The downward liquid-crystal hologram 14 transmits the p-polarized light, incident along the light path #2, in the rectilinear forward direction, thus outputting the p-polarized light on the output light path #2.

[Embodiment 12]

5

15

(Configuration of the polarization control optical space switch)

10 Fig. 19 shows the configuration of a polarization control optical space switch according to Embodiment 12.

This polarization control optical space switch has four inputs and four outputs, and is an implementation of a switch for setting a path for light information whose polarizing direction is p-polarization, as in Embodiment 8.

The polarization control optical space switch comprises four polarization control optical switches, 1A, 1B, 1C, and 1D, in cascade.

The polarization control optical switch 1A at the first stage has four inputs and four outputs.

This first-stage polarization control optical switch

1A consists of a polarization controller la and a light

path routing element 1b.

25 The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. The

polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The light path routing element 1b in the first stage consists of an upward liquid-crystal hologram 140, a $\lambda/2$ wavelength plate array 9, and a downward liquid-crystal hologram 150, coupled in cascade.

The function of the upward liquid-crystal hologram 140 is such that when the polarizing direction of input light information is p-polarization, the light information is transmitted in the rectilinear forward direction, and when the polarizing direction of input light information is s-polarization, the light information is shifted to the light path one path upward.

25 The $\lambda/2$ wavelength plate array 9 is identical in function and configuration to the one used in Embodiment 8.

)

5

10

15

20

20

25

The function of the downward liquid-crystal hologram 150 is such that when the polarizing direction of input light information is p-polarization, the light information is transmitted in the rectilinear forward direction, and when the polarizing direction of input light information is s-polarization, the light information is shifted to the light path one path downward.

The polarization control optical switch 1B at the

second stage consists of a polarization controller 1a

and a light path routing element 1b. The polarization

controller 1a consists of polarization control elements

PLCO - PLC3 corresponding to the light paths #0 - #3

respectively. These polarization control elements PLCO

- PLC3 are so set as to rotate the polarizing direction

of input light information through π/2 when no voltage

is applied, and to retain the polarizing direction of

input light information when voltage is applied.

The light path routing element 1b is identical in configuration and function to the one used in the first-stage polarization control optical switch 1A.

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a

10

15

20

25

and an upward liquid-crystal hologram 140.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through #10 when voltage is applied.

The upward liquid-crystal hologram 140 has the function of transmitting light information, incident along the light paths #0 - #3, through to the respective light paths #0 - #3 when the polarizing direction of the light information is p-polarization.

As an alternative, the fourth-stage polarization control optical switch 1D may be constructed with a polarization controller 1a and a downward liquid-crystal hologram 150.

[Embodiment 13]

(Configuration of the polarization control optical

space switch)

Fig. 20 shows the configuration of a polarization control optical space switch according to Embodiment 13.

This polarization control optical space switch has 5 four inputs and four outputs, and is an implementation of a switch for setting a path for light information whose polarizing direction is s-polarization, as in Embodiment 9.

The polarization control optical space switch 10 comprises four polarization control optical switches, 1A, 1B, 1C, and 1D, in cascade.

The polarization control optical switch 1A at the first stage has four inputs and four outputs.

This first-stage polarization control optical switch 15 1A consists of a polarization controller 1a and a light path routing element 1b.

The polarization controller la consists of

polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied. On the other hand,

25

20

the polarization control elements PLC1 and PLC3,

positioned in the light paths #1 and #3 respectively,

are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The light path routing element 1b in the first stage consists of a downward liquid-crystal hologram 14, a $\lambda/2$ wavelength plate array 9, and an upward liquid-crystal hologram 15, coupled in cascade in this order from the input side.

10 The function of the downward liquid-crystal hologram
14 is such that when the polarizing direction of input
light information is p-polarization, the light
information is transmitted in the rectilinear forward
direction, and when the polarizing direction of input
15 light information is s-polarization, the light
information is shifted to the light path one path
downward.

The $\lambda/2$ wavelength plate array 9 is identical in function and configuration to the one used in Embodiment 20 9.

The function of the upward liquid-crystal hologram

15 is such that when the polarizing direction of input
light information is p-polarization, the light
information is transmitted in the rectilinear forward
direction, and when the polarizing direction of input
light information is s-polarization, the light
information is shifted to the light path one path

Ŋ

5

25

upward.

5

10

15

25

The polarization control optical switch 1B at the second stage consists of a polarization controller 1a and a light path routing element 1b. The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. These polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The light path routing element 1b in the second stage is identical in configuration and function to the one used in the first-stage polarization control optical switch 1A.

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a and a downward liquid-crystal hologram 14.

The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as

10

15

25

to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied. On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied.

The downward liquid-crystal hologram 14 has the function of deflecting light information, incident along the light paths #0 - #3, into the respective light paths #0 - #3 when the polarizing direction of the light information is s-polarization. As an alternative, the fourth-stage polarization control optical switch 1D may be constructed with a polarization controller 1a and an upward liquid-crystal hologram 15.

[Embodiment 14]

20 (Configuration of the polarization control optical space switch)

Fig. 21 shows the configuration of a polarization control optical space switch according to Embodiment 14.

This polarization control optical space switch has four inputs and four outputs, and is an implementation of a switch for setting a path for light information whose polarizing direction is s-polarization, as in

Embodiment 10.

The polarization control optical space switch comprises four polarization control optical switches, 1A, 1B, 1C, and 1D, in cascade.

5 The polarization control optical switch 1A at the first stage has four inputs and four outputs.

This first-stage polarization control optical switch 1A consists of a polarization controller la and a light path routing element 1b.

10 The polarization controller la consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2. positioned in the light paths #0 and #2 respectively, are so set as to rotate the polarizing direction of 15 input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #320 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied.

25 The light path routing element 1b in the first stage consists of an upward liquid-crystal hologram 140, a $\lambda/2$ wavelength plate array 9, and a downward liquid-crystal

10

downward.

hologram 150, coupled in cascade in this order from the input side.

The function of the upward liquid-crystal hologram

140 is such that when the polarizing direction of input
light information is p-polarization, the light
information is transmitted in the rectilinear forward
direction, and when the polarizing direction of input
light information is s-polarization, the light
information is shifted to the light path one path
upward.

The $\lambda/2$ wavelength plate array 9 is identical in function and configuration to the one used in Embodiment 10.

The function of the downward liquid-crystal hologram

15 150 is such that when the polarizing direction of input
light information is p-polarization, the light
information is transmitted in the rectilinear forward
direction, and when the polarizing direction of input
light information is s-polarization, the light
20 information is shifted to the light path one path

The polarization control optical switch 1B at the second stage consists of a polarization controller 1a and a light path routing element 1b.

25 The polarization controller 1a consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively. These

polarization control elements PLCO - PLC3 are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The light path routing element 1b in the second stage is identical in configuration and function to the one used in the first-stage polarization control optical switch 1A.

The polarization control optical switch 1C at the third stage is identical in function and configuration to the second-stage polarization control optical switch 1B.

The polarization control optical switch 1D at the fourth stage consists of a polarization controller 1a and an upward liquid-crystal hologram 140.

The polarization controller la consists of polarization control elements PLCO - PLC3 corresponding to the light paths #0 - #3 respectively.

The polarization control elements PLCO and PLC2, positioned in the light paths #0 and #2 respectively, are so set as to retain the polarizing direction of input light information when no voltage is applied, and to rotate the polarizing direction of input light information through $\pi/2$ when voltage is applied.

On the other hand, the polarization control elements PLC1 and PLC3, positioned in the light paths #1 and #3

respectively, are so set as to rotate the polarizing direction of input light information through $\pi/2$ when no voltage is applied, and to retain the polarizing direction of input light information when voltage is applied.

The upward liquid-crystal hologram 140 has the function of deflecting light information, incident along the light paths #0 - #3, into the respective light paths #0 - #3 when the polarizing direction of the light information is s-polarization.

As an alternative, the fourth-stage polarization control optical switch 1D may be constructed with a polarization controller 1a and a downward liquid-crystal hologram 150.

polarization control optical space switch. In
Embodiments 15 to 22 hereinafter described, polarization
control optical space switches are constructed in
modules, and a plurality of polarization control optical
space switch modules are combined to realize a spacedivision optical switching network.

[Embodiment 15]

(Configuration of the space-division optical switching network)

Fig. 22 shows the configuration of a space-division optical switching network according to Embodiment 15.

This space-division optical switching network uses a

10

four-input, four-output s-polarization control optical space switch 20b in combination with a four-input, four-output p-polarization control optical space switch 20a, to realize a four-input, four-output optical switching network.

The space-division optical switching network comprises a polarization controller 16, a birefringent plate 17, a polarization control optical space switch block 20, a birefringent plate 18, and a polarization controller 19, coupled in cascade in this order from the input side.

The polarization control optical space switch block
20 consists of the s-polarization control optical space
switch 20b and p-polarization control optical space

switch 20a, arranged one above the other in parallel
fashion. More specifically, the s-polarization control
optical space switch 20b is located in the upper half,
and the p-polarization control optical space switch 20a
located in the lower half of the polarization control
optical space switch block 20.

The s-polarization control optical space switch 20b is a four-input, four-output switch, designed to set up a path for light information whose polarizing direction is s-polarization.

25 The p-polarization control optical space switch 20a is a four-input, four-output switch, designed to set up a path for light information whose polarizing direction

is p-polarization.

5

These polarization control optical space switches 20a, 20b are selected from among the polarization control optical space switches described in the foregoing Embodiments 1 to 14.

Located on the input side of the polarization control switch block 20 is the birefringent plate 17, a polarization splitting means according to the present The birefringent plate 17 transmits input light information in the rectilinear forward direction 10 through to the p-polarization control optical space switch 20a when the polarizing direction of the light information is p-polarization, while directing input light information to a light path four paths upward for input into the s-polarization control optical space 15 switch 20b when the polarizing direction of the light information is s-polarization. Arranged on the input side of the birefringent plate 17 is the polarization controller 16. The polarization controller 16 consists 20 of four polarization control elements. The polarization control elements are arranged in the respective light paths #0 - #3, each control element being designed to retain the polarizing direction of input light information or rotate it through $\pi/2$.

25 Located on the output side of the polarization control optical space switch block 20 is the birefringent plate 18 acting as a polarization

25

correcting means. The birefringent plate 18 directs the s-polarized light, output from the s-polarization control optical space switch 20b, to a light path four paths downward for input into the polarization controller 19, while transmitting the p-polarized light, output from the p-polarization control optical space switch 20a, in the rectilinear forward direction through to the polarization controller 19.

The polarization controller 19 is located on the output side of the birefringent plate 18. Like the polarization controller 16 on the input side, the polarization controller 19 works to retain the polarizing direction of input light information or rotate is through $\pi/2$, depending on voltage application.

15 The polarization controller 19 consists of four polarization control elements corresponding to the output light paths #0 - #3 respectively.

(Operation of the space-division optical switching network)

In the space-division optical switching network, p-polarized light incident along an i-th input light path first enters the polarization controller 16.

Depending on the presence or absence of voltage application, the polarization controller 16 allows the p-polarized light incident along the i-th light path to pass through it without change, or rotates the p-polarized light to convert it to s-polarized light for

output.

5

10

20

When the p-polarized light is output from the polarization controller 16 without change, the p-polarized light is passed through the birefringent plate 17 in the rectilinear forward direction and enters the i-th input light path in the p-polarization control optical space switch 20a.

On the other hand, when the p-polarized light is rotated by the polarization controller 16 and output as s-polarized light, the s-polarized light entering the birefringent plate 17 is moved upward across it and coupled into a light path four paths upward. The s-polarized light thus enters the i-th light path #i in the s-polarization control optical space switch 20b.

The s-polarized light output from the i-th light path in the s-polarization control optical space switch 20b enters the birefringent plate 18.

In the birefringent plate 18, the s-polarized light is moved four light paths downward (to the i-th output light path) and coupled into the i-th light path #i in the polarization controller 19.

The polarization controller 19 rotates the spolarized light to convert it into p-polarized light, which is output on the i-th output light path #i.

On the other hand, the p-polarized light output from the i-th light path in the p-polarization control optical space switch 20a is passed through the

birefringent plate 18 in the rectilinear forward direction and enters the polarization controller 19.

The polarization controller 19 outputs the p-polarized light without change onto the i-th output light path #i.

5 [Embodiment 16]

10

15

20

25

(Configuration of the space-division optical switching network)

Fig. 23 shows the configuration of a space-division optical switching network according to Embodiment 16.

This space-division optical switching network, as in the foregoing Embodiment 15, is an implementation of a four-input, four-output optical switching network. The space-division optical switching network comprises a polarization controller 16, a polarizing beam splitter array (PBS array) 21, a polarization control optical space switch block 20, a polarizing beam splitter array (PBS array) 22, and a polarization controller 19, coupled in cascade in this order from the input side.

The polarization controllers 16 and 19 are identical in configuration and function to those described in Embodiment 15.

Furthermore, the polarization control optical space switch block 20 is identical in function and configuration to the one described in Embodiment 15.

The polarizing beam splitter array (PBS array) 21 on the input side is a specific example of a polarization splitting means according to the present invention.

This splitter array transmits input light information in the rectilinear forward direction through to the p-polarization control optical space switch 20a when the polarizing direction of the light information is p-polarization, while directing input light information to a light path four paths upward for input into the s-polarization control optical space switch 20b when the polarizing direction of the light information is s-polarization.

The polarizing beam splitter array (PBS array) 22 on the output side is a specific example of a polarization correcting means according to the present invention.

This splitter array transmits the light information, output from the p-polarization control optical space

15 switch 20a, in the rectilinear forward direction through to the polarization controller 19, while directing the light information, output from the s-polarization control optical space switch 20b, to a light path four paths downward for input into the polarization

20 controller 19.

The operation of the space-division optical switching network of this embodiment is the same as that of Embodiment 15.

[Embodiment 17]

25 (Configuration of the space-division optical switching network)

Fig. 24 shows the configuration of a space-division

10

20

25

optical switching network according to Embodiment 17.

This space-division optical switching network, as in Embodiment 15, is an implementation of a four-input, four-output optical switching network. The space-division optical switching network comprises a polarization controller 16, a liquid-crystal hologram 23, a polarization control optical space switch block 20, a liquid-crystal hologram 24, and a polarization controller 19, coupled in cascade in this order from the input side.

The polarization controllers 16 and 19 are identical in configuration and function to those described in Embodiment 15.

The polarization control optical space switch block

20 also is identical in function and configuration to
the one described in Embodiment 15.

The liquid-crystal hologram 23 on the input side is a specific example of a polarization splitting means according to the present invention. This hologram 23 transmits input light information in the rectilinear forward direction through to the p-polarization control optical space switch 20a when the polarizing direction of the light information is p-polarization, while diffracting input light information toward a light path four paths upward for input into the s-polarization control optical space switch 20b when the polarizing direction of the light information is s-polarization.

The liquid-crystal hologram 24 on the output side is a specific example of a polarization correcting means according to the present invention. This hologram 24 transmits the light information, output from the p-polarization control optical space switch 20a, in the rectilinear forward direction through to the polarization controller 19, while diffracting the light information, output from the s-polarization control optical space switch 20b, toward a light path four paths downward for input into the polarization controller 19.

The operation of the space-division optical switching network of this embodiment is the same as that of Embodiment 15.

[Embodiment 18]

15 (Configuration of the space-division optical switching network)

Fig. 25 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 18.

This space-division optical switching network comprises: a matrix switch array 25 consisting of minput, m-output polarization control optical space switches, SW(1,1) - SW(n,n), arranged as a matrix of n x n; m x n (=N) optical switches, SI(1,1) - SI(n,m),

arranged on the input side of the matrix switch array 25; and N optical switches, SO(1,1) - SO(n,m), arranged on the output side of the matrix switch array 25.

10

15

20

25

The polarization control optical space switches, SW(1,1) - SW(n,n), are selected from among the polarization control optical space switches described in Embodiments 1 to 14, and each switch has m input light paths and m output light paths.

The optical switches, SI(1,1) - SI(n,m), are each provided with one input and n outputs. These optical switches, SI(1,1) - SI(n,m), are arranged in corresponding relationship to the N (n x m) input light paths to the matrix switch array 25.

On the other hand, the optical switches, SO(1,1) - SO(n,m), are each provided with n inputs and one output. These optical switches, SO(1,1) - SO(n,m), are arranged in corresponding relationship to the N (m x n) output light paths from the matrix switch array 25.

In this embodiment, the N (n x m) input light paths of the space-division optical switching network are divided into n groups of m input light paths. A j-th input light path in an i-th group is designated as #(i,j) (where $1 \le i \le n$, $1 \le j \le m$).

The n output light paths from an optical switch SI (i,j) corresponding to the input light path #(i,j) are connected to the j-th input light paths of n polarization control optical space switches, SW(i,1), SW(i,2), ..., SW(i,n), arranged in the i-th row of the matrix switch array 25.

The N output light paths from the matrix switch

15

20

array 25 are divided into n groups of m output light paths. An s-th output light path in an r-th group is designated as #(r,s) (where $1 \le r \le n$, $1 \le s \le m$).

The s-th outputs of polarization control optical space switches, SW(1,r), SW(2,r), ..., SW(n,r), are connected to an optical switch SO(r,s) corresponding to the output light path #(r,s).

(Operation of the space-division optical switching network)

The operation of the above space-division optical switching network will be described below.

When light information input from the light path #(i,j) is to be output on the output light path #(r,s), an input signal from the optical switch SI (i,j) corresponding to the input light path #(i,j) is placed on the j-th input light path to each polarization control optical space switch SW (i,r).

Each polarization control optical space switch SW (i,r) switches the incident light information from the j-th light path to the s-th light path for output.

The light information output on the s-th light path of the polarization control optical space switch SW (i,r) is input into the optical switch SO (r,s).

Thus, the space-division optical switching network

of Embodiment 18 is capable of achieving strictly

nonblocking, N-input, N-output light path routing.

[Embodiment 19]

10

15

20

25

(Configuration of the space-division optical switching network)

Fig. 26 shows the configuration of a space-division optical switching network according to Embodiment 19.

This space-division optical switching network comprises: an N-input, N-output (N = m x n) polarization control optical space switch block 26 consisting of n layers of m-input, m-output polarization control optical space switches stacked one on top of another; an N-input, N-output (N = m x n) polarization control optical space switch block 27 consisting of m layers of n-input, n-output polarization control optical space switches; and an N-input, N-output (N = m x n) polarization control optical space switch optical space switch block 28 consisting of n layers of m-input, m-output polarization control optical space switches, the switch blocks 26, 27, and 28 being coupled in cascade with one another.

The stacking direction in the polarization control optical space switch block 26 is made coincident with that in the polarization control optical space switch block 28, but perpendicular to that in the polarization control optical space switch block 27.

Fig. 27 shows how the switch blocks are coupled with each other to construct a space-division optical switching network.

In the space-division optical switching network shown, the N $(m \times n)$ input light paths are divided into

-

n groups of m input light paths. A j-th input light path in an i-th group is designated as #(i,j) (where $1 \le i \le n$, $1 \le j \le m$).

The input light path #(i,j) is connected to the j-th input light path of the polarization control optical space switch SW(1,i) located in the i-th row in the first-stage polarization control optical space switch block.

The j-th output of the polarization control optical space switch SW(1,i) in the i-th row in the first stage is coupled to the i-th input light path of the polarization control optical space switch (2,j) located in the j-th row in the second stage.

Further, the i-th output of the polarization control

optical space switch (2,j) in the j-th row in the second

stage is coupled to the j-th input light path of the

polarization control optical space switch (2,i) located

in the i-th row in the third stage.

Thus, according to the present embodiment, a space-20 division optical switching network having N inputs and N outputs $(N = m \times n)$ can be constructed using (2n + m)polarization control optical space switches.

[Embodiment 20]

(Configuration of the space-division optical switching network)

Fig. 28 is a diagram showing the configuration of a space-division optical switching network according to

Embodiment 20.

5

10

15

20

25

In comparison with the configuration of the foregoing Embodiment 19, the space-division optical switching network of Embodiment 20 comprises: a polarization control optical space switch block 26 consisting of n layers of m-input, m-output polarization control optical space switches stacked one on top of another; a polarization control optical space switch block 27 consisting of m layers of n-input, n-output polarization control optical space switches; a polarization control optical space switch block 28 consisting of m layers of m-input, m-output polarization control optical space switches; a reflection plate 29; and a reflection plate 30.

In this space-division optical switching network, the light paths of the polarization control optical space switch block 26 are arranged in a direction perpendicular to the light paths of the polarization control optical space switch block 27, which are then arranged in a direction perpendicular to the light paths of the polarization control optical space switch block 28.

The reflection plate 29 is located at a position where it makes an angle of 45° with the output light paths from the polarization control optical space switch block 26 as well as with the input light paths to the polarization control optical space switch block 27.

10

20

Similarly, the reflection plate 30 is located at a position where it makes an angle of 45° with the output light paths from the polarization control optical space switch block 27 as well as with the input light paths to the polarization control optical space switch block 28.

Light information output from the polarization control optical space switch block 26 strikes the reflection plate 29 at an incident angle of 45° and is reflected at a reflecting angle of 45°. Thus, the light information output from the polarization control optical space switch block 26 is deflected 90° by the reflection plate 29 and is input to the polarization control optical space switch block 27.

Similarly, the light information output from the

15 polarization control optical space switch block 27 is

deflected 90° by the reflection plate 30 and is input to
the polarization control optical space switch block 28.

Thus, according to this embodiment, a space-division optical switching network of reduced length in the travelling direction of light information can be constructed.

[Embodiment 21]

(Configuration of the space-division optical switching network)

Fig. 29 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 21.

10

15

20

25

As in Embodiment 19, the space-division optical switching network of Embodiment 21 comprises: a polarization control optical space switch block 26 consisting of n layers of m-input, m-output polarization control optical space switches stacked one on top of another; a polarization control optical space switch block 27 consisting of m layers of n-input, n-output polarization control optical space switches; and a polarization control optical space switch block 28 consisting of n layers of m-input, m-output polarization control optical space switches. These polarization control optical space switch blocks 26, 27, and 28 are arranged so that the light paths in one switch block extend in parallel to the light paths in another switch Furthermore, the polarization control optical space switch blocks 26, 27, and 28 are arranged so that the direction of light propagation of the light paths in the polarization control optical space switch block 27 is opposite to that of the light paths in the polarization control optical space switch block 26 as well as to that of the light paths in the polarization control optical space switch block 28.

On the output surface of the polarization control optical space switch block 26, there is provided a hologram 33 for diffracting the light paths of light information.

A hologram 34 is provided on the input surface of

10

15

the polarization control optical space switch block 27 on whose output surface is provided a hologram 35.

Further, a hologram 36 is provided on the input surface of the polarization control optical space switch block 28.

Furthermore, a reflection plate 31 is placed at a position facing the output surface of the polarization control optical space switch block 26 and the input surface of the polarization control optical space switch block 27. The reflection plate 31 is positioned perpendicularly to the light paths of the polarization control optical space switch blocks 26 and 27.

Similarly, a reflection plate 32 is placed at a position facing the output surface of the polarization control optical space switch block 27 and the input surface of the polarization control optical space switch block 28. The reflection plate 32 is positioned perpendicularly to the light paths of the polarization control optical space switch blocks 27 and 28.

In this space-division optical switching network, light information output from the polarization control optical space switch block 26 is diffracted by the hologram 33 before striking the reflection plate 31.

The reflection plate 31 reflects the incident light information into the hologram 34.

The hologram 34 diffracts the incident light information for coupling into an appropriate input light

20

path in the polarization control optical space switch block 27.

Next, the light information output from the polarization control optical space switch block 27 enters the hologram 35 provided on the output surface thereof.

The hologram 35 diffracts the light path of the incident light information which then strikes the reflection plate 32.

The reflection plate 32 reflects the incident light information into the hologram 36 provided on the input surface of the polarization control optical space switch block 28.

The hologram 36 diffracts the incident light

15 information for coupling into an appropriate input light

path in the polarization control optical space switch

block 28.

Thus, Embodiment 21 permits the construction of an optical switching network of reduced length in the travelling direction of light information.

[Embodiment 22]

Fig. 30 is a diagram showing the configuration of a space-division optical switching network according to Embodiment 22.

This space-division optical switching network comprises two switch matrices on different surfaces (surface A and surface B), each matrix consisting of a

10

15

20

cascade chain comprising: an N-input, N-output (N = $m \times m$ n) polarization control optical space switch block 26 consisting of n layers of m-input, m-output polarization control optical space switches stacked in a vertical direction; an N-input, N-output $(N = m \times n)$ polarization control optical space switch block 27 consisting of m layers of n-input, n-output polarization control optical space switches stacked in a horizontal direction; and an N-input, N-output $(N = m \times n)$ polarization control optical space switch block 28 consisting of n layers of m-input, m-output polarization control optical space switches stacked in a vertical direction. The spacedivision optical switching network further includes N optical switches, SI(1,1) - SI(n,m), each with one input and two outputs, for routing the input between the two switch matrices. Furthermore, the space-division optical switching network includes N switches, SO(1,1) -SO(n,m), each with two inputs and one output, for routing the output between the switch matrix on surface

The first output of each of the switches SI(1,1) - SI(n,m) is coupled to an input of surface A switch matrix, while the second output thereof is coupled to an input of surface B switch matrix.

The first input of each of the switches SO(1,1) - SI(n,m) is coupled to an output of surface A switch matrix, while the second input thereof is coupled to an

A and the switch matrix on surface B.

10

15

20

output of surface B switch matrix.

In this embodiment, the N (m x n) input light paths of the space-division optical switching network are arranged in n groups of m input light paths. A j-th light path in an i-th group is designated as #(i,j) (where $1 \le i \le n$, $1 \le j \le m$).

The first output of a switch SI(i,j) located in the input light path #(i,j) is coupled to the j-th input light path of the switch SW(1,i) located in the i-th row in the polarization control optical space switch block 26 in the switch matrix on surface A.

An s-th output light path (where $1 \le s \le m$) of a switch SW(1,r) (where $1 \le r \le n$) located in the r-th row in the polarization control optical space switch block 26 is coupled to the r-th input light path of the switch SW(2,s) located in the s-th row in the polarization control optical space switch block 27.

Further, a v-th output light path (where $1 \le v \le n$) of a switch SW(2,u) (where $1 \le u \le m$) located in the u-th row in the polarization control optical space switch block 27 is coupled to the u-th input light path of the switch SW(3,v) located in the v-th row in the polarization control optical space switch block 28.

The second output of the switch SI(i,j) located in

the input light path #(i,j) is coupled to the j-th input
light path of the switch SW(1,i) located in the i-th row
in the polarization control optical space switch block

26 in the switch matrix on surface B.

An s-th output light path (where $1 \le s \le m$) of a switch SW(1,r) (where $1 \le r \le n$) located in the r-th row in the polarization control optical space switch block 26 is coupled to the r-th input light path of the switch SW(2,s) located in the s-th row in the polarization control optical space switch block 27.

Further, a v-th output light path (where $1 \le v \le n$) of a switch SW(2,u) (where $1 \le u \le m$) located in the u-th row in the polarization control optical space switch block 27 is coupled to the u-th input light path of the switch SW(3,v) located in the v-th row in the polarization control optical space switch block 28.

The u-th output light path of a switch SW(3,v) on surface A is coupled to the first input of a switch SO(v,u).

The u-th output light path of a switch SW(3,v) on surface B is coupled to the second input of a switch SO(v,u).

.

5

10

WHAT IS CLAIMED IS:

5

10

15

20

25

[CLAIM 1] A polarization control optical space switch, comprising:

a combination of a plurality of polarization control optical switches, each of said polarization control optical switches comprising: polarization control means having elements, the number of which is equal to the number of light paths, for rotating the polarizing direction of incident light information through 90° or otherwise retaining the polarizing direction thereof with no introduction of rotation; and a light path routing element for routing the light path for the light information output from said polarization control means in accordance with the polarizing direction of the light information.

[CLAIM 2] A polarization control optical space switch according to claim 1, wherein

said light path routing element comprises:

polarization splitting means which transmits incident light information therethrough when the polarizing direction thereof is p-polarization that is parallel to the plane of incidence, and which reflects incident light information when the polarizing direction thereof is s-polarization that is perpendicular to the plane of incidence;

a transmitted-side $\lambda/4$ wavelength plate which is located on the output side of the p-polarized light

10

15

transmitted by said polarization splitting means and is positioned perpendicular to the travelling direction of the transmitted light information, and which functions to rotate the polarizing direction of the light information by $\pi/4$;

a transmitted-side reflection block, located behind said transmitted-side $\lambda/4$ wavelength plate, for reflecting the light information incident from said transmitted-side $\lambda/4$ wavelength plate back into said transmitted-side $\lambda/4$ wavelength plate along a light path adjacent to the light path of the incident light information;

a reflected-side $\lambda/4$ wavelength plate which is located on the output side of the s-polarized light reflected by said polarization splitting means and is positioned perpendicular to the travelling direction of the reflected light information, and which functions to rotate the polarizing direction of the light information by $\pi/4$; and

a reflected-side reflection block, located behind said reflected-side $\lambda/4$ wavelength plate, for reflecting the light information incident from said reflected-side $\lambda/4$ wavelength plate back into said reflected-side $\lambda/4$ wavelength plate along a light path adjacent to the light path of the incident light information.

[CLAIM 3] A polarization control optical space switch according to claim 1, wherein

20

25

said light path routing element comprises:

a first polarized-light routing element for shifting the light path of light information in accordance with the polarizing direction of the light information output from said polarization control means;

a phase element for rotating through 90° the polarizing direction of light information incident along a particular light path from said first routing element; and

a second polarized-light routing element for shifting the light path of light information, in accordance with the polarizing direction of the light information output from said phase element, in a direction opposite to the shifting direction of said first polarized-light routing element.

[CLAIM 4] A polarization control optical space switch according to claim 3, wherein

said plurality of polarization control optical switches are arranged in cascade along the light paths of light information travelling in parallel to each other,

said phase element in each of said polarization control optical switches rotates through 90° the polarizing direction of the light information incident from said first polarized-light routing element except those portions incident along the outermost light paths, and

said first polarized-light routing element and said second polarized-light routing element shift each light information to an adjacent light path for output.

[CLAIM 5] A polarization control optical space switch according to claim 4, wherein

said first polarized-light routing element transmits incident light information therethrough when the polarizing direction thereof is p-polarization, and shifts the light path of incident light information upward when the polarizing direction thereof is s-polarization, and

said second polarized-light routing element transmits incident light information therethrough when the polarizing direction thereof is p-polarization, and shifts the light path of incident light information downward when the polarizing direction thereof is s-polarization.

[CLAIM 6] A polarization control optical space switch according to claim 4, wherein

said first polarized-light routing element transmits incident light information therethrough when the polarizing direction thereof is p-polarization, and shifts the light path of incident light information downward when the polarizing direction thereof is s-polarization, and

said second polarized-light routing element transmits incident light information therethrough when

15

20

25

5

10

the polarizing direction thereof is p-polarization, and shifts the light path of incident light information upward when the polarizing direction thereof is s-polarization.

5 [CLAIM 7] A polarization control optical space switch according to claim 4, wherein

said first polarized-light routing element and said second polarized-light routing element are each constructed from a birefringent plate.

10 [CLAIM 8] A polarization control optical space switch according to claim 4, wherein

said first polarized-light routing element and said second polarized-light routing element are each constructed from a polarizing beam splitter array consisting of a combination of a plurality of polarizing beam splitters.

[CLAIM 9] A polarization control optical space switch according to claim 4, wherein

said first polarized-light routing element and said
20 second polarized-light routing element are each
constructed from a liquid-crystal hologram.

[CLAIM 10] A polarization control optical space switch according to claim 4, wherein

said phase element is constructed from a $\lambda/2$ wavelength plate array comprising light-transmitting members at both ends with a $\lambda/2$ wavelength plate sandwiched therebetween.

10

15

20

[CLAIM 11] A polarization control optical space switch according to claim 1, wherein

said polarization control means comprises a combination of: an element that rotates the polarizing direction of incident light when voltage is applied and that does not rotate the polarizing direction of incident light when no voltage is applied; and an element that does not rotate the polarizing direction of incident light when voltage is applied and that rotates the polarizing direction of incident light when no voltage is applied.

[CLAIM 12] A polarization control optical space switch according to claim 1, wherein

when the number of input/output light paths of said polarization control optical space switch is denoted by m, and the number of input/output light paths of each of said polarization control optical switches is denoted by m, said polarization control optical switches equalling m in number are arranged in series, and the polarization control means in a designated polarization control optical switch is controlled so that the light information incident from each of the m input light paths is output on a desired output light path selected from among the m output light paths.

25 [CLAIM 13] A polarization control optical space switch according to claim 1, wherein

when the number of input/output light paths of said

10

15

20

25

m, and the number of input/output light paths of each of said polarization control optical switches is denoted by m, said polarization control optical switches equalling (m - 1) in number are arranged in series, and the polarization control means in a designated polarization control optical switch is controlled so that the light information incident from each of the m input light paths is output on a desired output light path selected from among the m output light paths.

[CLAIM 14] A polarization control optical space switch according to claim 1, wherein

polarization control optical space switches, each having m input/output light paths, are arranged as a matrix array of n rows and n columns,

a number, $m \times n$, of input optical switches, each having one input and n outputs, are arranged on the input side of said switch matrix array, and

a number, $m \times n$, of output optical switches, each having n inputs and one output, are arranged on the output side of said switch matrix array, and

when said input light paths totalling m x n in number are arranged in n groups of m input light paths, with a j-th input light path in an i-th group designated as #(i,j) (where $1 \le i \le n$, $1 \le j \le m$), and said output light paths totalling m x n in number are arranged in n groups of m output light paths, with an s-th output light path

10

15

20

25

in an r-th group designated as #(r,s) (where $1 \le r \le n$, $1 \le s \le m$),

the n outputs of a one-input, n-output switch corresponding to said input light path #(i,j) are connected to the j-th input light paths of the polarization control optical space switches arranged in the i-th row of said switch matrix array, and

the s-th outputs of the polarization control optical space switches arranged in the r-th column of said switch matrix array are connected to an output optical switch corresponding to said output light path #(r,s).

[CLAIM 15] A polarization control optical space switch according to claim 1, wherein

polarization control optical space switches, each having n input/output light paths, are stacked in m layers to form a switch block A,

on the input side of said switch block A,

polarization control optical space switches, each having

m input/output light paths, are stacked in n layers,

extending at right angles with the layers of said switch

block A, to form an input switch block B, and

on the output side of said switch block A, polarization control optical space switches, each having m input/output light paths, are stacked in n layers, extending at right angles with the layers of said switch block A, to form an output switch block C, said switch blocks A, B, and C being coupled in cascade with each

other.

5

10

15

[CLAIM 16] A polarization control optical space switch according to claim 15, wherein

an input reflection plate is placed on the input side of said switch block A, and an output reflection plate on the output side of said switch block A, so that:

light information output from said input switch block B is reflected by said input reflection plate for entrance into said switch block A; and

light information output from said switch block A is reflected by said output reflection plate for entrance into said output switch block C.

[CLAIM 17] A polarization control optical space switch according to claim 16, wherein

a liquid-crystal hologram (a) is placed on the output side of said input switch block B, and a liquid-crystal hologram (b) on the input side of said switch block A, and

a liquid-crystal hologram (c) is placed on the output side of said switch block A, and a liquid-crystal hologram (d) on the input side of said output switch block C, so that:

light information output from said input switch

25 block B is diffracted by said liquid-crystal hologram

(a) for entrance into said input reflection plate;

the light information reflected by said input

15

20

25

reflection plate is diffracted by said liquid-crystal hologram (b) for entrance into said switch block A;

the light information output from said switch block

A is diffracted by said liquid-crystal hologram (c) for
entrance into said output reflection plate; and

the light information reflected by said output reflection plate is diffracted by said liquid-crystal hologram (d) for entrance into said output switch block B.

10 [CLAIM 18] A polarization control optical space switch according to claim 1, comprising:

a polarization control optical space switch block consisting of two polarization control optical space switches arranged in parallel with each other;

input polarization control means for rotating the polarizing direction of incident light through 90° or otherwise retaining the polarizing direction thereof for output;

polarization splitting means for directing the light information, output from said input polarization control means, to one or other of said polarization control optical space switches in said polarization control optical space switch block in accordance with the polarizing direction of the light information;

polarization correcting means for outputting the light information, output from said polarization control optical space switch block, onto a designated light

path; and

5

10

15

20

25

output polarization control means for rotating through 90° the polarizing direction of the light information output from said polarization correcting means or otherwise retaining the polarizing direction thereof for output.

[CLAIM 19] A polarization control optical space switch according to claim 18, wherein of said two polarization control optical space switches, one is an s-polarization control optical space switch for switching the light path for incident s-polarized light whose polarizing direction is perpendicular to the plane of incidence, and the other is a p-polarization control optical space switch for switching the light path for incident p-polarized light whose polarizing direction is parallel to the plane of incidence.

[CLAIM 20] A polarization control optical space switch according to claim 18, wherein said polarization splitting means and said polarization correcting means are each constructed from a birefringent plate.

[CLAIM 21] A polarization control optical space switch according to claim 18, wherein said polarization splitting means and said polarization correcting means are each constructed from a polarizing beam splitter array consisting of a combination of two polarizing beam splitters.

[CLAIM 22] A polarization control optical space

switch according to claim 18, wherein said polarization splitting means and said polarization correcting means are each constructed from a liquid-crystal hologram.

10

15

ABSTRACT

The present invention is directed to an optical space switch accommodating a plurality of input light paths and output light paths. The optical space switch comprises a plurality of polarization control optical switches, each consisting essentially of: polarization control means having elements, one for each input light path, for rotating through 90° the polarizing direction of light information incident from each input light path or otherwise retaining the polarizing direction thereof for output; and a light path routing element for routing the light path for the light information output from the polarization control means in accordance with the polarizing direction of the light information. polarization control optical switches are arranged in a matrix pattern or coupled in cascade to implement a polarization control optical space switch.

FIG.2

FIG.3

FIG.4(a)

FIG.4(b)

FIG.6

FIG.8

- ~ ~ ~

FIG.10

i, ai

FIG.14

FIG.15

F I G.16

FIG.17

F I G.18

FIG.19

FIG.20

FIG.21

F I G.22

F I G.25

F I G.26

FIG.27

FIG.28

FIG.29

FIG.30

PRIOR ART F I G.31

COMBINED DECLARATION/POWER OF ATTORNEY FOR UTILITY/DESIGN PATENT APPLICATION

As a below named inventor, I hereby declare that: My residence, post office address and citizenship are as stated below next to my name. I believe that I am the origina first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names a listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitl POLARIZATION CONTROL OPTICAL SPACE SWITCH the specification of which (check one) [] is attached hereto [X] was filed on as U.S. Application Serial No. <u>08/200.657</u> and was amended on (if applicable) I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claim as amended by any amendment referred to above. I acknowledge the duty to disclose to the Office all information known me to be material to patentability as defined in §1.56. I hereby claim foreign priority benefit(s) under 35 U.S.C. §119 any foreign application(s) for patent or inventor's certificate listed below and have also identified below any forei application(s) for patent or inventor's certificate having a filing date before that of the application on which priori is claimed. 5-33178 5-124010 23/02/93 26/05/93 Japan Japan ~ · X~· 5-69211 Japan 04/03/93 [] (Number) (Country) Day/Month/Year Filed No 6-15544 09/02/94 Japan [] [X](Number) (Country) Day/Month/Year Filed No I hereby claim the benefit under 35 U.S.C. §120 of any U.S. application(s) listed below and, insofar as the subject matt of each of the claims of this application is not disclosed in the prior United States application(s) in the manner provid by the first paragraph of 35 U.S.C. §112, and I acknowledge the duty to disclose to the Office all information known to to be material to patentability as defined in §1.56 which became available between the filing date of the prior applicati and—the national or PCT international filing date of this application: (Application Serial No.) (Filing Date) (Status: patented, pending, abandoned) (Application Serial No.) (Filing Date) patented, pending, abandoned) POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorneys and agent: James D. Halsey, Jr., Reg. No. 22,729; Harry Jo Stass, 22,010; David M. Pitcher, 25,908; Gene W. Stockman, 21,021; John C. Garvey, 28,607; J. Randall Beckers, 30,358; Jam H. Barsh, Jr., 24,533; William F. Herbert, 31,024; Richard A. Gollhofer, 31,106; Carla M. Krivak, 30,956; Matthew J. Bussai 33,644; Daniel W. Juffernbruch, 33,122; Jon M. Jurgovan, 34,633; Scott D. Balderston, 35,436; Mark J. Henry, 36,162; and Pal F. Daebeler, 35,852 to prosecute this application and transact all business in the Patent and Trademark Office connects themewith. Send correspondence to: STAAS & HALSEY, 1825 K Street, N.W., Suite 816, Washington, D.C., 20006 and direct telephone calls to: (202) 872-0123 I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful fal: statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. Tetsuya Nishi Full name of sole or first inventor etsura 25, 1994 March Kawasaki-shi, Kanagawa, Japan Residence Japan c/ofujitsu Limited, 1015, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Citizenship Post Office Address Kanagawa, Japan Takuji Maeda Full name of second joint inventor, if any Second Inventor's Signature 25, 1994 March Date Kawasaki-shi, Kamagawa, Residence Japan Citizenship c/o Fujitsu Limited, 1015, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Post Office Address Post Office Address Kanagawa Japan
(Supply similar information and signature lines for third and subsequent joint inventors.)

Full name of third joint inventor, if any	Satoshi Kuroyanagi
Inventor's Signature Satoshi Kurosa	<u>Prayu</u> Date <u>March</u> 25, 1994
Residence Kawasaki-shi, Kanagawa, Japan	
	Citizenship Japan
Post Office Address c/o Fujitsu Limited,	1015, Kamikodanaka, Nakahara-ku,
Kawasaki-shi, Kanagawa, Japan	
Full name of fourth joint inventor, if any	
Inventor's Signature <u>Kuyoshi Manangi</u> Kawasaki-shi, Kanagawa, Japan	T- Date <u>March</u> 25, 1994
Residence Rawasaki-Sili, Kalagawa, Dapali	
	Citizenship Japan
TOSE OFFICE Address	1015, Kamikodanaka, Nakahara-ku,
Kawasaki-shi, Kanagawa, Japan	
Full name of fifth joint inventor, if any _	
Inventor's Signature	Date
Residence	
	Citizenship
Post Office Address	
Full name of sixth joint inventor, if any _	
Inventor's Signature	Date
Residence	
	Citizenship
Post Office Address	
Full name of seventh joint inventor, if any	
Inventor's Signature	Date
Residence	
Post Office Address	
Full name of eighth joint inventor, if any	
Inventor's Signature	Date
Residence	
Post Office Address	

()

Docket No.: 1046.1028D2/DSG

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of:

Tetsuya NISHI et al.

: Group Art Unit: unassigned

Serial No.: Div. of Serial No. 08/200,657

Filed: August 2, 2000 : Examiner: unassigned

For: POLARIZATION CONTROL OPTICAL SPACE SWITCH

REQUEST FOR CHANGE OF ADDRESS

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Please correct the address of the undersigned attorney for applicants to:

STAAS & HALSEY LLP

700 ELEVENTH STREET, N.W.

SUITE 500

WASHINGTON, DC 20001

Respectfully submitted,

STAAS & HALSEY LLP

Deborah S. Gladstein

Registration No. 43,636

Date: 8/2/00