A Table of Commutation Relations

Nathaniel Beaver

August 31, 2013

1 A table of commutation relations for operators of a single particle.

1.1 Operators to use.

- Observables (Hermitian): $x, p_x, H = \frac{p_x^2}{2m}, N = a^{\dagger}a, J_x, J_y, J_z, J, \Pi$
- Non-observables: a, a^{\dagger}, T ,

1.2 The table.

[row, column]	x	p	O_x	Н	\mathbf{N}	J	J_x	J_y	J_z	П	a	a^{\dagger}	T
\overline{x}	0	i	\hbar										
p_x	$-i\hbar$)	$-i\hbar \frac{\partial}{\partial x} V(x)$ 0									
Н		$i\hbar \frac{\partial}{\partial x}$	V(x)	0									
N		O.t.	,		0						-a	$-a^{\dagger}$	
J						0							
J_x							0						
$J_y^{"}$								0					
J_z^{g}									0				
$\tilde{\Pi}$										0			
a											0	1	
a^{\dagger}											-1	0	
T													0
[row, column	$\mathbf{n}]$	S_x	S_y	S_z									
$\overline{S_x}$		0	$i\hbar S_z$	$-i\hbar S_y$									
S_y	-	$-i\hbar S_z$	0	$i\hbar S_x$									
S_z	1	$i\hbar S_u$	$-i\hbar S_x$	0									

1.3 Operator definitions.

- $p_x = \frac{\hbar}{i} \frac{\partial}{\partial x}$ in the x-basis. Townsend p.158.
- $\Pi |x\rangle = |-x\rangle$ Townsend p.213.
- $H = \frac{p^2}{2m} + V(x)$ Sakurai p.97, (2.4.2).

1.4 References.

- 0 Any operator commutes with itself.
- $-i\hbar$ See Townsend eq. 6.31, p. 155 or Griffiths eq. 2.51, p.55. This leads to the uncertainty principle $\Delta x \Delta p_x \geq \frac{\hbar}{2}$.
- -a See Sakurai p.90, (2.3.10).
- $-a^{\dagger}$ See Sakurai p.90, (2.3.11).
 - 0 H and p_x commute since $H = \frac{p_x^2}{2m}$.
- 2 A table of commutation relations for operators of two particles.