Author:

- Sidharth
- 2K18/MC/114

Objective:

Demonstrate the Renewal Process. WAP to find the expected waiting time until the nth renewal in case of a renewal process with renewal cycle length distributed

- 1. normally with mean μ and standard deviation σ , ($\mu > 3\sigma$)
- 2. exponentially with parameter λ .

Demonstrate it by taking suitable values for (a) and (b) both.

Theory:

A Renewal Process is a general case of Poisson Process in which the inter arrival time of the process or the time between failures does not necessarily follow the exponential distribution. A counting process N(t) that represents the total number of occurrences of an event in the time interval (0,t) is called a renewal process. If the time between failures are independent and identically distributed random variables.

The probability that there are exactly n failures occurring by time t can be written as,

$$P{N(t) = n} = P{N(t) \ge n} - P{N(t) > n}$$

And,

$$Tk = Wk + Wk-1$$

Code & Output:

◄. Normally with mean μ and standard deviation σ , (μ > 3 σ)

```
n = int(input('Enter value of n: '))
mu = int(input('Enter value of μ: '))
 sigma = input('Enter value of \sigma: ')
 ans = n*mu
print('Expected waiting time until the', n, 'th renewal = ', ans)
Enter value of n: 87
   Enter value of \mu: 3
   Enter value of \sigma: 0.6
   Expected waiting time until the 87 th renewal = 261
 \checkmark2. Exponentially with parameter \lambda
n = int(input('Enter value of n: '))
 1 = float(input('Enter value of λ: '))
 ans = n/1
print('Expected waiting time until the', n, 'th renewal = ', ans)
□→ Enter value of n: 122
   Enter value of \lambda: 0.245
   Expected waiting time until the 122 th renewal = 497.9591836734694
```

Result:

Demonstrated the Renewal Process and calculated the expected waiting time until the nth renewal.

Discussion:

Calculation of the expected waiting time until the nth renewal in case of a renewal process with renewal cycle length distributed normally with mean μ and standard deviation σ and exponentially with parameter λ are being calculated through above formula.