

Meta-Learning

Predictive models are like potato chips

Sometimes you can't have just one.

Need a combination of methods (ensemble) for certain situations.

Layers of Learning

Gilberto Titericz Junior (top-ranked user on Kaggle.com) used this setup to win the \$10,000 Otto Group Product Classification Challenge.

33 models???

3 levels???

LASAGNE???

Why so many models?

Recall: A single model on its own is often prone to bias and/or variance.

- Bias Systematic or "consistent" error.
 Associated with underfitting.
- Variance Random or "deviating" error.
 Associated with overfitting.

A tradeoff exists. We want to minimize both as much as we can.

Ensembles and Hypotheses

- Recall the definition of "hypothesis."
- Machine learning algorithms search the hypothesis space for hypotheses.
 - Set of mathematical functions on real numbers
 - Set of possible classification boundaries in feature space
- More searchers are more likely to find a "good" hypothesis that minimizes bias.
- We can then combine the searchers' results in a way that minimizes variance.

Introduction: Ensemble Averaging

Basic ensemble composed of a **committee** of learning algorithms.

Results from each algorithm are averaged into a final result, reducing variance.

More Sophisticated Ensembles

Three important ensembles to know:

Boosting

Bagging

Stacking

Boosting

Boosting decreases bias and prevents underfitting.

A **sequential ensemble**. Models are applied one-by-one based on how previous models have done.

- Apply a model on a subset of data.
- Check to see where the model has badly classified data.
- Apply another model on a new subset of data, giving preference to data badly classified by the model.

AdaBoost

- Short for <u>ada</u>ptive <u>boost</u>ing
- Uses "weak learners" simple models that do slightly better than random guessing
 - Example: decision stump (decision tree with one level)
- Sequentially generates weak learners, adjusting newer learners based on mistakes of older learners
- Combines output of all learners into weighted sum

XGBoost

- Short for eXtreme Gradient Boosting
- Sequentially generates "weak learners" like
 Adaboost
- Updates model by computing cost function
 - Computes gradient of cost function
 - Direction of greatest decrease = negative of gradient
 - Creates new learner with parameters adjusted in this direction

Boosting Demo

We'll be comparing the predictive power of the xgboost package in R to the standard logistic regression model (glm) on the same dataset.

Demo time!

Bagging

Bagging decreases variance and prevents overfitting.

Short for **b**ootstrap **agg**regat**ing**.

A **parallel ensemble**. Models are applied without knowledge of each other.

- Apply each model on a random subset of data.
- Combine the output by averaging (for regression) or by majority vote (for classification)
- A more sophisticated version of ensemble averaging.

Random Forests

- Designed to improve accuracy over CART
- Much more difficult to overfit
- Works by building a large number of CART trees
 - Disadvantage: Makes model harder to understand and follow
 - Each tree in the forest "votes" on outcome
 - Outcome with the most votes becomes our prediction

Random Forests

- Wouldn't each CART tree be identical?
 - Right! So random forest changes each tree's training data a bit
 - Each tree is trained on a random subset of the data
 - Example original data: 1 2 3 4 5
 - New data:
 - 2 4 5 2 1 ----> first tree
 - 41321----> second tree
 - 3 5 1 5 2 ----> third tree

Random Forest Parameters

- Minimum number of observations in a branch
 - o nodesize parameter, similar to minbucket in CART
 - Smaller the node size, more branches, longer the computation
- Number of trees
 - ntree parameter
 - Fewer trees means less accurate prediction
 - More trees means longer computation time
 - Diminishing returns after a couple hundred trees

Bagging Demo Time!

How Stacking Works

Assumption: can improve performance by taking a **weighted** average of the predictions of models.

- Apply models on subsets of your data (how you choose them is up to you)
- Obtain predictions and perform linear regression on the predictions
 - This gives you the coefficients of the weighted average
- Result: a massive blend of potentially hundreds of models!

Stacking

Linear regression...

...on models.

http://akns-images.eonline.com/eol_images/Entire_S ite/2015725/rs_634x920-150825112125-634-mccaul ey-culkin-home-alone-2-08255.jpg

https://upload.wikimedia.org/wikipedia/e n/1/18/Inception_OST.jpg

Stacking Example

We'll use the lm function in R on the results of three different models:

• (finish this later)

Demo time!

Where to Learn More

- The course notes (available on the course website)
- http://stats.stackexchange.com/questions/18891/bagging-boosting-and -stacking-in-machine-learning
- http://scott.fortmann-roe.com/docs/BiasVariance.html
- http://mlwave.com/kaggle-ensembling-guide/

Coming Up

Your problem set:

Next week: Learning how to analyze text

See you then!

