Doosting "the statistical view"

miscl error = 1 2 1 [4: f(x:) =07

\(\frac{1}{n} \) \(\text{Z} \) \(\ext{e}^{-y_i f(x_i)} \)
\(\text{exponential loss} \)

f to be a linear model, a linear combination of "weak" classifiers,

 $f(\kappa) = \sum_{i=1}^{\infty} \lambda_{i} h_{i}(\kappa)$

If I'm borng, $h_j(x) = x \cdot j$, so $f(x) = \sum_{i=1}^{n} \lambda_i x_i j$ as before.

 $R^{+\alpha i n}(\overline{\lambda}) = \frac{1}{n} Z e^{-y_i Z \lambda_j h_j(x_i)} = \frac{1}{n} Z e^{-Z y_i h_j(x_i) \lambda_j} = \frac{1}{n} Z e^{-(\overline{M} \cdot \overline{\lambda})_i}$

where M = 1 (1) "matrix of margins" margin of it point be it weak dassifier

assume all weak classifiers are binary, so h; (x;) = +1 Then Mi; = 11

Bran (1) = 1 Ze(M/x):

coordinate descent for 1

Step 1: "coordinates" are j's. Find steepest coordinate.

Step 2: do a linesearch in that direction

540 1. Say we are at λ_t and want steepest director. $J_{t} \in \operatorname{argmax} \left[-\frac{dR^{train}(\overline{\lambda} + \alpha \overline{e}_{i})}{d\alpha} \right]$ $= \frac{dR^{train}(\overline{\lambda} + \alpha \overline{e}_{i})}{d\alpha}$ $= \frac{dR^{train}(\overline{\lambda} + \alpha \overline{e}_{i})}{d\alpha}$ $-\frac{d}{d\alpha}\left(\frac{1}{n}\sum_{i}e^{-\left[\frac{1}{m}\left(x_{k}+\alpha e_{i}\right)\right]_{i}}\right)\Big|_{\lambda=0}$ $-\frac{d}{d\alpha}\left(\frac{1}{n}\sum_{i}e^{-\left(\frac{m}{m}x_{k}\right)_{i}-\alpha M_{i}}\right)\Big|_{\lambda=0}$ $\frac{1}{n} = \left[-\frac{d}{d\alpha} \left(e^{-(in\lambda_k)_i} - \alpha M_{ij} \right) \right]_{\alpha=0}$ $\frac{1}{n} \geq + M_{ij} e^{-(M_{ij})_{i}} + 0$ je orgnax i Z Mije - (M Tr.); "steepest direction"

Step 2: Linesearch along direction; $O = \frac{dR train (\lambda_t + \alpha \bar{e}_j)}{d\alpha}$ how for to go = \frac{q}{r} \frac{r}{r} \frac{r}{S} \text{ e} - (\bar{W}(\lambda^{r} + \alpha \epsilon^{j_{t}}))^{j_{t}}} $= \frac{1}{n} \left[e^{-(M \tilde{\lambda}_{\ell})_{i}} - \kappa H i_{\tilde{\lambda}_{\ell}} \right]$ $= \frac{1}{n} \left[\sum_{i} M_{ij_{t}} \right] e^{-(M\lambda_{t})_{i} - \alpha M_{ij_{t}}}$ $= \frac{1}{n} \sum_{i:M_{i_{j_{+}=1}}}^{i:M_{i_{j_{+}=1}}} M_{i_{j_{+}=1}} e^{-(M\lambda_{e})_{i_{-}} - \alpha M_{i_{j_{+}=-1}}} \sum_{i:M_{i_{j_{+}=-1}}}^{i:M_{i_{j_{+}=-1}}} M_{i_{j_{+}}} e^{-(M\lambda_{e})_{i_{-}} - \alpha M_{i_{j_{+}}}}$ $= -\frac{1}{n} \sum_{i:M_{i,k}=1}^{n} e^{-(M_{i,k})_{i}} e^{-\alpha} - \frac{1}{n} \sum_{i:M_{i,k}=1}^{n} - e^{-(M_{i,k})_{i}} e^{\alpha} \Big|_{\alpha_{i}}$ dative $d_{\xi,i} = \frac{e}{Z_i} - normalization$ $0 = - \sum_{i: M_{ij}=1}^{n} d_{t,i} e^{-x} - \sum_{i: M_{ij}=1}^{n} d_{t,i} e^{x}$ $= -e^{-\alpha_{k}} \sum_{i:M_{i}} d_{k,i} + e^{\alpha_{k}} \sum_{i:M_{i}} d_{k,i}$ $\downarrow d_{+}$ $\downarrow d_{+}$ $\downarrow d_{+}$ =-e^{-α}, d. + e^α, d d+ = e224 $\frac{1}{2} \ln \left(\frac{d_t}{d_-} \right) = d_t - Since d's are normalized <math>d_t = 1 - d_$ $d_{\epsilon} = \frac{1}{2} \ln \left(\frac{1 - d_{-}}{d_{-}} \right) \quad :$ Simplify are last thing: Step 1:), E argax in ZMije-(Mile). je e argmax ZMij de,i

Finally the algorithm'.

$$d_{i,i} = \frac{1}{n} \quad i = 1 - n$$

$$\frac{1}{n} = \frac{1}{n} \quad \frac{1}{n} = \frac{1}{n} = \frac{1}{n} \quad \frac{$$

Step 1:
$$\hat{J}_{\epsilon} \in \operatorname{argmax} (\bar{d}_{\epsilon}^T \bar{M})_{i}$$

Notation:
$$d_{-} = \sum_{M_{ij} = -1} d_{t,i}$$

Step 2:
$$\alpha_{\downarrow} = \frac{1}{2} \ln \left(\frac{1-q^{-}}{1-q^{-}} \right)$$

Take the step:
$$\lambda_{t+1} = \lambda_t + \alpha_t \in S_t$$

Notation:
$$d_{t+1,i} = e^{-(\bar{m}\bar{\lambda}_{t+1})} \cdot /Z_{t+1}$$
 $\forall i$

$$Z_{t+1} = Z_{e}^{-(\bar{N}\bar{\lambda}_{t+1})}$$

Replaced in practice by

if e ordinax (gitH)?

weak learning algorithm.

argmax $\left[Z d_{k,i} + Z - d_{k,i} \right]$

agnox [1-2 de,i - 2 de,i

agmin [Z de, c minimizes "weight" of misclassified

end

This I is adaBoost. Except be one thing weight update:
$$d_{t+1,i} = e^{-(\vec{m} \hat{\lambda}_{t+1})_i} / Z_{t+1}$$