23. Nemzetközi Magyar Matematika Verseny

Csíkszereda, 2014. március 12-16.

9. osztály

1. feladat: Egy könyvtárban megszámozták az összes könyvet. A számozáshoz 1-től kezdődően egymást követő természetes számokat használtak, és ugyanazt a számot nem írták rá két könyvre. A megszámozás során a könyvekre háromszor annyi számjegyet kellett ráírni, mint ahány könyv volt a könyvtárban. Hány könyv volt a könyvtárban?

Oláh György (Révkomárom)

1. megoldás: Legyen a keresett kötetek száma x. Ez a szám nem lehet egyjegyű, mert x > 0 esetén $x \neq 3x$. Ha x kétjegyű, akkor 9 + 2(x - 9) = 3x, mert az egyjegyű számjegyek száma 9, a kétjegyű számok számjegyeinek száma pedig 2(x - 9). Ennek az egyenletnek nincs megoldása a természetes számok halmazán.

Ha x háromjegyű, akkor $9 + 2 \cdot 90 + 3(x - 99) = 3x$, és ennek az egyenletnek sincs megoldása. Ha x négyjegyű, akkor az egyenlet:

$$9 + 2 \cdot 90 + 3 \cdot 900 + 4(x - 999) = 3x$$

és ennek az egyetlen megoldása x = 1107.

Ha a kötetek száma 1107+y is lehetne, ahol y pozitív egész, akkor a könyvek megjelölésére legalább $3\cdot 1107+4y$ számjegyet kellene felhasználni. (Az első 1107 kötethez $3\cdot 1107$ számjegyet és minden további kötethez legalább 4 számjegyet.) Másrészt y>0 esetén $3\cdot 1107+4y>3(1107+y)$, tehát 1107 az egyedüli megoldása a feladatnak.

2. megoldás: Legyen a keresett kötetek száma x. Jelöljük az x szám számjegyeinek számát (k+1)-gyel. Ekkor az előbbiekben is felírtuk, hogy $k \geq 1$ (azaz a szám legalább kétjegyű kell legyen) és a számozás során felhasznált számjegyek száma:

$$9 + 2 \cdot 90 + 3 \cdot 900 + \dots + k \cdot 9 \cdot 10^{k-1} + (k+1)(x-10^k+1)$$

Az első összeget a következőképpen alakíthatjuk:

$$9 (1 + 2 \cdot 10 + 3 \cdot 10^{2} + \dots + k \cdot 10^{k-1}) =$$

$$9 [(1 + \dots + 10^{k-1}) + 10 (1 + \dots + 10^{k-2}) + \dots + 10^{k-1}] =$$

$$9 \left[\frac{10^{k} - 1}{9} + 10 \cdot \frac{10^{k-1} - 1}{9} + \dots + 10^{k-1} \cdot \frac{10 - 1}{9} \right] =$$

$$[(10^{k} - 1) + (10^{k} - 10) + \dots + (10^{k} - 10^{k-1})] =$$

$$k \cdot 10^{k} - \frac{10^{k} - 1}{9},$$

tehát a számjegyek száma

$$k + (k+1)x - \frac{10^{k+1} - 10}{9}$$
.

$$3x = k + (k+1)x - \frac{10^{k+1} - 10}{9},$$

azaz

$$(k-2)x = \frac{10(10^k - 1)}{9} - k,$$

vagy

$$(k-2)x = \underbrace{111\dots 1}_{k \text{ darab}} 0 - k.$$

A fenti összefüggés jobb oldala egy 1-gyel kezdődő (k+1)-jegyű szám. A bal oldalon ott van a (k+1)-jegyű x és így k>3 esetén a baloldal nem lehet 1-gyel kezdődő (k+1)-jegyű szám. A k=3 esetben pedig x=1107.

2. feladat: Határozd meg az (a+b)(b+c)(c+a)=1144 egyenlet összes nullától különböző természetes megoldását!

dr. Hraskó András (Budapest)

Megoldás: $1144 = 8 \cdot 11 \cdot 13$. Mivel az (a + b), (b + c), (c + a) tényezők összege páros, ha közülük kettő páros, akkor a harmadik is az. Így vagy csak egyikük páros, vagy mind párosak.

Ha mind párosak, akkor legalább az egyik közülük 2, mert a prímtényezős felbontásban nincs három páratlan prím. Mivel 2 egyetlen felbontása pozitív egészek összegére az 1+1, a szorzat további két tényezője egymással egyenlő lenne. Ez nem lehetséges, tehát ebben az esetben nincs megoldás.

Ha csak egyikük páros, akkor szükségképpen $8,\,11$ és 13 a három kéttagú összeg, tehát a számok valamilyen sorrendben $3,\,5$ és 8.

3. feladat: Az ABCD konvex négyszögben $AB=1, BC=2, AD=\sqrt{2}, A <=105^{\circ}$ és $B <=60^{\circ}$. Számítsd ki a CD oldal hosszát!

Kovács Lajos (Székelyudvarhely)

dr. András Szilárd (Kolozsvár)

1. megoldás: Jelöljük a DC oldal hosszát x-szel és a BC oldal felezőpontját M-mel.

A feltételek alapján BM=MC=1, tehát az ABM háromszög egyenlő oldalú, és ezért $MAD \lhd = 45^\circ$. Az MAD háromszögben viszont $AD=\sqrt{2}$ és AM=1 is teljesül, így az MAD háromszög M-ben derékszögű és egyenlő szárú, tehát MD=1. Következik, hogy $DMC \lhd = 180^\circ - 60^\circ - 90^\circ = 30^\circ$. Tehát a DMC háromszög egyenlő szárú, DM=MC=1 és az M csúcsnál levő szög 30°-os. Ha ebben a háromszögben felvesszük az M csúcsból kiinduló magasságot (ami egyben szögfelező és oldalfelező is), akkor következik, hogy

$$x = 2\sin 15^{\circ} = 2\sqrt{\frac{1-\cos 30^{\circ}}{2}} = \sqrt{2} \cdot \sqrt{1-\frac{\sqrt{3}}{2}} = \sqrt{2-\sqrt{3}}.$$

2. megoldás: Jelöljük a DC oldal hosszát x-szel, a BC oldal felezőpontját M-mel, és az AD és BC egyenesek metszéspontját N-nel.

Az előző megoldáshoz hasonlóan megkapjuk, hogy $BCD \triangleleft = 75^\circ$ és $CDA \triangleleft = 75^\circ + 45^\circ = 120^\circ$. Tehát az ABCD négyszög szemközti szögeinek az összege 180° és így a négyszög körbeírható. A négyszög köré írt kör középpontja az M pont (és a kör sugara 1), ezért a $BAC \triangleleft$ és $BDC \triangleleft$ szögek 90° -osak. Pitagorasz tétele alapján az

$$AC = \sqrt{3}$$
 és $x^2 = 4 - BD^2$ (1)

összefüggéseket kapjuk.

Másrészt, $AMD \lhd = 90^\circ$, $BMA \lhd = 60^\circ$ és a BMD háromszög egyenlő szárú, tehát $MBD \lhd = 15^\circ$. Viszont az ABCD négyszög körbeírható, ezért a $CAD \lhd$ is 15° . De az ANB háromszögben az $ANB \lhd$ is 15° -os így az ACN háromszög egyenlő szárú és

$$CN = AC = \sqrt{3} \tag{2}$$

az (1) összefüggés alapján.

Mivel a BDN háromszög is egyenlő szárú (a BN oldalon fekvő szögek 15°-osak), ezért

$$BD = DN = y. (3)$$

Ha felírjuk az N pontnak az ABCD négyszög köré írt körre vonatkozó hatványát (vagy direkt hasonlóságból), a (2) és (3) összefüggések alapján az

$$ND \cdot NA = NC \cdot NB \iff y(y + \sqrt{2}) = \sqrt{3}(\sqrt{3} + 2)$$

összefüggéshez jutunk. Az y-ban másodfokú egyenletnek csak az egyik megoldása lesz pozitív (csak ez lehet egyenlő egy szakasz hosszával), és mivel BD=y, az (1) egyenletből megkapjuk az x értékét.

3. megoldás: Legyen a DC szakasz hossza x, a BC oldal felezőpontja M, a DCM háromszög D-ből húzott magasságának a hossza h és ez a magasság a CM szakaszt ossza y és 1-y részekre (lásd az ábrát).

Az első megoldáshoz hasonlóan DM=1és ezért Pitagorasz tétele alapján a

$$h^2 + y^2 = 1$$
 és $h^2 + (1 - y)^2 = x^2$ (4)

egyenletekhez jutunk.

Szükségünk van még egy egyenletre, ezért rajzoljuk be az ABM egyenlő oldalú háromszögben az A csúcsból húzott magasságot (aminek a hossza $\frac{\sqrt{3}}{2}$), majd állítsunk a D pontból egy merőlegest erre a magasságra (és jelöljük ennek talppontját P-vel, lásd az ábrát). A harmadik egyenletünket az APD derékszögű háromszögben felírt Pitagorasz tételből kapjuk:

$$\left(\frac{\sqrt{3}}{2} - h\right)^2 + \left(\frac{1}{2} + y\right)^2 = (\sqrt{2})^2. \tag{5}$$

A fenti három egyenletből átalakításokkal a

$$2 - 2y = x^{2},$$

$$h^{2} + y^{2} = 1,$$

$$\sqrt{3}h = y$$

egyenleteket kapjuk (a $h^2+y^2=1$ összefüggést használtuk a másik két egyenlet egyszerűsítésére, az utolsó egyenlet felírható a 30°-os szög tangenséből is). Az utolsó két egyenletből következik, hogy $h=\frac{1}{2}$ és így $y=\frac{\sqrt{3}}{2}$, tehát az első egyenletből következik, hogy $x=\sqrt{2-\sqrt{3}}$.

Megjegyzés: A mellékelt ábra alapján látható, hogy lépésről-lépésre csak a Pitagorasz tétel alkalmazásával is kiszámolható a kért szakasz hossza.

4. feladat: Hány valós megoldása van a $3[x]=2x^2+x-4$ egyenletnek? ([x] az x valós szám egész részét jelenti.)

Szabó Magda (Szabadka)

Longáver Lajos (Nagybánya)

1. megoldás: Mivel $x-1 < [x] \le x$, a következő egyenlőtlenségekhez jutunk:

$$3(x-1) < 2x^2 + x - 4 < 3x$$
.

Az így kapott egyenlőtlenségeket megoldjuk:

$$\left\{ \begin{array}{l} 2x^2 - 2x - 1 > 0 \\ 2x^2 - 2x - 4 \le 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \in \left(-\infty, \frac{1 - \sqrt{3}}{2} \right) \cup \left(\frac{1 + \sqrt{3}}{2}, +\infty \right) \\ x \in [-1, 2] \end{array} \right.$$

Tehát
$$x \in \left[-1, \frac{1-\sqrt{3}}{2}\right) \cup \left(\frac{1+\sqrt{3}}{2}, 2\right]$$
 és így $[x] \in \{-1, 1, 2\}$.

 $\operatorname{Ha}[x] = -1$, akkor a feladatbeli egyenlet $2x^2 + x - 1 = 0$, és ennek az egyetlen olyan megoldása,

amelynek az egészrésze -1, az x=-1. (A másik megoldás $\frac{1}{2}$, ennek viszont az egészrésze 0.) Ha [x]=1, akkor a feladatbeli egyenlet $2x^2+x-7=0$, és ennek az egyetlen olyan megoldása, amelynek az egészrésze 1, az a $x=\frac{-1+\sqrt{57}}{4}$. (A másik megoldás $\frac{-1-\sqrt{57}}{4}$.) Ha [x]=2, akkor a feladatbeli egyenlet $2x^2+x-10=0$, és ennek az egyetlen olyan megoldása,

amelynek az egészrésze 2, az x=2. (A másik megoldás $-\frac{5}{2}$.)

A fentieket összefoglalva, az egyenletnek összesen 3 megoldása van, ezek pedig a $-1, \frac{-1+\sqrt{57}}{4}$

2. megoldás: Ábrázoljuk az $y=\frac{2}{3}x^2+\frac{1}{3}x-\frac{4}{3}$ egyenletű parabolát, majd az y=[x] függvény grafikus képét.

Az ábra alapján látható, hogy a megoldások -1, 2 és egy (1, 2) intervallumbeli szám. Mivel a feladat nem kéri konkrétan a megoldásokat, csak a megoldások számát, ezért ez elégséges is. Hasonló, de talán jobban látható gondolatmenethez jutunk, ha az egészrész függvény helyett a törtrész függyény grafikus képét ábrázoljuk. Ehhez átalakítjuk az egyenletet:

$$3[x] = 2x^2 + x - 4 \Leftrightarrow 3(x - \{x\}) = 2x^2 + x - 4,$$

tehát a $\{x\} = -\frac{2}{3}x^2 + \frac{2}{3}x + \frac{4}{3}$ egyenlethez jutunk. Ha ábrázoljuk az $y = -\frac{2}{3}x^2 + \frac{2}{3}x + \frac{4}{3}$ egyenletű parabolát, majd az $y = \{x\}$ függvényt. Így sokkal jobban látszik a három megoldás.

3. megoldás: Tekintsük az $f(x) = 2x^{\frac{3}{4}} + x - (4+3k)$ függvényt, ahol k = [x].

Ha $x \le -2$, akkor f(x) = x(x+2) - (4+3k) > 0.

Az f függvény minden $x \in (0, -\frac{1}{4})$ esetén szigorúan csökkenő, ha pedig $x \in (-\frac{1}{4}, +\infty)$, akkor szigorúan növekvő.

Ha $x \in \left(-\frac{1}{4}, +\infty\right)$, akkor - mivel szigorúan növekvő - f-nek minden [k, k+1) intervallumban legfennebb egy gyöke van. Ez a gyök pontosan akkor létezik, ha $f(k) \leq 0$ és $f(k+1-\epsilon) > 0$, ha ϵ elég kicsi. Ha $\epsilon \to 0$, akkor

$$f(k+1-\epsilon) \to 2(k+1)^2 + (k+1) - (4+3k) = 2k^2 + 2k - 1$$

és ez nullánál szigorúan nagyobb kellene legyen.

Az
$$f(k) \le 0 \Leftrightarrow 2k^2 - 2k - 4 \le 0 \Leftrightarrow k \in \{-1, 0, 1, 2\}.$$

A $2k^2 + 2k - 1 > 0$ egyenlőtlenség viszont csak k = 1 és k = 2 esetén teljesül.

Ha $x \in (-2, -\frac{1}{4})$, akkor $k \in \{-2, -1\}$ és f szigorúan csökkenő. A k = -2 és k = -1 értékeket egyszerű visszahelyettesítéssel ellenőrizhetjük. Az előzőekhez hasonlóan azt is ellenőrizhetjük, hogy a fordított egyenlőtlenségek teljesülnek-e, azaz:

$$\begin{cases} 2k^2 - 2k - 4 \ge 0 \\ 2k^2 + 2k - 1 < 0 \end{cases}.$$

Bármelyik úton is haladnánk tovább, közülük csak a k=-1 felel meg. Tehát három megoldás van.

 $\textit{Megjegyz\'es}\colon$ Az f függvényt számítógép használata nélkül nagyon nehéz ábrázolni. Alább megtekinthető a grafikus képe.

5. feladat: Egy számítógép segítségével kinyomtatták a 2^{2014} és az 5^{2014} hatványok értékét tízes számrendszerben. Összesen hány számjegyet nyomtattak? (Pl. a 11231 szám kinyomtatásánál 5 számjegyet nyomtatnának.)

dr. Katz Sándor (Bonyhád)

Megoldás: Jelölje 2^{2014} jegyeinek számát k és 5^{2014} jegyeinek számát l. Ha az n természetes szám k jegyű, akkor $10^{k-1} \le n < 10^k$, ezért

$$10^{k-1} \le 2^{2014} < 10^k$$
, illetve $10^{l-1} \le 5^{2014} < 10^l$.

Mivel sem 2^{2014} , sem 5^{2014} nem lehet 10 hatvány, hiszen sem 2, sem 5 hatványai nem végződhetnek 0-ra, így egyik helyen sem állhat egyenlőség. Szorozzuk össze a két egyenlőtlenséget. Ezt megtehetjük, mert mindenhol pozitív számok állnak. Az előbbi észrevétel alapján mindkét egyenlőtlenség szigorú, tehát

$$10^{k+l-2} < 10^{2014} < 10^{k+l}.$$

A 10 hatványai a kitevő növekedésével növekednek, ezért az előbbiből következik, hogy

$$k + l - 2 < 2014 < k + l$$
.

Mivel k és l egész számok, így ez csak k+l=2015 esetén lehetséges. Tehát a két számnak összesen 2015 jegye van.

 $Megjegyz\acute{e}s$: Az előbbiekhez hasonlóan belátható, hogy tetszőleges n pozitív egész szám esetén 2^n és 5^n számjegyei számának összege n+1. Ebből következik, hogy ha n értékét eggyel növeljük, akkor 2^n és 5^n közül mindig pontosan az egyiknél nő a jegyek száma.

- 6. feladat: a) Határozd meg a síknak egységoldalú szabályos háromszögekkel és egységoldalú szabályos hatszögekkel való összes szabályos lefödését! Egy lefödés azt jelenti, hogy a sokszögek hézag és átfödés nélkül (egyrétűen) lefödik a síkot. A lefödés szabályos, ha léteznek olyan a és b nullától különböző természetes számok, amelyekre minden keletkező csúcs körül pontosan a darab háromszög és b darab hatszög van, valamilyen rögzített sorrendben.
- b) Bizonyítsd be, hogy van olyan, nem feltétlenül szabályos lefödés is (az előbbi háromszögekkel és hatszögekkel), amelyben létezik végtelen sok, páronként különböző mintázat, amely véges sokszor jelenik meg! (Mintázat alatt a lefödés véges sok sokszöge által meghatározott összefüggő alakzatot értünk.)

Zsombori Gabriella (Csíkszereda)

dr. András Szilárd, dr. Lukács Andor (Kolozsvár)

Megoldás: A szabályos háromszögnek egy szöge 60°-os, a szabályos hatszögnek pedig 120°. Egy csúcs körül az alakzatok szögeinek összege 360°, tehát egy csúcsban legalább három, de legfennebb hat alakzat találkozhat:

- ha három alakzat találkozna, akkor ezek mind hatszögek lennének, így nem tudnánk a szabályos lefödéshez háromszögeket használni:
- ha hat alakzat találkozna, akkor ezek mind háromszögek lennének, így a szabályos lefödéshez most nem tudnánk hatszöget használni:

Ezt a két esetetet a következő ábrákon láthatjuk:

Ha egy csúcs körül csak egy hatszög lenne, akkor négy háromszög kell melléje $(1\cdot120^{\circ}+4\cdot60^{\circ}=360^{\circ})$. Az egyszerűbb hivatkozás érdekében a lefedéshez hozzárendeljük a csúcsok körül megjelenő sokszögek oldalszámaiból képezett rendezett számhalmazt egy rögzített körüljárás szerint. Így az előbbi lefödéshez hozzárendelhetjük a (6,3,3,3,3) rendezett szám ötöst. Egy ilyen csúcspont látható a következő ábrán:

Szabályos lefödés csak a következő módon készíthető:

Ha egy csúcs körül két hatszög lenne, akkor két háromszög kell hozzá $(2 \cdot 120^{\circ} + 2 \cdot 60^{\circ} = 360^{\circ})$. Ez esetben kétféle csúcs lehetséges: (6,3,6,3), illetve (6,6,3,3).

 \bullet A (6,3,6,3)esetben egy csúcs körüli elhelyezés látható a bal oldalon, míg a szabályos lefödés a egy része jobb oldalon:

 \bullet A (6,6,3,3) esetben egy csúcs körüli elhelyezést tüntettünk fel a következő bal oldali ábrán.

Ebben az esetben szabályos lefödés nem létezik, amit az előbbi ábra jobb oldala is bizonyít. Valóban, ha kiindulunk az 1-el jelölt (6,6,3,3) típusú csúcsból, akkor a 2-es csúcs is szükségszerűen (6,6,3,3) típusú lesz. Viszont ez azt jelenti, hogy a 3-as csúcs már csak (6,3,6,3) típusú lehet. Ez a folyamat folytatódik, két fajta csúcsunk lesz: a teli csúcsok típusa az ábrán (6,6,3,3), míg az üres csúcsok (6,3,6,3) típusúak.

Áttérünk a b) alpont megoldására. Vegyük fel a következő ábrán látható szabályos lefödést és a hozzá tartozó, nem derékszögű koordináta-rendszert.

A lefödésben szereplő hatszögek középpontjainak a koordinátái (2k,2l) alakúak, ahol $k,l\in\mathbb{Z}$. Az összes olyan hatszöget, amely középpontjának a koordinátái nem $(2^k,2^k),\ k\in\mathbb{N},k\geq 1$ alakúak, cseréljük ki a hatszög egyértelmű háromszög-lefödésére.

Az így keletkezett síklefödés esetén végtelen sok olyan mintázat létezik, amelyik véges sokszor fordul csak elő: az összes olyan mintázat, amelyik tartalmaz két egymást követő megmaradt hatszöget és a köztük levő szabályos sokszögek által kitöltött alakzatot tartalmazza, csak egyszer fordul elő mert a két hatszög középpontja közti távolság csak egyszer fordul elő.

Megjegyzés: Javasoljuk elolvasni mind a négy évfolyam utolsó feladatának a megoldását az évfolyamok sorszámának növekvő sorrendjében.