

Teste de Invasão de Aplicações Web

Capítulo 9

Mecanismos criptográficos

Objetivos

Conceitos

Tópicos abordados

- Introdução
- Vulnerabilidades no transporte de informações
- Contramedidas
- Vulnerabilidades no armazenamento de informações
- Contramedidas

Introdução

Em sistemas de informação, a proteção criptográfica compreende a última barreira para evitar que o sigilo das informações sensíveis seja violado.

Introdução

No mínimo, os seguintes aspectos devem ser considerados:

Utilização de algoritmos e protocolos conhecidos e extensivamente analisados

Uso de primitivas criptográficas adequadas para cada situação

Emprego de bibliotecas que contenham implementações corretas dos criptossistemas adotados

Gerenciamento das chaves criptográficas

Vulnerabilidades no transporte de informações

Comunicação segura de rede ocorre quando os seguintes requisitos de segurança da informação são satisfeitos:

Autenticação de entidades

Autenticação da origem da mensagem

Integridade

Confidencialidade

Vulnerabilidades no transporte de informações

Em aplicações web, esses requisitos são atendidos, normalmente, pelo uso dos protocolos SSL e TLS, para transporte de dados HTTP.

Inúmeros são os casos de aplicações que empregam certificados autoassinados, expirados ou emitidos por autoridades certificadoras caseiras, das quais os navegadores e sistemas clientes não possuem a chave pública autêntica, para validação de assinatura.

O utilitário OpenSSL permite testar se um servidor está configurado para aceitar uma determinada versão de SSL/TLS, por meio das opções -ssl2, -ssl3, -tls1, -tls1_1, -tls1_2, -tls1_3 :

```
~$ openssl s_client -ssl2 -connect ex.esr.rnp.br:443
...
SSL handshake has read 1416 bytes and written 364 bytes
---
New, SSLv2, Cipher is DES-CBC3-MD5
Server public key is 2048 bit
SSL-Session:
    Protocol : SSLv2
    Cipher : DES-CBC3-MD5
```

Suporte a suítes criptográficas fracas

Uma suíte criptográfica,
no contexto dos
protocolos SSL e TLS,
descreve um conjunto
de algoritmos que
devem ser empregados
na proteção do canal de
comunicação.

Algumas delas, entretanto, utilizam criptossistemas fracos, que fornecem pouca ou nenhuma segurança.

Suporte a suítes criptográficas fracas

O seguinte cenário ilustra um ataque bem sucedido contra esta vulnerabilidade:

- Por meio de outra vulnerabilidade no cliente, o atacante força que a lista de suítes enviadas na mensagem "client_hello" contenha apenas a "NULL-SHA".
- O servidor escolhe os algoritmos para proteção do túnel SSL, com base na intersecção das listas de suítes suportadas por ambos que, no caso, é a própria "NULL-SHA".
- O atacante captura os pacotes de rede e extrai as informações desejadas que, embora encapsuladas por SSL, não estão cifradas.

Suporte a suítes criptográficas fracas

Figura 9.2 - Tráfego TLS em claro.

Problemas com o certificado digital

Situações relacionadas ao certificado instalado, que impedem que a negociação SSL/TLS seja realizada com sucesso incluem:

Certificado expirado

Certificado válido a partir de data posterior à atual

Certificado auto-assinado

Certificado emitido por autoridade certificadora desconhecida pelo navegador

Problemas com o certificado digital

Situações relacionadas ao certificado instalado, que impedem que a negociação SSL/TLS seja realizada com sucesso incluem:

Certificado revogado

Assinaturas digitais inválidas na cadeia de certificação

Nome de domínio do sítio web não incluso no certificado

Acesso a domínio não verificado

- O atacante obtém um certificado digital e chave privada correspondente válidos, de um domínio XYZ qualquer.
- Um servidor web é criado com conteúdo clonado do domínio ABC e com HTTPS configurado com o par de chaves do primeiro passo.
- Um e-mail é enviado a um conjunto de vítimas para que acessem o servidor malicioso, como sendo do domínio ABC.

Acesso a domínio não verificado

- Durante a negociação SSL, o servidor clonado envia o certificado do domínio XYZ para o navegador, que não valida o domínio. Como nenhum erro ocorre, a chave pública é extraída e utilizada para compor a mensagem "client_key_exchange", enviada, em seguida, ao servidor.
- O servidor é capaz de extrair o conteúdo da mensagem "client_key_exchange", pois possui a chave privada associada ao certificado do domínio XYZ, e completar as operações para estabelecimento de chaves.
- As mensagens "change_cipher_spec" e "finished" são trocadas entre as duas partes e o protocolo encerra-se normalmente.

Uso de protocolos proprietários

Projetar protocolos seguros é uma tarefa tão difícil quanto criar bons algoritmos criptográficos. Assim, a chance de um protocolo caseiro ser livre de vulnerabilidades é extremamente baixa, ainda mais quando ele é a criação de uma equipe não especializada.

Uso de protocolos proprietários

Situações relacionadas ao certificado instalado, que impedem que a negociação SSL/TLS seja realizada com sucesso incluem:

Espera Personificação Intercalação forçada Reflexão Repetição

Uso de protocolos proprietários

Figura 9.3 - Protocolo de autenticação vulnerável.

Contramedidas

Os seguintes pontos devem ser observados para evitar-se uma comunicação insegura com a aplicação web:

Não utilize protocolos de segurança desenvolvidos caseiramente.

Configure o servidor para aceitar apenas suítes criptográficas fortes.

Não utilize versões de SSL anteriores a 3.0 e prefira o uso do protocolo TLS.

Contramedidas

Os seguintes pontos devem ser observados para evitar-se uma comunicação insegura com a aplicação web:

- Compre e instale um certificado digital de uma autoridade certificadora conhecida e confiável. Não deixe que o certificado expire, adquirindo um novo, antes que isso aconteça.
- Para aplicações internas, caso uma infra-estrutura de chaves públicas própria seja utilizada, instale o certificado raiz correspondente nos navegadores web dos usuários.
- Não permita que um recurso servido por meio do protocolo HTTPS também seja acessível por HTTP.

Vulnerabilidades no armazenamento de informações

É relativamente comum, encontrar sistemas que apenas se preocupam em proteger as informações em trânsito e que se esquecem (ou ignoram) de protegê-las durante o armazenamento.

Por outro lado, quando existe a preocupação em cifrar dados sigilosos, a maior vulnerabilidade encontrada é com relação à proteção das chaves criptográficas utilizadas. Normalmente, os desenvolvedores as embutem no código, achando que, uma vez compilados os programas, será difícil que alguém as recupere.

BASE64 é o nome dado a um grupo de esquemas de codificação, que representam cadeias de octetos como caracteres imprimíveis, pertencentes a um conjunto de 65 caracteres ASCII.

A entrada é processada da esquerda para a direita, três octetos por vez, os quais resultam em quatro caracteres codificados.

Um ponto importante, que deve ser notado, é que os processos de conversão não dependem de nenhum segredo e, assim, qualquer pessoa é capaz de executálos.

Caso o tamanho da mensagem não seja múltiplo de três, o último bloco conterá um ou dois octetos e deverá ser tratado de maneira especial.

	Valor	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Código	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р
	Valor	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	Código	Q	R	S	Т	U	٧	W	Χ	Υ	Z	а	b	С	d	е	f
	Valor	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	Código	G	h	i	j	k	I	m	n	0	р	q	r	S	t	u	V
7	Valor	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
	Código	W	х	у	Z	0	1	2	3	4	5	6	7	8	9	+	/

Figura 9.4 - mapeamento utilizado em BASE64.

Figura 9.5 - Codificação em BASE64, quando o último bloco possui um octeto.

Figura 9.6 - Codificação em BASE64, quando o último bloco possui dois octetos.

T		•	•		s	t			e		
010101 0	0	0110	0101	0.	1 110011	011101 (00	0110	0101	0	0
010101	00	00110	01010)1	110011	011101	00	00110	0101	00	
V		G	V		Z	d		G	U		

Figura 9.7 - Exemplo de codificação em BASE64.

Identificação e quebra de cifras clássicas

Infelizmente, ainda hoje, encontram-se sistemas que utilizam cifras clássicas na proteção de informações sensíveis.

Esses algoritmos
criptográficos
históricos são
quebrados facilmente,
mesmo sem a ajuda de
computadores, o que
torna o fato bem
preocupante.

Conceitos adicionais sobre cifras

Alfabeto de ciframento

Figura 9.8 - Exemplo de cifra de substituição simples.

Conceitos adicionais sobre cifras

As cifras de transposição operam sobre blocos de tamanho fixo préestabelecido, permutando os elementos de cada um deles, segundo uma regra definida.

Uma terceira classe de cifras, a de substituição polialfabética, trabalha com um conjunto de n mapeamentos de substituição, que são aplicados ordenada e ciclicamente aos caracteres do texto em claro.

Conceitos adicionais sobre cifras

Por convenção, quando cifras clássicas são utilizadas, o texto em claro é representado em letras minúsculas e o cifrado em letras maiúsculas. Além disso, o alfabeto original e o de ciframento são idênticos.

Assume-se que o atacante sabe a língua da mensagem original e a cifra que foi utilizada para protegê-la.

Índice de coincidência

O primeiro passo antes de atacar um texto cifrado é identificar o tipo de algoritmo que foi utilizado, pois os métodos de criptoanálise diferem para cada classe.

Especificamente para os criptossistemas históricos, o objetivo é determinar se foram empregadas cifras monoalfabéticas, polialfabéticas ou de transposição.

Índice de coincidência

O índice de coincidência, introduzido por William Friedman em 1922, é uma ferramenta estatística que pode ser utilizada para este propósito.

$$IC(n) = \sum_{\alpha \in A} p_{\alpha} = \sum_{\alpha \in A} \frac{n_{\alpha} \times (n_{\alpha} - 1)}{n \times (n - 1)}$$

Tipo de cifra	Mono - português	Mono - inglês	Poli ou homofônica			
IC	0,0788	0,0657	0,03846			

Cifra de Cesar

Alfabeto original

Figura 9.10 - Mapeamento da cifra de Cesar e exemplo.

Cifra de deslocamento e ROT13

Alfabeto original

Figura 9.11 - Exemplo de cifra de deslocamento com chave k = 10.

Cifra de deslocamento e ROT13

	k												Mai	pea	me	ento												Texto
																												candidato
Į	0	а	b	С	d	е	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	٧	w	Х	У	Z	YKMAXGTIG
	1	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	N	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	xjlzwfshf
١	2	С	D	Ε	F	G	Н	1	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Ζ	Α	В	wikyverge
4	3	D	Ε	F	G	Н	Ι	J	Κ	L	Μ	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	vhjxudqfd
	4	Ε	F	G	Н	1	J	Κ	L	М	N	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	ugiwtcpec
	5	F	G	Н	Ī	J	Κ	L	М	N	О	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С	D	Ε	tfhvsbodb
	6	G	Н	Ī	J	K	L	М	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Z	A	В	C	D	E	F	seguranca

Figura 9.12 - Exemplo de criptoanálise da cifra de deslocamento.

Uma cifra de substituição monoalfabética genérica permite que o mapeamento seja realizado para qualquer permutação do alfabeto de entrada. Com isto, o total de chaves sobe para 26!.

Uma vez que o espaço de chaves deste esquema tem tamanho razoável para os dias atuais, resta saber se o algoritmo também é resistente.

O primeiro fato que deve ser levado em conta é que cifras de substituição simples apenas transferem as frequências individuais dos símbolos do texto em claro para outros caracteres no texto cifrado.

O segundo aspecto importante é que toda linguagem natural é redundante, o que determina uma estrutura característica de frequências e agrupamentos de letras.

Figura 9.13 - Frequências das letras na língua inglesa.

"Some 28,000 years ago in what is now the British territory of Gibraltar, a group of Neandertals eked out a living along the rocky Medterranean coast. They were quite possibly the last of their kind. Elsewhere in Europe and western Asia, Neandertals had disappeared thousands of years earlier, after having ruled for more than 200,000 years. The Iberian Peninusla, with its comparatively mild climate and rich array of animals and plants, seems to have been the final stronghold. Soon, however, the Gibraltar population, too, would die out, leaving behind only a smattering of their stone tools and the charred remnants of their campfires.", (Wong, 2009).

Figura 9.15 - Comparação das frequências das letras em inglês e em um trecho de artigo.

Figura 9.14 - Frequências das letras na língua portuguesa.

O método conhecido por análise de frequências, introduzido pelo polímata árabe al-Kindī, emprega os conceitos recém apresentados, para quebrar cifras de substituição simples.

O primeiro passo consiste em descobrir o idioma da mensagem original, o que é fundamental para saber quais são as frequências esperadas de cada letra do alfabeto.

Em seguida, deve-se realizar a contagem de cada símbolo presente no texto cifrado sendo analisado.

Como cifras monoalfabéticas apenas alteram a "face" de cada símbolo, mantendo a distribuição geral de frequências, é razoável assumir que cada elemento do texto cifrado corresponde a uma letra similarmente frequente do alfabeto original.

DSFY CQLGRBGJOFUT XJTG SJY IQBG YQXSFYDFCJDGL GAGIGUDY JD DSG RQDDQI QP DSG XJTG PQB GZJIXAG MQW CJU JAYQ GZJIFUG DSG PBGHWGUCM QP XJFBGL AGDDGBY JUL CQIXJBG DSGI DQ DSG PBGHWGUCM QP XJFBGL AGDDGBY FU GUTAFYS QB MQW CJU AQQO JD BGXGJDGL AGDDGBY QB DSG EQVGA DBQVGA

IC = 0,0723 ☐ Espanhol??

Figura 9.20 - Frequências individuais das letras do texto cifrado comparadas com as da língua inglesa.

			ť			U										a									
A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	ន	Т	Ū	V	W	X	Y	Z

t*** *a*e**e**** ***e *** *a*e *a****t***te* e*e*e*t* *t
t*e *atta* a* t*e ***e *a* e*****e *a* *** ***a e*****e
t*e **e**e*** a* ****e* *ette** *** *a****e t*e* ta t*e
ee*** a* ****e* *ette** ** e***** a* *a* *** *aa* *t
*e*e*te* *ette** a* t*e *a*e* t*a*e*

Figura 9.21 - Análise de frequências (1/11) – substituição de "G", "D" e "Q" por "e", "t" e "a", respectivamente.

th** *a*e**e**** ***e h** *a*e *a*h**t**te* e*e*e*t* *t
the *atta* a* the ***e *a* e*****e *a* *** ***a e*****e
the **e**e*** a* ****e* *ette** *** *a****e the* ta the
ee*** a* ****e* *ette** ** e****h a* *a* ****aa* *t
*e*e*te* *ette** a* the *a*e* t*a*e*

			t			U												h							
A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	ន	Т	U	V	W	X	Y	Z

```
th** ***e**e**** ***e h** ***e ***h**t**te* e*e*e*t* *t
the **tt** ** the ***e *** e*****e *** *** **** e****e
the **e**e*** ** ****e* *ette** *** *****e the* t* the
**e**e*** ** ****e* *ette** ** e****h ** *** *** ***
*e*e*te* *ette** ** the ***e* t***e*
```


			ť			U										0		h							
A	В	С	D	E	F	G	Н	I	J	K	L	M	И	0	P	Q	R	ន	Т	U	V	W	X	Y	Z

```
th** *o*e**e**** ***e h** *o*e *o*h**t***te* e*e*e*t* *t
the *otto* o* the ***e *o* e*****e *o* *** ***o e*****e
the **e**e*** o* ****e* *ette** *** *o****e the* to the
**e**e*** o* ****e* *ette** ** e****h o* *o* *** *oo* *t
*e*e*te* *ette** o* the *o*e* t*o*e*
```


	r		ť			U									£	0		h							
A	В	С	D	E	F	G	Н	I	J	K	L	M	И	0	P	Q	R	ន	Т	U	V	W	X	Y	Z

th** *o*e*re**** ***e h** *ore *o*h**t***te* e*e*e*t* *t
the *otto* of the ***e for e*****e *o* *** ***o e*****e
the fre**e*** of ***re* *etter* *** *o***re the* to the
fre**e*** of ***re* *etter* ** e****h or *o* *** *oo* *t
re*e*te* *etter* or the *o*e* tro*e*

	r		t			Ø			a						f	0		h							
A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	ន	Т	U	V	W	X	Y	Z

th** *o*e*rea**** *a*e ha* *ore *o*h**t**ate* e*e*e*t* at the *otto* of the *a*e for e*a***e *o* *a* a**o e*a***e the fre**e*** of *a*re* *etter* a** *o**are the* to the fre**e*** of *a*re* *etter* ** e****h or *o* *a* *oo* at re*eate* *etter* or the *o*e* tro*e*

	r	С	ť			е			a		d				f	0		h		n					
A	В	С	D	E	F	G	Н	I	J	K	L	M	И	0	P	Q	R	ន	Т	U	V	W	X	Y	Z

th** code*rea**n* *a*e ha* *ore *o*h**t*cated e*e*ent* at the *otto* of the *a*e for e*a***e *o* can a**o e*a**ne the fre**enc* of *a*red *etter* and co**are the* to the fre**enc* of *a*red *etter* *n en****h or *o* can *oo* at re*eated *etter* or the *o*e* tro*e*

	r	С	ť			Ø		m	a		d				f	0		h		n			p	ខ	
A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	ន	Т	U	V	W	X	Y	Z

th*s code*rea**n* pa*e has more soph*st*cated e*ements at the *ottom of the pa*e for e*amp*e *o* can a*so e*am*ne the fre**enc* of pa*red *etters and compare them to the fre**enc* of pa*red *etters *n en***sh or *o* can *oo* at repeated *etters or the *o*e* tro*e*

1	r	C	t		i	Ø		m	a		d				f	0		h	g	n			p	ន	
A	В	С	D	E	F	G	Н	I	J	K	L	M	И	0	P	Q	R	S	Т	U	V	W	X	Y	Z

this code*rea*ing page has more sophisticated elements at the *ottom of the page for e*ample *o* can also e*amine the fre**enc* of paired letters and compare them to the fre**enc* of paired letters in english or *o* can loo* at repeated letters or the *o*el tro*el

1	r	С	t		i	е	q	m	a		d	У			f	0	b	h	g	n		u	р	ន	x
A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z

this codebrea*ing page has more sophisticated elements at the bottom of the page for example you can also examine the frequency of paired letters and compare them to the frequency of paired letters in english or you can loo* at repeated letters or the *o*el tro*el

Figura 9.30 - Análise de frequências (10/11) – substituição de "R", "Z", "H", "W" e "M" por "b", "x", "q", "u" e "y", respectivamente.

1	r	O	t	v	i	е	q	m	a		d	У		k	f	0	b	h	g	n	w	u	p	ន	x
A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	ន	Т	U	V	W	X	Y	Z

this codebreaking page has more sophisticated elements at the bottom of the page for example you can also examine the frequency of paired letters and compare them to the frequency of paired letters in english or you can look at repeated letters or the vowel trowel

Cifra Vigenère

A cifra de Vigenère é um método de <u>criptografia</u> que usa uma série de diferentes <u>cifras de César</u> baseadas em letras de uma senha. Trata-se de uma versão simplificada de uma mais geral cifra de <u>substituição polialfabética</u>

mensagem: THE CAKE IS A LIE chave: PORTALPORTALP ORTALP mensagem cifrada: IVV VAVT WJT LTT

Cifra Vigenère

Figura 9.32 – Tabela de Vigenère

Recuperação de chaves embutidas no código

Muitas vezes, desenvolvedor es acreditam que é difícil recuperar informação a partir de binários.

Mesmo que fosse, deve haver separação de responsabilida des entre desenvolvime nto e produção.

No caso mais simples, basta executar o comando "strings", para recuperar a chave embutida.

Geração de chaves com baixa entropia

Boas chaves criptográficas devem ser geradas por processos que forneçam o máximo de aleatoriedade possível, impedindo, assim, que um adversário seja capaz de descobri-las por métodos determinísticos.

Geração de chaves com baixa entropia

Alguns exemplos de problemas comumente encontrados neste contexto estão enumerados a seguir:

- Utilização de geradores de números pseudo-aleatórios fracos, como os implementados pela classe "Random", em Java, e pela função "rand()", em C.
- Uso de sementes previsíveis em geradores de números pseudo-aleatórios.

Modo ECB:

Figura 9.52 - Modo de operação ECB - Ciframento.

Modo ECB:

Figura 9.53 - Modo de operação ECB - Deciframento.

Modo ECB:

Figura 9.54 - A imagem à direita é o resultado do ciframento, em modo ECB, da outra.

Modo CBC:

Figura 9.55 - Modo de operação CBC - Ciframento.

Modo CBC:

Figura 9.57 - Ciframento em modo CBC da imagem ilustrada na Figura 224.

Uso incorreto de algoritmos – cifras de fluxo

Cifras de fluxo operam diretamente com bits e utilizam o operador XOR, para combinar a entrada com o fluxo de chaves.

Diversas mensagens m_1 , m_2 , ..., m_n , de mesmo tamanho, são cifradas, individualmente, com uma mesma chave K, o que implica que o fluxo de chaves z é o mesmo para todas elas.

Do ciframento da mensagem mi, resulta ci = mi \oplus z.

Uso incorreto de algoritmos – cifras de fluxo

O uso de uma mesma chave, em cifras de fluxo aditivas e binárias, pode comprometer a segurança das informações:

Calculando o XOR de duas mensagens cifradas, é possível cancelar a ação do fluxo de chaves e obter o XOR dos textos em claro correspondentes.

A partir disso, é possível realizar uma análise estatística, com base na redundância do idioma, para recuperar as mensagens originais.

Mistura de algoritmos com níveis diferentes de segurança

		Algoritmos assi	métricos		Funções de hash
Nível de segurança	Cifras simétricas	Fatoração de inteiros	Logaritmo discreto	Logaritmo discreto elíptico	criptográficas (tamanho do hash)
80	2-TDES	RSA-1024	DH-1024	ECDSA-160	RIPEMD-160
112	3-TDES	RSA-2048	DH-2048	ECDSA-224	SHA-224
128	AES-128	RSA-3072	DH-3072	ECDSA-256	SHA-256
192	AES-192	RSA-7680	DH-7680	ECDSA-384	SHA-384
256	AES-256	RSA-15360	DH-15360	ECDSA-512	SHA-512

Figura 9.59 - Nível de segurança de diversos algoritmos criptográficos, em função do tamanho da chave (Barker et al., 2007).

Uso de algoritmos com fraquezas conhecidas

O emprego de mecanismos criptográficos com fraquezas conhecidas deve ser totalmente evitado para que a segurança da informação não seja comprometida.

Exemplos de algoritmos que não devem ser mais utilizados atualmente incluem:

Data Encryption Standard (DES)

RSA com chaves menores que 1024 bits

MD5

SHA-1

Proteção de senhas de usuário

A primeira fraqueza resulta da qualidade das senhas escolhidas pelos usuários, que, comumente, empregam palavras da língua ou informações pessoais.

Neste cenário, um atacante pode montar um dicionário de palavras conhecidas e variações e pré-computar os respectivos hashes.

Para impedir que isso aconteça, é comum o emprego de salts.

Proteção de dados de cartões de pagamento

O requisito 3.4 do padrão PCI DSS demanda que números de cartões de pagamento (PANs) sejam protegidos, durante o armazenamento, por meio de métodos seguros.

Técnicas aceitas incluem o truncamento do número, o uso de funções de hash criptográficas, substituição por tokens e emprego de cifras simétricas.

Um armazenamento seguro de informações requer a seleção adequada de criptossistemas, o gerenciamento das chaves criptográficas utilizadas e o zelo adequado com a manipulação de chaves pelos programas. Desse modo:

- Classifique as informações e cifre aquelas que necessitam que o requisito de sigilo seja satisfeito.
- Se não for necessário, não armazene dados sensíveis, após serem processados, evitando, assim, ter de protegê-los.

Um armazenamento seguro de informações requer a seleção adequada de criptossistemas, o gerenciamento das chaves criptográficas utilizadas e o zelo adequado com a manipulação de chaves pelos programas. Desse modo:

Não utilize algoritmos criptográficos com fraquezas conhecidas.

Nunca empregue cifras clássicas para proteger informações sensíveis e lembrese sempre de que BASE64 não é um algoritmo criptográfico.

Um armazenamento seguro de informações requer a seleção adequada de criptossistemas, o gerenciamento das chaves criptográficas utilizadas e o zelo adequado com a manipulação de chaves pelos programas. Desse modo:

- Use algoritmos criptográficos para satisfazerem apenas os requisitos de segurança da informação para os quais foram criados.
- Quando uma solução empregar diversos algoritmos criptográficos, determine o nível mínimo desejado de segurança e adote somente criptossistemas que atendam o limiar escolhido.

Um armazenamento seguro de informações requer a seleção adequada de criptossistemas, o gerenciamento das chaves criptográficas utilizadas e o zelo adequado com a manipulação de chaves pelos programas. Desse modo:

Crie e utilize processos e procedimentos para gerenciamento de chaves criptográficas.

Utilize bons geradores de números pseudo-aleatórios para a criação de chaves.

