

Rechnerarchitektur

Kombinatorische Logik I

Univ.-Prof. Dr.-Ing. Rainer Böhme

Wintersemester 2021/22 · 13. Oktober 2021

Gliederung heute

- 1. Grundlagen der Digitaltechnik
- 2. Boolesche Algebra
- 3. Realisierung in Schaltungen

Analoge und digitale Signale Analogtechnik: kontinuierliche Signale x(t) Veränderung in Wert und Zeit

Digitaltechnik: diskrete Signale (oft auch binär)

sprunghafter Wechsel zu festen Zeitpunkten zwischen endlich vielen Werten

Digitale Daten

Alle Arten von Daten werden digital als **diskrete Zahlen** gespeichert.

Zuordnungen existieren z.B. für Texte, Töne und Bilder.

Digitalrechner können nur digitale Daten verarbeiten.

Vergleich von Analog- und Digitaltechnik

Analogrechner

- + Multiplikation, Addition und Filter leicht realisierbar
- + geringer Flächenbedarf
- + sehr schnell
- nichtlineare Bauteile
- niedrige Genauigkeit
- temperaturabhängig
- Speicherung von Daten schwierig

Digitalrechner

- weniger störanfällig (z. B. Rauschen)
- + beliebig hohe Genauigkeit erreichbar
- + exakte Reproduktion und Übertragung von Daten
- + einfacher, modularer Entwurf
- oft hoher Flächenbedarf
- hoher Energieverbrauch

Kompromiss zwischen Analog- und Digitaltechnik: Hybridrechner

Digitaltechnik

Darstellung als elektrische Schaltung

Zwei Zustände:

- Strom fließt nicht (Lampe leuchtet nicht)
- 1. Strom fließt (Lampe leuchtet)

Varianten der Binärdarstellung

Interpretation der digitalen Zustände

Beispiel: positive Logik mit TTL-Ausgangspegeln

Konventionen in der kombinatorischen Logik

- Präferenz der digitalen Zustandsmenge $\{0,1\}$
- Realisierung elementarer Operatoren durch Gatter
- Realisierung komplexer Funktionen durch Verschalten von Gattern
- Vektorschreibweise für mehrstellige digitale Zustände:

$$\mathbf{x} = (x_1, x_2, \dots, x_n) \in \{0, 1\}^n$$

Die **Dimension** n ist dabei oft implizit.

Vorsicht!

InformatikerInnen zählen mitunter auch von 0 bis n-1 (angelehnt z. B. an Felder in den Programmiersprachen C und Java).

Gliederung heute

- 1. Grundlagen der Digitaltechnik
- 2. Boolesche Algebra
- 3. Realisierung in Schaltungen

Boolesche Algebra

nach George Boole (1815-1864)

- Verbindung von Philosophie (Logik) und Mathematik (Rechenregeln)
- Grundlage für heutige Rechner-Hardware
- Dient dem Entwurf, der Beschreibung, Berechnung und Vereinfachung von Schaltungen und Schaltwerken für die Verarbeitung binärer Größen
- gleichzeitig Grundlage der Theoretischen Informatik
 - → Einführung in die Theoretische Informatik

Operatoren

- Gegeben sei die Boolesche Menge \mathbb{B} oft $\mathbb{B} = \{0, 1\}$
- Definition von Operatoren auf Variablen $x_1, x_2 \in \mathbb{B}$ z. B. $+, \cdot, -$
- Vollständige Bestimmung durch Wahrheitstabelle
- Die Schreibweise der Operatoren kann variieren.

Achten Sie jedoch auf Konsistenz bei eigener Verwendung!

Elementare Operatoren

OR-Operator

logische Summe (ODER)

•	•	•
0	1	1
1	0	1
1	1	1

Das Ergebnis ist 1, falls **mindestens ein** Operand den Wert 1 annimmt.

AND-Operator

logisches Produkt (UND)

<i>X</i> ₁	<i>X</i> ₂	$x_1 \text{ AND } x_2$
0	0	0
0	1	0
1	0	0
1	1	1 1

Das Ergebnis ist 1, genau dann wenn **beide** Operanden den Wert 1 annehmen.

NOT-Operator

Invertierung (NICHT)

$$\overline{X}$$
 $-X$ -

X	NOT x
0	1

_ _ 0

Das Ergebnis ist 1, genau dann wenn der Operand den Wert 0 annimmt.

Boolesche Algebra

(im engeren Sinne)

Definition

Die Kombination der Booleschen Menge $\mathbb B$ mit den Operatoren OR, AND und NOT wird als **boolesche Algebra** bezeichnet.

Schreibweisen

- (B, AND, OR, NOT)
- $(\mathbb{B}, \cdot, +, -) = (\{0, 1\}, \cdot, +, -)$
- $\mathbb{B}(\wedge, \vee, \neg)$ auch $B(\wedge, \vee, \neg)$

Ähnlich wie in der Schulalgebra kann der Punkt-Operator (AND) bei Ausdrücken auch weggelassen werden: $x_1 \cdot x_2 \Leftrightarrow x_1x_2$

Es gilt Punkt vor Strich.

Axiome

der Booleschen Algebra zur Umformung logischer Gleichungen

Kommutativität

$$x_1 + x_2 = x_2 + x_1 \tag{1}$$

$$x_1 \cdot x_2 = x_2 \cdot x_1 \tag{2}$$

Distributivität

$$x_1 \cdot (x_2 + x_3) = (x_1 \cdot x_2) + (x_1 \cdot x_3)$$
 (3)

$$x_1 + (x_2 \cdot x_3) = (x_1 + x_2) \cdot (x_1 + x_3)$$
 (4)

Neutrale Elemente

$$0 + x = x \tag{5}$$

$$\mathbf{1} \cdot \mathbf{x} = \mathbf{x} \tag{6}$$

Komplementäres Element

$$x + \overline{x} = 1 \tag{7}$$

$$x \cdot \overline{X} = 0 \tag{8}$$

Sätze

abgeleitet aus den Axiomen

Idempotenz

$$x + x = x$$

$$x \cdot x = x$$

Assoziativität

$$x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$$

$$x_1\cdot(x_2\cdot x_3)=(x_1\cdot x_2)\cdot x_3$$

Absorption

$$x_1+(x_1\cdot x_2)=x_1$$

$$x_1\cdot(x_1+x_2)=x_1$$

$$x + 1 = 1$$

$$x \cdot 0 = 0$$

= - y

(17)

Weitere Gesetzmäßigkeiten

Komplementäre Werte $\overline{0} = 1$ und $\overline{1} = 0$

Abgeschlossenheit

Boolesche Operationen liefern nur boolesche Werte als Ergebnis.

Dualität

Für jede aus Axiomen ableitbare Aussage existiert eine duale Aussage.

Diese erhält man durch Tausch der Operatoren + und \cdot sowie der Werte 0, 1.

De Morgansche Gesetze (folgende Folien)

Die De Morganschen Gesetze

Das 1. De Morgansche Gesetz lautet: $\overline{x_1 \cdot x_2} = \overline{x_1} + \overline{x_2}$

<i>x</i> ₁ <i>x</i> ₂	$x_1 \cdot x_2$	$\overline{X_1 \cdot X_2}$	$\overline{X_1} \overline{X_2}$	$\overline{X_1} + \overline{X_2}$
0 0	0	1	1 1	1
0 1	0	1	1 0	1
1 0	0	1	0 1	1
1 1	1	0	0 0	0

Die De Morganschen Gesetze (Forts.)

Das 2. De Morgansche Gesetz lautet: $\overline{x_1 + x_2} = \overline{x_1} \cdot \overline{x_2}$

$x_1 x_2$	$x_1 + x_2$	$\overline{x_1 + x_2}$	$\overline{X_1} \ \overline{X_2}$	$\overline{\chi_1} \cdot \overline{\chi_2}$
0 0	0	1	1 1	1
0 1	1	0	1 0	0
1 0	1	0	0 1	0
1 1	1	0	0 0	0

Die De Morganschen Gesetze (Forts.)

Negation mithilfe der De Morganschen Gesetze

Negation von Termen erfolgt durch Tausch der Operatoren + und \cdot sowie Komplementierung aller Variablen.

Beispiel:

$$\overline{(x_1 + x_2) \cdot \overline{x_3}}$$

=

$$(\overline{x_1} \cdot \overline{x_2}) + x_3$$

Schaltfunktionen

Definition

Eine Funktion $f: \{0,1\}^n \to \{0,1\}^m$ mit $n,m \ge 1$ heißt **Schaltfunktion**.

Spezialfall

Eine Schaltfunktion mit m = 1 heißt n-stellige **Boolesche Funktion**.

Beschreibung Boolescher Funktionen:

- 1. eindeutig mit (sortierter) Wahrheitstabelle
- kompakter, aber nicht eindeutig mit Booleschem Ausdruck (aus Booleschen Variablen und Operationen)
- → Jede **Schaltfunktion** kann durch *m* **Boolesche Funktionen** zusammengesetzt werden.

Boolesche Funktionen

Wie viele n-stellige Boolesche Funktionen gibt es?

• Kombination aller 2^n *n*-Tupel aus $\{0,1\}$ der Argumente mit den Werten $\{0,1\}$: $2^{(2^n)}$

```
• Für n=1: f_0(x)=0 Kontradiktion (0-stellig) f_1(x)=x Identität f_2(x)=-x Negation f_3(x)=1 Tautologie (0-stellig)
```

• Für n = 2: 16 zweistellige Boolesche Funktionen

Einige davon sind lediglich auf zwei Argumente erweiterte null- oder einstellige Boolesche Funktionen: f_0 , f_3 , f_5 , f_{10} , f_{12} , f_{15} (folgende Folien)

Zweistellige Boolesche Funktionen

_	0 1 0 1 0 0 1 1	Term	Bezeichnung	Sprechweise
f_0	0 0 0 0	0	Nullfunktion	
f_1	0 0 0 1	X_1X_2	Konjunktion	x_1 AND x_2
f_2	0 0 1 0	$X_1\overline{X_2}$	1. Differenz	x_1 AND NOT x_2
f_3	0 0 1 1	X_1	1. Identität	
f_4	0 1 0 0	$\overline{X_1}X_2$	2. Differenz	NOT x_1 AND x_2
f_5	0 1 0 1	<i>X</i> ₂	2. Identität	
f_6	0 1 1 0	$\overline{x_1}x_2 + x_1\overline{x_2}$	Antivalenz	$x_1 XOR x_2$
<i>f</i> ₇	0 1 1 1	$x_1 + x_2$	Disjunktion	<i>x</i> ₁ OR <i>x</i> ₂

Zweistellige Boolesche Funktionen (Forts.)

_	0 1 0 1 0 0 1 1	Term	Bezeichnung	Sprechweise
$\frac{\lambda_1}{f_8}$	1 0 0 0	$\overline{x_1 + x_2}$	Negatdisjunktion	x_1 NOR x_2 "genau dann, wenn"
f_9	1 0 0 1	$(\overline{x_1}+x_2)(x_1+\overline{x_2})$	Äquivalenz	$x_1 \Leftrightarrow x_2$
f_{10}	1 0 1 0	$\overline{X_2}$	2. Negation	NOT x_2 "impliziert"
f_{11}	1 0 1 1	$X_1 + \overline{X_2}$	2. Implikation	$x_2 \Rightarrow x_1$
f_{12}	1 1 0 0	$\overline{X_1}$	1. Negation	NOT X ₁
f_{13}	1 1 0 1	$\overline{x_1} + x_2$	1. Implikation	$x_1 \Rightarrow x_2$
f_{14}	1 1 1 0	$\overline{X_1X_2}$	Negatkonjunktion	x_1 NAND x_2
f ₁₅	1 1 1 1	1	Einsfunktion	

Vollständige Operatorensysteme

- 1. Alle Booleschen Funktionen können mithilfe der
 - Disjunktion (+, OR),
 - Konjunktion (· , AND) und
 - **Negation** (-, NOT)

dargestellt werden.

→ Boolesche Basis

- 2. Alle Booleschen Funktionen können
 - entweder mithilfe der Negation und der Konjunktion
 - oder mithilfe der Negation und der Disjunktion

dargestellt werden.

ightarrow De Morgan-Basis

- 3. Alle Booleschen Funktionen können
 - entweder mithilfe der NAND-Verknüpfung
 - oder mithilfe der NOR-Verknüpfung

dargestellt werden.

Der 7400er-Chip

Chip der 7400er-Serie mit 4 NAND-Gattern:

Bildquelle: Wikimedia Commons

Gliederung heute

- 1. Grundlagen der Digitaltechnik
- 2. Boolesche Algebra
- 3. Realisierung in Schaltungen

Technische Realisierung digitaler Systeme

Gatter sind elektronische Schalter zur Verknüpfung binärer Argumente.

- Aufbau aus einfachen elektronischen Bauteilen: Widerständen, Dioden, Transistoren
- Verhalten realisiert Booleschen Funktionen mit $n \ge 1$ Eingängen, je einer pro Argument $(x_1, x_2, x_3, ...) \in \{0, 1\}^n$, und einem Ausgang $y \in \{0, 1\}$

Schaltsymbol mit zwei Eingängen (hier: AND-Gatter)

$$x_1$$
 $y = f(x_1, x_2)$

Verallgemeinerung mit n Eingängen z. B. $f(x_1, x_2, x_3) = f(x_1, f(x_2, x_3))$ usw.

Konvention: Die Form des Schaltsymbols lässt auf dessen Funktion schließen.

Wichtige Boolesche Funktionen als Gatter

Ein	igabe	Ausgabe						
		•	elementar		koı	kombiniert		
x_1	<i>X</i> ₂	$\overline{x_1 + x_2}$	x_1x_2	$\overline{X_1}$		$\overline{x_1}x_2 + x_1\overline{x_2}$	$\overline{x_1 + x_2}$	$\overline{X_1X_2}$
0	0	0	0	1		0	1	1
0	1	1	0	1		1	0	1
1	0	1	0	0		1	0	1
1	1	1	1	0		0	0	0
Scha	ltsymbol	=>-	=	>>-		1	=	=
Beze	ichnung	OR	AND	NOT		XOR	NOR	NAND

Darstellungsvarianten

Realisierung der Booleschen Funktion $\overline{\overline{x_1} + x_2}$ mit Gattern:

vereinfachte Darstellung

Beispiel einer logischen Schaltung

Gesucht Schaltung, die 1 ausgibt, wenn einer oder zwei von drei Eingängen x_1, x_2, x_3 den Wert 1 annehmen.

Wahrheitstabelle:

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	У
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	1
1	0	1	1
0	1	1	1
1	1	1	0

Beispiel einer logischen Schaltung

Gesucht Schaltung, die 1 ausgibt, wenn einer oder zwei von drei Eingängen x_1, x_2, x_3 den Wert 1 annehmen.

Wahrheitstabelle, Boolesche Funktion:

$$y = \overline{x_1}x_2 + \overline{x_1}x_3 + x_1\overline{x_2} + x_1\overline{x_3}$$

$$0 \quad 0 \quad 0 \quad 0$$

$$1 \quad 0 \quad 0 \quad 1 \quad \checkmark$$

$$0 \quad 1 \quad 0 \quad 1 \quad \checkmark$$

$$1 \quad 1 \quad 0 \quad 1 \quad \checkmark$$

$$0 \quad 0 \quad 1 \quad 1 \quad \checkmark$$

$$0 \quad 0 \quad 1 \quad 1 \quad \checkmark$$

$$1 \quad 1 \quad 0 \quad 1 \quad \checkmark$$

$$1 \quad 1 \quad 1 \quad 0$$

Beispiel einer logischen Schaltung

Gesucht Schaltung, die 1 ausgibt, wenn einer oder zwei von drei Eingängen x_1, x_2, x_3 den Wert 1 annehmen.

Wahrheitstabelle, Boolesche Funktion, Realisierung:

<i>X</i> ₁	<i>x</i> ₂	<i>X</i> 3	У
0	0	0	0
1	0	0	1 🗸
0	1	0	1 🗸
1	1	0	1 🗸
0	0	1	1 🗸
1	0	1	1 🗸
0	1	1	1 🗸
1	1	1	0

Syllabus – Wintersemester 2021/22

```
06.10.21
              1. Einführung
13.10.21
              2. Kombinatorische Logik I
20.10.21
              3. Kombinatorische Logik II
27.10.21
              4. Sequenzielle Logik I
03.11.21
              5. Sequenzielle Logik II
              6 Arithmetik I
10 11 21
17 11 21
              7 Arithmetik II
24.11.21
              8. Befehlssatzarchitektur (ARM) I
01 12 21
              9. Befehlssatzarchitektur (ARM) II
 15.12.21
             10. Ein-/Ausgabe
             11. Prozessorarchitekturen
12.01.22
 19.01.22
             12. Speicher
26.01.22
             13. Leistung
02.02.22
                  Klausur (1. Termin)
```