平成 31 年度大学院博士前期課程入学試験

大阪大学大学院工学研究科 電気電子情報工学専攻

専門科目試験問題

(電子工学コース)

(実施時間 14:00 ~ 16:00)

【注 意 事 項】

- 1. 問題用紙は、この表紙や白紙を除いて21ページある、解答開始の指示があるまで開いてはいけない、解答開始後、落丁や不鮮明な箇所等があった場合は、手を挙げて監督者にその旨を伝えること、
- 2. 試験問題は、「量子電子物性 1」、「量子電子物性 2」、「量子電子物性 3」、「量子電子物性 4」、「制御工学」、及び、「信号処理」、の全部で 6 題あり、この順番に綴じられている。このうち、3 題を選択し解答すること。
- 3. 解答開始前に、別紙の「専門科目試験問題選択票」に記載の注意事項も読んでおくこと.
- 4. 問題用紙は持ち帰ってもよい.

【量子電子物性1】 解答は、桃色(1番)の解答用紙に記入すること、

金属に関する次の文章を読み、下記の問いに答えよ、ただし、金属中の電子の質量をm、素電荷をe、ボルツマン定数を $k_{\rm B}$ 、プランク定数hを 2π で割った値を \hbar とする、

周期的境界条件が成り立つ一辺の長さがL(体積V)の立方体形状の金属の中にあるN 個の電子について、自由電子モデルを用いて考える。絶対零度において、自由電子密度 $n(=\frac{N}{V})$ とフェルミ波数 $k_{\rm F}$ の間には、以下の関係が成り立つ。

$$n = \frac{k_{\rm F}^3}{3\pi^2} \tag{1}$$

フェルミエネルギー $\varepsilon_{
m F}$ は, $k_{
m F}$ を使って

$$\varepsilon_{\rm F} = []$$
 (2)

と書けるので、nは次式で与えられる.

$$n = \frac{1}{3\pi^2} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \varepsilon_F^{\frac{3}{2}} \tag{3}$$

式(3)において、 ε_F を自由電子のエネルギー ε に置き換えると、 ε 以下の状態にある自由電子密度 $n(\varepsilon)$ が得られる. したがって、状態密度 $D(\varepsilon)$ は次式で与えられる.

$$D(\varepsilon) = \frac{dn(\varepsilon)}{d\varepsilon} = [②]$$
 (4)

これから、 nは次式で与えられる.

$$n = \int_0^{\varepsilon_{\rm F}} D(\varepsilon) d\varepsilon \tag{5}$$

状態密度 $D(\varepsilon)$ は、フェルミエネルギーにおける状態密度 $D(\varepsilon_{\rm F})$ を用いて、 $D(\varepsilon) = D(\varepsilon_{\rm F})(\varepsilon/\varepsilon_{\rm F})^{\frac{1}{2}}$ と書けるので、 $D(\varepsilon_{\rm F})$ は、n と $\varepsilon_{\rm F}$ を使って、次式のように簡単に表せる.

フェルミ温度 $T_{\rm F}$ よりも十分低い有限温度 T ($0 < T \ll T_{\rm F}$)では、電子の占有確率はフェルミーディラック関数

$$f(\varepsilon,T) = \frac{1}{\exp\left(\frac{\varepsilon - \varepsilon_{\rm F}}{k_{\rm B}T}\right) + 1} \tag{7}$$

で与えられ、温度 T を考慮した自由電子密度 $n(\varepsilon,T)$ は、 $\int_0^\infty \left(\begin{bmatrix} & & & & \\ & & & \end{bmatrix} \right) d\varepsilon$ で表される. なお、式(7)において、正確には $\varepsilon_{\rm F}$ ではなく化学ポテンシャルを用いるべきであるが、 $T \ll T_{\rm F}$ の条件では 殆ど同じであるとして $\varepsilon_{\rm F}$ を用いた.

次に、金属の熱伝導について考える。絶対零度では、フェルミーディラック関数 $f(\varepsilon,T)$ は、 $\varepsilon \leq \varepsilon_{\rm F}$ で $(0 < T \ll T_{\rm F})$ では、 $(0 < T \ll T_{\rm F})$ では、

このことを考慮して、低温度領域($0 < T \ll T_{\rm F}$)での単位体積あたりの電子比熱 $C_{\rm el}$ を計算すると、次式が得られる、

$$C_{el} = \int_0^\infty (\varepsilon - \varepsilon_{\rm F}) D(\varepsilon) \frac{\partial f(\varepsilon, T)}{\partial T} d\varepsilon = \frac{\pi^2}{3} D(\varepsilon_{\rm F}) k_{\rm B}^2 T$$
 (8)

ここで, $T \ll T_{\rm F}$ では電子密度が式(5)で近似できるものと仮定して,式(6)および $\varepsilon_{\rm F} = k_{\rm B}T_{\rm F}$ を用いると, C_{el} は次式で表される.

自由電子の熱伝導率 Kは, C_{el} ,フェルミ速度 $\nu_{\rm F}$,散乱の緩和時間 τ の関数として, $K=\frac{1}{3}C_{el}\nu_{\rm F}^2\tau$ で与えられる.これから,Kは, $\varepsilon_{\rm F}=\frac{1}{2}m\nu_{\rm F}^2$ および $\varepsilon_{\rm F}=k_{\rm B}T_{\rm F}$ を用いると n, $k_{\rm B}$,T,m, τ を使って,

$$K = [§]$$
 (10)

と求まる.

一方, 自由電子の電気伝導率 σ は, n, e, m, τ を使って, 次式で与えられる.

$$\sigma = [9]$$
 (11)

したがって、 $K \geq \sigma$ の間には、次式の関係が成り立つ.

上式は、 $\frac{K}{\sigma}$ が温度に比例することを示している.この関係は、ヴィーデマンーフランツの法則として知られている.

- 問 1 文章中の空欄 [①] ~ [⑩] にあてはまる数式または数値を答えよ.
- 問 2 式(1)を導出せよ、導出においては、自由電子の電子状態が、半径 $k_{\rm F}$ のフェルミ球の中で $k_{\rm x}$ 、 $k_{\rm y}$ 、 $k_{\rm z}$ 方向に $\frac{2\pi}{L}$ の周期で離散的に分布した波数空間の中の点の集まりとして表され、 一つの電子状態にはスピンを考慮して 2 個の電子が占有されることを用いよ.

問3 図 1-1 を解答用紙に転記し、有限温度T($0 < T \ll T_{\rm r}$)におけるフェルミーディラック関数

 $f(\varepsilon,T)$ を電子のエネルギー ε の関数として図示せよ、次に、 $\frac{\partial f(\varepsilon,T)}{\partial \varepsilon}\Big|_{\varepsilon=\varepsilon_{\mathrm{F}}}$ を求め、 $\varepsilon=\varepsilon_{\mathrm{F}}$ における接線の関数 $g(\varepsilon,T)$ を導け、さらに、この接線を同一グラフ上に描き、 $g(\varepsilon,T)=1$ および $g(\varepsilon,T)=0$ となる ε の値から、 $f(\varepsilon,T)$ が変化するエネルギー幅が $4k_{\mathrm{B}}T$ 程度であることを示せ、

問4 図 1-2 を解答用紙に転記し、絶対零度および $T=T_0$ (ただし、 $0 < T_0 \ll T_{\rm F}$)における状態密度と電子の占有確率の積を電子のエネルギー ε の関数として図示せよ、ただし、絶対零度および $T=T_0$ での関数は、それぞれ実線および点線を使って同じ図に示すこと、次に、絶対零度から $T=T_0$ に昇温するとき、電子が熱的に励起される領域と電子が新たに占める領域を、図中に網掛

けで示せ.

問 5 式(9)は、全ての自由電子のうち、わずか $\frac{T}{T_{\rm F}}$ (室温では \sim 0.01以下)の割合だけが熱エネルギーを吸収して励起されることを示している。この理由について、「フェルミ面」、「パウリの排他原理」をキーワードとして 100 字以内で述べよ。

量子電子物性1 単語の英訳

スピン:

転記:

関数:

金属: metal 質量: mass 素電荷: elementary charge ボルツマン定数 Boltzmann constant プランク定数: Planck constant 周期的境界条件: periodic boundary condition 立方体: cube 自由電子: free electron 絶対零度: absolute zero temperature 自由電子密度: density of free electrons フェルミ波数: Fermi wavenumber フェルミエネルギー: Fermi energy 状態密度: density of states フェルミ温度: Fermi temperature 有限温度: finite temperature 電子の占有確率: probability of electron occupation フェルミーディラック関数: Fermi-Dirac distribution function 化学ポテンシャル: chemical potential 階段関数: step function エネルギー幅: energy width 昇温: rising temperature 単位体積あたり: per unit volume 電子比熱: electronic specific heat 熱伝導率: thermal conductivity フェルミ速度: Fermi velocity 緩和時間: relaxation time 電気伝導率: electrical conductivity ヴィーデマンーフランツの法則: Wiedemann-Franz law 半径: radius フェルミ球: Fermi sphere 周期: period 離散的に: discretely 波数空間: wavenumber space 点: point

4

transcription

function

spin

接線: tangent line

積: product

実線: solid line 点線: dotted line

熱的に励起される: be excited thermally

領域: area

網掛け: hatching

フェルミ面: Fermi surface

パウリの排他原理: Pauli exclusion principle

【量子電子物性2】 解答は、緑色(2番)の解答用紙に記入すること.

半導体に関する次の文章を読み、下記の問いに答えよ、ただし、ボルツマン定数を $k_{\rm B}$ とする、

Ge や Si の単結晶の結晶構造は [⑦] 型構造であり、各原子の価電子は最近接原子と共有結合をしている。一つの Ge 原子に着目すると、そのまわりには [①] 個の価電子が存在して閉殻構造を形成しているとみなすことができ、これ以上電子を詰めることはできない、バンド理論から、この状態の電子は価電子帯を占有し、価電子帯は絶対零度では満ちたバンドとなっている。エネルギー幅 ε_s の禁制帯を隔ててそのエネルギー帯の上に空の伝導帯がある。温度が上昇するにつれて、価電子帯から伝導帯へと電子が熱的に励起される。この電子は価電子帯の正孔とともに電気伝導に寄与し、これらをキャリアと呼ぶ。ここで、キャリア 1 個の電荷量をqで表す。これまでに述べた半導体の場合、伝導帯の電子密度 n_0 と価電子帯の正孔密度 p_0 は [②] の関係式を満たしている。このような半導体を

半導体の性質は、添加した微量の不純物によって大きく変化する。母体である半導体に電子を与える不純物を [②]と呼ぶ。SiにPを不純物として添加すると [③]個の価電子のうち4個はSiとの共有結合にあずかり、[④]個は不純物原子の周りに緩く束縛される。この余剰電子は比較的簡単に熱的に励起され、キャリアとなって結晶中を動き回ることができる。一方、Bをドープした場合には、電子が [⑤]個不足した状態になるので、正孔が [⑤]個供給されることとなる。このような半導体を、[⑥]半導体に対して、 [②]半導体と呼ぶ。

「一の」 了不純物から供給された電子はクーロンポテンシャルによって不純物イオンに束縛されている. 基底状態でのその束縛エネルギーは数十 meV 程度であるため,室温では [の] 不純物はイオン化し,電子はキャリアとして半導体全体を動き回ることができる. [の] 半導体である Si に, $_{[\Gamma \oplus 1]} 1 \times 10^{18}$ cm⁻³ の密度で P などの [の] 不純物を添加した. 300 K では,この不純物すべてがイオン化しているとすると,300 K での伝導帯の電子密度はおおよそ [⑥] cm⁻³ となる. ドーピングによりキャリアが一種類とみなすことのできる半導体 A について考える. 絶対温度 T の熱平衡下では,キャリアは $k_B T$ に比例した平均的な運動エネルギーを持ち,半導体結晶中を平均的な熱速度でランダムな方向へ運動している. その途中,キャリアは格子振動やイオン化した不純物原子などによって散乱される. 弱電界 E が加えられると,キャリアは電界で加速されるが,電界から得た運動量を散乱により完全に失う. 結晶中のキャリアの運動は有効質量を用いると古典論での扱いが可能となる. 今,キャリアの緩和時間を τ (定数),キャリア密度をn,キャリアの有効質量をm*とする.緩和時間 τ 内にキャリアが得るドリフト速度 v_D は τ とEを用いて v_D = [⑦] で与えられる.移動度 μ は,

ドリフト速度と電界の比例係数の絶対値で定義される。このキャリアの運動によってドリフト電流が流れる。ドリフト電流の電流密度 \mathbf{J} はドリフト速度 \mathbf{v}_{D} を用いて $\mathbf{J}=[$ ⑧] と書き表されるので,電気伝導率 σ_{O} は移動度 μ と |q| を用いて [⑨] となる.

半導体 A に,電界 E と磁東密度 B なる磁界を印加した場合を考える.キャリアのドリフト速度 \mathbf{v}_{D} の時間変化は,上記の散乱過程を考慮に入れて

$$m^* \frac{d\mathbf{v}_{\mathsf{D}}}{dt} = [\quad \textcircled{1}$$

と書き表される。今、電界 $\mathbf{E}=(E_x,\ E_y,\ 0)$ と磁東密度 $\mathbf{B}=(0,\ 0,\ B_z)$ なる磁界を印加した場合を考える。定常状態では $\frac{d\mathbf{v}_{\mathrm{D}}}{dt}=0$ なので、 $\mathbf{v}_{\mathrm{D}}=(v_x,v_y,v_z)$ 、 $\omega=\frac{qB_z}{m^*}$ とおいて、 v_x と v_y を求め、 E_x と E_y の項に分けて書くと

$$v_x = \frac{q}{m^*} \{ ([]) \times E_x + ([]) \times E_y \}$$
 (2)

$$v_y = \frac{q}{m^*} \{ ([@]) \times (-E_x) + ([@]) \times E_y \}$$
 (3)

- 問 1 文章中の空欄 [⑦]~[⑦]にあてはまる語句を,空欄 [①]~[⑫] にあてはまる数値,数式または関係式を答えよ.
- 間 3 上の議論をもとにホール効果測定について考える。図 2-1 に示すように、試料(半導体 A)に対して、電流密度 J_x の直流電流をx 方向に一様に流し、 $(\omega\tau)^2 \ll 1$ を満たす磁東密度 B_z の一様な静磁界をz 方向に印加した。このとき、定常状態でy 方向にホール電界 E_x が発生した。
- (1) ホール抵抗 $R_{\rm H} = \frac{E_y}{J_x B_x}$ を、nを用いて表せ、その導出過程も書くこと、
- (2) n 型半導体の試料に発生するホール電圧 V_H を図 2-1 に示すように測定したとき、端子 1 、 2 のいずれが正となるか答えよ.
- (3) 定常状態では、式(2)、(3)より $J_x = \sigma_0 E_x$ なる関係式が導かれ、磁界中でのx 方向の電気伝導率は零磁場のときの電気伝導率 σ_0 と等しくなる.その理由を 30 字程度で説明せよ.

図 2-1

量子電子物性2 単語の英訳

半導体: semiconductor

ボルツマン定数: Boltzmann constant

結晶構造: crystal structure

価電子: valence electron 共有結合: covalent bond

閉殼: closed shell 価電子帯: valence band

禁制帯: forbidden band / band gap

伝導帯: conduction band

正孔: hole

電気伝導率: electrical conductivity

キャリア: carrier 密度: density 不純物: impurity

ドーピング: doping

電界: electric field

運動量: momentum

有効質量: effective mass 緩和時間: relaxation time

drift velocity 移動度: mobility

ドリフト速度:

磁束密度: magnetic flux density

磁界: magnetic field 定常状態: steady state

ホール効果: Hall effect

【量子電子物性3】 解答は、灰色(3番)の解答用紙に記入すること。

金属-半導体接触に関する次の文章を読み,下記の問いに答えよ.数値は端数を四捨五入し有効数字 2 桁まで求め,単位も示して解答せよ.ただし,ボルツマン定数を $k_{\rm B}$ (=1.4×10⁻²³ JK⁻¹ =8.6×10⁻⁵ eVK⁻¹),素電荷を q (=1.6×10⁻¹⁹ C) とし,必要ならば $\log_e 10 \cong 2.3$, $\log_e 2 \cong 0.69$ (e は自然対数の底)の値を用いよ.

図 3-1 に示すような電子親和力 χ_s ,仕事関数 ϕ_s ,バンドギャップ ε_g の半導体と,仕事関数 ϕ_m の金属の接触を考える.急峻で界面準位のない理想的な接触界面が形成されるとする.この半導体が n 型の場合,金属と半導体の仕事関数の間に $\phi_m > \phi_s$ の関係があると [⑦]接触となり, $\phi_m < \phi_s$ の関係があると [⑦]接触となり, $\phi_m < \phi_s$ の関係がある金属と n 型半導体が接触すると [⑦ (a) 半導体側から金属側に,(b) 金属側から半導体側に]電子が移動し,金属と半導体のフェルミ準位 ε_r が一致したところで平衡状態に達する.その結果,金属と接する半導体表面近傍には,イオン化したドナーが残された

 $\varepsilon_{\rm c}$ は伝導帯下端のエネルギー $\varepsilon_{\rm c}$ は価電子帯上端のエネルギー $\varepsilon_{\rm r}$ はフェルミ準位

図 3-1

$$\phi_{B} = \begin{bmatrix} & \textcircled{1} & & \\ & & & \end{bmatrix}$$

$$qV_{A} = \begin{bmatrix} & \textcircled{2} & & \\ \end{bmatrix}$$

$$(1)$$

一方,この半導体が p型の場合は $\phi_m < \phi_s$ の関係があるときに D]接触が得られる.この場合は半導体中のイオン化したアクセプタによる正孔に対する障壁が生じる.このとき,正孔に対する ϕ_B と qV_d はそれぞれ次のように示される.

$$\phi_{\rm B} = \begin{bmatrix} & \textcircled{3} & \textcircled{3} \\ qV_{\rm d} = \begin{bmatrix} & \textcircled{4} & \end{array} \end{bmatrix} \tag{3}$$

次に,[⑦]接触となる金属-n型半導体接触における電流密度-電圧特性を, ϕ_B 以上のエネルギーを持つ電子だけが障壁を越えて電流に寄与するとする熱電子放出モデルで考える.順方向(金属側を正,半導体側を負)を正とする電圧 V_0 を印加するとき,半導体側から見たエネルギー障壁の高さは qV_0 だけ[❸ (a)高くなる,(b) 低くなる].絶対温度T (T>0) における半導体の伝導帯中の電子密度をnとする.電子のエネルギー分布はボルツマン分布で近似できると仮定し,伝導帯下端のエネルギーを ε_c ,フェルミ準位のエネルギーを ε_r ,絶対温度Tにおける伝導帯の有効状態密度を N_c とする.n が,

$$n \cong N_{\rm c} \exp\left(-\frac{\varepsilon_{\rm c} - \varepsilon_{\rm F}}{k_{\rm B}T}\right) \tag{5}$$

で与えられることを使えば、nのうち、障壁を越えるエネルギーをもつ電子の密度 n_{th} は、次のように表すことができる.

$$n_{\rm th} = n \exp \left[-\frac{q(V_{\rm d} - V_0)}{k_{\rm B}T} \right] = N_{\rm c} \times ([\$] \{ \phi_{\rm B}, k_{\rm B}, T, V_0, q \}])$$
 (6)

金属から半導体へ向けて障壁を越える電子による電流密度を J_1 , 半導体から金属への電流密度を J_2 とする。 絶対温度Tにおいて J_2 は n_{th} に比例すると考えると, $J_2=Kn_{th}$ (Kは比例定数)と表せる。印加電圧 $V_0=0$ のとき正味の電流は流れないので,以下の関係が成り立つ。

$$J_{\rm I} = J_{\rm 2} = KN_{\rm c} \times ([\mbox{(} \{\phi_{\rm B} \ , \ k_{\rm B}, \ T\}])$$
 (7)

電圧 V_0 を印加しても金属側から見た障壁高さは ϕ_B のまま変化しないと考えると、 J_1 は印加電圧に依らず一定である.これより、電圧 V_0 印加時に障壁を流れる正味の電流密度J (= J_2-J_1) は以下のように表せる.

$$J=KN_c imes ([⑦ \{\phi_{\rm B},\ k_{\rm B},\ T,\ V_0,\ q\}])$$
 (8) ここで KN_c は定数 A^* を用いて, $KN_c=A^*T^2$ と表される.この定数 A^* をリチャードソン定数という.

境界条件として [\Box] の外部 (x>W) では電界が発生していないと仮定して, [\Box] 内の電界 E(x) を求めると

が得られる. したがって、単位面積当たりの静電容量(障壁容量) Cは

と求まる.

- 問 1 文章中の空欄 [⑦]~[卧]に当てはまる語句を答えよ.[⑦],[卧] は(a),(b)のどちらか適切な方を一つ選ぶこと.
- 問 2 文章中の空欄 [①]~ [④]に当てはまる数式を $\{\chi_s, \phi_s, \epsilon_g, \phi_m\}$ のうちからそれぞれ必要なものを用いて示せ.
- 問3 文章中の空欄 [⑤]~[⑦]に当てはまる数式を本文中の { } のうちの文字記号を用いて示せ.(ヒント:⑤はバンド図を描くと分かりやすい.)
- 問 4 ある金属と n 型半導体との接触において,電流密度 電圧特性が式(8)に従うとする.逆方向に十分に大きな電圧を印加した時の飽和電流密度 J が -9.0×10^{-5} Acm $^{-2}$ であった. A*を 100 AK $^{-2}$ cm $^{-2}$,Tを 300 K として, $\phi_{\rm B}$ の値を求めよ.
- 問 5 文章中の空欄 [⑧], [⑨] に当てはまる数式を $\{q, N_d, \kappa, \varepsilon_0, x, W\}$ の うちから、また空欄 [⑩], [⑪] に当てはまる数式を $\{q, N_d, \kappa, \varepsilon_0, V_d, V_0\}$ のうちからそれぞれ必要なものを用いて示せ.
- 問 6 問 4 とは異なる金属と n 型半導体の接触において、障壁容量 C と印加電圧 V_0 の関係を調べたところ、 $C^{-2}=1.0\times10^{15}-2.0\times10^{15}V_0$ (cm^4F^{-2})の関係が得られた.このときの V_d 、 N_d および ϕ_B の値を計算し、導出過程が分かるように示せ.ただし、T は 300 K, N_c は 3.5×10^{19} cm⁻³, κ は 10, ε_0 は 8.9×10^{-14} Fcm⁻¹ とする.

量子電子物性3 単語の英訳

金属: metal

半導体: semiconductor

接触: contact

素電荷: elementary charge

ボルツマン定数: Boltzmann constant

電子親和力: electron affinity 仕事関数: work function

急峻な: abrupt

界面準位: interface state フェルミ準位: Fermi level

伝導带: conduction band

価電子帯: valence band

真空準位: vacuum level

平衡状態: equilibrium state エネルギー障壁: energy barrier

障壁高さ: barrier height

正孔: hole

電流密度: current density

熱電子放出モデル: thermionic emission model

絶対温度: absolute temperature

電子密度: electron density

ボルツマン分布: Boltzmann distribution 有効状態密度: effective density of states

比例定数: proportional constant

印加電圧: applied voltage

正味の: net

リチャードソン定数: Richardson constant

障壁容量: barrier capacitance

誘電率: permittivity キャリア密度: carrier density

電位: electric potential

ポアソン方程式: Poisson's equation

境界条件: boundary condition

電界: electric field

【量子電子物性4】 解答は、青色(4番)の解答用紙に記入すること、

誘電体に関する次の文章を読み、下記の問いに答えよ. ただし、真空の誘電率を ϵ_0 、素電荷をe、虚数単位をiとする.

[I] 誘電体に外部電界を印加すると、分極によって電気双極子が誘起され、電磁気学でいう平均の電界 $\mathbb E$ がかかる。固体中のように原子や分子が密に存在すると、個々の電気双極子に働く電界は $\mathbb E$ ではなく、この電気双極子モーメントはその原子や分子に作用する局所電界 $\mathbb E_{loc}$ に比例する。電気双極子モーメントが複数種類あるとし、j 種の分極率を α_j 、その密度を N_j とすると、誘電体内に誘起される分極 $\mathbf P$ は、

$$\mathbf{P} = \sum_{j} \left(\begin{bmatrix} & & \mathbf{I} \end{bmatrix} \right) \tag{1}$$

と表すことができる.一般に局所電界係数を アとするとき,

$$\mathbf{E}_{\text{loc}} = \mathbf{E} + \frac{\gamma}{3\varepsilon_0} \mathbf{P} \tag{2}$$

となる. 誘電体の比誘電率を κ とすると

であるから、 $\gamma=1$ のときの κ と $\sum N_j \alpha_j$ の関係式は

$$[\quad \boxed{3} \quad \boxed{]} = \frac{1}{3\varepsilon_0} \sum_{i} N_i \alpha_i \tag{4}$$

と表される.この式は, [④] の式とよばれ,原子や分子のミクロな分極率とマクロな比誘電率を関係づけるものである.

[II]物質は、振動電界に対する応答の点では、様々な固有振動数をもつ電気双極子の集まりとみなされる場合がある。そこで1つの電気双極子をばねで束縛された電荷とみなし、速度に比例する制動力を受けながら振動する調和振動子として扱うローレンツモデルを考える。振動子の質量、電荷、固有角周波数をそれぞれm、q、 ω_0 とする。外から加えられた角周波数 ω で時間tに依存するx方向の振動電界 $E_0 \exp(-i\omega t)$ の影響下にある振動子の運動方程式は、

$$m\left(\frac{d^2}{dt^2}X + \Gamma_0 \frac{d}{dt}X + \omega_0^2 X\right) = \left(\begin{bmatrix} & \text{(5)} & \end{bmatrix}\right) \times \exp\left(-i\omega t\right)$$

となる.ここでX は振動子の平衡位置からの変位, Γ_0 (> 0)は制動力による振動の減衰を表す係数である.

変位 X は振動電界に追従して ω で振動することから、運動方程式の解は $X=X_0\exp\left(-i\omega t\right)$ で表されるとすると

が得られる. ただし θ は位相であり、

$$\tan \theta = \frac{\left[\begin{array}{c} \boxed{7} \\ \omega_0^2 - \omega^2 \end{array}\right]}{} \tag{7}$$

と表される. したがって本モデルで考える電気双極子が単位体積あたり N 個あるとき、分極 $P(\omega,t)$ は

$$P(\omega,t) = P_0 \exp\{-i(\omega t - \theta)\}$$
 (8)

と表される. ここで

一般に、物質の全分極率には3種類の分極の寄与が考えられ、分極は印加する振動電界の周波数に依存する. 10¹⁵ Hz 以上の高い周波数領域まで電界に応答する [①] 分極、10¹²~10¹⁴Hz の周波数領域まで電界に応答を示すことが多い [②] 分極、10¹⁰ Hz 以下の比較的低い周波数で電界応答を示す [④] 分極である. 分極が振動電界に追随できなくなると、その分極は分極率に寄与しなくなるため分極率は減少する. このような分極の周波数依存性は [⑤] とよばれ、[下線] [⑥] の起こる周波数では、印加された振動電界のエネルギーの [⑥] が大きくなる.

[III] 強誘電体は電界を印加しなくとも零ではない分極、つまり [①] 分極を有し、その分極の向きは電界によって変えることができる。ペロヴスカイト族のチタン酸バリウム(BaTiO3)は、約 393 Kの [⑱] 温度 T_1 より高い温度では [⑲] 相を示す。その結晶構造は [⑪] 相では [⑳] 晶をしており、体心に [㉑ Ba²+, Ti⁴+, O²-] イオン、面心に [㉑ Ba²+, Ti⁴+, O²-] イオン、8つの角に [㉑ Ba²+, Ti⁴+, O²-] イオンがある。 T_1 より低い温度では結晶が変形し、[㉑ Ba²+, Ti⁴+, O²-] イオンと [㉑ Ba²+, Ti⁴+, O²-] イオンが [㉑ Ba²+, Ti⁴+, O²-] イオンに対し相対的に変位して単位胞として電気双極子モーメントをもつようになる。

 問1
 文章中の空欄[
 ①
] ~ [
 ②
] にあてはまる語句, 数式または数値を答えよ. また, 空欄[
 ②
] はいずれか適切な化学記号を選択せよ.

間 2 気体状態の有機化合物 (A) CH₄ と(B) CH₃Cl と (C) CCI4 に対する $\kappa-1$ と絶対温度 T の逆数の関 係として、適切に表しているグラフをそれぞれ 図 4-1 の(あ)~(お)の中から選び、その記号 で答えよ、またその理由を簡潔に述べよ、ただ し、いずれの気体とも κ -1 \ll 1である.

- Γ (11)
-] 分極, [
- (13)
-] 分極,
-] 分極を各々1つずつもつ物質に (14) 角周波数ωの振動電界を印加した場合の全分極 率 α の実数部 α 'と虚数部 α "の角周波数依存 α_1 '+ α_2 '+ α_3 ' 性を示すグラフの概形を図示せよ. ここで,
-] 分極, [(13)
- 〕分極,
- (14)] 分極の十分低い周波数における 各々の分極率の実数部を α_1 ', α_2 ', α_3 'とし, 文章中の[下線]で述べたようなそれぞれ
- (II)
-] 分極, [13] 分極,

- ٢] 分極に対応する振動電界の
- エネルギーの [⑩] が最大となる角周 波数を ω_1 , ω_2 , ω_3 とする.
- 図 4-3 を解答用紙に転記し、BaTiO3の 問 4
 -] 温度 T_i より高い温度での (18)
 -]相における比誘電率 κ と絶対温度 Tとの関係を示すグラフの概形を図示し、 κ の温 度依存性を簡潔に説明せよ.

义 4-1

図 4-2(a)

図 4-2(b)

図 4-3

量子電子物性4 単語の英訳

誘電体: dielectric 誘電率: permittivity

素電荷: elementary charge 虚数単位: imaginary unit

電界: electric field
分極: polarization
電気双極子: electric dipole
電磁気学: electromagnetism

原子: atom 分子: molecule

電気双極子モーメント electric dipole moment

局所電界: local electric field

分極率: polarizability 密度: density

局所電界係数: local electric field coefficient

比誘電率: relative permittivity 振動電界: oscillating electric field

制動力: braking force / damping force

振動子: oscillator

角周波数: angular frequency 平衡位置: equilibrium position

位相: phase

複素分極率: complex polarizability

実数部: real part

虚数部: imaginary part 強誘電体: ferroelectric

単位胞: unit cell

絶対温度: absolute temperature

【制御工学】解答は、白色(5番)の解答用紙に記入すること.

以下の問1~問3に答えよ、

問1 図1のブロック線図において,R(s) から C(s) までの伝達関数を $G_1(s)$, $G_2(s)$, $G_3(s)$ を用いて表せ.

図 1

問 2 図 2 のフィードバックシステムについて、以下の問いに答えよ、ただし、K は実数値をとるゲインであり、R(s)、C(s) はそれぞれ時間関数 r(t)、c(t) $(t \ge 0)$ のラプラス変換を表す。また、E(s) は e(t) = r(t) - c(t) $(t \ge 0)$ のラプラス変換を表す。

- (i) R(s) から E(s) までの伝達関数が安定となるための K に関する必要十分条件を求めよ.
- (ii) K=5 としたとき, r(t)=t $(t\geq 0)$ なる単位ランプ入力に対する定常偏差 $\lim_{t\to\infty}e(t)$ を求めよ.
- (iii) K=5 としたとき,フィードバックシステムの開ループ伝達関数 L(s) に対する位相 $\angle L(j\omega)$ の角周波数 ω に関する漸近値 $\lim_{\omega\to 0}$ $\angle L(j\omega)$ と $\lim_{\omega\to \infty}$ $\angle L(j\omega)$ をそれぞれ求めよ.ただし,j は虚数単位を表し, $\angle L(j\omega)$ は $L(j\omega)$ の偏角を表す.
- (iv) K の値を 0 から ∞ へと変化させたときのフィードバックシステムの根軌跡において,無限遠点へ発散しない軌跡が存在する.無限遠点へ発散しない軌跡の終点の座標をすべて求めよ.

問3次式の状態方程式と出力方程式で与えられる線形時不変システムについて、以下の問いに答えよ.

$$\frac{dx(t)}{dt} = Ax(t) + bu(t), \quad y(t) = cx(t)$$

ただし,係数行列と係数ベクトルは

$$A = \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad c = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

で与えられ, $x(t)=\begin{bmatrix}x_1(t)\\x_2(t)\end{bmatrix}$ は状態変数ベクトル,u(t) は入力変数,y(t) は出力変数である.

- (i) このシステムの可制御性行列を求めよ.
- (ii) このシステムを可制御正準システムに変換せよ.
- (iii) 行列指数関数 $e^{(A-2bc)t}$ を求めよ.
- (iv) 入力 $u(t) = -2y(t) + te^{-t}$ $(t \ge 0)$ に対する出力 y(t) $(t \ge 0)$ を求めよ、ただし、初期状態は $x_1(0) = 0$, $x_2(0) = 0$ とする.
- (v) k を正の実数値とし,入力 u(t) = -ky(t) ($t \ge 0$) を施した出力フィードバックシステムを考える.この出力フィードバックシステムの極の実部が $-\frac{1}{2}$ 未満となるための k に関する必要十分条件を求めよ.

専門用語の英訳

ブロック線図 伝達関数

フィードバックシステム

ゲイン

ラプラス変換

安定

必要十分条件

単位ランプ入力 定常偏差

開ループ伝達関数

位相

角周波数 漸近値 虚数単位 偏角

根軌跡 無限遠点

終点

線形時不変システム

状態方程式 出力方程式 係数行列 係数ベクトル 状態変数ベクトル

入力変数 出力変数 可制御性行列

可制御正準システム

行列指数関数

出力フィードバックシステム

極

block diagram transfer function feedback system

gain

Laplace transform

stable

necessary and sufficient condition

unit ramp input steady-state error

open-loop transfer function

phase

angular frequency asymptotic value imaginary unit

argument root locus

point at infinity

end point

linear time-invariant system

state equation output equation coefficient matrix coefficient vector state variable vector

input variable output variable

controllability matrix

controllable canonical system matrix exponential function output feedback system

pole

【信号処理】解答は、だいだい色の解答用紙に記入すること.

入力信号 x[n] を処理し出力信号 y[n] (n は時刻を表す整数)を生成する離散時間信号処理システム L

$$y[n] = L[x[n]] \tag{1}$$

を考える. 以下の問いに答えよ.

- (i) 離散時間信号処理システムにおける線形性の定義を数式を用いて述べよ. また,線形なシステムと そうでないシステムの具体例を一つずつ挙げ,各々が定義を満たすこと,または満たさないことを 示せ.
- (ii) 離散時間信号処理システムにおける時不変性の定義を数式を用いて述べよ. また, 時不変なシステムとそうでないシステムの具体例を一つずつ挙げ, 各々が定義を満たすこと, または満たさないことを示せ.

以下の問いでは、システム L が線形かつ時不変であるとして答えよ、

(iii) システム L では、そのインパルス応答 h[n] と入力信号 x[n] の畳込みにより出力信号 y[n] が与えられること、すなわち

$$y[n] = h[n] * x[n] \triangleq \sum_{k=-\infty}^{\infty} h[n-k]x[k]$$

となること (* は畳込み演算記号) を,式 (1) より導出せよ.

(iv) システム L のインパルス応答, 周波数応答, 伝達関数について, 各々の定義や性質を数式を交えて 説明せよ、また, これらの相互関係を詳しく説明せよ、

専門用語の英訳	
入力信号	input signal
出力信号	output signal
離散時間信号処理システム	discrete-time signal processing system
線形	linear
時不変	time-invariant
インパルス応答	impulse response
畳込み	convolution
周波数応答	frequency response
伝達関数	transfer function