程执行一条非法指令,那么内核就发送给它一个 SIGILL 信号(号码 4)。如果进程进行非法内存引用,内核就发送给它一个 SIGSEGV 信号(号码 11)。其他信号对应于内核或者其他用户进程中较高层的软件事件。比如,如果当进程在前台运行时,你键入 Ctrl+C(也就是同时按下 Ctrl 键和 C键),那么内核就会发送一个 SIGINT 信号(号码 2)给这个前台进程组中的每个进程。一个进程可以通过向另一个进程发送一个 SIGKILL 信号(号码 9)强制终止它。当一个子进程终止或者停止时,内核会发送一个 SIGCHLD 信号(号码 17)给父进程。

序号	名称	默认行为	相应事件
1	SIGHUP	终止	终端线挂断
2	SIGINT	终止	来自键盘的中断
3	SIGQUIT	终止	来自键盘的退出
4	SIGILL	终止	非法指令
5	SIGTRAP	终止并转储内存 [©]	跟踪陷阱
6	SIGABRT	终止并转储内存 ^①	来自 abort 函数的终止信号
7	SIGBUS	终止	总线错误
8	SIGFPE	终止并转储内存 ^①	浮点异常
9	SIGKILL	终止②	杀死程序
10	SIGUSR1	终止	用户定义的信号1
11	SIGSEGV	终止并转储内存 ^①	无效的内存引用(段故障)
12	SIGUSR2	终止	用户定义的信号 2
13	SIGPIPE	终止	向一个没有读用户的管道做写操作
14	SIGALRM	终止	来自 alarm 函数的定时器信号
15	SIGTERM	终止	软件终止信号
16	SIGSTKFLT	终止	协处理器上的栈故障
17	SIGCHLD	忽略	一个子进程停止或者终止
18	SIGCONT	忽略	继续进程如果该进程停止
19	SIGSTOP	停止直到下一个 SIGCONT ®	不是来自终端的停止信号
20	SIGTSTP	停止直到下一个 SIGCONT	来自终端的停止信号
21	SIGTTIN	停止直到下一个 SIGCONT	后台进程从终端读
22	SIGTTOU	停止直到下一个 SIGCONT	后台进程向终端写
23	SIGURG	忽略	套接字上的紧急情况
24	SIGXCPU	终止	CPU 时间限制超出
25	SIGXFSZ	终止	文件大小限制超出
26	SIGVTALRM	终止	虚拟定时器期满
27	SIGPROF	终止	剖析定时器期满
28	SIGWINCH	忽略	窗口大小变化
29	SIGIO	终止	在某个描述符上可执行 I/O 操作
30	SIGPWR	终止	电源故障

图 8-26 Linux 信号

8.5.1 信号术语

传送一个信号到目的进程是由两个不同步骤组成的:

● 发送信号。内核通过更新目的进程上下文中的某个状态,发送(递送)一个信号给目的进程。发送信号可以有如下两种原因: 1)内核检测到一个系统事件,比如除零错误或者子进程终止。2)一个进程调用了 kill 函数(在下一节中讨论),显式地要求内核发送一个信号给目的进程。一个进程可以发送信号给它自己。

注:①多年前,主存是用一种称为磁芯存储器(core memory)的技术来实现的。"转储内存"(dumping core)是一个历史术语,意思是把代码和数据内存段的映像写到磁盘上。

②这个信号既不能被捕获,也不能被忽略。

⁽来源: man 7 signal。数据来自 Linux Foundation。)