Appendix 1

A.T. Tredennick, A.R. Kleinhesselink, & P.B. Adler "Ecosystem and community resistance..."

Peerl

Section A1.1 Estimating ANPP

- We used a radiometer to nondestructively estimate aboveground net primary productivity. Our
- approach relies on relating greenness in a plot to aboveground biomass. In each year we recorded
- 4 ground reflectances at four bands, two associated with the red spectrum and two associated with
- 5 the near-infrared spectrum (Table A1-1). We took four readings per plot that were averaged.
- 6 Bands 1 and 3 correspond to wavelengths collected by the MODIS satellite and bands 2 and 4
- 7 correspond to wavelengths collected by the AVHRR satellite.

 Table A1-1
 Radiometer specifications.

Band number	Spectrum name	Spectrum wavelengths	Corresponding satellite	
1	red	xx-xx µm	AVHRR	
2	red	xx-xx µm	MODIS	
3	near-infrared	xx-xx μm	AVHRR	
4	near-infrared	xx-xx µm	MODIS	

- 8 Using the RED and NIR reflectance values, we calculate the normalized difference vegetation
- index (NDVI) for each plot based on both AVHRR- and MODIS-based wavelengths. We calculated
- 10 NDVI as:

$$NDVI_{AVHRR} = \frac{b_3 \delta_{1(AVHRR)} - b_1 \delta_{2(AVHRR)}}{b_3 \delta_{1(AVHRR)} + b_1 \delta_{2(AVHRR)}}$$
(1)

$$NDVI_{MODIS} = \frac{b_4 \delta_{1(MODIS)} - b_2 \delta_{2(MODIS)}}{b_4 \delta_{1(MODIS)} + b_2 \delta_{2(MODIS)}}$$
(2)

- where b_x refers to band x (x = 1,2,3,4) in Table A1-1 and δ s are scaling factors unique to each
- band. The values for the scaling factors come from (PETER?) and are as follows: $\delta_{1(AVHRR)}=0.77$,
- 13 $\delta_{2(AVHRR)} = 1$, $\delta_{1(MODIS)} = 0.95$, $\delta_{2(MODIS)} = 0.96$.
- To convert plot NDVI to biomass, we regressed known biomass values from calibration plots
- against NDVI calculate for those plots. Calibration plots were located near our experiment plots,

and each year we located a new set of 10 plots in which we clipped all aboveground biomass, dried it to a constant weight at 60° C, and the weighed. We used these biomass values to estimate regression parameters for both AVHRR- and MODIS-based NDVI. We assessed model fit using R^2 and, for each year, we used the regression parameters associated with the best fit model to estimate biomass in the experimental plots based on their NDVI values (Table A1-2). R code for this procedure is in the file "calibrate_radiometer_by_year.R" in the supplemental code set.

Table A1-2 Details of regression models used to estimate biomass each year.

Year	Intercept	NDVI Slope	R^2	Min(biomass)	Max(biomass)	Algorithm
2012	9.03	144.23	0.59	8.57	41.42	MODIS
2013	1.44	111.39	0.39	8.63	77.62	MODIS
2014	16.31	222.38	0.63	14.61	62.30	MODIS
2015	-8.89	210.31	0.21	44.72	129.03	AVHRR
2016	14.15	493.85	0.72	50.16	163.70	MODIS