

主要内容:

- 8088/8086微处理器(主要是2.1, 2.2)
- 总线(2.5的部分内容)

重点内容:

2.1微处理器概述	了解运算器的组成和基本功能(P36,2.1.1下面一段话)			
2.2.1 8088/8086 CPU的特点	了解8088/8086 CPU具有流水线,内存分段管理和支持多处理器的特点	粗讲		
2.2.2 8088 CPU的外部引脚及	了解CPU有最大最小模式	粗讲		
	掌握地址线、数据线、读写控制、中断、锁存等功能的主要管脚	粗讲		
2.2.3 8088/8086 CPU的功能約	掌握CPU内部结构由EU和BIU组成及主要功能,P44图2-6	精讲		
	掌握CPU的内部14个寄存器及作用	精讲		
	掌握标志寄存器的各个位的作用	精讲		
2.2.4 8088/8086 CPU的存储器	了解CPU的地址线数量,地址容量	精讲		
		精讲		
	了解CPU段寄存器的类型及作用	粗讲		

2.1 微处理器概述

微处理器的基本功能: 教材P36

(1) (2) (3) (4) (5) (6)

评价微处理器的主要性能指标: 教材P36

■ 重点:字长

微处理器的组成部分: 教材P36

■ 运算器,控制器,寄存器组

2.1.1 运算器

- 1、由算术逻辑单元(ALU),通用与专用寄存器,内 部总线3部分构成;
- 2、核心是ALU;
- 3、运算器的结构有3种

2.1.2 控制器器

■ 1、控制器的作用与功能: 见教材P37 指令控制, 时序控制, 操作控制

■ 2、控制器的内部组成:

程序计数器PC,指令寄存器IR,指令译码器ID,时序控制部件,微操作控制部件。

2.2 8088/8086 微处理器

概述: 教材P38

2.2.1. 8088/8086 CPU的特点

- 1、采用并行流水线工作方式
 - 通过设置指令预取队列实现

(教材P39)

CPU内 部结构

_

指令执行的一般过程

取指令 — 指令译码 — 读取操作数 —

→ 执行指令 → 存放结果

取指部件,分析部件,执行部件

顺序执行和并行流水线

- 顺序执行方式:
 - 各功能部件交替工作,按顺序完成指令的执行过程。
- 并行流水线方式:
 - 各功能部件并行工作。

EU与BIU

顺序工作方式

CPU	取指令1	分析 指令1	执行 指令1	取指令2	分析 指令2	执行 指令2
BUS	忙碌			忙碌		

并行流水线工作方式

CPU	取指令1	分析 指令1	执行 指令1			
		取指令2	分析 指令2	执行 指令2		
			取指令3	分析 指令3	执行 指令3	•••
BIU	忙碌	忙碌	忙碌	忙碌	忙碌	•••

2、对内存空间实行分段管理(教材P40)

存储器寻 址部分

- 将内存分为4个段并设置地址段寄存器,以实现对1MB 空间的寻址;
- 内存中的每个单元地址由两部分构成: 段地址, 偏移地址;
- 逻辑地址与物理地址的概念;

3、支持多处理器系统(教材P40)

工作模式

可工作于两种模式下

- 最小模式 ——— 单处理器模式
- 最大模式 ———— 多处理器模式

最小模式下的总线连接示意图

控制信号较少,一般可不必接总线控制器

最大模式下的总线连接示意图

控制信号较多,需要通过总线控制器实现控制信号传输

两种工作模式的选择方式

- 8088是工作在最小还是最大模式由MN/MX引线的 状态决定。
 - MN/MX=0——工作于最大模式
 - MN/MX=1——工作于最小模式

2.2.2 8088/8086的引线及功能

概述:见教材P41

CPU访问一次内存或接口的主要信号

- CPU完成一次访问内存或I/0接口需要:
 - 地址信号
 - 内存地址,接口地址
 - 数据信号
 - 8088对外是8位数据线,与地址低8位分时复用。(8086对外是16位数据线,与地址低16位分时复用)
 - 各种控制信号
 - 读、写、读写允许、收发器方向控制,地址锁存,访存/访接口控制

主要引线——最小模式下的8088引线

- 地址线和数据线:
 - AD₀—AD₇: 低8位地址和低8位数据信号分时复用。在传送 地址信号时为单向,传送数据信号时为双向。
 - A₁₆--A₁₉: 高4位地址信号,与状态信号分时复用。
 - A₈—A₁₅: 8位地址信号

主要的控制和状态信号

- WR: 写信号;
- RD: 读信号;
- IO/M: 为 "0" 表示访问内存, 为 "1" 表示访问接口;
- DEN: 数据允许信号,低电平有效时,允许进行读/写
- 操作;常常用作数据总线驱动器的片选信号。
- DT/R: 数据收发器的传送方向控制;
- ALE: 地址锁存信号;
- RESET: 复位信号。

例:

- 如果有:
 - $\overline{WR}=1$, $\overline{RD}=0$, $\overline{IO}/\overline{M}=0$
- 表示:
 - CPU当前正在进行读存储器操作

READY信号

- 外部同步控制输入信号,高电平有效。
- 由被访问的内存或设备发出的响应信号。
- 有效时,表示存储器或设备已经准备好。

中断请求和响应信号

■ INTR: 可屏蔽中断请求输入端

■ NMI: 非屏蔽中断请求输入端

■ INTA: 中断响应输出端

总线保持信号

HOLD:

■ 总线保持请求信号输入端。当CPU以外的其他设备要求占用总线时,通过该引脚向CPU发出请求。

HLDA:

总线保持响应信号输出端。CPU对HOLD信号的响应信号。

最小模式下,这些信号主要是用于DMA(直接存储器访问)方式

2.2.3 8088/8086CPU的内部结构

教材P44

1. 组成

■ 8088/8086内部由两部分组成:

```
人
执行单元(EU)
总线接口单元(BIU)
```

第44页图

2. 执行单元EU

教材P44--45,图2-6左边

运算器 8个通用寄存器 1个标志寄存器 EU部分控制电路

执行单元

- 功能 → 指令的执行
 - 指令译码
 - 指令执行 —— 在ALU中完成
 - 暂存中间运算结果 —— 在通用寄存器中
 - 保存运算结果特征 —— 在标志寄存器FLAGS中

3. 总线接口单元

教材P44--45,图2-6右边

- 功能:
 - 从内存中取指令到指令预取队列
 - 指令预取队列是并行流水线工作的基础
 - 负责与内存或输入/输出接口之间的数据传送
 - 在执行转移程序时,BIU使指令预取队列复位,从指定的 新地址取指令,并立即传给执行单元执行。

结论

- 指令预取队列的存在使EU和BIU两个部分可同时 进行工作,即:
 - 实现指令的并行执行
- 目的:
 - 提高了CPU的效率;
 - 降低了对存储器存取速度的要求

4、内部寄存器的类型

■ 含14个16位寄存器,按功能可分为三类

8个通用寄存器 4个段寄存器 2个控制寄存器

深入理解:每个寄存器中数据的含义

1)通用寄存器

数据寄存器(AX, BX, CX, DX) 地址指针寄存器(SP, BP) 变址寄存器(SI, DI)

数据寄存器

■ 8088/8086含4个16位数据寄存器,它们又可分为8个8位寄存器,即:

- AX → AH, AL
- BX → BH, BL
- CX → CH, CL
- DX → DH, DL

数据寄存器特有的习惯用法

- **AX:**
 - 累加器。所有I/0指令都通过AX与接口传送信息,中间运算 结果也多放于AX中;
- **BX**:
 - 基址寄存器。在间接寻址中用于存放基地址;
- **CX**:
 - 计数寄存器。用于在循环或串操作指令中存放计数值;
- DX:
 - 数据寄存器。在间接寻址的I/0指令中存放I/0端口地址;在 32位乘除法运算时,存放高16位数。

地址指针寄存器

- SP:
 - 堆栈指针寄存器,其内容为栈顶的偏移地址;
- BP:
 - 基址指针寄存器,常用于在访问内存时存放内 存单元的偏移地址。

共同点:

- 1)默认指向堆栈区
- 2)多数情况用于存放地址

BX与BP在应用上的区别

- 作为通用寄存器,二者均可用于存放数据;
- 作为基址寄存器,用BX表示所寻找的数据在数据 段:用BP则表示数据在堆栈段。

变址寄存器

- SI:
 - 源变址寄存器
- DI:
 - 目标变址寄存器
- 变址寄存器在指令中常用于存放数据在内存中的 地址。

通用寄存器小结

2)控制寄存器

状态标志位(1)

- CF (Carry Flag)
 - 进位标志位。加(减)法运算时,若最高位有进(借)位则CF=1
- OF (Overflow Flag)
 - 溢出标志位。当算术运算的结果超出了有符号数的可表达范 围时, 0F=1
- ZF (Zero Flag)
 - 零标志位。当运算结果为零时ZF=1
- SF (Sign Flag)
 - 符号标志位。当运算结果的最高位为1时, SF=1

状态标志位(2)

- PF (Parity Flag)
 - 奇偶标志位。运算结果的低8位中"1"的个数为偶数时 PF=1
- AF (Auxiliary Carry Flag)
 - 辅助进位标志位。加(减)操作中,若Bit3向Bit4有进位(借位), AF=1

仅针对低8位

状态标志位例

- 给出以下运算结果及运算后各状态标志位的状态:
 - 10110110+11110100

控制标志位

- TF (Trap Flag)
 - 陷井标志位,也叫跟踪标志位。TF=1时,使CPU处于单步执行指令的工作方式。
- IF (Interrupt Enable Flag)
 - 中断允许标志位。IF=1使CPU可以响应可屏蔽中断请求。
- DF (Direction Flag)
 - 方向标志位。在数据串操作时确定操作的方向。

3)段寄存器

- 作用
 - 用于存放相应逻辑段的段基地址

需要弄清楚的问题:

什么是逻辑段?为什么要分段?

每个段寄存器中存放的内容=?

2.2.4 8088/8086CPU存储器组织

存储器管理机制

- 从8086/8088到Pentium, 80x86系列微处理器的存储器管理机制有了较大变化。
- 8086/8088只有一种存储器管理方式,即实地址方式 (简称实方式);
- 80286具有两种工作方式,即实方式和保护虚地址方式(简称保护方式);
- 80386及其以后的CPU有三种工作方式,即实方式、保护方式和虚拟8086方式。

内存储器管理

背景: 8088/8086有20根地址线,能够产生1M个地址编码,能管理(寻址) 1MB 内存空间,每一个内存单元地址都是20位(二进制),但内部管理地址的寄存器却都是16位的。

这样就引出了一个问题:如何用 16位的寄存器去管理20位的地址?

解决方案: 8088对内存采用分段管理方式

内存地址变换

XXXXXH

内存地址变换:

如何将直接产生的16位编码变换为20位物理地址?

1. 内存单元的编址(1)

- 内存每个单元的地址在逻辑上都由两部分组成:
 - 段(基)地址
 - 指示存储单元在整个内存空间中处于哪个区域
 - 段内地址(相对地址/偏移地址)
 - 指示存储单元在段中的相对位置(与段中第1个单元的距离)

8088为16位结构,所以段地址和偏移地址均为16位

存储器的编址(2)

- 段基地址:
 - 决定存储单元在内存中的位置
- 相对地址(偏移地址)
 - 该存储单元相对段内第一个单元的 距离
- 逻辑段的起始地址称为段首地址
 - 每个逻辑段内的第一个单元

由偏移地址的定义得段首的偏移地址= 0

存储器的编址(3)

段首的偏移地址:

0000H

存储器的编址(4)

- 物理地址:
 - ■内存单元在整个内存空间中的唯一地址

2. 实地址模式下的存储器地址变换

■ 内存物理地址由段基地址和偏移地址组成

3. 段寄存器

- 作用
 - 用于存放相应逻辑段的段基地址
- 8086/8088内存中逻辑段的类型
 - 代码段 —— 存放指令代码
 - 数据段 ── 存放操作的数据
 - 附加段 ——— 存放操作的数据
 - 堆栈段 —— 存放暂时不用但需保存的数据。

段寄存器

- CS
 - 代码段寄存器,存放代码段的段基地址
- DS
 - 数据段寄存器 ,存放数据段的段基地址
- ES
 - 附加段寄存器,存放数据段的段基地址
- SS
 - 堆栈段寄存器, 存放堆栈段的段基地址

段寄存器的值表明相应逻辑段在内存中的位置

例:

■ 设某操作数存放在数据段,DS=250AH,数据所在单元的偏移地址=0204H。则该操作数所在单元的物理地址为:

250AOH

- + 0204H
- = 252A4H
 - $\sim 250 \text{AH} \times 16 + 0204 \text{H} = 252 \text{A4H}$

4. 逻辑段与逻辑地址

- 关于逻辑段:
 - 大小、位置都可改变的"段"
 - 每个内存单元的段地址和偏移地址都可变

2500H:0000H 250AH:0000H 2500H: 00A0H 具有唯一物理地址: 250A0H

一个物理地址可以 对应若干逻辑地址

逻辑段与逻辑地址

- **内存的分段是逻辑分段,不是物理段**。各个逻辑段在地址上可以 不相连、可以部分重合,也可以完全重合
- 每个内存单元具有惟一物理地址,但可能具有多个逻辑地址。
- 一个逻辑段的默认容量为64KB → 16bit 计算机
 - 一个内存单元可以同时处于两个不同类型的逻辑段
 - 一个内存单元可以在不同的时刻属于相同(或不同)类型的段

不同类型段在内存中可以完全重合、部分重合、相邻、不相邻

例:

■ 已知: CS=1055H,

DS=250AH

ES=2EF0H

SS=8FF0H

■ 画出各段在内存中的分布。

例:

- CS=1055H
 - 段首地址=10550H
 - 默认段尾地址= 2054FH

- DS=250AH
 - 段首地址=250A0H
 - 默认段尾地址=3509FH

- ES=2EF0H
- SS=8FF0H

逻辑段说明

同一程序模块装入主存时,不同 类型的段可以装入在相同/不同 的物理空间

■ 两个逻辑段完全重合或部分重合

两个不同程序模块装入主存时, 同一类型的逻辑段也可以装入相 同或不同的物理空间中

5. 存储器的保护模式 (具体不做要求)

- 保护模式:
 - 支持多任务的工作模式,提供了多任务保护机制;
 - 内存段的访问受到限制,不能再随意存取数据段。
- 保护模式下的内存访问
 - 不再直接从段寄存器中获得段基地址,段基地址存放在内存的段描述符表中,由段描述符寄存器给出段描述符表的基地址,段寄存器中仅存放段选择符。

6. 堆栈及堆栈段的使用

■ 堆栈:

- 内存中一个特殊区域,用于存放暂时不用或需要保护的数据。
- ■常用于响应中断或子程序调用。

例:

- 己知
 - SS=1000H, SP=0100H
- 则:
 - 当前堆栈指针指向的物理地址是 10000H+0100H=10100H

实模式下的存储器寻址小结

- 每个内存单元在整个内存空间中都具有唯一地址
- 每个内存单元的地址都由两部分组成:
 - 段基地址 段内相对地址(偏移地址)
- 段基地址决定了逻辑段在内存中所占的区域,改变段基地址,则改变了逻辑段的位置。
- 一个逻辑段的默认长度为64KB,最小长度值为16B。
- 逻辑段可以有多个,但只有4种类型。在一个程序模块中,每种类型的逻辑段最多只能有一个。

2.2.5 总线时序

教材P49

几个基本概念

- 时序:
 - CPU各引脚信号在时间上的关系
- 时钟周期:
 - 每个时钟脉冲的持续时间
- 总线周期:
 - CPU完成一次访问内存(或接口)操作所需要的时间。
 - 一个总线周期至少包括4个时钟周期。

2.5 总线 (部分要求)

采用总线的优越性:见教材P72

2.5.1 概述: 见教材P72

- 总线的基本概念和分类;
- 总线的工作方式;
- 常用系统总线标准。

1. 概述

■ 总线:

是一组导线和相关的控制、驱动电路的集合。是计算机系统各部件之间传输地址、数据和控制信息的通道。

```
地址总线 (AB)
数据总线 (DB)
控制总线 (CB)
```

现代微机中的多总线结构

南北桥芯片

2. 总线分类

按层次结构分《系统总线

CPU总线

外部总线

3. 总线的基本功能

- 数据传送
- 仲裁控制
- 出错处理
- 总线驱动

4. 总线的主要性能指标

- 总线带宽(B/S):
 - 单位时间内总线上可传送的数据量
- 总线位宽(bit):
 - 能同时传送的数据位数
- 总线的工作频率(MHz)
 - 总线带宽=(位宽/8)×(工作频率/每个存取周期的时钟数)

- ISA (8/16位)
- PCI (32/64位)

77

- ISA (8/16位)
- PCI (32/64位)

■ AGP(加速图形端口,用于提高图形处理能力)

- PCI-E (PCI Express)
 - 目前最新的系统总线标准,采用串行方式传输数据, 依靠高频率来获得高性能。

本章小结

- 微处理器的一般构成
- 8088CPU的主要引线及其功能
- 8088CPU的内部结构
- 内部寄存器功能
 - 寄存器中数据的含义
 - 8位寄存器中存放的均为运算的数据
- 存储器寻址
 - 逻辑地址,段基地址,偏移地址,物理地址
- 堆栈
 - 栈顶地址,栈底地址,堆栈段基地址

