Introduction to Reinforcement Learning Session 5

Jean Martinet, based on the course of Diane Lingrand

Polytech SI4 / EIT Digital

2020 - 2021

Feedback after second submission

- 41 submissions
- Globally well, but only few obtained good agent players
 - No training dataset recorded
 - Review the methodology in the lab description
 - Training yields low accuracy
 - Play well and longer
 - Agent didn't play at all
 - Make sure the Y values include all 3 possible moves
 - Check test accuracy (model generalises well?)
 - Use imblearn lib to handle imbalanced datasets
 - Agent played well
 - Congratulations

Information about second assignment

- Instructions will be posted today (April 22)
- Work in groups of 2 (groups of 3 exceptionally, grading more strict)
 - Select an Atari game from a list
 - Select a training method and subject
 - Submit py+pdf or ipynb before Friday May 14 18:00 (3 weeks)

Mini-quizz

- How can should proceed for continuous action domains?
 - 0
- By using gradient descent, are we guaranteed to reach the best solution?
 - 0
- How can an ANN generate actions for states it has never seen?
 - •
- ANN are supervised... Are we actually doing RL?
 - 0

Mini-quizz

- How can should proceed for continuous action domains?
 - Tabular methods do not scale, use Value Function Approximation
- By using gradient descent, are we guaranteed to reach the best solution?
 - No, we may reach a local minimum
- How can an ANN generate actions for states it has never seen?
 - It can generalise and output a fair guess
- ANN are supervised... Are we actually doing RL?
 - Good point. We're using SL to solve an RL problem, with a continuously changing dataset

Remember last week

$$\widehat{V^{\pi}(s)} = V_{ heta}(s) = V(s, heta)$$
 $\widehat{Q^{\pi}(s, a)} = V_{ heta}(s, a) = V(s, a, heta)$

- Use a parametrised function to estimate value function and state-action value function
 - Compact representation that generalises across states and actions
- Need to have an oracle that tells us what the true value is
- The loss is defined with a mean squared error :

$$J(\theta) = \mathbb{E}_{\pi}[(V^{\pi}(s) - V(s, \theta))^{2}]$$

• Q-learning with a Deep ANN is Deep Q-Learning (DQN)

How to select the best action?

- Discrete action space?
 - Use argmax
- Continuous action space?
 - Still possible to estimate $V_{\theta}(s, a)$
 - But requires to find the maximum with gradient ascent
 - (optimisation over action space)
 - Still possible, but likely to be very slow and inefficient
 - (+ risk of finding local maximum)
- Value function much more complex than the policy
 - Rather estimate directly $\pi_{\theta}(s, a)$!

Policy gradient

Gradient ascent

$$\theta_{t+1} = \theta_t + \alpha \widehat{\nabla J(\theta_t)}$$

- With $\nabla J(\theta_t)$ a stochastic estimate of the performance w.r.t θ_t
- Some methods learn both action value and policy: actor-critic
- Critic: estimate the value function
 - ullet Estimate relevant value function, and then e.g. use ϵ -greedy
- Actor : learn the policy
 - Stochastic Policy Gradients (SPG): output is a probability over actions
 - Deterministic Policy Gradients (DPG) : output is the value of an action (e.g. up, down, etc)

Policy gradient

- Estimate directly the policy
- Discounted rewards
- Neural network for modelling the policy :
 - π_{θ} where θ are the weights of the ANN

Remember Markov Decision Process (MDP)

- Formal description of an environment for decision making / RL
- Tuple {S, A, P, R, γ}
 - States : s_t
 - Action : a_t
 - Dynamics model (transitions) : $P(s_t, a_t, s_{t+1}) \sim p(s_{t+1}|s_t, a_t)$
 - Reward model : $R(s_t)$ immediate reward
 - Policy : $\pi(s) \rightarrow a$.

Optimal policy : π^* Maximizes the long term expected reward or cumulative reward

Last week: supervised learning

Last week: learning

- pre-processing
 - image cropping (obs_t[34:194,:,1])
 - one channel
 - downsampling (factor 2 in x and in y)
 - difference of images : need for a direction of displacement
- data :
 - recorded games: set of pairs (difference of images 80x80; actions)
 - action = up, down or nope

Even if the supervised learning step is performed at the highest quality, it will never outperform human players!

Could we play randomly and ...

... keep the best scores?

- No, because of complexity
 - # pixels = 6400, # of connections, etc.
- Even if we start to play randomly, we need to learn from each experience
 - Yes, but we don't know the label action performed correct or not?
 - We only have sparse labels game/round won or lost
- The main idea is to sample actions from a probabilistic model $a_i = y_i \sim p(.|x_i)$
 - this model is a neural network (forward pass)
 - try to maximise $\sum_i A_i \times \log(p(y_i|x_i))$ (backpropagation)
 - $A_i > 0$ will make that action more likely in the future for that x_i state
 - $A_i < 0$ will make that action less likely in the future for that x_i state

Reward function

- Example of pong :
 - Set of actions and reward at the end of the game/round
 - \bullet +1 if win
 - -1 if loose for the whole sequence even if only the last action was wrong: Credit Assignment Problem
 - This method fails if, by taking random action, you never go to a

positive reward (e.g. Montezuma's Revenge)

- Reward shaping :
 - Manually design a reward function to guide the policy
 - Needs to be redone for every new environment / game
 - Sometimes fails : agent focusing on highest rewards instead of final goal
 - For GO game, it is not optimal (= playing like a human)

Back to pong reward : rounds

image from A. Karpathy's blog

- If we win the game : we assume that every action we took was correct (correct label)
- If we loose: we assume that every action we took was wrong (wrong label)

Discounted rewards

image from A. Karpathy's blog

- at t:-1
- ullet at t-1 : $-\gamma$
- at t-2 : $-\gamma^2$

Discounted rewards

image from A. Karpathy's blog

where $\gamma = 0.9$

A simple code for policy gradient

- from Andrej Karpathy
 - available at https://gist.github.com/karpathy/ a4166c7fe253700972fcbc77e4ea32c5#file-pg-pong-py
 - also an adaptation using keras https://raw.githubusercontent. com/mkturkcan/Keras-Pong/master/keras_pong.py
 - no dependancy except gym and numpy
- data collected during an episode (until one of the players reaches a score of 21)
 - neural network (one hidden layer of 200 neurons)
 - only one ouput neuron : probability of going up
 - random action according to estimated probabilities
 - batch for gradient computation
 - discounted rewards for a round
 - one step gradient iteration (using RMSprop)

Policy gradient

- Neural network with probabilities of actions as output
- Optimisation objective : $\hat{A}_t \log \pi_{\theta}(a_t|s_t)$
- Default Policy Gradient Loss : $L_PG(\theta) = \hat{E}_t[\log \pi_{\theta}(a_t|s_t)\hat{A}_t]$
 - The advantage \hat{A}_t measures how good is an action compared to other actions
 - If \hat{A}_t is positive, the gradient is positive, increasing these action probability
 - If \hat{A}_t is negative, the gradient is negative, decreasing these action probability
- $\bullet \hat{A}_t = R_t b(s_t)$
 - R_t : cumulative discounted rewards (we know what happened)
 - $b(s_t)$: baseline estimation (what we expected)

Policy gradient (2)

Vanilla Policy Gradient

```
Algorithm 1 "Vanilla" policy gradient algorithm
  Initialize policy parameter \theta, baseline b
  for iteration=1, 2, \ldots do
       Collect a set of trajectories by executing the current policy
       At each timestep in each trajectory, compute
        the return R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}, and
        the advantage estimate \hat{A}_t = R_t - b(s_t).
      Re-fit the baseline, by minimizing ||b(s_t) - R_t||^2.
        summed over all trajectories and timesteps.
       Update the policy, using a policy gradient estimate \hat{g},
        which is a sum of terms \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \hat{A}_t
  end for
```

Policy gradient algorithms

- TRPO (Trust Region Policy Optimization) https://arxiv.org/abs/1502.05477
 - The core idea is to avoid parameter updates that change the policy too much
- PPO (Proximal Policy Optimization) https://arxiv.org/abs/1707.06347
 - simpler objective function

```
Algorithm 1 PPO, Actor-Critic Style  \begin{aligned} & \textbf{for iteration=1, 2, \dots do} \\ & \textbf{for actor=1, 2, \dots, N do} \\ & \textbf{Run policy } \pi_{\theta_{\text{old}}} & \textbf{in environment for } T & \textbf{timesteps} \\ & \textbf{Compute advantage estimates } \hat{A}_1, \dots, \hat{A}_T & \textbf{end for} \\ & \textbf{Optimize surrogate } L & \textbf{wrt } \theta, & \textbf{with } K & \textbf{epochs and minibatch size } M \leq NT \\ & \theta_{\text{old}} \leftarrow \theta & \textbf{end for} \end{aligned}
```

AlphaGo uses policy gradients with Monte Carlo Tree Search (MCTS)

Today's lab

- download policy gradient algorithm for Pong by Andrej Karpathy
 - adapt to python3
 - print syntax
 - model.iteritems to model.items
- \bullet increase speed by modifying the learning rate to 10^{-3}
- try different ideas of improvement
 - reward shaping (positive reward if ball hitting the spade)
 - change the topology of the neural network :
 - 1 or 2 layers of convolution
 - 1 dense layer
 - modify the output : allow the possibility of no displacement