COMP 2080 Summer 2024 – Assignment 3

This assignment is due by 11:59pm on Monday May 27.

Your assignment will be submitted in Crowdmark and *not* in UM Learn. A Crowdmark invitation will be sent to your U of M email.

Proofs will be graded on both correctness and presentation. Clearly explain all of your steps.

The total number of points is 15.

Global Instructions

For this assignment, you may **only** use basic algebra, arithmetic, and the definitions of O(), $\Omega()$, $\Theta()$, o(), and $\omega()$. Do **not** use limits, statements about the hierarchy of functions, or any other properties of asymptotic notation.

Questions

- 1. [3 marks] Prove that $n! \notin O(n(4^n))$.
- 2. [3 marks] Prove that $2(\log_2(n))^3 \log_2(n) + 2024 \in \Omega((\log_2(n))^2)$.
- 3. [3 marks] Prove that $\log_2(4^n + 2) \in \Theta(n)$.
- 4. [3 marks] First, we define the following notation: for any even number m,

$$m!! = m \cdot (m-2) \cdot (m-4) \cdot \cdots \cdot (4) \cdot (2).$$

Prove that $4^n \in o((2n)!!)$.

- 5. [3 marks] Let f and g be arbitrary functions that map $\mathbb{Z}_{\geq 0} \to \mathbb{R}_{\geq 0}$. Prove that, if $g \in \omega(f)$, then $f + g \in \omega(f)$. Hints:
 - Begin by clearly stating what you are assuming and what you need to prove.
 - If you find yourself writing something like "Let M = 3M" in your proof, then you are using two different M's and they should have different names. You can use subscripts $(M_1, n_1, M_2, n_2, \ldots)$ or primes $(M', n'_0, M'', n''_0, \ldots)$ to distinguish between your variables.