MANUFACTURING SYSTEMS AUTOMATION NMM3512-2122

Sylvester Chiamaka Azubuine

U2075835

AUTOMATION DESIGN

A report submitted to the School of Computing and Engineering, University of Huddersfield, in part fulfilment of the Degree of Master of Science in

MSc Engineering Control Systems and Instrumentation

Module leader: Prof. Andrew Longstaff, Department of Engineering and Technology

19th November 2021

TABLE OF CONTENTS

T	ABI	LE OF CONTENTS	ii
L	IST	OF FIGURES	iii
L	IST	OF TABLES	iii
1.	Ι	NTRODUCTION	4
	1.1.	Aim	4
	1.2.	Objectives	4
2.	Γ	DESCRIPTION OF AUTOMATION TASK	4
	2.1.	Hardware connection to the PLC	5
	2.2.	Analogue input	5
	2	2.1. Scaling of the input values:	6
3.	S	SYSTEM INPUTS AND OUTPUTS	6
4.	C	DRGANISATION AND STRUCTURE OF LOGIC	6
	4.1.	Description of selected parts of program	8
5.	F	HUMAN MACHINE INTERFACE	9
6.	C	OPERATING MANUAL	10
7.	C	CONCLUSION	11
8.	R	REFERENCES	12
9.	A	APPENDICES	13
	9.1.	Appendix A	13
	9.2.	Appendix B	13
	9.3.	Appendix C	14
	9.4.	Appendix D	14

LIST OF FIGURES

Figure 1: Hardware connection to PLC	. 5
Figure 2: Top and side view of the Process diagram	. 7
Figure 3: Main POU	. 7
Figure 4: Timing POU	
Figure 5: Weighing POU	. 7
Figure 6: Function block	. 8
Figure 7: Timers and latching	. 8
Figure 8: Counters	. 9
Figure 9: HMI	
Figure 10: Mitsubishi Q Q61LD Analogue to Digital converter	13
Figure 11: Q64AD Analogue to Digital converter 1	13
LIST OF TABLES	
Table 1: Hardware chosen and justification	
Table 2: Analogue Sensors	. 5
Table 3: System inputs and outputs	. 6

1. INTRODUCTION

A major advantage of an ever-improving knowledge and technology is the ability to transfer certain tasks and manufacturing processes to machines. Such tasks include ones that are inherently hard and repetitive, thereby improving peoples' quality of life while at the same time, improving the yield of the process. In an industrial setting, mechanical relays which were used for switching circuits could not meet up with the speed and durability of most industries, hence a programmable logic controller (PLC) which greatly enabled automation of tasks came to be.

1.1. Aim

To design part of a safe and functional automated manufacturing process with the use of a PLC.

1.2. Objectives

- Define a manufacturing process which includes transporting components and stopping them at a point on a conveyor to perform inspection.
- Include timing and counting capabilities in the process.
- Make use of switches, sensors, pushbuttons, and a conveyor belt.

2. DESCRIPTION OF AUTOMATION TASK

This design automates part of a popcorn manufacturing process that includes the filling of a desired number of sachets in a box, sorting of the boxes such that the number of sachets within the box and the weight of every shipped box remains consistent, thereby improving quality assurance. Table 1 details the hardware employed for this task and the reason they were chosen.

Table 1: Hardware chosen and justification

SN		Device	>	Justification
1		Q03UD (CPU [1]	To allow for a possible expansion of the process
	QX80 Input modu QY10 Output mod		out module [2]	when the need for more production of the popcorn
			itput module	arises.
		QJ1E71-	100 Intelligent	The photoelectric sensor gives output in voltage, so
		module [3	3]	Q64AD module was used for it whereas the load
	Modular	Q64AD	converter	cell gives output in resistance and so Q61LD
	PLC	module [4	1]	module was used for it.
		Mitsubish	ni Q61LD	The QX80 module was used for the digital inputs,
		Analogue	e to Digital	QY10 module was used for the digital outputs and
	converter [5]		[5]	QJ1E71-100 module was used to communicate
	Q38B/Q63P Power		Power Power	with the HMI via ethernet protocol.
		supply		
2	Emergency	switch		Serves as an immediate safety measure
3	On/Off swi	tch		A switch was preferred over double push buttons
				for its simplicity and the less space taken up on the
				HMI display.
4	Photo-option	e sensor	_	Detects the location of a sachet/box on the
	[6] Input		Input	conveyor.
5	Photo-electric			Detects the presence of a box.
	proximity sensor [7]			
6	Load cell [8]			Measures the weight of the box.
7	Solenoid			Drives the pneumatic valve that controls the push
				arm and box stopper

8	Stepper motor	Output	Its unit step or combination of unit steps will equate to the exact length a sachet or box will occupy on the conveyor thereby ensuring fairly accurate metering of the sachets and boxes on the conveyor. No need for the extreme precision that a servo motor provides, also cheaper than a servo motor.	Controlled with a stepper driver
9	AC induction motor		Will be used to drive a conveyor that will be in continuous motion at a constant speed, hence no need for precise displacement.	Controlled with a variable frequency drive (inverter).

2.1. Hardware connection to the PLC

Figure 1: Hardware connection to PLC

2.2. Analogue input

Table 2: Analogue Sensors

SN	Analogue Sensor	Range
1	Applied Measurements OBUG platform load cell [8]	0-5000 grams
2	XUB1BPANL2 Photo-electric sensor [7]	0-5500 mm

2.2.1. Scaling of the input values:

Q64AD Converter module digital output range (x axis): 0-4000. See appendix A Q61LD Analogue to Digital converter output range: 0-10,000. See appendix B

Photoelectric sensor range: 0-5500mm. See appendix C

Load cell range: 0-5000g. See appendix D Y value for photoelectric sensor = 10mm

Y value for load cell =1700g

$$Y = (ymax - ymin) * (norm. x) + ymin$$
But $norm. x = \frac{x}{xmax}$
.....2
$$Y = (ymax - ymin) * (\frac{x}{xmax}) + ymin$$
.....3
$$x = \frac{(Y - ymin) * xmax}{(ymax - ymin)}$$
.....4
$$\therefore \frac{(10 - 0) * 4000}{(5500 - 0)} = 7.28 \text{ (X value for photo-electric proximity sensor)}$$
.....5
$$\therefore \frac{(1700 - 0) * 10000}{(5000 - 0)} = 3400 \text{ (X value for load cell)}$$
.....6

.....6

3. SYSTEM INPUTS AND OUTPUTS

Table 3: System inputs and outputs

	Input							
S/N Name		Device	Туре	Device tag				
1	Emergency Stop	Push Button	Normally closed	X1				
2	Start/Stop switch	Switch	Normally open	X2				
3	Batch reset	Push Button	Normally open	X7				
4	Sensor 1	Motion limit switch	Normally open	X3				
5	Sensor 2	Photo-optic sensor	Normally open	X4				
6	Sensor 3	Photo-optic sensor	Normally open	X5				
7	Sensor 4	Photo-optic sensor	Normally open	X6				
8	Sensor 5	Load cell	Normally open	D2				
		Output						
9	Box stopper actuator	Solenoid	Coil	Y10				
10	Push Arm actuator	Solenoid	Coil	Y15				
11	Conveyor A	Stepper motor	Stepper motor					
12	Conveyor B	Stepper motor		Y12				
13	Conveyor C	AC induction motor	AC induction motor					
14	Conveyor D	Stepper motor		Y14				

4. ORGANISATION AND STRUCTURE OF LOGIC

Main POU: Starts up the program, engages the first two conveyors and holds most commands that controls the movement of the conveyors as shown in Figure 3.

Timing POU: Determines how long conveyor D remains stopped.

Weighing POU: Measures and compares a box's weight with a set weight.

Figure 2: Top and side view of the Process diagram

Figure 3: Main POU

4.1. Description of selected parts of program

The function block: Contains the logic for the scaling of the analogue input. It was used for the two instances of analogue inputs in this program and Figure 6 shows its implementation in the weighing POU.

Figure 6: Function block

Timers and Latching: Figure 7 illustrates the use of timers to implement a delay when Conveyor D stops. Latching convDstop ensures that conveyor D remains stopped until the timing is complete.

Counters: Counter C1 was used to indicate the number of sachets detected by the sensor and when the count gets to 10, it triggers the stop of conveyor B as shown in Figure 8.

Figure 8: Counters

5. HUMAN MACHINE INTERFACE

Figure 9: HMI

The HMI consists of three segments. The inputs, values and outputs display. The emergency push button and alarm are positioned at the centre of the HMI. The stop switch turns red when on and stays green when off. The conveyors turn green when active and grey when off. The box stopper turns red when raised and grey when lowered. The push arm turns yellow when extended and grey when retracted. Batch reset is a virtual push button.

6. OPERATING MANUAL

- 1. Press the **on/off switch** to turn on **conveyors C and A**. The **Box stopper raises** as well.
- 2. Set the box stop distance to 10mm by inputting 7.28 in the photoelectric input terminal.
- 3. Press the **sensor 1 push button** to simulate that the photoelectric sensor has determined the box is in position. This stops **conveyor A** and starts **conveyor B**.
- 4. Press the **sensor 2 push button** to simulate each time a popcorn sachet enters the box from **conveyor B**. Once the **sachet count** is up to 10, **box stopper** lowers letting the box move along with **conveyor C**.
- 5. Press the **sensor 3 push button** to simulate that the presence of the box has been detected after the **box stopper**. This raises the **box stopper** and re-engages **conveyor A**.
- 6. Setting the **load cell value** to 3400 digital value, simulates that the load cell will have measured 1700g from a box and will display that on the values display section. Variating this value will also variate the detected weight of the box.
- 7. Pressing the **sensor 4 push button** pauses **Conveyor D** for some time, allowing the box to be weighed. If the value of the detected weight is not equal to 1700g, a **push arm** removes the box from the conveyor, but if weight is 1700g, the **batch count** will increase by one and the box will continue moving towards the other end of **conveyor D**.
- 8. The **batch reset button** resets the batch count when pressed.
- 9. Pressing the on/off switch at any point during operation will stop all active processes.
- 10. Pressing the **emergency button** at any point during operation also stops all active processes and engages the **alarm**.

7. CONCLUSION

The successful execution of this assignment demonstrates a clear understanding of the design and implementation of an automation task for a manufacturing process using a PLC, which includes the proper use of safety devices. Popcorn being a solid and edible product, also influenced the choice of sensors and actuators used amongst other considerations. The HMI was designed to be intuitive, easy to understand and navigate for an operator with little or no technical skills.

8. REFERENCES

- [1] Mitsubishi Electric, "Programmable Controllers MELSEC-Q series [QnU] Reaching higher, to the summit of the Q Series | CPU," .
- [2] Mitsubishi Electric, "MELSEC System Q Programmable Logic Controllers User's Manual MITSUBISHI ELECTRIC | QX80," 2003.
- [3] Mitsubishi Electric, "Q Corresponding Ethernet Interface Module User's Manual (Basic) QJ71E71-100 -QJ71E71-B5 -QJ71E71-B2," Available: https://ru3a.mitsubishielectric.com/fa/ru/dl/12468/QJ71E71_-_Users_Manual_(Basic)_SH(NA)-080009-U_(02.19).pdf.
- [4] Mitsubishi Electric, "Analog-Digital Converter Module User's Manual -Q64AD -Q68ADV -Q68ADI -GX Configurator-AD (SW2D5C-QADU-E)," .
- [5] Mitsubishi Electric, "Load Cell Input Module User's Manual -Q61LD," .
- [6] Omron, "Omron Retroreflective Photoelectric Sensor Block Sensor data sheet," *Omron*, Available: https://docs.rs-online.com/788a/0900766b8142886b.pdf.
- [7] Schneider Electric, "Product datasheet Characteristics XUB1BPANL2 photo-electric sensor -XUB -reflex -Sn 4m 12..24VDC -cable 2m," .
- [8] Applied Measurements Ltd, "Platform Load Cell | Single Point Load Cell," *Applied Measurements Ltd*, Available: https://appmeas.co.uk/products/load-cells-force-sensors/platform-load-cell-obug/.

9. APPENDICES

9.1. Appendix A

(1) Analog to digital conversion characteristics

The following figure shows the analog to digital conversion characteristics of the Q61LD.

No.	Analog input range setting (load cell rated output)	Zero value	Span value	Digital output value*1	Maximum resolution
1)	1mV/V	0mV	5mV		0.5µV
2)	2mV/V	0mV	10mV	0 to 10000	1.0µV
3)	3mV/V	0mV	15mV	7	1.5µV

Figure 10: Mitsubishi Q Q61LD Analogue to Digital converter performance specifications [5]

9.2. Appendix B

Number	Analog input range setting	Offset value	Gain value	Digital output value *2	Maximum resolution
1)	1 to 5 V	1 V	5 V	0.4- 4000	1.0 mV
2)	0 to 5 V	0 V	5 V	0 to 4000	1.25 mV
3)	-10 to 10 V	0 V	10 V	-4000 to 4000	2.5 mV
4)	0 to 10 V	0 V	10 V	0 to 4000	2.5 mV
5250	User range setting	* 1	*1	-4000 to 4000	0.375 mV

Figure 11: Q64AD Analogue to Digital converter performance specifications [4]

9.3. Appendix C

Range of product	Telemecanique Photoelectric sensors XU	
Series name	General purpose single mode	
Electronic sensor type	Photo-electric sensor	
Sensor name	XUB	
Sensor design	Cylindrical M18	
Detection system	Reflex	
Material	Metal	
Line of sight type	Axial	
Type of output signal	Discrete	
Supply circuit type	DC	
Wiring technique	3-wire	
Discrete output type	PNP	
Discrete output function	1 NO	
Electrical connection	Cable	
Cable length	2 m	
Product specific application		
Emission	Infrared reflex	
[Sn] nominal sensing distance	4 m reflex need reflector XUZC50	
Complementary		
Enclosure material	Nickel plated brass	
Lens material	PMMA	
Maximum sensing distance	5.5 m reflex	
Output type	Solid state	
Add on output	Without	
Wire insulation material	PvR	

Figure 12: Photo-electric sensor specifications [7]

9.4. Appendix D

Technical Specifications

CHARACTERISTICS	OBUG	OBUG	OBUC	UNITS		
Rated Capacity (RC)	0-0.25, 0-0.5, 0-1, 0-2	0-3, 0-5, 0-10, 0-15, 0-20, 0-30, 0- 40	0-10, 0-15, 0-20, 0-30, 0-50, 0-100, 0- 200	kgf		
Operating Modes		Compression only				
Sensitivity (RO)	1.5 nominal	2±10%	2±10%	mV/V		
Maximum Platform Dimensions	200 x 200	350 x 350	400 x 400	mm		
Zero Balance/Offset	<1	<1	<10	±%/Rated Output		
Creep (30 mins)	<0.08		<0.03	±%/Rated Capacity		
Non-Linearity		±%/Rated Capacity				
Hysteresis	Hysteresis <0.02					
Repeatability		<0.02		±%/Rated Capacity		
Temperature Effect on Zero	<0.005	<0.002	<0.006	±%/Rated Capacity/°C		
Temperature Effect on Sensitivity	<0.015	<0.002	<0.015	±%/Applied Load/°C		
Effect of Eccentricity	<0.015		:0.006	±%/Rated Capacity/cm		
Input Resistance		400 nominal				

Figure 13: Load cell specifications [8]