4. Schaltnetze

• Technische Realisierung von Schaltfunktionen

- Halbleitertechnik
 - meist basierend auf Silizium, aber auch Germanium oder GaAs sind Halbleiter
 - Leitfähigkeit liegt zwischen der von Leitern (Metallen) und Isolatoren
 - Transistoren
 - heute dominiert die CMOS-Schaltungstechnik auf Basis von Isolierschicht-Feldeffekttransistoren (MOSFET)

Grundlagen der Elektrotechnik

Ladung

- Eigenschaft der Materie
- es gibt positive (Atomkerne) und negative (Elektronen) Ladungen
 - gleichnamige Ladungen stoßen sich ab, entgegen gesetzte Ladungen ziehen sich an
- Ladungsmenge, meist mit Q bezeichnet, gemessen in Coulomb (C)

Strom

- bewegte Ladungen
 - in Metallen sind die Elektronen die beweglichen Ladungsträger
- Stromstärke ist die Ladungsmenge, die pro Zeiteinheit an einer Stelle vorbeifließt, meist mit *I* bezeichnet
- gemessen in Ampere (A), 1 A = 1 C/s
- der Stromzählpfeil zeigt in der Regel in technische Stromrichtung von + nach -
 - muss er aber nicht, dann ist der Strom eben negativ (z.B. I = -3 mA)

Grundlagen der Elektrotechnik (2)

Elektrische Energie

- In Ladungsträgern kann Energie stecken, die frei wird, wenn sich die Ladungsträger von einem Ort zu einem anderen bewegen.
 - Energie wird gemessen in Joule (J)
- Ladungsträger sind bestrebt, sich von Orten mit höherer Energie zu
 Orten mit niedrigerer Energie zu bewegen.
- Damit ist die Energiedifferenz die Ursache f
 ür den elektrischen Strom.

Spannung

Spannung ist definiert als Energie pro
 Ladungsmenge, meist mit *U* bezeichnet

- gemessen in Volt (V), 1 V = 1 J/C
- Spannung wird immer zwischen zwei Punkten gemessen
- der Zählpfeil zeigt in der Regel von + nach
 - muss er aber nicht, dann ist die Spannung eben negativ (z.B. U = -5V)

Kristalle

- Ge und Si Atome haben in ihrer äußersten Schale 4 Elektronen
 (Valenzelektronen), die bestrebt sind, sich mit je einem Elektron von je einem Nachbaratomen zu paaren
- die Atome gehen dadurch chemische Bindungen ein
- für Halbleiterbauelemente werden Einkristalle extrem hoher Reinheit (nur 1 Fremdatom auf 10¹⁰ Si-Atome) benötigt

Eigenleitfähigkeit von Halbleitern

- durch Aufnahme von Wärmeenergie werden einige Atombindungen aufgebrochen, d.h.
 Elektronen lösen sich vom Atomkern und bewegen sich frei im Kristall
- der feststehende Atomrumpf ist dann positiv geladen
- das fehlende Elektron kann von einem Elektron einer benachbarten Bindung aufgefüllt werden
- dann fehlt am Nachbaratom ein Elektron, das Atom ist daher positiv geladen
- die wandernde positive Ladung nennt man Loch (Defektelektron)
- ein Loch verhält sich genau wie ein positiver, frei beweglicher Ladungsträger
- fällt ein frei bewegliches Elektron in ein Loch, so löschen sich beide gegenseitig aus (Rekombination)

Eigenleitfähigkeit von Halbleitern (2)

- legt man eine Spannung an den Halbleiter an, bewegen sich beide Arten von Ladungsträgern und es fließt ein Strom
- die Anzahl der freien Ladungsträger ist aber sehr gering und temperaturabhängig

Störstellenleitfähigkeit

dotierte Halbleiter

- Eigenleitfähigkeit bei Zimmertemperatur ist sehr gering
- durch gezielte Zusetzung von Fremdatomen kann die Leitfähigkeit um einige Zehnerpotenzen erhöht werden (Dotierung)
- man verwendet Fremdatome mit 5 oder 3 Valenzelektronen
 - dadurch entstehen n- bzw. p-dotierte Halbleiter (s.u.)

n-dotierte Halbleiter

- Fremdatome mit 5 Elektronen in der äußersten Hülle
 - Arsen As, Antimon Sb, Phosphor P
 - werden in geringer Menge in das Kristallgitter mit eingebaut
 - nur vier Elektronen werden für die Bindungen benötigt
 - das fünfte Elektron ist ganz lose an den Atomkern gebunden, da es keinen Bindungspartner findet
 - schon bei Zimmertemperatur sind diese Elektronen frei beweglich

p-dotierte Halbleiter

- Fremdatome mit 3 Elektronen in der äußersten Hülle
 - Aluminium Al, Bor B, Indium In
 - werden in geringer Menge in das Kristallgitter mit eingebaut
 - es stehen nur drei Elektronen für die Bindungen zur Verfügung
 - das fehlende vierte Elektron wird sehr leicht von einem Nachbaratom zur Verfügung gestellt
 - es entsteht ein frei bewegliches Loch

pn-Übergang

- Elektronen wandern von der n-dotierten Zone in die p-dotierte Zone und rekombinieren mit den Löchern, bis die entstehenden Raumladungen den Prozess unterbinden
- keine beweglichen Ladungsträger in der so entstandenen Sperrzone
- eine angelegte Spannung verstärkt oder verhindert den Effekt

MOSFET

Isolierschicht-Feldeffekt-Transistor

- die Gateelektrode ist durch eine dünne Siliziumoxidschicht (SiO₂, sehr guter Isolator) vom eigentlichen Halbleiter getrennt
 - Metal-Oxide-Semiconductor (MOSFET)
 - manchmal auch Metal-Insulator-Semiconductor (MISFET) genannt

MOSFET (3)

Funktionsweise

- exemplarisch f
 ür n-Kanal MOSFET (p-Kanal analog)
- eine positive Spannung am Gate gegenüber dem Substrat zieht die auch in der p-dotierten Schicht immer noch vorhandenen Elektronen an, bzw. erzeugt neue Elektronen durch Paarbildung
- ab einer Schwellspannung U_{th} (Threshold-Spannung) entsteht eine leitfähige Schicht von Elektronen (n-Kanal)

- ortsfeste Raumladungen
- Ladungsträger

a)
$$0 < U_{GS} < U_{th}$$

b)
$$U_{GS} > U_{th}$$

MOSFET (3)

• beim p-Kanal MOSFET ist alles umgekehrt

- dort wird ein n-Substrat verwendet
- Löcher sind die beweglichen Ladungsträger
- eine negative Spannung baut den Kanal aus Löchern auf
- Bulk wird wieder mit Source verbunden

MOSFET: vereinfachte Darstellung

n-Kanal

Verknüpfungsglieder

• Verknüpfungsglieder (Gatter)

- in digitalen Schaltungen werden die Gesetze der Schaltalgebra mit Hilfe von elektronischen Verknüpfungsgliedern realisiert
- die Wahrheitswerte wahr und falsch werden durch die Zustände an und aus (oder hohe und niedrige Spannung) realisiert
- damit man Verknüpfungsglieder zu größeren Einheiten zusammenschalten kann, ist es erforderlich, dass die Schaltungen alle die gleichen Signalpegel benutzen und die Signallaufzeiten vergleichbar sind
- deshalb sind Verknüpfungsglieder standardisiert
- man spricht auch von Schaltkreisfamilien (z.B. TTL, ECL, NMOS, PMOS, *CMOS*)
- innerhalb einer Familie sind die Schaltungen nach denselben Konzepten mit derselben Art von Bauelementen realisiert

Signalpegel

- ein Schaltglied steuert normalerweise mehrere nachfolgende Schaltglieder an
- dabei können
 - Fertigungsschwankungen
 - Betriebsspannungsschwankungen
 - Störungen von anderen Leitungen

Signalpegel (2)

- daher werden für an/aus nicht zwei scharf definierte Spannungen spezifiziert, sondern Spannungs*bereiche*, der H- und der L-Pegel
- zwei mögliche Zuordnungen
 - positive Zuordnung (active high)
 H=1
 L=0
 - negative Zuordnung (active low)
 H=0
 L=1

die Zuordnung ist willkürlich, meist wird jedoch die positive (active high) verwendet

Statische Störsicherheit

- schaltet man zwei Schaltglieder hintereinander, ist die Ausgangsspannung des ersten gleichzeitig die Eingangsspannung des zweiten Gliedes
- damit die Zuordnung eindeutig bleibt, müssen bestimmte Grenzwerte bei den Pegelbereichen eingehalten werden
- die erlaubten Spannungsbereiche an Eingängen sind größer als an Ausgängen, um Störungen tolerieren zu können

Statische Störspannungsabstände:

$$U_{SSH} = U_{QH \min} - U_{IH \min}$$

$$U_{SSL} = U_{IL \max} - U_{QL \max}$$

MOSFET

MOSFET arbeitet wie ein Schalter

 Größe der Spannung an Gate bestimmt, ob Schalter zwischen Source und Drain geöffnet oder geschlossen ist

Beispiel n-Kanal MOSFET

- positive Spannung an G gegenüber S schließt den Schalter
- eine geringe Spannung öffnet den Schalter

MOSFET (2)

• p-Kanal MOSFET benötigt negative Spannung, um Schalter zu schließen

- alles ist umgekehrt
- positive Löcher bilden den p-Kanal, daher wird eine negative Spannung zur Bildung des Kanals benötigt

CMOS Inverter

CMOS Inverter, NOT-Gatter

- C steht für complementary, also komplementär
 - Kombination aus n-Kanal und p-Kanal MOSFET
- hier gilt (active high): eine hohe, positive Spannung bedeutet eine 1
- eine niedrige Spannung (bzw. 0V) bedeutet 0

CMOS Inverter (2)

Funktionsweise

CMOS NAND-Gatter

CMOS NOR-Gatter

Ausgangslastfaktor (Fan-out)

- oft werden von dem Ausgang eines Verknüpfungsgliedes mehrere Eingänge weiterer Verknüpfungsglieder angesteuert
- da die angeschlossenen Eingänge die Pegel verändern (da Strom fließt),
 können nicht beliebig viele Eingänge angeschlossen werden
- z.B. (über den Daumen)
 - TTL: maximal 10 Eingänge an einen Ausgang (TTL-Schaltungstechnik besprechen wir hier nicht)
 - CMOS: maximal 50 Eingänge an einen Ausgang

Fan-out

- maximale Anzahl der Standardeingänge, die ein Ausgang treiben kann
 - TTL: Fan-out = 10
 - CMOS: Fan-out = 50

Eingangslastfaktor (Fan-in)

Fan-in

- einem Standard-Gattereingang, wird der Lastfaktor 1 (Fan-in von 1)
 zugeordnet
- bei manchen Schaltungen belastet der Eingang den vorhergehenden Ausgang höher (höheres Fan-in)

• dies ist z.B. der Fall, wenn ein Eingangssignal intern zur Ansteuerung von zwei Gattern verwendet wird (Fan-in von 2)

- die Summe der Fan-in-Werte der angeschlossenen Eingänge darf den Fan-out-Wert des treibenden Ausgangs nicht überschreiten
- dies gilt nur, wenn Verknüpfungsglieder derselben Familie miteinander verschaltet werden

Mischgatter

- Boolesche Ausdrücke mit nur einer Negation am Ausgang können auch als Mischgatter dargestellt werden
- Ersparnis von Transistoren
- Addition vonSpannungsabfällen
 - die Pegel müssen regeneriert werden
 - daher nur als Teil einer noch größeren Schaltung verwendbar

PLA

Schaltnetze

- nur sehr einfache Schaltnetze werden heute noch aus diskreten Verknüpfungsgliedern zusammengesetzt
- für komplexe Schaltnetze verwendet man statt dessen flexiblere Lösungen

• Ausnutzung der DNF oder der minimierten Polynome

- Inverter
- UND-Matrix
- ODER-Matrix

• programmierbare Logik-Bausteine

- PLA: Programmable Logic Array
- vorgefertigte Schaltkreise, in denen die UND- und die ODER-Matrix vom Anwender programmiert werden können

PLA (2)

Darstellung der UND-Matrix analog

PLA (4)

PLA (5)

Programmierung z.B. durch Schmelzsicherungen

- an allen Kreuzungspunkten befinden sich schmale leitende Verbindungen (Schmelzsicherungen)
- durch gezieltes Anlegen einer hohen Programmierspannung und dem resultierenden Strom kann eine solche Sicherung zerstört werden
- es verbleiben nur die gewünschten Verbindungen

Variante

- durch hohe Programmierspannung fließt Strom durch eine normalerweise isolierende Schicht
- der hohe Strom transportiert Material und stellt eine leitende Verbindung her

Laufzeiteffekte

- durch Signallaufzeiten kann der Ausgang eines Schaltnetzes Werte annehmen, die aufgrund der logischen Schaltfunktion eigentlich nicht möglich sind
- solche Falsch-Werte werden Hazards (engl. f
 ür Gefahr, Risiko) genannt
- Statischer Hazard
 - Verfälschung von statischen Signalen
- Dynamischer Hazard
 - Verfälschung von Signalflanken (Signalübergängen)

Hazards

Beispiel

 $c = a \cdot a'$ müsste eigentlich immer auf 0 liegen Gatterlaufzeit 1 1 \mathcal{C} 1 1 1 1 1 1 a UND b 1 1 1 1 1 1 1 bb& T 1 1 1 1 1 1 1 1 a1 1 1 1

1 1

1 1 1

Hazards (2)

Beispiel XOR

Hazards (3)

Hazards (4)

- es gibt Methoden, Schaltungen so auszulegen, dass beim Wechsel *eines* Eingangssignals keine statischen Hazards entstehen
 - bleibt man beim Wechsel eines Eingangssignals im selben Resolutionsblock, passiert gar nichts, da das Signal zur Erzeugung der 1 gar nicht benutzt wird
 - ein statischer Hazard kann entstehen, wenn beim Wechsel des Eingangssignals zwei Resolutionsblöcke (Primimplikanten) gewechselt werden, die überlappungsfrei aneinander grenzen
 - denn dann wechselt das UND-Gatter, das zur 1 in der Ausgabe führt
 - durch unterschiedliche Verzögerungen kann zwischenzeitlich eine 0 entstehen

Hazards (5)

Hazardfreie Schaltungen

- Einfügen eines Resolutionsblocks, der die beiden vorhandenen Blöcke überlappend verbindet
- Das zusätzliche Monom garantiert eine 1 beim entsprechenden Übergang.
- Damit können aber nur statische Hazards beseitigt werden, die bei Wechsel eines einzigen Signals entstehen.

vorher mit Hazard

nachher ohne Hazard

Hazards (6)

- Man muss immer mit dem Auftreten von Hazards in Schaltnetzen rechnen.
- Hazards treten nur f
 ür eine gewisse Zeit auf und klingen dann ab.
- Daher werden wir weiter unten meist synchrone Schaltungen entwerfen, die Signale immer nur zu bestimmten aktiven Zeitpunkten auswerten (Taktsignal).
- Hazards sind dann unschädlich, wenn die Zeitpunkte so gewählt werden, dass die Signale unter Garantie stabil geworden sind (die Hazards also abgeklungen sind).

Standardschaltnetze

• Schaltnetze

- heißen auch kombinatorische Schaltungen (combinatorial logic)
- Ausgänge hängen nur vom momentanen Zustand der Eingänge ab (keine Speicher, im Gegensatz zu den später zu besprechenden Schaltwerken)
- über Wertetabelle und Minimierung der DNF kann jede beliebige
 Schaltfunktion als Schaltnetz realisiert werden
- ein anderer Ansatz ist es, Schaltungen modular aus Standardschaltnetzen aufzubauen

Standardschaltnetze sind z.B. (s.u.)

- Codeumsetzer (Coder/Decoder)
- Multiplexer, Demultiplexer, Adressdekodierer
- Barrelshifter, Addierer, Multiplizierer
- ALU's, Komparatoren

Grundgatter

Alternative Betrachtungsweise:

Wie beeinflusst das Steuersignal S das eigentliche Signal A?

Grundgatter (2)

Exklusiv-ODER-Gatter

Code-Umsetzer

Code-Umsetzer

- Schaltfunktionen bilden eine Eingangsbelegung eindeutig auf eine Ausgangsbelegung der Schaltvariablen ab
- damit kann ein Code in einen anderen umgewandelt werden
- Beispiel: 7-Segment-Anzeige zur Anzeige der 10 Ziffern

Beispiel: 7-Segmentanzeige

1010 bis 1111 können als
don't-cares behandelt werden!

Dezimal	8421-BCD-Code				7-S	egn	nent	-C	ode		
Ziffer	D	\mathbf{C}	В	A	a	b	\mathbf{c}	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1

7-Segmentanzeige (2)

in disjunktiver, minimierter Form

$$a = D \vee (\overline{A} \wedge \overline{C}) \vee (A \wedge C) \vee (A \wedge B)$$

$$b = \overline{C} \vee (A \wedge B) \vee (\overline{A} \wedge \overline{B})$$

$$c = A \vee \overline{B} \vee C$$

$$d = (\overline{A} \wedge B) \vee (\overline{A} \wedge \overline{C}) \vee (B \wedge \overline{C}) \vee (A \wedge \overline{B} \wedge C)$$

$$e = (\overline{A} \wedge B) \vee (\overline{A} \wedge \overline{C})$$

$$f = D \vee (\overline{A} \wedge \overline{B}) \vee (\overline{A} \wedge C) \vee (\overline{B} \wedge C)$$

$$g = (\overline{A} \wedge B) \vee (\overline{B} \wedge C) \vee (B \wedge \overline{C}) \vee D$$

7-Segmentanzeige (3)

sieht aus, wie jedes Schaltnetz

- drei Schichten
 - Inverter
 - für die Bildung der inversen Schaltvariablen
 - UND-Gatter
 - für die Bildung der Monome
 - ODER-Gatter
 - für die Bildung der Polynome

Multiplexer

Multiplexer (MUX)

- *n* Steuerleitungen, 2ⁿ Eingänge, 1 Ausgang
- Steuerleitungen legen fest, welcher Eingang auf den Ausgang durchgeschaltet wird
- wirkt wie ein Drehschalter mit 2ⁿ Stellungen

Multiplexer (2)

Es gibt viele gebräuchliche Darstellungen für Multiplexer:

Implementierung:

oder so:

MUX und Entwicklungssatz von Shannon

• 2:1 Multiplexer

$$Y = SD_1 + \overline{S}D_0$$

• Entwicklungssatz von Shannon (s.o.)

$$f(x_1,...,x_{i-1},x_i,x_{i+1},...,x_n) = x_i f_{x_i=1} + \overline{x}_i f_{x_i=0}$$

- 2:1 MUX implementiert den Entwicklungssatz (Fallunterscheidung)
- die Kofaktoren müssen an den Eingängen liegen

Multiplexer (3)

• Beispiel 4:1 Multiplexer

Anwendungen von Multiplexern

- Daten aus mehreren alternativen Quellen holen
 - z.B. Steuerung des Datenpfades in Prozessoren

Anwendungen von Multiplexern (2)

Multiplexer kaskadieren

 größere Multiplexer können aus kleineren zusammengebaut werden

2:1 MUX 2:1 MUX 2:1 s_1 MUX x_3 2:1 MUX 2:1 52 MUX 2:1 MUX 2:1 S_1 MUX

Verzögerungszeit 3 Gatterlaufzeiten

Verzögerungszeit 5 Gatterlaufzeiten

Anwendungen von Multiplexern (3)

Realisierung beliebiger Schaltfunktionen

- die Steuerleitungen eines Multiplexers adressieren einen Eingang und schalten ihn zum Ausgang durch
- legt man die Wertetabelle an die Eingänge, erhält man das entsprechende Schaltnetz
 (hier z.B. ein Volladdierer, s.u.)

C_{U}	B	A	SÜ
S_2	S_1	S_o	$Y_0 Y_1$
0	0	0	0 0
0	0	1	1 0
0	_1	0	1 0
0	1	1	0 1
1	0	0	1 0
1	0	1 -	0 1
1	1	0	0 1
1	1	1	1 1

Anwendungen von Multiplexern (4)

- man kann immer mit einem Multiplexer auskommen, der eine Steuerleitung weniger hat
 - eine Schaltvariable, S_0 , wird abgespalten
 - jeder Eingang muss damit zwei Zeilen in der Wertetabelle repräsentieren
 - die beiden Zeilen können vier verschiedene Wertekombinationen enthalten (0,0), (0,1), (1,0), (1,1)
 - legt man an den Eingang 0, S₀, S₀' oder 1 an, kann man alle vier
 Möglichkeiten abdecken

S_0	0	S_0	S ₀ '	1
0	0	0	1	1
1	0	1	0	1

Anwendungen von Multiplexern (5)

Demultiplexer

Demultiplexer (DEMUX)

- *n* Steuerleitungen
- schaltet den Eingang auf einen von 2ⁿ Ausgängen
- die anderen Ausgänge führen eine 0
- wirkt wie ein Verteilerschalter, dessen Stellung durch die n
 Steuerleitungen festgelegt wird

Demultiplexer

• Beispiel 1:4 Demultiplexer

Demultiplexer sind wie Multiplexer ebenfalls kaskadierbar

Demultiplexer (2)

Anderes Schaltzeichen

1:4 Demultiplexer

Dekoder

Dekoder

- auch Adressdekoder genannt
- *n* Eingänge
 - eine *n*-Bit Zahl
- 2ⁿ Ausgänge
 - eine von 2^n Leitungen liegt auf 1, die anderen auf 0
 - 1 aus *n* Code (s.o.)

Copyright © 2022 Prof. Dr. Joachim K. Anlauf, Institut für Informatik VI, Universität Bonn

Dekoder (2)

• Beispiel: 3-Bit Adressdekoder

Dekoder (3)

Aufbau

entsteht aus Demultiplexer mit einer 1 am Eingang D

Arithmetische Schaltnetze

Arithmetische Schaltungen

- Computer führen einfache arithmetische Rechenoperationen mithilfe von Schaltnetzen aus
- logische Operationen
- Shifter
- Addierer
- Multiplizierer

Logische Operationen

Logische Operationen

- werden von allen Computern durchgeführt
- meist gibt es: UND, ODER, Exklusiv-ODER für ganze Worte (bitweise verknüpft)
- Realisierung mit entsprechenden Grundgattern

Shifter

Shifter

- verschieben Bitmuster nach links oder rechts
- logischer Shift
 - Nullen werden hineingeschoben

- arithmetischer Shift
 - beim "Rechtsschieben" wird Vorzeichen beibehalten

$$\begin{array}{cccc}
1010 & 0111 & \xrightarrow{\text{rechts}} & \underline{1}101 & 0011 \\
0010 & 0111 & \xrightarrow{\text{rechts}} & \underline{0}001 & 0011
\end{array}$$

Shifter (2)

- 8-Bit rechts/links Shifter (logischer Shift)
 - C bestimmt Schieberichtung
 - C=1: rechts, C=0: links
 - zusätzliche Logik für arithmetischen Shift notwendig

Barrel-Shifter

Einsatzgebiet

wenn ein Bitvektor effizient um beliebig viele Stellen verschoben

Rechts-Shift:

d	<i>s</i> ₁	S ₀	у3	<i>y</i> 2	<i>y</i> 1	уо
0	0	0	x_3	x_2	x_1	x_0
0	0	1	0	х3	x_2	x_1
0	1	0	0	0	<i>x</i> ₃	x_2
0	1	1	0	0	0	x_3

d	<i>s</i> ₁	s ₀	у3	У2	<i>y</i> 1	уо
1	0	0	<i>x</i> ₃	x_2	x_1	x_0
1	0	1	x_2	x_1	x_0	0
1	1	0	x_1	x_0	0	0
1	1	1	x_0	0	0	0

Barrel-Shifter (2)

Implementierung

- sehr elegant mit Multiplexern darstellbar
- kann um beliebige Funktionalität erweitert werden
 - nur größerer Multiplexer notwendig
 - z.B. arithmetischer Shift: statt 0 wird Vorzeichen reingeschoben
 - z.B. Rotation: ein hinausgeschobenes Bit wird auf der anderen Seite wieder reingeschoben
- ist aber auch sehr aufwendig
 - Barrel-Shifter sind relativ teuer in der Implementierung
 - 64-Bit Worte erfordern z.B. 64 Multiplexer mit 128 Eingängen, wenn jeder mögliche Shiftwert (rechts und links) realisiert werden soll

Halbaddierer

- Addition zweier 1-Bit Zahlen
- genügt z.B., um das niederwertigste Bit zweier n-Bit Zahlen zu addieren

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Volladdierer

- um den Übertrag (carry) zu verarbeiten, muss man 3 Bit addieren

А	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Volladdierer (2)

Volladdierer

Volladdierer (3)

• als Disjunktion von Monomen

Einschub: O-Notation

- beschreibt das asymptotische Verhalten einer Funktion f(n)
- d.h. ihr wesentliches Verhalten f
 ür große n

genauer

– Die Funktion f(n) fällt in die Komplexitätsklasse O(g(n)), wenn es Konstanten c und N gibt, so dass für alle $n \ge N$ gilt:

$$|f(n)| \le c |g(n)|$$

d.h. f(n) wächst nicht schneller als g(n)

Beispiele

$$f(n) = 5n^2 + 100n + 1000$$
 fällt in $O(n^2)$ denn es gilt (z.B.) für $n > 1000000$: $f(n) \le 1000n^2$ oder

$$f(n) = 2^n + 1000000 n^{42}$$
 fällt in $O(2^n)$

Ripple-Carry Addierer

Addition von n-Bit Zahlen

- Schulmethode: mit dem niederwertigsten Bit anfangen und Überträge zur nächsten Stelle hinzuaddieren
- Carry-Bit "plätschert" (ripple) durch alle Stellen
- Verzögerung linear in n, also O(n)
- Hardwareaufwand ist ebenfalls O(n)

Paralleladdierer

Paralleladdierer

- Schaltnetz in DNF, das alle n Bits parallel berechnet
- Verzögerungszeit
 - 3 Gatterlaufzeiten (NICHT, UND, ODER)
 - also konstante Verzögerungszeit oder O(1)
- viel zu aufwendig für n Bit, da ca. $n \cdot 2^{2n-1}$ Minterme vorhanden sind

Carry-Look-Ahead Addierer

Kompromiss

- die Carry-Bits werden *parallel* berechnet (das geht elegant, s.u.)
 - Schaltfunktion lässt sich stark vereinfachen (s.u.)
- anschließend wird in jeder Stelle das Carry-Bit, A und B parallel mit dem Volladdierer addiert

Carry-Look-Ahead Addierer (2)

CLAG

- Übertrag entspricht Majorität der drei Eingangsvariablen A_n , B_n , C_n
- Erinnerung: Majoritätsfunktion (siehe vereinfachtes Schaltnetz 3 für Majorität)

$$f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3$$
$$= x_1(x_2 + x_3) + x_2x_3$$

hier

$$C_{n+1} = A_n B_n + (A_n + B_n)C_n$$

definiere

$$g_n = A_n B_n$$
 und $p_n = A_n + B_n$

dann gilt

$$C_{n+1} = g_n + p_n C_n$$

Carry-Look-Ahead Addierer (3)

- Bedeutung von g_n und p_n :
 - g_n ein Übertrag wird in einer Stelle neu erzeugt, wenn A_n UND B_n gleich 1 sind (*carry generate*)
 - p_n ein Übertrag C_n wird in die nächste Stelle weitergeleitet, wenn A_n ODER B_n gleich 1 sind (*carry propagate*)
- es gilt daher

$$\begin{split} &C_1 = g_0 + p_0 C_0 \\ &C_2 = g_1 + p_1 C_1 = g_1 + p_1 (g_0 + p_0 C_0) = g_1 + p_1 g_0 + p_1 p_0 C_0 \\ &C_3 = g_2 + p_2 C_2 = \dots = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 C_0 \\ &C_4 = g_3 + p_3 C_3 = \dots = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0 \end{split}$$

Das Ausmultiplizieren (Distributivgesetz) ist hier wichtig! Warum?

Carry-Look-Ahead Addierer (4)

- Schaltfunktionen f
 ür CLAG sind also sehr einfach strukturiert, wenn statt A und B, g und p benutzt werden
- ein Volladdierer kann g und p leicht mitberechnen
- Verzögerungszeit ist konstant (unabhängig von n), also O(1)
- Hardwareaufwand
 - Anzahl der Gatter ist $O(n^2)$
 - *n* Ausgänge
 - im Mittel werden *n*/2 Gatter pro Ausgang benötigt
 - Anzahl der Transistoren in CMOS ist $O(n^3)$
 - der Ausgang i besitzt i UND-Gatter mit 1 bis i Eingängen
 - Anzahl der Eingänge insgesamt und damit die Anzahl der Transistoren (jeder Eingang hat 2 Transistoren in CMOS) ist also

$$\sum_{i=1}^{n} \sum_{j=1}^{i} j = \sum_{i=1}^{n} O(i^{2}) = O(n^{3})$$

- (wer es nicht glaubt, sollte mal genau nachrechnen!)

Carry-Look-Ahead Addierer (5)

Beispiel 4-Bit Addierer mit CLAG

Carry-Look-Ahead Addierer (6)

 das Prinzip kann hierarchisch auf 4-Bit Blockebene weitergeführt werden, da man für C₄ schreiben kann

$$C_4 = G + PC_0$$

mit

$$G = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0$$

$$P = p_3p_2p_1p_0$$

- der CLAG generiert die Hilfsvariablen Block-Generate G und Block-Propagate P, die man mit einem weiteren CLAG zur Berechnung der Blocküberträge verwendet
- auf der vorherigen Folie ist nur

Carry-Look-Ahead Addierer (7)

• Struktur

Carry-Look-Ahead Addierer (8)

Aufwand

- Verzögerungszeit ist O(log n)
 - Anzahl der CLAG-Schichten: k
 - Anzahl der Bits $n = 4^k$, also $k = \log_4 n$
 - da die Verzögerungszeit durch die Volladdierer und Carry-Look-Ahead Generatoren (CLAG's) jeweils konstant sind, also O(1), ist die Gesamtverzögerungszeit O(log *n*), da das Signal durch alle *k* Schichten hindurch muss
- Hardwareaufwand (Anzahl der Gatter) ist O(n)
 - der Aufwand für die Volladdierer ist O(n)
 - ein einzelner CLAG hat Aufwand O(1), da er in diesem Fall nicht mit *n* wächst, sondern auf 4 Bit festgelegt ist

• gesamte Anzahl der CLAG =
$$\sum_{i=0}^{k-1} 4^i = \frac{4^k - 1}{4 - 1} = \frac{n - 1}{3} = O(n)$$

• also Gesamtaufwand ebenfalls O(*n*)

Subtrahierer

Subtraktion

- wird ersetzt durch Addition des Zweierkomplementes
- Bildung Zweierkomplement
 - Negation aller Bits
 - Addition einer 1

Carry-Save Addierer

Addition zweier Zahlen

 Carry-Look-Ahead Addierer ist optimiert, um zwei Zahlen in konstanter Zeit (unabhängig von n, der Anzahl der Bits) zu addieren

Addition von mehr als zwei Zahlen

- hier gibt es Lösungen mit weniger Aufwand
- Idee: drei Zahlen bitweise in Volladdieren addieren und Übertrag als Ergebnis mit ausgeben
 - aus drei n-bit Zahlen werden zwei n-bit Zahlen mit identischer Summe

Carry-Save Addierer (2)

• Anwendung: Addition von drei *n*-bit Zahlen

- um die endgültige Summe zu berechnen, müssen die beiden Ergebnisse noch addiert werden
 - z.B mit Ripple-Carry Addierer (wenig Aufwand, aber langsam)
 - oder Carry-Look-Ahead Addierer (mehr Aufwand, aber schneller)

Carry-Save Addierer (3)

- Carry-Save Addierer: CSA
 - reduziert drei n-bit Zahlen zu zwei n-bit Zahlen mit identischer Summe
 - Berechnung geschieht vollständig parallel (3 Gatterlaufzeiten)

- Prinzip kaskadierbar für die Addition von mehr als drei Zahlen
 - zum Beispiel für die Implementierung einer Multiplikation

Multiplizierer

Einfache Multiplikation

Multiplikation nach Schulmethode

- bei $n \times n$ Bit müssen n Partialprodukte addiert werden
 - Partialprodukte sind entweder 0 oder der Multiplikator selbst, je nach Bit des Multiplikanden
 - mit UND-Gattern realisiert

Multiplizierer (2)

Multiplizierer (3)

- da viele Additionen nacheinander ausgeführt werden müssen, bietet sich die Implementierung mit Carry-Save Addierern an
- z.B. Addition von 18
 Partialprodukten bei einer
 18x18 Bit Multiplikation
 - es fehlt noch der abschließende Carry-Look-Ahead Addierer
 - für einen Multiplizierer müssen noch die UND-Gatter an den Eingängen ergänzt werden
- Durchlaufverzögerung O(n)

Multiplizierer (4)

geschickter: Baumartige Strukturen

- Durchlaufverzögerung: O(log n)
- am Ende muss noch eine letzte Addition durchgeführt werden
 - z.B mit Carry-Look-Ahead Addierer

input vector

output vector

Arithmetisch logische Einheit, ALU

ALU

- Arithmetic Logic Unit
- berechnet arithmetische und logische Operationen auf n-Bit Worten
- ist häufig aus identischen Teilen zusammengesetzt, die jeweils ein Bit verarbeiten

ALU (2)

Beispiel: einfache 1-Bit ALU

Steuerleitungen F₀, F₁

Dekoder wählt eine von 4 Operationen aus

\mathbf{F}_1	F_0	Output
0	0	A UND B
0	1	NICHT B
1	0	A ODER B
1	1	A+B

Addition

ALU (3)

8-Bit ALU aus 8 1-Bit ALU's

ALU (4)

• Allgemeiner Aufbau einer ALU

- Funktionale Einheiten
 - verantwortlich für die Implementierung einzelner unterstützter Operationen
- MUX
 - Multiplexer, der das gewünschte Ergebnis auswählt
- Befehlsdecoder
 - Schaltnetz, das aus den ALU-Steuersignalen interne Steuersignale für die funktionalen Einheiten und den Multiplexer generiert

Komparator

• Vergleich zweier Binärzahlen auf Gleichheit

Komparator (2)

- zusätzliche Ausgänge für "<" bzw. ">"
 - kann immer mit Subtrahierer realisiert werden
 - Annahme: Ergebnisse liegen in Zweierkomplementdarstellung vor

