

NPTEL ONLINE CERTIFICATION COURSES

Blockchain and its applications **Prof. Sandip Chakraborty**

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Lecture 39: Bitcoin-NG

CONCEPTS COVERED

- Issues with Bitcoin Revisit
- Bitcoin-NG

KEYWORDS

- Transaction Serializability
- Key-blocks and Microblocks

Performance vs Scalability

node scalability

Vukolić, Marko. "The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication." International Workshop on Open Problems in Network Security. Springer, Cham, 2015.

Towards a Scalable Consensus

Bitcoin-NG

Eyal, I., Gencer, A. E., Sirer, E. G., & Van Renesse, R. (2016, March). **Bitcoin-NG: A Scalable Blockchain Protocol**. in *NSDI 2016*

Issues with Nakamoto Consensus

- Transaction scalability
 - Block frequency of 10 minutes and block size of 1 MB during mining reduces the transactions supported per second

Issues with Nakamoto Consensus

Transaction scalability

 Block frequency of 10 minutes and block size of 1 MB during mining reduces the transactions supported per second

Issues with Forks

- Prevents consensus finality
- Makes the system unfair a miner with poor connectivity has always in a disadvantageous position

Bitcoin-NG: Decouple Leader Election

 Bitcoin - think of the winning miner as the leader - the leader serializes the transactions and include a new block in the blockchain

Bitcoin-NG: Decouple Leader Election

 Bitcoin - think of the winning miner as the leader - the leader serializes the transactions and include a new block in the blockchain

- Decouple Bitcoin's blockchain operations into two planes
 - Leader election: Use PoW to randomly select a leader (an infrequent operation)
 - Transaction Serialization: The leader serializes the transaction until a new leader is elected

Bitcoin vs Bitcoin-NG

Bitcoin vs Bitcoin-NG

Bitcoin-NG: Key Blocks

Key blocks are used to choose a leader (similar to Bitcoin)

- A key block contains
 - The reference to the previous block
 - The current Unix time
 - A coinbase transaction to pay of the reward
 - A target hash value
 - A nonce field

Key Blocks

- Key blocks are generated based on regular Bitcoin mining procedure
 - Find out the nonce such that the block hash is less than the target value
- Key blocks are generated infrequently the intervals between two key blocks is exponentially distributed

Bitcoin-NG: Microblocks

- Once a node generates a key block, it becomes the leader and generates further microblocks
 - Microblocks are generates at a set rate smaller than a predefined maximum
 - The rate is much higher than the key block generation rate

Bitcoin-NG: Microblocks

- A microblock contains
 - Ledger entries
 - Header
 - Reference to the previous block
 - The current Unix time
 - A cryptographic hash of the ledger entries (Markle root)
 - A cryptographic signature of the header (signature of the key block miner)

Microblock Fork

- When a miner generates a key block, he may not have heard of all microblocks generated by the previous leader
 - Common if microblock generation is frequent
 - May result in microblock fork

Microblock Fork

- When a miner generates a key block, he may not have heard of all microblocks generated by the previous leader
 - Common if microblock generation is frequent
 - May result in microblock fork
- A node may hear a forked microblock but not new key block
 - This can be prevented by ensuring the reception of the key block
 - When a node sees a microblock, it waits for propagation time of the network to make sure it is not pruned by a new key block

Bitcoin-NG Performance

Bitcoin-NG Performance

Conclusion

 A major source of latency in Bitcoin is that every block needs to be mined by different miners

- Bitcoin-NG decouples leader election from transaction serialization
 - Key blocks and Microblocks

Performance vs Scalability - Revisiting

node scalability

