CMPT 413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Sequence Learning

- British Left Waffles on Falkland Islands
 - -(N, N, V, P, N, N)
 - -(N, V, N, P, N, N)
- Segmentation 中国十四个边境开放城市经济建设成就显著
 - -(s, b, i, b, i)

中国 十四 个 边境 开放 城市 经济 建设 成就 显著

China 's 14 open border cities marked economic achievements

Sequence Learning

3 states: N, V, P

Observation sequence: $(o_1, \dots o_6)$

State sequence (6+1): (*Start*, *N*, *N*, *V*, *P*, *N*, *N*)

Finite State Machines

Mealy Machine

Finite State Machines

s q r r ansition

Moore Machine

Probabilistic FSMs

- Each transition is associated with a transition probability
- Each emission is associated with an *emission probability*
- Two conditions:
 - All outgoing transition arcs from a state must sum to 1
 - All emission arcs from a state must sum to 1

Probabilistic FSMs

$$\sum_{x} P(q \rightarrow x) = P(q \rightarrow r) + P(q \rightarrow q) = 1.0$$

$$\sum_{x} P(\mathsf{emit}(q, x)) = P(\mathsf{emit}(q, a)) + P(\mathsf{emit}(q, b)) = 1.0$$

Probabilistic FSMs

Hidden Markov Models

- There are n states $s_1, ..., s_i, ..., s_n$
- The emissions are observed (input data)
- Observation sequence $\mathbf{O} = (o_1, ..., o_t, ..., o_T)$
- The states are not directly observed (hidden)
- Data does not directly tell us which state X_t is linked with observation o_t

$$X_t \in \{s_1,\ldots,s_n\}$$

- For observation sequence babaa i.e: o_1 =b, o_2 =a, ..., o_5 =a
- Compute P(babaa) using a bigram model P(b)*P(a|b)*P(b|a)*P(a|b)*P(a|a)
- Equivalent Markov chain:

- For observation sequence babaa i.e: $o_1 = b$, $o_2 = a$, ..., $o_5 = a$
- Compute P(babaa) using a trigram model P(ba)*P(b|ba)*P(a|ab)*P(a|ba)
- Equivalent Markov chain:

- For observation sequence babaa i.e: $o_1 = b$, $o_2 = a$, ..., $o_5 = a$
- Compute P(babaa) using a trigram model P(ba)*P(b|ba)*P(a|ab)*P(a|ba)
- Equivalent Markov chain:

Given an observation sequence

$$\mathbf{O} = (o_1, ..., o_t, ..., o_T)$$

• An *n*th order Markov Chain or *n*-gram model computes the probability

$$P(o_1, ..., o_t, ..., o_T)$$

• An HMM computes the probability $P(X_1, ..., X_{T+1}, o_1, ..., o_T)$ where the state sequence is *hidden*

Properties of HMMs

Markov assumption

$$P(X_t = s_i \mid \ldots, X_{t-1} = s_j)$$

Stationary distribution

$$P(X_t = s_i \mid X_{t-1} = s_j) = P(X_{t+l} = s_i \mid X_{t+l-1} = s_j)$$

HMM Algorithms

- HMM as language model: compute probability of given observation sequence
- HMM as parser: compute the best sequence of states for a given observation sequence
- HMM as learner: given a set of observation sequences, learn its distribution, i.e. learn the transition and emission probabilities

HMM Algorithms

- HMM as language model: compute probability of given observation sequence
- Compute $P(o_1, ..., o_T)$ from the probability $P(X_1, ..., X_{T+1}, o_1, ..., o_T)$

$$=\prod_{t=1}^T P(X_{t+1} = s_j \mid X_t = s_i) imes P(o_t = k \mid X_{t+1} = s_j)$$

$$P(o_1, ..., o_T) = \sum_{X_1,...,X_{T+1}} P(X_1,...,X_{T+1},o_1,...,o_T)$$

HMM Algorithms

- HMM as parser: compute the best sequence of states for a given observation sequence
- Compute best path $X_1, ..., X_{T+1}$ from the probability $P(X_1, ..., X_{T+1}, o_1, ..., o_T)$

Best state sequence X_{1}^{*} , ..., X_{T+1}^{*}

$$= \underset{X_1,...,X_{T+1}}{\operatorname{argmax}} P(X_1,\ldots,X_{T+1},o_1,\ldots,o_T)$$

Best Path (Viterbi) Algorithm

- Key Idea 1: storing just the best path doesn't work
- Key Idea 2: store the best path upto *each* state

- Algorithm that finds the transition and emission probabilities using training data that *does not have* hidden states provided
- Set the probabilities (for all parameters in the HMM) so that the training data T is assigned highest P(T) value (or lowest H(T), entropy value)
- This is called the maximum likelihood value over all possible hidden state sequences for the training data
- Exploits the fact that some transitions and resulting observations will occur more frequently than others in the training data

- Consider input $o_1,..., o_t,..., o_T$ where each o_t is from a set of symbols $V = \{1,..k,..K\}$
- Let π_i be the probability of state *i* being a start state (for simplicity, π_i is not discussed further)
- Let $a_{i,j}$ be the transition probability: $P(X_{t+1} = s_i \mid X_t = s_i) \quad |S|^2 \text{ distinct } a_{i,j} \text{ values}$
- Let $b_{j,k}$ be the emission probability: $P(o_t = k \mid X_{t+1} = s_j) \quad |S| \times |V| \text{ distinct } b_{j,k} \text{ values}$
- Probability of going from state s_i to state s_j while observing input o_t is simply $a_{i,j} \times b_{j,k}$

- The algorithm starts with an initial setting for the probabilities in *a* and *b*
- We are provided with training data which consists of observation sequence(s): $o_1,...,o_v,...,o_T$
- The probability $P(o_1,...,o_T)$ depends on the values in a and b
- For given observation sequence(s), different transitions/emissions will be visited with different frequencies

- For every path through the HMM, we count how many transitions occurred from state i to state j on observation o_t
- Then (loosely speaking) we reward those transitions (and emissions) which have high *expected* frequency and penalize the competing transitions
- Expected frequency means we multiply the frequency with the current probability (taken from *a* and *b*)

- $P(o_1,...,o_T)$ is the expected frequency of visiting all transitions and so the new frequency is the expected occurrence of a transition divided by $P(o_1,...,o_T)$
- This gives us new values for all probabilities: a' and b' and we set a and b to these new values
- Compute $P(o_1,...,o_T)$. If the value is unchanged from before iteration then stop (convergence)
- Otherwise iterate (the entire procedure) with new values for a and b

- How to compute expected frequency over all paths efficiently (reuse dynamic programming idea from Viterbi algorithm)
- For input $o_1,..., o_t,..., o_T$ where $o_t \in V = \{1,..k,..K\}$
- For every path from a start state to state i we can compute the probability of observing $o_1, ..., o_{t-1}$
- Let $\alpha_i(t)$ be the sum of all these probabilities
- For every path from state j to a final state we can compute the probability of observing $o_{t+1},...,o_{T}$
- Let $\beta_j(t+1)$ be the sum of all these probabilities

$$lpha_k(t-1)$$
 k
 $a_i(t) \cdot a_{i,j} \cdot b_{j,o_t} \cdot \beta_j(t+1)$
 $a_i(t) = \sum_{k=1}^N a_{k,i} \cdot b_{i,o_{t-1}} \cdot \alpha_k(t-1)$
 $\beta_j(t+1) = \sum_{m=1}^N a_{j,m} \cdot b_{m,o_{t+1}} \cdot \beta_m(t+2)$
 $P(o_1, \dots, o_T) = \sum_{i=1}^N \alpha_i(T+1) = \sum_{i=1}^N \pi_i \cdot \beta_i(1)$

$$\hat{f}(i,j,o_t) = rac{lpha_i(t) \cdot a_{i,j} \cdot b_{j,o_t} \cdot eta_j(t+1)}{P(o_1,\ldots,o_T)} \quad \hat{f}(i,j) = \sum_{t=1}^T \hat{f}(i,j,o_t)$$

$$a'_{i,j} = \frac{\hat{f}(i,j)}{\sum_{j=1}^{N} \hat{f}(i,j)} \qquad b'_{j,k} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{f}(i,j,o_t = k)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \hat{f}(i,j)}$$

- Each iteration provides new values for all the *parameters*
- But are the new parameters any better? How can we tell?
- Compute probability of the training data
- For HMMs, Baum 1977 shows that the probability will always be non-decreasing (later generalized to the more general EM algorithm)
- Same as cross-entropy is non-increasing

$$KL(\mu_{i+1} \mid\mid D) \leq KL(\mu_i \mid\mid D)$$