Семинар 16 (17.01.2023)

Краткое содержание

Поговорили про понятие линейной независимости подпространств и пять эквивалентных условий, определяющих эту линейную независимость. Обсудили разложение векторного пространства в прямую сумму подпространств (по определению это означает, что подпространства линейно независимы и в сумме дают всё пространство).

Разобрали частный случай двух подпространств: подпространства U,W векторного пространства V линейно независимы тогда и только тогда, когда $U \cap W = \{0\}$ или, эквивалентно, $\dim U + \dim W = \dim(U+W)$ (см. пять эквивалентных условий). Отсюда следует, что

$$V = U \oplus W \Leftrightarrow U \cap W = \{0\} \text{ if } U + W = V \Leftrightarrow U \cap W = \{0\} \text{ if } \dim U + \dim W = \dim V.$$
 (1)

(Последнее условие часто удобнее всего проверять в конкретных задачах.) Если есть разложение в прямую сумму $V = U \oplus W$, то тогда всякий вектор $v \in V$ единственным образом представляется в виде суммы v = u + w, где $u \in U$ и $w \in W$. В этом случае u называется проекцией вектора v на U вдоль W, а w называется проекцией вектора v на W вдоль U.

В качестве простейшего примера разобрали разложение пространства \mathbb{R}^2 в прямую сумму двух одномерных подпространств, из которых первое — это ось Ox, а второе — прямая y=x. Разобрали графически, как в этом случае находятся обе проекции для произвольного вектора. Аналогично рассмотрели разложение \mathbb{R}^2 в прямую сумму оси Ox и другой прямой и обсудили, как устроены обе проекции в этом случае. Подчеркнули, что для одного и того же вектора проекции на одну и ту же ось Ox вдоль разных дополнительных прямых отличаются (вообще говоря).

Если $U = \langle u_1, \dots, u_k \rangle$ и $W = \langle w_1, \dots, w_m \rangle$ — два подпространства в F^n , то разложение $F^n = U \oplus W$ удобно доказывать при помощи одного из условий в (1). Чтобы найти проекции заданного вектора $v \in F^n$ на U вдоль W и наоборот, достаточно решить СЛУ $\lambda_1 u_1 + \dots \lambda_k u_k + \mu_1 w_1 + \dots + \mu_m w_m = v$ относительно неизвестных λ_i, μ_j , и тогда искомые проекции будут равны $\lambda_1 u_1 + \dots \lambda_k u_k$ и $\mu_1 w_1 + \dots + \mu_m w_m$.

Разобрали номер 35.18.

Следующий вопрос: верно ли, что если три подпространства U_1, U_2, U_3 векторного пространства V удовлетворяют условию $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_3 = \{0\}$, то они линейно независимы? В общем случае неверно: в качестве примера можно взять три различных прямых в \mathbb{R}^2 .

Домашнее задание к семинару 16. Дедлайн 24.01.2023

Номера с пометкой П даны по задачнику Проскурякова, с пометкой К – Кострикина.

- 1. K35.19
- 2. K35.21
- 3. Рассмотрим в пространстве $M_n(\mathbb{R})$ подпространства U и W, где U состоит из всех симметричных матриц, а W из всех строго верхнетреугольных (то есть верхнетреугольных с нулями на диагонали) матриц. Докажите, что $M_n(\mathbb{R}) = U \oplus W$, и найдите проекцию матрицы из предыдущей задачи на каждое из этих подпространств вдоль другого.
- 4. Рассмотрим в пространстве \mathbb{R}^5 подпространства $U_1 = \langle (1,1,1,1,0) \rangle, \ U_2 = \langle (0,1,0,0,-1) \rangle$ и U_3 , являющееся множеством решений системы

$$\begin{cases} x_1 + x_2 = 0, \\ x_3 - x_5 = 0. \end{cases}$$

Докажите, что $\mathbb{R}^5 = U_1 \oplus U_2 \oplus U_3$.