Zifan Wang

Background

Design & Ir

Results

Evaluation

Backup Slides

An Extensible Framework for At-Speed Evaluation of Arithmetic Hardware

Zifan Wang Supervisor: Dr. James Davis

Imperial College London

June 25, 2019

Zifan Wang

Background

Design & Implementation

Resul

Evaluatio

Backup Slides

- 1 Background
- 2 Design & Implementation
- 3 Results

- 4 Evaluation
- 5 Backup Slides

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slides

Motivation

- Started as a specialised evaluation system for high-radix online arithmetic units
 - At-speed (Overclockable)
 - Precision Checking

Motivation

- Started as a specialised evaluation system for high-radix online arithmetic units
 - At-speed (Overclockable)
 - Precision Checking
- Digital designers all use their own testbenches

Motivation

- Started as a specialised evaluation system for high-radix online arithmetic units
 - At-speed (Overclockable)
 - Precision Checking
- Digital designers all use their own testbenches
- Ad hoc, one-time use, inefficient

Background

 Started as a specialised evaluation system for high-radix online arithmetic units

plementa

At-speed (Overclockable)

Results

Precision Checking

Evaluatio

Digital designers all use their own testbenches

...

Ad hoc, one-time use, inefficient

Propose an extensible framework

- With variable frequency with a high maximum (Assume DUT @300MHz)
- Extensible
- User-friendly

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slides

Design & Implementation

Design & Implementation

Results

Evaluation

Backup Slide

Hardware Choice

Cyclone V SX SoC Development Board

- HPS user interaction and test control
- FPGA actual hardware testing

Design & Im-

plementation

System Architecture

- Inspired by UVM agent
- Modular, thus extensible

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slides

System Architecture

 Software accepts user commands from files or command line

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slides

System Architecture

Randomiser generate random data with LFSRs

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slide

System Architecture

 Driver filters inputs and drives them to the DUT and the monitor

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slide:

System Architecture

 Monitor watches for the differences between DUT and reference outputs

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slide

System Architecture

Scoreboard tallies them and provides results to software

Zifan Wang

Background

Design & Implementation

Regulto

Evaluation

Backup Slide

System Architecture

Software reads results and present them to user

Zifan Wang

Design & Im-

plementation

Hardware Project Hierarchy

Adapted from a golden system reference design

Zifan Wang

Background

Design & Implementation

Dogulto

Evaluation

Backup Slides

Hardware Project Hierarchy

Adapted from a golden system reference design

Already uses Qsys for soc_system

Design & Implementation

Hardware Project Hierarchy

Adapted from a golden system reference design

- Already uses Qsys for soc_system
- Frequency control uses pll (Phase-locked loop) and pll_reconfig IP, easy integration with Qsys.

Design & Implementation

Hardware Project Hierarchy

Adapted from a golden system reference design

- Already uses Qsys for soc_system
- Frequency control uses pll (Phase-locked loop) and pll_reconfig IP, easy integration with Qsys.
- Great interface for user to connect their design and reference modules

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slides

Hardware Project Hierarchy

Access to software through hps

Zifan Wang

Background

Design & Implementation

Regulte

Evaluation

Backup Slide

Hardware Project Hierarchy

- Access to software through hps
- Access to hardware design through dut and ref

Zifan Wang

Background

Design & Im-

plementation

Results

Evaluation

Backup Slide

Providing test data

 Assume DUT is 32-bit @300MHz, need sustained data input for stress testing

Zifan Wang

Design & Im-

plementation

Providing test data

- Assume DUT is 32-bit @300MHz, need sustained data input for stress testing
- Real time, on board generation of random test data
 - Low effort, significant coverage, can discover subtle errors
 - Include filters to give user control
 - Accept manual inputs from users for critical path

Zifan Wang

Design & Im-

plementation

Relaxed Reference

- Monitors needs reference module to check correctness.
- Has to be functionally correct
- Sensible to have reduced timing requirements
- Harder for users to make mistakes.

Design & Im-

plementation

Monitor Structure

- Parallel Monitor
 - Checks all data points in parallel

Zifan Wang

Background

Dackground

Design & Implementation

Results

Evaluation

Backup Slide:

Software Design

- Requirement
 - Manual and auto input controls
 - Test duration
 - PLL frequency

Design & Implementation

- Requirement
 - Manual and auto input controls
 - Test duration
 - PLL frequency
- Considered solutions
 - Test configuration files
 - Easy to build and scale
 - Slightly harder to use and manage
 - Interactive REPL system
 - Intuitive to control
 - Easy to automate and scale

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slides

Results

Zifan Wang

Results

Results

Maximum frequency

TimeQuest: 394.01MHz

Hardware test: Stable at 400MHz; breaks at 425MHz

DUT initially assume to work at 300MHz

Zifan Wang

Background

Docian & Im

Results

Evaluation

Backup Slide

Results

Maximum frequency

TimeQuest: 394.01MHz

Hardware test: Stable at 400MHz; breaks at 425MHz

DUT initially assume to work at 300MHz

User-friendliness

Performed an OOTB Testing

Knowledge of digital designs and testbenches

No previous knowledge on Qsys or the framework

Obtained results in 2 hours

No major interruptions, positive feedback

Background

Maximum frequency

TimeQuest: 394.01MHz

Results

Hardware test: Stable at 400MHz; breaks at 425MHz

valuation • Dt

DUT initially assume to work at 300MHz

User-friendliness

Performed an OOTB Testing

Knowledge of digital designs and testbenches

No previous knowledge on Qsys or the framework

Obtained results in 2 hours

No major interruptions, positive feedback

Flexibility

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Sildes

Flexibility

Item	Reconfigurability
WIDTH	≤32 bits
NUM_SUB_MON	≥2
f _{dut}	≤400MHz
DUT I/O	2 in 1 out
DUT delay	All values
bitset/bitclr	All values
manual	All values
time	All values

Results

Shows the configuration process

Shows software interaction

Command	Explanation
reset	Resets the system and test results.
version	Prints the system version.
freq <speed></speed>	Sets the clock speed to the specified value in MHz. Prints the actual frequency configured.
mode <m a></m a>	Choose between \underline{m} anual and \underline{a} uto test mode.
manual <a b> <hex></hex></a b>	Give input in manual mode.
bitset <a b> <hex></hex></a b>	Force bits to be 1 in auto mode.
bitclr <a b> <hex></hex></a b>	Force bits to be 0 in auto mode.
run <time></time>	Runs the test for the duration specified in seconds. Prints the results at the end of the test.
exit	Exits the REPL.

Zifan Wang

Danian O Inc

Design & Implementation

Results

Evaluation

Backup Slides

Evaluation

Zifan Wang

Background

Design & Ir

Dogulto

Evaluation

Backup Slide

What have we done?

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

xkcd.com/927

Evaluation

Evaluation

- Limitations
 - · Customisability of current implementation

Background

olementatio

Results

Evaluation

Backup Slide

Evaluation

- Limitations
 - Customisability of current implementation
- Improvements
 - User experience can be made better with a unified software system + Verilog preprocessor
 - Set up a more powerful HPS-FPGA communication system to allow more insightful results

Evaluation

- Limitations
 - Customisability of current implementation
- Improvements
 - User experience can be made better with a unified software system + Verilog preprocessor
 - Set up a more powerful HPS-FPGA communication system to allow more insightful results
- Not limits to the extensibility of the framework

Background

Questions?

Design & Im-

Evaluation

Backup Slides

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slides

Backup Slides

Zifan Wang

Backup Slides

Providing test data

- Assume 32-bit @600MHz, need sustained 19.2Gbps for stress testing
- HPS-FPGA bridge
 - Assume perfect packing and always burst transfer
 - 128-bit @133MHz, 17.0Gbps
- Off-chip SDRAM
 - Assume always burst, access pipelined
 - 32-bit DDR3 @400MHz, 25.6Gbps
 - Sufficient, but needs time to fill up
 - SDRAM controller can be complex to use and manage
- On-chip memory
 - Assume widest possible arrangement
 - 768.9kB @315MHz, 242Gbps
 - Very fast, but extremely small capacity for sustained load
- Real time generation

Zifan Wang

Background

Design & Implementation

Results

Evaluation

Backup Slides

LFSRs

Zifan Wang

Background

Design & Im-

Results

Evaluation

Backup Slides

Randomiser Structure

Background

Desian & Im

Regulte

Evaluation

Backup Slides

Hardware

Backup Slides

Monitor Structure

- Lazy Monitor
 - Randomly selects data points to check

Results

Evaluation

Backup Slides

Software Design

mode: auto
bitset:

a: 00000001 b: 00000000

bitclr:

a: 00000000 b: 00000001

input:

- a: 00000000 b: 00000000

freq: 200
runtime: 60

> mode auto

> bitset a 00000001

> bitclr b 00000001

> freq 200

PLL Configured to 200.00MHz

> run 60
Results: ...

Zifan Wang

Design & Im-

plementation

Backup Slides

REPL Commands

Command	Explanation
reset	Resets the system and test results.
version	Prints the system version.
freq <speed></speed>	Sets the clock speed to the specified value in MHz. Prints the actual frequency configured.
mode <m a></m a>	Choose between manual and auto test mode.
manual <a b> <hex></hex></a b>	Give input in manual mode.
bitset <a b> <hex></hex></a b>	Force bits to be 1 in auto mode.
bitclr <a b> <hex></hex></a b>	Force bits to be 0 in auto mode.
run <time></time>	Runs the test for the duration specified in seconds. Prints the results at the end of the test.
exit	Exits the REPL.

Background

plementatio

riesuns

Evaluatio

Backup Slides

dut_out

Driver clk a4fe 527f a93f d49f 7527 (ba93 5d49 2ea4 1752 X 8ba9 rand f_bitset 0000 0004 f_bitclr 0000 f000 0000 drive_dut a4fe 527f a93f 049f 0a4f 0527 ba97 5d4d 1756 8bad drive_mon a4fe 527f a93f 049f 0a4f 0527 ba97 5d4d

a4fe

527f

a93f

049f

0a4f

0527

ba97

5d4d

Background

Design & Implementation

nesuits

Evaluation

Backup Slides

Zifan Wang

Design & Im-

Backup Slides

Scoreboard

clk freeze mon_ready diff data_ctr error_ctr acc maxacc minacc

