TEMA 4. MODELO DE ESPACIO VECTORIAL

Contenidos

- 1. Conceptos previos.
 - 1.1 Recuperación ordenada.
 - 1.2 Puntuación de documentos.
 - 1.3 Frecuencia del término y su pesado.
 - 1.4 Frecuencia de documento.

2. Modelo de Espacio Vectorial

- 2.1 Documentos como vectores
- 2.2 Consultas como vectores
- 2.3 Medir la similitud entre dos documentos en el espacio vectorial.
- 2.4 Esquemas de pesado.

Bibliografía

A Introduction to Information Retrieval:

Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze. Cambridge University Press, **2009**.

Capítulo 6

Speech and Language Processing: International Version, 2/E.

Daniel Jurafsky, James H. Martin.

Pearson International Edition, 2009. ISBN-10: 0135041961.

Capítulo 23

1. CONCEPTOS PREVIOS

- 1.1 Recuperación ordenada.
- 1.2 Puntuación de documentos.
- 1.3 Frecuencia del término y su pesado.
- 1.4 Frecuencia de documento.

1.1 Recuperación ordenada

Dada una consulta q y una colección C:

Q: expresiones y operadores correspondientes a un lenguaje de consultas específico,

Recuperación booleana

El sistema devuelve: un conjunto de documentos que satisfacen la expresión lógica correspondiente a la consulta (Las consultas Booleanas a menudo obtienen muy pocos o demasiados resultados)

Q: texto plano (free text), forma asociada a la recuperación ordenada.

Recuperación ordenada

El sistema devuelve: un conjunto de documentos de la colección ordenado según relevancia.

- Objetivo: devolver en orden los documentos que con mayor probabilidad sean los más útiles para el usuario.
- Cuando el sistema genera un conjunto de resultados ordenados, el tamaño del conjunto resultante no es un problema:
 - Mostramos del resultado sólo el tope K
 (≈ 10).
 - No abrumamos al usuario
 - Premisa: el algoritmo de ordenación funciona.

1.2 Puntuación (score) de documentos

¿Cómo ordenar documentos respecto a una consulta?

- Asignar una puntuación dentro del rango [0, 1] para cada documento es la base de la Recuperación ordenada de documentos.
- Esta puntuación mide cómo de bien "se emparejan" el documento y la consulta.

Emparejamiento Consulta-documento

Asignar una puntuación a un par (consulta, documento): se basará en el peso de los términos de la consulta *q* en el documento *d*.

Para un término *t* de la consulta *q*:

- Si t no se encuentra en d → la puntuación será 0.
- ¿Cuanto más frecuente sea el t de la consulta q en el documento d más alta será la puntuación del d?.
- Estudiaremos alternativas para esto

Métricas para puntuar dos conjuntos A y B

Solapamiento:

```
overlap(A,B) = |A \cap B|
```

no está normalizado (prima los documentos mas grandes)

Coeficiente de Jaccard:

```
jaccard(A,B) = |A \cap B| / |A \cup B|
jaccard(A,A) = 1
jaccard(A,B) = 0 si A \cap B = 0
```

- A y B no tienen porqué ser del mismo tamaño.
- siempre se asigna un valor entre 0 y 1.

Ejercicio#1:Calcula la puntuación correspondiente al par consulta-documento calculado según overlap y jaccard,

Consulta: días de lluvia en primavera

Documento 1: resbaló en un día de Iluvia

Documento 2: la Iluvia ácida es muy perjudicial para los árboles,

sobre todo en la primavera que es cuando florecen.

Ejercicio#1_Solución:

Calcula la puntuación correspondiente al par consulta-documento calculado según overlap y jaccard,

Consulta: días de lluvia en primavera

Documento 1: resbaló en un día de lluvia

Documento 2: la Iluvia ácida es muy perjudicial para los árboles, sobre todo en la primavera que es cuando florecen.

overlap
$$(q,d1) = |Q \cap D1| = 2$$

overlap $(q,d2) = |Q \cap D2| = 2$

$$|\operatorname{accard}(q,d1)| = |Q \cap D1| / |Q \cup D1| = 2/4$$

 $|\operatorname{accard}(q,d2)| = |Q \cap D2| / |Q \cup D2| = 2/7$

Nótese que $|Q \cap D|$ representa el número de términos que coinciden.

Recordemos...

Matriz Incidencia Binaria término-documento

Cada documento (término) se representa por un vector binario ∈ {0,1}^{|V|}

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Ejemplo.

Consulta: Brutus AND Caesar AND NOT Calpurnia,
110100 AND 110111 AND 101111 (Compl. De Calpurnia)= 100100

Pospuesta: "Antony and Claenatra " y "Hamlet"

Respuesta: "Antony and Cleopatra" y "Hamlet"

Todos los términos se consideran igual de importantes para evaluar su relevancia sobre una consulta.

Matriz contador término-documento

Considera el número de ocurrencias de un término en un documento:

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

- Cada documento se representa por un vector contador en Nº: una columna de la matriz
- La frecuencia de *t* en *d* es considerado para evaluar su relevancia sobre una consulta (Mod. Boleano: si f>0 peso=1 sino peso= 0).

- La representación mediante un vector no considera el orden de las palabras en un documento.
- Julia es mas valiente que Pedro y Pedro es mas valiente que Julia representan el mismo vector.
- Esto es conocido como modelo de Bolsa de Palabras (Bag of words).

1.3 Frecuencia del término $(f_{t,d})$ y su pesado $(tf_{t,d})$

• La frecuencia del término t en el documento d ($f_{t,d}$): se define como el <u>número de veces que t ocurre en d</u>.

¿Cómo podemos usar f cuando calculamos la puntuación del par consulta-documento?

Un documento con 10 ocurrencias del término es más relevante que un documento con 1 ocurrencia,...PERO NO 10 VECES MÁS.

 La relevancia no se incrementa proporcionalmente con su frecuencia, en caso contrario se primaría los documentos de mayor talla. El **peso** de la frecuencia del término t en d se representa por $tf_{t,d}$

El pesado log (muy extendido):

$$tf_{t,d} = \begin{cases} 1 + \log_{10} f_{t,d}, & \text{si } f_{t,d} > 0 \\ 0, & \text{otro caso} \end{cases}$$

$$f_{t,d} \rightarrow t f_{t,d}: 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4,...$$

Puntuación para el par consulta-documento.

• Es la suma de los pesos de los términos *t que aparecen* en ambos *q* y *d*:

$$puntuación = \sum_{t \in q \cap d} (tf_{t,d})$$

Con un pesado tomando log

$$puntuación = \sum_{t \in q \cap d} (1 + \log f_{t,d})$$

• La puntuación es 0 si ninguno de los términos de la consulta se encuentra en el documento.

1.4. Frecuencia de documento

- Los términos raros son más informativos que los términos frecuentes.
- Considera un término en la consulta que sea raro en la colección (p.e., diplodocus) → Un documento conteniendo este término raro es muy probable que sea relevante para la consulta.

Deseable asignar un peso alto para términos raros.

- Los términos frecuentes son menos informativos que los raros (véase las stop words).
- Considera un término en la consulta que sea frecuente en la colección de la industria automovilística (p.e., coche)
 - Un documento conteniendo este término es más probable que sea relevante para la consulta que otro que no lo tenga, pero esto no puede ser el único indicador de relevancia.
 - Para términos frecuentes deseamos un peso alto pero más bajo que para los términos raros.

Usaremos la frecuencia de documento (*df*) para capturarlo.

Peso idf

- df_t es la frecuencia de documento de t: el número de documentos de la colección que contienen el término t
 - $df_t \leq N$
 - siendo N el número total de documentos de la colección.
- Definimos idf_t (frecuencia de documento inversa de t),

$$idf_t = log_{10} (N/df_t)$$

idf, es 0 para los términos que aparecen en todos los documentos

Ejercicio#2. Calcular idf de los términos (nºdocs N=1 millón)

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = log(N/df_t)$$

Hay un valor idf para cada término *t* en una colección.

 $\log 1=0$; $\log 10=1$; $\log 100=2$; $\log 1.000=3$; $\log 10.000=4$; $\log 100.000=5$; $\log 1.000.000=6...$

Efecto de idf sobre la ordenación

 idf afecta a la ordenación de documentos para consultas con al menos dos términos.

Ejemplo.

Q: persona caprichosa,

las ocurrencias de caprichosa contarán mucho más en la ordenación final que las ocurrencias de persona.

Pesado tfxidf_{t,d}

El peso tfxidf (nombrado alternativamente tf.idf o tf-idf) de un término t es el producto de su peso tf y su peso idf.

$$\mathbf{w}_{t,d} = \mathbf{tf}_{t,d} \times \mathbf{idf}_t = (1 + \log(\mathbf{f}_{t,d})) \times \log(N/d\mathbf{f}_t)$$

 $tfxidf_{t,d}$ asigna a un término t un peso en el documento d, tal que es:

- 1. Alto cuando *t* sucede muchas veces dentro de un pequeño número de documentos.
- 2. Bajo cuando *t* sucede muy pocas veces, o cuando sucede en muchos documentos.
- 3. El más bajo cuando *t* sucede en todos los documentos.

2. MODELO DE ESPACIO VECTORIAL

- 2.1 Documentos como vectores
- 2.2 Consultas como vectores
- 2.3 Medir la similitud entre dos documentos en el espacio vectorial.
- 2.4 Esquemas de pesado.

Modelo de Espacio Vectorial

Las consultas y los documentos se representan como vectores en un espacio V-dimensional común.

V = nº de términos diferentes de la colección

Un eje por cada término

Modelo estándar en RI para:

- puntuación de documentos sobre una consulta,
- clasificación de documentos,
- agrupación de documentos.

Ejemplo:

Receta de pollo frito (d_j) : aparecen los términos chicken, fried, oil y pepper con frecuencias 8, 2, 7 y 4 respectivamente.

Receta de pollo escalfado (d_k) : aparece el término chicken 6 veces

Consulta (q): fried, chicken

• Representamos las recetas y la consulta como vectores:

$$\vec{q} = (1,1,0,0)$$
 $\vec{d}_j = (8,2,7,4)$ $\vec{d}_k = (6,0,0,0)$

La colección se representa como una matriz de términos:

$$A = \begin{pmatrix} 8 & 6 \\ 2 & 0 \\ 7 & 0 \\ 4 & 0 \end{pmatrix}$$

Documentos y consulta como puntos en el mismo espacio vectorial

2.1 Documentos como vectores

- Así tenemos un espacio vectorial de |V|-dimensiones.
- Los términos son los ejes del espacio.
- Los documentos son puntos o vectores en este espacio.
- Muy alta-dimensión: decenas de millones de dimensiones cuando se aplica a un motor de búsqueda web.
- Son vectores muy dispersos, la mayoría de las entradas son cero.

Matriz binaria → contador → pesos

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Cada documento se representa por un vector con los valores de pesos $tfxidf \in R^{|V|}$

2.2 Consultas como vectores

- Paso1: representar las consultas como vectores en el espacio.
- Paso 2: ordenar los documentos de acuerdo a su proximidad a la consulta en este espacio.
 - proximidad = similitud de vectores
 - proximidad ≈ inversa de distancia
- Objetivo: ordenar los documentos más relevantes para la consulta de mayor a menor similitud

2.3 Medir la similitud entre dos documentos en el espacio vectorial.

- Uso del ángulo en vez de la distancia: El ángulo entre los dos documentos es 0 cuando se alcanza la similitud máxima.
- La distancia euclídea entre dos documentos "semánticamente" similares puede ser muy alta si son de longitudes muy diferentes. En cambio su ángulo se acercará a 0.
- Objetivo: Ordenar los documentos de acuerdo al ángulo con la consulta.

Desde ángulos a cosenos

- Las dos nociones siguientes son equivalentes:
 - Ordenar documentos en orden <u>creciente del ángulo</u> entre la consulta y el documento
 - Ordenar documentos en orden <u>decreciente del coseno</u> entre la consulta y el documento (cos (0)=1)
- Coseno es una función monótona decreciente para el intervalo [0º, 180º]

¿Qué documento es más similar a la consulta? Razonar la respuesta respecto al ángulo y el coseno.

Longitud-Normalización

Experimento: Si a un documento d le añadimos su propio contenido obteniendo el documento d':

- "Semánticamente" d y d' tienen el mismo contenido.
- La distancia entre los dos documentos puede ser grande por la distinta longitud de ambos documentos.

Necesitamos normalizar los vectores correspondientes a ambos documentos en función de su longitud.

Longitud-Normalización

 Un vector puede <u>normalizarse dividiendo cada uno de sus</u> <u>componentes por su longitud</u> – para esto usamos la norma L₂ de dicho vector:

$$\left\| \vec{x} \right\|_2 = \sqrt{\sum_i x_i^2}$$

- De esta forma, los documentos d y d' (d añadido a sí mismo) serían vectores idénticos después de la Longitudnormalización.
 - documentos largos y cortos ahora tienen pesos comparables.

Coseno (consulta, documento)

producto escalar

Vectores normalizados

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|k|} q_i d_i}{\sqrt{\sum_{i=1}^{|k|} q_i^2} \sqrt{\sum_{i=1}^{|k|} d_i^2}}$$

 q_i representa el peso del término i en la consulta $q(w_{tq})$ d_i representa el peso del término i en el documento $d(w_{td})$

Coseno para vectores Longitud-normalizados

Para vectores Longitud-normalizados, la similitud del coseno es simplemente el producto punto (o producto escalar):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

Similitud coseno entre 3 documentos

Cómo de similares son las novelas

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice

WH: Wuthering

Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Frecuencia de términos (conteo)

Para simplificar no hemos usado el idf

Similitud coseno entre 3 documentos cont.

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

Pesado log frecuencia

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

Long-normalización de vectores

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

 $\cos(\text{SaS,PaP}) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94$ $\cos(\text{SaS,WH}) \approx 0.79$

 $cos(PaP,WH) \approx 0.69$

ALGORITMO PUNTUACIÓN_COSENO (q)

- 1. $Scores[N] \leftarrow 0$ /*N es el número de documentos
- 2. Inicializa Length[N]
- 3. para cada término t de q
- 4. hacer calcular $w_{t,q}$ and recorrer postings list para t
- 5. **para cada** $par(d, tf_{t,d})$ in postings list
- 6. **hacer** Scores $[d] += \mathbf{w}_{t,d} \times \mathbf{w}_{t,q}$
- 7. para cada d
- 8. **hacer** Scores[d] = Scores[d] / Length[d]
- 9. **devuelve** los *K* componentes mejor puntuados de *Scores*[]

Scores

d_1	d_2	 d _i	 d _N
0	0	0	0

q

t ₁	0
t ₂	2
t _n	1
t _V	0

Índice invertido

Scores

d_1	d_2	 d _i	 d _N
		$w_1t_2q \times w_1t_2d_i$	

hacer calcular $w_{t,q}$ and recorrer postings list para tpara cada par (d, tf_{td}) in postings list **hacer** Scores $[d] += \mathbf{w}_{t,d} \times \mathbf{w}_{t,a}$

para cada d

Scores

d ₁	d_2	 d _i	 d _N
		$(w_{-}t_{2}q \times w_{-}t_{2}d_{i}) + \cdots + (w_{-}t_{n}q \times w_{-}t_{n}d_{i})$	

para cada $par(d, tf_{td})$ in postings list

hacer Scores $[d] += W_{td} \times W_{ta}$

para cada d

2.4 Esquemas de pesado.

Esquemas de pesado se representan por *ddd.qqq*:

- ddd pesado del vector de documentos.
- qqq pesado del vector de consulta

(1ª letra: frecuencia término; 2ª letra: Frecuencia documento; 3ª Letra: Normalización)

Term f	frequency	Docum	ent frequency	Normalization			
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1		
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$		
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{d}f_t}{\mathrm{d}f_t}\}$	u (pivoted unique)	1/u		
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$		
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$						

Inc.Itc.

- •el vector de documentos tiene una frecuencia de términos log-pesado, no idf y coseno normalizado
- •el vector de consulta usa frecuencia de términos log-pesado, idf y coseno normalizado.

Ejercicio#3. Calcular la puntuación del documento respecto a la consulta suponiendo una colección de 1.000.000 de documentos con un esquema de pesado **Inc.ltc**

Inc.Itc:

- •el vector de documentos tiene una frecuencia de términos log-pesado, no idf y coseno normalizado
- •el vector de consulta usa frecuencia de términos log-pesado, idf y coseno normalizado.

Term		(Consulta	a			Do	ocumen	ito		Producto
	$f_{t,q}$	$tf_{t,q}$	df _t	idf _t	$\mathbf{w}_{\mathrm{t,d}}$ =tfxidf	L-Normaliz	$f_{t,d}$	tf _{t,d}	$\mathbf{w}_{t,d} = \mathbf{tf}_{t,d}$	L-Normaliz	
auto	0		5000				1				
mejor	1		50000				0				
coche	1		10000				1				
seguro	1		1000				2				

Ejercicio#3_Solución. Calcular la puntuación del documento respecto a la consulta suponiendo una colección de 1.000.000 de documentos con un esquema de pesado **Inc.ltc**

Term			Consult	a				Documento		Producto	
	$f_{t,q}$	$tf_{t,q}$	dft	idft	$\mathbf{w}_{t,d}$ =tfxidf	L-Normaliz	$\mathbf{f}_{t,d}$	tf _{t,d}	$\mathbf{w}_{t,d} = tf_{t,d}$	L-Normaliz	
auto	0	0	5000	2,3	0	0,00	1	1	1	0,52	0,00
mejor	1	1	50000	1,3	1,3	0,34	0	0	0	0,00	0,00
coche	1	1	10000	2	2	0,52	1	1	1	0,52	0,27
seguro	1	1	1000	3	3	0,78	2	1,3	1,3	0,68	0,53

Puntuación = Cos(q,d)=0+0+0.27+0.53 = 0.8

Ejercicio#4. Similitud entre 4 documentos esquema pesado **Inc** (**l**og-**n**oidf-**c**oseno)

Similitud entre 4 documentos esquema pesado Inc

Pesado Log

L-normalizacion

term	SaS	PaP	WH	WH+WH	SaS	PaP	WH	WH+WH	SaS	PaP	WH	WH+WH
affection	115	58	20	40	3,06	2,76	2,30	2,60	0,789	0,832	0,524	0,522
jealous	10	7	11	22	2,00	1,85	2,04	2,34	0,515	0,555	0,465	0,470
gossip	2	0	6	12	1,30	0,00	1,78	2,08	0,335	0,000	0,405	0,417
wuthering	0	0	38	76	0,00	0,00	2,58	2,88	0,000	0,000	0,588	0,578

cos(SaS,PaP) ≈ 0,94 cos(SaS,Wh) ≈ 0,79 cos(SaS,Wh+Wh) ≈ 0,79

¿Qué podemos observar a la vista de los resultados?

cos(PaP,Wh) ≈ 0,69 cos(PaP,Wh+Wh) ≈ 0,69 cos(Wh,Wh+Wh) ≈ 1,00

Resumen

- Representar la consulta como un vector tfxidf pesado
- Representar cada documento como un vector tfxidf pesado
- Calcular la puntuación similitud del coseno para el vector de la consulta y para el vector de cada documento
- Ordenar documentos respecto a la consulta por puntuación
- Devolver los K (p.e. K=10) primeros documentos al usuario.