Trabalho II -Processamento Gráfico

Programa de Pós graduação em Modelagem Computacional

Gisele Goulart Marvelúcia Almeida Professor Rafael Bonfim - 2020/2

Banco de imagens

- O banco de dados **USC-SIPI** é um conjunto de imagens para apoiar pesquisas em processamento e análise de imagens e visão computacional.
- As imagens coloridas são de 24 bits e as na escala de cinza possuem 8 bits. Com um total de 44 imagens (6 imagens utilizadas).

Questão 1

TRANSFORMADAS DISCRETAS DE IMAGENS

Transformadas Discretas de Imagens

Transformada Discreta de Fourier (DFT)

$$X[k,l] = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left[\frac{1}{\sqrt{M}} \sum_{m=0}^{M-1} x[m,n] e^{-j2\pi \frac{mk}{M}} \right] e^{-j2\pi \frac{nl}{N}}$$

Transformada Discreta de Cosseno (DCT)

$$X_{k_1,k_2} = \sum_{n_1=0}^{N_1-1} \left(\sum_{n_2=0}^{N_2-1} x_{n_1,n_2} \cos \left[rac{\pi}{N_2} \left(n_2 + rac{1}{2}
ight) k_2
ight]
ight) \cos \left[rac{\pi}{N_1} \left(n_1 + rac{1}{2}
ight) k_1
ight]$$

Transformada Discreta de Seno (DST)

$$F\{u,v\} = \frac{2c(u)c(v)}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} f(m,n) \sin\left(\frac{2m+1}{2N}u\pi\right) \sin\left(\frac{2n+1}{N}v\pi\right)$$

Transformadas Discretas de Imagens

Objetivo:

- Aplicar as transformadas nas imagens com e sem ruído;
- Para cada imagem calcular:
 - Módulo da amplitude das intensidades da imagem transformada;
 - Logaritmo do módulo da amplitude das intensidades da imagem transformada;
 - Porcentagem de intensidades nulas da imagem transformada em ambos cenários investigados;
 - Ressaltar a geração da imagem ruidosa e os parâmetros adotados para aplicação das transformadas.

Implementação DFT, DCT, DST

- Linguagem de programação: Python.
- Bibliotecas utilizadas: glob, PIL(Image), numpy, matplotlib, scipy.
 - → Carregamento das imagens em preto e branco (PIL);
 - → Após isso, as imagens foram convertidas em uma matriz *float* de intensidades (*numpy*);
 - → Geração da matriz de ruídos gaussiana (função np.random.normal, média:128 e desvio padrão:20) (numpy);
 - → Adição da matriz de ruído à matriz da imagem;
 - → Emprego da relação que garante com que os valores das intensidades da matriz com ruído possua intensidades entre 0 e 255 (8 bits);

$$f_m = f - \min(f)$$

$$f_s = K \left[\frac{f_m}{\max(f_m)} \right]$$

Implementação DFT, DCT, DST

→ Aplicação da **transformada às imagens** com e sem ruído:

DCT e **DST** (*scipy*)

DFT (numpy)

- → Cálculo do módulo da amplitude das intensidades da imagem transformada (numpy);
- → Cálculo do logaritmo do módulo da amplitude das intensidades da imagem transformada (numpy);
- → Cálculo do valor máximo, mínimo e médio do módulo das amplitudes (numpy);
- → Cálculo da **porcentagem das intensidades nulas** da imagem transformada (*numpy*);
- → Reconstrução da imagem (*PIL*, *Image*);
- → Geração dos resultados gráficos (*matplotlib*).

Resultados DFT

Figura 1

Resultados DFT

Figura 2

Resultados DFT

	DFT - Figura 1														
	Sem ruído								Com ruído						
Módulo d	Módulo das amplitudes Log do módulo					Módulo das amplitudes Log do módulo					0				
MAX	MIN	MED	MAX	MAX MIN MED ZEROS			MAX	MIN	MED	MAX	MIN	MED	ZEROS		
7.286.171,0	3,23	2.598,14	6,86	0,51	2,98	0%	8.229.899,0	15,09	3.855,76	6,91	1,18	3,44	0%		

	DFT - Figura 2												
Sem ruído							Com ruído						
Módulo da	Módulo das amplitudes Log do módulo					Módulo das amplitudes Log do módulo						O	
MAX	MIN	MED	MAX	MAX MIN MED ZEROS			MAX	MIN	MED	MAX	MIN	MED	ZEROS
10.959.374,0	1,25	2.667,47	7,04	0,09	2,87	0%	11.504.537,0	22,67	4.389,54	7,06	1,35	3,49	0%

Resultados DCT

Figura 1

Resultados DCT

Figura 2

Resultados DCT

	DCT - Figura 1												
Sem ruído							Com ruído						
Módulo da	Módulo das amplitudes Log do módulo				Módulo das amplitudes Log do módulo					0			
MAX	MIN	MED	MAX	MIN	MED	ZEROS	MAX	MIN	MED	MAX	MIN	MED	ZEROS
28.461,60	0	8,52	4,45	-3,62	0,39	$22,\!10\%$	32.148,04	$4,70 \times 10^{-5}$	13,35	4,51	-4,33	0,87	5,93%

	DCT - Figura 2												
			Com ruído										
Módulo	Módulo das amplitudes Log do módulo					Módulo das amplitudes Log do módulo)		
MAX	MIN	MED	MAX	MAX MIN MED ZEROS			MAX	MIN	MED	MAX	MIN	MED	ZEROS
42.810,05	$7,67 \times 10^{-5}$	9,40	4,63	-4,11	0,31	30,40%	44.939,60	$7,79 \times 10^{-07}$	15,49	4,65	-6,11	0,93	5,14%

Resultados DST

Figura 1

Resultados DST

Figura 2

Resultados DST

	DST - Figura 1												
				Com ruído									
Módulo	das amplitu	des		Log do	módule	O	Módulo das amplitudes Log do módulo						0
MAX	MIN	MED	MAX	MIN	MED	ZEROS	MAX	MIN	MED	MAX	MIN	MED	ZEROS
11.416,29	$1,72 \times 10^{-5}$	11,38	4,06	-4,76	0,48	18,67%	12.953,64	0	16,04	4,11	-3,48	0,91	5,49%

	DST - Figura 2												
		Com ruído											
Módulo	Módulo das amplitudes Log do módulo					Módulo das amplitudes Log do módulo				0			
MAX	MIN	MED	MAX	MAX MIN MED ZEROS			MAX	MIN	MED	MAX	MIN	MED	ZEROS
15.973,98	$2,89 \times 10^{-6}$	12,41	4,20	-5,54	0,40	26%	17.247,25	$1,64 \times 10^{-5}$	18,60	4,24	-4,78	0,95	5%

Questão 2

FLUXO ÓTICO EM SEQUÊNCIA TEMPORAL DE IMAGENS

Fluxo ótico em imagens sequenciais

Objetivo:

- Aplicar os métodos Horn e Schunck (HS) e Lucas e Kanade (LK) em uma sequência temporal de imagens;
- Identificar os parâmetros adotados em cada método;
- Mostrar o campo vetorial (fluxo ótico) obtido através dos métodos aplicados;
- Apresentar a derivada material;

Fluxo Ótico

É a distribuição da velocidade aparente do movimento dos padrões de intensidade no plano da imagem (Horn e Schunck, 1981).

Apresenta informações sobre o arranjo espacial dos objetos e a taxa de variação desse arranjo.

É computado em um pixel da imagem considerando os seus vizinhos e

restrições adicionais.

Fluxo Ótico

- Métodos diferenciais utilizados para determinação do fluxo ótico: Horn e Schunck e Lucas e Kanade.
- Esses dois métodos consideram que a intensidade entre uma imagem e outra é aproximadamente constante em um intervalo de tempo pequeno.

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

Assim, a derivada material do fluxo ótico resultará na Equação de Restrição do Fluxo Ótico:

$$\frac{D\mathbf{I}}{Dt} = \nabla \mathbf{I} \cdot \vec{\mathbf{v}} + \mathbf{I}_t$$

$$\nabla \mathbf{I} \cdot \vec{\mathbf{v}} + \mathbf{I}_t = 0 \to \mathbf{I}_x u + \mathbf{I}_y v + \mathbf{I}_t = 0$$

Método Horn e Schunck (HS)

- Utiliza uma forma de regularização aplicada à equação anterior chamada de restrição de suavização, ou seja, considera que o fluxo de vetores de uma imagem para outra varia de forma suave;
 - **Restrição de iluminação**: iluminação constante nas duas imagens.
 - **Restrição de suavização**: pontos vizinhos apresentam velocidades semelhantes.
- As derivadas parciais são estimadas pela média das quatro primeiras regiões adjacentes (vizinhas) da imagem;
- É um método iterativo que minimiza a equação da restrição de suavização pelo método dos mínimos quadrados, obtendo o campo de velocidades (campo vetorial/fluxo ótico) para cada pixel da imagem;

Implementação do Horn e Schunck (HS)

- Linguagem de programação: Python.
- Bibliotecas utilizadas: OpenCV, numpy, matplotlib.
 - → Carregamento das imagens (512x512) (OpenCV, cv2.imread);
 - → Chama o método HS, passando seus parâmetros: as duas imagens sequenciais e o fator de suavização (alpha);
 - → Cálculo das derivadas parciais (lx, ly, lt);
 - → Cálculo das componentes do fluxo ótico (u, v);
 - → Geração do campo de fluxo ótico (CV2, cv2.arrowedLine);
 - → Cálculo da derivada material da imagem (DI/Dt);
 - → Geração dos resultados gráficos (matplotlib);
 - → Cálculo da norma de Frobenius da matriz da derivada material (numpy);

$$\|A\|_{ ext{F}} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

Horn e Schunck (HS) - Testes Alpha

f1

Alpha	Norma da Derivada
4	3273.0550
1	1987.2742
0.6	1532.5471
0.1	871.1743

Horn e Schunck (HS) - Testes Alpha

Alpha	Norma da Derivada
4	3473.6680
1	2059.1113
0.6	1545.2078
0.1	752.0276

Horn e Schunck (HS) - Testes Alpha

f3

Alpha	Norma da Derivada
4	3954.6210
1	2487.3780
0.6	1922.2987
0.1	1071.9418

Resultados Horn e Schunck (HS)

Resultados Horn e Schunck (HS)

500

Alpha= 4

Resultados Horn e Schunck (HS)

Método Lucas e Kanade (LK)

- É um método não-iterativo;
- Assume um fluxo ótico constante local em pequenas janelas de tamanhos (nxn) e com n>1, centradas em um único pixel;
- Resolve as equações do sistema formado a partir do problema de minimização da restrição do fluxo óptico através de um ajuste ponderado de mínimos quadrados;
- Apresenta robustez contra ruídos, mas a malha de pontos do campo de velocidade não é tão densa;

Implementação do Lucas e Kanade (LK)

- Linguagem de programação: Python.
- Bibliotecas utilizadas: OpenCV, numpy, matplotlib.
 - → Carregamento das imagens (512x512) (*OpenCV*, *cv2.imread*);
 - → Chama o método LK, passando seus parâmetros: as duas imagens sequenciais e o tamanho da janela;
 - → Cálculo das **derivadas parciais** (lx, ly, lt);
 - → Cálculo das **componentes** do fluxo ótico (u, v);
 - → No qual, a matriz de pesos é filtro gaussiano de tamanho **5x5** e **desvio padrão de 3** (OpenCV,*cv2.GaussianBlur*).
 - → Geração do **campo de fluxo ótico** (*CV2, cv2.arrowedLine*);
 - → Cálculo da **derivada material** da imagem (DI/Dt);
 - → Geração dos resultados gráficos (matplotlib);
 - → Cálculo da norma de Frobenius da matriz da derivada material (numpy);

$$\|A\|_{ ext{F}} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

Lucas e Kanade (LK) - Testes Janela

f1

Janela	Norma da Derivada
3	104931.2733
5	103219.2757
7	102256.4848
9	101498.8131

Lucas e Kanade (LK) - Testes Janela

Janela	Norma da Derivada
3	55750.6050
5	51155.1222
7	53672.6159
9	53102.8614

Lucas e Kanade (LK) - Testes Janela

f3

Janela	Norma da Derivada
3	95737.5797
5	94095.5993
7	93181.0213
9	92525.5137

Resultados Lucas e Kanade (LK)

Janela= 5

Resultados Lucas e Kanade (LK)

Janela= 5

Resultados Lucas e Kanade (LK)

Janela= 5

Referências

- Banco de imagens:
 - http://sipi.usc.edu/database/database.php?volume=misc
- Bibliotecas Python:
 - https://pillow.readthedocs.io/en/stable/reference/Image.html
 - o https://numpy.org/
 - o https://matplotlib.org/
 - https://docs.python.org/3/library/glob.html
 - https://docs.scipv.org/doc/scipv/reference/generated/scipv.fftpack.fft2.html#scipv.fftpack.fft2
- Ferraz, T. V. D., Rodrigues, G. F., 2015. Rastreamento labial utilizando fluxo óptico para reconhecimento de fala em imagens de vídeo. Universidade Federal de São João del-Rei.
- Implementações LK e HS:
 - https://github.com/dmarkatia/LucasKanade/blob/master/LK.py
 - https://stackoverflow.com/questions/27904217/horn-schunck-optical-flow-implementation-issue
- GitHub com a implementação: https://github.com/giselegoulart/graphic-processing