STAT 6910-003 - SLDM II - Homework #3

Due: 5:00 PM 11/2/18

1. Maximum Likelihood Estimation (14 pts)

(a) Let X_1, \ldots, X_n be i.i.d. sample from a Poisson distribution with parameter λ , i.e.

$$P(X = x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}.$$

i. (2 pts) Write down the likelihood function $L(\lambda)$.

ii. (2 pts) Write down the log-likelihood function $\ell(\lambda)$.

iii. (3 pts) Find the maximum likelihood estimate (MLE) of the parameter λ .

(b) (7 pts) Let X_1, \ldots, X_n be an i.i.d. sample from an exponential distribution with the density function

$$p(x;\beta) = \frac{1}{\beta} e^{-\frac{x}{\beta}}, \ 0 \le x < \infty.$$

Find the MLE of the parameter β . Given what you know about the role that β plays in the exponential distribution, does the MLE make sense? Why or why not?

2. Logistic Regression as ERM (5 pts). Consider training data $(x_1, y_1), \ldots, (x_n, y_n)$ for binary classification and assume $y_i \in \{-1, 1\}$. Show that if $L(y, t) = \log(1 + \exp(-yt))$, then

$$\frac{1}{n} \sum_{i=1}^{n} L(y_i, \boldsymbol{w}^T \boldsymbol{x}_i + b)$$

is proportional to the negative log-likelihood for logistic regression. Therefore ERM with the logistic loss is equivalent to the maximum likelihood approach to logistic regression.

Clarification: In the above expression, y is assumed to be -1 or 1. In the notes, we had $y \in \{0, 1\}$. So all you need to do is rewrite the negative log-likelihood for logistic regression using the ± 1 label convention and simplify that formula until it looks like the formula above.

3. Convexity and Optimization (24 pts). Let $f: \mathbb{R}^d \to \mathbb{R}$.

(a) (7 pts) Show that if f is strictly convex, then f has at most one global minimizer.

(b) (7 pts) Use the Hessian to give a simple proof that the sum of two convex functions is convex. You may assume that the two functions are twice continuously differentiable.

(c) (7 pts) Consider the function $f(x) = \frac{1}{2}x^TAx + b^Tx + c$ where A is a symmetric $d \times d$ matrix. Derive the Hessian of f. Under what conditions on A is f convex? Strictly convex?

(d) (3 pts) Let $J(\theta)$ be a twice continuously differentiable function. Derive the update step for Newton's method from the second order approximation of $J(\theta)$ (see lecture slides for equations for both the update step and the second order approximation).

4. Logistic regression Hessian (15 pts). Determine a formula for the gradient and the Hessian of the regularized logistic regression objective function. Argue that the objective function

$$J(\boldsymbol{\theta}) = -\ell(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||^2$$

is convex when $\lambda \geq 0$, and that for $\lambda > 0$, the objective function is strictly convex.

Hints: The following conventions and properties regarding vector differentiation may be useful. The properties can be easily verified from definitions. Try to avoid long, tedious calculations.

1

• If $f: \mathbb{R}^n \to \mathbb{R}$, then we adopt the convention

$$\frac{\partial f(\boldsymbol{z})}{\partial \boldsymbol{z}} := \nabla f(\boldsymbol{z}).$$

• If $f: \mathbb{R}^n \to \mathbb{R}^m$, adopt the convention

$$\frac{\partial f(\boldsymbol{z})}{\partial \boldsymbol{z}^T} := \left(\frac{\partial f(\boldsymbol{z})}{\partial \boldsymbol{z}}\right)^T.$$

 \bullet Given these conventions, it follows that the Hessian H of J is

$$H = \frac{\partial}{\partial \boldsymbol{\theta}^T} \left(\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right),$$

which is often denoted more concisely as

$$\frac{\partial^2 J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T}.$$

• (One form of a multivariate chain rule): If f(z) = g(h(z)) where $g: \mathbb{R} \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}$, then

$$\nabla f(\mathbf{z}) = \nabla h(\mathbf{z}) \cdot g'(h(\mathbf{z})).$$

5. ERM and Stochastic Gradient Descent (10 pts). Given training data $(x_1, y_1), \ldots, (x_n, y_n)$, define the empirical risk for either a regression or classification problem as

$$\hat{R}(f_{\boldsymbol{\theta}}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i.f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)).$$

Write pseudocode describing how you would implement stochastic gradient descent to minimize $\hat{R}(f_{\theta})$ with respect to θ . Assume a fixed mini-batch size of m and assume that the step size α is fixed for each epoch.

6. Handwritten digit classification with logistic regression (22 pts). Download the file mnist_49_3000.mat from the Homework 3 assignment. This is a Matlab data file that contains a subset of the MNIST handwritten digit dataset, which is a well-known benchmark dataset for classification. This subset contains examples of the digits 4 and 9.

The data file contains variables x and y, with the former containing the image of the digit (reshaped into column vector form) and the latter containing the corresponding label $(y \in \{-1, 1\})$. To visualize an image, you will need to reshape the column vector into a square image. You should be able to find methods for loading the data file and for reshaping the vector in your preferred language through a Google search. If you're struggling to find something that works, you may ask for suggestions on Piazza.

Implement Newton's method to find a minimizer of the regularized negative log likelihood for logistic regression: $J(\boldsymbol{\theta}) = -\ell(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|^2$. Try setting $\lambda = 10$. Use the first 2000 examples as training data and the last 1000 as test data.

- (a) (6 pts) Report the test error, your termination criterion (you may choose), how you initialized θ_0 , and the value of the objective function at the optimum.
- (b) (10 pts) Generate a figure displaying 20 images in a 4 × 5 array. These images should be the 20 misclassified images for which the logistic regression classifier was most confident about its prediction. You will have to define a notion of confidence in a reasonable way and explain how you define it. In the title of each subplot, indicate the true label of the image. What you should expect to see is a bunch of 4s that look kind of like 9s and vice versa.
- (c) (6 pts) Include your well-organized, clearly commented code.
- 7. How long did this assignment take you? (5 pts)
- 8. Type up homework solutions (5 pts)