CALC1100 Modules 2.4 and 2.5 Fall 2022

2.4 Implicit and Logarithmic Differentiation

2.5 Higher Order Derivatives

Textbook ref: 2.11 and 2.14

Example 1. The Folium of Descartes

Example 2. (video in Panopto)

Find the slope of the tangent to the curve $x^2 + y^2 = 25$ at point (3, 4). *Hint*: Use the point-slope form of the equation of a straight line $y - y_0 = m(x - x_0)$. (Ans. 3x + 4y = 25)

Example 3

Use implicit differentiation to find the equation of the tangent line to the curve $xy^3 + xy = 20$ at the point (10,1) (Ans. y = -0.05x + 1.5)

1 | Page

CALC1100 Modules 2.4 and 2.5 Fall 2022

Compute derivatives with respect to variables indicated.

1. a. Assume that
$$u=u(t)$$
. If $y=3u^4$, find $\frac{dy}{dt}$. b. If $P=2R^3+0.5t^2$ and $R=R(t)$, find $\frac{dP}{dt}$. c. Assume that $r=r(t)$. If $V=\frac{4}{3}\pi r^3$, find $\frac{dV}{dt}$.

5. Assume that y = y(x), find

a.
$$\frac{d}{dx}[xy] =$$

b.
$$\frac{d}{dx}[x^2y^3] =$$

4.
$$y^3 - 4x^2y^2 + y^4 = 9$$
, find $\frac{dy}{dx}$

5. Given
$$cos(xy) = 1 + sin y$$
, find $\frac{dy}{dx}$

6. Find the slope of the tangent line at the point P(1,1) on the graph of $e^{x-y}=2x^2-y^2$.

7. Find the derivative $\frac{dy}{dx}$ by implicit differentiation $e^y = \sin(x+y)$

Calculating the higher-order derivatives.

Let y=f(x). The 1st derivative of a function f is : $\frac{dy}{dx}=f'(x)=y'=D_x[y]$

The derivative of the $\mathbf{1}^{\text{st}}$ derivative is called the $\mathbf{2}^{\text{nd}}$ derivative:

$$\frac{d}{dx}\left[\frac{dy}{dx}\right] = \frac{d^2y}{dx^2} = y'' = f''(x) = D_x^2[y]$$

8. Find the first three derivatives of $y = 5x^3 - 2x$, y', y'', y'''

9. Find
$$y''$$
 for $y = \sqrt{5 - 4x^2}$

10. Find
$$y'$$
 and y'' if $y = \sqrt{1 - \sec t}$

11. Evaluate
$$y''$$
 for $y = \frac{2}{1-x}$ for $x = -2$

12. Find
$$y''$$
 of $y = 6 \tan 5x$

2 | Page

Fall 2022

CALC1100 Modules 2.4 and 2.5

Additional Problems

- 13. Use implicit differentiation to find an equation of the tangent line to the curve $y \sin 2x = x \cos 2y$ at the point($\pi/2, \pi/4$).
- 14. The power P that a battery (source) supplies to a laptop (load) depends on the internal resistance of the battery. For a battery of voltage V and internal resistance R_S , the total power delivered to a laptop of resistance R_L is

$$P = \frac{V^2 R_L}{(R_L + R_S)^2}$$

- a. Assume that V and R_S are constants, treat the power P as an unspecified function of R_L , such that $P=f(R_L)$, and find $\frac{dP}{dR_L}$.
- b. Determine the value(values) of the laptop resistance R_L for which the tangent line is horizontal? What does it mean in terms of the power?
- 14. Differentiate $y = x^{\sin x}$ using logarithmic differentiation.
- 15. Differentiate $f(x) = \frac{x^3 e^x}{(1+x)^4}$ using logarithmic differentiation
- 16. Use logarithmic differentiation to find the derivative of the function $y = (\sin x)^{\ln x}$

Modules 2.4 and 2.5

ANSWERS

CALC1100

1. a.
$$\frac{dy}{dt}=12u^2\frac{du}{dt}$$
; b. $\frac{dP}{dt}=6R^2\frac{dR}{dt}+t$; c. $y'=4\pi r^2\frac{dr}{dt}$

2.
$$\frac{dx}{dy} = 2(y-3)$$

3. a.
$$\frac{d}{dx}[xy] = y + xy'$$
; b. $\frac{d}{dx}[x^2y^3] = 2xy^3 + 3x^2y^2y'$

4.
$$y' = \frac{8xy}{3y - 8x^2 + 4y^2}$$

5.
$$y' = -\frac{y\sin(xy)}{x\sin(xy) + \cos y}$$

6.
$$m_T@P(1,1) = 3$$

7.
$$\frac{dy}{dx} = \frac{\cos(x+y)}{e^y - \cos(x+y)}$$

8.
$$y' = 15x^2 - 2$$
, $y'' = 30x$, $y''' = 30$

9.
$$y' = -4x(5 - 4x^2)^{-\frac{1}{2}}; y'' = -20(5 - 4x^2)^{-\frac{3}{2}}$$

10.
$$y' = -\frac{\sec t \tan t}{\sqrt{1-\sec t}}, y'' = \text{good luck}$$

11.
$$y' = 2(1-x)^{-2}$$
; $y'' = \frac{4}{(1-x)^3}$; $y''(-2) = \frac{4}{27}$

12.
$$y' = 30sec^2(5x)$$
; $y'' = 300sec^2(5x)\tan(5x)$

13.
$$\frac{dy}{dx} = \frac{\cos 2y - 2y \cos 2x}{\sin 2x + 2x \sin 2y}$$
; $y - \frac{\pi}{4} = \frac{1}{2} \left(x - \frac{\pi}{2} \right)$

14. a.
$$\frac{dP}{dR_L}=V^2\frac{R_S-R_L}{(R_L+R_S)^3}$$
; b. $R_L=R_S$

15.
$$y' = x^{sinx} \left(\cos x \ln x + \frac{sinx}{x} \right)$$

16.
$$f'(x) = \frac{x^3 e^x}{(1+x)^4} \left[1 + \frac{3}{x} - \frac{4}{1+x} \right]$$

17.
$$y' = (\sin x)^{\ln x} \left[\frac{\ln(\sin x)}{x} + \ln x \cot x \right]$$

3 | Page

Fall 2022