BILAG 4

Analyse

Indholdsfortegnelse

Kapite	l 1 Indledning	3					
Kapite	l 2 Det oprindelige kredsløb	4					
2.1	Hardware	4					
	2.1.1 Strømforsyning	4					
	2.1.2 Funktionsgenerator	5					
	2.1.3 Forstærkning	5					
	2.1.4 Strømgenerator	7					
	2.1.5 Elektroder	7					
	2.1.6 A/D-konverter	8					
2.2	Software	9					
	2.2.1 Waveforms	9					
2.3	Testopstillinger	9					
	2.3.1 Testopstilling 1	9					
2.4	Konklusion	15					
Kapitel	l 3 Det modificeret kredsløb	16					
3.1	Hardware del 1 - Strømgenerator	16					
	3.1.1 Strømforsyning	16					
	3.1.2 Funktionsgenerator	16					
	3.1.3 Forstærkning	16					
	3.1.4 Strømgenerator	17					
	3.1.5 Elektroder	17					
3.2	Hardware del 2 - Spændingsmåler	18					
	3.2.1 Strømforsyning	18					
	3.2.2 Elektroder	18					
	3.2.3 Forstærkning	18					
	3.2.4 Antialiaseringsfilter	19					
	3.2.5 A/D konverter	19					
3.3	Software	19					
	3.3.1 Matlab	19					
3.4	Testopstillinger	19					
	3.4.1 Testopstilling 1	19					
	3.4.2 Testopstilling 2 - LM318N	19					
	3.4.3 Testopstilling 3 - OPAMP	19					
3.5	Konklusion	19					
Kapite	l 4 EMG	20					
Kanitel	Kapitel 5 Konklusion 24						

Indho	ldsforte	egnelse

Litteratur 25

Indledning

I afsnittet analyse vil der blive beskrevet de overvejelser om mulige løsninger i projektet og hvilke der har valgt at gå videre og begrundelse herom. Der er beskrevet og diskuteret valget af hardware- og software komponenter som er kritiske for systemet. Det udleveret diagram som kan ses på figur 1.1 er en simple BI måler som består af en instrumenterings forstærker, en strømgenerator og udgang til elektroder. Kredsløbet skal tilføres et signal fra en funktiongenerator, som resulterer i en konstant genereret strøm over elektroderne. Da man nu har en kendte strøm og måler spændingsfaldet over elektroderne, kan man ved brug af ohms lov ($\frac{U}{I}=R$) beregne og vise impedansen for et synk.

Figur 1.1: BI diagram[1]

Det oprindelige kredsløb

2.1 Hardware

Det oprindeligekredsløb var bygget som vist på figur 2.1 i simuleringsværtøjet Multisim og efterfølgende på et fumlebræt.

Figur 2.1: Blokdiagram over det oprindelige kredsløb[1]

2.1.1Strømforsyning

I artiklen [1] blev der brugt en ± 12 v strømforsyning tilsluttet til netforsyningen. Vi valgte at undgå netforsyningen, ved at sætte otte AA batterier i serie, både for +12v og -12v.

Figur 2.2: $\pm 12v$ batteriforsyning

2.1.2 Funktionsgenerator

Analog Discovery blev brugt som funktionsgenerator, da denne er nem og hurtig til at generere signaler. Den ønskede frekvens på 50 kHz blev brugt, da det er en brugt frekvens når der skal måles et synk[2]. Amplituden blev sat til 2V.

Figur 2.3: Analog discovery som funktionsgenerator

2.1.3 Forstærkning

Signalet fra Analog Discovery går ind til forstærkeren INA128. Den tilhørende gain modstand på 51kohm blev også brugt, da det giver en fordobling i forstærkning. På udgangen af INA128 er der nu 4V. Udover at forstærke signalet vil det også fået fjernet common-mode støj, så signalet er mindre støj fyldt.

Figur 2.4: Diagram over INA128

Figur 2.5: Oversigt over hvilke frekvenser INA128 kan arbejde indenfor ved bestemte gains

Ved en gain på 2 kan der aflæses i figur 2.5, at båndbredden er over $100 \rm kHz$, hvilket er indenfor den ønskede frekvens på $50 \rm kHz$.

2.1.4 Strømgenerator

Figur 2.6: Diagram over VCCS. Den faste spænding på 4V til VCCS giver en fast strøm på 100uA

Spændningen kommer ind ved modstand R1 og strømmen ud på ben 3 på LF412N. Kombinationen af bestemt ohmsk modstand størrelse og lav % tolerance modstand giver den faste strøm. Her er der brugt 1% modstande. Ved at ændre modstand R5, kan en ønsket strøm beregnes[1]:

$$I_{tissue} = 2 * \frac{V_{in}}{R_5}$$

2.1.5 Elektroder

Figur 2.7: Ved målingerne er der blevet brugt EKG elektroder (venstre) og EMG elektroder (højre).

De forskellige elektroder kan ses i figur 3.3. EKG elektroderne er nemme at påsætte og indeholder meget gel som giver optimal kontakt, men fysisk fylder de meget. EMG elektroderne har mindre gel, men fylder næsten ingen ting.

2.1.6 A/D-konverter

Analog er tilsluttet en pc via usb og det analogt signal blev samplet ved at måle over elektroderne. Der blev også monteret et multimeter i serie for at aflæse den konstante strøm.

Figur 2.8: Scope channel 1 positiv blev brugt til at måle spændingen over elektroderne

 $Figur\ 2.9:\ Der\ blev\ målt\ over\ elektroderne\ mellem\ ben\ 3\ på\ LF412N\ og\ ground.$

2.2 Software

2.2.1 Waveforms

I programmet Waveforms kan frekvens og amplitude indstilles og resultatet kan ses i oscilloskopet.

Figur 2.10: Brugerinterfacet i Waveforms, hvor funktionsgeneratoren og A/D-konverter indstilles.

2.3 Testopstillinger

Kredsløbet blev bygget i simuleringsprogrammet multisim og på et fumlebræt. Begge med samme udgangspunkt som i figur 2.11. I de kommende testopstillinger vil der blive bekræftet systemts virkning op i mod dokumentationen fra den oprindelige artikel og andre metoder fra andre artikler.

2.3.1 Testopstilling 1

I testopstilling 1 blev kredsløbet bygget efter figuer 2.11 først i multisim og bagefter på et fumlebræt. Testen og resultaterne blev holdt op i mod dokumentationen fra den oprindelige artikel, som kan ses i figur 2.12 og 2.13. Ved at sammenligne resultaterne var det muligt at se om kredsløbet opførte sig korrekt og om det kunne bruges i den videre udvikling af synkerefleksmonitor.

 $Figur\ 2.11:\ Diagram\ over\ testopstilling\ 1\ på\ baggrund\ af\ det\ oprindelige\ kredsløbsdesign.$

Figur 2.12: No-Load strøm respons af VCCS fra den oprindelige artikel[1].

Figur 2.13: Målte spændinger over elektroderne med en vævsmodel påsat fra den oprindelige artikel[1].

2.3.1.1 Simularing

Opstiling af simuleringen af testopstilling 1 kan ses i figur 2.14.

Figur 2.14: Diagram over testopstilling 1 i multisim på baggrund af det oprindelige kredsløbsdesign, dog uden instrumentationsforstærker.

No-Load

Til at bekræfte No-Load responset blev funktionsgeneratoren sat til 4V og 100Hz. På udgangen sad amperemeter for at kunne aflæse den konstante strøm.

Det kunne nu måles at den konstante strøm er på 49uA ved 100Hz, som det fremgår af figur 2.18 hvilket stemmer fint overens med figur 2.12 fra den oprindelige artikel. Ved at foretage flere målinger ved at varierer frekvensen kan der tegnes en graf til sammenligning.

Figur 2.15: Diagram over testopstilling 1 i multisim ved 4V og 100Hz, kan den konstante strøm aflæses til 49uA.

I tabel 2.3 kan de brugte frekvenser ses og går fra 100Hz til 20kHz med et passende interval. På baggrund af disse målinger kan der laves en graf over strøm responset som i 2.12.

Hz	uA	Hz	uA	Hz	u A	Hz	u A
100	49,19	2000	27,99	30000	27,73	400000	27,87
200	40,74	3000	27,84	40000	27,73	500000	27,93
300	35,68	4000	27,79	50000	27,73	600000	27,99
400	32,90	5000	27,77	60000	27,73	700000	28,07
500	31,30	6000	27,76	70000	27,74	800000	28,16
600	30,32	7000	27,75	80000	27,74	900000	28,25
700	29,69	8000	27,75	90000	27,74	1000000	28,32
800	29,26	9000	27,74	100000	27,74		
900	28,95	10000	27,74	200000	27,78		
1000	28,73	20000	27,73	300000	27,82		

Tabel 2.1: Målt strøm over elektroderne ved bestemte frekvenser.

Figur 2.16: Resultatet af den målte strøm ved varieret frekvenser, som kan sammenlignes med figur 2.12. X aksen er i logaritmisk skala.

Målte spænding

Den målte spænding måles over elektroderne og ved at tilføje en vævsmodel som i figur 2.17, vil spændingen ændre sig ved forskellige frekvenser. Vævsmodellen bruges til at vertificere nøjeagtighed og repeterbarhed af kredsløbet[1].

Figur 2.18: Diagram over testopstilling 1 i multisim ved 4V og 100Hz, hvor spændingen kan aflæses over elektroderne.

Hz	VRMS	Hz	VRMS	Hz	VRMS
100	0,626	2000	0,047	30000	0,041
200	0,311	3000	0,044	40000	0,041
300	0,195	4000	0,043	50000	0,041
400	0,141	5000	0,042	60000	0,041
500	0,112	6000	0,042	70000	0,041
600	0,094	7000	0,042	80000	0,041
700	0,083	8000	0,041	90000	0,041
800	0,074	9000	0,041	100000	0,041
900	0,068	10000	0,041		
1000	0,064	20000	0,041		

Tabel 2.2: Målt VRMS ved bestemte frekvenser.

Figur 2.19: Grafen viser de plottet frekvenser, som kan sammenlignes med figur 2.13 fra den oprindelige artikel.

2.3.1.2 Fumlebræt

Figur 2.20: Billede af testopstilling 1 på fumlebræt på baggrund af det oprindelige kredsløbsdesign.

No-Load

Hz	u A	Hz	uA	Hz	uA	Hz	u A
100	49,19	2000	27,99	30000	27,73	400000	27,87
200	40,74	3000	27,84	40000	27,73	500000	27,93
300	35,68	4000	27,79	50000	27,73	600000	27,99
400	32,90	5000	27,77	60000	27,73	700000	28,07
500	31,30	6000	27,76	70000	27,74	800000	28,16
600	30,32	7000	27,75	80000	27,74	900000	28,25
700	29,69	8000	27,75	90000	27,74	1000000	28,32
800	29,26	9000	27,74	100000	27,74		
900	28,95	10000	27,74	200000	27,78		
1000	28,73	20000	27,73	300000	27,82		

Tabel 2.3: Målt strøm over elektroderne ved bestemte frekvenser.

Målte spænding

2.4. Konklusion

2.4 Konklusion

Det modificeret kredsløb

3

Erfaringerne fra det oprindelige kredsløb og metoder fra andre artikler blev testet for til slut at kunne vælge det endelige videre system i projektet. Den overordnet ændring er at hardware blev delt op i to dele, en strømgenerator og spændingsmåler. Denne løsning er blevet brugt i flere artikler, [3], [4].

3.1 Hardware del 1 - Strømgenerator

I denne hardware del 1 blev der genereret strøm til to elektroder. I figur 4.1 kan de enkelte komponenter ses.

Figur 3.1: Forløbet over generationen af den faste strøm.

3.1.1 Strømforsyning

Strømforsyningen er blevet øget fra ± 12 til ± 18 da dette giver en højere excitationsspænding som bidrager til en øget strøm som kan genereres.

Figur 3.2: Ved brug af fire 9V batterier kan excitationsspænding komme op på $\pm 18V$.

3.1.2 Funktionsgenerator

Signalet fra funktionsgeneratoren blev øget til 4V og bibeholdt 50kHz.

3.1.3 Forstærkning

Forstærkningen blev nu øget fra 4V til 8V strømgeneratoren.

3.1.4 Strømgenerator

Der vælges at øge strømmen til 500uA ved at ændre R5 til 2k, da artiklerne [4], [5] og [2] bruger denne strøm til at detektere BI over svælget.

3.1.5 Elektroder

Der blev testet med begge elektroder fra figur 3.3 og med forskellige placeringer. Strømmen og den målte spændingen er nu blevet ført over sine egne ledninger. BI er bedst at måle med fire elektroder, for at undgå utilsigtet inklusion af elektrode impedans ved kun brug af to elektroder [6, s. 420-421].

Figur 3.3: Der er prøvet med forskellige elektrode placeringer. Hvor strøm elektroder er yderst og spændingen måles inderst.

Figur 3.4: Diagram for hvordan man måler BI, med en fast strøm hvor spændingen kan måles over.

3.2. Hardware del 2 - Spændingsmåler

3.2 Hardware del 2 - Spændingsmåler

Figur 3.5: Bioimpedans ud

3.2.1 Strømforsyning

Da strømforsyningen var øget til $\pm 18\mathrm{V}$ for del 1, blev del 2 forsynet med den samme excitationsspænding.

3.2.2 Elektroder

Der blev testet med begge elektroder fra figur 3.3 og med forskellige placeringer.

3.2.3 Forstærkning

Da det var en lille spænding der måltes blev den forstærket op samtidig med at støj blev reduceret. Der blev stadig holdt øje om båndbredden var indenfor hvad INA128 kunne leverer ved forskellige gains. Gain blev sat til 10, hvilket der ok som det kan aflæses i figur 2.5.

3.3. Software

- 3.2.4 Antialiaseringsfilter
- 3.2.5 A/D konverter
- 3.3 Software
- 3.3.1 Matlab
- 3.4 Testopstillinger
- 3.4.1 Testopstilling 1
- 3.4.2 Testopstilling 2 LM318N
- 3.4.3 Testopstilling 3 OPAMP

 $Figur~\it 3.6$

3.5 Konklusion

EMG 4

Figur 4.1: Bioimpedans ud

Instrumenterings forstærker 1

I det oprindelig design af BI konstateret vi at det var lavet lavet til at måle BI'er på skalpen og ikke over svælget. Derfor valgte vi at instrumenterings forstærkeren fik et større signal ind fra Analog Discovery på 2V og $50 \mathrm{kHz}$. I det hele taget undrede vi over artiklens valg af brug af instrumenterings forstærker i starten af kredsløbet, da den ikke er et must for at realisere kredsløbet. Men dens eneste formål var at nedbringe common-mode støj fra funktions generatoren, så vi valgte at beholde denne da vi også vil undgå så meget støj som muligt videre i kredsløbet. Gain var oprindeligt sat til 51 Kohm hvilket giver det dobbelte af hvad instrumenterings forstærkeren tilføre. I diagrammet på figur ?? kan det ses at instrumenterings forstærkeren bliver forsynet med +12/-12 V, men der er her valgt at -12 V skal direkte til ground, hvilket har resulteret i at instrumenterings forstærkeren ikke fungerer korrekt, så der er den i stedet forsynet med -12 V og ikke ground.

Strømgenerator

Det forstærket signal som kommer fra udgangen på instrumenterings forstærkeren løber over til strømgeneratoren. Denne strømgenerator er en Howland bridge. Sammensætningen af modstandene er vigtige og deres tolerance skal være lav for at få en korrekt og konstant strøm. For at justerer strømmen kan R5 udskiftes i kredsløbet. For at få en konstant strøm omkring ca. 500 uA, er modstanden ændret fra 51 Kohm til 2 Kohm.

Det oprindelige kredsløb

Først bygges det oprindelige kredsløb som det er opgivet og der bliver foretaget en no load test, for at se om det stemmer overens med figuren fra artiklen.

Figur 4.2: A figure

Figur 4.3: Another figure

Det modificeret kredsløb

112	u.r.
100	1268
200	1051
300	920
400	845
500	802
600	775
700	756
800	744
900	735
1000	728
2000	703
3000	696
4000	692
5000	688
6000	685
7000	683
8000	680
9000	678
10000	676
20000	675
30000	634
40000	596
-50000	542
60000	475
70000	405
80000	332
90000	268
100000	210
_110000	161
120000	120
130000	87
140000	60
150000	40
160000	25
170000	16
180000	10
190000	6
200000	4
210000	2
220000	1
230000	1

Hz

uA

Tabel 4.1: Student Database

0

240000

Figur 4.4: 2-D scatterplot of the Student Database

Overvejelser om mulige løsninger løsninger I har valgt, begrundelsen herfor grundlæggende valg af hardware- og softwaremæssige komponenter, som er kritiske for realisering af

systemet

For at træffe et valg kan der analyseres og diskuteres forskellige løsninger mht. til ydeev-ne, pris, leveringstid og forhåndskendskab. Disse kan med fordel opstilles i tabelform.

Anti-alisering Elektroder Konstant strøm Lavpas filtering Ensretter Sampling af signal [?

Konklusion 5

Litteratur

- [1] Kevin R. Aroom, Matthew T. Harting, Charles S. Cox, Ravi S. Radharkrishnan, Carter Smith, and Brijesh S. Gill. Bioimpedance Analysis: A Guide to Simple Design and Implementation. *Journal of Surgical Research*, 153(1):23–30, 2009.
- [2] T Kusuhara, T Nakamura, Y Shirakawa, K Mori, Y Naomoto, and Y Yamamoto. Impedance pharyngography to assess swallowing function. *The Journal of international medical research*, 32(6):608–16, 2004.
- [3] H. Nahrstaedt, C. Schultheiss, R. O. Seidl, and T. Schauer. Swallow detection algorithm based on bioimpedance and EMG measurements. In *IFAC Proceedings Volumes (IFAC-Papers Online)*, 2012.
- [4] Chris J Chester, Paul T Gaynor, Richard D Jones, and Maggie-Lee Huckabee. Electrical bioimpedance measurement as a tool for dysphagia visualisation.
- [5] Christopher J Chester. Electrical-Impedance Biofeedback Instrument for Swallowing Rehabilitation. 2014.
- [6] David S Holder. Electrical impedance tomography: methods, history and applications. CRC Press, 2004.