F1 Grand Prix Race Win Predictor — Sprint 2

Predicting F1 winner: complex problem

Reintroduction to the Problem Space

1010 1010 **Binary classification problem**: Win (1) or Not Win (0)

Models for Sprint 2

- Logistic Regression
- Decision Tree
- Random Forest

Data Overview and Changes

Dataset V2: focuses on pre-race factors.

Excludes in-race statistics: e.g. pit stops.

Features engineered: e.g. cumulative season points

Original data trimmed for predictive relevance.

Dataset is heavily Class Imbalanced...

Results of our first models

Benchmark: Predict each row will not win and you will be 95% accurate.

Data Pit Stop: SMOTE's Role in Tuning Predictive Models

Visualization of Original and SMOTE Resampled Data

SMOTE – Produced the best models so far...

Next Steps for Sprint 3...

Further Feature Engineering: enhance predictive power

Test Other Methods To Reduce Class Imbalance

Further Modelling Techniques: e.g. Neural Networks

Profit and Loss Analysis: Make money?

Model Interpretation: What makes a winner?

Thanks for your time