COMP S264F Unit 3: Set Theory

Dr. Keith Lee
School of Science and Technology
The Open University of Hong Kong

Overview

- Set notations
- Equality & Subset
- Venn diagrams
- Finite sets
- Set operators
 - >Union, Intersection, Difference, Complement
- Set identities
- Power sets
- Cartesian products

Sets

- A set is a group of distinct objects.
- To describe a set, we can
 - ▶ list all its elements (enclosed by a pair of braces); or
 - > specify the properties of the objects in the set.

Examples:

- > Let A be the set of all Computing students born in 1999.
- >Let X be the set of {A, B, C, D}.
- \triangleright Let \mathbb{Z} be the set of all integers.
- \triangleright Let \mathbb{N} (natural numbers) = {0, 1, 2, 3, ...}.
- \triangleright EVEN = { x | x \in \mathbb{Z} and (x mod 2 = 0)}.
- { x | ... } is the set builder notation, read as the set of all x such that ...
- ~Python's list comprehension:
 - \triangleright EVEN = [x for x in Z if x mod 2 == 0].

Basic terminology

- The objects in a set are also called the <u>elements</u> or <u>members</u> of the set.
- The notation "x ∈ A" is defined to be the statement "x is an element of A", "x is in A", or "A contains x".
 - "x ∉ A" means "x is not in A".
- The set that contains no element is called the empty set, or the null set, denoted by Ø.
- The universal set is the set containing all objects under consideration.

Equality & Subset

- Two sets A and B are equal, denoted by A = B, if and only if they have the same elements (i.e., $\forall x \ (x \in A \Leftrightarrow x \in B)$).
- E.g., $\{1, 3, 5\} = \{3, 5, 1\}$?

$$\emptyset = \{\emptyset\}$$
?

- A set A is said to be a subset of a set B, denoted by A ⊆ B, if and only if every element of A is also an element of B (i.e., ∀x (x ∈ A ⇒ x ∈ B)).
- E.g., $\{1, 2\} \subseteq \{3, 1, 2\} \subseteq \mathbb{N} \subseteq \mathbb{Z}$

Venn diagrams

Let A and B be sets.

- If A and B are represented as <u>regions in the plane</u>, their <u>relationships</u> can be represented by a Venn diagram.
- E.g., A ⊆ B:

A = B:

Three possible Venn diagrams for A ⊈ B:

Equality: Example 1

How to prove A = B?

- Show that A ⊆ B and also B ⊆ A
- I.e. $\forall x (x \in A \Rightarrow x \in B)$ and $\forall x (x \in B \Rightarrow x \in A)$.

Example 1: Let $A = \{ n \mid n = 2p \text{ for some } p \in \mathbb{Z} \}$, and let $B = \{ m \mid m = 2q - 2 \text{ for some } q \in \mathbb{Z} \}$. Is A = B?

 Before proving a theorem, it is always good to consider some small examples of it.

```
Python: Z = list(range(-10,10))
A = [2*p for p in Z]
B = [2*q-2 for q in Z]
print("Z:", Z)
print("A:", A)
print("B:", B)
```

Output:

Z: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
A: [-20, -18, -16, -14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
B: [-22, -20, -18, -16, -14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16]

Equality: Example 1 (cont')

How to prove A = B?

- Show that A ⊆ B and also B ⊆ A
- I.e. $\forall x (x \in A \Rightarrow x \in B)$ and $\forall x (x \in B \Rightarrow x \in A)$.

Example 1: Let $A = \{ n \mid n = 2p \text{ for some } p \in \mathbb{Z} \}$, and let $B = \{ m \mid m = 2q - 2 \text{ for some } q \in \mathbb{Z} \}$. Is A = B?

Proof.

Let $x \in A$. Then, there is an integer p such that x = 2p = 2(p+1) - 2. As p+1 is also an integer, $x \in B$.

Let $y \in B$. Then, there is an integer q such that y = 2q - 2 = 2(q-1). As q-1 is also an integer, $y \in A$.

Therefore, A = B.

Equality: Example 2

Python: Z = list(range(-10,10))

Example 2: Let $A = \{ n \mid n = 2p \text{ for some } p \in \mathbb{Z} \}$, and let $C = \{ k \mid k = 3r + 1 \text{ for some } r \in \mathbb{Z} \}$. Is A = C?

```
A = [2*p for p in Z]

C = [3*r+1 for r in Z]

print("Z:", Z)

print("A:", A)

print("C:", C)

Z: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

A: [-20, -18, -16, -14, -12, -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

C: [-29, -26, -23, -20, -17, -14, -11, -8, -5, -2, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28]
```

Proof. No, we can find a **counterexample**, as follows:

C contains k = 3(2) + 1 = 7, i.e., $7 \in C$.

To check whether $7 \in A$, we set 7 = 2p.

Then, p = 7/2 = 3.5, which is not an integer.

Thus, $7 \notin A \implies A \neq C$.

Subsets

Let $A = \{1, 2, 3\}.$

True or false?

- $\bullet \varnothing \subseteq A$
- $\bullet \varnothing \subseteq \varnothing$
- $\emptyset \subset S$ for all sets S.

Let A and B be any two sets. A is a <u>proper subset</u> of B, denoted by $A \subset B$, if and only if $A \neq B$ and $A \subseteq B$.

True or false?

 $\bullet \varnothing \subset \varnothing$

Subsets: Example

A: [5, 6, 7, 8, 9]

- The set of <u>real numbers</u> is denoted by \mathbb{R} .
- E.g., $1.33 \in \mathbb{R}, \quad \pi \in \mathbb{R}, \quad -2 \in \mathbb{R}, \quad \mathbb{N} \subset \mathbb{Z} \subset \mathbb{R}.$

B: (-10, -9, -8, -7, -6, -5, -4, -3, -2, 2, 3, 4, 5, 6, 7, 8, 9]

Example: Let $A = \{x \in \mathbb{R} \mid x > 4\}$, and let $B = \{x \in \mathbb{R} \mid x^2 > 1\}$. Prove that $A \subset B$.

```
Python: Z = list(range(-10,10))
A = [x for x in Z if x > 4]
B = [x for x in Z if x**2 > 1]
print("Z:", Z)
print("A:", A)
print("B:", B)

Output:
Z: [-10, -9, -8, -7, 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

Subsets: Example

Example: Let $A = \{x \in \mathbb{R} \mid x > 4\}$, and let $B = \{x \in \mathbb{R} \mid x^2 > 1\}$. Prove that $A \subset B$.

Proof.

First, we show that $A \subseteq B$. For every $x \in A$,

$$x > 4 \implies x^2 > 4^2$$
 (as $x > 0$)
= 16
 $\Rightarrow 1$
 $\Rightarrow x \in B$.

Then, we show that $A \neq B$. Consider x = -2.

$$x^2 = (-2)^2 = 4 > 1 \implies -2 \in B$$
.

But,
$$x = -2 \le 4 \implies -2 \notin A$$
.

It follows that $A \subset B$.

Finite sets

Let S be a set containing exactly $n \ge 0$ elements.

- We say that S is a <u>finite</u> set.
- The <u>cardinality</u> of S, denoted by |S|, is the number of elements in S, i.e., n.

An **infinite** set is a set that is not finite.

Questions: finite or infinite?

- {A, B, C}
- The set of all Computing students who were born in 1999.
- $\mathbb{N} = \{0, 1, 2, ...\}$
- PRIME = the set of prime numbers

What is the cardinality of \emptyset ? $\{\emptyset\}$? $\{\emptyset, \{\emptyset\}\}$?

Set Operators

Let A and B be two sets.

- The union of A and B, denoted by A ∪ B, is the set {x | x ∈ A or x ∈ B }.
 E.g., { 1, 2 } ∪ { 3, 2 } = { 1, 2, 3 }
- The intersection of A and B, denoted by A ∩ B, is the set {x | x ∈ A and x ∈ B }.
 E.g., {1, 2} ∩ {3, 2} = {2}
- The difference of A and B, denoted by A B, is the set {x | x ∈ A and x ∉ B}.
 E.g., {1, 2} {3, 2} = {1}
- The complement of a set A (with respect to a fixed universal set U), denoted by A
 , is the set U - A.

E.g.,
$$U = \{1, 2, 3, 4, 5\}$$
, $A = \{1, 4\}$. Then, $\overline{A} = \{2, 3, 5\}$.

Venn diagram of Set Operators

Let A and B be two sets.

• **A** ∪ **B**:

• A - B:

$$\bullet \overline{A} = U - A$$
:

Set Identities - 1

Identity	Name
$A \cup \varnothing = A$ $A \cap U = A$	Identity laws
$A \cup U = U$ $A \cap \varnothing = \varnothing$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{\overline{A}} = A$	Complementation law

Set Identities - 2

Identity	Name
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$\overline{\frac{A \cup B}{A \cap B}} = \overline{B} \cap \overline{A}$ $\overline{A \cap B} = \overline{B} \cup \overline{A}$	De Morgan's laws

Sets in Python

- Sets are enclosed in braces { }.
- Lists care about order and repetition; while sets only care about membership.
 - In [1], the set has repeated item (i.e., 1) and is thus invalid.
 - ➤ In [2], the repeated item is removed automatically.
- in operator is for set membership.
- set function converts a list to a set.
- sorted function converts a set to a list.

```
In [1]: my_set = \{1,3,5,1\}
In [2]: my_set
Out[2]: {1, 3, 5}
In [3]: 2 in my_set
Out[3]: False
In [4]: 3 in my_set
Out[4]: True
In [5]: set(['c','b','a'])
Out[5]: {'a', 'b', 'c'}
In [6]: sorted(my_set)
Out[6]: [1, 3, 5]
```

Subset & Superset in Python

- A ⊆ B can be checked using issubset function or <= .
- B ⊇ A (i.e., B is a superset of A, or A ⊆ B) can be checked using issuperset function or >=.
- A ⊂ B (A is a proper subset of B)
 can be checked using A < B.
- B ⊃ A (B is a proper superset of A) can be checked using B > A.
- N.B. Set does not care about order, e.g., see [12].

```
In [7]: {2,4}.issubset({2,4,6})
Out[7]: True
In [8]: \{2,4\} \leftarrow \{2,4,6\}
Out[8]: True
In [9]: {2,4,6}.issuperset({2,4})
Out[9]: True
In [10]: \{2,4,6\} >= \{2,4\}
Out[10]: True
In [11]: \{2,4,6\} < \{2,4,6\}
Out[11]: False
In [12]: \{2,4\} < \{6,4,2\}
Out[12]: True
```

Set operators in Python

- Set union can be done by union function or |.
- Set intersection can be done by intersection function or & .
- Set difference can be done by difference function or - .

```
In [13]: \{1,2,3\}.union(\{3,4,5\})
Out[13]: {1, 2, 3, 4, 5}
In [14]: {1,2,3} | {3,4,5}
Out[14]: {1, 2, 3, 4, 5}
In [15]: {1,2,3}.intersection({3,4,5})
Out[15]: {3}
In [16]: {1,2,3} & {3,4,5}
Out[16]: {3}
In [17]: {1,2,3}.difference({3,4,5})
Out[17]: {1, 2}
In [18]: {1,2,3} - {3,4,5}
Out[18]: {1, 2}
```

Proving Set Identities

$$\bullet A \cup \emptyset = A$$

Output: $A \mid B = \{1, 2, 3, 4, 5\}$

Proof.

It is obvious that $A \subseteq A \cup \emptyset$.

If $x \in A \cup \emptyset$, then $(x \in A)$ or $(x \in \emptyset) \Rightarrow (x \in A)$ or false $\Rightarrow x \in A$. Thus, $A \cup \emptyset \subseteq A$.

Therefore, $A \cup \emptyset = A$.

Proving Set Identities (cont')

 $A \cap U = A$

Python: U = set({1,2,3,4,5,6,7,8,9,10}) A = set({1,2,3,4,5}) print("A & U =", A & U)

Output:

$$A \& U = \{1, 2, 3, 4, 5\}$$

Proof.

It is obvious that $A \cap U \subseteq A$.

If $x \in A$, then $x \in A \Rightarrow (x \in A)$ and $(x \in U) \Rightarrow x \in A \cap U$. Thus, $A \subseteq A \cap U$.

Therefore, $A \cap U = A$.

Proving Set Identities (cont')

$$\cdot A \cap \emptyset = \emptyset$$

Output: A & B = set()

Proof.

It is obvious that $A \cap \emptyset \subseteq \emptyset$.

As $\emptyset \subseteq X$ for any set X. Thus, $\emptyset \subseteq A \cap \emptyset$.

Therefore, $A \cap \emptyset = \emptyset$.

Another useful set identity

$$A - B = A \cap \overline{B}$$

Proof.

$$x \in A - B$$

$$\Leftrightarrow$$
 (x \in A) and (x \notin B)

$$\Leftrightarrow$$
 (x \in A) and (x \in \overline{B}).

$$\Leftrightarrow x \in A \cap \overline{B}$$
.

Therefore, $A-B=A\cap \overline{B}$.

Proving Subset: Example 1

Theorem 1. $A \cap B \subseteq B$.

Proof.

```
We need to prove \forall x (x \in A \cap B) \Rightarrow x \in B.
Assume x \in A \cap B.
Then, x \in A and x \in B (Definition of \cap)
\Rightarrow x \in B (p and q \Rightarrow p)
```

Proving Subset: Example 2

Theorem 2. If $A \subset B$, then $A \cap B \subset B$.

Proof.

By Theorem 1, $A \cap B \subseteq B$.

Thus, it <u>remains</u> to prove: If $A \subset B$, then $\exists x ((x \in B) \land (x \notin A \cap B))$.

Assume $A \subset B$.

Then, $\exists x \ (x \in B \land x \notin A)$ (Definition of \cap) $\Rightarrow \exists x \ (x \in B \land ((x \notin A) \lor (x \notin B)))$ ($p \Rightarrow p \lor q$) $\Rightarrow \exists x \ (x \in B \land (x \notin A \cap B))$ ($x \notin A \cap B \Leftrightarrow x \notin A \text{ or } x \notin B$)

Proving Subset: Example 3

Theorem 3. $A \subseteq B$ if and only if $A \cap B = A$.

Proof.

We first prove that if $A \subseteq B$, then $A \cap B = A$.

Assume $A \subset B$.

It is obvious that $A \cap B \subset A$.

If $x \in A$, then $(x \in A)$ and $(x \in B)$ (as $A \subseteq B$) $\Rightarrow x \in A \cap B$. Thus, $A \subseteq A \cap B$.

Therefore, $A \cap B = A$.

Proving Subset: Example 3 (con't)

Theorem 3. $A \subseteq B$ if and only if $A \cap B = A$.

Proof (cont').

Next, we prove that if $A \cap B = A$, then $A \subseteq B$.

Assume $A \cap B = A$.

 $x \in A$

 \Rightarrow x \in A \cap B (as A \cap B = A)

 \Rightarrow (x \in A) and (x \in B)

 $\Rightarrow x \in B$

Thus, $A \subseteq B$.

The theorem follows.

Power Sets

- The power set of a set S, denoted by P(S), is the set of all subsets
 of S.
- That means, for any element x of P(S), x ⊆ S.
 E.g.,
- $P(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$
- $|\{0, 1, 2\}| = 3; |P(\{0, 1, 2\})| = 8.$
- What is the power set of the empty set?
- In general, if |S| = n, then |P(S)| = ?

Size of power set

Theorem. For any set S with n elements, $|P(S)| = 2^n$.

Proof. We can prove by induction on the number of elements.

Base case. When n = 1, let $S = \{a\}$. Then $P(S) = \{\emptyset, \{a\}\}$.

Thus, $|P(S)| = 2 = 2^1 = 2^n$.

Inductive step. Assume that if a set S' contains k elements for some k, then $|P(S')| = 2^k$.

Consider the case where |S| = k + 1.

Let x be an element of S and denote $S' = S - \{x\}$.

Consider each subset A of S'.

- A is also a subset of S.
- A \cup {x} gives another distinct subset of S.

Thus, S has twice as many subsets as S', and

$$|P(S)| = 2 \times |P(S')| = 2 \times 2^k = 2^{k+1}$$
.

Generating power set in Python

- Python does not support a set of sets.
- We will use list instead to generate items in a power set.

```
def P(s):
    if len(s) == 0:
        return [[]]
    else:
        a = s[0]
        subsets = P(s[1:])
        newsubsets = []
        for subset in subsets:
            newsubsets.append([a]+subset)
        return subsets + newsubsets
```

```
a = P([1,2,3,4])
a.sort()
a.sort(key=len)
print(a)
```



```
[[], [1], [2], [3], [4], [1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4], [1, 2, 3, 4]]
```

Power Sets: Example

Prove that $P(A \cap B) = P(A) \cap P(B)$.

Proof.

$$x \in P(A) \cap P(B)$$

$$\Leftrightarrow$$
 x \in P(A) and x \in P(B)

$$\Leftrightarrow x \subseteq A \text{ and } x \subseteq B$$

$$\Leftrightarrow x \subseteq A \cap B$$

$$\Leftrightarrow$$
 x \in P(A \cap B)

Therefore, $P(A \cap B) = P(A) \cap P(B)$.

Cartesian Products

• Ordering is important: An ordered $\underline{n\text{-tuple}}$ ($a_1, a_2, ..., a_n$) is the ordered collection that has a_1 as the first element, a_2 as its second element, ..., and a_n as the n-th element.

NB. The **set** $\{a_1, a_2, ..., a_n\}$ does not carry any ordering.

 Let A and B be sets. The Cartesian product of A and B, denoted by A x B, is the set of all 2-tuples (a, b) where a ∈ A and b ∈ B.

E.g.,
$$\{a,b\} \times \{c,d\} = \{ (a,c), (a,d), (b,c), (b,d) \}.$$

The Cartesian product of the sets A1, A2, ..., An, denoted by A1 x A2 x ... x An, is the set
{ (a₁, a₂, ..., an) | a₁ ∈ A1 and a₂ ∈ A2 and ... and an ∈ An}

Cartesian Products: Questions

Assume that A contains *n* elements and B contains *m* elements.

- How many elements does A x B contain?
- $A \times B = B \times A$?
- Suppose A x B is equal to the empty set.
 What can you conclude?

Cartesian Products: Questions (cont')

Let A be a set of n elements.

- How many elements does P(A) x P(A) contain?
 By definition, P(A) x P(A) = { (X, Y) | X ⊆ A, Y ⊆ A }.
- How many elements are in the set $\{(X, Y) \mid X \subseteq A, Y \subseteq A, X \cap Y = \emptyset \}$?