

IE 5331-003 Homework 2

Spring 2025 Due Date: Sunday, Feb-23-2025, 11:59 PM

Problem 1

Consider the following quadratic optimization (with positive definite matrix) problem, finish the following questions.

$$\min_{x} \frac{1}{2} \langle x, Qx \rangle + \langle c, x \rangle$$

s.t. $Ax = b$

- 1. Provide the dual problem in the maximin form.
- 2. Reformulate the dual problem by solving an optimal *x* exactly. Simplify the resulting optimization problem (merge terms if possible).
- 3. Determine the optimal u of the dual problem by direct calculation (analytical solution).
- 4. Randomly generate five problem instances with $x \in \mathbb{R}^{10}$ (so each Q is a 10×10 positive definite matrix and each $c \in \mathbb{R}^{10}$). Solve the associated dual problem in Python using following methods:
 - (a) Use the analytical solution.
 - (b) Use the gradient decent (first-order method). [hint: numpy or scipy package]
 - (c) Use the Newton's method (second-order method). [hint: numpy or scipy package]
 - (d) Solve the linear system obtained by the KKT conditions.
- 5. Report your results in a table, including optimal values and running times.

Problem 2

A company has two distribution centers (DCs) that require purchasing a certain type of product from n potential suppliers. Ordering from each suppler $i \in [n]$ induces a fix cost of \bar{c}_i dollars. Once an order is placed for the supplier i, parameter \bar{a}_{ij} is the amount of products will be sent from supplier i to DC j. Each DC needs at least d_i amount of products. The details can be found in the following table. Finish the

Γ	Center ID	Supplier ID									Demands d
		1	2	3	4	5	6	7	8	9	Demands a
	1	10	23	13	4	9	20	15	6	12	46
	2	3	8	30	11	6	33	17	18	9	54
Γ	Cost \bar{c}	9	11	7	8	8	13	21	16	11	_

Table 1: Information Table. Center IDs are indexed by $[2] := \{1, 2\}$, Supplier IDs are indexed by $[9] := \{1, 2, ..., 9\}$. Number \bar{a}_{ij} in each cell denotes the amount of products from supplier i to center j.

following questions.

- 1. Set up a formulation assuming all parameters are deterministic as shown in the table.
- 2. Suppose each supply vector $a_j = (a_{ij})_{i \in [9]}$ is uncertain and can take any possible realization of $a_j = \bar{a}_j + \xi$ for some $\xi \in \Xi := \{\xi \mid \langle \xi, \xi \rangle \leq 1\}$, where ξ can be considered as some perturbation of the parameters.

- (a) Set up the associated semi-infinite optimization to ensure solution robustness, i.e., the solution is feasible for the worst-case scenario.
- (b) Solve this semi-infinite optimization using master-subproblem method. [hint: Gurobi callback + lazy cuts. Run with one-hour time limit if necessary.]
- (c) Reformulate the problem using (convex) dualization.
- (d) Solve the reformulated problem in Gurobi [one-hour time limit].
- (e) Compare two methods in terms of optimal values, running times, and optimality gap.
- 3. Suppose the cost c is also uncertain with the representation $c := \bar{c} + \gamma$ for some $\gamma \in \Gamma := \{ \gamma \mid B\gamma \geq b \}$.
 - (a) Adjust the objective function of the previous semi-infinite optimization problem to ensure solution robustness. [hint: consider the worst-case in the objective function]
 - (b) Reformulate the problem to have a one-level optimization problem.