

MSFC ADVANCED CONCEPTS OFFICE DEFINING THE FUTURE OF SPACE EXPLORATION

Advanced Concepts Overview

We Are An Office Specializing In Pre-Phase A & Phase A Concept Definition For Space Exploration Elements

Launch Vehicle Systems

Robotic & Science Systems

Human Exploration Systems

Human Interplanetary Systems

Advanced Concepts Overview

We Utilize Multi-Disciplined Teams Within the Office to Provide Fully Integrated Assessments of Missions and Their Elements

Mission architecture considerations

Team 1 drivers for MGS transportation:

- Launch capability
- Time-of-flight
- Fuel usage
- Propulsion elements
- Manned element cost
- Satellite considerations

12/10/2010

Integrated Systems Analysis Capability

Mission Analysis

Project & Study Highlights

Science & Robotic Exploration

- ◆ Advanced X-ray Timing Array (AXTAR)
- ◆ Small Orbital Debris Detection And Tracking (SODDAT)
- ◆ Cryogenic Propellant Storage & Transfer (CPST) Technology Demonstration Definition
- ◆ Nano-Energetic Propellants
- ◆ Space Solar Power

Human Exploration

- ◆ Space Launch Systems (SLS) Definition
 - ◆ Launch Vehicle Trades & Analysis
 - ◆ Architecture Definition
- ◆ Human Spaceflight Architecture Team (HAT)
 - ◆ Cryo Propulsion Stage Definition
 - ◆ Lunar Lander Definition
 - ◆ Deep Space Habitat Definition
- ◆ Manned GEO Servicing

ACO Contributions to the Agency

***Advanced Concepts Products Influence
NASA Programs***

Collaborative Design Team

- ◆ The ACO Design Teams are established, co-located teams of systems and design engineers
- ◆ Other disciplines or specific expertise are matrixed into the team as necessary
 - ◆ Scientific Areas of Interest
 - ◆ Programmatic Support
 - ◆ Additional Discipline Support

Design & Analysis Tools

INTROS

ProEngineer

Thermal Desktop

Copernicus

LVA

3D Studio

COPA

POST

FEMAP w/NX NASTRAN

Collaborative Design Process

Engineering Directorate Collaborative Pre-Phase A Design Process

Consistent with NASA NPR 7120
System Engineering Principles

Simplified Vehicle Definition Process

Summary

- ◆ Advanced Concepts Performs Rapid Pre-Phase A & Phase A Conceptual Design and Analysis for Space Exploration Elements
 - ◆ Collaborative Engineering Processes
 - ◆ Diverse Toolset

Vdot's implementation will greatly enhance the capabilities of the Advanced Concepts Office

STUDY EXAMPLES

Example: AXTAR Spacecraft Study

AXTAR: Introduction

Customer

- Colleen Wilson-Hodge (VP62) and the AXTAR science team

Mission Description

- The Advanced X-ray Timing Array (AXTAR) is an X-ray observatory concept combining very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity.
- Its mission is to probe the physics of ultra-dense matter, strongly curved space-times, and intense magnetic fields.
- Instruments: (1) the Large Area Timing Array (LATA) is for timing observations of accreting neutron stars and black holes; (2) the sensitive Sky Monitor (SM) acts as a trigger for pointed observations of X-ray transients and also provides sensitive monitoring of the X-ray sky.

Mission Class: MIDEX science mission.

AXTAR Final Deliverable, 6 May 2010 (Revised June 10, 2010)

4

Goals and Responsibilities

Study Goal

- Complete a conceptual spacecraft design to support the AXTAR science mission and determine the maximum number of LATA supermodules and Sky Monitor cameras that can be accommodated on a feasible configuration

Responsibilities

Advanced Concepts Office	Spacecraft	Instruments
	<ul style="list-style-type: none"> Communications Electrical Power Trajectory / GN&C Propulsion Thermal AR&D Launch Stack Shroud Integration Cost 	<ul style="list-style-type: none"> Propose method to transfer heat from LATA to spacecraft thermal control system Determine max number of LATA modules and Sky Monitors for feasible configuration.
VP62		
		Instruments <ul style="list-style-type: none"> Design Power Mass Data requirements Cost (ED04/CS50 will also cost the instruments)

AXTAR Final Deliverable, 6 May 2010 (Revised June 10, 2010)

5

Bus structure

Solar Array (2X)

Sky monitor cluster (7)

Spacecraft bus

Science bus

20 LATAs (4 x 5)

Sky monitor cluster (4)

Sky monitor cluster (6)

AXTAR Final Deliverable, 6 May 2010 (Revised June 10, 2010)

Taurus II Design: Configuration

36

AXTAR: Mass Properties (Falcon 9 Concept)

4.0 Avionics/Control			422.53
4.1 ACS (includes Reaction Wheels and Torque Rods)	1	308.98	308.98
4.2 CDS (includes Flight Computers and Data Recorders)	1	20.00	20.00
4.3 Instrumentation	1	15.00	15.00
4.4 Communications System	1	38.55	38.55
4.5 Avionics Cabling	1	40.00	40.00
5.0 Thermal Control			53.98
5.1 Multilayer Insulation/Thermal Tape	1	42.00	42.00
5.2 Thermal Filler	1	2.10	2.10
5.3 Paint/Thermal Coatings	1	9.10	9.10
5.4 Heaters/Thermostats	1	0.70	0.70
6.0 Contingency			620.35
6.1 Structure	30%	362.50	362.50
6.2 Propulsion	30%	28.40	28.40
6.3 Power	30%	66.53	66.53
6.4 Avionics/Control	30%	126.76	126.76
6.5 Thermal	30%	16.17	16.17
Dry Mass			2688.19
7.0 Non-propellant Fluids			4.09
7.1 Residual Hydrazine	1	2.09	2.09
7.2 Pressurant (GN2)	1	2.00	2.00
8.0 Payload/Science Instruments			1797.20
8.1 LATA	42	30.00	1260.00
8.2 SM	27	2.00	54.00
8.3 IDS	1	30.00	30.00
8.4 Payload Contingency (30%)		403.20	403.20
8.5 Instrument Cabling	1	50.00	50.00
Inert Mass			1801.29
Total Less Propellant			4489.48
9.0 Propellant (Hydrazine)	1	405.25	405.25
Gross Mass			4894.7268

AXTAR Final Deliverable, 6 May 2010 (Revised June 10, 2010)

151

Example: Cryostat

CRYOSTAT Mission Overview

DESCRIPTION

- This project will demonstrate the technologies needed to store, monitor, access, pre-position and transfer cryogenic propellants for large cryogenic propellant storage and transfer systems that will support future space mission and commercial market opportunities

APPROACH

- Critical technologies are demonstrated in one mission utilizing one vehicle

APPLICATIONS

- Human exploration missions beyond LEO utilizing:
 - Large cryogenic stages w/ long duration space exposures
 - Propellant transfer for the earth departure stages (EDS)
- Supporting infrastructure for commercial space options (e.g., for satellite servicing, propellant transfer, refueling depots, tourism, etc.)

BENEFITS

- Enabling large cryogenic propulsion stages for Human exploration
- Options for use of commercial operations to support explorations missions (through use of multiple propellant transfers)

TECHNOLOGY ELEMENTS

- Tank Thermal Control
- Tank Pressure Control
- Cryogenic Propellant Transfer
- Liquid Acquisition
- Mass Gauging
- Leak Detection

CONFIGURATION

YOSTYAT Concepts

Lite Maximum Size (Based on Falcon 9 Capability) CPS-Lite Minimum Size (Based on 2 Month Mission)

Length:	4.6 m	Length:	4.2 m
Dia.:	4 m	Dia.:	2 m
LH2 Mass:	316 kg	LH2 Mass:	250 kg
LOX Mass:	2000 kg	LOX Mass:	580 kg
CFM System	3816 kg	CFM System	2350 kg
Bus	3020 kg	Bus	1300 kg
Total Mass:	6836 kg	Total Mass:	3650 kg

CPS-Pathfinder (2 Month Mission)

Element	Mass
LH2	250 kg
Total CFM Payload	791 kg
Spacecraft Bus	471 kg
Launch Mass	1262 kg

Spacecraft Size
Length = 2.4 m
Dia. = 1.9 m

Spacecraft Bus

Example: HEFT CryoPropulsion Stage

Groundrules & Assumptions

- ◆ Provides ΔV for circularization of the launch vehicle 30x130 nmi delivery orbit to the LEO 220 nmi circular orbit for itself and any other payloads manifested with it on the launch vehicle.
- ◆ CPS includes avionics, propulsion, and attitude control for automated rendezvous and docking. When rendezvous and docking with other elements the CPS can play either the active or passive role.
- ◆ CPS structure will provide adequate load bearing strength to account for its own fully loaded mass, plus the mass of any attached payloads through all phases of the mission, including launch, loiter, docking, and active thrusting.
- ◆ While loitering in-space, the CPS provides required attitude control for itself plus any attached payloads utilizing on-board RCS (storable, bi-prop system).

Pre-Decisional: For NASA Internal Use Only

4

Cryo-Propulsion Stage – Block 1

Design Constraints/Parameters

Propellants: O2/H2

Stage PMF:

0.8

Stage Diameter:

7.5 m

Stage Length:

18 m

Engines / Type:

4 J Altair DME

Engine Thrust (100%)

18,627

Engine Isp (100%)

448.6 sec

RCS Propellants:

NTO/MMH

RCS Thrusters / Type:

16 / Press-fed

RCS Thruster Isp:

300 sec

Passive Thermal Control of Propellants

O2/H2, NTO/MMH, Bi-prop, RCS

The Block 1 Cryo Propulsion Stage (CPS-B1) is delivered to a 30 x 130 nmi insertion orbit by the launch vehicle where the CPS is then responsible for raising and circularizing itself and any payload to an orbit of 220 nmi. The non-reuseable CPS-B1 utilizes passive thermal control techniques to limit cryogenic propellant boiloff during its operation. The CPS-B1 includes avionics, propulsion, and attitude control for automated rendezvous and docking. Inert propellants are mission specific and are affected by mission duration, number of engine burns, and other mission parameters.

Pre-Decisional: For NASA Internal Use Only

Category

Mass, kg

Structure: 2,913

Propulsion: 3,823

MPS (including tanks): 2,761

RCS (including tanks): 252

Power: 147

Avionics: 455

Thermal: 1,091

Active CFM: -

Passive CFM: 364

Vehicle TCS: 728

MMOD Protection: -

Growth (30%): 2,289

Dry Mass: 9,918

Inert Mass*: 2029

MPS Fuel Boiloff: 49

MPS Oxidizer Boiloff: 98

Non-Usable MPS Prop: 1,716

Non-Usable RCS Prop: 21

Pressurants: 136

Total Less Usable Prop: 11,247

Usable Propellant: 67,897

MPS Fuel: 10,266

MPS Oxidizer: 55,572

RCS Fuel: 392

RCS Oxidizer: 647

Total Stage Wet Mass: 79,844

* Mission specific values

Groundrules & Assumptions

- ◆ CPS has a power generation and storage system capable of providing the necessary power for itself, plus any required attached payloads (quantity TBD) for all phases of flight. The full power generation capability of the CPS can be transferred to other elements through the forward docking IDSS/payload interface.
- ◆ The CPS Block 2 includes a long duration cryogenic fluid management system that provides 0.5%/month liquid hydrogen loss (by mass), and 0%/month liquid oxygen loss.
- ◆ During high thrust maneuvers where a Solar Electric Propulsion (SEP) stage is connected, the CPS engines must maintain a thrust to weight of the assembled elements of less than 0.1g.

Pre-Decisional: For NASA Internal Use Only

5

Cryo-Propulsion Stage – Block 2

Design Constraints/Parameters

Propellant: O2/H2

Stage PMF:

0.8

Stage Diameter:

7.5 in

Stage Length:

18 in

Engines / Type:

4 J Altair DME

Engine Thrust (100%): 18,627

Engine Isp (100%): 448.6 sec

RCS Propellants: NTO/MMH

RCS Thrusters / Type:

16 / Press-fed

RCS Thruster Isp:

300 sec

0.5% per month HQ Boiloff

0% per month O2 Boiloff

2 x UltraFlex Arrays (26.7 kW total power)

Description

The Block 2 Cryo Propulsion Stage (CPS-B2) builds upon the Block 1 CPS but includes a long duration cryogenic fluid management system that provides 0.5%/month liquid hydrogen loss (by mass), and 0%/month liquid oxygen loss. The CPS includes avionics, propulsion, and attitude control for automated rendezvous and docking. Inert propellants are mission specific and are affected by mission duration, number of engine burns, and other mission parameters.

Category

Mass, kg

Structure: 2,913

Propulsion: 3,823

MPS (including tanks): 2,711

RCS (including tanks): 252

Power: 1,003

Avionics: 405

Thermal: 4,057

Active CFM: 2,215

Passive CFM: 324

Vehicle TCS: 728

MMOD Protection: 382

Growth (30%): 3,599

Dry Mass: 15,383

Inert Mass*: 9,220

MPS Fuel Ratio: 134

MPS Oxidizer Ratio: 1

Non-Usable MPS Prop: 1,716

Non-Usable RCS Prop: 31

Pressurants: 136

Total Less Usable Prop: 17,692

Usable Propellant: 97,897

MPS Fuel: 10,288

MPS Oxidizer: 55,572

RCS Fuel: 392

RCS Oxidizer: 647

Total Stage Wet Mass: 85,499

* Mission specific values

Pre-Decisional: For NASA Internal Use Only

7

Example: Manned GEO Servicing

Example: Nano-Energetic Propellants

Monopropellant Mission Matrix

Advanced Concepts

Mission	Propellant Load (kg)	ΔV (m/sec)	NEPP Propellant Candidates	Science Payload Increase (%) O2/H2 HAN/H2O
Mars Astrobiology Explorer	596	419	O2 / Metalized Gelled H2 (MGH)	60.0 50.3
Mars Sample Return Lander	470	389	HAN / H2O / FGS-nDiamond	18.9 16.2
Mars Geophysical Network	132	296		34.4 38.6
Io Observer	989	1124		110.5 89.4
Saturn Probe	252	675		113.4 106.3

Game-Changing

Bipropellant Mission Matrix

Advanced Concepts

Mission	Propellant (kg)	ΔV (m/sec)	NEPP Propellant Candidates	Science Payload Increase (%) O2/H2 HAN
Mercury Lander	1969	1238	O2 / Metalized Gelled H2 (MGH)	51.8 -2.6
Venus Mobile Explorer	370	280		15.5 4.6
Venus Intrepid Terresa Lander	351	270	HAN / H2O / FGS-nDiamond	9.5 3.0
Venus Climate Mission	1432	1734		22.8 -0.4
Lunar Polar Volatiles Explorer	216	254		3.5 2.0
Mars Sample Return Orbiter	1573	3690		21 kg -0.6
Jupiter Europa Orbiter	2681	2260		27.1 -2.1
Ganymede Orbiter	2664	2662		65.5 -5.0
Trojan Tour	557	1933		18.3 2.5
Titan Saturn System	2528	2377		32.8 -2.3
Enceladus Fly-by	2000	2000		55.8 -2.9
Enceladus Orbiter	2434	2881		60.9 -4.2
Titan Lander	2255	2590		54.4 -3.4
Uranus Orbiter and Probe	1161	2500		23.5 0.3
Chiron Orbiter	840	2166		28.6 1.9

Game-Changing

Solid Propellant Mission Matrix

Advanced Concepts

Mission	Baseline Motor	Propellant Load (kg)	ΔV (m/sec)	NEPP Propellant Candidates	Science Payload Increase (%)				
					(1) DCPD / AP / nAI	(2) High Solids HTPB	(3) HAN/HTPB/AI	(4) HAN/GAP/AI	(5) HAN/DCPD/AI
Mercury Lander	Star 48V	2076	4426	(1) DCPD / AP / nAI	-62.8	13.8	-9.1	13.8	-21.3
Lunar Geophysical Network	Star 30BP	457	2450	(2) High Solids HTPB	-19.3	17.7	1.2	15.7	-7.7
Lunar Polar Volatiles Explorer	Star 48V	2010	2455	(3) HAN/HTPB/AI	-41.0	10.1	-5.2	10.1	-13.3
Mars Sample Return Lander	Star 17A	145	1857	(4) HAN/GAP/AI	-1.6	1.0	0.2	1.0	-0.2
				(5) HAN/DCPD/AI					

