Generalization of risk ratio using observational data

Julie Josse (Inria) & Erwan Scornet (Sorbonne Université)

Ahmed BOUGHDIRI May 30, 2024

- \Rightarrow Effect of a policy/intervention/treatment T on an outcome Y
 - What is the effect of smoking on COVID-19 mortality rate?
 - What is the effect of online classes on student performance ?
 - How does 4 days work week affect the economy?

Effect of a policy/intervention/treatment T on an outcome Y

[&]quot;People who have a lighter tend to have a smaller life expectancy"

"People who have a lighter tend to have a smaller life expectancy"

"People who have a lighter tend to have a smaller life expectancy"

Covariates			Treatment	Outcome	Potential outcomes	
X_1	X_2	X_3	T	Y	Y ⁽⁰⁾	$Y^{(1)}$
1.1	20	F	1	67	?	67
6	45	F	0	83	83	?
0	15	M	1	57	?	57
12	52	M	0	100	100	?

Ways to measure the causal effect

$$\mathbb{E}\left[Y^{(1)}\right] \qquad \mathbb{E}\left[Y^{(0)}\right]$$

Expected outcome if treated (1) or control (0)

Ways to measure the causal effect

$$\mathbb{E}\left[Y^{(1)}
ight] \qquad \mathbb{E}\left[Y^{(0)}
ight]$$

Expected outcome if treated (1) or control (0)

$$\tau_{RR} = \frac{\mathbb{E}\left[Y^{(1)}\right]}{\mathbb{E}\left[Y^{(0)}\right]} \qquad \tau_{SR} = \frac{1 - \mathbb{E}\left[Y^{(1)}\right]}{1 - \mathbb{E}\left[Y^{(0)}\right]}$$

$$\tau_{RD} = \mathbb{E}\left[Y^{(1)}\right] - \mathbb{E}\left[Y^{(0)}\right] \qquad \tau_{NNT} = \tau_{RD}^{-1}$$
 Number Needed to Treat
$$\tau_{OR} = \frac{\mathbb{E}[Y^{(1)}]}{1 - \mathbb{E}[Y^{(1)}]} \left(\frac{\mathbb{E}[Y^{(0)}]}{1 - \mathbb{E}[Y^{(0)}]}\right)^{-1}$$

Ways to measure the causal effect

$$\mathbb{E}\left[Y^{(1)}\right] \qquad \mathbb{E}\left[Y^{(0)}\right]$$

Expected outcome if treated (1) or control (0)

RESEARCH METHODS & REPORTING

CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials

David Mohe; Sally Hopewelt: Venneth F Schutz, "Victor Montori," Peter C Gatasche," P | Devereaux, "Dana

Elbourne 7 Matthias Egger 9 Douglas G Altman

"[...] both the relative effect (risk ratio (relative risk) or odds ratio) and the absolute effect (risk difference) should be reported (with confidence intervals), as neither the relative measure nor the absolute measure alone gives a complete picture of the effect and its implications."

Randomized Controlled Trial (RCT)

(1)
$$T_i \perp \{Y_i(0), Y_i(1), X_i\} \implies e = \mathbb{P}[T_i = 1]$$

Randomized Controlled Trial (RCT)

(1)
$$T_i \perp \{Y_i(0), Y_i(1), X_i\} \implies e = \mathbb{P}[T_i = 1]$$

$$\tau_{RR} = \mathbb{E}[Y(1)]/\mathbb{E}[Y(0)]$$

$$\stackrel{\text{(1)}}{=} \mathbb{E}[Y|T = 1]/\mathbb{E}[Y|T = 0]$$

Randomized Controlled Trial (RCT)

(1)
$$T_i \perp \{Y_i(0), Y_i(1), X_i\} \implies e = \mathbb{P}[T_i = 1]$$

$$\tau_{RR} = \mathbb{E}[Y(1)]/\mathbb{E}[Y(0)]$$

$$\stackrel{\text{(1)}}{=} \mathbb{E}[Y|T = 1]/\mathbb{E}[Y|T = 0]$$

Simple mean approach:

$$\hat{\tau}_{\text{RR,N,n}} = \frac{\frac{1}{n_1} \sum_{i=1}^{n} T_i Y_i}{\frac{1}{n-n_1} \sum_{i=1}^{n} (1 - T_i) Y_i} \quad \text{with} \quad n_1 = \sum_{i=1}^{n} T_i$$

$$\sqrt{n} \left(\hat{\tau}_{\text{RR,N,n}} - \tau_{\text{RR}} \right) \xrightarrow{d} \mathcal{N} \left(0, V_{\text{RR,N}} \right)$$

where

$$V_{ ext{\tiny RR,N}} = au_{ ext{\tiny RR}}^2 \left(rac{\mathsf{Var}\left(Y^{(1)}
ight)}{\mathsf{e}\mathbb{E}[Y^{(1)}]^2} + rac{\mathsf{Var}\left(Y^{(0)}
ight)}{(1-e)\mathbb{E}[Y^{(0)}]^2}
ight)$$

Randomized Controlled Trial (RCT)

- Gold standard (allocation 🐑)
- $T_i \perp \{Y_i(0), Y_i(1), X_i\}$ (1)
- Small sample size: expensive, long, ethical limitations
- Not representative sample:restrictive inclusion criteria

Observational Data

- Low quality Data: contains confounding bias
- $\{Y_i(0), Y_i(1)\} \perp T_i \mid X_i(2)$
- Large sample size (registries, biobanks, EHR, claims)
- Representative sample

Randomized Controlled Trial (RCT)

- Gold standard (allocation 🏝)
- $T_i \perp \{Y_i(0), Y_i(1), X_i\}$ (1)
- Small sample size: expensive, long, ethical limitations
- Not representative sample:restrictive inclusion criteria

Observational Data

- Low quality Data: contains confounding bias
- $\{Y_i(0), Y_i(1)\} \perp T_i \mid X_i(2)$
- Large sample size (registries, biobanks, EHR, claims)
- Representative sample

$$\begin{split} \tau_{\mathsf{RR}} &= \mathbb{E}[Y(1)]/\mathbb{E}[Y(0)] \\ &\stackrel{\text{(2)}}{=} \mathbb{E}[\mathbb{E}[Y|X,\,T=1]]/\mathbb{E}[\mathbb{E}[Y|X,\,T=0]] \end{split}$$

Observational Data

$$T_i \perp \{Y_i(0), Y_i(1), X_i\} \implies \{Y_i(0), Y_i(1)\} \perp T_i \mid X_i$$
 $e = \mathbb{P}[T = 1] \implies \underbrace{e(X) = \mathbb{P}[T = 1|X]}_{\text{propensity score}}$

Observational Data

$$T_i \perp \{Y_i(0), Y_i(1), X_i\} \implies \{Y_i(0), Y_i(1)\} \perp T_i \mid X_i$$
 $e = \mathbb{P}[T = 1] \implies \underbrace{e(X) = \mathbb{P}[T = 1|X]}_{\text{propensity score}}$

• Inverse weighted approach

Observational Data

$$T_i \perp \{Y_i(0), Y_i(1), X_i\} \implies \{Y_i(0), Y_i(1)\} \perp T_i \mid X_i$$
 $e = \mathbb{P}[T = 1] \implies \underbrace{e(X) = \mathbb{P}[T = 1|X]}_{\text{propensity score}}$

- Inverse weighted approach
- Regression based approach

Observational Data

$$T_i \perp \{Y_i(0), Y_i(1), X_i\} \implies \{Y_i(0), Y_i(1)\} \perp T_i \mid X_i$$
 $e = \mathbb{P}[T = 1] \implies \underbrace{e(X) = \mathbb{P}[T = 1|X]}_{\text{propensity score}}$

- Inverse weighted approach
- Regression based approach
- Double robust based approach

Observational Data

Inverse weighted approach: We estimate $\hat{e}(X) = \mathbb{P}[T = 1|X]$

Observational Data

Inverse weighted approach: We estimate $\hat{e}(X) = \mathbb{P}[T = 1|X]$

$$\hat{\tau}_{\text{\tiny RR,IPW}} = \frac{\sum_{i=1}^n \frac{T_i Y_i}{\hat{\epsilon}(X_i)}}{\sum_{i=1}^n \frac{(1-T_i)Y_i}{1-\hat{\epsilon}(X_i)}}$$

Observational Data

Inverse weighted approach: We estimate $\hat{e}(X) = \mathbb{P}[T = 1|X]$

$$\hat{\tau}_{\text{\tiny RR,IPW}} = \frac{\sum_{i=1}^{n} \frac{T_{i}Y_{i}}{\hat{e}(X_{i})}}{\sum_{i=1}^{n} \frac{(1-T_{i})Y_{i}}{1-\hat{e}(X_{i})}} \implies \tau_{\text{\tiny RR,IPW}}^{\star} = \frac{\sum_{i=1}^{n} \frac{T_{i}Y_{i}}{e(X_{i})}}{\sum_{i=1}^{n} \frac{(1-T_{i})Y_{i}}{1-e(X_{i})}}$$

Observational Data

Inverse weighted approach: We estimate $\hat{e}(X) = \mathbb{P}[T = 1|X]$

$$\hat{\tau}_{\text{\tiny RR,IPW}} = \frac{\sum_{i=1}^n \frac{T_i Y_i}{\hat{e}(X_i)}}{\sum_{i=1}^n \frac{(1-T_i)Y_i}{1-\hat{e}(X_i)}} \implies \tau_{\text{\tiny RR,IPW}}^{\star} = \frac{\sum_{i=1}^n \frac{T_i Y_i}{e(X_i)}}{\sum_{i=1}^n \frac{(1-T_i)Y_i}{1-e(X_i)}}$$

$$\sqrt{n}\left(\tau_{\text{\tiny RR,IPW}}^{\star}-\tau_{\text{\tiny RR}}\right)\overset{d}{\rightarrow}\mathcal{N}\left(0,V_{\text{\tiny RR,IPW}}\right)$$

where

$$V_{\text{RR,IPW}} = \tau_{\text{RR}}^2 \left(\frac{\mathbb{E}\left[\frac{(Y^{(1)})^2}{e(X)}\right]}{\mathbb{E}\left[Y^{(1)}\right]^2} + \frac{\mathbb{E}\left[\frac{(Y^{(0)})^2}{1 - e(X)}\right]}{\mathbb{E}\left[Y^{(0)}\right]^2} \right).$$

Observational Data

Inverse weighted approach: We estimate $\hat{e}(X) = \mathbb{P}[T = 1|X]$

$$\hat{\tau}_{\text{\tiny RR,IPW}} = \frac{\sum_{i=1}^n \frac{T_i Y_i}{\hat{e}(X_i)}}{\sum_{i=1}^n \frac{(1-T_i)Y_i}{1-\hat{e}(X_i)}} \implies \tau_{\text{\tiny RR,IPW}}^{\star} = \frac{\sum_{i=1}^n \frac{T_i Y_i}{e(X_i)}}{\sum_{i=1}^n \frac{(1-T_i)Y_i}{1-e(X_i)}}$$

$$\sqrt{n}\left(\tau_{\text{\tiny RR,IPW}}^{\star}-\tau_{\text{\tiny RR}}\right)\overset{d}{\rightarrow}\mathcal{N}\left(0,V_{\text{\tiny RR,IPW}}\right)$$

where

$$V_{\text{RR,IPW}} = \tau_{\text{RR}}^2 \left(\frac{\mathbb{E}\left[\frac{(Y^{(1)})^2}{e(X)}\right]}{\mathbb{E}\left[Y^{(1)}\right]^2} + \frac{\mathbb{E}\left[\frac{(Y^{(0)})^2}{1 - e(X)}\right]}{\mathbb{E}\left[Y^{(0)}\right]^2} \right).$$

Furthermore, if for all i, $0 < m \le Y_i \le M$ we have:

$$\left| \textit{Bias}(\tau_{\text{\tiny RR,IPW}}^{\star}) \right| \leq \frac{2 \textit{M}^3 (1-\eta)^3}{\textit{nm}^3 \eta^3} \quad \left| \mathsf{Var}(\tau_{\text{\tiny RR,IPW}}^{\star}) \right| \leq \frac{4 \textit{M}^4 (1-\eta)^6}{\textit{nm}^6 \eta^4}$$

Observational Data

Regression based approach: We estimate $\hat{\mu}_t(X) = \mathbb{E}[Y|T=t,X]$

Observational Data

Regression based approach: We estimate $\hat{\mu}_t(X) = \mathbb{E}[Y|T=t,X]$

$$\hat{\tau}_{_{\mathrm{RR,G,\,n}}} = rac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i})}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})}$$

Observational Data

Regression based approach: We estimate $\hat{\mu}_t(X) = \mathbb{E}[Y|T=t,X]$

$$\hat{\tau}_{\text{\tiny RR,G, n}} = \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i})}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \implies \tau_{\text{\tiny RR,G, n}}^{\star} = \frac{\sum_{i=1}^{n} \mu_{1}^{\star}(X_{i})}{\sum_{i=1}^{n} \mu_{0}^{\star}(X_{i})}$$

Observational Data

Regression based approach: We estimate $\hat{\mu}_t(X) = \mathbb{E}[Y|T=t,X]$

$$\hat{\tau}_{\text{\tiny RR,G, n}} = \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i})}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \implies \tau_{\text{\tiny RR,G, n}}^{\star} = \frac{\sum_{i=1}^{n} \mu_{1}^{\star}(X_{i})}{\sum_{i=1}^{n} \mu_{0}^{\star}(X_{i})}$$
$$\sqrt{n} \left(\tau_{\text{\tiny RR,G, n}}^{\star} - \tau_{\text{\tiny RR}}\right) \stackrel{d}{\to} \mathcal{N}\left(0, V_{\text{\tiny RR,G}}\right)$$

where

$$V_{ ext{RR,G}} = au_{ ext{RR}}^2 \operatorname{Var} \left(rac{\mu_1^\star(X)}{\mathbb{E}\left[Y^{(1)}
ight]} - rac{\mu_0^\star(X)}{\mathbb{E}\left[Y^{(0)}
ight]}
ight)$$

Observational Data

Regression based approach: We estimate $\hat{\mu}_t(X) = \mathbb{E}[Y|T=t,X]$

$$\hat{\tau}_{\text{\tiny RR,G, n}} = \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i})}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \implies \tau_{\text{\tiny RR,G, n}}^{\star} = \frac{\sum_{i=1}^{n} \mu_{1}^{\star}(X_{i})}{\sum_{i=1}^{n} \mu_{0}^{\star}(X_{i})}$$

$$\sqrt{n}\left(au_{ ext{\tiny RR,G, n}}^{\star}- au_{ ext{\tiny RR}}\right)\overset{d}{
ightarrow}\mathcal{N}\left(0,V_{ ext{\tiny RR,G}}\right)$$

where

$$V_{ ext{\tiny RR,G}} = au_{ ext{\tiny RR}}^2 \operatorname{\sf Var} \left(rac{\mu_1^\star(X)}{\mathbb{E}\left[Y^{(1)}
ight]} - rac{\mu_0^\star(X)}{\mathbb{E}\left[Y^{(0)}
ight]}
ight)$$

Assume for all i, $M_0 \ge \mu_0^{\star}(x_i) \ge m_0 > 0$ and $M_1 \ge \mu_1^{\star}(x_i)$. Then, we have:

$$|\textit{Bias}(\hat{\tau}_{\text{\tiny RR, G, n}})| \leq \frac{2M_1M_0^2}{\textit{nm}_0^3} \quad |\mathsf{Var}(\hat{\tau}_{\text{\tiny RR, G, n}})| \leq \frac{2M_0^2M_1(M_1 + M_0)}{\textit{nm}_0^6}$$

Observational Data

Observational Data

$$\hat{\tau}_{\text{RR,AIPW}} = \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i}) + \frac{T_{i}(Y_{i} - \hat{\mu}_{1}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i}) + \frac{(1 - T_{i})(Y_{i} - \hat{\mu}_{0}(X_{i}))}{1 - \hat{\epsilon}(X_{i})}}.$$

Observational Data

$$\hat{\tau}_{\text{RR,AIPW}} = \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i}) + \frac{T_{i}(Y_{i} - \hat{\mu}_{1}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i}) + \frac{(1 - T_{i})(Y_{i} - \hat{\mu}_{0}(X_{i}))}{1 - \hat{\epsilon}(X_{i})}}.$$

If
$$\mathbb{E}\left[\left(\hat{\mu}_{(t)}(X_i) - \mu_{(t)}(X_i)\right)^2\right] \mathbb{E}\left[\left(\hat{e}(X_i) - e(X_i)\right)^2\right] = o\left(\frac{1}{n}\right)$$
 then:

Observational Data

Double robust based approach: We estimate $\hat{\mu}_t(X) = \mathbb{E}[Y|T=t,X]$ and $\hat{e}(X) = \mathbb{P}[T=1|X]$:

$$\hat{\tau}_{\text{RR,AIPW}} = \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i}) + \frac{T_{i}(Y_{i} - \hat{\mu}_{1}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i}) + \frac{(1 - T_{i})(Y_{i} - \hat{\mu}_{0}(X_{i}))}{1 - \hat{\epsilon}(X_{i})}}.$$

If
$$\mathbb{E}\left[\left(\hat{\mu}_{(t)}(X_i) - \mu_{(t)}(X_i)\right)^2\right] \mathbb{E}\left[\left(\hat{e}(X_i) - e(X_i)\right)^2\right] = o\left(\frac{1}{n}\right)$$
 then:

$$\sqrt{n}\left(\hat{\tau}_{\text{RR,AIPW}}- au_{\text{RR}}\right)\overset{d}{
ightarrow}\mathcal{N}\left(0,V_{\text{RR,AIPW}}\right)$$

where

$$\frac{v_{\mathrm{RR,AIPW}}}{\tau_{\mathrm{RR}}^2}\!=\!\!\mathrm{Var}\!\left(\frac{\mu_1(\mathbf{X})}{\mathbb{E}\!\left[\mathbf{Y}^{(1)}\right]}\!-\!\frac{\mu_0(\mathbf{X})}{\mathbb{E}\!\left[\mathbf{Y}^{(0)}\right]}\right)\!+\!\mathbb{E}\!\left[\frac{\mathrm{Var}\!\left(\mathbf{Y}^{(1)}|\mathbf{X}\right)}{e(\mathbf{X})\mathbb{E}\!\left[\mathbf{Y}^{(1)}\right]^2}\right]\!+\!\mathbb{E}\!\left[\frac{\mathrm{Var}\!\left(\mathbf{Y}^{(0)}|\mathbf{X}\right)}{(1\!-\!e(\mathbf{X}))\mathbb{E}\!\left[\mathbf{Y}^{(0)}\right]^2}\right]\!.$$

Observational Data

Observational Data

$$\hat{\tau}_{\mathrm{RR,OS}} \! = \! \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i})}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \left(1 \! - \! \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i}) \! + \! \frac{T_{i}(Y_{i} \! - \! \hat{\mu}_{1}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \right) + \frac{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i}) \! + \! \frac{(1 \! - \! T_{i})(Y_{i} \! - \! \hat{\mu}_{0}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})}$$

Observational Data

$$\hat{\tau}_{\mathrm{RR,OS}} \! = \! \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i})}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \left(1 - \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i}) + \frac{T_{i}(Y_{i} - \hat{\mu}_{1}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \right) + \frac{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i}) + \frac{(1 - T_{i})(Y_{i} - \hat{\mu}_{0}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})}$$

If
$$\mathbb{E}\Big[\big(\hat{\mu}_{(t)}(X_i) - \mu_{(t)}(X_i)\big)^2\Big] \mathbb{E}\Big[(\hat{e}(X_i) - e(X_i))^2\Big] = o\Big(\frac{1}{n}\Big)$$
 and $[\dots]$ then:

Observational Data

Double robust based approach: We estimate $\hat{\mu}_t(X) = \mathbb{E}[Y|T=t,X]$ and $\hat{e}(X) = \mathbb{P}[T=1|X]$:

$$\hat{\tau}_{\mathrm{RR,OS}} \! = \! \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i})}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \left(1 \! - \! \frac{\sum_{i=1}^{n} \hat{\mu}_{1}(X_{i}) \! + \! \frac{T_{i}(Y_{i} \! - \! \hat{\mu}_{1}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})} \right) \! + \! \frac{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i}) \! + \! \frac{(1 \! - \! T_{i})(Y_{i} \! - \! \hat{\mu}_{0}(X_{i}))}{\hat{\epsilon}(X_{i})}}{\sum_{i=1}^{n} \hat{\mu}_{0}(X_{i})}$$

If
$$\mathbb{E}\left[\left(\hat{\mu}_{(t)}(X_i) - \mu_{(t)}(X_i)\right)^2\right] \mathbb{E}\left[\left(\hat{e}(X_i) - e(X_i)\right)^2\right] = o\left(\frac{1}{n}\right)$$
 and $\left[\ldots\right]$ then:

$$\sqrt{n}\left(\hat{\tau}_{\scriptscriptstyle \mathrm{RR,OS}} - au_{\scriptscriptstyle \mathrm{RR}}\right) \overset{d}{
ightarrow} \mathcal{N}\left(0,\,V_{\scriptscriptstyle \mathrm{RR,AIPW}}\right)$$

where

$$\frac{v_{\mathrm{RR,AIPW}}}{\tau_{\mathrm{RR}}^2}\!=\!\!\mathrm{Var}\!\left(\frac{\mu_1(\mathbf{X})}{\mathbb{E}\!\left[\mathbf{Y}^{(1)}\right]}\!-\!\frac{\mu_0(\mathbf{X})}{\mathbb{E}\!\left[\mathbf{Y}^{(0)}\right]}\right)\!+\!\mathbb{E}\!\left[\frac{\mathrm{Var}\!\left(\mathbf{Y}^{(1)}|\mathbf{X}\right)}{\mathrm{e}(\mathbf{X})\mathbb{E}\!\left[\mathbf{Y}^{(1)}\right]^2}\right]\!+\!\mathbb{E}\!\left[\frac{\mathrm{Var}\!\left(\mathbf{Y}^{(0)}|\mathbf{X}\right)}{(1\!-\!\mathrm{e}(\mathbf{X}))\mathbb{E}\!\left[\mathbf{Y}^{(0)}\right]^2}\right]\!.$$

Observational Data

Efficiency Theory:

Suppose we want to estimate a function f in a value a:

$$a \approx \hat{a} \implies f(a) \approx f(\hat{a}) \qquad f(a) = f(\hat{a}) + \int_{\hat{a}}^{a} f'(t) dt$$

Risk Ratio

Observational Data

Efficiency Theory:

Suppose we want to estimate a function f in a value a:

$$a \approx \hat{a} \implies f(a) \approx f(\hat{a}) \qquad f(a) = f(\hat{a}) + \int_{\hat{a}}^{a} f'(t) dt$$

$$f(a) \implies \Psi(\mathcal{P}_{X,T,Y}) = \frac{\mathbb{E}\left[\mathbb{E}\left[Y|T=1,X\right]\right]}{\mathbb{E}\left[\mathbb{E}\left[Y|T=0,X\right]\right]}$$
$$\mathcal{P}_{X,T,Y} \approx \hat{\mathcal{P}}_{X,T,Y} \implies \Psi(\mathcal{P}) \approx \Psi(\hat{\mathcal{P}})$$

Risk Ratio

Observational Data

Efficiency Theory:

Suppose we want to estimate a function f in a value a:

$$a \approx \hat{a} \implies f(a) \approx f(\hat{a}) \qquad f(a) = f(\hat{a}) + \int_{\hat{a}}^{a} f'(t) dt$$

$$f(a) \implies \Psi(\mathcal{P}_{X,T,Y}) = \frac{\mathbb{E}\left[\mathbb{E}\left[Y|T=1,X\right]\right]}{\mathbb{E}\left[\mathbb{E}\left[Y|T=0,X\right]\right]}$$
$$\mathcal{P}_{X,T,Y} \approx \hat{\mathcal{P}}_{X,T,Y} \implies \Psi(\mathcal{P}) \approx \Psi(\hat{\mathcal{P}})$$

$$\Psi(\mathcal{P}) = \Psi(\hat{\mathcal{P}}) + \int \varphi(z; \hat{\mathcal{P}}) d\mathcal{P}(z) + R_2(\hat{\mathcal{P}}, \mathcal{P})$$
$$\simeq \Psi(\mathbb{P}_n) + \frac{1}{n} \sum_{i=1}^n \varphi(Z_i; \mathbb{P}_n) := \hat{\tau}_{RR,OS}$$

 φ can be seen a the derivative of the Ψ according to a distribution \mathcal{P} .

Simulations

Observational Data

We generate datasets $(X_i, T_i, Y_i^{(0)}, Y_i^{(1)})$ according to the model:

$$Y_i^{(1)} = m(X_i) + b(X_i) + \varepsilon_i^{(1)} \qquad e(X_i) = \mathbb{P}\left[T_i = 1 | X_i\right]$$

$$Y_i^{(0)} = b(X_i) + \varepsilon_i^{(0)} \qquad \varepsilon^{(t)} \sim \mathcal{N}\left(0, \sigma^2\right)$$

$$\hat{ au}_{ ext{RR,IPW}}$$
 $\hat{ au}_{ ext{RR,G, n}}$ $\hat{ au}_{ ext{RR,AIPW}}$ $\hat{ au}_{ ext{RR,OS}}$

We need to estimate $\hat{\mu}_t(X) = \mathbb{E}[Y|T=t,X]$ and $\hat{e}(X) = \mathbb{P}[T=1|X]$:

Random Forest:

- RandomForestClassifier()
- RandomForestRegressor()

Regressions:

- LogisticRegression()
- LinearRegression()

Simulations

Linear and logistic setting:

$$m(X, V) = 2,$$

 $b(X, V) = \beta_0^{\top}[X, V],$ where $\beta_0 = (-1, 1, -1, -1, 1, 1)$
 $e(X) = (1 + \exp(-\beta_e X))^{-1},$ where $\beta_e = (-0.6, 0.6, -0.6).$

Figure 1: Estimation of the Risk Ratio in a linear and logistic setting

Simulations

Non-linear and non-logistic setting:

$$m(X) = \sin(\pi X_1 X_2) + 2(X_3 - 0.5)^2 + X_4 + 0.5X_5 - (X_1 + X_2)/4$$

$$b(X) = (X_1 + X_2)/2$$

$$e(X) = \max\{0.1, \min(\sin(\pi X_1), 0.9)\}, \text{ where } X \sim \text{Unif}(0, 1)^6.$$

Figure 2: Estimation of the Risk Ratio in a Non-linear and non-logistic setting

Generalization of risk ratio using observational data

Generalization of risk ratio using observational data

RCT

 $au_{
m RR,N} au_{
m RR,HT}$

Generalization of risk ratio using observational data

RCT

$$au_{
m RR,N} au_{
m RR,HT}$$

• Observational Data

$$\hat{\tau}_{\mathrm{RR,IPW}}$$
 $\hat{\tau}_{\mathrm{RR,G, n}}$ $\hat{\tau}_{\mathrm{RR,AIPW}}$ $\hat{\tau}_{\mathrm{RR,OS}}$

Generalization of risk ratio using observational data

RCT

 $au_{
m RR,N}$ $au_{
m RR,HT}$

Observational Data

$$\hat{\tau}_{\text{RR,IPW}}$$
 $\hat{\tau}_{\text{RR,G, n}}$ $\hat{\tau}_{\text{RR,AIPW}}$ $\hat{\tau}_{\text{RR,OS}}$

Generalization:

Thanks for your attention!

Appendix

Causal Inference

$$Y(t)$$
 Vs $Y|T=t$

