

1/3 DUTY GENERAL-PURPOSE LCD DRIVER

DESCRIPTION

The SC75823E/W is a general-purpose LCD driver that can be used for frequency display in microprocessor-controlled radio receives and in other display applications. In addition to being able to directly drive up to 156 LCD segments.

FEATURES

- Supports both 1/3 duty 1/2 bias and 1/3 duty 1/3 bias LCD drive of up to 156 segments under serial data control.
- Serial data input supports CCB format communication with the system controller.
- Serial data control of the power-saving mode based backup function and all the segments forced off function.
- High generality since display data is displayed directly without **ORDERING INFORMATION** decoder intervention.
- The INH pin can force the display to the off state.
- The LCD drive bias voltage can be provided internally or externally.
- Power supply voltage: 4.5 to 6.0V

Device	Package
SC75823W	LQFP-64-10 X 10-0.5
SC75823E	QFP-64-14 X 14-0.8

BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (Tamb=25°C, VSS=0 V)

Characteristics	Symbol	Value	Unit
Maximum Supply Voltage	VDDmax	-0.3 to +6.5	V
1	VIN1	-0.3 to +6.5	V
Input Voltage	VIN2	-0.3 to VDD+0.3	V
Output Voltage	Vout	-0.3 to VDD+0.3	V
Outrout Commont	IOUT1	300	μΑ
Output Current	IOUT2	3	mA
Allowable Power Dissipation	PDmax	200	mW
Operating Temperature	Topr	-40 to +85	°C
Storage Temperature	Tstg	-55 to 125	°C

ALLOWABLE OPERATING RANGE (Tamb=-40 to +85°C, VSS=0V)

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	VDD	4.5		6.0	V
	VDD1	VDD1		2/3VDD	6.0	V
Input Voltage	VDD2	VDD2		1/3VDD	6.0	V
Input High level Voltage	VIH	CE, CL, DI, INH	4.0		6.0	V
Input Low Level Voltage	VIL	CE, CL, DI, INH	0		0.7	V
Recommended External Resistance	Rosc	osc		47		kΩ
Recommended External Capacitance	Cosc	osc		1000		pF
Guaranteed Oscillator Range	fosc	osc	19	38	76	kHz
Data Setup Time	tds	CL, DI: figure 2	100			ns
Data Hold Time	tdh	CL, DI: figure 2	100			ns
CE Wait Time	tcp	CE, CL: figure 2	100			ns
CE Setup Time	tcs	CE, CL: figure 2	100			ns
CE Hold Time	tch	CE, CL: figure 2	100			ns
High-level Clock Pulse Width	tφH	CL: figure 2	100			ns
Low-level Clock Pulse Width	tφL	CL: figure 2	100			ns
Rise Time	tr	CE, CL, DI: figure 2		100		ns
Fall Time	tf	CE, CL, DI: figure 2		100		ns
INH Switching Time	t2	INH , CE: figure 3	10			μs

ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input High Level Current	lін	CE, CL, DI, INH; VI=6V			5	μΑ
Input Low Level Current	lıL	CE, CL, DI, INH; VI=0V	-5			μΑ
Oscillator Frequency	fosc	OSC;Rosc=47kΩ, Cosc=1000pF		38		kHz
Hysteresis Width	VH	CE, CL, DI, INH; VDD=5V	0.3			٧
Output High Level Voltage	VOH1	S1 to S52; IO=-20μA	VDD-1.0			V
Output Low Level Voltage	VOL1	S1 to S52; IO=20μA			1.0	V
Output High Level Voltage	VOH2	COM1 to COM3; IO=-100µA	VDD-1.0			V
Output Low Level Voltage	VOL2	COM1 to COM3; Io=100µA			1.0	V
	VMID1	1/2 bias, COM1 to COM3; IO=±100μA				>
Intermediate Level Voltage	VMID2	1/3 bias, COM1 to COM3; IO=±100μA	2/3VDD±1.0			٧

(To be continued)

HANGZHOU SILAN MICROELECTRONICS CO.,LTD

Rev: 1.2 2004.08.03

(Continued)

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Intermediate Level Voltage*	VмID3	1/3 bias, COM1 to COM3; $IO=\pm100\mu A$	1/3VDD±1.0			٧
	VMID4	1/3 bias, S1 to S52; IO=±20μA	2/3VDD±1.0			V
	VMID5	$1/3$ bias, S1 to S52; $IO=\pm20\mu A$	1/3VDD±1.0			٧
	IDD1	Power saving mode			5	μΑ
	IDD2	f=38kHz, 1/2 bias, VDD=5V		400	800	μΑ
Supply Current	IDD3	f=38kHz, 1/3 bias, VDD=5V		300	600	μΑ
	IDD2	f=38kHz, 1/2 bias, VDD=6V		650	1300	μΑ
	IDD3	f=38kHz, 1/3 bias, VDD=8V		580	1200	μΑ

Note: * Except the bias voltage generation divider resistors that are built into V_{DD1} and V_{DD2} .(see figure 1)

Figure 1

Fig 2

1. When CL is stopped at the low level

2. When CL is stopped at the high level

PIN DESCRIPTION

Pin No	Symbol	Description						
1-52	S1 to S52	Segment outputs for displaying the display dat	a transferred by serial data input.					
53	COM1							
54	COM2	Common driver outputs. The frame frequency fO is given by: fO=(fOSC/384)Hz						
55	COM3							
61	osc	Oscillator connection An oscillator circuit is formed by connecting an external resistor and capacitor to this pin.						
62	CE		CE: chip enable					
63	CL	Serial data transfer inputs. These pins are	CL: synchronization clock					
64	DI	connected to the control microprocessor.	DI: transfer data					
57	— INH	Display off control input INH =low (Vss)Display forced off (S1 to S52, COM1 to COM3=low) INH =high (VDD)Display on note that serial data transfers can be performed when the display is forced off.						
58	VDD1	Used for the 2/3 bias voltage when bias voltage are provided externally. Connect to VDD2 when 1/2 bias is used.						
59	VDD2	Used for the 1/3 bias voltage when bias voltage are provided externally. Connect to VDD1 when 1/2 bias is used.						
56	VDD	Power supply. Provide a voltage of between 4.	.5 and 6.0V					
60	Vss	Ground. Connect this pin to the system ground	d.					

FUNCTION DESCRIPTION

Serial data transfer format

1. When CL is stopped at the low level

2. When CL is stopped at high level

- CCB address......41H
- D1 to D156.....Display data

Dn (n=1 to 156)=1......Display on

Dn (n=1 to 156)=0......Display off

- DR......1/2-bias drive or 1/3-bias drive switching control data
- SC.....Segments on/off control data
- BU.....Normal mode/power-saving mode control data

Serial data transfer examples

• When 63 segments are used

63 bits is display data (D94 to D156) must be sent.

Control data function

1. DR: 1/2-bias drive or 1/3-bias drive switching control data

This control data selects either 1/2-bias drive or 1/3-bias drive.

DR	Drive type
0	1/2-bias drive
1	1/3-bias drive

2. SC: segments on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state
0	On
1	Off

However, note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

3. BU: Normal mode/power-saving mode control data

BU	Mode
0	Normal mode
1	Power-saving mode. In this mode the OSC pin oscillator is stopped and the common and segment
	pins output VSS levels.

Display data to segment output pin correspondence

Segment output pin	СОМЗ	COM2	COM1	Segment output pin	СОМЗ	COM2	COM1
S1	D1	D2	D3	S27	D79	D80	D81
S2	D4	D5	D6	S28	D82	D83	D84
S3	D7	D8	D9	S29	D85	D86	D87
S4	D10	D11	D12	S30	D88	D89	D90
S5	D13	D14	D15	S31	D91	D92	D93
S6	D16	D17	D18	S32	D94	D95	D96
S7	D19	D20	D21	S33	D97	D98	D99
S8	D22	D23	D24	S34	D100	D101	D102
S9	D25	D26	D27	S35	D103	D104	D105
S10	D28	D29	D30	S36	D106	D107	D108
S11	D31	D32	D33	S37	D109	D110	D111
S12	D34	D35	D36	S38	D112	D113	D114
S13	D37	D38	D39	S39	D115	D116	D117
S14	D40	D41	D42	S40	D118	D119	D120
S15	D43	D44	D45	S41	D121	D122	D123
S16	D46	D47	D48	S42	D124	D125	D126
S17	D49	D50	D51	S43	D127	D128	D129
S18	D52	D53	D54	S44	D130	D131	D132
S19	D55	D56	D57	S45	D133	D134	D135

(To be continued)

HANGZHOU SILAN MICROELECTRONICS CO.,LTD

Rev: 1.2 2004.08.03

(Continued)

Segment output pin	СОМЗ	COM2	COM1	Segment output pin	СОМЗ	COM2	COM1
S20	D58	D59	D60	S46	D136	D137	D138
S21	D61	D62	D63	S47	D139	D140	D141
S22	D64	D65	D66	S48	D142	D143	D144
S23	D67	D68	D69	S49	D145	D146	D147
S24	D70	D71	D72	S50	D148	D149	D150
S25	D73	D74	D75	S51	D151	D152	D153
S26	D76	D77	D78	S52	D154	D155	D156

For example, the table below lists the segment output states for the S11 output pin.

	Display data		0
D31	D32	D33	Segment output pin (S11) state
0	0	0	The LCD segments corresponding to COM1 to COM3 are off.
0	0	1	The LCD segments corresponding to COM1 is on.
0	1	0	The LCD segments corresponding to COM2 is on.
0	1	1	The LCD segments corresponding to COM1 and COM2 are on.
1	0	0	The LCD segments corresponding to COM3 is on.
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.
1	1	0	The LCD segments corresponding to COM2 and COM3 are on.
1	1	1	The LCD segments corresponding to COM1 to COM3 are on

INH and display control

Since the LSI internal data (D1 to D156, DR, SC and BU) is undefined when power is first applied, the display is off (S1 to S52, COM1 to COM3= low) by setting the INH pin low at the same as power is applied. Then, meaningless display at the power-on can be prevented by transferring serial data from the controller while the display is off and setting INH pin high after the transfer completes.(see figure3).

Figure 3

t2.....10 µ s(minimum)

TIMING DIAGRAM

1/2 Bias , 1/3 Duty Drive Technique

1/3 Bias, 1/3 Duty Drive Technique

TEST CIRCUIT1

1/3 Bias (for use with small panels)

TEST CIRCUIT2

1/3 Bias (for use with normal size panels)

TEST CIRCUIT3

1/3 Bias (for use with large panels)

PACKAGE OUTLINE

HANDLING MOS DEVICES:

Electrostatic charges can exist in many things. All of our MOS devices are internally protected against electrostatic discharge but they can be damaged if the following precautions are not taken:

- Persons at a work bench should be earthed via a wrist strap.
- Equipment cases should be earthed.
- All tools used during assembly, including soldering tools and solder baths, must be earthed.
- MOS devices should be packed for dispatch in antistatic/conductive containers.

Attachment

Revision History

Data	REV	Description	Page
2001.12.30	1.0	Original	
2002.03.04	1.1	Modify the "SC7523" to "SC75823E/W"	
2002.03.27	1.2	Modify the "Package outline"	15