Dimostriamo proprieta` transitiva

- $d(n)=O(f(n)) e f(n)=O(g(n)) \rightarrow d(n)=O(g(n))$
- · Dim.
- 1. $d(n)=O(f(n)) \rightarrow esistono due costanti c'>0 ed n'₀>0 t.c. <math>d(n)\le c'f(n)$ per ogni $n \ge n'_0$
- 2. $f(n)=O(g(n)) \rightarrow esistono due costanti c">0 ed n"₀>0 t.c. <math>f(n)\le c"g(n)$ per ogni $n \ge n"_0$
- la 1 \rightarrow d(n) \leq c'f(n) per ogni n \geq n'₀, la 2 \rightarrow f(n) \leq c"q(n) per ogni n \geq n"₀
- e di conseguenza, d(n) ≤c'f(n) ≤c'(c"g(n))=c'c"g(n) per ogni n maggiore di n'0 e n"0
- Ponendo c=c'c" ed n₀=max{n'₀, n"₀}, possiamo quindi affermare che
- d(n) ≤cq(n) per ogni n ≥ n₀ e cio` implica d(n)=O(q(n))

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

47

47

Bound asintotici per alcune funzioni di uso comune Logaritmi

■ $O(\log_a n) = O(\log_b n)$, $\Omega(\log_a n) = \Omega(\log_b n)$, $\Theta(\log_a n) = \Theta(\log_b n)$, per ogni costante a, b > 0.

Dim. per O (per le altre notazioni asintotiche le dimostrazioni sono simili)

dalla proprieta` 1 dei logaritmi si ha, $log_a n = log_b n/(log_b a)$ (*)

- siccome banalmente $log_b n = O(log_b n)$ allora, per la regola 1 della notazione asintotica (slide 39), si ha $log_b n/(log_b a) = O(log_b n)$
- siccome dalla (*) $\log_a n = \log_b n/(\log_b a)$ allora $\log_a n = O(\log_b n)$

analogamente possiamo dimostrare che $log_b n = O(log_a n)$

Progettazione di Algoritmi, a.a. 2022-23

Bound asintotici per alcune funzioni di uso comune Logaritmi

log n= O(n).

Dim. Dimostriamo per induzione che $\log_2 n \le n$ per ogni n≥1.

Base dell'induzione: Vero per n=1 in quanto $log_2 1 = 0 < 1$

Passo Induttivo: Supponiamo log_2 n \leq n vera per n \geq 1.

Dimostriamo che è vera per n+1.

1. $\log_2(n+1) \le \log_2(2n) = \log_2 2 + \log_2 n = 1 + \log_2 n$

Per ipotesi induttiva log₂n≤n e quindi

2. $1 + \log_2 n \le 1 + n$.

Dalla catena di disuguaglianze 1. e dalla disuguaglianza 2. si ha $log_2(n+1) \le n+1$.

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

49

49

Un utile richiamo

Parte intera inferiore:

La parte intera inferiore di un numero x è denotata con [x] ed è definita come quell'unico intero per cui vale che $x-1 < [x] \le x$. In altre parole, [x] è il più grande intero minore o uguale di x (infatti dalla definizione si ha $[x] \le x$ ma [x] +1 > x) Esempio: [4.3]=4, [6.9]=6, [3]=3

Proprietà 1: L'intero più piccolo strettamente maggiore di x è $\lfloor x \rfloor + 1$.

Dim. Siccome $\lfloor x \rfloor$ è il più grande intero minore o uguale di x allora qualsiasi intero più grande di $\lfloor x \rfloor$ è maggiore di x. La proprieta` discende allora dal fatto che il piu` piccolo degli interi maggiori di $\lfloor x \rfloor$ è $\lfloor x \rfloor$ +1.

Proprietà 2: $\lfloor \lfloor a/b \rfloor/c \rfloor = \lfloor a/(bc) \rfloor$, per a ≥ 0 reale e b e c interi positivi

Progettazione di Algoritmi, a.a. 2022-23

Un utile richiamo

Parte intera superiore:

La parte intera superiore di un numero x è denotata con [x] ed è definita come quell'unico intero per cui vale che $x \le [x] < x+1$ In altre parole, [x] è il più piccolo intero maggiore o uguale di x (infatti dalla definizione si ha $[x] \ge x$ ma [x]-1 < x)

Esempio: [4.3] = 5, [6.9] = 7, [3] = 3

Proprietà 3: L'intero più grande strettamente minore di $x \in [x]$ -1.

Dim. Siccome [x] è il piu` piccolo intero maggiore o uguale di x allora qualsiasi intero piu` piccolo di [x] è minore di x. La proprieta` discende allora dal fatto che il piu` grande intero piu` piccolo di [x] e [x]-1.

Proprietà 4: [[a/b] / c] = [a/(bc)] per $a \ge 0$ reale e b e c interi positivi

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

51

51

Tempo logaritmico

Tipicamente si ha quando ogni passo riduce di un fattore costante il numero di passi che restano da fare

Per esercizio dimostriamo che il seguente for richiede tempo $\Theta(\log n)$

For (i=n;
$$i \ge 1$$
; $i = [i/2]$) print(i)

Dimostrazione: Il for termina quando i diventa minore di 1.

Ad ogni iterazione il valore di i è minore o uguale della metà del valore che aveva in precedenza \rightarrow dopo la k-esima iterazione i = [...[[[n/2]/2] /2].... /2]= [n/2^k] per la proprieta` 2 della parte intera inferiore k divisioni

Per sapere dopo quante iterazioni termina il for dobbiamo trovare il più piccolo k per cui $\lfloor n/2^k \rfloor < 1$. Vediamo per quali k è soddisfatta la disuguaglianza $\lfloor n/2^k \rfloor < 1$

$$[n/2^{k}] < 1 \leftrightarrow n/2^{k} < 1 \leftrightarrow 2^{k} > n \leftrightarrow k > \log_{2} n$$
 (1)

Noi vogliamo il piccolo intero k per cui vale la (1), cioe` il piu` piccolo intero strettamente maggiore di \log_2 n. Per la proprieta` 1 della parte intera inferiore si ha k= $\lfloor \log_2$ n \rfloor + 1

N.B. Se invece di venire diviso per 2, il valore di i viene diviso per una generica costante c>1 allora la base del log è c ma ai fini della valutazione asintotica non cambia niente.

De Bonis

Tempo logaritmico

```
For (i=1; i<= n;i=i*2)
print(i)
```

Il for in alto richiede tempo $\Theta(\log n)$

Dimostrazione: Il for termina quando i diventa maggiore di n.

- . Ad ogni iterazione il valore di i raddoppia \rightarrow dopo la k-esima iterazione i = 2^k .
- Per sapere dopo quante iterazioni termina il for dobbiamo trovare il più piccolo k per cui $2^k > n$. In altre parole vogliamo k tale che $2^k > n$
- La disequazione 2k > n se e solo se k > log2n
- Tra tutti gli interi $k > \log_2 n$, noi vogliamo quello piu` piccolo. Per la proprieta` 1 della parte intera inferiore si ha $k=\lfloor \log_2 n \rfloor + 1$
- Dopo esattamente k=[log2 n] +1 iterazioni 2k diventa più grande di n e il for termina.
- . → Numero iterazioni è $\lfloor \log_2 n \rfloor + 1 = \Theta(\log n)$

N.B. Se invece di raddoppiare, il valore di i viene moltiplicato per una generica costante c>1 allora la base del log è c ma ai fini della valutazione asintotica non cambia niente.

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

53

53

Tempo logaritmico: O(log n)

Tipicamente si ha quando ogni passo riduce di un fattore costante il numero di passi che restano da fare

Ricerca binaria. Dato un array A ordinato di n numeri ed un numero x vogliamo determinare se x è in A

```
binarySearch(A, n, x)

| = 0;

r = n-1

while | <= r

c= (|+r)/ 2 //assumiamo troncamento

if x = A[c]

return true

if x < A[c]

r = c-1

else |= c+1 //caso x>A[c]

return false
```

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis Se la dimensione r-l+1 dell'intervallo [l,r] è pari allora il sottointervallo di destra [c+1,r] ha un elemento in più rispetto a quello di sinistra. In caso contrario i due sottointervalli hanno la stessa dimensione.

Caso r-l+1 pari: intervallo di sinistra ha $(r-l+1)/2 - 1 = \lfloor (r-l+1)/2 \rfloor - 1$ elementi e quello di destra $(r-l+1)/2 = \lfloor (r-l+1)/2 \rfloor$.

Caso r-l+1 dispari: entrambi gli intervalli hanno [(r-l+1)/2] elementi

Tempo logaritmico: O(log n)

Analisi ricerca binaria.

Il while termina quando l>r, cioè quanto il range [1,r] vuoto.

- Inizialmente [1,r]=[0,n-1] e quindi contiene n elementi
- Dopo la prima iterazione, [l,r] contiene al più $\lfloor n/2 \rfloor$ elementi
- Dopo la seconda iterazione, [l,r] contiene al più [[n/2]/2]= [n/4] elementi
- Dopo la terza iterazione, [1,r] contiene al più [[n/4]/2]= [n/8] elementi
- ..
- Dopo la k-esima iterazione, [l,r] contiene al più [n/2k] elementi
- Per sapere quando termina il ciclo di while dobbiamo trovare il più piccolo intero k per cui $\lfloor n/2^k \rfloor < 1$
- Abbiamo gia` dimostrato che questo k e` ⊖(log n)
- NB: per sbarazzarci delle parti intere inferiori annidate abbiamo usato la proprieta` 2.

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

5.5

55

Espressione O	nome
O(1)	costante
$O(\log \log n)$	$\log \log$
$O(\log n)$	logaritmico
$O(\sqrt[c]{n}), \ c > 1$	sublineare
O(n)	lineare
$O(n \log n)$	$n \log n$
$O(n^2)$	quadratico
$O(n^3)$	cubico
$O(n^k) \ (k \ge 1)$	polinomiale
$O(a^n) \ (a > 1)$	esponenziale

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

Tempo $O(\sqrt{n})$

```
j=0;
i=0;
while(i<=n){
  j++;
  i=i+j;
```

Analisi:

Il while termina quando i diventa maggiore di n.

All'iterazione k al valore di i viene sommato j=k per cui dopo aver iterato il while k volte il valore di i è (1+2+3+...+k)=k(k+1)/2.

Affinche' si interrompa il while e` sufficiente che k(k+1)/2 > n

Per semplicità osserviamo che $k^2/2 \le k(k+1)/2$ per cui se $k^2/2 > n$ allora k(k+1)/2 > n.

Risolviamo k²/2 >n.

 $k^2/2 \rightarrow n \leftrightarrow k^2 \rightarrow 2n \leftrightarrow k \rightarrow (2n)^{1/2}$ (le implicazioni utili sono \leftarrow)

Dalla proprietà 1, $\lfloor (2n)^{1/2} \rfloor + 1$ e' il più piccolo intero maggiore di \rightarrow $(2n)^{1/2}$ per cui dopo al piu' [$(2n)^{1/2}$]+1 = $O(\sqrt{n})$ iterazioni il while termina.

Progettazione di Algoritmi, a.a. 2022-23

ie di Algoritmi, A. De Bonis

57

57

Tempo $O(\sqrt{n})$

```
j=0;
i=0;
while(i<=n){
  j++;
  i=i+j;
```

Analisi:

Il while termina quando i diventa maggiore di n.

All'iterazione k al valore di i viene sommato j=k per cui dopo aver iterato il while k volte il valore di i è (1+2+3+...+k) = k(k+1)/2.

Affinche' si interrompa il while e` sufficiente che i=k(k+1)/2 > n

Risolviamo la disequazione $k^2/2 + k/2 - n > 0$: le soluzioni di $k^2/2 + k/2 - n = 0$ sono

 $k_1=-1/2-(1/4+4n/2)^{1/2}$ e $k_2=-1/2+(1/4+4n/2)^{1/2}$ e la disequazione è soddisfatta per k
k k_1 e k> k_2 . Siccome il nostro k è positivo puo' essere solo k> k2.

Quindi dopo $k > -1/2 + (1/4 + 2n)^{1/2}$ iterazioni si ha i=k(k+1)/2 > n e il while si interrompe.

Dalla proprietà 1, il piu` piccolo intero strettamente maggiore di -1/2+(1/4+4n/2)1/2 è

 $\lfloor -1/2 + (1/4 + 2n)^{1/2} \rfloor + 1. \ L'intero \ \lfloor -1/2 + (1/4 + 2n)^{1/2} \rfloor + 1 \ \grave{e} \ \leq \ \lfloor (1/4n + 2n)^{1/2} \rfloor + 1 = \lfloor ((9/4)n)^{1/2} \rfloor + 1 \leq (\sqrt{9}/\sqrt{4}) \sqrt{n} + 1 = \lfloor (1/4n + 2n)^{1/2} \rfloor + 1 =$ ed è \geq [-1+ (1/4n+2n)^{1/2}]+1= [$\sqrt{9}$ / $\sqrt{4}$) \sqrt{n}] \geq ($\sqrt{9}$ / $\sqrt{4}$) \sqrt{n} +1 per ogni n. Quindi dopo $\Theta(\sqrt{n})$ iterazioni il

Progettazione di Algoritmi, a.a. 2022-23 while termina.

Logaritmi a confronto con polinomi e radici

Per ogni costante x > 0, log $n = O(n^x)$. (N.B. x può essere < 1)

Dim.

Caso x ≥1:

Se $x \ge 1$ si ha $n \le n^x$ per ogni $n \ge 0 \rightarrow n = O(n^x)$.

Abbiamo già dimostrato che log n=O(n) per cui la proprietà transitiva →log n=O(n×)

Caso x<1:

Vogliamo trovare le costanti c>0 e n₀≥0 tale che log n ≤ cn× per ogni n≥n₀

Siccome sappiamo che log₂ m < m per ogni m≥1 allora ponendo m=n× con n≥1, si ha log₂ n× <n× da cui $x\log_2 n < n^x$ e dividendo entrambi i membri per x si ha $\log_2 n < 1/x n^x$. Perchè la disequazione log₂ n≤ cn× sia soddisfatta per ogni n≥n₀, basta quindi prendere c=1/x ed n₀=1.

A. De Bonis

NB: abbiamo visto che nella notazione asintotica possiamo eliminare la base del log se Progettazione di Algoritmi, a.a. 2022-23 questa e` costante

59

Potenze di logaritmi a confronto con polinomi e radici

Per ogni x > 0 e b>0 costanti, $(\log n)^b = O(n^x)$.

Dim.

Vogliamo trovare le costanti c>0 e no≥0 tali che (log n)b ≤cn× per ogni n≥no

Risolviamo la disequazione (log n)^b ≤ cn[×] :

(log n)^b \leq cn^x \longleftrightarrow log n \leq c^{1/b}n^{x/b} (\longleftrightarrow vale perchè assumiamo log n>0)

Troviamo le costanti c>0 ed n_0 ≥0 tali che log n \leq $c^{1/b}n^{x/b}$ per ogni n≥ n_0

Abbiamo già dimostrato nella slide precedente che log n=O(n^y) per ogni y>0. Ciò vale anche se poniamo y= x/b. Quindi esistono due costanti c'>0 e n'o≥0 tali che log n ≤c'n×/b per ogni n≥n'₀.

Di conseguenza basta imporre $c^{1/b} = c'$ ed $n_0 = n'_0$ da cui $c = (c')^b$ ed $n_0 = n'_0$

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

Potenze di logaritmi a confronto con polinomi e radici

Dimostrare che per ogni x > 0, a > 0 e b > 0 costanti, (log $n^a)^b = O(n^x)$.

La dimostrazione è molto semplice se si usa quanto visto nelle slide precedenti

Dim: Per quanto dimostrato nella slide precedente (log n) b = $O(n^x)$.

- Per la proprieta` 3. dei logaritmi log n^a = a log n log n^a = a log n → (log n^a)^b = a^b(logn)^b
- Per la prima regola della notazione asintotica (slide 42), moltiplicare una funzione per una costante non cambia la limitazione asintotica per cui

 $\log n^b = O(n^x) \rightarrow a^b (\log n)^b = O(n^x) da cui (\log n^a)^b = O(n^x)$

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

61

61

Potenze di logaritmi a confronto con polinomi e radici

Per esercizio dimostriamo che per ogni $\times > 0$ costante, log n non è $\Omega(n^{\times})$.

Per definizione di Ω : log $n = \Omega(n^x) \rightarrow$ esistono due costanti c>0 e $n_0 \ge 0$ tali che log $n \ge cn^x$ per ogni $n \ge n_0$

vediamo se esistono queste due costanti: risolviamo la disequazione log $n \ge cn^x \leftrightarrow c \le (\log n)/n^x$

quindi la costante c e la costante n_0 devono essere tali che c \leq (log n)/n $^{\times}$ per ogni $n\geq n_0$

il limite di (log n)/n $^{\times}$ al tendere di n all'infinito è 0 per cui comunque scegliamo piccola la costante c esistera $^{\times}$ un n_c per cui (log n)/n $^{\times}$ <c per ogni n \geq n_c

quindi non è possibile trovare una costante c>0 ed una costante $n_0 \ge 0$ per cui log $n \ge cn^x$ per ogni $n \ge n_0$ Progettazione di Algoritmi, a.a. 2022-23
A. De Bonis

Tempo O(n log n)

Tempo O(n log n). Tipicamente viene fuori quando si esamina la complessità di algoritmi basati sulla tecnica del divide et impera

Ordinamento. Mergesort e heapsort sono algoritmi di ordinamento che effettuano O(nlog n) confronti.

Il più grande intervallo vuoto. Dati n time-stamp $x_1, ..., x_n$ che indicano gli istanti in cui le copie di un file arrivano al server, vogliamo determinare qual è l'intervallo di tempo più grande in cui non arriva alcuna copia del file.

Soluzione O(n log n). Ordina in modo non decrescente i time stamp. Scandisci la lista ordinata dall'inizio computando la differenza tra ciascun istante e quello successivo. Prendi il massimo delle differenza calcolate. Tempo O(nlog n+n)=O(nlogn)

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

63

63

Grafo

· Esempio (vedremo meglio questo concetto nelle prossime lezioni)

V = { 1, 2, 3, 4, 5, 6, 7, 8 }

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

64

Tempo polinomiale $O(n^k)$

Insieme indipendente di dimensione k (k costante). Dato un grafo, esistono k nodi tali che nessuno coppia di nodi è connessa da un arco?

Soluzione O(nk). Enumerare tutti i sottoinsiemi di k nodi.

```
foreach sottoinsieme S di k nodi {
   controlla se S è un insieme indipendente
   if (S è un insieme indipendente)
      riporta che S è in insieme indipendente
   }
}
```

- Controllare se S è un insieme indipendente = $O(k^2)$
- Numero di sottoinsiemi di k elementi = $\binom{n}{k} = \frac{n(n-1)(n-2)...(n-k+1)}{k(k-1)(k-2)...(2)(1)} \le \frac{n^k}{k!}$
- Tempo totale $O(k^2 n^k / k!) = O(n^k)$

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

65

65

Insieme indipendente

Esempio: per k=3 l'algoritmo riporta gli insiemi {1,4,6}, {1,4,7}, {1,4,8},{1,5,7},{1,5,8},{1,6,7}, {1,6,8}, {2,6,7},{2,6,8},{3,4,6}, {4,6,7},{4,6,8}


```
V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11
```

Progettazione di Algoritmi, a.a. 2022-23

De Bonis

Tempo esponenziale

Esempio:

Massimo insieme indipendente . Dato un grafo G, qual è la dimensione massima di un insieme indipendente di G?

Def. insieme indipendente: un insieme indipendente di un grafo è un sottoinsieme di vertici a due a due non adiacenti

Soluzione $O(n^2 2^n)$. Esamina tutti i sottoinsiemi di vertici. NB: Il numero totale di sottoinsiemi di un insieme di n elementi è 2^n

```
S* ← ф
foreach sottoinsieme S di nodi {
  controlla se S è un insieme indipendente
  Se (S è il più grande insieme indipendente visto finora)
     aggiorna S* ← S
  }
}
```

Progettazione di Algoritmi, a.a. 2022-23

67

67

Tempo esponenziale

Per esercizio proviamo che il tempo del nostro algoritmo per il massimo insieme indipendente è $\Theta(n^2 \, 2^n)$ Dim: Assumiamo per semplicità n dispari

- Stimiamo il tempo per controllare l'indipendenza di tutti gli insiemi di dimensione maggiore o uguale di $\lceil n/2 \rceil$. Un limite inferiore a questo tempo è sicuramente un limite inferiore al tempo totale.
- Per ogni insieme S_i di dimensione k, per $k=\lceil n/2\rceil,...,n$, il suo complemento $S_i'=V-S_i$ ha dimensione n-k con $n-k < \lceil n/2 \rceil \rightarrow S_i'$ non è uno degli insiemi $S_1,S_2,S_3,...$.
- Ad ogni insieme corrisponde un unico complemento → se metto da una parte tutti gli insiemi S₁,S₂,S₃,... e dall'altra gli insiemi S'₁,S'₂,S'₃,... avro` lo stesso numero di insiemi da una parte e dall'altra → ho diviso 2ⁿ insiemi in due meta` una contenente tutto gli insiemi di dimensione ≥ [n/2] e l'altra tutti gli insiemi di dimensione < [n/2] → numero insiemi di dimensione maggiore o uguale di [n/2] è numero totale insiemi /2= 2ⁿ/2= 2ⁿ⁻¹
- 2. Il tempo per controllare l'indipendenza di ciascuno di questi insiemi è $\Omega(n^2)$ perché dobbiamo controllare almeno n/2(n/2-1)/2 coppie di nodi nel caso pessimo.
- 1. e 2. \rightarrow Tempo totale per controllare insiemi di dimensione maggiore o uguale di $\lceil n/2 \rceil$ è $\Omega(n^22^{n-1})$ = $\Omega(n^22^n/2)$ = $\Omega(n^22^n)$ \rightarrow Algoritmo ha tempo $\Omega(n^22^n)$

Progettazione di Algoritmi, a.a. 2022-23

Tempo esponenziale

Siccome nelle due slide precedenti abbiamo dimostrato che vale sia $O(n^2 \, 2^n)$ che $\Omega(n^2 \, 2^n)$ allora abbiamo dimostrato che il tempo **dell'algoritmo** è $\Theta(n^2 \, 2^n)$. E se n è pari?

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

69

69

Esercizio:

Ci chiediamo: 3ⁿ è O(2ⁿ)?

Sappiamo che 3^n è $O(2^n)$ se e solo se esistono due costanti c>0 ed $n_0 \ge 0$ t.c. $3^n \le c \cdot (2^n)$ per ogni $n \ge n_0$.

Proviamo a determinare tali costanti risolvendo la disequazione $3^n \le c \cdot 2^n$ rispetto a c

 $3^n \le c \cdot 2^n \longleftrightarrow c \ge 3^{n/2^n} = (3/2)^n$. Occorre quindi prendere $c \ge (3/2)^n$.

La funzione $(3/2)^n$ cresce al crescere di n e tende all'infinito al tendere di n all'infinito. Siccome $(3/2)^n$ tende all'infinito, qualsiasi valore scegliamo per la costante c, questo valore sarà superato da $(3/2)^n$ per n sufficientemente grande.

Ne deduciamo che **non** esistono c>0 ed $n_0 \ge 0$ t.c. $3^n \le c \cdot (2^n)$ per ogni $n \ge n_0$.

→ Abbiamo dimostrato che 3ⁿ non è O(2ⁿ)

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

A lezione, per esercizio, abbiamo svolto l'analisi dell'algoritmo nella slide precedente...

Il for esterno mi costa: tempo lineare in n + il tempo per eseguire tutte le iterazioni del for interno

Analizziamo il for interno:

Chiamiamo t_i il numero di iterazioni del for interno alla i-esima iterazione del for esterno

Quante volte viene iterato il for interno in totale? Risposta: $t_1+t_2+...+t_n$.

Per ogni i si ha t_i=(n-i)

Quindi sommando i t_i per tutte le iterazioni del for esterno ho

 $t_1+t_2+...+t_n = (n-1)+(n-2)+...+1+0 = n(n-1)/2$ iterazioni del for interno **IN TOTALE**

siccome la singola esecuzione del corpo del for interno richiede tempo pari ad una costante c \rightarrow il tempo richiesto da tutte le iterazioni del for interno è c(n(n-1)/2)= Θ (n²)

Tempo totale: $\Theta(n) + \Theta(n^2) = \Theta(n^2)$

Progettazione di Algoritmi, a.a. 2022-23 A. De Bonis

71