Optimal predictive maintenance policy for multi-component systems

Tiffany Cherchi

Camille Baysse, Benoîte de Saporta, François Dufour

ESREL 2019, Hannover, Germany.

Table of Contents

Introduction

MDP model of the system

Numerical results

Conclusion

Maintenance optimization problem

Equipments

- with several components,
- required for missions,
- subject to random degradation and failures.

Find a maintenance policy ..

- what action : mission / workshop (repair or change)?
- when?

.. in order to optimize some criterion

- ► minimize maintenance costs,
- maximize availability.

non-trivial compromise

Industrial context (1)

Missions

- System required for fixed frequencies and durations missions,
- Over a finite time horizon,
- When the system is not functioning, it can not degrade or fail.

Equipments with 3 components

▶ Dynamics of the components 1, 2 and 3 :

```
stable \xrightarrow{\text{Weibull}} degraded \xrightarrow{\text{Exponential}} failed.
```

Global equipment state

- stable if all its components are in a stable state,
- ▶ failed if at least one of its component is in failed state,
- ► and degraded otherwise.

Introduction Maintenance ontimization problem Conclusion References

Industrial context (2)

Possible maintenance operations

- do nothing : in stable, degraded and failed states,
- change : in stable, degraded and failed states,
- repair : in stable and degraded states.

Workshop

- Immobilize the entire system,
- ► As good as new (stable state, functioning times reset to 0).

Costs

- ► Maintenances : repair, change,
- Penalties in failed state : failed missions, unavailability,
- ▶ repair < change < unavailability < failure.</p>

Table of Contents

Introduction

Maintenance optimization problem

MDP model of the system

Numerical results

Non standard optimization problem

Conclusion

Our approach

- Propose a mathematical model for the evolution of the multi-component system by using the formalism of a Markov Decision Processes (MDP).
 - 1. System degradation modeling,
 - 2. Explicit the cost function.
- ➤ Simulate the process under different reference maintenance policies (corrective or preventive) and compare their costs.

Markov Decision Processes (MDP)

A MDP is defined by the following parameters :

$$(X; A; \{A(x) \mid x \in X\}; Q; c)$$

- A state space \mathbb{X} $\mathbb{X} = \{x = (e_i, r_i), i \in \{1,2,3\}, e_i \in \{\text{stable,degraded,failed}\}, r_i \in \mathbb{R}^+\}.$
- ▶ An action space \mathbb{A} , $\mathbb{A} = \{a = (a_1, a_2, a_3), a_i \in \{\text{nothing, repair, change}\}\}$.
- A set $\mathbb{A}(x)$ of admissible actions when the system is in state x; is such that a failed component cannot be repaired.
- ▶ A transition kernel $Q(\cdot \mid x, a)$ which provides the distribution of the next state of the system, when the current state is $x \in X$ and the action $a \in \mathbb{A}(x)$.
- ▶ A cost function $c : \mathbb{X} \times \mathbb{A}(x) \to \mathbb{R}$ depending on state-action.

Construction of controlled trajectories

Optimization problem

The total **cost** until the finite horizon N, with initial state $x \in \mathbb{X}$ and under the *policy* π :

$$V_N(\pi,x) = \mathbb{E}_x^{\pi} \Big[\sum_{n=0}^N c(x_n,a_n) \Big].$$

The optimal control problem associated to a MDP is to *minimize*, over all *admissible policies* Π , the function $\pi \to V_N(\pi, x)$.

The optimum is called the value function and is given by

$$V(x) = \inf_{\pi \in \Pi} V_N(\pi; x).$$

A strategy $\pi^* \in \Pi$ is called *optimal* if it satisfies

$$V_N(\pi^*, x) = V(x).$$

π_1 - Policy without any intervention

Do nothing (no change, no repair) during the studied period.

π_2 - Corrective maintenance policy

Send back the equipment to the workshop, 1 day after the failure,

- repair each degraded component,
- change each failed one.

π_3 - Preventive maintenance policy

After 1 day spent in a degraded or failed state, send back the equipment to the workshop,

- repair each degraded components,
- change each failed one.

Policy Comparisons

We compare the performances of these reference policies. Their cost was evaluated through 10^5 Monte Carlo simulations.

Policy	cost	95% CI
π_1	22892	[22884, 22900]
π_2	18134	[18121, 18147]
π_3	15435	[15423, 15447]

Table – Costs of the reference policies

As expected, a preventive maintenance policy π_3 effectively reduces maintenance costs by intervening on the system before the failure.

This yields a *relative gain* with respect to the uncontrolled policy π_1 of 33% and 15% with respect to the corrective policy π_2 .

Non standard optimization problem

State space

 Discrete variables and continuous variables (functioning times of the components): the state space is not finite.

Transition kernel Q(dy|x, a)

- Not analytically explicit, it can be simulated.
- → Standard optimization technique for MDPs do not apply.
- → The *next step* toward solving the global optimization problem will be to *discretize the state space*.

Discretization of the state space

State space

$$\mathbb{X} = \{(e_i, r_i); i \in \{1, 2, 3\}, e_i \in \{\text{stable}, \text{degraded}, \text{failed}\}, r_i \in \mathbb{R}^+\}$$

Discretize the state space, as a trade-off between:

- precision of the approximation
- numerical complexity

Non-trivial compromise

Reference policy costs will be used to assess the impact of discretization on costs.

Problems:

- No "universal method",
- No theoritical result.

Conclusion

Conclusions

- ▶ Propose a *mathematical model* for the evolution of the system by using the formalism of a Markov Decision Processes (MDP).
 - System degradation modeling,
 - Explicit the cost functions.
- Simulate the process under different reference maintenance policies (corrective or preventive) and compare their costs.

Work in progress

- Discretize the state space, as a compromise between numerical complexity and precision of the approximation.
- ▶ Use *simulation-based* optimisation algorithm to compute an approximation of the optimal cost and policy, over the whole space Π of admissible policies.

Benoîte de Saporta, François Dufour, Huilong Zhang, and Charles Elegbede.

Optimal stopping for the predictive maintenance of a structure subject to corrosion.

Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 226(2):169–181, 2012.

Onésimo Hernández-Lerma and Jean Bernard Lasserre.

Discrete-Time Markov Control Processes: Basic Optimality Criteria. vol. 30 de Applications of Mathematics. New-York: Springer-Verlaga, 1996.

Sophie Mercier and Inmaculada T. Castro.

Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system.

European Journal of Operational Research, 273(1):237–248, 2019.

Nan Zhang, Mitra Fouladirad, and Barros Anne.

Maintenance analysis of a two-component load-sharing system. *Reliability Engineering & System Safety*, 167:67-74, 2017.

References

Tiffany CherchiCamille Baysse, Benoîte de Saporta, François Dufour

ESREL 2019, Hannover, Germany.

