Homework 2 Written Assignment

10-605/10-805: Machine Learning with Large Datasets

Due Tuesday, September 29th at 1:30:00 PM Eastern Time

Submit your solutions via Gradescope, with your solution to each subproblem on a separate page, i.e., following the template below. Note that Homework 2 consists of two parts: this written assignment, and a programming assignment. The written part is worth 30% of your total HW2 grade (programming part makes up the remaining 70%).

1 Nyström Method (30 points)

Nyström method. Define the following block representation of a kernel matrix:

$$\mathbf{K} = \begin{bmatrix} \mathbf{W} & \mathbf{K}_{21}^{\top} \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{bmatrix} \quad \text{and} \quad \mathbf{C} = \begin{bmatrix} \mathbf{W} \\ \mathbf{K}_{21} \end{bmatrix}.$$

The Nyström method uses $\mathbf{W} \in \mathbb{R}^{l \times l}$, $\mathbf{C} \in \mathbb{R}^{m \times l}$ and $\mathbf{K} \in \mathbb{R}^{m \times m}$ to generate the approximation $\widetilde{\mathbf{K}} = \mathbf{C}\mathbf{W}^{\dagger}\mathbf{C}^{\top} \approx \mathbf{K}$.

(a) [5 points] Show that **W** is symmetric positive semi-definite (SPSD) and that $\|\mathbf{K} - \widetilde{\mathbf{K}}\|_F = \|\mathbf{K}_{22} - \mathbf{K}_{21}\mathbf{W}^{\dagger}\mathbf{K}_{21}^{\top}\|_F$, where $\|.\|_F$ is the Frobenius norm.

Solution: For the first part of question, note that **W** is SPSD if $\mathbf{x}^{\top}\mathbf{W}\mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{l}$. This condition is equivalent to $\mathbf{y}^{\top}\mathbf{K}\mathbf{y} \geq 0$ for all $\mathbf{y} \in \mathbb{R}^{m}$ where $y_{i} = 0$ for $l+1 \leq i \leq m$. Since **K** is SPSD by assumption, this latter condition holds. For the second part, we write $\widetilde{\mathbf{K}}$ in block form as

$$\widetilde{\mathbf{K}} = \begin{bmatrix} \mathbf{W} \\ \mathbf{K}_{21} \end{bmatrix} \mathbf{W}^{\dagger} \begin{bmatrix} \mathbf{W} & \mathbf{K}_{21}^{\top} \\ \mathbf{K}_{21} & \mathbf{K}_{21} \mathbf{W}^{\dagger} \mathbf{K}_{21}^{\top} \end{bmatrix}.$$

Comparison with the block form of K then immediately yields the desired result.

(b) [10 points] Let $\mathbf{K} = \mathbf{X}^{\top}\mathbf{X}$ for some $\mathbf{X} \in \mathbb{R}^{N \times m}$, and let $\mathbf{X}' \in \mathbb{R}^{N \times l}$ be the first l columns of \mathbf{X} . Show that $\widetilde{\mathbf{K}} = \mathbf{X}^{\top}\mathbf{P}_{U_{X'}}\mathbf{X}$, where $\mathbf{P}_{U_{X'}}$ is the orthogonal projection onto the span of the left singular vectors of \mathbf{X}' .

Solution: Observe that $\mathbf{C} = \mathbf{X}^{\top} \mathbf{X}'$ and $\mathbf{W} = \mathbf{X}'^{\top} \mathbf{X}'$. Thus,

$$\widetilde{\mathbf{K}} = \mathbf{C}\mathbf{W}^{\dagger}\mathbf{C}^{\top} = \mathbf{X}^{\top}\mathbf{X}' \big(\mathbf{X}'^{\top}\mathbf{X}'\big)^{\dagger}\mathbf{X}'^{\top}\mathbf{X} = \mathbf{X}^{\top}\mathbf{U}_{X'}\mathbf{U}_{X'}^{\top}\mathbf{X} = \mathbf{X}^{\top}\mathbf{P}_{U_{X'}}\mathbf{X}.$$

(c) [5 points] Is $\widetilde{\mathbf{K}}$ SPSD?

Solution: Yes. Using the expression for $\widetilde{\mathbf{K}}$ in (b) and the idempotency of orthogonal projection matrices, we can write $\widetilde{\mathbf{K}} = \mathbf{X}^{\top} \mathbf{P}_{U_{X'}} \mathbf{X} = \mathbf{A}^{\top} \mathbf{A}$, where $\mathbf{A} = \mathbf{P}_{U_{X'}} \mathbf{X}$.

- (d) [5 points] If $\operatorname{rank}(\mathbf{K}) = \operatorname{rank}(\mathbf{W}) = r \ll m$, show that $\widetilde{\mathbf{K}} = \mathbf{K}$. Note: this statement holds whenever $\operatorname{rank}(\mathbf{K}) = \operatorname{rank}(\mathbf{W})$, but is of interest mainly in the low-rank setting.
 - Solution: Since $\mathbf{K} = \mathbf{X}^{\top} \mathbf{X}$, rank $(\mathbf{K}) = \operatorname{rank}(\mathbf{X}) = r$. Similarly, $\mathbf{W} = \mathbf{X}'^{\top} \mathbf{X}'$ implies rank $(\mathbf{W}) = \operatorname{rank}(\mathbf{X}') = r$. The columns of \mathbf{X}' are columns of \mathbf{X} and they thus span the columns of \mathbf{X} . Hence, $\mathbf{U}_{X'}$ is an orthonormal basis for \mathbf{X} , i.e., $\mathbf{I}_N \mathbf{P}_{U_{X'}} \in \operatorname{Null}(\mathbf{X})$, and by part (b) of this exercise we have $\mathbf{K} \widetilde{\mathbf{K}} = \mathbf{X}^{\top} (\mathbf{I}_N \mathbf{P}_{U_{X'}}) \mathbf{X} = \mathbf{0}$.

(e) [5 points] If m = 20M and **K** is a dense matrix, how much space is required to store **K** if each entry is stored as a double? How much space is required by the Nyström method if l = 10K?

Solution: Storage of ${\bf K}$ requires roughly 3200 TB, i.e.,

$$(20\times 10^6)^2 \text{ entries} \times 8 \text{ bytes/entry} \times \frac{1\text{TB}}{10^{12} \text{ bytes}} = 3200 \text{ TB}.$$

Storage of C requires roughly 160 GB, i.e.,

$$(20\times 10^6\times 10^4)~\rm{entries}\times 8~\rm{bytes/entry}\times \frac{1\rm{GB}}{10^9~\rm{bytes}} = 1600~\rm{GB}.$$

Note that the computed numbers do not account for the symmetry of \mathbf{K} (doing so would change the storage requirements by less than a factor of two)