Microarray Data Analysis

Statistical methods to detect differentially expressed genes

Outline

- The class comparison problem
- Statistical tests
 - □ Calculation of p-values
 - □ Permutations tests
 - □ The volcano plot
- Multiple testing
- Extensions
- Examples

Class comparison: Identifying differentially expressed genes

- Identify genes whose expression is significantly associated with different conditions
 - ☐ Treatment, cell type,... (qualitative covariates)
 - □ Dose, time, ... (quantitative covariate)
 - □ Survival, infection time,...!
- Estimate effects/differences between groups probably using log-ratios, i.e. the difference on log scale:

$$log(X)$$
- $log(Y)$ [= $log(X/Y)$]

What is a "significant change"?

- Depends on the variability within groups, which may be different from gene to gene.
- To assess the statistical significance of differences, conduct a statistical test for each gene.

Different settings for statistical tests

- Indirect comparisons: 2 groups, 2 samples, unpaired
 - □ E.g. 10 individuals: 5 suffer diabetes, 5 healthy
 - One sample fro each individual
 - □ Typically: Two sample t-test or similar
- Direct comparisons: Two groups, two samples, paired
 - □ E.g. 6 individuals with brain stroke.
 - □ Two samples from each: one from healthy (region 1) and one from affected (region 2).
 - □ Typically: One sample t-test (also called paired t-test) or similar, based on the individual differences between conditions.

Different ways to do the experiment

- An experiment use cDNA arrays ("two-colour") or affy ("one-colour).
- Depending on the technology used allocation of conditions to slides changes.

Type of chip Experiment	cDNA (2-col)	Affy (1-col)
10 indiv. Diab (5) Heal (5)	Reference design. (5) Diab/Ref (5) Heal/Ref	Comparison design. (5) Diab vs (5) Heal
6 indiv. Region 1 Region 2	6 slides 1 individual per slide (6) reg1/reg2	12 slides (6) Paired differences

м

"Natural" measures of discrepancy

For Direct comparisons in two colour or paired-one colour.

Mean (log) ratio =
$$\frac{1}{n_T} \sum_{i=1}^{n_T} R_i$$
, (R or M used indistinctly)

Classical t-test = $t = (\overline{R})/SE$, (SE estimates standard error of \overline{R})

Robust t-test = Use robust estimates of location &scale

For Indirect comparisons in two colour or Direct comparisons in one colour.

Mean difference =
$$\frac{1}{n_T} \sum_{i=1}^{n_T} T_i - \frac{1}{n_C} \sum_{i=1}^{n_C} C_i = \overline{T} - \overline{C}$$

Classical t-test =
$$t = (\overline{T} - \overline{C})/s_p \sqrt{1/n_T + 1/n_C}$$

Robust t-test = Use robust estimates of location &scale

Some issues in gene selection

- Gene expression values have peculiarities that have to be dealt with.
- Some related with small sample sizes
 - Variance unstability
 - Non-normality of the data
- Other related to big number of variables
 - Multiple testing

Variance unstability

- Can we trust average effect sizes (average difference of means) alone?
- Can we trust the t-statistic alone?
- Here is evidence that the answer is no.

Gene	M1	M2	М3	M4	M5	M6	Mean	SD	t
Α	2.5	2.7	2.5	2.8	3.2	2	2.61	0.40	16.10
В	0.01	0.05	-0.05	0.01	0	0	0.003	0.03	0.25
С	2.5	2.7	2.5	1.8	20	1	5.08	7.34	1.69
D	0.5	0	0.2	0.1	-0.3	0.3	0.13	0.27	1.19
Е	0.1	0.11	0.1	0.1	0.11	0.09	0.10	0.01	33.09

M may be assumed to be the log-Fold change in a paired experiment

Variance unstability (1): outliers

- Can we trust average effect sizes (average difference of means) alone?
- Can we trust the t statistic alone?
- Here is evidence that the answer is no.

Gene	M1	M2	М3	M4	M5	M6	Mean	SD	t
Α	2.5	2.7	2.5	2.8	3.2	2	2.61	0.40	16.10
В	0.01	0.05	-0.05	0.01	0	0	0.003	0.03	0.25
С	2.5	2.7	2.5	1.8	20	1	5.08	7.34	1.69
D	0.5	0	0.2	0.1	-0.3	0.3	0.13	0.27	1.19
Е	0.1	0.11	0.1	0.1	0.11	0.09	0.10	0.01	33.09

Averages can be driven by outliers.

Variance unstability (2): tiny variances

- Can we trust average effect sizes (average difference of means) alone?
- Can we trust the t statistic alone?
- Here is evidence that the answer is no.

Gene	M1	M2	M3	M4	M5	M6	Mean	SD	t
Α	2.5	2.7	2.5	2.8	3.2	2	2.61	0.40	16.10
В	0.01	0.05	-0.05	0.01	0	0	0.003	0.03	0.25
С	2.5	2.7	2.5	1.8	20	1	5.08	7.34	1.69
D	0.5	0	0.2	0.1	-0.3	0.3	0.13	0.27	1.19
Е	0.1	0.11	0.1	0.1	0.11	0.09	0.10	0.01	33.09

[•]t's can be driven by tiny variances.

Solutions: Adapt t-tests

- Let
 - \square R_a mean observed log ratio
 - \square SE_g standard error of R_g estimated from data on gene g.
 - SE standard error of R_g estimated from data across all genes.
- Global t-test: $t=R_g/SE$
- Gene-specific t-test $t=R_g/SE_g$

Some pro's and con's of t-test

Test	Pro's	Con's
Global t-test: $t=R_g/SE$	Yields stable variance estimate	Assumes variance homogeneity -> biased if false
Gene-specific: $t=R_g/SE_g$	Robust to variance heterogeneity	 Low power Yields unstable variance estimates (due to few data)

T-tests extensions

SAM (Tibshirani, 2001)

EB-moderated t (Smyth, 2003)

$$S = \frac{R_g}{c + SE_g}$$

$$t = \frac{R_g}{\sqrt{\frac{v_0 SE^2 + (n-1)SE_g^2}{v_0 + n - 2}}}$$

$$t = \frac{R_g}{\sqrt{\frac{d_0 \cdot SE_0^2 + d \cdot SE_g^2}{d_0 + d}}}$$

Up to here...: Can we generate a list of candidate genes?

With the tools we have, the reasonable steps to generate a list of candidate genes may be:

We need an idea of how significant are these values → We'd like to assign them *p-values*

Nominal p-values

After a test statistic is computed, it is convenient to convert it to a p-value:

The probability that a test statistic, say S(X), takes values equal or greater than the observed value, say X^{0} , under the assumption that the null hypothesis is true

$$p=P\{S(X)>=S(X^0) | H_0 \text{ true}\}$$

Significance testing

- Test of significance at the α level:
 - □ Reject the null hypothesis if your p-value is smaller than the significance level
 - It has advantages but not free from criticisms
- Genes with p-values falling below a prescribed level may be regarded as significant

Hypothesis testing overview for a single gene

		Reported of		
		H ₀ is Accepted	H ₀ is Rejected	
		(gene not Selected)	(gene is Selected)	
State of the nature	H ₀ is true (Not Affected)	TN , prob: β	FP, P[Rej $H_0 H_0] <= \alpha$ Type I error	Specificity TN/[TN+FP]
("Truth")	H ₀ is false (Affected)	FN, prob: 1-β Type II error	TP, prob: 1-α	Sensitiviy TP/[TP+FN]
		Negative predictive value TN/[TN+FN]	Positive predictive value TP/[TP+FP]	

Calculation of p-values

- Standard methods for calculating pvalues:
 - (i) Refer to a statistical distribution table (*Normal, t, F*, ...) or
 - (ii) Perform a permutation analysis

(i) Tabulated p-values

- Tabulated p-values can be obtained for standard test statistics (e.g.the t-test)
- They often rely on the assumption of normally distributed errors in the data
- This assumption can be checked (approximately) using a
 - □ Histogram
 - □ Q-Q plot

Example (1)

Golub data, 27 ALL vs 11 AML samples, 3051 genes A *t*-test yields 1045 genes with p< 0.05

м

(ii) Permutations tests

- Based on data shuffling. No assumptions
 - Random interchange of labels between samples
 - Estimate p-values for each comparison (gene) by using the permutation distribution of the t-statistics
- Repeat for every possible permutation, b=1...B
 - □ Permute the *n* data points for the gene (*x*). The first *n*1 are referred to as "treatments", the second *n*2 as "controls"
 - For each gene, calculate the corresponding two sample t-statistic, tb
- After all the B permutations are done put p = #{b: |tb| ≥ |tobserved|}/B

.

Permutation tests (2)

			Parametric
	Class 1 data values	Class 2 data values	t-statistic
original data:	_0.18 _0.10 _0.13 _0.30 _0.14	0.15 0.84 0.66 0.52	t=3.64
data permutation 1:	_0.18 _0.10 _0.13 _0.30 _0.14	0.15 0.84 0.66 0.52	$t^* = 3.64$
data permutation 2:	-0.18 -0.10 -0.13 0.30 0.15	_0.14 0.84 0.66 0.52	$t^* = 2.15$
data permutation 3:	-0.18 -0.10 -0.13 0.15 0.84	0.30 -0.14 0.66 0.52	$t^* = 0.83$
data permutation 4:	-0.18 -0.10 -0.13 -0.14 0.15	0.30 0.84 0.66 0.52	$t^* = 5.48$
•			
	E10	[세념경험학 - 1827년	
data permutation 124:	0.30 -0.14 0.84 0.66 0.52	[-0.18] $[-0.10]$ $[-0.13]$ $[0.15]$	$t^* = -2.48$
data permutation 125:	0.30 0.15 0.84 0.66 0.52	[-0.18] $[-0.10]$ $[-0.13]$ $[-0.14]$	$t^* = -4.49$
data permutation 126:	<u>-0.14</u> 0.15 0.84 0.66 0.52	[-0.18] $[-0.10]$ $[-0.13]$ $[0.30]$	$t^* = -2.48$
permutation <i>p</i> -value =	$\frac{\text{# of the 126 permuations where } t^* \ge t }{126} =$	<u>3</u> 126	

The volcano plot: fold change vs log(odds)¹

Significant change detected

No change detected

Multiple testing

How far can we trust the decision?

- The test: "Reject H_0 if p-val $\leq \alpha$ "
 - □ is said to *control* the type I error because, under a certain set of assumptions, the probability of falsely rejecting H₀ is less than a fixed small threshold

$$P[Reject H_0|H_0 true] = P[FP] \le \alpha$$

- Nothing is warranted about P[FN] →
 - "Optimal" tests are built trying to minimize this probability
 - In practical situations it is often high

What if we wish to test more than one gene at once? (1)

- Consider more than one test at once
 - □ Two tests each at 5% level. Now probability of getting a false positive is 1 0.95*0.95 = 0.0975
 - □ Three tests \rightarrow 1 0.95³ =0.1426
 - \square *n* tests \rightarrow 1 0.95ⁿ
 - Converge towards 1 as n increases
- Small p-values don't necessarily imply significance!!! → We are not controlling the probability of type I error anymore

What if we wish to test more than one gene at once? (2): a simulation

- Simulation of this process for 6,000 genes with 8 treatments and 8 controls
- All the gene expression values were simulated i.i.d from a N (0,1) distribution, i.e. NOTHING is differentially expressed in our simulation
- The number of genes falsely rejected will be on the average of $(6000 \cdot \alpha)$, i.e. if we wanted to reject all genes with a p-value of less than 1% we would falsely reject around 60 genes

See example

w

Multiple testing: Counting errors

		H ₀ is accepted (Genes not Selected)		H ₀ is Rejected (Genes Selected)		Total
State of the nature ("Truth")	H ₀ is true (Not Affected)	m_o - $lpha$ m $ heta$	(U)	$lpha extbf{m}_{ heta}$	(V)	m_o
	H ₀ is false (Affected)	$(m-m_o)-$ $(m_{\alpha}-\alpha m_{o})$	(T)	m_{α} $-\alpha m_{\theta}$	(S)	m-m _o
Total		$\emph{m-m}_{lpha}$	(m-R)	M_{lpha}	(R)	m

V = # Type I errors [false positives]

T = # Type II errors [false negatives]

All these quantities could be known if m₀ was known

How does type I error control extend to multiple testing situations?

- Selecting genes with a p-value less than α doesn't control for P[FP] anymore
- What can be done?
 - □ Extend the idea of type I error
 - FWER and FDR are two such extensions
 - Look for procedures that control the probability for these extended error types
 - Mainly adjust raw p-values

м

Two main error rate extensions

- Family Wise Error Rate (FWER)
 - FWER is probability of at least one false positive

FWER= Pr(# of false discoveries > 0) = Pr(V > 0)

- False Discovery Rate (FDR)
 - □ FDR is expected value of proportion of false positives among rejected null hypotheses FDR = E[V/R; R>0] = E[V/R | R>0]·P[R>0]

FDR and FWER controlling procedures

FWER

- □ Bonferroni (adj Pvalue = min{n*Pvalue,1})
- □ Holm (1979)
- □ Hochberg (1986)
- Westfall & Young (1993) maxT and minP

FDR

- □ Benjamini & Hochberg (1995)
- □ Benjamini & Yekutieli (2001)

Difference between controlling FWER or FDR

- FWER→ Controls for no (0) false positives
 - □ gives many fewer genes (false positives),
 - □ but you are likely to miss many
 - adequate if goal is to identify few genes that differ between two groups
- FDR→ Controls the proportion of false positives
 - ☐ if you can tolerate more false positives
 - □ you will get many fewer false negatives
 - □ adequate if goal is to pursue the study e.g. to determine functional relationships among genes

Steps to generate a list of candidate genes revisited (2)

Example (1b)

Golub data, 27 ALL vs 11 AML samples, 3051 genes Bonferroni adjustment: 98 genes with p_{adj} < 0.05 (p_{raw} < 0.000016)

Example (2)

Se the examples of testing in the case study found in this link

http://www.ub.edu/stat/docencia/bioinformatica/microarrays/AD M/labs/Virtaneva2002/Ejemplo_AML8.R

Extensions

- Some issues we have not dealt with
 - Replicates within and between slides
 - Several effects: use a linear model
 - □ ANOVA: are the effects equal?
 - □ Time series: selecting genes for trends
- Different solutions have been suggested for each problem
- Still many open questions