Table of Contents

App	endix	L Safety Case Construction	.3
L.1	SEC	CoT Validation Report Template	.3
	L.1.1	Purpose of the Report	3
	L.1.2	Scope of Validation	3
	L.1.3	SECoT Output Validation	4
	L.1.4	Summary and Next Steps	5
	L.1.5	Appendices (Optional)	5
	L.1.6	SECoT Validation Review Process	5
L.2	SEC	CoT Validation Report for AVOIDDS case study	.7
	L.2.1	Purpose of the Report	7
	L.2.2	Scope of Validation	7
	L.2.3	SECoT Output Validation	8
	L.2.4	Summary and Next Steps	9
	L.2.5	Appendices (Optional)1	0
	L.2.6	SECoT Validation Review Process	11
L.3	SEC	CoT Validation Report for Unsafe Train Tracks case study1	12
	L.3.1	Purpose of the Report	12
	L.3.2	Scope of Validation 1	12
	L.3.3	SECoT Output Validation	12
	L.3.4	Summary and Next Steps	14
	L.3.5	Recommended Actions	14
	L.3.6	Appendices 1	15
	L.3.7	SECoT Validation Review Process	15
L.4	SAC	CE Safety Case Argumentation Patterns1	16
	L.4.1	Stage 1: Operating Context Assurance	16
	L.4.2	Stage 2: AS Hazardous Scenario Identification	26
	L.4.3	Stage 3: Safe Operating Concept Assurance	35

L.4.4	Stage 4: Safety Requirements Assurance	41
L.4.5	Stage 5: AS Design Assurance	49
L.4.6	Stage 6: Hazardous Failures Management	58
L.4.7	Stage 7: Out-of-Context Operation Assurance	64
L.4.8	Stage 8: AS Verification Assurance	64
L.4.9	Summary of SACE artefacts and AIC Systems Approach implementation	165
I E Eog	le Robot AMLAS Safety Case Argumentation Patterns	01
L.5 Eag	te hobot Arieno dalety dase Argumentation ratterns	01
	Stage 1. ML Safety Assurance Scoping	
L.5.1	· -	81
L.5.1 L.5.2	Stage 1. ML Safety Assurance Scoping	81 84
L.5.1 L.5.2 L.5.3	Stage 1. ML Safety Assurance Scoping Stage 2. ML Safety Requirements Assurance	81 84 88
L.5.1 L.5.2 L.5.3 L.5.4	Stage 1. ML Safety Assurance Scoping Stage 2. ML Safety Requirements Assurance Stage 3. Data Management	81 84 88 96

Appendix L Safety Case Construction

Note: We often refer to the artefacts in Appendices H and I because they contain detailed tables and figures. However, each section in Appendices H and I is also associated with sections in Chapters 6, 7 and Appendix M.

L.1 SECoT Validation Report Template

This template provides a structured approach for validating Systems Engineering Chains of Thought (SECoTs) in a systematic and repeatable manner. It ensures that each SECoT follows a rigorous predictive thinking process, aligning with general systems principles and enabling a thorough exploration of emergent behaviours. The template can be adapted for any SECoT by defining specific elements and applying the methodology to various systems engineering contexts. For a full description of SECoTs, see section D.8. for full definition of SECoT methods. The following are the main sections of the report:

L.1.1 Purpose of the Report

- Clearly define the purpose of the validation report.
- Explain why the SECoT needs to be validated.

Example: This report validates the "AIC Perspective Shift SECoT," ensuring that its predictive thinking steps systematically uncover unforeseen scenarios that impact autonomous safety assurance.

L.1.2 Scope of Validation

- Define the boundaries of what is being validated.
- Specify whether the validation applies to a single SECoT, a set of SECoTs, or a broader system application.
- You may also include "Out of Scope" to summarise what would be outside the scope of validation.

Example: The scope of this validation includes examining predictive thinking pipelines, general systems rules, and structured outputs to ensure alignment with the SECoT_1 principle.

L.1.3 SECoT Output Validation

L.1.3.1 Validation Criteria

- Define measurable criteria (pass/fail) to determine whether SECoT predictions are valid and valuable.
- Include qualitative and quantitative measures.
- Examine if the step completion criteria in the SECoT are preserved.

Example criteria:

- The predictions align with general systems axioms.
- The SECoT process reveals previously unrecognised emergent behaviours.
- The thinking pipelines yield multiple alternative scenarios.
- Step completion criteria are preserved.

L.1.3.2 Validation Results Table

Define the appropriate textual description of the validation test that needs to be checked for a given SECoT.

Table Error! No text of specified style in document...1 SECoT validation results table

Validation			
Step	Evaluation Criteria	Pass/Fail	Notes
	Alignment with general		Predictions adhere to known system
Step 1	systems rules.	Pass	behaviours.
	Generation of unforeseen		
Step 2	scenarios.	Pass	Identified new emergent behaviours.
	Applicability to real-world		Scenario aligns with real-world system
Step 3	cases.	Pass	failures.
	Step completion criteria are		The output predictions preserve step
Step 4	preserved.	Pass	completion criteria.

L.1.4 Summary and Next Steps

L.1.4.1 Summary of Findings

- Summarize the key takeaways from the SECoT validation.
- Highlight whether the SECoT successfully identified emergent scenarios and preserved general systems rules.

Example: The SECoT validation confirmed that predictive thinking pipelines effectively identify unforeseen scenarios in autonomous drone operations, revealing three unaccounted failure cases.

L.1.4.2 Recommended Actions

Outline the next steps for refining the SECoT or integrating it into system design.

Example:

- Incorporate SECoT predictions into risk mitigation planning.
- Expand SECoT pipelines to cover additional interaction types.
- Validate SECoT predictions through simulation or real-world testing.

L.1.5 Appendices (Optional)

Include supporting materials such as:

- Diagrams of the SECoT predictive steps.
- Simulation results validating SECoT predictions.
- Additional examples of general systems rules in use.

L.1.6 SECoT Validation Review Process

- Validation reports must follow the peer review process.
- The process starts with the naming of the architect who is responsible for generating the report.
- It must also include signatures of at least one more reviewer to affirm the validity of the process.

L.2 SECoT Validation Report for AVOIDDS case study¹

Below is a sample SECoT Validation Report drafted by the L.1 SECoT Validation Report Template. This example applies to the "Identification and Analysis of Unsafe Problematic Behaviours in Mid-Air Collision" SECoT, Table I.1, validating the correctness and usefulness of "Architect Assertion 1.1.4" about confusing and unsafe behaviours that may lead to collisions.

L.2.1 Purpose of the Report

This validation report evaluates the "Identification and Analysis of Unsafe Problematic Behaviours in Mid-Air Collision" SECoT, ensuring that its predictive thinking steps systematically uncover unforeseen or unsafe behaviours in the problem domain. It also confirms whether the SECoT product meets the expected completeness, consistency, and alignment with general systems rules and organisational needs.

- SECoT Under Review: "Unsafe Problematic Behaviours List Identification"
- Architect Assertion 1.1.4: Outlines two major problematic behaviours in mid-air collision contexts:
 - 1. Aircraft deviating unexpectedly from assigned flight paths
 - 2. By-passing aircraft moving erratically at high altitudes near crowded airspace.

L.2.2 Scope of Validation

This validation covers:

- Examination of how the SECoT identifies and describes confusing or unsafe behaviours in the domain of mid-air collision avoidance.
- Authentication that the Predictive Thinking steps are properly followed—i.e., that
 they adhere to "General rule A" and "General rule B" from your general systems
 rules.
- Assess alignment with the Step Completion Criteria (1.1.3) to confirm that the SECoT product sufficiently describes the problem context and indicates undesirable impacts without prematurely jumping to design solutions.

-

¹ Associated with section 7.9 and table I.1

Out of Scope:

- Detailed assessment of proposed solutions or mitigations for any of the identified unsafe behaviours.
- Authentication of other SECoTs beyond the "Identification and Analysis of Unsafe Behaviours" focus.
- Full end-to-end system safety or certification processes outside the immediate SECoT's boundaries.

L.2.3 SECoT Output Validation

L.2.3.1 Validation Criteria

We define the following **pass/fail** criteria to determine whether the "Identification and Analysis of Unsafe Problematic Behaviours in Mid-Air Collision" SECoT output is valid and valuable:

1. Alignment with General Systems Rules

 The SECoT must illustrate that General rule A (unsafe behaviour is a type of confusing behaviour) and General rule B (confusing behaviours cause undesirable emergent outcomes) are correctly applied.

2. Relevance to the Stakeholder/Architect Sphere of Concern

 The problem statements must show that the described behaviours (e.g., erratic or unauthorised flight path deviations) fall within the domain's sphere of concern (e.g., collision risk in congested airspace).

3. Identification of Realistic Undesirable Outcomes

 The SECoT must show how each unsafe or confusing behaviour leads to specific, undesirable consequences (e.g., near misses or actual collisions).

4. Exclusion of Solutions

 The deliverable should focus on analysing behaviours and not present solutions or mitigations (in line with the step's instructions).

5. Step Completion Criteria (1.1.3) Preserved

 The SECoT must sufficiently describe the problem (the "Confusing Complex") and the unsafe impact on some element B.

L.2.3.2 Validation Results Table

Below is an example table summarising the evaluation of each step or key aspect in the SECoT.

Validation	Evaluation Criteria	Pass/Fail	Notes
Step			
Step 1: Identify Problem Domain	Does the SECoT describe a mid-air collision scenario with enough clarity?	Pass	The problem domain is stated clearly: mid-air collisions. The scenario references "aircraft deviate from assigned path."
Step 2: Apply General Rule A, B	Are unsafe/ confusing behaviours recognised as contradictory? Do they cause emergent risk?	Pass	Identified two primary behaviours: unexpected flight path deviation and erratic flight near crowded airspace, leading to collision risk.
Step 3: Problem- Focused, No Solutions	Does the text avoid introducing solutions?	Pass	The SECoT only defines problems: "Aircraft deviating" and "Moving erratically" It does not mention new solutions or systems.
Step 4: Step Completion Criteria	Does an "undesirable outcome accompany each behaviour"?	Pass	The undesirable outcomes are clearly described as "Increased collision risk," "ATC confusion," and "reactive manoeuvres."
Overall	Does the SECoT produce an acceptable description of the Confusing Complex?	Pass	The problem context is consistent, relevant, and no solutions overshadow the problem articulation.

L.2.4 Summary and Next Steps

L.2.4.1 Summary of Findings

- The SECoT effectively identifies critical unsafe behaviours (such as "unexpected flight path deviations" or "unauthorised, erratic flight in crowded space").
- Each behaviour is framed as "confusing" and includes specific undesirable outcomes (e.g., collision risk, unpredictability for other pilots).
- The content adheres to General Rule A and General Rule B, explaining how each contradictory behaviour escalates collision likelihood and thus is within the "sphere of concern."

 No solutions appear in the text, thus fulfilling the requirement to remain problemfocused.

All these observations indicate that the SECoT output meets the objectives set out in the instructions for "Identification and Analysis of Unsafe Problematic Behaviours." Hence, the SECoT is validated as meeting the acceptance criteria for this stage.

L.2.4.2 Recommended Actions

To refine future SECoT steps or expansions, the following actions are suggested:

1. Feed into Next Phase

- Use these validated unsafe behaviours to inform the following process steps:
 - Step 1.2) Generate a descriptive image that visualises the unsafe behaviour

L.2.5 Appendices (Optional)

If needed, include:

- Minutes of problem articulation reviews with the customer that support this SECoT's finding.
- Illustrative diagrams or references to concept sketches of the flight paths,
 relevant logs of near-misses, or any additional data compiled during the problem articulation.

Figure Error! No text of specified style in document.. 1 Diagram taken from [1]

L.2.6 SECoT Validation Review Process

- **Report Author/Architect**: Haider Al-Shareefy [University of Southampton], responsible for generating the SECoT validation content.
- **Reviewer 1**: Prof Michael Butler [University of Southampton], validating alignment with General Rules D, E, F.
- **Reviewer 2**: Dr Son Hoang [University of Southampton], verifying coverage of elements and clarity of PrimePs.
- **Reviewer 3**: Prof Hamid Asgari [Thales], performs customer acceptance of validation report output.
- **Sign-off**: The above signatories affirm that the **SECoT validation** process was carried out thoroughly, and the results are valid as of this report date.

By signing below, the reviewers confirm that **I.4.1.1 Step 1.1) Identify a list of unsafe or confusing behaviours** of the SECoT is validated as meeting the defined criteria.

-					
C	ign	9	•••	ro	۰.
J	ווצו	a	LU		Э.

Signatures:

•	Architect:	(Date:)
•	Reviewer 1:	(Date:)
•	Reviewer 2:	(Date:)
•	Reviewer 3:	(Date:

End of SECoT Validation Report

L.3 SECoT Validation Report for Unsafe Train Tracks case study²

L.3.1 Purpose of the Report

This report aims to validate the SECoT step "H.4.1.4 Step 1.4) Define the Supra-Complexes and Their PrimePs" ensuring that its predictive thinking processes and outputs adhere to the established general systems rules and follow the method's intended objective.

The SECoT step under validation identifies two supra-complexes within the train tracks problem domain—Train Network and Adversarial Scheme—each associated with a distinct Prime Purpose (PrimeP). Validating this SECoT output is crucial to confirm that the methodology correctly organises the system elements into supra-complexes with consistent, clearly stated PrimePs, thereby guiding subsequent design and solution development.

L.3.2 Scope of Validation

- **Focus**: The validation is limited to the single SECoT step "Define the supra-complexes and their PrimePs" as documented in Table H.4 and summarised in Architect Assertion 1.4.6.
- **Boundaries**: The assessment excludes detailed downstream solutions, mitigations, or expansions of these supra-complexes beyond verifying that the SECoT step (1) correctly applies the relevant general system rules (D, E, F) and (2) satisfies the completion criteria (1.4.5).
- **Related References**: This validation specifically examines integrating with the "General Systems Rules" (especially D, E, F) and aligning with the AIC-based method for clarifying purpose and system scope.

L.3.3 SECoT Output Validation

L.3.3.1 Validation Criteria

The following criteria (Pass/Fail) are applied to judge whether the SECoT step output is acceptable:

1. Alignment with General System Rules

• General Rule D: Has the architect defined supra-complexes as "larger collections of complexes"?

² Associated with section 6.10 and table H.4

- General Rule E: Are the purpose statements consistent, stable, and clear across scenarios?
- General Rule F: Does each supra-complex have a well-defined Prime Purpose in the sense of a "Primary Purpose" that influences design?

2. Clarity of Supra-Complex Scope

 Each supra-complex must logically group relevant elements to achieve its chosen PrimeP.

3. Correctness and Completeness

- o The final list of supra-complexes must encompass all visible elements.
- The step must not omit significant elements or add extraneous ones that do not fit the scenario.

4. Step Completion Criteria (1.4.5) Preservation

 The step's deliverable is considered complete when at least one supra-complex is identified to represent each group of coexisting elements, and each is assigned a PrimeP.

5. Absence of Unwarranted Solutions

 This phase must remain descriptive about system structure and purpose rather than specifying a design or solution.

Validation Step	Evaluation Criteria	Pass/Fai	Notes
Step 1: Application of Gen. Rules D, E, F Step 2: Clarity of Supra- Complex Scope	Are supra-complexes formed properly (Rule D)? Are the defined PrimePs consistent (Rules E, F)? Do these supracomplexes collectively include all identified elements?	Pass	Two supra-complexes—Train Network and Adversarial Scheme— are logically separated, each with a stable, domain-consistent PrimeP. The Train Network includes the train, fence, vegetation, and power lines. The Adversarial Scheme consists of the adversarial drone. Comprehensive coverage.
Step 3: Correctness and Completenes s	Are the key elements (train, fence, drone, etc.) correctly allocated?	Pass	All visible elements are accounted for; each belongs to a supra-complex that logically groups them by purpose.

Step 4: Step			Train Network → "transport
Completion Criteria 1.4.5 Preserved	Is each supra-complex assigned a PrimeP?	Pass	people/goods safely" Adversarial Scheme → "disrupt train operations" Aligned with the method's instructions.
Step 5: No Solutions Included	Does it avoid design solutions?	Pass	The final output remains at the level of problem domain structuring—no solutions or mitigations overshadow the definition process.

L.3.4 Summary and Next Steps

L.3.4.1 Summary of Findings

1. General Systems Rule Application

- The step properly operationalises Rule D by defining supra-complexes that unite sets of systems with shared overarching objectives.
- Rules E and F are upheld: each supra-complex's PrimeP is well defined and consistent across potential scenarios.

2. Thoroughness in Coverage

 All major observable elements (train, tracks zone, vegetation, fence, power lines, drone) are included and correctly assigned to either the Train Network or Adversarial Scheme supra-complex.

3. Clarity for Future Stages

 The logic behind choosing these two supra-complexes clarifies how future design or risk analysis can proceed (e.g., focusing on how adversarial elements threaten the train network's primary purpose).

Therefore, the SECoT step "Define the supra-complexes and their PrimePs" meets the validation criteria, with no unmet requirements or contradictions discovered.

L.3.5 Recommended Actions

1. Incorporate into Next Steps

 Use these supra-complex definitions to guide scenario-based hazard analyses or system design choices, especially in subsequent steps focusing on emergent interactions.

2. Validate Worst-Case Assumptions

 Validate or refine the assumption that the "Adversarial Scheme" might be more widespread than a single drone (i.e., a multi-drone orchestrated threat).

L.3.6 Appendices

- (If desired) Diagrams showing the two supra-complexes and their sub-elements.
- Additional references or notes on re-scope definitions, if the "Adversarial Scheme" requires broadening.

L.3.7 SECoT Validation Review Process

- Report Author/Architect: Haider Al-Shareefy [University of Southampton],
 responsible for generating the SECoT validation content.
- **Reviewer 1**: Prof Michael Butler [University of Southampton], validating alignment with General Rules D, E, F.
- **Reviewer 2**: Dr Son Hoang [University of Southampton], verifying coverage of elements and clarity of PrimePs.
- Reviewer 3: Prof Hamid Asgari [Thales], performs customer acceptance of validation report output.
- **Sign-off**: The above signatories affirm that the **SECoT validation** process was carried out thoroughly, and the results are valid as of this report date.

By signing below, the reviewers confirm that **H.4.1.4 Step 1.4**) **Define the supra-complexes and their PrimePs** of the SECoT is validated as meeting the defined criteria.

Signatures:

•	Architect:	(Date:)
•	Reviewer 1:	_ (Date:)
•	Reviewer 2:	_ (Date:)
•	Reviewer 3:	_ (Date:)

End of SECoT Validation Report

L.4 SACE Safety Case Argumentation Patterns

L.4.1 Stage 1: Operating Context Assurance

The first stage of SACE requires defining the AS's capabilities, validating its Operational Domain Model (ODM), and defining operating scenarios. The primary outcomes of this stage are:

- 1. Autonomous Capabilities are specified.
- 2. AS's Operational Domain Model (ODM) are established and confirmed.
- 3. Operating Scenarios within the established ODM are identified and validated.
- 4. Development of Operating Context Assurance Argument.

AIC Systems Approach Processes involved to satisfy the objectives:

- Stage 1: Uncertainty Problem Articulation and Operational Environment Modelling
- Stage 2: Architect Intent and Autonomous Solution Needs Definition
- Stage 3A: HazTOPS and Ordered AIC-driven Autonomous System Requirements
 Development
- Stage 3B: Comprehensive Operational Environment Definition

L.4.1.1 Argument Pattern for Eagle Robot Operating Context Assurance

Assurance Argument Pattern	AIC Systems Approach supportive methods
	and artefacts The following process outputs satisfy the artefact's demonstration requirements:
[B] C1.1 [ODM] C1.2 [AC definition] (D) C1.2 [AC definition]	Table H.15 Architect High-Level Solution Prescription. • Sections 6.2, 7.2. Table H.35 Operational Design Definition for Eagle Robot Deployment in Train Track Zone

 Sections L.1 for SECoT validation template, sections H.12, L.2 for implementations.

H.4.4.3 Step 4.3) Define the assumptions made about factors.

Table J.8 unsafe train tracks problem domain assumptions.

H.4.3.1 Step 3.1) Model detailed AIC interactions scenarios for the problem domain.

Figure H.3 Modelling a complicated interaction n6.

Table J.6 AIC problem domain scenarios definition

H.4.3.2 Step 3.2) Predict the extended list of emergent AIC interactions scenarios.

Table H.10 Complexity Field for n6 Interaction SECoT definition.

Table J.7 AIC Extended Scenarios.

H.6.1 Predictive Thinking Pipeline 1: Introducing Autonomous systems into Feedforward complexity.

Table H.18 Implementing Architect Intent and Forward-Feed AIC Interaction Framework for addressing train derailment caused by adversarial drones.

Table H.19 Mapping AIC interactions of the Eagle Drone and adversarial drone behaviours in mitigating train derailment risks.

	·
	H.7 Stage 3B: Comprehensive Operational
	Environment Definition.
	Table H.35 Operational Design Definition for
	Eagle Robot Deployment in Train Track Zone.
•	Validation is done by documenting expert
[F] over	reviews of architect assertions and predictions
[F] Sn1.3	and the appropriate application of SECoT.
[OS Validation report]	A validation report template has been
lopolity	
	generated, which can be found
	No validation report had been generated as
	part of PhD scope.
	part of Frid Scope.

L.4.1.2 Argument Pattern for AVOID System Operating Context Assurance

Assurance Argument Pattern	AIC Systems Approach supportive methods and artefacts; The following process outputs satisfy the artefact's demonstration
[B] C1.1 [ODM] [D] C1.2 [AC definition]	Table I.13 Architect High-Level Solution Prescription. Table I.27 Operational Design Definition for AVP
[C] Sn1.2 [ODM Validation report]	L.2 SECoT Validation Report for AVOIDDS case study. (I.4.1.1 Step 1.1) Identify a list of unsafe or confusing behaviours]
	I.4.4.3 Step 4.3) Define the assumptions and hazards made about factors.

Table K.2 Extended assumptions, plausibility, concern and hazards analysis. In no particular order.

I.4.3.1 Step 3.1) Model detailed AIC interactions scenarios for the problem domain.

Figure I.2 Modelling AIC scenario from interaction n1.

I.4.3.2 Step 3.2) Predict the extended list of emergent AIC interactions scenarios.

Table I.10 AIC extended scenario for n1 Interaction SECoT definition.

Table K.2 Extended assumptions, plausibility, concern and hazards analysis. In no particular order.

I.6.1 Predictive Thinking Pipeline 1: Introducing Autonomous systems into Feedforward complexity.

Table I.14 Implementing Architect Intent and Forward-Feed AIC Interaction Framework for addressing AVP reliability for by-passing aircraft.

Table I.15 Mapping AIC interactions of AVP with ownship aircraft and the environment

I.7 Stage 3B: Comprehensive Operational Environment Definition.

Table I.27 Operational Design Definition for AVP

Table L.2 captures the primary artefacts that need to be presented:

Table Error! No text of specified style in document..2 SACE Stage 1 artefacts and AIC approach mapping

SACE Artefact	Explanation	The substantiating AIC
		methods and artefacts
[A]: AS Concept Definition	entails producing a high-level	Sections 6.3, M.3.
	document outlining the	• H,I.5 Stage 2: Architect
	intended functions,	Intent and Autonomous
	objectives, and constraints.	Solution Needs Definition
	The systems approach	method satisfies artefacts
	artefact should demonstrate	[A].
	that the intended system	This is because the method for
	functionality, scope of	defining the architect's intent
	autonomy, and interactions	specifically delineates how the
	with humans are clearly	architect plans to address the
	defined. It should include a	anticipated problematic
	use-case description and	situations identified in Stage 1
	stakeholder involvement	and how autonomous
	agreement.	functionalities may provide
		solutions for those issues. This
		stage encompasses
		establishing a contractual
		agreement between the
		architect and the stakeholder
		regarding the requirements to
		be fulfilled by the architect. For

instance, the following may be observed:

• Table H.15 - Architect High-Level Solution Prescription

• Table I.13 - Architect High-Level Solution Prescription

[B]: Operational Domain Model (ODM)

Domain entails modelling the scope of operations for AS, including the assumptions made about the environment and operating conditions. The systems approach artefact should demonstrate:

- All relevant environmental and operational conditions are included.
- All scenarios the AS may encounter are covered.
- It should explicitly list assumptions, constraints, and nonmission interactions.

- Sections 6.2, M.2.
- H,I.4 Stage 1: Uncertainty
 Problem Articulation and
 Operational Environment
 Modelling.

In Stage 1, the architect methodically formulates comprehensive Operational Domain Model (ODM) by clearly delineating uncertainties related to environmental conditions and contextual constraints that may be deemed critical to the safety of autonomous systems. This stage employs structured activities, such as the Predictive Thinking Pipeline (H.4.4),which assesses pivotal assumptions and factors related to the problem domain, ensuring a thorough operational environment representation.

For instance, the Operational Design Definitions presented in Table H.35 (Eagle Robot

Deployment in Train Track Zone) and Table 1.27 (Automated Valet Parking, AVP) illustrate the sources of uncertainty the architect perceives. Furthermore, the complexity inherent in the operational domain is acknowledged. Consequently, Stage 1 asserts that the resultant ODM is adequately detailed and resilient, thereby helping minimise unforeseen occurrences upon the deployment of the autonomous system. lt distinctly identifies the assumptions and variances necessary for subsequent safety analysis and assurance while explicitly addressing potential risks introduced by emergent complexity and operational nuances uncertainty.

[C]: ODM Validation Report

entails documenting the validation of plausibility and correctness of the ODM and that it sufficiently defines the operating scope.

clear evidence that the ODM is AVOIDDS system (L.2) and comprehensive and correct. Unsafe Train Tracks (L.3), Since we utilise SECoT to systematically fulfils the SACE model the ODM, validating it demonstration requirements. becomes more objective and

Sections L.1 for SECoT validation process,

The structured **SECoT** Validation Report Template (Artefact L.1), along with its The architect must provide specific instances about the we developed a structured distinctly delineates: SECoT validation report template (section L.1).

straightforward. For such end, Specifically, the AIC method

- Validation objective of Completeness: The validation report examines whether the set of predictions is complete implementing in the thinking method and those general systems rules enforced; thus, the architect predicts all they can or need to predict.
- Validation objective of Correctness: The validation report requires a formal review process to ensure the predictions regarding implementing the thinking method and general systems rules (axioms) are correct.
- Validation objective of plausibility: The validation report examines whether SECoT predictions align with possible real-world complexity.

Consequently, the structured AIC substantiating method meets the SACE artefact requirements by ensuring that the Operating Domain Model is thoroughly validated for

relevance, accuracy, completeness, and suitable granularity, with documented expert review outlined in the validation review process (L.1.6). The validation report template can be used to validate AIC model any schema. [D]: **Autonomous** entails specifying AS Architect High-Level **Capabilities Definition** functionalities. The systems Solution Prescription approach artefact is expected (Table H.15, I.13). to clearly define the scope of • H,I.6 Stage 3A: HazTOPs autonomy and the tasks that and Ordered AIC-driven may require human Autonomous System intervention. Requirements Development Stage 2 of the AIC approach develops the high-level solution for identified problematic situations and assumptions derived from stage 1. At this stage, the architect and stakeholders decide what autonomous capabilities need to be used. Stage 3A further refines the system level needs into more granular definitions autonomous capabilities. [E]: Operating **Scenarios** entail a detailed description of H,I.6 Stage 3A: HazTOPs Definition all scenarios the AS may and Ordered AIC-driven encounter within the Autonomous System anticipated ODM. The systems

approach artefact must define actions, events and environmental assumptions that could affect AS performance.

- Requirements

 Development
- H,I.7 Stage 3B: Comprehensive
 Operational Environment
 Definition.
- H,I.8 Stage 4: Disordered AIC-Driven Black Swan Scenarios Prediction

The AIC approach predicts scenarios at every stage of the design process and translates those scenarios into design requirements. One important activity is predicting Black Swan scenarios, which are part of the long-tailed probability distribution possible events that could happen in the operational domain. The development stages define the actions, events and operational environment assumptions constituting the operational scenarios.

[F]: Operating ScenariosValidation Report

scenarios assesses whether the defined operating scenarios comprehensively capture all relevant AS interactions. The substantiating artefact must provide evidence of expert review, simulation-based verification, and real-world validation data to confirm the

Sections L.1 for SECoT validation template, sections H.12, L.2 for implementations.

Validation is done by documenting expert reviews of architect assertions and predictions and the appropriate application of

	completeness of the operating	SECoT. A validation report
	scenarios.	template has been generated,
		which can be found. No
		validation report was
		generated as part of PhD
		scope.
[G]: AS Operating Context	A structured assurance	The assurance argument
Assurance Argument Pattern	argument framework is	framework presented in
& [H]: AS Operating Context	explicitly formulated to	artefact L.4.1.1 (Argument
Assurance Argument:	demonstrate that the	Pattern for Eagle Robot
	Autonomous System (AS) can	Deployment) explicitly
	safely operate within its	addresses the requirement by
	specifically defined	structuring the safety
	operational context.	justification around
		systematically established
		operational domain
		assumptions and scenarios.

L.4.2 Stage 2: AS Hazardous Scenario Identification

SACE Stage 2 and AIC Stage 3A emphasise identifying and validating hazardous scenarios. The main outcomes of this stage:

- 1. Potential hazardous scenarios for the AS are identified and outlined.
- 2. Hazardous Scenarios of the AS are Validated.
- 3. Development of the Assurance Argument for the AS Hazardous Scenarios.

The AIC approach introduces HazTOPs (Hazards, Threats, and Opportunities Scenarios) to refine the scope of risk mitigation strategies.

AIC Systems Approach: Processes involved to satisfy the objectives:

- Stage 3A: HazTOPS and Ordered AIC-driven Autonomous System Requirements
 Development
- L.1 SECoT Validation Report Template

L.4.2.1 Argument Pattern for Eagle Robot Hazardous Scenarios

Assurance Argument Pattern	AIC Systems Approach supportive methods
Account of Augustion Country	and artefacts; The following process outputs
	satisfy the artefact's demonstration
	requirements:
	-
[XX] C2.1 [AS Hazardous Scenarios]	H.6.3 Predictive Thinking Pipeline 3: Hazards, Threats and Opportunities Scenarios (HazTOPs) Analysis.
\triangle	Figure H.16 Hazards Complexity Field Scope:
	graphically scoping the hazards within the
	complexity field by placing hazard icons on
	target interaction.
	Figure H.17 Threats Complexity Field Scope
	Figure H.18 Opportunities Complexity Feels
	Scope
	H.6.3.2 Step 2) Characterise the scoped interactions.
	Figure H.19 Hazards associated with Eagle
	Drone preventing derailed train complexity field
	Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones
	H.6.3.3 Step 3) Apply predictive potential complications guide words.
	Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment

	Table H.26 HazTOPs Analysis of adversarial
	drone using smart lasers scenario
	Table H.27 HazTOPs Analysis of adversarial
	drone hiding behind fence scenario
	Figure Error! No text of specified style in document2 Soft Hazard Complexity Field Model
<u> </u>	Validation is done by documenting expert
[YY]	reviews of architect assertions and predictions
Sn2.3 [AS Hazardous	and the appropriate application of SECoT.
Scenarios Validation Report]	A validation report template has been
	generated, which can be found in
	L.1 SECoT Validation Report Template
	Examples: L.3 SECoT Validation Report for
	Unsafe Train Tracks case study
V	H.6.1 Predictive Thinking Pipeline 1:
[WW] Sn2.1	Introducing Autonomous systems into Feed- forward complexity
[AS Decision Analysis Report]	H.6.2 Predictive Thinking Pipeline 2: Designing the affecting Backward-Feed complexity field
	H.9 Stage 5: CuneiForm-based Syllabus for
Δ	Safety-Driven ML Epistemic Intelligence
	Development Development
	H.6.1 Predictive Thinking Pipeline 1:
[E] C2.2	Introducing Autonomous systems into Feed-
[Operating Scenarios	forward complexity.
Definition]	
	Table H.18 Implementing Architect Intent and
$\overline{\Delta}$	Forward-Feed AIC Interaction Framework for
	addressing train derailment caused by
	adversarial drones.

Table H.19 Mapping AIC interactions of the Eagle Drone and adversarial drone behaviours in mitigating train derailment risks.

L.4.2.2 Argument Pattern for AVOID System Hazardous Scenarios

Assurance Argument Pattern	AIC Systems Approach supportive methods
	and artefacts; The following process outputs
	satisfy the artefact's demonstration
	requirements:
(IVVI	I.6.3 Predictive Thinking Pipeline 3: Hazards,
[XX] C2.1 [AS Hazardous Scenarios]	Threats and Opportunities Scenarios (HazTOPs) Analysis.
	Figure I.11Sources of Hazards AIC Complexity Field
	H.6.3.2 Step 2) Characterise the scoped interactions.
	Table I.22 Considering Hazards related to I1 interaction
	H.6.3.3 Step 3) Apply predictive potential complications guide words.
	Table I.23 Example "More" guide word complication
[YY] Sn2.3 [AS Hazardous Scenarios Validation Report]	Validation is done by documenting expert reviews of architect assertions and predictions and the appropriate application of SECoT. A validation report template has been
	generated, which can be found in
	L.1 SECoT Validation Report Template Examples:

	L.2 SECoT Validation Report for AVOIDDS
	case study
	I.6.1 Predictive Thinking Pipeline 1:
	Introducing
[ww]	
Sn2.1	I.6.2 Predictive Thinking Pipeline 2: Designing
[AS Decision Analysis Report]	the affecting Backward-Feed complexity field
	I.9 Stage 5: CuneiForm-based Syllabus for
	Safety-Driven ML Epistemic Intelligence
_	Development
	I.6 Stage 3A: HazTOPs and Ordered AIC-
[E] C2.2	driven Autonomous System Requirements
[Operating Scenarios	Development.
Definition]	Table I.14 Implementing Architect Intentand
	Forward-Feed AIC Interaction Framework for
	addressing AVP reliability for by-passing
	aircraft.
	Table H.19 Mapping AIC interactions of the
	Eagle Drone and adversarial drone behaviours
	in mitigating train derailment risks.

Table L.3 captures the primary artefacts that need to be presented in the safety case:

Table **Error! No text of specified style in document..** 3 SACE Stage 2 artefacts and AIC approach mapping

SACE Artefact	Explanation	The substantiating AIC
		methods and artefacts
[WW]: AS Decision Analysis	A report analysing the	• I, H.6.1 Predictive
Report:	decisions made by the AS at	Thinking Pipeline 1:
	key decision points within	Introducing
	different operating scenarios.	Autonomous systems

The systems approach artefact must demonstrate that all AS decisions and judgments have been identified and analysed for potential hazards and belief states of AS.

- into Forward-Feed complexity
- I,H.6.2 Predictive
 Thinking Pipeline 2:
 Designing the affecting
 Backward-Feed
 complexity field

In this process, the architect determines an AS's decisions when involved in a particular problematic scenario. For example,

Table H.18
 Implementing
 Architect Intent and
 Forward-Feed AIC
 Interaction Framework
 for addressing train
 derailment caused by
 adversarial drones

The Eagle Drone should decide to inhibit the adversarial drone and prevent derailment of the train incident. However, to do so it must perform the following activities:

- Recognises the visibility of vegetation appearance.
- Avoids crashing into vegetation structures.
- Physically inhibit the by-passing drone.
- It cannot effectively be influenced or

controlled by the adversarial drone.

Also, I,H.9 Stage 5: SafetyDriven ML-based Perception
Training, Testing and
Validation Process
(CuneiForm Strategy
Development)

In this stage, the architect determines what decision AS should make when face a particular scenario, for example, in a situation such as (Table H.39 CuneiForm Pictorial situation articulation):

A drone landing on the ground {1}. The drone has a camouflaged skin {2} landing at various distances from the track fence or train tracks or both {3}, trees {4}, local birds surrounding the landed drone{5} bushes {6}, gravel{7}, soil{8}, pavement{9} trash {10}.

Then, the Eagle Drone should be able to recognise adversarial drone and act accordingly. We do not specifically define a category of knowledge as "decision"; however, any action required and derived through the process from the ML

		component to perform is a
		decision made.
[XX]: AS Hazardous	A comprehensive	• H.6 Stage 3A:
Scenarios Definition:	specification of all identified	HazTOPs and Ordered
	hazardous scenarios,	AIC-driven
	including the interactions,	Autonomous System
	environment states, and	Requirements
	decisions leading to unsafe	Development
	outcomes. The systems	• H.8 Stage 4:
	approach artefact should	Disordered AIC-Driven
	clearly show how the architect	Black Swan Scenarios
	predicted hazardous	Prediction
	scenarios and what mitigation	Stages 3A and 4 enable the
	requirements were devised to	architect to assess the
	reduce their impact	problematic scenarios
		identified in Stage 1 thoroughly
		and discover additional
		scenarios. HazTops adopts a
		holistic approach that
		pinpoints hazards while
		identifying threats and
		opportunities. For instance, in
		Figure H.16, we modelled the
		operational scenario where a
		desired autonomous
		capability was defined, in
		which a hazard was predicted
		due to tree cover around the
		tracks, as it would obstruct the
		Eagle Drone's perception to
		identify. However, it can also
		be viewed as an opportunity
		because trees can complicate
		adversarial drone missions
		and can be utilised to provide
		an advantage for the Eagle
		Drone to ambush adversarial

[YY]: AS Hazardous	This validation document	drones. Meanwhile, we identified a Soft Hazard concerning the relationship between agitated locals and the presence of surveillance robots, using the destruction of nature as a pretext to obstruct the continuation of the Eagle Drone's operations The outputs of all predictive
[YY]: AS Hazardous Scenarios Validation Report:	confirms the completeness and correctness of the identified hazardous scenarios. The systems	thinking pipelines and design steps provide comprehensive justification and design traceability for hazardous scenarios, including Black Swan scenarios. Validation is done by documenting expert

[J]: AS Hazardous Scenarios	A structured assurance	• L.4.2.1 Argument
Assurance Argument & [I]: argument demonstrating that		Pattern for Eagle Robot
AS Hazardous Scenarios	all hazardous scenarios have	Hazardous Scenarios.
Assurance Argument	been sufficiently identified and	• L.4.2.2 Argument
Pattern:	validated.	Pattern for AVOID
		System Hazardous
		Scenarios.

L.4.3 Stage 3: Safe Operating Concept Assurance

This phase involves actions aimed at defining and validating the safe operating concept for an AS.

The following are the primary outcomes of this stage:

- 1. The Safe Operating Concept for the AS is clearly defined.
- 2. The Safe Operating Concept is validated.
- 3. Development of the Safe Operating Concept Assurance Argument.

AIC Systems Approach Processes involved to satisfy the objectives:

- Stage 3A: HazTOPS and Ordered AIC-driven Autonomous System Requirements
 Development
- Stage 3B: Comprehensive Operational Environment Definition
- Stage 4: Disordered AIC-Driven Black Swan Scenarios Prediction

L.4.3.1 Argument Pattern for Eagle Robot SOC Assurance

Assurance Argument Pattern	AIC Systems Approach supportive methods
	and artefacts; The following process outputs
	satisfy the artefact's demonstration
	requirements:
	H.6.3 Predictive Thinking Pipeline 3: Hazards,
[XX] C3.2	Threats and Opportunities Scenarios
[Hazardous Scenarios]	(HazTOPs) Analysis.
\triangle	Figure H.16 Hazards Complexity Field Scope:
	graphically scoping the hazards within the

complexity field by placing hazard icons on target interaction.

Figure H.17 Threats Complexity Field Scope

Figure H.18 Opportunities Complexity Feels Scope

H.6.3.2 Step 2) Characterise the scoped interactions.

Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field

Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones

H.6.3.3 Step 3) Apply predictive potential complications guide words.

Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment

Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario

Table H.27 HazTOPs Analysis of adversarial drone hiding behind fence scenario

Figure Error! No text of specified style in document...3 Soft Hazard Complexity Field Model

L.4.3.2 Argument Pattern for AVOID System SOC Assurance

Assurance Argument Pattern	AIC Systems Approach supportive methods	
	and artefacts; The following process outputs	
	satisfy the artefact's demonstration	
	requirements:	
	I.6.3 Predictive Thinking Pipeline 3: Hazards,	
[XX] C3.2	Threats and Opportunities Scenarios	
[Hazardous Scenarios]	(HazTOPs) Analysis.	
	Figure I.11Sources of Hazards AIC Complexity	
	Field	

	Figure H.17 Threats Complexity Field Scope
	Figure I.12 Sources of Threats AIC Complexity Field
	Table I.22 Considering Hazards related to I1 interaction
	Table I.23 Example "More" guide word complication
[L] C3.1 [SOC]	I.6.4 Predictive Thinking Pipeline 4:Elicitate Ordered AIC System-Level Requirements and training requirements
	I.6.4.1,2 (c) Step 3) Ordered-AIC-based Mitigating System or Safety Requirements Derivation (Safety Concept)
Sn3.3 [SOC justification report]	I.6.4 Predictive Thinking Pipeline 4:Elicitate Ordered AIC System-Level Requirements and training requirements
[B] C3.4 [RODs specification]	To be completed [outside PhD scope]
J3.1 Mitigating hazardous events under some conditions may require a ROD, a reduction in AC within an existing domain, or a combination of both	To be completed [outside PhD scope]

The following are the primary artefacts that need to be presented:

Table **Error! No text of specified style in document.**.4 SACE Stage 3 artefacts and AIC approach mapping

SACE Artefact	Explanation	The substantiating AIC
		methods and artefacts
[K]: Definition of Sufficiently	Defines what constitutes an	The structure of SECoTs can be
Safe	acceptable level of safety for	used as evidence to justify how
	the AS, considering legal,	the architect arrived at
	ethical, and stakeholder risk	predicting hazards and Black
	tolerance factors. The systems	Swan scenarios in the context
	approach artefact must justify	of providing a comprehensive
	why the defined safety criteria	justification. However,
	are sufficient, referencing legal	justifying based on specific
	and regulatory guidelines,	ethical standards or
	ethical considerations, and	comparisons to human
	risk acceptance criteria.	performance is outside the
		scope of the PhD.
		Nonetheless, SECoT is ethics-
		based on the application of
		universal systems rules about
		complexity. Ethical regulations
		can substitute those rules and
		thus provide systematic
		evidence of ethical design
		considerations for assurance
		purposes.
II 1: Safe Operating Concept	A formal specification of how	The safety concent comprises
Definition	·	a set of safety requirements at
	·	the system level, not solely for
		the ML component. In our
		approach, we combine the
	system safety requirements.	
		with the training requirements
		(training concept), which do

system-level requirements, ensuring they implement the training. S6age are clear, unambiguous, and 4 provides further safety sufficient to hazardous scenarios.

safety not precisely specify how to mitigate requirements based on mitigating Black Swan scenarios.

> The following is examples of how we captured safety concept and training concept:

- H.6.4.1,2 (c) Step 3) Ordered-AIC-Based Mitigating System Requirements Safety Derivation (Safety Concept)
- H.6.4 Predictive **Pipeline** Thinking 4:Elicitate AIC System-Level Requirements and **Training Requirements**
- H.8.5 Step 5) Define MLmitigating Development and Safety Requirements.

[M]: Safety Concept (SOC) A structured report validating Stages 3A and 4 provide the **Justification Report**

that the mitigates the hazardous scenarios. must systematically justify considered. For example, how each safety requirement and operational constraint contributes to mitigating specific hazardous scenarios.

SOC sufficiently comprehensive justification of identified how the architect arrives at The their predictions and what systems approach artefact mitigation plans should be

> I,H.6.3 Predictive Thinking Pipeline 3: Hazards, Threats and Opportunities

		Scenarios (HazTOPs)
		Analysis
		• I, H.6.4 Predictive
		Thinking Pipeline
		4:Elicitate AIC System-
		Level Requirements
		and Training
		Requirements
[N]: SOC Assurance	A structured framework to	We constructed the GSN
Argument Pattern & [O]: SOC	argue that the Safe Operating	argument in the following
Assurance Argument:	Concept sufficiently mitigates	sections:
	all hazardous scenarios	
	identified in previous	• L.4.3.1 Argument
	stages. The systems approach	Pattern for Eagle Robot
	artefact must systematically	SOC Assurance.
	justify how each safety	• L.4.3.2 Argument
	requirement and operational	Pattern for AVOID
	constraint contributes to	System SOC
	mitigating specific hazardous	Assurance
	scenarios.	

L.4.4 Stage 4: Safety Requirements Assurance

SACE stage 4 revolves around demonstrating that the safety requirements are comprehensively and correctly captured. The primary outcome of this stage is:

- 1. Safety requirements for each tier of the requirements development is clearly defined.
- 2. The defined safety requirements are validated.
- 3. Development of Safety Requirements Argument.

AIC Systems Approach Processes involved to satisfy the objectives:

The pattern is mandated for each tier of the system approach. Therefore, the following structure would be:

- **Tier n-3:** Stage 2: Architect Intent and Autonomous Solution Needs Definition. Sections: I.5, H.5.
- Tier n-2: Stage 3A: HazTOPS and Ordered AIC-driven Autonomous System Requirements Development. Sections: I.6, H.6.
- Tier n-1: Stage 4: Disordered AIC-Driven Black Swan Scenarios Prediction. Sections: I.8, H.8.
- **Tier n:** Stage 5: CuneiForm-based Syllabus for Safety-Driven ML Epistemic Intelligence Development. Sections: I.9, H.9.

L.4.4.1 Argument Pattern for Eagle Robot Safety Requirements Assurance

Assurance Argument Pattern	AIC Systems Approach supportive methods
	and artefacts; The following process outputs
	satisfy the artefact's demonstration
	requirements:
[P] C4.1	Stage 3A, (c) Step 3) Ordered-AIC-based
C4.1 [SRs from {tier n-1}]	Mitigating System or Safety Requirements
[Sits nom (acr n 1)]	Derivation (Safety Concept).
	Table H.37 Eagle Drone Safety Training
Given: Tier n: Safety Driven CuneiForm	Requirements for Black Swan Scenarios
Characterisation	Table H.38 ML component training dataset
Then	requirements
Tier n-1 : Safety ML Development	
Requirements (Training Concept)	

Tier n: Safety Driven CuneiForm Characterisation

Table H.39 CuneiForm Pictorial situation articulation

Table H.40 Characteristic Training Classes definitions for a CuneiForm abstract image

Figure H.36 Example output CuneiForm with appropriate instantiation using a simple CuneiForm canvas template example. We defined a Black Swan Scenarios Validation Dataset.

Table H.37 Eagle Drone Safety Training Requirements for Black Swan Scenarios

Figure H.36 Example output CuneiForm with appropriate instantiation using the CuneiForm canvas template example. We defined a Black Swan Scenarios Validation Dataset.

Table H.35 Operational Design Definition for Eagle Robot Deployment in Train Track Zone

Table H.31 4HnWs method for Eagle Drone adjusting patrol functionality

	Table H.15 Architect High-Level Solution		
	Prescription		
	Table H.16 Architect High-Level Solution		
	Prescription related to the impact of roaming		
	adversarial drones		
	Table H.17 Architect High-Level Solution		
	Prescription related to the police incapability		
	to capture adversarial drone		
•	All stages, from stage 1 to stage 5,		
[R]			
Sn4.1			
[SR justification report]			
	I .		

L.4.4.2 Argument Pattern for AVOID Safety Requirements Assurance

Assurance Argument Pattern	AIC Systems Approach supportive methods
	and artefacts; The following process outputs
	satisfy the artefact's demonstration
	requirements:
[P] C41	Table I.31a AVP Training Requirements for
-⊳ (SRs from {tier n-1}]	Black Swan Scenarios
	Table I.31b ML Safety Training Requirements
	and Perception Dataset Specifications for AVP
Tier n-1 : Safety ML Development	
Requirements (Training Concept)	

Tier n: Safety Driven CuneiForm Characterisation

Table I.32 CuneiForm Pictorial situation articulation

Table I.33 Characteristic Training Classes definitions for a CuneiForm abstract image

Figure I.20 Example CuneiForm and instantiated image

Appendix D Safety Validation report for AVOIDDS dataset. Pages: 15, 19, 23, 27, 31, 35. For example, the following is safety-driven CuneiForm characterisation of a training dataset.

Table I.13 Architect High-Level Solution Prescription

Table I.26 Safety requirements derivations to mitigate the concealed drone problem.

Table I.27 Operational Design Definition for AVP

Table L.5 captures primary artefacts that need to be presented:

Table Error! No text of specified style in document..5 SACE Stage 4 artefacts and AIC approach mapping

SACE Artefact	Explanation	The substantiating AIC
		methods and artefacts
[P]: Safety Requirements	The safety requirements are	in the AIC systems approach,
from tier n-1 & [Q]: Safety	defined at the higher level tier	the tier-n-1 is relative; for
Requirements for tier n:	of decomposition, which must	example, the Stage 3A, (c) Step
	be correctly allocated and	3) Ordered-AIC-based
	interpreted at the current tier.	Mitigating System or Safety
	The systems approach	Requirements Derivation
	artefact must demonstrate	(Safety Concept). Would be
	that higher-level safety	the tier n-1 for (d) Step 4)
	requirements are adequately	Extended Concrete Safety
	decomposed, ensuring	Concept and ML Safety
	consistency and	Training Concept, output (tier
	completeness in allocating to	n)
	system components	

Also, Given: Tier n: Safety Driven CuneiForm Characterisation

Then,

Tier Safety n-1 Development Requirements (Training Concept)

Therefore, the following would be evidence to be provided:

[R]: Safety **Justification Report**

that the decomposed safety stage 5, operate based on tight requirements maintain the intent of the on the premise of exposing the original requirements. systems approach artefact that informs any decision, thus must provide traceability and providing a very clear insight justification for each safety into the justification behind requirement, ensuring they design correctly address identified hazards and appropriately assigned system components.

Requirements A structured report validating All stages, from stage 1 to adequately traceability. They also operate The architectural thought process choices the and the principles used to make such are engineering decisions. For to example:

> H, I.6 Stage 3A: HazTOPs and Ordered AIC-driven Autonomous System Requirements Development

> Since we are including CuneiForms as the implementation of SOC, then the following tables will justification provide the required (examples):

Table M.21 Characteristic Training Classes definitions for a CuneiForm abstract image (AVOIDDS)

Table M.20 CuneiForm Pictorial situation articulation (AVOIDDS)

Table M.19 ML Safety Training Requirements and Perception Dataset Specifications for AVP

Table M.18 AVP Training Requirements for Black Swan Scenarios (AVOIDDS)

[W]: tier n Design:

The design specification at the These are the more concrete current tier of decomposition requirements or defines system components specifications directly relating and their interactions. The to higher-level safety systems approach artefact requirements. For example, must explicitly define design requirements which meet the higher-level safety requirements.

- Table H.31 4HnWs method for Eagle Drone adjusting patrol functionality.
- Figure I.20 Example CuneiForm and instantiated image.

We would also include the following tables as evidence:

Table 7.10 Black Swan Scenarios Batch A and B CuneiForms

Table 7.11 Typical operations CuneiForms

		Figure 7.6 H.54 Out-of-context
		CuneiForm of drones.
		Figure M.20 Example
		CuneiForm and instantiated
		image for AVOIDDS case study
		They represent the concrete
		level implementation of safety
		concept at dataset level.
[S]: Safety Requirements	A structured framework for	We captured the patterns for
Argument Pattern & [T]:	demonstrating that the safety	this stage in the following
Safety Requirements	requirements at each tier	sections:
Argument:	adequately capture the intent	• L.4.5.1 Argument
	of the previous tier's	Pattern for Eagle Robot
	requirements.	Design Assurance
		• L.4.5.2 Argument
		Pattern for AVOID
		system Design
		Assurance

L.4.5 Stage 5: AS Design Assurance

This stage focuses on assuring the concrete design. It is iterative in nature, accounting for the AS's design assurance at various design decomposition levels. The following are the main outcomes:

- 1. Design at tier n, which satisfies safety requirements, is specified.
- 2. The sufficiency of the design at tier n is justified.
- 3. The claim of sufficiency is validated.
- 4. Development of As design assurance argument.

AIC Systems Approach Processes involved to satisfy the objectives:

• All AIC Systems Approach stages.

L.4.5.1 Argument Pattern for Eagle Robot Design Assurance

Dutside PhD scope Justification of fault tolerance mechanisms ensuring continued operation despite failures. Demonstrating that the system has an active monitoring mechanism to track and adapt its behavior based on operational feedback. [V] C5.3 [{tier n}) design decisions] All SECoTs present a clear argument on the though processes that went into		H.10.6	Experiment 2: ML development environment-
Justification of fault tolerance mechanisms ensuring continued operation despite failures. Outside PhD scope Demonstrating that the system has an active monitoring mechanism to track and adapt its behavior based on operational feedback. IVI C5.3 [(tier n) design decisions] All SECoTs present a clear argument on the though processes that went into			
Justification of fault tolerance mechanisms ensuring continued operation despite failures. Sas.a			
Justification of fault tolerance mechanisms ensuring continued operation despite failures. Outside PhD scope Demonstrating that the system has an active monitoring mechanism to track and adapt its behavior based on operational feedback. IVI C5.3 [(tier n) design decisions] All SECoTs present a clear argument on the though processes that went into			
Justification of fault tolerance mechanisms ensuring continued operation despite failures. Outside PhD scope Demonstrating that the system has an active monitoring mechanism to track and adapt its behavior based on operational feedback. IVI C5.3 [(tier n) design decisions] All SECoTs present a clear argument on the though processes that went into			
Justification of fault tolerance mechanisms ensuring continued operation despite failures. Outside PhD scope Demonstrating that the system has an active monitoring mechanism to track and adapt its behavior based on operational feedback. IVI C5.3 [(tier n) design decisions] All SECoTs present a clear argument on the though processes that went into			
Justification of fault tolerance mechanisms ensuring continued operation despite failures. Outside PhD scope Sa.8 (Rutime monitoring) helps ensure SRs are met met	{Fault tolerance measure} helps ensure	Outside Ph	D scope
mechanisms ensuring continued operation despite failures. Outside PhD scope Outside PhD scope Demonstrating that the system has an active monitoring mechanism to track and adapt its behavior based on operational feedback. All SECoTs present a clear argument on the though processes that went into	Sn5.3 [AS Design		
mechanisms ensuring continued operation despite failures. Outside PhD scope Outside PhD scope Demonstrating that the system has an active monitoring mechanism to track and adapt its behavior based on operational feedback. All SECoTs present a clear argument on the though processes that went into	Δ		
Operation despite failures. Outside PhD scope Out	Justification of fault tolerance		
Outside PhD scope Sinstance Continue monitoring Continue monitoring Continue monitoring Continue monitoring Continue monitoring Continue metal	mechanisms ensuring continued		
C5.3 (Runtime monitoring) helps ensure SRs are met	operation despite failures.		
an active monitoring mechanism to track and adapt its behavior based on operational feedback. All SECoTs present a clear argument on the though processes that went into	{Runtime monitoring} helps ensure SRs are met [Y] Sn5.4 [AS Design	Outside Ph	D scope
All SECoTs present a clear argument on the though processes that went into	an active monitoring mechanism to track and adapt its behavior based		
processes that went into		AH 0== =	
Presenting an argument over the	—⊳ [{tier n} design		
	Presenting an argument over the		
appropriateness of each design	appropriateness of each design		
decision to ensure system safety.	decision to ensure system safety.		

Ensuring that the design process itself includes sufficient validation steps to prevent hazardous failures.

L.1 SECoT Validation Report Template

L.3 SECoT Validation Report for Unsafe Train Tracks case study

Stage (1-6) in AIC Systems Approach

H.10.5 Experiment 1: Limited Live video-based experimentation

H.10.6 Experiment 2: ML development environment-based validation

The context must demonstrate that the defined safety requirements at tier n comprehensively address operational risks, failure modes, and system constraints, ensuring the AS design meets safety assurance objectives and regulatory compliance.

Table H.33 Safety requirements derivations to mitigate the concealed drone problem.

Table H.34 ML Safety Requirements Derivation

Table H.37 Eagle Drone Safety Training Requirements for Black Swan Scenarios

Table H.38 ML component training dataset requirements

Figure H.36 Example output CuneiForm with appropriate instantiation using a simple CuneiForm canvas template example. We defined a Black Swan Scenarios Validation Dataset.

Table H.37 Eagle Drone Safety Training Requirements for Black Swan Scenarios

Figure H.36 Example output CuneiForm with appropriate instantiation using the CuneiForm canvas template

example. We defined a Black Swan Scenarios Validation Dataset. Table H.35 Operational Design Definition for Eagle Robot Deployment in Train Track Zone Table H.31 4HnWs method for Eagle Drone adjusting patrol functionality Table H.15 Architect High-Level Solution Prescription Table H.16 Architect High-Level Solution Prescription related to the impact of roaming adversarial drones Table H.17 Architect High-Level Solution Prescription related to the police incapability to capture adversarial drone Validation is done by documenting expert reviews of G5.4 {tier n} design is sufficiently architect assertions and predictions and the appropriate free from errors that could application of SECoT. contribute to hazards A validation report template has been generated, which can be found in [Z] Sn5.5 [AS Design L.1 SECoT Validation Report Template Review Report] L.3 SECoT Validation Report for Unsafe Train Tracks case study

L.4.5.2 Argument Pattern for AVOID System Design Assurance

Assurance Argument Pattern	AIC Systems Approach supportive methods and
	artefacts; The following process outputs satisfy the
	artefact's demonstration requirements:

Justification that key design decisions taken at tier n are appropriate to meet the defined safety requirements.

All Predictive Thinking Pipelines and design steps' outputs

Demonstrating that the system has been designed to be robust against potential unexpected environmental changes.

Table I.31a AVP Training Requirements for Black Swan Scenarios

Table I.31b ML Safety Training Requirements and Perception Dataset Specifications for AVP

- I.9 Stage 5: Safety-Driven ML-based PerceptionTraining, Testing and Validation Design (CuneiFormStrategy Development)
- I.10 Stage 6: Black Swan-driven ML Development and Testing

Ensuring that the design process itself includes sufficient validation steps to prevent hazardous failures.

The context must demonstrate that the defined safety requirements at tier n comprehensively address operational risks, failure modes, and system constraints, ensuring the AS design meets safety assurance objectives and regulatory compliance.

Given Tier n is the dataset:

Table I.26 Safety requirements derivations to mitigate the concealed drone problem.

Table I.31a AVP Training Requirements for Black Swan Scenarios

Table I.31b ML Safety Training Requirements and Perception Dataset Specifications for AVP

Figure I.18 We used DALL-E to generate this Black Swan Scenario for validation.

Figure I.20 Example CuneiForm and instantiated image

Table I.13 Architect High-Level Solution Prescription

Table I.26 Safety requirements derivations to mitigate the concealed drone problem.

Stage 3A, Step 4) Extended Concrete Safety Concept and ML Safety Training Concept

Table I.27 Operational Design Definition for AVP

Table I.31a AVP Training Requirements for Black Swan Scenarios

Table I.31b ML Safety Training Requirements and Perception Dataset Specifications for AVP

Figure I.20 Example CuneiForm and instantiated image

Table 8.5 captures primary artefacts that need to be presented:

Table Error! No text of specified style in document.. 6 SACE Stage 5 artefacts and AIC approach mapping

SACE Artefact	Explanation	The substantiating AIC
		methods and artefacts
[V]: AS Development Log,	A comprehensive record of the	All SECoTs present a clear
[X]: Design Process for tier n,	design evolution, decisions,	argument on the thought
[Z]: AS Design Review	and iterations taken	processes that went into all
	throughout development. The	engineering judgements. This
	systems approach artefact	can be organised similarly as
	must track all design changes,	Appendix H and I. Also, we can
	safety considerations, and	add in the validation reporting
	iterations, ensuring full	that captures the design
	traceability of design	reviews outcomes.
	decisions.	
[AA]: AS Design Assurance	we captured the GSN patterns in:	
Argument & [U]: AS Design		

Assurance	Argument	 L.4.5.1 Argument Pattern for Eagle Robot Design
Pattern:		Assurance
		 L.4.5.2 Argument Pattern for AVOID system Design Assurance.

L.4.6 Stage 6: Hazardous Failures Management

SACE Stage 6 provides evidence demonstrating that the systems approach had thoroughly considered the hazards analysis. The primary outcomes of stage 6 are:

- 1. AS Hazardous Failures are identified.
- 2. The identified AS Hazardous Failures are mitigated.
- 3. Developing Hazardous Failures Assurance Argument Pattern

AIC Systems Approach Processes involved to satisfy the objectives:

- Stage 3A: HazTOPS and Ordered AIC-driven Autonomous System Requirements
 Development.
- Stage 3B: Comprehensive Operational Environment Definition.
- Stage 4: Disordered AIC-Driven Black Swan Scenarios Prediction.
- Stage 5: CuneiForm-based Syllabus for Safety-Driven ML Epistemic Intelligence Development.

L.4.6.1 Argument Pattern for Eagle Robot Hazardous Failures

requirements derivations to
ed drone problem. Requirements Derivation e Drone Safety Training ck Swan Scenarios

Table H.38 ML component training dataset requirements

Figure H.36 Example output CuneiForm with appropriate instantiation using a simple CuneiForm canvas template example. We defined a Black Swan Scenarios Validation Dataset.

Table H.33 Safety requirements derivations to mitigate the concealed drone problem.

Table H.34 ML Safety Requirements Derivation

Table H.37 Eagle Drone Safety Training Requirements for Black Swan Scenarios

Table H.39 CuneiForm Pictorial situation articulation

Table H.40 Characteristic Training Classes definitions for a CuneiForm abstract image

Figure H.36 Example output CuneiForm with appropriate instantiation using the CuneiForm canvas template example. We defined a Black Swan Scenarios Validation Dataset.

L.4.6.2 Argument Pattern for AVOID system Hazardous Failures

Table 8.6 captures primary artefacts that need to be presented:

Table **Error! No text of specified style in document..** 7 SACE Stage 6 artefacts and AIC approach mapping

SACE Artefact	Explanation	The substantiating AIC
		methods and artefacts
[BB]: AS Safety Analysis	A comprehensive report	AIC systems approach
Report:	detailing the identified	includes the following
	hazardous failures and the	techniques dedicated to
	justification for the analysis	discovering Hard and Soft
	approach used. The systems	hazards and then translating

approach must document all them into safety concepts and identified hazardous failures, training concepts: the rationale for their H.6 Stage 3A: identification, failure modes, HazTOPs and Ordered potential consequences, and AIC-driven their impact on AS safety. Autonomous System Requirements Development H.7 Stage 3B: Comprehensive Operational **Environment Definition** H.8 Stage 4: Disordered AIC-Driven Black Swan Scenario Predictions and Validation **Failures** We captured the AIC outputs in the following sections: [DD]: Hazardous Argument Pattern & [EE]: L.4.6.1 Argument Pattern for Eagle Robot Hazardous Hazardous **Failures Failures Argument:** L.4.6.2 Argument Pattern for AVOID System Hazardous Failures

L.4.7 Stage 7: Out-of-Context Operation Assurance

Outside PhD scope

L.4.8 Stage 8: AS Verification Assurance

Outside PhD scope

L.4.9 Summary of SACE artefacts and AIC Systems Approach implementation

				Substantiating AIC
SACE Artefact	SACE Stage	Definition	General Demonstration Requirements	methods/Example: The following process outputs satisfy the artefact's demonstration requirements:
[A]: AS Concept Definition	1	High-level document outlining the system's intended functions, objectives, and constraints.	The systems approach artefact must define intended system functionality, scope of autonomy, and interaction with humans. Should include use-case descriptions and stakeholder agreements.	H,I.5 Stage 2: Architect Intent and Autonomous Solution Needs Definition Table H.15 Architect High- Level Solution Prescription Table I.13 Architect High- Level Solution Prescription
[AA]: AS Design Assurance Argument [U] : AS Design Assurance Argument Pattern	5	A structured assurance case demonstrates that tier n's design sufficiently satisfies the defined safety requirements.	The systems approach artefact must logically argue that design decisions at each tier ensure safety, referencing artefacts [Y], [Z], and [V] to provide supporting evidence.	L.4.5.1 Argument Pattern for Eagle Robot Design Assurance L.4.5.2 Argument Pattern for AVOID system Design Assurance
[B] : Operational Domain Model (ODM)	1	A model defining the scope of operation for the AS, including assumptions about the environment and operating conditions.	The systems approach artefact must include all relevant environmental and operational conditions, ensuring that all scenarios the AS may encounter are covered. It should explicitly list	H,I.4 Stage 1: Uncertainty Problem Articulation and Operational Environment Modelling Table H.35 Operational Design Definition for Eagle

			assumptions, constraints, and non-mission interactions.	Robot Deployment in Train Track Zone Table I.27 Operational Design Definition for AVP
[BB] : AS Safety Analysis Report	6	A comprehensive report detailing the identified hazardous failures and the justification for the analysis approach used.	The systems approach artefact must document all identified hazardous failures, the rationale for their identification, failure modes, potential consequences, and their impact on AS safety.	H.6 Stage 3A: HazTOPs and Ordered AIC-driven Autonomous System Requirements Development H.7 Stage 3B: Comprehensive Operational Environment Definition H.8 Stage 4: Disordered AIC-Driven Black Swan Scenarios Prediction I.6 Stage 3A: HazTOPs and Ordered AIC-driven Autonomous System Requirements Development I.7 Stage 3B: Comprehensive Operational Environment Definition I.8 Stage 4: Disordered AIC-Driven Black Swan Scenario Predictions and Validation

[C] : ODM Validation Report	1	A documented validation of the completeness and correctness of the ODM, ensuring it sufficiently defines the operating scope.	Must provide evidence of review, simulation testing, and field validation to verify that all necessary operational elements have been captured. It should also justify the granularity level of the ODM.	L.1 SECoT Validation Report Template L.2 SECoT Validation Report for AVOIDDS case study L.3 SECoT Validation Report for Unsafe Train Tracks case study
[D] : Autonomous Capabilities Definition	1	A document specifying the AS's autonomous functionalities, limitations, and human-AS interaction boundaries.	The systems approach artefact must clearly define the scope of autonomy, specifying tasks the AS can perform independently and those requiring human intervention. Should also outline conditions under which autonomy is constrained.	Table H.15 Architect High-Level Solution Prescription. Table I.13 Architect High-Level Solution Prescription H,I.6 Stage 3A: HazTOPs and Ordered AIC-driven Autonomous System Requirements Development
[DD] : Hazardous Failures Argument Pattern [EE]: Hazardous	6	A structured framework for reasoning about identifying and mitigating hazardous failures at each tier of AS design.	The systems approach artefact must demonstrate that hazardous failures have been systematically identified and addressed, ensuring that the AS design	for Eagle Robot Hazardous Failures L.4.6.2 Argument Pattern for AVOID system

Failures Argument		mitigates safety risks effectively.	
[E] : Operating Scenarios 1 Definition	A detailed description of all scenarios the AS may encounter within the defined ODM, including static and dynamic interactions.	The systems approach artefact must define actions, events, and environmental conditions affecting the AS. Should specify scenes (static conditions) and scenarios (temporal developments over time).	H.4.4.3 Step 4.3) Define the assumptions made about factors. Table J.8 unsafe train tracks problem domain assumptions. H.4.3.1 Step 3.1) Mode detailed AIC interactions scenarios for the problem domain. Figure H.3 Modelling a complicated interaction not table J.6 AIC problem domain scenarios definition H.4.3.2 Step 3.2) Predict the extended list of emergen AIC interactions scenarios. Table H.10 Complexity Field for not Interaction SECondefinition. Table J.7 AIC Extended Scenarios. H.6.1 Predictive Thinking Pipeline 1: Introducing Autonomous systems into Feed-forward complexity. Table H.18 Implementing Architect Intent and Forward-Feed AIC Interaction Framework for addressing train derailmenting and the step of

caused by adversarial drones. Table H.19 Mapping AIC interactions of the Eagle Drone and adversarial drone behaviours mitigating train derailment risks. H.7 Stage 3B: Comprehensive Operational Environment Definition. Table H.35 Operational Design Definition for Eagle Robot Deployment in Train Track Zone. I.4.4.3 Step 4.3) Define the assumptions and hazards made about factors. Table K.2 Extended assumptions, plausibility, concern and hazards analysis. In no particular order. I.4.3.1 Step 3.1) Model detailed AIC interactions scenarios for the problem domain. Figure I.2 Modelling AIC scenario from interaction n1. I.4.3.2 Step 3.2) Predict the extended list of emergent AIC interactions scenarios.

scenario for n1 Interact SECoT definition. Table K.2 Extend assumptions, plausibil concern and haza analysis. In no particul order. I.6.1 Predictive Think Pipetine 1: Introduct Autonomous systems in Feed-forward complexity Table I.14 Implement Architect Intenta Forward-Feed Interaction Framework addressing AVP reliabil for by-passing aircraft. Table I.15 Mapping A interactions of AVP w	
Table K.2 Extend assumptions, plausibil concern and haza analysis. In no particulor order. I.6.1 Predictive Think Pipeline 1: Introduce Autonomous systems in Feed-forward complexity. Table I.14 Implement Architect Intental Forward-Feed Interaction Framework addressing AVP reliable for by-passing aircraft. Table I.15 Mapping A	
assumptions, plausibil concern and haza analysis. In no particulor order. I.6.1 Predictive Think Pipeline 1: Introduce Autonomous systems in Feed-forward complexity Table I.14 Implement Architect Intental Forward-Feed Interaction Framework addressing AVP reliability for by-passing aircraft. Table I.15 Mapping Interaction Table I.15 Mapping Interaction Interactio	
concern and haza analysis. In no particulor order. I.6.1 Predictive Think Pipeline 1: Introduce Autonomous systems in Feed-forward complexity Table I.14 Implement Architect Intental Forward-Feed Interaction Framework addressing AVP reliable for by-passing aircraft. Table I.15 Mapping A	
analysis. In no particulorder. I.6.1 Predictive Think Pipeline 1: Introduct Autonomous systems in Feed-forward complexity Table I.14 Implement Architect Intentate Forward-Feed Interaction Framework addressing AVP reliable for by-passing aircraft. Table I.15 Mapping A	
order. I.6.1 Predictive Think Pipeline 1: Introduce Autonomous systems in Feed-forward complexity Table I.14 Implement Architect Intenta Forward-Feed Interaction Framework addressing AVP reliable for by-passing aircraft. Table I.15 Mapping	
I.6.1 Predictive Think Pipeline 1: Introduce Autonomous systems in Feed-forward complexity Table I.14 Implement Architect Intenta Forward-Feed Interaction Framework addressing AVP reliabit for by-passing aircraft. Table I.15 Mapping A	
Pipeline 1: Introduce Autonomous systems in Feed-forward complexity Table I.14 Implement Architect Intenta Forward-Feed Interaction Framework addressing AVP reliable for by-passing aircraft. Table I.15 Mapping A	
Autonomous systems in Feed-forward complexity Table I.14 Implement Architect Intentation Framework addressing AVP reliable for by-passing aircraft. Table I.15 Mapping A	
Feed-forward complexity Table I.14 Implement Architect Intenta Forward-Feed Interaction Framework addressing AVP reliabil for by-passing aircraft. Table I.15 Mapping I	
Table I.14 Implement Architect Intenta Forward-Feed Interaction Framework addressing AVP reliabi for by-passing aircraft. Table I.15 Mapping	
Architect Intental Forward-Feed A Interaction Framework addressing AVP reliability for by-passing aircraft. Table I.15 Mapping A	
Forward-Feed Interaction Framework addressing AVP reliabil for by-passing aircraft. Table I.15 Mapping	
Interaction Framework addressing AVP reliability for by-passing aircraft. Table I.15 Mapping A	
addressing AVP reliability for by-passing aircraft. Table I.15 Mapping A	
for by-passing aircraft. Table I.15 Mapping A	
Table I.15 Mapping A	
interactions of AVP w	
Interdetions of AVI W	
ownship aircraft and	
environment	
I.7 Stage	
Comprehensive	
Operational Environme	
Definition.	
Table I.27 Operatio	
Design Definition for AVF	
A validation The systems approach	
document artefact must provide	
assessing evidence of expert [F]: Operating	F1 : Operating
Scenarios whether the review, simulation-	
Validation 1 defined based verification, and	
operating real-world validation Validation is done	'alidation
scenarios data to confirm the documenting exp	
comprehensively completeness of the reviews of archit	/alidation Report
capture all operating scenarios. assertions and prediction	

		relevant AS interactions.		and the appropriate application of SECoT. A validation report template has been generated, which can be found No validation report had been generated as part of PhD scope.
[G] : AS Operating Context Assurance Argument Pattern [H] : AS Operating Context Assurance Argument	1	A structured assurance argument framework for ensuring the AS operates safely within its defined context.	The systems approach artefact must logically argue that the defined Operational Domain Model (ODM) and operating scenarios are sufficient, comprehensive, and correctly validated to support safe operations.	L.4.1.1 Argument Pattern for Eagle Robot Operating Context Assurance L.4.1.1 Argument Pattern for AVOID System Operating Context Assurance
[I] : AS Hazardous Scenarios Assurance Argument Pattern [J] : AS Hazardous Scenarios Assurance Argument	2	A structured framework ensures that all hazardous scenarios have been correctly identified and analysed.	The systems approach artefact must logically argue and provide evidence that all hazardous scenarios have been identified, relevant decisions analysed, and interactions between the AS and its environment adequately considered.	L.4.2.1 Argument Pattern for Eagle Robot Hazardous Scenarios L.4.2.2 Argument Pattern for AVOID System Hazardous Scenarios
[K] : Definition of Sufficiently Safe	3	Defines what constitutes an acceptable level	The systems approach artefact must justify why the defined safety	Outside PhD scope

		of safety for the AS, considering legal, ethical, and stakeholder risk tolerance factors.	criteria are sufficient, referencing legal and regulatory guidelines, ethical considerations, and risk acceptance criteria. It may include comparisons to human operators or specific scenario-based safety assessments.	
[L] : Safe Operating Concept Definition	3	A formal specification of how the AS must operate within its defined environment to ensure safety, incorporating necessary constraints and system safety requirements.	The systems approach artefact must define specific system-level safety requirements, ensuring they are clear, unambiguous, and sufficient to mitigate hazardous scenarios. Should reference the Operational Domain Model (ODM) and the AS's autonomous capabilities.	H.6.4.1,2 (c) Step 3) Ordered-AIC-based Mitigating System or Safety Requirements Derivation (Safety Concept) H.6.4 Predictive Thinking Pipeline 4:Elicitate AIC System-Level Requirements and Training Requirements
[M] : SOC Justification Report	3	A structured report validating that the SOC sufficiently mitigates the identified hazardous scenarios.	The systems approach artefact must systematically justify how each safety requirement and operational constraint contributes to mitigating specific hazardous scenarios. Stakeholder reviews, scenario simulations, and expert evaluations should be included as validation methods.	I,H.6.3 Predictive Thinking Pipeline 3: Hazards, Threats and Opportunities Scenarios (HazTOPs) Analysis I, H.6.4 Predictive Thinking Pipeline 4:Elicitate AIC System-Level Requirements and Training Requirements

[N] : SOC Assurance Argument Pattern 3 [O] : SOC Assurance Argument	A structured framework to argue that the Safe Operating Concept sufficiently mitigates all hazardous scenarios identified in previous stages.	The systems approach artefact must logically demonstrate that the SOC addresses all identified hazardous scenarios, ensuring that system safety requirements, reduced operating domains (RODs), and constraints sufficiently mitigate risks.	L.4.3.1 Argument Pattern for Eagle Robot SOC Assurance L.4.3.2 Argument Pattern for AVOID System SOC Assurance
[P] : Safety Requirements 4 from tier n-1	The safety requirements are defined at the previous tier of decomposition, which must be correctly allocated and interpreted at the current tier.	The systems approach artefact must demonstrate that higher-level safety requirements are adequately decomposed, ensuring consistency and completeness in allocating system components.	(c) Step 3) Ordered-AIC-based Mitigating System or Safety Requirements Derivation (Safety Concept) Table H.37 Eagle Drone Safety Training Requirements for Black Swan Scenarios Table H.38 ML component training dataset requirements Table I.31a AVP Training Requirements for Black Swan Scenarios Table I.31b ML Safety Training Requirements and Perception Dataset Specifications for AVP
[Q] : Safety Requirements 4 for tier n	The newly defined safety requirements at the current tier,	The systems approach artefact must prove that these safety requirements align with	Table H.39 CuneiForm Pictorial situation articulation

		allocated to relevant system components.	the previous tier's intent, effectively mitigating risks and guiding system design.	Table H.40 Characteristic Training Classes definitions for a CuneiForm abstract image Figure H.36 Example output CuneiForm with appropriate instantiation using a simple CuneiForm canvas template example. We defined a Black Swan Scenarios Validation Dataset. Table I.32 CuneiForm Pictorial situation articulation Table I.33 Characteristic Training Classes definitions for a CuneiForm abstract image Figure I.20 Example CuneiForm and
[R] : Safety Requirements Justification Report	4	A structured report validating that the decomposed safety requirements adequately maintain the intent of the original requirements.	The systems approach artefact must provide traceability and justification for each safety requirement, ensuring they correctly address the identified hazards and are properly assigned to system components.	instantiated image H, I.6Stage 3A: HazTOPs and Ordered AIC-driven Autonomous System Requirements Development H,I.8 Stage 4: Disordered AIC-driven Black Swan ScenariosPredictions and Validation H,I.10 Stage 6: Black Swan-driven ML Development and Testing H,I.9 Stage 5: CuneiForm- based Syllabus for Safety-

				Driven ML Epistemic Intelligence Development
[S] : Safety Requirements Argument Pattern [T] : Safety Requirements Argument	4	A structured framework for demonstrating that the safety requirements at each tier adequately capture the intent of the previous tier's requirements.	The systems approach artefact must logically show that the defined safety requirements at each tier align with those from the previous tier, maintaining intent and ensuring completeness.	L.4.5.1 Argument Pattern for Eagle Robot Design Assurance L.4.5.2 Argument Pattern for AVOID system Design Assurance
[V] : AS Development Log	5	A comprehensive record of the design evolution, decisions, and iterations taken throughout development.	The systems approach artefact must track all design changes, safety considerations, and iterations, ensuring full traceability of design decisions.	All SECoTs present a clear argument on the thought processes that went into all engineering judgement.
[W]: tier n Design	4	The design specification at the current tier of decomposition defines system components and their interactions.	The systems approach artefact must explicitly define design requirements which meet the higher-level safety requirements, ensuring that architectural decisions address identified risks and failure modes.	Table H.37 Eagle Drone Safety Training Requirements for Black Swan Scenarios Figure H.36 Example output CuneiForm with appropriate instantiation using the CuneiForm canvas template example. We defined a Black Swan Scenarios Validation Dataset. Table H.31 4HnWs method for Eagle Drone adjusting patrol functionality

				Stage 3A, Step 4) Extended Concrete Safety Concept and ML Safety Training Concept Table I.31a AVP Training Requirements for Black Swan Scenarios Table I.31b ML Safety Training Requirements and Perception Dataset Specifications for AVP Figure I.20 Example CuneiForm and instantiated image H.6.1Predictive Thinking
[WW] : AS Decision Analysis Report	2	A report analysing the decisions made by the AS at key decision points within different operating scenarios.	The systems approach artefact must demonstrate all decision points have been identified and analysed for potential hazards, considering different environmental conditions and belief states of the AS. Should include examples of decision failures and their potential hazardous outcomes.	Autonomous systems into Feed-forward complexity H.6.2 Predictive Thinking Pipeline 2: Designing the affecting Backward-Feed complexity field H.9 Stage 5: CuneiForm- based Syllabus for Safety- Driven ML Epistemic Intelligence Development I.6.1 Predictive Thinking Pipeline 1: Introducing Autonomous systems into Feed-forward complexity I.6.2 Predictive Thinking Pipeline 2: Designing the affecting Backward-Feed complexity field

[X] : Design Process for 5 tier n	A structured process outlining the methodology for developing and validating the AS design at tier n.	The systems approach artefact must document and justify the design approach, ensuring that potential hazards are considered and that design decisions align with safety requirements.	I.9 Stage 5: CuneiFormbased Syllabus for Safety-Driven ML Epistemic Intelligence Development L.1 SECOT Validation Report Template L.3 SECOT Validation Report for Unsafe Train Tracks case study Stage (1-6) in AIC Systems Approach H.10.5 Experiment 1: Limited Live video-based experimentation H.10.6 Experiment 2: ML development environment-based validation L.1 SECOT Validation Report Template L.2 SECOT Validation Report for AVOIDDS case study Stage n in AIC Systems Approach
[XX]: AS Hazardous Scenarios Definition	comprehensive specification of all identified hazardous scenarios, including the interactions, environment states, and decisions	The systems approach artefact must document hazardous scenarios using the structure: <as operating="" scenario=""><relevant environment="" state(s)=""> AND <decision>. Should include examples of failure</decision></relevant></as>	[The research did not include the imposed structure] H.6.3 Predictive Thinking Pipeline 3: Hazards, Threats and Opportunities Scenarios (HazTOPs) Analysis. Figure H.16 Hazards Complexity Field Scope: graphically scoping the

outcomes. errors, and unsafe interactions. lineractions. errors, and unsafe interaction. Figure H.17 Threats Complexity Field Scope Figure H.18 Opportunities Complexity Feels Scope H.6.3.2 Step 2) Characterise the scoped interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs Analysis of adversarial	leading to unsafe	modes,	decision	hazards within the
interaction. Figure H.17 Threats Complexity Field Scope Figure H.18 Opportunities Complexity Feels Scope H.6.3.2 Step 2) Characterise the scoped interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs	outcomes.	errors, and	d unsafe	complexity field by placing
Figure H.17 Threats Complexity Field Scope Figure H.18 Opportunities Complexity Feels Scope H.6.3.2 Step 2) Characterise the scoped interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potentiat complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs		interactions.		hazard icons on target
Complexity Field Scope Figure H.18 Opportunities Complexity Feels Scope H.6.3.2 Step 2) Characterise the scoped interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversariat drone using smart lasers scenario Table H.27 HazTOPs				interaction.
Figure H.18 Opportunities Complexity Feels Scope H.6.3.2 Step 2) Characterise the scoped interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Figure H.17 Threats
Complexity Feels Scope H.6.3.2 Step 2) Characterise the scoped interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Complexity Field Scope
H.6.3.2 Step 2) Characterise the scoped interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Figure H.18 Opportunities
Characterise the scoped interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Complexity Feels Scope
interactions. Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				H.6.3.2 Step 2)
Figure H.19 Hazards associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Characterise the scoped
associated with Eagle Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				interactions.
Drone preventing derailed train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Figure H.19 Hazards
train complexity field Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				associated with Eagle
Table H.24 The table describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Drone preventing derailed
describes the AIC interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				train complexity field
interaction dynamics between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Table H.24 The table
between Eagle Drones and adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				describes the AIC
adversarial drones H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				interaction dynamics
H.6.3.3 Step 3) Apply predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				between Eagle Drones and
predictive potential complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				adversarial drones
complications guide words. Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				H.6.3.3 Step 3) Apply
Table H.25 HazTOPs Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				predictive potential
Analysis of "3 Drones Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				complications guide words.
Attack" Scenario with Risk and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Table H.25 HazTOPs
and Surprise Assessment Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Analysis of "3 Drones
Table H.26 HazTOPs Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				Attack" Scenario with Risk
Analysis of adversarial drone using smart lasers scenario Table H.27 HazTOPs				and Surprise Assessment
drone using smart lasers scenario Table H.27 HazTOPs				Table H.26 HazTOPs
scenario Table H.27 HazTOPs				Analysis of adversarial
Table H.27 HazTOPs				drone using smart lasers
				scenario
Analysis of adversarial				Table H.27 HazTOPs
				Analysis of adversarial
drone hiding behind fence				drone hiding behind fence
scenario				scenario
Figure H.20 Soft Hazard				Figure H.20 Soft Hazard
Complexity Field Model				Complexity Field Model

				I.6.3 Predictive Thinking Pipeline 3: Hazards, Threats and Opportunities Scenarios (HazTOPs) Analysis. Figure I.11Sources of Hazards AIC Complexity Field I.6.3.2 Step 2) Characterise the scoped interactions. Table I.22 Considering Hazards related to I1 interaction I.6.3.3 Step 3) Apply predictive potential complications guide words. Table I.23 Example "More" guide word complication
[Y] : AS Design Justification	5	A structured report providing justification for each design decision made at tier n, ensuring alignment with safety requirements.	The systems approach artefact must explain how design choices ensure safety, robustness, fault tolerance, and runtime monitoring while addressing potential risks.	All Predictive Thinking Pipelines and design steps' outputs
[YY]: AS Hazardous Scenarios Validation Report	2	A validation document confirming the completeness and correctness of the identified hazardous scenarios.	The systems approach artefact must provide evidence of review, expert validation, simulation-based verification, or real-world testing. It should justify that no significant hazardous	Validation is done by documenting expert reviews of architect assertions and predictions and the appropriate application of SECoT. A validation report template has been generated, which can be found in

			scenario has been overlooked.	L.1 SECoT Validation Report Template Examples: L.2 SECoT Validation Report for AVOIDDS case study L.3 SECoT Validation Report for Unsafe Train Tracks case study Validation is done by
[Z] : AS Design Review	5	Independent reviewers formally assess the AS design to ensure compliance with safety requirements.	The systems approach artefact must verify that design choices do not introduce new hazards, confirm adherence to the design process, and evaluate robustness measures.	documenting expert reviews of architect assertions and predictions and the appropriate application of SECoT. A validation report template has been generated, which can be found in L.1 SECoT Validation Report Template L.2 SECoT Validation Report for AVOIDDS case study L.3 SECoT Validation Report for Unsafe Train Tracks case study

L.5 Eagle Robot AMLAS Safety Case Argumentation Patterns

L.5.1 Stage 1. ML Safety Assurance Scoping

This stage defines the argument for the ML component's boundaries and safety assurance objectives. The AIC Systems Approach Processes involved to satisfy the objectives:

- Stage 1: Uncertainty Problem Articulation and Operational Environment Modelling
- Stage 2: Architect Intent and Autonomous Solution Needs Definition.
- Stage 3A: HazTOPS and Ordered AIC-driven Autonomous System Requirements Development.
- Stage 4: Disordered AIC-Driven Black Swan Scenarios Prediction.

Assurance Argument Pattern	AIC Systems Approach supportive methods and
	artefacts
	The following process outputs satisfy the artefact's demonstration requirements:
A1.1 The system safety process has identified the system safety requirements allocated to the ML component A [E] C1.4	H.6 Stage 3A: HazTOPs and Ordered AIC-driven Autonomous System Requirements Development H.8 Stage 4: Disordered AIC-Driven Black Swan Scenario Predictions and Validation Table H.34 ML Safety Requirements Derivation Table H.37 Eagle Drone Safety Training
{system safety requirements allocated to ML component}	Requirements for Black Swan Scenarios
[D] C1.3	Table H.15 Architect High-Level Solution Prescription
{ML Component Description}	Table H.16 Architect High-Level Solution Prescription related to the impact of roaming adversarial drones

	Table H.17 Architect High-Level Solution
	Prescription related to the police incapability to
	capture adversarial drone
	Table H.15 Architect High-Level Solution
[C] C1.2	G v v v v
{Descrition of system and	Prescription
system architecture}	Figure H.28 AIC hierarchical modelling schema for
\triangle /	
	4HnWs analysis
	Table H.23 The table outlines the interactions and
	behavioural influences of Eagle Drone
	Denavioural initiatiness of Eagle Dione
	Figure H.15 Corrected Eagle Drone complexity field
	Table H.33 Safety requirements derivations to
	mitigate the concealed drone problem.
	Table H.34 ML Safety Requirements Derivation
	Table H.37 Eagle Drone Safety Training
	Requirements for Black Swan Scenarios
	For model architecture:
	ML Model Type: Pohoflow 2.0 Object Detection
	ML Model Type: Roboflow 3.0 Object Detection
	(<u>Fast)</u>
	111111111111111111111111111111111111111
[B] C1.1	H.4.1.5 Architect Prediction 1.5
	Table H.12 Police Force Response to Adversarial
{Description of	Drones in Train Track Zones
operational environment}	Diones in Hain Hack Zoffes
\triangle	Table H.13 Predicted Factors Output
	and the second second second second
	Table H.14 Problem domain factors definitions
	1

Table H.35 Operational Design Definition for Eagle
Robot Deployment in Train Track Zone

Table **Error! No text of specified style in document.**.8 AMLAS Stage 1 artefacts and AIC approach mapping

AMLAS Artefact	Explanation	The substantiating AIC
		methods and artefacts
[A]: System Safety Requirements	define the acceptable risk	Stages 3A and 4 clearly capture and analyse the problem domain to derive safety requirements. For example, H.6 Stage 3A: HazTOPs and Ordered AIC-driven Autonomous System Requirements Development
[B]: Description of Operating Environment of System	A formal description of the operational conditions, environmental factors, and constraints in which the ML component will function.	Stage 1 clearly and comprehensively articulates the problem domain defining the operational environment. For example, H.4.1.5 Architect Prediction 1.5.
[C]: System Description	overall system architecture, including interactions	Stage 2 of the AIC process defines the architect's and stakeholders' needs for what the systems should do in response to problematic
[D]: ML Component Description	Defines the function, scope, and interactions of the ML component within the system.	situations in the problem domain. For example, Table H.15 Architect High-Level Solution Prescription.

[E]: Safety Requirements Allocated to ML Component	The ML component must meet specific safety requirements to ensure system safety.	The process involved the derivation of ML safety training requirements from system-level safety concepts. For example, Table H.34 ML Safety Requirements Derivation.
[F]: ML Assurance ScopingArgument Pattern[G]: ML Safety AssuranceScoping Argument		We captured the argument in the following section: L.5.1 Stage 1. ML Safety Assurance Scoping

L.5.2 Stage 2. ML Safety Requirements Assurance

This stage develops the argument that demonstrates the safety requirements specific to the ML system are defined and validated. The AIC Systems Approach Processes involved to satisfy the objectives:

- SECoT Validation Report for Unsafe Train Tracks case study
- Stage 3A: HazTOPS and Ordered AIC-driven Autonomous System Requirements
 Development.
- Stage 4: Disordered AIC-Driven Black Swan Scenarios Prediction
- Stage 6: Black Swan-driven ML Development and Testing

Assurance Argument Pattern	AIC Systems Approach: supportive methods and
	artefacts
	The following process outputs satisfy the artefact's demonstration requirements:
[H] C2.5	Table H.34 ML Safety Requirements Derivation
-□ {ML robustness safety requirements}	Table H.37 Eagle Drone Safety Training Requirements for Black Swan Scenarios
	7.2.2 Step 1: Design CuneiForms

J2.1 {Justification for the development of the ML safety requirements}	 H.6 Stage 3A: HazTOPs and Ordered AIC-driven Autonomous System Requirements Development H.8 Stage 4: Disordered AIC-Driven Black Swan Scenarios Predictions and Validation
[H] C2.1 {ML safety requirements developed from allocated system safety requirements}	Table H.34 ML Safety Requirements Derivation Table H.37 Eagle Drone Safety Training Requirements for Black Swan Scenarios Table H.38 ML component training dataset requirements

Table **Error! No text of specified style in document.**.9 AMLAS Stage 2 artefacts and AIC approach mapping

AMLAS Artefact	Explanation	The substantiating AIC
		methods and artefacts
[H]: ML Safety Requirements	explicit safety requirements, including performance and robustness constraints. Must demonstrate clear,	requirements from system- level safety concepts. For example, see Table H.34 ML Safety Requirements
	mitigate system hazards.	
[I]: ML Safety Requirements Argument Pattern	system-level safety requirements into ML-specific	We captured the pattern in section: L.5.2 Stage 2. ML Safety
[K]: ML Safety Requirements Argument	requirements, ensuring relevance, completeness, and correctness.	Requirements Assurance

validation activities performed training on ML safety requirements. domain, we performed the Must demonstrate that ML following validation activities: safety requirements correctly reflect system safety needs can be realistically implemented and verified.

The documented results of In stage 6, for the unsafe tracks problem

7.2.3 Step 2: SOC Compliance

To validate that CuneiForm correctly captures safetytraining requirements. See the following sections in this chapter, which capture the way we would validate CuneiForms tractability to safety requirements:

7.1.3, 7.1.5

7.2.5 Step CuneiForm 4: Compliance Validation

In this step, we performed a validation process determine whether an image is compliant with a CuneiForm, which is compliant with ML safety training requirements and, in turn, with SOC requirements.

Appendix D captures the CuneiForm validation report for AVOID dataset.

addition direct compliance of CuneiForms, we also provide an audit trail demonstrating how the training syllabus is achieving

[J]: ML Safety Requirements **Validation Results**

compliance towards safety requirements preservation during unforeseen (black swan) scenarios. See Table Black Swan-driven incremental ML development process to assure model performance under Black Swan operations. We also developed a SECoT validation report template: L.1 **SECoT Validation Report** Template Which we instantiated to: L.3 **SECoT Validation Report** for Unsafe Train Tracks case study

L.5.3 Stage 3. Data Management

This stage develops the argument that data used in training and validation meets the necessary quality and safety standards. The AIC Systems Approach Processes involved to satisfy the objectives:

- Stage 5: CuneiForm-based Syllabus for Safety-Driven ML Epistemic Intelligence Development
- CuneiForm Training syllabus as a Validation Process for Datasets
- Stage 6: Black Swan-driven ML Development and Testing

The following dataset validation artefacts can be used as evidence to demonstrate how the dataset captures a CuneiForm, which in turn shows how a safety requirement is captured in a dataset (example taken from AVOIDDS case study):

Figure L.4 Example validation report of how a sample training image validates CuneiForm 5 CuneiForm 5 has been retrospectively generated:

Figure L.5 AVOIDDS training CuneiForm 5 and examples training images, which instantiate different aspects of the abstract image. Appendix D is the actual validation report from the AVOID dataset.

Table L.10 captures primary artefacts that need to be presented:

Table Error! No text of specified style in document..10 AMLAS Stage 3 artefacts and AIC approach mapping

AMLAS Artefact	Explanation	The	substantiating	AIC
		metho	ods and artefacts	

		The AIC systems approach
		included a process for
		systematically identifying data
		requirements derived from the
		training concept. For example,
		Table H.38 ML component training dataset requirements
	Defines the ML data's characteristics to ensure the model meets its safety	Table 6.35 Black Swan Scenarios Batch A and B CuneiForms
	requirements. It must include	
[L]: Data Requirements		, .
	completeness, accuracy, and	CuneiForms
	balance requirements,	Figure 6.36 H.54 Out-of-
	ensuring sufficient operational	context CuneiForm of drones
	domain representation.	
		Figure 6.27 represents the
		Cuneiform (H.36)
		characterisation for the Black
		Swan Scenario Validation.
		Figure 7.20 Example
		CuneiForm and instantiated
		image for AVOIDDS case study
	Justifies that the data	The following describes the
	requirements are sufficient to	systematic process that
[M]: Data Requirements Justification Report	develop a safe ML model. It	demonstrates how the data
	must demonstrate how the	requirements were derived:
	data requirements were	I H O Storo Fr OwneiFerry
	derived, validated, and	I, H.9 Stage 5: CuneiForm-
	justified to capture the	based Safety-Driven ML
	necessary variations in the	Training, Testing Process
	operational environment.	

		I.10, Section 7.2 Stage 6:
		Dataset generation and
		validation process
	Data used for training and	We developed a dataset using
[N]: Development Data	validating the ML model during	the requirements derived from
	development.	stage 4 and 5. We also used a
	Data used for testing the ML	pre-existing dataset and
	model internally before	injected the specially derived
[O]: Internal Test Data	verification. This is equivalent	dataset and then validated its
	to what we define as a	performance against a Black
	validation dataset.	Swan scenario. For more
		details, see section L.5 and the
	A separate dataset, equivalent	following link to the <u>output</u>
	to what we define as a test	model.
FDI Mariffa shi sa Daha	dataset, is used for final model	
[P]: Verification Data	evaluation to assess	[N] Development Data, [O]
	performance under unseen	Internal Test Data, [P]
	conditions.	Verification Data : <u>Dataset</u>
		Config7 (augmented)
	Documents the process of	The CuneiForm method in
	data collection, pre-	stage 5 defines the rationale of
	processing, and	how data requirements are
[O]: Data Consection Log	augmentation. It must capture	translated into the dataset.
[Q]: Data Generation Log	decisions made during data	
	collection, processing, and	Also, 7.2.2 Step 1: Design
	augmentation, providing a	CuneiForms, and 7.2.4 Step
	rationale for data sufficiency.	3: Instantiates CuneiForms
	Documents the validation	In the unsafe train tracks case
	outcomes, ensuring the	study, we did not consider the
	generated data meets ML data	validation report over the
[S]: ML Data Validation	requirements. It must	produced dataset. However, in
Results	demonstrate that data	the AVOIDDS case study, we
	relevance, completeness,	did. Therefore, we will include
	balance, and accuracy were	

	verified and any discrepancies	the following from the second
	justified.	case study:
		I.10.1 CuneiForm Training
		syllabus as a Validation
		Process for Datasets
		I.10.3 CuneiForm Validation
		Artifact
		Safety Validation Report for
		AVOID Dataset using the
		CuneiForm method
		[can be retrieved from here]
		[can be retrieved from <u>nore</u>]
		As for unsafe train tracks, an
		example CuneiForm validation
		can be found in section 7.2.
		Specifically see section 7.2.5
		Step 4: CuneiForm
		Compliance Validation
IDI. MI Data Assurement	A structured assurance	We captured the artefacts in
[R]: ML Data Argument	argument justifying the	the following sections:
Pattern	adequacy of the ML data for	
[T]: ML Data Argument		L.5.3 Stage 3. Data
F-1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	safety assurance.	Management

Assurance Argument Pattern	AIC Systems Approach supportive methods	
	and artefacts	
	The following process outputs satisfy the	
	artefact's demonstration requirements:	

³ Data accuracy refers to how reliably a dataset reflects real-world conditions, ensuring labels and metadata truthfully represent the objects or scenarios they describe. For drone detection systems, this means training data (images, sensor readings, labels) must precisely capture drones in diverse, realistic settings to avoid biases or errors that could compromise the model's performance.

	In the AVOIDDS case study, we did. Therefore,
	we will include the following from the second
	case study:
	I.10.1 CuneiForm Training Strategy as a Validation Process for Datasets
	I.10.3 CuneiForm Validation Artifact
	Safety Validation Report for AVOID Dataset using the CuneiForm method [can be retrieved from here]
G3.7 The generated ML data meets the balance data requirements [S] Sn3.5 {Data Balance Validation Results}	In the unsafe train tracks case study, we did not consider the validation report over the produced dataset. However, in the AVOIDDS case study, we did. Therefore, we will include the following from the second case study: I.10.1 CuneiForm Training Strategy as a Validation Process for Datasets
	I.10.3 CuneiForm Validation Artifact
	Safety Validation Report for AVOID Dataset using the CuneiForm method [can be retrieved from here]
S3.2 Argument over different types of ML data requirements J3.1 {Rationale for the sufficiency of the identified types of ML data requirements}	H.9 Stage 5: CuneiForm-based Syllabus for Safety-Driven ML Epistemic Intelligence Development
	H.10 Stage 6: Black Swan-driven ML Development and Testing

L.5.4 Stage 4. Model Learning

This stage develops the argument for the creation and evaluation of the ML model correctly and comprehensively to ensure safety objectives are achieved. The AIC Systems Approach Processes involved to satisfy the objectives:

- Stage 5: CuneiForm-based Syllabus for Safety-Driven ML Epistemic Intelligence Development
- Stage 6: Black Swan-driven ML Development and Testing

The model training process we produced is characterised below⁴:

Table **Error! No text of specified style in document.**.11 Final training syllabus and trained output model

ML Config7: All in	Total Training: 16788	Total Valid: 4426	Total Test: 2319
dataset	(71%) (no augm.)	(19%) (no augm.)	(10%) (no augm.)
Coo MI Confir7	Out-of-context	Out-of-context	Out-of-context
See ML Config7 (augmented)	images: 10954 (65%)	images: 1969 (44%)	images: 268 (11%)
Total: 23533 images	Black Swans A	Black Swans A	Black Swans A
(without	CuneiForm	CuneiForm	CuneiForm
augmentation)	Scenarios: H.36, 37,	Scenarios: H.36, 37,	Scenarios: H.36, 37,
	38, 39, 40, 41: 1866	38, 39, 40, 41: 622	38, 39, 40, 41: 622
With augmentation:	(11%)	(14%)	(26%)
	Black Swans B	Black Swans B	Black Swans B
40321 images	CuneiForm	CuneiForm	CuneiForm
	Scenarios:	Scenarios:	Scenarios:
	H.51,52,53: 695 (4%)	H.51,52,53: 231 (5%)	H.51,52,53: 232 (10%)
	Typical Operations	Typical Operations	Typical Operations
	CuneiForm	CuneiForm	CuneiForm
	Scenarios: H.42,	Scenarios:	Scenarios : 48,49,50:
	43,44: 3273 (19%)	H.45,46,47: 1604	1197 (51%)
		(36%)	
	Applied Pre-processing	ng: Grayscale: Applied	1
	Applied Pre-processing	ng:	

⁴ See section H.9.5 for more details on CuneiForms.

Outputs per training example: 2
Noise: Up to 2.39% of pixels
Performance: mAP50/test 99%, mAP50/validation 98%,

Table L.12 captures the primary artefacts that need to be presented:

Table L.12 AMLAS Stage 4 artefacts and AIC approach mapping

AMLAS Artefact	Explanation	The substantiating AIC methods
		and artefacts
		For ML development audit trail
		see Table 7.12 Black Swan-driven
		incremental ML development
		process to assure model
		performance under Black Swan
		operations, Section 7.2.8.
	A record of all decisions,	
	configurations, and	We used the RoboFlow platform
	justifications during model	to capture the model
	training and development.	development log activities. The
		following model is the output of
[U]: Model Development	It must capture all design	experiment 9.6 where we injected
Log	choices, hyperparameter	the black swan training subset
	settings, and rationale for	and validated it against the Black
	selecting the final model—	Swan Validation subset:
	document methods to	
	prevent overfitting and	ML Config7 (augmented)
	ensure robustness.	Trained based on: Experiment 9.6
		full dataset including black
		swans, typical operations and
		random out-of-context:
		[N] Development Data, [O]
		Internal Test Data, [P] Verification

[V]: ML Model	The final ML model was developed based on the training process. It must demonstrate that the trained model satisfies all ML safety requirements, including performance, robustness, and failure handling.	Data : Dataset Config7 (augmented) Furthermore, the following stages also capture activities that were directly involved development of the model: H.9 Stage 5: CuneiForm-based Safety-Driven ML Training, Testing Process H.10.6 Captures a comprehensive experimentation to justify the training syllabus and model. We used the RoboFlow platform to capture the model development log activities. The following model is the output of experiment 9.6 where we injected the black swan training subset and validated it against the Black Swan Validation subset: ML Config7 (augmented)
[X]: Internal Test Results	Documented results of evaluating the ML model on internal test data.	The test dataset can be found here: [N] Development Data, [O] Internal Test Data, [P] Verification Data : Dataset Config7 (augmented) The validation and test results can be found in ML Config7 (augmented) Also, Black Swan (only) testing can be found in the following ML

		configuration 6 which
		demonstrates the model's ability
		to handle out-of-distribution,
		data shift.
[Y]: ML Learning Argument	The instantiated ML learning	The instantiated argument is
	assurance argument is based	captured in the following section:
[W]: ML Learning Argument	on development and testing	
Pattern	evidence.	L.5.4 Stage 4. Model Learning

Assurance Argument Pattern	AIC Systems Approach supportive methods and
	artefacts
	The following process outputs satisfy the artefact's demonstration requirements:

L.5.5 Stage 5. Model Verification

Outside the PhD scope

L.5.6 Stage 6. Model Deployment

Outside the PhD scope