Analyzing Airbnb Accommodation Dataset

컴퓨터공학과

2017103948 고다경

- 1. Dataframe: listing each room id, host id with total score in two sorting ways
 - 1. 1) index = (room_id, host_id)
 - 2. 2) column = total_score: o verall_satisfaction + reviews * 0.378
 - 3. 3) output = 1. sorted total_score in ascending 2. sorted total_score in descending

= sorted_total_score_ascend.csv, sorted_total_score_descend.csv

```
In [1]: import pandas as pd import numpy as np

df_air = pd.read_csv('airbnb.csv') #파일 일기 df_air.'overall_satisfaction.fillna(3) df1 = df_air.copy() idx1 = list(df1[['room_id', 'host_id']].itertuples(index=False, name=None)) #(room_id, host_id) index 생성 df1['total_score'] = df1['overall_satisfaction'] + df1['reviews']*0.378 #total_score 생성 df1 = pd.DataFrame(df1['total_score'].to_list(), index = idx1, columns=['total_score']) #DataFrame

df1 = df1.sort_values(by=['total_score'], ascending=True) #total_score/]준 오름차순 정렬 file_name = "./sorted_total_score_ascend.csv"

df1.to_csv(file_name)

df1 = df1.sort_values(by=['total_score'], ascending=False) #total_score/]준 내림차순 정렬 file_name = "./sorted_total_score_descend.csv"
    df1.to_csv(file_name)
```

Out[30]:

	total_score
(66288, 324630)	149.530
(414419, 2027295)	111.474
(1497879, 2776892)	110.718
(31796, 119019)	103.536
(815639, 3637081)	98.622
(10730102, 32150958)	3.000
(13028899, 43544288)	3.000
(12969495, 4605418)	3.000
(8761060, 45942466)	3.000
(11757251, 26873897)	2.134

3277 rows × 1 columns

- 2. Dataframe: listing average of factors by grouped neighborhood
 - 1. 1) index = (neighborhood)
 - 2. 2) column = avg of reviews | avg of overall_satisfaction | avg of price | max of reviews | min of reviews | max of price | min of price
 - 3. 3) output = 1. sorted neighborhood in ascending
 - = sorted_neighborhood_factors.csv

Out[2]:

	avg of reviews	avg of overall_satisfaction	avg of price	max of reviews	min of reviews	max of price	min of price
neighborhood							
Allston	10.314010	3.710145	100.019324	118	0	550.0	20.0
Allston	10.314010	3.710145	100.019324	118	0	550.0	20.0
Allston	10.314010	3.710145	100.019324	118	0	550.0	20.0
Allston	10.314010	3.710145	100.019324	118	0	550.0	20.0
Allston	10.314010	3.710145	100.019324	118	0	550.0	20.0
West Roxbury	11.533333	3.766667	109.766667	155	0	375.0	45.0
West Roxbury	11.533333	3.766667	109.766667	155	0	375.0	45.0
West Roxbury	11.533333	3.766667	109.766667	155	0	375.0	45.0
West Roxbury	11.533333	3.766667	109.766667	155	0	375.0	45.0
West Roxbury	11.533333	3.766667	109.766667	155	0	375.0	45.0

3277 rows × 7 columns

3. Dataframe: listing average of factors by grouped ranged prices

index = ranged prices
output = sort_ranged_price.csv

```
In [3]: df3 = df_air.copy()
          ranged_price = [0,100,200,300,400,500,1000,5000]
          ranged_price_label = ['0-100','100-200','200-300','300-400','400-500','500-1000','1000-5000']
          def s(group):
              d = {}
d['accommodates average'] = group['accommodates'].mean()
              d['bedrooms average'] = group['bedrooms'].mean()
d['bedrooms median'] = group['bedrooms'].median()
d['reviews average'] = group['reviews'].mean()
              d['reviews median'] = group['reviews'].median()
d['neighbor list'] = list(group['neighborhood'])
              return pd.Series(d, index=['accommodates average','bedrooms average','bedrooms median',
                                               'reviews average','reviews median','neighbor list'])
          df3 = df3.groupby(pd.cut(df_air['price'], #cut 사용해서 그룹화
                                       bins=ranged_price,
                                       right=False, # right=False '미만'으로 구역 나누기
                                        labels=ranged_price_label))
          length = df3.size() # 행 개수
          df3 = df3.apply(s)
          df3['length'] = length
          file_name = "./sort_ranged_price.csv"
          df3.to_csv(file_name)
          df3
```

Out[3]:

:		accommodates	bedrooms	bedrooms	reviews	reviews		
		average	average	median	average	median	neighbor list	length
	price							
	0-100	1.974026	0.989796	1.0	21.000928	5.0	[Allston, Dorchester, East Boston, Allston, Al	1078
	100-200	2.975787	1.101133	1.0	17.102502	5.0	[Jamaica Plain, Beacon Hill, Beacon Hill, Miss	1239
	200-300	3.871930	1.536412	1.0	13.719298	4.0	[Back Bay, Jamaica Plain, Back Bay, Beacon Hil	570
	300-400	4.812183	2.005076	2.0	9.309645	4.0	[South End, South Boston Waterfront, Fenway, C	197
	400-500	4.488372	1.813953	1.0	5.441860	1.0	[Mission Hill, Downtown, South Boston Waterfro	86
	500-1000	5.322917	2.395833	2.0	5.635417	0.5	[Back Bay, Fenway, Back Bay, Fenway, Jamaica P	96
	1000- 5000	4.000000	1.909091	2.0	0.090909	0.0	[Charlestown, South Boston, Back Bay, Bay Vill	11

- 4. Graph: draw each graph by the following lists
- 1) lineplot xaxis=rangedprice|yaxis=accommodateaverage

```
In [4]: import matplotlib.pyplot as plt

df4 = df3.copy()

df4['accommodates average'].plot(kind='line')

plt.show()
5.0
4.5
4.0
3.5
3.0
2.5
2.0
```

2) line plot x axis = ranged price | y axis = bedrooms average

100-200 200-300 300-400 400-500 500-10001000-5000

```
In [5]: df4['bedrooms average'].plot(kind='line')
plt.show()

24
22
20
18
16
14
12
10
0-100 100-200 200-300 300-400 400-500 500-10001000-5000
```

3) line **subplot** x axis = neighborhood

```
| y axis = reviews average
| y axis = overall satisfaction average
| y axis = average price average
```

```
In [6]: fig = plt.figure(figsize=(10,18)) #간격위해 사이즈 조정
ax1 = fig.add_subplot(3, 1, 1)
ax1.set_title('reviews average')
df_neigh['avg of reviews'].plot(kind='line',ax=ax1)

ax2 = fig.add_subplot(3, 1, 2)
ax2.set_title('overall_satisfaction average')
df_neigh['avg of overall_satisfaction'].plot(kind='line',ax=ax2)

ax3 = fig.add_subplot(3, 1, 3)
ax3.set_title('price average')
df_neigh['avg of price'].plot(kind='line',ax=ax3)
plt.show()
```


