Bernoulli	$X \sim B(1,p)$	$P(X = x) = p^{x}(1-p)^{1-x}$ $x = 0, 1$	E(X) - p	V(X) = p(1-p)
Binomial	$X \sim B(n,p)$	$P(X = x) = C_x^n p^x (1-p)^{n-x}$ $x = 0, 1,, n$	E(X) = np	V(X) = np(1-p)
Hipergeométrica	$X \sim H(N,r,n)$	$P(X = x) = \frac{C_x^r C_{n-x}^{N-r}}{C_n^N} \qquad x = 0, 1,, min(r, n)$	$E(X) = n \left(\frac{r}{N}\right)$	$V(X) = n \left(\frac{r}{N}\right) \left(1 - \frac{r}{N}\right) \left(\frac{N - n}{N - 1}\right)$
Poisson	$X \sim P(\lambda)$	$P(X = x) = \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}$ $x = 0, 1, 2,$	$E(X) - \lambda$	$V(X) = \lambda$
Geométrica	$X \sim G(p)$	$P(X = x) = p(1-p)^{x-1}$ $x = 1, 2, 3,$	$E(X) = \frac{1}{p}$	$V(X) = \frac{1-p}{p^2}$
Pascal	$X \sim BN(k, p)$	$P(X = x) = C_{k-1}^{x-1} p^k (1-p)^{x-k}$ $x = k, k+1, k+2,$	$E(X) = \frac{k}{p}$	$V(X) = \frac{k(1-p)}{p^2}$
Normal	$X \sim N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty$	$E(X) = \mu$	$V(X) = \sigma^2$
Uniforme	$X \sim U\big[a,b\big]$	$f(x) = \frac{1}{b-a} , a \le x \le b$	$E(X) = \frac{(a+b)}{2}$	$V(X) = \frac{(b-a)^2}{12}$
Gamma	$X \sim Ga(\alpha, 1/\beta)$	$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} , x > 0 \text{, cuando } \alpha > 0$ $,\beta > 0$ $\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha-1} e^{-x} dx , \alpha > 0 \qquad \Gamma(n) = (n-1)!$	$E(X) = \alpha \beta$	$V(X) = \alpha \beta^2$
Exponencial	X ~ E(1/β)	$f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}} , x > 0, donde β>0$ Función acumulada: $F(x) = P(X \le x) = 1 - e^{-\frac{x}{\beta}}$	$E(X) = \beta$	$V(X) = \beta^2$