# Mediation Analysis in Difference-in-Differences Designs

#### Timo Schenk

Aarhus University (→ Erasmus University Rotterdam)

Microeconometrics Class of 2024 Conference

### Motivation

- ► Standard DiD: total effect of *D* on *Y*
- ▶ But why did D affect Y?
- ► This paper: indirect effect *D* on *Y* mediated by *M*





### Motivation

- ► Standard DiD: total effect of D on Y
- ▶ But why did D affect Y?
- ► This paper: indirect effect *D* on *Y* mediated by *M*





## Empirical practice

Most empirical DiD papers study mechanisms informally:

- Estimate the effect of *D* on *M*,
- ► If significant, conclude that *M* might be an important mechanism.

To quantify the mechanism we need the effect of M on Y!



## Empirical examples



Hypertension medication ? Health centers ---?--- Mortality rates

Bailey and Goodman-Bacon (2015)

## Identifying indirect effects is challenging

- Need additional assumptions even if D is randomized
  - Sequential conditional independence (Imai et al., 2010; Heckman and Pinto, 2013; Huber et al., 2017),
  - ▶ Instruments for *D* and *M* (Frölich and Huber, 2017)
  - Parallel trends in Y for different levels of M (Deuchert et al., 2019)
- ► In DiD designs, we typically face selection into *D* and *M*.



# This paper

- Identification strategies for the indirect effect in DiD designs
  - ► Sequential DiD approach: sequential parallel trends & restricted effect heterogeneity
  - ► Two-sample approach: external validity
- 2. Robust inference methods,
- 3. Two types of applications (one for each approach)



### More related literature

- ▶ DiD when covariates are affected by the treatment (Caetano et al., 2022; Brown et al. 2023)
- Dynamic effects of staggered natural experiments (de Chaisemartin and D'Haultfoeuille, 2024)
- ► LATE without exclusion restriction (Flores and Flores-Lagunes, 2013; Huber and Mellace, 2015; Kitagawa, 2015; Kwon and Roth, 2024)

## Simple setup

- ▶ Two periods: t = 0 (pre-treatment) and t = 1 (post-treatment)
- ▶ Binary treatment  $D_{it}$ , binary mediator  $M_{it}$
- ▶ Sharp timing:  $D_{i0} = M_{i0} = 0$  (relaxed in paper)
- ▶ Potential outcome  $Y_{it}(d, M_{it}(d))$ , potential mediator  $M_{it}(d)$
- Observed outcome and mediator:

$$Y_{it} = egin{cases} Y_{it}(1, M_{it}(1)), & D_{it} = 1 \ Y_{it}(0, M_{it}(0)), & D_{it} = 0 \end{cases}, \quad M_{it} = egin{cases} M_{it}(1), & D_{it} = 1 \ M_{it}(0), & D_{it} = 0 \end{cases}$$

## The total effect is well-identified

Assumption (Parallel trends across treatment groups)

$$E[Y_1(0, M(0)) - Y_0(0, M(0))|D]$$
 does not depend on D.

The DiD estimand identifies the total effect

$$au_{att} := \mathsf{E}[Y_1(1, M(1)) - Y_1(0, M(0))|D = 1] \\ = \mathsf{E}[\Delta Y|D = 1] - \mathsf{E}[\Delta Y|D = 0]$$

with 
$$\Delta Y = Y_1 - Y_0$$

## Effect of interest: the indirect effect

Definition (Indirect effect)

$$au_{ind} := \mathsf{E}[Y_1(0, M(1)) - Y_1(0, M(0))|D = 1]$$

= the effect of D on Y mediated by M

Decomposition of the total effect:

$$\tau_{\sf att} = \tau_{\sf ind} + \tau_{\sf dir}$$

# The indirect effect is driven by switchers

Table: Unobserved mediator groups

| Group            | G | M(0) | M(1) |
|------------------|---|------|------|
| Always mediators | а | 1    | 1    |
| Never mediators  | n | 0    | 0    |
| Compliers        | C | 0    | 1    |
| Defiers          | d | 1    | 0    |
|                  |   |      |      |

The indirect effect is

$$\tau_{ind} = \pi_c \beta_c - \pi_d \beta_d$$

with local average mediator effects

$$\beta_g = \mathsf{E}[Y_1(0,1) - Y_1(0,0)|D = 1, G = g]$$

and share of compliers (defiers)

$$\pi_{\mathsf{g}} = \mathsf{Pr}[\mathsf{G} = \mathsf{g}|\mathsf{D} = 1]$$

for g = c, d

# Sequential DiD: implementation

1. Total (reduced form) effect  $\tau_{att}$ 

$$\Delta Y_i = \delta + \tau_{\mathsf{att}} D_i + \varepsilon_i$$

2. Treatment effect on the mediator  $\pi$ 

$$M_i = \alpha + \pi^* D_i + \nu_i$$

3. Mediator effect  $\beta$ 

$$\Delta Y_i = \tilde{\delta} + \beta^* M_i + \gamma_0 D_i + \gamma_1 D_i M_i + \tilde{\varepsilon}_i$$

4. Indirect effect

$$\tau_{ind}^* = \tau_{att} - (\gamma_0 + \pi^* \gamma_1) = \pi^* \beta^*$$

## Sequential DiD: identification

Sequential DiD identifies the product

$$\tau_{ind}^* = \pi^* \beta^*$$

▶ Ingredient 1: average effect of *D* on *M* 

$$\pi^* = \mathsf{E}[M|D = 1] - \mathsf{E}[M|D = 0]$$

► Ingredient 2: average mediator effect

$$\beta^* = E[\Delta Y | D = 0, M = 1] - E[\Delta Y | D = 0, M = 0]$$

# Main decomposition: the three sources of bias

#### Theorem

$$au_{ind}^* = au_{ind} + SM + EH + NW$$

with

- 1. Selection into mediation:  $SM = \pi^*(\delta_1 \delta_0)$  with  $\delta_m = \mathbb{E}[\Delta Y(0,0)|D, M(0) = m]$ ,
- 2. Mediator effect heterogeneity:  $EH = \pi_c(\beta_a \beta_c)$ , and
- 3. Negative weights bias:  $NW = \pi_d \tilde{\pi} (\beta_d \beta_a)$ ,  $\tilde{\pi} = \frac{\pi_c \pi_a}{\pi_d + \pi_a}$ .

## Identification based on sequential parallel trends

$$au_{ind}^* = au_{ind} + SM + EH + NW$$

So  $\tau_{ind}^* = \tau_{ind}$  under

- 1. Parallel trends across mediator groups:  $E[\Delta Y(0,0)|D,M(0)]$  does not depend on  $M(0) \Rightarrow SM = 0$
- 2. Mediator effect homogeneity:  $\beta_a = \beta_c \Rightarrow EH = 0$
- 3. Monotonicity in treatment effects on the mediator (no defiers)  $M(1) \ge M(0)$  a.s.  $\Rightarrow NW = 0$



## Two-sample approach

- Problem: Main approach not feasible in some common settings
- Example: Pr(M = 1|D = 0) = 0 (mediator "part of" treatment)
- ▶ Consequence:  $\beta^*$  not identified in the main sample

#### Solution

▶ Mediator effects  $(M \rightarrow Y)$  identified in a separate sample (e.g. RCT)

$$au_{\mathit{ind}}^{\dagger} = \pi^* \beta^{\dagger}$$

Parallel trends across mediator groups no longer required

## Inference challenges

1. Conventional tests for  $\tau_{ind} = 0$  are conservative. Details

Solution: improved test for mediation van Garderen and van Giesbergen (2022)

2. Conventional inference on  $\frac{\tau_{ind}}{\tau_{att}}$  not uniformly valid.

Solution: robust CIs based on the Fieller method (aka Anderson-Rubin)

# Robust inference on the proportion mediated

- lacksquare Important object: the proportion mediated  $r=rac{ au_{ind}}{ au_{att}}$
- Conventional confidence intervals (CIs) based on the delta method

$$CI_{conv} = \{\hat{r} \pm 1.96SE[\hat{r}]\}$$

Robust CIs based on the Fieller method

$$CI_{rob} = \{r : AR(r) \le q_{0.95}\}$$

i.e. collect all r for which  $H_0(r)$ :  $\tau_{ind} - r\tau_{att} = 0$  cannot be rejected

## Two types of applications

 (Economic history) How Prohibition increased productivity through farm values. Howard and Ornaghi (2021)

```
▶ Details
```

 (Public health) How Community Health Centers decreased mortality rates through increased use of anti-hypertensive medication. Bailey and Goodman-Bacon (2015)

```
▶ Details
```

# How did Community Health Centers decrease mortality rates?

- ► Treatment D: County establishes CHC Map
- Outcome Y: Mortality rate among aged 50+ years, 5-9 years after treatment
- ▶ Total effect:  $\hat{\tau}_{att} = 274$  avoided deaths per 100k (SE 51.5)
- ▶ Proposed mediator *M*: prescription of anti-hypertensive medication
- ▶ Problem: no (observed) variation of *M* in untreated counties

# How important is the hypertension channel?

Table: Calculation of the indirect effect in Bailey and Goodman-Bacon (2015)

| Effect                                           | Source                                                                                                  | Est   | Std. err. |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------|-----------|
| Effect of $D$ on $Y$ $(\hat{	au}_{att})$         |                                                                                                         | 274   | (51.5)    |
| Share of CHC beneficiaries                       | $egin{aligned} P[	akeup D=1] \ 	ext{NHE Survey}^1 \ P[	akeup D=1] 	imes lpha_{	ext{hyp}} \end{aligned}$ | 0.16  | -         |
| Hypertension prevalance $(\alpha_{hyp})$         |                                                                                                         | 0.262 | -         |
| Effect of $D$ on $M$ $(\pi^*)$                   |                                                                                                         | 0.042 | -         |
| Local effect of $M$ on $Y$ $(\hat{\beta}_{hyp})$ | HDFP RCT $^2$ $\hat{eta}_{hyp} 	imes \pi^*$ $\hat{	au}_{ind}/\hat{	au}_{att}$                           | 2,168 | (760)     |
| Indirect effect $(\hat{\tau}_{ind})$             |                                                                                                         | 91    | (31.9)    |
| Relative indirect effect $(\hat{r})$             |                                                                                                         | 33.2% | (13.2%)   |

<sup>&</sup>lt;sup>1</sup> National Health Examination Survey

<sup>&</sup>lt;sup>2</sup> Hypertension Detection and Follow-Up Program

#### How credible is this ratio?

#### Identification

- Selection into M: no problem as we took β from RCT
- ► Monotonicity: did CHCs prevent some people from *M*?
- Mediator effect heterogeneity: how different is the population of the RCT from the CHC beneficiaries?

#### Inference





## Summary

- 1. Identification strategies for the indirect effect in DiD designs
  - ▶ Main approach: sequential parallel trends & restricted effect heterogeneity
  - ► Two sample approach: external validity
- 2. Robust inference methods,
- 3. Two types of applications (one for each approach)

## Robust parallel trends

Parallel trends across treatment groups do not hold just by coincidence.

### Assumption

 $\mathsf{E}[\Delta Y_i(0,0)|D_i,M_i(0)=m]$  does not depend on  $D_i$  for both m=0,1.

### Assumption

 $E[M_i(0)|D_i]$  does not depend on  $D_i$ .

### Assumption

The mediator effects are the same between treatment groups:  $\beta_{1,1} = \beta_{0,1}$ .



## Visualizing sequential parallel trends

#### Sequential parallel trends violated



>

#### Sequential parallel trends holds





>

## Inference on the indirect effect

Consider testing for the presence on an indirect effect

$$H_0: \pi\beta = 0 \Leftrightarrow H_{0,a}: \pi = 0 \lor H_{0,b}: \beta = 0$$

Conventional tests:

- lacksquare Wald / Sobel test based on  $\frac{\hat{ au}_{ind}}{\mathrm{se}[ au_{ind}]}$
- ▶ LR: test  $H_{0,a}$  and  $H_{0,b}$  individually based on corresponding t-statistics  $t_{\pi}$ ,  $t_{\beta}$  Reject  $H_0$  iff both  $H_{0,a}$  and  $H_{0,b}$  reject

Problem: power below nominal size when  $\pi$  and  $\beta$  are both small.

#### Conventional tests are conservative



DGP:  $\Delta Y = \beta \Delta M + \varepsilon$  and  $\Delta M = ATT_mD + \nu$  over a grid  $ATT_m \in \{0, 0.05, \dots, 1\}$ . Sample size N = 100.

## Solution: improved test for mediation

van Garderen and van Giesbergen (2022) [VGVG]

# Order the t-statistics $t_{(1)} = \min\{|t_{\beta}|, |t_{\pi}|\}, t_{(2)} = \max\{|t_{\beta}|, |t_{\pi}|\}$

► Reject if  $g(t_{(2)}) < t_{(1)}$  with g(.) a transformation given in VGVG

▶ Back

#### Critical Regions LR vs VGVG



## Details on the VGVG test



# Asymptotic distribution of the effect ratio

Let heta collect the parameters of the two linear regressions

$$\Delta Y_i = \delta + \beta M_i + \gamma_0 D_i (1 - M_i) + \gamma_1 D_i M_i + \varepsilon_i$$
  
$$M_i = \pi_0 + \pi_1 D_i + \nu_i$$

#### **Theorem**

Let  $\{Y_{i0}, Y_{i1}, M_i, D_i\}_{i=1}^N$  be an independent sample. Let  $\hat{\theta}_{\tau} = \mathbf{g}(\hat{\theta}) = (\hat{\tau}_{ind}, \hat{\tau}_{dir})'$ .

Then  $\sqrt{N}(\hat{\theta} - \theta^*) \stackrel{d}{\longrightarrow} \mathcal{N}[\mathbf{0}, \Sigma]$  as  $N \to \infty$  with  $\Sigma$  the full-rank variance matrix.

Consequently,

$$\sqrt{N}(\hat{m{ heta}}_{ au} - m{ heta}_{ au}^*) \stackrel{d}{\longrightarrow} \mathcal{N}[m{0},\Omega]$$

where  $\Omega = G_0' \Sigma G_0$  and  $G_0 = [\nabla g_1, \nabla g_2]_{\theta = \theta^*}$  the jacobian of  $g : \Theta \to \mathbb{R}^2$ .

# Asymptotic distribution of the effect ratio

Consider now the ratio  $\hat{r} = \frac{\hat{\tau}_{ind}}{\hat{\tau}_{stt}}$ .

## Corollary

If  $\tau_{att} \neq 0$ , then

$$\sqrt{N}(\hat{r}-r_0) \stackrel{d}{\longrightarrow} \mathcal{N}[0,\sigma_{\hat{r}}^2]$$

with  $\sigma_{\hat{r}}^2 = \nabla r_0 \Omega \nabla r_0$  and  $\nabla r_0 = \frac{1}{\tau_{att}} (\tau_{dir}, -\tau_{ind})'$ .

## Corollary

Let  $AR(r) = \frac{(\hat{\tau}_{ind} - r\hat{\tau}_{att})^2}{\hat{\sigma}_{ar}^2}$  and suppose  $\Omega$  has full rank. Then  $AR(r_0) \stackrel{d}{\longrightarrow} \chi^2(1)$  for all  $\tau_{att}$ .

## Simulation: strong ATT

# Distribution of Confidence Intervals Strong ATT



Coverages: 94.9 % (conv.), 95.08 % (AR)

Figure:  $\Delta Y_i | (M_i, D_i) \sim \mathcal{N}[3M_i + \gamma_0 D_i, 16], M_i | D_i \sim Bern(0.25 + \pi^* D_i), (\pi^*, \gamma_0) = (0.5, 0.5)$ 

#### Simulation: weak ATT

#### Distribution of Confidence Intervals



Figure:  $\Delta Y_i | (M_i, D_i) \sim \mathcal{N}[3M_i + \gamma_0 D_i, 16], M_i | D_i \sim Bern(0.25 + \pi^* D_i), (\pi^*, \gamma_0) = (0.1, 0.1)$ 

## The indirect effects of Prohibition

#### Setting

| t = 1        | 1910                  |
|--------------|-----------------------|
| t = 0        | 1900                  |
| $D_i$        | early adopting county |
| $Y_{i,t}$    | log productivity      |
| $M_{i,t}$    | log farm value        |
| $X_{i,1900}$ | baseline demographics |



FIGURE 2
TREATMENT STATUS MAP

Figure: Howard and Ornaghi (2021, Fig. 2).

## Results

Table: Decomposed Effect of Prohibition on Productivity

|                                             | Estimate                                   | Std. Err.               | 95% CI                                             |
|---------------------------------------------|--------------------------------------------|-------------------------|----------------------------------------------------|
| Total effect                                | 0.072*                                     | 0.043                   | [-0.012, 0.156]                                    |
| Effect D on M Effect M on Y Indirect effect | 0.081***<br>0.567***<br>0.046 <sup>†</sup> | 0.024<br>0.104<br>0.014 | [0.034, 0.128]<br>[0.363, 0.771]<br>[0.019, 0.074] |
| % mediated (conv.)<br>% mediated (AR)       | 63.89%<br>-                                | 36.79%<br>-             | $[-7.6\%, 136.6\%]$ $(-\infty, \infty)$            |
| Direct effect                               | 0.026                                      | 0.042                   | [-0.06, 0.108]                                     |

# **Empirical strategy**

Reduced form

$$\Delta Y_i = \tau_{att} D_i + X'_{i,1900} \vartheta + \alpha_{s(i)} + \varepsilon_i$$

First stage

$$\Delta M_i = \pi D_i + X'_{i,1900} \vartheta + \alpha_{s(i)} + \varepsilon_i$$

Second stage

$$\Delta Y_i = \gamma D_i + \beta \Delta M_i + X'_{i,1900} \vartheta + \alpha_{s(i)} + \varepsilon_i$$

## Establishment of CHCs



▶ Back

Figure 3. Establishment of Community Health Centers by County of Service Delivery, 1965–1980

Note: Dates are the first year that a CHC was established in the county.

Source: Information on CHCs drawn from NACAP and PHS reports.

# Survey of Empirical Studies

Table: Proposed mechanisms in DiD papers surveyed in Roth (2022)

| Paper                                 | Outcome                    | Treatment                   | Mechanism                                             |
|---------------------------------------|----------------------------|-----------------------------|-------------------------------------------------------|
| Bailey and<br>Goodman-Bacon<br>(2015) | mortality rate             | Community Health<br>Centers | anti-hypertensive<br>medication                       |
| Deryugina (2017)                      | government trans-<br>fers  | hurricane                   | demographics, earn-<br>ings, employment               |
| Fitzpatrick and<br>Lovenheim (2014)   | test scores                | teacher retirements         | shift in resources,<br>teacher assignment             |
| Gallagher (2014)                      | flood insurance take<br>up | large regional floods       | flood costs, migra-<br>tion, protective mea-<br>sures |