Differential Equations in Geophysical Fluid Dynamics

I. Governing equations, scale analysis, and approximations

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Feb, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Introduction

What is Geophysical Fluid Dynamics (GFD)?

Fluid dynamics in large scale where rotation of world becomes matter.

https://www.gfdl.noaa.gov/hires_indian_sst-2/

Governing equation

Why are differential equations so important?

Newton's second law

$$\frac{d\vec{u}}{dt} = \sum_{i} \vec{F}_{i} \tag{1}$$

that is the origin of (almost) all classic dynamics and already differential equation.

Navier-Stokes equations

Inertia
$$\frac{\partial u}{\partial t} + \frac{\partial (uu)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial (uw)}{\partial z} - fv =$$

$$-\frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(A_h \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial u}{\partial z} \right)$$

$$\frac{\partial v}{\partial t} + \frac{\partial (vu)}{\partial x} + \frac{\partial (vv)}{\partial y} + \frac{\partial (vw)}{\partial z} + fu =$$

$$-\frac{1}{\rho} \frac{\partial P}{\partial y} + \frac{\partial}{\partial x} \left(A_h \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial v}{\partial z} \right)$$

$$\frac{\partial w}{\partial t} + \frac{\partial (wu)}{\partial x} + \frac{\partial (wv)}{\partial y} + \frac{\partial (ww)}{\partial z} =$$
Diffusion (eddy viscosity)
$$-\frac{1}{\rho} \frac{\partial P}{\partial z} + \frac{\partial}{\partial x} \left(A_h \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial w}{\partial z} \right) - g$$
Pressure gradient

and mass conservation (continuity equation)

Before that, a bit more about **Coriolis force**: https://www.youtube.com/watch?v=nMPXBAYsWvs

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$
 (3)

Scale analysis

$$\begin{split} \frac{\partial u}{\partial t} + \frac{\partial (uu)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial (uw)}{\partial z} - fv = \\ - \frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(A_h \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial u}{\partial z} \right) \end{split}$$

Let us define Constant "order" (including unit)
$$x = L x^*, y = L y^*, z = H z^*, t = T t^*,$$

$$u = U u^*, v = U v^*, w = W w^*, P = p P^*$$
Nondimensionalized variable

Scale analysis

Order (rough size) of each term!
$$\left(\frac{U}{T}\right) \frac{\partial u^*}{\partial t^*} + \left(\frac{U^2}{L}\right) \left(\frac{\partial (u^*u^*)}{\partial x^*} + \frac{\partial (u^*v^*)}{\partial y^*} + \frac{\partial (u^*w^*)}{\partial z^*}\right) =$$

$$- \left(\frac{p}{\rho L}\right) \frac{\partial P^*}{\partial x^*} - \left(fU\right) v^* + \left(\frac{A_h U}{L^2}\right) \left[\frac{\partial}{\partial x^*} \left(A_h^* \frac{\partial u^*}{\partial x^*}\right) + \frac{\partial}{\partial y^*} \left(A_h^* \frac{\partial u^*}{\partial y^*}\right)\right] + \left(\frac{A_z U}{H^2}\right) \frac{\partial}{\partial z^*} \left(A_z^* \frac{\partial u^*}{\partial z^*}\right)$$
(5)

Scale analysis: application

Ulleung Eddy in the East Sea

Let us assume pressure gradient is important, and what is the most significant term balancing the pressure gradient.

General values for the parameters:

$$A_h pprox 10^2\,m^2\,s^{-1}$$
 , $A_z pprox 1\,m^2\,s^{-1}$, and $f_* pprox 10^{-4}_{\odot}$, $s_* = 1$,

Scale analysis: application

$$\frac{\partial u}{\partial t} + \frac{\partial (uu)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial (uw)}{\partial z} - \mathbf{f} \mathbf{v} =$$

$$-\frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{\partial}{\partial x} \left(A_h \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial u}{\partial z} \right)$$

$$\downarrow$$

$$-fv = -\frac{1}{\rho} \frac{\partial P}{\partial x} \tag{6}$$

that is what we call "geostrophic balance". But is it too simple to consider complexity of the nature (and original equations)?

Scale analysis: application

Nope, at least locally when our choice of the scales ("assumptions") are correct.

Nondimensionalization

Dividing (5) by order of the term we interested (e.g., Coriolis; fU) yields

Ek:(Vertical) Ekman number

Blue indicate order relative to the other term's order, what we call nondimensional number.

Summary

- Scale analysis, applicable to any equations, is easy and powerful.
- Stupidly simplified equations work unless the assumptions are valid.
- Further profound discussions about the scale analysis are in Price (2005; available at https://www2.whoi.edu/staff/jprice/wp-content/ uploads/sites/199/2024/10/DA_2024_A2.pdf).

Assignment

In the continuity equation (3), density ρ can be decomposed into constant component ρ_0 , so $\rho=\rho_0+\rho'$. Substituting $\rho=\rho_0+\rho'$ into (3) and then, conduct scale analysis and obtain nondimensionalized version of the equation.

- 1. What is the nondimensional number controlling the equation?
- 2. In general, $\rho_0 \approx 1025 kg \, m^{-3}$ and the order of ρ' is less than $10 \, kg \, m^{-3}$. Is the constant density assumption valid in (3)?