Detection of DDoS in SDN environment using Support Vector Machine, Entropy based discretization and Fuzzy C Means Clustering

Achyuth Rao - 41056 Akib Shaikh - 41062 Arun Pottekat - 41054 Pranay Tale - 41070

Guide:- Prof. Mrs. Aparna Junnarkar

PES's Modern College Of Engineering

Contents

- Introduction
- Problem Statement
- Motivation
- Objective
- Scope
- Literature Survey
- Architecture Diagram
- UML Diagrams
- Mathematical Model
- Algorithmic Strategies
- Algorithmic Strategies
- Algorithmic Strategies
- Software Specifications
- Hardware Specifications
- Dataset Specifications
- Test Cases
- Results of Entropy Based Discretization
- Results of SVM based Method
- Results of Fuzzy C Means Clustering
- Performance Analysis
- Conclusion
- References

Introduction

- SDN separates intelligence from the hardware.
- SDN controller acts as network Operating System.
- This networking paradigm faces some issues.
- DDoS attack makes the network resources unavailable.

Figure 1: SDN Architecture

Problem Statement

 To provide a solution for the detection of DDoS attack in SDN environment using Support Vector Machine, Entropy based mechanism, Fuzzy C Means Clustering and monitoring OpenFlow statistics.

Motivation

- Number of cyber attacks is increasing day by day.
- Reluctance to adopt SDN due to lack of security solutions.
- A single DDoS attack can cost an enterprise over \$1.6 million.
- SDN market is expected to grow to \$56 Billion by 2022.
- Automation of attack detection is required.
- Integration of Machine Learning and Data Mining with SDN.

Objective

- To apprehend different types of network attacks which can be launched on SDN.
- To compare different types of DDoS detection techniques.
- To propose the best effective method for a specific environment.
- To grasp an overview about the different network monitoring tools.

Scope

- Set up of SDN environment.
- Entropy, Fuzzy C Means and SVM based DDoS detection method.
- OpenFlow Monitoring application using POX API.

Literature Survey

Title	Author	Journal and Year	Description
DDoS Detection and Analysis in SDN-based En- vironment Using Support Vector Machine Classifier	Kokila RT, S. Thamarai Selvi, Kannan Govin- darajan	IEEE 2014	This paper provides information about DDoS attack in SDN environment using Support Vector Machine to classify the attack.
An Entropy-Based Distributed DDoS Detection Mecha- nism in Software- Defined Network- ing	Rui Wang, Zhip- ing Jia, Lei Ju	IEEE 2015	This paper provides information about DDoS attack in SDN environment using Entropy based mechanism to classify the attack.
Software-Defined Networking:The New Norm for Networks	Open Networking Foundation	ONF White Paper, 2012	Description about Software Defined Networks
Advances in Fuzzy Clustering and its Applications	Jose Valente de Oliveira, Witold Pedrycz	Wiley 2007	This book provides informa- tion about the algorithm for Fuzzy C Means Clustering.
OpenFlow Switch Specification	Open Networking Foundation	Version 1.3.2 2013	Description about Open- Flow Protocol

Architecture Diagram

Figure 2: System Architecture

UML Diagrams

Figure 3: Use Case Diagram

UML Diagrams

Figure 4: Sequence Diagram

Mathematical Model

```
S = \{\{I\}, \{P\}, \{O\}\}
I = \{N\}
where,
N = \{ \text{ Network Statistics } \},
F = \{F_i \mid F_i \in T, \forall i \mid F_i = \text{ Individual entry } \},
T = \{ \text{ Flow Table } \},
F \subseteq N
P = \{P_{EBD}, P_{SVM}, P_{FCM}\}
O = \{O_{EBD} \cup O_{SVM} \cup O_{FCM}\}
```

Mathematical Model

```
P<sub>EBD</sub> (I<sub>EBD</sub>, O<sub>EBD</sub>)
    • I_{EBD} = \{U_i \mid U_i = (\text{Dest. Addr., Count}), U_i \subset F_i\}
    P_i = \frac{C_i}{N}
    • \varepsilon = \sum_{i=0}^{n} -P_i \log P_i
    • \varepsilon_n = \frac{\varepsilon}{N}
    • (\lambda < \varepsilon_n) \rightarrow (\beta = 0)
        (\lambda > \varepsilon_n) \to (\beta = 1)
    • O_{EBD} = \{ \beta \mid \beta \in (0, 1) \}
PSVM (ISVM, OSVM)
    • I_{SVM} = \{V_i \mid V_i = (Src. Addr., Dest. Addr., Time, Prot.)\}
    v = \overline{\omega} * x + b
    • (y < -1) \to (\alpha = 1)
        (y > 1) \rightarrow (\alpha = 0)
    • O_{SVM} = \{ \alpha \mid \alpha \in (0, 1) \}
```

Mathematical Model

```
P_{FCM} (I_{FCM}, O_{FCM})
       • I_{FCM} = \{W_i \mid W_i = (\text{ Time, Dest. Addr., X })\}
      • P_I(z_i) = \sum_{i=1}^X \epsilon^- \alpha ||z_i - z_I||^2
     \bullet \ u_{ij} = \frac{d_{ij}^{-\frac{2}{m-1}}}{\sum_{l=1}^{c} d_{li}^{-\frac{2}{m-1}}}
      • c_{ij} = \frac{\sum_{j=1}^{X} u_{ij}^{m} C_{j}}{\sum_{i=1}^{X} u_{ii}^{m}}
      • (y \le u_{attack}) \to (\gamma = 0)

(y \ge u_{attack}) \to (\gamma = 1)
       • O_{FCM} = \{ \gamma \mid \gamma \in (0, 1) \}
```

Algorithmic Strategies

Figure 5: Flowchart: Support Vector Machine Algorithm

Figure 6: Support Vector Machine Graph

Algorithmic Strategies

Figure 7: Flowchart: Entropy Based Discretization Mechanism

Algorithmic Strategies

Figure 8: Flowchart: Fuzzy C Means Clustering

Software Specifications

- Linux based Operating System.
- Open vSwitch (OVS).
- Oracle VirtualBox.
- POX Controller.
- Python 2.7 or above.
- Mininet 2.2.1
- Flask
- Numpy, Pandas [Data analysis tools]
- tshark [CLI version of wireshark]

Hardware Specifications

- Any Enterprise/ Data Center/ Campus Network Topology with 1000+ Mbps.
- Manageable switches that support OpenFlow Protocol / Whitebox Switches.
 - HPE Altoline 6900 48G ONIE AC Switch.
 - Pica8 P-3297 48 X 1Gbe.
 HP 2920 Switch Series
 - TP 2920 SWITCH Series
- Server Running the Controller
 - Dell PowerEdge R720

Dataset Specifications

- Dataset prepared using packet capturing tool tshark during both training and prediction phases.
- Training datasets include scenarios for both attack as well as normal nature of network.

Time Interval	Src. IP.	Dst. IP	Protocol
0.025412000	192.168.1.11	192.168.1.13	1
0.037555000	192.168.5.1	192.168.5.2,6	6
0.024478000	192.168.1.11	192.168.1.13	1

Table 1: Normal Traffic Dataset

Time Interval	Src. IP.	Dst. IP	Protocol
0.000001000	192.168.1.14	192.168.1.11	1
0.000002000	192.168.1.14	192.168.1.11	1
0.000001000	192.168.1.14	192.168.1.11	1

Table 2: Attack Traffic Dataset

Test Cases

ld	Description	Scenario	Expected Output
1	Time span between attack de-	Attack has oc-	Instantaneous alert
	tection and alert generation	cured	generation
2	Normal Network Traffic, Log	SDN functioning	Alert not generated
	file not altered and attack is	in normal mode	
	not detected		

Scenario: Attack Traffic

ld	Description	Input	Expected Output
1	Simple DoS attack	Large no. of same	Attack detected
		type of packets	
2	UDP flood attack	Large no. of UDP packets	Attack detected
3	Varying DDoS attack bandwidth	Large no. of packets	DDoS attack should be detected only when bandwidth exceeds normal threshold traffic.

Results of Entropy Based Discretization

- Switch configuration: Machine with Ubuntu 14.04, 8GB RAM, 4 logical cores
 Host configuration: Virtual Machine with Ubuntu 14.04, 1.5GB RAM, single core.
- POX controller.
- Flow Table Entries
- Normal traffic Rate: x pkts/second

Traffic Rate (pkts/second)	Entropy Values
×	0.854
50x	0.633
200x	0.511

Table 3: Entropy Values for different traffic rates

Results of SVM based Method

- Normal and attack traffic datasets are generated at run time using tshark.
- Normal to Total Ratio: Total normal classifications / Total number of packets

Traffic	Rate	SVM	Ratio	Val-
(pkts/seco	nd)	ues		
×		0.33		
50x		0.004		
200×		0.0000	2	

Table 4: SVM Ratio Values for different traffic rates

Results of Fuzzy C Means Clustering

• Normal and attack traffic datasets are generated at run time using tshark.

Normal Traffic: x pkts/second
 Normal Centroids: 0.00146, 2.1613

 Attack Traffic: 200x pkts/second Attack Centroid: 0.000014

Traffic Rate(pkts/second)	% packets in at- tack cluster
X	56%
50x	78%
200x	99%

Table 5: Accuracy with different parameters

Performance Analysis

Accuracy: 95.33%

Detection Rate: 97.43%False Positive Rate: 6.9%

Conclusion

 Proposing a solution for DDoS detection in SDN environment and also comparing the effectiveness of both methods (SVM, Entropy based Discretization and Fuzzy C Means Clustering) in a specific environment which would be a step towards solving the security issues and accelerating the adoption of SDN.

References

- "DDoS Detection and Analysis in SDN-based Environment Using Support Vector Machine Classifier" - Kokila RT, S. Thamarai Selvi, Kannan Govindarajan - 2014 Sixth International Conference on Advanced Computing(ICoAC) - Department of Computer Technology, Anna University (MIT Campus), Chennai.
- "An Entropy-Based Distributed DDoS Detection Mechanism in Software-Defined Networking" - Rui Wang, Zhiping Jia, Lei Ju - 2015 IEEE Trustcom/BigDataSE/ISPA - School of Computer Science and Technology Shandong University Jinan, China.
- "Software-Defined Networking: The New Norm for Networks and Open Networking Foundation" - Open Networking Foundation - ONF White Paper April 13, 2012.
- "Advances in Fuzzy Clustering and its Applications" Jose Valente de Oliveira, Witold Pedrycz Wiley 2007
- T.Subbulakshmi , Dr. S. Mercy Shalinie, V.GanapathiSubramanian, K.BalaKrishnan, D. AnandK, K.Kannathal - IEEE-ICoAC 2011 - Department of CSE, TCE Madurai, India.
- "OpenFlow Switch Specification" Open Networking Foundation Version 1.3.2 2013.

Thank You...