

Journal of Wind Engineering and Industrial Aerodynamics 90 (2002) 1657–1669

wind engineering indastrial aerodynamics

www.elsevier.com/locate/jweia

Generalized extreme gust wind speeds distributions

E. Cheng^{a,*}, C. Yeung^b

^a Department of Civil Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
^b US Geological Survey, Honolulu, HI 96813, USA

Abstract

Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.

With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Gust winds; General pareto distribution; Generalized extreme value distribution; Cumulative mean exceedance method; Gumbel and reverse Weibull distributions

1. Introduction

In the United States, ASCE 7-93 [1] was the last version of wind load standards using the fastest-mile wind data, which statistically reduced extreme value distributions by using the Fisher–Tippet Type I function. The current ASCE 7-98

E-mail address: echeng@eng.hawaii.edu (E. Cheng).

0167-6105/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.

PII: S0167-6105(02)00277-5

^{*}Corresponding author.

[2] uses the 3-s extreme gust wind speeds for estimating wind loads on structures. Recognizing that extreme wind speeds are physically bounded, researchers have used Weibull and reverse Weibull distributions in their analyses of extreme winds [3–7]. Results from these studies have indicated that annual fastest-mile wind speeds (excluding tornado and hurricane winds) are better described by the reverse Weibull distribution in most, if not all cases. Our recent study on annual extreme gust winds suggests that a two-parameter generalized Pareto distribution (GPD) may be used to analyze the extreme gust wind speeds instead of the current practice of assuming that the parent extreme winds (regardless of location) are all Type I distributed. The solution range of the tail-length parameter c of GPD may serve as an indicator that the extreme events under consideration may be represented by either Type I Gumbel (for c value approaching zero), Type II Frechet (for c > 0) or Type III reverse Weibull (for c < 0) extreme value functions.

2. Strategy

Consider W(t) as the wind speed time series at a specific site, and V as the extreme gusts associated with W(t), in general, the parent distribution of V is unknown. However, V may be identified by estimating its tail quantile probability of a proposed conditional cumulative distribution function (CDF) F(v)

$$Prob(V \le v) = F(v) = 1 - (1 + cv/d)^{-1/c}$$
(1)

for d > 0 and (1 + cv/d) > 0, in which, V = W(t) - u, where u is a sufficiently large threshold value of W(t), v is a conditional realization of V, c and d are the shape (or tail-length) and scale parameters, respectively. Eq. (1) is the well-known GPD, which may be considered as the basis for extreme gust representation. The element $(1 + cv/d)^{-1/c}$ on the right-hand side of Eq. (1) is known as the generalized Pareto tail.

Using the GPD for extreme gust wind representation is an approach departing from the current practice of assuming the parent extreme wind distributions. The solution ranges of the GPD's shape (or tail-length) parameter c will distinguish the extreme event as either Type I, Type II or Type III distributed [8,9]. The GPD has been used by researchers in generating fastest-mile wind speeds annual series as well as in Monte Carlo simulations [5–7,10].

3. Generalized extreme value distribution

One of the important properties of GPD is that the extreme gust wind variate v in Eq. (1) has, essentially, a generalized extreme value (GEV) distribution. This is true if the occurrences of the variate v, which exceed sufficiently high thresholds, are rare events and the occurrences can be represented by a Poisson process [8]. The CDF of GEV distribution may be expressed as

$$G(v) = \exp\{-[1 + c(v - a)/b]^{-1/c}\}\tag{2}$$

for $c \neq 0$, where a, b and c are the threshold (or location), scale and tail-length (or shape) parameters, respectively. It is noteworthy that the tail-length parameters, c, of the GPD (Eq. (1)) and the GEV (Eq. (2)) are exactly identical [8,9]. From Eq. (2), three types of extreme value distributions for maxima may be realized by examining the range of tail-length parameter [11,12].

For c = 0, that is the limit of c approaching zero, Eq. (2) becomes

$$G_{\rm I}(v) = \exp\{-\exp[-(v-a)/b]\}.$$
 (3)

For c > 0, then c = 1/q and Eq. (2) becomes

$$G_{\text{II}}(v) = \exp\{-[(v-a)/b]^{-q}\}.$$
 (4)

For c < 0, then c = -1/q and Eq. (2) becomes

$$G_{\text{III}}(v) = \exp\{-[(a-v)/b]^q\}.$$
 (5)

Eqs. (3)–(5) are the Type I (Gumbel), Type II (Frechet) and Type III (reverse Weibull) extreme value distributions, respectively. Mathematically, the difference between Types II and III distributions is only a sign conversion.

Since the tail-length parameter c of the three-parameter GEV and the two-parameter GPD are exactly identical, we are using the two-parameter GPD as the diagnostic tool for determining the types of extreme gust wind speed distributions.

The tail-length parameter c and scale parameter d of GPD can be estimated by means of the straightforward method of moments if excessive biased results associated with c and d are not of primary concern. However, we prefer the more accurate threshold method of evaluating c and d. Consider v and w as the realizations of V and W, respectively. We may state that v = w - u (where u is a sufficiently large threshold of w). Consequently, Eq. (1) may be expressed as

$$F(v) = \text{Prob}(V \le v) = 1 - [1 + c(w - u)/d]^{-1/c}$$
(6)

for d > 0, w > u and [1 + c(w - u)/d] > 0; and $[1 + c(w - u)/d]^{-1/c}$ is the generalized Pareto tail.

Now consider the exceedance conditional mean of V [9,11]

$$E[V|V > 0] = (d + cu)/(1 - c). \tag{7}$$

For c < 1, u > 0 and (d + cu) > 0.

For a given sample set, the observed mean excess data over the threshold u (as the ordinate) can be plotted against various levels of selected u (as the abscissa). If the GPD assumption is correct, then the cumulative mean exceedance (CME) plot, in a general sense, should follow a straight line. The slope of the straight line c/(1-c) and its intercept d/(1-c) can be easily quantified. Thus, c and d are determined. This is also known as the CME method. Since the tail-length parameter c is known, the solutions of the threshold and scale parameters a and b associated with the Gumbel, Frechet or the reverse Weibull distributions i.e., Eqs. (3), (4) or (5), respectively, can be found in many standard texts.

4. Data preparation

The gust wind speed data used in this study were obtained from the US National Climatic Center database [13]. This database consists of more than 750 weather stations throughout the United States. Of the 750 plus stations, about 525 stations have data ranged from 5 to 45 years (1946–1990).

A minimum record length of 15 years was chosen to allow an adequate amount of wind data to be analyzed in this study. Because of climatic characteristics, a smaller sample may not adequately represent all possible wind patterns. Therefore, stations with less than 15 years of record were removed from the database. As a result, 350 stations remained. However, only 270 out of the 350 stations have anemometer elevation records. For the sake of homogeneity, the Pacific Island stations also were removed. The number of available stations then was reduced to 184. For further homogeneity consideration, stations affected by hurricanes and tornadoes were therefore excluded from the study. We felt that hurricane and tornado winds deserve separate attention. Furthermore, stations with non-continuous records also were excluded. Finally, 143 weather stations in the contiguous United States were selected for the analysis.

For the selected 143 stations, it was necessary to convert all gust wind speeds at all stations to a common elevation. As required in the ASCE Minimum Load Standards [2], all gust wind speed data at the 143 stations were converted to a common 10 m above ground level using the logarithmic law with peak gust effective roughness lengths [14, 15]. The longitudes and latitudes of the 143 stations were entered to a Geographic Information System software [16] to generate Fig. 1.

Fig. 1. The 143 stations in the contiguous United States used in the study.

5. Illustration

The GPDs tail-length and scale parameters, c and d, for the annual extreme gust wind speeds at all 143 stations were quantified by means of the described CME method in Section 3 and presented in Column (7) of Table 1.

It is noteworthy that the selection of an appropriate threshold value reduces the bias since it conforms best with the asymptotic assumption on which the GPD is based; however, because it results in less data, therefore, it will increase the sampling error [5]. On the other hand, excessive lowering of the threshold value would increase the availability of extreme values and it would introduce correlation among the data. This correlation would violate the basic assumptions of the GPD used in this study, which assumes the exceedances of the extreme events to be independently and identically distributed. Since the threshold value is site-dependent, the annual series' median wind speed, $V_{\rm med}$, was found to provide satisfactory results [5]. The $V_{\rm med}$, was also chosen to be the threshold value for all the 143 stations used in this study. Obviously, the occurrence of $V_{\rm med}$ is rare in a sense. Therefore, it is reasonable to assume that successive extreme events arrive according to a Poisson process and have independent magnitudes. In addition, we found out that by choosing V_{med} as the threshold value can indeed reduce the nonlinearity of the CME plots. Therefore, the tail-length parameter c values obtained have better accuracy. This finding is generally in agreement with the results obtained by other researchers [17,18]. As indicated in Column (7) of Table 1, the values of parameter c varied from 0.82 to -3.20 for all the 143 stations considered.

Further in Table 1, of the 143 stations studied, only one station (Station #23050-Albuquerque, NM) yielded a positive tail-length value (indicating Type II distribution for that station), three stations (Station # 13729-Elkins, WV; #13733-Lynchburg, VA; and #24127-Salt Lake City, UT) with values approaching zero (i.e., Type I distributions), and the rest were all negative values (i.e., Type III distributions).

The observed extreme gust winds v at all 143 sites were plotted against a reduced variate W calculated for the Type I distribution. The observed data were then fitted graphically by both the Gumbel and reverse Weibull distributions which were converted into reduced variate forms, as illustrated in Figs. 2–4.

As indicated in Column (7) of Table 1, the Type III reverse Weibull distributions are most suitable for delineating the annual extreme gust wind speeds at the 139 stations; therefore, the reverse Weibull distribution is the basic representative probability function for those 139 stations. This result is in agreement with the conclusions suggested by other studies for fastest-mile winds [5,7]. However, a simple statistical analysis revealed the opposite results (Columns (9) and (12) of Table 1). As indicated in Columns (9) and (12) of Table 1, for the great majority of the stations considered, the Type I Gumbel distribution yielded higher accuracy than the Type III distribution for gust winds with greater recurrence intervals. This result is further verified by fitting the wind data at the 139 stations by both Type I and Type III distributions. Few examples are presented in Figs. 2–4.

Table 1 Estimated annual gust wind speeds at 143 stations in contiguous United States

								Reverse	Reverse Weibull		Gumbel		
	Sta. No. (1)	Sta. Abv. (2)	N (yrs) (3)	Mean (m/s) (4)	SD (m/s) (5)	V _{max} (m/s) (6)	CME C _{med}	$V_{\rm RN}$ (m/s) (8)	$R_1 $ (%) (9)	V_{50} (m/s) (10)	V _{GN} (m/s) (11)	R ₂ (%) (12)	V ₅₀ (m/s) (13)
-	3812	AVL	16	24.40	2.03	28.50	-1.77	25.46	0.107	25.46	27.92	0.020	29.66
2	3813	MCN	18	26.29	3.57	40.37	-0.55	34.59	0.143	35.36	36.71	0.091	40.22
3	3820	AGS	18	25.60	3.32	32.26	-0.76	29.42	0.088	29.69	31.66	0.019	34.21
4	3822	SAV	26	26.53	3.82	37.64	-1.21	29.62	0.213	29.65	34.56	0.082	36.42
5	3860	HTS	16	23.96	3.04	29.03	-2.14	25.19	0.132	25.20	29.24	0.007	31.85
9	3870	GSP	15	26.13	4.00	32.93	-1.04	29.76	960.0	29.91	32.89	0.001	36.51
7	3872	BKW	16	24.78	2.70	30.29	-1.47	26.55	0.123	26.56	29.47	0.027	31.78
8	3927	DFW	32	28.14	4.10	38.17	-0.58	33.98	0.110	34.20	37.44	0.019	38.78
6	3940	JAN	18	26.67	2.91	31.72	-0.25	31.51	0.007	32.71	31.98	0.008	34.21
10	3945	COL	21	30.44	4.71	44.63	-0.58	36.84	0.174	37.41	39.59	0.113	42.65
11	3947	MCI	18	28.18	4.53	37.64	-0.30	35.52	0.056	37.16	36.44	0.032	39.92
12	4725	BGM	16	26.52	2.72	32.23	-1.13	28.82	0.106	28.88	31.24	0.031	33.57
13	12921	SAT	19	26.36	3.90	35.59	-1.46	28.94	0.187	28.96	33.64	0.055	36.48
14	13722	RDU	15	24.66	2.63	29.03	-1.13	26.87	0.074	26.95	29.09	0.002	31.47
15	13723	GSO	16	25.54	6.14	45.70	-1.80	28.69	0.372	28.70	36.20	0.208	41.46
16	13729	EKN	15	24.23	2.67	29.57	90.0-	28.72	0.029	30.86	28.73	0.028	31.15
17	13733	ГХН	16	23.98	3.36	33.55	-0.02	29.81	0.112	32.56	29.82	0.1111	32.70
18	13739	PHL	17	56.69	3.27	32.26	-1.00	29.78	0.077	29.90	32.52	0.008	35.17
19	13741	ROA	16	27.87	4.50	36.33	-0.42	34.42	0.053	35.70	35.68	0.018	39.54
20	13743	DCA	38	28.03	4.36	45.40	-1.03	32.18	0.291	32.19	38.49	0.152	39.35
21	13748	ILM	19	27.38	4.42	35.00	-0.83	32.21	0.080	32.48	35.62	0.018	38.83
22	13781	WIL	16	28.36	3.16	33.33	-0.68	39.20	0.176	32.60	33.85	0.016	36.56
23	13865	MEI	20	24.56	3.70	32.26	-0.57	29.61	0.082	30.12	31.62	0.020	34.16
24	13866	CRW	16	26.02	3.68	34.06	-0.76	30.21	0.113	30.56	32.41	0.048	35.57
25	13874	ATL	21	28.01	4.24	36.02	-1.55	30.63	0.150	30.64	36.24	900.0	39.00
76	13877	BRI	18	26.55	4.54	40.86	-1.36	29.77	0.271	29.81	34.84	0.147	38.32
27	13880	CHS	22	26.61	2.94	33.33	-1.84	28.08	0.157	28.09	32.44	0.027	34.25

37.34	34.04	38.24	34.74	39.19	39.32	38.09	39.43	41.14	36.12	31.75	37.14	38.41	32.60	40.88	36.97	37.83	34.30	42.51	37.80	42.15	33.35	27.81	31.58	39.46	39.01	38.04	32.57	35.50	43.69	38.97	40.02	33.15	38.76	37.97	37.87
0.030	0.015	990.0	0.016	0.166	0.059	0.035	0.004	0.109	0.062	0.132	0.001	0.077	0.036	0.001	0.030	0.094	0.028	0.102	0.014	090.0	980.0	0.003	0.032	0.040	900.0	0.018	0.032	0.014	0.160	0.040	0.089	0.071	0.039	0.016	0.075
33.89	31.52	34.84	31.29	36.05	38.44	35.13	37.64	38.34	33.83	29.40	34.95	35.72	30.57	38.15	34.43	35.06	32.07	38.65	36.28	37.25	30.46	26.04	29.55	36.65	36.36	34.35	31.24	33.27	39.55	36.14	36.24	30.95	35.15	34.98	34.82
28.79	26.86	31.91	30.89	36.33	33.77	32.36	34.99	34.85	29.27	25.81	31.83	34.50	25.96	35.33	32.60	33.02	30.05	36.88	32.62	32.48	30.84	23.33	26.96	36.16	33.80	34.65	32.08	32.86	33.28	38.31	33.85	27.46	34.79	32.93	30.81
0.178	0.160	0.148	0.026	0.194	0.176	0.117	0.074	0.194	0.082	0.239	0.092	0.127	0.182	0.082	0.087	0.154	0.041	0.156	0.115	0.183	0.109	0.101	0.117	0.076	0.086	0.011	0.035	0.020	0.295	0.043	0.159	0.176	0.074	0.080	0.181
28.73	26.86	31.79	30.01	34.85	33.67	32.14	34.70	34.65	29.26	25.78	31.78	33.79	25.96	35.02	32.39	32.76	29.92	36.30	32.57	32.38	29.70	23.33	26.95	35.26	33.41	33.37	31.14	32.15	33.22	36.03	33.48	27.46	33.85	32.73	30.81
-1.24	-2.11	-1.09	-0.51	-0.29	-0.67	-0.87	-0.60	-0.85	-1.49	-1.30	-1.19	-0.48	-3.09	-0.73	-0.86	-0.80	-0.93	-0.67	-1.05	-1.23	-0.37	-2.09	-1.50	-0.42	-0.64	-0.41	-0.15	-0.43	-1.29	-0.10	-0.79	-2.27	-0.51	-0.91	-1.85
34.95	31.99	37.33	30.81	43.24	40.86	36.41	37.48	43.01	31.87	33.87	35.00	38.72	31.72	38.17	35.49	38.71	31.18	43.01	36.79	39.64	33.33	25.96	30.52	38.17	36.56	33.73	32.26	32.80	47.11	37.64	39.79	33.33	36.56	35.56	37.64
4.75	3.29	3.75	3.81	4.82	4.47	3.86	3.90	4.30	3.52	3.23	3.01	4.13	2.80	4.19	2.97	3.42	2.75	4.51	3.13	5.40	3.38	2.06	2.37	3.87	4.31	4.07	1.65	3.07	5.70	3.47	4.40	2.56	3.99	3.29	3.37
25.02	25.50	28.51	24.86	26.68	27.74	28.08	29.33	29.98	26.99	23.37	29.34	27.70	25.35	30.01	29.27	28.97	27.17	30.81	29.70	28.13	24.60	22.46	25.44	29.43	27.84	27.48	28.31	27.53	28.92	29.95	28.60	26.51	28.42	29.43	29.14
19	18	15	15	21	38	18	27	21	21	19	19	21	19	21	16	17	17	16	26	15	16	16	16	19	22	15	17	19	19	17	16	16	15	15	15
CHA	TYS	MEM	MGM	BNA	$_{ m SHN}$	ABI	SPS	OKC	IOL	BTR	DDC	STL	SGF	TOP	Γ GA	EWR	ALB	ABE	BOS	BDL	BTV	CON	AVP	CLE	CMH	FNT	FWA	LAN	MSN	MKE	PIA	CIU	YNG	ERI	MFD
13882	13891	13893	13895	13897	13957	13962	13966	13967	13968	13970	13985	13994	13995	13996	14732	14734	14735	14737	14739	14740	14742	14745	14777	14820	14821	14826	14827	14836	14837	14839	14842	14847	14852	14860	14891
28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	99	57	58	59	09	61	62	63

Continued)	
1	
Table	

	`												
								Reverse	Reverse Weibull		Gumbel		
	Sta. No.	Sta. Abv.	N	Mean	SD	$V_{ m max}$	CME	$V_{ m RN}$	R_1	V_{50}	$V_{\rm GN}$	R_2	V_{50}
	Ξ	(2)	(yrs)	(s/m)	(s/m)	(s/m)	$C_{ m med}$	(w/w)	(%)	(w/s)	(m/s)	(%)	(m/s)
			(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)	(13)
49	14898	GRB	16	26.66	4.83	37.64	-1.00	31.20	0.171	31.40	35.04	0.069	39.18
65	14913	DLH	24	26.52	3.50	33.19	-0.90	30.18	0.091	30.28	33.68	0.015	35.60
99	14914	FAR	21	25.12	3.14	33.15	-1.76	26.78	0.192	26.79	31.22	0.058	33.27
29	14918	INL	16	25.44	2.86	29.57	-1.81	26.90	0.090	26.90	30.40	0.028	32.85
89	14922	MSP	18	26.85	2.80	31.91	-0.75	30.09	0.057	30.32	31.96	0.001	34.11
69	14923	MLI	18	30.32	3.54	36.91	-1.05	33.55	0.091	33.65	36.79	0.003	39.50
70	14925	RST	19	32.10	3.82	40.48	-1.19	35.21	0.130	35.27	39.22	0.031	41.99
71	14933	DSM	21	29.01	3.11	35.49	-0.38	33.93	0.044	34.65	35.04	0.013	37.06
72	14936	HUR	16	29.84	3.16	35.49	-0.55	34.04	0.041	34.64	35.33	0.004	38.03
73	14939	LNK	18	28.79	4.12	39.25	-0.60	34.18	0.129	34.75	36.32	0.075	39.49
74	14943	SUX	19	29.75	2.90	34.93	-2.02	31.02	0.112	31.02	35.15	0.007	37.26
75	14944	FSD	19	30.14	3.94	38.72	-1.65	32.39	0.163	32.40	37.49	0.032	40.36
9/	23034	SJT	19	31.49	4.60	43.55	-0.53	37.92	0.129	38.69	40.08	0.080	43.42
77	23042	ΓBB	18	30.64	4.21	39.02	-1.74	32.90	0.157	32.91	38.34	0.018	41.57
78	23044	ELP	21	28.41	4.76	39.25	-1.72	31.00	0.210	31.01	37.66	0.041	40.75
79	23047	AMA	21	30.86	2.87	37.18	-1.71	32.43	0.128	32.44	36.43	0.020	38.30
80	23050	ABQ	18	29.83	1.58	33.46	0.82	32.02	0.043	32.30	32.72	0.022	33.93
81	23061	ALS	16	27.11	2.93	32.18	-0.49	31.19	0.031	31.86	32.20	0.001	34.72
82	23062	DEN	35	25.54	1.96	29.34	-1.63	26.68	0.091	26.68	30.10	0.026	30.61
83	23065	GLD	16	31.40	2.60	36.02	-1.36	33.24	0.077	33.27	35.91	0.003	38.13
84	23066	GJT	16	29.06	3.53	36.26	-1.05	32.26	0.110	32.38	35.19	0.029	38.22
85	23154	ELY	15	27.42	1.60	30.11	-1.40	28.52	0.053	28.54	30.12	0.000	31.57
98	23155	BFL	20	21.23	3.00	26.88	-1.94	22.63	0.158	22.63	26.95	0.003	29.02
87	23157	BIH	16	27.82	3.41	32.90	-2.32	29.05	0.117	29.05	33.75	0.026	36.67
88	23160	TUS	21	27.80	4.13	37.64	-0.36	34.46	0.084	35.49	35.83	0.048	38.52
68	23169	LAS	20	30.35	4.83	41.94	-0.86	35.50	0.153	35.73	39.56	0.057	42.88
06	23174	LAX	40	21.85	2.85	30.34	-1.41	23.83	0.215	23.83	28.79	0.051	29.24
91	23185	RNO	21	31.65	4.16	40.48	-1.19	35.24	0.130	35.31	39.72	0.019	42.42

28.86	42.50	36.33	34.82	36.00	34.41	38.07	39.95	39.37	33.63	35.35	33.70	32.77	34.41	36.71	38.71	31.90	31.93	30.54	31.04	40.19	33.57	30.68	33.43	26.79	38.76	37.79	40.48	39.63	37.40	52.08	33.78	42.23	35.35	42.70	39.74
0.111	0.119	0.071	900.0	0.014	0.017	0.064	0.120	0.104	0.052	0.126	0.039	0.088	0.058	0.025	0.047	0.025	0.031	0.012	0.062	0.051	690.0	0.051	0.022	0.028	0.005	0.057	0.052	0.064	0.036	0.153	0.134	0.018	690.0	0.147	0.077
26.75	41.66	34.13	33.12	34.21	32.81	36.08	38.79	35.66	31.62	32.91	31.02	30.39	32.09	34.60	36.37	30.39	29.70	28.68	28.24	38.52	31.04	28.33	31.54	25.09	37.45	34.46	35.99	36.23	34.20	47.36	31.29	38.52	33.04	38.09	37.21
25.77	34.72	33.09	31.53	29.80	30.18	35.56	31.91	34.67	28.80	33.27	28.60	28.97	29.29	30.35	36.10	27.40	29.71	26.31	26.38	33.63	28.73	27.55	29.99	23.80	34.38	33.38	36.25	33.27	29.89	45.96	28.25	33.36	27.81	32.63	38.97
0.162	0.267	0.114	0.056	0.117	0.065	0.090	0.276	0.151	0.139	0.143	0.119	0.139	0.143	0.145	0.078	0.122	0.059	0.098	0.133	0.176	0.145	0.096	0.080	0.089	0.092	0.105	0.095	0.146	0.158	0.209	0.220	0.154	0.216	0.272	0.083
25.22	34.67	32.52	31.46	29.80	30.18	35.08	31.90	33.78	28.70	32.24	28.43	28.71	29.18	30.34	35.20	27.39	28.83	26.18	26.12	33.46	28.49	26.99	29.69	23.50	34.16	32.73	34.38	33.05	29.86	44.25	28.18	33.22	27.81	32.48	36.98
-0.48	-0.84	-0.48	-1.05	-2.43	-3.20	-0.52	-0.02	-0.53	-0.94	-0.34	-0.92	-0.77	-0.99	-1.52	-0.36	-1.48	-0.36	-0.86	-0.81	-0.70	-0.78	-0.52	-0.63	-0.60	-0.57	-0.59	-0.34	-0.90	-1.41	-0.37	-1.10	-1.04	-3.06	-1.07	-0.10
30.11	47.30	36.72	33.33	33.75	32.26	38.55	44.09	39.79	33.33	37.64	32.26	33.33	34.06	35.49	38.17	31.18	30.65	29.03	30.11	40.60	33.33	29.86	32.26	25.81	37.64	36.56	37.97	38.71	35.49	55.92	36.12	39.25	35.49	44.64	40.32
3.24	5.35	3.38	1.99	2.75	1.77	2.45	4.11	4.57	3.10	3.01	3.31	2.78	3.19	3.25	3.59	2.32	3.07	2.87	3.28	5.10	3.49	3.06	2.90	2.62	3.97	3.88	6.17	4.18	3.95	8.13	3.25	5.39	3.18	6.02	3.89
20.46	28.62	27.57	29.67	28.88	29.82	31.71	29.29	27.51	25.60	27.55	25.11	25.57	26.14	28.29	29.39	25.88	23.97	23.09	22.55	26.96	24.53	22.73	25.91	20.01	28.46	27.72	24.48	28.78	27.17	31.00	25.35	28.25	27.11	27.11	29.65
21	40	21	16	21	15	17	36	17	21	17	17	16	17	21	21	21	19	21	16	32	19	18	21	21	32	16	19	17	17	23	18	20	19	18	21
SAN	SFO	BIS	SHR	BIL	CPR	RAP	$S\Gamma C$	MIN	BOI	HLN	FCA	LWS	MSO	PEN	PIH	GEG	EUG	MFR	OLY	PDX	SAE	SEA	YKM	FAT	ATC	IAD	TLH	CVG	EVV	IND	LEX	SDF	SPI	CSG	GGW
23188	23234	24011	24029	24033	24089	24090	24127	24128	24131	24144	24146	24149	24153	24155	24156	24157	24221	24225	24227	24229	24232	24233	24243	93193	93730	93738	93805	93814	93817	93819	93820	93821	93822	93842	94008
92	93	94	95	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127

Table 1 (Continued)

							Reverse	Reverse Weibull		Gumbel		
Sta.	. Abv.	N	Mean	SD	$V_{ m max}$	CME	$V_{ m RN}$	R_1	V_{50}	$V_{ m GN}$	R_2	V_{50}
(2)		(yrs)	(s/m)	(s/m)	(s/m)	$C_{ m med}$	(s/m)	(%)	(m/s)	(m/s)	(%)	(m/s)
		(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)	(13)
ISN		16	27.31	2.70	32.77	-0.75	30.39	0.072	30.66	32.00	0.024	34.31
AS	L	20	31.67	3.54	37.10	-1.36	34.20	0.078	34.22	38.41	0.035	40.85
BD	Ä	15	26.29	3.16	31.93	-0.90	29.48	0.077	29.67	31.62	0.010	34.48
š	OR	21	28.82	2.51	31.99	-0.80	31.65	0.011	31.79	33.69	0.053	35.33
JF	¥	15	27.71	2.58	33.33	-2.04	28.82	0.135	28.83	32.06	0.038	34.39
Ή	ΓΓ	16	23.49	2.33	26.81	-1.78	24.70	0.079	24.70	26.31	0.019	29.53
×	FD	19	28.21	3.88	37.64	-1.37	30.96	0.177	30.99	35.45	0.058	38.27
Ĭ	TC	16	26.54	2.73	33.74	-0.95	29.20	0.135	29.33	31.27	0.073	33.61
0	RD	24	27.22	3.99	35.49	-0.34	33.91	0.044	34.76	35.37	0.003	37.55
Ω	TW	24	25.49	3.33	37.95	-1.43	27.75	0.269	27.76	32.31	0.149	34.14
A	APN	16	23.63	2.45	27.73	-1.86	24.83	0.104	24.83	27.87	0.005	29.97
Ü	RR	21	28.09	3.66	36.56	-0.98	31.65	0.134	31.75	35.19	0.037	37.57
>	CT	17	23.22	2.399	28.61	-0.43	24.17	0.155	24.17	27.49	0.039	29.44
Ü	TF	17	27.30	3.22	34.14	-0.51	31.75	0.070	32.40	33.03	0.033	35.63
æ	WI	16	27.22	3.37	36.02	-0.72	31.16	0.135	31.53	33.06	0.082	35.95
Ξ	SE	15	27.84	4.10	39.23	-1.33	30.81	0.214	30.87	34.75	0.114	38.47

N, V_{max}: Sample size, maximum observed gust wind speed with specified N-yr data.

Mean, SD: Mean and standard deviation of observed gust wind speed with specified N-yr data.

Col. 1: US National Weather Service station number.

Col. 7: C_{mod} : Estimated c based on CME method at median gust wind speed with specified N-yr data.

Col. 8,10: $V_{\rm RN}$ and V_{50} are estimated N- and 50-yr gust wind speed based on Reverse Weibull distribution, respectively.

Col. 11, 13: $V_{\rm GN}$ and V_{50} are estimated N- and 50-yr gust wind speed based on Gumbel distribution, respectively. Col. 9: $R_1 = [\text{Col. (6)-Col. (8)}]/\text{Col. (6)}$.

Col. 12: $R_2 = [\text{Col. (6)-Col. (11)}]/\text{Col. (6)}.$

Fig. 2. Gumbel and reverse Weibull distributions applied to the annual extreme gust wind speeds (1954–1985) at Dallas/Fort Worth, Texas station.

Fig. 3. Gumbel and reverse Weibull distributions applied to the annual extreme gust wind speeds (1970–1988) at San Antonio, Texas station.

Fig. 4. Gumbel and reverse Weibull distributions applied to the annual extreme gust wind speeds (1973–1990) at Lubbock, Texas station.

6. Conclusions

Preliminary annual extreme gust wind speed distributions at the selected 143 stations in the contiguous United States were investigated. The CME method based calculation indicated that the annual extreme gust wind speeds at 139 out of the 143 stations are reverse Weibull function distributed (i.e., Type III). However, the results obtained from a simple statistical analysis and a graphic curve fitting approach revealed that instead, the Type I Gumbel extreme value function is a better model for the great majority of the stations studied.

With the contradictory results obtained from the CME and graphic curve fitting methods, a number of questions could be raised. Could it be that the sample sizes at the stations are too small, since the length of the annual series varied from 15 to 40 years? Could it be that the samples contained mixed populations? For example, gust wind records may be developed from different storm types [18]. The linear results obtained from our CME plots suggest that the annual extreme gust winds are homogeneous sets. Nevertheless, the homogeneity of the data sets should be further examined?

It is understandable that the probabilistic model should reflect the physical limitation of gust wind. Type I Gumbel distribution has an infinite upper tail that may be unrealistic to delineate the physically bounded nature of the peak gust wind. For a greater recurrence interval, wind speed predicted by the Gumbel distribution may be unrealistically high. However, only 50-year recurrence intervals were used in this study. For the limited length of records available at the selected 143 stations (maximum 40 years of data), Type I extreme value function indeed offers better accuracy in modeling the annual extreme gust wind speeds at the 139 stations studied.

References

- [1] American Society of Civil Engineers, Minimum design loads for buildings and other structures ASCE 7-93, New York, NY, 1994.
- [2] American Society of Civil Engineers, Minimum design loads for buildings and other structures ASCE 7-98, New York, NY, 2000.
- [3] E.D. Cheng, A.N. Chiu, Short-record-based extreme wind simulation, J. Nat. Inst. Standards Technol., US Department Commer. 99 (4) (1994) 391–397.
- [4] E.D. Cheng, A.N. Chiu, Regional design wind speed estimation, Proceedings of the 9th International Conference on Wind Engineering, New Delhi, India, January 1995, pp. 81–92.
- [5] J. Gross, A. Heckert, J. Lechner, E. Simiu, Novel extreme value estimation procedures: application to extreme wind data, in: J. Galambos, J. Lechner, E. Simiu (Eds.), Extreme Value Theory and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 139–158.
- [6] J. Gross, N. Heckert, J. Lechner, E. Simiu, A study of optimal extreme wind estimation procedures, Proceedings of the 9th International Conference on Wind Engineering, New Delhi, India, January 1995, pp. 69–80.
- [7] E. Simiu, N. Heckert, Extreme wind distribution tails: a peaks over threshold approach, J. Struct. Eng. ASCE 122 (5) (1996) 539–547.
- [8] J. Hosking, J. Wallis, Parameter and quantile estimation for the generalized Pareto distribution, Technometrics, Am. Statist. Assoc. and Am. Soc. Qual. Control 29 (3) (1987) 339–349.

- [9] A. Davison, R. Smith, Models for exceedances over high thresholds, J. Roy. Statist. Soc. Ser. B London 52 (3) (1990) 393–442.
- [10] N. Heckert, E. Simiu, T. Whalen, Estimates of hurricane wind speeds by peak over threshold method, J. Struct. Eng. ASCE 124 (4) (1998) 445–449.
- [11] R. Smith, Extreme value theory, in: W. Ledermann (Chief Ed.), Handbook of Applicable Mathematics, Supplement, Wiley, New York, 1990, pp. 437–472.
- [12] N. Johnson, S. Kotz, N. Balakrshnan, Continuous Univariate Distributions, Vol.2, 2nd Edition, Wiley, New York, NY, 1995.
- [13] National Climatic Data Center, Documentation for TD-3210: daily summary observations, US National Oceanic and Atmospheric Administration, Asheville, NC, 1993.
- [14] E. Simiu, R. Scanlan, Wind Effects on Structures, 3rd Edition, Wiley, New York, 1996.
- [15] J. Peterka, S. Shahid, Design gust wind speeds in the United States, J. Struct. Eng. ASCE 124 (2) (1998) 207–214.
- [16] Geographic Information System, ARC/INFO Data Management, Environmental Systems Research Institute, Inc., Redland, CA, 1999.
- [17] J. Holmes, W. Moriarty, Application of the generalized Pareto distribution to extreme value analysis in wind engineering, J. Wind Eng. Ind. Aerodyn. 83 (1999) 1–10.
- [18] J. Holmes, Private communication, January, Cheju, Korea, 2000.