AUTÓMATAS DETERMINISTAS Y NO DETERMINISTAS (EJERCICIOS)

UNIDAD DE APRENDIZAJE:

AUTÓMATAS Y LENGUAJES FORMALES

PROGRAMA EDUCATIVO:

INGENIERÍA EN COMPUTACIÓN

ESPACIO ACADÉMICO:

FACULTAD DE INGENIERÍA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

ELABORÓ:

LILIA OJEDA TOCHE

FECHA de ELABORACIÓN: Marzo-Mayo 2017

Guión Explicativo

- El presente juego de diapositivas tiene como finalidad apoyar al profesor de la Unidad de aprendizaje de AUTÓMATAS Y LENGUAJES FORMALES del Plan de estudios de la Licenciatura de Ingeniería en Computación, específicamente en la Unidad de Competencia II: Manejar la teoría de autómatas finitos y sus relaciones entre sí y con los lenguajes de programación.
- Se recomienda que este material se utilice para revisar algunos ejercicios de autómatas finitos deterministas y autómatas finitos no deterministas en clase, y otros puedan asignarse o revisarse por los mismos alumnos como trabajo extraclase.

Guión Explicativo

- En la parte introductoria se mencionan algunos conceptos básicos de la teoría de autómatas, incluyendo la definición de autómata finito determinista y no determinista.
- Cabe señalar que entre las características propias de este material se encuentran:
 - Se han seleccionado los ejercicios de manera que se presentan de menor a mayor complejidad.
 - Se plantea un ejercicio y enseguida se resuelve.
 - Se presentan las soluciones de todos los ejercicios planteados.

AUTÓMATAS FINITOS DETERMINISTAS Y NO DETERMINISTAS

Definiciones Básicas

A continuación se presentan algunos conceptos básicos necesarios para la comprensión de los ejercicios que se presentan en las secciones subsecuentes.

Símbolo es un signo que representa algo abstracto. En este material, símbolo se referirá a un caracter alfanumérico.

Ejemplos

a, b, 1, 0, x, y, z, 9,

Alfabeto es un conjunto de símbolos y normalmente se denota con la letra Σ . Ejemplos

$$\Sigma = \{a,b,c,...z\}$$
 $\Sigma = \{1,2,3,...9\}$ $\Sigma = \{0,1\}$ $\Sigma = \{a,b\}$ Cadena o palabra es un conjunto de símbolos de algún alfabeto Σ concatenados entre sí, es decir uno enseguida del otro.

Ejemplos

Para el alfabeto $\Sigma = \{a,b,c,...z\}$ algunas cadenas son: ab, z, cc, abc, abab

Para el alfabeto $\Sigma = \{0,1\}$ algunas cadenas son: 0, 1, 01, 000, 0101

Cadena Vacía E, es la cadena que no contiene ningún símbolo.

Lenguaje es un conjunto de cadenas o palabras definido en un alfabeto Σ .

Ejemplos

Si $\Sigma = \{0,1\}$ podríamos definir los lenguajes "conjunto de cadenas en Σ que terminan en 0" algunos de las palabras del lenguajes serían: 0, 10,00,010,100, 110...

Autómata es una máquina matemática M formada por 5 elementos $M = (\Sigma, Q, s, F, \delta)$ donde Σ es un alfabeto de entrada, Q es un conjunto finito de estados, s es el estado inicial, F es un conjunto de estados finales o de aceptación y δ (delta) es una relación de transición.

Ejemplo:

$$\Sigma = \{0,1\}$$
 s = A
 $Q = \{A,B,D\}$ F = $\{B\}$
 $\delta: (A,0) = B$ $(A,1) = D$ $(B,0) = B$
 $(B,1) = B$ $(D,0) = D$ $(D,1) = D$

Autómata Finito Determinista (AFD) es un autómata finito en donde δ (delta) es una función de transición, es decir, que para cada par (estado actual y símbolo de entrada) le corresponde un único estado siguiente.

Autómata Finito No Determinista (AFND) es un autómata finito en donde δ no es necesariamente una función de transición, es decir, que para cada par (estado actual y símbolo de entrada) le corresponde cero, uno, dos o más estados siguientes, Normalmente la relación de transición para un AFND se denota con Δ .

EJERCICIOS

AUTÓMATAS DETERMINISTAS (AFD)

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{0,1\}$. El conjunto de cadenas que inician en "0".

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{0,1\}$. El conjunto de cadenas que terminan en "1".

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{0,1\}$. El conjunto de cadenas que contienen a la sub-cadena "01".

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{0,1\}$. El conjunto de cadenas que no contienen a la sub-cadena "01".

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que inician en la sub-cadena "ac" o terminan en la sub-cadena "ab".

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que inician en la sub-cadena "ac" y terminan en la sub-cadena "ab".

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que inician en la sub-cadena ac o no terminan en la sub-cadena ab.

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que inician en la sub-cadena ac y no terminan en la sub-cadena ab.

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que no inician en la sub-cadena "ac" o no terminan en la sub-cadena "ab".

Ejercicio: Obtenga un AFD dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que no inician en la sub-cadena "ac" y no terminan en la sub-cadena "ab".

EJERCICIOS

AUTÓMATAS NO DETERMINISTAS (AFND)

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{0,1\}$. El conjunto de cadenas que inician en 0.

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{0,1\}$. El conjunto de cadenas que terminan en 1.

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{0,1\}$. El conjunto de cadenas que contienen a la sub-cadena "01".

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{0,1\}$. El conjunto de cadenas que no contienen a la sub-cadena "01".

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que inician en la sub-cadena "ac" o terminan en la sub-cadena "ab".

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que inician en la sub-cadena "ac" y terminan en la sub-cadena "ab".

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que inician en la sub-cadena "ac" o no terminan en la sub-cadena "ab".

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que inician en la sub-cadena "ac" y no terminan en la sub-cadena "ab".

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que no inician en la sub-cadena "ac" o no terminan en la sub-cadena "ab".

Ejercicio: Obtenga un AFND dado el siguiente lenguaje definido en el alfabeto $\Sigma = \{a,b,c\}$. El conjunto de cadenas que no inician en la sub-cadena "ac" y no terminan en la sub-cadena "ab".

Referencias

Bibliográficas

- Dean K. (1995). "Teoría de Autómatas y Lenguajes Formales". Edit. Prentice Hall,
 España.
- Hopcroft J. E., Ullman J.D. (2007). "Introducción a la teoría de autómatas, lenguajes y computación". 3ª ed. Edit. Pearson Educación, Madrid.
- Linz P. (2001) "An Introduction to Formal Languages and Automata", 3rd Edition,
 J.A. Bartlett.
- Martin J. (2004). "Lenguajes Formales y Teoría de la computación". 3^a ed. Edit.
 MacGraw-Hill Interamericana de México.