Heat Risk Prediction in Philadelphia

MUSA 6950 Jingmiao Fei

¹ Why Heat Risk?

- ^{2.} Data
- ^{3.} Model
- 4. Results
- 5. Future Approach

Why Heat Risk?

Extreme heat is one of the deadliest weather-related hazards. With ongoing climate change and urbanization, cities are becoming 'heat islands'.

Predicting heat risk accurately is critical for early warning systems, public health planning, and building resilient cities.

Research Goal

Use machine learning methods to build a **heat risk level model** based on the satellite images and LULC index to provide scientific decision-making assistance for urban planning.

Data

Landsat 8 / C02 / T1_L2

- 2020 ~ 2024, June ~ August
- Cloud cover < 20%
- Median

Philadelphia Administrative Boundary

Data

Y

Band 10 (Thermal Infrared, 100m resolution) →
Land Surface Temperature (LST) → Resample to 30m

X

- Band 4,3,2 (RGB), Band 5 (NIR),
- NDVI, NDBI, MNDWI, SAVI

Model

Categorize LST to heat risk

- $\le 35^{\circ}C$ low
- 35 ~45°C Medium
- ≥ 45°C High

Stratified sampling

- 5000 samples in total

train (70%) - test (30%) split

Model

Model

Model 1 - CNN (Adapted from Fu et al. (2024))

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 1, 8, 16)	80
conv2d_1 (Conv2D)	(None, 1, 8, 32)	544
conv2d_2 (Conv2D)	(None, 1, 8, 32)	1,056
conv2d_3 (Conv2D)	(None, 1, 8, 64)	2,112
flatten (Flatten)	(None, 512)	0
dense (Dense)	(None, 128)	65,664
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 64)	8,256
dense_2 (Dense)	(None, 3)	195

Model 2 - Random Forest

Fu, S., Wang, L., Khalil, U., Cheema, A. H., Ullah, I., Aslam, B., Tariq, A., Aslam, M., & Alarifi, S. S. (2024). *Prediction of surface urban heat island based on predicted consequences of urban sprawl using deep learning: A way forward for a sustainable environment. Physics and Chemistry of the Earth, Parts A/B/C, 135*, 103682.

Result

Model 1 - CNN

Overall Accuracy = 0.78

Model 2 - Random Forest

Overall Accuracy = 0.77

Result

Future Approach

- Test generalizability across time and space
- Feature selection based on feature importance rank
- Use air temperature instead of LST, which better measures the heat risk. (Using deep learning and interpolation methods based on dispersed meteorological station data to construct a continuous raster dataset of air temperature.)