

Tune It or Don't Use It: Benchmarking Data-Efficient Image Classification

L. Brigato, B. Barz, L. Iocchi, and J. Denzler

2nd Visual Inductive Priors for Data-Efficient Deep Learning Workshop <u>ICCV 2021</u>

Context

Data-Efficient Image Classification

- Train classifiers from limited data Few tens of samples per class (< 100, > 10)
- Do not employ pre-trained networks NO Transfer Learning from large datasets

Motivation

Lack of a common benchmark

- Subsampled datasets without canonical splits
- Overfitting on natural images (e.g. CIFAR10) which generally do not have data-deficiency issues

Lack of reliable comparisons

• Neglecting the existing state of the art

• Using untuned baselines

Example on 1% of CIFAR10:

Default *Ir* and *wd*provide sub-optimal

performance (~12 pp)

Contribution

Propose 1st benchmark for data-efficient image classification

- Composed of 6 different datasets covering different data types and domains
- Follow a strict evaluation pipeline
- Re-evaluate 8 state-of-the-art methods along with the baseline

Findings

Well-tuned cross-entropy is a strong baseline

- Cross-entropy ranks second in our benchmark only behind one specialized method
- Hyper-parameter optimization (HPO) is fundamental to avoid biased evaluations

Published baselines are underperforming

• Our cross-entropy baseline beats published ones by up to ~18 pp on similar setups

A strong baseline is obtainable with:

- Very small batch sizes
- Weight decay tuned ad-hoc for each dataset
- Small learning rates

Datasets

Comprehensive set concerning data domains and data types

- From popular academic datasets (e.g. ImageNet) to handwriting recognition
- From RGB, to multispectral, to grayscale images

Datasets dimension

• Mostly training sets with 50 images per class

Dataset	Classes	Imgs/Class	#Trainval	#Test	Problem Domain	Data Type
ImageNet-1k [24]	1,000	50	50,000	50,000	Natural Images	RGB
ciFAIR-10 [15, 2]	10	50	500	10,000	Natural Images	RGB (32x32)
CUB [33]	200	30	5,994	5,794	Fine-Grained	RGB
EuroSAT [12]	10	50	500	19,500	Remote Sensing	Multispectral
ISIC 2018 [7]	7	80	560	1,944	Medical	RGB
CLaMM [26]	12	50	600	2,000	Handwriting	Grayscale

Methods

Re-evaluation of 8 approaches published between 2017 and 2021

- Selected approaches originally tested on small/subsampled versions of popular datasets
- Using publicly available code when available

Cross-Entropy Baseline Deep Hybrid Networks [21, 22] OLÉ [16] Grad- ℓ_2 Penalty [3] Cosine Loss [1] Cosine Loss + Cross-Entropy [1] Harmonic Networks [31, 32] Full Convolution [13] Dual Selective Kernel Networks [27] T-vMF Similarity [14]

Approaches of different type

- Loss-based (e.g. Cosine loss, T-vMF similarity)
- Geometric priors (e.g. Deep Hybrid Networks, Harmonic Networks)
- Architecture-based (e.g. Full Convolution, DSK networks,)

Experimental Setup

Data pre-processing

- Channel-wise normalization of input images (mean and std)
- Dataset-specific data augmentation (e.g. h/v flipping, scale/shift augmentation)

Architecture and optimizer

- Wide ResNet 16-8 / ResNet-50 for ciFAIR10 / other datasets
- SGD with momentum (0.9) and cosine learning rate schedule

HPO

- Asynchronous HyperBand with Successive Halving (ASHA) algorithm
- We tuned *lr*, *wd*, *bs*, and method-specific additional hyper-parameters
- 40% of training set used for validation

Hyper-Parameter	ImageNet	ciFAIR-10	CUB	EuroSAT	ISIC 2018	CLaMM	
Learning Rate	loguniform(1e-4, 0.1)						
Weight Decay	loguniform(1e-5, 0.1)						
Batch Size	{8, 16, 32}	{10, 25, 50}	{8, 16, 32}	{10, 25, 50}	{8, 16, 32}	{8, 16, 32}	
Epochs	200 (500)	500	200	500	500	500	
HPO Trials	100	250	100	250	100	100	
Grace Period	10	50	10	25	25	25	

Results

Comparison with published methods on similar settings

- Re-evaluations of data-efficient methods similar to published values (-0.5 pp, -1.9 pp, +5.5 pp).
- Re-evaluations of baselines much better than published values (+11.7 pp, +6.0 pp, +18.6 pp)

Cross-Entropy Baseline

Results

Data-efficient image classification benchmark

- Harmonic networks is the champion of our benchmark with 68.70% average accuracy
- The baseline ranks second with a close 67.90%
- T-vMF, DSK Networks, Cosine+Xe loss, and OLE follow with ~64/65%

Method	ImageNet	ciFAIR-10	CUB	EuroSAT	ISIC 2018	CLaMM	Average
Cross-Entropy Baseline	44.97	58.22	71.44	90.27	67.19	75.34	67.90
Deep Hybrid Networks [21, 22]	38.69	54.21	52.54	91.15	59.64	65.74	60.33
OLÉ [16]	43.05	54.92	63.32	89.29	62.89	71.42	64.15
Grad-ℓ ₂ Penalty [3]	25.21	51.03	51.94	79.33	60.21	65.10	55.47
Cosine Loss [1]	37.22	52.39	66.94	88.53	62.42	68.89	62.73
Cosine Loss + Cross-Entropy [1]	44.39	51.74	70.80	88.77	64.52	69.29	64.92
Harmonic Networks [31, 32]	46.36	56.50	72.26	92.09	70.42	74.59	68.70
Full Convolution [13]	36.58	55.00	64.90	90.82	61.70	63.33	62.06
Dual Selective Kernel Networks [27]	45.21	54.06	71.02	91.25	64.78	61.51	64.64
T-vMF Similarity [14]	42.79	57.50	67.43	88.53	65.37	66.40	64.67

Qualitative picture of computational demand

Total run times for the baseline

- 4 Nvidia V100 GPUs 32GB
- Around 6 days to evaluate the baseline on the full benchmark

Dataset	HPO (#hrs)	Final Training - 10 reps (#hrs)
ciFAIR10	3.7	1.2
EuroSAT	3.3	1.4
ISIC 2018	4.5	3.3
ClaMM	4.8	3.5
CUB	6.5	6.3
ImageNet	63	37
Total	85.8	52.7

Conclusions

Introduced the 1st benchmark for data-efficient image classification

- Comprehensive with respect to data domains and types
- Dataset splits publicly available: https://github.com/cvjena/deic
- Possible to extend with new splits/datasets

Proposed a fair evaluation pipeline to re-evaluate existing approaches

- Common experimental setup (e.g. architecture, optimizer etc.)
- Careful tuning of hyper-parameters

Cross-entropy has been largely undervalued

- Ranks second only behind Harmonic Networks
- Beats published baselines by large margins

Our benchmark and training procedure allows to:

- Compare with the existing state of the art
- Avoid misleading comparison with weak baselines
- Set the stage for future developments of the research field

Context

Data-Efficient Image Classification

- Increase in number of publications concerning this research area
- Organization of workshops and challenges
- tagliare

Deep Learning on Small Datasets without Pre-Training using Cosine Loss

Björn Barz

Joachim Denzler

Friedrich Schiller University Jena, Germany Computer Vision Group

A Close Look at Deep Learning with Small Data

Lorenzo Brigato

Dpt. of Computer, Control, and Management
Engineering
Sapienza University of Rome

Luca Iocchi
Dpt. of Computer, Control, and Management
Engineering
Sapienza University of Rome

Results

Tuned hyper-parameters (baseline)

- Small batch sizes, high wd and small lr
- Lr and wd appear to be negatively correlated r = -0.58 (after taking the log of both)

