User Manual of the Packages Polyopt and PoolOpt

May 11, 2017

Chapter 1

Introduction

Polyopt is the implementation of the generalized BSOS and sparse-BSOS hierarchies [2]. PoolOpt is the package that uses Polyopt to solve pooling problems. These packages are written in Julia 0.5.

To use Polyopt and PoolOpt, you need to install two packages:

- MOSEK by using julia > Pkg.add("MOSEK");
- Combinatorics by using julia > Pkg.add("Combinatorics");

Also, you can install the packages using the following codes:

- julia> Pkg.clone("https://github.com/MOSEK/Polyopt.jl.git");
- julia> Pkg.clone("https://github.com/AhmadrezaMarandi/PoolOpt.git");

In the next chapters we define the available functions in the packages.

Chapter 2

Polyopt

As it was mentioned, Polyopt uses the generalization of the BSOS and sparse-BSOS hierarchy. The codes are based on the results in [2]. In this chapter, we present the available functions in this package.

2.1 variable(string, int)

To solve your problem, you first need to define the decision variables and constraints. This is possible by use of the function "variables". This function gets two arguments as the input: a string and an integer. The string denotes the name of the variable, and the integer is the dimension of it.

```
Example 1 julia> y=variables("y",5)
5-element ArrayPolyopt.PolyInt64,1:
y1
y2
y3
y4
y5
```

Example 2

```
julia > x = variables("x", 4)
4 - element \ ArrayPolyopt.PolyInt64, 1:
x1
x2
x3
x4
julia > f = x[1]^2 - x[2]^2 + x[3]^2 - x[4]^2 + x[1] - x[2]
-x4^2 + x3^2 - x2 - x2^2 + x1 + x1^2
julia > q = [2 * x[1]^2 + 3 * x[2]^2 + 2 * x[1] * x[2] + 2 * x[3]^2 + 3 * x[4]^2 + 2 * x[3] * x[4],
3 * x[1]^2 + 2 * x[2]^2 - 4 * x[1] * x[2] + 3 * x[3]^2 + 2 * x[4]^2 - 4 * x[3] * x[4],
x[1]^{2} + 6 * x[2]^{2} - 4 * x[1] * x[2] + x[3]^{2} + 6 * x[4]^{2} - 4 * x[3] * x[4],
x[1]^2 + 4 * x[2]^2 - 3 * x[1] * x[2] + x[3]^2 + 4 * x[4]^2 - 3 * x[3] * x[4],
2 * x[1]^2 + 5 * x[2]^2 + 3 * x[1] * x[2] + 2 * x[3]^2 + 5 * x[4]^2 + 3 * x[3] * x[4]
x[1], x[2], x[3], x[4]
9 - element \ ArrayPolyopt.PolyInt 64.1:
3 * x4^{2} + 2 * x3 * x4 + 2 * x3^{2} + 3 * x2^{2} + 2 * x1 * x2 + 2 * x1^{2}
2 * x4^{2} - 4 * x3 * x4 + 3 * x3^{2} + 2 * x2^{2} - 4 * x1 * x2 + 3 * x1^{2}
6 * x4^{2} - 4 * x3 * x4 + x3^{2} + 6 * x2^{2} - 4 * x1 * x2 + x1^{2}
4 * x4^{2} - 3 * x3 * x4 + x3^{2} + 4 * x2^{2} - 3 * x1 * x2 + x1^{2}
5 * x4^{2} + 3 * x3 * x4 + 2 * x3^{2} + 5 * x2^{2} + 3 * x1 * x2 + 2 * x1^{2}
x1
x2
x3
x4
```

2.2 Polyopt.correlative_sparsity()

After constructing the problem, you can see the adjacent matrix of its graph using Polyopt.correlative_sparsity().

Example 3

```
julia > Polyopt.correlative\_sparsity(f, g)
4x4 sparse matrix with 16 Int64 nonzero entries:
[1,1] = 1
[2,1] = 1
[3,1] = 1
[4,1] = 1
[1, 2] = 1
[2, 2] = 1
[3, 2] = 1
[4,2]=1
[1,3] = 1
[2,3] = 1
[3,3] = 1
[4,3] = 1
[1, 4] = 1
[2, 4] = 1
[3, 4] = 1
[4, 4] = 1
```

2.3 Polyopt.chordal_embedding()

Using this function, you can find the sparsity pattern of the associated graph:

Example 4

```
julia > Polyopt.chordal\_embedding(Polyopt.correlative\_sparsity(f,g)) \\ 1 - element\ Array\{Array\{Int64,1\},1\}: \\ [1,2,3,4]
```

2.4 bsosprob_chordal(d, k, I, f, g,eq)

This function will generate the level of the hierarchy. The arguments of this functions are:

d: level of the hierarchy;

k: the SOS polynomial in the hierarchy is with degree 2k;

I: the sparsity pattern (maximal cliques of the graph associated to the problem) or any appropriate pattern;

f : objective function;

g: inequality constraints;

eq: equality constraints.

2.5 solve_mosek(prob, tolrelgap)

This function solves the constructed level of the hierarchy using MOSEK.

prob: problem that is constructed for the level of the hierarchy;

tolrelgap: an optional argument to specify the preferred error gap.

Chapter 3

PoolOpt

This package solves pooling problems using Polyopt package. This package contains many well-known pooling problem instances such as Havely1-3, Foulds1-4,..., and DeyGupte4 that is constructed in [1]. These instances can be reached by adding () after their name, like Haverly_1().

3.1 elimination_equality(data)

This function constructs the P-formulation of the pooling problem after elimination of equality constraints, which is introduced in [1]. "data" is the information of the pooling problem.

Example 5

```
julia > f, g = elimination\_equality(Haverly\_1());
Data was read.
====== Input - pool variables are build, considering elimination
of the equality constraints! =========
======== The model is being constructed... ===========
julia > f
-1000.0*y4 + 200.0*y3 + 200.0000000000142*y2 - 2000.00000000002*y2*y5+
1400.0000000000014 * y1 - 2000.000000000002 * y1 * y5
julia > q
11 - elementArrayPolyopt.PolyFloat64, 1:
1.0 - 2.0 * y3 - 2.0 * y1
1.0 - y4 - y2
0.05 * y3 + 0.15000000000000002 * y1 - 0.2 * y1 * y5
y5
0.250000000000001 * y2 * y5 + 0.250000000000001 * y1 * y5
0.25000000000001*y2 - 0.25000000000002*y2*y5 + 0.25000000000001*y1 - 0.25000000
00000002 * y1 * y5
0.25 * y1
0.25 * y2
y3
y4
```

3.2 with_equality(data)

This function returns the P-formulation.

Example 6

```
julia > f, g, eq = with\_equality(Haverly\_1());
Datawasread.
======== The model is being constructed ... ===========
====== Objective function is constructed! ========
julia > f
3200.0 * y7 + 1200.0 * y6 - 1000.0 * y4 + 200.0 * y3 - 3000.0 * y2 - 1800.0 * y1
julia > q
11 - element\ Array Polyopt. Poly Float 64, 1:
1.0 - 2.0 * y3 - 2.0 * y1
1.0 - y4 - y2
0.05 * y3 + 0.15000000000000002 * y1 - 0.2 * y1 * y5
y5
y6
y7
y1
y2
y3
y4
```

3.3 pooling_with_eq_BSOS(data, d, k)

This function solves the dth level of the BSOS hierarchy when the SOS polynomial in it is with degree 2k.

Example 7

```
- number
cerminated. Time: 0.00
- threads
- solved problem
- Constraints
- Cones
- Scalar variables
                                                                                                                                                                                                                                       : 1
                                                                                                                                                                                                                                                                                                                                                                          conic
     pptimizer - Semi-definite variables: 1
                                                                                                                                                                                                                                                                                                                                                                        scalarized
                                                                    - setup time
                                                                                                                                                                                                                                       : 0.00
                                                                                                                                                                                                                                                                                                                                                                            dense det. time
                                                                    - ML order time
                                                                                                                                                                                                                                       : 0.00
                                                                                                                                                                                                                                                                                                                                                                          GP order time
                                                                    - nonzeros before factor : 666
                                                                                                                                                                                                                                                                                                                                                                            after factor
                                                                      - dense dim.
                                                                                                                                                                                                                                       : 0
                                                                                                                                                                                                                                                                                                                                                                            flops
                                                                      DFEAS GFEAS
                                                                                                                                                                                                      PRSTATUS POBJ
                                                                      00 1.0e+000 1.0e+000 0.00e+000 0.00000000e+000 0.00000000e+000
                 6.1e-001 3.2e-001 6.1e-001 7.66e-001 -4.565784312e-001 -3.990256242e-001 3.
                   001 0.00
2.7e-001 1.4e-001 4.6e-001 1.77e+000 -2.934437382e-001 -2.790044611e-001 1.
001 0.00
1.4e-001 7.0e-002 2.9e-001 8.96e-001 -2.756713539e-001 -2.760321365e-001 7.
                                            1e-001 7.0e-002 2.9e-001 0.900 000 -1.748599341e-001 -1.750857805e-001 1.
-1.748599341e-001 -1.73087/803e-001 1.04e+000 -1.748599341e-001 -1.73087/803e-001 1.0600 00 5 7.9e-003 4.1e-003 6.09 -002 1.04e+000 -1.872951534e-001 -1.873214438e-001 4.1876622954e-001 5.4e-004 0.00 -1.876602954e-001 -1.876602954e-001 -1.875030604e-001 1.09e-005 0.00 -1.875030604e-001 1.09e-005 0.00 -1.87500004e-001 -1.875000004e-001 1.09e-005 0.00 -1.87500004e-001 -1.875000004e-001 1.09e-005 0.00 -1.87500004e-001 -1.875000004e-001 -1.87500004e-001 -1.875000004e-001 -1.875000004e-001 -1.875000004e-001 -1.875000004e-001 -1.875000004e-001 -1.875000004e-001 -1.87500
   optimizer terminated. Time: 0.01
   Interior-point solution summary
Problem status: PRIMAL_AND_DUAL_FEASIBLE
Solution status: OPTIMAL
Solution status: OPTIMAL
10 barvar: 0e+000
barvar: 0e+000
barvar: 10e+000
barvar: 1e-01
10 barvar: 1e-010
10 bar
```

Similarly, we have

- pooling_without_eq_BSOS(data, d, k)
- pooling_with_eq_Sparse_BSOS(data , d, k)
- pooling_without_eq_Sparse_BSOS(data , d, k)
- pooling_with_eq_Merge_Sparse_BSOS(data , d, k)
- pooling_without_eq_Merge_Sparse_BSOS(data, d, k)

where the last two function merge the cliques with high overlaps and then use sparse-BSOS hierarchy.

Bibliography

- [1] A. Marandi, J. Dahl, and E. de Klerk. A numerical evaluation of the bounded degree sum-of-squares hierarchy of lasserre, toh, and yang on the pooling problem. *Annals of Operations Research*, pages 1–26, 2017.
- [2] A. Marandi, E. De Klerk, and J. Dahl. Solving sparse polynomial optimization problems with chordal structure using the sparse, bounded-degree sum-of-squares hierarchy. *Optimization Online*, 2017.