Analysis II

October 31, 2016

CONTENTS 2

Contents

1	Vector spaces		
	1.1	Vector spaces	3
	1.2	Continuity	4
		1.2.1 Addendum	5
	1.3	Open and Closed Subsets	6
	1.4	Lipschitz equivalence	7
2 Uniform Convergence		iform Convergence	9
	2.1	Notions of Convergence	9
	2.2	Power series	11
	2.3	Integration and Differentiation	14
3	Compactness 1		
	3.1	Compact subsets of \mathbb{R}^n	18
	3.2	Completeness	21
	3.3	Uniform continuity	24
	3.4	Application: Integration	24

1 Vector spaces

Vector spaces 1.1

If $a_n \in \mathbb{R}$, $(a_n) \to a$ if for every $\epsilon > 0$, $\exists N$ such that $|a_n - a| < \epsilon$ whenever n > N.

Now consider a general vector space:

Definition. Let V be a real vector space. A norm on V is a function $||\cdot||:V\to\mathbb{R}$ satisfying:

- $||\mathbf{v}|| \ge 0 \ \forall \mathbf{v} \in V$, and $||\mathbf{v}|| = 0 \iff \mathbf{v} = \mathbf{0}$;
- $\bullet ||\lambda \mathbf{v}|| = |\lambda| \cdot ||\mathbf{v}||, \ \forall \lambda \in \mathbb{R} \text{ and } \mathbf{v} \in V;$
- $\bullet ||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||, \, \forall \mathbf{v}, \mathbf{w} \in V \text{ (triangle inequality)}.$

Example. $||\mathbf{v}||_2 = (\sum v_i^2)^{\frac{1}{2}}$, the Euclidean norm; $||\mathbf{v}||_1 = \sum |v_i|;$ $||\mathbf{v}||_{\infty} = \max\{|v_1|, ..., |v_n|\}.$

Example. Let $V = C[0,1] = \{f : [0,1] \to \mathbb{R} | f \text{ is continuous} \}$. Then we can have the following norms:

- $||f||_1 = \int_0^1 |f(x)| dx;$
- $||f||_2 = \left(\int_0^1 f(x)^2 dx\right)^{\frac{1}{2}};$ $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|.$

Notation. If $||\cdot||$ is a norm on V, we say the pair $(V, ||\cdot||)$ is a normed space.

Definition. Suppose $(V, ||\cdot||)$ is a normed vector space, and (\mathbf{v}_n) is a sequence in V. We say (\mathbf{v}_n) converges to $\mathbf{v} \in V$ if $\forall \varepsilon > 0$, $\exists N$ such that $\forall n > N$, $||\mathbf{v}_n - \mathbf{v}|| < \varepsilon.$

Equivalently, $(\mathbf{v}_n) \to \mathbf{v}$ if and only if $||\mathbf{v}_n - \mathbf{v}|| \to 0$ in \mathbb{R} .

Example. Let $V = \mathbb{R}^n$, $\mathbf{v}_k = (v_{k,1}, ..., v_{k,n})$. (a) $(\mathbf{v}_k) \to \mathbf{v}$ with respect to $||\cdot||_{\infty}$ $\iff ||\mathbf{v}_k - \mathbf{v}||_{\infty} \to 0$ $\iff \max\{|v_{k,i} - v_i|\} \to 0$ $\iff |v_{k,i} - v_i| \to 0 \text{ for all } 1 \le i \le n$ $\iff v_{k,i} \to v_i.$

So sequence converges if and only if every component converges.

(b)
$$(\mathbf{v}_k) \to \mathbf{v}$$
 with respect to $||\cdot||_1$
 $\iff \sum_{i=1}^n |v_{k,i} - v_i| \to 0$
 $\iff |v_{k,i} - v_i| \to 0$ for all $1 \le i \le n$
 $\iff v_{k,i} \to v_i$.

Note the two different norms in (a) and (b) give the same notion of convergence.

We set a convention that, when talking about convergence in \mathbb{R}^n without mentioning a norm, then it's with respect to $||\cdot||_1$ (or $||\cdot||_{\infty}$ or $||\cdot||_2$) (these all give the same notion of convergence).

Example. Let V = C[0, 1],

$$f_n(x) = \begin{cases} 1 - nx & x \in \left[0, \frac{1}{n}\right) \\ 0 & x \in \left[\frac{1}{n}, 1\right] \end{cases}$$

So

$$||f_n||_1 = \int_0^1 |f_n(x)| dx = \frac{1}{2n} \to 0$$

as $n \to \infty$. So $(f_n) \to 0$ with respect to $||\cdot||_1$.

On the other hand, $||f_n||_{\infty} = 1 \not\to 0$, so $(f_n) \not\to 0$ with respect to $||\cdot||_{\infty}$. Here the two different norms give two different notions of convergence.

1.2 Continuity

Let $(V, ||\cdot||)$ be a normed vector space.

Recall: If $\mathbf{v}_n \in V$ and $\mathbf{v} \in V$, the sequence $(\mathbf{v}_n) \to \mathbf{v}$ if for every $\varepsilon > 0$, there exists n such that $||\mathbf{v}_n - \mathbf{v}|| < \varepsilon$ when n > N.

Definition. Suppose V and W are normed spaces, and $f: V \to W$. We say f is *continuous* if the sequence $(f(\mathbf{v}_n)) \to f(\mathbf{v})$ in W whenever $(\mathbf{v}_n) \to \mathbf{v}$ in V.

Example. (1) $f: V \to \mathbb{R}^n$, $f(\mathbf{v}) = (f_1(\mathbf{v}), ..., f_n(\mathbf{v}))$. Then f is continuous if and only if $f_1, ..., f_n$ are all continuous.

- (2) $p_i : \mathbb{R}^n \to \mathbb{R}$ by $p_i(\mathbf{v}) = v_i$. Then p_i is continuous.
- (3) $V = C[0,1], x \in [0,1], p_x : C[0,1] \to \mathbb{R}$ by $p_x(f) = f(x)$ (linear map). Then p_x is continuous with respect to the uniform norm on C[0,1]:

$$(f_n) \to f \text{ wrt } ||\cdot||_{\infty}$$

$$\iff \max_{y \in [0,1]} |f_n(x) - f(x)| \to 0$$

$$\iff |f_n(x) - f(x)| \to 0$$

$$\iff (f_n(x)) \to f(x)$$

However, p_x is not continuous with respect to $||\cdot||_1$ on C[0,1]. See examples in M&T.

So linear maps may not be continuous.

- (4) If $f: V_1 \to V_2$ and $g: V_2 \to V_3$ are continuous, so is $g \circ f: V_1 \to V_3$.
- (5) $||\cdot||:V\to\mathbb{R}$ is continuous.

Lemma. If $\mathbf{v}, \mathbf{w} \in V$, then $||\mathbf{w} - \mathbf{v}|| \ge |||\mathbf{w}|| - ||\mathbf{v}|||$.

Proof. Since
$$||\mathbf{v}|| + ||\mathbf{w} - \mathbf{v}|| \ge ||\mathbf{w}||$$
, $||\mathbf{w} - \mathbf{v}|| \ge ||\mathbf{w}|| - ||\mathbf{v}||$. Similarly, $||\mathbf{w} - \mathbf{v}|| = ||\mathbf{v} - \mathbf{w}|| \ge ||\mathbf{v}|| - ||\mathbf{w}||$. So $||\mathbf{w} - \mathbf{v}|| \ge |||\mathbf{w}|| - ||\mathbf{v}|||$.

Now we can prove the 5^{th} example above:

Proof. Let $f(\mathbf{v}) = ||\mathbf{v}||$. Then if $(\mathbf{v}_n) \to \mathbf{v}$, $(||\mathbf{v}_n - \mathbf{v}||) \to 0$. But $||\mathbf{v}_n - \mathbf{v}|| \ge |||\mathbf{v}_n|| - ||\mathbf{v}||| = |f(\mathbf{v}_n) - f(\mathbf{v})| \ge 0$. So by squeeze rule, $(|f(\mathbf{v}_n) - f(\mathbf{v})|) \to 0$, i.e. $f(\mathbf{v}_n) \to f(\mathbf{v})$.

Proposition. $f: V \to W$ is continuous if and only if for every $\mathbf{v} \in V$ and $\varepsilon > 0$, there exists $\delta > 0$ such that

$$||f(\mathbf{w}) - f(\mathbf{v})||_W < \varepsilon$$

whenever $||\mathbf{w} - \mathbf{v}||_V < \delta$.

Proof. Suppose the $\varepsilon - \delta$ condition hold. We'll show that f is continuous, i.e. if $(\mathbf{v}_n) \to \mathbf{v}$, then $(f(\mathbf{v}_n)) \to f(\mathbf{v})$.

Given $(\mathbf{v}_n) \to \mathbf{v}$ and $\varepsilon > 0$, pick $\delta > 0$ such that $||f(\mathbf{w}) - f(\mathbf{v})|| < \varepsilon$ whenever $||\mathbf{w} - \mathbf{v}|| < \delta$. Since $(\mathbf{v}_n) \to \mathbf{v}$, there exists N such that $||\mathbf{v}_n - \mathbf{v}|| < \delta$ whenever n > N, i.e. $||f(\mathbf{v}_n) - f(\mathbf{v})|| < \varepsilon$ when n > N. So $(f(\mathbf{v}_n)) \to f(\mathbf{v})$. So f is continuous

If the $\varepsilon - \delta$ condition does not hold, then there exists $\mathbf{v} \in V$ and $\varepsilon > 0$ such that for every n > 0, there exists \mathbf{v}_n with

$$||\mathbf{v} - \mathbf{v}_n|| < \frac{1}{n}$$

but

$$||f(\mathbf{v}) - f(\mathbf{v}_n)|| > \varepsilon$$

(Otherwise, take $\delta = \frac{1}{n}$ and we get a contradiction). Then $(\mathbf{v}_n) \to \mathbf{v}$, but $(f(\mathbf{v}_n)) \not\to f(\mathbf{v})$. So f is not continuous.

1.2.1 Addendum

Suppose V, W are normed spaces and U_{α} is an open subset of V for all $\alpha \in A$. Let $U = \bigcup_{\alpha \in A} U_{\alpha}$.

Proposition. Suppose $f: U \to W$ and f is continuous on all U_{α} . Then f is continuous on U. It's important that U_{α} 's are all open. For example, any $f: V \to W$ is continuous on $\{\mathbf{v}\}$, but may not be continuous on $\cup_{\mathbf{v} \in V} \{\mathbf{v}\} = V$.

Proof. Must show that given $\mathbf{v} \in U$ and $\varepsilon > 0$, $\exists \delta > 0$ s.t.

$$f(B_{\delta}(\mathbf{v}) \cap U) \subset B_{\varepsilon}(f(\mathbf{v}))$$

 $\mathbf{v} \in \bigcup_{\alpha \in A} U_{\alpha}$, so $\mathbf{v} \in U_{\alpha_0}$ for some $\alpha_0 \in A$. f is continuous on U_{α_0} , so $\exists \delta_1 > 0$ s.t.

$$f\left(B_{\delta_{1}}\left(\mathbf{v}\right)\cap U_{\alpha_{0}}\right)\subset B_{\varepsilon}\left(f\left(\mathbf{v}\right)\right)$$

 U_{α_0} is open, so $\exists \delta_2 > 0$ s.t. $B_{\delta_2}(\mathbf{v}) \subset U_{\alpha_0}$. Let $\delta = \min(\delta_1, \delta_2)$. Then $B_{\delta}(\mathbf{v}) \subset B_{\delta_1}(\mathbf{v})$ and $B_{\delta}(\mathbf{v}) \subset B_{\delta_2}(\mathbf{v}) \subset U_{\alpha_0}$. So $B_{\delta}(\mathbf{v}) \subset B_{\delta_1}(\mathbf{v}) \cap U_{\alpha_0}$. Thus

$$f(B_{\delta}(\mathbf{v}) \cap U) = f(B_{\delta}(\mathbf{v})) \subset f(B_{\delta_1}(\mathbf{v}) \cap U_{\alpha_0}) \subset B_{\varepsilon}(f(\mathbf{v}))$$

1.3 Open and Closed Subsets

Definition. If $\mathbf{v} \in V$ and r > 0,

$$B_r(\mathbf{v}) = {\mathbf{w} \in V | ||\mathbf{v} - \mathbf{w}|| < r}$$

is the open ball of radius r centered at \mathbf{v} ,

$$B_r(\mathbf{v}) = {\mathbf{w} \in V |||\mathbf{v} - \mathbf{w}|| \le r}$$

is the *closed ball* of radius r centered at \mathbf{v} .

Now we can get an alternative definition of continuous:

• f is continuous if and only if for every $\mathbf{v} \in V$ and $\varepsilon > 0$, there exists $\delta > 0$ such that $f(B_{\delta}(\mathbf{v})) \subset B_{\varepsilon}(f(\mathbf{v}))$.

Definition. $U \subset V$ is an *open subset* of V if for every $\mathbf{u} \in U$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(\mathbf{u}) \subset U$.

Proposition. If $f: V \to W$ is continuous and $U \subset W$ is open, then $f^{-1}(U)$ is open in V.

Proof. Suppose $\mathbf{v} \in f^{-1}(U)$, i.e. $f(\mathbf{v}) \in U$.

U is open, so there exists $\varepsilon > 0$ such that $B_{\varepsilon}(f(\mathbf{v})) \subset U$.

f is continuous, so $\exists \delta > 0$ such that $f(B_{\delta}(\mathbf{v})) \subset B_{\varepsilon}(f(\mathbf{v})) \subset U$, i.e. $B_{\delta}(\mathbf{v}) \subset f^{-1}(U)$ so $f^{-1}(U)$ is open.

The converse is also true(see M&T).

Definition. (Open subsets) Recall $U \subset V$ is *open* in V if for every $\mathbf{u} \in U$, $\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(\mathbf{u}) \subset U$.

Proposition. If $f: V \to W$ is continuous and $U \subset W$ is open, then $f^{-1}(U)$ is open in V.

Example. Given $\mathbf{v} \in V$, define

$$f_{\mathbf{v}}: V \to \mathbb{R}$$
$$f_{\mathbf{v}}(\mathbf{w}) = ||\mathbf{v} - \mathbf{w}||$$

Then $f_{\mathbf{v}}$ is continuous, so

$$B_r\left(\mathbf{v}\right) = f_{\mathbf{v}}^{-1}\left(\left(-r,r\right)\right)$$

is open in V, i.e. open balls are open.

Definition. (Closed subsets) Recall if $C \subset V$, $V - C = \{ \mathbf{v} \in V | \mathbf{v} \notin C \}$ is the complement of C. $C \subset V$ is closed if V - C is an open subset of V.

Corollary. If $f: V \to W$ is continuous and C is closed in W, then $f^{-1}(C)$ is closed in V.

Example. Let

$$C = \{(x, f(x)) | x \in \mathbb{R}\}$$

where $f: \mathbb{R} \to \mathbb{R}$ is continuous. Then C is closed in \mathbb{R}^2 .

Proof. Let $F: \mathbb{R}^2 \to \mathbb{R}$ by F(x,y) = f(x) - y which is continuous. Then $C = F^{-1}(\{0\})$ is closed, since $\{0\}$ is closed in \mathbb{R} .

Example.

$$\overline{B}_r(\mathbf{v}) = f_{\mathbf{v}}^{-1}([0, r])$$

is closed in any normed space V.

Example. $\mathbb{Q} \subset \mathbb{R}$ is neither open nor closed.

Example. $V \subset V, \, \phi \subset V$ are both open and closed.

Proposition. C is closed in V if and only if for every sequence $(\mathbf{v}_n) \to \mathbf{v} \in V$ which satisfies $\mathbf{v}_n \in C$ for all n, we have $\mathbf{v} \in C$ as well.

Proof. Suppose C is closed in V, and $(\mathbf{v}_n) \to \mathbf{v}$ with $\mathbf{v} \notin C$. Now V - C is open, and $\mathbf{v} \in V - C$. So $\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(\mathbf{v}) \subset V - C$. Since $(\mathbf{v}_n) \to \mathbf{v}$, there exists N s.t. $\mathbf{v}_n \in B_{\varepsilon}(\mathbf{v}) \subset V - C$ for all n > N. So $\mathbf{v}_n \notin C$. Contradiction.

Conversely, suppose that C is not closed. Then V-C is not open. So there exists $\mathbf{u} \in V-C$ such that for every $\varepsilon > 0$, $B_{\varepsilon}(\mathbf{v}) \not\subset V-C$, i.e. $B_{\varepsilon}(\mathbf{v}) \cap C \neq \phi$. Now pick \mathbf{v}_n s.t. $\mathbf{v}_n \in B_{1/n}(\mathbf{v}) \cap C$. Then $||\mathbf{v}_n - \mathbf{v}|| < \frac{1}{n} \to 0$, so $(\mathbf{v}_n) \to \mathbf{v}$ for all $\mathbf{v}_n \in C$, but $\mathbf{v} \not\in C$. Contradiction.

1.4 Lipschitz equivalence

We've seen in the first lecture that $||\cdot||_1, ||\cdot||_2, ||\cdot||_{\infty}$ all induce the same notion of convergence on \mathbb{R}^n . So $f: \mathbb{R}^n \to V$ is continuous with respect to $||\cdot||$ if and only if it's continuous with respect to $||\cdot||_{\infty}$.

Proposition. Suppose $||\cdot||,||\cdot||'$ are two norms on V. The map $id:(V,||\cdot||) \to (V,||\cdot||')$ by $id(\mathbf{v}) = \mathbf{v}$ is continuous if and only if there exists some constants C > 0 such that

$$||\mathbf{v}||' \le C||\mathbf{v}||$$

for all $\mathbf{v} \in V$.

Proof. Suppose $||\mathbf{v}||' \leq C||\mathbf{v}||$ for all $\mathbf{v} \in V$.

If $(\mathbf{v}_n) \to \mathbf{v}$ with respect to $||\cdot||$, then $(||\mathbf{v} - \mathbf{v}_n||) \to 0$. But then

$$0 \le ||\mathbf{v} - \mathbf{v}_n||' \le C||\mathbf{v} - \mathbf{v}_n||$$

By the squeeze law, $||\mathbf{v} - \mathbf{v}_n||' \to 0$ as well. So $(\mathbf{v}_n) \to \mathbf{v}$ with respect to $||\cdot||'$. This means $id: (V, ||\cdot||) \to (V, ||\cdot||')$ is continuous.

Conversely, suppose $id: (V, ||\cdot||) \to (V, ||\cdot||')$ is continuous. Then there exists $\delta > 0$ s.t. $B_{\delta}(\mathbf{0}, ||\cdot||) \subset B_1(\mathbf{0}, ||\cdot||')$.

For any $\mathbf{v} \in V$, $\mathbf{v} \neq 0$, there exists k s.t. $||k\mathbf{v}|| = \frac{\delta}{2}$. So $k\mathbf{v} \in B_{\delta}(\mathbf{0}, ||\cdot||)$, so $k\mathbf{v} \in B_1(\mathbf{0}, ||\cdot||')$, i.e. $||k\mathbf{v}||' < 1 = \frac{2}{\delta}||k\mathbf{v}||$. Divide by |k| we get

$$||\mathbf{v}||' \leq \frac{2}{\delta}||\mathbf{v}||$$

for all $\mathbf{v} \neq \mathbf{0}$. So we can take $C = \frac{2}{\delta}$. The case $\mathbf{v} = \mathbf{0}$ is trivial.

Definition. If $||\cdot||$ and $||\cdot||'$ are two norms on V, we say they are *Lipschitz* equivalent if there exists C > 0 s.t.

$$\frac{1}{C}||\mathbf{v}|| \le ||\mathbf{v}||' \le C||\mathbf{v}||$$

for all $\mathbf{v} \in V$, or say there exists C_1, C_2 such that

$$||\mathbf{v}|| \leq C_1 ||\mathbf{v}||'$$

and

$$||\mathbf{v}||' \le C_2||\mathbf{v}||$$

That is also equivalent to

$$id: (V, ||\cdot||) \rightarrow (V, ||\cdot||')$$

and

$$id: (V, ||\cdot||') \rightarrow (V, ||\cdot||)$$

being both continuous.

Corollary. If $||\cdot||$ and $||\cdot||'$ are Lipschitz equivalent, then:

- (a) $(\mathbf{v}_n) \to \mathbf{v}$ with respect to $||\cdot||$ if and only if $(\mathbf{v}_n) \to \mathbf{v}$ with respect to $||\cdot||'$.
- (b) $f:V\to W$ is continuous with respect to $||\cdot||$ if and only if $f:V\to W$ is continuous with respect to $||\cdot||'$.
- (c) $g: W \to V$ is continuous with respect to $||\cdot||$ if and only if $g: W \to V$ is continuous with respect to $||\cdot||'$.

Example. $||\mathbf{v}||_{\infty} \leq ||\mathbf{v}||_2 \leq ||\mathbf{v}||_1 \leq n||\mathbf{v}||_{\infty}$ for all $\mathbf{v} \in \mathbb{R}^n$. So $||\cdot||_{\infty}$, $||\cdot||_2$, $||\cdot||_1$ are all Lipschitz equivalent.

Problem. Can we find a norm on \mathbb{R}^n that is not Lipschitz equivalent to these?

2 Uniform Convergence

2.1 Notions of Convergence

Let $A \subset \mathbb{R}$, $f, f_n : A \to \mathbb{R}$.

We've known the definition of continuous and boundedness from Analysis I. Now define C(A) to be the set of continuous functions $f:A\to\mathbb{R}$, and B(A) to be the set of bounded functions $F:A\to\mathbb{R}$. Both of these are vector spaces.

We have $C[0,1] \subset B[0,1]$ by maximum value theorem, while $C(0,1) \not\subset B(0,1)$ (take $f(x) = \frac{1}{x}$).

Definition. If $f, f_n : A \to \mathbb{R}$, we say $(f_n) \to f$ pointwise if $(f_n(x)) \to f(x)$ for every $x \in A$.

Definition. The uniform norm $||\cdot||_{\infty}$ on B(A) is given by

$$||f||_{\infty} = \sup_{x \in A} |f(x)|$$

If $f, f_n : A \to \mathbb{R}$, we say $(f_n) \to f$ uniformly if $||f - f_n||_{\infty} \to 0$.

Equivalently, if $(f_n) \to f$ pointwise, then for every $x \in A$ and $\epsilon > 0$, $\exists N$ s.t. $|f_n(x) - f(x)| < \varepsilon$ whenever n > N.

If $(f_n) \to f$ uniformly, given ε , we need to find some N that works for all $x \in A$.

Example. Let $A = \mathbb{R}$, $f_n(x) = x + \frac{1}{n}$, f(x) = x. Then $(f_n) \to f$ pointwise and uniformly.

Example. Let $A = \mathbb{R}$, $g_n(x) = \left(x + \frac{1}{n}\right)^2$, $g(x) = x^2$. Then $g(n) \to g$ pointwise, but $g_n - g = \frac{2x}{n} + \frac{1}{n^2}$ is not even bounded. So (g_n) does not converge to g uniformly. Nevertheless, $(g_n) \to g$ uniformly on [a, b] for any $a, b \in \mathbb{R}$) (since convergence and uniform convergence is the same on compact sets).

Example. If $(f_n) \to f$ uniformly, then $(f_n) \to f$ pointwise (Immediate from definition).

Theorem. Suppose $f_n \in C(A)$ and $(f_n) \to f$ uniformly on A. Then $f \in C(A)$.

Proof. Given $x \in A$ and $\varepsilon > 0$, we need to find $\delta > 0$ s.t.

$$\left| f\left(x\right) -f\left(y\right) \right| <\varepsilon$$

whenever $|x - y| < \delta$ and $y \in A$. Since $(f_n) \to f$ uniformly, $\exists N$ s.t.

$$|f_n(y) - f(y)| < \frac{\varepsilon}{4}$$

whenever $n \geq N$ and $y \in A$.

Since f_N is continuous, $\exists \delta > 0$ s.t.

$$|f_N(x) - f_N(y)| < \frac{\varepsilon}{2}$$

whenever $|x-y| < \delta$ and $y \in A$. Then for $|x-y| < \delta$ and $y \in A$,

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)|$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon$$

which is what we wanted to prove.

Corollary. C[a,b] is a closed subset of B[a,b] with respect to $||\cdot||_{\infty}$.

Proof. Recall that C is closed if $c \in C$ whenever $(c_n) \to c$ and $c_n \in C$.

Example. Let
$$A = [0,1], f_n(x) = x^n, f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$$
. Then $(f_n) \to f$ pointwise but not uniformly, since $f_n \in C[0,1]$, but $f \notin C[0,1]$.

Example. Let $f_n(x) = (1-x)x^n$. Then $(f_n) \to 0$ pointwise. In fact $(f_n) \to 0$ uniformly.

Proof. Given $\varepsilon > 0$, we must find N s.t. $|f_n(x)| < \varepsilon$ for all $x \in [0,1]$ whenever

We know $1 - \varepsilon < 1$, so $(1 - \varepsilon)^n \to 0$. Pick N s.t. $(1 - \varepsilon)^n < \varepsilon$ whenever n > N. Then for n > N,

$$|(1-x)x^n| < 1 \cdot (1-\varepsilon)^n < \varepsilon$$

for $x \in [0, 1 - \varepsilon]$, and

$$|(1-x)x^n| < \varepsilon \cdot 1^n = \varepsilon$$

for
$$x \in (1 - \varepsilon, 1]$$
.

Everything so far in this chapter works for $f: A \to W$, where $A \subset V$ and V, Ware both normed spaces. (exercise)

Recall that if $f, f_n \in C[a, b]$ with $a, b \in \mathbb{R}$, then $(f_n) \to f$ in L^1 (with respect to $||\cdot||_1$) if

$$||f_n - f||_1 = \int_a^b |f_n(x) - f(x)| \to 0$$

Lemma. If $(f_n) \to f$ uniformly on [a,b] and $f_n \in C[a,b]$, then $(f_n) \to f$ in L^1 on [a,b].

Proof. $(f_n) \to f$ uniformly implies that $f \in C[a,b]$. Given $\varepsilon > 0$, pick N s.t.

$$|f_n(x) - f(x)| < \frac{\varepsilon}{(b-a)}$$

for n > N and $x \in [a, b]$. Then

$$||f_n - f||_1 = \int_a^b |f_n(x) - f(x)| dx < \int_a^b \frac{\varepsilon}{b - a} dx = \varepsilon$$

So
$$(f_n) \to f$$
 in L^1 .

Example. Let A = [0, 1],

$$f_n(x) = \begin{cases} nx & x \in \left[0, \frac{1}{n}\right] \\ 2 - nx & x \in \left[\frac{1}{n}, \frac{2}{n}\right] \\ 0 & x \in \left[\frac{2}{n}, 1\right] \end{cases}$$

Then $(f_n) \to 0$ pointwise, and in L^1 , but not uniformly.

Example. Let A = [0, 1],

$$f_n\left(x\right) = \begin{cases} n^2 x & x \in \left[0, \frac{1}{n}\right] \\ 2n - n^2 x & x \in \left[\frac{1}{n}, \frac{2}{n}\right] \\ 0 & x \in \left[\frac{2}{n}, 1\right] \end{cases}$$

Then $(f_n) \to f$ pointwise, but not in L^1 , nor uniformly.

We would like to say that a sequence of bounded integrable functions on [0,1]that converges pointwise converges in L^1 . But for this to be true, we need a better definition of \int (in measure and probability).

2.2 Power series

Recall some facts about series of complex numbers from Analysis I, for $\sum_{i=0}^{\infty} c_i$,

- $c_{i} \in \mathbb{C}:$ 1) $\sum_{i=0}^{\infty} c_{i} = c \text{ means } (\sum_{i=0}^{n} c_{i}) \to c;$ 2) $\sum_{i=0}^{\infty} c_{i} \text{ converges if and only if } \sum_{i=k}^{\infty} c_{i} \text{ converges;}$ 3) $\sum_{i=k}^{\infty} \alpha^{i} = \frac{\alpha^{k}}{1-\alpha} \text{ if } |\alpha| < 1;$ 4) If $\sum_{i=0}^{\infty} c_{i} \text{ converges, then } (c_{n}) \to 0;$ 5) If $0 < a_{i} < b_{i} \text{ for all } i \text{ (here } a_{i}, b_{i} \in \mathbb{R}), \text{ and } \sum_{i=0}^{\infty} b_{i} \text{ converges, then } \sum_{i=0}^{\infty} a_{i}$ converges as well;
- 6) If $\sum_{i=0}^{\infty} |c_i|$ converges, then $\sum_{i=0}^{\infty} c_i$ converges.

Corollary. If $|c_i| < b_i$ for all i and $\sum_{i=0}^{\infty} b_i$ converges, then $\sum_{i=0}^{\infty} c_i$ converges.

Proof. Follows from (5) and (6).

Definition. A power series is

$$\sum_{i=0}^{\infty} a_i \left(z_i \right)^i$$

where $a_i, c, z \in \mathbb{C}$. Call c the center of the series.

Proposition. Suppose $\sum_{i=0}^{\infty} a_i (z_0 - c)^i$ converges for some $z_0 \in \mathbb{C}$. Then the series $\sum_{i=0}^{\infty} a_i (z_0 - c)^i$ converges for all z with $|z - c| < |z_0 - c|$.

Proof. By (4), $\left(a_i\left(z_0-c\right)^i\right)\to 0$. Pick N such that $\left|a_i\left(z_0-c\right)^i\right|<1$ for all i > N.

By (2), suffices to show that $\sum_{i=N}^{\infty} a_i (z-c)^i$ converges. Now

$$|a_i(z-c)^i| = |a_i(z_0-c)^i| \cdot \left| \frac{z-c}{z_0-c} \right|^i \le 1 \cdot \alpha^i$$

(call this 'Key Estimate', to be used later) for $i \geq N$ where $\alpha = \left| \frac{z-c}{z_0-c} \right|$. For $|z-c| < |z_0-c|$, $\alpha < 1$, so $\sum_{i=N}^{\infty} \alpha^i$ converges. By corollary, it follows that $\sum_{i=0}^{\infty} a_i (z-c)^i$ converges.

Definition.

$$R = \sup \left\{ |z - c| |\sum_{i=0}^{\infty} a_i (z - c)^i \text{ converges } \right\}$$

is the radius of convergence of this series.

The above proposition says that $\sum_{i=0}^{\infty} a_i (z-c)^i$ converges for all $z \in B_R(c) = \{z \in \mathbb{C} | |z-c| < R\}$.

We can define $f: B_R(c) \to \mathbb{C}$ by

$$f(z) = \sum_{i=0}^{\infty} a_i (z - c)^i$$

Let

$$p_n(z) = a_i (z - c)^i$$

Then $(p_n) \to f$ pointwise on $B_R(c)$.

Theorem. With notation as above, $(p_n) \to f$ uniformly on $\bar{B}_r(c) = \{z \in \mathbb{C} | |z - c| \le r\}$ for any r < R.

Proof. Fix $z_0 \in \mathbb{C}$ with $r < |z_0 - c| < R$. Then $\sum_{i=0}^{\infty} a_i (z_0 - c)^i$ converges. Let

$$E_n(z) = f(z) - p_n(z) = \sum_{i=n+1}^{\infty} a_i (z-c)^i$$

We want to show that given $\varepsilon > 0$, $\exists N$ s.t. $|E_n(z)| < \varepsilon$ for all n > N and $z \in \bar{B}_r(c)$.

Pick N_0 with $|a_i(z_0-c)^i|<1$ for all $i\geq N_0$ as in the proof of the previous proposition.

Now for $n > N_0$, Key Estimate says that

$$|E_n(z)| = \left| \sum_{i=m}^{\infty} a_i (z - c)^i \right|$$

$$\leq \sum_{i=n+1}^{\infty} |a_i (z - c)^i|$$

$$\leq \sum_{i=n+1}^{\infty} \alpha (z)^i$$

where $\alpha\left(z\right) = \frac{|z-c|}{|z_0-c|}$. If $z \in \bar{B}_r\left(c\right)$, $\alpha\left(z\right) \le \alpha_0 = \frac{r}{|z_0-c|} < 1$. So

$$|E_n(z)| \le \sum_{i=1}^{\infty} \alpha^i = \frac{\alpha_0^{n+1}}{1 - \alpha_0}$$

Now $\alpha_0 < 1$, so $\frac{\alpha_0^{n+1}}{1-\alpha_0} \to 0$ as $n \to \infty$. Pick $N > N_0$ s.t. $\frac{\alpha_0^{n+1}}{1-\alpha_0} < \varepsilon$ for n > N. Then $|E_n(z)| < \varepsilon$ for all n > N and $z \in \bar{B}_r(c)$ which is what we wanted. \square

Remark. (p_n) may not converge uniformly on $B_R(c)$. For example, $\sum_{i=0}^{\infty} x^i$ has R=1, and equals $f(x)=\frac{1}{1-x}$ on $B_1(0)$, but p_n is a polynomial, so bounded on $\bar{B}_1(0)$, so $f(x)-p_n(x)$ is not even a bounded function on $B_1(0)$.

Corollary.

$$f(z) = \sum_{i=0}^{\infty} a_i (z - c)^i$$

is a continuous map $f: B_R(c) \to \mathbb{C}$.

Proof. $p_n = \sum_{i=0}^n a_I (z-c)^i$ is a polynomial, so is continuous as a map $\mathbb{C} \to \mathbb{C}$. $(p_n) \to f$ uniformly on $\bar{B}_r(c)$ for any r < R, so $f : \bar{B}_r(c) \to \mathbb{C}$ is continuous for any r < R.

Given $z \in B_R(c)$, pick r with $z \in B_r(c)$. Then f is continuous at z. So f is continuous at all $z \in B_R(c)$, i.e. $f : B_R(c) \to \mathbb{C}$ is continuous.

We can now construct lots of continuous functions using power series.

Example.

$$\exp\left(z\right) = \sum_{i=0}^{\infty} \frac{z^{i}}{i!}$$

has $R = \infty$, so is a well defined, continuous function on \mathbb{C} .

Let $f(x) = \exp(x)$ for $x \in \mathbb{R}$. We want to show that f'(x) = f(x):

$$\frac{d}{dx} \left(\sum_{i=0}^{\infty} \frac{x_i}{i!} \right) = \sum_{i=0}^{\infty} \frac{ix^{i-1}}{i!} = \sum_{i=1}^{\infty} \frac{x^{i-1}}{(i-1)!} = \exp(x)$$

this looks easy, but why does the first equality hold?

Example. Suppose

$$\sum_{i=0}^{\infty} a_i \left(z - c \right)$$

has radius of convergence R. Then if $p_n = \sum_{i=0}^{\infty} a_i (z-c)^i$, $(p_n) \to f(z) = \sum_{i=0}^{\infty} a_i (z-c)^i$ uniformly on $\bar{B}_r(c)$ for all $r < R \implies f$ is continuous on $\bar{B}_r(c)$ for $r \in R$.

Take $U_r = B_r(c)$, so f is continuous on U_r for r < R. U_r is open. So f is continuous on $\bigcup_{r < R} U_r = B_R(c)$.

2.3 Integration and Differentiation

Recall from Analysis I:

Theorem. (Fundamental Theorem of Calculus) If $f \in C[a, b]$, then

$$F\left(x\right) = \int_{x_0}^{x} f\left(y\right) dy$$

exists, and

$$F'(x) = f(x).$$

Some properties of integral:

Suppose $f, g \in C[a, b]$.

(1)

$$\int_{x_{0}}^{x} f(y) + \lambda g(y) dy = \int_{x_{0}}^{x} f(y) dy + \lambda \int_{x_{0}}^{x} g(y) dy$$

(2) If $f(y) \leq g(y)$ for all $y \in [a, b]$, then

$$\int_{x_{0}}^{x} f(y) dy \leq \int_{x_{0}}^{x} g(y) dy$$

(3)
$$\left| \int_{x}^{x_{0}} f(y) dy \right| \leq \left| \int_{x}^{x_{0}} \left| f(y) \right| dy \right|$$

Suppose $f_n \in C[a,b]$ and $(f_n) \to f$ uniformly on [a,b]. So $f \in C[a,b]$. Thus

$$F(x) = \int_{x_0}^{x} f_n(y) \, dy$$

and

$$F\left(x\right) = \int_{x_0}^{x} f\left(y\right) dy$$

are defined.

Proposition. $(F_n) \to F$ uniformly on [a,b].

Proof. $(f_n) \to f$ uniformly, so given $\varepsilon > 0$, $\exists N$ s.t.

$$|f_n(x) - f(x)| < \varepsilon$$

for all n > N and $x \in [a, b]$. Choose N s.t.

$$|f_n(x) - f(x)| < \frac{\varepsilon}{b-a}$$

for all n > N and $x \in [a, b]$. Then for $x \in [a, b]$,

$$|F_{n}(x) - F(x)| = \left| \int_{x_{0}}^{x} (f_{n}(y) - f(y)) dy \right|$$

$$\leq \left| \int_{x_{0}}^{x} |f_{n}(y) - f(y)| dy \right|$$

$$\leq \left| \int_{x_{0}}^{x} \frac{\varepsilon}{b - a} dy \right| dy$$

$$= \frac{\varepsilon |x - x_{0}|}{|b - a|}$$

$$\leq \varepsilon$$

So $(F_n) \to F$ uniformly on [a, b].

Note that $(f_n) \in C(\mathbb{R})$, $(f_n) \to f$ uniformly does not imply $(F_n) \to F$ uniformly on \mathbb{R} . (But does on [a,b] for $a,b \in \mathbb{R}$).

Let

$$f(y) = \sum_{i=0}^{\infty} a_i (y - c)^i$$

be a real power series $(a_i, c, y \in \mathbb{R})$ with radius of convergence R. Then if the partial sum $p_n(y) = \sum_{i=0}^n a_i (y-c)^i$, then $(p_n) \to f$ uniformly on [c-r, c+r] for any r < R.

Corollary.

$$\int_{c}^{x} f(y) \, dy = \sum_{i=0}^{\infty} \frac{a_{i}}{i+1} (x-c)^{i+1}$$

for all $x \in (c - R, c + R)$.

Proof. Given $x \in (c-R, c+R)$, pick r with |x-c| < r < R. Then $(p_n) \to f$ uniformly on [c-r, c+r], so by proposition

$$(P_n) \to \int_c^x f(y) \, dy$$

where

$$P_n = \int_c^x p_n(y) \, dy = \sum_{i=0}^n \frac{a_i}{i+1} (x-c)^{i+1}$$

Q: If $(f_n) \to f$ uniformly, what can I say about (f_n) ? A: Nothing, because:

Example. Take $f_n(x) = \frac{1}{n} \sin nx$, $x \in [0, \pi]$. Then $(f_n) \to 0$ uniformly on $[0, \pi]$, but $f'_n(x) = \cos nx$ doesn't converge for any $x \in (0, \pi)$.

Proposition. If

$$f(y) = \sum_{i=0}^{\infty} a_i (y - c)^i$$

converges on (c-R, c+R), then

$$f(y) = \sum_{i=0}^{\infty} i a_i (y-c)^{i-1}$$

on (c-R, c+R).

Proof.

Lemma.

$$\sum_{i=0}^{\infty} i a_i \left(y - c \right)^{i-1}$$

converges for all $y \in (c - R, c + R)$.

Pick y_0 with $|y-c|<|y_0-c|< R$. $\sum_{i=0}^{\infty}a_i\left(y-c\right)^i \text{ converges, so by 'Key Estimate', } \exists N \text{ s.t.}.$

$$|a_i(y-c)|^i < \alpha^i$$

for all $i \geq N$, where $\alpha = \left| \frac{y-c}{y_0-c} \right| < 1$.

If y = c, $\sum i a_i (y - c)^{i-1}$ obviously converges. If not, estimate

$$\left|ia_i(y-c)^{i-1}\right| < \frac{i}{|y-c|}\alpha^i$$

Now $\sum_{i=0}^{\infty} \frac{i}{|y-c|} \alpha^i$ converges by Ratio Test. So $\sum_{i=0}^{\infty} i a_i (y-c)^{i-1}$ converges as well.

Now begin the proof of proposition:

$$g(y) = \sum_{i=0}^{\infty} i a_i (y-c)^{i-1}$$

is continuous on (c - R, c + R). So by corollary,

$$\int_{c}^{x} g(y) dy = \sum_{i=1}^{\infty} a_{i} (x - c)^{i} = f(x) - f(c)$$

By Fundamental Theorem of Calculus, $f'\left(x\right)=g\left(x\right)$.

Application: Power series solutions of ODEs are legit (as long as we check the radius of convergence).

3 Compactness

3.1 Compact subsets of \mathbb{R}^n

Let V be a normed space. Then if $(\mathbf{v}_n) \to \mathbf{v} \in V$ and (\mathbf{v}_{n_j}) is a subsequence of (\mathbf{v}_n) , then $(\mathbf{v}_{n_j}) \to \mathbf{v}$. We leave this as an exercise.

Definition. $A \subset V$ is bounded if $\exists M \in \mathbb{R}$ s.t. $||\mathbf{v}|| \leq M$ for all $\mathbf{v} \in A$.

If $||\cdot||$ and $||\cdot||'$ are Lipschitz equivalent, then boundedness with respect to the two norms are equivalent.

Corollary. (Bolzano-Weierstrass in \mathbb{R}^n) If (\mathbf{v}_k) is a bounded sequence in \mathbb{R}^n , it has a converging subsequence.

Proof. To prove this, simply pick a subsequence with the first coordinate convergent, then pick a subsequence of that subsequence with the second coordinate convergent, etc..

Let $\mathbf{v}_k = (v_{1,k}, ..., v_{n,k})$. (\mathbf{v}_k) is bounded, so $(v_{i,k})$ is bounded for all $1 \le i \le n$. By B-W theorem, there exists a convergent subsequence $\left(v_{1,k_j^1}\right)$ of $(v_{1,k})$. Now the sequence $\left(v_{2,k_j^1}\right)$ is bounded. So by B-W, there exists a subsequence $\left(v_{2,k_j^2}\right)$ which converges. Then by the previous exercise, $\left(v_{1,k_j^2}\right)$ converges.

Now consider the sequence (v_{3,k_j^2}) . By B-W, it has a convergent subsequence (v_{3,k_j^3}) . etc.

Apply B-W n times, we get $\left(\mathbf{v}_{k_{j}^{n}}\right)$ of original $\left(\mathbf{v}_{n}\right)$ s.t. $\left(v_{i,k_{j}^{n}}\right)$ converges for $1 \leq i \leq n$. So $\left(\mathbf{v}_{k_{j}^{n}}\right)$ converges.

Example. Let V = C[0,1] with $||\cdot||_{\infty}$, and

$$f_n\left(x\right) = \left\{ \begin{array}{ll} 1 - nx & x \in \left[0, \frac{1}{n}\right] \\ 0 & x \in \left[\frac{1}{n}, 1\right] \end{array} \right.$$

If

$$f(x) = \begin{cases} 1 & x = 0 \\ 0 & x > 0 \end{cases}$$

then $(f_n) \to f$ pointwise. Then (f_n) is bounded with respect to $||\cdot||_{\infty}$ but has no convergent subsequence.

Proof. Suppose $(f_{n_j}) \to g$ uniformly, then $(f_{n_j}) \to g$ pointwise, so g = f. But $f \notin C[0,1]$, so $(f_{n_j}) \not\to f$ uniformly.

19

Definition. We say $A \subset V$ is sequentially compact (s.compact) if any sequence (\mathbf{v}_n) in A has a convergent subsequence $(\mathbf{v}_{n_j}) \to \mathbf{v} \in A$.

Example. R is not s.compact, since (n) has no convergent subsequence.

Example. A = (0,2) is not s.compact, since $\left(\frac{1}{n}\right) \to 0 \notin A$.

Proposition. Suppose $A \subset V$ is s.compact. Then A is closed in V and bounded.

Proof. We prove the contrapositive:

If A is not closed, then there exists a sequence $(\mathbf{v}_n) \to \mathbf{v}$ with $\mathbf{v}_n \in A$ for all n but $\mathbf{v} \notin A$. By the exercise, any subsequence (\mathbf{v}_{n_j}) converges to $\mathbf{v} \notin A$. So A is not s.compact.

If A is not bounded, then for all $n \in \mathbb{N}$ we can find $\mathbf{v}_n \in A$ with $||\mathbf{v}_n|| \ge n$. We claim that (\mathbf{v}_{n_j}) has no convergent subsequence: if $(\mathbf{v}_{n_j}) \to \mathbf{v}$, then $\exists J$ s.t. $||\mathbf{v}_{n_j} - \mathbf{v}|| < 1$ for all j > J. So

$$||v_{n_i}|| \le ||\mathbf{v}|| + ||\mathbf{v_{n_i}} - \mathbf{v}|| \le ||\mathbf{v}|| + 1$$

for all j > J, but this is impossible since $n_j \ge j$, so $||v_{n_j}|| \ge j \to \infty$ as $j \to \infty$.

It follows that \mathbf{v}_n has no convergent subsequence, so A is not s.compact. \square

Theorem. (Heine-Borel) $A \subset \mathbb{R}^n$ is s.compact if and only if A is closed and bounded.

Proof. By the proposition, A is s.compact $\implies A$ is closed and bounded. Conversely, suppose A is closed and bounded, and (\mathbf{v}_n) is a sequence in A. Then (\mathbf{v}_n) is bounded (since A is). So by B-W, it has a convergent subsequence. Since A is closed, $\mathbf{v} \in A$. So A is s.compact.

Remark. By previous example, $\bar{B}_1(0)$ in C[0,1] with $||\cdot||_{\infty}$ is closed and bounded but not s.compact since (f_n) has no convergent subsequence. So Heine-Borel theorem does not hold in general spaces.

Remark. If $A \subset V$ a normed space, then A is s.compact \iff A is compact.

Proposition. Suppose $C \subset V$ is s.compact and $f: C \to W$ is continuous. Then f(C) is s.compact.

Proof. Suppose (\mathbf{w}_n) is a sequence in f(C). Pick $\mathbf{v}_n \in C$ with $f(\mathbf{v}_n) = \mathbf{w}_n$. We know C is s.compact, so (\mathbf{v}_n) has a convergent subsequence $(\mathbf{v}_{n_i}) \to \mathbf{v} \in C$.

Now f is continuous, so $(\mathbf{w}_{n_j}) = (f(\mathbf{v}_{n_j})) \to (f(\mathbf{v})) \in f(C)$. So f(C) is s.compact.

We'll use the above to prove maximum value theorem.

B COMPACTNESS

Lemma. If $A \subset \mathbb{R}$ is closed and bounded, then $\sup A \in A$.

Proof. A is bounded, so $\sup A$ exists. Pick $x_n \in A$ with $\sup A - \frac{1}{n} \le x_n \le \sup A$. Then $(x_n) \to \sup A$. The result follows since A is closed.

20

Theorem. (Maximum value theorem) Suppose C is s.compact, $f: C \to \mathbb{R}$ is continuous. Then there exists $\mathbf{v} \in V$ s.t.

$$f(\mathbf{v}) \ge f(\mathbf{v}')$$

for all $\mathbf{v}' \in C$.

Proof. We know A = f(C) is a s.compact subset of \mathbb{R} , so it is closed and bounded. So by the lemma, sup A is in A = f(C). So pick $\mathbf{v} \in C$ with $f(\mathbf{v}) = \sup A$. \square

Application: Norms on \mathbb{R}^n :

Let $||\cdot||$ be a norm on \mathbb{R}^n .

Lemma. The map $id:(\mathbb{R}^n,||\cdot||_1)\to(\mathbb{R}^n,||\cdot||)$ is continuous.

Proof. Write $\mathbf{v} = (v_1, ..., v_n) = \sum_{i=1}^n v_i \mathbf{e}_i$. By the triangle inequality,

$$||\mathbf{v}|| \le \sum_{i=1}^{n} ||v_i \mathbf{e}_i|| = \sum_{i=1}^{n} |v_i|||\mathbf{e}_i|| \le C \sum_{i=1}^{n} |v_i| = C||\mathbf{v}||_1$$

Where $C = \max_{1 \le i} \le n\{||\mathbf{e}_j||\}$. By criterion of section 1.4, the given map is continuous.

Corollary. The map $f: (\mathbb{R}^n, ||\cdot||_1) \to \mathbb{R}$ given by $f(\mathbf{v}) = ||\mathbf{v}||$ is continuous.

Theorem. $||\cdot||$ is Lipschitz equivalent to $||\cdot||_1$.

Proof. Let $S = \{ \mathbf{v} \in \mathbb{R}^n \mid ||\mathbf{v}_1 = 1\} = q^{-1}(\{1\}), \text{ where } q(\mathbf{v}) = ||\mathbf{v}||_1.$

Now $g:(\mathbb{R}^n,||\cdot||_1)\to\mathbb{R}$ is continuous, $\{1\}$ is closed in \mathbb{R} , so $g^{-1}(\{1\})$ is closed in $(\mathbb{R}^n,||\cdot||_1)$. So S is s.compact by Heine-Borel.

 $f: (\mathbb{R}^n, ||\cdot||_1) \to \mathbb{R}, f(\mathbf{v}) = ||\mathbf{v}||$ is continuous by corollary. So by maximum value theorem, there exists $\mathbf{v}_{\pm} \in S$ s.t.

$$C_{-} = f(\mathbf{v}_{-}) \le f(\mathbf{v}) \le f(\mathbf{v}_{+}) = C_{+}$$

for all $\mathbf{v} \in S$, i.e. $C_{-} \leq \mathbf{v} \leq \mathbb{C}_{+}$ for all $\mathbf{v} \in S$ where $C_{-} = ||\mathbf{v}_{-}|| > 0$ since $\mathbf{v}_{-} \in S \implies \mathbf{v}_{-} \neq \mathbf{0} \implies \mathbf{v}_{-} \neq 0$.

Then for $\mathbf{v} \neq 0$ in \mathbb{R}^n , $\mathbf{v}/||\mathbf{v}||_1 \in S$. So

$$0 < C_{-} \le ||\frac{\mathbf{v}}{||\mathbf{v}||_{1}} \le C_{+}$$

3 COMPACTNESS

21

i.e.

$$C_{-}||\mathbf{v}||_{1} \le ||\mathbf{v}|| \le C_{+}||\mathbf{v}||_{1}$$

where $C_{-}, C_{+} > 0$. So the two norms are Lipschitz equivalent.

Corollary. Any two norms on \mathbb{R}^n are Lipschitz equivalent.

3.2 Completeness

Let V be a normed space, and let (\mathbf{v}_n) be a sequence in V.

Definition. The sequence $(\mathbf{v})_n$ is *Cauchy* if given $\varepsilon > 0$, there exists N s.t. $||\mathbf{v}_n - \mathbf{v}_m|| < \varepsilon$ for all $n, m \ge N$.

Example. If $(\mathbf{v}_n) \to \mathbf{v}$, then (\mathbf{v}_n) is Cauchy.

Proof. Given $\varepsilon > 0$, pick N s.t. $||\mathbf{v}_n - \mathbf{v}|| < \frac{\varepsilon}{2}$ for all $n \ge N$. Then for $n, m \ge N$, by triangle inequality,

$$||\mathbf{v}_n - \mathbf{v}_m|| \le ||\mathbf{v}_n - \mathbf{v}|| + ||\mathbf{v} - \mathbf{v}_m|| < \varepsilon$$

i.e. (\mathbf{v}_n) is Cauchy.

Example. Let $s_n = \sum_{i=1}^n \frac{1}{i}$. Then s_n diverges. Also it is not Cauchy, even though $|s_n - s_{n+1}| \to 0$ as $n \to \infty$.

Cauchy sequences want to converge.

Example. Given $\varepsilon > 0$, pick N s.t. $||\mathbf{v}_n - \mathbf{v}_m|| < \varepsilon$ for all $n, m \ge N$. Then all but finitely many terms of (\mathbf{v}_n) are contained in $B_{\varepsilon}(\mathbf{v}_N)$.

However they may not have an element of V to converge to.

Example. Let V = C[0,1] with $||\cdot||_1$. Take

$$f_n = \begin{cases} 0 & x \in [0, 1/2] \\ n(x - 1/2) & x \in [1/2, 1/2 + 1/n] \\ 1 & x \in [1/2 + 1/n, 1] \end{cases}$$

f(n) is Cauchy:

If $m, n \ge N$, $|f_n(x) - f_m(x)| = 0$ if $x \notin A_n = [1/2, 1/2 + 1/N]$, and < 1 if $x \in A_N$. Then

$$||f_n - f_m||_1 = \int_0^1 |f_n(x) - f_m(x)| dx \le \int_{1/2}^{1/2 + 1/N} 1 dx = \frac{1}{N}$$

so (f_n) is Cauchy.

Now let

$$f(x) = \begin{cases} 0 & x \in [0, 1/2] \\ 1 & x \in (1/2, 1] \end{cases}$$

which is not in C[0,1].

If $(f_n) \to g \in C[0,1]$ then $(f_n) \to g$ with respect to $||\cdot||_1$ on $[0,1] - A_n$ for any N > 0. On the other hand, $(f_n) \to f$ uniformly on $[0,1] - A_N$ for any N > 0.

On the other hand, $(f_n) \to f$ uniformly on $[0,1]-A_N$ for any N > 0. So $(f_n) \to f$ with respect to $||\cdot||_1$ on $[0,1]-A_N$ for all N > 0. Therefore g(x) = f(x) for all $x \in [0,1]$. Contradiction.

Definition. A normed space V is *complete* if every Cauchy sequence (\mathbf{v}_n) in V converges to a limit $\mathbf{v} \in V$.

Example. $(C[0,1],||\cdot||_1)$ is not complete.

Application: Completeness of \mathbb{R}^n .

Let V be a normed vector space, and suppose (\mathbf{v}_n) is a Cauchy sequence in V.

Lemma. (\mathbf{v}_n) is bounded. (Exercise)

Lemma. If (\mathbf{v}_n) has a convergent subsequence $(\mathbf{v}_{n_i}) \to \mathbf{v} \in V$, then $(\mathbf{v}_n) \to \mathbf{v}$.

Proof. Given $\varepsilon > 0$, pick M s.t. $||\mathbf{v}_n - \mathbf{v}_m|| < \frac{\varepsilon}{2}$ whenever n, m > M. Now \mathbf{v}_{n_i} converges to \mathbf{v} , so pick I s.t. $||\mathbf{v}_{n_i} - \mathbf{v}|| < \frac{\varepsilon}{2}$ whenever i > I. So choose I' > I s.t. $n_{I'} \ge M$. Then for $n > n_{I'}$,

$$||\mathbf{v}_n - \mathbf{v}|| \le ||\mathbf{v}_n - \mathbf{v}_{n_{I'}}|| + ||\mathbf{v}_{n_{I'}} - \mathbf{v}|| < \varepsilon$$

So
$$(\mathbf{v}_n) \to \mathbf{v}$$
.

Theorem. \mathbb{R}^n is complete.

Proof. Suppose (\mathbf{v}_n) is a Cauchy sequence in \mathbb{R}^n . By lemma 1, (\mathbf{v}_n) is bounded. By B-W, (\mathbf{v}_n) has a convergent subsequence $(\mathbf{v}_{n_i}) \to \mathbf{v}$. By lemma 2, $(\mathbf{v}_n) \to \mathbf{v}$, i.e. every Cauchy sequence converges. So \mathbb{R}^n is complete.

Remark. If $||\cdot||$ and $||\cdot||'$ are Lipschitz equivalent, then (\mathbf{v}_n) is Cauchy with respect to the two norms are equivalent. So Completeness with respect to the two norms are equivalent.

Since all norms on \mathbb{R}^n are Lipschitz equivalent, the the theorem holds for any norm.

We saw $(C[0,1], ||\cdot||_1)$ is not complete. What about $(C[0,1], ||\cdot||_{\infty})$?

Bounded sequences need not have convergent subsequences.

Theorem. C[0,1] is complete with respect to $||\cdot||_{\infty}$.

Proof. Given a Cauchy sequence (f_n) , we must find $f \in C[0,1]$ s.t. $(f_n) \to f$ uniformly.

Given $\varepsilon > 0$, choose N s.t. $||f_n - f_m|| < \varepsilon/2$ for all $n, m \ge N$. Then if $x \in [0, 1]$,

$$|f_n(x) - f_m(x)| \le \max_{x \in [0,1]} |f_n(x) - f_m(x)|$$

$$= ||f_n - f_m||_{\infty}$$

$$< \varepsilon/2 < \varepsilon$$

For $n, m \geq N$.

So $(f_n(x))$ is a Cauchy sequence in \mathbb{R} . But \mathbb{R} is complete. So $\lim_{n\to\infty} f_n(x)$ exists.

Define $f(x) = \lim_{n \to \infty} f_n(x)$. Then $(f_n) \to f$ pointwise.

Now we want to prove $(f_n) \to f$ uniformly. Given $\varepsilon > 0$, and $x \in [0, 1]$, pick M (depending on x) s.t. $|f_n(x) - f(x)| < \varepsilon/2$ whenever $n \ge M$.

Let $R = \max(N, M)$, then for $n \ge N$,

$$|f_n(x) - f(x)| \le |f_n(x) - f_R(x)| + |f_R(x) - f(x)|$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon$$

3 COMPACTNESS 24

for $n, R \ge N$. i.e. $|f_n(x) - f(x)| < \varepsilon$ for all $x \in [0, 1]$ i.e. $||f_n - f||_{\infty} < \varepsilon$. So $(f_n) \to f$ uniformly.

$$f_n \in C[0,1] \implies f \in C[0,1]$$
. So $(f_n) \to f \in C[0,1]$ uniformly.

3.3 Uniform continuity

Suppose V, W are normed spaces, $A \subset V$.

Definition. $f: A \to W$ is uniformly continuous if for every $\varepsilon > 0$, $\exists \delta > 0$ s.t. $||f(\mathbf{v}) - f(\mathbf{v}')|| < \varepsilon$ whenever $||\mathbf{v} - \mathbf{v}'|| < \delta$.

Example. Let $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Then $f(x + \delta) - f(x) = 2x\delta + \delta^2$. For fixed δ , $2x\delta + \delta^2 \to \infty$ as $x \to \infty$. So $f(x) = x^2$ is not uniformly continuous.

Example. Let $f:(0,1]\to\mathbb{R}$ with $f(x)=\frac{1}{x}$. This is not uniformly continuous as well (consider $x\to 0$).

Theorem. If C is s.compact, and $f: C \to W$ is continuous, then f is uniformly continuous.

Proof. Suppose f is not uniformly continuous. Then there exists $\varepsilon > 0$ s.t. for all n > 0 we can find $\mathbf{v}_n, \mathbf{w}_n \in C$ with $||\mathbf{v}_n - \mathbf{w}_n|| < \frac{1}{n}$, and $||f(\mathbf{v}_n) - f(\mathbf{w}_n)|| \ge \varepsilon$ (else f is uniformly continuous).

Since C is s.compact, (\mathbf{v}_n) has a convergent subsequence $(\mathbf{v}_{n_i}) \to \mathbf{v}^* \in C$.

f is continuous and $\mathbf{v}^* \in C$, so $\exists \delta > 0$ s.t. $||f(\mathbf{v}) - f(\mathbf{v}^*)|| < \varepsilon/2$ whenever $\mathbf{v} \in B_{\delta}(\mathbf{v}^*)$.

If $\mathbf{v}, \mathbf{v}' \in B_{\delta}(\mathbf{v}^*)$, then

$$||f(\mathbf{v}) - f(\mathbf{v}')|| \le ||f(\mathbf{v}) - f(\mathbf{v}^*)|| + ||f(\mathbf{v}^*) - f(\mathbf{v}')||$$
$$< \varepsilon/2 + \varepsilon/2 = \varepsilon$$

 $(\mathbf{v}_{n_i}) \to \mathbf{v}^*$, so pick I_1 s.t. $||\mathbf{v}_{n_i} - \mathbf{v}^*|| < \delta/2$ when $i \ge I_1$.

Pick I_2 s.t. $1/I_2 < \delta/2$. Then for $i \ge \max(I_1, I_2)$, we have $||\mathbf{v}_{n_i} - \mathbf{v}^*|| < \delta/2$ and $||\mathbf{v}_{n_i} - \mathbf{w}_{n_i}|| < \frac{1}{n_i} < \frac{1}{i} < \frac{1}{I_2} < \frac{\delta}{2}$.

So $||\mathbf{w}_{n_i} - \mathbf{v}^*|| < ||\mathbf{w}_{n_i} - \mathbf{v}_{n_i}|| + ||\mathbf{v}_{n_i} - \mathbf{v}^*|| < \delta/2 + \delta/2 = \delta$, i.e. $\mathbf{w}_{n_i}, \mathbf{v}_{n_i} \in B_{\delta}(\mathbf{v}^*)$, $||f(\mathbf{v}_{n_i}) - f(\mathbf{w}_{n_i})|| \ge \varepsilon$. Contradiction. So f must be uniformly continuous.

3.4 Application: Integration

Recall from Analysis I: We say $f:[a,b] \to \mathbb{R}$ is piecewise constant if $\exists a = a_0 < a_1 < ... < a_n = b$ and $c_1,...,c_n \in \mathbb{R}$ s.t. $f(x) = c_i$ if $x \in (a_{i-1},a_i)$.

3 COMPACTNESS 25

Let $P\left[a,b\right]=\{f:\left[a,b\right]\to\mathbb{R}\mid f\text{ is piecewise constant}\}.$ If $f\in P\left[a,b\right]$ is as above, then

$$I(f) = \sum_{i=1}^{n} c_i (a_i - a_{i-1}) = \int f$$

Lemma. If $f, g \in P[a, b], \lambda \in \mathbb{R}$, then

$$f - \lambda g \in P[a, b]$$

and
$$I(f - \lambda g) = I(f) - \lambda I(g)$$
.

Write $f \geq g$ if $f(x) \geq g(x)$ for all $x \in [a, b]$.

Lemma. If $f \geq 0$, $I(f) \geq 0$.

So if $f, g \in P[a, b], f \geq g$, then $I(f) \geq I(g)$.

Definition. (Riemann Integral) Suppose $f:[a,b]\to\mathbb{R}$ is bounded. Let

$$\mathcal{U}(f) = \{g \in P[a, b] \mid g \ge f\},$$

$$\mathcal{L}(f) = \{g \in P[a, b] \mid g \le f\}$$

since f is bounded, these are not empty. Let

$$U(f) = \{I(g) \mid g \in \mathcal{U}(f)\},$$

$$L(f) = \{I(g) \mid g \in \mathcal{L}(f)\}$$

If $g^+ \in \mathcal{U}(f)$ and $g^- \in \mathcal{L}(f)$, then $g^+ \geq f \geq g^-$. So $I(g^+) \geq I(g^-)$. If $u \in U(f)$ and $l \in L(f)$, then $u \geq l$. So U(f) is bounded below, L(f) is bounded above.

Now let

$$u(f) = \inf U(f),$$
$$l(f) = \inf L(f)$$

Note that $u(f) \ge l(f)$.

We say f is Riemann integrable if u(f) = l(f), in which case we define

$$\int_{a}^{b} f(x) dx = u(f) = l(f)$$

If $f \in P[a, b]$, then u(f) = I(f) = l(f), so f is RI.

Theorem. If $f \in C[a, b]$, then f is RI.

Lemma. Given $\varepsilon > 0$, $\exists g^+ \in \mathcal{U}(f)$ and $g^- \in \mathcal{L}(f)$ s.t. $I(g^+) - I(g^-) < \varepsilon$.

Proof. [a,b] is closed and bounded in \mathbb{R} , so it is s.compact. By last lecture's theorem, $f:[a,b]\to\mathbb{R}$ is uniformly continuous. So pick δ s.t.

$$|f(x) - f(y)| < \frac{\varepsilon}{b-a}$$

whenever $|x-y| < \delta$. Choose $a = a_0 < a_1 < ... < a_n = b$ such that $a_{i+1} - a_i < \delta$ for all i.

Define

$$c_{i}^{+} = \max_{x \in [a_{i-1}, a_{i}]} f(x),$$

$$c_{i}^{-} = \min_{x \in [a_{i-1}, a_{i}]} f(x)$$

(These exist by Maximum value theorem) So

$$c_{i}^{+} = f\left(x^{+}\right) \ge f\left(x^{-}\right) \forall x \in \left[a_{i-1}, a_{i}\right],$$

$$c_{i}^{-} = f\left(x^{-}\right) \le f\left(x\right) \forall x \in \left[a_{i-1}, a_{i}\right]$$

$$x^+, x^- \in [a_{i-1}, a_i] \implies |x^+ - x^-| < \delta.$$

Define

$$g^{+}(x) = c_{i}^{+} \text{ if } x \in [a_{i-1}, a_{i}),$$

 $g^{-}(x) = c_{i}^{-} \text{ if } x \in [a_{i-1}, a_{i})$

Then $|x^+ - x^-| < \delta \implies c_i^+ - c_i^- < \frac{\varepsilon}{b-a}$ for all i. So to sum up, $g^+ \ge f \ge g^$ and $g^{+}-g^{-}\leq\frac{\varepsilon}{b-a}.$ Thus $g^{+}\in\mathcal{U}\left(f\right),\,g^{-}\in\mathcal{L}\left(f\right),$ and

$$I\left(g^{+}\right)-I\left(g^{-}\right)=I\left(g^{+}-g^{-}\right)\leq I\left(\frac{\varepsilon}{b-a}\right)=\varepsilon$$

Now prove the theorem:

Proof. $I\left(g^{+}\right) \geq u\left(f\right) \geq l\left(f\right) \geq I\left(g^{-}\right)$. So $u\left(f\right) - l\left(f\right) \leq I\left(g^{+}\right) - I\left(g^{-}\right) < \varepsilon$ for all $\varepsilon > 0$, which implies u(f) = l(f).

Corollary. If $f \in C[a,b]$, $\exists f_k \in P(a,b)$ s.t. $(f_k) \to f$ uniformly on [a,b].

Proof. For each k, choose g_k^+ as in the proof of lemma with $\varepsilon = \frac{1}{k}$. Then $(g_k^+) \to f$ uniformly.

Example. (Speed and Distance) Suppose $f[a,b] \to \mathbb{R}^n$ is continuous. f(t) = $(f_1(t), ..., f_n(t))$ where all f_i are continuous. Define $\int_a^b f(t) dt = \left(f_1(t) dt, ..., \int_a^b f_n(t) dt\right)$ (Integrating pointwise).

If $f(t) = \mathbf{v}(t)$ =velocity of a particle in \mathbb{R}^n at time t, then $\mathbf{p}(b) - \mathbf{p}(a) =$ $\int_{a}^{b} f(t) dt$ is the displacement of particle from its position at t = a. $||\mathbf{v}(t)||$ is the speed of particle.

Proposition. If $f:[a,b]\to\mathbb{R}^n$ is continuous, then

$$\left|\left|\int_{a}^{b} f(t) dt\right|\right| \leq \int_{a}^{b} \left|\left|f(t)\right|\right| dt$$

Lemma. If $x_i, y_i \in \mathbb{R}$ satisfy:

- (1) $x_i \leq y_i$ for all i;
- (2) $(x_i) \to x$ and $(y_i) \to y$

Then $x \leq y$.

Proof.
$$y_i - x_i \ge 0, (y_i - x_i) \to y - x \implies y - x \ge 0.$$

Lemma. The proposition holds if f is piecewise constant (maybe not continuous).

Proof. Suppose $f(t) = \mathbf{v}_i$ for $t \in (a_{i-1}, a_i)$. Then

$$\begin{aligned} || \int_{a}^{b} f(t) dt || &= || I(f) || \\ &= || \sum_{i=1}^{n} (a_{i+1} - a_{i}) \mathbf{v}_{i} || \\ &\leq \sum_{i=1}^{n} (a_{i} - a_{i-1}) || \mathbf{v}_{i} || \\ &= I(||f||) \\ &= \int_{a}^{b} ||f|| dt. \end{aligned}$$

Proof of proposition:

3 COMPACTNESS

28

Proof. Choose a sequence of piecewise constant functions $f_k : [a, b] \to \mathbb{R}^n$ s.t. $(f_k) \to f$ uniformly.

Then

$$\int_a^b f_k \to \int_a^b f$$

(uniformly convergence $\implies L^1$ convergence) and

$$\left(\left|\left|\int_a^b f_k\right|\right|\right) \to \left(\left|\left|\int_a^b f\right|\right|\right)$$

since $||\cdot||$ is continuous.

Also (|| \mathbf{f}_k ||) \rightarrow ||f|| uniformly (|| · || is continuous). So

$$\left(\int_a^b ||f_k||\right) \to \int_a^b ||f||$$

So now take $x_k = ||\int_a^b f_k||, x = ||\int_a^b f||, y_k = \int_a^b ||f_k||, y = \int_a^b ||f||.$

Then
$$x_k \leq y_k$$
, so $x \leq y$.