IPv4 & IPv6 Addressing

Arquitetura de Redes

Mestrado Integrado em Engenharia de Computadores e Telemática DETI-UA

Subnetting

- Problem: Organizations have multiple networks which are independently managed
 - Solution 1: Allocate a separate network address for each network
 - Difficult to manage
 - From the outside of the organization, each network must be addressable.
 - Solution 2: Add another level of hierarchy to the IP addressing structure

Types of Addresses

- Unicast Identify a single sender/receiver.
- Broadcast All are receivers.
- Multicast Identify all elements of a group as receivers (all-of-many)
- Anycast Identifies any element of group as receiver (one-of-many)

IPv4 Addressing

- An IPv4 address is a unique address for a network interface
- Exceptions:
 - Dynamically assigned IPv4 addresses (DHCP)
 - IP addresses in private networks (NAT)
- An IPv4 address:
 - is a 32 bit long identifier
 - encodes a network number (network prefix) and a host identifier

Network Prefix and Host Identifier

 The network prefix identifies a network and the host identifier identifies a specific host (actually, interface on the network).

network prefix

host identifier

- How do we know how long the network prefix is?
 - Before 1993: The boundary between network prefix and host identifier is implicitly defined (class-based/classful addressing)

or

 After 1993: The boundary between network prefix and host identifier is indicated by a netmask.

Classless Inter-Domain Routing (CIDR)

- New interpretation of the IP addressing to increase efficiency and flexibility.
 - Network Masks were created to define the boundary between the IP network prefix and host identifier.
 - A bit of the mask equal to one indicate that that bit (in that position) of the address belongs to the network prefix.
 - → A bit of the mask equal to zero indicate that that bit (in that position) of the address belongs to the host identifier.
 - Called VLSM (Variable Length Subnet Mask).
 - Must be provided with the IP address.
- Allowed the partition of a network in smaller networks or sub-networks (subnets).
- Allowed to merge several network under a single prefix (aggregation or summary process).

Mask Notations

- There are two notations for IPv4 masks:
 - Decimal: 4 bytes separated by dots.
 - CIDR: A slash (/) a a number with the number of bits of the network prefix.
- Both notations still exist today.
 - CIDR starts to become prevalent.
 - IPv6 only supports CIDR.

CIDR	Decimal
/21	255.255.248.0
/20	255.255.240.0
/19	255.255.224.0
/18	255.255.192.0
/17	255.255.128.0
/16	255.255.0.0
/15	255.248.0.0
/14	255.240.0.0
/13	255.224.0.0

CIDR	Decimal
/30	255.255.255.252
/29	255.255.255.248
/28	255.255.255.240
/27	255.255.255.224
/26	255.255.255.192
/25	255.255.255.128
/24	255.255.255.0
/23	255.255.254.0
/22	255.255.252.0

CIDR Address Blocks

- CIDR defines a block of addresses.
- The addresses blocks are used to assign
- #Addresses= 2^(32-CIDR)
 - **•** Example: $(34 \rightarrow 2^{(32-24)}=2^{8}=256, (28 \rightarrow 2^{(32-28)}=2^{4}=16)$
- #Usable_Addresses = #Addresses 2 addresses
 - Network prefix and broadcast address

CIDR	# of addresses	# usable addresses	CIDR	# of addresses	# usable addresses
21	2048	2046	30	4	2
20	4096	4094	29	8	6
19	8192	8190	28	16	14
18	16384	16382	27	32	30
17	32768	32766	26	64	62
16	65536	65534	25	128	126
15	131072	131070	24	256	254
14	262144	262142	23	512	510
13	524288	524286	22	1024	1022

IPv4 Classful Addressing

- Initially (until 1993) the boundary between the network prefix and host identifier was predefined by the value of the first byte (class).
- Resulted in a huge waste of addresses:
 - Classes A and B were to big,
 - Not enough class C networks.
- Routing Tables were becoming very long
 - It was not possible to merge (aggregate) networks to simplify routing tables.

Class	First Address	Last Address
A	1.0.0.0	126.0.0.0
В	128.0.0.0	191.255.0.0
С	192.0.0.0	223.255.255.0
D	224.0.0.0	239.255.255.255
Е	240.0.0.0	255.255.255.254

Conversion of Multicast IPv4 Address to Ethernet Address

IPv4 Private Networks

Prefix	First Address	Last Address
10.0.0.0/8	10.0.0.0	10.255.255.255
172.16.0.0/12	172.16.0.0	172.31.255.255
192.168.0.0/16	192.168.0.0	192.168.255.255
169.254.0.0/16	169.254.0.0	169.254.255.255

- To be used within a local network.
- Packets with these addresses as destination are not routed to the Internet.
- Packets with these addresses as source should not be routed to the Internet.
 - Not default behavior!

IPv6 Addressing

IPv6 Background

- ETF IPv6 WG began to work on a solution to solve addressing growth issues in early 1990s
- Reasons to late deployment
 - Classless Inter-Domain Routing (CIDR) and Network address translation (NAT) were developed
 - Investments on field equipments (not IPv6 aware) had to reach the predicted "return of investment"
 - Massive re-equipment price

IPv6 Features

- Larger address space enabling:
 - Global reachability, flexibility, aggregation, multihoming, autoconfiguration, "plug and play" and renumbering
- Simpler header enabling:
- Routing efficiency, performance and forwarding rate scalability
- Improved option support

IPv6 Addressing

- IPv4: 4bytes/32 bits
 - **→** ~ 4,294,967,296 possible addresses
- IPv6: 16bytes/128 bits
 - **3**40,282,366,920,938,463,463,374,607,431,768,211,456 possible addresses
- Representation
 - 16-bit hexadecimal numbers
 - Hex numbers are not case sensitive
 - Numbers are separated by (:)
 - Abbreviations are possible
 - Leading zeros in contiguous block could be represented by (::)
 - Example:
 - 2001:0db8:0000:130F:0000:0000:087C:140B = 2001:0db8:0:130F::87C:140B
 - Double colon only appears once in the address
 - Address's prefix is represented as: prefix/mask_number_of_bits

IPv4 vs. IPv6 Headers

IPv4 Header

Version	IHL	Type of Service	Total Length	
Identification		Flags	Fragment Offset	
Time to	Live	Protocol	Header Checksum	
	Source Address			
Destination Address				
Options				Padding

IPv6 Header

Source Address

Destination Address

IPv6 Header Format

IPv6 Addressing Model

- Interface have multiple addresses
- Addresses have scope:
 - Link Local
 - Valid within the same LAN or link
 - Unique Local
 - Valid within the same private domain
 - Can not be used in Internet
 - Global
- Addresses have lifetime
 - Valid and preferred lifetime

Types of IPv6 Addresses

- Unicast
 - Address of a single interface.
 - One-to-one delivery to single interface
- Multicast
 - Address of a set of interfaces.
 - One-to-many delivery to all interfaces in the set
- Anycast
 - Address of a set of interfaces.
 - One-to-one-of-many delivery to a single interface in the set that is closest
- No more broadcast addresses

IPv6 Addressing

Type	Binary	Hexadecimal
Global Unicast Address	0010	2
Link-Local Unicast Address	1111 1110 10	FE80::/10
Unique-Local Unicast Address	1111 1100 1111 1101	FC00::/8 FD00::/8
Multicast Address	1111 1111	FF00::/16

Link-Local Address

- Used For:
 - Mandatory address for local communication between two IPv6 devices
 - Next-Hop calculation in Routing Protocols
- Automatically assigned as soon as IPv6 is enabled
- Remaining 54 bits could be Zero or any manual configured value

Unique-Local Address

- Used For:
 - Local communications
 - Inter-site VPNs
- Can be routed only within the same Autonomous System
 - Can not be used on the Internet

Global Unicast Addresses

LA, NLA and SLA used for hierarchical addressing

24 Bits

TLA - Top-Level Aggregation

13 Bits 8 Bits

- RES Reserved (must be zero)
- NLA Next-Level Aggregation Identifier
- SLA Site-Level Aggregation Identifier

IPv6 Interface Identifier

- Lowest-Order 64-Bit field of any address:
 - Auto-configured from a 64-bit EUI-64, or expanded from a 48-bit MAC address (e.g. Ethernet address)
 - Auto-generated pseudo-random number
 - Assigned via DHCP
 - Manually configured

MAC to Interface ID (EUI-64 format)

- Stateless auto-configuration
- Expands the 48 bit MAC address to 64 bits by inserting FFFE into the middle 16 bits
- To make sure that the chosen address is from a unique Ethernet MAC address
 - "u"bit is set to 1 for global scope
 - "u"bit is set to 0 for local scope

Anycast Address

IPv6 Address

- Address that is assigned to a set of interfaces
 - Typically belong to different nodes
- A packet sent to an Anycast address is delivered to the closest interface (determined by routing and timings)
- Anycast addresses can be used only by routers, not hosts
- Must not be used as the source address of an IPv6 packet
- Nodes to which the anycast address is assigned must be explicitly configured to recognize that the address is an Anycast address

Multicast Addresses

8-bit	4-bit	4-bit	112-bit
1111 1111	Lifetime	Scope	Group-ID

Lifetime	
0	If Permanent
1	If Temporary

Scope	
1	Node
2	Link
5	Site
8	Organization
Е	Global

- Multicast addresses have a prefix FF00::/8
- The second byte defines the lifetime and scope of the multicast address.

Mapping a IPv6 Multicast Address to Ethernet Address

Common Multicast Addresses

Node Scope

- → FF01:::1 All Nodes Address (Node scope)
- FF01:::2 All Routers Address (Node scope)

Link Scope

- FF02::1 All Nodes Address (Node scope)
- FF02::2 All Routers Address
- FF02::4 DVMRP Routers
- → FF02::5 OSPF IGP
- FF02::6 OSPF IGP Designated Routers
- FF02::9 RIP Routers
- → FF02::B Mobile-Agents
- → FF02::D All PIM Routers
- → FF02::E RSVP-ENCAPSULATION
- → FF02::16 All MLDv2-capable routers
- → FF02:::1:2 All DHCP agents

Solicited-Node Multicast Address

IPv6 Address

- For each unicast and anycast address configured there is a corresponding solicited-node multicast
- FF02::1:FF:<interface ID's lower 24 bits>
- This address has link local significance only
- Used in "Neighbour Solicitation Messages"
 - MAC/Physical addresses resolution
 - Duplicate Address Detection (DAD)
 - Random or assigned interface IDs may result in equal global/link addresses

Physical Addresses Resolution

- In IPv6 ARP does not exist anymore.
- ARP table is now called NDP table
 - NDP: Neighbor Discovery Protocol
 - Maintains a list of known neighbors (IPv6 addresses and MAC addresses).
- Uses ICMPv6 "Neighbor Solicitation" and "Neighbor Advertisement" messages.
 - To resolve an address a Neighbor Solicitation message is sent to the Solicited-Node multicast address of the target machine (IPv6 address).
 - Response is sent in unicast using a Neighbor Advertisement message.

ICMPv6

- Internet Control Message Protocol version 6 (ICMPv6) is the implementation ICMP for IPv6
 - ▶ RFC 4443
 - ICMPv6 is an integral part of IPv6.
- Have the same functionalities of ICMP, plus:
 - Replaces and enhances ARP,
 - ICMPv6 implements a Neighbor Discovery Protocol (NDP),
 - Hosts use it to discover routers and perform auto configuration of addresses,
 - Used to perform Duplicate Address Detection (DAD),
 - Used to test reachability of neighbors.

Neighbor Discovery

- Neighbor discovery uses ICMPv6 messages, originated from node on link local with hop limit of 255
- Consists of IPv6 header, ICMPv6 header, neighbor discovery header, and neighbor discovery options
- Five neighbor discovery messages
 - Router solicitation (ICMPv6 type 133)
 - Router advertisement (ICMPv6 type 134)
 - Neighbor solicitation (ICMPv6 type 135)
 - Neighbor advertisement (ICMPv6 type 136)
 - Redirect (ICMPV6 type 137)

Router Solicitation

- Host send to inquire about presence of a router on the link
- Send to all routers multicast address of FF02::2 (all routers multicast address)
- Source IP address is either link local address or unspecified IPv6 address

Router advertisement

- Sent out by routers periodically, or in response to a router solicitation
- Includes auto-configuration information
- Includes a "preference level" for each advertised router address
- Also includes a "lifetime" field

Neighbor Solicitation

- Send to discover link layer address of IPv6 node
- IPv6 header, source address is set to unicast address of sending node, or :: for DAD
- Destination address is set to
 - Unicast address for reachability
 - Solicited node multicast for address resolution and DAD

Neighbor Advertisement

- Response to neighbor solicitation message
- Also send to inform change of link layer address

Redirect

 Redirect is used by a router to signal the reroute of a packet to a better router

Auto-configuration

Stateless

- A node on the link can automatically configure global IPv6 addresses by appending its interface identifier (64 bits) to the prefixes (64 bits) included in the Router Advertisement messages
- Additional/Other network information may be obtained
 - Additional fields in Router Advertisement messages,
 - Using a stateless DHCPv6 server.

Stateful

- Addresses are obtained using DHCPv6.
- The default gateway may send two configurable flags in Router Advertisements (RA)
 - Other flag bit: client can use DHCPv6 to retrieve other configuration parameters (e.g.: DNS server addresses)
 - Managed flag bit: client may use DHCPv6 to retrieve a Managed IPv6 address from a server

DHCPv6

- Basic DHCPv6 concept is similar to DHCP for IPv4.
- If a client wishes to receive configuration parameters, it will send out a request to detect available DHCPv6 servers.
 - This done through the "Solicit" and "Advertise" messages.
 - Well known DHCPv6 Multicast addresses are used for this process.
- Next, the DHCPv6 client will "Request" parameters from an available server which will respond with the requested information with a "Reply" message.

DHCPv6 Client

- DHCPv6 relaying works differently from DHCP for IPv4 relaying
 - Relay agent will encapsulate the received messages from the directly connected DHCPv6 client (RELAY-FORW message)
 - Forward these encapsulated DHCPv6 packets towards the DHCPv6 server.
 - In the opposite direction, the Relay Agent will decapsulate the packets received from the central DHCPv6 Server (RELAY-REPL message).

Multicast Listener Discovery (MLD)

- MLD permits the creation/management of multicast groups
- MLD is used by an IPv6 router to:
 - Discover the presence of multicast listeners on directly attached links
 - And to discover which multicast addresses are of interest to those neighboring nodes
 - Report interest in router specific multicast addresses
- Routers and hosts use MLD to report interest in respective Solicited-Node Multicast Addresses
- MLD will be studied later in detail.

IPv6 Start-up - Router

Multicast (all MLDv2-capable routers)

ff02::16

Multicast (all MLDv2-capable routers)

ff02::16

Multicast solicited-node address

ff02::1:ff+(address's last 24 bits)

Multicast (all hosts)

ff02::1

Multicast (all MLDv2-capable routers)

ff02::16

Multicast (all MLDv2-capable routers)

ff02::16

Multicast solicited-node address

ff02::1:ff+(address's last 24 bits)

Multicast (all hosts) ff02::1 MLDv2 Report Message

(Multicast all routers)

MLDv2 Report Message

(Multicast solicited-node address)

Neighbor Solicitation

(DAD link-local address)

Neighbor Advertisement

MLDv2 Report Message

(Multicast all routers)

MLDv2 Report Message

(Multicast solicited-node address)

Neighbor Solicitation

(DAD global address)

Router Advertisement

Link-local address

Null address

Null address

Null address

Link-local address

fe80::+(interface ID 64-bits)

Link-local address

fe80::+(interface ID 64-bits)

Link-local address

fe80::+(interface ID 64-bits)

Null address

fe80::+(interface ID 64-bits)

IPv6 Start-up — Terminal/Router Interaction

Multicast solicited-node address Neighbor Solicitation Null address (DAD link-local address) ff02::1:ff+(address's last 24 bits) Link-local address **Router Solicitation Multicast (all routers)** fe80::+(interface ID 64-bits) ff02::2 **MLDv2** Report Message **Null address Multicast (all MLDv2-capable routers)** (Multicast solicited-node address) ff02::16 **Router Advertisement Link-local address Multicast (all hosts)** fe80::+(interface ID 64-bits) ff02::1 Multicast solicited-node address **Neighbor Solicitation Null address** (DAD global address) ff02::1:ff+(address's last 24 bits)

Address Resolution and Ping6

IPv6 Subnetting/Aggregation

- In IPv6 the same principles of IPv4 subnetting and aggregation are still valid.
 - Using the TLA, NLA and SLA bits of the IPv6 addresses.
 - Example: network 2001:A:A:/48 can be divided in 2^16 sub-networks with identifiers 2001:A:A:****:/64
- By standard, the maximum mask size is /64, however it is possible to subnet also the host part of the IPv6 address.
 - Usage of mask /120 to protect the network from NDP Table Exhaustion attacks.
 - → With mask /120 the maximum size of the NDP table is limited to 2^8.
 - More "large" masks also work.
 - Some tools/services may break.
 - Requires manual, DHCPv6 address configuration or modified autoconfiguration mechanisms.

IP Addresses Allocation Planning

Physical vs. Logical Networks

- A physical (or VLAN) network can have multiple IP logical (sub)networks,
 - One or more IPv4 public networks,
 - One or more IPv4 private networks,
 - One or more IPv6 networks.
- Requires
 - Terminals that support multiple IP addresses in the same NIC (normal!).
 - Configuration of sub-interfaces in routers or L3 switches
- IPv4 private and public routing is the same.
- IPv4 routing and IPv6 routing are independent.

Advantages of Subnetting

- With subnetting, IP addresses use a 3-layer hierarchy:
 - Network
 - Subnet
 - Host
- Reduces router complexity. Since external routers do not know about subnetting, the complexity of routing tables at external routers is reduced.
- Note: Length of the subnet mask <u>does not need</u> to be identical in all subnetworks.
 - Address blocks with mask /x contain 2 address blocks with mask /(2*x)
 - /24 block contains 2 /25 blocks
 - /25 block contains 2 /26 blocks
 - *****
 - /27 block contains 2 /28 blocks

Example – IPv4 Public Planning (1)

- Problem: Multiple (V)LAN require a small number of public IPv4 addresses. The public IPv4 network available is 193.1.1.0/24.
 - Note: All (V)LAN require IPv4 addresses, however may use private addresses (another IPv4 network).

192.1.1.0/24

Example – IPv4 Public Planning (2)

- LAN 1 \rightarrow **10**+2 routers/gw+prefix+broadcast= 14 \rightarrow 16 \rightarrow /28 net
- LAN 2 \rightarrow 25+2 routers/gw+prefix+broadcast= 29 \rightarrow 32 \rightarrow /27 net
- LAN 3 \rightarrow **16**+2 routers/gw+prefix+broadcast= 20 \rightarrow 32 \rightarrow /27 net
- LAN 4 \rightarrow **15**+2 routers/gw+prefix+broadcast= 19 \rightarrow 32 \rightarrow /27 net
- LAN 5 \rightarrow **50**+1 router/gw+prefix+broadcast= 53 \rightarrow 64 \rightarrow /26 net
- DMZ \rightarrow **5**+1 router/gw+prefix+broadcast = 8 \rightarrow 8 \rightarrow /29 net

- **Q** LAN 1 → 10+2+2=14 → 16 → /28 net
- LAN 2 \rightarrow 25+2+2=29 \rightarrow 32 \rightarrow /27 net
- LAN 3 \rightarrow 16+2+2=20 \rightarrow 32 \rightarrow /27 net
- **Q** LAN 4 → 15+2+2=19 → 32 → /27 net
- **Q** LAN 5 → 50+1+2=53 → 64 → /26 net
- DMZ \rightarrow 5+1+2=8 \rightarrow 8 \rightarrow /29 net

Example (3)

Example: 192 is multiple of 64, 176 is multiple of 16, and 184 is

multiple of 8.

Example – IPv4 Private Planning (2)

- Easier approach is to start from /24 networks and perform sub-netting/aggregation as required.
- Point-to-point networks will be /30 networks.
 - Network 10.0.9.0/24 will be used to perform the sub-netting.
 - Assigned: 10.0.9.0/30, 10.0.9.4/30, 10.0.9.8/30

IP Address Allocation (1)

- IP addresses allocation (blocks)
 - Separate VLANs for video, voice and data, and even user role-based
 - Data-center and DMZ
 - Network Address Translation (NAT/PAT)
 - Addressing for virtual private network (VPN) clients
 - Inner layer (point-to-point) links
 - Lookback addresses
- The same (V)LAN may/should have an IPv4 private network, IPv4 public network (if required), IPv6 global network, and IPv6 site-local network (optional).

• Allocate address blocks that allow route summarization (addresses aggregation) for

"similar" (sub)networks

- Important in scaling any routing protocol.
 - Simpler configurations, reduces routing tables (and routes databases) sizes, number/size of exchanged packets, faster convergence.
- Efficient and easily managed address rules for quality of service (QoS) and security purposes.

IP Address Allocation (2)

- IPv4 private versus public address allocation
 - Reserve small public subnets for equipments/services that really need a public address
 - Router network interfaces with ISPs
 - Usually ISPs give/define extra addresses for this interfaces.
 - Company's (paid) IP addresses ranges used to everything else.
 - **→**NAT/PAT
 - →Video-conference terminals, public servers, etc...
 - For private addressing available addresses are not an issue (usually!)
 - →A simple scheme that can be used to avoid binary arithmetic,
 - →e.g., use network 10.0.0.0/8 → to cretate subnetworks 10.<aaaabbbb>.<cccdddd>.0/24
 - →aaaa bits: location encoding; bbbb bits: building/zone encoding; cccc bits: group encoding; dddd bits: service encoding.
- IPv6 address allocation
 - Available addresses are not an issue.
 - Usage of summarization must be considered.
 - →e.g., for network 2001:A:A::/48 → 2001:A:A:<aaaabbbbccccdddd>:/64 subnetworks
 - Example for summarization per location first, and after by service: aaaa bits: location encoding; bbbb bits: service encoding; cccc bits: group encoding; dddd bits: building/zone encoding.
 - Example for sumarization per location first, and after by building/zone: aaaa bits: location encoding; bbbb bits: building/zone encoding; cccc bits: group encoding; dddd bits: service encoding.
- Point-to-point links and loopback interfaces
 - For IPv4 prefer to use
 - →/30 prefixes for point-to-point links, /32 prefixes for *loopback* interfaces.
 - For IPv6 prefer to use
 - →/126 prefixes for point-to-point links, /128 prefixes for *loopback* interfaces.