Nonstandard Numbers

Athar Abdul-Quader

Purchase College, SUNY

Hofstra Mathematics Department Seminar April 9, 2025

00000

- 1700s / 1800s: formalizing notions of calculus (Bolzano, Weierstrauss, Cauchy: limits, continuity)
- Development of set theory (Cantor, late 1800s)
- Foundational crises!
- Axiomatic theories (Late 1800s Dedekind-Peano, early 1900s Zermelo)
- Early 1900s: Hilbert's program

$$\mathbb{N}=\{0,1,2,3,\ldots\}.$$

00000

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$. What exactly does "..." mean? Aren't mathematical definitions supposed to be precise?

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$. What exactly does "..." mean? Aren't

mathematical definitions supposed to be precise?

Definition

Introduction

00000

 \mathbb{N} is the smallest set containing 0 that is closed under the operation of adding 1.

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$. What exactly does "..." mean? Aren't mathematical definitions supposed to be precise?

Definition

Introduction

00000

 \mathbb{N} is the smallest set containing 0 that is closed under the operation of adding 1.

The word "smallest" is key here. One can imagine a set containing $\mathbb N$ and an "infinite element" c, together with all of its successors: $\{0,1,2,3,\ldots,c,c+1,c+2,c+3,\ldots\}$. Such a set would contain 0 and be closed under adding 1. c is kind of "unreachable" from 0.

00000

The definition in the previous slide just describes the *set* of natural numbers; it doesn't describe the arithmetical structure. This can be described with the (Dedekind-)Peano axioms:

- For all natural numbers a and b, a+b is a natural number (\mathbb{N} is closed under addition).
- For all natural numbers a and b, ab is a natural number ($\mathbb N$ is closed under multiplication).
- For all natural numbers a, b and c, a(b+c)=ab+ac (multiplication distributes over addition).
- Addition and multiplication are commutative, associative, etc.
- For all natural numbers a and b, a < b or b < a or a = b.
- ... (There are many more: Every natural number has a unique "successor", every non-zero natural number has a unique "predecessor", etc.)

We can use the first order language of arithmetic $(0,1,+,\times,<)$ to formalize the statements in the previous slide.

Introduction

00000

We can use the first order language of arithmetic $(0,1,+,\times,<)$ to formalize the statements in the previous slide.

• Formulas are built using variables, $0, 1, +, \times, <$ and =.

Introduction

00000

We can use the first order language of arithmetic $(0,1,+,\times,<)$ to formalize the statements in the previous slide.

- Formulas are built using variables, $0, 1, +, \times, <$ and =.
- If ϕ and ψ are formulas, then so are $\phi \wedge \psi$ (" ϕ and ψ "), $\phi \vee \psi$ (" ϕ or ψ "), $\neg \phi$ ("Not ϕ "), and $\phi \rightarrow \psi$ ("If ϕ , then ψ .")

Introduction

00000

We can use the first order language of arithmetic $(0,1,+,\times,<)$ to formalize the statements in the previous slide.

- Formulas are built using variables, $0, 1, +, \times, <$ and =.
- If ϕ and ψ are formulas, then so are $\phi \wedge \psi$ (" ϕ and ψ "), $\phi \vee \psi$ (" ϕ or ψ "), $\neg \phi$ ("Not ϕ "), and $\phi \rightarrow \psi$ ("If ϕ , then ψ .")
- Formulas can have free variables: e.g. $\psi(y) = 1 < y$ expresses "y is greater than 1."

Introduction

00000

We can use the first order language of arithmetic $(0,1,+,\times,<)$ to formalize the statements in the previous slide.

- Formulas are built using variables, $0, 1, +, \times, <$ and =.
- If ϕ and ψ are formulas, then so are $\phi \wedge \psi$ (" ϕ and ψ "), $\phi \vee \psi$ (" ϕ or ψ "), $\neg \phi$ ("Not ϕ "), and $\phi \rightarrow \psi$ ("If ϕ , then ψ .")
- Formulas can have free variables: e.g. $\psi(y) = 1 < y$ expresses "y is greater than 1."
- We can also quantify over variables in a formula using \forall ("For all") and \exists ("There exists"). $\phi(y) = 1 < y \land \forall a \forall b (a \times b = y \rightarrow (a = y \lor b = y))$ expresses "y is a prime number".
- For the above formula $\phi(y)$, $\mathbb{N} \models \phi(2)$ and $\mathbb{N} \models \neg \phi(6)$.

Categoricity

Introduction

00000

Many mathematical structures that have those same properties. What makes \mathbb{N} unique? We already said this: \mathbb{N} is the smallest set containing 0 and closed under successors!

How do we express this formally?

Dedekind (1888) / Peano (1889): axiomatization of $\mathbb N$ using just 0 and S (for "successor"):

- $0 \in \mathbb{N}$
- For every $n \in \mathbb{N}$, $S(n) \in \mathbb{N}$ (\mathbb{N} is closed under successors).
- For all $m, n \in \mathbb{N}$, if S(m) = S(n), then m = n (S is an injection).
- For all $n \in \mathbb{N}$, $S(n) \neq 0$ (0 is not a successor).

Dedekind-Peano

Dedekind (1888) / Peano (1889): axiomatization of \mathbb{N} using just 0 and S (for "successor"):

- \bullet 0 $\in \mathbb{N}$
- For every $n \in \mathbb{N}$, $S(n) \in \mathbb{N}$ (\mathbb{N} is closed under successors).
- For all $m, n \in \mathbb{N}$, if S(m) = S(n), then m = n (S is an injection).
- For all $n \in \mathbb{N}$, $S(n) \neq 0$ (0 is not a successor).

(So far this defines 0, successors, and says that $\mathbb N$ is closed under successors. Now how do we say it's the smallest?)

Applications

Dedekind-Peano

Dedekind (1888) / Peano (1889): axiomatization of \mathbb{N} using just 0 and S (for "successor"):

- $0 \in \mathbb{N}$
- For every $n \in \mathbb{N}$, $S(n) \in \mathbb{N}$ (\mathbb{N} is closed under successors).
- For all $m, n \in \mathbb{N}$, if S(m) = S(n), then m = n (S is an injection).
- For all $n \in \mathbb{N}$, $S(n) \neq 0$ (0 is not a successor).

(So far this defines 0, successors, and says that $\mathbb N$ is closed under successors. Now how do we say it's the smallest?)

• If K is a set with the properties that $0 \in K$ and whenever $n \in K$, then $S(n) \in K$, then $\mathbb{N} \subseteq K$.

Categoricity

Introduction

Dedekind proved that $\mathbb N$ is categorical for these axioms: that is, if any structure (M,0',S') satisfies these same axioms, then $(\mathbb N,0,S)\cong (M,0',S')$.

Proof.

The isomorphism $f : \mathbb{N} \to M$ is defined inductively so that:

- \bullet $0 \mapsto 0'$
- If $m \mapsto n$, then $S(m) \mapsto S'(n)$.

(Need to prove this is an isomorphism; ie that this defines a function that is one to one, onto, and commutes with successors.)

Formalizing

Introduction

The Dedekind-Peano axiomatization can be formalized in first-order logic, with one major caveat.

Notice the difference between a sentence like

$$\forall n \forall m (S(n) = S(m) \rightarrow n = m)$$

and

$$\forall K(0 \in K \land (n \in K \rightarrow S(n) \in K)) \rightarrow \forall n(n \in K)$$
?

First and Second Order

Logic

Introduction

The distinction: what *objects* are we quantifying over?

- The ones in the set N?
- The subsets of \mathbb{N} ?

The Dedekind-Peano axiomatization is a second-order axiomatization of \mathbb{N} . Can we translate it to first-order logic?

Scheme

Introduction

Let's go back to the language with $0, 1, +, \times, <$.

Instead of quantifying over all sets K, we can add an infinite scheme of axioms, one for each formula $\phi(x, \bar{y})$ in this language:

$$\forall \bar{v}(\phi(0,\bar{v}) \land \forall x(\phi(x,\bar{v}) \rightarrow \phi(x+1,\bar{v})) \rightarrow \forall x(\phi(x,\bar{v})))$$

This is the axiom schema of induction. Now we have a first-order axiomatization of arithmetic!

Scheme

Introduction

Let's go back to the language with $0, 1, +, \times, <$.

Instead of quantifying over all sets K, we can add an infinite scheme of axioms, one for each formula $\phi(x, \bar{y})$ in this language:

$$\forall \bar{v}(\phi(0,\bar{v}) \land \forall x(\phi(x,\bar{v}) \rightarrow \phi(x+1,\bar{v})) \rightarrow \forall x(\phi(x,\bar{v})))$$

This is the axiom schema of induction. Now we have a first-order axiomatization of arithmetic!

Is this good enough?

Aside: Models and Theories

Logic

Introduction

A statement is a formula without free variables. A theory is a consistent collection of statements (in some fixed "language").

Aside: Models and Theories

A statement is a formula without free variables. A theory is a consistent collection of statements (in some fixed "language").

- Can reason axiomatically: start with a theory, and see what we can prove from that theory (need a proof system).
- Alternatively, start with a mathematical structure (a set with some operations like + and/or relations like <), describe the properties that are true about that structure.
- The interplay between these two approaches is the heart of model theory, a branch of mathematical logic.

Aside: Models and Theories

A statement is a formula without free variables. A theory is a consistent collection of statements (in some fixed "language").

- Can reason axiomatically: start with a theory, and see what we can prove from that theory (need a proof system).
- Alternatively, start with a mathematical structure (a set with some operations like + and/or relations like <), describe the properties that are true about that structure.
- The interplay between these two approaches is the heart of model theory, a branch of mathematical logic.

Definition

• A model of a theory is a set M such that every statement in the theory is true in M.

A statement is a formula without free variables. A theory is a consistent collection of statements (in some fixed "language").

- Can reason axiomatically: start with a theory, and see what we can prove from that theory (need a proof system).
- Alternatively, start with a mathematical structure (a set with some operations like + and/or relations like <), describe the properties that are true about that structure.
- The interplay between these two approaches is the heart of model theory, a branch of mathematical logic.

Definition

Introduction

- A model of a theory is a set M such that every statement in the theory is true in M.
- Given a structure M Th(M) is the set of all first-order statements that are true about M.

Fix a first-order language \mathcal{L} . Let \mathcal{T} be a theory and ϕ a sentence.

- If there is a proof of ϕ from T, we write $T \vdash \phi$.
- If M is a model and ϕ is true in M, we write $M \models \phi$.
- If, in *every* model M of T, it happens that $M \models \phi$, then we write $T \models \phi$.

Theorem (Gödel's Completeness Theorem)

Fix a language \mathcal{L} . For every theory T and sentence ϕ , $T \vdash \phi$ if and only if $T \models \phi$.

Importantly: proofs are finite! This implies:

Theorem (Compactness Theorem)

A theory T has a model if and only if every finite subset $T_0 \subseteq T$ has a model.

Nonstandardness

Introduction

- PA is the first-order theory including the axioms for arithmetic (in the language $0, 1, +, \times, <$).
- Describes the algebraic structure (commutativity, associativity, etc), ordering, and the induction scheme.
- Consider the theory T (in an expanded language which has a new symbol c) consisting of PA as well as all statements of the form c > n for each natural number n.

Nonstandardness.

Introduction

- PA is the first-order theory including the axioms for arithmetic (in the language $0, 1, +, \times, <$).
- Describes the algebraic structure (commutativity, associativity, etc), ordering, and the induction scheme.
- Consider the theory T (in an expanded language which has a new symbol c) consisting of PA as well as all statements of the form c > n for each natural number n.
- Take any finite subset T_0 of T: there is natural number $c \in \mathbb{N}$ satisfying all those statements.

Nonstandardness

- PA is the first-order theory including the axioms for arithmetic (in the language $0, 1, +, \times, <$).
- Describes the algebraic structure (commutativity, associativity, etc), ordering, and the induction scheme.
- Consider the theory T (in an expanded language which has a new symbol c) consisting of PA as well as all statements of the form c > n for each natural number n.
- Take any finite subset T_0 of T: there is natural number $c \in \mathbb{N}$ satisfying all those statements.
- ullet By the compactness theorem, there is a model M of T.

PA is the first-order theory including the axioms for arithmetic (in the language $0, 1, +, \times, <$).

- Describes the algebraic structure (commutativity, associativity, etc), ordering, and the induction scheme.
- Consider the theory T (in an expanded language which has a new symbol c) consisting of PA as well as all statements of the form c > n for each natural number n.
- Take any finite subset T_0 of T: there is natural number $c \in \mathbb{N}$ satisfying all those statements.
- By the compactness theorem, there is a model M of T.
- But in this model, c cannot be any natural number n! So this model M must contain non-standard elements.

M is called a non-standard model of arithmetic!

Introduction

Suppose M is a nonstandard model of PA.

• $0 \in M$, $1 \in M$, etc. That is: $\mathbb{N} \subseteq M$.

Introduction

- $0 \in M$, $1 \in M$, etc. That is: $\mathbb{N} \subseteq M$.
- If $c \in M$ is nonstandard, then $c + 1, c + 2, \ldots$ are all in M

Introduction

- $0 \in M$, $1 \in M$, etc. That is: $\mathbb{N} \subseteq M$.
- If $c \in M$ is nonstandard, then $c+1, c+2, \ldots$ are all in M
- $c \neq 0$, so it is a successor: c 1, c 2, ... are all in M.

Introduction

- $0 \in M$, $1 \in M$, etc. That is: $\mathbb{N} \subseteq M$.
- If $c \in M$ is nonstandard, then c + 1, c + 2, ... are all in M
- $c \neq 0$, so it is a successor: $c 1, c 2, \ldots$ are all in M.
- That is: $\{c+n:n\in\mathbb{Z}\}\subseteq M$.

Introduction

- $0 \in M$, $1 \in M$, etc. That is: $\mathbb{N} \subseteq M$.
- If $c \in M$ is nonstandard, then $c+1, c+2, \ldots$ are all in M
- $c \neq 0$, so it is a successor: $c 1, c 2, \ldots$ are all in M.
- That is: $\{c+n:n\in\mathbb{Z}\}\subseteq M$.
- $2c? 3c? c^2?$

Introduction

- $0 \in M$, $1 \in M$, etc. That is: $\mathbb{N} \subseteq M$.
- If $c \in M$ is nonstandard, then c + 1, c + 2, ... are all in M
- $c \neq 0$, so it is a successor: c 1, c 2, ... are all in M.
- That is: $\{c+n:n\in\mathbb{Z}\}\subseteq M$.
- $2c^{2}$ $3c^{2}$ c^{2} ?
- Can prove via induction: every number is either even or odd (congruent to 0 or 1 mod 2). So $\left|\frac{c}{2}\right| \in M$.

What do they look like?

Introduction

Suppose M is a nonstandard model of PA.

- $0 \in M$, $1 \in M$, etc. That is: $\mathbb{N} \subseteq M$.
- If $c \in M$ is nonstandard, then $c+1, c+2, \ldots$ are all in M

Nonstandard Models

- $c \neq 0$, so it is a successor: $c 1, c 2, \ldots$ are all in M.
- That is: $\{c+n:n\in\mathbb{Z}\}\subseteq M$.
- $2c^{2}$ $3c^{2}$ c^{2} ?
- Can prove via induction: every number is either even or odd (congruent to 0 or 1 mod 2). So $\left|\frac{c}{2}\right| \in M$.
- But also, same reasoning holds about $\{|\frac{c}{2}| + n : n \in \mathbb{Z}\}$, $\{ \lfloor \frac{3c}{2} \rfloor + n : n \in \mathbb{Z} \}, \ldots$

Introduction

Suppose M is a nonstandard model of PA.

- $0 \in M$, $1 \in M$, etc. That is: $\mathbb{N} \subseteq M$.
- If $c \in M$ is nonstandard, then c + 1, c + 2, ... are all in M
- $c \neq 0$, so it is a successor: c 1, c 2, ... are all in M.
- That is: $\{c+n:n\in\mathbb{Z}\}\subseteq M$.
- 2c? 3c? c^2 ?
- Can prove via induction: every number is either even or odd (congruent to 0 or 1 mod 2). So $\lfloor \frac{c}{2} \rfloor \in M$.
- But also, same reasoning holds about $\{\lfloor \frac{c}{2} \rfloor + n : n \in \mathbb{Z}\}$, $\{\lfloor \frac{3c}{2} \rfloor + n : n \in \mathbb{Z}\}$, . . .

Every countable, non-standard model of PA looks like a copy of \mathbb{N} , followed by \mathbb{Q} -many copies of \mathbb{Z} (ie a dense ordering of \mathbb{Z} -chains above \mathbb{N})!

What do they think?

Euclidean division: if $M \models PA$, and $b, c \in M$ with $b \neq 0$, then $M \models \exists q \exists r (r < b \land c = qb + r)$. How do we see this?

Proof.

Introduction

Fix $b \neq 0$ and let $\phi(x)$ be the formula $\exists q \exists r (r < b \land x = qb + r)$. Then $\phi(0)$ is true. (Why?)

Suppose $x \in M$ and $M \models \phi(x)$. Then there are q, r such that $M \models x = qb + r$. Then $M \models x + 1 = qb + r + 1$. If r + 1 < b, we are done.

If not? Then r+1=b, and so $M \models x+1 = ab+b = (a+1)b+0$, and therefore $M \models \phi(x+1)$.

Applications

What do they think?

What else is true in M?

- Almost any number-theoretic statement you can think of.
- Chinese Remainder Theorem
- Binary representations: there is a formula b(x, y) that is true if the x-th bit of y is 1.
- Fundamental Theorem of Arithmetic
- Infinitude of the primes
- ..

Elementarity

Introduction

Definition

If $M \subseteq N$ and M and N agree on $+, \times$, and the < relation for elements of M, then M is a substructure of N and N is an extension of M.

Elementarity

Introduction

Definition

If $M \subseteq N$ and M and N agree on +, \times , and the < relation for elements of M, then M is a substructure of N and N is an extension of M.

If $M \subseteq N$ is a substructure, then they agree on the truth of any quantifier-free statements involving parameters from M.

If, for every formula $\phi(x_0,\ldots,x_{n-1})$ and all $a_0,\ldots,a_{n-1}\in M$, $M\models\phi(\bar{a})$ if and only if $N\models\phi(\bar{a})$, the extension is elementary, written $M\prec N$. M is called an elementary substructure of N, and N is called an elementary extension of M. We write $M\prec N$.

Colorings

Introduction

 \mathbb{N} is the set of natural numbers: $\{0, 1, 2, 3, \ldots\}$ A two-coloring of a set X is a function $f: X \to \{ \text{ red, blue } \}$.

Example

A two-coloring of \mathbb{N} :

0 1 2 3 4

Ramsey's Theorem

Definition

Introduction

Let X be a set and n > 0 a natural number. The set $[X]^n$ is the set $\{A \subseteq X : |A| = n\}$, the set of all *n*-element subsets of X.

Ramsey's Theorem

Definition

Introduction

Let X be a set and n > 0 a natural number. The set $[X]^n$ is the set $\{A \subseteq X : |A| = n\}$, the set of all n-element subsets of X.

For example, $[\mathbb{N}]^2$ is the set containing $\{0,1\},\{0,2\},\{1,2\},\{0,3\},\{1,3\},\{2,3\},\dots$

Theorem (Ramsey's Theorem for Pairs)

Let f be a two-coloring of $[\mathbb{N}]^2$. There is an infinite $H \subseteq \mathbb{N}$ such that $f \upharpoonright [H]^2$ is constant.

A set H satisfying the theorem above is called homogeneous for the coloring f.

Ramsey's Theorem

Introduction

A two-coloring of $[\mathbb{N}]^2$

Introduction

Ramsey's Theorem for Singletons

A significantly easier result is the following:

Theorem (Ramsey's Theorem for Singletons)

Let f be a two-coloring of \mathbb{N} . There is an infinite $H \subseteq \mathbb{N}$ such that $f \mid H$ is constant.

Ramsey's Theorem for Singletons

A significantly easier result is the following:

Theorem (Ramsey's Theorem for Singletons)

Let f be a two-coloring of \mathbb{N} . There is an infinite $H \subseteq \mathbb{N}$ such that $f \upharpoonright H$ is constant.

Proof.

Introduction

Let $B = \{a \in \mathbb{N} : f(a) = \text{blue }\}$, and $R = \{a : f(a) = \text{red }\}$. If both are finite, then their union is finite, but of course $B \cup R = \mathbb{N}$ is infinite.

Similar "Proof"?

Introduction

Argument does not directly generalize to pairs.

- Certainly either $B = \{\{x,y\} : f(\{x,y\}) = \text{blue}\}$ or $R = \{\{x,y\} : f(\{x,y\}) = \text{red}\}$ is infinite.
- But it could be that $B = \{\{0,1\},\{1,2\},\{2,3\},\ldots\}$, so that $\{0,3\} \not\in B$. So any homogeneous H should not contain 0, 1, and 3.

• We want an infinite set of numbers, not pairs!

Introduction

Ramsey

Ramsey's Theorem for Pairs, again:

Theorem

Let f be a two-coloring of $[\mathbb{N}]^2$. There is an infinite $H \subseteq \mathbb{N}$ such that $f \upharpoonright [H]^2$ is constant.

Ramsey

Introduction

Ramsey's Theorem for Pairs, again:

$\mathsf{Theorem}$

Let f be a two-coloring of $[\mathbb{N}]^2$. There is an infinite $H \subseteq \mathbb{N}$ such that $f \upharpoonright [H]^2$ is constant.

Let f be a two-coloring of $[\mathbb{N}]^2$. We expand the language of arithmetic to allow our formulas to talk about f; in other words, we allow build our formulas using $+, \times, <, =,$ and f.

Let M be an elementary extension of \mathbb{N} (in this language containing f). Let $b \in M \setminus \mathbb{N}$. So b is nonstandard (b > n for each $n \in \mathbb{N}$).

Proof

Introduction

Define a sequence inductively in M as follows:

- $a_0 = 0$.
- a_{n+1} = the least $a \in M$ such that for every $i \le n$, $a > a_i$ and $f(a_i, a) = f(a_i, b)$.

In other words: $f(\cdot, a_{n+1})$ should agree with $f(\cdot, b)$ on $\{a_0, \dots, a_n\}$.

Introduction

Let $X = \{a_i : i \in M\} \cap \mathbb{N}$. Using elementarity, we show that X is infinite:

Introduction

Let $X = \{a_i : i \in M\} \cap \mathbb{N}$. Using elementarity, we show that X is infinite: First, we see that $a_1 \in \mathbb{N}$.

Introduction

Let $X = \{a_i : i \in M\} \cap \mathbb{N}$. Using elementarity, we show that X is infinite: First, we see that $a_1 \in \mathbb{N}$. Suppose $M \models f(0, b) = \text{blue}$. Then $M \models \exists x (f(0,x) = \text{blue})$. By elementarity, $\mathbb{N} \models \exists x (f(0,x) = \text{blue}), \text{ so } a_1 \in \mathbb{N}.$

Introduction

- Similar argument: $a_n \in \mathbb{N}$ for each $n \in \mathbb{N}$.
- Since they are all different, X is infinite.
- Split X into $R = \{a \in X : f(a, b) = \text{red}\}$ and $B = \{a \in X : f(a, b) = \text{blue}\}.$
- One of these is infinite, and both are homogeneous!

Set Theory

Introduction

Models of PA can be thought of as models of finite set theory:

- Use binary representations and define $x \in y$ to mean the x-th bit of y is 1.
- Can prove that M satisfies all the axioms of set theory (ZFC) except the axiom of infinity!

So we can use the full power of (finite) set theory: we can code sequences, formulas¹, proofs², ...

¹a formula is just a sequence of symbols

²a proof is a sequence of formulas with some special properties

Proofs

Introduction

Just to re-iterate, there is a formula Pr(x, y) which says:

- x codes a sequence of (codes of) statements
- each of which is either an axiom or follows from previous statements in the sequence by the usual rules of proof,
- and that sequence concludes with the statement coded by y.

Let $\theta(y)$ be the formula $\neg \exists x (Pr(x,y))$. What does this say?

Self-reference

Introduction

Theorem (Gödel 1931 / Carnap 1934)

For every formula $\theta(x)$ in the language of arithmetic, there is a statement P such that $\theta(\lceil P \rceil) \leftrightarrow P$ is true.

In other words, P asserts that it, itself, has the property described by θ .

Self-reference

Introduction

Theorem (Gödel 1931 / Carnap 1934)

For every formula $\theta(x)$ in the language of arithmetic, there is a statement P such that $\theta(\lceil P \rceil) \leftrightarrow P$ is true.

In other words, P asserts that it, itself, has the property described by θ .

"How shocking it is to find that self-reference, the stuff of paradox and nonsense, is fundamentally embedded in our beautiful number theory! The fixed point lemma shows that every elementary property F admits a statement of arithmetic asserting 'this statement has property F'."

— Joel David Hamkins

Introduction

Let $\theta(y)$ be the formula $\neg \exists x (Pr(x,y))$. Suppose P is the fixed point of θ . Then:

- If *P* is true, then there is no proof of *P*.
- If P is false, then there is a proof of P.
- Therefore, *P must* be true!
- But there cannot be a proof of P from the axioms of arithmetic!

In other words: there are arithmetic statements that are true (ie, $\mathbb{N} \models P$), but there is no proof of P from the axioms of PA³! This is, essentially, Gödel's First Incompleteness Theorem!

³What does this mean about nonstandard models of PA?

Hydra

The hydra game is played as follows:

- Begin with a finite tree (with the root at the bottom). This is your hydra. The "heads" of the hydra are the leaves of the tree.
- At stage n: Hercules chooses a head to chop off.
- If the head was attached to the root, nothing else happens (just continue).
- Otherwise, go down one level from the chopped off head, and sprout *n* copies of that part of the tree.

Hercules wins if, at some finite stage, he has chopped off all of the heads.

Hydra Results

Introduction

Theorem (Kirby-Paris 1982)

For any finite tree:

- Every strategy for Hercules is a winning strategy. (No matter what order he chops the heads off, he will eventually win!)
- We can formalize the notion of winning strategies in PA, but PA does not prove that Hercules has a winning strategy!

(Another true but unprovable statement!)

Could Goldbach be independent?

Introduction

Goldbach's conjecture: every even integer x > 4 can be expressed as a sum of two primes. Exercises:

- Write the formula P(x) asserting that x is prime.
- 2 Write the statement G, using P(x), expressing Goldbach's conjecture.
- Could G be unprovable from PA?
- Then there would be $M_1, M_2 \models PA$ where $M_1 \models G$ and $M_2 \models \neg G$.
- **5** What about \mathbb{N} ? Can $\mathbb{N} \models G$? Can $\mathbb{N} \models \neg G$?

Thank you!

Questions?