Geometric Series Cheatsheet - Exercises 6.8 and 6.9 (Class 11 Mathematics)

Prepared for Entry Test Preparation

1. Geometric Series Basics (Ex. 6.8)

A geometric series is the sum of terms of a geometric progression (G.P.). The sum of n terms is given by:

- $S_n = \frac{a_1(1-r^n)}{1-r}$ if |r| < 1,
- $S_n = \frac{a_1(r^n-1)}{r-1}$ if |r| > 1.

For an infinite geometric series (|r| < 1):

$$S_{\infty} = \frac{a_1}{1 - r}$$

2. Key Formulas and Concepts for Exercise 6.8

- Sum of n Terms: Use $S_n=rac{a_1(1-r^n)}{1-r}$ for |r|<1, or $S_n=rac{a_1(r^n-1)}{r-1}$ for |r|>1.
- **Sum of Special Series**: For series like $0.2+0.22+0.222+\ldots$, rewrite as $2(0.1+0.11+0.111+\ldots)=\frac{2}{9}(0.9+0.99+\ldots)$, then use geometric series sum.
- Algebraic Series: For series like $1+(a+b)+(a^2+ab+b^2)+\ldots$, use $(a-b)S_n=\frac{a(a^n-1)}{a-1}-\frac{b(b^n-1)}{b-1}$.
- Coefficient Series: For series like $r+(1+k)r^2+(1+k+k^2)r^3+\ldots$, use $(1-k)S_n=\frac{r(r^n-1)}{r-1}-\frac{rk((rk)^n-1)}{rk-1}$.
- **Complex Series**: For series with complex terms, compute S_n using the geometric sum formula and simplify using $i^2 = -1$.
- Infinite Series Sum: Compute $S_{\infty}=\frac{a_1}{1-r}$ for |r|<1.
- Recurring Decimals: Convert decimals like $0.\overline{abc}$ to fractions using $S_{\infty}=\frac{a_1}{1-r}$.

3. Key Concepts for Exercise 6.9

- Applications of Geometric Series: Compute total deposits, loan repayments, or population growth using S_n or $a_n=a_1r^{n-1}$.
- **Population Growth**: For annual increase rate p%, use $P_n = P_0(1 + \frac{p}{100})^n$.
- **Doubling Periods**: For quantities doubling every k years, use $a_n = a_1 \cdot 2^{n-1}$.
- Bacteria Growth: For bacteria doubling every time period, use $a_n=a_1\cdot 2^{2n}$ for n hours with doubling every half-hour.

- Nested Triangles: Sum perimeters of nested equilateral triangles using $S_{\infty} = \frac{a_1}{1-x}$.
- Infinite Series with Variable Terms: For series like $y=a_1x+a_1rx^2+a_1r^2x^3+\ldots$, solve $y=\frac{a_1x}{1-rx}$ to find x.
- Convergence Interval: Series converges if |r| < 1, e.g., for r = 2x, $|x| < \frac{1}{2}$.
- **Bouncing Ball**: Total distance = initial fall + $2 \cdot \frac{a_1}{1-r}$ for rebounds with ratio r.
- Sum of Squares Series: If sum of series is S and sum of squares is S^2 , solve $\frac{a}{1-r} = S$, $\frac{a^2}{1-r^2} = S^2$.

4. Examples from Exercises 6.8 and 6.9

Sum of n Terms (Ex. 6.8, Q1)

Problem: Sum first 15 terms of $1, \frac{1}{3}, \frac{1}{9}, \dots$

•
$$a_1 = 1$$
, $r = \frac{1}{3}$, $n = 15$.

•
$$S_{15} = \frac{1 \cdot (1 - \left(\frac{1}{3}\right)^{15})}{1 - \frac{1}{2}} = \frac{3}{2} \cdot \frac{14348906}{14348907} = \frac{7174453}{4782969}$$

Special Series (Ex. 6.8, Q2(i))

Problem: Sum 0.2 + 0.22 + 0.222 + ... to *n* terms.

•
$$S_n = \frac{2}{9} \left[n - \frac{1}{9} \left(1 - \frac{1}{10^n} \right) \right]$$
.

Infinite Series (Ex. 6.8, Q5(iv))

Problem: Sum 2 + 1 + 0.5 + ...

•
$$a_1=2$$
, $r=\frac{1}{2}$. $S_{\infty}=\frac{2}{1-\frac{1}{2}}=4$.

Recurring Decimal (Ex. 6.8, Q6(i))

Problem: Convert $1.\overline{34}$ to a fraction.

•
$$1.\overline{34} = 1 + \frac{0.34}{1 - 0.01} = \frac{133}{99}$$
.

Deposits (Ex. 6.9, Q1)

Problem: Deposits of Rs. 8, 24, 72, ... in 5 years.

•
$$a_1 = 8$$
, $r = 3$, $n = 5$. $S_5 = \frac{8(3^5 - 1)}{3 - 1} = 968$.

Bouncing Ball (Ex. 6.9, Q10)

Problem: Ball dropped from 27m, rebounds $\frac{2}{3}$. Total distance?

• Initial fall = 27, rebounds: $a_1=18$, $r=\frac{2}{3}$. Total = $27+2\cdot\frac{18}{1-\frac{2}{3}}=135$.

Infinite Series with Variable (Ex. 6.9, Q12)

Problem: Show $x = \frac{y-1}{2y}$ for $y = 1 + 2x + 4x^2 + \ldots$

•
$$a_1 = 1$$
, $r = 2x$. $y = \frac{1}{1-2x}$. Solve: $x = \frac{y-1}{2y}$.

