Theory of Computation (CS355) - Worksheet 1

Barak A. Pearlmutter (barak+cs355@cs.nuim.ie)

16-Feb-2024

Deadline: 14:30, Mon 26-Feb-2024.

Submission: moodle (upload pdf or jpeg, scans/photos okay)

I: DFA Definition

Consider these state diagrams of two DFAs, M_1 and M_2 :

- 1. Answer the following questions about each of these machines:
 - (a) What is the start state?
 - (b) What is the set of accept states?
 - (c) What sequence of states does the machine go through on input aabb?
 - (d) Does the machine accept the string aabb?
 - (e) Does the machine accept the string ε ?
- 2. Give a formal description of machines M_1 and M_2 .
- 3. The formal description of a DFA M_3 is $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$ where δ is given by the following table.

\overline{q}	$\delta(q,u)$	$\delta(q,d)$
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Give the state diagram of this machine.

II: DFA Exercise

- 4. Enumerate all possible distinct functions mapping from the set $\{x,y\}$ to the set $\{1,2,3\}$.
- 5. How many DFA's exist with 4 states over the alphabet $\Sigma = \{\#, 0, 1\}$.

Give state diagrams of DFAs recognizing the following languages. In all parts, $\Sigma = \{0, 1\}$.

- 6. $\{w \mid w \text{ begins with a 1 and ends with a 0}\}$
- 7. $\{w \mid w \text{ contains at least three 1s}\}$
- 8. $\{w \mid w \text{ contains the substring 0101, i.e., } w = x0101y \text{ for some } x \text{ and } y\}$
- 9. $\{w \mid w \text{ has length at least 3 and its third symbol is a 0}\}$
- 10. $\{w \mid w \text{ starts with } 0 \text{ and has odd length, or starts with } 1 \text{ and has even length}\}$
- 11. $\{w \mid w \text{ does not contain the substring } 110\}$
- 12. $\{w \mid \text{ the length of w is at most 5}\}$
- 13. $\{w \mid \text{ is any string except } 111\}$

III: NFA/GNFA/Regular Language Exercise

Consider $L = \{abwba : w \in \Sigma^* \text{ but does not contain the substring } ba\} \text{ over } \Sigma = \{a, b, c, d\}.$

- 1. Show that L is a regular language by drawing a DFA for it, with the DFA having as few states as you can.
- 2. Draw an NFA for L with as few states as you can.
- 3. Convert the NFA to a GNFA, and show that.
- 4. Convert the GNFA to a regular expression, and show that, using the procedure discussed in class. Show the steps. You may, but are not required to, shorten intermediate regular expression using identities like $R\emptyset = \emptyset$ and $\varepsilon R = R$ and $R \cup \emptyset = R$ to reduce expression swell.