20 Probability

20.1 The Percolation Model

Question 1:

(a) Why θ is non-decreasing in p?

According to the notes at the end of the project, it suggests that we may label each edge with a pseudo-random number which is uniformly distributed from 0 to 1 and use the same realization for all values of p simultaneously. We assume an edge is open when the assigned number of the edge is $\leq p$.

Let $\mu(p_1)$ and $\mu(p_2)$ be the set of edges that are open under the $p=p_1$ and $p=p_2$, Under the same realization, we can deduce that $|\mu(p_1)| \leq |\mu(p_2)|$ if $p_1 \leq p_2$ (*) As there are more edges available for $p=p_2$ than for $p=p_1$ (for which $\mu(p_1) \subseteq \mu(p_2)$), we can conclude that $\{y\colon y \text{ are accessible nodes as } p=p_1\} \subseteq \{y\colon y \text{ are accessible nodes as } p=p_2\}.$ Therefore, $\theta(p_1) \leq \theta(p_2)$ if $p_1 \leq p_2$.

(b) Show $\theta_n(p)$ is decreasing in n.

For $\theta_n(p) = P_p(|C_n| \neq \emptyset)$, we can see it is dependent on $\theta_{n-1}(p) = P_p(|C_{n-1}| \neq \emptyset)$ as we know if $|C_{n-1}| = \emptyset$, $|C_n| = \emptyset$ must be true as well.

Therefore,

$$\theta_{n}(p) = P_{p}(|C_{n}| \neq \emptyset)$$

$$= P_{p}(|C_{n}| \neq \emptyset) |C_{n-1}| \neq \emptyset)$$

$$= P_{p}((|C_{n}| \neq \emptyset)|) |(|C_{n-1}| \neq \emptyset)) |P_{p}(|C_{n-1}| \neq \emptyset)$$

$$\leq P_{p}(|C_{n-1}| \neq \emptyset)$$

$$\leq \theta_{n-1}(p)$$

2

(c) Give an estimate for the likely size of the error $\hat{\theta}_{m,n}(p) - \theta_{n}(p)$.

We use Central Limit Theorem in this question.

Central Limit Theorem stated that:

'If $X_1, X_2, ..., X_n$ are i.i.d.random variables having the same distribution with mean μ and variance σ^2 .

Then if $n \to \infty$, the random variable

$$Z = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}}$$

has the standardistribution d normal N(0,1)'.

$$\hat{\theta}_{m,n}(p) - \theta_{n}(p) = \frac{1}{m} \sum_{j=1}^{m} I_{n}(j) - \theta_{n}(p)$$

I suggest $I_n(j)$ has a binomial distribution with probability $P(I_n(j) = 1) = \theta_n(p)$ and $P(I_n(j) = 0) = (1 - \theta_n(p))$ and variance $\sigma^2 = (1 - \theta_n(p))\theta_n(p)$.

Therefore, we get

$$\frac{\sqrt{m}}{\sqrt{\left(1-\theta_{\mathrm{n}}(p)\right)\theta_{\mathrm{n}}(p)}} \left(\frac{1}{m} \sum_{j=1}^{m} I_{n}(j) - \theta_{\mathrm{n}}(p)\right) \sim N(0,1) \ by \ Central \ Limit \ Theorem.$$

Hence,

$$P\left(\left|\frac{\sqrt{m}}{\sigma}\left(\frac{1}{m}\sum_{j=1}^{m}I_{n}(j)-\theta_{n}(p)\right)\right|\leq\varepsilon\right)=\Phi(\varepsilon)-\Phi(-\varepsilon)$$

$$P\left(\left|\left(\frac{1}{m}\sum_{j=1}^{m}I_{n}(j)-\theta_{n}(p)\right)\right|\leq\frac{\sigma}{\sqrt{m}}\varepsilon\right)=\Phi(\varepsilon)-\Phi(-\varepsilon)$$

For a fixed ε and σ , we can reduce the error of $\hat{\theta}_{m,n}(p) - \theta_n(p)$ by increase m. The order of the reduction in error will be in order $O(\frac{1}{\sqrt{m}})$

Question 2:

Regarding to the computational time of the program, I have chosen (m=1000, n=800) and (m=1000, n=400) for my program [percolationQ2_mod.m] to plot $\hat{\theta}_{m,n}(p)$ against p for $p \in [\ 0.5\ ,0.75\]$, which takes around 41 seconds to run for $p_c \approx 0.62$, which is close to the our believed result, 0.644.

In my program [percolationQ2_mod.m], I have first generate 2 random matrix A_{ij} and B_{ij} of size (n*n) representing the values on the vertical and horizontal edges from node (i-1,j-1). It runs at $O(n^2)$. Secondly, I followed the suggested algorithm from the notes and calculate Z(x) for all nodes x on the grid which involves 3 comparison operations per node which is running at $O(n^2)$ as well. Thirdly, I check for any $Z(x) \leq p$ for $x \in Q_n$ and for all p in the given range and this action works in O(n). And lastly, we repeat the above for m different realizations which means the complexity of the program in total will be $O(m(n^2+n)) \approx O(mn^2)$. We can deduce that the computational time for the program is also in $O(mn^2)$.

Therefore, I have chosen a smaller value for n compared with m at the start of the question.

As it is more likely for $|C_n| = \emptyset$ when $n \to \infty$ for p fixed, we expect p_c increases and getting closer to 0.644 as n increases and the graph of $\theta(p)$ shifts to the right compared with the graph we have above.

Comparing two graphs with $\hat{\theta}_{200,2000}$ and $\hat{\theta}_{200,1000}$ in Graph 2, we can see p_c shifts from 0.62 to 0.63, which is closer to the true value, 0.644 as n increases. In addition, we can see the graph behaves like the error function and tends to a Heaviside function as n increases. I believe as n increases, the graph will tend to H(p-0.644) where H is a Heaviside function.

Question 3:

From graph 4, we can see \hat{p}_c increases and tends to reach the true value $p_c=0.644$ as n increases and m (large) fixed. This is because, similar reason in Question 2, it is more likely for $C_n=\emptyset$ as n increases. Therefore, the value for \hat{p}_c increases as n increases. On the other hand, as $\hat{\theta}_{m,n}(p)$ is a decreasing function in n and increasing function in p, for getting the $p_s=\sup\{p\colon \hat{\theta}_{m,n}(p)=0\}$ for fixed p_s and increasing p_s , we should expect p_s increases and it will always be $p_s(n)\leq p_c$ and $p_s(n)\to p_c$ for $n\to\infty$.

For fixed n, as m increases, we expect \hat{p}_c fluctuate and converges to a limit $\hat{p}_c(n)$ where $\hat{p}_c(n)$ is a constant and $\hat{p}_c(n) = \sup\{p: \theta_{\rm n}(p) = 0\} \le p_c$. ('Less than or equal to ${\bf p_c}'$ because of squared statement above.). For showing the convergence of $p_s = \sup\{p: \hat{\theta}_{m,n}(p) = 0\} \to \hat{p}_c(n) = \sup\{p: \theta_{\rm n}(p) = 0\}$ as $m \to \infty$, we may use the statement from the law of large numbers where the sample average tends to the expected value as $m \to \infty$. We can confirm our prediction with the Graph 3 as we can see a fluctuation between 0.5 to 0.57 and converging to the range of [0.51, 0.54] where p_s is.

From both graph, as we achieve our approximation by averaging m realizations with 2 pseudo-random matrices, it is normal to see fluctuation, however, we can still see the tendency of the graph.

Question 4:

To estimate γ , I have written a program [Q4.m] which gives me the $P_p(C_n \neq \emptyset)$ out of the m realization with a given p through running the program [percolationQ2_mod.m] and calculate γ with the calculated $P_p(C_n \neq \emptyset)$ and input n.

It is tricky to pick the suitable value for m and n as it always turns out to be undefined if I have picked a relatively large n due to $P_p(C_n \neq \emptyset) = 0$ if n is large and p is in the range [0.3-0.6] and $\log(0)$ does not give us any useful information at all. Therefore, I need to pick a relative small n for this estimation.

On the other hand, as there is more chance for me to get at least a realization with $(C_n \neq \emptyset)$ if I picked a large m, I expect to pick a large m in respect to n for the estimation.

As $P_p(C_n \neq \emptyset)$ an increasing function in p and decreasing function in n, I expect that we can increase our value of n as we increase in p. By trial and error, I obtained the largest n which works for the smallest p for a large m=100000. To avoid unreasonably long computation time, as the program in $O(mn^2)$, I have made adjustment of the value of m according to the value of n.

p	γ	m	n
0.3	0.5207	100000	20
0.4	0.3005	50000	36
0.5	0.1012	30000	95
0.6	0.0186	10000	250

In theory, I expect to see γ decreases as p is reaching p_c from below. This is because $P_p(C_n \neq \emptyset) \to 1$ if p is higher so we expect $\gamma \to 0$ as p increases.

Reference:

1. http://www.stat.ucla.edu/~nchristo/introeconometrics/introecon central limit theore m.pdf

'The Central Limit Theorem'

Program:

1:

```
function [W]=percolationQ2 mod(m,n,pstart,pend)
%m is the number of repeats; n is value of how far we
%approximate)
%p start and p end indicates range of p for the graph and
approximation
tic;
W = [];
for y=1:m,
%generate different matrix first
map=rand(n,n,2);
T=nan(n,n);
T(1,1)=0;
%1 is horizontal 2 is vertical
%coord in T is i+1,j+1
%define boundary condition
for t=2:n,
    T(1,t) = max(T(1,t-1), map(1,t-1,1));
    T(t,1) = max(T(t-1,1), map(t-1,1,2));
%calculate the probability of each node being accessible
for k=2:n,
    for u=2:(n-k+1)
        ver=max(T(k-1,u),map(k-1,u,2));
        hor=max(T(k,u-1), map(k,u-1,1));
        T(k, u) = min(ver, hor);
    end
end
0=0;
1=0;
e=[];
%check any nodes at distance n being accessible for different p
for p=pstart:0.01:pend,
    1=1+1;
    e=[e;p];
for z=1:n,
    if T(z, n-z+1) \le p
        0=1;
    end
end
W(1, y) = 0;
end
end
W=sum(W,2)./m;
```

toc;
plot(e,W)
end

```
2:
function Q3fixm mod(m)
T=[];
for n=100:20:600,
W=percolationQ2 mod(m,n,0.5,0.7);
W=sum(W,2);
K=find(W);
P=0.5+(K(1)-1)*0.01;
T=[T;n,P];
end
plot (T(:,1),T(:,2))
3:
function Q3fixn mod(n)
T=[];
for m=100:100:7000,
W=percolationQ2 mod(m,n,0.45,0.75);
W=sum(W,2);
K=find(W);
P=0.5+(K(1)-1)*0.01;
T=[T;m,P];
end
plot (T(:,1),T(:,2))
4:
function [K] = Q4 (m, n, p)
[W]=percolationQ2 mod(m,n,p,p);
K = (\log(W(1)))/n;
end
```