

()	њ	,
(.)

			(· · ·)	
К	Њ			
К	Њ			
		3		
		11 11		
_		-		
_	7.70			
	7-56			_
()				
()				

																						3
1																						5
	1.1				•							•										5
	1.2																					5
	1.3																					7
2																						9
	2.1																					9
	2.2																					12
	2.3																					12
		2.3	1.1																			12
		2.3	3.2		•							•					•					13
		2.3	5.3			•														•		14
3																						17
	3.1																					17
	3.2																					17
	3.3			•																	•	20
4																						21
	4.1																					21
	4.2						•															21
																						29
																						30

- 1) , ;
- 2) , ;
- 3) , . . .
- : :,,.
- 3:,,;
- ;
- ;
- _

— . . .

1.1

(BubbleSort) [1] - , , , , N-1 , , , , ().

1.2


```
: .
     (max-heap)
A[Parent(i)] \geqslant A[i], \dots , \dots , \dots
     (min-heap) A[Parent(i)] \leq A[i].,
                 i, 	 2i+1, 	 2i+2.
  1) ;
  (2) ( ) m, m- ;
  3) m-1;
  4) 2, 3 - m - 1, - 0.
     , , , .
     heapify, .
   .. , [(n/2 + 1)...n] ( n - ) , (-) . [(n/4 + 1)...n/2], , ,
   heapify i \in [0...n/2] A[i], A[Left(i)], A[Right(i)], A - , Left(i) Right(i)
- , largest. A[i],\ A[i]\ A[largest]\ .\ ,\ i\ .\ A[i]\ largest,
largest ., heapify .
1.3
    (Bucket sort) [3] - , , ; O(n).
      [a,\,b]\;(\;a\;\;b\;-\;\;\;)\;\;n\;\;,\;\;(buckets),\qquad n\;\;.\;\;(\;)\qquad [a,\,b],\;\;,\qquad \qquad .\quad ,
```

- , , .

(2.1), (2.2), (2.3).

2.2 – () c heapify ()

[4]:

1) (2.1) 1.

$$+, -, /, \%, ==, !=, <, >, <=, >=, [], ++, --$$
 (2.1)

2) if then A else B, (2.2).

$$f_{if} = f + \begin{cases} f_A, & , \\ f_B, & . \end{cases} \tag{2.2}$$

3) , (2.3).

$$f_{for} = f + f + N(f + f + f)$$
 (2.3)

4) 0.

2.3

N.

2.3.1

:

$$i \in [1..N) (2.4).$$

$$f_i = 2 + 2(N - 1) (2.4)$$

- , [1..N-1], (2.5).

$$f_j = 3(N-1) + \frac{N \cdot (N-1)}{2} \cdot (3 + f_{if})$$
 (2.5)

- (2.6).

$$f_{if} = 4 + \begin{cases} 0, \\ 9, \end{cases} \tag{2.6}$$

(2.7).
$$f_{best} = \frac{7}{2}N^2 + \frac{3}{2}N - 3 \approx \frac{7}{2}N^2 = O(N^2)$$
 (2.7)

(2.8).
$$f_{worst} = 8N^2 - 8N - 3 \approx 8N^2 = O(N^2)$$
 (2.8)

2.3.2

, heapify, . , n- $\lfloor \lg n \rfloor$. heapify n $\lfloor \lg n \rfloor$. . heapify (2.9).

$$f_{best} = 16 = O(1)$$
 (2.9)

heapify (2.10).

$$f_{worst} = 16 + 9 + 25\lfloor \lg n \rfloor \approx 25\lfloor \lg n \rfloor = O(\lfloor \lg n \rfloor)$$
 (2.10)

$$- i \in [N/2...0] (2.11).$$

$$f_i = 3 + 2(N/2) (2.11)$$

- (heapify) $j \in [N-1...0)$ (2.12).

$$f_j = 3 + 2(N - 1) (2.12)$$

- heapify $i \in [N/2...0]$ $j \in [N-1...0)$ (2.13).

$$f_{summ_{heapify}} = 16 + (N/2 + N - 1)f_{heapify},$$
 (2.13)

 $f_{heapify}$ (2.14).

$$f_{heapify} = \begin{cases} 16, \\ 25 + 25 \lfloor \lg n \rfloor, \end{cases}$$
 (2.14)

(2.15).

$$f_{best} = 22 + 16(N/2 + N - 1) + 2(N - 1 + N/2) \approx 27N = O(N)$$
 (2.15)

(2.16).

$$f_{worst} = 22 + (N/2 + N - 1)(25 + 25\lfloor \lg n \rfloor) + 2(N - 1 + N/2) \approx$$

$$\approx \frac{75}{2} N \lfloor \lg n \rfloor = O(N \lg n)$$
(2.16)

2.3.3

, , .

•

 $-i \in [1..N) \ ()(2.17):$

$$f_i = 2 + 2(N - 1) + 7(N - 1) (2.17)$$

- , [1..N-1] (2.18):

$$f_{while} = \begin{cases} (N-1) \cdot 4, \\ (N-1) \cdot 10(N-1), \end{cases}$$
 (2.18)

(2.19).
$$f_{best} = 9N - 3 + 4N - 4 \approx 13N = O(N) \tag{2.19}$$

(2.20).

$$f_{worst} = 10N^2 - 20N - 10 + 9N - 3 \approx 10N^2 = O(N^2)$$
 (2.20)

:

- $(N)i \in [0...N) (2.21).$

$$f_1 = 2 + 2N + N \tag{2.21}$$

- () $i \in [0...N)$ (2.22).

$$f_2 = 2 + 2N + 5N \tag{2.22}$$

- (i) $i \in [0...N)$., i- i, $n_i \leq N$, i- (2.22):

$$f_3 = 2 + 2N + \sum k = 0^{N-1} f_{ins_k}$$
 (2.23)

, f_{ins_k} — k-, n_k .

, -, "— ., N , N, , 1
$$(O(1))$$
., N

.

(2.24).

$$f_{best} = 13N + 6 + (13N - 7) \approx 26N = O(N)$$
 (2.24)

(2.25).

$$f_{worst} = 13N + 6 + (10N^2 - 11N - 10 - 3) \approx 10N^2 = O(n^2)$$
 (2.25)

, , , , ,

, .

3.1

Python [5].

3.2

3.1 - 3.6 - , , .

3.1 -

```
def bubble_sort(array):
2
         n = len(array)
3
         for i in range(n):
               for j in range(1, n - i):
4
                     if array[j - 1] > array[j]:
5
6
                            t = array[j-1]
7
                            \operatorname{array} \left[\, \mathbf{j} - \! 1\right] \, = \, \operatorname{array} \left[\, \mathbf{j} \, \right]
8
                            array[j] = t
9
         return array
```

```
def heap_sort(array):
1
2
       n = len(array)
3
       for i in range (n//2, -1, -1):
           heapify (array, n, i)
4
5
       for i in range (n-1, 0, -1):
6
           t = array[i]
7
           array[i] = array[0]
8
           array[0] = t
9
           heapify (array, i, 0)
10
       return array
```

3.3 – heapify

```
1
  def heapify (array, n, i):
2
       largest = i
3
       l = 2 * i + 1
       r = 2 * i + 2
4
       if l < n and array[i] < array[l]:
5
           largest = 1
6
7
       if r < n and array [largest] < array [r]:
8
           largest = r
9
       if largest != i:
10
           t = array[i]
           array[i] = array[largest]
11
12
           array[largest] = t
13
           heapify (array, n, largest)
```

3.4 -

```
def bucket_sort(array):
 1
 2
       \max \text{ value} = \max(\text{array})
 3
       min_value = min(array)
       n = len(array)
 4
 5
       if n = 0:
 6
            return array
 7
       size = (max_value - min_value)/n
 8
       if size == 0:
 9
            return array
10
11
       buckets_list= []
12
       for i in range(n):
```

```
buckets_list.append([])
1
2
3
       for i in range(n):
           j = int ((array[i] - min_value)/ size)
4
5
           if j != n:
6
               buckets_list[j].append(array[i])
7
           else:
               buckets_list[-1].append(array[i])
8
9
       for z in range(n):
10
11
           insertion sort (buckets list [z])
12
13
       final_output = []
       for x in range(n):
14
15
           final_output = final_output + buckets_list[x]
16
       return final output
```

```
3.6 -
```

```
def insertion_sort(array):
2
      for i in range(1,len(array)):
3
          key = array[i]
4
          j = i-1
5
          while array[j] > key and j >= 0:
              array[j+1] = array[j]
6
7
              j -= 1
8
          array[j+1] = key
9
      return array
```

. 3.1 , . .

3.1 -

[15, 25, 35, 45, 55]	[15, 25, 35, 45, 55]	[15, 25, 35, 45, 55]
[55, 45, 35, 25, 15]	[15, 25, 35, 45, 55]	[15, 25, 35, 45, 55]
[-10, -20, -30, -25]	[-30, -25, -20, -10]	[-30, -25, -20, -10]
[40, -10, 20, -30, 75]	[-30, -10, 20, 40, 75]	[-30, -10, 20, 40, 75]
[100]	[100]	[100]
[-20]	[-20]	[-20]

3.2 – ()

100	0.25	0.2188	0.0781
200	0.9688	0.3438	0.1562
300	2.0312	0.75	0.2656
400	3.6719	1.0156	0.3281
500	5.875	1.3438	0.5469
600	8.5156	1.6094	0.5781
700	12.1562	1.8594	0.8125
800	15.7031	2.3438	1.1094

, . , . .

4.1

, :

Windows 10 21H1 [6] x86_64;

8 2133;

Intel Core i5-8300H 2.30 [7].

4.2

process_time time Python. float [8].

- , . $[A_{min}, A_{max}], A_{min}, A_{max}$ A. N , $N-1 \qquad [0,\,1], \qquad 10000000. \qquad \qquad N-1 \qquad , \qquad . \qquad , \qquad .$ 4.1 - 4.4.

4.1 - ()

100	0.25	0.2188	0.0781
200	0.9688	0.3438	0.1562
300	2.0312	0.75	0.2656
400	3.6719	1.0156	0.3281
500	5.875	1.3438	0.5469
600	8.5156	1.6094	0.5781
700	12.1562	1.8594	0.8125
800	15.7031	2.3438	1.1094

4.2 – ()

100	0.25	0.2188	0.0781
200	0.9688	0.3438	0.1562
300	2.0312	0.75	0.2656
400	3.6719	1.0156	0.3281
500	5.875	1.3438	0.5469
600	8.5156	1.6094	0.5781
700	12.1562	1.8594	0.8125
800	15.7031	2.3438	1.1094

4.3 - , ()

100	0.4062	0.2188	0.0781
200	1.8438	0.375	0.1406
300	4.0156	0.6094	0.2812
400	7.4062	0.8594	0.3906
500	11.5312	1.2188	0.6094
600	16.7188	1.5312	0.7656
700	23.4844	1.8906	0.8125
800	30.4844	2.0469	1.125

4.4 - c ()

100	0.4062	0.2188	0.0781
200	1.8438	0.375	0.1406
300	4.0156	0.6094	0.2812
400	7.4062	0.8594	0.3906
500	11.5312	1.2188	0.6094
600	16.7188	1.5312	0.7656
700	23.4844	1.8906	0.8125
800	30.4844	2.0469	1.125

4.1 - 4.6

4.1 -

4.2 -

4.6 -

4.8 -

, (.4.2, 4.4, 4.6). , (.4.7).

- [1] Cormen T. H., Leiserson C. E., Rivest R. L. Introduction to Algorithms. MIT Press, Cambridge, 2009. pp. 40–41.
- [2] Cormen T. H., Leiserson C. E., Rivest R. L. Introduction to Algorithms. MIT Press, Cambridge, 2009. pp. 151–156.
- [3] Cormen T. H., Leiserson C. E., Rivest R. L. Introduction to Algorithms. MIT Press, Cambridge, 2009. pp. 200–204.
- $[4] \ldots \ldots , , 2007 \ldots 376.$
- [5] Welcome to Python []. : https://www.python.org (: 10.10.2022).
- [6] Windows [].: https://www.microsoft.com/en-us/windows (:10.10.2022).
- [7] Intel Core i5 []. : https://www.intel.com/processors/core/i5/docs (: 10.10.2022).
- [8] time Time access and conversions []. : https://docs.python.org/3/library/time.html (: 10.10.2022).