Exercice 1 (CCP MP 2015)

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. On note $R_n(f)=\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right)$.

- (a) Quelle est l'interprétation géométrique de $R_n(f)$? Illustrer par un dessin soigné.
- (b) Montrer que si f est de classe C^1 sur [0,1] alors $\lim_{n\to+\infty} R_n(f) = \int_0^1 f(t) dt$.
- (c) Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \sum_{k=1}^n \frac{n}{3n^2 + k^2}$.

Exercice 2 (CCP MP 2015)

- (a) Énoncer le théorème de dérivation sous le signe intégral.
- (b) Montrer que la fonction $f: x \mapsto \int_0^{+\infty} e^{-t^2} \cos(xt) dt$ est de classe C^1 sur \mathbb{R} .
- (c) Trouver une équation différentielle linéaire d'ordre 1 dont f est solution et en déduire une expression simple de f. On pourra utiliser l'identité $f(0) = \frac{\sqrt{\pi}}{2}$.

Exercice 3 (CCP MP 2015)

Soient E un espace vectoriel réel et f, g deux endomorphismes de E tels que $f \circ g = \mathrm{Id}$.

- (a) Montrer que $Ker(g \circ f) = Ker f$.
- (b) Montrer que $\text{Im}(g \circ f) = \text{Im}g$.
- (c) Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} g$

Exercice 4 (CCP MP 2015)

Dans \mathbb{R}^3 , soit P le plan d'équation x+y+z=0 et D la droite d'équation $x=\frac{y}{2}=\frac{z}{3}$. On note π la projection sur P parallèlement à D.

- (a) Vérifier que $\mathbb{R}^3 = P \oplus D$.
- (b) Déterminer la matrice de π dans la base canonique de \mathbb{R}^3 .
- (c) Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de π est diagonale.

Exercice 5 (CCP MP 2015)

Soit E un espace euclidien (en particulier, E est de dimension finie).

- (a) Si A est un sous-espace vectoriel de E, montrer que $(A^{\perp})^{\perp} = A$.
- (b) Si F et G sont deux sous-espaces vectoriels de E, montrer que $(F+G)^{\perp}=F^{\perp}\cap G^{\perp}$.
- (c) Si F et G sont deux sous-espaces vectoriels de E, montrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Exercice 6 (CCP MP 2015)

Une personne effectue n appels téléphoniques vers n personnes différentes. À chaque appel, la probabilité de joindre son correspondant est $p \in [0, 1]$, les réussites aux différents appels étant indépendantes les unes des autres. Soit X la variable aléatoire donnant le nombre de correspondants joints.

(a) Donner la loi de X.

Les n-X personnes n'ayant pas pu être jointes sont à nouveaux appelées dans les mêmes conditions que la première série d'appel. On note Y le nombre de personne jointes avec succès au cours de cette deuxième série d'appel.

- (b) Si $i \in \{0, 1, ..., n\}$ et $k \in \mathbb{N}$ déterminer P(Y = k | X = i).
- (c) Montrer que X + Y suit une loi binomiale dont on déterminera le paramètre.
- (d) Calculer l'espérance de X + Y.

Exercice 7 (CCP MP 2015)

Soient $N \in \mathbb{N}^*$ et $p \in]0,1[$, on note q=1-p. On considère N variables aléatoires X_1,X_2,\ldots,X_N définies sur le même espace de probabilité (Ω,\mathcal{A},P) mutuellement indépendantes et suivant toutes une loi géométrique de paramètre p. On note $Y=\min_{1\leq i\leq N}X_i$ la variable aléatoire définie par $\forall \omega\in\Omega,\ Y(\omega)=\min_{1\leq i\leq N}(X_1(\omega),X_2(\omega),\ldots,X_N(\omega))$.

- (a) Si $i \in \{1, 2, ..., N\}$ et $n \in \mathbb{N}^*$, déterminer $P(X_i \leq n)$ et $P(X_i > n)$.
- (b) Si $n \in \mathbb{N}^*$, calculer P(Y > n). En déduire P(Y = n).
- (c) Prouver que Y admet une espérance et la calculer.

Exercice 8 (CCP MP 2015)

On dispose de 100 dés dont 25 sont pipés. Si on lance un dé pipé, la probabilité d'obtenir le chiffre 6 est 1/2.

(a) Énoncer et démontrer la formule de Bayes pour un système complet d'évènements.

- (b) On choisit un dé au hasard parmi les 100, on le lance et on obtient 6. Quelle est la probabilité que ce soit un dé pipé?
- (c) On choisit un dé au hasard parmi les 100, on le lance n fois et on obtient que des 6. Quelles est la probabilité p_n que ce dé soit pipé?
- (d) Déterminer $\lim_{n \to +\infty} p_n$.

Exercice 9 (CCP MP 2015)

On pourra utiliser sans justification que pour tout $q \in \mathbb{N}^*$ et tout $x \in]-1,1[$, on a $\sum_{k=q}^{+\infty} \binom{k}{q} x^{k-q} = \frac{1}{(1-x)^{q+1}}$.

On se donne $p \in]0,1[$ et X,Y deux variables aléatoires définies sur le même espace de probabilité (Ω,\mathcal{A},P) à valeurs dans $\mathbb N$ telles que

$$\forall (k,n) \in \mathbb{N}^2, \ P((X=k) \cap (Y=n)) = \begin{cases} \binom{n}{k} \left(\frac{1}{2}\right)^n p(1-p)^n & \text{si } k \le n \\ 0 & \text{sinon} \end{cases}.$$

- (a) Vérifier qu'il s'agit bien d'une loi de probabilité.
- (b) Montrer que 1+Y suit une loi géométrique et en déduire son espérance.
- (c) Déterminer la loi de X.

Exercice 10 (Centrale PC 2011)

Soient a < 0, b > 0 et \mathcal{A} l'ensemble des fonctions définies sur]a, b[, à valeurs réelles, de classe C^{∞} et telles que pour tout $n \in \mathbb{N}, \ f^{(n)} \ge 0$ sur]a, b[.

(a) L'ensemble \mathcal{A} est-il un sous-espace vectoriel de $C^{\infty}([a,b])$? Si f et g sont des éléments de \mathcal{A} , a-t-on $fg \in \mathcal{A}$?

Dans la suite, on fixe un élément $f \in \mathcal{A}$ et pour $x \in]a,b[$ et $n \in \mathbb{N}$ on pose $R_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$.

- (b) Justifier que la fonction $x \mapsto \frac{f(x) f(0)}{x}$ est croissante sur]0, b[.
- (c) Si $n \in \mathbb{N}$, montrer que la fonction $x \mapsto \frac{R_n(x)}{x^{n+1}}$ est croissante sur]0, b[.
- (d) En déduire que si $0 \le x < y < b$ alors pour tout $n \in \mathbb{N}$ on a $0 \le R_n(x) \le f(y) \left(\frac{x}{y}\right)^{n+1}$.
- (e) Justifier l'existence d'un réel r strictement positif tel que f soit développable en série entière sur]-r,r[.

Exercice 11 (Centrale PC 2012)

Pour
$$(n,p) \in (\mathbb{N}^{\star})^2$$
, on note $u_{n,p} = \frac{1}{p^n} \left(\sum_{k=1}^p \left(1 + \frac{k}{p} \right)^{1/n} \right)^n$. Déterminer $\lim_{n \to +\infty} \left(\lim_{p \to +\infty} u_{n,p} \right)$ et $\lim_{p \to +\infty} \left(\lim_{n \to +\infty} u_{n,p} \right)$.

Exercice 12 (Centrale PC 2012)

Soient a et b deux réels tels que a < b. On note E l'ensemble des fonctions continues définies sur [a,b] à valeurs strictement positives. On note Φ l'application définie sur E par

$$\Phi(f) = \int_{a}^{b} f(t) dt \int_{a}^{b} \frac{dt}{f(t)}.$$

Déterminer $m = \inf_{f \in E} \Phi(f)$ et $M = \sup_{f \in E} \Phi(f)$ et éventuellement les fonctions pour lesquelles ces extrema sont atteints.

Exercice 13 (Centrale PC 2012)

Soient $n \ge 1$ et M et N deux matrices d'ordre n et de rang 1 telles que $\operatorname{Ker} M = \operatorname{Ker} N$ et $\operatorname{Im} M = \operatorname{Im} N$.

- (a) Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $M = \lambda N$.
- (b) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $MAM = \alpha M$.

Exercice 14 (Centrale PC 2012)

On munit \mathbb{R}^{2n} de sa structure euclidienne canonique. Soit $f \in \mathcal{L}(\mathbb{R}^{2n})$ antisymétrique.

- (a) Montrer que f^2 est diagonalisable. Que peut-on dire du signe des valeurs propres de f^2 ?
- (b) Soit x un vecteur propre de f^2 . Montrer que $\operatorname{Vect}(x, f(x))$ et $(\operatorname{Vect}(x, f(x)))^{\perp}$ sont stables par f.
- (c) On suppose de plus que f est inversible. Montrer que l'on peut trouver une base de \mathbb{R}^{2n} telle que la matrice de f dans cette base soit

$$\left(\begin{array}{c|c} O_n & -I_n \\ \hline I_n & O_n \end{array}\right)$$
.

Exercice 15 (Mines PC 2012)

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $\Delta(A) = \{M \in \mathcal{M}_n(\mathbb{C}), M + {}^tM = (\operatorname{Tr} M)A\}$. Montrer que $\Delta(A)$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$. Déterminer $\Delta(A)$.

Exercice 16 (Mines PC 2012)

On note $\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ dont toutes les valeurs propres sont positives ou nulles.

- (a) Montrer que si $A \in \mathcal{S}_n^+(\mathbb{R})$ alors $\det(I_n + A) \ge 1 + \det(A)$.
- (b) Montrer que si A et B sont des éléments de $\mathcal{S}_n^+(\mathbb{R})$ alors $\det(A+B) \geq \det(A) + \det(B)$.

Exercice 17 (Mines PC 2012)

Soit $\varphi: \mathbb{R}_+ \to \mathbb{R}_+^*$ une fonction croissante C^1 à valeurs strictement positives. Montrer si $x: \mathbb{R}_+ \to \mathbb{R}$ est une solution de $x'' + \varphi x = 0$ alors x est bornée.

Exercice 18 (Mines PC 2012)

Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ où, pour tout $n\in\mathbb{N}, u_n=n\int_0^1\ln(1+t^n)\mathrm{d}t$.

Exercice 19 (Mines PC 2012)

Résoudre
$$\sum_{n=0}^{+\infty} (3n+1)^2 x^n = 0.$$

Exercice 20 (X-ESPCI PC 2012)

- (a) Soient F et G deux sous-espaces vectoriels de \mathbb{C}^n de même dimension. Montrer qu'il existe $f \in \mathrm{GL}_n(\mathbb{C})$ tel que f(F) = G.
- (b) Soit F un sous-espace vectoriel de \mathbb{C}^n de dimension r < n. Montrer qu'il existe un endomorphisme nilpotent f de $\mathcal{L}(\mathbb{C}^n)$ tel que $\mathrm{Im} f = F$.
- (c) Soit $\Phi: \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$ non constante telle que $\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$, $\Phi(AB) = \Phi(A)\Phi(B)$. Montrer que $\Phi(A) = 0$ si et seulement si A n'est pas inversible.

Exercice 21 (X-ESPCI PC 2012)

Soient a < b deux réels et f_1, f_2, \ldots, f_n des fonctions continues définies sur [a, b] à valeurs réelles. On note A la matrice $\left(\int_a^b f_i f_j\right)_{1 \le i,j \le n}$. Montrer que $\det(A) = 0$ si et seulement si la famille (f_1, f_2, \ldots, f_n) est liée.

Exercice 22 (X-ESPCI PC 2012)

Soient
$$f: x \mapsto \int_0^x e^{-t^2} dt$$
 et $g: x \mapsto \int_0^{\frac{\pi}{4}} e^{-x^2/\cos(u)} du$.

- (a) Montrer que $f^2 + g$ est constante.
- (b) En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 23 (X MP 2012)

Montrer qu'il existe une constante $k \in \mathbb{R}$ telle que pour toute fonction f de classe C^2 telle que f(0) = 0 et $\int_0^{+\infty} (f'(t))^2 dt < +\infty$ on a $\int_0^{+\infty} \left(\frac{f(t)}{t}\right)^2 dt \le k \left(\int_0^{+\infty} (f'(t))^2 dt\right)$.

Exercice 24 (ENS PC 2012)

Soit Φ une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$.

- (a) On suppose que pour toutes matrices A et B on a $\Phi(AB) = \Phi(BA)$. Montrer que Φ est proportionnelle à la trace.
- (b) On suppose que pour toute matrice A et pour toute matrice inversible P on a $\Phi(P^{-1}AP) = \Phi(A)$. Montrer que Φ est proportionnelle à la trace.

Exercice 25 (ENS PC 2012)

- (a) Soit a > 0 et $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2} + a$. Étudier la convergence de la suite $(u_n)_{n \in \mathbb{N}}$ et préciser la vitesse de convergence s'il y a convergence.
- (b) Soient $(a_n)_{n\in\mathbb{N}}$ et $(u_n)_{n\in\mathbb{N}}$ deux suites réelles. On suppose que $a_n\to 0$ et que pour tout $n\in\mathbb{N}, u_{n+1}=\frac{u_n}{2}+a_n$. Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ et déterminer sa limite éventuelle.