	Date Page
	Differentiability:
	Then f is diff. at point $(a,b) \in D$ if
	F(ath, htk) - f(ah) = Ab + ax + [1242] d(4 4)
	where A, B are real Constants and the lt \$(h, k)=0.
	ice It o(h,K) = It flath, b+K) - flab - (Ah+BK)
	√ h²+k²
->	If h=0 Then
	$f(a,b+k) - f(a,b) = Bk + b \phi(a,b)$
	=> t = fla+b+k) - fla,b) = B + lt pla,k) k+0
74	=) $B = \int_{K \to 0}^{K} f(a,b+k) - f(a,b) = f_y(a,b)$
-	Similarly, If K=0 Then
	$f(a+h, b) - f(a,b) = Ah + (h) \phi(dh, c)$
	$\Rightarrow \underbrace{\text{lt } f(a+h,b) - f(a,b)}_{h \to 0} = A$
2 .	
	$\Rightarrow A = f_{x}(q_{b})$
	and $B = fy(ab)$
→	If I is differentiable at point (a, b) = I is continuous at pt (a, b).
\rightarrow	
	Thought ability at (a,b) = Pout of 1 1 1
	But Conveys e need not to be true.
->	If fx (ab) and fy (ab) soit and 1 1 0 1 8
	If fx(a,b) and fy(a,b) Exist and both fx and fy are Continuous at (a,b) => f is diff at (ab).

Date		- Comment	
Page			

Maxima	Minima at a	boint:

Def Positive definite Matrix :> Mateix A is called positive definite If all the principal Minous of A are positive.

then My = a 70

Ma = a b = ad-bc >0

Negative definite Matrix: > Matrix A is alled negative definite If all the Principal Minaria are alternatively negative and positive starting wither the negative Sign.

i.e. If Az ab

Mgg= a b ad-bc>0. So (-vi Mii >0.

Let $f: D \rightarrow R$, $D \subseteq R^2$ Then (a,b) & D is called point of local Maxima If J STO St. f(x,y) = f(a,b) + (x,y) ∈ Ng(a,b) (a,b) ED is called point of local Maxima of 35>0 S.b. f(x,y) ≥ f(a,b) + (x,y) ∈ Ng(a,b). Maximum on Minimum value of function at point (a,b) is Called an Extreme Value. aritical points:> Let fihas first order partial derivatives at Point (a,b). Then (a,b) ED is called a critical Point If for (a,b) = 0 and fy (a,b)=0. -> Saddle points:> If (a,b) ED is ceritical point but it is neither point of Minima non point of Maxima then (a,b) is colled saddle point. Methodology:> If f: D →R, D ⊆R2 be a function Sit fr, fy, frx, fry, fry, fyx mexist and Continuous at (a,b) ED. (fxy=fyx Inthis Care) Then (a,b) is point of Extrema > \$10,0=000 Sy(0,5)-0.

