Gr-CATEGORIES¹ Summary

The purpose of these notes is to study the Gr-categories and give some applications of them. Below is a brief description of the organisation of the work.

Chapter I gives some definitions and results, which are used continually in the sequel, on \otimes -categories one can find in [2], [6], [11], [14], [15], the terminology employed in this chapter being of Neantro Saavedra Rivano [14]. A \otimes -category is a category $\mathscr C$ together with a $law \otimes$, i.e. a covariant bifunctor

$$\otimes\!:\mathscr{C}\times\mathscr{C}\longrightarrow\mathscr{C}$$

$$(X,Y) \mapsto X \otimes Y$$

An associativity constraint for a \otimes -category $\mathscr C$ is an isomorphism of bifunctors

$$a_{XYZ}: X \otimes (Y \otimes Z) \xrightarrow{\sim} (X \otimes Y) \otimes Z, \quad X, Y, Z \in Ob(\mathscr{C})$$

satisfying the pentagon axiom, i.e. all the pentagonal diagrams

[]

are commutative. A \otimes -category together with an associativity constraint is called a \otimes -associativity category.

A commutativity constraint for a \otimes -category $\mathscr C$ is an isomorphism of bifunctors

$$c_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X, \quad X,Y \in Ob(\mathscr{C})$$

https://agrothendieck.github.io/

¹This text had been transcribed by Mateo Carmona

verifying the relation

$$c_{Y,X} \circ c_{X,Y} = \mathrm{Id}_{X \otimes Y}$$

The commutativity constraint c is said to be *strict* if $c_{X,X} = \operatorname{Id}_{X\otimes}$ for all $X \in Ob(\mathscr{C})$. A \otimes -category together with a commutativity constraint is a \otimes -commutative category. A \otimes -commutative category is *strict* if its commutativity constraint is strict.

An *unity constraint* for a \otimes -category $\mathscr C$ is a triple $(\underline{1}, g, d)$ where $\underline{1}$ is an object of $\mathscr C$, g and d natural isomorphisms

$$g_X: X \xrightarrow{\sim} \underline{1} \otimes X, \quad d_X: X \xrightarrow{\sim} X \otimes \underline{1}, \quad X \in Ob(\mathscr{C})$$

such that $g_{\underline{1}} = d_{\underline{1}}$. A \otimes -category together with an unity constraint is a \otimes -unifer category.

A \otimes -category $\mathscr C$ together with an associativity constraint a and a commutaivity constraint c is a \otimes -AC category if the hexagonal axiom is fulfilled, i.e. all the hexagonal diagram commutes

[]

A \otimes -category $\mathscr C$ together with a associativity constraint a and an unity contraint $(\underline{1}, g, d)$ is a \otimes -AU category if all the following triangles commute

[]

A \otimes -ACU category is a \otimes -AC and AU category. An object X of a \otimes -ACU category $\mathscr C$ is *invertible* if there are two objects $X', X'' \in Ob(\mathscr C)$ such that $X' \otimes X \simeq X \otimes X'' \simeq 1$.

A \otimes -functor from a \otimes -category \mathscr{C} to a \otimes -category \mathscr{C}' is a pair (F, \check{F}) where F is a functor $\mathscr{C} \longrightarrow cC'$ and \check{F} an isomorphism of bifunctors

$$\check{F}_{X,Y}: FX \otimes FY \longrightarrow F(X \otimes Y) \quad X,Y \in Ob(\mathscr{C})$$

A \otimes -functor (F, \check{F}) from a \otimes -associative category \mathscr{C} to a \otimes -associative category \mathscr{C}' is *associative* if the following diagram commutes:

[]

where a is the associativity constraint of $\mathscr C$ and a' of $\mathscr C'$.

A \otimes -functor (F,\check{F}) from a \otimes -commutative category \mathscr{C} to a \otimes -commutative category \mathscr{C}' is *commutative* if the following diagram commutes:

c and c' being the commutativity constraints of $\mathscr C$ and $\mathscr C'$ respectively.

A \otimes -functor (F, \check{F}) from a \otimes -category \mathscr{C} with an unity constraint $(\underline{1}, g, d)$ to a \otimes -category \mathscr{C}' with an unity constraint $(\underline{1}', g', d')$ is a \otimes -unifer functor if there exists an isomorphism $\hat{F}: \underline{1}' \xrightarrow{\sim} F\underline{1}$ such that the following diagrams commute:

[]

It follows from the definition that the isomorphism $\hat{F}: \underline{1}' \xrightarrow{\sim} F\underline{1}$, it it exists, is unique.

A \otimes -AC functor is an \otimes -associative and commutative functor.

A \otimes -ACU functor is a \otimes -associative, commutative and unifer functor.

Let (F, \check{F}) and (G, \check{G}) be \otimes -functors from a \otimes -category \mathscr{C} to a \otimes -category \mathscr{C}' . A \otimes -morphism from the \otimes -functor (F, \check{F}) to the \otimes -functor (G, \check{G}) is a morphism of functors $\lambda : F \longrightarrow G$ such that the following diagram commutes

 $\lceil \rceil$

Chapter II is a study of Gr-categories and Pic-categories. A Gr-category is a \otimes -AU category, the objects of which are all invertible, and the base category a groupoid (i.e. all arrows are isomorphisms). Thus a Gr-category is like a group. We obtain from this definition that if $\mathscr P$ is a Gr-category, the set $\pi_0(\mathscr P)$ of the classes up to isomorphism of objects of $\mathscr P$, together with the operation induced by the law \otimes of $\mathscr P$, is a group; the group $\operatorname{Aut}(\underline{1}) = \pi_1(\mathscr P)$ is a commutative group; and for all $X \in Ob(\mathscr P)$

$$\gamma_X : u \mapsto u \otimes \mathrm{Id}_X = \mathrm{Aut}(1) \xrightarrow{\sim} \mathrm{Aut}(X)$$

$$\delta_X : u \mapsto \operatorname{Id}_X \otimes u = \operatorname{Aut}(1) \xrightarrow{\sim} \operatorname{Aut}(X)$$

We attribute thus to a Gr-category \mathscr{P} two groups $\pi_0(\mathscr{P})$ and $\pi_1(\mathscr{P})$ where $\pi_1(\mathscr{P})$ is commutative. Furthermore we can define an action of $\pi_0(\mathscr{P})$ on $\pi_1(\mathscr{P})$ by the formula

$$s u = \delta_X^{-1} \gamma_X(u)$$

for $s \in \pi_0(\mathscr{P})$ represents d by X and $u \in \pi_1(\mathscr{P})$. The commutative group $\pi_1(\mathscr{P})$ together with this action is a left $\pi_0(\mathscr{P})$ -module.

Let M be a group, N a left M-module. A preepinglage of type (M, N) for a Gr-category \mathcal{P} is a pair $\varepsilon = (\varepsilon_0, \varepsilon_1)$ of isomorphisms

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathscr{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathscr{P})$$

compatible wit the action of M on N, $\pi_0(\mathcal{P})$ on $\pi_1(\mathcal{P})$. A Gr-category preeplingled of type (M,N) is a Gr-category \mathcal{P} together with preepinglage. Finally, an arrow of Gr-categories preepingled of type (M,N) $(\mathcal{P},\varepsilon) \longrightarrow (\mathcal{P}',\varepsilon')$ is a \otimes -associative functor such that the following triangles commute:

[]

It follows from this definition that a such arrow is a \otimes -equivalence. Thus the set of the equivalence classes of Gr-categories preepingled of type (M,N) is equal to the set of connected components of the category of Gr-categories preepingled of type (M,N).

If we consider the cohomology group $H^3(M,N)$ of the group M with coefficients N (in the sense of the group cohomology [12]) we obtain a canonical bijection between the set $H^3(M,N)$ and the set of the equivalence classes of Grcategories preepingled of type (M,N).

A Pic-category is a Gr-category together with a commutativity constraint which is compatible with its associativity constraint, i.e. the hexagon axiom is satisfied. Thus a Pic-category is like a commutative group. We verify immediately that a necessary condition for the existence of a Pic-category structure on a Gr-category is that $\pi_0(\mathcal{P})$ must be commutative and act trivially on $\pi_1(\mathcal{P})$. A Pic-category is *strict* if its commutativity constraint is strict.

Let M, N be abelian groups. A *preepinglage* of type (M, N) for a Pic-category \mathscr{P} is a pair $\varepsilon = (\varepsilon_0, \varepsilon_1)$ of isomorphisms

$$\varepsilon_0: M \xrightarrow{\sim} \pi_0(\mathscr{P}), \quad \varepsilon_1: N \xrightarrow{\sim} \pi_1(\mathscr{P})$$

A Pic-category preepingled of type (M,N) is a Pic-category together with a preepinglage. We define the *arrow* of such objects in the same way as for Greategories.

For next propositions, let us consider two complexes of free abelian groups

$$L_{\bullet}(M): L_3(M) \xrightarrow{d_3} L_2(M) \xrightarrow{d_2} L_1(M) \xrightarrow{d_1} L_0(M) \longrightarrow M$$

$${}^{\prime}L_{\bullet}(M):{}^{\prime}L_{3}(M) \xrightarrow{{}^{\prime}d_{3}}{}^{\prime}L_{2}(M) \xrightarrow{{}^{\prime}d_{2}}{}^{\prime}L_{1}(M) \xrightarrow{{}^{\prime}d_{1}}{}^{\prime}L_{0}(M) \longrightarrow M$$

where

[]

so that $L_{\bullet}(M)$ is a truncated resolution of M. One obtains a canonical bijection between the set of the equivalence classes of Pic-categories preepingled of type (M,N) and the set $H^2(Hom('L_{\bullet}(M),N))$. The exactitude of the complex L(M) gives us e triviality of the classification of Pic-categories preepingled of type (M,N) which are strict, i.e. all Pic-categories preepingled of type (M,N) which are strict, are equivalent.

Finally chapter III gives us the construction of the solution of two universal problems: problem of making objects "unity objects" and problem of reversing objects.

Let be a \otimes -AC category, ' another \otimes -AC category whose base category is a groupoid, and (T, \check{T}) :' \longrightarrow a \otimes -AC functors. We try to make the objects TA' of , $A' \in Ob(')$, "unity object", i.e. we try to get:

- 1°) A ⊗-ACU category \mathscr{P}
- 2°) A ⊗-AC functor $(D, \check{D}):\longrightarrow \mathscr{P}$
- 3°) A ⊗-isomorphism

$$\lambda: (\check{D}) \circ (T, \check{T}) \xrightarrow{\sim} (I_{\mathscr{P}}, \check{I}_{\mathscr{P}})$$

where $(I_{\mathscr{P}}, \check{I}_{\mathscr{P}})$ is the \otimes -constant functors $\underline{1}_{\mathscr{P}}$ from ' to \mathscr{P} . The triple $(\mathscr{P}, (D, \check{D}), \lambda)$) must be universal for triples $(,(E, \check{E}), \mu)$ satisfying $1^{\circ}, 2^{\circ}, 3^{\circ}$.

For the description of the triple $(\mathcal{P}, (D, \check{D}), \lambda)$, we introduce a quotient category of a \otimes -AC category as follows:

Let be a \otimes -AC category, Y a multiplicative subset of (that means a subset of the set of all endomorphisms of such that $Id_X \in Y$ for all $X \in Ob()$ and the tensor product of two arrows of Y belongs to Y). The \otimes -AC category quotient A^Y of with respect to Y is the solution of the universal problem

$$(K, \check{K}): \longrightarrow$$
, $K(u) = \text{Id for all } u \in Y$

where *B* is a \otimes -AC category and (K, \check{K}) a \otimes -AC functor.

Now let us give an idea of the construction of the triple $(\mathcal{P}, (D, \check{D}, \lambda))$ for $' \neq \emptyset$:

$$1^{\circ} \operatorname{Ob}(\mathscr{P}) = \operatorname{Ob}()$$

$$2^{\circ} Hom_{\mathscr{P}}(A,B) = \varphi(A,B)_{/R_{A,B}}, A,B \in Ob(\mathscr{P})$$

 $\varphi(A,B)$ being the set of all triples (A',B',u) where $A',B' \in Ob(')$, $u \in Fl()$, $u:A \otimes TA' \longrightarrow B \otimes TB'$; $R_{A,B}$ the equivalence relation defined in $\varphi(A,B)$ as follows

$$(A'_1, B'_1, u)R_{A,B}(A'_2, B'_2, u)$$

if and only if there are objects C'_1 , C'_2 and isomorphisms

$$u':A_1'\otimes C_1' \xrightarrow{\sim} A_2'\otimes C_2', \quad v':B_1'\otimes C_1' \xrightarrow{\sim} B_2'\otimes C_2'$$

of ' such that the following diagram commutes in φ \otimes -AC quotient category of with respect to the multiplicative subset of generated by the endomorphisms of the form $T(c_{A',A'})$;

We denote by [A', B', u] the class which has (A', B', u) as representative

3° Composition of arrows in \mathscr{P} . Let $[A', B, u]: A \longrightarrow B, [B'', C'', v]: B \longrightarrow C$ be arrows in \mathscr{P} . We define

$$[B'', C'', v] \circ [A', B', u] = [A' \otimes B'', B' \otimes C', w] : A \longrightarrow C$$

where w is such that the following diagram commutes:

Γ٦

4° ⊗-structure on 𝒯

$$A \otimes E \text{ (in } \mathscr{P}) = A \otimes E \text{ (in)}$$

$$[A',B',u]\otimes [E',F',v] = [A'\otimes E',B'\otimes F',w]$$

where w is defined by the commutative diagram (1)

5° ACU constraint in \mathscr{P} .

$$([A',A',a\otimes \mathrm{Id}],[A',A',c\otimes Id],(1_{\mathscr{P}}=TA'_{0},g_{A}=[A'_{0}\otimes A',A',t_{A}],d_{A}=[A'_{0}\otimes A',A',p_{A}]))$$

where A'_0 is a fixed object of ', A' an arbitrary object of ', g_A and d_A natural isomorphisms

$$g_A: A \longrightarrow 1_{\mathscr{P}} \otimes A, \quad d_A: A \longrightarrow A \otimes 1_{\mathscr{P}}$$

with t_A and p_A defined by the commutativity diagrams (2)

 $6^{\circ} (D, \check{D})$ is defined by

$$DA = A$$
, $D_u = [A', A', u \otimes \operatorname{Id}_{TA'}]$, $\check{D}_{A,B} = \operatorname{Id}_{A \otimes B}$

[]

For the problem of reversing objects, let us consider a \otimes -category \mathscr{C} with a ACU constraint (a, c, (1, g, d)) a \otimes -category \mathscr{C}' with a ACU constraint (a', c', (1', g', d')), the base category of which is a groupoid, and a \otimes -ACU functor $(F, \check{F}) : \mathscr{C}' \longrightarrow \mathscr{C}$. We try to find a \otimes -ACU category \mathscr{P} and a \otimes -ACU functor $(D, \check{D}) : \mathscr{C} \longrightarrow \mathscr{P}$ having the following properties

- 1° DFX' is invertible in \mathscr{P} for all $X' \in Ob(\mathscr{C}')$
- 2° For all \otimes -ACU functor (E, \check{E}) from \mathscr{C} to a \otimes -ACU category such that EFX' is invertible in for all $X' \in Ob(\mathscr{C}')$, there exists a \otimes -ACU functor (E', \check{E}') , unique up to \otimes -isomorphism, from \mathscr{P} to such that $(E, \check{E}) \simeq (E', \check{E}' \circ (D, \check{D}))$.

This problem is reduced by the first by putting $' = \mathscr{C}'$, $= \mathscr{C} \times \mathscr{C}'$, TX' = (FX',X') and by remarking that if \mathscr{C} , \mathscr{C}' , are \otimes -ACU categories, \otimes , $^{ACU}(\mathscr{C},)$ the category of all \otimes -ACU functors from \mathscr{C} to , then there is a canonical equivalence of categories

$$\otimes^{ACU}(\mathscr{C} \times \mathscr{C}',) \longrightarrow^{\otimes^{ACU}}(\mathscr{C},) \times^{\otimes^{ACU}}(\mathscr{C}',)$$

The \otimes -ACU category \mathscr{P} thus defined is called the \otimes -category of fractions of the category \mathscr{C} with respect to $(\mathscr{C}',(F,\check{F}))$. The \otimes -category of fractions of \mathscr{C}^{is} with respect to $(\mathscr{C}^{is},(\mathrm{Id}_{\mathscr{C}^{is}},\mathrm{Id}))$ is a Pic-category which is called the Pic-envelope of the category \mathscr{C} , and denoted by $\mathrm{Pic}(\mathscr{C})$.

For an application of the Pic-envelope, we take $\mathscr{C} = P(R)$, category of all finitely generated *R*-modules (*R* a ring) and $\mathscr{P} = \operatorname{Pic}(P(R))$, then one obtain

$$\pi_0(\mathscr{P}) \simeq K^0(R)$$

$$\pi_1(\mathcal{P}) \simeq K^1(R)$$

where $K^0(R)$ is the Grothendieck group and $K^1(R)$ the whitehead group [1].

The use of the \otimes -category of fractions of a \otimes -ACU category gives us the following result:

Let \mathscr{C} be a \otimes -ACU category, Z an arbitrary object of \mathscr{C} different from the unity object $\underline{1}$, S the functor from \mathscr{C} to \mathscr{C} defined by

$$X \mapsto X \otimes Z$$
.

The *suspension category* of the \otimes -ACU category $\mathscr C$ defined by the object Z is the triple $(\mathscr P,i,p)$ which solves the universal problem for triples (,j,q) where is a category, j a functor from $\mathscr C$ to , and q an equivalence of categories from to , so that the following diagram commutes

Π

up to natural isomorphism. In the case where \mathscr{C} is the homotopy category of pointed topological spaces $_*$ together with the smash [] (the smash [] of two spaces X and Y, with the base points x_0 and y_0 , is obtained from the product $X \times Y$ by [] the subset [] to a single point which is taken as the base point of []), and the usual ACU constraint; and Z is the 1-sphere S^1 hence S^1 is the suspension functor, we get the well-known definition of the suspension category.

Let \mathscr{C}' be the \otimes -stable subcategory of \mathscr{C} generated by Z and \mathscr{P} the \otimes -category of fractions of \mathscr{C} with respect to $(\mathscr{C}',(F,\operatorname{Id}))$ where $F:\mathscr{C}'\longrightarrow\mathscr{C}$ is the inclusion functor. One obtains a functor $G:\mathscr{P}\longrightarrow\mathscr{P}$ from the suspension category to the \otimes -category of fractions of \mathscr{P} . If G is not faithful, that is the case of the homotopy category of pointed topological spaces $_*$ together with the smash \wedge and the 1-sphere S^1 ; then it is impossible to construct in \mathscr{P} a law \otimes such that \mathscr{P} together with this law is a \otimes -ACU category, iZ invertible in \mathscr{P} , and i embedded in a pair (i,i) which is a \otimes -ACU functor from \mathscr{C} to \mathscr{P} .

REFERENCES

- [1] BASS, H K-theory and stable algebra. Publ. maths de L'IHES, n°22
- [2] BÉNABOU, J Thèse, Paris 1966
- [3] BOURBAKI, N Théorie des ensembles
- [4] Algèbre commutative
- [5] Algèbre multilinéaire
- [6] DELIGNE, P Champs de Picard strictement commutatifs, SGA 4 XVIII
- [7] EILENBERG, S ET KELLY, G M *Closed category*, Proceedings of the conference on categorical algebra (421.561). Springer Verlag 1965
- [8] FREYD, P *Stable homotopy*, Proceedings of the conferece on categorical agebra (121.176). Springer Verlag 1965
- [9] GROTHENDIECK, A Biextensions de faisceaux de groupes, SGA 7, VII
- [10] Catégories cofibrées additives et complexe cotangent relatif, Lecture notes in mathematics n°79. Springer Verlag 1968
- [11] MACLANE, S Categorical algebra, Bull. Amer. Mat. Soc. 71 (1965)
- [12] Homology, Springer Verlag 1967
- [13] MITCHELL, B Theory of categories, Academic Press 1965
- [14] NEANTRO SAAVEDRA RIVANO Thèse, Paris (1970?)

- [15] Catégories tannakiennes, Lecture notes in mathematics n°265. Springer Verlag 1972
- [16] Spanier, E- Algebraic topology, McGraw-Hill, 1966