1. Introduction

Transformers have become the state-of-the-art for many NLP tasks, including text classification, due to their ability to capture contextual information in text. This report details the implementation of a transformer-based text classification model for the AG News dataset, categorizing news articles into four predefined classes: *World, Sports, Business*, and *Sci/Tech*. Using the pretrained BERT model (bert-base-uncased), we fine-tuned it to achieve high accuracy, precision, and recall. This report elaborates on the methods used, challenges faced, and the results obtained.

2. Methods

Data Preprocessing

To prepare the AG News dataset for training:

1. Text Cleaning:

- Removed punctuation and numerical characters, which are irrelevant for classification.
- Applied stopword removal to eliminate common words (e.g., and, the, etc.) that add little value.

def remove_stopwords(text):

clean_text = [word for word in text.split(' ') if word not in stopw]
return ' '.join(clean_text)

2. Feature Engineering:

 Combined the Title and Description columns into a single text column for a comprehensive representation of the article.

3. Label Adjustment:

 Transformed labels from {1, 2, 3, 4} to {0, 1, 2, 3} for compatibility with PyTorch models.

Data Tokenization

We used the AutoTokenizer from the Hugging Face library, designed for the bert-base-uncased model, to:

· Tokenize text into word pieces.

• Generate attention masks for input padding and truncation.

```
def preprocess_function(examples):
    return tokenizer(examples["text"], truncation=True)
```

Model Architecture

The BERT model (bert-base-uncased) was fine-tuned by adding a classification head with four output neurons (corresponding to the dataset's classes).

- Pretrained Weights: Initialized using weights trained on a large corpus.
- Fine-tuning: Adjusted the weights specifically for the AG News dataset. Training

Configuration

Training was conducted with the following settings:

Learning Rate: 2×10-52 \times 10^{-5}2×10-5

• Batch Size: 16

Epochs: 3

• Optimizer: AdamW with weight decay (0.010.010.01)

• Scheduler: Linear decay learning rate scheduler with no warmup steps.

A training loop logged the loss per batch to monitor convergence.

```
for epoch in range(3): for
batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
```

Evaluation Metrics

To evaluate the model's performance, the following metrics were used:

- 1. **Accuracy**: Proportion of correctly classified samples.
- 2. **Precision**: Fraction of true positives among predicted positives.
- 3. **Recall**: Fraction of true positives among actual positives.
- 4. **Confusion Matrix**: Visual representation of true vs. predicted labels.

3. Results and Insights

Training Loss

- The loss steadily decreased across batches and epochs, indicating proper convergence.
- Training Loss vs. Steps: A line plot illustrates the gradual reduction in loss during training.

Insight:

Lower loss across epochs confirms that the model was effectively learning from the training data.

Performance Metrics

Validation Results

Class	Precision	Recall	F1-Score	Support
World	0.93	0.93	0.93	2488
Sport	0.98	0.98	0.98	2514
Business	0.89	0.90	0.89	2488
Sci/Tech	0.91	0.90	0.90	2510
Accuracy			0.93	10000
Macro Avg	0.93	0.93	0.93	10000
Weighted Avg	0.93	0.93	0.93	10000

Overall Accuracy: 93%

Key Observations:

- The model achieved the highest F1-Score in the Sports category, likely due to its distinct linguistic patterns.
- Slightly lower performance in Sci/Tech suggests overlap in terminology with other categories (e.g., Business).

Confusion Matrix

The confusion matrix revealed:

- Few misclassifications between *Business* and *Sci/Tech*.
- Most predictions were on the diagonal, reflecting strong performance.

Testing on Random Samples

- Evaluated 100 random samples from the test dataset.
- Accuracy: 93%

4. Challenges Faced

- 1. **Dataset Size**: Training on the full dataset (120,000 samples) required significant computational resources. A smaller subset (30%) was used.
- 2. **Class Overlap**: Certain classes (e.g., *Business* and *Sci/Tech*) shared overlapping vocabulary, impacting classification performance.
- 3. **Training Stability**: Fine-tuning transformers required careful hyperparameter tuning to prevent overfitting or underfitting.

5. Visualizations

Training Loss Trend

Confusion

Matrix

6. Conclusions

This project demonstrated the effectiveness of transformer-based models for text classification. Key outcomes include:

- Fine-tuned BERT achieved 93% accuracy on the validation set.
- Misclassifications occurred mainly due to overlapping features in the dataset.
- Incorporating techniques like class-specific preprocessing or additional pretraining on domain-specific data could further enhance results.