

असाधारण EXTRAORDINARY

16/7/8c

भाग !—सण्ड ।
PART I—Section 1
प्राधिकार से प्रकाशित

PUBLISHED BY AUTHORITY

to 41] No. 41] नई बिल्ली, सोमबार, मार्च 6, 1989/फाल्गुन 15, 1910

NEW DELHI, MONDAY, MARCH 6, 1989/PHALGUNA 15, 1910

इस भाग में भिन्न पुष्ठ संख्या की जाती है जिससे कि यह अलग संकलम के रूप में रखा जा सके

Separate Paging is given to this Part in order that it may be filed as a separate compilation

वाणिज्य मंत्रालय

(भ्रायात क्यापार नियंत्रण)

मार्वजनिक मुचना मं. 104-आई टी सी (पी एन)/88-91

नई दिल्ली, 6 मार्च, 1989

विषय:--म्रायात-निर्मात नीति म्रप्रैल, 1988--मार्च, 1991

फा. सं. 6/90/88—ई. पी. सी. —वाणिज्य मंत्रालय की सार्वजितिक सूचना सं. 1—ग्नाई टी सी (पी एन)/88—91, दिनांक 30 मार्च, 1988 के ग्रन्तर्गत प्रकाणित श्रप्रैल, 1988-मार्च, 1991 की यथासंगोधित श्रायात-निर्यात नीति की ओर ध्यान दिलाया जाता है।

उक्त नीति में नियमिलिखित संशोधन नीचे उल्लिखित उचित स्थानों परिकिए जाएंगे:—

फ्रम ग्रायात-निर्यात नीति संदर्भ संशोधन
मं. 1988—91 (खंड-1)
की पृष्ठ मं.
1 2 3 4
1. 246 परिशिष्ट-13ग इस कम सं. के कालम-5 और 6 के सामन उल्लिखित माला को इस्जीनियरिंग दोनों कालमों में "0.3" द्वारा प्रतिप्यापित किया जाएगा । उत्पाद, कम सं.-33 गैम' मैन्टल्म

1	2	3		4
2.	246	परिभिष्ट-13-ग इंजीनियरिंग उत्पाद ऋम सं. 33		कि इस ग्रधिसूचना के उपाबन्ध "क ' वेश, उत्पादन मानदण्ड जोड़ा जाएगा।
3.	248	परिशिष्ट 13-ग रसायन और सहबद्ध उत्पाद कम सं. 23(ख) एन्डोसल्फगन (तकनीकी)	विवरण एवं माद्रा सहित इस	क्रम संख्या को हटा दिया जाएगा ।
4.	246-252	परिणिष्ट-13.ग रसायन और सहबद्ध उत्पाद		जैसा कि इस म्रधिसूचना के उपाबन्ध वेश-उत्पादन मानदण्ड जोड़ा जाएगा।
5.	252	परिभिष्ट-13-ग प्लास्टिक कम संख्या-20		कि इस ग्रधिसूचना के उपावन्ध "ग" श-उत्पादन मानदण्ड जोड़ा जाएगा।
6.	252253	परिधिष्ट-13-ग खाद्य, ऋम सं. 2		कि इस ग्रधिमूचना कि उपावन्ध "घ" वैश-उत्पादन मानदण्ड जोड़ा जाएगा।
7.	253—25 5	परिभिष्ट-13-ग वस्त्र, तैयार पौपाकों, हौजरी और निटवियर कम सं. 1		2 और 3 में निर्यात ७*पाद और को निम्न द्वारा प्रतिस्थापि किया
			कालम-2	कालम-3
			100% मलबरी सिल्क फैब- रिक्स/मेड-ग्रंपस	(i) किसी भी ग्रेड की मालबरी राँ सिल्क/इंपियन यार्न ।
8.	253255	परिमिष्ट-13-ग वस्त्र, तैयार पौशाकें, होजरी और निटवियर क्रम सं. 2	विवरण और मान्ना सहित इस	ऋम सं. का लोप किया जाएगा।
9.	253255	परिशिष्ट-13-ग वस्त्न, तैयार पौशाकें हीजरी और निटवियर कम संख्या-3	मदों के थिररण एवं माला सहि द्वारा प्रतिस्थापन किया ज	त इस ऋम संख्याको उपाबन्ध ''ङ'' गएगा ।
10.	253255	परिशिष्ट-13-ग वस्त्र, तैयार पौशाकों, हौजरी और निटवियर कम सं. 45] 100./* ऊन से मिमितहौजरी/ निटवियर की वस्तुएं	प्रतिस्थापित किया जाएगा ।	6 में माझा को "1.143" द्वारा

			
1	2	3	4
11.	253-255		इस कम सं. के सामने कालम-6 में उल्लिखित माक्षा को "1.138" द्वारा प्रतिस्थापित किया जाएगा ।

3. उपर्युक्त संगोधन लोक-हित में किए गए हैं।

ह./-तेजेन्द्र खन्ना, मुख्य नियंत्रक स्रायात-निर्यात

			उप	बिन्ध "क"
क्रम निर्यात उत्पाद का विवरण सं.	कच्चे माल का विवरण	निर्यात उत्पाद की मात्रा (कि.ग्रा.)	श्रायात के लिए श्रनुमेय माझा (कि. ग्रा.)	मुल्क छूट लाभ के साथ ग्रनुमेय माला (कि.ग्रा.)
1 2	3	4	5	6
"34. प्राइम गेल्वेनाइज्ड इस्पात काइल्स	(1) सी. श्रार. काइन्स (2) जस्ता 98.5 % न्यूनतम शुद्धता की	1	1.050	1.050
35. ए. एस. टी. एम/की. एस. विशिष्टकरण तक की गेल्वेनाइज्ड बैलडिड इस्पात	ा। (1) पिग म्नायरन या एच. मैलटिंग स्कैप या स्टील स्कल्स	1	. 040 1. 374 य	.040 1.374
ट्पृब्स			1.304 या 1.540	1.304
	(2) जस्ता		0.070	0.070
36. ए एस टी एम/बी. एस. विणिष्टकरण तक की काली बैलडिड इस्पात ट्यूब्स	(1) पिग श्रायरन या एच. मैनटिंग स्क्र <mark>ीप</mark>	1	1.356 या 1.287	1.356 1.287
	या स्टील स्कल्स		या 1.519	1.519
37. इसई. एस. 7887 जे घ्राई एस 3505 और ए एस टी एम 510 विशिष्टकरण तक की वायर राष्ट	(1) पिग क्रायरन या एच मैर्लाटंग स्क्रेप	1	1,3 87 या 1,126	1.187 1.126
••	या स्टील स्कल्स		या 1.329	1.329
38. म्राई एस 226 तक को माइल्ड स्टोल राउंड्स	(1) पिग श्रायरन या एच मैलटिंग स्कैप	1	1 . 232 था 1 . 169	1.232 1.169
	या स्टीय स्कल्स		1,138	1.138

	3	4	 5	6
(-)				
, ,		1		1.238
, 0				1.175
	या		 या	1
	स्टील स्कल्म		1.388	1.338
(1)	हे ग्साक्लोरोक्यूलो /पेंटाडाइनी (एच. मी. मी. पी.)	1	0.88	0.88
(2)	ब्यूटीन डिल		0.27	0.27
(3)	थाई ओर्निलक्लोराइड		0.35	0.35
(4)	एपी क्लोरो हाईड्रीन		0.055	0.055
(5)	कार्बन टेट्रा-क्लोराइड		0.01	0.01
(e)	टोल्यूइन		0.014	0.014
(1)	एस. क्लोरोफिराइडीन	1	0 55	0.55
. ,			0.8820	0.8820
(3)	डिमिथाइल एमीनो एथानाल		0.50	0.50
(4)	आइसोप्रोपिल अल्कोहल		3.2	3.2
(1)	आइसोप्रोपिल अस्कोहल	1	4.0	4.0
		•		2.08
` '				8.54
, ,				1.60
	· ·			1.74
	•		7.66	7.66
(1)	सायाटामाइन हाइडोक्लोराइड	ī	1 254	1.254
		-		5.0
• •				2.5
				10.25
. ,				1.92
• •	•	1 867		1 867
		1.007		9.00
` '		1	0.416	0.416
		1		0.066
` '				0.000
` '	•			0.480
` '				0.100
` '				0.100
	, ,			0.085
` '	सोडियम नाइट्राइट		0.085	0.226
			~	
. ,	ः सा इनोरि क क्लोराइड	1	0.166	0 166
	(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6)	प्च मैलिटग स्क्रैंप या स्टीस स्कल्म (1) हेक्साक्लोरोक्यूलो/पेंटाडाइनी (एच. मी. सी. पी.) (2) ब्यूटीन डिल (3) धाईओनिलक्लोराइड (4) एपी क्लोरो हाईक्रीन (5) कार्बन टेट्रा-क्लोराइड (6) टोल्यूइन (1) एस. क्लोरोफिराइडीन (2) पैराक्लोरो देनजिल साइनाइड (3) डिमिथाइल एमीनो एथानाल (4) आइमोप्रोपिल अल्कोहल (1) आइसोप्रोपिल अल्कोहल (1) आइसोप्रोपिल अल्कोहल (2) मेथिल आइमोथियोमाइनेट (3) डाइमेथिन सल्फोआक्साइड (4) पोटाशियम डाइड्रोक्साइड (5) नाइट्रोमेथेन (6) क्लोरोफार्म (1) सायाटामाइन हाइड्रोक्सोराइड (2) आइसोप्रोपिल अल्कोहल (3) मेथिल -आइसोथियोसाइनेट (4) डाइसेथिन सल्फोक्साइड	प्रच मैलटिंग स्क्रैंप या एच मैलटिंग स्क्रैंप या स्टील स्कल्स (1) हेक्साक्लोरोक्यूलो/पेंटाडाइनी (एच. मी. भी. पी.) (2) ब्यूटीन डिल (3) पाईओनिलक्लोराइड (4) एपी क्लोरो हार्डड्रीन (5) कार्बन टेट्रा-क्लोराइड (6) टोल्यूइन (1) एस. क्लोरोफिराइड्रीन (2) पैराक्लोरो ट्रेनजिल साइनाइड्र (3) डिमियाइल एमीनो एथानाल (4) आइमोश्रोपिल अल्कोहल (1) आइसोशोपिल अल्कोहल (1) आइसोशोपिल अल्कोहल (2) मैथिल आइमोथियोमाइनेट (3) डार्डमेथिन सल्फोआक्साइड (4) पोटाश्रियम डाइड्रोक्लोराइड (5) नाइट्रोमेथेन (6) क्लोरोफार्म (1) सायाटामाइन हाइड्रोक्लोराइड (2) आइसोशोपिल अल्कोहल (3) मेथिल -आइसोथियोसाइनेट (4) डाइमेथिलमल्लोक्साइड (5) पोटाश्रियम डाइड्रोक्लोराइड (6) नाइट्रो-मेथेन (7) क्लोराफार्म (1) नेपथेलीन (2) फोर्मिकएसिड (3) कास्टिक सोड़ा (4) सोडा एश (5) एनिलिन (6) बेजीडाइन डी-डाइड्रोक्लोराइड्स	- (1) पिग श्रायरन 1 1.238 वा पा पूज मैलिटग स्क्रीं या पूज मैलिटग स्क्रीं या पा स्टीस स्क्रलम 1.388 (1) हेक्साक्जोरोक्यूलो/मेंटाडाइनी (एच. मी. भी. पी.) (2) ब्यूटीन डिल 0.27 (3) बाईओनिलक्सोराइड 0.35 (4) एपी क्लोरो हाईडीन 0.055 (5) कार्बन टेट्टाक्लोराइड 0.014 (1) एस. क्लोरोफिराइडीन 1 0.55 (2) पैराक्नोरो केनाजिल साइनाइड 0.8820 (3) डिमियाइल एमीनो एथानोल 0.50 (4) आइमोश्रोपिल अल्कोहल 3.2 (1) आइमोश्रोपिल अल्कोहल 1 4.0 (2) मेचिल आइमोथियोमाइनेट 2.03 (3) बाईमोथिल सल्कोआक्साइड 1.60 (5) नाइट्रोमेथेन 1.74 (6) क्लोरोफार्म 7.66 (1) सायाटामाइन हाइड्रोक्लाराइड 1 1.254 (2) आइसोश्रोपिल अल्कोहल 5.0 (3) मेथिल आइसोथियोमाइनेट 2.5 (4) डाइमेथिल मल्कोक्साइड 1 1.254 (2) आइसोश्रोपिल अल्कोहल 5.0 (3) मेथिल आइसोथियोसाइनेट 2.5 (4) डाइमेथिल मल्कोक्साइड 1 1.254 (2) आइसोश्रोपिल अल्कोहल 5.0 (3) मेथिल आइसोथियोसाइनेट 2.5 (4) डाइमेथिल मल्कोक्साइड 1 1.254 (2) आइसोश्रोपिल अल्कोहल 5.0 (3) मेथिल आइसोथियोसाइनेट 2.5 (4) डाइमेथिल मल्कोक्साइड 10.25 (5) पोटाध्यम डाइड्रोक्साइड 1.867 1.867 (7) क्लोराफार्म 9.00 (1) नेपबेलीन 1 0.416 (2) फोर्मिकएसिड 0.660 (3) कास्टिक सोड़ा 0.640 (4) सोडा एण 0.480 (5) एनिलन 0.100 (6) बेजीडाइन डी-डाइड्रोक्लाराइड्स 0.200

1	2	3	4	5	6
393 ই	त्र्डोक्टिय गोल्डन येलो (रिएक्क्टिय	 (1) साइनोरिक क्लोराइड	1	0.166	0 166
अ	गरेज-12)	(2) मेटा-फिनिलीन डायामाइन		0.60	0.60
		(3) ब्रेटा नेपथल		0.430	0.430
394 अ	ग[क्सफनबूटाजोन	(1) थाइओनील क्लोराइड	1	2.5	2.5
		(2) बुटिल एसिटेट		1.2	1.2
		(३) एनिलीन तेल		0.58	0.58
		(4) फिनोल		0.58	0.58
		(5) पायरीडीन		0.5	0.5
		(6) तरल शोमाइन		1.4	1.4
		(7) एन-बृटिल अल्कोहल		1.4	1.4
		(8) मेथानील		3.0	3.0
		(9) सोडियम मेटल		0.40	0.40
		(10) डाई-मेथाइल एनिलिन		1.0	1.0
		(11) एसिटिक एनडाईड्राइड		0.50	0.50
		(12) जिक डस्ट		0.60	0.60
		(13) मोडियम साइनाइड		0.75	0.75
		(14) मोनोक्लोरो एसिटिक एसिड		1.20	1.20
395 T	।(र. एमितो एसिटानीलाइड	(1) एगिटानीलाइड फलेक्स	1	1.3	1.3
396 ₹	ां रोएएक्टल क्योर। इ ड	(1) मोनोक्लोरो एसिटिक एसिड	1	0.90	0.90
		(2) कास्टिक एसिड		0.47	0.47
397. f	मफालेक्सिन	(1) पोटाशियम पेंसिलिन-जी	1	2.1	2.1
	•	(2) हाइड्रोजन पैराआनसाइड		1.5	1.5
		(3) एच एम डी एस		0.59	0.59
		(4) पायरीडोन डाइड्रोब्रोमाइड		0.35	0.35
		(5) मिलिय-जी एमिडासी		0.002	0.002
		(6) ट्रार्डमेथिल क् लोरो साइलेन		3.96	3.96
		(7) डी-एस्फाफिनेल ग्लाईसीन एच भी एल		0.70	0.70
		(8) मेथिलीन क्लोराइड		10.00	10.00
		(9) द्राईमेथिल एमाइन		2.00	2.00
		(10) फिथाइरीडीन		1.00	1.00
398	डाईएथित्रीन ग्लाईकोल	(1) नेष्था	1	1.50	1.50
399. इ	ग्रहेक्जोरोएथेन एथिनीन डाइक्कोस इड	(1) नेप्था	1	0.65	0.65
400 T	ी. वी. मी. रेजिन	(1) नेप्था	1	1.14	1,14
401. 3	आइयोत्रोरेनोल	(1) नेप्या	1	1.85	1.85
402	र्सिटोन	(1) नेप्था	1	1.90	1.90
404. T	डायाक्तोटोन अल्कोहल (डी.ए.ए.)	(1) नेप्था	1	2.20	2.20
	तें¦येल अःिनोबुटिल केटोन (एस. आर्ट. बी. के.)	(1) नेप्था	1	3.00	3,00

1 2	3	4	5	6
405. एथिलीन	(1) नेप्था	1	2.20	2.20
406. नेण्योल ए. एस. डी. (सिथेटिक	(1) बेटा नेपयोल	1	0.80	0.80
आर्गेनिक डाई)	(2) कास्टिक सोडा फलेक्स		0.65	0.65
	(3) ओर्थो टोल्यूडाइन		0.42	0.42
407. मेटा एमिनो फिनोल	(1) नाइट्रो बेजीनी	1	1.6	1.6
	(2) कास्टिक सोडा फ्लेक्स		1.8	1.8
	(3) पोटाशियम क्लोरेट (म्यूरिएट आफ पोटाश)		1.453	1.453
408. नोरफ्लोक्सामिन	(1) 3-क्लोरो-4-फ्लूरो-एनिलीन	1	1.46	1.46
("एनओ आर-)-1-पिपीरेजिनील)-3-	(2) डाईमेथिल सल्फोक्नाइड		8.00	8.00
क्यूनोलीन कार्बोक्सलिक ए आई सी	(3) पोटाशियम कारवोनेट		5.00	5.00
ৰী'')	(4) एथिल क्रोमोइड		4.00	4.00
	(5) पिपराजीन एनहाईड्राम		6.00	6.00
	(६) मेथिलीन क्लोराइड		4.00	4.00
	(7) आसोप्रोपील अल्कोहल		4.00	4.00
	(8) डाई-मेथिल फोर्मामाइड		6.00	6.00
	,		उपा	रन्ध "ग"
"21. एव डी पी ई लेमिनेटिड/कोटिड बूबन सैक्स (एल डी पी ई की लेमिनेशन/	(1) एच डी पी ई ग्रेन्यूल्स (2) लेमिनेणन कोटिंग के लिए एल	1@	1.10	1.10
कोटिंग)	डो पी ई ग्रेन्ल्यूस	1@	1.05	1.05
22. पी पी -लेमिनेटिड/कोटिड बूबन सैक्स	(1) पी पी ग्रेन्यूल्स	1@	1.10	1.10
(पी पी की लेमिनेशन कोर्टिंग)	(2) लेमिनेशन/कोटिंग ले लिए पी पी ग्रेन्यूरस		1.05	1.05
23. एल डी पी ई लाइनर सहित एच डी	(1) एच डी पी ई ग्रेन्यूल्म (2) लाइनर के लिए एल डी पी ई	1@	1.10	1.10
पी ई बूबन में क्स	ग्रेन्यूहस	1@	1.05	1.05
24. लाइनर सहित लेमिनेटिड कोटिड एव	(1) एच डी पी ई ग्रैन्यूल्स(2) लेमिनेशन/कोटिंग के लिए प्रयोग में	1@	1,10	1.10
डी पी ई बूबन सैक्स	लाई गई सामग्री के ग्रेन्यूल्स	1@	1.05	1.05
25. लाइनर सहित लेमिनेटिड/कोटिडपी पी बूबन सैक्स	(1) पी पी ग्रेन्यूल्स	1@	1.10	1.10
**	(2) नेमिनेशन/कोटिंग के लिए प्रयोग में लाई गई मामग्री के ग्रेन्यूल्स	1@	1.05	1.05
26. पी पी बूबन फैंब्रिक्स	(1) पी पी ग्रेन्यूल्स	1@	1.08	1.08

1 2	3	4	5	6
27. एच डी पी ई वूबन फैंकियस	(1) एच. डी. पी. ई. ग्रेन्यूल्स	1@	1.08	1.08
28 लेमिनेटिड/कोटिड पी पी बूबन फैब्रिनस	(1) पी पी ग्रेन्यूल्स	1@	1.08	1.08
	(2) लेमिनेशन/कोटिंग के लिए प्रयोग में लाई गई सामग्री के ग्रेन्यूल्स	1@	1.05	1.05
 श्वेमिनेटिङ/कोटिङ एच डी पी ई बूबन फैंबिक्स 	(1) एच डी पी ई जेन्यूल्स (2) लेमिनेशन/कोटिंग के लिए प्रयोग	1@	1.08	1.08
	मे लाई गई सामग्री के ग्रेन्यूल्स	1@	1.05	1,05
30. पी पी/एच डी पी ई/नारपोलीन	(1) तारपोलीन के विनिर्माण के लिए प्रयोग में लाई गई सामग्री (श्रर्थात्	1(@)	1.08	1 08
	पी पी/एच डीपी ई) के ग्रेन्यू⊤स	1@	1.08	1 08
31. पी पी/एच घो पी ई तारपोलीन एल डी पी ई से कोटिड	(1) तारपोलीन के निर्माण के प्रयोग में लाई गई सामग्री के ग्रेन्यूल्स (ग्रर्थात् पी पी/एच डी पी ई)	1@	1.08	1.08
	(2) एल डी पी ई ग्रेन्यूरुस (कोटिंग के लिए)	1@	1.05	1.05
	(@) निर्यात उत्पाद में संगत मामग्री की	णु ता मा न्ना)		
			उपा	जनक्षं ^{('} घं''
3. फल का जैंग	(1) फल का गुदा	1	0.45	0.45
	(2) चीनी	0,55	0,55	0.55
	(3) पैक्टिन (4) को जी पान जैन न		0.07	0.07
	(4) ओ, टी. एम. कैनम	म्द	मान्ना के इ	गधार पर
			उपाबन	ম-5 ব.
 शहलूत मिश्रित सिल्क फेब्रिक्स/मेडग्रप्स 	(1) किसी भी श्रेणी/	1	1.40	1.35
वस्त्र	(2) नकली रे ग्ने का ग हतूत का कच्चा रेग्नम	#		
	(3) नायल यार्न	‡	1,19	1.19
	(4) स्पन सिल्क यार्न	‡	1,11	1,11

‡ंग्रायात के लिए श्रनुमित शहसूत के कच्चे रेशम/नकली रेशे, नायल रेशे और स्पन रेशम धागे की मात्रा निर्यात उर₁ादन में इस्तेमाल होने वाले/इस्तेमाल किए गए ऐसे कच्चे रेशम/रेशे की मात्रा के श्रनुरूप होनी चाहिए ।

MINISTRY OF COMMERCE

(Import Trade Control)

PUBLIC NOTICE NO. 104—ITC(PN)/88-91

New Delhi, the 6th March, 1989

Subject.—Import and Export Policy for April, 1988—March, 1991.

F. No. 6/90/88-EPC.—Attention is invited to the Import & Export Policy for April, 1988—March, 1991, published under the Ministry of Commerce Public Notice No. 1-ITC(PN)/88-91 dated the 30th March, 1988, as amended.

2. The following amendments shall be made in the Policy at appropriate places indicated below:

Sı No.	Page No. of Import & Export Policy, 1988—91 (Volume 1)	Reference	Amendment.
1	2	3	4
1.	246	Appendix 13-C Engineering Products Sl. No. 33 Gas Mantles	The quantities mentioned in Columns 5 and 6 against this Sl. No. shall be substituted by "0.3" in both the Columns.
2.	246	Appendix-13-C Engineering Products Sl. No. 33	After this Sl. No., new input-output norms as given in Annexure 'A' to this notification shall be added.
3.	248	Appendix 13-C Chemicals and Allied Products Sl. No. 23 (b) Endosulfan (Technical)	This Sl. No. with description and quantity shall be deleted.
4.	245—252	Appendix 13-C Chemicals and allied Products Sl. No. 386	After this Sl. No., new input-output norms as given in Annexure 'B' to this notification shall be added.
5.	252	Appendix 13-C Plastics Sl. No. 20	After this Sl. No., new input-output norms as given in Annexure 'C' to this notification shall be added.
6.	252-253	Appendix 13-C Foods Sl. No. 2	After this Sl. No., a new input-output norms as given in Annexure 'D' to this notification shall be added.

1	2	3	4
7.	253-255	Appendix 13-C Textiles, Ready-made Garments Hosiery and Knitwear S. No. 1	This existing description of export product and raw materials in Column 2 and 3 against this Sl. No. shall be substituted by the following:—
			Col. 2 Col. 3
			"100% Mulberry silk (i) Mulberry raw silk fabrics/made-ups. of any grade/dupion yain."
8.	253-255	Appendix-13C Textiles, Ready-made Garments, Hosiery and Knitwear St. No. 2	This SI. No. with description and quantity shall be deleted.
9.	253-255	Appendix 13-C Textiles, Ready-made Garments, Hosiery and Knitwear Sl. No. 3	This Sl. No. with description of items and quantity shall be substituted by Annexure 'E',
10.	252-255	Appendix 13-C Textiles, Readymade Garments, Hosiery and Knitwear Sl. No. 45 Articles of Hosiery/Knitwears made of 100% wool.	This quantity in column 6 against this Sl. No. shall be substituted by "1.143".
11.	252-255	Appendix 13-C Textiles, Readymade Garments, Hosicry and Knitwear Articles of Hosicry/Knitwears made of woollen blended yarn Sl. No. 46	The quantity mentioned in Column 6 against this Sl. No. shall be substituted by "1.138".

^{3.} The above amendments have been made in public interest.

TEJBNDRA KHANNA, Chief Controller of Imports and Exports

ANNEXURE-A

S1. Description of the Export ? c. Product	Description of raw material	Qty. of Export Product	Qty. allowed for import	Qty allowed with duty exemption benefits
		(Kgs)	(Kgs)	(Kgs)
1 2	3	4	5	6
'34, Prime Galvaniscd Steel Coils	(i) C.R. Coils (ii) Zinc 98.5% Min. purity	1	1.050	1.050 .040
35. Galvanised Welded Steel Tubes to ASTM/BS Specification.	(i) Pig Iron OR	1	1.374 OR	
	H. Melting Scrap OR		1.304 OR	1,304
	Steel Skulls (ii) Zinc		1.540% 0.070	1.540 0.070
36. Black Welded Steel Tubes to ASTM/BS Specification	(i) Pig Iron OR	1	1.356 OR	1.356
· -	H. Melting Scrap OR		1.28 7 OR	1.287
	Steel Skulls		1.519	1.519
37. Wire Rods to Specification IS 7887, JIS 3505 & ASTM 510	(i) Pig Iron OR	1	1.187 OR	1.187
	H. Melting Scrap OR 7		1.126 OR	
	Steel Skulls		1.329	1.329
38. Mild Steel Rounds to IS 226	(i) Pig Iron OR	1	1.232 OR	
	H. Molting Scrap OR 1		1.169	1.169
an management cate	Steel Skulls	1	1,138	1.138
39. Gold Twisted/thermo-mechani- cally treated re-inforcing bars	(i) Pig Iron OR'	1	1.238 OR	
to IS 1786	H. Melting Scrap OR Steel Skulls		1.175 OR 1.388	1.175

ANNEXURE-B

SI. No.	Description of the export product	Description of raw material	Qty. ol Export product Kgs.	Qty. allowed for import Kgs.	Qty. allowed with duty exemption benefit Kgs.
 1	2	3	4	5	6
 387.	Endosulfan (Technical)	(i) Hexachloro cyclo-pentadic- nnc (HCCP)	1	0.88	0.88
		(ii) Butene Diol.		0.27	0.27
		(iii) Thionyl chloride		0.35	0.35
		(iv) Epichlorohydrine		0.055	0.055
		(v) Carbon Tetrachloride		0.01	0.01
		(vi) Toluene		0.014	0.014
	Chlorpheniramine Maleate	(i) S-Chloro phyridine	1	0.55	0.55
	BP/USP	(ii) Parachloro Benzyl Cyanide		0.8820	0.8810
		(iii) Dimethyl Amino Ethanol		0.50	0.50
		(iv) Isopropyl Alcohol		3.2	3.2
389.	Ranitidine Intermediate	(i) Isopropyl Alcohol	1	4.0	4.0
	(1-Methylamine-1-Meth-1-thio-2-	(ii) Methyl isothiocynate		2.08	2.08
	Nitro ethane) Nitro compound.	(iii) Dimethyl sulphoxide		8.54	8.54
		(iv) Potassium Hydroxide		1.60	1.60
		(v) Nitro methane		1.74	1.74
		(vi) Chloroform		7.66	7.66
39 0.	Ranitidine Hydrochloride	(i) Cyatamine Hydrochloride	1	1.254	1.254
	(Chemical name: N-2-5-	(ii) Isopropyl Alcohol		5.0	5.0
	Dimethyl amine) (Methyl-2-	(iii, Methyl Iso-thiocynate		2.5	2.5
	Furanyl) (Methyl thio ethyl)	(iv) Dimethyl Sulphoxide		10.25	10.25
	(N-Methyl-2-Nitro-1-1-ethene-	(v) Potassium Hydroxide		1.92	1.92
	diamine)	(vi) Nitro Methane (vii) Chloroform		1.867 9.00	1.867 9.00
39 1.	Direct Black-38	(i) Naphthelene	Ī	0.416	0.416
	(Direct Black-E H-cont).	(ii) Formic Acid		0.066	0.066
		(iii) Caustic Soda		0.640	0.640
		(iv) Soda Ash		0.480	0.480
		(v) Aniline		0.100	0.100
		(vi) Benzidine di-hydrochlorices		0.200	0.200
		(vii) Mota Phynyle diamine		0.085	0.085
		(viii) Sodium Nitrite		0.226	0.226
392	Indoctive orange (Reactive	(i) Cyanuric chloride	1	0.166	0.166
	orange 13)	(ii) Tobies Acid		0.680	0.680

1 2	3	4	5	6
393. Indoctive Golden Yellow	(i) Cyanurie chloride	1	0.166	0.166
(Reactive orango 12)	(ii) Meta Phynylene Diamine		0.160	0.160
	(iii) Beta Napthal		0.430	0.430
394. Oxyphenbutazone	(i) Thionyl Chloride	l	2.5	2.5
	(ii) Butyl Acetate		1.2	1.2
	(iii) Aniline Oil		0.58	0.58
	(iv) Phenol		0.58	0.58
	(v) Pyridine		0.5	0.5
	(vi) Liquid Bromine		1,4	1.4
	(vii) N-Butyl Alcohol		J'.4	1.4
	(viii) Methanol		3.0	3.0
	(ix) Sodium Metal		0.40	0.40
	(x) Di-Methyl Aniline		1.0	0.1
	(xi) Acetic Anhydride		0.50	0.50
	(xii) Zinc Dust		0,60	0.60
	(xiii) Sodium Cyanide		0.75	0.75
	(xiv) Monochloro Acetic Acid		1.20	1.20
D3. Para Am ab Acetanilide	(i) Acctanilide Flakes	1	1.3	1.3
96. Chloro Aetyl Chloride	(i) Monochloro Acetic Acid	1	0.90	0.90
	(ii) Caustic Acid		0.47	0.47
97. Cephalexin	(i) Potassium Poncillin G	1	2.1	2.1
	(ii) Hydrogen Poroxide		1.5	1.5
	(iii) HMDS		0.59	0.59
	(iv) Pyridine Hydrobromide		0.35	0.35
	(v) Pencillin G Amidase		0.002	0.002
	(vi) Trimethyl Chloro Silane		3.96	3.96
	(vii) D. Alpha Phenyl Glycine HCL		0.70	0.70
	(viii) Methylene Chloride		10.00	10.00
	(ix) Trimethyl Amine		2.00	2.00
	(x) Pyridine		1.00	1.00
98. Diethylene Glycol	(i) Napntha	1	1.50	1.50
99. Dichloroethane/Ethylene Dichloride	(i) Naphtha	1	0.65	0.65
00. PVC Resin	(i) Naphtha	1	1.14	1.14
01. Isopropanol	(i) Naphtha	1	1.85	1.85
102. Acetone	(i) Naphtha	1	1.90	1.90
03. Diacetone Alcohol (DAA)	(i) Naphtha	1	2.20	2.20
04. Methyl Isobutyl Ketone (MIBK) (i) Naphtha	1	3.00	3.00
05. Ethylene	(i) Naphtha	I	2.20	2.20
36. Naphthol ASD (Synthetic	(i) Beta Naphthol	1	0.80	0.80
Organic Dyes)	(ii) Caustic Soda Flakes		0.65	0.65
	(iii) Ortho Toluidine		0.42	0.42

1	2		3	4	5	6
407.	Meta Amine Phenol	(ii)	Nitro Benzene Caustic Soda Potassium Chlorate (Muriate of Potash)	1	1.6 1.8 1.453	1.6 1.8 1.453
408.	Norfloxacin ('NOR-(-1-Piperazinyl)-3- Quincline Carboxylic Acid').	(ii) (iii) (iv) (v) (vi) (vii)	3-Chloro-4-fluro Aniline Dimethyl Sulflexide Potassium Carbonate Ethyl Bromide Piperazine Anhydrous Methylene Chloride Isopropyl Alcohol	1	1.46 8.00 5.00 4.00 6.00 4.00 4.00 6.00	1.46 8.00 5.00 4.00 6.00 4.00 4.00 6.00
	`	(1111)	Dimethyl Formamide ANNEXURE—C		0.00	0.00
"21.	HDPE Laminated/Coated Woven sacks (Lamination/ coating of LDPE).		HDPE Granules LDPE Granules for lamination/ccating	1@ 1@	1 .10 1 .05	1 .10 1 .05
22.	PP laminated/coated woven sacks (Lamination/coating of PP)		PP Granules PP Granules for lamination/ coating	1@ 1@	1.10 1.05	1.10 1.05
23.	HDPE woven sacks with LDPE liner		HLPE Granules LDPE Granules for liner	1@ 1@	1.10 1. 05	1.10 1.05
24.	HDPE woven sacks laminated/coated_with linear.	(ii)	HDPE Granules Granules of material used for lamination/coating	1@ 1@	1.10 1.05	1.10 1.05
		(iii)	Granule of material used for liner.	1@	1.05	1.05
25.	PP woven sacks laminated/ enated with liner.	(ii	PP Granules) Granules of material used for	1@ 1@	1.10 1.05	1.10 1.05
			lamination/coating Granules of material used for liner	1@·	1.05	1.05
- 6.	. PP woven fabrics	(i)	PP Granules	1@:	1.08	1.08
17 .	HDPE woven fabrics	(i)	HDPE Granules	1@	1.08	1.08
28.	PP woven fabrics laminated/ccate	(ii)	PP Granules Granules of material used for lamination/coating	1@ 1@	1.08 1.05	1.08 1.05
29.	HDPE woven fabrics laminated/coated.	(i)	HDPE Granules Granules of material used for lamination/ccating.	1@ 1@	1.08 1.05	1.08 1.05
30.	PP/HDPF/Tarpauline	(i)	Granule of material (i.e. PP/HDPE) used for manufacture of Tarpauline.	1@	1.08	1.08
31.	PP/HDPE Tarpauline coated with LDPE	(1)	Granule of material (i.e. PP/HDPE) used for manufacture of Tarpauline.	1 (ã	1.08	1.08
		(ii)	LDPE Granule (for coating)	1 @	1.05	1.05

[@]Net content of relevant material in Export Product.

⁶⁰⁹ G1/89---3

14	THE GAZETTE OF INDIA: EXTRAORDINARY								
1	2	3	4	5	6				
		ANNEXURE	-D						
"3. Fruit Jam		(i) Fruit Pulp	1	0.45	0.45				
		(ii) Sugar		0.55	0.55				
		(iii) Pectin		0.07	0.07				
		(iv) OTS cans	-On net t	to net basis"—	.				
	ANNEURE—E								
"3. Mulborry n made-ups/g	nixed silk fabrics/ arments	(i) Mulberry raw silk of any grade/dupion yarn*	1	1 .40	1.35				
		(ii) Noil yarn*		1.19	1.19				

(iii) Spun Silk yarn*

1.11

1,11

^{*}The quantum of mulberry raw silk/dupion yarn, noil yarn and spun silk yarn allowed for import will correspond to the quantity of such raw silk/yarn used/proposed to be used in the export product."