مدرس: دكتر فاطمه بهارىفرد

انشکدهی مهندسی کامپیوتر

فصل دوم

تمرین دوم محاسبات عددی

۱- تابعی به صورت $x - e^{-x} = 0$ داریم مطلوب است محاسبه ریشه این تابع با کمک روش بولزانو در بازهی [0,1]. (۱۰ نمره)

۲- با کمک روش نیوتن رافسون x_2 را برای معادله ی x_2 -3=0 بیابید، x_2 بیابید، x_3 -7x + 8x -3=0 بیابید، x_2 بیابید، x_3 -7x + 8x -3=0 بیابید، x_2 (۱۰) نمره)

ب) با کمک روش نیوتن رافسون ریشه ی معادله $g(x)=x^4-5x^3+9x+3=0$ را تا شش رقم اعشار در بازه ی $g(x)=x^4-5x^3+9x+3=0$ اعشار در بازه ی $g(x)=x^4-5x^3+9x+3=0$

۳- مطلوب است محاسبه ی 5- $2x^3 - 2x^3 - 2x^3$ با استفاده از روش نابه جایی در بازه ی $f(x) = 2x^3 - 2x^3 - 2x^3$ در هفت گام. (۲۰ نمره)

۴- معادله درجه دوم $x^2-x+8=0$ با حدس اولیه 1 و 2 تعریف شده است، مطلوب است محاسبه مقدار $x^2-x+8=0$ با استفاده از روش سکانت. (۱۰ نمره)

g(x) در فاصله $f(x)=x^2+x-1$ در فاصله $f(x)=x^2+x-1$ به روش نقطه ثابت، کدام انتخاب برای $f(x)=x^2+x-1$ شرایط همگرایی را دارد؟ (لطفا پاسخ کامل و دلیل رد یا انتخاب هر یک از گزینه ها را بنویسید). (۲۵ نمره)

$$g_1(x) = \frac{x^2+1}{2x+1}$$
 (1)

$$g_2(x) = \frac{1}{x+1} (\Upsilon$$

$$g_3(x)=\sqrt{1-x}$$
 (r

$$g_4(x) = 1 - x^2 ($$

 $f(x)=ax^3+bx^2+dx+c$ کد الگوریتم روش هورنر را به ازای ورودی های متفاوت برای معادله $(x)=ax^3+bx^2+dx+c$ (به زبان پایتون) پیادهسازی نمایید. (۱۵ نمره)

c در ابتدا از کاربر چهار تا ورودی دریافت کنید که ضرایب معادله فوق هستند (به ترتیب a و b و c را دریافت کنید) x_0 (هم گرفته و در نهایت حاصل جواب را نمایش دهید.

برای مثال اگر از کاربر چهار عدد به ترتیب 1-,2, 6, 2, -1 (اعداد را از چپ به راست بخوانید) از ورودی دریافت کنید و $\mathbf{x}_0 = \mathbf{x}_0 = \mathbf{x}_0$ باشد، برای معادله $\mathbf{x}_0 = \mathbf{x}_0 = \mathbf{x}_0$ شما در خروجی عدد 5 را مشاهده میکنید.

(این سوال به صورت دستی بررسی میشود و راه و الگوریتم پیش گرفته مهم است.)