Développements limités CHAPITRE 1:

Cours N⁰1 : Formule de Maclaurin et développements limités en 0

1 Les dérivées successives:

1.1 Définitions:

Définition1:

On définit par récurrence la dérivée $n^{\grave{e}me}$ de f (ou dérivée d'ordre n) notée $f^{(n)}$ par:

$$\begin{cases} f^{(0)} = f \\ \text{et} \\ \forall n \in \mathbb{N}, \ f^{(n+1)} = (f^{(n)})' \end{cases}$$

Exemples:

1/ Calculer la dérivée d'ordre n de la fonction $f(x) = e^{kx}, k \in \mathbb{R}$.

Une dérivation successive nous donne:

$$\forall x \in \mathbb{R}, \ f'(x) = k.e^{kx}, \ f''(x) = k^2.e^{kx}, \ f^{(3)}(x) = k^3.e^{kx}$$

On obtient par récurrence:

$$\forall n \geq 1, f^{(n)}(x) = (e^{kx})^{(n)} = k^n \cdot e^{kx}$$
. (On montre ce résultat par récurrence).

2/ Montrer par récurrence que:

$$\forall n \in \mathbb{N}, (\sin x)^{(n)} = \sin(x + n\frac{\pi}{2})$$

- On vérifie que la propriété est vraie pour:

$$n = 0: (\sin x)^{(0)} = \sin x = \sin(x + 0.\frac{\pi}{2})$$

$$n = 1 : (\sin x)' = \cos x = \sin(x + 1.\frac{\pi}{2}).$$

- On suppose que la propriété est vraie jusqu'à l'ordre n, c'est à dire: $(\sin x)^{(n)} = \sin(x + n\frac{\pi}{2}).$

- On montre que la propriété est vraie à l'ordre (n+1), c'est

à dire:
$$(\sin x)^{(n+1)} \stackrel{?}{=} \sin(x + (n+1)\frac{\pi}{2}).$$

On a
$$(\sin x)^{(n+1)} = ((\sin x)^{(n)})' = (\sin(x + n\frac{\pi}{2}))' = \cos(x + n\frac{\pi}{2})$$
 et $\cos(x + n\frac{\pi}{2}) = \sin(x + n\frac{\pi}{2} + \frac{\pi}{2})$

$$\operatorname{car} \forall x \in \mathbb{R}, \ \sin(x + \frac{\pi}{2}) = \cos x$$

car
$$\forall x \in \mathbb{R}$$
, $\sin(x + \frac{\pi}{2}) = \cos x$
donc $(\sin x)^{(n+1)} = \sin(x + n\frac{\pi}{2} + \frac{\pi}{2}) = \sin(x + (n+1)\frac{\pi}{2})$
alors la propriété est vraie à l'ordre $(n+1)$.

Conclusion: $\forall n \in \mathbb{N}, (\sin x)^{(n)} = \sin(x + n\frac{\pi}{2}).$

Définition 2:

- On dit que f est de classe D^n sur I, si elle est n fois dérivable sur I.
- On dit que f est de classe C^n sur I si elle est de classe D^n sur Iet que $f^{(n)}$ et continue sur I.
- On dit que f est de classe C^{∞} sur I si pour tout $n \in \mathbb{N}$, f est de classe C^n sur I. (f est dite indéfiniment dérivable sur I).

- $1/ \bullet C^0(I)$ ou C(I) est l'ensemble des fonctions continues sur I.
 - D(I) est l'ensemble des fonctions dérivables sur I.
 - $C^1(I)$ est l'ensemble des fonctions dérivables sur I et dont la dérivée est continue sur I.
- $2/ \bullet D^n(I)$ est l'ensemble des fonctions de classe D^n sur I.
 - $C^n(I)$ est l'ensemble des fonctions de classe C^n sur I.
- $3/ \bullet C^{\infty}(I)$ est l'ensemble des fonctions de classe C^{∞} sur I.

1.2 Formule de Leibnitz:

Soient f et g deux fonctions de classes D^n sur I et soit n un entier naturel n.

$$(f.g)^{(n)} = \sum_{k=0}^{k=n} C_n^k . f^{(k)} . g^{(n-k)} \quad \text{avec } C_n^k = \frac{n!}{k!(n-k)!}.$$

$$n! = n(n-1)! = n(n-1)(n-2)....2.1$$

Par convention: 0! = 1, 1! = 1.

Exemple:

- Montrer que $(x^2e^{-2x}) \in C^{\infty}(\mathbb{R})$. Calculer $(x^2e^{-2x})^{(n)}$.

Solution:

- On a $x^2 \in C^{\infty}(\mathbb{R})$ et $e^{-2x} \in C^{\infty}(\mathbb{R})$ (les deux fonctions sont indéfiniments dérivables sur \mathbb{R}) donc $(x^2e^{-2x}) \in C^{\infty}(\mathbb{R})$.

$$\begin{split} (x^2e^{-2x})^{(n)} &= \sum_{k=0}^{k=n} C_n^k.(x^2)^{(k)}.(e^{-2x})^{(n-k)} \\ &= C_n^0(x^2)^{(0)}(e^{-2x})^{(n)} + C_n^1(x^2)^{(1)}(e^{-2x})^{(n-1)} + C_n^2(x^2)^{(2)}(e^{-2x})^{(n-2)} + \dots \end{split}$$

avec
$$C_n^0 = 1$$
, $C_n^1 = n$ et $C_n^2 = \frac{n(n-1)}{2}$.

$$(x^2)^{(0)} = 1$$
, $(x^2)^{(1)} = 2x$, $(x^2)^{(2)} = 2$, $(x^2)^{(3)} = 0$, donc $\forall n \ge 3$, $(x^2)^{(n)} = 0$.

et
$$(e^{-2x})' = -2e^{-2x}$$
, $(e^{-2x})^{(2)} = (-2)^2 e^{-2x}$, $(e^{-2x})^{(3)} = (-2)^3 e^{-2x}$

en déduit par récurrence que:
$$\forall n \in \mathbb{N}, (e^{-2x})^{(n)} = (-2)^n e^{-2x}.$$

donc
$$(x^2e^{-2x})^{(n)} = (-2)^n e^{-2x} x^2 + n(-2)^{n-1} e^{-2x} 2x + \frac{n(n-1)}{2} (-2)^{n-2} e^{-2x}$$

 $(x^2e^{-2x})^{(n)} = 2^{n-1} e^{-2x} [2(-1)^n x^2 + 2n(-1)^{n-1} x + \frac{n(n-1)}{2} (-1)^{n-2}].$

Développement limité en 0 et formule de Maclaurin: $\mathbf{2}$

Développement limité en 0 : 2.1

Définition3: Soit I un intervalle et $0 \in I$.

Soit f une fonction définie sur $I - \{0\}$.

On dit que f admet un développement limité en 0 à l'ordre $n \ (n \in \mathbb{N})$,

s'il existe un polynôme P_n de degré inférieur ou égal à n tels que:

 $\forall x \in I, f(x) = P_n(x) + x^n \varepsilon(x)$

Où encore: $f(x) = P_n(x) + o(x^n)$

avec $\lim_{x \to 0} \varepsilon(x) = \lim_{x \to 0} \frac{\circ(x^n)}{x^n} = 0$

et $P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{k=0}^{k=n} a_k x^k$

où $a_0, a_1, \dots a_n \in \mathbb{R}$

 P_n est appelé la partie régulière d'ordre n du développement limité et $x^n \varepsilon(x)$ où $\circ(x^n)$ est le reste d'ordre n du développement limité.

Notation:

 $DL_n(0,I)$ est l'ensemble des fonctions définies sur I admettant un développement limité d'ordre n en 0.

Théorème:

Si f admet un développement limité à l'ordre n en 0, ce développement est unique.

2.1.1Propriétés:

Limite: On suppose que $f \in DL_n(0, I)$ avec $n \ge 0$,

tel que $f(x) = P_n(x) + o(x^n)$

avec $P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{k=0}^{k=n} a_k x^k$ alors f admet a_0 pour limite en 0

c'est à dire: $\lim_{x \to 0} f(x) = a_0$.

 $f \in DL_n(0,I) \Longrightarrow \lim_{x \to 0} f(x)$ existe, finie et unique.

Remarque: Si f n'admet pas de limite en 0, alors f n'admet pas un développement limité en 0.

Exemple:

Les fonctions $f(x) = \frac{1}{x}$, $g(x) = \sin(\frac{1}{x})$ et $h(x) = \ln x$ n'admettent pas un développement limité en 0.

$$\left(\lim_{x \to 0} f(x) = \infty, \lim_{x \to 0} g(x) = \nexists \text{ et } \lim_{x \to 0} h(x) = -\infty\right)$$

Restriction ou troncature: Si f admet un développement limité à

l'ordre n en 0: $f(x) = P_n(x) + o(x^n)$

avec $P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{k=0}^{k=n} a_k x^k$ alors pour tout entier $0 \le r \le n$, f admet un développement limité à l'ordre r en 0 dont la partie régulière est: $P_r(x) = \sum_{k=0}^{k=r} a_k x^k = a_0 + a_1 x + \dots + a_r x^r$.

Exemple:

Soit f une fonction admettant un développement limité en 0 à l'ordre 4 donné par:

$$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + o(x^4)$$

alors $f(x) = 1 + x + \frac{x^2}{2} + o(x^2)$ est le développement limité en 0 à l'ordre 2 de f. Et f(x) = 1 + x + o(x) est son développement limité en 0 à l'ordre 1.

Parité: Soit f une fonction qui admet un développement limité à

l'ordre n en 0: $f(x) = P_n(x) + o(x^n)$

1/ Si f est paire alors le polynôme P_n est pair.

2/ Si f est impaire alors le polynôme P_n est impair.

Remarques

L'ordre d'un développement limité se voit sur le reste $o(x^n)$ et non sur le degré du polynôme P_n qui peut être strictement inférieur à n.

Exemple:

$$f(x) = 2 + x^2 + 3x^3 - x^4 + o(x^5)$$

c'est un développement limité de f à l'ordre 5 en 0 ($d^{\circ}P_n = 4$).

2.2 Développements limités en 0 des fonctions dérivables:

2.2.1 Formule de Maclaurin:

Soit V un voisinage de 0, et soit f une fonction de classe C^n sur V. Alors f admet un développement limité à l'ordre n en 0, donné par la formule de "Maclaurin" avec le reste de "young":

$$f(x) = \sum_{k=0}^{k=n} x^k \cdot \frac{f^{(k)}(0)}{k!} + o(x^n)$$

$$= f(0) + \frac{f'(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

où par la formule de "Maclaurin" avec le reste de "lagrange" :

$$f(x) = \sum_{k=0}^{k=n} x^k \cdot \frac{f^{(k)}(0)}{k!} + \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta x), \text{ avec } \theta \in]0,1[$$

où
$$f \in C^n$$
 sur V , et $f \in D^{n+1}$ sur V .

Remarques:

- 1/ La formule de *Maclaurin-lagrange* permet de calculer la valeur du reste. Elle est utilisée, en général, pour une meilleure approximation polynômiale de la fonction f (on peut contrôler le reste).
- 2/ La formule de *Maclaurin-young* montre que pour calculer le développement limité d'une fonction f à l'ordre n en 0, on peut se contenter de calculer les n dérivées successives f', f'',...., $f^{(n)}$, et ensuite utiliser leur valeur en 0. En pratique c'est une trés mauvaise méthode dés que n dépasse 2 ou 3 car trés lourde en calcul.

Donc en général, on applique cette formule que pour les fonctions usuelles.

2.2.2 Développements limités usuelles en 0:

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} + o(x^{n}) = \sum_{k=0}^{k=n} \frac{x^{k}}{k!} + o(x^{n})$$

$$\sin x = x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) = \sum_{k=0}^{k=n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$$

$$\cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n}) = \sum_{k=0}^{k=n} (-1)^{k} \frac{x^{2k}}{(2k)!} + o(x^{2n})$$

$$shx = x + \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) = \sum_{k=0}^{k=n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$$

$$chx = 1 + \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n}) = \sum_{k=0}^{k=n} \frac{x^{2k}}{(2k)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n}) = \sum_{k=0}^{k=n} (-1)^{k+1} \frac{x^{k}}{k} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^{3} + \dots + \alpha(\alpha-1)(\alpha-2) \dots (\alpha-n+1) \frac{x^{n}}{n!} + o(x^{n})$$

$$\begin{cases} \alpha = -1, & \frac{1}{1+x} = 1 - x + x^{2} - \dots + (-1)^{n}x^{n} + o(x^{n}) = \sum_{k=0}^{k=n} (-1)^{k}x^{k} + o(x^{n}) \\ \alpha = -1, & \frac{1}{1+x} = 1 - x + x^{2} - \dots + (-1)^{n}x^{n} + o(x^{n}) = \sum_{k=0}^{k=n} (-1)^{k}x^{k} + o(x^{n}) \\ \alpha = \frac{1}{2}, & \sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + \frac{1}{16}x^{3} - \frac{5}{128}x^{4} + o(x^{4}) \\ \alpha = \frac{-1}{2}, & \frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3x^{2}}{3^{2}} - \frac{5}{16}x^{3} + \frac{35}{128}x^{4} + o(x^{4}) \end{cases}$$

2.3 Opérations sur les développements limités:

(Règles de calcul)

Soient f et g deux fonctions admettant un développement limité en 0 à l'ordre n et $\lambda \in \mathbb{R}$.

$$f(x) = P_n(x) + o(x^n) \text{ et } g(x) = Q_n(x) + o(x^n)$$
tel que: $P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{k=0}^{k=n} a_k x^k$
et $Q_n(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n = \sum_{k=0}^{k=n} b_k x^k$

2.3.1 Linéarité:

$$\mathbf{a} / \ (f+g) \ \text{admet un développement limité à l'ordre } n \ \text{en } 0 \ \text{et:} \\ (f+g)(x) = (P_n+Q_n)(x) + \circ(x^n) \\ (P_n+Q_n)(x) = P_n(x) + Q_n(x) \\ = (a_0+b_0) + (a_1+b_1)x + \dots + (a_n+b_n)x^n \\ (P_n+Q_n)(x) = \sum_{k=0}^{k=n} (a_k+b_k)x^k \ .$$

$$\mathbf{b} / \ (\lambda.f) \ \text{admet un développement limité à l'ordre } n \ \text{en } 0 \ \text{et:} \\ (\lambda.f)(x) = (\lambda.P_n)(x) + \circ(x^n)$$

$$(\lambda.P_n)(x) = \lambda.P_n(x)$$

$$= \lambda.a_0 + \lambda.a_1x + \dots + \lambda.a_nx^n$$

$$(\lambda.P_n)(x) = \sum_{k=0}^{k=n} \lambda.a_kx^k.$$

Exemples:

- $\mathbf{1}/$ Soient f et g deux fonctions définies par leurs développements
- limités $f(x) = 1 + x x^2 + x^3 + o(x^3)$ et $g(x) = x + \frac{x^3}{3!} + o(x^3)$. Déterminer le développement limité des fonctions (f+g), (-2f) et (f-g) en 0 à l'ordre 3.

Soit $x \in \mathbb{R}$,

•
$$(f+g)(x) = f(x) + g(x)$$

= $1 + x - x^2 + x^3 + x + \frac{x^3}{3!} + \circ(x^3)$
 $(f+g)(x) = 1 + 2x - x^2 + (1 + \frac{1}{6})x^3 + \circ(x^3)$
donc $(f+g)(x) = 1 + 2x - x^2 + \frac{7}{6}x^3 + \circ(x^3)$.

 \bullet (-2.f)(x) = -2.f(x) $= -2(1+x-x^2+x^3) + o(x^3)$ $-2f(x) = -2 - 2x + 2x^2 - 2x^3 + o(x^3).$

2/ Déterminer le développement limité en 0 à l'ordre 4 de la fonction $f(x) = e^x + \sin x - 3x.$

$$f(x) = e^x + \sin x - 3x.$$
- On a $e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + o(x^4)$

$$\sin x = x - \frac{1}{3!}x^3 + o(x^4) \text{ et } -3x = -3x + o(x^4)$$

$$\operatorname{donc} f(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + x - \frac{1}{3!}x^3 - 3x + o(x^4)$$

$$= 1 - x + \frac{1}{2}x^2 + (\frac{1}{6} - \frac{1}{6})x^3 + \frac{1}{24}x^4 + o(x^4)$$

$$f(x) = 1 - x + \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)$$

2.3.2**Produit:**

(f,q) admet un développement limité à l'ordre n en 0 et:

$$(f.g)(x) = R_n(x) + \circ(x^n)$$

avec $R_n(x) = P_n(x).Q_n(x)$ en ne gardant que les termes de degré inférieur ou égal à n.

Exemples:

1/ Déterminer le développement limité de la fonction (f.g) en 0à l'ordre 3 sachant que:

$$f(x) = 1 + x - x^2 + x^3 + o(x^3)$$
 et $g(x) = x + \frac{x^3}{3!} + o(x^3)$.

- Soit $x \in \mathbb{R}$.

$$(f.g)(x) = (1 + x - x^2 + x^3 + o(x^3))(x + \frac{x^3}{3!} + o(x^3))$$
$$= x + \frac{x^3}{3!} + x^2 - x^3 + o(x^3)$$

$$= x + \frac{x^3}{3!} + x^2 - x^3 + o(x^3)$$

donc $(f.g)(x) = x + x^2 + (\frac{1}{6} - 1)x^3 + o(x^3) = x + x^2 - \frac{5}{6}x^3 + o(x^3).$

2/ Déterminer le développement limité de la fonction $f(x) = \cosh x \sqrt{1+x}$ à l'ordre 3 en 0.

On a
$$chx = 1 + \frac{1}{2!}x^2 + \circ(x^3)$$

et $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \circ(x^3)$
donc $f(x) = (1 + \frac{1}{2!}x^2 + \circ(x^3))(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \circ(x^3))$

$$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \frac{1}{2}x^2 + \frac{1}{4}x^3 + o(x^3)$$

$$f(x) = 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + o(x^3)$$

2.3.3 Inverse et quotient:

Si $\lim_{x \longrightarrow 0} g(x) \neq 0$ (c'est à dire: $Q_n(0) \neq 0$)

alors $(\frac{1}{q})$ admet un développement limité à l'ordre n en 0 et

 $(\frac{f}{a})$ admet un développement limité à l'ordre n en 0 et $\left(\frac{f}{g}\right)(x) = R_n(x) + \circ(x^n)$

où $R_n(x)$ est obtenu en faisant la division euclidienne du polynôme P_n par le polynôme Q_n suivant les puissances croissantes jusqu'à l'ordre n.

Exemples:

1/ Déterminer le développement limité de la fonction $f(x) = \frac{\sin x + 1}{\cos x + 1}$ à l'ordre 2 en 0.

On $\cos x + 1 \neq 0$ au voisinage de 0.

- On a $\sin x = x + o(x^2)$ donc $\sin x + 1 = 1 + x + o(x^2)$ et $\cos x = 1 - \frac{x^2}{2!} + o(x^2)$ donc $\cos x + 1 = 1 - \frac{x^2}{2!} + 1 + o(x^2) = 2 - \frac{x^2}{2!} + o(x^2)$ $f(x) = \frac{1 + x + o(x^2)}{2 - \frac{x^2}{2!} + o(x^2)}$ On offsets $1 + x + o(x^2)$

$$f(x) = \frac{1+x+o(x^2)}{2-\frac{x^2}{2!}+o(x^2)}$$

On effectue la division euclidienne du polynôme numérateur par le polynôme dénominateur suivant les puissances croissantes

polynôme dénominateur suivant
$$\begin{array}{c|c}
1+x \\
1-\frac{x^2}{4} \\
\hline
x+\frac{x^2}{4} \\
x \\
\hline
\frac{x^2}{4} \\
\frac{x^2}{4} \\
0
\end{array}$$

Alors $f(x) = \frac{1}{2} + \frac{1}{2}x + \frac{1}{8}x^2 + o(x^2)$.

2/ Déterminer le développement limité de la fonction f(x) = tgx

à l'ordre 5 en 0. On $tgx = \frac{\sin x}{\cos x} = \frac{x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + o(x^5)}{1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + o(x^5)}$, $\cos 0 = 1 \neq 0$.

On effectue la division euclidienne du polynôme numérateur par le polynôme dénominateur suivant les puissances croissantes

polynôme dénominateur suivant les puis
$$\begin{array}{c|c}
x - \frac{1}{6}x^3 + \frac{1}{120}x^5 \\
x - \frac{1}{6}x^3 + \frac{1}{120}x^5 \\
\underline{x - \frac{x^3}{2} + \frac{x^5}{24}} \\
\underline{\frac{x^3}{3} - \frac{x^5}{30}} \\
\underline{\frac{x^3}{3} - \frac{x^5}{6}} \\
\underline{\frac{2}{15}x^5} \\
0
\end{array}$$

Donc
$$f(x) = tgx = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$$
.

2.3.4 Composée:

Soit f une fonction définie sur I et g une fonction définie sur J tel que $f(I) \subseteq J$.

Si
$$\lim_{x \to 0} f(x) = 0$$
 (c'est à dire: $P_n(0) = 0$)

alors $(g \circ f)$ admet un développement limité à l'ordre n en 0 et:

$$(g \circ f)(x) = R_n(x) + \circ (x^n)$$

avec $R_n(x) = (Q_n \circ P_n)(x) = Q_n(P_n(x))$ en ne gardant que les termes de degré inférieur où égal à n.

(C'est à dire: On substitue la partie régulière de f dans la partie régulière de g et on tronque le polynôme obtenu à n).

Exemples:

1/ Déterminer le développement limité de la fonction $(f \circ g)$ en 0 à l'ordre 3

si
$$f(x) = 1 + x - x^2 + x^3 + o(x^3)$$
 et $g(x) = x + \frac{x^3}{3!} + o(x^3)$.

On a
$$\lim_{x \to 0} g(x) = \lim_{x \to 0} (x + \frac{x^3}{3!} + o(x^3)) = 0$$

$$f \circ g(x) = f(g(x)) = f(u)$$

avec
$$u = g(x) = x + \frac{x^3}{3!} + o(x^3)$$
 et $u \in v(0)$
 $f(u) = 1 + u - u^2 + u^3 + o(u^3)$
 $u = x + \frac{x^3}{3!} + o(x^3)$

$$f(u) = 1 + u - u^2 + u^3 + o(u^3)$$

$$u = x + \frac{x^3}{3!} + o(x^3)$$

$$u^2 = u.u = (x + \frac{x^3}{3!} + \circ(x^3))(x + \frac{x^3}{3!} + \circ(x^3)) = x^2 + \circ(x^3)$$

$$u^{3} = u.u^{2} = (x + \frac{x^{3}}{3!} + o(x^{3}))(x^{2} + o(x^{3})) = x^{3} + o(x^{3})$$

$$u = x + \frac{x}{3!} + o(x^{3})$$

$$u^{2} = u.u = (x + \frac{x^{3}}{3!} + o(x^{3}))(x + \frac{x^{3}}{3!} + o(x^{3})) = x^{2} + o(x^{3})$$

$$u^{3} = u.u^{2} = (x + \frac{x^{3}}{3!} + o(x^{3}))(x^{2} + o(x^{3})) = x^{3} + o(x^{3})$$

$$donc \ f \circ g(x) = 1 + x + \frac{x^{3}}{3!} - (x^{2}) + x^{3} + o(x^{3})$$

$$= 1 + x - x^{2} + \frac{7}{6}x^{3} + o(x^{3}).$$
2) Differential of the large ground limit is the last function $f(x)$

2/ Déterminer le développement limité de la fonction $f(x) = e^{shx}$ à l'ordre 4 en 0.

- On a
$$f(x) = g \circ h(x)$$
 avec $h(x) = shx$ et $g(x) = e^x$ avec

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} shx = 0$$

On a
$$shx = x + \frac{1}{2}x^3 + o(x^4)$$

et
$$e^{shx} = e^u$$
 avec $u = shx = x + \frac{1}{3!}x^3 + o(x^4) \in v(0)$

$$e^{u} = 1 + u + \frac{1}{2!}u^{2} + \frac{1}{3!}u^{3} + \frac{1}{4!}u^{4} + \circ(u^{4})$$

$$u^{2} = u.u = (x + \frac{1}{3!}x^{3} + o(x^{4}))(x + \frac{1}{3!}x^{3} + o(x^{4}))$$
$$= x^{2} + \frac{1}{2}x^{4} + \frac{1}{2}x^{4} + o(x^{4})$$

$$u^2 = x^2 + \frac{1}{2}x^4 + o(x^4)$$

$$u^{3} = u.u^{2} = (x + \frac{1}{3!}x^{3} + o(x^{4}))(x^{2} + \frac{1}{3}x^{4} + o(x^{4}))$$

$$= x^3 + o(x^4)$$

$$u^4 = u.u^3 = (x + \frac{1}{3!}x^3 + o(x^4))(x^3 + o(x^4)) = x^4 + o(x^4)$$

- On a
$$f(x) = g \circ h(x)$$
 avec $h(x) = shx$ et $g(x) = e^x$ avec $\lim_{x \to 0} h(x) = \lim_{x \to 0} shx = 0$
On a $shx = x + \frac{1}{3!}x^3 + \circ(x^4)$ et $e^{shx} = e^u$ avec $u = shx = x + \frac{1}{3!}x^3 + \circ(x^4) \in v(0)$ $e^u = 1 + u + \frac{1}{2!}u^2 + \frac{1}{3!}u^3 + \frac{1}{4!}u^4 + \circ(u^4)$ $u^2 = u.u = (x + \frac{1}{3!}x^3 + \circ(x^4))(x + \frac{1}{3!}x^3 + \circ(x^4))$ $= x^2 + \frac{1}{6}x^4 + \frac{1}{6}x^4 + \circ(x^4)$ $u^2 = x^2 + \frac{1}{3}x^4 + \circ(x^4)$ $u^3 = u.u^2 = (x + \frac{1}{3!}x^3 + \circ(x^4))(x^2 + \frac{1}{3}x^4 + \circ(x^4))$ $= x^3 + \circ(x^4)$ $u^4 = u.u^3 = (x + \frac{1}{3!}x^3 + \circ(x^4))(x^3 + \circ(x^4)) = x^4 + \circ(x^4)$ donc $e^{shx} = 1 + x + \frac{1}{3!}x^3 + \frac{1}{2}(x^2 + \frac{1}{3}x^4) + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \circ(x^4)$ $e^{shx} = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{5}{24}x^4 + \circ(x^4)$.

3/ Déterminer le développement limité de la fonction $f(x) = \sqrt{1 + \sin x}$ à l'ordre 3 en 0.

$$f(x) = \sqrt{1 + \sin x} = \sqrt{1 + y}$$
 avec $y = \sin x \in v(0)$

et
$$\sqrt{1+y} = 1 + \frac{1}{2}y - \frac{1}{8}y^2 + \frac{1}{16}y^3 - \frac{5}{128}y^4 + \circ(y^4)$$

 $y = \sin x = x - \frac{1}{3!}x^3 + \circ(x^4)$
 $y^2 = y.y = (x - \frac{1}{3!}x^3 + \circ(x^4))(x - \frac{1}{3!}x^3 + \circ(x^4)) = x^2 - \frac{1}{3}x^4 + \circ(x^4)$
 $y^3 = y^2.y = (x^2 - \frac{1}{3}x^4 + \circ(x^4))(x - \frac{1}{3!}x^3 + \circ(x^4)) = x^3 + \circ(x^4)$
 $y^4 = y^3.y = (x^3 + \circ(x^4))(x - \frac{1}{3!}x^3 + \circ(x^4)) = x^4 + \circ(x^4)$
donc $f(x) = 1 + \frac{1}{2}(x - \frac{1}{3!}x^3) - \frac{1}{8}(x^2 - \frac{1}{3}x^4) + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \circ(x^4)$
 $f(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{48}x^3 + \frac{1}{384}x^4 + \circ(x^4)$

2.3.5 Primitive:

Soit f une fonction définie sur I un voisinage de 0.

On suppose que f admet un développement limité à l'ordre n en 0 et que f est continue sur I.

Alors: Toute primitive F de f sur I admet un développement limité à l'ordre (n+1) en 0.

C'est à dire:

Si
$$\forall x \in I$$
, $f(x) = P_n(x) + \circ(x^n)$ avec $P_n(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ alors $\int_0^x f(t) dt = \int_0^x P_n(t) dt + \circ(x^{n+1})$ d'où $F(x) - F(0) = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + + \frac{a_n}{n+1} x^{n+1} + \circ(x^{n+1})$.

- 1/ Déterminer le développement limité de la fonction f(x) = arctgx à l'ordre 5 en 0.
- On a $\forall x \in \mathbb{R}$, $(arctgx)' = \frac{1}{1+x^2}$

Déterminons le DL de la fonction
$$\frac{1}{1+x^2}$$
 à l'ordre 4 en 0 :
$$\frac{1}{1+x^2} = \frac{1}{1+t} \text{ avec } t = x^2 = x^2 + \circ(x^4) \in v(0)$$

$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + t^4 + \circ(t^4)$$

$$t^2 = t.t = x^4 + \circ(x^4), \quad t^3 = t^2.t = \circ(x^4) \text{ et } t^4 = t^3.t = \circ(x^4)$$

$$\text{donc } \frac{1}{1+x^2} = 1 - x^2 + x^4 + \circ(x^4)$$

$$\text{On a } \int_0^x \frac{1}{1+t^2} dt = \int_0^x (1 - t^2 + t^4) dt + \circ(x^5)$$

$$\implies [arctgt]_0^x = [t - \frac{t^3}{3} + \frac{t^5}{5}]_0^x + \circ(x^5)$$

$$\implies arctgx - arctg0 = x - \frac{x^3}{3} + \frac{x^5}{5} - 0 + \circ(x^5)$$

$$\implies arctgx = x - \frac{x^3}{3} + \frac{x^5}{5} + \circ(x^5).$$

- 2/ Déterminer le développement limité de la fonction $f(x) = \arcsin x$ à l'ordre 5 en 0.

- On a
$$\forall x \in]-1, 1[$$
, $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$
Déterminons le DL de la fonction $\frac{1}{\sqrt{1-x^2}}$ à l'ordre 4 en 0 :
$$\frac{1}{\sqrt{1-x^2}} = (1-x^2)^{\frac{-1}{2}} = (1+t)^{\frac{-1}{2}} \text{ avec } t = -x^2 = -x^2 + \circ(x^4) \in v(0)$$
$$\frac{1}{\sqrt{1-x^2}} = \frac{1}{\sqrt{1+t}} = 1 - \frac{t}{2} + \frac{3t^2}{8} + \circ(t^2)$$

$$\begin{split} t^2 &= t.t = x^4 + \circ(x^4) \\ \operatorname{donc} \ \frac{1}{\sqrt{1 - x^2}} &= 1 - \frac{1}{2}(-x^2) + \frac{3}{8}x^4 + \circ(x^4) \\ &= 1 + \frac{x^2}{2} + \frac{3x^4}{8} + \circ(x^4) \\ \operatorname{On a} \ \int_0^x \frac{1}{\sqrt{1 - t^2}} dt &= \int_0^x (1 + \frac{t^2}{2} + \frac{3t^4}{8}) dt + \circ(x^5) \\ &\Longrightarrow [\arcsin t]_0^x &= [t + \frac{t^3}{6} + \frac{3t^5}{40}]_0^x + \circ(x^5) \\ &\Longrightarrow \arcsin x - \arcsin 0 = x + \frac{x^3}{6} + \frac{3x^5}{40} + \circ(x^5) \\ &\Longrightarrow \arcsin x = x + \frac{x^3}{6} + \frac{3x^5}{40} + \circ(x^5). \end{split}$$

A partir des règles précédentes, on peut déduire les résultats du tableau suivant:

Remarques:

- 1/ Dans le calcul des développements limités (somme, produit, composée,....) des fonctions f et q, il faut prendre des développements limités de f et qde même ordre.
- 2/ Le développement limité est une égalité mathématique, il faut toujours indiquer le reste et savoir à quel ordre on calcule le développement limité.
- 3/ On peut déterminer le développement limité d'une fonction par plusieurs méthodes.(Le résultat est unique)

Exercice:

Déterminer le développement limité des fonctions suivantes, à l'ordre indiqué au voisinage de 0.

1/
$$f(x) = e^{\cos x}, n = 4$$
 2/ $f(x) = \sqrt{2\cos x}, n = 6$

1/
$$f(x) = e^{\cos x}$$
, $n = 4$
2/ $f(x) = \sqrt{2\cos x}$, $n = 4$
3/ $f(x) = \ln(\frac{\sin x}{x})$, $n = 3$
4/ $f(x) = \cos(\sin x)$, $n = 4$

5/
$$f(x) = \ln(\sqrt{1+2x} - x), n = 4$$
 6/ $f(x) = (1+x)^{\frac{1}{x}}, n = 4$.