Lecture 8: Point estimation: Methods of Evaluating Estimators

Ma Xuejun

School of Mathematical Sciences
Soochow University
https://xuejunma.github.io

Outline

- Review
- Unbiasedness
 - Evaluation of Estimators: Bias and Variance
 - Uniform Minimum Variance Unbiased Estimator
- Mean Square Error

Evaluation of Estimators

- We already discussed several types of estimators and the computing issue
- We can also define any statistic to be an estimator
- Which is better? Which is worse?

Evaluation of Estimators

There are plenty of ways to evalute. Here are some popular used criteria.

- Bias and Variance
 - Unbiased estimator
 - Cramer-Rao Lower Bound
 - Rao-Blackwell Theorem
- Mean squared error (MSE)
 - Trade-off between bias and variance
 - Loss function
 - Mean squared error
- Minimax Theory
- Large sample theory
 - Consistency
 - Efficiency

Unbiasedness

■ Say that $\hat{\theta} = w(X_1, \dots, X_n)$ is an estimator of θ , then it would be good if it satisfies that

$$E[\hat{\theta}] = \theta$$

Unbiased Estimator

Let $\hat{\theta}$ be an estimator of a parameter θ . Then the bias of $\hat{\theta}$ is defined as

$$Bias(\hat{\theta};\theta) = E_{\pmb{\theta}}[\hat{\theta}] - \theta$$

If $Bias(\hat{\theta}) = 0$, then we say $\hat{\theta}$ is unbias.

- $E_{\theta}[\hat{\theta}]$ means the expectation of $\hat{\theta}$ when the underlying parameter equals to θ .
- The bias is a function of θ . For unbiased estimators, the bias is a function that always equals to 0.

Unbiasedness: Example

Let $X_1, \dots, X_n \sim Exp(\lambda)$. Estimate λ .

Recall that the MLE for exponential distribution is $1/\bar{X}_n$. Let the estimator be $\hat{\lambda}=1/\bar{X}_n$. Note that $n\bar{X}_n\backsim Gamma(n,\lambda)$. Therefore, the bias is

$$Bias(\hat{\lambda}, \lambda) = \frac{n}{n-1}\lambda - \lambda = \frac{1}{n-1}\lambda$$

Therefore,the MLE $\hat{\lambda}$ is a biased estimator.However,when $n \to \infty$,the bias is close to 0.

■ Let $X_1, \dots, X_n \sim N(\mu, \sigma^2)$. Find the bias for the sample variance. The sample variance is $\frac{1}{n-1}(X_i - \bar{X}_n)^2$. The bias is

$$Bias(\hat{\sigma}^2, \sigma^2) = E[\frac{1}{n-1}(X_i - \bar{X}_n)^2] - \sigma^2 = 0$$

So, the sample variance is unbiased estimator.

Variance

- In the previous normal example, we show that the bias for sample variance is 0.
- If we take the estimator as $\tilde{\sigma}^2=\frac{n}{n-1}(X_1^2-\bar{X}_n^2)$, then $E[\tilde{\sigma}^2]-\sigma^2=\frac{n}{n-1}[E[X_1^2]-E[\bar{X}_n^2]]-\sigma^2=\frac{n}{n-1}\times\frac{n-1}{n}\sigma^2-\sigma^2=0,$ which is also unbiased.
- Which estimator is better? the sample variance or $\tilde{\sigma}^2$?

Variance

Let $\hat{\theta}$ be an estimator of the parameter $\theta.$ Then the variance of $\hat{\theta}$ is defined as

$$Var(\hat{\theta}; \theta) = Var_{\theta}(\hat{\theta}).$$

- Targeting at θ , the estimator with smaller variance is better.
- For the previous example, the variance for sample variance is $2\sigma^4/(n-1)$, but for $\tilde{\sigma}^2$ is approximately σ^4 . So, the sample variance is a better estimator.

Bias-Variance

Uniform Minimum Variance Unbiased Estimator

- Obviously, one unbiased estimator with smallest variance is the best unbiased estimator.
- However,recall that $Var(\hat{\theta};\theta)$ is a function about θ .
- It is possible that for some θ_1 , $Var(\hat{\theta_1}; \theta_1) < Var(\hat{\theta_2}; \theta_1)$, but for another θ_2 , $Var(\hat{\theta_1}; \theta_2) > Var(\hat{\theta_2}; \theta_2)$.
- The best unbiased estimator would be one estimator that for any other estimator W, $Var(\hat{\theta};\theta) < Var(W;\theta)$ holds for all $\theta \in \Theta$

Definition 7.3.7: Uniform Minimum Variance Unbiased Estimator

An estimator W^* of $\tau(\theta)$ is the best unbiased estimator if $E[W^*;\theta]=\tau(\theta)$ for every θ and for any other unbiased estimator W,we have

$$Var(W^*; \theta) \le Var(W; \theta), \quad \theta \in \Theta.$$

 W^* is called the minimum variance unbiased estimator (UMVUE) for $\tau(\theta)$.

- Does the UMVUE exist?
 - Not necessarily. It is possible that UMVUE does not exist.
- How to prove one estimator is UMVUE?
 - There is a lower bound for the variance of unbiased estimators. If there is one unbiased estimator with variance approaching the lower bound, then it is UMVUE.
- How to find the UMVUE?

Cramer-Rao Lower Bound

Theorem 7.3.9 Cramer-Rao Lower Bound

Let X_1, \dots, X_n with joint density $f(x_1, x_2, \dots, x_n; \theta)$ and let $W(X_1, \dots, X_n) : X^n \to \mathbb{R}$ be an estimator with

$$\frac{d}{d\theta}(E[W(X_1,\cdots,X_n;\theta)]) = \int \frac{\partial}{\partial \theta}[W(x_1,x_2,\cdots,x_n)f(x_1,x_2,\cdots,x_n;\theta)]dx$$

and $Var(W(X_1, \cdots, X_n); \theta) < +\infty$, then

$$Var(W(X_1, \cdots, X_n); \theta) \ge \frac{\left(\frac{d}{d\theta} \left(E[W(X_1, \cdots, X_n; \theta)] \right) \right)^2}{E_{\theta}\left\{ \left[\frac{\partial}{\partial \theta} \log(f(X_1, \cdots, X_n; \theta)) \right) \right]^2 \right\}}$$

The condition can be written as

$$\frac{d}{d\theta}(E[W(X_1,\dots,X_n);\theta]) = \frac{d}{d\theta} \int W(x_1,x_2,\dots,x_n) f(x_1,x_2,\dots,x_n;\theta) dx$$

$$= \int \frac{\partial}{\partial \theta} [W(x_1,x_2,\dots,x_n)f(x_1,x_2,\dots,x_n;\theta)] dx.$$

Remark: The integral and the derivative is exchangeable. It is satisfied under regular conditions.

Cramer-Rao Lower Bound

Corollary 7.3.10 Corollary: Unbiased Estimators

Let X_1,\cdots,X_n with joint density $f(x_1,x_2,\cdots,x_n;\theta)$ and let $W:X^n\to\mathbb{R}$ be an estimator of $\pmb{\tau}(\theta)$. Suppose the conditions hold,then

$$Var(W;\theta) \ge \frac{\left(\frac{d}{d\theta}E[W(X_1,\cdots,X_n;\theta)]\right)^2}{nE_{\theta}[\left[\frac{\partial}{\partial\theta}\log(f(X;\theta))\right)]^2]} = \frac{\tau'(\theta)^2}{nE_{\theta}[\left[\frac{\partial}{\partial\theta}\log(f(X;\theta))\right)]^2]}$$

- The lower biund does not depend on the estimator. It is the lower bound for all estimators.
- ullet The lower biund is a function of the parameter heta
- If there is an estimator W^* , which achieves the lower bound for every θ , then this estimator W^* is UMVUE.
- No need to prove $Var(W^*; \theta) \leq Var(W; \theta)$ for all W.

Score and Fisher Information

- An important item here is $E_{\theta}[[\frac{\partial}{\partial \theta} \log(f(X_1, \cdots, X_n; \theta)))]^2]$
- Actually,we hve some notions and lemmas w.r.t.this quantity

Score function

Let X_1,\cdots,X_n be with joint density $f(x_1,x_2,\cdots,x_n;\theta)$. The score function is the derivative of the log-likelihood function, which is

$$S_n(\theta) = \frac{\partial}{\partial \theta} \log(f(X_1, \dots, X_n; \theta))$$

If X_1,\cdots,X_n are i.i.d.with density $f(x;\theta)$,then the score function equals to

$$\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f(X_i; \theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X_i; \theta)$$

Lemma

Under regularity conditions,

$$E_{\theta}[S_n(\theta)] = 0$$

Proof The expectation of score function is

$$E_{\theta}[S_n(\theta)] = \int \frac{\partial \log(f(x_1, \dots, x_n; \theta))}{\partial \theta} f(x_1, \dots, x_n; \theta) dx_1 \dots dx_n$$

$$= \int \frac{\frac{\partial}{\partial \theta} f(x_1, \dots, x_n; \theta)}{f(x_1, \dots, x_n; \theta)} f(x_1, \dots, x_n; \theta) dx_1 \dots dx_n$$

$$= \int \frac{\partial}{\partial \theta} f(x_1, \dots, x_n; \theta) dx_1 \dots dx_n$$

$$= \frac{\partial}{\partial \theta} \int f(x_1, \dots, x_n; \theta) dx_1 \dots dx_n = \frac{\partial}{\partial \theta} 1 = 0$$

Note If θ mismatches,it may not hold.It is possible $E_{\theta_1}[S_n(\theta_2)] \neq 0$

Fisher Information

Fisher Information

Let X_1, \dots, X_n be with yith joint density $f(x_1, x_2, \dots, x_n; \theta)$. The Fisher information is the variance of the score function, which is

$$I_n(\theta) = \mathbf{Var}_{\theta}(S_n(\theta)) = E\left\{ \left[\frac{\partial}{\partial \theta} \log f(X_1, \dots, X_n; \theta) \right]^2 \right\}$$

If X_1,\cdots,X_n are i.i.d.with density f(x; heta),then the Fisher information is

$$I_n(\theta) = nI(\theta)$$

where $I(\theta)$ is the Fisher information for single observation.

- $S_n(\theta) = 0$, yet $Var_{\theta}(S_n(\theta))$ is a function of θ
- Proof in i.i.d.case,the score function is $S_n(\theta) = \sum_{i=1}^n \log f(X_i; \theta)$

$$I_n(\theta) = Var_{\theta}(S_n(\theta)) = Var(\sum_{i=1}^n \frac{\partial}{\partial \theta} \log f(X_i; \theta))$$
$$= \sum_{i=1}^n Var(\frac{\partial}{\partial \theta} \log f(X_i; \theta)) = nVar(\frac{\partial}{\partial \theta} \log f(X_1; \theta)) = nI(\theta)$$

Fisher Information

- According to the Cramer-Rao lower bound, all the unbiased estimator for θ has variance larger than $1/I_n(\theta)$. So $I_n(\theta)$ gives us the bound for the information we can get from the data. That's why we call is as Information.
- Another statement of Cramer-Rao lower bound

Corollary: Unbiased Estimators

Let X_1,\cdots,X_n be i.i.d.samples with density $f(x;\theta)$ and let $W:X^n\to\mathbb{R}$ be an unbiased estimator of $\tau(\theta)$.Suppose the conditions hold,then

$$Var(W; \theta) \ge \frac{\tau'(\theta)^2}{I_n(\theta)} = \frac{\tau'(\theta)^2}{nI(\theta)}$$

- ullet Obviously,the variance will converge to 0 when n increases.
- The best unbiased estimator has convergence rate at $1/\sqrt{n}$.

Fisher Information

Lemma: Fisher Information

Under regularity conditions,

$$I_n(\theta) = E\left\{ \left[\frac{\partial}{\partial \theta} \log f(X_1, \dots, X_n; \theta) \right]^2 \right\} = -E\left[\frac{\partial^2}{\partial \theta^2} \log f(X_1, \dots, X_n; \theta) \right]$$

Proof. In short,we denote $X=(X_1,X_2,\cdots,X_n)$. For the L.H.S,there is

$$E[[\tfrac{\partial}{\partial \theta} \log f(X;\theta)]^2] = E[\tfrac{1}{(f(X;\theta))^2} (\tfrac{\partial}{\partial \theta} f(X;\theta))^2]$$

For the R.H.S, we have

$$\begin{split} -E\Big[\frac{\partial^2}{\partial\theta^2}\log f(X;\theta)\Big] &= -E\Big[\frac{\partial}{\partial\theta}\frac{1}{f(X;\theta)}\frac{\partial f(X;\theta)}{\partial\theta}\Big] \\ &= E\Big[\frac{1}{(f(X;\theta))^2}[\frac{\partial}{\partial\theta}f(X;\theta)]^2\Big] - E\Big[\frac{1}{f(X;\theta)}\frac{\partial f(X;\theta)}{\partial\theta}\Big] \\ &= E\Big[\frac{1}{(f(X;\theta))^2}[\frac{\partial}{\partial\theta}f(X;\theta)]^2\Big] - \int \frac{\partial^2 f(X;\theta)}{\partial\theta^2}dx \\ &= L.H.S - \frac{\partial^2}{\partial\theta^2}\int f(X;\theta)dx^1 = L.H.S \end{split}$$

¹true for an exponential family

Example of CRLB-Poisson

Suppose X_1, \cdots, X_n from a iid sample from Poisson distribution,

$$f(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

Find the CRLB for $\hat{\lambda}$.

Solution For the Poisson distribution,

$$l(\lambda) = X \ln \lambda - \lambda - \ln X!$$

$$l'(\lambda) = \frac{X}{\lambda} - 1 \qquad l''(\lambda) = \frac{X}{\lambda^2}$$

$$I(\lambda) = \frac{E[X]}{\lambda^2} = \frac{1}{\lambda}$$

Finally,we have the CRLB $\frac{\lambda}{n}$.

Recall that the MLE for Poisson example is \bar{X}_n , with expectation λ and variance $\frac{\lambda}{n}$. So the MLE is UMVUE for Poisson distribution.

• Example 7.3.12 \bar{X} is UMVUE for λ if X_1, \dots, X_n are i.i.d. Poisson(λ). From Theorem 7.3.9, we have for any unbiased estimator $W(\mathbf{X})$ of λ .

$$\operatorname{Var}_{\lambda}W(\boldsymbol{X}) \geq \frac{1}{-nE_{\lambda}\left[\frac{\partial^{2}}{\partial\lambda^{2}}\log f(\boldsymbol{x}|\lambda)\right]}$$

$$\log f(\boldsymbol{x}|\lambda) = \log\left[e^{-\lambda}\frac{\lambda^{x}}{x!}\right] = -\lambda + x\log\lambda - \log x!$$

$$\frac{\partial^{2}}{\partial\lambda^{2}}\log f(\boldsymbol{x}|\lambda) = -x\frac{1}{\lambda^{2}}.$$
(4.1)

Therefore,

$$-E_{\lambda} \left[\frac{\partial^2}{\partial \lambda^2} \log f(\boldsymbol{x}|\lambda) \right] = \frac{1}{\lambda^2} E_{\lambda} X = \frac{1}{\lambda}$$

.

(4.1) Becomes $\operatorname{Var}_{\lambda}(W(\boldsymbol{X})) \geq \frac{\lambda}{n}$. $\operatorname{Var}_{\lambda}(\bar{X}) = \frac{\lambda}{n}$, so \bar{X} is UMVUE

• Example 7.3.13 (Unbiased Estimator for Scale Parameter) Let $X_1, \, \cdots, \, X_n$ be i.i.d. with pdf $f(x|\theta) = \frac{1}{\theta}, \, 0 < x < \theta$. Since $\frac{\partial}{\partial \lambda} \log f(x|\theta) = -\frac{1}{\theta}$, we have

$$E_{\theta} \left[\frac{\partial}{\partial \lambda} \log f(x|\theta) \right] = \frac{1}{\theta^2}$$

So if W is unbiased for θ , then

$$\operatorname{Var}_{\theta}(W) \geq \frac{\sigma^2}{n}$$
.

• On the other hand, $Y = \max(Y_1, \cdots, Y_n)$ is a sufficient statistic. $f_Y(y|\theta) = ny^{n-1}/\theta^n, \ 0 < y < \theta.$ So

$$E_{\theta}Y = \int_{0}^{\theta} y \cdot \frac{ny^{n-1}}{\theta^{n}} dy = \frac{n}{n+1} \theta,$$

showing that $\frac{n+1}{n}Y$ is an unbiased estimator of θ .

$$\begin{split} \operatorname{Var}_{\theta} \left(\frac{n+1}{n} Y \right) &= \left(\frac{n+1}{n} \right)^2 \operatorname{Var}_{\theta}(Y) \\ &= \left(\frac{n+1}{n} \right)^2 \left[E_{\theta} Y^2 - (EY)^2 \right] \\ &= \left(\frac{n+1}{n} \right) \left[\frac{n}{n+2} \theta^2 - \left(\frac{n}{n+1} \theta \right)^2 \right] \\ &= \frac{1}{n(n+2)} \theta^2, \end{split}$$

which is uniformly smaller than θ^2/n .

• Cramér-Rao lower bound Theorem is not applicable to this pdf since

$$\frac{d}{d\theta} \int_0^{\theta} h(x) f(x|\theta) dx = \frac{d}{d\theta} \int_0^{\theta} h(x) \frac{1}{\theta} dx$$

$$= \int_0^{\theta} h(x) \frac{\partial}{\partial \theta} \frac{1}{\theta} dx + \frac{h(\theta)}{\theta}$$

$$\neq \int_0^{\theta} h(x) \frac{\partial}{\partial \theta} f(x|\theta) dx.$$

Let X_1, \dots, X_n be a random sample from the $N(\mu, \sigma^2)$ distribution. Find the CRLB and,in case 1 and 2. check whether it is equalled,for the variance of an biased estimator of

- ullet μ when σ^2 is known,
- σ^2 when μ is known
- ullet μ when σ^2 is unknown
- σ^2 when μ is unknown

Solution: The sample joint pdf is

$$f_X(X|\theta) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(x_i - \mu)^2/\sigma^2)$$

and

$$\log f_X(X|\theta) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2} = \sum_{i=1}^{n} (x_i - \mu)^2 / \sigma^2$$

1. When σ^2 is known $\theta = \mu$ and

$$\log f_X(X|\theta) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^2/\sigma^2$$

$$S(X) = \frac{\partial}{\partial \theta} \log f_X(X|\theta) = \sum_{i=1}^{n} (x_i - \mu)^2 / \sigma^2 = \frac{n}{\sigma^2} [\bar{x} - \theta]$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, is a n unbiased estimator of $\theta = \mu$ whose variance equals

the CRLB and that $\frac{n}{\sigma^2} = I(\theta)$ i.e.CRLB= $\frac{\sigma^2}{n}$. Thus \bar{X} is UMVUE.

2. When μ is known but σ^2 is unknown, $\theta = \sigma^2$ and

$$\log f_X(X|\theta) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\theta) - \frac{1}{2\theta}\sum_{i=1}^{n} (x_i - \mu)^2 / \sigma^2$$

Hence

$$S(X) = \frac{\partial}{\partial \theta} \log f_X(X|\theta) = -\frac{n}{2\theta} + \frac{1}{2\theta} \sum_{i=1}^n (x_i - \mu)^2 / \sigma^2$$
$$= \frac{n}{2\theta^2} \left[\frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2 - \theta \right]$$

$$\frac{1}{2}\sum_{i=1}^n(x_i-\mu)^2$$
 is an unbiased estimator of $\tau=\sigma^2$ and $\frac{n}{2\theta^2}=I(\theta)$ i.e.the $CRLB=\frac{2\theta^2}{n}=\frac{2\sigma^4}{n}$

3.and 4. Case both μ and σ^2 is unknown here $\theta = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$ i.e. $\theta_1 = \mu$ and $\theta_2 = \sigma^2$

$$f_X(X|\theta) = \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(x_i - \mu)^2/\sigma^2) \propto \theta_2^{-n/2} \exp(\frac{1}{2\theta_2} \sum_{i=1}^n (x_i - \theta_1)^2/\sigma^2)$$

and

$$\log f_X(X|\theta) = -\frac{n}{2}\log\theta_2 - \frac{1}{2\theta_2}\sum_{i=1}^{n}(x_i - \theta_1)^2/\sigma^2$$

Thus

$$= \frac{\partial}{\partial \theta} \log f_X(X|\theta) = \frac{1}{\theta_2} \sum_{i=1}^n (x_i - \theta_1) / \sigma^2$$
$$\frac{\partial^2}{\partial \theta^2} \log f_X(X|\theta) = -\frac{n}{\theta_2}$$
$$\frac{\partial^2}{\partial \theta^2} \log f_X(X|\theta) = -\frac{1}{\theta_2} \sum_{i=1}^n (x_i - \theta_i) / \sigma^2$$

$$\frac{\partial^2}{\partial \theta^2 \theta^1} \log f_X(X|\theta) = -\frac{1}{\theta_2^2} \sum_{i=1}^n (x_i - \theta_1)$$

$$\frac{\partial^2}{\partial \theta^2} \log f_X(X|\theta) = \frac{n}{2\theta_2^2} - \frac{1}{\theta_2^3} \sum_{i=1}^n (x_i - \theta_1)^2$$

Consequently

$$I_{11}(\theta) = -E(-\frac{n}{\theta_2}) = \frac{n}{\theta_2}$$

$$I_{12}(\theta) = -E(-\frac{1}{\theta_2^2} \sum_{i=1}^n (x_i - \theta_1)) = 0$$

$$I_{22}(\theta) = -E(\frac{n}{2\theta_2} - \frac{1}{\theta_2^3} \sum_{i=1}^n (x_i - \theta_1)^2) = \frac{n}{2\theta_2^2}$$

i.e

$$I(\theta) = \begin{bmatrix} \frac{n}{\theta_2} & 0\\ 0 & \frac{n}{2\theta_2^2} \end{bmatrix}$$

and

$$[I(\theta)]^{-1} = J(\theta) = \begin{bmatrix} \frac{\theta_2}{n} & 0\\ 0 & \frac{2\theta_2^2}{n} \end{bmatrix} = \begin{bmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n} \end{bmatrix}$$

Consequently,for unbiased estimators $\hat{\mu},\hat{\sigma^2}$ of μ and σ^2 respectively

$$Var(\hat{\mu}) \ge \frac{\sigma^2}{n}$$

and

$$Var(\hat{\sigma^2}) \ge \frac{2\sigma^4}{n}$$

The vector case

- For the normal example,e=we consider $\theta = (\mu, \sigma^2)$,where the unknown parameter is a vector.
- Let $\theta = (\theta_1, \dots, \theta_k)$, then the score function is

$$S_n(\theta) = (\frac{\partial}{\partial \theta_1 l(\theta)}, \frac{\partial}{\partial \theta_2 l(\theta)}, \cdots, \frac{\partial}{\partial \theta_k l(\theta)})^T$$

 $E[S_n(\theta)] = 0$ still holds.

 \blacksquare The Fisher information is now a $k\times k$ matrix,actually,the covariance matrix for $S_n(\theta)$,that

$$I_n = E_{\theta}[S_n(\theta)(S_n(\theta))^T],$$

For the (r,s) element of I_n ,there is $I_n(r,s)=-E_{\theta}[\frac{\partial^2 l(\theta)}{\partial \theta_r \partial \theta_s}]$. So,under regular conditions, I_n equals to the expectation of the Hessian matrix for $-l(\theta)$.

- UMVUE has uniformly minimum variance of all unbiased estimators
- Recall the original formula of Cramer-Rao Lower Bound, that

$$Var(W(X_1, X_2, \cdots, X_m); \theta) \ge \frac{\left(\frac{d}{d\theta}(E_{\theta}[W(X_1, \cdots, X_m)])\right)^2}{E_{\theta}[\left[\frac{\partial}{\partial \theta}\log(f(X_1, \cdots, X_n; \theta))\right]^2]}$$

- For the lower bound ,note that the denominator does not changes for whatever E[W] is.The numerator depends on $E_{\theta}[W]$.
- If W is unbiased,then $E_{\theta}[W] = \tau(\theta)$,so the numerator is always $[\tau'(\theta)]^2$.If W is biased,then $E_{\theta}[W] = \tau(\theta) + Bias$,which may induce a smaller lower bound.
- Example:take W=0,then ${\cal E}[W]=0$ with large bias,but the variance is 0.

- For estimation, we should consider both the bias and the variance.
- How to comnine them?

Description of our problem:what is our goal?

- Goal: We want to estimate θ (or $\tau(\theta)$) with the random sample X_1, \dots, X_n .
- For any estimator $\hat{\theta}$, it differs from θ by $\hat{\theta} \theta$
- We hope $\hat{\theta} \theta$ can be small in most cases
- \bullet We can evaluate the error by $(\hat{\theta}-\theta)^2,$ then the overall loss can be evaluated by

$$E_{\theta}[(\hat{\theta}-\theta)^2]$$

It combines the bias and the variance. We call it as Mean Squared Error.

Mean Squared Error

Definition: Mean Squared Error(MSE)

Let $\hat{\theta}$ be an estimator of a parameter θ . The Mean Squared Error(MSE)of $\hat{\theta}$ is

$$E_{\theta}[(\hat{\theta}-\theta)^2]$$

- According to the definition, $MSE(\hat{\theta}) = E_{\theta}[(\hat{\theta} \theta)^2] = (E_{\theta}[\hat{\theta} \theta])^2 + Var_{\theta}(\hat{\theta} \theta) = Bias^2 + Var_{\theta}(\hat{\theta})$ MSE combines the variance and the bias of one estimator.
- When $\hat{\theta}$ is unbiased,then Bias=0 and its MSE equals to its variance,which is bounded by CRLB.
- Given the estimator $\hat{\theta}$, the MSE is a function of θ .
- Obviously,for any $\tau(\theta)$, and an estimator W of $\tau(\theta)$, we can also define the MSE as $E[(W-\tau(\theta))^2]$.

• Example 7.3.3 (Normal MSE) Let X_1, X_2, \cdots, X_n be i.i.d. $N(\mu, \sigma^2)$. Then statistics \bar{X} and S^2 are both unbiased.

$$\begin{split} MSE(\bar{X}) &=& E(\bar{X}-\mu)^2 = \mathrm{Var}(\bar{X}) = \sigma^2/n \\ E(S^2-\sigma^2)^2 &=& \mathrm{Var}(S^2) = \frac{2\sigma^4}{n-1}^2 \end{split}$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \Rightarrow \operatorname{Var}\Bigl(\frac{(n-1)S^2}{\sigma^2}\Bigr) = 2(n-1)$$

• Example 7.3.4 Maximum Likelihood estimator of σ^2 is

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 &= \frac{n-1}{n} S^2. \\ \operatorname{Var} \left(\frac{n-1}{n} S^2 \right) &= \frac{(n-1)^2}{n^2} \cdot \frac{2\sigma^4}{n-1} = \frac{2(n-1)}{n^2} \sigma^4 \\ MSE \left(\frac{n-1}{n} S^2 \right) &= \left(\frac{n-1}{n} E S^2 - \sigma^2 \right)^2 + \frac{2(n-1)}{n^2} \sigma^4 \\ &= \sigma^4 \left(\frac{n-1}{n} - 1 \right)^2 + \frac{2(n-1)}{n^2} \sigma^4 \\ &= \sigma^4 \frac{2n-1}{n^2} \end{split}$$

Since

$$\frac{2n-1}{n^2} < \frac{2}{n-1},$$

So in this case MLE has smaller MSE than the unbiased estimator S^2 .

Remark While MSE is a reasonable measurement for location parameters, it may not be a good to compare estimators of scale parameters with MSE.

The Loss Function

Two questions about MSE:

- Note:MSE is a function about θ .For two estimators,it is possible that for $\theta = \theta_1$,estimator 1 has smaller MSE,while for $\theta = \theta_2$,estimators 2 has smaller MSE.
- Uniform Minimal MSE? Or some other criteria ?
- ullet MSE is the result when we consider the L_2 -loss.
- What if we consider other types of loss functions?
 - $L(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$ squared error loss
 - $L(\theta, \hat{\theta}) = |\theta \hat{\theta}|$ absolute error loss
 - $L(\theta, \hat{\theta}) = |\theta \hat{\theta}|^p$ L_p loss
 - $L(\theta, \hat{\theta}) = 0$ if $\theta = \hat{\theta}$ or 1 if $\theta \neq \hat{\theta}$ zero-one loss
 - $L(\theta, \hat{\theta}) = I(|\theta \hat{\theta}| > c)$ large deviation loss
 - $L(\theta, \hat{\theta}) = \int \log(\frac{p(x;\theta)}{p(x;\hat{\theta})}) p(x;\theta) dx$ Kullback-Leibler loss

Loss Function

- The loss function can be generalized to the vector case.
 - Squared error loss: $L(\theta, \hat{\theta}) = \|\theta \hat{\theta}\|^2 = \sum_{j=1}^k (\hat{\theta_j} \theta_j)^2$. For example, for the normal example, we may calculate one MSE for the estimator vector $(\bar{X}_n, \hat{\sigma}^2)$.
 - L_p loss: $L(\theta, \hat{\theta}) = (\sum_{j=1}^k |\hat{\theta_j} \theta_j|^p)^{1/p}$.It is slightly different from the original L_p loss. This is just a common generilization people like to use.
- \bullet For the squared error loss,we have MSE as $E_{\theta}[L(\theta,\hat{\theta})]$
- ullet For general loss functions, we call such an expectation as risk. The risk of an estimator $\hat{ heta}$ is

$$R(\theta, \hat{\theta}) = E_{\theta}[L(\theta, \hat{\theta})] = \int L(\theta, \hat{\theta}(x_1, \dots, x_n)) f(x_1, \dots, x_n; \theta) dx$$

Obviously, the risk of an estimator is a function of θ .

Comparing Risk Functions

The risk functions cannot provide a clear answer which estimator is better.

Example Let $X \sim N(\theta, 1)$ and assume we are using squared error loss. Consider two estimators

$$\hat{\theta_1} = X, \qquad \hat{\theta}_2 = 3$$

Comparisin For $\hat{\theta}_1$, the risk function is $R(\theta,\hat{\theta}_1)=E_{\theta}(X-\theta)^2=1$. For $\hat{\theta}_2$, the risk function is $R(\theta,\hat{\theta}_1)=E_{\theta}(3-\theta)^2=(3-\theta)^2$

Example 7.3.5 (MSE of binomial Bayes Estimator) $X_1, \dots, X_n \sim \text{Bernoulli}(p)$.

- Let $\hat{p} = \frac{X_1 + \dots + X_n}{n}$. $E_p(\hat{p} p)^2 = \mathsf{Var}_p(\bar{X}) = \frac{p(1-p)}{n}$.
- \bullet Let $\hat{p}_B = \frac{Y+\alpha}{\alpha+\beta+n}$ be the Bayes estimator. Here $Y = \sum_{i=1}^n X_i$

$$\begin{split} MSE\left(\hat{p}_{B}\right) &= \operatorname{Var}_{p}\left(\hat{p}_{B}\right) + \left(\operatorname{Bias}_{p}\left(\hat{p}_{B}\right)\right)^{2} \\ &= \operatorname{Var}\left(\frac{Y+\alpha}{\alpha+\beta+n}\right) + \left(E_{p}\left(\frac{Y+\alpha}{\alpha+\beta+n}\right) - p\right)^{2} \\ &= \frac{np(1-p)}{(\alpha+\beta+n)^{2}} + \left(\frac{np+\alpha}{\alpha+\beta+n} - p\right)^{2} \end{split}$$

In the absence of good prior information about p, we might choose α and β to make the MSE of \hat{p}_B constant. Choose $\alpha=\beta=\sqrt{n/4}$ gives

$$\hat{p}_B = \frac{Y + \sqrt{n/4}}{n + \sqrt{n}}, \ E(\hat{p}_B - p)^2 = \frac{n}{4(n + \sqrt{n})^2}$$

Figure 7.3.1 Comparison of $MSE(\hat{p})$ and $MSE(\hat{p}_B)$ for sample size n=4 and n=400 in Example 7.3.5

- For small n, \hat{p}_B is the better choice (unless there is a strong belief that p is near 0 or 1)
- For large $n, \ \hat{p}$ is the better choice (unless there is a strong belief that p is close to $\frac{1}{2}$)

- For these two examples, we cannot claim which estimator is better
- Need:one-number summary of the risk function

Two popular approaches

- Maximum risk $\sup_{\theta \in \Theta} R(\theta, \hat{\theta}).$ The case that $\hat{\theta}$ works worst (has largest risk)
- ullet Bayes risk:recall for the Bayesian model,we have the prior for the parameter heta. Therefore,we can find the expectation of the risk function:

$$B_{\pi} = \int R(\theta, \hat{\theta}) \pi(\theta) d\theta = E[R(\theta, \hat{\theta})]$$

where the expectation is with respect to $\pi(\theta)$.

Recall the Bernoulli(p) example,where we have estimators $\hat{p}_A=\bar{X}_n$ and $\hat{p}_B=\frac{\sum X_i+\sqrt{n}/2}{n+\sqrt{n}}.$

Maximum risk Note that for \hat{p}_A , the risk function is

$$R(p, \hat{p}_A) = p(1-p)/n$$

- For 0 achieves maximum at <math>p=1/2. So the maximum risk is 1/4n.
- ullet The risk for \hat{p}_2 is a constant function,so the maximum is $1/4(\sqrt{n}+1)^2$
- Therefore,the \hat{p}_2 has smaller maximum risk than \hat{p}_B ,and we claim \hat{p}_1 is better.

Note.

- If we check the figure, we can find that the risk $R(p,\hat{p}_A)$ is smaller than $R(p,\hat{p}_B)$ for almost all the interval, except the small area around 1/2.
- Therefore, people still prefers \bar{X}_n to \hat{p}_B . The one number summarization lose some information.

Estimator

- Based on the summary of the risk function,if we have $\hat{\theta}$ that minimizes the risk,then we would prefers this $\hat{\theta}$
- Therefore, we define the minimax estimator and the Bayes estimator.

Definition: Minimax risk/estimator

The minimax risk is the minimum of the maximum risk among all estimators,

$$R_n = \inf_{\hat{\theta}} \sup_{\theta} R(\theta, \hat{\theta})$$

An estimator $\hat{\theta}$ is a minimax estimator, if

$$\sup_{\theta} R(\theta, \hat{\theta}) = \inf_{\tilde{\theta}} \sup_{\theta} R(\theta, \tilde{\theta}).$$

Definition:Bayes estimator

Given the prior $\pi(\theta)$,an estimator $\hat{\theta}$ that minimizes the Bayes risk is called a Bayes estimator,i.e.,

$$B_{\pi}(\hat{\theta}) = \inf_{\theta} B_{\pi}(\tilde{\theta})$$