CÁLCULO AVANZADO Segundo Cuatrimestre — 2019

Práctica 7: Compacidad

- **1.** (a) Si $(x_n)_{n\geq 1}$ es una sucesión en \mathbb{R} que converge y x_0 es su límite, entonces el conjunto $\{x_n : n \geq 0\}$ es compacto en \mathbb{R} .
- (b) El intervalo [0,1] es compacto en \mathbb{R} .
- (c) Si a y b si dos elementos de $\mathbb{R} \setminus \mathbb{Q}$ tales que a < b, entonces $S = (a, b) \cap \mathbb{Q}$ es un subconjunto cerrado y acotado de \mathbb{Q} que no es compacto.

Solución. (a) Sea X el conjunto del enunciado y sea $\mathscr U$ un cubrimiento abierto de X. Sea $U_0\in\mathscr U$ tal que $x\in U_0$. Como la sucesión $(x_n)_{n\geq 1}$ converge a x, existe $N\in\mathbb N$ tal que $x_n\in U_0$ siempre que $n\geq N$. Por otro lado, para cada $i\in [\![N]\!]$ existe $U_i\in\mathscr U$ tal que $x_i\in U_i$. Es claro que $\{U_i:0\leq i\leq N\}$ es un subcubrimiento finito de $\mathscr U$.

(b) Sea $(x_n)_{n\geq 1}$ una sucesión en [0,1]. Para cada subintervalo [a,b] de [0,1] sea $I(a,b):=\{n\in\mathbb{N}:x_n\in[a,b]\}$. Vamos a construir dos sucesiones $(a_n)_{n\geq 0}$ y $(b_n)_{n\geq 0}$ inductivamente, de manera tal que para todo $n\in\mathbb{N}$ es $a_{n+1}\leq a_n< b_n\leq b_{n+1},\ b_n-a_n=2^{-n}$ y el conjunto $I(a_n,b_n)$ es infinito. Empezamos con $a_0:=0$ y $b_0:=1$. Supongamos que $n\in\mathbb{N}_0$ y que ya elegimos a_n y b_n . Sea $c=(a_n+b_n)/2$. Como $I(a_n,b_n)=I(a_n,c)\cup I(c,b_n)$ y el conjunto $I(a_n,b_n)$ es infinito, alguno de $I(a_n,c)$ o $I(c,b_n)$ es infinito: si $I(a_n,c)$ es infinito, ponemos $a_{n+1}=a_n$ y $b_{n+1}=c$; si, por el contrario, es finito, ponemos $a_{n+1}=c$ y $b_{n+1}=b_n$. En cualquiera de los dos casos tenemos que $a_n\leq a_{n+1}< b_{n+1}< a_n$, $b_{n+1}-a_{n+1}=(b_n-a_n)/2=2^{-(n+1)}$ y el conjunto $I(a_{n+1},b_{n+1})$ es infinito. Observemos que $a\in[a_n,b_n]$ para todo $n\in\mathbb{N}$.

Vamos a construir ahora una subsucesión $(x_{n_k})_{k\geq 1}$ de $(x_n)_{n\geq 1}$ tal que $x_{n_k}\in [a_k,b_k]$ para todo $k\in\mathbb{N}$. Ponemos $n_1:=1$ y para cada $k\in\mathbb{N}$ definimos inductivamente

$$n_{k+1} := \min\{i \in I(a_{k+1}, b_{k+1}) : i > n_k\}.$$

Es claro que la sucesión $(n_k)_{k\geq 1}$ es estrictamente creciente y que $x_{n_k}\in [a_k,b_k]$ para todo $k\in \mathbb{N}$. Más aún, como ese intervalo también contiene a α y tiene diámetro 2^{-k} , tenemos que $|x_{n_k}-\alpha|\leq 2^{-k}$. Esto implica claramente que la sucesión $(x_{n_k})_{k\geq 1}$ converge a α .

Hemos mostrado así que toda sucesión en [0, 1] posee una subsucesión convergente.

(b) Sea $\mathscr U$ un cubrimiento abierto de [0,1] y sea T el conjunto de los números $t\in [0,1]$ tales que $\mathscr U$ posee un subconjunto finito que cubre al intervalo [0,t]. Observemos que $T\neq\varnothing$: en efecto, como $\mathscr U$ cubre [0,1], existe $U\in\mathscr U$ tal que $0\in U$ y, por lo tanto, el intervalo degenerado [0,0] está cubierto por el subconjunto $\{U\}$ de $\mathscr U$, que es finito, de manera que $0\in T$. Por otro lado, es evidente que T es acotado, ya que está contenido en [0,1]: podemos, entonces, considerar el número $\tau\coloneqq\sup T$, que está en [0,1].

Como $\mathscr U$ cubre a [0,1], existe $V\in\mathscr U$ tal que $\tau\in V$ y, como V es abierto, existe $\delta>0$ tal que $(\tau-\delta,\tau+\delta)\subseteq V$. Como τ es el supremo de T, existe $\sigma\in T$ tal que $\tau-\delta<\sigma\leq \tau$ y, por lo tanto, existe un subconjunto finito $\mathscr U'$ de $\mathscr U$ que cubre al intervalo $[0,\sigma]$. Es claro ahora que $\mathscr U'\cup\{V\}$ es un subconjunto finito de $\mathscr U$ que cubre a $[0,\tau+\delta/2]$: esto implica, en particular, que $[\tau,\tau+\delta/2]\cap[0,1]\subseteq T$. Como τ es el supremo de T, tenemos necesariamente que $[\tau,\tau+\delta/2]\cap[0,1]=\{\tau\}$, así que $\tau\in T$, y $\tau=1$.

- (c) Sean $a, b \in \mathbb{R} \setminus \mathbb{Q}$ tales que a < b y sea $S := (a,b) \cap \mathbb{Q}$. Como a y b no están en \mathbb{Q} , $S = [a,b] \cap \mathbb{Q}$: como $[a,b] \cap \mathbb{Q}$ es un cerrado de \mathbb{Q} , esto muestra que S es cerrado en \mathbb{Q} . Claramente es acotado veamos que no es compacto. Sabemos que hay una sucesión $(q_n)_{n \geq 1}$ de números racionales todos contenidos de [a,b] que converge a a y que es decreciente: esa sucesión está en S, es de Cauchy y no tiene límite en S, así que S no es completo. En particular, S no es compacto.
- 2. Un espacio métrico compacto es separable.

Solución. Sea X un espacio métrico compacto. Si $n \in \mathbb{N}$, entonces $\mathscr{U}_n \coloneqq \{B_{1/n}(x) : x \in X\}$ es un cubrimiento abierto de X y existe por lo tanto un subconjunto finito D_n de X tal que $\mathscr{U}'_n \coloneqq \{B_{1/n}(x) : x \in D_n\}$ es un subcubrimiento de \mathscr{U}_n . Pongamos $D \coloneqq \bigcup_{n \geq 1} D_n$, que es un subconjunto numerable de X. Más aún, si $x \in X$ y $n \in \mathbb{N}$, entonces como \mathscr{U}'_n es un cubrimiento de X, existe $y \in D_n \subseteq D$ tal que $x \in B_{1/n}(y)$, esto es, tal que d(x,y) < 1/n. Esto nos dice que el conjunto D es denso en X.

3. Si n y m están en \mathbb{N} , escribamos

$$a_{n,m} := \begin{cases} 1 & \text{si } n = m; \\ 0 & \text{si no.} \end{cases}$$

Para cada $n \in \mathbb{N}$ podemos considerar la sucesión $a_n = (a_{n,m})_{m \geq 1}$, que es un elemento de ℓ_{∞} , y, por lo tanto, la sucesión $(a_n)_{n \geq 1}$ de elementos de ese espacio.

El conjunto $\{a_n:n\geq 1\}$ de ℓ_∞ es discreto, cerrado y acotado, pero no compacto.

Solución. Sea X el conjunto del enunciado. Si n y m son dos elementos distintos de \mathbb{N} , entonces $d_{\infty}(a_n, a_m) \geq |a_{n,n} - a_{m,n}| = 1$, así que para todo $n \in \mathbb{N}$ es $X \cap B_{1/2}(a_n) = \{a_n\}$: vemos así que X es discreto.

Para todo $n \in \mathbb{N}$ es $d(a_n,0)=1$, así que X es acotado. Si $(x_n)_{n\geq 1}$ es una sucesión en X que converge en ℓ_∞ , entonces la sucesión es de Cauchy y existe $N\in \mathbb{N}$ tal que siempre que $r,s\geq N$ se tiene que $d(x_r,x_s)<1/2$ y, por lo que hicimos ya, que $x_r=x_s$. La sucesión es, por lo tanto, casi constante y podemos concluir entonces que su límite está en X. Para ver que X no es compacto basta observar que la sucesión $(a_n)_{n\geq 1}$, que toma valores en X, no posee ninguna subsucesión de Cauchy: en efecto, toda subsucesión es inyectiva y la distancia entre cada par de sus puntos es 1.

4. Sea X un espacio métrico. Si $\mathscr U$ es un cubrimiento abierto de X, un número $\varepsilon > 0$ es un *número de Lebesgue* de $\mathscr U$ si toda bola abierta de radio ε está contenida en un abierto de $\mathscr U$. Muestre que todo cubrimiento abierto de un espacio métrico compacto posee un número de Lebesgue.

Solución. Sea X un espacio métrico compacto y sea $\mathscr U$ un cubrimiento abierto. Si $X\in\mathscr U$, entonces 1 es un número de Lebesgue para $\mathscr U$. Podemos suponer entonces que $X\notin\mathscr U$ en lo que queda de la prueba.

Como X es compacto, hay un subconjunto finito \mathscr{U}' de \mathscr{U} que cubre a X. Sea $n=\#\mathscr{U}'$, sean U_1,\ldots,U_n los elementos de \mathscr{U}' y sea $f:X\to\mathbb{R}$ la función tal que

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} d(x, X \setminus U_i)$$

para cada $x \in X$; observemos que esto tiene sentido, ya que $X \notin \mathcal{U}'$. Esta función es continua, porque es suma de funciones continuas. Sea $\delta := \inf\{f(x) : x \in X\}$. Como X es compacto, existe $y \in X$ tal que $f(y) = \delta$. Como \mathcal{U}' es un cubrimiento de X, existe $i \in [n]$ tal que $x \in U_i$, y como $X \setminus U_i$ es un cerrado, tenemos que $d(y, X \setminus U_i) > 0$, de manera que claramente $\delta = f(y) > 0$.

Veamos que δ es un número de Lebesgue para \mathscr{U} . Sea $z \in X$. Si no existiera $i \in \llbracket n \rrbracket$ tal que $B_{\delta}(z) \subseteq U_i$, entonces sería $d(z, X \setminus U_i) < \delta$ para todo $i \in \llbracket n \rrbracket$ y, por lo tanto, $f(z) = \frac{1}{n} \sum_{i=1}^n d(z, X \setminus U_i) < \delta$: esto es absurdo. Esta nos dice que hay un $i \in \llbracket n \rrbracket$ tal que $B_{\delta}(z) \subseteq U_i \in \mathscr{U}$.

5. Sea *X* un espacio métrico.

- (*a*) El conjunto de los compactos de *X* es cerrado por uniones finitas e intersecciones arbitrarias.
- (b) Si X es compacto, todo cerrado de X es compacto.
- (c) Un subconjunto F de X es cerrado si y solamente si para todo compacto K de X la intersección $F \cap K$ es cerrada.

Solución. (a) Sea C una familia no vacía de compactos de X. Como los elementos de C son compactos, son cerrados en X, así que $T := \bigcap_{K \in C} K$ es un cerrado de X. Si K_0 es un elemento de C, entonces T es un cerrado de K_0 , así que es compacto porque K_0 lo es. Vemos así que la intersección de una familia arbitraria no vacía de compactos de X es compacta.

Para ver que la unión finita de compactos es compacta es suficiente, gracias a una inducción evidente, con mostrar que la unión de dos compactos es compacta. Sean A y B dos compactos de X y sea $(x_n)_{n\geq 1}$ una sucesión en $A\cup B$. Alguno de los conjuntos $\{n\in\mathbb{N}:x_n\in A\}$ y $\{n\in\mathbb{N}:x_n\in B\}$ es infinito y podemos suponer, sin pérdida de generalidad, que el primero lo es. Esto implica claramente que nuestra sucesión tiene una subsucesión con valores en A y, como A es compacto, esta subsucesión posee una subsucesión convergente. Por supuesto, esto nos dice que la sucesión con la que empezamos posee una subsucesión convergente.

- (b) Supongamos que X es un espacio métrico compacto y sea F un cerrado de X. Sea $\mathscr U$ un cubrimiento abierto de F. Para cada $U \in \mathscr U$ existe un abierto V_U en X tal que $U = F \cap V_U$, y el conjunto $\mathscr V := \{X \setminus F\} \cup \{V_U : U \in \mathscr U\}$ es un cubrimiento abierto de X. Como X es compacto, este cubrimiento posee un subcubrimiento finito $\mathscr V'$. Es inmediato verificar que $\{V \cap F : V \in \mathscr V'\} \setminus \{\varnothing\}$ es un subcubrimiento de $\mathscr U$.
 - (c) La condición es claramente necesaria, ya que los compactos de X son cerrados y la

intersección de cerrados es cerrada. Veamos que también es suficiente.

Sea F un subconjunto de X tal que para todo compacto K de X la intersección $F \cap K$ es cerrada y sea $(x_n)_{n\geq 1}$ una sucesión con valores en F que converge a un punto x de X. El conjunto $K=\{x_n:n\geq 1\}\cup\{x\}$ es un compacto de X, así que la hipótesis nos dice que $F\cap K$ es cerrado: como la sucesión $(x_n)_{n\geq 1}$ toma valores en esta intersección, tenemos que su limite x está también ahí. En particular, tenemos que $x\in F$. Vemos así que F es un cerrado de X.

6. Si V es un espacio vectorial de dimensión finita, entonces dos normas $\|-\|\mathbf{y}\|-\|'$ sobre V son equivalentes, esto es, existe un escalar positivo α tal que

$$\alpha ||x|| \le ||x||' \le \alpha^{-1} ||x||$$

para todo $x \in V$.

Solución. Hacer

7. El espacio métrico c_0 de las sucesiones de números reales que convergen a 0 dotado de la métrica d_{∞} es separable y su bola unidad cerrada $\overline{B}_1(0)$ no es compacta.

Solución. Consideremos el conjunto D de las sucesiones $(a_n)_{n\geq 1}$ de números racionales para las que existe $n_0\in\mathbb{N}$ tal que $a_n=0$ siempre que $n\geq n_0$. Es claro que D es numerable y que $D\subseteq c_0$. Veamos que D es denso en c_0 .

Sea $x=(x_n)_{n\geq 1}$ un elemento de c_0 y sea $\varepsilon>0$. Como la sucesión x converge a 0, existe n_0 tal que $|x_n|<\varepsilon/2$ si $n\geq n_0$. Por otro lado, como $\mathbb Q$ es denso en $\mathbb R$, existen $q_1,\ldots,q_{n_0}\in\mathbb Q$ tales que $\max\{|q_i-x_i|:1\leq i\leq n_0\}<\varepsilon$. Si $y=(y_n)_{n\geq 1}$ es tal que $y_i=q_i$ para $i\in \llbracket n_0\rrbracket$ e $y_i=0$ si $i>n_0$, entonces claramente es $y\in D$ y $d_\infty(x,y)<\varepsilon$. Esto prueba que el espacio c_0 es separable, como queríamos.

Para cada $n \in \mathbb{N}$ sea $e_n = (e_{n,m})_{m \geq 1}$ la sucesión tal que $e_{n,m} = 0$ si $m \neq n$ y $e_{n,n} = 1$. Es claro que e_n converge a 0, así que $e_n \in c_0$. Tenemos, por lo tanto, una sucesión $(e_n)_{n \geq 1}$ en c_0 . Más aún, $d_{\infty}(0,e_n)=1$ para todo $n \in \mathbb{N}$, así que la sucesión toma valores en la bola unidad cerrada $\overline{B}_1(0)$. Si esta bola fuera compacta, la sucesión poseería una subsucesión convergente y, en particular, de Cauchy, pero esto no es así: en efecto, es claro que $d_{\infty}(e_n,e_n)=1$ siempre que $n \neq m$.

8. Sean X e Y dos espacios métricos y dotemos al conjunto $X \times Y$ de su métrica d_{∞} . El espacio $X \times Y$ es compacto si y solamente si X e Y lo son.

Solución. Si el espacio $X \times Y$ es compacto, entonces X e Y también lo son porque las proyecciones $\pi_1: X \times Y \to X$ y $\pi_2: X \times Y \to Y$ con continuas y sobreyectivas.

Para probar la recíproca, supongamos que X e Y son espacios métricos compactos y sea $(p_n)_{n\geq 1}$ una sucesión en $X\times Y$. Como X es compacto, existe una subsucesión $(p_{n_k})_{k\geq 1}$ tal que la sucesión $(\pi_1(p_{n_k}))_{k\geq 1}$ converge en X, y como Y es compacto, esta subsucesión posee a su vez una subsucesión $(p_{n_{k_l}})_{l\geq 1}$ tal que la sucesión $(\pi_2(p_{n_{k_l}}))_{l\geq 1}$ es convergente en Y. Como además $(\pi_1(p_{n_{k_l}}))_{l\geq 1}$ converge en X, la caracterización de las sucesiones convergentes en $X\times Y$ nos dice que la sucesión $(p_{n_{k_l}})_{l\geq 1}$, que es una subsucesión de la sucesiones $(p_n)_{n\geq 1}$ con la que empezamos, converge.

- **9.** Sea *X* un espacio métrico.
- (a) Si K es un compacto de X y $x \in X$, entonces hay un punto $y \in K$ tal que d(x,y) = d(x,K).
- (*b*) Si F y G son dos cerrados disjuntos de X y uno de los dos es compacto, entonces d(F,G) > 0.
- (c) Si F y G son dos compactos de X, entonces existen $x \in F$ e $y \in G$ tales que d(x, y) = d(F, G).

Solución. (a) Sea K un compacto de X y sea $x \in X$. La función $f: y \in K \mapsto d(x,y) \in \mathbb{R}$ es continua y su dominio compacto, así que existe $y \in K$ tal que $f(y) \leq f(y')$ para todo $y' \in K$, esto es, tal que $d(x,y) \leq d(x,y')$ para todo $y' \in K$. Esto nos dice que d(x,y) es una cota inferior para $\{d(x,y'): y' \in K\}$ y, por lo tanto, que $d(x,y) \leq d(x,K)$. Por otro lado, que $d(x,y) \geq d(x,K)$ es evidente.

(b) Sean F y G dos cerrados de X y supongamos que F es compacto y que d(F,G)=0. Esto implica que hay dos sucesiones $(x_n)_{n\geq 1}$ e $(y_n)_{n\geq 1}$ en F y en G, respectivamente, tales que $\lim_{n\to\infty}d(x_n,y_n)=0$. Como F es compacto, podemos —a menos de reemplazar a la sucesión $(x_n)_{n\geq 1}$ por una de sus subsucesiones— suponer que además la sucesión $(x_n)_{n\geq 1}$ converge a un punto x, que necesariamente está en F, ya que F es cerrado.

Si ahora $n \in \mathbb{N}$, entonces $0 \le d(x,y_n) \le d(x,x_n) + d(x_n,y_n)$ y, como $(x_n)_{n\ge 1}$ converge a x y $(d(x_n,y_n))_{n\ge 1}$ converge a 0, vemos que $(y_n)_{n\ge 1}$ converge a x. Esta última sucesión toma valores en G, que es cerrado, así que podemos concluir que $x \in G$. Pero entonces la intersección $F \cap G$ no es vacía, ya que contiene a x.

- (c) Sean F y G dos compactos de X. La función distancia $d: X \times X \to \mathbb{R}$ es continua, así que también lo es su restricción $d: F \times G \to \mathbb{R}$. Como el dominio de esta última es compacto, sabemos que existe $(x,y) \in F \times G$ tal que $d(x,y) \leq d(x',y')$ cualquiera sea $(x',y') \in F \times G$. Esto, por supuesto, nos dice que d(x,y) = d(F,G).
- **10.** Sea X un espacio métrico completo y sea K(X) el conjunto de todos los subconjuntos compactos y no vacíos de X.
- (a) Si A y B son elementos de K(X), ponemos $\tilde{d}(A,B) := \sup\{d(a,B) : a \in A\}$. Muestre que \tilde{d} no es, en general, una métrica sobre K(X).
- (*b*) Sea $\delta: K(X) \times K(X) \to \mathbb{R}$ la función tal que

$$\delta(A,B) = \max{\{\tilde{d}(A,B), \tilde{d}(B,A)\}}$$

cada vez que A y B están en K(X). Por otro lado, si C es un subconjunto de X y $\varepsilon > 0$, entonces ponemos

$$N(C,\varepsilon) := \{x \in X : d(x,C) < \varepsilon\}.$$

Si $\varepsilon > 0$ y $A, B \in K(X)$, entonces

$$\delta(A,B) < \varepsilon \iff A \subseteq N(B,\varepsilon) \vee B \subseteq N(A,\varepsilon).$$

(c) La función δ es una métrica sobre K(X), a la que llamamos *métrica de Haus-dorff*.

Solución. (a) Sean $X = \mathbb{R}$, $A = \{-2, 2\}$ y B = [-1, 1]. Es $\tilde{d}(A, B) = 1$, mientras que $\tilde{d}(B, A) = 2$: la función δ no es, por lo tanto, simétrica, y, en particular, no es una métrica.

(b) Sean A y B dos compactos de X y sea $\varepsilon > 0$.

Supongamos primero que $\delta(A,B) < \varepsilon$, de manera que $\tilde{d}(A,B) < \varepsilon$ y $\tilde{d}(B,A) < \varepsilon$: esto implica que $d(a,B) < \varepsilon$ para todo $a \in A$ y $d(b,A) < \varepsilon$ para todo $b \in B$: vemos así que $A \subseteq N(B,\varepsilon)$ y que $B \subseteq N(A,\varepsilon)$.

Supongamos ahora que $A \subseteq N(B,\varepsilon)$ y que $B \subseteq N(A,\varepsilon)$, de manera que $d(a,B) < \varepsilon$ para todo $a \in A$ y $d(b,A) < \varepsilon$ para todo $b \in B$. Como la función $a \in A \mapsto d(a,B) \in \mathbb{R}$ es continua, su dominio es compacto y en todo punto tiene valor estrictamente menor a ε , su máximo es estrictamente menor que ε y tenemos, por lo tanto, que $\tilde{d}(A,B) < \varepsilon$. El mismo razonamiento nos dice que $\tilde{d}(B,A) < \varepsilon$ y, por lo tanto, que $\delta(A,B) < \varepsilon$.

Observemos que

```
\inf\{\varepsilon \in \mathbb{R} : \varepsilon > 0, A \subseteq N(B, \varepsilon), B \subseteq N(A, \varepsilon)\} = \inf\{\varepsilon \in \mathbb{R} : \varepsilon > 0, \delta(A, B) < \varepsilon\} = \delta(A, B).
```

(c) La función δ es evidentemente simétrica y tiene $\delta(A,A)=0$ para todo $A\in K(X)$. Por otro lado, si A y B son elementos de K(X) tales que $\delta(A,B)=0$, entonces para todo $\varepsilon>0$ tenemos que $A\subseteq N(B,\varepsilon)$ y $B\subseteq N(A,\varepsilon)$, de manera que $A\subseteq \bigcap_{\varepsilon>0}N(B,\varepsilon)$ y $B\subseteq \bigcap_{\varepsilon>0}N(A,\varepsilon)$. Ahora bien, es claro que $\bigcap_{\varepsilon>0}N(B,\varepsilon)$ contiene a B y que si x es un punto de esa intersección tiene d(x,B)=0, de manera que la intersección es igual a $\overline{B}=B$. De la misma forma, es $\bigcap_{\varepsilon>0}N(A,\varepsilon)=A$ y, por lo tanto, tenemos que A=B.

Nos queda probar que δ satisface la desigualdad triangular. Sean A, B y C tres elementos de K(X). Observemos que siempre que R y S están en K(X) se tiene, por lo que probamos en la segunda parte del ejercicio, que

```
\delta(R,S) = \inf\{\varepsilon \in \mathbb{R} : \varepsilon > 0, R \subseteq N(S,\varepsilon), S \subseteq N(R,\varepsilon)\}.
```

En particular,

```
\begin{split} \delta(A,B) + \delta(B,C) \\ &= \inf\{\varepsilon \in \mathbb{R} : \varepsilon > 0, A \subseteq N(B,\varepsilon), B \subseteq N(A,\varepsilon)\} \\ &\quad + \inf\{\varepsilon \in \mathbb{R} : \varepsilon > 0, B \subseteq N(C,\varepsilon), C \subseteq N(B,\varepsilon)\} \\ &= \inf\{\varepsilon + \eta \in \mathbb{R} : \varepsilon, \eta > 0, A \subseteq N(B,\varepsilon), B \subseteq N(A,\varepsilon), B \subseteq N(C,\varepsilon), C \subseteq N(B,\varepsilon)\}. \end{split}
```

Ahora bien, si ε y η son números positivos tales que $A \subseteq N(B, \varepsilon)$, $B \subseteq N(A, \varepsilon)$, $B \subseteq N(C, \varepsilon)$ y $C \subseteq N(B, \varepsilon)$, entonces

```
A\subseteq N(B,\varepsilon)\subseteq N(N(C,\eta),\varepsilon)=N(C,\varepsilon+\eta)yC\subseteq N(B,\eta)\subseteq N(N(A,\varepsilon),\eta)=N(A,\varepsilon+\eta).
```

Esto nos dice que

```
\{\varepsilon + \eta \in \mathbb{R} : \varepsilon, \eta > 0, A \subseteq N(B, \varepsilon), B \subseteq N(A, \varepsilon), B \subseteq N(C, \varepsilon), C \subseteq N(B, \varepsilon)\}\subseteq \{\rho \in \mathbb{R} : \rho > 0, A \subseteq N(C, \rho), C \subseteq N(A, \rho)\}
```

y, por lo tanto, que $\delta(A,B) + \delta(B,C)$ $= \inf\{\varepsilon + \eta \in \mathbb{R} : \varepsilon, \eta > 0, A \subseteq N(B,\varepsilon), B \subseteq N(A,\varepsilon), B \subseteq N(C,\varepsilon), C \subseteq N(B,\varepsilon)\}$ $\geq \inf\{\rho \in \mathbb{R} : \rho > 0, A \subseteq N(C,\rho), C \subseteq N(A,\rho)\}$ $= \delta(A,C).$ Esta es la desigualdad que queríamos.

- [†]**11.** Sea X un espacio métrico y sea K(X) el conjunto de los compactos no vacíos de X dotado de su métrica de Hausdorff.
 - (a) Si X es completo, entonces K(X) es completo.
 - (b) Si X es compacto, entonces K(X) es compacto.

Solución. (a) Hacer

(b) Supongamos que X es compacto. Como X es completo, la primera parte del ejercicio nos dice que K(X) es completo: para ver que K(X) es compacto, entonces, es suficiente que mostremos que es totalmente acotado.

Sea $\varepsilon > 0$. Como el espacio X es compacto, hay un conjunto finito $F \subseteq X$ tal que $X = \bigcup_{x \in F} B_{\varepsilon}(x)$. Sea G el conjunto de todas las uniones no vacías de elementos de la famila $\mathscr{B} = \{\overline{B}_{\varepsilon}(x) : x \in F\}$. Como los elementos de \mathscr{B} son cerrados de X, son compactos: esto implica que los elementos de G son compactos de G0, ya que son uniones finitas de compactos. Por otro lado, el conjunto G1 tiene a lo sumo $2^{|\mathscr{B}|}$ elementos, así que es finito.

Sea K un elemento de K(X), esto es, un compacto no vacío de X. Pongamos

$$L := \bigcup_{\substack{x \in F \\ K \cap \overline{B}_{\varepsilon}(x) \neq \emptyset}} \overline{B}_{\varepsilon}(x),$$

que es un elemento de G; observemos que $L \neq \emptyset$ porque \mathscr{B} es un cubrimiento de X. Si $y \in L$, entonces existe $x \in F$ tal que $y \in \overline{B}_{\varepsilon}(x)$ y $K \cap \overline{B}_{\varepsilon}(x) \neq \emptyset$ y, por lo tanto, $d(y,K) < 3\varepsilon$: esto muestra que $L \subseteq N(K,3\varepsilon)$. Por otro lado, si $z \in K$, entonces la elección de F implica que existe $x \in F$ tal que $z \in \overline{B}_{\varepsilon}(x)$, de manera que $K \cap \overline{B}_{\varepsilon}(x) \neq \emptyset$, $\overline{B}_{\varepsilon}(x) \subseteq L$, y $d(z,L) < 3\varepsilon$: esto muestra que $K \subseteq N(L,3\varepsilon)$. De acuerdo al Ejercicio $\mathbf{10}(b)$, tenemos entonces que $\delta(K,L) < 3\varepsilon$ y, por lo tanto, que $K \in B_{3\varepsilon}(L)$.

Con esto concluimos que

$$K(X)\subseteq\bigcup_{L\in G}B_{3\varepsilon}(L)$$

y, en definitiva, que es totalmente acotado.

- **12.** Sea $f: X \to Y$ una función continua entre espacios métricos.
- (a) Si X es compacto, entonces f(X) también lo es.
- (b) Si además f es biyectiva, entonces f es un homeomorfismo.

Solución. (a) Supongamos que X es compacto. Sea $(y_n)_{n\geq 1}$ una sucesión en f(X), de manera que para cada $n\in\mathbb{N}$ existe $x_n\in X$ tal que $f(x_n)=y_n$. Como X es compacto, la sucesión $(x_n)_{n\geq 1}$ posee una subsucesión $(x_{n_k})_{k\geq 1}$ convergente, y como f es continua la sucesión $(f(x_{n_k}))_{k\geq 1}$, que la subsucesión $(y_{n_k})_{k\geq 1}$ de $(y_n)_{n\geq 1}$, converge. Esto implica que el conjunto f(X) es compacto.

(b) Supongamos que X es compacto y que f es biyectiva. Para ver que f es un homeomorfismo, es suficiente con mostrar que es cerrada. Sea F un cerrado de X. Como X es compacto, F es compacto en X y, en vista de la primera parte del ejercicio, f(F) es un compacto de Y. En particular, f(F) es un cerrado de Y, y esto muestra que f es cerrada, como queríamos.

13. Si *X* es un espacio métrico compacto, entonces para todo otro espacio métrico *Y* la proyección $\pi: (x, y) \in X \times Y \mapsto y \in Y$ es cerrada.

Solución. Sea X un espacio métrico compacto, sea Y un espacio métrico y sea $\pi: X \times Y \to Y$ la proyección en el segundo factor del producto. Sea F un cerrado de $X \times Y$ y sea $(y_n)_{n \geq 1}$ una sucesión en $\pi(F)$ que converge a un punto y de Y. Como la sucesión está en $\pi(F)$, para cada $n \in \mathbb{N}$ existe $x_n \in X$ tal que $(x_n, y_n) \in F$. Como X es compacto, la sucesión $(x_n)_{n \geq 1}$ contiene una subsucesión $(x_{n_k})_{k \geq 1}$ que converge a un punto x de X. Como también $(y_{n_k})_{k \geq 1}$ converge a y, tenemos que la sucesión $((x_{n_k}, y_{n_k}))_{k \geq 1}$, que toma valores en F, converge a (x, y): como F es cerrado, esto implica que $(x, y) \in F$ y, por lo tanto, que $y = \pi(x, y) \in \pi(F)$. Vemos así que $\pi(F)$ es cerrado en Y.

14. Sean X e Y dos espacios métricos y supongamos que Y es compacto. Una función $X \to Y$ cuyo gráfico es un cerrado de $X \times Y$ es continua.

Solución. Sea $f: X \to Y$ una función tal que $\Gamma = \{(x, f(x)) : x \in X\}$ es un cerrado de $X \times Y$, sea $(x_n)_{n \geq 1}$ una sucesión en X que converge y sea x su límite. Como Y es compacto, la sucesión $(f(x_n))_{n \geq 1}$ posee subsucesión convergentes. Si $(f(x_{n_k}))_{k \geq 1}$ es una de ellas e y su límite, entonces la sucesión $((x_{n_k}, f(x_{n_k}))_{k \geq 1}$, que toma valores en Γ , converge entonces a (x, y) y, como Γ es cerrado, tenemos que $(x, y) \in \Gamma$, esto es, que f(x) = y.

Vemos de esta forma que toda subsucesión convergente de $(f(x_n))_{n\geq 1}$ converge a f(x). Esto implica que la sucesión misma converge a f(x) y, en definitiva, que f es continua: probemos eso.

una sucesión en un espacio métrico compacto tal que todas sus subsucesiones convergentes tienen el mismo límite converge.

Sea Z un espacio métrico compacto y sea $(z_n)_{n\geq 1}$ una sucesión en Z cuyas subsucesiones convergentes convergen todas a un punto z y supongamos, para llegar a un absurdo, que la sucesión no converge a z. Existe entonces $\varepsilon>0$ y una subsucesión $(z_{n_k})_{k\geq 1}$ tal que $d(z,z_{n_k})\geq \varepsilon$ para todo $k\in\mathbb{N}$. Como Z es compacto, esta subsucesión posee, a su vez, una subsucesión $(z_{n_{k_l}})_{l\geq 1}$ que converge. Si w es el límite de esta última, tenemos claramente que $d(z,w)\geq \varepsilon$ y, en particular, que $z\neq w$: esto es absurdo, porque contradice la hipótesis hecha sobre a sucesión $(z_n)_{n\geq 1}$.

15. (a) Una función $f:[0,+\infty)\to\mathbb{R}$ que es uniformemente continua en [0,1]

y en $[1, +\infty]$ es uniformemente continua en $[0, +\infty)$.

- (b) La función $x \in [0, +\infty) \to \sqrt{x} \in \mathbb{R}$ es uniformemente continua.
- (c) Una función continua $f: \mathbb{R} \to \mathbb{R}$ tal que $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$ es uniformemente continua.

Solución. (a) Sea $f:[0,+\infty)\to\mathbb{R}$ una función que es uniformemente continua en [0,1] y en $[1,+\infty)$, y sea $\varepsilon>0$. La hipótesis implica inmediatamente que existe $\delta>0$ tal que

$$x, y \in [0, 1], |x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{2}$$

у

$$x, y \in [1, +\infty), |x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{2}.$$

Sean x e y son dos elementos de $[0,+\infty)$ tales que $|x-y|<\delta$. Si x e y están los dos en [0,1] o en $[1,+\infty)$, entonces la elección de δ implica que $|f(x)-f(y)|<\varepsilon/2<\varepsilon$. Si no es ese el caso, podemos suponer sin pérdida de generalidad que $x\in[0,1]$ y que $y\in[1,+\infty)$. Tenemos entonces que $y\geq x$ y que

$$\delta > |y - x| = y - x = (y - 1) + (1 - x) = |y - 1| + |1 - x|,$$

así que $|x-1| < \delta$ y $|1-y| < \delta$ y, por lo tanto,

$$|f(x)-f(y)| \leq |f(x)-f(1)| + |f(1)-f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Vemos así que f es uniformemente continua en $[0, +\infty)$.

(b) Sea f la función del enunciado y sea $\varepsilon>0$. Existe K>0 tal que $1/2\sqrt{K}<\varepsilon/2$. Como f es continua, es uniformemente continua en el intervalo compacto [0,K] y existe $\delta>0$, que podemos suponer menor que 1, tal que

$$x, y \in [0, K], |x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{2}.$$

Por otro lado, si x e y son dos elementos de $[K, +\infty)$ con |x-y| < 1, el teorema de Lagrange nos dice que existe un punto ξ que está entre x e y, y que en particular es mayor que K, tal que

$$|f(x) - f(y)| = |f'(\xi)||x - y| = \frac{1}{2\sqrt{\xi}}|x - y| < \frac{1}{2\sqrt{K}} < \frac{\varepsilon}{2}.$$

Procediendo como en la primer aparte del ejercicio, podemos ver que

$$x, y \in [0, +\infty), |x - y| < \min\{\delta, 1\} \implies |f(x) - f(y)| < \varepsilon.$$

(c) Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua tal que $\lim_{x \to +\infty} f(x) = 0$ y $\lim_{x \to -\infty} f(x) = 0$ y sea $\varepsilon > 0$. La hipótesis implica que existe R > 0 tal que si |x| > R entonces $|f(x)| < \varepsilon/2$. Por otro lado, como la función es continua en el intervalo compacto [-R,R], existe $\delta > 0$, que podemos suponer menor que R, tal que

$$x, y \in [-R, R], |x - y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{2}$$

Si ahora x e y son dos elementos de \mathbb{R} que están a distancia menor que δ y tales que x < y, entonces o bien están los dos en uno los intervalos $(-\infty, -R]$, [-R, R] o $[R, +\infty)$,

П

o bien $x \in (-\infty, -R]$ e $y \in [-R, R]$, o bien $x \in [-R, R]$ e $y \in [R, +\infty)$. En el primer caso tenemos que $|f(x) - f(y)| < \varepsilon/2 < \varepsilon$. En el segundo, que |x - (-R)| y |(-R) - y| son menores que δ , así que $|f(x) - f(y)| \le |f(x) - f(-R)| + |f(-R) - f(y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$, y en el tercero que |x - R| y |R - y| son menores que δ , de manera que

$$|f(x)-f(y)| \le |f(x)-f(R)| + |f(R)-f(y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Vemos así que

$$x, y \in \mathbb{R}, |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

y, por lo tanto, que f es uniformemente continua.

16. Sea X un espacio métrico y sea A un subconjunto compacto de X. Si $f:A \to \mathbb{R}$ es una función continua y f(x) > 0 para todo $x \in A$, entonces existe K > 0 tal que $f(x) \ge K$ para todo $x \in A$.

Solución. Sea $f:A\to\mathbb{R}$ una función continua sobre el compacto A que toma valores positivos, consideremos el número $K=\inf\{f(x):x\in A\}$. Si K=0, entonces existe una sucesión $(x_n)_{n\geq 1}$ de elementos de A tal que $\lim_{n\to\infty}f(x_n)=0$: como A es compacto, hay una subsucesión $(x_{n_k})_{k\geq 1}$ que converge a un punto x de A, y como f es continua, tenemos que $f(x)=\lim_{k\to\infty}f(x_{n_k})=0$, lo que es absurdo. Esto nos dice que K es positivo. Como $f(x)\geq K$ para todo $x\in A$, esto prueba lo que queremos.

- **17.** Sea $f : \mathbb{R} \to \mathbb{R}$ una función continua y abierta.
- (a) La función f no tiene extremos locales.
- (b) Existen $a, b \in [-\infty, +\infty]$ tales que $f(\mathbb{R}) = (a, b)$.
- (c) La función f es un homeomorfismo de \mathbb{R} al intervalo (a, b) y ella y su inversa son funciones monótonas.

Solución. (a) Supongamos que f tiene un máximo local en $x \in \mathbb{R}$, de manera que existe $\varepsilon > 0$ tal que $f(x) \ge f(y)$ para todo $y \in B_{\varepsilon}(x)$. Esto implica que $f(B_{\varepsilon}(x))$ está contenido en $(-\infty, f(x)]$: como evidentemente contiene a f(x), ese conjunto no es abierto. Esto es absurdo, ya que f es abierta y $B_{\varepsilon}(x)$ es abierto.

- (b) Como f es continua y \mathbb{R} conexo, el conjunto $f(\mathbb{R})$ es un conexo abierto de \mathbb{R} y sabemos que los conexos abiertos son los intervalos abiertos.
- (c) Si x e y son dos elementos de $\mathbb R$ tales que x < y, entonces $f(x) \neq f(y)$. En efecto, supongamos que, por el contrario, es f(x) = f(y). Si m y M son el mínimo y el máximo de f en [x,y], entonces existen u, $v \in [x,y]$ tales que f(u) = m y f(v) = M. Si fuese $u \in (x,y)$, entonces f tendría un mínimo local en f tendría un máximo local en

Vemos así que si

$$A := \{(x, y) \in \mathbb{R}^2 : x < y, f(x) < f(y)\},\$$

y

$$B := \{(x, y) \in \mathbb{R}^2 : x < y, f(x) > f(y)\},\$$

entonces

$$A \cup B = \{(x, y) \in \mathbb{R}^2 : x < y\}.$$

Ahora bien, es claro de la definición de los conjuntos A y B y de la continuidad de f que se trata de abiertos y que son disjuntos. Como el conjunto $\{(x,y) \in \mathbb{R}^2 : x < y\}$ es conexo tenemos que o bien coincide con A o bien coincide con B: esto significa que o bien f es estrictamente creciente o bien es estrictamente decreciente.

En particular, la correstricción $f: \mathbb{R} \to (a,b)$ es sobreyectiva e inyectiva: como es continua y abierta, se trata de un homeomorfismo.