WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCI) (51) International Patent Classification 6: (11) International Publication Number: WO 98/00244 B08B 3/04, 3/08, 3/10, 7/00, 7/04, C11D 7/22, 7/50, 7/60 (43) International Publication Date: 8 January 1998 (08.01.98) (21) International Application Number: PCT/US97/12421 (81) Designated States: JP, KR, SG, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, (22) International Filing Date: 3 July 1997 (03.07.97) (30) Priority Data: Published 08/675,500 3 July 1996 (03.07.96) With international search report. US (71) Applicants (for all designated States except US): VANCED CHEMICAL SYSTEMS INTERNATIONAL, INC. [US/US]; 510 Alder Drive, Milpitas, CA 95035 (US). KLOFFENSTEIN, Thomas, J. [/US]; 4276 Bolina Drive, Union City, CA 94587 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): WOJTCZAK, William, A. [US/US]; 350 Elan Village Lane #1, San Jose, CA 95134 (US). GUAN, George [US/US]; 3900 Moorpark #58, San Jose, CA 95117 (US). FINE, Stephen, A. [US/US]; 7 Jones Road, Peabody, MA 01960 (US). FINE, Daniel, N. [US/US]; 7 Jones Road, Peabody, MA 01960 (US). (74) Agent: GUILLOT, Robert, O.; Oppenheimer Poms Smith, Suite 600, Ten Almaden Boulevard, San Jose, CA 95113 (US).

(54) Title: IMPROVED POST PLASMA ASHING WAFER CLEANING FORMULATION

(57) Abstract

A semiconductor wafer cleaning formulation for use in post plasma ashing semiconductor fabrication comprising the following components in the percentage by weight ranges shown: chelating agen 2-98 %; solvent 2-98 %. In the preferred embodiment the chelating agent is selected from the group consisting of 2,4-Pentanedione, Malonic acid. Oxalic acid, p-Toluenesulfonic acid, and Trifluoroacetic acid and the solvent is selected from the group consisting of Water, Ethylene glycol, N-Methylpyrrolidone (NMP), Gamma butyrolactone (BLO), and Butyl carbitol.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Alberia	E8	Spain	LS	Lesotho	SI	Slovenia
AM .	Armenia	Ł١	Pinland	LT	Lkhania	SIK	Slovakia
AT	Austria	PR	Prance	W	Luxembourg	5N	Senegal
AU	Australia	GA	Gabon	LV	Latvia	82	Sweetland
AZ	Azerbeijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Talikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Terkmenistan
BF	Burkins Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	17	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Ugenda
BY	Belatus	1S	Iceland	MW	Malewi	US	United States of America
CA	Canada	ΙT	italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zirababwe
a	Côte d'Ivoire	KP	Denocratic People's	NZ	New Zealand		Z.D.DOWC
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Caba	KZ	Kazaksten	RO	Romania		
CZ	Czech Republic	ıc	Saint Lucis	RU	Russian Pederation		
DE	Germany	и	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lenka	SE	Sweden		
EE	Extonia	LR	Liberia	SG	Singapore		

Specification

IMPROVED POST PLASMA ASHING WAFER CLEANING FORMULATION

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation in part application which claims priority of U.S. Patent Application Serial No. 08/675,500, filed July 3, 1996, entitled: Post Plasma Ashing Wafer Cleaning Formulation, naming Thomas J. Kloffenstein and Daniel N. Fine as inventors.

BACKGROUND OF THE INVENTION

10

5

Field of the Invention

The present invention relates generally to chemical formulations used in semiconductor wafer fabrication and particularly to chemical formulations that are utilized to remove residue from wafers following a resist plasma ashing step.

15

Description of the Prior Art

The prior art teaches the utilization of various chemical formulations to remove residue and clean wafers following a resist ashing step. Generally, these prior art chemical formulations include strong reagents such as strong acids, strong bases and/or highly reactive amine containing compounds. Such strong reagents can cause unwanted further removal of metal or insulator layers remaining on the wafer and are therefore undesirable in many instances. A particular problem with strippers containing both amine component(s) and water is corrosion of metal, particularly aluminum and aluminum-copper alloys. There is therefore a need for chemical formulations which effectively remove residue following a resist ashing step which do not attack and potentially degrade delicate structures which are meant to remain on a wafer.

25

20

SUMMARY OF THE INVENTION

A semiconductor wafer cleaning formulation for use in post plasma ashing semiconductor fabrication comprising the following components in the percentage by weight ranges shown:

chelating agent

2 - 98%

5

10

15

20

25

solvent

2 - 98%

In the preferred embodiment the chelating agent is selected from the group consisting of 2,4-Pentanedione,

Malonic acid, Oxalic acid, p-Toluenesulfonic acid, and Trifluoroacetic acid and the solvent is selected from the

group consisting of Water, Ethylene glycol, N-Methylpyrrolidone (NMP), Gamma butyrolactone (BLO), and Butyl
carbitol.

It is an advantage of the present invention that it effectively removes inorganic residues following a plasma ashing step.

It is another advantage of the present invention that it effectively removes metal halide and metal oxide residues following plasma ashing.

It is a further advantage of the present invention that it effectively removes inorganic residue from a semiconductor wafer following plasma ashing without containing a strong acid, strong base and/or amine containing compound.

These and other features and advantages of the present invention will become understood to those of ordinary skill in the art upon review of the following detailed description of the preferred embodiments.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Typical steps in the fabrication of semiconductor wafers involve the creation of a metalized layer having a patterned resist layer formed thereon. Such a wafer may then be exposed to a metal etching plasma (such as a halogen based plasma) to remove exposed metal. Thereafter, a plasma ashing step often is conducted (typically using an oxygen based plasma) in which the remaining resist is removed from the wafer. The result is a patterned metalized layer.

This series of steps generally results in a residue which must be removed from the wafer prior to further fabrication steps. The residue following the plasma asking step is predominantly composed of inorganic compounds such as metal halides and metal oxides.

Various chemical formulations are currently used to remove the inorganic compound residues. These formulations are generally holdovers from older semiconductor fabrication wet chemical resist removal processes that were used prior to the introduction of the resist plasma ashing technology. The prior formulations thus typically contain strong acids or strong bases or highly reactive amine compounds to remove residues that remained following the wet chemical resist removal step.

The present invention comprises chemical formulations for the removal of inorganic compound residues, where the formulations do not contain strong acids, strong bases and/or reactive amine compounds of the prior art formulations. The general formulation of the present invention has two or three components that are present in the following ranges (where the percent (%) given is percent by weight):

Organic Chelating Agent

1 - 15%

Water

25 - 99%

Polar Organic Solvent

0 - 60%

A preferred general formulation is created where the organic chelating agent is Catechol (1, 2-dihydroxybenzene) and the polar organic solvent is Gamma butyrolactone (BLO). Thus, a preferred general formulation is:

10

5

Catechol

1 - 15%

Water

25 - 99%

BLO

0 - 60%

As is seen from the above formulation ranges, a first included series of formulations exists where there is zero BLO (BLO 0%). That is, a formulation of Catechol 1-10% and water 90-99% Within these parameters a preferred formulation comprises:

Catechol

7 - 10%

Water

90 - 93%

Regarding the three component formulations described above, a preferred three component formulation within the range of parameters is:

20

25

15

Catechol

7 - 12%

Water

48 - 83%

BLO

10 - 40%

Both preferred formulations have been shown to be effective in removing inorganic compound residues following plasma ashing of the resist. The following examples describe the utilization of the preferred formulations.

Example I

A first example of the present invention involved wafers having 3-layer metal lines containing a top layer of titanium nitride (1200Å thick), a middle layer of aluminum (99.5%) copper (0.5%) alloy (10,000Å thick), and a

bottom layer of Titanium/Tungsten alloy (1500Å thick). The substrate was silicon oxide and the width of metal lines was approximately 0.8 microns.

The wafers were metal-etched with a chlorine-containing plasma which was followed by an oxygen plasma ashing of the resist. This was followed by immersion of the wafers in a bath of the present invention containing catechol 10%, water 50% and BLO 40% at 60°C for 30 minutes followed by washing with deionized water. Further testing has demonstrated that effective residue removal is obtained in a temperature range of 45° to 75°C, and with wafer exposure times in a range of 15 to 60 minutes. Additionally, rather than utilizing wafer immersion techniques, the solutions could be sprayed onto the wafers using automated spray tools followed by a water rinse.

10 Example II

5

15

20

25

A second set of wafers which were identical to the set utilized in Example I, were processed utilizing a different cleaning formulation. Specifically, the wafers were metal-etched with a chlorine-containing plasma which was followed by an oxygen plasma ashing of the resist. This was followed by immersion of the wafers in a bath of the present invention containing catechol 8% and water 92%, at 60°C for 30 minutes followed by washing with deionized water. As with the prior example, a formulation temperature of 45 to 75°C with a wafer exposure time of 15 to 60 minutes will produce satisfactory results.

Regarding both examples above, inspection of SEM photomicrographs of processed wafers was utilized to evaluate the stripping effectiveness of the formulations and also to confirm lack of corrosivity to metal features.

To someone of ordinary skill in the art it would be expected that chelating agents related to catechol and other polar organic solvents may also be utilized with comparable results. Catechol-related chelating agents would include derivatives of benzene, naphthalene, and aromatic heterocyclic compounds having at least two hydroxyl (OH) groups on adjacent carbon atoms. Other polar organic solvents which could be utilized include N-Methylpyyrolidone (NMP); Sulfolane; Propylene glycol monomethylether acetate (PMA); Ethylene glycol and propylene glycol; and Dimethylsulfoxide.

Additional formulations have been developed for stripping wafer residues which originate from plasma metal etching followed by ashing. The additional formulations utilize the following components (percentages are by weight):

A chelating agent compound

2-98%

Water and/or a polar organic solvent

2-98%

5

20

The preferred chelating agent compounds are:

2,4-Pentanedione	0-98%
Malonic acid	0-10%
Oxalic acid	0-5%
p-Toluenesulfonic acid	0-10%
Trifluoroacetic acid	0-12%
grand the second of the second	

Other chelating agents that provide good results are:

10	Acetoacetamide	0-15%
	Anthranilic acid	0-13%
	Methyl acetoacetate	0-10%
	Dimethylmalonate	0-10%
	Boric acid	0-5%
15	Lactic acid	0-5%
	Levulinic acid	0-5%

The preferred polar organic solvents are:

Water	0-98%
Ethylene glycol	0-98%
N-Methylpyrrolidone (NMP)	0-98%
Gamma butyrolactone (BLO)	0-40%
Butyl carbitol	0-59%

Preferred solvent formulations that are utilized in the specific cleaning formulations set forth below are:

Mixtures of NMP (50-55%) and water (28-40%)

25 Mixtures of BLO (40-50%) and water (30-50%)

A significant feature of the new formulations is the use of a chelating agent in a solvent solution which does not contain any amine or strong base.

Specific cleaning formulations include:

2,4-Pentanedione

10%

6

	BLO	40%
	Water	50%
	2,4-Pentanedione	10%
5	NMP	50%
	Water	40%
	Oxalic acid	5%
10	NMP	55%
	Water	40%
	Methyl acetoacetate	10%
	BLO	40%
15	Water	50%
	Malonic acid	5-10%
	NMP	50-559
20	Water	40%
	Malonic acid	5%
	BLO	50%
	Water	45%
25	p-Toluenesulfonic acid	10%
	NMP	50%
	Water	40%
	Trifluoroacetic acid	10%

NMP

50%

Water

40%

Other 1,3-dicarbonyl compounds and related compounds are expected to display comparable

5 performance. These would have the following general structure:

10

15

20

25

R is either a hydrogen atom or an alkyl group and

X and Y are functional groups containing multiply bonded moities known to have electron-withdrawing properties, for example X and Y may be CZ=0, C≡N, CZ=N, CZ=S, NZ=0, SZ=0 in which Z represents another atom or group of atoms. X and Y may be identical or different.

Other non-amine polar organic solvents are expected to be suitable either along or when mixed with water.

It would also be expected that inclusion of optional components such as surfactants, stabilizers, corrosion inhibitors, buffering agents, and cosolvents would constitute obvious additions to those practiced in the art.

Commercially generated wafers which have been etched with chlorine- or fluorine-containing plasmas followed by oxygen plasma ashing have residues that typically contain inorganic materials such as, but not limited to, aluminum oxide and titanium oxide. These residues are often difficult to dissolve completely without causing corros8ion of metal and titanium nitride features required for effective device performance.

Four types of commercially generated wafers containing vias and metal lines were processed using the formulation of the present invention. In each case, following plasma etching and ashing, the residue was removed from the wafer by immersion of wafers in baths at 60° C for 30 minutes followed by washing with deionized water and drying with a stream of nitrogen gas. It is expected that the solutions can also be applied by spraying onto the wafers in an automated spray tool followed by a water rinse.

The four via and metal line structures were:

- 0.8 micron diameter, four layer vias comprised of silicon oxide top and second layers, a third layer of titanium nitride, and a bottom layer of aluminum, silicon, copper (AlSiCu) alloy. The substrate was silicon oxide.
- 2. One micron diameter, two-layer vias comprised of a top layer of silicon oxide (7000 Angs. thick) and a middle layer of titanium nitride (1200 Angs. thick) on top of a silicon substrate.

- 3. 1.2 micron wide, 4-layer metal lines with a top layer of titanium/tungsten (1200 Angs. thick), a second layer of aluminum (6000 Angs. thick), a third layer of titanium/tungsten (1200 Angs thick), and a bottom layer of titanium (500 Angs. thick) on a silicon oxide substrate.
- 4. Two micron wide, 3-layer metal lines with a top layer of titanium (200 Angs. thick), a middle layer of aluminum/silicon/copper (750 Angs. thick), and a bottom layer of titanium/tungsten (1250 Angs. thick) on a silicon oxide substrate.

Based on inspection of scanning electron microscope photographs of customer wafers before and after treatment, the preferred formulations successfully removed residues without signs of corrosion on metal and/or alloy layers.

While the present invention has been shown and described with reference to particular preferred embodiments, it is to be understood that other and further changes and modifications of the invention will become apparent to those skilled in the art after understanding the present invention. It is therefore intended that the following claims cover all such alterations and modifications as fall within the true spirit and scope of the invention.

15

10

5

What I claim is:

CLAIMS

1. A semiconductor wafer cleaning formulation for use in post plasma ashing semiconductor fabrication comprising the following components in the percentage by weight ranges shown:

chelating agent

2 - 98%

solvent

2 - 98%.

- 2. A cleaning formulation as described in claim 1 wherein said chelating agent is selected from the group consisting of, 2,4-Pentanedione, Malonic acid, Oxalic acid, p-Toluenesulfonic acid, and Trifluoroacetic acid.
- 3. A cleaning formulation as described in claim 1 wherein said chelating agent is selected from the group conssiting of, Acetoacetamide, Anthranilic acid, Methyl acetoacetate, Dimethylmalonate, Boric acid, Lactic acid, and Levulinic acid.
- 4. A cleaning formulation as described in claim 1 wherein said chelating agent in the percentage by weight range shown is selected from the group consisting of, 2,4-Pentanedione 0-98%, Malonic acid 0-10%, Oxalic acid 0-5%, p-Toluenesulfonic acid 0-10%, and Trifluoroacetic acid 0-12%
- 5. A cleaning formulation as described in claim 1 wherein said solvent is selected from the group consisting of, Water, Ethylene glycol, N-Methylpyrrolidone (NMP), Gamma butyrolactone (BLO), and Butyl carbitol.
- 6. A cleaning formulation as described in claim 1 wherein said solvent in the percentage by weight range shown is selected from the group consisting of, Water 0-98%, Ethylene glycol 0-98%, N-Methylpyrrolidone (NMP) 0-98%, Gamma butyrolactone (BLO) 0-40%, and Butyl carbitol 0-59%.
- 7. A semiconductor wafer cleaning formulation for use in post plasma ashing semiconductor fabrication, wherein said formulation in the percentage by weight ranges shown is selected from the group consisting of:

	TT:0 00000				•
	WO 98/00244	10) ·	PCT/US97/12421	
	2,4-Pentanedione			10%	
	BLO			40%	
	Water	·		50%,	
5	2,4-Pentanedione			10%	•
	NMP			50%	
	Water			40%,	
			· · ·	ta a ta	
		•	18		
10	Oxalic acid			5%	
	NMP			55%	
•	Water			40%,	
	Methyl acetoacetate				
15	BLO			10%	
	Water		• 1	40% 50%,	
				3076,	
	Malonic acid			5-10%	•
	NMP	٠.		50-55%	
20	Water			40%,	•
•			`		
	Malonic acid			5%	
	BLO			50%	
	Water			45%,	
25					
	p-Toluenesulfonic acid	•		10%	

Water 40%, and

Trifluoroacetic acid 10%

NMP 50%

Water 40%

8. A method for fabricating a semiconductor wafer which includes the steps comprising:

plasma ashing a substance from the surface of the wafer;

cleaning said wafer in a following step using a chemical formulation comprising the following components in the
percentage by weight ranges shown:

chelating agent

2 - 98%

solvent

5

5

2-98%

- 9. A method as described in claim 8 wherein said chelating agent is selected from the group consisting of: 2,4-Pentanedione, Malonic acid, Oxalic acid, p-Toluenesulfonic acid, Trifluoroacetic acid.
- 10. A method as described in claim 8 wherein said chelating agent is selected from the group consisting of:

 Acetoacetamide, Anthranilic acid, Methyl acetoacetate, Dimethylmalonate, Boric acid, Lactic acid, and Levulinic acid.
- A method as described in claim 8 wherein said chelating agent in the percentage by weight range shown is selected from the group consisting of, 2,4-Pentanedione 0-98%, Malonic acid 0-10%, Oxalic acid 0-5%, p-Toluenesulfonic acid 0-10%, and Trifluoroacetic acid 0-12%
- 12. A method as described in claim 8 wherein said solvent is selected from the group consisting of: Water, Ethylene glycol, N-Methylpyrrolidone (NMP), Gamma butyrolactone (BLO), and Butyl carbitol.

- A method as described in claim 8 wherein said solvent in the percentage by weight range shown is selected 13. from the group consisting of, Water 0-98%, Ethylene glycol 0-98%, N-Methylpyrrolidone (NMP) 0-98%, Gamma butyrolactone (BLO) 0-40%, and Butyl carbitol 0-59%.
- A method as described in claim 9 wherein said cleaning formulation in the percentage by weight ranges shown 14. is selected from the group consisting of:

	2,4-Pentanedione	10%
	BLO	40%
5.	Water	50%,
	2,4-Pentanedione	lÒ%
	NMP	50%
	Water	40%,
10		. •
. •		
	Oxalic acid	5%
	NMP	55%
	Water	40%,
15	•	
	Methyl acetoacetate	10%
	BLO	40%
•	Water	50%,
20	Malonic acid	5-10%
	NMP	50-55%
	Water	40%,

	Malonic acid BLO Water	5% 50% 45%,
5	p-Toluenesulfonic acid NMP Water	10% 50% 40%, and
10	Trifluoroacetic acid NMP Water	10% 50% 40%.

15. A method for fabricating a semiconductor wafer including the steps comprising:

plasma etching a metalized layer from a surface of the wafer;

plasma ashing a resist from the surface of the wafer following the metal etching step;

cleaning the wafer in a following step using a chemical formulation including the following components in the percentage by weight ranges shown:

chelating agent

2 - 98%

solvent

2 - 98%.

- 16. A method as described in claim 15 wherein said chelating agent is selected from the group consisting of: 2,4-Pentanedione, Malonic acid, Oxalic acid, p-Toluenesulfonic acid, Trifluoroacetic acid.
- 17. A method as described in claim 15 wherein said chelating agent is selected from the group consisting of: cetoacetamide, Anthranilic acid, Methyl acetoacetate, Dimethylmalonate, Boric acid, Lactic acid, and Levulinic acid.

5

10

15

- 18. A method as described in claim 15 wherein said chelating agent in the percentage by weight range shown is selected from the group consisting of, 2,4-Pentanedione 0-98%, Malonic acid 0-10%, Oxalic acid 0-5%, p-Toluenesulfonic acid 0-10%, and Trifluoroacetic acid 0-12%
- 19. A method as described in claim 15 wherein said solvent is selected from the group consisting of: Water, Ethylene glycol, N-Methylpyrrolidone (NMP), Gamma butyrolactone (BLO), and Butyl carbitol.
- 20. A method as described in claim 15 wherein said solvent in the percentage by weight range shown is selected from the group consisting of, Water 0-98%, Ethylene glycol 0-98%, N-Methylpyrrolidone (NMP) 0-98%, Gamma butyrolactone (BLO) 0-40%, and Butyl carbitol 0-59%.
- 21. A method as described in claim 15 wherein said cleaning formulation in the percentage by weight ranges shown is selected from the group consisting of:

2,4-Pentanedione	10%
BLO	40%
Water	50%,
2,4-Pentanedione	10%
NMP	50%
Water	40%,
Oxalic acid	5%
NMP	55%
Water	40%,
Methyl acetoacetate	10%

22. A method as described in claim 8 wherein the wafer is exposed to said chemical formulation for a time period of 15-60 minutes at a temperature range of 45-75°C.

Water

Ξ:

50%

40%.

23. A method as described in claim 15 wherein the wafer is exposed to said chemical formulation for a time period of 15-60 minutes at a temperature range of 45-75°C.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12421

A. CLASSIFICATION OF SUBJECT MATTER IPC(6): B08B 3/04, 3/08, 3/10, 7/00, 7/04; C11D 7/22, 7/ US CL: 134/1.2, 1.3, 2, 3, 38, 40, 42; 510/175, 176, 178 According to International Patent Classification (IPC) or to both		·			
B. FIELDS SEARCHED					
Minimum documentation searched (classification system follower	d by classification symbols)				
U.S. : 134/1.2, 1.3, 2, 3, 38, 40, 42; 510/175, 176, 178					
Documentation searched other than minimum documentation to the	e extent that such documents are included	in the fields searched			
Electronic data base consulted during the international search (na Please See Extra Sheet.	ame of data base and, where practicable	, search terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
X US 5,183,552 A (BRESSEL et al) document, especially column 5, lin		1, 2 and 4-6 3 and 7			
X US 5,334,332 A (LEE) 02 August	1994, entire document.	1, 5, 6, 8, 12, 13, 15, 19, 20, 22 and 23			
X US 5,466,389 A (ILARDI et al) 1 document.	4 November 1995, entire	2-4, 7, 9-11, 14, 16-18 and 21 1 and 5 			
X Further documents are listed in the continuation of Box C	See patent family annex.				
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance: "E" cartier document published on or after the interestional filing date: "L" document which may throw doubts on priority claim(s) or which is cited to enablish the publication date of another citation or other	"I" later document published after the int date and not in conflict with the applic principle or theory underlying the iew "X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone. "Y" document of particular relevance; the	ntion but cited to understand the rention so claimed invention cannot be and to involve an inventive step			
O document referring to an oral disclosure, use, exhibition or other measure.	considered to involve an inventive combined with one or more other as being obvious to a person skilled in t	s step when the document is ch documents, such combination the art			
P document published prior to the international filing date but later than the priority date claimed	"A" document member of the same paten				
Date of the actual completion of the international search 29 AUGUST 1997 Date of mailing of the international search report 2 4 SEP 1997					
Name and mailing address of the ISA/US Commissioner of Patents and Tradomarks Box PCT Washington, D.C. 20231	Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT ALEXANDER MARKOFF 927				
Pacsimile No. (703) 305-3230	Telephone No. (703) 308-0651				

OLGED WHY TO JOYED SIH.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12421

C (Continue	JS97/12421	
Category*	citation of document, with indication, where appropriate, of the relevant passes	
	water appropriate, of the relevant passe	Relevant to claim
Y	US 4,744,834 A (HAQ) 17 May 1988, entire document.	1-23
c	US 5,236,552 A (FANG) 17 August 1993, entire document, especially column 3, lines 10-39.	1, 2 and 4-6
Y	The state of the s	3 and 7-23
- I	US 4,221,674 A (VANDER MEY) 09 September 1980, entire document.	1, 2 and 4
		3 and 7-23
:	And the second s	
ľ		

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

Olege Was Sales Hill

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12421

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS search terms: pentanedione, malonic, oxalio, toluenesulfonio, trifluoroscetic, acetoacetamide, anthranilio, borio, lactic, levulinio, dimethylmalonate, acid, water, aqueous, nmp, methylpirrolidone, butyrolactome, blo, butyl carbitol, ethylene glycol, wafer, plasma, semiconductor, resist, photoresist.