Professora: Sarah Thomaz de Lima Sa

Aluno: Luiz Eduardo Barros Coelho

Matéria: Matemática Discreta

Campus: Natal - Central

Curso: Tecnologia em Análise e Desenvolvimento de Sistemas

Turma: 01 Matutino

Nº do aluno: 039

Natal/RN

04/2019

Matemática Discreta - Professora Sarah

Definição: especificam com precisão os conceitos em que estamos interessados.

Teorema: afirmam exatamente o que é verdadeiro sobre esses conceitos.

Provas: demonstram de maneira irrefutável a verdade dessas asserções.

• Objetos matemáticos são puramente conceituais: adquirem existência através das definições.

Exemplo: um número é chamado de par ou primo desde que satisfaça condições precisas, sem ambiguidade.

Leis x Definições matemáticas

- Definição Par: um inteiro é par se é divisível por 2.
- Definição Divisível: sejam a e b inteiros. Dizemos que a é divisível se existe um inteiro c, tal que a = b.c

Dizemos que: b divide a; b é fator de a; c é divisor de a.

Notações: b|a "b divide a"

Observação: não confundir "|" com "/".

Exemplo: 24 é divisível por 4? Sim, pois existe um inteiro \mathbf{c} , a saber, 6, tal que 6.4 = 24

Exemplo 02:

- a) 21 é divisível por 3? Sim, pois, existe um número inteiro c que multiplicado por 3 resulta em 21. No caso, c = 7
- **b) 5 divide 40?** Sim, pois, existe um número inteiro **c** que multiplicado por 5 resulta em 40. No caso, **c** = 8
- c) 7 divide 3? Não, pois, não existe um número inteiro c que multiplicado por 7 resulte em 3. No caso, c = não existe

- d) 32 é múltiplo de -16? Sim, pois, existe um número inteiro c que multiplicado por -16 resulta em 32. c = - 2
- e) 7 é fator de -7? Sim, pois existe um número inteiro c que multiplicado por 7 resulta em -7. No caso, c = -1

Exemplo 03:

- a) 12 é par? Sim, pois é divisível por 2 no momento que existe um número inteiro c que multiplicado por 2 resulta em 12. c = 6
- b) 13 é par? Não, pois não é divisível por 2 no momento em que não existe um número inteiro c que multiplicado por 2 resulte em 13. C = não existe.
 - Definição Impar: um inteiro a é chamado de ímpar, desde que existe um inteiro b, qual que a = 2b + 1
 - **Definição Primo:** um inteiro **a** é chamado de primo se a>1 e se seus únicos divisores forem **a** e 1.

Exemplo: 11 é primo; 1 não é primo pois não existe um inteiro a>1 que seja seu divisor.

Exemplo: defina o que significa um inteiro ser um quadrado. Por exemplo: os inteiros 1, 0, 4 e 16 são quadrados.

Um inteiro x é chamado de quadrado desde que x elevado a 2 resulte em um número, por saber y. Este número y será divisível por 2, portanto, 2|y a partir do momento que existe um inteiro a, que multiplicado por 2, resulte em y. Logo, um número inteiro é quadrado a partir do momento que x = a.

Dando o 4 como exemplo. X = 4 que elevado a 2 resulta em 16. Portanto, 16 será divisível por 2, logo, 2|16 a partir do momento que existe um número inteiro a, por saber 4, que multiplicado por 2 resulte em 16. Observe que x = a (4 = 4). Portanto, $x \ne a$ um número quadrado.

OBS: um teorema é uma afirmação declarativa sobre a matemática para a qual existe uma prova.

- Matemáticos fazem três tipos de afirmações:
- 1. A que sabemos que são verdadeiras, pois podemos provar a sua veracidade: teoremas:
- 2. Cuja veracidade não podemos provar: conjectura;
- 3. Falsas: erros.

OBS: na matemática o termo verdadeiro deve ser considerado como absoluto, incondicional e sem exceção.

• **Teorema - Pitágoras:** Se a e b são os comprimentos dos catetos de um triângulo retângulo e c é o comprimento da sua hipotenusa, então:

• Designação de um teorema:

Fato: teorema de importância limitada. 3 + 6 = 9.

Proposição: teorema de importância secundária.

Lema: teorema com o objetivo principal de auxiliar outro teorema mais importante.

Colorário: resultado de uma prova rápida, cujo objetivo principal é o uso de outro teorema provado anteriormente.

Alegações: análogo a tema.

 Conjectura - GoldBach: todo inteiro par maior que 2 é a soma de dois números primos.

$$4 = 2 + 2$$
 $12 = 5 + 7$ $8 = 3 + 5$ $6 = 3 + 3$ $14 = 7 + 7$ $10 = 3 + 7 \dots$

- Conjectura Primos Gêmeos: existem infinitos números primos cuja diferença entre eles é 2.
 - Primos de Mersome: primos de forma 2 elevado a p 1, onde p é primo.
 - **-Primos de Fernat:** primos de forma 2 elevado a 2n + 1, onde n é inteiros positivos.
- Crivo de Erastótenes: método utilizado para se encontrar um número primo até certo limite.
 - 1. Se escreve todos os naturais até o limite;
 - 2. Corta-se o número 1;
 - 3. Corta-se os múltiplos de 2 exceto o 2, que é primo;
 - 4. Corta-se os múltiplos de 3, exceto o 3, que é primo;
 - 5. O primeiro número não cortado é primo;
 - 6. Repete-se o passo 4 com o último primo.

E. OU e NÃO

• **E:** "A e B" é verdade se ambas 25 informações A e B forem verdadeiras. Exemplo: "Todo inteiro cujo algarismo das unidades é o 0 é divisível por 2 **e** por 5."

OBS: A ^ B

NÃO: "Não A" é uma afirmação verdadeira somente se A for falsa.
 Exemplo: "Todos os primos são impares" → F

OBS: ¬ A

• **OU:** "A ou B" significa que A é verdadeira ou B é verdadeira ou A e B são verdadeiros.

Exemplo: "Você é aluno de Matemática Discreta ou de TADS".

Α	В	A OU B
F	F	F
F	٧	V
V	F	V
V	٧	V

OBS: A v B

OBS2: O "ou" matemático permite a possibilidade de ambos.

• Proposição 01: a soma de dois inteiros pares é par

Prova:

- **1.** Vamos mostrar que se X e Y são inteiros pares então X + Y é um inteiro par;
- 2. Sejam X e Y inteiros pares;
- 3. Como X é par, sabemos pela definição 01 que 2 | X (X é divisível por 2);
- 4. Analogamente, lema Y, pela definição 01, 2 | Y (Y é divisível por 2);
- Como 2 | X sabemos pela definição 02 que existe um número inteiro a que multiplicado por 2 resulta em X, logo, 2.a = x;
- **6.** Analogamente, existe um inteiro b tal que 2.b = Y

- **7.** Observe que X + Y = 2.a + 2.b, logo, X + Y = 2.(a + b);
- 8. Logo, temos pela definição 02, que existe um número inteiro c, a saber (a + b), tal que 2.c = X + Y
- 9. Logo, pela definição 02, 2 | X + Y;
- **10.** Portanto, pela definição 01, X + Y é par.
- Prova Direta
- P1) Convertemos para "se então";
- P2) Admitimos a primeira parte para chegar na segunda;
- P3) Admitimos que a condição é satisfeita;
- **P3)** Desenvolvemos a prova sabendo de onde começamos e onde queremos chegar;
- P4) Terminamos com "Portanto...".
- Proposição 02: sejam a, b e c inteiros, se a|b e b|c então a|c.

Prova:

- 1. Sejam a, b e c inteiros com a|b e b|c então a|c;
- Como a|b, sabemos pela definição 02 que existe um número inteiro X que multiplicado por a resulta em b, logo, a.X = b;
- Analogamente com b|c, pela definição sabemos que existe um inteiro Y
 que multiplicado por b resulta em c, logo b.Y = c;
- **4.** Substituindo a.x em b na fórmula (b.Y = c), temos, a.(x.Y) = c;
- 5. Portanto, pela definição 02 sabemos que existe um número inteiro z, por sua vez (x.Y), que multiplicado por a resulta em c, logo, a.z = c
- 6. Portanto a|c
- Proposição 03: sejam a, b,c e d inteiros. Se a|b, b|c, c|d então a|d.

Prova:

- 1. Sejam a, b, c e d inteiros, tais que a|b, b|c, c|d;
- 2. Como a|b, então, sabemos pela definição 02 que existe um número inteiro x que multiplicado por a resulta em b, logo, a.x = b;
- **3.** Analogamente em b|c, existe um inteiro **y** que multiplicado por b resulta em c, logo, b.y = c;
- **4.** Da mesma forma que em c|d, existe um inteiro **z** que multiplicado por c resulta em d, logo, c.z = d;
- **5.** Substituindo a.x em b na fórmula (b.y = c) se tem a.(x.y) = c;
- **6.** Pela definição 02, sabe-se que existe um número inteiro **J**, por sua vez (x.y), que multiplicado por a resulta em c, logo a.j = c;
- 7. Substituindo c na fórmula (c.z = d) se tem a(j.z) = d;

- 8. Sabe-se pela definição 02 que existe um número inteiro **K**, por sua vez (j.z), que multiplicado por em a resulta em d, logo a.k = d
- 9. Portanto, concluímos que, pela definição 02 a|d.
- Proposição 04: seja X um inteiro então X é par se e somente x+1 é ímpar.

Prova:

- Se X é par significa que 2|X. Logo, pela definição de divisibilidade há um inteiro tal que 2.a=X
 - Somando um de ambos os lados obtemos: 2a+1=X+1;
 - Portanto, pela definição de ímpar, (X+1) é ímpar.
- ❖ Isso significa que existe um inteiro b, tal que 2b+1=X+1
 - Subtraindo 1 de ambos os lados obtemos 2b=X;
 - Portanto, pela definição de divisibilidade temos que 2|X e então pela definição de par podemos afirmar que X é par.
- Proposição 05: sejam a e b inteiros. Se a|b e bZa então a=b
 - Tomando a=2 e b=2, temos que a|b e b|a, no entanto, a é diferente de b. Logo, a proposição é falsa.
- Proposição 06: se um inteiro 1 e 20 é divisível por 6 então também é divisível por 3
 - Não existe nenhum número inteiro c tal que c.6 que resulte em 1 ou 20, portanto, a afirmação é falsa.

Conjuntos

Teoria dos Conjuntos

Conjunto: agrupamento de objetos, denominados elementos.

Representação: S → Conjunto

A £(pertence) $S \rightarrow$ Elemento

Definição: um conjunto é uma coleção não ordenada de elementos, sem repetição.

Axioma de extensão: se dois conjuntos X e Y são tais que todo elemento de X é elemento de Y e todo elemento de Y é elemento de X, então X e Y são iguais.

OBS: dado um elemento a e um conjunto S temos apenas duas possibilidades: a £ S ou a ¢(não pertence) S.

Ex: $A = \{2, 3, 5, 7\}$

 $B = \{5, 3, 2, 7\}$

$$C = \{5, 5, 3, 3, 3, 2, 3, 3, 3, 7, 7, 2\}$$

3 £ A? Não

A £ A? Sim

{3, 5} £ A? não

• Um conjunto pode ser descrito listando todos os elementos ou caracterizando-os a partir de duas propriedades:

Ex:

- O conjunto de todos os inteiros positivos ímpares menores que 10
- A = {X|X é um inteiro positivo ímpar menor que 10}
- $A = \{X \pounds Z + | X \text{ \'e impar e } X < 10\}$
- $A = \{1, 3, 5, 7, 9\}$

Conjuntos importantes

 $N = \{1, 2, 3, 4, 5,...\} \rightarrow Naturais$

 $Z = \{..., -2, -1, 0, 1, 2, ...\} \rightarrow Reais$

 $Q = \{m/n; m, n \ £ \ Z; n \ (diferente) \ 0 \rightarrow Racionais$

R = Q U II → Reais

Conjunto vazio: caracterizado por não possuir elementos.

Notação: { } ou ø

Conjunto unitário: conjunto com um único elementos

Ex: {1}

{ø}

Diagrama de Venn: representações gráficas de conjuntos

• Relação entre conjuntos

Subconjunto: o conjunto A é um subconjunto de B se e somente se todo elemento de A for também elemento de B.

A é subconjunto de B.

Exemplo: O conjunto de todos os inteiros positivos ímpares menores que 10 pé um subconjunto de todos os inteiros positivos menores que 10.

$$A = \{1, 2, 3\}$$
 $B = \{1, 2, 3, 4, 5\}$

A é subconjunto restrito de B

OBS: Para todo conjunto A qualquer

Ø conjunto restrito de A e A é conjunto restrito de A

Logo, todo conjunto não vazio tem no mínimo dois subconjuntos.

Subconjunto eestrito: quando A faz parte de B porém A é diferente de B.

Cardinal de A: um conjunto finito de A possui n elementos distintos

N é dito cardinal de A

$$n = |A|$$

Exemplos:

$$A = \{2, 3, 5\}$$
 $|A| = 3$
 $A = \{\}$ $|A| = 0$
 $A = \{2, 2, 3, 3, 5\}$ $|A| = 3$
 $A = \{IN\}$ $|A| = infinito$

Conjunto das partes: dado o conjunto A o conjunto das partes de A é o conjunto de todos os subconjuntos de A.

Notação: P(A)

Exemplo: Qual o conjunto das partes de $A = \{0, 1, 2\}$?

$$P(A) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$$

→ Ø e {0,1,2} são elementos de P(A).

Questão 01: qual o conjunto das partes de { }?

$$P(\{ \}) = \{\emptyset\} \text{ ou } \{\{\}\}$$

Questão 02: Qual o conjunto das partes de {ø}?

$$P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$$

Produto cartesiano: considere A e B conjuntos. O produto cartesiano de A e B, indicado por AxB é o conjunto de todos os pares ordenados (a,b) em que a £ A e b £ B.

Exemplo: considere A como o conjunto de todos os estudantes e B o conjunto de todas as universidades. Qual o produto cartesiano?

$$A = \{1, 2\} e B = \{a, b, c\}$$

$$AxB = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$$

OBS: um subconjunto R de um produto cartesiano é chamado de relação de um conjunto A com o conjunto B.

OBS: AxB e BxA são iguais caso

 $A = \emptyset$ ou B differente de 0, onde $AxB = \emptyset$ ou A=B

Exemplo: mostre que AxB é diferente de BxA, onde A = {1, 2} e B = {a, b, c}

$$BxA = \{(a,1),(b,2),(a,1),(a,2),(c,1),(c,2)\}$$

$$AxB = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$$

Exemplo: mostre AxB para os conjuntos $A = \{1,2\}$ e $B = \{a, b, c, \{d\}\}$

$$AxB = \{(1,a),(1,b),(1,c),(1,\{d\}),(2,a),(2,b),(2,c),(2,\{d\})\}$$

Exercício

- **1)** Suponha que A={2,4,6}, B={2,6}, C={4,6}, D={4,6,8} e E={x,y}
- a) Determine o conjunto das partes de cada um desses conjuntos

$$P(A) = \{\emptyset, \{2\}, \{4\}, \{6\}, \{2,4\}, \{2,6\}, \{4,6\}, \{2,4,6\}\}\}$$

$$P(B) = \{\emptyset, \{2\}, \{6\}, \{2,6\}\}\$$

$$P(C) = \{\emptyset, \{4\}, \{6\}, \{4,6\}\}\$$

$$P(D) = \{\emptyset, \{4\}, \{6\}, \{8\}, \{4,6\}, \{4,8\}, \{6,8\}, \{4,6,8\}\}\}$$

$$P(E) = \{\emptyset, \{x\}, \{y\}, \{x,y\}\}\$$

b) Quais desses conjuntos é subconjunto de outro?

B é subconjunto estrito de A, C é subconjunto estrito de A, C é subconjunto estrito de D, B é subconjunto de A, C é subconjunto de D.

c) Determine P(A)xE:

$$P(A) \times E =$$

$$\{(\emptyset,x),(\emptyset,y),(\{2\},x),(\{2\},y),(\{4\},x),(\{4\},y),(\{6\},x),(\{6\},y),(\{2,4\},x),(\{2,4\},y),(\{2,6\},x),(\{2,6\},y),(\{4,6\},x),(\{4,6\},x),(\{2,4,6\},x),(\{2,4,6\},y)\}$$

2) Para cada um dos conjuntos abaixo determine se 2 é um elemento de conjunto

a)
$$\{x \, \pounds \, IR \mid x \, \pounds \, Z \, ^x > 1\}$$

2 pertence a esse conjunto.

b)
$$\{X \, \pounds \, IR \mid X = a^2 \land a \, \pounds \, Z\}$$

2 não pertence a esse conjunto.

2 pertence a esse conjunto.

2 não pertence a esse conjunto.

2 não pertence a esse conjunto

2 não pertence a esse conjunto.

3) Determine se cada uma das afirmações abaixo é verdadeiro ou falso

a) 0 £ ø

Falso

b) {0} é subconjunto de ø

Falso

c) {0} £ {0}

Falso

d) {ø} é subconjunto restrito de {ø}

Falso

e) Ø £ {Ø}

Verdadeiro

f) ø é subconjunto de {0}

Verdadeiro

g) {0} é subconjunto de {0}

Verdadeiro

- 4) Qual a cardinalidade de cada um dos conjuntos abaixo?
- a) $\phi \rightarrow 0$
- **b)** $\{\emptyset, \{\emptyset\}\} \rightarrow 2$
- **c)** $\{\{\{\}\}, \{\{\}\}, \{\}\}\} \rightarrow 1$
- d) $\{\emptyset\} \rightarrow 1$
- **e)** $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\} \rightarrow 3$
- $\mathbf{f)} \ \{\emptyset,\emptyset,\{\},\{\emptyset,\emptyset\},\{\{\}\}\} \rightarrow \{\emptyset,\{\emptyset\},\{\emptyset\}\} \rightarrow \{\emptyset,\{\emptyset\}\} \rightarrow 2$

Participação de um conjunto: dizemos que uma família de subconjuntos de A é uma partição de A, quando:

- A união desses conjuntos resulta em A;
- A intersecção de qualquer par desses conjuntos é vazia.

$$A = \{1,2,3,4,5,6,7\}$$
 $A1 = \{1,3\}$ $A2 = \{2,4\}$ $A3 = \{5,6,7\}\Pi$

• Operações entre conjuntos

Definição U: sejam A e B conjuntos. A união dos conjuntos A e B, indicada por AUB é o conjunto que contém todos os elementos que estão em A,B ou ambos.

AUB =
$$\{x \mid x \ \pounds \ A \ ou \ x \ \pounds \ B\}$$

$$A = \{1,2,3\}$$

$$B = \{7,8\}$$

$$AUB = \{1,2,3,7,8\}$$

Definição Π: sejam A e B conjuntos. A intersecção de A e B indicada por AΠB, é o conjunto que contém os elementos que estão em A e B simultaneamente.

$$A\Pi B = \{x \mid x \pounds A e X \pounds B\}$$

Exemplo: $A = \{1,2,4\}$ $B = \{4,6,8\}$

 $A\Pi B = \{4\}$

Definição disjuntos: dois conjuntos são disjuntos se a intersecção é vazia.

 $A\Pi B = \emptyset$

Cardinalidade da união entre conjuntos:

|A|+|B| diferente |AUB|

 $|AUB| = |A| + |B| - |A\Pi B|$

$$A = |\{1,2\}| = 2$$
; $B = |\{1,3\}| = 2$
 $AUB = |\{1,2,3\}| = 3$

Definição diferença: sejam A e B conjuntos. A diferença entre A e B, indicada por A-B é o conjunto que contém todos os elementos que estão em A mas não estão em B.

A-B =
$$\{x \mid x \ \pounds A \ e \ x \ \phi(n\ \ ao \ pertence) \ B\}$$
$$|A-B| = |A|-|A\Pi B|$$

Exemplo: $A = \{1,3,5\}$ e $B = \{1,2,3\}$

$$A-B = \{5\}$$

Definição complemento: considere U como universo. O complemento de A, indicado por \overline{A} é o complemento de A em relação a U.

$$\overline{A} = U-A$$
 $\overline{A} = \{x \mid x \notin A\}$

OBS: $A\Pi \overline{A} = \emptyset$

$$AU\overline{A} = \emptyset$$

• Identidade de conjuntos

Identidade:

01. Propriedades dos elementos neutros:

$$A \cup \emptyset = A$$

02. Propriedades de dominação:

03. Propriedades idempotentes:

04. Propriedades da complementação:

$$\overline{A} = A$$

05. Propriedades comutativas:

06. Propriedades associativas:

$$AU(Buc) = (AUB)Uc$$

07. Propriedades distributivas:

08. Leis de Morgan:

09. Propriedades de Absorção:

10. Propriedades de complementação:

Exemplo: use a notação de construção do conjunto e equivalências lógica para estabelecer a segunda lei de Morgan

$$\overline{A\PiB} = \overline{A}U\overline{B}$$

$$\overline{A\PiB} = \{x \mid x \notin (n\overline{a}o \text{ pertence}) \text{ }A\PiB\}$$

$$= \{x \mid \neg (x \pounds A\PiB)\}$$

$$= \{x \mid \neg (x \pounds A \land x \pounds B\}$$

$$= \{x \mid \neg (x \pounds A) \text{ }ou \neg (x \pounds B)\}$$

$$= \{x \mid x \notin A \text{ }ou \text{ }x \notin B\}$$

$$= \{x \mid x \pounds \overline{A} \text{ }ou \text{ }x \pounds \overline{B}\}$$

$$= \{x \mid x \pounds \overline{A}U\overline{B}\}$$

$$\overline{A\PiB} = \overline{A}U\overline{B}$$

Exemplo: Considere A, B e C como conjuntos e mostre que $\overline{A\Pi(B\Pi C)}$ = $(\overline{C}U\overline{B})\Pi\overline{A}$

Funções e Relações

Definição 01: sejam A e B conjuntos. Definimos uma relação R de A em B, representada por R: A → B como sendo qualquer subconjunto de AxB.

Exemplo:

$$A = \{0,1,2\}$$
 $B = \{1,2,3\}$

 $R = \{(x,y) \pounds AxB \mid x < y\}$

$$\mathsf{R} = \{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$$

OBS: quando $(x,y) \not\in R$ escrevemos xRy; quando $(x,y) \not\in R$ escrevemos xRy.

Composição de Relações:

R1: A→B

R2: B→C

R2oR1: A→C

(x,y) £ AxC; tal que, existe Z £ B com (x,z) £ R1 e (z,y) £ R2

Exemplo:

$$A = \{1,2,3\} \qquad B = \{a,b\} \qquad C = \{4,3,2\}$$

$$R1 = \{(1,a),(2,b)\} \qquad R2 = \{(a,4),(a,3),(b,3)\}$$

$$R2oR1 = \{(1,4),(2,3),(1,3)\}$$

Definição 02: sejam A e B conjuntos não vazios. Uma função f de A em B é uma determinação de exatamente um elemento de B para cada elemento de A. Escrevemos f(a)=b, se b for o único elemento de B determinado pela função f para o elemento a de A.

Mapeamento ou transformação:

OBS: uma função só é uma função se todos os elementos de A estiverem cada um determinando somente um elemento de B.

Definição 03: se f é uma função de A para B, dizemos que A é o domínio de f e B é o contradomínio de f. Se f(a) = b dizemos que b é a imagem de a e a é a imagem inversa de b.

A imagem de f é o conjunto de todas as imagens dos elementos de A.

❖ Se f é uma função de A para B, dizemos que f mapeia A em B.

OBS: duas funções são iguais quando possuem o mesmo domínio, tem o mesmo contradomínio e mapeiam os elementos de seus domínios comuns para as mesos elementos de contradomínio.

Exemplo> considere f como a função que determina os dois últimos bits de uma cadeia de bits maior que 2.

$$F(110101) = 01$$

Domínio: qualquer cadeia de bits com mais de dois bits.

Contradomínio: {01,00,11,10}

Imagem: {01,00,11,10}

Duas funções com valores reais para o mesmo domínio podem ser somadas ou multiplicadas

$$f1+f2 \rightarrow (f1+f2)(x) = f1(x)+f2(x)$$

 $f1*f2 \rightarrow (f1*f2)(x) = f1(x)*f2(x)$

Exemplo:

f1(x) =
$$x^2$$

f1+f2 = x^2 +(x- x^2)
f1+f2 = x
f1*f2 = x^2 *(x- x^2)
f1*f2 = x^2 *x - x^2 *x²
f1*f2 = x^3 -x4

Definição: uma função é chamada de **injetora** ou **um para um**, se e somente se f(a) = f(b) implica que a=b para todos os a e b do domínio f.

(para todo)a(para todo)b ($f(a) = f(b) \rightarrow a=b$)

Exemplo: determine se a função f de $\{a,b,c,d\}$ para $\{1,2,3,4,5\}$ com f(a) = 4, f(b) = 5, f(c) = 1 e f(d) = 3 é injetora \rightarrow Sim, pois para todo a se tem um b.

Definição: uma função f de A para B é **sobrejetora** ou **sobrejetiva** se e somente de para todo b £ B existe um a £ A com f(a)=b. Nesta função, todos os elementos do contradomínio são imagem.

Definição: a função f é bijetora, ou seja, correspondência, um para um se for injetora e sobrejetora.

Exercícios

Q1) Use as identidades dos conjuntos para se a seguinte afirmação é verdadeira. Sejam A e B conjuntos arbitrários.

$$(AUB) - (A\Pi B) = (A-B) U (B-A)$$

Q2) Determine se a seguinte afirmação é verdadeira a partir de diagrama de venn e identidade de conjuntos:

 $A-(B\Pi C) = (A-B) U (A-C)$

Q3) Mostre que para quaisquer conjuntos A,B e C:

Q4) Desenhe o diagrama de Venn para cada uma das combinações abaixo:

a) AΠ(B-C)

b) (АПВ)U(АПС)

c) $(A\Pi \overline{B})U(A\Pi \overline{C})$

Q5) Mostre que AΠB=(A-B)U(AΠB)U(B-A)

Definição: considere g como uma função A→B e f como uma função B→C. A composição das funções f e g, indicada por f o g é definida por:

$$f \circ g (a) = f(g(a))$$

f o g só pode ser definida se o conjunto imagem de g for um subconjunto ao domínio de f.

Exemplo: f o g

$$f(x) = 2x + 3$$

$$g(x) = 3x+2$$

$$f \circ g = 2(3x+2)+3$$

$$f \circ g = 6x + 7$$

Princípio da casa de pombos: estabelece que se n pombos voam para m casas, se n>m então ao menos uma casa deverá conter dois ou mais pombos.

OBS: uma função de um conjunto finito para um conjunto finito maior não pode ser bijetora, 1→1 deve haver pelo menos dois elementos do domínio que possuem a mesma imagem.

Exercício

Não é uma função, apenas relação.