Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 24

Math 237 – Linear Algebra

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Solution:

Version 3

$$\begin{bmatrix} 0 & 1 & 3 \end{bmatrix}$$

Standard A2.

Determine if $D: \mathbb{R}^{2\times 2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$ is a linear transformation or not.

Solution: D(I) = 1 but $D(2I) = 4 \neq 2D(I)$, so D is not linear.

Mark:

Standard M1.

Mark:

Let

$$C = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad \qquad D = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad \qquad E = \begin{bmatrix} 2 & 0 \\ 0 & -1 \\ 1 & -1 \end{bmatrix}$$

Determine which of the six products CD, CE, DC, DE, EC, ED can be computed, and compute them.

Solution:

$$EC = \begin{bmatrix} 4 & 6 \\ 0 & -1 \\ 2 & 2 \end{bmatrix}$$
$$DE = \begin{bmatrix} 6 & -1 \end{bmatrix}$$

Standard M2.

Mark:

Determine if the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix}$ is invertible.

Solution: This matrix is row equivalent to the identity matrix, so it is invertible.

Standard M3.

Mark:

Find the inverse of the matrix $\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}.$

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 8 & 5 & 3 & 0 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 1 & 0 & 1 & 0 & 0 \\ 5 & -3 & 1 & -2 & 0 & 0 & 1 & 0 \\ -1 & 2 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 2 & -5 & 12 \\ 0 & 1 & 0 & 0 & 1 & 1 & -4 & -9 \\ 0 & 0 & 1 & 0 & -4 & -7 & 20 & 47 \\ 0 & 0 & 0 & 1 & -1 & 0 & 3 & 7 \end{bmatrix}$$

So the inverse is $\begin{bmatrix} 1 & 2 & -5 & 12 \\ 1 & 1 & -4 & -9 \\ -4 & -7 & 20 & 47 \\ -1 & 0 & 3 & 7 \end{bmatrix}.$

Additional Notes/Marks