Números reales y funciones elementales

Números reales 1

Ejercicio 1. Calcula para qué valores de x se verifica que $\frac{2x-3}{x+2} < \frac{1}{3}$.

Ejercicio 2. Encuentra aquellos valores de x que verifican que:

a)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$

d) $x^2 \leq x$,

a)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$
,
b) $x^2 - 5x + 9 > x$,

e) $x^3 \leq x$,

c)
$$x^3(x-2)(x+3)^2 < 0$$
,

f) $x^2 - 3x - 2 < 10 - 2x$.

Ejercicio 3. Discute para qué valores de x se verifica que:

a)
$$|x-1||x+2|=3$$
,

c) |x-1|+|x+1|<1,

b)
$$|x^2 - x| > 1$$
,

d)
$$|x+1| < |x+3|$$
.

Ejercicio 4. ¿Para qué valores de x se cumple la desigualdad $x^2 - (a + b)x + ab < 0$?

1.1 Principio de inducción

Ejercicio 5. Demuestra por inducción que $1+2+3+\ldots+n=\frac{n(n+1)}{2}$, para cualquier $n \in \mathbb{N}$.

Ejercicio 6. Demuestra que $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^{n-1}} \le 1$ para cualquier natural mayor o igual que

Ejercicio 7. Prueba que la suma de los cubos de tres números naturales consecutivos es divisible

Ejercicio 8. Demuestra que $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$, para cualquier $n \in \mathbb{N}$.

Ejercicio 9. Demuestra que $1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$, para $n \in \mathbb{N}$.

Ejercicio 10. Demuestra que $1 + 1 + 2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1}$, para cualquier $n \in \mathbb{N}$.

Funciones elementales

Ejercicio 11. Calcula el dominio de las siguientes las funciones:

a)
$$y = \sqrt{\frac{x-2}{x+2}}$$

c)
$$y = \sqrt{\frac{x}{1-|x|}}$$

a)
$$y = \sqrt{\frac{x-2}{x+2}}$$

b) $y = \log(\frac{x^2 - 5x + 6}{x^2 + 4x + 6})$

d)
$$y = \tan\left(x + \frac{\pi}{4}\right)$$

Ejercicio 12. Si f(x) = 1/x y $g(x) = 1/\sqrt{x}$, ¿cuáles son los dominios naturales de f, g, f + g, $f \cdot g$ y de las composiciones $f \circ g$ y $g \circ f$?

Ejercicio 13. Estudia si son pares o impares las siguientes funciones:

a)
$$f(x) = |x+1| - |x-1|$$

d)
$$f(x) = e^x - e^{-x}$$

b)
$$f(x) = \log(\frac{1+x}{1-x})$$

c) $f(x) = e^x + e^{-x}$

e)
$$f(x) = \operatorname{sen}(|x|)$$

c)
$$f(x) = e^x + e^{-x}$$

f) $f(x) = \cos(x^3)$

Ejercicio 14. ¿Para qué números reales es cierta la desigualdad $e^{3x+8}(x+7) > 0$?

Ejercicio 15. Comprueba que la igualdad $a^{\log(b)} = b^{\log(a)}$ es cierta para cualquier par de números positivos a y b.

Ejercicio 16. Resuelve la siguiente ecuación:

$$\frac{1}{\log_x(a)} = \frac{1}{\log_b(a)} + \frac{1}{\log_c(a)} + \frac{1}{\log_d(a)}.$$

Ejercicio 17. ¿Para qué valores de x se cumple que $\log(x-1)(x-2) = \log(x-1) + \log(x-2)$?

Ejercicio 18. Prueba que $\log(x + \sqrt{1 + x^2}) + \log(\sqrt{1 + x^2} - x) = 0$.

Ejercicio 19. Resuelve la ecuación $x^{\sqrt{x}} = (\sqrt{x})^x$.

Ejercicio 20. Simplifica las siguientes expresiones:

- a) $a^{\log(\log a)/\log a}$.
- b) $\log_a (\log_a(a^{a^x}))$.

Ejercicio 21. Comprueba que si $f(x) = \frac{1}{1-x}$, entonces $f \circ f \circ f(x) = x$.

Ejercicio 22. Calcula la inversa de las siguientes funciones a) $f(x) = \sqrt[3]{1 - x^3}$ b) $f(x) = -\frac{3}{2}$

a)
$$f(x) = \sqrt[3]{1 - x^3}$$

b)
$$f(x) = \frac{e^x}{1 + e^x}$$

Ejercicio 23. ¿Hay algún valor de x e y para los que se cumpla que $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$?

Ejercicio 24. ¿Hay algún valor de x e y para los que se cumpla que $\frac{1}{x+y} = \frac{1}{x} + \frac{1}{y}$?