Álgebra I Práctica 5 - Números Enteros (Parte 2)

Factorización en primos

1. Decidir si existen enteros a y b no nulos que satisfagan

i) $a^2 = 8b^2$.

- ii) $a^2 = 3b^3$,
- iii) $7a^2 = 11b^2$.

2. Sea $n \in \mathbb{N}$, $n \geq 2$. Probar que si p es un primo positivo entonces $\sqrt[n]{p} \notin \mathbb{Q}$.

3. Sea p un primo positivo. Probar que si 0 < k < p, entonces p divide a $\binom{p}{k}$.

4. i) Sea n un número natural congruente a 3 módulo 4. Probar que n es divisible por algún primo congruente a 3 módulo 4.

ii) Probar que existen infinitos primos congruentes a 3 módulo 4. (Sugerencia: supongamos que sólo hay finitos de tales primos, p_1, p_2, \ldots, p_k . ¿Qué ocurre con el número $n = 4p_1p_2 \cdots p_k - 1$?)

5. Sean p un número primo y $n \in \mathbb{N}$. Sea p^{α} la mayor potencia de p que divide a n!. Probar que

$$\alpha = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$$

(notar que sólo finitos términos de esta suma son no nulos).

6. i) Calcular la máxima potencia de 3 que divide a 77!.

ii) Calcular la máxima potencia de 9 que divide a 77!.

iii) Calcular la máxima potencia de 20 que divide a 81!.

iv) Calcular la máxima potencia de 24 que divide a 81!.

v) Determinar en cuántos ceros termina el desarrollo decimal de 81!.

vi) Determinar en cuántos ceros termina el desarrollo en base 16 de 20!.

* 7. Sea $n \in \mathbb{N}$. Probar que:

i) 2^n no divide a n!,

ii) si 2^{n-1} divide a n! entonces n es una potencia de 2.

* 8. Sea $n \geq 2$ un entero. Probar que

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$

no es entero. (Sugerencia: considerar la mayor potencia de 2 menor o igual que n.)

9. Determinar cuántos divisores positivos tienen 9000, $15^4 \cdot 42^3 \cdot 56^5$ y $10^n \cdot 11^{n+1}$. ¿Cuántos divisores tienen en total?

10. Hallar la suma de los divisores positivos de $2^4 \cdot 5^{123}$ y de $10^n \cdot 11^{n+1}$.

11. Hallar el menor número natural n tal que $6552\,n$ sea un cuadrado.

12. Hallar un número natural n divisible por 13, cuya mitad sea un cuadrado perfecto, su tercera parte sea un cubo perfecto y su cuarta parte sea una potencia quinta perfecta.

1

- 13. Hallar todos los $n \in \mathbb{N}$ tales que
 - i) $(n:945) = 63, (n:1176) = 84 \text{ y } n \le 2800.$
 - ii) (n:1260) = 70 y n tiene 30 divisores positivos.
 - iii) (n:360) = 8, n tiene 12 divisores positivos, y $n \le 1000$.
- 14. Hallar el menor número natural n tal que (n:3150)=45 y n tiene exactamente 12 divisores positivos.
- **15**. Hallar todos los $n \in \mathbb{N}$ tales que
 - i) [n:130] = 260.
 - ii) [n:420] = 7560.
- **16**. Hallar todos los $a, b \in \mathbb{N}$ tales que
 - i) (a:b) = 10 y [a:b] = 1500.
 - ii) $3 \mid a, (a:b) = 20 \text{ y } [a:b] = 9000.$

Pequeño teorema de Fermat

- 17. Hallar el resto de la división de a por p en los casos
 - i) $a = 33^{1427}, p = 5,$
 - ii) $a = 71^{22283}$, p = 11,
 - iii) $a = 5 \cdot 7^{2451} + 3 \cdot 65^{2345} 23 \cdot 8^{138}, p = 13.$
- **18**. Hallar todos los primos positivos p tales que $p \mid 2^p + 5$.
- 19. Resolver en \mathbb{Z} las ecuaciones de congruencia
 - i) $7^{13}X \equiv 5$ (11),

ii) $2^{194}X \equiv 7 (97)$.

- **20**. Probar que para todo $a \in \mathbb{Z}$ vale
 - i) $728 \mid a^{27} a^3$,

- ii) $\frac{2a^7}{35} + \frac{a}{7} \frac{a^3}{5} \in \mathbb{Z}$.
- **21**. Hallar todos los $a \in \mathbb{Z}$ tales que $a^{236} \equiv 6$ (19).
- **22**. Sea $a \in \mathbb{Z}$. Probar que $(3a^6 3:5a^6 + 2) = 1$ ó 7, y hallar todos los a para los cuales vale 7.
- **23**. Hallar todos los enteros positivos a tales que $(4a^{62} a: 11a) \neq a$.
- **24**. Probar que para todo primo p > 3 se cumple que $p \mid 2^{p-2} + 3^{p-2} + 6^{p-2} 1$.
- **25**. i) Sean p un primo impar y a un número entero coprimo con p. Probar que $a^{\frac{p-1}{2}}$ es congruente a 1 o a -1 módulo p.
 - ii) Demostrar que la ecuación $x^5 = y^2 + 4$ no tiene soluciones enteras.

Teorema chino del resto

26. Hallar, cuando existan, todos los enteros a que satisfacen simultáneamente:

i)
$$\begin{cases} a \equiv 0 & (8) \\ a \equiv 2 & (5) \\ a \equiv 1 & (21) \end{cases}$$
 ii)
$$\begin{cases} a \equiv 3 & (10) \\ a \equiv 2 & (7) \\ a \equiv 5 & (9) \end{cases}$$
 iii)
$$\begin{cases} a \equiv 1 & (6) \\ a \equiv 2 & (20) \\ a \equiv 3 & (9) \end{cases}$$
 iv)
$$\begin{cases} a \equiv 1 & (12) \\ a \equiv 7 & (10) \\ a \equiv 4 & (9) \end{cases}$$

- 27. i) Sabiendo que los restos de la división de un entero a por 3, 5 y 8 son 2, 3 y 5 respectivamente, hallar el resto de la división de a por 120.
 - ii) Sabiendo que los restos de la división de un entero a por 6, 10 y 8 son 5, 3 y 5 respectivamente, hallar los posibles restos de la división de a por 480.
- 28. i) ¿Existe algún entero a cuyo resto en la división por 15 sea 2 y cuyo resto en la división por 18 sea 8?
 - ii) ¿Existe algún entero a cuyo resto en la división por 15 sea 13 y cuyo resto en la división por 35 sea 22?
- **29**. Hallar, cuando existan, todos los enteros a que satisfacen simultáneamente:

i)
$$\begin{cases} 3 \ a \equiv 4 & (5) \\ 5 \ a \equiv 4 & (6) \\ 6 \ a \equiv 2 & (7) \end{cases}$$
 ii)
$$\begin{cases} 3 \ a \equiv 1 & (10) \\ 5 \ a \equiv 3 & (6) \\ 9 \ a \equiv 1 & (14) \end{cases}$$
 iii)
$$\begin{cases} 15 \ a \equiv 10 & (35) \\ 21 \ a \equiv 15 & (8) \\ 18 \ a \equiv 24 & (30) \end{cases}$$

- **30**. i) Hallar el menor entero positivo a tal que el resto de la división de a por 21 es 13 y el resto de la división de 6a por 15 es 9.
 - ii) Hallar un entero a entre 60 y 90 tal que el resto de la división de 2a por 3 es 1 y el resto de la división de 7a por 10 es 8.
- 31. Resolver en \mathbb{Z} los siguientes sistemas lineales de ecuaciones de congruencia:

i)
$$\begin{cases} 2^{2013}X \equiv 6 & (13) \\ 5^{2013}X \equiv 4 & (7) \\ 7^{2013}X \equiv 2 & (5) \end{cases}$$
 ii)
$$\begin{cases} 10^{49}X & \equiv 17 & (39) \\ 5X & \equiv 7 & (9) \end{cases}$$

- 32. Calcular el resto de
 - i) la división de $3 \cdot 7^{135} + 24^{78} + 11^{222}$ por 70,
 - ii) la división de $\sum_{i=1}^{1759} i^{42}$ por 56.
- **33**. Sea $a \in \mathbb{Z}$ tal que $(9a^{25} + 10 : 280) = 35$. Hallar el resto de la división de a por 70.
- **34**. Hallar todos los divisores positivos de 25^{70} que sean congruentes a 2 módulo 9 y a 3 módulo 11.
- **35**. Hallar el resto de la división de 2^{2^n} por 13 para cada $n \in \mathbb{N}$.
- **36**. Un elemento $a \in \mathbb{Z}_n$ es un *cuadrado* si existe $b \in \mathbb{Z}_n$ tal que $a = b^2$ en \mathbb{Z}_n .
 - i) Calcular los cuadrados de \mathbb{Z}_n para n=2, 3, 4, 5, 6, 7, 8, 9, 11 y 13.
 - ii) Probar que si $a,b\in\mathbb{Z}_n$ son cuadrados, entonces ab es un cuadrado.
 - iii) Probar que si a es un elemento inversible de \mathbb{Z}_n tal que $a = b^2$, entonces b es inversible y a^{-1} es un cuadrado.
 - iv) Sea p primo positivo. Probar que, en \mathbb{Z}_p , si $a^2 = b^2$ entonces a = b ó a = -b. Deducir que si p es impar, entonces hay exactamente $\frac{p-1}{2}$ cuadrados no nulos en \mathbb{Z}_p .
 - v) Sea p primo positivo impar. Probar que, en $\mathbb{Z}_{2p},$ si $a^2=b^2$ entonces a=b ó a=-b.
 - vi) Probar que si $n \in \mathbb{N}$ es compuesto e impar, existen $a, b \in \mathbb{Z}_n$ con $a^2 = b^2$ y $a \neq \pm b$.