

Special Topic: Solenoids

Applications of Solenoidal Fields

 Solenoids can provide an arbitrarily uniform magnetic field through a very large and/or extended volume

- Solenoids have long been used to create momentum tracking volumes in central high energy physics detectors.
- Solenoids can also be used to contain and transport low momentum particles (p up to a few 10's of MeV) by "trapping" in helical trajectories along the field lines
 - Concept originally applied to plasma containment
 - Currently drawing a great deal of interest as a way to transport very large emittance beams of low momentum particles
 - Particularly useful pions and muons for neutrino physics or muon application.

The fields in a solenoid

• Within a long solenoid, the magnetic field is more or less uniform, calculated with $abla_b = 0$

$$\oint \vec{B} \cdot d\vec{l} = BL = \mu_0 I_{\text{enc}} = \mu_0 I nL$$
winding pitch
$$\Rightarrow B = \mu_0 nI$$

The exact formula is

$$B_z = \frac{1}{2} \mu_0 nI (\cos \varphi_1 - \cos \varphi_2)$$

 \mathbf{Z}

Particle motion in a solenoidal field

 Generally, particles move in a helical trajectory

$$\rho = \frac{p}{qB}; \rho[m] = \frac{p[MeV/c]/299}{B[T]}$$

For high momentum particles, the curvature is used to

measure the momentum

 Low momentum particles are effectively "trapped" along the field lines

 10 MeV/c particle will have a radius of 3 cm in a 1 T field

Solenoids are a powerful tool to transport low momentum particles and can accommodate beams with very large emittances.

Constants of the motion

 Both total momentum and angular momentum are conserved

$$p_0^2 = p_\perp^2 + p_\parallel^2 = \text{constant}$$

$$L = p_\perp \rho = \frac{p_\perp^2}{qB_\parallel} = \text{constant}$$

$$\Rightarrow p_\perp^2 = qLB_\parallel$$

$$p_\parallel^2 = p_0^2 - qLB_\parallel$$

- If $qLB_{||} > p_0^2$, then particle will be reflected
 - Basis of "pinch confinement"

"E cross B Drift"

An electric field transverse to the magnetic will cause a lateral drift, but the average acceleration will be zero.

Cross the magnetic field into this

$$q \left[\vec{B}_0 \times \vec{E}_0 + \vec{B}_0 \times \left(\vec{v}_d \times \vec{B}_0 \right) \right] = 0$$

$$\vec{B}_0 \times \vec{E}_0 + B_0^2 \vec{v}_d - \left(\vec{B}_0 \bullet \vec{v}_d \right) \vec{B}_0 = 0$$

$$\vec{v}_d = \frac{\vec{E}_0 \times \vec{B}_0}{B_0^2}$$

«Grad-B Drift»

We'll divide the motion in the cyclical part (v_0) and the drift (v_g)

$$\frac{\vec{F}}{q} = \vec{v}(t) \times \vec{B}(r) = \vec{v}_0(t) \times \vec{B}(r) + \vec{v}_g \times \vec{B}(r)$$

$$\approx \vec{v}_0(t) \times \vec{B}_0 + \vec{v}_0(t) \times \left[\left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right] + \vec{v}_g \times \vec{B}(r) + \vec{v}_g \times \left[\left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right]$$

$$\Rightarrow \left\langle \frac{\vec{F}}{q} \right\rangle = \left\langle \vec{v}_0(t) \times \vec{B}_0 \right\rangle + \left\langle \vec{v}_0(t) \times \left[\left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right] \right\rangle + \left\langle \vec{v}_g \times \vec{B}_0 \right\rangle + \left\langle \vec{v}_g \times \left[\left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right] \right\rangle$$

$$= \left\langle \vec{v}_0(t) \times \left[\left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right] \right\rangle + \vec{v}_g \times \vec{B}_0 = 0$$

Again, cross B into this and we get

$$\vec{B}_0 \times \left\langle \vec{v}_0(t) \times \left[\left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right] \right\rangle + B_0^2 \vec{v}_g - \left(\vec{B}_0 \cdot \vec{v}_g \right) \vec{B}_0 = 0 \\ \rightarrow \vec{v}_g = \frac{1}{B_0^2} \left\langle \vec{v}_0(t) \times \left[\left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right] \right\rangle \times \vec{B}_0$$

For our example

$$\vec{B}_0 = B_0 \hat{z}$$
$$\left(\vec{r} \cdot \vec{\nabla}\right) \vec{B} = y \frac{\partial B}{\partial y} \vec{z}$$

$$\vec{v}_{0}(t) \times \left(\vec{r} \cdot \vec{\nabla}\right) \vec{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ v_{0,x}(t) & v_{0,y}(t) & 0 \\ 0 & 0 & y \frac{\partial B}{\partial y} \end{vmatrix} = v_{0,y}(t) y \frac{\partial B}{\partial y} \hat{x} - v_{0,x}(t) y \frac{\partial B}{\partial y} \hat{y}$$

$$= -\rho_0 v_0 \cos(\Omega_s t) \sin(\Omega_s t) \frac{\partial B}{\partial v} \hat{x} - \rho_0 v_0 \cos^2(\Omega_s t) \frac{\partial B}{\partial v} \hat{y}$$

$$\begin{split} \left\langle \vec{v}_{0}(t) \times \left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right\rangle &= -\frac{1}{2} \rho_{0} v_{0} \frac{\partial B}{\partial y} \hat{y} \\ \vec{v}_{g} &= \frac{1}{B_{0}^{2}} \left\langle \vec{v}_{0}(t) \times \left[\left(\vec{r} \cdot \vec{\nabla} \right) \vec{B} \right] \right\rangle \times \vec{B}_{0} \\ &= -\frac{1}{2B_{0}} \rho_{0} v_{0} \frac{\partial B}{\partial y} \hat{x} \\ &= \frac{1}{2B^{2}} \rho_{0} v_{0} \left(\vec{B}_{0} \times \vec{\nabla} B \right) \end{split}$$

Fields and drift in a Curved Solenoid

$$\begin{split} \int \vec{B} \bullet d\vec{l} &= 2\pi r B = \mu_0 NI \\ B &= \frac{\mu_0 NI}{2\pi r} \\ B_0 &\equiv \frac{\mu_0 NI}{2\pi R_B} = \mu_0 nI \quad \text{field in center solenoid} \\ B &= B_0 \frac{R_B}{r} \end{split} \qquad \begin{array}{c} \text{Nominal radius of curvature} \\ \approx B_0 \left(1 - \frac{x}{R_B}\right) \end{array} \qquad \begin{array}{c} \text{x measured outward from center of solenoid} \end{split}$$

Clearly these formulas will also hold in an area of local curvature R_0 .

As the particle moves along the field lines, it will experience a (fictitious) centrifugal force outward.

Component of velocity along B field
$$\vec{F_c} = m \frac{v_{\parallel}^2}{R_{\scriptscriptstyle R}} \hat{r}$$

This is analogous to the effect of the electric field, so

$$\vec{E}_0 \to \frac{\vec{F}_c}{q} \Longrightarrow \vec{v}_d = \frac{\vec{E}_0 \times \vec{B}_0}{B_0^2} \to \vec{v}_d = \frac{mv_{\parallel}^2}{qR_B B_0^2} \hat{r} \times \vec{B}_0$$

But we also have a gradient

$$\begin{split} \vec{\nabla}B &= -\frac{B_0}{R_B}\hat{r} \\ v_g &= \frac{1}{2B_0^2}\rho_0v_0\Big(\vec{B}_0\times\vec{\nabla}B\Big) = \frac{1}{2B_0R_B}\bigg(\frac{\gamma mv_\perp}{qB_0}\bigg)v_\perp\Big(\hat{r}\times\vec{B}_0\Big) \\ &= \frac{\gamma mv_\perp^2}{2qB_0^2R_B}\Big(\hat{r}\times\vec{B}_0\Big) \end{split}$$

So the total drift velocity is

$$\vec{v}_{tot} = \vec{v}_d + \vec{v}_g$$

$$= \frac{m}{qR_B B_0^2} (\hat{r} \times \vec{B}) \left(v_{\parallel}^2 + \frac{1}{2} \gamma v_{\perp}^2 \right)$$

out of bend plane

In most transport applications, this term will dominate

Depends on charge and direction of field, but not on direction of propagation within bend.

Example: Mu2e Experiment Transport Solenoid

- Use curved solenoid to select negative muons with p<90 MeV/c
- Curvature drift and collimators sign and momentum select beam
- dB/ds < 0 in the straight sections to avoid trapping which would result in long transit times

Fringe field of a solenoid

Near the ends, the field of a solenoid will have a radial component

Integration volume

 For a long solenoid, this can be approximated near the end as

$$B_z \approx \frac{1}{2} \mu_0 nI \left(1 - \cos \phi_2 \right) = \frac{1}{2} \mu_0 nI \left(1 - \frac{z^2}{\sqrt{z^2 + R^2}} \right)$$

$$B_r = -\frac{r}{2}B_z' \approx \frac{r}{4}\mu_0 nI \left(\frac{1}{\sqrt{z^2 + R^2}} - \frac{z}{(z^2 + R^2)^{3/2}}\right)$$

Understanding solenoidal focusing

- ullet Consider a particle coming toward a long solenoid parallel to the axis with velocity v_o
 - It will see a transverse kick (in the thin lens approximation).

$$p_{\perp} \approx q \int B_r dz = -q \frac{r}{2} \int B_z' dz = -q \frac{r}{2} B_0$$

It will begin to travel in a helix described by:

$$\rho = \frac{p_{\perp}}{qB_0} = \frac{r}{2}; \omega = \frac{p_{\perp}}{\gamma m\rho} = \frac{1}{\gamma} \Omega_s$$

 That is, the extrema of he helix will be the radius at the point of entry and the axis of the solenoid

Focusing effect

 The radial position and velocity of the particle will be given by

$$r^2 = 2\rho^2 (1 + \cos\phi) = \frac{r_0^2}{2} (1 + \cos\phi) = r_0^2 \cos^2\frac{\phi}{2}$$

$$\Rightarrow r = r_0 \cos \frac{\varphi}{2}$$

$$\Rightarrow v_r = \dot{r} = -\frac{r_0}{2}\omega\sin\frac{\phi}{2} = -\frac{r_0}{2}\omega\sin\frac{\omega L/v_z}{2}$$

$$\approx -\frac{r_0}{4}\omega_z^2 \frac{L}{v_z} = \frac{r_0\Omega_s^2}{4\gamma^2 v_z} L = \frac{r_0q^2B_0^2}{4\gamma^2 m^2 v_z} L$$

$$\omega = \frac{L}{\sqrt{2}} < \pi$$

This results in a focusing angle

$$\theta \approx \frac{v_r}{v_z} = -r_0 \frac{q^2 B_0^2}{4 \gamma^2 m^2 v_z^2} L \approx -r_0 \frac{q^2 B_0^2}{4 p^2} L$$

Effective focal length and coupling

The general form of the previous equation is

$$\theta \approx -r_0 \frac{q^2}{4p^2} \int B_0^2 dz = -\frac{r_0}{f}$$
for unit charge
$$\Rightarrow \frac{1}{f} = \frac{q^2}{4p^2} \int B_0^2 dz = \frac{1}{4(B\rho)^2} \int B_0^2 dz =$$

- At the exit of the solenoid, the particles will receive an opposite transverse kick, but the magnitude will be reduced by r/r_0 , resulting in a coupling between the planes
- Useful in low energy beam lines
 - Eg, immediately after ion sources
- Also useful in beam lines with large emittances
 - Eg, muon beams