Predicting Hand Gestures Using EMG Data

Benjamin McAteer

Background & Objectives

EMG: raw voltage reading of muscle activation

- Gesture Control
- Prosthetic Control systems

Objectives:

- 1. Predict hand gesture with 95% accuracy within one second
- 2. Determine which model optimally predicts EMG data

Dataset

4 Gestures:

Rock Paper Scissors OK

8 Sensors

200Hz

117 seconds per gesture

No Electrode location

Methods & Key Data Characteristics

- 1. Reset Data Structure
- 2. Finding Key Characteristics of the Data
 - a. Variance per sensor?
 - b. Variance between each sensor?
 - c. Average value of each sensor (absolute value)?

500

400

300

200

100

Rock

0.5

1.0

Scissors

1.5

2.0

Paper

2.5

3.0

OK

fotal Variance

- d. Summed average value of each sensor?
- 3. Window data using the key characteristic
 - a. 1.00 second window
 - b. 0.50 second windowc. 0.25 second window
 - d. 0.05 second window
 - e. 0.005 second window
- 4. Z-Scale Data
- 5. Apply Models
 - a. MLP
 - b. Linear
 - c. Naive Bayes Gaussiand. Optimized KNN
 - e. PČA
- 6. Confusion Matrix

0.5

0.0

Rock

1.0

Scissors

1.5

2.0

Paper

2.5

3.0

OK

Total Variance per Sensor

MLP Model Confusion Matrix with 0.005 seconds

Results

- MLP, Linear, and KNN models showed accuracies above 95% with only 1/20th of a second of data.
- Decreasing to 1 datapoint per key characteristic (0.005 seconds) reduced accuracy by over 20% per model
- MLP consistently slightly better

	1.00 Seconds		0.50 Seconds		0.25 Seconds		0.05 Seconds		0.005 Seconds	
Model	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
MLP	100.0%	99.7%	100.0%	99.8%	99.8%	99.6%	97.9%	98.4%	75.1%	76.2%
Linear	100.0%	100.0%	99.8%	100.0%	99.2%	99.8%	96.9%	97.1%	31.9%	31.7%
Naïve Bayes Gaussian	97.3%	99.3%	97.7%	98.6%	96.9%	97.7%	91.0%	91.5%	-	-
Optimized KNN	100.0%	99.1%	99.6%	99.5%	99.1%	99.5%	96.5%	97.5%	67.7%	73.6%
PCA	97.9%	99.3%	98.5%	98.6%	96.6%	97.3%	91.0%	91.5%	-	-

Discussion

Implications/ Conclusion

- Absolute value of mean per each sensor
- Fast gesture prediction
- Inconclusive potential model
 - MLP marginally better

Future Work

- Identify electrode placement and attempt referencing non-used muscles for active filtering
- Add more gestures
- Conform code for streaming constant data

Opinions

- Data structures can be incredibly difficult
- Work was completed on High-end EMG
- Completed project objectives and more!

Thank you!