Algoritmos y Estructuras de Datos

Teoría de Grafos

G=(P,R) donde P= $\{x/x \text{ es un nodo}\}\ R=\{(x,y)/x,y\in P \land xRy\}$

Def. por extensión y por comprensión

Funciones de Asignación

Cómo implementar un grafo. Estructuras estáticas y dinámicas. Diseño de celdas.

Paso $\rho(x,z)$ es la secuencia $\langle y_0, y_1, ..., y_n \rangle$ n ≥ 0

1.
$$x = y_0$$
; $z = y_r$

2.
$$y_{i-1} \neq y_i$$

1.
$$x = y_0$$
; $z = y_n$ 2. $y_{i-1} \neq y_i$ 3. $(y_{i-1}, y_i) \in R$ 1 $\leq i \leq n$

 $|\rho(x,z)| = n^{\circ}$ de arcos entre x y z

Camino: C(x,z) es la secuencia $\langle y_0, y_1, ..., y_n \rangle$ $n \geq 0$

1.
$$x = y_0$$
; $z = y_n$

2.
$$y_{i-1} \neq y$$

2.
$$y_{i-1} \neq y_i$$
 3. $(y_{i-1}, y_i) \in R \lor (y_i, y_{i-1}) \in R 1 ≤ i ≤ n$

 $|C(x,z)| = n^{\circ}$ de conexiones entre x y z

Ciclo: $|\rho(x,x)| \ge 2$

Circuito: $|C(x,x)| \ge 2$

Loop: $|\rho(x,x)| = 0$

$$L(x) = \{y/y \in P; (y,x) \in R\}$$
 $R(x) = \{z/z \in P; (x,z) \in R\}$

$$R(x) = \{z/z \in P; (x,z) \in R\}$$

$$L(x) = \{y/y \in P; \exists \rho(y,x)\}$$

$$R(x) = \{z/z \in P; \exists \rho(x,z)\}$$

$$\mathbf{z}(\mathbf{x}) = \{\mathbf{z}/\mathbf{z} \in \mathsf{P}; \exists \ \rho(\mathbf{x},\mathbf{z})\}$$

|L(x)| = cantidad de arcos que llegan a x |R(x)| = cantidad de arcos que salen de x

$$\underline{\mathsf{Minimal}} = \{ x / x \in \mathsf{P} , |\mathsf{L}(x)| = 0 \}$$

$$\underline{\mathsf{Maximal}} = \{ \ z \ / \ z \in \mathsf{P} \ , \ |\ \mathsf{R}(\mathsf{z})| = 0 \ \}$$

<u>Mínimo</u> = x es mín si $|L(x)| = 0 \land x$ es único. <u>Máximo</u> = z es máx si $|R(z)| = 0 \land z$ es único.

Grafo Básico: 1. Libre de loops.

2.
$$\forall x,y \in P$$
, si $\exists |\rho(x,y)| \ge 2 \Longrightarrow (x,y) \notin R$

<u>Grafos Isomorfos</u>: dos grafos $G_1 = (P_1, R_1)$ $G_2 = (P_2, R_2)$ son isomorfos $G_1 \cong G_2$ si $\exists \phi: P_1 \rightarrow P_2$

$$\forall x,y \in P_1: (x,y) \in R_1 \Leftrightarrow (\phi(x), \phi(y)) \in R_2 \land \phi(x), \phi(y) \in P_2$$

<u>Subgrafo</u>: dado G=(P,R) G'=(P',R') será subgrafo de G si :

1.
$$P' \subseteq P$$

1.
$$P' \subseteq P$$
 2. $R' = R_{|p|}$