The "encrypt-then-MAC" transformations

Ganyu (Bruce) Xu (g66xu) June 26, 2024

1 Encrypt-then-MAC transformations

In this section we describe two "encrypt-then-MAC" transformations and discuss their security properties.

	Algorithm 2 $D_{\text{EtM}}(\mathbf{sk}, (c, t))$
1: $k_{\texttt{MAC}} \leftarrow G(m)$ 2: $c \leftarrow \texttt{E}(\texttt{pk}, m) \rightarrow \texttt{If E}$ is randomized, then $\texttt{E}_{\texttt{EtM}}$ is randomized 3: $t \leftarrow \texttt{Sign}(k_{\texttt{MAC}}, c)$ 4: $\texttt{return}(c, t)$	1: $\hat{m} \leftarrow D(sk, c)$ 2: $\hat{k}_{MAC} \leftarrow G(\hat{m})$ 3: if Verify $(\hat{k}_{MAC}, c, t) \neq 1$ then 4: return \perp 5: end if 6: return \hat{m}

Figure 1: EtM transformation.

	$ \frac{\textbf{Algorithm 4}}{\hat{\textbf{SL}}} \frac{\textbf{D}_{\texttt{EtM}}^{\texttt{\#}}(\texttt{sk},(c,t))}{\hat{\textbf{SL}}} $
1: $k_{\texttt{MAC}} \leftarrow G(m)$ 2: $r \leftarrow H(m)$ 3: $c \leftarrow \texttt{E}(\texttt{pk}, m; r)$ 4: $t \leftarrow \texttt{Sign}(k_{\texttt{MAC}}, c)$ 5: $\mathbf{return}(c, t)$	1: $\hat{m} \leftarrow D(sk,c)$ 2: $\hat{k}_{\mathtt{MAC}} \leftarrow G(\hat{m})$ 3: if $Verify(\hat{k}_{\mathtt{MAC}},c,t) \neq 1$ then 4: return \perp 5: end if 6: return \hat{m}

Figure 2: Derandomized encrypt-then-MAC

Algorithm 5 Sequence of games $(pk, sk) \stackrel{\$}{\leftarrow} KeyGen(1^{\lambda})$ $m^* \stackrel{\$}{\leftarrow} \mathcal{M}_{PKE}$ $k_{MAC}^* \leftarrow \mathcal{H}(m^*)$ \triangleright Game 0-2 $k_{MAC}^* \stackrel{\$}{\leftarrow} \mathcal{K}_{MAC}$ \triangleright Game 3 $c^* \stackrel{\$}{\leftarrow} E(pk, m)$ $t^* \leftarrow Sign(k_{MAC}^*, c^*)$ $\hat{m} \leftarrow \mathcal{A}^{PCO,CVO,\mathcal{O}^H}(1^{\lambda}, pk, (c^*, t^*))$ \triangleright Game 0 $\hat{m} \leftarrow \mathcal{A}^{PCO_1,CVO,\mathcal{O}^H}(1^{\lambda}, pk, (c^*, t^*))$ \triangleright Game 1 $\hat{m} \leftarrow \mathcal{A}^{PCO_1,CVO,\mathcal{O}^H}(1^{\lambda}, pk, (c^*, t^*))$ \triangleright Game 2-3 $\mathbf{return} \ \llbracket \hat{m} = m^* \rrbracket$

Figure 3: Sequence of games 0-3

Algorithm 6 $PCO(m, (c, t))$	
1: $\hat{m} \leftarrow \mathtt{D}(\mathtt{sk}, c)$	
$2: \hat{k}_{\texttt{MAC}} \leftarrow H(\hat{m})$	1: if $\exists (\tilde{m}, \tilde{k}) \in \mathcal{O}^H : \tilde{m} = m \land \text{Sign}(\tilde{k}, c) = t$ then
3: if $\operatorname{Sign}(\hat{k}_{\mathtt{MAC}},c) \neq t$ then	2: return 1
4: $\mathbf{return} \ 0$	3: end if
5: end if	4: return 0
6: return $[\hat{m} = m]$	

Figure 4: True PCO and simulated PCO

```
Algorithm 8 CVO(c,t)

1: \hat{m} \leftarrow D(sk,c)

2: \hat{k}_{MAC} \leftarrow H(\hat{m})

3: if Sign(\hat{k}_{MAC},c) \neq t then

4: return 0

5: end if

6: return 1

Algorithm 9 CVO<sub>1</sub>(c,t)

1: if \exists (\tilde{m},\tilde{k}) \in \mathcal{O}^H : Sign(\tilde{k},c) = t then

2: return 1

3: end if

4: return 0
```

Figure 5: True CVO and simulated CVO_1