Témata: Základní syntaxe a sémantika predikátové logiky.

Příklad 1. Určete volné a vázané výskyty proměnných v následujících formulích. Poté je převeďte na varianty, ve kterých nebudou proměnné s volným i vázaným výskytem zároveň.

- (a) $(\exists x)(\forall y)P(y,z) \lor (y=0)$
- (b) $(\exists x)(P(x) \land (\forall x)Q(x)) \lor (x=0)$
- (c) $(\exists x)(x > y) \land (\exists y)(y > x)$

Příklad 2. Označme φ formuli $(\forall x)((x=z) \lor (\exists y)(f(x)=y) \lor (\forall z)(y=f(z)))$. Které z následujících termů jsou substituovatelné do φ ?

- (a) term z za proměnnou x, term y za proměnnou x,
- (b) term z za proměnnou y, term 2 * y za proměnnou y,
- (c) term x za proměnnou z, term y za proměnnou z,

Příklad 3. Jsou následující formule variantami formule $(\forall x)(x < y \lor (\exists z)(z = y \land z \neq x))$?

- (a) $(\forall z)(z < y \lor (\exists z)(z = y \land z \neq z))$
- (b) $(\forall y)(y < y \lor (\exists z)(z = y \land z \neq y))$
- (c) $(\forall u)(u < y \lor (\exists z)(z = y \land z \neq u))$

Příklad 4. Mějme strukturu $\mathcal{A} = (\{a, b, c, d\}, \triangleright^A)$ v jazyce s jediným binárním relačním symbolem \triangleright , kde $\triangleright^A = \{(a, c), (b, c), (c, c), (c, d)\}$. Které z následujících formulí jsou pravdivé v \mathcal{A} ?

- (a) $x \triangleright y$
- (b) $(\exists x)(\forall y)(y \rhd x)$
- (c) $(\exists x)(\forall y)((y \rhd x) \to (x \rhd x))$
- (d) $(\forall x)(\forall y)(\exists z)((x \rhd z) \land (z \rhd y))$
- (e) $(\forall x)(\exists y)((x \rhd z) \lor (z \rhd y))$

Příklad 5. Pro každou formuli φ z předchozího příkladu najděte strukturu \mathcal{B} (pokud existuje) takovou, že $\mathcal{B} \models \varphi$ právě když $\mathcal{A} \not\models \varphi$.

Příklad 6. Jsou následující sentence pravdivé / lživé / nezávislé (v logice)?

- (a) $(\exists x)(\forall y)(P(x) \vee \neg P(y))$
- (b) $(\forall x)(P(x) \to Q(f(x))) \land (\forall x)P(x) \land (\exists x) \neg Q(x)$
- (c) $(\forall x)(P(x) \lor Q(x)) \to ((\forall x)P(x) \lor (\forall x)Q(x))$
- (d) $(\forall x)(P(x) \to Q(x)) \to ((\exists x)P(x) \to (\exists x)Q(x))$
- (e) $(\exists x)(\forall y)P(x,y) \rightarrow (\forall y)(\exists x)P(x,y)$

Příklad 7. Dokažte (sémanticky) nebo najděte protipříklad: Pro každou strukturu \mathcal{A} , formuli φ , a sentenci ψ ,

- (a) $\mathcal{A} \models (\psi \to (\exists x)\varphi) \Leftrightarrow \mathcal{A} \models (\exists x)(\psi \to \varphi)$
- (b) $\mathcal{A} \models (\psi \to (\forall x)\varphi) \Leftrightarrow \mathcal{A} \models (\forall x)(\psi \to \varphi)$
- (c) $\mathcal{A} \models ((\exists x)\varphi \rightarrow \psi) \Leftrightarrow \mathcal{A} \models (\forall x)(\varphi \rightarrow \psi)$
- (d) $\mathcal{A} \models ((\forall x)\varphi \to \psi) \Leftrightarrow \mathcal{A} \models (\exists x)(\varphi \to \psi)$

Platí to i pro každou formuli ψ s volnou proměnnou x? A pro každou formuli ψ ve které x není volná?

Příklad 8. Rozhodněte, zda následující platí pro každou formuli φ . Dokažte (sémanticky, z definic) nebo najděte protipříklad.

- (a) $\varphi \models (\forall x)\varphi$
- (b) $\models \varphi \to (\forall x)\varphi$
- (c) $\varphi \models (\exists x)\varphi$
- (d) $\models \varphi \rightarrow (\exists x)\varphi$

Příklad 9. Buď $L=\langle +,-,0\rangle$ jazyk teorie grup (s rovností). Teorie grup T sestává z těchto axiomů:

$$x + (y + z) = (x + y) + z$$
$$0 + x = x = x + 0$$
$$x + (-x) = 0 = (-x) + x$$

Rozhodněte, zda jsou následující formule pravdivé / lživé / nezávíslé v T.

- (a) x + y = y + x
- (b) $x + y = x \rightarrow y = 0$
- (c) $x + y = 0 \rightarrow y = -x$
- (d) -(x+y) = (-y) + (-x)

Příklad 10. Uvažme $\underline{\mathbb{Z}}_4 = \langle \{0,1,2,3\},+,-,0 \rangle$ kde + je binární sčítání modulo 4 a – je unární funkce, která vrací *inverzní* prvek + vzhledem k *neutrálnímu* prvku 0.

- (a) Je \mathbb{Z}_4 model teorie T z předchozího příkladu (tj. je to grupa)?
- (b) Určete všechny podstruktury $\underline{\mathbb{Z}}_4\langle a\rangle$ generované nějakým $a\in\mathbb{Z}_4$.
- (c) Obsahuje $\underline{\mathbb{Z}}_4$ ještě nějaké další podstruktury?
- (d) Je každá podstruktura $\underline{\mathbb{Z}}_4$ modelem T?
- (e) Je každá podstruktura $\underline{\mathbb{Z}}_4$ elementárně ekvivalentní $\underline{\mathbb{Z}}_4$?
- (f) Je každá podstruktura komutativní grupy (tj. grupy, která splňuje x+y=y+x) také komutativní grupa?

Příklad 11. Buď $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ těleso racionálních čísel se standardními operacemi.

- (a) Existuje redukt \mathbb{Q} , který je modelem T z předchozích příkladů?
- (b) Lze redukt $\langle \mathbb{Q}, \cdot, 1 \rangle$ rozšířit na model T?
- (c) Obsahuje Q podstrukturu, která není elementárně ekvivalentní Q?
- (d) Označmě $\overline{Th}(\mathbb{Q})$ množinu všech sentencí pravdivých v \mathbb{Q} . Je $\overline{Th}(\mathbb{Q})$ úplná teorie?

Příklad 12. Mějme teorii $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ v jazyce $L = \langle c_1, c_2, c_3 \rangle$ s rovností.

- (a) Je T (sémanticky) konzistentní?
- (b) Jsou všechny modely T elementárně ekvivalentní? Tj. je T (sémanticky) úplná?
- (c) Najděte všechny jednoduché úplné extenze T.
- (d) Je teorie $T' = T \cup \{x = c_1 \lor x = c_4\}$ v jazyce $L = \langle c_1, c_2, c_3, c_4 \rangle$ extenzí T? Je T' jednoduchá extenze T? Je T' konzervativní extenze T?