Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий математики и механики

Теория вероятностей и математическая статистика

специальность: Программная инженерия

Лектор:

Пройдакова Екатерина Вадимовна, доцент кафедры ПРИН ИИТММ

Лекция 11.

Дискретные и непрерывные одномерные случайные величины

11.2. Дискретная одномерная случайная величина

Определение 1. Случайная величина $\xi(\omega)$ называется дискретной, если из множества ее значений $X = \{\xi(\omega): \omega \in \Omega\}$ можно выделить такое счётное подмножество $X_1 = \{x_1, x_2, ...\}$ возможных её значений, что:

$$P(\{\omega: \xi(\omega) = x_1\}) = p_1 > 0, P(\{\omega: \xi(\omega) = x_2\}) = p_2 > 0, \dots \quad \text{if} \quad p_1 + p_2 + \dots = 1.$$

Совокупность вероятностей $\{p_i: i=1, 2, ...\}$ называется распределением дискретной случайной величины $\xi(\omega)$.

В простейшем варианте, подмножество X_1 может содержать лишь конечное число m элементов, т. е. $X_1 = \{x_1, x_2, ..., x_m\}$.

11.2. Дискретная одномерная случайная величина

При этом определение 1 не исключает ситуацию, когда дискретная случайная величина ξ может принимать несчётное число различных значений из некоторого множества X_2 с нулевой вероятностью.

В таком случае: $X = X_1 \cup X_2$, $X_1 \cap X_2 = \emptyset$ и $P(\{\omega : \xi(\omega) \in X_2\}) = 0$.

На практике, как правило, $X = X_1$ и $X_2 = \emptyset$.

Первый закон распределения одномерной дискретной случайной величины - интегральная функция распределения F(x),

Определение 2. Интегральная функция распределения F(x) одномерной дискретной случайной величины ξ вычисляется по следующей формуле:

$$F(x) = \mathbf{P}(\{\omega : \xi(\omega) < x\}) = \sum_{i: x_i < x} \mathbf{P}(\xi(\omega) = x_i) = \sum_{i: x_i < x} p_i$$

Общие свойства F(x) 1) - 4), рассмотренные на лекции 9, сохраняются, но возникают некоторые особенности, характерные именно для дискретных случайных величин.

График такой интегральной функции распределения F(x) имеет ступенчатый или кусочно-постоянный вид (рис. 2).

Из рис.2 легко видеть, что производная интегральной функции распределения дискретной случайной величины всюду равна нулю, исключая точки из X, в которых F(x) терпит разрывы и $F(x_i + 0) - F(x_i) = p_i$, i = 1, 2, ...

Второй закон распределения одномерной дискретной случайной величины - это ряд распределения.

Рядом распределения дискретной случайной величины ξ при счетном множестве $X = \{x_1, x_2, ...\}$ называется таблица вида:

ξ(ω)	x_1	x_2	• • •	x_i	• • •
P (•)	p_1	p_2	• • •	p_i	• • •

Здесь
$$x_1 < x_2 < x_3 < \dots$$
, $p_1 + p_2 + \dots = 1$,

Третий закон распределения одномерной дискретной случайной величины - многоугольник или **полигон распределения** вероятностей

Вероятностные характеристики случайной величины дискретного типа и её численные значения представляются наглядно в прямоугольной системе координат.

Для этого на плоскости для поставим точку с абсциссой x_i и ординатой p_i , $i=1,2,\ldots$ Затем каждые две соседние точки соединим отрезком.

Полученный график в виде ломанной кривой определяет так называемый многоугольник или **полигон распределения** вероятностей.

На рисунке ниже изображён пример, когда дискретная случайная величина ξ принимает значения x_1, x_2, x_3 и x_4 с вероятностями $p_1, p_2, p_3,$ и p_4 . Многоугольник распределения помечен штриховкой

Этот график даёт наглядное представление о вероятностных свойствах случайной величины ξ . Например, вероятность того, что ξ примет значения строго меньше нуля, равна сумме $p_1 + p_2$ длин вертикальных отрезков, расположенных левее прямой x = 0.

Пример 2. В ящике 3 бракованных и 5 качественных деталей. Детали извлекаются из ящика по одной без возвращения до появления первой качественной детали. Пусть случайная величина ξ - число произведенных извлечений. Построить для случайной величины ξ :

- а) ряд распределения,
- б) многоугольник распределения,
- в) интегральную функцию распределения,
- г) график интегральной функции распределения.

Решение: Случайная величина ξ соответствует числу произведенных извлечений деталей, возможными значениями ξ являются $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$.

Далее найдем вероятность для каждого из возможных значений.

$$p_1 = P(\xi = x_1) = P(\xi = 1) = \frac{5}{8} = 0,625;$$

$$p_2 = P(\xi = x_2) = P(\xi = 2) = \frac{3}{8} \times \frac{5}{7} = \frac{15}{56} \approx 0,268;$$

$$p_3 = P(\xi = x_3) = P(\xi = 3) = \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} = \frac{30}{336} \approx 0,089;$$

$$p_4 = P(\xi = x_4) = P(\xi = 4) = \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} = \frac{30}{1680} \approx 0,018.$$

Для распределения дискретной случайной величины должно выполняться условие нормировки, т.е. в нашем случае для **ξ**:

$$p_1 + p_2 + p_3 + p_4 = 0.625 + 0.268 + 0.089 + 0.018 = 1$$

Условие нормировки выполнено.

В ряде распределения значения должны быть упорядочены по возрастанию, в нашем случае $x_1 = 1 < x_2 = 2 < x_3 = 3 < x_4 = 4$.

С учетом полученных результатов можем записать ряд распределения для ξ:

$\xi = x_i$	1	2	3	4
$P(\xi = x_i)$	0,625	0,268	0,089	0,018

б) По полученному ряду строим многоугольник распределения:

Лекция 11. Дискретные и непрерывные одномерные случайные величины

Интегральная функция распределения $F_{\varepsilon}(x)$ одномерной дискретной случайной

величины
$$\xi$$
 вычисляется по формуле: $F_{\xi}(x) = \sum_{i:x_i < x} P(\xi = x_i) = \sum_{i:x_i < x} p_i$

Для нашего случая последовательно получаем:

$$F_{\xi}(x) = 0$$
 при $x \le x_1 = 1$.

$$F_{\xi}(x) = \sum_{i: x_i < x} p_i = p_1 = 0,625$$
 при $1 = x_1 < x \le x_2 = 2$.

$$F_{\xi}(x) = \sum_{i:x_i < x} p_i = p_1 + p_2 = 0,893$$
 при $2 = x_2 < x \le x_3 = 3$.

$$F_{\xi}(x) = \sum_{i: x_i < x} p_i = p_1 + p_2 + p_3 = 0,982$$
 при $3 = x_3 < x \le x_4 = 4$.

$$F_{\xi}(x) = \sum_{i: x_i < x} p_i = p_1 + p_2 + p_3 + p_4 = 1$$
 при $4 = x_4 < x$.

График интегральной функции распределения $F_{\xi}(x)$:

$$F_{\xi}(x) = \begin{cases} 0, & x \le 1; \\ 0,625, & 1 < x \le 2; \\ 0,893, & 2 < x \le 3; \\ 0,982, & 3 < x \le 4; \\ 1, & x > 4. \end{cases}$$

Определение 3. Случайная величина $\xi(\omega)$: $\Omega \to X$ называется непрерывной, если существует такая неотрицательная функция f(x) с областью определения R, что для любого действительного числа x имеет место равенство:

$$F(x) = \int_{-\infty}^{x} f(u) \, du$$

Функция f(x) или $f_{\xi}(x)$ называется плотностью распределения случайной величины $\xi(\omega)$.

Первым законом распределения для непрерывной случайной величины по прежнему является **интегральная функция распределения** $F(x) = \int_{-\infty}^{x} f(u) \, du$

График F(x) не имеет скачков, его качественный вид представлен на рис. 3.

Так как F(x) является непрерывной функцией, то $P(\{\omega: \xi(\omega) = x\}) = F(x+0) - F(x) = 0$.

Вторым законом распределения непрерывной случайной величины $\xi(\omega)$ является плотность распределения f(x).

На практике f(x) имеет не более счётного числа точек разрыва на R, причём на конечном промежутке таких точек может быть лишь конечное число.

Известно, что интеграл с переменным верхним пределом является абсолютно непрерывной функцией, и, более того, у нее существует производная почти всюду. Значит можем записать: $\frac{dF(x)}{dx} = f(x)$

Поэтому **плотность распределения** вероятностей для случайной величины $\xi(\omega)$ часто называют дифференциальной функцией распределения.

На рис. 4 приведён пример графика функции f(x), который еще называется кривой распределения вероятностей случайной величины $\xi(\omega)$.

Так как для непрерывной случайной величины $\xi(\omega)$ выполняется $\mathbf{P}(\{\omega: \xi(\omega) = x\}) = \mathbf{0}$, то можем записать соотношения:

$$P(\{\omega : a \le \xi(\omega) < b\}) = P(\{\omega : a \le \xi(\omega) \le b\}) = P(\{\omega : a < \xi(\omega) < b\}) =$$

$$= P(\{\omega : a < \xi(\omega) \le b\}) = F(b) - F(a) = \int_{a}^{b} f(u) du.$$

Значит, вероятность попадания случайной величины $\xi(\omega)$ в каждый из указанных промежутков равна площади заштрихованной криволинейной трапеции на рис. 4.

Поскольку $\lim_{x\to +\infty} F(x) = F(+\infty) = 1$, то получаем известное условие нормировки для плотности распределения f(x):

$$\int_{-\infty}^{+\infty} f(u) du = 1$$

То есть площадь фигуры между кривой распределения и осью абсцисс всегда равна единице.

Заключение

- 1. На данной лекции мы познакомились с дискретной одномерной случайной величиной.
- 2. Определили три ее закона распределения: интегральная функция, ряд распределения и многоугольник распределения. Проиллюстрировали новые понятия на числовом примере.
- 3. Дали определение непрерывной одномерной случайной величине.
- 4. Узнали законы распределения непрерывной одномерной случайной величины: интегральную функцию и плотность.