ME41055 Multibody Dynamics B

Spring Term 2019

Homework Assignment 9 (HW9)

Consider the rotary motion of a torque-free satellite in deep space (no gravity, no drag). At a certain instant in time, which we call t=0, the orientation of the body fixed orthonormal coordinate frame \mathcal{B} expressed in a space fixed frame \mathcal{N} is given by ${}^{\mathcal{N}}\boldsymbol{e}_x=(0.768,0.024,0.640),$ ${}^{\mathcal{N}}\boldsymbol{e}_y=(-0.424,0.768,0.480),$ and ${}^{\mathcal{N}}\boldsymbol{e}_z=(-0.480,-0.640,0.600).$

- a. Determine for t=0 the rotation matrix ${}^{\mathcal{N}}\mathbf{R}_{\mathcal{B}}$ which transforms the body fixed frame coordinates ${}^{\mathcal{B}}\boldsymbol{x}$ into the space fixed frame coordinates ${}^{\mathcal{N}}\boldsymbol{x}$ as in ${}^{\mathcal{N}}\boldsymbol{x} = {}^{\mathcal{N}}\mathbf{R}_{\mathcal{B}}{}^{\mathcal{B}}\boldsymbol{x}$.
- b. Determine for t = 0 from this ${}^{\mathcal{N}}\mathbf{R}_{\mathcal{B}}$ the associated Euler angles (zxz) ϕ , θ , and ψ .

The initial angular velocities at t=0 expressed in the global reference frame \mathcal{N} are given by $^{\mathcal{N}}\omega=(7.67952,0.23936,6.40060)$ rad/s.

- c. Determine for t=0 the angular velocities ${}^{\mathcal{B}}\omega$ expressed in the body fixed frame \mathcal{B} .
- d. Determine for t=0 the rate of change of the Euler angles: $(\dot{\phi}, \dot{\theta}, \dot{\psi})$.

The satellite is modelled by a rectangular box with mass m = 60 kg and dimensions $l_x = 0.4$, $l_y = 1.2$ and $l_z = 0.3$ in the body fixed frame.

e. Determine the mass moment of inertia matrix ${}^{\mathcal{B}}I_{C}$ at the CoM in the body fixed frame \mathcal{B} .

Next we want to investigate the motion of the satellite.

- f. Write down the Euler equations of motion for the rigid body and the state equations $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$. Use as state variables \mathbf{y} the Euler angles (ϕ, θ, ψ) and the angular velocities ${}^{\mathcal{B}}\boldsymbol{\omega}$ expressed in the body fixed frame \mathcal{B} .
- g. Show the motion of the satellite as a function of time by numerical integration of state equations for 60 seconds. Plot in one figure the Euler angles (ϕ, θ, ψ) as a function of time and in a second figure the three components of the angular velocities ${}^{\mathcal{B}}\boldsymbol{\omega}$ expressed in the body fixed frame \mathcal{B} as a function of time. Discuss the results.
- h. The first Euler angle grows linearly with time, therefore plot the other two Euler angles, θ and ψ , as a function of time in one figure. To see what really happens, make a second figure with a 3D plot of the trajectory of point $p = (l_x/2, 0, 0)$ of the body for t=0..60 s. Discuss the results. What happens around $\theta = 0 \pm k\pi$, $k = 0 \dots n$?
- i. Next, plot in one figure the three components of the angular velocities ${}^{\mathcal{N}}\boldsymbol{\omega}$ expressed in the space fixed frame \mathcal{N} as a function of time, and plot in a second figure the three components of angular momentum vector ${}^{\mathcal{N}}\boldsymbol{H}_C$ expressed in the space fixed frame \mathcal{N} as a function of time. Discuss the results.
- j. Which invariants (invariant with respect to time) can you use to check your time series results? Plot these invariants as a function of time. Are they really invariant? Explain.