

File sharing

- Purpose: find a file and transfer it from multiple other users
- Service characteristics:
 - Search for file
 - Identify which users have which pieces
 - Transfer pieces and put it together
- Performance:
 - Loss not ok
 - Delay very flexible, often hours
 - Throughput higher is better, but flexible

File sharing: search

- Location?
 - e.g. tracker
- Client-server or peer-to-peer?
- Two functions:
 - Search
 - usually client-server
 - File transfer
 - peer-to-peer

File sharing: search

client-server followed by peer-to-peer, e.g. gnutella

- server: put peer in contact with peers
- peer-to-peer: file transfer

Figure 2.26 ♦ File distribution with BitTorrent

File sharing: Method & Connection Management

- Method
 - e.g. bittorrent, ...
- Connection Management
 - often uses a large number of unregistered ports
 - peers determined by protocol
 - connections set up directly to peers

File sharing: action management

Figure 2.26 ♦ File distribution with BitTorrent

Kurose

BitTorrent:

- File split into "chunks"
- Client side:
 - Request missing chunks directly from other peers, via TCP
- Server side:
 - Listen for and service requests for chunks you have, via TCP

File sharing: action management

Figure 2.26 ♦ File distribution with BitTorrent

Kurose

BitTorrent program:

- Client algorithm
 determines which
 chunk to request first,
 e.g. rarest first
- Server algorithm
 determines rate, e.g.
 number connections,
 max rate

Multimedia

Streaming

- Purpose: 1 way transmission of audio or video
- Service characteristics:
 - Constant bit rate (unless compressed)
 - Duration = mins to hours
- Performance:
 - Loss small amount ok
 - Delay seconds, firm once stream started
 - Throughput fixed

Streaming

Figure 7.3 \diamond Client buffer being filled at rate x(t) and drained at rate dKurose

Voice or Video over IP

- Purpose: 2 way interactive transmission of voice or video
- Service characteristics:
 - Constant bit rate (unless compressed)
 - Duration = mins to hours
- Performance:
 - Loss small amount ok
 - Delay a few tenths of a second
 - Throughput fixed

Voice or Video over IP

- Crude version: similar to streaming
- Better version: give priority to these packets over packets such as email or web browsing

Location

Location

- Location identifier (application method independent)
 - Part of a Uniform Resource Locator (URL)
 - commonly a domain name or IP address
- Search
 - Give provider identifier
 - Return domain name or IP address
- Caching
 - May redirect you to a location closer to you

Location

- Source location(s)
 - client/server or peer-to-peer?
- Destination location(s)
 - stationary or mobile?

Location Model Examples

- http:
 - Distribution of popular webservers
- Email:
 - Distribution of email source/destination pairs
- Streaming:
 - Distribution of popular streaming servers
- VoIP:
 - Distribution of who is calling whom
 - Plus perhaps mobility

Traffic characterization by layer

Connection Management

- Connection Initiation
 - Connection access control
 - Server may block a connection
 - Server balancing
 - Server may redirect a connection
- Connection Termination
 - When?

Connection models

- Arrivals
- Duration
- Connection access control

Connection Queuing Model

Leon-Garcia fig. A.6

Connection arrivals

- Exponential arrivals
 - when users start connections at times that are
 - independent of other users
 - independent of the user's other connections
 - same probability of starting a connection at every time
- Arrival Rate
 - $-\lambda = 1/E[\tau]$
 - likely slowly changing hour by hour, day by day

Blocking

- Connection Access Control (CAC)
 - System may block a connection
 - if not enough resources
 - or if enough resources, but they can be used better
 - System may queue connection requests
 - connection buffer
 - System may redirect connection requests
 - e.g. server balancing, content distribution networks

Connection duration

- Communication
 - Exponential durations
 - when users end connections at times that are
 - independent of other users
 - independent of the user's other connections
 - same probability of ending a connection at every time
- Service Rate
 - $-\mu = 1/E[X]$
 - likely dependent on type of communication, not on time of day

Connection duration

- Content
 - Probably not an Exponential duration
 - Duration = file size / throughput
- File size distribution
 - Depends on type of content
 - Often a heavy-tailed distribution
 - e.g. if $X \sim \text{Exp}(\mu)$, then e^X has a Pareto distribution,
 - Better to look at P(X>x) than P(X=x)

Connection duration

- Service rate
 - Throughput
 - Depends on lower layers, including
 - Application: number of parallel connections
 - Transport: effect of flow and congestion control
 - Network: effect of packet scheduling & dropping
 - Link: effect of multiple access

Queue notation

Arrival Process / Service Time / Servers / Max Occupancy

Interarrival times τ

M = exponential

D = deterministic

G = general

Service times X

M = exponential

D = deterministic G

= general

1 server

c servers

infinite

K customers

unspecified if

unlimited

Arrival Rate:

 $\lambda = 1/E[\tau]$

Service Rate:

 $\mu = 1/E[X]$

Leon-Garcia fig. A.7

• http:

- Arrivals
 - "M"
 - with queuing
 - possibly with server balancing or content distribution

Duration

- depends on file size distribution
- and on throughput
- and on user impatience (termination)
- and on persistent vs. non-persistent
- and on number of parallel connections

• Email:

- Arrivals
 - "M"
 - with queuing
- Duration
 - depends on file size distribution
 - and on throughput
- But really multiple queues
 - Client
 - Server(s)
 - Queuing network?

• Streaming:

- Arrivals
 - "M"
 - with queuing
 - likely with server balancing or content distribution
- Duration
 - depends on file distribution (but not necessarily size)
 - and on user behavior (termination)

- VoIP:
 - Arrivals
 - "M"
 - with no queuing
 - possibly with blocking
 - Duration
 - "M"
 - and on network behavior (termination)

Action Management

- During connection, do whatever the application needs to do!
- Application layer at source and destination coordinate through messages
- State: information about current status of the application instance
 - May be maintained by client, server, and/or peer application
 - May be maintained in a file

Connection Action models

- Actions taken by each side to manage an ongoing connection
- Likely modeled by Finite state machines

Action Model Examples

- http:
 - File requests
- Email:
 - Upload
 - Download

- Streaming:
 - Pause
 - Rewind or fast forward
 - Rebuffer
 - Change encoding rate
- VolP:
 - Change encoding rate
 - Handoff

Voice Over IP

VolP

- Real time application
- Multimedia streams
- Both directions

QoS Requirements

- Packet loss
 - Up to 20% is tolerated
 - Packet losses
 - Buffer overflow
 - Link layer
 - Delay
 - UDP vs TCP
 - Reliability (retransmissions)
 - Delay
 - Buffer starvation
 - Delay variations

QoS Requirements

- End-to-End delay
 - Sum of all the
 - Transmission
 - Propagation
 - Processing
 - Queueing delays
 - Up to 400ms tolerable

QoS Requirements

- Jitter
 - Packets generated periodically
 - Delay variations at the receiver
 - E.g., queue conditions

Best effort

- Individual pkt end-to-end performance is random
- Possibly large variations
- Average may vary over time

Voice over IP?

Jitter – Countermeasure

- Timestamp
 - Generation time
- Delayed playout
 - (Most of the) Packets arrive before playout time
 - Introduces delay
 - Packets after playout time are discarded

Jitter – Countermeasure

- Delayed playout
 - Delay is a random variable
 - Variations due to network conditions
 - Min delay with loss constraint
 - Fixed playout
 - t+q
 - Generation + delay + max variations
 - Large variations = large delays
 - Adaptive playout
 - Talk spur = delay re-estimated
 - Fixed during talk spur
 - Recent measured delays used for estimation

Jitter – Countermeasure

Figure 7.7 ♦ Packet loss for different fixed playout delays

Packet Loss Recovery

- TCP
 - Retransmission
 - Delay!
- Recovery
 - FEC
 - Interleaving
 - No Additional RTT

FEC

- Redundancy
 - +1 pkt every N
 - N small
 - Larger generation rate
 - Better recovery
 - Delay: wait for the entire group
- Low rate stream
 - Low-quality/Low-bitrate stream appended

FEC

Figure 7.8 • Piggybacking lower-quality redundant information

Interleaving

- Samples are resequenced
 - Adjacent samples assigned to different chunks
- Packet loss mitigated
 - Avoids gaps
- Increased latency
- Same bandwidth

Interleaving

Figure 7.9 • Sending interleaved audio

Real Time Protocol (RTP)

- UDP
 - RTP UDP IP
- RTP
 - Independent RTP stream per source
 - Video/audio payload + header

Figure 7.11 • RTP header fields

Real Time Protocol (RTP)

Payload Sequence type Synchronization Miscellaneous source identifier fields

Figure 7.11 • RTP header fields

- Payload type
 - Encoding
- Sequence number
 - Re-sequencing
 - Packet recovery
- Timestamp
 - Playout control
- Synch. Source ID
 - identification

Supporting Multimedia Applications

Supporting Multimedia

- Network dimensioning
 - Enough bandwidth to support QoS
- Differentiated service
 - Hierarchy of priorities
- Per-connection Guarantees
 - End-to-end resource reservation

Dimensioning

- Avoid congestion
 - Links have enough bandwidth
 - No loss, small delay, small jitter etc.
- No changes to best-effort model
- End-to-end
 - Multiple ISP cooperation
- How much is enough?
 - Traffic demand
 - Performance requirements
 - End-to-end performance prediction

Multiple Service Classes

- Multimedia/priority first, then the others
 - Priority per class and not per user/stream
 - Improved service
 - Avoids congestion

Figure 7.14 ♦ Competing audio and HTTP applications

Multiple Service Classes

- Operations
 - Packet marking
 - Router processing
 - End-to-end

Figure 7.14 • Competing audio and HTTP applications

Multiple Service Classes

- Issues
 - Too many prioritized streams or too much prioritized traffic
 - Congestion of low-priority traffic
- Solutions
 - Policing
 - Traffic control (router)
 - Drop/delay packets
 - Fixed allocation
 - Link level scheduling
- Efficiency?

Figure 7.15 ♦ Policing (and marking) the audio and HTTP traffic classes

Scheduling

Figure 7.20 • Operation of the priority queue

Priority

Figure 7.19 • Priority queuing model

- Preemptive
 - Service is interrupted
- Non-preemptive
 - Service is not interrupted

Weighted Round-Robin

- Round-robin
 - Classes with non-empty queue sequentially served
- Weighted fair queueing
 - Weight defines amount of time

$$w_i$$

The leaky-bucket

- Limited injection of traffic in the buffer(s)
 - B tokens
 - Tokens assigned to incoming packets
 - Tokens generated with rate r (if bucket)
- Policing
 - Average injection rate
 - Peak rate
 - Burst size
- Multiple buckets

leaky-bucket + Weighted round robin

if
$$r_1 < Rw_i / \sum_j w_j$$
 then max delay is $d_{max} = \frac{b_1}{Rw_i / \sum_j w_j}$

DiffServ

- Supports service differentiation
- Edge functions
 - Packet classification/marking
 - Traffic conditioning
- Core functions
 - Per-hop behavior only function of the class

DiffServ

Traffic conditioning

- Pre-negotiated characterization
- Leaky bucket

Per-connection QoS

- End-to-end resource is pre-assigned
- QoS guarantees

- Stream admission
- Avoid unusable flow

Kurose-Ross 7.27

Per-connection QoS

- Stream admission procedure
- Setup signaling
- RSVP protocol

Kurose-Ross 7.27

Exercises!!