BAYESIAN LEARNING

Bayesian Learning

- A powerful approach in machine learning
- Combine data seen so far with prior beliefs
 - This is what has allowed us to do machine learning, have good inductive biases, overcome "No free lunch", and obtain good generalization on novel data
- We use it in our own decision making all the time
 - You hear a word which which could equally be "Thanks" or "Hanks", which would you go with?
 - Combine sound likelihood and your prior knowledge
 - Texting Suggestions on phone
 - Spell checkers, speech recognition, etc.
 - Many applications

Bayesian Classification

- P(c|x) Posterior probability of output class c given the input vector x
- The discriminative learning algorithms we have learned so far try to "approximate" this directly
- Bayes Rule A true probability: P(c|x) = P(x|c)P(c) / P(x)
- P(c) Prior probability of class c How do we know?
 - Just count up and get the probability for the Training Set Easy!
- P(x|c) Probability "likelihood" of data vector x given that the output class is c
 - We will discuss ways to calculate this likelihood
- P(x) Prior probability of the data vector x
 - This is a normalizing term to get an actual probability. In practice we drop it because it is the same for each class c (i.e. independent), and we are just interested in which class c maximizes P(c|x).

Bayesian Intuition

- Bayesian vs. Frequentist
- Bayesian allows us to talk about probabilities/beliefs even when there is little data, because we can use the prior
 - What is the probability of a nuclear plant meltdown?
 - What is the probability that BYU will win the national championship?
- As the amount of data increases, Bayes shifts confidence from the prior to the likelihood
- Requires reasonable priors in order to be helpful
- We use priors all the time in our decision making
 - Unknown coin: probability of heads?

Bayesian Learning of ML Models

- Assume H is the hypothesis space, h a specific hypothesis from H, and D is all the training data
- P(h|D) Posterior probability of h, this is what we usually want to know in a learning algorithm (i.e. model selection)
- P(h|D) = P(D|h)P(h)/P(D) Bayes Rule
- P(h) Prior probability of the hypothesis/model independent of D do we usually know?
 - Could assign equal probabilities
 - Could assign probability based on inductive bias (e.g. simple hypotheses have higher probability) Thus regularization already in the equation!
- P(D|h) Probability "likelihood" of data given the hypothesis
- P(D) Prior probability of the data
- P(h|D) increases with P(D|h) and P(h). In learning when seeking to discover the best h given a particular D, P(D) is the same and can be dropped.

Naïve Bayes Revisit Bayesian Classification

- P(c|x) = P(x|c)P(c)/P(x)
- P(c) Prior probability of class c How do we know?
 - Just count up and get the probability for the Training Set Easy!
- P(x|c) Probability "likelihood" of data vector x given that the output class is c
 - We use $P(x_1,...,x_n | c_j)$ as short for $P(x_1 = val_1,...,x_n = val_n | c_j)$
 - How do we really do this?
 - If x is real valued?
 - If x is nominal we can just look at the training set and count to see the probability of x given the output class c but how often will all x's be the same?
 - Which will also be the problem if we bin real valued inputs

Naïve Bayes Classifier

- Note we are not considering $h \in H$, rather just collecting statistics from the data set
- Given a training set, $P(c_i)$ is easy to calculate
- How about $P(x_1, ..., x_n | c_j)$? Most cases would be either 0 or 1
- Key "Naïve" leap: Assume conditional independence of the attributes

$$P(x_1, ..., x_n | c_j) = \prod_{j} P(x_i | c_j)$$

$$cNB = \underset{c_j \in C}{\operatorname{argmax}} P(c_j)^i \prod_{j} P(x_i | c_j)$$

- P(Thin, Red, Meat | Good) = P(Thin | Good) * P(Red | Good) * P(Meat | Good)
- There is usually sufficient data to get accurate values for independent terms

Naïve Bayes Classifier

- While conditional independence is not typically a reasonable assumption... (heart rate and blood pressure)
 - Low complexity simple approach
 - Need only store all $P(c_i)$ and $P(x_i|c_i)$ terms
 - Assume nominal features for the moment
 - Easy to calculate the |attribute values| \times |classes| terms
 - There is often enough data to make the independent terms reasonably accurate
 - Effective and common for many large applications (Document classification, etc.)

Naïve Bayes (cont.)

- Can normalize to get the actual naïve Bayes probability
- Continuous data? Can discretize a continuous feature into bins, thus changing it into a nominal feature and then gather statistics normally
 - How many bins? More bins is good, but need sufficient data to make statistically significant bins. Thus, base it on data available
 - Could also assume data is Gaussian and compute the mean and variance for each feature given the output class, then each $P(x_i|c_j)$ becomes $\mathcal{N}(x_i|\mu_{xi|ci}, \sigma^2_{xi|ci})$
 - Not good if data is multi-modal

Naïve Bayes (cont.)

- NB uses just 1st order features assumes conditional independence
 - calculate statistics for all $P(x_i|c_i)$
 - |attributes| \times |attribute values| \times |output classes|
- *n*th order $P(x_i, ..., x_n | c_i)$ assumes full conditional dependence
 - $|attributes|^n \times |attribute\ values| \times |output\ classes|$
 - Too computationally expensive exponential
 - Not enough data to get reasonable statistics most cases occur 0 or 1 time
- 2nd order? compromise $P(x_i x_k | c_i)$ assume only low order dependencies
 - $|attributes|^2 \times |attribute \ values| \times |output \ classes|$
 - More likely to have cases where number of $x_i x_k | c_j$ occurrences are 0 or few, could just use the higher order features which occur often in the data
 - 3rd order, etc.
- How might you test if a problem is conditionally independent?
 - Could just compare against 2nd or higher order. How far off on average is our assumption $P(x_i x_k | c_i) = P(x_i | c_i) P(x_k | c_i)$?

Naïve Bayes (cont.)

- No training Just gather the statistics from the data set and then apply the Naïve Bayes classification equation to any new instance
- Easier to have many attributes since not building a net, etc. and the amount of statistics gathered grows linearly with the number of attribute values (# attribute values × # classes) Thus natural for applications like text classification which can be represented with huge numbers of input attributes.
- Though Naïve Bayes is limited by the first order assumptions, it is still often used and gives reasonable results in many large real-world applications

Naïve Bayes Example

Size (L, S)	Color (R,G,B)	Output (P,N)
L	R	N
S	В	P
S	G	N
L	R	N
L	G	P

For the given training set:

- 1. Create a table of the statistics needed to do Naïve Bayes
- 2. What would be the best output for a new instance which is Large and Blue? (e.g. the class which wins the argmax)
- 3. What is the true probability for each output class (P or N) for Large and Blue?

$$cNB = \underset{cj \in C}{\operatorname{argmax}} P(c_j) \prod_i P(x_i \mid c_j)$$

Size (L, S)	Color (R,G,B)	Output (P,N)
L	R	N
S	В	P
S	G	N
L	R	N
L	G	P

$$cNB = \underset{cj \in C}{\operatorname{argmax}} P(c_j) \prod_i P(x_i | c_j)$$

P(P)	
P(N)	
P(Size=L P)	
P(Size=S P)	
P(Size=L N)	
P(Size=S N)	
P(Color=R P)	
P(Color=G P)	
P(Color=B P)	
P(Color=R N)	
P(Color=G N)	
P(Color=B N)	

$$P(c_j)$$

$$P(x_i | c_j)$$

Challenge Question Finish and give the true Probabilities of P and N for Size = L and Color = B

Size (L, S)	Color (R,G,B)	Output (P,N)
L	R	N
S	В	P
S	G	N
L	R	N
L	G	P

$$cNB = \underset{cj \in C}{\operatorname{argmax}} P(c_j) \prod_i P(x_i \mid c_j)$$

P(P)	2/5
P(N)	3/5
P(Size=L P)	1/2
P(Size=S P)	1/2
P(Size=L N)	2/3
P(Size=S N)	
P(Color=R P)	
P(Color=G P)	
P(Color=B P)	
P(Color=R N)	
P(Color=G N)	
P(Color=B N)	

$$P(c_j)$$

$$P(x_i | c_j)$$

$$P(P) = 2/5 * 1/2 * P(Color = B|P) = ? P(N) = ?$$

Challenge Question Finish and give the true Probabilities of P and N for Size = L and Color = B

Size (L, S)	Color (R,G,B)	Output (P,N)
L	R	N
S	В	P
S	G	N
L	R	N
L	G	P

$$cNB = \underset{cj \in C}{\operatorname{argmax}} P(c_j) \prod_i P(x_i | c_j)$$

$$P(P) = 2/5 * 1/2 * 1/2 = 1/10$$

P(P)	2/5
P(N)	3/5
P(Size=L P)	1/2
P(Size=S P)	1/2
P(Size=L N)	2/3
P(Size=S N)	1/3
P(Color=R P)	0/2
P(Color=G P)	1/2
P(Color=B P)	1/2
P(Color=R N)	2/3
P(Color=G N)	1/3
P(Color=B N)	0/3

$$P(c_j)$$

$$P(x_i | c_j)$$

True Probabilities

$$P(P) = 1/(1+0) = 1$$

 $P(N) = 0/(1+0) = 0$

$$P(N) = 3/5 * 2/3 * 0/3 = 0$$

Naïve Bayes Homework

Size (L, S)	Color (R,G,B)	Output (P,N)
L	R	P
S	В	P
S	В	N
L	R	N
L	В	P
L	G	N
S	В	P

For the given training set:

- 1. Create a table of the statistics needed to do Naïve Bayes
- 2. What would be the best output for a new instance which is Small and Blue? (e.g. the class which wins the argmax)
- 3. What is the true probability for each output class (P or N) for Small and Blue?

$$cNB = \underset{cj \in C}{\operatorname{argmax}} P(c_j) \prod_i P(x_i \mid c_j)$$