# **IC Grupos**

Iniciação Científica em Teoria de Grupos

Marco Vieira Busetti

Professor: Francismar Ferreira Lima

Universidade Tecnológica Federal do Paraná Curitiba, Novembro de 2024

# Capítulo 1

# Generalidades sobre Grupos

## 1.1 Operações Binárias

#### Definição 1.1.1

Sejam G e E conjuntos não-vazios e  $\oplus$  uma função tal que:

$$\oplus: \begin{array}{c} G \times G \to E \\ (a,b) \mapsto \oplus (a,b) \end{array}$$

Definimos a função acima como a **operação binária de dois elementos de** G **em** E e a escrevemos comumente como:  $a \oplus b$ .

## Exemplo 1.1.1

A adição usual + é uma operação binária de dois elementos de  $\mathbb{I}$  em  $\mathbb{R}$ . Onde  $\mathbb{I}$  denota o conjunto dos números irracionais.

## Exemplo 1.1.2

Sejam  $(a, b) \in \mathbb{R}^2$ , a função que define a distância cartesiana entre dois pontos a e b:

$$\operatorname{dist}(a,b): \frac{\mathbb{R} \times \mathbb{R} \to \mathbb{R}^+}{(a,b) \mapsto \sqrt{a^2 + b^2}}$$

representa uma operação binária de dois elementos de  $\mathbb{R}$  em  $\mathbb{R}^+$ .

1.2. GRUPOS 3

### Definição 1.1.2

A partir das notações acima, definimos **lei de composição interna de**  $G \times G \rightarrow G$  **se** E = G.

Observação: caso não haja ambiguidade, denotaremos simplesmente **lei de composição interna em** G para representar a lei de composição interna de  $G \times G \to G$ .

## Exemplo 1.1.3

A operação usual + em  $\mathbb N$  é uma lei de composição interna em  $\mathbb N$ , ao contrário da operação usual - de  $\mathbb N$  em  $\mathbb Z$ .

## 1.2 Grupos

## Definição 1.2.1

Seja G um conjunto não-vazio. **Dizemos que**  $(G, \cdot)$  **é um grupo** se, e somente se,  $\cdot$  é uma lei de composição interna em G tal que:

1. 
$$\exists e \in G$$
,  $\forall x \in G : x \cdot e = e \cdot x = x$ ;

2. 
$$\forall x \in G, \exists \hat{x} \in G : x \cdot \hat{x} = \hat{x} \cdot x = e;$$

3. 
$$\forall x, y, z \in G : (x \cdot y) \cdot z = x \cdot (y \cdot z)$$
.

Observações:

Levando em consideração as notações acima, temos:

1. Primeiramente, notamos que e e  $\hat{x}$  são únicos, uma vez que: Supondo que existam e e e' pertencentes à G que satisfazem o item 1, temos:

$$x \cdot e = x = x \cdot e' \implies \hat{x} \cdot x \cdot e = \hat{x} \cdot x \cdot e' \implies e = e' \square$$

Supondo agora que existam  $\hat{x}$  e  $\hat{x}'$  que satisfaçam o item 2, temos:

$$\hat{x} \cdot x = e = \hat{x}' \cdot x \implies \hat{x} \cdot x \cdot \hat{x} = \hat{x}' \cdot x \cdot \hat{x} \implies \hat{x} \cdot e = \hat{x}' \cdot e \implies \hat{x} = \hat{x}' \quad \Box$$

- 2. Notamos por convenção  $x^{-1}$  no lugar de  $\hat{x}$  no **item 2** (dada sua unicidade).
- 3. Caso  $\forall$   $(x,y) \in G \times G$ :  $x \cdot y = y \cdot x$ , dizemos que G é um grupo *abeliano* (ou *comutativo*).
- 4. Caso G seja um grupo abeliano, então

$$(x \cdot y)^n = x^n \cdot y^n, \quad \forall n \in \mathbb{Z}.$$

## Exemplo 1.2.1

 $(\mathbb{Z},+)$ ,  $(\mathbb{Z}/n\mathbb{Z},+)$ ,  $(\mathbb{R}^*,\cdot)$ ,  $(\mathbb{R},+)$ ,  $(\mathbb{C},+)$ ,  $(\mathbb{C}^*,\cdot)$ ,  $(\mathbb{Q}^*,\cdot)$  são grupos abelianos (onde + e  $\cdot$  denotam as operações usuais de adição e produto em  $\mathbb{C}$ ).

#### Exemplo 1.2.2

 $(GL_n(\mathbb{K}), \times)$  define uma estrutura de grupo, onde  $\mathbb{K} = \mathbb{C}$  ou  $\mathbb{R}$  e  $GL_n(\mathbb{K})$  define o conjunto das matrizes  $n \times n$  invertíveis com entradas em  $\mathbb{K}$ .

## Exemplo 1.2.3

Seja A um conjunto não-vazio. Seja

$$\mathcal{P}(f) = \{ f : A \to A \mid f \text{ bijetiva} \}$$

O conjunto das funções f bijetivas de A em A.

 $(\mathcal{P}(f),\circ)$  define uma estrutura de grupo, onde  $\circ$  representa composição entre funções.

Caso A seja um conjunto finito e  $n \in \mathbb{N}$  tal que Card(A) = n,  $\mathcal{P}(f)$  será representado por  $S_n$  e será chamado de **grupo simétrico ou grupo das permutações**.

1.2. GRUPOS 5

### Exemplo 1.2.4

Seja, neste exemplo, para fins de simplificação,  $\mathbb{Z}/n\mathbb{Z} \stackrel{def}{=} \mathbb{Z}_n$ , para  $n \in \mathbb{Z}$ .

Seja a operação  $\odot$  em  $\mathbb{Z}_n$  definida da seguinte forma:

$$\odot: \frac{\mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n}{(\overline{a}, \overline{b}) \mapsto \overline{a} \odot \overline{b} = \overline{a \cdot b}}$$

onde · é a operação usual de produto nos inteiros.

Temos que  $(\mathbb{Z}_p^*, \odot)$ , onde p é um número primo, é um grupo abeliano.

#### Demonstração:

Por construção, temos que  $\overline{a} \odot \overline{b} \in \mathbb{Z}_p^*$ .

Para mostrar a associatividade, sejam  $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_p^*$ .

Temos que:

$$\overline{a} \odot (\overline{b} \odot \overline{c}) = \overline{a} \odot (\overline{b \cdot c}) =$$

$$= \overline{a \cdot (b \cdot c)} = \overline{(a \cdot b) \cdot c} = (\overline{a} \odot \overline{b}) \odot \overline{c}.$$

O elemento neutro é evidentemente o elemento  $\overline{1} \in \mathbb{Z}_p^*$ , pois:

$$\overline{a} \odot \overline{1} = \overline{a \cdot 1} = \overline{a}, \ \forall \overline{a} \in \mathbb{Z}_p^*.$$

Também temos que para todo elemento de  $\mathbb{Z}_p^*$ , existe elemento inverso, pois, sabemos que:

$$\forall \overline{a} \in \mathbb{Z}_p^* \implies \mathsf{mdc}(a,p) = 1.$$

Logo, pelo Teorema de Bézout, temos que existem *x* e *y* inteiros tais que:

$$ax - py = 1$$

Ora mas isso é a mesma coisa que afirmar que existe uma solução para a equação:

$$a \cdot x \equiv 1 \pmod{p} \iff \overline{a} \odot \overline{x} = \overline{1}.$$

Logo, deduzimos que  $\forall \overline{a} \in \mathbb{Z}_p^*, \ \exists \overline{a}^{-1} \in \mathbb{Z}_p^*.$ 

Além disso, é evidente que a operação ⊙ é comutativa.

Portanto, provamos que  $(\mathbb{Z}_p^*, \odot)$  é um grupo abeliano.

#### Exemplo 1.2.5

Seja  $G = ]-1,1[, (G, \star) \text{ tal que}]$ 

$$\forall x, y \in G : x \star y = \frac{x+y}{1+xy}$$

define um grupo abeliano.

#### Demonstração:

Provemos primeiramente que  $\forall x, y \in G, x \star y \in G$ .

Fixando  $y \in G$  temos a seguinte função de  $x \in G$ :

$$f(x) = \frac{x+y}{1+xy}$$

A função é derivável em *G*. Tomando sua derivada temos:

$$f'(x) = \frac{1 - y^2}{(1 + xy)^2}$$

Temos evidentemente  $\forall (x,y) \in G \times G, f'(x) > 0.$ 

(De forma simétrica podemos mostrar o mesmo escrevendo f como uma função de y).

Logo, deduzimos que a função f é estritamente crescente.

Portanto:

$$f(-1) < x \star y < f(1) \iff \frac{y-1}{1-y} < x \star y < \frac{1+y}{1+y} \iff -1 < x \star y < 1$$

1.2. GRUPOS 7

Logo, provamos que  $x \star y \in G$ .

Provemos os outros axiomas:

Existência do neutro:

Tomando y = 0 temos:

$$x \star 0 = \frac{x+0}{1+0 \cdot x} = x$$

Portanto, deduzimos que o elemento neutro do grupo G é dado por e=0.

Existência do inverso:

Tomando y = -x temos:

$$x \star - x = \frac{x - x}{1 - (-x)x} = 0$$

Portanto, deduzimos que o elemento inverso do grupo G existe e é dado por  $x^{-1}=-x$ .

Associatividade:

Sejam  $x, y, z \in G$ , mostremos que  $(x \star y) \star z = x \star (y \star z)$ 

Temos:

$$(x \star y) \star z = \frac{(x \star y) + z}{1 + (x \star y)z} = \frac{\frac{x + y}{1 + xy} + z}{1 + z\frac{x + y}{1 + xy}} = \frac{x + y + z + xyz}{1 + xy + xz + yz} = \frac{x(1 + yz) + (y + z)}{(1 + yz) + x(y + z)} = \frac{x + \frac{y + z}{1 + yz}}{1 + x\frac{y + z}{1 + yz}} = x \star (y \star z)$$

Mostrando, assim, a associatividade.

Ainda, temos que o grupo é evidentemente abeliano.

## 1.3 Subgrupos

#### Definição 1.3.1

Seja  $(G, \cdot)$  um grupo. Um subconjunto  $H \subseteq G$  é chamado de subgrupo de G (denotamos  $H \subseteq G$ ) se, e somente se,  $(H, \cdot)$  é um grupo.

Observação: temos ainda que se  $H \subset G$ , temos então H é chamado de subgrupo próprio de G e denotamos como H < G.

## Proposição 1.3.1

Seja  $H \subseteq G$  tal que  $H \neq \emptyset$  e  $(G, \cdot)$  é um grupo.  $H \leq G$  é equivalente à satisfazer as seguintes condições:

1. 
$$h_1 \cdot h_2 \in H$$
,  $\forall (h_1, h_2) \in H \times H$ ;

2. 
$$h^{-1}$$
 ∈  $H$ ,  $\forall h$  ∈  $H$ .

#### Demonstração:

É necessário mostrarmos as duas implicações da equivalência:

$$H \le G \Longrightarrow (1.) \text{ e } (2.)$$
 (1.1)

$$(1.) e (2.) \Longrightarrow H \le G \tag{1.2}$$

A implicação (1.1) é trivial. Ora, se  $H \leq G$ , então pela definição de subgrupo temos que  $h_1 \cdot h_2 \in H$  e  $h^{-1} \in H$ , isto é  $\exists h^{-1} \in H : h \cdot h^{-1} = h^{-1} \cdot h = h$ .

Para a implicação (1.2):

Sabemos que  $H \subseteq G$ , logo, se  $h_1 \cdot h_2 \in H \Longrightarrow h_1 \cdot h_2 \in G$ . Ora, sabemos que  $(G, \cdot)$  é um grupo. Logo, a associatividade é satisfeita. Para demonstrar que  $e \in H$ , basta tomarmos  $h_2 = h^{-1}$  a partir de (2.).

Logo, temos  $h \cdot h^{-1} = e \in H$ . Com isso mostramos todos os axiomas necessários e deduzimos que  $H \leq G$ .

## Exemplo 1.3.1

 $(\mathbb{U}^*,\cdot)$ ,  $(\mathbb{R}^*,\cdot)$ ,  $(\mathbb{R}^*,\cdot)$ ,  $(\mathbb{Q}^*,\cdot)$ ,  $(\mathbb{Q}^*,\cdot)$  são subgrupos de  $(\mathbb{C}^*,\cdot)$ , onde  $\cdot$  denota a multplicação usual em  $\mathbb{C}$ .

## Exemplo 1.3.2

G e  $\{e\}$  são subgrupos *triviais* de G.

## Exemplo 1.3.3

Seja  $n \in \mathbb{Z}$ ,  $(n\mathbb{Z}, +)$  são subgrupos de  $(\mathbb{Z}, +)$ , e, em particular, são os únicos.

#### Demonstração:

É evidente que  $(n\mathbb{Z}, +)$  são subgrupos de  $(\mathbb{Z}, +)$ . Mostremos que são os únicos!

Seja (H, +) um subgrupo qualquer de  $(\mathbb{Z}, +)$ . Se  $H = \{0\}$ , então  $H = 0\mathbb{Z}$ .

Suponhamos agora  $H \neq \{0\}$ . Seja  $n = \min\{a \in H, a > 0\}$ .

Logo, como  $n \in H$  e  $H \leq \mathbb{Z}$ , temos que  $n\mathbb{Z} \subseteq H$ .

De maneira inversa, seja  $h \in H$ . Logo, pelo Algoritmo de Euclides, existem  $q, r \in \mathbb{Z}$  tais que:

$$h = qn + r \ (0 \le r < n)$$

Porém, note que, como  $h \in H$ , temos:

$$r = h - qn \in H$$

Porém, sabemos que  $0 \le r < n$ .

Ora, como n é o elemento mínimo de H estritamente maior que 0, deduzimos que apenas podemos ter r=0.

Logo:

$$h = qn \implies h \in n\mathbb{Z} \implies H \subseteq n\mathbb{Z}.$$

Portanto deduzimos que  $H = n\mathbb{Z}$ .

## Exemplo 1.3.4

Seja G um grupo e I um conjunto não-vazio de índices. Se  $\{H_i\}_{i\in I}$  é uma família de subgrupos de G, então  $\bigcap_{i\in I} H_i$  é um subgrupo de G.

#### Demonstração:

Como visto na **Proposição 1.3.1**, mostremos que:

1. 
$$\forall x_1, x_2 \in \bigcap_{i \in I} H_i \implies x_1 \cdot x_2 \in \bigcap_{i \in I} H_i$$
;

2. 
$$\forall x \in \bigcap_{i \in I} H_i \implies \exists x^{-1} \in \bigcap_{i \in I} H_i$$
.

Provemos o **item 1**:

Sejam,

$$x_1, x_2 \in \bigcap_{i \in I} H_i$$

Logo:

$$\forall i \in I, \ x_1, x_2 \in H_i$$

Sabemos também que:

$$\forall i \in I, H_i \leq G$$

Portanto, deduzimos que:

$$\forall i \in I, \ x_1 \cdot x_2 \in H_i$$

Mas isso é a mesma coisa que dizer:

$$\forall x_1, x_2 \in \bigcap_{i \in I} H_i \implies x_1 \cdot x_2 \in \bigcap_{i \in I} H_i$$

Provemos o item 2:

Analogamente ao item 1, sabemos que:

$$x_0 \in \bigcap_{i \in I} H_i \iff \forall i \in I, \ x_0 \in H_i$$

Porém, sabemos que:

$$\forall i \in I, H_i \leq G$$

Logo, deduzimos que:

$$\forall i \in I, \ x_0 \in H_i, \ \exists x_0^{-1} \in H_i$$

Mas isso é a mesma coisa que:

$$\forall x \in \bigcap_{i \in I} H_i \implies \exists x^{-1} \in \bigcap_{i \in I} H_i$$

Portanto, provamos que:

$$\bigcap_{i\in I} H_i \leq G$$

## Definição 1.3.2

Seja G um grupo. O subconjunto Z(G) tal que:

$$Z(G) = \{x \in G : xg = gx, \ \forall g \in G\}$$

define um subgrupo de G chamado centro de G.

## Demonstração:

Como visto na **Proposição 1.3.1**, para mostrar que  $Z(G) \leq G$  é suficiente mostrar que  $x \cdot x^{-1} \in Z(G)$ ,  $\forall x \in Z(G)$ .

Temos que:

Se:

$$x \in Z(G) \Rightarrow x \cdot g = g \cdot x, \ \forall g \in G.$$

Logo, teremos:

$$xgx^{-1} = g \Longrightarrow x^{-1}xgx^{-1} = x^{-1}g \Longrightarrow gx^{-1} = x^{-1}g, \ \forall g \in G$$

Portanto:

$$x^{-1} \in Z(G)$$

Temos também que:

$$x_1 \in Z(G) \Longrightarrow x_1 g = g x_1, \ \forall g \in G \ (I)$$

$$x_2 \in Z(G) \Longrightarrow x_2g = gx_2, \ \forall g \in G \ (II)$$

Deduzimos de (I):

$$x_1g = gx_1 \Longrightarrow g = x_1^{-1}gx_1$$

Substituindo em (II):

$$x_2x_1^{-1}gx_1 = x_1^{-1}gx_1x_2 \Longrightarrow x_2x_1^{-1}x_1g = x_1^{-1}gx_1x_2 \Longrightarrow$$

$$\implies x_2g = x_1^{-1}gx_1x_2 \Longrightarrow (x_1x_2)g = g(x_1x_2)$$

Logo, deduzimos que:

$$(x_1, x_2) \in Z(G) \times Z(G) \Longrightarrow x_1 \cdot x_2 \in Z(G)$$

Portanto,  $Z(G) \leq G$ .

Observação: O subgrupo centro serve o propósito de "medir a comutatividade" de um dado grupo. Por exemplo, observamos que  $Z(\mathbb{Z}) = \mathbb{Z}$ ,  $Z(GL_2(\mathbb{R})) = \{\lambda I : \lambda \in \mathbb{R}^*\} \ e \ Z(S_n) = \{e\}, \ n \geq 3.$ 

## Definição 1.3.3

Seja  $(G, \cdot)$  um grupo e X um conjunto não-vazio tal que  $X \subseteq G$ . Chamamos de subgrupo gerado por um subconjunto a interseção de todos os subgrupos de G que contém X. Denotamos-o como  $\langle X \rangle$ .

Matematicamente temos:

$$\langle X \rangle = \bigcap \{ H : H \le G \text{ e } X \subseteq H \}$$

#### Proposição 1.3.2

A partir das notações da **Definição 1.3.3**, temos que  $\langle X \rangle$  é o menor subgrupo de G que contém X.

#### Demonstração:

Suponha que  $J \leq G$  seja o menor subgrupo de G tal que  $X \subseteq J$ .

Ora, como  $J \leq G$  e  $X \subseteq J$ , então:  $\langle X \rangle \subseteq J$ .

Entretanto, também sabemos que J é o menor subgrupo de G tal que  $X \subseteq J$ .

Portanto, deduzimos que  $J \subseteq H$ ,  $\forall H : H \leq G$  e  $X \subseteq H$ .

Porém, para todo H subgrupo de G temos que  $X \subseteq H$ , logo, deduzimos que  $J \subseteq \langle X \rangle$ .

Portanto,  $J = \langle X \rangle$ .

## Proposição 1.3.3

A partir das notações da **Definição 1.3.3**, temos que:

$$\langle X \rangle = \{ x_1 x_2 ... x_n : x_i \in X \cup X^{-1}, \ n \ge 1 \}$$

## Demonstração:

Sejam:

$$\dot{X} \stackrel{def}{=} \bigcap \{H : H \le G \text{ e } X \subseteq H\}$$

$$\bar{X} \stackrel{def}{=} \{ x_1 x_2 ... x_n : x_i \in X \cup X^{-1}, \ n \ge 1 \}$$

Queremos mostrar que:  $\dot{X} = \bar{X}$ .

Realizemos, primeiramente, algumas convenções de notação:

$$\bar{x}_p \stackrel{def}{=} x_1 x_2 ... x_p, \ p \in \mathbb{Z}_+^*$$

$$\bar{x}_p^{-1} \stackrel{def}{=} x_1^{-1} x_2^{-1} ... x_p^{-1}, \ p \in \mathbb{Z}_+^*$$

É evidente que  $\bar{x}_p$ ,  $\bar{x}_p^{-1} \in \bar{X}$ . Assim como  $\bar{x}_p \bar{x}_p^{-1} \in \bar{X}$ , o que nos mostra que  $\bar{X} \leq G$ .

Mostremos que  $\dot{X} \subseteq \bar{X}$ :

Sabemos que:

$$\bar{X} = \{\bar{x}_p : x_i \in X \cup X^{-1}, p \in \mathbb{Z}_+^* \text{ e } 1 \le i \le p\}$$

Evidentemente temos que:

$$\forall x \in X \implies x \in \bar{X}$$

Uma vez que  $\bar{X} \leq G$ , temos diretamente que  $\dot{X} \subseteq \bar{X}$ .

Isso se dá pelo fato de que  $\dot{X}$  é o menor subgrupo de G contendo X, e, como  $\bar{X}$  é um subgrupo de G contendo X, realizamos tal dedução.

Mostremos agora que  $\bar{X} \subseteq \dot{X}$ :

Seja  $H \leq G$  tal que:

$$H \leq G$$
 e  $X \subseteq H$ .

Ora, temos evidentemente que:

$$\forall \bar{x}_p \in \bar{X} \implies \bar{x}_p \in H.$$

Logo:

$$\bar{x}_p \in H \implies \bar{x}_p \in \bigcap_{i \in I} H_i$$

Onde I é um conjunto não-vazio de índices.

Evidentemente temos então que  $\bar{x}_p \in \dot{X}$ .

Logo,  $\bar{X} \subseteq \dot{X}$ .

Portanto, mostramos que:  $\bar{X} = \dot{X}$ .

## Exemplo 1.3.5

Seja o grupo ( $\mathbb{R}^*$ , ·) e o subconjunto  $E \subset \mathbb{R}^*$  tal que  $E = \{2\}$ . O subgrupo gerado por E é, portanto,  $H = \{2^n, n \in \mathbb{Z}\}$ .

De forma genérica, para um grupo G e um elemento  $a \in G$ , temos:  $\langle a \rangle = \{a^n | n \in \mathbb{Z}\}.$ 

## Exemplo 1.3.6

Seja o grupo ( $\mathbb{Z}$ , +) e o subconjunto  $E \subset \mathbb{Z}$  tal que  $E = \{3\}$ . O subgrupo gerado por E é, portanto,  $(3\mathbb{Z}, +)$ .

De forma geral, dado um grupo G, para determinarmos um subgrupo H gerado por um subconjunto X devemos provar os seguintes pontos:

- 1. *H* é um subgrupo de *G*
- 2. *X* ⊂ *H*
- 3. Se H' é um outro subgrupo tal que  $X \subset H'$ , então  $H \subset H'$

## Definição 1.3.4

Seja G um grupo. G é chamado de grupo cíclico quando ele pode ser gerado por um único elemento  $x \in G$ .

## Exemplo 1.3.7

$$\mathbb{Z} = \langle 1 \rangle$$
,  $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$ ,  $\mathbb{U} = \langle e^{\frac{2\pi i}{n}} \rangle$ .

## Proposição 1.3.4

Se *G* é um grupo cíclico, então *G* é um grupo abeliano.

#### Demonstração:

Seja  $a \in G$  tal que  $G = \langle a \rangle$ . Podemos representar G como:

$$G = \{..., (a^{-1})^r, ..., (a^{-1})^2, a^{-1}, e, a, a^2, ..., a^r, ...\}$$

Onde  $r \in \mathbb{Z}$ .

Sejam  $(x,y) \in G \times G$ , queremos mostrar que  $x \cdot y = y \cdot x$ . Sabemos que:

$$x = a^{r_1}, r_1 \in \mathbb{Z}$$

$$y = a^{r_2}, r_2 \in \mathbb{Z}$$

Logo:

$$x \cdot y = a^{r_1} \cdot a^{r_2} = a^{r_1 + r_2} \stackrel{(*)}{=} a^{r_2 + r_1} = a^{r_2} \cdot a^{r_1} = y \cdot x$$

(\*): deduz-se que  $r_1+r_2=r_2+r_1$  pois estamos trabalhando dentro do grupo abeliano  $(\mathbb{Z},+).$ 

Portanto, *G* é um grupo abeliano.

## Definição 1.3.5

Definimos  $\langle \{xyx^{-1}y^{-1}|(x,y)\in G\times G\}\rangle$  como o subgrupo dos comutadores do grupo G. Denotaremos-o por G'.

#### Definição 1.3.6

Seja  $(G, \cdot)$  um grupo. **Definimos ordem do grupo**  $(G, \cdot)$  **a quantidade de elementos no conjunto** G e a denotamos por |G|.

Se  $\alpha \in G$ , a ordem de  $\alpha$  é a ordem do subgrupo gerado por  $\alpha$ , denotada por  $\mathcal{O}(\alpha)$ , isto é,  $\mathcal{O}(\alpha) = |\langle \alpha \rangle|$ .

#### Exemplo 1.3.8

$$|\mathbb{Z}| = \infty$$
,  $|\mathbb{Z}/n\mathbb{Z}| = n$ ,  $|S_n| = n!$ 

### Proposição 1.3.5

Seja G um grupo finito e  $\alpha$  um elemento de G.

Logo, 
$$\mathcal{O}(\alpha) < \infty$$
.

#### Demonstração:

Provemos a **Proposição 1.3.5** via absurdo.

Suponha que  $\mathcal{O}(\alpha)$  seja não finito, logo podemos gerar n valores distintos a partir de potências de  $\alpha$ , onde  $n \in \mathbb{Z}$ .

Ora, a partir da geração de infinitos valores distintos de potências de  $\alpha$ , sabemos que, para dado valor inteiro k, teremos  $\alpha^k \notin G$ . Ora, mas  $\langle \alpha \rangle$  é um subgrupo de G. Absurdo.

Portanto, temos que  $\mathcal{O}(\alpha) < \infty$ .

Proposição 1.3.6

Seja G um grupo e  $\alpha$  um elemento de G. Então, as seguintes proposições são equivalentes:

- (i) A ordem  $\mathcal{O}(\alpha)$  é finita. Isto é,  $\mathcal{O}(\alpha)$  < ∞;
- (ii)  $\exists t \in \mathbb{Z}_{+}^{*} : \alpha^{t} = e$ , onde  $t = \min \{k \in G : k > 0\}$ .

## Demonstração:

Queremos provar que:  $(i) \iff (ii)$ .

Comecemos provando a implicação  $(i) \Longrightarrow (ii)$ :

Temos, por definição, que  $\langle \alpha \rangle = \{ \alpha^m \mid m \in \mathbb{Z} \}.$ 

Como  $\mathcal{O}(\alpha) < \infty$ , temos que  $\exists p, q \in \mathbb{Z} : p > q \in \alpha^p = \alpha^q$ .

Deduzimos diretamente que:  $\alpha^{p-q} = e$ . Como  $p - q \in \mathbb{Z}_+^*$ , mostramos  $(i) \Longrightarrow (ii)$ .

Note que a escolha do valor p-q ocorre sem perda de generalidade, uma vez que o conjunto  $\mathbb{Z}_+^*$  é enumerável e sempre podemos garantir a minimalidade de p-q.

Provemos  $(ii) \Longrightarrow (i)$ :

Ora, a partir de (ii) sabemos que  $\langle \alpha \rangle$  é finito e, pela minimalidade de t, sua ordem é igual à t.

Portanto, a partir da **Proposição 1.3.5** temos diretamente que  $\mathcal{O}(\alpha) < \infty$ .

Portanto, com isso, mostramos que  $(ii) \implies (i)$  e, consequentemente, mostramos  $(i) \iff (ii)$ .

## 1.4 Teorema de Lagrange

## Definição 1.4.1

Seja G um grupo e H um subgrupo de G. Definimos classe lateral à esquerda de H em G que contém x o subconjunto xH de G tal que  $\forall x \in G$ :

$$xH = \{xh \mid h \in H\}$$

Analogamente definimos classe lateral à direita de H em G que contém x o subconjunto Hx de G tal que  $\forall x \in G$ :

$$Hx = \{hx \mid h \in H\}$$

Observações:

• As classes laterais de G não são necessariamente subgrupos de G;

• Quando não houver confusão possível, podemos denominar as classes laterais à esquerda/direita de H em G que contém x como simplesmente: classe lateral à esquerda/direita de H.

### Definição 1.4.2

A cardinalidade do conjunto das classes laterais à esquerda ou à direita é definida como **o índice de** H **em** G, e será denotada por [G:H].

Observação: note que o número de classes laterais à direita de H é igual ao número de classes laterais à esquerda de H (por mais que as classes laterais sejam diferentes).

Isto se dá pelo fato de que a função:

$$\phi: \begin{cases} \{\text{classes lat. à esquerda}\} \rightarrow \{\text{classes lat. à direita}\} \\ xH \mapsto Hx^{-1} \end{cases}$$

é claramente uma bijeção.

#### Teorema 1.4.1

## Teorema de Lagrange (Grupos)

Seja G um grupo finito e H um subgrupo de G.

Logo, |H| divide |G|.

#### Demonstração:

Seja  $x \in G \backslash H$ , consideremos o conjunto das classes laterais à esquerda de H:

$$xH = \{xh \mid h \in H\}$$

Mostremos que  $H \cap xH = \emptyset$ :

Supondo  $\alpha \in H \cap xH$ :

$$\alpha \in H \cap xH \iff \alpha = xh \in H.$$

Como  $\alpha = xh \in H$ , logo  $\exists h^{-1} \in H$  tal que  $hh^{-1} \in H$ Portanto:

$$\alpha h^{-1} = xhh^{-1} \in H \iff x \in H \Longrightarrow \text{Absurdo, pois } x \in G \backslash H.$$

Logo,  $H \cap xH = \emptyset$ .

Agora mostremos que Card(xH) = |H|:

Seja  $\zeta$  a função definida abaixo:

$$\zeta: \begin{array}{c} H \to xH \\ h \mapsto xh \end{array}$$

A função  $\zeta$  é claramente sobrejetiva por definição.  $\zeta$  também é injetiva pois se  $(xh_1, xh_2) \in (xH)^2$ :

$$xh_1 = xh_2 \Longrightarrow x^{-1}xh_1 = x^{-1}xh_2 \Longrightarrow h_1 = h_2.$$

Portanto, deduzimos que Card(xH) = |H|.

Consideremos agora o conjunto yH das classes laterais à esquerda de H em G que contém y tal que  $y \notin H \cup xH$ .

Já mostramos anteriormente que  $y \notin H$ .

Mostremos que  $yH \cap xH = \emptyset$ 

Supondo  $\beta \in yH \cap xH$ :

Então  $\beta$  pode ser escrito de duas formas:

$$\beta = yh_1$$

$$\beta = xh_2$$

Logo, temos:

$$yh_1 = xh_2 \Longrightarrow y = xh_2h_1^{-1} \in xH \Longrightarrow \text{Absurdo, pois } y \notin H \cup xH.$$

Analogamente ao passo anterior podemos provar que Card(yH) = Card(xH) = |H|.

Portanto, realizando os passos acima sucessivamente, criamos partições de *G*.

Como G é finito, o processo terá finalizado após n etapas.

Portanto, temos: 
$$|G| = n|H|$$
.

Observações:

- 1. Segue como consequência direta do **Teorema de Lagrange** que caso G seja um grupo finito e  $\alpha \in G$ , então  $\mathcal{O}(\alpha)$  divide |G|.
- 2. Temos diretamente pela **Definição 1.4.2** que: |G| = |H|[G:H].

#### Proposição 1.4.1

Seja G um grupo finito de ordem  $p \in \mathbb{N}^*$ .

Se *p* for primo, então *G* é um grupo cíclico.

## Demonstração:

Pelo Teorema de Lagrange sabemos que se H é subgrupo de um grupo finito G, então |H| divide |G|.

Como |G|=p primo, então os únicos subgrupos possíveis de G são seus subgrupos triviais.

Seja  $x \in G$  tal que  $x \neq e$ , onde e é o elemento neutro de G.

Logo, o único subgrupo gerado por x é o próprio G,  $\langle x \rangle = G$ 

Observação: como visto na **Proposição 1.3.2**, G também é abeliano!

#### Teorema 1.4.2

## Teorema de Euler (Grupos)

Seja  $(G, \cdot)$  um grupo finito tal que |G| = n,  $n \in \mathbb{Z}$ . Então:

$$\forall g \in G, \ g^n = 1.$$

## Demonstração:

Seja g um elemento do grupo finito G. Sabemos que  $\langle g \rangle \leq G$ . Sabemos também, pelo **Teorema de Lagrange** que  $\mathcal{O}(g)$  divide a ordem de G.

Ora, podemos então escrever:

$$|G| = k\mathcal{O}(g), k \in \mathbb{Z}$$

Porém, pela **Proposição 1.3.6**, deduzimos:

$$g^{n} = g^{|G|} = g^{k\mathcal{O}(g)} = (g^{\mathcal{O}(g)})^{k} = e^{k} = e^{k}$$

Ora, demonstramos, com o argumento acima, sem perda de generalidade, tal fato para qualquer elemento de *G*.

#### Teorema 1.4.3

## Pequeno Teorema de Fermat

Seja p um número primo e  $a \in \mathbb{Z} \setminus p\mathbb{Z}$ , então:

$$a^{p-1} \equiv 1 \pmod{p}$$
.

## Demonstração:

O **Pequeno Teorema de Fermat** é evidentemente o caso específico do **Teorema de Euler** em que  $(G,\cdot)=((\mathbb{Z}/p\mathbb{Z})^*,\odot)$ .

# 1.5 Grupos Quocientes

#### Definição 1.5.1

Seja *G* um grupo. O subgrupo *H* de *G* é chamado de **subgrupo normal de** *G* se:

$$\forall (g,h) \in G \times H, \ ghg^{-1} \in H.$$

23

Denotamos:

 $H \triangleleft G$ .