Algebra e Logica Matematica

Gruppi, classi di resto

Esercizio 3.1. Calcolare il MCD e il mcm delle coppie seguenti:

- 1) (12, 35);
- 2) (231, 152);
- 3) (1200, 17);
- 4) (2301, 45).

Esercizio 3.2. a) Mostrare che ((-1;1),*) è un gruppo ove * è definita da

$$x * y = \frac{x + y}{1 + xy}.$$

Indicazione: è molto utile la tangente iperbolica.

b) Sia $(\mathbb{R}, *)$ dove * è definita da

$$\forall x, y \in \mathbb{R}, \ x * y = \sqrt[n]{x^n + y^n},$$

per un certo intero n > 0 dispari. Mostrare che $(\mathbb{R}, *)$ è un gruppo. Esibire un isomorfismo col gruppo $(\mathbb{R}, +)$.

Esercizio 3.3. a) Sie E un insieme finito munito di una legge interna associativa * per la quale tutti gli elementi di E sono regolari. Stabillire che (E, *) è un gruppo.

- b) Sia (E,*) un gruppo finito. Mostrare che se si costruisce la tavola dell'operazione *, ogni elemento di E compare una e un'unica volta in ogni riga e ogni colonna della tavola. Costruire una tavola con tale proprietà che non sia la tavola moltiplicativa di un gruppo.
- c) Mostrare che se (E, *) e (E', .) sono due gruppi di ordine tre, esiste un isomorfismo tra questi due gruppi. Mostrare che è falso per quattro elementi.

Esercizio 3.4. Mostrare che i gruppi $(\mathbb{Q}, +)$ e (\mathbb{Q}_+^*, \times) non sono isomorfi. Mostrare che (\mathbb{R}^*, \times) e (\mathbb{C}^*, \times) non sono isomorfi.

Indicazione: in \mathbb{Q} , l'equazione $x^2 = p$, dove p è primo, non ha soluzione.

Esercizio 3.5. Determinare gli elementi di ordine 3 in (\mathbb{C}^*, \times) .

Esercizio 3.6. a) Mostrare che l'intersezione di una famiglia di sottogruppi di un gruppo G è un sottogruppo di G.

- b) Sia G un gruppo. Dare una condizione necessaria e sufficente affinché due sottogruppi H e K di G siano tali che $H \cup K$ sia un sottogruppo di G.
- c) Dedurne una condizione necessaria e sufficente affinché $H \cup K = G$.

Esercizio 3.7. Siano (G, *) un gruppo, $x \in y$ due elementi di ordine finito di G tali che x * y = y * x.

- a) Mostrare che x * y è di ordine finito.
- b) Supponiamo che MCD(o(x), o(y)) = 1, mostrare che o(x * y) = o(x)o(y).
- c) Nel caso generale, mostrare che o(x * y) = mcm(o(x), o(y)).

Esercizio 3.8. Siano (G,*) un gruppo, $x \in y$ in G. Mostrare che

- 1) Se o(x) = o(y) = o(x * y) = 2, allora x * y = y * x.
- 2) Se o(x) è finito, calcolare $o(x^{-1})$.
- 3) Se o(x) è finito, calcolare $o(y * x * y^{-1})$.
- 4) Se o(x * y) è finito, mostrare che o(y * x) è finito e calcolarlo.

Esercizio 3.9. Mostrare che se tutti gli elementi di un gruppo G diversi dell'unità hanno ordine 2 allora G è abeliano.

Esercizio 3.10. Sia (G, *) un gruppo con identità e. Sia S il sottoinsieme di G costituito dagli elementi di ordine 2, cioè

$$\mathcal{S} = \{ g \in G/g * g = e \land g \neq e \}.$$

1) Mostrare che la relazione definita su G da

$$x \mathcal{R} y \iff x = y \circ x = y^{-1}$$

è una relazione di equivalenza (questo è vero per tutti i gruppi, non solo per quelli di ordine pari).

- 2) Descrivere le classi di equivalenza della relazione.
- 3) Dire quanti elementi ha una classe di equivalenza (attenzione: ci sono due casi!).

4) Dedurre della domanda precedente che se il gruppo G è di ordine pari, allora \mathcal{S} ha un numero dispari di elementi.

Esercizio 3.11. Fissiamo un intero $n \ge 1$.

- 1) Mostrare che $(\mathbb{Z}/n\mathbb{Z}, +)$ è ciclico.
- 2) Sia G un gruppo ciclico di ordine n. Mostrare che è isomorfo a $(\mathbb{Z}/n\mathbb{Z}, +)$. Quanti isomorfismi ci sono?
- 3) Sia G un gruppo ciclico di orgine n. Mostrare che per ogni divisore d di n, G ha un unico sottogruppo di ordine d. Mostrare che è ciclico e precisare il suo generatore.

Esercizio 3.12. Calcolare gli elementi invertibili di $(\mathbb{Z}/6\mathbb{Z})$ e $(\mathbb{Z}/12\mathbb{Z})$.

Esercizio 3.13. Determinare gli automorfismi del gruppo $(\mathbb{Z}, +)$.

Esercizio 3.14. Sia (G, *) un gruppo. Si chiama centro di G e si denota Z(G) l'insieme degli elementi che commutano con tutti gli altri:

$$Z(G) = \{ z \in G / \forall g \in G, g * z = z * g \}.$$

Mostrare che Z(G) è un sottogruppo di G, che è abeliano e che è normale in G.

Esercizio 3.15. a) Mostrare che se un gruppo è generato da un unico elemento, allora è abeliano.

- b) Mostrare che un gruppo con un numero primo di elementi è ciclico.
- c) Sia p un numero primo e G un gruppo con p^2 elementi. Quanti elementi può a priori avere Z(G)? Mostrare che se G/Z(G) è ciclico allora Z(G)=G. Contando gli elementi nelle classi di coniugio, verificare che non è possibile che Z(G)=1. Concludere che G è abeliano.

Esercizio 3.16. Si consideri la seguente proprietà di un gruppo (G, .): per ogni $x \in G$ e per ogni intero n > 0, se $x^n = 1_G$ allora $x = 1_G$.

- 1) I gruppi $(\mathbb{C}, +)$ e (\mathbb{C}^*, \times) hanno tale proprietà?
- 2) Nel seguito, (G, .) sarà un gruppo con tale proprietà. Si provi che se $x \neq 1_G$ e n e m sono interi tali che $x^n = x^m$ allora n = m.
- 3) Si definisca su G una relazione \leq ponendo, per ogni x, y in $G, x \leq y$ se e solo se esiste $n \in \mathbb{N}$ tale che $x = y^n$. Mostrare che \leq è una relazione di ordine su G.
- 4) Dimostrare che \leq è un ordine totale se e solo se $G = \{1_G\}$. (Indicazione: se $x \neq 1_G$, considerare x^2 e x^3 .)

Esercizio 3.17. Sia $\operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$ l'insieme delle matrici 2×2

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \quad \text{tali che } a,\,b,\,c,\,d \in \mathbb{Z}/2\mathbb{Z},\,\,ad-bc=[1]_2$$

In $GL_2(\mathbb{Z}/2\mathbb{Z})$ definiamo la moltiplicazione nel modo solito:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}$$

Verificare che $(GL_2(\mathbb{Z}/2\mathbb{Z}), \times)$ è un gruppo. Quanti elementi ha ? È abeliano ?

Esercizio 3.18. Consideriamo il gruppo (G,*) dove $G=\mathbb{R}^\times\times\mathbb{R}$ e * è la legge definita su G da

$$(x,y)*(x',y') = (xx',xy'+y).$$

- 1) Mostrare che (G, *) è effettivamente un gruppo.
- 2) Identificare il centro Z(G) di G.
- 3) Mostrare che $\mathbb{R}_+^{\times} \times \mathbb{R}$ è un sottogruppo di G.

Nota: questo tipo di costruzione si chiama prodotto semidiretto di \mathbb{R}^{\times} e \mathbb{R} .

Esercizio 3.19. Consideriamo il gruppo (G,*) dove $G = \mathbb{R}^{\times} \times \mathbb{R}$ e * è la legge definita su G da

$$(x,y)*(x',y') = (xx',xy' + \frac{y}{x'}).$$

- 1) Mostrare che (G, *) è effettivamente un gruppo.
- 2) Identificare il centro Z(G) di G.
- 3) Mostrare che $\mathbb{R}^{\times} \times \{0\}$, $\{1\} \times \mathbb{R}$ e $\mathbb{Q}^{\times} \times \mathbb{Q}$ sono dei sottogruppi di G.
- 4) Mostrare che per ogni $k \in \mathbb{Z}$, il sottoinsieme

$$H_k = \left\{ \left(x, k \left(x - \frac{1}{x} \right) \right) \middle/ x \in \mathbb{R}^{\times} \right\}$$

è un sottogruppo abeliano di (G, *).