

Estimating Methods

01418321 System Analysis and Design Chalothon Chootong (Ph.D.)

Department of Computer Science and Information, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus

chootong.c@ku.th

Objective

- Explain how projects are selected in some organizations
- Estimating the Project Time Frame
- Become familiar with project estimation.

Software Estimation

Predicting the resources required for a software development process (Size, People, Period, Price)

ขั้นตอนในการประมาณการ

- การเลือกกรรมวิธีการวดั ลักษณะของซอฟต์แวร์(Measurement Method)
- เลือกวิธีที่ใช้ในการประมาณการ(EstimationTechniques)
- ทำการประมาณการในส่วนของขนาดค่าใช้จายบุคลากรระยะเวลาและทรัพยากรที่ จำเป็น
- (Product Estimation)
- ทำการวิเคราะห์ความเสี่ยง หรือ ผลกระทบจากปัจจัยต่างๆ (Risk Assessment
- /Impact Analysis)
- ทำการตรวจทานตรวจสอบและปรับแก้ให้เหมาะสม (Review/Revise/Refine/Document)
- ทำการติดตามวัดผลผลติภัณฑ์หรือซอฟต์แแวร์ที่ได้ทำการพัฒนาจริง (Tracking/Product Measurement)
- ทำการปรับปรุง แก้ไขกระบวนการ(Process Improvement)

การประมาณการขนาดของซอฟต์แวร์

- สิ่งแรกก่อนที่จะทำการประมาณการซอฟต์แวร์ใด ๆ จะต้องทำการวัด ขนาดของซอฟต์แวร์เสียก่อน โดยสามารถแบ่งลักษณะของการวัด ออกเป็น 2เชิงด้วยกันคือ
- การวัดเชิงปริมาณ (Software Quantitative)
 วัดในเชิงขนาดบุคลากร ระยะเวลา อัตราความผิดพลาดในการ พัฒนาค่าใช้จ่าย
- การวัดเชิงคุณภาพ(Software Qualitative)
 วัดในเชิงลักษณะของการผลิตทีมงาน ความซับซ่อน การ บริหารจัดการ และ เทคโนโลยีที่นำมาใช้

Popular Estimating Methods

Wideband-Delphi method

Fuzzy-Logic Method

Standard-Component Method

Wideband-Delphi method

- A group of experts is each given the program's specifications and an estimation form
- They meet to discuss project goals, assumptions and estimation issues
- Given to the estimate moderator
- The experts meet to discuss the result
- Estimation
- The cycle continues at 3 times

เทคนิคเดลฟายเป็นเทคนิคที่มุ่งแสวงหาข้อมูลจากความคิดเห็นของกลุ่มผู้เชี่ยวชาญในเรื่องใดเรื่องหนึ่ง ด้วยการตอบแบบสอบถาม ดังนั้นผู้เชี่ยวชาญจึงจำเป็นต้องตอบแบบสอบถามที่ผู้วิจัยได้กำหนดขึ้นในแต่ละขั้นตอนการตอบหรือการตัดสินใจของผู้เชี่ยวชาญจะมีความถูกต้องและความตรงสูง เมื่อผู้เชี่ยวชาญนั้นเป็นที่ผู้ที่มีความรู้ และมีความเชี่ยวชาญในเรื่องที่ศึกษา

Example

Round 1

OE1: estimate 24

OE2 : estimate 30

OE3: estimate 20

OE4 : estimate 12

O12 20 24 30

$$(20+24)/2 = 22$$

Single-Band Delphi

Wide-Band Delphi

- For each task, each estimator provide the
 #Optimistic Effort: the least cost of least time
 #Pessimistic Effort: the most cost or time
 #Expected Effort: the realistic forecast
- Calculate the weighted average of these estimates from each eatimator.

$$E = \frac{O+P+4B}{6}$$

Confidence Interval

- The estimate should be provided as a range
- The 95% Confidence Interval is:

where

$$SE = \frac{|\bar{O} - \bar{P}|}{6}$$

SE = Standard Error

1.96 is Standard Error for 95% Confidence

Example: Wide-Band Delphi

The following estimates were provided in the second round by four estimators for next year's data use:

Estimator	P	0	В	E
Deepen	87	62	70	72
Alan	91	72	80	81
Melanie	88	50	70	70
Tonya	97	88	95	94

- I. What is the weighted estimate for each estimator?
- 2. What is the average joint estimate?
- 3. What is the 95% confidence interval for the estimate?

Advantages

- Use in every size product

Disadvantages

- Use many time
- ▶ Value depend on each person

Fuzzy-Logic Method

- Estimate size with historical data
- Separate developed products into size categories

Fuzzy-Logic Method

Range	Size-LOC
Very Small	2000
Small	8000
Medium	32000
Large	128000
Very Large	512000

LOC = Line Of Code

Advantages

- Refer to historical data
- Use to easy
- Don't have tool
- No train
- Good estimate because use historical data

Disadvantages

- Must have many historical data
- ▶ If new project unlike old project so incorrect
- Cannot use new project type
- Cannot in case New project bigger or smaller historical data

Standard-Component Method

size of project
effort (person-months)
time (months)

- Estimate system size (function points and lines of code)
- Estimate effort required (person-months)
- Estimate time required (months)

A function point is a measure of program size that is based on the system's number and complexity of inputs, outputs, queries, files, and program interfaces.

Function Point (FP)

- กระบวนการนับฟังก์ชันพอยต์ มีลักษณะดังนี้
- vั้นที่ 1 นำ Requirement ที่เก็บรวบรวมไว้มาทำการแบ่งฟังก์ชันพอยต์
- ขั้นที่ 2 ประเมินความซับซ้อนของฟังก์ชัน
- > ขั้นที่ 3 เปรียบเทียบความซับซ่อน เพื่อให้ได้ระดับความซับซ้อน เพื่อคำนวณฟังก์ชัน พอยต์ที่ ยังไม่ได้ปรับค่า (Unadjusted Function Point : UFP)
- vั้นนที่ 4 คำนวณค่าตัวแปรปรับค่า (Value Adjustment Factor) ตามลักษณะของโครงการ
- ขั้นที่ 5 คำนวณจำนวนฟังก์ชันพอยต์ที่ผ่านการปรับค่า (Adjusted Function Point : AFP)
- ขั้นที่ 6 ฟังก์ชันพอยต์ ที่ผ่านการปรับค่าสามารถนำไปคำนวณเป็น LOC ได้

Function Points

By Allen Albrecht of IBM (1979)

Description	Complexity			Total
	Low	Medium	High	
Inputs	*3	*4	*6	• • •
Outputs	*4	*5	*7	• • •
Inqueries	*3	*4	*6	•••
Files	*7	*10	*15	•••
Interface	*5	*7	*10	• • •
Total unadjusted function points (TUFP)				• • • •

Inputs (EI: External Input)

- O Screen or form through which human users of an application
- Other program add new data or update existing data
- If an input screen is too large for a single normal display (usually 80 columns by 25 lines) and flows over onto a second screen

Outputs (EO: External Output)

- Screen or report for human users
- Separate processing are the unit to count

Inquiries (EQ: External Query)

- Screens that allow users to interrogate an application
- Ask for assistance or information
- Such as help screens

Files (ILF: Internal Logical Files)

- Logical collections of records that the application modifies or update
- One table within a relational database
- One path through a network database

Interface(EIF: External Interface File)

- Files shared with other applications
- Incoming or outgoing tape files
- Shared database

Project Complexity

ค่าที่ประเมินตั้งแต่ 0 (ไม่เกี่ยวข้อง) ถึง 5 (เกี่ยวข้องมาก)

	คุณลักษณะ	ค่า		คุณลักษณะ	ค่า
1	การติดต่อสื่อสารข้อมูล (Data		8	การปรับปรุงข้อมูลแบบออนไลน์ (Online	
	Communication)			Update)	
2	การประมวลผลข้อมูลแบบกระจาย		9	ความซับซ้อนของการประมวลผล	
	(Distribution Data Processing)			(Complex Processing	
3	ประสิทธิภาพของระบบ (Performance)		10	การนำไปใช้ซ้ำได้ (Reusability)	
4	การแก้ไขค่าของระบบ (Configuration)		11	ความง่ายในการติดตั้ง (Installation	
				Ease)	
5	ปริมาณรายการข้อมูล (Transaction)		12	ความง่ายในการดำเนินงาน (Operational	
				Ease)	
6	การป้อนข้อมูลเข้าสู่ระบบแบบออนไลน์		13	การใช้งานได้หลายไซต์ (Multiple Sites)	
	(Online Data Entry)				
7	ประสิทธิภาพการใช้งานของผู้ใช้ (End-		14	รองรับการเปลี่ยนแปลงความต้องการของ	
	user Effciency)			ผู้ใช้ (Change Requirement)	

Project complexity (PC):

Data Communication

The data and control information used in the application are sent or received over communication facilities.

Heavy use configuration

A heavily used operational configuration, requiring special design considerations, is a characteristic of the application.

Transaction rate

The transaction rate is high and influences the design, development, installation and support.

End-user efficiency

The on-line functions provided emphasize a design for end-user efficiency.

Complex processing

Complex processing is a characteristic of the application.

Installation ease

Conversion and installation ease are characteristics of the application. A conversion and installation plan and/or conversion tools were provided and tested during the system test phase.

Multiple sites

The application has been specifically designed, developed and supported to be installed at multiple sites for multiple organizations.

Performance

Application performance objectives, stated or approved by the user, in either response or throughput, influence (or will influence) the design, development, installation and support of the application.

Distributed functions

Distributed data or processing functions are a characteristic of the application within the application boundary.

On-line data entry

On-line data entry and control information functions are provided in the application.

On-line update

The application provides on-line update for the internal logical files.

Reusability

The application and the code in the application have been specifically designed, developed and supported to be usable in other applications.

Operational ease

Operational ease is a characteristic of the application. Effective start-up, backup and recovery procedures were provided and tested during the system test phase.

Extensibility

The application has been specifically designed, developed and supported to facilitate change.

The APC factor has a baseline value of 0.65

Adjusted Project complexity (APC) = 0.65 + (0.01 * PC)

Total adjusted function points (TAFP) = APC * TUFP

Lines of code (LOC)

https://www.qsm.com/resources/function-point-languages-table

Calculated by

TAFP * Number LOC per FP of each Language

Language	Approximate Number of Lines of Code per Function Point
С	130
COBOL	110
Java	55
C++	50
Turbo Pascal	50
Visual Basic	30
PowerBuilder	15
HTML	15
Packages (e.g., Access, Excel)	10-40
Source: Capers Jones, Software Productiv	rity Research, http://www.spr.com

เปรียบเทียบค่ำ FP เพื่อแปลงไปเป็น LoC ตามมาตรฐานของ QSM (Quantitiative Software Management: www.qsm.com)

Estimate effort

- **By Constructive Cost Model: COCOMO**
- COCOMO Model depend on

Complexity of software

Size of the system

Experience of developer

The type of software

Software have 3 level

Organic

Semi-detached

Embedded

การประมาณการต้นทุนและ Effort ด้วยแบบจาลอง COCOMO นั้น เป็นการคำนวณจากขนาดของ ซอฟต์แวร์ ร่วมกับปัจจัยแวดล้อมอื่น ๆ ที่เกี่ยวข้อง เช่น ความแน่นอนของกระบวนการ และความสามารถ ในการผลิตซอฟต์แวร์ ของทีมงาน ความยืดหยุ่น ความเสี่ยง และวิธีจัดการกับความเสี่ยง

สามารถแบ่งออกเป็น 3 ประเภทโครงการดังนี้

	ลักษณะโครงการ			
ประเภท	ดูจาก LOC Fluzzie	นวัตกรรมใหม่	ระยะเวลาและ ข้อจำกัด	ลักษณะการ พัฒนา
Organic	เล็ก	เล็กน้อย	มีความยืดหยุ่นมาก	คงที่
Semi Detached	กลาง	บางส่วน	ระยะเวลาเหมาะสม ไม่มีข้อจำกัดมากนัก	ปานกลาง
Embedded	ใหญ่	ค่อนข้างมาก	ระยะเวลาสั้น ต้อง เร่งค่วน และ ข้อจำกัดสูง	ซับซ้อน

Effort (E) = a KLOC b

	a	b	С	d
Organic	2.4	1.05	2.5	0.38
Semi-	3.0	1.12	2.5	0.35
detached				
Embedded	3.6	1.20	2.5	0.32

Estimate time

schedule time (month) = $c * E^d$

- ☐ This estimate is for
 - Analysis
 - Design
 - Implementation
 - Does not include the planning

Advantages

- COCOMO is transparent
- Estimator to understand the impact of difference factors that affect project costs

Disadvantages

- ▶ It is hard to accurately estimate early on in the project
- Is not a size measure it is a length measure
- Vulnerable to mis-classification of the development mode
- Success depends largely on tuning the model to the needs of the organization, using historical data which is not always available

Example

Description	Complexity			Total
	Low	Medium	High	
Inputs	1*3	3*4	1*6	21
Outputs	3*4	4*5	1*7	39
Inqueries	2*3	5*4	2*6	38
Files	0*7	1*10	0*15	10
interface	2*5	2*7	3*10	54
Total unadjusted function points (TUFP)				162

Project Complexity

	0-5
1. Data Communication	2
2. Heavy use configuration	3
3. Transaction rate	1
4. End-user efficiency	3
5. Complex processing	3
6. Installation ease	1
7. Multiple sites	4

Project Complexity (Cont.)

	0-5
8. Performance	5
9. Distributed functions	3
10. On-line data entry	3
11. On-line update	3
12. Reusability	4
13. Operational ease	4
14. Extensibility	4
Project complexity (PC):	43

With JAVA

- \triangleright Line of Code = 174.96 * 55
- > = 9623
- Note LOC ทำการ หารด้วย 1000 เพื่อทำการ nomalization Semi-detached

schedule time (month) =
$$c * E^d$$

= $2.5 * 30^{0.35}$
= 8.22 months

Thanks! Any questions?