

LA MAINTENANCE DES EQUIPEMENTS

Frederic FONTANE

16 Novembre 2016

Pourquoi s'interesser a la maintenance ?

Croissance des enjeux autour des equipements :

- 1. Le Juste-a-Temps
- 2. Economie

- 3. Respect CDC Securite
- 4. Service et perception client

Enjeux economiques de la maintenance

Quelques chiffres ... (France -2014 -source AFIM)

Dépenses de maintenance dans l'industrie : **22 Mds €** dont **7,7 Mds €** sous-traités 40% main d'œuvre interne, 34% sous-traitance, 24% pièces de rechange

Dépenses de maintenance dans l'immobilier tertiaire : 17,6 Mds dont 13,2 € sous-traités

430 000 emplois

Enjeux economiques de la maintenance

Securite et respect du cahier des charges du constructeur

ES : examen de service ECC : examen confort client

EMN: examen mécanique

VL : visite limitée

VG : visite générale

ATS : autres travaux systématiques

GVG : grande visite générale OP mi-vie : 15 ans modulable

Logique Juste a Temps

Definition et typologie de la maintenance

La maintenance cherche a maintenir ou retablir un bien (equipement) dans un etat specifie afin que celui-ci soit en mesure d'assurer un service determine.

Un compromis correctif-preventif... souvent dicte par les exigences de service

répartition des coûts des centrales nucléaires

Notion de fiabilite, maintenabilite et disponibilite

Exemple

Le responsable de la maintenance d'une entreprise a le fichier historique d'un tour. Chaque tour est équipé d'un terminal de saisie des données de production. Ces données sont récapitulées dans le tableau ci-dessous.

N°	Défaillance	Cause	TBF en h.	Pièce de rechange	Coûts en €.	TTR en h.
1	Moteur	Electrique	80	Contacteur	300	2
2	Moteur	Electrique	40	Relais thermique	300	3
3	Broche	Mécanique	50	Courroie	150	2
4	Broche	Mécanique	100	Roulement	200	8
5	Avance	Electrique	60	Pignon	300	5
6	Avance	Electrique	40	Relais	150	2
7	Lubrification	Mécanique	20	Moteur	600	3
8	Lubrification	Hydraulique	5	Pignon	100	4
9	Lubrification	Hydraulique	10	Filtre	100	3
10	Lubrification	Hydraulique	20	Réservoir	0	1.25

Total TBF = Σ TBF = 425 h.

Total TTR = Σ TTR = 33,25 h.

MTBF = Σ TBF / nb de défaillances = 425 / 10 = 42,5 h. MTTR = Σ TTR / nb de défaillances = 33,25 / 10 = 3,325 h D = MTBF / (MTBF + MTTR) = 42,5 / (42,5 + 3,325) = 0,927

La disponibilite

- □ La disponibilite c'est la proportion du temps pendant laquelle le système fonctionne correctement
- Mesuree par la duree entre les pannes et par la rapidite de reprise de service. Indicateur a contextualiser!

- Disponibilite
 - **90**%
 - **99**%
 - **99.9**%
 - **99.99%**
 - **99.999**%
 - **99.9999**%

- Temps d'arret
- 36.5 jours/annee
- 3.65 jours/annee
- 8.76 heures/annee
- 52 minutes/annee
- 5 minutes/annee
- 31 secondes/annee

Amelioration de la disponibilite

- En conception :
 - Fiabilite: Modelisation des taux de defaillance, analyse MTBF des composants, architecture redondee, tolerance aux pannes,...
 - Maintenabilite: MTTR (Mean Time To Replace) des organes, modularite, facilite d'acces aux organes a maintenir.
 - Systemes embarques de diagnostic et de transmission de donnees.
 Signaux de prevention.
 - ☐ En maintenance :
 - AMDEC
 - TPM
 - **.**.,

L'AMDEC

- ☐ Analyse des Modes de Defaillance, de leurs Effets leurs Criticite
- □ Origine : 1949 armee americaine
- ☐ Analyse d'une machine, d'un produit, d'un fournisseur
 - QS 1988 : AMDEC pour auditer les fournisseurs

L'AMDEC : une demarche a la fois qualitative et quantitative

QUALITATIVE

- Decoupage Fonctionnel
- Analyse des Modes de Defaillances
- Analyse des Causes
- Analyse des Effets

QUANTITATIVE

- Cotation des parametres (Frequence d'apparition , Gravite)
- Calcul de la criticite a partir de ces parametres
- Mesure des resultats

Une demarche en 4 etapes

MINES *

ETAPE 1: INITIALISATION DE L'ETUDE

ETAPE 2: DECOMPOSITION FONCTIONNEL

D'UN SYSTEME

Decoupage arborescent du systeme Inventaire des Fonctions de service Inventaire des fonctions elementaires

Exemple de decoupage fonctionnel

Verins

Une demarche en 4 etapes

ETAPE 3: ANALYSE AMDEC DU SYSTEME

- Analyse des mecanismes de defaillances : modes de defaillance, causes, effets, detections eventuelles
- Evaluation de la criticite: estimation des temps d'intervention, des frequences d'apparition des defaillances, evaluation des criteres de cotation, calcul de la criticite
- Proposition d'actions correctives : reduction des effets par de la maintenance preventive , detection preventive

ETAPE 4 : SYNTHESE DE L'ETUDE

- Hierarchisation des defaillances: liste des pannes resumees, classement par categories, symptomes observables....)
- Liste des points critiques et plan de maintenance eventuel

Analyse de la criticite

MODE DE DEFAILLANCE

QUE PEUT-IL ARRIVER?

EFFETS

QUELLES EN SONT LES CONSEQUENCES?

CAUSES

POURQUOI CETTE DEFAILLANCE EST-ELLE ARRIVEE?

FREQUENCE = F

QUELLE EST LA FREQUENCE DES DEFAILLANCES?

GRAVITE = G

LA QUALITE EST-ELLE BONNE ?

LA SECURITE EST-ELLE GARANTIE ?

QUELLE SERA LA DUREE DE L'INTERVENTION?

QUELS SERONT LES COUTS DIRECTS ET INDIRECTS?

DETECTION = D

QUELLE EST LA PROTECTION SUR CET EQUIPEMENT QUI PERMET DE DETECTER LA DEFAILLANCE?

Analyse de la criticite

Criticite $C = F \times G \times D$

⇒ LA COTATION DES CRITERES F (frequence), G (gravite), D (detection) s 'effectue en general de 1 a 4 (ou a 5)

NIVEAU OU COTATION	1	2	3	4
FREQUENCE	Tres faible taux d'apparition Moins de une defaillance par an	apparition d'apparition pins de une		Taux d'apparition Regulier Plusieurs defaillances par semaine
DETECTION	VISUELLE A COUP SUR	VISUELLE APRES ACTION DE L'OPERATEUR	DIFFICILEMENT DECELABLE (Eventuellement auditif)	DETECTION IMPOSSIBLE
GRAVITE	Duree d'intervention D < 10 mn Peu ou pas de pertes de production		Duree d'intervention 30 mn < D < 45 mn	

Analyse AMDEC

i			L
Po	mpe à ha pression		f hyc
L	Pompe pres		e
		Filtre	
	L	Réfr	igérant
			,

Elément	fonction	Mode de	cause	Effet	Détection		Cri	ticit	é	Action
		défaillance				F	G	D	C	
Pompe à haute pression	Débiter l'huile à haute pression	Faible débit	l'usure abrasive des engrenages	Arrêt du broyeur	Impossible	2	2	4	16	Surveillance périodique
Pompe à basse pression	Débiter l'huile à basse pression	Arrêt du débit	détérioration du joint a lèvres	Arrêt du broyeur	visuel	3	4	1	12	Assure l'étanchéité
Réfrigérant	Refroidir 1'huile	bouchage	Présence d'un film de tartre sur la surface d'échange	Augmentation de la température	visuel	3	2	1	б	Nettoyage de la surface d'échange
Filtre	Filtration d'huile	colmatage	Saleté Dépôt de débris	Contamination d'huile	Indicateur de colmatage	3	2	1	6	Changement de filtre

Organes	criticités	Cumulé	Pourcentage cumulé
Limiteur de pression	27	12,86	12,86
Pompe hydraulique	24	11,43	24,29
Accumulateur à piston	24	11,43	35,72
Vérin	20	9,52	45,24
Distributeur	18	8,57	53,81
Pompe à haute pression	16	7,62	61,43
Pompe à basse pression	12	5,71	67,14
Réducteur	12	5,71	72,85
Paires de galets	12	5,71	78,57
Filtre	6	2,86	81,43
Réfrigérant	6	2,86	84,29
Accouplement	6	2,86	87,15
Tirants /manilles	6	2,86	90,01
Moteur électrique	5	2,38	92,39
Armoire électrique	4	1,9	94,29
Bâti	4	1,9	96,19
Flexible	4	1,9	100

Somme 210

Les limites de l'AMDEC

- □ N'est pas une methode de resolution de problemes.
- □ Ne permet pas l'etude des combinaisons de defaillances (plutot reservee aux Arbres de Defaillances, reseau de Markov,...).
- □ Ne peut pas garantir l'exhaustivite de l'etude.
- ☐ Est une methode fastidieuse pour l'etude des systemes complexes.

Pratiques japonaises du traitement des pannes

Objectif: obtenir au moindre cout le rendement maximum pendant toute la duree de vie

MINES ** ParisTech

Le modele de la Total Productive Maintenance (TPM)

- ☐ Resolution de la panne de maniere collective
 - Implication des operateurs
 - □ Fonction maintenance integree a la production
- □ Au dela de la remise en route c'est la cause profonde la panne qui doit etre traitee.
- □ Des methodologies specifiques :
 - **5**\$
 - ☐ Un indicateur : le TRS

Exemple d'une tentative d'auto-maintenance du materiel roulant

En exploitation

Niveau 1 = operations de surveillance lors des circulations (dispositif de surveillance de la temperature des boites d'essieux...)

 Niveau 2 = verifications, tests, echanges rapides d'equipements entre deux circulations

Hors exploitation

- Niveau 3 = visites periodiques preventives et deposes d'organes, generalement hors service commercial (en centre de maintenance)
- Niveau 4 = operations de maintenance majeures, les revisions (en atelier)
- Niveau 5 = modernisation, transformation ou reparation importante (en atelier)

Une demarche basique : les 5S

□ SEIRI: debarrasser

□ SEITON: ranger

□ SEISO: nettoyer

□ SEIKETSU: standardiser

□ SHITSUKE : suivre

<u>Trier</u> Pas d'objets inutiles, piece cassee, objets divers, objets rouillees, recuperation "ca pourrait servir".

Ranger Outils/objets identifies (Chaque chose a une place assignee).

<u>Nettoyer</u> Nettoyage regulier des outils et environnement de travail, controle et inspection periodique.

Standardiser Etablir des consignes de nettoyage, de rangement et de securite.

Privilegier le management visuel.

Respecter et Ameliorer Verifier periodiquement l'application et le respect des standards etablis (audits 5S).

5S Exemple

Avant Après

Interets du 5S

Demarche	But de la demarche	5S en quoi ?	Pourquoi ?		
TPM	Minimiser les arrets (pannes) et maximiser le temps productif	Nettoyer et repeindre sols, carters de machines, conduites	Rendre toute anomalie (fuite, perte) visible et facilement detectable		
SMED	Minimiser le temps d'arret machine pour preparation et de changement de serie/outil	Avoir les outils et accessoires propres et utilisable, a proximite immediate, ranges de maniere standard et bien ordonnee	Minimiser les pertes de temps, eliminer les recherches		
Qualite	Eliminer les defauts a la source	Environnement de travail propre, ordonne	Eliminer les risques pour la fabrication ; rayures par dechets ou objets inutiles, confusions, salissures		

Reflechir a la productivite d'une machine : la decomposition du temps

Le calcul d'un TRS

 $TRS = \frac{Tps \ marche \ brut}{Tps \ ouverture} \cdot \frac{Tps \ marche \ net}{Tps \ marche \ brut} \cdot \frac{Tps \ marche \ efficace}{Tps \ marche \ net}$

TRS = $D^*E^*T = 0.83^*0.5^*0.98 = 0.41$

Synthese

☐ Un domaine « obscur » pourtant essentiel

☐ Life cycle cost

☐ Un domaine qui peut « produire » ou « detruire » le service

Exemple simplifie d'un arbre de defaillance

