Last Time

Defined eigenvalues + eigenvectors

- if $\vec{v}_1, ..., \vec{v}_m$ are eigenvectors, will distinct eigenvalues $\vec{v}_1, ..., \vec{v}_m$ then $(\vec{v}_1, ..., \vec{v}_m)$ is LI.

Corollary: If dim v=n < 00, then TE I(V) has at MOST

n distinct eigenvalues

Today

Does Jan eigenvalue? Is T diagonalizable

Next Goal: Tell(V), din V=n < 00, vector space over C. Show: I eigenvelue of T

P- Idea: Apply polynomials to T

Given $p(x) \in F[x]$ (Already have defined p(T) (also p(A))

(3) if p(x) = f(x)g(x) then p(T) = f(T)g(T)

3 Suppose $T(\vec{t}) = \lambda \vec{\nabla}$, $p(x) \in F[x]$. When is $p(T)(\vec{v})$?

5

if $p(x) = a_0 + a_1x + \dots + a_mx^m$, $a_i \in \mathbb{I}^m \neq i$ $p(T) = a_0 + a_1 + \dots + a_m + a_m$ $= a_0 + a_1 + a_1 + \dots + a_m + a_m$ $= \sqrt[m]{a_0 + a_1 + \dots + a_m}$ $= \sqrt[m]{a_0 + a_1 + \dots + a_m}$ $= \sqrt[m]{a_0 + a_1 + \dots + a_m}$ $= \sqrt[m]{a_0 + a_1 + \dots + a_m}$

If B = 0'A0 are similar and phale [X] we have p(A), p(B) n×n matrices, how are they related?

 $B = \alpha' A \alpha$ $B^2 = \alpha' A \alpha \alpha' A \alpha = \alpha' A^2 \alpha$: $B^{\alpha} = \alpha' A^{\alpha} \alpha$

P(B) = a. I + a, B+ ... + amBm = Q-1 (a. I + a, A+ ... + amAm)Q = 0-1 P(A)Q

Aside on direct sums

Suppose $V_1, V_2, ..., V_r \subseteq V$ are subspaces suppose $W = V_1 + V_2 + ... + V_r$ we say

W= V, + ... + Vr

is a direct sum written

w= v, ⊕ ... ⊕ 1,

if

DW= 0,+...+Vr

(3) Whenever $u_{1,...,1}u_{r}$, $u_{i}eV$ and $u_{i,+...+}u_{r}=0$ then $u_{i}=...$ $u_{r}=0$

Example: if V has a basis $(\vec{v}_1,...,\vec{v}_n)$ and if we let $V_i = \text{span}(\vec{v}_i)$, then $V = V_i \oplus V_2 \oplus \cdots \oplus V_n$ also: if $(v_1,...,v_n)$ spans V then $(V_1,...,v_n)$ is $ZI \iff V = V_i \oplus \cdots \oplus V_n$

Remark: \vec{v} † 0. Then \vec{v} is an eigenvector of $T \in L(v)$ w | eigenvalue \vec{v} $\Leftrightarrow T\vec{v} = \lambda\vec{v}$ $\Leftrightarrow T\vec{v} = \lambda \vec{v}$ $\Leftrightarrow (T - \lambda \vec{I}) \vec{v} = 6$

⇒ veker (T->I)

Jo 2 is an eigenvalue (=) ker (T-7I)+0 Buret

If dim V=NLOD

Definition: Given a vector space V_1 $T \in \mathcal{L}(V)$ or $A_{n \times n_1}$. Let $E_{\gamma}(T) = E_{\gamma} \stackrel{d}{=} \ker(T - \gamma I) \leq V$ be the λ -eigenspace of T. Also

En(A) = ker(A- ZI) = F"

Theorem: Let V be a finite dimensional vector space over C and let Te Ilv).

Then I DEC s.E. 2= eigenvalue of T.

Proof: Suppose dim V=n >0 Choose a vector vev, v+0.

Consider

7, T(v), T°(v), ..., T°(v) ← n+1 vecs

.. 3 LD on above list.

i.e $\exists a_0, ..., a_n \in ()$ s.t. $\vec{o} = a_0 \vec{v} + a_1 \vec{v} + ... + a_n T^n(\vec{v}) = p(T) \vec{v}$ if $p(x) = a_0 + a_1 x + ... + a_n x e^m$ Suppose deg $p(x) = m \leq n$ Now use fundamental theory of algebra $p(\infty) = c(\infty - \lambda)(\kappa - \lambda_2) - - (\infty - \lambda_m)$ $p(T) = c(T - \lambda_1 I)(T - \lambda_2 I) ...(T - \lambda_m I)$ Know is ker p(T) $c(T - \lambda_1 I) - - \cdot (T - \lambda_m I) = 0$ So if ker (T - \lambda_1 I) \delta for some i

then we have \lambda_i = eigenvalue.

Other: T - \lambda_i I is invertible \for i = 1,..., \lambda

... \Pi(T - \lambda_i I) invertible.

But TEker T.

Contradiction:

-- Some 7 - 7: I is NOT invertible

- that is 7: is an eigenvalue