Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

13 September 2021

Outline

- Motivation
- 2 Call-strings method
- 3 Correctness
- 4 Bounded call-string method
- 5 Approximate call-string method

How would we extend an abstract interpretation to handle programs with procedures?

```
main(){
    x := 0;
    x := x+1;
    f();
    return;
    g();
    print x;
}
```

How would we extend an abstract interpretation to handle programs with procedures?

```
main(){
    x := 0;
    f(){
    x := x+1;
    f();
    f();
    return;
    return;
    print x;
}
```

Question: what is the collecting state before the print x statement in main?

How would we extend an abstract interpretation to handle programs with procedures?

```
main(){
                       f(){
                                              g(){
                                                 f();
  x := 0;
                         x := x+1;
  f();
                         return;
                                                 return;
  g();
  print x;
```

Question: what is the collecting state before the print x statement in main? Answer: $x \mapsto 2$.

- Add extra edges
 - call edges: from call site (call p) to start of procedure (p)
 - ret edges: from return statement (in p) to point after call sites ("ret sites") (call p).

 Assume only global variables.

Motivation 000000000

> Transfer functions for call/return edges?

- Assume only global variables.
- Transfer functions for call/return edges? Identity function

- Assume only global variables.
- Transfer functions for call/return edges? Identity function
- Now compute JOP in this extended control-flow graph.

Ex. 1. Actual collecting state at C?

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$.

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis?

state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis? $\{x \mapsto 1, x \mapsto 2, x \mapsto 3, \ldots\}$.

Ex. 1. Actual collecting

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis? $\{x\mapsto 1,\ x\mapsto 2,\ x\mapsto$

- JOP is sound but very imprecise.
- Reason: Some paths don't correspond to executions of the program: Eg. ABDFGILC.

Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis? $\{x\mapsto 1,\ x\mapsto 2,\ x\mapsto$

Reason: Some paths don't correspond to executions of the program: Eg. ABDFGILC.

What we want is Join over "Interprocedurally-Valid" Paths (JVP).

Interprocedurally valid paths and their call-strings

- Informally a path ρ in the extended CFG G' is inter-procedurally valid if every return edge in ρ "corresponds" to the most recent "pending" call edge.
- For example, in the example program the ret edge E corresponds to the call edge D.
- The call-string of a valid path ρ is a subsequence of call edges which have not been "returned" as yet in ρ .
- For example, cs(ABDFGEKJHF) is "KH".

Interprocedurally valid paths and their call-strings

• A path $\rho = ABDFGEKJHF$ in $IVP_{G'}$ for example program:

- Associated call-string $cs(\rho)$ is KH.
- For $\rho = ABDFGEK \ cs(\rho) = K$.
- For $\rho = ABDFGE \ cs(\rho) = \epsilon$.

Call-strings method

Interprocedurally valid paths and their call-strings

More formally: Let ρ be a path in G'. We define when ρ is interprocedurally valid (and we say $\rho \in IVP(G')$) and what is its call-string $cs(\rho)$, by induction on the length of ρ .

- If $\rho = \epsilon$ then $\rho \in IVP(G')$. In this case $cs(\rho) = \epsilon$.
- If $\rho = \rho' \cdot N$ then $\rho \in IVP(G')$ iff $\rho' \in IVP(G')$ with $cs(\rho') = \gamma$ say, and one of the following holds:
 - N is neither a call nor a ret edge. In this case $cs(\rho) = \gamma$.
 - N is a call edge. In this case $cs(\rho) = \gamma \cdot N$.
 - **1** N is ret edge, and γ is of the form $\gamma' \cdot C$, and N corresponds to the call edge C. In this case $cs(\rho) = \gamma'$.
- We denote the set of (potential) call-strings in G' by Γ . Thus $\Gamma = \mathcal{C}^*$, where \mathcal{C} is the set of call edges in G'.

Join over interprocedurally-valid paths (JVP)

- Let P be a given program, with extended CFG G'.
- Let $path_{I,N}(G')$ be the set of paths from the initial point I to point N in G'.
- Let $\mathcal{A} = ((D, \leq), f_{MN}, d_0)$ be an abstract interpretation for P.
- Then we define the join over all interprocedurally valid paths (JVP) at point N in G' to be:

$$\bigsqcup_{\rho \in path_{I,N}(G') \cap IVP(G')} f_{\rho}(d_0)$$

Sharir and Pnueli's approaches to interprocedural analysis

Motivation

000000000

Micha Sharir and Amir Pnueli: Two approaches to interprocedural data flow analysis, in Program Flow Analysis: Theory and Applications (Eds. Muchnick and Jones) (1981).

One approach to obtain JVP: Call-Strings

- Find JOP over same graph, but modify the abs int.
- Modify transfer functions for call/ret edges to detect and invalidate invalid edges.
- Augment underlying data values with some information for this.
- Natural thing to try: "call-strings".

Overall plan

- Define an abs int \mathcal{A}' which extends given abs int \mathcal{A} with call-string data.
- Show that JOP of A' on G' coincides with JVP of A on G'.
- Use Kildall (or any other technique) to compute LFP of \mathcal{A}' on \mathcal{G}' . This value over-approximates JVP of \mathcal{A} on \mathcal{G}' .

• Elements of D' are maps $\xi : \Gamma \to D$

- Ordering on D': \leq' is the pointwise extension of \leq in D.
- That is $\xi_1 \leq \xi_2$ iff for each $\gamma \in \Gamma$, $\xi_1(\gamma) \leq \xi_2(\gamma)$.

Motivation

• Elements of D' are maps $\xi: \Gamma \to D$

ć .	ϵ	c_1	c ₁ c ₂	c1 c2 c2	
ς.	d ₀	d_1	d ₂	d ₃	

- Ordering on D': \leq' is the pointwise extension of \leq in D.
- That is $\xi_1 \leq \xi_2$ iff for each $\gamma \in \Gamma$, $\xi_1(\gamma) \leq \xi_2(\gamma)$.

• Check that (D', <') is also a complete lattice.

Motivation

- A call-string table ξ at program point N represents the fact that, for each call-string γ , there are some initial paths with call-string γ reaching N, and the join of the abstract states (obtained by propagating d_0) along these paths is $\xi(\gamma)$.
- The transfer functions of \mathcal{A}' should keep this meaning in mind.

Call-string abs int A': Initial value ξ_0

• Initial value ξ_0 is given by

$$\xi_0(\gamma) = \begin{cases} d_0 & \text{if } \gamma = \epsilon \\ \bot & \text{otherwise.} \end{cases}$$

Call-string abs int A': transfer functions

Transfer functions for non-call/ret edge N:

$$f'_{MN}(\xi) = f_{MN} \circ \xi.$$

Transfer functions for call edge N:

$$f'_{MN}(\xi) = \lambda \gamma. \begin{cases} \xi(\gamma') & \text{if } \gamma = \gamma' \cdot N \\ \bot & \text{otherwise} \end{cases}$$

 Transfer functions for ret edge N whose corresponding call edge is C:

$$f'_{MN}(\xi) = \lambda \gamma . \xi(\gamma \cdot C)$$

• Transfer functions f'_{MN} is monotonic (distributive) if each f_{MN} is monotonic (distributive).

Transfer functions f'_{MN} for example program

Non-call/ret edge B:

$$\xi_B = f_{AB} \circ \xi_A.$$

• Call edge *D*:

$$\xi_D(\gamma) = \begin{cases} \xi_B(\gamma') & \text{if } \gamma = \gamma' \cdot D \\ \bot & \text{otherwise} \end{cases}$$

• Return edge *E*:

$$\xi_E(\gamma) = \xi_G(\gamma \cdot D).$$

Let \mathcal{A} be the standard collecting state analysis. For brevity, represent a set of concrete states as $\{0,1\}$ (meaning the 2 concrete states $x \mapsto 0$ and $x \mapsto 1$). Assume an initial value $d_0 = \{0\}.$

Show the call-string tagged abstract states (in the lattice A') along the paths

- ABDFGEKJHFGIL (interprocedurally valid)
- ABDFGIL (interprocedurally invalid).

Correctness claim

Assumption on A: Each transfer function satisfies $f_{MN}(\bot) = \bot$.

Claim

Let N be a point in G'. Then

$$JVP_{\mathcal{A}}(N) = \bigsqcup_{\gamma \in \Gamma} JOP_{\mathcal{A}'}(N)(\gamma).$$

Proof: Use following lemmas to prove that LHS dominates RHS and vice-versa.

IVP Paths reaching N

Paths reaching N

Correctness claim: Lemma 1

Lemma 1

Motivation

Let ρ be a path in $IVP_{G'}$. Then

$$f'_{\rho}(\xi_0) = \lambda \gamma. \begin{cases} f_{\rho}(d_0) & \text{if } \gamma = cs(\rho) \\ \bot & \text{otherwise.} \end{cases}$$

ϵ	c_1	$cs(\rho)$	c1 c2 c2	
Т	1	d	\perp	

Proof: by induction on the length of ρ .

Correctness claim: Lemma 2

Lemma 2

Let ρ be a path not in $IVP_{G'}$. Then

$$f_{\rho}'(\xi_0) = \lambda \gamma. \perp.$$

ε	c ₁	c ₂	c1 c2 c2	
_	1		1	

Proof:

- ρ must have an invalid prefix.
- Consider smallest such prefix $\alpha \cdot N$. Then it must be that α is valid and N is a return edge not corresponding to $cs(\alpha)$.
- Using previous lemma it follows that $f'_{\alpha,N}(\xi_0) = \lambda \gamma. \perp$.
- But then all extensions of α along ρ must also have transfer function $\lambda \gamma. \perp$.

Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.

Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.

Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.

Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.

 Problem is that D' is infinite in general (even if D were finite). So we cannot use Kildall's algo to compute an over-approximation of JOP (it may not terminate when the program has recursive procedures).

Available expressions

- An expresssion (like "a * b") is available along an execution if there is a point where the expression is evaluated and thereafter none of the constituent variables (like a and b) are written to.
- An expression is available at a point N in a program, if along every execution reaching N, the expression is available.
- Is a * b available at program point N?

Available expressions

- An expresssion (like "a * b") is available along an execution if there is a point where the expression is evaluated and thereafter none of the constituent variables (like a and b) are written to.
- An expression is available at a point N in a program, if along every execution reaching N, the expression is available.
- Is a * b available at program point N? Yes.

Available expressions analysis

Lattice for Av-Exp analysis for a * b.

- "0" concretizes to the set States × {A, NA}; while "1" concretizes to States × {A}. "⊥" concretizes to Ø.
- JOP of analysis says
 a * b is not available at program point N.

Available expressions analysis

Lattice for Av-Exp analysis for a * b.

- "0" concretizes to the set States × {A, NA}; while "1" concretizes to States × {A}. "⊥" concretizes to Ø.
- JOP of analysis says
 a * b is not available at program point N.
- JVP says it is available.

Motivation

Computing JOP for abs int A'

- We give two methods to bound the number of call-strings we need to consider, when underlying lattice (D, \leq) is finite.
 - Give a bound on largest call-string needed.
 - Use "approximate" call-strings.

Bounded call-string method for finite underlying lattice *D*

- Possible to bound length of call-strings Γ we need to consider.
- For a number I, we denote the set of call-strings (for the given program P) of length at most I, by Γ_I .
- Define a new analysis \mathcal{A}'' (M-bounded call-string analysis) in which call-string tables have entries only for Γ_M for a certain constant M, and transfer functions ignore entries for call-strings of length more than M.
- We will show that JOP(G', A'') = JOP(G', A').

- Consider any fixpoint V' (a vector of tables) of \mathcal{A}' .
- Truncate each entry of V' to (call-strings of) length M, to get V''.
- Clearly V' dominates V''.
- Further, observe that V'' is a post-fixpoint of the transfer functions for \mathcal{A}'' .
- By Knaster-Tarski characterisation of LFP, we know that V" dominates LFP(A").

Sufficiency (or safety) of bound

Let k be the number of call sites in P.

Claim

For any path p in $IVP(r_1, N)$ with a prefix q such that $|cs(q)| > k|D|^2 = M$ there is a path p' in $IVP(r_1, N)$ with $|cs(q')| \leq M$ for each prefix q' of p', and $f_p(d_0) = f_{p'}(d_0)$.

Paths with bounded call-strings

Proving claim

Claim

For any path p in $IVP(r_1, N)$ such that for some prefix q of p, $|cs(q)| > M = k|D|^2$, there is a path p' in $IVP_{\Gamma_M}(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0).$

Sufficient to prove:

Subclaim

For any path p in $IVP(r_1, N)$ with a prefix q such that |cs(q)| > M, we can produce a smaller path p' in $IVP(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0).$

• ...since if $|p| \leq M$ then $p \in IVP_{\Gamma_M}$.

Proving subclaim: Path decomposition

A path ρ in $IVP(r_1, n)$ can be decomposed as

$$\rho_1\|(c_1,r_{p_2})\|\rho_2\|(c_2,r_{p_3})\|\sigma_3\|\cdots\|(c_{j-1},r_{p_j})\|\rho_j.$$

where each ρ_i (i < j) is a valid and complete path from r_{p_i} to c_i , and ρ_i is a valid and complete path from r_{p_i} to n. Thus c_1, \ldots, c_{i-1} are the unfinished calls at the end of ρ .

Proving subclaim

- Let p_0 be the first prefix of p where $|cs(p_0)| > M$.
- Let decomposition of p_0 be

$$\rho_1\|(c_1,r_{\rho_2})\|\rho_2\|(c_2,r_{\rho_3})\|\sigma_3\|\cdots\|(c_{j-1},r_{\rho_j})\|\rho_j.$$

- Tag each unfinished-call c in p_0 by $(c, f_{a \cdot c}(d_0), f_{a \cdot ca'e}(d_0))$ where e is corresponding return of c in p.
- If no return for c in p tag with $(c, f_{q \cdot c}(d_0), \perp)$.
- Number of distinct such tags is $k \cdot |D|^2$.
- So there are two calls qc and qcq'c with same tag values.

Proving subclaim – tag values are \perp

Proving subclaim – tag values are not \bot

Approximate (suffix) call-string method

Idea:

- Consider only call-strings of up to length < 1.
- For l=2, call strings can be of the form " c_1 " or " c_1c_2 " etc. So each table ξ is now a finite table.
- Transfer functions for non-call/ret edges remain same.
- Transfer functions for call edge C: Shift γ entry to $\gamma \cdot C$ if $|\gamma \cdot C| \leq I$; else shift it to $\gamma' \cdot C$ where γ is of the form $A \cdot \gamma'$, for some call A.
- Transfer functions for ret edge N:
 - If $\gamma = \gamma' \cdot C$ and N corresponds to call edge C, then shift $\gamma' \cdot C$ entry to $A \cdot \gamma'$ which are "feasible" at the return site;

Motivation

From Sharir-Pnueli 1981, p136 of typed version

string. As long as the length of a call string is less than j, update it as in Section 4. However, if q is a call string of length j, then, when appending to it a call edge, discard the first component of q and add the new call block to its end. When appending a return edge, check if it matches the last call in q and, if it does, delete this call from q and add to its start all possible call blocks which call the procedure containing the first call in q. This approximation may be termed a call-string suffix approximation.

Transfer functions f'_{MN} for Example 2

• Non-call/ret edge *C*:

$$\xi_C = f_{BC} \circ \xi_B$$
.

• Call edge O:

$$\xi_O(\gamma) = \begin{cases} \xi_C(\gamma') & \text{if } \gamma = \gamma' \cdot \overbrace{\phi_{\text{call p}}}^{\gamma} \\ \bot & \text{otherwise} \end{cases}$$

• Return edge N:

$$\xi_N(\gamma) = \xi_J(\gamma \cdot O).$$

