

# INS ADVANCED CONFIGURATION USER GUIDE





# **Document Revision History**

| Edition | Date    | Comments                                                                                                                                                                                 |
|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α       | 09/2011 | First Edition                                                                                                                                                                            |
| В       | 02/2012 | iXBlue graphical chart applied to the document                                                                                                                                           |
| С       | 03/2012 | ATLANS & QUADRANS products added                                                                                                                                                         |
| D       | 02/2013 | New colors applied to the document                                                                                                                                                       |
| E       | 10/2013 | Firmware versions updated VBW replaced by EMLOG VBW in table 10 Appendix B added                                                                                                         |
| F       | 11/2014 | OCTANS NANO product added                                                                                                                                                                |
| G       | 05/2015 | Command availability, General system configuration and external sensors chapters updated                                                                                                 |
| Н       | 07/2015 | Chapter 5 updated                                                                                                                                                                        |
| I       | 12/2015 | Set system run time since manufacturing and USBL interface command updated.                                                                                                              |
| J       | 01/2016 | Chapter 4.11 updated. Appendix "Orientation and Sign Conventions Recall" deleted.                                                                                                        |
| K       | 05/2016 | PHINS COMPACT C7 product added. EM Log 2 configuration added. Port mapping & ID chapter added.                                                                                           |
| L       | 10/2016 | PHINS COMPACT C3 and ROVINS NANO product added. Chapters 2, 6.1.2 & 6.1.3 updated. Travelled distance Reset, Static convergence selection, Go to navigation, DVL command chapters added. |
| М       | 11/2016 | Chapters 6.4 & 6.2.3 updated. Chapter "DVL triggered by Pulse Out" added.                                                                                                                |



# Copyright

All rights reserved. No part of this manual may be reproduced or transmitted, in any form or by any means, whether electronic, printed manual or otherwise, including but not limited to photocopying, recording or information storage and retrieval systems, for any purpose without prior written permission of iXBlue.

## **Disclaimer**

iXBlue specifically disclaims all warranties, either expressed or implied, included but not limited to implied warranties of merchantability and fitness for a particular purpose with respect to this product and documentation. iXBlue reserves the right to revise or make changes or improvements to this product or documentation at any time without notify any person of such revision or improvements.

In no event shall iXBlue be liable for any consequential or incidental damages, including but not limited to loss of business profits or any commercial damages, arising out of the use of this product.

## **Trademarks**

Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation. Intel and Pentium are registered trademarks and Celeron is a trademark of Intel Corporation.



# **Text Usage**

| Bold | Bold text | is used | d for items | you must | select or | click in the |
|------|-----------|---------|-------------|----------|-----------|--------------|
|------|-----------|---------|-------------|----------|-----------|--------------|

software. It is also used for the field names used into the dialog

box.

Courier Text in this font denotes text or characters that you should enter

from the keyboard, the proper names of disk Drives, paths,

directories, programs, functions, filenames and extensions.

Italic Italic text is the result of an action in the procedures. It is also

used for referencing to other document titles.

#### **Icons**



The **Note** icon indicates that the following information is of particular interest and should be read with care.

## **Important**

The **Important** mention indicates that the following information should be read to forbid or prevent a product dysfunction or a faulty operation of the equipment.



The **Caution** icon indicates that the following information should be read to forbid or prevent product damage.



The **Warning** icon indicates that possible personal injury or death could result from failure to follow the provided recommendation.

# **Abbreviations and Acronyms**

Abbreviations and acronyms are described in document *Inertial Products - Principle & Conventions (Ref.: MU-INS&AHRS-AN-003).* 



# **Table of Contents**

| 1    | INTRODUCTION                                       | 7  |
|------|----------------------------------------------------|----|
| 2    | VERSION AND PRODUCTS CONCERNED                     | 8  |
| 3    | GENERAL CONVENTIONS                                | 9  |
| 3.1  | COMMAND SYNTAX                                     | 9  |
| 3.2  | How to Send and Receive Commands                   |    |
| 3.3  | COMMAND AVAILABILITY                               | 11 |
| 4    | GENERAL SYSTEM CONFIGURATION                       | 13 |
| 4.1  | COMMUNICATION MODE                                 |    |
| 4.2  | SAVE TO EEPROM                                     |    |
| 4.3  | SOFTWARE SYSTEM REBOOT                             |    |
| 4.4  | RESET TO FACTORY DSP PARAMETERS                    |    |
| 4.5  | RESET TO FACTORY MPC PARAMETERS                    | 14 |
| 4.6  | WEB MMI PASSWORDS RESET                            | 14 |
| 4.7  | System Errors Log Reset                            | 15 |
| 4.8  | Initial Position                                   | 15 |
| 4.9  | MANUAL UTM Position                                | 15 |
| 4.10 | 0 HEADING, ROLL AND PITCH FINE MISALIGNMENTS       | 16 |
| 4.1° | 1 HEADING, ROLL AND PITCH BIAS REFERENCE           | 16 |
| 4.12 | 2 Axis Orientation                                 | 17 |
| 4.13 | 3 MAIN LEVER ARMS                                  | 19 |
| 4.14 | 4 SECONDARY LEVER ARMS                             | 20 |
| 4.1  | 5 CENTER OF GRAVITY POSITION                       | 20 |
| 4.10 | 6 ZERO VELOCITY UPDATE                             | 21 |
| 4.17 | 7 TURN ON/OFF DVL/ODOMETER CALIBRATION MODE        | 22 |
| 4.18 |                                                    |    |
| 4.19 | 9 CONFIGURATION STARTING MODE                      | 23 |
| 4.20 |                                                    |    |
| 4.2° | 1 HEAVE PARAMETERS                                 | 25 |
| 4.2  | 2 STATIC CONVERGENCE SELECTION                     | 25 |
| 4.2  |                                                    |    |
| 4.2  |                                                    |    |
| 4.2  | 5 TRAVELLED DISTANCE RESET                         | 26 |
| 5    | EXTERNAL SENSORS CONFIGURATION                     | 27 |
| 5.1  | DVL CONFIGURATION                                  | 27 |
| 5.1. | 1 DVL Lever Arm                                    | 27 |
| 5.1. | 2 DVL Calibration (Misalignments and Scale Factor) | 27 |
| 5.1. |                                                    |    |
| 5.1. |                                                    |    |
| 5.1. | 3, 111                                             |    |
| 5.1. | ,                                                  |    |
| 5.1. | . 3                                                |    |
| 5.2  | DVL2 CONFIGURATION                                 | 31 |



| 5.2.1  | Lever arm                                         | 31         |
|--------|---------------------------------------------------|------------|
| 5.2.2  | DVL2 calibration (misalignments and scale factor) | 31         |
| 5.2.3  | DVL2 interface                                    | 32         |
| 5.2.4  | Rejection Filter configuration for Bottom Track   | 32         |
| 5.2.5  | Rejection Filter configuration for Water Track    | 33         |
| 5.2.6  | Coupling Mode                                     | 33         |
| 5.2.7  | DVL Command                                       | 34         |
| 5.3    | DVL TRIGGERED BY PULSE OUT                        | 34         |
| 5.4    | ODOMETER CONFIGURATION (LANDINS & ATLANS)         | 35         |
| 5.4.1  | Odometer Lever Arm                                | 35         |
| 5.4.2  | Odometer Calibration                              | 35         |
| 5.4.3  | Odometer Interface                                | 36         |
| 5.4.4  | Rejection Filter Configuration for Odometer       | 36         |
| 5.5    | EM LOG CONFIGURATION                              | 37         |
| 5.5.1  | EM Log Lever Arm                                  | 37         |
| 5.5.2  | EM Log Interface                                  | 37         |
| 5.5.3  | EM Log Rejection Filter                           | 38         |
| 5.6    | EM LOG 2 CONFIGURATION                            | 39         |
| 5.6.1  | EM Log 2 Lever arm                                | 39         |
| 5.6.2  | EM Log 2 interface                                | 39         |
| 5.6.3  | EM Log 2 Rejection Filter                         | 40         |
| 5.7    | GPS CONFIGURATION                                 | 41         |
| 5.7.1  | GPS Lever Arm                                     | 41         |
| 5.7.2  | GPS Interface                                     | 41         |
| 5.7.3  | GPS Rejection Filter                              | 42         |
| 5.8    | GPS2 CONFIGURATION                                | 43         |
| 5.8.1  | GPS2 Lever Arm                                    | 43         |
| 5.8.2  | GPS2 Interface                                    | 43         |
| 5.8.3  | GPS2 Rejection Filter                             | 44         |
| 5.9    | MANUAL GPS CONFIGURATION                          | 45         |
| 5.9.1  | Manual GPS Lever Arm                              | 45         |
| 5.9.2  | Manual GPS Rejection Filter                       | 45         |
| 5.9.3  | Manual GPS Position Fix                           | 46         |
| 5.10   | DEPTH SENSOR CONFIGURATION                        | 47         |
| 5.10.1 | Depth Sensor Lever Arm                            | 47         |
| 5.10.2 | 2 Depth Sensor Offset                             | 47         |
| 5.10.3 | 3 Zero Depth Sensor                               | 47         |
| 5.10.4 | Depth Sensor Interface                            | 48         |
| 5.10.5 | Rejection Filter Mode for Depth Sensor            | 48         |
| 5.11   | USBL CONFIGURATION                                | 49         |
| 5.11.1 | USBL Lever Arm                                    | 49         |
| 5.11.2 | 2 USBL Interface                                  | 49         |
| 5.11.3 | 3 USBL Rejection Filter Mode                      | 50         |
| 5.11.4 | USBL Beacon Watch Selection                       | 50         |
| 5.11.5 | Maximum Number of USBL Beacons                    | 50         |
| E 42   | LRI CONFIGURATION                                 | <b>E</b> 1 |



| 5.12.1                      | LBL Lever Arm                                       | 51 |
|-----------------------------|-----------------------------------------------------|----|
| 5.12.2                      | LBL Interface                                       | 51 |
| 5.12.3 LBL Rejection Filter |                                                     |    |
| 5.13 U                      | TC (TIME SYNCHRONIZATION) INTERFACE                 | 52 |
| 6 INTE                      | RFACES CONFIGURATION                                | 53 |
| 6.1 P                       | ORT MAPPING AND ID                                  | 53 |
| 6.2 S                       | ERIAL AND ETHERNET COMMANDS                         | 55 |
| 6.2.1                       | Serial I/O General Parameters (Parity and Stop Bit) | 55 |
| 6.2.2                       | Serial/Ethernet Input Port Configuration            | 56 |
| 6.2.3                       | Serial/Ethernet Output Port Configuration           | 59 |
| 6.2.4                       | Output Device Selection                             | 65 |
| 6.2.5                       | Input Device Selection                              | 66 |
| 6.2.6                       | Port Forwarding Command                             | 66 |
| 6.3 E                       | THERNET CONFIGURATION                               | 67 |
| 6.3.1                       | Network Setup Command                               | 67 |
| 6.3.2                       | IP Output Configuration                             | 67 |
| 6.3.3                       | IP Input Configuration                              | 68 |
| 6.4 P                       | ULSES INTERFACES                                    | 69 |
| 6.4.1                       | Pulses Input                                        | 69 |
| 6.4.2                       | Pulses Output                                       | 70 |
| 7 DYN                       | IAMIC STRING RETRIEVE COMMANDS                      | 71 |
| 7.1.1                       | Generic Text Retrieve Command                       | 71 |
| 7.1.2                       | INS III Specific Text Retrieve Command              | 73 |
| APPEND                      | DICES                                               | 74 |
| A NM                        | EA CHECKSUM WEB PAGE                                | 74 |
| B FAC                       | TORY SETTING DETAILS                                | 75 |
|                             |                                                     |    |



# 1 INTRODUCTION

This document describes the Inertial Navigation Systems (INS) configuration and monitoring commands which can be used during operation. These commands are sent directly through the repeater port to check settings and modify INS or external sensors configuration (depending of the external sensor and of the INS capabilities), to reset the unit, and save the configuration to PROM.

However, commands described below are exactly equivalent to the ones which are sent by the Web-based User Interface. They may be useful when launching and using the Web-based User Interface during operation is not possible.



## 2 Version and Products Concerned

The current edition of this document is applicable to the following INS:

Table 1 - List of products and firmware

| Product          | Firmware version  |
|------------------|-------------------|
| PHINS            |                   |
| PHINS COMPACT C3 |                   |
| PHINS COMPACT C7 |                   |
| ROVINS           |                   |
| ROVINS NANO      |                   |
| PHINS 6000       | CINT 6.50 version |
| HYDRINS          | CINT 0.50 VEISION |
| MARINS           |                   |
| LANDINS          |                   |
| QUADRANS         |                   |
| AIRINS           |                   |
| ATLANS           |                   |

Refer to section 7.1.1 to check the firmware version currently downloaded into your unit.



Several commands described in this manual are associated with specific external sensors that may not be available on your product. Please, refer to *your Product User Manual* to check which external sensors are available.

Contact iXBlue customer support to check if your system is eligible to a firmware update (see document: *Inertial Products - General Information (Ref.: MU-INS&AHRS-AN-007)* for contact information).



## 3 GENERAL CONVENTIONS

# 3.1 Command Syntax

All frames are compatible with NMEA 0183 standard and are formatted as follows:

\$PIXSE,CONFIG,NAME[,xxx,...,.y]\*hh<CR><LF> for generic configuration commands

\$PIXSE,TEXT\_\_,NAME[,xxx,...,..y]\*hh<CR><LF> for generic configuration text retrieve commands

\$PHCNF,NAME[,xxx,...,..y]\*hh<CR><LF> for INS III specific configuration commands

\$PHTXT,NAME[,xxx,...,..y]\*hh<CR><LF> for INS III specific configuration text retrieve commands

\$ is a header and "NAME" depends on the command

Brackets [] indicates optional parameters, depending on the command. Most commands can be used either to send configuration parameters "xxx,...,..y" to the system, or to ask for the current value for the parameter. In such case, the ",xxx,...,..y" should be replaced by ",,".

"hh" is the checksum of the sentence, and allows for a control during the transmission. It is calculated by exclusive-OR'ing (XOR) the 8 bits (no start bits or stop bits) of each character in the sentence, excluding "\$" and "\*". The hexadecimal values of the most significant and least significant 4 bits of the result are converted to two ASCII (0-9, A-F) for transmission. The most significant character is transmitted first.

The checksum field is required in all transmitted sentences. All frames should be ended by the two characters **<CR><LF>** (0D 0A hexadecimal).

A web based NMEA calculator can be found in Annex A to help computing checksums.



## 3.2 How to Send and Receive Commands

The INS will listen for COMMAND protocol on repeater flow, which is available on repeater connector, digital connector and Ethernet.

Repeater serial configuration is fixed and set to 57 600 bauds, odd parity bit, 2 stop bits. Repeater Ethernet configuration is fixed to TCP IP port 8110 in server mode.

Repeater flow will also output PHINS STANDARD protocol.

Answers to commands sent to this port will thus be mixed in PHINS STANDARD output frames (refer to INS Library Interface for detail).

If a command is not correctly formatted, the INS will ignore it and no answer will be sent. If a parameter is out of allowed range, it will be ignored by the INS and set to default value (0 or none).

Thus, to confirm that a command was correctly handled by the INS, the control application should systematically send the command to change a parameter, and then send the read back command to check stored value.

After all changes are made, the application can send a SAVE command to store parameters in non-volatile memory inside the INS.



# 3.3 Command Availability

Following table details command availability depending on system type:

Table 2 – General system configuration

|                                                 |                                                     |          |               |             |          |          | ,        | iii comigurat |          |
|-------------------------------------------------|-----------------------------------------------------|----------|---------------|-------------|----------|----------|----------|---------------|----------|
| Command                                         | PHINS PHINS COMPACT C7 PHINS COMPACT C3 ROVINS NANO | ROVINS   | PHINS<br>6000 | HYDRINS     | MARINS   | QUADRANS | AIRINS   | ATLANS        | LANDINS  |
| - Communa                                       | TO THE TARGET                                       |          | General Sys   | tem Configu | ration   |          | _        |               |          |
| Communication mode                              | <b>✓</b>                                            | ✓        | <b>✓</b>      | ✓           | ✓        | <b>√</b> | ✓        | ✓             | ✓        |
| Save to eeprom                                  | <b>✓</b>                                            | <b>✓</b> | <b>✓</b>      | ✓           | ✓        | ✓        | ✓        | ✓             | <b>✓</b> |
| Software system reboot                          | <b>✓</b>                                            | ✓        | ✓             | ✓           | ✓        | ✓        | ✓        | ✓             | ✓        |
| Reset to factory DSP parameters                 | <b>√</b>                                            | ✓        | ✓             | <b>✓</b>    | <b>√</b> | ✓        | <b>√</b> | <b>√</b>      | ✓        |
| Reset to factory MPC parameters                 | <b>√</b>                                            | <b>✓</b> | <b>√</b>      | <b>✓</b>    | <b>√</b> | <b>√</b> | <b>√</b> | <b>~</b>      | ✓        |
| Web MMI password reset                          | ✓                                                   | ✓        | ✓             | ✓           | ✓        | ✓        | ✓        | ✓             |          |
| Initial position                                | ✓                                                   | ✓        | ✓             | ✓           | ✓        | ✓        | ✓        | ✓             | ✓        |
| Manual UTM position                             | ✓                                                   | ✓        | ✓             | ✓           | ✓        | ✓        | ✓        | ✓             | ✓        |
| Heading, roll, pitch biases                     | ✓                                                   | ✓        | ✓             | ✓           | ✓        | ✓        | ✓        | ✓             | ✓        |
| Heading, roll, pitch biases ref                 |                                                     |          |               |             | <b>√</b> |          |          |               |          |
| Axis orientation                                | <b>√</b>                                            | ✓        | <b>✓</b>      | ✓           | ✓        | ✓        | <b>✓</b> | ✓             | ✓        |
| Main Lever Arms                                 | ✓                                                   | ✓        | ✓             | ✓           | ✓        |          | ✓        | ✓             | ✓        |
| Secondary Lever Arms                            | ✓                                                   | ✓        | ✓             | ✓           | ✓        |          | ✓        | ✓             | ✓        |
| Position of the vessel center of gravity        | <b>√</b>                                            | <b>✓</b> | <b>√</b>      | ~           | <b>√</b> |          |          |               |          |
| Zero velocity update mode                       | <b>√</b>                                            | <b>✓</b> | <b>√</b>      | <b>~</b>    | <b>~</b> |          | <b>√</b> | <b>~</b>      | ✓        |
| Turn ON/OFF<br>DVL/odometer calibration<br>mode | <b>√</b>                                            | <b>√</b> | <b>√</b>      |             | <b>~</b> |          | ~        | <b>√</b>      | <b>√</b> |



| Command                                 | PHINS PHINS COMPACT C7 PHINS COMPACT C3 ROVINS NANO | ROVINS   | PHINS<br>6000 | HYDRINS       | MARINS   | QUADRANS | AIRINS   | ATLANS   | LANDINS  |
|-----------------------------------------|-----------------------------------------------------|----------|---------------|---------------|----------|----------|----------|----------|----------|
| Starting mode configuration             | <b>✓</b>                                            | <b>✓</b> | <b>√</b>      | <b>✓</b>      | <b>✓</b> |          | <b>✓</b> | <b>✓</b> | <b>✓</b> |
| Altitude Calculation mode configuration | <b>√</b>                                            | <b>✓</b> | ✓             | ✓             | <b>√</b> |          | ✓        | <b>√</b> | <b>√</b> |
| Heave parameters                        | ✓                                                   | ✓        | <b>✓</b>      | <b>✓</b>      | ✓        |          |          |          |          |
|                                         |                                                     |          | External Sei  | nsor Configu  | ration   |          |          |          |          |
| DVL Configuration                       | ✓                                                   | ✓        | ✓             |               | ✓        |          |          |          | ✓        |
| Odometer Configuration                  |                                                     |          |               |               |          |          |          | ✓        | <b>✓</b> |
| EM Log configuration                    | ✓                                                   |          |               |               | ✓        | ✓        |          |          | ✓        |
| GPS Configuration                       | ✓                                                   | ✓        | ✓             | <b>✓</b>      | ✓        | ✓        | ✓        | ✓        | ✓        |
| GPS2 Configuration                      | ✓                                                   | ✓        | ✓             |               | ✓        |          |          |          | ✓        |
| Manual GPS<br>Configuration             | <b>√</b>                                            | <b>~</b> | ✓             |               | <b>√</b> |          | ✓        | <b>~</b> | <b>√</b> |
| Depth sensor configuration              | <b>√</b>                                            | <b>~</b> | ✓             |               | <b>√</b> |          |          |          | <b>√</b> |
| USBL configuration                      | ✓                                                   | ✓        | ✓             |               |          |          |          |          | ✓        |
| LBL configuration                       | ✓                                                   | ✓        | ✓             |               |          |          |          |          | ✓        |
| UTC interface configuration             | <b>√</b>                                            | ~        | <b>√</b>      | <b>√</b>      | <b>√</b> | <b>√</b> | <b>✓</b> | <b>✓</b> | <b>~</b> |
|                                         |                                                     |          | Interface     | s Configurati | on       |          | Ī        |          |          |
| Serial and Ethernet commands            | ✓                                                   | ✓        | <b>✓</b>      | <b>✓</b>      | ✓        | ✓        | ✓        | <b>✓</b> | ✓        |
| Network Setup<br>Command                | ✓                                                   | <b>✓</b> | <b>√</b>      | <b>√</b>      | <b>√</b> | <b>√</b> | <b>√</b> | <b>√</b> | <b>✓</b> |
| Pulses Interfaces                       | ✓                                                   | ✓        | ✓             | <b>√</b>      | ✓        | ✓        | ✓        | ✓        | ✓        |



## 4 GENERAL SYSTEM CONFIGURATION

#### 4.1 Communication Mode

To start the communication with INS in User Mode:

| Message | \$PIXSE,CONFIG,WAKEUP*40 <cr><lf></lf></cr>      |
|---------|--------------------------------------------------|
| Title   | Starting Communication with the INS in User Mode |

This command exists for compatibility with previous INS generation, but is not required on INS generation III. Commands can be sent directly without having to call WAKEUP before.

## 4.2 Save to EEPROM

To save all parameters into EEPROM:

| Message | \$PIXSE,CONFIG,SAVE*5C <cr><lf></lf></cr> |
|---------|-------------------------------------------|
| Title   | Save Configuration to EEPROM              |

Please note the 2 underscores ("\_") characters at the end of this frame.

# 4.3 Software System Reboot

To reboot the system by software, following command can be used:

| Message | \$PIXSE,CONFIG,RESET_*57 <cr><lf></lf></cr> |
|---------|---------------------------------------------|
| Title   | Restart INS algorithm                       |

#### **Warning**

The unit will restart with the configuration saved into EEPROM. It is recommended to perform a save to PROM command (see section 4.2) before resetting if you changed the settings and want to keep them.



# 4.4 Reset to Factory DSP Parameters

To reset DSP parameters to factory defaults, following command can be used:

| Message | \$PIXSE,CONFIG,RSTDSP*4F <cr><lf></lf></cr> |  |
|---------|---------------------------------------------|--|
| Title   | Reset DSP parameters to factory defaults    |  |

## **Important**

This command resets only DSP parameters (lever arms, system orientation, algorithm modes, initial position, etc.). Default parameters will only apply at next reboot.

To completely reset system settings, use RSTMPC command as well.

Refer to Appendix B for details on factory configuration.

# 4.5 Reset to Factory MPC Parameters

To reset MPC parameters to factory defaults, following command can be used:

| Message | \$PIXSE,CONFIG,RSTMPC*56 <cr><lf></lf></cr> |  |
|---------|---------------------------------------------|--|
| Title   | Reset MPC parameters to factory defaults    |  |

#### **Important**

This command resets only MPC parameters (lever arms, system orientation, algorithm modes, initial position, etc.). Default parameters will only apply at next reboot.

To completely reset system settings, use RSTDSP command as well.

Refer to Appendix B for details on factory configuration.

## 4.6 Web MMI Passwords Reset

To reset Web MMI passwords, following command can be used:

| Message | \$PIXSE,CONFIG,PWDRST*4B <cr><lf></lf></cr> |  |
|---------|---------------------------------------------|--|
| Title   | Reset Web MMI Passwords                     |  |

There is no password any more once this command is used.



# 4.7 System Errors Log Reset

To reset System Error Log, following command can be used:

| Message | \$PIXSE,CONFIG,ERRRST*4D <cr><lf></lf></cr> |  |
|---------|---------------------------------------------|--|
| Title   | Reset System Errors log                     |  |

# 4.8 Initial Position

To enter the initial position for the static alignment process:

| Message    | \$PIXSE,CONFIG,MANPOS,x.x,y.y,z.z*hh <cr><lf></lf></cr> |        |       |  |  |
|------------|---------------------------------------------------------|--------|-------|--|--|
| Title      | Manual Position                                         |        |       |  |  |
| Data Field | Semantics Unit Type                                     |        |       |  |  |
| X.X        | Latitude, positive north                                | Degree | float |  |  |
| y.y        | Longitude, positive east Degree                         |        | float |  |  |
| Z.Z        | Altitude, positive up                                   |        |       |  |  |

To retrieve current initial position:

\$PIXSE,CONFIG,MANPOS,,\*53<CR><LF>

## 4.9 Manual UTM Position

To enter initial UTM position used in static alignment process:

| Message    | \$PIXSE,CONFIG,UTMWGS,c,i,x.x,y.y,z.z*hh <cr><lf></lf></cr> |     |       |  |
|------------|-------------------------------------------------------------|-----|-------|--|
| Title      | Manual UTM Position                                         |     |       |  |
| Data Field | Semantics Unit Type                                         |     |       |  |
| С          | Northing area letter                                        | N/A | char  |  |
| i          | Easting area index                                          | N/A | int   |  |
| X.X        | Easting offset in area                                      | m   | float |  |
| y.y        | Northing offset in area                                     | m   | float |  |
| Z.Z        | Altitude                                                    | m   | float |  |

To retrieve current UTM initial position:

\$PIXSE,CONFIG,UTMWGS,,\*52<CR><LF>

## **Important**

Internally, the INS only stores one initial position in latitude/longitude and converts UTM initial position to/from latitude/longitude.



# 4.10 Heading, Roll and Pitch Fine Misalignments

To configure user attitude biases:

| Message    | \$PIXSE,CONFIG,BIAS,x.x,y.y,z.z *hh <cr><lf></lf></cr> |        |       |  |
|------------|--------------------------------------------------------|--------|-------|--|
| Title      | Bias Configuration                                     |        |       |  |
| Data Field | Semantics Unit Type                                    |        |       |  |
| X.X        | Heading misalignment                                   | Degree | float |  |
| y.y        | Roll misalignment                                      | Degree | float |  |
| Z.Z        | Pitch misalignment                                     | Degree | float |  |

To retrieve the biases:

\$PIXSE,CONFIG,BIAS\_\_\_,\*44<CR><LF>

# 4.11 Heading, Roll And Pitch Bias Reference

To configure user attitude biases reference (fine misalignment):

| Message    | \$PIXSE,CONFIG,BIASRF,i *hh <cr><lf></lf></cr> |      |         |  |
|------------|------------------------------------------------|------|---------|--|
| Title      | Bias Configuration                             |      |         |  |
| Data Field | Semantics Unit Type                            |      |         |  |
|            | Bias reference                                 | None | Integer |  |
| i          | 0: Use Pins reference                          |      |         |  |
|            | 1: Use Mirror reference                        |      |         |  |

To retrieve the biases reference:

\$PIXSE,CONFIG,BIAS\_\_\_,\*44<CR><LF>

Answer is given by:

| Data Field | Semantics              | Unit | Туре    |
|------------|------------------------|------|---------|
|            | Bias reference usabled | None | Integer |
|            | 0: None                |      |         |
| i          | 1: Pins only           |      |         |
|            | 2: Mirror only         |      |         |
|            | 3: Both                |      |         |
|            | Bias reference used    | None | Integer |
| j          | 0: Pins reference      |      |         |
|            | 1: Mirror reference    |      |         |



# 4.12 Axis Orientation

To enter an axis orientation (rough misalignment):

| Message    | \$PIXSE,CONFIG,AXISOR,i*hh <cr><lf></lf></cr> |                                                            |     |  |  |
|------------|-----------------------------------------------|------------------------------------------------------------|-----|--|--|
| Title      | Axis Orientation                              |                                                            |     |  |  |
| Data Field | Semantics Unit Type                           |                                                            |     |  |  |
| i          | Index of the rough misalignment               | Table 3 for index/orientation correspondence and checksums | int |  |  |

To retrieve the axis orientation, also called the rough misalignment:

\$PIXSE,CONFIG,AXISOR,,\*43<CR><LF>

#### **Important**

Please: check logo and connector positions in the following table.

Table 3 - Matching between index i and INS axes orientation with associated checksum (hh)

| i         | Orientation (Surface) | Orientation (Subsea) | i         | Orientation (Surface) | Orientation (Subsea) |
|-----------|-----------------------|----------------------|-----------|-----------------------|----------------------|
| 0<br>(5F) | 2                     | 2                    | 1<br>(5E) | 2                     |                      |
| 2<br>(5D) | 3                     | 3                    | 3<br>(5C) | 2                     |                      |
| 4<br>(5B) | 3                     | 2                    | 5<br>(5A) | 2                     | 3                    |



| i          | Orientation (Surface) | Orientation (Subsea) | i          | Orientation (Surface) | Orientation (Subsea) |
|------------|-----------------------|----------------------|------------|-----------------------|----------------------|
| 6<br>(59)  | 2                     |                      | 7<br>(58)  | 2                     | 3                    |
| 8<br>(57)  | 2                     |                      | 9<br>(56)  | 3                     | 2                    |
| 10<br>(6E) | 3                     | 2                    | 11<br>(6F) | 2                     |                      |
| 12<br>(6C) | 2                     |                      | 13<br>(6D) | 2                     | 3                    |
| 14<br>(6A) | 2                     | 3                    | 15<br>(6B) | 3                     | 3                    |
| 16<br>(68) | 2                     | 2                    | 17<br>(69) | 2                     | 2                    |



| i          | Orientation (Surface) | Orientation (Subsea) | i          | Orientation (Surface) | Orientation (Subsea) |
|------------|-----------------------|----------------------|------------|-----------------------|----------------------|
| 18<br>(66) | 2                     |                      | 19<br>(67) | 3                     |                      |
| 20<br>(6D) | 3                     | 3                    | 21<br>(6C) | 3                     |                      |
| 22<br>(6F) |                       | 3                    | 23<br>(6E) | 2                     |                      |

# 4.13 Main Lever Arms

To configure main monitoring point lever arms from the INS:

| Message    | \$PIXSE,CONFIG,LEVARM,x.x,y.y,z.z*hh <cr><lf></lf></cr> |                   |       |
|------------|---------------------------------------------------------|-------------------|-------|
| Title      | Lever A                                                 | rms Configuration |       |
| Data Field | Semantics                                               | Unit              | Туре  |
| x.x        | XV1 lever arm                                           | m                 | Float |
| y.y        | XV2 lever arm                                           | m                 | Float |
| Z.Z        | XV3 lever arm                                           | m                 | Float |

To retrieve main monitoring point lever arms from the INS:

\$PIXSE,CONFIG,LEVARM,,\*5C<CR><LF>



# 4.14 Secondary Lever Arms

To configure secondary monitoring point lever arms from the INS:

| Message    | \$PIXSE,CONFIG,SECLVX,x.x,y.y,z.z*hh <cr><lf></lf></cr> |      |       |
|------------|---------------------------------------------------------|------|-------|
| Title      | Lever Arms Configuration                                |      |       |
| Data Field | Semantics                                               | Unit | Type  |
| X          | Lever arm ('A', 'B' or 'C')                             | N/A  | Char  |
| x.x        | XV1 lever arm                                           | m    | Float |
| у.у        | XV2 lever arm                                           | m    | Float |
| z.z        | XV3 lever arm                                           | m    | Float |

To retrieve secondary monitoring point lever arms from the INS:

\$PIXSE,CONFIG,SECLVA,,\*53<CR><LF>
\$PIXSE,CONFIG,SECLVB,,\*50<CR><LF>
\$PIXSE,CONFIG,SECLVC,,\*51<CR><LF>

# 4.15 Center of Gravity Position

To configure center of gravity position relative to the INS:

| Message    | \$PIXSE,CONFIG,COG,x.x,y.y,z.z*hh <cr><lf></lf></cr> |                 |       |
|------------|------------------------------------------------------|-----------------|-------|
| Title      | Lever Arm                                            | s Configuration |       |
| Data Field | Semantics                                            | Unit            | Type  |
| x.x        | XV1 cog                                              | m               | Float |
| y.y        | XV2 cog                                              | m               | Float |
| Z.Z        | XV3 cog                                              | m               | Float |

Please note the 3 underscore ("\_") characters after COG header.

To retrieve center of gravity from the INS:

\$PIXSE,CONFIG,COG\_\_\_\_,\*49<CR><LF>



# 4.16 Zero Velocity Update

Enabling a ZUPT mode is equivalent to sending a speed sensor forced to 0m/s in the INS. Following modes are available:

- Static 10m/s: this mode sends a 0m/s speed input with 10m/s standard deviation
- Static 0.1m/s: this mode sends a 0m/s speed input with 0.1m/s standard deviation
- Autostatic 0.01m/s: this mode detects system movements and when no rotation larger than 10°/h is detected, it enables a null speed entry with 0.01m/s standard deviation.
- Autostatic bench: this mode detects movements and when no rotation larger than 10°/h is detected, it enables a null speed entry with 0.01m/s standard deviation and a null rotation of 10°/h standard deviation.
- ANC: this mode is a combination of a null transverse speed input with 0.2m/s standard deviation together with autostatic 0.01m/s mode as detailed above. This mode is only available on LAND products.
- Position: in this mode, the manual GPS position input is repeated before each Kalman observation with current standard deviations of the manual GPS.

To retrieve the Zero Velocity Update Mode:

\$PIXSE,CONFIG,ZUP\_\_\_\_,\*5D<CR><LF>

To configure the Zero Velocity Update Mode:

| Message    | \$PIXSE,CONFIG,ZUP,i*hh <cr><lf></lf></cr> |                  |      |
|------------|--------------------------------------------|------------------|------|
| Title      | Zero Veloc                                 | ity Update Mode  |      |
| Data Field | Semantics                                  | Unit             | Type |
| i          | Index of ZUP mode                          | See tables below | int  |

Please note the 3 underscore ("\_") characters after ZUP header.

Table 4 - ZUPT mode index for PHINS, PHINS COMPACT C7, MARINS, HYDRINS, AIRINS, PHINS COMPACT C3, ROVINS and ROVINS NANO

| i | ZUPT mode                 |
|---|---------------------------|
| 0 | None                      |
| 1 | Static 10 m/s             |
| 2 | Static 0.1 m/s            |
| 3 | Auto static 0.01 m/s      |
| 4 | Autostatic bench 0.01 m/s |
| 5 | Fixed position            |



Table 5 - ZUPT mode index for LANDINS and ATLANS

| i | ZUPT mode                 |  |
|---|---------------------------|--|
| 0 | None                      |  |
| 1 | Static 10 m/s             |  |
| 2 | Static 0.1 m/s            |  |
| 3 | Auto static 0.01 m/s      |  |
| 4 | Autostatic bench 0.01 m/s |  |
| 5 | ANC                       |  |
| 6 | Fixed position            |  |

## 4.17 Turn On/Off DVL/Odometer Calibration Mode

To control the DVL (PHINS) or odometer (LANDINS, ATLANS) calibration process:

| Message    | \$PIXSE,CONFIG,DDRECK,i*hh <cr><lf></lf></cr> |                                                                                                           |     |
|------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----|
| Title      | Dead Reckoning Configuration                  |                                                                                                           |     |
| Data Field | Semantics Unit Type                           |                                                                                                           |     |
| i          | Index of Dead Reckoning Mode                  | Stop calibration and ignore estimated calibration values     Start calibration mode and reset estimations | int |
|            |                                               | 2: Stop calibration and save estimated calibration values                                                 |     |

#### **Comments:**

- When calibration (Dead Reckoning) is started (index set to 1), the \$PIXSE,DDRECK frame is output from the PHINS Standard protocol, to provide for estimated misalignment (heading and pitch) and scale factor during calibration. For more details refer to PHINS STANDARD protocol description in the INS-Interface Library document (ref.: MU-INSIII-AN-001). These data should be checked for, and calibration can be stopped when these parameters are stabilized (+/-0.01°).
- When calibration is stopped (index set to 0), the misalignments and scale factor estimations are not accounted for, and the misalignment parameters are kept unchanged.
- When calibration is stopped (index set to 2), current DVL / odometer misalignments and scale factor parameters are automatically corrected with new calibration estimation. A "Save to PROM" command is required afterwards to permanently save these values.

To retrieve current calibration mode:

\$PIXSE,CONFIG,DDRECK,,\*42<CR><LF>



# 4.18 Turn On/Off DVL/Odometer Calibration Check Mode

To control the DVL (PHINS) or odometer (LANDINS, ATLANS) calibration check process:

| Message    | \$PIXSE,CONFIG,CALCHK,i*hh <cr><lf></lf></cr> |                 |      |
|------------|-----------------------------------------------|-----------------|------|
| Title      | Calib                                         | ation Check     |      |
| Data Field | Semantics                                     | Unit            | Туре |
| i          | Calibration Check State                       | 0: ON<br>1: OFF | int  |

To retrieve current calibration check mode:

\$PIXSE,CONFIG,CALCHK,,\*53<CR><LF>

# 4.19 Configuration Starting Mode

The frame used to define the starting mode is:

| Message    | \$PIXSE,CONFIG,START_,i*hh <cr><lf></lf></cr> |                                                                                                                                                                             |      |
|------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Title      | Starting Mode                                 |                                                                                                                                                                             |      |
| Data Field | Semantics                                     | Unit                                                                                                                                                                        | Туре |
| i          | Index for Starting Mode                       | <ul> <li>0 : Immediate run after power on</li> <li>1 : Wait for Position</li> <li>2 : Restore Position</li> <li>3 : Restore Attitude</li> <li>4 : Emulation mode</li> </ul> | int  |

To retrieve the starting mode:

**\$PIXSE,CONFIG,START\_,**,\*42<CR><LF>



# 4.20 Altitude Calculation Mode

To define the mode to compute the altitude:

| Message    | \$PIXSE,CONFIG,ALTMDE,i*hh <cr><lf></lf></cr> |                  |      |
|------------|-----------------------------------------------|------------------|------|
| Title      | Altitude Calculation Mode                     |                  |      |
| Data Field | Semantics                                     | Unit             | Туре |
| i          | Index                                         | See tables below | int  |

To retrieve the altitude computation mode:

\$PIXSE,CONFIG,ALTMDE,,\*48<CR><LF>

Table 6 - Altitude mode index for PHINS, PHINS COMPACT C7, MARINS, ROVINS, PHINS 6000, ROVINS NANO and PHINS COMPACT C3

| i | Altitude mode |
|---|---------------|
| 0 | None          |
| 1 | GPS           |
| 2 | Depth         |
| 3 | Hydro         |

Table 7 - Altitude mode index for AIRINS, LANDINS and ATLANS

| i | Altitude mode |
|---|---------------|
| 0 | None          |
| 1 | GPS           |

Table 8 - Altitude mode index for HYDRINS

| i | Altitude mode |
|---|---------------|
| 0 | None          |
| 1 | GPS           |
| 2 | Hydro         |



## 4.21 Heave Parameters

The frame used to define the sea state is:

| Message    | \$PIXSE,HVECNF,i*hh <cr><lf></lf></cr> |                                                                                                                                               |     |  |
|------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| Title      | Heave Parameters                       |                                                                                                                                               |     |  |
| Data Field | Semantics Unit Type                    |                                                                                                                                               |     |  |
| I          | Index                                  | <ul><li>0: Slight Sea (&lt;1.2m)</li><li>1: Moderate Sea (&lt;2.5m)</li><li>2: Rough Sea (&gt;2.5m)</li><li>3: Harbors and Channels</li></ul> | int |  |

To retrieve the current sea state mode:

\$PIXSE,CONFIG,HVECNF,,\*4D<CR><LF>

This command is deprecated for CINT firmware >=6.50.

# 4.22 Static convergence selection

The Frame used to enable/disable static convergence algorithm:

| Message    | \$PIXSE,CONFIG,CVSTAT,i*hh <cr><lf></lf></cr> |                                                                              |     |  |
|------------|-----------------------------------------------|------------------------------------------------------------------------------|-----|--|
| Title      | Static convergence selection                  |                                                                              |     |  |
| Data Field | Semantics Syntax Type                         |                                                                              |     |  |
| I          | Start                                         | Disable static convergence algorithm     Enable static convergence algorithm | int |  |

To retrieve current convergence mode:

\$PIXSE,CONFIG,CVSTAT,,\*5A<CR><LF>

# 4.23 Go to navigation

The Frame used to switch to navigation mode:

| Message | \$PIXSE,CONFIG,GONAV_*53 <cr><lf></lf></cr> |  |
|---------|---------------------------------------------|--|
| Title   | Switch to navigation mode                   |  |



# 4.24 UTM Zone Mode

The frame used to define the UTM Zone mode is:

| Message    | \$PIXSE,CONFIG,UTMEXT_,i*hh <cr><lf></lf></cr> |                                     |     |  |
|------------|------------------------------------------------|-------------------------------------|-----|--|
| Title      | UTM Zone                                       |                                     |     |  |
| Data Field | Semantics Unit Typ                             |                                     |     |  |
| i          | UTM Zone Mode                                  | 0 : Standard Mode 1 : Extended Mode | int |  |

To retrieve the UTM Zone mode:

\$PIXSE,CONFIG,UTMEXT,,\*58<CR><LF>

# 4.25 Travelled Distance Reset

The frame used to Reset the Travelled Distance is:

| Message | \$PIXSE,CONFIG,DSTRST*4B <cr><lf></lf></cr> |  |
|---------|---------------------------------------------|--|
| Title   | Distance Travelled Reset                    |  |



#### 5 EXTERNAL SENSORS CONFIGURATION

This section describes commands to configure external sensors connected to INS. See section 2 to check the availability of the command depending of the INS used.

# 5.1 **DVL** Configuration

#### 5.1.1 DVL LEVER ARM

To configure the lever arm from the INS to the DVL:

| Message    | \$PIXSE,CONFIG,LOGLV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |   |       |  |
|------------|---------------------------------------------------------|---|-------|--|
| Title      | DVL Lever Arm                                           |   |       |  |
| Data Field | Semantics Unit Type                                     |   |       |  |
| x.x        | XV1 lever arm                                           | m | float |  |
| y.y        | XV2 lever arm                                           | m | float |  |
| z.z        | XV3 lever arm                                           | m | float |  |

To retrieve the lever arm from the INS to the DVL:

\$PIXSE,CONFIG,LOGLV\_,,\*5C<CR><LF>

# 5.1.2 DVL CALIBRATION (MISALIGNMENTS AND SCALE FACTOR)

To manually configure the DVL calibration:

| Message    | \$PIXSE,CONFIG,LOGCAL,x.x,y.y,z.z,s.s*hh <cr><lf></lf></cr> |     |       |
|------------|-------------------------------------------------------------|-----|-------|
| Title      | DVL Calibration                                             |     |       |
| Data Field | Semantics Unit Type                                         |     |       |
| x.x        | Misalignment / unit around XV1 (roll)                       | Deg | float |
| y.y        | Misalignment / unit around XV2 (pitch)                      | Deg | float |
| Z.Z        | Misalignment /unit around XV3 (heading)                     | Deg | float |
| S.S        | Scale factor correction percentage                          |     | float |

To retrieve the DVL calibration:

\$PIXSE,CONFIG,LOGCAL,,\*57<CR><LF>

## **Important**

This command only retrieves the values set for DVL calibration. It does not output the misalignment and scale factor estimations when in Dead Reckoning mode during the DVL calibration. These estimations are only available through the PHINS STANDARD output frame (see section 0).



#### 5.1.3 **DVL** INTERFACE

To configure the DVL interface (INS interface to receive data from log):

| Message    | \$PIXSE,CONFIG,LOGINT,i*hh <cr><lf></lf></cr> |           |     |  |
|------------|-----------------------------------------------|-----------|-----|--|
| Title      | DVL Interface                                 |           |     |  |
| Data Field | Semantics Unit Type                           |           |     |  |
|            | Interface                                     | 0: None   |     |  |
|            |                                               | 1: Port A |     |  |
|            |                                               | 2: Port B | :4  |  |
| 1          |                                               | 3: Port C | int |  |
|            |                                               | 4: Port D |     |  |
|            |                                               | 5: Port E |     |  |

The interface should be configured in accordance with the instrument.

To retrieve the INS interface for DVL data reception:

\$PIXSE,CONFIG,LOGINT,,\*4A<CR><LF>

#### 5.1.4 SOUND VELOCITY COMPENSATION

The INS can compensate the DVL measurement with the velocity of sound received from an external sensor.

To configure the interface to get the real time velocity of sound:

| Message    | \$PIXSE,CONFIG,LOGSND,i*hh <cr><lf></lf></cr> |                                                           |     |  |
|------------|-----------------------------------------------|-----------------------------------------------------------|-----|--|
| Title      | Sound Velocity compensation                   |                                                           |     |  |
| Data Field | Semantics Unit Type                           |                                                           |     |  |
| i          | Interface                                     | 0: None 1: Port A 2: Port B 3: Port C 4: Port D 5: Port E | int |  |

The interface should be configured in accordance with the instrument.

To retrieve the INS interface to which the sound velocity sensor is connected:

\$PIXSE,CONFIG,LOGSND,,\*40<CR><LF>



#### 5.1.5 REJECTION FILTER CONFIGURATION FOR BOTTOM TRACK

To configure the Rejection Filter mode for DVL data in Bottom Track mode:

| Message    | \$PIXSE,CONFIG,LOGKFM,i*hh <cr><lf></lf></cr>   |                                                                                                                           |     |  |
|------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|--|
| Title      | Rejection Filter Configuration for Bottom Track |                                                                                                                           |     |  |
| Data Field | Semantics Unit Type                             |                                                                                                                           |     |  |
| i          | Mode Index                                      | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |  |

To retrieve the Rejection Filter mode for DVL data in Bottom Track mode:

\$PIXSE,CONFIG,LOGKFM,,\*59<CR><LF>

## 5.1.6 REJECTION FILTER CONFIGURATION FOR WATER TRACK

To configure the DVL Rejection Filter mode for Water track data:

| Message    | \$PIXSE,CONFIG,LOGWTM,i*hh <cr><lf></lf></cr> |                                                                                                                           |     |  |  |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| Title      | Rejection Filter Con                          | Rejection Filter Configuration for Water Track                                                                            |     |  |  |
| Data Field | Semantics                                     | Semantics Unit Type                                                                                                       |     |  |  |
| i          | Mode Index                                    | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |  |  |

To retrieve the DVL Rejection Filter mode for Water track data:

\$PIXSE,CONFIG,LOGWTM,,\*57<CR><LF>



# 5.1.7 COUPLING MODE

To configure the DVL coupling mode:

| Message    | \$PIXSE,CONFIG,LOGCPL,i*hh <cr><lf></lf></cr> |                                                                   |     |  |
|------------|-----------------------------------------------|-------------------------------------------------------------------|-----|--|
| Title      | DVL Coupling mode                             |                                                                   |     |  |
| Data Field | Semantics Unit Type                           |                                                                   |     |  |
| i          | Coupling Mode                                 | O: DVL not coupled to the system     I: DVL coupled to the system | int |  |

To retrieve the DVL coupling mode:

\$PIXSE,CONFIG,LOGCPL,,\*46<CR><LF>



# 5.2 DVL2 configuration

#### 5.2.1 LEVER ARM

To configure the lever arm from the INS to the DVL2:

| Message    | \$PIXSE,CONFIG,LG2LV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |   |       |  |
|------------|---------------------------------------------------------|---|-------|--|
| Title      | DVL2 Lever Arm                                          |   |       |  |
| Data Field | Semantics Unit Type                                     |   |       |  |
| x.x        | XV1 lever arm                                           | m | float |  |
| y.y        | XV2 lever arm                                           | m | float |  |
| Z.Z        | XV3 lever arm                                           | m | float |  |

To retrieve the lever arm from the INS to the DVL2:

\$PIXSE,CONFIG,LG2LV\_,,\*21<CR><LF>

## 5.2.2 DVL2 CALIBRATION (MISALIGNMENTS AND SCALE FACTOR)

To manually configure the DVL2 calibration:

| Message    | \$PIXSE,CONFIG,LG2CAL,x.x,y.y,z.z,s.s*hh <cr><lf></lf></cr> |     |       |  |  |
|------------|-------------------------------------------------------------|-----|-------|--|--|
| Title      | DVL2 Calibration                                            |     |       |  |  |
| Data Field | Semantics Unit Typ                                          |     |       |  |  |
| X.X        | Misalignment / unit around XV1 (roll)                       | Deg | float |  |  |
| y.y        | Misalignment / unit around XV2 (pitch)                      | Deg | float |  |  |
| z.z        | Misalignment /unit around XV3 (heading)                     | Deg | float |  |  |
| S.S        | Scale factor correction percentage                          |     | float |  |  |

To retrieve the DVL2 calibration:

\$PIXSE,CONFIG,LG2CAL,,\*2A<CR><LF>

#### **Important**

**Note:** this command only retrieves the values set for DVL calibration. It does not output the misalignment and scale factor estimations when in Dead Reckoning mode during the DVL calibration. These estimations are only available through the PHINS STANDARD output frame (see section 0).



# 5.2.3 DVL2 INTERFACE

To configure the DVL interface (INS interface to receive data from log):

| Message    | \$PIXSE,CONFIG,LG2INT,i*hh <cr><lf></lf></cr> |           |     |  |
|------------|-----------------------------------------------|-----------|-----|--|
| Title      | DVL 2 Interface                               |           |     |  |
| Data Field | Semantics Unit Type                           |           |     |  |
|            |                                               | 0: None   |     |  |
|            | Interface                                     | 1: Port A |     |  |
| :          |                                               | 2: Port B | :4  |  |
| птепасе    |                                               | 3: Port C | int |  |
|            |                                               | 4: Port D |     |  |
|            |                                               | 5: Port E |     |  |

The interface should be configured in accordance with the instrument.

To retrieve the INS interface for DVL data reception:

\$PIXSE,CONFIG,LG2INT,,\*37<CR><LF>

#### 5.2.4 REJECTION FILTER CONFIGURATION FOR BOTTOM TRACK

To configure the Rejection Filter mode for DVL2 data in Bottom Track mode:

| Message    | \$PIXSE,CONFIG,LG2KFM,i*hh <cr><lf></lf></cr>   |                                                                                                                           |     |  |
|------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|--|
| Title      | Rejection Filter Configuration for Bottom Track |                                                                                                                           |     |  |
| Data Field | Semantics Unit Type                             |                                                                                                                           |     |  |
| i          | Mode Index                                      | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |  |

To retrieve the Rejection Filter mode for DVL2 data in Bottom Track mode:

\$PIXSE,CONFIG,LG2KFM,,\*24<CR><LF>



## 5.2.5 REJECTION FILTER CONFIGURATION FOR WATER TRACK

To configure the DVL2 Rejection Filter mode for Water track data:

| Message    | \$PIXSE,CONFIG,LG2WTM,i*hh <cr><lf></lf></cr>  |                                                                                                                           |     |  |
|------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|--|
| Title      | Rejection Filter Configuration for Water Track |                                                                                                                           |     |  |
| Data Field | Semantics Unit Type                            |                                                                                                                           |     |  |
| i          | Mode Index                                     | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |  |

To retrieve the DVL2 Rejection Filter mode for Water track data:

\$PIXSE,CONFIG,LG2WTM,,\*2A<CR><LF>

## 5.2.6 COUPLING MODE

To configure the DVL2 coupling mode:

| Message    | \$PIXSE,CONFIG,LG2CPL,i*hh <cr><lf></lf></cr> |                                                                |      |
|------------|-----------------------------------------------|----------------------------------------------------------------|------|
| Title      | DVL2 Coupling mode                            |                                                                |      |
| Data Field | Semantics                                     | Unit                                                           | Type |
| i          | Coupling Mode                                 | O: DVL not coupled to the system     DVL coupled to the system | int  |

To retrieve the DVL2 coupling mode:

\$PIXSE,CONFIG,LG2CPL,,\*3B<CR><LF>



#### 5.2.7 DVL COMMAND

To send command to DVL:

| Message    | \$PIXSE,CONFIG,DVLCMD,x*hh <cr><lf></lf></cr> |                                                                                                                                   |                     |  |
|------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Title      | DVL command                                   |                                                                                                                                   |                     |  |
| Data Field | Semantics Unit Type                           |                                                                                                                                   |                     |  |
| x          | ID command<br>Or<br>Sub Command               | ID command: 0 : DVL Stop pinging 1 : DVL Start pinging 2 : DVL Single Ping Sub command: String: sub ASCII command (256 chars max) | Int<br>or<br>String |  |

Frame examples:

**DVL Stop pinging:** 

\$PIXSE,CONFIG,DVLCMD,0\*71<CR><LF>

Sending a sub ASCII command to DVL:

\$PIXSE,CONFIG,DVLCMD,CS\*75<CR><LF>

## 5.2.8 DVL TRIGGERED BY PULSE OUT

To configure which pulse out will be trig DVL x:

| Message    | \$PIXSE,CONFIG,DVLTRG,x,y*hh <cr><lf></lf></cr> |                              |      |
|------------|-------------------------------------------------|------------------------------|------|
| Title      | DVL command                                     |                              |      |
| Data Field | Semantics                                       | Unit                         | Type |
| х          | DVL ID                                          | x : DVL x                    | Int  |
|            |                                                 | 0 : No pulse association     |      |
| у          | Pulse Out ID                                    | 1 : Pulse Out A (see note 1) | int  |
|            |                                                 | 2 : Pulse Out B (see note 2) |      |

To retrieve which pulse out is configured with DVL x (checksum hh depends on x):

\$PIXSE,CONFIG,DVLTRG,x,\*hh<CR><LF>

Note 1: No pulse out available for OCTANS NANO and ROVINS NANO

Note 2: No pulse out B available for PHINS C3



## 5.3 Odometer Configuration (LANDINS & ATLANS)

#### 5.3.1 ODOMETER LEVER ARM

To configure the lever arm from the INS to the odometer:

| Message    | \$PIXSE,CONFIG,ODOLV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |      |       |
|------------|---------------------------------------------------------|------|-------|
| Title      | Odometer Lever Arm                                      |      |       |
| Data Field | Semantics                                               | Unit | Type  |
| x.x        | XV1 lever arm                                           | m    | float |
| y.y        | XV2 lever arm                                           | m    | float |
| z.z        | XV3 lever arm                                           | m    | float |

To retrieve the lever arm from the INS to the odometer:

\$PIXSE,CONFIG,ODOLV\_,,\*5C<CR><LF>

#### 5.3.2 ODOMETER CALIBRATION

To manually configure the odometer calibration:

| Message    | \$PIXSE,CONFIG,ODOCAL,x.x,y.y,z.z,s.s*hh <cr><lf></lf></cr> |      |       |
|------------|-------------------------------------------------------------|------|-------|
| Title      | Odometer calibration                                        |      |       |
| Data Field | Semantics                                                   | Unit | Туре  |
| X.X        | Misalignment / unit around XV1 (roll)                       | Deg  | float |
| y.y        | Misalignment / unit around XV2 (pitch)                      | Deg  | float |
| z.z        | Misalignment /unit around XV3 (heading)                     | Deg  | float |
| s.s        | Scale factor correction percentage                          |      | float |

To retrieve the odometer calibration:

\$PIXSE,CONFIG,ODOCAL,,\*57<CR><LF>

#### **Important**

This command only retrieves the values set for odometer calibration. It does not output the misalignment and scale factor estimations when in Dead Reckoning mode during the odometer calibration process. These estimations are only available through the PHINS STANDARD output frame (see section 0).



#### 5.3.3 ODOMETER INTERFACE

To configure the odometer interface:

| Message    | \$PIXSE,CONFIG,ODOINT,i*hh <cr><lf></lf></cr> |           |      |
|------------|-----------------------------------------------|-----------|------|
| Title      | Odometer Interface                            |           |      |
| Data Field | Semantics                                     | Unit      | Туре |
|            |                                               | 0: None   |      |
|            | Interface                                     | 1: Port A |      |
|            |                                               | 2: Port B |      |
| '          |                                               | 3: Port C | int  |
|            |                                               | 4: Port D |      |
|            |                                               | 5: Port E |      |

The interface should be configured in accordance with the instrument.

To retrieve the INS interface for odometer data reception:

\$PIXSE,CONFIG,ODOINT,,\*4A<CR><LF>

## 5.3.4 REJECTION FILTER CONFIGURATION FOR ODOMETER

To configure the Rejection Filter mode for odometer:

| Message    | \$PIXSE,CONFIG,ODOKFM,i*hh <cr><lf></lf></cr> |                                                                                                                           |     |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|
| Title      | Rejection Filter Configuration for odometer   |                                                                                                                           |     |
| Data Field | Semantics Unit Type                           |                                                                                                                           |     |
| i          | Mode Index                                    | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |

To retrieve the Rejection Filter mode for odometer:

\$PIXSE,CONFIG,ODOKFM,,\*59<CR><LF>



# 5.4 EM Log Configuration

## 5.4.1 EM LOG LEVER ARM

To configure the lever arm from the INS to the EM log sensor:

| Message    | \$PIXSE,CONFIG,LMNLV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |      |       |
|------------|---------------------------------------------------------|------|-------|
| Title      | EM Log Lever Arm                                        |      |       |
| Data Field | Semantics                                               | Unit | Type  |
| x.x        | XV1 lever arm                                           | m    | float |
| y.y        | XV2 lever arm                                           | m    | float |
| Z.Z        | XV3 lever arm                                           | m    | float |

To retrieve the lever arm from the INS to the EM log sensor:

\$PIXSE,CONFIG,LMNLV\_,,\*57<CR><LF>

#### **5.4.2 EM LOG INTERFACE**

To configure the EM Log interface (INS interface to receive data from EM Log):

| Message    | \$PIXSE,CONFIG,LMNINT,i*hh <cr><lf></lf></cr> |                                                           |      |
|------------|-----------------------------------------------|-----------------------------------------------------------|------|
| Title      | EM Log Interface                              |                                                           |      |
| Data Field | Semantics                                     | Unit                                                      | Туре |
| i          | Interface                                     | 0: None 1: Port A 2: Port B 3: Port C 4: Port D 5: Port E | int  |

The interface should be configured in accordance with the instrument.

To retrieve the INS interface to which EM Log should be connected:

\$PIXSE,CONFIG,LMNINT,,\*41<CR><LF>



## 5.4.3 EM LOG REJECTION FILTER

To configure the EM Log Rejection Filter mode:

| Message    | \$PIXSE,CONFIG,LMNKFM,i*hh <cr><lf></lf></cr> |                                                                                                                           |      |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|
| Title      | Rejection Filter Configuration for EM Log     |                                                                                                                           |      |
| Data Field | Semantics                                     | Unit                                                                                                                      | Type |
| i          | Mode Index                                    | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int  |

To retrieve the EM Log Rejection Filter mode:

\$PIXSE,CONFIG,LMNKFM,,\*52<CR><LF>



# 5.5 EM Log 2 configuration

## 5.5.1 EM Log 2 Lever ARM

To configure the lever arm from the INS to the EmLog 2 sensor:

| Message    | \$PIXSE,CONFIG,LM2LV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |      |       |
|------------|---------------------------------------------------------|------|-------|
| Title      | EM Log 2 Lever Arm                                      |      |       |
| Data Field | Semantics                                               | Unit | Type  |
| x.x        | XV1 lever arm                                           | m    | float |
| y.y        | XV2 lever arm                                           | m    | float |
| z.z        | XV3 lever arm                                           | m    | float |

To retrieve the lever arm from the INS to the EmLog 2 sensor:

\$PIXSE,CONFIG,LM2LV\_,,\*2B<CR><LF>

#### 5.5.2 EM LOG 2 INTERFACE

To configure the EM Log 2 interface (INS interface to receive data from EM Log 2):

| Message    | \$PIXSE,CONFIG,LM2INT,i*hh <cr><lf></lf></cr> |                                                           |      |
|------------|-----------------------------------------------|-----------------------------------------------------------|------|
| Title      | EM Log 2 Interface                            |                                                           |      |
| Data Field | Semantics                                     | Unit                                                      | Туре |
| i          | Interface                                     | 0: None 1: Port A 2: Port B 3: Port C 4: Port D 5: Port E | int  |

The interface should be configured in accordance with the instrument.

To retrieve the INS interface to which EM Log 2 should be connected:

\$PIXSE,CONFIG,LM2INT,,\*3D<CR><LF>



#### 5.5.3 EM Log 2 REJECTION FILTER

To configure the EM Log 2 Rejection Filter mode:

| Message    | \$PIXSE,CONFIG,LM2KFM,i*hh <cr><lf></lf></cr> |                                                                                                                           |     |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|
| Title      | Rejection Filter Configuration for EM Log 2   |                                                                                                                           |     |
| Data Field | Semantics                                     | cs Unit Type                                                                                                              |     |
| i          | Mode Index                                    | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |

To retrieve the EM Log 2 Rejection Filter mode:

\$PIXSE,CONFIG,LM2KFM,,\*2E<CR><LF>



# 5.6 GPS Configuration

## 5.6.1 GPS LEVER ARM

To configure the lever arm from the INS to the GPS:

| Message    | \$PIXSE,CONFIG,GPSLV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |      |       |
|------------|---------------------------------------------------------|------|-------|
| Title      | GPS Lever Arm                                           |      |       |
| Data Field | Semantics                                               | Unit | Type  |
| x.x        | XV1 lever arm                                           | m    | float |
| y.y        | XV2 lever arm                                           | m    | float |
| z.z        | XV3 lever arm                                           | m    | float |

To retrieve the lever arm from the INS to the GPS:

\$PIXSE,CONFIG,GPSLV\_,,\*5C<CR><LF>

#### 5.6.2 GPS INTERFACE

To configure the GPS interface (INS interface to receive data from GPS):

| Message    | \$PIXSE,CONFIG,GPSINT,i*hh <cr><lf></lf></cr> |                                     |      |
|------------|-----------------------------------------------|-------------------------------------|------|
| Title      | GPS Interface                                 |                                     |      |
| Data Field | Semantics                                     | Unit                                | Туре |
|            | luto efo o o                                  | 0: None<br>1: Port A<br>2: Port B   |      |
| 1          | Interface                                     | 3: Port C<br>4: Port D<br>5: Port E | int  |

The interface should be configured in accordance with the instrument.

To retrieve the INS interface to which GPS should be connected:

\$PIXSE,CONFIG,GPSINT,,\*4A<CR><LF>



## 5.6.3 GPS REJECTION FILTER

To configure the GPS Rejection Filter mode:

| Message    | \$PIXSE,CONFIG,GPSKFM,i*hh <cr><lf></lf></cr> |                                                                                                                           |     |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|
| Title      | Rejection Filter Configuration for GPS        |                                                                                                                           |     |
| Data Field | Semantics                                     | Semantics Unit Type                                                                                                       |     |
| i          | Mode Index                                    | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |

To retrieve the GPS Rejection Filter mode:

\$PIXSE,CONFIG,GPSKFM,,\*59<CR><LF>



# 5.7 **GPS2 Configuration**

## 5.7.1 GPS2 LEVER ARM

To configure the lever arm from the INS to the GPS2:

| Message    | \$PIXSE,CONFIG,GP2LV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |   |       |  |
|------------|---------------------------------------------------------|---|-------|--|
| Title      | GPS2 Lever Arm                                          |   |       |  |
| Data Field | Semantics Unit Type                                     |   |       |  |
| x.x        | XV1 lever arm                                           | m | float |  |
| y.y        | XV2 lever arm                                           | m | float |  |
| Z.Z        | XV3 lever arm                                           | m | float |  |

To retrieve the lever arm from the INS to the GPS2:

\$PIXSE,CONFIG,GP2LV\_,,\*3D<CR><LF>

#### 5.7.2 GPS2 INTERFACE

To configure the GPS2 interface (INS interface to receive data from GPS2):

| Message    | \$PIXSE,CONFIG,GP2INT,i*hh <cr><lf></lf></cr> |                                                           |     |  |
|------------|-----------------------------------------------|-----------------------------------------------------------|-----|--|
| Title      | GPS2 Interface                                |                                                           |     |  |
| Data Field | Semantics Unit Type                           |                                                           |     |  |
| i          | Interface                                     | 0: None1: Port A2: Port B<br>3: Port C 4: Port D5: Port E | int |  |

The interface should be configured in accordance with the instrument.

To retrieve the GPS2 interface (INS interface to receive data from GPS2):

\$PIXSE,CONFIG,GP2INT,,\*2B<CR><LF>



## 5.7.3 GPS2 REJECTION FILTER

To configure the GPS2 Rejection Filter mode:

| Message    | \$PIXSE,CONFIG,GP2KFM,i*hh <cr><lf></lf></cr> |                                                                                                                           |      |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|
| Title      | Rejection Filter Configuration for GPS2       |                                                                                                                           |      |
| Data Field | Semantics                                     | Unit                                                                                                                      | Type |
| i          | Mode Index                                    | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int  |

To retrieve the GPS2 Rejection Filter mode:

\$PIXSE,CONFIG,GP2KFM,,\*38<CR><LF>



# 5.8 Manual GPS Configuration

#### 5.8.1 MANUAL GPS LEVER ARM

To configure the lever arm from INS to the manual GPS:

| Message    | \$PIXSE,CONFIG,GPMLV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |   |       |  |
|------------|---------------------------------------------------------|---|-------|--|
| Title      | Manual GPS Lever Arm                                    |   |       |  |
| Data Field | Semantics Unit Typ                                      |   |       |  |
| x.x        | XV1 lever arm                                           | m | float |  |
| y.y        | XV2 lever arm                                           | m | float |  |
| Z.Z        | XV3 lever arm                                           | m | float |  |

To retrieve the lever arm from the INS to the manual GPS:

\$PIXSE,CONFIG,GPMLV\_,,\*42<CR><LF>

#### 5.8.2 MANUAL GPS REJECTION FILTER

To configure the Manual GPS Rejection Filter mode:

| Message    | \$PIXSE,CONFIG,GPMKFM,i*hh <cr><lf></lf></cr> |                                                                                                                           |     |  |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|--|
| Title      | Rejection Filter Con                          | Rejection Filter Configuration for manual GPS                                                                             |     |  |
| Data Field | Semantics                                     | Semantics Unit Type                                                                                                       |     |  |
| i          | Mode Index                                    | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |  |

To retrieve the Manual GPS Rejection Filter mode:

\$PIXSE,CONFIG,GPMKFM,,\*47<CR><LF>



## 5.8.3 MANUAL GPS Position Fix

To send a manual position fix:

| Message    | \$PIXSE,CONFIG,MANGPS,a.a,b.b,c.c,d.d,e.e,f.f*hh <cr><lf></lf></cr> |        |       |  |
|------------|---------------------------------------------------------------------|--------|-------|--|
| Title      | Manual GPS position fix                                             |        |       |  |
| Data Field | Semantics Unit Type                                                 |        |       |  |
| a.a        | Latitude                                                            | degree | float |  |
| b.b        | Longitude                                                           | degree | float |  |
| C.C        | Altitude (mean sea level)                                           | m      | float |  |
| d.d        | Latitude standard deviation                                         | m      | float |  |
| e.e        | Longitude standard deviation                                        | m      | float |  |
| f.f        | Altitude standard deviation                                         | m      | float |  |

To retrieve the last manual position sent:

\$PIXSE,CONFIG,MANGPS,,\*5B<CR><LF>



# 5.9 Depth Sensor Configuration

#### 5.9.1 Depth Sensor Lever Arm

To configure the lever arm from the INS to the Depth sensor:

| Message    | \$PIXSE,CONFIG,DEPLV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |   |       |  |
|------------|---------------------------------------------------------|---|-------|--|
| Title      | Depth Lever Arm                                         |   |       |  |
| Data Field | Semantics Unit Type                                     |   |       |  |
| x.x        | XV1 lever arm                                           | m | float |  |
| y.y        | XV2 lever arm                                           | m | float |  |
| Z.Z        | XV3 lever arm                                           | m | float |  |

To configure the lever arm from the INS to the Depth sensor:

\$PIXSE,CONFIG,DEPLV\_,,\*49<CR><LF>

#### 5.9.2 DEPTH SENSOR OFFSET

To configure the offset that will be subtracted from depth sensor input value:

| Message    | \$PIXSE,CONFIG,DEPOFS,x.x*hh <cr><lf></lf></cr> |      |       |
|------------|-------------------------------------------------|------|-------|
| Title      | Depth offset                                    |      |       |
| Data Field | Semantics                                       | Unit | Туре  |
| X.X        | Offset                                          | m    | float |

To retrieve current depth offset:

\$PIXSE,CONFIG,DEPOFS,,\*56<CR><LF>

## 5.9.3 ZERO DEPTH SENSOR

To use current raw depth input as depth offset (calibrate the depth sensor):

| Message | \$PIXSE,CONFIG,DEPZER,,*41 <cr><lf></lf></cr> |  |
|---------|-----------------------------------------------|--|
| Title   | Zero depth                                    |  |



#### 5.9.4 Depth Sensor Interface

To configure the Depth Sensor interface (INS interface to receive data from depth sensor):

| Message     | \$PIXSE,CONFIG,DEPINT,i*hh <cr><lf></lf></cr> |           |     |  |
|-------------|-----------------------------------------------|-----------|-----|--|
| Title       | Depth Interface                               |           |     |  |
| Data Field  | Semantics Unit Type                           |           |     |  |
|             |                                               | 0: None   |     |  |
|             |                                               | 1: Port A |     |  |
|             | la ta ef a a a                                | 2: Port B |     |  |
| i Interface | Іптепасе                                      | 3: Port C | int |  |
|             |                                               | 4: Port D |     |  |
|             |                                               | 5: Port E |     |  |

The interface should be configured in accordance with the instrument.

To retrieve the Depth Sensor interface (INS interface to receive data from depth sensor):

\$PIXSE,CONFIG,DEPINT,,\*5F<CR><LF>

#### 5.9.5 REJECTION FILTER MODE FOR DEPTH SENSOR

To configure the Rejection Filter mode for Depth Sensor:

| Message    | \$PIXSE,CONFIG,DEPKFM,i*hh <cr><lf></lf></cr>   |                                                                                                                           |      |
|------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|
| Title      | Rejection Filter Configuration for Depth Sensor |                                                                                                                           |      |
| Data Field | Semantics                                       | Unit                                                                                                                      | Type |
| i          | Mode Index                                      | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int  |

To retrieve the Rejection Filter mode for Depth Sensor:

\$PIXSE,CONFIG,DEPKFM,,\*4C<CR><LF>



# 5.10 USBL Configuration

#### 5.10.1 USBL LEVER ARM

To configure the lever arm from the INS to the specified USBL beacon:

| Message    | \$PIXSE,CONFIG,USBLV_,x.x,y.y,z.z,i*hh <cr><lf></lf></cr> |     |       |
|------------|-----------------------------------------------------------|-----|-------|
| Title      | USBL Lever Arm                                            |     |       |
| Data Field | Semantics Unit Type                                       |     | Type  |
| x.x        | XV1 lever arm                                             | m   | float |
| y.y        | XV2 lever arm                                             | m   | float |
| Z.Z        | XV3 lever arm                                             | m   | float |
| i          | USBL beacon index (0, 1 or 2)                             | N/A | int   |

To retrieve the lever arm from the INS to the specified USBL beacon (i is the beacon index):

\$PIXSE,CONFIG,USBLV\_,,i\*hh<CR><LF>

## 5.10.2 USBL INTERFACE

To configure the USBL interface (INS interface to receive data from specified USBL beacon):

| Message    | \$PIXSE,CONFIG,USBINT,i,ttt,j*hh <cr><lf></lf></cr> |                                                           |        |
|------------|-----------------------------------------------------|-----------------------------------------------------------|--------|
| Title      | USB                                                 | BL Interface                                              |        |
| Data Field | Semantics                                           | Unit                                                      | Туре   |
| ı          | Interface                                           | 0: None 1: Port A 2: Port B 3: Port C 4: Port D 5: Port E | Int    |
| ttt        | Tp Code                                             | 8 char max                                                | String |
| j          | Index                                               | USBL beacon index (0, 1 or 2)                             | int    |

To retrieve the specified USBL beacon interface (j is the beacon index):

\$PIXSE,CONFIG,USBINT,,j\*hh<CR><LF>



#### 5.10.3 USBL REJECTION FILTER MODE

To configure the Rejection Filter mode for specified USBL beacon:

| Message    | \$PIXSE,CONFIG,USBKFM,i,j*hh <cr><lf></lf></cr> |                                                                                                                           |     |
|------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|
| Title      | Rejection Filter                                | Rejection Filter Configuration for USBL                                                                                   |     |
| Data Field | Semantics                                       | Semantics Unit Type                                                                                                       |     |
| i          | Mode Index                                      | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int |
| j          | USBL index                                      | USBL beacon index (0, 1 or 2)                                                                                             | int |

To retrieve the Rejection Filter mode for a specified USBL beacon index j:

\$PIXSE,CONFIG,USBKFM,,j\*hh<CR><LF>

#### 5.10.4 USBL BEACON WATCH SELECTION

In PHINS STANDARD protocol, only one USBL beacon will be reported at a time. To configure the USBL beacon to watch in PHINS STANDARD protocol:

| Message    | \$PIXSE,CONFIG,USBVIE,i*hh <cr><lf></lf></cr> |                               |      |
|------------|-----------------------------------------------|-------------------------------|------|
| Title      | USBL beacon watch selection                   |                               |      |
| Data Field | Semantics                                     | Unit                          | Туре |
| i          | Beacon index                                  | USBL beacon index (0, 1 or 2) | int  |

To retrieve currently selected beacon:

\$PIXSE,CONFIG,USBVIE,,\*43<CR><LF>

#### 5.10.5 MAXIMUM NUMBER OF USBL BEACONS

To retrieve maximum number of beacons that the firmware can manage:

| Message | \$PIXSE,CONFIG,USBNBB,,*57 <cr><lf< th=""></lf<></cr> |
|---------|-------------------------------------------------------|
| Title   | Maximum Number of USBL Beacons                        |

For a maximum number of 3 beacons, this command will return:

\$PIXSE,CONFIG,USBNBB,3\*48<CR><LF>



# **5.11 LBL Configuration**

#### 5.11.1 LBL LEVER ARM

To configure the lever arm from the INS to the LBL computing point:

| Message    | \$PIXSE,CONFIG,LBLLV_,x.x,y.y,z.z*hh <cr><lf></lf></cr> |      |       |
|------------|---------------------------------------------------------|------|-------|
| Title      | LBL Lever Arm                                           |      |       |
| Data Field | Semantics                                               | Unit | Type  |
| x.x        | XV1 lever arm                                           | m    | float |
| y.y        | XV2 lever arm                                           | m    | float |
| z.z        | XV3 lever arm                                           | m    | float |

To retrieve the lever arm from the INS to the LBL computing point:

\$PIXSE,CONFIG,LBLLV\_,,\*5A<CR><LF>

#### 5.11.2 LBL INTERFACE

To configure the LBL interface (INS interface to receive data from LBL):

| Message    | \$PIXSE,CONFIG, | LBLINT,i*hh <cr><lf></lf></cr>                            |      |
|------------|-----------------|-----------------------------------------------------------|------|
| Title      | LBL Interface   |                                                           |      |
| Data Field | Semantics       | Unit                                                      | Туре |
| i          | Interface       | 0: None 1: Port A 2: Port B 3: Port C 4: Port D 5: Port E | int  |

To retrieve the LBL interface (INS interface to receive data from LBL):

\$PIXSE,CONFIG,LBLINT,,\*4C<CR><LF>



## 5.11.3 LBL REJECTION FILTER

To configure the LBL Rejection Filter mode:

| Message    | \$PIXSE,CONFIG,LBLKFM,i*hh <cr><lf></lf></cr> |                                                                                                                           |      |
|------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|
| Title      | Rejection Filter Configuration for LBL        |                                                                                                                           |      |
| Data Field | Semantics                                     | Unit                                                                                                                      | Туре |
| i          | Rejection Mode Index                          | 0 : Not Active Always True 1 : Not Active Always False 2 : Active Automatic reacquisition 3 : Active Manual reacquisition | int  |

To retrieve the LBL Rejection Filter mode:

\$PIXSE,CONFIG,LBLKFM,,\*5F<CR><LF>

# 5.12 UTC (Time Synchronization) Interface

To configure the UTC interface (the INS interface to receive data from UTC):

| Message    | \$PIXSE,CONFIG,UTCINT,i*hh <cr><lf></lf></cr> |                                                           |      |
|------------|-----------------------------------------------|-----------------------------------------------------------|------|
| Title      | UTC Interface                                 |                                                           |      |
| Data Field | Semantics                                     | Unit                                                      | Туре |
| i          | Interface                                     | 0: None1: Port A2: Port B<br>3: Port C 4: Port D5: Port E | int  |

To retrieve the UTC interface (the INS interface to receive data from UTC):

\$PIXSE,CONFIG,UTCINT,,\*4C<CR><LF>



#### 6 Interfaces Configuration

This section describes commands to configure serial or Ethernet ports and analog I/O.

## 6.1 Port mapping and ID

The ports mapping from software port identification to physical port identification may differ for certain product:

#### For ATLANS-C

- to configure the physical serial input ports A and B use configuration commands with respectively ID D and E instead.
- to configure the physical **Ethernet input ports** A to B use configuration commands with respectively ID D to E instead.
- to configure **output ports** use the physical port ID.



#### For PHINS COMPACT C7

- to configure the physical serial input ports A and B use configuration commands with respectively ID D and E instead.
- to configure the physical **Ethernet input ports** A to D use configuration commands with respectively ID D to G instead.
- to configure **output ports** use the physical port ID.





## For other products

- to configure an **input port** use the physical port ID: A up to G.
- to configure output ports use the physical port ID.





## 6.2 Serial and Ethernet Commands

## 6.2.1 SERIAL I/O GENERAL PARAMETERS (PARITY AND STOP BIT)

To configure the parity and stop bit for serial port X:

| Message    | \$PIXSE,CONFIG,RSCM_X,i,j[,k][,l]*hh <cr><lf></lf></cr> |                                                                                                                                                                                                                                                                           |      |
|------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Title      | Serial interface configuration                          |                                                                                                                                                                                                                                                                           |      |
| Data Field | Semantics                                               | Unit                                                                                                                                                                                                                                                                      | Type |
| X          | Port                                                    | ATLANS: set A to B to configure output ports A to B*  Set D to E to configure input ports A to B*  PHINS COMPACT C7:  Set A to E to configure output ports A to E*  Set D to G to configure input ports A to D*  OTHERS: set A to E to configure input/output port A to E | int  |
| i          | parity                                                  | 0: None<br>1: Even<br>2: Odd                                                                                                                                                                                                                                              | int  |
| j          | number of stop bits                                     | 0: 0.5 stop bit 1: 1 stop bit 2: 1.5 stop bit 3: 2 stop bits                                                                                                                                                                                                              | int  |
| k          | RFU                                                     | 0                                                                                                                                                                                                                                                                         | int  |
| I          | RFU                                                     | 0                                                                                                                                                                                                                                                                         | int  |

<sup>\*:</sup> refer to 6.1 to explanation about the product port mapping.

To retrieve parity and stop bit for serial port X (checksum hh depends on port X):

\$PIXSE,CONFIG,RSCM\_X,,\*hh<CR><LF>



#### 6.2.2 SERIAL/ETHERNET INPUT PORT CONFIGURATION

To configure the serial input port X:

| Message    | \$PIXSE,CONFIG,RSIN_X,i,j[,k][,l]*hh <cr><lf></lf></cr> |                                                         |      |
|------------|---------------------------------------------------------|---------------------------------------------------------|------|
| Title      |                                                         | Input port configuration                                |      |
| Data Field | Semantics                                               | Unit                                                    | Туре |
|            |                                                         | ATLANS: set D to E to configure ports A to B*           |      |
| x          | Port                                                    | PHINS COMPACT C7: set D to G to configure ports A to D* | char |
|            |                                                         | Other products: set A to E to configure ports A to E*   |      |
| i          | Baud rate                                               | See Table 9                                             | int  |
| j          | protocol                                                | See<br>Table 10 and Table 11                            | int  |
| k          | RFU                                                     | 0                                                       | int  |
| I          | RFU                                                     | 0                                                       | int  |

<sup>\*:</sup> refer to 6.1 to explanation about the product port mapping.

The RSIN command must be used to select input protocol in Ethernet mode too.



Changing input port baud rate will affect corresponding output port baud rate as baud rate generator is common to both input and output serial transceiver.

To retrieve configuration of serial input port x (checksum hh depends on port x):

\$PIXSE,CONFIG,RSIN\_X,,\*hh<CR><LF>

Table 9 - Baud rate index

| i | Baud rate  |
|---|------------|
| 0 | 600 bps    |
| 1 | 1 200 bps  |
| 2 | 2 400 bps  |
| 3 | 4 800 bps  |
| 4 | 9 600 bps  |
| 5 | 19 200 bps |

| i  | Baud rate   |
|----|-------------|
| 6  | 38 400 bps  |
| 7  | 57 600 bps  |
| 8  | 115 200 bps |
| 9  | 230 400 bps |
| 10 | 460 800 bps |
|    |             |



# Table 10 - List and index of input protocols for serial/Ethernet ports (part1)

| ld | PHINS / PHINS 6000<br>ROVINS | HYDRINS  | MARINS BK-A    | MARINS BKB     | ROVINS NANO      |
|----|------------------------------|----------|----------------|----------------|------------------|
|    | PHINS COMPACT C7             |          |                |                | PHINS COMPACT C3 |
| 0  | NONE                         | NONE     | NONE           | NONE           | NONE             |
| 1  | RDI PD6                      | GPS      | GPS            | GPS            | APOS PSIM LBP    |
| 2  | RDI PD4                      | STD_NMEA | EMLOG VBW      | EMLOG VBW      | APOS PSIM SSB    |
| 3  | GPS                          |          | SKIPPER DL850  | SENIN          | EIVA             |
| 4  | MICRO IN                     |          | SENIN          | MICRO IN       | EM LOG VHW       |
| 5  | SVP 70                       |          | RDI PD6        | SVP 70         | VBW              |
| 6  | EMLOG VBW                    |          | RDI PD4        | PAROSCIENTIFIC | GAPS             |
| 7  | PAROSCIENTIFIC               |          | MICRO IN       | SOC AUTOSUB    | GPS              |
| 8  | APOS PSIM SSB                |          | SVP 70         | EXT SENSOR BIN | HALLIBURTON      |
| 9  | HALLIBURTON                  |          | PAROSCIENTIFIC | SEAKING 700    | MICRO SVT-P      |
| 10 | USBL LBL CTD                 |          | SOC AUTOSUB    | EMLOG VHW      | MINISVS          |
| 11 | SOC AUTOSUB                  |          | EXT SENSOR BIN | MINISVS        | PAROSCIENTIFIC   |
| 12 | EXT SENSOR BIN               |          | SEAKING 700    | CTD SBE        | PRESSURE SENSOR  |
| 13 | POSIDONIA                    |          | EMLOG VHW      | SVX2           | RDI PD6          |
| 14 | USBL INPUT                   |          | VBW            | DCN STD LOCH   | SBE 37SI         |
| 15 | SEAKING 700                  |          | MINISVS        | RESERVED       | SEAKING 700      |
| 16 | EMLOG VHW                    |          | CTD SBE        | IXBLUE STD BIN | SENIN            |
| 17 | LOG VBW                      |          | RDI PD0        |                | SVP70            |
| 18 | AUVG 3000                    |          | SVX2           |                | SVX2             |
| 19 | SENIN                        |          | DCN STD LOCH   |                | USBL LBL CTD     |
| 20 | MINI SVS                     |          | PDS            |                | EM LOG VBW       |
| 21 | CTD SBE                      |          | GRAVIMETRY     |                | AUVG3000         |
| 22 | GAPS STD                     |          | RESERVED       |                | EXT SENSOR BIN   |
| 23 | RDI PD0                      |          | IXBLUE STD BIN |                | IXBLUE STD BIN   |
| 24 | SVX2                         |          |                |                | POSIDONIA        |
| 25 | EIVA                         |          |                |                | RAMSES POSTPRO   |
| 26 | DCN LOCH                     |          |                |                | RDI PD0          |
| 27 | IXSEA AUV                    |          |                |                | RDI PD3          |
| 28 | APOS PSIM LBP                |          |                |                | RDI PD3 RT       |
| 29 | RAMSES PP                    |          |                |                | RDI PD4          |
| 30 | USBLBOX PP                   |          |                |                | SOCAUTOSUB       |
| 31 | RDI PD3                      |          |                |                | USBL BOX POSTPRO |
| 32 | RDI PD3 RT                   |          |                |                |                  |
| 33 | PRESSURE SENSOR              |          |                |                |                  |
| 34 | SBF_SIX                      |          |                |                |                  |
| 35 | STD_NMEA                     |          |                |                |                  |
| 36 | STDBIN                       |          |                |                |                  |
| 37 | SBE49                        |          |                |                |                  |



Table 11 - List and index of input protocols for serial/Ethernet ports (part 2)

| ld | LANDINS  | AIRINS   | ATLANS   | QUADRANS     |
|----|----------|----------|----------|--------------|
| 0  | NONE     | NONE     | NONE     | NONE         |
| 1  | GPS      | GPS      | GPS      | GPS          |
| 2  | ODOMETER | GSM 3000 | ODOMETER | EMLOG<br>VBW |
| 3  | STD_NMEA | STD_NMEA | SBF SIX  | EMLOG<br>VHW |
| 4  |          |          | STD_NMEA | DCN LOCH     |
| 5  |          | _        | STDBIN   | LOCH VBW     |
| 6  |          |          | HEXAPOD  | STD_NMEA     |



#### 6.2.3 SERIAL/ETHERNET OUTPUT PORT CONFIGURATION

To configure the serial/Ethernet output on port X:

| Message    | \$PIXSE,CONFIG,RSOUTX,i,j,k,I,m[,n][,o]*hh <cr><lf></lf></cr> |                                                                                                                                                                                             |      |  |  |
|------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| Title      |                                                               | Output port configuration                                                                                                                                                                   |      |  |  |
| Data Field | Semantics                                                     | Unit                                                                                                                                                                                        | Type |  |  |
| X          | Port                                                          | ATLANS: A to C Other products: A to E                                                                                                                                                       | char |  |  |
| i          | baud rate                                                     | See Table 9                                                                                                                                                                                 | int  |  |  |
| j          | protocol                                                      | protocol See Table 12 and Table 13                                                                                                                                                          |      |  |  |
| k          | rate                                                          | Output rate in ms (100 = 100 ms = 10 Hz)  Minimum value is 5 ms (200 Hz)                                                                                                                    | int  |  |  |
| I          | RS level                                                      | RS level 0: RS232 1: RS422 (not available for PHINS COMPACT C3                                                                                                                              |      |  |  |
| m          | Lever arm                                                     | O: Main lever arm, standard heave filter  1: Secondary lever arm 1, standard heave filter  2: Secondary lever arm 2, standard heave filter  3: Secondary lever arm 3, standard heave filter | int  |  |  |
| n          | Heave                                                         | 0: Real Time Heave<br>Heave 1: Smart Heave (100s delayed)                                                                                                                                   |      |  |  |
| o          | Altitude<br>reference                                         | 0: Mean sea level Geoidal (default) 1: WGS84 Ellipsoidal                                                                                                                                    | int  |  |  |

To retrieve configuration of serial output port x (checksum hh depends on port X):

\$PIXSE,CONFIG,RSOUTX,,\*hh<CR><LF>

Table 12 - list and index of output protocols for serial ports on inertial units (part 1)

| ld | PHINS / PHINS 6000<br>HYDRINS / ROVINS /<br>PHINS COMPACT C7 | MARINS BKA       | MARINS BKB       | PHINS COMPACT C3 /<br>ROVINS NANO |
|----|--------------------------------------------------------------|------------------|------------------|-----------------------------------|
| 0  | NONE                                                         | NONE             | NONE             | NONE                              |
| 1  | PHINS STANDARD                                               | PHINS STANDARD   | PHINS STANDARD   | PHINS STANDARD                    |
| 2  | POST PROCESSING                                              | POST PROCESSING  | POST PROCESSING  | POSTPROCESSING                    |
| 3  | HALLIBURTON SAS                                              | NAVIGATION SHORT | NAVIGATION SHORT | AIPOV                             |
| 4  | DORADO                                                       | NAVIGATION LONG  | NAVIGATION LONG  | GPS LIKE                          |
| 5  | CONTROL NO G                                                 | GPS LIKE         | GPS LIKE         | GYROCOMPASS                       |
| 6  | NAVIGATION SHORT                                             | BINARY NAV       | BINARY NAV       | GYROCOMPASS 2                     |
| 7  | NAVIGATION LONG                                              | VTG GGA          | VTG GGA          | HALLIBURTON SAS                   |
| 8  | GPS LIKE                                                     | HEHDT            | HEHDT            | HEHDT HEROT                       |



| ld | PHINS / PHINS 6000<br>HYDRINS / ROVINS /<br>PHINS COMPACT C7 | MARINS BKA      | MARINS BKB      | PHINS COMPACT C3 /<br>ROVINS NANO |
|----|--------------------------------------------------------------|-----------------|-----------------|-----------------------------------|
| 9  | IMU ASCII                                                    | SPAWAR NAV      | SPAWAR NAV      | HETHS HEROT                       |
| 10 | IMU BINARY                                                   | NAVIGATION      | NAVIGATION      | HYDROGRAPHY                       |
| 11 | BINARY NAV                                                   | DCN STD NAV 1   | DCN STD NAV 1   | IXSEA TAH                         |
| 12 | VTG GGA                                                      | DCN STD NAV 10  | DCN STD NAV 10  | KVH EXTENDED                      |
| 13 | HEHDT                                                        | SPERRY ATT      | SPERRY ATT      | NAV BHO                           |
| 14 | HEHDT FIXED                                                  | SENIN           | SENIN           | NAV BHO LONG                      |
| 15 | OCTANS STANDARD                                              | BROADCAST A     | BROADCAST A     | NAVIGATION                        |
| 16 | GYROCOMPASS                                                  | BROADCAST B     | BROADCAST B     | OCTANS STANDARD                   |
| 17 | GYROCOMPASS II                                               | BROADCAST C     | BROADCAST C     | POSIDONIA                         |
| 18 | SOC AUTOSUB                                                  | BROADCAST D     | BROADCAST D     | PRDID                             |
| 19 | SEAPATH                                                      | BROADCAST E     | BROADCAST E     | PRDID TSS                         |
| 20 | SPAWAR NAV                                                   | HEHDT_HEROT     | HEHDT_HEROT     | PRECISE ZDA                       |
| 21 | BUC                                                          | VTGGGU          | VTGGGU          | RDI PD11                          |
| 22 | EMT SDV GCS                                                  | LONG BIN NAV HR | LONG BIN NAV HR | RDI PING                          |
| 23 | HDMS                                                         | IXSEA ICCB1     | IXSEA ICCB1     | RDI SYNC                          |
| 24 | SIMRAD EM                                                    | NAV BINARY HR   | NAV BINARY HR   | SUBMERGENCE A                     |
| 25 | SIMRAD EM TSS                                                | NAVIGATION HDLC | NAVIGATION HDLC | SUBMERGENCE B                     |
| 26 | SIMRAD EM TSSH2                                              | DCN NAV1 FLF    | DCN NAV1 FLF    | TECHSAS                           |
| 27 | HYDROGRAPHY                                                  | SER OUT A RTC   | SER OUT A RTC   | TECHSAS TSS                       |
| 28 | TECHSAS                                                      | SER OUT B RTC   | SER OUT B RTC   | TOKIMEC PTVF                      |
| 29 | TECHSAS TSS                                                  | SER OUT C RTC   | SER OUT C RTC   | TSS335B                           |
| 30 | PRDID                                                        | SER OUT D RTC   | SER OUT D RTC   | TSS1 DMS                          |
| 31 | PRDID TSS                                                    | SER OUT E RTC   | SER OUT E RTC   | AUVG3000                          |
| 32 | NAVIGATION                                                   | SUBMERGENCE A   | SUBMERGENCE A   | CONTROL                           |
| 33 | TSS1 DMS                                                     | SUBMERGENCE B   | SUBMERGENCE B   | CONTROL NO G                      |
| 34 | TSS335B                                                      | PTNL GGK        | PTNL GGK        | DORADO                            |
| 35 | TMC CCV IMBAT                                                | NAV BINARY 1    | NAV BINARY 1    | DORADO 2                          |
| 36 | POSIDONIA                                                    | INHDT           | INHDT           | EMT SDV CGS                       |
| 37 | NAV BHO                                                      | S40 NAV 10      | S40 NAV 10      | EXT SENSOR BIN                    |
| 38 | NAV BHO LONG                                                 | S40 NAV 100     | S40 NAV 100     | GAPS BIN                          |
| 39 | INDYN                                                        | ANSCHUTZ STD 20 | ANSCHUTZ STD 20 | IXBLUE STD BIN V2                 |
| 40 | DOLOG HRP                                                    | DCN NAV1 FAA    | DCN NAV1 FAA    | IXBLUE STD BIN V3                 |
| 41 | SENSOR RD                                                    | DCN FAA         | DCN FAA         | KINETIC SCIENTIFIC                |
| 42 | NAV AND CTD                                                  | LRS 10 78 IIC   | LRS 10 78 IIC   | LONG BIN NAV SM                   |
| 43 | EXT SENSOR BIN                                               | LRS 10 78 IC    | LRS 10 78 IC    | LONG BINARY NAV                   |
| 44 | DCN STD NAV 1                                                | LRS 100 32 IIC  | LRS 100 32 IIC  | NAV AND CTD                       |
| 45 | DCN STD NAV 10                                               | LRS 100 32 IC   | LRS 100 32 IC   | NAV BINARY                        |
| 46 | SPERRY ATT                                                   | LRS 100 35 IIC  | LRS 100 35 IIC  | NAV BINARY 1                      |
| 47 | RIEGL                                                        | LRS 100 35 IC   | LRS 100 35 IC   | NAVIGATION LONG                   |



| ld | PHINS / PHINS 6000<br>HYDRINS / ROVINS /<br>PHINS COMPACT C7 | MARINS BKA        | MARINS BKB        | PHINS COMPACT C3 /<br>ROVINS NANO |
|----|--------------------------------------------------------------|-------------------|-------------------|-----------------------------------|
| 48 | AUVG 3000                                                    | LONG BIN NAV SM   | LONG BIN NAV SM   | POLAR NAV                         |
| 49 | IXSEA TAH                                                    | HEAVE POSTPRO     | HEAVE POSTPRO     | SEAPATH                           |
| 50 | SENIN                                                        | POLAR NAV         | POLAR NAV         | SEATEX DHEAVE                     |
| 51 | BROADCAST A                                                  | GRAVITY DOV CORR  | HETHS HEROT       | SENSOR RD                         |
| 52 | BROADCAST B                                                  | IMU ASCII         | SPERRY_ATT_STANAG | SIMRAD EM                         |
| 53 | BROADCAST C                                                  | IMU BIN           | STDBIN_V2         | SIMRAD EM TSS                     |
| 54 | BROADCAST D                                                  | IMU RAW DATA      | STDBIN_V3         | SIMRAD EM HEAVE2                  |
| 55 | BROADCAST E                                                  | HETHS HEROT       |                   | SOC AUTOSUB                       |
| 56 | HEHDT HEROT                                                  | SPERRY_ATT_STANAG |                   | TMS CCV IMBAT                     |
| 57 | RDI SYNC                                                     | STDBIN_V2         |                   | TUS                               |
| 58 | VTG GGU                                                      | STDBIN_V3         |                   | BROADCAST A                       |
| 59 | LONG BINARY NAV HR                                           |                   |                   | BROADCAST B                       |
| 60 | IXSEA ICCB1                                                  |                   |                   | BROADCAST C                       |
| 61 | RDI PD11                                                     |                   |                   | BROADCAST D                       |
| 62 | NAV BINARY HR                                                |                   |                   | BROADCAST E                       |
| 63 | TUS                                                          |                   |                   | SER OUT A RTC                     |
| 64 | STOLT OFFSHORE 2                                             |                   |                   | SER OUT B RTC                     |
| 65 | SHORT GPS LIKE                                               |                   |                   | SER OUT C RTC                     |
| 66 | POS MV GRP 111                                               |                   |                   | SER OUT D RTC                     |
| 67 | SEATEX DHEAVE                                                |                   |                   | SER OUT E RTC                     |
| 68 | HEAVE POST PRO                                               |                   |                   | LODESTAR CTAG                     |
| 69 | CONTROL                                                      |                   |                   | IMU ASCII                         |
| 70 | GAPS BIN                                                     |                   |                   | IMU BINARY                        |
| 71 | NAVIGATION HDLC                                              |                   |                   | IMU RAW DATA                      |
| 72 | DCN NAV 1 FLF                                                |                   |                   |                                   |
| 73 | SER OUT A RTC                                                |                   |                   |                                   |
| 74 | SER OUT B RTC                                                |                   |                   |                                   |
| 75 | SER OUT C RTC                                                |                   |                   |                                   |
| 76 | SER OUT D RTC                                                |                   |                   |                                   |
| 77 | SER OUT E RTC                                                |                   |                   |                                   |
| 78 | SUBMERGENCE A                                                |                   |                   |                                   |
| 79 | SUBMERGENCE B                                                |                   |                   |                                   |
| 80 | PTNL GGK                                                     |                   |                   |                                   |
| 81 | NAV BINARY 1                                                 |                   |                   |                                   |
| 82 | KVH EXTENDED                                                 |                   |                   |                                   |
| 83 | POLAR NAV                                                    |                   |                   |                                   |
| 84 | INHDT                                                        |                   |                   |                                   |
| 85 | S40 NAV 10                                                   |                   |                   |                                   |
| 86 | S40 NAV 100                                                  |                   |                   |                                   |



| ld  | PHINS / PHINS 6000<br>HYDRINS / ROVINS /<br>PHINS COMPACT C7 | MARINS BKA | MARINS BKB | PHINS COMPACT C3 /<br>ROVINS NANO |
|-----|--------------------------------------------------------------|------------|------------|-----------------------------------|
| 87  | ANSCHUTZ STD 20                                              |            |            |                                   |
| 88  | DCN NAV1 FAA                                                 |            |            |                                   |
| 89  | DCN FAA                                                      |            |            |                                   |
| 90  | LRS 10 78 IIC                                                |            |            |                                   |
| 91  | LRS 10 78 IC                                                 |            |            |                                   |
| 92  | LRS 100 32 IIC                                               |            |            |                                   |
| 93  | LRS 100 32 IC                                                |            |            |                                   |
| 94  | LRS 100 35 IIC                                               |            |            |                                   |
| 95  | LRS 100 35 IC                                                |            |            |                                   |
| 96  | SAS 2                                                        |            |            |                                   |
| 97  | MDL                                                          |            |            |                                   |
| 98  | PEGASE NAV                                                   |            |            |                                   |
| 99  | PEGASE CMS                                                   |            |            |                                   |
| 100 | PRECISE ZDA                                                  |            |            |                                   |
| 101 | LONG BIN NAV SM                                              |            |            |                                   |
| 102 | SAS2B                                                        |            |            |                                   |
| 103 | SEANAV ID1                                                   |            |            |                                   |
| 104 | TOKIMEC PTVF                                                 |            |            |                                   |
| 105 | RDI_PING                                                     |            |            |                                   |
| 106 | IMU RAW DATA                                                 |            |            |                                   |
| 107 | AIPOV                                                        |            |            |                                   |
| 108 | LONG BIN NAV HR 2                                            |            |            |                                   |
| 109 | HETHS HEROT                                                  |            |            |                                   |
| 110 | RTCM_SIX                                                     |            |            |                                   |
| 111 | KINETIC_SCIENTIFIC                                           |            |            |                                   |
| 112 | STDBIN_V2                                                    |            |            |                                   |
| 113 | SPERRY_ATT_STANAG                                            |            |            |                                   |
| 114 | STOLT_OFFSHORE                                               |            |            |                                   |
| 115 | STDBIN_V3                                                    |            |            |                                   |
| 116 | STANDARD2                                                    |            |            |                                   |



Table 13 - list and index of output protocols for serial ports (part 2)

| Index | AIRINS              | ATLANS           | LANDINS          | QUADRANS         |
|-------|---------------------|------------------|------------------|------------------|
| 0     | NONE                | NONE             | NONE             | NONE             |
| 1     | PHINS STANDARD      | PHINS STANDARD   | PHINS STANDARD   | PHINS STANDARD   |
| 2     | POST<br>PROCESSING  | POST PROCESSING  | POST PROCESSING  | POST PROCESSING  |
| 3     | HALLIBURTON SAS     | HALLIBURTON SAS  | HALLIBURTON SAS  | CONTROL NO G     |
| 4     | DORADO              | DORADO           | DORADO           | HEHDT            |
| 5     | CONTROL NO G        | CONTROL NO G     | CONTROL NO G     | HEHDT FIXED      |
| 6     | NAVIGATION<br>SHORT | NAVIGATION SHORT | NAVIGATION SHORT | OCTANS STD       |
| 7     | NAVIGATION LONG     | NAVIGATION LONG  | NAVIGATION LONG  | GYROCOMPASS      |
| 8     | GPS LIKE            | GPS LIKE         | GPS LIKE         | GYROCOMPASS 2    |
| 9     | IMU ASCII           | IMU ASCII        | IMU ASCII        | BUC              |
| 10    | IMU BINARY          | IMU BINARY       | IMU BINARY       | HDMS             |
| 11    | BINARY NAV          | BINARY NAV       | BINARY NAV       | SIMRAD EM        |
| 12    | GYROCOMPASS         | GYROCOMPASS      | GYROCOMPASS      | SIMRAD EM TSS    |
| 13    | INDYN               | INDYN            | INDYN            | SIMRAD EM TSS H2 |
| 14    | NAVIGATION          | NAVIGATION       | NAVIGATION       | PRDID            |
| 15    | HEHDT               | HEHDT            | HEHDT            | PRDID TSS        |
| 16    | HEHDT FIXED         | HEHDT FIXED      | HEHDT FIXED      | TSS1 DMS         |
| 17    | OCTANS<br>STANDARD  | OCTANS STANDARD  | OCTANS STANDARD  | TSS 335B         |
| 18    | PRDID               | PRDID            | PRDID            | TMS CCV IMBAT    |
| 19    | PRDID TSS           | PRDID TSS        | PRDID TSS        | INDYN            |
| 20    | SEAPATH             | SEAPATH          | SEAPATH          | DOLOG HRP        |
| 21    | VTG GGA             | VTG GGA          | VTG GGA          | SPERRY ATT       |
| 22    | EVENT MARKER        | RIEGL            | RIEGL            | BROADCAST A      |
| 23    | IXSEA TAH           | EVENT MARKER     | EVENT MARKER     | BROADCAST B      |
| 24    | BROADCAST A         | IXSEA TAH        | IXSEA TAH        | BROADCAST C      |
| 25    | BROADCAST B         | GEO 3D           | GEO 3D           | BROADCAST D      |
| 26    | BROADCAST C         | LANDINS STD      | LANDINS STD      | BROADCAST E      |



| Index | AIRINS                | ATLANS               | LANDINS            | QUADRANS              |
|-------|-----------------------|----------------------|--------------------|-----------------------|
| 27    | BROADCAST D           | DIST TRAVELED        | DIST TRAVELED      | HEHDT HEROT           |
| 28    | BROADCAST E           | GPS LIKE SHORT       | GPS LIKE SHORT     | LONG BIN NAV HR       |
| 29    | CONTROL               | BROADCAST A          | BROADCAST A        | IXSEA ICCB1           |
| 30    | AIPOV                 | BROADCAST B          | BROADCAST B        | STOLT OFFSHORE        |
| 31    | SHORT GPS LIKE<br>ZZZ | BROADCAST GPS<br>RAW | BROADCAST C        | CONTROL               |
| 32    | PRECISE ZDA           | CONTROL              | BROADCAST D        | ANSCHUTZ STD 20       |
| 33    | IMU RAW               | AIPOV                | BROADCAST E        | INSITU                |
| 34    |                       | SHORT GPS LIKE ZZZ   | CONTROL            | IMU ASCII             |
| 35    |                       | DORADO2              | AIPOV              | IMU BINARY            |
| 36    |                       | PRECISE ZDA          | SHORT GPS LIKE ZZZ | PRECISE ZDA           |
| 37    |                       | RTCM SIX             | DORADO2            | IMU RAW DATA          |
| 38    |                       | IMU RAW              | PRECISE ZDA        | KVH EXTENDED          |
| 39    |                       | STDBIN_V2            |                    | HETHS HEROT           |
| 40    |                       | STDBIN_V3            |                    | SPERRY_ATT_STAN<br>AG |
| 41    |                       |                      |                    | STOLT_OFFSHORE        |
| 42    |                       |                      |                    | STDBIN_V2             |
| 43    |                       |                      |                    | STDBIN_V3             |



#### **6.2.4 OUTPUT DEVICE SELECTION**

To select the device that will be used for data output on selected port:

| Message    | \$PHCNF,EDIROX,i*hh <cr><lf></lf></cr> |                                                                                                                                                                                      |      |  |  |  |
|------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| Title      | Outpu                                  | t device selection                                                                                                                                                                   |      |  |  |  |
| Data Field | Semantics                              | Unit                                                                                                                                                                                 | Type |  |  |  |
| X          | Port                                   | ATLANS: A to D Other products: A to E                                                                                                                                                | char |  |  |  |
| i          | Device                                 | <ul><li>0: No device selected</li><li>1: Serial output on selected port</li><li>2: Ethernet output on selected port</li><li>3: Ethernet and serial output on selected port</li></ul> | int  |  |  |  |

To retrieve network configuration (where X is the port letter):

\$PHCNF,EDIROX,,\*hh<CR><LF>



## 6.2.5 INPUT DEVICE SELECTION

To select the device that will be used for data input on selected port:

| Message    | \$PHCNF,EDIRIX,i*hh <cr><lf></lf></cr> |                                                                                                                      |      |  |  |
|------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|------|--|--|
| Title      |                                        | Input device selection                                                                                               |      |  |  |
| Data Field | Semantics                              | Unit                                                                                                                 | Type |  |  |
| x          | Port                                   | ATLANS: set D to E to configure A to B PHINS COMPACT C7: set D to G to configure ports A to D Other products: A to E | char |  |  |
| i          | Device                                 | 0: No device selected  1: Serial input on selected port  2: Ethernet input on selected port                          | int  |  |  |

To retrieve network configuration (where X is the port letter):

\$PHCNF,EDIRIX,,\*hh<CR><LF>

#### 6.2.6 PORT FORWARDING COMMAND

To send frames from repeater port to another port (useful to configure external sensors through the INS):

| Message    | \$PIXSE,CONFIG,TXx,D*hh <cr><lf></lf></cr> |                                                                                                                                                                                |        |  |  |
|------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| Title      | Port forwarding                            |                                                                                                                                                                                |        |  |  |
| Data Field | Semantics                                  | Semantics Unit Type                                                                                                                                                            |        |  |  |
| x          | Port                                       | A: Port A B: Port B E: Port E                                                                                                                                                  | char   |  |  |
| D          | Forwarded data                             | String to forward to selected port. The system will add <cr><lf> to the string and forward it to port X. End of string is detected by '*' character before checksum.</lf></cr> | string |  |  |



To send a break on selected output port, use "BREAK,t" as D string. This will generate a break of t milliseconds to selected port.

Example: To send frame 'TEST' to port A:

\$PIXSE,CONFIG, TXA,TEST\*0A<CR><LF>



# 6.3 Ethernet Configuration

## 6.3.1 NETWORK SETUP COMMAND

To configure Ethernet network settings (Settings will be effective after next reboot only):

| Message    | \$PHCNF,ETHIP,D,I,N[,G][,H]*hh <cr><lf></lf></cr> |                                                 |            |  |  |
|------------|---------------------------------------------------|-------------------------------------------------|------------|--|--|
| Title      | Ethernet configuration                            |                                                 |            |  |  |
| Data Field | Semantics                                         | Semantics Unit                                  |            |  |  |
| D          | DHCP                                              | 0: disable DHCP at boot time,<br>1: enable DHCP | Int        |  |  |
| I          | IP address                                        | System IP address (i.e.: 192.168.36.100)        | IP address |  |  |
| N          | Netmask                                           | Network mask (i.e.: 255.255.255.0)              | IP address |  |  |
| G          | Gateway                                           | Gateway<br>(i.e.: 192.168.36.254)               | IP address |  |  |
| Н          | DNS                                               | DNS (i.e.: 192.168.36.1)                        | IP address |  |  |

To retrieve network configuration:

\$PHCNF,ETHIP,,\*3F<CR><LF>

#### 6.3.2 IP OUTPUT CONFIGURATION

To configure the IP output settings on selected port:

| Message    | \$PHCNF,ELCFOX,m,i,p*hh <cr><lf></lf></cr> |                                                                                                     |            |  |
|------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------|------------|--|
| Title      | IP out                                     | put settings                                                                                        |            |  |
| Data Field | Semantics                                  | Unit                                                                                                | Type       |  |
| X          | Port                                       | ATLANS: A to D Other products: A to E                                                               | Char       |  |
| М          | Mode                                       | IP output mode: 0: TCP server 1: TCP client 2: UDP point to point 3: UDP broadcast 4: UDP multicast | Int        |  |
| ı          | Destination IP                             | IP address to connect to. This field is ignored in TCP server and UDP broadcast modes.              | IP address |  |
| Р          | IP Port                                    | Port to connect/listen to                                                                           | Int        |  |

To retrieve IP output settings on port x, use following command:

\$PHCNF,ELCFOX,,\*hh<CR><LF>



## 6.3.3 IP INPUT CONFIGURATION

To configure the IP input settings on selected port:

| Message    | \$PHCNF,ELCFIX,m,i,p*hh <cr><lf></lf></cr> |                                                                                                                        |            |  |
|------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|--|
| Title      | IP input settings                          |                                                                                                                        |            |  |
| Data Field | Semantics                                  | Unit                                                                                                                   | Type       |  |
| Х          | Port                                       | ATLANS: Use D to E to configure A to B  PHINS COMPACT C7: Use D to G to configure ports A to D  Other products: A to E | Char       |  |
| m          | Mode                                       | IP input mode: 0: TCP server 1: TCP client 2: UDP point to point 3: UDP broadcast 4: UDP multicast                     | int        |  |
| i          | Destination IP                             | IP address to connect to. This field is ignored in TCP server and UDP broadcast modes.                                 | IP address |  |
| р          | IP Port                                    | Port to connect/listen to                                                                                              | int        |  |

To retrieve IP input settings on port x, use following command:

\$PHCNF,ELCFIX,,\*hh<CR><LF>



#### 6.4 Pulses Interfaces

#### 6.4.1 Pulses Input

To configure pulse input X:

| Message    | \$PIXSE,CONFIG,IOIN_X,x.x,i*hh <cr><lf></lf></cr> |                                                                           |       |  |
|------------|---------------------------------------------------|---------------------------------------------------------------------------|-------|--|
| Title      | Pulse Input                                       |                                                                           |       |  |
| Data Field | Semantics Unit                                    |                                                                           |       |  |
| x          | Pulse index                                       | A: Pulse A B: Pulse B C: Pulse C <sup>(1)</sup> D: Pulse D <sup>(2)</sup> | char  |  |
| X.X        | Parameter <sup>(3)</sup>                          | Pulse protocol parameter                                                  | float |  |
| i          | Protocol                                          | See Table 14                                                              | int   |  |

- (1) Pulse input C is not available on PHINS COMPACT C3 and ROVINS NANO
- (2) Pulse input D is not available on ROVINS, PHINS 6000, PHINS COMPACT C3 and ROVINS NANO.
- (3) The protocol parameter is only used on factory protocols for now (heading, roll, pitch trigger). When not used, this parameter can be set to 0.0.

To retrieve configuration of input pulse port X (checksum hh depends on port X):

\$PIXSE,CONFIG,IOIN\_X,,\*hh<CR><LF>

Table 14 - list and index of input protocols for pulse ports

| Index | PHINS/MARINS/ HYDRINS/<br>ROVINS/PHINS 6000/PHINS<br>COMPACT C7/PHINS COMPACT<br>C3/ ROVINS NANO | LANDINS/AIRINS/<br>ATLANS |
|-------|--------------------------------------------------------------------------------------------------|---------------------------|
| 0     | NONE                                                                                             | NONE                      |
| 1     | PPS RISING + ZDA EDGE                                                                            | PPS RISING + ZDA EDGE     |
| 2     | PPS FALLING + ZDA EDGE                                                                           | PPS FALLING + ZDA EDGE    |
| 3     | ZDA + PPS RISING EDGE                                                                            | ZDA + PPS RISING EDGE     |
| 4     | ZDA + PPS FALLING EDGE                                                                           | ZDA + PPS FALLING EDGE    |
| 5     | SERIAL OUT SYNC A                                                                                | SERIAL OUT SYNC A         |
| 6     | SERIAL OUT SYNC B                                                                                | SERIAL OUT SYNC B         |
| 7     | SERIAL OUT SYNC C                                                                                | SERIAL OUT SYNC C         |
| 8     | SERIAL OUT SYNC D                                                                                | SERIAL OUT SYNC D         |
| 9     | SERIAL OUT SYNC E                                                                                | SERIAL OUT SYNC E         |
| 10    |                                                                                                  | EVENT MARKER RISING       |
| 11    |                                                                                                  | EVENT MARKER FALLING      |
| 12    |                                                                                                  | EVENT MARKER RISING PP    |
| 13    |                                                                                                  | EVENT MARKER FALLING PP   |



#### 6.4.2 PULSES OUTPUT

To configure pulse output X:

| Message    | \$PIXSE,CONFIG,IOOUTX,x.x,i*hh <cr><lf></lf></cr> |                                                   |       |  |  |  |
|------------|---------------------------------------------------|---------------------------------------------------|-------|--|--|--|
| Title      | Pulse Output                                      |                                                   |       |  |  |  |
| Data Field | Semantics                                         | Semantics Unit Type                               |       |  |  |  |
| X          | Port                                              | A: Port A <sup>(1)</sup> B: Port B <sup>(2)</sup> | char  |  |  |  |
| x.x        | Parameter <sup>(3)</sup>                          | Parameter for the pulse protocol                  | float |  |  |  |
| i          | Protocol                                          |                                                   |       |  |  |  |

- (1) No Pulse Out are available on ROVINS NANO.
- (2) Pulse Out B is not available on PHINS C3.
- (3) The protocol parameter is only used on factory protocols for now (heading, roll, pitch trigger). When not used, this parameter can be set to 0.0.

To retrieve configuration of pulse output port X (checksum hh depends on port X):

\$PIXSE,CONFIG,IOOUTX,,\*hh<CR><LF>

Table 15 - List and index of output protocols for pulse ports

| Index | OUTPUT PULSE TYPE         | PHINS<br>COMPACT C3 | Others |
|-------|---------------------------|---------------------|--------|
| 0     | NONE                      | OK                  | ОК     |
| 1     | SER OUT A RTC             | OK                  | ОК     |
| 2     | SER OUT B RTC             | OK                  | ОК     |
| 3     | SER OUT C RTC             | OK                  | ОК     |
| 4     | SER OUT D RTC             | OK                  | ОК     |
| 5     | SER OUT E RTC             | OK                  | ОК     |
| 6     | TRAVELED DISTANCE RISING  | OK                  | ОК     |
| 7     | TRAVELED DISTANCE FALLING | OK                  | ОК     |
| 8     | PPS LIKE                  | OK                  | ОК     |
| 9     | TIMER RISING              | OK                  | ОК     |
| 10    | TIMER FALLING             | OK                  | ОК     |
| 11    | BROADCAST PULSE A         | ОК                  |        |
| 12    | BROADCAST PULSE B         | ОК                  |        |



#### 7 DYNAMIC STRING RETRIEVE COMMANDS

This section describes commands to retrieve all configuration strings in order to dynamically get the firmware feature list.

#### 7.1.1 GENERIC TEXT RETRIEVE COMMAND

To retrieve a specific text for a command:

| Message    | \$PIXSE,TEXT,list,i,j,c*hh <cr><lf></lf></cr> |                                            |        |  |  |  |  |
|------------|-----------------------------------------------|--------------------------------------------|--------|--|--|--|--|
| Title      | Text I                                        | Text list retrieve                         |        |  |  |  |  |
| Data Field | Semantics                                     | Semantics Unit Type                        |        |  |  |  |  |
| list       | List name                                     | Name of command associated to the list     | string |  |  |  |  |
| i          | Section index                                 | Index of list to retrieve for this command | int    |  |  |  |  |
| j          | String index                                  | Index of string in the list                | int    |  |  |  |  |
| С          | Language                                      | Only english 'E' is supported              | char   |  |  |  |  |

#### Example:

To retrieve first serial output protocol name, you should send:

\$PIXSE,TEXT\_\_,RSOUTX,1,0,E\*35<CR><LF>

The INS will then answer:

\$PIXSE,TEXT\_\_,RSOUTX,1,0,NONE\*7A<CR><LF>

When no string is available, the INS returns "\_\_\_\_\_\_" (16 x '\_' character). Thus, to retrieve all available output protocol names, you should send \$PIXSE,TEXT\_\_,RSOUT command and increment string index until the firmware answers no string available. The Following table details all string retrieve functions and their parameters:

Table 16 - List name table

| List name | Section index | Retrieved list description     |
|-----------|---------------|--------------------------------|
| RSOUTX    | 0             | Port output baud rate strings  |
|           | 1             | Port output protocol names     |
|           | 2             | Port output lever arm names    |
|           | 3             | Port output level names        |
|           | 4             | Port output heave filter names |



| List name | Section index | Retrieved list description                       |
|-----------|---------------|--------------------------------------------------|
| RSCM_X    | 0             | Port input/output parity strings                 |
|           | 1             | Port input/output stop bits strings              |
| RSIN_X    | 0             | Port input/output baud rate strings              |
|           | 1             | Port input protocol names                        |
| IOIN_X    | 0             | Input pulse protocol names                       |
| IOOUTX    | 0             | Output pulse protocol names                      |
| STATUS    | 0             | System status word bit names and attributes      |
| ALGSTS    | 0             | Algorithm status word bit names and attributes   |
| HT_STS    | 0             | High-level status word bit names and attributes  |
| LOGINT    | 0             | DVL bottom track sensor interface names          |
| LOGSND    | 0             | Sound velocity sensor interface names            |
| LOGKFM    | 0             | DVL bottom track rejection filter mode names     |
| LOGWTM    | 0             | DVL water track sensor interface names           |
| GPSINT    | 0             | GPS sensor interface names                       |
| GPSKFM    | 0             | GPS sensor rejection filter mode names           |
| GP2INT    | 0             | GPS2 sensor interface names                      |
| GP2KFM    | 0             | GPS2 sensor rejection filter mode names          |
| DEPINT    | 0             | Depth sensor interface names                     |
| DEPKFM    | 0             | Depth sensor rejection filter mode names         |
| USBINT    | 0             | USBL sensor interface names                      |
| USBKFM    | 0             | USBL sensor rejection filter mode names          |
| LBLINT    | 0             | LBL sensor interface names                       |
| LBLKFM    | 0             | LBL sensor rejection filter mode names           |
| UTCINT    | 0             | UTC synchronization interface names              |
| START_    | 0             | Starting mode selection strings                  |
| ZUP       | 0             | ZUPT mode selection strings                      |
| ALTMDE    | 0             | Altitude stabilization mode selection strings    |
| SERNUM    | 0             | INS Serial number (i and j parameters not used)  |
| VERFRM    | 0             | INS firmware version (i and j parameters not     |
|           |               | used)                                            |
| VERLDR    | 0             | INS loader version (i and j parameters not used) |
| EQP       | 0             | INS type name (i and j parameters not used)      |



#### 7.1.2 INS III SPECIFIC TEXT RETRIEVE COMMAND

To retrieve a specific text for a command:

| Message    | \$PHTXT,list,c,i,j*hh <cr><lf></lf></cr> |                                            |        |  |  |
|------------|------------------------------------------|--------------------------------------------|--------|--|--|
| Title      | Text list retrieve                       |                                            |        |  |  |
| Data Field | Semantics Unit Type                      |                                            |        |  |  |
| list       | List name                                | Name of command associated to the list     | string |  |  |
| С          | Language                                 | Only english 'E' is supported              | Char   |  |  |
| i          | Section index                            | Index of list to retrieve for this command | int    |  |  |
| j          | String index                             | Index of string in the list                | int    |  |  |

#### Example:

To retrieve first input interface selection name, you should send:

#### \$PHTXT,EDIRIX,0,0,E\*0E<CR><LF>

The INS will then answer:

When no string is available, the INS returns "\_\_\_\_\_\_" (16 x '\_' character). Thus, to retrieve all available input interface names, you should send **\$PHTXT,EDIRIX** command and increment string index until the firmware answers no string available. The Following table details all string retrieve functions and their parameters (see Table 17):

Table 17 - List name table

| List name | Section index | Retrieved list description           |
|-----------|---------------|--------------------------------------|
| EDIRIX    | 0             | Port input interface selection name  |
| EDIROX    | 0             | Port output interface selection name |
| ELCFIX    | 0             | IP input mode selection name         |
| ELCFOX    | 0             | IP output mode selection name        |



## **Appendices**

#### A NMEA CHECKSUM WEB PAGE

To get a simple NMEA computation tool, copy following code into a new file (nmea.html) and save it, and open this file with your internet navigator:

```
<html><head><title>NMEA MTK checksum calculator</title>
<script><!--
function updateChecksum(cmd)
 var checksum = 0;
 for(var i = 0; i < cmd.length; i++) checksum = checksum ^
cmd.charCodeAt(i);
 var hexsum = Number(checksum).toString(16).toUpperCase();
 if (hexsum.length < 2) hexsum = ("00" + hexsum).slice(-2);
 settext(document.getElementById("output"), "$" + cmd + "*" + hexsum);
}
function settext(span, text)
 if (!span.hasChildNodes()) {
   span.appendChild(span.ownerDocument.createTextNode(text));
   return;
  } else span.firstChild.nodeValue = text;
}
--></script></head><body>
<h1>MTK NMEA checksum calculator</h1>
This is a simple calculator to compute the checksum field of NMEA
frames.
\protect\ensuremath{\text{c}} The checksum is simple, just an XOR of all the bytes between the
<tt>$</tt> and the <tt>*</tt> (not including the delimiters themselves),
and written in hexadecimal.
For this to work you'll need to be using a browser that supports
JavaScript and DHTML
(most modern browsers do).
<div style="margin:1em; padding: 2em; background: #ddddff;">
<form onsubmit="document.getElementById('commandfld').select(); return</pre>
false;">
Command:<tt>$<input id="commandfld" size=80
type="text" onchange="updateChecksum(this.value);"
value="PIXSE, CONFIG, WAKEUP">*</tt></tt>
With checksum:<span id="output" style="font-
family: monospace;"></span>
</form></div>
<script>updateChecksum(document.getElementById("commandfld").value);</scri</pre>
pt>
<hr></body></html>
```



#### В **FACTORY SETTING DETAILS**

This page details factory default settings:

| DS | SP settings:                                                                           |  |  |
|----|----------------------------------------------------------------------------------------|--|--|
|    | System orientation is set to 0.                                                        |  |  |
|    | All system and sensors lever arms and misalignments are set to 0                       |  |  |
|    | All sensors rejection filter is set to 'Always false'. Manual GPS is set to "Automatic |  |  |
|    | reacquisition".                                                                        |  |  |
|    | Altitude mode is set according to system type:                                         |  |  |
|    | <ul> <li>GPS for AIRINS, LANDINS</li> </ul>                                            |  |  |
|    | <ul> <li>Hydro for HYDRINS</li> </ul>                                                  |  |  |
|    | <ul> <li>Depth for ROVINS and PHINS 6000</li> </ul>                                    |  |  |
|    | <ul> <li>Stabilization for PHINS and MARINS</li> </ul>                                 |  |  |
|    | Starting mode is set to 'Wait for position'                                            |  |  |
|    | Heave filter is set to 'Medium'                                                        |  |  |
|    | Manual position is set to 48.87°N latitude, 2°E longitude, 0 m altitude                |  |  |
|    | ZUPT mode is set to 'None'                                                             |  |  |
|    |                                                                                        |  |  |
|    | PC settings:                                                                           |  |  |
|    | All input and output port protocols are set to 'NONE', on primary lever arm, with      |  |  |
|    | geoidal altitude                                                                       |  |  |
|    | All output port protocols rate are set to 0 Hz                                         |  |  |
|    | Ethernet output ports are set from 8111 to 8115 for port A to E                        |  |  |
|    | Ethernet input ports are set from 8117 to 8121 for port A to E                         |  |  |
|    | Ethernet input and output target IP is set to 192.168.36.102 and mode is set to        |  |  |
|    | "TCP server"                                                                           |  |  |
|    | Serial settings for all ports are set to 9 600 bps, none, 1 stop bit in RS232          |  |  |
|    | All sensor interface are set to '0' (disabled)                                         |  |  |
|    | All pulse in and out protocols are disabled (set to '0')                               |  |  |