CENG 424 Fall 2024 Homework 1

Yancı, Baran e2449015@ceng.metu.edu.tr

November 4, 2023

$\mathbf{Q}\mathbf{1}$

a)

Α	В	¬ B	$A \land \neg B$	$A \rightarrow B$	¬ (A ∧¬ B)
0	0	1	0	1	1
0	1	0	0	1	1
1	0	1	1	0	0
1	1	0	0	1	1

 $A \to B$ and \neg (A $\land \neg$ B) are logically equivalent.

b)

A	В	¬ A	¬В	$\neg A \lor B$	$\neg B \lor A$	$A \leftrightarrow B$	$(\neg A \lor B) \land (\neg B \lor A)$
0	0	1	1	1	1	1	1
0	1	1	0	1	0	0	0
1	0	0	1	0	1	0	0
1	1	0	0	1	1	1	1

 $A \leftrightarrow B$ and $(\neg \ A \lor B) \land (\neg \ B \lor A)$ are logically equivalent.

c)

A	В	¬ A	$\neg A \rightarrow B$	$A \rightarrow (\neg A \rightarrow B)$	1
0	0	1	0	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	1	0	1	1	1

 $A \rightarrow (\ \neg\ A \rightarrow B)$ and 1 are logically equivalent.

d)

A	В	С	¬ A	¬ B	$A \lor \neg B$	$\neg A \wedge B$	$(A \lor \neg B) \to C$	$(\neg A \land B) \lor C$
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	0	1	1
0	1	0	1	0	0	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	1	1	0	0	0
1	0	1	0	1	1	0	1	1
1	1	0	0	0	1	0	0	0
1	1	1	0	0	1	0	1	1

 $(A \, \vee \neg \, B) \to C$ and $(\neg \, A \, \wedge \, B) \, \vee \, C$ are logically equivalent.

$\mathbf{Q2}$

a)

$$A \wedge (\neg A \to A)$$

$$A \wedge (\neg \neg A \vee A)$$

$$A \wedge (A \vee A)$$

$$A \wedge A$$

$$A$$

$$\begin{array}{c} (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A) \\ \neg \ (A \rightarrow B) \lor ((A \rightarrow \neg B) \rightarrow \neg A) \\ \neg (A \rightarrow B) \lor ((A \rightarrow \neg B) \rightarrow \neg A) \\ \neg (A \rightarrow B) \lor ((A \rightarrow \neg B) \rightarrow \neg A) \\ \neg (\neg A \lor B) \lor ((A \rightarrow \neg B) \rightarrow \neg A) \\ (A \land \neg B) \lor (\neg (A \rightarrow \neg B) \lor \neg A) \\ (A \land \neg B) \lor (\neg (A \rightarrow \neg B) \lor \neg A) \\ (A \land \neg B) \lor (\neg (A \rightarrow \neg B) \lor \neg A) \\ (A \land \neg B) \lor (\neg (A \rightarrow \neg B) \lor \neg A) \\ (A \land \neg B) \lor ((A \land B) \lor \neg A) \\ (A \land \neg B) \lor ((A \land B) \lor \neg A) \\ (A \land \neg B) \lor (A \land B) \lor \neg A \\ \neg \ (A \land \neg B) \land \neg (A \land B) \land \neg \neg A \\ (\neg A \lor \neg \neg B) \land (\neg A \lor \neg B) \land A \\ (\neg A \lor B) \land (\neg A \lor \neg B) \land A \\ \end{array}$$

c)

$$(A \to (B \lor \neg C)) \land \neg A \land B$$
$$(\neg A \lor (B \lor \neg C)) \land \neg A \land B$$
$$(\neg A \lor B \lor \neg C) \land \neg A \land B$$

$\mathbf{Q3}$

16.

The logical formulas $\neg A \land B, \neg (B \land C), C \lor D$ and $\neg (\neg A \to D)$ are not mutually consistent.