

Instituto Tecnológico de Aeronáutica - ITA

Divisão de Engenharia Eletrônica Departamento de Eletrônica Aplicada Laboratório de EEA-21

1ª Experiência

Análise e síntese de funções combinacionais de uma única saída.

1. Objetivos

- a. Familiarização com simulador de captura esquemática;
- b. Familiarização com circuitos combinacionais básicos;
- c. Verificação de alguns teoremas da álgebra booleana; e
- d. Utilização da função multiplexadora.

2. Instruções gerais

Para cada uma das tarefas propostas, observe o que se pede em negrito. Quando a solicitação é da forma:

- "Projete", espera-se que os alunos projetem os circuitos seguindo algum tipo de especificação dada. Assim, os cálculos combinacionais, procedimentos de minimização ou outros mecanismos utilizados para o projeto e o diagrama esquemático final do circuito devem ser mostrados (constar no relatório).
- "Simule", espera-se que seja utilizado um software de captura esquemática para a obtenção dos resultados. Assim, o diagrama esquemático (no caso de captura esquemática) deve ser apresentado, bem como o diagrama de temporização contendo as entradas e as saídas.
- "Analise", espera-se que sejam obtidas as expressões lógicas, tabelas verdade, a partir de um diagrama esquemático, diagrama de temporização ou outra informação sobre o circuito lógico. Dessa forma, os procedimentos de análise devem ser mostrados no relatório.

3. Informações úteis

3.1 Ciclo de *Análise e Design*.

3.2 Fluxo de Projeto.

3.2 Propriedades validadas em álgebra de Boole:

1	a+b=b+a	ab = ba	Comutatividade
2	a + (bc) = (a+b)(a+c)	a(b+c) = (ab) + (ac)	Distributividade
3	a + (b+c) = (a+b) + c = a+b+c	a(bc) = (ab)c = abc	Associatividade
4	a + a = a	aa = a	Idempotência
5	$a + \overline{a} = 1$	$a\overline{a}=0$	Complemento
6	1+a=1	0a = 0	
7	0+a=a	1a = a	Identidade
8	$\overline{(\overline{a})} = a$		Involução
9	a + ab = a	a(a+b)=a	Absorção
10	$a + \overline{a}b = a + b$	$a(\overline{a}+b)=ab$	Simplificação
11	$\overline{(a+b)} = \overline{ab}$	$\overline{(ab)} = \overline{a} + \overline{b}$	Teorema De Morgan

3.3 Portas lógicas de uma e de duas entradas:

PORTA	SÍMBOLO	EQUAÇÃO BOOLEANA
NOT	A — NOT Y	$Y = \overline{A}$
AND	A B AND Y	$Y = A \cdot B$
OR	A DORY	Y = A + B
NAND	A DO-Y	$Y = \overline{A \cdot B}$
NOR	A Do-Y	$Y = \overline{A + B}$
XOR	A B XOR Y	$Y = A \oplus B = A\overline{B} + \overline{A}B$
XNOR	A DON-Y	$Y = \overline{A \oplus B} = AB + \overline{AB}$

4. Tarefas:

4.1 Projete e simule um dispositivo digital tem como entrada um número binário de 4 bits, $X_3X_2X_1X_0$, onde X_3 representa o bit mais significativo, e uma única saída f, que detecte se o número pertence à sequência de Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, 34,...) : saída f = 1 (um) quando a entrada pertence à sequência; e saída f = 0 (zero) quando a entrada não pertence à sequência.

Obtenha:

- a. A tabela verdade para a função lógica f;
- b. O diagrama lógico (diagrama esquemático) usando apenas portas lógicas de no máximo duas entradas; e
- c. Apresente o resultado da simulação funcional em sua forma de diagrama de temporização.
- 4.2 Analise o circuito combinacional abaixo.

Obtenha:

- a. A expressão lógica simplificada.
- b. Simule o circuito acima e apresente o diagrama de temporização.
- c. Simule o circuito obtido a partir da expressão lógica simplificada do item a.
- d. Compare os resultados das simulações obtidas.

4.3 Um circuito digital desconhecido possui três entradas e gera uma única saída digital F. Para sintetizar este circuito montou-se no laboratório a seguinte configuração:

Nesta montagem o gerador de palavras digitais gera uma palavra de três bits (bits A, B e C) a cada 100 ns. O diagrama de temporização obtido através do analisador lógico e apresentado abaixo.

Considerando as informações acima **Projete e Simule** o circuito combinacional que satisfaz este diagrama usando apenas portas NAND de duas entradas.

Obtenha:

- a. A expressão lógica.
- b. O diagrama esquemático e a simulação deste circuito obtido, comparando com a figura dada.
- c. Justifique o aparecimento de um deslocamento temporal Δτ no diagrama temporal da saída F.
- **4.4** Usando somente portas NAND de duas entradas, **projete e simule** a função multiplexadora (**MUX**) *4x1* minimizada, na forma de soma de produto.

Obtenha:

- a. O diagrama esquemático; e
- b. O diagrama temporal da simulação funcional.
- 4.5 Seja a função:

$$F = \sum (2,3,5,7,8,11,13)$$

Projete e simule F utilizando apenas um MUX 8x1 e uma inversora.

Obtenha o diagrama esquemático e o resultado da simulação.

Obs.: F é uma função com entrada de 4 bits e sua saída vale 1 (um) quando a entrada representa um dos valores da lista acima.