

Max Müller-Eberstein, Rob van der Goot and Barbara Plank

EMNLP 2021

IT-UNIVERSITETET I KØBENHAVN

Domain Specialization

If our goal is to develop a parser for an **unseen language** with a **known domain**, can a signal such as **genre** guide our selection of cross-lingual proxy training data?

Universal Dependencies v2.7

Zeman et al., 2020

177 TREEBANKS 1.38M SENTENCES

Genre as Weak Supervision

Domain

Genre

Register

Kessler et al. (1997); Lee (2001); Webber (2009); Plank (2011)

18 community-provided categories in UD

=== Machine-readable metadata (DO NOT REMOVE!) ======== Data available since: UD v2.7 License: CC BY-SA 4.0 Includes text: yes Genre: spoken Lemmas: not available UPOS: converted with corrections XPOS: not available Features: not available Relations: manual native Contributors: Tyers, Francis; Mischenkova, Karina Contributing: elsewhere Contact: ftyers@iu.edu

=== Machine-readable metadata (DO NOT REMOVE!) ======= Genre: blog social reviews email xpos: single-genre multi-genre Features: au matic 117

Genre Distribution in UD

Genre Distribution in UD

Genre Distribution in UD

Treebanks

Treebanks

Treebanks

Targeted Data Selection

Treebanks

Treebanks

Treebanks

TARGET

META

Treebanks

PROXY

META

META

BOOT

TARGET

META

META

META

META

BOOT

TARGET

META

META

META

META

BOOT

TARGET

META

BOOT

META

BOOT

GMM

Clustering

Clustering

Treebanks

META

BOOT

GMM

Treebanks

GMM

SENT

META

BOOT

Treebanks

META

BOOT

GMM

LDA

TARGET

PROXY

Experiments

Target		Authors	Language	#Sentences	mBERT	Genre
SWL 🗩	SSLC	Östling et al. (2017)	Swedish Sign Language	203	×	spoken
SA 🗏	UFAL	Dwivedi and Easha (2017)	Sanskrit	230	×	fiction
KPV 🗏	Lattice	Partanen et al. (2018)	Komi Zyrian	435	×	fiction
TA 🖃	TTB	Ramasamy and Žabokrtský (2012)	Tamil	600		news
GL	TreeGal	Garcia (2016)	Galician	1,000		news
YUE 🗩	НК	Wong et al. (2017)	Cantonese	1,004	×	spoken
CKT 🗩	HSE	Tyers and Mishchenkova (2020)	Chukchi	1,004	×	spoken
FOW	OFT	Tyers et al. (2018)	Faroese	1,208	×	wiki
TE 🎇	MTG	Rama and Vajjala (2017)	Telugu	1,328		grammar
MYVE	JR	Rueter and Tyers (2018)	Erzya	1,690	×	fiction
QHE 3	HIENCS	Bhat et al. (2018)	Hindi-English	1,800	~	social
QTD 🗩	SAGT	Çetinoğlu and Çöltekin (2019)	Turkish-German	1,891	~	spoken

META

BOOT

GMM

SWL ● SA ■ KPV ■ TA ■ GL ■ YUE ● CKT ● FOW TE ※ MYV ■ QHE ふ QTD ●

TARGET

RAND

SENT

META

BOOT

GMM

Dozat & Manning (2017)

van der Goot et al. (2021)

BOOT

GMM

LDA

PROXY (annotated)

TARGET (unannotated)

	SWL 🗩	SA 🗏	KPV 🗏	TA 📾	GL 📾	YUE 🗩	CKT 🗩	FOW	TE 🎇	MYV	QHE 3	QTD 🗩	Ø
TARGET	28.0	15.7	13.4	64.1	80.9			49.6	83.6	_	62.7	55.0	50.3
RAND	3.7	24.8	10.9	50.7	77.7	33.3	15.5	61.9	67.7	20.0	27.0	44.6	36.5
SENT	3.6	23.7	13.7	47.9	77.6	35.8	16.4	62.5	68.1	22.9	26.5	42.8	36.8
META	6.5	24.3	10.2	50.4	76.6	31.2	11.6	61.2	64.9	20.4	9.42	42.6	34.1
BOOT	5.2	21.8	*21.1	49.4	76.7	* 49.9	18.4	* 66.3	65.6	19.5	14.8	43.8	37.7
GMM	4.9	22.9	* 20.9	* 51.5	77.8	* 49.9	* 19.8	* 68.3	67.9	20.2	15.1	45.4	38.7
LDA	6.6	23.7	* 22.3	49.2	77.0	* 49.4	*19.1	* 68.3	* 68.6	20.5	15.1	44.7	38.7

	SWL 🗩	SA 🗏	KPV 🗏	TA	GL	YUE 🗩	CKT 🗩	FOW	TE 🎾	MYVE	QHE 3	QTD 🗩	Ø
TARGET	28.0	15.7	13.4	64.1	80.9			49.6	83.6		62.7	55.0	50.3
RAND	3.7	24.8	10.9	50.7	77.7	33.3	15.5	61.9	67.7	20.0	27.0	44.6	36.5
SENT	3.6	23.7	13.7	47.9	77.6	35.8	16.4	62.5	68.1	22.9	26.5	42.8	36.8
META	6.5	24.3	10.2	50.4	76.6	31.2	11.6	61.2	64.9	20.4	9.42	42.6	34.1
ВООТ	5.2	21.8	*21.1	49.4	76.7	* 49.9	18.4	* 66.3	65.6	19.5	14.8	43.8	37.7
GMM	4.9	22.9	*20.9	* 51.5	77.8	* 49.9	* 19.8	* 68.3	67.9	20.2	15.1	45.4	38.7
LDA	6.6	23.7	* 22.3	49.2	77.0	* 49.4	*19.1	* 68.3	* 68.6	20.5	15.1	44.7	38.7

	SWL 🗩	SA 🗏	KPV 🗏	TA	GL	YUE 🗩	CKT 🗩	FOW	TE 🎇	MYVE	QHE 🔊	QTD 🗩	Ø
TARGET	28.0	15.7	13.4	64.1	80.9			49.6	83.6		62.7	55.0	50.3
RAND	3.7	24.8	10.9	50.7	77.7	33.3	15.5	61.9	67.7	20.0	27.0	44.6	36.5
SENT	3.6	23.7	13.7	47.9	77.6	35.8	16.4	62.5	68.1	22.9	26.5	42.8	36.8
META	6.5	24.3	10.2	50.4	76.6	31.2	11.6	61.2	64.9	20.4	9.42	42.6	34.1
BOOT	5.2	21.8	*21.1	49.4	76.7	* 49.9	18.4	*66.3	65.6	19.5	14.8	43.8	37.7
GMM	4.9	22.9	*20.9	* <u>51.5</u>	77.8	* 49.9	* 19.8	* 68.3	67.9	20.2	15.1	45.4	38.7
LDA	6.6	23.7	* 22.3	49.2	77.0	* 49.4	*19.1	* 68.3	* 68.6	20.5	15.1	44.7	38.7
van der Goot et al. (2021)		16.5	11.7			32.7	15.3	62.7					

Conclusion

Genre is a valuable signal for parsing unseen, low-resource targets

