Amendment to the claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of claims:

1. (currently amended) A photothermographic material comprising, on a support, a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent and a binder, wherein the photothermographic material comprises a compound having a group adsorptive to silver halide and a reducible group or a precursor of the compound, a silver behenate content of the non-photosensitive organic silver salt is at least 30% by mole and less than 80% by mole, and the binder has a glass transition temperature (Tg) of 45°C or higher;

wherein the compound having a group adsorptive to silver halide and a reducible group is represented by the following formula (I):

A-(W)n-B formula (I)

wherein, in the formula, A represents a group adsorptive to silver halide, W represents a divalent linking group, n represents 0 or 1, and B represents a reducible group,

wherein the group adsorptive to silver halide is a heterocyclic group substituted by a mercapto group, a heterocyclic group substituted by two mercapto groups, or a nitrogen atom containing heterocyclic group having a -NH- group capable to form an iminosilver (>NAg) as a partial structure of heterocyclic ring, and the reducible group is hydroxyurea group, or 1-phenyl-3-pyrazolidone group.

- 2. (original) The photothermographic material according to claim 1, wherein a silver iodide content of the photosensitive silver halide is 5% by mole or more.
- 3. (original) The photothermographic material according to claim 2, wherein the silver

iodide content of the photosensitive silver halide is 30% by mole or more.

- 4. (original) The photothermographic material according to claim 3, wherein the silver iodide content of the photosensitive silver halide is 70% by mole or more.
- 5. (original) The photothermographic material according to claim 4, wherein the silver iodide content of the photosensitive silver halide is 90% by mole or more.
- 6. (original) The photothermographic material according to claim 1, wherein an average grain size of the photosensitive silver halide is 5 nm to 80 nm.
- 7. (original) The photothermographic material according to claim 6, wherein the average grain size of the photosensitive silver halide is 10 nm to 55 nm.
- 8. (original) The photothermographic material according to claim 1, wherein the binder comprises polyvinyl butyral in an amount of 50% by weight or more.
- 9. (currently amended) A photothermographic material comprising, on a support, an image forming layer comprising at least a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent and a binder, wherein the photothermographic material comprises a compound having an adsorptive group and a reducible group, or a precursor of the compound, and the photosensitive silver halide comprises iridium;

wherein the compound having a group adsorptive to silver halide and a reducible group is represented by the following formula (I):

A-(W)n-B formula (I)

wherein, in the formula, A represents a group adsorptive to silver halide, W represents a divalent linking group, n represents 0 or 1, and B represents a reducible group,

wherein the group adsorptive to silver halide is a heterocyclic group substituted by a mercapto group, a heterocyclic group substituted by two mercapto groups, or a nitrogen atom containing heterocyclic group having a -NH- group capable to form an iminosilver (>NAg) as a partial structure of heterocyclic ring, and the reducible group is hydroxyurea group, or 1-phenyl-3-pyrazolidone group.

- 10. (currently amended) The photothermographic material according to claim 9, wherein the an amount of iridium is 1×10^{-8} mol to 1×10^{-1} mol per one mol of the silver halide.
- 11. (original) The photothermographic material according to claim 10, wherein the amount of iridium is 1×10^{-6} mol to 1×10^{-3} mol per one mol of the silver halide.
- 12. (original) The photothermographic material according to claim 9, wherein the photothermographic material comprises a compound that can be one-electron-oxidized to provide a one-electron oxidation product which releases one or more electrons due to a subsequent reaction.
- 13. (original) The photothermographic material according to claim 12, wherein the compound that can be one-electron-oxidized is selected from the following compounds of Groups 1 to 5:
- (Group 1) a compound that can be one-electron-oxidized to provide a one-electron oxidation product which further releases at least two electrons, due to being subjected to a subsequent bond cleavage reaction;
- (Group 2) a compound that has at least two groups adsorptive to the silver halide and can be one-electron-oxidized to provide a one-electron oxidation product which further releases one electron, due to being subjected to a subsequent bond cleavage reaction;

- (Group 3) a compound that can be one-electron-oxidized to provide a one-electron oxidation product, which further releases at least one electron after being subjected to a subsequent bond formation;
- (Group 4) a compound that can be one-electron-oxidized to provide a one-electron oxidation product which further releases at least one electron after a subsequent intramolecular ring cleavage reaction; and
- (Group 5) a compound represented by X-Y, in which X represents a reducible group and Y represents a leaving group, and convertable by one-electron-oxidizing the reducible group to a one-electron oxidation product which can be converted into an X radical by eliminating the leaving group in a subsequent X-Y bond cleavage reaction, one electron being released from the X radical.
- 14. (original) The photothermographic material according to claim 9, wherein the photothermographic material comprises at least one spectral sensitizer represented by any one of the following formulae (3a) to (3d):

Formula (3a)

Formula (3b)

$$W_{11}$$
 Y_{11}
 V_{12}
 V_{12}
 V_{11}
 V_{12}
 V_{13}
 V_{14}
 V_{14}
 V_{15}
 V_{15}
 V_{15}
 V_{16}
 V_{17}
 V_{17}
 V_{17}
 V_{18}
 V_{18}
 V_{18}
 V_{19}
 V_{19}

Formula (3c)

$$(R_3S)_{n1}$$
 V_1
 V_1
 V_1
 V_1
 V_2
 V_3
 V_4
 V_4

Formula (3d)

$$(R_{13}S)_{n11} \xrightarrow{V_{11}} L_{11} = L_{12} - L_{13} = L_{14} - L_{15} \xrightarrow{N} R_{12} (SR_{14})_{n12}$$

$$(X_{11})_{k11} = (X_{11})_{k11} + (X_{12})_{k11} + (X_{13})_{k11} + (X_{14})_{k11} + (X_{14})_{k11} + (X_{15})_{k11} + (X_{15}$$

wherein, Y_1 , Y_2 and Y_{11} each represent an oxygen atom, a sulfur atom, a selenium atom or a -CH=CH- group; L_1 to L_9 and L_{11} to L_{15} each represent a methine group; R_1 , R_2 , R_{11} and R_{12} each represent an aliphatic group; R_3 , R_4 , R_{13} and R_{14} each represent a lower alkyl group, a cycloalkyl group, an alkenyl group, an aryl group or a heterocyclic group; W_1 , W_2 , W_3 , W_4 , W_{11} , W_{12} , W_{13} and W_{14} each represent a hydrogen atom or a

substituent, or alternatively together represent a group of nonmetallic atoms required to form a condensed ring by bonding between W₁ and W₂, W₃ and W₄, W₁₁ and W₁₂, and W₁₃ and W₁₄, respectively, or a group of nonmetallic atoms required to form a 5- or 6-membered condensed ring R₃ and W₁, R₃ and W₂, R₁₃ and W₁₁, R₁₃ and W₁₂, R₄ and W₃, R₄ and W₄, R₁₄ and W₁₃, and R₁₄ and W₁₄, respectively; X₁ and X₁₁ each represent an ion necessary for neutralizing a charge in a molecule; k1 and k11 each represent a number of ions necessary for neutralizing a charge in a molecule; m1 represents 0 or 1; n1, n2, n11 and n12 each represent 0, 1 or 2, provided that at least one of n1 and n2 represents 1 or 2, and that at least one of n11 and n12 represents 1 or 2; and that t1, t2, t11 and t12 each represent 1 or 2.

- 15. (currently amended) The photothermographic material according to claim 9, wherein the image forming layer is formed by coating the support with a coating solution for an the image forming layer prepared by at least the following 1) and 2):
- 1) preparing the photosensitive silver halide; and
- 2) preparing the non-photosensitive organic silver salt.
- 16. (original) The photothermographic material according to claim 15, wherein the photosensitive silver halide is added while preparing the non-photosensitive organic silver salt.
- 17. (original) The photothermographic material according to claim 9, wherein a silver iodide content of the photosensitive silver halide is 5% by mole or more.
- 18. (original) The photothermographic material according to claim 17, wherein the silver iodide content of the photosensitive silver halide is 40% by mole or more.