

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : A43B 5/02, 5/00, A43C 15/16	A1	(11) International Publication Number: WO 91/03960 (43) International Publication Date: 4 April 1991 (04.04.91)
(21) International Application Number: PCT/US90/05232 (22) International Filing Date: 14 September 1990 (14.09.90) (30) Priority data: 407,869 15 September 1989 (15.09.89) US (71) Applicant: TANEL CORPORATION [US/US]; 1818 North Water Street, Milwaukee, WI 53202 (US). (72) Inventor: TANEL, Michael, L. ; 119 North 92nd Street, Milwaukee, WI 53226 (US). (74) Agent: JANSSON, Peter, N.; Law Firm of Peter N. Jansson, Ltd., 245 Main Street, Suite M, Racine, WI 53403 (US).	(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent).	Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>

(54) Title: CLEATED SOLE FOR AN ATHLETIC SHOE

(57) Abstract

An improved athletic shoe sole (10) of the type having annular cleating is disclosed. The sole (10) includes an annular cleat set (21) projecting from the main sole surface (19) and disposed along a substantially circular path (25) which encompasses a major area of the toe and ball-of-the-foot portions (17, 15), the set (21) having a plurality of cleat nodes (23), each of which is arranged in a substantially abutting relationship to at least one adjacent cleat node (23). Each cleat node (23) has a distal end or tip (39) spaced from the main sole surface (19) and first and second edges (45a, 45b) on opposite sides of the distal end (39) with proximal ends (47) terminating on the circular path (25). Improved pivotability and traction characteristics are provided.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CP	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
DE	Germany	LU	Luxembourg	TD	Chad
DK	Denmark			TG	Togo
				US	United States of America

-1-

1

5

10

15

20

CLEATED SOLE FOR AN ATHLETIC SHOE

Field of the Invention

This invention is related generally to athletic shoes of the type having cleats for penetrating ground engagement and, more specifically, to athletic shoes with cleats facilitating pivoting movement.

Background of the Invention

Many athletic shoes used for field sports, such as football, soccer, lacrosse, baseball and softball, have a number of typically truncated cone-shaped cleats for the purpose of increasing traction. Cleats dig into the turf to prevent slipping during starting, stopping, and cutting maneuvers.

However, in addition to providing desirable traction for starting, stopping and cutting, such cleats typically

-2-

1 provide very undesirable resistance to pivoting. This can
be a disadvantage in at least two ways.

5 First, the resistance of many prior art cleating arrangements to turning movements can create stresses within the leg when unwanted torque or force is applied to the athlete, particularly to the athlete's leg. Injuries, particularly knee and ankle injuries, can result if a twisting movement is forcibly applied to a leg at a time when the cleats are firmly planted in the turf and release 10 is difficult or impossible.

15 Second, when pivoting is inhibited, maneuverability of the athlete is limited, thus making performance less than it could be. Enhancing the ability of a player to pivot while still maintaining good traction and foot stability can greatly increase effectiveness on the field.

20 Recent athletic shoe cleating developments of Michael L. Tanel, the inventor herein, involving annular cleating provided a combination of greatly improved pivotability and excellent traction. These developments tend to reduce the chance of athletic injuries and significantly improve maneuverability on the field. Examples of such cleating are disclosed in United States Patent Nos. 4,577,422, 4,653,206, 4,660,304, 4,669,204, 4,723,365 and 4,748,752.

25 The improvement in pivotability made possible with shoes in accordance with the principles of such patents is dramatic, and such shoes give the athletes wearing them a natural feeling of freedom together with good feeling of traction for stopping, starting and cutting.

30 Despite the improvements which these developments represent, additional improvement is needed to provide functional advantages not realized or fully realized in the prior art. Certain conditions and situations must be addressed and are addressed by the improvements of this invention.

35 One significant concern regarding cleated soles for athletic shoes, including those disclosed in the patents noted above, relates to the degree and ease of penetration

-3-

1 of cleats. Ease of penetration has a significant effect on
 how well a shoe functions. If there is insufficient ground
 penetration or if ground penetration is difficult, there
 may be less traction than is desirable and less contact
5 with the turf than is needed for the best possible
 fixed-position pivoting.

10 In this regard, consideration must be given to, among
 other things, the total area of the cleat ends, that is,
 the total area of the distal surface(s) of the cleat or
 cleats. Generally speaking, the greater the total end area
 bearing on the ground, the more difficult it may be for a
 cleat to penetrate the ground; the smaller the total end
 area bearing on the ground, the easier it may be for a
 cleat to penetrate. This effect is accentuated when the
15 ground is hard.

20 Sharpening the distal end(s) of cleat(s), whether the
 shoe has discrete cleats or an annular cleat with an
 annular distal edge, tends to reduce the total area of
 cleat distal surface. However, it may also cause concern
 about injury from player contact with such sharp edges.
 This latter concern particularly arises in the cases of
 hard plastic or metal cleats.

25 Whether in pivoting motions or non-pivoting motions,
 maintenance of stability and traction is important under
 all conditions. Particular consideration must be given to
 the traction available from an athletic shoe sole when the
 wearer is playing on grassy turf with a very compact and
 hard underlying earth surface. Little if any earth
 penetration may be possible under such conditions,
 depending on the extent of turf hardness and compaction.
30 The concern about hard ground under grassy turf is
 particularly significant when the grass is wet, as often
 occurs late in the evening or early in the morning because
 of dew.

35 The design of the sole can and should address such
 condition. When penetration is difficult, traction may
 depend in part on the extent of rubber "grab" on the ground

-4-

1 and in part on the extent of "tangle" which is possible
with the grass. When the grass is also wet, rubber "grab"
is minimized and "tangle" becomes more important to an
athlete's traction. Of course, the athlete does not wish
5 to sacrifice pivotability under these conditions any more
than he does under other turf conditions.

Another important consideration relates to the degree
to which the underlying turf is destroyed when played upon
by wearers of cleated shoes. With standard cleating
10 arrangements, when pivoting occurs considerable ground or
turf destruction can occur; that is, the turf may be ground
up. This is not only harmful to the ground, but in itself
causes a loss of foot traction. With an annular cleat,
ground destruction is minimized, thus enhancing foot
15 traction. There is a need to have the benefits of both
sorts of cleats without unduly destroying turf.

While free pivotability is highly desirable, some
athletes would like there to be a degree of control in
such pivotability. Providing a cleating arrangement with a
20 modicum of initial resistance to pivoting would be regarded
as desirable by some. However, generally free pivotability
beyond that point is considered extremely important. Once
again, there is a perceived need for some benefits of
annular cleating combined with some benefits of old-style
25 standard cleating arrangements.

Still another concern relates to the strength of
cleats. Cleat bending and breakage can be a problem. It
is considered very beneficial, of course, for cleats to be
highly resistant to bending and breakage. Improvements in
30 cleat structural strength are desirable.

In very soft ground, the lateral profile of some
standard cleats of the prior art is sometimes too small to
provide a sufficient level of resistance to through-ground
sliding. Ground can be displaced when side pressure
occurs, thus providing a failure of traction. Providing
35 cleats with greater resistance to such side pressure would
be highly desirable.

-5-

1 Still another problem with certain cleated shoes of
the prior art is that the pressure of the individual cleats
can be felt by the foot of the athlete. Because of this,
shoe comfort is reduced. The aforementioned annular cleats
5 tend to overcome this problem, but for shoes with discrete
cleats, this problem can be significant.

A few general comments are in order before turning to
a description of this invention. In particular, a brief
description of the foot and its pivoting and planted
10 positions will be helpful. This can serve as an aid in
understanding preferred embodiments of this invention.

The sole of the foot includes four portions. These
are, in order from back to front: the heel portion; the
arch portion; the ball-of-the-foot portion; and the toe
15 portion. The heel and ball-of-the-foot portions are those
portions which share most if not all of the player's weight
when the player is in a normal standing position with feet
generally flat on the ground. In such position, the arch
portion and toe portion bear little if any weight.

20 When a player is "on his toes" in a "ready" position,
virtually all of the player's weight is normally shared by
the toe portion and the ball-of-the-foot portion. The same
is usually true when a player is "digging" in a running
action. Indeed, when a player is in the ready position,
25 the juncture of the phalanges (toe bones) and the
metatarsals is the center of weight bearing. In other
words, the center of weight bearing in the forward portions
of the foot actually moves forward when a player shifts to
the ready position.

30 The sole of an athletic shoe has portions immediately
below these four portions of the foot which may be
designated, and herein are designated, by the same terms.

Objects of the Invention

35 It is an object of this invention to overcome some of
the problems and shortcomings of the prior art, including
those mentioned above.

1 Another object of this invention is to provide an
improved athletic shoe sole.

5 Another object of this invention is to provide an
athletic shoe having both improved pivotability and
excellent traction.

10 Another object of this invention is to provide an
improved athletic shoe which tends to reduce the risk of
certain common injuries of athletes, particularly knee and
ankle injuries.

15 Another object is to provide an improved athletic
shoe of the type having annular cleating.

20 Another object of this invention is to provide an
improved annular-cleated athletic shoe with enhanced ground
penetration.

25 Still another object is to provide an athletic shoe
sole exhibiting both good traction and pivoting
characteristics on grass-covered hard earth, particularly
when such grass is wet.

30 Another object of this invention is to provide an
athletic shoe with annular cleating which nevertheless
exhibits good "tangle" traction with turf.

35 Yet another object is to provide an improved
annular-cleated shoe having both excellent "grab" traction
and excellent "tangle" traction.

40 Another object of this invention is to provide
improved ground penetration in an annular-cleated shoe
without sharpening the distal edge of annular cleating.

45 Another object is to provide an cleated athletic shoe
combining certain benefits of standard cleating with
certain benefits of annular cleating.

50 Another object is to provide an athletic shoe with
improved ground penetrability which avoids or minimizes
turf destruction and the resulting traction loss.

55 Another object of this invention is to provide an
improved annular-cleated shoe with excellent pivotability
which nevertheless provides what some perceive to be a
desirable degree of initial resistance to pivoting.

-7-

1 Still another object of this invention is to provide
a cleated athletic shoe having cleating with excellent
strength and resistance to bending and breakage.

5 Another object of this invention is to provide an
improved cleated shoe with wide cleat profile to avoid
unnecessary through-ground sliding, thus enhancing stopping
and starting traction.

10 Yet another object of this invention is to provide a
cleated athletic shoe exhibiting excellent sole comfort.

15 These and other important objects will be apparent
from the descriptions of this invention which follow.

Summary of the Invention

15 This invention is an improved athletic shoe sole for
field sports providing excellent controlled pivotability
and traction in a commercially desirable form. The
invention is an improvement in athletic shoe soles of the
type having annular cleating.

20 The invention provides enhanced ground penetration,
and resulting improvements in traction and pivotability.
The sole of this invention also provides both good traction
and pivoting characteristics on grass-covered hard earth,
with significant improvement provided even when such grass
is wet. Improved "tangle" and "grab" traction are provided
25 in a sole of the type having annular cleating. Improved
traction is provided without sharpening the distal edge of
annular cleating. The soles of this invention minimize
turf destruction even while providing excellent traction
characteristics.

30 The soles of this invention, while having excellent
pivotting characteristics, also provide what some perceive
to be a desirable degree of initial resistance to pivoting.
This gives an even greater feeling of control to some
athletes. The cleating arrangement of this invention
provide a wide cleat profile and thus avoid through-ground
35 sliding. This enhances traction, particularly stopping and
starting traction.

1 The soles of this invention are comfortable to wear, substantially avoiding any feeling of individual cleats as can occur with certain shoes of the prior art. The annular cleating of this invention also has excellent strength and
5 resistance to bending and breakage. This is due in part to wide base dimensions.

The inventive sole has an annular cleat set which projects from the main sole surface and is disposed along a substantially circular path which encompassing a major area
10 of the toe and ball-of-the-foot portions. The annular cleat set has a plurality of cleat nodes, each of which is arranged in a substantially abutting relationship to at least one adjacent cleat node. Each of the cleat nodes has a distal end spaced from the main sole surface and first
15 and second edges on opposite sides of the distal end. The edges having proximal ends which terminate substantially on the circular path.

The first and second edges, sometimes referred to herein as leading and trailing edges because of their
20 relationship to the cleat node and the ground during pivoting, function to cut into the turf, thereby reducing initial resistance to penetration by the cleats. The inventive sole thereby exhibits excellent initial penetration as well as traction and pivotability.

25 In a first preferred embodiment, adjacent pairs of cleat nodes are arranged to be in substantial abutment at the base portion of the nodes, that is, where the cleat nodes join the main sole surface. In a second preferred embodiment, cleats abut at the shoulder, that is, at a
30 region generally midway between the base portion and the distal end (or "tip") of the cleat. This second embodiment is somewhat more "aggressive" than the first embodiment in its ability to maximize traction. Nevertheless, its configuration exhibits substantially the same advantages as described above with respect to the first embodiment. In a third embodiment, cleat nodes abut at their distal ends tips.

-9-

1 As used herein, the expression "substantially
abutting relationship" means any one of the foregoing
relationships. The term also describes the relationship of
5 cleat nodes which may be slightly spaced from one another
at their base portions, or any combination of the
foregoing.

10 A preferred feature of the second embodiment is that
the cleat nodes located on the circular path in a position
adjacent to the arch portion of the sole are in abutment at
their base portions rather than at the shoulder portions,
as with the other cleat nodes of such embodiment. The
resulting V-shaped spaces between cleat nodes in this area
extend from the cleat tips to the sole surface and help
prevent the sole from adhering to the turf by suction, as
15 might otherwise occur on a muddy field. Such spaces allow
air venting to help prevent the "clapping" sound which can
result from trapped air, particularly when a player is
running backwards.

20 All non-cleated areas of that portion of the sole
area enclosed by the circular path are preferably
coincident with the main sole surface; that is, such
surfaces are not built up. This allows full turf
penetration by the cleats.

25 Each of the cleat nodes has a base portion joined to
the main sole surface. The base portion of each cleat node
has a length measured generally along the circular path of
the cleat set and a thickness measured generally radially
to such path. The length is substantially greater than the
thickness, thus providing excellent pivotability of the
30 sole with good resistance to forces urging the sole
laterally or longitudinally.

35 Controlling the relative length and thickness as
described results in a cleat which presents a relatively
small frontal area when the sole is being pivoted, thereby
reducing pivoting effort. In contrast, the circumferential
profile of the cleat nodes is quite large, thereby
providing a high degree of stability and traction.

-10-

1 In a highly preferred embodiment, the cleat nodes are
tapered to blunt, rather than pointed, distal ends. This
configuration optimally resolves the conflicting concerns
relating to ease of penetration on the one hand and
5 avoidance of player "spiking" injuries on the other.

10 In a highly preferred embodiment, each cleat node has
multiple planar surfaces and leading and trailing edges
each formed by the acute-angle intersections of pairs of
such planar surfaces. The leading and trailing edges are
substantially coincident with a projection of the circular
path and form acute angles with the main sole surface. The
resulting cleat node edges facilitate initial ground
penetration. In addition, these edges slice rather than
"punch" through the turf as the sole is pivoted.

15 Because of the abutting relationship of the cleat
nodes and the angular arrangement of the edges, some highly
desirable results are accomplished. First, resistance to
initial penetration increases gradually rather than
instantaneously as the cleat node first contacts and then
20 penetrates the turf. Second, only slight pivoting rotation
of the sole causes a trailing cleat node to enter and
follow a path cut by a leading cleat node; therefore, there
is a reduction in resistance to pivoting movement following
slight initial resistance during initial rotation.

25 In addition, the unique design of the inventive sole
tends to preserve rather than destroy turf. The structural
integrity of the earth beneath the sole tends to be
preserved and good traction is maintained rather than
reduced.

30 In order to maximize the stability of the sole
against lateral forces, the outer surface of at least one
of the cleat nodes is generally coincident with the lateral
side portion of the sole. An outer surface of at least one
other cleat node is generally coincident with the medial
side portion of the sole. Stated another way, the cleat
nodes on the medial side and lateral side portions of the
35 soles preferably have maximum spacing therebetween. This

-11-

1 helps reduce the possibility or the severity of ankle-twist
injuries.

5 To help assure that the athlete enjoys excellent sole flexibility in the ball-of-the-foot and toe portions, it is preferred that the cleat nodes be arranged to promote such flexibility while yet maintaining a good capability for stopping, starting and cutting. In certain embodiments of this invention, each adjacent pair of abutting, tapered cleat nodes defines a generally V-shaped space between them. The annular cleat set includes a plurality of opposed pairs of such spaces forming a plurality of cross-sole breaks in the annular cleat set.

10 The configuration of the inventive athletic shoe sole and of the cleat nodes forming a part of the sole may be readily adapted to accommodate specific requirements. For example, the angles of taper of leading and trailing edges may be changed, the degree of sharpness of such edges may be modified and/or the cleat tip may be more or less blunted or pointed.

15 In some cases, it may be desirable to taper cleat nodes non-uniformly so that the profiles of the leading edges are different than the profiles of their trailing edges. This would serve to make pivoting easier in one direction than another, which may be desirable for athletes playing certain positions. Varying sharpness of leading and trailing edges can provide the same result.

20 Little or no spacing between cleat nodes is highly preferred. In such cases, there is little if any of the main sole portion lying exposed along the circular path followed by the annular cleat set. Thus, the cleat set of this invention, for all practical purposes, forms a substantially continuous ring despite the characteristics of the cleat nodes therealong.

35 Brief Description of the Drawings

FIGURE 1 is a perspective view of the first embodiment of the invention.

-12-

1 FIGURE 2 is a bottom plan view of the sole of FIGURE
1, with cleat sets removed, showing the heel, arch,
ball-of-the-foot and toe portions of the sole.

5 FIGURE 3 is a bottom plan view of a cleat node.

FIGURE 4 is an end elevation view of the cleat node
of FIGURE 3, taken along the viewing axis 4 of FIGURE 3.

FIGURE 5 is a side elevation view of the cleat node
of FIGURE 3, taken along the viewing axis 6 of FIGURE 3.

10 FIGURE 6 is a side elevation view of the cleat node
of FIGURE 3, taken along the viewing axis 6 of FIGURE 3.

FIGURE 7 is a perspective view of the second
embodiment of the invention.

15 FIGURE 8 is a bottom plan view of cleat nodes
arranged in an abutting relationship at their distal ends
as used in a third embodiment of the invention.

Detailed Descriptions of Preferred Embodiments

The figures illustrate a preferred athletic shoe sole
10 in accordance with this invention.

20 Referring first to FIGURE 2, the sole 10 has four
portions which are defined by the portions of the foot
adjacent to them. These sole portions are: the heel
portion 11; the arch portion 13; the ball-of-the-foot
portion 15; and the toe portion 17. The upper portions of
25 the shoe are not illustrated.

Referring now to FIGURE 1, the lower surface of the
sole 10, which contacts the surface of the playing field,
includes a main sole surface 19 which is a generally flat,
even surface from which an annular cleat set 21 projects.
30 The cleat set 21 has a number of cleat nodes 23 which are
integrally formed with the main sole surface 19 in a
molding process of well-known type. The sole 10 is made of
material which is tough and wear resistant but which can
flex in the normal manner depending upon how weight is
35 applied to it. The sole 10 is preferably formed of
polyurethane or rubber.

-13-

1 A plurality of cleat nodes 23 project from the main
sole surface 19 and are disposed along a substantially
circular path 25. This path 25 encompasses a major area of
5 toe and ball-of-the-foot portions 17 and 15, respectively,
and is centered on the juncture of such portions. Each
cleat node 23 is arranged in a substantially abutting
relationship to at least one adjacent cleat node 23 for
providing improved engagement between the sole 10 and an
earthen surface such as turf. Improved engagement results
10 because of the relatively large number of cleat nodes 23
projecting from the sole 10, among other things.

For sports involving frequent and sudden shifts in body position or direction of movement, it is preferred that the arrangement of the cleat nodes 23 is selected to 15 maximize the lateral stability of the shoe. To that end, an outer surface 27 of at least one of the cleat nodes 23 is generally coincident with the lateral side portion 29 of the sole 10. An outer surface 27 of at least another one 20 of the cleat nodes 23 is generally coincident with the medial side portion 31 of the sole 10. Improved lateral shoe stability results and this feature aids in avoiding ankle injuries or in lessening their severity.

It is also preferred that the sole 10 exhibit a high degree of cross-sole flexibility, particularly at and near 25 the junction of toe and ball-of-the-foot portions, 17 and 15, respectively. Accordingly and in the first and second embodiments, shown in FIGURES 1 and 7 respectively, a first opposed pair of V-shaped spaces 33 defines one break (or flexing line or region) and a second opposed pair of V-shaped spaces 35 defines another break located forward of 30 the first. The flexibility of the sole 10 is thereby preserved while yet maintaining an excellent traction capability.

Referring next to FIGURES 3, 4, 5 and 6, a preferred 35 cleat node 23 is shown to include a base portion 37, a distal end or tip 39 and a shoulder 41 located generally midway between the base portion 37 and the tip 39. Each

-14-

1 cleat node 23 includes multiple planar surfaces 43 and
edges 45 at the intersections of pairs of such planar
surfaces 43. In particular, a cleat node 23 includes a
first edge 45a and a second edge 45b, each formed by the
5 intersection of two planar surfaces 43 having an acute
included angle between them. The proximal ends 47 of the
first edge 45a and second edge 45b terminate on the path 25
and each of the edges 45a, 45b cooperates with the main
sole surface 19 to likewise define an acute included angle
10 "A" between them. The tip 39 is a flat surface which is
diamond-shaped as shown in FIGURE 3. This surface may be
smooth or, preferably, cross hatched to a shallow depth for
improved traction.

Referring generally to FIGURES 3-5 and particularly
15 to FIGURES 4 and 5, a highly preferred cleat node 23 is
tapered in two dimensions D1, D2. A first dimension D1 is
measured along the base portion 37 generally parallel to
the path 25. It will be appreciated that if measurement is
taken in a plane parallel to the path 25 and at progressive
20 points along the first and second edges 45a, 45b, where the
edges 45a, 45b intersect with the plane the dimension D1
between points on those edges 45a, 45b diminishes as the
points of measurement move upward from the base portion 37
to the tip 39. Similarly and referring particularly to
25 FIGURES 3 and 4, a second dimension D2, cleat node
thickness, may be similarly measured generally radially to
the path 25 and it will be noted that the thickness of the
cleat node 23 also diminishes as the points of measurement
are moved upward from the base portion 37 to the tip 39.

Several benefits arise from the use of a cleat node
30 23 having the described configuration. Referring
particularly to FIGURES 1, 3 and 4, it is apparent that the
tip 39 has a relatively small surface area. As the tip 39
first makes contact with the turf, it tends to readily
35 penetrate the turf, especially soft turf. Penetration is
aided by the fact that the first and second edges 45a, 45b
progressively slice the turf as the depth of penetration

-15-

1 increases. This combination of a tip surface with a
relatively small area and of first and second edges 45a,
45b exhibiting wedge-like or knife-like characteristics
results in good penetration characteristics.

5 Pivoting movement causes the annular cleat set 21 to
move about a center cleat 49 which is located at or near
the center of the circular path 25. As a cleat node 23
moves in either direction, its first edge 45a or second
edge 45b, whichever is leading, cuts through the turf. The
10 corresponding edge of the adjacent trailing cleat node 23
thereafter enters and follows the path cut by the leading
cleat node 23. Pivoting effort is thereby reduced.

15 Referring especially to FIGURE 4, the profile of a
cleat node 23 as seen spanning the circular path 25 of the
annular cleat set 21 is relatively small and this fact also
aids in the ability of the cleat node 23 to more easily
20 advance through the turf as the sole 10 is pivoted.

25 As explained above, a preferred sole 10 not only
facilitates pivoting movement without the imposition of
undue stress on the athlete's leg but also provides
stability and traction for foot movements not involving
pivoting. Referring particularly to FIGURE 5, the profile
area of a side of the cleat node 23 is relatively large and
this provides a substantial surface to resist slipping
during stopping, starting, and cutting.

30 Still another benefit of the described cleat node 23
configuration may be attributed to its tapered shape. That
is, its base portion 37 has an area which is significantly
larger than that of the surface of the tip 39. This "broad
shouldered" configuration makes the cleat node 23 highly
resistive to forces which may bend, twist or otherwise
deform the cleat node 23 and impair traction.

35 One of the most difficult of all playing field
conditions is presented when very hard earth is covered
with wet grass. This most frequently occurs upon the
formation of dew. Not only is it difficult to penetrate
the ground with any sort of cleat configuration, but

-16-

1 conventional smooth-surfaced, conical cleats have a low
coefficient of friction in contact with wetted grass. With
the annular cleat sets 21 described herein, the multiple
edges 45 on each cleat node 23 combined with an arrangement
5 of cleat nodes 23 in an abutting relationship, with or
without V-shaped spaces 35 therebetween, helps "tangle"
with blades of grass. Improved traction results.

With respect to the first embodiment, it should also
be appreciated that during rare but very strenuous
10 movements, the sole 10 may become severely flexed along any
line passing through the center cleat 49. Many cleat nodes
23 may not then be in contact with the turf. Even in that
event, the sole 10 maintains at least three cleat nodes 23
in turf contact for helping the athlete maintain footing.

15 Referring next to FIGURE 7, a second embodiment of
the athletic shoe sole 10 includes cleat nodes 23 arranged
in a substantially abutting relationship to at least one
adjacent cleat node 23. In the second embodiment and for
all but one of the cleat nodes 23, the abutting
20 relationship occurs at the shoulder portion 41 rather than
at the base portion 37. For any given size of shoe sole
10, this provides a greater cleat "density" and results in
a sole 10 which more aggressively grips the turf. In the
embodiments described above, that portion of the main sole
25 surface 19 which is encompassed by the circular path 25 is
not built up; that is, it lies generally on the same plane
as those portions of the sole surface 19 lying outside the
circular path 25.

Referring to FIGURE 7, it will be noted that in this
30 second embodiment, most of the cleat nodes 23 abut at the
shoulder 41 rather than at the base portion 37. Unless
special precautions are taken, air may become entrapped
within the space encompassed by the annular cleat set 21,
as previously explained. Accordingly, one cleat node 23a,
35 preferably located at the rear part of the circular path
25, is arranged to abut adjacent cleat nodes 23b at the

-17-

1 base portion 37 or to be slightly spaced therefrom. This
arrangement provides a plurality of air passages to prevent
air entrapment.

5 Yet other arrangements of the inventive athletic shoe
sole 10 are possible in view of the foregoing. For
example, a sole 10 configured for use on artificial turf
may employ concentric rings of cleat nodes 23 at the
forefoot, and perhaps also on the heel. Still another
10 variation may involve the use of cleat nodes 23 of slightly
different size and/or physical arrangement. For example,
cleat nodes 23 may be sized and arranged to define a pair
of spaces adjacent the lateral sole portion 29 but only a
single space adjacent the medial sole portion 31. The
resulting spaces would provide for sole flexibility by
15 defining a "V", the ends of which are at the lateral sole
portion 29 and the apex of which is at the medial sole
portion 31.

20 Referring to FIGURE 8, a third embodiment involves
arranging cleat nodes 23 in an abutting relationship at the
tip 39 or distal end. Of the three embodiments, this third
embodiment maximizes the area which initially contacts the
turf and the area forming the bearing surface during
pivoting movement. Therefore, this third embodiment has
the least resistance to pivoting effort. However, the
25 presence of its multiple edges 45 in engagement with the
turf, including wet grass, provides improved traction over
earlier shoe soles.

30 While the principles of this invention have been
described in connection with specific embodiments, it
should be understood clearly that these descriptions are
made only by way of example and are not intended to limit
the scope of the invention.

-18-

1 CLAIMS:

1. In an athletic shoe sole of the type having a main sole surface and cleats extending therefrom, and
5 having heel, arch, ball-of-the-foot and toe portions, the improvement comprising:

10 -an annular cleat set projecting from the main sole surface and disposed along a substantially circular path which encompasses a major area of the toe and ball-of-the-foot portions, the set having a plurality of cleat nodes each of which is arranged in a substantially abutting relationship to at least one adjacent cleat node; and

15 -each of the cleat nodes having a distal end spaced from the main sole surface and first and second edges on opposite sides of the distal end, the edges having proximal ends which terminate substantially on the circular path.

20 2. The athletic shoe sole of claim 1 wherein each of the cleat nodes comprises a base portion which is joined to the main sole surface and has a length measured generally along the path and a thickness measured generally radially to the path, the length being substantially greater than
25 the thickness, whereby the cleat set provides excellent pivotability of an athletic shoe and excellent resistance to forces urging the shoe laterally or longitudinally.

30 3. The athletic shoe sole of claim 2 wherein when the cleat nodes are in contact with the ground, each of the edges defines with the ground an acute included angle, thereby reducing resistance of the sole to pivoting motion.

35 4. The athletic shoe sole of claim 3 wherein the abutting relationship occurs at the base portions of abutting cleat nodes.

-19-

1. 5. The athletic shoe sole of claim 3 wherein:
-each of the cleat nodes includes a shoulder portion
located intermediate the distal end and the main sole
surface; and
5 -the abutting relationship occurs at the shoulder
portions of abutting cleat nodes.

10 6. The athletic shoe sole of claim 3 wherein the
abutting relationship occurs at the distal ends of the
abutting cleat nodes.

15 7. The athletic shoe sole of claim 1 wherein each of
the first and second edges forms an acute angle with the
main sole surface, thereby further facilitating pivoting.

20

25

30

35

-20-

1 8. In an athletic shoe sole of the type having a main sole surface and cleats extending therefrom, and having heel, arch, ball-of-the-foot and toe portions, and opposite lateral and medial side portions, the improvement
5 comprising:

10 -an annular cleat set projecting from the main sole surface and disposed along a substantially circular path which encompasses a major area of the toe and ball-of-the-foot portions, the set having a plurality of tapered cleat nodes, at least one of said cleat nodes having a radially-outer surface generally coincident with the medial side portion and at least one other of said cleat nodes having a radially-outer surface generally coincident with the lateral side portion; and
15 -each adjacent pair of tapered cleat nodes defining a generally V-shaped space therebetween, a plurality of opposed pairs of the spaces forming a plurality of cross-sole breaks in the annular cleat set.

20 9. The athletic shoe sole of claim 8 wherein each of the cleat nodes is tapered in two dimensions, a first dimension measured generally parallel to the path and a second dimension measured generally radially to the path, thereby providing a tip of reduced area.
25

30 10. The athletic shoe sole of claim 8 wherein:
-each of the cleat nodes includes multiple planar surfaces and edges at the intersections of pairs of the planar surfaces;
-the edges include a leading edge and a trailing edge, said leading and trailing edges each formed by intersection of two of said planar surfaces having an acute angle therebetween; and
35 -each of the leading and trailing edges defines an acute angle with the main sole surface, whereby ground penetration and pivoting movements are facilitated.

1/3

Fig. 1

Fig. 2

2/3

3/3

Fig. 7

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US90/05232

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)¹⁾

According to International Patent Classification (IPC) or to both National Classification and IPC

INT (5): A43B 5/02, 5/00; A43C 15/16

U.S. CL.: 36/126, 128, 134, D2/320

II. FIELDS SEARCHED

Minimum Documentation Searched⁴⁾

Classification System	Classification Symbols
U.S.	36/134, 126, 128, 32R, 59C, 59R, 67R, 67A D2/320, 311
<small>Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched⁵⁾</small>	

III. DOCUMENTS CONSIDERED TO BE RELEVANT^{1), 2)}

Category ³⁾	Citation of Document, ^{1), 2)} with indication, where appropriate, of the relevant passages ^{1), 2)}	Relevant to Claim No. ^{1), 2)}
X	US, A, 4,689,901 (IHLENBURG) 01 September 1987	8-9
Y	See entire document	1-4, 6-7, 10
Y	US, A, 4,641,438 (LARD ET AL) 10 February 1987 See entire document	1-4, 6-7, 10
Y	US, A, 4,501,077 (YOUNG) 26 February 1985 See entire document	6
A	US, A, 4,392,312 (CROWLEY ET AL) 12 July 1983	
A	US, A, 4,255,874 (SIRONI) 17 March 1981	
A	US, A, 3,581,414 (CRAWFORD) 01 June 1971	
A	US, A, D295,231 (HEYES) 19 April 1988	
A	US, A, D294,655 (HEYES) 15 March 1988	
A	IT, A, 432,510 (MARCHETTO) 20 March 1948	
A	CH, A, 294,324 (CONTINENTAL) 15 November 1953	
A	CH, A, 224,626 (SPINI) 01 March 1943	

* Special categories of cited documents: 1)

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search²⁾

Date of Mailing of this International Search Report³⁾

22 OCTOBER 1990

25 JAN 1991

International Searching Authority¹⁾

Signature of Authorized Officer²⁾

ISA/US

STEVEN N. MEYERS