Exerciții

LazR ('3')

 $6~\mathrm{Iulie},~2024$

Cuprins

1	Numere reale															•	3
2	Trigonometrie															8	3

1 Numere reale

- 1. Să se restrângă expresiile:
- a) $a^2 4a + a$;
- b) $\frac{4}{a^2} \frac{12}{a} + 9$;
- c) $-2a^2 + 2\sqrt{2}ab b^2$;
- d) $a^2 + b^2 + 1 2a 2b 2ab$;
- e) $4a^2 + 4 + 4\sqrt{3}a 4a 2\sqrt{3}$.
- 2. Să se descompună în factori expresiile:
- a) $4a^2 9b^2$;
- b) $3 a^2$;
- c) $2a^2 5$;
- d) $1 16a^4$;
- e) $a^3 + 125b^3$;
- f) $a^6 b^6$;
- g) $(a+b-c)^3 (a-b+c)^3$.
- 3. Să se calculeze:
- a) 299 · 301;
- b) 599 · 601;
- c) $1001 \cdot (-999);$

- d) $(-2501) \cdot (-2499)$.
- 4. Să se pună în evidență un pătrat de binom:
- a) $a^2 2a + 3$;
- b) $-a^2 + 5a + 2$;
- c) $a^4 + 3a^2$;
- d) $(a-1)^2 2(a^2-1)$;
- e) $-2a^2 + 7a + 3$.
- 5. Să se arate că următoarele expresii sunt constante:
- a) $(a-2)^2 (a-3)^2 2a$;
- b) $(2a+1)(4a^2-2a+1)-8a^3$;
- c) $(a-2)^3 + 6(a-1)^2 a^3$;
- d) $\frac{a^3-8}{a-2} \frac{a^3+8}{a+2} 4a;$
- e) $(2a+1)^3 (2a-3)^3 48 \cdot \frac{a^3+1}{a+1}$.
- 6. Fi
e $a,b\in\mathbb{R}, a>b,$ astfel încât a+b=6 și
 $a\cdot b=4.$ Să se calculeze:
- a) $\frac{1}{a} + \frac{1}{b}$;
- b) $\frac{a}{b^2} \frac{b}{a^2}$;
- c) $\frac{a}{b^3} \frac{b}{a^3}$;
- d) $\frac{a^2}{b+2} + \frac{b^2}{a+2}$;
- e) $\frac{a}{1-a} + \frac{b}{1-b}$;

- f) $\frac{a}{b-3} + \frac{b}{a-3}$;
- g) $\frac{a}{a^2+a+1} + \frac{b}{b^2+b+1}$.
- 7. Fie $a,b\in\mathbb{R}$ astfel încât $a^2+b^2=26$ și $a\cdot b=5$. Să se calculeze:
- a) a + b;
- b) a-b;
- c) $a^3 b^3$;
- d) $a^4 b^4$;
- e) $a^4 + b^4$;
- f) $a^5 + b^5$.
- 8. Fie $x \in \mathbb{R}^*$ astfel încât $x + \frac{1}{x} = a, a > 2$. Să se calculeze în funcție de a expresiile:
- expresiile: a) $x^2 + \frac{1}{x^2}$;
- b) $x \frac{1}{x}$;
- c) $x^3 + \frac{1}{x^3}$;
- d) $x^4 + \frac{1}{x^4}$;
- e) $x^5 + \frac{1}{x^5}$.
- 9. Fie x>0. Dacă $x^2+\frac{1}{x^2}=14$, să se demonstreze că $x^5+\frac{1}{x^5}\in\mathbb{Z}.$
- 10. Să se rezolve ecuațiile:
- a) |3-x|-2|x-3|;
- b) |2x+1| = x+3;

c)
$$|3x - 2| = |x + 1|$$
;

d)
$$|x| + |x - 1| = 1$$
;

f)
$$|x-1| + |2x-2| + \dots + |9x-9| = x$$
.

11. Să se afle [x] și $\{x\}$, dacă:

a)
$$x - [\sqrt{2}] + \{-2, (3)\} = \{2\} + \{\frac{1}{3}\} + \{3, (4)\};$$

b)
$$2x-(1+[1-\sqrt{3}])x=\{\frac{5}{3}\}x-\{\frac{99}{4}\}.$$

12. Să se calculeze partea întreagă a numerelor:

a)
$$\sqrt{n^2+2}$$
;

b)
$$\sqrt{n^2 + 4n}$$
;

c)
$$\sqrt{9n^2 + n}$$
;

d)
$$\sqrt{n^2 - n + 1}$$
;

e)
$$\sqrt{4n^2 + 3n + 1}$$
;

f)
$$\sqrt{n^2 + 2n} + \sqrt{4n^2 + 1}$$
.

13. Fie $n \in \mathbb{N}^*$ și $p = \sum_{k=1}^n [\sqrt{n^2 + k}]$. Să se demonstreze că numărul p este pătrat perfect.

14. Să se rezolve ecuațiile:

a)
$$\left[\frac{2x-1}{3}\right] = \frac{x+1}{2};$$

b)
$$\left[\frac{4x-1}{3}\right] = \left[\frac{2x+1}{4}\right];$$

c)
$$\left[\frac{x+1}{x+2}\right] = \frac{2x+1}{2x+2};$$

d)
$$\left[\frac{5+6x}{8}\right] = \frac{15x-7}{5}$$
.

15. Să se demonstreze că:

a)
$$\{x\} + \{x + \frac{1}{2}\} = 2x + \frac{1}{2};$$

b)
$$\{x\} + \{x + \frac{1}{3}\} + \{x + \frac{2}{3}\} = 3x + 1;$$

c)
$$\left[\frac{x+1}{2}\right] = \left[x\right] - \left[\frac{x}{2}\right]$$
.

- 16. Să se determine $n \in \mathbb{N}^*$ pentru care [a] = 1, unde $a = \sum_{k=1}^n \frac{1}{\sqrt{k+1} + \sqrt{k}}$.
- 17. Să se calculeze $\sum_{k=2}^{n} \left[\frac{k+\sqrt{k}}{k} \right], n \in \mathbb{N}, n \geq 2.$
- 18. Să se calculeze $\sum_{k=1}^{n} [\sqrt{k(k+1)}], n \in \mathbb{N}^*.$
- 19. Să se afle partea întreagă a numerelor:

a)
$$\sum_{k=1}^{n} \frac{1}{3^k}, n \in \mathbb{N}^*;$$

b)
$$\sum_{k=1}^{n} \frac{1}{k^2}, n \in \mathbb{N}^*.$$

- 20. Fie $(a_n)_{n\in\mathbb{N}^*}$ o progresie aritmetică de rație r. Știind că $a_{21}=20$ și $a_{101}=60$, să se determine r și formula termenului a_{n+1} .
- 21. Un muncitor taie o scândură cu lungimea de 4 metri în 10 bucăți, fiecare bucată fiind cu 6 centimeri mai lungă decât precedenta. Ce lungime are cea mai scurtă bucată?
- 22. Fie n un număr natural, mai mare decât 3. Să se calculeze suma:

$$2 + 22 + 222 + \dots + \underbrace{22..2}_{\text{de } n \text{ ori}}$$
.

23. Fie $(b_n)_{n\in\mathbb{N}^*}$ o progresie geometrică cu termeni nenuli și rație $q\neq 1$. Știind că $b_1=1$ și $2b_{n+1}=b_n+b_{n-1}$ pentru orice $n\geq 2$, să se determine q și S_n .

2 Trigonometrie

- 1. Să se calculeze $\sin^2 120^\circ$ $\cos^2 30^\circ$.
- 2. Fie $x \in (0,\pi)$ astfel încât $\cos x = \frac{\sqrt{2}}{2}$. Să se determine $\tan x$.
- 3. Se consideră expresia $E(x) = \sin \frac{x}{2} + \cos x$, unde $x \in \mathbb{R}$. Să se calculeze $E(\frac{2\pi}{3})$.
- 4. Aflați valoarea lui $a \in (0,\pi)$ pentru care $2\cos(\pi a) 1 = 0$.
- 5. Să se calculeze $\sin(2x)$, știind că $\sin x = \frac{1}{2}$ și $x \in (\frac{\pi}{2}, \pi)$.
- 6. Să se rezolve ecuația trigonometrică:

$$\cos x = -\cos 40^{\circ}$$

unde $x \in (0, 360^{\circ})$.

- 7. Care dintre numerele $\cos 55^{\circ}$, $\sin 155^{\circ}$, $\sin 15^{\circ}$, $\cos 170^{\circ}$, $\cos 100^{\circ}$, $\sin 106^{\circ}$ este cel mai aproape de 0?
- 8. Verificați valoarea de adevăr a propozițiilor:
- a) $\sin 144^{\circ} = \cos 54^{\circ}$;
- b) $\cos 2018^{\circ} = -\cos 38^{\circ}$.
- 9. Dacă $\sin a = \frac{3}{5}$, unde $a \in (\frac{\pi}{2}, \pi)$, atunci calculați valoarea lui $\cos \frac{a}{2}$. 10. Să se calculeze $\tan a + \tan b$, unde $a, b \in (0, \pi) \setminus \left\{\frac{\pi}{2}\right\}$, dacă $\cos a + \cos b = 0$.