A1

Contents

- Q1
- Q2
- Q3
- Q4
- Q5
 - Refined
- Q6
 - o a
 - o b
- Q7
 - o a
 - o b
 - 0 C
 - o d

Q1

 W_1 and W_3 not found for L^4 W_3 not found for L^st

Q2

 $\mbox{\it ?}$ When calculating L^* do we need to consider $L^0=\epsilon$ in the shortlex order ϵ , 01, 010, 100, 0101, 01001, 01010, 01001, 010010, 010100, 010101, 0101001, 0101001, 0101010, 0101100, 0110001

Q3

 $A^*B^* = \{0\}^*\{1\}^* = \text{Strings } 0^n1^m \text{ where } n, m \geq 0$ $(AB)^* = (01)^* = \text{Even length strings, with equal number of 0 and 1, starting with 0, ending in 1, and no consecutive same symbols.}$ $(A \cap B)^* = \text{set of empty string.}$

 $(A \cup B)^*AB$ = Binary string ending in 01. $(A^* \cup AB)^* - (BAB)^*$ = Binary String that don't end with 1 and no consecutive 1 in the string.

Q4

a.
$$G imes (H \cup K) = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$$
 b. $G imes (H \cap K) = \{a,b\} imes \{2\} = (a,2),(b,2)$ c. $\mathscr{P}((G imes H) \cap (G imes K)) = \{\phi,\{(a,2),(b,2)\},\{(a,2)\},\{(b,2)\}\}$

Q5

Try proof by cases

- Let's L is an arbritary language. L = $\{x_1, x_2, \ldots\}$ with length greater than 1.
- Now for strings x_1 and x_2 in L, by the given definition we $x_1 \cdot x_2 \in L$(1)
 - o If that's not true then L is not repeat avoiding. [case 1]
 - \circ If that's true then **also** $x_1 \cdot x_2 \cdot x_1 \in L$. [case 2]
 - If that's not true then L is not repeat avoiding. [case 2.1]
 - If that's true then $x_1 \cdot x_2 \cdot x_1 \cdot x_2 \in L$. [case 2.2]
 - If case 2.2 not true false then L is not repead [case 2.2.1]
 - If case 2.2 is true then proposition 1 is false, as $x_1 \cdot x_2 \in L$ and thus viewing all cases it

Refined

Let's L is an arbritary language. L = $\{x_1,x_2,.....\}$ where |L|>1. Let's consider 2 strins x_1 and x_2 , where $x_1\in L$ and $x_2\in L$ Now We consider 2 cases.

Case 1:
$$x_1 \cdot x_2 \in L$$

If case 1 is true then,

By proposition 2, $x_1 \cdot x_2 \cdot x_1$ should be in L

case a
$$x_1 \cdot x_2 \cdot x_1 \in L$$

If case a is true then, by propostion 2, $x_1 \cdot x_2 \cdot x_1 \cdot x_2 \in L$

then it goes against propostion 1 therefore L is not repead avoiding.

case b
$$x_1 \cdot x_2 \cdot x_1 \notin l$$

If Case B then L is not repeat avoiding

Case 2:
$$x_1 \cdot x_2 \notin L$$

If case 2 is true then L is not repeat avoiding.

Q6

$$S = \{00, 10, 010, 01001\}$$

a

Picking the longest:

01001 $0 \in S^*$ $010010 \in S^*$

 \therefore the string is concatenation of 010 to itself and $010 \in S$

First picking the longest prefix 01001 from S,

We have 010010, After this we are left 0, and $0 \notin S$, therefore for W = 010010 the algorithm returns No, though the string $010010 \in S^*$

b

01001 = this is the last string in S.

 $01001 \in S^*$

 $01001 \in S$, $\therefore 01001 \in S^*$

First picking the shortest prefix $W_1 \in S$ such that $W_1 \cdot y = 01001$

We picked 010, therefore the string becomes 01001, but $01 \notin S$ therefore we couldn't cross off all symbols of string W. Hence our algorithm output is No. But as we have showed before string $W \in S^*$

Q7

a

 W_1,W_2 two strings $|W_1|\geq 1$ and $|W_2|=n$

Base case: For n = 1,

$$W_2^R$$
 = W_2 Since $x^R=x$

 \mathbb{Z} If $|W_2|=1$, Can we apply $(W_1\cdot W_2)^R=W_2\cdot W_1^R$ DONE

$$(W_1 \cdot W_2)^R = W_2 \cdot W_1^R$$

Inductive Hypothesis: For n = m,

We assume, for W_1, W_m where W_1 is an arbritary string and $|W_m|=m$,

$$(W_1 \cdot W_m)^R = W_m^R \cdot W_1^R$$

Inductive Step

Now let's consider for W_{m+1} where, $|W_{m+1}|=m+1$, We need to proof, $(W_1\cdot W_{m+1})^R=W_{m+1}^R\cdot W_1^R$ Lets consider $W_{m+1}=W_q\cdot x$ and $|W_q|=m$

$$\begin{split} &(W_1\cdot W_{m+1})^R=(W_1\cdot W_q\cdot x)^R\\ &\text{let, }W_1\cdot W_q=W\\ &\text{Then, }(W_1\cdot W_q\cdot x)^R=(W\cdot x)^R\\ &\Longrightarrow (W_1\cdot W_q\cdot x)^R=xW^R\text{ [}\therefore\text{ Statement (2)]}\\ &\Longrightarrow (W_1\cdot W_q\cdot x)^R=x(W_1\cdot W_q)^R\text{ By replacing value of }W\text{ with }W_1\cdot W_q\end{split}$$

Using our assumption,

 $\implies (W_1\cdot W_q\cdot x)^R=x(W_1\cdot W_q)^R=x\cdot W_q^R\cdot W_1^R$ [Both W_q,W_m are arbritary string with same length]

$$(W_q \cdot x)^R = x \cdot W_q^R$$

$$\Longrightarrow (W_{m+1})^R = x \cdot W_q^R$$

Hence,
$$(W_1\cdot W_q\cdot x)^R=x(W_1\cdot W_q)^R=x\cdot W_q^R\cdot W_1^R$$
 $\Longrightarrow (W_1\cdot W_q\cdot x)^R=x(W_1\cdot W_q)^R=(W_{m+1})^R\cdot W_1^R$

Start is here iam going to be here.

b

Base Case

$$(W_1 \cdot W_2)^R = W_2^R \cdot W_1^R$$

Induction Hypothesis

$$(W_1 \cdot W_2 \cdot \cdot \cdot W_k)^R = W_k^R \cdot \cdot \cdot W_2^R \cdot W_1^R$$

We need to prove, $(W_1\cdot W_2\cdot \cdots W_k\cdot W_{k+1})^R=W_{k+1}^R\cdot W_k^R\cdot \cdots W_2^R\cdot W_1^R$

$$\begin{aligned} &\text{L.H.S} = (W_1 \cdot W_2 \cdot \cdots W_k \cdot W_{k+1})^R \\ &= (W \cdot W_{k+1})^R \text{, where } W = W_1 \cdot W_2 \cdot \cdots W_k \\ &= W_{k+1}^R \cdot W^R \text{ } [\because proposition 1] \\ &= W_{k+1}^R \cdot (W_1 \cdot W_2 \cdot \cdots W_k)^R \text{ } [\text{replacing W with it's value}] \\ &= W_{k+1}^R \cdot W_k^R \cdot \cdots W_2^R \cdot W_1^R \text{ } [\text{Applying induction hypothesis}] \\ &= \text{R.H.S} \end{aligned}$$

? Since k has no upper limit, kinda like limit can we use Induction?

- % Is x non-empty?
- \cite{N} We can't use the definition of reverse, but can we use the definition of palindrome? that is, **if** X **is a palindrome then** $X^R = X$
- $\centebox{$\widehat{\gamma}$}$ For a power of string, can we say $x^m \cdot x = x \cdot x^m$
- $\cite{Theorem 2}$ Can we use $|X^R| == |X|$

Proof If X is a palindrome, then X^n is a palindrome.

If X is a palindrome,

Base Case: for n = 1,

 $x^n = x, x,$

there fore x^n is a palindrome.

Induction Hypothesis for n = m

Assume, the statement is true. i.e. If x is a palindrome, then x^m is also a palindrome.

induction step for n = m+1

We need to prove, the statement is true.

$$x^{m+1} = x^m \cdot x$$

$$(x^{m+1})^R = (x^m \cdot x)^R = x^R \cdot (x^m)^R$$
 [from 4a]

 $\therefore (x^{m+1})^R = x \cdot x^m$ [Since x is a plaindome and using Induction hypothesis]

$$\therefore (x^{m+1})^R = x^{m+1}$$

Hence x^{m+1} is a palindrome.

d

Contrapositive: If x is not a palindrome then x^n is not a palindrome.

Base case

for
$$n = 1$$
,

 $x^1=x$, hence if x is not a palindrome then $x
eq x^R$

Induction Hypothesis for n = m

Assune if x is not a palindrome then, x^m is not a palindrome

induction step for n = m+1,

$$x^{m+1} = x^m \cdot x$$

$$\therefore (x^{m+1})^R = (x^m \cdot x)^R = x^R \cdot (x^m)^R$$
 [from 4a]

Now
$$x^{m+1} = x^m \cdot x = x \cdot x^m$$

Between $x^R \cdot (x^m)^R$ and $x \cdot x^m$ the suffix $(x^m)^R$ and x^m is not same and it has same length,

therefire we can conclude that $x^R\cdot (x^m)^R\neq x\cdot x^m$ or $x^R\cdot (x^m)^R\neq x^{m+1}$ hence $x^{m+1}\neq (x^{m+1})^R$, therfore x^{m+1} is not a palindrome.