

CRO

DETAILS No.

RAMANJINEYALU

Roll Number >

KUB23MCA013

EXPERIMENT

Title

Description

Given two numbers a and b. Find the GCD and LCM of and b.

TIB

Input:

• Two positive integers a and b (1 <=a, b <=1000)

Output:

For GCD function, an integer representing the GCD of a 'and b

For LCM function, an integer representing the LCM of a and b

Sample Input:

12 18

Output:

36

Explanation:

The GCD of 12 and 18 is 6. The LCM of 12 and 18 is 36.

Source Code:

import math def gcd(a,b): return math.gcd(a,b) def lcm(a,b): return (a*b)//gcd(a,b) a,b=map(int,input().split()) gcd_value=gcd(a,b) lcm_value=lcm(a,b) print(gcd_value) print(lcm_value)

RESULT

https://practice.reinprep.com/student/get-report/8e0d2de3-7ca8-11ef-ae9a-0e411ed3c76b

0/3

1823

5 / 5 Test Cases Passed | 100 %

1823 132 132 1823 1 182