Neural Machine Translation by Jointly Learning to Align and Translate

Muhammad Tasnim Mohiuddin

School of Computer Science and Engineering Nanyang Technological University

March 21, 2018

Encoder-Decoder Model in NMT

- Encoder reads and encodes a source sentence into a fixed-length vector (Thought Vector / Context Vector).
- Decoder then outputs a translation from the encoded vector.

Problems with Basic Encoder-Decoder Model

Encoder needs to be able to **compress all the necessary information** of a source sentence **into a fixed-length vector**.

Problematic while dealing with long sentences.

Performance of a basic encoder-decoder model deteriorates rapidly as the length of an input sentence increases.

Problems with Basic Encoder-Decoder Model

Encoder needs to be able to **compress all the necessary information** of a source sentence **into a fixed-length vector**.

Problematic while dealing with long sentences.

Performance of a basic encoder-decoder model deteriorates rapidly as the length of an input sentence increases.

What is the solution?

Attention Mechanism

 The most important distinguishing feature of this approach from the basic encoderdecoder is that it does not attempt to encode a whole input sentence into a single fixed-length vector.

Attention Mechanism

- The most important distinguishing feature of this approach from the basic encoderdecoder is that it does not attempt to encode a whole input sentence into a single fixed-length vector.
- Each time the proposed model generates a word in a translation, it searches for a set of positions in a source sentence where the most relevant information is concentrated.
- This frees a neural translation model from having to squash all the information of a source sentence, regardless of its length, into a fixed-length vector.

Proposed Model

Context vector

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

• Weight α_{ij} is computed by

$$\alpha_{ij} = softmax(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

Alignment model score

$$e_{ij} = v_a^\mathsf{T} \tanh(W_a s_{i-1} + U_a h_j)$$

It is a feedforward neural network jointly trained with others.

Visualize the effect of weight α_{ij}

Result

