CLASSIFICATION ASSIGNMENT

1)PROBLEM STATEMENT:

A requirement from the Hospital, Management asked us to create a predictive model which will predict the Chronic Kidney Disease (CKD) based on the several parameters. The Client has provided the dataset of the same.

Machine Learning -Supervised Learning -Classification

Name of the project :Chronic kidney disease prediction

2)DATASET

Total number of rows:25

Total number of columns:400

3) Nominal Data

converting String to number

4)

1)Decision Tree Classification

```
: print(cm)
[[49 2]
[ 8 74]]
```

: from sklearn.metrics import classification_report clf_report=classification_report(Y_test,y_pred)

print(clf_report)

	precision	recall	f1-score	support
0	0.86	0.96	0.91	51
1	0.97	0.90	0.94	82
accuracy			0.92	133
macro avg	0.92	0.93	0.92	133
weighted avg	0.93	0.92	0.93	133

2.LOGISTIC ALGORITHM

```
print(cm)
```

[[51 0] [2 80]]

from sklearn.metrics import classification_report
clf_report=classification_report(Y_test,y_pred)

print(clf_report)

	precision	recall	f1-score	support
0	0.96	1.00	0.98	51
1	1.00	0.98	0.99	82
accuracy			0.98	133
macro avg	0.98	0.99	0.98	133
weighted avg	0.99	0.98	0.99	133

3.RANDOM FOREST CLASSIFICATION

```
print(cm)
  [[50 1]
   [ 1 81]]
  from sklearn.metrics import classification_report
  clf_report=classification_report(Y_test,y_pred)
  print(clf_report)
                precision
                             recall f1-score
                                                support
             0
                     0.98
                               0.98
                                         0.98
                                                     51
             1
                     0.99
                               0.99
                                         0.99
                                                     82
      accuracy
                                         0.98
                                                    133
                     0.98
                               0.98
                                         0.98
                                                    133
     macro avg
  weighted avg
                               0.98
                     0.98
                                         0.98
                                                    133
SUPPORT VECTOR MACHINE
   print(cm)
   [[51 0]
    [ 1 81]]
]: from sklearn.metrics import classification_report
   clf_report=classification_report(Y_test,y_pred)
   print(clf_report)
                 precision
                              recall f1-score
                                                 support
              0
                                          0.99
                                                      51
                      0.98
                                1.00
                                          0.99
              1
                      1.00
                                0.99
                                                      82
                                          0.99
```

133

133

133

0.99

0.99

Support Vector Machine gives best Accuracy :0.99

0.99

0.99

0.99

0.99

accuracy

macro avg

weighted avg