Fachbereich Mathematik Prof. Dr. Martin Kiehl Dipl. Math. Sarah Drewes Dipl. Math. Carsten Ziems

SoSe 2008 11.06.2008

10. Übungsblatt zur "Mathematik IV für ETiT, iKT, iST / Mathematik III für Inf Bsc"

Gruppenübung

Aufgabe G28 (Verteilungsfunktion, Maßzahlen)

In einer Automobilfabrik wurden bei 20 Fahrzeugen eines Typs folgende Höchstgeschwindigkeiten gemessen:

141, 142, 143, 144, 147, 144, 144, 138, 140, 141, 145, 148, 150, 151, 152, 150, 145, 146, 147, 151,

- (a) Zeichne die empirische Verteilungsfunktion der Stichprobe.
- (b) Berechne den Median, das arithmetische Mittel, das p-Quantil für p=0.25 und p=0.75, die empirische Varianz und die empirische Streuung.
- (c) Angenommen bei der Übertragung der Messdaten ist ein Fehler passiert und es wurde bei einer der Messungen statt 145 km/h 345 km/h übertragen. Welche Auswirkung hat das auf die in Aufgabe (b) berechneten Maßzahlen?

Lösung:

(a) Zuerst ordnen wir die Stichprobe und schreiben die Merkmale mit ihren Häufigkeiten in eine Tabelle:

Geschw.	138	140	141	142	143	144	145	146	147	148	150	151	152
abs.Häuigkeit	1	1	2	1	1	3	2	1	2	1	2	2	1

Die empirische Verteilungsfunktion ist $F_n(z; x_1, \ldots, x_n) = \frac{1}{n} \cdot (\text{Anzahl der } x_i : x_i \leq z)$

- (b) Mittelwert: $\bar{x} = \frac{2909}{20} = 145.45$, Median: $\tilde{x} = x_{(10)} = 145$, 0.25-Quantil: $x_{0.25} = x_{(5)} = 142$, 0.75-Quantil: $x_{0.75} = x_{(15)} = 148$. Empirische Varianz: $s^2 = \frac{1}{19}[(138 145.45)^2 + (140 145.45)^2 + 2(141 145.45)^2 + (142 145.45)^2 + (143 145.45)^2] + 3(144 145.45)^2 + 2(145 145.45)^2 + (146 145.45)^2 + 2(147 145.45)^2 + (148 145.45)^2 + 2(150 145.45)^2 + 2(151 145.45)^2 + (152 145.45)^2 = 16.1553$, Empirische Streuung : $s = \sqrt{16.1553} = 4.01936$.
- (c) Der Mittelwert erhöht sich relativ stark, er ist jetzt schon bei 155.45, was deutlich über dem Durchschnitt der ursprünglichen Stichprobe liegt. Der Median bleibt gleich, da noch immer $\tilde{x}=x_{10}=145$ ist, das untere Quantil bleibt ebenfalls erhalten und das obere Quantil verschiebt sich nach rechts auf $\tilde{x}_{0.75}=150$. Der Median und die Quantile sind also unempflindlicher gegenüber Ausreißern. Die Varianz und die Streuung erhöhen sich sehr stark auf $\tilde{s}^2=2006,68$ bzw. s=44.796. Dies ist zu erwarten, da die Daten durch den sehr hohen Wert sehr viel stärker gestreut sind als vorher.

Aufgabe G29 (Differenzenverfahren für die Poissongleichung)

Wir betrachten die Poissongleichung mit Dirichlet–Randbedingung auf dem Einheitsquadrat $G=(0,1)\times(0,1)$

$$\begin{array}{rcl}
-\Delta u(x) & = & f(x) & \text{für } x \in G, \\
u(x) & = 0 & \text{für } x \in \partial G,
\end{array} \tag{1}$$

mit $f:G\to\mathbb{R}$, $f(x_1,x_2)=\frac{486}{10}(x_1-x_2)^2$. Bestimme eine Näherungslösung des obigen elliptischen Randwertproblems mit dem Differenzenverfahren mit Schrittweite $h=\frac{1}{3}$.

- (a) Zeichne dazu zunächst das entstehende Gitter und beschrifte die Gitterpunkte nach der Notation aus dem Skript.
- (b) Stelle dann das lineare Gleichungssystem für das Differenzenverfahren auf.
- (c) Bestimme U_{11} derart, dass der Vektor $u^h = (U_{11}, \frac{2}{10}, \frac{2}{10}, \frac{1}{10})^T$ hier Lösung des Differenzenverfahrens ist. Welche Annäherung erhalten wir für u in $(\frac{1}{3}, \frac{2}{3})$?
- (d) Was können wir über den Fehler zwischen der exakten Lösung u zu obigem Problem im Punkt x_{ij} und der Näherung U_{ij} aussagen, wenn wir die Schrittweite h gegen Null gehen lassen?

Lösung:

(b) Mit $\frac{1}{h^2} = 9$ und $c = (f(x_{11}), f(x_{12}), f(x_{21}), f(x_{22}))^T = (0, 5.4, 5.4, 0)^T$ erhalten wir das folgende Gleichungssystem

$$9 \cdot \begin{pmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} U_{11} \\ U_{21} \\ U_{12} \\ U_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 5.4 \\ 5.4 \\ 0 \end{pmatrix}.$$

- (c) Für $U_{11}=\frac{1}{10}$ löst das angegebene u^h das lineare Gleichungssystem aus Teilaufgabe (b). Es gilt $u(\frac{1}{3},\frac{2}{3})\approx U_{12}=0.2$.
- (d) Nach Satz 9.1.1 ist das Differenzenverfahren sowohl konsistent von 2. Ordnung als auch konvergent von 2. Ordnung, d.h. es existiert eine Konstante M>0 mit

$$|u(x_{ij}) - U_{ij}| \le Mh^2, \qquad 1 \le i, j \le N.$$

Der Fehler geht also quadratisch in der Schrittweite h gegen Null.

Aufgabe G30 (Finite Elemente Methode für die Poissongleichung)

Wir betrachten die Poissongleichung (1) mit Dirichlet-Randbedingung auf dem Einheitsquadrat $G=(0,1)\times(0,1)$ aus Aufgabe G29 mit $f:G\to\mathbb{R},$ $f(x_1,x_2)=x_1\cdot x_2$. Berechne eine Näherungslösung $u_h(x_1,x_2)$ mit dem Finite Elemente Ansatz aus der Vorlesung und den Ansatzfunktionen

$$\phi_1(x_1, x_2) = x_1(1 - x_1)x_2(1 - x_2), \qquad \phi_2(x_1, x_2) = x_1(1 - x_1)x_2^2(1 - x_2),$$

$$\phi_3(x_1, x_2) = x_1^2(1 - x_1)x_2(1 - x_2), \qquad \phi_4(x_1, x_2) = x_1^2(1 - x_1)x_2^2(1 - x_2).$$

- (a) Begründe, dass die ϕ_i , i=1,2,3,4, einen möglichen Finite Elemente Raum für die Poissongleichung (1) mit Dirichlet-Randbedingung auf dem Einheitsquadrat $G=(0,1)\times(0,1)$ aufspannen.
- (b) Zeige, dass für das beim Finite Elemente Ansatz entstehende lineare Gleichungssystem $a_{12} = \frac{1}{90}$ sowie $c_1 = \frac{1}{144}$ gilt, indem Du a_{12} und c_1 berechnest.
- (c) Es gilt $a_{11}=\frac{2}{90}, a_{13}=\frac{1}{90}, a_{14}=\frac{1}{180}, a_{22}=\frac{4}{525}, a_{23}=\frac{1}{180}, a_{24}=\frac{11}{2520}, a_{33}=\frac{4}{525}, a_{34}=\frac{2}{525},$ und $a_{44}=\frac{4}{1575},$ sowie $c_2=\frac{1}{240}, c_3=\frac{1}{240}$ und $c_4=\frac{1}{400}.$ Stelle die Steifigkeitsmatrix A auf und bestimme u_1 , so dass $\bar{u}=(u_1,0.1823,0.2363,0.2005)^T$ das lineare Gleichungssystem $A\bar{u}=c$ (bis auf Rundungsfehler) löst.
- (d) Gib die Funktion $u_h(x)$ an und berechne $u_h(\frac{1}{2}, \frac{1}{2})$.

Lösung:

- (a) Offenbar gilt, dass die Ansatzfunktionen ϕ_i , i=1,2,3,4, auf dem Rand des Einheitsquadrates G Null sind. Damit sind die Randbedingungen erfüllt. Zudem sind die Ansazfunktionen quadratintegrierbar auf G und mindestens lokal partiell differenzierbar, so dass wir eine schwache Formulierung der Variationsformulierung bilden können.
- (b) Wir berechnen a_{12} :

$$\begin{split} a_{12} &= \alpha(\phi_1,\phi_2) = \int_G \phi_{1,x_1}(x)\phi_{2,x_1}(x) + \phi_{1,x_2}(x)\phi_{2,x_2}(x)\mathrm{d}x \\ &= \int_0^1 \int_0^1 (1-2x_1)x_2(1-x_2)(1-2x_1)x_2^2(1-x_2) + x_1(1-x_1)(1-2x_2)x_1(1-x_1)(2x_2-3x_2^2)\mathrm{d}x_1\mathrm{d}x_2 \\ &= \int_0^1 \int_0^1 (1-2x_1)^2 x_2^3(1-x_2)^2 \mathrm{d}x_1\mathrm{d}x_2 + \int_0^1 \int_0^1 x_1^2(1-x_1)^2(1-2x_2)(2x_2-3x_2^2)\mathrm{d}x_1\mathrm{d}x_2 \\ &= \int_0^1 \int_0^1 (1-4x_1+4x_1^2)(x_2^3-2x_2^4+x_2^5)\mathrm{d}x_1\mathrm{d}x_2 + \int_0^1 \int_0^1 (x_1^2-2x_1^3+x_1^4)(2x_2-7x_2^2+6x_2^3)\mathrm{d}x_1\mathrm{d}x_2 \\ &= \int_0^1 \left[(x_1-2x_1^2+\frac{4}{3}x_1^3)(x_2^3-2x_2^4+x_2^5)\right]_0^1\mathrm{d}x_2 + \int_0^1 \left[(\frac{1}{3}x_1^3-\frac{1}{2}x_1^4+\frac{1}{5}x_1^5)(2x_2-7x_2^2+6x_2^3)\right]_0^1\mathrm{d}x_2 \\ &= \frac{1}{3} \left[\frac{1}{4}x_2^4-\frac{2}{5}x_2^5+\frac{1}{6}x_2^6\right]_0^1 + \frac{1}{30} \left[x_2^2-\frac{7}{3}x_2^3+\frac{3}{2}x_2^4\right]_0^1 \\ &= \frac{1}{180} + \frac{1}{180} = \frac{1}{90}. \end{split}$$

Wir berechnen c_1 :

$$c_1 = \int_G f(x)\phi_1(x)dx = \int_0^1 \int_0^1 x_1^2 (1 - x_1)x_2^2 (1 - x_2)dx_1dx_2$$
$$= \int_0^1 \int_0^1 (x_1^2 - x_1^3)(x_2^2 - x_2^3)dx_1dx_2$$
$$= (\frac{1}{3} - \frac{1}{4})(\frac{1}{3} - \frac{1}{4}) = \frac{1}{144}.$$

(c) Offenbar löst $\bar{u} = (0.0531, 0.1823, 0.2363, 0.2005)^T$ das lineare Gleichungssystem

$$\begin{pmatrix} 2/90 & 1/90 & 1/90 & 1/180 \\ 1/90 & 4/525 & 1/180 & 11/2520 \\ 1/90 & 1/180 & 4/525 & 2/525 \\ 1/180 & 11/2520 & 2/525 & 4/1575 \end{pmatrix} \cdot \bar{u} = \begin{pmatrix} \frac{1}{144} \\ \frac{1}{240} \\ \frac{1}{240} \\ \frac{1}{400} \end{pmatrix}$$

mit der symmetrischen Steifigkeitsmatrix A.

(d) Es ergibt sich also

$$u_h(x_1, x_2) = 0.0531 \cdot x_1(1 - x_1)x_2(1 - x_2) + 0.1823 \cdot x_1(1 - x_1)x_2^2(1 - x_2) + 0.2363 \cdot x_1^2(1 - x_1)x_2(1 - x_2) + 0.2005 \cdot x_1^2(1 - x_1)x_2^2(1 - x_2)$$

und folglich $u_h(\frac{1}{2}, \frac{1}{2}) = 0.0195$.

In dem folgenden Bild ist die Funktion f abgebildet, wobei die x_1 – und x_2 –Achsen mit dem Faktor 100 skaliert wurden.

In dem folgenden Bild sieht man die Näherungsfunktion u_h , wobei wieder die x_1 - und x_2 - Achsen mit dem Faktor 100 skaliert wurden.

Hausübung

Aufgabe H28 (Verteilungsfunktion, Histogramm)

Auf einem Flughafen wurde an 29 aufeinanderfolgenden Tagen jeweils um 8:00 Uhr die Windgeschwindigkeit gemessen. Es wurden folgende Werte gemessen:

(a) Skizziere die empirische Verteilungsfunktion der angegebenen Messreihe und zeichne ein Histogramm mit folgender Klasseneinteilung:

$$(5.0, 7.0]$$
 $(7.0, 9.0]$ $(9.0, 11.0]$ \cdots $(19.0, 21.0]$

(b) Berechne das arithmetische Mittel, den Median, und die empirische Varianz.

Lösung:

(a) Die Verteilungsfunktion sieht folgendermassen aus:

Beim Histogramm ist zu beachten, dass eine Klassenbreite von 2 gewählt wurde. Die Höhe der Balken entspricht also der Hälfte der relativen Häufigkeiten.

(b) Mittelwert: $\bar{x} = 11.9724$, Median: $\tilde{x} = x_{15} = 11.5$, Empirische Varianz: $s^2 = 11.3456$.

Aufgabe H29 (Differenzenverfahren für die Poissongleichung)

Wir betrachten die Poissongleichung (1) mit Dirichlet-Randbedingung auf dem Einheitsquadrat $G=(0,1)\times(0,1)$ aus Aufgabe G29 mit $f:G\to\mathbb{R},$ $f(x_1,x_2)=-512(x_1-\frac{1}{2})^2-512(x_2-\frac{1}{2})^2+64.$ Bestimme eine Näherungslösung dieses elliptischen Randwertproblems mit dem Differenzenverfahren mit Schrittweite $h=\frac{1}{4}$.

- (a) Zeichne dazu zunächst das entstehende Gitter und beschrifte die Gitterpunkte nach der Notation aus dem Skript.
- (b) Stelle dann das lineare Gleichungssystem für das Differenzenverfahren auf.
- (c) Bestimme eine Lösung des Differenzenverfahrens. Welche Annäherung erhalten wir für u in $(\frac{1}{4},\frac{1}{2})$?

Hinweis: Zur Bestimmung einer Lösung darf mathematische Software benutzt werden.

Lösung:

(b) Mit $\frac{1}{h^2}=16$ und $c=(0,32,0,32,64,32,0,32,0)^T$ erhalten wir das folgende Gleichungssystem

$$16 \cdot \begin{pmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{pmatrix} \cdot u^h = \begin{pmatrix} 0 \\ 32 \\ 0 \\ 32 \\ 64 \\ 32 \\ 0 \\ 32 \\ 0 \\ 0 \end{pmatrix}.$$

(c) Der Vektor $u^h = \frac{1}{4}(3,6,3,6,10,6,3,6,3)^T$ löst das lineare Gleichungssystem aus Teilaufgabe (b). Damit folgt $u(\frac{1}{4},\frac{1}{2}) \approx U_{12} = \frac{1}{4}6$.

Aufgabe H30 (Finite Elemente Methode für die Poissongleichung)

Bearbeite Aufgabe G30.