

University of Sheffield

Department of Electronic and Electrical Engineering

EEE207 Semiconductors for Electronics and Devices

Problem Sheet 1

- 1. A bar of intrinsic germanium at 300 K has 2.5×10^{19} electrons per cubic metre in the conduction band. Find the net current density when an electric field of 500V m⁻¹ is applied to the bar. Assume $\mu_h = 0.19 \text{m}^2$ V⁻¹ s⁻¹ and $\mu_e = 0.39 \text{m}^2$ V⁻¹ s⁻¹.
- 2. The resistivity of intrinsic silicon at 27°C is 3000Ω m. Assuming $\mu_e = 0.17\text{m}^2\text{ V}^{-1}\text{ s}^{-1}$ and $\mu_h = 0.035\text{m}^2\text{ V}^{-1}\text{ s}^{-1}$, calculate the intrinsic carrier density n_i at this temperature.
- 3. A current density of 10^3A m^{-2} flows through an n-type germanium crystal of resistivity 0.05Ω m. Calculate the time taken for electrons to travel 5×10^{-5} m, if the mobility is $\mu_e = 0.39 \text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$.
- 4. Compare the drift velocity of an electron moving in a field of 10000V m⁻¹ in pure germanium, with the final velocity of an electron that has moved through a distance 10mm in the same field in a vacuum. The free electron mass is 9.11×10^{-31} kg, and the mobility $\mu_e = 0.39$ m² V⁻¹ s⁻¹ in germanium.
- 5. A rod of p-type germanium 6mm long, 1mm wide and 0.5mm thick has an electrical resistance of 120 Ω . What is the impurity concentration? What proportion of the conductivity is due to electrons in the conduction band? (Take $\mu_b = 0.19 \text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$, $\mu_c = 0.39 \text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$, and $n_i = 2.5 \times 10^{19} \text{m}^{-3}$.)
- 6. Given that the mobilities of charge carriers in germanium vary with temperature over a certain range according to $\mu_e \propto T^{-1.6}$ and $\mu_h \propto T^{-2.3}$, the mobilities at 290K are $\mu_e = 0.38 \text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$ and $\mu_h = 0.18 \text{m}^2 \text{ V}^{-1} \text{ s}^{-1}$, the energy gap is $E_g = 0.67 \text{eV}$, and that over this temperature range the intrinsic carrier density is given by

$$n_{\rm i} = 5 \times 10^{21} \ (T/{\rm K})^{3/2} {\rm exp}(-E_{\rm g}/2kT) \ {\rm m}^{-3}$$

(where (T/K) signifies absolute temperature measured in kelvin), show that the electrical conductivity of pure germanium as a function of temperature is of the form

$$\sigma = \left[C_1 \left(\frac{290}{T} \right)^{0.1} + C_2 \left(\frac{290}{T} \right)^{0.8} \right] \exp\left(\frac{-C_3}{T} \right).$$

Hence, estimate the conductivity of germanium at its melting point (958°C).

7 Show that a semiconductor has minimum conductivity at a given temperature when

$$n = n_i \sqrt{\frac{\mu_h}{\mu_e}}$$
 and $p = n_i \sqrt{\frac{\mu_e}{\mu_h}}$.

Find the numerical values of the intrinsic and minimum conductivities for germanium at a temperature such that $n_{\rm i} = 2.5 \times 10^{19} {\rm m}^{-3}$, $\mu_{\rm e} = 0.38 {\rm m}^2 \ {\rm V}^{-1} \ {\rm s}^{-1}$ and $\mu_{\rm h} = 0.19 {\rm m}^2 \ {\rm V}^{-1} \ {\rm s}^{-1}$.

For what value of n or p (other than $n = p = n_i$) does the crystal have a conductivity equal to the intrinsic conductivity?

- 8. Calculate the fraction of electrons in the conduction band at room temperature for (a) pure Germanium ($E_g = 0.72 \text{eV}$), (b) pure Silicon ($E_g = 1.10 \text{eV}$) and (c) pure diamond ($E_g = 5.6 \text{eV}$), and comment on the results.
- 9. Pure silicon has resistivity 2000Ω m at room temperature, and the density of conduction electrons is 1.4 \times $10^{16} m^{-3}$. Calculate the resistivities of two other, doped, samples containing acceptor concentrations of $10^{21} m^{-3}$ and $10^{23} m^{-3}$ respectively. Assume that the hole mobility remains the same as in pure silicon and that it is equal to 0.26 times the electron mobility.
- 10. The variation of the resistivity of intrinsic germanium with temperature is found to be as follows:

T/K: 384 458 556 714 $\rho/(\Omega \text{ m})$: 0.028 0.0061 0.0013 0.00027

Assuming that for an intrinsic semiconductor the density of carriers is approximately proportional to $\exp(-E_g/2kT)$ where E_g is the band gap energy and T is absolute temperature, determine the value of E_g in eV. It may be assumed, as a rough approximation, that the hole and electron mobilities vary as $T^{-3/2}$ and that E_g does not vary with temperature.

Numerical Answers

- 1. 1.16kA m⁻²
- $2.1.02 \times 10^{16} \text{m}^{-3}$
- 3. 2.5µs
- $4.3.9 \times 10^3 \text{m s}^{-1}$ in Ge; $5.93 \times 10^6 \text{m s}^{-1}$ in vacuum. Note the effect of the crystal lattice in Ge.
- 5. $3.29 \times 10^{21} \text{m}^{-3}$; 1 in 8.4×10^3
- $6.6.5 \times 10^4 \text{S m}^{-1}$
- 7. 2.28S m^{-1} , 2.15S m^{-1} , 1.25 × $10^{19}m^{-3}$, 5 × $10^{19}m^{-3}$
- 8. 10⁻⁶, 10^{-9.3}, 10⁻⁴⁷
- 9. 0.135Ω m and 0.00135Ω m
- 10.0.8eV