Shortest Vector Problem (SVP) Annangi Shashank Babu (EE21B021)

August 25, 2024

Lattice Based Cryptography

- Lattice-based cryptography: one of the main proposals for post-quantum cryptography.
- Many of the finalists of the NIST competition are from lattice-based cryptography.

Lattice

The d-dimensional lattice $\mathcal{L} \in R^m$ generated by the basis $B = (\vec{b_1}, \vec{b_2}, ..., \vec{b_d})$ is the set of all integer linear combinations of its basis vectors: $\mathcal{L}(B) = \{\sum_{i=1}^d \lambda_i \vec{b_i}, \lambda_i \in Z\}$

SVP

Given a lattice \mathcal{L} , find the shortest non-zero vector $\vec{v} \in \mathcal{L}$.

example:

$$-322(64,218,133) + 323(71,205,111) - 83(28,-48,-84) = (1,3,-1).$$

QUBO Formulation

$$\lambda^2 = \min_{x \in Z^n \setminus 0^n} |Bx|^2$$

$$\lambda^2 = \min_{x \in Z^n \setminus 0^n} \sum_{i=1}^n x_i^2 B_{ii} + 2 \sum_{0 < i < j < n} x_i x_j B_{ij}$$

• In order to convert the above equation into a binary optimisation problem, we need bounds $|x_i| \le a_i$.

$$x_i = -a + \sum_{y=0}^{\lfloor \log_2 2a \rfloor - 1} (2^y \tilde{x}_{iy}) + (2a + 1 - 2^{\lfloor \log_2 2a \rfloor}) \cdot \tilde{x}_{i, \lfloor \log_2 2a \rfloor}$$

$$\min_{\tilde{\mathbf{x}}_{1,0},...,\tilde{\mathbf{x}}_{1,\lfloor\log_2 a_1\rfloor},...,\tilde{\mathbf{x}}_{n,0},...,\tilde{\mathbf{x}}_{n,\lfloor\log_2 a_n\rfloor}} (p + \sum_{\tilde{\mathbf{x}}_{i,j}} p_{i,j}\tilde{\mathbf{x}}_{i,j} + \sum_{\tilde{\mathbf{x}}_{i,j},\tilde{\mathbf{x}}_{k,l}} q_{i,j,k,l}\tilde{\mathbf{x}}_{i,j}\tilde{\mathbf{x}}_{k,l})$$

QUBO Formulation

• For imposing the condition $x \neq 0^n$, viable solution is to modify the Hamiltonian and impose a penalty for reaching the zero vector (ground state of the "naive" Hamiltonian).

$$x_i = -a + \zeta_i a + \omega_i (a+1) + \sum_{y=0}^{\lfloor \log_2(a-1) \rfloor - 1} (2^y \tilde{x}_{iy}) + (a - 2^{\lfloor \log_2(a-1) \rfloor}) \cdot \tilde{x}_{i, \lfloor \log_2(a-1) \rfloor}$$

If $x_i = 0$, then $\zeta_i = 1$.

Hamiltonian:

$$(p+\sum_{\tilde{\mathbf{x}}_{i,j}}p_{i,j}\tilde{\mathbf{x}}_{i,j}+\sum_{\tilde{\mathbf{x}}_{i,j},\tilde{\mathbf{x}}_{k,l}}q_{i,j,k,l}\tilde{\mathbf{x}}_{i,j}\tilde{\mathbf{x}}_{k,l})+L\cdot\left(1+\sum_{i=1}^{n}z_{i}\left(-(1-\zeta_{i})+\sum_{k=i+1}^{n}(1-\zeta_{i})+\sum_{k=i+1}^{n$$

GAMA Formulation

constraints:

$$\sum_{i=1}^{n} x_{i}^{2} B_{ii} + 2 \sum_{0 < i < j < n} x_{ij} B_{ij} + Z = |B[1]|^{2}$$

$$(p + \sum_{\tilde{x}_{i,j}} p_{i,j} \tilde{x}_{i,j} + \sum_{\tilde{x}_{i,j}, \tilde{x}_{k,l}} q_{i,j,k,l} \tilde{x}_{i,j,k,l}) + Z = |B[1]|^{2}$$

$$\tilde{x}_{i,j,k,l} \ge \tilde{x}_{i,j} + x_{k,l} - 1$$

$$\tilde{x}_{i,j,k,l} \le \tilde{x}_{i,j}$$

$$\tilde{x}_{i,j,k,l} \le \tilde{x}_{k,l}$$

$$Z = \sum_{y=0}^{\lfloor \log_2 B[1]^2 - 1 \rfloor - 1} (2^y \tilde{z}_{iy}) + (B[1]^2 - 2^{\lfloor \log_2 B[1]^2 - 1 \rfloor}) \cdot \tilde{z}_{i, \lfloor \log_2 B[1]^2 - 1 \rfloor}$$

- the above inequalities make sure that $x_{ij,kl} = x_{i,j} * x_{k,l}$
- Here we should maximise Z which will minimize the norm.

GAMA Formulation

 since the number of required quibits are higher for GAMA so the search space is higher, time taken to reach ground state of Hamiltonian is longer.

Figure: Comparing approx number of quibits required for specified QUBO and GAMA

Thank You!