## Part 1: Why visualise data?



### Why?

Another way of summarising data

Many at times , simple numeric summaries are not enough, for example while finding patterns in the data

> Images captures imagination of audience better than dry numbers in many cases

# Popular Visualisations

#### Data Distribution: Histogram, Bar Plots



#### Data Distribution with outliers: Box Plots, jitter, violin etc



#### Variable Relationship: Scatter Plot, Smoothing Curve



#### Pie Charts: Bar plots in polar world

#### Browser market share, April, 2011



Highcharts.com

## Part 2: Ways of ggplot2

#### Philosophy: Grammar of Graphics

➤ Idea is to streamline visualisation and do away with approaching each visualisation separately with some popular name.

- Visualisation process is made up of two steps
  - Aesthetics mapping for a geometry
  - Overlaying geometric layer on top of mappings to generate visualisation

#### **Aesthetics Mapping**

- ➤ Each geometry can have [ need to have ] certain properties which we can use to display our data.
  - points : size , colour , shape , position ( x and y axis)
  - bars : fill , colour , position (x axis ) [y axis is reserved for frequency ]
- Choice of these geometries depend on the context of the what we are trying to do
  - > Visualising categorical variable : bar plots
  - Relation ship between two numeric vars : scatter plot, smoothing curves

#### Aesthetic Mappings: Example Point



#### Aesthetic Mappings: Example Bar



#### Non data mappings

- Each geometry has properties which may or may not be mapped to data
  - rather than mapped to data [treated as aesthetics]

- Visualisation in general can have properties which need not be necessarily mapped to data
  - axis labels , legends , titles , coordinate types

#### Building a visualisation & aesthetic inheritance

- ➤ Building a visualisation starts with constructing a data layer, with basic aesthetics mapping [ aesthetic can be left blank too in data layer]
- > Whatever geometry layers you add to this data layer, inherits aesthetics mapping from it
- ➤ In case of adding multiple geometries , all of them will inherit same mappings from data layer
- ➤ Each geometry layer can have its local aesthetic mapping which are not shared with other geometric layers

### Benefit of this methodology

That you do have a methodology!!

You can have multiple geometries (visualisations) in single visualisation

➤ You can make visualisation, which need not have a standard name yet useful in context of your problem.

➤ No need to rely on specific visualisation type , but focus what makes them : geometries !!

#### Few useful aspects

- coord \* : Default coordinate system is euclidian [ranges] of vars adjusted to fit in somewhat aesthetically appealing dimensions]
  - coord polar: transforms your plot to a polar/ circular plot . x-y axis get mapped to radius and angle
- theme : function can be used to modify overall properties of visualisation : grid , labels etc
- > scale color brewer: can be used to override default colour palate
- There is many more additional functions to deal with other aspects of visualisations

#### **Example: Coordinate Transformation**



#### **Example: Coordinate Transformation**



### Part 3: Implementation in R

### Implementation in R

