Number of vertices n = 9. Adjacencies of Graph

- 1. vertex 1 adjacent to 3 4 5 6 7 8 9
- 2. vertex 2 adjacent to 3 4 5 6 7 8 9
- 3. vertex 3 adjacent to 1 2
- 4. vertex 4 adjacent to 1 2
- 5. vertex 5 adjacent to 1 2
- 6. vertex 6 adjacent to 1 2
- 7. vertex 7 adjacent to 1 2
- 8. vertex 8 adjacent to 1 2
- 9. vertex 9 adjacent to 1 2

Size of automorphism group of the graph=10080

Full group: |Aut(polytope)| = 832359628800

Restricted group: $|Aut(G) \times switch| = 2580480$

Number of orbits for the full group: 1

List of orbits of facets for the full group: Total number of orbits = 1 Total number of facets = 196

1. Inequality 1 with incidence 128 and stabilizer of size 4246732800. Orbit size is 196 nature: 4-cycle inequality, $C=[\ 2,\ 8,\ 1,\ 6\]$ $F=[\ 2,\ 8\]$

(1,3):0	(1,4):0	(1,5):0	(1,6):1	(1,7):0	(1,8):1
(1,9):0	(2,3):0	(2,4):0	(2,5):0	(2,6):1	(2,7):0
(2,8):-1	(2,9):0				

Number of orbits for the restricted group: 2

List of orbits of facets for the restricted group: Total number of orbits = 2 Total number of facets = 196

1. Inequality 1 with incidence 128 and stabilizer of size 15360. Orbit size is 168 nature: 4-cycle inequality, C=[2, 8, 1, 6] F=[2, 8]

(1,3):0	(1,4):0	(1,5):0	(1,6):1	(1,7):0	(1,8):1
(1,9):0	(2,3):0	(2,4):0	(2,5):0	(2,6):1	(2,7):0
(2,8):-1	(2,9):0				

2. Inequality 2 with incidence 128 and stabilizer of size 92160. Orbit size

is 28 nature: ϵ				of size 921	60. Orbit s
$ \begin{array}{c} (1,3):0\\ (1,9):0\\ (2,8):0 \end{array} $	(1,4):0 (2,3):0 (2,9):0	(1,5):0 $(2,4):0$	(1,6):0 (2,5):0	(1,7):0 $(2,6):0$	(1,8):1 (2,7):0