

11 Publication number:

0 382 762 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (3) Date of publication of patent specification: 15.12.93 (3) Int. Cl.5: C12N 15/00, C12N 9/08
- 21 Application number: 88908734.2
- 2 Date of filing: 07.10.88
- International application number: PCT/GB88/00833
- International publication number:
 WO 89/03424 (20.04.89 89/09)
- (S) SYNTHETIC GENE.
- Priority: 08.10.87 GB 8723662
- 43 Date of publication of application: 22.08.90 Bulletin 90/34
- Publication of the grant of the patent: 15.12.93 Bulletin 93/50
- Designated Contracting States:
 AT BE CH DE FR GB IT LI LU NL SE
- References cited:
 EP-A- 0 068 375
 EP-A- 0 171 024

EUROPEAN JOURNAL OF BIOCHEMISTRY,vol. 96, 1979, Springer-Verlag, (Berlin, DE), K.G. Welinder: "Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C", pp. 483-502

 Proprietor: BRITISH BIO-TECHNOLOGY LIMIT-ED
 Wattington Road

Watlington Road
Cowley Oxford OX4 5LY(GB)

Inventor: EDWARDS, Richard, Mark 7 Ludlow Drive

Thame

Oxon(GB)

Inventor: BURKE, Julian, Francis

6 Friar's Walk

Lewes

East Sussex BN7 2LE(GB)

Representative: Sheard, Andrew Gregory et al Kilburn & Strode 30, John Street London WC1N 2DD (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

10

25

This invention relates to synthetic genes coding for horseradish peroxidase.

Horseradish peroxidase C (E.C.1.11.1.7) (HRP) is the major peroxidase isozyme isolated from the horseradish (Armoracia rusticana). It is a monomeric glycoprotein of 308 amino acids the polypeptide chain having a MW of 33,980 D. There are three neutral carbohydrate side chains and 4 disulphide bridges. The amino acid sequence of the mature protein has been determined. The presence of a pyrrolidonecarboxylyl amino terminus indicates that the protein is probably produced as a precursor form that is processed on secretion. The active form of the enzyme contains a hemin prosthetic group.

The enzyme is particularly stable and is amenable to crosslinking and derivitisation without excessive loss of activity. This together with its wide range of chromogenic substrates, some of which give rise to insoluble, chemiluminescent or fluorescent products, and the low background activities observed in most applications, have made horseradish peroxidase an invaluable tool for diagnostic and research applications in the fields of immunology, histochemistry, cytology and molecular biology. A further advantage it presents over other enzymatic markers is that some some substrates for the enzyme give rise to electron dense products that allow correlation of peroxidase location with cellular ultrastructure using electron microscopy. In addition, horseradish peroxidase is electron dense itself by virtue of the Fe it contains and as a result can act as an E.M. marker in its own right. Particular applications have been found in immunochemistry, where peroxidase cross linked to immunoglobulin is widely used in both ELISA based assay systems and immunocytochemistry. Methods have been described that use either direct crosslinking of peroxidase to the immunoglobulin or indirect crosslinking of biotin labelled immunoglobulin to a streptavidin/horseradish peroxidase complex. Such streptavidin complexes have also found widespread application in nucleic acid hybridisation methods where biotinylated probe sequences can be localised by sequential incubation with the streptavidin/peroxidase complex and a suitable chromogenic peroxidase substrate.

The amino acid sequence of horseradish peroxidase is taught by Welinder, K.G. (Eur. J. Biochem. 96, 483-502 (1979)). The cloning of the cDNA or natural gene for horseradish peroxidase has not been described.

In order to facilitate the dissection of the structure/function relationships of HRP, its incorporation into expression vectors and the production of novel chimeric proteins containing HRP functionality an improved novel synthetic gene for the peroxidase C produced by Armoracia rusticana is sought.

It is by no means easy to predict the design of an improved HRP gene, since the factors that determine the expressibility of a given DNA sequence are still poorly understood. Furthermore, the utility of the gene in various applications will be influenced by such considerations as codon usage and restriction sites. The present invention relates to a synthetic HRP gene which has advantages in the ease with which it can be modified due to the presence of useful restriction sites.

When synthesising and assembling genes, problems have been encountered when there are inverted or direct repeats greater than eight bases long in the genetic sequence. In addition, areas of unbalanced base composition such as G/C or A/T rich regions or polypurine/polypyrimidine tracts have been found to lead to inefficient expression. The present invention seeks to overcome or at least alleviate these difficulties.

According to a first aspect of the invention, there is provided DNA coding for horseradish peroxidase and including the following sequence:

CAG TTA ACC CCT ACA TTC TAC GAC AAT AGC TGT CCC
AAC GTG TCC AAC ATC GTT CGC GAC ACA ATC GTC AAC
GAG CTC AGA TCC GAT CCC AGG ATC GCT GCT TCA ATA
TTA CGT CTG CAC TTC CAT GAC TGC TTC GTG AAT GGT
TGC GAC GCT AGC ATA TTA CTG GAC AAC ACC ACC AGT
TTC CGC ACT GAA AAG GAT GCA TTC GGG AAC GCT AAC
AGC GCC AGG GGC TTT CCA GTG ATC GGT ACC GCT AAC
GCT GCC GTT GAG TCA GCA TGC CCA CGA ACA GTC AGT
TGT GCA GAC CTG CTG ACT ATA GCT GCG CAA CAG AGC

GTG ACT CTT GCA GGC GGA CCG TCC TGG AGA GTG CCG CTC GGT CGA CGT GAC TCC CTA CAG GCA TTC CTA GAT 5 CTG GCC AAC GCC AAC TTG CCT GCT CCA TTC TTC ACC CTG CCC CAG CTG AAG GAT AGC TTT AGA AAC GTG GGT CTG AAT CGC TCG AGT GAC CTT GTG GCT CTG TCC GGA GGA CAC ACA TTT GGA AAG AAC CAG TGT AGG TTC ATC 10 ATG GAT AGG CTC TAC AAT TTC AGC AAC ACT GGG TTA CCT GAC CCC ACG CTG AAC ACT ACG TAT CTC CAG ACA CTG AGA GGC TTG TGC CCA CTG AAT GGC AAC CTC AGT 15 GCA CTA GTG GAC TTT GAT CTG CGG ACC CCA ACC ATC TTC GAT AAC AAG TAC TAT GTG AAT CTA GAG GAG CAG AAA GGC CTG ATA CAG AGT GAT CAA GAA CTG TTT AGC 20 AGT CCA AAC GCC ACT GAC ACC ATC CCA CTG GTG AGA AGT TTT GCT AAC TCT ACT CAA ACC TTC TTT AAC GCC TTC GTG GAA GCC ATG GAC CGT ATG GGT AAC ATT ACC CCT CTG ACG GGT ACC CAA GGC CAG ATT CGT CTG AAC 25 TGC AGA GTG GTC AAC AGC AAC TCT

The above sequence may be immediately preceded by an initiation codon (ATG) and immediately followed by a termination codon (TAA), but this will not necessarily be the case if the DNA incorporates linker(s) and/or extension(s), such as a sequence coding for a signal peptide, for example for efficient expression in eukaryotic cells such as mammalian cells. One extension which gives good expression in mammalian cells is a 5'-extension coding for the amino acids KCSWVIFFLMAVVTGVNS, which may be provided between an initiation codon and the codon coding for the first Q residue. A preferred such extension is shown in Figure 6. A sequence coding for a 3'-signal sequence may code for LLHDMVEVVDFVSSM; a preferred DNA sequence coding for this series of amino acid residues is also shown in Figure 6. Other useful 5' extensions are AAGCTTAACCATG and AAGCTTCATATG and a useful 3' extension is TAATAAGGATCCGAATTC.

A synthetic HRP gene as described above incorporates useful restriction sites at frequent intervals to facilitate the cassette mutagenesis of selected regions. Also included in preferred embodiments are flanking restriction sites to simplify the incorporation of the gene into any desired expression system.

Codons are those that are favoured by E. coli but it is expected that the DNA would be suitable for expression in other organisms including yeast and mammalian cells.

According to a second aspect of the invention, there is provided a genetic construct comprising DNA according to the first aspect. A genetic construct in accordance with the second aspect may be a vector, such as a plasmid, cosmid or phage.

According to a third aspect of the invention, there is provided a process for the preparation of DNA in accordance with the first aspect or a genetic construct in accordance with the second aspect, the process comprising coupling successive nucleotides and/or ligating appropriate oligomers.

The invention also relates to other nucleic acid (including RNA) either corresponding to or complementary to DNA in accordance with the first aspect.

The invention encompasses a process for the production of monodisperse horseradish peroxidase C comprising the expression of a genetic construct as described above.

Further, the invention extends to constructs as described above comprising a sequence in accordance with the first aspect fused to any other sequence of DNA so as to result in a sequence capable of encoding a hybrid protein possessing peroxidase activity. An example of such a construct is a genetic fusion between a gene encoding horseradish peroxidase and a gene encoding streptavidin or avidin such that the encoded fusion protein possesses both biotin binding and peroxidase activity. Another example is a genetic fusion between a gene encoding horseradish peroxidase and a gene encoding an immunoglobulin-derived antigen

binding function such that the fusion protein possesses both antigen binding and horseradish peroxidase activity. The antigen binding function may be an immunoglobulin heavy chain or light chain or fragments thereof or an engineered monomeric antigenic recognition site.

Particular constructs of interest include: vectors comprising the gene for horseradish peroxidase C that enable the production of fusions between horseradish peroxidase and any other protein of interest; and expression vectors that provide for the co-expression of the gene for horseradish peroxidase and another gene of interest either as a single fusion product, as a single polycistronic message or as two separate but linked transcriptional units.

According to a further aspect of the invention, there is provided a gene for horseradish peroxidase containing a mutation (either missense, nonsense, deletion, insertion, duplication or other re-arrangement) that destroys or impairs the activity of the encoded horseradish peroxidase protein. The invention extends to genetic constructs including all or a fragment of such a mutant horseradish peroxidase gene.

Defective or non-defective horseradish peroxidase genetic constructas can be employed (for example as markers) in mammalian cells and/or in transgenic animals.

Specific applications of synthetic genes for horseradish peroxidase, which themselves form further aspects of the invention, are disclosed in greater detail below:

1) The gene can be incorporated into a suitable expression vector to allow for the efficient production of the enzyme in a compatible organism. This will have the advantage of being a ready source of a monodisperse enzyme preparation free of the contaminating isozymes present in the material isolated from horseradish root. Varying the organism or cell type chosen for production will also allow for the production of HRP with different patterns of glycosylation, including no glycosylation. Such material will have better defined properties that will make it more suitable for more demanding histochemical applications and sensitive enzyme assays, especially immunoassays.

20

25

30

35

40

45

55

- 2) The gene can be incorporated into an HRP-streptavidin or HRP-avidin gene fusion. This will allow for the production of streptavidin-HRP or avidin-HRP complexes without the need for cross-linking. Again this will allow for a better defined, more stable product and will probably result in less loss of both biotin binding and peroxidase activity.
- 3) Similarly, fusions between immunoglobulins and HRP or protein A and HRP can be produced that would be valuable histochemical reagents. Again the need for the usual cross-linking procedures would be avoided
- 4) The HRP gene would have valuable applications in the construction of vectors designed to allow the production of fusions between HRP and any other protein for which a gene or cDNA had been cloned or for which the amino acid sequence is known. This would be useful both for monitoring the expression of a gene the product of which is difficult to assay and to tag the protein of interest to allow its metabolism and pharmodynamics to be followed in vivo by the use of the appropriate histochemical techniques or enzyme assays. Additionally, HRP fusions will allow for a simple immunopurification of the fusion product through the use of an appropriate anti-HRP antibody.
- 5) The expression of HRP will be a useful marker in expression systems, eg mammalian cell expression systems. The HRP gene could be expressed either as a fusion or on a polycistronic message with the gene of interest, or as a separate but closely linked transcriptional unit. The production of the easily assayed HRP could be readily screened for and used as an indication as to which clones of cells were likely to be expressing large quantities of the deisred product. The use of fluorescent or chemiluminescent HRP chromogenic substrates would allow for the possibility of directly selecting high producing eukaryotic cells by fluorescence activated cell-sorting (FACS).
- 6) HRP genes carrying mutations (missense, nonsense, deletion, insertion, duplication or other rearrangement) that destroy or impair the enzymatic activity of the resultant product would allow the construction of vectors that could be used to follow the frequency of reversion or suppression of the particular mutation introduced into the gene.

The introduction of such defective HRP genes into the germ line of the organism of interest would also enable a researcher to fate-map particular cell-types by histologically examining the pattern of HRP activity in the tissue of interest. Care would have to be excercised in constructing a mutant HRP gene with the correct in vivo reversion rate so that areas of HRP activity and hence the presence of reverted HRP gene could be taken as evidence for the clonal origin of the HRP + cells. The intact synthetic non-mutant gene could also be used for such fate-mapping experiments by infection of an organism with the HRP gene in a siutable vector such as a retroviral vector or transposon.

7) The advantage of a synthetic gene for HRP allows for the production of HRP genes modified to encode a protein carrying small additional sequences, such as N-or C- terminal extensions. These will be of great application in simplifying the purification of the HRP and/or increasing the ease and enhancing

the specificity with which it can be cross-linked to other proteins of interest or otherwise derivatised. For example, a C-terminal extension of six to eight Arg residues could be used to simplify purification by analogy with the technique of Sassenfeld et al. Bio/technology 2 76 (1984). Alternatively, a tail of Lys residues would provide an accessible and sensitive site for reaction with bifunctional cross-linking reagents such as glutaraldehyde.

Preferred embodiments and examples of the invention will now be described. In the following description, reference is made to a number of drawings, in which:

- Figure 1 shows the amino acid sequence of horseradish peroxidase C;
- Figure 2 shows the sequence of the horseradish peroxidase synthetic gene; a summary of useful restriction sites; and a sequence of front and back halves of the gene that were initially cloned:
- Figure 3 shows a sequence of synthetic horseradish peroxidase gene divided into oligonucleotides;
- Figure 4 shows a summary of assembly procedure used;
- shows the structure of the HRP E. coli expression plasmid pSD18; Figure 5
- Figure 6 shows a synthetic HRP gene modified for efficient expression in mammalian cells; and
- shows the structure of the HRP mammalian expression plasmid pCP21. Figure 7

Example 1

10

15

20

The gene was designed to be synthesized and cloned, in this example, in two halves with a final subcloning step to yield the full length gene. The sequence of the two halves of the gene together with that of the final product are depicted in Figure 2. The final synthetic gene encodes the entire mature horseradish peroxidase protein together with the required initiator methionine residue but lacks the leader sequence that is assumed to be present in the natural gene. It is envisaged that the leader sequence appropriate to the 25 expression system of choice would be added to the synthetic gene as required or ommitted to allow for intracellular expression of the gene.

The desired gene sequence was divided into a front half and a back half of 501 and 474 bp respectively. Both halves were designed with a common Xhol site to allow for the complete gene to be assembled with a simple cloning step. The front and back halves of the gene were divided into 24 and 22 oligodeoxyribonucleotides (oligomers) respectively as depicted in Figure 3. The division was such as to provide 7 base cohesive ends after annealing complementary pairs of oligomers. The end points of the oligomers were chosen to minimize the potential for inappropriate ligation of oligomers at the assembly stage.

The oligomers were synthesized by automated solid phase phosphoramidite chemistry. Following deblocking and removal from the controlled pore glass support the oligomers were purified on denaturing polyacrylamide gels, further purified by ethanol precipitation and finally dissolved in water prior to estimation of their concentration.

All the oligomers with the exception of the 5' terminal oligomers BB279 and BB302 for the front half and BB303 and BB324 for the back half were then kinased to provide them with a 5' phosphate as required for the ligation step. Complementary oligomers were then annealed and the oligomers ligated together by T4 DNA ligase as depicted in Figure 4. The ligation products were separated on a 2% low gelling temperature (LGT) gel and the bands corresponding to the front and back halves of the horseradish peroxidase gene were cut out and extracted from the gel. The purified fragments were then ligated separately to EcoRI/HindIII cut DNA of the plasmid vector pUC18. The ligated products were transformed into HW87 and plated on L-agar plates containing 100 mcg ml⁻¹ ampicillin. Colonies containing potential clones were then grown up in L-broth containing ampicillin at 100 mcg ml⁻¹ and plazmid DNA isolated. Positive clones were identified by direct dideoxy sequence analysis of the plasmid DNA using the 17 base universal primer, a reverse sequencing primer complementary to the opposite strand on the other side of the polylinker and some of the oligomers employed in the assembly of the gene that served as internal primers. One front half and one back half clone were subsequently re-sequenced on both strands to confirm that no mutations were present. The complete gene was then assembled by isolating the 466 bp Xhol-EcoRI fragment from the back half calone that contained the 3' end of the gene and ligating it to a front half clone that had also been digested with EcoRI and XhoI. The identity of the final construct was confirmed by restriction analysis and subsequent complete resequencing.

All the techniques of genetic manipulation used in the manufacture of this gene are well known to those skilled in the art of genetic engineering. A description of most of the techniques can be found in one of the following laboratory manuals: Molecular Cloning by T. Maniatis, E.F. Fritsch and J. Sambrook published by Cold Spring Harbor Laboratory, Box 100, New York, USA, or Basic Methods in Molecular Biology by L.G.

Davis, M.D. Dibner and J.F. Battey published by Elsevier Science publishing Co. Inc. New York, USA. Additional and modified methodologies are detailed below.

1) Oligonucleotide synthesis

The oligonucleotides were synthesized by automated phosphoramidite chemistry using cyanoethyl phosphoramidtes. The methodology is now widely used and has been described (Beaucage, S.L. and Caruthers, M.H. Tetrahedron Letters. **24**, 245 (1981)).

2) Purification of Oligonucleotides

The oligonucleotides were de-protected and removed from the CPG support by incubation in concentrated NH3. Typically, 50 mg of CPG carrying 1 micromole of oligonucleotide was de-protected by incubation for 5 hr at 70° in 600 mcl of concentrated NH3. The supernatant was transferred to a fresh tube and the oligomer precipitated with 3 volumes of ethanol. Following centrifugation the pellet was dried and resuspended in 1 ml of water. The concentration of crude oligomer was then determined by measuring the absorbance at 260 nm.

For gel purification 10 absorbance units of the crude oligonucleotide were dried down and resuspended in 15 mcl of marker dye (90% de-ionised formamide, 10mM tris, 10 mM borate, 1mM EDTA, 0.1% bromophenol blue). The samples were heated at 90° for 1 minute and then loaded onto a 1.2 mm thick denaturing polyacrylamide gel with 1.6 mm wide slots. The gel was prepared from a stock of 15% acrylamide, 0.6% bisacrylamide and 7M urea in 1 X TBE and was polymerised with 0.1% ammonium persulphate and 0.025% TEMED. The gel was pre-run for 1 hr. The samples were run at 1500 V for 4-5 hr. The bands were visualized by UV shadowing and those corresponding to the full length product cut out and transferred to micro-testubes. The oligomers were eluted from the gel slice by soaking in AGEB (0.5 M ammonium acetate, 0.01 M magnesium acetate and 0.1 % SDS) overnight. The AGEB buffer was then transferred to fresh tubes and the oligomer precipitated with three volumes of ethanol at -70° for 15 min. The precipitate was collected by centrifugation in an Eppendorf microfuge for 10 min, the pellet washed in 80 % ethanol, the purified oligomer dried, redissolved in 1 ml of water and finally filtered through a 0.45 micron micro-filter. The concentration of purified product was measured by determining its absorbance at 260 nm.

3) Kinasing of oligomers

250 pmole of oligomer was dried down and resuspended in 20 mcl kinase buffer (70 mM Tris pH 7.6, 10 mM MgCl2, 1 mM ATP, 0.2 mM spermidine, 0.5 mM dithiothreitol). 10 u of T4 polynucleotide kinase was added and the mixture incubated at 37° for 30 min. The kinase was then inactivated by haeating at 85° for 15 min.

40 4) Annealing

8 mcl of each oligomer was mixed, heated to 90° and then slow cooled to room temperature over a period of an hour.

45 5) Ligation

5 mcl of each annealed pair of oligomers were mixed and 10 X ligase buffer added to give a final ligase reaction mixture (50 mM Tris pH 7.5, 10 mM MgCl₂, 20 mM dithiothreitol, 1 mM ATP. T4 DNA ligase was added at a rate of 100 u per 50 mcl reaction and ligation carried out at 15° for 4 hr.

6) Agarose gel electrophoresis

Ligation products were separated using 2% low gelling temperature agarose gels in 1 X TBE buffer (0.094 M Tris pH8.3, 0.089 M boric acid, 0.25 mM EDTA) containing 0.5 mcg ml⁻¹ ethidium bromide.

7) Isolation of ligation products

The band corresponding to the expected horseradish peroxidase gene or gene fragment ligation product was identified by reference to size markers under long wave UV illumination. The band was cut out of the gel and the DNA extracted as follows.

The volume of the gel slice was estimated from its weight and then melted by incubation at 65° for 10 min. The volume of the slice was then made up to 400 mcl with TE (10 mM Tris pH 8.0, 1 mM EDTA) and Na acetate added to a final concentration of 0.3 M. 10 mcg of yeast tRNA was also added as a carrier. The DNA was then subjected to three rounds of extraction with equal volumes of TE equilibrated phenol followed by three extractions with ether that had been saturated with water. The DNA was precipitated with 2 volumes of ethanol, centrifuged for 10 min in a microfuge, the pellet washed in 70 % ethanol and finally dried down. The DNA was taken up in 20 mcl of TE and 2 mcl run on a 2 % agarose gel to estimate the recovery of DNA.

15 8) Cloning of fragments

For the initial cloning of the two halves of horseradish peroxidase 0.5 mcg of pUC18 DNA was prepared by cleavage with HindIII and EcoRI as advised by the suppliers. The digested DNA was run on an 0.8 % LGT gel and the vector band purified as described above. For the final assembly step the clone carrying the front half of the horseradish peroxidase gene was treated similarly using the enzymes XhoI and EcoRI.

20 ng of cut vector DNA was then ligated to various peroxidase gene DNA ranging from 2 to 20 ng for 4 hr using the ligation buffer described above. The ligation products were used to transform competent HW87 as has been described. Ampicillin resistant transformants were selected on L-agar plates containing 100 mcg ml⁻¹ ampicillin.

9) Isolation of plasmid DNA

Plasmid DNA was prepared from the colonies containing potential horseradish peroxidase clones essentially as described (Ish-Horowicz, D., Burke, J.F. Nucleic Acids Research 9 2989-2998 (1981).

10) Dideoxy sequencing

The protocol used was essentially as has been described (Biggin, M.D., Gibson, T.J., Hong, G.F. P.N.A.S. 80 3963-3965 (1983)). The method was modified to allow sequencing on plasmid DNA as described (Guo, L-H., Wu, R. Nucleic Acids Research 11 5521-5540 (1983).

11) Transformation

Transformation was accomplished using standard procedures. The strain used as a recipient in the cloning was HW87 which has the following genotype:

araD139(ara-leu)del7697 (lacIPOZY)del74 galU galK hsdR rpsL srl recA56 Any other standard cloning recipient such as HB101 would be adequate.

Example 2

The front end of the synthetic HRP gene prepared in Example 1 was modified by the replacement of the HindIII-Hpal fragment with a synthetic linker carrying an Ndel site on the initiator ATG as follows:

55

45

50

25

Example 3

Expression of the Synthetic horseradish peroxidase Gene in Escherichia coli

The synthetic HRP gene of Example 2 was cloned into the expression vector pGC517 on a Ndel-BamHI fragment to give the plasmid pSD18. The host vector pGC517 was prepared from the known plasmid pAT153 (Twigg & Sherratt Nature 283, 216-218 (1980)), which is now a standard E. coli high expression vector, by the incorporation by standard methods of the known tac promoter sequence and a termination sequence. pAT153 is itself a derivative of pBR322. In pGC517 the HRP gene is expressed from the powerful and regulatable tac promoter. To ensure that expression remained repressed in uninduced cultures the plasmid was maintained in E. coli strain W3110 lacl^q, which is widely available, in which the lac repressor protein is over-produced. Figure 5 depicts the structure of pSD18.

Strain W3110 lacl^q-pSD18 was grown in M9 minimal medium containing 0.2% glucose and 0.2% casamino acids. At an O.D. of 0.2 - 0.3 the culture was induced by the addition of IPTG to a final concentration of 5mM. The culture was grown for a further 3 hr with samples removed at 30 min intervals.

Microscopic examination of the induced culture revealed the presence of inclusion bodies, characteristic of the accumulation of large amounts of insoluble aggregated protein within the cell. In addition, cultures expressing HRP at high levels acquired a pink colouration, perhaps related to the overexpression of a haem protein. SDS/PAGE analysis subsequently revealed the presence of a large amount of a 33 kD protein, estimated at 10-20% of total cell protein in induced but not uninduced cultures. Western blot analysis confirmed that this protein was HRP.

Standard methods for inclusion body isolation could be applied to obtain a substantial purification of the denatured HRP as insoluble aggregates. This material was then dissolved in 6 M guanidine HCl prior to renaturation. For renaturation, the dissolved HRP was dialysed against 8 M urea, 50mM Tris HCl, 100mM NaCl for 24 hr. Ca²⁺ was then added (as CaCl₂) to 1 mM and the sample incubated for 2 hr at room temperature. This procedure resulted in the recovery of about 0.125% of the expected HRP activity by the standard pyrogallol colorimetric assay and based on the protein concentration and estimated purity of the preparation (see Table 1).

Table 1 - Renaturation of HRP Expressed in E. coli

35	S a m p l e	Conditions	Rate of reaction (maximum) AU/min	Amount of recombinant HRP C assayed mcg	Activity AU/min mcg rec. HRP	Activity (% of max. activity of commercial HRP)
4 5	1	before 1st dialysis	0.01 AU/0.8 min	25 mcg	5x10 ⁻³ AU/min mcg	0.007%
50	2	after 1st dialysis	0.015 AU/1.1 min	5.77 mcg	0.0024 AU/min mcg	0.034%
55	3	sample 2 incubated with 1 mM Ca ²⁺ for 2h	0.01 AU/1.5 min	0.76 mcg	0.029 AU/min mcg	0.125%

Control samples prepared from similar cultures carrying the expression plasmid without the HRP gene gave backgrounds about 1000 fold less than this. The assay mixture contained freshly prepared pyrogallol and peroxide in the following concentrations: 11mM K phosphte, pH 6.0, 8mM H₂O₂, 0.55% w/v pyrogallol in H₂O. The HRP was added and the increase in adsorption at 420nm was followed.

Thus the synthetic HRP gene is capable of high level expression in E. coli and is capable of directing the synthesis of active product.

Example 4

10

15

The synthetic HRP gene of Example 2 was modified as follows to allow for its efficient expression in mammalian cells:

- (a) The 3' end of the gene was extended from the Pst 1 site to include the C-terminal extension reported by Fujiyama et al. Eur. J. Biochem. 173, 681-687 (1988).
- (b) The 5' end of the gene was modified by the addition of a HindIII/Hpal linker which encoded a signal sequence based on an immunoglobulin signalpeptide.

The modified HRP gene is depicted in Figure 6, and will be referred to as HPRX.

Example 5

Expression of the Synthetic Horesradish Peroxidase Gene in Mammalian Cells

The HRPX gene of Example 4 was inserted into the mammlian cell expression vector pCPH11 to give pCP21, in which the HRP gene is expressed from the HCMV (Human Cytomegalovirus) early promoter, see Figure 7. The plasmid pCPH11 is based on pUC18, which is widely available and from which it can be prepared by standard methods, using the information in Figure 7.

The HRP expression plasmid pCP21 was transfected into COS cells using the standard technique of calcium phosphate precipitation (20mcg DNA transfected per 10⁵ cells). HRP activity was assayed in cell culture medium, 48-72h post transfection using tetra-methyl benzidine substrate (TMB), a standard HRP reagent. No HRP activity was detectable in control constructs which did not contain a signal sequence and/or the 3' extension. In contrast, HRP activity was clearly detectable in cells transfected with pCP21 (up to 10x greater than in controls). The results are shown in Table 2.

35

40

45

50

Table 2 - HRP Expression in COS Cells

5	Vol.Extract.	O.D.450
	(mcl)	

	, ,	Plasmid													
10		pCP21	pCP22	pCP11	pCP12										
	100	.004	022	.008	.003										
15	50	.033	.012	.010	.013										
75	25	.107*	.010	.003	.016										
	10	.084*	.011	.007	.017										
	5	.064*	.015	.012	.011										
20	1	.028	.008	.007	.007										
	<u>KEY</u>														
25	pCP21	HRP with N	and C ter	minal sign	als, correct										
		orientation.													
	pCP22	HRP with N	and C te	rminal sig	nals, wrong										
30		orientation.													
30	pCP11	HRP with r	o signal	sequence	s, correct										
		orientation.													
	pCP12	HRP with	no signa	l sequen	ces, wrong										
35		orientation.			_										

All results are the mean of duplicate samples.

* = significant level of activity.

45 HRP Assay

40

55

For assaying cell extracts, a substrate mix was prepared as follows:

TMB (3,3',5,5' tetramethyl benzidine (Sigma)) was dissolved to 10 mg/ml in DMSO and 100 mcl of this solution added to 100 ml of assay buffer (0.1M NaAc in citric acid, pH6.0) along with 100 mcl H_2O_2 .

A cell extract was prepared by collecting the cells by centrifugation followed by freeze thawing or sonication. The medium, cell lysates and standards were aliquoted in 96 well microtitre plates as follows:

Sample	100	50	25	10	5	1	mcl
Assay Buffer	0	50	75	90	95	99	mcl

Blank samples were set up using 100 mcl of assay buffer alone. 100 mcl of TMB/H₂O₂ mix was added to the samples of incubated at RT for 30 mins to 1 hour. The reaction was stopped by the addition of 50

mcl of 2.5M $H_2\,SO_4$ and the colour change read at 450 nm on a plate reader. Commercially available HRP was used as a standard diluted by a factor of 10^{-6} .

Claims

5

1. DNA coding for horseradish peroxidase and including the following sequence:

	CAG	TTA	ACC	CCT	ACA	TTC	TAC	GAC	AAT	AGC	TGT	CCC
10	AAC	GTG	TCC	AAC	ATC	GTT	CGC	GAC	ACA	ATC	GTC	AAC
	GAG	CTC	AGA	TCC	GAT	ccc	AGG	ATC	GCT	GCT	TCA	ATA
	TTA	CGT	CTG	CAC	TTC	CAT	GAC	TGC	TTC	GTG	AAT	GGT
15	TGC	GAC	GCT	AGC	ATA	TTA	CTG	GAC	AAC	ACC	ACC	AGT
	TTC	CGC	ACT	GAA	AAG	GAT	GCA	TTC	GGG	AAC	GCT	AAC
	AGC	GCC	AGG	GGC	TTT	CCA	GTG	ATC	GAT	CGC	ATG	AAG
20	GCT	GCC	GTT	GAG	TCA	GCA	TGC	CCA	CGA	ACA	GTC	AGT
	TGT	GCA	GAC	CTG	CTG	ACT	ATA	GCT	GCG	CAA	CAG	AGC
	GTG	ACT	CTT	GCA	GGC	GGA	CCG	TCC	TGG	AGA	GTG	CCG
	CTC	GGT	CGA	CGT	GAC	TCC	CTA	CAG	GCA	TTC	CTA	GAT
25	CTG	GCC	AAC	GCC	AAC	TTG	CCT	GCT	CCA	TTC	TTC	ACC
	CTG	CCC	CAG	CTG	AAG	GAT	AGC	TTT	AGA	AAC	GTG	GGT
	CTG	AAT	CGC	TCG	AGT	GAC	CTT	GTG	GCT	CTG	TCC	GGA
30	GGA	CAC	ACA	TTT	GGA	AAG	AAC	CAG	TGT	AGG	TTC	ATC
	ATG	GAT	AGG	CTC	TAC	AAT	TTC	AGC	AAC	ACT	GGG	TTA
	CCT	GAC	CCC	ACG	CTG	AAC	ACT	ACG	TAT	CTC	CAG	ACA
35	CTG	AGA	GGC	TTG	TGC	CCA	CTG	AAT	GGC	AAC	CTC	AGT
	GCA	CTA	GTG	GAC	TTT	GAT	CTG	CGG	ACC	CCA	ACC	ATC
	TTC	GAT	AAC	AAG	TAC	TAT	GTG	AAT	CTA	GAG	GAG	CAG
	AAA	GGC	CTG	ATA	CAG	AGT	GAT	CAA	GAA	CTG	TTT	AGC
40	AGT	CCA	AAC	GCC	ACT	GAC	ACC	ATC	CCA	CTG	GTG	AGA
	AGT	TTT	GCT	AAC	TCT	ACT	CAA	ACC	TTC	TTT	AAC	GCC
	TTC	GTG	GAA	GCC	ATG	GAC	CGT	ATG	GGT	AAC	ATT	ACC
4 5	CCT	CTG	ACG	GGT	ACC	CAA	GGC	CAG	ATT	CGT	CTG	AAC
	TGC	AGA	GTG	GTC	AAC	AGC	AAC	TCT				

50 2. DNA as claimed in claim 1, further including, at the 5'end, flanking DNA having one of the following sequences:

AAGCTTAACCATG; or AAGCTTCATATG;

or when the DNA is for expression in mammalian animals, the sequence:

AAGCTTCCACCATGAAGTGCTCCTGGGTGATCTTCTTCCTGATGGCCGTGGTGA-CCGGCGTGAACTCC;

5

and, at the 3'end flanking DNA having the sequence:
TAATAAGGATCCGAATTC;
or, where the DNA is to be expressed in mammalian cells, the sequence:

10

CTACTCCATGATATGGTGGAGGTCGTTGACTTTGTTAGCTCTATGTAATAAGGA-TCCGAATTC.

15

- 3. A genetic construct comprising DNA as claimed in claim 1 or claim 2.
- 4. A construct as claimed in claim 3, which is a vector.
- 5. A process for the preparation of DNA as claimed in claim 1 or claim 2, or a genetic construct in accordance with claim 3 or claim 4, the process comprising coupling successive nucleotides and/or ligating appropriate oligomers.
- 6. A construct as claimed in claim 3 or 4 comprising the sequence defined in claim 1 fused to any other sequence of DNA so as to result in a sequence capable of encoding a hybrid protein possessing peroxidase activity.
 - 7. A construct as claimed in claim 6, wherein the other sequence of DNA is a gene encoding streptavidin or avidin such that the encoded fusion protein possesses both biotin binding and peroxidase activity.

3

- 8. A construct as claimed in claim 7, wherein the other sequence is a gene encoding an immunoglobulinderived antigen binding function, such that the encoded fusion protein possesses both antigen binding and horseradish peroxidase activity.
- 95 9. A construct as claimed in claim 8, wherein the antigen binding function is an immunoglobulin heavy chain or light chain or fragments thereof or an engineered monomeric antigenic recognition site.
 - 10. A construct as claimed in claim 4, which is an expression vector that provides for the co-expression of DNA as claimed in claim 1 or claim 2 and another gene of interest, either as a single fusion product, as a single polycistronic message or as two separate but linked transcriptional units.
 - 11. A process for the production of a monodisperse horseradish peroxidase C comprising expression of a genetic construct as claimed in claim 3 or claim 4.

45

40

50

12. A set of oligonucleotides for the preparation of DNA as claimed in claim 1 or claim 2 comprising:

	BB303	
5	ACCITACICA-GIGACUTGIGGCICIGICGGACACATTT GCAAGAACCA	
10	EB305 EB307 GIGTAGGITCATCATGGATAGGCTCTACAA TTTCAGCAACACTGGGTTACCTGACCCCAC	
15	EB309 GCTGAACACTAGTA TCTCCAGACACTGAGAGGCTTGTGCCCACTGAATGCCAACCTC GACTTGTGATGCATAGAGGTC TGTGACTCTCGAAACAGGGTGACTTAGGGTGAGTCAGGTG 610 620 630 640 650 660 EB310	
20	BB311 FIGCACTAGIGGACTTIGATCIGGGGACCCCAACCATCTIGG ATAACAAGIACTATGIGAA	
25	670 680 690 700 710 720 BB312	
	BB313 BB315	
30	EB313 TCTAGAGGAGCAGAAAGGCCTGA TACAGAGTGATCAAGAACTGTTTAGCAGTCCAAAGGC	
	TCTAGAGGAGCAGAAAGGCCTGA TACAGAGTGATCAAGAACTGTTTAGCAGTCCAAAGGC AGATCTCCTCGTCTTTCCCGACTATGTCTC ACTAGTTCTTGACAAATCGTCAGGTTTGCG 730 740 750 760 770 780 BB314 BB316 CACTGA CACCATCCCACTGGTGAGAAGTTTTGCTAACTCTACTCAAA CCTTCTTTAACGC	
30	TCTAGAGGAGCAGAAAGGCTGA TACAGAGTGATCAAGAACTGTTTAGCAGTCCAAAGCC AGATCTCCTGTCTTTCCGGACTATGTCTC ACTAGTTCTTGACAAATGGTCAGGTTTGCG 730 740 750 760 770 780 BB314 BB316 CACTGA CACCATCCCACTGGTGAGAAGTTTTGCTAACTCTCAAAA CCTTCTTTAACGC	
30 35	TCTAGAGGAGCAGAAAGGCCTEA TACAGAGTGATCAAGAACTGTTTAGCAGTCCAAAGCC AGATCTCCTGTCTTTCCGGACTATGTCTC ACTAGTTCTTGACAAATGGTCAGGTTTGCG 730 740 750 760 770 780 BB314 BB316 CACTGA CACCATCCCACTGGTGAGAAGTTTTGCTAACTCTACTCAAA CCTTCTTTAACGC CACTGA CACCATCCCACTGGTGAGAAGTTTTGCTAACTCTACTCAAA CCTTCTTTAACGC GTGACTGTGGTAG GGTGACCACTCTTCAAAACGATTGAGATGAGTTTGGAAGAA ATTGCG 790 800 810 820 830 840 BB318 BB319 BB321 CTTCGTGGAAGCCATGGACCGTAACCAT TACCCCTCTGACGGGTACCCAAGGCCA SAAGCACCTTCGGTACCATGGTAACAT TACCCCTCTGACGGTACCCAAGGCCA SAAGCACCTTCGGTACCATGGCCATGGTAATGGGGGA GACTCCCCATGGGTTCCGTT	

Patentansprüche

1. DNA, die Meerrettich-Peroxidase codiert und die folgende Sequenz umfaßt:

5 CAG TTA ACC CCT ACA TTC TAC GAC AAT AGC TGT CCC AAC GTG TCC AAC ATC GTT CGC GAC ACA ATC GTC AAC GAG CTC AGA TCC GAT CCC AGG ATC GCT GCT TCA ATA 10 TTA CGT CTG CAC TTC CAT GAC TGC TTC GTG AAT GGT TGC GAC GCT AGC ATA TTA CTG GAC AAC ACC ACC AGT TTC CGC ACT GAA AAG GAT GCA TTC GGG AAC GCT AAC AGC GCC AGG GGC TTT CCA GTG ATC GAT CGC ATG AAG 15 GCT GCC GTT GAG TCA GCA TGC CCA CGA ACA GTC AGT TGT GCA GAC CTG CTG ACT ATA GCT GCG CAA CAG AGC GTG ACT CTT GCA GGC GGA CCG TCC TGG AGA GTG CCG 20 CTC GGT CGA CGT GAC TCC CTA CAG GCA TTC CTA GAT CTG GCC AAC GCC AAC TTG CCT GCT CCA TTC TTC ACC CTG CCC CAG CTG AAG GAT AGC TTT AGA AAC GTG GGT 25 CTG AAT CGC TCG AGT GAC CTT GTG GCT CTG TCC GGA GGA CAC ACA TTT GGA AAG AAC CAG TGT AGG TTC ATC ATG GAT AGG CTC TAC AAT TTC AGC AAC ACT GGG TTA CCT GAC CCC ACG CTG AAC ACT ACG TAT CTC CAG ACA 30 CTG AGA GGC TTG TGC CCA CTG AAT GGC AAC CTC AGT GCA CTA GTG GAC TTT GAT CTG CGG ACC CCA ACC ATC TTC GAT AAC AAG TAC TAT GTG AAT CTA GAG GAG CAG 35 AAA GGC CTG ATA CAG AGT GAT CAA GAA CTG TTT AGC AGT CCA AAC GCC ACT GAC ACC ATC CCA CTG GTG AGA AGT TTT GCT AAC TCT ACT CAA ACC TTC TTT AAC GCC 40 TTC GTG GAA GCC ATG GAC CGT ATG GGT AAC ATT ACC CCT CTG ACG GGT ACC CAA GGC CAG ATT CGT CTG AAC TGC AGA GTG GTC AAC AGC AAC TCT

DNA nach Anspruch 1, die zusätzlich am 5'-Ende flankierende DNA mit einer der folgenden Sequenzen umfaßt:

50 AAGCTTAACCATG; oder

45

55

AAGCTTCATATG;

oder, wenn die DNA für die Expression in Säugerzellen eingesetzt wird, die Sequenz:

AAGCTTCCACCATGAAGTGCTCCTGGGTGATCTTCTTCCTGATGGCCGTGGTGA-CCGGCGTGAACTCC;

und am 3'-Ende flankierende DNA mit der Sequenz: TAATAAGGATCCGAATTC; oder, wenn die DNA in Säugerzellen exprimiert werden soll, die Sequenz:

CTACTCCATGATATGGTGGAGGTCGTTGACTTTGTTAGCTCTATGTAATAAGGA-TCCGAATTC.

- 3. Gentechnologisches Konstrukt, umfassend DNA nach Anspruch 1 oder 2.
- 4. Konstrukt nach Anspruch 3, nämlich ein Vektor.

5

10

25

35

40

45

50

55

- 5. Verfahren zur Herstellung von DNA nach Anspruch 1 oder 2, oder eines gentechnologischen Konstrukts nach Anspruch 3 oder 4, wobei das Verfahren die aufeinanderfolgende Kupplung von Nucleotiden und/oder die Ligierung geeigneter Oligomere umfaßt.
- 6. Konstrukt nach Anspruch 3 oder 4, umfassend die Sequenz gemäß der Definition in Anspruch 1, die 20 mit einer anderen DNA-Sequenz fusioniert ist, so daß eine Sequenz erhalten wird, die ein Hybridprotein, das Peroxidaseaktivität besitzt, codieren kann.
 - 7. Konstrukt nach Anspruch 6, wobei die andere DNA-Sequenz ein Gen ist, das Streptavidin oder Avidin codiert, so daß das codierte Fusionsprotein sowohl Biotinbindungsals auch Peroxidase-Aktivität besitzt.
 - 8. Konstrukt nach Anspruch 7, wobei die andere Sequenz ein Gen ist, das eine von einem Immunglobulin stammende Antigenbindungsfunktion codiert, so daß das codierte Fusionsprotein sowohl Antigenbindungs- als auch Meerrettich-Peroxidase-Aktivität besitzt.
- 9. Konstrukt nach Anspruch 8, wobei die Antigenbindungsfunktion eine schwere oder leichte Immunglobulinkette oder Fragmente davon ist, oder eine konstruierte monomere Antigenerkennungsstelle.
 - 10. Konstrukt nach Anspruch 4, nämlich ein Expressionsvektor, der die Coexpression von DNA nach Anspruch 1 oder 2 und eines anderen Gens von Interesse entweder als Einzelfusionsprodukt, als einzelne polycistronische Botschaft oder als zwei getrennte, aber verknüpfte Transkriptionseinheiten ermöglicht.
 - 11. Verfahren zur Herstellung einer monodispersen Meerrettich-Peroxidase C, umfassend die Expression eines gentechnologischen Konstrukts nach Anspruch 3 oder 4.

12. Oligonucleotid-Set für die Herstellung von DNA nach Anspruch 1 oder 2, umfassend:

•			B	3279					
5	5' AGCTTAAC					acers 	TCCCA	GIGIC	7.
	3' ATTS	<u> ಆಗಿಯಾದ</u>	ATTGGG	e de la compación de la compac	IGCIGITA	عصنصد	SUTTE	cherc	
	1	J	20 BB	30 280	40		50		60
10		9281					PB283		
				og agd 	1111				AT
		<u> </u>	AGCAGITY 80	SCICEROI On	C TAGG		110	inger T	IA 20
		B282					E3284		
15	ATTACCTIC	سجيجين	التشتين		BB285	razac	TEG CE	וביירביו	
	1111111		111111				111		Ш
	<u> </u>	GTGAA	GGIACIN 140	15: 15:	ycimicar;	leo	170	at (GACCT 180
20	130				BB286				
	<u> </u>	EB287		11167	ricciia	e Social	E239	coace	33
	1111111111	1111111		[- 11			11111	II
	GITGIGGIGG 190		200	210	SIRA G	20	230	2	40
25		EB288				E	3290		
	CTTTCTS	TEATCE	incorn	iaaggctig	25291 201115AG1	CASCATE	ಯಾಂ	GAACA	TCLS
	 GANAGGTCAC		111111	111111	SCAACIC	111111	11111		- 111
30			260	270) 2	30	290		300
	•	BB29		,1	33292		EB29	5	
	TTTTGCASAC		TATAGC	ಇದಾದಾನಿಲ	ಸ್ಥ ಸಿರಯ	TCACTOT	recusea	cace.	rc
	AACACTICIC		 STATCS		1012222 	 GAGA	harcas		
35	310	3	20	330	340		350	36	50
		PB29	4		EB29	7	EB29	5	
	CICGAGAGIG	<u> </u>	بمعتصة	areker:	:::::::::::::::::::::::::::::::::::::::	CATTCCT	ncharcaes	\approx	
		ill Katheac	ag (1			2123GG3	rowska Toward		XIII
40	370		30	390) 4	CO -	410	47	20
		E229			E329		2330	1	
	yaanyama			.cccrccc	ಮೀ ಯ	تبهجيت	acerra.	AAACC	222
45			1111111	11111111	 -	الالا الل	TCEANATC		
	43	3	440	450	46	0 .	470 2830	_	480
		EB30	0				EBIC	<u>ٺ</u>	
	TOTOLATOSO		,						
50	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		3A 51						
	490	5				-			

17

Revendications

1. ADN codant pour la peroxydase de raifort et comprenant la séquence suivante :

```
5
           CAG TTA ACC CCT ACA TTC TAC GAC AAT AGC TGT CCC
           AAC GTG TCC AAC ATC GTT CGC GAC ACA ATC GTC AAC
           GAG CTC AGA TCC GAT CCC AGG ATC GCT GCT TCA ATA
           TTA CGT CTG CAC TTC CAT GAC TGC TTC GTG AAT GGT
10
           TGC GAC GCT AGC ATA TTA CTG GAC AAC ACC ACC AGT
           TTC CGC ACT GAA AAG GAT GCA TTC GGG AAC GCT AAC
           AGC GCC AGG GGC TTT CCA GTG ATC GAT CGC ATG AAG
15
           GCT GCC GTT GAG TCA GCA TGC CCA CGA ACA GTC AGT
           TGT GCA GAC CTG CTG ACT ATA GCT GCG CAA CAG AGC
           GTG ACT CTT GCA GGC GGA CCG TCC TGG AGA GTG CCG
20
           CTC GGT CGA CGT GAC TCC CTA CAG GCA TTC CTA GAT
           CTG GCC AAC GCC AAC TTG CCT GCT CCA TTC TTC ACC
           CTG CCC CAG CTG AAG GAT AGC TTT AGA AAC GTG GGT
           CTG AAT CGC TCG AGT GAC CTT GTG GCT CTG TCC GGA
25
          GGA CAC ACA TTT GGA AAG AAC CAG TGT AGG TTC ATC
          ATG GAT AGG CTC TAC AAT TTC AGC AAC ACT GGG TTA
          CCT GAC CCC ACG CTG AAC ACT ACG TAT CTC CAG ACA
30
          CTG AGA GGC TTG TGC CCA CTG AAT GGC AAC CTC AGT
          GCA CTA GTG GAC TTT GAT CTG CGG ACC CCA ACC ATC
          TTC GAT AAC AAG TAC TAT GTG AAT CTA GAG GAG CAG
35
          AAA GGC CTG ATA CAG AGT GAT CAA GAA CTG TTT AGC
          AGT CCA AAC GCC ACT GAC ACC ATC CCA CTG GTG AGA
          AGT TTT GCT AAC TCT ACT CAA ACC TTC TTT AAC GCC
          TTC GTG GAA GCC ATG GAC CGT ATG GGT AAC ATT ACC
40
          CCT CTG ACG GGT ACC CAA GGC CAG ATT CGT CTG AAC
          TGC AGA GTG GTC AAC AGC AAC TCT
```

2. ADN tel que défini à la revendication 1, comprenant en outre, à l'extrémité 5', un ADN adjacent ayant l'une des séquences suivantes :

AAGCTTAACCATG; ou

AAGCTTCATATG;

45

50

ou, lorsque l'ADN est destiné à l'expression dans des cellules de mammifère, la séquence :

AAGCTTCCACCATGAAGTGCTCCTGGGTGATCTTCTTCCTGATGGCCGTGGTGA-CCGGCGTGAACTCC;

et, à l'extrémité 3', un ADN adjacent ayant la séquence : TAATAAGGATCCGAATTC ; ou, si l'ADN est destiné à être exprimé dans des cellules de mammifère, la séquence :

CTACTCCATGATATGGTGGAGGTCGTTGACTTTGTTAGCTCTATGTAATAAGGA-TCCGAATTC.

- 3. Produit de synthèse génétique comprenant l'ADN tel que défini à la revendication 1 ou à la revendication 2.
- 4. Produit de synthèse tel que défini à la revendication 3, qui est un vecteur.

10

15

30

35

50

- 5. Procédé de préparation de l'ADN tel que défini à la revendication 1 ou à la revendication 2, ou d'un produit de synthèse génétique tel que défini à la revendication 3 ou à la revendication 4, le procédé comprenant le couplage de nucléotides successifs et/ou la soudure d'oligomères appropriés.
- 20 6. Produit de synthèse selon la revendication 3 ou 4, comprenant la séquence telle que définie à la revendication 1, fusionnée à n'importe quelle autre séquence d'ADN, de façon à conduire à une séquence capable de coder pour une protéine hybride possédant l'activité peroxydase.
- 7. Produit de synthèse selon la revendication 6, dans lequel l'autre séquence d'ADN est un gène codant pour la streptavidine ou l'avidine, de telle sorte que la protéine de fusion codée possède à la fois l'activité de liaison à la biotine et l'activité peroxydase.
 - 8. Produit de synthèse selon la revendication 7, dans lequel l'autre séquence est un gène codant pour une fonction de liaison à un antigène issu d'une immunoglobuline, de telle sorte que la protéine de fusion codée possède à la fois l'activité de liaison à un antigène et l'activité peroxydase de raifort.
 - 9. Produit de synthèse selon la revendication 8, dans lequel la fonction de liaison à un antigène est une chaîne lourde ou une chaîne légère d'immunoglobuline, ou des fragments de celles-ci, ou un site de reconnaissance antigénique monomère obtenu par génie génétique.
 - 10. Produit de synthèse selon la revendication 4, qui est un vecteur d'expression qui assure la coexpression de l'ADN tel que défini à la revendication 1 ou à la revendication 2 et d'un autre gène présentant un intérêt, soit sous la forme d'un produit de fusion unique, soit sous la forme d'un message polycistronique unique, soit sous la forme de deux unités de transcription séparées mais liées.
 - 11. Procédé de fabrication d'une peroxydase de raifort C monodispersée, comprenant l'expression d'un produit de synthèse génétique tel que défini à la revendication 3 ou à la revendication 4.
- 12. Jeu d'oligonucléotides pour la préparation de l'ADN tel que défini à la revendication 1 ou à la revendication 2, comprenant :

			E	B279				
	5' AGCTT	::::::::::::::::::::::::::::::::::::::	5112ACCC		acacat 	AGCTG TCC	240GIGIC	~
5	3′ À	10	CAATIGGG	ويرويون	<u> </u>	resicises m	CACAG	GII
		10	20 B	30 B280	40	50		60
	CATCOT	BB281	ATOMICS.	2013 ACC	محدد دی دین	BB2 ATCCCACGATC	83	
10	111111			111	11111	1111111111	1111111	aat H
10	GTAGCA	70	1126C-G1. 80	igereergt 90	C TAGGO 1	TAGGICCIAG		ITA 120
	,	BE282				BB2	84	220
	ATTACCT	C TGCAC	Trechie	CIGCITCE	BB285 IGAAIGSIII	COCHOCOTAG	CATATTI	CIGGA
15	111111	SACTICAA	- 111111		1111111	 		
		130		150) 10		o Perugar	GACCI 180
		EB23	7	F	B286	EB289		
20	CAACACC			aaagg a	TECHTICS	SEAACECTAACE	CCCCCCCC	SS
	GIIGIGG.	بورين بورند	SCGIGACT	TITCCTAC	TAA GOO	XIIIGOGATIG:		≝
	:	190 BB288	200 3	210	22	230 230 230	1 2	40
25				B	B291,			
	11111111	TGATC	111111	[][][][111111111	AGCATGCCCAC		111
	CYYYCGIC	ACTACCT	AGOGTA (HICCEACE	CAACICAG 28	ronaccine	CITGICA	GIC
30					3292			300
30	TTGTGCAG	BB2 ACCICCICA		GCCLACAC	: AGGGTT	a Bacdettotoae	B295	·
	1111111	1111111	11111111				11111111	1
		regaciaci 10	320	330	340	GAGAACTIC 350	36	
35		EB2	94		EB297	Pi	3296	
	CTCGAGAG.		recorect		CERCAGGE	Treeractie	rccca	
	GACCICIC		ng cr	GCACTGAGG	<u> </u>	TAAGGATCTAG		SGTT
40	37	70 3	350	390	400 22298		42	
		EB29	9			EE	3301	
	ACCOLACITO							366
45	GAAC	richochiggi 430	7440 440		JOSE CITY	CTATCGAAA	nerrice.	ر ش دون
		BB30		450	460	47 - EE	302	480
	TCTGAATCC	crccagg 3	,					
50		ШШ						
	- AGACTTAGC 49		DA 5' 00					

FIGURE 1

AMINO ACID SEQUENCE OF HORSERADISH PEROXIDASE (INCLUDING INITIATOR METHIONINE).

(M) Q L T P T F Y D N S C P N V S N I V R 10 D T I V N E L R S D P R I A A S I L R L H F H D C F V N G C D A S I L L D N T T S F R T E K D A F G N A N S A R G F P V IDRMKAAVESACPRTVSCAD LLTIAAQQSVTLAGGPSWRV 110 P L G R R D S L Q A F L D L A N A N L P 130 A P F F T L P Q L K D S F R N V G L N R 150 S S D L V A L S G G H T F G K N Q C R F 170 180 IMDRLYNFSNTGLPDPTLNT 190 TYLQTLRGLCPLNGNLSALV 210 220 D F D L R T P T I F D N K Y Y V N L E E 230 Q K G L I Q S D Q E L F S S P N A T D T 250 I P L V R S F A N S T Q T F F N A F V E 270 AMDRMGNITPLTGTQGQIRL 290 300 NCRVVNSNS

FIGURE 2a

SEQUENCE OF SYNTHETIC HORSERADISH PEROXIDASE GENE

				_	_	_	_	_	_		_		_						
AAGC	מידיני	.a~	M מיזייבי	YAC YAC	עיוייזי גיוויזי	'I'	U. Б	יני) ימיין מי	F TTY	Y TUNC	D Cac	N	S	C	P ~~~	N	<u>v</u>	S	N
HinD	III		2110	H	baI		<u></u>		110	·IA	GML	WAT		TGT	٠	AAC	GIG	100	AA.
TTO							GGA	IGI	AAG	ATG	CIG	TTA'	rœ	ACA	3GG	ITG	CAC	AGG	יויד
		10				0			30			40			5				60
I CATC	V اتات	R	D	T ACA	I ATY	CELLC.	N AAC	E	L	R	S	D Cam	P	R	I	A	A	S	I
	N	huI					. 2 50	Sac	I		100	G-11	٠	A.J.	al C	ar T	GCI		spI
GTAG	CAA	GCG	CIG	TGI	TAG	CAG	TIG	CTO	- GAG	TCI	AGG	CIA	3GG	TCC	ľAG	OGA:	CGA.	AGT AGT	MY JDT
		70				0		•				100			11			1	
L	R	L	H	F	H	D	С	F	V	N	G	С	D	A	S	I	L	L	D
ATTA													1	Nhe	Т				
TAAT	GCA												CIG	CGA!	IŒ	ľAT	TAA	GAO	CT
		130			14			1				160		•				_	80
N	T	T	S	F	R	T	E	K	D	A	F	G	N	A	N	S	A	R	G
CAAC	ACC	ACC	AGI	TIC	ŒC.	ACI	GAA	AAG			ITO	GGG	AAO	GCI	AAC	AGO	GCC	AGG	GG
GITG	ייאו	ייטוו	ביאה	ልልሴ	تك	יעבאד	بلبلث	רצויון	Ns ביויי		እእር	~~	ייצויו	וגיי		~~	~~	~ ~	~
		190			20	0	~	2:	 10	L	<u> </u>	220	.16	~~ <u>`</u>	23		تان		&: 40
																-			
F	P	V	I	D	R	M	K	A	A	V	E	S	A	C	P	R	T	V	S
CITT	CCA	GIG	ATC	GAT	œc.	ATG	AAG	GCI	GCC	GII	GAG				CA	OGA.	ACA	GIC	AG
GAAA	ىت	רארי יי	шус ста	سب 1/15	vui	ריא מיד	دخلتا	O-74	~~	~ x ~	بحلك) T	Sph	I ~~	~~	~~-	~	~ ~	T
-		250		-1M	26	0		2	70	CAA	C1C			ACG			TGI		00 IC
С	A	D	L	L	т	I	A	A	0	0	s	v	т	L	Α	G	G	P	s
TIGI	GCA	GĀC	CIG	CTG	ACE	ATA	GCI	GOG	CÃA	CÂG	AGO	GIG	ACI	CIN	CA	SGO	GGA	∞	rc
		Bs	pMI				F	Iqa								R	srT	T	
AACA														GAA			CI		
		310						33				340			35	-			60
W	R	V	P	L	G	R	R	D	S	L	Q	A	F	L	D	L	A	N	A
CTGG	ΑΞΑ	GIG	W	CIQ	\[ي دد	UšA! I T	WI!	GAC.	ICC	CIA	CAG	GCA'	ITO					AAO	GC
GACC	ىنى	ሮልሶ	660	CAC	JOA.	GCAD T-T	<u>حر</u> ے	cinc:) ACC	יייעב	-M-	ملتك	\ Z\~'	אריי אינייט	ALLY.	1/B	alI	· · · · · ·	~
		370			38		المصح		90			400			410			11G 4:	
N														S					
CAAC	TTG	ŒĪ	GCI	CCA'	TIC	TTC	ACO	CIG		CAG Pvu		AAG	AT	AGC:	HAN	\GA	AAC	FIG	3G
GTTG	AAC	GGA	OGA/	GGE	AAG	AAG.	IGG	GAC				rτα	TA'	rog	\AA'	Cr	ITG	CAC	∞
		430			440				50			460		-	470				30
														T				N	
TCIG		CC.	IŒ	AGI					CIG	TCC	GA(
XhoI BspMII AGACTTAGCGAGCTCACTGGAACACCGAGACAGGCCTCCTGTGTGAAACCTTTCTTGGT																			
MUMC		490		T CHI	500		للام		зАС 10	اناداه		520	aTG.	1617	1444) 530		riC.		3T 10
						_		٠.			•				~	,		٠,	Ŧ U

C	R	F	I	M	D							N				P		P	
GIG	LAGC	HIC	AIC	AIG	GAT	AGG	CIC	TAC	AAT	TTC	AGC	AAC	ACI		TTA tei		GAC	∞	AC
CAC	YTCC	'AAG	TAG	TAC	CTA	\mathbf{x}	GAG	AIG	ΤΙΆ	AAG	ΤŒ	TTG	TGA				CTG	GGG	TG
		550			56		570			580				59		600			
L	N	T	T	Y	L	Q	T	L	R	G	L	С	P	L	N	G	N	L	s
GCTC	AAC				CIC	CAG	ACA	CIG	AGA	GGC	TIC				TAA	GGC	AAC	CIC	AG
CGA(TITE:	-	naB TCC	_	CVC	(TIV	ייצייי	ראר	-TV-TT	~~	יא א ר		Pfl CCT		mma.	~~	,,,,,,	~~	m
CEAC	.110	610		UTU	62		.161		30	w		640		GAL	65		ililG		60 1C
					-	•		Ŭ				040			03	J		O	00
Α	L	V	D	F	D	L	R	T	P	T	I	F	D	N	K	Y	Y	V	N
TGC	CIA	GIG	GAC	TTT	GAT	CIG	ŒG	ACC	CCA	ACC	ATC	TTC	GAT	'AAC	AAG	TAC	TAT	GIG	AA
ApaLl																aΙ			
ACCI	GAI									TGG				TIG			ATA		
		670			68	U		6	90			700			71	.0		7.	20
L	E	E	Q	K	G	L	I	Q	s	D	0	E	L	F	s	s	P	N	Α
TCIA	GAC	GAG	CAG	AAA	GGC	CIG	ATA	CAG	AGI	GAI	CAA	GAA	CIG	TTT	AGC	AGI	CCA	AAO	GC
Xbal	_													•					
AGAI	CIC			TTT			TAT:							AAA			GGI		
		730			74	0		7	50			760			77	0		7	80
т	D	T	I	P	L	V	R	s	F	Α	N	s	т	0	т	F	F	N	A
CACI	GAC	'ACC	ATÇ	CCA	CTG	GIG	AGA	AGI	TTT	GCI	'AAC	TCI	ACT	CÃA	$\bar{\infty}$	TTC	TT	AAO	GC
		Bs	tXI																
GTG	CIC		IAG	GGT			TCI			CGA				GII			AAA		
		790			80	0		8	10			820			83	0		8	40
F	v	E	Α	M	D	R	M	G	N	I	т	P	L	т	G	т	0	G	0
CITO	GIG	GAA	GCC	ATG	GAC	ŒI	ATG	GGI	AAC	ATI	ΆŒ	CI	CIG	AŒ	GGI	ĀŒ	CAA	GGO	CÃ
			No												Kpn	I			
GAAC			ŒG	TAC			TAC			TAA				TGC			GTI		
		850			86	0		8	70			880			89	0		9	00
I	R	L	N	С	R	V	V	N	s	N	s	*	*						
GATI	YYT	تكلمك	אממ		303		TIV	אאר	700	330	_					~~~			
	. ~ .					יוניו	GTC	anc.	7	AAC	1C1	TAA						,	
- ena			P	stI										Bam	Н	Ecc	RI		
CTAA			P	stI		CAC	CAG	TTG	TOG	TTG	AGA		ATT	Bam	Н	Ecc CII	RI		

FIGURE 2b SUMMARY OF USEFUL RESTRICTION SITES.

ENZYME	SECUENCE	POSITION
HinDIII	AAGCTT	1
HpaI	GITAAC	16
SacI	GAGCTC	86
SspI	TTATAA	118
NheI	GCTAGC	164
NsiI	ATGCAT	210
ClaI	ATOGAT	251
PvuI	CGATCG	253
SphI	GCATGC	281
BSPMI	ACCTGC	309
FspI	TGCGCA	325
RsrII	OGGACOG	352
SalI	GTCGAC	378
BglII	AGATCT	406
BalI	TGGCCA	411
PvuII	CAGCIG	452
XhoI	CTCGAG	490
BspMII	TCCGGA	512
BstEII	CCTTACC	585
SnaBI	TACGIA	610
PflMI	CCACTGAATGG	641
ApaLI	GIGCAC	660
SpeI .	ACTAGT	664
ScaI	AGIACT	708
XbaI	TCIAGA	721
StuI	AGGCCT	736
BelI	TGATCA	751
BstXI	CCATCCCACTGG	789
N∞I	CCATCG	852
KpnI	GGTACC	887
PstI	CIGCAG	913
BamHI	GGATCC	944
EcoRI	GAATTC	9 50

FIGURE 2c

SEQUENCE OF SYMTHETIC HORSERADISH PEROXIDASE GENE 5' END HALF

			M	Q	L	T	P	T	F	Y	D	N	S	С	P	N	v	s	N
AAGC	TTA	ACC	ATG	CAG	ľΆ	ACC	CI	ACA	TTC	TAC	GAC	AAT	AGC	IGI	$\overline{\infty}$	AAO	GĪG	īœ	AA
HinD	III	· 		H	paI														
ľΙŒ	IAA			GIC			GGA			ATG	CIG			ACA			CAC		
		10			2	U			30			40			5	0			60
т	17	R	ח	m	т	٦,	Ŋ	T	т.	ъ	c	n	Б	ъ	_			_	_
CATC																	A		
		ruI				J_ U		Sac				<u> </u>	٠	7	NI C	CCI	GCI		spI
GIAG				IGI	IAG	CAG				TCI	AGG	CIA	GGG	TCC	TAG	ŒĀ	ŒΑ	AGT	TA
		70			8				90			100			11				20
L	R	L	H	F_	H	D	C	F	V	N	G	С	D	A	S	I	L	L	D
ATTA	ŒI	CIG	CAC	TTO	CAI	GAC	IGC	TIC	GIG	TAA	GGI	IGO				ATA	TTA	CIG	GA
TAAT	מייבי	CAO	בחב	አልሮ	עונב	באני	200	አአር	יראר	מיוים	ריא	እኆ		Nhe		mam	3 3 M	~3~	~
TLAST	GC.	130		rrso	14		nu		50	110		160		CL.	17		WYT		80 80
						•		_								•			50
N	T	T	S	F	R	T	E	K	D	A	F	G	N	A	N	S	A	R	G
CAAC	ACC	ΆŒ	AGT	TTO	ŒC	ACT	GAA	AAG	GAT	GCA	TTC	GGG	AAC	GCT	AAC	AGO	GCC	AGG	GG
									Ns										
GIIG	IGG			AAG			CIT			Œ				CCA			Œ		
		190			20	U		2	10		220					0		2	40
F	P	v	T	D	R	М	ĸ	Α	A	v	E	s	Α	С	D	. R	T	v	S
CITI	CCA.	GĪG	ATC	GAT	œc	ATG	AAG	GCI	GCC	GIT	GĀG	TCA	GCA	TGC	ŒΑ	OGA	ACA	GIC	AG
			Cla	I/P	νuΙ								Sph	I					
GAAA				CIA	GOG	IAC	TTC	CGA	.CCG	CAA	CIC	AGT	ŒI	ACG	GGI	GCT	IGI	CAG	TC
		250			26	0		. 2	70			280			29	0		3	00
C	λ	D	Τ.	т.	m	т	a	λ	^	^	c	77	m	T		~	~	70	c
rigi	יברים ברים	ദ്മറ	יאט	Calc:	Δ <u>.</u> Δ.(ΤΤ.	ב גידע	درسا م	c T	ממי	CAC	acc Acc	ترارت ۸	λCT Τ		CCA CCA	പ്പ സ്ഥ	GC3	~~	TY
							F			~~		GIG	no.	C11	GC.		srI		10
AACA	ŒI									GIC	TŒ	CAC	TGA	GAA	ŒĪ				AG
		310			32							340			35				60
	_			_	_	_	_	_											
W	R	V	P	L	G	R	R	D	S	L	Q	A	F	L	D	L	A	N	A
CTGG	AGA	GIG	Œ	CIO	GGIV Sa		Œ1	GAÇ	:100	CLA	CAG	GCA	TTC						GC
GACC	ייציי	רמר	cco	CVC			CCA	сTC	አርር	יייעני	CIIV-	ىلىك	እ እ <i>ር</i>	ם מחגרים	GILY GTT	C3/C	alI	TTT 2	~
		370			38		دس		90	OLT		400		GHI	41		تت		20
					•	•			-						7.0	•			
N	L	P	A	P	F	F	T	L	P	Q	L	K	D	S	F	R	N	V	G
CAAC	TIG		GCI	CCA'	ric	ITC	ACC	CIG	∞	CAG	CIG	AAG	GAT	AGC	TTT	AGA	AAC	GIG	GG
~~~~		<b>~~</b>	~				<b>~~</b> ~	<b>~</b> ~		Pvu								<b></b>	
GIIG	AAC			GGL			ıGG			GIC				103			TIG		
		430			44	U		4	50			460			47	U		4	80
L	N	R	s																

TCTGAATCGCTCGAGGAATTC XhoI ECORI AGACTTAGCGAGCTCCTTAAG 490

# FIGURE 2d

SEQUENCE OF SYNTHETIC HORSERADISH PEROXIDASE GENE 3' END HALF.

				S	S	D	L	V	A	L	S	G	G	Н	T	F	G	K	N	Q
			AAC			GAO	CIT	GIG	GCI	CIG	TCC	GGA	GGA	CAC	ACA'	TT	GGA	AAG	AAC	χÃ
			X								Bsp	MII								
	TIC	GAA	TIG		ICA			CAC			AGG				IGI			TTC		
			490			50	U		5	10			520			53	0		5	40
	C	R	F	т	м	מ	R	т.	V	N	Ŧ	S	N	т	G	т.	Ð	ח	D	т
G			TTC																	
															Bs	tEI	I			
C	ACA	$\infty$	AAG		TAC			GAG	ATG	TTA	AAG	TŒ	TIG	TGA	$\infty$	TAA	GGA	CIG	GGG	TG
			550			56	0		5	70			580			59	0		6	00
	Ŧ	N	т	T	v	т	^	т	T	ъ	C	Ŧ	_	ъ		M	_	3.7		_
G			ACI																L	
Š	,010			naB								.110		Pf1		wı	350	anu	CIC	<i>-</i>
C	GAC	TIC	TGA	IGC	ATA	GAG	GIC	TGI	GAC	TCI	œ	AAC				TTA	$\infty$	TTG	GAC	TC
			610			62	0		6	30			640	)		65	0		6	60
	_	_		_	_	_	_	_												
-	A	L	V	D	F	D	L	R	T	P	T	I	F	D	N	K	Y 	Y	V	N
	aLI		GIG	GAC	TTT	GAI	CIG	CGG	ACC	CL'A	ACC	AIC	TIC	GAT	AAC		TAC aI	TAT	GIG	AA
			CYC	CIG	ΑΑΑ	CTTA	GAC	r.	TC:	CCT	יבווי	TΆC	ממני	מידיי	באויני			מידע	CAC	ىلىلە
			670			68				90			700		410	71		ni.		20
																-	.•		•	
	${f L}$	E	E			G														
			GAG	CAG				ATA	CAG				GAA	CIG	TTT	AGC	AGI	CCA	AAC	<b>SC</b>
	baI		CIO	<b>сту</b>		tuI		יייאיד	r Tr		cli		~~	~~ ~	222	m~~	m-x	~~T	*****	·~
	MAT.	CIC	730		.111	74		TWT		50			760		MAA	77		1 تاتا		بىر 80ا
						, .	•		•	-			, 00			• •	•		•	00
	T	D	T	I	P	L	V	R	S	F	A	N	S	T	Q	T	F	F	N	A
C	ACI	GAC	ACC			CIG	GIG	AGA	AGT	TTI	GCI	'AAC	TCI	'ACI	CAA	ACC	TTC	TTT	AAC	<b>SC</b>
_				tXI													_			
G	ilGA	CIG	TGG 790		GGI	GAO 80		ICI		AAA 10	CGA	TIC			GIT			AAA		
•			790			80	U		ð	10			820	)		83	U		8	40
	F	V	E	A	M	D	R	M	G	N	I	Т	P	L	т	G	т	0	G	0
C	TTC	GIG	GAA	GCC	ATG	GAO	ŒI	ATG	GGI	AAC	ATI	'nα	XCI	CIG	AŒ	GGI	ΆŒ	CĂA	GGC	χÃ
				NC												Kon	I			
G	AAG		CII		TAC			TAC			TAA				TGC			GII		
			850			86	0		8	70			880	)		89	0		9	00
	I	R	L	N	C	D	77	77	N	s	N	s	+	*						
G	_		CIG		_			-			-	-			GGA	TCC	raa	איייני	•	
					stI										Bam					
C	TAA	GCA	GAC	ΓIG	ACG						TTC			ΆΤΙ					;	
			910			92	0		9	30			940	)		95	0			

#### FIGURE 3a

DESIGN OF OLIGOMERS FOR SYNTHETIC HORSERADISH PEROXIDASE GENE 5'HALF.



#### FIGURE 3b

DESIGN OF OLIGOMERS FOR SYMTHETIC HORSERADISH PEROXIDASE GENE 3' HALF.



#### FIGURE 4a

SUMMARY OF ASSEMBLY PROCEDURE, 5' HALF.

 kinased oligomers annealed in pairs and mixed in two groups (A & B).



b) oligomers ligated together in two groups. (BB279 and BB302 not kinased to avoid multimerisation.



c) The ligations were checked for the presence of fragment A & B on 2% agarose gels then the ligation reactions were mixed and the reaction allowed to continue to give the final product.

AGCTT		-XhoI	
A	ACTAGCT	-XhoI	-CITAA

d) The HRP gene fragment was isolated on a 2% IGT agarose gel and cloned into EcoRI/HinDIII cut pUC18.



HinDIII	HRP 5' half	
vvvvaAGCIT		XhoIGaattcvvvvv
vvvvttogaA		XhoICITAAgvvvvv

v = vector sequence

p = 5' phosphates

#### FIGURE 4b

SUMMARY OF ASSEMBLY PROCEDURE, 3' HALF.

a) kinased oligomers annealed in pairs and mixed in two groups (A & B).



b) oligomers ligated together in two groups. (BB303 and BB324 not kinased to avoid multimerisation.



c) The ligations were checked for the presence of fragment C & D on 2% agarose gels then the ligation reactions were mixed and the reaction allowed to continue to give the final product.

AGCTT—XhoI————TACAGAG——————G	
A-XhoIATGICICCUI	ממי

d) The HRP gene fragment was isolated on a 2% LGT agarose gel and cloned into EcoRI/HinDIII cut pUC18



HinDIII	HRP 3' half	EcoRI
vvvvaAGCIT—XhoI—		Gaattcvvvvv
vvvvttogaA—XhoI—		CITAAgvvvvv

v = vector sequence

p = 5' phoshates

## FIGURE 4c

## SUMMARY OF FINAL ASSEMBLY PROCEDURE.

a) 5' and 3' clones of HRP cloned in pUC18 were digested with XhoI and EcoRI. Relevant fragments from each digest were isolated from a 0.8% LGT agarose gel.

HinDIII	HRP 5'	XhoI	ECORI
VVVVAAGCIT			
***************************************		-GENTLO-	-CITUM30000
HinDIII	XhoI	HALF	Ecori
VVVVVAAGCTT	-CICGAG-	 	-GAATTCVVVVV
VVVVVITOGAA			

b) XhoI/EcoRI fragment carrying 3' half of HRP ligated into XhoI/EcoRI cut HRP 5' half clone.



c) Completed gene cloned in pUC18.

HRP 5'	HALF	HRP 3' HALF	
VVVVAAGCIT	CTOGAG	<del></del>	-GAATTCvvvvv
VVVVVTTOGAA-	GAGCTC		-CITAAGvvvvv

v = vector sequence

Figure 5. The HRP Expression Plasmid pSD18.



# Figure 6. Synthetic HRP Gene Modified for Expression in Mammalian Cells.

- M k c s w v i f f l m a v v t g v

  AAGCTTCCACCATGAAGTGCTCCTGGGTGATCTTCTTCCTGATGGCCGTGGTGACCGGCG

  10 20 30 40 50 60
- n s<>Q L T P T F Y D N S C P N V S N I V TGAACTCCCAGTTAACCCCTACATTCTACGACAATAGCTGTCCCAACGTGTCCAACATCG 70HpaI 80 90 100 110 120
- R D T I V N E L R S D P R I A A S I L R TTCGCGACACAATCGTCAACGAGCTCAGATCCGATCCCAGGATCGCTGCTTCAATATTAC 130 140 150 160 170 180
- L H F H D C F V N G C D A S I L L D N T GTCTGCACTTCCATGACTGCTTCGTGAATGGTTGCGACGCTAGCATATTACTGGACAACA 190 200 210 220 230 240
- T S F R T E K D A F G N A N S A R G F P CCACCAGTTTCCGCACTGAAAAGGATGCATTCGGGAACGCTAACAGCGCCAGGGGCTTTC 250 260 290 300
- D L L T I A A Q Q S V T L A G G P S W R CAGACCTGCTGACTATAGCTGCGCAACAGAGCGTGACTCTTGCAGGCGGACCGTCCTGGA 370 380 390 400 410 420
- V P L G R R D S L Q A F L D L A N A N L GAGTGCCGCTCGGTCGACGTGACTCCCTACAGGCATTCCTAGATCTGGCCAACGCCAACT 430 440 450 460 470 480
- PAPFFTLPQLKDSFRNVGLN TGCCTGCTCCATTCTCACCCTGCCCCAGCTGAAGGATAGCTTTAGAAACGTGGGTCTGA 490 500 510 520 530 540
- R S S D L V A L S G G H T F G K N Q C R ATCGCTCGAGTGACCTTGTGGCTCTGTCCGGAGGACACACTTTGGAAAGAACCAGTGTA 550 560 570 580 590 600
- F I M D R L Y N F S N T G L P D P T L N GGTTCATCATGGATAGGCTCTACAATTTCAGCAACACTGGGTTACCTGACCCCACGCTGA 610 620 630 640 650 660
- T T Y L Q T L R G L C P L N G N L S A L ACACTACGTATCTCCAGACACTGAGAGGCTTGTGCCCACTGAATGGCAACCTCAGTGCAC 670 680 690 700 710 720

- V D F D L R T P T I F D N K Y Y V N L E TAGTGGACTTTGATCTGCGGACCCCAACCATCTTCGATAACAAGTACTATGTGAATCTAG 730 740 750 760 770 780
- E Q K G L I Q S D Q E L F S S P N A T D AGGAGCAGAAAGGCCTGATACAGAGTGATCAAGAACTGTTTAGCAGTCCAAACGCCACTG 790 800 810 820 830 840
- T I P L V R S F A N S T Q T F F N A F V ACACCATCCCACTGGTGAGAAGTTTTGCTAACTCTACTCTAAACCTTCTTTAACGCCTTCG 850 860 870 880 890 900
- E A M D R M G N I T P L T G T Q G Q I R TGGAAGCCATGGACCGTATGGGTAACATTACCCCTCTGACGGGTACCCAAGGCCAGATTC 910 920 930 940 950 960
- L N C R V V N S N S l l h d m v e v v d GTCTGAACTGCAGAGTGGTCAACAGCAACTCTCTACTCCATGATATGGTGGAGGTCGTTG Pst1 980 990 1000 1010 1020
- f v s s m * *

  ACTTTGTTAGCTCTATGTAATAAGGATCCGAATTC
  1030 1040 ECORI

## KEY

Underlined sequences indicate linkers used to adapt synthetic gene.

Lower case residues indicate N and C terminal pre & pro sequences.

Figure 7. The HRP Expression Plasmid pCP21.



# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

# IMAGES ARE BEST AVAILABLE COPY.

Defects in the images include but any und 1

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.