Identity based encryption (IBE)

Jiageng Chen

Boneh, D., & Franklin, M. (2001, August). Identity-based encryption from the Weil pairing. In *Annual international cryptology conference* (pp. 213-229). Springer, Berlin, Heidelberg.

Recall: Pub-Key Encryption (PKE)

PKE Three algorithms: (G, E, D)

 $G(\lambda) \rightarrow (pk,sk)$ outputs pub-key and secret-key

 $E(pk, m) \rightarrow c$ encrypt m using pub-key pk

 $D(sk, c) \rightarrow m$ decrypt c using sk

Example: ElGamal encryption

• $G(\lambda)$: $(G, g, q) \leftarrow GenGroup(\lambda)$ $sk := (\alpha \leftarrow F_p) ; pk := (h \leftarrow g^{\alpha})$

- E(pk, m∈G): $s \leftarrow Z_q$ and do $c \leftarrow (g^s, m \cdot h^s)$
- D(sk= α , c=(c₁,c₂)): observe $c_1^{\alpha} = (g^s)^{\alpha} = h^s$
- Security (IND-CPA) based on the DDH assumption:

 (g, h, g^s, h^s) indist. from (g, h, g^s, g^{rand})

Identity based encryption

- IBE: PKE system where PK is an arbitrary string
 - e.g. e-mail address, phone number, ip address

IBE in practice

Bob encrypts message with pub-key:

Aug. 2011: "... Voltage SecureMail ... with over one billion secure business emails sent annually and over 50 million worldwide users."

Four algorithms

Four algorithms: (S,K,E,D)

$$S(\lambda) \rightarrow (pp, mk)$$
 output params, pp, and master-key, mk

$$K(mk, ID) \rightarrow d_{ID}$$
 outputs private key, d_{ID} , for ID

$$E(pp, ID, m) \rightarrow c$$
 encrypt m using pub-key ID (and pp)

$$D(d_{ID}, c) \rightarrow m$$
 decrypt c using d_{ID}

IBE "compresses" exponentially many pk's into a short pp

BasicIdent(IBE)

 $params = \{q, G_1, G_2, \hat{e}, n, P, P_{pub}, H_1, H_2\}$ params Bob: TA Alice: id=alice@gmail.com $\hat{e}: G_1 \times G_1 \rightarrow G_2$ $M \leftarrow \{0,1\}^n$ Generator $P \in G_1$ params $msk = s \stackrel{R}{\leftarrow} Z_a^*$ id $P_{pub} = sP$ U = rP $Q_{ID} = H_1(\text{alice@gmail.com})$ $H_1: \{0,1\}^* \to G_1^*$ $g = \hat{e}(Q_{id}, P_{pub})$ $H_2: G_2 \to \{0,1\}^n$ C = (U, V)Private key of Alice $Q_{id} = H_1(id)$ $V = M \oplus H_2(g^r)$ $M = V \oplus H_2(\hat{e}(d_{id}, U))$ d_{id} $d_{id} = sQ_{id}$ Note: $H_2(\hat{e}(d_{id},U))$ $=H_2(\hat{e}(sQ_{id},rP))$ $=H_2(\hat{e}(Q_{id},P)^{sr})$ $=H_2(\hat{e}(Q_{id},sP)^r)$ $=H_2(\hat{e}(Q_{id},P_{pub})^r)$ $=H_2(g^r)$

BasicIdent (IBE)

Setup: Given a security parameter $k \in \mathbb{Z}^+$, the algorithm works as follows:

- Step 1: Run \mathcal{G} on input k to generate a prime q, two groups $\mathbb{G}_1, \mathbb{G}_2$ of order q, and an admissible bilinear map $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$. Choose a random generator $P \in \mathbb{G}_1$.
- Step 2: Pick a random $s \in \mathbb{Z}_q^*$ and set $P_{pub} = sP$.
- Step 3: Choose a cryptographic hash function $H_1: \{0,1\}^* \to \mathbb{G}_1^*$. Choose a cryptographic hash function $H_2: \mathbb{G}_2 \to \{0,1\}^n$ for some n. The security analysis will view H_1, H_2 as random oracles.
- The message space is $\mathcal{M} = \{0,1\}^n$. The ciphertext space is $\mathcal{C} = \mathbb{G}_1^* \times \{0,1\}^n$. The system parameters are params $= \langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, H_1, H_2 \rangle$. The master-key is $s \in \mathbb{Z}_q^*$.
- **Extract:** For a given string $\mathsf{ID} \in \{0,1\}^*$ the algorithm does: (1) computes $Q_{\mathsf{ID}} = H_1(\mathsf{ID}) \in \mathbb{G}_1^*$, and (2) sets the private key d_{ID} to be $d_{\mathsf{ID}} = sQ_{\mathsf{ID}}$ where s is the master key.
- **Encrypt:** To encrypt $M \in \mathcal{M}$ under the public key ID do the following: (1) compute $Q_{\mathsf{ID}} = H_1(\mathsf{ID}) \in \mathbb{G}_1^*$, (2) choose a random $r \in \mathbb{Z}_q^*$, and (3) set the ciphertext to be

$$C = \langle rP, M \oplus H_2(g_{\mathsf{ID}}^r) \rangle$$
 where $g_{\mathsf{ID}} = \hat{e}(Q_{\mathsf{ID}}, P_{pub}) \in \mathbb{G}_2^*$

Decrypt: Let $C = \langle U, V \rangle \in \mathcal{C}$ be a ciphertext encrypted using the public key ID. To decrypt C using the private key $d_{\mathsf{ID}} \in \mathbb{G}_1^*$ compute:

$$V \oplus H_2(\hat{e}(d_{\mathsf{ID}},U)) = M$$

Theorem

 Suppose H₁ and H₂ are random oracles. The BasicIdent is a semantically secure identity based encryption (IND-ID-CPA) assuming BDH is hard in groups generated by G.

BDH Assumption. Let \mathcal{G} be a BDH parameter generator. We say that an algorithm \mathcal{A} has advantage $\epsilon(k)$ in solving the BDH problem for \mathcal{G} if for sufficiently large k:

$$\operatorname{Adv}_{\mathcal{G},\mathcal{A}}(k) = \operatorname{Pr}\left[\mathcal{A}(q,\mathbb{G}_1,\mathbb{G}_2,\hat{e},P,aP,bP,cP) = \hat{e}(P,P)^{abc} \middle| \begin{array}{c} \langle q,\mathbb{G}_1,\mathbb{G}_2,\hat{e}\rangle \leftarrow \mathcal{G}(1^k), \\ P \leftarrow \mathbb{G}_1^*, \ a,b,c \leftarrow \mathbb{Z}_q^* \end{array} \right] \geq \epsilon(k)$$

Proof reductions

Lemma 1. Let H_1 be a random oracle from $\{0,1\}^*$ to \mathbb{G}_1^* . Let \mathcal{A} be an IND-ID-CPA adversary that has advantage $\epsilon(k)$ against BasicIdent. Suppose \mathcal{A} makes at most $q_E > 0$ private key extraction queries. Then there is a IND-CPA adversary \mathcal{B} that has advantage at least $\epsilon(k)/e(1+q_E)$ against BasicPub.

Lemma 2. Let H_2 be a random oracle from \mathbb{G}_2 to $\{0,1\}^n$. Let \mathcal{A} be an IND-CPA adversary that has advantage $\epsilon(k)$ against BasicPub. Suppose \mathcal{A} makes a total of $q_{H_2} > 0$ queries to H_2 . Then there is an algorithm \mathcal{B} that solves the BDH problem for \mathcal{G} with advantage at least $2\epsilon(k)/q_{H_2}$.

BasicPub (PKE)

BasicPub (PKE)

BasicPub is described by three algorithms: keygen, encrypt, decrypt.

keygen: Given a security parameter $k \in \mathbb{Z}^+$, the algorithm works as follows:

Step 1: Run \mathcal{G} on input k to generate two prime order groups \mathbb{G}_1 , \mathbb{G}_2 and a bilinear map $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$. Let q be the order of \mathbb{G}_1 , \mathbb{G}_2 . Choose a random generator $P \in \mathbb{G}_1$.

Step 2: Pick a random $s \in \mathbb{Z}_q^*$ and set $P_{pub} = sP$. Pick a random $Q_{\mathsf{ID}} \in \mathbb{G}_1^*$.

Step 3: Choose a cryptographic hash function $H_2: \mathbb{G}_2 \to \{0,1\}^n$ for some n.

Step 4: The public key is $\langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, Q_{\mathsf{ID}}, H_2 \rangle$. The private key is $d_{\mathsf{ID}} = sQ_{\mathsf{ID}} \in \mathbb{G}_1^*$.

encrypt: To encrypt $M \in \{0,1\}^n$ choose a random $r \in \mathbb{Z}_q^*$ and set the ciphertext to be:

$$C = \langle rP, M \oplus H_2(g^r) \rangle$$
 where $g = \hat{e}(Q_{\mathsf{ID}}, P_{pub}) \in \mathbb{G}_2^*$

decrypt: Let $C = \langle U, V \rangle$ be a ciphertext created using the public key $\langle q, \mathbb{G}_1, \mathbb{G}_2, \hat{e}, n, P, P_{pub}, Q_{\mathsf{ID}}, H_2 \rangle$. To decrypt C using the private key $d_{\mathsf{ID}} \in \mathbb{G}_1^*$ compute:

$$V \oplus H_2(\hat{e}(d_{\mathsf{ID}},U)) = M$$

Lemma 1

 $params1 = \{q, G_1, G_2, \hat{e}, n, P, P_{pub}, Q_{ID}, H_2\} \rightarrow params2 = \{q, G_1, G_2, \hat{e}, n, P, P_{pub}, H_1, H_2\}$

Assume the probability that B does not abort is δ , the advantage of B is:

 $Adv_{IND-CPA}[B, BasicPub] = \delta Adv_{IND-ID-CPA}^{RO}[A, BasicIdent]$

Lemma 2

 $params = \{P, aP, bP, cP\} \rightarrow params 1 = \{q, G_1, G_2, \hat{e}, n, P, P_{pub}, Q_{ID}, H_2\}$

It can be seen that only A queries D, can A has the advantage to guess the encrypted messages.

So if A output $\hat{b} = b$ iff A queries D, which means that D exists in the H₂ list.