8 Ganzzahlige quadratische Formen

8.1 Grundbegriffe und Bezeichnungen

Problem: Man diskutiert die diophantische Gleichung

$$k = ax^2 + bxy + cy^2 \quad (*)$$

Gegeben sind $a, b, z, k \in \mathbb{Z}$, gesucht ist ein $\underline{x} = (x, y) \in \mathbb{Z}^2$, für die (*) gilt.

Gegeben $Q = aX^2 + bXY + cY^2 \in \mathbb{Z}[X,Y]$, $a,b,c \neq 0$, mit Kurzbezeichnung Q = [a,b,c]. Dieses Q heißt ganzzahlige binäre (wegen den 2 Variablen) quadratische (grad q = 2) Form.

Nun betrachtet man Q als Abbildung $\mathbb{Z}^2 \to \mathbb{Z}^2$, $\underline{x} = (x, y) \mapsto Q(x, y)$.

Definition

- (1) \underline{x} primitiv \iff ggT(x, y) = 1
- (2) Q primitiv \iff ggT(a, b, c) = 1
- (3) Q stellt $k \in \mathbb{Z}$, $k \neq 0$ (primitiv) da $\iff \exists \underline{x} \in \mathbb{Z}^3$ (\underline{x} primitiv), mit $Q(\underline{x}) = k$

Problem: Welche Formen stellen welche Zahlen dar? $Q(\mathbb{Z}^2) = ?$

Falls $k \in Q(\underline{x})$, welche weiteren \underline{x}' erzeugen $k = Q(\underline{x}')$? $Q^{-1}(\{k\}) = ?$

Bemerkung: (1) $z \in \mathbb{Z}$, so $Q(z \cdot \underline{x}) = z^2 \cdot Q(\underline{x})$

(2) Mit Q ist auch mQ eine Quadratische Form $(m \in \mathbb{Z}, m \neq 0)$

Wegen (1) genügt es meist, primitive Darstellungen zu betrachten.

Aus der Linearen Algebra ist über reelle Quadriken bekannt: Es gibt Darsellungsmatrixen $A_Q = \mathbb{R}^{2\times 2}$ mit $Q(x) = xA_Qx^{\top}$, wobei

$$A_Q = \begin{pmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{pmatrix}$$

Idee (Gauß?) Wegen $\mathbb{Z}^2U=\mathbb{Z}^2$ für $U\in GL_2(\mathbb{Z})$ gilt $Q(\mathbb{Z}^2)=Q\cdot (\mathbb{Z}^2U)$. $Q(\underline{x}U)=\underline{x}U\cdot A_Q\cdot (xU)^\top=\underline{x}(UA_QU^\top)x^\top$

Definition

- (1) Zu Q sei U.Q die Quadratische Form mit Darstellungsmatrix UA_QU^{\top}
- (2) Q und Q^{\top} heißen (eigentlich) äquivalent $(Q \sim Q' \text{ bzw } Q \approx Q') \iff \exists U \in GL_2(\mathbb{Z}) \text{ (bzw. } \exists I \in SL_2(\mathbb{Z}), \text{ wobei } SL_2(\mathbb{Z}) = \{U \in \mathbb{Z}^{2 \times 2} \mid \det U = 1\}) \text{ mit } Q' = U.Q.$

 \sim , \approx unterscheiden sich wenig, sozusagen höchstens um eine Matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Bemerkung: (1) $1_2.Q=Q,\,U,V\in GL_2(\mathbb{Z}).\,(UV).Q=U.(V.Q).$ " $GL_2(\mathbb{Z})$ bzw. $SL_2(\mathbb{Z})$ operiert auf der Menge der Quadratischen Formen"

- (2) \sim , \approx sind Äquivalenzrelationen
- (3) Äquivalente Formen stellen die selben Zahlen dar.

Beweis

(1) $UV.Q: UVA_Q(UV)^{\top} = U(VA_QV^{\top})U^{\top}: U.(V.Q).$

Folgt
$$Q' = U.Q$$
, so $U^{-1}.Q' = U^{-1}.(U.Q) = (U^{-1}U).Q = 1_2.Q = Q$.

Also ist \sim symetisch: $Q \sim Q$.

Transitivität:
$$Q \sim Q'$$
, $Q' = U.Q$ und $Q' \sim Q''$, $Q'' = V.Q$, mit $U, V \in GL_2(\mathbb{Z})$, so ist $Q'' = V.(U.Q) = (VU).Q \implies Q'' \sim Q$

8.2 Die Diskriminante

Sei Q = [a, b, c] eine Quadratische Form.

Definition

 $\Delta = -4 \cdot \det A_Q = b^2 - 4ac = \operatorname{dis}(Q) \in \mathbb{Z}$ heißt Diskriminante von Q.

Bemerkung aus der Linearen Algebra: $\mathcal{V} = \mathcal{V}_{Q-k}(\mathbb{R}) = \{\underline{x} \in \mathbb{R}^2 \mid Q(\underline{x}) = k\}$ ist reelle Quadrik, abgesehen von ausgearteten Fällen gilt: $\Delta < 0$: \mathcal{V} Ellipse, $\Delta > 0$, \mathcal{V} Hyperbel.

Beispiel

$$X^2 + 5Y^2$$
 Ellipse: $\Delta = 0 - 4 \cdot 5 = -20 < 0$
 $X^2 + -2Y^2$ Hyperbel: $\Delta = 0 - 4 \cdot (-2) = 8 > 0$

Problem: Welche $(x, y) \in \mathbb{Z}^2$ (Gitterpunkte) liegen auf \mathcal{V} .

Satz 8.1 (Diskriminantensatz)

Sei Q eine Quadratische Form.

- (1) Ist $Q \sim Q'$, so gilt $\operatorname{dis}(Q) = \operatorname{dis}(Q')$.
- (2) Ist $\Delta = \operatorname{dis} Q$ ein Quadrat in $\mathbb{Z} \iff Q$ zerfällt über \mathbb{Z}^n , also $\exists u, v, w, z \in \mathbb{Z}$ mit Q = (uX + vY)(wX + zY)
- (3) Ist dis $Q \neq 0$, so gilt

$$Q$$
 definit \iff dis $Q < 0$
 Q indefinit \iff dis $Q > 0$

(4) $0 \neq d \in \mathbb{Z}$ ist Diskriminante $\iff d \equiv 0, 1 \mod 4$

Anwendung: $\Delta = \operatorname{dis} Q$ sei ein Quadrat $Q(\underline{x}) = k \neq 0 \iff \exists d \in \mathbb{Z}, dk: ux + vy = d, wx + zy = \frac{k}{d}$. Die Frage nach den darstellbaren k läuft zurück auf a) Bestimmung aller Teiler von k, b) Diskussion eines ganzzahligen LSG.

Ab jetzt interessieren nur noch nichtquadratische Diskriminanten.

Beweis

(4) $\delta = \operatorname{dis} Q = b^2 - 4ac \equiv b^2 \equiv 0, 1 \mod 4.$ $d \equiv 0 \mod 4$: $Q = [1, 0, -\frac{d}{4}]$ $d \equiv 1 \mod 4$: $Q = [1, 1, -\frac{1-d}{4}]$

Für diese Formen gilt dis $Q=d\equiv \Delta$. Diese Form heißt "Hauptform" der Diskriminante.

- $(1) \ \det U A_Q A^\top = \det U \cdot \det U^\top \cdot \det A_Q = (\det U)^2 \cdot \det A_Q = \det A_Q \implies \text{Behauptung}.$
- (2) (Skizze)

"⇐" Nachrechnen

"⇒" $\Delta = \operatorname{dis} Q = q^2$. Sei $t = \operatorname{ggT}(a, \frac{b-a}{2})$, dann (Übung):

$$Q = \left(\frac{a}{t}X + \frac{b-q}{2t}Y\right)(tX + \frac{b+q}{2\frac{a}{t}}Y)$$

(3)
$$a=0 \implies \Delta>0, \ Q=bXY+cY^2=(bX+cY)Y$$
 indefinit $a\neq 0$: $aQ=(aX+bY)^2-\frac{1}{4}\Delta Y^2$. Offensichtlich: $\Delta<0$: definit, $\Delta>0$: indefinit

<++>

8.3 Darstellung von Zahlen durch QFen

Vor. Q QF, dis $Q = \Delta$ sei kein Quadrat. U.Q QF mit Matrix $UA_qU^T, U \in GL_2(\mathbb{Z})$ $U = \begin{pmatrix} r & s \\ u & v \end{pmatrix} \Rightarrow U.Q = [Q(r,s), 2rU \cdot a + (rv + su)b + 2sv \cdot c, Q(u,v)]$

Spezialfälle:

$$Q' = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \cdot Q = [a, t \cdot 2a + b, at^2 + bt + c]$$

$$Q' = \begin{pmatrix} \cdot & 1 \\ -1 & t \end{pmatrix} \cdot Q = [c, -b + 2ct, ct^2 - bt + a]$$

$$Q' = \begin{pmatrix} \cdot & 1 \\ -1 & \cdot \end{pmatrix} \cdot Q = [c, -b, a]$$

$$Q' = \begin{pmatrix} 1 & \cdot \\ 1 & 1 \end{pmatrix} \cdot Q = [a, 2a + b, a + b + c]$$

Wunsch:

Algorithmus der feststellt, ob Q k darstellt oder nicht.

Satz 8.2 (1. Darstellungssatz)

Q stellt $0 \neq k \in \mathbb{Z}$ genau dann primitiv dar, wenn: $\exists Q' = [k, l, m]$ mit $Q' \approx Q \land -|k| < l \leq l$ |k|.

Hat man also einen Algorithmus, der feststellt, ob $Q \approx Q' \vee Q \not\approx Q'$, so hat man einfach 2kFormen zu testen (auf Äquivalenz zu Q). $(m = \frac{l^2 - \Delta}{4k})$

Spezialfall:

k=1,Qstellt 1 dar $\Leftrightarrow Q\approx [1,0,\frac{-\Delta}{4}]$ (für $\Delta\equiv 0\mod 4)$ –HIER FEHLT NOCH EINE ZEILE, WELCHE NICHT RICHTIG KOPIERT WURDE –

$$Q\approx [1,1,\tfrac{1-\Delta}{4}] \text{ (für } \Delta\equiv 1 \mod 4).$$

Ergebnis: Genau die zur Hauptform äquivalenten Formen stellen 1 dar.

" \Leftarrow ": Q'(1,0) = k. Hat man $Q' \approx Q \Rightarrow Q$ stellt k dar

"⇒":
$$k = Q(x,y), ggT(x,y) = 1$$
. LinKomSatz liefert $u,v \in \mathbb{Z}$ mit $xv - yu = 1 \Rightarrow U := \begin{pmatrix} x & y \\ u & v \end{pmatrix} \in Sl_2(\mathbb{Z})$

$$Q_1 := U.Q = [\underbrace{Q(x,y)}_{=k}, l', \text{irgendwas}], l := l' \mod 2|k|, \exists t : l = l' + 2tk \Rightarrow Q' = \begin{pmatrix} 1 & \cdot \\ t & 1 \end{pmatrix}.Q_1$$
 wie verlangt.

Satz 8.3 (2. Darstellungssatz)

Sei $k \in \mathbb{Z}, k \neq 0$. Genau dann gibt es eine Form Q mit dis $Q = \Delta$, die k primitiv darstellt, wenn die Kongruenz $l^2 \equiv \Delta \mod 4k$ so lösbar ist, dass $\operatorname{ggT}(k, l, \frac{l^2 - \Delta}{4k}) = 1$.

"\(= ": Einfach, die Form $[k, l, \frac{l^2 - \Delta}{4k}]$ tut es

"⇒":
$$k$$
 so darstellbar $Q \approx Q' = [k, l, \frac{l^2 - \Delta}{4k}]$ nach 1. Darstellungssatz (für (mindestens) ein l) $\Rightarrow \frac{l^2 - \Delta}{4k} \in \mathbb{Z} \Rightarrow l^2 \equiv \Delta \mod 4k$ [ggT stimmt auch]

Spezialfälle:

Sei $k = p \in \mathbb{P}$

- $p \nmid \Delta, p \neq 2 : p$ so darstellbar $\Leftrightarrow (\frac{\Delta}{p}) = 1$
- $p \mid \Delta, p \neq 2 : p$ so darstellbar $\Leftrightarrow v_p(\Delta) = 1$
- $p = 2 \mid \Delta$: 2 so darstellbar $\Leftrightarrow \Delta \equiv 8,12 \mod 16$

Zu den Spezialfällen

- $\bullet \ p \nmid \Delta : (\tfrac{\Delta}{p}) = 1 \text{ l\"osbar}, \ l_1^2 \equiv \Delta \mod p \Leftrightarrow l_1^2 \equiv \Delta \mod 4p \leadsto ChRs$
- $2 \neq p \mid \Delta$: Löse $l \equiv 0 \equiv \Delta \mod p(*)$, $l^2 \equiv \mod 4 \Rightarrow l^2 \equiv \Delta \mod 4p$ $\operatorname{ggT}(\underbrace{p,l}_{\operatorname{ggT}=p}, \frac{l^2-\Delta}{4p}) = 1 \Leftrightarrow p \nmid \frac{l^2-\Delta}{4p} \Leftrightarrow p^2 \nmid l^2 \Delta \Leftrightarrow p^2 \nmid \Delta, \operatorname{da} p^2 \mid l^2 \operatorname{nach} (*). (\Rightarrow v_p(\Delta) = 1)$
- $p=2 \mid \Delta$: Ü.

Definition

Die <u>Klassenzahl</u> $h(\Delta)$ ist die Anzahl der Klassen eigentlich äquivalenter Formen mit Diskriminante Δ . "Schöne Resultate", falls $h(\Delta) = 1$.

 \Rightarrow Alle Formen der Diskriminante Δ stellen k dar \Leftrightarrow Bed. 2. DarstSatz.

Später. h(-4)=1, Q=[1,0,1] Ergebnis: $2\neq p\in\mathbb{P}$ wird durch $Q=x^2+y^2$ dargestellt $\Leftrightarrow 1=(\frac{-4}{p})=\frac{-1}{p}=(-1)^{\frac{p-1}{2}}\Leftrightarrow p\equiv 1\mod 4$ Andere Beispiele, etwa $\Delta=-164$ (Klassenzahl 1, betragsmäßig größte negative Zahl. Im positiven unbekannt)

8.4 Reduktion der definiten Formen

Sei $\Delta < 0$ [und damit "Nicht-Quadrat"], $\Delta = b^2 - 4ac \Rightarrow ac > 0$. Ohne Einschränkung positiv definit, d.h. a > 0, c > 0.

Definition (Gauß)

Q (mit Diskr Δ) heißt <u>reduziert</u> $\Leftrightarrow |b| \leq a \leq c$

In dieser Vorlesung:

Q heißt vollreduziert \Leftrightarrow Q ist reduziert und falls $(c = 0 \land b \neq 0) \lor (|b| = a)$ auch noch b > 0 ist.

Idee (Gauß):

Setzte |Q| := a + |b|. Versuche $Q' \approx Q$ zu finden mit |Q'| < |Q|. Das geht, solange Q nicht reduziert ist.

$$\text{Fall I: } a > c, Q' := \begin{pmatrix} \cdot & 1 \\ -1 & \cdot \end{pmatrix}, Q = \underbrace{\begin{bmatrix} \cdot & -b \\ -a' & \cdot \end{pmatrix}}_{c'}, \underbrace{\begin{bmatrix} -b \\ -a' \\ -c' \end{bmatrix}}_{c'}. \ |Q'| = a' + |b'| = |b| + c < |b| + a = |Q|$$

Fall II: $a \leq c, |b| > a$ (da Q nicht-reduziert) Division von b mit Rest durch 2a: $\exists t \in \mathbb{Z} : b = b' - 2ta, -a < b' \leq a$. $Q' = \begin{pmatrix} 1 & \cdot \\ t & 1 \end{pmatrix}$. $Q = [a, \underbrace{b + 2ta}_{b'}, c']$. $|Q'| = |b'| + a \leq a + \underbrace{|a|}_{=a(\text{ da } -a \leq a)}$

Dies ergibt Vollreduktionsalgorithmus red(Q), der \tilde{Q} berechnet mit $\tilde{Q} \approx Q \wedge \tilde{Q}$ vollreduziert. Wiederholte Anwendung von Q := Q' aus Fall I,II endet nach endlich vielen Schritten mit reduziertem $Q_1 \approx Q$. Falls Q_1 vollreduziert, so $\tilde{Q} := Q_1$.

Falls Q_1 nicht vollreduziert, so 2 Fälle für $Q_1 = [a, b, c]$

•
$$c = a$$
, aber $b < 0 : \tilde{Q} := \begin{pmatrix} \cdot & 1 \\ -1 & \cdot \end{pmatrix} . Q_1 = [a, -b, a]$, jetzt $-b > 0$

•
$$|b| = a$$
, also $b = -a < 0$. $\tilde{Q} = \begin{pmatrix} 1 & \cdot \\ 1 & 1 \end{pmatrix}$. $[a, -a, c] = [a, a, c], c' = a + b + c = c$ ist

vollreduziert (b' = a > 0).

Ziel: 2 vollreduzierte Formen der Disk Δ sind äquivalent \Leftrightarrow sie sind gleich. Es folgt: $Q \approx Q' \Leftrightarrow \text{red } Q = \text{red } Q'$. Daher gibt es einen Algorithmus, der entscheidet, ob $Q \approx Q' \vee Q \not\approx$

Hilfsatz:

Q = [a, b, c] sei reduziert. Dann:

(i)
$$a = \min Q(\mathbb{Z}^2 \setminus 0)$$

(ii) Für
$$a < c$$
 ist $Q^{-1}(\{a\}) = \{\pm(1,0)\}$ (klar: $Q(\underline{x}) = Q(-\underline{x})$)
Für $0 \le b < a = c$ ist $Q^{-1}(\{a\}) = \{\pm(1,0),\pm(0,1)\}$. (Für $|b| = a = c$ (=1, da Q primitiv) $Q[1,\pm 1,1] = x^2 \pm yx + y^2 \Rightarrow \#Q^{-1}\{a\} = 6$)

$$|b| \le a \le c$$

$$(*) Q(x,y) = ax^2 + bxy + cy^2 \stackrel{(1)}{\ge} ax^2 - |bxy| - ay^2 \ge a(|x| - |y|)^2 + (2a - |b|)|xy| \ge a(\underbrace{(|x| - |y|)^2 + |xy|}_{\in \mathbb{Z}, \ne 0, \text{ wenn } (x,y) \ne 0, \text{ also } \ge 1}^{(4)}$$

Erinnerung:

 $Q = [a, b, c] \text{ reduziert } \Leftrightarrow |b| \leq a \leq c$

Vollreduziert: Falls $a = c \land b \neq 0 \lor a = c = |b|$, so $b > 0 \leadsto \text{Vollreduktionsalgorithmus red.}$

Sei
$$Q(x,y) = a \Rightarrow$$
 in (*) überall "c" $a < c \Rightarrow y = 0$ (sonst bei (1) >) "=" bei (4) \Rightarrow ($|x| - |y|$)² + $|xy| = 1 \Rightarrow (x,y) \in M = \{\pm(1,0), \pm(0,1), (\pm1,\pm1)\}$

Fall I:
$$Q^{-1}(a) = \{\pm(1,0)\}, \#Q^{-1}(a) = 2$$

Fall II:
$$a = c$$
, aber $|b| < a \Rightarrow 2a - |b| > a \Rightarrow = =$ " nur für $|xy| = 0$. $Q^{-1}(a) = \{\pm (1,0), \pm (0,1)\}$

Fall III:
$$a = c = |b|$$
, etwa $b > 0$, so $x^2 + xy + y^2 = 1$ von $(\pm 1, \pm 1)$ in M nur $\pm (1, -1)$ [dazu noch $\pm (1, 0), \pm (0, 1)$] $\Rightarrow \#Q^{-1}(a) = 6$

Folgerung: Sei Q, Q' vollständig reduziert und $Q \approx Q'$, so ist Q = Q'.

$$a = \min(Q(\mathbb{Z}^2 \setminus 0)) = \min(Q'(\mathbb{Z}^2 \setminus 0)) = a'.$$

Fall I:
$$a < c \land U = \begin{pmatrix} r & s \\ u & v \end{pmatrix}$$
 mit $U.Q = Q'.$ $a = Q(1,0) = Q'(1,0) = Q((1,0)U) = Q(r,s) \Rightarrow (r,s) = \pm (1,0) \Rightarrow s = 0, \pm U = \begin{pmatrix} 1 & 0 \\ 0(?) & 1 \end{pmatrix} = U.$ $Q' = (a,b+2au,*(?)), |b| \le a, Q' \text{ red. } |b'| = |b+2au| < a. \text{ Wegen } |b| < a \Rightarrow U = 0, \pm U = \begin{pmatrix} 1 & 0 \\ 0(?) & 1 \end{pmatrix} \Rightarrow Q = Q'$

Fall II: $a=c, |b| \neq a$. $\#Q^{-1}(a)=4 \Rightarrow$ II liegt auch für Q' vor $\Rightarrow a=a'=c' \Rightarrow b^2=b'^2 \Rightarrow b'=\pm b$, aber nur b möglich, da Q' vollständig reduziert $\Rightarrow Q'=Q$.

Fall III:
$$a = c = |b| = b \Rightarrow$$
 Fall II auch für $Q' \Rightarrow a = a' = c' = b'$

Satz 8.4 (Hauptsatz über definite QFen)

Sei $\Delta \in \mathbb{Z}, \Delta \equiv 0, 1 \mod 4, \Delta < 0$.

- (i) Zwei Formen Q, Q' mit Diskriminante Δ sind nau dann eigentlich äquivalent, wenn red (Q) = red (Q') (mit VollredAlgo red)
- (ii) Die vollreden Formen der Diskriminanten Δ bilden ein volles Vertretersystem aller eigentlichen Formenklassen, insbesondere ist die Klasse zu U $h(\Delta)$ endlich.

Beweis

- (i) $\exists U, U'$ mit red Q = U.Q, red $Q' = U'.Q'(U, U' \in Sl_2(\mathbb{Z}))$ können in red berechnet werden. Multipliziere die Matrizen bei den Reduktionsschritten, $Q \approx \operatorname{red} Q, Q' \approx \operatorname{red} Q'$. $Q \approx Q' \Leftrightarrow \operatorname{red} Q \approx \operatorname{red} Q' \overset{\text{Folgerung}}{\Leftrightarrow} \operatorname{red}(Q) = \operatorname{red}(Q')$.
- (ii) Q reduziert $\Leftrightarrow |b| \leq a \leq c \Rightarrow b^2 \leq ac \Rightarrow |\Delta| = -\Delta = -b^2 + 4ac \geq -b^2 + 4b^2 = 3b^2$. Abschätung: $|b| \leq \sqrt{\frac{|\Delta|}{3}} \Rightarrow$ Nur endlich viele reduzierte Qs. Dies ergibt Algorithmus zur Bestimmung von $h(\Delta)$: $h(\Delta) = \#$ vollreduzierten Formen zu Δ . Reduzierte Form $Q = [a, b, c] \Leftrightarrow |b| \leq \sqrt{\frac{|\Delta|}{3}}, \equiv \Delta \mod 2$, da $b^2 \equiv \Delta \mod 4$. $|b| \leq a \leq c \leq ac = \frac{b^2 \Delta}{4}$. Stelle alle diese (a, b, c) auf, streiche die nicht vollreduzierten.

$$\text{Für } \Delta < 0 \text{ gilt: } h(\Delta) = 1 \Leftrightarrow \Delta \in \{-3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -163\}$$

Beweis im Netz!

Satz 8.6 (Siegel)

Für negative Diskriminanten Δ gilt $\lim_{|\Delta| \to \infty} h(\Delta) = \infty$

 $(\Rightarrow$ Für jedes feste $\hat{h} \in \mathbb{N}$ gibt es ∞ viele Δ mit $h(\Delta) = \hat{h}$.)

Gauß definiert eine Verknüpfung (Komposition) zweier Formen $Q_1, Q_2 \Rightarrow Cl(\Delta) = \text{Menge aller Formenklassen wird (endliche abelsche Gruppe "Klassengruppe" genannt.$

 \sim viele Vermutungen, wenige Sätze bis heute Gaußsche Geschlechtertheorie ersetzt $h(\Delta) = 1$ durch etwas schwächere Bedingung.

8.5 Reduktion indefiniter Formen

Vor: $Q = [a, b, c], \Delta = b^2 - 4ac > 0, \sqrt{\Delta} \notin \mathbb{Q}$ (Δ kein Quadrat in \mathbb{Z}) [aber $a, c \neq 0$] Ärger: Theorie viel komplizierter als bei $\Delta < 0$

Definition

- (i) Q heißt <u>halbreduziert</u> $\Leftrightarrow \sqrt{\Delta} |2a| < b < \sqrt{\Delta}$
- (ii) Q heißt reduziert $\Leftrightarrow 0 < b < \sqrt{\Delta} \land \sqrt{\Delta} b < |2a| < \sqrt{\Delta} + b$

Satz 8.7 (Reduktionsungleichungen)

Für eine reduzierte Form Q = [a, b, c] gilt:

$$0 \stackrel{(1)}{<} b \stackrel{(2)}{<} \sqrt{\Delta}$$

$$\sqrt{\Delta} - b \stackrel{(3)}{<} |2a| \stackrel{(5)}{<} \sqrt{\Delta} + b$$

$$\sqrt{\Delta} - b \stackrel{(4)}{<} |2c| \stackrel{(6)}{<} \sqrt{\Delta} + b$$

Q ist genau dann reduziert, wenn (2), (3), (4) gelten.

Beweis

Abschätzen → Netz

Folgerung 8.8 (Reduktionskriterium)

Sei Q halbreduziert. Dann ist Q reduziert, wenn eine der folgenden Ungleichungen gilt:

- (i) $|a| \le |c|$
- (ii) $\sqrt{\Delta} b < |2c|$

Beweis

- (2), (3) ok bei halbreduzierten Formen
 - (ii) fordert (4)

(i) Bei
$$|a| \le |c| : (3) \Rightarrow (4)$$

Bemerkung: Zu $Q = [a, b, c] \exists ! t \in \mathbb{Z} \text{ mit } Q' = \begin{pmatrix} \cdot & 1 \\ -1 & t \end{pmatrix}$. Q halbreduziert, denn $Q' = [\underbrace{c}_{=a'}, \underbrace{-b + 2ct}_{=b'}, ct^2 - \underbrace{-b + 2ct}_{=a'}, ct^2 - \underbrace$

Zu erreichen. $\sqrt{\Delta} - \underbrace{|2a'|}_{|2c|} < b' < \sqrt{\Delta} \exists !t, \text{ so dass das stimmt.}$

Benennungen:

- (i) Q' = [a', b', c'] heißt rechter (linker) Nachbar von Q = [a, b, c], wenn gilt: $b + b' \equiv 0 \mod 2c$ und a' = c (a = c') und Q' halbreduziert.
- (ii) $T =: T_Q$ aus Bew (oder Bem?) heiße <u>Nachbarmatrix</u> (also $Q' = T_Q.Q$)

Leicht zu sehen: Jede QF hat je genau einen reuzierten rechten bzw. linken Nachbarn.

Reduktionsalgorithmus:

Wiederhole das Bilden des rechten Nachbars so lange, bis reduzierte Form erreicht ist.

Wieso terminiert? Ist Q' = [c, -b + 2ct, c'] nicht-reduziert, so muss (i) im Reduktionskriteriumg nicht vorliegen, d.h. |a'| = |c| > |c'| (für Q'). Der Koeffizient |c| kann nicht unendlich oft verkleinert werden.

Satz 8.9 (Nachbarreduktionssatz)

- (i) Ist Q = [a, b, c] reduziert, so ist auch der rechte Nachbar Q' von Q reduziert und es ist sign(a) = -sign(a')
- (ii) Es gibt nur endlich viele reduzierte Formen.

Beweis

- (i) Abschätzen → mühsam
- (ii) Klar. Nur endlich viele b zu Δ . Nur endlich viele a, c laut Ungleichungen zu $B \Rightarrow \text{Algorithmus}$ zur Aufstellung aller reduzierten Formen.

 $\Delta = -1$ bzw $\Delta = -4m, m \in \mathbb{N}, qf, 2 \nmid m$. Dann: Formen zu Δ stellen $p \in \mathbb{P}$ dar mit $p \mid m$ kann zur Faktorisierung von m ausgenutzt werden. Hierzu schneller, hochgezüchteter Algorithmus von Shanks:

WH: Q indefinit, $\Delta > 0, \sqrt{\Delta} \notin \mathbb{Q}$

1. Q = [a, b, c] halbreduziert $\Leftrightarrow 0 < b < \sqrt{\Delta}, \sqrt{\Delta} - b < |2a| < \sqrt{\Delta} + b$. Rechter (halbreduzierter) Nachbar von Q ist $Q' = [a', b', c'], Q' = \begin{pmatrix} \cdot & 1 \\ -1 & t \end{pmatrix} \cdot Q, t$ mit $\sqrt{\Delta} - |2c| < -bt2ct < \sqrt{\Delta}$. Also $t = \text{sign}(c) \cdot \lfloor \frac{\sqrt{\Delta} + b}{|2c|} \rfloor$.

Algorithmus: Wiederholtes Nachbarbilden ergibt (irgendwann) reduzierte Form.

Sei $Q = Q_0$ reduziert. $Q_{j+1} = Q'_j (j \ge 0)$. Da es nur endlich viele reduzierte Formen gibt, muss vorkommen: $\exists k, l \in \mathbb{N}, l > 0$ mit $Q_k = Q_{k+l}$.

Der reduzierte linke Nachbar ist $Q_{k-1} = Q_{kl-1}$ (da eindeutig bestimmt, usw gibt $Q_0 = Q_l$ (mit l > 0)). Ist hier l minimal, so $2 \mid l$ (wegen sign(a') = -sign(a))), und $Q_0, ..., Q_{l-1}$ sind alle verschieden.

Benennung:

$$\zeta(Q) = [Q_0, Q_1, ..., Q_{l-1}]$$
 heißt Zyklus von Q (Q reduziert)

Klar: Die Menge der reduzierten Formen zerfällt disjunkt in Zyklen.

Satz 8.10 (Satz von Mertens)

Sei $U \in Sl_2(\mathbb{Z}), U \neq \pm 1_2$. Die Formen Q und $\tilde{Q} := U.Q$ seien reduziert. Dann ist eine der Matrizen $\pm U, \pm U^{-1}$ ein Produkt von Nachbarmatrizen aufeinanderfolgender rechter Nachbarn. Insbesondere sind Q und \tilde{Q} im selben Zyklus.

Folgerung 8.11

Für 2 definite QFen Q_1, Q_2 sei $\Delta > 0$ usw (<- kein Quadrat) und es gilt: $Q_1 \approx Q_2 \Leftrightarrow \operatorname{red}(Q_2)$ ist im Zyklus $\zeta(\operatorname{red}(Q_1)) \Leftrightarrow \zeta(\operatorname{red}(Q_2)) = \zeta(\operatorname{red}(Q_1))$.

Klar:

- 1. Es gibt einen Algorithmus, der entscheidet, ob $Q_1 \approx Q_2$ oder nicht
- 2. Die Zyklen entsprechen den Formklassen zu $\Delta \Rightarrow$ ist Algorithmus, der $h(\Delta)$ berechnet (stelle alle reduzierten Formen auf, berechne Zyklen!).

Zum Beweis des Satzes von Merteus: Viele mühsame Abschätzungen.

$$U.Q = (-U).Q, \operatorname{da} U = \begin{pmatrix} r & s \\ u & v \end{pmatrix}, -U = \begin{pmatrix} -r & -s \\ -u & -v \end{pmatrix}, 1 = \operatorname{det} U = rv - us. \ U^{-1} = \begin{pmatrix} v & -s \\ -u & r \end{pmatrix}, -U^{-1} = \begin{pmatrix} -v & s \\ u & -r \end{pmatrix}.$$

Die richtige Wahl entscheidet sich für passende positive Vorzeichen.

Ohne Einschränkung
$$r > 0, v > 0$$
, setzte $U' = UT_Q^{-1} = \begin{pmatrix} r' & s' \\ u' & v' \end{pmatrix}$. Man zeigt: IU, IU^{-1} keine

Nachbarmatrix $\neq \pm 1 \Rightarrow 0 < r' < r$

Induktionshypothese für $U', Q' \Rightarrow$ Behauptung.

Über $h(\Delta)$ und Struktur der Klassengruppe bei $\Delta > 0$ "fast" keine allgemeine Sätze bekannt. Unbekannt z.B: existieren unendlich viele Δ mit $h(\Delta) = 1$?

8.6 Automorphismengruppen

Definition

- (i) $U \in Sl_2(\mathbb{Z})$ heißt eigentlicher Automorphismus der QF $Q = [a,b,c] :\Leftrightarrow U.Q = Q.$
- (ii) $Aut_+(Q) = \{U \in Sl_2(\mathbb{Z}) : U.Q = Q\}$ (ist UGR von $Sl_2(\mathbb{Z}) \sim$ Untergruppenkriterium) heißt eigentliche Automorphismengruppe von Q.

Beweis

(i) $\Delta > 0 \Rightarrow \operatorname{Aut}_+(Q)$ abelsch und $\#\operatorname{Aut}(Q) = \infty.Q(\Delta) = k, U \in \operatorname{Aut}_+(Q) \Rightarrow k = U.Q(\underline{x}) = Q(\underline{x}U)$. Mit \underline{x} stellt auch $\underline{x}U$ die Zahl k dar \Rightarrow existieren unendlich viele $\underline{y} \in \mathbb{Z}^2 : Q(\underline{y}) = k$. Man kann zeigen: Es gibt $\underline{x}_1, ...\underline{x}_l, l \in \mathbb{N}_+$, so dass $\{\underline{x} | Q(\underline{x}) = k\} = \underline{x}_1 G \dot{\cup} ... \dot{\cup} \underline{x}_l G$ mit $G = \operatorname{Aut}_+(Q)$ (falls k überhaupt darstellbar)

Definition

 $[Q_0,...,Q_{2l-1}]=\zeta(Q),Q=Q_0$ reduziert. Die Matrix $-T_Q,T_Q=:R$ heißt <u>Doppelnachbarmatrix</u> zu Q (Q' rechter Nachbar). $B:R_{2l-2}\cdot...\cdot R_2\dot{R}_0$ heißt <u>Grundmatrix</u> zu Q.

Klar nach Definition: B.Q = Q, d.h. $B \in \text{Aut}_+(Q)$. Betrachte $V \in \text{Aut}_+(Q)$, so $\pm V, \pm V^{-1}$ (eines davon) nach Satz von Mertes ein Produkt von Nachbarmatrizen.

 \Rightarrow Eine dieser Matrizen ist Potenz von B! [würde sonst irgendwo mitten im Zyklus stehenbleiben]

Satz 8.12

 $\operatorname{Aut}_+(Q) = \{ \pm B^m | m \in \mathbb{Z} \}$ ist sogar abelsch.

Wieso unendlich? Man zeigt leichct: R hat alle Koeffizienten $> 0 \Rightarrow B$ auch \Rightarrow Alle Matrizen $\pm B^m$ sind verschieden.

Es gibt auch Aussagen für nicht-reduziertes Q. Ist $Q' = V.Q, V \in Sl_2(\mathbb{Z})$, so ist die Abbildung $\phi: \operatorname{Aut}_+(Q) \to \operatorname{Aut}_+(Q'), U \mapsto VUV^{-1} =: \phi(U)$ ein Isomorphismus von Gruppen.

Moderne Theorie: Theorie der QFen zu Δ weitgehend äquivalent zur algZT in quadratischem "Zahlkörper" $K=Q(\sqrt{\Delta})$. Norm $n(a+b\sqrt{\Delta})=(a+b\sqrt{\Delta})(a-b\sqrt{\Delta})=a^2-b^2\Delta$ ist QF für a,b.