ENV 503: Statistics for Bioinformatics

Homework Set #2

Due: September 12, 2018

Instructions:

Use R to complete this assignment.
Assignment is to be submitted via Blackboard.

Use the R dataset airquality to answer all questions.

1. Get familiar with the dataset by using ?, str(), and head().

?(airquality)

New York Air Quality Measurements

Description

Daily air quality measurements in New York, May to September 1973.

Usage

airquality

Format

A data frame with 154 observations on 6 variables.

```
[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1--12)
[,6] Day numeric Day of month (1--31)
```

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September 30, 1973.

- ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island
- Solar R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from 0800 to 1200 hours at Central Park
- Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport
- Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data) and the National Weather Service (meteorological data).

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) *Graphical Methods for Data Analysis*. Belmont, CA: Wadsworth.

Examples

>

```
require (graphics)
pairs(airquality, panel = panel.smooth, main = "airquality data")
 head(airquality)
     Ozone Solar.R Wind Temp Month Day
  123456
         41
                   190
                          7.4
                                   67
                                                  1
2
3
                   118
                         8.0
                                   72
         36
         12
                   149 12.6
                                   74
                   313 11.5
                                   62
                                                  4
         18
                    NA 14.3
         \mathsf{N}\mathsf{A}
                                   56
         28
                    NA 14.9
  str(airquality)
 'data.frame': 153 obs. of 6 variables:
$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
                         190 118 149 313 NA NA 299 99 19 194
  $ Solar.R: int
              : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...

: int 67 72 74 62 56 66 65 59 61 69 ...

: int 5 5 5 5 5 5 5 5 5 ...

: int 1 2 3 4 5 6 7 8 9 10 ...
  $ Wind
    Temp
  $ Month : int
  $ Day
```

2. Plot a histogram for ozone, temperature, wind speed, and solar radiation. Describe each distribution.

Histogram of airquality\$Ozone

This distribution has skewed right since its longer tail is to the right of the mode. Also, It has outliers.

This is a bimodal distribution because it has two modes or value of high frequency.

Histogram of airquality\$Wind

This is a symmetric distribution because it's left, and right side are looking almost similar.

Histogram of airquality\$Solar.R

This is a bimodal distribution because it has two mode with high frequency than others.

3. Generate summary statistics for each variable using summary(). Which variable has the most missing values?

ans. summary(airquality)

Ozone	Solar.R	Wind	Temp
Min. : 1.00	Min. : 7.0	Min. : 1.700	Min. :56.00
1st Qu.: 18.00	1st Qu.:115.8	1st Qu.: 7.400	1st Qu.:72.00

```
Median : 31.50
                 Median :205.0
                                  Median : 9.700
                                                    Median :79.00
Mean
       : 42.13
                         :185.9
                                  Mean
                                          : 9.958
                                                    Mean
                                                            :77.88
                 Mean
3rd Qu.: 63.25
                 3rd Qu.:258.8
                                  3rd Qu.:11.500
                                                    3rd Qu.:85.00
Max.
       :168.00
                 Max.
                         :334.0
                                  Max.
                                          :20.700
                                                    Max.
                                                            :97.00
NA's
       :37
                 NA's
                         :7
    Month
                      Day
       :5.000
                        : 1.0
Min.
                Min.
1st Qu.:6.000
                1st Qu.: 8.0
Median :7.000
                Median:16.0
       :6.993
                        :15.8
Mean
                Mean
                 3rd Qu.:23.0
3rd Qu.:8.000
                        :31.0
       :9.000
Max.
                Max.
```

Ozone has the most missing values.37

4. Generate side-by-side box plots showing the distribution of each of these variables separately by month. How does each appear to vary by month?

Figure: Side-by-side boxplot for ozone.

Figure: Side-by-side boxplot for Solar radiation.

Figure: Side-by-side boxplot for wind.

Figure: Side-by-side boxplot for Temperature.

5. Use aggregate() to calculate the mean and standard deviation of each of these variables separately by month. (Hint: the keyword to use for the mean is "mean", for standard deviation is "sd")

aggregate(Ozone~Month,airquality,mean)

	Month	Ozone
1	5	23.61538
2	6	29.44444
3	7	59.11538
4	8	59.96154
5	9	31.44828

aggregate(Ozone~Month,airquality,sd)

aggregate(Solar.R~Month,airquality,mean)

```
Month Solar.R
1 5 181.2963
2 6 190.1667
3 7 216.4839
```

```
8 171.8571
5
      9 167.4333
aggregate(Solar.R~Month,airquality,sd)
         Solar.R
 Month
      5 115.07550
2
      6 92.88298
3
      7 80.56834
4
      8 76.83494
5
      9 79.11828
aggregate(Wind~Month,airquality,mean)
 Month
             Wind
      5 11.622581
2
      6 10.266667
3
      7
        8.941935
4
      8 8.793548
5
      9 10.180000
aggregate(Wind~Month,airquality,sd)
 Month
            Wind
      5 3.531450
2
      6 3.769234
3
      7 3.035981
4
      8 3.225930
5
      9 3.461254
aggregate(Temp~Month, airquality, mean)
 Month
            Temp
      5 65.54839
2
      6 79.10000
3
      7 83.90323
4
      8 83.96774
5
      9 76.90000
aggregate(Temp~Month,airquality,sd)
  Month
            Temp
1
      5 6.854870
2
      6 6.598589
3
      7 4.315513
4
      8 6.585256
5
      9 8.355671
```