## Experimental design

### Goal

- To answer your research question, given logistical constraints.
- You can't do it all!



## Types of questions

- What does the transcriptome look like?
- Which genes are on/off?
- What allelic variants are present?
- How much is each transcript expressed?
- How do expression levels vary?
- What are the most differentially expressed genes?
- How much alternative splicing is there?
- ... etc.

## Types of questions

- What does the transcriptome look like?
- Which genes are on/off?
- What allelic variants are present?
- How much is each transcript expressed?
- How do expression levels vary?
- What are the most differentially expressed genes?
- How much alternative splicing is there?
- ... etc.

## Differential expression analysis

- Statistical power
  - The ability to distinguish differential expression due to treatment effect from background noise



- 1) Poisson counting error
  - Uncertainty in count-based measurements
  - Disproportionately large for low-count data



- 1) Poisson counting error
  - Uncertainty in count-based measurements
  - Disproportionately large for low-count data



 Dynamic range = spread between highest and lowest counts in a dataset



 Expression landscape = magnitude and proportion of expression differences between samples



- 2) Technical variance
  - Imprecision observed between repeated measurements of the same sample

#### 2) Technical variance

- Imprecision observed between repeated measurements of the same sample
- Multiple sources:
  - Random sampling noise (e.g. <0.01% RNA sequenced)</li>
  - Sample collection, storage, and processing
  - Library preparation: PCR biases, sample handling
  - Sequencing: flow cell and lane biases

#### Lane bias

#### Confounded design



- Systematic variations between sequencing lanes
- Actually lane bias at every step that occurs on plates (e.g. RNA isolation, library prep)

Auer & Doerge 2010

#### 3) Biological variance

- Natural variation observed among samples due to environmental or genetic differences
- Usually the greatest source of within-group variance
  - Lower for cell-lines and inbred animal strains (BCV≤0.2)
  - Higher for wild populations (BCV>0.3)

\*BCV = Biological Coefficient of Variation

- Tend to increase with sample size, transcriptome size and complexity
- How can we control for it?

# Controlling for variation

- 1) Randomization
- 2) Blocking
- 3) Replication

... To reduce confounding sources of variation and more accurately estimate variation that is not of interest (i.e. error)



Ronald Fisher
"The Design of Experiments"
(1935)

#### Randomization

 Randomize treatments during sample collection, storage, handling, and processing whenever possible

## Blocking

 When every level of the factor of interest occurs the same number of times with the "nuisance" factor

#### Example:

- Treatment = of interest
- Sequencing lane = nuisance

# Blocking

#### Confounded design



## Blocking

#### Confounded design



#### Balanced blocked design



Auer & Doerge 2010

## Replication

#### Technical replicates

- No longer necessary for standard experiments
- RNA-seq is highly replicable
- Biological replicates
  - The only way to quantify biological variation
  - Improves estimates of all sources of variance

#### Balanced blocked design



## + Sequencing depth

- Reduces Poisson noise and random sampling error
- Improves detection for transcripts that are lowly expressed, have low fold changes, or higher variance
- BUT:
  - Advantages plateau at an average of ~10 mapped reads per transcript
  - 5-20 million mapped reads generally sufficient

### Power of DE detection



### Other factors

Time





Cost

Manpower





Tools

# Less time/manpower

- Model organism
- High quality RNA
- Plain treatment/control setup or simple time-series
- Dedicated person with support system



## More time/manpower

- Non-model organism
- Low quality RNA
- Complex multifactorial designs
- No single dedicated person/lack of support



### **Toolkit**

- Tools
  - Model organisms
    - Genome information
    - Several pipelines
    - Lots of tools for cool visualizations
  - Non-model organisms
    - No genome (or have to make your own)
    - Few tools designed for this
- Computing power
  - One strong computer (model organism)
  - Access to a cluster



- Affects choice of:
  - Biological replicates
  - Technical replicates
  - Sequencing depth
  - Sequencing technology
  - Computing resources
  - Manpower
  - ... and more!



- Tradeoff between sequencing depth and replication
  - More power comes from biological replication!

- Tradeoff between sequencing depth and replication
  - More power comes from biological replication!



- Tradeoff between sequencing depth and replication
  - More power comes from biological replication!



## All aspects are connected

- Sample preparation must reflect experimental design!
- Otherwise this will be your outcome:



Scenario I – Exploratory, unlimited

 Question: How do cod respond to temperature during early development?



#### Scenario I – Exploratory, unlimited

- Question: How do cod respond to temperature during early development?
- Design your experiment:
  - Treatments?
  - # replicates?
  - Sequencing depth?
  - Analysis pipeline?
  - Type I error rate?

#### Scenario I – Exploratory, unlimited

- Question: How do cod respond to temperature during early development?
- Illumina Hiseq 4000
  - Cost per lane = 22,000 NOK
  - Reads per lane = 280 million
- How much would your experiment cost?

Scenario 2 – Exploratory, limited

- Question: How do cod respond to temperature during early development?
- Budget = 66,000 NOK

#### Scenario 2 – Exploratory, limited

- Question: How do cod respond to temperature during early development?
- Budget = 66,000 NOK
- Design your experiment:
  - Treatments?
  - # replicates?
  - Sequencing depth?

## Technical biases

Make a plate map

#### Scenario 3 - Aquaculture

- Question: What genes are the most differentially expressed in response to temperature in cod?
- How might you change your design?

Scenario 4 - Fisheries management in response to climate change

- Question: What genes are involved in temperature adaptation in cod?
- How might you change your design?

#### Scenario 5 – Model species

- Question: What genes are associated with temperature adaptation in zebrafish?
- How might you change your design?

**Exercise: Scotty** 

## Scotty

 Online tool for calculating power in RNA-seq experiments based on model or pilot datasets

#### BIOINFORMATICS APPLICATIONS NOTE

Vol. 29 no. 5 2013, pages 656-657 doi:10.1093/bioinformatics/btt015

Gene expression

Advance Access publication January 12, 2013

Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression

Michele A. Busby, Chip Stewart, Chase A. Miller, Krzysztof R. Grzeda and Gabor T. Marth\* Department of Biology, Boston College, Chestnut Hill, MA 02467, USA Associate Editor: Ivo Hofacker

## Scotty

- Go to: <a href="http://scotty.genetics.utah.edu">http://scotty.genetics.utah.edu</a>
- Run optimization of:
  - I) Model dataset (Human liver Blekhman)
  - 2) Nonmodel dataset (Atlantic cod larvae Oomen) ~/data/RNAseq/scotty/Trinity\_genes.counts.matrix.cvsd28t13.scotty
- Evaluate and compare results

#### Rules of thumb

- 1) Average transcript coverage >10
- 2) No less than 3 biological replicates
- 3) Increase # replicates rather than sequencing depth
- 4) Conduct a pilot sequencing experiment!

#### **MOLECULAR ECOLOGY**

Molecular Ecology (2016) 25, 1224-1241

doi: 10.1111/mec.13526

#### **INVITED REVIEWS AND SYNTHESES**

The power and promise of RNA-seq in ecology and evolution

ERICA V. TODD,\* MICHAEL A. BLACK† and NEIL J. GEMMELL\*

\*Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand, †Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand