第二章 关系数据库

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数

关系数据结构:关系、二维表

关系的 完整性约束 实体完整性 主属性非空

参照完整性 外码

用户自定义完整性

此时外码需为非主属性

主码值

同目同域

传统的集合运算

并U、交∩、差-笛卡尔积×

关系代数

专门的关系运算

选择σ

投影Ⅱ

连接 🔀

 $R \bowtie S$

邾 4 贝

西南交通大学

《数据库原理及应用》

(三) 连接运算 (Join)

从两个关系R和S的笛卡尔积中选择属性间满足

一定条件的元组构成新的关系。

R S A为R的属性组,B为S的属性组。

若R有n列,S有m列,R与S连接后的关系有n+m列。

- □ 两类常用连接运算
- 1.等值连接

- ■比较运算符为等号 "="。
- 从R×S中选取A,B属性值相等的元组。

 \boldsymbol{R}

$oldsymbol{A}$	В	C
a_1	\boldsymbol{b}_1	5
a_1	\boldsymbol{b}_2	6
a_2	b_3	8
a_2	b_4	12

\boldsymbol{S}		
В	E	
b_1	3	
b_2	7	
b_3	10	
b_3	2	
b_5	2	

等值连接 $R \bowtie S$ R.B=S.B

A	R.B	C	S.B	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b ₃	10
a_2	b_3	8	b_3	2

2.自然连接

特点: 一种特殊的等值连接

- ■连接中用于比较的分量必须属于相同的属性组
- 在结果中把重复的属性去掉

设R和S具有相同的属性组B,则R与S的自然连接记为:

 $\mathbf{R} \bowtie \mathbf{S}$

R		
$oldsymbol{A}$	B	\boldsymbol{C}
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	$b_{\scriptscriptstyle A}$	12

S		
$\begin{bmatrix} B \end{bmatrix}$	$oldsymbol{E}$	
b_1	3	
b_2	7	
b_3	10	
b_3	2	
b_5	2	

自然连接 $R \bowtie S$

$oldsymbol{A}$	B	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b ₃	8	2

例:检索学习2号课程的学生学号与姓名

Student (Sno, Sname, Ssex, Sage, Sdept) SC(Sno,Cno,Grade)

■ 此时课程与姓名属性不在一张表内 Student 🖂 SC

(Sno, Sname, Ssex, Sage, Sdept, Cno, Grade)

- 找出学习2号课程的学生 $\sigma_{Cno=2}$ (Student \bowtie SC)
- 然后再列出其学号与姓名

$$\prod_{\text{Sno,Sname}} (\sigma_{\text{Cno=2}} (\text{Student} \times \text{SC}))$$

下列关系代数操作中,要求两个运算对象其

属性结构完全相同的是______D____。

- A.笛卡儿积、连接
- B.投影、选择
- C.自然连接、除
- D.并、交、差

題空凤題

- 3、自然联接是构成新关系的有效方法。一般情况下,当对关系R和S自然联接时,要求R和S含有一个或者多个共有的(C)
- A. 记录 B. 行 C.属性 D.元组
- 4、关系模式和元组的集合通称为 (关系)。
- 5、关系代数是关系操纵语言的一种传统表示方式,它以集合代数为基础,它的运算对象和运算结果均为(关系)。

作业:第二章课后作业4、6、7题。

注意:第6题只用关系代数语言完成,且(5)小题不做

第三章 关系数据库标准语言SQL

- 3.1 SQL概述
- 3.2 学生-课程数据库
- 3.3 数据定义
- 3.4 数据查询
- 3.5 数据更新
- 3.6 视图

3.1 SQL概述

3.1.1 SQL的产生与发展

- 口 由于关系代数太数学,难以被普通用户接受,于是1973 年IBM 开展了System R的研制,SQL诞生
- □ 1986, ANSI确认SQL为数据库系统的工业标准, 简称SQL-86
- □ 1987, ISO将SQL语言作为关系数据语言的国际标准
- □ SQL-89, SQL-92, SQL-99
- □ SQL-2003, SQL-2008, SQL-2011, SQL-2016

目前没有一个DBMS能够支持SQL 标准的所有概念和特性

3.1.2 SQL的特点

- □综合统一(数据定义、操纵和控制;操作符统一)
- 口高度非过程化 (提出做什么,而无须指明怎么做)
- 口面向集合的操作方式
- 口以同一种语法结构提供两种使用方式
 - 交互式SQL
 - **嵌入式SQL**

SQL功能	动词
数据定义	Create, Drop, Alter
数据查询	Select
数据修改	Insert, Update, Delete
数据控制	Grant, Revoke

口语言简洁, 易学易用 9个动词

3.1.3 SQL的基本概念

□支持SQL的RDBMS基本也是三级体系结构,但术 语与传统的关系模型术语不同。

- 模式对应基本表
- 外模式对应视图和部分基本表
- 内模式对应存储文件

3.1.3 SQL的基本概念

基本表和视图都是关系

□ 基本表

- 本身独立存在的表;
- SQL中一个关系就对应一个基本表;
- 一个存储文件可以存放一个或多个基本表;

□ 视图

- 从基表或其它视图中导出来的表,是虚表;
- 一个基表上可以建立多个视图;
- 也可以多张表为基础建立一个视图。

3.2 学生-课程数据库

学生Student

课程Course

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200211	李永	男	20	CS
200212	刘成	女	19	CS
200213	王敏	女	18	MA
200214	张力	男	19	IS

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	2	3
2	数据结构		3
3	操作系统	4	3
4	数据处理		2

选课SC

学号Sno	课程号Cno	成绩Grade
200211	1	92
200211	2	88
200213	1	78

3.3 数据定义

3.3.1 数据库的定义与删除

1、定义数据库 CREATE DATABASE <数据库名称>

```
SQL Server 定义数据库的语句:
CREATE DATABASE <数据库名称>
     [ON [ <文件属性> [, ... n]]
     [LOG ON {<文件属性>[,...n]}]
<文件属性>::=
     ([NAME='逻辑文件名',]FILENAME='物理文件名
     [, SIZE=数据文件的初始容量]
     [, MAXSIZE={最大容量|UNLIMITED}]
     [,FILEGROWTH=文件每次的增量])
```

3.3 数据定义

例: 定义数据库XSCJ

SQL Server 有四个系统数据库

CREATE DATABASE XSCJ ON

(NAME= 'XSCJ', FILENAME='D:\SQL\XSCJ.mdf',

SIZE=10, MAXSIZE=50, FILEGROWTH=5)

LOG ON

(NAME= 'XSCJlog', FILENAME='D:\SQL\XSCJlog.ldf')

2、删除数据库

删除数据库管理系统中该数据库使用的磁盘文件。

DROP DATABASE 数据库名

3.3.2 基本表的定义、删除与修改

1、定义基本表

关系模型中"域"的概念用数据类型来实现

Create Table <表名> (<列名> <数据类型>[列级完整性约束]

[, <列名> <数据类型>[列级完整性约束]...]

[, <表级完整性约束>]);

- □ 主码约束: Primary Key(<列名>)
 - 一个表只能有一个主码约束。主码值非空唯一。
- 口 外码 (参照完整性) 约束:

Foreign Key(<列名>)References<表名>(<列名>)

SQL中的数据类型

□ 数值型

- integer 长整数。integer可简写为int。
- smallint 短整数。
- float(n) 浮点数,精度至少为n位数字。

□ 字符串型

- char(n) 长度为n的定长字符串。
- varchar (n) 可变长字符串,其最大长度为n。

□时间型

- date 日期,包含年、月、日,形式为YYYY-MM-DD。
- time 时间,包含时、分、秒,其形式为HH: MM: SS。

- 商用DBMS的数 据类型有差异
- 和高级语言的数据类型大体一致

3.3 数据定义

例:建立3.2节中的表Student,由学号Sno,姓名Sname,性别

Ssex,年龄Sage属性,所在系Sdept组成,其主码为Sno。

Create Table Student (

Sno char(8) Primary Key,

Sname char(20),

列级主码约束

Ssex char(2),

Sage smallint,

Sdept char(5))