

MM54HC595/MM74HC595 8-Bit Shift Registers with Output Latches

General Description

This high speed shift register utilizes advanced silicon-gate CMOS technology. This device possesses the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL leads

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has 8 TRI-STATE® outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

The 54HC/74HC logic family is speed, function, and pin-out compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Low quiescent current: 80 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- 8-bit serial-in, parallel-out shift register with storage
- Wide operating voltage range: 2V-6V
- Cascadable
- Shift register has direct clear
- Guaranteed shift frequency: DC to 30 MHz

Connection Diagram

Dual-In-Line Package

TL/F/5342-1

Order Number MM54HC595 or MM74HC595

Truth Table

RCK	SCK	SCLR	G	Function
Х	Х	Х	Н	Q _A thru Q _H =TRI-STATE
Х	Х	٦	L	Shift Register cleared Q'H=0
Х	1	Н	L	Shift Register clocked $Q_N = Q_{n-1}, Q_0 = SER$
1	X	Н	L	Contents of Shift Register transferred to output latches

TRI-STATE® is a registered trademark of National Semiconductor Corr

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 35 mA
DC V _{CC} or GND Current, per pin (I _{CC})	$\pm70~mA$
Storage Temperature Range (T _{STG})	$-65^{\circ}\text{C to } + 150^{\circ}\text{C}$

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW 260°C

Lead Temp. (T_L) (Soldering 10 seconds)

Operating Condition	ons		
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A)			
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Guaranteed Limits			
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
	Q' _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\begin{vmatrix} I_{OUT} \end{vmatrix} \le 4.0 \text{ mA}$ $\begin{vmatrix} I_{OUT} \end{vmatrix} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.2	3.98 5.48	3.84 5.34	3.7 5.2	V
	Q _A thru Q _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\begin{vmatrix} I_{OUT} \end{vmatrix} \le 6.0 \text{ mA}$ $\begin{vmatrix} I_{OUT} \end{vmatrix} \le 7.8 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
	Q' _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $\begin{vmatrix} I_{OUT} \end{vmatrix} \le 4 \text{ mA}$ $\begin{vmatrix} I_{OUT} \end{vmatrix} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
	Q _A thru Q _H	$egin{array}{c} V_{IN}\!=\!V_{IH} \mbox{ or } V_{IL} \ ig C_{OUT} \! ig \! \leq \! 6.0 \mbox{ mA} \ ig C_{OUT} \! \! \leq \! 7.8 \mbox{ mA} \ \end{array}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
l _{OZ}	Maximum TRI-STATE Output Leakage	$\frac{V_{OUT} = V_{CC}}{G} = V_{IH}$	6.0V		±0.5	±5.0	±10	μΑ
Icc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $V_{CC} = 5V, T_A = 25^{\circ}C, t_r = t_f = 6 \text{ ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency of SCK		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, SCK to Q _H [,]	C _L =45 pF	12	20	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, RCK to Q _A thru Q _H	C _L =45 pF	18	30	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time from $\overline{\mathbf{G}}$ to $\mathbf{Q}_{\mathbf{A}}$ thru $\mathbf{Q}_{\mathbf{H}}$	$R_L = 1 k\Omega$ $C_L = 45 pF$	17	28	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time from $\overline{\mathbf{G}}$ to $\mathbf{Q}_{\mathbf{A}}$ thru $\mathbf{Q}_{\mathbf{H}}$	$R_L = k\Omega$ $C_L = 5 pF$	15	25	ns
t _S	Minimum Setup Time from SER to SCK			20	ns
t _S	Minimum Setup Time from SCLR to SCK			20	ns
t _S	Minimum Setup Time from SCK to RCK (See Note 5)			40	ns
t _H	Minimum Hold Time from SER to SCK			0	ns
t _W	Minimum Pulse Width of SCK or RCK			16	ns

Note 5: This setup time ensures the register will see stable data from the shift-register outputs. The clocks may be connected together in which case the storage register state will be one clock pulse behind the shift register.

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 - 6.0 \text{V}, \ C_L = 50 \ \text{pF}, \ t_r = t_f = 6 \ \text{ns} \ \text{(unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Typ Guaranteed Limits			
f _{MAX}	Maximum Operating Frequency	C _L =50 pF	2.0V 4.5V 6.0V	10 45 50	6 30 35	4.8 24 28	4.0 20 24	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from SCK to Q' _H	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	58 83	210 294	265 367	315 441	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	14 17	42 58	53 74	63 88	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	10 14	36 50	45 63	54 76	ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from RCK to Q _A thru Q _H	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	70 105	175 245	220 306	265 368	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	21 28	35 49	44 61	53 74	ns ns
		$C_L = 50 \text{ pF}$ $C_1 = 150 \text{ pF}$	6.0V 6.0V	18 26	30 42	37 53	45 63	ns ns

AC Electrical Characteristics

 V_{CC} =2.0-6.0V, C_L =50 pF, t_r = t_f =6 ns (unless otherwise specified) (Continued)

Symbol	Parameter	Conditions	tions V _{CC}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		<u> </u>
t _{PHL} , t _{PLH}	Maximum Propagation Delay from SCLR to Q'H		2.0V 4.5V 6.0V		175 35 30	221 44 37	261 52 44	ns ns ns
t_{PZH} , t_{PZL}	$\begin{array}{c} \text{Maximum Output Enable} \\ \text{from \overline{G} to Q_A thru Q_H} \end{array}$	$R_L = 1 k\Omega$ $C_L = 50 pF$ $C_L = 150 pF$	2.0V 2.0V	75 100	175 245	220 306	265 368	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	15 20	35 49	44 61	53 74	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	13 17	30 42	37 53	45 63	ns ns
t _{PHZ} , t _{PLZ}	$\begin{array}{c} \text{Maximum Output Disable} \\ \text{Time from \overline{G} to Q_A thru Q_H} \end{array}$	$R_L = 1 k\Omega$ $C_L = 50 pF$	2.0V 4.5V 6.0V	75 15 13	175 35 30	220 44 37	265 53 45	ns ns ns
t _S	Minimum Setup Time from SER to SCK		2.0V 4.5V 6.0V		100 20 17	125 25 21	150 30 25	ns ns ns
t _R	Minimum Removal Time from SCLR to SCK		2.0V 4.5V 6.0V		50 10 9	63 13 11	75 15 13	ns ns ns
t _S	Minimum Setup Time from SCK to RCK		2.0V 4.5V 6.0V		100 20 17	125 25 21	150 30 26	ns ns ns
t _H	Minimum Hold Time SER to SCK		2.0V 4.5V 6.0V		5 5 5	5 5 5	5 5 5	ns ns ns
t _W	Minimum Pulse Width of SCK or SCLR		2.0V 4.5V 6.0V	30 9 8	80 16 14	100 20 18	120 24 22	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time, Clock		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time Q _A -Q _H		2.0V 4.5V 6.0V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise & Fall Time Q' _H		2.0V 4.5V 6.0V		75 15 13	95 19 16	110 22 19	ns ns ns
C _{PD}	Power Dissipation Capacitance, Outputs Enabled (Note 6)	$\overline{G} = V_{CC}$ $\overline{G} = GND$		90 150				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			15	20	20	20	pF

 $\textbf{Note 6:} \ \ C_{PD} \ \ \text{determines the no load dynamic power consumption,} \ P_D = C_{PD} \ V_{CC}^2 \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{and the no load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{however the notion of the load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{f + } I_{CC} \ V_{CC}, \ \text{however the notion of the load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{however the load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{however the load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{however the load dynamic current consumption,} \ I_S = C_{PD} \ V_{CC} \ \text{however the load dynamic current consumption,} \ I_S = C_{PD} \$

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: onlyeg@tevnz.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408