CS 2710 Foundations of AI Lecture 9

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 2710 Foundations of AI

Knowledge representation

Knowledge-based agent

Knowledge base

Inference engine

Knowledge base (KB):

- A set of sentences that describe facts about the world in some formal (representational) language
- Domain specific
- Inference engine:
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - Domain independent

CS 2710 Foundations of AI

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- Knowledge base represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

If

- 1. The stain of the organism is gram-positive, and
- 2. The morphology of the organism is coccus, and
- 3. The growth conformation of the organism is chains

Then the identity of the organism is streptococcus

Inference engine:

 manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form
- Key aspects of knowledge representation languages:
 - Syntax: describes how sentences are formed in the language
 - Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world
 - Computational aspect: describes how sentences and objects are manipulated in concordance with semantical conventions

Many KB systems rely on some variant of logic

CS 2710 Foundations of AI

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with values.
- The valuation (meaning) function V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

V: sentence \times interpretation \rightarrow {True, False}

Example of logic

Language of numerical constraints:

• A sentence:

$$x + 3 \le z$$

x, z - variable symbols (primitives in the language)

• An interpretation:

I:
$$x = 5, z = 2$$

Variables mapped to specific real numbers

• Valuation (meaning) function V:

$$V(x+3 \le z, \mathbf{I})$$
 is **False** for I: $x=5, z=2$

is ***True*** for I:
$$x = 5, z = 10$$

CS 2710 Foundations of AI

Types of logic

- Different types of logics possible:
 - Propositional logic
 - First-order logic
 - Temporal logic
 - Numerical constraints logic
 - Map-coloring logic

In the following:

- Propositional logic.
 - Formal language for making logical inferences
 - Foundations of **propositional logic**: George Boole (1854)

Propositional logic. Syntax

- Propositional logic P:
 - defines a language for symbolic reasoning
- Proposition: a statement that is either true or false
- Examples of propositions:
 - Pitt is located in the Oakland section of Pittsburgh.
 - France is in Europe.
 - It rains outside.
 - 2 is a prime number and 6 is a prime
 - How are you? Not a proposition.

CS 2710 Foundations of AI

Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols

Examples:

- P
- Pitt is located in the Oakland section of Pittsburgh.,
- It rains outside. etc.
- A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If A, B are sentences then $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or $(A \lor B) \land (A \lor \neg B)$ are sentences

CS 2710 Foundations of AI

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

- 1. Interpretation of propositional symbols and constants
 - Semantics of atomic sentences
- 2. Through the meaning of connectives
 - Meaning (semantics) of composite sentences

Semantic: propositional symbols

A propositional symbol

- a statement about the world that is either true or false Examples:
 - Pitt is located in the Oakland section of Pittsburgh
 - It rains outside
 - Light in the room is on
- An interpretation maps symbols to one of the two values:
 True (T), or False (F), depending on whether the symbol is satisfied in the world
 - I: Light in the room is on -> True, It rains outside -> False
 - I': Light in the room is on -> False, It rains outside -> False

CS 2710 Foundations of AI

Semantic: propositional symbols

The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

- I: Light in the room is on -> True, It rains outside -> False

 V(Light in the room is on, I) = True

 V(It rains outside, I) = False
- I': Light in the room is on -> False, It rains outside -> False

 V(Light in the room is on, I') = False

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding *True*, *False* value

$$V(True, \mathbf{I}) = True$$

$$V(False, \mathbf{I}) = False$$
For any interpretation \mathbf{I}

CS 2710 Foundations of AI

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
True True	True False			True True	True False	True False
		True True	False False	True False	True True	False True

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2710 Foundations of AI

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2710 Foundations of AI

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset. $S \rightarrow t$

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 2710 Foundations of AI

Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

• Contradiction (always False)

$$P \wedge \neg P$$

• Tautology (always *True*)

$$P \vee \neg P$$

$$\neg (P \vee Q) \Leftrightarrow (\neg P \wedge \neg Q)$$

$$\neg (P \wedge Q) \Leftrightarrow (\neg P \vee \neg Q)$$
DeMorgan's Laws

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True	True	True	False	True
True	False		True	True
False	True		False	True
False	False		False	True

CS 2710 Foundations of AI

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True	True	True	False	True
True	False		True	True
False	True		False	True
False	False		False	True

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

		Satis	fiable sentence	
P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True	False True False False	True True True True

CS 2710 Foundations of AI

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

		Satis	fiable sentence	Valid sentence
Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True	False True False False	True True True True

Entailment

• **Entailment** reflects the relation of one fact in the world following from the others

- Entailment $KB = \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

CS 2710 Foundations of AI

Sound and complete inference.

Inference is a process by which conclusions are reached.

• We want to implement the inference process on a computer !!

Assume an **inference procedure** *i* that

• derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment

- Soundness: An inference procedure is sound
 - If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$
- **Completeness:** An inference procedure is **complete**

If $KB = \alpha$ then it is true that $KB = \alpha$

Logical inference problem

Logical inference problem:

- Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB = \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.

CS 2710 Foundations of AI

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB \models \alpha$$
 ?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

F	Example:	K	B	α
	P Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
	True True True False False True False False	True	True False False True	True False False False

CS 2710 Foundations of AI

Truth-table approach

Problem: $KB \models \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:			K	В	α	
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$	
	True False	True False True False	True	True False False True	True False False False	

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

E:	xample	:	K	(B	α
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
	True	True	True	True	True
	True	False	True	False	False
	False	True	True	False	False
	False	False	False	True	False

CS 2710 Foundations of AI

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	C	$A \lor C$	$(B \vee \neg C)$	KB	α
True	True	True				
True	True	False				
True	False	True				
True	False	False				
False	True	True				
False	True	False				
False	False	True				
False	False	False				

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	C	$A \vee C$	$(B \vee \neg C)$	KB	α
True	True	True	True	True	True	True
True	True	False	True	True	True	True
True	False	r aise True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
	False	True	True	False	False	False
	False	False	False	True	False	False

CS 2710 Foundations of AI

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	C	$A \vee C$	$(B \vee \neg C)$	KB	α	
True	True	True	True	True	True	True	v
True True	True False	False True	True True	True False	True False	True True	V
True	False	False	True	True	True	True	v
False	True True	True False	True False	True True	True	True True	V
	False	True	True	False	False False	False	
False	False	False	False	True	False	False	

$$KB = (A \lor C) \land (B \lor \neg C)$$
 $\alpha = (A \lor B)$

A	B	C	$A \vee C$	$(B \vee \neg C)$	KB	α
	True	True	True	True	True	True
	True	False	True	True	True	True
1.000	True False	raise True	True True	False	False	True
True		False	True True	True True	True	True
False		True	rue	True	True	True
False		False	False	True	False	True
False		True	True	False	False	False
False		False	False	True	False	False

KB entails α

• The **truth-table approach** is **sound and complete** for the propositional logic!!

CS 2710 Foundations of AI

Limitations of the truth table approach.

$$KB \mid = \alpha$$
 ?

What is the computational complexity of the truth table approach?

• ?

Limitations of the truth table approach.

$$KB = \alpha$$
?

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

 2^n Rows in the table has to be filled

CS 2710 Foundations of AI

Limitations of the truth table approach.

$$KB \mid = \alpha$$
 ?

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

 2^n Rows in the table has to be filled

But typically only for a small subset of rows the KB is true

Limitations of the truth table approach.

$$KB = \alpha$$
 ?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset

CS 2710 Foundations of AI

Limitation of the truth table approach.

$$KB = \alpha$$
?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true only on a small subset interpretations

How to make the process more efficient?

Inference rules approach.

$$KB = \alpha$$
?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset

How to make the process more efficient?

Solution: check only entries for which KB is True.

This is the idea behind the inference rules approach

Inference rules:

- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones

CS 2710 Foundations of AI

Inference rules for logic

Modus ponens

$$A \Rightarrow B$$
, A premise conclusion

- If both sentences in the premise are true then conclusion is true.
- The modus ponens inference rule is **sound.**
 - We can prove this through the truth table.

A	В	$A \Rightarrow B$
False False True	False True False True	True True False True

Inference rules for logic

And-elimination

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

And-introduction

$$\frac{A_1, A_2, A_n}{A_1 \wedge A_2 \wedge A_n}$$

Or-introduction

Unit resolution

$$\frac{A_i}{A_1 \vee A_2 \vee \dots A_i \vee A_n}$$

CS 2710 Foundations of AI

Inference rules for logic

- Elimination of double negation
- $\frac{A \vee B, \quad \neg A}{R}$

- $\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$ Resolution
- All of the above inference rules are sound. We can prove this through the truth table, similarly to the **modus ponens** case.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- **1.** *P* ∧ *Q*
- $\mathbf{2.} \quad P \stackrel{\sim}{\Rightarrow} \ R$
- 3. $(Q \wedge R) \Rightarrow S$

CS 2710 Foundations of AI

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $2. P \stackrel{\sim}{\Rightarrow} R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4**. *F*
- $\boldsymbol{\varsigma}$ R

From 2,4 and Modus ponens

$$\frac{A \Rightarrow B, \quad A}{B}$$

CS 2710 Foundations of AI

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- **1.** *P* ∧ *Q*
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *F*
- **5.** *R*
- **6.** Q

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- **6.** Q
- 7. $(Q \wedge R)$

From 5,6 and And-introduction

$$\frac{A_1, A_2, A_n}{A_1 \wedge A_2 \wedge A_n}$$

CS 2710 Foundations of AI

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- **6.** Q
- 7. $(Q \wedge R)$
- 8. S

$$\frac{A \Rightarrow B, \quad A}{B}$$

From 7,3 and Modus ponens

Proved: S

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- 4. P From 1 and And-elim
- 5. R From 2,4 and Modus ponens
- 6. Q From 1 and And-elim
- 7. $(Q \wedge R)$ From 5,6 and And-introduction
- 8. S From 7,3 and Modus ponens

Proved: S

CS 2710 Foundations of AI

Inference rules

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible inference rules to be applied next

Looks familiar?

Logic inferences and search

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible rules to can be applied next

Looks familiar?

This is an instance of a search problem:

Truth table method (from the search perspective):

blind enumeration and checking

CS 2710 Foundations of AI

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- Initial state: a set of sentences in the KB
- Operators: applications of inference rules
 - Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- **Proof:** A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem