Introduction to Supersymmetry and Supergravity Homework 1

January 23, 2019 Due: February 1

1.

(a) Calculate the following (anti) commutators:

$$\{\Gamma^{\mu_1\cdots\mu_m}, \Gamma^{\nu_1\cdots\nu_n}\}$$
 and $[\Gamma^{\mu_1\cdots\mu_m}, \Gamma^{\nu_1\cdots\nu_n}]$

for (m, n) = (1, n) and (3, 2).

(b) Determine c_n and d_n in the following products:

$$\Gamma^{\mu_1\cdots\mu_n}\Gamma_{\mu}\Gamma_{\mu_1\cdots\mu_n} = c_n\Gamma_{\mu}$$
, and $\Gamma^{\mu}\Gamma_{\mu_1\cdots\mu_n}\Gamma_{\mu} = d_n\Gamma_{\mu_1\cdots\mu_n}$

2.

(a) Determine $c_1, ..., c_5$ in

$$\Gamma^{\mu}\Gamma^{\rho\sigma}\Gamma_{\mu\nu} = c_1\Gamma_{\nu}{}^{\rho\sigma} + c_2\delta^{[\rho}_{\nu}\Gamma^{\sigma]} \ , \quad \text{and} \quad \Gamma_{[\mu}\Gamma^{\rho\sigma}\Gamma_{\nu]} = c_3\Gamma_{\mu\nu}{}^{\rho\sigma} + c_4\delta^{[\rho}_{[\mu}\Gamma_{\nu]}{}^{\sigma]} + c_5\delta^{[\rho}_{[\mu}\delta^{\sigma]}_{\nu]}$$

(b) Given that ψ_a is an anticommuting vector-spinor, and χ is a spinor, which one of the following expressions vanish?

$$\bar{\psi}_a \Gamma^c \psi_b \ , \qquad \bar{\psi}_a \Gamma^{abc} \psi_b \ , \qquad \bar{\psi}_c \Gamma^{a_1...a_5} \psi_c \ , \qquad \bar{\psi}_a \Gamma^a \chi - \bar{\chi} \Gamma^a \psi_a$$

3.

- (a) Show that $(\Gamma^{\mu})_{\alpha}{}^{\beta}$ is invariant under Lorentz transformations.
- (b) Show that $\bar{\psi}\psi$, where $\bar{\psi}\equiv\psi^{\dagger}A$, is invariant under Lorentz transformations.
- (c) Show that $B^{-1}\psi$ also transforms as a spinor under Lorentz transformations, just as ψ does.
- **4.** Starting from the Dirac equation $(i\Gamma^{\mu}\partial_{\mu} m)\psi = 0$, write the Dirac spinor as sum of Weyl spinors as $\psi = \psi_L + \psi_R$, and determine the field equations for ψ_L and ψ_R separately, using the van der Wardeen symbols. Show that if ψ_L or ψ_R is vanishing, then the mass m must vanish as well.

5.

Find a representation for the Γ^{μ} , A, B and C matrices in (1,4) and (1,5) dimensions. In the latter case, let Γ^7 be diagonal, and determine also the chirally projected Γ matrices in this case.

6

- (a) Write down all possible generators on the right hand side of the anti-commutator $\{Q_{\alpha}, Q_{\beta}\}$, in (1,3) and (1,7) dimensions. Take Q_{α} to be Majorana in (1,3) and pseudo-Majorana in (1,7) dimensions.
- (b) Repeat the exercise for $\{Q_{\alpha}^{i}, Q_{\beta}^{j}\}$ in (1,5) dimensions, where i, j = 1, 2 are the Sp(1) doublet indices, and Q_{α}^{i} is symplectic Majorana-Weyl. Use chirally projected Γ -matrices so as to avoid the chiral projection matrices in the algebra.