Bildverarbeitung

Zusammenfassung

Manuel Pauli Sebastian Schweikl

22. Juni 2016

1 Mathematische Grundlagen

Definition 1.1 (Torus) Als *Torus* bezeichnet man die Menge der Äquivalenzklassen definiert durch

$$\mathbb{T} \coloneqq \mathbb{R}/2\pi\mathbb{Z}$$
.

gesprochen » \mathbb{R} modulo $2\pi\mathbb{Z}$ «.

Bemerkung 1.2 (Torus) Einfach gesagt: Alle reellen Zahlen, die beim Teilen durch Vielfache von 2π den selben Rest lassen, sind äquivalent, und der Torus enthält alle möglichen Reste, die dabei auftreten können. Beispiel:

$$0/2\pi = 0 \text{ Rest } 0$$
, $2\pi/2\pi = 1 \text{ Rest } 0$, $4\pi/2\pi = 2 \text{ Rest } 0$,...

D.h., die Zahlen 0, 2π und 4π sind zueinander äquivalent, da sie alle den Rest 0 lassen. Man sagt, sie befinden sich in einer gemeinsamen Äquivalenzklasse. Da es unendlich viele Zahlen gibt, die beim Teilen durch 2π den Rest 0 lassen, befinden sich unendlich viele Zahlen in dieser Äquivalenzklasse. Daher sucht man sich einen Stellvertreter (einen sog. Repräsentanten), um vernünftig arbeiten zu können. Es bietet sich die einfachste Zahl in der Äquivalenzklasse an, in diesem Fall die 0, und man schreibt dann häufig [0], wenn alle Zahlen gemeint sind, die zur 0 äquivalent sind.

Nun wird dem einen oder anderen schon aufgefallen sein, dass der Torus auch unendlich viele Äquivalenzklassen besitzt (da es ja unendlich viele mögliche Reste beim Teilen gibt). Z.B. ist jede Zahl aus dem Intervall $[0,2\pi)$ ein Repräsentant genau einer Äquivalenzklasse, und zu jeder Äquivalenzklasse kann man einen Repräsentanten in $[0,2\pi)$ finden. Daher sagt man \mathbb{T} ist isomorph zu $[0,2\pi)$, in Zeichen

$$\mathbb{T} \simeq [0, 2\pi).$$

Wichtig: Das heißt *nicht*, dass $\mathbb T$ das Gleiche ist wie $[0,2\pi)!$ $[0,2\pi)$ ist immer noch ein Intervall, und die Elemente aus $\mathbb T$ können zwar mit denen aus $[0,2\pi)$ identifiziert werden, aber $\mathbb T$ hat *mehr Struktur* als $[0,2\pi)$. Denn: Wenn ich z.B. die Zahl π aus dem Torus mit sich selber addiere, dann bekomme ich 0, denn $\pi + \pi = 2\pi$ und $2\pi/2\pi = 1$ mit Rest $0 \in \mathbb T$. Das Ergebnis ist wieder ein Element aus dem Torus! Wenn ich aber $\pi \in [0,2\pi)$ betrachte, und die selbe Rechnung wiederhole, dann bekomme ich immer noch 2π . Aber im Unterschied zu vorher gilt jetzt $2\pi \notin [0,2\pi)$!

Übrigens gibt es unendlich viele Intervalle, die isomorph zu T sind, z.B.

$$[-\pi,\pi),(-2\pi,0],[-2\pi,0),[42.5\pi,44.5\pi),\ldots$$

Jedes Intervall der Länge 2π ist isomorph zu \mathbb{T} ! Aber man sucht sich natürlich nur die hübschen Intervalle raus, und das sind im wesentlichen eh nur $[0,2\pi)$ und $[-\pi,\pi)$.

Definition 1.3 (Funktionenräume)

1. Wir bezeichnen mit $L(\mathbb{R})$ die Gesamtheit aller reellwertigen Funktionen, d.h. die Menge aller Funktionen, die von \mathbb{R} von \mathbb{R} abbilden:

$$L(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} \}.$$

Analog ist $l(\mathbb{Z})$ die Menge aller reellwertigen Folgen, also Funktionen, die von \mathbb{Z} nach \mathbb{R} abbilden:

$$l(\mathbb{Z}) = \{c \colon \mathbb{Z} \to \mathbb{R}\}.$$

Wichtig: Die Indexmenge der Folge kommt aus \mathbb{Z} , das Bild einer Folge das aber selbstverständlich weiterhin eine Teilmenge von \mathbb{R} sein. Wir könnten also auch schreiben:

$$l(\mathbb{Z}) = \{(c_n)_{n \in \mathbb{Z}} \subseteq \mathbb{R}\}.$$

2. Die Menge aller summierbaren Funktionen $L_1(\mathbb{R})$ ist definiert durch

$$L_1(\mathbb{R}) := \left\{ f \in L(\mathbb{R}) \colon \left\| f \right\|_1 := \int_{\mathbb{R}} |f(t)| \, \mathrm{d}t < \infty \right\}$$

und die Menge aller summierbaren Folgen durch

$$l_1(\mathbb{Z}) := \left\{ c \in l(\mathbb{Z}) \colon \left\| f \right\|_1 := \sum_{k \in \mathbb{Z}} |c(k)| < \infty \right\}$$

3. Analog wird die Menge der quadratsummierbaren Funktionen $L_2(\mathbb{R})$ definiert durch

$$L_2(\mathbb{R}) := \left\{ f \in L(\mathbb{R}) \colon \left\| f \right\|_2 \coloneqq \sqrt{\int_{\mathbb{R}} |f(t)|^2 dt} < \infty \right\}$$

und die Menge der quadratsummierbaren Folgen durch

$$l_2(\mathbb{Z}) := \left\{ c \in l(\mathbb{Z}) \colon \|c\|_2 \coloneqq \sqrt{\sum_{k \in \mathbb{Z}} |c(k)|^2} < \infty. \right\}$$

 $\|\bullet\|_2$ bezeichnet man auch als die »Energie-Norm«.

4. Die Menge aller beschränkten Funktionen und Folgen definiert durch

$$L_{\infty}(\mathbb{R}) := \left\{ f \in L(\mathbb{R}) \colon \left\| f \right\|_{\infty} \coloneqq \sup_{t \in \mathbb{R}} |f(t)| < \infty \right\}$$

bzw.

$$l_{\infty}(\mathbb{Z}) := \left\{ c \in l(\mathbb{Z}) \colon ||c||_{\infty} := \sup_{k \in \mathbb{Z}} |c(k)| < \infty \right\}.$$

5. Einer geht noch: Die Menge der Funktionen und Folgen mit *endlichem Träger*, geschrieben als $L_{00}(\mathbb{R})$ bzw. $l_{00}(\mathbb{Z})$. Was ist mit »endlichem Träger« gemeint? Das bedeutet, dass der Bereich, auf dem die Funktion bzw. Folge lebt, nicht unendlich groß sein darf. Formal: Es existiert ein $N \in \mathbb{N}$, sodass

$$\left\{ \begin{aligned} &\{t \in \mathbb{R} \colon f(t) \neq 0\} \\ &\{k \in \mathbb{Z} \colon c(k) \neq 0\} \end{aligned} \right\} \subseteq [-N, N].$$

Bemerkung 1.4 $(L_1(\mathbb{R})$ -Funktionen und $l_1(\mathbb{Z})$ -Folgen) Wir betrachten nur Funktionen (bzw. Folgen, aber das werde ich jetzt nicht mehr dazu sagen), die »brav« sind. Damit ist gemeint, dass die Funktionen ein hinreichend schnelles Abklingverhalten gegen 0 besitzen müssen. Anschaulich gesprochen bewirkt der Betrag ja, dass wir einfach alles, was von der Funktion unterhalb der x-Achse liegt, nach oben »umklappen«, sodass es nun positiv ist. Und wenn wir jetzt darüber integrieren, darf nur was Endliches dabei herauskommen. Dies ist eine hinreichende Forderung, damit wir die Fourier-Transformation zu einer Funktion überhaupt vernünftig definieren können.

Wir stellen fest, dass in $l_1(\mathbb{Z})$ nur Nullfolgen (Folgen, deren Grenzwert 0 ist) zu finden sind, z.B. $(1/k^2)_{k\in\mathbb{Z}}$. Achtung! Die Folge $(1/k)_{k\in\mathbb{Z}}$ ist zwar auch eine Nullfolge, aber die Reihe dazu konvergiert nicht absolut (wir haben es hier ja mit der harmonischen Reihe zu tun), und ist daher ist die Folge auch nicht in $l_1(\mathbb{Z})$.

Bemerkung 1.5 ($L_2(\mathbb{R})$ -Funktionen und $l_2(\mathbb{Z})$ -Folgen) Unterschied zu den »normalen« summierbaren Funktionen ist, dass hier die Zwei-Norm der Funktion kleiner als unendlich sein muss anstatt der Eins-Norm (daher kommt ja auch der Name »quadratsummeribar«). Leider gibt es hierfür keine so schöne geometrische Anschauung, da wir über ganz \mathbb{R} integrieren, aber man kann versuchen, sich das Ganze so vorzustellen: Durch das Quadrieren des Betrags erhält man sozusagen eine Fläche, und durch das Integrieren erzeugen wir ein Volumen, welches dann so wie ein Schlauch an der x-Achse entlang wabert. Durch das Wurzelziehen brechen wir das Volumen wieder herunter auf eine Fläche. Und hier endet leider schon die Analogie. Auf dem Torus würde man jetzt noch durch 2π teilen (weil das die Länge eines Intervalls ist, welches isomorph zum Torus ist), und man könnte sich die Zwei-Norm vorstellen als Mittelwert der Fläche. Da wir aber über ganz \mathbb{R} integrieren und wir schlecht durch ∞ teilen können, lass ma das hier bleiben und geben uns mit dem zufrieden, was wir schon haben.

Das führt uns unweigerlich zu einer wichtigen Frage: Warum sollte man also überhaupt den Raum $L_2(\mathbb{R})$ definieren wollen? Die Antwort ist: Weil Mathematiker es immer cool finden, irgendwelche abgefahrenen Konzepte zu verallgemeinern. Außerdem kann man in $L_2(\mathbb{R})$ ein Skalarprodukt von Funktionen definieren, mit dem sich recht schön rechnen lässt, was eben in $L_1(\mathbb{R})$ nicht geht.

Für die mathematisch Interessieren unter uns: $L_2(\mathbb{R})$ liegt dicht in $L_1(\mathbb{R})$, und es gilt:

$$L_1(\mathbb{R}) \not\subset L_2(\mathbb{R})$$
 und $L_2(\mathbb{R}) \not\subset L_1(\mathbb{R})$.

Cool ist es aber, wenn wir Funktionen im Schnitt der beiden Funktionenräume betrachten. Für solche Funktionen kann man nämlich wieder eine Fourier-Transformierte definieren, und man hat sogar ein Skalarprodukt.

Beispiel 1.6 (Beschränkte Folge) Betrachten wir als Beispiel einer Folge in $l_{\infty}(\mathbb{Z})$ die Folge $((-1)^n : n \in \mathbb{Z})$. Die Folge besitzt zwei Häufungspunkte -1 und 1, zwischen denen sie immer hin- und herspringt. Das Supremum dieser Folge ist natürlich 1, was kleiner als ∞ ist. Wäre diese Folge auch in $l_1(\mathbb{Z})$? Nein, wäre sie nicht, da sie ja nicht mal konvergiert.

Beispiel 1.7 ($L_{00}(\mathbb{R})$ -Funktion) Die Exponentialfunktion exp wird niemals 0, sie hat unendlichen Träger und deshalb keine $L_{00}(\mathbb{R})$ -Funktion. Die Rechtecksfunktion $\chi_{[-1,1]}$ hingegen ist nur im Intervall [-1,1] ungleich 0 und daher in $L_{00}(\mathbb{R})$.

Definition 1.8 (Dirac-Puls) Der Dirac-Puls

$$\delta(k) := \delta_{0k} := \begin{cases} 1, & k = 0, \\ 0, & k \neq 0 \end{cases}$$

ist eine lustige Funktion, die nur an der Stelle 0 gleich 1 ist und sonst überall 0.

Definition 1.9 (Abtastoperator) Der Abtastoperator $S_h: L(\mathbb{R}) \to l(\mathbb{R})$ mit Schrittweite h ist für eine Funktion f definiert als

$$(S_h f)(k) := f(hk), \quad k \in \mathbb{Z}.$$

Das heißt, anstatt die Funktion für alle reellen Zahlen zu betrachten, tasten wir die Funktion an diskret vielen Stellen ab, welche alle im Abstand $h \in \mathbb{R}$ zueinander sind. Wir betrachten die Funktion also nur an den Stellen 0, h, -h, 2h, -2h, 3h, -3h...

2 Fourier

Definition 2.1 (Fourier-Transformation) Für Funktionen $f \in L_1(\mathbb{R})$ definieren wir mit

$$\widehat{f}: \mathbb{R} \to \mathbb{C}, \qquad \widehat{f}(\xi) \coloneqq f^{\wedge}(\xi) \coloneqq \int_{\mathbb{R}} f(t) e^{-i\xi t} dt, \quad \xi \in \mathbb{R}$$

die Fourier-Transformierte von f und für Folgen $c \in l_1(\mathbb{Z})$

$$\widehat{c}: \mathbb{Z} \to \mathbb{C}, \qquad \widehat{c}(\xi) \coloneqq c^{\wedge}(\xi) \coloneqq \sum_{k \in \mathbb{Z}} c(k) e^{-i\xi t}, \quad \xi \in \mathbb{R}$$

die Fourier-Transformierte von c.

Bemerkung 2.2 (Fourier-Transformation)

• Was machen wir hier eigentlich? Schreiben wir einfach mal \widehat{f} als

$$\int_{\mathbb{R}} f(t)e^{-i\xi t} dt = \int_{\mathbb{R}} f(t)(\cos(\xi t) - i\sin(\xi t)) dt$$
$$= \int_{\mathbb{R}} f(t)\cos(\xi t) - i\int_{\mathbb{R}} f(t)\sin(\xi t) dt$$

dann sehen wir, dass wir lediglich versuchen, f auszudrücken als Kombination von sinus- und cosinus-Termen. Wir schauen einfach, wo f und der sin bzw. cos eine große Ähnlichkeit zueinander haben (an der Stelle wird das Integral dann groß) und finden so heraus, welchen »Anteil« die Frequenz ξ am Signal f hat. Dass wir hier die doofe imaginäre Einheit i mit drin haben, liegt halt einfach daran, dass wir die Identität

$$e^{ix} = \cos(x) + i\sin(x)$$

ausgenutzt haben, um die Fouriertransformation besonders elegant zu schreiben. Man hätte auch für Real- und Imaginärteil zwei gesonderte Fouriertransformationen definieren können. Aber das soll uns hier nicht weiter stören. Außerdem kann man halt mit einer Exponentialfunktion schöner rechnen (z.B. ist die Stammfunktion der Exponentialfunktion wieder die Exponentialfunktion). Das ist eigentlich alles, was dahinter steckt. Will man die imaginäre Einheit ganz wegbekommen, geht man im diskreten Fall einfach über zur Diskreten Cosinus-Transformation.

- Wichtig: Mit der Fouriertransformation finden wir zwar heraus, welche Frequenzen im Singal stecken, aber wir wissen nicht, an welcher Stelle bzw. zu welchem Zeitpunkt die entsprechende Frequenz auftritt! Wir haben keine Lokalität, da wir ja über ganz \mathbb{R} integrieren. Das ist ein wichtiger Unterschied zur *Gabor-Transformation*, wo wir unser einer Fensterfunktion bedienen, um so Frequenzen besser lokalisieren zu können \odot .
- Warum brachen wir $L_1(\mathbb{R})$ -Funktionen? Wie vorher schon erwähnt, ist das eine hinreichende Bedingung, dass \widehat{f} überhaupt existiert:

$$\widehat{f} \leq |\widehat{f}| = \left| \int_{\mathbb{R}} f(t) e^{-i\xi t} \, \mathrm{d}t \right| \leq \int_{\mathbb{R}} |f(t)| \underbrace{|e^{-i\xi t}|}_{=1} \, \mathrm{d}t = \int_{\mathbb{R}} |f(t)| \, \mathrm{d}t < \infty.$$

Das Argument lässt sich analog auf $l_1(\mathbb{Z})$ -Folgen übertragen.

Definition 2.3 (Translations- und Skalierungsoperator)

1. Der Translationsoperator τ_y mit $y \in \mathbb{R}$ angewendet auf eine Funktion f ist definiert als

$$\tau_u f := f(\bullet + y).$$

2. Der Skalierungsoperator σ_h mit $h \in \mathbb{R} \setminus \{0\}$ angewendet auf eine Funktion f ist definiert als

$$\sigma_h f := f(h \cdot \bullet).$$

Bemerkung 2.4 (Translations- und Skalierungsoperator)

1. der Translationsoperator verschiebt eine Funktion auf der *x*-Achse um *y* Einheiten nach links oder rechts:

Wert von <i>y</i>	Effekt auf f
y = 0	Verschiebung nach <i>links</i> Keine Verschiebung Verschiebung nach <i>rechts</i>

2. Der Skalierungsoperator streckt oder staucht eine Funktion um den Faktor h und kann sie sogar an der y-Achse spiegeln:

Wert von <i>h</i>	Effekt auf f
h = 1	Stachung Kein Effekt Streckung
h = 0	Um Gottes Willen! Das ist pfui-gack.
h = -1	Streckung und Spiegelung an der <i>y</i> -Achse Nur Spiegelung an der <i>y</i> -Achse Stauchung und Spiegelung an der <i>y</i> -Achse

3. Translation und Skalierung sind invertierbar, d.h. man kann ihre Auswirkungen wieder rückgängig machen:

$$\tau_y (\tau_{-y} f) = \tau_{-y} (\tau_y f) = f$$
 und $\sigma_h (\sigma_{1/h} f) = \sigma_{1/h} (\sigma_h f) = f$.

Definition 2.5 (Faltung) Seien $f,g \in L(\mathbb{R})$ und $c,d \in l(\mathbb{Z})$. Dann ist die Faltung zweier Funktionen definiert als

$$f * g := \int_{\mathbb{R}} f(\bullet - t) \cdot g(t) dt \in L(\mathbb{R})$$

und die Faltung zweier Folgen als

$$c*d := \sum_{k \in \mathbb{Z}} c(\bullet - k) \cdot d(k) \in l(\mathbb{Z}).$$

Die Faltung einer Funktion f mit einer Folge c ist definiert durch

$$c*f\coloneqq f*c\coloneqq \sum_{k\in\mathbb{Z}}f(\bullet-k)\cdot d(k)\in L(\mathbb{R}).$$

Bemerkung 2.6 (Eigenschaften der Faltung) Aus der Linearität des Integrals und den Gruppenoperationen auf \mathbb{R} lassen sich folgende Eigenschaften der Faltung für Funktionen oder Folgen f, q, h herleiten:

6

- Kommutativität: f * q = q * f
- Assoziativität: (f * g) * h = f * (g * h)
- Distributivität: f * (q + h) = f * q + f * h
- Skalare Multiplikation: $a \cdot (f * g) = (a \cdot f) * g = f * (a \cdot g)$, wobei $a \in \mathbb{C}$ eine beliebige Konstante ist.

Bemerkung 2.7 (Interpretation der Faltung) Die Faltung kann aufgefasst werden als Produkt zweier Funktionen oder Folgen, welches wieder eine Funktion bzw. Folge liefert. Wie kann man sich die Faltung geometrisch vorstellen? Betrachten wir als Beispiel zwei Funktionen f und g und die Faltung f * g. Was dabei passiert, ist Folgendes: Wir halten die Funktion g fest und lassen f einmal komplett von ganz links nach ganz rechts über die x-Achse wandern. Dort, wo sich f und g überlagern und eine große »Gemeinsamkeit « miteinander haben, wird auch das Integral groß. Dort, wo beide Funktionen keine große Gemeinsamkeit miteinander haben, wird das Integral klein. Die Faltung ist also eine Methode, um feststellen zu können, wie lokal ähnlich (nicht global!) sich zwei Funktionen sind.

Je nachdem, welche Funktion man für g wählt, lassen sich mit der Faltung unterschiedliche interessante andere Funktionen erzeugen. Wikipedia meint, dass eine Faltung f*g einen »gewichteten Mittelwert« von f darstellt, wobei die Gewichtung durch g vorgegeben ist. Diese Argumentation versteht man eigentlich erst, wenn man sich zyklische Faltungen anschaut, wo nicht über ganz $\mathbb R$ integriert wird, sondern über ein Kompaktum. Dann wird das Integral nämlich noch durch die Länge des Kompaktums dividiert, sodass man tatsächlich eine Art Durschnitt hat. Und hey, das kommt uns doch jetzt irgendwie von der Definition der $L_2(\mathbb R)$ - Funktionen bekannt vor!

Beispiel 2.8 (Faltung) Falten wir doch einmal die Rechtecksfunktion $\chi_{[-1,1]}$ mit sich selbst. Man definiert

$$\chi_{[-1,1]}(x) = \begin{cases} 1, & x \in [-1,1] \\ 0, & \text{sonst.} \end{cases}$$

Dann ist

$$(\chi_{[-1,1]} * \chi_{[-1,1]})(x) = \int_{\mathbb{R}} \chi_{[-1,1]}(x-t) \cdot \chi_{[-1,1]}(t) dt = \int_{\mathbb{R}} \chi_{[x-1,x+1]}(t) \cdot \chi_{[-1,1]}(t) dt$$

$$= \int_{\mathbb{R}} \chi_{[x-1,x+1]\cap[-1,1]}(t) dt = \int_{[x-1,x+1]\cap[-1,1]} 1 dt$$

$$= \begin{cases} \int_{-1}^{x+1} 1 dt = 2 + x, & -2 \le x \le 0, \\ \int_{x-1}^{1} 1 dt = 2 - x, & 0 < x \le 2, \\ 0, & \text{sonst}, \end{cases}$$

$$=: \Delta_{[-2,2]}(x).$$

Man erhält also die Dreiecksfunktion auf dem Intervall [-2,2]. Was bedeutet das? Naja, die $\Delta_{[-2,2]}(x)$ an der Stelle x gibt genau die Fläche an, die zwischen den beiden Rechtecksfunktionen gerade eingeschlossen wird, wenn man eine Rechtecksfunktion um x Einheiten verschiebt. Im Fall von x=0 überlappen sich beide Rechtecksfunktionen ganz genau, und deren Flächeninhalt ist 2. Dies ist genau der Wert von $\Delta_{[-2,2]}(2)!$ Verschiebt man eine Rechtecksfunktion um 1 Einheit nach links oder rechts, dann wird nur noch die Hälfte der Fläche zwischen beiden Rechtecksfunktionen eingeschlossen, also Flächeninhalt 1. Und genau das kommt bei $\Delta_{[-2,2]}(x)$ heraus, wenn man x=1 oder x=-1 einsetzt.

Die geometrische Interpretation einer Faltung ist also sehr vielfältig und hängt sehr stark von den beiden Funktionen ab, die miteinander gefaltet werden.