Problem 1

V is a vector space and $S \subseteq V$.

- (a) W is a subspace of V is W is a vector space with the same operations (addition and scalar multiplication) defined on V.
- (b) span(S) is the set of all linear combinations of vectors in S.
- (c) S is linearly dependent if there exists $v_1, \dots, v_n \in S$ and scalars $a_1, \dots, a_n \in F$ such that

$$a_1v_1 + \dots + a_nv_n = 0$$

and not all a_i 's are zero.

- (d) S is a basis of V if S is linearly independent and span(S) = V.
- (e) $\dim(V)$ is the unique number of vectors in each basis of V.

Problem 2

V is a vector vector space, $S \subseteq V$ is linearly independent and $v \in V \setminus S$. Prove that $S \cup \{v\}$ is linearly dependent if and only if $v \in span(S)$.

"\Rightarrow" Suppose $S \cup \{v\}$ is linearly dependent, take the vectors $v_1, \dots, v_n \in S \cup \{v\}$ and scalar a_1, \dots, a_n such that

$$a_1v_1 + \dots + a_nv_n = 0$$

Without loss of generality we can assume v is among these vectors, say, $v_1 = v$. If $a_1 = 0$, then we get

$$a_2v_2 + \cdots + a_nv_n = 0$$

with $v_2, \dots, v_n \in S$ and not all a_2, \dots, a_n are zero. This contradicts the assumption that S is linearly independent. If $a_1 \neq 0$, then we can divide the equation by a_1 and get

$$v + \frac{a_2}{a_1}v_2 + \dots + \frac{a_n}{a_1}v_n = 0$$

Therefore $v = -\frac{a_2}{a_1}v_2 + \cdots + \frac{a_n}{a_1}v_n$ is a linear combination of vectors $v_2, \cdots, v_n \in S$ and $v \in span(S)$.

<u>"\("\)</u> Suppose $v \in span(S)$; write $v = c_1u_1 + \cdots + c_nu_n$ where $u_1, \cdots, u_n \in S$ and c_1, \cdots, c_n are scalars. We see

$$0 = -v + c_1 u_1 + \dots + c_n u_n$$

= $(-1)v + c_1 u_1 + \dots + c_n u_n$

is a linear combination of vectors $v, u_1, \dots, u_n \in S \cup \{v\}$ with not all zero coefficients. In particular, the coefficient of v is $(-1) \neq 0$.

Problem 3

(a) ① The zero matrix $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ certainly is a diagonal matrix with zeros as diagonal entries. For diagonal matrices $A = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$, $B = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}$ and scalar $c \in \mathbb{R}$, ② the sum $A + B = \begin{bmatrix} a_1 + b_1 & 0 \\ 0 & a_2 + b_2 \end{bmatrix}$ and ③ the scalar multiple $cA = \begin{bmatrix} ca_1 & 0 \\ 0 & ca_2 \end{bmatrix}$ are both diagonal. Therefore W is closed under addition and scalar multiplication. By Theorem in textbook, W is a subspace of $M_{2\times 2}(\mathbb{R})$.

(b, c)
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \subseteq W$$
 is a basis since

$$a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow a = b = 0 \text{ (linear independence)}$$

and

$$\forall A = \left[\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right] \in W, A = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + b \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \in span(S) \; (S \; \text{spans} \; W)$$

Also, dim(W) = #S = 2.

(d) Consider
$$T = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}; S \cup T \text{ is a basis of } M_{2 \times 2}(\mathbb{R}) \text{ because}$$

$$a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + c \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a & c \\ d & b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow a = b = c = d = 0$$

and

$$\forall A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in M_{2 \times 2}(\mathbb{R}), A = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + b \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + c \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + d \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \in span(S \cup T)$$

Problem 4

(a) V is a vector space and W_1, W_2 are subspaces of V. Prove that if W_1 and W_2 are finite dimensional then so is $W_1 + W_2$.

Take basis $\beta_1 = \{v_1, \dots, v_n\}, \beta_2 = \{u_1, \dots, u_m\}$ of W_1, W_2 , respectively, then

$$W_1 = \{a_1v_1 + \dots + a_nv_n \mid a_1, \dots, a_n \in F\}, W_2 = \{c_1u_1 + \dots + c_mu_m \mid c_1, \dots, c_m \in F\}$$

Now by definition of summed spaces,

$$W_1 + W_2 = \{(a_1v_1 + \dots + a_nv_n) + (c_1u_1 + \dots + c_mu_m) \mid a_1, \dots, a_n, c_1, \dots, c_m \in F\} = span(\beta_1 \cup \beta_2)$$

is generated by a finite set $\beta_1 \cup \beta_2$. By theorem in textbook, we can reduce the generating set $\{v_1, \dots, v_n, u_1, \dots, u_m\}$ to a basis, which can contain at most n+m vectors and is

henceforth finite.

(b) Take basis $\beta_0 = \{t_1, \dots, t_r\}$ of $W_1 \cap W_2$; extend β_0 to a basis of W_1 as $\{t_1, \dots, t_r, v_{r+1}, \dots, v_n\}$ (note the dimension of W_1 is still n as in the previous part), extend it similarly with W_2 and get $\{t_1, \dots, t_r, u_{r+1}, \dots, u_m\}$. With the same notion in part (a), we get

$$W_1 + W_2 = span(\{t_1, \dots, t_r, v_{r+1}, \dots, v_n, u_{r+1}, \dots, u_m\})$$

Suppose $a_1t_1 + \cdots + a_rt_r + b_{r+1}v_{r+1} + \cdots + b_nv_n + c_{r+1}u_{r+1} + \cdots + c_mu_m = 0$, then

$$u = c_{r+1}u_{r+1} + \dots + c_mu_m = -(a_1t_1 + \dots + a_rt_r) - (b_{r+1}v_{r+1} + \dots + b_nv_n) \in W_1 \cap W_2$$

Since t_1, \dots, t_r is a basis of $W_1 \cap W_2$, we can represent $u = \alpha_1 t_1 + \dots + \alpha_r t_r$, and

$$u = \alpha_1 t_1 + \dots + \alpha_r t_r = -(a_1 t_1 + \dots + a_r t_r) - (b_{r+1} v_{r+1} + \dots + b_n v_n)$$

Or $(\alpha_1+a_1)t_1+\cdots+(\alpha_r+a_r)t_r+b_{r+1}v_{r+1}+\cdots+b_nv_n=0$. Since $t_1, \dots, t_r, v_{r+1}, \dots, v_n$ is a basis of W_1 , we must get $b_{r+1}=\cdots=b_n=0$. Similarly, we shall have $c_{r+1}=\cdots=c_m=0$. That is, we have

$$a_1t_1 + \dots + a_rt_r = 0$$

and again since t_1, \dots, t_r is linearly independent, we have $a_1 = \dots = a_r = 0$. We just proved $\{t_1, \dots, t_r, v_{r+1}, \dots, v_n, u_{r+1}, \dots, u_m\}$ is a linearly independent set. My proof to this part is a little tedious; perhaps the instructor will have a shorter proof.

(c) Consider
$$V = \mathbb{R}^3$$
, $W_1 = \{x - y \text{ plane}\} = span\left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\right)$, $W_2 = \{y - z \text{ plane}\} = \{y - z \text{ plane}\}$

$$span\left(\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right)$$
. In this case, $W_1 \cap W_2 = \{y\text{-axis}\} = span\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) \neq \{0\}$ and

indeed
$$W_1 + W_2 = span\left(\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}\right) = \mathbb{R}^3.$$

Problem 5

(a) False.
$$\begin{bmatrix} -1\\1\\2\\1 \end{bmatrix} = \begin{bmatrix} 1&0\\0&1\\1&1\\-1&1 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix}$$
 is equivalent to solving $\begin{bmatrix} 1&0&-1\\0&1&1\\0&1&3\\0&1&0 \end{bmatrix}$ (by ele-

mentary matrix operations), which is not solvable.

- (b) True.
- (c) False. $dim(\mathbb{R}^2) = 2$; there can't be a linearly independent subset of \mathbb{R}^2 of more than 2 vectors.
- (d) False. Consider 1-dimensional vector space V = span(v); every vector is a multiple of the other.
- (e) False. It is an "affine space" of \mathbb{R}^4 , but definitely not a subspace of \mathbb{R}^4 . For instance,

it doesn't contain zero vector $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$

- (f) True.
- (g) False. The inequality should be reversed. Linear independent subset should always contain less (or equal number of) vectors than spanning set.
- (h) True.
- (i) False. Consider $S = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$, since

$$1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

it's linearly dependent. However, the subset $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \subseteq S$ is easily the basis of \mathbb{R}^2 and linearly independent.