

Institut für Flugführung

Protokoll

Flugversuch im Kompetenzfeldlabor der Luft- und Raumfahrttechnik

Alexander Göhmann

Matrikelnummer 4828693

Tim Gotzel

Matrikelnummer 4839608

Nico Hempen

Matrikelnummer 4753519

Finn Matz

Matrikelnummer 4810384

Viktor Rein

Matrikelnummer 4808490

Ausgegeben: Institut für Flugführung

Institutsleiter: Prof. Dr. P. Hecker Technische Universität Braunschweig

Betreuer:

Veröffentlichung: Datum

Inhaltsverzeichnis

N	omenklatur	1				
1	Einleitung (VR)	2				
2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4 4 4 4 4				
3	Versuchsdurchführung (TG)					
4	Massenabschätzung (AG)	7				
5	Auswertung und Umrechung der Messdaten	8				
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 9 10 10 10 11 11 12 12				
7	Interpretation der Ergebnisse (NH) 7.1 Höhenruder Trimmkurve 7.2 Auftriebsbeiwert über Anstellwinkel 7.3 Lilienthal-Polare 7.4 Widerstand über Fluggeschwindigkeit 7.5 Staudruck über Anstellwinkel 7.6 Fluggeschwindigkeit über Anstellwinkel	13 13 13 13 13 13				
8	Interpretation der Ergebnisse (FM) 8.1 Höhenruder Trimmkurve 8.2 Auftriebsbeiwert über Anstellwinkel 8.3 Lilienthal-Polare 8.4 Widerstand über Fluggeschwindigkeit 8.5 Staudruck über Anstellwinkel 8.6 Fluggeschwindigkeit über Anstellwinkel	14 14 14 14 14 14				
9	Interpretation der Ergebnisse (TG) 9.1 Höhenruder Trimmkurve	15 15 15 15				

<u>ii</u> <u>Inhaltsverzeichnis</u>

	9.5	Widerstand über Fluggeschwindigkeit 1 Staudruck über Anstellwinkel 1 Fluggeschwindigkeit über Anstellwinkel 1		
10	10 Interpretation der Ergebnisse (AG)			
	10.1	Höhenruder Trimmkurve		
	10.2	Auftriebsbeiwert über Anstellwinkel		
	10.3	Lilienthal-Polare		
	10.4	Widerstand über Fluggeschwindigkeit		
		Staudruck über Anstellwinkel		
		Fluggeschwindigkeit über Anstellwinkel		

Nomenklatur

Lateinische Bezeichnungen

${\bf Griechische\ Bezeichnungen}$

 β Winkel in Umfangsrichtung

Indizes

ax in axiale Richtung

${\bf Abk\ddot{u}rzungen}$

CFD <u>C</u>omputational <u>F</u>luid <u>D</u>ynamics

Einleitung (VR)

 tbd

Name	$\operatorname{Initialen}$
Nico Hempen	NH
Tim Gotzel	TG
Finn Matz	FM
Alexander Göhmann	\overline{AG}
Viktor Rein	VR

Tabelle 1.1: Initialen der beteiligten Personen

Theoretische Grundlagen (NH)(FM)

2.1 Luftdichte ρ

Zur Bestimmung der real vorherrschenden Luftdichte in der gegebenen Höhe, wird unter der Annahme, dass Luft ein ideales Gas ist, diese Luftdichte mit der Idealen Gasgleichung definiert:

$$\rho_{real} = \frac{m}{V} = \frac{P}{R_{Luft} \cdot T} \tag{2.1}$$

Dabei kann $R_{Luft} = 287.058 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ gesetzt werden und der Luftdruck P in definierter Höhe über die Temperatur T mittels der Isentropenbeziehung berechnet werden:

$$P = \left(\frac{T}{T_0}\right)^{\frac{\kappa}{\kappa - 1}} \cdot P_0 \tag{2.2}$$

Dabei gilt für die Standardbedingungen $T_0 = 288.15 \,\mathrm{K}$ und $P_0 = 101\,300 \,\mathrm{Pa}$.

2.2 Wahre Fluggeschwindigkeit V_{TAS}

In den von uns aufgezeichneten Daten der DO-128, sowie in den bereitgestellten Daten der DO-28, liegt die Information der Fluggeschwindigkeit lediglich als *indicated airspeed* vor. Zur Bestimmung der nachfolgenden Beiwerte und Zusammenhänge zwischen den Kenngrößen ist jedoch die so genannte *true airspeed* von Bedeutung. Zur Bestimmung von V_{TAS} aus V_{IAS} wird folgende Formel verwendet?:

$$V_{TAS} = \sqrt{\frac{\rho_0}{\rho_{real}} \cdot V_{IAS}^2} \tag{2.3}$$

Dabei kann ρ_0 als Luftdichte zu $1.225\,\mathrm{kg/m^3}$ gesetzt werden. Die Fluggeschwindigkeit V_{IAS} muss

bei dem Flugversuch mit der DO-128 allerdings noch von kn in $\frac{m}{s}$ umgerechnet werden:

$$V\left(\frac{m}{s}\right) = 0.51444 \cdot V\left(kn\right) \tag{2.4}$$

2.3 Auftriebsbeiwert C_A

Der Auftriebsbeiwert C_A kann per Definition mittels folgender Gleichung bestimmt werden?:

$$C_A = \frac{A}{\frac{\rho_{real}}{2} \cdot S \cdot V_{TAS}^2} \tag{2.5}$$

Darin kann der Auftrieb A über die Gewichtskraft G nach folgender Gleichung aufgestellt werden:

$$A = \cos(\gamma) \cdot G \tag{2.6}$$

Da der Bahnwinkel γ lediglich in der Messreihe für die DO-28 gegeben ist, muss dieser Wert für die Messreihe der DO-128 über die Sinkgeschwindigkeit $w_{g_{real}}$ und der Fluggeschwindigkeit V_{TAS} bestimmt werden:

$$\gamma = \arcsin\left(\frac{w_{g_{real}}}{V_{TAS}}\right) \tag{2.7}$$

Dabei wird die Sinkgeschwindigkeit $w_{g_{real}}$ bestimmt durch?:

$$w_{g_{real}} = \frac{\Delta H_{INA}}{\Delta t} \cdot \frac{T_{real}}{T_{INA}} \tag{2.8}$$

Worin T_{INA} für die jeweiligen Höhen aus Tabellen bestimmt werden können und die übrigen Werte im Versuch aufgezeichnet wurden.

Die Flügelfläche S kann in Gleichung 2.5 durch die jeweiligen Daten der beiden Flugzeuge ersetzt werden.

2.4 Widerstandsbeiwert C_W

Ähnlich wie die Bestimmung des Auftriebsbeiwertes kann auch der Widerstandsbeiwert C_W bestimmt werde:

$$C_W = \frac{W}{\frac{\rho_{real}}{2} \cdot S \cdot V_{TAS}^2} \tag{2.9}$$

Der einzige Unterschied zu C_A besteht in der Verwendung vom Widerstand W statt des Auftriebs A in dieser Gleichung. Dieser kann über die selbe Beziehung wie in Gleichung 2.6 bestimmt werden:

$$W = \sin(\gamma) \cdot G \tag{2.10}$$

Dabei kann der Bahnneigungswinkel γ ebenfalls mit Gleichung 2.7 berechnet werden.

2.5 Minimaler Widerstand W_{min}

$$W_{min} = \frac{2 \cdot C_{W0} \cdot G}{C_A^*} \tag{2.11}$$

2.6 Optimale Fluggeschwindigkeit V_{opt}

$$V_{opt} = \sqrt{\frac{G}{\frac{\rho}{2} \cdot S \cdot C_A^*}} \tag{2.12}$$

Versuchsdurchführung (TG)

 tbd

Massenabschätzung (AG)

Auswertung und Umrechung der Messdaten

 tbd

Darstellung der Ergebnisse

6.1 Daten zum Flugversuch der DO-128

6.1.1 Auftriebsbeiwert C_A über Widerstandsbeiwert C_W

Abb. 6.1: C_A über C_W der DO-128

6.1.2 Widerstand W über Fluggeschwindigkeit V

Abb. 6.2: W über V der DO-128

6.2 Daten zum Flugversuch der DO-28

6.2.1 Anstellwinkel α über Bahnneigungswinkel η

Abb. 6.3: α über η der DO-28

6.2.2 Auftriebsbeiwert C_A über Anstellwinkel α

Abb. 6.4: C_A über α der DO-28

6.2.3 Auftriebsbeiwert C_A über Widerstandsbeiwert C_W

Abb. 6.5: C_A über C_W der DO-28

6.2.4 Widerstand W über Fluggeschwindigkeit V

Abb. 6.6: W über V der DO-28

6.2.5 Fluggeschwindigkeit V und Staudruck q über Anstellwinkel α

Abb. 6.7: V und q über α der DO-28

Interpretation der Ergebnisse (NH)

7.1	Höhenruder Trimmkurve			
tbd				
7.2	Auftriebsbeiwert über Anstellwinkel			
tbd				
7.3	Lilienthal-Polare			
tbd				
7.4	Widerstand über Fluggeschwindigkeit			
tbd				
7.5	Staudruck über Anstellwinkel			
tbd				
7.6	Fluggeschwindigkeit über Anstellwinkel			
tbd				

Interpretation der Ergebnisse (FM)

8.1	Höhenruder Trimmkurve		
tbd			
	Auftriebsbeiwert über Anstellwinkel		
tbd			
8.3 tbd	Lilienthal-Polare		
8.4	Widerstand über Fluggeschwindigkeit		
tbd			
8.5	Staudruck über Anstellwinkel		
8.6	Fluggeschwindigkeit über Anstellwinkel		
tbd			

Interpretation der Ergebnisse (TG)

9.1	Höhenruder Trimmkurve		
tbd			
9.2	Auftriebsbeiwert über Anstellwinkel		
tbd			
9.3	Lilienthal-Polare		
tbd			
9.4	Widerstand über Fluggeschwindigkeit		
tbd			
9.5	Staudruck über Anstellwinkel		
tbd			
9.6	Fluggeschwindigkeit über Anstellwinkel		
tbd			

Interpretation der Ergebnisse (AG)

10.1	Höhenruder Trimmkurve
tbd	
10.2	Auftriebsbeiwert über Anstellwinkel
tbd	
	Lilienthal-Polare
tbd	
$egin{array}{c} 10.4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Widerstand über Fluggeschwindigkeit
	Staudruck über Anstellwinkel
tbd	State and Thisterwiller
10.6	Fluggeschwindigkeit über Anstellwinkel
tbd	-