Normalized Model Evaluation Concerning Social Abstract Argumentation

Sinan Eğilmez Supervised by: João Leite

February 17, 2015

Outline

- 1. Social Abstract Argumentation Frameworks
- 2. Normalized Model Evaluation Concerning SAF

Outline

- 1. Social Abstract Argumentation Frameworks
- 2. Normalized Model Evaluation Concerning SAF

Motivation

- Interactions in Social Networks are unstructured, often chaotic.
- Prevents a fulfilling experience for those seeking deeper interactions and not just increasing their number of friends, likes, etc.

The Vision: A self-managing online debating system capable of accommodating two archetypal levels of participation:

- experts/enthusiasts who specify arguments and the attacks between arguments.
- observers/random browsers will vote on individual arguments, and on the specified attacks via GUI.
- ▶ autonomously maintaining a formal outcome to debates by assigning a strength to each argument based on the structure of the argumentation graph and the votes

Motivation

- Interactions in Social Networks are unstructured, often chaotic.
- Prevents a fulfilling experience for those seeking deeper interactions and not just increasing their number of friends, likes, etc.

The Vision: A self-managing online debating system capable of accommodating two archetypal levels of participation:

- experts/enthusiasts who specify arguments and the attacks between arguments.
- observers/random browsers will vote on individual arguments, and on the specified attacks via GUI.
- autonomously maintaining a formal outcome to debates by assigning a strength to each argument based on the structure of the argumentation graph and the votes

Envisioned Framework

Envisioned Framework Model

- $F = \langle A, \mathcal{R}, V_A, V_{\mathcal{R}} \rangle$
- $\blacktriangleright S = \langle L, A, A, A, \Upsilon, \neg, \tau \rangle$
- Desiderata for Semantics
- ► Class of Well-behaved semantics
- ▶ Concrete Semantics, $S_{\epsilon} = \langle [0,1], \mathcal{L}, \mathcal{L},$
- ▶ A S-model of F is a total mapping $M : A \rightarrow L$ such that for all $a \in A$

$$M(a) = \tau(a) \curlywedge_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^-(a)} (\tau((a_i, a)) \curlywedge_{\mathcal{R}} M(a_i))$$

- $F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$
- $ightharpoonup S = \langle L, A, A, A, \Upsilon, \neg, \tau \rangle$
- Desiderata for Semantics
- ► Class of Well-behaved semantics
- ▶ Concrete Semantics, $S_{\epsilon} = \langle [0,1], \mathcal{L}, \mathcal{L}, \mathcal{L}, \mathcal{L}, \mathcal{L}, \tau, \neg, \tau_{\epsilon} \rangle$
- ▶ A S-model of F is a total mapping $M : A \rightarrow L$ such that for all $a \in A$

$$M(a) = \tau(a) \curlywedge_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^{-}(a)} (\tau((a_i, a)) \curlywedge_{\mathcal{R}} M(a_i))$$

- $\blacktriangleright F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$
- $\blacktriangleright \mathsf{S} = \langle \mathsf{L}, \mathsf{L}, \mathsf{L}, \mathsf{L}, \mathsf{Y}, \neg, \tau \rangle$
- Desiderata for Semantics
- Class of Well-behaved semantics
- ▶ Concrete Semantics, $S_{\epsilon} = \langle [0,1], \mathcal{L}, \mathcal{L}, \mathcal{L}, \mathcal{L}, \mathcal{L}, \tau, \neg, \tau_{\epsilon} \rangle$
- ▶ A S-model of F is a total mapping $M : A \rightarrow L$ such that for all $a \in A$

$$M(a) = \tau(a) \curlywedge_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^-(a)} (\tau((a_i, a)) \curlywedge_{\mathcal{R}} M(a_i))$$

- $\blacktriangleright F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$
- $\triangleright \mathsf{S} = \langle \mathsf{L}, \mathsf{L}, \mathsf{L}, \mathsf{L}, \mathsf{T}, \mathsf{T}, \mathsf{T} \rangle$
- Desiderata for Semantics
- ► Class of Well-behaved semantics
- ▶ Concrete Semantics, $S_{\epsilon} = \langle [0,1], \mathcal{L}, \mathcal{L},$
- ▶ A S-model of F is a total mapping $M : A \rightarrow L$ such that for all $a \in A$

$$M(a) = \tau(a) \downarrow_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^-(a)} (\tau((a_i, a)) \downarrow_{\mathcal{R}} M(a_i))$$

- $F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$
- $\triangleright \mathsf{S} = \langle \mathsf{L}, \mathsf{L}, \mathsf{L}, \mathsf{L}, \mathsf{T}, \mathsf{T}, \mathsf{T} \rangle$
- Desiderata for Semantics
- Class of Well-behaved semantics
- ▶ Concrete Semantics, $\mathcal{S}_{\epsilon}^{\cdot} = \langle [0,1], \curlywedge^{\cdot}, \curlywedge^{\cdot}, \neg, \tau_{\epsilon} \rangle$
- ▶ A S-model of F is a total mapping $M : A \rightarrow L$ such that for all $a \in A$

$$M(a) = \tau(a) \curlywedge_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^-(a)} (\tau((a_i, a)) \curlywedge_{\mathcal{R}} M(a_i))$$

- $\blacktriangleright F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$
- $\triangleright \mathsf{S} = \langle \mathsf{L}, \mathsf{L}, \mathsf{L}, \mathsf{L}, \mathsf{T}, \mathsf{T}, \mathsf{T} \rangle$
- Desiderata for Semantics
- Class of Well-behaved semantics
- ▶ Concrete Semantics, $\mathcal{S}_{\epsilon}^{\cdot} = \langle [0,1], \curlywedge^{\cdot}, \curlywedge^{\cdot}, \curlyvee, \neg, \tau_{\epsilon} \rangle$
- ▶ A S-model of F is a total mapping $M : A \rightarrow L$ such that for all $a \in A$

$$M(a) = \tau(a) \curlywedge_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^-(a)} (\tau((a_i, a)) \curlywedge_{\mathcal{R}} M(a_i))$$

- $F = \langle \mathcal{A}, \mathcal{R}, V_{\mathcal{A}}, V_{\mathcal{R}} \rangle$
- $\blacktriangleright \mathsf{S} = \langle \mathsf{L}, \bot_{\mathcal{A}}, \bot_{\mathcal{R}}, \curlyvee, \neg, \tau \rangle$
- Desiderata for Semantics
- Class of Well-behaved semantics
- ▶ Concrete Semantics, $\mathcal{S}_{\epsilon}^{\cdot} = \langle [0,1], \curlywedge^{\cdot}, \curlywedge^{\cdot}, \curlyvee, \neg, \tau_{\epsilon} \rangle$
- ▶ A S-model of F is a total mapping $M : A \rightarrow L$ such that for all $a \in A$

$$M(a) = \tau(a) \curlywedge_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^-(a)} (\tau((a_i, a)) \curlywedge_{\mathcal{R}} M(a_i))$$

- Extends Dung's Classical AFs by
 - ▶ Social voting on arguments [Leite11]
 - Social voting on attack relations [Egilmez13]
- ► Flexible argument valuation
- Enjoys desirable properties (under Product semantics)
 - e.g. Fairness, Existence and Uniqueness of Models
- Fast implementations of model evaluation [Correia14]
 - ► Iterative Successive Substitution Algorithm

- Extends Dung's Classical AFs by
 - Social voting on arguments [Leite11]
 - Social voting on attack relations [Egilmez13]
- ► Flexible argument valuation
- Enjoys desirable properties (under Product semantics)
 - e.g. Fairness, Existence and Uniqueness of Models
- Fast implementations of model evaluation [Correia14]
 - ► Iterative Successive Substitution Algorithm

- Extends Dung's Classical AFs by
 - Social voting on arguments [Leite11]
 - Social voting on attack relations [Egilmez13]
- Flexible argument valuation
- Enjoys desirable properties (under Product semantics)
 - e.g. Fairness, Existence and Uniqueness of Models
- Fast implementations of model evaluation [Correia14]
 - Iterative Successive Substitution Algorithm

- Extends Dung's Classical AFs by
 - Social voting on arguments [Leite11]
 - Social voting on attack relations [Egilmez13]
- Flexible argument valuation
- ► Enjoys desirable properties (under Product semantics)
 - e.g. Fairness, Existence and Uniqueness of Models
- ► Fast implementations of model evaluation [Correia14]
 - ► Iterative Successive Substitution Algorithm

- Extends Dung's Classical AFs by
 - Social voting on arguments [Leite11]
 - Social voting on attack relations [Egilmez13]
- Flexible argument valuation
- Enjoys desirable properties (under Product semantics)
 - e.g. Fairness, Existence and Uniqueness of Models
- Fast implementations of model evaluation [Correia14]
 - Iterative Successive Substitution Algorithm

Outline

- 1. Social Abstract Argumentation Frameworks
- 2. Normalized Model Evaluation Concerning SAF

Problem motivation

▶ When the social argumentation graph is dense, the model evaluations tend to get smaller.

Problem motivation

When the social argumentation graph is dense, the model evaluations tend to get smaller.

Formal Roadmap

- ► Characterization of a normalized dataset
 - Concepts from the field of Statistics
- Desired properties/mappings
 - Existence of arguments
 - ► Relative ordering of model evaluations
 - Relative ordering of distances
 - Upper limit by social support
- Construction of the normalizing algorithm
 - In alignment with classes of desired mappings

Formal Roadmap

- Characterization of a normalized dataset
 - Concepts from the field of Statistics
- Desired properties/mappings
 - Existence of arguments
 - Relative ordering of model evaluations
 - Relative ordering of distances
 - Upper limit by social support
- Construction of the normalizing algorithm
 - In alignment with classes of desired mappings

Formal Roadmap

- Characterization of a normalized dataset
 - Concepts from the field of Statistics
- Desired properties/mappings
 - Existence of arguments
 - Relative ordering of model evaluations
 - Relative ordering of distances
 - Upper limit by social support
- Construction of the normalizing algorithm
 - In alignment with classes of desired mappings

- We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)

- We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)

- We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)

- We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)

- ► We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)

- ► We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)

- ► We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)

- We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)
 - Cluster density
 - Time/Space complexity
 - Clustering spacing
- 2. Normalizing phase (via update function)

- We may construct the normalization algorithm with two components:
- 1. Labeling phase (by clustering)
 - Cluster density
 - Time/Space complexity
 - Clustering spacing
- 2. Normalizing phase (via update function)
 - Desirable properties
 - Time complexity

Ongoing Work

- Automated means for characterization.
 - ▶ Initial attempts rely on expert knowledge or constants.
- Investigation of desirable properties, stricter desirable mapping classes.
- Investigation of algorithms.

"Perhaps the most important principle for the good algorithm designer is to refuse to be content."

- Aho, Hopcroft, and Ullman, *The Design and Analysis of Computer Algorithms*, 1974

Ongoing Work

- Automated means for characterization.
 - ▶ Initial attempts rely on expert knowledge or constants.
- Investigation of desirable properties, stricter desirable mapping classes.
- Investigation of algorithms.

"Perhaps the most important principle for the good algorithm designer is to refuse to be content."

- Aho, Hopcroft, and Ullman, *The Design and Analysis of Computer Algorithms*, 1974

Bibliography

- ▶ J. Leite and J. Martins, **Social Abstract Argumentation**, *In Procs. of IJCAI 2011*.
- S. Egilmez, J. Martins and J. Leite, Extending Social Abstract Argumentation with votes on attacks, In Procs. of TAFA 2013.
- M. Correia, J. Cruz and J. Leite, On the Efficient Implementation of Social Abstract Argumentation, In Procs. of ECAI 2014.


```
input : D (instances set), k (# of clusters))
   output: D (normalized instances set)
 1 cluster\_counter = 0;
 2 Clusters ← ∅;
 3 foreach d_i \in \mathcal{D} do
       newCluster \leftarrow \{d_i\};
       instance\_counter(newCluster) = 1;
       Clusters \leftarrow Clusters \cup newCluster;
       cluster\_counter + +:
 s end
 9 foreach C_i, C_i \in Clusters do
       Compute \Lambda(C_i, C_i)
11 end
12 while cluster_counter \neq k do
       (C_m, C_n) = two clusters closest together in Clusters;
13
       Clusters \leftarrow Clusters -\{C_m\} - \{\bar{C}_n\} \cup \{C_m \cup C_n\};
14
       cluster\_counter - -:
15
       foreach C \in Clusters do
16
           Compute \bigwedge(C, (C_m \cup C_n));
18
       end
19 end
20 Mid ← ∅;
21 foreach C_i, C_{i+1} \in Clusters do
       Mid \leftarrow Mid \cup \{(max(C_i) + min(C_{i+1})/2)\};
23 end
24 foreach C_i \in Clusters \backslash C_k do
       foreach d \in C_i do
25
           d \leftarrow \frac{d - min(C_i)}{max(C_i) - min(C_i)} (Mid[i] - min(C_i)) + min(C_i);
26
       end
27
28 end
```