Sabina Batyrkhanovna

• The memory hierarchy system consists of all storage devices employed in a computer system from the slow by high-capacity auxiliary memory to a relatively faster main memory, to an even smaller and faster cache memory.

Access Methods

- Each memory is a collection of various memory location.
 Accessing the memory means finding and reaching desired location and than reading information from memory location.
 The information from locations can be accessed as follows:
- 1. Random access
- 2. Sequential access
- 3. Direct access
- Random Access: It is the access mode where each memory location has a unique address. Using these unique addresses each memory location can be addressed independently in any order in equal amount of time. Generally, main memories are random access memories(RAM).

Access Methods

- <u>Sequential Access</u>: If storage locations can be accessed only in a certain predetermined sequence, the access method is known as serial or sequential access.
 - Opposite of RAM: **Serial Access Memory** (SAM). SAM works very well for memory **buffers**, where the data is normally stored in the order in which it will be used (a good example is the texture buffer memory on a video card, magnetic tapes, etc.).
- <u>Direct Access</u>: In this access information is stored on tracks and each track has a separate read/write head. This features makes it a semi random mode which is generally used in magnetic disks.

Main Memory

- Most of the main memory in a general purpose computer is made up of RAM integrated circuits chips, but a portion of the memory may be constructed with ROM chips.
- RAM— Random Access memory
 - Integrated RAM are available in two possible operating modes,
 Static and Dynamic.
- ROM— Read Only memory

Random Access Memory (RAM)

• RAM is used for storing bulk of programs and data that is subject to change.

Typical RAM chip

CS	1 CS2	RD	WR	Memory function	State of data bus
0	0	Х	Х	Inhibit	High-impedence
0	1	х	Х	Inhibit	High-impedence
1	0	0	0	Inhibit	High-impedence
1	0	0	1	Write	Input data to RAM
1	0	1	Χ	Read	Output data from RAM
1	1	х	Χ	Inhibit	High Impedence

Types of RAM

- Static RAM (SRAM)
 - Each cell stores bit with a six-transistor circuit.
 - Retains value indefinitely, as long as it is kept powered.
 - Faster (8-16 times faster) and more expensive (8-16 times more expensive as well) than DRAM.
- Dynamic RAM (DRAM)
 - Each cell stores bit with a capacitor and transistor.
 - Value must be refreshed every 10-100 ms.
 - Slower and cheaper than SRAM. Has reduced power consumption, and a large storage capacity.

In contrast to, SRAM and DRAM:

- Non Volatile RAM (NVRAM)
 - retains its information when power is turned off (non volatile).
 - best-known form of NVRAM memory today is flash memory.

Virtually all desktop or server computers since 1975 used DRAMs for main memory and SRAMs for cache.

Read Only Memory (ROM)

- It is non-volatile memory, which retains the data even when power is removed from this memory. Programs and data that can not be altered are stored in ROM.
- ROM is used for storing programs that are **PERMANENTLY** resident in the computer and for tables of constants that do not change in value once the production of the computer is completed.
- The ROM portion of main memory is needed for storing an initial program called bootstrap loader, which is to start the computer operating system when power is turned on.

Auxiliary Memory

- Also called as Secondary Memory, used to store large chunks of data at a lesser cost per byte than a primary memory for backup.
- It does not lose the data when the device is powered down—it is non-volatile.
- It is not directly accessible by the CPU, they are accessed via the input/output channels.
- The most common form of auxiliary memory devices used in consumer systems is flash memory, optical discs, and magnetic disks, magnetic tapes.

Types of Auxiliary Memory

- <u>Flash memory</u>: An electronic non-volatile computer storage device that can be electrically erased and reprogrammed, and works without any moving parts. Examples of this are **USB flash drives** and **solid state drives**.
- Optical disc: Its a storage medium from which data is read and to which it is written by lasers. There are three basic types of optical disks: CD-ROM (read-only), WORM (write-once read-many) & EO (erasable optical disks).

Types of Auxiliary Memory

- <u>Magnetic tapes</u>: A magnetic tape consists of electric, mechanical and electronic components to provide the parts and control mechanism for a magnetic tape unit.
- The tape itself is a strip of plastic coated with a magnetic recording medium.
 Bits are recorded as magnetic spots on tape along several tracks called
 RFCORDS.
- Each record on tape has an identification bit pattern at the beg. and the end.

Types of Auxiliary Memory

Magnetic Disk:

- A magnetic disk is a circular plate constructed of metal or plastic coated with magnetized material.
- Both sides of the disk are used and several disks may be stacked on one spindle with read/write heads available on each surface.
- Bits are stored in magnetized surface in spots along concentric circles called tracks. Tracks are commonly divided into sections called sectors.
- Disk that are permanently attached and cannot removed by occasional user are called hard disks.

From Computer Desktop Encyclopedia Reproduced with permission. 3 1997 Singapore Technologies

Associative Memory

- A memory unit accessed by contents is called an associative memory or content addressable memory (CAM).
- This type of memory is accessed simultaneously and in parallel on the basis of data content rather than by specific address or location.

Read/Write operation in associative memory

• Write operation:

- When a word is written in in an associative memory, no address is given.
- The memory is capable of finding an unused location to store the word.

Read operation:

- When a word is to be read from an associative memory, the contents of the word, or a part of the word is specified.
- The memory locates all the words which match the specified content and marks them for reading.

Disadvantage

 An associative memory is more expensive than a random access memory because each cell must have an extra storage capability as well as logic circuits for matching its content with an external argument.

Cache memory

- If the active portions of the program and data are placed in a fast small memory, the average memory access time can be reduced.
- Thus reducing the total execution time of the program
- Such a fast small memory is referred to as cache memory
- The cache is the fastest component in the memory hierarchy and approaches the speed of CPU component

Basic Operations of Cache

- When CPU needs to access memory, the cache is examined.
- If the word is found in the cache, it is read from the cache memory.
- If the word addressed by the CPU is not found in the cache, the main memory is accessed to read the word.
- A block of words containing the one just accessed is then transferred from main memory to cache memory.
- If the cache is full, then a block equivalent to the size of the used word is replaced according to the replacement algorithm being used.

Hit Ratio

- When the CPU refers to memory and finds the word in cache, it is said to produce a hit
- Otherwise, it is a miss
- The performance of cache memory is frequently measured in terms of a quantity called **hit ratio**

Hit ratio = hit / (hit+miss)

Mapping Process

- •The transformation of data from main memory to cache memory is referred to as a **mapping** process, there are three types of mapping:
 - Associative mapping
 - Direct mapping
 - Set-associative mapping
- •To help understand the mapping procedure, we have the following example:

Associative Mapping

- Each block mapped to any cache location
 - any block from main memory can be placed any where in the cache. After being placed in the cache, a given block is identified uniquely by its main memory block number, referred to as the tag, which is stored inside a separate tag memory in the cache.

Direct Mapping

• Each memory block is mapped to exactly one block in the cache

Set – Associative Mapping

- Each block mapped to subset of cache locations
- Is a hybrid between a fully associative cache, and direct mapped cache

Replacement Algorithms

- Optimal replacement algorithm find the block for replacement that has minimum chance to be referenced next time.
- Two algorithms:
 - FIFO: Selects the item which has been in the set the longest.
 - LRU: Selects the item which has been least recently used by the CPU.

FIFO (First In First Out)

- The first-in block in the cache is replaced first.
- In the other word, the block that is in the cache longest is replaced.
- Advantage: Easy to implement.
- Disadvantage: In some condition, blocks are replaced too frequently.

LRU (Least Recently Used)

- Replaced the least recently used block in the cache.
- To determine where is LRU block, a counter can be associated with each cache block.
- Advantage: This algorithm follows locality principle, so it limits number of times the block to be replaced.
- Disadvantage: Implementation is more complex.