Nombre dérivé

1^{ère} STMG

Table des matières

1	Limite en zéro d'une fonction							
	1.1 Exemple	2						
2	Nombre dérivé	2						
	2.1 Rappel: Coefficient directeur d'une droite	2						
	2.2 Définition : Nombre dérivé	3						
	2.3 Méthode : Calculer le nombre dérivé	4						
3	Tangente à une courbe	5						
	3.1 Définition : Tangente une courbe représentative d'une fonction	-						
	3.2 Méthode : Déterminer le coefficient directeur d'une tangente à une courbe	5						

1 Limite en zéro d'une fonction

1.1 Exemple

Soit la fonction f définie sur $]-\infty$; $0[\cup]0$; $+\infty[$ par $f(x) = \frac{(x+1)^2-1}{x}$.

L'image de 0 par la fonction f n'existe pas. On s'intéresse cependant aux valeurs de f(x) lorsque x se rapproche de 0.

\overline{x}	-0,5	-0,1	-0,01	-0,001		0,001	0,01	0,1	0,5
f(x)	1,5	1,9	1,99	1,999	?	2,001	2,01	2,1	2,5

On constate que f(x) se rapproche de 2 lorsque x se rapproche de 0.

On dit que la limite de f lorsque x tend vers 0 est égale à 2 et on note :

$$\lim_{x\to 0}f\left(x\right) =2$$

2 Nombre dérivé

2.1 Rappel: Coefficient directeur d'une droite

Le coefficient directeur de la droite (AB) est égal à :

$$\frac{5-3}{4-1} = \frac{2}{3}$$

Le coefficient directeur de la droite (CD) est égal à :

$$\frac{-1-1}{6-2} = \frac{-2}{4} = -\frac{1}{2}$$

2

2.2 Définition : Nombre dérivé

Soit une fonction f et \mathcal{C}_f sa représentation graphique dans le repère ci-dessous.

Soit A et M deux points de la courbe représentative de f d'abscisses respectives (a) et (a+h).

Le coefficient directeur de la droite (AM) est égal à :

$$\frac{f\left(a+h\right)-f\left(a\right)}{a+h-a}=\frac{f\left(a+h\right)-f\left(a\right)}{h}$$

Lorsque le point M se rapproche du point A, le coefficient directeur de la droite (AM) est égal à la limite de $\left(\frac{f\left(a+h\right)-f\left(a\right)}{h}\right)$ lorsque h tend vers 0.

Ce coefficient directeur s'appelle le **nombre dérivé** de f en a et on le note f'(a).

$$f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right)$$

2.3 Méthode : Calculer le nombre dérivé

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$.

- a) Calculer le nombre dérivé de la fonction f en x=2.
- (a) On commence par calculer $\frac{f\left(2+h\right)-f\left(2\right)}{h}$

On a :

$$f(2+h) = (2+h)^{2} + 2 \times (2+h) - 3$$

$$= 4 + 4h + h^{2} + 4 + 2h - 3$$

$$= h^{2} + 6h + 5$$

$$f(2) = (2)^{2} + 2 \times (2) - 3$$

$$= 4 + 4 - 3$$

$$= 5$$

Donc

$$\frac{f(2+h) - f(2)}{h} = \frac{(h^2 + 6h + 5) - (5)}{h}$$

$$= \frac{h^2 + 6h}{h}$$

$$= \frac{h(h+6)}{h}$$

$$= h + 6$$

Puis on calcule la limite de $\left(\frac{f\left(2+h\right)-f\left(2\right)}{h}\right)$ lorsque h tend vers 0 :

$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} (h+6) = 6$$

Le nombre dérivé de f en 2 est égal à 6. Et on note f'(2) = 6.

3 Tangente à une courbe

3.1 Définition : Tangente une courbe représentative d'une fonction

A est un point d'abscisse a appartenant à la courbe représentative d'une fonction f.

La **tangente** à la courbe au point A d'abscisse a est la droite :

- passant par A,
- de coefficient directeur le nombre dérivé f'(a).

FIGURE 1 – Tangente à une courbe représentatn une fonction f

3.2 Méthode : Déterminer le coefficient directeur d'une tangente à une courbe

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 2x - 3$ dont le nombre dérivé en 2 a été calculé plus haut.

- a) Déterminer le coefficient directeur de la tangente à la courbe représentative de f au point A de la courbe d'abscisse 2.
- b) Construire la tangente à la courbe de la fonction f en 2.
- c) En s'aidant de la calculatrice graphique, reproduire la courbe de la fonction f
- d) Donner une équation de la tangente.

(a) On a vu que le nombre dérivé de f en 2 est égal à 6. f'(2) = 6

Ainsi la tangente à la courbe représentative de f au point A de la courbe d'abscisse 2 est la droite passant par A et de coefficient directeur 6.

(b) On commence par placer le point A de coordonnées $(2\ ; f(2))$, avec $f(2)=2^2+2\times 2-3=5$.

On trace la tangente passant par A et de coefficient directeur 6. Pour cela, on avance de 1 dans le sens des abscisses puis de 6 dans le sens des ordonnées.

(c) A l'aide de la calculatrice, on a :

Table 2 – La courbe C_f sur la calculatrice CASIO et TI

(d) Une équation de la tangente en 2 est de la forme y = 6x + p.

Pour calculer p, on sait que le point A appartient à la tangente donc ses coordonnées (2;5) vérifient l'équation de la tangente y=6x+p.

$$y_A = 6 \times x_A + p$$
$$5 = 6 \times 2 + p$$
$$5 = 12 + p$$
$$p = -7$$

Une équation de tangente à la courbe représentative de f au point A d'abscisse 2 est y = 6x - 7.

Remarques

À l'aide de la calculatrice, il est possible de tracer la tangente à une courbe en un point.

Une fois la courbe tracée sur la calculatrice, saisir :

— TI-83 : Touches 2nde + PGRM (Dessin) puis 5: Tangente et saisir l'abscisse du point A, ici 2. Puis ENTER.

Figure 2 – Courbe et tangente avec TI

— Casio Graph 85 : Touches ${\tt SHIFT}+{\tt F4}$ (Skech) puis ${\tt Tang}$ et saisir l'abscisse du point A , ici 2. Puis ${\tt EXE}+{\tt EXE}.$

FIGURE 3 – Courbe et tangente avec Casio