The Payday Loan Puzzle: A Credit Scoring Explanation

Tsung-Hsien Li University of Mannheim

Jan Sun University of Mannheim

This version: November, 2021

Motivation

- Payday loans: Unsecured, small amount (\$300), short-term (2 weeks), and high-cost (400%)
- 12 million user and \$50 billion (Stagman, 2007; PEW, 2016)
- Hotly debated regulatory topic
- Payday loan puzzle in U.S. (Agarwal et al, 2009):
 - 2/3 of payday loan borrowers have liquidity left on credit cards (< 20%)
 - Significant extra monetary costs about \$200 over a year

Credit Scoring Explanation

"Why are people taking out [payday] loans instead of using their cards?" Ranney told me, "This guy was implying that these people weren't smart enough to make the 'right' decision. I laughed in his face. 'They're protecting the card!' I told him. [...]" Whereas failure to repay a payday loan won't affect a consumer's credit score, failure to repay a credit card will.

— Lisa Servon (2017): *The Unbanking of America*

What We Do

- Reputation protection: "Using payday loans to protect credit scores!"
 - Credit scores very important in U.S. Credit Scores
 - Payday lenders do not report to credit bureaus in U.S. (CFPB, 2017)
- Build a Huggett-type model of two assets, two default options, both hidden information (type scores) and hidden actions
 - Rationalize the puzzling behavior via type score protection
- Use calibrated model to understand payday loan puzzle
- Policy experiments: Quantity caps, full ban

Intuition — Type Score Protection via Payday Loans

- HHs' types (discount factors) β are unobservable
- Types score: Probability of being patient (good type)
- Types score updated with observable bank loan choice and default
- Credit terms thus condition on type scores
- Income ↓ ⇒ Borrowing bank loans ⇒ Type score ↓ (today)
 ⇒ Fail to repay bank loans ⇒ Type score ↓ (tomorrow)
- Payday loans and payday default are unobservable "to banks"
- HHs might use more expensive payday loans to protect type scores

Key Findings

- Endogenously generate the payday loan puzzle
 - Account for 40% of the puzzle occurrence
 - Match the magnitude of monetary losses
- Restricting the size of or banning payday loans are welfare-reducing
 - Heterogeneity across types

Literature / Contribution

- Consumer finance and default: Chatterjee et al. (2007), Livshits et al. (2007), Chatterjee et al. (2020), Exler (2020), Saldain (2021)

 First to model defaultable bank and payday loans with hidden information and actions
- Pecuniary mistakes: Agarwal et al. (2009), Cartel et al. (2011)
 First to endogenously generate and rationalize the payday loan puzzle
- Payday loan policy debate: Zinman (2010), Morgan et al. (2012), Skiba and Tobacman (2019), Melzer (2011)
 - First to analyze welfare implications of policies in a richer framework

Model Environment

- Time is discrete
- Endowment economy with idiosyncratic shocks
- Incomplete market: Bank assets, payday loans
- Banks, payday lenders, and households
- Households' hidden types (discount factors) ⇒ Type scores
- Banks cannot see payday loans

Households

- Infinitely-lived with survival rate ρ
- Risk-averse, derive utility from consumption *c*
- Two types of HHs: β_L and β_H (stochastic persistent)
- \blacksquare Receive stochastic earnings **z** (transitory) and **e** (persistent)
- Have bank assets b, payday debts p, type score s (Prob. of β_H)
- Repay or default *d*
 - Formal default (both), payday default (payday loan only)
 - Filing costs, stigma costs, exclusion in the filing period
- Can borrow/save **b'** in banking sector
- Can borrow p' in payday lending sector (if b' < 0)
- Subject to action-specific utility shocks $\epsilon \implies \sigma^{(d,b',p')}(\beta,z,e,b,s,p)$

Banks and Payday Lenders

- Risk-neutral
- Different information set
 - Banks cannot observe payday variables (p, p', and PD)
- Different operating costs: $r_p \gg r_f$
- Different default probabilities
 - Banks: Formal default
 - Payday lenders: Formal default, payday default
- Both can't see z (i.i.d.) and β (persistent) \rightarrow Type score s
- Perfect competition: Risk-based discount loan prices q_b and q_v

► Bank Loan Price Schedule ← Payday Problem ← Payday Loan Price Schedule

Information Structure

Type Score Updating

■ Bank-observable choice probabilities $\omega_h \equiv (e, b, s)$:

$$\sigma^{(d,b',p')}(\beta,z,\omega_b,\boldsymbol{p}) \xrightarrow{\tilde{\boldsymbol{\mu}}(\boldsymbol{p})} \sigma^{(\boldsymbol{d},b',\boldsymbol{p'})}(\beta,z,\omega_b) \xrightarrow{\boldsymbol{p'},\tilde{\boldsymbol{d}}=\boldsymbol{R}\vee\boldsymbol{PD}} \tilde{\sigma}_b^{(\tilde{\boldsymbol{d}},b')}(\beta,z,\omega_b)$$

■ Type score s (Prob. of β_H) updated via Bayes rule:

$$\underbrace{s'(\beta_{H})}_{\text{posterior}} = \underbrace{Q_{H \to H}^{\beta}}_{\text{C}_{\tilde{b}}} \cdot \underbrace{\frac{\tilde{\sigma}_{b}^{(\tilde{d},b')}(\beta_{H}) \cdot \tilde{s}(\beta_{H})}{\tilde{\sigma}_{b}^{(\tilde{d},b')}(\hat{\beta}) \cdot s(\hat{\beta})}}_{\text{posterior}} + Q_{L \to H}^{\beta} \cdot \underbrace{\frac{\tilde{\sigma}_{b}^{(\tilde{d},b')}(\beta_{L}) \cdot (1 - s(\beta_{H}))}{\sum_{\hat{\beta}} \tilde{\sigma}_{b}^{(\tilde{d},b')}(\hat{\beta}) \cdot s(\hat{\beta})}}_{\sum_{\hat{\beta}} \tilde{\sigma}_{b}^{(\tilde{d},b')}(\hat{\beta}) \cdot s(\hat{\beta})}$$

Rigorous $\tilde{\sigma}_k$ Likelihood Ratio and Type Score Stationary Equilibrium

Strategy

- Model period is a year
- Whole population in 2004
- Two sets of parameters
 - Exogenously calibrated
 - ▶ Discount factors from Chatterjee et al. (2020)
 - ► Earnings processes from Floden and Linde (2001)
 - ► Standard values or direct empirical evidence
 - Internally calibrated to match formal and payday default rates

Exogenous Calibration

Parameter		Value	Source
Low discount factor	eta_L	0.886	Chatterjee et al. (2020)
High discount factor	β_H	0.915	Chatterjee et al. (2020)
Transition from low to high	$Q^{\beta}(\beta_L \beta_H)$	0.013	Chatterjee et al. (2020)
Transition from high to low	$Q^{\beta}(\beta_H \beta_L)$	0.011	Chatterjee et al. (2020)
Discount factor at birth	G_{eta}	(0.72, 0.28)	Chatterjee et al. (2020)
AR(1) of persistent earnings	$ ho_e$	0.9136	Floden and Linde (2001)
S.D. of persistent earnings	σ_e^2	0.0426	Floden and Linde (2001)
S.D. of transitory earnings	$\sigma_e^2 \ \sigma_z^2$	0.0421	Floden and Linde (2001)
Persistent earnings at birth	G_e	(1,0,0)	Upward earnings profile
Transitory earnings at birth	G_z	(1/3,1/3,1/3)	Upward earnings profile

Exogenous Calibration (cont.)

Parameter		Value	Source
CDD 4			
CRRA	γ	2	Standard
Survival probability	ρ	0.975	40 years
Risk-free rate	r_f	0.014	Effective interest rate = 4%
Formal default cost	κ_{FD}	0.02	Albanesi and Nosal (2020)
Payday default cost	κ_{PD}	0.002	Montezemolo and Wolff (2015)
Operating cost for payday lenders	r_p	1.925	Flannery and Samolyk (2005)
Dispersion of extreme value shocks	α	0.005	

Internal Calibration

Parameter	Value	Target	Data	Model
0		Formal default rate Payday default rate (cond.)	0.22,0	0.99% 29.7%

Untargeted Moments Aligned with Data

Moment (in %)	Data	Model
Households in Debt		
Fraction of bank loan users	20.9	24.26
Fraction of payday loan users	5.61	9.46
Bank debt-to-earnings (cond. on borr.)	11.75	6.48
Interest Rate		
Avg. interest rate for bank loans	9.26	8.56
Avg. interest rate for payday loans	447.88	410.85

Pooling and Cross-Subsidization

Pooling

- Banks cannot see types and payday loan choices
- Conditional on the same borrowing of bank loans
 - Impatient \rightarrow Default $\uparrow \rightarrow$ **Riskier**
 - Payday loan users \rightarrow Total debt burden $\uparrow \rightarrow$ Default $\uparrow \rightarrow$ **Riskier**
- **Riskier** faces lower bank loan rates than "actuarially fair rates" (FI)
- Cross-subsidization in "bank loan market"

Formal Default Prob. by Types and Payday Users Foundation Outcomes by Types

Cross-Subs. of Bank Loans across Types

Cross-Subs. of Bank Loans across Payday Loan Users

Payday Loan Puzzle

Account for 40% of Puzzle Occurrence

- Payday loan puzzle: Using payday loans before maxing out credit cards
- In data \approx 66% (Agarwal et al., 2009)
- Define "Rate of Puzzle Occurrence" as:

$$\left(\frac{\text{Both loan users making "Seeming Pecuniary Mistake"}}{\text{Both loan users}}\right) \times 100$$

- In model = 26.44% \implies 40% of puzzle occurrence
- Puzzle users: HHs of this puzzling behavior

Match Magnitude of Monetary Losses

Source: Agarwal et al. (2009)

Reputation Gain vs. Interest Loss

Why? Smooth Out Temporary Shortfall in Earnings

Policy Debate about Payday Lending

- Hotly debated policy topic
- Benchmark: $p \in [0, $6000]$
- Two counterfactuals
 - Quantity Cap: $p \in [0, $300]$
 - Full Ban: p = 0

Pooling vs. Insurance of Payday Loans

Variables	Benchmark	Quantity Cap	Full Ban
Welfare (CEV)	_	-0.0012%	-0.0291%
Welfare (CEV) – Impatient	_	-0.0029%	-0.0331%
Welfare (CEV) – Patient	_	0.0013%	-0.0233%
Avg. Cross-Sub. of Bank Loans (β_L)	\$4.57	\$4.09	\$3.88
Avg. Cross-Sub. of Bank Loans $(p' < 0)$	\$30.33	\$23.95	_

- lacktriangle Quantity cap ightarrow Less pooling ightarrow Good: Patient / Bad: Impatient
- Insurance of payday loans \rightarrow Smoothing bad shocks (e.g., puzzle users)

Conclusion

- Payday loan puzzle can be rationalized by "credit scoring protection"
 - Account for 40% of puzzle occurrence
 - Match magnitude of monetary losses
- Puzzle users are not "stupid"—They want to maintain access to credit market in the future via type score protection!
- Restricting the size of payday loans affects (im)patient HHs differently: Impatient, worse off while patient, better off
 - Less cross-subsidization in bank loan market (less pooling)
- Eliminating payday loans is overall welfare-reducing
 - Both types do use payday loans to smooth out bad shocks (insurance)