Análise multivariada

Patrícia de Siqueira Ramos

UNIFAL-MG, campus Varginha

11 de Setembro de 2018

Dada uma matriz **A** $(p \times p)$, podemos obter um escalar λ e um vetor **v** $(p \times 1)$ de modo que

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \tag{1}$$

seja satisfeita?

Dada uma matriz **A** $(p \times p)$, podemos obter um escalar λ e um vetor **v** $(p \times 1)$ de modo que

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \tag{1}$$

seja satisfeita?

Se for possível,

- λ é um autovalor (raiz característica) da matriz **A** e
- ${\bf v}$ é um autovetor (vetor característico) associado a λ

Reescrevendo a equação (1):

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0},\tag{2}$$

Reescrevendo a equação (1):

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0},\tag{2}$$

o que representa um sistema de p equações homogêneas.

Reescrevendo a equação (1):

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0},\tag{2}$$

o que representa um sistema de p equações homogêneas.

Como queremos uma solução não trivial $(\neq 0)$, a matriz de coeficientes $(\mathbf{A} - \lambda \mathbf{I})$ deve ser singular:

$$|\mathbf{A} - \lambda \mathbf{I}| = 0, \tag{3}$$

que é a equação característica de A.

Assim, haverá p raízes $(\lambda_1, \lambda_2, \dots, \lambda_p)$ e cada uma será um autovalor.

Assim, haverá p raízes $(\lambda_1, \lambda_2, \dots, \lambda_p)$ e cada uma será um autovalor.

- Posto($\mathbf{A} \lambda \mathbf{I}$) < p
- Substituir cada λ_i em $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ produzirá um \mathbf{v} correspondente
- $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ dará um número infinito de soluções que correspondem a λ_i
 - Normalizaremos e selecionaremos um elemento como o autovetor correspondente a λ_i impondo uma restrição
 - Esse vetor será **e**;

Para uma matriz simétrica \mathbf{A} $(p \times p)$ existe uma matriz ortogonal \mathbf{P} $(p \times p)$ com colunas \mathbf{e}_i tal que

$$\mathbf{P}^{T}\mathbf{A}\mathbf{P} = \mathbf{\Lambda}, \qquad \mathbf{A}\mathbf{P} = \mathbf{P}\mathbf{\Lambda},$$

$$\mathbf{P}\mathbf{P}^{T} = \mathbf{I} = \sum_{i} \mathbf{e}_{i}\mathbf{e}_{i}^{T} \qquad \mathbf{A} = \mathbf{P}\mathbf{\Lambda}\mathbf{P}^{T} = \sum_{i} \lambda_{i}\mathbf{e}_{i}\mathbf{e}_{i}^{T},$$

Para uma matriz simétrica \mathbf{A} $(p \times p)$ existe uma matriz ortogonal \mathbf{P} $(p \times p)$ com colunas \mathbf{e}_i tal que

$$\mathbf{P}^{T}\mathbf{A}\mathbf{P} = \mathbf{\Lambda},$$
 $\mathbf{A}\mathbf{P} = \mathbf{P}\mathbf{\Lambda},$ $\mathbf{P}\mathbf{P}^{T} = \mathbf{I} = \sum_{i} \mathbf{e}_{i}\mathbf{e}_{i}^{T}$ $\mathbf{A} = \mathbf{P}\mathbf{\Lambda}\mathbf{P}^{T} = \sum_{i} \lambda_{i}\mathbf{e}_{i}\mathbf{e}_{i}^{T},$

em que Λ é matriz diagonal com $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$:

$$\mathbf{\Lambda} = \left[\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{array} \right].$$

Exercício: Seja

$$\mathbf{\Sigma} = \left[\begin{array}{cc} 8 & -2 \\ -2 & 5 \end{array} \right].$$

Obter os autovalores e autovetores resolvendo a equação característica

Se posto(\mathbf{A}) = $r \le p$, há r elementos não nulos na diagonal de $\mathbf{\Lambda}$

- Uma matriz simétrica com todos $\lambda_i > 0$: POSITIVA DEFINIDA (P.D.)
- Se alguns $\lambda_i > 0$ e pelo menos um $\lambda_i = 0$: POSITIVA SEMI DEFINIDA (P.S.D.)
- A classe de matrizes P.D. e P.S.D. é NÃO NEGATIVA DEFINIDA (N.N.D.)
- Se pelo menos um $\lambda_i = 0$, **A** é singular
- Se há autovalores positivos e negativos, a matriz é chamada INDEFINIDA

Se posto $(\mathbf{A}) = r \leq p$, há r elementos não nulos na diagonal de Λ

- Uma matriz simétrica com todos $\lambda_i > 0$: POSITIVA DEFINIDA (P.D.)
- Se alguns $\lambda_i > 0$ e pelo menos um $\lambda_i = 0$: POSITIVA SEMI DEFINIDA (P.S.D.)
- A classe de matrizes P.D. e P.S.D. é NÃO NEGATIVA DEFINIDA (N.N.D.)
- Se pelo menos um $\lambda_i = 0$, **A** é singular
- Se há autovalores positivos e negativos, a matriz é chamada INDEFINIDA

Exercício: Classifique a matriz A do exemplo

Resultados para **A** $(p \times p)$ simétrica:

$$|\mathbf{A}| = \prod^{p} \lambda_{i}$$

3 autovalores de
$$\mathbf{A}^{-1}$$
 são $\frac{1}{\lambda_i}$ se posto $(\mathbf{A}) = p$

5 A é idempotente sse todos
$$\lambda_i = 0$$
 ou 1

o A é singular sse um
$$\lambda_i = 0$$

0 se **A** é ortogonal,
$$\lambda_i = \pm 1$$

Na análise multivariada, esse teorema é útil para relacionar a matriz de covariâncias com seus autovalores e autovetores

Seja Σ $(p \times p)$ uma matriz de covariâncias, então há uma matriz ortogonal P $(p \times p)$ tal que

$$P^T \Sigma P = \Lambda$$
 e $P \Lambda P^T = \Sigma$,

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$$
.

Na análise multivariada, esse teorema é útil para relacionar a matriz de covariâncias com seus autovalores e autovetores

Seja $\mathbf{\Sigma}$ $(p \times p)$ uma matriz de covariâncias, então há uma matriz ortogonal \mathbf{P} $(p \times p)$ tal que

$$P^T \Sigma P = \Lambda$$
 e $P \Lambda P^T = \Sigma$,

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$$
.

Dizemos que Σ é similar a Λ :

$$\bullet |\mathbf{\Sigma}| = |\mathbf{\Lambda}| = \prod^{p} \lambda_{i}$$

•
$$tr(\mathbf{\Sigma}) = tr(\mathbf{\Lambda}) = \lambda_1 + \cdots + \lambda_p$$

A *i*-ésima coluna da matriz \mathbf{P} é o vetor normalizado \mathbf{e}_i . Então a matriz \mathbf{P} é

$$\mathbf{P} = [\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_p]$$

A *i*-ésima coluna da matriz \mathbf{P} é o vetor normalizado \mathbf{e}_i . Então a matriz \mathbf{P} é

$$\mathbf{P} = [\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_p]$$

e, pelo teorema,

$$\mathbf{\Sigma} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^T = \sum_{i}^{p} \lambda_i \mathbf{e}_i \mathbf{e}_i^T,$$

sendo \mathbf{e}_i um vetor de comprimento 1, ou seja,

- \bullet $\mathbf{e}_{i}^{T}\mathbf{e}_{i}=1$
- $\mathbf{e}_i^T \mathbf{e}_j = 0 \quad \forall i \neq j \text{ (vetores ortogonais)}$

Assim, \mathbf{e}_i forma um conjunto de vetores ortonormais

Exercício: Realize todas as verificações para a matriz do exercício

Observações:

- Resolver a equação característica não é a melhor estratégia para obter ${\pmb \Lambda}$ e ${\pmb P}$
- Há outros métodos mais eficientes: método da potência, da deflação, de Jacobi, Givens, LU e QR, entre outros