BFSI Case Study- Regression Problem

PROBLEM STATEMENT

The dataset belongs to a leading life insurance company. The company wants to predict the bonus for its agents so that it may design appropriate engagement activity for their high performing agents and up skill programs for low performing agents..

Objective:

- One of the major factor that an organisation takes care is rolling out the bonus (Target variable) for its
 employees in accordance with their performance. We will be predicting the bonus for the agents, so that
 it is possible to design appropriate engagement activity for their high performing agents and up skill
 programs for low performing agents.
- Compare different models and find out which one is the most suitable in this case in predicting the bonus.

Data Dictionary

- 1. CustID: Unique customer ID.
- 2. AgentBonus: Bonus amount given to each agents in last month.
- 3. Age: Age of customer.
- 4. **CustTenure:** Tenure of customer in organization.
- 5. **Channel:** Channel through which acquisition of customer is done.
- 6. **Occupation:** Occupation of customer.
- 7. **EducationField:** Field of education of customer.
- 8. Gender: Gender of customer
- 9. ExistingProdType: Existing product type of customer.
- 10. **Designation:** Designation of customer in their organization.
- 11. **NumberOfPolicy:** Total number of existing policy of a customer.
- 12. MaritalStatus: Marital status of customer.
- 13. MonthlyIncome: Gross monthly income of customer.
- 14. Complaint: Indicator of complaint registered in last one month by customer.
- 15. ExistingPolicyTenure: Max tenure in all existing policies of customer.
- 16. SumAssured: Max of sum assured in all existing policies of customer.
- 17. Zone: Customer belongs to which zone in India. Like East, West, North and South.
- 18. **PaymentMethod:** Frequency of payment selected by customer like Monthly, quarterly, half yearly and yearly.
- 19. LastMonthCalls: Total calls attempted by company to a customer for cross sell.
- 20. CustCareScore: Customer satisfaction score given by customer in previous service call.

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn import tree
from sklearn.ensemble import RandomForestRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import GridSearchCV
```

Read the data

In [3]:

```
df=pd.read_csv('Sales.csv')
```

In [4]:

```
df=df.drop("CustID" , axis=1)
```

Check the Head

In [5]:

```
df.head()
```

Out[5]:

	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingPro
0	4409	22.0	4.0	Agent	Salaried	Graduate	Female	
1	2214	11.0	2.0	Third Party Partner	Salaried	Graduate	Male	
2	4273	26.0	4.0	Agent	Free Lancer	Post Graduate	Male	
3	1791	11.0	NaN	Third Party Partner	Salaried	Graduate	Fe male	
4	2955	6.0	NaN	Agent	Small Business	UG	Male	
4								>

Get the info

In [6]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4520 entries, 0 to 4519 Data columns (total 19 columns):

Data	cordining (corar 19 cor	ullitis).	
#	Column	Non-Null Count	Dtype
-, -, -,			
0	AgentBonus	4520 non-null	int64
1	Age	4251 non-null	float64
2	CustTenure	4294 non-null	float64
3	Channel	4520 non-null	object
4	Occupation	4520 non-null	object
5	EducationField	4520 non-null	object
6	Gender	4520 non-null	object
7	ExistingProdType	4520 non-null	int64
8	Designation	4520 non-null	object
9	NumberOfPolicy	4475 non-null	float64
10	MaritalStatus	4520 non-null	object
11	MonthlyIncome	4284 non-null	float64
12	Complaint	4520 non-null	int64
13	ExistingPolicyTenure	4336 non-null	float64
14	SumAssured	4366 non-null	float64
15	Zone	4520 non-null	object
16	PaymentMethod	4520 non-null	object
17	LastMonthCalls	4520 non-null	int64
18	CustCareScore	4468 non-null	float64
dtype	es: float64(7), int64(4), object(8)	

dtypes: float64(7), int64(4), object(8)
memory usage: 671.1+ KB

Get the Summary Statistics

In [7]:

df.describe(include='all').T

Out[7]:

	count	unique	top	freq	mean	std	min
AgentBonus	4520.0	NaN	NaN	NaN	4077.838274	1403.321711	1605.0
Age	4251.0	NaN	NaN	NaN	14.494707	9.037629	2.0
CustTenure	4294.0	NaN	NaN	NaN	14.469027	8.963671	2.0
Channel	4520	3	Agent	3194	NaN	NaN	NaN
Occupation	4520	5	Salaried	2192	NaN	NaN	NaN
EducationField	4520	7	Graduate	1870	NaN	NaN	NaN
Gender	4520	3	Male	2688	NaN	NaN	NaN
ExistingProdType	4520.0	NaN	NaN	NaN	3.688938	1.015769	1.0
Designation	4520	6	Manager	1620	NaN	NaN	NaN
NumberOfPolicy	4475.0	NaN	NaN	NaN	3.565363	1.455926	1.0
MaritalStatus	4520	4	Married	2268	NaN	NaN	NaN
MonthlyIncome	4284.0	NaN	NaN	NaN	22890.309991	4885.600757	16009.0
Complaint	4520.0	NaN	NaN	NaN	0.287168	0.452491	0.0
ExistingPolicyTenure	4336.0	NaN	NaN	NaN	4.130074	3.346386	1.0
SumAssured	4366.0	NaN	NaN	NaN	619999.699267	246234.82214	168536.0
Zone	4520	4	West	2566	NaN	NaN	NaN
PaymentMethod	4520	4	Half Yearly	2656	NaN	NaN	NaN
LastMonthCalls	4520.0	NaN	NaN	NaN	4.626991	3.620132	0.0
CustCareScore	4468.0	NaN	NaN	NaN	3.067592	1.382968	1.0

Check for Object Data Type

In [8]:

```
df.select_dtypes(include='object').head()
```

Out[8]:

	Channel	Occupation	EducationField	Gender	Designation	MaritalStatus	Zone	Paymentl
0	Agent	Salaried	Graduate	Female	Manager	Single	North	Hal
1	Third Party Partner	Salaried	Graduate	Male	Manager	Divorced	North	
2	Agent	Free Lancer	Post Graduate	Male	Exe	Unmarried	North	
3	Third Party Partner	Salaried	Graduate	Fe male	Executive	Divorced	West	Hal
4	Agent	Small Business	UG	Male	Executive	Divorced	West	Hal

∢_

Check for the different values under 'object' data type

In [9]:

```
df.Channel.value_counts()
```

Out[9]:

Agent 3194
Third Party Partner 858
Online 468
Name: Channel, dtype: int64

In [10]:

df.Occupation.value_counts()

Out[10]:

Salaried 2192 Small Business 1918 Large Business 255 Laarge Business 153 Free Lancer 2

Name: Occupation, dtype: int64

In [11]:

```
df.EducationField.value_counts()
```

Out[11]:

Graduate 1870 Under Graduate 1190 Diploma 496 Engineer 408 Post Graduate 252 UG 230 MBA 74

Name: EducationField, dtype: int64

In [12]:

```
df.Gender.value_counts()
```

Out[12]:

Male 2688 Female 1507 Fe male 325

Name: Gender, dtype: int64

In [13]:

```
df.Designation.value_counts()
```

Out[13]:

Manager 1620 Executive 1535 Senior Manager 676 AVP 336 VP 226 Exe 127

Name: Designation, dtype: int64

In [14]:

```
df.MaritalStatus.value_counts()
```

Out[14]:

Married 2268 Single 1254 Divorced 804 Unmarried 194

Name: MaritalStatus, dtype: int64

```
In [15]:
```

```
df.Zone.value_counts()
```

Out[15]:

West 2566 North 1884 East 64 South 6

Name: Zone, dtype: int64

In [16]:

```
df.PaymentMethod.value_counts()
```

Out[16]:

Half Yearly 2656 Yearly 1434 Monthly 354 Quarterly 76

Name: PaymentMethod, dtype: int64

Data Correction

- Occupation: 'Large Business' is available as ('Large Business','Laarge Business') in different cases. To avoid this being considered as 2 different occupation, correct to single format.
- EducationField: 'UG' is available as ('UG','Under Graduate') in different cases. To avoid this being considered as 2 different occupation, correct to single format.
- **Gender**: 'Female' is available as ('Female','Fe male') in different cases. To avoid this being considered as 2 different occupation, correct to single format.
- **Designation**: 'Executive' is available as ('Executive', 'Exe') in different cases. To avoid this being considered as 2 different occupation, correct to single format.
- MaritalStatus: 'Single' is available as ('Single','Unmarried') in different cases. To avoid this being considered as 2 different occupation, correct to single format.

```
In [17]:
```

```
df['Occupation'] = df['Occupation'].str.replace('Laarge Business', 'Large Business')
```

In [18]:

```
df.Occupation.value_counts()
```

Out[18]:

Salaried 2192 Small Business 1918 Large Business 408 Free Lancer 2

Name: Occupation, dtype: int64

In [19]:

```
df['EducationField'] = df['EducationField'].str.replace('UG', 'Under Graduate')
```

```
In [20]:
```

```
df.EducationField.value_counts()
Out[20]:
Graduate
                  1870
Under Graduate
                  1420
Diploma
                   496
Engineer
                   408
Post Graduate
                    252
                    74
Name: EducationField, dtype: int64
In [21]:
df['Gender'] = df['Gender'].str.replace('Fe male', 'Female')
In [22]:
df.Gender.value_counts()
Out[22]:
Male
          2688
Female
          1832
Name: Gender, dtype: int64
In [23]:
df['Designation'] = df['Designation'].str.replace('Executive', 'Exe')
In [24]:
df.Designation.value_counts()
Out[24]:
Exe
                  1662
Manager
                  1620
Senior Manager
                   676
AVP
                    336
VΡ
                    226
Name: Designation, dtype: int64
In [25]:
df['MaritalStatus'] = df['MaritalStatus'].str.replace('Unmarried', 'Single')
In [26]:
df.MaritalStatus.value_counts()
Out[26]:
Married
            2268
Single
            1448
Divorced
             804
Name: MaritalStatus, dtype: int64
```

Check for Null Values

In [27]:

df.isnull().sum()

Out[27]:

AgentBonus	0
Age	269
CustTenure	226
Channel	0
Occupation	0
EducationField	0
Gender	0
ExistingProdType	0
Designation	0
NumberOfPolicy	45
MaritalStatus	0
MonthlyIncome	236
Complaint	0
ExistingPolicyTenure	184
SumAssured	154
Zone	0
PaymentMethod	0
LastMonthCalls	0
CustCareScore	52
dtype: int64	

% Null values

In [28]:

df.isnull().sum()/df.isnull().sum()*100

Out[28]:

AgentBonus	0.000000
Age	23.070326
CustTenure	19.382504
Channel	0.000000
Occupation	0.000000
EducationField	0.000000
Gender	0.000000
ExistingProdType	0.000000
Designation	0.000000
NumberOfPolicy	3.859348
MaritalStatus	0.000000
MonthlyIncome	20.240137
Complaint	0.000000
ExistingPolicyTenure	15.780446
SumAssured	13.207547
Zone	0.000000
PaymentMethod	0.000000
LastMonthCalls	0.000000
CustCareScore	4.459691
d+vno: floa+64	

dtype: float64

```
In [ ]:
```

Null Value Imputation

• Age

```
In [29]:
```

```
df.loc[df['Age'].isnull() == True, 'Age'] = df['Age'].median()
display("Median of Age :",df['Age'].median())
```

'Median of Age :'

13.0

CustTenure

In [30]:

```
df.loc[df['CustTenure'].isnull() == True, 'CustTenure'] = df['CustTenure'].median()
display("Median of CustTenure :",df['CustTenure'].median())
```

'Median of CustTenure :'

13.0

NumberOfPolicy

In [31]:

```
df.loc[df['NumberOfPolicy'].isnull() == True,'NumberOfPolicy'] = df['NumberOfPolicy'].m
ode()[0]
display("Mode of NumberOfPolicy :",df['NumberOfPolicy'].mode()[0])
```

'Mode of NumberOfPolicy :'

4.0

· MonthlyIncome

In [32]:

```
df.loc[df['MonthlyIncome'].isnull() == True,'MonthlyIncome'] = df['MonthlyIncome'].medi
an()
display("Median of MonthlyIncome :",df['MonthlyIncome'].median())
```

'Median of MonthlyIncome :'

21606.0

• ExistingPolicyTenure

```
In [33]:
```

```
df.loc[df['ExistingPolicyTenure'].isnull() == True, 'ExistingPolicyTenure'] = df['Existi
ngPolicyTenure'].median()
display("Median of ExistingPolicyTenure :",df['ExistingPolicyTenure'].median())
'Median of ExistingPolicyTenure :'
3.0

    SumAssured

In [34]:
df.loc[df['SumAssured'].isnull() == True, 'SumAssured'] = df['SumAssured'].median()
display("Median of SumAssured :",df['SumAssured'].median())
'Median of SumAssured :'
578976.5

    CustCareScore

In [35]:
df.loc[df['CustCareScore'].isnull() == True, 'CustCareScore'] = df['CustCareScore'].medi
display("Median of CustCareScore :",df['CustCareScore'].median())
'Median of CustCareScore :'
3.0
In [ ]:
```

Check for Outliers

```
In [36]:
```

```
cols=['Age', 'CustTenure', 'MonthlyIncome', 'ExistingPolicyTenure', 'SumAssured', 'LastMon
thCalls']
for i in cols:
    sns.boxplot(df[i], showmeans=True, whis=1.0)
    plt.grid()
    plt.show();
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpr etation.

warnings.warn(

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpr etation.

warnings.warn(

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpr etation.

warnings.warn(

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpr etation.

warnings.warn(

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpr etation.

warnings.warn(

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variable as a keyword arg: x. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpr etation.

warnings.warn(

In []:

Outlier Treatment

In [37]:

```
#def remove_outlier(col):
# Q1,Q3=col.quantile([0.25,0.75])
# IQR=Q3-Q1
# Lower_range= Q1-(1.5 * IQR)
# upper_range= Q3+(1.5 * IQR)
# return lower_range, upper_range
```

In [38]:

```
#for column in df[cols].columns:
# lr,ur=remove_outlier(df[column])
# df[column]=np.where(df[column]>ur,ur,df[column])
# df[column]=np.where(df[column]<lr,lr,df[column])</pre>
```

After Outlier Correction

In [39]:

```
#cols=['Age', 'CustTenure', 'MonthlyIncome', 'ExistingPolicyTenure', 'SumAssured', 'LastMo
nthCalls']
#for i in cols:
# sns.boxplot(df[i], showmeans=True, whis=1.5)
# plt.grid()
# plt.show();
```

In []:

Univariate Analysis

· Distribution of Categorical variables

In [39]:

```
from pylab import rcParams
rcParams['figure.figsize'] = 12,5
```

In [40]:

```
#df[['Channel','Occupation','EducationField','Gender','ExistingProdType','Designatio
n','NumberOfPolicy','MaritalStatus','Complaint','Zone','PaymentMethod','CustCareScor
e']].hist();
```

In [41]:

df['Channel'].hist();

In [42]:

df['Occupation'].hist();

In [43]:

df['EducationField'].hist();

In [44]:

```
rcParams['figure.figsize'] = 5,5
df['Gender'].hist();
```


In [45]:

df['ExistingProdType'].hist();

In [46]:

df['Designation'].hist();

In [47]:

df['NumberOfPolicy'].hist();

In [48]:

df['MaritalStatus'].hist();

In [49]:

df['Complaint'].hist();

In [50]:

In [51]:

df['PaymentMethod'].hist();

In [52]:

df['CustCareScore'].hist();

· Distribution of Continuous varaibles

In [122]:

dist_cont = df[['AgentBonus', 'Age', 'CustTenure', 'MonthlyIncome', 'ExistingPolicyTenur
e', 'SumAssured', 'LastMonthCalls']]

In [54]:

```
fig=plt.figure(figsize=(20,20))
for i in range(0,len(dist_cont.columns)):
    ax=fig.add_subplot(4,4,i+1)
    sns.distplot(dist_cont[dist_cont.columns[i]],hist=False)
    ax.set_title(dist_cont.columns[i],color='Red')
plt.tight_layout()
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn\distributions.py:2619: F utureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\User\anaconda3\lib\site-packages\seaborn\distributions.py:2619: F utureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\User\anaconda3\lib\site-packages\seaborn\distributions.py:2619: F utureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\User\anaconda3\lib\site-packages\seaborn\distributions.py:2619: F utureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\User\anaconda3\lib\site-packages\seaborn\distributions.py:2619: F utureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\User\anaconda3\lib\site-packages\seaborn\distributions.py:2619: F utureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

C:\Users\User\anaconda3\lib\site-packages\seaborn\distributions.py:2619: F utureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

warnings.warn(msg, FutureWarning)

In []:

BiVariate Analysis with target variable : 'AgentBonus'

· 'Age' with 'AgentBonus'

In [55]:

```
#sns.set(font_scale=1.5, style="white")
#sns.lmplot(x="Age", y="AgentBonus", data=df)
df.plot.scatter(x = 'Age', y = 'AgentBonus')
#plt.show()
```

Out[55]:

<AxesSubplot:xlabel='Age', ylabel='AgentBonus'>

· 'CustTenure' with 'AgentBonus'

In [56]:

```
#sns.set(font_scale=1.5, style="white")
#sns.lmplot(x="CustTenure", y="AgentBonus", data=df)
df.plot.scatter(x = 'CustTenure', y = 'AgentBonus')
#plt.show()
```

Out[56]:

<AxesSubplot:xlabel='CustTenure', ylabel='AgentBonus'>

• 'MonthlyIncome' with 'AgentBonus'

In [57]:

```
#sns.set(font_scale=1.5,style="white")
#sns.lmplot(x="MonthlyIncome",y="AgentBonus",data=df)
df.plot.scatter(x = 'MonthlyIncome', y = 'AgentBonus')
#plt.show()
```

Out[57]:

<AxesSubplot:xlabel='MonthlyIncome', ylabel='AgentBonus'>

• 'ExistingPolicyTenure' with 'AgentBonus'

In [58]:

```
#sns.set(font_scale=1.5,style="white")
#sns.lmplot(x="ExistingPolicyTenure",y="AgentBonus",data=df)
df.plot.scatter(x = 'ExistingPolicyTenure', y = 'AgentBonus')
#plt.show()
```

Out[58]:

<AxesSubplot:xlabel='ExistingPolicyTenure', ylabel='AgentBonus'>

• 'SumAssured' with 'AgentBonus'

In [59]:

```
#sns.set(font_scale=1.5, style="white")
#sns.lmplot(x="SumAssured", y="AgentBonus", data=df)
df.plot.scatter(x = 'SumAssured', y = 'AgentBonus')
#plt.show()
```

Out[59]:

<AxesSubplot:xlabel='SumAssured', ylabel='AgentBonus'>

· 'LastMonthCalls' with 'AgentBonus'

In [60]:

```
#sns.set(font_scale=1.5, style="white")
#sns.lmplot(x="LastMonthCalls", y="AgentBonus", data=df)
df.plot.scatter(x = 'LastMonthCalls', y = 'AgentBonus')
#plt.show()
```

Out[60]:

<AxesSubplot:xlabel='LastMonthCalls', ylabel='AgentBonus'>

• 'Channel' with 'AgentBonus'

In [61]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["Channel"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'Occupation' with 'AgentBonus'

In [62]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["Occupation"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'EducationField' with 'AgentBonus'

In [63]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["EducationField"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'Gender' with 'AgentBonus'

In [64]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["Gender"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

'ExistingProdType' with 'AgentBonus'

In [65]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["ExistingProdType"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'Designation' with 'AgentBonus'

In [66]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["Designation"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

• 'NumberOfPolicy' with 'AgentBonus'

In [67]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["NumberOfPolicy"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'MaritalStatus' with 'AgentBonus'

In [68]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["MaritalStatus"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'Complaint' with 'AgentBonus'

In [69]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["Complaint"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'Zone' with 'AgentBonus'

In [70]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["Zone"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'PaymentMethod' with 'AgentBonus'

In [71]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["PaymentMethod"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

· 'CustCareScore' with 'AgentBonus'

In [72]:

```
plt.figure(figsize=(8,8))
sns.stripplot(df["CustCareScore"], df['AgentBonus'], jitter=True)
plt.show()
```

C:\Users\User\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futur eWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Encoding

Channel

In [40]:

```
df['Channel'].replace(['Agent', 'Third Party Partner', 'Online'],[3,2,1], inplace = Tru
e)
df['Channel'] = df['Channel'].astype('int64')
```

Occupation

```
In [41]:
```

```
df['Occupation'].replace(['Salaried', 'Small Business', 'Large Business','Free Lancer'
], [4,3,2,1], inplace = True)
df['Occupation'] = df['Occupation'].astype('int64')
```

EducationField

In [42]:

```
df['EducationField'].replace(['Graduate', 'Under Graduate', 'Diploma', 'Engineer', 'Post
    Graduate', 'MBA'], [6,5,4,3,2,1], inplace = True)
df['EducationField'] = df['EducationField'].astype('int64')
```

Gender

In [43]:

```
df['Gender'].replace(['Male', 'Female'], [2,1], inplace = True)
df['Gender'] = df['Gender'].astype('int64')
```

Designation

In [44]:

```
df['Designation'].replace(['Exe', 'Manager','Senior Manager','AVP','VP'], [5,4,3,2,1],
inplace = True)
df['Designation'] = df['Designation'].astype('int64')
```

MaritalStatus

In [45]:

```
df['MaritalStatus'].replace(['Married', 'Single','Divorced'], [3,2,1], inplace = True)
df['MaritalStatus'] = df['MaritalStatus'].astype('int64')
```

Zone

In [46]:

```
df['Zone'].replace(['West', 'North', 'East', 'South'], [4,3,2,1], inplace = True)
df['Zone'] = df['Zone'].astype('int64')
```

· PaymentMethod

In [47]:

```
df['PaymentMethod'].replace(['Half Yearly', 'Yearly', 'Monthly', 'Quarterly'], [4,3,2,1],
inplace = True)
df['PaymentMethod'] = df['PaymentMethod'].astype('int64')
```

```
In [ ]:
```

In [48]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4520 entries, 0 to 4519
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	AgentBonus	4520 non-null	int64
1	Age	4520 non-null	float64
2	CustTenure	4520 non-null	float64
3	Channel	4520 non-null	int64
4	Occupation	4520 non-null	int64
5	EducationField	4520 non-null	int64
6	Gender	4520 non-null	int64
7	ExistingProdType	4520 non-null	int64
8	Designation	4520 non-null	int64
9	NumberOfPolicy	4520 non-null	float64
10	MaritalStatus	4520 non-null	int64
11	MonthlyIncome	4520 non-null	float64
12	Complaint	4520 non-null	int64
13	ExistingPolicyTenure	4520 non-null	float64
14	SumAssured	4520 non-null	float64
15	Zone	4520 non-null	int64
16	PaymentMethod	4520 non-null	int64
17	LastMonthCalls	4520 non-null	int64
18	CustCareScore	4520 non-null	float64
dtyp	es: float64(7), int64(12)	
memo	ry usage: 671.1 KB		

In []:

Multi variate Analysis

In [232]:

sns.pairplot(df)

Out[232]:

<seaborn.axisgrid.PairGrid at 0x1f1768a1f10>


```
In [53]:
```

```
plt.figure(figsize=(12,7))
sns.heatmap(df.corr(), annot=True, fmt='.2f', cmap='Blues')
plt.show()
```


Observation

- The target field 'AgentBonus' is strongly influenced by 'SumInsured' field.
- The target field 'AgentBonus' is moderately influenced by 'MonthlyIncome', 'Designation', 'Age' and 'CustTenure'.
- There is strong corelation between 'MonthlyIncome' and 'Designation'.

In []:

VIF- Check MultiCollinearity

In [49]:

```
df.columns
```

Out[49]:

In [50]:

```
from scipy.stats import zscore
df_scaled=df.apply(zscore)
df_scaled.head()
```

Out[50]:

	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	Exi
0	0.236010	0.865868	-1.189214	0.594015	0.933261	0.867194	-1.211301	
1	-1.328309	-0.388311	-1.418006	-0.902611	0.933261	0.867194	0.825559	
2	0.139087	1.321933	-1.189214	0.594015	-3.685358	-2.259824	0.825559	
3	-1.629770	-0.388311	-0.159648	-0.902611	0.933261	0.867194	-1.211301	
4	-0.800217	-0.958393	-0.159648	0.594015	-0.606279	0.085440	0.825559	
4								•

In [51]:

```
features
                               VIF
11
              Complaint 1.004154
17
          CustCareScore 1.006371
          MaritalStatus 1.007284
9
                    Zone 1.008142
14
2
                 Channel 1.009260
5
                 Gender 1.015831
15
          PaymentMethod 1.030241
8
          NumberOfPolicy 1.069846
   ExistingPolicyTenure 1.114429
12
       ExistingProdType 1.145761
6
          LastMonthCalls 1.171116
16
              Occupation 1.284631
3
4
         EducationField 1.286616
1
             CustTenure 1.330042
                    Age 1.333014
0
13
             SumAssured 1.738838
7
             Designation 3.497375
10
          MonthlyIncome 3.627038
```

In [52]:

```
#plt.figure(figsize=(12,7))
#sns.heatmap(X.corr(), annot=True, fmt='.2f', cmap='Blues')
#plt.show()
```

In [56]:

df_scaled

Out[56]:

	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender
0	0.236010	0.922528	-1.231573	0.594015	0.933261	0.867194	-1.211301
1	-1.328309	-0.391386	-1.471557	-0.902611	0.933261	0.867194	0.825559
2	0.139087	1.400315	-1.231573	0.594015	-3.685358	-2.259824	0.825559
3	-1.629770	-0.391386	-0.151649	-0.902611	0.933261	0.867194	-1.211301
4	-0.800217	-0.988620	-0.151649	0.594015	-0.606279	0.085440	0.825559
4515	-0.088969	-1.227514	-0.751607	0.594015	-0.606279	0.867194	0.825559
4516	-0.811620	-0.630280	-0.631615	0.594015	0.933261	0.085440	-1.211301
4517	-0.203709	1.041975	1.048268	0.594015	0.933261	-1.478070	-1.211301
4518	0.526069	-0.510833	-0.511624	-2.399237	-0.606279	0.867194	-1.211301
4519	0.489009	-0.033046	-0.511624	0.594015	0.933261	0.085440	-1.211301

4520 rows × 19 columns

Clustering

· Hierarchical Clustering

In [96]:

from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster

In [97]:

```
wardlink = linkage(df_scaled, method = 'ward')
dend = dendrogram(wardlink)
```


In [99]:


```
In [100]:
```

```
# Set criterion as maxclust, then create 2 clusters, and store the result in another obj
ect 'clusters'
clusters = fcluster(wardlink, 2, criterion='maxclust')
clusters
Out[100]:
array([2, 2, 2, ..., 2, 2], dtype=int32)
In [103]:
df['Hier_cluster'] = clusters
In [105]:
#Cluster Frequency
df.Hier_cluster.value_counts().sort_index()
Out[105]:
     1461
1
     3059
Name: Hier_cluster, dtype: int64
In [ ]:
#aggdata=df.iloc[:,0:18].groupby('clusters').mean()
#aggdata['Freq']=df.clusters.value_counts().sort_index()
#aggdata
In [ ]:
#df.to_csv('hier-clusters.csv')
In [ ]:

    k-means clustering

In [83]:
from sklearn.cluster import KMeans
k_means = KMeans(n_clusters = 2)
In [84]:
k_means.fit(df_scaled)
Out[84]:
KMeans(n_clusters=2)
```

https://htmtopdf.herokuapp.com/ipynbviewer/temp/8d58df722bf1fba1d26f14691a673d11/svijaykailash-BFSI-Regression.html?t=1669207238872

```
In [85]:
k_means.labels_
Out[85]:
array([1, 1, 1, ..., 0, 1, 1])
In [86]:
k_means.inertia_
Out[86]:
74845.77383062952
In [87]:
k_means = KMeans(n_clusters = 1)
k_means.fit(df_scaled)
k_means.inertia_
Out[87]:
85880.00000000001
In [88]:
k_means = KMeans(n_clusters = 2)
k_means.fit(df_scaled)
k_means.inertia_
Out[88]:
74845.7199572887
In [89]:
k_means = KMeans(n_clusters = 3)
k_means.fit(df_scaled)
k_means.inertia_
Out[89]:
71072.58914699193
In [90]:
k means = KMeans(n clusters = 4)
k_means.fit(df_scaled)
k_means.inertia_
Out[90]:
67703.93181248946
In [91]:
wss =[]
```

In [92]:

```
for i in range(1,11):
    KM = KMeans(n_clusters=i)
    KM.fit(df_scaled)
    wss.append(KM.inertia_)
```

In [93]:

WSS

Out[93]:

```
[85880.00000000001,
74845.68120343324,
71158.37383530868,
68079.12483741975,
65436.98606745957,
63699.452550432536,
62193.479387367915,
60889.991614946615,
59805.72256150749,
58315.66690173464]
```

In [94]:

```
plt.plot(range(1,11), wss)
```

Out[94]:

[<matplotlib.lines.Line2D at 0x23e83451880>]

In [95]:

```
k_means = KMeans(n_clusters = 2)
k_means.fit(df_scaled)
labels = k_means.labels_
```

```
In [110]:
```

```
df["Kmeans-CLuster"] = labels
df.head()
```

Out[110]:

	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingPro
0	4409	22.0	4.0	3	4	6	1	
1	2214	11.0	2.0	2	4	6	2	
2	4273	26.0	4.0	3	1	2	2	
3	1791	11.0	13.0	2	4	6	1	
4	2955	6.0	13.0	3	3	5	2	

5 rows × 21 columns

In []:

```
#aggdata2=df2.iloc[:,0:9].groupby('Clus_kmeans').mean()
#aggdata2['Freq']=df2.Clus_kmeans.value_counts().sort_index()
#aggdata2
```

In [108]:

```
from sklearn.metrics import silhouette_samples, silhouette_score
```

In [109]:

```
silhouette_score(df_scaled,labels)
```

Out[109]:

0.14187029298754747

In [111]:

```
sil_width = silhouette_samples(df_scaled,labels)
```

```
In [112]:
```

```
df["sil_width"] = sil_width
df.head()
```

Out[112]:

	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingPro
0	4409	22.0	4.0	3	4	6	1	
1	2214	11.0	2.0	2	4	6	2	
2	4273	26.0	4.0	3	1	2	2	
3	1791	11.0	13.0	2	4	6	1	
4	2955	6.0	13.0	3	3	5	2	

5 rows × 22 columns

→

In [113]:

```
df.to_csv('clusters.csv')
```

In [114]:

In []:

PCA

In [117]:

Z.head()

Out[117]:

	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingProdType
0	0.922528	-1.231573	0.594015	0.933261	0.867194	-1.211301	-0.678318
1	-0.391386	-1.471557	-0.902611	0.933261	0.867194	0.825559	0.306267
2	1.400315	-1.231573	0.594015	-3.685358	-2.259824	0.825559	0.306267
3	-0.391386	-0.151649	-0.902611	0.933261	0.867194	-1.211301	-0.678318
4	-0.988620	-0.151649	0.594015	-0.606279	0.085440	0.825559	-0.678318
4							>

In [122]:

```
Z.boxplot(figsize=(20,3))
plt.xticks(rotation=90)
plt.show()
```


In [139]:

#!pip install factor_analyzer

In [124]:

from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
chi_square_value,p_value=calculate_bartlett_sphericity(Z)
p_value

Out[124]:

0.0

In [126]:

```
from factor_analyzer.factor_analyzer import calculate_kmo
kmo_all,kmo_model=calculate_kmo(Z)
kmo_model
```

Out[126]:

0.6751505569103183

In [127]:

```
#Apply PCA taking all features
from sklearn.decomposition import PCA
pca = PCA(n_components=5, random_state=123)
pca_transformed = pca.fit_transform(Z)
```

In [128]:

```
#Extract eigen vectors
pca.components_
```

Out[128]:

```
array([[ 0.34124887, 0.34108746, 0.01932232, 0.0120823 , 0.0060132 ,
        -0.0357085 , 0.1244012 , -0.46117129 , 0.09481622 ,
                                                            0.01433447,
        0.47726192, -0.00175326, \quad 0.20320025, \quad 0.43388822, \quad 0.00210135, \\
        0.03016599, 0.26300833, 0.02467013],
       [-0.04733013, -0.04913791, 0.11681757, -0.68543956, -0.6847282,
        0.0263781 , 0.10038753, -0.00928509, 0.132837 , -0.01227712,
        0.04140504, 0.01442283, -0.00089065, -0.03733165, 0.05754642,
        0.07939905, 0.03524944, -0.01369849],
       [-0.20679874, -0.23501143, -0.01417544, -0.01171432, -0.03237225,
        0.19226484, -0.39009923, -0.36566242, -0.22413332, 0.17396599,
        0.25483875, -0.09147669, -0.37154713, -0.20358004, 0.06050036,
        -0.27594989, 0.40522119, 0.02121226],
       [0.26942144, 0.23108588, 0.14267772, -0.08744265, -0.14336701,
        0.07521524, -0.51818288, 0.08312645, -0.43571133, 0.15720153,
       -0.21364874, 0.1722669, 0.21096954, 0.23761962, 0.09662793,
       -0.29239615, -0.22879049, -0.07966296],
       [-0.04184715, -0.04629065, 0.14678788, -0.01990405, 0.01060285,
       -0.46683522, -0.20391453, 0.0149095, 0.35821695, -0.21716679,
       -0.01629717, 0.10390137, 0.09714285, -0.04164951, -0.38814234,
       -0.45055842, 0.15960387, -0.37076691]])
```

In [129]:

```
#Check the eigen values
#Note: This is always returned in descending order
pca.explained_variance_
```

Out[129]:

```
array([2.94282086, 1.49392249, 1.19923367, 1.17220303, 1.10163981])
```

In [130]:

```
#Check the explained variance for each PC
#Note: Explained variance = (eigen value of each PC)/(sum of eigen values of all PCs)
pca.explained_variance_ratio_
```

Out[130]:

```
array([0.16345388, 0.08297733, 0.06660935, 0.06510798, 0.06118867])
```

In [131]:

In [132]:

df_extracted_loadings

Out[132]:

	PC1	PC2	PC3	PC4	PC5
Age	0.341249	-0.047330	-0.206799	0.269421	-0.041847
CustTenure	0.341087	-0.049138	-0.235011	0.231086	-0.046291
Channel	0.019322	0.116818	-0.014175	0.142678	0.146788
Occupation	0.012082	-0.685440	-0.011714	-0.087443	-0.019904
EducationField	0.006013	-0.684728	-0.032372	-0.143367	0.010603
Gender	-0.035709	0.026378	0.192265	0.075215	-0.466835
ExistingProdType	0.124401	0.100388	-0.390099	-0.518183	-0.203915
Designation	-0.461171	-0.009285	-0.365662	0.083126	0.014909
NumberOfPolicy	0.094816	0.132837	-0.224133	-0.435711	0.358217
MaritalStatus	0.014334	-0.012277	0.173966	0.157202	-0.217167
MonthlyIncome	0.477262	0.041405	0.254839	-0.213649	-0.016297
Complaint	-0.001753	0.014423	-0.091477	0.172267	0.103901
ExistingPolicyTenure	0.203200	-0.000891	-0.371547	0.210970	0.097143
SumAssured	0.433888	-0.037332	-0.203580	0.237620	-0.041650
Zone	0.002101	0.057546	0.060500	0.096628	-0.388142
PaymentMethod	0.030166	0.079399	-0.275950	-0.292396	-0.450558
LastMonthCalls	0.263008	0.035249	0.405221	-0.228790	0.159604
CustCareScore	0.024670	-0.013698	0.021212	-0.079663	-0.370767

In [133]:

```
#Create a scree plot
plt.figure(figsize=(8,5))
sns.lineplot(y=pca.explained_variance_ratio__,x=range(1,6),marker='o')
plt.xlabel('Number of Components',fontsize=10)
plt.ylabel('Variance Explained',fontsize=10)
plt.title('Scree Plot',fontsize=12)
plt.grid()
plt.show()
```


In [134]:

```
#Check the cumlative explained variance ratio to find a cut off for selecting the number of PCs rotation = r
```

Out[134]:

array([0.16345388, 0.24643121, 0.31304056, 0.37814854, 0.43933722])

In [135]:

```
#Choose the PCs basis cumulative explained variance
df_selected = df_extracted_loadings[['PC1','PC2', 'PC3', 'PC4', 'PC5']]
#
```

In [136]:

#Check the selected PCs
df_selected

Out[136]:

	PC1	PC2	PC3	PC4	PC5
Age	0.341249	-0.047330	-0.206799	0.269421	-0.041847
CustTenure	0.341087	-0.049138	-0.235011	0.231086	-0.046291
Channel	0.019322	0.116818	-0.014175	0.142678	0.146788
Occupation	0.012082	-0.685440	-0.011714	-0.087443	-0.019904
EducationField	0.006013	-0.684728	-0.032372	-0.143367	0.010603
Gender	-0.035709	0.026378	0.192265	0.075215	-0.466835
ExistingProdType	0.124401	0.100388	-0.390099	-0.518183	-0.203915
Designation	-0.461171	-0.009285	-0.365662	0.083126	0.014909
NumberOfPolicy	0.094816	0.132837	-0.224133	-0.435711	0.358217
MaritalStatus	0.014334	-0.012277	0.173966	0.157202	-0.217167
MonthlyIncome	0.477262	0.041405	0.254839	-0.213649	-0.016297
Complaint	-0.001753	0.014423	-0.091477	0.172267	0.103901
ExistingPolicyTenure	0.203200	-0.000891	-0.371547	0.210970	0.097143
SumAssured	0.433888	-0.037332	-0.203580	0.237620	-0.041650
Zone	0.002101	0.057546	0.060500	0.096628	-0.388142
PaymentMethod	0.030166	0.079399	-0.275950	-0.292396	-0.450558
LastMonthCalls	0.263008	0.035249	0.405221	-0.228790	0.159604
CustCareScore	0.024670	-0.013698	0.021212	-0.079663	-0.370767

In [137]:

```
#Check as to how the original features matter to each PC
#Note: Here we are only considering the absolute values
plt.figure(figsize = (12,6))
for i in range(len(df_selected.columns)):
    plt.subplot(3,2,i+1)
    abs(df_selected[df_selected.columns[i]]).T.sort_values(ascending = False).plot.bar
()
    plt.yticks(np.arange(0,1.2,.2))
    plt.title('Abs. loadings of {}'.format(df_selected.columns[i]))
    plt.tight_layout()
```


In [138]:

```
#Compare how the original features influence various PCs
plt.figure(figsize = (12,7))
sns.heatmap(abs(df_selected), annot = True, cmap = 'Blues',fmt = '.2f');
```


In []:

Train/Test Split

In [53]:

from sklearn.model_selection import train_test_split

```
In [54]:
```

```
# capture the target column ("AgentBonus") into separate vectors for training set and t
est set

# Copy all the predictor variables into X dataframe
X = df.drop(['AgentBonus','MonthlyIncome'],axis=1)
# Copy target into the y dataframe.
y = df[['AgentBonus']]
```

In [55]:

```
# splitting data into training and test set for independent attributes
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30 , random_state
=1)
```

In [57]:

```
ss=StandardScaler()
x_train_scaled=ss.fit_transform(x_train)
x_test_scaled=ss.transform(x_test)
```

In []:

Import necessary libraries for Model Building/Performance Metrics

In [58]:

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
from sklearn.model_selection import GridSearchCV
```

In [59]:

```
from sklearn import tree
from sklearn.ensemble import RandomForestRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.neighbors import KNeighborsRegressor
```

In [60]:

```
#from sklearn import metrics
```

In [61]:

```
import time
```

Models

In [63]:

```
# Models that does not require scaling
dtr = tree.DecisionTreeRegressor(random_state=1)
rfr = RandomForestRegressor(random_state=1)

# Models on Scaled Dataframe
ann = MLPRegressor(hidden_layer_sizes=(100),random_state=1, max_iter=10000)#you are fre
e to tweak the layer sizes
#ann = MLPRegressor()#you are free to tweak the layer sizes
lr = LinearRegression()
svm = SVR(kernel='rbf')
lasso = Lasso(alpha=1.0)
ridge = Ridge(alpha=1.0)
knn = KNeighborsRegressor(n_neighbors=2)
```

In [66]:

```
models = [dtr,rfr,ann,lr,svm,lasso,ridge,knn]
#models2 = [ann,regression_model,lr,lda]
mae_train=[]
mae_test=[]
mse_train=[]
rmse_test=[]
rmse_test=[]
r2_train=[]
r2_test=[]
mape_train=[]
scores_train=[]
scores_test=[]
```

In [67]:

```
#y:Original value
#yhat:Predicted value

def MAPE(y, yhat):
    y, yhat = np.array(y),np.array(yhat)
    try:
        mape = round(np.mean(np.abs((y-yhat)/y)) * 100,2)
    except:
        print("Observed Values are empty")
        mape=np.nan
    return mape
```

In [68]:

```
for i in models: # we are scaling the data for ANN. Without scaling it will give very
poor results. Computations becomes easier
    if (i not in models2) :
    if (i == dtr or i == rfr) :
        start = time.time()
        i.fit(x_train,y_train)
        end = time.time()
        diff = end - start
        print("model that doesn't need scaling: ",i)
        print("time taken: ",diff)
        scores_train.append(i.score(x_train, y_train))
        scores_test.append(i.score(x_test, y_test))
        mae_train.append(mean_absolute_error(y_train,i.predict(x_train)))
        mae_test.append(mean_absolute_error(y_test,i.predict(x_test)))
        mse_train.append(mean_squared_error(y_train,i.predict(x_train)))
        mse_test.append(mean_squared_error(y_test,i.predict(x_test)))
        rmse_train.append(np.sqrt(mean_squared_error(y_train,i.predict(x_train))))
        rmse_test.append(np.sqrt(mean_squared_error(y_test,i.predict(x_test))))
        r2_train.append(r2_score(y_train,i.predict(x_train)))
        r2_test.append(r2_score(y_test,i.predict(x_test)))
        mape_train.append(MAPE(y_train,i.predict(x_train)))
        mape_test.append(MAPE(y_test,i.predict(x_test)))
    else:
        start = time.time()
        i.fit(x_train_scaled,y_train)
        end = time.time()
        diff = end - start
        print("model that doesn't need scaling: ",i)
        print("time taken: ",diff)
        scores_train.append(i.score(x_train_scaled, y_train))
        scores_test.append(i.score(x_test_scaled, y_test))
        mae_train.append(mean_absolute_error(y_train,i.predict(x_train_scaled)))
        mae test.append(mean absolute error(y test,i.predict(x test scaled)))
        mse_train.append(mean_squared_error(y_train,i.predict(x_train_scaled)))
        mse_test.append(mean_squared_error(y_test,i.predict(x_test_scaled)))
        rmse_train.append(np.sqrt(mean_squared_error(y_train,i.predict(x_train_scaled
))))
        rmse_test.append(np.sqrt(mean_squared_error(y_test,i.predict(x_test_scaled))))
        r2 train.append(r2 score(y train,i.predict(x train scaled)))
        r2 test.append(r2 score(y test,i.predict(x test scaled)))
        mape_train.append(MAPE(y_train,i.predict(x_train_scaled)))
        mape test.append(MAPE(y test,i.predict(x test scaled)))
print(pd.DataFrame({'Train MAE': mae_train, 'Test MAE': mae_test, 'Train MSE': mse_train,
'Test MSE': mse_test, 'Train RMSE': rmse_train, 'Test RMSE': rmse_test, 'Train R2': r2_tra
in, 'Test R2': r2 test, 'Train MAPE': mape train, 'Test MAPE': mape test, 'Training Score':
scores train, 'Test Score': scores test},
            index=['DT Regressor','RF Regressor','ANN Regressor','Lin Regression','SVM'
,'Lasso','ridge','knn']))
```

```
model that doesn't need scaling: DecisionTreeRegressor(random_state=1)
time taken: 0.08398675918579102
```

C:\Users\User\AppData\Local\Temp\ipykernel_10048\2107772906.py:6: DataConv
ersionWarning: A column-vector y was passed when a 1d array was expected.
Please change the shape of y to (n_samples,), for example using ravel().
 i.fit(x_train,y_train)

model that doesn't need scaling: RandomForestRegressor(random_state=1)
time taken: 5.069835186004639

C:\Users\User\anaconda3\lib\site-packages\sklearn\neural_network_multilay
er_perceptron.py:1599: DataConversionWarning: A column-vector y was passed
when a 1d array was expected. Please change the shape of y to (n_samples,
), for example using ravel().

y = column_or_1d(y, warn=True)

model that doesn't need scaling: MLPRegressor(hidden_layer_sizes=100, max
_iter=10000, random_state=1)
time taken: 667.8342356681824

model that doesn't need scaling: LinearRegression()

time taken: 0.37500476837158203

C:\Users\User\anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataConversionWarning: A column-vector y was passed when a 1d array was ex pected. Please change the shape of y to (n_samples,), for example using r avel().

y = column_or_1d(y, warn=True)

```
model that doesn't need scaling:
                                  SVR()
time taken: 2.588724374771118
model that doesn't need scaling:
                                  Lasso()
time taken: 0.0937509536743164
model that doesn't need scaling:
                                  Ridge()
time taken: 0.32813119888305664
                                  KNeighborsRegressor(n neighbors=2)
model that doesn't need scaling:
time taken: 0.0
                  Train MAE
                                Test MAE
                                             Train MSE
                                                             Test MSE
DT Regressor
                   0.000000
                              555.710914
                                          0.000000e+00
                                                        6.040700e+05
RF Regressor
                 150.158300
                              412.650605
                                          3.962162e+04
                                                        2.913267e+05
ANN Regressor
                 417.863868
                              457.658967
                                          2.874699e+05
                                                        3.522575e+05
                 489.598451
Lin Regression
                              500.638254
                                          3.868962e+05 4.004964e+05
SVM
                1049.344336 1051.244915
                                          1.837397e+06
                                                        1.816980e+06
Lasso
                 489.582129
                              500.468537
                                          3.869107e+05
                                                        4.003309e+05
ridge
                 489.593852
                              500.635841
                                          3.868963e+05
                                                        4.004894e+05
knn
                 426.482933
                              764.355457
                                          2.998414e+05
                                                        9.325485e+05
                 Train RMSE
                               Test RMSE
                                          Train R2
                                                     Test R2 Train MAPE
\
DT Regressor
                   0.000000
                              777.219378
                                          1.000000 0.690563
                                                                    41.81
RF Regressor
                 199.051793
                              539.746887
                                          0.979948
                                                    0.850767
                                                                    40.97
ANN Regressor
                 536.162173
                              593.512845
                                          0.854517
                                                    0.819555
                                                                    39.69
                 622.009798
                                                                    12.74
Lin Regression
                              632.847879
                                          0.804199 0.794844
                                                                    29.36
SVM
                1355.505996
                            1347.953913
                                          0.070128 0.069246
Lasso
                 622.021463
                              632.717116
                                          0.804192 0.794929
                                                                    39.47
                              632.842314 0.804199 0.794848
ridge
                 622.009866
                                                                    12.74
knn
                 547.577783
                              965.685519 0.848256 0.522299
                                                                    11.09
                           Training Score
                Test MAPE
                                          Test Score
DT Regressor
                    41.49
                                 1.000000
                                             0.690563
                    39.88
                                 0.979948
                                             0.850767
RF Regressor
ANN Regressor
                    39.25
                                 0.854517
                                             0.819555
                                             0.794844
Lin Regression
                    13.06
                                 0.804199
SVM
                    29.39
                                 0.070128
                                             0.069246
Lasso
                    38.94
                                 0.804192
                                             0.794929
                                 0.804199
                                             0.794848
ridge
                    13.06
knn
                    20.04
                                 0.848256
                                             0.522299
4
```

In [134]:

In [69]:

```
x_train_scaled
```

Out[69]:

```
array([[-0.27021194, 0.18179816, -0.89078547, ..., 0.7343346 , -0.99294345, 0.6768627 ],
        [ 1.88474443, 0.06732863, 0.59573628, ..., 0.7343346 , -0.7196832 , 0.6768627 ],
        [ 0.07004433, -0.96289711, 0.59573628, ..., 0.7343346 , -1.26620369, 1.40282663],
        ...,
        [-0.27021194, -0.27607995, 0.59573628, ..., 0.7343346 , 0.64661804, -1.50102908],
        [-1.06414324, -1.07736663, 0.59573628, ..., 0.7343346 , 1.19313853, -0.04910123],
        [-0.04337443, 0.18179816, -2.37730722, ..., 0.7343346 , -0.1731627 , -0.04910123]])
```

Linear Regression - Equation

In [72]:

```
G=pd.DataFrame(x_train_scaled,columns=['Age','CustTenure','Channel','Occupation','Educa
tionField','Gender','ExistingProdType ','Designation','NumberOfPolicy','MaritalStatus',
'Complaint','ExistingPolicyTenure','SumAssured','Zone','PaymentMethod','LastMonthCalls'
,'CustCareScore'])
```

In [73]:

```
G.head(5)
```

Out[73]:

	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingProdType
0	-0.270212	0.181798	-0.890785	-2.157284	-1.546264	0.841679	0.313421
1	1.884744	0.067329	0.595736	-0.606353	0.063071	0.841679	0.313421
2	0.070044	-0.962897	0.595736	0.944578	0.867739	0.841679	-0.672329
3	-1.064143	0.181798	-2.377307	-2.157284	-1.546264	0.841679	0.313421
4	-0.723887	0.296268	0.595736	0.944578	0.867739	0.841679	-2.643828
4							+

In [74]:

```
lr.coef_
```

Out[74]:

```
array([[ 202.35830138, 211.9045996 , -6.03237815, 10.24290628, 2.78095838, 20.82260664, 17.46554314, -241.11776421, 35.22986402, -18.5823853 , 22.6342431 , 121.34585686, 853.39826618, 3.27003031, -9.6016256 , -6.52862081, 17.73404751]])
```

In [75]:

```
# Let us explore the coefficients for each of the independent attributes
for idx, col_name in enumerate(G.columns):
    print("The coefficient for {} is {}".format(col_name, lr.coef_[0][idx]))
The coefficient for Age is 202.3583013777785
The coefficient for CustTenure is 211.9045995992575
The coefficient for Channel is -6.03237814917093
The coefficient for Occupation is 10.242906282072497
The coefficient for EducationField is 2.780958379128812
The coefficient for Gender is 20.82260664381628
The coefficient for ExistingProdType is 17.46554313888791
The coefficient for Designation is -241.11776421172425
The coefficient for NumberOfPolicy is 35.22986402110787
The coefficient for MaritalStatus is -18.582385301507735
The coefficient for Complaint is 22.634243101210423
The coefficient for ExistingPolicyTenure is 121.34585686248133
The coefficient for SumAssured is 853.3982661759505
The coefficient for Zone is 3.270030306512659
The coefficient for PaymentMethod is -9.60162560097576
The coefficient for LastMonthCalls is -6.52862081353075
The coefficient for CustCareScore is 17.73404750884633
```

In [76]:

```
# Let us check the intercept for the model
intercept = lr.intercept_[0]
print("The intercept for our model is {}".format(intercept))
```

The intercept for our model is 4082.5309734513276

Equation for Linear Regression

AgentBonus = (4082.53)'Intercept' + (853.39)'SumAssured' + (211.90)'CustTenure' + (202.35)'Age' + (121.34)'ExistingPolicyTenure' + (35.22)'NumberOfPolicy' + (22.63)'Complaint' + (20.82)'Gender' + (17.73)'CustCareScore' + (17.46)'ExistingProdType' + (10.24)'Occupation' + (2.78)'EducationField' + (-6.03)'Channel' + (-6.52)'LastMonthCalls' + (-9.60)'PaymentMethod' + (-18.58)'MaritalStatus' + (-241.11)'Designation'