В матане как на войне

Учебное пособие о том как затащить у кохася

- @irdkwmnsb
- @JelluSandro
 - @Dalvikk
- @Turukmokto
 - @Onexx7
- @NULL3301
- @DimaUtyuz
- @RahimHakimov
 - @Shady712
 - @Moroness
 - @abramkht

December 2020

Содержание

1	Теоремы		6
	1.3	Законы де Моргана	6
	1.4	Единственность предела и ограниченность сходящейся последовательности	9
	1.5	Теорема о предельном переходе в неравенствах для последовательностей	
		и для функций	11
	1.6	Теорема о двух городовых	12
	1.7	Бесконечно малая последовательность	13
	1.8	Теорема об арифметических свойствах предела последовательности в нор-	
		мированном пространстве и в \mathbb{R}	14
	1.9	Неравенство Коши-Буняковского в линейном пространстве, норма, по-	
		рожденная скалярным произведением	16
	1.10	Леммы о непрерывности скалярного произведения и покоординатной схо-	
		димости в \mathbb{R}^n	17
	1.11	Аксиома Архимеда. Плотность множества рациональных чисел в $\mathbb R$	18
	1.12	Неравенство Бернулли (Якоба)	19
		Открытость открытого шара	20
		Теорема о свойствах открытых множеств	21
	1.15	Теорема о связи открытых и замкнутых множеств, свойства замкнутых	
		МНОЖЕСТВ	22
	1.16	Теорема об арифметических свойствах предела последовательности (в R	
		с чертой). Неопределенности	23
		Теорема Кантора о стягивающихся отрезках	24
		Теорема о существовании супремума	25
		Лемма о свойствах супремума	26
		Теорема о пределе монотонной последовательности	27
		Определение числа e , соответствующий замечательный предел	28
	1.22	Теорема об открытых и замкнутых множествах в пространстве и в под-	20
	1 00	1 1	30
		Теорема о компактности в пространстве и в подпространстве	32
		Простейшие свойства компактных множеств	32
		Лемма о вложенных параллелепипедах	33
		Компактность замкнутого параллелепипеда в \mathbb{R}^m	33
		Теорема о характеристике компактов в \mathbb{R}^m	34
		Эквивалентность определений Гейне и Коши	36
	1.29	Единственность предела, локальная ограниченность отображения, имеющего предел, теорема о стабилизации знака	37
	1 20		31
	1.50	Арифметические свойства пределов отображений. Формулировка для R с чертой	38
	1 21	Принцип выбора Больцано-Вейерштрасса	39
		Сходимость в себе и ее свойства	40
		Критерий Коши для последовательностей и отображений	41
		Теорема о пределе монотонной функции	42
		Теорема о замене на эквивалентную при вычислении пределов. Таблица	-4
	1.00		43
	1.36	Теорема единственности асимптотического разложения	44
		E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	1.37	Свойства непрерывных отображений: арифметические, стабилизация зна-	
		,	4
	1.38	Непрерывность композиции и соответствующая теорема для пределов	4
	1.39	Теорема о топологическом определении непрерывности	4'
	1.40	Теорема Вейерштрасса о непрерывном образе компакта. Следствия	4
	1.41	Теорема о вписанном n -угольнике максимальной площади	4
	1.42	Лемма о связности отрезка	5(
		-	5
			5:
			5
			5^{4}
			5
		Теорема о непрерывности монотонной функции. Следствие о множестве	٠,
	1.40		50
	1.40	1 1	50
			5'
			5 5
		±	
		•	5
		± 11	58
	1.54	Равносильность двух определений производной. Правила дифференци-	
		1	59
			6
			6
	1.57	Выражение произвольной показательной функции через экспоненту. Два	
			6
			6
	1.59	Теорема Ферма (с леммой)	6!
	1.60	Теорема Ролля. Вещественность корней многочлена Лежандра	6
	1.61	Теоремы Лагранжа и Коши. Следствия об оценке приращения и о пре-	
		деле производной	6
	1.62	Теорема Дарбу. Следствия	68
2	Опр		69
	2.3		69
	2.4	Декартово произведение	7(
	2.5	Аксиомы вещественных чисел	7
	2.6	Аксиома Кантора, аксиома Архимеда	7
	2.7	Пополненное множество вещественных чисел, операции и порядок в нем	7
	2.8	Последовательность	7!
	2.9	Образ и прообраз множества при отображении	7(
	2.10		7
			78
			79
			81
			8
			8:
		<u> </u>	8
			8,
	4.11	ipogori noviogobaronbilocin (onpegarenne na nobike okpeetnocien)	J

2.18	Метрика, метрическое пространство, подпространство	85
2.19	Шар, замкнутый шар, окрестность точки в метрическом пространстве	86
2.20	Линейное пространство	87
2.21	Норма, нормированное пространство	88
2.22	Ограниченное множество в метрическом пространстве	89
2.23	Скалярное произведение	90
2.24	Максимум, верхняя граница, множество, ограниченное всверху	90
2.25	Внутренняя точка множества, открытое множество, внутренность	90
2.26	Предельная точка множества	91
2.27	Замкнутое множество, замыкание, граница	91
2.28	Изолированная точка, граничная точка	92
2.29	Описание внутренности множества	93
2.30	Описание замыкания множества в терминах пересечений	94
2.31	Верхняя, нижняя границы; супремум, инфимум	95
2.32	Техническое описание супремума	96
2.33	Последовательность, стремящаяся к бесконечности	97
2.34	Определения предела отображения (3 шт)	98
	Определения пределов в R с чертой	
2.36	Компактное множество	100
	Секвенциальная компактность	
2.38	Предел по множеству	102
2.39	Односторонние пределы	103
2.40	Конечная эпсилон-сеть	104
	Теорема о характеризации компактных множеств в терминах эпсилон-сете	й105
2.42	Непрерывное отображение (4 определения)	106
	Непрерывность слева	
2.44	Разрыв, разрывы первого и второго рода	108
2.45	О большое	109
2.46	О маленькое	110
2.47	Эквивалентные функции, таблица эквивалентных	111
	Асимптотически равные (сравнимые) функции	
	Асимптотическое разложение	
	Наклонная асимптота графика	
	Путь в метрическом пространстве	
	Линейно связное множество	
2.53	Счетное множество, эквивалентные множества	113
	Множество мощности континуума	
	Функция, дифференцируемая в точке	
	Производная	
	Касательная прямая к графику функции	

Как это редактировать?

Таблицу можно сделать так:

Распределение вариантов

Строчки в табличке Кохася	Кто
3-7	Шемякин
8 - 12	Зайцев
13 - 17	Бессонницын
18 - 22	Крайнов
23 - 27	Ковальчук
28 - 32	Утюжников
33 - 37	Нагибин
38 - 42 + 59	Алексеев
43 - 47 + 60	Галибов
48 - 52 + 61	Хакимов
53 - 57 + 62	Дзестелов

Формулы вы делать умеете, АИСД сдаете же как-то

Картинки можно вставлять так:

Внизу в левом углу вы видите File outline, в нем содержатся ссылки на заголовки, чтобы можно было быстро перейти к своей части

Пожалуйста, следите за тем чтобы после вашего кода не возникало кучу ошибок при компиляции!

Если что то похерилось — писать Владу или Максиму (@Dalvikk, @irdkwmnsb) $a\ b$ — маленький пробел в режиме набора мат формул

a b — средний

 $a \qquad b$ — большой

Лайфхак: дважды нажмите на текст в пдфке и ваш курсор переместится на ее латех код

Комент

Как написать комент: В правом верхнем углу есть кнопка Review, после ее нажатия откроется поле где видны комментарии + выделив текст можно можно добавить новый тыкнув на Add comment

1 Теоремы

1.3 Законы де Моргана

Законы Де Моргана

Теорема.

$$Y \setminus \left(\bigcup_{d \in A} X_d\right) = \bigcap_{d \in A} \left(Y \setminus X_d\right) \tag{1}$$

$$Y \setminus \left(\bigcap_{d \in A} X_d\right) = \bigcup_{d \in A} (Y \setminus X_d) \tag{2}$$

$$Y \cap \left(\bigcup_{d \in A} X_d\right) = \bigcup_{d \in A} \left(Y \cap X_d\right) \tag{3}$$

$$Y \bigcup \left(\bigcap_{d \in A} X_d\right) = \bigcap_{d \in A} \left(Y \bigcup X_d\right) \tag{4}$$

Доказательство. Докажем (1), остальные аналогично(смотреть фоточки;))

$$x\in$$
 левой части $\Leftrightarrow (x\in Y)$ и $\left(x\notin\bigcup_{d\in A}X_d\right)\Leftrightarrow x\in Y$ и $\forall d\in A\ x\notin X_d\Leftrightarrow$

$$\Leftrightarrow \forall d \in A \ (x \notin X_d \ \text{if} \ x \in Y) \Leftrightarrow \forall d \in A \ x \in (Y \setminus X_d) \Leftrightarrow \bigcap_{d \in A} (Y \setminus X_d)$$

1.4 Единственность предела и ограниченность сходящейся последовательности

Начнем с определений

Последовательность $(x_n)_{n \in \mathbb{N}}$ - семейство чисел, заиндексированное натуральными. $x_n \in \mathbb{R}$

Пусть есть $(x_n)_{n \in \mathbb{N}}$ и $a \in \mathbb{R}$

$$x_n \to a$$

$$\lim x_n = a$$

$$\forall \epsilon \exists N \ \forall n > N : |x_n - a| < \epsilon$$

(Расстояние от x_n до a) $< \epsilon \Leftrightarrow |x_n - a| < \epsilon$

Примеры:

1. x_n - стационарная последовательность $x_n = a$

$$\lim_{n \to \infty} x_n = a$$

2.
$$x_n = \frac{1}{n}$$
 тогда $x_n \longrightarrow 0$

$$\forall \ \epsilon > 0 \ \exists N = \frac{1}{\epsilon} \ \forall \ n > \frac{1}{\epsilon} \ \frac{1}{n} < \epsilon$$

3. $x_n = (-1)^n$ Расходится

$$\forall \ \epsilon > 0 \ \exists N \ \forall \ n > N \quad |x_n - a| < \epsilon$$

заменим N на $N(\epsilon)$ N от епсилон. Тогда $\forall n>N(\epsilon) \ |x_n-a|<\epsilon$

Тоесть
$$(N(\epsilon); \infty)$$

Тогда рассмотрим для конкретного $\epsilon=1$ $\exists N(1) \; \forall \; n>N(1) \; \; |x_n-a|<1$

Теорема о единственности предела

 x_n - последовательность в метрическом пространстве (x,q)

$$a, b \in X$$
 точки в X

$$x_n \longrightarrow a \quad x_n \longrightarrow b \quad \Longrightarrow a = b$$

Доказательство

Имеет место свойство делимости

Если $a \neq b$, то существуют окрестности точек a и b, что они не пересекаются

$$\exists U(a), V(b) : U(a) \cup V(b) = \emptyset$$

$$U(a) = B(a, \frac{1}{2}r)$$
 $V(b, \frac{1}{2}r)$

$$r = q(a, b)$$

Пусть
$$z \in B_1$$
 и $z \in b_2$

$$q(a,z) = \frac{1}{2}r$$

$$q(b,z) = \frac{1}{2}r$$

$$q(a,b) = r \le q(a,z) + q(z,b)$$
 (Неравенство треугольника) $< \frac{1}{2}r + \frac{1}{2} = r$

Пусть $a \neq b$ Рассмотрим не пересекающиеся окрестности U(a), V(b). Вне U(a) конечное число членов последовательности \Longrightarrow В V(b) конечное число членов последовательности.

Ограниченость сходящейся последовательности

В метрическом пространстве X $A \subset X$

A - множество

A - ограниченно \Longrightarrow содержится в шаре

 $\exists x \in X \ \exists r > 0 : B(x,r) \supset A$

A - огранничено $\exists r>0 \ A\subset B(x_0,r),$ если x_0 закрепить. Выбираем шар всегда в точке x_0

 $A \subset B(x,r) \subset B(x_0,r+q(x,x_0))$ Неравенство треугольника

В метрическом пространстве сходящаяся последовательность ограниченна.

Последовательность x_n Ограниченна, если множество ее значений ограниченно.

Доказательство $x_n \longrightarrow a$

Для $\epsilon=1$ $\exists N \; \forall n>N \; \; q(x_n,a)<1$ определение предела для $\epsilon=1$

 $R = max(q(x_i, a))$ Берем конечные точки и раширяем шар до них.

В шаре B(a,R) содержится вне x_n

1.5 Теорема о предельном переходе в неравенствах для последовательностей и для функций

```
x_n, y_n - вещественные последовательности
    x_n \longrightarrow a, y_n \longrightarrow b, a, b \in R
    Пусть \forall n \in N \ x_n \leqslant y_n Тогда a \leqslant b
    Доказательство Пусть b < a \epsilon = \frac{a-b}{2} растояние от a до b
    Тогда b + \epsilon = a - \epsilon
    Для этого же \epsilon \;\;\exists\;\; N_1 \;\; \forall n > N_1 \, |x_n - a| < \epsilon
    a - \epsilon < x_n < a + \epsilon
    a - \epsilon < x_n
    Для этого же \exists \exists N_2 \forall n > N_2 |y_n - b| < \epsilon
    y_n < b + \epsilon Тогда при n > max(N_1, N_2)
    y_n < b + \epsilon = a - \epsilon < x_n Противоречие
    Замечание и к предыдущему билету тоже
    x_n = -\frac{1}{n} \ y_n = \frac{1}{n} \ x_n < y_n
Знак не может быть строгим 0 \leqslant 0
     Верны варианты теорем с одной последовательностью
    \forall n \ x_n \leqslant b
    x_n \longrightarrow a
     Тогда a \leq b
    Если x_n \in [a;b], x_n \longrightarrow \alpha тогда \alpha \in [a;b]
```

1.6 Теорема о двух городовых

Пусть есть 3 последовательности $(x_n), (y_n), (z_n)$ - вещественные последовательности $\forall n \ x_n \leqslant y_n \leqslant z_n$ Пусть $x_n \longrightarrow a, z_n \longrightarrow a$ Тогда, \exists предел $\lim_{n \to \infty} y_n$ и это предел $\lim_{n \to \infty} y_n = a$ $\forall \ \epsilon > 0 \ \exists N_1 \ \forall \ n > N_1 \ a - \epsilon < x_n$ $\forall \ \epsilon > 0 \ \exists N_2 \ \forall \ n > N_2 \ y_n < a + \epsilon$ $N = max(N_1, N_2), \forall n > N$ $a - \epsilon < x_n \leqslant y_n \leqslant z_n < a + \epsilon$ $a - \epsilon < y_n < a + \epsilon$ Заменим $\forall \ n \ x_n < y_n$ и $x_n \leqslant y_n \leqslant z_n$ $\exists \ k \ \forall n > k$ неравенство с некоторго номера k выполняется Частичный случай $(x_n), (y_n), \forall \ n \ |x_n| \leqslant y_n$ и $y_n \longrightarrow 0$ Тогда $x_n \longrightarrow 0, -y_n \leqslant x_n \leqslant y_n, y_n \longrightarrow 0, -y_n \longrightarrow 0$ Для комплексного x_n и $y_n \in R, Re(x_n) \leqslant |x_n| \leqslant y_n$ $-y_n \leqslant -absx_n \leqslant Re(x_n) \leqslant |x_n| \leqslant y_n$

1.7 Бесконечно малая последовательность

Вещественная последовательность, называется бесконечно малой, если она стремится κ 0 и $x_n \longrightarrow 0$

Бесконечно малых чисел не бывает(Аксиома Архимеда)

Теорема

 $(x_n), (y_n)$ - вещественные последовательности

 x_n - бесконечно малая, y_n - ограниченная

Тогда $x_n * y_n$ бесконечно малая

Доказательство $\exists M \forall \ n > N \ |y_n| \leqslant M,$ так как y_n - ограниченна.

orall $\epsilon>0$ $\exists N$ orall n>N $|x_n|<\epsilon$ одно и тоже $|x_n*y_n|< M\epsilon$ $orall \epsilon>0$ $\exists N$ orall n>N $|z_n|< M\epsilon$ -китайская теорема

 $\forall \epsilon > 0 \ \exists N = \frac{\epsilon}{M} \ \forall n > N \frac{\epsilon}{M} \ |z_n| < M \frac{\epsilon}{M}$

1.8 Теорема об арифметических свойствах предела последовательности в нормированном пространстве и в $\mathbb R$

Арифметические свойства предела в нормированном пространстве

Пусть даны:

 $(X, ||\cdot||)$ — нормированное пространство

 $(x_n),(y_n)$ — последовательности элементов X

 λ_n — последовательность скаляров

$$x_n \to x, y_n \to y, \lambda_n \to \lambda, x \in X, y \in X, \lambda \in \mathbb{R}(\mathbb{C})$$

Тогда утверждается нескольство свойств:

1.
$$x_n \pm y_n \rightarrow x \pm y$$

2.
$$\lambda_n x_n \to \lambda x$$

3.
$$||x_n|| \to ||x||$$

Доказательство:

1. $\forall \varepsilon > 0$

$$\exists N_1 \ \forall n > N_1 \quad ||x_n - x|| < \frac{\varepsilon}{2}$$

$$\exists N_2 \ \forall n > N_2 \quad ||y_n - y|| < \frac{\varepsilon}{2}$$

 $\exists N_2 \ \forall n > N_2 \quad ||y_n - y|| < \frac{\varepsilon}{2}$ Тогда при $n > max(N_1, N_2)$ выполняется

$$||x_n + y_n - (x+y)|| \le ||x_n - x|| + ||y_n - y|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2. $||\lambda_n x_n - \lambda x|| = ||(\lambda_n x_n - \lambda_n x) + (\lambda_n x - \lambda x)|| \le ||\lambda_n (x_n - x)|| + ||(\lambda_n - \lambda)x|| =$

$$|\lambda_n| \cdot ||x_n - x|| + |\lambda_n - \lambda| \cdot ||x||$$

 $|\lambda_n|$ — ограничено

 $||x_n - x||$ — бесконечно малое

 $|\lambda_n - \lambda|$ — бесконечно малое

||x|| — ограничено

б.м. \cdot огр. + огр. \cdot б.м. \Rightarrow все выражение бесконечно малое по теореме о бесконечно малой последовательности (пункт 1.7)

3.
$$|||x_n|| - ||x||| \le ||x_n - x|| \to 0$$

Арифметические свойства предела в $\mathbb R$

 $(x_n), (y_n)$ — вещественные последовательности

$$x_n \to x, y_n \to y, x \in \mathbb{R}, y \in \mathbb{R}$$

Тогда утверждается нескольство свойств:

1.
$$x_n \pm y_n \rightarrow x \pm y$$

$$2. x_n y_n \to xy$$

$$3. |x_n| \rightarrow |x|$$

4. Если
$$y \neq 0$$
 и $\forall n \ y_n \neq 0$ то $\frac{x_n}{y_n} \to \frac{x}{y}$

 \mathbb{R} — нормированное пространство, следовательно, 1-3 — доказаны

Доказательство 4:

Заметим $\frac{x_n}{y_n} = x_n \cdot \frac{1}{y_n}$ Достаточно проверить $\frac{1}{y_n} \to \frac{1}{y}$ (далее по свойству 2) $|\frac{1}{y_n} - \frac{1}{y}| = |y_n - y| \cdot |\frac{1}{y}| \cdot |\frac{1}{y_n}|$ $|y_n - y|$ — бесконечно малое $|\frac{1}{y}|$ — ограничено

$$\left| \frac{1}{y_n} - \frac{1}{y} \right| = |y_n - y| \cdot \left| \frac{1}{y} \right| \cdot \left| \frac{1}{y_n} \right|$$

Для
$$\varepsilon = |y| \cdot \frac{1}{2} \quad \exists N \ \forall n > N$$

$$\frac{y}{2} < y_n < \frac{3}{2}y$$

 $|\frac{1}{y}|$ — ограничено Докажем, что $|\frac{1}{y_n}|$ — ограничено $y_n \to y \neq 0$ Для $\varepsilon = |y| \cdot \frac{1}{2}$ $\exists N \ \forall n > N$ Для случая y > 0 $\frac{y}{2} < y_n < \frac{3}{2}y$ $\frac{2}{3y} < \frac{1}{y_n} < \frac{2}{y}$ В общем случае $|\frac{2}{3y}| < |\frac{1}{y_n}| < |\frac{2}{y}|$ Тогда число $M = max(\frac{1}{|y_1|}, \frac{1}{|y_2|}...\frac{1}{|y_N|}, \frac{2}{|y|}) + 1$ — верхняя граница последовательности $\frac{1}{y_n}$,

т. е. $\forall n \in \mathbb{N} \ 0 \leq |\frac{1}{y_n}| \leq M$, следовательно, $\left|\frac{1}{y_n}\right|$ ограничена. Из этого следует, что $|\frac{1}{y_n} - \frac{1}{y}| = |y_n - y| \cdot |\frac{1}{y}| \cdot |\frac{1}{y_n}| \longrightarrow 0$, следвательно, $\frac{1}{y_n} \to \frac{1}{y}$, что и требовалось проверить.

1.9 Неравенство Коши-Буняковского в линейном пространстве, норма, порожденная скалярным произведением

Неравенство Коши-Буняковского в линейном пространстве

 $\forall x,y \ |\langle x,y\rangle|^2 \leq \langle x,x\rangle\langle y,y\rangle$ — нер-во Коши-Буняковского в линейном пространстве Доказательство:

 $0 \le \langle x+ty,x+ty \rangle = \langle x,x \rangle + t \langle y,x \rangle + \bar{t} \langle x,y \rangle + t \cdot \bar{t} \langle y,y \rangle$ по свойствам скалярного произведения.

Подставим $t = \frac{-\langle x,y \rangle}{\langle y,y \rangle}$ (при y = 0 изначальное неравенство тривиально, рассматриваем $y \neq 0$)

$$\frac{\langle x, x \rangle}{\langle x, y \rangle} - \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle} - \frac{\overline{\langle x, y \rangle} \langle x, y \rangle}{\langle y, y \rangle} + \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle} = \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} \ge 0$$
 (пояснение: $\overline{\langle x, y \rangle} = \langle y, x \rangle$ и $\overline{\langle x, y \rangle} \langle x, y \rangle = |\langle x, y \rangle|^2$)

Преобразуя финальное неравенство можно получить исходное ⇒ доказано.

Пример:

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n (x_1 y_1 + x_2 y_2 + \dots + x_n y_n)^2 \le (x_1^2 + x_2^2 + \dots + x_n^2) \cdot (y_1^2 + y_2^2 + \dots + y_n^2) \Leftrightarrow |x_1 y_1 + x_2 y_2 + \dots + x_n y_n| \le \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}$$

Норма, порожденная скалярным произведением

X- линейное пространство со скалярным произведением

Тогда функция $\rho(x) := \sqrt{\langle x, x \rangle}$ - норма в X

Свойства нормы:

1.
$$\rho(x) \ge 0$$
 $\rho(x) = 0 \leftrightarrow x = 0$

2.
$$\rho(\alpha x) = |\alpha|\rho(x)$$
 Доказательство: $\rho(\alpha x) = \sqrt{\langle \alpha x, \alpha x \rangle} = \sqrt{\alpha \overline{\alpha} \langle x, x \rangle} = |\alpha|\rho(x)$

3.
$$\rho(x+y) \le \rho(x) + \rho(y)$$

Доказательство:

Возведем обе части в квадрат

$$\langle x + y, x + y \rangle \le_? \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$$

Используем часть из доказательства неравенства Коши-Буняковского

$$\langle x, y \rangle + \langle y, x \rangle + \langle x, x \rangle + \langle y, y \rangle \le_? \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$$

Сокращаем

$$\langle x, y \rangle + \langle y, x \rangle \leq_? 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$$

Верно по неравенству Коши-Буняковского

$$2\operatorname{Re}\langle x,y\rangle < 2|\langle x,y\rangle| < 2\sqrt{\langle x,x\rangle\langle y,y\rangle}$$

1.10 Леммы о непрерывности скалярного произведения и покоординатной сходимости в \mathbb{R}^n

Лемма о непрерывности скалярного произведения

X - пространство со скалярным произведением

Зададим с помощью скалярного произведения норму на X

$$x_n \to x, y_n \to y, x \in X, y \in X$$

Тогда
$$\langle x_n, y_n \rangle \to \langle x, y \rangle$$

Доказательство

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| = |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \le |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle| = |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \le \sqrt{\langle x_n, x_n \rangle} \sqrt{\langle y_n - y, x_n - y \rangle} + \sqrt{\langle x_n - x, x_n - x \rangle} \sqrt{\langle y, y \rangle} \le ||x_n|| \cdot ||y_n - y|| + ||x_n - x|| \cdot ||y||$$
 (согласно неравенству Коши-Буняковского и тому факту, что норма задана скалярным произведением)

$$||x_n||$$
 — ограничено

$$||y_n - y||$$
 — бесконечно малое

$$||x_n - x||$$
 — бесконечно малое

$$||y||$$
 — ограничено

$$\Rightarrow ||x_n|| \cdot ||y_n - y|| + ||x_n - x|| \cdot ||y|| \to 0$$

Лемма о покоординатной сходимости в \mathbb{R}^n

Будем нумеровать рисуя индекс сверху

$$(x^{(n)})$$
 — последовательность векторов из \mathbb{R}^m

$$(x^{(10)}) = (x_1^{(10)}, x_2^{(10)}, ..., x_m^{(10)}) \in \mathbb{R}^m$$
 — координаты этого вектора

Собственно сама лемма

В качестве нормы используется Евклидова норма

Если $x^{(n)}$ — последовательность векторов в \mathbb{R}^m , тогда эквивалентны два утверждения:

1)
$$x^{(n)} \rightarrow a$$
 (по Евклидовой норме)

2)
$$\forall k \in \{1, 2, \dots m\}$$
 $x_k^{(n)} \xrightarrow[n \to \infty]{} a_k$

Доказательство:

• $1 \Rightarrow 2$ $|x_k^{(n)} - a_k| \le ||x^{(n)} - a|| = \sqrt{\sum_{i=1}^m |x_i^{(n)} - a_i|^2} \to 0$

Сумма получилась по Евклидовой норме, в сумме есть в том числе и k-тый элемент \Rightarrow она \geq левой части.

Следовательно
$$|x_k^{(n)} - a_k| \to 0 \Rightarrow \forall k \in \{1, 2, \dots m\}$$
 $x_k^{(n)} \xrightarrow[n \to \infty]{} a_k$.

•
$$2 \Rightarrow 1$$
 $||x^{(n)} - a|| \le \sqrt{m} \cdot \max_{k \in [1..m]} |x_k^{(n)} - a_k| \to 0$
 $\sqrt{\sum_{i=1}^m |x_i^{(n)} - a_i|^2} \le \sqrt{m} \cdot (\text{максимальное слагаемое})^2$
Следовательно $||x^{(n)} - a|| \to 0 \Rightarrow x^{(n)} \to a$

1.11 Аксиома Архимеда. Плотность множества рациональных чисел в $\mathbb R$

Аксиома Архимеда

 $\forall x, y \in \mathbb{R}, x > 0, y > 0 \quad \exists n \in \mathbb{N} : nx > y$

Сомнительное упарывание от Кохася

Введем поле $R(x) = \{\frac{p(x)}{q(x)}, p, q$ — многочлены с вещественными коэффициентами $\}$ q — ненулевой многочлен

 $\frac{q_1}{q_1} = \frac{p_2}{q_2}$ если $\exists T > 0 \ \forall x > T \ \frac{p_1(x)}{q_1(x)} = \frac{p_2(x)}{q_2(x)}$ $\frac{p_1}{q_1} < \frac{p_2}{q_2}$ если $\exists T > 0 \ \forall x > T \ \frac{p_1(x)}{q_1(x)} < \frac{p_2(x)}{q_2(x)}$ Все 5 аксиом выполняются — упорядоченное поле?

Но все ломается из-за аксиомы Архимеда

Берем первый элемент $\frac{1}{1}$, второй $\frac{x}{1}$, оба положительные $\Rightarrow n>x$ — неверно, так как при $T=n\ \forall x>T: x>n\Rightarrow \frac{x}{1}>\frac{n}{1}$

Плотность множества рациональных чисел в $\mathbb R$

Множество $A \subset \mathbb{R}$ — всюду плотно в \mathbb{R} , если

 $\forall x, y, \ x < y \ (x, y) \cap A \neq \emptyset$ — в любом промежутке имеются точки из множества A

\mathbb{Q} плотно в \mathbb{R}

Доказательство:

 $\forall x,y \; x < y \; ? \exists \; q \in (x,y)$ — ищем такое q

Будем рассматривать только случай x, y > 0 тк, если x, y < 0, то это симметрично нашему случаю, а если x < 0, y > 0 то просто возьмем новый x > 0, x < y

Возьмем $n > \frac{1}{y-x}$ — возможно по аксиоме Архимеда

$$\frac{1}{n} < y - x$$

Bозьмем $q:=\frac{[nx]+1}{n}$

Проверяем

$$q \le \frac{nx+1}{n} = x + \frac{1}{n} < x + (y - x) = y$$

$$q > \frac{(nx-1)+1}{n} = x$$

$$q > \frac{(nx-1)+1}{n} = x$$

 $x < q < y \Rightarrow q \in (x, y)$ — мы доказали, что $\forall x, y, \ x < y \ \exists \ q \in (x, y)$.

1.12 Неравенство Бернулли (Якоба)

Лайт-версия: при x>-1 $\forall n\in\mathbb{N}$ $(1+x)^n\geq 1+nx$

Продвинутая версия: при $x>0 \quad \forall n\in \mathbb{N} \quad (1+x)^n\geq 1+nx+\frac{n(n+1)}{2}x^2$

(Продвинутую версию Кохась не доказывал)

Доказательство лайт-версии:

По индукции

База: n = 1 $1 + x \ge 1 + x$ — верно

Переход:

Дано: $(1+x)^n \ge 1 + nx$

Доказать: $(1+x)^{n+1} \ge 1 + (n+1)x$

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1+x+nx+nx^2 \ge 1+(n+1)x \iff$$

 $(1+x)^{n+1} \ge 1 + (n+1)x - \text{чтд}$

1.13 Открытость открытого шара

Определения:

a- внутреннаяя точка D=>

$$\exists U(a): U(a) \subset D(a)$$

$$\exists r: B(a,r) \subset D(a)$$

a- не внутреннаяя точка D=>

$$\forall U(a) \exists y \notin D: y \in U(a)$$

D- открытое множество, если все его точки внутренние.

X— открыто

⊘ - открыто

$$B(a,r) = x \in X : q(x,a) < r$$

 $\forall b \in B(a,r): B(b,r-q(a,b)) \subset B(a,r)-r-q(a,b)$ по определению, т. к. $b \in B(a,r),$ докажем этот факт:

$$x \in B(b, r - q(a, b)) =>$$

$$q(x,b) < r - q(a,b)$$

$$q(b, x) + q(a, b) < r$$

$$q(a,x) \le q(b,x) + q(a,b) < r$$

Мы доказали, что $\forall b \in B(a,r): B(b,r-q(a,b)) \subset B(a,r) \Rightarrow \exists B(b,r') \subset B(a,r),$ следовательно, все точки открытого шара — внутренние, следовательно, открытый шар — открытое множество.

1.14 Теорема о свойствах открытых множеств

$$X$$
— метрическое пространство $(G_{\alpha})_{\alpha \in A}$ — семейство открытых в X множеств 1е свойство: $\bigcup_{\alpha \in A} G_{\alpha}$ — открыто в X
Доказательство: $x \in D = \bigcup_{\alpha \in A} G_{\alpha} = > \exists d_0 : x \in G_{d_0} = > \exists d_0 : x \in G_{d_0} = > \exists U(x) \subset G_{d_0} = > = \exists U(x) \subset G_{d_0} = = \exists U$

1.15 Теорема о связи открытых и замкнутых множеств, свойства замкнутых множеств

Теорема о связи открытых и замкнутых множеств:

X- метрическое пространство; $D \subset X = >$

$$D$$
— замкнуто <=> $D^c = X - D$ — открыто

 D^c — дополнение D

Доказательство в ту сторону(=>):

D— замкнутое, D^c —открытое?

 $\forall x \in D^c : ?x$ -внутренняя точка D^c

 $x \in D^c \Longrightarrow x \notin D$ (по условию D замкнуто)

=>x- не предельная точка D=>

$$\exists U(x): U(x) \cap D = \emptyset =>$$

 $U(x) \subset D^c$

Доказательство в обратную сторону(<=):

 D^c -открытое, D- замкнутое?

 $\forall x$ — предельная точка $D:?x \in D$

Если это не так, то $x \in D^c =>$

$$\exists U(x): U(x) \subset D^c => U(x) \cap D = \emptyset$$

Это опровергает что x - предельная точка => противоречие => D—замкнуто.

Важно:

 $A \subset X$ А не открыто не следуте что A—замкнуто!!!

Теорема о свойствах замкнутого множества:

X— метрическое пространство $(F_{\alpha})_{\alpha \in A}$ — семейство замкнутых в X множеств.

- 1) $\bigcap F_{\alpha}$ —замкнуто в X
- 2) $\bigcup F_{\alpha}$ —замкнуто в X(A—конечно)

Доказательство:

$$D=\bigcap_{lpha\in A}F_lpha$$
 $D^c=X-\bigcap_{lpha\in A}F_lpha$ =по законам де моргана:
$$=\bigcup_{lpha\in A}(X-F_lpha)=\bigcup_{lpha\in A}F_lpha^c$$
-открыто

$$=\bigcup_{\alpha\in A}(X-F_{\alpha})=\bigcup_{\alpha\in A}F_{\alpha}^{c}$$
-открыто

 D^c -открыто=> D-замкнуто.

Пункт 2 аналогично.

1.16 Теорема об арифметических свойствах предела последовательности (в R с чертой). Неопределенности

```
(x_n), (y_n)-вещественные последовательности;
    a, b \in \mathbb{R}; x_n \to a \ y_n \to b
    Тогда:
    1)x_n + -y_n \to a + -b
    (2)x_n * y_n \to a * b \quad (0*\inf,\inf*0)— не определены.
    3) Если \forall n \ y_n \neq 0 \ b \neq 0, то\frac{x_n}{y_n} \to \frac{a}{b} при условии, что правые части имеют смысл.
    1)x_n \to a \in \mathbb{R}, y_n \to +\inf
    x_n + y_n \to +\inf?
    \forall \varepsilon > 0 \ \exists N_1 \forall n > N_1 : a - \epsilon < x_n < a + \epsilon
    \forall E > 0 \ \exists N_2 \forall n > N_2 : E < y_n
    N = max(N_1, N_2)
    \forall n > N : x_n + y_n > E + a - \epsilon
    (2)x_n \to a \in \mathbb{R}, y_n \to +\inf
    \frac{x_n}{y_n} \to \frac{a}{+\inf} = 0?
    Если y_n-бесконечно большая, то \frac{1}{y_n}- бесконечно малая.
    \forall E > 0 \exists N \forall n > N : E < y_n
```

1.17 Теорема Кантора о стягивающихся отрезках

Пусть дана убывающая система:

$$[a_1,b_1]\supset [a_2,b_2]\supset \dots$$
 Пусть $(b_n-a_n)->0$, тогда: $\exists!c\in\bigcap\limits_{}^{\inf}[a_k,b_k]$

и при этом $b_n \to c$ при $n \to \inf$ и $a_n \to c$ при $n \to \inf$ По аксиоме Кантора:

$$\exists c \in \bigcap_{k=1}^{\inf} [a_k, b_k] =>$$
 $\forall n: c \in [a_n, b_n] =>$
 $0 < b_n - c <= b_n - a_n$
 $b_n - a_n \to 0$ при $n \to \inf => b_n \to c$
аналогично $a_n \to c$

c- однозначно заданно в силу единственности предела.

1.18 Теорема о существовании супремума

Если X — непустое множество в \mathbb{R} , ограниченное сверху, то $\exists \ sup X < \infty$ Доказательство:

Пусть E — множество всех верхних границ множества X. Далее большая буква означает любой элемент из соответствующего множества (то есть $A - \forall a \in A$)

Знаем, что $X \leq E$. Воспользуемся аксиомой непрерывности и найдем $c \in \mathbb{R}$ такое, что X < c < E.

Получили c, которое \geq любого элемента X, то есть верхняя граница X, и \leq любого элемента E, то есть наименьшая из верхних границ.

Значит, по определению, $c=supX<\infty$, то есть $\exists \; supX<\infty$, что и требовалось доказать.

Небольшое примечание:

Возможно, Кохась потребует доказать теорему о существовании infimum, хотя ее нет в списке вопросов. По сути, это та же теорема, что и о существовании supremum. Вам нужно просто поменять знаки в неравенствах и заявить о победе:)

1.19 Лемма о свойствах супремума

1.
$$D \subset E \subset \mathbb{R} \Rightarrow supD \leq supE$$

Доказательство:

Заметим, что supE — верхняя граница множества D (так как это верхняя граница множества E, содержащего в себе D). Тогда $supD \le supE$, что и требовалось доказать.

2.
$$\forall \lambda \in \mathbb{R} : \lambda > 0$$
 выполняется $sup(\lambda E) = \lambda supE$

Доказательство:

 $\forall x \in E$ верно $x \leq supE$. Значит $\lambda x \leq \lambda supE$. Отсюда непосредственно следует, что $sup(\lambda E) = \lambda supE$, что и требовалось доказать.

3.
$$sup(-E) = -infE$$

Доказательство:

Найдем $M: \ \forall x \in (-E): \ x \leq M.$ Тогда $\forall -x \in E: \ -x \geq M.$ Значит -M — нижняя граница E. Тогда $-sup(-E) = infE \Rightarrow sup(-E) = -infE$, что и требовалось доказать.

Примечание:

Первое свойство верно для infimum со знаком \geq .

Второе свойство верно для infimum.

1.20 Теорема о пределе монотонной последовательности

Если x_n монотонна и ограниченна, то существует конечный $\lim_{n\to\infty} x_n$.

Доказательство (рассмотрим случай для возрастающей ограниченной сверху последовательности):

Рассмотрим $M = \sup(x_n)$. Вспомним техническое определение supremum:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} : \ M - \epsilon < x_N.$$

То, что последовательность возрастающая, означает, что $\forall n > N: x_N \leq x_n$

Воспользуемся двумя неравенствами и свойством supremum сразу:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n > N : \ M - \epsilon < x_N \le x_n \le M$$

Получили, что в эпсилон-окрестности точки M лежит бесконечно много элементов из последовательности x_n . Значит, $\lim_{n\to\infty}x_n=M=\sup(x_n)$. То есть существует конечный предел, что и требовалось доказать.

Случай с убывающей последовательностью, ограниченной снизу, доказывается аналогично через infimum.

Предел возрастающей последовательности, неограниченной сверху, равен, очевидно, $+\infty$. Аналогично для убывающей, неограниченной снизу.

1.21 Определение числа e, соответствующий замечательный предел

Рассмотрим последовательности $x_n = (1 + \frac{1}{n})^n$ и $y_n = (1 + \frac{1}{n})^{n+1}$. Утверждается, что их пределы совпадают и равны e.

Доказательство:

Очевидно, что $y_n \ge 1$

Заметим, что y_n — убывающая последовательность, так как:

$$\frac{y_{n-1}}{y_n} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(1 + \frac{1}{n^2 - 1}\right)^{n+1} \cdot \frac{n-1}{n} \ge$$

(По неравенству Бернулли)

$$(1 + \frac{n+1}{n^2 - 1}) \cdot (\frac{n-1}{n}) = (1 + \frac{1}{n-1}) \cdot (\frac{n-1}{n}) = \frac{n-1}{n} + \frac{1}{n} = 1$$

Получили, что y_n — убывающая последовательность, ограниченная снизу, а значит имеет предел.

Заметим, что x_n — возрастающая последовательность, так как:

$$\frac{x_{n+1}}{x_n} = \frac{\left(\frac{n+2}{n+1}\right)^{n+1}}{\left(\frac{n+1}{n}\right)^n} = \left(1 + \frac{1}{n+1}\right) \cdot \left(1 - \frac{1}{(n+1)^2}\right) \ge$$

(По неравенству Бернулли)

$$\left(1 + \frac{1}{n+1}\right) \cdot \left(1 - \frac{n}{(n+1)^2}\right) = 1 - \frac{n}{(n+1)^2} + \frac{1}{n+1} - \frac{n}{(n+1)^3} = 1 + \frac{1}{(n+1)^3} > 1$$

Покажем, что x_n ограничено сверху. Сделаем это методом от противного: Пусть x_n не ограничена сверху. Значит $\forall c \in \mathbb{R} \ \exists N \in \mathbb{N} : \ \forall n > N \ x_n > c$

Возьмем c=1000. Тогда неравенство $(1+\frac{1}{n})^n>1000$ имеет бесконечно много решений.

$$1 + \frac{1}{n} > \sqrt[n]{1000} = (1 + 999)^{\frac{1}{n}}$$

(По неравенству Бернулли)

$$1 + \frac{1}{n} > 1 + \frac{999}{n}$$

$$\frac{998}{n} < 0$$

У неравенства нет решений. Получили противоречие. Значит x_n ограничена сверху. x_n также возрастает, а значит имеет предел.

Путь $\lim x_n = e$. Покажем, что $\lim y_n = e$:

$$\lim y_n = \lim (x_n \cdot (1 + \frac{1}{n})) = e \cdot 1 = e$$

Получили, что две этих последовательности имеют одинаковый замечательный предел, равный e.

1.22 Теорема об открытых и замкнутых множествах в пространстве и в подпространстве

Пусть X — метрическое пространство, $Y\subset X,\,Y$ — подпространство X (имеет ту же метрику $\rho_y(y_1,y_2)=\rho_x(y_1,y_2)),\,D\subset Y\subset X$ Тогда:

- 1. D открыто в пространстве $Y \Leftrightarrow \exists G$ открытое в X: $D = G \cap Y$ 2. D замкнуто в пространстве $Y \Leftrightarrow \exists F$ замкнутое в X: $D = F \cap Y$ (Заметим, что $a \in Y$, $B^y(a,r) = B^x(a,r) \cap Y$)
- Доказательство:

1.

 $\bullet \Rightarrow$

Dоткрыто в Y. Значит $\forall a\in D\ \exists r_a:B^y(a,r_a)\subset D$ Пусть $G=\bigcup_{a\in D}B^x(a,r_a)$ — открыто в X (объединение открытых множеств) Тогда:

$$G \cap Y = (\bigcup_{a \in D} B^x(a, r_a)) \cap Y = \bigcup_{a \in D} (B^x(a, r_a) \cap Y) = \bigcup_{a \in D} B^y(a, r_a) = D$$

Получили, что $G \cap Y = D$, что и требовалось доказать.

• =

G— открыто в $X,\,G\cap Y=D.$ Пусть $a\in D\Rightarrow a\in G\Rightarrow \exists r:B^x(a,r)\subset G$ (следует из того, что G открыто в X) Рассмотрим пересечение с Y:

$$\exists r: B^x(a,r) \subset G$$
$$\exists r: B^x(a,r) \cap Y \subset G \cap Y$$
$$\exists r: B^y(a,r) \subset G \cap Y$$
$$\exists r: B^y(a,r) \subset D$$

То есть $\forall a \in D$ Зокрестность a, также принадлежащая D. Значит D — открыто, что и требовалось доказать.

2.

 $\bullet \Rightarrow$

Рассмотрим дополнение:

D — замкнуто в $Y \Rightarrow D^c = Y \backslash D$ — открыто в $Y \Rightarrow \exists G$ — открытое в $X: D^c = G \cap Y$ (по пункту 1)

Тогда $F = G^c = X \backslash G$ — замкнуто в X. $D^c = G \cap Y \Rightarrow D = G^c \cap Y = F \cap Y$.

Получили $D = F \cap Y$, что и требовалось доказать.

• =

$$F$$
 — замкнуто в X . $F^c = X \backslash F$ — открыто в X $F^c \cap Y$ — открыто в Y $Y \backslash (F^c \cap Y)$ — замкнуто в Y Применим закон Де-Моргана: $Y \backslash (F^c \cap Y) = (Y \backslash F^c) \cup (Y \backslash Y) = Y \backslash F^c = Y \cap F = D$ Получили, что $F \cap Y = D$ — замкнуто, что и требовалось доказать.

1.23 Теорема о компактности в пространстве и в подпространстве

Пусть (X, ρ) — метрическое пространство, $Y \subset X$ — подпространство, $K \subset Y$ Тогда K — компактно в $Y \Leftrightarrow K$ — компактно в X.

Доказательство.

 $\bullet \Rightarrow$

Пусть
$$K \subset \bigcup_{\alpha \in A} G_{\alpha}$$
, где G_{α} — открытые в X

Тогда так как
$$K \subset Y: K \subset \bigcup_{\alpha \in A} (G_{\alpha} \cap Y) \Rightarrow \exists \alpha_{1}, \ldots \alpha_{n}: K \subset \bigcup_{i=1}^{n} (G_{\alpha i} \cap Y)$$
 (т.е. существует конечное подмножество, так как K компактно в Y). И раз $K \subset \bigcup_{i=1}^{n} (G_{\alpha i} \cap Y)$, то тем более $K \subset \bigcup_{i=1}^{n} G_{\alpha i}$

• =

Дано: K — компактно в X, правда ли что K — компактно в Y?

$$K \in \bigcup_{\alpha \in A} G_{\alpha}, G_{\alpha}$$
 — открытые в Y

$$\exists G_{\alpha}: G_{\alpha} = \tilde{G}_{\alpha} \cap Y(\tilde{G}_{\alpha} - omкрыто \ 6 \ X) \Rightarrow K \subset \bigcup_{i=1}^{n} \tilde{G}_{\alpha} \Rightarrow [\text{по компактности в } X] \Rightarrow$$
$$\Rightarrow K \subset \bigcup_{i=1}^{n} \tilde{G}_{\alpha} \Rightarrow K \subset \bigcup_{i=1}^{n} G_{\alpha}$$

1.24 Простейшие свойства компактных множеств

Пусть X—метрическое пространство, $K \subset X$. Тогда:

- 1. K— компактно \Rightarrow замкнуто + ограничено
- 2. $Y \subset X, Y$ —компактно, K замкнуто в $Y \Rightarrow K$ —компактно (замкнутое подмножество компактного множества компактно)

Доказательство.

1. (а) Замкнуто ли K? Для этого достаточно проверить что $K^c = X \setminus K$ — открыто Пусть $a \in K^c$. Окружим каждую точку K каким нибудь шаром, не задевая a. Тогда $K \in \bigcup_{x \in K} B\left(x, \frac{1}{2}\rho(x,a)\right)$ — открытое покрытие \Rightarrow [по компактности]

$$\exists x_1, \dots x_n : K = \bigcup_{i=1}^n B(x_i, \frac{1}{2}\rho(x_i, a))$$

Возьмем $R:=\min\{\frac{1}{2}\rho(x_i,a):1\leq i\leq n\}\Rightarrow$ очевидно, что $B(a,R)\subset K^c$. Таким образом каждая точка K^c входит вместе с некоторым шаром $\Rightarrow K^c$ — открыто

- (b) Ограничено ли K? Пусть $a \in X$ любая точка, $K \subset \bigcup_{n=1}^{+\infty} B(a,n)$ [формально это открытое подпокрытие, тогда по компактности] $\Rightarrow \exists n_1 \dots n_l : K \subset \bigcup_{n=1}^l B(a,n_l)$ Ну и тут написано что a содержится в каком то шаре большого радиуса, если взять наибольший
- 2. Проверим, компактно ли K в Y

$$K \subset \bigcup_{\alpha \in A} G_{\alpha}$$
 — открытые в Y

K — замкнуто, значит K^c открыто $\Rightarrow Y \subset$ (на самом деле =) $K^c \smile \bigcup_{\alpha \in A} G_\alpha$ (это открытое покрытие) $\Rightarrow \exists$ конечное открытое подпокрытие Y:

$$Y\subset igcup_{i=1}^n G_{lpha_i},$$
 и, возможно, $\smile K^c$. Тогда $K\subset igcup_{i=1}^n G_{lpha_i}$

Примечание. В $X = \mathbb{R}^m K$ — компактно \Leftrightarrow замкнуто + открыто, но в любом X (и даже подпространстве \mathbb{R}^m) это неверно!

 Π ример. X=(0,1) — ограничено и замкнуто (в X), но некомпактно, так как можем взять следующее открытое покрытие:

$$X = \bigcup_{k=1}^{\infty} \left(\frac{1}{k+2}; \frac{1}{k} \right)$$

 Π римечание. $K\subset X, K$ — конечное множество, тогда очевидно, что K — компактно

1.25 Лемма о вложенных параллелепипедах

Параллеленинед:
$$[a,b] = \{x \in \mathbb{R}^m : \forall i : a_i \leq x_i \leq b_i\}$$
 $[a_1,b_1] \underset{\infty}{\supset} [a_2,b_2] \supset [a_3,b_3] \dots$

Тогда
$$\bigcap\limits_{i=1}^{\infty} [a_i,b_i]$$
 — непусто

Доказательство. Рассмотрим покоординатно:

 $\forall i=1\dots m, [(a_k)_i,(b_k)_i]\supset [(a_{k+1})_i,(b_{k+1})_i]\dots$ —к этой системе вложенных промежутков применим аксиому Кантора.

$$\exists c_i \subset \bigcap_{i=1}^{\infty} [(a_k)_i, (b_k)_i]$$

Тогда, очевидно,
$$c=(c_1\dots c_m)\subset\bigcap_{i=1}^\infty[a_i,b_i]$$
, так как $\forall i:(a_k)_i\leq c_i\leq (b_k)_i$

1.26 Компактность замкнутого параллелепипеда в \mathbb{R}^m

Пусть K = [a,b] — замкнутый параллелепипед в \mathbb{R}^m . Тогда K — компактно

Доказательство. $[(a,b)] \subset \bigcup G_{\alpha}$ — открытое покрытие в \mathbb{R}^m

Допустим из этого открытого покрытия невозможно выбрать конечное подпокрытие. Тогда осуществляем половинное деление. Тогда обязательно (так как мы предположили что конечного покрытия не существует) будет существовать четвертинка (в двумерном случае, в произвольном $\frac{1}{2^m}$ часть) которую нельзя накрыть конечным покрытием множеств. Запускаем такой алгоритм, изначально $a_1 = a, b_1 = b$

Получилась цепочка вложенных параллелепипедах. Тогда лемма о вложенных параллелепипедах:

$$\exists c \in \bigcap [a_k, b_k].$$

 $diam[a_k,b_k]=rac{diam[a_1,b_1]}{2^{k-1}},$ очевидно, длина диаметра стремится к нулю

Тогда $\exists G_{\alpha}: c \in G_{\alpha}$, и так как G_{α} открытое, то c входит с некоторой окрестностью $\Rightarrow \exists B(c,r) \subset G_{\alpha}$, и когда диаметр параллелепипеда станет меньше r, мы получим что весь параллелепипед вместе с точкой c содержится в этом одном шаре G_{α} , но мы ведь строили параллелепипеды так, чтобы их нельзя было накрыть конечным подпокрытием. Мы получили противоречие.

1.27 Теорема о характеристике компактов в \mathbb{R}^m

Дано множество K лежащее в $R^m: K \subset R^m.$ Тогда следующие утверждения эквивалетны:

- 1. K замкнуто и ограничено (Мы доказывали что компактное множество обязательно замкнуто и ограничено, но в R^m это работает еще в обратную сторону)
- 2. K компактно
- 3. K секвенциально компактно. Это значит, что $\forall (x_n) \in K \exists n_k$ строго возрастающая последовательность номеров, $\exists x \in K : x_{n_k} \to x$ (у любой последовательности имеется сходящаяся подпоследовательность, причем x тоже должен лежать в K)

Доказательство.

• $1 \Rightarrow 2$

K — замкнуто и (ограничено, значит можем заключить в шаре, да и не только в шаре, давайте в параллелепипеде) содержится в параллелепипеде. Замкнутое подмножество компактного множества компактно (по теореме о простейших свойствах) $\Rightarrow K$ — компактно

• $2 \Rightarrow 3$

Пусть дана последовательность x_n . Можем ли мы найти такую подпоследовательность x_{n_k} ? Разберем два случая:

1. Множество значений x_n конечно. Очевидно, можем. Допустим у нас есть 10 значений x_n , а самих номеров бесконечно много. Значит одному из значений отвечает бесконечно много номеров. Берем эти номера, это и будут n_k , значит \exists бесконечная стационарная подпоследовательность.

2. Множество значений x_n бесконечно. $D = \{x_n\}$.

Предположим что у D нет предельных точек в K, тогда построим покрытие: $K = \bigcup_{X \in \mathcal{X}} B(x, \varepsilon_x)$

 $x \in K$ не предельная точка для $D \Rightarrow$ можем окружить таким шаром, что там нет точек $D: \exists \varepsilon_x : \dot{B}(x, \varepsilon_x)$ не пересекается с D.

Тогда это открытое покрытие. У этого открытого покрытия нет конечного подпокрытия, потому что множество D бесконечно и не может быть покрыто конечным количеством шаров. Но это противоречие, так как K компактно и значит у любого открытого покрытия есть конечно подпокрытие \Rightarrow у D есть предельные точки

Тогда пусть x — предельная точка. Значит $\exists x_{m_k} \to x$, где $x_{m_k} \in D, x_{m_k} \neq x$ (ко всякой предельной точке можно подойти не наступая на саму точку) Последовательность номеров должна быть возрастающей, поэтому отсортируем последовательность m_k и удалим повторы

Рассмотрим
$$x_{m_1}: \exists K \ \forall k > K: |x_{m_k} - x| < \underbrace{|x_{m_1} - x|}$$

То есть при k>K $m_k \neq m_1 \Rightarrow m_1$ встретится конечное число раз

Аналогично $\forall i: m_i$ встречается в последовательности (m_k) конечное число раз

Итого, алгоритм построения n_k : Берем m_1 , при $k > K_1$ выбираем наименьшее значение m_l

Обозначим $n_1=1, n_2=l.$ Аналогично запускаем выше проделанное наблюдение

 $\exists K_1$ при $k>K_1:m_i\neq m_l$, берем наименьшее значение m_i , обозначим n_2 . . .

• $3 \Rightarrow 1$

Может ли K быть неограниченно?

Тогда $\forall n \; \exists x_n \in K : \|x_n\| > n$. Возьмем шар радиусом n в нуле, K из него вылезает. Возьмем x_n за пределами шара и так при каждом n. Получили какую то последовательность. Но тут нет сходящейся подпоследовательности, потому что если $x_n \to x$, то $\|x_{n_k}\| \to \|x\|$, а у нас $\|x_{n_k}\| \to +\infty \Rightarrow K$ — ограниченно

Замкнуто ли K? А что если $\exists a$ — предельная точка $K, a \not\in K$

К предельной точке всегда можно подойти сколько угодно близко $\Rightarrow \exists x_n \to a, x_n \in K$. Любая подпоследовательность должна стремится к a, но согласно секвенциальной компактности, $a \in K$, но у нас $a \notin K \Rightarrow$ противоречие. Значит все предельные точки лежат в K.

Примечание. Утверждение 2 равносильно утверждению 3 в любом метрическом пространстве. Из 2 следует 1 по теореме о простейших свойствах компактов. Но из 1, к сожалению, не следует 2:

Рассмотрим интервал (0,1). Он не компактен, ограничен и замкнут если мы его рассматриваем в себе (как самостоятельное пространство).

П

1.28 Эквивалентность определений Гейне и Коши

- 1) Определение на ε -языке, или по Коши: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \setminus \{a\} : \rho(x,a) < \delta$ $\rho(f(x), A) < \varepsilon$.
- 2) Определение на языке последовательностей, или по Гейне: $\forall \{x_n\} : x_n \in D \setminus \{a\},$ $x_n \to a \ f(x_n) \to A$.

Теорема: определения предела отображения по Коши и по Гейне равносильны.

Доказательство:

Слева направо. Дано 1). Берём $x_n \to a, x_n \in D, x_n \neq a$. $?f(x_n) \to A$.

 $\varepsilon > 0 \; \exists N \; \forall n > N \; \rho(f(x_n), A) < \varepsilon.$

 $\delta > 0$ так как $x_n \to a \Rightarrow \exists N \ \forall n > N \ \rho(x_n, a) < \delta$.

Справа налево. Пусть A - не есть предел по Коши:

Тогда $\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D \ 0 < \rho(x,a) < \delta \ \rho(f(x),A) \geq \varepsilon$

 $\delta = 1 \; \exists x_1 \ldots \rho(f(x_1), A) \geq \varepsilon$

 $\delta = \frac{1}{2} \exists x_2 \dots \rho(f(x_2), A) \ge \varepsilon$ $\delta = \frac{1}{n} \exists x_n \in D \ 0 < \rho(x_n, a) < \frac{1}{n} \ \rho(f(x_n), A) \ge \varepsilon$ $x_n \in D \ x_n \ne a \ x_n \to a \ \rho(f(x_n), A) \nrightarrow 0$, то есть $f(x_n) \nrightarrow A$. Противоречие.

1.29 Единственность предела, локальная ограниченность отображения, имеющего предел, теорема о стабилизации знака

Теорема: если $\lim_{x\to a} f(x) = A$ и $\lim_{x\to a} f(x) = B$, то A=B.

Доказательство:

По Гейне. По единственности предела последовательности A = B.

Теорема: локальная ограниченность отображения, имеюещего предел.

Пусть X и Y - метрические пространства, $f:D\subset X\to Y,$ a - предельная точка D, $A\in Y,$ $f(n)\to A$ при $x\to a.$ Тогда $\exists V_a$ точки a, что f ограничено в $V_a\bigcup D.$

Доказательство:

Для $\varepsilon=1$: $\exists U_a \ \forall x\in U_a \cap D \ f(x)\in B(a,1)$. Если $a\in D$ увеличим радиус шара до $R=\rho(f(x),A)+1$. (*)

Тогда $\exists x \in U_a \cap D \ f(x) \in B(A, R).$

Теорема: о стабилизации знака: Дано (*). Тогда $\forall L \neq A(L \in Y) \; \exists U_a \; f(x) \neq L \;$ при $x \in U_a \cap D$.

Доказательство:

Берём $0<\varepsilon<\rho(L,a)$ $\exists U_a\ \forall U_a\bigcap D\colon \rho(f(x),A)<\varepsilon<\rho(L,a),$ то есть $f(x)\neq L,$ f(x)>0 (для \mathbb{R}).

1.30 Арифметические свойства пределов отображений. Формулировка для R с чертой

Теорема: об арифметических свойствах предела в \mathbb{R} . X - метрическое пространство, $D\subset X,\,a$ - предельная точка $D,\,f,g:D\to Y,\,A,B\in Y,\,\lambda_0\in\mathbb{R}:\,f(x)\to A,\,g(x)\to B,$ $\lambda(x) \to \lambda_0$ при $x \to a$. Тогда $\lambda: D \to Y$.

1) $\exists \lim_{x \to a} f(x) \pm g(x) = A \pm B$. 2) $\exists \lim_{x \to a} \lambda(x)g(x) = \lambda_0 A$. 3) $\exists \lim_{x \to a} ||f(x)|| = ||A||$. 4) Для $Y = \mathbb{R}$, если $B \neq 0$, то $\exists \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$. Замечание: аналогичная теорема верна для $Y=\mathbb{R}$ и/или $X=\mathbb{R}$. /возможно $a,A,B,\lambda_0=\pm\infty/$. Тогда утверждения 1-4 верны, если правые части имеют смысл.

Доказательство:

- 3) $x_n \to a, \ x_n \neq a, \ x_n \in D \ ?||f(x)|| \to ||A||.$ Да, так как $f(x_n) \to A$ по Гейне. 4) ? $\frac{f(x_n)}{g(x_n)} \to \frac{A}{B}.$ $x_n \to a$, берём U_a из замечания $\exists N \ \forall n > N \ x_n \in U_a.$

1.31 Принцип выбора Больцано-Вейерштрасса

Теорема: из всякой ограниченной последовательности \mathbb{R}^m можно извлечь сходящуюся подпоследовательность.

Доказательство:

В силу ограниченности все члены последовательности принадлежат некоторому замкнутому кубу I. Поскокльку I компактен, из этой последовательности можно извлечь подпоследовательность, имеющую предел, принадлежащий I.

1.32 Сходимость в себе и ее свойства

Лемма: 1. Сходящаяся в себе последовательность ограничена.

2. Если у сходящейся в себе последовательности есть сходящаяся подпоследовательность, то сама последовательность сходится.

Доказательство: 1. $\{x_n\}$ сходится в себе, тогда $\exists N$, что $\forall n, l > N$ будет $\rho(x_n, x_l) < 1$. То есть $\rho(x_n, x_{N+1}) < 1$. Пусть $b \in X$. Тогда по неравенству треугольника $\rho(x_n, b) < 1 + \rho(x_{N+1}, b)$. Пусть $R = \max\{\rho(x_1, b), \dots, \rho(x_{n+1}, b), 1 + \rho(x_{N+1}, b)\}$, тогда $\rho(x_n, b) \leq R$ для всех номеров n.

2. Пусть $\{x_n\}$ сходится в себе $x_{n_k} \to a$. Возьмём $\varepsilon > 0$. По определению предела $\exists K \forall k > K \colon \rho(x_{n_k}, a) < \frac{\varepsilon}{2}$, а по определению сходимости в себе $\exists N \ \forall n, l > N \colon \rho(x_n, x_l) < \frac{\varepsilon}{2}$. Покажем, что найденное N - требуемое для ε из определения предела. Пусть n > N. Положим $M = max\{N+1, K+1\}$, тогда $n_M \ge n_{N+1} > n_N \ge N$ и, аналогично $n_M > K$. Следовательно, $\rho(x_n, a) \le \rho(x_n, x_{n_M}) + \rho(x_{n_M}, a) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. В силу произвольности ε это означает, что $x_n \to a$.

Теорема: 1. Во всяком метрическом пространстве любая сходящаяся последовательность сходится в себе.

2. В R^m любая сходящаяся в себе последовательность сходится.

Доказательство:

- 1. Обозначим $\lim x_n = a$. Тогда $\exists N \ \forall n > N : \ \rho(x_n, a) < \frac{\varepsilon}{2}$. Тогда $\forall n, m > N : \ \rho(x_n, x_m) \le \rho(x_n, a) + \rho(a, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. В силу произвольности ε это означает, что $\{x_n\}$ сходится в себе.
- 2. Пусть $\{x^{(n)}\}$ сходящаяся в себе последовательность в \mathbb{R}^m . По пункту 1 леммы она ограничена. По принципу выбора Больцано-Вейерштрасса из неё можно извлечь сходящуюся подпоследовательность, а тогда по пункту 2 леммы она сама сходится.

1.33 Критерий Коши для последовательностей и отображений

```
f:D\subset x	o y,y - полно а - предельна точка D. Тогда Экв: 1) \exists \lim_{x	o a} f(x)\in y 2) \forall \epsilon>0 \exists v(a) \forall x_1,x_2\in v(a)\cap D\rho(f(x_1),f(x_2))<\epsilon Док-во: 1 \Longrightarrow 2 Записать и получится (Смайлик) \lim_{x	o a} f(x)=A \forall \epsilon>0 \exists v(a) \forall x_1\in v(a)\cap D\rho(f(x_1),a)<\epsilon/2 аналогично для x_2 2 \Longrightarrow 1 По гей не
```

1.34 Теорема о пределе монотонной функции

- $f:D\subset\mathbb{R}\to\mathbb{R},$ монотонна, а $\in\mathbb{R}D_1:=(-\infty,a)\cap D,a$ предельная точка D_1 Тогда:
 - 1) Если f убывает и f ограничена снизу на D_1 то тогда \exists конечный $\lim_{x\to a-0} f(x)$
 - 2) Если f возрастает и f ограничена сверху на D_1 то тогда \exists конечный $\lim_{x\to a-0} f(x)$

Док-во: Аналогично теореме о последовательности

 $A := \sup_{x \in D_1} f(x)$

Проверим: $f(x) \to A \ A \in \mathbb{R}$

 $\forall \epsilon > 0 \ A - \epsilon$ - не верхняя граница для значения функции т.е. $\exists x_1 \in D_1 : A - \epsilon < f(x_1) \leq A$

 $\exists \delta = |a - x_1| \, \forall x \in D, a - \delta < x < a$

 $|f(x) - A| < \epsilon$ т.к. $x_1 < x < a \implies$ по монотонности $A - \epsilon < f(x_1) \le f(x) \le A$

1.35 Теорема о замене на эквивалентную при вычислении пределов. Таблица эквивалентных

Пусть X — метрическое пространство, $f, f_1, g, g_1 : D \subset X \to \mathbb{R}(\mathbb{C}), x_0$ — предельная точка D, $f(x) \sim f_1(x), g(x) \sim g_1(x), x \to x_0$. Тогда справедливы следующие утверждения:

- 1) $\lim_{x\to x_0} f(x)g(x) = \lim x \to x_0 f_1(x)g_1(x)$
- 2) Если x_0 предельная точка области определения $\frac{f}{g}$, то $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f_1(x)}{g_1(x)}$ Как всегда очевидно.

$$f = \phi * f_1(x)$$
, $\phi_x \to 1$ при $x \to x_0$

$$g = \psi * g_1(x) \; , \; \psi_x \to 1 \; \mathrm{при} \; x \to x_0$$

 $\lim_{x \to x_0} fg = \lim_{x \to x_0} \phi \psi f_1 g_1 = \lim_{x \to x_0} f_1 g_1$

Если x_0 — предельная точка области определения. Благодаря данному утверждению $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{\phi f_1(x)}{\psi g_1(x)}$ корректно $\implies \lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f_1(x)}{g_1(x)}$

1.36 Теорема единственности асимптотического разложения

$$f,g_k:D\subset X o \mathbb{R}$$
 X - метрическое пространство x_0 - предельная точка D $g_{k+1}=o(g_k)\exists v(x_0): \forall g_k(x)!=0$ Пусть построили разные асимптотические разложения $f_1=\sum_{k=1}^n c_k g_k+o(g_n)$ $f_2=\sum_{k=1}^n d_k g_k+o(g_n)$ $f_1=f_2$ Тогда $\forall k=1...n$, $c_k=d_k$ Док-во: Пусть $\mathbf{m}=min(k:c_k!=d_k)$ Тогда $f_1-f_2=(c_m-d_m)g_m+\sum_{k=m+1}^n (c_k-d_k)g_k+o(g_n)=(c_m-d_m)+o(g_m)$ т.к. сумма очень маленькая и равна $o(g_m)$ $0=(c_m-d_m)g_m+o(g_m)$ $0=(c_m-d_m)+\frac{o(g_m)}{g_m}$ $0=(c_m-d_m)+0$ противоречие

1.37 Свойства непрерывных отображений: арифметические, стабилизация знака, композиция

1) Арифметические

 $f,g:D\subset X\to Y$ (нормированое пространстов) $x_0\in D, \lambda:D\to\mathbb{R}$

 f,g,λ - непрерывны в x_0 . Тогда

 $f \pm g$, λf , ||f|| - непрерывны в x_0 .

 $f,g:D\subset X\to D,\,x_0\in D$

f,g - непрерывны в x_0 . Тогда

 $f \pm g$, gf, |f| - непрерывны в x_0 .

Если $g(x_0)!=0$, то $\frac{f}{g}$ - непрерывна в x_0 . Док-во: Если X_0 - изолированая точка D \implies осталась изолированой, иначе по теореме освойствах предела.

2) Стабилизация знака

 $f, D \to \mathbb{R}$ непр. в $x_0 \in D, f(x_0)! = 0$

Тогда $\exists v(x_0) \forall x \in v(x_0), sign(f(x)) = sign(g(x_0))$

Док-во по определению предела

3) непрерывность композиции

 $f: D \in x \to y, g: E \in y \to z, f(D) \subset E$

f - непр. $x_0 \in D$, g - непр. $f(x_0)$

Тогда $g \circ f$ непр. в x_0

Док-во по Гейне

 $x_n \to x_0$, $x_n \in D \implies f(x_n) \to f(x_0)$, $f(x_n) \in E \implies g(f(x_n)) \to g(f(x_0))$

1.38 Непрерывность композиции и соответствующая теорема для пределов

1.39	Теорема о топологическом определении	непрерывности

1.40 Теорема Вейерштрасса о непрерывном образе компакта. Следствия

1.41	Теорема о ві	исанном	п-угольнике	максимальной	площади

1.42 Лемма о связности отрезка

1.43 Теорема Больцано-Коши о промежуточном значении

Пусть функция f непрерывна на [a,b]. Тогда для любого числа C, лежащего между f(a) и f(b), найдётся такое $c \in [a,b]$, что f(c) = C.

Доказательство:

Без ограничения общности предположим, что f(a) = A < B = f(b).

Рассмотрим функцию g(x) = f(x) - C. Она непрерывна на отрезке [a,b] и g(a) < 0, g(b) > 0. Покажем, что существует такая точка $c \in [a,b]$, что g(c) = 0. Разделим отрезок [a,b] точкой x_0 на два равных по длине отрезкаю Тогда либо $g(x_0) = 0$ и нужная точка $c = x_0$ найдена, либо на концах одного из полученых промежутков функция g(x) принимает значения разных знаков.

Обозначим полученный отрезок $[a_1, b_1]$, разделим его снова на два равных по длине отрезка и т.д.

Тогда, либо через конечное число шагов мы придем к искомой точке c, либо получим последовательность вложенных отрезков $[a_n, b_n]$ по длине стремящихся к нулю и таких, что $g(a_n) < 0 < g(b_n)$.

Пусть c - общая точка всех отрезков (согласно принципу Кантора, она существует и единственна) $[a_b,b_n]$. $n=1,\,2,\,3\,\dots$

Тогда $c = \lim a_n = \lim b_n$, и в силу непрерывности функции $g(x) : g(c) = \lim g(a_n) = \lim g(b_n)$.

Поскольку $\lim g(a_n) \leq 0 \leq \lim g(b_n)$, получим, что g(c) = 0.

1.44 Теорема о бутерброде

Если дано n измеримых «объектов» в n-мерном евклидовом пространстве, их можно разделить пополам (согласно их мере, то есть объёме) с помощью одной (n-1)-мерной гиперплоскости.

Доказательство:

Лемма:

 $A\subset R^2,$ V - произвольный вектор. Тогда \exists прямая с направлением вектора V, делящая фигуру на части одинаковой площади.

Доказательство Леммы:

Пусть $A \subset [a,b]x[c,d]$. Не умоляя общности пусть $[a,b] \not V$. Где [a,b] - часть оси ОХ. Рассмотрим координату на оси ОХ $\forall t \ f(t) = S_l(t) - S_r(t) \ f(a) = -S$, а f(b) = S. f - непрерывна: $|f(t_1) - f(t_2)| \le 2$ * площадь слоя фигуры между t_1 и $t_2 \le 2*(d-c)*|t_1-t_2|$ По теореме Больцано-Коши о промежуточном значении $\exists t_0: f(t_0) = 0$

 $\forall \phi \in [0, 2 * \pi]$ построим по лемме прямую направленную под углом ϕ к оси ОХ. Она делит A на равновеликие части. $g(\phi) = S_l^B(\phi) - S_r^B(\phi)$. (Площади фигуры B).

1 утверждение (очевидное) (для получения периодичности)

$$g(\phi + \pi) = -g(\phi)$$

2 утверждение (g - непрерывно)

 $g(\phi_1) - g(\phi_2) \le 2 * 1/2 * d^2 * |sin(\phi_1 - \phi_2) * 2|$, где d - диагональ стола. По теореме Больцано-Коши о промежуточном значении все получается.

1.45 Теорема о сохранении промежутка

$$f\langle a,b \rangle o \mathbb{R}$$
, тогда $f(\langle a,b \rangle)$ - промежуток

Доказательство:

$$m = \inf f, M = \sup f$$

Достаточно проверить $(m,M) \subset f\langle a,b \rangle$

$$\forall t \in (m, M) ? \exists x : f(x) = t$$

Если нет, то $f^{-1}(-\infty,t) \cap (m,M)$, $f^{-1}(t,+\infty) \cap (m,M)$ два не пустых, открытых, непересекающихся множества накрывающие множества дающие в объединении (m,M).

Ч.Т.Д.

1.46 Теорема Больцано-Коши о сохранении линейной связности

Определение: Пусть Y - метрическое пространство и $E \subset Y$.

Е - линейно связное если $\forall A,B\in E\exists$ путь c:[a,b] toE - непрерывный, такой что c(a)=A,c(b)=B.

Пример 1 - круг в \mathbb{R}^2 - линейно связный потому что выпуклый. $g:[0,1]\to\mathbb{R}^2$ $t\to A+t(B-A)$

Пример 2 -
$$A\subset \mathbb{R}^2$$
 $A=(0*[-1,1])\cup (x,sin\frac{1}{2}:x\in \mathbb{R},x\neq 0)$

Теорема:

X - линейное связное множество. $f: X \to Y$ (на Y) - непрерывно. Тогда Y - линейное связно.

Доказательство:

$$A, B \in Y$$
 подберем $U, V \in X : f(U) = A, f(V) = B;$

Соединим U и V путем с (т.е. возьмем $c:[a,b]\to X, c(a)=U, c(b)=V$). Тогда композиция f и с соединяет точки A и B.

1.47 Описание линейно связных множеств в \mathbb{R}

Определение: Пусть Y - метрическое пространство и $E\subset Y$.

Е - линейно связное если $\forall A,B\in E\exists$ путь c:[a,b] toE - непрерывный, такой что c(a)=A,c(b)=B.

Пример 1 - круг в \mathbb{R}^2 - линейно связный потому что выпуклый. $g:[0,1]\to\mathbb{R}^2$ $t\to A+t(B-A)$

Пример 2 -
$$A\subset \mathbb{R}^2$$
 $A=(0*[-1,1])\cup (x,sin\frac{1}{2}:x\in \mathbb{R},x\neq 0)$

Теорема:

 $B \mathbb{R}^1$ линейно связыми множествами являются только промежутки.

Доказательство:

В утверждении спрятана \leftrightarrow . Е - промежуток \to Е - линейно связно. Очевидно. Е - линейно связно. $m=\inf E, M=\sup E$. Проверим, что $(m,M)\subset E$. Пусть $t\in (m,M)$: $t\not\in E$. Возьмем $A\in E: A< t, B\in E: t< B$

Тогда / пути из А в В. (Если бы существовал такой путь, то в некоторой точке $d \in (a,b): c(d)=t$).

1.48 Теорема о непрерывности монотонной функции. Следствие о множестве точек разрыва

Теорема о непрерывности монотонной функции

Пусть $f:\langle a,b\rangle\to\mathbb{R},\,f$ монотонна. Тогда справедливы следующие утверждения.

- $1. \ f$ не может иметь разрывов второго рода.
- 2. Непрерывность f равносильна тому, что её множество значений промежуток.

Доказательство. Пусть f возрастает(для других случаев доказывается аналогично).

- 1. Пусть $x_0 \in (a,b), x_1 \in \langle a,b \rangle$. Тогда $f(x_1) \leq f(x) \leq f(x_0)$ для всех $x \in (x_1,x_0)$, поэтому f возрастает и ограниченна сверху на $\langle a,x_0 \rangle$. По теореме о пределе монотонной функции существует конечный предел $f(x_0-)$, причём по теореме о предельном переходе в неравенстве $f(x_1) \leq f(x_0-) \leq f(x_0)$. Аналогично доказывается, что для любой точки $x_0 \in \langle a,b \rangle$ существует конечный предел $f(x_0+)$, причём $f(x_0) \leq f(x_0+) \leq f(x_2)$ для всех $x_2 \in (x_0,b)$.
- 2. Ввиду следствия, остаётся доказать только достаточность. Пусть $f(\langle a,b\rangle)$ промежуток. Докажем непрерывность f слева в любой точке $x_0 \in (a,b\rangle$ от противного. Пусть $f(x_0-) < f(x_0)$ (мы уже доказали, что существует конечный левосторонний предел). Возьмём $y \in (f(x_0-), f(x_0))$. Тогда если $a < x_1 < x_0$, то $y \in [f(x_1), f(x_0)]$. Следовательно, $y \in f(\langle a,b\rangle)$, т.е. y значение функции. С другой стороны

$$\forall x \in \langle a, x_0 \rangle \Rightarrow f(x) \leq f(x_0 -) < y$$

 \mathbf{a}

$$\forall x \in [x_0, b\rangle \Rightarrow f(x) \ge f(x_0) > y,$$

т.е. функция не принимает значение y. Получаем противоречие. Т.е. $f(x_0-)=f(x_0)$. Аналогично f непрерывна справа в любой точке $x_0'\in \langle a,b\rangle$.

1.49 Теорема о существовании и непрерывности обратной функции

Теорема о существовании и непрерывности обратной функции Пусть $f \in C(\langle a,b \rangle \to \mathbb{R}), f$ строго монотонна,

$$m = \inf_{x \in \langle a, b \rangle} f(x), \quad M = \sup_{x \in \langle a, b \rangle} f(x).$$

Тогда справедливы следующие утверждения.

- 1. f обратима, $f^{-1}:\langle m,M\rangle \to \langle a,b\rangle$ биекция.
- 2. f^{-1} строго монотонна одноимённо с f.

3. f^{-1} непрерывна.

 $\ensuremath{\mathcal{A}\!\textit{оказательство}}.$ Пусть для определённости f строго возрастает.

Если $x_1, x_2 \in \langle a, b \rangle, x_1 < x_2$, то $f(x_1) < f(x_2)$; следовательно, f обратима. По теореме о сохранении промежутка $f(\langle a, b \rangle) = \langle m, M \rangle$. По общим свойствам обратного отображения f^{-1} – биекция $\langle m, M \rangle$ и $\langle a, b \rangle$.

Докажем, что f^{-1} строго возрастает. Если $y_1, y_2 \in \langle m, M \rangle$, $y_1 < y_2$, то $y_1 = f(x_1)$, $y_2 = f(x_2)$, где $x_1, x_2 \in \langle a, b \rangle$, $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$ При этом $x_1 < x_2$, так как возможность $x_1 \geq x_2$ исключена в силу строгого возрастания f.

Возрастающая функция f^{-1} задана на промежутке $\langle m, M \rangle$, а её множество значений - промежуток $\langle a, b \rangle$. По теореме о непрерывности монотонной функции она непрерывна.

1.50 Счетность множества рациональных чисел.

Множество рациональных чисел счётно

Доказательство. Обозначим

$$Q_{+} = \{x \in \mathbb{Q} : x > 0\}, \quad Q_{-} = \{x \in \mathbb{Q}\}$$

При всех $q\in\mathbb{N}$ множество $Q_q=\{\frac{1}{q},\frac{2}{q},\frac{3}{q},\ldots\}$ счётно. По теореме об объединении не более чем счётных множеств и $Q_+=\cup_{q=1}^\infty Q_q$ счётно. Очевидно, что $Q_ Q_+$. Снова по той же теореме множество

$$\mathbb{Q} = Q_+ \cup Q_- \cup \{0\}$$

счётно.

1.51 Несчетность отрезка.

Несчетность отрезка Отрезок [0, 1] несчетен

Доказательство. Допустим противное: пусть отрезок [0,1] счетен, т.е. все числа отрезка [0,1] можно расположить в виде последовательности:

$$[0,1] = \{x_1, x_2, x_3, x_4, x_5, \ldots\}$$

Разобьем отрезок [0,1] на три равных отрезка $[0,\frac{1}{3}], [\frac{1}{3},\frac{2}{3}], [\frac{2}{3},1]$ и обозначим через $[a_1,b_1]$ тот из них, который не содержит точки x_1 (если таких два, то всё равно, какой). Далее разобьём отрезок $[a_1,b_1]$ на три равных отрезка и обозначим через $[a_2,b_2]$ тот из них, который не содержит x_2 (если таких более одного, то всё равно, какой). Этот процесс продолжим неограниченно. В результате мы построим последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$, причём $x_n\notin [a_n,b_n]$ для любого n. По аксиоме о вложенных отрезках существует точка x^* , принадлежащая одновременно всем отрезкам $[a_n,b_n]$. Тем более, $x^*\in [0,1]$. Но тогда x^* имеет номер: $x^*=x_m$ при некотором m. По построению $x^*\notin [a_m,b_m]$, что противоречит принадлежности x^* всем отрезкам $[a_n,b_n]$.

1.52 Континуальность множества бинарных последовательностей

1.53 Замечательные пределы

Утверждение. Из геом. соображений верно следующее неравенство $\sin x < x < \tan x$ для $0 < x < \pi/2$

Замечательные переделы

1.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство. Для $0 < x < \pi/2$ $x < \tan x \Rightarrow \cos x < \frac{\sin x}{x} < 1$, откуда по теореме о двух городовых имеем замечательный предел.

.....

2.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Доказательство. (Кохась взял кредит, док-во не требуется)

.....

3.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Доказательство. Положим $t = \ln(1+x) \Rightarrow e^t = 1+x \Rightarrow x = e^t - 1 \Rightarrow$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{e^t - 1}{t} = 1$$

Подстановка t справедлива по пределу композиции, т. к. $\ln(1+x)$ непрерывная функция

.....

4.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Доказательство. $(1+x)^{\frac{1}{x}}=e^{\frac{\ln(1+x)}{x}}\rightarrow e^1=e$

.....

5.

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha$$

Доказательство. Положим $f(x) = (1+x)^{\alpha} - 1 \Rightarrow \ln(f(x)+1) = \alpha \ln(1+x)$. Тогда при $x \to 0$ по двум замечательным пределам:

$$\frac{(1+x)^{\alpha} - 1}{x} = \frac{f(x)}{x} = \frac{f(x)\alpha \ln(1+x)}{x \ln(f(x)+1)} = \frac{f(x)}{\ln(f(x)+1)} \cdot \alpha \cdot \frac{\ln(x+1)}{x} \to 1 \cdot \alpha \cdot 1 = \alpha$$

1.54 Равносильность двух определений производной. Правила дифференцирования.

Пусть функция f действует из отрезка $[a,b] \to \mathbb{R}, x_0 \in (a,b)$.

Определение производной №1

Если $\exists A \in \mathbb{R} : f(x) = f(x_0) + A(x - x_0) + o(x - x_0), x \to x_0$, тогда f - дифф. в x_0 , а A производная в этой точке.

Определение производной №2

Если $\exists \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = A \in \mathbb{R}$, тогда f - дифф. в x_0 , а A - производная в этой точке.

Эквивалентность определений

Определение №1 эквивалентно определению №2.

Доказательство.

$$(1) \Leftrightarrow \frac{f(x) - f(x_0)}{x - x_0} = A + \frac{o(x - x_0)}{x - x_0} \Leftrightarrow (\lim_{x \to x_0} \frac{o(x - x_0)}{x - x_0} = 0) \Leftrightarrow (2)$$

Правила дифференцирования

Пусть функции f,g действут из отрезка $[a,b] \to \mathbb{R}, x_0 \in (a,b),$ дифф. в $x_0 \Rightarrow \varphi$ дифф. в x_0 и справедливо:

1. $\varphi'(x_0) = (f+q)'(x_0) = f'(x_0) + g'(x_0)$

Доказательство. По определению.

2. $\forall \alpha \in \mathbb{R}$ $\varphi'(x_0) = (\alpha f(x_0))' = \alpha f'(x_0)$

Доказательство. По определению.

3. $\varphi'(x_0) = (fq)'(x_0) = f'(x_0)q(x_0) + f(x_0)q'(x_0)$

Доказательство.

$$(fg)' = \lim_{\Delta x \to 0} \frac{f\Delta g}{\Delta x} + \lim_{\Delta x \to 0} \frac{g\Delta f}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta g =$$

$$= f \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} + g \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta g = fg' + gf' + f' \cdot 0 = f'g + fg'.$$

$$(f(x) \cdot g(x))' = \lim_{\Delta t \to 0} \frac{\Delta(f(x) \cdot g(x))}{\Delta x} = \lim_{\Delta t \to 0} \frac{f(x + \Delta x) \cdot g(x + \Delta x) - f(x) \cdot g(x)}{\Delta x} =$$

$$= \lim_{\Delta t \to 0} \frac{(f(x) + \Delta f(x)) \cdot (g(x) + \Delta g(x)) - f(x) \cdot g(x)}{\Delta x} =$$

$$f(x) \cdot g(x) + g(x) \cdot Af(x) + f(x) \cdot Ag(x) + Af(x) \cdot Ag(x) - f(x) \cdot g(x)$$

$$= \lim_{\Delta x \to 0} \frac{f(x) \cdot g(x) + g(x) \cdot \Delta f(x) + f(x) \cdot \Delta g(x) + \Delta f(x) \cdot \Delta g(x) - f(x) \cdot g(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{g(x) \cdot \Delta f(x) + f(x) \cdot \Delta g(x) + \Delta f(x) \cdot \Delta g(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{g(x) \cdot \Delta f(x) + f(x) \cdot \Delta g(x) + \Delta f(x) \cdot \Delta g(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta g(x) =$$

$$= \lim_{x \to 0} \frac{g(x) \cdot \Delta f(x) + f(x) \cdot \Delta g(x) + \Delta f(x) \cdot \Delta g(x)}{\Delta f(x)}$$

$$= \lim_{\Delta x \to 0} \frac{g(x) \cdot \Delta f(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{f(x) \cdot \Delta g(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta g(x) = 0$$

$$= g(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} + f(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta g(x)}{\Delta x} + f'(x) \cdot 0 = 0$$

 $= f'(x) \cdot g(x) + f(x) \cdot g'(x)$

......

4.
$$g(x_0) \neq 0 \Rightarrow \varphi'(x_0) = (\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

Доказательство.

$$\begin{split} &\left(\frac{f(x)}{g(x)}\right)' = \lim_{\Delta x \to 0} \frac{\Delta \left(\frac{f(x)}{g(x)}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)}}{\Delta x} = \\ &= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \cdot g(x) - g(x + \Delta x) \cdot f(x)}{\Delta x \cdot g(x + \Delta x) \cdot g(x)} = \\ &= \frac{1}{g^2(x)} \cdot \lim_{\Delta x \to 0} \frac{(f(x) + \Delta f(x)) \cdot g(x) - (g(x) + \Delta g(x)) \cdot f(x)}{\Delta x} = \\ &= \frac{1}{g^2(x)} \cdot \lim_{\Delta x \to 0} \frac{f(x) \cdot g(x) + g(x) \cdot \Delta f(x) - f(x) \cdot g(x) - f(x) \cdot \Delta g(x)}{\Delta x} = \\ &= \frac{1}{g^2(x)} \cdot \lim_{\Delta x \to 0} \frac{g(x) \cdot \Delta f(x) - f(x) \cdot \Delta g(x)}{\Delta x} = \\ &= \frac{1}{g^2(x)} \cdot \left(g(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} - f(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta g(x)}{\Delta x}\right) = \\ &= \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)} \end{split}$$

1.55 Дифференцирование композиции и обратной функции

1.56 Теорема о свойствах показательной функции

1.57 Выражение произвольной показательной функции через экспоненту. Два следствия

1.58

1.59 Теорема Ферма (с леммой)

1.60 Теорема Ролля. Вещественность корней многочлена Лежандра

1.61 Теоремы Лагранжа и Коши. Следствия об оценке приращения и о пределе производной

Теорема Лагранжа. Пусть функция f непрерывна на [a,b] и дифференцируема на (a,b). Тогда найдётся такая точка $c \in (a,b)$, что

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Теорема Коши. Пусть функции f и g непрерывны на [a,b] и дифференцируемы на $(a,b), g'(x) \neq 0$ для любого $x \in (a,b)$. Тогда найдётся такая точка $c \in (a,b)$, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Замечание. Теорема Лагранжа - частный случай теоремы Коши, где g(x) = x. Поэтому достаточно доказать теорему Коши.

Доказательство теоремы Коши. Заметим, что $g(a) \neq g(b)$, так как инчае по теореме Ролля нашлась бы точка $t \in (a,b)$, в которой g'(t) = 0. Положим h = f - Kg, где $K = \frac{f(b) - f(a)}{g(b) - g(a)}$, т.е. h(a) = h(b). Тогда h удовлетворяет условиям теоремы Ролля. Поэтому найдётся такая точка $c \in (a,b)$, что h'(c) = 0, т.е. f'(c) = Kg'(c). Что и требовалось доказать.

Следствие. Оценка приращения функции. Пусть функция f непрерывна на $\langle a,b \rangle$, дифференцируема на (a,b), а число M>0 таково, что $|f'(t)| \leq M$ для всех $t \in (a,b)$. Тогда для любых точек x и $x+\Delta x$ из $\langle a,b, \rangle$

$$|f(x + \Delta x) - f(x)| \le M|\Delta x|.$$

1.62 Теорема Дарбу. Следствия

2 Определения и формулировки

2.3 Упорядоченная пара

Упорядоченная пара — двухэлементное семейство, где множеством индексов является $\{1,2\}$.

Множество - набор различных элементов. Неопределяемое понятие.

Семейство - множество с повторяющамися объектами

2.4 Декартово произведение

Декартовым или прямым произведением множеств X и Y называется множество всех упорядоченных пар, таких, что первый элемент пары принадлежит X, а второй — Y: $X \times Y = \{(x,y) : x \in X, y \in Y\}$

2.5 Аксиомы вещественных чисел

Множество R действительных чисел, множество в котором введены операции + и * и отношения порядка, если выполняются следующие аксиомы

- +1. Коммутативность $\forall a, b \in R : a + b = b + a$
- +2. Ассоциативность (a+b)+c=a+(b+c)
- + 3. Существование нейтрального элемента по сложению: $\exists \, \mathbb{O} : \forall a : a + \mathbb{O} = a$
- +4. Существование обратного элемента по сложению: $\forall a \ \exists (-a) : a + (-a) = 0$
- · 1. Коммутативность $a \cdot b = b \cdot a$
- · 2. Ассоциативность $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- · 3. Существование нейтрального элемента по умножению: $\exists 1 \neq 0 : \forall a \ a \cdot 1 = a$
- 4. Существование обратного элемента по умножению: $\forall x \neq 0 \ \exists x^{-1}: \ x \cdot x^{-1} = 1$
- $+\cdot 1$. Дистрибутивность $a\cdot (b+c)=(a\cdot b)+(a\cdot c)$

Нетревиальность поля $1 \neq 0$

Определение. Поле — множество в котором введены операции "+"и " \cdot "удовлетворяющие I группе аксиом. Например, \mathbb{R}, \mathbb{Q}

II Аксиомы порядка

Примечание. На элементах должно быть введено отношение порядка : $a \in x, b \in x \ a \prec b, \prec$ — неравенство

- 1. Рефлексивность: $\forall x, y \in \mathbb{R} : x \leq y$ или $y \leq x$
- 2. Транзитивность: $x < y, y < z \Rightarrow x < z$
- 3. Антисимметричность: $x \le y, y \le x \Rightarrow x = y$
- 4. Связь сложения и порядка $x \le y \Rightarrow x + z \le y + z$
- 5. Связь умножения и порядка $0 \le x$, $0 \le y \Rightarrow 0 \le xy$

Определение. Поле, удовлетворяющие аксиомам I - II называется **упорядоченным полем**. Например, \mathbb{R}, \mathbb{Q} — упорядоченное поле, \mathbb{C} — нет.

Упражнение. Докажите что 0 < 1, используя аксиомы I - II

Примечание.

$$[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a, b) = \{x \in \mathbb{R} : a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

Луч:
$$[a, +\infty) = \{x : a \le x\}$$

Аксиома архимеда

Аксиома Полноты читать про расширеные вещественные числа

2.6 Аксиома Кантора, аксиома Архимеда

III Аксиома Архимеда

 $\forall x, y \in \mathbb{R} \ x > 0, y > 0 \ \exists n \in \mathbb{N} \ nx > y$

Следствие. Существуют сколько угодно большие числа *Пример*.

$$R(x) = \{\frac{p(x)}{q(x)}, \ p, q$$
 — многочлены с вещественными коэфициентами $\}$

$$\frac{p1}{q1} = \frac{p2}{q2}$$
, если $\exists \ T > 0 \ \forall x > T \ \frac{p_1(x)}{q_1(x)} = \frac{p_2(x)}{q_2(x)}$

$$\frac{p1}{q1} < \frac{p2}{q2}$$
, если $\exists \ T > 0 \ \forall x > T \ \frac{p_1(x)}{q_1(x)} < \frac{p_2(x)}{q_2(x)}$

Аксиома Кантора

Пусть у нас есть последовательность вложенных отрезков $[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\dots$ Тогда для любой бесконечной последовательности вложенных отрезков их пересечение не пусто: $\bigcap_{k=1}^{\infty} [a_k,b_k]\neq\varnothing$

Примечание. Аксиома Кантора не выполняется для последовательности вложенных промежутков. Например, $(a_k, b_k) = (0, \frac{1}{k})$. Тогда $\bigcap_{k=1}^{\infty} = \emptyset$

Доказательство. От противного. Пусть существует $\alpha>0$ ($\alpha\leq0$ очевидно, не подходит), что $\alpha\in\bigcap_{n=1}^{\infty}\left(0,\frac{1}{k}\right)$

$$\forall k: \alpha < \frac{1}{k}$$

$$\forall k : ak < 1$$

— Противоречие аксиоме Архимеда

2.7 Пополненное множество вещественных чисел, операции и порядок в нем

Операции над множествами

Пусть $(x_n)_{\alpha \in A}$ — семейство множеств. Объединением семейства $(x_n)_{\alpha \in A}$ называется множество всех элементов, которые принадлежат хотя бы одному из множеств X_{α} :

$$\bigcup_{\alpha \in A} X_{\alpha} = \{ x : \exists \alpha \in A \quad x \in X_{\alpha} \}$$

Пусть $(x_n)_{\alpha \in A}$ — семейство множеств. Пересечением семейства $(x_n)_{\alpha \in A}$ называется множество всех элементов, которые принадлежат каждому из множеств X_{α} :

$$\bigcap_{\alpha \in A} X_{\alpha} = \{ x : \forall \alpha \in A \quad x \in X_{\alpha} \}$$

Разностью множеств X и Y называется множество всех элементов, которые принадлежат X, но не принадлежат Y:

$$X \setminus Y = \{x : x \in X, x \notin Y\}$$

Дополнение множества: $\vec{A} = A^c = \{x \in \mathbb{U} : x \notin A\}, \quad \mathbb{U}$ —универсум

$$A \setminus B = A \cap B^c$$

Пополненное множество вещественных чисел, операции и порядок в нем

Множество R с чертой $= R \bigcup \{-\infty, \infty\}$ называется расширенной числовой прямой.

Множество $E \subset R$ называется ограниченным сверху, если существует такое число $M \in R$, что $x \leq M$ для всех $x \in E$. Число M называется верхней границей множества.

Множество $E \subset R$ называется ограниченным снизу, если существует такое число $m \in R$, что $x \geqslant m$ для всех $x \in E$. Число m называется нижней границей множества.

Множество $E \subset R$ называется ограниченным, если оно ограничено и сверху, и снизу.

Пусть $\overline{\mathbb{R}}$ — расширенное множество вещественных чисел. $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$ —

не поле, так как некоторые операции не определены

+	$x \in \mathbb{R}$	$+\infty$	$-\infty$
$y \in \mathbb{R}$	x+y	$+\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	©
$-\infty$	$-\infty$	3	$-\infty$

	x > 0	0	$+\infty$	$-\infty$
y < 0	xy	0	$-\infty$	$+\infty$
$+\infty$	$+\infty$	(:)	$+\infty$	$-\infty$
$-\infty$	$-\infty$	(3)	$-\infty$	$+\infty$

Примечание.

- не определено
- тоже не определено, но уже чуть лучше (почему не помню)

 $\frac{0}{0}$ = неопределенность

 $\frac{\infty}{\infty}$ = неопределенность

 $0*\infty$ = неопределенность

 $\infty - \infty =$ неопределенность

 1^{∞} = неопределенность

 0^0 = неопределенность

 ∞^0 = неопределенность

$$-\infty < \infty$$

$$\infty * \infty = \infty$$

$$-\infty * \infty = -\infty$$

$$-\infty * -\infty = \infty$$

$$-\infty < X < \infty$$

$$x + x = 2x$$

$$x + \infty = \infty$$

$$x - \infty = -\infty$$

$$\infty + \infty = \infty$$
$$-\infty - \infty = -\infty$$
$$x * x = x^{2}$$
$$x * \infty = \infty$$
$$x * (-\infty) = -\infty$$

2.8 Последовательность

Последовательность - частный случай отображения

 $\mathbb{N} \to Y$

По натуральному номеру генерируем точку в пространстве $n\mapsto x_n$

Числу n ставим в соответствие элемент из Y который называем x_n .

При желании можно считать последовательность функцией Если выписать множество значений последовательности $(x_1, x_2, x_3...)$, то можно воспринимать ее как список.

Отображение - Неопределяемое понятие.

Это тройка (X, Y, f):

X - область опредления

Y - множество на котором отображение принимает значения

f - правило которое по элементам множества X генерирует элементы множества Y $f:X\to Y$

 $x \mapsto f(x)$

Частные случаи отображения:

- Последовательность
- Функция:

$$f: X \to \mathbb{R}$$

• Семейство:

A - множество меток

X - множество объектов

По каждой метке α из A генерируем x_{α}

 $\{x_{\alpha}\}_{{\alpha}\in A}$

2.9 Образ и прообраз множества при отображении

Пусть дано отображение $f:X\to Y,$ тогда образом множества $A\subset X$ под действием f называется

$$f(A) = \{ f(x) \mid x \in X \}$$

Прообразом множества $B\subset Y$ относительно отображения f называется $f^{-1}(B)=\{x\in X\mid f(x)\in B\}$

2.10 Инъекция, сюръекция, биекция

Отображение f называется:

• Сюръекцией (отображением на):

```
\forall y \in Y \ \exists x \in X : f(x) = y \Leftrightarrow f(X) = Y \Leftrightarrow \forall y \in Y уравнение относительно x, \ f(x) = y - имеет решение
```

• Инъекцией (отображением в):

```
\forall x_1 \in X \ \forall x_2 \neq x_1 \ f(x_1) \neq f(x_2) \Leftrightarrow \forall y \in Y уравнение f(x) = y имеет не более одного решения (относительно x)
```

• Биекцией:

Если обладает свойствами инъективности и сюръективности $\Leftrightarrow \forall y \in Y$ уравнение f(x) = y имеет ровно одно решение

2.11 Векторнозначаная функция, ее координатные функции

Если отображение действует из X в \mathbb{R}^n , то его называют векторнозначной функцией $f:X\to\mathbb{R}^n$ - векторнозначаная функция

 \mathbb{R}^n - декартово произведение n копий множества вещественных чисел $\mathbb{R},$ т.е. множество всевозможных наборов $(y_1...y_n), y_i \in \mathbb{R}$

Отображение переводит
$$x$$
 в вектор $f(x) \in \mathbb{R}^n$ $x \mapsto f(x) = (f_1(x), f_2(x), ... f_n(x))$

Вместе с этим появляются вспомогательные отображения $f_i(x)$ $x\mapsto f_i(x)\in\mathbb{R}$ - координатная функция отображения f

2.12 График отображения

Пусть дано отображение $f:X\to Y,$ тогда графиком называется множество в декартовом произведении $X\times Y$

$$\Gamma_f = \{(x, y) \in X \times Y : y = f(x)\}$$

2.13 Композиция отображений

Композицией отображений $f:U\to V$ и $g:V\to W$ называется такое отображение $h:U->Wh=g\circ f,$ что $\forall u\in U$ $h(u)=(g\circ f)(x)=g(f(x))$

2.14 Сужение и продолжение отображений

2.15 Предел последовательности (эпсилон-дельта определение)

Определения: (x_n) —последовательность точке в метрическом пространстве $(X,q); a \in X$

$$\lim_{x_n}=a$$
 при $\forall \epsilon>0 \exists N: \forall n>N: q(a,x_n)<\epsilon$ это тоже, что $q(a,x_n)\to 0$ $\forall U(a)\exists N: \forall n>Nx_n\in U(a)$

 $\forall U(a)$ верно, что вне этой окрестности лежит конечное число членов последовательности.

Определения:

 (x_n) —вещественная последовательность $a \in R; x_n \to a$ — последователность сходится к a— предел последовательности

$$x_n = a - \lim_{x_n} = a$$

 $\forall \epsilon > 0 \exists N : \forall n > N |x_n - a| < \epsilon$

2.16 Окрестность точки, проколотая окрестность

```
Определения: (x,q)-метрическое пространство a \in X, r > 0- открытый шар B(a,r) = \{x: q(a,x) < r\} B(a,r) = \{x: q(a,x) <= r\} закрытый шар. \epsilon- окрестность точки a = B(a,\epsilon) проколотая \epsilon- окрестность точки a = B(a,\epsilon)
```

2.17 Предел последовательности (определение на языке окрестностей)

Определения: (x_n) – последовательность точке в метрическом пространстве $(X,q); a \in X$

```
\lim_{x_n}=a при \forall \epsilon>0 \exists N: \forall n>N: q(a,x_n)<\epsilon это тоже, что q(a,x_n)\to 0 \forall U(a)\exists N: \forall n>Nx_n\in U(a)
```

 $\forall U(a)$ верно, что вне этой окрестности лежит конечное число членов последовательности.

2.18 Метрика, метрическое пространство, подпространство

Определение. Метрика — это функция на парах элементов какого-либо множества, возвращающая расстояние между этими элементами. Пусть $\rho(x,y)$ — метрика. Тогда она обладает следующими свойствами:

- $\rho(x,y) = 0 \Leftrightarrow x = y$ (аксиома тождества)
- $\rho(x,y) = \rho(y,x)$ (аксиома симметрии)
- $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ (неравенство треугольника)

Определение. Метрическое пространство — это пара из множества и метрики (метрика определена на парах элементов множества). То есть это множество различных элементов, между которыми можно найти расстояние с помощью заданной функции — метрики. (X — множество, ρ — метрика, то (X, ρ) — метрическое пространство)

Определение. Метрическое пространство (M, ρ_M) называется подпространством метрического пространства (X, ρ) , если $M \subset X$ и $\rho_M = \rho_X|_M$.

2.19 Шар, замкнутый шар, окрестность точки в метрическом пространстве

Определение. Шар с центром в точке a радиуса r>0 — это множество всех точек, таких что расстояние от a до них меньше заданного r. То есть B(a,r)=X, где $\forall x\in X: \rho(a,x)< r$

Определение. D(a,r) называют замкнутым шаром с центром a радиуса r, если r>0 и D(a,r)=X, где $\forall x\in X: \rho(a,x)\leq r$

Определение. Окрестностью точки x_0 в метрическом пространстве (X, ρ) называют шар $B(x_0, \epsilon)$. То есть это множество точек $Y \subset X$ такое что $\forall y \in Y : \rho(x_0, y) < \epsilon$

2.20 Линейное пространство

Определение. (Строгое определение) Линейное пространство — это упорядоченная четверка $(V, F, +, \cdot)$, где V — множество векторов, F — поле скаляров, + — определенная в пространстве операция сложения векторов, \cdot — определенная операция умножения векторов на скаляры

(По сути) Линейное пространство — это множество векторов и поле скаляров, на которых определены операции сложения векторов и умножения их на скаляры

Заданные операции + и · должны удовлетворять следующим аксиомам:

- x + y = y + x (коммутативность сложения)
- x + (y + z) = (x + y) + z (ассоциативность сложения)
- $\exists 0 \in V : \forall x \in V$ выполнено 0 + x = x + 0 = x (существование нейтрального элемента относительно сложения)
- $\forall x \in V \exists -x \in V : x + (-x) = 0 \ (-x \text{вектор}, \text{противоположный } x)$
- $\forall \alpha, \beta \in F$ выполняется $\alpha(\beta x) = (\alpha \beta) x$ (ассоциативность умножения на скаляр)
- $\forall x \in V$ выполняется $1 \cdot x = x$ (умножение на нейтральный элемент поля F сохраняет вектор из V)
- $\forall \alpha, \beta \in F \ \forall x \in V$ выполняется $(\alpha + \beta)x = \alpha x + \beta x$ (дистрибутивность умножения относительно сложения скаляров)
- $\forall \alpha \in F \ \forall x, y \in V$ выполняется $\alpha(x+y) = \alpha x + \alpha y$ (дистрибутивность умножения относительно сложения векторов)

2.21 Норма, нормированное пространство

Определение. Норма — это функция, которая каждому вектору сопоставляет неотрицательное число.

Более формально: ρ называется нормой на векторном пространстве V над полем скаляров, если $\rho: V \to \mathbb{R}_{\geq 0}$

Норма обладает следующими свойствами (аксиомы нормированного пространства):

- $\rho(x) = 0 \Rightarrow x = 0 \ (0 \in V)$
- $\forall x,y \in V$ выполняется $\rho(x+y) \leq \rho(x) + \rho(y)$ (неравенство треугольника)
- $\forall \alpha \in \mathbb{C}, \forall x \in V$ выполняется $\rho(\alpha x) = |\alpha| \rho(x)$

Определение. Нормированное пространство — это линейное пространство с заданной на нем нормой.

В нормированном пространстве d(x,y) = ||x-y|| определяет метрику. Свойства метрики и связь с нормой:

- $d(x,y) = ||x y|| = 0 \implies x = y$
- d(x,y) = ||x y|| = ||y x|| = d(y,x)
- $d(x,y) = ||x-y|| = ||(x-z) + (z-y)|| \le ||x-z|| + ||z-y|| = d(x,z) + d(z,y)$ (неравенство треугольника)
- d(x,y) = d(x+z,y+z) (инвариантность относительно сдвига)
- $d(\lambda x, \lambda y) = |\lambda| d(x, y)$ (положительная однородность)

2.22 Ограниченное множество в метрическом пространстве

Определение. Ограниченное множество в метрическом пространстве — это множество конечного диаметра. То есть:

Пусть (M, ρ) — метрика. Тогда множество $X \subset M$ является ограниченным, если \exists шар U радиуса r>0 с центром 0 такой, что $\forall x \in X: x \in U$, то есть $\rho(x,0) < r$. То есть существует какой-то шар, в котором умещаются все элементы множества.

2.23 Скалярное произведение

Определение. $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}(\mathbb{C})$, где X — линейное пространство над $\mathbb{R}(\mathbb{C})$, называется скалярным произведением, если соблюдаются аксиомы 1-3

Аксиомы скалярного произведения

- 1. $\forall x_1, x_2, y \in X \ \forall \alpha_1, \alpha_2 \in \mathbb{R}(\mathbb{C}) : \langle \alpha_1 x_1 + \alpha_2 x_2, y \rangle = \alpha_1 \langle x_1, y \rangle + \alpha_2 \langle x_2, y \rangle$
- 2. Симметричность (эрмитовость) $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- 3. $\forall x \in X : \langle x, x \rangle \ge 0$ и $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

2.24 Максимум, верхняя граница, множество, ограниченное всверху

Определение. Число $x \in A$ — называется максимальным элементом A (максимум A): $\forall a \in A : a \leq x$

Определение. M — **верхняя граница** A, если : $\forall x \in A : x \leq M$

Определение. Множество A называется ограниченным сверху, если $\exists M: \forall x \in A: x \leq M$

Примечание. Пусть A = (0,1) (интервал). Максимальный элемент не существует

2.25 Внутренняя точка множества, открытое множество, внутренность

Пусть у нас есть (X, ρ) — метрическое пространство, $\alpha \in X, D \subset X$

Определение. α — внутренняя точка множества D, если $\exists U(a) : U(a) \subset D$

$$\exists r > 0 : B(a,r) \subset D$$

Определение. D — открытое множество $\forall a \in D : a$ — внутренняя точка D

 Π ример.

- 1. *X*
- $2. \varnothing$
- 3. B(a, r)

Доказательство. $x \in B(a,r)$, доказать: x — внутренняя точка. Возьмем $R < r - \rho(a,x)$. Докажем, что $B(x,R) \subset B(a,r)$ Возьмем $y \in B(x,R)$:

$$\rho(y, a) \le \rho(y, x) + \rho(x, a) < R + \rho(a, x) < r \Rightarrow y \in B(a, r)$$

Определение. Внутренность $D:Int(D)=\{x\in D:x$ — внутренняя точка $D\}$

Примечание.

- 1. IntD открытое множество
- 2. $IntD = \bigcup_{\substack{D \supset G, \\ G \text{ открыто}}}$ максимальное открытое множество содержащееся в D
- 3. D открыто в $X \Leftrightarrow D = IntD$

2.26 Предельная точка множества

Определение. α — **предельная точка** множества D, если:

$$\forall \dot{U}(a) \qquad \dot{U}(a) \cap D \neq \varnothing$$

Пример. Пусть D = (0,1) $X = \mathbb{R}$

α	IsLimitPoint
-1	False, $B(-1, \frac{1}{2}) \cap D = \emptyset$
$\frac{1}{2}$	True, $B(\frac{1}{2}, \frac{1}{2}) \subset D$
1	True, $B(1, \frac{1}{2}) \cap D = (\frac{1}{2}, 1)$

2.27 Замкнутое множество, замыкание, граница

Определение. D — **замкнутое множество** в X, если оно содержит все свои предельные точки

Пример.

- \mathbb{N} в \mathbb{R} замкнуто (нет предельных точек)
- (0,1) в \mathbb{R} незамкнуто, $1 \notin (0,1)$ и 1 предельная точка
- \bullet X одновременно и замкнуто, и открыто
- \emptyset одновременно и замкнуто, и открыто

Определение. $D \subset X$, тогда **замыкание** $D : \overline{D} = D \cup ($ предельные точки D)

Примечание.

1.
$$a \in \overline{D} \Leftrightarrow \exists (x_n) : x_n \in D, x_n \to a$$

- $2. \ \overline{D} = \bigcap_{\substack{F: F \ -\text{ замкнуто} \\ F \supset D}} F$ мин. по включению замкнутое множество, содержащее D
- 3. D замкнуто $\Leftrightarrow D = \overline{D}$

Определение. x — граничная точка D, если $\forall U(x)$: в U(x) имеется точка как из D, так из D^c . Обозначение: δD

Определение. Граница D — множество граничных точек

Пример. Пусть у нас множество \mathbb{Q} в пространстве \mathbb{R} , граница $\mathbb{Q} = \mathbb{R}$

2.28 Изолированная точка, граничная точка

Определение: точка a называется изолированной точкой множества D, если $a \in D,$ но не является его предельной точкой.

Определение: точка a называется граничной точкой множества D, если в $\forall \mathcal{U}(a)$ найдётся точка как из D, так и не из D. Граница D - множество граничных точек.

2.29 Описание внутренности множества

Определение: точка a называется внутренней точкой множества D, если $\exists \mathcal{U}(a) \in D$ Определение: множество D называется открытым, если все его точки внутренние. Определение: Множество всех внутренних точек множества D называется внутренностью D.

2.30 Описание замыкания множества в терминах пересечений

Определение: для $D \in X$ замыканием называется такое $\overline{D},$ что $\overline{D} = D \bigcup T,$ где T множество предельных точек $D.\overline{D}$ - замкнуто.

Замечание:

- 1) $a \in \overline{D} \leftrightarrow \exists (x_n) : x_n \in D, x_n \to a$ 2) $\overline{D} = \bigcap F_i$, где F_i замкнуто и $D \in F_i$.
- 3) D замкнуто $\leftrightarrow D = \overline{D}$.

2.31 Верхняя, нижняя границы; супремум, инфимум

Определение: $E \in \mathbb{R}, \ E \neq \emptyset$ - ограничена сверху: $\exists M \ \forall x \in E : x \leq M.\ M$ - верхняя граница.

Определение: $E \in \mathbb{R}, \ E \neq \emptyset$ - ограничена снизу: $\exists m \ \forall x \in E : x \geq m. \ m$ - нижняя граница.

Определение: E - ограничена сверху. Число $b \in \mathbb{R}$ - супремум множества E ($b = \sup(E)$), если b - наименьшая из верхних границ.

Определение: E - ограничена снизу. Число $b \in \mathbb{R}$ - инфинум множества E (b = inf(E)), если b - наибольшая из нижних границ.

2.32 Техническое описание супремума

Определение: b = supE, если выполняется:

- 1) b верхняя граница: $\forall x \in E : x \leq b$
- 2) b самая маленькая верхняя граница: $\forall \varepsilon > 0 \ \exists x \in E \colon b \varepsilon < x$

2.33 Последовательность, стремящаяся к бесконечности

Определение: Последовательность, стремящаяся к бесконечности называеться бесконечно большой

2.34 Определения предела отображения (3 шт)

$$\lim_{x \to a} x = A$$

1) Определение на $\epsilon - \delta$ -языке, или по Коши.

Для любого положительного числа ϵ существует такое положительное число δ , что для всех точек х множества D, отличных от а и удовлетворяющих неравенству $\rho_x(x,a) < \delta$, выполняется неравенство $0 < \rho_y(f(x),a) < \epsilon$:

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in D : 0 < \rho_x(x, a) < \delta \ 0 < \rho_y(f(x), a) < \epsilon$$

2) Определение на языке окрестностей.

Для любой окрестности V_a точки A существует такая окрестность V_a точки a, что образ пересечения проколотой окрестности V_a с множеством D при отображении f содержится в окрестности V_A

3) Определение на языке последовательностей, или по Гейне

Для любой последовательности x_n точек множества D, отличных от a, стремящейся к a, последовательность $f(x_n)$ стремится к A:

$$\forall (x_n): 1)x_n \to a \ 2)x_n \in D \ 3)x_n! = a \implies f(x_n) \to A$$

2.35 Определения пределов в R с чертой

Утверждение 2 из на прошлой странице прекрасно работает Первое не подходит т.к. очень далеко.

$$\lim_{x\to\infty}=A$$

$$\forall \epsilon > 0 \exists \Delta \forall x \in D, x > \Delta |f(x) - A| < \epsilon$$

2.36 Компактное множество

 $K \in X$ называется компактным если:

∀ открытое покрытие

$$K \subset \bigcup_{\alpha \in A} G_{\alpha}$$

 \exists конечный набор α_i :

$$\bigcup_{i=1}^{n} G_{\alpha}$$

2.37 Секвенциальная компактность

Пространство называется секвенциально компактным, если из любой последовательности в нём можно выделить сходящуюся подпоследовательность.

K — секвенциально компактно. Это значит, что $\forall (x_n) \in K \exists n_k$ — строго возрастающая последовательность номеров, $\exists x \in K : x_{n_k} \to x$ (у любой последовательности имеется сходящаяся подпоследовательность, причем x тоже должен лежать в K)

2.38 Предел по множеству

2.39 Односторонние пределы

2.40 Конечная эпсилон-сеть

2.41 Теорема о характеризации компактных множеств в терминах эпсилон-сетей

2.42 Непрерывное отображение (4 определения)

2.43 Непрерывность слева

Пусть Y — метрическое пространство, $f:D\subset\mathbb{R}\to Y,\,x_0\in D$. Если сужение отображения f на множество $E_1=D\cap(-\infty,x_0],\,(E_2=D\cap[x_0,+\infty))$ непрерывно в точке x_0 , то говорят, что отображение f непрерывно слева (справа) в точке x_0 .

2.44 Разрыв, разрывы первого и второго рода

Разрыв. Точки, в которых нарушается условие непрерывности, называют точками разрыва функции.

Разрыв 1 порядка. Точка разрыва x_0 называется точкой разрыва первого порядка, если существуют конечные односторонние пределы в этой точке.

Разрыв 2 порядка. Точка x_0 называется точкой разрыва второго порядка, если она не является точкой разрыва первого рода (если хотя бы один из односторонних пределов не существует или равен $+\infty$ или $-\infty$.

2.45 О большое

Пусть X - метрическое пространство, $D\subset X, \, f,g:D\to \mathbb{R}(\mathbb{C}),\, x_0$ - предельная точка D. Если существует функция $\phi:D\to \mathbb{R}(\mathbb{C})$ и окрестность V_{x_0} точки x_0 , такие, что $f(x)=\phi(x)g(x)$ для всех $x\in V_{x_0}\cap D$.

 ϕ ограничена на $V_{x_0}\cap D,$ то говорят, что функция fограничена по сравнению с g при $x\to x_0.$

2.46 О маленькое

Пусть X - метрическое пространство, $D\subset X, f,g:D\to\mathbb{R}(\mathbb{C}), x_0$ - предельная точка D. Если существует функция $\phi:D\to\mathbb{R}(\mathbb{C})$ и окрестность V_{x_0} точки x_0 , такие, что $f(x)=\phi(x)g(x)$ для всех $x\in V_{x_0}\cap D$.

 $\phi \to 0$, то говорят, что функция f беконечная малая по сравнению с g при $x \to x_0$.

2.47 Эквивалентные функции, таблица эквивалентных

Пусть X - метрическое пространство, $D \subset X$, $f,g:D \to \mathbb{R}(\mathbb{C})$, x_0 - предельная точка D. Если существует функция $\phi:D \to \mathbb{R}(\mathbb{C})$ и окрестность V_{x_0} точки x_0 , такие, что $f(x) = \phi(x)g(x)$ для всех $x \in V_{x_0} \cap D$.

 $\phi \to 1$, то говорят, что функция f и g эквивалентны равны при $x \to x_0$.

$$\sin(x) \approx \arcsin(x) \approx \tan(x) \approx \arctan(x) \approx e^x - 1 \approx x$$

2.48 Асимптотически равные (сравнимые) функции

Определение. Если f(x) = O(g(x)) и g(x) = O(f(x)) (при $x \to x_0$ или $x \in D$), то говорят, что функции f и g сравнимы (при $x \to x_0$ или $x \in D$ соответственно), и пишут $f \asymp g$

2.49 Асимптотическое разложение

Определение. Пусть X-метрическое пространство, $D \subset X$, x_0 -предельная точка D, $f:D\to\mathbb{R}$ или \mathbb{C} и задана конечная или счётная система функций $\{g_k\}_{k=0}^N$ ($N\in\mathbb{N}$) или $\{g_k\}_{k=0}^\infty$, $g_k:D\to\mathbb{R}$ или \mathbb{C} , каждая из которых бесконечно мала по сравнению с предыдущей при всех $\in [0:N-1]$ или $k\in\mathbb{Z}_+$

$$g_{k+1}(x) = o(g_k(x)), x \to x_0.$$

Большую роль в анализе играют асимптотические формулы вида

$$f(x) = \sum_{k=0}^{n} c_k g_k(x) + o(g_n(x)), \quad x \to x_0.$$

Это и есть асимптотическое разложение по заданной системе функций.

2.50 Наклонная асимптота графика

Определение. Пусть $(a, +\infty) \subset D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $\alpha, \beta \in \mathbb{R}$. Прямая y = ax + b называется наклонной асимптотой функции f при $x \to +\infty$, если

$$f(x) = \alpha x + \beta + o(1), \quad x \to +\infty.$$

2.51 Путь в метрическом пространстве

Определение. Пусть Y-метрическое пространство, $E \subset Y$. Непрерывное отображение отрезка в множество E:

$$\gamma \in C([a,b] \subset \mathbb{R} \to E)$$

называется $nym\ddot{e}_{M}$ в E. Точка $\gamma(a)$ называется началом, $\gamma(b)$ – концом пути.

2.52 Линейно связное множество

Определение. Пусть Y-метрическое пространство, $E \subset Y$. Множество E называется *линейно связным*, если любые две его точки можно соединить путём в E:

$$\forall A, B \in E, \exists \gamma \in C([a, b] \subset \mathbb{R} \to E) : \gamma(a) = A, \gamma(b) = B.$$

2.53 Счетное множество, эквивалентные множества

2.54	Множество	мощности	континуума

2.55 Функция, дифференцируемая в точке

Функция, дифференцируемая в точке - это функция, которая имеет конечную производную в точке (см. 2.56). На самом деле, функция может иметь бесконечную производную, тогда фактически говорят о наличии производной, однако не считают функцию дифференцируемой в этой точке.

2.56 Производная

Два определения производной.

Определение производной №1

Если $\exists A \in \mathbb{R} : f(x) = f(x_0) + A(x - x_0) + o(x - x_0), x \to x_0$, тогда f - дифф. в x_0 , а A производная в этой точке.

Определение производной \mathfrak{N}_{2}

Если $\exists \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = A \in \mathbb{R}$, тогда f - дифф. в x_0 , а A - производная в этой точке.

2.57 Касательная прямая к графику функции