Chapter 1: Introduction to Spatial Databases

- 1.1 Overview
- 1.2 Application domains
- 1.3 Compare a SDBMS with a GIS
- 1.4 Categories of Users
- 1.5 An example of an SDBMS application
- 1.6 A Stroll though a spatial database
 - 1.6.1 Data Models, 1.6.2 Query Language, 1.6.3 Query Processing,
 - 1.6.4 File Organization and Indices, 1.6.5 Query Optimization,
 - 1.6.6 Data Mining

Learning Objectives

- Learning Objectives (LO)
 - LO1: Understand the value of SDBMS
 - Application domains
 - users
 - How is different from a DBMS?
 - LO2: Understand the concept of spatial databases
 - LO3: Learn about the Components of SDBMS
- Mapping Sections to learning objectives
 - **■** LO1 1.1, 1.2, 1.4
 - **LO2** 1.3, 1.5
 - **LO3** 1.6

Value of SDBMS

- Traditional (non-spatial) database management systems provide:
 - Persistence across failures
 - Allows concurrent access to data
 - Scalability to search queries on very large datasets which do not fit inside main memories of computers
 - Efficient for non-spatial queries, but not for spatial queries
- Non-spatial queries:
 - List the names of all bookstore with more than ten thousand titles.
 - List the names of ten customers, in terms of sales, in the year 2001
- Spatial Queries:
 - List the names of all bookstores with ten miles of Minneapolis
 - List all customers who live in Tennessee and its adjoining states

Value of SDBMS – Spatial Data Examples

- Examples of non-spatial data
 - Names, phone numbers, email addresses of people
- Examples of Spatial data
 - Census Data
 - NASA satellites imagery terabytes of data per day
 - Weather and Climate Data
 - Rivers, Farms, ecological impact
 - Medical Imaging
- Exercise: Identify spatial and non-spatial data items in
 - A phone book
 - A cookbook with recipes

Value of SDBMS – Users, Application Domains

- Many important application domains have spatial data and queries. Some Examples follow:
 - Army Field Commander: Has there been any significant enemy troop movement since last night?
 - Insurance Risk Manager: Which homes are most likely to be affected in the next great flood on the Mississippi?
 - Medical Doctor: Based on this patient's MRI, have we treated somebody with a similar condition ?
 - Molecular Biologist: Is the topology of the amino acid biosynthesis gene in the genome found in any other sequence feature map in the database?
 - Astronomer: Find all blue galaxies within 2 arcmin of quasars.
- Exercise: List two ways you have used spatial data. Which software did you use to manipulate spatial data?

Learning Objectives

- Learning Objectives (LO)
 - LO1: Understand the value of SDBMS
 - LO2: Understand the concept of spatial databases
 - What is a SDBMS?
 - How is it different from a GIS?
 - LO3: Learn about the Components of SDBMS
- Sections for LO2
 - Section 1.5 provides an example SDBMS
 - Section 1.1 and 1.3 compare SDBMS with DBMS and GIS

What is a SDBMS?

- A SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial abstract data types (ADTs) and a query language from which these ADTs are callable
 - supports spatial indexing, efficient algorithms for processing spatial operations, and domain specific rules for query optimization
- Example: Oracle Spatial data cartridge, ESRI SDE
 - can work with Oracle 8i DBMS
 - Has spatial data types (e.g. polygon), operations (e.g. overlap) callable from SQL3 query language
 - Has spatial indices, e.g. R-trees

SDBMS Example

- Consider a spatial dataset with:
 - □ County boundary (dashed white line)
 - □ Census block name, area, population, boundary (dark line)
 - Water bodies (dark polygons)
 - Satellite Imagery (gray scale pixels)
- Storage in a SDBMS table:

```
create table census_blocks (
name string,
area float,
population number,
boundary polygon);
```


Fig 1.2

Modeling Spatial Data in Traditional DBMS

- •A row in the table census blocks (Figure 1.3)
- Question: Is Polyline datatype supported in DBMS?

Figure 1.3

Spatial Data Types and Traditional Databases

- Traditional relational DBMS
 - Support simple data types, e.g. number, strings, date
- **Example:** Figure 1.4 shows modeling of polygon using numbers
 - Three new tables: polygon, edge, points
 - Note: Polygon is a polyline where last point and first point are same
 - A simple unit sqaure represented as 16 rows across 3 tables
 - Simple spatial operators, e.g. area(), require joining tables
 - Tedious and computationally inefficient
- Question. Name post-relational database management systems which facilitate modeling of spatial data types, e.g. polygon.

Mapping "census_table" into a Relational Database

Census_blocks

Name	Area	Population	boundary-ID
340	1	1 839	1050

Polygon

boundary-ID	edge-name
1050	A
1050	В
1050	С
1050	D

Edge

edge-name	endpoint
A	1
A	2
В	2
В	3
С	3
С	4
D	4
D	1

Point

endpoint	x-coor	у-соот
1	0	1
2	0	0
3	1	0
4	1	1

Fig 1.4

Evolution of DBMS technology

Fig 1.5

Spatial Data Types and Post-relational Databases

- Post-relational DBMS
 - Support user defined abstract data types
 - Spatial data types (e.g. polygon) can be added
- Choice of post-relational DBMS
 - Object oriented (OO) DBMS
 - □ Object relational (OR) DBMS
- A spatial database is a collection of spatial data types, operators, indices, processing strategies, etc. and can work with many post-relational DBMS as well as programming languages like Java, Visual Basic etc.

How is a SDBMS different from a GIS?

- GIS is a software to visualize and analyze spatial data using spatial analysis functions such as
 - Search Thematic search, search by region, (re-)classification
 - Location analysis Buffer, corridor, overlay
 - **™ Terrain analysis** Slope/aspect, catchment, drainage network
 - Flow analysis Connectivity, shortest path
 - **□ Distribution** Change detection, proximity, nearest neighbor
 - Spatial analysis/Statistics Pattern, centrality, autocorrelation, indices of similarity, topology: hole description
 - Measurements Distance, perimeter, shape, adjacency, direction
- GIS uses SDBMS
 - to store, search, query, share large spatial data sets

How is a SDBMS different from a GIS?

- SDBMS focusses on
 - Efficient storage, querying, sharing of large spatial datasets
 - Provides simpler set based query operations
 - Example operations: search by region, overlay, nearest neighbor, distance, adjacency, perimeter etc.
 - Uses spatial indices and query optimization to speedup queries over large spatial datasets.
- SDBMS may be used by applications other than GIS
 - Astronomy, Genomics, Multimedia information systems, ...
- Will one use a GIS or a SDBM to answer the following:
 - How many neighboring countries does USA have?
 - ➡ Which country has highest number of neighbors?

Evolution of acronym "GIS"

- Geographic Information Systems (1980s)
- Geographic Information Science (1990s)
- **♦**Geographic Information Services (2000s)

Fig 1.1

Three meanings of the acronym GIS

- Geographic Information Services
 - Web-sites and service centers for casual users, e.g. travelers
 - Example: Service (e.g. AAA, mapquest) for route planning
- Geographic Information Systems
 - Software for professional users, e.g. cartographers
 - Example: ESRI Arc/View software
- Geographic Information Science
 - Concepts, frameworks, theories to formalize use and development of geographic information systems and services
 - Example: design spatial data types and operations for querying
- **Exercise:** Which meaning of the term GIS is closest to the focus of the book titled "Spatial Databases: A Tour"?

Learning Objectives

- Learning Objectives (LO)
 - LO1: Understand the value of SDBMS
 - LO2: Understand the concept of spatial databases
 - LO3: Learn about the Components of SDBMS
 - Architecture choices
 - SDBMS components:
 - data model, query languages,
 - query processing and optimization
 - File organization and indices
 - Data Mining
- Chapter Sections
 - 1.5 second half
 - 1.6 entire section

Components of a SDBMS

- Recall: a SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial ADTs and a query language from which these ADTs are callable
 - supports spatial indexing, algorithms for processing spatial operations, and domain specific rules for query optimization

Components include

- spatial data model, query language, query processing, file organization and indices, query optimization, etc.
- Figure 1.6 shows these components
- We discuss each component briefly in chapter 1.6 and in more detail in later chapters.

Three Layer Architecture

Fig 1.6

1.6.1 Spatial Taxonomy, Data Models

- Spatial Taxonomy:
 - multitude of descriptions available to organize space.
 - Topology models homeomorphic relationships, e.g. overlap
 - Euclidean space models distance and direction in a plane
 - Graphs models connectivity, Shortest-Path
- Spatial data models
 - rules to identify identifiable objects and properties of space
 - Object model help manage identifiable things, e.g. mountains, cities, land-parcels etc.
 - Field model help manage continuous and amorphous phenomenon, e.g. wetlands, satellite imagery, snowfall etc.
- More details in chapter 2.

1.6.2 Spatial Query Language

- Spatial query language
 - Spatial data types, e.g. point, linestring, polygon, ...
 - Spatial operations, e.g. overlap, distance, nearest neighbor, ...
 - Callable from a query language (e.g. SQL3) of underlying DBMS

SELECT S.name FROM Senator S WHERE S.district.Area() > 300

Standards

- SQL3 (a.k.a. SQL 1999) is a standard for query languages
- OGIS is a standard for spatial data types and operators
- Both standards enjoy wide support in industry
- More details in chapters 2 and 3

Multi-scan Query Example

Spatial join example

SELECT S.name FROM Senator S, Business B WHERE S.district.Area() > 300 AND Within(B.location, S.district)

Non-Spatial Join example

SELECT S.name FROM Senator S, Business B

WHERE S.soc-sec = B.soc-sec AND S.gender = 'Female'

SENATOR

1.6.3 Query Processing

- Efficient algorithms to answer spatial queries
- Common Strategy filter and refine
 - Filter Step:Query Region overlaps with MBRs of B,C and D
 - Refine Step: Query Region overlaps with B and C

Fig 1.8

Query Processing of Join Queries

- •Example Determining pairs of intersecting rectangles
 - (a):Two sets R and S of rectangles, (b): A rectangle with 2 opposite corners marked, (c): Rectangles sorted by smallest X coordinate value
 - Plane sweep filter identifies 5 pairs out of 12 for refinement step
 - •Details of plane sweep algorithm on page 15

Fig 1.9

1.6.4 File Organization and Indices

- A difference between GIS and SDBMS assumptions
 - •GIS algorithms: dataset is loaded in main memory (Fig. 1.10(a))
 - •SDBMS: dataset is on secondary storage e.g disk (Fig. 1.10(b))
 - •SDBMS uses space filling curves and spatial indices

(a)

•to efficiently search disk resident large spatial datasets

Fig 1.10

Organizing spatial data with space filling curves

- •Issue:
 - •Sorting is not naturally defined on spatial data
 - •Many efficient search methods are based on sorting datasets
- Space filling curves
 - •Impose an ordering on the locations in a multi-dimensional space
 - •Examples: row-order (Fig. 1.11(a), z-order (Fig 1.11(b))
 - Allow use of traditional efficient search methods on spatial data

1	2	3	4
5	6	7	ន
9	10	11	12
13	14	15	16

7	8	14	16
5	6	13	15
2	4	10	12
1	3	9	11

(b)

(a)

Fig 1.11

Spatial Indexing: Search Data-Structures

- •Choice for spatial indexing:
 - •B-tree is a hierarchical collection of ranges of linear keys, e.g. numbers
 - •B-tree index is used for efficient search of traditional data
 - •B-tree can be used with space filling curve on spatial data
 - •R-tree provides better search performance yet!
 - •R-tree is a hierarchical collection of rectangles
 - •More details in chapter 4

1.6.5 Query Optimization

- Query Optimization
 - A spatial operation can be processed using different strategies
 - Computation cost of each strategy depends on many parameters
 - •Query optimization is the process of
 - ordering operations in a query and
 - •selecting efficient strategy for each operation
 - •based on the details of a given dataset
- •Example Query:

```
SELECT S.name FROM Senator S, Business B
WHERE S.soc-sec = B.soc-sec AND S.gender = 'Female'
```

- Optimization decision examples
 - •Process (S.gender = 'Female') before (S.soc-sec = B.soc-sec)
 - •Do not use index for processing (S.gender = 'Female')

1.6.6 Data Mining

- Analysis of spatial data is of many types
 - Deductive Querying, e.g. searching, sorting, overlays
 - Inductive Mining, e.g. statistics, correlation, clustering, classification, ...
- Data mining is a systematic and semi-automated search for interesting non-trivial patterns in large spatial databases
- •Example applications include
 - •Infer land-use classification from satellite imagery
 - •Identify cancer clusters and geographic factors with high correlation
 - •Identify crime hotspots to assign police patrols and social workers

1.7 Summary

- SDBMS is valuable to many important applications
- SDBMS is a software module
 - works with an underlying DBMS
 - provides spatial ADTs callable from a query language
 - provides methods for efficient processing of spatial queries
- Components of SDBMS include
 - spatial data model, spatial data types and operators,
 - ☐ spatial query language, processing and optimization
 - spatial data mining
- SDBMS is used to store, query and share spatial data for GIS as well as other applications