HW 7

Max Horowitz-Gelb

3/3/17

Q1

 $\mathbf{Q2}$

First without loss of generality we may assume the starting position is at time 1 since otherwise we could simply rename all the states by rotating the clock until the starting position was 1. Also note that all states communicate with state 1 since there is at most a shortest path of length 6 from any state to 1 with a probability of 0.5^6 of occurring. Then using this, we may apply theorem 1.28 and say that if g(x) is the expected number of transitions required to first get to state 1, then g(1) = 0 and for $x \neq 1$

$$g(x) = 1 + \sum_{y} p(x, y)g(y) = 1 + \sum_{y} r(x, y)g(y)$$

where r is p restricted to $\{2..12\}$. Then we can solve

$$g[2..12] = (I - r)^{-1}[1, ...1]^T$$

g turns out to be,

$$[0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11]^T$$

Then since with probability 1 the starting state will transition to 2 or 12, then the expected the expected number of steps it will take X_n to return to the starting position is

$$1 + 0.5 * g(2) + 0.5 * g(12) = 1 + 0.5 * 11 + 0.5 * 11 = 12$$