Homework: Sec. 3B # 17, Sec. 3C # 2

Sam Fleischer

Due: Thurs. Feb. 19, 2015

Sec. 3B

#17

Suppose V and W are both finite-dimensional. Prove that there exists an injective linear map from V to W if and only if $dim(V) \leq dim(W)$.

Suppose $T \in \mathcal{L}(V, W)$ such that T is injective. Since T(0) = 0 and T is injective, $\operatorname{null}(T) = \{0\}$. Thus $\dim(\operatorname{null}(T)) = 0$. Thus,

$$\dim(\operatorname{range}(V)) = \dim(V) - \dim(\operatorname{null}(T))$$

$$\implies \dim(\operatorname{range}(V)) = \dim(V) - 0$$

$$\implies \dim(\operatorname{range}(V)) = \dim(V)$$

Since $\operatorname{range}(V) \subset W$, $\dim(\operatorname{range}(V)) \leq \dim(W)$. Thus $\dim(V) \leq \dim(W)$.

Now suppose $m = \dim(V) \leq \dim(W) = n$. Then let (v_1, \ldots, v_m) be a basis for V and let (w_1, \ldots, w_n) be a basis for W. Define $T : V \to W$ by $T(v_i) = w_i$ for $i \in \{1, \ldots, m\}$. Note this is a valid map since $m \leq n$ (so $w_i \in W$ for $i \in \{1, \ldots, m\}$). Also, this is a linear map because every linear map is uniquely defined by where it sends basis vectors. Thus $T \in \mathcal{L}(V, W)$. Now suppose $a, b \in V$ and T(a) = T(b). Then $\exists ! a_1, \ldots, a_m, b_1, \ldots, b_m \in \mathbb{F}$ such that $a = a_1v_1 + \cdots + a_mv_m$ and $b = b_1v_1 + \cdots + b_mv_m$. Then by the additivity and homogeneity of $b = b_1v_1 + \cdots + b_mv_m$ and $b = b_1v_1 + \cdots + b_mv_m$ a

Thus for finite dimensional vector spaces V and W, $\exists T \in \mathcal{L}(V, W)$ such that T is injective $\iff \dim(V) \leq \dim(W)$. \square

Sec. 3C

#2

Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined by Dp = p'. Find a basis of $\mathcal{P}_3(\mathbb{R})$ and a basis of $\mathcal{P}_2(\mathbb{R})$ such that the matrix of D with respect to these bases is

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)$$

Consider the list of vectors in $\mathcal{P}_3(\mathbb{R})$, $\mathcal{X}=(x^3,x^2,x,1)$, and let $p=p_3x^3+p_2x^2+p_1x+p_0\in\mathcal{P}_3(\mathbb{R})$. Then let $a_i=p_i$ for $i\in\{0,1,2,3\}$. Then $a_3(x^3)+a_2(x^2)+a_1(x)+a_0(1)=p$, and thus \mathcal{X} spans $\mathcal{P}_3(\mathbb{R})$. Then suppose $a_3x^3+a_2x^2+a_1x+a_0=0=0x^3+0x^2+0x+0$. This implies $a_3=a_2=a_1=a_0=0$, and thus \mathcal{X} is linearly independent and a basis of $\mathcal{P}_3(\mathbb{R})$. Consider the list of vectors in $\mathcal{P}_2(\mathbb{R})$, $\mathcal{Y}=(3x^2,2x,1)$, and let $q=q_2x^2+q_1x+q_0\in\mathcal{P}_2(\mathbb{R})$. Then let $b_2=\frac{1}{3}q_2$, $b_1=\frac{1}{2}q_1$, and $b_0=q_0$. Then $b_2(3x^2)+b_1(2x)+b_0(1)=q$, and thus \mathcal{Y} spans $\mathcal{P}_2(\mathbb{R})$. Then suppose $b_2(3x^2)+b_1(2x)+b_0(1)=0=0x^2+0x+0$. This implies $3b_2=2b_1=b_0=0$, which implies $b_2=b_1=b_0=0$. Thus \mathcal{Y} is linearly independent and a basis of $\mathcal{P}_2(\mathbb{R})$. Then,

$$D(x_3) = 3x^2 = 1(3x^2) + 0(2x) + 0(1)$$

$$D(x_2) = 2x = 0(3x^2) + 1(2x) + 0(1)$$

$$D(x) = 1 = 0(3x^2) + 0(2x) + 1(1)$$

$$D(1) = 0 = 0(3x^2) + 0(2x) + 0(1)$$

Thus,

$$\mathcal{M}(D, \mathcal{X}, \mathcal{Y}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$