

Data Structures

Ch6

2022年10月31日

学而不厭 誨 人不倦

Chapter 6 图

- ☞ 6.1 引言
- ☞ 6.2 图的逻辑结构
- ☞ 6.3 图的存储结构及实现
- ☞ 6.4 最小生成树
- ☞ 6.5 最短路径
- ☞ 6.6 有向无环图及其应用
- ☞ 6.7 扩展与提高
- ☞ 6.8 应用实例

冬

欧拉1707年出生在瑞士,19岁开始发表论文,直到76岁。几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线、多面体的欧拉定理、立体解析几何的欧拉变换公式、四次方程的欧拉解法到数论中的欧拉函数、微分方程的欧拉方程、数论的欧拉常数、变分学的欧拉方程、复变函数的欧拉公式等等。欧拉对哥尼斯堡七桥问题的提出和解答开创了图论的研究。

冬

图是一种较线性表和树更为复杂的数据结构。

线性表: 线性结构(前驱、后继)

树: 层次结构(父子)

图: 任意两个数据元素之间都可能相关(邻接)

农夫过河问题

【**问题**】农夫过河问题。一个农夫带着一只狼、一只羊和一筐菜,想从河一边 (左岸)乘船到另一边(右岸),由于船太小,农夫每次只能带一样东西过河, 但是如果没有农夫看管,则狼会吃羊,羊会吃菜。其给出过河方案。

【想法——数据模型】用 0 表示在河的左岸,用 1 表示在河的右岸,将每一个可能的状态抽象为一个顶点,边表示状态转移发生的条件。

教学计划编排

【问题】已知计算机专业的核心课程如下表所示,编制合适的教学计划。

【想法—数据模型】用顶点表示课程,如果从顶点 c_i 到 c_j 之间存在边 $< c_i$, $c_j >$,则表示课程 c_i 是课程 c_i 的先修课。

课程编号	课程名称	先修课程
c_1	程序设计基础	无
c_2	电子技术基础	无
c_3	离散数学	c_1
C_4	数据结构	c_1
C_5	计算机原理	c_1 c_2
C_6	操作系统	$c_3 \ c_4 \ c_5$
c_7	计算机网络	$c_4 \ c_5 \ c_6$
c_8	数据库原理及应用	c_4 c_5

6-2-1 图的定义与基本术语

1. 图的定义

图 G 是由两个集合:顶点集 V(G) 和边集 E(G) 组成的 , 记作G=(V(G) , E(G))。

通常表示为:

$$G=(V, E)$$

V是顶点的有穷非空集合

E是两个顶点之间的关系,即边的有穷集合

2. 图的分类

无向图: 边是顶点的无序对,即边没有方向性。

无向边:表示为 (v_i, v_j) ,顶点 v_i 和 v_j 之间的边没有方向

$$V = \{ v_1, v_2, v_3, v_4, v_5 \}$$

$$E = \{ (v_1, v_2), (v_1, v_4), (v_2, v_3), (v_2, v_5), (v_3, v_4), (v_3, v_5) \}$$

 (v_1, v_2) 表示顶点 v_1 和 v_2 之间的边

$$(v_1, v_2) = (v_2, v_1)$$

2. 图的分类

有向图: 其边是顶点的有序对,即边有方向性。

有向边(弧):表示为 $\langle v_i, v_j \rangle$,从 v_i 到 v_j 的边有方向

有向图:图中任意两个顶点之间的边都是有向边

$$V = \{ v_1, v_2, v_3, v_4 \}$$

$$E = \{ \langle v_1, v_2 \rangle, \langle v_1, v_3 \rangle, \langle v_3, v_4 \rangle, \langle v_4, v_1 \rangle \}$$

通常有向图的边称为弧 , $\langle v_1, v_2 \rangle$ 表示顶点 v_1 到 v_2 的弧。

称 v_1 为弧尾,称 v_2 为弧头。

$$< v_1, v_2 > \neq < v_2, v_1 >$$

6-2-1 图的定义与基本术语

2. 图的分类

图 (边上是否带权)

非带权图带权图

★ 权:对边赋予的有意义的数值量

带权图(网图):边上带权的图

/ 树结构中, 权通常赋予在结点

带权的无向图称为**无向网**。带权的有向图称为**有向网**。

2. 图的分类

稠密图:边数很多的图

图的定义与基本术语

3. 图的逻辑关系

邻接、依附:无向图中,对于任意两个顶点 v_i 和顶点 v_i , 若存在边 (v_i, v_i) , 则称顶点 v_i 和顶点 v_i 互为邻接 点,同时称边 (v_i, v_j) 依附于顶点 v_i 和顶点 v_i

 v_0 的邻接点: $v_1 \setminus v_4$

 v_2 的邻接点: v_1 、 v_3

 v_i , 若存在弧 $\langle v_i, v_i \rangle$, 则称顶点 v_i 邻接到 v_i , 顶点 v_i 邻接自 v_i ,同时称弧 $< v_i$, $v_i >$ 依附于顶点 v_i 和顶点 v_i

 v_0 的邻接点: $v_1 \setminus v_4$

 v_2 的邻接点: v_0

6-2-1 图的定义与基本术语

3. 图的逻辑关系

线性结构中,数据元素之间具有线性关系,逻辑关系表现为前驱-后继;

树结构中,结点之间具有层次关系,逻辑关系表现为双亲-孩子

图结构中, <u>任意两个顶点之间都可能有关系</u>,逻辑关系表现为<mark>邻接</mark>

6-2-1 图的定义与基本术语

4. 图的基本术语

完全图

无向完全图:无向图中,任意两个顶点之间都存在边

n 个顶点的无向完全图有多少条边? \longrightarrow $n \times (n-1)/2$

有向完全图:有向图中,任意两个顶点之间都存在方 向相反的两条弧

n 个顶点的有向完全图有多少条弧? \longrightarrow $n \times (n-1)$

度、入度和出度

TD
$$(v_0) = 2$$
, TD $(v_3) = 3$

ID
$$(v_0) = 1$$
, OD $(v_0) = 2$,

度、入度和出度

在具有 n 个顶点、e 条边的无向图中,各顶点的度之 和与边数之和有什么关系?

$$\sum_{i=0}^{n-1} TD(v_i) = 2e$$

在具有 n 个顶点、e 条边的有向图中,各顶点的入度 之和与各顶点的出度之和有什么关系?与边数之和有 什么关系?

$$\sum_{i=0}^{n-1} ID(v_i) = \sum_{i=0}^{n-1} OD(v_i) = e$$

路径、回路

路径:在无向图中,顶点 v_p 和顶点 v_q 之间的路径是一个顶点序列 $(v_p=v_{i0},v_{i1},...,v_{im}=v_q)$,其中 $(v_{ij-1},v_{ij})\in E(1\leq j\leq m)$

顶点 v_0 和顶点 v_4 之间的路径:

 $v_0 v_4$, $v_0 v_1 v_3 v_4$, $v_0 v_1 v_2 v_3 v_4$,

回路(环):第一个顶点和最后一个顶点相同的路径

从顶点 v_0 到顶点 v_4 的路径: v_0v_4 、 $v_0v_1v_4$

6-2-1 图的定义与基本术语

4. 图的基本术语

路径、回路

★ 简单路径:序列中顶点不重复出现的路径

★ 简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。

不致混淆的情况下,路径和回路都是简单的

6-2-1 图的定义与基本术语

4. 图的基本术语

路径、回路

路径长度:非带权图——路径上边的个数

路径长度:带权图——路径上边的权值之和

顶点 v_0 和顶点 v_4 之间的路径长度:

 $v_0 v_4 : 1$ $v_0 v_4 : 5$

 $v_0 v_1 v_3 v_4 : 3$ $v_0 v_1 v_3 v_4 : 17$

 $v_0 v_1 v_2 v_3 v_4 : 4$ $v_0 v_1 v_2 v_3 v_4 : 19$

图的定义与基本术语 6-2-1

4. 图的基本术语

子图

子图:若图G=(V,E), G'=(V',E'), 如果 $V'\subseteq V$ 且 $E'\subseteq E$,则称图G'是G的子图

连通图

- ★ 连通图:在无向图中,如果任意两个顶点都是连通的,则称该无向图是连通图
- 对于非连通图,实际处理中会有什么问题?
 - 从某顶点出发进行遍历,有一些顶点访问不到。

图的定义与基本术语 6-2-1

4. 图的基本术语

连通分量

连通分量:非连通图的极大连通子图

连通分量是对无向图的一种划分

强连通图、强连通分量

- ★ 强连通图:在有向图中,如果任意两个顶点都是强连通的,则称该有向图是强连通图
- ★ 强连通分量:非强连通图的极大连通子图

6-2-2 图的抽象数据类型定义

1. 图的ADT定义

图是一种与具体应用密切相关的数据结构,基本操作有很大差别

ADT Graph

DataModel

顶点的有穷非空集合和顶点之间边的集合

Operation

CreatGraph: 图的建立

DestroyGraph: 图的销毁

DFTraverse: 深度优先遍历图

BFTraverse: 广度优先遍历图

简单起见,只讨论图的遍历

endADT

6-2-2 图的抽象数据类型定义

2. 图的遍历

★ 图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点 仅被访问一次

抽象操作,可以是对顶点的各种处理,这里简化为输出顶点的数据

6-2-2 图的抽象数据类型定义

2. 图的遍历

★ 图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点 仅被访问一次

在图中,如何选取遍历的起始顶点?

 a_1 a_2 a_2 a_1 a_2 a_2 a_3 a_4 a_5 a_6 a_6

解决方案:将图中的顶点按<mark>任意</mark>顺序排列起来,从编号最小的顶点开始

6-2-2 图的抽象数据类型定义

2. 图的遍历

★ 图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点

仅被访问一次

以某顶点出发能访问其他所有顶点吗?

解决方案:多次调用图遍历算法

下面仅讨论从某顶点出发遍历图的算法

6-2-2 图的抽象数据类型定义

2. 图的遍历

★ 图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点 仅被访问一次

如何避免遍历不会因回路而陷入死循环?

解决方案:附设访问标志数组visited[n]

6-2-2 图的抽象数据类型定义

2. 图的遍历

★ 图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点

仅被访问一次

第 采用什么次序依次访问图中所有顶点?

线性序: $a_1 a_2 \dots a_n$ 前序:ABDCEF

中序: DBAECF

后序: DBEFCA

解决方案:深度优先遍历和广度优先遍历

6-2-3 图的遍历操作

1. 图的深度优先遍历

图可分为三部分:

基结点

第一个邻接结点导出的子图

其它邻接顶点导出的子图

深度优先搜索类似于树的先序遍历

1. 图的深度优先遍历

算法描述:

- 1). 从图中某个顶点 ∨ 出发,访问此顶点;
- 2). 然后依次从 ▼ 的未被访问的邻接点出发进行深度优先遍历;
- 3). 直至图中所有和 ▼ 有路径相通的顶点都被访问到。
- 4). 若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点做起始点,重复上述过程,直至图中所有顶点都被访问到。

深度优先遍历是一个递归的过程

1. 图的深度优先遍历

》用伪代码描述深度优先遍历的操作定义

算法: DFTraverse

输入:顶点的编号 v

输出:无

- 1. 访问顶点 v ; 修改标志visited[v] = 1;
- 2. w =顶点 v 的第一个邻接点;
- 3. while (w 存在)
 - 3.1 if (w 未被访问) 从顶点 w 出发递归执行该算法;
 - 3.2 w = 顶点 v 的下一个邻接点:

/ 运行实例——深入理解操作过程

深度优先遍历序列: v_0 v_1 v_4

/ 运行实例——深入理解操作过程

深度优先遍历序列: v_0 v_1 v_4 v_2 v_3

/ 运行实例——深入理解操作过程

深度优先遍历序列: v_0 v_1 v_4 v_2 v_3 v_5

深度优先搜索顺序: V₁ V₂ V₄ V₈ V₅ V₃ V₆ V₇

栈实现深度优先搜索

深度优先搜索顺序:

 V_1 V_2 V_4 V_8 V_5 V_3 V_6 V_7

广度优先搜索类似于树的层次遍历

把图人为的分层, 按层遍历。

> 只有父辈结点被 访问后才会访问 子孙结点!

广度优先搜索顺序:

 $V_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8$

从顶点v出发进行广度优先遍历的基本思想是:

- 1. 从图中某个顶点 v 出发,访问此顶点;
- 2. 然后依次访问 v 的各个未曾访问的邻接点;
- 3. 然后依次从这些邻接点出发再依次访问它们的邻接点;
- 4. 直至图中所有和 v 有路径相通的顶点都被访问到。
- 5. 若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点做起始 点,重复上述过程,直至图中所有顶点都被访问到。

"先被访问顶点的邻接点" 先于 "后被访问顶点的邻接点"

▲ 运行实例——深入理解操作过程

 v_0 v_1 v_2

广度优先遍历序列: v_0 v_1 v_2

6.2 图的逻辑结构

6-2-3 图的遍历操作

2. 图的广度优先遍历

⚠ 运行实例——深入理解操作过程

 v_1 v_2 v_4 v_3

广度优先遍历序列: v_0 v_1 v_2 v_4 v_3

6.2 图的逻辑结构

6-2-3 图的遍历操作

2. 图的广度优先遍历

/ 运行实例——深入理解操作过程

 v_4 v_3

广度优先遍历序列: v_0 v_1 v_2 v_4 v_3

/ 用伪代码描述广度优先遍历的操作定义

算法:BFTraverse

输入:顶点的编号 v

输出:无

- 1. 队列 Q 初始化;
- 2. 访问顶点 v; 修改标志visited [v] = 1; 顶点 v 入队列 Q;
- 3. while (队列 Q 非空)
 - 3.1 v = 队列 Q 的队头元素出队;
 - 3.2 w = 顶点 v 的第一个邻接点:
 - 3.3 while (w 存在)
 - 3.3.1 如果 w 未被访问,则 访问顶点 w; 修改标志visited[w] = 1; 顶点 w 入队列 Q;
 - 3.3.2 w = 顶点 v 的下一个邻接点;

广度优先搜索顺序: V₁ V₂ V₃ V₄ V₅ V₆ V₇ V₈

小结

- 1. 掌握图的定义和基本术语
- 2. 理解图的抽象数据类型定义
- 3. 掌握图的深度/广度优先遍历方法

作业

1.有向图G如下图所示,请从顶点A出发开始搜索,分别写出一个深度优先搜索遍历序列和一个广度优先搜索遍历序列。

Thank You !

