PROGRAMACION LINEAL CONTINUA NO TIENE SOLUCION BASICA POSIBLE

Max
$$Z = 3X_1 + 2X_2$$

Sujeto a:

$$2X_1 + 1X_2 \le 2$$

 $3X_1 + 4X_2 \ge 12$

$$X_1, X_2 >= 0$$

a) Formular el problema en forma normal de máximo.

$$Max Z = 3X_1 + 2X_2 + 0X_3 + 0X_4$$

Sujeto a:

$$2X_1 + 1X_2 + X_3 = 2$$

 $3X_1 + 4X_2 - X_4 = 12$

$$X_1, X_2, X_3, X_4 >= 0$$

b) Introducir variables artificiales en la función objetivo y en las restricciones

$$Max W = 3X_1 + 2X_2 + 0X_3 + 0X_4 - MU_1$$

Sujeto a:

$$2X_1 + 1X_2 + X_3 = 2$$

 $3X_1 + 4X_2 - X_4 + U_1 = 12$

$$X_1$$
, X_2 , X_3 , X_4 , $U_1 >= 0$

c) Seleccionar una base posible inicial:

$$\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ ; por cuanto, } \overline{\overline{X}}^B = \begin{bmatrix} \overline{\overline{X}}_3 \\ \overline{\overline{U}}_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 12 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

d) Calcular la matriz: Y, Z^R , $C^R - Z^R$, $\overline{\overline{Z}}^B$, $\overline{\overline{Z}}$

$$Y = B^{-1}R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 3 & 4 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 4 & -1 \end{bmatrix}$$

$$Z^{R} = C^{B}Y = \begin{bmatrix} 0 & -M \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 3 & 4 & -1 \end{bmatrix} = \begin{bmatrix} -3M & -4M & M \end{bmatrix}$$

$$C^{R} - Z^{R} = \begin{bmatrix} 3 & 2 & 0 \end{bmatrix} - \begin{bmatrix} -3M & -4M & M \end{bmatrix} = \begin{bmatrix} 3+3M & 2+4M & -M \end{bmatrix}$$
$$\overline{\overline{X}}^{B} = \begin{bmatrix} \overline{\overline{X}}_{3} \\ \overline{\overline{U}}_{1} \end{bmatrix} = \begin{bmatrix} 2 \\ 12 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\overline{\overline{Z}} = C^B \overline{\overline{X}}^B = \begin{bmatrix} 0 & -M \end{bmatrix} \begin{bmatrix} 2 \\ 12 \end{bmatrix} = -12M$$

e) Disponer en un tablero simplex

	X_1	X_2	X_3	X_4	${\pmb U}_1$	
$-\overline{\overline{Z}} = -12M$	3+3M	2+4M	0	-M	0	θ
$\overline{\overline{\overline{X}}}_3 = 2$	2	1	1	0	0	2
$\overline{\overline{\overline{U}}}_1 = 12$	3	4	0	-1	1	4

1º. ITERACION:

Cálculos Auxiliares:

Fila del Pivote:

Fila Cero:

Fila Dos:

	X_1	X_2	X_3	X_4	${\pmb U}_1$	
$-\overline{\overline{Z}} = -4 + 4M$	-1-5M	0	-2-4M	-M	0	θ
$\overline{\overline{X}}_2 = 2$	2	1	1	0	0	
$\overline{\overline{U}}_1 = 4$	-5	0	-4	-1	1	

Solución:

$$\overline{\overline{X}}^{B} = \begin{bmatrix} \overline{\overline{X}}_{2} \\ \overline{\overline{U}}_{1} \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \qquad \qquad \overline{\overline{X}}^{R} = \begin{bmatrix} \overline{\overline{X}}_{1} \\ \overline{\overline{X}}_{3} \\ \overline{\overline{X}}_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Siendo la variable artificial variable básica en el óptimo ¡No existe una base posible inicial!