

Evaluation and Experimentation

- Evaluation Metrics
- Cross-Validation
- Significance Tests

Evaluation

- Predictive analysis: training a model to make predictions on previously unseen data
- Evaluation: using previously unseen <u>labeled</u> data to estimate the quality of a model's predictions on new data
- Evaluation Metric: a measure that summarizes the quality of a model's predictions

Predictive Analysis

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

- There are many different metrics
- Different metrics make different assumptions about what end users care about
- Choosing the most appropriate metric is important!

(1) accuracy

Accuracy: percentage of correct predictions

true

	pos	neg
pos	а	b
neg	С	d

$$\mathcal{A} = \frac{(a+d)}{(a+b+c+d)}$$

Evaluation Metrics (1) accuracy

Accuracy: percentage of correct predictions

true

	pos	neut.	neg
pos	а	b	С
neut.	d	е	f
neg	g	h	i

$$\mathcal{A} = \frac{(a+e+i)}{(a+b+c+d+e+f+g+h+i)}$$

Evaluation Metrics (1) accuracy

What assumption(s) does accuracy make?

true

	pos	neut.	neg
pos	а	b	С
neut.	d	е	f
neg	g	h	i

$$\mathcal{A} = \frac{(a+e+i)}{(a+b+c+d+e+f+g+h+i)}$$

Content recommendation: relevant vs. non-relevant

Email spam filtering: spam vs. ham

0 !	Ø From	Subject Date Received	Categories
▼ SUNDA	ΑΥ		
M	audio@DesktopTrainingOnline.com	Adobe Acrobat Pro: Instructor-Led Training t Sun 9/30/12 5:19 PM	Junk
▼ THURS	DAY		
\bowtie $\$	ei-sci@ei-sci.org	SCI-EI期刊检索、收录 (ICIEEE 2013) 邀请函 Thu 9/27/12 2:50 AM	Junk
₩ WEDNI	ESDAY		
\bowtie	The New York Times	Act now to receive FREE digital access PLUS 5 Wed 9/26/12 3:49 PM	Junk
\bowtie	Citrix Systems	Give people the freedom to work anyplace Wed 9/26/12 1:20 PM	Junk
▼ LAST \	VEEK		
\bowtie	audio@DesktopTrainingOnline.com	Excel 2007/2010 Formatting & Customizing Mon 9/24/12 8:24 PM	Junk
\searrow	Vonage	Last Chance: Unlimited calls with Vonage Basi Mon 9/24/12 2:56 PM	Junk
\searrow	conference EDM	World's Tallest Tower in Tokyo - Join 2013 E Thu 9/20/12 10:48 PM	Junk
▼ 2 WEE	KS AGO		
\bowtie	Jim Davidson & Strategic Investment	Washington Insider Comes out of the Shadow Tue 9/18/12 12:02 PM	Junk
\bowtie	audio@supertrainme.com	Student Record Retention: Secure Data, Maint Tue 9/18/12 6:56 AM	Junk
\searrow	audio@DesktopTrainingOnline.com	Mastering Excel 2007/2010 Charts: Tips & Tri Thu 9/13/12 8:31 PM	Junk
▼ 3 WEE	KS AGO		
\bowtie	Vonage	Get Unlimited Calling with Vonage Basic Talk Fri 9/7/12 2:41 PM	Junk
\bowtie	prof_qian	[EI SCOPUS ISI Journal, Beijing, China]Internati Fri 9/7/12 1:32 PM	Junk

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Product reviews: positive vs. negative vs. neutral

Text-based Forecasting: buy vs. sell vs. hold

Health monitoring system: alarm vs. no alarm

Evaluation Metrics (1) accuracy

- What assumption(s) does accuracy make?
- It assumes that all prediction errors are equally bad
- Oftentimes, we care more about one class than the others
- If so, the class of interest is usually the minority class
- We are looking for the "needles in the haystack"
- In this case, accuracy is not a good evaluation metric
- There are metrics that provide more insight into perclass performance

(2) precision and (3) recall

- For a given class C:
 - precision: the percentage of positive <u>predictions</u>
 that are truly positive
 - recall: the percentage of <u>true</u> positives that are correctly predicted positive

(2) precision and (3) recall

test set

(2) precision and (3) recall

(2) precision and (3) recall

(2) precision and (3) recall

 Precision (the percentage of positive predictions that are truly positive) = ?

(2) precision and (3) recall

 Recall (the percentage of <u>true</u> positives that are correctly predicted positive) = ?

(2) precision and (3) recall

(2) precision

true

predicted

	pos	neut.	neg
pos	а	b	С
neut.	d	е	f
neg	g	h	i

$$\mathcal{P}_{\text{positive}} = \frac{a}{a+b+a}$$

For a positive class, the percentage of correct predictions that are truly positive

(3) recall

true

predicted

	pos	neut.	neg
pos	а	b	С
neut.	d	е	f
neg	g	h	i

$$\mathcal{R}_{\text{positive}} = \frac{a}{a+d+g}$$

For a positive class, the percentage of <u>true</u> positives that are correctly predicted positive

prevision vs. recall

true

	pos	neut.	neg
pos	а	b	С
neut.	d	е	f
neg		h	i

(4) f-measure

 F-measure: the harmonic (not arithmetic) mean of precision and recall

$$\mathcal{F} = \frac{2 \times \mathcal{P} \times \mathcal{R}}{\mathcal{P} + \mathcal{R}}$$

(4) f-measure

 F-measure: the harmonic (not arithmetic) mean of precision and recall

(4) f-measure

F-measure: the harmonic (not arithmetic) mean of precision and recall

(5) precision-recall curves

 F-measure: assumes that the "end users" care equally about precision and recall

- Most machine-learning algorithms provide a prediction confidence value
- The prediction confidence value can be used as a threshold in order to trade-off precision and recall

(5) precision-recall curves

- Remember Naive Bayes classification?
- Given instance D, predict positive (POS) if:

$$P(POS|D) \ge P(NEG|D)$$

Otherwise, predict negative (NEG)

Evaluation Metrics (5) precision-recall curves

- Remember Naive Bayes classification?
- Given instance D, predict positive (POS) if:

$$P(POS|D) \ge P(NEG|D)$$

Otherwise, predict negative (NEG)

this value can be used as a threshold for classification into the POS class

rank (K)	ranking	P(POS D)	P@K	R@K
1		0.99	1.00	0.10
2		0.87	0.50	0.10
3		0.84	0.67	0.20
4		0.83	0.75	0.30
5		0.77	0.80	0.40
6		0.63	0.83	0.50
7		0.58	0.86	0.60
8		0.57	0.75	0.60
9		0.56	0.78	0.70
10		0.34	0.70	0.70
11		0.33	0.73	0.80
12		0.25	0.67	0.80
13		0.21	0.62	0.80
14		0.15	0.64	0.90
15		0.14	0.60	0.90
16		0.14	0.56	0.90
17		0.12	0.53	0.90
18		0.08	0.50	0.90
19		0.01	0.47	0.90
20		0.01	0.50	1.00

PR curves for 'relevant'

PR curves for 'alarm'

(5) precision-recall curves

- PR curves show different precision-recall operating points (or trade-off points)
- How many false positives will I have to sift through for a desired level of recall?
- How many true positives will I have to miss for a desired level of precision?

- In some situations we may want to summarize the quality of a PR curve using a single number
 - when comparing across lots of different models or feature representations
- Average precision: <u>proportional</u> (not equal) to the area under the PR curve

- Average Precision
 - 1. Sort instances by descending order of confidence value
 - 2. Go down the ranking, and measure P@K where recall increases
 - 3. Take the average of all P@K values where recall increases

rank (K)	ranking	P(POS D)	P@K	R@K
1		0.99	1.00	0.10
2		0.87	1.00	0.20
3		0.84	1.00	0.30
4		0.83	1.00	0.40
5		0.77	1.00	0.50
6		0.63	1.00	0.60
7		0.58	1.00	0.70
8		0.57	1.00	0.80
9		0.56	1.00	0.90
10		0.34	1.00	1.00
11		0.33		
12		0.25		
13		0.21		
14		0.15		
15		0.14		
16		0.14		
17		0.12		
18		0.08		
19		0.01		
20		0.01		
		Average Precision	1.00	

rank (K)	ranking	P(POS D)	P@K	R@K
1		0.99	1.00	0.10
2		0.87	1.00	0.20
3		0.84	1.00	0.30
4		0.83	1.00	0.40
5		0.77	1.00	0.50
6		0.63	1.00	0.60
7		0.58	1.00	0.70
8		0.57	1.00	0.80
9		0.56	1.00	0.90
10		0.34		
11		0.33	0.91	1.00
12		0.25		
13		0.21		
14		0.15		
15		0.14		
16		0.14		
17		0.12		
18		0.08		
19		0.01		
20		0.01		
		Average Precision	0.99	

(14)	1 *	D/DOC/D)	D.O.14	D 014
rank (K)	ranking	P(POS D)	P@K	R@K
1		0.99	1.00	0.10
2		0.87	1.00	0.20
3		0.84	1.00	0.30
4		0.83	1.00	0.40
5		0.77	1.00	0.50
6		0.63	1.00	0.60
7		0.58	1.00	0.70
8		0.57	1.00	0.80
9		0.56	1.00	0.90
10		0.34	1.00	1.00
11		0.33		
12		0.25		
13		0.21		
14		0.15		
15		0.14		
16		0.14		
17		0.12		
18		0.08		
19		0.01		
20		0.01		
		Average Precision	1.00	

rank (K)	ranking	P(POS D)	P@K	R@K
1		0.99	1.00	0.10
2		0.87		
3		0.84	0.67	0.20
4		0.83	0.75	0.30
5		0.77	0.80	0.40
6		0.63	0.83	0.50
7		0.58	0.86	0.60
8		0.57	0.88	0.70
9		0.56	0.89	0.80
10		0.34	0.90	0.90
11		0.33	0.91	1.00
12		0.25		
13		0.21		
14		0.15		
15		0.14		
16		0.14		
17		0.12		
18		0.08		

- Average precision is proportional to the area under the PR curve
- It punishes high-confident mistakes more severely than low-confident mistakes

- Accuracy
- Precision
- Recall
- F-measure (or F1 measure)
- PR curves (not a metric, but rather a way to show different PR operating points)
- Average Precisions

Evaluating numeric prediction

- Same strategies: independent test set, cross-validation, significance tests, etc.
- Difference: error measures
- Actual target values: a₁ a₂ ...a_n
- Predicted target values: $p_1 p_2 ... p_n$
- Most popular measure: mean-squared error

$$\frac{(p_1-a_1)^2 + \cdots + (p_n-a_n)^2}{n}$$

Easy to manipulate mathematically

Other measures

The root mean-squared error :

$$\sqrt{\frac{(p_1-a_1)^2+\cdots+(p_n-a_n)^2}{n}}$$

 The mean absolute error is less sensitive to outliers than the mean-squared error:

$$\frac{|p_1-a_1|+\cdots+|p_n-a_n|}{n}$$

 Sometimes relative error values are more appropriate (e.g. 10% for an error of 50 when predicting 500)

Correlation coefficient

 Measures the statistical correlation between the predicted values and the actual values

$$\frac{S_{PA}}{\sqrt{S_P S_A}}, \text{ where } S_{PA} = \frac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n-1}, S_P = \frac{\sum_i (p_i - \overline{p})^2}{n-1},$$

$$S_A = \frac{\sum_i (a_i - \overline{a})^2}{n-1} \text{ (here, } \overline{a} \text{ is the mean value over the test data)}$$

- Scale independent, between –1 and +1
- Good performance leads to large values!

(slide courtesy of Witten et al., 2017)

Evaluation and Experimentation

- Evaluation Metrics
- Cross-Validation
- Significance Tests

N-fold cross-validation

- 1. divide the data into N sets of instances
- 2. use the union of N-1 sets to find the best parameter values
- 3. measure performance (using the best parameters) on the held-out set
- 4. do steps 2-3 N times
- 5. average performance across the N held-out sets

of NORTH CAROLINA
at CHAPEL HILL

• Split the data into N = 5 folds

12345

 For each fold, find the parameter value that maximizes performance on the union of N - 1 folds and test (using this parameter value) on the held-out fold.

 For each fold, find the parameter value that maximizes performance on the union of N - 1 folds and test (using this parameter value) on the held-out fold.

of NORTH CAROLINA
at CHAPEL HILL

 For each fold, find the parameter value that maximizes performance on the union of N - 1 folds and test (using this parameter value) on the held-out fold.

 For each fold, find the parameter value that maximizes performance on the union of N - 1 folds and test (using this parameter value) on the held-out fold.

 For each fold, find the parameter value that maximizes performance on the union of N - 1 folds and test (using this parameter value) on the held-out fold.

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

 Average the performance across held-out folds

1	F = 0.50
2	F = 0.60
3	F = 0.70
4	F = 0.60
5	F = 0.50

Average

F = 0.58

 Average the performance across held-out folds

Advantages and Disadvantages?

N-Fold Cross-Validation

- Advantage
 - multiple rounds of generalization performance.
- Disadvantage
 - ultimately, we'll tune parameters on the whole dataset and send our system into the world.
 - a model trained on 100% of the data should perform better than one trained on 80%.
 - thus, we may be underestimating the model's performance!

of NORTH CAROLINA
at CHAPEL HILL

 Split the data into N folds of 1 instance each

 For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.

 For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.

- For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.
- And so on ...
- Finally, average the performance for each heldout instance

- For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.
- And so on ...
- Finally, average the performance for each heldout instance

Advantages and Disadvantages?

Advantages

- multiple rounds of generalization performance.
- each training fold is as similar as possible to the one we will ultimately use to tune parameters before sending the system out into the world.

Disadvantage

- our estimate of generalization performance may be artificially high
- we are likely to try lots of different things and pick the one with the best "generalization" performance
- still indirectly over-training to the dataset (sigh...)

Evaluation and Experimentation

- Evaluation Metrics
- Cross-Validation
- Significance Tests

Comparing Systems

•	Train and test both
	systems using 10-fold
	cross validation

- Use the same folds for both systems
- Compare the difference in average performance across held-out folds

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Significance Tests motivation

- Why would it be risky to conclude that System B is better System A?
- Put differently, what is it that we're trying to achieve?

Significance Tests motivation

- In theory: that the average performance of System B is greater than the average performance of System A for all possible test sets.
- However, we don't have all test sets. We have a sample
- And, this sample may favor one system vs. the other!

Significance Tests definition

 A significance test is a statistical tool that allows us to determine whether a difference in performance reflects a true pattern or just random chance

Significance Tests ingredients

- Test statistic: a measure used to judge the two systems (e.g., the difference between their average F-measure)
- Null hypothesis: no "true" difference between the two systems
- P-value: take the value of the observed test statistic and compute the probability of observing a statistical summary (e.g., sample mean difference between two compared groups) that is large (or larger) <u>under the null hypothesis</u>

Significance Tests ingredients

- If the p-value is large, we cannot reject the null hypothesis
- That is, we cannot claim that one system is better than the other
- If the p-value is small (p<0.05), we can reject the null hypothesis
- That is, the observed test-statistic is not due to random chance

Comparing Systems

P-value: the probability
 of observing a difference
 equal to or greater than
 0.07 under the null
 hypothesis (i.e., the
 systems are actually
 equal).

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Fisher's Randomization Test procedure

- Inputs: counter = 0, N = 100,000
- Repeat N times:

Step 1: for each fold, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment counter

Output: counter / N

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Fisher's Randomization Test procedure

- Inputs: counter = 0, N = 100,000
- Repeat N times:

Step 1: for each query, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment counter

• Output: counter / N = (25,678/100,000) = 0.25678

- Under the null hypothesis, the probability of observing a value of the test statistic of 0.07 or greater is about 0.26.
- Because p > 0.05, we cannot confidently say that the value of the test statistic is <u>not</u> due to random chance.
- A difference between the average F-measure values of 0.07 is not significant

Fisher's Randomization Test procedure

- Inputs: counter = 0, N = 100,000
- Repeat N times:

Step 1: for each query, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment counter

• Output: counter / N = (25,678/100,00) = 0.25678

This is a one-tailed test (B > A). We can modify it to be a two-tailed test (|B| > A)

Bootstrap-Shift Test motivation

Our sample is a representative sample of all data

Bootstrap-Shift Test motivation

 If we sample (with replacement) from our sample, we can generate a new representative sample of all data

- **Inputs:** Array $T = \{\}$, N = 100,000
- Repeat N times:
- **Step 1:** sample 10 folds (with replacement) from our set of 10 folds (called a subsample)
- **Step 2:** compute test statistic associated with new sample and add to T
- Step 3: compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by <u>average</u> and put in T'
- Output: % of numbers in T' greater than or equal to the observed test statistic

- **Inputs:** Array $T = \{\}$, N = 100,000
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- Step 3: compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by <u>average</u> and put in T'
- Output: % of numbers in T greater than or equal to the observed test statistic

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Fold	System A	System B	sample
1	0.2	0.5	0
2	0.3	0.3	1
3	0.1	0.1	2
4	0.4	0.4	2
5	1	1	0
6	0.8	0.9	1
7	0.3	0.1	1
8	0.1	0.2	1
9	O	0.5	2
10	0.9	0.8	0

iteration = 1

Fold	System A	System I	В	
2	0.3	0.3		
3	0.1	0.1		
3	0.1	0.1		
4	0.4	0.4		
4	0.4	0.4		
6	0.8	0.9		
7	0.3	0.1		
8	0.1	0.2		
9	0	0.5		
9	0	0.5		
Average	0.25	0.35		$T = \{0.10\}$
	Difference iteration	0.1 on = 1		, (0.10)

sample	System B	System A	Fold
0	0.5	0.2	1
0	0.3	0.3	2
3	0.1	0.1	3
2	0.4	0.4	4
0	1	1	5
1	0.9	0.8	6
1	0.1	0.3	7
1	0.2	0.1	8
1	0.5	0	9
1	0.8	0.9	10

 $T = \{0.10\}$

iteration = 2

Fold	System A	System	В	
3	0.1	0.1		
3	0.1	0.1		
3	0.1	0.1		
4	0.4	0.4		
4	0.4	0.4		
6	0.8	0.9		
7	0.3	0.1		
8	0.1	0.2		
9	0	0.5		
10	0.9	0.8		
Average	0.32	0.36		$T = \{0.10,$
	Difference	0.04		0.04}
	iteratio	n = 2		

Fold	System A	System B	
1	0.2	0.5	
1	0.2	0.5	
4	0.4	0.4	
4	0.4	0.4	
4	0.4	0.4	
6	0.8	0.9	
7	0.3	0.1	
8	0.1	0.2	
8	0.1	0.2	
10	0.9	0.8	$T = \{0.10,$
Average	0.38	0.44	0.04,
	Difference	0.06	,
	iteration =	100,000	0.06}

- **Inputs:** Array T = {}, N = 100,000
- Repeat N times:
- **Step 1:** sample 10 folds (with replacement) from our set of 10 folds (called a subsample)
- **Step 2:** compute test statistic associated with new sample and add to T
- Step 3: compute <u>average</u> of numbers in T
- Step 4: reduce every number in T by <u>average</u> and put in T'
- Output: % of numbers in T' greater than or equal to the observed test statistic

• For the purpose of this example, let's assume N = 10.

Average = 0.12

- **Inputs:** Array T = {}, N = 100,000
- Repeat N times:
- **Step 1:** sample 10 folds (with replacement) from our set of 10 folds (called a subsample)
- **Step 2:** compute test statistic associated with new sample and add to T
- Step 3: compute average of numbers in T
- Step 4: reduce every number in T by <u>average</u>
- Output: % of numbers in T' greater than or equal to the observed test statistic

• Output: (3/10) = 0.30

```
T = \{0.10,
                                           T' = \{-0.02,
    0.04,
                                                -0.08,
    0.21,
                                                0.09,
    0.20,
                                                0.08,
    0.13,
                                                0.01,
    0.09,
                                                -0.03,
    0.22,
                                                0.10,
                Step 3
                                      Step 4
    0.07,
                                               -0.05,
                                                -0.09,
    0.03,
    0.11}
                                                -0.01}
```

Average = 0.12

• For the purpose of this example, let's assume N = 10.

$$T = \{0.10, & T' = \{-0.02, \\ 0.04, & -0.08, \\ 0.21, & 0.09, \\ 0.20, & two-tailed test. & 0.01, \\ 0.09, & -0.03, \\ 0.022, & 0.10, \\ 0.07, & Step 3 & Step 4 & -0.05, \\ 0.03, & -0.09, \\ 0.11\}$$

Average = 0.12

Significance Tests summary

- Significance tests help us determine whether the outcome of an experiment signals a "true" trend
- The null hypothesis is that the observed outcome is due to random chance (sample bias, error, etc.)
- There are many types of tests
- Parametric tests: assume a particular distribution for the test statistic under the null hypothesis
- Non-parametric tests: make no assumptions about the test statistic distribution under the null hypothesis
- The randomization and bootstrap-shift tests make no assumptions, are robust, and easy to understand

Any Questions?

Exploratory Analysis: Clustering

Next Class

