Chapitre 7 : Variables aléatoires discrètes (révisions)

1 Variables aléatoires discrètes

Définition 1 (Variable aléatoire réelle)

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

• On appelle **variable aléatoire réelle** sur (Ω, \mathcal{A}, P) toute application $X : \Omega \longrightarrow \mathbb{R}$ telle que, pour tout $x \in \mathbb{R}$

$$[X \leqslant x] \in \mathcal{A}$$

où $[X \le x]$ désigne l'ensemble $\{\omega \in \Omega \mid X(\omega) \le x\}$.

• Une **variable aléatoire discrète** est une variable aléatoire réelle X si $X(\Omega)$ peut s'écrire sous la forme $X(\Omega) = \{x_i, i \in I\}$ où I est une partie de \mathbb{N} (ou de \mathbb{Z}).

Remarque 1

- 1. Soient X une variable aléatoire réelle et I une partie de \mathbb{R} . On note $[X \in I]$ l'ensemble $\{\omega \in \Omega \mid X(\omega) \in I\}$. De même, pour $x \in R$, on note [X = x] l'ensemble $\{\omega \in \Omega \mid X(\omega) = x\}$.
- 2. On distingue deux types de variables aléatoires discrètes :
 - variable aléatoire discrète finie X lorsque $X(\Omega) = \{x_1, ..., x_n\}$ (où $n \in \mathbb{N}$),
 - variable aléatoire discrète infinie X lorsque $X(\Omega) = \{x_i, i \in I\}$ où I est une partie infinie de \mathbb{N} (ou de \mathbb{Z}).

Définition 2 (Fonction de répartition)

Soient (Ω, \mathcal{A}, P) un espace probabilisé et X une variable aléatoire réelle sur (Ω, \mathcal{A}, P) . On appelle **fonction de répartition** de X la fonction notée F_X définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = P([X \leq x]).$$

Proposition 1

Soit X une variable aléatoire réelle définie sur un espace probabilisé (Ω, \mathcal{A}, P) . Alors :

- 1. F_X est croissante,
- 2. F_X est continue à droite en tout point,
- 3. $\lim_{x \to -\infty} F_X(x) = 0 \text{ et } \lim_{x \to +\infty} F_X(x) = 1,$
- 4. Si $X(\Omega) \subset \mathbb{Z}$, $P(X = k) = F_X(k) F_X(k-1)$.

Définition 3 (Loi d'une variable aléatoire)

Soit X une variable aléatoire réelle définie sur un espace probabilisé (Ω, \mathcal{A}, P) .

On appelle **loi** de X la donnée de toutes les probabilités $P(X \in A)$ où A est une réunion au plus dénombrable d'intervalles de \mathbb{R} .

Proposition 2 (Caractérisation de la loi)

- 1. La fonction de répartition caractérise la loi : si X et Y sont deux variables aléatoires réelles définies sur un espace probabilisé elles ont la même loi si et seulement si $F_X = F_Y$.
- 2. La loi d'une variable aléatoire discrète X est caractérisée par la donnée des valeurs P(X = x) pour $x \in X(\Omega)$.

Test 1 (Voir solution.)

Une urne contient au départ une boule blanche et une boule noire. On effectue des tirages d'une boule avec remise

en rajoutant à chaque tirage une boule blanche supplémentaire. On note X la variable aléatoire correspondant au numéro premier tirage où apparaît une boule noire, si un tel tirage et existe, et valant 0 si à chaque tirage on obtient une boule blanche.

- 1. Pour tout $k \ge 1$, déterminer P(X = k).
- 2. Montrer que la série $\sum_{k \ge 1} P(X = k)$ converge et que sa somme vaut 1.
- 3. En déduire P(X = 0).

Test 2 (Voir solution.)

Soit X une variable aléatoire à valeurs dans \mathbb{N}^* telle que

$$\forall k \in \mathbb{N}^*, P(X = k) = a3^{-k}.$$

- 1. Déterminer a pour que l'on définisse bien une loi de probabilité.
- 2. X a-t-elle plus de chance de prendre des valeurs paires ou impaires?

Définition 4

Soit X une **variable aléatoire discrète** définie sur un espace probabilisé (Ω, \mathcal{A}, P) et soit g une fonction définie sur $X(\Omega)$. On note g(X) la composée $g \circ X$.

Proposition 3

Soit X une **variable aléatoire discrète** définie sur un espace probabilisé (Ω, \mathcal{A}, P) et soit g une fonction définie sur $X(\Omega)$. La variable aléatoire g(X) est discrète et sa loi est donnée par

- 1. $g(X)(\Omega) = \{g(x), x \in X(\Omega)\}$
- 2. pour tout $y \in g(X)(\Omega)$ on a

$$P(g(X) = y) = \sum_{x \in X(\Omega) \text{ tel que } g(x) = y} P(X = x).$$

2 Moments

2.1 Espérance

Définition 5 (Espérance)

Soit X une variable aléatoire discrète définie sur un espace probabilisé (Ω, \mathcal{A}, P) .

• Si X est discrète finie, on appelle **espérance** de X et on note E(X), le nombre défini par

$$\mathrm{E}(\mathrm{X}) = \sum_{x \in \mathrm{X}(\Omega} x \mathrm{P}(\mathrm{X} = x).$$

• Si X est discrète infinie, on dit que X **admet une espérance** si la série $\sum_{x \in X(\Omega)} x P(X = x)$ est absolument convergente. Dans ce cas, l'**espérance** de X, notée E(X) est la somme de cette série

$$E(X) = \sum_{x \in Y(O)} x P(X = x).$$

Remarque 2

- 1. Une variable aléatoire discrète finie possède donc toujours une espérance.
- 2. Une variable aléatoire discrète **infinie** ne possède pas nécessairement une espérance : l'hypothèse de convergence absolue est fondamentale.

Exemple 1

Dans le cas où $X(\Omega) = E(X) = \{x_i, i \in \mathbb{N}\}$, X possède une espérance si et seulement si la série $\sum_{k \ge 0} x_k P(X = x_k)$ est absolument convergente.

Test 3 (Voir solution.)

On considère les variables aléatoires X du test 2. Montrer que X possède une espérance et déterminer la.

Proposition 4

Soient X et Y deux variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) et admettant une espérance.

- 1. Linéarité: pour tout $(a, b) \in \mathbb{R}^2$, aX + bY possède une espérance et E(aX + bY) = aE(X) + bE(Y).
- 2. *positivité* : si $X \ge 0$ alors $E(X) \ge 0$.

Théorème 1 (Transfert)

Soit X une variable aléatoire discrète définie sur un espace probabilisé (Ω, \mathcal{A}, P) . Soit g une fonction définie sur $X(\Omega)$. Alors la variable aléatoire g(X) possède une espérance si et seulement si la série $\sum g(x)P(X=x)$ est absolument convergente. Dans ce cas,

$$E(g(X)) = \sum_{x \in X(\Omega)} g(x)P(X = x).$$

Remarque 3

Si X est **finie** alors g(X) possède toujours une espérance.

Test 4 (Voir solution.)

Soit X une variable aléatoire du test 2. Montrer que E(X(X-1)) existe et calculer la.

2.2 Moments

Définition 6 (Moments d'ordre *r*)

Soient $r \in \mathbb{N}$ et X une variable aléatoire discrète. On dit que X possède un **moment d'ordre** r si X^r possède une espérance. On note alors

$$m_r(X) = E(X^r).$$

Remarque 4

Si X est **finie** alors X possède des moments de tout ordre.

Définition 7 (Variance)

Soit X une variable aléatoire discrète. Sous réserve d'existence :

- la **variance** de X, notée V(X) est le réel $V(X) = E((X E(X))^2)$;
- l' écart-type de X, notée $\sigma(X)$ est le réel $\sigma(X) = \sqrt{V(X)}$.

Proposition 5 (Formule de Koenig-Huygens)

Une variable aléatoire discrète X possède une variance si et seulement si X admet un moment d'ordre 2. Dans ce cas

$$V(X) = E(X^2) - E(X)^2$$
.

Proposition 6

Soit X une variable aléatoire discrète possédant une variance. Alors

- 1. $V(X) \ge 0$
- 2. pour tout $(a, b) \in \mathbb{R}^2$, V(aX + b) existe et $V(aX + b) = a^2V(X)$.

3 Lois usuelles

3.1 Loi certaine

Loi certaine

• On dit qu'une variable aléatoire X suit la loi certaine si elle ne prend qu'une seule valeur $a \in \mathbb{R}$:

$$X(\Omega) = \{a\}$$
 et $P(X = a) = 1$.

• Si X suit une loi certaine avec $X(\Omega) = \{a\}$ alors

$$E(X) = a$$
 et $V(X) = 0$.

• Une variable aléatoire X suit une loi certaine si et seulement si V(X) = 0.

3.2 Loi de Bernoulli

Loi de Bernoulli

Soit *p* ∈]0,1[.

- On dit qu'une variable aléatoire X suit une loi de Bernoulli de paramètre p, et on note $X \hookrightarrow \mathcal{B}(p)$ si :
 - i) $X(\Omega) = \{0, 1\}$
 - ii) P(X = 1) = p et P(X = 0) = 1 p.
- Si $X \hookrightarrow \mathcal{B}(p)$ alors

$$E(X) = p$$
 et $V(X) = p(1-p)$.

Exemple 2 (Expérience de référence)

On considère une expérience aléatoire possédant deux issues. L'une de ces issues est nommée « succès » et se produit avec probabilité p; l'autre est nommée « échec » et se produit avec probabilité 1-p (une telle expérience est appelée une épreuve de Bernoulli).

La variable aléatoire X égale à 1 en cas de succès et à 0 en cas d'échec suit une loi $\mathcal{B}(p)$.

Exemple 3

On lance une pièce ayant probabilité p de tomber sur Pile et 1-p de tomber sur Face. On note X la variable aléatoire égale à 1 si on obtient Pile et à 0 si on obtient Face . Alors

- $X(\omega) = \{0, 1\}$
- P(X = 0) = 1 p et P(X = 1) = p.

 $Donc X \hookrightarrow \mathcal{B}(p)$

3.3 Loi binomiale

Loi binomiale

Soient $p \in]0,1[$ et $n \in \mathbb{N}^*$.

- On dit qu'une variable aléatoire X suit une loi de Binomiale de paramètres n et p, et on note X \hookrightarrow $\mathscr{B}(n,p)$ si :
 - i) $X(\Omega) = \{0, 1, ..., n\}$
 - ii) $\forall k \in \{0, 1, ..., n\}, P(X = k) = \binom{n}{k} p^k (1 p)^{n-k}.$
- Si $X \hookrightarrow \mathcal{B}(n, p)$ alors

$$E(X) = np$$
 et $V(X) = np(1-p)$.

Exemple 4 (Expérience de référence)

On considère une expérience aléatoire qui consiste à répéter n épreuves de Bernoulli indépendantes de paramètre p.

La variable aléatoire X égale au nombre de succès suit une loi $\mathcal{B}(n, p)$.

Exemple 5

On considère une pièce ayant probabilité p de tomber sur Pile et 1-p de tomber sur Face. On lance n fois consécutives cette pièce et on note X la variable aléatoire égale au nombre de Piles obtenues . Alors

- $\Omega = \{Pile, Face\}^n$,
- $X(\omega) = \{0, 1, ..., n\}$
- *pour tout* $k \in \{0, 1, ..., n\}$
 - i) $\binom{n}{k}$ issues réalisant [X = k] (cela correspond au nombres de façon de choisir la position des k Piles parmi les n lancers);
 - ii) la probabilité pour qu'une des issues ci-dessus arrive est $p^k(1-p)^{n-k}$;
 - iii) $donc P(X = k) = {n \choose k} p^k (1 p)^{n-k}$.

 $Donc X \hookrightarrow \mathscr{B}(n,p)$

3.4 Loi uniforme

Loi uniforme

Soit $n \in \mathbb{N}^*$.

- On dit qu'une variable aléatoire X suit une loi de uniforme sur [1, n], et on note $X \hookrightarrow \mathcal{U}([1, n])$ si :
 - i) $X(\Omega) = [1, n]$
 - ii) $\forall k \in [1, n], P(X = k) = \frac{1}{n}$.
- Si $X \hookrightarrow \mathcal{U}([1, n])$ alors

$$E(X) = \frac{n+1}{2}$$
 et $V(X) = \frac{n^2-1}{12}$.

Exemple 6 (Expérience de référence)

On considère une expérience aléatoire qui possède n issues différentes numérotées de 1 à n qui sont équiprobables.

La variable aléatoire X égale à i si l'issue i est obtenue suit une loi $\mathcal{U}(\llbracket 1, n \rrbracket)$.

Remarque 5

Soit $(a, b) \in (\mathbb{N}^*)^2$ avec a < b.

• On dit qu'une variable aléatoire X suit une loi de uniforme sur [a,b], et on note $X \hookrightarrow \mathcal{U}([a,b])$ si :

5

- $i) X(\Omega) = [a, b]$
- ii) $\forall k \in [a, b], P(X = k) = \frac{1}{h a + 1}$.
- $SiX \hookrightarrow \mathcal{U}(\llbracket a,b \rrbracket)$ alors

$$E(X) = \frac{a+b}{2}$$
 et $V(X) = \frac{(b-a)(b-a+2)}{12}$.

3.5 Loi géométrique

Loi géométrique

Soit $p \in]0,1[$.

- On dit qu'une variable aléatoire X suit une loi de géométrique de paramètre p, et on note X $\hookrightarrow \mathcal{G}(p)$ si :
 - i) $X(\Omega) = \mathbb{N}^*$
 - ii) $\forall k \in \mathbb{N}^*$, $P(X = k) = p(1 p)^{k-1}$.
- Si $X \hookrightarrow \mathcal{G}(p)$ alors

$$E(X) = \frac{1}{p}$$
 et $V(X) = \frac{1-p}{p^2}$.

Exemple 7 (Expérience de référence)

On considère une expérience aléatoire qui consiste en une succession infinie d'épreuves de Bernoulli indépendantes de même paramètre p.

La variable aléatoire X donnant le rang du premier succès obtenu suit une loi $\mathcal{G}(p)$.

Exemple 8

On considère une pièce ayant probabilité p de tomber sur Pile et 1-p de tomber sur Face. On lance la pièce une infinité de fois consécutives et note X la variable égale au rang de la première apparition d'un Pile. Alors

- $\Omega = \{Pile, Face\}^{\mathbb{N}^*}$,
- $X(\omega) = \mathbb{N}^*$
- i) Pour tout $k \in \mathbb{N}^*$ on a

$$[X = k] = F_1 \cap F_2 \cap \cdots \cap F_{k-1} \cap P_k$$

où F_i = « obtenir Face au i-ème lancer » et P_i = « obtenir Pile au i-ème lancer ».

ii) Par indépendance des lancers

$$P(X = k) = P(F_1 \cap F_2 \cap \dots \cap F_{k-1} \cap P_k)$$

$$= P(F_1) \cdot P(F_2) \cdot \dots \cdot P(F_{k-1}) \cdot P(P_k)$$

$$= (1 - p)^{k-1} p$$

 $Donc X \hookrightarrow \mathcal{G}(p)$

3.6 Loi de Poisson

Loi de Poisson

Soit $\lambda > 0$.

- On dit qu'une variable aléatoire X suit une loi de Poisson de paramètre λ , et on note X $\hookrightarrow \mathcal{P}(\lambda)$ si :
 - i) $X(\Omega) = \mathbb{N}$
 - ii) $\forall k \in \mathbb{N}, P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$
- Si $X \hookrightarrow \mathcal{P}(\lambda)$ alors

$$E(X) = \lambda$$
 et $V(X) = \lambda$.

Test 5 (Voir solution.)

Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$. Calculer, si elles existent, $E(e^{-X})$ et $V(e^{-X})$.

6

4 Objectifs

- 1. Connaître par coeur les lois usuelles : loi, espérance, variance.
- 2. Savoir reconnaître les lois usuelles d'après leur loi ou par l'expérience de référence.
- 3. Savoir déterminer la loi d'une variable aléatoire discrète donnée.

- 4. Savoir justifier l'existence de l'espérance, la variance d'une variable donnée.
- 5. Savoir utiliser le théorème de transfert.

5 Correction des tests

Correction du test 1 (Retour à l'énoncer.)

Soit $i \in \mathbb{N}^*$. Au tour numéro i, l'urne contient i boules blanches et une boule noire (donc i+1 boules au total)

1. Pour tout $k \ge 1$, X = k si et seulement si pour tout $1 \le i \le k-1$, on a tiré une boule blanche au i-ème tirage (cela arrive avec probabilité $\frac{i}{i+1}$) et au k-ième tirage on a tiré une boule noire (cela arrive avec probabilité $\frac{1}{k+1}$). Les tirages étant indépendants (tirages avec remise), on a

$$P(X = k) = \frac{1}{2} \times \frac{2}{3} \times \dots \times \frac{k-1}{k} \times \frac{1}{k+1} = \frac{1}{k(k+1)}$$

2. Soit $N \in \mathbb{N}^*$. Alors

$$\sum_{k=1}^{N} P(X=k) = \sum_{k=1}^{N} \frac{1}{k(k+1)} = \sum_{k=1}^{N} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{N+1}$$

donc la série converge et sa somme vaut 1.

3. On a

$$P(X = 0) = 1 - P(X \neq 0) = 1 - P\left(\bigcup_{k=1}^{+\infty} [X = k]\right)$$

$$= 1 - \sum_{k=1}^{+\infty} P(X = k) \quad (par \sigma - additivit\'e car les \'ev\'enements [X = k] sont deux \`a deux incompatibles)$$

$$= 0$$

Correction du test 2 (Retour à l'énoncer.)

Soit X une variable aléatoire à valeurs dans N* telle que

$$\forall k \in \mathbb{N}^*, P(X = k) = a3^{-k}.$$

1. On a

$$\sum_{k=1}^{+\infty} a 3^{-k} = a \frac{1}{3} \frac{1}{1 - \frac{1}{3}} = \frac{a}{2}.$$

Donc on définit une loi de probabilité si et seulement a = 2.

2. On a, d'une part,

$$P(X \text{ est pair}) = P\left(\bigcup_{n=1}^{+\infty} [X = 2n]\right)$$

$$= \sum_{n=1}^{+\infty} P(X = 2n) \quad (par \sigma - additivit\'e \text{ car les \'ev\'enements } [X = 2n] \text{ sont deux \`a deux incompatibles})$$

$$= \sum_{n=1}^{+\infty} \frac{2}{3^{2n}}$$

$$= 2\sum_{n=1}^{+\infty} \left(\frac{1}{9}\right)^n$$

$$= \frac{2}{9} \frac{1}{1 - \frac{1}{6}} = \frac{1}{4}.$$

D'autre part,

$$P(X \ est \ impair) = P\left(\bigcup_{n=0}^{+\infty} [X=2n+1]\right)$$

$$= \sum_{n=0}^{+\infty} P(X=2n+1) \quad (par \ \sigma - additivit\'e \ car \ les \ \'ev\'enements \ [X=2n+1] \ sont \ deux \ \grave{a} \ deux \ incompatibles)$$

$$= \sum_{n=0}^{+\infty} \frac{2}{3^{2n+1}}$$

$$= \frac{2}{3} \sum_{n=0}^{+\infty} \left(\frac{1}{9}\right)^n$$

$$= \frac{2}{3} \frac{1}{1 - \frac{1}{n}} = \frac{3}{4}.$$

Correction du test 3 (Retour à l'énoncer.)

La série $\sum_{n\geqslant 1} n\frac{2}{3^n}$ est absolument convergente (à un facteur $\frac{2}{3}$ près, il s'agit d'une série géométrique dérivée de raison $\frac{1}{3}$) donc E(X) existe et

$$E(X) = \sum_{n=1}^{+\infty} n \frac{2}{3^n} = \frac{2}{3} \sum_{n=1}^{+\infty} n \frac{1}{3^{n-1}} = \frac{2}{3} \frac{1}{\left(1 - \frac{1}{3}\right)^2} = \frac{3}{2}.$$

Correction du test 4 (Retour à l'énoncer.)

 $La\,s\'{e}rie\sum_{n\geqslant 1}n(n-1)\tfrac{2}{3^n}\,est\,ab solument\,convergente\,(\grave{a}\,un\,facteur\,\tfrac{2}{9}\,pr\`{e}s,\,il\,s'agit\,d'une\,s\'{e}rie\,g\'{e}om\'{e}trique\,d\'{e}riv\'{e}e\,seconde\,de\,raison\,\tfrac{1}{3})\,donc\,E(X(X-1))\,\,existe\,et$

$$E(X(X-1)) = \sum_{n=1}^{+\infty} n(n-1) \frac{2}{3^n} = \frac{2}{9} \sum_{n=2}^{+\infty} n(n-1) \frac{1}{3^{n-2}} = \frac{2}{9} \frac{2}{\left(1 - \frac{1}{3}\right)^3} = \frac{3}{2}.$$

Correction du test 5 (Retour à l'énoncer.)

Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$. Calculer, si elles existent, $E(e^{-X})$ et $V(e^{-X})$.

1. Pour l'espérance : on considère la série $\sum_{k \ge 0} e^{-k} e^{-\lambda} \frac{\lambda^k}{k!}$. Pour tout $n \in \mathbb{N}$ on a

$$\sum_{k=0}^{n} e^{-k} e^{-\lambda} \frac{\lambda^{k}}{k!} = e^{-\lambda} \sum_{k=0}^{n} e^{-k} \frac{\lambda^{k}}{k!} = e^{-\lambda} \sum_{k=0}^{n} \frac{(\lambda e^{-1})^{k}}{k!}.$$

On reconnaît à droite la somme partielle d'indice n d'une série exponentielle (qui converge). Par conséquent, la série $\sum_{k\geqslant 0}e^{-k}e^{-\lambda}\frac{\lambda^k}{k!}$ est convergente donc absolue convergente car ses termes sont positifs. De plus, sa somme vaut

$$\sum_{k=0}^{+\infty} e^{-k} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{+\infty} \frac{(\lambda e^{-1})^k}{k!} = e^{-\lambda} e^{\lambda e^{-1}} = e^{\lambda (e^{-1} - 1)}.$$

Ainsi, $E(e^{-X})$ existe et vaut $e^{\lambda(e^{-1}-1)}$.

2. Pour la variance : on considère la série $\sum_{k\geqslant 0} \left(e^{-k}\right)^2 e^{-\lambda} \frac{\lambda^k}{k!}$. Pour tout $n\in\mathbb{N}$ on a

$$\sum_{k=0}^{n} \left(e^{-k} \right)^{2} 2e^{-\lambda} \frac{\lambda^{k}}{k!} = e^{-\lambda} \sum_{k=0}^{n} e^{-2k} \frac{\lambda^{k}}{k!} = e^{-\lambda} \sum_{k=0}^{n} \frac{(\lambda e^{-2})^{k}}{k!}.$$

On reconnaît à droite la somme partielle d'indice n d'une série exponentielle (qui converge). Par conséquent, la série $\sum_{k\geqslant 0} \left(e^{-k}\right)^2 e^{-\lambda} \frac{\lambda^k}{k!}$ est convergente donc absolue convergente car ses termes sont positifs et sa somme vaut

$$\sum_{k=0}^{+\infty} e^{-2k} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{+\infty} \frac{(\lambda e^{-2})^k}{k!} = e^{-\lambda} e^{\lambda e^{-2}} = e^{\lambda (e^{-2} - 1)}.$$

Ainsi, e^{-X} possède un moment d'ordre 2. Par la formule de Koenig-Huygens, e^{-X} possède une variance et

$$V(e^{-X}) = E((e^{-X})^2) - E(e^{-X})^2 = e^{\lambda(e^{-2}-1)} - e^{2\lambda(e^{-1}-1)}.$$