Lecture 2: Unemployment, Inflation, and Interest Rate

Instructor: Fei Tan

@econdojo

@BusinessSchool101

Saint Louis University

Course: Macroeconomics 201

Date: September 1, 2025

The Road Ahead

- 1. Measuring Unemployment
- 2. Measuring Inflation
- 3. Real versus Nominal Interest Rates

How to Measure Unemployment?

- Bureau of Census conducts Current Population Survey (CPS) to classify people as
 - employed (N): people who have job
 - o unemployed (U): people who don't have job but are actively looking for one
 - o not in labor force: neither, e.g. discouraged worker
- Bureau of Labor Statistics (BLS) uses CPS data to calculate
 - labor force (L) = N + U
 - unemployment rate (u) = U / L × 100% (series U-3)
 - participation rate = L / working-age population (civilian noninstitutional population) × 100%

Working-Age Population

Employment status, April 2017 (source: BLS)

Broader Measure of Unemployment

- Series U-6 = U-3 + discouraged + part-time (source: BLS)
- Official U-3 is not exact measure of joblessness

Types of Unemployment

- We identify three types of unemployment
 - frictional: temporary unemployment due to process of matching workers with jobs
 - structural: longer unemployment due to mismatch b/w worker's skills/attributes and job requirements
 - cyclical: unemployment due to business cycle recession
- When cyclical unemployment drops to zero
 - economy is at full employment
 - \circ natural rate of unemployment (u_n)
 - general consensus for U.S.: b/w 4% and 5%
- Why unemployment rate never falls to zero?

U.S. Unemployment Rate

- U.S. unemployment rate, 1950-2016 (source: BLS)
- ullet u rises during recessions and falls during expansions

How to Measure Inflation

- Three common measures of price level
 - GDP deflator (broadest)
 - consumer price index (CPI): price of basket of goods and services purchased by consumer (cost of living)
 - producer price index (PPI): price received by producers of goods and services at all stages of production
- Changes in PPI signifies future movements in CPI
- Inflation rate is percentage increase in price level

$$\pi_t = rac{P_t - P_{t-1}}{P_{t-1}} imes 100\%$$

CPI Market Basket

- CPI market basket, December 2016 (source: BLS)
- Housing, transportation, and food make up about 75%

Calculating CPI

Product	1999 Quantity	1999 Price	2020 Price	2021 Price
Eye examinations	1	\$50	\$100	\$85
Pizzas	20	\$10	\$15	\$14
Books	20	\$25	\$25	\$27.5

- Assume base year is 1999
- Calculate CPI for year 2020 & 2021

$$\text{CPI} = \frac{\text{expenditures in current year}}{\text{expenditures in base year}} \times 100$$

Answer:
$$P_{2020} = 120$$
, $P_{2021} = 122$

ullet 2021 inflation: $\pi_{2021} = (122-120)/120 imes 100\% pprox 1.7\%$

Purchasing Power

Year	Nominal Average Hourly Earnings	CPI (1982-1984=100)	
2020	\$19.73	230	
2021	\$20.14	233	
2022	\$20.60	237	

- Nominal variables are values in current-year dollars
- Calculate real values for years 2020-2022

$$ext{real variable} = rac{ ext{nominal variable}}{ ext{current-year price index}} imes 100$$

Answer:
$$W_{2020} = \$8.59$$
, $W_{2021} = \$8.65$, $W_{2022} = \$8.70$

Compare growth rates in nominal and real values

Real versus Nominal Interest Rates

- Interest rate is cost of borrowing funds
 - o **nominal interest rate** (i): expressed in terms of units of **national currency**; borrowing \$1 this year requires repaying \$(1+i) next year
 - → this year's **price** of one dollar relative to next year
 - \circ real interest rate (r): expressed in terms of baskets of **goods**; borrowing one basket this year requires repaying (1+r) baskets next year
 - → this year's price of one basket relative to next year
- ullet Borrowers/lenders care about r rather than i
- A useful (Fisher) relation

$$r_t pprox i_t - \pi^e_{t+1} \quad ext{for small } i_t ext{ and } \pi^e_{t+1}$$

U.S. Interest Rates

- i = interest rate on 3-month U.S. Treasury bills, π = percentage change in CPI (source: FRED)
- ex-ante versus ex-post real interest rates

Readings & Exercises

- Readings
 - HO: chapter 9
 - BJ: lecture 1 (sec. 2, 3, 4), lecture 5 (sec. 1), 12 (sec. 1) (supplementary)
- Exercises
 - HO: problem 1.7, 3.2, 4.6, 5.5, 6.6, D9.2
 - Derive Fisher relation