

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of Performance:	_02_/_08_/2024	Batch No:	E-2
Faculty Name:		Roll No:	16010123325
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No: 1

Title: Study of Basic Gates and Universal Gates

Aim and Objective of the Experiment:
Understand Basic Logic Gates and Universal Gates

COs to be achieved:

CO1: Recall basic gates & logic families and binary, octal & hexadecimal calculations and conversions.

Tools used:	
Trainer kits	

Theory:

Logic gates are electronic circuits that perform logical operations on one or more input signals to produce an output signal based on a set of logical rules. Logic gates can be classified into the following categories:

- 1. Basic Gates:
 - a. AND Gate: The AND gate produces a high output (1) only when all of its inputs are high (1).
 - b. OR Gate: The OR gate produces a high output (1) if any of its inputs is high (1).
 - c. NOT Gate (Inverter): The NOT gate produces the logical complement of its input. It takes a single input and produces the opposite value as the output.
- 2. Derived Gates:
 - a. NAND Gate: The NAND gate is a combination of an AND gate followed by a NOT gate. It produces the inverse of the AND gate's output. It outputs a low (0) only when all of its inputs are high (1).
 - b. NOR Gate: The NOR gate is a combination of an OR gate followed by a NOT gate. It produces the inverse of the OR gate's output. It outputs a high (1) only when all of its inputs are low (0).
 - c. XOR Gate (Exclusive OR): The XOR gate produces a high output (1) when the number of high inputs is odd. It outputs a low (0) when the number of high inputs is even.
 - d. XNOR Gate (Exclusive NOR): The XNOR gate produces a high output (1) when the number of high inputs is even. It outputs a low (0) when the number of high inputs is odd.

Semester: V

3. Universal Gates:

NAND and NOR gates are considered universal gates because any logic function can be implemented using only NAND gates or only NOR gates. This means that with a sufficient number of NAND or NOR gates, you can create circuits that can perform any logical operation.

Academic	Year:	2023-24
Roll No:		

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Implementation Details

1. AND Gate: Y = A.B

Symbol

Pin Diagram

Truth Table:

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

2. OR Gate: Y = A+B

Symbol

Semester: V

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Pin Diagram

IC 7432

Truth Table:

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

3. NOT Gate: $Y = \overline{A}$

Symbol

Pin Diagram

IC 7404

Object Oriented Programming

Semester: V Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Truth Table:

A	Ā
0	0
0	1
1	0
1	1

4. NAND Gate: $Y = (A.B)^c$

Symbol

Pin Diagram

IC 7400

Truth Table:

A	В	$(A.B)^c$
0	0	1
0	1	1
1	0	1
1	1	0

Semester: V

Object Oriented Programming

Academic Year: 2023-24

Roll No:____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

5. NOR Gate: $Y = (A+B)^c$

Symbol

Pin Diagram

IC 7402

Truth Table:

A	В	(A+B) ^c
0	0	1
0	1	0
1	0	0
1	1	0

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

6. XOR Gate: $Y = A \oplus B$

Symbol

Pin Diagram

IC 7486

Truth Table:

A	В	$(A \bigoplus B)^c$
0	0	0
0	1	1
1	0	1
1	1	0

7. XNOR Gate: Y =

Symbol

Semester: V

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Pin Diagram

Truth Table:

A	В	$A \oplus B$
0	0	1
0	1	0
1	0	0
1	1	1

Semester: V

Object Oriented Programming

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Implementation Using NAND Gate

NOT GATE

AND GATE

OR GATE

Semester: V

Object Oriented Programming

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Implementation Using NOR Gate

NOT GATE

OR GATE

AND GATE

Semester: V

Object Oriented Programming

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Post Lab Subjective/Objective type Questions:

1. Implement the Boolean function using NAND gates and NOR gates F=A'B + AB'

2. Implement using combination of gates F = ABC + AB'C + ABC'

Semester: V

Object Oriented Programming

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

$\boldsymbol{\alpha}$		1		•		
('(n	r	ш	CI	on	•

Through this experiment we learned about using Logic gates IC on the kit and also how to do implementations of equations using logic gates.

Signature of faculty in-charge with Date:

Academic Year: 2023-24

Semester: V

Roll No:_____