10.2.1 Exercices résolutions graphiques

Pour une fonction f, et un réel k. Lors de la résolution (algébrique ou graphique) d'une équation f(x) = k ou d'une inéquation f(x) > k, on cherche les solutions dans le domaine de la fonction f.

■ Exemple 10.5

Résoudre graphiquement avec la précision permise par le graphique les équations et inéquations suivantes.

1)
$$f(x) = 5$$
 d'inconnue x
 $S =$

2)
$$f(x) > 5$$
 d'inconnue x
 $S =$

3)
$$f(x) \ge 5$$
 d'inconnue x
 $S =$

Exercice 1

Résoudre graphiquement avec la précision permise par le graphique les équations et inéquations suivantes.

1)
$$f(x) = 2$$
 d'inconnue x
 $S =$

2)
$$f(x) \ge -2$$
 d'inconnue x
 $S =$

3)
$$f(x) > 2$$
 d'inconnue x
 $S =$

4)
$$f(x) = -1$$
 d'inconnue x
 $S =$

5)
$$f(x) \leqslant -1$$
 d'inconnue x
 $S =$

6)
$$f(x) < -1$$
 d'inconnue x

$$S =$$

4)
$$f(x) = -2$$
 d'inconnue x
 $S =$

5)
$$f(x) \ge -2$$
 d'inconnue x
 $S =$

6)
$$f(x) > -2$$
 d'inconnue x
 $S =$

4)
$$f(x) = 0$$
 d'inconnue x
 $S =$

5)
$$f(x) < 0$$
 d'inconnue x
 $S =$

x	 	
signe		
de f(x)		

Bilan Donner selon les valeurs de k, le nombre de solutions de l'équation f(x) = k inconnue x.

Exercice 2

Ci-contre la représentation de la fonction f:

- 1) Donner le domaine D_f de la fonction f.
- 2) Résoudre graphiquement les équations suivantes :
 - a) f(x) = -2 d'inconnue x.
 - b) f(x) = 4 d'inconnue x.
- 3) Préciser selon les valeurs de k le nombre de solution de l'équation f(x) = k.
- 4) Résoudre graphiquement les inéquations suivantes :
 - a) $f(x) \ge 2$ d'inconnue x.
 - b) f(x) > 1.5 d'inconnue x.

Exercice 3 Ci-dessous la représentation de la fonction f:

- 1) Donner le domaine D_f de la fonction f.
- 2) Résoudre graphiquement les équations suivantes :
 - a) f(x) = 0 d'inconnue x.
 - b) f(x) = 4 d'inconnue x.
- 3) Préciser selon les valeurs de k le nombre de solution de l'équation f(x) = k.
- 4) Résoudre graphiquement les inéquations suivantes :
 - a) $f(x) \ge 0$ d'inconnue x.
 - b) f(x) < 1 d'inconnue x.

■ Exemple 10.6 — (In)équations de la forme f(x) = g(x) et $f(x) \ge g(x)$. On considère les courbes représentatives \mathscr{C}_f et \mathscr{C}_g .

- 1) Pour résoudre l'équation f(x) = g(x).
 - a) On identifie les points d'intersections entre les courbes :

$$A(\ldots;\ldots)$$
 et $B(\ldots;\ldots)$

b) On lit les abscisses des points :

$$x_A = \dots$$
 et $x_B = \dots$
c) On donne les solutions $\mathscr{S} = \dots$

$$S = \dots$$

- 2) Pour résoudre l'inéquation $g(x) \ge f(x)$.
 - a) Identifier les points de la courbe \mathscr{C}_g au dessus de la courbe \mathscr{C}_f
 - b) Lire les abscisses des points correspondants :

Dans chaque cas, représentez les fonctions f et g données par leur expressions algébriques à l'aide de la pythonette, puis résoudre l'équation f(x) = g(x) et l'inéquation f(x) > g(x).

1)
$$f(x) = 2x + 3$$
 et $g(x) = 5$

2)
$$f(x) = 3x - 2$$
 et $g(x) = -4x + 2$

3)
$$f(x) = 9x^2$$
 et $g(x) = 6x - 1$

4)
$$f(x) = 2x^3 - x$$
 et $g(x) = 3x^2 - x$.

Exercice 5 Résoudre algébriquement les équations et inéquations de l'exercice précédent.