

OTR 101: Module 2

On-Ramp Solution Architecture
On-Ramp Communications System Features

On-Ramp Solution Architecture

On-Ramp Solution Architecture

Enabling a Growing Ecosystem

- ANSI and IEC integration-ready MCMs
- Software configurable for meter capabilities, operator requirements

On-Ramp Reference Platform

- Fully functional sensor communication module
- Integrated microNode
- Integrated K20 Processor
- Kit includes hardware design and manufacturing plans, reference software, and development guidelines
- Endpoint certification process

microNode

- Antenna diversity support
- Global availability
- ULP 90nM SoC

Connected by On-Ramp Support Package

Item	Item Description	
On-Ramp Development System	Development System VM including the following: Gateway Controller & Security Services Element Management System Network Agent Total View Application Interface Support Related documentation and development license	
On-Ramp Access Point	Standard FCC/IC or ETSI Access PointAP Installation & Commissioning Guide	
AP Lab Mounting Kit	Indoor mounting kit w/ POEIndoor GPS antenna	
Reference Platform	 Platform Kit includes: Hardware design collateral (schematics, gerbers, etc.) Software source code (host API code, host reference application) Development documentation: rACM Quick Start Guide and Developer Guide Interface Guides microNode and dNode Integration Specifications 	
Development Licenses	Development licenses for Development System VM and Reference Platform	
Engineering Support	Support packages available per developer requirements	

On-Ramp Total Reach Access Point

On-Ramp Access Point

- Provides wide area wireless coverage to sensors with On-Ramp Nodes
- Transports data from field to back office on secure IP backhaul (e.g. cellular, DSL, fiber,...)
- Each AP can support up to 64K endpoints
- Rapid and low cost deployment (50-300 sq. miles of coverage a day)
- Supports various indoor and outdoor mounting options and powered or un-powered installations
- EMC certified by FCC, IC, ETSI, and numerous regional entities
- Environmentally certified for utility and industrial applications

Access Point with Deployment Option =Basestation

On-Ramp Network Control & Management

- The high capacity, high availability Gateway (GW) manages network security and AP connections with back office management applications.
- The Element Management System (EMS) manages network elements with intuitive interfaces for monitoring network performance, managing device configuration and firmware updates.
- The Network Agent provides network diagnostic and database services

On-Ramp Wireless Device Management

The On-Ramp Total View (OTV) application provides:

 An intuitive interface for visualization of sensor performance, alarms, active commands, etc.; supported devices include meters, distribution automation devices, and remote I/O devices.

 Head End Services which parses/manages sensor data and manages sensor interaction commands (e.g., device triggers, system alarms).

Database services responsible for managing storage of the end point

application data

On-Ramp Supported Interfaces

Sensor Information:

Protocol Adaptors

- Support specific protocol data interaction with SCADA, MDMS, etc., systems
- Connected by On-Ramp ecosystem partners have added protocol support

File Export

- Export CMEP files for use in billing, meter management, or analytics applicat
- Locally save an export in CSV format

REST API

- Access uplink raw or parsed device data
- Send commands or configuration updates to one or more devices

Network Information:

SNMP Agent

- Access network health information
- Diagnose network issues

On-Ramp Communication System Features

Communication System Features

- Optimized for Remote Sensor Applications
- Designed for Robust, Reliable Communications
- Secure End-to-End
- Flexible Deployment, Upgrade and Support

Communication System Feature Overview

- Optimized for Remote Sensor Applications
- Designed for Robust, Reliable Communications
- Secure End-to-End
- Flexible Deployment, Upgrade and Support

One Network, Capacity for All Applications Grid IQ™ AMI P2MP Solution Applications

Wide-Area Coverage Anywhere

Efficient 2-Way Communications

- Uplink Communications:
 - Scheduled data Node wakes up to send a message at each Update Interval (UI)
 - Continuous reporting:
 - An endpoint is configured to both transmit and receive (i.e. listen) each frame.
 - Provides the fastest response time or minimum latency for on-demand operation.
 - However, utilizes the most network capacity per end device; consequently, use should be carefully considered.
 - The 2.X release supports the concept of paging to address capacity; for lower latency on-demand operation paging should be considered.
 - Periodic reporting:
 - The endpoint Node can be in a low power "deep sleep" mode most of the time, and is awake for only short periods of time to receive and transmit data.
 - UI is set at 4.8 mins, 7.2 mins, ... 24 hrs. Note: This setting defines your listening interval and consequently your on-demand latency when using this configuration.
 - Unscheduled data Host wakes Node to send asynchronous events
- Downlink Communications
 - Unicast interaction with a specific meter
 - Multicast to multiple endpoints or group(s)
 - Broadcast to entire network
 - Firmware Update to endpoints type or entire network

Capacity to Cover Anything

Simultaneous
Uplink and
Downlink!

○ Uplink (Node → AP)

- AP can receive 100 MBytes/day in steady-state using RPMA
- Can service >2000 nodes simultaneously, e.g. outage flood

Application	Update Interval	Data/Day
Electric AMI Meter	15 min interval data	2.4 KB
Gas Meter	2 per day	140bytes
Fault and line sensor	1 per day	16 bytes
Smart Transformer	24 per day	2.4 KB

○Downlink (AP → Node)

- Up to 72 MBytes/day of unicast user data
- Up to 144 kBytes/day of multicast user data
- Up to 72 kBytes/day of broadcast user data

Power Efficiency and Responsiveness

- Ultra low power consumption delivered:
 - Used low power network acquisition
 - Efficient sleep modes, advanced deep sleep
 - Optimized communications timing
- Getting to a 20-year battery life:
 - Minimize update frequency
 - Minimize packet size
 - Ensure solid network coverage
- Achieving required responsiveness:
 - Battery-powered devices:
 - Trade off Update Interval and Read Interval consider having sensor read or evaluate condition more frequently (Read Interval) but transmit scheduled updates less frequently (Update Interval)
 - Change transmit frequency only when in an alarm condition, return to less frequent transmissions once alarm is cleared
 - Line-powered devices:
 - Increase responsiveness by operating in continuous mode (Uplink/Downlink every frame)
 - Minimize the time between a command (e.g., meter disconnect, on-demand read) and its completion
 - Continuous mode reporting does impact uplink capacity

Communication System Feature Overview

- Optimized for Remote Sensor Applications
- Designed for Robust, Reliable Communications
- Secure End-to-End
- Flexible Deployment, Upgrade and Support

Reliable Data Delivery

- Delivery Acknowledgment: Uplink and downlink confirmation of receipt and re-request of missing packets
- Time Stamp Accuracy: Precise GPS time stamping of events enhances data reporting and analysis.
- Traffic Prioritization:
 - Endpoint host can specify uplink traffic prioritization:
 - An "urgent" packet will be handled as an asynchronous message
 - "Non-urgent" packet will be queued or scheduled for transmission at the next update interval
- Rapid detection of issues in critical network components and applications through redundant monitoring systems

Accurate Propagation Planning

Maps are created that gives a very high degree of confidence of coverage

Accurate techniques model the effects of:

- Terrain
- Clutter
- Margin (for high probability of coverage)
- Interference
- Dynamic Link
- Access Point Macro-Diversity
- Endpoint Antenna Diversity

Reliable Network Coverage & Availability

O AP Diversity:

- Depending on data delivery requirements, APs can be deployed to provide redundant coverage
- Even if not fully overlapping in coverage, partial redundancy can improve overall coverage for endpoints throughout the coverage area

Antenna Diversity:

 Two available antennas on a single endpoint, separated by a few inches significantly improves the reliability of wireless communications of a static endpoint

Endpoint/AP Failover:

- Endpoint devices deployed on a network dynamically adjust to network conditions
- Endpoints continually search for optimal network connectivity and automatically reestablish connection if communications with an AP were interrupted

Interruption Recovery:

- In the event of lost backhaul connectivity, AP user data caching (default 1 hour) allows network entities to remain operational
- Upon regaining connectivity, the affected network entities synchronize communications and return to normal operations

Appliance Availability:

- Appliance designed with redundant power supplies, SSD drives and hypervisor SD cards
- Can be deployed in a dual server option for High Availability (HA)

Communication System Feature Overview

- Optimized for Remote Sensor Applications
- Designed for Robust, Reliable Communications
- Secure End-to-End
- Flexible Deployment, Upgrade and Support

ORW Security Approach

- Security by design supports NERC CIP, NIST and FIPS guidelines for critical cyber assets
- Security mechanisms designed for a star topology network that requires bandwidth efficiency, power efficiency, and long life (10-15 years)
- Defense in depth strategy:
 - Prevention mechanisms access control, mutual authentication, confidentiality, high availability, secure firmware updates
 - Detection mechanisms identification and alert of attempts to break into the system
 - Recovery mechanisms graceful degradation and/or successful operation even when under attack

Attacks

On-Ramp Security Attributes

Mutual Entity Authentication

Meters and devices will join only a valid network and only valid meters or devices will join a network

Message Authentication

Messages authenticated using AES-128 based CMAC Immune to replay attacks.

Message Confidentiality

Messages encrypted using 3-key 3DES (192 bit key) at Communication layer and using AES-128 at the MCM layer.

Limited Anonymity

Communication link does not disclose identity of meter.

Secure Firmware Upgrade

Meter, MCM and Node firmware securely updated with no OTA key exchange

Communication System Feature Overview

- Optimized for Remote Sensor Applications
- Designed for Robust, Reliable Communications
- Secure End-to-End
- Flexible Deployment, Upgrade and Support

Flexible Deployment

- Flexible Deployment Options
 - Network Cloud
 - Operator owned field infrastructure
 - Fully hosted and managed network
 - Implementation services
 - Network Appliance
 - Operator owned field and back office infrastructure
 - Optional implementation, network operations, support and maintenance services
- Rapid Solution Deployment and Validation
 - Simple field infrastructure, deploy 50-300 sq. miles of coverage a day
 - With point-to-point architecture, deployment of the network is not dependent on the deployment of any given endpoint.
 - As soon as an endpoint is deployed within coverage, it is live no need to wait on multiple endpoints to form the network.

Flexible Upgrade & Support

- Most network upgrades supported with minimal to no service interruption
- The EMS operator console is used to
 - Manage additions, updates, and removals of APs
 - Addition, upgrade, and removal of and endpoint Nodes
 - Report and assist with diagnosis of alarm conditions
 - Perform ongoing network performance monitoring
- Over-the-air firmware updates efficiently delivered to sensor devices, MCMs, and On-Ramp Nodes:
 - 50 Kbytes per day
 - 5-10 days to upgrade 99% of 1 million end nodes in our network (could be 6 months to achieve the same with mesh networks)
- On-Ramp will support Appliance software and environment updates and upgrades

Module 2 Quiz

- What types of Nodes are available for an endpoint integration?
- What are the required field infrastructure components of an On-Ramp network?
- O What is the function of the On-Ramp Gateway?
- What is the difference between what you can manage/monitor with EMS vs. OTV?
- O What is the best way to get the data out of the On-Ramp system and used by other systems?
- What is the on demand latency for a battery powered application with a UI of 1 hour?
- O What components can be upgraded once deployed?

