RANGE DEPONDED

The Biotechnology Systems Branch of the Scientific and Technical Information

Center (STIC) detected errors when processing the following computer readable

form:

Application Serial Number:

Source:

Date Processed by STIC:

10|534,538

THE ATTACHED PRINTOUT EXPLAINS DETECTED ERRORS.
PLEASE FORWARD THIS INFORMATION TO THE APPLICANT BY EITHER:

- 1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANT, WITH A NOTICE TO COMPLY or,
- 2) TELEPHONING APPLICANT AND FAXING A COPY OF THIS PRINTOUT, WITH A NOTICE TO COMPLY

FOR CRF SUBMISSION AND PATENTIN SOFTWARE QUESTIONS, PLEASE CONTACT MARK SPENCER, TELEPHONE: 571-272-2510; FAX: 571-273-0221

TO REDUCE ERRORED SEQUENCE LISTINGS, PLEASE USE THE <u>CHECKER</u> <u>VERSION 4.4.0 PROGRAM</u>, ACCESSIBLE THROUGH THE U.S. PATENT AND TRADEMARK OFFICE WEBSITE. SEE BELOW FOR ADDRESS:

http://www.uspto.gov/web/offices/pac/checker/chkrnote.htm

Applicants submitting genetic sequence information electronically on diskette or CD-Rom should be aware that there is a possibility that the disk/CD-Rom may have been affected by treatment given to all incoming mail. Please consider using alternate methods of submission for the disk/CD-Rom or replacement disk/CD-Rom.

Any reply including a sequence listing in electronic form should NOT be sent to the 20231 zip code address for the United States Patent and Trademark Office, and instead should be sent via the following to the indicated addresses:

- 1. EFS-Bio (http://www.uspto.gov/ebc/efs/downloads/documents.htm, EFS Submission User Manual ePAVE)
- 2. U.S. Postal Service: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450
- 3. Hand Carry, Federal Express, United Parcel Service, or other delivery service (EFFECTIVE 01/14/05):
 U.S. Patent and Trademark Office, Mail Stop Sequence, Customer Window, Randolph Building, 401 Dulany Street,
 Alexandria, VA 22314

Revised 01/10/06

Raw Sequence Listing Error Summary

ERROR DETECTED	SUGGESTED CORRECTION SERIAL NUMBER: 0534,538
ATTN: NEW RULES CASES:	PLEASE DISREGARD ENGLISH "ALPHA" HEADERS, WHICH WERE INSERTED BY PTO SOFTWARE
IWrapped Nucleics Wrapped Aminos	The number/text at the end of each line "wrapped" down to the next line. This may occur if your file was retrieved in a word processor after creating it. Please adjust your right margin to .3; this will prevent "wrapping."
2Invalid Line Length	The rules require that a line not exceed 72 characters in length. This includes white spaces.
3Misaligned Amino Numbering	The numbering under each 5 th amino acid is misaligned. Do not use tab codes between numbers; use space characters , instead.
4Non-ASCII	The submitted file was not saved in ASCII(DOS) text, as required by the Sequence Rules. Please ensure your subsequent submission is saved in ASCII text.
5Variable Length	Sequence(s)contain n's or Xaa's representing more than one residue. Per Sequence Rules, each n or Xaa can only represent a single residue. Please present the maximum number of each residue having variable length and indicate in the <220>-<223> section that some may be missing.
6PatentIn 2.0 "bug"	A "bug" in PatentIn version 2.0 has caused the <220>-<223> section to be missing from amino acid sequences(s) Normally, PatentIn would automatically generate this section from the previously coded nucleic acid sequence. Please manually copy the relevant <220>-<223> section to the subsequent amino acid sequence. This applies to the mandatory <220>-<223> sections for Artificial or Unknown sequences.
7Skipped Sequences (OLD RULES)	Sequence(s) missing. If intentional, please insert the following lines for each skipped sequence: (2) INFORMATION FOR SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) (i) SEQUENCE CHARACTERISTICS: (Do not insert any subheadings under this heading) (xi) SEQUENCE DESCRIPTION:SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) This sequence is intentionally skipped Please also adjust the "(ii) NUMBER OF SEQUENCES:" response to include the skipped sequences.
8Skipped Sequences (NEW RULES)	Sequence(s) missing. If intentional, please insert the following lines for each skipped sequence. <210> sequence id number <400> sequence id number 000
9Use of n's or Xaar's (NEW RULES)	Use of n's and/or Xaa's have been detected in the Sequence Listing. Per 1.823 of Sequence Rules, use of <220>-<223> is MANDATORY if n's or Xaa's are present. In <220> to <223> section, please explain location of n or Xaa, and which residue n or Xaa represents.
Invalid 213> Response	Per 1.823 of Sequence Rules, the only valid <213> responses are: Unknown, Artificial Sequence, or scientific name (Genus/species). <220>-<223> section is required when <213> response is Unknown or is Artificial Sequence. (see item 11 below)
11Use of <220>	Sequence(s) missing the <220> "Feature" and associated numeric identifiers and responses. Use of <220> to <223> is MANDATORY if <213> "Organism" response is "Artificial Sequence" or "Unknown." Please explain source of genetic material in <220> to <223> section or use "chemically synthesized" as explanation. (See "Federal Register," 06/01/1998, Vol. 63, No. 104, pp. 29631-32), also Sec. 1.823 of Sequence Rules
PatentIn 2.0 "bug"	Please do not use "Copy to Disk" function of PatentIn version 2.0. This causes a corrupted file, resulting in missing mandatory numeric identifiers and responses (as indicated on raw sequence listing). Instead, please use "File Manager" or any other manual means to copy file to floppy disk.
13 Misuse of n/Xaa	"n" can only represent a single <u>nucleotide</u> ; "Xaa" can only represent a single <u>amino acid</u>

PCT

RAW SEQUENCE LISTING

DATE: 02/24/2006

PATENT APPLICATION: US/10/534,538

TIME: 12:45:48

Input Set : A:\272331US0PCT.ST25.txt
Output Set: N:\CRF4\02242006\J534538.raw

```
3 <110> APPLICANT: XI, YONGZHI
              XI, CAIXIA
      6 <120> TITLE OF INVENTION: A FULL-LENGTH POLYNUCLEOTIDE CODING CHICKEN TYPE II COLLAGEN
AND
              THE USE OF IT
      9 <130> FILE REFERENCE: 272331US0PCT
     11 <140> CURRENT APPLICATION NUMBER: US 10/534,538
     12 <141> CURRENT FILING DATE: 2005-05-12
     14 <150> PRIOR APPLICATION NUMBER: PCT/CN03/00967
     15 <151> PRIOR FILING DATE: 2003-11-14
                                                                    Dres Net Comply
     17 <150> PRIOR APPLICATION NUMBER: CN 100039
                                                                    Corrected Diskette
     18 <151> PRIOR FILING DATE: 2002-11-14
     20 <160> NUMBER OF SEQ ID NOS: 29
     22 <170> SOFTWARE: PatentIn version 3.3
     24 <210> SEO ID NO: 1
     25 <211> LENGTH: 5495
     26 <212> TYPE: DNA
     27 <213> ORGANISM: Genomic DNA
     29 <400> SEQUENCE: I
                                                                               60
     30 ccaggcaagg atggcgcacg tgtaagtggg gcacggccat ggggtgggct ggcaaaggat
                                                                              120
     32 geteacagag accaeatect catetetete teteteceat agggtetgae gggteceatt
     34 ggtccccctg gccctgctgg ccccaacggt gagaaggtga gagcagcatc acagcacccc
                                                                              180
     36 acattacgcc ccatgggatg accccagtgc ctccacctct ccatcctttc ttttccaggg
                                                                              240
     38 tgaatceggc ceteetggte catetggtge tgeeggtgee egtggtgeee eegtaageae
                                                                              300
     40 aatgtctgca gcccctgggt gcccctaacc ttcaccctaa acccccatca acccctttat
                                                                              360
                                                                              420
     42 caaceteece catetettee cattagggtg agegtggega geeeggtgee eeeggteetg
                                                                              480
     44 ctggatttgc tggccccccg gtgagtgttt caccccgaag cccccatcgc acacccacgt
     46 cttcacccca catcctcacc ccactcatgg tggctgctgt tcccatcagg gcgccgatgg
                                                                              540
                                                                              600
     48 acaacceggt gccaaaggeg agcagggaga gcccgggcag aagggtgacg cgggcgctcc
                                                                              660
     50 tggtccccaa ggtccctccg gcgctcctgg cccccaggta caacaccaaa tggggcaaac
                                                                              720
     52 ccccaaattt gggacgtcac ggccccaatg caggcacact gcagctcccg ttcggatttg
     54 taacctgttt ttctctcctt cctagggtcc aaccggtgtc actggtccca aaggagctcg
                                                                              780
                                                                              840
     56 tggggctcag ggtccccctg tgagtaccgg ggggtgggct gcagggtggg gaaggagcgg
     58 ccgtggggct gagctgtgtc tgagccgttt ctcctctcc tctctcctct gactctgtga
                                                                              900
                                                                              960
     60 ttccctccc agggagccac gggattcccc ggagctgccg gccgtgtggg accgcccggc
                                                                             1020
     62 cctaatgtga gtctggggc gttctgggat tgccccacc tggggtttgg gcgctgcttc
                                                                             1080
     64 cccgcgctgc gtgttggagg gggcactgtt tccctgcaca gacacgtggg gttttcctcc
     66 ttggctctct gatgttggct tttggggcca ttccaatggt agagaaggac ttttctaagg
     68 gcaagagete eecaagaage agcagtggga tgegggtgat aaagatggaa tggetgeete
                                                                             1200
     70 tggtttgcac caacgctgct ttccttccct ttagggtaac ccaggccccc ccggaccccc
                                                                             1260
     72 eggetetget ggeaaagaeg geeceaaggg tgttegtgge gaegeeggee eeceeggeeg
                                                                             1320
                                                                             1380
     74 tgcaggtgac cccggcctcc aaggccccgc cggcccccc ggcgagaagg gcgaacccgg
```

76 cgaggacggc cccgcggtga ggattctggg ggtctcctcc ctccgtgcac cccctggctg

78 cgtggtgccg ttgttcttag tctgatttcc ccctctgctg ccctgcaggg tcccgacggc

1440

1500

PATENT APPLICATION: US/10/534,538

DATE: 02/24/2006 TIME: 12:45:48

Input Set : A:\272331US0PCT.ST25.txt
Output Set: N:\CRF4\02242006\J534538.raw

80 (ccccccggc	cctcaaggct	tggcaggaca	gcgtggtatt	gtgggtctcc	caggacagcg	1560
		ggcttccccg					1620
		tcctatgggg					1680
		agccctttgg					1740
		tttttcccca					1800
		ggttatttgt					1860
		tctctcccac					1920
		cctggctctg					1980
96	gctgacaggt	cctgctggag	aacccgggcg	cgaggtaagc	aaaaccccac	agcatcacag	2040
98 (cggcaccggg	catcaccaac	cccatggcac	agctcagctc	ccagagctcc	ccggtgtctt	2100
100	tttctccago	: actgaaagga	gactttgcac	: aaatcctgct	ccacccgggt	tgtaacatcc	2160
102	ccttttcctc	: ctagggcaac	cctggtgctg	acggtcccc	aggcagggat	ggcgcagctg	2220
		gagcttgcca					2280
106	tgtggggttt	tgcacagatc	tgacctctct	gttgtctgct	cgcagggtga	tcgtggtgag	2340
		t <u>g</u> ggtgctcc					2400
		aacaaggaga					2460
						ttccttgcac	2520
						gtcactgttg	2580
		ı gggtgcggag					2640
						tctccctgca	2700
						tgccggtgag	2760
						tgccaggagg	2820
						caaggacctc	2880
						caccgcggct	2940
						cactgagccc	3000
						ctgtctggcc	3060
						cgtctggaga	3120
		gccggtcccg					3180
		ggaaggggaa					3240
						caatgccttc	3300 3360
						cctctggcaa	3420
						gacggagtgg	3420
						ccagctcgca	3540
						cccggtcctc	3600
						ggactgggtc	3660
						gccggagggc	3720
						cagattgaga	3780
		cgagtggaag				gacatcaaac	3840
						tggatgttag	3900
						ggaggtgggg	3960
						gagcgtggct	4020
						ttaatggctc	4080
						cgatctttga	4140
		gatettaaeg					4200
						acgccatcaa	4260
						gcagcatccc	4320
						ttgcagagac	4380
						cgatcccacc	4440
- / 0	caccaacggc	. ggccccacg	-99919111			2500000000	1110

RAW SEQUENCE LISTING

PATENT APPLICATION: US/10/534,538

DATE: 02/24/2006 TIME: 12:45:48

Input Set : A:\272331USOPCT.ST25.txt
Output Set: N:\CRF4\02242006\J534538.raw

```
4500
178 tgggatgtcc ttcttgcggt catgtggatg ggttttaatg aagttataga gggtgattct
                                                                          4560
180 gaaggtgtag gtttgggtca gttcagctcc acaaatcaaa gggaaaggat gggatggagc
                                                                          4620
182 aactgagete eeteggtttg tttggeecag aaaaggtgag gatgagggga ggeeteaegg
                                                                          4680
184 ccctacagcc ccttacggcc ctacagcagc gttaggaaaa aagttctgcc ccggagctgt
                                                                          4740
186 gttgggcaca gaacagccct gtgatgccgg agctcgggga gcattgggac aacgctctca
188 gacattgggt ttgggtcagg tcctgggtaa cgtgatgtgc agggggcaac cagcccatgg
                                                                          4800
190 gtgggcttta aggacccttc caagccaacc attccatggt tctgtgatct gtaaggacct
                                                                          4860
192 ttccaatcca aaccactctg atttttttct cagccatttg ggaacctgaa gtacggaagt
                                                                          4920
194 cctcccaaaa agctcctgag agtaaggtgg tcataatgcc cgcaggcttt aactcctcac
                                                                          4980
196 ctcttccctc cagttcagct acggcgatga gaacctgtcc cccaacaccg ccagcatcca
                                                                          5040
198 gatgacette etgegeetee tgtecaeega gggeteeeag aacgteaeet accaetgeaa
                                                                          5100
200 gaacagcatc gcctacatgg acgaggagac gggcaacctg aagaaagcca tcctcatcca
                                                                         5160
202 gggatccaac gacgtggaga tcagagccga gggcaacagc aggttcacct acagcgtctt
                                                                          5220
204 ggaggacggc tgcacggtag gttgctgggc gcctgcaaag gaaaggtgca gatggggagg
                                                                          5280
206 gggaggetga ggetgggggg atgaggeegg ageagetgae ageateeetg eeeteettee
                                                                          5340
208 ctccccagaa acacactggc aaatggggca agacggtgat cgagtaccgg tcgcagaaga
                                                                          5400
210 cctcgcgcct gcccattgta gatattgcac ctatggacat tggcggagcc gatcaggagt
                                                                          5460
212 ttggcgtgga tattggccca gtctgcttct tgtaa
                                                  c- see item#10 or
error summary
217 <212> TYPE: DNA
218 <213> ORGANISM: CDNA
220 <400> SEQUENCE: 2
215 <210> SEQ ID NO: 2
221 atgcacggcc gccgcccgcc ccgctccgcc gctctcctcc tcctcctcct ccttctcacg
                                                                           120
223 geegeegeaa eegegeagga eegegaeete egacaaeetg geeceaaggg acagaaggga
225 gaacccggag atattaaaga tgttgtagga ccccgagggc ctccaggacc acagggccca
                                                                           180
227 gcaggagage agggacageg aggggacegt ggcgagaagg gggagaaggg tgeteetgge
                                                                           240
229 ccccgtggga gggatggaga acccggcacc cctggaaacc caggcccccc cggtcccccc
                                                                           300
231 ggacctcctg gccccccgg acttggtgga aactttgcgg cgcagatggc gggcgcttc
                                                                           360
233 gatgagaagg cgggtggagc gcagatgggt gtcatgcagg gacccatggg ccctatggga
                                                                           420
235 ccccgcggcc cccctggccc cactggcgca cctggtcccc agggatttca aggcaacccc
                                                                           480
237 ggtgagcccg gcgaacccgg cgctgctggt ccgatgggtc cccggggacc tccgggacca
                                                                           540
239 cctgggaaac ccggtgacga tggtgagaca ggcaaacccg gcaaatctgg tgaacgtggc
                                                                           600
241 ccccccggcc cccagggcgc tcgtggcttc cctgggactc ctggtctccc cggagtgaag
                                                                           660
243 ggccaccgag gctaccccgg tttggatggt gccaaaggag aggcgggggc tcctggagcc
                                                                           720
245 aagggtgaat ctggttcacc gggtgagaac ggctcccccg gccccatggg accccgtggg
                                                                           780
247 ctgcccggag agcgaggacg tcccggcccc tccggcgccg ccggtgctcg tggcaatgac
                                                                           840
249 ggtctccctg gccctgctgg accccctgga cccgtcggcc ctgccggagc ccccggcttc
                                                                           900
251 cccggagccc ccggttcaaa gggtgaagcc ggccccactg gtgcacgggg tcccgagggt
                                                                           960
                                                                          1020
253 geceaaggae eeegeggega ateeggeaee eeeggetete eeggeeeege tggegeaeee
255 ggtaacccag ggactgatgg catccccggt gccaagggct cggcgggtgc cccgggcatt
                                                                          1080
257 gcaggcgctc caggattccc cggcccacgc ggcccccccg gaccccaagg tgccaccgga
                                                                          1140
259 ccactgggac ccaaaggaca gacgggcgaa cccggcatcg caggcttcaa gggcgagcaa
                                                                          1200
261 ggaccgaagg gcgagacggg ccccgcagga ccccaaggtg cccccgggcc ggctggtgag
                                                                          1260
263 gaaggcaaga gaggageteg tggtgaacet ggtgeegeeg geeetgtggg eeeeeegga
                                                                          1320
```

265 gaaaggggcg ctcctggcaa ccgtggattc cccgggcagg acgggctggc cggacccaag

267 ggtgctccag gtgaacgcgg ccccgctggt ctcgccggtc ccaaaggtgc caccggtgac

269 cccggacgte ccggagagee egggetgeee ggagegaggg gteteacegg eegeeeegge 271 gatgegggae etcaaggeaa agteggeeea actggtgete etggegagga tggeegeeee

The type of errors shown exist throughout the Sequence Listing. <u>Please check subsequent sequences for similar errors</u>.

1380

1440 1500

1560

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/534,538

DATE: 02/24/2006 TIME: 12:45:48

Input Set : A:\272331US0PCT.ST25.txt
Output Set: N:\CRF4\02242006\J534538.raw

273	ggcccccccg	gacctcaggg	tgctcgtggg	cagcctggtg	tgatgggttt	ccccggtccc	1620
275	aaaggcgcta	atggtgagcc	tggaaaagct	ggagagaaag	gactgcccgg	cgccccaggg	1680
277	ctgcggggtc	tgcctggcaa	ggatggggag	acgggagctg	ccggcccccc	tggacccgct	1740
279	ggtcctgtgg	gtgagagagg	agagcaagga	gcccccggtc	cttccggctt	ccagggactg	1800
			tggggagagc				1860
			tgttggtccc				1920
			gctgcagggt				1980
			cggtccagcc				2040
			gagaggagca				2100
			acctgaggga				2160
			tggccctgct				2220
			tgccggtgcc				2280
			atttgctggc				2340
			cgggcagaag				2400
			ccagggccca				2460
			agccacggga				2520
			aggcccccc				2580
			cgccggcccc				2640
			cgagaagggc				2700
			aggcttggca				2760
			cccggactg				2820
			tgaccgaggt				2880
			cgggcgcgag				2940
			gaagggtgat				3000
			cgccccggc				3060
			agggcccatg				3120
			tcgtggtgac				3180
			cttcaccggt				3240
			cggtcccgct				3300
							3360
			agatggctct				3420
			tgaacccggc				3480
			cggcaccggc				3540
			ccccatccgc				3600
			ggtggatgcc				3660
			ctccaagaag				3720
			gagcggagat				3780
			ctgcaacatg				
			gaactggtgg				3840
			cggcggtttc				3900
			gatgaccttc				3960
			gaacagcatc				4020
			gggatccaac				4080
			ggaggacggc				4140
			gcagaagacc			_	4200
			tcaggagttt				4260
			tgtgtgtttg				4320
			agaaaggaat				4380
			ttcccagcac				4440
369	cgcgcccctt	cgggaccctc	cggcgccgtc	accgggcaga	ctgcgaaata	caaccacggg	4500

Input Set : A:\272331US0PCT.ST25.txt
Output Set: N:\CRF4\02242006\J534538.raw

	373	1 cttatattta tttattgeet teetggaagg eetggttteg taggge 3 ateaatetgg eaggtgtgae ggeeeeete eecacaaagg gatetg 5 egegaateee eteeeeteee egtgtateae eageaggagt getaat										tgg	caa a	acgcaggtat		4560 4620 4680		
	377	aaat	aaatggtgct attcttgtaa aacaagtctg tattttttaa catcagttga tataaaaac										aaaca	4740				
	379	79 acaaaaaaa aaacttttgg tggaaagtaa aaaaaacaaa aaaaaaaaa aaa												4793				
	382	2 <210> SEQ ID NO: 3																
	383	3 <211> LENGTH: 1420																
	384	4 <212> TYPE: PRT																
	385	<213	3> OF	RGANI	SM:	Chic	cken											
	387	<400)> SI	EQUE	ICE:	3												
	389	Met	His	Gly	Arg	Arg	${\tt Pro}$	${\tt Pro}$	Arg	Ser	Ala	Ala	Leu	Leu	Leu	Leu	Leu	
	390	1				5					10					15		
	393	Leu	Leu	Leu	Thr	Ala	Ala	Ala	Ala	Ala	Gln	Asp	Arg	Asp	Leu	Arg	Gln	
	394				20					25					30			
	397	Pro	Gly	Pro	Lys	Gly	${\tt Gln}$	Lys	Gly	Glu	Pro	Gly	Asp	Ile	Lys	Asp	Val	
	398			35					40					45				
	401	Val	Gly	Pro	Arg	Gly	Pro	Pro	Gly	Pro	Gln	Gly	${\tt Pro}$	Ala	Gly	Glu	Gln	
	402		50					55					60					
	405	Gly	Gln	Arg	Gly	Asp	Arg	Gly	Glu	Lys	Gly	Glu	Lys	Gly	Ala	Pro	Gly	
•	406	65					70					75					80	
	409	Pro	Arg	Gly	Arg	Asp	Gly	Glu	${\tt Pro}$	Gly	Thr	${\tt Pro}$	Gly	Asn	Pro	Gly	Pro	
	410					85					90					95		
	413	Pro	Gly	${\tt Pro}$	Pro	Gly	Pro	${\tt Pro}$	Gly	Pro	Pro	Gly	Leu	Gly	Gly	Asn	Phe	
	414				100					105					110			
	417	Ala	Ala	Gln	Met	Ala	Gly	Gly	Phe	Asp	Glu	Lys	Ala	Gly	Gly	Ala	Gln	
	418			115					120					125				
	421	Met	Gly	Val	Met	Gln	Gly	${\tt Pro}$	Met	Gly	Pro	Met	Gly	Pro	Arg	Gly	Pro	
	422		130					135					140					
	425	Pro	Gly	Pro	Thr	Gly	Ala	Pro	Gly	Pro	Gln	Gly	Phe	Gln	Gly	Asn	Pro	
	426						150					155					160	
	429	Gly	Glu	Pro	Gly	Glu	Pro	Gly	Ala	Ala	Gly	Pro	Met	Gly	Pro	Arg	Gly	
	430					165					170					175		
		Pro	Pro	Gly		Pro	Gly	Lys	Pro		Asp	Asp	Gly	Glu		Gly	Lys	
	434				180					185					190	_		
		Pro	Gly	_	Ser	Gly	Glu	Arg		Pro	Pro	Gly	Pro		Gly	Ala	Arg	
	438			195					200			_		205		_		
		Gly		Pro	Gly	Thr	Pro		Leu	Pro	Gly	Val		Gly	His	Arg	Gly	
	442		210	_				215					220		_			
		_	Pro	Gly	Leu	Asp	_	Ala	Lys	Gly				Ala	Pro	Gly		
		225			_		230	_				235		_			240	
		Lys	Gly	Glu	Ser		Ser	Pro	Gly	Glu		Gly	Ser	Pro	Gly	Pro	Met	
	450		_			245				_	250	_	_		_	255		
		Gly	Pro	Arg	_	Leu	Pro	Gly	Glu	_	GLY	Arg	Pro	GLY		Ser	GTA	
	454				260	_		_	_	265	_	_		_	270	~-	_	
		Ala	Ala		Ala	Arg	GLy	Asn		GLy	Leu	Pro	Gly		Ala	Gly	Pro	
	458	_		275			_		280		_			285			_	
		Pro	_	Pro	Val	Gly	Pro		Gly	Ala	Pro	GLY		Pro	GLY	Ala	Pro	
	462	~~	290	_	~-	~-		295	_	1	~-		300	~ ~	_	~ 3	~ 3 -	
	465	GIY	ser	Lys	GLY	Glu	Ala	GIY	Pro	Thr	GLY	Ala	Arg	GLY	Pro	Glu	GTÅ	•

RAW SEQUENCE LISTING ERROR SUMMARY PATENT APPLICATION: US/10/534,538

DATE: 02/24/2006 TIME: 12:45:49

Input Set : A:\272331USOPCT.ST25.txt
Output Set: N:\CRF4\02242006\J534538.raw

Invalid <213> Response:

Use of "Artificial" only as "<213> Organism" response is incomplete, per 1.823(b) of New Sequence Rules. Valid response is Artificial Sequence.

Seq#:4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29

VERIFICATION SUMMARY

PATENT APPLICATION: US/10/534,538

DATE: 02/24/2006 TIME: 12:45:49

Input Set : A:\272331USOPCT.ST25.txt
Output Set: N:\CRF4\02242006\J534538.raw