PROJETO 6 - Introdução à Física Computacional - 2020 - Turma 2 LEIS DE KLEPER E O PROBLEMA DE TRÊS CORPOS Data de entrega: 01/07/2020 (quarta feira)

Consideraremos neste projeto o efeito da atração gravitacional entre os planetas e o sol. A força de atração gravitacional, de acordo com a lei da gravitação de Newton, entre um Planeta (massa M_P) e o Sol (massa M_S) é dada por:

$$\vec{F}_G = -G \frac{M_S M_P}{r^3} \vec{r},\tag{0.1}$$

sendo G a constante gravitacional de dimensão $[G] = [L^3T^{-2}M^{-1}]$ e \vec{r} o vetor distância entre o Sol e o Planeta. Como os raios médios das translações dos Planetas bem como seus períodos são números grandes no sistema MKS é conveniente usarmos unidades astronômicas de espaço tempo. A unidade de espaço é o UA (unidade astronômica) (1UA = $1.5 \ 10^{11} \mathrm{m}$), correspondendo à distância média Terra-Sol, a unidade de tempo é o ano (1ano = $3.210^7 \mathrm{s}$), período de translação da Terra. A unidade de massa correspondente pode ser obtida aproximando-se a órbita terrestre como circular, e temos:

$$\frac{M_T v^2}{r}$$
 = f. centrípeta = f. gravitacional = $\frac{GM_SM_T}{r^2}$, (0.2)

então

$$GM_S = v^2 \cdot r = (\frac{2\pi r}{\text{ano}})^2 \cdot r = 4\pi^2 \frac{(\text{UA})^3}{\text{ano}^2},$$
 (0.3)

ou seja $GM_S = 4\pi^2$ nas unidades astronômicas.

Vamos considerar inicialmente o problema de dois corpos (Planeta +Sol). Neste caso a conservação de momento angular (forças centrais) implica num movimento planar. Consideremos o Sol parado na origem $(x_S, y_S) = (0,0)$. A equação de movimento para o planeta (coordenada (x, y) será:

$$\frac{d^2x}{dt^2} = \frac{F_{G,x}}{M_T} = -\frac{GM_Sx}{r^3}; \quad \frac{d^2y}{dt^2} = \frac{F_{G,y}}{M_T} = -\frac{GM_Sy}{r^3}, \tag{0.4}$$

sendo $r = \sqrt{x^2 + y^2}$.

Vamos no presente projeto, ao invés de usarmos o método de Euler-Cromer, usar o **Método de Verlet** que se baseia na expansão Taylor:

$$y(t_i \pm \Delta t) = y(t_i) \pm \frac{dy}{dt_i} \Delta t + \frac{1}{2} \frac{d^2 y}{dt_i^2} (\Delta t)^2 \pm \frac{1}{6} \frac{d^3 y}{dt_i^3} (\Delta t)^3 + \cdots$$
 (0.5)

Somando-se as expressões como os dois sinais obtemos

$$y_{i+1} = 2y_i - y_{i-1} + \frac{d^2y}{dt_i^2} (\Delta t)^2 + O(\Delta t)^4, \tag{0.6}$$

que é uma ordem mais precisa que o método de Euler que usamos até aqui. Contudo aqui temos que calcular o y_2 , e para isto precisamos de y_{-1} . Isto é concertado usando-se, por exemplo o y_2 da expressão "Eulerense" $y_2 = y_1 + v_0 \Delta t$, sendo v_0 a velocidade inicial dada.

TAREFA A: Monte as expressões para usar o método de Verlet e faça um programa que calcule as posições (x(t), y(t)) de um planeta que gira ao redor do sol. Que valor de Δt você precisa ajustar para ter órbita circular?

a1) Considere a tabela abaixo onde temos as massas, raios e excentricidades das órbitas planetárias do sistema solar. A excentricidade (veja figura abaixo) é dada por:

$$\varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a} \tag{0.7}$$

Considere os dados solares:

Planeta	massa (Kg)	raio (UA)	excentricidade
Mercúrio	$2.4 \ 10^{23}$	0.39	0.206
Venus	$4.9 \ 10^{24}$	0.72	0.007
Terra	$6.0 \ 10^{24}$	1.00	0.017
Marte	$6.6 \ 10^{23}$	1.52	0.093
Júpiter	$1.9 \ 10^{27}$	5.20	0.048
Saturno	$5.7 \ 10^{26}$	9.24	0.056
Urano	$8.8 \ 10^{25}$	19.19	0.046
Netuno	$1.03 \ 10^{26}$	30.06	0.010
Plutão	$6.0 \ 10^{24}$	39.53	0.248

Estrela: Sol $\rightarrow M_S = 2.10^{30} \text{ Kg} \approx 10^3 M_{\text{Júpiter}} \approx 3.10^5 M_{\text{Terra}}$.

Calcule por tentativa e erro a velocidade que teria que ter cada planeta para se obter uma

órbita circular. Faça uma tabela da razão $\frac{T^2}{R^3}$ para os planetas (Terceira Lei de Kleper), onde T e R são os períodos e raios das respectivas órbitas (discuta seus resultados).

- **a2)** Execute seu programa para órbitas não circulares e verifique em que condições as órbitas são fechadas ou não. Verifique no caso das órbitas fechadas as três leis de Kleper:
 - 1. Todos os planetas movem-se em órbitas elípticas tendo o Sol num dos focos.
 - 2. A linha que une um planeta ao Sol varre áreas iguais em tempos iguais.
- 3. Se T é o período da órbita e a o semi-eixo maior da órbita então $\frac{T^2}{a^3}$ é constante para todos os planetas.

TAREFA B: Problema de três ou mais corpos. Podemos generalizar o programa anterior para incluir todos os planetas. Para facilitar colocaremos os planetas no plano. Diferentemente do problema de dois corpos a órbita de cada planeta não será mais exatamente periódica. Para testar esta afirmação consideraremos o problema de 3 corpos em que temos a terra (M_T) , Sol (M_S) e Júpiter (M_J) . Neste caso as equações de movimento para a

Terra (x_T, y_T) são:

$$\frac{d^2x_T}{dt^2} = -G\frac{M_S x_T}{r_{T-S}^3} - G\frac{M_J}{r_{T-J}^3}(x_T - x_J),\tag{0.8}$$

$$\frac{d^2y_T}{dt^2} = -G\frac{M_Sy_T}{r_{T-S}^3} - G\frac{M_J}{r_{T-J}^3}(y_T - y_J),\tag{0.9}$$

e equações análogas para Júpiter (x_J,y_J) . Em (7) e (8) $r_{T-S}=\sqrt{(x_T-x_S)^2+(y_T-y_S)^2}$ e $r_{T-J}=\sqrt{(x_T-x_J)^2+(y_T-y_J)^2}$ são as distâncias instantâneas Terra-Sol e Terra-Júpiter, respectivamente.

- **b1)** Faça um programa usando o método de Verlet para o problema de três corpos. Calcule a órbita da Terra colocando Júpiter na posição e velocidade que teria caso sua órbita fosse circular (no problema de dois corpos). Mostre que agora diferentemente do problema de dois corpos a órbita terrestre não é mais periódica. Que distâncias típicas a Terra passa a cada ano de sua posição anterior?
 - **b2)** Multiplique a massa de Júpiter por 100 e 1000 e veja os efeitos mais acentuados.
- **b3)** Existe uma faixa relativamente grande do sistema solar com uma grande concentração de asteróides. Alguns deles possuem dados astronômicos conforme a tabela abaixo.

Objeto	raio (UA)	velocidade (UA/ano)
Asteróide I	3.000	3.628
Asteróide II	3.276	3.471
Asteróide III	3.700	3.267

Considere os dados para Júpiter sendo raio 5200 UA e velocidade 2.755 UA/ano. Despreze o efeito dos asteróides em Júpiter e apenas considere o efeito de Júpiter e do Sol os asteróides. Monte as órbitas dos asteróides devido as efeito gravitacionais de Júpiter. Discuta seus resultados. Você já ouviu falar nas lacunas de Kirkwood?

- b3) Coloque os planetas todos juntos (no plano) e brinque com eles !!!
- b4) **Desafio Opcional**: Voce conseguiria fazer um programa que calculasse as coordenas vistas da terra dos planetas ao longo do ano? Voce conseguiria fazer um programa que calculasse as eclipses lunares e solares?