	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Teste 1	Ano letivo 2017/2018	Data 16-11-2017
P.PORTO		Curso Licenciatura em Engenharia Informática	Hora 10:00	
		Unidade Curricular Matemática Computacional II		Duração 1,5 horas

Observações

Este teste é de consulta, pelo que para a sua realização os alunos podem usar:

- · Máguina de calcular.
- · Computador sem chat ou contacto com terceiros.
- · Apontamentos da UC.

Responda de forma clara e sucinta, indicando todos os cálculos que efetuar.

Submeta todos os ficheiros que utilizar no moodle. O nome de cada ficheiro deve começar pelo seu número de aluno.

Bom trabalho! Aldina Correia Eliana Costa e Silva

Questão	1	2	3.1	3.2	3.3	3.4	3.5	3.6	3.7	Total
Cotação	30	20	15	25	20	20	25	25	20	200

1. Considere o número real $x=26\pi\times 10^{-3}$ e a aproximação calculada do seguinte modo:

$$\bar{x} = (n \acute{u}mero\ de\ aluno) \times 10^{-8}$$

Determine:

- 1.1. O erro absoluto:
- 1.2. O erro relativo e a percentagem de erro;
- 1.3. O número de casas decimais significativas da aproximação;
- **1.4.** O número de algarismos significativos da aproximação.
- 2. Considere as seguintes aproximações obtidas por arredondamento:

$$\bar{x} = -1.520 \times 10^{-3}$$
; $\bar{y} = (número de aluno) \times 10^{-5}$.

Seja
$$f(x,y) = x \cdot \ln(y+1)$$
.

Calcule o limite superior para o erro absoluto de $f(\bar{x}, \bar{y})$.

- 3. Considere a base de dados *Dados_Pordata.xlsx*, disponível no *moodle*, que apresenta a percentagem de computadores no ensino básico e secundário com ligação à internet desde o ano de 2002 até 2016. Nas seguintes questões utilize apenas os dados relativos às percentagens totais.
 - 3.1. Represente graficamente os dados usando o
 - **3.2.** Escreva o polinómio de Lagrange de grau 2 mais adequado para aproximar a percentagem de computadores no ano de 2011.
 - 3.3. Calcule uma aproximação para a percentagem de computadores no ano de 2011 usando um polinómio interpolador de grau 12.
 - **3.4.** Calcule uma aproximação do erro cometido na alínea anterior.
 - **3.5.** Deduza o sistema de equações necessário para construir a *spline* de ordem 2, usando os anos de 2010, 2012 e 2013.
 - **3.6.** Usando 3 pontos adequados escreva a expressão da *spline* linear para aproximar a percentagem de computadores no ano de 2011.
 - 3.7. Use *splines* cúbicos naturais para interpolar a percentagem de computadores no ano de 2011.

ESTG-PR05-Mod013V2 Página 1 de1