## EE 452 – Power Electronics Design, Fall 2021 Homework 3

Due Date: Thursday October 28th 2021, 11:59pm Pacific Time

Instructions. You must scan your completed homework assignment into a pdf file, and upload your file to the Canvas Assignment page by the due date/time above. All pages must be gathered into a single file of moderate size, with the pages in the correct order. Set your phone or scanner for basic black and white scanning. You should obtain a file size of hundreds of kB, rather than tens of MB. I recommend using the "Tiny Scanner" app. Please note that the grader will not be obligated to grade your assignment if the file is unreadable or very large.

**Description** In Problems 1–3 on the next page, the input voltage  $V_g$  is dc and positive with the polarity shown. Specify how to implement the switches using a minimal number of diodes and transistors, such that the converter operates over the entire range of duty cycles  $0 \le D \le 1$ . The switch states should vary as shown in Fig. 1. You may assume that the inductor current ripples and capacitor voltage ripples are small. For each problem, do the following:

- (a) Realize the switches using SPST ideal switches, and explicitly define the voltage and current of each switch.
- (b) Express the on-state current and off-state voltage of each SPST switch in terms of the converter inductor currents, capacitor voltages, and/or input source voltage.
- (c) Solve the converter to determine the inductor currents and capacitor voltages, as in Chapter 2.
- (d) Determine the polarities of the switch on-state currents and off-state voltages. Do the polarities vary with duty cycle?
- (e) State how each switch can be realized using transistors and/or diodes, and whether the realization requires single-quadrant, current-bidirectional two-quadrant, voltage-bidirectional two-quadrant, or four-quadrant switches.



Figure 1: Switch control method for Problems 1–3.



Circuit for Problem 1.



Circuit for Problem 2.



Circuit for Problem 3.