FLOOD DAMAGE ANALYSIS PACKAGE DESCRIPTION USER GUIDANCE AND EXAMPLE(U) HYDROLOGIC ENGINEERING CENTER DAVIS CA R CARL ET AL. JAN 86 HEC-TD-21 10-8164 736 1/2 UNCLASSIFIED NL ' F/G 13/2 =

MICROCOPY RESOLUTION TEST CHART

The Hydrologic Engineering Center

FLOOD DAMAGE ANALYSIS PACKAGE

Description, User Guidance and Example

AD-A164 736

BTIC FILE COPY

STIC SELECTE FEB 2 5 1986

Training Document No. 21

January 1986

Approved for Public Release. Distribution Unlimited.

86 2 25 002

TRAINING DOCUMENT NUMBER 21

FLOOD DAMAGE ANALYSIS PACKAGE

Description, User Guidance and Example

January 1986

The Hydrologic Engineering Center Water Resources Support Center U.S. Army Corps of Engineers 609 Second Street Davis, California 95616 (916) 551-1748 or FTS 460-1748

FLOOD DAMAGE ANALYSIS PACKAGE (FDA)

TABLE OF CONTENTS

		Page	a
I.	Intro	oduction	_
	A.	Purpose of the Package	
	В.	Background and Overview	
	C.	Acknowledgements	
II.	Flood	d Damage Computation Overview	
	A.	Basic Approaches	
	В.	Flood Damage by Frequency Method	
III.	HEC I	Flood Damage Analysis Package	
	A.	Basic Components	
	В.	Terminology	
	C.	Parametric Relationships Used in the Package 10	
		1. Flow-Frequency Data	
		2. Elevation-Discharge Data	
		3. Elevation-Damage Data	
		4. Expected Annual Damage Computations	
	D.	Typical Applications of the Package	
		1. Future Watershed Urbanization	
		2. Storage Reservoirs	
		3. Flood Plain Management Actions and Policies 13	
		4. Channel and Levees	
IV.	Stud	ly Management	
	A.	Organizational Matters	
	В.	Computer Program/File Management	
	c.	Data Management	
	٠.	Data Hanagement	
V.	Refe	erences	-
	Appe	endices	
	A.	Data Management	
		1. Introduction	
		2. DSS Description	
		3. Application Programs	
		a. Description	,,,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
		b. Creating a DSS file	
		c. Accessing a DSS file	,000
		and the second s	. , or
		Special Specia	al

TABLE OF CONTENTS (cntd)

		d.	TCT -	and Da	ha Ma	.4:6	::																Page
		e.		and Da Link																			
			(1)	Flow-	Fregu	uenc	· v																28
			(2)	Eleva																			31
			(3)	Eleva	tion	- Dan	nage	e Da	ta														32
	4.	Sum	mary															•	•				35
В.	Sup	plem	entary	/ User	Docu	umer	ıtat	ion															36
	1.	Int	roduci	ion .																			37
	2.			ntary																			37
	3.			ntary																			38
	J.	Sup	bremei	ical y	DANCI	nL (/SEL	111	101	. IIId	LI	.011		•	•		•	•	•	•	•	•	36
C.	Flo	od D	amage	Analy	sis l	Pack	tage	- •	Apı	li	ca	ti	on	E	ха	mp]	le	•	•	•	•	•	40
	1.	Pur	pose																				41
	2.		•	 Descri																			41
	3.			ion of																			41
	4.																						41
	5.			 nageme																			
	6.																						41
	Ο.	Stu	uy Pro	ocedur	e.	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	43
		а.	Formu	ılate	f1000	d da	mag	se m	it	iga	ti	.on	a	1t	er	nat	iv	es					44
		b.	Selec	et dam	age i	inde	x Ī	loca	tio	ons	;												44
		С.	Assig	gn alp	hanur	meri	lc i	den	til	fie	rs	f	or	đ	at	a n	nan	ag	eme	ent	: .		45
		d.		e the														_					
				all																			45
		e.		ıte ba																			49
		f.		in cro																			57
		g.		rmine															•	•	•		66
		h.	-	ite el idex 1				nage						-									66
		i.		ite th nditio			ed:	ann	ua]	L d	an	ag	9	fo	r	the	b	as	е				78
		j.		st pro															•	•	•	•	, ,
		J.		f need																			99
		k.		late a																			
		1.		late a																			
		m.		late a																			
		m.																					
			L 1 200	iproof	SUIT	ui il		•	•	٠.	•	•	•	E.	•		•	•	•	٠	•	٠	120
		ο.		ite th																			121
			a .	lterna	CIVE	ອ .				•										•	•	•	121

LIST OF FIGURES

Figure	Title	Page
1	Basic and Derived Relationships	5
2	Flood Damage Analysis Package	9
3	Silver Creek, Vicinity of Riverton	42
4	Damage Index Location, Riverton	46
5	Riverton Cross-section At River Mile 49.0	58
6	Base Condition Frequency Curves, Silver Creek	91
7	Base Condition Rating Curve, Silver Creek R.M. 49.0	92
8	Base Condition Elevation-Damage, Silver Creek, RCH 1	93
9	Gated Reservoir Frequency Curve	115
10	Channel Improvement At River Mile 49.0	125
11	Damage-Frequency Functions for the Base Plus Four Plans	141
	I TOT OF TARIFC	
	LIST OF TABLES	
<u>Table</u>	LIST OF TABLES Title	<u>Page</u>
<u>Table</u>		
	Ţi <u>tle</u>	6
1	Title Effect of Flood Plain Management Measures	6
1 2	Title Effect of Flood Plain Management Measures	6 27
1 2 3	Title Effect of Flood Plain Management Measures	6 27 44
1 2 3 4	Title Effect of Flood Plain Management Measures	6 27 44 45
1 2 3 4 5	Title Effect of Flood Plain Management Measures	6 27 44 45 49
1 2 3 4 5	Title Effect of Flood Plain Management Measures	6 27 44 45 49 66 66
1 2 3 4 5 6	Title Effect of Flood Plain Management Measures	6 27 44 45 49 66 66 67

Introduction

A. Purpose of the Package

見されているとは、簡単でなっつつこの問題ではな

The purpose of the Flood Damage Analysis (FDA) Package is to link hydrologic and economic computer programs developed by the Hydrologic Engineering Center (HEC). The programs are linked through a data management system, developed by HEC, which is called the Hydrologic Engineering Center Data Storage System (HECDSS) or the Data Storage System (DSS). This linkage facilitates the automatic transfer of data between computer programs with minimal effort by the analyst. Instead of manually entering data, the analyst assigns an alphanumeric label to the data and that label is used to store and retrieve data. The HEC has completed the development and documentation of this coordinated, linked family of programs.

B. Background and Overview

Flood damage analysis is performed to provide quantitative information on the social cost of flooding and to provide a basis for formulating, evaluating, and implementing a range of remedial construction projects and other management actions. Flood damage potential assessments of existing flood plain development provide the basis for identifying critical problem areas and for development of actuarial insurance premiums for government and private industry. Damage appraisals performed in the aftermath of flood events provide the data used as the basis for the efficient and equitable allocation of relief funds and other emergency assistance. Damage estimates of potential future development scenarios can encourage local government agencies and private individuals to make wise land use decisions considering the flood hazard consequences. Several types of analysis for a range of development conditions and careful segmenting of damageable areas are required to meet these information needs.

For a number of years, the HEC has been active in developing a variety of computer programs to meet these needs. The programs have been used extensively individually and occasionally congruently. Recent developments in data management computer software have provided an opportunity to link these programs in a highly efficient data file management mode that now permits packaging (in a conceptual analysis sense) to form a coordinated, linked family of flood damage analysis programs.

The programs collectively provide capability for flood damage analysis for the full range of structural and nonstructural flood plain management measures. The package presently includes three computer programs for performing hydrologic engineering analysis, three programs for flood damage analysis, and the HEC Data Storage System. Evaluation of structural measures such as reservoirs, channels, levees, diversions, and non-structural measures such as flood proofing, structure relocation, and management of future development can be accomplished by the appropriate use and linking of the programs. The programs may be used individually, or in any needed combination, and the system can accommodate direct data input as might be available from computer programs in use by others or from published data.

This document briefly overviews the basic concepts of flood damage computations, describes the coordinated linked set of programs (referred to as

the Flood Damage Analysis Package), and provides suggested study procedures to efficiently use the package. Also included are supplementary user documentation as needed, data management information and a complete narrated and executed example.

The package of programs is maintained and distributed by the Hydrologic Engineering Center, Water Resources Support Center, U.S. Army Corps of Engineers, 609 Second Street, Davis, California 95616.

C. Acknowledgements

This document was prepared as part of the continuing Hydrologic Engineering Center Research and Development actities directed to improving the Corps capability to perform comprehensive, efficient and cost effective flood damage analysis. The research is an element of the Corps Civil Works Research and Development program. The research effort is ongoing and it is anticipated that the "package" described herein will continue to grow in capability and useability. Near term efforts are being devoted to developing more simplified, higher level user control of files and computer processing to make the package easier to use while requiring less computer specific processing expertise by the user. Several important technical additions are also planned for the near future. Suggestions are welcomed.

This document was prepared by several persons. Mr. Brian Smith, formerly with the HEC, Robert Carl and Darryl Davis developed the basic text. Mr. Carl developed the illustrated example based on a case example prepared for the HEC by the Ft. Worth District, Flood Plain Management Services Section. The development of the flood damage analysis computer programs and documentation, such as this training document on the "package," is under the supervision of Darryl W. Davis, Chief, Planning Division. Substantial contributions to the development of the flood damage analysis computer programs has been by Harold Kubik, Chief, Computer Support Office, and Michael Burnham, Hydraulic Engineer and Rochelle Barkin, Computer Systems Analyst, Planning Division. Mr. Bill S. Bichert was the Director of the HEC throughout the duration of this project.

II. Flood Damage Computation Overview

A. Basic Approaches

Expected annual flood damage computations may be performed by two distinctly different approaches. One is to develop a chronologically long period of annual damage values and compute the average value. The value may be derived either from historic records of incurred damage data or simulation of damage as it might occur on an annual basis. Projects and other management measures are evaluated in terms of their expected effect on the chronologically long period of annual damage values.

Another approach to annual damage computations is to develop the data in a way that determines the potential for damage from specific flood events and weights the damage values with the probability that these events might be exceeded. The result is the expected annual damage value (sometimes referred to as average annual damage). Projects and other management actions are evaluated by determining their expected effect on the basic relationships that determine the damage in any year and then recomputing the expected annual damage. This latter approach, often referred to as the frequency method, is the primary reason that the Flood Damage Analysis Package has been developed.

B. Flood Damage By Frequency Method

The Expected Annual Flood Damage Computation (EAD) Users Manual (3) describes the frequency method, illustrates basic concepts with charts, and provides guidance for developing data to perform the computations. This section contains excerpts from that material. The reader is referred to the EAD manual for a more complete discussion of the method.

The frequency method is based on the principle that flood damage to an individual structure, group of structures, or damageable property within a flood plain reach can be estimated by determining the dollar value of flood damage for different magnitudes of flooding and by estimating the percent chance of exceedance of each of these flood magnitudes. The damage caused by a single flood event of known magnitude is estimated directly from a damage relationship. When it is desired to compute the damage which can be expected in an average year, then the damage corresponding to each magnitude of flooding is weighted by the probability of each being exceeded (damage caused by rare events are thus weighted less). The sum of the weighted damage represents the expected annual flood damage. The objective of much of the preparatory technical analysis is the development of an exceedance frequency-damage relationship that subsequently can be integrated numerically to yield the expected annual value.

There are several different combinations in which the stage, flow, damage and frequency data can be expressed to develop the final frequency-damage relationship. The simplest way is to relate stage or flow to damage and to relate stage or flow to exceedance frequency. The common parameter, stage or flow, can be used to relate damage to exceedance frequency. If the damage and frequency data are not directly related to a common parameter, then another relationship must be used. This is commonly a stage-flow relationship. Thus, if damage is expressed as a function of stage and exceedance frequency as a function of flow, damage can be related to frequency with the stage-flow function. Figure 1, taken from (3), summarizes the basic technical analysis

needed, derived functional relationships, and general processing to develop the damage-exceedance frequency function.

Because stage, flow, frequency and damage relationships vary along a river, it is common practice to divide a river into reaches and designate a set of these relationships to represent the stage, flow, frequency and damage data for a reach. An index location is selected within the reach and a single stage or flow-frequency relationship and stage-flow relationship are applied at that location and considered representative of these variables for the entire reach. In the case of damage, several relationships are usually used, each representative of a particular damage category.

One reason for computing flood damage is to evaluate several basin conditions. A typical analysis includes the determination of expected annual damage for without conditions. Appropriate simulations must be performed including (as needed) reservoir operations, channel improvements, levees, diversions, etc. If it is forecast that future development (i.e. increased urbanization) will occurr in the basin or that flood plain occupants will enjoy an increase in affluence, the without condition must be evaluated in terms of equivalent annual damage. Regulations prohibit the inclusion of inflation (or deflation) in the economic evaluations. However, to compute equivalent annual damage, the present value of damage at some future points in time must be determined and then it must be amoritized into an equivalent annual value. This establishes the expected annual damage for without conditions.

A principal reason for computing flood damage is to determine the effectiveness of different flood plain management plans in reducing damage. If significant damage occurs in the basin, responsible agencies will try to formulate measures to reduce it. These measures might include building a reservoir, modifying the channel, or floodproofing structures. To evaluate these measures, the analyst will define several flood damage mitigation plans. Bach plan will consist of one or more damage reduction measures. This reduction commonly is referred to as an inundation reduction benefit and is measured as the difference in expected annual flood damage with and without a plan. Different management plans alter the stage, flow, frequency, and/or damage relationships in different ways. Table 1 summarizes these concepts and changing relationships. With a modified relationship the damage is different, usually lower, than without the plan. Thus, for any plan which causes a change which can be quantified, damage with the plan can be computed.

The HEC flood damage analysis package has tied specific HEC programs together through the mechanism of an HEC-developed data management system in such a way that all the relevant functions can be developed and computations performed in a highly automated yet user controlled manner. The next section describes the overall structure for the package and briefly reviews the individual components.

III. HEC Flood Damage Analysis Package

A. Basic Components

The HEC Flood Damage Analysis Package is schematically illustrated in Figure 2. The package is comprised of the following computer programs:

1. Hydrologic Analysis Computer Programs

- o HEC-1 Flood Hydrograph Package (5); simulates rainfall-runoff, simple reservoirs and hydrologic channel routing; used to develop existing, without conditions, and modified conditions flow-frequency curves.
- o HEC-2 Water Surface Profiles (15); computes steady-state, uniform flow profiles; used to develop elevation-flow rating curves.
- o HEC-5 Simulation of Flood Control and Conservation Systems (11); simulates complex reservoir systems; used to develop existing, without and modified flow-frequency curves.

2. Flood Damage Analysis Computer Programs

- o SID, Structure Inventory For Damage Analysis (12); processes inventories of structures located in the flood plain; used to develop elevation-damage relationships.
- o SIDEDT, Structure Inventory For Damage Analysis Edit Program (13); edits structure inventory and damage function files used for the SID program.
- o DAMCAL, Damage Reach Stage-Damage Calculation (2); performs same analysis as SID except based on a geographic (spatial) unit; used to develop elevation-damage relationships.
- o Expected Annual Damage Computation EAD (3); computes expected (or equivalent) annual damage and inundation reduction benefits; used to compare flood damage mitigation plans.

3. HEC-DSS (Data Management) Utility Programs

- o PIP, Interactive Paired-Function Input Program (10); directly inputs paired function relationships to a DSS data file, for example, an elevation-damage relationship derived by hand from field data..
- o DSSUTL, HEC-DSS Utility Program (8); provides the means of performing utility functions on data stored in the HEC-DSS data file, for example, cataloging, editing, and deleting data.
- o DSPLAY, HEC-DSS Display Program (8); Provides the means to tabulate and plot data stored in a HEC-DSS data file.

Figure 2 Flood Damage Analysis Package

If flood damage computations are based on conventional structure inventories, then a structure file is constructed based on a field inventory of structures vulnerable to flood damage. If damage computations are spatially based, then a grid cell data bank is constructed. It is possible that both damage approaches may be used for a given study, in which case both files will exist. HEC's Data Storage System is a set of software that allows the user to store data in a file and manage that data. The components are described in more detail later in this section and the capabilities of each component are summarized in Appendix A.

B. Terminology

The basic terminology used to define the flood magnitude, frequency and damage vary among Corps Districts. For the FDA package, the water surface descriptors are stage and elevation. Stage is used herein as a term to represent both the situation in which a local datum is used for each location in the study area and also for the more general case of a common datum for the entire study area. In the latter case, "elevation" is often used by others as an appropriate term. This document uses stage and elevation interchangeably. It is desirable for all participants in a study to use "elevation" based on common datum. An exception to this is the stage-damage functions (or stage-percent damage functions) input to the SID program. They usually reference the first floor as a stage of zero. The aggregated elevation-damage relationships for each reach are then computed from the known first floor elevation.

C. Parametric Relationships Used in the Package

The package of programs and data management elements are designed to be used as an integrated set, as partial separate elements, or even as a final repository/processing capability for data developed by other programs or procedures. It is envisioned that each of the hydrologic engineering and flood damage function development programs would be used independently by the specialist working in their respective areas. For example, a hydraulic engineer will determine elevation-discharge rating curves at selected locations using HEC-2 and store the curves in the DSS data file. Simultaneously, an economist will inventory structures in the flood plain to compute elevation-damage relationships for those same index locations using SID and store the curves in the same DSS data file. Other analyses also will be performed simultaneously (such as rainfall-runoff and reservoir systems) and the pertinent parametric relationships (flow-frequency curves) stored in the same DSS file. Each of the analysts must meet with the study manager to establish:

- (1) a list of index locations at which the pertinent relationships will be computed, and
- (2) a convention for the alphanumeric labels which will identify the locations, the damage alternative plans, and the study (this is discussed in Appendix A).

The basic concept is that each of the major data types is developed by the applicable computer programs and the results written to the DSS file with

The basic and derived evaluation relationships are shown above. Concepts important to their construction are described herein.

Stage-flow Relationship: This is a basic hydraulic function that shows for a specific location, the relationship between flow rate and stage. It is frequently referred to as a "rating curve" and is normally derived from water surface profile computations.

Stage-Damage Relationship: This is the economic counterpart to the stage-flow function and represents the damage which will occur for various river stages. Usually the damage represents an aggregate of the damage which could occur some distance upstream and downstream from the specified location. It is usually developed from field damage surveys.

Flow-Frequency Relationship. This defines the relationship between exceedance frequency and flow at a location. It is the basic function describing the probability nature of stream flow and is commonly determined from either statistical analysis of gaged flow data or through watershed model calculations.

Damage-frequency Relationship: This relationship is derived by combining the basic relationships using the common parameters stage and flow. For example, the damage for a specific exceedance frequency is determined by ascertaining the corresponding flow rate from the flow-frequency function, the corresponding stage from the stage flow function and finally the corresponding damage from the stage-damage relationship. Any changes which occur in the basic relationships because of watershed development or flood plain management measure implementation will change the damage-frequency function and therefore the expected annual damage that is computed as the integral of the function (area underneath).

Other functional Relationship: The flow-damage relationship is developed by combining the stage-damage with the stage-flow relationship using stage as the common parameter. The stage frequency relationship is developed by combining the stage-flow with the flow-frequency relationship using flow as the common parameter. The damage-frequency relationship could then be developed as a further combination of these derived relationships.

Figure 1 Basic and Derived Relationships

Table 1: Effect of Flood Plain Management Measures

Impacted Relationship1

<u>Measure</u>	Stage- flow	Stage- Damage	Flow- Damage	Flow- Frequency	Damage- Frequency
Reservoir ²	NC	NC	NC	M	M
Levee or floodwall ²	M	M	M	Мз	M
Channel Modification ²	M	NC	M	Мэ	M
Diversion ²	NC	NC	NC	M	M
Flood Forecasting	NC	NC	NC	M	M
Flood Proofing	NC	M	M	NC	M
Relocation	NC	M	M	NC	M
Flood Warning	NC	M	M	NC	M
Land Use Control ⁴	NC	W	M	H	M

- 1 The following codes apply to the table above:
 - NC = No Change in parametric relationship
 - M = Modification to parametric relationship
- Long-term effects resulting from a change in stream regime induced by these measures could affect the basic stage-flow relationship and thus other derived relationships at some future date.
- Elimination of significant amounts of flood plain storage can result in downstream effects on flow-frequency relationship.
- The impact indicated is that which would occur to a future condition in the absence of the measure.

The basic relationships that comprise the frequency method (Figure 1) are developed in a variety of ways by Corps field offices. Most analysts derive the stage-flow (rating curve) by computing water surface profiles with one of the readily available computer programs. Some analysts combine the stage-flow and stage-damage steps in an alternative approach wherein flow lines (flood plain outlines for a range of flood events) are drawn on maps, potential damage identified within the flooded areas, and flow-damage relationships developed directly. More commonly, stage-damage relationships are developed through an inventory process (of individual or groups of structures), and then the inventory results are aggregated to form one or more categories of damage relationships. Flow-frequency is developed through either direct analysis of historic records or by use of computations with hydrologic models, or a combination of both. Corps field offices often manipulate the resulting functions with their own annual damage computer programs or use one or more of the HEC programs.

appropriate identifying labels. The data can then be subsequently retrieved and used by other computation programs if the appropriate identifying label is input to the program.

1. Flow-Frequency Data

The hydrologic engineer will perform conventional analysis to develop a rainfall-runoff model (HEC-1) of the study area and set the program to run in the multi-plan evaluation mode (see HEC-1 User's Manual). Execution would cause the base condition and subsequent alternative conditions flow-exceedance frequency curves developed automatically during HEC-1 program execution to be written to the DSS file with the appropriate identifying labels. If reservoir system operation is an element of the study, then hydrographs would instead be written to the DSS file for subsequent retrieval and operation with the HEC-5 program. The HEC-5 program is then executed for the alternatives of interest in its plan evaluation mode (see HEC-5 User's Manual) and the subsequent flow-frequency results written to the DSS file with the appropriate identifying labels.

2. Elevation-Discharge Data

Water surface profile computations would be performed conventionally. After completion of calibration analysis, HEC-2 is executed for the stream conveyance alternatives of interest using the multiple profile mode (see HEC-2 User's Manual) and the resulting elevation-flow results written to the DSS file with appropriate pathname labels.

3. Elevation-Damage Data

Two alternatives are possible for development of elevation-damage relationships using programs in this package. One is conventional structure inventory based (SID) and the other is geographically (spatially) based (DAMCAL) using a grid cell data bank. The subsequent elevation-damage function development capability is virtually identical for both. Damage functions may be developed by reach, by damage category and for a wide range of non-structural flood plain management measures. References are available describing an overview of spatial versus inventory approach (4), guidance on preparation of grid cell data banks (7), and examples of the application in Corps studies (14). Other analysis features are available for hydrologic and economic aspects of studies using the spatial approach but are not discussed herein. Reference (6) is a descriptive overview of the spatially-based HEC-SAM system. Regardless of the approach taken the program (SID or DAMCAL) is executed for the without condition and then with alternatives of interest and the computed results written to the DSS file with the appropriate identifying labels. The user's manuals for SID and DAMCAL describe their specific capabilities and provide instructions for their use.

The SIDEDT program is a specially designed editor that can manipulate the structure inventory data file that would be developed for use with SID. It has capabilities to enable easy data editing to correct errors, updating by any number of mathematical operations and windowing out data sets for a more geographically confined analysis.

These programs are generally considered to be intermediate steps to annual damage computations but the careful analyst can develop very useful plan

formulation/evaluation data as a by product to development of the elevation damage functions. For example, the analyst could compute such data as the damage resulting from specific frequency-flood events and the number of inundated structures (or acres of land) by category and flood frequency zone using either SID or DAMCAL.

4. Expected Annual Damage Computations

At this point, the DSS file contains flow-exceedance frequency, elevation flow rating, and elevation-damage potential data for a variety of conditions and alternatives. The final step to compute expected annual damage is the execution of the EAD program for the specific conditions and alternatives desired. The EAD program is executed conventionally except that instead of defining each of the various relationships in an input data file, the appropriate data is retrieved from the DSS file by recalling data sets with the appropriate identifying labels. In effect the annual damage computations are performed by orchestrating the data from the DSS file into groupings needed for the alternative evaluation.

D. Typical Applications of the Package

Various components of the package come into play for specific types of analysis. Selected evaluation situations are described below to provide the reader with the flavor of the significant capability that the integrated package provides. Assume for this discussion that basic computer runs have been made so that the DSS file contains base condition evaluation data of flow-frequency, elevation-flow, and elevation-damage for locations of interest within an area under investigation. Several alternate watershed conditions and alternative flood damage mitigation measures will be evaluated.

1. Future Watershed Urbanization

Increased urban development in a watershed can have a direct effect on storm runoff. To evaluate future runoff impacts, HEC-1 is executed in the multi-plan mode with runoff and routing coefficients representative of both the base condition and projected future conditions. The resulting sets of flow-exceedance frequency data are written to the DSS file. The coefficients for existing and future conditions are developed conventionally through study of historic storms, or through the use of a grid cell data bank - see references (7) and (1) for details. The EAD program is executed, if desired, to determine the effect of future urban development on annual damage by retrieving the future condition frequency curves along with the other base condition data rather than the base condition frequency data.

2. Storage Reservoirs

Storage reservoirs for flood control are of two types - uncontrolled (sometimes referred to as "ungated") where outflow is a function of storage in the reservoir; and controlled (sometimes referred to as "gated") wherein reservoir releases are made based on downstream flow conditions. In the former case, the simple uncontrolled reservoirs to be studied are characterized by storage-outflow routing functions and these are inserted into the HEC-1 data set. HEC-1 is executed and the resulting regulated flow-frequency data are written to the DSS file. In the latter (gated case), inflow data for HEC-5 is derived by alternate means, or HEC-1 is executed to

develop a set of inflow hydrographs using an HEC-1 run set-up similar to that needed for the ungated analysis, except that hydrographs are written to the DSS file. HEC-5 is then executed, retrieving the flow hydrographs from the DSS file and performing a simulation analysis for the proposed storage reservoirs. The resulting flow-frequency data are written to the DSS file.

These regulated frequency curves, along with appropriate rating and damage functions, are then retrieved by the EAD program to determine the reduction in annual damage due to the storage reservoirs. Detailed guidance for performing the modeling needed to evaluate reservoirs is contained in the HEC-1 and HEC-5 user manuals.

3. Flood Plain Management Actions and Policies

Mitigation measures that modify the damage potential of flood plain occupant properties are evaluated with SID and DAMCAL - the specific program used depends on whether spatial data or structure inventory data are used. SIDEDT is used to "window" a larger structure data set to a smaller subset if a subunit of the study area is to be investigated. It is also used to correct and update data contained in a SID file to represent the conditions of interest.

The SID (or DAMCAL) programs are then executed for the mitigation measures of interest (flood proofing, relocation, temporary emergency action, management of future development) and the resulting elevation-damage data written to the DSS file. The EAD program is then executed, if desired, to determine the annual damage reduction resulting from the proposed measures. The full range of these program capabilities are contained in their respective user's manuals (references 12 and 2).

4. Channel and Levees

Channel modifications directly impact on the geometry of the stream conveyance system. The HEC water surface profiles program is therefore the evaluation tool. HEC-2 runs are made for the alternatives of interest, whether clearing and snagging (smoothing roughness) or channel enlargement or straightening or both and the resulting multiple profile data are written to the DSS file. If levees are studied, and their placement adjacent to the stream results in a measurable reduction in conveyance, HEC-2 runs are made for these cases as well and the resulting altered profile data written to the DSS file. The EAD program is then used to retrieve appropriate rating functions and other data to compute the annual damage reduction that would result from the measures. Evaluation of levees alone are often satisfactorily analyzed by adjustment of functions (truncation of damage or frequency functions) at the time of EAD execution and thus need not require re-analysis with other programs.

IV. Study Management

A. Organizational Matters

Studies that are intended to realize the full potential of the Flood Damage Analysis (FDA) package need to be particularly careful to ensure coordination among participating study group members with respect to common data sets, elevation datum, study area partitioning, alternatives to be considered, and naming conventions. Study management and the participating technical analysts should meet early (and often) to adopt the necessary common items. Most often, study participants will work in separate District units, and to a significant degree, independent of others. It is essential that the following be accomplished:

- Assignment of responsibility for coordination of data management activities. This can be performed by any element but can usually best be accomplished by the staff of the coordinating unit - usually a technical assistant to the study manager.
- 2. Agreement on those items that must be coordinated (e.g. damage reaches, index locations, stage/elevation datum, reporting subdivisions, naming conventions, etc.) and the mechanism for ensuring agreement.
- 3. Performance of first-pass coordination on key items to enable study activities to begin.
- 4. Development of a phased work plan schedule for each participant to permit orderly progression of computer processing that is dependent upon data in computer files to be developed by others.

B. Computer Program/File Management

The FDA package programs should all exist on a single computer system so that files may be written in a straight-forward manner. The programs must be the proper versions; e.g. Districts with versions of HEC-1, HEC-2 etc. that do not contain the DSS software system calls will not be able to write data to DSS files. Recent HEC official library versions resident on the Harris 500 (or 1000) and the CDC Cybernet systems have the necessary features incorporated. Other program versions may not. It is prudent to arrange for acquisition/testing of the needed programs early, and to work closely with District ADP elements to ensure availability of needed hardware and dedicated system file space (e.g. disc storage space). The features of the programs that make them linkable through the DSS system are significant. If a District wishes to use their own version of one of the programs that had been modified to accommodate local District practices, the incorporation of the DSS features could be a major and difficult task. It would be best to acquire the official HBC library program with the DSS features already incorporated and then add, at the District level, the local modifications as needed.

Efficient use of the FDA package (or the HEC programs independent of the FDA features for that matter) requires experienced program users. Novices should be trained in the basic use and capabilities of the individual programs (through in-house or other training mechanisms) and then introduced to the more advanced integrated use made available through the FDA package. Technical

assistance from HEC staff may be useful for early aspects of studies. Several Districts have made use of the capability and are likewise valuable contacts for ideas regarding the FDA package, (for example, New York, Ft. Worth, St. Louis, and Little Rock).

C. Data Management

Planning studies which make significant use of computerized analysis are the rule rather than the exception within the Corps of Engineers. Planning studies, by their increasingly comprehensive nature, involve several District elements. Assignments change and staff change positions. Studies that use the FDA Package depend upon data placed in computer files by the several District elements. It is therefore important that each element be businesslike in recording at regular intervals in notebooks/study files, the status of computer runs, location and conditions for which files were written to the DSS file, and any notations needed to enable the "next person" to continue the study from that point with minimum disruption. File management and archiving for future reference are also important.

Another common tendency in the present highly-computerized environment of studies is to concentrate on making computer runs and obtaining output and files to the neglect of narrative documentation of important assumptions, data adjustment, and insights obtained. It is a useful practice to prepare regularly (along with the recording of the status of computer data and runs described separately) narrative descriptions of these aspects of the study so that they likewise may provide for continuity of study progress should interruptions occur. Even without application of the FDA package, business-like during-study documentation discussed herein is a good idea.

V. References

- 1. Corps of Engineers, U. S. Army, "Application of Spatial Data Management Techniques to HEC-1 Rainfall-Runoff Studies," Hydrologic Engineering Center, Davis, Ca., 1983.
- 2. Corps of Engineers, U. S. Army, "Damage Reach Stage Damage Calculation (DAMCAL) User's Manual," Hydrologic Engineering Center, Davis, Ca., 1979.
- 3. Corps of Engineers, U. S. Army, "Expected Annual Damage Computation (EAD) User's Manual," Hydrologic Engineering Center, Davis, Ca., 1984.
- 4. Corps of Engineers, U. S. Army, "Flood Damage Assessments Using Spatial Data Management Techniques," Hydrologic Engineering Center, Davis, Ca., 1978.
- 5. Corps of Engineers, U. S. Army, "Flood Hydrograph Package (HEC-1) User's Manual," Hydrologic Engineering Center, Davis, Ca., 1981.
- 6. Corps of Engineers, U. S. Army, "Flood Mitigation Planning Using HEC-SAM," Hydrologic Engineering Center, Davis, Ca., 1980.
- 7. Corps of Engineers, U. S. Army, "Guide Manual for the Creation of Grid Cell Data Banks," Hydrologic Engineering Center, Davis, Ca., 1978.
- 8. Corps of Engineers, U. S. Army, "HECDSS, User's Guide and Utility Program Manuals," Hydrologic Engineering Center, Davis, Ca., 1983.
- 9. Corps of Engineers, U. S. Army, "Hydrologic Parameters (HYDPAR) User's Manual," Hydrologic Engineering Center, Davis, Ca., 1978.
- 10. Corps of Engineers, U.S. Army, "Interactive Paired-Function Input Program (PIP) User's Manual," Hydrologic Engineering Center, Davis, CA., January 1986.
- 11. Corps of Engineers, U. S. Army, "Simulation of Flood Control and Conservation Systems (HEC-5) User's Manual," Hydrologic Engineering Center, Davis, Ca., 1983.
- 12. Corps of Engineers, U. S. Army, "Structure Inventory for Damage Analysis (SID) User's Manual," Hydrologic Engineering Center, Davis, Ca., 1982.
- 13. Corps of Engineers, U. S. Army, "Structure Inventory for Damage Analysis Edit Program (SIDEDT) User's Manual," Hydrologic Engineering Center, Davis, Ca., 1983.
- 14. Corps of Engineers, U. S. Army, "Walnut and Williamson Creeks Expanded Flood Plain Information Study," U. S. Army Engineer District, Fort Worth, Texas, Three volumes, May 1980.
- 15. Corps of Engineers, U. S. Army, "Water Surface Profiles (HEC-2) User's Manual," Hydrologic Engineering Center, Davis, Ca., 1982.
- 16. Davis, D. W., "Comprehensive Flood Plain Studies Using Spatial Data Management Techniques", Water Resources Bulletin, American Water Resources Association, paper number 77100, 1980.

Appendix A Data Management

A. Data Management

1. Introduction

This appendix describes data manipulations when using the previously mentioned programs as a package. The traditional manner of performing a study is to prepare data input to a specific applications program in a single, human-readable file, execute the program, obtain computed results printed on paper, and then prepare data input in another-human readable file to another applications program that utilizes computed results from the first program. This method requires the user to manually read results from printed output and enter them as input. This method has the following disadvantages and advantages:

o Disadvantages:

- o The user can easily make an error in transferring the data.
- The user might have to expend considerable time and energy to transfer the data.

o Advantages:

- o The user need not have any knowledge of a data management system.
- o The user does not need data management software. Data management software are generally more computer system dependent than the application programs and thus may not be as available.

When using the Flood Damage Analysis programs as a package, the user must still prepare data input in a human readable file and obtain printed output. However, some input normally entered by the user may be retrieved from a data base file and some output that is printed may also be written to that file. This reduces the amount of user input and allows the user to retain computed results on a computer system and subsequently view and compare alternatives. HEC has developed a data storage system (DSS) that allows the user to transfer data between programs, has modified the application programs to utilize it, and has developed utility programs to manipulate DSS data files. To take advantage of DSS, the user will need to make minor modifications to the job control language (JCL) used to execute the program and to the input data files. These modifications are described in detail later in this section under "Application Programs".

2. DSS Description

DSS is a collection of subroutines that can be called by application programs (such as HEC-1). The programs retrieve from the DSS software or pass to the DSS software some kind of data and associated descriptors. DSS in turn accesses a disk file and either retrieves data from or stores data in that file. The data file remains permanently on the computer system until saved on tape and eliminated by the user. The user can access data in that file by executing an applications program (such as EAD) that will read data from it, or by executing a DSS utility program (such as DSPLAY) that can tabulate or

plot data from it. The description contained herein is very general. The user may obtain more detailed information on the DSS and its utilities from reference (8).

DSS utilizes a direct access (versus sequential) disk file. A direct access file permits more efficient data access than a sequential file when used in a data management environment. The fact that the DSS file is a direct access file is important to the user for two reasons:

- o The data stored in the file is not stored in a human readable format --- the user cannot "list" the file but must execute a program to look at the data.
- o The user may have to create the DSS file in a special way --- this is computer system dependent and will be addressed later under Application Programs.

A DSS file stores data by records. It may contain only one record or as many records as the user wishes. A unique alphanumeric string of 80 or fewer characters identifies each record. This identifier is referred to as a "pathname". There is one pathname for every record and no two pathnames can be identical. The pathname begins and ends with the slash ("/") character and consists of six parts, each separated by a slash ("/"). For discussion purposes, the parts will be identified as A,B,C,D,E, and F. Thus, a possible pathname would be:

/A/B/C/D/E/F/

In practice, pathname parts follow certain naming conventions as shown below:

Pathname	
Part	Description
A	River basin or Project identifier.
В	Location, reach, or gage identifier.
С	Data variable or variables (i.e. FLOW).
E	Year corresponding to data (for Flood Damage Analysis).
F	Alternative name or data variable qualifier.

For instance, if HEC-1 was executed to compute a flow-frequency curve for two plans and those curves were stored in a DSS file, the resulting pathnames for these curves might look like this:

/SILVER CREEK/RCH 1/FREQ-FLOW//1980/BASE/ /SILVER CREEK/RCH 1/FREQ-FLOW//1980/UNGTD RES/

DSS data records internally follow certain conventions. They include regular time series, irregular time series, and paired function data. The user need not know much of anything about these conventions other than that they exist. To perform flood damage analysis, the user need utilize only the paired function convention. Paired data is data that represents a two variable relationship. The relationships used in flood damage analysis include: flow-frequency, stage-discharge, and stage-damage. One or more paired data curves

may be stored in a single DSS record. However, each record contains data for only one location, one alternative or plan, and one point in time (year). A record may contain more than one curve if one variable has a single set of ordinates. SID and DAMCAL are the only Flood Damage Analysis programs that store multiple curves in a single DSS record. They generate stage-damage curves where, for a single set of stages, there might be several corresponding sets of damage values such as residential, light commercial, and heavy commercial.

The regular time series convention is not required for the flood damage analysis package but may be beneficial to the user in the application of HEC-1 or HEC-5. This convention is used to store hydrographs containing ordinates spaced uniformly in time. Thus, the user could store and compare flood hydrographs for several plans for each ratio.

Each DSS record is comprised of two parts: a header and a data area. The data area contains application program input or output such as flow hydrographs or paired functions. The header part contains index or descriptive information for the data. This includes such things as the data units (CFS, FEET, ...), data type (average for the period, instantaneous, or probabilistic), and the number of values or ordinates.

When using the Flood Damage Analysis Package, the user must maintain the integrity of the DSS data file. As with any other file, it can be damaged by a computer system crash, a user directed application program abort, or an involuntary application program abort. File integrity is maintained by software within the DSS system and by the user maintaining backup files. DSS software performs file pointer cleanup when an application program aborts. Under some conditions, a computer system crash may irreparably damage a DSS file and require that the user generate a new file from a backup file.

Any analysis will require archiving study materials. Computer files may be archived in conjunction with normal, periodic system backup by ADP support personnel or as a result of specific user instruction. It usually involves storing data on a low cost, mass storage device such as a magnetic tape. The tape may be written in different formats ranging from very efficient but computer system dependent to less efficient but computer system independent. Application program input data, program source code, and output may be stored in any of the above formats. However, application program executables and DSS data files may only be stored in a computer system dependent format. If the user anticipates archiving data that will be subsequently transferred to a different system, the data and source codes must be selectively stored. A DSS file can be recreated on another computer system by:

- o Bither re-running all application programs on that system.
- o Or creating human readable system independent files of data to transfer between systems.

The creation of a system transferable file requires the use of the DSS utility program DSSUTL (8) to retrieve data from a DSS file on the original system and store it in a transferable file. That file is then transferred to the new system and DSSUTL is used to recreate the DSS file on that system. The user should consult his support personnel for help in archiving data on magnetic tape. Documentation for DSS describes the use of DSSUTL in detail.

3. Application Programs

a. Description

Flood Damage Analysis application programs communicate with each other through a DSS data file. For example, EAD uses frequency curves computed by HEC-1. EAD retrieves those curves by knowing the identification of the data record in the DSS file and the format of the frequency curve data. Some of this information is transparent to the user whereas some information must be supplied by the user. If the user supplies incorrect information, the application program will not obtain the required data and will compute erroneous results. This section will describe the specific user actions required to successfully utilize the DSS linkage.

EAD is the "bottom line" application program. It produces the user's final objective --- either damage for a specific event or expected annual damage. EAD processes computed results from one or more of the following programs: HEC-1, HEC-2, HEC-5, SID, and DAMCAL. Thus, when using the DSS link, EAD can be executed only after at least one of these other programs has been executed. For most applications, the programs HEC-1, HEC-2, HEC-5, SID, and DAMCAL can be executed independently and in any order. There are always exceptions. For example, significant channel modifications may change the stage-discharge rating curve (HEC-2), the storage routing coefficients (HEC-2 results must be used in HEC-1), and the flow-frequency curve (HEC-1). The user may also wish to use the HYDPAR (9) program to develop parameters which would be stored in a DSS file and used as input to HEC-1. In that case, the order of program execution is important --- HEC-2, followed by HYDPAR, followed by HEC-1, followed by EAD.

To utilize DSS, the user must execute the following tasks:

- Generate the DSS file. If the file does not exist, the application programs will generate it using default specifications. It is necessary to generate only one DSS file although it is sometimes helpfull to use more than one file.
- Modify job control language (JCL) to connect the DSS file to the execution of a desired program and the user's input.
- 3. Enter application program input data to trigger the storage or retrieval of data from a DSS file.
- Enter application program input data to define the DSS record identification (pathname) for the desired data.

b. Creating a DSS file

The first step required to use DSS is the creation of a DSS file. This is a system dependent action. The users main goal is to generate a DSS file in such a manner that will maximize data integrity. When more than one person will use the file, the user must insure that the user will not destroy another user's DSS data. The following recommendations are specific to Harris and CDC computers. However, the concepts can be applied to other computers. The Harris computer allows multiple users to simultaneously access the same file whereas a CDC machine allows only single user access.

- o To generate a file on a Harris system:
 - 1. If only one user at a time will access the file, enter:

\$GENERATE, filename, U

This creates an unblocked file called "filename" which can be accessed by only one user at a time.

2. If more than one user will simultaneously access the file, enter:

\$GENERATE, filename, R

This creates a direct access file called "filename" which can be accessed by several users simultaneously.

o To generate a file on a CDC system, the user should enter:

DEFINE, filename/M=W.

This creates a file called "filename" with write access. It is a direct access file that can be used by only one person at a time.

The filename should be three through seven characters starting with an alpha character (A through Z). Many systems allow filenames with eight characters, but some (like CDC) limit them to seven. Also, on the Harris, the DSS system generates a file that inventories the data file pathnames. This file is called a catalog file. Its name is generated by appending the character "C" to the name of the data file. Thus, if the data filename is seven characters, the catalog filename is eight characters.

c. Accessing a DSS File

CANADA CONTROL CONTROL CONTROL OF THE CONTROL OF TH

The second step is to access the DSS file when executing an applications program. This is done through job control language (JCL) and it is computer system dependent. When created, the DSS file is empty. The first execution of an application program must store (write) data to the file and not retrieve (read) data.

To access a DSS file on a <u>Harris</u>: perform "file substitution" at the time of execution. For example, if the DSS file name is "SLVAAEZ", the user executes HEC-1 by entering:

HLIB*HEC1X, DSSFILE=SLVAAEZ

Unfortunately, the programs are not consistent in their use of a file name identifier. Each program is executed with DSS file access by using the following JCL lines where "(filename)" is the name of the users DSS file:

HLIB*HYDPAR, TAPE71=(filename)
HLIB*HEC1X, DSSFILE=(filename)
HLIB*HEC2X, DSSFILE=(filename)
HLIB*HEC5BX, DSSOUT=(filename)
HLIB*SIDX, TAPE71=(filename)

HLIB*DAMCALX, TAPE71=(filename) HLIB*EADX, TAPE71=(filename)

The user may determine the identifier quite easily on the Harris. For example, to determine the identifier for HEC-1, the user would type the following on the computer terminal keyboard:

HLIB*HEC1X,?

HEC-1 would list each local file number (FORTRAN unit), identifier, and default file assignment as shown below.

HLIB*HEC1X,?

DEFA	ULT ASSIGNME	INTS
LFN	KEYWORD	DEFAULT
7	INPUT	*0
6	OUTPUT	LO
8	PUNCH	W8
21	TAPE21	W1
22	TAPE22	W2
23	TAPE23	W3
24	TAPE24	W4
25	TAPE25	W5
32	TAPE32	U2
33	TAPE33	U3
34	TAPE34	U4
35	TAPE35	<i>U</i> 5
36	TAPE36	U6
38	TAPE38	U8
71	DSSFILE	U1

The user would find the local file number 71 or LFN 71 (except for HEC-5 which uses 72) and then find the corresponding identifier to use in the execution JCL (it would be either TAPE71, DSSFILE, or DSSOUT).

To access a DSS file on a CDC machine, the user may either perform file substitution or make a file assignment. File substitution requires the user to know the order of file declarations on the program card within the FORTRAN source code. This information may be difficult to obtain. Thus, the user is encouraged to use the second method of accessing a DSS file as described below. All programs utilize Fortran unit 71 for the DSS file except HEC-5 which stores data on unit 72. In JCL, unit 71 is identified as "TAPE71". To access the DSS file, the user would assign that unit before executing that program. For example, to access the DSS file "SLVAAEZ", the user would enter:

ATTACH, TAPE71=SLVAAEZ/M=W. or ATTACH, TAPE71=SLVAAEZ.

The inclusion of "/M=W" allows the user to write data to the file and it may be eliminated if the user is only reading data from the file.

```
Example JCL files are listed below:
1. Harris --- JCL and input data stored in same file:
          $JOB, HEC1, .....
          HLIB*HEC1X, DSSFILE=SLVAAEZ
            (HEC-1 input data)
          $EOJ
2. Harris --- Input data stored in a separate file (called SLVA01I) from
   JCL:
          $JOB, HEC1, .....
          HLIB*HEC1X, INPUT=SLVA01I, DSSFILE=SLVAAEZ
          $EOJ
3. CDC Cybernet --- JCL and input data stored in same file:
     HEC, CM377000, P=3, T=70.
     USER, CEL7xx, password, KOE.
     CHARGE, CEL7xxx, xxxxx.
     GET, HEC1/UN=CECELB.
     ATTACH, TAPE71=SLVAAEZ/M=W.
     HEC1.
     /*EOR
        (HEC-1 input data)
     /*EOF
4. CDC Cybernet --- Input data stored in a separate file (called SLVA01I)
   from JCL:
     HEC, CM377000, P=3, T=70.
     USER, CEL7xx, password, KOE.
     CHARGE, CEL7xxx, xxxxx.
     GET, HEC1/UN=CECELB.
     ATTACH, TAPE71=SLVAAEZ/M=W.
     GET, SLVA011.
```

HEC1, SLVA011.

/*EOF

d. JCL and Data Modifications

The next steps require the user to enter certain application program input data that will trigger a read or write of data to a DSS file and specify the desired record identifier (called pathname). The user triggers a retrieval (or read) from DSS file by entering one or more "ZR" cards. The "ZR" refers to the card code identifier that is entered in columns one and two of a data input record. Similarly, the user triggers a storage (or write) to DSS file operation by entering one or more "ZW" cards. User input on the ZR and ZW cards define some parts of the DSS pathname, but not all. The user must generally define parts A, E, and F on the ZR/ZW cards. As mentioned earlier, part A defines the Basin or River, E the year that the data represents, and F the alternative or plan identification. When defining parts, leading and trailing blanks are ignored and embedded blanks are significant.

For Flood Damage Analysis, part A will be identical for all application programs for a given study area. Each plan will have an identical F pathname part, and each data year will have an identical E pathname part. Input to each program will be discussed in more detail below. However, it would be helpful to show one example.

For the HEC-1 economic analysis mode, the ZW card defines parts A,E, and F of the pathname. Part A is entered in columns three through sixteen, part E in columns forty-five through forty-eight, and part F in columns seventeen through forty. For discussion purposes, assume a study is being performed in "Bedrock Creek" for the plan "Base", and for the year 1980. HEC-1 writes frequency curves to DSS and EAD will later read those curves. Pathname parts entered on the ZW card for HEC-1 will have to be exactly duplicated on the ZR card for EAD. It so happens that the ZR card for EAD contains pathname part A in columns three through sixteen, and part F in columns seventeen through forty. Examples below depict user input which would trigger DSS interaction.

Valid example:

ZW SILVER CREEK	BASE	1980	
ZR SILVER CREEK	BASE	QF 1	

RAD will be able to read frequency curves written to DSS by HEC-1 because leading and trailing blanks of a pathname part are ignored. DSS software will ignore the leading blank before "SILVER CREEK" on the ZW card and the leading blanks before "BASE" on the ZR card.

Invalid example:

ZWSILVER CREEK BASE BASE 1980
ZRSILVER CREEK BASE QF 1

EAD will not be able to retrieve the frequency curve written by HEC-1 for two reasons:

- o The HEC-1 ZW card contains two blank columns between "SILVER" and "CREEK" whereas the EAD ZR card contains only one.
- o The HEC-1 ZW card contains the year "1980" outside of the required columns forty-five through forty-eight.

The users manuals for programs HEC-1, HEC-5, HYDPAR, SID, and EAD describe DSS input data cards ZR and ZW. Appendix B of this document describes DSS input data cards for the programs HEC-2 and DAMCAL.

Earlier sections of this document describe analysis scenarios and the type of data stored in or retrieved from a DSS file when performing Flood Damage Analysis. In summary, HEC-1 and HEC-5 store flow-frequency curves, HEC-2 stores stage-discharge curves, SID and DAMCAL store stage-damage curves, and EAD reads all of these curves. Storage of computed results essentially duplicates printed output. Retrieval of data from a DSS file replaces user input. Thus, the user may associate certain EAD input cards with data stored in a DSS file. This association for EAD is described later. In general, the user specifies pathname parts A, E, and F on the ZR and ZW cards. The other pathname parts may be either automatically generated by the applications program or entered by the user as a normal input data item even for non DSS jobs. Table 2 summarizes the location of pathname parts entered to each program.

A pathname cannot exceed 80 characters including the "/" (slash) separators. DSS limits individual parts to thirty-two characters. Application programs further limit those pathname parts by allowing a limited number of columns of user input. As a result, the following limitations apply to pathname parts when used in Flood Damage Analysis:

Maximum	number	of	characters
	14		
	6		
	4		
	22		
	Maximum	14 6 4	6 4

TABLE 2: Location of DSS Pathname Parts [1]

		Pathname Part						
	A	В	С	D	E	F		
Program								
HYDPAR	ZW.1-2	SB-5	AG	NA	ZW.6	ZW.3-5		
HEC-1	ZW.1-2	FR.1[2]	AG	NA	ZW.6	ZW.3-5		
HEC-2	ZW.1-2	X1.1	AG	NA	ZW.6	ZW.3-5		
HEC-5	ZW [3]	ID.1-2	AG	NA	ZW [3]	ZW [3]		
SID	ZW.1-2	DR.1	AG	NA	ZW.6	ZW.3-5		
DAMCAL	ZW.1-2	DT.1	AG	NA	ZW.6	ZW.3-5		
EAD	ZR.1-2	[4]	AG [5]	NA	[6]	ZR.3-5		
EAD	ZR.1-2	QF.1	AG	NA	QF.2	ZR.3-5		
EAD	ZR.1-2	QS.1	AG	NA	QS.2	ZR.3-5		
EAD	ZR.1-2	DG.1	AG	NA	DG.2	ZR.3-5		

note:

[1] The part location is identified by the code:

"xx.n-m"

where:

is the card code identifier entered in columns one and two for an application program (i.e. "ZW").

n-m is the field locations on that card. If only one field is occupied, then "-m" is not entered. Sometimes, partial fields are used. That is documented with the detailed card descriptions.

The code "NA" indicates that part is not used and the code "AG" indicates that part is automatically generated by the applications program.

- [2] HEC-1 generates part B from field one of the FR card. If it is blank, then it uses the first field of the preceding KK card.
- [3] HEC-5 requires the user to enter "ZWQF" in columns one through four to store flow-frequency data in a DSS file. Parts A, E, and F are entered in a free format style. For example:

ZWQF A=BEDROCK CREEK, E=1990, F=BASE

- [4] EAD generates part B from field one of the following cards: QF,QS,DG.
- [5] EAD automatically generates part C based on the type of card input: QF,QS, or DG.
- [6] EAD generates part E from field 2, columns nine through twelve of the following cards: QF,QS, or DG.

e. Data Link to the EAD Program

User input which triggers DSS interaction is most critical for the EAD program. This input must exactly agree with that previously entered for the other programs. Therefore, some additional discussion of this link is warranted. It is organized by data type. Example usage is included with each description.

(1) Flow-Frequency

EAD reads flow-frequency data from FR and QF cards. To read flow- frequency data from DSS, the user must execute either HEC-1 or HEC-5:

(la) Execute HEC-1. For example:

HLIB*HEC1X, DSSFILE=SLVAAEZ

A DSS file has been generated and attached to this execution. For example, if the file does not exist, generate it:

\$GE SLVAAEZ R PR PW OD G=100

- A ZW card must be entered after the EC card and after each PN card.
- o The ZW card must contain:
 - o Pathname part A in columns three through sixteen.
 - o Pathname part F in columns seventeen through forty.
 - o Pathname part E in columns forty-five through forty-eight.
- o Pathname part B is entered on each FR card in columns three through eight.
- o Example HEC-1 input:

ID.		
• • •	••	
	••	
EC		
PN	1EXISTING CONDITIONS	
ZW	SILVER CREEK BASE	198
PN	2UNGATED RESERVOIR	
ZW	SILVER CREEK UNGTO RES	198
KK	RCH 1	
FR	RCH 1 16	
QF		
77		

(1b) Execute HEC-5

HEC-5 must be executed in two parts. Example JCL is:

HLIB*HEC5AX HLIB*HEC5BX, DSSOUT=SLVAAEZ

DSS file is generated and attached to this execution. For example, if the file does not exist, generate it:

\$GE SLVAAEZ R PR PW OD G=100

- Appropriate flags are set on the J4 card:
 - o A positive integer is entered in field one of the J4 card.
 - o A "2" is entered in field ten of the J4 card.
- A ZW card is entered after the BF and FC cards.
- The ZW card contains:
 - Pathname part A in free format.
 - Pathname part F in free format. 0
 - Pathname part E in free format.
- Pathname part B is entered on each ID card in columns three through sixteen. Only six characters are entered for flood damage analysis.
- Example HEC-5 input:

T1....

J4 1

CP 2 ID RCH 1

RT

DA ..

DF

DQ

DC ...

ED

BF 2

FC .2

ZW A-SILVER CREEK E-1985 F-GATED RES

EJ

ER

(1c) Execute EAD

The DSS file used for the HEC-1 or HEC-5 job must be attached to the EAD execution. Example JCL is:

HLIB*EADX, TAPE71=SLVAAEZ

- o A ZR card must be entered and contain:
 - o Pathname part A in columns three through sixteen.
 - o Pathname part F in columns seventeen through forty.
 - o The characters "QF" in columns forty-seven and forty-eight.
 - A numeric plan identifier in columns fifty-five and fifty-six (right justified).
 - o Example EAD input for ZR cards:

ZR	SILVER	CREEK	BASE		QF	1
ZR	SILVER	CREEK	UNGTD	RES	QF	2
ZR	SILVER	CREEK	GATED	RES	OF	3

- A QF card must be entered at the location that the FR and QF cards are normally entered. The QF card must contain:
 - o Pathname part B in columns three through eight which is identical to a reach identification entered either in columns three through eight of a FR card in the economics section of the HEC-1 data deck or columns three through sixteen of an ID card in the HEC-5 input data file.
 - o Pathname part E in columns nine through twelve which is identical to that entered in columns forty-five through forty-eight of the HEC-1 ZW card or on the HEC-5 ZW card.
 - o The plan number in columns thirteen and fourteen (right justified). This must agree with the plan number entered on a ZR card.
 - o "-1" in columns twenty-three and twenty-four to instruct EAD to read the flow-frequency curve from a DSS file.
- o Example EAD input data:

ZR	SIL	VER CI	REEK	BASE			QF	1
ZR	SIL	VER CI	REEK	UNGTD	RES		QF	2
ZR	SIL	VER C	REEK	GATED	RES		QF	3
RN	ľ							
FR	RCH	1						
QF	RCH	1198	5 1		-1			
EF	1	1						
QF	RCH	11989	52		-1			
BP		2						
QF	RCH	1198	5 3		-1			
	,	_						

HEC-1, HEC-5, and EAD automatically generate pathname part C to be:

"FREQ-FLOW"

(2) Elevation-Discharge Data

RAD reads elevation-discharge rating curves from SQ and QS cards. To read elevation-discharge data from DSS, the user must:

(1a) Execute HEC-2. Example JCL is:

HLIB*HEC2X, DSSFILE=SLVAAEZ

A DSS file has been generated and attached to this execution. For example, if the file does not exist, generate it:

\$GE SLVAAEZ R PR PW OD G=100

- o A ZW card must be the first input data record.
- o The ZW card must contain:
 - o Pathname part A in columns three through sixteen.
 - o Pathname part F in columns seventeen through forty.
 - o Pathname part E in columns forty-five through forty-eight.

1985

- o Pathname part B is entered on every X1 card in columns three through eight.
- Conditional modifications are made to the J2 and J3 cards.
- o Example HEC-2 input data:

ZW SILVER CREEK BASE
T1
....
X1 49.0

(1b) Execute BAD

EJ

o The DSS file used for the HEC-2 job must be attached to the EAD execution. An example execution of EAD is:

HLIB*BADK, TAPE71=SLVAAEZ

- o A ZR card must be entered and contain:
 - o Pathname part A in column three through sixteen.
 - o Pathname part F in columns seventeen through forty.
 - o The characters "QS" in columns forty-seven and forty-eight.
 - A numeric plan identifier in columns fifty-five and fifty-six (right justified).

- o A QS card must be entered at the location that the QS and SQ cards are normally entered. The QS card must contain:
 - o Pathname part B in columns three through eight which corresponds to the cross-section number entered in columns three through eight of a X1 card in the HEC-2 data deck. HEC-2 stores the section number as a numeric (as opposed to alpha) quantity. It must then convert that numeric quantity to an alpha identification when used as part B of the pathname. This conversion process may slightly alter what the user has input on the X1 card. For example, the section number "32" would have a DSS pathname part B of "32.".
 - o Pathname part E in columns nine through twelve which is identical to that entered in columns forty-five through forty-eight of the HEC~2 ZW card.
 - A numeric plan number in columns thirteen and fourteen that matches columns fifty-five through fifty-six of the ZR card for EAD.
 - o A "-1" in columns twenty-three and twenty-four to instruct EAD to read the elevation-discharge curve from a DSS file.
 - o Example EAD input data:

```
TT
ZR SILVER CREEK BASE
                                                QS
ZR SILVER CREEK CHIMP-20FT BW
                                                QS
RN
FR RCH 1 .....
QF RCH 11985 1
                      -1
QS49.0001985 1
                      -1
ΕP
       1
QS49.0001985 5
                      -1
EJ
       5
```

HEC-2 and EAD automatically generate pathname part C to be: "ELEV-FLOW".

(3) Elevation-Damage Data

■マネススのでは ■ ハイイティア ■ ハイフ

していることをいることのなるのはないでしていていると

EAD reads elevation-damage relationships from SD and DG cards. These relationships may be written to a DSS file by either SID or DAMCAL. They are slightly different in format from both the flow-frequency and elevation-discharge curves. elevation-damage relationships may consist of several curves identified by a single pathname whereas flow-frequency and elevation-discharge relationships consist of a single curve identified by a single pathname.

Elevation-damage curves correspond to damage categories. If the user enters this data as input, he would enter one SD card followed by a separate DG card for each category. To read elevation-damage data from a DSS file, the user would enter only one DG card to retrieve all categories (maximum of eighteen categories allowed). To read elevation-damage data from DSS, the user must:

- (la) Execute a flood damage analysis program (either SID or DAMCAL).
 - o Execute SID. Example JCL is:

HLIB*SIDX, TAPE71=SLVAAEZ

o A DSS file has been generated and attached to this execution. For example, if the file does not exist, generate it:

\$GE SLVAAEZ R PR PW OD G=100

- o A ZW card must be included and contain:
 - o Pathname part A in columns three through sixteen.
 - o Pathname part F in columns seventeen through forty.
 - o Pathname part B in columns forty-five through forty-eight.
- o Pathname part B must be entered on every DR card in columns three through eight.
- o Execute DAMCAL. Example JCL is:

HLIB*DAMCALX, TAPE71 = SLVAAEZ

O A DSS file has been generated and attached to this execution. For example, if the file does not exist, generate it:

\$GE SLVAAEZ R PR PW OD G=100

- o A ZW card must be included and contain:
 - o Pathname part A in columns three through sixteen.
 - o Pathname part F in columns seventeen through forty.
 - Pathname part E in columns forty-five through forty-eight.
- o Pathname part B must be entered on every DT card in columns three through eight.
- o Example input data for SID (DAMCAL is very similiar):

T1 ...
....
ZW SILVER CREEK BASE 1985
DF

DR RCH 1
DT
SL
SD

(1b) Execute EAD

o The DSS file used for either the SID or DAMCAL job must be attached to the EAD execution. Example JCL is:

HLIB*EADX, TAPE71=SLVAAEZ

- o A ZR card must be entered and contain:
 - o Pathname part A in columns three through sixteen.
 - o Pathname part F in columns seventeen through forty.
 - A numeric plan identifier in columns fifty-five and fifty-six (right justified).
- o A DG card must be entered at the location that the SD and DG cards are normally entered. The DG card must contain:
 - Pathname part B in columns three through eight which is identical to a reach identification code entered in columns three through eight of a DR card in the SID input data deck or columns 3 through 8 of a DT card in a DAMCAL input data deck.
 - o Pathname part E in columns nine through twelve which is identical to that entered in columns forty-five through forty-eight of the SID ZW card or DAMCAL ZW card.
 - A numeric plan number in columns thirteen and fourteen that matches columns fifty-five and fifty-six of the ZR card for EAD.
 - O A "-1" in columns twenty-three and twenty-four to instruct EAD to read the stage-damage curve from a DSS file.
 - o Example EAD input data:

TT
....

ZR SILVER CREEK BASE
DG 1

ZR SILVER CREEK FP-3 FT
DG 4

RN
FR RCH 1
QF RCH 11985 1 -1
QS49.0001985 1 -1
DG RCH 11985 1 -1
EP 1
DG RCH 11985 4 -1
EP 4
EJ

SID, DAMCAL, and EAD automatically generate pathname part C to be:

"ELEVATION-DAMAGE".

4. Summary

■ 人のからののは ■ ころのののと ■

> Appendix A has described the process of transferring computed results from programs HEC-1, HEC-2, HEC-5, SID, and DAMCAL to the EAD program by using a data management system called DSS. To access DSS, the user need only make minor changes to job control language and application program input data. Appendix B describes DSS input modifications to HEC-1, HEC-2, and DAMCAL. published user's manuals describe DSS input requirements for programs HEC-5, SID, and EAD. The publication "HECDSS Users Guide and Utility Program Manuals" (8) describes in detail the DSS data management system and its associated utilities. The DSS utility program DSSUTL inventories data pathnames, provides data file housekeeping capability (such as eliminate or rename records), and generates computer system independent data files. The DSS utility program DSPLAY tabulates and graphs data stored in a data file. The interactive program PIP, documented in a separate user's manual, enables insertion of flow-exceedance frequency, flow-damage elevation-exceedance frequency, elevation-flow, elevation-damage, and exceedance frequency-damage data into the DSS file system where it then may be used identical to computer program generated DSS data records. Although the application of the Flood Damage Analysis Package does not require the use of these DSS utilities, they provide the user with significant additional flexibility and capabilities.

35

Appendix B Supplementary User Documentation

B. Supplementary User Documentation

1. Introduction

Each program referenced in this document has a user's manual which describes the analytical procedures used by the program, the input to the program, the output from the program, and results from test examples. All but two of the user's manuals (HEC-2 and DAMCAL) also describe the procedures for use of the DSS (data storage system) to store and extract data. These two manuals will address the use of the DSS in future revisions. This appendix is designed to supplement these two user documents to describe the use of the DSS and the required input to enable the use of this feature.

2. Supplementary HEC-2 User Information

The computer program HEC-2 computes water surface profiles for river channels of any cross section for either subcritical or supercritical flow conditions. The principle use of the program is for determining profiles for various frequency floods for both natural and modified conditions. HEC-2 generates elevation-flow (rating) curves which can be written to a DSS file. To accurately define the rating curves, the user should enter the maximum allowable number of water surface profiles. These profiles should span the range of the flow-frequency curves. The EAD program utilizes the elevationflow rating curves to convert elevation-damage into discharge-damage relationships. The conversion is performed by linear interpolation. the EAD program will not extrapolate the rating curve if an elevation-damage coordinate exceeds the maximum elevation ordinate in the rating curve or is less than the minimum elevation ordinate. HEC-2 writes a rating curve to the DSS file for every cross-section. The analyst may wish to use a temporary DSS file to store all the rating curves in a reach, and then copy the one required rating curve at the index point into the permanent DSS file. Required additions to the HEC-2 program input follow.

ZW Card --- DSS Write Card (Optional, required for DSS write)

To write elevation-flow (rating) curves to a DSS file, the user must insert a ZW card as the first input card of the data deck. The ZW card contains DSS pathname parts A, B, and F. HEC-2 develops a rating curve and stores that rating curve in the DSS file for every cross-section. HEC-2 will use variable SECNO (field X1-1 in the HEC-2 input) to define part B of the DSS pathname. Care must be exercised because HEC-2 stores variable SECNO as a floating point variable and must convert it to a character string for use as a pathname part. Many times, the result will differ from that which was input by the user. For example, the user may define the section number to be "49" but HEC-2 will generate part B of the pathname to be "49.000".

<u>Field</u>	<u>Value</u>	<u>Description</u>
0	ZW	Card identification.
1-2	(AN)	Study or Project name (part A of the DSS pathname).
3-5	(AN)	Plan or alternative name (part F of the DSS pathname).
6	(AN)	Year of data (part E of the DSS pathname). Must be entered in columns 45 - 48.

J2 Card --- Job Card (required for DSS write)

The J2 card is used to specify printout, plot, trace, and computational options. In order to initiate the write to a DSS file, the last J2 card must contain a "15" in field 1 (J2-1) which requests the summary printout.

<u>Field</u>	Variable	<u>Value</u>	<u>Description</u>
0	IA	J2	Card Identification.
1	NPROF	15	Indicates last profile and requests a summary printout.
2-10			No change from users manual.

J3 Card --- Job Card

The J3 card is an optional card. However, if it is entered, the user must request "Table 150". If the J3 card is omitted, Table 150 is provided by default.

3. Supplementary DAMCAL User Information

The computer program DAMCAL can evaluate a broad range of alternative flood damage reduction measures that will provide flood damage relief for existing and future land use conditions. It accesses a spatial grid cell data base file from which it extracts information for flood damage computations. This information includes: topographic elevation, reference flood elevation, damage reach delineation, existing land use classification, and alternative future land use patterns. Each alternative analysis results in the creation of an aggregated elevation-damage function for each land use category at each damage reach index location. The aggregated elevation-damage function can then be stored in a DSS file by following the supplementary instructions listed below.

ZW Card -- Write elevation-damage function to a DSS file

The ZW card flags the DAMCAL program that elevation-damage functions will be stored in a data storage system (DSS) data file. The functions are stored by land use for each reach. The ZW card contains the study, project, or basin name, the study or plan alternative, and the data year associated with the computed results. The ZW card is placed after the last job card (J) and before the format (FT) card.

Field	Value	Description
0	ZW	Card Identification.
1-2	(AN)	Study, Project, or Basin name (part A of the DSS pathname).
3-5	(AN)	Study or plan alternative (part F of the DSS pathname).
6	(AN)	Data year (part E of the DSS pathname). The data year must be entered in columns 45-48.

DT Card --- Damage Reach Title Card

The DT card labels the damage reach and provides the unique identifier (name or location) for each reach.

Field	Value	Description
0	DT	Card Identification.
1	(AN)	Damage reach location or name (part B of the DSS pathname).
2-10	(AN)	Description of the damage reach on the preceding DR card $(DR.1)$.

Appendix C Flood Damage Analysis Package - Application Example

C. Flood Damage Analysis Package - Application Example

1. Purpose

The purpose of this appendix is to provide specific examples of Flood Damage Analysis Package program executions and the transfer of data through a data management system. This will include study management considerations, example Job Control Language (JCL), input data considerations, output analysis, and DSS utility program application. The problem presented is hypothetical and unrealistically simple --- but it demonstrates the logic in applying the Flood Damage Analysis FDA Package. The logic and procedures are the same for a large basin with tens of thousands of structures and several hundred damage reaches. For the novice computer user, the mechanics of applying the FDA Package are not trivial.

2. Problem Description

The town of Riverton is a relatively new development located on the banks of Silver Creek. See Figure 3. It consists of one residential property and one commercial building. This year, both structures suffered severe flooding. The town's citizen(s) have demanded relief from the flooding and have insisted that the government determine an effective flood control measure to immediately implement.

3. Description of Study Area

Silver Creek remains in its natural state with a slope of thirty feet per mile. The channel capacity is limited. Surrounding hills slope steeply into the channel except in the vicinity of Riverton where a small flat area exists.

4. Action

In response to the public, the government has initiated a study to evaluate the existing flood problems and to formulate and analyze several flood damage mitigation plans.

5. Study Management

An important first step in perfoming a flood damage analysis study is to define the scope of the study. This might include conceptualizing the study procedure, estimating the required personnel, determining the necessary technical capability, estimating the field surveys, and estimating the amount of required data. Based on this early assessment, a study team is formed, a study manager is selected, and the individuals are asked to help refine the study procedure. For Riverton, several alternatives are considered feasible. They include: building an ungated or gated reservoir, improving the channel, and floodproofing the residential and comercial structures. The following sequence of activities has been adopted for flood damage analysis aspects of the Riverton study.

Figure 3 Silver Creek, Vicinity of Riverton

No.	<u>Task</u>
a	Define the scope of the study, including the likely conceptual array of flood damage mitigation alternatives.
Ъ	Subdivide the watershed into hydrologic sub-basins and damage reaches and select damage index locations.
c	Assign alphanumeric identifiers for data management.
đ	Define the computer file naming conventions for all the analyses files including input, output, job control language (JCL), DSS and other data files.
е	Compute a base (without) condition discharge-exceedance frequency curve for each index location for Riverton.
f	Obtain cross-section information and compute profiles.
g	Determine the reference flood elevations at the index locations and at each of the structures.
h	Inventory the damageable structures within the study area and compute elevation-damage relationships at the index locations.
i	Compute the expected annual damage for the base condition.
j	Adjust the study procedure or change naming conventions if problems have occurred.
k	Simulate an ungated reservoir.
1	Simulate a gated reservoir.
m	Simulate a channel improvement.
n	Floodproof structures.
0	Compute the expected annual damage for the base condition and all alternatives.

6. Study Procedure

At this point, the individual tasks are implemented. The following descriptions follow the flood damage analysis of Riverton through the tasks as outlined above.

a. Formulate flood damage mitigation alternatives.

It is advantageous to define the conceptual array of likely flood damage mitigation alternatives as early as possible. This enables systematic subdivision of the watershed and definition of damage reaches for efficient study of the alternatives. In addition, it also provides a reference for developing data for the base condition with the idea of expanding the analysis to study the alternatives. It also provides a basis for defining the alphanumeric identifiers for data management. Table 3 describes the preliminary plans formulated for Riverton.

Table 3: Flood Damage Mitigation Plans For Riverton

Plan	Description
1	Existing without (Base) Conditions. No flood plain management measures in place.
2	Flood proof both structures to 3 feet. The SID program will be used to develop a modified elevation-damage relationship.
3	Construct an ungated reservoir upstream of Riverton. The HEC-1 program will be used to develop a modified discharge-exceedance frequency curve.
4	Construct a controlled (gated) reservoir upstream of Riverton. The HEC-5 program will be used to develop a modified discharge-exceedance frequency curve.
5	Improve the Silver Creek channel through Riverton by excavating a trapezoidal section with a bottom width of 20 feet and a side slope of 1.5 on 1.

Each of these plans will be evaluated by executing the EAD program. Often times is not possible to formulate all of the specifics of a given plan. For example, the above formulation does not define the size of the reservoir nor the allocation of space within that reservoir for either plan three or four. As the study proceeds, it may require studying several sizes and pool storage allocations. It then is beneficial to define those other alternavtives at this point. For this simple example, only one size of reservoir is considered.

b. Select damage index locations.

Only one damage reach and one index location are needed for this study. Many factors influence the selection of the index locations. These include the location of stream gaging stations, the uniformity of stream profiles, the location of governmental boundaries, and the characteristics of alternatives under investigation. It is desirable but not always possible to correctly identify all index locations at the outset of the study. For example, the hydraulic engineer later may change stream profiles for reaches that orginally were thought to have uniform profiles. For Riverton, this is not the case. The hydraulic engineer is consulted to determine suitable locations for cross-sections and the economist is consulted to determine the location of

damageable property. This information might be entered on a topographic map as shown in Figure 4. From this information, a cross-section at river mile 49.0 is selected as the index location at which elevation-discharge rating curves, elevation-damage relationships, and flow exceedance frequency curves for Riverton will be developed.

c. Assign alphanumeric identifiers for data management.

Identifiers are chosen for defining data records in the DSS file. The same river name (or basin) is used for part A of the DSS pathname for all index locations; the damage reach index location identifier is used for part B of the DSS pathname; the data-year is used for part E of the pathname; and the alternative is used for part F of the DSS pathname.

The river name "SILVER CREEK" is used for part A of the pathname. This assignment is valid since it is less than fifteen characters.

The reach identifier "RCH 1" is used for part B of the pathname (must be six characters or less). If possible, the identifier is chosen in such a way that index locations can be added later and assigned logical names. It is anticipated that no reaches will be added for the Silver Creek study.

Blank characters are used for part E of the pathname. The relationships do not vary with time so equivalent annual damage will not be computed.

Part F of the DSS pathname is defined according to Table 4 (this part must be twenty-two characters or less).

Table 4: Pathname Part F For Silver Creek

<u>Plan</u>	Part F of the DSS pathname
1	BASE
2	FP-3 FT
3	UNGTD RES
4	GATED RES
5	CHIMP-20 FT BW

d. Fine the computer file naming conventions for all files.

◇■これにたたたの問題にたたいのでは、

The Riverton study involves the application of HEC-1 (ungated reservoir), HEC-5 (gated reservoir), HEC-2 (rating curves), SID (inventory structures), and EAD (expected annual damage). A consistent file naming scheme simplifies file management and facilitates better communication. File names are limited to seven characters. File naming extensions are used to identify the type of file. For example, the characters ".J" or just "J" are used to identify a file containing job control language (JCL). Part of the basin name is included to identify files associated with this study. Additional characters identify the program and the alternative. The following naming convention is used for the Riverton study.

■のながながなる■のながななな。 そうにんちんか

Figure 4 Damage Index Location, Riverton

Character Location	<u>Contents</u>
1-3	River name abbreviation to indicate study; "SLV" is used for all files.
4 -5	Alternative indicator; "AO" would indicate base condition ("O") for alternative "A" whereas "Al" would indicate condition "1" for alternative "A". The condition assumes an alphanumeric value for some cases. Examples of this are the EAD input data file which analyzes multiple conditions or the DSS file that contains results for many alternatives.
6	Computer program identifier; indicates with which program the file is associated. Character is taken from the reference list shown below:

Character	Program		
1	HEC-1		
2	HEC-2		
5	HEC-5		
S	SID		
D	DAMCAL		
ĸ	RAD		

7 Type of file; indicates the nature of the file. Taken from the reference list below:

Character	File Type
I	Input data file.
0	Computer program output listing.
J	Job control language to execute program.
Z	DSS data file.

Typical file names are listed below.

<u>Filename</u>	<u>Description</u>
SLVA01I	Input data file to HEC-1 for base condition.
SLVA01J	Job control language to execute HEC-1 for base condition.
SLVA010	Program printout from HEC-1 for base condition.
SLVAOSI	Input data file to SID for base condition.
SLVAOEI	Input data file to EAD for base condition.
SLVAA12	Intermediate DSS file containing HEC-1 computed hydrographs.

The most important file is the DSS file through which all FDA programs communicate. Only one file is used for storing and retrieving the basic economic relationships --- frequency curves, elevation-discharge rating curves, and elevation-damage relationships. The Riverton DSS file is named "SLVAAEZ". Other variations are possible. Some analysts like to include the characters "DSS" in the file name or add a specific character extension. Examples using this notation include: "SILVDSS" or "DSSSILV", or "SILVR.Z".

There is merit to using more than one DSS file in a flood damage analysis study. Separate files are maintained for time series data and paired function data to reduce the management overload of large DSS data files. In the Riverton study, four DSS files are used. The file names and descriptions are shown below:

File Description

SLVAAEZ Master DSS file. It contains all flow-frequency curves, elevation-discharge rating curves at index locations, and elevation-damage relationships for each reach. The EAD program will access this file to retrieve all the parametric relationships used in the computation of expected annual damage for base condition and all alternatives.

DSS file to contain hydrographs and frequency curves which were computed by the HEC-1 program. HEC-1 writes hydrographs and frequency curves to the same DSS file. The use of this intermediate DSS file facilitates the storage of hydrographs separate from the the master DSS file which will contain only the basic economic relationships. The DSS utility program DSSUTL is used to "copy" the flow-frequency curves from this DSS file into the master DSS file "SLVAAEZ". When analyzing a gated reservoir, HEC-5 will utilize hydrographs from this file as incremental local inflows. If HEC-1 does not store hydrographs in a DSS file, then the frequency curves are stored directly into the master DSS file "SLVAAEZ".

DSS file to contain elevation-discharge rating curves for each cross-section as computed by HEC-2. This temporary DSS file is used because HEC-2 stores rating curves in the DSS file for all of the cross-sections input to it. Subsequent analyses will require rating curves at only the index points. This intermediate DSS file facilitates the screening out of unnecessary rating curves. The DSS utility program DSSUTL is used to "copy" the rating curve at the damage index point into the master DSS file "SLVAAEZ".

SLVAA5Z DSS file to contain hydrographs computed by the HEC-5 program.

e. Compute base frequency curve for each index location.

A stream gaging station does not exist near Riverton. If one were present for a reasonable length of time (twenty years or more) or if it were in existence during a significant storm, the data could be used to help construct a discharge-exceedance frequency curve. Since a gaging station does not exist, a rainfall-runoff model is developed. The analyst is given the location of cross-section 49.0 at which the frequency curve is developed. frequency curves may be developed using any number of publications such as the National Weather Service's Technical Paper 40 (TP-40), the National Oceanic and Atmospheric Administration Technical Memorandum NWS Hydro-35, the U.S. Army Corps of Engineers Civil Engineer Bulletin No. 52-8, "Standard Project Flood Determinations", as well as any local technical publications or newspapers. Rainfall-runoff modeling requires the estimation of runoff response hydrograph parameters and rainfall loss parameters such as infiltration. For Riverton, a simple rainfall runoff model is developed since the watershed is small. It is determined that hydrologic routing parameters are not required. This document will not address the details of the frequency curve development. Other HEC publications are available on the subject. The analyst has determined the base condition frequency curve shown in Table 5.

Table 5: Base Condition Discharge-Exceedance Frequency

Exceedance Frequency(%)	Discharge (cfs)
90	1000
80	1150
70	1270
60	1400
50	1550
40	1700
30	1860
20	2100
10	2550
5	3000
2	3750
1	4350
0.5	5300
0.2	6700
0.1	7800
0.01	12000

Notice the extreme exceedance frequencies used to define the curve (90% through .01% chance exceedance). The lowest flow point on the curve must be less than the "zero" damage discharge (no damage occurrs for flow below this discharge) and the highest point on the curve should be a rare event (.1 percent or greater) so expected annual damage may be accurately computed. The base condition flow-frequency curve is either stored directly into the master DSS file "SLVAAEZ" using for example the PIP program as an input aid or is input to the HEC-1 program as part of a rainfall-runoff simulation input data file. For Riverton, the flow-frequency curve is input to HEC-1. The file SLVAOII contains data to simulate rainfall-runoff above Riverton. It contains

three control points --- two at the location of a proposed reservoir and one at the damage index point in Riverton. The damage index point corresponds to cross-section 49.0. The HEC-1 input and output is shown below.

Write computed inflow to DSS file for later use by HEC-5. of precip. These may need adjusting by trail and error Write computed local incremental inflow to DSS file for Maximum of nine ratios used to define frequency curve. Base condition frequency curve contains frequency extremes PAGE 2100 later use by HEC-5. 1860 6.01 1700 1700 Part A of pathname. Part F of pathname. Write frequency curve to DSS file. ILOCAL INFLOW TO INDEX POINT FOR REACH 1 IN RIVERTON s. -Intermediate DSS Filo 60 1400 6700 8. INFLOW TO RESERVOIR SITE ABOVE RIVERTON ACH 11NDEX POINT FOR REACH 1 IN RIVERTON 2 10.....1.....2.....3......4......5.. 8 HEC-1 INPUT B of pathname. 1.2 EXECUTE HEC-1 FOR BASE CONDITION ===> HLIB*HEC1X, INPUT=SLVA011, DSSF1LE DSHEC1 25 Must be unique 26 and 27 Identi-Hydrology Records Economics Records Appendix C

51

*	* U.S. ARMY CORPS OF ENGINEERS	* THE HYDROLOGIC ENGINEERING CENTER	* 609 SECOND STREET	* DAVIS, CALIFORNIA 95616	* (916) 440-3285 OR (FTS) 448-3285	*	化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
*	(HEC-1) *	*	•	*	9:38:42 *	•	*******
	COD HYDROGRAPH PACKAGE (HEC-1)	FEBRUARY 1981	REVISED 31 JAN 85		N DATE 9 MAY 85 TIME 9:38:42 *		在我在我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我
	OOD HYDROG	E	REVI	!	N DATE 9 M		********

SILVER CREEK

					1.50
					1.30
	TERVAL				1.00
SCALE	TATION IN'				0.95
PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE	MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME MUNBER OF HYDROGRAPH ORDINATES ENDING DATE	2.00 HOURS 58.00 HOURS	SCUARE MILES MCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES	NUMBER OF PLANS	N 0 0.83
	2882		SQUARE MILES INCHES FEET CUBIC FEET P ACRE-FEET ACRES	∓	I-RATIO OPTION RATIOS OF PRECIPITATION .39 0.60 0.70
ROL VAR	TIME DA	TATION INTERVAL TOTAL TIME BASE	I DEPTH	OPT I ON	OPTION OF PREC 0.60
CUTPUT CONTROL VARIABLES IPRNT 4 IPLOT 0 QSCAL 0.	HYDROGRAPH TIME DATA NATIN 1DATE 1JAI 1TIME 00 NQ NDATE 3JAI 1TIME 3.1A	COMPUTATION INTERVAL TOTAL TIME BASE	ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENOTH, ELEVATION FLOM STORAGE VOLUME SURFACE AREA TEMPERATURE	MULTI-PLAN OPTION NPLAN	MULTI-RATIO OPTION RATIOS OF PREC 0.39 0.60
3 10	L			4	4

ADDITIONAL OUTPUT

1.80

	RIVERTON - REACH 1		
•	RCH 1 *	*	· · · · · · · · · · · · · · · · · · ·
•	*	•	****
	% &		

NO DANAGE DATA (OD OR SD CARDS) FOR THIS LOCATION, SO DANAGES WILL NOT BE CALCULATED.

20.0 User input "Base Condition" fre-	quency curve.	"Base Condition" frequency curve written to DSS file. Nine points are taken from nine ratios. Frequencies are interpolated using input curve and	peak arsenarge jor each racio.	
20.0	2100.	ion" fr SS file om nine ated us	JO 1 0 1	
30.0	1860.	Condition to Diken from the Condition of	rtschar.	
0.0	1700. 12000.	"Base writte are to are in	reak o	
50.0	1550. 7800.	9118.		1
60.0 0.2	1400. 6700.	0.13 7403.		nency –
70.0	1270. 5300.	0.27 6263. ASE/		n" Freq
0.00	4350.	1.06 0.85 0.2 4277. 4560. 6263 REEK/RCH 1/FREQ-FLOW///BASE/	140 SECTORS	onditio
%.5 0.6	1000.	1.06 4277. /RCH 1/FRE	WORDS, 140	"Base C
5.0	3000.	2.37 3602. LVER CREEK		Pathname for "Base Condition" Frequency— Curve.
GE 10.0	2550.	14.18 5.94 2.37 2322. 2875. 3602. 71, VERS. 2 /SILVER CR	XCLOSE FILE 71 MO. RECORDS= 21 FILE SIZE= 15656 PERCENT INACTIVE= 0.	Pathna Curve.
PERCENT EXCEEDANCE	<u>a</u>	14.18 2322. 71, YERS.	DSSZCLOSE FILE WO. RECORDS= FILE SIZE= PERCENT INACI	į
PERCEN	PEAK FLOW	72.43 1240. NRTTE FILE	:	*** WORMAL END OF MEC-1 *** STOP 101
æ	ħ.	PLAN 1 FREQUENCY FREAK FLOW FLOW FLOW FLOW FLOW FLOW FLOW FLOW		*** NORMAL STOP 101
		-	5,4	

EXAMPLE DSSUTL RUN

- Execute DSSUTL ENTER DSS FILE NAME HLIB*DSSUTLX

Catalog intermediate HEC-1

DSS file.

Copy frequency curve into master DSS file.

83

new catalog (data has been written to file since last "catalog").

HECOSS COMPLETE CATALOG OF RECORD PATHNAMES ON FILE 0000A10C SLVAA12

VERSION 4-CA FILE CREATED ON 10MAY85; TIME = 17:04:51CATALOG DATE = 10MAY85,
WUMBER OF RECORDS = 19
SORT ORDER = ABCFED

												base condition frequency curve.	Pathname reference number "10".	(nained finetion data)	ישמיים למוני ביים מיים לי						(regular time series data)
	RECORD PATHNAME	/SILVER CREEK/RCH 1/FLOW/01JAN1980/2HOUR/LOCAL+1/	/SILVER CREEK/RCH 1/FLCW/01JAN1980/2HCUR/LOCAL+2/	/SILVER CREEK/RCH 1/FLCW/01JAN1980/ZHCUR/LOCAL+3/	/SILVER CREEK/RCH 1/FLOW/01JAN1980/2HOUR/LOCAL+4/	/SILVER CREEK/RCH 1/FLCW/01JAW1980/2HOUR/LOCAL+5/	/SILVER CREEK/RCH 1/FLCW/01JAM1980/2HCUR/LOCAL+6/	/SILVER CREEK/RCH 1/FLCW/01JAN1980/2HCUR/LOCAL+7/	/SILVER CREEK/RCH 1/FLOW/01JAN1980/2HOUR/LOCAL+8/	NEW COMMAND	/SILVER CREEK/RCH 1/FLCW/01JAN1980/ZHCUR/LOCAL+9/	/SILVER CREEK/RCH 1/FREQ-FLOW///BASE/	/SILVER CREEK/RES 1/FLOW/01JAN1980/ZHOUR/INFLOW+1/	/SILVER CREEK/RES 1/FLCW/01JAN1980/ZHCUR/INFLCW+2/	/SILVER CREEK/RES 1/FLOW/01JAN1980/ZHOUR/INFLOW+3/	/SILVER CREEK/RES 1/FLCW/01JAN1980/ZHCUR/INFLCW+4/	/SILVER CREEK/RES 1/FLCW/01JAN1980/ZHCUR/INFLCM+5/	/SILVER CREEK/RES 1/FLCW/01JAN1980/2HCUR/INFLCW+6/	/SILVER CREEK/RES 1/FLCW/01JAN1980/2HCUR/1NFLCM+7/	/SILVER CREEK/RES 1/FLOW/01JAN1980/ZHOUR/INFLOW+8/	/SILVER CREEK/RES 1/FLOW/01JAN1980/2HOUR/INFLOW+9/
	DATA	372	372	372	372	372	372	372	372		372	ഇ	372	372	372	372	372	372	372	372	372
	HEAD	15	5	ŧ	ŧ	\$	5	\$	₹	R ENTER	ŧ	8	5	5	÷	ŧ	5	ŧ	15	5	₹
	VER	-	-	-	-	-	-	_	-	VE, OR	-	-	-	-	-	-	-	-	-	-	-
TEN	TIME	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	TO CONTINUE,	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25	16:56:25
WRITTEN	DATE	10MAY85	PUSH CARRIAGE RETURN U>	104AY85	104AY85	10MAY85	10MAY85	10MAY85	104AY85	10MAY85	104AY85	10MAY85	10MAY85	10MAY85							
	PROG	HEC.1	HEC1	EC.1	HEC1	EC1	EC.	HEC1	HECT	ARR I AC	HEC1	HEC	#EC1	EC.	HEC.1	HECT	HEC.1	XEC1	HEC.1	HECT	ECI
REF	ş	_	7	m	*	<u>د</u>	9	_	••	PUSH C	٥	<u>?</u>	F	2	5	*	₽	2	11	₽	4

List of DSS records co; ied to file "SLVAAEZ". (only one in this ease). -Copy all frequency curves to a different DSS file. 72 0000A10C*SLVAAEZ 7 SECTORS 138 SECTORS .DSS file to which data is copied.DSS---2CLOSE FILE 71
MO. RECORDS= 19
FILE SIZE= 154.04 WORDS,
PERCENT INACTIVE= 0.00
.....DSS---2CLOSE FILE 72
MO. RECORDS= 2
FILE SIZE= 680 WORDS,
PERCENT INACTIVE= 0.00 STOP

Copy DSS records from one file to another.

f. Obtain cross-section information and compute profiles.

In extensive studies, aerial photography is used in addition to field surveys to derive cross-section data. Sometimes, local communities have obtained detailed topography (two-foot contour interval). For the Riverton study, field surveys are used to obtain cross-section data. Care is taken to obtain data at the damage index location identified as river mile 49.0. A plot of this cross-section and computed water surface elevations is shown in Figure 5. Additional topography is needed for reservoir sites. Some estimation is made of the elevation-storage capacity possible at the damsite upstream from Riverton.

An HEC-2 data file is constructed to compute stream profiles on Silver Creek through Riverton. A "ZW" card is included to store rating curves in an intermediate DSS file names "SLVAA2Z". After executing HEC-2, DSSUTL is executed to copy the rating curve at river mile 49.0 from the intermediate DSS file named "SLVAA2Z" into the master DSS file called "SLVAAEZ". Below is a selective listing of the HEC-2 output. It is followed by the execution of DSSUTL to copy the rating curve into the master DSS file.

Figure 5 Riverton Cross-section at River Mile 49.0

BASE CONDITION HEC-2

===> NLIB*HEC2X,INPUT=SLVA021,DSSFILE=SLVAA22,TAPE95=SLV952A

10.00分割であることでは関係できたことのは動きのできたのながながあっているのである。 10.00分割であるのでは、10.00分割を使用しているのできた。 10.00分割であるのできたが、10.00分割できたできた。

-Intermediate HEC-2 DSS file.

16:57:22

THIS RUN EXECUTED 10 MAY 85

へくう 見っといたための 見っとっている

Write rating curves to DSS file.

HECZ RELEASE DATED NOV 76 UPDATED NAY 1984 ERROR CORR - 01,02,03,04,05,06 MODIFICATION - 50,51,52,53,54,55,56

COFFICATION - 50,51,52,53,54,55,56

Part A of DSS pathname
Part F of DSS pathname

ZNSILVER CREEK BASE Part P of DSS pathnameDSS...ZOPEN NEW FILE OPENED 71 0000A10C*SLVAAZZ

DATA STORAGE SYSTEM OPTION ACTIVATED

Request for simplified table which includes rating curve. 0.000 0.000 0.000 54.000 100.000 0.000 0.000 4000,000 0.000 3432,000 3461,000 0.000 0.000 3436.000 0.000 0.00 0.00 ITRACE Must ask for "Table 150". 0.00 0.000 3500.000 0.000 0.000 50.000 90.000 2 0.000 140.000 220.000 0.00 0.00 0.00 3440.000 CHIM 0.000 3000.000 0.000 3445.000 3445.000 1056.000 3438.000 3477.000 0.000 0.00 0.000 *******REQUESTED SECTION NUMBERS******* 8 26.000 0.000 2500.000 0.000 30.000 70.000 0.000 1056.000 130.000 190.000 0.000 90.00 0.0 HVINS ALLDC 56.000 0.00 0.00 0.100 2000.000 15000.000 0.000 3445.000 3440.000 METRIC 1056.000 3445.000 3456.000 8.8 0.00 9.00 55.000 XSECH 0.005700 0.100 1500.000 10000.000 70.000 20.000 66.000 165.000 20.000 165.000 STRT 0.00 43.000 0.00 XSECV CODES FOR SUMMARY PRINTOUT JOIR M 0.040 1000.000 8000.000 50.000 3451.000 0.000 130.000 3449.000 3445.000 1.000 0.00 -1.00 PRFVS ö 0.060 500.000 6000.000 11.000 0.000 60.000 120.000 9.000 0.000 146.000 9.00 9.00 38.000 -10.000 SILVER CREEK HUMSEC 옾 0.070 14.000 5000.000 48.300 3471.000 3430.000 48.500 34.77.000 34.38.000 150.000 -10.000 1.000 **JCHECK** LPRHT 5 2552555 288 ŋ 2 121

59

Appendix C

588	48.800 3480.000 3449.000	<u>:-</u>		150.000 3462.000 3458.000	180.000 20.000 180.000	1584.000 3458.000 3465.000	1584.000 150.000 203.000	1584.000 3449.000 3480.000		0.000 154.000 240.000	0.000 3445.000 0.000	0.000 162.000 0.000
5	10 MAY 85	16:57:22	~									0400
		1	\	Reach 1	Reach 1 damage index location.	index l	ocation.					
CRR	49.000 3480.000 3456.000	9.000 0.000 167.000	, wy wy	150.000 3465.000 3461.000	175.000 20.000 175.000	1056.000 3461.000 3471.000	1056.000 150.000 200.000	1056.000 3457.000 3480.000		0.000 159.000 240.000	0.000 3451.000 0.000	0.000 163.000 0.000
5883	49.500 34%.000 3467.000 0.000	8.000 0.000 140.000	****	117.000 34%.000 3476.000 0.000	152.000 10.000 152.000 0.000	2506.000 3475.000 3486.000 0.000	2506.000 117.000 190.000 0.000	2506.000 3469.000 0.000		0.000 127.000 0.000 0.000	0.000 3466.000 0.000 0.000	0.000 135.000 0.000 0.000
2	10 MAY 85	16:57:22	Α.									PAGE 3
									THIS PA	N EYECH	THIS BIIN EXECUTED 45 MAY BE	27.57
프로	HECZ RELEASE DA ERROR CORR - 0 MODIFICATION -	HECZ RELEASE DATED NOV 76 UPDATED ERROR CORR - 01,02,03,04,05,06 MODIFICATION - 50,51,52,53,54,55,	00v 76 u 03 04 0 1,52,53	HECZ RELEASE DATED WOV 76 UPDATED WAY 1984 ERROR CORR - 01,02,03,04,05,06 WODIFICATION - 50,51,52,53,54,55,56	1984							67: JC:01
- 0 M	SILVE	SILVER CREEK										
_	CHECK	<u>s</u>	MINV	IDIR	STRT	METRIC	HVINS	ø	WSEL	6		
	٠.	ĸ.		ö	0.005700	00.00	0.0		3356.000	00.00		
~	NPROF	IPLOT	PRFVS	XSECV	XSECH	£	ALLDC	187	CHNIM	ITRACE	ш	
	2.000	0.000	-1.000	00 0 00	000.00	0.000	0.000	0.000	0.000	0.000	00	

A STATE OF THE PARTY OF

16:57:29

4

PAGE

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

HECZ RELEASE DATED WOV 76 UPDATED MAY 1984.
ERROR CORR - 01,02,03,04,05,06
MODIFICATION - 50,51,52,53,54,55.54

SILVER CREEK

SUMPLARY PRINTOUT

SECHO	CNSEL	σ	NL08	VROB	ΛC⊭	
48.300	3436.67	500.00	0.00	0.00	6.33	
48.300	3439.59	1000.00	0.00	0.0	7.59	
48.300	3441.47	1500.00	1.28	1.49	8.3	
48.300	3442.85	2000.00	2.00	2.3	8.80	
48.300	3444.04	2500.00	2.52	2.94	10.51	
48.300	3445.05	3000.00	2.93	3.42	11.11	
48.300	3445.86	3500.00	3.51	4.10	11.61	
48.300	3446.61	4000.00	4.00	4.66	12.05	
48.300	3447.30	4500.00	4.41	5.15	12.46	
48.300	3447.96	5000.00	4.78	5.58	12.84	
48.300	3449.17	900009	5.41	6.31	13.52	
48.300	3451.32	8000.00	07.9	7.47	14.68	
48.300	3453.22	10000.00	7.18	8.38	15.67	
48.300	3457.32	15000.00	8.61	10.04	17.66	
48.500	3442.94	500.00	0.00	0.00	5.81	
48.500	3445.25	1000.00	0.36	0.02	6.31	
48.500	3446.76	1500.00	1.18	1.30	6.84	
48.500	3447.99	2000.00	1.53	1.68	7.07	
48.500	3449.02	2500.00	1.73	1.91	7.19	
48.500	88 0772	3000.00	5.06	2 03	7 16	

	PAGE 17			Rating curve written to DSS file for damage reach /1 index point-						•						
7.22 7.29 7.36 7.43 7.57 7.83 8.04 8.54		NCH CH	5.8 7.99 5.97	14.51	16.24 12.24	13.71 12.84	7.59 17.69 17.69	7.50	8.08 7.08 1.08	7.53	7.47	8.6 9.26 9.00	10.35	4.51 5.74 7.12	8.64 10.38	13.58 14.87 15.18
2.13 2.23 2.31 2.38 2.50 2.72 3.12		VROB	8888	8888	0.00 0.81 55.5	3.38	5.78 4.67 6.24	0.00	2.12 2.38	2.53	2.88	2.5.8 8.5.8	5.17	0.00	0.74 1.10	2.23 2.73
2.29 2.49 2.65 2.79 3.38 3.38 4.13		NL08	0.000	8888	32.5	3.15	5.8 5.8 5.8	0.00	2.2 2.4 2.4	. 2.5 2.8 2.8	% % i	3.97	6.09	0.00 0.00 8.0	1.32	2.46 3.21 3.21
3500.00 4000.00 4500.00 5000.00 6000.00 8000.00 15000.00		•	500.00 1000.00 1500.00	3000.00	4500.00 4500.00	\$000.00 \$000.00	10000.00 15000.00	500.00	2000.00	300.00	4500.00	8000.00	10000.00	500.00 1000.00 1500.00	2500.00	3500.00 4000.00 4500.00
3450.63 3451.34 3452.00 3452.64 3453.85 3456.05 3456.05 3462.45	16:57:22	CWSEL	3451.82 3453.73 3454.78	3455.63	34.58.26 34.58.26 34.60.15		3464.30 3466.30 3466.41	3459.69	763.4 764.65	3466.39			3471.59	3472.89 3474.98 3476.02	3476.60 3476.85 3477.16	3477.29 3477.59 3478.28
48.500 48.500 48.500 48.500 48.500 48.500 48.500	10 MAY 85	SECNO	008.87	008.84	008.84 8.80 8.80 8.80	48.800 08.84	48.800 48.800 48.800	49.000	000.64 64.64	000.64	65.000	000.64	65.000 49.000	49.500 49.500 49.500	49.500 49.500	005.64 005.64 005.64
	1 10			* * •		* * *										*

005.67 *	2	5000.00	3.51	3.12	15.58							
005.64	X 83.53	8000.00 10000.00	2.73	4.62	17.32							
* 49.500	37.88	15000.00	6.26	6.41	20.24							
-												
10 MAY 85	16:57:22									Ą	PAGE 18	
SILVER CREEK		\ 	W	est be r	equeste	-Must be requested on V3 card.	card.					
SUMMARY PRINTOUT TO		BLE 150	ı									
SECNO	XLCH	ELTRO	ELLC	ELMIN	σ	CNSEL	CRIWS	EG	10K*S	V CH	AREA	
48.300			9.6	3430.00	500.00	3436.67	0.0	3437.29	56.45	6.33	78.93	
48.300			88	3430.08	1500.00	3441.47	8.6	3442.66	57.0% 57.0%	8.3	17.8	
48.300 48.300	88.	88.	6 6 8 8	3430.00	2000.00 2500.00	3442.85	0.0 0.0	3445.29	57.93	9.80	229.38	330.41
48.300			0.0	3430.00	3000.00	3445.05	0.00	3446.78	56.88	1.1	342.95	
		/										
		/	/									
			/	,								
				/	/							
					/	,						
					ADI	ADDITIONAL OHEPHE	OHEPHE					
					<u>.</u>		; /					

Confirmation that rating curves are written to the DSS file. /SILVER CREEK/48.300/ELEV-FLOW///BASE//SILVER CREEK/48.500/ELEV-FLOW///BASE//SILVER CREEK/48.800/ELEV-FLOW///BASE//SILVER CREEK/49.000/ELEV-FLOW///BASE//SILVER CREEK/49.500/ELEV-FLOW///BASE//SILVER CREEK/49.500/ELEV-FLOW///BASE//SILVER CREEK/49.500/ELEV-FLOW///BASE// NO. RECORDS= 5 FILE SIZE= 1206 WORDS, PERCENT INACTIVE= 0.00 LIST OF HECDSS PATHNAMES WRITTEN 16:57:56 10 MAY 85 10 MAY 85

では、単分ではこのでは、単分ではなるとは、 のでは、このでは、 のでは、 の

THIS RUN EXECUTED 10 MAY 85 16:57:56

STOP

64

Access intermediate HEC-2 DSS file. MIB*DSSUTLX Execute DSSUTL ENTER DSS FILE NAME FILE = SLVAA22 🚣

Get a "new" catalog list. 71 0000A10C*SLVAA2ZDSS---ZOPEN EXISTING FILE OPENED

diate file into master

DSS file.

intermecurve

Copy rating from HEC-2

U>CA.N.C.
GENERATED AREANAME CALLED 0000A10C*SLVAA22C
CATALOG FILE = 0000A10C*SLVAA22C

HECDSS COMPLETE CATALOG OF RECORD PATHNAMES ON FILE 0000A10C SLVAA2Z

VERSION 4-CA FILE CREATED ON 10MAY85; TIME = 17:07:39 CATALOG DATE = 10MAY85, NUMBER OF RECORDS = 5 SORT ORDER = ABCFED

/SILVER CREEK/48.300/ELEV-FLOW//BASE/ /SILVER CREEK/48.500/ELEV-FLOW//BASE/ /SILVER CREEK/48.800/ELEV-FLOW//BASE/ /SILVER CREEK/49.000/ELEV-FLOW//BASE/ /SILVER CREEK/49.500/ELEV-FLOW//BASE/ RECORD PATHNAME *** VER HEAD DATA KKKKK TIME REF NO. PROG

Copy rating curves for cross-section 49.0 from DSS file "SLVAA22" into the master

DSS file "SLVAAEZ".

Verification of record(s) copied.

0000A10C*SLVAAEZ

5√1

65

RECORD COPIED: /SILVER CREEK/49.000/ELEV-FLOW///BASE/

USCOPY SLVAMEZ B=49.00

11 SECTORS 9 SECTORS 1206 WORDS, FILE SIZE= 960 WORDS, PERCENT INACTIVE= 0.00 FILE SIZE= 1206 WOR PERCENT INACTIVE= 0.00 ZCLOSE FILE 72 NO. RECORDS= NO. RECORDS= --SSQ----

STOP

g. Determine the reference flood elevations.

Reference flood elevations are needed before an elevation-damage relationship can be compiled for the damage reach index location (river mile 49.0 in Riverton). This requires either the use of historic flood information or a stream profile analysis using HEC-2. See the SID user's manual for a discussion of the reference flood. For the Riverton study, observations from a recent major flood are used for the reference elevations. Table 6 tabulates this data.

Table 6: Reference Flood Elevations

Location	Flood Blevations
Index location	3466.5
Residential structure	3464.8
Commercial structure	3465.9

The residential and commercial structure reference flood elevations are input on the SID structure records (variable ADJ) and the index location reference flood elevation input on the reach record.

The output from the base condition SID run follows paragraph h below.

h. Compute elevation-damage relationships at the index location.

This step includes locating and categorizing all structures in the flood plain and developing or adapting standard stage percent damage functions for categories of structures and their contents in Riverton. Stage versus percent damage relationships are obtained for structures of this type in the area. Field surveys of Riverton reveal two types of structures (one residential and one commercial), their estimated real estate value in dollars (for both the structure as well as it's contents), and each structures' finished floor (first) elevations. These data are listed in Table 7.

Table 7: Structure Inventory For Riverton Structure and Content Value (\$1000)

<u>Item</u>	<u>Value</u>
Residential structure	\$130.
Residential contents	\$ 65.
First floor elevation	3463.8'
Commercial structure	\$ 60.
Commercial contents	\$250 .
First floor elevation	3462.4'

The adapted damage functions were taken from a recent study within the area and are tabulated in Table 8.

Table 8: Base Condition Elevation-Damage Functions

Residential Structures

Stage (feet)	Damage to structure (percent of structure value)	Stage (feet)	Damage to Contents (percent of contents value)
-2	0	-2	0
0	19	0	0
2	31	2	75
6	53	6	100
15	100	15	100

Commercial Structures

Stage (feet)	Damage to structure (percent of structure value)	Stage (feet)	Damage to Contents (percent of contents value)
0	0	0	0
1	33	5	89
10	40	10	100
15	100		

The SID user's manual contains a sample structure inventory form which is very useful for performing field surveys. Tables 9 and 10 contain the field inventory forms for Riverton. The output from the base condition SID run then follows.

DATA CARDS DATA C	DATA CARDS DELTG (FIRST FLOOR-STOPO):	STUDY: Silve	r Creek) RE	SIDENT:	<u>M.R</u>	. Wate	ers
PREPARED BY: RDC SURVEY FIELD FORM RIVER MILE: 48.9 LOCATION DAMAGE VALUE FUNCTION BANAGE REACH(LORCH): RCH	PREPARED BY: RDC SURVEY FIELD FORM RIVER MILE: 48.9 LOCATION DAMAGE VALUE DAMAGE ABOVE FIRST FLOOD STRUCTURE REP ELEVISTOPO): 37638 and 157.000 COORDINATES: NORTH (ROW): EAST (COLUMN): COORDINATES: NORTH (ROW): EAST (COLUMN): FIRST FLOOR STRUCTURE BASEMENT FIRST FLOOR): DELTZ (ZERO DAMAGE ELEV-FF): -2 DELTZ (ZERO DAMAGE ELEV-FF): -2 DELTZ (RASEMENT-FIRST FLOOR): DELTZ (RASEMENT FLOOR): DELTZ			STRUCTURE	AC	DRESS:	101 H	Riverside	e Or.
PIELD FORM RIVER MILE: 48.9 DAMAGE REACH(IDRCH): RCH	PIELD FORM RIVER MILE: AB. 9	PREPARED BY:	RDC	SURVEY					
BUILDING ID(IBLDG): RCO1 DAMAGE REACH(IDRCH): RCH DAMAGE CATEGORY(IDCAT): RESONTL DEET FLOOD CLEV(ADJ): 39638 STRUCTURE REF ELEVISTOPO): 39638 STRUCTURE REF ELEVISTOPO): 39638 COORDINATES: HORTH (ROW): EAST (COLUMN): EAST (COLUMN): DELTZ (ZERO DAMAGE ELEV-FF): DELTZ (ZERO DAMAGE ELEV-FF): DELTZ (JERO DAMAGE ELEV-FF): DEL	DATA CARDS DATA CARDS DELTZ (ZERO DAMAGE ELEV-FF): — Z DELTZ (ZERO DAMA	THEFANCO DI.	.,, 5	SORVET					
DATA CARDS DATA C	DATA CARDS DATA C			FIELD FORM					
DAMAGE REACH(IDRCH): RCH DAMAGE FUNCTION RESONT RES	DATA CARDS DATA C				J RI	VER MIL	E:	70.1	
DAMAGE REACH(IDRCH): RESONT ARE FUNCTION TYPE (1045) REF FLOOD ELEV(ADJ): 39638 STRUCTURE REF ELEV(STOPO): 39638 STRUCTURE REF ELEV	DAMAGE REACH(IDRCH): RESONT 10 10 10 10 10 10 10 1	BUILDING ID(IBLDG):	R001						
DATA CARDS DATA CARDS DATA CARDS DATA CARDS DATA CARDS THE PLOOF PROPERTY CONTENTS OF THE PLOOF PROPERTY CONTENTS OF THE PLOOF PROPERTY CONTENTS OF THE PLOOF CONTENTS OF T	DATA CARDS DATA C	DAMAGE REACH(IDRC	H): RCH I	\triangle		LOCATION		VALUE	
DATA CARDS DATA CARDS DATA CARDS THE STRUCTURE REF ELEV(STOPO): 3963.8 oct. 1 oct. 3000000 oct. 3000000000000000000000000000000000000	THE FECOND ELEVIADA STRUCTURE REF ELEVISTOPO): 39638 STRUCTURE REF ELEVISTOPO): 39638 STRUCTURE REF ELEVISTOPO): 39638 STRUCTURE REF ELEVISTOPO): 39638 STRUCTURE REP ELEVISTOPO): 39638 STRUCTURE REP ELEVISTOPO): 39638 STRUCTURE REPRESENTANT REPORT FLOOR COLLEGISTOR FLOOR COLLEGISTOR FLOOR COLLEGISTOR FLOOR COLLEGISTOR COLLEGISTO			1		ABOVE			
DATA CARDS DATA CARDS DATA CARDS DATA CARDS DATA CARDS DELTZ (ZERO DAMAGE ELEV-FF): — Z DELTZ (FIRST FLOOR-STOPO): — DELTZ (1086) DELTZ (FIRST FLOOR-STOPO): — DELTZ (1080) DELTZ (FIRST FLOOR-STOPO): — DELTZ (FIRST FLOOR): — DELTZ (FIRST FLOOR): — DELTZ (FIRST FLOOR-STOPO): — DELTZ (FIRST FLOOR-STO	DATA CARDS DATA C		•••			1			
DATA CARDS CONTENTS CONTENT	DATA CARDS					FLOOR			
DELTZ (ZERO DAMAGE ELEV-FF): _ Z DELTZ (ZERO DAMAGE ELEV-FF): _ Z DELTB (BASEMENT FLOOR): DELTG (FIRST FLOOR - STOPO): REMARKS: DATA CARDS DATA CARDS 1000	DATA CARDS DATA CARDS Contents Content	STRUCTURE REF ELE	v(stopo): 3963.8	TZ [] DELTO	LEVATION GROUND			130	RSI
DELTZ (ZERO DAMAGE ELEV-FF):	EAST (COLUMN):	COORDINATES: NORT	H (ROW):			1		50%	R52
DELTZ (ZERO DAMAGE ELEV-FF):	DELTZ (ZERO DAMAGE ELEV-FF):	EAST	(COLUMN):						
DELTE (BASEMENT FIRST FLOOR): DELTE (FIRST FLOOR-STOPO): REMARKS: DATA CARDS 1 2 3 4 5 6 7 8 9 10 3 1 3 1 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DELTE (BASEMENT FIRST FLOOR): DELTE (FIRST FLOOR-STOPO): REMARKS: DATA CARDS 1 2 3 4 5 6 7 8 9 10 DISTRICT OF THE PROPERTY OF THE PROPERT	DELTT (TERO DAMAG	= = 1 = V = E = 1 - 2						
DATA CARDS Comparison	DATA CARDS Comparison		_			BASEMENT			
DATA CARDS	DATA CARDS	DELTB (BASEMENT-F	FIRST FLOOR):						
DATA CARDS 1 2 0 0 0 0 0 0 0 0 0	DATA CARDS 1	DELTG (FIRST FLOOF	R-STOPO):						
1 2 3 4 5 6 7 8 9 10 11 12 1 3 14 15 16 1 7 18 19 20 21 22 22 22 22 22 22 22 22 22 22 22 22	1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 17 18 19 24 21 24 24 25 24 27 24 25 24 24 25 24 24 25 24 24 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24								
3456789901121919191922222222222222222222233333333	10 RCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO								
RCH ROOI 3464.8 3465.8 -Z IDRCH IBLDG IDCAT IDIFS VIFS IDIFC VIFC IDIFO VIFO IADDR RCH ROOI RESUNTLASI 130852 -50 IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG YC SFTG CON CBS IZE NWBWA BW B NOS OAB OB FC FSIZE NWWA F WD FNOF OAF OD	IDRCH IBLDG IDCAT IDIFS VIFS IDIFC VIFC IDIFO VIFO IADDR RCH I ROOI RESUNTL, RSI ISCASS -50 IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG VC SFTGCGNGBG BTSCBSIZENWEWABWBFNOSOABOBF FC FSIZE NWWAFWDFNOFDAFOD								
IDRCH IBLDG IDCAT IDIFS V1FS ID1FC V1FC ID1FO V1FO IADDR RCH ROOI RESONTLASI 130852 -50 IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG YC SFTGCGNGBG BTSCBSIZENWEWABWBFNOSOABOBF FC FSIZE NWWAFWDFNOFDAFOD	IDRCH IBLDG IDCAT IDIFS V1FS ID1FC V1FC ID1FO V1FO IADDR RCH RCO RESONTLASI 130K52 -50 IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO IDRCH IBLDG YC SFTGCGNGBG BTSGSIZENWEWABWBFNOSOABOBF FC FSIZE NMWAFWDFNOFOAFOD	3 4 5 6 7 8 9 10 11 12 1 3 14 15 16 1	3 4 7181924212423242524272424343431343	5 6	Anagerisie:	7 25 5450454 7 February 1	8	9 5555768670171777	10
IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO	IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO	3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 1 D R C H I B L D G	7 18 1 9 20 21 24 23 24 25 26 27 28 23 30 31 323	5 6 4543545454645464546454645464546464	4849505151 D t	25 \$54555657 58 6	6061626364	5666768697071727	10 3MF3F4F7F4F9
IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO	IDRCH IBLDG IDBS VBS IDBC VBC IDBO VBO IDAS VAS IDAC VAC IDAO VAO	345678901112131415161 IDRCH IBLDG	718192421242324292627282834313433 ROWN COLE	5 \$2433573434404145454454647 ADJ STOPO	4849505151 D t	25 \$54555657 58 6	6061626364	5666768697071727	10 Shairs reli rindro
IDRCH IBLDG YC SFTGCGNGBG BTBCBSIZENWEWABWBFNOBOABOBF FC FSIZE NMWAFWDFNOFOAFOD	IDRCH IBLDG YC SFTGCGNGBG BTBCBSIZENWEWABWBFNOBOABOBF FC FSIZE NMWAFWDFNOFOAFOD	34567890112131415161 IDRCH IBLDG RCH I ROOI	7 8 9 24 21 24 23 24 23 24 23 34 31 34 34 34 34 34 34 34 34 34 34 34 34 34	5 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	48 4950 515 D 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6061626364	5666768697071727	10
IDRCH IBLDG YC SFTGCGNGBG BTBCBSIZENWEWABWBFNOSOABOBF FC FSIZE NMWAFWDFNOFOAFOD	IDRCH IBLDG YC SFTGCGNGBG BTBCBSIZENWEWABWBFNOSOABOBF FC FSIZE NMWAFWDFNOFOAFOD	ACH I ROOL	10 CAT 101FS V1FS 11 RESDNTL RSJ 130F	5 6	48495q51 5	25 54505657585 ELTZ	960615263646 ELTB	5666768697071727	10 Shirt-retribute
		ACH I BLDG		5 6	484950515 D 1	TADDR	960615263644 DELTB	5666768697071727	10
		SALSE TE SOUNTE STATES OF THE SALE OF THE		5 6 35473457345340414244454647 ADJ STOPO 3164.8 3165. DIFC V1FC ID1FO V1FO	4849505155 B	DAR IDAC	DELTB	SEGITIGUE ENTO TO T	SINT TO THE P
		34567890112131456161 IDRCH IBLDG RCH I ROOL IDRCH IBLDG		5 6 35473457345340414244454647 ADJ STOPO 3164.8 3165. DIFC V1FC ID1FO V1FO	4849505155 B	VAC IDAC	DELTB	SEGITIGUE ENTO TO T	SINT TO THE PO
		SASETS SOUTE STATES OF THE SECOND STATES OF THE SECOND SEC	TIBLE TO COLE	5 6 334331343404142434454647 ADJ STOPO 3164.8 3465. DIFC ID1FO V1FO S2 -50 DBO VBO IDAS VAS	4849505155 B	VAC IDAC	VAO	SEGITIGUE ENTO TO T	SMITTITUS OFO A FO D
		ASET BON PRINCIPLE IN THE PROPERTY OF THE PROP	TIBLE TO COLE	5 6 334331343404142434454647 ADJ STOPO 3164.8 3465. DIFC ID1FO V1FO S2 -50 DBO VBO IDAS VAS	4849505155 B	VAC IDAC	VAO	SEGITIGUE ENTO TO T	OFO A F O D

TUDY: Silver Creek		ESIDENT:	N.F	1. Wells	
ATE: May 10, 1985 STRUCT	URE	DDRESS:	III R	verside	Dr.
REPARED BY: ROC SURVE	EY C	ity: <u>Ri</u> s	verton	<u> </u>	
FIELD FO	ORM Z	1P:		. 	
FIELD F		IVER MIL	E:		
UILDING ID(IBLDG):			DAMAGE		DAMAGE
AMAGE REACH(IDRCH): RCH 1		LOCATION	TYPE	VALUE	FUNCTION
AMAGE CATEGORY(IDCAT): COMERCL		ABOVE	STRUCTURE (IDAS)		ļi
EF FLOOD ELEV(ADJ): 3965.9	Ţ	FIRST	CONTENTS (IDAC)		
	(FF)	FLOOR	OTHER (IDAO)		
TRUCTURE REF ELEV(STOPO): 3462.4	DELTS ELEVATION BELEVATION ELEVATION		STRUCTURE (ID1FS)	60	CMI
OORDINATES: NORTH (ROW):	DELTB	FIRST	CONTENTS (ID1FC)	2 50	CM2
EAST (COLUMN):	BASEMENT FLOOR		OTHER (ID1FO)	O	
			STRUCTURE (1DBS)		
ELTZ (ZERO DAMAGE ELEV-FF):		BASEMENT	CONTENTS (IOBC)		†
ELTB (BASEMENT-FIRST FLOOR):			OTHER		<u> </u>
ELTG (FIRST FLOOR-STOPO):			(1080)		1
EMARKS:					
EMARKS:					
EMARKS: DATA CA	RDS				
DATA CA	6		8	9	10
DATA CA 1 2 3 4 5 4 3 6 7 9 9 0 1 2 3 4 5 6 17 19 9 2 2 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3	6 344564744495051 8 7 0 P 0	525354655657585	8 9506152636455 D.E.L.T.B.	9 	10
DATA CA 1 2 3 4 5 15 6 7 8 9 10 11 2 3 4 5 16 5 6 7 8 9 10 11 2 3 4 3 4 3 4 3 4 3 4 3 4 4	6 34415464746495051	525354655657585	9606162636465 D E L T 8	DELTG	1 SPATE TOTO
DATA CA 1 2 3 4 5 6 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 21 22 22 22 22 22 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	6 3445=474645051 3 7 0 P 0	525354655657585	9606162636465 D E L T 8	66676869707172	1 SPATE TOTO
DATA CA 1 2 3 4 5 6 5 6 7 9 9 0 2 3 4 5 6 7 9 9 2 2 2 2 2 2 2 2 2 2 2 2	6 3445=474645051 3 7 0 P 0	525 35455657 585 ELTZ 1	9606152636465 DELTB	DELTG	1 SPATE TOTO
DATA CA 1 2 3 4 5 45 7 9 10 11 12 13 14 15 DRCH	6 3445454744495051 8 7 0 P 0 D 3 9 6 2 . S	545 545 565 7 565	9606152636465 DELTB	DELTG	1 SPATE TOTO
DATA CA 1	6 544564746454051 5 T O P O D 5 T O P O D 5 T O P O D 5 T O P O D 6 T O P O D 7 T O P O D	SABASSEST SAS ELTZ	906152636465 DELT8	SCETES CONTO	73 12 12 12 17 17 17 17 17 17 17 17 17 17 17 17 17
DATA CA 1 2 3 4 5 4 5 6 7 9 9 0 1 2 3 4 5 6 17 19 9 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3	6 544564746454051 5 T O P O D 5 T O P O D 5 T O P O D 5 T O P O D 6 T O P O D 7 T O P O D	SABASSEST SAS ELTZ	PEDELTB	DELTG	r star retrirers
DATA CA 1 2 3 4 5 4 5 6 7 8 9 9 10 11 12 1 3 14 15 16 1 7 18 19 12 2 12 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	6 544564746454051 5 T O P O D 5 T O P O D 5 T O P O D 5 T O P O D 6 T O P O D 7 T O P O D	SA BANGE TO SEE LTZ	PEDEL TO	SCETES CONTO	NOTE O A P O D
1 2 3 4 5 4 5 6 7 8 9 90 11 12 13 14 15 16 17 18 19 20 21 22 32 4 22 22 22 22 32 33 33 33 33 34 34 33 73 33 34 34 34 34 34 34 34 34 34 34 34 34	6 544564746454051 5 T O P O D 5 T O P O D 5 T O P O D 5 T O P O D 6 T O P O D 7 T O P O D	SA BANGE TO SEE LTZ	PEDELTB	DELTG	NOTIO A F O D

CORRESPONDE TO A PROPERTY OF THE PROPERTY OF T

Write elevation-damage relationships to DSS file.

LIST OF INPUT CARDS FOR THIS RUN

CC 1**234567890123456789012345678901234**5678901234567890123456789012345678901234567890

Part B of DSS pathname.

J1 CARD

THIS JOB WILL PERFORM THE FOLLOWING

NO RAISE-TO-TARGET ELEVATION ANALYSIS TO BE CONSIDERED FOR THIS COMPUTER RUN

졏

0, NO FLOOD PROOFING ANALYSIS TO BE CONSIDERED FOR THIS COMPUTER RUN 1 PROF

0, NO STRUCTURE RELOCATION WILL BE CONSIDERED FOR THIS COMPUTER RUN 1EVAC

0, NORMAL OUTPUT IPRKT 0, NO TRACE OUTPUT ITRACE 0, SINGLE EVENT DAMAGES WILL NOT BE CALCULATED ITYPE

0, NO AGGREGATION OF SINGLE EVENT DAMAGES 146

O, NO SAMPLING CONVERSION ISAMP THE REPORT OF THE PROPERTY OF

J2 CARD

Elevation-damage relationships are calculated on this interval. It must be large enough to conture all damageable property. "ELINIR"

capture all damageable property. (card DR.7) with overide.

JOB PROCESSING INFORMATION

4, NUMBER OF DAMAGE FUNCTIONS **100**

2, NUMBER OF DAMAGE CATEGORIES

1, NUMBER OF DAMAGE REACHES **#00#**

1.00, AGGREGATION INTERVAL (IN FEET) AGG

O, STRUCTURE INFORMATION FILE

WFILE

1, IMAGES OF INPUT CARDS WILL BE LISTED AND ECHOED AS READ IMAGE

THE NUMBER OF ELEVATIONS TO BE CALCULATED FOR THE ELEVATION-DAMAGE RELATIONSHIPS ₩,

1, THE TOTAL (STRUCTURE+CONTENTS+OTHER) VALUE WILL BE USED FOR THE STRUCTURE VALUE FLOOD ZONE SUMMARY

IMARK

0, DAMAGE FUNCTION FILE

Number of ordinates in elevation-damage relationships which are written to the DSS file. A maximum of eighteen is allowed.

「シスキースのこうではの自分ののののでしたのでした。」「このできない」

Write elevation-damage relationships to DSS file.

FILE SYSTEM CARD

CC 12345678901234567890123456789012345678901234567890123456789012345678901234567890

SILVER CREEK 1 PR Part A -

BASE Y A Part E-Part F-

EMPTY FILE OPENED-DSS----ZOPEN 0000A10C*SLVAAEZ

7

ADDITIONAL OUTPUT

Appendix C

73

REF. FLOOD ELEV.= 3464.80	STRUCTURE REFERENCE ELEVATI	REFERENCE ELEV. AT INDEX =
R001		_

SIRUCIONE 1.D.= DAMAGE REACH RCH 1 DAMAGE CATEGORY RE	. * C. ±	RUUI I 1 Resontl	REF. Stru Refei	REF. FLOOD ELEV.= 3464.8U STRUCTURE REFERENCE ELEVATION REFERENCE ELEV. AT INDEX = 34	464.80 Elevation = 3463.80 Index = 3465.50	3.0
***************************************		STRUCTURE	* CONTENTS		TOTAL	I - 1
· · · · · · · · · · · · · · · · · · ·						
TOTAL VALUE		130000.		0	195000.	
DAMAGE FUNCTION		RS1	* RS2 *		. 4. 4	
***********	Ĭ :	********	************	************	****	I .
	Ē	*****	**************	****		
STAGE * W.S.E.		STRUCTURE	* CONTENTS	OTHER	* TOTAL	
	*		,			
-2.0 * 3463.5	* 1	•				
-1.8 * 3463.8		1875.	0	ö	1875.	
-1.5 * 3464.0		3750.			3750.	
-1.3 * 3464.3	* *	5625.			5625.	
-1.0 * 3464.5	* *	7300.			. 7300.	
8.7972 * 8.0-	* *	83		d	9375.	
*	*		;	· ·		•
-0.5 * 3465.0		11250.			11250.	
-0.3 * 3465.3	* *	13125.	0	6	13125.	* 1
0.0 * 3465.5	* *	15000.	· ·	0	15000.	
*	*					*
0.3 * 3465.8	* *	16250.	3750.	ö	20000.	* *
0.5 * 3466.0	*	17500.	. 7500.	0	. 25000.	
£ 77 72 * 8 0	* *	0,57,81	. 11250 .		30000	* *
*	*		*	5	*	
1.0 * 3466.5	* 1	20000.	. 15000.		35000.	* *
1.3 * 3466.8	. *	21250.	* 18750.	0	. 40000	
1 5 * 24.67 0	* *	22500	* 22500 .		¥ 45000	* *
		2000	נוליים.	;	. >>>>	

* 50000. *	* 55000. *		* 58375. * relationship is not computed for the	* 60063. * entire height of this structure. An	61750. * determine if the highest calculated	63438. * damage elevation (3471.0 in this case)	65125. * Is high enough. If not, then the tabu-	* 6895. * "AGG", J2.4 or "ELINTR", DR.7).	* 68598. *	* 10188. *	71875.	* 73563. *	* 75250. *	* 76938. *	* 78625. *
0	•				•	ö	0.	6	٠,	\o <u>`</u>	6	7	Ġ	•	
	* *		* *	* *			* *		* *		١.	* *			* *
26250. *	30000 *	30625.	31250. *	31875.	32500.	33125. *	33750. *	34375. *	35000.	35625. *	36250.	26875.	37500.	38125.	38750
23750. * 26250. *	25000. * 30000. *	26063. * 30625. *	27125. # 31250. #	28188. * 31875. *	29250. * 32500. *	30313. * 33125. *	* 31375. * 33750. *	32438. * 34375. *	33500. * 35000. *	34563. * 35625. *	35625. 36250.	36688. 36875.	37750 37500.	38813. \$ 38125.	39875. 38750
	* *				* *		. * *	* *			* *		٠,	* * *	* *

文の名 をないののなな 日本の 人名英国の人

DAMAGE WAS NOT CALCULATED FOR ENTIRE STAGE DAMAGE FUNCTION FOR STRUCTURE DAMAGE WAS NOT CALCULATED ABOVE MAXIMUM ELEVATION FOR DAMAGE REACH

STRUCTURE VALUE FIRST FLOOR CONTENTS OF THIS STRUCTURE IS 50.0 PERCENT OF THE DAMAGE VALUES ARE TRUNCATED TO -2.0 STAGE TO REFLECT THE DIFFERENCE IN STAGE BETWEEN THE FIRST FLOOR AND LOWEST OPENING (DELTZ) FIRST FLOOR THE VALUE OF

ADDITIONAL OUTPUT

SILVER CREEK

Elevation-damage relationship that is written to DSS file.

				DAM	DAMAGE REACH RCH	RC# →		Dog	Dag. 1.7.1.	700 001	oftion for mariable
		_	DAMAGE R	EACH 1 FOR	REACH 1 FOR RIVERTON (DANAGES ARE IN \$1000	1000		(DR.	(DR.6). Sh	ior seri	
				. DA	DAMAGE CATEGORIES	ORIES		unne	unnecessary	zero	zero damage values)
MATER * SURFACE * RESONTL * COMERCE ELEVATION*	RESDNTL	WATER * * * * * * * * * * * * * * * * * * *	OTHER	* * * *	* * * *\	\	* * * *			•	# TOTAL #
*******	****	***************************************	****	***********	<u>'</u>	***************************************	*********	******	****	****	******
3462.0 *	0.0	0.0	0.0	ارة م	, o.o.	* 0.0	0.0	* 0.0	* 0.0	* 0.0	* 0.0
3462.5 *	0.0	0.0	* 0.0	1 00	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	0.0	* 0.0
3463.0 *	0.0	* 0.0 *	0.0	0.0 *	0.0	0.0	0.0	* 0.0	* 0.0	* 0.0	0.0
3463.5 *	0.0	21.0 *	0.0	0.0	. 0.0	* 0.0	* 0.0	0.0	* 0.0	0.0	21.0 *
3464.0 *	ю. Ю	42.0 *	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.7 *
3464.5 #	7.5	58.1	0.0	0.0	* 0.0	0.0	0.0	0.0	0.0	0.0	65.6 *
3465.0 *	11.3	74.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	85.5 *
3465.5 *	15.0	90.3	0.0	0.0	0.0	0.0	* 0.0	* 0.0	0.0	* 0.0	105.3 *
3466.0 *	25.0	106.4	0.0	0.0	0.0	0.0	0.0	0.0	* * 0.0	0.0	131.4 *
3,66.5 *	35.0	122.6	0.0	* 0.0	0.0	0.0	0.0	0.0	* 0.0	0.0	157.6 *
3,67.6 *	45.0	* 138.7 *	0.0	* 0.0	0.0	0.0	0.0	* * 0.0	0.0	0.0	183.7 *
3467.5 *	55.0	* 154.8 *	* 0.0	* * 0.0	* * 0.0	* * 0.0	* * 0.0	* * 0.0	* * 0.0	* * 0.0	* 8 500 209.8 *
* 0 8972	7 85	170 0 *	* *	* *	* *	* *	* *	* *	* *	* *	* 2000
* 3 07/2		1	* •	* *	* *	* •	* *	* •	* *	* *	* * * * * * * * * * * * * * * * * * * *
* 0.00		* 1/3.0	* *	• •	. *	* * •	• •	* *	* *	• *	
3469.0 *	65.1	175.1 *	* 0.0	* 0.0	* * 0.0	* *	* 0.0	* *	* *	* *	240.2 *
3469.5 *	68.5	* 177.2 *	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	245.7 *
3470.0 *	71.9 4	* 179.3 *	* 0.0	* 0.0	* 0.0	0.0	* 0.0	* 0.0	* 0.0	* 0.0	251.2 *
3470.5 *	75.2	* 181.4 *	0.0	* 0.0	0.0	0.0	* 0.0	* 0.0	0.0	0.0	256.7 *

DAMAGE CATEGORY COMERCL IDENTIFIED AS COMMERCIAL STRUCTURE AND CONTENTS DAMAGE CATEGORY OTHER IDENTIFIED AS OTHER DAMAGE CATEGORIES

SILVER CREEK

/SILVER CREEK/RCH 1/ELEVATION-DAMAGE///BASE/ S.-.ZCLOSE FILE 71
NO. RECORDS= 1
FILE SIZE= 456 WORDS,
PERCENT INACTIVE= 0.00

R STOP

Elevation-damage relationship written to DSS file for reach 1.

i. Compute the expected annual damage for the base condition.

At this point, all the pertinent relationships for the base condition have been stored in the master DSS file named "SLVAAEZ". A data file named "SLVAOEI" is developed to compute expected annual damage for the base condition.

Data stored in the DSS file may be examined at any time. It may at times be useful to check the data before submitting the EAD run. This is easily done by using the DSS utility programs DSSUTL to catalog the file and tabulate the data and DSPLAY to tabulate and plot the data. It is possible to input data directly into the DSS file. For illustration purposes, the base condition frequency curve is input and (later) compared to the automatically inserted curve. This entails directly storing the input curve into the DSS file using the PIP program (reference 10). The output below demonstrates the application of these programs. This is a good time to verify that the rating curves are properly defined (the lowest discharge is below the lowest point on the flow-frequency curve and the highest point is above the maximum damage elevation), the frequency curves are properly defined (the lowest discharge on the curve is non-damaging and the highest point is very rare (on the order of .2% chance exceedance), and the elevation-damage relationships are well defined. Careful examination of the results of the EAD run will also reveal whether the data ranges input have been appropriate. Notice that the frequency curve stored in the DSS file is virtually identical to the one which was input to HEC-1. It is based on the ratios which were selected on the JR card in the HEC-1 input data file. The flow-exceedance frequency curves are shown in Figure 6, the elevation-flow rating curve at river mile 49.0 is shown in Figure 7, and the elevation-damage relationships for both damage categories of reach one in Riverton are shown in Figure 8.

Program PIP

HL18*P1PX

OPENING MENU

Enter base condition frequency curve directly to DSS data file.

0 EXIT PROGRAM

GENERAL HELP MENU

PATHNAME MENU

DATA ENTRY MENU

DATA-FILE MENU

ENTER ITEM NUMBER OR <H>ELP:

Menu to enter pathname parts (A & F).

PATHNAME MENU

OTHER MENUS

0 EXIT PROGRAM : 3 GENERAL HELP MENU

SET PROJECT NAME : 4 DATA ENTRY MENU

SET ALTERNATIVE NAME : 5 DATA-FILE MENU

ENTER ITEM NUMBER OR <H>ELP:

ENTER PROJECT NAME (MAXIMM 14 CHARACTERS):
SILVER CREEK — Part A.

SILVER CREEK —— Part A.

ENTER ITEM WUMBER OR <H>ELP:

2 — Enter Part F.

ENTER ALTERNATIVE NAME (MAXIMUM 24 CHARACTERS):
EXISTING-INPUT - Part F.

ENTER ITEM NUMBER OR <H>ELP:

Menu to enter data and parts B and E of the pathname.

DATA ENTRY MENU

OTHER MENUS

0 EXIT PROGRAM : 4 GENERAL HELP MENU

SET LOCATION : 5 PATHNAME MENU : SET DATA YEAR : 6 DATA-FILE MENU

3 SELECT DATA TYPE

Appendix C

79

ENTER ITEM NUMBER OR <H>ELP:

- Enter Part B. ENTER LOCATION (MAXIMUM 6 CHARACTERS):

Part B.

ENTER ITEM NUMBER OR <H>ELP:

Menu to select data type.

TYPE DATA

OTHER MENUS

. 8 GENERAL HELP MENU	9 PATHNAME MENU	: 10 DATA ENTRY MENU	. 7 DISPLAY PATHNAME : 11 DATA-ETLE MENT
4 FREG-FLOW	ELEVATION-DAMAGE : 5 FLOW-DAMAGE	6 FREQ-DANAGE	DISPLAY PATHNAME
4	2	9	7
••		••••	•••
EXIT PROGRAM	MAG		

ENTER ITEM NUMBER OR <H>ELP:

Select frequency-flow data type.

80

FREQUENCY - FLOW DATA ENTRY (MAXIMUM 18 VALUES)

THE FREQUENCY-FLOW VALUES ARE INPUT IN FREE-FORMAT, SEPARATED BY AT LEAST ONE SPACE OR A SINGLE COMMA. THE FLOW VALUES MUST BE INPUT IN INCREASING ORDER. THIS DATA ENTRY SECTION ALLOWS YOU TO MANUALLY INPUT FREQUENCY - FLOW FUNCTIONS TO AN HEC DSS-FILE.

THE FREQUENCY VALUES MUST BE INPUT AS EXCEEDANCE FREQUENCY VALUES IN PERCENT. THE VALUES MUST BE IN DECREASING ORDER (E.G. 10. FOR THE 10-YEAR EVENT, 1.0 FOR THE 100-YEAR EVENT, ETC.).

A BLANK PAIR OF FREQUENCY-FLOW VALUES TERMINATES DATA ENTRY AND TRIGGERS DATA VERIFICATION AND EDIT MODES.

PRESS THE CARRIAGE RETURN TO CONTINUE

COURT TO CONTROL OF THE CONTROL OF T

Display data entered above.

าปราก																			
													;					_	
	FLO4	1000.00	1150.00	1270.00	1400.00	1550.00	1700.00	1860.00	2100.00	2550.00	3000.00	3750.00	4350.00	5300.00	6700.00	7800.00	12000.00	DATA? (Y OR N)	
ΙΑΥ	FREQUENCY	90.06 0.06	80.00	8.8	90.09	20.00	40.00	30.00	20.00	10.00	2.00	2.00	1.0	0.50	0.20	0.10	0.01	WANT TO EDIT THE	
DATA DISPLAY	POINT	-	7	m	4	'n	•	7	∞	٥	5	=	12	13	2	15	2	$\overline{}$	2
					8	31													

OTHER MENUS

EXIT PROGRAM : SET LOCATION : SET DATA YEAR :	4 GENERAL HELP MENU	5 PATHNAME MENU	6 DATA-FILE MENU
EXIT PROGRAM SET LOCATION SET DATA YEAR	••		
0 - 2	O EXIT PROGRAM	1 SET LOCATION	2 SET DATA YEAR

SELECT DATA TYPE

Select Data-file menu. ENTER ITEM NUMBER OR <H>ELP:

N E N

OTHER MENUS

GENERAL HELP MENU DATA ENTRY MENU PATHNAME MENU WRITE DATA-FILE TO DSS-FILE SET DATA-FILE NAME EXIT PROGRAM

ENTER ITEM NUMBER OR <H>ELP:

-Write data (frequency curve) to DSS file. 71 0000A10C*SLVAAEZ 1/FREG-FLOW///EXISTING-INPUT/ DSS file name 7DSS---ZOPEN EXISTING FILE OPENED ENTER DSS-FILE NAME (MAXIMUM 7 CHARACTERS): ...-DSS ... ZWRITE FILE

11 SECTORS

Frequency curve written to DSS file.

DATA·FILE

OTHER MENUS

PATHINAME MENU 1 SET DATA-FILE NAME

DATA ENTRY MENU

WRITE DATA-FILE TO DSS-FILE

GENERAL HELP MENU

ENTER ITEM NUMBER OR <H>ELP:

Exit "PIP" program.

DO YOU WANT TO SAVE YOUR DATA? (Y OR N)

DO YOU WANT TO SAVE YOUR DATA? (Y OR N) ARE YOU SURE? (Y OR N)

DSS-FILE NAME (MAXIMUM 7 CHARACTERS):

Alternative method to write data to DSS file.

11 SECTORS NO. RECORDS= 4 FILE SIZE= 1124 WORDS, PERCENT INACTIVE= 0.00

STOP Appendix C

O EXIT PROGRAM

Master DSS file.

71 0000A10C*SLVAREZ Get a "new" (option "N") catalog listingDSS...ZOPEN EXISTING FILE OPENED

catalog and tabulate Execute DSSUTL to

data.

U-CA.N GENERATED AREANAME CALLED 0000A10C*SLVAAEZC CATALOG FILE = 0000A10C*SLVAAEZC

VERSION 4-CA MECOSS COMPLETE CATALOG OF RECORD PATHNAMES ON FILE 0000A10C SLVAAEZ FILE CREATED ON 10MAY85; TIME = 17:09:37 CATALOG DATE = 10MAY85, NUMBER OF RECORDS = SORT ORDER = ABCFED

Catalog Listing.

/SILVER CREEK/49.000/ELEV-FLOW///BASE/ /SILVER CREEK/RCH 1/ELEVATION-DAWAGE///BASE/ /SILVER CREEK/RCH 1/FREQ-FLOW///BASE/ RECORD PATHNAME WTA 1.3 Tabulate pathnames 1 through 3. 822 VER HEAD DATA 718 **URITTEN** 10MAY85 10MAY85 **OMAY85** P.R.O.G

- DSS records in file

/SILVER CREEK/49.000/ELEV-FLOW///BASE/ /SILVER CREEK/49.000/ELEV-FLOW///BASE/
HEADER L.= 34, # DATA PAIRS= 14, # X CURVES= 1, # Y CURVES= 1, HORIZ= 2
FEET CFS UNI UNI 71, VERS.

83

3466.392 3467.123 3467.763 3473.973 3465.654 3471.594 3461.926 3463.437 3464.646 3468.304 3468.820 3470.245 3459.691 3467.973

200 4500. 4000 3000 2500. 1500 10000 500. 600.

- Elevation-discharge rating curve.

		Elevation-damage relationship.		
/SILVER CREEK/RCH 1/ELEVATION-DAMAGE///BASE/ ASE/ URVES= 1, # Y CURVES= 3, HORI2= 2	3464.000 3464.500 3465.000 3465.500 \blacksquare $Elev$.	25.00 35.00 •Resdntl.	%.333 177.222 ←Comerel.	o. *Other
3, HOR12=	5465.000 34 5469.000 34	25.00 25.00	74.222	
# Y CURVES=	3464.500	7.50 11.25 15.00 68.50 71.87 75.25	58.111 173.000	
SE/ RVES= 1,	3464.000 3468.000	7.50	42.000 170.889	
8, # X CU	3463.500 3467.500	3.75 65.13	21.000 154.778	
EVATION - DA PAIRS 1	463.000 467.000	0.00 0.00 58.38 61.75	0.000	
K/RCH 1/ELEV 42, # DATA P. 0 UNT UNT ERCL OTHER	3462.000 3462.500 3463.000 3463.500 3466.000 3466.500 3467.000 3467.500 3470.000 3470.500	0.00 0.0 55.00 58.3	0.000 122.556 181.444	000
/SILVER CREEK/RCH 1/ELEVATION-DAMAGE///BASE/ HEADER L.= 42, # DATA PAIRS= 18, # X CURVES= 1, # Y CURVES= 3, HORIZ= 2 FEET \$1000 UNT UNT RESDNIL COMERCL OTHER	3462.000 3466.000 3470.000	45.00	0.000 106.444 179.333	666

/----DSS---ZREAD FILE 71, VERS. 1 /SILVER CREEK/RCH 1/FREQ-FLOW///BASE//SILVER CREEK/RCH 1/FREQ-FLOW///BASE/ /SILVER CREEK/RCH 1/FREQ-FLOW///BASE/ HEADER L.= 30, # DATA PAIRS= 9, # X CURVES= 1, # Y CURVES= 1, HORIZ= 1

72.4310 14.1772 5.9418 2.3709 1.0643 0.8533 0.2684 0.1265 \leftarrow Freq. 0.0474 2322.498 2875.303 3601.746 4277.350 4559.864 6263.014 7403.350 \leftarrow Flow 9117.608

Freq-flow curve.

V>FI

STOP

....-DSS---ZCLOSE FILE 71

NO. RECORDS= 3

FILE SIZE= 960 WORDS, 9 SECTORS

PERCENT INACTIVE= 0.00

84

Execute DSPLAY
HIB*DSPLAYX

-Execute program.

Tabulate data. Plot data.

1.

DSS-DSPLAY PROGRAM
VERSION NO. 7
JAN. 25, 1985

Master DSS file. ENTER DSS DATA FILE NAME FILE = SLVANEZ -

71 0000A10C*SLVAAEZ ...-DSS---ZOPEN EXISTING FILE OPENED

OR PROCESS/MODE COMMAND. ÷ ENTER PATHNAME **∳** ≙~

-Get online help.

DSPLAY

The following is a list of the VALID COMMUNDS available under the DATA RETRIEVAL SUBMODULE. To get definitions of the commands, enter ?,ALL. To get a definition of individual command, enter ?,command,command,...

DATA RETRIEVAL SUBMODULE COMMANDS

DBUG LANGUAGE RATE SQUARE SETTING FRANE DPATHNAM DATE GRID PLOT SPLIT ? HELP CURVES
GETPATHN
PATHNAME
SIZESYMB
USERLABE
STATUS COLOR FINISH OPEN SHADE TIME RPLOT CATALOG FACTOR L2 SCREEN TABULATE SPLOT YLABEL AXIS
DEVICE
L1
RESET
SYMBOL
YRANGE
XLABEL
MORMALIZ

-List of commands.

85

-Get online documentation for the command "device". Indicate Tektronix 4014 terminal is being used. Get existing catalog listing. The DE command is used to specify the type of terminal being used. Parameters: ALPHA, INTERACTIVE, BATCH, 4014, 4027 Example: DE,4014 (Tektronix 4014 being used) Default: ALPHA (Non-Graphics) and INTERACTIVE OR PROCESS/MODE COMMAND. OR PROCESS/MODE COMMAND. OR PROCESS/MODE COMMAND. DEVICE D> CA CA
CA
CATALOG FILE = 0000A10C*SLVAAEZC ÷ -: **-**: ENTER PATHNAME ENTER PATHNAME USE: DE, Parameters D> 2, DEV 2, DEV

THE SECOND P. LEWIS CO., LAND BY SECOND P. LE

NO. PROG DATE TIME VER HEAD DATA RECORD PATHNAME

1 HEC2 10MAY85 16:57:23 1 34 28 /SILVER CREEK/49.000/ELEV-FLOM//BASE/
2 SID 10MAY85 16:59:49 1 42 72 /SILVER CREEK/RCH 1/ELEVATION-DAMAGE//BASE/
3 HEC1 10MAY85 16:56:25 1 30 18 /SILVER CREEK/RCH 1/FREQ-FLOM//BASE/
4 PIP 17APR85 14:49:02 4 34 32 /SILVER CREEK/RCH 1/FREQ-FLOM///EXISTING-INPUT/

VERSION 4-CA

FILE CREATED ON 10MAY85;

HECOSS COMPLETE CATALOG OF RECORD PATHNAMES ON FILE 0000A10C SLVAAEZ

86

CATALOG DATE = 14MAY85, TIME = 13:59:20
NUMBER OF RECORDS = 4
SORT ORDER = ABCFED

Plot elevation-discharge rating curve. (reference number 1). OR PROCESS/MODE COMMAND. /SILVER CREEK/49.000/ELEV-FLOW///BASE/ ENTER PATHNAME ው R,1 R,1

Appendix C

Tabulate rating ourves and damage relationships. (ref. No. 1 and 2). ADDITIONAL OUTPUT PAGE PAGE PAGE PAGE OR PROCESS/MODE COMMAND. MINIMUM MAXIMUM VALUE VALUE 500.00 15000.00 MAXIMUM VALUE 3473.97 /SILVER CREEK/49.000/ELEV-FLOW///BASE/ /SILVER CREEK/RCH 1/ELEVATION-DAMAGE///BASE/ PATH NAME
/SILVER CREEK/RCH 1/ELEVATION-DAMAGE///BAX MINIMUM P VALUE 3459.69 PATH NAME /SILVER CREEK/49.000/ELEV-FLOW///BASE/ 0> MEAN VALUE 4750.00 MEAN VALUE 3466.97 ENTER PATHNAME 1. Y - VARIABLE DATA
NO TOTAL
ALUES VALUE
14 48537.54 X - VARIABLE DATA
NO TOTAL
VALUES VALUE
14 66500.00 14MAY85 14:43:51 14:43:51 14:43:51 14:43:51 CURVE NO 1 14MAY85 VALUES 14MAY85 14MAY85 87 Appendix C

TO SEE THE PROPERTY OF THE PRO

~
띯
ž
_

PAGE 7	///BASE/						- Tabulation of rating curve.		-				PAGE	1//BASE/		
	/SILVER CREEK/49.000/ELEV·FLOW///BASE/	FLOW IN CFS	FLOW	500.000		2000.000				5000.000	•		:51	/SILVER CREEK/49.000/ELEV-FLOW///BASE/	FLOW IN CFS	FLOW
35 14:43:51	ER CREEK/49.	-	ELEV	3459.691	3463.437	3464.646	3466.392	3467.763	3467.973	3468.304	3470.245		85 14:43:51	ER CREEK/49		ELEV
14MAY85	SILVE		2	- ^	ı m	4 N	•	~ •0	•	2 :	- 2º E	<u>^</u>	14MAY85	/SILM		욮

3473.973 15000.000

Appendix C

PAGE 9				Tabulation of damage relationships.		
			OTHER	000000000000000000000000000000000000000	OTHER	000000000000000000000000000000000000000
	/SILVER CREEK/RCH 1/ELEVATION-DANAGE///BASE/	DANAGE IN \$1000	COMERCI	1 3.462.000 0.000 0.000 2 3.462.500 0.000 0.000 4 3.463.000 0.000 0.000 5 3.464.000 3.750 42.000 6 3.464.500 7.500 58.111 7 3.465.000 11.250 74.222 8 3.466.000 25.000 106.444 10 3.466.000 25.000 122.556 11 3.467.000 45.000 122.556 12 3.467.500 55.000 138.667 12 3.467.500 55.000 138.667 14.43.51 14MAY85 14:43.51 15.468.000 58.375 170.889 14.43.51 15.468.000 58.375 170.889	COMERCL	173.000 175.111 177.222 179.333 181.444
	/ELEVATION-I	DANA	RESONTL	0.000 0.000 0.000 3.750 11.250 15.000 25.000 35.000 55.000 58.375	RESDNTL	61.750 65.125 68.500 71.875 75.250
14:43:51	CREEK/RCH 1,		ELEVATION	3462.000 3462.500 3463.000 3463.000 3464.000 3464.500 3464.500 3464.500 3465.500 3467.500 3467.500 3468.000	ELEVATION	348.500 3469.000 3469.000 34.70.000 34.70.500
14MAY85	/SILVER		9	13 12 13 1444 85 1444 85	2	75 55 70 40 40 40 40 40 40 40 40 40 40 40 40 40

Tabulate frequency curve (ref No. 3). ← Tabulation of frequency curve. PAGE PAGE OR PROCESS/MODE COMMAND. MAXIMUM VALUE 9117.61 PATH MAME /SILVER CREEK/RCH 1/FREG-FLOW///BASE/ D> /SILVER CREEK/RCH 1/FREG-FLOW///BASE/ /SILVER CREEK/RCH 1/FREG-FLOW///BASE/ MEAN VALUE 4628.98 1240.091 2322.498 2875.303 3601.746 4277.350 4559.864 6263.014 7403.350 9117.608 FLOW IN CFS RESDNTL ENTER PATHNAME 1. X - VARTABLE DATA
NO TOTAL
VALUES VALUE
9 97.28 Y - VARIABLE DATA
NO TOTAL
ALUES VALUE
9 41660.82 14:43:51 14:43:51 14:43:51 CURVE NO 1 14MAY85 14MAY85 14MAY85 ۵ 90 Appendix C

Figure v Base Condition Frequency Curves, Silver Creek

THE CONTROL OF THE PROPERTY OF THE PARTY OF

MICROCOPY RESOLUTION TEST CHART

Figure 7 Base Condition Rating Curve, Silver Creek R.M. 49.0

Figure 8 Base Condition Elevation-Damage, Silver Creek, RCH 1

===> HLIB*EADX, INPUT=SLVAOEI, TAPE71=SLVAAEZ Base Condition EAD

-Master DSS file.

SAL RESIDENCE ISSNESSES. BUSINESSES COLLEGISCOTT

* EXPECTED ANNUAL FLOOD DANAGE PROGRAM
* VERSION OF MARCH 1985

EEEEEEE EEEEEE

READIN .. 13 RECORDS URITTEN TO LOGICAL FILE 8

	+ EXPECTED ANNUAL FLOOD DANAGE COMPUTATION + 761.X6-L7580 FEBRUARY 1984 + VERSION DATE MARCH 5. 1985 + 1885 + 1985 + 1885	PUTATION + 1984 + 5, 1985 +				

	TT SILVER CREEK					
	DAMAGE CATEGORY MANES CN 2 RESIDNTL CONERCL					
	FLOOD PLAIN MANAGENENT PLAN NAMES PN 1 EXISTING CONDITIONS	**S				
	FILE SYSTEM READ ZR SILVER CREEK BASE ZR SILVER CREEK BASE ZR SILVER CREEK BASE	992	1 1 1 1			
	***************************************	***************************************			***************************************	******
	REACH 1, REACH MAME - RH REACH 1, RIVERTON					
96	++++ IMPUT DATA ++++					
•	**FREGUENCIES** FR RCN 1 18 90.00 70.00 15.00 10.00 7.00 5.00	50.00 40.00 3.00 2.00	. 3.88 88	30.00 0.50	25.00 0.20	20.00 User input to EAD program.
	FREQUENCIES READ FROM MECOSS FILE FR RCH 1 0 1 0 72.43 14.18 5 0.05	5.94 [2.37	1.08	0.85	0.27	0.13 (Frequency curve stored in DSS file by HEC-
	FLOOD PEAKS READ FROM HECOSS FILE QF RCH 1 9 1240, 2322, 287918.	2875. 3502.	· 42m.	4560.	6263.	7403.
	INTERPOLATED FLOOD PEAKS QF RCH 1 0 1 0 974.58 1271.62 15 2289. 2534. 2764. 3000.	536.06 1687.7 3408. [3737	341774.03 - 4348.	1870.92 5315.	1982.91 2 6704.	900 PEAKS** 974.58 1271.62 1536.06 1687.73/1774.03 1870.92 1982.91 2117.52 Interpolated flow values corresponding t 2764. 3000. 3408. [3737.] 4348. 5315. 6704. 7790. frequencies entered by user on FT cards.
Ap	**STAGES FOR RATING CURVE** \$049.000 14 3459.69 3461.93 34 3467.97 3468.30 3468.82 3470.25 34	.93 3463.44 3464.65 3465.65 3466.39 3467.12 3467.76 .25 3471.59 3473.97	5 3465.65	3466.39	3467.12	2467.76
9						The state of the s

Control of the Control of Manager of the Section 1

*Rating curve stored in DSS file by HEC-2. **FLGWS FOR RATING CURVE**
6\$49.000 0 1 0 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00
4500. 5000. 6000. 8000. 10000. 15000.

DSS file by HEC-1.

Damage relationship stored in DSS file by SID program. 15.00 73.25 **STAGES FOR DANAGE DATA**
SD RCH 1 18 3462.00 3462.50 3463.00 3464.00 3464.50 3464.50 3465.00 3465.50 3466.00 3466.50 3466.00 3466.50 3466.00 3466.50 3466.00 21.00 42.00 58.11 74.22 173.00 175.11 177.22 179.33 11.25 71.87 3.73 65.13 **FLOOD DANAGE DATA**
DG RCH 1 2 0.00 0.00 0.00 106.44 122.56 138.67 154.78 170.89 0.00 58.38 0.00 55.00 0.00 **FLOOD DAMAGE DATA**
DG RCH 1 0 1 1 0.
25.00 35.00 45.

**END OF INPUT DATA FOR PLAN 1 **

++DAMAGE DATA FOR PLAN 1 -- EXISTING CONDITIONS

	ACC EAD	42.51	42.51	41.00	37.89	35.63	32.92	۶. چ	8.8	21.57	16.37	12.64	9.8 80	6.48	4.54	2.37	1.21	0.50	0.25		
	TOTAL	0.0	0.0	22.20	40.36	72.67	59.03	62.69	80.83	94.55	115.98	133.70	151.%	183.06	205.93	225.72	234.39	243.76	252.26		42.51
	COMERCL	0.0	0.00	22.02	37.43	45.22	52.77	61.50	20.46	81.59	8.8	107.84	119.10	138.29	152.41	167.98	172.86	176.47	179.74	flows	38.8
	RESIDNTL	0.0	8.0	0.18	2.93	4.50	6.26	8.29	10.37	12.8	19.08	25.86	32.86	4.7	53.53	57.76	61.53	67.29	72.52	volated	6.47
2nc	▼ STAGE	3461.81	3462.73	3463.52	3463.89	3464.10	3464.33	3464.61	3464.88	3465.23	3465.70	3466.04	3466.39	3466.99	3467.43	3467.91	3468.47	3469.32	3470.10	$\prod_{n \in N} nter$	1
User in	201	975.	1272.	1536.	1688.	1774.	1871.	1983.	2118.	2289.	2534.	2764.	3000.	34.08.	13737.	4348 A	5315.7	6704.	730.		DAMAGE
1	FREG	8,8	8	20.00	60.09	35.8	30.00	X 8	8 8	15.00	10.00	2.0	8.8	3.00	8.8	8.	0.50	٥. د	0.10		AHMUAL C
		-	~	m	•	'n	•	~	••	•	2	=	12	5	*	\$	2	17	₽		EXP

SILVER CREEK

** SUPPLARY OF REACH NAMES **

O ID ... NAME ...

SILVER CREEK

** GRAND SUMMARY BY CATEGORY **

** FLOOD PLAIN MANAGEMENT PLANS 1 - EXISTING CONDITIONS

GRAND SLAWARY - ALL DAWAGE CATEGORIES
. EXPECTED ANNUAL DAWAGE .
DAWAGE BASE
CATEGORY CONDITION
(PLAM 1)

42.51 TOTAL

RESIDNTL CONERCL

Total expected annual damage for all reaches and categories.

Appendix C

j. Adjust procedure or change naming conventions if needed.

At this point, the base condition damage is determined. It is a good time to assess the successfulness of the study procedure to determine if adjustments are necessary. If mistakes or misunderstandings in data management naming conventions have caused inconsistences in data storage, these are corrected both in the master data base file "SLVAAEZ", as well as all intermediate DSS files and input data files. The output from the RAD program is checked to ensure that frequency curves are properly defined, that elevation-damage relationships span the range of damageable property, and that rating curves have properly converted elevation to discharge.

Once it is determined that all relationships are properly defined and that the study procedure is sound, the flood damage mitigation measures formulated earlier are studied. This process involves study team communication because some alternatives involve interdependent modifications to the basic hydrologic relationships.

k. Simulate an ungated reservoir.

HEC-1 simulates an ungated reservoir located above Riverton. The basic hydrologic model exists as a result of analyzing the base condition. It includes the base condition frequency curve. Only minor modifications are required to simulate the reservoir and compute the modified frequency curve. The second control point was established to accomodate the ungated reservoir plan even though it was not needed for base condition. The elevation-storage-discharge relationships are entered at control point 2 in the hydrology section of input for "plan 2" (from the standpoint of HEC-1 internal computations) and apprpriate "PN" and "ZW" cards are entered in the economics section of input to trigger the writing of a modified frequency curve to the DSS file. The HEC-1 output for the ungated reservoir follows below.

1.8 + Ratios to multiply precipitation. *Base condition frequency curve. .DSS pathname parts for plan "2", ungated reservoir. DSS pathname parts for plan "1", base condition. Master DDS file. Hydrographs are not written to DDS file to intermediate HEC-1 DDS file is 2100 .Plan 2 data. 20 Ungated reservoir data. 8 40 1700 12000 *No routing for plan 1, base condition. ILOCAL INFLOW TO INDEX POINT FOR REACH 1 IN RIVERTON ę 2 plans 60 1400 6700 ଞ୍ଚ TINFLOW TO RESERVOIR SITE ABOVE RIVERTON not needed. RCH 11NDEX POINT FOR REACH 1 IN RIVERTON 2 20000 3530 70 0.5 1270 5300 30 .3 1 1150 4350 路 1EXISTING CONDITIONS SILVER CREEK BASE ZUNGATED RESERVOIR SILVER CREEK UNGTO RES - REACH 1 0200 8 .07 ===> HLIB*HEC1X,INPUT=SLVA111,DSSFILE=SLVAAEZ 🥕 SILVER CREEK 50 12.5 1100 3500 3000 8 8. RCH 1RIVERTON RCH 1 16 120 01JAN80 3500 3492 0 3490 RES 1 HEC-1 Digited Reservoir 28282 ***** 22222 Economics

日 こうしゅうかんし かんちょうろいまける

		•	
CON MYNDAGRADM DACKAGE (MEC-1)	CHEC-13	* U.S. ARMY (U.S. ARMY CORPS OF ENGINEERS
SEBBIABY 1081		* THE HYDROLOGI	* THE HYDROLOGIC ENGINEERING CENTER
DEVICED 31 JAN 85		3 609	509 SECOND STREET
KENISED SI SUN S.) 'SIAMO * DAVIS' (DAVIS, CALIFORNIA 95616
N DATE 14 MAY 85 TIME 15:42:08 *	15:42:08		* (916) 440-3285 OR (FTS) 448-3285
	**********		经收收的证据 化水子 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基

SILVER CREEK

					1.50
					1.30
	ERVAL				1.00
SCALE	TATION INT				0.95
PRINT CONTROL PLOT CONTROL NYDROGRAPH PLOT SCALE	MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE	2.00 HOURS 58.00 HOURS	SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT	NUMBER OF PLANS	₩ 0 0.83
	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		SQUARE MILES INCHES FEET CUBIC FEET PACKE-FEET ACKE-FEET ACKES	۲ 2	1-RATIO OPTION RATIOS OF PRECIPITATION 1.39 0.60 0.70
OL VARI	INE DAT	TATION INTERVAL TOTAL TIME BASE	DEPTH 10N	PTION	OPTION O.60
OUTPUT CONTROL VARIABLES 1PRNT 4 1PLOT 0 QSCAL 0.	HYDROGRAPH TIME DATA MATIN 1DATE 1JA 1TIME 0 NQ NDATE 3JA NDTIME 1	COMPUTATION INTERVAL TOTAL TIME BASE	ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURRACE AREA TEMPERATURE	MULTI-PLAN OPTION NPLAN	MULTI-RATIO OPTION RATIOS OF PREC 0.39 0.60
3 10	=			\$	<u>۾</u>

1.80

SUBBASIN RUMOFF DATA
SUBBASIN CHARACTERISTICS
TAREA 23.00 SUBBASIN AREA

BASE FLOW CHARACTERISTICS
STRTQ 60.00 INITIAL FLOW

ADDITIONAL OUTPUT

6 KK

7 8A

8 8F

大道 見たなり アンス 整備シストルと人を開けて

102

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOW IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN		RATIO 1 0.39	RATIOS APPLIED TO PRECIPITATION 1 RATIO 2 RATIO 3 RATIO 4 R 9 0.60 0.70 0.83	IED TO PRE RATIO 3 0.70	ECIPITATIC RATIO 4 0.83	AT10 5 0.95	RATIO 6 1.00	RAT10 7 1.30	RATIO 8 1.50	RAT10 9 1.80	
HYDROGRAPH AT	-	23.00	- 2	FLOW TIME FLOW TIME	1208. 24.00 1208. 24.00	2283. 24.00 2283. 24.00	2834. 24.00 2834. 24.00	3558. 24.00 3558. 24.00	4233. 24.00 4233. 24.00	4515. 24.00 4515. 24.00	6216. 24.00 6216. 24.00	7356. 24.00 7356. 24.00	9070. 24.00 9070. 24.00	
ROUTED TO	RES 1	23.00	- 0	FLOW TIME FLOW TIME	1208. 24.00 622. 34.00	2283. 24.00 1732. 30.00	2834. 24.00 2302. 30.00	3558. 24.00 3022. 28.00	4233. 24.00 3702. 28.00	4515. 24.00 3999. 28.00	6216. 24.00 5584. 28.00	7356. 24.00 6575. 28.00	9070. 24.00 8111. 28.00	
			‡- ~	PEAK STAGE STAGE TIME STAGE TIME	PEAK STAGES IN FEET STAGE 0.00 TINE 0.00 STAGE 3501.73 TINE 34.00	0.00 0.00 3504.39 30.00	0.00 0.00 3505.47 30.00	0.00 0.00 3506.68 28.00	0.00 0.00 3507.80 28.00	0.00 0.00 3508.23 28.00	0.00 0.00 3510.45 28.00	0.00 0.00 3511.67 28.00	0.00 0.00 3513.50 28.00	
HYDROGRAPH AT	~	5.00	- 2	FLOW TIME FLOW TIME	846. 12.00 846. 12.00	1503. 12.00 1503.	1807. 12.00 1807. 12.00	2202. 12.00 2202. 12.00	2567. 12.00 2567. 12.00	2719. 12.00 2719. 12.00	3631. 12.00 3631. 12.00	4239. 12.00 4239. 12.00	5150. 12.00 5150. 12.00	
2 COMBINED AT	RCH 1	28.00	- 2	FLOW TIME FLOW	1240. 24.00 908.	2322. 24.00 1745.	2875. 24.00 2316.	3602. 24.00 3043.	4277.	24.00	6263. 24.00 5607.	7403. 24.00 6597.	9118. 24.00 8134.	
					Peak cond	Peak flow for rch 1, Base condition, ratio 6.	or rch ratio	1, Bas		1				
					Peak unga 6.	Peak flow for rch 1, / ungated reservoir, ratio 6.	or rch	1, / ratic						

103

36 KK * RCH 1 * RIVERTON - REACH 1

LOUIS PRODUCTOR BUSINESS CONTRACTOR

NO DAWAGE DATA (GO OR SD CARDS) FOR THIS LOCATION, SO DAWAGES WILL NOT BE CALCULATED.

,	20.0	2100.	6. base condition	peak flow: 4560 cfs.		
,	30.0	1860.	Ratio	реак		
	0.0	1700. 12000.				
į	0.0	1550. 7800.		0.05 9118.		0.05 8134.
	0.5	1400. 6700.	!	0.13 7403.		0.13 6597.
i	0.0	1270. 5300.		0.27 6263. BASE/		0.27 5607. Ungtd Res/
	8 =	1150. [4350.		0.85 560. EQ FLOW///	->	0.85 4021. /FREQ-FLOW///
;	80.0 2.0	1000. 3750.		1.06 4277. K/RCH 1/FRI		· • · · ·
	5.0	1 3000. 3		2.37 3602. SILVER CREEK		2.37 1.06 3043. 3723. 7SILVER CREEK/RCH 1
ĘĘ.	10.0	2550. EN EXISTO		5.94 2875.		5.94 2316.
PERCENT EXCEEDANCE		EAK FLOW 2550.		14.18 2322. 71, VERS.		14.18 1745. 71, VERS
PERCEN		PEAK FLOW		72.43 1240. -ZURITE FILE		TEQUENCY 72.43 AK FLOW 908.
æ		QF	no17	Bas Condi	aroc par	riosasi niasasi niasasi niban niban niban

.....DSS...ZCLOSE FILE 71
MO. RECORDS= 6
FILE SIZE= 1498 WORDS, 14 SECTORS
PERCENT IMACTIVE= 0.00

*** KORMAL END OF HEC-1 *** STOP 101

1. Simulate a gated reservoir.

HEC-5 simulates a gated reservoir located above Riverton. A basic hydrologic model is developed that is very similiar to that developed for the ungated reservoir using HEC-1. The input data includes the base condition frequency curve. The elevation-storage-discharge relationships are entered at control point 2. HEC-5 computes and stores three frequency curves in one record --- the first curve is the modified curve representative of the gated reservoir condition, the second curve is the base condition frequency curve computed by HEC-5, and the third curve is a frequency curve derived from the local uncontrolled discharge. Only the first curve (the modified curve) is used in the expected annual damage calculations and the others are ignored.

Due to the gate operation capabilities, HEC-5 may compute a modified frequecy curve containing inconsistent flow reductions as shown in Figure 9. HEC-5 allows the user to change the order and method of arraying the points or the analyst can use the DSSUTL program to edit the modified curve, if desirable. Damage relationships are still required input in order to write the frequency curves to the DSS file. "Dummy" data is input on the DC cards as shown in the run below. An execution of DSPLAY follows the HEC-5 output. It tabulates and plots the frequency curves computed by HEC-5 for the gated reservoir condition.

Gated Reservoir HEC-5

-DSS file to which HEC-5 writes computed hydrographs.

-DSS file containing inflow hydrographs calculated by HEC-1.

71 0000A10C*SLVAA1Z-DSS---ZOPEN EXISTING FILE OPENED

.... PATHNAMES READ FOR TIME SERIES DATA....

/SILVER CREEK/RES 1/FLOW/01JAN1980/2HOUR/INFLOM+6///SILVER CREEK/RCH 1/FLOW/01JAN1980/2HOUR/LOCAL+6/ 71, VERS. 71, VERS. FILEDSS...ZREAD

Inflow hydrographs read from

162 SECTORSDSS---ZCLOSE FILE 71

WO. RECORDS= 19

FILE SIZE= 18137 WORDS,

PERCENT INACTIVE= 13.15

NEC-5 SIMULATION OF FLOOD CONTROL AND CONSERVATION SYSTEMS SEGMENTED VERSION (UPDATED MARCH 1985)

* RUN DATE 15 MAY 85 TIME

609 SECOND STREET, SULTE D DAVIS, CALIFORNIA 95616 (916) 440-2105 (FTS) 448-2

HEC-5 SIMULATION OF FLOOD CONTROL AND CONSERVATION SYSTEMS

SEGMENTED VERSION (UPDATED MARCH 1985)

MAX DIMENSION LIMITS ARE CURRENTLY SET AT 15 RESERVOIRS AND 25 CONTROL POINTS

*INPUT LISTING FROM PRERD

TO SUPPRESS LISTING, INSERT NOLIST CARD INTO INPUT DECK AT DESIRED POINT

9 ratios to multiple inflows to derive frequency curve.									Write hydrographs and frequency curves to DSS file.
	3299	1301	26		33	m	0		graphs
55	2554	168 2	₹		4	ı,	0		hydroi
2.0	1776	212	167		2633	7	0		Write
5.5.	1055	2788	216		2718	2	0		
080010100 0 2 .75 .90 1.0 1.5 1, C=FLOW, F=INFLOM+6	510	3465	20		1678	5	0		
010100 .90 =FLOW, F	\$	4043	%		805	2	0		
.73 Es 1, c	2	4402	\$		8	5	0) RES	
2 30 0 080 .25 .40 .60 .75 IN1 A-SILVER CREEK, B=RES 1, C	5	4514	603		113	45	_	I-SILVER CREEK F-GATED RES	
30 .40 :SILVER C	0 0	4357	٤	31.JAM80	٥	ઢ	-	LVER CREI	7
25. 11.	- 8	3931	1001	7	7	8	~	A=SI	

START COMPUTATIONS FOR JOB NUMBER 1 FOR 1 FLOODS READ

38

1

		•	•
	3299.0 1301.0	375.0	3.0 0.0 SUR=
	2554.0 1682.0	1406.0	0.0
	2172.0	2633.0	0.0
_		2718.0	
UK ONESU.	510.0 3465.0	1678.0	5.0 0.0
HINPER NDATUK 0 0. 2. 3.	204.0	361.0 802.0	0.0 0.0
19ER . 4			31.0 0.0
T EPER 0.	16.0	113.0	1.0
CNSTI FLDAT 0.00 80010100.	9.0	0. % 0. %	% - 0.0.
MPSTO CHS 0. 0.0	60.0 3931.0	1007.0	93.0 2.0
MPER NO.		JANBO	;
FLOFMT 2.	}-	2	,
20	2 =	Ξ	

46312.

10432.

JI METRIC ISTMO NULEY LEVCON LEVTFC LEVBUF LEVPBS 0 1 5 3 4 2 3

ADDITIONAL OUTPUT

Appendix C

0.00 EVAPORATION AND STORAGES IN ACRE FEET OR 1000 CU METERS ELEVATIONS IN FEET OR METERS ENERGY IN 1000 KWH EXCEPT WHEN IPER LT 24 HOURS-IN KWH 0.00 Flow frequency curves are written to this DSS file. 0.000 /SILVER CREEK/GATED RESERVO/FLOW-RES IN/01JAN1980/ZHOUR/GATED RES/ /SILVER CREEK/GATED RESERVO/FLOW-RES OUT/01JAN1980/ZHOUR/GATED RES/ /SILVER CREEK/RCH 1/FLOW-REG/01JAN1980/ZHOUR/GATED RES/ UNITS OF CUTPUT 0.00 ALL FLOWS IN CFS OR CMS 0.00 Execute part B of HEC-5. 0.00 29 SECTORS FL000= 0.00 SUMMARY BY PERICO FILE SIZE= 3221 WORDS, PERCENT INACTIVE= 0.00 2.040 RCH FLOW REG 226.38 218.49 237.34 298.94 397.30 612.69 612.69 856.91 561.65 579.85 0.250 2 to the second of ***** FLOOD NUMBER 1.18 GATED RE OUTFLOW ADDITIONAL OUTPUT 223.45 216.24 202.09 202.44 196.80 193.27 193.27 193.27 193.26 210.15 286.10 479.04DSS...ZCLOSE FILE NO. RECORDS= FILE SIZE= OUTPUT DATA WRITTEN TO DSS COMPUTATION INTERVAL IN HOURS= 2.00 72, VERS. 72, VERS. 72, VERS. USER DESIGNED OUTPUT ... 8 GATED RE INFLOW ===>(HLIB*NEC5BX,DSSOUT=SLVAAEZ 15.00 2.25 4.00 17.50 51.00 51.00 51.00 644.00 638.50 638.50 824.75 IFLRD * NFLR0=DSS---ZURITE FILE
.....DSS---ZURITE FILE
.....DSS---ZURITE FILE SILVER CREEK 3 2 *USERS.1 *FL000 1 쭞 LOC #0= 2 STOP 109 Appendix C

*SUMF1 SINGLE FLOOD SUMMARY COPY= 1 COMPUTATION INTERVAL IN HOURS= 2.00

SILVER CREEK

**** FLOOD NUMBER 9 ****

CH CAP	1500.	CHAN CAP	3000
BY RES	3299.	MAX REL C	10041
MAX UNC	6795.	MAX INFLOW	11285
MAX NAT	11398.	MAX LEVEL	4.095
MX REG Q	10094.	STOR1	1100
s	RIVERTO	S	RESERVOIR
HOMRESERVOIR	RCH 1	RESERVOIR	GATED RESE
- 007	~	- 201	-

MAX SYSTEM STORAGE= 4619

EXPECTED ANNUAL FLOOD DAMAGE SUMMARY
CONTROL POINT NUMBER 2

to HEC-5, by user.

Base condition flow-frequency curve input

Dummy drmage; Economic calculations are performed using progress. CONDITION FREQUENCY-FLOM-DANAGE DATA TYPE 2 TYPE] PEAK 1150. 1 FRE9 0.8000 0.8000 0.8000 0.6000 0.5000 0.3000 0.1000 0.0500 0.0100 0.0000 0.0000 0.0000 FEDAM 2

"EAD"

BASE CONDITION FLOOD DAMAGES

0.85

0.85

0.00

EXPECTED ANNUAL DAMAGES
BASE COND-COMPUTED
BASE COND- INPUT

Base condition frequency curve interpolated from user input curve using peak regulated discharge for each ratio entered on "FC" card. Modified frequency curve. Representative of plan 4	conditions - gated reservoir built and operating.
1 TYPE 2 TYPE 29 0.29 37 0.37 15 0.15 10 0.15 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 17 TYPE 2 TYPE 11 TYPE 2 TYPE 15 0.15 16 0.01 10 0.01 10 0.01	
17PE 2 1 0.29 0.37 0.15 0.03 0.00 0.00 0.00 0.00 0.17 0.15 0.15 0.15 0.15 0.00 0.00 0.00 0.00	0.0
17PE 1 0.29 0.37 0.03 0.01 0.00 0.00 0.00 17PE 1 0.17 0.17 0.15 0.03 0.00 0.00	0.0
SUN 0.57 0.02 0.03 0.01 0.00 0.03 0.03 0.03 0.03 0.00 0.00	0.0
EXCD PROB 1140.0.808 0.341 1824.0.320 0.367 2735.0.074 0.145 3419.0.030 0.031 4103.0.030 0.001 4559.0.009 0.006 6839.0.009 0.001 11398.0.000 0.001 11398.0.000 0.001 EXCD PROB EXCD PROB 1499.0.320 0.367 1499.0.320 0.367 1499.0.320 0.367 14537.0.007 0.006	10094.0.000 0.000

3																	
<u> </u>		TYPE															
UNCONTROLLED LOCAL FLOW F		TYPE 2	8 8	0.14	0.15	0.03	0.01	0.0	0.0	0.0	9.0		0.33		0.52	0.39	
8		TYPE 1	8.	0.14	0.15	0.03	0.01	0.01	0.0	0.0	0.0		0.33		0.52	0.39	
		NTS.	8	0.28	6.29	9.0	0.05	0.01	0.01	0.0	°.0		0.67		1.03	6.0	
	80	Ħ	0.336	0.367	0.145	0.031	0.011	90.0	90.0	0.0	0.00	TOTAL	JECTS	SIBLE	ROL	WAGES	
	8	FRED	.0.808	0.320	20.074	0.030	.0.013	90.0	.0.00	0.00.	6795.0.000 0.000	DAMAGES W/	CONTROL AT PROJECTS	REDUCTION POSSIBLE	AL CONTROL	RESIDUAL DAMAGES	
				1087	1631	2039	2446	2718	4077	5436	679	DAMA	CONTROL	REDUCT	W/ TOTAL	RESI	
		ŝ	_	~	M	4	5	•	~	•0	0		_				

Frequency curve written to DSS file. 0.2 0.1 8DSS.---ZURITE FILE 72, VERS. 4 /SILVER CREEK/RCH 1/FREG-FLOW///GATED RES/ 1 CONTROL POINT 2 *EPLOT 2 ADDITIONAL OUTPUT EXCEEDENCE FREQUENCY 8 8. Ŗ. 8 9.9 9.8 99.5 100000 00008

17 SECTORS FILE SIZE 1832 WORDS, PERCENT INACTIVE 0.00DSS...ZCLOSE FILE

CONTROL POINT

=BEYOND PLOT RANGE

X #INPUT FREQUENCY CURVE

M =MODIFIED PEAK

O =BASE CONDITION PEAK

ğ

SUMMARY OF SYSTEM"S EXPECTED ANNUAL FLOOD DAMAGES

RESIDUAL 0.79 8. DAWAGE REDUCTION
MOD COND LOC COND RI
0.24 1.03 1.03 0.24 79.0 0.67 79.0 80 - 86 3. 1.46 8 DAMAGES 98 5 BASE TOTALS ಕಿ

*CASES

** CASE=X.Y, WHERE X=CONTROLLING LOCATION AND Y=NUMBER FUTURE PERIOD CONTROLLING EXCEPT WHEN X=0

THEN, TYPE OF RELEASE IS BASED ON RESERVOIR ITSELF,Y= Y=00 MINIMUM DESIRED FLOW WAS RELEASED Y=01 MAXIMUM RESERVOIR RELEASE

ADDITIONAL OUTPUT

Appendix C

112

DSPLAY MLIB*DSPLAYX

* DSS-DSPLAY PROGRAM
* VERSION NO. 7
* JAN. 25,1965

FILE ** SLVAMEZ
FILE ** SLVAMEZ
SLVAMEZ

** SLVAMEZ

** TOOOOATOC** SLVAMEZ

*

ENTER PATHNAME 1. OR PROCESS/MODE COMMAND.
D> PL,7
PL,7
CATALGG FILE = 0000A10C*SLVAAEZC
/SILVER CREEK/RCH 1/FREQ-FLOW///GATED RES/

Appendix C

Base condition frequency curve (using HEC-5 ratios of flow). This curve (and "uncontrl" curve) is not used in EAD computations. Modified frequency curve - gated reservoir in place. PAGE 17 SECTORSDSS.--2CLOSE FILE 71
NO. RECORDS= 8
FILE SIZE= 1832 WORDS,
PERCENT INACTIVE= 0.00 ADDITIONAL OUTPUT 679.500 1087.200 1630.800 2038.500 2446.200 2718.000 4077.000 5436.000 6795.000 UNCONTRL OR PROCESS/MODE COMMAND. PATH NAME /SILVER CREEK/RCH 1/FREG-FLOW///GATED RES/ 114 /SILVER CREEK/RCH 1/FREQ-FLOW///GATED RES/ 1139.750 1823.600 2735.400 3419.250 4103.100 4559.000 6838.500 9118.000 FLOW IN CFS BASE 1630.800 3048.000 3657.600 3480.000 6326.759 8147.214 10094.115 MODIFIED ENTER PATHNAME 1. 16:58:11 80.805 7.393 2.976 1.291 0.854 0.046 FREG 0> 1744785 9 13 ۵ Appendix C

PAGE

OR PROCESS/MODE COMMAND.

ENTER PATHNAME 1 D> TA,7 TA,7

/SILVER CREEK/RCH 1/FREG-FLOW///GATED RES/

16:58:11

17MAY85

Figure 9 Gated Reservoir Frequency Curve

m. Simulate a channel improvement.

The proposed channel improvement is easily modeled using the HEC-2 program. The base condition input data file is modified by inserting a "CI" card (or cards) and modifying the "ZW" card to identify part F of the DSS pathname for this alternative plan. The improved cross-section at river mile 49.0 is shown in Figure 10. As in the base condition analysis, the computed rating curves are written to the intermediate DSS file "SLVAA2Z" and then the curve at the index location (river mile 49.0) is copied to the master DSS file "SLVAAEZ" using the DSSUTL program. Selected portions of the HEC-2 output are shown below. It is followed by the DSSUTL program execution that copies the rating curve to the master DSS file.

===> HLIB*HEC2X,INPUT=SLVA12I,DSSFILE=SLVAA2Z,TAPE95=SLV952B HEC-2 Channel Improvement

15:44:26 14 MAY 85

Intermediate HEC-2 D35 Tile.

15:44:27 THIS RUN EXECUTED 14 MAY 85

HEC2 RELEASE DATED NOV 76 UPDATED MAY 1984 ERROR CORR - 01,02,03,04,05,06

Must be different than that for base condition. -Part F of DSS pathname.

Otherwise, this job will overwrite it. STING FILE OPENED 71 0000010C*SLVAA22 DATA STORAGE SYSTEM OPTION ACTIVATED ZW SILVER CREEK CHIMP-20FT BW

1 1	525	SILVE	SILVER CREEK										
7	5	ICHECK	ING	NINV	IDIR	STRT	METRIC	210	HVINS	ø	WSEL	E	
		•	2.	0.	•	0.005700	0.00	9	0.0		3440.000		0.000
	3	NPROF	IPLOT	PRFVS	XSECV	XSECH	Z		ALLDC	187	CHNIM		TRACE
		1.000	0.000	-1.000	0.000	000.00		000.0	00.00	00.00		0.000	0.000
	2		VARIABLE CODES FOR SUMMARY PRINTOUL	UMMARY PRI	NTOUT	Ì	hust re	sanb	Must request "Table	e 150".	٠.		
		150.000	150.000 \$8.000	1.000	43.000	0 55.000		26.000	26.000	0.000		0.000	0.000
	55	LPRNT	NUMSEC		ŧ	******	OUESTED S	ECTION	******REQUESTED SECTION NUMBERS******	******			
		.10.000	-10.000	000.0	000.0	000.00		0.000	00.00	00.00		0.000	0.000
	ž	0.070	090.0	0,040	Ó	0.100	0.100	Ö	0000	0.000	00	0.000	0.000
	6	14.000	⋈		•	1500.000	2000.000		2500,000	3000.000		3500.000	4000,000
۸.	5	5000.000	8	ಹ	-	0000.0000	15000.000		0.00	0.000		0.00	0.000
	Ξ	48.300			9	70.000	0.00	9	0.00	0.00	00	0.000	0,000
^-	<u>ٿ</u>	.1.000	•		<u>_</u>	1.500	1.500	0	20.000	0.00	8	0.00	0.000
٠.	Z.	3471.000			2	20.000	3445.000	_	30.000	3440.000	8	50.000	3432,000
	85 /	3430.000		343	0	900.99	3440.000	2	70.000	3445.000	00	90.00	3461.000
. r	ಕ್ರ/	3471.000	120.000	0.000	<u>o</u>	0.000	0000	0	0000	000.0	00	0.000	0000

0.000 0.000 0.000 0.000 54.000 100.000 0.000

×	48.500	9.000	130.000	165.000	1056.000	1056.000	1056,000	0.000	0.000	0.000	
ğ	3477.000	0.000	3449.000	20.000	3445.000	130.000	3438,000	140.000	3436.000	143.000	
3	3438.000	146.000	3445.000	165.000	3456.000	190.000	3477.000	220.000	0.000	0.000	
Z	48.800	9.000	150.000	180.000	1584.000	1584.000	1584.000	0.000	0.000	0.000	
3	3480.000	0.00	3462.000	20.000	3458.000	150.000	3449.000	154.000	3445.000	162.000	
3	3449.000	170.000	3458.000	180.000	3465.000	203.000	3480.000	240.000	0.000	0.000	
7	14 MAY 85	15:44:26								PAGE 2	
Rch	i I" dam	1" damage index	point .	location.							
>⊊	1 49.0001	9.000	150.000	175.000	1056.000	1056.000	1056.000	0.000	0.00	0.000	
3	3480.000	K	3465.000	20.000	3461.000	150.000	3457.000	159.000	3451.000	163.000	
3	3456.000	000.29	3461.000	175.000	3471.000	200.000	3480.000	240.000	0.000	0.000	
Z	49.500	8.09	117.000	152.000	2506.000	2506.000	2506.000	0.000	0.000	0.000	
3	34%.000	0.00	000.35×	10.000	3475.000	117.000	3469.000	127.000	3466.000	135.000	
3	3467.000	140,000	34 JA 600	152.000	34%.000	190.000	0.000	0.000	0.00	0000	
3	0.00	0.000	60.0	0.00 /	0.000	0.000	0.000	0.000	0.000	0.000	
7	14 MAY 85	15:44:26		Part	Part B of DSS	pathname	.•			PAGE 3	

THIS RUN EXECUTED 14 MAY 85 15:44:40

HEC2 RELEASE DATED NOV 76 UPDATED NAY 1984 ERROR CORR - 01,02,03,04,05,06 MODIFICATION - 50,51,52,53,54,55,56

0.00 3356.000 WSEL CHNIM 0.00 ٥. 185 0.00 0.0 ALLDC 0.00 METRIC 0.0 0.000 XSECH 0.005700 STRT 0.00 XSECV 101R -1.000 PRFVS 0.00 SILVER CREEK IPLOT J1 ICHECK J2 MPROF

0.000 ITRACE 0.000

Appendix C

118

14 MAY 85

\$

PAGE

THIS RUN EXECUTED 14 MAY 85 15:45:04

HEC2 RELEASE DATED NOV 76 UPDATED MAY 1984 ERROR CORR - 01,02,03,04,05,06 MODIFICATION - 50,51,52,53,54,55,56 NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

SILVER CREEK

SUMMARY PRINTOUT

Juser defined table (13 card).

•
500.00
1500.00
8
2500.00
3000.00
3500.00
9
4500.00
5000.00
8
8000.00
10000.00
15000.00
500.00
₽
5
×
ĸ
R
×
3
45
Š
3
8
10000.00
15000.00

^	
-	
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
9	

					Rating curve for "RC! 1" with improved channel	/conditions. Stored in DSS file.																												
ЛСН	6.03	8.41 9.09	9.65	0.75 0.75	1.38	2.00	16.31	6.59	17.07		52	7.5	7.94	8.47	8.89	9.5¢	9.85	6.6	0.03	9.88	10.10	8.	5.98	7.33	8.17	8.81	9.33	8. 8. 8. 8.	27.0	1.24	11.83	3.17	6.33	17.30 18.64
VROB	0.00								0.00	1	0.00	3.5	88	0.00	0.00	8.6	88						0.00	0.00	0.0	0.00								86
NL08	888	9.0	8.6	8.8	0.00	8.6	8.6	0.0	1.19 3.86		8.6	3 5	88	0.00	0.00	0.5 8 6	1.24	1.54	1.%	2.35	3.52	*	0.0	0.0	0.0	0.0	9.6	38	8 8	8 12	1.10	2.5	2.45	5.41 03
g	500.00 1000.00	2000.00	2500.00	3500.00	4000.00	4500.00	6000.00 6000.00	8000.00	10000.00 15000.00		500.00	1500.00	2000.00	2500.00	3000.00	3500.00	4500.00	5000.00	900009	8000.00	10000.00	15000.00	500.00	1000.00	1500.00	2000.00	2500.00	3000.00	2200.00	4500.00	5000.00	6000.00	8000.00	15000.00
CWSEL	3448.32	3451.11 3452.16	3453.07	3454.47	3455.03	3455.49	3456.33	3457.46	3459.19		3454.75	7450.45	3458.9	3459.86	3460.74	3461.55	3,62.96	3463.63			3468.49		3469.34	3470.97	3472.25	3473.33	3474.27	\$ 2. \$ 2. \$ 3. \$ 4. \$ 5. \$ 6. \$ 6. \$ 6. \$ 6. \$ 6. \$ 6. \$ 6. \$ 6	247.74 24.74 /.R	34.76.98	3477.40			3480.11
SECNO	48.800	78.800 78.800	008.87	48.80 80.80	48.800	48.800	48.800	48.800	48.800 48.800		49.000	000.64	65.000	49.000	49.000	000.64	65.000	49.000	49.000	69.000	65.000	44.000	49.500	49.500	49.500	49.500	49.500	44.500	60.500	49.500	49.500	49.500	49.500	76.500
																																		* *

Verification of rating curves written to DSS file. PAGE 15:45:20 14 MAY 85

LIST OF HECOSS PATHNAMES URITTEN

18 SECTORS MO. RECORDS= 10 FILE SIZE= 1970 WORDS, PERCENT INACTIVE= 0.00

15:45:21 14 HAY 85

15:45:21 THIS RUN EXECUTED 14 MAY 85

STOP

DSSUTL

- HEC-2 intermediate DSS file. ENTER DSS FILE FILE = SLVM22 AL 18*DSSUTLX

71 0000A10C*SLVAA2Z EXISTING FILE OPENEDDSS---ZOPEN

Catalog the master DSS file.

83

improved channel into the

master DSS file.

for

Copy rating curve

7.

Catalog HEC-2 DSS file.

"New" catalog. CATALOG FILE = 0000A10C*SLVAA22C

PC. N

NECOSS COMPLETE CATALOG OF RECORD PATHNAMES ON FILE 0000A10C SLVAA22

VERSION 4-CA FILE CREATED ON 10MAY85; TIME = 17:18:12 CATALOG DATE = 14MAY85, MIMBER OF RECORDS * SORT ORDER = ABCFED

CREEK/48.300/ELEV-FLOW///BASE/ CREEK/48.300/ELEV-FLOW///CHIMP-20FT BW/ CREEK/48.500/ELEV-FLOW///BASE/ CREEK/48.800/ELEV-FLOW///CHIMP-20FT BW/ CREEK/49.000/ELEV-FLOW///BASE/ CREEK/49.000/ELEV-FLOW///CHIMP-20FT BW/ CREEK/48.500/ELEV-FLOW///CHIMP-20FT BW/ CREEK/48.800/ELEV-FLOW///BASE/ RECORD PATHNAME /SILVER / SILVER / SI DATA **** VER HEAD 16:57:23 16:57:23 16:57:23 15:44:28 16:57:23 16:57:23 WRITTEN DATE T 80 ₩. 5

ENTER NEW 8 TO CONTINUE PUSH CARRIAGE RETURN U>

/SILVER CREEK/49.500/ELEV-FLOW///BASE/ /SILVER CREEK/49.500/ELEV-FLOW///CHIMP-20FT BW/ 88 なな 16:57:23 15:44:28 104AY85 144AY85

Copy rating curve at section 49.000 for improved channel condition into the master DSS file.

Wrong DSS filename; its not fatal! 3 SILVAAEZ B=49.000 F=CHIMP-20FT GENERATED RANDOM ACCESS FILE SILVAMEZ

0000A10C*S1LVAAEZ

RECORD COPIED: /SILVER CREEK/49.000/ELEV-FLOW///CHIMP-20FT BW/

Copy it into the proper DSS file.

4 SECTORS 362 WORDS, PERCENT INACTIVE= NO. RECORDS= FILE SIZE=

0000A10C*SLVAAEZ RECORD COPIED: /SILVER CREEK/49.000/ELEV-FLOW///CHIMP-20FT BW/

Appendix C

123

"new" catalog listing of master DSS file. a Get0000A10C*SLVAAEZ 4 SECTORS 17 SECTORS ۲ "open" the master DSS file. NO. RECORDS= 8
FILE SIZE= 1832 WORDS,
PERCENT INACTIVE= 0.00 384 WORDS,DSS.-.ZOPEN EXISTING FILE OPENED
.....DSS.-.ZCLOSE FILE 72
NO. RECORDS= 8 PERCENT INACTIVE= 0.00-DSS---ZCLOSE FILE
NO. RECORDS= FILE SIZE= CATALOG FILE = 0000A10C*SLVAAEZC U>OP SLVAAEZ

2000000 (66000

MECOSS COMPLETE CATALOG OF RECORD PATHNAMES ON FILE 0000A10C SLVAAEZ

VERSION 4-CA FILE CREATED ON 10MAY85; TIME = 17:21:18

CREEK/RCH 1/ELEVATION-DANAGE///BASE/ CREEK/RCH 1/ELEVATION-DANAGE///FP-3 FT/ CREEK/49.000/ELEV-FLOW///BASE/ CREEK/49.000/ELEV-FLOW///CHIMP-20FT BU/ RECORD PATHINAME SILVER / SILVER / SILVER / SILVER / DATA 88225838 VER HEAD なななななななな 15:43:10 14:53:39 16:59:49 URITTEN DATE T 144A785 144A785 144A785 144A785 200 ₩.

all the required relationships to compute expected annual damage for the 5 desired plans.

> 1/FREG-FLOW//EXISTING-INPUT/ 1/FREQ-FLOW///GATED RES/

Master DSS data file now contains

134

STOP

17:07:13 15:43:10

.....DSS...ZCLOSE FILE 71
MO. RECORDS= 8
FILE SIZE= 1832 WORDS,
PERCENT INACTIVE= 0.00

イス 日からだったことできる ののでかられる

Figure 10 Channel Improvement at River Mile 49.0

n. Floodproof structures.

The floodproofing alternative plan is easily modeled using the SID program. The SID base condition input deck is modified to indicate:

- a. Floodproofing of all structures
- b. Floodproofing to three foot depth for both categories
- c. Part F of the DSS pathname is changed to: "FP-3 FT" The SID program calculates a modified elevation-damage relationship for RCH 1 and writes it to the master DSS file "SLVAAEZ". Selected portions of the SID output are shown below.

II Flood Proofing
---- HLIB*SIDX, INPUT-SLVAIS, TAPE71=SLVAAE2 - Master DSS file.
First alternative input for SID.

たのです。この「manage ののできない。」の「いっちのない」というないない。 「Manage のできないない。 「Manage のできない。」というない。 「Manage のできない。」というない

LIST OF IMPUT CARDS FOR THIS RUN

ADDITIONAL OUTPUT

ORDER OF ACTION

SECOND 1, RUN RAISING STRUCTURES FIRST LAST FLOODPROOF ING RELOCATION 2, RUN 3, RUN 10A(1) 10A(2)

SILVER CREEK

104(3)

FILE SYSTEM CARD

CC 12345678901234567890123456789012345678901234567890123456789012345678901234567890 128

71 0000A10C*SLVAAEZDSS --- ZOPEN EXISTING FILE OPENED SILVER CREEK FP-3 FT PROL YEAR ALT

Part F of DSS pathname.

ADDITIONAL OUTPUT

Appendix C

Eleratic pritten	t-dama) to liss	SILVER CREE or relationship file for flood-	silver creek ionship r flood-	¥		,	E trans	522	. and the contract	.• :- :-	
	g attornative.	at1.26.	DAMAGE	DAMAGE REACH 1 FOR RIVERTON (DAMAGE REACH 1 FOR RIVERTON)		V					
	A	_			DAMAGE CATEGORIES	IES				1	
WATER				# 1	* 1					Ē	
* SURPACE *	KESONIL	* COMERCI.	O HEK		* *	k #1	H #	k #	k #	N 44	TOTAL *
* 3462.0	• • • • • •	* * 0.0	* *	* * 0.0	* * 0°0	* * 0.0	* * 0.0	* *	* * 0°0	* *	* *
* 3462.5	* 0.0	* 0.0	* 0.0	* *	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0
3463.0	* 0.0	* 0.0	* 0.0	* 0.0	0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0
* 3463.5	.0.0	0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* * *	* 0.0	.0.0
3464.0	0.0	0.0	0.0	0.0	* 0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 3464.5	0.0	0.0	0.0	0.0	0.0	* 0.0	* 0.0	* 0.0	* 0.0	0.0	0.0
3465.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	* 0.0	0.0	0.0
3,465.5	0.0	0.0	0.0	0.0	0.0	0.0	* 0.0	0.0	0.0	0.0	0.0
3,466.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	* 0.0	0.0	* 0.0
3,466.5	0.0	122.6	0.0	0.0	0.0	.0.0	0.0	0.0	0.0	0.0	122.6 *
3467.0	45.0	138.7	0.0	0.0	* 0.0	0.0	0.0	* 0.0	0.0	0.0	183.7 *
* 3467.5	* 55.0 *	154.8	* 0.0	0.0	* 0.0	0.0	0.0	0.0	0.0	0.0	209.8 *
3468.0	58.4	170.9	* 0.0	• 0.0	0.0	* 0.0	* * 0.0	* 0.0	* 0.0	0.0	229.3 *
3468.5	* 61.8 *	173.0	* 0.0	* 0.0	* 0.0	* 0.0	* * *	* 0.0	* 0.0	* *	234.7 *
3469.0	65.13	175.1	* 0.0	* * 0.0	* 0.0	* * 0.0	* * *	0.0	* 0.0	0.0	240.2 *
3469.5	* 68.5 *	177.2 *	* * 0.0	* 0.0	* * 0.0	* 0.0	* 0.0	* 0.0	* 0.0	* * 0.0	245.7 *
3470.0	71.9	179.3 *	* 0.0	* 0.0	* * 0.0	* *	* 0.0	* 0.0	* 0.0	* 0.0	251.2 *
* 3470.5	75.2	* 181.4	* * 0.0	* * 0.0	0.0	* * 0.0	* 0.0	* *	* *	* * 0.0	256.7 *

TO THE TOTAL PROPERTY OF THE P

DAMAGE CATEGORY RESDNTL IDENTIFIED AS RESIDENTIAL STRUCTURE AND CONTENTS DAMAGE CATEGORY COMERCI IDENTIFIED AS COMMERCIAL STRUCTURE AND CONTENTS DAMAGE CATEGORY OTHER IDENTIFIED AS OTHER DAMAGE CATEGORIES

SILVER CREEK

-----DSS----ZURITE FILE 71, VERS. 1 /SILVER CREEK/RCH 1/ELEVATION-DAMAGE///FP-3 FT/ J NO. RECORDS= 5 FILE 71 SECTORS FILE 71 FILE SIZE= 1376 WORDS, 13 SECTORS PERCENT INACTIVE= 0.00

R STOP Confirmation that elevation-damage relationship for floodproofing alternative is written to the DSS file.

Appendix C

130

o. Compute the expected annual damage for all alternatives.

The EAD program will easily compute the inundation reduction benefits for the four alternative plans. All of the basic relationships are stored in the master DSS file "SLVAAEZ". The EAD input data file is enlarged to include five "PN" cards (one for each plan), seven "ZR" cards, and the additional data cards to read the parametric relationships from the DSS file for each plan. The selected portions of the EAD output are listed below. The analyst need not enter a "ZR" card for each relationship for each plan. This is demonstrated in the EAD output below. For example, the base condition flowfrequency curve is used for plans one, four, and five. "ZR" cards referencing the frequency curves are entered for plans 1, 2, and 3. The "QF" cards for plans 4 and 5 actually reference the "ZR" card for plan one (base condition). When referencing a relationship for a previous plan like this, it is good practice to enter the plan number in the first field of every "EP" (or "EJ") card so that the output will be properly labeled. Figure 11 is a plot of the damage-exceedance frequency relationship that result for each of the alternative plans. Similar plots may be produced for any of the data items involved in the damage computation process.

-Master DSS file. EAD Compare 5 Plans === HLI8*EADX,INPUT=SLVAAE?

いている。「これのないのです」というないのでは、「これのないできない。

+ EXPECTED ANNUAL FLOOD DAMAGE COMPUTATION + 761-X6-L7580 FEBRUARY 1984 + VERSION DATE MARCH 5, 1985 +

ORDER 1234567890123456789012345678901234567890123456789012345678901234567890 ** LIST OF RECORDS READ BY READIN **
RECORD

31 RECORDS WRITTEN TO LOGICAL FILE READIN ..

÷	+	+	+	
***	110	1984	5, 1985 +	
Ŧ	₹		δ,	1
•	훙	ARY	_	1
į	¥6£	FEBRUARY	MARCH	
ŧ	3	_	_	•
**************************************	EXPECTED ANNUAL FLOOD DAMAGE COMPUTATION +			
Ĭ		요	2	
Ŧ	3	Ř	ă	
Į	3	<u>ج</u>	₹	1
Į	Æ	761-X6-L7580	· VERSION DATE	
ŧ	ũ	ř	>	4

SILVER CREEK

RESIDNTL CONERCL 8 PLAIN MANAGEMENT PLAN NAMES** EXISTING CONDITIONS

2222

LOOD PROOFING ALL STRUCTURES BY 3 FEET IMPROVING THE CHANNEL BOTTON WIDTH TO 20 FEET

	10	es T	DG -	0F 2	QF 3	7 90	20
FILE SYSTEM READ	ZR SILVER CREEK BASE	ZR SILVER CREEK BASE	ZR SILVER CREEK BASE	ZR SILVER CREEK UNGTO RES	ZR SILVER CREEK GATED RES	ZRSILVER CREEK FP-3 FT	20411 VED COFFIX CHIMD-20FT RU

REACH 1, REACH NAME RN REACH 1, RIVERTON

**** INPUT DATA ****

20.00	0.13	7403.
25.00	0.27	6263. 7403.
30.00	1.06 0.85 0.27 0.13	7560
35.00 1.00	1.06	4277.
40.00	2.37	3602.
30.00 3.00	.E** 5.94	E** 2875.
8.00 8.00 8.00	14.18	ECOSS FIL 2322.
%.00 7.00	FROM HE 72.43	FROM HE 1240.
CIES** 18 10.00	**FREQUENCIES READ FROM HECOSS FILE** FR RCH 1 0 1 0 72.43 14.18 5.94 0.05	**FLOOD PEAKS READ FROM HECDSS FILE** OF RCH 1 9 1240. 2322. 28
**FREQUENCIES* FR RCH 1 15.00 10.	**FREQUEN FR RCH 1 0.05	**FLOOD P QF RCH 1

INTERPOLATED FLOOD PEAKS GF RCH 1 0 1 0 974.58 1271.62 1536.06 1687.73 1774.03 1870.92 1982.91 2117.52 2289. 2534. 2764. 3000. 3408. 3737. [4348.] 5315. 6704. 7790. OF RCH 1 2289.

Interpolation of flow values for specified exceedance frequencies.

133

	57.70	
	ž	
	.12	
	3467	
	39	
	39	
	Š	
	5.6	
	×	
	59.	.97
	35 25 25 25 25 25 25 25 25 25 25 25 25 25	3473
	7,	59
	3463.	3471.
	93	22
*	s049.0 00 14 3459.69 3461.93 3463.44 3464.65 3465.65 3466.39 3467.12 3467.7	3470.
RVE	69	2
3	50	ૹું
E	¥	Ä
≨	÷	
STAGES FOR RATING CURVE		346
GES	8	.97
STA	69.	795
#	Š	M

	3000.00 3500.00 4000.00	
	30.00 35	
	0.00 300	
	0 0 1 0 500.00 1000.00 1500.00 2000.00 2500.00 3	.00
	.00 200	.000
	.00 1500	30. 100
	90 1000	. 80
250 SET	88	. 60
""FLUMS FOR KALING COKVE"	0	. 5000
5	as49.000	4200

3465.50	15.00	90.33
3470.50	75.25	181.44
3465.00	11.25 71.87	74.22
3464.50	7.50	58.11
3469.50	68.50	177.22
3464.00	3.75	42.00
3469.00	65.13	17.11
3463.50	0.08	21.00
3468.50	61.73	173.00
3463.00 3468.00	0.00 58.38	0.00
3462.50	0.90	0.00
3467.50	55.80	154.78
GE DATA*	7A**	7A**
3462.00	0.00	0.00
3467.00	45.00	138.67
FOR DANIA	AMGE DA	AMAGE DA
18	0 1 1	2
3466.50	35.00	122.56
STAGES FOR DAMAGE DATA SD RCN 1 18 3462.00 3462.50 3463.00 3463.50 3464.00 3464.50 3465.00 3465.50 3466.00 3466.50 3467.00 3467.50 3468.00 3468.50 3469.00 3469.50 3470.00 3470.50	**FLOOD DAMAGE DATA** DG RCH 1 0 1 1 0.00 25.00 35.00 45.00	**FLOCO DAMAGE DATA** DG RCH 1 2 0.00 106.44 122.56 138.67

**END OF INPUT DATA FOR PLAN 1 ** -

Base Condition.

++DANAGE DATA FOR PLAN 1 -- EXISTING CONDITIONS

ACC EAD 42.51 42.51 42.51 33.68 33.68 33.68 46.53 46.5	
107AL 0.08 0.08 0.08 69.38 59.03 113.88 133.	42.51
0.08 0.08 0.08 37.03 37.03 57.03 61.50 61.50 119.10 119.10 1176.47 176.47 176.47 176.47	36.04
RESIDNTI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	27.9
\$1 AK 5.23 AK 5.39 AK 5.30 AK	
FLOW 975. 1576. 1536. 1688. 1768. 2718. 2718. 2728. 2734. 2766. 3706. 3707. 4748. 577. 770.	DAMAGE
## 95 95 95 95 95 95 95 95 95 95 95 95 95	AMMUAL D
	EXP

REACH 1, REACH NAME RN REACH 1, RIVERTON

**** INPUT DATA ****

0.13 6597. 0 2 0 720.79 930.16 1119.40 1231.86 1297.40 1372.46 1461.25 1571.02 1952. 2199. 2443. 2849. 3179. 3798. 4742. 5994. 6939. 0.27 5607. 4021. 0.85 3723. . 8 3043 2.37 **FLOOD PEAKS READ FROM HECOSS FILE**
OF RCH 1 9 908. 1745. 2316.
8134. 5.9% **FREQUENCIES READ FROM HECOSS FILE** FR RCH 1 0 2 0 72.43 14.18 5. 0.05 **INTERPOLATED FLOOD PEAKS** QF RCH 1 0 2 0 720.79 930

Ungated reservoir - new frequency curve computed by HEC-1.

**END OF INPUT DATA FOR PLAN 2 **

++DANAGE DATA FOR PLAN 2 -- UNGATED RESERVOIR

ACC EAD	18.18	18.18	18.18	18,18	18.18	18.17	2.7	16.80	15.08	12.36	10.06	8.13	5.67	4.15	2.30	1.19	67.0	0.25
TOTAL	0.00	0.0	o. 0	8. 0	0.0	2.17	13.44	26.39	43.73	38.99	87.35	107.34	140.31	165.60	209.97	230.73	238.23	245.61
COMERCI	0.0	0.0	0.0	0.0	0.0	2.17	13.44	25.57	62.04	59.11	K.K	91.57	111.91	127.52	154.93	171.45	174.34	177.18
RESIDNTL	0.0	9.0	0.0	9.0	9.0	0.0	9.0	0.82	3.44	7.73	11.61	15.77	28.40	38.08	55.03	59.27	63.89	68.43
STAGE	3460.68	3461.61	3462.29	3462.63	3462.82	3463.05	3463.32	3463.61	3463.96	¥ ¥.53	3465.05	3465.54	3466.17	3466.65	3467.50	3458.13	3468.82	3469.49
FLOS	721.	930.	1119.	1232.	1297.	1372.	1461.	1571.	1716.	1952.	2199.	2443.	2849.	3179.	3798.	4742.	2994.	6939.
FREG	90.00	8. 2	20.00	% 00.04	35.00	30.00											0.20	
		~	M	4	S	•	7	•	•	2	=	7	5	*	5	2	17	€

135

18.18

15.43

2.76

EXP ANNUAL DAMAGE

MAE	RTON
REACH NAME	RIVE
•	-
REACH 1	RN REACH

**** IMPUT DATA ****

FREQUENCIES READ FROM HECDSS FILE
FR RCH 1 0 3 0 80.80 31.99 7.39 2.98 1.29 0.85 0.18 0.05
0.01

FLOOD PEAKS READ FROM HECDSS FILE

GF RCH 1 9 1004, 1499, 1631, 3048, 3658, 3480, 6327, 8147.
10094.

INTERPOLATED FLOOD PEAKS

GF RCH 1 0 3 0 859.66 1143.15 1358.00 1444,88 1480.85 1509.72 1531.39 1548.24
1565, 1596, 1648, 2073, 3040, 3446, 3536, 4027, 6168, 7159.

Gated reservoir - new increases carricomputed by HEC-5.

##END OF INPUT DATA FOR PLAM 3 ##

++DANAGE DATA FOR PLAN 3 .. GATED RESERVOIR

	17.02	14.94	2.08		DAMAGE	AKKUAL	X
0.25	247.32	17.84	69.69	3469.65	7159.	0.10	5
0.49	239.58	174.86	8.73	3468.94	6168.	ල. ව	17
1.18 81.1	220.46	163.61	56.85	3467.77	4027.	0.20	2
2.20	192.45	144.09	48.36	3467.17	3536.	8	5
8. 8.	185.94	140.07	45.87	3467.04	3446.	5.8	*
5.81	154.95	120.95	% .8	3466.45	3040.	×.8	5
8.08	77.28	67.56	9.30	3464.73	2073.	8.8	72
9.13	35.59	33.38	.2.21	3463.73	1648.	2.8	F
10.08	29.33	28.07	1.26	3463.67	15%.	5.8	2
11.45	25.69	24.98	0.71	3463.59	1565.	15.00	0
12.68	23.66	23.26	07.0	3463.55	1548.	8.8	•
13.81	21.64	21.54	0.10	3463.51	1531.	8. 8	_
14.84	19.34	19.34	0.0	3463.46	1510.	8.8	•
15.73	15.93	15.93	0.0	3463.38	1481.	35.00	Ŋ
16.41	11.36	11.36	0.0	3463.27	1445.	6 0.09	4
17.01	o.34	0.34	0.0	3463.01	1358.	50.08	M
17.02	0.0	0.0	0.0	3462.36	1143.	8	~
17.02	9.0	0.0	0.0	3461.30	860.	8.8	-
ACC EAD	TOTAL	COMERCI	RESIDNTL	STAGE	<u> </u>	FRED	

	6263. 7403. Base condition frequency curve read from DSS file again.			New elevation-damage relationships for floodproofing as computed by SID.		
0.13	7403.	2117.52	2465.50 24.70.50	5.23	0.00	
0.27		1536.06 1687.73 1774.03 1870.92 1982.91 2117.52 3408. 3737. 4348. 5315. 6704. 7790.	3463.00 3463.50 3464.00 3464.50 3465.00 3465.50 3468.00 3468.50 3469.00 3469.50 3470.00 3470.50	0.00	0.00	
0.85	4560.	1870.92 5315.	3464.50	0.00	0.00 177.22	
7.8	4277.	1774.03 4348.	3464.00	0.00	0.00 0.00 0.00 175.11 177.22 179.33	
2.37	3602.	1687.73 3737.	3463.50	0.00 61.73	0.0 73.00	
FILE** 8 5.94	FILE** . 2875.	1536.06 3408.	3463.00	0.00 58.38	0.00	
_	ECOSS F1 2322.		62.50 67.50	0.00 55.00	0.00 154.78	** 7 NV
72.43	1240.	974.58 2764.	K DATA K62.00 K67.00	,5.00 45.00	138.67	F08 P
IES REAL 0 1 0	AKS READ 9	ATED FLC 0 1 0 25%.	OR DAMA: 18 3 466.50 3	MAGE DAT 0 4 1 0.00	MAGE DA1 2 122.56	MPLE DAT
FREGUENCIES READ FROM MECDSS F FR RCM 1 0 1 0 72.43 14.18 0.05	**FLOOD PEAKS READ FROM NECDSS F OF RCM 1 9 1240. 2322. 9118.	**INTERPOLATED FLOOD PEAKS** QF RCN 1 0 1 0 974.58 1271.62 2289. 2534. 2764. 3000.	**STAGES FOR DANAGE DATA** SD RCH 1 18 3462.00 3462.50 3466.00 3466.50 3467.00 3467.50	**FLOOD DANAGE DATA** DG RCH 1 0 4 1 0.00 0.00 0.00 0.00 45.00 55.00	**FLOOD DAWAGE DATA** DG RCN 1 2 0.00 0.00 0.00 122.56 138.67 154.78	**END OF INPUT DATA FOR PLAN &

++DANAGE DATA FOR PLAN 4 -- FLOOD PROOFING ALL STRUCTURES BY 3 FEET

ACC ES	10.31	10.31	10.31	10.31	10.31	10.31	10.31	10.31	10.31	10.31	10.30	67.6	87.9	4.54	2.37	1.21	0.50	0.Z	
TOTAL	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.58	36.28	182.24	205.93	225.72	234.39	243.76	252.26	
COMERCI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.58	98.28	138.29	152.41	167.96	172.86	176.47	179.74	
RESIDNTL	0.0	0.0	0.0	0.0	0.0	0.0	o. 0	0.0	0.0	0.0	0.0	0.0	43.95	53.53	57.76	61.53	67.29	72.52	
STAGE	3461.81	3462.75	3463.52	3463.89	3464.10	3464.33	3464.61	3464.88	3465.23	3465.70	3466.04	3466.39	3466.99	3467.43	3467.91	3468.47	3469.32	3470.10	
3	975.	1272.	1536.	1688.	17%.	1871.	1983.	2118.	2289.	2534.	2764.	3000	3408.	3737.	4348.	5315.	6704.	ġ.	
FREG	80.00	20.00	20.00	60.00	35.00	30.00	8.52	20.00	15.00	10.00	7.00	5.00 5.00	3.00	2.00	9.	0.50	0.20	0.10	
	-	~	M	4	'n	9	~	•0	•	유	Ξ	2	ŭ	7	₹	2	17	₽	

2.00

EXP ANNUAL DAMAGE

138

Appendix C

REACH 1, REACH NAME -

**** IMPUT DATA ****

\$TAGES FOR DANAGE DATA

SD RCN 1 18 3462.00 3462.50 3463.00 3463.50 3464.50 3464.50 3465.00 3465.50

3466.00 3466.50 3467.00 3467.50 3468.00 3469.50 3469.50 3470.00 3470.50

FLOOD DANAGE DATA

DG RCN 1 0 1 1 0.00 0.00 0.00 0.00 3.75 7.50 11.25 15.00

25.00 35.00 45.00 55.00 58.38 61.75 65.13 68.50 71.87 75.25

FLOOD DANAGE DATA

DG RCN 1 2 0.00 0.00 0.00 21.00 42.00 58.11 74.22 90.33

106.44 122.56 138.67 154.78 170.89 173.00 175.11 177.22 179.33 181.44

Read base condition damage relationships from DSS file again.

\$TAGES FOR RATING CURVE
\$949.000 14 3454.75 3456.49 3457.81 3458.90 3459.86 3460.74 3461.55 3462.27
3462.96 3463.63 3464.90 3466.97 3468.49 34.70.83

***FLOUS FOR RATING CURVE**

9849.000 0 5 0 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00

4500. 5000. 6000. 8000. 10000. 15000.

- New rating curve for improved channel.

END OF INPUT DATA FOR PLAM 5 *

**DANAGE DATA FOR PLAN 5 -- IMPROVING THE CHANNEL BOTTOM WIDTH TO 20 FEET

ACC EAD	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.53	0.31	0.17
TOTAL	8.	9.0	0.0	9.0	9.0	0.0	9.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	76.86	112.10	170.80
COMERCI.	8.	0.0	0.00	0.0	0.0	0.0	0	9.0	0.00	0.0	0.00	0.0	0.0	0.0	45.90	94.51	130.73
RESIDNTL 0.00	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	3.8	17.59	40.07
STAGE 3456.41	3457.21	3457.89	3458.22	3458.41	3458.62	3458.87	3459.13	3459.46	3459.92	3460.33	3460.74	3461.40	3461.89	3462.75	3464.03	3465.63	3466.73
£6 33.	1272.	1536.	1688.	17%.	1871.	1983.	2118.	2289.	2534.	2764.	3000.	3 408	3737.	4348.	5315.	6704.	28 28
FREG 90.00																	
-	~	M	4	ın	•	~	∞	•	2	=	5		*				

0.61

0.51

0.10

EXP ANNUAL DAMAGE

SILVER CREEK

** SUBBARY OF REACH NAMES **

REACH 1, RIVERTON 1 RCH 1

SILVER CREEK

** GRAND SUPPLARY BY CATEGORY **

** FLOOD PLAIN MANAGEMENT PLANS

GATED RESERVOIR FLOOD PROOFING ALL STRUCTURES BY 3 FEET IMPROVING THE CHANNEL BOTTON WIDTH TO 20 FEET

GRAND SUPPLARY - ALL DAMAGE CATEGORIES

Inundation reduction benefit

for plan 5. DANAGE DANAGE
W/PLAN REDUCED 32.20 DAMAGE DAMAGE W/PLAN REDUCED 2.00 8.32 10.31 . . . EXPECTED ANNUAL DAMAGE 25.50 DAMAGE DAMAGE W/PLAN REDUCED 17.02 3.73 24.33 2.76 15.43 18.18 42.51 RESIDNTL CONERCL DAMAGE CATEGORY TOTAL Expected annual damage for plan 5.

END OF RUN

140

Appendix C

Figure 11 Damage Frequency Functions for the Base Plus Four Plans

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER
Training Document No. 21 AD-A16+	136
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Flood Damage Analysis Package Description, User Guidance and Example	Final Report
outuance and Example	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
Robert Carl, Darryl Davis, Brian Smith	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Corps of Engineers	
The Hydrologic Engineering Center	!
609 Second Street, Davis, CA 95616	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	January 1986
	13. NUMBER OF PAGES
	145
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Distribution of this document is unliwited	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	om Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number,)
Flood Damage Analysis, Water Resources Planning, Poost Analysis, Flood Control Benefits, Inundation	=
The Flood Damage Analysis Package document describe a set of linked hydrologic and economic computer polydrologic Engineering Center (HEC). The programs transfer provided automatically by the HEC Data Stopped Content of the Content	es and illustrates the use of rograms developed by the are linked through data orage System. The programs
collectively provide capability for flood damage and of structural and nonstructural flood plain manage	

DD 1 JAN 73 1473 EDITION OF F NOV 65 IS OBSOLETE

Unclassified

END

FILMED

4-86

DTIC