

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

КАФЕДРА Прикладная математика

ФАКУЛЬТЕТ	Фундаментальные науки

Лабораторная работа №2 по дисциплине "Разработка программных комплексов" на тему "Численное решение дифференциального уравнения с граничными условиями проекционными методами"

Студент	ФН2-71Б		Пиневич В.Г.
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Принял			Азметов Х.Х.
•		(Подпись, дата)	(И.О. Фамилия)

Содержание

1.	Задача	3
2.	Метод Бубнова-Галеркина	4
	2.1. Граничные условия $u(0) = 1; u(1) = 3 \dots \dots \dots \dots$	4
	2.2. Граничные условия $u(0) = 1; w(1) = 3 \dots \dots \dots \dots$	5
	2.3. Граничные условия $u'(0) = 1; u(1) = 3 \dots \dots \dots \dots$	6
3.	Метод Галеркина	7
	3.1. Граничные условия $u(0) = 1; u(1) = 3 \dots \dots \dots \dots$	7
	3.2. Граничные условия $u(0) = 1; u'(1) = 3 \dots \dots \dots \dots$	8
	3.3. Граничные условия $w(0) = 1; u(1) = 3 \dots \dots \dots \dots$	9
4.	Метод наименьших квадратов	10
	4.1. Граничные условия $u(0)=1; u(1)=3 \ldots \ldots \ldots$	10
	4.2. Граничные условия $u(0)=1; u'(1)=3\ldots\ldots\ldots\ldots$	11
	4.3. Граничные условия $u'(0) = 1; u(1) = 3 \dots \dots \dots \dots$	12

1. Задача 3

1. Задача

Создать программу решения дифференциального уравнения проекционными методами. Задано урванение на области [0, 1]:

$$\frac{d^2u}{dx^2} + u + x = 0.$$

Необходимо реализовать методы решения:

- 1. Метод Бубнова-Галеркина
- 2. Метод Галеркина
- 3. Метод наименьших квадратов

Реализовать методы учета граничных условий:

- 1. Метод штрафа
- 2. Метод множителей Лагранжа

По результатам предоставить отчет, в котором входят результаты для каждого метода решения с порядком аппроксимации 3, вариантами и методами учета граничных условий. Для метода штрафа задать значения 1, 100, 1000 и 10000...

2. Метод Бубнова-Галеркина

2.1. Граничные условия u(0) = 1; u(1) = 3

Метод штрафов

No	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	0.16	-4.37, 6.47, -1.71
2	10	0.02	-2.09, 4.29, -1.24
3	1000	0.01	-1.92, 4.13, -1.21
4	10000	0.01	-1.92, 4.13, -1.21

$N_{ar{0}}$	Относительная ошибка	Коэффициенты приближенного решения
1	0.01	-1.92, 4.13, -1.21

Рис. 1. График точного и численного решения метода Бубнова-Галеркина для u(0)=1; u(1)=3

2.2. Граничные условия u(0) = 1; u'(1) = 3

Метод штрафов

$N_{ar{0}}$	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	0.40	-7.89, 10.09, -2.44
2	10	0.07	-7.36, 11.02, -2.81
3	1000	0.03	-7.29, 11.14, -2.86
4	10000	0.03	-7.28, 11.14, -2.86

J	No	Относительная ошибка	Коэффициенты приближенного решения
	1	0.03	-7.28, 11.14, -2.86

Рис. 2. График точного и численного решения метода Бубнова-Галеркина для $u(0)=1; u\prime(1)=3$

2.3. Граничные условия u'(0) = 1; u(1) = 3

Метод штрафов

$N_{\overline{0}}$	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	0.08	7.65, -4.10, 0.48
2	10	0.01	8.17, -4.34, 0.50
3	1000	0.00	8.23, -4.36, 0.50
4	10000	0.00	8.23, -4.36, 0.50

Nº	Относительная ошибка	Коэффициенты приближенного решения
1	0.00	8.23, -4.36, 0.50

Рис. 3. График точного и численного решения метода Бубнова-Галеркина для $u\prime(0)=1; u(1)=3$

3. Метод Галеркина

3.1. Граничные условия u(0) = 1; u(1) = 3

Метод штрафов

$N_{ar{o}}$	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	0.17	-0.37, 3.07, -1.08
2	10	0.04	-2.20, 4.72, -1.44
3	1000	0.03	-2.49, 4.98, -1.49
4	10000	0.03	-2.49, 4.98, -1.49

	r 1	E
$N_{\bar{0}}$	Относительная ошибка	Коэффициенты приближенного решения
1	0.03	-2.49, 4.98, -1.49

Рис. 4. График точного и численного решения метода Галеркина для u(0)=1; u(1)=3

3.2. Граничные условия u(0) = 1; u'(1) = 3

Метод штрафов

$N_{\overline{0}}$	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	8.39	-56.13, 100.65, -28.72
2	10	1.57	-27.17, 39.29, -10.59
3	1000	1.32	-26.09, 37.00, -9.91
4	10000	1.32	-26.08, 36.98, -9.90

$N_{ar{o}}$	Относительная ошибка	Коэффициенты приближенного решения
1	1.32	-26.08, 36.98, -9.90

Рис. 5. График точного и численного решения метода Галеркина для $u(0)=1; u\prime(1)=3$

3.3. Граничные условия u'(0) = 1; u(1) = 3

Метод штрафов

$N_{\overline{0}}$	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	0.82	21.89, -15.21, 2.59
2	10	0.05	8.87, -4.79, 0.55
3	1000	0.03	8.54, -4.52, 0.50
4	10000	0.03	8.54, -4.52, 0.50

$\mathcal{N}_{\overline{0}}$	Относительная ошибка	Коэффициенты приближенного решения
1	0.03	8.54, -4.52, 0.50

Рис. 6. График точного и численного решения метода Галеркина для w(0) = 1; u(1) = 3

4. Метод наименьших квадратов

4.1. Граничные условия u(0) = 1; u(1) = 3

Метод штрафов

$N_{ar{0}}$	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	0.09	-0.16, 2.25, -0.75
2	10	0.03	-1.38, 3.42, -1.0
3	1000	0.03	-1.57, 3.61, -1.04
4	10000	0.03	-1.58, 3.61, -1.04

P		
$N_{\bar{0}}$	Относительная ошибка	Коэффициенты приближенного решения
1	0.03	-1.58, 3.61, -1.04

Рис. 7. График точного и численного решения метода наименьших квадратов для u(0)=1; u(1)=3

4.2. Граничные условия u(0) = 1; u'(1) = 3

Метод штрафов

Nο	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	0.57	-3.41, 4.92, -1.20
2	10	0.26	-4.44, 7.09, -1.76
3	1000	0.20	-4.63, 7.48, -1.86
4	10000	0.20	-4.63, 7.49, -1.86

Л	Относительная ошибка	Коэффициенты приближенного решения
1	0.20	-4.63, 7.49, -1.86

Рис. 8. График точного и численного решения метода наименьших квадратов для u(0)=1; u'(1)=3

4.3. Граничные условия u'(0) = 1; u(1) = 3

Метод штрафов

$\mathcal{N}_{\bar{0}}$	Штраф	Относительная ошибка	Коэффициенты приближенного решения
1	1	0.10	6.24, -2.67, 0.13
2	10	0.06	8.32, -4.26, 0.42
3	1000	0.06	8.88, -4.69, 0.50
4	10000	0.06	8.88, -4.69, 0.50

$N_{ar{o}}$	Относительная ошибка	Коэффициенты приближенного решения
1	0.06	8.88, -4.69, 0.50

Рис. 9. График точного и численного решения метода наименьших квадратов для w'(0)=1; u(1)=3