

IIC1253 — Matemáticas Discretas — 1' 2019

PAUTA TAREA 2

Pregunta 1

Pregunta 1.1

Como Σ es satisfacible sabemos que existe una valuación σ tal que $\sigma(\Sigma)$ es verdadero. Luego podemos ver solo dos casos para una formula cualquiera φ y una valuación σ que satisface a Σ :

- 1. $\sigma(\varphi) = 1$ por lo cual $\{\Sigma, \varphi\}$ es satisfacible, y finalmente $\Sigma \not\models \neg \varphi$
- 2. $\sigma(\neg \varphi) = 1$ por lo cual $\{\Sigma, \neg \varphi\}$ es satisfacible, y finalmente $\Sigma \not\models \varphi$

Por lo tanto queda demostrado que, para una formula cualquiera φ se cumple que:

$$\Sigma \not\models \varphi \vee \Sigma \not\models \neg \varphi$$

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Demostración correcta y clara.
- (3 puntos) Demostración con pequeños errores u omisiones.
- (0 puntos) Otros casos.

Pregunta 1.2

Dado la definición de Σ se debía **argumentar** que, dada una valuación σ :

$$\sigma(\Sigma) = 1 \iff \sigma = \{1, 1, ..., 1\}$$

Luego, como σ es única se cumple una de las siguientes opciones:

- $\sigma(\varphi) = 1 \wedge \sigma(\neg \varphi) = 0$ y por lo tanto $\Sigma \models \varphi$
- $\sigma(\varphi) = 0 \land \sigma(\neg \varphi) = 1$ y por lo tanto $\Sigma \models \neg \varphi$

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Demostración correcta y clara.
- (3 puntos) Demostración con pequeños errores u omisiones.
- (0 puntos) Otros casos.

Pregunta 2

Una posible solución es:

- 1. $\forall x. \exists y. \exists z. \ C(x,y,z) \lor C(y,x,z)$
- 2. $\exists x.\exists y.\exists z. (C(x,y,z) \lor C(y,x,z)) \land \neg E(x,z)$
- 3. $\exists x. \forall z. \ C(x, x, z)$
- 4. $\exists x. \forall y. \forall z. \neg C(x, y, z) \land \neg C(y, x, z)$
- 5. $\forall x. \neg C(x, x, x)$
- 6. $\forall z. \exists x. \exists y. C(x,y,z) \land (\forall u. \forall v. C(u,v,z) \rightarrow (E(u,x) \land E(v,y)))$
- 7. $\forall x. \forall y_1. \forall y_2. \forall z_1. \forall z_2. \ ((C(x,y_1,z_1) \lor C(y_1,x,z_1)) \land (C(x,y_2,z_2) \lor C(y_2,x,z_2)) \rightarrow E(y_1,y_2)$
- 8. $\forall x. \forall y. \forall z. \forall w. (C(x,y,z)) \lor C(y,x,z)) \rightarrow (\neg C(z,w,x) \land \neg C(w,z,x))$
- 9. $\exists x. \exists y_1. \exists z_1. \exists y_2. \exists z_2. ((C(x, y_1, z_1) \lor C(y_1, x, z_1)) \land (C(x, y_2, z_2) \lor C(y_2, x, z_2)) \land \neg E(z_1, z_2) \land (\forall y_3. \forall z_3. ((C(x, y_3, z_3) \lor C(y_3, x, z_3)) \rightarrow (E(z_3, z_1) \lor E(z_2, z_1))))$

Tomando en cuenta que se debe incluir una pequeña explicación de la correctitud de cada fórmula, el puntaje asignado es el siguiente:

- (4 puntos) Si todas las fórmulas son correctas (i.e. son lógicamente equivalentes a las recién descritas y poseen una breve explicación).
- (3 puntos) Si existen errores pero hay al menos 6 fórmulas correctas.
- (0 puntos) Otros casos (e.g. no incluir explicaciones para cada fórmula).