Clase 5- lógica de predicados sintáxis

martes, 16 de septiembre de 2025

La lógica proposicional se queda corta para expresar cosas intuitivamente válidas.

Su formalización es la siguiente: Todos los hombres son mortales. Sócrates es un hombre. Por lo tanto, Sócrates es mortal. Por lo tanto, r

p,q|r

Sujeto-> cosas sobre lo que tengo algo que decir Predicado-> propiedad que tienen los sujetos.

Los predicados unarios definen relaciones de grado uno, es decir propiedades de un objeto, como por ejemplo:

- "el 7 es un número primo" que lo simbolizamos P_1^1 (7) «Socrates es mortal» que lo simbolizamos P_2^1 (socrates) «Sócrates es un hombre» que lo simbolizamos P_3^1 (socrates)
- P es la letra que se elige para ese predicado

Los indices de abajo son para separa, es como si fueran distintas letritas El número de abajo es a cuántos elementos aplica ese predicado.

Se escriben los sujetos con minúsculas y predicados en mayúscula Las oraciones tienen que quedar en afirmativo.

D(Luciana) donde d(x) siboliza el predicado x cursa la matria ftc. D(Luciana, ftc) donde d(x,y) es el predicado x cursa la materia y.

Cuantificadores: existerncial y universal.

Estos ejemplos ilustran un esquema común (pero que puede no cumplirse):

- El cuantificador universal va seguido de una implicación, debido a que los enunciados universales suelen ser de la forma,
 - «dado un x cualquiera, si tiene la propiedad A entonces tiene también la propiedad B»
- El cuantificador existencial va seguido de una conjunción, debido a que los enunciados existenciales suelen ser de la forma,

«existe al menos un x, que tiene la propiedad A y tiene también la propiedad B»

Para el existe va la y, para el para todo es una flecha No necesito ambos, con uno solo resuelvo todo, los puedo traducir

p->q es lo que mismo que !pvq

e(x) es lo mismo que !(para todo)! Osea no es vewrdad que todos no la cumplen

Sintaxis: definición formal Cómo se escribe:

Alfabeto o vocabulario: símbolos que puedo usar

Gramática: reglaas de las cadenas de símbolos que pertenecen al lenguaje.

Alfabeto Gramática La gramática del lenguaje define dos clases de elementos, por un lado los términos, que son las expresiones que denotan los objetos del dominio, y por el otro las fórmulos bien formados (fbf), con las que se expresan las relaciones entre los objetos.

Término--> o anidando funciones:

Ej f(0)=1, f(1)=2 f(f(f(0)))=3 siendo f es el sucesor de x

Fórmula atómica es cuando no tiene conectivos, un solo término.

Siemplos de Términos

- √ Los símbolos de constantes y de variables son términos
 - ➤ Entonces c₁ y x son términos
- ✓ Si $t_1, ..., t_n$ son términos y f_i^n es un símbolo de función, entonces $f_i^n(t_1, ..., t_n)$ es un término
 - \succ Como \mathfrak{c}_1 es un término, y f_1^1 es un símbolo de función unario, entonces f_1^1 $\{\mathfrak{c}_1\}$ es un término. Que podría interpretarse como la función sucesor aplicada al cero, suc $\{0\}$.
 - to Camp a consensationing of the consensation of the consensation

Por su parte, las fórmulas bien formadas se definen así:

- ✓ Sit t₁, ..., t_n son términos y P_iⁿ es un símbolo de predicado, entonces P_iⁿ(t₁, ..., t_n) es una formula bien formada. En este caso se denomina fórmula otómica o directamente ótomo.
 ✓ Si A y B son fórmulas bien formadas, entonces (~ A), (A ∧ B), (A ∨ B), (A → B) y (A ↔ B) también lo son.
 ✓ Si A es una fórmula bien formada y x es un símbolo de variable, entonces (∀x) A y (∃x) A son fórmulas bien formadas.
 ✓ Sólo las expresiones que pueden ser generadas mediante las cláusulas i a iii en un número finito de pasos son fórmulas bien formadas.

Los Simbolos del alfabeto del lenguaje de los números: $c_1 \operatorname{ser\'a} \operatorname{el} \operatorname{simbolo} \operatorname{de} \operatorname{constante} \operatorname{para} \operatorname{representar} \operatorname{el} \operatorname{cero}. \\ f_1^1 \operatorname{ser\'a} \operatorname{el} \operatorname{simbolo} \operatorname{de} \operatorname{función} \operatorname{para} \operatorname{representar} \operatorname{el} \operatorname{sucesor}. \\ f_2^1 \operatorname{ser\'a} \operatorname{el} \operatorname{simbolo} \operatorname{de} \operatorname{función} \operatorname{para} \operatorname{representar} \operatorname{el} \operatorname{sucesor}. \\ f_3^1 \operatorname{ser\'a} \operatorname{el} \operatorname{simbolo} \operatorname{de} \operatorname{predicado} \operatorname{para} \operatorname{representar} \operatorname{la} \operatorname{propiedad} \operatorname{de} \operatorname{ser} \operatorname{par}. \\ f_3^1 \operatorname{ser\'a} \operatorname{el} \operatorname{simbolo} \operatorname{de} \operatorname{predicado} \operatorname{para} \operatorname{representar} \operatorname{la} \operatorname{relación} \operatorname{de} \operatorname{igualdad}. \\ f_3^2 \operatorname{ser\'a} \operatorname{el} \operatorname{simbolo} \operatorname{de} \operatorname{predicado} \operatorname{para} \operatorname{representar} \operatorname{la} \operatorname{relación} \operatorname{el} \operatorname{sucesor}.$

iemplos de Términos:

- √ Los símbolos de constantes y de variables son términos.
 - Entonces c₁ y x son términos.

P1 (1) (1)

- \checkmark Si $\mathbf{t_1},...,\mathbf{t_n}$ son términos y f_i^n es un símbolo de función, entonces $f_i^n(\mathbf{t_1},...,\mathbf{t_n})$ es un término.
 - \succ Como $\, {\mathfrak c}_1 \,$ es un término, y f_1^1 es un símbolo de función unario, entonces $f_1^1 \, ({\mathfrak c}_1)$ es un término. Que podría interpretarse como la función sucesor aplicada al cero, suc(0).
 - \succ Como c_1 y x son términos, y f_1^2 es un símbolo de función binario, entonces f_1^2 (c_1 , x) es un término Que podría interpretarse como la función suma, *(0,x). Notar: notación prefija *(0,x) vs. notación infija (0*x).

Ejemlo con 2 es par sería