8

3

3

3

3

IN THE CLAIMS

Please amend the claims as indicated:

Fax:7132668510

- 1 (previously presented) An apparatus for use in a borehole for electrical imaging 1.
- 2 during rotary drilling comprising:
- 3 (a) a resistivity sensor having an offset from a wall of the borehole that is 4 greater then a specified minimum value;
- 5 **(b)** an orientation sensor making a measurement of a toolface angle of said 6 apparatus during continued rotation thereof; and
- 7 (c) a device which maintains said resistivity sensor at said offset.

1 2. (original) The apparatus of claim 1 wherein said resistivity sensor comprises a 2 galvanic sensor.

- (previously presented) The apparatus of claim 1 wherein said resistivity sensor is 1 3. 2 mounted on a pad.
- 1 4. (previously presented) The apparatus of claim 1 wherein said resistivity sensor is 2 mounted on a rib.
- (previously presented) The apparatus of claim 1 wherein said resistivity sensor is 1 5. 2 mounted on a stabilizer.

2

•	U.	Chicaic	busing presented) the apparatus of claim 1 wherein said resistivity sensor
2		further	comprises
3		(i)	a current electrode which conveys a measure current into said formation
4	•		through a conducting fluid, and
5		(ii)	at least one guard electrode proximate to said current electrode for
6			maintaining focusing of said measure current.
7			
1	7.	(origin	al) The apparatus of claim 6 wherein said at least one guard electrode
2		focuse	s said measure current in a direction substantially normal to said borehole
3		wall.	
4			
1	8.	(origin	al) The apparatus of claim 7 wherein said at least one guard electrode
2		surrou	nds said measure electrode and maintains a focusing of said measure
3		current	in a flushed zone of said formation.
4			
1	9.	(origin	al) The apparatus of claim 7 wherein the at least one guard electrode
2		compri	ises a plurality of guard electrodes for altering a depth of investigation of
3		said re	sistivity sensor.
4			
1	10.	(origin	al) The apparatus of claim 6 wherein said at least one guard electrode
2		compri	ises a plurality of guard electrodes that create substantially spherical
3		equipo	tential surfaces

4		
1	11.	(previously presented) The apparatus of claim 1 wherein said resistivity sensor
2		further comprises:
3		(i) a current electrode which conveys a measure current into said formation,
4		and
5		(ii) a measure electrode spaced apart from said current electrode,
б		the apparatus further comprising a processor which determines from a voltage of
7		said measure electrode and said measure current an indication of a resistivity of
8		said earth formation.
9		
1	12.	(original) The apparatus of claim 8 further comprising monitor electrodes to
2		support the focusing in the presence of non negligible contact impedances.
3		. •
1	13.	(original) he apparatus of claim 9 further comprising monitor electrodes to
2		support the focusing in the presence of non negligible contact impedances.
3		
1	14.	(original) The apparatus of claim 8 wherein further comprising a pad that
2		substantially circumscribes said apparatus, said pad carrying said sensor thereon
3		

3

1

2

15.

4

(original) The apparatus of claim 14 further comprising monitor electrodes to

support the focusing in the presence of non negligible contact impedances.

1	10.	(previously presented) The apparatus of claim 8 further comprising a controller
2		which maintains a substantially constant power consumption by said
3		electrodes.
4		
1	17.	(previously presented) The apparatus of claim 12 further comprising a controller
2		which maintains a substantially constant power consumption by said electrodes.
3		•
1	18.	(previously presented) The apparatus of claim 14 further comprising a controller
2		which maintains a substantially constant power consumption by said electrodes.
3		
1	19.	(previously presented) The apparatus of claim 14 further comprising a controller
2		which maintains a substantially constant power consumption by said electrodes.
3		
1	20.	(original) The apparatus of claim 1 wherein said orientation sensor comprises a
2		magnetometer.
3		
1	21.	(original) The apparatus of claim 1 wherein said orientation sensor comprises an
2		accelerometer.
3		
1	22.	(original) The apparatus of claim 1 wherein said device comprises a stabilizer.
2		
1	23.	(original) The apparatus of claim 1 wherein said device comprises a steerable rib.

P.07

2		
1	24.	(original) The apparatus of claim 1 wherein said borehole is filled with a
2		substantially nonconducting fluid and wherein said resistivity sensor is
3		capacitively coupled to said earth formation.
4		
1	25.	(original) The apparatus of claim 24 wherein said resistivity sensor makes
2		measurements at a plurality of different frequencies.
3		
1	26.	(original) The apparatus of claim 1 wherein said borehole includes a substantially
2		non-conducting fluid therein.
3		
1	27.	(previously presented)The apparatus of claim 2 wherein said borehole includes a
2	•	substantially non-conducting fluid therein and wherein said resistivity sensor
3		conveys a measure current into said formation using capacitive coupling.
4		
1	28.	(original) The apparatus of claim 1 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	29.	(original) The apparatus of claim 26 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	30.	(original) The apparatus of claim 26 wherein said resistivity sensor further

2		comp	rises a c	directionally sensitive induction logging tool.
3				
1	31.	(origi	nal) The	e apparatus of claim 30 wherein said directionally sensitive induction
2		loggir	ig tool o	comprises a quadrupole transmitter.
3				
1	32.	(origi	nal) The	e apparatus of claim 26 wherein said resistivity sensor further
2		comp	rises a r	adio frequency microwave transmitter
3				
1	33.	(origi	nal) The	e apparatus of claim 26 wherein said resistivity sensor comprises an
2		induct	tion coi	1.
3	•			
1	34	(with	irawn)	A system for use in a borehole for determining a resistivity
2		param	eter du	ring drilling of a borehole in an earth formation comprising:
3		(a)	a bott	om hole assembly (BHA) including
4			(i)	a resistivity subassembly having a resistivity sensor with an offset
5				from a wall of the borehole that is greater than a specified
6				minimum value during rotation of the BHA;
7			(ii)	an orientation sensor on said subassembly which makes a
8				measurement of a toolface angle of said subassembly during
9				continued rotation thereof; and
10			(ii)	a device which maintains said resistivity sensor at said offset.
11		(b)	a proc	essor which determines said resistivity parameter from
		•		•

12		measurements made by said resistivity sensor;
13		(c) a device which drills said borehole; and
14		(d) conveyance device which conveys said BHA into said borehole.
15		
1	35.	(withdrawn) The system of claim 34 wherein said device for drilling said borehole
2		comprises a drill bit.
3		
1	36.	(withdrawn) The system of claim 34 wherein said conveyance device comprises
2		a drill string.
3		
1	37.	(withdrawn) The system of claim 34 wherein said processor is part of said BHA.
2		
1	38.	(withdrawn)The system of claim 34 wherein said processor includes a
2		memory device which stores at least a subset of measurements made by said
3		resistivity sensor.
4		
1	39.	(withdrawn) The system of claim 34 wherein said resistivity sensor comprises a
2		galvanic sensor.
3		
1	40.	(withdrawn) The system of claim 39 wherein said sensor furthercomprises
2		(i) a current electrode which conveys a measure current into said formation
3		through a conducting fluid, and
		2

4		(11) at least one guard electrode proximate to said current electrode which
5		maintains focusing of said measure current.
6		
1	41.	(withdrawn) The system of claim 40 wherein said processor maintains a
2		substantially constant power consumption by said electrodes.
3		
1	42.	(withdrawn) The system of claim 34 wherein said orientation sensor comprises a
2		magnetometer.
3		
1	43.	(withdrawn) The system of claim 34 wherein said orientation sensor comprises an
2		accelerometer.
3		
1	44.	(withdrawn) The system of claim 34 wherein said device comprises a stabilizer.
2		•
1	45.	(withdrawn) The system of claim 34 wherein said device comprises a steerable
2		rib.
3		
1	46.	(withdrawn) The system of claim 34 wherein said borehole is filled with a
2		substantially nonconducting fluid and wherein said resistivity sensor is
3		capacitively coupled to said earth formation.
4		
1	47.	(withdrawn) The system of claim 46 wherein said resistivity sensor makes

2		measurements at a plurality of different frequencies.
3		
1	48.	(withdrawn) The system of claim 34 wherein said borehole includes a
2		substantially non-conducting fluid therein and wherein said resistivity sensor
3		conveys a measure current into said formation using capacitive coupling.
4		
1	49.	(withdrawn) The system of claim 34 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
1	50.	(withdrawn) The system of claim 34 wherein said resistivity sensor further
2		comprises a directionally sensitive induction logging tool.
3		
1	51 .	(withdrawn) The system of claim 50 wherein said directionally sensitive induction
2		logging tool comprises a quadrupole transmitter.
3		
1	52. -	(withdrawn) The system of claim 34 wherein said resistivity sensor further
2		comprises a radio frequency microwave transmitter
3		
1	<i>5</i> 3.	(withdrawn) The system of claim 34 wherein said resistivity parameter comprises
2		a resistivity image of said borehole.
3		
1	54.	(withdrawn) A method of determining a parameter of an earth formation during

2		format	ion of a borehole in said earth formation by a device on a bottom hole
3		asseml	bly (BHA), the method comprising:
4		(a)	maintaining a resistivity sensor on said BHA substantially at an offset
5			from a wall of the borehole less than a specified minimum value;
6		(b)	using said resistivity sensor for making measurements indicative of said
7			parameter during continued rotation of said BHA;
8		(c)	using an orientation sensor on said BHA for making a measurement of a
9	•		toolface angle of said BHA during said continued rotation; and
10		(d)	using a processor for determining from said measurements said parameter
11			
1	55.	(withd	trawn) The method of claim 54 wherein said resistivity sensor comprises a
2		galvan	nic sensor.
3			
1	56.	(withd	rawn) The method of claim 54 further comprising mounting said resistivity
2		sensor	on a pad.
3			
1	<i>5</i> 7.	(withd	rawn) The method of claim 54 further comprising mounting said resistivity
2		sensor	on a rib of said BHA.
3			
1	58	(withd	lrawn) The method of claim 54 further comprising mounting said resistivity
2		sensor	on a stabilizer of said BHA.
3			

1

1	59.	(with	drawn) The method of claim 54 further comprising
2		(i)	using a current electrode of said resistivity sensor for conveying a measure
3			current into said formation through a conducting fluid, and
4		(ii)	using at least one guard electrode proximate to said current electrode for
5			maintaining focusing of said measure current.
6			
1	60.	(with	drawn) The method of claim 59 further comprising using said at least one
2		guard	electrode for focusing said measure current in a direction substantially
3		norma	al to a borehole wall.
4			
ì	61.	(with	drawn) The method of claim 60 wherein said at least one guard electrode
2		surro	ands said measure electrode and maintains a focusing of said measure
3		currer	nt in a flushed zone of said formation.
4			
1	62.	(with	drawn) The method of claim 59 further comprising using said at least one
2		guard	electrode for creating substantially spherical equipotential surfaces
3			
1	63.	(with	drawn) The method of claim 54 further comprising:
2		(i)	using a current electrode of said resistivity sensor for conveying a measure
3			current into said formation,
4		(ii)	measuring a voltage of a measure electrode spaced apart from said current
5			electrode; and

6		(iii) using said processor for determining from a voltage of said measure
7		electrode and said measure current said resistivity parameter.
8		
1	64.	(withdrawn) The method of claim 60 further comprising using monitor electrodes
2		to support the focusing in the presence of non negligible contact impedances.
3		·
1	65.	(withdrawn) The method of claim 61 further comprising using monitor electrodes
2		to support the focusing in the presence of non negligible contact impedances.
3		•
1	66.	(withdrawn) The method of claim 60 further comprising carrying said sensor on a
2		pad that substantially circumscribes said apparatus.
3		
1	67.	(withdrawn) The method of claim 66 further comprising using monitor electrodes
2		to support the focusing in the presence of non negligible contact impedances.
3		
1	68.	(withdrawn) The method of claim 60 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	69.	(withdrawn) The method of claim 64 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	70 .	(withdrawn) The method of claim 66 further comprising using a processor for

2		maintaining a substantially constant power consumption by said electrodes.
3		
1	71.	(withdrawn) The method of claim 67 further comprising using a processor for
2		maintaining a substantially constant power consumption by said electrodes.
3		
1	72.	(withdrawn) The method of claim 54 wherein said orientation sensor comprises a
2		magnetometer.
3		
1	73.	(withdrawn) The method of claim 54 wherein said orientation sensor comprises
2		an accelerometer.
3		
1	74.	(withdrawn) The method of claim 54 further comprising using a stabilizer for
2		maintaining said specified offset.
3		
1	75 .	(withdrawn) The method of claim 54 further comprising using a steerable rib for
2		maintaining said specified offset.
3		
1	76.	(withdrawn) The method of claim 54 further comprising:
2		(i) using said BHA in a borehole is filled with a substantially nonconducting
3		fluid, and
4		(ii) capacitively coupling said resistivity sensor to said earth formation.
5		

•	, , .	(withdrawn) The mother of claim 70 further comprising using said lesistivity
2		sensor for making measurements at a plurality of different frequencies.
3		
1	78.	(withdrawn) The method of claim 76 further comprising using said resistivity
2		sensor for making measurements at two frequencies.
3		
1	7 9.	(withdrawn) The method of claim 77 further comprising using said processor for
2		performing a multi-frequency focusing of said measurements.
3		\cdot .
1	80.	(withdrawn) The method of claim 54 wherein said borehole includes a
2		substantially non-conducting fluid therein.
3		
1	81.	(withdrawn) The method of claim 55 further comprising:
2	•	(i) using said BHA in a borehole is filled with a substantially nonconducting
3	•	fluid, and
4		(ii) capacitively coupling said resistivity sensor to said earth formation
5	•	
1	82.	(withdrawn) The method of claim 54 wherein said resistivity sensor further
2		comprises a shielded dipole.
3		
l	83.	(withdrawn) The method of claim 80 wherein said resistivity sensor further
2		comprises a shielded dipole.

MADANMOSSMANSRIRAM

3		
1	84.	(withdrawn) The method of claim 80 wherein said resistivity sensor further
2		comprises a directionally sensitive induction logging tool.
3		
1	85.	(withdrawn) The method of claim 84 wherein said directionally sensitive
2		induction logging tool comprises a quadrupole transmitter.
3		
1	86.	(withdrawn) The method of claim 80 wherein said resistivity sensor further
2		comprises a radio frequency microwave transmitter.
3		
1	87.	(withdrawn) The method of claim 54 further comprising using an induction coil a
2		said resistivity sensor.
3		
1	88.	(withdrawn) The method of claim 87 further comprising using said processor for
2		determining an inductance of said induction coil.
3		•
1	89.	(withdrawn) The method of claim 86 further comprising using said processor for
2		determining an extent of a fluid invasion of the earth formation.
3		
1	90.	(withdrawn) The method of claim 54 wherein said orientation sensor comprises a
2		magnetometer
3		

1	91.	(new) The apparatus of claim 1 further comprising a bottomhole assembly (BHA)
2		carrying the resistivity sensor into the borehole.
3		
1	92.	(new) The apparatus of claim 1 further comprising a conveyance device which
2		conveys the resistivity sensor into the borehole.
3		
1	93.	(new) The apparatus of claim 91 further comprising an orientation sensor that
2		makes measurements of an orientation of the BHA during continued rotation
3		thereof.
4		·
_		