Vorlesung MuPAD Tag 1 Aufbau von MuPAD Streifzug durch MuPAD

Stefan Wiedmann

Mathematisches Institut Universität Göttingen

16.01.2009

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

6.01.2009

1 / 44

Accounts

- MuPAD ist in Version 4.0 auf allen Rechnern der Mathematischen Fakultät installiert
- Kiosk-System im Übungssaal und im Computerraum kein Login aber auch keine Speicherung von eigenen Dateien
- Accounts im CIP-Pools der Mathematischen Fakultät:
 - Mit Stud.it-Account: Formular unter https://xldap.uni-math.gwdg.de/register.php ausfüllen
 - Ohne Stud.it-Account: An Herrn Jochen Schulz wenden
- Mit Account: Möglichkeit via ssh in der Shell mupad zu starten: ssh -X username@11.num.math.uni-goettingen.de ssh -X username@s1.math.uni-goettingen.de
- Alternative Rechner: 12 114, bzw. s2 s6

Organisatorisches

- Anmeldungen zu der Veranstaltung über StudIP https://www.studip.uni-goettingen.de/ Einführung in MuPAD (Mathematische Anwendersysteme) (WS 2008/09)
- Alle Unterlagen können von der StudIP-Seite (Reiter Dateien) heruntergeladen werden
- Dozent: Stefan Wiedmann wiedmann@uni-math.gwdg.de
- Büro: Zi. 006 (Erdgeschoß), MI
- Telefon: 39-7754

Stefan Wiedmann (Göttingen

Vorlesung Tag

01 0000

2 / 11

Unterlagen

Aufgabenblätter: StudIP

Folien zur Vorlesung: StudIP

• Folien der Vorlesung zum Ausdrucken: StudIP

Notebooks zur Vorlesung: StudIP

 MuPAD Buch: Preis: 19.95 Euro, Rapin, Wassong, Wiedmann, Koospal: MuPAD - Eine Einführung, Springer 2007, ISBN 978-3-540-73475-8

Stefan Wiedmann (Göttingen) Vorlesung Tag1 16.01.2009 3 / 44 Stefan Wiedmann (Göttingen) Vorlesung Tag1 16.01.2009 4 /

Ablauf der Veranstaltung

- Blockveranstaltung vom 16.2.-27.2.2008
- Vorlesung: 9.15 Uhr bis 11.30 Uhr
- Nachmittags: 4 Übungsgruppen à je 1h 15min
 - 13:00-14:15 (Tutor: Schulz)
 - 14:15-15:30 (Tutor: Wiedmann)
 - 15:30-16:45 (Tutor: Schulz)
 - 16:45-18:00 (Tutor: Wiedmann)
- Scheinerwerb
 - Regelmäßige Teilnahme an den Übungen
 - Vorführen von Aufgaben
 - Klausur am 27.2.2009; 9:15 10:45; Anmeldung über FlexNow!

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

16.01.2009

Gliederung des heutigen Tages

- Organisatorisches
- Was ist MuPAD?
- Ein Streifzug durch MuPAD
 - Eine Kurvendiskussion
 - Symbolisches Rechnen
 - Etwas AGLA
 - Etwas Zahlentheorie
 - Nützliches und Hilfe

Inhalt der Vorlesung

- 1. Tag Organisatorisches, Aufbau von MuPAD, Streifzug durch MuPAD
- 2. Tag Grundlagen MuPAD (grundlegende Datentypen, Ausdrücke), Lösen von Gleichungen, Symbolisches Rechnen
- 3. Tag Mengen, natürliche, rationale, reelle und komplexe Zahlen, Gleitkommazahlen, Ungleichungen
- 4. Tag Vektoren und Matrizen, Lineare Algebra in MuPAD, Programmieren I
- 5. Tag Datencontainer in MuPAD, Lineare Abbildungen und Matrizen
- 6. Tag Folgen und Reihen
- 7. Tag Reelle Funktionen, Grafiken
- 8. Tag Differenzial- und Integralrechnung
- 9. Tag Grundlagen der Programmierung, Zeichenketten (Strings)
- 10. Tag Klausur (9.15 10.45 Uhr)

Stefan Wiedmann (Göttingen)

16.01.2009

MuPAD

- MuPAD ist ein Computeralgebra-System
 - Entwicklung von MuPAD seit 1990 an der Universität Paderborn
 - Seit 1997 Teilausgliederung in die SciFace Sofware GmbH
 - MuPAD wurde mitte des Jahres 2008 an Mathworks verkauft
 - MuPAD ist seither eine Toolbox des Programms Matlab (Symbolic Toolbox)
- MuPAD ist in C/C++ geschrieben.
- MuPAD ist objektorientiert.

Vorlesung Tag1 16.01.2009 16.01.2009 Stefan Wiedmann (Göttingen) Stefan Wiedmann (Göttingen) Vorlesung Tag1

Computeralgebra-Systeme

Computeralgebra

beschäftigt sich mit exakten Berechnungen von mathematischen Objekten

Mathematische Objekte

Natürliche Zahlen, reelle Zahlen, Polynome, Funktionen, Gruppen, Ringe, ...

Numerischen Berechnungen

Bei numerischen Rechnungen (z.B. Taschenrechner) benutzt man Zahlen in Gleitpunktdarstellung, also i.A. nur Näherungen an die gesuchte Lösung

Stefan Wiedmann (Göttingen

Vorlesung Tag:

16.01.2009

/ 44

Computeralgebra <-> Numerische Berechnung

Beispiel

Mathematische Objekte π , $\sqrt{2}$ Gleitpunktdarstellung (8 Stellen) 3.1415927, 1.4142136

Stefan Wiedmann (Göttingen) Vorlesung Tag1 16.01.2009 10 / 44

Andere Computeralgebra-Systeme

General purpose: Derive (Eingestellt 2006, TI)

LiveMath (Maple) Maxima (Free, GPL)

Reduce (sehr alt, in Lisp programmiert, free)

Mathematica (Platzhirsch)

Maple (Platzhirsch)

Matlab/Octave (Für große Rechnungen)

Magma (Spezielle mathematische Rechungen)

Special purpose: Cadabra (Körpertheorie)

PARI/GP (Zahlentheorie) GAP (Gruppentheorie)

Macaulay (Algebraische Geometrie) Singular (Algebraische Geometrie)

Neuere Entwicklungen

Neue Entwicklungen/Bibliotheken:

Sage Sehr ehrgeiziges Projekt, komplett in Phython geschrieben

SymPy Phython-Bibliotheken als CAS-Verwendbar

 ${\sf SymbolicC} + + \ {\sf Bibliotheken} \ {\sf zur} \ {\sf CA} \ {\sf in} \ {\sf C} + +$

Überblick:

http://en.wikipedia.org/wiki/Comparison_of_computer_

algebra_systems

 Stefan Wiedmann (Göttingen)
 Vorlesung Tag1
 16.01.2009
 11 / 44
 Stefan Wiedmann (Göttingen)
 Vorlesung Tag1
 16.01.2009
 12 /

MuPAD - Stärken

- Objektorientiertes Konzept (definieren eigener Datentypen, überladen von Operatoren möglich)
- interaktiver Quellcode-Debugger
- umfangreiches Hilfesystem
- Einfaches Einbinden von C/C++ Routinen (dynamische Module)
- Teil einer großen Software (Weiterenwicklung gesichert)
- Viele freie (Unterrichts-)materialien im Netz

Stefan Wiedmann (Göttingen) Vorlesung Tag1 16.01.2009 13

Struktur von MuPAD

MuPAD - Schwächen

- Befehlsumfang nicht so mächtig wie bei Maple oder Mathematica
- Geringerer Verbreitungsgrad
- Benutzung ist nicht so intuitiv wie bei anderen Systemen
- Teil einer großen Software (Matlab muß installiert/erworben werden)
- Programmierumgebung wenig komfortabel (Es gibt in der Matlab-Version einen Editor)
- Gültigkeitsberereich von Variablen in Funktionen ist global
- Zum Teil nicht konsistent erscheinende Auswertungen von Variablen

fan Wiedmann (Göttingen) Vorlesung Tag1 16.01.2009 14 / 44

Kern von MuPAD

- Parser: Liest die Eingaben und überprüft die Syntax; Umwandlung in MuPAD-Datentyp
- Auswerter: Auswertung und Vereinfachung der Ergebnisse
- ullet Speicherverwaltung: (MAMMUT \equiv Memory Allocation Managment Unit) interne Verwaltung der MuPAD-Objekte
- Kernfunktionen: Oft benötigte Funktionen werden aus Effizienzgründen im Kern auf C-Ebene implementiert.

 Stefan Wiedmann (Göttingen)
 Vorlesung Tag1
 16.01.2009
 15 / 44
 Stefan Wiedmann (Göttingen)
 Vorlesung Tag1
 16.01.2009
 16 / 44

Literatur

- K. Gehrs, F. Postel. MuPAD Eine praktische Einführung. SciFace. 2001.
- Ch. Creutzig, J. Gerhard, W. Oevel, St. Wehmeier. Das MuPAD Tutorium. Springer. 2. Auflage. 2002.
- M. Majewski. MuPAD Pro Computing Essentials. Springer. 2002.
- Rolf Monnerjahn. Mathematische Anwendungen in Biologie, Chemie, Physik. MuPad im Mathematikunterricht: 5.-10. Schuljahr
- Gerd Rapin, Thomas Wassong, Stefan Wiedmann und Stefan Koospal. MuPAD: Eine Einführung

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

Kurvendiskussion I

Betrachte die durch die reelle Zahl a parametrisierte Funktionenschar:

$$f: x \mapsto \frac{2x^2 - 20x + 42}{x - 1} + a, \quad a \in \mathbb{R}$$

Eingabe der Funktion

$$\Rightarrow$$
 f:= x \Rightarrow (2*x^2-20*x +42)/(x-1)+a

$$x \rightarrow (2*x^2 - 20*x + 42)/(x - 1) + a$$

Definitionslücken

{1}

MuPAD als Taschenrechner

Hier einige Beispiele:

>> 3+4*10+12

55

>> sin(PI)

0

>> float(PI)

3.141592654

>> float(sqrt(2))

1.414213562

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

16.01.2009 18 / 44

Kurvendiskussion II

Pol ?

>> limit(f(x),x=1,Left)

a - infinity

>> limit(f(x), x=1, Right)

a + infinity

Umformen

Stefan Wiedmann (Göttingen)

>> normal(f(x))

2 x - 20 x - a + a x + 42x - 1

Kurvendiskussion III

Nullstellen

>> Nullstellen:=solve(f(x)=0,x)

1/2 (a - 32 a + 64) a (a - 32 a + 64)

Berechnen der Ableitung

>> f'(x)

 $4 \times - 20 \quad 2 \times - 20 \times + 42$ x - 1 (x - 1)

tefan Wiedmann (Göttingen)

Vorlesung Tag1

Kurvendiskussion V

• Verhalten von f für große x

>> limit(f(x),x=infinity); limit(f(x),x=infinity)

a+infinity a-infinity

• Definiere f_0 , f_1 , f_2

>> f0:=subs(f(x),a=0):>> f1:=subs(f(x),a=-20): \Rightarrow f2:=subs(f(x),a=20): f0,f1,f2

2 x - 20 x + 42 2 x - 20 x + 42 2 x - 20 x + 42-----+20 x - 1 x - 1

Kurvendiskussion IV

Extremwerte

>> Extremstellen:=solve(f'(x)=0,x)

1/2 1/2 $\{1 - 2 3, 2 3 + 1\}$

Lokale Minima und Maxima

>> float(f','(1-2*sqrt(3)))

-1.154700538

>> float(f','(2*sqrt(3)+1))

1.154700538

Stefan Wiedmann (Göttingen)

Plot

>> plotfunc2d(f0,f1,f2,x=0..10)

Vorlesung Tag1 16.01.2009 23 / 44 Stefan Wiedmann (Göttingen)

Vorlesung Tag1

Zusammenfassung I

- Definieren von Variablen mit ':=', z.B. a:=3
- Löschen von Objekten mit delete, z.B. delete a
- Definieren von Funktionen mit'->', z.B. $f:=x \rightarrow x^2-6*x$
- Symbolisches Rechnen
 - Unstetigkeitsstellen: discont(f(x),x)
 - Grenzwertbestimmung: limit(f(x), x= 2, Left)
 - Vereinfachen: normal(f(x))
 - Bilden von Ableitungen f'(x)

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

Symbolisches Rechnen I

• Integrieren von $\int_0^\infty x^4 e^{-x} dx$

24

• Stammfunktion von $\frac{1+\sin(x)}{1+\cos(x)}$

$$\ln(2 \cos(x) + 2) - \sin(x) + \cos(x) \ln(2 \cos(x) + 2)$$

$$- \cos(x) + 1$$

Zusammenfassung II

- Lösen von Gleichungen: solve(f(x)=0, x)
- Berechnen numerischer Approximationen: float(f(sqrt(3)+ 4))
- Plotten einer Funktion: plotfunc2d(sin(x),x=0..4)

16.01.2009 26 / 44

Symbolisches Rechnen II

• Faktorisieren und Ausmultiplizieren

>> expand(
$$(x-1)*(x-2)*(x-3)*(x-4)$$
)

>> factor(%)

$$(x - 1) (x - 2) (x - 3) (x - 4)$$

• Sortieren eines Ausdrucks bezüglich einer Unbekannten

$$collect(x^2+2*x+b*x^2+sin(x)+a*x,x)$$

Vorlesung Tag1 16.01.2009 Stefan Wiedmann (Göttingen)

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

Symbolisches Rechnen III

Partialbruchzerlegung

>> partfrac(x^ 2/(x^ 2- 1))

• Vereinfachen von Ausdrücken $\left(\frac{e^x-1}{e^{(1/2)x}+1}\right)$

$$\Rightarrow$$
 simplify((exp(x)-1)/(exp(x/2)+1))

16.01.2009

MuPAD unterscheidet strikt zwischen Funktionen und Ausdrücken II

>> int(f,x)

Error: Illegal integrand [int]

>> int(f(x),x)

 $-\cos(x)$

 \Rightarrow f(x)-g

0

>> h:=fp::unapply(g)

 $x \rightarrow sin(x)$

Vorlesung Tag1 Stefan Wiedmann (Göttingen)

MuPAD unterscheidet strikt zwischen Funktionen und Ausdrücken I

Beispiele:

 \Rightarrow f:= x \Rightarrow sin(x)

 $x \rightarrow \sin(x)$

>> g:=sin(x)

sin(x)

>> f(1),g(1)

sin(1), sin(x)(1)

16.01.2009

32 / 44

Analytische Geometrie und Lineare Algebra

Berechnen des Schnittpunkts der Ebene

$$E: \vec{\mathsf{x}} = \left(egin{array}{c} 2 \ 1 \ -1 \end{array}
ight) + \mathit{I} \left(egin{array}{c} 1 \ -1 \ -1 \end{array}
ight) + \mathit{m} \left(egin{array}{c} -3 \ 1 \ 4 \end{array}
ight), \quad \mathit{I}, \mathit{m} \in \mathbb{R}$$

mit der Geraden

$$g: \vec{x} = \left(egin{array}{c} 3 \ 0 \ 1 \end{array}
ight) + k \left(egin{array}{c} 4 \ -1 \ 2 \end{array}
ight), \quad k \in \mathbb{R}$$

Stefan Wiedmann (Göttingen) Vorlesung Tag1

Grafische Darstellung

>> E1 := 2+1-3*m: E2:=1-1+m: E3:=-1-1+4*m:

>> Ebene1 := plot::Surface([E1,E2,E3], l=-2..2,m=-2..2, Mesh=[20,20]):

>> g1 := 3+4*k: g2 := -k: g3 := 1+2*k:

>> Gerade1 := plot::Curve3d([g1, g2, g3], k=-3..3):

>> plot(Ebene1, Gerade1)

Stefan Wiedmann (Göttingen

Vorlesung Tag1

01.2009

33 /

Grafische Darstellung

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

16.01.2009

24 / 44

Analytische Lösung

Gleichsetzen ergibt:

$$\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + I \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} + m \begin{pmatrix} -3 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + k \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}$$

oder

$$\underbrace{\begin{pmatrix} 1 & -3 & -4 \\ -1 & 1 & 1 \\ -1 & 4 & -2 \end{pmatrix}}_{=:A} \underbrace{\begin{pmatrix} I \\ m \\ k \end{pmatrix}}_{=:L} = \underbrace{\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}}_{=:b}$$

oder AL = b.

Definieren und Lösen des LGS

• Definieren der Matrix A

Definieren des Vektors b

>> b:=matrix([1,-1,2]):

Stefan Wiedmann (Göttingen) Vorlesung Tag1 16.01.2009 35 / 44

Stefan Wiedmann (Göttingen)

Vorlesung Tag

• Lösen von A L = b

```
>> L:=linalg::matlinsolve(A,b)
```

```
6/5
3/5
-2/5
```

• Einsetzen in die Geradengleichung

```
>> k:=L[3]: x_s:=matrix([g1,g2,g3])
```

```
7/5 I
2/5
1/5
```

Vorlesung Tag1

Vorlesung Tag1

16.01.2009

Etwas Zahlentheorie I

Fermatsche Primzahlen: $F_n = 2^{2^n} + 1$. Finden Sie die kleinste Zahl F_n , die keine Primzahl ist!

```
>> F:=2^(2^n)+1:
>> n:=1: F, isprime(F)
  5, TRUE
>> n:=2: F, isprime(F)
  17, TRUE
>> n:=3: F, isprime(F)
  257, TRUE
>> n:=4: F, isprime(F)
  65537, TRUE
>> n:=5: F, isprime(F)
  4294967297, FALSE
>> numlib::divisors(F)
  [1, 641, 6700417, 4294967297]
```

Matrizenoperationen

```
>> B:=matrix([[1,0,0],[0,1,1],[1,1,1]]):
>> A*B, A-B, A+B
```

```
-3, -7, -7 | | 0, -3, -4 | 2, -3, -4
 0, 2, 2 |, | -1, 0, 0 |, | -1, 2, 2
-3, 2, 2 | | -2, 3, -3 | | 0, 5, -1 |
```

Berechnen der Inversen (mit Probe)

```
>> A^{(-1)}, A*A^{(-1)}
```

```
| -2/5, -22/15, 1/15 | | 1, 0, 0 |
| -1/5, -2/5, 1/5 |, | 0, 1, 0 |
-1/5, -1/15, -2/15 | | 0, 0, 1 |
```

Etwas Zahlentheorie II

• Eine Liste der ersten Primzahlen bis 100

```
>> Menge:= [ i $ i=1..100 ]:
>> select(Menge,isprime)
```

```
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97]
```

• Mersenne-Primzahlen $2^p - 1$, p Primzahl. Bestimmen der ersten Mersenne Primzahlen im Bereich < 200.

```
>> Primes := select([i $ i=1..200],isprime):
>> select(Primes,p->isprime(2^p-1))
```

```
>> numlib::mersenne()
```

Vorlesung Tag1 16.01.2009 Vorlesung Tag1 Stefan Wiedmann (Göttingen) Stefan Wiedmann (Göttingen)

Etwas Zahlentheorie III

Wir geben für die natürlichen Zahlen ≤ 1000 an, wieviele Zahlen $1,2,3,\ldots$ Teiler haben.

```
>> Liste:=[i $ i=1..1000]:
>> anz_teiler:= n -> nops(numlib::divisors(n)):
>> Liste1:=map(Liste,anz_teiler):
>> for i from 1 to 50 do
        print(i,nops(select(Liste1, x -> (x = i))))
        end_for:
```

```
1, 0
2, 168
...
```

Teiler der Zahl 840:

```
>> numlib::divisors(840)
```

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

01 2000

41 / 44

Nützliches

- Löschen aller eigenen Variablen und Zurücksetzen auf den Anfangsstatus: reset()
- Anzeigen aller definierten Variablen: anames(All)
- Anzeigen aller selbst definierten Variablen: anames(All, User)
- Alle Ausgaben entfernen: Bearbeiten -> Alle Ausgaben entfernen
- \bullet Matheklammer erzeugen: π
- Lücke für Text erzeugen: ¶

Überlebensregeln

- Kommas zwischen Eingaben erzeugen den Datentyp einer Folge!
- Mehrere Befehle in einer Zeile besser durch ';' oder ':' trennen. Ausgabe wird mit ':' am Ende unterdrückt
- Die Eingabe % ergibt die Ausgabe des letzten Befehls
- Die Eingabe %n ergibt die Ausgabe des *n*-letzten Befehls
- Bei Eingaben, die über mehrere Zeilen gehen, kann ein Zeilenumbruch durch <SHIFT>+<ENTER> erreicht werden

Stefan Wiedmann (Göttingen)

Vorlesung Tag1

16.01.2009

40 / 44

Starten von MuPAD

- Kiosk: Lernprogramme -> Mathematisches -> MuPAD 4.0.0
- Benutzung der Terminals:
 - Einloggen auf einem Linuxrechner (I1,...,I14) mit ssh -X 11.num.math.uni-goettingen.de
 - Starten von MuPAD: mupad &
- Hilfefunktionen in MuPAD
 - ? (startet menügesteuertes Hilfefenster)
 - info(name) gibt eine Kurzhilfe zu name
 - ? name oder help("name") gibt ausführliche Hilfe.

 Stefan Wiedmann (Göttingen)
 Vorlesung Tag1
 16.01.2009
 43 / 44
 Stefan Wiedmann (Göttingen)
 Vorlesung Tag1
 16.01.2009
 44 / 44