f .		CUMENTATIO			Form Approved OMB No. 0704-0188
including suggestions for re Highway, Suite 1204, Arling collection of information if it	 and completing and reviewing ducing this burden to Departmenton, VA 22202-4302. Respondentones not display a currently value. 	of this collection of information. So nt of Defense, Washington Head lents should be aware that notwith d OMB control number. PLEAS	end comments regarding this bur	den estimate or any Information Operation	searching existing data sources, gathering and other aspect of this collection of information, ons and Reports (0704-0188), 1215 Jefferson Davis be subject to any penalty for failing to comply with a ADDRESS.
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE Technical Paper	-		3. DATES COVERED (From - To)
4. TITLE AND SUBT	TITLE				5a. CONTRACT NUMBER
7	\int				5b. GRANT NUMBER
6. AUTHOR(S)	1/10/	ise	See)		5c. PROGRAM ELEMENT NUMBER
6. Admon(s)) /		5d. PROJECT NUMBER
	QT	a 0000			5e. TASK NUMBER
				.	5f. WORK UNIT NUMBER
7. PERFORMING OF	RGANIZATION NAME(S) AND ADDRESS(ES)			346057 8. PERFORMING ORGANIZATION
_	ERC		,		REPORT
9. SPONSORING / N	ONITORING AGENCY	NAME(S) AND ADDRE	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
•	n Laboratory (AFMC)	•		
AFRL/PRS 5 Pollux Drive					11. SPONSOR/MONITOR'S NUMBER(S)
Edwards AFB CA				-	Please see attached
12. DISTRIBUTION /	AVAILABILITY STATE	MENT			7 3 7 3 5
Approved for publi	ic release; distributio	n unlimited.			
13. SUPPLEMENTAR	RY NOTES				
14. ABSTRACT					
14. ADSTRACT	•			•	
		<u> </u>	20	1777	14 DEE
			20	וטכטי	16 055

15. SUBJECT TERMS	8				
OUDDED! FEITHIN	-				
16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER	PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE			Leilani Richardson 19b. TELEPHONE NUMBER
Unclassified	Unclassified	Unclassified	(A)		(include area code) (661) 275-5015
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

MEMORANDUM FOR PR (In-House Contractor/In-House Publication) FROM: PROI (TI) (STINFO)

29 February 2000

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-2000-038 Chchroudi, B. (ERC), Badakshan, A., Cohn, R., Talley, D., "Injection of Cryogenic Fluids into Subcritical and Supercritical Environments"

Invited University Seminar

(Statement A)

Eidgenossische Technische Hochs 17 Mar 2000	schule (ETH), Zurich, Switzerland (Absolute Deadline: 09 Mar 2000)	
1. This request has been reviewed by the For	reign Disclosure Office for: a.) appropriateness of distribution state	ement,
b.) military/national critical technology, c.) e		
	ation, and e.) technical sensitivity and/or economic sensitivity.	
Comments:		
		_
Signature	Date	_
2. This request has been reviewed by the Pub and/or b) possible higher headquarters review Comments:		
Signature	Date	
b.) appropriateness of distribution statement,	INFO for: a.) changes if approved as amended, c.) military/national critical technology, d.) economic sensitivity, d f.) format and completion of meeting clearance form if required	<u> </u>
Signature	Date	_
4. This request has been reviewed by PR for appropriateness of distribution statement, d.) national critical technology, and f.) data righ Comments:		_
	APPROVED/APPROVED AS AMENDED/DISAPPRO	 OVED
	ROBERT C. CORLEY (Date)	
	Senior Scientist (Propulsion)	
	Propulsion Directorate	

Doug Talley Group Leader, Rocket Combustion Devices Air Force Research Laboratory

Credits

Principle Investigators

- Dr. Bruce Chehroudi
- Dr. Roger Woodward

Collaborators

- R. Cohn
- E. Coy
- A. Badakshan
- D. Poulikakos

Motivation

AFRL

At Edwards

 Supercritical conditions that can exist inside rocket engines

Other

- Gas turbines
- Diesel
- etc

LOX/H2, 500,000 lb thrust (112,000 N) Space Shuttle Main Engine

- It is often advantageous to operate combustion chambers at pressures exceeding the critical pressure of one or both propellants.
- Higher chamber pressures lead to greater performance (Isp).
- At supercritical pressures, the distinct difference between gas and liquid phases disappears.
- Conventional "spray combustion" experience no longer applies.
- It is not known how to replace conventional "spray combustion" models in engine design codes.
- The lack of understanding leads to potentially large engine design errors.

The Problem (3)

AFRL

Other factors not normally considered in conventional spray combustion

- Vanishing surface tension and enthalpy of vaporization.
- Equivalent "gas" and "liquid" phase densities.
- Strongly enhanced solubility of one species ("gas") into another ("liquid").
- Reduced gas phase diffusivity (more liquid-like).
- Large property excursions near the critical point
- Conductivity, viscosity, speed of sound, specific heats.
- Mixing induced critical point variations.
- Enhanced gas phase unsteadiness.
- Potentially different kinetics mechanisms.

Determine the mechanisms which control the breakup, transport, mixing, and combustion of subcritical and supercritical droplets, jets, and sprays.

Experimental Set-up

Transcritical LOX drops in room temperature GN2

1/16" (1.6 mm) AFRL

Representative evolution of transcritical drop disintegration

Transcritical LOX drops in room temperature GN2 (2)

AFRL

Visualization at different times at the same location

Shadowgraph Results - N₂ into N₂

 $P_{cr} = 3.39 \text{ MPa}$

 $T_{amb} = 300 \text{ K}$

Re = 25,000- 75,000

 $T_{inj} = 99-120 \text{ K}$

 $T_{cr} = 126 \text{ K}$

 $V_{inj} = 10-15 \text{ m/s}$

Mixing Layer Structure - N₂ into N₂

AFRL

 $P_{cr} = 3.39 \text{ Mpa}$, $T_{cr} = 126 \text{ K}$, $T_{inj} = 128 \text{ K}$, $T_{amb} = 300 \text{ K}$

Low Pres. Subcritical Droplets

Mod. Pres. Supercritical Transition

High Pres. Supercritical Gas layers

Jet Spreading Angles

Chehroudi et. al., AIAA 99-0206, AIAA 99-2489

- - - Steady Diesel-Type Spray L/D=85

N2 jet into N2 Darkcore (*)

Steady Diesel-Type Spray L/D=4

- ◆ Cold He jet into N2; L/D=200 (*)
- O2 jet into N2; L/D=200 (*)

٥

□ O2 jet into N2; Darkcore (*)

Cold N2 jet into He; L/D=200 (*)

N2 jet into N2 L/D=200 (*)

AFRL

--- Theory (Papamoschou&Roshko)

- Characteristic bulge formation time (au_b) at the jet interface (Tseng et al.): $(\rho_l L^3/\sigma)^{1/2}$; ρ_l , L, σ are liquid density, characteristic dimension of turbulent eddy, and surface tension, respectively.
- Characteristic time for gasification (τ_a) (D-square law): D^2/K ; D and K are drop diameter and vaporization constant.
- A Hypothesis: If these two characteristic times comparable then an interface bulge may not be separated as an unattached entity (onset of the gas-(calculated for appropriate length scales) jet behavior at supercritical condition)

analysis to find the wavelength of the most unstable Theoretical isothermal liquid spray growth rate (θ_s) based on Orr-Sommerfeld equation and stability interface wave:

$$\theta_{s} = 0.27 [O + (p_{g}/p_{I})^{0.5}]$$

Papamoschou/Rashko theory for incompressible variable-density gaseous mixing layer/jet:

$$\Theta_{P/R} \equiv 0.17 [1 + (\rho_g/\rho_I)^{0.5}]$$

Dimotakis theory for incompressible variable-density gaseous mixing layer/jet:

$$\theta_{\rm D} = 0.212 [0.59 + (\rho_{\rm g}/\rho_{\rm I})^{0.5}]$$

ALL HAVE THE SQUARE ROOT OF DENSITY RATIO AND THE SAME EQUATION FORMAT

Empirical Correlation

AFRL

Based of the information of the previous slide the rates: following "intuitive/smart" equation is proposed for both growth supercritical measured and

$$\theta_{\text{Ch}} \equiv O.27 [(\tau_b/(\tau_b + \tau_g)) + (\rho_g/\rho_l)^{O.5}]$$

Note:

- For isothermal liquid case: $au_g >> au_b$ and $au_g \to \infty$. It then collapses to the isothermal spray case.
- For subcritical the $(au_b/(au_b+ au_g))$ is calculated until it reaches 0.5. After that it is maintained constant at 0.5 for supercritical gas-like jet. The transition point is found to be approximately when $(\mathbf{\tau}_b/(\mathbf{\tau}_b+\mathbf{\tau}_g))\equiv 0.5$ (i.e. $\mathbf{\tau}_b\equiv\mathbf{\tau}_g).$

AFRL

- ullet $(oldsymbol{ au}_b/(oldsymbol{ au}_b+oldsymbol{ au}_a))$ is assumed to be a dominant function of the density ratio (ρ_a/ρ_l) ; i.e. $\tau_b/(\tau_b+\tau_a))=F(\rho_g/\rho_l)$.
- ans N_2 -into-Ar) cases. That is, for example, for N_2 -intocase and is taken to be the same for other (N_2 -into-He The function F is only calculated for the N2-into-N2

 $\theta_{Ch} = 0.27 [G(\rho_g/\rho_I) + (\rho_g/\rho_I)^{0.5}]$ where $G(\rho_R) = F(\rho_R)$

 $\rho_{R}' = \rho_{R} - (1-X)\rho_{R} = X\rho_{R}$ $\rho_{R} = (\rho_{g}/\rho_{l});$ X = 1.2**X=1.0** for N_2 -into- N_2 ; **X=0.2** for N_2 -into-He; for N_2 -into-Ar.

Fractal Dimension vs Reduced Pressure

AFRE

Chehroudi et. al., AIAA 99-2489

----Sreenivasan & Meneveau (plane gaseous mixing layer) Sreenivasan & Meneveau (gaseous boundary layer) —— BOX64 (N2into N2) -e-EDM (N2into N2) -Sreenivasan & Meneveau (axisymmetric gaseous jet) -- Taylor & Hoyt (2nd-wind-induced water jet breakup) ---- Dimotakis et al. (turbulent water jet) - - A - AVERAGE (N2into N2)

Results in Isothermal N₂ at 273 K

Chamber Pressure	Chamber Pressure Density Ratio Based on	Dark-background-corrected
Mna	P-Measurement & Ideal Gas	Camera-measured
	Nitrogen	Intensity Ratio
A THE RESERVE THE PROPERTY OF		Nitrogen
A SECURITY OF THE PROPERTY OF		
U6 9	4.73	4.78
2,82	1.93	1.89
1.46	1.00	1.00

2-D Raman Images, N₂ into N₂

AFRL

Intensity Defect vs Normalized Radius

Normalized Intensity Defect Plot: Reference Case

Normalized Intensity Defect Plot: Supercritical Regime

Normalized Intensity Defect Plot: Supercritical Regime (3)

Normalized Intensity Defect Plot: Supercritical Regime (4)

AFRL

	Q/X	Pch Pr	Ì	Inj. Tempinj. Vel Re	Inj. Vel	Re	Inj/Cham
ANALASA SI (MANALASA SI MANALASA MININI MANALASA	计算机 化二苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	MPa	Mary New York (No. of the Control of	K	s/m	MARKAGONT UN DESPRÉNTARIO DE PLACTORIA Y SANTONIO	density ratio
Oschwald et al.	1.0	1.0 4.0	1.2	140		5.0 115000	3.3
Oschwald et al.	8.4	4.0	1	118	2.0	5.0 126000	12.5
en de la companya de	A. Charles Maria, in a state of the state of		- خود دادی برون در دادی در می در دادی دادی				
Chehroudi et al. 4.8	4.8 to 24.4	6.9	2.0	95	8.0	35000	7.1
Chehroudi et al. 4.8		1.5	0.4	110	8.0	12000	40.6
	ANTICOMENSACIONAL CONTRACTOR CONT		,	e feweralder i de sie steinfalde interferale de versiteit eine de steinfalde fan de de s			
So et. al.	5.1	0.1		275	11.6	2000	9.0
So et. al.	6.4	0.1	1	275	11.6	5000	0.6

Normalized Intensity Defect Plot: **Subcritical Regime**

AFRL

Comparison of Shadowgraph Measurements with Raman Measurements

- Setting $\theta = 2 \times FWHM$ produces agreement with shadowgraph measurements.
- Consistent with the observations of Brown and Roshko

Summary & Conclusions

Structural differences in cryogenic jets have been observed below and above the thermodynamic critical point.

AFRE

Liquid-Jet like appearance occurs up to near the critical point, similar to second wind-induced liquid jet breakup regime. Gas-jet like appearance occurs above the critical point. No drops are observed. Supercritical spreading rate measurements agree quantitatively with incompressible variable density mixing layer experiments and theory. Supercritical fractal dimensions agree quantitatively with gas jet measurements.

theory have for the first time been consolidated into a single plot as a function of density ratio, where the density ratio spans New and existing mixing layer growth rate experiments and three orders of magnitude. A physical mechanism and correlation have been proposed to describe the transition from spray to gas jet behavior.

Summary & Conclusions (Raman)

AFRL

- Measurement system integrity has been established by performing Raman measurements of isothermal N_2 at different pressures.
- Measurements were constrained to the near-field in order to maintain large Froude numbers (minimize buoyancy).
- Growth rates measured from Raman profiles measured at 2 x FWHM point agree well with shadowgraph measurements.
- The equivalency of visual and density growth rates has also been reported in the literature (Brown & Roshko, 1974).
- To within experimental error, the near-field plots appear to reduce to self-similar shapes for both the supercritical and subcritical cases.
- Not the same profile as for fully developed turbulent gas jets.
- The near-field supercritical profile more closely approaches that of fully developed turbulent gas jets than the near-field subcritical

Future

- Complete N₂-into-N₂ analysis.
- Reduce and analyzise N₂-into-N₂/He data.
- Acoustic experiments.