ENPM 692 MANUFACTURING AND AUTOMATION

SIMULATION IN MANUFACTURING

Time: Wednesdays 7:00pm - 9:40pm

Location: JMP 2222

Dr. Mahesh Mani, PhD

Email: mmani@umd.edu

Problem Solving Process

Simulation always present?

Definition

Discrete Event Simulation

Discrete means...

- Completely separate and unconnected
- Used to describe elements or variables that are distinct, unrelated, and have a finite number of values

Event means...

- An occurrence, especially one that is particularly significant, interesting, exciting, or unusual
- A happening (occurrence)
- An occurrence or happening of significance to a computer program, for example, the clicking of a mouse button or the completion of a write operation to a disk

Simulation means...

- The reproduction of the essential features of something, for example, as an aid to studies or training
- An artificial or imitation object
- The construction of a mathematical model to reproduce the characteristics of a phenomenon, system, or process, often using a computer, in order to infer information or solve problems

Relevance of Simulation

Virtual Product / Process Development

Manufacturing Execution

Consequences of shorter product development cycles

Concurrent Engineering

The Purpose

Process-Driven Verification of the Integration between **Product Development Product and Production Process Change-over at** any Weekend Less need for **Reduced Lead-time Physical Prototypes**

Changes the developing process

Real world

Virtual world

Applications of Discrete Event Simulation

Production

Fundamental engineering method in modern manufacturing.

- Logistics, Transportation and Distribution
 - Evaluate route planning, simulating sorting strategies in distribution centers
 - Parametric modeling in rail-capacity planning
 - Handle queue problems in Hospitals, in Airports, with public transport and motor traffic in urban environments
- Business processes
 - Banks, restaurant and other business centers forecasting the customer flows
 - Strategic workforce planning
- Military
 - Simulating a lot of areas to gain understanding and knowledge in how to act in reality

Discrete Event Simulation (DES)

Structure of a DES-system

Example

http://www.mathworks.com/videos/model-a-discrete-event-system-overview-1-of-7-81124.html?requestedDomain=www.mathworks.com#

DES of Production Flows

Different types of models

- ☐ Deterministic vs. Stochastic
- ☐ Dynamic vs. Static
- **□** Discrete vs. Continuous
- Change oriented vs. Event oriented

Different types of models:

Deterministic vs. Stochastic

In **deterministic** models, the output of the model is fully determined by the parameter values and the initial conditions.

A phenomenon is defined as **stochastic** when it's course of events is impossible to predict exactly. A state does not fully determine its next state. The randomness makes that different courses of events happens with more or less probability.

Different types of models:

Dynamic vs. Static

A model of a system where it's variables can change also without external influence. The system is influence to it's own history – the passage of time plays a crucial role.

A model of a system with directly instantaneous connections between it's variables. Two events are entirely related.

Discrete vs. Continuous

Different types of models:

Discrete event models:

They are time-based jumping between events, when a new event has occurred a new state for the system is calculated.

Time continuous models:

Time flows continuous, the system state is represented by dependent variables that change continuously over time, as defined by differential equations.

Different types of models:

Change oriented vs. Event oriented

Physical processes are often best described in terms of continuous changes. They use formulas such as mathematical models from physics.

Systems which are designed by the human being, where underlying changes take place in term of discrete events are called Event oriented - Discrete Event System.

Flow simulation-system

Flow simulation example

Clock time	Event	Machine 1	Buffer	Machine 2	Output
	-	idle	_	idle	0
6 1st	part arrives	busy	_	idle	0
11 1	part to buffer	idle	1	idle	0
11	buffer to m/c2	idle	_	busy	0
12 2nd	d part arrives	busy	_	busy	0
17 1	part to buffer	idle	1	busy	0
18 3rd	l part arrives	busy	1	busy	0
23	oart to buffer	idle	2	busy	0
23	part complete	idle	2	idle	1
23	buffer to m/c2	idle	1	busy	1
24 4th	n part arrives	busy		busy	1

Code for this System?

Clock time	Event	Machine 1	Buffer	Machine 2	Output
	-	idle	_	idle	0
6 1st	part arrives	busy	_	idle	0
11	part to buffer	idle	1	idle	0
11	buffer to m/c2	idle	_	busy	0
12 2nd	d part arrives	busy	_	busy	0
17	part to buffer	idle	1	busy	0
18 3rd	d part arrives	busy	1	busy	0
23	part to buffer	idle	2	busy	0
23	part complete	idle	2	idle	1
23	buffer to m/c2	idle	1	busy	1
<u>24</u> 4th	n part arrives	busy	1	busy	1

Discrete Event Simulation

- ☐ Systems where the pattern of events cannot be predicted
 - ☐ Models of such systems contains stochastic variables
 - ☐ They adopt probability distributions
- □ DES-models are "run", not solved, with the result based on the interaction of system components
- ☐ When next event is time fixed, the clock jump to a given point in time
- ☐ Identifies which events going to happen next
- Perform the identified events in due sequence and order.

Discrete Event Simulation

- ☐ Deterministic vs. Stochastic
- ☐ Dynamic vs. State
- ☐ Discrete vs. Continuous
- Change oriented vs. Event oriented

Why Simulation?

Creates the need for order

• Points in the right direction

Timesaver

Advantages of Simulation

- 1. Making correct choices
- 2. Compressing and expanding time
- 3. Understanding "Why?"
- 4. Exploring possibilities
- 5. Diagnosing problems
- 6. Identifying constraints
- 7. Developing understanding

- 8. Visualizing the plan
- 9. Building consensus
- 10. Preparing for change
- 11. Making wise investments
- 12. Training the team
- 13. Specifying requirements

Disadvantages of Simulation

- Simulation takes time
- Simulation does only propose a solution
- Bad input data can seem to produce reliable output data
- It is hard to determine the level of detail for the model
- Creating a model is not what its all about, more skills are needed

Simulation is necessary when there are a large number of events and interactions in a system, which is true of most manufacturing problems!

Simulation Model building is an art

Examples in simulation

Water Bottling Industry

U.S. Consumption of Bottled Water in 2006:

- 31.2 billion liters of water
- 900,000 tons of polyethylene terephthalate (PET)

U.S. Manufacturing of Bottled Water in 2006:

- Required 17 million barrels of oil, not including energy for transportation
- Produced more than 2.5 million tons of carbon dioxide
- Took 3 liters of water to produce 1 liter of bottled water

Why is manufacturing's energy/ water use important

Manufacturing alone accounts for:

- 65% of the industrial sector's energy consumption
- 85% of the industrial sector's carbon dioxide emissions
 - 1,349 million metric tons of carbon dioxide in 2008
- 18,200 million gallons of water per day
 - 9% of the nations water withdrawals excluding thermoelectric power

Project Statement

To systematically study and model the combined sustainability performance of a bottled water facility

- Taking into account the sustainability performance of manufacturing operations
- Considering the environmental impacts of the building facility
- Analyzing utilization and processing of manufacturing unit processes

Methodology

Manufacturing Operations

Sustainability Performance

Building Services

Energy Implications in Manufacturing

Bottled Water Production Process

Bottled Water Production Process	Energy (MJ)			
Container Production	11940.8			
Packaging Production	1582.3			
Bottling	941.9			
Distribution	2202.5			
Consumer Transport	245.5			
End-of-Life	2.3			
Total:	16915.3			

Bottled Water Production	
Process	Water (Gallons)
Container & Packaging Production	175
Bottling	400.5
Power Production	716.2
Transportation	11.1
Total:	1302.8

Overview of Injection Stretch Blow Molding

1 PET resin is melted to produce the mid-stage product Preform

Preform is reheated to the desired temperature

3 Preform is put inside a Blow-Mold.

4 Stratching and 1st Blowing with low Air pressure.

Final formation using intense pressure to form the desired bottle shape.

Final product is cooled and removed from metal pattern.

Water Purification

Water Bottling Plant

Water Facility Layout

Input-Output Diagram of Facility

Data Collected

	Manufacturing Operations					
	Unscrambler	Rinser/Filler/Capper & Clean Room	Date Coder	Labeler	Shrink Wrapper	
Quantity	1	1	1	1	1	
Energy (watt)						
Busy	2,640	6,824	300	1,000	13,000	
Idle	1,760	1,824	100	500	8,000	
Water (liter/bottle)						
Rinsing	0	0.05	0	0	0	
Filling	0	0.5	0	0	0	
Processing Time (sec)/Bottle						
Mode	0.3	0.26	0.26	0.3	0.25	

	Building Services					
	Lighting (Storage)	Lighting (Busy Areas)	Fan (HVAC)	Reverse Osmosis		
Quantity 59 (fixtures*)		35 (fixtures**)	1	1		
Utilization (1 production day=9.5 hours)	30%	80%	100%	158%		
Energy (watt)						
Busy	7,776		7,460	14,920		
Idle	le 0		0	N/A		
Water (1 production day=66237.5 liters)						
Purified Water	0	0	0	32,500		
Waste Water)	0	0	0	17,500		

^{*59} fixtures=6 lamp 32 watt T8 (216 watts/fixture)

^{** 9} fixtures=7 lamp 32 Watt T8 (240 watts/fixture), 26 fixtures=, 6 lamp 32 watt T8 (216 watts/fixture)

```
Busy_Time_Shrinker - Notepad
File Edit Format View Help
external
var
T2pa: Real
T1pa : Real
ITpa: Real
               Simulation Control Language
BTpa: Real
procedure energy5()
var
pid: Process
Begin
        pid=get_process('Process_16')
        require part ANY
write('T2pa from previous part = ',T2pa,'secs',CR)
       endif
        do_process(pid)
        T2pa=sim_time
write('T2pa for current part = ',sim_t
        BTpa=sim_time-ITpa
write('BTpa= ',BTpa,'secs',CR)
End
```

Facility Model

Delmia Quest Software

Simulation Video

Results

Energy Consumption

Additional Information:

- •1 package of bottles = 24 bottles
- •Time: Does not include time to transport bottles from storage to unscrambler
- •Energy Consumption: Does not account for energy consumed in water purification process
- •Water Consumption: Does account for water consumed in water purification process

Energy Consumption, Bottleneck: Labeler

Manufacturing Operation vs. Building Services

Discussion

Discrete event simulation for the sustainable manufacture of golf balls

Motivation

- How best can Discrete Event Simulation (DES) and Life Cycle Assessment (LCA) help analyze the utilization and processing of manufacturing resources?
- Implications of such methods and evaluations to reduce the financial and environmental costs for energy intensive manufacturing processes

Project Statement

What-if scenarios in a simplified golf ball factory using as close to real-world data as possible to demonstrate DES and LCA's ability to facilitate decision-making and optimize energy intensive manufacturing processes (Injection Molding) Discrete Event Simulation

- Computer simulation used to evaluate a system represented by a sequence of events
- Has typically been used to increase throughput and profitability of factories

- LCA is an evaluation of a product's environmental impact during its full life cycle
- Only recently have been combined to promote sustainability

Source: visualcomponents.com

Source: nist.gov/mel/msid

Injection Molding

- Three different types of injection molding machines: all-electric, hybrid, and hydraulic
- Unlike hydraulic and hybrid, all-electric machines have very low idle energy consumptions, use servomotors instead of hydraulic pumps
- Hydraulic are a bit more precise, can produce larger clamping forces, but create hydraulic oil waste

The cover is applied through injection or compression molding

Case Study: Golf Ball Covers

- About a billion golf balls manufactured per year
- Can be made using either injection or compression molding
- Two-piece vs. three-piece balls
- Rubber (compression molded) core and thermoplastic (injection molded) cover
- Core is held by retractable pins
- Surlyn by DuPont

Input-Output Diagram of Model

AutoMod Factory Simulation

Simplified golf ball factory simulation with one injection molding machine

Golf ball factory simulation with injection molding machines in parallel

Input Data

- Injection molding cycle times and energy usage taken from real world data (*Thiriez*, 2006)
- Cycle times, energy usage for other resources were estimated
- Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR) were chosen randomly
- Material usage estimated based on golf ball specifications

What-if Scenarios

- Change type of injection molding machine (all-electric, hybrid, hydraulic)
- Increase number of injection molding machines in parallel (1 to 2)
- Increase number of repairmen (1 to 2)
- Change type of polymer processed
 - Surlyn 9320W melting point: 70°C (10 sec plasticizing time)
 - Surlyn 8670 melting point: 100°C
 (20 sec plasticizing time)

AutoMod Simulation Model

Results – Throughput

- With one injection molding machine, adding a repairman had little effect
- Both a second machine and a second repairman can increase throughput to over 300,000
- A second repairman is needed to make the investment worthwhile
- Plasticizing time had almost no effect for two machines

Results – Energy Consumption

- Type of injection molding machine had significant impact on energy consumption
- Energy savings of 60-70% have led to trend towards adoption of all-electric machines
- For hydraulic machines, injection molding accounted for almost half of the total energy consumed
- For shorter plasticizing time and one repairman, second machine was hardly used

Type of Injection Molding Machine

Results – Material Usage & CO₂ Emissions

- CO₂ emissions were calculated by multiplying energy consumption by an f factor for Maryland (Department of Energy, 2002)
- Modest estimates due to exclusion of HVAC, lighting, waste materials, transportation, etc.
- LCA would include environmental impacts of materials from extraction to disposal

Potential use of Volatile Organic Compounds (VOCs)

Material Usage

Input parameters changed			Output data from simulation					
# of Injection Molding Machines	IM Type/ Power Draw (kW)	Plasticizing time (sec)	Repairmen	Rubber (kg)	Polymer (kg)	Paint (L)	Coating (L)	Cardboard (m^2)
1	Electric (6.3)	20	1	4879	2439.2	184.2	91.8	1829.2
2	Electric (6.3)	20	2	8582	4290.8	324.4	162	3218

Discussion

- Proof of concept of using DES with LCA for energy intensive manufacturing processes
- Adopting systems approach to problem solving
- Better incorporation of sustainability metrics in simulation software (interfaces in AutoMod)
- Comprehensive LCA on related materials
- Improve upon lack of LCI data on the unit processes

Muroyama, Alexander, Mahesh Mani, Kevin Lyons, and Bjorn Johansson. "Simulation and analysis for sustainability in manufacturing processes." In *ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*, pp. 935-941. American Society of Mechanical Engineers, 2011

Redesign

Simulating Sustainable Enterprises: Factory Level

Environmental

Ergonomics

Level of Automation

System Inputs

System Analysis

ARENA

https://www.youtube.com/watch?v=dlbW8WFen1s