Lecture 2

Geometric Series: - Geometric seriet ausenies $a + ar + ar^2 + - - + ar^2 + - - = \sum_{n=1}^{\infty} ar^{n-1}$ the form $=\sum_{n=1}^{\infty}a\gamma^n$

The eation 'r' can be positive or negative and $a \neq 0$.

nth partial sum of the geometric series is

$$S_n = \frac{a(1-\gamma^n)}{1-\gamma} \qquad (\gamma \neq 1)$$

If IrICI, the geometric series atartas2+.. $-+ar^{n-1}_{+}-- Converges to \frac{a}{1-r}:$ $\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{1-r}, |r|<1$

$$\sum_{n=1}^{\infty} a_n x^{n-1} = \frac{a}{1-x}, |r| < 1$$

If 1817,1, the series diverges.

eg!-1) The series $\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5}{4^n} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + - -$

is a geometric series with a = 5 and r=-1/4.

It converges to
$$\frac{a}{1-r} = \frac{5}{1+1/4} = 4$$
.

3) Find the sum of the "telescoping" sesies \(\sum_{n=1}^{\int} \n(n+1) \) $\frac{Sol'!-}{S_{k}=\sum_{n=1}^{\infty}\frac{1}{n(n+1)}}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$

$$S_{K} = \frac{1}{1 - \frac{1}{2}} + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \cdots + (\frac{1}{K} - \frac{1}{K+1})$$

$$S_{K} = \frac{1}{1 - \frac{1}{K+1}} \rightarrow 1 \quad \text{as} \quad K \rightarrow \infty$$

The series converges, and its sum is 1:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

1th term test for a Divergent senies: if \(\San converges, then an -> 0. C∑anduverges if lum an fails to essist or is different from zero. Ex. 7 The following an all examples of divergent a) $\sum_{n=1}^{\infty} n^2$ diverges because $n^2 \rightarrow \infty$ b) $\sum_{n=1}^{\infty} \frac{n+1}{n}$ duverges $\frac{n+1}{n} \to 1$ [lim $q_n \neq 0$] c) $\underset{n\to\infty}{\overset{\sim}{>}} (1)^{n+1}$ divergel : lum $(1)^{n+1}$ does not exist. d) $\frac{\infty}{2n+5}$ diverges: $\lim_{n\to\infty} \frac{-n}{2n+5} = -\frac{1}{2} \neq 0$. Combining Series: - If I an = A and Ibn = B are convergent series, then $\Sigma(an+bn) = \Sigma an + \Sigma bn = A+B$ [(an-bn) = [an-Ibn = A-B ZKan = KIan = KA Note: - 1 Every nonzero constant multiple of a divergent series diverges. If Ian converges and Ibn diverges, then I(an+bn) and Ihn-bn) both diverge.

Remark: [(antbn) can converge when [an an Ibn both diverge. for eg. [an = 1+1+1+. diverges and Ibn = (-1)+(-1)+(-1)+converges to O. whereas Σ (an+bn) $= 0+0+0+-\cdots$ Ex.9 Find the sum of the following senies a) $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}} \left(= \frac{4}{5} AM^{\cdot} \right)$ $\sum_{n=0}^{\infty} \frac{4}{n} = 8 \text{ Am.}$ Problem! . O Verng the nth term test, show that following series so are divergent. 1) $\sum_{n=1}^{\infty} \frac{n}{n+10} \qquad \boxed{2} \qquad \sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)(n+3)}$ 3) $\sum_{n=1}^{\infty} cos(n)$ 4) $\sum_{n=1}^{\infty} \frac{e^n}{e^n+n}$ Eln(h) 6) Ecolnst which server converge and which diverge? If a series converges, and its sum $\frac{2}{2}\left(\frac{1}{\sqrt{2}}\right)^{n} = 2$ $\frac{2}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{n} = 2$ $\frac{2}{\sqrt{2}}\left(\frac{1}{$

integral Test: - 00

converges if and only if its partial sums are bounded from above.

Thm:- Let $\{an\}$ be a sequence of positive terms, Suppose that an = f(n), where f is a continuous, positive, decreasing function of x + x > N. Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{N}^{\infty} f(x) dx$ both converge or both diverge.

b-series:- $\frac{\sum_{n=1}^{\infty}\frac{1}{n^{p}}}{\sum_{n=1}^{\infty}\frac{1}{n^{p}}} = \frac{1}{1^{p}} + \frac{1}{2^{p}} + \frac{1}{3^{p}} + - - + \frac{1}{n^{p}} + - - + \frac{1}$ converges if $p \le 1$, and diverges if $p \le 1$.

Problem! 1 Determine the convergence or divergence

of the seriet

a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$
 $\sum_{n=1}^{\infty} \frac{1}{2^{\ln(n)}}$ $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$

Sol!- (a) We apply the integral test and find that $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{dx} = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{du}{dx} = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ Since the integral converges, the sentes also $=\frac{1}{2e}$ Aw converges.

b) Again applying the integral text
$$\int_{1}^{\infty} \frac{dx}{2 \ln x} = \int_{0}^{\infty} \frac{e^{y} du}{2^{y}} =$$

The improper integral diverges, so the series diverges also.

c)
$$\int_{1}^{\infty} \frac{1}{x^{2}+1} dx = \lim_{b \to \infty} \left[\frac{1}{2} - \frac{1}{4} \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left[\frac{1}{2} + \frac{1}{4} - \frac{1}{4} \right]_{2}^{b}$$

$$= \lim_{b \to \infty} \left[\frac{1}{2} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \right]_{2}^{b}$$

Exercises Applying the integral test to determine series are converges or diverges.

(4)
$$\sum_{n=1}^{\infty} \frac{1}{n+4}$$
 (5) $\sum_{n=1}^{\infty} e^{-2n}$ (6) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$

$$(7) \sum_{n=2}^{\infty} \frac{\ln(n^2)}{n} \qquad (8) \sum_{n=1}^{\infty} \frac{n^2}{e^{n/3}}$$

(9)
$$\sum_{n=2}^{\infty} \frac{n-4}{n^2-2n+1}$$