AD-A141 900

Damage Tolerant Design Handbook

A Compilation of Fracture and Crack-Growth Data for High Strength Alloys

Metals and Ceramics Information Center Battelle

Columbus Laboratories

This reconstruct has about grounding tor parties in a section in a sec

Prepared by

University of Dayton Research Institute

Materials Laboratory
Air Force Wright Aeronautical Laboratories
Wright-Patterson Air Force Base

84 0% 00 0%

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Pula Entereil)

READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER MCIC-HB-01R (4 Volumes) 4. TITLE (and Subrette) 5. TYPE OF REPORT & PERIOD COVERED DAMAGE TOLERANT DESIGN HANDBOOK. A COMPILATION OF FRACTURE AND CRACK GROWTH DATA FOR HIGH-STRENGTH **ALLOYS** 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S) J. Gallagher F33615-80-C-5149 DLA900-83-C-1744 9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS University of Dayton Research Institute 300 College Park Avenue Dayton, OH 45469 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Materials Laboratory (AFWAL/MLSE) December 1983 Air Force Wright Aeronautical Laboratories (AFSC) 13. NUMBER OF PAGES Wright-Patterson AFB, OH 45433 3260 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a, DECLASSIFICATION DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the obstract entered in Bluck 20, if different from Report)

18. SUPPLEMENTARY NOTES

Availability: Metals and Ceramics Information Center, P.O. Box 8128,

Columbus, Ohio 43201

HC \$400.00 for 4 Volumes

(No copies furnished by DTIC)

13 KEY WORDS (Continue on reverse side if necessary and identify by block number)

*Fracture (Mechanics), *Handbooks, *Titanium Alloys, *Nickel Alloys, *Stainless Steel, *Aluminum Alloys, High Strength Alloys, Structural Steel, Fracture Toughness, Damage Assessment, State of the Art, Data Compilation, Fatigue Crack Growth

20 ABSTRACT (Continue on reverse side if necessary end identify by block number)

This edition entirely revamps the 1975 edition. This edition is arranged by alloy rather than by property as in the previous addition. The data are presented in eight chapters and four volumes. Plane-strain fracture toughness ($K_{\rm IC}$), critical plane stress fracture toughness, apparent fracture toughness, R-curve, fatigue crack growth rates, sustained-load crack growth rate and threshold stress intensity ($K_{\rm ISCC}$) data are presented for stainless steels, titanium alloys, nickel-base alloys, alloy steels, 2000-, 6000- and 7000-series aluminum alloys.

Volume 2

Damage Tolerant Design Handbook

A Compilation of Fracture and Crack Growth
Data for High-Strength Alloys

Compiled by
J. Gallagher
Program Manager
University of Dayton Research Institute
Dayton, Ohio

Sponsored by

Materials Laboratory

Air Force Wright Aeronautical Laboratories Wright-Patterson Air Force Base, Ohio 45433

December 1983

Metals and Ceramics Information Center

BATTELLE Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

Approved for public release; distribution unlimited

Acces	sion For
NTIS	GRA&I
DTIC	TAB 🛅
Unann	ounced 🗌
Justi	fication /
By	ibution/
Avai	lability Codes
	Avail and/or
Dist	Special
A-1	21

ACKNOWLEDGMENT

This document was published by the Metals and Ceramics Information Center (MCIC), Battelle's Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201-2693. MCIC's objective is to provide a comprehensive current resource of technical information on the development and utilization of advanced metal- or ceramic-base metals.

MCIC is publishing this revised and expanded edition of the Damage Tolerant Design Handbook to increase the availability of information to the technical community. The loose leaf format was selected to facilitate updating the handbook as new information becomes available. This edition is a completely revised and expanded version of the original handbook first published by MCIC in 1972 and revised in 1973 and 1975.

The Center is operated by Battelle-Columbus under Contract Number DLA900-83-C-1744 for the U.S. Defense Logistics Agency; technical aspects of MCIC operations are monitored by the Office of the Deputy Under Secretary of Defense Research and Advanced Technology. The support of these sponsor organizations is gratefully acknowledged.

This document was prepared under the sponsorship of the Department of Defense. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use or publication of the information contained in this document or warrants that such use or publication will be free from privately owned rights.

Approved for public release; distribution unlimited.

All rights reserved. This document, or parts thereof, may not be reproduced in any form without written permission of the Metals and Ceramics Information Center.

TABLE 1.4
ABBREVIATIONS FOR MATERIAL SYSTEMS

Abbreviation	<u>Materials</u>
ALUM	Aluminum Alloys
TITAN.	Titanium Alloys
NICKEL	Nickel-Base Alloys
STAIN. STEEL	Stainless Steel Alloys
ALLOY STEEL	Steel Alloys

TABLE 1.5
ABBREVIATIONS FOR ALLOY CONDITIONING AND HEAT TREATMENTS

Abbreviation	Condition/Heat Treatment
OQ	Oil Quenched
ABQ	Aus-Bay Quench
AC	Air Cool
WC	Water Quench
MA	Mill Anneal
BA	Beta Anneal
DA	Duplex Anneal
RA	Recrystallize Anneal
ST	Solution Treated
STA	Solution Treated And Aged

TABLE 1.6
ABBREVIATIONS FOR PRODUCT FORMS

Abbreviations	Product Form
S	Sheet
P	Plate
E	Extrusion
F	Forging
FB	Forged Bar
BT	Billet
BR	Round Bar
RB	Rolled Bar
С	Casting
W	Weldment
D	Disk
EB	Extruded Bar
В	Bar

TABLE 1.7
ABBREVIATIONS FOR ENVIRONMENTAL SYSTEMS

Abbreviations	Environmental System
R. T. L. H. A.	Room Temperature (65°F-80°F) Low Humidity Air (< 10% RH)
Dry Air	Low Humidity Air (< 10% RH)
н. н. а.	High Humidity Air (> 80% RH)
Lab. Air	Laboratory Air (% RH unspecified)
Dist. H ₂ O	Distilled Water
Dist. Water	Distilled Water
3.5 PCT Nacl	3.5% Salt Water Solution
JP.4	JP-4 Aircraft Fuel
JP.4 - Fuel	JP-4 Aircraft Fuel
S. T. W.	Sump Tank Water
S. S. W.	Simulated Sea Water
s. c. s.	Shop Cleaning Solvent
F. C. S.	Field Cleaning Solvent
Salt Fog	Salt Fog
Temp.	Temperature

TABLE 1.8
ABBREVIATIONS FOR SPECIMEN DESIGNS

Abbreviations	Specimen Design*
CT	Compact Tension
NB	3Pt. Notched Bend
WOL	Wedge Open Load
CCP	Center Cracked Panel
BWOL	Bolt Loaded-Wedge Open Load
CANT	Cantilever Beam
TDCB	Tapered Double Cantilever Beam
CHAR	Charpy
PTSC	Part Through Surface Crack
SENT	Single Edge Notch Tension
KBBAR	K _B Bar
4-NB	4 Pt. Notched Bend
MCT	Modified Compact Tension
CNT	Center Notched Tension
DCB	Double Cantilever Beam
BDCB	Bolt Loaded Double Cantilever Beam

^{*}Also note that when "SG" is used in conjunction with a specimen design, the specimen is side-grooved along the path of the crack.

Damage Tolerant Design Handbook

Volume 2

CONTENTS

CHAPTER 5 NICKEL BASE ALLOYS

Astroloy P/M-H Astroloy P/M-W Astroloy 901 Incoloy 901

Inconel 600 Inconel 625 Inconel 718 IN 100 IN 100 P/M-G NASA IIB-7 P/M P/M Rene 95 Waspaloy

CHAPTER 6 ALLOY STEELS

AF 1410 AF 1410 (VIM-VAR) A 286 D6 AC HP 9-4-.20 HP 9-4-.20 (CEVM) HP 9-4-.25 HP 9-4-.30 HP 9-4-.45 HY-TUF HY-150 HY-180

H11
10Ni Steel
12-9-2 (MAR)
12Ni-5Cr-3Mo
18Ni (180) MAR
18Ni (200) MAR
18Ni (250) MAR
18Ni (280) MAR
18Ni (300) MAR
300M
300M (AM)
300M (VAR)

300M (VM) 4140 4330V (MOD) 4340 4340 (AM) 4340 (DH) 4340 (EFM) 4340 V 4340 (VAR) 4340 (MOD)

CHAPTER 5 NICKEL BASE ALLOY SECTIONS

5.0	Nickel Base Material Summaries
5.1	Astroloy P/M-H
5.2	Astroloy P/M-W
5.3	Astroloy 901
5.4	incoloy 901
5.5	Inconel 600
5.6	Inconel 625
5.7	Inconel 718
5.8	IN 100
5.9	IN 100 P/M-G
5.10	NASA IIB-7 P/M
5.11	P/M Rene 95
5.12	Waspaloy
5.13	Bibliography

Table 5.0.1

AVAILABLE DATA FOR NICKEL-BASE SUPERALLOYS

ALLOY	CONDITION/HT	PRODUCT FORM	KIC	KC R CURVE	R CURVEB DA/DN DA/DT KIBCC	DA/DT	KISCC	
ASTROLOY P/M-H	2025F 3HR AC, 1600F BHR AC, 1800F 4HR AC, 1200F 24HR AC, 1400F BHR AC	DISK			×			
ASTROLOY P/M-W	2025F 4HRS AC, 1600F BHRS AC, 1800F 4HRS AC, 1200F 24HRS AC, 1400F BHRS AC	DISK			×			
ASTROLOV 901		}			×			
INCOLOY 901	-	!			×			
INCONEL 600	1585F . 75HR AC	PLATE			×			
	1583F . 75HR AC, 1000F, 18800IRS	PLATE			×			
	1585F . 75HR AC, 1200F 1450 HRS	PLATE			×			
INCONEL 625	MA	PLATE			×			
INCOMEL 718	COLD ROLLED 30 PERCENT AND AGED	SHEET	×					
	ST 1850F, 1360F 9HRS F/C 1175F	FORCED BAR			×			
	1325F 8 HR, FC TD 1150F, HOLD 18 HR	FORGING	*					
	1325F 8HRS, FC TO 1150F	FORGING			×			
	1325F 9 HR, FC TO 1150F AT 100F/HR,HOLD AT 1150F 8 HR, AC	FURGING	×					
	1750F 14R 0, 1325F BHR FC TO 1150F AT 100F/HR HOLD BIR, AC	DISK			×			

Table 5.0.1 (con't)

AVAILABLE DAIA FOR NICKEL-BASE SUPERALLOYS

ALLOY	CONDITION/HT	PRODUCT FORM KIC	KC R CURVES	DA/DN DA/DT	M18CC
INCONEL 718	1750F, AC, 1325F, BHRS, FC TO 1130F, HCLD 1814RS, AC	SHEET PLATE FORGING FORGED BAR		***	
	1750F, 1HR, AC 1325F, BHRS, FC TD 1150F, HELD 18HRS, AC (VIM-EFR)	PLATE		×	
	1750F, 1HR, AC 1325F, BHRS, FC TO 1130F, HELD 18HRS, AC (VIM-VAR)	FORCED BAR		×	
	1760F 14M MG, 1325F BHRB, FC TO 1150F BHMS, AC	DISK		×	
	1800F 1HR G, 1325F BHRB FC TO 1150F HOLD BHRS AC	FDROING		×	
	1850F 1, 5HR 00, 1360F 9HRS, FC TO 1175F	FORGED BAR			×
	1880F 1HR AC 1520F BHR FC 1200F 16HR AC	SHEET			×
	1950F, AC, 1323F, BHRS, FC TO 1150F, HLLD 181MS, AC	PLATE		×	
IN100)		FORGING		××	
	PRESTRAIN	FURCING		×	
IN100 P/M-G	2050F ZHRS UG, 1600F 0.67HR AC, 1200F Z4HRS AC, 1400F 4HRS AC	DISK		×	
NASA 118-7 PZH	1650F 16HRS TD 2000F 1HR DB.	DISK		×	

Table 5.0.1 (con't)

AVAILABLE DATA FOR NICKEL-BASE SUPERALLOYS

AFFOA	CONDITION/HT	PRODUCT FORM KIC	KC R CURVES	DA/DN DA	DA/DN DA/DT KISCC
P/M RENE 95	2080F 1HR AC, 1600F 1HR AC,	DISK		×	
	1200F 24HRS AC 2100F 1HR, SQ AT 1000F, 1600F 1HR, 1200F 24HRS, AC	DISK		*	
RENE 93 (H&F)	2000F 1HR, SG AT 1000F, 1400F 16HRS	FORGING		×	
HASPAL.OY		FURGING		××	
	1850F ZHRS, 1350F 6HRS, (FINE GB, SMALL PRECIPITATES)	BILLET		×	
	1830F 2HRS, 1600F 24HRS (FINE CS, LARGE PRECIPITATES)	BILLET		×	
	1875F 4HRS DG, 1550F 4HRS AC, 1400F 4HRS AC	DISK		×	
	2010F 2HRS, 1330F 6HRS, (COARSE OS, SMALL PRECIPITATES)	BILLET		×	
	2010F 2HMS, 1600F 24HMS, (COARSE GS, LARGE PRECIPITATES)	BILLET		×	

TABLE 5.0.2

PLANE STRESS AND TRANSITIONAL FRACTURE TOUGHNESS OF NICKEL BASE ALLOYS (WITHOUT BUCKLING CONSTRAINTS)

Specimen $K_c^*(Ksi \sqrt{in})$ Thickness (in) = 0.027	191.177.5 (15)	200.6/13.8 (13)	178.5/3.6 (6) 224.6/11.1 (5)
Yield Strength (KSI)	269.0	259.0	218.0 218.0
nen Width (in)	4.0	L-T 4.0	4.0
Specimen Orient W	T-1	L-T	L-T
Test Temp. (^O F)	-423	-320	R.T.
Condition/HT	Cold Rolled 30 Percent and aged		
Alloy	Inconel 718		

* Mean/Standard Deviation (No. of Specimens)

Table 5.0.3.1

COMPARISON OF FATIOUE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR NICKEL-BASE SUPERALLINYS

TEST CONDITIONS

SPECIMEN ORIENTALION: Unknown

ENVIRONMENT: LAB AIR AT R. T.

STRESS RATID: 0.05-0.10

FREGUENCY: 10.00HZ

100.0			1 1 1 1 1			
) IN/CYCLE (N)) = 50.0	44. 1	41.7		10. 7	2. 84	63.
FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE) FOR DELTA K LEVELS (KSI SGRT(IN)) # 5 5.0 10.0 20.0 50.0 1	1.77	1. 77	1. 57			
Ci.	_					
FREQUENCY	10.00	10.00	10.00	10.00	10.00	10.00
STRESS RATIO	0.05	0.03	0. 03	0. 10	0. 10	0. 10
FRODUCT FORM	PLATE	FORGING	PLATE	BILLET	BILLET	BILLET
CONDITION/HT	1750F AC. 1325F RHR FC TO 1150F, HELD 18HR AC	1750F AC, 1329F CHR FC TO 1150F, HELD 18HR AC	1750F 1HR AC, 1329F 8HR FC TO 1150F, HELD 18HR AC(VIM-EFR)	1850F 2HRS, 1350F BILLET CHRS(FINE GS, SMALL PRECIPITATES)	2010F 2HR, 1350F 6HR(CDARSC &S, SMALL PRECIPITATES)	2010F 2MR, 1600F 24HR (CDARSE GS, LARGE PRECIPITATES)
אררטא	INCONEL 718			MASPAL UY		

Table 5.0.3.2

COMPARISON OF FATIOUE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR NICKEL-BASE SUPERALLOYS

TEST CONDITIONS

ENVIRONMENT: LAB AIR AT R. T. FREQUENCY: 8, 33HZ SPECIMEN CALIENT L-T STRESS RATTO 0.05

ALLOY	CONDITION/HT	PRODUCT FORM	STRESS RATIO	FREGUENCY	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE) FOR DELTA K LEVELS (KSI SORT(IN)) = 2.5 5.0 10.0 20.0 50.0 10	K CROWTH RA	NES (HIC)	10 IN/CYCI	100.0
INCONEL 718	1730F AC, 1325F PLATE BHRS, FC TO 1150F, HELD 18HRS AC	PLATE	0.03	B. 33			1. 29	30. ♣	
	1950F AC, 1325F BHRS, FC TO 1150F, HELD 18HRS AC	PLATE	0.03	8. 33			1. 05		

(P)

Table 5,0.3.3

COMPARISON OF FAITOUE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR NICKEL-BASE SUPERALLOYS

TEST CONDITIONS

SPECIMEN
ORIENTATION: T-L
STRESS RATIO: 0.05

ENVIRONMENT: LAB AIR AT R. T. FREGUENCY: 8.33-10.00HZ

00 FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE) FOR DELTA K LEVELS (KSI SGRT(IN)) = 5 5.0 10.0 20.0 50.0 10 in ni FREGUENCY STRESS Ratio PRODUCT FORM CONDITION/HT ALLOY

0

122

2.99

8.33-10.00

0.03

FORGED BAR

1750F 1HR AC, F 1325F 8HR FC TD 1150F, HELD 18HR AC(VIM-VAR)

INCONEL 718

5.0-9

Table 5.0.3.4

COMPARISON OF FATIONE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR NICKEL-BASE SUPERALLOYS

TEST COMDITIONS

SPECTMEN ORIENTATION

ENVIRONMENT: LAB AIR AT R. T.

STRESS RATIO:

0. 33-10, 00HZ FREQUENCY:

0.00-0.03

IN/CYCLE)	47.2		
FATIOUE CRACK GROWTH RATES (MICRO IN/CYCLE) FOR DELTA K LEVELS (KSI SGRT(IN)) = 2.5 5.0 10.0 20.0 50.0 1	S Ci	2. 136	
FREQUENCY	10.00	}	
STRESS RATIO	0.03	6 . 0	00.00
PRODUCT FORM	1325F FORGED BAR 1150F, AC	DISK 0.00 .33	DISK
CONDITION/HT	1750F AC, 1323F BHR FC TO 1150F, HELD 18HR AC	1760F 1HR WG, 1325F BHRS, FC TO 1150F BHRS, AC	2080F 1HR AC, 1600F 1HR AC, 1200F 24HR9 AC
AI.LOV	INCONEL 718		P/M RENE 95

TABLE 5.0.4

INDIVIDUAL STRESS CORROSION CRACKING THRESHOLD DATA FOR NICKEL BASE ALLOYS AT ROOM TEMPERATURE

KISCC (KSI/in) ENVIRONMENTS

PROPELLANT GRADE HYDRAZINE		87.5
MATHESON-COLEMAN- BELL 97¢ GRADE HYDRAZINE		25.8
MARTIN-MARIETTA REFINED GRADE HYDRAZINE		79.0,79.0
MAR RE AEROZINE 50		80.0
SUMP TANK WATER	>86.0;>180.0 >89.0;121.0 >87.0;>99.0	
SHOP CLEANING SOLVENT	>166.0;>86.0	
SPECIMEN	T-1 T-7 1-8	}
PRODUCT FORM	F 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ν
CONDITION	1850 1.5 HR OQ, 1360F 9 HRS, FC to	1880F 1 HR AC, 1520F 8 HR FC, 1200F 16 HR AC
ALLOY	INCONEL 718	5.0-11

Table 5.1.1

				TEB	ř	173	181	914	275	8	
				DWTH RY	8					7. 93	4. 53
Y FACTOR				FATIOUE CRACK ORDWIH RATEB	01						
INTENBIT			1200 F	FATIOUE	n						
TRESS-1	7		AIR AT		ni Ci						
FATIOVE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR	NICKEL-BASE ABTROLOY P/M-H		ENVIRONMENT:	FREG. DELTA K (HZ) DELTA K LEVELB:	(KSI SORT(IN))	2 MIN. HOLDTIME TRAPEZOIDAL MAVEFORM	9 HIN. HOLDTIME TRAPEZOIDAL WAVEFORM	15 MIN. HOLDTINE TRAPEZOIDAL WAVEFORM	0.01	0. 33	20. 00
RATE (i					_		
GROWTH				STRESS	}	0.03	0.05	0.03	0.03	0.03	0 0
FATIQUE CRACK			C-R	PRODUCT FORM		DISK	DISK	DISK	DISK	DISK	01.SK
		TEST CONDITIONS	SPECIMEN ORTENTATION	CONDITION/HT		2025F 3HR AC, 1600F BHR AC, 1800F 4HR AC, 1200F 24HR AC, 1400F BHR AC	2025F 3IR AC. 1600F BHR AC. 1800F AIR AC. 1200F 24IR AC. 1400F BHR AC	2025F 3HR AC, 1600F BHR AC, 1800F 4HR AC, 1200F 24HR AC, 1400F BHR AC	2025F 3HR AC, 1600F BHR AC, 1800F 4HR AC, 1200F 24HR AC, 1400F BHR AC	2025F 3HR AC, 1600F 8HR AC, 1800F 4HR AC, 1200F 24HR AC, 1400F 8HR AC	2025F 3HR AC, 1600F BHR AC, 1800F 4HR AC, 1200F 24HR AC, 1400F BHR AC

100

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.1.3.1 INDICATING EFFECT

OF FREQUENCY

MATERIAL: NICKEL BASE ASTROLOY P/M-H CONDITION: 2025F 3HR AC, 1600F 8HR AC, 1800F 4HR

AC, 1200F 24HR AC, 1400F 8HR AC

DELTA				DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN*	*1/2) : :	A		В		С	D
	:	F(HZ)=	0. 01	F(HZ)=	0. 33	F(HZ)= 20.00)
A:	21.63 :	12. 0					
DELTA K B:	14. 25 :			2. 6	7		
MIN C:	15. 27 :					2. 39	
D:	:						
	: 16.00 :			3. 9	5	2. 64	
	20.00 :			7. 9		4, 53	
	25.00 :	18. 4		14. 9		8. 25	
	30.00:	31. 2		24. 2		13. 6	
	35.00 :	54. 7		35. 7		20, 2	
	40.00 :	103.		49. 4		27. 8	
	50. 00 1:	275.		84. 4			
	60 . 00 :	410.		130.			
	70 . 00 :						
	80.00 :						
A:	80. 05 :	1089.					
	62.12 :	<u> </u>		142.			
MAX C:	44.64 :					35. 6	
D:	:					-4	
	:						
RODT MEAN PERCENT E		33. 43		24. 73	~~~~	8. 73	

PREDICTION 0.5-0.8 RATID 0.8-1.25 SUMMARY 1.25-2.0 (NP/NA) >2.0

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.1.3.2 INDICATING EFFECT

OF FREQUENCY

		2025F 3H	SE ASTROLON R AC,1600F BHR 24HR AC,1400F	AC, 1800F 4HR		
ENVIRON	MENT	T: +1200F	AIR			
		K :		DA/DN (10**-6	IN. /CYCLE)	
(KSI*)	I N#≀	*1/2) : :	A	В	c	D
			F=2 MIN HOLD TRAPEZOIDAL			
	A:	29 . 04 :	38. 9			
		28 . 95 :		90. 9		
MIN	C: D:	23 . 79 :			60 . 7	
		25 . 00 :			64. 9	
		30.00 :	43. 3	90. 1	97. 1	
		35.00 :		95. 9	156.	
		40.00 :	9Q. O	114.	24 6.	
		50 . 00 :	173.	181.	514.	
		60 . 00 :	327.	278.	926.	
		70 . 00 :	559 .	472.	1574.	
		80 . 00 :	842.	70B.	2622.	
		90 . 00 :		1000.	4352.	
	A:	87. 40 :	1050.			
DELTA K		93 . 51 :		1113.		
		92.44 :			4928.	
	D:	:				
PERCENT	T EF	RROR	26. 66	26. 49	24. 65	
LIFE PREDICTI RATIO	I ON	0. 0-0. 5 0. 5-0. 8 0. 8-1. 2 1. 25-2. 0	5			

>2. 0

(NP/NA)

AND THE REPORT OF THE PERSON AND THE

Figure 5.1.3.2

Table 5.2.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE ASTROLOY F/M-W

S.
CONDI
IEST_(
H

	E8	20	1195	132	
	OWTH RAT	50	50.2	10.3	.3. 4 8
	FATIQUE CRACK GROWTH RATEB (MICRO IN/CYCLE)	10			
AIR AT 1200 F	FATIOUE (M	so .			
AIR AT					
ENVIRONMENT:	DELTA K	(KSI SORT(IN))	13 HIN. HOLDTIME TRAPEZOIDAL WAVEFORM		
	FREG. (HZ)		15 MIN. H TRAPEZUID	0. 33	20.00
	STRESS RATIO		0.05	0.05	0.09
- F	PRODUCT FORM		DISK	DISK	DISK
SPECIMEN OPIENTATION: C-R	CONDITION/HT		2025F 4HR AC, 1600F BHR AC, 1800F 4HR AC, 1200F 24HR AC, 1400F DHR AC	2025F 4HR AC, 1600F BHR AC, 1800F 4HR AC, 1200F P4HR AC, 1400F 8HR AC	2025F 4HR AC, 1600F BHR AC, 1800F 4HR AC, 1200F 24HR AC, 1400F BHR AC,

001

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.2.3.1 INDICATING EFFECT

OF FREQUENCY

~		OF 	FREQUENCY		
	2025F 4HF	SE ASTROLOY R AC,1600F BHR A HR AC, 1400F BHR	C, 1800F 4HR		
ENVIRONMENT	r: +1200F	AIR			
	K :		DA/DN (10**-6	IN. /CYCLE)	
(V21#1N##	+1/2) : :	A	В	С	D
	; ; ;	F=15 MIN HULD TRAPEZOIDAL	F(HZ)= 0.33	F(HZ)= 20.00	
	15. 46 :	18. 2			
DELTA K B: MIN C: D:			3. 50	2. 59	
	13. 00 : 16. 00 :	21.0	3. 61 5. 26	0.40	
		113. 218.	10. 3 21. 7 37. 7 55. 9	3. 48 5. 84 9. 22 13. 6	
	40 . 00 : 50 . 00 : 60 . 00 :	578. 1156. 2205.	76. 5 132. 225.	18. 8	
	70.00 : 80.00 :	4714.			
A: DELTA K B:	84 . 92 : 61. 82 :	30709.	249 .		
MAX C: D:				25. 4	
ROOT MEAN S PERCENT ER		97. 51	14. 52	15. 84	
LIFE PREDICTION RATIO SUMMARY	0.8-1.25	;			

£ 3

(NP/NA)

>2.0

Figure 5.2.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.3.3.1 INDICATING EFFECT

DELTA (KSI*IN*)	K : ∗1/2) ·		DA/DN (10**-	-6 IN. /CYCLE)	
(102	:	A	В	С	D
	:	R=+0. 10			
A: DELTA K B:	18. 88 : :	. 752			
MIN C: D:	: : :				
	20.00 : 25.00 : 30.00 :	2. 62 4. 5 5			
		6. 35 8. 5 5 22. 1			
DELTA K B: MAX C: D:	59. 15 : : : :	35. 1			
OOT MEAN S	_	11. 20			

Figure 5.3.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.3.3.2 INDICATING EFFECT

MATERIAL: N CONDITION: ENVIRONMENT		ASTROLD	Y 901	aan ann han dan dan dan dan dan dan ann aan dan adin dan dan	
DELTA			DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN*	*172) : :	A	В	С	D
	:	R=+0. 10	R=+0. 50		
DELTA K B: MIN C: D:		1. 99	. 867		
	10.00 : 13.00 : 14.00 : 25.00 : 25.00 : 35.00 : 40.00 : 50.00 : 60.00 : 70.00 : 80.00 :	7. 14 12. 0 18. 9 27. 7 50. 0 87. 1 172.	1. 21 2. 25 3. 72 5. 85 9. 39 15. 3 23. 7 34. 2		
DELTA K B: MAX C: D:	88. 23 : 48. 57 : : :	918.	54. 2		
PERCENT ER	ROR	21. 41	14. 70		
LIFE PREDICTION	0. 5-0. 8 0. 8-1. 25 1. 25-2. 0				

Figure 5.3.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.3.3.3 INDICATING EFFECT

MATERIAL: N CONDITION: ENVIRONMENT		SE ASTROLO	901		
DELTA (KSI*IN*			DA/DN (10**-	6 IN. /CYCLE)	
(1,02 - 214-	:	A	В	С	D
	:	R=+0. 70			
A:	8.01:	. 441			
DELTA K B:	:				
MIN C: D:	:				
.	:				
	9 . 00 :	. 428			
	10.00 :	. 601			
	13.00 :				
	16.00 :	2. 26 3. 93			
	25. 00 :	5. 73 5. 98			
			,		
A:	26 . 83 :	7. 68			
DELTA K B:	:				
MAX C:	:				
D:	:				
ROOT MEAN S					
PREDICTION RATIO SUMMARY	0. 8-1. 25				

Figure 5.3.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.3.3.4 INDICATING EFFECT

C II . 50 R=+0.80 . 948 1. 64 2. 08 3. 12 57 5. 03 0 7. 69
1. 64 2. 08 3. 12 57 5. 03 0 7. 69
. 948 1. 64 2. 08 3. 12 57 5. 03 0 7. 69
. 948 1. 64 2. 08 3. 12 57 5. 03 0 7. 69
1. 64 2. 08 3. 12 57 5. 03 0 7. 69
2. 08 3. 12 57 5. 03 0 7. 69
2. 08 3. 12 57 5. 03 0 7. 69
3. 12 57 5. 03 0 7. 69
57 5. 03 0 7. 69 6
0 7. 69 6
7
, 7
, 7
7
11. 9
5 12. 71

Figure 5.3.3.4

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.3.3.5 INDICATING EFFECT

DELTA K :		DA/DN (10**-6 IN./CYCLE)			
(KSI#IN**	(1/2) : :	A	В	С	a
	:	R=+0. 10	R=+0. 50		
A:	17. 59 :	7. 88			
DELTA K B: MIN C: D:			5. 64		
	16.00 :		6. 02		
		11.4	11. 4		
		19. 3	20. 2		
	30 . 00 :	27. 9	26. 9		
	35.00 :	37. 0	3 5. 0		
	40 . 00 :	47. 3	5 0. 9		
	50 . 00 :	78. 0			
	60 . 00 :	13 9 .			
A:	67. 44 :	249.			
DELTA K B:	48 . 57 :		110.		
MAX C:	:				
D:	:				
ROOT MEAN SQUARE PERCENT ERROR		14. 45	13. 87		

Figure 5.3.3.5

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.3.3.6 INDICATING EFFECT

UP SIKESS KAITU								
MATERIAL: NICKEL CONDITION: ENVIRONMENT: +13		ASTROLOY	901					
DELTA K	:		DA/DN (10**-	-6 IN. /CYCLE)				
(KSI*IN**1/2)	: :	A	В	С	D			
	: R=+	0. 10						
DELTA K B: MIN C: D: 200.00 DELTA K B: MAX C: D:	: : : : : : : :							
ROOT MEAN SQUARE PERCENT ERROR	O.	00						
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2	D. 8 L. 25 2. 0							

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.3.3.7 INDICATING EFFECT

MIN C: : : : : : : : : : : : : : : : : : :	DELTA		:	DA/DN (10**-6 IN./CYCLE)						
: AIR AIR A: 10.86: 1.81 DELTA K B: 11.04: 4.57 MIN C: : D: : 13.00: 2.58 5.22 16.00: 3.71 10.9 20.00: 5.96 16.6 25.00: 9.97 24.6 30.00: 13.8 35.1 35.00: 19.9 37.8 40.00: 29.4 DELTA K B: 36.86: 35.6 MAX C: : :	/VOT#IM#>	(1/2)	. A	В	С	D				
DELTA K B: 11.04 : 4.57 MIN C: D: : 13.00 : 2.58 5.22 16.00 : 3.71 10.9 20.00 : 5.96 16.6 25.00 : 9.97 24.6 30.00 : 13.8 35.1 35.00 : 19.9 37.8 40.00 : 29.4 DELTA K B: 36.86 : 35.6 MAX C: : :										
D: : : : : : : : : : : : : : : : : : :	DELTA K B:			4. 57						
16.00 : 3.71 10.7 20.00 : 5.96 16.6 25.00 : 9.97 24.6 30.00 : 13.8 35.1 35.00 : 19.9 37.8 40.00 : 29.4 A: 45.80 : 37.3 DELTA K B: 36.86 : 35.6 MAX C: :			:							
20. 00 : 5. 96 16. 6 25. 00 : 9. 97 24. 6 30. 00 : 13. 8 35. 1 35. 00 : 19. 9 37. 8 40. 00 : 29. 4 A: 45. 80 : 37. 3 DELTA K B: 36. 86 : 35. 6 MAX C: :										
25. 00 : 9. 97										
30. 00 : 13. 8 35. 1 35. 00 : 19. 9 37. 8 40. 00 : 29. 4 A: 45. 80 : 37. 3 DELTA K B: 36. 86 : 35. 6 MAX C: :										
35. 00 : 19. 9 37. 8 40. 00 : 29. 4 A: 45. 80 : 37. 3 DELTA K B: 36. 86 : 35. 6 MAX C: :										
40.00: 29.4 A: 45.80: 37.3 DELTA K B: 36.86: 35.6 MAX C: :		35.00	: 19. 9							
DELTA K B: 36.86 : 35.6 MAX C: :										
MAX C: :										
			:	35. 6						
			: :							
ROOT MEAN SQUARE 11.65 15.60 PERCENT ERROR			11. 65	15. 60	الباد عليه الله الله الله الله الله الله الله ا					

Figure 5.3.3.7

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.3.3.8 INDICATING EFFECT

MATERIAL: N	NICKEL E	BASE	ASTROLO	DY 901		tige dan dan tina nga gat tiga tan ant filik ala		
DELTA (KSI*IN*		:		DA/DN (10**-6 IN./CYCLE)				
		:	A	В	С	D		
			E=+ 800F	E=+1100F AIR				
DELTA K B: MIN C: D:			. 504	. 560				
	8.00 9.00 10.00 13.00 16.00 20.00 25.00	: : : :	. 504 . 567 1. 23	. 661 . 894 1. 12 1. 82 2. 78 5. 32 14. 3				
DELTA K B: MAX C: D:	15. 69 25. 23		1.88	15. 0				
ROOT MEAN S			9. 84	17, 19		nar nar ann an na		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.5-0. 0.8-1. 1.25-2.	8 25 0	er ter dan					

Figure 5.3.3.8

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.4.3.1 INDICATING EFFECT

MATERIAL: I CONDITION:	NICKEL B	ASE INCOLOY	901				
DELTA (KSI*IN*	K *1/2)	: : :	DA/DN (10**-6 IN./CYCLE)				
/ NOT * 1/4*	*1/E/	: A	В	С	Ø		
		: E=+ 900F :AIR					
DELTA K B: MIN C: D:	14. 89	: . 77 9 : :					
	40. 00	2, 20 : 4, 87					
DELTA K B: MAX C: D:		: 68 . 7 : :					
ROOT MEAN S		23. 65					
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0 0. 8-1. 3 1. 25-2. 0	B 25 0					

Figure 5.4.3.1

(

Table 5.5.1.1

FATIGUE CRACK GROWIH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BABE INCOMEL 600

TEST CONDITIONS

	FATIOUE CRACK ORDWIH RATES (MICRO IN/CYCLE)	10 20 50 100	1.71	9. 91	0.94	
800 F	FATIOU	1 P				
A14		E)				
ENVIRONHENT:	DELTA K I EVELS:	(KBI BORTCIN))				
	FREG. (HZ)		6.67	6. 67	6. 67	
	BTRE99 RATIO		0.03	0.33	09 '0	
Unknown	PRODUCT FURIN		PLATE	PLATE	PLATE	
SPECIMEN ORIENTATION: Unknown	COND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1585F . 7!HR AC	1585F 751R AC	1585F 75HR AC	

Table 5.5.1.2

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR NICKEL-BASE INCOMEL 600

TEST CONDITIONS

ENVIRCHMENT: AIR AT 1000 F	FATIGUE CRACK GROWTH RATES DELTA K (MICRO IN/CYCLE)	LEVELS: (KSI SGRT(IN)) 2.5 5 10 20 50 100	3.83	4. 60	6.55	0.86	0.68	4. 81
	FREG. (HZ)	J	6. 67	0. 67	6. 67	6. 67	6. 67	0.67
	STRE55 RATIO		0.05	0.05	0.33	0.50		0.05
Unknown	PRODUCT		PLATE	PLATE	PLATE	PLATÉ	PLATE	PLATÉ
SPECIMEN ORIENTATION: Unknown	CONDITION/HI		1585F 75HR AC	1585F . 75HR AC	1585F 75HR AC	1585F 75HR AC	1585F 75HR AC	1585F 75HR AC, 1000F 1880O HRS

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.5.3.1 INDICATING EFFECT

OF STRESS RATIO

ENVIRONMENT: R.T. / A DELTA K :			DA/DN (10**-	-4 IN /CVCLE)	
(KSI*IN**1			DA/DN (10**-	B IN. /CTCLE/	
	:	A	В	С	D
	:	R≈+0. 05			
A: A	25. 33 : : :	2. 73			
;	30.00 : 35.00 : 40.00 :				
A: 4 DELTA K B: MAX C: D:	40. 56 : : : :	19. 8			
ROOT MEAN SQL PERCENT ERRO		5. 08			
LIFE (PREDICTION (RATIO (SUMMARY 1.	0. 5-0. 8 0. 8-1. 25	1			

Figure 5.5.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.5.3.2 INDICATING EFFECT

OF STRESS RATIO

CONDITION:	NICKEL BASE 1585F .75HF [: + 800F,A]	R AC	600		
DELTA (KSI*IN*)			DA/DN (10**-	6 IN. /CYCLE)	
///O1 * 114 * /	: :	Α	B	С	D
	:	R=+0. 05	R=+0. 33	R=+0. 60	
	16.89 :	. 630	400		
DELTA K B: MIN C: D:	6. 90 :		. 490	. 172	
	7.00 : 8.00 : 9.00 : 10.00 :			. 176 . 250 . 379 . 547	
	13.00 : 16.00 : 20.00 : 25.00 :	1. 71 5. 41	. 623 1. 35 3. 91		
DELTA K B:	27. 20 : 20. 75 : 12. 06 : :	9. 04	4. 85	. 818	
ROOT MEAN S		7. 02	8. 23	7. 41	
PREDICTION RATIO SUMMARY	0.8-1.25	1	1	1	

Figure 5.5.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.5.3.3 INDICATING EFFECT

OF STRESS RATIO

ENVIRONMEN			DA /DN / 4 0 + 4					
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)					
		A	В	С	D			
	:	R=+0. 33	R=+0. 50	R=+0. 66				
	11 . 70 :	1. 02						
DELTA K B:			. 68 8					
MIN C: D:	6. 43 : :			. 208				
	7. 00 :			. 255				
	8.00:			. 366				
	9 .00 :			. 512				
	10.00 :		. 861	. 584				
		1. 32	1. 73					
		2. 79	3. 53					
	20 . 00 :	6. 55						
A:	22. 90 :	9. 57						
DELTA K B:			4. 03					
MAX C:	11.40 :			. 941				
D:	; ;							
ROOT MEAN SQUARE PERCENT ERROR		4. 59	4. 43	2. 38				
LIFE	0.0- 0.5							
PREDICTION								
	0. B-1. 25	1	1	1				
	1.25-2 0							
(NP/NA)	⊃2 0							

Figure 5.5.3.3

1AbLE 5.5.3.4

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.5.3.4 INDICATING EFFECT

MATERIAL: CONDITION:			INCONEL AC	. 600		
DELTA		:		DA/DN (10**-6	5 IN. /CYCLE)	
(KSI*IN*	*1/2)	:	A	В	С	D
		: :AIR	E=+ 600F	E=+ 800F AIR		E=+1200F AIR
DELTA K B: MIN C: D:		:	4. 25	4. 60	4. 54	
	20. 00 25. 00 30. 00	:	11.5	6. 72 15. 2	4. 60 11. 1 20. 9	
DELTA K B:	31, 85 32, 19 32, 64	:	17. 2	20. 8	27. 5	
ROOT MEAN PERCENT E			15. 37	5. 28	4. 51	0. 00
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	8 25 0	5	1	2	

Figure 5.5.3.4

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.5.3.5 INDICATING EFFECT

DF FREQUENCY

MATERIAL: N CONDITION: ENVIRONMENT	1585F . 75	HR AC	CONEL	600		ter erk Tus has am big dag am			
DELTA				DA/DN (10**-6	IN. /CYC	LE)		
(KSI*IN*	*1/2) : :	A		В		С		D	
	:	F(HZ)=	0.001	F(HZ)=	0. 07	F(HZ)=	6. 67		
DELTA K B: MIN C: D:	20. 04 : 16. 50 :			6. 7	5	1. 5	5		
	20. 00 : 25. 00 : 30. 00 :			12. 8 24. 1		3. 8 11. 8 22. 9			
DELTA K B: MAX C: D:	32. 54 : 30. 56 : :			30. 6		23. 9			
ROOT MEAN S		0. 00		3. 86	- 	7. 59		~~~~~	
SUMMARY	0. 5-0. 8 0. 8-1. 25)		1		1			, diagno degree agains o

NICKEL CONDITION/HT: 1585F . 75HR AC YIELD STRENGTH: 35. Ø KSI BASE FORM: 1. ØØ"TH PLATE ULT. STRENGTH: 94. 3 KSI SPECIMEN TYPE: CT SPECIMEN THK: 0.412- 0.420" **ORIENTATION:** SPECIMEN WIDTH: 2.002-2.004" STRESS RATIO: +0.05 INCONEL ENVIRONMENT: +1000° F. AIR REFERENCES: HDØØ3 600 $\Delta K (MPA \sqrt{m})$ $\Delta K (MPA \sqrt{m})$ 100 100 10 40 10 40 Lilili 111111 10 ⁰ FREQUENCY (Hz) = FREQUENCY (Hz) = 0.0010.07 10-2 10-2 10-1 10-1 10-3 10⁻³ 10⁻² 10⁻² da.dN (mm/cycle) da/dN (in/cycle) 10-4 104 10⁻³ 10⁻³ 10⁻⁵ 10^{.5} 10.4 10-4 10⁻⁶ 10⁻⁶ 10.5 10^{.5} 10.7 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 10 40 100 10 40 100 (D) (C) للابليلية <u>LITTITI</u> 11111 10 ⁰ 10 ^C FREQUENCY (Hz) = FREQUENCY (Hz) = 6.67 10-2 10⁻² 10-1 10 10.3 10⁻³ 10⁻² 10-2 da/dN (mm/cycle) da/dN (in/cycle) 10-4 10-4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10-4 10⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 40 10 40 100 10 100 ΔK (KSI √in) ΔK (KSI \sqrt{in})

Figure 5.5.3.5

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.5.3.6 INDICATING EFFECT

MATERIAL: N CONDITION:						
DELTA (KSI#IN*+	K +1/2)	:		DA/DN (10**-6	IN. /CYCLE)	
		: : : :AIR	A E=+1000F	В	С	D
DELTA K B: MIN C: D:	18. 57	: : :	4. 68			
	25. 00	:	4, 81 13, 2 24, 3			
DELTA K B: MAX C: D:	30 . 70	: : : :	30. 5			
ROOT MEAN S PERCENT ER			12. 33	at and		# #
SUMMARY	0. 5-0. 0. 8-1.	8 25 ()	2			

Figure 5.5.3.6

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.5.3.7 INDICATING EFFECT

		INCONEL R AC, 1200F						
DELTA (KSI*IN*	K : +1/2) :	DA/DN (10**-6 IN./CYCLE)						
(1102 1114		A	В	С	D			
	: : AII	E=+1200F R						
DELTA K B: MIN C: D:	14. 24 : : : :	4. 17						
	16.00 : 20.00 :							
DELTA K B: MAX C: D:	23. 73 : : : :	37. 6						
PERCENT EF	GUARE RROR	5. 92						
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25	1						

Figure 5.5.3.7

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.6.3.1 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: N CONDITION: ENVIRONMENT	MA	INCONEL	625		
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6	S IN. /CYCLE)	
(NO1 - 114	:	A	В	С	D
	:	R=+0. 05			
DELTA K B: MIN C: D:	18. 93 : : :	1. 71			
	25 . 00 : 30 . 00 :	2. 07 4. 35 8. 25 15. 4			
DELTA K B: MAX C: D:	37. 87 : : : :	22. 2			
ROOT MEAN S PERCENT ER		3. 21	The tip gas gat tip day has been the see with the case with ti		. — — t- <u></u>
PREDICTION RATIO SUMMARY	0.8-1.25	1		in the and the new own has the time and the first own five may pas the	

Figure 5.6.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.6.3.2 INDICATING EFFECT

	A E= R.T.	В	С	D
	E= R. T.			_
	AB AIR-10HZ			
0. 25 :	3. 01			
:				
:				
:				
5 00 :	7 20			
	· ·			
0 . 00 :	4 0. B			
0.7/	04.0			
9./6:	74. B			
•				
:				
:				
ARE R	5. 17			·
0-0 5			ه جونه جود ۱۳۰۰ کې چوه خون بوره کې خون خون د ۱۳۰۰ کې د ۱۳۰۰	
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	0.00 : 5.00 : 0.00 : 9.76 : :	9. 76 : 94. 8 : : : ARE 5. 17 R	0.00 : 14.3 5.00 : 25.1 0.00 : 40.8 9.76 : 94.8 :: ARE 5.17	0. 00 : 14. 3 5. 00 : 25. 1 0. 00 : 40. 8 9. 76 : 94. 8

Figure 5.6.3.2

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.6.3.3 INDICATING EFFECT

MATERIAL: NICKE CONDITION: MA	BASE	INCONEL	625			
DELTA K : (KSI*IN**1/2) :			DA/DN	(10**-6	IN. /CYCLE)	
(W21#1N##1\S)	:	A	E	3	С	D
	: :AIR				E=+1000F AIR	E=+1200F AIR
A: 20.1 DELTA K B: 16.1	38 :	6. 81	4.	19		
MIN C: 15. D: 13.					5. 59	4. 52
16. (20. (00 :	10.5	7.		· · · - -	7, 50 18, 0
30 .		12. 5 26. 5 56. 2	30.	_	20. 0 38. 1 62. 6	40. 3
A: 35.		60. 3	55.	2		
MAX C: 35. D: 26.					64. B	49. 1
ROOT MEAN SQUAR PERCENT ERROR		4. 72	7. 5	54	5. 17	4. 35
LIFE 0.0 PREDICTION 0.5 RATIO 0.8 SUMMARY 1.25	-0. 8 -1. 25 -2. 0	1	1		1	1

Figure 5.6.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.6.3.4 INDICATING EFFECT

MATERIAL: N CONDITION:		SE INCONEL	. 625		
DELTA (KSI*IN**			DA/DN (10**-6	IN./CYCLE)	
	:	A	В	С	D
			E=+ 800F AIR		
A: DELTA K B:		1. 69	4. 13		
MIN C: D:	17. 98 : 14. 04 :			7. 23	6. 78
	16.00 : 20.00 :	2. 9 8	4. 55	9. 05	9. 17 16. 5
	30 . 00 :	15. 9		26. 9	
		33. 6 63. 7	38. 3 67. 0	46. 6 80. 8	74. 1
DELTA K B:		113.	103.		
MAX C: D:	43 . 39 : 38 . 90 : :			117.	93.8
PERCENT ER	ROR	6. 43	3. 83	3. 21	2. 39
LIFE PREDICTION RATIO SUMMARY	0.8-1.25		1	1	1

Figure 5.6.3.4

Table 5.7.1.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE INCONEL 718

TEST CONDITIONS

LAB AIR AT R. T. ENVIRONMENT SPECIMEN ORIENTATION UNKNOWN

	100			
E3	30	1.77 44.1	1.77 41.7	
OWTH RATI	50	1.77	1. 77	1. 57
FATIGUE CRACK GROWTH RATES	10		, - - - - -	
FATIGUE (M)	JC.			
	2.5		1	
DELTA K	(KSI SORT(IN))			
FREG.		10.00	10.00	10.00
STRESS		0.03	0.05	0.03
PRODUCT		PLATE	rorging	PLA1E
COHOT 1 TOHVHT		1750F AC, 1325F RHR FC TO 1150F HELD IBHR AC	1750F AC, 1325F RHR FC TD 1150F HELD IRHR AC	1750F 1HR AC, 1325F BHR FC TO 1150F, HELD 18HR AC(VIM-EFR)

Table 5.7.1.2

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-DASE INCONEL 718

TEST CONDITIONS

SPECIFICH
OFFICIALITY UNKNOWN

600 F

AIR

ENVIRONMENT

100 58.8 28.4 8 FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE) 2, 33 1.23 1, 91 1.44 50 0 13 13 DELTA K LEVELS: (KSI SORT(IN)) 0.67 0.67 0.67 0.67 FREG. (HZ) SIRESS 0.05 0.05 0.03 0.05 PRODUCT FURM PLATE SHEET FORGING PLATE 1750F AC, 1375F 9HRS, FC TO 1150F, HELD 18HRS, AC 1750F AC, 1725F BHRS, FC 11150F, HELD 1818/3, AC 1750F AC, 1325F BHRS, FC TO 1150F, HELD 18HRS, AC 1750F AC, 1325F BHRS, FC TO 1150F, HELD 18HRS, AC CONDITION/HI

Table 5.7.1.3

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE INCONEL 718

TEST CONDITIONS

800 F AIR AT ENVIRONMENT SPECTHEN ORIENTOWN UNKNOWN

	100			
80	20	30. 6		48. 6
FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	90	2.24 30.6	23.	9. 03
UE CRACK GROWTH (MICRO IN/CYCLE)	10			
FATICUE (MI	an			
	2. G			
DELTA K	(KSI SGRT(IN))			
FREG. (HZ)		0. 67	0. 67	0. 67
STRESS		0.03	60.03	0.03
PRODUCT FORM		SHEET	PLATC	l'orging
COND 1 1 10N/H1		1750F AC, 1325F BHR FC FD 1150F, HELD 191R AC	1750F AC, 1328F EHR FC TO 1150F, HELD 18HR AC	1750F AC, 1325F BHR FC TO 1150F, HELD 18HR AC

Table 5.7.1.4

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE INCONEL 718

	H RATES E) 20	4.90	5. 01	3. 23	4. 06	6. 48	5. 93
	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)		•	.,	•	0.77	•
LL.	IGUE CRA (MICRO						
AIR AT 1000 F	FAT						
A I R	ni ni						
ENVIRONMENT:	DELTA K LEVELS: (KSI SGRT(IN))						
	FREG. (HZ)	90.0	0.67	6. 67	6. 67	6.67	0.67
	STRESS RATIO	0.05	0.03	0.03	0.33	0. 50	0 02
nknown	PRODUCT FORM	PLATE	PLATE	PLATE	PLATE	PLATE	FORGING
SPECIMEN OPTENTATION UNKNOWN	CONDITION/HI	1750F AC, 1325F BHRS, FC TO 1150F, HELD 181RS, AC	1750F AC, 1325F PHRS, FC TO 1150F, HELD 18HRS,AC	1750F AC, 1325F BHRS, FC TO 1150F, HELD 18HRS, AC	1750F AC, 1325F BHRS, FC TO 1150F, HELD 18HRS, AC	1750F AC, 1325F BHRS, FC TO 1150F, HELD 18HRS, AC	1750F AC, 1325F BHRS, FC TO 1150F, HELD 18FIRS, AC

001

9

Table 5.7.1.5

Ó

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE INCONEL 718

TEST CONDITIONS

SPFCIMEN
FINVIRONMENT: AIR
ORIENTATION: ---

		100		
	BS	30		
	FATIGUE CRACK GROWTH RATES	20	17. 5	9.30
	WE CRACK GROWTH	01		
	ATIGUE (MIC	ND.		
i	<u> </u> 	e S		
	DELTA K	(KSI SGRT(IN))		
	FREG. (HZ)		0.67	0.67
	STRESS RAFIO		0.03	0.03
	PRODUCT FURM		PLATE	rdreing
	COMD1110H7HT		1750F AC, 1325F BHR FC TO 1750F, HELD 184R AC	1750F AC, 1325F CHR FC TO 1150F, MELD 18HR AC

Table 5.7.1.6

				σ.	20	10.0	30.2	19.0	34. 0	
				FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	20		0. 77	1.13	2. 17	
FACTOR				UE CRACK GROWTH (MICRO IN/CYCLE)	10					
NTENSITY			نا نا	FATIGUE (MI	r n					
TRESS-1			L. H. A. AT R. T.		2.5			, 1 1 1 1		
FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR	NICKEL-BASE INCONEL 718		ENV I RONMENT:	DELTA K	(KSI SORT(IN))					
E AT DEFIN	NICKEL			FREG. (HZ)		6.00	6 . 00	6.00	6.00	
CROWTH RAT				STRESS RA110		0.08	0. 50	80.0	0. 30	
FATIGUE CRACK			L-1	PRODUCT FORM		FURGED BAR	FORCED BAR	rorging	FORGING	
		TEST COMDITIONS	SPECTHEN ORTENTATUM	COUDITION/HT		ST 1850F, 1360F 9HRS, F/C 1173F	ST 1850F, 1360F 9HRS, F/C 1175F	1325F BHRS, FC TO 1150F	1325F BHRS, FC 10 1150F	

Table 5.7.1.7

FATIGNE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TEST CONDITIONS										
SPECINEN OPIENTALION. L	L - T			ENVIRONMENT: L. H. A. AO F	L. H.	4. 400 F				
COMDITIONALHI	PRODUCT FORM	STRESS	FREG. (HZ)	DELTA K		FATIQUE	UE CRACK GROWTH (MICRO IN/CYCLE)	FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE)	50	
				(KSI SORT(IN))	2. B	n	10	20	90	100
SI 1850F, 1360F 9HRS, F/C 1175F	FURGED BAR	0.08	6.00						13.3	
ST 1850F, 1360F 9HRS, F/C 1175F	FORGED BAR	0. 50	9 . 00					1.66		

Table 5.7.1.8

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

		100			
	Į, į	30	1. 27 30. 4		
	WTH RATE	50	1. 29	1. 05	
	FATIOUE CRACK GROWTH RATES	10		} 	
~	ATIQUE CI	ec.			
LAB AIR AT R. T.	ù.	2. G		 	
ENVIRONMENT: LAB AIR AT R. T.	DELTA K	(KSI SORT(IN))			
	FREG. (HZ)		B . 33	6 6 7 8	
	STRE55 RAT10		0.03	0.05	
r-1	PRODUCT		PLATE	PLATE	
TEST COMDITIONS: SPECINEN ORTENTATION:	CONDITION/HT		1750F AC. 1325F RHRS, FC TO 1150F, HELD IRHRS AC	1950F AC, 1325F RHRS, FC TO 1150F, HELD 18HRS AC	

Table 5.7.1.9

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TUST CONDITIONS			NICKEL	NICKEL-BASE INCONEL 718						
SPECJHEN OPTENIATION	L-1			ENVIRONMENT	AIR	800 F				
COVIDITION/HT	PRODUCT FORM	STRESS RA110	FREG.	DELTA K LEVELS: (KSI SQRT(IN))	u n	FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE)	UE CRACK GROWTH	OWTH RATI	9.1	2
1750F AC. 1325F BHRS, FC TO 1130F, HELD 18FRS AC	PLATE	0.05	0.67					2. 93	69.4	
1750F AC. 1325F BHRS, FC TO 1150F, HELD 181ME AC	PLATE	0.05	6. 67					1. 98		
1750F AC, 1325F 8HRS, FC TO 1150F, HELD TAHRS AC	PLATE	0. 33	6. 67					4.		
1750F AC, 1325F 8HPS, FC TO 1150F, HELD 18HRS AC	PLATE	0.50	6. 67				9.54	9. 14 4.		

Table 5.7.1.10

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

			100		
		83	90	63.9	
		OWTH RAT	50	3.78 63.9	
		FATIONE CRACK GROWTH RATES (MICRO IN/CYCLE)	01		1.18
	1000 F	FATIQUE (M)	In		
AIA	P.		15 C1		
TNOTENDENT	AT 1000 F	DELTA K	(KSI SGRT(IN))		
		FREG. (HZ)		0. 67	6. 67
		STRESS		0.03	0. 67
	L. T	PRODUCT FORM		PLATE	PLATE
TEST CONDITIONS	ALTON	CONDITION/HT		1750F AC, 1325F BHRS, FC TO 1150F, HELD 18HRS AC	1750F AC, 1325F BHRS, FC TO 1150F, HFLD 18HRS AC

Table 5.7.1.11

FATICUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

		TH RATES	20 50 100	16. 1	32.3	
	;	UE CRACK GROWTH (MICRO IN/CYCLE)	10			
		FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	n			
	L. H. A. AT R. T.	FA	n) Di		[]	
	ENVIRONHENT: L.H.A.	DELTA K	(KSI SORT(IN))			
		FREG. (HZ)		9. 00	6.00	
		STRESS		0.08	BO .0	
	T. L	PRODUCT FORM		FURGED BAR	FORGING	
TEST CONDITIONS	SPECIMEN OPTENTATION T-L	CONDITION/HT		ST 1850F, 1360F 9HRS, F/C 1173F	1325F 8HRS, FC TO 1150F	

Table 5.7.1.12

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

			100	}	 	
		60	20	47.2	 	
		WTH RATE	50	2 53	98 3	
		FATIGUE CRACK GROWTH RATES	10			
	e c.	ATIGUE C	'n			
	LAB AI AT R.T		E Ci			
	ENVIRONMENT: LAB AIR AT R.T.	DELTA K	(KSI SORT(IN))		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
	į	FREG. (HZ)		10. 00	0.33	
		STRESS RATIO		0.05	0.00	
	C-R	PRODUCT FORM		FORGED BAR	DISK	
TEST CONDICTIONS.	SPECIMEN ORIENTATION:	CONDITION/HF		1750F AC, 1325F BHR FC TO 1150F, HELD 18HR AC	1760F 1HR WG, 1375F BHRS, FC 1150F BHRS, AC	

Table 5.7.1.13

FATIGUE CRACK GROWIN RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

SFFC LMFN (IR JENTAT JÜN	CR			ENVIRONMENT:	AIR	300 F				
1H/ND1 L10ND3	PRODUCT FORM	STRESS	FREG. (HZ)	DELTA K		FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	UE CRACK GROWTH (MICRO IN/CYCLE)	WTH RATE	.	
				(KSI SORT(IN))	tri Ci	ın.	01	02	30	100
1750F 148 0. 1325F FBR FC 10 1150F AT 100F 74R HOLD BHR, AC	DISK	-0.33	0.33					0. 77		
1750F 14H G. 1325F PHR FC TO 1150F AT 100F 74R HOLD BHR AC	DISK	00 0	0.33					1. 45		
1755F 618 FC 10 1150F AT 100F 748 HOLD BHR. AC	DISK	0.03	0.33					1.86		
1750F 1HR 0. 1325F PHR FC FU 1150F AT 100F 7HR HOLD BHR.AC	DISK	0.23	0.33					1. 09		
1750F 1HR 0. 1323F FIR FC TO 1150F AT 100F 7HR HOLD EHR.AC	DISK	0 20	0.33					3. 23		

Table 5.7.1.14

AFIGUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

				TES	30	50.1	; ; ; ; ; ; ; ;			
				OWTH RAY	50	2.32	22.22	1. 66	2.71	3, 74
FACTUR				UE CRACK GROWTH (MICRO IN/CYCLE)	10		1 ; ; ; ;			
INTENSITY			600 F	FATIGUE CRACK GROWTH RATES (MICHO IN/CYCLE)	N)					
TRESS-			AIR		() ()		i 			
FAFIGUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR	NICKEL-RASE INCONEL 718		ENVIRONMENT	DELTA K	(KSI SGRT(IN))					
E AT DEFINE	NICKEL -			FREQ. (HZ)		0.67	EE 0	0.33	0.33	0.33
CROWIN RAT				STRESS		0 03	EC '0-	00 0	0.25	0.54
AFIGUE CRACK			C - R	PRODUCT FURM	:	FORGED RAR	DISK	DISK	DISK	DISK
<u>.</u>		TEST COMDITIONS	SPECIMEN OBJENIALION C	COUDITIONAL		1750F AC. 1325F SHR FC 10 1150F. HELD JRIR AC	1750F 11HR 0, 1325F CHR FC TO 1150F AT 100F/HR HDLD BHR, AC	1750F 14R Q, 1325F PHR FC 10 1150F AT 100F/HR HPLD BHR, AC	1750F 114R Q, 1375F RHR FC TO 1150F AT LOOF/HR HOLD BUR, AC	1750F 1HR G. 1325F PHR FC TO 1150F AT 100F/HR HOLD BHR, AC

100

Table 5.7.1.15

FATIGUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

	ENVIRONMENT: AIR AT BOOF	PRODUCT STRESS FREG. PELTA K (MICRO IN/CYCLE) FIRM RAIJO (HZ) DELTA K (MICRO IN/CYCLE)	(KSI SORT(IN)) 2.5 5 10 20 50 100	30ED BAR 0.05 0.67 2.08	DISK -0.33 0.33	DISK 0.03 0.33 0.34 2.67	DISK 0.25 0.33	DISK 0, 54 0, 33 5.86	
	<u>u</u>	PRODUCT FORM		FORCED BAR	į	DISK	DISK	DISK	
TEST CONDITIONS	SPECTMEN CREENIATION C	COURTIENTHI		1750F AC, 1325F PHR FC TO 1150F, HELD 18HR AC	1750F 1HR 0, 1325F EHR FC TO 1150F AT 100F 7HR HOLD BHR, AC	1750F 1HR 0, 1325F EHR FC 1D 1150F AT 100F/HR HOLD BIR, AC	1750F 14R Q, 1325F PHR FC TQ 1150F AT 100F/4F HOLD BHR, AC	1750F 1HR 0, 1325F BHR FC TO 1150F AT 100F/HR HOLD BHR, AC	

Table 5.7.1.16

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

	ENVIRONMENT: AIR AT 1000 F	FATIGUE CRACK GROWTH RATES N K (MICHO IN/CYCLE)	T(IN)) 2.5 5 10 20 100	7. 13 101	3. 70	3.36	5. 59	4. BO	6. 62	0 85 8 45
	ENVIR	FREG DELTA K (HZ) DELTA K	(KSI SORT(IN))	0.67	0 33	O 33	0.33	0.33	0 33	0 33
		STRESS RAIIO		0 03	-0.33	00.00	60.03	60.03	0.25	0 54
	C ·· R	PRODUCT FORM		FORGED DAR	DISK	DISK	DISK	DISK	DISK	DISK
TEST COMDITIONS	SPECINEN SPECIAL SOLUTION SPECIAL SPEC	1007.44		1750F AC, 1335F 948 FC 10 1150F, HELD 1848 AC	1750F 118 0, 1325F CHR FC 10 1150F A1 TOREZHP HOLD BHR, AC	1730F 14R 0, 1325F 84R FC FD 1150F AT 100E/18 HOLD 84R, AC	1750F 11M G , 1325F SHR FC 10 1150F AT 100F74R HRLD BHR, AC	1750F 1HR G, 1325F 9HR FC TO 1150F AT 100F/HR HOLD BHR, AC	1750F 114R 0, 13 25F EMR FC 10 1150F AT 100F/MR HOLD BHR, AC	1750F 1HR G. 1325F CHR FC 10 1150F AT 100F/HR HDLD BHR. AC

Table 5.7.1.17

FATIGUE CRACK CROWIN RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

R 1200 F	FATIGUE CRACK GRUMTH RATES (MICRO IN/CYCLF) 5 5 10 20 50 100	0 12	9. 75	9.92	2.12 16.0	8 02 294	3.20 607	11 7 110
ENVIRONHENT - AIR	DELTA K LEVELS: (KSI SORT(IN))						SPEC. THK = 0,08"	SPEC. THK = 0,25"
	FREG. (HZ)	29 0	6. 03	0.33	0.33	0.02	0.33	0 33
	STRESS RALID	60.0	-0 33	0, 03	0.54	00.00	00 '0	00 0
&	PRCIDUCT FORM	FORGED BAR	DISK	DISK C	D I SK	DISK	DISK	DISK
TEST CONDITIONS SPECINEN	CORD111047H1	1750F AC, 1325F PHR FC TG 1150F, HFLD 18HR AC	1750F 148 G. 1325F 84R FC 10 1150F AT 100F/HP HOLD BHR. AC	1750F 14R R, 1325F RHR FC TO 1150F AT 100F/HR HOLD BHR, AC	1750F 14R 0. 1325F 8HR FC 10 1130F AT 100F/HR HOLD BIR. AC	1750F 1148 WG. 1325F 8148, FC 19-1150F 8448, AC	1760F 1HR WG, 1324F CHRS, FC 10 1150F BHRS, AC	1760F 14R WO, 1325F BHRS, FC TO 1150F BHRS, AC

Table 5.7.2.1

	1	1		
	REFER	1973 88187	1973 88187	1973 88187
	DATE	1973	1973	1973
	K(IC) STAN MEAN DEV RT IN)	! !		
	K(IC) MEAN (KSI*SORT IN)	74.00	78.80	65. 60
G	SPECIMEN CRACK 2.5* K(IC) GTAN DEV WIDTH THICK DESIGN LENGTH (K(IC)/TYS)**2 K(IC) MEAN DEV (IN) (IN) (IN) (IN) (KSI*SORT IN) H B A	0 23	0. 68	0.53
ž	CRACK LENGTH () (IN)	1.987	1.049	1.060
INCONEL 718 K(IC)	WIDTH THICK DESIGN (IN) (IN)	CT	s cT	CT (
INC	PECIMEN THICK (IN) B	1. 120	0.746 CT	0.749 CT
BASE		160.0 4.022 1.120 CT	2.002	2.002
NICKEL BASE		160.0	151.0	143.0
	SPECIMEN VIELD ORIENT STRENGTI (KSI)	، ، ب ،	T-L 151.0 OF B HR, AC	S-L OF B HR, AC
	TEST (F)	E .	R. T. AT 1150	R. T. AT 115
	PRODUCT TEST FORM THICK TEMP (IN) (F)	3 00 R.T.	3.30 7. HOL.D	3 30 7. HOLD
	FORM	OLD 18 HF	F T 100F/H	F 3 30 R.T. T 100F/HR.HOLD AT 115
	CONDITION	1325F 8 HR, F F F F T T 1150F, HOLD 18 HR	1325F 9 HR, F 3.30 R.T. FC TO 1150F AT 100F/HR, HOLD AT 1150	1325F 9 HR, F 3 30 R.T. FC 10 1150F AT 100F/HR.HOLD AT 1150

Table 5.7.2.2

			DATE REFER			
		STAN	DEV			
		K(C)	MEAN	ORT IN)		
			K(C)	(KB1+9		
		STAN	DEV			
		K(APP) STAN	K(APP) MEAN	(IN) (IN) (IN) (KSI) (KSI) (KSI+SBAT IN) (KSI+SBAT IN)		
K(C)	CRACK LENGTH OROSS STRESS		XAM	(KSI)	B(MAX)	
INCONEL 718 K(C)	OROSS	-	ONSET	(KSI)	2A(F) S(0) S(MAX)	
CONEL	LENGTH	1 1 1 1 1 1	FINAL	î.	2A(F)	
£	CRACK		INI	Ŝ	2A(0)	
NICKEL BASE		IMEN	THICK	î.	.	
NICKE		SPEC	WIDIH	î	3	
		YIELD	STR	(KSI)		
		TEST	TEMP	(F)		
		L10	HICK	(IN) (F)		
		P30DV	FORM THICK TEMP OR	_		
			CONDITION			

BUCKLING OF CRACK EDGES NOT RESTRAINED

60578 60578 60578 60578 60578 60578 60578 60578 60578 60578 60578 60578	60578 60578 60578 60578 60578 60578 60578 60578 60578 60578 60578 60578
1964 1964 1964 1964 1964 1964 1964 1964	1964 1964 1964 1964 1964 1964 1964 1964
n	
191.1/7.	
186. 79 199. 70 190. 76 190. 76 190. 67 190. 67 190. 67 192. 64 193. 64 193. 64 191. 03 191. 03	203. 22 200. 604 211. 374 211. 374 211. 374 211. 374 202. 27 203. 574 170. 92 170. 92 170. 15 203. 64 203. 64 203. 64
	aaaaaaa
175.8/	
30 22 30 30 30 30 30 30 30 30 30 30 30 30 30	200 4 4 4 1 6 4 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6
00 177. 00 177. 00 178. 00 178. 00 178. 00 178. 00 178. 00 178. 00 178.	00 184 00 185 00 187 00 187 00 187 00 197 00 171 10 166 00 171 00 171 00 171 00 187 00 187
112.0 116.0 116.0 116.0 117.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0	1119. 171. 1118. 126. 126. 126. 127. 117. 177. 177. 177.
11.1.2.1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.	0.8430 0.8430 0.9430 0.9430 1.1750 1.1750 1.1750 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.0
1 270 1 280 1 240 1 240 1 250 1 250 0 750 0 750 0 750 0 750	1 330 1 270 1 270 1 270 1 270 1 230 1 730 1 730
0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028	0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028
000000000000000000000000000000000000000	000000000000000000000000000000000000000
0000000000000000 00000000000000000000	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
423 L-T	320 L-T
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	0000000000000000
30 S	נה כ ר
T AND	7 640 1 640
COLD ROLLED PERCENT AND AGFD	COLD ROLLED REDGE UT AND AGED
ு டி ६	∪ u. <

*NOTE- NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STD. DEV

Table 5.7.2.2 (con't)

		REFER		t 1			80509				-	_														60578	60578	60578					60578
		DATE		1 1 !		1964	1964		1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1964	1044		1704	1964	1564
	STAN	DEV		! !				13.8 8																			3.6						
	5		(KSI+SORT IN)	1 1 !		•		200. 6/13	44*	0	46*	*	16*	CI)	41*	56*	41*	24*	m	- 0	94*	0	54*	39*	84*	37*	209.94#178.5/		6		0		7 224, 6/11, 1
		X(C)	*15X	! !		212.04	189. 2		192.94	173.40		182. 54	185. 1	180.32		192. 5	182.4	167. 2	176.38	181.66	192.9	176.70	198. 5		192. B	201.5	6 60	233, 26			235. 75	17. 1	227. 47
	NATO	DEV	_	i 1 1		N		89 .	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	N	9.6	N	ה	4 (9 1		. 9
	KCAPP	MEAN	(KSI#8GRT IN)	l ! }				180.47									•				_						161.4/						197 0/
	-	K(APP))S + 1 S	1		2. 42	0.88		167. 12	155, 12		165.62		2 20		158.98	157, 34#	151.99	149.60	163.25	1.80			160.62	6. 22	2.67	5, 14	69.0	2	5 6	E	0.77	9.31
	<u>α</u> :			1 	ŒD		90 170.		00 16				-	80 152.		• •				00 16			00 178.	00 16	00 166.	00 162	09 175	200					90 189.
Ç)	BTRESS	A X	(KSI)	l ; 1	IRAIN	129.00	91.9		112.0	83.0	116.0	111.0	138.0	91.6		93.		138.0	80.10	110.0	148.0	85.8	118.0	104.0	112.0	108.0	114.0	44					60.9
718	9R03S	ONSET	(KB1) 5(0)	1 1 1	CRACK EDGES NOT RESTRAINED	1	1		-	;		-		1		1		-	-		1		1	1		-	-	į			1	1	;
INCONEL 718	CRACK LENGTH	FINAL	(IN) 2A(F)	l ! 1	EDGES	1.450	1.950		1.550	1.980	1.480	1.450	1.050	2.100	0.840	2, 150	0.940	0.880	2. 100	1.460	1.000	1.950	1.500	1.650	1.550	1.730	1.700	E 680				6. 680	7. 200
Z	CRACK	INIT	(IN) 2A(D)	1 1 1	CRACK	1, 250	1. 720		1,250	1. 730	1, 230	1, 250	0.730	1. 720	0.720	1.720	0. 720	0.740	1, 730	1.240	0. 730	1. 720	1, 280	1, 320	1, 240	1.270	1, 310	5.480	400		0.470	5, 480	5.470
NICKEL BASE	1.1ND#1.7HGG1	THICK	Î.	! !	BUCKLING OF	0.028	0.028		0.028	0.028	0, 028	0,028			0,028		0.028			0,028	0.028	0.028		0.028		0.028	0.026	0.026			0.026		0.026
NICKE		WIDTH	2 2 3	† † † †	BUCKI	4.010	4, 010		4 000	4.000	4,000	4 000	4, 000	4,000	4,010	4.010	4,010	4,010	4.010	4,010	4,010	4, 010	4.010	4, 010	4, 010	4.020	4, 020	17 930		000		18, 080	18.080
	V 7 E1 D	STR	(KS1)	1			259.0		218.0	218.0							218.0		218.0			218.0		218.0	218.0	218.0		218.0				218.0	
	7	3 8		1		1-1			L-1																			1-1					
	1691		(F)	1 t		320 L-T			⊢																			F					
	- Pannin T.		(N)	1		- 60 0	0 03		60	0 03		0 03								0 03				0 03	0 03	0 03	0 03	60				0 03	
		FORM		1 1 1 1		ED 30 S	Q		ED 30 S	9																		S 08 02		è			
		CONDITION		1 1 1 1		COLD ROLLED	PERCENT AND	AGED	COLD ROLLED	PERCENT AND	AGED																	COLD POLLED	DEDCENT AND		AGED		

*NOTE- NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR 9TD. DEV

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.1 INDICATING EFFECT

	1325F 8H	BE INCONEL RS, FC TO 1150F ,L.H.A.								
DELTA (KSI*IN*			DA/DN (10**-6 IN./CYCLE)							
(MDIRIME)	*1/2/ . :	Α	В	С	D					
	:	R= +0. 08	R=+0. 50							
DELTA K B: MIN C: D:		. 300	1. 40							
		6. 76 9. 68	2. 17 4. 27 7. 07 10. 9 16. 1 34. 0 71. 4 152.							
DELTA K B: MAX C: D:		27. 2	689.							
ROOT MEAN S PERCENT EF		6. 41	11.84							
SUMMARY			1							

Figure 5.7.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE INDICATING EFFECT

CONDITION: ENVIRONMENT	1325F 8HRS T: R.T. /L	INCONEL , FC TO 1150 . H. A.			
DELTA **KSI*IN	K :		DA/DN (10**-	6 IN. /CYCLE)	
(NOTATIVA)	*1/2/ : :	Α	В	С	D
	:	R=+0. 08			
DELTA K B: MIN C: D:	21.31 :	1. 56			
	25. 00 : 30. 00 : 35. 00 : 40. 00 : 40. 00 : 70. 00 : 50.	8.68 14.3 32.3 59.0 107.			
DELTA K B: MAX C: D:	86. 24 : : : :	790.			
ROOT MEAN S					
PREDICTION RATIO	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0	1			

Figure 5.7.3.2

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.3 INDICATING EFFECT

		UF	ENVIRUNMEN	! 	
		E INCONEL 1325 F BHR F		HELD 18HR AC	
DELTA			DA/DN (10	**-6 IN./CYCLE)	
(KSI*IN*	:	Α	В	С	D
		E≕ R.T. aIR			
DELTA K B: MIN C: D:	14.22 : : :	. 612			
	16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 :	5. 13 7. 46			
DELTA K B: MAX C: D:	47 . 95 : : : : : : : : : : : : : : : : : :	20. 1			
ROOT MEAN S PERCENT EF	ROR		gana gana gana gana dalah dan sasa sasa salah dana i		
LIFE PREDICTION RATIO	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0				

Figure 5.7.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.4 INDICATING EFFECT

		BASE INCONE AC, 1325F BHR F	L 718 C TO 1150F, HELI	D 18HR AC	
DELTA (KSI*IN*		:	DA/DN (10**-	5 IN. /CYCLE)	
(V21*1N*)	*1/E/	A	В	С	D
			E≕+ 800F AIR	E=+1000F AIR	
DELTA K B: MIN C: D:	19. 39		2. 06	10.8	
	25. 00 30. 00 35. 00	: 8.86 : 13.3	2. 24 3. 95 6. 35 9. 71 14. 4 30. 6	12. 3 17. 9 23. 7 28. 4	
DELTA K B: MAX C: D:	57. 84		53. 8	28. 5	
ROOT MEAN S PERCENT ER		3. 58	4. 18	3. 30	
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0, 5-0, 0, 8-1, 1, 25-2,	8 25 J 0	1	1	

CONDITION/HT: 1750F AC. 1325F 8HR FC TO 1150F. HELD 18HR AC NICKEL Ø. Ø6"TH SHEET YIELD STRENGTH 174. Ø KSI FORM. BASE ULT STRENGTH: 204.1 KSI SPECIMEN TYPE: CCP SPECIMEN THK: Ø. Ø61" ORIENTATION SPECIMEN WIDTH: 1. 995-STRESS RATIO: +0.05 2.000" FREQUENCY: INCONEL Ø. 67 HZ REFERENCES:HDØ17 718 $\Delta K (MPA \sqrt{m})$ $\Delta K (MPA \sqrt{m})$ 100 40 10 40 100 10 ENVIRONMENT + 800° F. ENVIRONMENT: + 600° F. **(B)** 10 0 AIR 10² 10-2 10-1 10 -1 10-3 10⁻³ 10 2 10⁻² da:dN (in/cycle) da dN (mm cycle) 10 4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁴ 10⁻⁴ 10⁶ 10⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10.6 10⁻⁸ 10⁻⁸ 10 40 10 40 100 100 ENVIRONMENT +1000 F. (C) \bigcirc 10 0 ENVIRONMENT: 10 (10 2 10² 10^{-1} 10 10⁻³ 10⁻³ 10 2 da.dN (in. cycle) 10 ' 1a dN (mm-cycle) 10.4 10⁻³ 10 10⁻⁵ 10⁻⁴ 10 : 10^{.6} 10⁶ 10 5 10 10 10 10 10 40 100 40 10 100 ΔK (KSI \sqrt{m}) ΔK (KSI $\sqrt{\ln}$) Figure 5.7.1.

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.5 INDICATING EFFECT

		INCONEL 1325 F 8HR F	. 718 C TO 1150F, HE	ELD 18HR AC	
ENVIRONMEN	IT: R.T., L	AB AIR			
DELTA			DA/DN (10**-	-6 IN. /CYCLE)	
(KSI*IN*	*1/2/ .	A	В	С	D
	; ;	R=+0. 05			
DELTA K B: MIN C: D:	:	. 438			
	16.00 : 20.00 : 25.00 : 35.00 : 40.00 : 50.00 :	11.2 18.0			
DELTA K B: MAX C: D:	:	89. 9			
ROOT MEAN PERCENT E					
PREDICTION RATIO	0.0-0.5	1			

Figure 5.7.3.5

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.6 INDICATING EFFECT

CONDITION: ENVIRONMENT	1750F AC,	AIR	. 718 FC TO 1150F,	HELD 18HRS AC	
DELTA	K :		DA/DN (10**-	6 IN. /CYCLE)	
(V21*1V**	+1/2) : :	A	В	С	D
	: :	R=+0. 05	R≃+0. 33	R=+0. 50	
DELTA K B: MIN C: D:	9.19 :	. 693	. 471	. 615	
	16.00 : 20.00 :	1. 77 3. 23 5. 55 10. 6 20. 1	1. 16 2. 17 4. 06 7. 71 14. 9		
DELTA K B: MAX C: D:			18. 8	11. 7	
PERCENT ER	ROR	4. 84		4. 04	**
LIFE PREDICTION	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25 1. 25-2. 0		1	1	

Figure 5.7.3.6

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.7 INDICATING EFFECT

		ASE INCONE C,1325F BHRS,	L 718 FC TO 1150F, H	ELD 18HRS, AC	
	K	:	DA/DN (10**-	6 IN. /CYCLE)	
(KSI*IN*	(1/2)	: : A	В	С	D
			E=+1000F AIR, 001HZ		
A: DELTA K B:		: . 386			
MIN C:		:		2. 11	
		. 549		2. 27	
		: 1.23		4. 90	
		: 3. 03		10. 3	
		6. 43		17. 2	
	35. 00	: 11.9			
A: DELTA K B:		: 18. O			
MAX C:		•		23. 2	
D:	<u>.</u>	: :			
ROOT MEAN S PERCENT ER		5. 47	0. 00	3. 25	. هم بياه هم. منه _{حك} شو شو چه هم دين _و ي
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	8 25 1 0	Since and Miles was upon apper bigs, more dann dann dann dann fram fram over over	1	

CONDITION/HT: 1750F AC, 1325F 8HRS, FC TO 1150F, HELD 18HRS, AC NICKEL Ø. 50"TH PLATE FORM: YIELD STRENGTH: 150.5 KSI BASE SPECIMEN TYPE: CT ULT. STRENGTH: 191. 3 KSI SPECIMEN THK: 0. 299~ 0. 300" **ORIENTATION** SPECIMEN WIDTH: 1. 151-STRESS RATIO: +0.05 INCONEL FREQUENCY: REFERENCES:HDØ15 718 ΔK (MPA √m) ΔK (MPA √m) 100 40 100 10 40 10 ENVIRONMENT: +1000 F. ENVIRONMENT: AIR. 67HZ 600 F. 10 ⁰ AIR, .001HZ 10-2 10⁻² 10⁻¹ 10⁻¹ 10⁻³ 10⁻³ 10⁻² 10⁻² da/dN (in/cycle) 10 10 4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ da/dN 10⁻⁴ 10-4 10⁻⁶ 10⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10-8 10⁻⁸ 40 100 40 100 10 ENVIRONMENT: +1000° F. **©** (D) 10 ⁰ ENVIRONMENT: 10 ⁰ 10² 10² 10⁻¹ 10-1 10⁻³ 10⁻³ 10⁻² 10⁻² da/dN (in/cycle) 10⁴ 10 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10-4 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 40 40 100 10 100 10 ΔK (KSI √in) ΔK (KSI √in)

Figure 5.7.3.7

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.8 INDICATING EFFECT

MATERIAL: I CONDITION:		C, 1325F			F, HELD		
DELTA **KSI*IN		:		DA/DN	(10**-6	IN. /CYCLE)	
(VD1#1M#.	*1/2/	: A	•	E	1	С	D
						E=+1000F AIR	E=+1200F AIR
A: DELTA K B:	16. 56		743	1.	49		
MIN C: D:	13. 60 16. 93					1.44	11.1
	20. 00 25. 00 30. 00 35. 00	1. 2. 5. 5. 7. 17.	33 18 97 3	15. 24.	87 0 2	2, 33 5, 01 11, 2 20, 7 33, 5	
A :	50. 00	: 27.: 58.: 95.	8	34.	7	47. 0	
DELTA K B: MAX C: D:	44. 06 41. 58	: :		43.	5	51. 1	75. 6
ROOT MEAN S		5. 7	1	7. 2	2	2. 95	4. 81
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. (0. 8-1. (B 25 1 0		1		1	1

Figure 5.7.3.8

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.9 INDICATING EFFECT

MATERIAL: NICKEL BASE INCONEL 718 CONDITION: 1750F AC, 1325 F BHRS, FC TO 1150F, HELD 18HRS AC ENVIRONMENT: + 800F, AIR							
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)					
(V21 ± 114 ± ±	: :	A	В	С	D		
	:	R=+0. 33	R=+0. 50				
DELTA K B: MIN C: D:		. 499	. 147				
			. 220 . 362 . 548 1. 39 2. 68 5. 14				
A: DELTA K B: MAX C: D:	29. 34 : 23. 56 : : :	14. 1	8. 10				
ROOT MEAN SQUARE PERCENT ERROR		3. 82	5. 67				
SUMMARY	0. 5-0. 8 0. 8-1. 25	1	1				

Figure 5.7.3.9

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.10 INDICATING EFFECT

	1750F AC.		718 FC TO 1150F, H	HELD 18HRS AC		
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)				
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	:	A	В	C	D	
	:	R=+0. 67				
DELTA K B: MIN C: D:	7. 74 : : : :	. 523				
		2. 42				
DELTA K B: MAX C: D:	18.84 :	6. 03				
ROOT MEAN SQUARE PERCENT ERROR						
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25	1				

Figure 5.7.3.10

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.11 INDICATING EFFECT

MATERIAL: NICKEL BASE INCONEL 718 CONDITION: 1750F AC,1325F BHRS, FC TO 1150F, HELD 18HRS, AC							
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
(1/01 - 1/4	:	A	В	С	D		
	:	E=+1200F AIR					
DELTA K B: MIN C: D:	20. 23 : :	9. 05					
	30.00 : 35.00 : 40.00 :	17.8 31.1 48.8 70.7 125.					
DELTA K B: MAX C: D:	55. 76 : :	160.					
ROOT MEAN SQUARE PERCENT ERROR		2. 88					
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.5-0.8 0.8-1.2 1.25-2.0	3 25 1 0					

Figure 5.7.3.11

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.12 INDICATING EFFECT

MATERIAL: CONDITION:					HELD 18HRS AC	
DELTA K (KSI*IN**1/2)		:		DA/DN (10**	-6 IN. /CYCLE)	
(KSI*IN*	*1/2)	:	A	В	c	D
		_		E=+ 800F AIR, 6. 67HZ		
DELTA K B: MIN C: D:	15. 64	: : : : : : : : : : : : : : : : : : : :	1.01	. 7 49		
	16.00 20.00 25.00 30.00 35.00 40.00 50.00	: : : : : : : : : : : : : : : : : : :		. 820 1. 98 4. 69 9. 30 16. 3 25. 9		
DELTA K B: MAX C: D:			5. 9	32. 5		
ROOT MEAN PERCENT E	RROR		56	4. 55		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	5 8 25 0	1	1		

Figure 5.7.3.12

FATIGUE CRACK CROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.13 INDICATING EFFECT

DELTA K (KSI*IN**1/2)		:	DA/DN (10**-	6 IN. /CYCLE)		
(1/21**	T W **	₹1/≈/	: A	B	С	D
			: E=+ 800F :AIR	E=+1000F AIR		
		16. 57 15. 20	: 1.25 :	1. 43		
		25. 00 30. 00 35. 00 40. 00	: 2.93 : 6.96 : 13.1 : 21.6 : 33.1 : 69.4	1. 73 3. 78 7. 63 13. 2 20. 8 31. 1 63. 9 122.		
DELTA K MAX	B:	5 6. 07 66 . 35	: 104. : :	181.		
PERCEN	T EF	ROR	5. 56			
LIFE PREDICT RATIO	ION RY	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 1 0	5		

CONDITION/HT: 1750F AC. 1325F SHRS. FC TO 1150F. HELD 18HRS AC NICKEL Ø. 50"TH PLATE YIELD STRENGTH: 129. 0- 150. 5 KSI FORM: BASE ULT. STRENGTH: 160.1- 191.3 KSI SPECIMEN TYPE: CT SPECIMEN THK: Ø. 476- Ø. 478" ORIENTATION: L-T - STRESS RATIO: +0.05 SPECIMEN WIDTH: 1. 996-INCONEL FREQUENCY: Ø. 67 HZ REFERENCES:HDØ15 718 ΔK (MPA √m) ΔK (MPA √m) 100 10 40 100 10 40 ENVIRONMENT: +1000 F. 800° F. ENVIRONMENT: + 10-2 10-2 10⁻¹ 10⁻¹ 10⁻³ 10⁻³ 10⁻² da/dN (in/cycle) 10-4 10-4 10⁻³ 10⁻³ 10⁻⁵ 10 10⁻⁴ 10-4 10⁻⁶ 10⁶ 10⁻⁵ 10⁻⁵ 10-7 10-7 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 10 40 100 10 40 100 ENVIRONMENT: (D) **(C)** Lilia 10 ⁰ ENVIRONMENT: 10 ⁰ 10-2 10-2 10^{-1} 10⁻¹ 10-3 10⁻³ 10⁻² 10⁻² da/dN (in/cycle) 10-4 104 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10⁻⁴ 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10 40 40 100 10 100 ΔK (KSI √in) ΔK (KSI √in)

Figure 5.7.3.13

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.14 INDICATING EFFECT

OF STRESS RATIO

		UP	SIRESS RAITU		
		INCONEL 1325 F 8HR F	718 C TO 1150F, HE	LD 18HR AC	
ENVIRONMEN'	T: R.T., L	AB AIR			
DELTA (KSI*IN*	K :		DA/DN (10**-	6 IN./CYCLE)	
/ VOT v 1 lA v 1	:	A	В	С	D
	:	R=+0. 05			
DELTA K B: MIN C: D:	13. 06 : : :	190			
	16.00 : 20.00 : 25.00 : 30.00 : 35.00 : 40.00 :	3. 70 6. 86 11. 7 18. 7			
DELTA K B: MAX C: D:	59 . 94 : : : : : : : : : : : : : : : : : : :	80.8			
ROOT MEAN S	ROR	9. 07			
LIFE PREDICTION RATIO SUMMARY	0. 8-1. 25	1			

Figure 5.7.3.14

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.15 INDICATING EFFECT

		E INCONEL 1325F BHR FO	_ 718 C TO 1150F, HELD	18HR AC	gain dan dan dan hin agan gali nap dan dan din dan dan
DELTA (KSI*IN*		,	DA/DN (10**-6	IN. /CYCLE)	
(1/21 = 114=)	:	Α	B	С	D
	:				
		E=+ 600F	E=+ 800F AIR	E=+1000F	E=+1200F
	: A.	IR .	HIK	MIK	MIK
A:	16.43 :	. 786			
DELTA K B:			. 849		
MIN C:				1. 22	5 00
D:	14.06 :				3. 09
	13. 00 :			1.38	
	16.00 :		. 993	3.06	4.71
	20.00:	1.44	2.05	5. 93	7. 30
	25 . 00 :	3. 28	4. 40	10.7	17. 4
	30.00 :	6. 61 11. 5	8. 32	17. 9	28. 2
	35 . 00 :	11. 5 17. 4	14.3		41.7
	40 .00 : 50 .00 :	17.4	22. 7 48. 6		
	50 . 00 :		40. 0		
A:	41.28 :	19. 0			
DELTA K B:			54. 9		
MAX C:				20. 2	
D:	38 . 42 : :				52. 5
ROOT MEAN S	ROR		5. 36		4. 14
PREDICTION	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0		1	1	i

Figure 5.7.3.15

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.16 INDICATING EFFECT

DELTA K (KSI*IN**1/2)		:	DA/DN (10**-6 IN./CYCLE)					
(V) T x I I d x x	1/2/	: A : E= R.T.	В	С	D			
		:LAB AIR						
A: DELTA K B:	16. 57	i. 36						
MIN C:		· :						
D:		:						
	20. 00	: : 2.55						
	25. 00							
	30.00	: 8. 74						
	35 . 00							
	40 . 00							
	50.00							
	60 . 00	: 98.4						
A:	63. 69	: 128.						
DELTA K B:		:						
MAX C:		:						
D:		:						
		:						
ROOT MEAN S PERCENT ER		7. 64						
LIFE	0-0-0		. شر سیاد سال جدر برید رسید برید با با است سیاد شده ها جدا					
PREDICTION								
	0.8-1.							
SUMMARY								
	>2.							

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.17INDICATING EFFECT

		SE INCONEL , 1325F 8HR FC	718 TD 1150F, HELD	18HR AC	
DELTA (KSI*IN**	K :		DA/DN (10**-6	IN. /CYCLE)	
	:		В	С	D
			E≃+ 800F AIR		
DELTA K B:	17. BO :	1. 38	1. 72		
MIN C: D:	16. 17 : 16. 10 :			3. 48	12. 5
	25. 00 : 30. 00 : 35. 00 : 40. 00 :		2.88 6.91 12.9 21.0 31.2	7. 13 12. 9 20. 5 31. 0 45. 9	21. 0 36. 4 55. 6 76. 1 95. 3
DELTA K B: MAX C:	42. 93 :	74. 9	38. 3	150.	110.
ROOT MEAN S PERCENT ER		4. 54	5. 17	4. 81	4. 86
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0, 5-0, 8 0, 8-1, 2 1, 25-2, 0	5 1	1	1	1

Figure 5.7.3.17

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.18 INDICATING EFFECT

		C, 1325F 8H	718 4R FC TO 1150F,		
	‹ :		DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**)	1/2) :	Α	В	С	D
			E=+1200F AIR, . 67HZ		
DELTA K B: MIN C: D:	12. 11 : 28. 72 : :	. 0962	21. 7		
	13.00 : 16.00 : 20.00 : 25.00 : 30.00 : 35.00 : 40.00 :	. 632 1. 57 3. 83 7. 06 11. 7	25. 1 37. 7 49. 0		
A: DELTA K B: MAX C: D:	45.38 : 45.46 : :	35. 7	60.6		
ROOT MEAN SO PERCENT ERF		4. 97	3. 70		
LIFE PREDICTION RATIO SUMMARY 1	0, 5-0, 8 0, 8-1, 25 1, 25-2, 0	1	1		

Figure 5.7.3.18

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.19 INDICATING EFFECT

OF STRESS RATIO

		٦U 	SIKESS KAITU		
CONDITION:		INCONEL AC, 1325F 8	718 HR FC TO 1150F	F, HELD 18HR	AC
ENVIRONMENT	: R.T., L	AB AJR			
DELTA (KSI*IN**			DA/DN (10**-	-6 IN. /CYCLE)	
(101-114	:	A	В	С	D
	:	R=+0. 05			
A: DELTA K B: MIN C: D:	16. 56 : : :	1. 63			
	20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 :				
DELTA K B: MAX C: D:	56. 03 : : : :	232.			
ROOT MEAN S PERCENT ER		5. 04			
SUMMARY	0. 5-0. 8 0. 8-1. 25	1			

Figure 5.7.3.19

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.20 INDICATING EFFECT

	NICKEL E 1750F 1 (VIM-VA		EL 718 BHR FC TO 1150F	, HELD 18HR A	c
	 К	·	DA/DN (10**-	6 IN. /CYCLE)	
(KSI*IN*	*1/2)	: : A	В	С	D
		: E=+ 600F	E=+ 800F	<u>.</u> .	_
DELTA K B: MIN C:	13. 42	:	1. 37	1. 93	20. 1
	25. 00 30. 00	: 2. 01 : 4. 34 : 8. 72 : 14. 0 : 28. 9	2.70 5.66 11.1 19.4 32.3 52.9	2.06 3.88 7.07 11.9 17.2 22.5	34. 6 59. 4 83. 4
DELTA K B: MAX C: D:	41. 21	:	59. 6	27. 2	89. 9
ROOT MEAN S PERCENT ER		4. 62	3. 55	7. 73	2. 35
SUMMARY (NP (NA)	0. 5-0. 0. 8-1. 1. 25-2.	8 25 1 0	1	1	1

Figure 5.7.3.20

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.21 INDICATING EFFECT

OF STRESS RATIO

— — .	1750F 1 100F/H	R HOLD BHR, AC	L 718 R FC TO 1150F AT		
DELTA K (KSI*IN**1/2)			DA/DN (10**-6	IN. /CYCLE)	
(V21×1N×	*1/2/	A	В	c	D
		: R=+0. 03			
A: DELTA K B: MIN C: D:		: 2. 25 : :			
	25. 00 30. 00 35. 00	4.80 9.24 14.7 21.9			
DELTA K B: MAX C: D:	47 . 47	: 56. 9 : :			
ROOT MEAN PERCENT E		8. 74	*		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	8 25 0			

1750F 1HR Q, 1325F 8HR FC TO 1150F AT 100F/HR HOLD 8HR, AC CONDITION HT. NICKEL FORM 1.19"TH DISK YIELD STRENGTH 150. Ø KSI BASE SPECIMEN TYPE KB BAR ULT STRENGTH ORIENTATION C-R Ø. 25Ø" SPECIMEN THK FREQUENCY ENVIRONMENT SPECIMEN WIDTH Ø. 900-Ø. 33 HZ 0.902" INCONEL +1000° F. AIR REFERENCES GEDØ5 718 $\Delta K (MPA \sqrt{m})$ ΔK (MPA \sqrt{m}) 10 40 100 10 100 TITLE **B**) STRESS RATIO STRESS RATIO +0.03 10 10 크 ¹⁰ 10 10 da dN (in cycle) 104 10 10 (C) D STHE STHA 10 <u>z</u>

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DAYA ASSOCIATED WITH FIGURE 5.7.3.22 INDICATING EFFECT

	1750F 1	ASE INCONEL HR Q, 1325F BHR HBLD BHR, AC		Т	
DELTA (KSI*IN*			DA/DN (10**-	6 IN./CYCLE)	
		A	В	С	D
			E=+ 600F AIR	E=+ 800F AIR	
DELTA K B			1.06	1.20	
	14 00 20 00 25 00 30 00 40 00 50 00	9 46	1,20 2,12 4,47 8,76 15,5 24,8	1, 42 2, 42 5, 00 9, 86 17, 9 29, 7 64, 2	
DELTA K B MA: C D	_	23. 7	48. 5	64. 3	
- TARAN.		26 22	48. 34	19. 07	
- : : · · · · · · · · · · · · · · · · ·	0-1 5-1 7-9-1	Ę			

Figure 5.7.3.22

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.23 INDICATING EFFECT

DELTA K : (K51*IN**1/2) :		:	DA/DN (10**-6	IN. /CYCLE)	
11102		: A	В	С	D
		E=+1000F	E=+1200F AIR		
DELTA K B: MIN C: D:		: 96 : :	8. 13		
	35 . 00	: 3.70	9, 75 16, 8 28, 8 45, 6 65, 4		
A: DELTA K B: MAX C: D:		: 8 9. 9 : : :	9 5. 9		
ROOT MEAN S PERCENT EF		10. 33	19. 70		. Destr alle 1622 gan gan 1624, wi

Figure 5.7.3.23

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.24 INDICATING EFFECT

			T	
DELTA K (KSI*IN**1/2)	:	DA/DN (10**-	6 IN./CYCLE)	
	: A	В	С	D
		E=+ 600F AIR	E=+1000F AIR	
A: 15.0	9 : . 485			
DELTA K B: 15.8		. 58 9		
MIN C: 14.9 D:	2 : : :		1. 28	
16. 0	0 : . 5 7 5	. 626	1. 70	
	0: 1.45	1.66	3. 36	
	0: 3.38	3. 66	5. 95	
	0: 6.13	7. 64		
	0: 11.0			
40. 0	0 : 17.1	19. 9	30. 3	
A· 44 0	5 : 2 7. 9			
DELTA K B: 42.5		21. 5		
MAX C: 45.9			43. 4	
D:	: :			
ROOT MEAN SQUARE PERCENT ERROR		12. 85	7. 47	
LIFE 0.0- PREDICTION 0.5- RATIO 0.8- SUMMARY 1.25- (NP/NA)	D. 5 D. 8 1. 25 ⊋. 0			

Figure 5.7.3.24

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.25 INDICATING EFFECT

CONDITION: 1750F	BASE INCONE 1HR Q, 1325F 8H HR HOLD 8HR, AC		т	
DELTA K		DA/DN (10**-	6 IN. /CYCLE)	
(KSI*IN**1/2)	: : A	В	С	D
		F=+ 800F AIR		E=+1200F AIR
A: 19.8 DELTA K B: 7.1 MIN C: 14.1 D: 12.9	.9 :	. 146	1. 84	2. 42
8. 0 9. 0 10. 0 13. 0 16. 0 20. 0 25. 0 30. 0 40. 0	00 : 00 : 00 : 00 : 00 : 00 : 00 : 00	. 149 . 221 . 346 . 749 1. 33 2. 67 5. 99 12. 4 23. 0 38. 5	1.86 2.59 6.06 14.5 20.9 27.6	2, 44 5, 51 7, 92 23, 4 42, 7 64, 3 84, 3
A: 47.2 DELTA K B: 40.1 MAX C: 49.0 D: 45.6)1 :	38. 9	65 . 2	114.
ROOT MEAN SQUARE PERCENT ERROR	6.12	15. 70	21. 44	21.88
LIFE 0.0- PREDICTION 0.5- RATIO 0.8- SUMMARY 1.25- (NP/NA)	·0. 8 ·1. 25 ·2. 0			

Figure 5.7.3.25

1ABLE 5.7.2.26

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.26 INDICATING EFFECT

DELTA (KSI*IN*)			DA/DN (10**-	-6 IN. /CYCLE)	
(VDIRINA)	:	A	В	С	a
		E=+ 300F AIR	E=+ 600F AIR	E=+ 800F AIR	E=+10008 AIR
A: DELTA K B:	17 . 33 :	. 523	1. 33		
MIN C: D:				1. 36	2. 60
	13.00 :				1.81
		. 395	2.71	1.41	2. 69 5. 62
			2. 71 6. 74		
			13.8		23. 0
	35 . 00 :		24. 5		54. 6
		12. 0	71 E		
DELTA K B: MAX C:			31. 5	21. 3	
D:				24. 3	59. 0
ROOT MEAN S PERCENT ER		21. 76	16. 02	15. 70	20. 84

Figure 5.7.3.26

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.27 INDICATING EFFECT

•	1750F 1HR	INCONEL Q, 1325F BHF DLD BHR, AC	- 718 R FC TO 1150F A	ìΤ	
DELTA			DA/DN (10**-	6 IN./CYCLE)	
(KSI*IN*	(172) : :	A	В	С	Ð
			E=+ 600F AIR		
DELTA K B: MIN C: D:		. 849	1. 09	. 54 7	
		1.08	1. 07 1. 95 3. 74	1, 12 3, 31 5, 86	
DELTA K B: MAX C: D:		6. 18	10. 2	8. 80	
RODT MEAN S		38. 69	24. 20	32. 95	
SUMMARY	0. 5-0. B 0. 8-1. 25				

Figure 5.7.3.27

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.28 INDICATING EFFECT

	1750)F 1	HR Q,	INCONEL 1325F BHR BHR, AC	718 FC TO 1150F AT		
DEL.T/ (KSI*IN)	-		:		DA/DN (10**-6	IN. /CYCLE)	
(1,01 - 111			:	A	В	С	D
			: :AIR		E=+1200F AIR		
DELTA K B: MIN C: D:	9.	26 80	:	. 412	. 348		
	10. 13. 16.	00 00 00 00	: :	. 857 2. 19 4. 03 8. 45	. 287 2. 12 5. 73 8. 45 16. 0		
A: DELTA K B: MAX C: D:	22.			14.3	22. 0		
ROOT MEAN PERCENT E		E		18. 59	24. 72		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5 0. 5	9-0 9-1 9-2	8 25 0				

Figure 5.7.3.28

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.29 INDICATING EFFECT

		1HR W		. 718 RS, FC TD 1150F		
DEI TA		:		DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN*)	*1/4)	:	A	В	С	D
		: : : LAB	E= R.T. AIR,.33HZ	E=+1200F AIR, 33HZ	E=+1200F AIR, 02HZ	E=+1200F AIR,5MIN HOLD
A :			. 0371			
DELTA K B:				. 172		
MIŅ C:					7. 05	
D:	19. 03	; ;				. 615
	13. 00		. 0525			
	16.00			. 692		
	20.00		1, 02 2, 86	3. 20	8. 02	1. 30
	25.00		ሪ . 8 5	9. 59	27. 7	18. 0
	30.00		14.7	18. 4	ሬ1. 0	87. 8
	35.00) :	32. 3	28. 3	106.	300.
	40.00			38. 5	160.	753 .
	50.00) :		6 0. /	294.	
	60 . 00) :			472.	
	70 . 00	· :		130.	719.	
A:	39 19	:	324			
DELTA K B:				136.		
MAX C:					9 78.	
D:	41.00	; ;				1205.
POOT MEAN	COLIARE		19 82	18. 82	20 92	29 11
PERCENT ER				16. 02		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.5-0 0.8-1 1.25-2	. 5 . 8 . 25	an a			

Figure 5.7.3.29

FATIGUE CRACK ORDWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.30 INDICATING EFFECT

DE ENVIRONMENT

			Q,	LIVERNO	1141162741		
MATERIAL. N CONDITION:						BHRS AC	
DEL TA (KSI*IN**		:		DA/DN	(10**-6	IN. /CYCLE)	
		. A	i		B	С	D
		: E=+1 :AIR	500L				
DELTA K B: MIN C: D:	13, 48	:	203				
	20, 00 25, 00 30, 00 35, 00	2. 11. 24. 37. 51. 67.	7 2 5 6				
A: DELTA K B: MAX C: D:		: 167. : : :					
ROOT MEAN S PERCENT ER		17. 5	4				
L)FE PREDICTION RATIO SUMMARY (NP/NA)	0, 5-0, 0 8-1, 1, 25-2,	8 25 0		-			

1. A

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.31 INDICATING EFFECT

DELTA K : (KSI*IN**1/2) :		•	200 214 (10 = x)	6 IN. /CYCLE)	
	121	: A	В	С	D
		: : E-+1200F :AIR			
A: DELTA K B: MIN C: D:	14. 80	1 . 41			
	20.00 25.00 30.00 35.00 40.00				
A: : DELTA K B: MAX C: D:	55 . 0 0	112.			
ODT MEAN SQU PERCENT ERRI	DR				

Figure 5.7.3.31

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.32 INDICATING EFFECT

		ASE INCONE DF, 1360F 9HRS,			
	У К		DA/DN (10**-	6 IN. /CYCLE)	
(K21*IN*	+¥1/2)	A	В	С	D
			E=+ 400F L. H. A. , 6HZ		
DELTA K B:	25. 53 25. 20		. 175	. 345	
	4 0. 00 5 0. 00	. 840 2. 09 3. 73 9. 99 21. 2		4.12 11.4	
DELTA K B:	68. 07 62. 69		48. 0	27. 2	
ROOT MEAN PERCENT E		6. 46	6. 32	9, 48	
PREDICTION RATIO	0. 8-1. 1. 25-2.	8 25 i 0	1	1	

Figure 5.7.3.32

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.33 INDICATING EFFECT

MATERIAL: NICKE CONDITION: ST 1				
DELTA K (KSI*IN**1/2)	: :	DA/DN (10**-	-6 IN./CYCLE)	
(NOI*10**1/2/		В	С	D
	: E= R. T. : L. H. A.	E=+ 400F L. H. A.		
A: 19. DELTA K B: 17. MIN C: D:	84 : .710 85 : : :	. 7 3 8		
25. 30. 35. 40.	00 : .773 00 : 3.38 00 : 6.69 00 : 10.8 00 : 16.0	5. 47 12. 1 20. 2		
A: 59. DELTA K B: 49. MAX C: D:	27 : 47.0 30 : : :	4 9. 8		
ROOT MEAN SQUAR PERCENT ERROR	E 3.11	6. 49		
LIFE 0.0 PREDICTION 0.5 RATIO 0.8 SUMMARY 1.25 (NP/NA)	-0. B -1. 25 1 -2. 0	.1.		

Figure 5.7.3.33

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.34 INDICATING EFFECT

MATERIAL: NICKEL CONDITION: ST 18	50F, 1360F 9HRS			
DELTA K (KSI*IN**1/2)	:	DA/DN (10**-	6 IN./CYCLE)	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		В	С	D
		E= R. T. S. T. W. , 1HZ		
A: 26.2 DELTA K B: 28.9 MIN C: 31.5 D:		. 394	1. 18	
35. 0 40. 0 50. 0	O :			
A: 67.3 DELTA K B: 81.3 MAX C: 95.9 D:		306.	225.	
ROOT MEAN SQUARE PERCENT ERROR			8. 36	
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2	0. 5 0. 8 1 1. 25 2. 0	1	i	

Figure 5.7.3.34

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.35 INDICATING EFFECT

		SE INCONE 1360F 9HRS,			
DELTA (KSI*IN*			DA/DN (10**-	5 IN. /CYCLE)	
	:	A	В	С	D
	: : : L	E= R.1. H. A.	E=+ 400F L. H. A.	E= R. T. S. T. W.	
DELTA K B: MIN C: D:	20. 07 : 20. 92 :	2. 84	. 335	. 253	
	25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 : 60. 00 : 70. 00 :	11. 4 27. 0 78. 8 277	1. 23 2. 86 5. 47 9. 81 29. 8 74. 0	1. 02 2. 63 4. 07 7. 38	•
DELTA K B: MAX C: D:		550.	80. 0	13. 5	
PERCENT E	REOR		13. 52	13. 99	
LIFE PREDICTION RATIO SUMMARY	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0 >2.0	1	1	1	

Figure 5.7.3.35

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.36 INDICATING EFFECT

		BASE INCONEL AC, 1325 F BHRS,		HELD 18HRS AC	
DELTA (KSI*IN*		:	DA/DN (10**-	6 IN. /CYCLE)	
(V21×1M×	*1/2/	A	В	С	D
		: E= R.T. :LAB AIR,8.33HZ			
DELTA K B: MIN C: D:		: 1.02 : :	1. 94		
		1. 97 2. 95 3. 95 7. 36	3. 92 7. 70 13. 5 21. 1		
DELTA K B: MAX C: D:		: 10.5 : :	34. 6		
RODT MEAN : PERCENT E		4. 50	4. 32		
SUMMARY	0. 5-0. 0. 8-1	8 25 1 0	1		

Figure 5.7.3.36

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.7.3.37 INDICATING EFFECT

OF STRESS RATIO

DEI (KSI*		K 1 (2)	:		DA/DN	(10**-6	IN /CYCLE)	
(1131*	714× ×	1/2/	•	A	В		c	D
			R=	0 05				
DELTA K MIN	A: B: C: D:	21 00	: •	93				
		25 00 30 00 35 00 40 00	1°	7 94 . • • • • • • • • • • • • • • • • • • •				
DELTA K MAX	A B C D	46 50	•					

PREDICTION 0.5

(NP/NA)

Figure 5.7.3.37

Table 5.7.3.33

	DATE REFER	1976 R1006 1976 R1006	1976 R1006 1976 R1006	1976 R1006 1976 R1006	1976 R1006 1976 R1006	974 887	1974 88700	1974 88700	1974 88700	1974 88700
	TEST TIME ((MIN)	60180	60060	60060	60120		1 1	1		
	STAN				! !					
	CRACK LENGTH K(Q) K(ISCC) MEAN (IN) (KSI*SGRI IN)	>166. 00 > 86. 00	103.00 > 86.00 103.00 >180.00	> 89.00 121.00	> 97.00	80° 00	79. 00*	79.00#	25. 80*	87. 50*
	K(0) (KSI#S(103.00 >166. 103.00 > 86.	103.00 > 86. 103.00 >180.	104. 00 104. 00	104.00					
K(IBCC)	CRACK LENGTH (IN)							DXYGEN		1
INCONEL 718 K	DESIGN (*#50)	1. 000 DCB 1. 000 DCB	1.000 DCB 1.000 DCB	1. 000 DCB 1. 000 DCB	1.000 DCB 1.000 DCB	0. 125 WOL	O. 125 WOL. HYDRAZINE	O. 125 WOL. YDRAZINE-2PCT	0.123 WDL HYDRAZINE	0. 125 WOL
INC	W B B	2. 000 2. 000	2. 000 2. 000	is 000	1 0000 ii i	1.300	1. 300 CRADE	1. 300 D GRADE H	1. 300 PCT GRADE	1.300
NICKEL BASE	STR ENVIRONMENT (KSI)	160.0 S.C.S.	160.0 S. T. H. 160.0	160.0 S.T.W. 160.0	160.0 S. T. H. 160.0	AEROZINE 50	MARTIN- MARIETTA REFINED	MARTIN- 1.300 0.125 WOL MARIETTA REFINED GRADE HYDRAZINE-2PCT	MATHESON- 1.300 COLEMAN-BELL 97PCT GRADE	PROPELLANT GRADE HYDRAZINE
	SPEC	7	L-1	1-L	S	1		1	1	}
	TEST TEMP (F)	π . ⊢ .	σ. -	E .	æ. ⊢.	⊢	€ .	æ. ⊢.	E.	α H
	FORM THICK (IN)	4 4 00	4 4	4 00	4 4 00 1	0.13 16HR AC	0. 13 16HR AC	S 0.13 1200F 16HR AC	0 13 16HR AC	0 13 16HR AC
	FORM	8	E.	F.B	e i	S 200F	8 200F	S 200F	9 200F	S 200F
	CONDITION	1850F 1. 5HR 00, 1360F 9HRS, FC TO 1175F	1850F 1.5HR 00,1360F 9HRS, FC TO 1175F	1850F 1 5HR 00.1360F 9HRS. FC 10 1175F	1850F 1.5HR 00,1360F 9HRS, FC TO 1175F	BBOF 1HR AC 520F BHR FC	1880F 1HR AC S 0.13	1880F 1HR AC 1520F 8HR FC 1	1880F 1HR AC 9 0.13	1880F 1HR AC S 0 13 1520F 8HR FC 1200F 16HR AC

*NOTE-DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2. 5(KISCC/TYS)SQUARED

Table 5.8.1.1

·..

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE IN100

	IR I 800 F	FATIGUE CRACK GRUNTH RATES (MICRO IN/CYCLE)	2.5 5 10 20 50	4.11	7 09	
	ENVIRONMENI: AIR AT	Α *				
	ENA	DELTA K	(KSI SOR			
		FREG.		0.17	0. 17	
		STRE59 RATIO		-1, 00	-0.50	
Ġĭ	Unknown	PRODUCT FURM		FURGING	FORGING	
SNOTITONOS ISSI	SPECIMEN ORIENTATION UNKNOWN	CDUD1710H/H1				

100

Table 5.8.1.2

FATIGUE CRACK CROWIH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE IN100

4 47.01 I	on Unknown			ENVIRONMENT: AIR AT 1200 F	AIR AT	1200 F			
COND 1 1 ON / HT	PRODUCT FURIN	SIRESS	FREG. (HZ)	DELTA K		FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	CRACK GR	DWTH RAT	86
				LEVELS: (KSI SGRT(IN))	7. 3.	ß	10	20	20
	FORGING	-1.00	0. 17					38.5	
	FORCING	-0, 50	0. 17					40.9	
	FORGING	0.10							3081
	FOHCING	0.80	0. 17				10.7		

100

Table 5.8.1.3

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE IN100

TEST CONDITIONS

		100									
	ES	20	492	239							
	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	0.00	6 %	35 3	27 6	8 16	44 1	7. 10			
	UE CRACK GROWTH	10	! !				4 63		19 5	5 69	
1200 F	FATIGUE (MI	'n	 							09 0	
AIR AT 1		2 5									
ENVIRONMENI	DELTA K	(KSI SORT(IN))									
	FREG (HZ)		0 01	0 17	0 17	20 00	0 17	50 00	0 17	50 00	
	STRESS RAIIO		ن 10	0 10	010	0 10	0 90	0 05	08 0	0 80	
8 0	PRUDUCT FURM		FORGING	FURGING	FURGING	F ORGING	FORGING	F CHGING	FURGING	FORGING	
SPECIMEN ORIENTATION	CONDITION/HI										

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.1 INDICATING EFFECT

MATERIAL: N	NICKEL B	ASE IN100			
DELTA K : (KSI*IN**1/2) :		; ;	DA/DN (10**-6	IN /CYCLE)	
(W21*1N**	*1/2/	. A	В	С	D.
			E=+1350F AIR		
DELTA K B: MIN C: D:		: 4.32 : :	13. 7		
	8.00 9.00 10.00 13.00 16.00 20.00 25.00	: : : 5.39 : 10.8	13 8 18 9 24 4 41 5 59 2 84 9		
DELTA K B: MAX C: D:		: 22.9 : : :	105		
ROOT MEAN S PERCENT ER		3. 22	3 46		
SUMMARY	0. 5-0. 0. 8-1.	8 25 0			

Figure 5.8.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.2 INDICATING EFFECT

OF STRESS RATIO

DELTA K (KSI*IN**1/2)			DA/DN (10**-6 IN./CYCLE)		
/W31 + 114 + 11 / 2 /		: A	В	С	D
		: : R=+0.10	R=+0. 30		
A: DELTA K B: MIN C: D:	14. 98	: 12. 8 : :	14.8		
	20.00 25.00 30.00 35.00 40.00	: 55.3 : 76.9 : 97.8 : 123. : 228.	19.8 43.3 74.7 105. 138. 176. 289. 466. 593.		
DELTA K B: MAX C: D:	72. 77	: 289. : : :	601.		
PERCENT E	ROR	9. 12	21. 12		

Figure 5.8.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.3 INDICATING EFFECT

OF STRESS RATIO

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6	IN. /CYCLE)	
/L/21 x 1/4 x x	:	A	В	С	D
	:	R=+0.05	R=+0. 10		
DELTA K B: MIN C: D:		7. 64	10.0		
	: 16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 :	8.62 26.2 54.9 74.2 91.0 116. 250.	10. 6 15. 5		
A: DELTA K B: MAX C: D:	50. 85 : 30. 86 : :	272.	15. 9		
ROOT MEAN SQUARE PERCENT ERROR		9. 69	7. 90		· •••• ••• ••• ••• ••• •••• ••• •••• •

NICKEL CONDITION/HT: YIELD STRENGTH: 169. 1 KSI BASE FORM: SPECIMEN TYPE: CT ULT. STRENGTH: 236.5 KSI SPECIMEN THK: 0.109- 0.826" ORIENTATION: C-R SPECIMEN WIDTH: FREQUENCY: 0.33;20.0HZ IN100 **ENVIRONMENT** +1200° F. AIR REFERENCES:PWØØ6 ΔK (MPA √m) $\Delta K (MPA \sqrt{m})$ 10 40 100 10 40 100 **(A)** тттт **(B)** STRESS RATIO = +0. Ø5 STRESS RATIO = +0. 10 10² 10° 10 1 10⁻³ 10 ' da dN (in cycle) 104 10 10 **©** Z,

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.4 INDICATING EFFECT

OF STRESS RATIO

(KSI*IN**	1/2/				
	•	A	В	С	D
	:	R=+0.10			
	14.82 :	60. 0			
ELTA K B:	:				
MIN C: D:	:				
D.	•				
	16.00 :	69. 9			
	20 . 00 :	117.			
	25 . 00 :	217.			
	30 . 00 :	378.			
	35. 00 : 40. 00 :	623 .			
	40.00 :	9//.			
A :	42. 68 :	1221.			
ELTA K B:	:				
MAX C:	:				
D:	:				
	:				
OOT MEAN S		11. 54			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.5 INDICATING EFFECT

DELTA K :		:	DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**1/2) :		: : A	В	С	D
			E=+ 500F AIR		
A: 14.09 DELTA K B: 14.58 MIN C: D:	:	871			
		. 556 : 1. 4 2 : 3. 59	1. 30 3. 12 6. 47		
A: DELTA K B: MAX C: D:		: 5. 54 : :	7. 31		
ROOT MEAN S PERCENT ER		15. 79	B. 94		- 40. 40. 40. 40 40. 40. 40. 40.
	0. 0-0. 0. 5-0. 0. 8-1.	8 25			

Figure 5.8.3.5

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.6 INDICATING EFFECT

MATERIAL: N	NICKEL B	ASE IN100			
DELTA ++KSI*IN			DA/DN (10**-	-6 IN./CYCLE)	
(1/27 + 1/4 + 1	1/2/	. A	В	С	D
			E=+1100F AIR		
		3, 24			
DELTA K B: MIN C: D:			13. 2	13. 7	
	16. 00 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00	: 4.71 : : :	16. 4 32. 2 55. 4 75. 6 96. 8 124. 227.	22. 2	
DELTA K B: MAX C: D:	52 . 9 0		279.	53. 8	
ROOT MEAN S PERCENT ER		22. 76	g. 93	10. 20	
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0 5-0 0 8-1 1 25-2	8 25 0			

Figure 5.8.3.6

7Ablb 5.8.3.7

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.7 INDICATING EFFECT

OF FREQUENCY

MATERIAL: I CONDITION: ENVIRONMEN		SE IN100 AIR			
DELTA K : (KSI*IN**1/2) :			DA/DN (10**~6	in./CYCLE)	
(1101 1111)		A	В	С	D
		F=2 MIN HOLD TRAPEZOIDAL	F(HZ)= 0.16	F(HZ)= 20.00	
A:		15. 9			
DELTA K B: MIN C: D:			3. 24	. 919	
	13.00 : 16.00 :			1.02	
	20 .00 :		4. 71	2. 01 4. 58	
	25 . 00 : 30 . 00 :	21.4		8, 07 13, 7	
A: DELTA K B: MAX C:	21.80	16. 6	6. 30	15. 3	
D:	: :				
	ROOT MEAN SQUARE PERCENT ERROR		22. 76	9. 62	~
PREDICTION RATIO SUMMARY	0.8-1.25				~-

Figure 5.8.3.7

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.8 INDICATING EFFECT

OF FREQUENCY

DELTA K			DA/DN (10**	-6 IN./CYCLE)	
(KSI*IN**1/2)	:	Α	В	С	D
		F=2 MIN HULD TRAPEZOIDAL			
A: DELTA K B: MIN C:	:				
D: 200. 0	: 0 :				
A: DELTA K B: MAX C: D:	: : : :				
ROOT MEAN SQUARE PERCENT ERROR		0. 00			

Figure 5.8.3.8

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTUR

DATA ASSOCIATED WITH FIGURE 5.8.3.9 INDICATING EFFECT

MATERIAL: N CONDITION: ENVIRONMENT					
DELTA (KSI*IN*	DELTA K :		DA/DN (10**-6	IN. /CYCLE)	
(1101 - 114 - 2	:	Α	В	С	D
	:	R=-1.00	R=-0.50		
DELTA K B: MIN C: D:	13.48 : 12.10 :	1.08	. 532		
	13.00 : 16.00 : 20.00 : 25.00 : 30.00 :	1.91 4.11 11.0	1.88 4.13 7.09 15.9 42.5		
DELTA K B: MAX C: D:	26. 54 : 31. 05 : :	15. 2	43. 9		
ROOT MEAN S PERCENT ER		6. 68	15. 29		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.5-0.8 0.8-1.25	1	1		

Figure 5.8.3.9

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.10 INDICATING EFFECT

MATERIAL: NICKEL CONDITION: ENVIRONMENT: +12				
DELTA K	<u>:</u>	DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**1/2)	A	В	С	D
	: R=-1.00	R=-0. 50		
A: 19.8 DELTA K B: 13.7 MIN C: D:	4 : 37. B 5 : :	11. 9		
16.0 20.0 25.0 30.0 35.0 40.0	00: 38.5 00: 42.4 00: 91.0 00: 132.	21. 7 40. 9 73. 9 128.		
A: 42.9 DELTA K B: 33.2 MAX C: D:	28 : 253. 24 : : :	184.		
ROOT MEAN SQUARE PERCENT ERROR	4. 79	9. 03		
LIFE 0.0- PREDICTION 0.5- RATIO 0.8- SUMMARY 1.25- (NP/NA)	0 8 1 25 1	1		

Figure 5.8.3.10

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.11 INDICATING EFFECT

CONDITION: ENVIRONMENT	r: +1200F,	E IN100 AIR						
DELTA (KSI*IN*	K :	top ages ages ages and and the read and then and and the	DA/DN (10**-6 IN./CYCLE)					
(101-114-	:	Α	В	C	D			
	:	R=+0. 80						
DELTA K B: MIN C: D:	5 . 60 : : : : : : : : : : : : : : : : : :	2. 78						
	7 . 00 : 8 . 00 :							
DELTA K B: MAX C: D:	13.74 : : : :	27. 2						
ROOT MEAN S PERCENT ER		7 . 23						
PREDICTION RATIO SUMMARY	0.8-1.25	1			. 			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.12 INDICATING EFFECT

OF FREQUENCY

MATERIAL: NICKEL BASE IN100 CONDITION: ENVIRONMENT: +1200F, AIR DELTA K DA/DN (10**-6 IN./CYCLE) (KSI*IN**1/2) : В D F=10 MIN HOLD : TRAPEZOIDAL A: 23.52 : 509. DELTA K B: MIN C: D: **25**. 00 : 616. 30.00 : 1003. **35**. 00 : 1416. **40**. 00 : **1875**. **50**. 00 : **3082**. 60.00 : 5076. A: 67.89 : 7719. DELTA K B: MAX C: D: ROOT MEAN SQUARE 6.81 PERCENT ERROR LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 1 SUMMARY 1.25-2.0 >2 0 (NP/NA)

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.13 INDICATING EFFECT

MATERIAL: CONDITION: ENVIRONMEN		E IN100 AIR						
DELTA **(KSI*IN)	DELTA K		DA/DN (10**-6 IN./CYCLE)					
(1101 = 174	:	Α	В	С	D			
	:	R=+0. 10						
DELTA K B: MIN C: D:		9. 13						
	16.00 : 20.00 : 25.00 : 30.00 : 35.00 : 40.00 :	17. 6 24. 6 33. 2 45. 8						
DELTA K B: MAX C: D:	41.33 : : : :	72. 1						
ROOT MEAN S PERCENT ER		2. 53						
PREDICTION RATIO	0. 8-1. 25 1. 25-2. 0	1						

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.14 INDICATING EFFECT

MATERIAL: NI CONDITION: ENVIRONMENT:					
DELTA M			DA/DN (10**-6	IN. /CYCLE)	
(VD1#1M##1	. / e.)	Α	В	С	1)
	· :	R=+0.05	R=+0. 10		
	14.03 : 13.55 :	4. 32	3. 94		
	16.00 : 20.00 : 25.00 : 30.00 : 40.00 :	4, 75 7, 10 12, 6 20, 9 30, 8	4, 92 8, 16 15, 2 25, 3 36, 6 46, 6		
	38.78 : 41.45 : :	38. 1	4 9. 0		
ROOT MEAN SO PERCENT ERF		12.71	17. 34		
LIFE PREDICTION RATIO SUMMARY 1 (NP/NA)	0.5-0.8 0.8-1.25	1	2		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.15 INDICATING EFFECT

DELTA (KSI*IN*	• •		DA/DN (10**	-6 IN. /CYCLE)	
(VOI#1 4##	:	A	B	C	D
	:	R=+0. 10			
A: DELTA K B: MIN C: D:	12.89 : : :	6. 18			
	13.00 : 16.00 : 20.00 : 25.00 : 30.00 :	12. 3 27. 6 65. 3			
A: DELTA K B: MAX C: D:	31.93 : : : :	95. 6			
ROOT MEAN 9 PERCENT ER	ROR				
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.16 INDICATING EFFECT

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-	6 IN. /CYCLE)	
	:	A	В	С	D
	:	R=+0. 50			
A :	8.06 :	2. 41			
DELTA K B:	:				
MIN C:	:				
D:	•				
	9. 00 :	2 21			
	10 . 00 :	3. 31 4. 63			
	13. 00 : 16. 00 :	11. J 22 A			
	20.00 :				
	20.00	-7- 7. A			
A:	22. 91 :	58. 3			
ELTA K B:	:				
MAX C:	:				
D:					
	:				
ROOT MEAN S PERCENT ER	ROR	8. 04			· — — — — — — — — — — — — — — — — — — —
LIFE PREDICTION	0.0-0.5			~	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.17 INDICATING EFFECT

OF ENVIRONMENT

IICKEL B	ASE IN100			
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-	6 IN. /CYCLE)	
	. A	В	С	D
	: 5-+12005	E-+1250E	E-41250E	
	: AIR, 0. 17HZ	AIR, O. O1HZ	AIR, O. 17HZ	
20. 20	: 39. 0			
		281 .		
14. 68	: :		16. 2	
16. 00	:		24. 1	
			53. 3	
25. 00	: 70.7		94. 7	
30.00	110.		145.	
35 . 00	: 153.	452.	216.	
			329.	
		•		
60 . 00	:	1699.		
54. 45	: 313.			
		2019.		
41. 46	: :		375.	
	4. 36	6. 81	13. 97	
0 . 0 –0.				
0. B-1. 1. 25-2.	25 i 0	1	1	
	20. 20 27. 86 14. 68 16. 00 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00 60. 00 54. 45 65. 70 41. 46	E=+1300F : AIR, 0. 17HZ 20. 20 : 39. 0 27. 86 : 14. 68 : 16. 00 : 20. 00 : 25. 00 : 70. 7 30. 00 : 110. 35. 00 : 153. 40. 00 : 197. 50. 00 : 280. 60. 00 : 54. 45 : 313. 65. 70 : 41. 46 : :: GQUARE	M DA/DN (10**- 1/2) : A B E=+1300F E=+1350F AIR, 0. 17HZ AIR, 0. 01HZ 20. 20 : 39. 0 27. 86 : 281. 14. 68 : 16. 00 : 20. 00 : 25. 00 : 70. 7 30. 00 : 110. 322. 35. 00 : 153. 452. 40. 00 : 197. 630. 50. 00 : 280. 1117. 60. 00 : 147. 630. 50. 00 : 280. 1117. 60. 00 : 1699. 54. 45 : 313. 65. 70 : 2019. 41. 46 : 16. 00 -0. 5 0. 5-0. 8 0. 8-1. 25 1 1	M DA/DN (10**-6 IN. /CYCLE) A B C E=+1300F E=+1350F E=+1350F AIR, 0. 17HZ AIR, 0. 01HZ AIR, 0. 17HZ 20. 20 : 39. 0 27. 86 : 281. 14. 68 : 16. 2 16. 00 : 24. 1 20. 00 : 53. 3 25. 00 : 70. 7 30. 00 : 110. 322. 145. 35. 00 : 153. 452. 216. 40. 00 : 197. 630. 329. 50. 00 : 280. 1117. 60. 00 : 1699. 54. 45 : 313. 65. 70 : 2019. 41. 46 : 375. 80UARE 4. 36 6. 81 13. 97 ROUARE 7. 36 6. 81 13. 97 ROUARE 9. 80 8 6. 81 13. 97 ROUARE 1. 25 1 1 1 1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.18 INDICATING EFFECT

MATERIAL: CONDITION: ENVIRONMEN	T: +1200F	SE IN100			
DELTA	K :		DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN*	*1/ <i>=</i> / :	A	В	С	D
	:	F(HZ)= 0.01	F(HZ)= 0.17	F(HZ)= 20.00	
		20. 0			
DELTA K B:			7. 25		
MIN C: D:	13 . 55 :			3. 94	
	: 16.00 :	21. 5	16. 9	4. 92	
	20.00:		35. 3	8. 16	
	25 . 00 :	69. B	62.0	15. 2	
		120.	90. 0	25. 3	
		1 8 8.	120.	36. 6	
	40.00 :	274. 492.	153.	46. 6	
	50.00 :	492.	239.		
		745.			
	70.00 :	996. 1214			
	90.00 :	1214. 1378.			
A:	91.39 :	1396.			
DELTA K B:	57 . 86 :		337.		
	41.45 :			49. 0	
D:	:				
ROOT MEAN PERCENT E		11. 27	9. 73	17. 34	
PREDICTION RATIO SUMMARY		5 3	5	2	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.19 INDICATING EFFECT

CONDITION: ENVIRONMEN		SE IN100			
DELTA	K : *1/2) :		DA/DN (10**-6	IN. /CYCLE)	
11101 - 114-	:	A	B	С	D
	; ; ;		F=2 MIN HOLD TRAPEZOIDAL		
A: DELTA K B:	18.78 :	52. 1	87. 6		
MIN C:	19.39 : 27.08 :		67. 6	203.	371.
	16.00 : 20.00 : 25.00 :	144.	87. 0 93. 7 156.	208. 347.	. 5.7
	35 . 00 : 40 . 00 :	315. 559.	462. 679.	1363.	1466.
	50 . 00 : 60. 00 :		1006.		2555. 4304.
DELTA K B:	41. 45 : 50. 80 : 49. 73 :	831.	1018.	4327.	
D:	67. 35 : :				6558 .
ROOT MEAN ! PERCENT EI		6. 62	15. 60	7. 60	10. 08
PREDICTION RATIO SUMMARY	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0 >2.0		2	1	1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.20 INDICATING EFFECT

OF FREQUENCY

MATERIAL: NICKEL BASE IN100 CONDITION: ENVIRONMENT: +1350F, AIR DELTA K DA/DN (10**-6 IN./CYCLE) (KSI*IN**1/2) מ F=2 MIN HOLD TRAPEZOIDAL A: 12.93 : 105. DELTA K B: MIN C: D: 107. **13**.00 : 16.00 : 293. **20**. 00 : 776. A: 21, 29 : 871. DELTA K B: MAX C: ROOT MEAN SQUARE 13.50 PERCENT ERROR LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 1 SUMMARY 1.25-2.0 (NP/NA) >2. **0**

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.8.3.21 INDICATING EFFECT

MATERIAL: N CONDITION: ENVIRONMENT		SE IN100			
	DELTA K		DA/DN (10**-6	IN. /CYCLE)	
(KSI#IN#	: (1/2)	A	В	С	D
	:	F(HZ)= 0.1	7 F(HZ)= 20.00		
DELTA K B: MIN C: D:		17. 5	. 367		
	13.00 :	19. 5 31. 8 55. 2	. 600 . 977 1. 32 1. 68 2. 11 2. 69		
DELTA K B: MAX C: D:	18. 16 : 11. 78 : :	84. 6	4. 46		
ROOT MEAN S PERCENT EF	ROR	6. 15	<u> </u>		
LIFE PREDICTION RATIO SUMMARY	0.0-0.5 0.5-0.8 0.8-1.2 1.25-2.0 >2.0		1		

Figure 5.8.3.21

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE INDICATING EFFECT

OF STRESS RATIO

MATERIAL: NICKEL BASE IN100 CONDITION: PRESTRAIN ENVIRONMENT: +1200F, AIR DELTA K DA/DN (10**-6 IN./CYCLE) (KSI*IN**1/2) D R=+0. 10 2. 42 A: 11.89 : DELTA K B: MIN C: D: 13.00 : 4. 10 16.00 : 19. 36 : 34. 1 A: DELTA K B: MAX C: ROOT MEAN SQUARE 33. 86 PERCENT ERROR LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 1 SUMMARY 1.25-2.0 (NP/NA) >2. 0

Figure 5.8.3.22

Table 5.9.1.1

(3)

FAFIGIE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR NICKEL-BASE INIOO P/M-G		ENVIRONMENT: AIR AT 1200 F	FREG. (HZ) DELTA K (MICRO IN/CYCLE) LEVELS:	(KGI BORT(IN)) 2.5 5 10 20	0.01	0.33	20.00
ALIGNE CRACK GROWTH		4 ن	PRODUCT STRESS FONM RATIO		DISK 0.05	DISK 0.05	DISK 0.05
-	TEST CONDICIONS.	SPECTMEN ORITNIATION C	COUDITION/HI		2050F 2HR 00,1600F 67HR AC, 1200F 24HR AC,1400F 4HR AC	2050F 24R 09, 1600F 671R AC, 1200F 244R AC, 1400F 44R AC	2050F 2HR 00,1600F 67HR AC, 1200F 24HR AC,1400F 4HR AC

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.9.3.1 INDICATING EFFECT

OF FREQUENCY

MATERIAL:	NICKEL	BASE	IN100 P/	M-G
CONDITION:	2050F	2HR 00,	1600F . 67HR	AC, 1200F
	24HR /	AC,1400F	HR AC	

PREDICTION 0.5-0.8

SUMMARY 1. 25-2. 0

RATIO

(NP/NA)

0.8-1.25

>2.0

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
		:	A	В	С	D	
		:	F=15 MIN HO TRAPEZOIDAL	LD F(HZ)= 0.01	F(HZ)= 0.33	3 F(HZ)≈ 20.0	
	A:	24.49	463.				
DELTA K		13.36		7. 57			
MIN		13. 44 :		, . .	2. 78		
	D:					4. 25	
		16.00 :	•	9 . 13	7. 49	4. 27	
		20.00 :		26. 9	18.5	6. 16	
		25.00 :		58. 6	34. 1		
			773.	87. 5	49. 2		
		35. 00 :	1226.	114.	64. 3	26. 2	
		40.00	1226. 1915. 4412.	157.	81. 4	35. 9	
		50.00	4412.				
		60.00	9530.				
			19994.				
			40505.				
			63096.				
	A:	97. 60 :	64557.				
DELTA K		43.75		214.			
		46. 90			112.		
		46.70				47.6	
		:					
ROOT ME			31. 42	15. 26	17. 71	24. 67	

1.3

Table 5.10.1

FATIGNE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL -BASE NASA IIB-7 P/H

	60	50		313
	WTH RATE	02	3592	13. 80
	FATIGUE CRACK GROWTH RATES	10		
AIR AT 1200 F	FATICUE (MIC	ED.		
		. 5 5		
ENV IRONMENT:	DELTA K	(KSI SORT(IN))	15 MIN. HOLDTIME TRAPEZUIDAL WAVEFORM	
	FREG. (HZ)		15 MIN. HO TRAPEZUIDA	0. 33
	STRESS RATIO		0.03	0 0
¥5	PRODUCT FORM		DISK	DISK
SPECTMEN ORIENTATION:	CONDITION/HT		1650F 161RS TD 2000F 11R DG, 1400F 161RS AC	1650F 164RS TO 2000F 11R OA. 1400F 164RS AC
SPF(COND		1650F 2000F 1400F	1650F 2000F 1400F

TABLE 5.10.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.10.3.1 INDICATING EFFECT

			SHRS AC	
DELTA K (KSI*IN**1/2)	:	DA/DN (10**-6	IN. /CYCLE)	
	: A : : F=15 MIN HULD : TRAPEZDIDAL	B F(HZ)= 0.33	С	D
DELTA K B: 14.6 MIN C: D:	30 : 315. 57 : : :	4. 87		
20. (25. (30. (35. (40. (00 : 1303. 00 : 3593. 00 : 6526. 00 : 10084. 00 : 16495. 00 : 30610.	5. 96 15. 8 35. 6 60. 3 92. 6 137. 313.		
A: 45.7 DELTA K B: 51.2 MAX C: D:	79 : 74742. 24 : : : :	483.		
PERCENT ERROR				
LIFE 0.0- PREDICTION 0.5- RATIO 0.8- SUMMARY 1.25- (NP/NA)	-0. 5 -0. 8 -1. 25 -2. 0			

Table 5.11.1.1

FAFICUE CRACK CROWIN RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

	S	30	54. 1	200
	OWTH RATI	50	2.61	4. 03
	CRACK GR	10		
1200 F	FATIGUE (M)	ED.		
A I R		2.3		
ENVIRONMENT	DELTA K	(KSI SORT(IN))		
	FREG. (HZ)		0. 33	0.02
	STRESS		0.00	00 0
8 .	PRODUCT		DISK	DISK
FEST CONDITIONS SPECIMEN OFIENTATION	COMDITION/HE		2080F THR AC, 1600F THR AC, 1200F 241RS AC	2080F 1HR AC, 1600F 1HR AC, 1200F 241RS AC
	DITIONS	ION C-R PRODUCT STRESS FREG. DELTA K FORM RATIO (HZ) DELTA K	ENVIRONMENT: AIR AT 1200 F PRODUCT STRESS FREG. BELTA W (MIGHO IN/CYCLE) FORM RATIO (HZ) DELTA W (MIGHO IN/CYCLE) (KSI SORT(IN)) 2.5 5 10 20	FALTICUS FORM FALTO FALTICUS FALTI

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.11.3.1 INDICATING EFFECT

	BASE RENE 95			
CONDITION: 2000F	1HR, SQ AT 1000F	1400F 16HRS	6 	
DELTA K (KSI*IN**1/2)	:	DA/DN (10**-	-6 IN./CYCLE)	
	A	B	С	α
	E=+1200F			
A: 13.5E DELTA K B: MIN C: D:	3 : 2.15 : :			
16. 00 20. 00 25. 00 30. 00 35. 00 40. 00	10.4 0: 17.9 0: 29.6 0: 49.8			
A: 45.70 DELTA K B: MAX C: D:	141. : : :			
ROOT MEAN SQUARE PERCENT ERROR	16. 33			
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2	9 8 . 25 ! 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.11.3.2 INDICATING EFFECT

				
MATERIAL: NICKEL BAS CONDITION: 2080F 1H			HRS AC	
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6	S IN. /CYCLE)	
:	A	В	С	D
: : : !	E= R.T. _AB AIR, .33HZ	E=+1200F AIR, 33HZ	E=+1200F AIR, 5 MIN HOLD	
A: 16, 68 :	. 216			
DELTA K B: 17.22 : MIN C: 28.18 : D: :		. 840	59. 5	
30 . 00 :	. 394 1. 60 5. 29 11. 8 18. 9 27. 6	19. 9 27. 2	103. 250. 413. 1093. 2403. 4006. 8368.	
A: 56.41 : DELTA K B: 63.62 : MAX C: 80.21 : D: :	55. 2	192.	85 35.	
ROOT MEAN SQUARE PERCENT ERROR		27. 95	7. 78	
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 SUMMARY 1.25-2.0 (NP/NA) >2.0				

Figure 5.11.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.11.3.3 INDICATING EFFECT

		ASE P/M REI HR AC, 1600F	NE 95 1HR AC, 1200F 24H	RS AC	
DELTA *KSI*IN			DA/DN (10**-6	IN. /CYCLE)	~
(NOI×IN×	*1/2/	. A	В	С	D
		E=+1200F : AIR, . 33HZ	E=+1200F AIR, 5 MIN HOLD)	
DELTA K B: MIN C: D:			107.		
	25. 00 30. 00	. 531 5.00 20.1 44.5 82.4	107. 4 06.		
DELTA K B: MAX C: D:	3 3. 95	: 96.2 : :	2226.		
ROOT MEAN PERCENT E		15. 59	28. 78	and the day of the life are the life and the law of the law of	
PREDICTION RATIO SUMMARY	O. 8-1.	8 25 0			

Figure 5.11.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.11.3.4 INDICATING EFFECT

		ASE P/M RE HR AC, 1600F	NE 95 1HR AC, 1200F 24H	RS AC	
DELTA		:	DA/DN (10**-6	IN. /CYCLE)	
(KSI#IN##	(1/2)	: : A	В	С	D
		: E=+1200F : AIR 02HZ	E=+1200F ARGON 33HZ		
A: DELTA K B:		: 3 . 4 5	1. 29		
MIN C:	17.02	· : :	1. 27		
		4. 03	1. 94		
		: 14.8 : 33.9	3. 71 5. 95		
		: 61.3	9. 11		
	40.00	: 9 7. 0	14. 0		
	50 . 00	: 200. : 369.	35. 3		
	<i>6</i> 0. 00 70 . 00	: 369. : 662.			
A:	76. 15	: 948 .			
DELTA K B:	51.58	:	41. 3		
MAX C: D:		: : :			
ROOT MEAN S PERCENT ER		11.36	24. 59	**************************************	
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	8 25 0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.11.3.5 INDICATING EFFECT

CONDITION:	2100F 1HR,	P/M RENE SG AT 1000F	, 1600F 1HR,	1200F 24HRS, AC	
	K :			-6 IN./CYCLE)	
(102 - 214 - 1	:	A	B	С	a
	: : AI	E=+1200F R			
DELTA K B: MIN C: D:	12. 70 : : :	2. 95			
	13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 :	6. 16 9. 97 17. 0 31. 2 58. 7 110.			
DELTA K B: MAX C: D:	56 . 60 : : : : : : : : : : : : : : : : : :				
PERCENT EF		24. 46			
LIFE PREDICTION RATIO SUMMARY	0.0- 0.5				

Table 5.12.1.1

			NICKEL	NICKEL-BASE WASPALDY					
TEST CONDITIONS									
SPECTHEN ORTENTATION: Unknown	known			ENVIRONMENT	LAB AIR AT R. T.	K .			
COHDI TION/HT	PRODUCT	STRESS RATIO	FREG. (HZ)	DELTA K LEVELS: (KSI SORT(IN))	u n	ATIGUE (M	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE) 5 10 20	DWTH RA'	FE 5 3.
1850F 2HRS, 1350F 6HRS(FINE GS, SMALL PRECIPITATES)	BILLET	0. 10	10. 00						101
2010F 2HR. 1330F AHRICDARSE 65, SMALL PRECIPITATES)	BILLET	0. 10	10.00			1 1 1 1			. ~
2010F PHR, 1600F 24HR(COARSE GS, LARGE PRECIPITATES)	BILLET	0. 10	10.00	1	; ; ; ;] 	 	i i 1 1 1	!

100

Table 5.12.1.2

FATIGUE CRACK CROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE WASPALUY

SPECIMEN UNKNOWN	Unknown			ENVIRONMENT: AIR	A1A	800 F	:			
COUDITION/HI	PRODUCT FORM	STRESS RATIO	FREG. (HZ)	DELTA K		FATIGUE (MI)	CRACK GR	FATIGUE CRACK GROWTH RATES (MICRD IN/CYCLE)	s o.	
				(KSI SORT(IN))	2. 3		5 10	50	0 6	100
	LURGING	-1.00	0. 17					4. B7		
	FORGING	-0, 30	0. 17					3. 56		
	FORGING	0, 50	0. 17					5.93		

Table 5.12.1.3

FATIGUE CRACK GROWIN RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE MASPALDY

		<u> </u>	100	<u> </u>				
		5 0.	20			93.8		
		FATIGUE CRACK GROWTH RATES	50	10.8	9. 57	12. 4		
		UE CRACK GROWTH	01				3, 84	
	200 F	FATIGUE	ED.					
	AIR AT 1200 F	_						
	ENVIRONMENT:	DELTA K	(KSI SORT(IN))					
		FREG. (HZ)		0. 17	0. 17	0. 17	0. 17	
		STRESS		-1.00	-0. 50	0. 10	0.80	
	Unknown	PRODUCT FORM		FURGING	FORGING	FORGING	FORGING	
FSI CUMITONS	SPECINEN ORICHTATION	CONDITION/HI						

Table 5.12.1.4

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

NICKEL-BASE WASPALDY	SHOT LICHS	ENTRING C.R. AT 1200 F	PRODUCT STRESS FREG. FORM RATIO (HZ)	(KSI SORT(IN)) 2.5 5 10 20 500 100	FORGING 0.05 0.17	FURGING 0.05 0.33 49.5	F DRGING 0.05 20.00 4.36	FURGING 0.10 0.17 10.4	FURGING 0.10 20.00 3.78	FURGING 0.10 20.00 3.71	FURGING 0.10 20.00 3.98	FORGING 0. BO 20. 00	RS DR, DISK 0.05 0.33 RS AC, RS AC	NS 00, DISK 0.05 20.00 3.86 29.7
	TUST COMBILLUMS	SPECIMEN OPIENIATOM	COMDITIONANT										1855F 4HRS DG. 1850F 4HRS AC. 1400F 4HRS AC	1875F 4HRS 00,

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.1 INDICATING EFFECT

MATERIAL: NIC	KEL BASE	WASPAL)Y		
DELTA K (KSI*IN**1/			DA/DN (10**-6	IN. /CYCLE)	
(1/21 + 1/4 + 1)	:	A	В	С	D
	: : AII		E=+1200F ARGON		
DELTA K B: 3 MIN C: D:	4. 91 : 33. 32 : :	5. 71	18. 2		
2 3 3 4	6. 00 : 0. 00 : 0. 00 : 0. 00 : 0. 00 : 0. 00 :	22. 6	21. 9 29. 8 35. 3		
A: 3 DELTA K B: 5 MAX C: D:	85. 87 : 89. 56 : : :	31.0	4 2. 8		
ROOT MEAN SQU PERCENT ERRO		2. 05	9. 70		
LIFE O PREDICTION O RATIO O SUMMARY 1. (NP/NA)), 5-0, 8), 8-1, 25				

Figure 5.12.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.2INDICATING EFFECT

ENVIRONMEN					
	K :		DA/DN (10**-	S IN. /CYCLE)	
(KSI*IN*	*1/2) : :	Α	В	С	р
	:		R≃-0. 50		
	•	K- 1. 00	K- 0.00	K = * 0. 00	
	15 . 16 :	1. 67			
DELTA K B:			1. 37		
MIN C:	21.55 :			3. 81	
D:	:				
	16.00 :	2. 16			
	20.00 :	4.87	5. 56		
	25 . 00 :	8. 78	9. 24	5. 56	
	30 . 00 :	14. 1	14. 5	8. 66	
	35 . 00 :	23. 3		13. 7	
	40 . 00 :			23. 2	
Δ.	37 . 90 :	32. 1			
DELTA K B:		U L. 1	18. 5		
	41.48 :		-	27. 5	
D:	:				
	:				
ROOT MEAN 9	GUARE	7. 42	9. 14	2. 64	
PERCENT EF					
LIFE	0.0-0.5				
PREDICTION					
	0.8-1.25	1	1	1	
SUMMARY	1.25-2.0				
(NP/NA)	>2. 0				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.3 INDICATING EFFECT

MATERIAL: NICK CONDITION: ENVIRONMENT: +			and the size was successful any age and and they age and		
DELTA K (KSI*IN**1/2			DA/DN (10**-	-6 IN. /CYCLE)	
(NO1 * 114 * 11 / E	, . :	A	B	С	D
	:	R=+0.50	R=+0. 80		
A: 15		3. 93			
DELTA K B: 6 MIN C:	. 02 : :		. 434		
D:	:				
	. 00 :		. 765		
	. 00 : . 00 :				
	. 00 :				
	. 00 :				
	. 00 :	3. 96			
20 25	. 00 : . 00 :	5. 93 10. 3			
A: 28	. 39 :	14. 8			
DELTA K B: 7	. 32 :		. 791		
MAX C: D:	:				
ROOT MEAN SQUA	 RF	2. 90	22. 36		
PERCENT ERROR					
LIFE C. PREDICTION O.			الله الله الله الله فيه الله الله الله الله الله الله الله ال	The same sees the same same same same same same same sam	
RATIO O.	8-1. 25	1	1		
SUMMARY 1.2					
(NP/NA)	≥2. 0				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.4 INDICATING EFFECT

DELTA I		DA/DN (10**-6 IN./CYCLE)				
(KSI*IN**	:	A	В	c	D	
	:	R=-1.00	R=-0. 50	R≔+0. 05		
A:	11.63:	2. 52				
DELTA K B:			7. 33			
MIN C:	23.34 :			11. 6		
D:	:					
	: 13.00 :	3. 66				
	16.00 :					
	20.00 :		9. 57			
	25.00 :	17. 1	11. 4	13. 6		
	30.00 :			20. 4		
	35.00 :			29. 8		
	40 . 00 :			44. 8		
A :	31.47 :	28. 5				
DELTA K B:			18. 7			
MAX C:			- - · ·	58. 7		
D:	:					
	:					
PERCENT ERI	ROR	6. 60	9. 76	პ. 65		
LIFE						
PREDICTION	0. 5-0. B					
RATIO		1	1	1		
SUMMARY 1						
(NP/NA)	>2. 0					

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.13.3.5 INDICATING EFFECT

MATERIAL: NICKEL BASE WASPALDY CONDITION: ENVIRONMENT: +1200F, AIR						
DELTA K :		DA/DN (10**-6 IN./CYCLE)				
(KSI*IN*	*1/2) :	A	В	c	D	
	:	R=+0. 10	R=+0. 55	R=+0. 80		
A: DELTA K B:		2. 23				
	5. 59 :			. 994		
	6.00 : 7.00 : 8.00 : 9.00 :			1.33 2.07 2.68 3.22		
	10.00 : 13.00 : 16.00 : 20.00 : 25.00 : 35.00 : 40.00 : 50.00 :	3. 36 6. 69 12. 4 20. 4 28. 4 42. 4 66. 1 95. 8		3. 84		
DELTA K B: MAX C: D:	:	94. 1		5. 72		
ROOT MEAN SQUARE PERCENT ERROR		13. 15	0. 00	7. 13		
LIFE PREDICTION RATIO SUMMARY	O. O-O. 5	2		1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.6 INDICATING EFFECT

MATERIAL: 1 CONDITION:	NICKEL BASE	WASPAL	ΩY		
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)			
(1,02 / 214 /	:	A	В	С	D
	: : : AIR		E=+1200F AIR	E=+1350F AIR	
DELTA K B: MIN C: D:	21.55 : 23.34 : :	3. 81	11.6		
	35 . 00 :	8. 66	13. 6 20. 4 29. 8 44. 8		
DELTA K B: MAX C: D:	41 . 48 : 43 . 07 : :	27. 5	58. 7		
ROOT MEAN S PERCENT EF	GUARE RROR	2. 64	3. 65	0. 00	
PREDICTION RATIO SUMMARY	0.8-1.25	1	1		

FATICUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.7 INDICATING EFFECT

DELTA (KSI*IN**		DA/DN (10**-6 IN./CYCLE)			
(1/01 - 1/4	:	A	В	С	D
	; ;	R=+0. 10	R=+0. 80		
A: DELTA K B: MIN C: D:		1. 93	. 761		
	7. 00 : 8. 00 : 9. 00 : 10. 00 : 13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 : 40. 00 :	7, 43 11, 0 15, 1	. 801 . 947 1. 10 1. 28 2. 43		
A: DELTA K B: MAX C: D:	42. 08 : 14. 64 : :	23. 2	3. 92		
ROOT MEAN S PERCENT ER		14. 93	7. 70		
PREDICTION	0. 8-1. 25 1. 25-2. 0	2	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.8 INDICATING EFFECT

MATERIAL: N CONDITION: ENVIRONMENT		E WASPALO	ΥY				
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
***************************************	:	A	В	С	D		
	: :	R=+0. 10					
A:	31.69 :	19. 0					
DELTA K B:	:						
MIN C: D:	:						
U.	:						
	35 . 00 :	24. 5					
	40.00 :						
	50 . 00 :						
	60 . 00 :	138.					
A :	60 . 02 :	138.					
DELTA K B:	:	. ·					
MAX C:	:						
D:	:						
	:						
ROOT MEAN S PERCENT ER		11. 96					
LIFE PREDICTION	0.5-0.8						
	0.8-1.25	5					
SUMMARY (NP/NA)	1, 25-2, 0 >2, 0						

Figure 5.12.3.8

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.9 INDICATING EFFECT

MATERIAL: N		ASE WASPAL	.DY		~		
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
		: A	В	С	D		
		E=+ 800F	E=+1200F AIR	E=+1350F AIR			
A: DELTA K B:		1.24					
MIN C:		: :		17. 5			
	20. 00 25. 00			19. 0			
	30 . 00 35 . 00	: 4. 5 3		22. 5 24. 1			
	40 . 00 50 . 00	: 10.3		25. 8 34. 3			
A: DELTA K B:		21.1					
MAX C:		· : :		47. 4			
ROOT MEAN S		11. 40	0. 00	10. 70	هند بدن منه من بدن وقع الله عالم		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0 0. 8-1. 1. 25-2.	8 25 i 0		1			

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.10 INDICATING EFFECT

MATERIAL: N CONDITION:	IICKEL B	ASE WASPALO)Y				
DELTA K : (KSI*IN**1/2) :		, and see they see see the see the test see see the see see	DA/DN (10**-6 IN./CYCLE)				
		: A	B	С	D		
		: : E=+ 800F :AIR	E=+ BOOF AIR				
		: SP, THK. =, 104" :					
A:	19 . 79	: 1. 24					
DELTA K B: MIN C: D:	17. 25	:	1. 46				
	20 . 00	: 1. 29	3. 33				
		2. 69	6. 27				
	30 .00 35 .00		9, 39 13, 3				
	40.00		13. 3 19. 0				
	50 . 00	11.8	33. 1				
	57. 73						
DELTA K B: MAX C: D:	58. 47	: : :	59. 7				
ROOT MEAN S PERCENT ER		11.38	17. 47				
SUMMARY	0. 5-0. 0. 8-1.	8 25 1 0	3				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.11INDICATING EFFECT

MATERIAL: CONDITION:	NICKEL E	ASE WASPAL	OY				
DELTA K : (KSI*IN**1/2) :		:	DA/DN (10**-6 IN./CYCLE)				
(VDI * 1/4 * 1 \ 5 \		. A	В	С	D		
			E=+1200F AIR				
DELTA K B: MIN C: D:		: 2.96 : :	1. 93				
		4.45	3.98 7.43 11.0 15.1 20.4				
DELTA K B: MAX C: D:		: 19.9 : :	23. 2				
ROOT MEAN SQUARE PERCENT ERROR		5. 52	14. 93				
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	8 25 1 0	2				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.12 INDICATING EFFECT

DELTA (KSI*IN*	K :		DA/DN (10**-6	IN. /CYCLE)	
(VOIXINX)	*1/E/ :	A	В	С	D
	:	F(HZ)= 0.17	F(HZ)= 0.33	F(HZ)= 20.00	
A: DELTA K B: MIN C:		6. 23	17. 0	3. 64	
D:	16. 76 .			J. 04	
	25 . 00 :	8. 79 13. 4		4. 36 7. 38	
		19. 4 31. 4	18. 6 27. 4	10. 6 14. 6	
	40 .00 :		34. 3	19. 9	
	50 . 00 : 60 . 00 :		49. 5 82. 0		
	70 . 00 :		169.		
	37.21 :	40. B			
DELTA K B: MAX C: D:			299.	27. 2	
ROOT MEAN S PERCENT EF		5. 03	8. 60	4. 94	* *** *** *** *** ***
PREDICTION			_		
SUMMARY	0. 8−1. 25 1. 25−2. 0 >2. 0) 1	1	5	

NICKEL CONDITION/HT: YIELD STRENGTH: 154. Ø KSI BASE FORM: 1.60"TH FORGING ULT. STRENGTH: 199. 2 KSI SPECIMEN TYPE: CT Ø. 432-Ø. 753" SPECIMEN THK: ORIENTATION: C-R 2.519" SPECIMEN WIDTH: 2. 502-STRESS RATIO: +0.05 WASPALOY +1200° F. AIR REFERENCES:PW001 **ENVIRONMENT:** $\Delta K (MPA \sqrt{m})$ ΔK (MPA √m) 100 10 40 100 40 10 <u>1 11111</u> 10 ⁰ Ø. 17 FREQUENCY (Hz) = Ø. 33 FREQUENCY (Hz) = 10⁻² 10-2 10⁻¹ 10⁻¹ 10⁻³ 10⁻³ 10⁻² 10⁻² da/dN (in/cycle) 10 10-4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 40 100 10 40 100 10 **(**D) **C** لبلالنا للثلثال 10 ⁰ 10 0 FREQUENCY (Hz) = FREQUENCY (Hz) = 20.00 10-2 10 2 10-1 10-1 10⁻³ 10.3 10⁻² 10⁻² da/dN (in/cycle) 10⁻⁴ 10-4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10-4 10⁻⁶ 10⁻⁶ 10⁻⁵ 10^{.5} 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁸ 40 4 10 40 100 10 100

Figure 5.12.3.12

ΔK (KSI √in)

 ΔK (KSI \sqrt{in})

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.13INDICATING EFFECT

MATERIAL N	ICKEL BAS	E WASPALOY			
CONDITION: ENVIRONMENT					
DELTA			DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**	·1/2) :	Α	В	С	а
		F=2 MIN HOLD	F(HZ)= F=5 MIN HOLD TRAPEZOIDAL	F=15 MIN HOLD	
DELTA K B: MIN C: D:		19. 1	172.	17. 2	
	50 . 00 :		477. 861. 1259.	25. 1 71. 8 145. 245. 563. 1195. 2595.	
DELTA K B:	67. 17 : 78. 46 : 84. 43 :	544.	2633.	8/49.	
ROOT MEAN PERCENT E	SQUARE RROR	12. 50	10. 08	14. 05	
PREDICTION RATIO	0, 0-0, 5 0, 5-0, 8 0, 8-1, 2 1, 25-2, 0	5 1	1	3	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.14INDICATING EFFECT

MATERIAL: N CONDITION: ENVIRONMENT		E WASPALO	Y		, all the cast and the cast are the test at
DELTA			DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN*)	£1/2) :	A	В	С	D
	:	-	Б	V	D
	:	F(HZ)= 0.01	F(HZ) = 0.17	F(HZ) = 20.00	
A:	21.41 :	13. 6			
DELTA K B:			7. 03		
MIN C: D:	16 . 66 : :			2 . 24	
	20.00:		10. 4	3. 71	
		20. 9	17. 1	7. 90	
	30 .00 :	31.4	25. 1	11. 1	
	35 . 00 :	45. 6	33. 6	14. 2	
	40 . 00 :	69. 5	41. 5	20. 9	
A:	45 . 95 :	127.			
DELTA K B:			44.6		
MAX C:	42 . 08 :			26. 1	
D:	:				
PERCENT ER	ROR		8. 21	13. 97	
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0		1	2	

1AbLL 5.12.3.15

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.15INDICATING EFFECT

OF STRESS RATIO

CONDITION: ENVIRONMEN	1850F 2HR T: R.T.,		G(FINE GS,SMALI	PRECIPITATES)	
DELTA (KSI*IN*			DA/DN (IO**	-6 IN. /CYCLE/	
(101 - 111 -	:	A	В	С	D
	:	R=+0. 10			
A: DELTA K B: MIN C: D:	27. 75 : : : :	1. 09			
	35 . 00 : 40 . 00 :	1. 38 2. 76 4. 58 10. 7			
DELTA K B: MAX C: D:	53. 11 : : : :	14. 5			
ROOT MEAN PERCENT E		4. 51			
PREDICTION RATIO SUMMARY	0. 0-0, 5 0. 5-0. 8 0. 8-1. 25 1. 25-2. 0 >2. 0		in view dern gem velen gap den aler turt den der der den den eine view ein		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.16 INDICATING EFFECT

OF STRESS RATIO

	K (2)	:	DA/DN (10**-	5 IN. /CYCLE)	
(KSI*IN*	*1/2)	: : A :	В	С	D
		: R≔+0. 10			
A: ELTA K B: MIN C: D:	25. 47	1.02			
		2. 33 4. 39 7. 12			
ELTA K B: MAX C: D:	45 . 09	10. B			
DOT MEAN ! PERCENT EI		3. 40			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.17INDICATING EFFECT

	1875F 4	BASE WASPALO HRS OQ, 1550F OF, AIR		4HRS AC	
DELTA	ĸ	:	DA/DN (10**~6	IN. /CYCLE)	
(KSI*IN*	*1/2)	:	_		_
		: A	B	С	D
		: $F(HZ) = 0.33$	F(HZ) = 20.00		
A:	11. 78	: 2.13			
DELTA K B:	19. 24	:	3. 55		
MIN C: D:		;			
2.		:			
	13.00				
	16, 00 20, 00		3. 86		
	25. 00		6. 37		
	30 . 00		9. 75		
	35 . 00 40 . 00		13. 9 18. 8		
	50.00		2 9. 7		
	60.00				
	70, 00 80, 00				
A:	37 . 65	: 450.			
DELTA K B:	50.41	:	30. 2		
MAX C: D:		:			
D .		:			
ROOT MEAN S PERCENT EF		21.40	14. 51		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.5-0. 0.8-1. 1.25-2.	8 25 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.18INDICATING EFFECT

CONDITION: 1	1875F 4HR RS AC		RS AC, 1400F 4	н	
DELTA P		·	DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**)	1/2) : :	A	В	С	D
	:		-	_	~
			F=5 MIN HOLD TRAPEZOIDAL	F=15 MIN HOLD TRAPEZOIDAL	
	24 . 46 :	14.4			
DELTA K B: MIN C:			371.	14. 5	
D:	:			14. 5	
	25.00 :	15. 9 33. 8		15. 5	
	30.00 :	33. 8 59. 1		47. 5	
		59. 1 92. 8		105.	
	50 00 :	74.0 196	443.	191. 478.	
	60 . 00 :	196. 383. 734.	636	1008.	
	70.00 :	734.	1069.	2007.	
	BO . 00 :	1410.	1951.	3939.	
	90 . 00 :			7765.	
A:	81 . 37 :	1544.			
DELTA K B:			2544.		
MAX C:	95 . 27 :			11155.	
D:	: :				
PERCENT ERR			26. 98	33. 21	
LIFE PREDICTION RATIO SUMMARY 1 (NP/NA)	0.0-0.5 0.5-0.8 0.8-1.25				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.12.3.19 INDICATING EFFECT

OF STRESS RATIO

		Ur	DIKESS KALIU		
	2010F 2H PRECIPIT			LL.	
DELTA (KSI*IN*	K :		DA/DN (10**	-6 IN. /CYCLE)	
///21 × 1/4 ×	:	Α	B	С	D
	:	R=+0. 10			
DELTA K B: MIN C: D:	:	1. 29			
	60 . 00 :	2. 84 10. 1 20. 3			
A: DELTA K B: MAX C: D:	:	20. 8			
ROOT MEAN		13. 73			
PREDICTION RATIO SUMMARY	0, 0-0, 5 0, 5-0, 8 0, 8-1, 2 1, 25-2, 0 >2, 0	5			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE5.12.3.20 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: NICKEL BA CONDITION: 2010F 2H PRECIPI ENVIRONMENT: R.T.	IR, 1600F 24HR(TATES)		GE	
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-	5 IN. /CYCLE)	
	A	B	С	D
:	R=+0. 10			
A: 30.90 : DELTA K B: : MIN C: : D: :	. 893			
40.00 :	1.66 3.19 9.65 25.5			
A: 62.77 : DELTA K B: : MAX C: : D: :	32. 9			
ROOT MEAN SQUARE PERCENT ERROR	7. 17			
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.2 SUMMARY 1.25-2.0 (NP/NA) >2.0	5			

Table 5.13

REFERENCES FOR THE NICKEL BASE ALLOY DATA

60578 Incomel 718 Kc

Christian, J.L., Yang, C.T., and Witzell, W.E., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryrogenic Environment," ASD-TDR-62-258, Part III, General Dynamics/Astronautics, December 1964.

88187 Inconel 718 K_{Tc}

"Incomel 718 Test Data of September 19, 1973," Shultz Steel Company, South Gate, CA., September 1, 1973.

88579 Inconel 718 da/dN

"B-l Program da/dN Data for Aluminum Alloys," Rockwell International Corporation; Memorandum to H.D. Moran from E.W. Cawthorne, Battelle's Columbus Laboratories, April 3, 1974.

88700 Inconel 718 K_{Iscc}

Gilbreath, W.P., and Adamson, M.J., "The Stress Corrosion Susceptibility of Several Alloys in Hydrazine Fuels," NASA Technical Note, Report NASA TN D-7604, Ames Research Center, Moffett Field, CA., February 1974.

GE001 Inconel 718 da/dN P/M Rene 95 da/dN

Shanini, V and Popp, H.G., "Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys," General Electric, Evendale, Ohio, Contract No. NAS3-20368, Report No. NASA-CR-159433, June 1978.

GE204 P/M Rene 95 da/dN

"Argon Environment Testing," Thermal-Mechanical Crack Propagation Program; Data Sheets sent from M.S. Gilbert, General Electric Co., Evendale, Ohio, Contract No. F33615-77-C-5193, November 1980.

GE005 Inconel 718 da/dN

"Fatigue Crack Growth Rate Data on Inconel 718 Using K_B Bar Specimens from the TF34 DTA Effort;" Data sent from M.S. Gilbert, General Electric Co., Evendale, Ohio, October 1982.

GE008 Incomel 718 da/dN P/M Rene 95 da/dN

Domas, P.A., "Crack Propagation Under Thermal Mechanical Cycling," General Electric Co., Aircraft Engine Group, Evendale, Ohio, Contract No. F33615-77-C-5193, November 1979.

HD003 Incomel 500 da/dN

James, L.A., "Fatigue Crack Propagation Behavior of Inconel 600," International Journal of Pressure Vessels and Piping, Vol. 5, 241-259, 1977.

HD005 Inconel 625 da/dN

James, L.A., "The Effect of Temperatures upon the Fatigue Crack Propagation Behavior of Inconel 625," Report HEDL-TME 77-2, Westinghouse Hanford Co., Richland, WA., March 1977.

HD015 Inconel 718 da/dN

Tames, L.A., "Fatigue Crack Propagation Rehavior of Inconel 718," Report HEDL-TME 75-80. Westinghouse Ham - 2 Co., Richland, WA., September 1975.

Table 5.13 (Continued)

HD016 Incomel 718 da/dN

Mills, W.J., and James, L.A., "Effect of Heat Treatment on Elevated Temperature Fatigue-Crack Growth Behavior of Two Heats of Alloy 718," ASME Paper 78-WA/FVP-2, December 1978.

HD017 Inconel 718 da/dN

James, L.A., "The Effect of Product Form Upon the Fatigue-Crack Growth Behavior in Alloy 718," Journal of Engineering Materials and Technology, Vol. 103, 234-239, 1981.

PW001 Waspaloy da/dN

Larsen, J.M., Schwartz, B.J., Annis, C.G. Jr., "Cummulative Damage Fracture Mechanics Under Engine Spectra," Pratt and Whitney Aircraft Group, Government Product Division, West Palm Beach, Fla., Report No. AFML-TR-77-4159, January 1980.

PW002 IN 100 da/dN

Larsen, J.M., Schwartz, B.J., Annis, C.G. Jr., "Cummulative Damage Fracture Mechanics Under Engine Spectra," Pratt and Whitney Aircraft Group, Government Product Division, West Palm Beach, FL., Report No. AFML-TR-77-4159, January 1980.

PW003 Astroloy 901 da/dN IN 100 da/dN Incoloy 901 da/dN

Fatigue Crack Growth Rate Data on Titanium and Nickel Base Alloys from B.S. Schwartz, Pratt and Whitney Aircraft Group, Government Product Division, West Palm Beach, FL., July 1982.

PW004 Astroloy P/M da/dN IN 100 P/M da/dN NASAIIB-7 P/M da/dN Waspaloy da/dN

Cowles, B.A., Sims, D.L., Warren, J.R., "Evaluation of the Cyclic Behavior of Aircraft Turbine Disk Alloys," Pratt and Whitney Aircraft Group, United Technologies Corp., West Palm Beach, FL., Contract No. NAS3-20367, Report No. NASA CR-159409, October 1978.

PW006 IN 100 da/dN Waspaloy da/dN

Fatigue Crack Growth Rate Data on Nickel Base Allovs from Pratt and Whitney Ai maft Group, Government Product Division, West Palm Beach, FL., July

RI006 Incomel 718 KIsco

Ferguson, R.R., Berryman, R.C., "Fracture Mechanics Evaluation of B-1 Materials," Rockwell International B-1 Division, Los Angelos, CA., Contract No. F33657-70-C-0800, Report No. AFML-TR-76-137, October 1976.

UC001 Waspalov da/dN

Lawless, B., et.al., "The Effect of Microstructure on the FCP and Overload Behavior of Waspalov at Room Temperature," Dept. of Materials Science and Metallurgical Engineering, University of Cincinnati, December 1980.

CHAPTER 6

ALLOY STEEL SECTIONS

```
6 ()
          Alloy Steel Material Summaries
6.1
          AF 1410
          AF 1410 - VIM-VAR
6.2
6.3
          A286
6.4
         D6AC
6.5
         HP 9-4- 20
66
         HP 9-4-.20 (CEVM)
6.7
         HP 9-4-.25
         HP 9-4-.30
6.8
69
         HP 9-4-,45
         HY-TUF
6.10
6 11
         HY-150
         HY-180
6.12
6.13
         1111
6.14
         10Ni Steel
6:15
         12-9-2 (MAR)
6.16
         12Ni-5Cr-3Mo
6.17
         18Ni (180) MAR
6 18
         18Ni (200) MAR
6 19
         18Ni (250) MAR
6.20
         18Ni (280) MAR
6.21
          18Ni (300) MAR
6.22
         18Ni (350) MAR
6.23
         300M
6.24
         300M (AM)
6.25
         300M (VAR)
         300M (VM)
6.26
327
         4140
6.28
         43307 MODE
         4340
6 29
b 30
         1330 AM
E_2 \rightarrow 1
         1 440 []+
633
         4 340 7 13
633
         4.34-16
         4 (40 % A)
634
```

6.35

6.36

4340 (MOE

Bhiliagraphs

TABLE 6.0.1

AVAILABLE DATA FOR ALLOY STEEL

PRODUCT FORM MIC MC M CUNVES TAYIN DAZDT MISCO	PROVIE FAR	ÇI ATE .	P. ATF x	PLATE X X X X	PLATE x	SHEET	SHEET	SHEET	FORGING X	PLATE X	PLATE X FURGING X	PLATE X X Y TURGING X	FORGING X	DILLET x
COMPUTE (WATE)	PER CHARACTER THRANT 95 A CHARACTER AND 95 A CHARACTER AND	1575F 1HR, 40 Librari 1985, det 956 - 3HR, Art	AKTATOCHTM TKY TAGOK THR MOLTGOOF THE MO	TROOP, O SYLOND, MG, 1325F. LONE, AC	HEAT TREATED TO 46 RC HABUNESS	155/35 AQ 650F 4HR	1550F AQ 9501 4HR	1350F 25 MIN GA 850F 1+1 HR	16151 2 2318. A-80 325F, AC. 312 748F 348. 1080F 6-6 5HR	1450F AUS BAY QUENCH 975F.SO	1450f AUS-BAY QUENCH 975F, SO 175f : 1000F 242 HR	1650F A-BG AT 975F, SG AT 400F, 1000F 2+2HR	1659F.1 HP F1 TB 950F B9 AT 180F.AC.1029F 2+2 HR	1650F.1 HR.FC 1070F.1 HR.DG.
WE SW	Af 1410		AFTATOCUTH 17-4	4286	DGAC									

TABLE 6.3.1 (con't)

AL 1.03		PRODUCT FORM	ж ж		R CURVES	DAZDN	DAZBN DAZDT	KISCC
<u> </u>				! !				
DoAr	1550 .; HR FC TO 96.5.00 AT From AC 1000F 2+2 HR	BILLET	*					
	1675 AC 1575F 00,400F 2 HR. 1158F 2 HR (RC 42 5)	PI, ATE	×					
	1675F AC. 1575F 00, 4037 2 HR. BOOF 2 HR (RC 46 5)	PLATE	*					
	16751 AC. 1575F 00, 400F 2 HR, 5001 2 HR (RC 50)	PLATE	×					
	1700F A-B0 AT 978F, 00 AT 140F, 1000F 2+2HR	PLATE FORGING	**			* *		
	1700F.1 HB.FC TO 960F.DG AT 150F.AC.1000F 2+2 HF	BILLET	*					
	1700F.1 HR.00.1025F 2+2 HR	BILLET	×					
	1725f 1 HB. AC 1700F 1 HB, DQ. 1000F 1 HB. 1015f 1 HR	BILLET	×					
	1725F.1 HB.AC 1700F.1 HB.00. 1100F.2+2 HB	BILLET	×					
	1075F.T HR.AC 1700F.T HR.00.	BILLET	×					
	17256-1 HR.AC 1670F T HR.FC 10 929F SG 150F O S HR.AC 1623-242 HR	BILLET	×					
06 - 9 -6dH	,	PI ATE						×
		DAR FORGING	×			* *		· ×
	ASINE ALT D	FURGING	×					
	CTA WELD WELDMENT	PLATE						*

TABLE 6.0.1 (con't)

CONDITIONAM	PRODUCT FURM	ALC AC A CONVES	NO CHA	73614
HEAL THEALTH	FORGIMG	×		
MÎLÊI D	WELPMFNI		×	
BUENCHED AND TENIPERED	PLATE			
157-Y (0). 100F (1P.1055) 4+40R	FURGING	: **		
15, SE ZHRS AC. TOOF ZHRS. 15, SE 44/RS	B11.LE1		×	
15251 24RS (10. 100)" 24RS. 1025F 44RS	PLATE BILLET FORGED BAR		* *	
11198 112 HR AC. 1524F 172 HR 11G. 100F 2HE. 1010F 4-7HR	FORGING	×		
1655- 1-24R AC. 1535F 1-2 HR AC 100F 1-34R-1025F 4FP	LORGING	×		
16/04 1-2HR AC 10255 1-2HR 09 - CORE 2HR, 1025F 4-6HR	PLATE FORGING	××		
1×504 (1.2)HP AC 15/35 (1.2)4R Qu. 10QF 23R, 1000F 4-6HR	FURGING	×		
17 (0) 1 (2) HR, ACT 525F 1 (2) IR. (0) 1 (00) 2) HR, 10) (0) 4 (6) HR	FORGING	*		
연스트 7대R AC. 152개 군대R (19. 17대 연구 2포기R AC	FORGING			
1 30F 1 20HP AC 1 2NB AC. 100F 1 94P 1008 A.B.	PLATE	×		
16,000 (10,000) (10,000) ACT - 130F 1708 (10,000) 10,000 (100	PLAIF	Sec.		
1800F. 1- PHR AC 1 SHR 00. 1025F 12HR	FORUTNG	×		

TABLE 6.0.1 (con't)

AVAILABLE DATA FOR ALLOY STEEL

≯0.7. ₹	CONDITION, HT	PRODUCT FORM MIC MC	KIC KC R C	R CURVES	Z	DA/DT	KISCC
	The second secon						
HP9-4 - 20	1770) 4 SHR.AC TO 930F HELD O SHR.A. 100F 1 SHR.1025F BHP 2 F0	FORGING	*				
	1 YOF 4 SHR.AC 1700F 1 SHR. AC -100F 1 SHR.1025F 44RS	FORGING	*				
MP9-4- 2010FTM)	ANNEAL ED	FORGING			×		
HE 9 4 275 AE	270 APP 15504 1 UP 00 1000F 2+2UR AC	FORGING	244				
нр9-4 30		PLATE BAR FORGING	×		×××		
	HEAT TREATED TO 47 RC HARDNESS	PLATE	×				
	GUENCHED → TEMPERED AT 97.0F	PLATE					×
	1115+220 240K51	BILLET			*		
	1525F 2HRS 00100F 1HR. 1625F 242HP	FORGEO BAR			*		
	1525F 25HRS 00, -100F 2HRS. 1025F 25JHR	FORGED BAR			×		
	1750F ZHRS NQ. 100F 3HRS. 1700F Z+ZHRS	FORGED BAR			×		
) 525F. 00100F 3HR. 1050F 4HR	FORGING	×				
	15'86 - 1 - 248 - A° - 152'5F - 1-248 06 100F - 1-34R - 1006F - 44R	FORGING	*				
	(650F 1-24R AC 1525F 1-21B Gü100F 1-31R 1025F AHR	FORCING	ж				

TABLE 6.0.1 (con't)

ALLOY	CONDITION/HT	PRODUCT FORM	KIC KC	R CURVES		DA/BN DA/DT	KISCC
HP9-4-30	1650F 1-2HR AC 1573F 1-2HR UG. 108F 1-3HR. 1050F 4HR	FURGING	*				
	1550F 2HRS AC.1550F 2HR 00. -100F 2HR AC. 1000F 4HR. AC. 1000F 4HR. AC.	FORGING	×				
	1650F. 2HR AC 1550F 2HR UG 1000F 2+2HR AC	FORGING	*				
	1550) - AG, 1525F - 1, 24R, 00, - 100P 1-34R, - 1050F - 44R	FORGING	*				
HP 9 4 45	1600F O SHR AC 1500F O 33HR AC	SHEET					×
	475F	PLATE					×
HY - TUF	1700F 1HR AC. 1500F 1HR. 1000F 20 MIN.00.550F 2HR	FORGING	×				
	1700F 1HR.AC. 1600F 1HR.OG. 150F 2HR	FORGING	*				
HY - 150	DM GHI grosl	PLATE					×
ну 190	GFA (UTS 180KSI)	FORGED BAR			*		
HY 80	4 2 2	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			×		
ī	:	! ! !				×	
	AUSTENIZED % TEMPERED (TYS = 220KST)	ROUND BAR			×		
	QUENCHED + TEMPEMED AT 1100F	PLATE					×
	1325F.1850F 0 5HR AC.1060F 2+2HR	SHEET					×

TABLE 6.0.1 (con't)

AYALLABLE DATA FUR ALLOY STEEL

A) : 0.4	ойтутрият	PRODUCT FORM KIC MC R CURVES DA / D	R CURVES LAZDN DAZDT KISCC
HIS INOI	:	P. ATF	
12 P. COMAR	GIA 900	RDUND BAR X X	
OWE HOW INCH		PI ATE	××
	ELECTRIC FORNACE	PLATE	*
	GTA WELDED	WELDMENT	*
	LOW RESTDUAL	PLATE	×
	TYS-150 0KSI	PLATE	×
	IVS-160 OKSI	PLATE	×
	175-170 OKSI	PLATE	×
	145-175 OKS1	PLATE	×
	1500F, 930F, 20HP, AC	PLATE	×
16NI (180) (MAP	TrS-170k51	PLATE	×
	T+S-175MS1	PLATE	×
	1×5×178KST	PI,ATE	*
	T+S 185851	PLATE	*
	1+5+190k51	PLATE	×
	Tvs-195ks1	PI.ATE	×
	3+S:200K51	PLATE	×
	TYNDY THR AC 900F, THR	PI.ATE	*

e O norma Namana

TABLE 6.0.1 (con't)

At LOV	CONDITION/HT	PRODUCT FORM MIC	H MIC	¥C	R CURVES DA/DN DA/DT KISCC	NQ/VQ	DA/DT	M.ISCC
			! 					
18NI (200) (MAR)	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	PLATE						×
	TVS=215 KSI	PLATE						: >=
	WELD CENTER LINE	PLATE						. >
	1500F 1HR AC 900F 3HR	PLATE						*
	1650F 4 5 HR. AC. AGED 1000F 6 HR	PLATE	×					
	1650F 4 5 HR. AC.AGED 950F 24 HR	PLATE	×					
	1650F 4 5 HR, AC, AGED 900F 24 HR	PLATE	×					
	1650F 4 5 HR. AC. AGED 900F 6 HR	FORGING	×					
	1650F, 4 5 HR, AC, AGED B50F 24 HR	FOROING	*					
	1650F 900F 3HR AC	PLATE						×
	1675F 2HR AC 500F,15MIN 850F 4HR CDDL 250F/MIN	PLATE						× ×
18NI (250) (HAR)		PLATE					,	×
	AGE 900F 3HR	PLATE					•	٠,
	AGED 900F 3HR AC	PLATE						< ×
	TUS=243M51	BILLET				×		ı
	1YS=250KG1	PLATE						*
	TYS=260M51	PLATE						: ×

TABLE 6.0.1 (con't)

AI LÜY	CONDITION/HT	PRODUCT FORM	KIC KC	R CURVES	DA/DN DA/DT	DA/DT	MISCC
18NI (250) (MAR)	1500F AC, 850F & HR	PLATE	*				
	1500F AC. 900F 24 HR	PLATE	×				
	1500F AC, 950F 6 HH	PLATE	×				
	1500F 1HR.AC. AGED 900F 3HR. AC	BILLET	*				
	1500F: AC, 900F 6 HR	PLATE	*				
	1650f 1 25HR WG, 1525F 1 25HR WG, 900F 3HR AC	PLATF					*
	900F 2HR A	SHEET					×
18NI (280) (MAR)	1507F THR AC 900F 3HR	PLATE					×
18N1 (300) (MAP)	:	SHEET	×		×	×	
	ACFD	!			×		
	ANNEALED	1			×		
	AGE 900F GHR	FORGING					×
	AGE 950F 12HR	FORGING					×
	CRACK PRESTRESSED TO 50 PCT KIC	FORCING					×
	CRACK PRESTRESSED TO 25 PCL KTC	FORGING					×
	CPACK PPFSTRESSED TO BO PCT KTC	FURGING					×
	1500F 0 5HR AC 900F 3HR	PLATE					×
	1500F 2HR B00F 10HR	BAR					×
	1500F 2HR 900F 3 5HR	8					×

TABLE 6.0.1 (con't)

ארוטא	CONDITIONALIT	PRODUCT FORM KIC	Š	R CURVES DA/DN DA/DT KISCC	r KISCC
(MAR)	1500F 2HB 900F 100HB	8 9			×
	1700F, 1500F AGED 900F 6HR	FORGING			×
	2300F 1HR 1700F 4HR 900F 100HR	BAR			*
	2300F 1HR 1700F 4HR BOOF 10HR	BAR			*
	2300F 11#R 1700F 4HR 900F 100HH	BAR			×
	3 348	BAR			×
	2006 3HR 950F 3HR	FORCING			×
	1700F 1HR. AC. 1500F 1 HR. AC. 900F 6 HR	FDRCING	×		
	700 F AGED	PLATE	×		
3NI (350) (MAR)	18NI(350)(MAR) AGED BHR ROOF	FORGED BAR		×	*
	AGE 900F 3HR	FORGED BAR			×
	AGE 900F BHR	FORGED BAR			×
	1500F 1HR 800F 8HR	FORGING			×
	ISOOF IHP 900F BHR	FORGING			×
	1500F 1HR 950F 3HR	FORGING			×
300H	!	PLATE FORGING	×	×	××

TABLE 6.0.1 (con't)

AVAILABLE DATA FOR ALLOY STEEL

A) 1"0A	CONDITIONAHI	PRODUCT FORM KIC	į	KC R CURVES	DAZDN DAZDT	1	KISCC
Bridg	AMT 6434 UIGS220 (40KG)	PLATE		×			
	UPS 200 080451	Pl.ATE		×			
	U15-280 300MS1	SHEET PLATE		××			
	HEAT FREATED TO SAIRC HARRACES	Pl.ATE	×				
	(5) 55 90 300 481	BAR BICLET			**		
	15GOF O SHR DO 400F 2+2 HR CODARSE GRAINED STRUCTURE)	PLATE					×
	1500F O SHR DR 550F 2+2 HR COARSE GRAINED STRUCTURE)	PLATE					×
	1500F O SHR OG 550F 2+2 HR	PLATE					×
	ISON O SHR OG 4001 2+2 HR FINE GRAINED STRUCTURE)	Pl.ATE					×
	1550F O SHR OG 550F 2+2 HR (FINE GRAINED STRUCTURE)	PLATE					*
	: Flast & SHR 09 400F 2+2 HR (Flast ORAINED STRUCTURE)	PLATE					×
	1550F O SUR 09 SSOF 2+2 HR COARSE GRAINED STRUCTURE)	PLATE					×
	ISSAC O SHR 00 400F 2+2 HR COMPSE GPAINED STRUCTURE)	Pl.ATE					×
	LERUE O SHR US ADOF 2+2 HR COARSE GRAINFU STRUCTURE)	PLATE					×
	(Agod o SHR NG S50F 2+2 HR (COAKSE GRAINED STRUCTURE)	Pl ATE					×
	1600F O SHR OG 550F 2+2 HR (FINE GRAINED STRUCTURE)	PLATE					×

TABLE 6.0.1 (con't)

ALLOY	CONDITIONALIT	PRODUCT FORM KIC	KIC KC	R CURVES DA/DN DA/DT KISCC	PA/DN	DA/DT	MISCC
300₩	1600F 00, 575F 2+2HR	SHEET				×	
	1.60vF 0 5 HR, SQ.1000F 0 5 1 0 HR, 09 BO-180F 05 MIN: 575F 2+24R	FORGING	×				
	1500F 1 05 HR:00- 600F 2+2HR	FORGING	×				
	1840 11 11 00, 475 1HR	BAR	×				
	1500F 1HR, NO. 1HR, WO. 475F 1HR	BAR	*				
	1600F 1HR.00. 615F 1 HR	BAR	×				
	1500F 1HR, 00, 575F 1HR	BAR	×				
	1500F 1HR, DQ, 745F 1HR	BAR	×				
	1700F 00.550F 2+2HR	PLATE	*				
	1650F, 1525F (19 600F 2+2HR	FORGING					×
	1850E.1860E.18R NG 800E.1+1 HR	FORGING					×
	1675F AC. 1575F 00, 800F 2HR (Rt. 47.5)	PLATE	×				
	17.75F.AC 1575F 00,500F 2HR (PC 51.5)	PLATE	×				
	1475F.AC.1575F 00.1100F 2HR (Pc. 39)	PLATE	×				
	1700F 1 SHRS AC.1600F 1 SHRS 00.600F 2+2FRS	FORGING			×		×
	1735F 114R AC, 1600F 1HR 00. 6-0F 2HR AC (AMS 6419)	PLATE	*				
	1210F-1510F-610F	BAR					*

TABLE 6.0.1 (con't)

A(1,0)*	CONDITIONSHI	PRODUCT FORM KIC	KIC KC R CURVES	DAZDN DAZDT	DA/DT	KISCC
₩ ∂0 <u>L</u>	21906 148, EC TO 15006 HOLD O SHR. DQ. 475F 148	ВАЯ	×			
	2190F 148,FC TO 1600F,HOLD O '848,00,515F 14R	BAR	×			
	2190F 1HR, FC TO 1600F, HOLD 0 SHR, DQ, 745F 1HR	BAR	×			
	2190F 1HR. DG. 400F 1HR	BAR	×			
	2190F 1HR, DQ. 475F 1HR	ВАЯ	×			
	2190F JHR, DQ, 475F JHR, WQ, 475F JHR	ВАЯ	*			
	2190F 1HR, UQ, 615F 1HR	BAR	×			
	2170F 1HR, DA, 745F 1HR	ВАЯ	×			
300M (AM)	1550F 1 14F.AC.1550F 1 HR.QQ. 1350F 0 5 HR. 600F 2+2HR.AC	FORGING	×			
300M (VAR)	1650F 1 HR.AC.1550F 1 HR. 00. 3.0F 0 5 HR. 600F 2*2HR.AC	FURGING	×			
300M(VM)	1500F 04,400F 2+2HR	PLATE	*			
	1500F. 00, 550F. 2+2HR	PLATE	×			
	1750F 00, 400F 2+2HR	PLATE	×			
	1550F. 00, 550F 2+2HR	PLATE	×			
	1500F, 06, 400F 242HR	PLATE	×			
	1400F.00.550F.3+R	PI ATE	×			
	1700F.AC.1600F 1 HR.00,550F 2+2 HR	BILLET	×			

TABLE 6.0.1 (con't)

¥11.0¥	Ĭ	IDDUCT FORM) ¥		R CURVES	DA/DN	DA/DT	MISCC
				 - 	į			
3000(00)	1700F. AC. 1600F - 148. SQ 975F. (10. 573F- 2+2 HR	BILLET	ж.					
	17001 . AC. 1600F 1 HR, SQ 400F. AC. 100F 2+2 HR	B נרו כע	×					
4140	1500 HIR OR 1250F THE AC	PLATE						×
	TSSSE THR UR TOOPE THR ACTIONS THREACT	PLATE.						×
	160-31 1 HR, 779, 400F 1HR	FURGED BAR	×					
	1600F 1 HR, DB, 745F 1HR	FORGED BAR	×					
	1600f 1 HR. 00, 535F 1HR	FORCED BAR	×					
	1600F 14R, 1550F 14R, 00 AT 150-175F, 900F 14R	PLATE	×					
	15/00F 1HR, 1550F 1HR, UR AT 150-175F, BOOF 1HR	PLATE	×					
	1700F.1600F 00 750F 1+1 HR	PLATE						×
	1700F. 1600F 00 600F 1+1 HR	PLATE						×
	2010F 1 1HR, 00, 400F 1 HR	FURGED BAR	*					
	2010F 1 HR, 00, 475F 1 HR	FORGED BAR	×					
	2190F 1 HR, 00, 400F 1 HR	LORGED BAR	×					
	2190F 1 HR. 00. 660F 1 HR	FORGED BAR	×					
	2190F 1 HR. 00.615F 1 HR	FORGED BAR	×					
	2190F 1 HR DG 475F 1 HR	FURGED BAR	×					
4330V	QUENCHED + TEMPERED AT 500F	PLATE						×

TABLE 6.0.1 (con't)

AVALLABLE DATA FOR ALLOY STEEL

AL 1,074	THOUGHT FRANCE	PRODUCT FORM ALC	KIG KC R CURVES	NG/AG 2	DA/DN DA/DT	KISCC
4 8 80 V MUD		BILLFT	×	×		
	HEAT TREATED TO 40 BY HAPPNING	PLATE	.tw€			
	The state of the s	FORGED BAR	×			
	98-1 JSS 00 28-1 (1984)	FORGED BAR	×			
	523 - 57 HB 523 - 57 HB	016161	×			
	15(5) (1.19B) (6.15) (1.19B) (0.3) Root (15.29B)	BILLET	1 4			
3 5 5		SHEET PLATE FORGING			× ×	***
	AÇAT TAÇATÊD TALST BI HARDNISS	PLATE	×			
	Q addamin day	PI ATE		ж		
	11 MPCR 400F 1F6	PLATE			×	
	TEMPERED 40s4	:			*	
	158821 14	FLATE				×
	Tys. Tooks I	Pt ATF				×
	150 12000	First				×
	IYS JOOKSI	PI ATE.				×
	The Modern Const.	F ZTRUSTUN			ж	
	1. 4	PI ATE				×

TABLE 6.0.1 (con't)

4 140	015 - 160 KSI	RUUND BAK		*	
	UTS > 180 MS1	ROUND BAR	×	*	
	UTS: 180 200KS1	BAR PLATE		××	
	1350F 00 750F 1 23#	PLATE			×
	1750F. OG. TÜMPERED BÜÖF	PLATE	×		
	ISSUE TEMPERED SOOF	Pi ATE	×		
	1996 ON 750F CRACK PRESTRESSFD ID EQUAL MIC	PLATE			×
	1556F DQ 250 THR CRACK PRESTRESFO FORSON: MIC	PLATE			×
	TOOK ON 750F CRACK PRESTRESSED OF ROBEL MIT	PLATE			*
	150 for O 750F CRACK PRESTRESSED	P! ATE			×
	1 199 DO 250F FRACE PRESTRESSED to about MTV	PLATE			×
	15 75F 00 675F 4HR	PLATE			×
	1.75E 09 800F 4HR	PLATE			×
	1508F 1 18 00.400F 1 HR	FURGED BAR	∺		
	1600F 1 18,00 745F 1 HR	LURGED BAR	*		
	1ALCT 1 HR. 00, 680F 1 HR	FORGED BAR	> (
	1-0-0-1 HR 103 038L 1 HR	FORGED BAR	*		
	17 - C. 3402 (1525) S. SRB, DQ A' 154 (175), 300F (140)	PLATE	×		
	trough 198 00 soot 1+198	FORGING			×
	77.74 G 1525F US 460F 242HR	FORGING			×

TABLE 6.0.1 (con't)

AVAILABLE DATA FOR ALLOY STEEL

At I.CV	CONDITION/HT	PRODUCT FORM	KIG	K C	R CURVES	EA/DN	DA/DT	KISCC
4,340	1650F THR AC 1680F 2HR 00.LN 0-25HR, 400F 1+1HR 00	₽ ~						×
	1650F 1HR AC 1480F 2HR DG.LN 0 25HR, 400F 1+1HR DG	BAR						×
	1650F 1 HR.AC.1525F 1 HR.0G. ROOF 2 HR	BILLET	×					
	1700F 0 25HR AC 1550F 00 600F 1+1HR	SHEET						×
	1900F 9. 600F 1+1HR	FORGING						×
	2190f 1HR. FC TO 1500F. HOLD 0 54R. 400F 1 HR	FORGED BAR	×					
	2190F 1HR, FC TO 1600F, HOLD 0 54R, 660F 1 HR	FORGED BAR	×					
	2190F 1HR, EC TO 1600F, HOLD O EHR, 5.45F 1 HR	FORGED DAR	×					
	2190F 1HR, NG, 475F 1HR	FORGED BAR	×					
	2190F 1HR-00- 535F 1HR	FORGED BAR	ж					
	450F TEMPER	}				×		
	750F TEMPTR	1				×		
4340 (AM)	1200F 1 HR.AC.1550F 1 HR.DQ. 320F 0 5 HR. 400F 2 HR.AC	FORGING	>					
4 340 (DID	1550F, DG, 900F, 1 HR	BILLET	×					
	1409F 1 HR, AC, 1550F 1 HR, 09. 350F 0 5 HR, 400F 2 HR, AC	FORGING	*					
4340 (VAR)	1600F 1 HR.AC.1550F 1 HR.DG. 320F 0 5 HR. 400F 2 HR.AC	FORGING	×					
4340 (EFM)	1550F 51R, 400F 4HR	PLATE					×	

TABLE 6.0.1 (con't)

AVAILABLE DATA FOR ALLOY STEEL

AI I.OY	CONE LT ION, HT	FRODUCT FORM KIC KC R CURVES DA/DN DA/DT KISCC	DA/DN DA/D	K ISCC
4340V		EXTRUSION	×	
4340 (MDD)	1650F 14R, 1600F 14R 00 1+1 600F (0 09 SI)	BAR		×
	1530F 1HR, 1600F 1HR 00 1+1 4G0F (0 09 ST)	JAR		×
	(1975) 3 450F 1+1HR (9 200)	FORGING		×
	1900F @ 500F 1+1HR (0 21C)	FORGING		×
	1866F 3 689F 14R (0 20C)	FORGING		×
	1900F @ 650F 1HR (0 24C)	FORGING		×
	1900 a 650F 1+1HR (0 28C)	FORGING		×
	1800F @ 700F 1HR (0 21C)	FORCING		×
	18ual @ 780F 1+1HR (0 33C)	FORGING		×
	1900F @ 800F 1HR (0 46C)	FORGING		×
	1800F @ 900F 1HR (0 640)	FORGING		×
	1800F 0 925F 1+114R (0 530)	FORGING		×

TABLE 6.0.2

PLANE STRAIN FRACTURE TOUGHNESS VALUES OF ALLOY STEEL AT ROCH TEMPERATURE

ALLOY	CONDITION/ HT	FORH	RANGE OF PRODUCT THICKNESSES (IN)				(K81	(KBI BORT(IN))	ŝ			
					L-1			1-		1	_	7
				BPECIMEN THICK *	HEAN	BTD. DEV.	BPECIMEN THICK *	TEAN	BTD. DEV.	SPECIMEN THICK .		F
AF1410	1650F 1HR, Mg, 1500F 1HR, Mg, 950F 5HRB, AC	PLATE	8 ni	1. 78	139, 6	11.7	1. 75	136. 7	*	1		
D6AC	HEAT TREATED TO 46 RC HARDNESS	PLATE					0. 70	80. 80.	÷	j		
	1615F 2. 294R, A-80 325F, AC, 310-345F 34R, 1080F 6-6, 94R	FORGINO					8 .	78. ♣		0. 97	_	8 3. 9
	1650F AUS-BAY GUENCH 975F, 8G 325F, 1000F	PLATE	0. 80-1. 90	0. 79	66.9	18. 7	1		-		•	
	1650F AUS-BAY	PLATE	t. 30	0.60	6 2.2	14.0		!		}	•	
	375F, 1000F	FURGING	1. 30	0.73	6 0	4.	į		ŀ	1	•	
	1650F, AUS-BAY	PLATE	0.80	0.60	64. 4	12.1	}	İ		-	•	-
	400F, 1000F 2+2 HR	FORGING	0. 80-1. 50	09 .0	66. 2	12.3	}	}		1	'	
	1650F.1 HR.FC 1650F.1 HR.DB. 1029F.2+2 HR	BILLET	7. 98	8 -	78. 3	4.7				}	1	
	1650F, 1 HR, FC TO 960F, DB AT 150F, AC, 1000F 2+2 HR	BILLET	7. 00	8	8 0. 3	Ö	1			;	1	
	1700F, AUG-BAY	PLATE	0. 80-1. 90	0.61	95.0	8		i		1	i	
	140F, 1000F	FURDING	0. 80-1. 50	0.75	93. 22	9		-	1	!	i	-

. MINIMUM BPECIMEN THICKNESS (IN.).

,

TABLE 6.0.2 (con't)

PLANE BTRAIN FRACTURE TOVONNESS VALUES OF ALLOY STEEL AT ROOM TENFERATURE

ALLOV	CONDITION/ HT	PRODUCT FORM	NAMBE OF PRODUCT THICKNESSES (IN)				E 184)	(KBI SORT(IN))	N)			
1	76 4 1 1 0 1 5 5 7 7 7 8 8 7 7 1 5 5 7 7 8 8 8 7 7 8 8 8 7 8 8 8 8 8 8 8		1 1 1 1 1 1 1 1 1 1	i	L-1			7			7	
				BPECIMEN THICK .	T.	810. DEV.	BPECIMEN THICK *	EA	25 .	SPECIMEN THICK .	TEAN	910 0.
D6AC	1700F, 1 HR, FC TO 960F, OB AT 150F, AC, 1000F 2+2 HR	BILLET	7. 90	8	6	4 .						
	1700F.1 HR.00. 1025F 2+2 HR	BILLET	7. 00-10. 00	1.8	77.3	Ci 4	ł			:		
	1729F 1 HR, AC 1700F 1 HR, 08, 1000F 1 HR, 1013F 1 HR	DILLET	7.00	1. 8	77. 2		1			1		
	1729F. 1 HR. AC 1700F 1 HR. DB. 1100F 2+2 HR	DILLET	7. 00–10. 00	1. 00	101. 2			ŀ	1	•		
	1725F, 1 HR, AC 1700F 1 HR, DB, 1025F 2+2 HR	BILLET	7. 00–10. 00	1 8	74. 4	Ą	1	;		}	-	!
	1729F.1 HR. AC 1650F.1 HR. FC TO 960F.80 350F.0.5 HR. AC 1029F.2+2 HR	BILLET	7.00	2.00	79. 1	10.		i				
HP 9-4-, 20	-	FORGINO	1. 25	8 ai	150.6	4	9 8	136.3		1		
	ANNEALED	FURGINO	3, 90	1.8	120. 6	7.3	8	117.7		ł		
	HEAT TREATED	FURGINO	3. 40-7. 00	1.90	140.7	₩.	1. 46	132.3	•	-		
	1929F 00, -100F 1HR, 1063F 4+4HR	FORGINO	₩.	}			.	111.7	o N	;		
	1650F 1-2 HR AC. 1525F 1-2 HR 00, -100F 2HR, 1050F 4-6HR	FORG IND	3. 00-3. 26		133 23.2	e.			•			

* MINIMUM BPECIMEN THICKNEBB (IN.).

TABLE 6.0.2 (con't)

PLANE BIRAIN FRACTURE TOUGHNESS VALUES OF ALLOY STEEL AT ROOM TEMPERATURE

ALLOY	CONDITION/ HT	FORM	THICKNESSES (IN)				(K81	(KSI SORT(IN))	ŝ			: !
					L-1			1			-	į
				SPECIMEN THICK .	HEAN	STD. DEV.	BPECIMEN THICK *	TE 2	BTD. DEV.	SPECIMEN THICK .	F	STD. DEV.
HP 9-4-, 20	1650F 1-24R AC, 1929F 1-2 HR AC, -100F 1-24R, 1029F 44R	FDR0 I NO	4. 00-7. 00	1. 79	134.8	e 3	1. 76	109. 7	+			1
	1650F 1-2HR AC	PLATE	2. 30	8	121. 5	23.0	!					İ
	00, -100F 2HR. 1023F 4-6HR	FOROINO	80. →	6 8	142.8	10. 7	1		-			}
	1650F 1-2HR AC 1529F 1-2HR UG100F 2HR, 1029F 4-6HR	FOROING	4.00	1. 51	129. 1	6.7	1. 91	125.3	-	Ì	;	
	1630F 2HR AC. 1925F 2HR DG. 1000F 2+2HR AC	FOROINO	₩. 00	1. 24	4.	÷	1			1		
	1690F, 1-2HR, AC 1-2HR, AC, -100F 1, 5HR, 1025F 4 HR, 1060F 64R	PLATE	96 6	00 ni	123. 9	12. 0	!		ļ	!		!
	1630F, 1-2HR, AC 1. SHR 09, 1023F 12HR	FOR0 IND	. 60	1. 93	125. 9	6. 8.	1	1	}			•
	1650F, 4. 34R, AC TD 900F, HELD 0. 34R, AC, -100F 1. 34R, 1023F B HR, A-B0	FURGINO	4.00	1. 99	28.	.0	1			!		
	1700F 4. SHR, AC 1700F 1. SHR, AC -100F 1. SHR, 1 025F 4HRS	FOROINO	4 . 00	1. 60	140.9				}			!

. MINIMUM SPECIMEN THICKNESS (IN.).

TABLE 6.0.2 (con't)

PLANE STRAIN FRACTURE TOUGHNESS VALUES OF ALLOY STEEL AT ROOM TEMPERATURE

HP 9-4-, 25 (VAR) 1550F 1 HR, D0 FUROING 3.00 1000F 2+2HR, AC 1000F 2+2HR, AC 1000F 2+3HR, AC HP 9-4-, 30 HEAT TREATED PLATE 3.25 HANDNESS
1650F 1-248 AC FORGING 3.00 1525F 1-248 DG 1000F 1-348,
1650F 1-244 AC FORGING 3.00 1525F 1-244 DG 1050F 1-344,
1650F 1-24R AC FURGING 3.00 1525F 1-24R DG 1025F 1-34R 1025F 44R
1650F, 24ft AC FORGING 3.25 1950F 24ft DG 1000F 2+24ft AC
1700F 1HR, AC, FORGING 6, 50 1600F 1HR, 00, 550F 2HR
1650F 4.5 HR, PLATE 4.25 AC, AOED 1000F 6 HR

+ MINIMUM SPECIMEN THICKNESS (IN.).

TABLE 6.0.2 (con't)

PLANE STRAIN FRACTURE TOUGHNESS VALUES OF ALLOY STEEL AT ROOM TEMPERATURE

1300 1400F 4 3 HB. PLATE 4.23 2.40 99.3 1.2	ALLOY	CONDITION/ HT	PRODUCT	THICKNESSES (IN)				(KB1	(K81 BORT(IN))	C C				
######################################					_	-1			ا ب	1		3-t		
1.290F 4.5 HB, PLATE 4.23 2.40 99.3 1.2					SPECIMEN THICK +	HEAN	BTD. DEV.	BPECIMEN THICK *	HEAN	BTD. DEV.	BPECIMEN THICK .	FA	81D. DEV.	
14.50F 4.3 HR, Manage 700F 7.3 Half 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	18NI (200) (HAR)	1650F 4.5 HR. AC. AGED 950F 24 HR	PLATE	4. 25.	ni 4				}	1			-	
1450F 4.5 HR, detalous TORGING 3.00 2.40 100.3 0.6		1650F 4.5 HR. AC. AGED 900F 24 HR	PLATE	4.25	ų 6		0. 7		1	!		-		
1500F AC, 830F BLATE 2.00 1.80 80.7 1.2 1500F AC, 900F BLATE 2.00 1.80 80.7 1.2 1500F AC, 900F BLATE 1.00-12.00 1.80 80.7 1.2 1500F HR, AC, 1.80 80.7 1.2 1500F HR, AC, 1.80 80.7 1.2 1500F HR, AC, 1.80 80.7 1.2 1500F HR, AC, 1.80 80.7 1.2 1.00-12.00 1.80 80.7 1.2 1.00-12.00 1.80 80.7 1.2 1.00-12.00 1.80 80.7 1.2 1.00 1.80 80.7 1.2 1.00 1.80 80.7 1.2 1.00 1.80 80.7 1.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00		1650F 4. 5 HR. AC. AGED 900F 6 HR	FOR0 I NO	3.00	ų 5	100.3		1				!		
1500F AC, 900F 24 IPR 1500F AC, 950F 1 I I I I I I I I I I I I I I I I I I	18NI (250) (MAR)		PLATE	4. 23	1. 80	76.0		}		}	}	i		
1900F AC. 930F PLATE 2.00 1.80 84.0 2.6		1500F AC, 900F 24 HR	PLATE	90 ci	1.80	8 0. 7		!	1			- 1	!	
1500F 1HR, AC, ACED 900F 3HR, ACCED 900F 3HR, FORGINO 1.29 1.29 52.6 2.3 1.29 52.9 2.0		1500F AC, 950F 6 HR	PLATE	8 ni	1.80	4		}		}				
1500F, AC, 900F PLATE 2.00 1.80 82.3 3.2 FURGINO 1.25 1.25 32.6 2.3 1.25 52.9 2.0		1500F 1HR, AC, AGED 900F 3HR, AC	BILLET	1. 00-12. 00		74. 3		9	64. 1					
HEAT TREATED PLATE 1.00 1.25 52.6 2.3 1.25 52.9 2.0 10 54 RC HARDNESS 1.00 0.25 54.6 2.5 50.6 1.7 0.25 54.1 1700F 1HR AC, PLATE 1.00 0.50 51.8 0.7 1.00 0.		1300F, AC, 900F 6 HR	PLATE	8 ni	1.80			1	1					
TED PLATE 1.00 0.45 58.6 3.9 2.5 HR, FORGINO 3.0C 0.25 54.6 2.5 0.25 50.6 1.7 0.25 54.1 2.5 HR, PLATE 1.00 0.50 51.8 0.7	300M	ł ł	FOROINO	1. 25	1. 25	3 2. 6		1. 25		Ni O	}	1		
FOROTNO 3.0C 0.25 54.6 2.5 0.25 50.6 1.7 0.25 54.1		HEAT TREATED TO 54 RC HARDNESS	PLATE	1.00				0 4	38 .					
3. PLATE 1.00 0.50 51.8 0.7 5.5		1600F 1.25 HR, DG, 600F 2+2HR	FOROINO	3.00	0.0	9 9		0. 23	9 0.	1.7	0	.	1.1	
		1700F 1HR AC. 1600F 1HR 09. 600F 2HR AC (AHS 6419)	PLATE	1.00	0. 30	91. 8								

* MINIMUM SPECIMEN THICKNESS (IN.).

,

TABLE 6.0.2 (con't)

PLANE BIRAIN FRACTURE TOUGHNESS VALUES OF ALLOY STEEL AT ROOM TEMPERATURE

ALLOY	CONDITION/ HT	PRODUCT	RANGE OF PRODUCT THICKNESSES (IN)				CKBI	(KSI SORT(IN))	Ç.			
, , , , , ,		; ; ; ; ; ; ;		1	1-1			1			7	
				SPECIMEN THICK +	HEAN	STD.	BPECIMEN THICK +	TE à	810. 0EV.	SPECIMEN THICK +	EA	BTD.
HOOE	2190F 1HR, FC TD 1600F, HDLD 0. SHR, DQ, 473F 1HR	Ž	0.62	09	47.4	. ::				ļ		
300H (AH)	1650F 1 HR. AC. 1550F 1 HR. OG. -320F 0.5 HR. 600F 2+2HR. AC	FOR 0 INO	6	6 6		6	-			i i i		
BOOM (VAR)	1650F 1 HR. AC. 1550F 1 HR. DB. -320F 0.3 HR. 600F 2+24R. AC	FURGING	06. *	o 6	a Gi	 G				i		
300H(VH)	1500F, DG, 400F 2+2HR	PLATE	9 9	0. 40	4 0.0	17.0	-	!	-	1		
	1500F, 08, 350F 2+2HR	PLATE	9 9 9	0	4. 9.	10.	!	-				
	1550F. 00. 550F 2+2HR	PLATE	98	0. 30	65 3	6. 6.	1			;		
	1700F. AC. 1600F 1 HR. 00, 550F 2+2 HR	BILLET	06 si				2	53.3	e 8			
	1700F. AC, 1600F 1 HR. BG 973F, 00, 573F 2+2 HR	BILLET	06 6				- 8	3.	ai G			-
	1700F. AC. 1600F 1 HR. 80 400F. AC. 550F 2+2 HR	BILLET	9 16		;		1.00	9	₹ ri	}		
4140	2010F 1 HR, D0. 475F 1 HR	FORGED BAR	0. 62	0. 60	52.1	7.4	1 1	!	į	į	;	

TABLE 6.0.2 (con't)

PLANE BIRAIN FRACTURE TOUGHNESS VALUES OF ALLOY STEEL AT ROOM TEMPERATURE

ALLOY	CONDITION/ HT	PRODUCT	RANGE OF PRODUCT				KKSI	(KBI BORT(IN))	N)			
				}	-1		i '	7			- C-	
				SPECIMEN THICK *	TE SK	810. DEV	BPECIMEN THICK +	HE À	BTD.	BPECIMEN THICK •	HEAN	STD. DEV.
4140	2190F 1 HR, 00, 400F 1 HR	FORGED BAR	0. 62	0, 60	1.1	13. 2	1	1				
	2190F 1 HR. DG. 475F 1 HR	FORGED BAR	0. 62	0.60	1 .	ui V		}			!	
4330V MOD	HEAT TREATED TO 46 RC HARDNE88	PLATE	0.62	!		į	0.73	74.7	Ö	i		
	1600F 1 HR, 09, 533F 1 HR	FORGED BAR	0. 62	0.60	96.7	6. 6.	•			}		!
	1650F 1 HR, AC, 1973F 1 HR, DG, 800F 2+2 HR	BILLET	9	1.00	76. 1	ci Ci	1			}		-
	1650F 1 HR, AC, 1575F 1 HR, DB, 525F 2+2 HR	DILLET	9 .	8 :1	81. 6	m ni				1		!
4340	HEAT TREATED TO 51 RC HARDNESS	PLATE	0.62	1			0 6 7	91.7	1.3			
	1550F, DQ. TEMPERED BOOF	PLATE	1. 00	98 90	76. 6	.	<u> </u>	† †	}	1		}
	1550F, DG, TEMPERED 500F	PLATE	1. 00	0.80	45.3	oi Oi	-					1
	1600F 1 HR, 00, 533F 1 HR	FORGED SAR	0.62	0.60	6 .09	6	-			}		}
	1600F 1HR, 1525F 2. 5HR, 00 AT 150-173F, 900F 1HR	PLATE	90 .1		}	}	1. 01	99 01	n -i	!		!
	1650F 1 HR, AC, 1525F 1 HR, DG, 800F 2 HR	BILLET	10.00	1.00	76. 3	က် •				! !		}

. MINIMAM SPECIMEN THICKNESS (IN.).

TABLE 6.0.2 (con't)

SACCO ARCOCOCO PARACOCO POSSOSO RECOCOCOS RECOCOCO DE SACCOS RECOCOCOCOS DE SACCOS DE

PLANE BTRAIN FRACTURE TOUGHEBS VALUES OF ALLOY STEEL AT ROOM TEMPERATURE

ALLOV	CONDITION/ HT	PROBUCT	RANDE OF PRODUCT THICKNESSES (IN)		1-1			182	KBI BONT((KBI BONT(IN))		KAIC (NSI BORT(IN))
				OPECINEN THICK .	PEAN	BTD.	BPECINEN THICK +	i Z	N PEAN	. i	MEAN 8TD. DEV.	PEAN 8TD. SPECIMEN DEV. THICK +
4340	2190F 1HR, FC TO 1600F, HOLD O. 5HR, 400F 1 HR	FURGED BAR	6.62	3	76. 8	9. 1		1	1	*	1	1
	2190F 11M, FC TO 1600F, HOLD O. 34M, 640F 1	FUNCED BAR	6	9.	9 0.	8	1	(1		}	
	2190F 1HM, FC TO 1600F, HOLD O. SHR, 939F 1 HR	FORGED BAR	o. 9.	09 .0	1 .09	ດ ຕ່	1	1	1	;		
4340 (AH)	1600F 1 HR, AC, 1950F 1 HR, DB, -320F 0. 9 HR, 400F 2 HR, AC	FURGING	9 6	5	40.5	5	1		_	•	-	!
4340 (DH)	1550F, 09, 900F 1 HR	BILLET	1. 00	!		}	. 8	6.3				tu •
	1600F 1 HR, AC, 1350F 1 HR, 09, -320F 0.5 HR, 400F 2 HR, AC	FOROINO	. 00	9. 40	91.0	0 m				1		
4340 (VAR)	1600F 1 HR, AC, 1950F 1 HR, CG, -320F 0 5HR, 400F 2 HR, AC	FURGINO	8 0 ÷	0	99. 0	*	1		•	1	1	

* MINIMUM BPECIMEN THICKNESS (IN.).

TABLE 6.0.3

PLANE STRESS AND TRANSITIONAL FRACTURE TOUGHNESS OF STEEL ALLOYS (WITHOUT BUCKLING CONSTRAINTS)

		Teat	Specimen	C	Yield		
	Condition/Ht	. (a)	Ortent	Kidth (in)	Strength (Ks1)	Specimen Thickness (in) = 0.025	
18 NI (300) HAR		-423	1-1	0.4	386	86.4/7.3 (5)	
		- 320	1-T	2.0	336	142.6/7.4 (5)	
		R. T.	1-1	2.0	111	132.1/4.3 (5)	
				0.4.0	277	128.5/3.8 (5) 110.3/10.9 (3)	

A Mean/Standard Deviation (No. of Specimens)

TABLE 6.0.4.1

COMPARISON OF FATISUE CRACK GROWTH RATEB AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR ALLOY STEEL

IEST CONDITIONS:

L-1 BPECIMEN ORIENTATION

ENVIRONMENT: LAB AIR AT R. T.

0. 10-30. 00HZ FREQUENCY:

0.02-0.10 STRESS RATIO:

0 139 126 8 FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE) FOR DELTA K LEVELS (MSI SORT(IN)) = 5 5.0 10.0 20.0 50.0 IC 27.3 30.7 24. B 31. 5 63.2 n 0 3 . 9. 60 0 8 2.85 59 9.61 1.61 ri . 633 969 . 646 180 164 105 **13** 0 10- 20 00 . 10- 30.00 . 10- 30.00 FREGNENCY 8 6 2 1.00 8 30.00 BTREB8 Ratio 000 Ö 0.02 8 0 10 0.03 2 0. 10 Ö o ROUND BAR ROUND BAR FURGING PRODUCT FORM PLATE PLATE PLATE PLATE PLATE 1650F A-80 AT 975F, 90 AT 400F, 1000F 2+2HR 1650F A-80 AT 973F, 80 AT 400F, 1000F 2+2HR 1700F A-BG AT 975F, DG AT 140F, 1000F 2+24R 1800F 0, 5-1, 0HR MG 1325F 16HR AC 1523F 1HR AC, -100F 1HR AC, 950F 5HR9 AC CONDITION/HT 1525F 1HR AC. -100F 1HR AC. 950F 5HRB AC 1500F 1HR WG, 1500F 1HR WG, 950F 3HRB AC AF1410(VIM-VAR) HP9-4- 20 AF1410 ALLOY A286 DOAC

33

96 6

900

0 0

BAR

TABLE 6.0.4.1 (con't)

COMPARIBON OF FATIONE CRACK ORDWITH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR ALLOY STEEL

TEST CONDITIONS:

SPECIMEN CRIENTATION: L-T

ENVIRONMENT: LAB AIR AT R. T.

STRESS RATIO: 0.02-0.10

FREQUENCY: 0, 10-30, 00HZ

ALLOY	COND1710N/HT	PRODUCT	STRE88 RATIO	FREGUENCY	FATIONE CRACK ORDWIH RATES (MICRO IN/CYCLE) FOR DELTA K LEVELS (KSI SGRT(IN)) = 2.5 5.0 10.0 20.0 50.0 1	PROWTH R. LEVELS 10.0	ATEB (MICR (KBI BORT) 20.0	10 1N/CYCL 1N) = 50.0	E) 100: 0
HP9-4-, 20(CEVM)	ANNEALED	FOROINO	0. 10	5. 00-10. 00			6. 19	37. 0	
HP9-4- 30		FOROINO	0.05	5.00- 20.00		. 399	6	38. 4	
		BAR	0.02	1.00				46, 4	
		BAR	0.05	10.00		1	3.59	46.6	
HY-180	STA (UTS = 180 KSI)	FORGED BAR	0. 10	30.00	9860	926	6 6		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BTA (UTS = 180 KSI)	FORGED BAR	0.10	10.00			£ 24	30. 6	
Ī	AUSTENIZED & TEMPERED (TYB = 220K81)	ROUND BAR	0. 10	10.00			9. 83		
	AUSTENIZED 4. TEMPERED (TYS = 220KSI)	ROUND BAR	0. 10	30.00		334	86 6	i i i i i	
12-9-2 MAR	STA 900	ROUND BAR	0. 10	10.00			6. 17		
	STA 900	ROUND BAR	0. 10	30.00		149	8. 92		

TABLE 6.0.4.1 (con't)

COMPARIBON OF FATIONE CRACK OROWTH RATER AT DEFINED LEVELB OF THE BIRESB INTENSITY FACTOR FOR ALLOY STEEL

TEST CONDITIONS.

0. 02-0. 10 SPECIMEN CRIENTATION: L-T STRESS RATIO

ENVIRONMENT: LAB AIR AT R. T

FREQUENCY: 0. 10-30. 00HZ

FATIQUE CRACK GROWTH RATEG (MICRO IN/CYCLE) FOR DELTA K LEVELB (KGI BORT(IN)) = 5 5.0 10.0 20.0 50.0 100.0	3.63	D. 74 00. 5	2.11 7.44 28.4	3.12 23.0 111.	2. 47	2.96 23.2
RACK GROWTH LITA K LEVELB	. 716		2.11			. 507
FREGUENCY	. 10- 20. 00 GP THM=1. 25"	0.74 00.00 BT ITM 0.85" G. 30	0, 02 1, 00- 30, 00	ı	7.00	20.00- 30.00
STRESS RATIO	0.02	S S	0. 02	0.02	0. 10	01 '0
PRODUCT FORM	FURGING		BILLET	PLATE	ROUND BAR	ROUND BAR
CONDITION/HT	And a series	18M	- 1	MARTEMPERED	UTS = 160 KSI	UTS = 180 KSI
ALLOV	ЭООН	1	4330V (MDD)	4340		

TABLE 6.0.4.2

CONTROL OF CONTROL AND CONTROL

COMPARIBON OF FATIONE CRACK GROWTH RATES AT DEFINED LEVELS OF THE STRESS INTENSITY FACTOR FOR ALLOY STEEL

TEST CONDITIONS:

SPECIMEN ORIENTATION: T-L STRESS BATID: 0.02-0.10

ENVIRONMENT: LAB AIR AT R. T.

ALLOY	CONDITION/HT	PRODUCT	STRESS RATIO	FREGUENCY	FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE) FOR DELTA R LEVELS (RSI SGRT(IN)) = 2.5 5.0 10.0 20.0 50.0	ORGUTH RI	E CRACK ORDWIH RATES (MICRO IN DELTA N LEVELS (MSI SORT(IN)) 3.0 10.0 20.0 50	11N) -	E) 100.0
AF 1410	1525F 1HR AC. -100F 1HR AC. 950F 5HRS AC	ROUND BAR	0.02	. 10- 30. 00	134	. 513	=	27. B	49B.
	1525F 1HR AC, -100F 1HR AC, 950F 5HRB AC	ROUND BAR	0.02	. 10- 30. 00		717	4.07	28. 1	149.
AF1410(VIM-VAR)	1650F 1HR WG, 1500F 1HR WG, 950F 5HRS AC	PLATE	6 0 0	0. 10- 30. 00		.711	 8	e.	
A286	1800F 0. 5-1. OHR M0. 1323F 16HR AC	PLATE	0.03	3.00	f 1		28 1		
HP9-4-, 20	1 1	FUROINO	0.02	0. 10- 20. 00		. 242	2.99	30. 7	490.
HP9-4-, 20 (CEVH)	ANNEALED	FORGING	0.10	10.00- 15.00			6. 53	42.9	
149-4-30		FORGING	0.02	0. 10- 20. 00	# 1	996	3.34	4.5.69	1883.
18NI (250) HAR	1(/8=243KB1	BILLET	0.10	10.00	2	1.16	5.91	71.0	
ноое		FUR0 I NO	0.02	. 10- 20.00	. 118	749	3.87	117.	

TABLE 6.0.5
STRESS CORROSION CRACKING THRESHOLD DATA FOR STEEL ALLOYS AT ROOM TEMPERATURE

SEA WATER DISTILLED 3.5% NaC1 7.0 45.2 45.2 110.0(2) 10.0 10.0 105.0 105.0 105.0 106.0 106.0 107.0 108.0						1	KISCC(Ket/In)		
15.50F AQ 5 L-T 7.0 15.50F AQ 5 L-T 15.50F AQ 5 L-T 15.50F AQ P 	ALLOY		PRODUCT FORM	SPECIMEN ORIENTATION	STMULATED SEA WATER	SEA WATER	DISTILLED	3.5% NaCl	SUMP TANK WATER
1550F AQ 950F 4M 5 L-T	D6AC	1550F AQ 650F 4HR	S	L-T			7.0		
Quenched and Tempered P		1550F AQ 950F 4HR	s				45.2		
Quenched and Tempered P L-T 110.0(2) 1525F 2HR QQ P L-T 1.0.7 1025F 2HR QQ P L-T 1.0.7 1025F 2HR QQ P L-T 20.0 4/5F P 40.0 Quenched and Tempered at 1100F P 40.0 Tempered at 1100F P 40.0 CA Welded and Linded Learning R AC P 108.0 Low Residual Low Residual Low Residual Ling R AC P 108.0 1755-178 KSI P R AC P 108.0 60.0 1755-100 KSI P R AC P 108.0 60.0 150F JHR AC P 108.0 60.0 150F JHR AC P 108.0 60.0 150F JHR AC P 108.0 10.0 150F JHR AC P 108.0 10.0 150F JHR AC P 10.0 150F JHR A	HP9-420	GTA Weld	ď	•	. 65.0				
1525F 2HR QQ P L-T	Quenched and Tempered	۵.	i				110.0(2)		
10.25 F 4 HK FB T-L T-		1525F 2HR 0Q	۵.	L-T					105.0(3
10.25 F 411K FB 1—T 10.25 F 411K FB 1—T 1.25 F 411K FB 1—T 1.2		- 100F 2HK		T-L					97.4(5
Note that the content of the conte		1025F 41IR	FB	L-1					110.0
Quenched and Tempered at 1100F P 40.0 30.0 Mo Electric Furnace of Tempered at 1100F P 40.0 33.0 CAT Welded at 1100F W 108.0 80.0 CAT Welded at 1100F P 108.0 80.0 CAT Welded at 1100F P 108.0 80.0 1550F,900F P 108.0 60.0 1550F,900F P 108.0 60.0 175=105 KSI P 108.0 60.0 175=200 KSI P 108.0 60.0 Weld Center Line P 70.0 Weld Center Line P 70.0 900F JHR P 75.0 1675F 2HR AC P T-S 78.0 500F 4HR/coul P T-S 78.0 850F 4HR/coul H T-S 78.0				S-T					78.3(3
Quenched and Tempered at 1100F P 40.0 -5Cr-)Mo Electric Furnace CTA Welded at 1100F P 40.0 1 Soft Welded Low Residual Low Residual Low Residual Low Residual Low Residual Low Residual Low Residual Roll From Trys 178 KS1 P P P PRIOR TYS 178 KS1 P P PRIOR LIVE P P PRIOR TYS 178 KS1 P P PRIOR LIVE P PRIOR LIVE P PRIOR LIVE ROLL FROM The Roll Center Line P PRIOR LIVE ROLL FROM LOW The Roll From Trys 160 First Roll Fro	HP9-445	475F	d.					20.0	
1400pr 140.0 33.0 33.0 140.0	H-11	Quenched and	a					30.0	
Trace P 40.0 1 P 108.0 1 P 108.0 P T-S 108.0 P 108.0 P 108.0 C P T-S 108.0 C P T-S 108.0		Tempered at 1100F							
1 P 33.0 P 108.0 P 108.0 P 108.0 P 108.0 C P T-S C P T-S	12N1-5Cr-3Mo	Electric Furnace	a.	1	40.0				
1 P 108.0 P L-S T-S T-S T-S T-S T-S T-S T-S T-S T-S T		CTA Welded	38	1 4	33.0				
Line P L-S C P T-S C P T-S C P T-S C P T-S Ol		Low Residual	۵.	1	108.0				
T-S 108.0 P 108.0 P 108.0 C P T-S C P T-S C P T-S		1550F, 900F	۵	r-s				80.0	
Line P T-S C P T-S C P T-S C P T-S C P T-S Ol		20HR AC		T-S				70.0	
Line P C P T-S C P T-S C P T-S C P T-S Ol	18N1 (180) (MAR)	TYS=178 KSI	a.	:	108.0				
Line P C P T-S C P T-S C P T-S C P T-S		TYS=195 KSI	٦					0.09	
Line PS C P T-S C P T-S C P T-S C P T-S		TYS=200 KS1	٩					105.0	
F S - 1	18N1 (200) (MAR)	TYS=215 KSI	۵.	;				0.07	
P T-S 9 9 1 1-S 1		Weld Center Line	۵.	S-7				70.0	
T-S T-S 1-S		1500F 1HR AC 900F 3HR	۵	T-S				39.0	
1-S		1675F 2HR AC	۵.	T-S				48.0	
850F 4HR/coul		500F 0,25HR	. 3	1-S				78.0	
		850F 4HR/cool							

TABLE 6.0.5 (con't)

STRESS CORROSION CRACKING THRESHOLD DATA FOR STEEL ALLOYS AT ROOM TEMPERATURE

						KISCC (Kat/In)		
ALLOY	CONDITION/ HT	PRODUCT FORM	SPECIMEN ORIENTATION	SIMULATED SEA WATER	SEA WATER	DISTILLED WATER	3.5% NaCl	SUMP TANK WATER
18N1 (250) (MAR) AGE 900F 3HR AC	AGE 900F 3HR AC	a	L-S L-T				40.5(2) 45.0	
	TYS=250 KSI TYS=260 KSI	<u>a</u> a					50.0 70.0	
	1650F 1.25HR WQ 1525F 1.25HR WQ 900F 3HR AC	a.		36.7				
18N1(280) (MAR) 1500F 1HR AC 900F 3HR	1500F 1HR AC 900F 3HR	ď					14.0	
18N1 (300)	AGED 900F 6HR	ía,	L-1 1-T				7.0	
	AGED 950F 12HR	(L	T-L				6.0	
	Crack Prestressed to 50PCT KIC	(L	T-L				5.0	
	Crack Prestressed to 25 PCT KIC	(t.	T-L				5.0	
	Crack Prestressed to 80 PCT KIC	íL.	T-L				10.0	
	1500F 0.5HR AC 900F 3HR	۵	r-s			48.0(2)		
	1500F 2HR 800F 10HR	£	r-S			9.0		
	1700F, 1500F ACED 900F 6HR	Ŀ	T-L				7.5	
	950F 3HR 950F 3HR	ía.	T-L				5.0	
18N1(350) (MAR) ACE 800F BHR	ACE 800F BHR	50 X	\$!				5.0	
	ACE 900F SHR	2 4					0.01	

TABLE 6.0.5 (con't)

. . .

STRESS CORROSION CRACKING THRESHOLD DATA FOR STEEL ALLOYS AT ROOM TEMPERATURE

						KISCC(Kat/In)		
ALLOY	CONDITION/ HT	PRODUCT FORM	SPECIMEN ORIENTATION	SIMULATED SEA WATER	SEA WATER	ENVIRONMENTS DISTILLED WATER	3.5% NaCl	SUMP TANK WATER
18N1 (350) (MAR)	18N1(350)(MAR) 1500F 1HR 800F 8HR 1500F 1HR 900F 8HR 1500F 1HR 950F 3HR	Da. Da. Da.	S-7 S-7 S-7				5.0 10.0 10.0	
300м	1500F 0.5HR 0Q 400F 2+2HR (Coarse Grain)	p e Grain)	-				12.0	
	1500F 0.5HR 0Q 400F 2+2HR (Fine Grain)	P Grain)	!				12.0	
	1500F 0.5HR 0Q 550P 2+2HR (Coarse Grain)	P e Grain)					15.0	
	1500F 0.5HR 0Q 550F 2+2HR (Fine Grain)	P Grain)	}				15.0	
	1550F 0.5HR OQ 400F 2+2HR (Coarse Grain)	P e Grain)	}				15.0	
	1550F 0.5HR 0Q 400F 2+2HR (Fine Grain)	P Grain)	i				15.0	
	1550F O.SHR OQ 550F 2+2HR (Coarse Grain)	P e Grain)	}				15.0	
	1550F 0.5HR OQ 550F 2+2HR (Fine Grain)	P Grain)	}				15.0	
	1600F 0.5HR 0Q 400F 2+2HR (Coarse Grain)	P e Grain)	1				12.0	
	1600F 0.5HR 0Q 550F 2+2HR (Coarse Grain)	P e Grain)	!				12.0	
	1600F O.SHR OQ 550F 2+2HR (Fine Grain)	P Grain)	}				12.0	
	1650F, 1600F 1HR 0Q 600F 1+1HR	i.	r-s				19.6	
	1700F 1.5HR AC 1600F 1.5HR 0Q 600F 2+2HR	ís.	7-S					15.5(2)
	1710F, 1610F 610F	æ	L-T T-L				17.4(3)	

TABLE 6.0.5 (con't)

STRESS CORROSION CRACKING THRESHOLD DATA FOR STEEL ALLOYS AT ROOM TEMPERATURE

						KISCC(Kat/In)		
ALLOY	CONDITION/ HT	PRODUCT FORM	SPECIMEN ORIENTATION	STMULATED SEA WATER		DISTILLED	3.5% NaC1	
0717	1700F 1600F 0Q 750 1+1HR	e.	1			15.0		
:	1700F 1600F 0Q 600F 1+1HR	e.				11.0		
4330V	Quenched and Tempered at 500F	6.	L-S				25.0	
4340	TYS=150 KSI	۵.	7-1		59.0			
	TYS-175 KSI	۵.	T-T		27.0			
	TYS=200 KSI	a. (T-L		10.0			
	TYS=225 KSI	-	T-L		2.0			
	1350F 0Q 750F 1.25HR	a	T-S		8.5			
	1550F 0Q 750F Crack Prestressed to 80 PCT K ₁₀	a.	1				24.0	
	1550F 0Q 750F Crack Prestressed to 60 PCT K _{IC}	۵.	1				23.0	
	1550F OQ 750F Crack Prestressed to 40 PCT K _{IC}	۵.	ļ				17.0	
	1550F 0Q 750F Crack Prestressed to 20 PCT K _{IC}	۵	1				12.0	
	1550F 0Q 750F 1HR	۵۰	;				8.0	
	1575F 0Q 675F 4HR	۵.	1 1			8.6		
	1575F 0Q 800F 4HR	۵.				8.6		
	1600F 1HR 0Q 600F 1+1HR	(4.	1				10.0	
	1650F 1HR AC 1680F 2HR 0Q LN 0.25HR 400F 1+1H	B 1+1HR 0Q	L-T				15.0	

TABLE 6.0.5 (con't)

STRESS CORROSION CRACKING THRESHOLD DATA FOR STEEL ALLOYS AT ROOM TEMPERATURE

						KISCC (Ket /In)		
ALLOY	CONDITION/ HT	PRODUCT FORM	SPECIMEN ORIENTATION	SIMULATED SEA WATER	SEA WATER	DISTILLED WATER	3.5% NaC1	SUMP TANK
4340	1650F 1HR AC 1480F 2HR OQ LN 0.25HR 400F 1+1HR OQ	6	L-T				15.0	
	1700F 0.25HR AC 1550F 0Q 600F 1+1HR	ω	1				29.0	
	1800F Q 600F 1+1HR	12	L-S				25.2(12)	
4340 MOD	1650F 1HR 1600F 1HR 0Q 1+1 600F (0.09 SI)	æ	T-L				18.0	
	1650F 1HR 1600F 1HR 0Q 1+1 400F (0.09 SI)	æ	T-L				13.0	
	1800F Q 460F 1+1 HR (0.20C)	ís.	L-S				96.0	
	1800F Q 500F 1+1HR (0.21C)	(a.	L-S				52.0	
	1800F Q 600F 1 HR (0.20C)	(±	L-S				72.0	
	1800F Q 650F 1HR (0.24C)	(±.	r-s				62.0	
	1800F Q 650F 1HR (0.28C)	íz,	r-s				35.0	
	1800F Q 700F 1HR (0.21C)	(e.	L-S				42.0	
	1800F () 780F 1+1HR (0.33C)	íe.	L-S				32.0	
	1800F Q 80JF 1HR (0.46C)	(e.	L-S				20.0	
	1800F () 900F 1HR (0.64C)	íe.	L-S				10.0	
	1800F () 925F 1+1HR (0.53C)	(a.	r-s				42.0	

SAM PARIOTA ISSANON PARAMON ISSANON IS	TABLE 6.1.1.1	HEAN PLANE BIRAIN FRACTURE TOUGHNESS DATA OF ALLOY STEEL AF1410 AT ROOM TEMPERATURE	CDNDITIDN/HT MEÁN KIC + BTANDARD (NURBER OF BPECIMENS) (KBI BORT(IN)) DEVIATION	PLATE	CONDITION/HT L-I I-L B-L	1650F 1HR, WG, 139.6 ± 11.7 (2) 136.7 ± 7.4 (2) 1500F 1HR, WG. 950F 34RS, AC
Hudesdessan Haddiddaa Huseid	<u> </u>		CDMOITI		COMDITI	1650F 1 1500F 1 950F 3H

TABLE 6.1.1.2 FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

			AL LOY S	ALLOY STEEL AF1410		1100				
TEST CONDITIONS										
SPECTMEN UKIENTATION	۲ ۲			ENVIRONMENT	LAR AIR AT R T					
TH/NOT: IQNO:	PRODUCT FORM	STRESS	FREG (HZ)	DELTA K	A T	TIGUE CI	FATIGUE CRACE GROWTH RATES (MIGRO IN/CYCLE)	WTH RATE	g	
				(KSI SORT(IN))	s ni	i	2	20	ဝင္ပ	100
1523F 1HR AC, -100F 1HR AC, 730F 5HRS AC	ROUND BAR	30 O	0 10-30 00			0.10	E9 0	3.60	30.7	139
1525F 1HR AC. -100F 1HR AC. 950F 5HRS AC	RGUND BAR	č 0 0	0.10-30.00			0.16	÷ 63	4. 07	29.5	
	1									

TABLE 6.1.1.3

FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL AF1410

TEST CONDITIONS

SPECIMEN ORIENTATION T-L

ENVIRONMENT, LAB AT

	100	498	949	
S	20	4.11 27.2	4. 07 28. 1	
JUTH RATE	20		4.07	
UE CRACE GROWTH (MICRO IN/CYCLE)	10	0.13 0.51	0 71	
FATIGUE CRACE GROWTH RATES (MICRO IN/CYCLE)	ທ	0 13		
ii.	19. 15.			
DELTA K	(KSI SORT(IN))			
FRE9 (HZ)		0. 10-30. 00	0 10-30 00	
STRESS		20 0	0.02	
PRODUCT FORM		ROUND BAR	ROUND BAR	
COND 1 : 10N/H1		1525F 1HR AC. -100F 1HR AC. 350F 5HRS AC	1525F 1HR AC. -100F 1HR AC. 950F 5HRS AC	

TABLE 6.1.2.1

	DATE REFER	1977 RI001	1977 R1001 1977 R1001	1977 R1001	1977 R1001 1977 R1001
	CRACK 2 5* LEMOTH (K(IC)/TYS)**? K(IC) HEAN DEV (IN) (IN) (KSI*SORT IN)	109.90	131, 30 147, 80 139, 6/, 11, 7	111. 10	141.90 131.40 136.77.7.4
G	2.5* (M(IC)/TVS)**? (IN)	0.54	0.82	0.49	0. 96 0. 82
K(IC)	CRACK LENGTH (IN)	1		!	
AF 1410	HIDTH THICK DESIGN (1N) (1N)	1. 750 CT	1,750 CT 1,750 CT	1. 750 CT	1, 750 GT 1, 750 GT
31+ri	WIDTH (1N)	3. 500	3, 500	3, 500	3.500
ALL IIY STEEL	YIELD STRENGTH (KSI)	235.7	228. 4 228 4	248.6	228. 4 228. 4
	SPI-C (MEN ORIENT	1-1	<u>.</u>	1-	7
	TEMP (F)	9	⊢	92	Ε.
	FORM THICK TEMP (F)	2 00 - 65 5HRS, AC	2 00 R.T 2 00	2.00 - 65 5HRS, AC	2 00 R. T.
		P 9:50F	c.	P 950F	c.
	:	10°	2 5 5 2 5 6 2 5 6	10.	3 5 5 5 6 5
	NO :	1HR.	1HR. 1HR. HRS.	ΞΞ. ΞΞ.	THR, THR,
	SOPPITION	1650F 1HR. 40.	1650F 14R, 40, 1500F 14R, 40, 950F 54RS, AC	1650F 1HR, WO, 1500F 1HR, NO.	1650F 1HR, WG, 1500F 1HR, WG, 950F 5HRS, AC

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.1.3.1 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: ALLOY STEEL AF1410 CONDITION: 1525F 1HR AC, -100F 1HR AC, 950F 5HRS ENVIRONMENT: R. T. , LAB AIR DELTA K DA/DN (10**-6 IN./CYCLE) (KSI*IN**1/2) : Α В C D R=+0.02 3.88 : . 0513 A: DELTA K B: MIN C: D: . 0558 . 102 . 167 . 252 . 357 . 485 . 636 4.00 : 5 00 : 6.00 : 7.00 : 8.00: 9.00 : . 636 1. 24 2. 08 3. 60 6. 16 9. 49 13. 6 18. 5 30. 7 46. 1 64. 7 10.00 : 13.00 : 16.00 : 20.00: **25**. 00 : **30**, 00 : 35.00 : 40.00 : 50.00 : **60**, 00 : 64. 7 70.00 : **80**. 00 : 86.4 90. 00 : 111. 100. 00 : 139. 130. 00 : 240. A: 152.83 : 334. DELTA K B: MAX C: ROOT MEAN SQUARE 18.40 PERCENT ERROR LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 SUMMARY 1.25-2.0

(NP/NA)

>2.0

Figure 6.1.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.1.3.2 INDICATING EFFECT

OF STRESS RATIO

	.525F 1HR	AC: -100F 1	HR AC, 950F 5HR	 !S			
DELTA K :		. — — — — — — — — —	DA/DN (10**-6 IN./CYCLE)				
(KSI*IN**1	;/2) : :	A	В	С	D		
	: :	R=+0. 02					
A: DELTA K B: MIN C: D:	5 . 79 : : : : : : : : : : : : : : : : : :	. 117					
1 A: 1 DELTA K B:	90 . 00 :	149. 320.					
MAX C: D:	: : :						
ROOT MEAN SQUARE PERCENT ERROR		13. 68					
LIFE PREDICTION RATIO SUMMARY 1	0, 5-0, 8 0, 8-1, 25	4					

Figure 6.1.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.1.3.3 INDICATING EFFECT

OF STRESS RATIO

AF1410 HR AC, -100F 1HI ,LAB AIR A R=+0.02		HRS *-6 IN./CYCLE) C	D
A R=+0. 02			D
A R=+0. 02			D
R=+0. 02	В	С	D
. 08			
289.			
9, 95			
3 25 2)			
	167. 289. 395. 9. 95	167. 289. 395. 9. 95	167. 289. 395. 9. 95

Figure 6.1.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.1.3.4 INDICATING EFFECT

OF STRESS RATIO

	Ur 	31KE35 KATIO				
MATERIAL: ALLOY STEEL AF1410 CONDITION: 1525F 1HR AC, -100F 1HR AC, 950F 5HRS AC ENVIRONMENT: R.T., LAB AIR						
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)				
(W21×1M×#1\S)	A	В	С	D		
:	R=+0. 02					
A: 3.92 : DELTA K B: 6 : MIN C: :	. 071					
4. 00 : 5. 00 : 6. 00 : 7. 00 : 8. 00 : 9. 00 : 10. 00 : 13. 00 : 14. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 : 60. 00 : 70. 00 : 80. 00 : 70. 00 : 100. 00 :	. 134 . 187 . 242 . 308 . 373 . 513 1. 23 2. 37 4. 11 6. 47 9. 07 12. 1 15. 9 27. 2 46. 9 82. 7 148. 270. 498.					
DELTA K B: : MAX C: : D: :						
ROOT MEAN SQUARE PERCENT ERROR	6. 95		*			
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.2 SUMMARY 1.25-2.0 (NP/NA) >2.0	} 25 2)					

Figure 6.1.3.4

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.2.3.1 INDICATING EFFECT

OF ENVIRONMENT

CONDITION:			1HR WQ, 950F 5HR			
DELTA K (KSI*IN**1/2)		:	DA/DN (10**-6 IN./CYCLE)			
		A	В	С	D	
		: E= R.T. :LAB AIR :30HZ				
DELTA K B: MIN C: D:	13. 62	: . 409 : :	2. 29			
	60 . 00	:	3. 40 5. 49 8. 40 11. 7 15. 4 19. 8 31. 1 47. 4			
A: DELTA K B: MAX C: D:	62. 59	: 48.3 : :	52. 7			
ROOT MEAN SQUARE PERCENT ERROR		4. 86	9. 34			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	8 25 1 0	2			

Figure 6.2.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.2.3.2 INDICATING EFFECT

OF ENVIRONMENT

CONDITION:		EEL AF1410 HR WG, 1500F 1		?s	100 to 200 to	
DELTA K : (KSI*IN**1/2) ::		DA/DN (10**-6 IN./CYCLE)				
(1/21 - 1/4")	-1/2/	: A	B	С	а	
		: AIR	E= R.T. LAB AIR 1-30HZ	3. 5% NACL		
DELTA K B: MIN C: D:	9. 31 15. 28		. 575	2. 78		
A:	35. 00 40. 00 50. 00 60. 00 70. 00 80. 00 90. 00	:	. 711 1. 45 2. 40 3. 95 6. 37 9. 36 13. 0 17. 5 29. 3 46. 5 71. 1 106. 154.	3. 09 4. 97 7. 57 10. 5 14. 0 18. 1 29. 5 47. 1 74. 5		
DELTA K B: MAX C: D:	70. 51		176.	76. 2		
ROOT MEAN SQUARE PERCENT ERROR		4. 10	9. 36	16. 05	to 100 000 0 ₀₀ can also tag 000 000 000 0	
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	8 25 1 0	3	1		

Figure 6.2.3.2

TABLE 6.2.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.2.3.3 INDICATING EFFECT

DELTA K		:	DA/DN (10**-	6 IN. /CYCLE)	
(KSI*IN**1/2	2)	: : A	В	С	D
		: E= R.T. :LAB AIR 10-30HZ	E= R.T. 3.5% NACL 1-30HZ		
A: E DELTA K B: 19 MIN C: D:		: . 683 : :	5. 72		
16	9. 00 0. 00 3. 00	1.11			
2(2:	5. 00 5. 00 5. 00	: 3. 36 : 5. 35 : 8. 40	6. 09 8. 95		
3: 4(5. 00 0. 00		12. 9 18. 9 25. 5		
		56. 1	37. 8		
A: 68 DELTA K B: 56 MAX C: D:		: 77. 7 : : :	52 . 5		
OGT MEAN SQUA		5. 74			

Figure 6.2.3.3

TABLE 6.3.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.3.3.1 INDICATING EFFECT

MATERIAL: ALLOY S' CONDITION: 1800F,		1325F, 16HR, AC		
DELTA K (KSI*IN**1/2)		DA/DN (10**-6	IN. /CYCLE)	
(V21×1M××1\5)	. A	В	С	D
		E=+ 600F AIR, 67HZ		
A: 14.92 DELTA K B: 15.66	: . 474	1. 70		
MIN C: 15.62 D: 15.26	:		2. 39	3. 96
16.00 20.00 25.00 30.00 35.00 40.00 50.00	1.59 3.43 6.09 7.79 14.9	1.84 3.94 7.96 13.9 22.2 33.8	2. 57 5. 01 7. 68 16. 7 26. 6 40. 1	4, 66 8, 86 14, 7 21, 6 30, 5 42, 8
A: 53.83 DELTA K B: 48.91 MAX C: 48.76 D: 49.18	:	66. 5	75. 7	92 . 1
ROOT MEAN SQUARE PERCENT ERROR		3. 95		2. 90
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	5 8 25 1	1	1	1

TABLE: 6.3.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.3.3.2 INDICATING EFFECT

MATERIAL: AL CONDITION: 1			1325F, 16HR, AC		
DELTA K			DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**1	./2) : :	A	В	С	D
	: : LAB	E= R.T. AIR, 3HZ	E=+ 600F AIR, .67HZ	E=+ 800F AIR, .67HZ	E=+1000F AIR, .67HZ
DELTA K B: MIN C:		. 438	2. 02	1. 93	6. 04
	20.00 : 25.00 : 30.00 : 35.00 :	3. 86	12. 3 20. 3	6. 89 11. 7 18. 3	
DELTA K B: MAX C:		20. 4	94. 0	78. 9	104.
ROOT MEAN SO PERCENT ERR	-	4. 62	5. 51	6. 21	3. 93
LIFE PREDICTION RATIO SUMMARY 1 (NP/NA)	0. 5-0. 8 0. 8-1. 25 . 25-2. 0	1	1	1	1

Figure 6.3.3.2

TABLE 6.3.3.3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.3.3.3 INDICATING EFFECT

MATERIAL: ALLOY S CONDITION: 1800F	· · · · · · · · · · · · · · · · · · ·	1325F, 16HR,	AC	
DELTA K (KSI*IN**1/2)		DA/DN (10**	-6 IN. /CYCLE)	
	: A	В	С	D
	E=+1000F AIR			
DELTA K B: MIN C: D:	: : :			
200.00	· •			
A: DELTA K B: MAX C: D:				
ROOT MEAN SQUARE PERCENT ERROR	0. 00			
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2), 8 , 25 , 0			

Figure 6.3.3.3

TABLE 6.3.3.4

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.3.3.4 INDICATING EFFECT

MATERIAL: ALLOY S CONDITION: 1800F,		, 1325F, 16HR, AC	:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DELTA K (KSI*IN**1/2)	:	DA/DN (10**-6	IN. /CYCLE)	
	A	В	С	D
	: E= R.T. :LAB AIR, 3HZ	E=+ 600F AIR, .67HZ		
A:	:			
DELTA K B: MIN C:	:			
D:	:			
200. 00	:) :			
A :	:			
DELTA K B: MAX C:	: •			
D:	· :			
	:			
ROOT MEAN SQUARE PERCENT ERROR	0. 00	0. 00		
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2), 8 ,, 25 2, 0			

Figure 6.3.3.4

TABLE 6.4.1.1

HEAN PLANE BTRAIN FRACTURE TOUGHNESS DATA OF ALLOY STEEL DAAC AT ROOM TEMPERATURE

CONDITION/HT	HEAN KIC + BTANDARD (KBI BGRT(IN) DEVIATION	(NUMBER OF BPECIMENS)	BPECINENS)
	SLAIE.		•
COMDITION/HI	J	1	
HEAT TREATED TO 46 RC HARDNESB		85.8 ± 1.8 (2)	
1650F AU8-BAY GUENCH 975F, 80 325F, 1000F 2+2 HR	66. 9 <u>±</u> 18. 7 (7)		1
1650F AUG-BAY GUENCH 979F, 80 373F, 1000F 2+2 HR	62.2 ±14.0 (19)		
1650F, AUS-BAY GUENCH 975F, 80 400F, 1000F 2+2 HR	64. 4 ±12. 1 (103)		1
1700F, AUS-BAY GUENCH 975F, DG 140F, 1000F 2+2 HR	92. 0 <u>+</u> 8. 2 (30)		
	ECHOINO	2	
CONDITION/HT	ij	រាំ	7
1619F 2.29HR, A-80 323F, AC, 310-349F 3HR, 1080F 6-6.3HR		78. 4 ±13. 1 (6)	83. 9 <u>+</u> 14. 8 (52)
1650F AUS-BAY QUENCH 975F, 80 375F, 1000F 2+2 HR	46.0 ± 4.2 (8)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE 6.4.1.1 (Con't)

MEAN PLANE STRAIN FRACTURE TOUGHNESS DATA OF ALLOY STEEL DAAC AT ROOM TEMPERATURE

DAVE 4 LED.

TABLE 6.4.1.1 (Con't)

 $\overline{\cdot \cdot \cdot \cdot}$

POSSESSES DE L'ANDRE D

MEAN PLANE BTRAIN FRACTURE TOVOHNESB DATA OF ALLOY STEEL DEAC AT ROOM TEMPERATURE

CONDITION/HT HEAN KIC + BTANDARD (NUMBER OF BPECIMENB) (KBI BORT(IN)) DEVIATION	CONDITION/HT L_[I=L B=L	1723F.1 HR.AC 74.4 ± 6.2 (6) 1700F 1 HR.0G. 174.7 ± 6.2 (6) 1023F 2+2 HR	1725F.1 HR. AC 75.1 ±10.1 (3)		HEAN KIC + BTANDARD (KSI BORT(IN)) DEVIATION BILLEI L-I 74.4 ± 6.2 (6) 75.1 ±10.1 (3)	I-L	C I HENB)
---	--------------------------	--	-------------------------------	--	--	-----	-----------

and of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of

TABLE 6.4.1.2
ACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-I

		FE 5.0				43.9	43. 4	43.3	
		OWTH RAI	80	0. 40.	, ta	5.28	5. 88	4.86	é. 18
FACTOR		FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE) 5 10 20							
NTENSITY	œ <u>.</u>	FATIGUE (MI			i i i i i				
TRESS-1	DRV AIR AT R T.	u di			1				
FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR ALLOY STEEL D6AC	ENVIRONMENT	DELTA K LEVELS: (KSI SORT(IN))							
E AT DEFINED LEVELS ALLOY STEEL D6AC		FREG. (HZ)	0. 10	1.00	3.00	0.10	1.00	3 00 E	0. 10- 3. 00
GROWTH RAT		STRESS	60.0	0.09	0.09	0.10	0. 10	0.10	0.50
FATIQUE CRACK	۱-1	PRODUCT FORM	PLATE	PLATE	PLATE	FLATE	PLATE	PLATE	PLATE
	IEST CONDITIONS SPECTHEN ORIENTATION	CDND 1.1 IDN/HT	1650F A-BQ AT 975F, SQ AT 400F, 1000F 2+2HR	1650F A-BG AT 975F, SG AT 400F, 1000F 2+2HR	1650F A-BG AT 975F, SG AT 400F, 1000F 2+2HR	1700F A-B9 AT 975F,00 AT 1400F. 1000F 2+2HR	1700F A-BQ AT 975F. DG AT 1400F. 1000F 2+2HR	1700F A-BG AT 975F, 0G AT 1400F, 1000F 2+2HR	1700F A-BQ, 975F 00 AT 140F, 1000F 2+2HRS

TABLE 6.4.1.3

T.

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

IEST CONDITIONS	TAI IGUE CRACK	GROWTH RAI	ALLOY	DEFINED LEVELS OF THE STA ALLOY STEEL DOAC FNUTBONHENT	FAILGUE CRACK GRUMTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR ALLOY STEEL DOAC FRUTRINMENT: LAR ATR	
ORIENTATION L-T	L-T				AT R. T	1
COND1710N/H7	PRODUCT FORM	STRESS RATIO	FREG. (HZ)	DELTA K LEVELS: (KSI SGRT(IN))	FATIGUE CRACK ORDWTH RATES (MICRO IN/CYCLE) 2.5 5 10 20 5	iň
1650F A-8G AT 975F, SG AT 400F. 1000F 2+2HR	PLATE	0 10	0. 10		99	, n
1650F A-BG AT 975F, SG AT 400F, 1000F 2+2HR	PLATE	0 10	1.00		2. 85	
1650F A-BG AT 975F, SG AT 400F, 1000F 2+2HR	PLATE	0 20	1.00		9. 29	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1		,	i i

100

ŝ

65.2

51.3

5 61

1 00

0.10

PLATE

1700F A-8G AT 975F, DG AT 140F. 1000F 2+2HR

TABLE 6.4.1.4

					50 10							
				WTH RATES CLE)	50 °5	10.4	7. 4	5 31	90 6	6 45	6. 36	9. 38
TY FACTOR				FATIQUE CRACK GROWTH RATES	01			0 73	2 14	1 09	0 47	
STRESS-INTENSITY FACTOR		9.4.0i	AT R. T.	FATIQUE	2.5							
FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRI	ALLOY STEEL D6AC	TARMORTONE	i	DELTA K	(KSI SGRT(IN))							
E AT DEFINE	ALLOY S			FREG (HZ)		0. 10	7.00	3.00	1.00	00 E	1.00	1.00
K GROWTH RAT				STRESS		0. 10	0 10	0 10	0.50	0 20	0.10	0.50
FATIGUE CRACI			L-1	PRODUCT FORM		PLATE	PLATE	PLATE	PLATE	PLATE	FORGING	FORGING
		SPECIMEN	ORIENTATION	CONDITION/HT		1650F A-8G AT 975F, SG AT 400F, 1000F 2+2HR	1650F A-BG AT 975F, 5G AT 400F, 1000F 2+2HR	1650F A-BG AT 975F, SG AT 400F. 1000F 2+2HR	1650F A-BQ AT 975F, SQ AT 400F, 1000F 2+2HR	1650F A-BG AT 975F, SG AT 400F, 1000F 2+2HR	1650F A-80 AT 975F, S0 AT 375F, 1000F 2+2HR	1650F A-BG AT 975F, SG AT 400F, 1000F 2+24R

TABLE 6.4.1.4 (Con't)

·:\.

FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL DOAC

TEST CONDITIONS

JP-4 FUEL AT R T ENVIRONMENT SPECIMEN ORIENTATION L-T

CONDITION/HT	PRODUCT	STRESS	FREQ (HZ)	DELTA K		ATIQUE (MI	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	DWTH RATI	93	
				LEVELS: (MSI SGRT(IN))	C)	ī.	01	50	20	100
1700F A-BQ AT 975F, CQ AT 140F, 1000F 2+2HR	PLATE	0 20	1 00					8.95		
1700F A-BQ AT 975F, 0Q AT 140F, 1000F 2+2HR	PLATE	0 50	9 oo E					6. 73		
1700F A-BG AT 975F, OG AT 140F, 1000F 2+2HR	F DR 0 I NO	0.10	0 10					1.4 B	9 2 6	
1700F A-BQ AT 975F, UQ AT 140F. 1000F 2+2HR	FORGING	0 10	1.00					8 37	37.4	
1700F A-80 AT 975F, DQ AT 140F, 1000F 2+2HR	FURGING	0 10	3.00					3 73	38 7	

TABLE 6.4.1.5

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR ALLOY STEEL DGAC	ENVIRONMENT DIST H20 AT R T	ESS FREG. DELTA K FATIONE CRACK GROWTH RATES ID (HZ) DELTA K (MICRO IN/CYCLE) LEVELS: (KSI SQRT(IN)) 2.5 5 10 20 5	10 1 00	50 1 00	50 1 00	50 3.00 1.43 8.56	11 0 10 23.4	11 1.00 10.7	11 3 00 5 BB
E STRE									
WED LEVELS OF THE	ENVIRONME	DELTA K LEVELS: (KSI SGRT(IN)							
E AT DEFII ALLOY		FREQ. (HZ)		1 00		9 00 E	0 10	1.00	00 E
C GROWTH RAT		STRESS	0.10	0 5 0	0.50	05 0	0. 11	0.11	0. 11
FATIGUE CRACE	۲ ۲	PRODUCT FORM	FORGING	FORCING	PLATE	PLATE	PLATE	PLATE	PLATE
	IESI. CONDLIIONS Specimen Orientation	CONDITION/HT	1650F A-80 AT 975F. S0 AT 375F. 1000F 2+2HR	1650F A-BG AT 975F, 50 AT 375F, 1000F 2+2HR	1700F A-BG AT 975F, QQ AT 140F, 100GF 2+2HR	1700F A-BG AT 975F,00 AT 110F. 1000F 2+2HR	1700F 4-89 AT 975F. UG AT 140F. 1000F 2+2HR	1700F A-BG AT 975F, GG AT 140F. 1000F E+2HR	1700F A-80 AT 975F, 00 AT 140F. 1000F 2+2HR

TABLE 6.4.1.5 (Con't) cue crack growth rate at defined levels of the stress-intensity

			95				
			FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE) 5 10 20	15.7	9. 51	6. 47	11.4
FACTOR			CRACK GR				
INTENSIT		DIST H20 AT R. T.	FATIGUE (M				
TRESS-		DIST AT A	Ci R				
FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR	ALLOY STEEL D6AC	ENVIRONMENT	DELTA K LEVELS: (KSI SQRT(IN))				
E AT DEFIN	ALLOY :		FREG.	0 10	1.00	3. 00	1 00
GROWTH RAT			STRESS RATIO	0.10	0.10	0.10	0 48
FATIGUE CRACK		7	PRODUCT FORM	FURGING	FORGING	FORGING	FORGING
		<u>CONDITIONS</u> HEN IENTATION	CONDITION/HT	1760F A-80 AT 975F, 00 AT 140F. 1000F 2+2HR	1700F A-BG AT 975F, OG AT 140F, 1060F 2+2HR	1700F A-BG AT 975F. UG AT 140F. 1000F 2+2HR	1700F A-BG AT 975F, 00 AT 140F, 1000F 2+2HR
			!	1 232	9.	1631	163

TABLE 6.4.2.1

	ER :				
	REFER	84029 84029		НБОО1 НБОО1 НБОО1 НБОО1	
	DATE		1979 1979 1980	1979 1979 1979 1979 1980	1978 1978 1979 1979 1978 1978 1978 1979 1979
	STAN	- 1		13.1	
	KCIC)	85.87	49	78. 47. 15.	
	K(IC) (KSI#5)	84. 5 87. 0	37 33	72. 62 93. 00 93. 67 87. 89 39. 04 64. 27	71. 78 100. 64 100. 65 100. 25 70. 23 70. 23 70. 23 70. 23 70. 64 81. 67 82. 63 89. 64 89. 64 80 80 80 80 80 80 80 80 80 80 80 80 80
	2 5* (IC)/TYS)**? (IN)	t 1	B & =		
ŝ	2 5* (K(IC)/ (IN)	00 1	0.28 0.29 0.21	000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
K(1C)	CRACK LENGTH (IN)	22.	1.046 1.061 1.041	1.048 1.072 1.069 1.060 1.024 1.035	040 040 040 060 060 060 060 060 060 060
	DESTON		10 11 11	555555	55555555 5555555555555555555555555555
DVVC	SPECIMEN THICK DE (IN)	700	988	1.003 1.003 1.003 1.002 1.002	1.000 1.0000 1.0
SHEL	MIDTH (IN)	1 401	2 000 2 000 1 997	2. 001 2. 000 2. 000 2. 000 1. 998 1. 997	1.999 1.999
ALLOY STEEL	VIELD STRENGTH (KSI)	206 206	197 198 199	198.1 198.1 198.5 198.5 207.5	186. 7 186. 7 187. 2 187. 2 187. 2 187. 2 189. 3 189. 3 189. 3 189. 3 189. 3 191. 0 191. 9 191. 9 192. 8 192. 8 193. 8
	SFECIMEN ORIENT	ا ا ا	i i	ī	₀ -
	TE 11 TE 11 (F)	r- œ	⊢ ≅	π. .	⊢ α
	POS, F- THECK CTMD	; 1 ; 1		i	
	_		Ŀ	u.	u.
	C040D1T10N	HEAT TREATED TO 46 RC HARPHESS	5F 2 25 A 325F, -345F 3 NF 6 -6	1615F 2. 25HR. A-DQ 325F, AC. 310-345F 3HR. 1050F 6-6 5HR	1615F 2, 25HR, A-RG 325F, AC, 310-345F 3HR, 10POF 6-6 5HR

TABL: 6.4.2.1 (Con't)

	t .	!	
	REFER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	82543 82543 82543 82543
	DATE	1979 1977 1977 1977 1980 1980 1978 1979 1979 1978 1978 1978 1978 1978	1972 1972 1972 1972
	STAN	60 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1 € 1	6
	K(IC) MEAN HT IN)	B3.9/	37.0/
	K(IC) MEAN (KSI*50HT IN)	17 6 8 9 9 9 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	35.80 47.00 31.20 34.10
	S) #45	1 1	
	2 5* (K(IC)/TYS)#42 (IN)	0 0 0 0 0 4 4 4 8 8 8 0 0 4 4 8 8 0 0 0 4 4 8 0 0 0 0	0.06 0.11 0.05 0.05
K(1C)	S C S	0044 0023 0024 0036 0036 0036 0057 0011 0014 0037 0036 0036 0037	760 759 790 854
	1		0000
	£510		5555
DOAC	SPECIMEN- IHICK DI (IN)		0 750 0 757 0 750 0 750
SIFEL	WIDTH 1	1	1, 499 1, 502 1, 501 1, 479
AI 1.DY	YIELD STRENGTH (KSI)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	228 0 228 0 228 0 228 0
	SPECIMEN OHIENT	। । । ।	7
			. 65
	FROM BUCK TENP (T) (T)		1 50 1 50 1 50
			۵
	H01110705	10 345F 34R, AC, IO 345F 34R, AC, IO 345F 34R,	1ASOF AUS-BAY RUENSH 975F, SA RUSE, 1000F 245 HR

TABLE 6.4.2.1 (Con't)

	DATE REFER	72 82543 72 82543		972 82543			972 62343		1972 82543				972 82543		972 82543		1972 82543	972 82543	972 82543		972 82543					1972 82543		1972 82543	1972 82543	1972 82543		1972 82543	
	STAN DEV		34.1/ 2.9	4			0	3/ 10: 4	-	,	4,0,0	i 3	-			40.0/ 4.4	-	-	1	44.77 9.7		_		-	-		66.9/ 18.7 1	-	•		74.77 2.0	•	
	K(1C) (KS1#59	32.00		54.60	34. 50	34.60	35.70	S	45.60	40, 70	34. 60		44, 60	39. 60			50.00				48. 70	81.00	80.10	83.60	46. 50	43, 80			75.40			100.80	
5	2.5* K(IC)/TYS)++2 (IN)	0.00		0.15			0.13		0, 10	0° 08	90 '0		Ó	90.0	Ö		Ö	0.08	Ö			Ö		Ö	Ö		ó	0	0.32	Ö		0.61	i
)	CRAC LENGT (IN)	0 771				0, 786	0.769	0.777	0, 789	0.784			0.768	0.837	0, 780		0. 787	0.777							0.815				0 823			0 763	;
	ES16	, 55					5 !		13		C1			5				5							5			15		5		13	
DOVC	ECIMEN HICK (IN)	0.750	`.			0.750	0. 757	0. 750		0.750				0.750				0.750							0, 755		0.750		0 750			7	5
รหยา	WIDTH (IN)	1,500	1. 502	1. 503	1,499	1.500	1. 502	1. 500	1. 499	1, 479	1.499			1, 500	1.499		1.499		1.502		1. 498	1. 504	1.502	1. 502	1. 501	1, 502	1.499		1 500			707	
ALT:07	YIELD STRENGTH (KSI)	227.0			226.0	226.0	226.0	226.0		224.0				222. 0			220.0		220 0		217.0	217.0	217.0	217.0	217.0	217.0	217.0		0 110			•	
	ST CC IMEN OR LENT	1 1 1		<u></u> 1					1				1-1				-				i								-			+	-
	11.51 11.31P (F.)	: 1		- 30					c	1			50				04	1			F							7	2			501	in Ha
	PROPOGLES INST FORM BUTCK TOPP CIM) (F)	1 50	20 10	00		1 30		06 1	05	05	1 30		00	1 50	1 50	•	1 50	1 50			00				1 30	30					•		1 30 1000F 2+
	FORM	; ; ;	Ĕ	۵					ō.				٥				٥				۵							(r				3255
	101	AUS- FAY	925F, 1000F 2+2 HR	ALIS. FAY		DOOL			VAII-211A	OUTNCH 975F, 50	000F		1650F AUS-BAY	PUENCH 975F. SO	0000		VASOF ALIGNAY	DUENCH 975F. SO	DOOF		AVE-SUC BOS-1	GLENCH 975F, SO	DOOF						1650F MUS-UAY	1000	5		1630F - 405-8AY P
	(1011101)	16:05	OFFICE POST 1	1 A 50E	CHURCH	125F. 1000F	¥ 14+C		30 to 9 to	HUNDING.	325F, 1000F	11 C+12	16506	PUENCH	127E, 1000F	子のい	14506	HUNENCH	325F. 1000F	2+2 HR	14508	HUNGHO	100 E	2+0 HB					16501	TOUCH TALE	1 E C C C	. 4	1650F QUE NCH

TABLE 6.4.2.1 (Con't)

	DATE REFER	72 82543 72 82543			1972 82543 1972 82543 1972 82543 1972 82543	1972 82543 1972 82543 1972 82543 1972 82543 1972 82543 1972 82543 1972 82543	1972 82543 1972 82543	1972 82543 1972 62543 1972 82543	1972 82543	1972 B2543
	STAN DEV	. 6 . 6) t t t t t t t t t t t t t t t t t t t			62.2/ 14.0	31.8/ 0.0	34.8/ 0.6	-	-
		105.4			50. 40 87. 90 46. 80 69. 40	66.30 47.70 68.20 72.20 77.80 77.90 77.90 77.90 80.20 48.00	31. B0 31. B0	35. 30 34. 50 34. 50	34. 60	39, 00
•	2.5* K(IC)/TYS)*+2 (IN)	0.67	0.35	0. 12 0. 30 0. 21		0 0 0 2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.03 0.03	0.06 0.06 0.06	90.0	0.08
KCIC)	CRACK LENGTH (IN)	0 798			0.612 0.630 0.610 0.621 0.632	0, 599 0, 623 0, 644 0, 644 0, 641 0, 641 0, 642 0, 642	0. 773 0. 773	0,768 0,758 0,755	0 791	0. 782
U	101 101	50 CT 50 CT	122			0 0 CT	56 CT 56 CT	000	5 CT	5 CT
DAAC	SPECIMEN THICK DE: (IN) B	1 1			0.605 0.605 0.604 0.603	0.608 0.608 0.607 0.605 0.605 0.608 0.608 0.608	0.75	0, 759 0, 759 0, 753	0 75	0, 75
STFFL	WIDTH (IN)	1.501		1.200 1.205 1.704	1, 199 1, 200 1, 193 1, 195	1. 201 1. 203 1. 204 1. 197 1. 198 1. 201 1. 201 1. 201	1. 507	1, 506 1, 506 1, 504	1.504	1 506
AI LIDY	YIELD STRENCTI (KSI)	204.0	1 00			217.0 217.0 217.0 217.0 217.0 217.0 217.0	225. 0 225. 0	222.0 222.0 222.0	220.0	218 0
	PI-CIMEN DRIENT		1 1				L-1	L-1	<u>-</u>	<u></u>
	# 51 # 14 (1)	300	; ; ; £				- 65	50	0 2 HR	20 HĽ
	Pusj fer THTGK CTD	1 20	1 50	1 50 1 50 1 50	20000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 50	1 50	1 50 1000F 2+8	1 50 100nF 2+2
		: ! C == !	· • •				∟ ≅	نذ	F 375F.	F 375F.
	101.	1500F AUS-BAY P 9-8-100H 975F-50 300F-1000F 242-HR	1610F AUS-BAY	175F, 1006F			1650F AUS-BAY F 9JENCH 975F,50 375F,1000F 2+2 HR	1650F AUS-BAY 9UFNCH 975F.50 375F.1000F 2+2 HR	1650F AUS BAY F 1 50 QUENCH 975F, SQ 375F, 1000F 2+2 HR	1650F AUS-BAY F 1 50 20 QUERCH 975F, 50 375F, 100nF 1+2 HR

TABLE 6.4.2.1 (Con't)

					ALLIAY	BILELL	DOVC		KCICI	13			
COUDITION	_	≥	F = E	FECTM ORIEN	VIELD STRENGTH (KSI)	WIDTH (IN)	SPECIMEN THICK (IN)	DESIGN	CRACK LENGTH (IN)	2, 5* (K(IC)/TYS)#42; (IN)	K(IC) E K(IC) MEAN D (KSI*SQRT IN)	STAN	DATE REFER
AUS BAY H 975F.58		5 6	50	1 1-7	218.0	1.503	75	1 CT 1 0 9	0 785	90.0	33. 50 37. 90	1	1972 82543 1972 82543
1650F AUS-BAY	1 _	1 50	⊢	1-1		1.503						e E	1972 82543
175⊬, 1000F 2+₹ HR		888			214.0 214.0	1.501	0. 753 0. 750 0. 755				48, 40 42, 40 46, 10		101010
		1 20 20			214.0 214.0	1. 508 1. 502 1. 502	0. 755 0. 755 0. 750 0. 753	5555	0. 762 0. 766 0. 768 0. 767	0.00 0.00 0.01 0.01 0.02	54.40 45.10 46.80 40.30 46.0/	4.	1972 82543 1972 82543 1972 82543 1972 82543
1650F AUS-DAY QUENCH 975F, SQ 375F, 1000F 2+2 HR	E.	1 50 1 50 1 30	175	L-1	208. 0 208. 0 208. 0	1, 501 1, 503 1, 497	0. 755 0. 750 0. 750	555	0, 780 0, 775 0, 773	0. 17 0. 33 0. 20	57.30 75.60 59.40	5	
1650F AUS-BAY F AVENCH 975F,50 375F,1000F 2+2 HR	L E !	1 30	300	5	201.0	1. 501	0.753	CT	0.762	0.00 1 10.00 1 44 1	3. 40 9. 50 9. 20	-	1972 82 1972 82
1650F, AUS-BAY BUFNCH 975F, SA 400F, 1000F 2+2 HR	٩	- 00 00 00 00 00 0	63	r-1	228.0 228.0 228.0 228.0 228.0	1. 501 1. 503 1. 504 1. 504 1. 507	55.00	55555	0.743 0.748 0.763 0.763 0.753	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30.40 34.70 31.90 31.80 37.30 33.2/	≀ ai	1972 82543 1972 82543 1972 82543 1972 82543
1650F. AUS−BAY ØUENCH 975F. SO 406F. 1000F 2÷5. HR	a	000 000 000 000 000 000 000 000 000 00	40		227.0 227.0 227.0 227.0 227.0 228.0	1.499 1.502 1.498 1.696 1.203 1.201	0.758 0.693 0.757 0.757 0.693 0.599	555555	0.770 0.730 0.738 0.760 0.765 0.765 0.624	0.00 0.07 0.07 0.00 0.08	36. 70 37. 00 37. 60 30. 30 37. 30 41. 40 38. 37	O Ni	
1450F, AUS-BAY P 0 80 - 20 OUENCH 973F, SG 400F, 1000F 2+2 HR	P 100F, 10	0.80 -	50	1-1	226.0	1, 501	0.757	CT	0.748	0.08	01 68		1972 02543

TABLE 6.4.2.1 (Con't)

					A! I (1)Y	11118	DV7G	KAIC)				
11011	_	SEE .	1EST (1EMP (F)	SFECTOEN ORIENT	VIELD STRENGTH (KSI)	WIDTH (IN)	DESIG	CRACK LENGTH (1N)	2, 5# IC)/TYS) 44? (IN)	K(IC) MEAN DE (KSI+SORT IN)	DA :	REFER
:	i 1		:	1 t :	: : : :	:		! ! !	; !	; ; I	ı J	•
TAPOF, AUG BAY	۵	0 130	- 20	1-1	226.0	1.478	757	0, 755			1972	
GUENCH STOFT BO		000 0			226.0	1.501	755			40. 80	1972	
400F, 100GF		0000			226 0	1 501	0.757 CT	0.756	0 00		1972	82543
21.5		00 0			226.0	1.502	757	0 754		42, 30 40, 37 1,	3 1972	
1550F. AUS. BAY	۵	08 0	c	FT	224.0	1. 476	0.757 CT	0 781	60 0	42 40	1972	
CHENCH 975F. DO		200		•			758			•	1972	
400F. 100GF		0 80			224.0	1. 487	0. 757 CT	0.746	0.08		1972	82543
2+2 HR										42.4/ 2.	8	
1450E. AUS-BAY	د	08 0	000	1	0 666	1.500	757	0 744		47 70	1972	
ON POST OF SOME SOME SOME SOME SOME SOME SOME SOME		000			0 000	1 502	758			47 60	1972	
400F . 1000F		0 00			222.0	1.503	0.758 CT	0.778	0 08		1972	82543
がた。ま) 		1				6	
1650F, AUS-BAY	د	0 80	40	1-1	220.0	1.502	0.758 CT	0.770	0.15	54, 30	1972	82543
QUENCH 975F. SA		0 80			220.0		758				1972	
400F, 1000F 2+2 HR	2#1									52.8/ 2.	1	
1650F, AUS-BAY	a.	00 0	Œ	<u> </u>	217.0	1.504	0 749 CT	0 767	0 34	86.10	1972	82543
OUFNCH 975F, SO		0. 80			217.0	1, 502	747				1972	8254
400F, 1000F					217.0	1.197	0 608 CT	0.622	0.16		1972	
2+2 HR		00 0			217.0	1.504	692			56.00	1972	
		0 60			217.0	1.197	909	0. 622			1972	8254
					217.0	1, 505	671				1972	
		0 80			217.0	1.503	750				1972	82543
					217.0	1.503				59.00	1972	
		0 10			217.0	1.498	757		0.24	99. 90	1972	
					217.0	1.500	754			81, 70	1972	
		0 90			217.0	1, 198	602		0. 20	61. 90	1972	82543
		0 80			217.0	1, 505	672		0.18	57, 70	1972	82543
					217.0	1 501	750				1972	
		0 50			217.0	1.202	604		0.35		1972	
		0 80			217.0	1 199	809	0.617			1972	82543
		0 0			217.0	1.200	607				1972	
		0 00			217.0	1 200	209			73.30	1972	
		0 110				1, 503	0.694 CT		0. 16		1972	
		0 110				1 159	409	0 624	0.36	B1, 90	1972	82543
		0 40			217.0	1,500	0. 755 CT		0. 24	66. 70	1972	8234

TABLE 6.4.2.1 (Con't)

Condition						ערוטא פ	STREET	DOAC		K(10)	•			
1972 1972 1975	:	<u> </u>	THICK (IN)	<u>- a</u> 1	DRIENT	YIELD STRENGTH (KSI)	WIDTH (IN)	THICK IN B	ESIGN	CRACK LENGTH (IN)	2 5# K(IC)/TYS)*#2 (IN)	K(IC) HEAN DEV (KSI*SGNT IN)	DATE	REFER
0 0	1650F, AUG-BAV			-	-	710	1 505		1				1972	82543
1,000, 1,000,	DELICH PYSE, SO				· !		1.478		5					62543
14	400F , 1000F						1 202	-	L					82543
1,000 1,00	新						1.503		CT				1972	82543
10							1.496		CT				1972	82543
60 217 1 501 0.672 CT 0.759 0.10 43.90 1972 80 217 0 1 93 0.693 CT 0.623 0.11 46.40 1972 80 217 0 1 952 CT 0.623 0.11 46.40 1972 80 217 0 1 903 CT 0.623 0.11 46.40 1972 80 217 0 1 903 CT 0.623 0.19 44.30 1972 80 217 0 1 903 CT 0.625 CT 0.645 CT 0.646 CT 0.646 CT 0.646 CT 0.646 CT 0.646 CT 0.646 CT 0							1.502		CT			61.90	1972	82543
10							1.501		כו			43.90	1972	82543
Heat							1, 203		CT			73.40	1972	82543
Heat							1. 193		t			57, 50	1972	62543
(1) 217.0 1.502 0.649 CT 0.762 0.10 44.50 1972 80 217.0 1.197 0.607 CT 0.625 0.42 88.60 1972 80 217.0 1.203 0.600 CT 0.635 0.18 58.40 1972 80 217.0 1.203 0.600 CT 0.636 0.17 58.60 1972 80 217.0 1.201 0.603 CT 0.632 0.17 58.60 1972 80 217.0 1.201 0.605 CT 0.621 0.19 58.60 1972 80 217.0 1.198 0.605 CT 0.621 0.19 58.00 1972 80 217.0 1.198 0.605 CT 0.622 0.19 58.00 1972 80 217.0 1.198 0.605 CT 0.621 0.19 58.00 1972 80 217.0 1.190							1. 501		C			46. 40		82543
80 217.0 1.97 0.607 CT 0.625 0.42 88 BB 1972 80 217.0 1.503 0.694 CT 0.636 0.19 59.40 1972 80 217.0 1.203 0.608 CT 0.616 0.19 59.40 1972 80 217.0 1.200 0.608 CT 0.616 0.17 36.00 1972 80 217.0 1.199 0.608 CT 0.612 0.74 91.00 1972 80 217.0 1.199 0.606 CT 0.622 0.19 59.50 1972 80 217.0 1.199 0.606 CT 0.622 0.14 91.00 1972 80 217.0 1.199 0.606 CT 0.612 0.14 91.00 1972 80 217.0 1.199 0.606 CT 0.612 0.14 91.00 1972 80 217.0 1.199							1. 502		C1					82543
10 217.0 1 503 0 694 CT 0 755 0 19 57,40 1972 10 217.0 1 203 0 600 CT 0 616 0 18 58,40 1972 10 217.0 1 203 0 600 CT 0 616 0 17 56,00 1972 10 217.0 1 201 0 600 CT 0 622 0 17 56,00 1972 10 217.0 1 198 0 605 CT 0 622 0 19 59,00 1972 10 217.0 1 198 0 605 CT 0 622 0 19 59,00 1972 10 217.0 1 198 0 606 CT 0 622 0 14 51,00 1972 10 217.0 1 198 0 606 CT 0 622 0 14 51,00 1972 10 217.0 1 199 0 608 CT 0 622 0 14 48 51,00 1972 10 217.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1, 197</td><td></td><td>C_T</td><td>0. 625</td><td></td><td></td><td></td><td>B2543</td></t<>							1, 197		C _T	0. 625				B2543
80 217.0 1.203 0.600 CT 0.636 0.18 58.60 1972 80 217.0 1.200 0.608 CT 0.636 0.17 56.00 1972 80 217.0 1.200 0.608 CT 0.636 0.17 56.00 1972 80 217.0 1.201 0.605 CT 0.622 0.19 59.50 1972 80 217.0 1.199 0.605 CT 0.621 0.14 91.00 1972 80 217.0 1.199 0.605 CT 0.642 0.14 91.00 1972 80 217.0 1.198 0.605 CT 0.642 0.14 91.00 1972 80 217.0 1.198 0.606 CT 0.642 0.14 91.00 1972 80 217.0 1.199 0.608 CT 0.642 0.14 91.00 1972 80 217.0 1.190							1.505		CT	0.755		59.40		82543
80 217.0 1.200 0.608 CT 0.616 0.18 58.60 1972 80 217.0 1.500 0.603 CT 0.636 0.17 36.00 1972 80 217.0 1.501 0.605 CT 0.622 0.19 59.50 1972 80 217.0 1.199 0.605 CT 0.621 0.19 59.50 1972 80 217.0 1.199 0.605 CT 0.621 0.19 59.50 1972 80 217.0 1.199 0.605 CT 0.622 0.19 59.50 1972 80 217.0 1.501 0.759 CT 0.756 0.14 91.00 1972 80 217.0 1.502 0.508 CT 0.622 0.14 91.00 1972 80 217.0 1.503 0.608 CT 0.622 0.14 91.00 1972 80 217.0 1.503							1, 203		CT	0.635		58. 90	1972	82543
HO 217. 0 1.198 0.603 CT 0.636 0.17 56.00 1972 HO 217. 0 1.501 0.603 CT 0.729 0.32 77.10 1972 HO 217. 0 1.501 0.605 CT 0.621 0.14 91.00 1972 HO 217. 0 1.198 0.605 CT 0.622 0.18 58.00 1972 HO 217. 0 1.198 0.605 CT 0.627 0.18 98.00 1972 HO 217. 0 1.198 0.605 CT 0.520 0.18 58.00 1972 HO 217. 0 1.197 0.608 CT 0.755 0.18 58.60 1972 HO 217. 0 1.197 0.694 CT 0.756 0.21 62.90 1972 HO 217. 0 1.197 0.694 CT 0.756 0.21 62.90 1972 HO 217. 0 1.197 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.200</td> <td></td> <td>CT</td> <td>0.616</td> <td></td> <td>58. 60</td> <td>1972</td> <td>82543</td>							1.200		CT	0.616		58. 60	1972	82543
80 217.0 1.500 0.751 CT 0.227 0.32 77.10 1972 80 217.0 1.199 0.605 CT 0.622 0.19 59.50 1972 80 217.0 1.199 0.605 CT 0.621 0.18 50.00 1972 80 217.0 1.198 0.605 CT 0.622 0.18 50.00 1972 80 217.0 1.198 0.608 CT 0.622 0.14 50.00 1972 80 217.0 1.198 0.608 CT 0.620 0.14 50.00 1972 80 217.0 1.200 0.677 CT 0.620 0.31 76.60 1972 80 217.0 1.197 0.608 CT 0.617 76.60 1972 80 217.0 1.197 0.608 CT 0.417 76.60 1972 80 217.0 1.494 0.744 CT							1.198		CT				1972	82543
00 217.0 1.201 0.600 CT 0.622 0.19 59.50 1972 10 217.0 1.199 0.605 CT 0.619 0.44 91.00 1972 10 217.0 1.501 0.756 CT 0.619 0.18 59.50 1972 10 217.0 1.598 0.608 CT 0.622 0.14 50.10 1972 10 217.0 1.198 0.608 CT 0.622 0.14 52.10 1972 10 217.0 1.197 0.608 CT 0.622 0.14 52.10 1972 10 217.0 1.197 0.608 CT 0.617 6.20 1972 10 217.0 1.197 0.608 CT 0.617 62.90 1972 10 217.0 1.197 0.694 CT 0.746 CT 0.746 0.746 0.746 0.746 0.746 0.746 0.746 0.746							1.500		CT			77. 10		82543
BO 217.0 1.199 0.605 CT 0.621 0.44 91.00 1972 BO 217.0 1.198 0.606 CT 0.619 0.18 58.00 1972 BO 217.0 1.198 0.606 CT 0.620 0.14 52.10 1972 BO 217.0 1.494 0.756 CT 0.620 0.31 76.80 1972 BO 217.0 1.494 0.756 CT 0.620 0.31 76.80 1972 BO 217.0 1.494 0.756 CT 0.417 0.31 76.60 1972 BO 217.0 1.502 0.794 CT 0.766 0.37 83.60 1972 BO 217.0 1.502 0.794 CT 0.746 0.16 55.40 1972 BO 217.0 1.503 0.642 CT 0.744 0.20 60.80 1972 BO 217.0 1.504							1.201		CT			59, 50		82543
EQ 217. 0 1.198 0.606 CT 0.619 0.18 58.00 1972 RO 217. 0 1.501 0.756 CT 0.622 0.18 58.00 1972 RO 217. 0 1.494 0.756 CT 0.622 0.18 58.60 1972 RO 217. 0 1.200 0.607 CT 0.620 0.31 76.80 1972 RO 217. 0 1.197 0.608 CT 0.617 0.31 76.80 1972 RO 217. 0 1.197 0.694 CT 0.759 0.31 76.80 1972 RO 217. 0 1.505 0.692 CT 0.759 0.16 55.40 1972 RO 217. 0 1.505 0.692 CT 0.744 0.20 60.80 1972 RO 217. 0 1.505 0.692 CT 0.744 0.20 60.80 1972 RO 217. 0 1.504 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.199</td> <td>0. 605</td> <td>CT</td> <td></td> <td></td> <td>91.00</td> <td>1972</td> <td>82543</td>							1.199	0. 605	CT			91.00	1972	82543
1972 17.0 1.501 0.755 0.18 48.50 1972							1.198		CT			58.00	1972	82543
BO 217.0 1.198 0.608 CT 0.622 0.14 52.10 1972 BO 217.0 1.494 0.756 CT 0.620 0.31 76.80 1972 BO 217.0 1.1970 0.607 CT 0.620 0.31 76.80 1972 BO 217.0 1.1970 0.694 CT 0.738 0.21 62.90 1972 BO 217.0 1.303 0.694 CT 0.739 0.21 62.90 1972 BO 217.0 1.303 0.694 CT 0.739 0.37 83.60 1972 BO 217.0 1.303 0.691 CT 0.734 0.16 55.40 1972 BO 217.0 1.504 0.691 CT 0.744 0.20 60.80 1972 BO 217.0 1.505 0.691 CT 0.744 0.20 60.80 1972 BO 217.0 1.199							1.501		CT			48. 50		82543
RO 217.0 1.494 0.756 CT 0.459 0.18 58.60 1972 RO 217.0 1.200 0.607 CT 0.617 0.31 76.80 1972 RO 217.0 1.503 0.694 CT 0.617 0.31 76.80 1972 RO 217.0 1.503 0.794 CT 0.746 0.37 83.60 1972 RO 217.0 1.503 0.692 CT 0.744 0.20 60.80 1972 RO 217.0 1.504 0.744 0.20 60.80 1972 RO 217.0 1.505 0.691 CT 0.744 0.20 60.80 1972 RO 217.0 1.505 0.691 CT 0.744 0.20 60.80 1972 RO 217.0 1.505 0.691 CT 0.744 0.20 80.80 1972 RO 217.0 1.199 0.606 CT							1.198		CT					82543
BO 217.0 1.200 0.607 CT 0.620 0.31 76.80 1972 BO 217.0 1.197 0.694 CT 0.417 0.31 76.60 1972 BO 217.0 1.502 0.794 CT 0.759 0.31 76.60 1972 BO 217.0 1.502 0.794 CT 0.759 0.16 55.40 1972 BO 217.0 1.505 0.692 CT 0.759 0.16 55.40 1972 BO 217.0 1.505 0.693 CT 0.744 0.20 60.80 1972 BO 217.0 1.504 0.693 CT 0.744 0.20 60.80 1972 BO 217.0 1.199 0.604 CT 0.744 0.20 60.80 1972 BO 217.0 1.199 0.604 CT 0.745 0.14 50.00 1972 BO 217.0 1.200							1.494	0.756	CT			58. 60	1972	82543
BO 217.0 1.197 0.608 CT 0.617 0.31 76.60 1972 HO 217.0 1.505 0.644 CT 0.758 0.21 62.90 1972 HO 217.0 1.505 0.642 CT 0.756 0.37 83.60 1972 HO 217.0 1.505 0.642 CT 0.756 0.17 55.40 1972 HO 217.0 1.496 0.748 CT 0.776 0.17 57.20 1972 HO 217.0 1.504 0.643 CT 0.776 0.17 57.20 1972 HO 217.0 1.199 0.606 CT 0.613 59.00 1972 BO 217.0 1.199 0.608 CT 0.613 59.00 1972 BO 217.0 1.203 0.608 CT 0.619 0.14 50.60 1972 BO 217.0 1.203 0.753 CT							1. 200		CT			76. 80	1972	82543
HO 217.0 1.505 0.694 CT 0.758 0.21 62.90 1972 HO 217.0 1.502 0.794 CT 0.766 0.37 83.60 1972 HO 217.0 1.505 0.693 CT 0.795 0.16 55.40 1972 HO 217.0 1.505 0.693 CT 0.776 0.17 57.20 1972 HO 217.0 1.505 0.691 CT 0.776 0.18 59.00 1972 HO 217.0 1.505 0.691 CT 0.747 0.18 59.00 1972 HO 217.0 1.203 0.608 CT 0.613 0.33 79.30 1972 HO 217.0 1.203 0.608 CT 0.613 0.14 50.60 1972 HO 217.0 1.201 0.608 CT 0.619 0.19 60.70 1972 HO 217.0 1.498 0.753 CT 0.781 0.13 50.00 1972 HO 217.0 1.199 0.605 CT 0.630 0.33 78.40 1972 HO 217.0 1.199 0.605 CT 0.630 0.33 78.40 1972							1.197		CT			76. 60	1972	82543
BO 217.0 1.502 0.754 CT 0.766 0.37 B3.60 1972 BO 217.0 1.503 0.692 CT 0.759 0.16 59.40 1972 BO 217.0 1.504 0.691 CT 0.744 0.20 6.080 1972 BO 217.0 1.504 0.691 CT 0.744 0.20 6.080 1972 BO 217.0 1.505 0.691 CT 0.744 0.20 6.080 1972 BO 217.0 1.199 0.691 CT 0.745 0.14 59.00 1972 BO 217.0 1.203 0.692 CT 0.619 0.33 79.30 1972 BO 217.0 1.203 0.608 CT 0.619 0.14 50.60 1972 BO 217.0 1.478 0.753 CT 0.619 0.19 59.50 1972 BO 217.0 1.199							1.505		CT			62.90	1972	82543
HO 217.0 1.505 0.672 CT 0.759 0.16 55.40 1972 EIO 217.0 1.496 0.748 CT 0.744 0.20 60.80 1972 BO 217.0 1.504 0.643 CT 0.17 57.20 1972 BO 217.0 1.505 0.641 CT 0.747 0.18 59.00 1972 BO 217.0 1.199 0.606 CT 0.619 0.33 79.30 1972 BO 217.0 1.203 0.608 CT 0.619 0.42 88.90 1972 BO 217.0 1.201 0.608 CT 0.619 0.42 88.90 1972 BO 217.0 1.478 0.753 CT 0.619 0.19 59.50 1972 BO 217.0 1.499 0.749 CT 0.739 0.19 59.50 1972 BO 217.0 1.199 0.605							1.502		CT			83. 60	1972	82543
EIO 217.0 1.496 0.748 CT 0.744 0.20 60.80 1972 FIO 217.0 1.504 0.643 CT 0.775 0.17 59.20 1972 FIO 217.0 1.504 0.643 CT 0.643 79.20 1972 FIO 217.0 1.199 0.606 CT 0.613 0.33 79.30 1972 FIO 217.0 1.199 0.608 CT 0.619 0.42 88.90 1972 FIO 217.0 1.201 0.608 CT 0.619 0.42 88.90 1972 FIO 217.0 1.201 0.608 CT 0.619 0.19 50.00 1972 FIO 217.0 1.498 0.753 CT 0.619 0.19 59.50 1972 FIO 217.0 1.199 0.605 CT 0.630 0.33 59.50 1972 FIO 217.0 1.199 0.605 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.505</td> <td></td> <td>CT CT</td> <td></td> <td></td> <td>55. 40</td> <td>1972</td> <td>82543</td>							1.505		CT CT			55. 40	1972	82543
RO 217.0 1.504 0.693 CT 0.776 0.17 57.20 1972 RO 217.0 1.505 0.691 CT 0.747 0.18 59.00 1972 RO 217.0 1.199 0.606 CT 0.613 0.33 79.30 1972 RO 217.0 1.505 0.753 CT 0.765 0.14 50.60 1972 RO 217.0 1.203 0.608 CT 0.619 0.42 88.90 1972 RO 217.0 1.201 0.608 CT 0.619 0.19 60.70 1972 RO 217.0 1.498 0.753 CT 0.779 0.19 39.50 1972 RO 217.0 1.199 0.605 CT 0.630 0.33 57.80 1972 RO 217.0 1.179 0.605 CT 0.630 0.18 57.80 1972							1.496		CT			90.80	1972	82543
00 217.0 1.505 0.691 CT 0.747 0.18 59.00 1972 H0 217.0 1.199 0.606 CT 0.613 0.33 79.30 1972 B0 217.0 1.505 0.753 CT 0.745 0.14 50.60 1972 B0 217.0 1.203 0.698 CT 0.619 0.49 88.90 1972 H0 217.0 1.201 0.608 CT 0.619 0.19 60.70 1972 H0 217.0 1.478 0.753 CT 0.781 0.13 50.00 1972 H0 217.0 1.199 0.605 CT 0.630 0.33 78.40 1972 H0 217.0 1.199 0.605 CT 0.630 0.33 57.80 1972							1.504		CT			57. 20	1972	82543
80 217.0 1.199 0.606 CT 0.613 0.33 79.30 1972 80 217.0 1.503 0.649 0.755 CT 0.619 0.42 88.90 1972 80 217.0 1.203 0.608 CT 0.619 0.42 88.90 1972 80 217.0 1.201 0.608 CT 0.619 0.19 60.70 1972 80 217.0 1.478 0.753 CT 0.781 0.19 59.50 1972 80 217.0 1.199 0.605 CT 0.630 0.33 78.40 1972 80 217.0 1.179 0.605 CT 0.630 0.18 57.80 1972							1.305		CT			39.00	1972	82543
80 217.0 1.505 0.753 CT 0.765 0.14 50.60 1972 80 217.0 1.203 0.608 CT 0.619 0.42 88.90 1972 80 217.0 1.201 0.608 CT 0.615 0.19 60.70 1972 10 217.0 1.498 0.753 CT 0.781 0.13 50.00 1972 10 217.0 1.508 0.749 CT 0.779 0.19 59.50 1972 10 217.0 1.199 0.605 CT 0.630 0.18 57.80 1972 10 217.0 1.179 0.605 CT 0.630 0.18 57.80 1972							1.199		CT				1972	82543
RO 217.0 1.203 0.608 CT 0.619 0.42 88.90 1972 BO 217.0 1.201 0.608 CT 0.615 0.19 60.70 1972 10 217.0 1.498 0.753 CT 0.781 0.13 50.00 1972 10 217.0 1.508 0.749 CT 0.779 0.19 59.50 1972 10 217.0 1.199 0.605 CT 0.630 0.33 78.40 1972 10 217.0 1.179 0.605 CT 0.630 0.18 57.80 1972							1.505		CT	0.765			1972	82543
BO 217.0 1.201 0.608 CT 0.615 0.17 60.70 1972 10 217.0 1.498 0.753 CT 0.781 0.13 50.00 1972 10 217.0 1.508 0.749 CT 0.779 0.19 39.50 1972 10 217.0 1.199 0.605 CT 0.630 0.33 78.40 1972 10 217.0 1.179 0.605 CT 0.630 0.18 57.80 1972							1, 203		CT	0.619		88. 90	1972	82543
HO 217.0 1.498 0.753 CT 0.781 0.13 50.00 1972 HO 217.0 1.508 0.749 CT 0.779 0.19 59.50 1972 HO 217.0 1.199 0.605 CT 0.630 0.18 57.80 1972							1, 201		CT	0.615		60. 70	1972	82543
BO 217.0 1,508 0,749 CT 0,779 0,19 59,50 1972 RO 217.0 1,199 0,605 CT 0,630 0,33 78,40 1972 RO 217.0 1,199 0,605 CT 0,630 0,18 57,80 1972									CT			50.00	1972	82543
HO 217, 0 1, 199 0, 605 CT 0, 630 0, 33 78, 40 1972 100 217, 0 1, 199 0, 605 CT 0, 630 0, 18 57, 80 1972							1.508		CT				1972	62543
00 217.0 1.179 0.605 CT 0.630 0.18 57.80 1972							1, 199		TCT				1972	82543
							1.199		CT				1972	82543

TABLE 6.4.2.1 (Con't)

					ALLOY (STLEL	DAAC		K(1C)	•			
inipit ton	FORM	mick mick (TM)	1FST 1FMP (1)	SPICTNEN ORIENT	VIELD STREDGTH (KSI)	HLGIM NI (NI)	SPECIMEN- THICK D (IN) B	ESTON	CRACK LENGTH ((IN)	2, 5* (K(10)/TYS) **? (IN)	K(IC) STAN K(IC) MEAN DEV (KSI#SORT IN)	DATE	REPER
or, AUSBAY	G.	0	<u>د</u>] - [217 0	1, 203	0.606		0 621		5	1972	254
OUEUCH 975F, SO		0 60			217 0	1.505	0.674	15	0, 753	0.50	06.09	1972	82543
400F, 1000F		011				1,504	0.692	CI				1972	B2543
21+2 HR						1 202	0.605	C _T			78.00	1972	82543
		0. 10				1. 198	0, 749	CI			71. 40	1972	82543
		0110				1.502	0.755	<u>-</u> 2			54, 00	1972	82543
					217.0	1.497		C ₁				1972	82543
						1, 198		C1			76. 20	1972	82543
		0 60				1.199		CT.				1972	82543
						1, 300	0.738	C1				1972	82543
					217.0	1.504	0.692	ct	0.774			1972	82543
						1.504	0.692	CT CT				1972	82543
						1. 196		CT				1972	82543
						1.458		5		0. 23		1972	82543
						1, 200		CT.				1972	82543
						1. 500	0.750	C1	0.764			1972	82543
						1. 201	0.604	C				1972	82543
					217.0	1.198		<u></u>	0.624		61.80	1972	82543
					217.0	1.501		C1		0. 12		1972	82543
					217.0	1, 199		CT	0.612		96. 90	1972	82543
					217.0	1,498		CT		0. 23		1972	82543
					217.0	1, 201	909 0	C.				1972	82543
					217.0	1.504		CT				1972	82543
					217.0	1.500		CT			54, 60	1972	82543
					217.0	1, 199	0.602	C1				1972	82543
					217.0	1, 500	0.749	CT				1972	82543
					217.0	1.504	0.692	CT				1972	82543
					217.0	1, 199		CI				1972	82543
					217.0	1. 200		CT				1972	82543
					217.0	1. 199	0.603	CT	0.629	0.15		1972	82543
		0 80			217.0	1.497		CT				1972	82543
					217.0	1, 199	009 0	CT				1972	82543
		0 60			217.0	1, 199		CT			47, 70	1972	82543
		0 80			217.0	1.500		CT				1972	82543
		0 53			217.0	1.505		CT			59.20	1972	82543
		08 0			217.0	1. 504		C	0 769	92 0		1972	82543
		0.80			217.0	1.494	0, 753	C1	0.773			1972	82543
						1.501	0, 755	CT		0.16	35, 60	1972	82543
		08 0			217.0	1. 203	0° 60B	5	0.621	0.27	71.60	1972	82543

TABLE 6.4.2.1 (Con't)

Figure 1103 Figure 11 Figure 12 Figure 13 Figure 14 Fi						AL DY	SIFIL	DVVC	U	K(JC)	()					
1-1 217 1 170 0 605 CT 0 621 0 0 0 0 0 0 0 0 0	;	PROF.	HHTCK CHID	1731 (1)	SHICTMEN	YIELD STRENGTH (KSI)	HIDIM (NI)	SPECIMEI THICK (IN)	SIGN	CRACK LENGTH (IN)	2 5* (K(IC)/TYS)**? (IN)	K (IC) H (KSI+SQH	EAN D	E V	DATE	REFE
217.0 1177 0 603 CT 0 633 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			00 0	- 2	<u>-</u> -1	217.0		, 0	; ;	, ,	; ; ;	1 1	1	t		,
1972 1974 1975 1976 1975	GUENCH 975F, SA	J	01 0			217 0									1972	82543
Chief Chie	400F, 1000F	-	08 0												1972	82543
Colored Colo	1, to ±2	•	023												1972	R2543
C C C C C C C C C C						217.0									1972	R2543
C		-	2			217.0						8	+		1972	82543
C			020	ניני	-											
5 L-T 211.0 1.500 0.757 CT 0.770 0.46 90.10 BB 07 3.0 1972 211.0 1.502 0.758 CT 0.779 0.47 91.60 1972 1972 211.0 1.502 0.758 CT 0.779 0.44 88.60 1972 1972 204.0 1.502 0.759 CT 0.770 0.41 88.66 3.21 1972 204.0 1.501 0.759 CT 0.770 0.41 88.66 3.21 1972 204.0 1.502 0.756 CT 0.770 0.41 88.66 3.21 1972 204.0 1.502 0.756 CT 0.700 0.41 88.66 3.21 1972 225.0 1.502 0.756 CT 0.700 0.06 33.70 1972 1972 225.0 1.502 0.756 CT 0.750 0.06 33.60 33.10 2.9															1972	F2543
S	490F 1000F 2+2 HR														1972	82543
5 L-T 211 0 1.502 0.758 CT 0.779 0.44 91.90 1972 0 L-T 211 0 1.502 0.758 CT 0.779 0.44 88.60 1972 0 L-T 204.0 1.502 0.759 CT 0.771 0.47 88.80 1972 0 L-T 204.0 1.501 0.759 CT 0.770 0.41 88.80 1972 5 L-T 204.0 1.501 0.759 CT 0.770 0.41 82.90 86.67 1972 5 L-T 224.0 1.501 0.750 CT 0.770 0.06 33.00 1972 5 L-T 224.0 1.493 0.694 CT 0.750 0.06 33.60 33.17 2.9 1972 5 225.0 1.497 0.693 CT 0.759 0.06 41.60 6.07 41.10 1972 5 222.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>												_				
0 L-T 224 0 1.502 0.758 CT 0.774 0.44 88 80 1972 1972 204.0 1.502 0.758 CT 0.777 0.44 88 10 1972 1972 1972 204.0 1.501 0.759 CT 0.777 0.44 88 10 1972 1972 204.0 1.501 0.759 CT 0.777 0.47 88 80 10 1972 1972 204.0 1.501 0.759 CT 0.770 0.41 88 10 10 1972 1972 204.0 1.501 0.750 CT 0.770 0.41 82.90 1972 1972 225.0 1.500 0.749 CT 0.770 0.04 23.70 1972 1972 225.0 1.500 0.749 CT 0.775 0.04 23.70 1972 1972 1972 225.0 1.500 0.759 CT 0.775 0.04 23.70 1972 1972 1972 225.0 1.495 0.694 CT 0.775 0.09 33.60 33.17 2.9 1972 1972 1972 224.0 1.495 0.693 CT 0.776 0.098 41.60 41.40 40.77 1.3 1972 1972 1972 1972 1972 1972 1972 1972			90	175												
204.0 1.502 0.758 CT 0.771 0.44 BB 60 1972 204.0 1.505 0.759 CT 0.771 0.47 BB 80 204.0 1.501 0.759 CT 0.771 0.47 BB 80 204.0 1.501 0.759 CT 0.770 0.41 BB 70 204.0 1.501 0.750 CT 0.770 0.41 BB 70 225.0 1.502 0.756 CT 0.770 0.06 33.70 225.0 1.477 0.749 CT 0.757 0.06 33.80 40.70 1.477 0.749 CT 0.759 0.09 41.60 222.0 1.477 0.749 CT 0.759 0.09 41.10 222.0 1.477 0.749 CT 0.759 0.09 41.10 222.0 1.477 0.749 CT 0.759 0.09 41.10 222.0 1.477 0.749 CT 0.759 0.00 44.40 41.27 3.2 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972					-										1972	82543
0 L-T 204.0 1.505 0.759 CT 0.771 0.47 88.80 88.57 2.1 1972 204.0 1.505 0.759 CT 0.771 0.47 88.80 88.10 1972 1972 204.0 1.501 0.750 CT 0.784 0.06 35.70 88.10 1972 1972 225.0 1.500 0.749 CT 0.750 0.04 39.70 39.70 1972 225.0 1.500 0.749 CT 0.750 0.04 29.00 39.70 1972 225.0 1.500 0.749 CT 0.750 0.04 29.00 39.70 1972 1972 225.0 1.497 0.749 CT 0.756 0.08 41.60 41.10 1972 1972 1972 222.0 1.497 0.749 CT 0.759 0.08 41.10 44.40 1972 1972 1972 1972 1972 1972 1972 1972	400F. 1000F	, ,														R2547
0 L-T 204.0 1.505 0.759 CT 0.771 0.47 88 80 1972 1972 204.0 1.501 0.759 CT 0.770 0.41 88.80 86.67 3.2 1 1972 204.0 1.501 0.756 CT 0.770 0.41 88.90 86.67 3.2 1 1972 225.0 1.502 0.756 CT 0.750 0.04 29.00 39.70 33.60 33.17 2.9 1972 225.0 1.502 0.756 CT 0.750 0.04 29.00 39.70 33.60 33.17 2.9 1972 1972 225.0 1.502 0.756 CT 0.757 0.06 39.70 33.60 33.17 2.9 1972 1972 225.0 1.497 0.749 CT 0.759 0.09 41.60 39.80 41.10 1972 1972 1972 222.0 1.497 0.749 CT 0.755 0.06 39.80 41.10 1972 1972 1972 1972 1972 1972 1972 1972	20 T 1 1 T	,														62543
0 L-T 204.0 1.503 0.759 CT 0.771 0.47 88 80 1972 1972 204.0 1.501 0.750 CT 0.770 0.41 82.90 86.6/ 3.2 1972 204.0 1.501 0.750 CT 0.770 0.41 82.90 86.6/ 3.2 1972 225.0 1.502 0.749 CT 0.760 0.06 33.70 33.1/ 2.9 1972 225.0 1.502 0.756 CT 0.757 0.06 33.70 33.1/ 2.9 1972 225.0 1.497 0.750 CT 0.753 0.09 41.60 37.80 40.7/ 1.3 1972 222.0 1.497 0.749 CT 0.753 0.09 41.10 41.10 1972 222.0 1.494 0.750 CT 0.755 0.00 38.10 41.10 1972 1972 1972 222.0 1.494 0.750 CT 0.755 0.07 38.10 41.2/ 3.2 1972 1972 1972 1972 1972 1972 1972 197																
0 L-T 204.0 1.505 0.759 CT 0.771 0.47 88.80 1972 204.0 1.501 0.759 CT 0.770 0.41 88.10 1972 204.0 1.501 0.750 CT 0.770 0.04 34.00 86.67 3.2 5 L-T 225.0 1.502 0.756 CT 0.760 0.06 34.00 1972 225.0 1.502 0.756 CT 0.757 0.06 33.17 2.9 1972 225.0 1.502 0.756 CT 0.757 0.06 33.60 33.17 2.9 1972 225.0 1.502 0.756 CT 0.757 0.06 33.60 33.17 2.9 1972 224.0 1.497 0.749 CT 0.753 0.09 41.40 40.77 1.3 1T 222.0 1.474 0.749 CT 0.755 0.07 36.50 44.40 1.77			;									,				
204.0 1.501 0.759 CT 0.782 0.47 88.10 1972 204.0 1.502 0.750 CT 0.784 0.06 34.00 86.6 3.2 225.0 1.502 0.756 CT 0.784 0.06 33.70 1972 225.0 1.502 0.756 CT 0.757 0.06 33.60 33.1/ 2.9 1972 225.0 1.502 0.756 CT 0.757 0.06 33.60 33.1/ 2.9 1972 225.0 1.495 0.694 CT 0.753 0.09 41.60 40.7/ 1.3 1972 322.0 1.497 0.749 CT 0.759 0.08 41.10 41.2/ 3.2 1972 322.0 1.497 0.749 CT 0.759 0.09 41.10 44.40 1972 322.0 1.497 0.750 CT 0.759 0.00 44.40 1972 322.0 1.497 0.750 CT 0.755 0.07 38.10 41.2/ 3.2 1972			9 6	300	[]			0.759		0.771						
5 L-T 225.0 1.502 0.756 CT 0.770 0.41 82.90 86.67 3.2 1972 225.0 1.502 0.756 CT 0.760 0.06 33.70 225.0 1.502 0.756 CT 0.760 0.06 33.70 225.0 1.502 0.756 CT 0.750 0.06 33.70 1972 1972 225.0 1.500 0.749 CT 0.757 0.06 33.60 33.17 2.9 1972 1972 225.0 1.497 0.593 CT 0.776 0.09 41.60 40.77 1.3 1972 1972 222.0 1.497 0.749 CT 0.759 0.07 38.10 41.27 3.2 1972 1972 222.0 1.498 0.750 CT 0.759 0.07 38.10 41.27 3.2 1972 1972 1972 1972 1972 1972 1972 197	Application 47.2F.; 50	· د	9 1					0. 759		0 782	0.47					2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 L-T 225 0 1.502 0.756 CT 0.784 0.06 34 00 1972 1972 225.0 1.502 0.749 CT 0.760 0.06 35.70 35.70 1972 225.0 1.502 0.749 CT 0.750 0.04 29.00 31.7 2.9 1972 225.0 1.502 0.749 CT 0.753 0.09 41.60 31.7 2.9 1972 1972 224.0 1.497 0.593 CT 0.753 0.09 41.60 41.40 41.7 1.3 1972 1972 222.0 1.477 0.749 CT 0.755 0.07 38.10 44.40 41.27 3.2 1972 1972 222.0 1.478 0.750 CT 0.755 0.07 38.10 44.40 41.27 3.2 1972 1972 1972 1972 1972 1972 1972 197	2000	O						0.750			0.41					7 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
5 L-T 225.0 1.502 0.756 CT 0.784 0.06 34.00 1972 1972 225.0 1.502 0.756 CT 0.750 0.06 33.70 1972 225.0 1.502 0.756 CT 0.750 0.06 33.70 1972 1972 225.0 1.502 0.756 CT 0.757 0.06 33.6 33.17 2.9 1972 1972 224.0 1.495 0.694 CT 0.753 0.09 41.60 41.60 40.77 1.3 1972 1972 222.0 1.477 0.749 CT 0.755 0.08 38.10 41.10 1972 222.0 1.494 0.749 CT 0.755 0.07 38.10 1972 1972 222.0 1.497 0.750 CT 0.755 0.07 38.10 1972 1972 1972 1972 1972 1972 1972 1972												•	, , ,			06.04.0
5 L-7 225.0 1.502 0.756 CT 0.784 0.06 39.70 1972 225.0 1.500 0.749 CT 0.760 0.06 39.70 1972 225.0 1.500 0.756 CT 0.757 0.06 39.70 1972 225.0 1.500 0.756 CT 0.757 0.06 39.70 1972 225.0 1.497 0.693 CT 0.755 0.09 41.60 40.77 1.3 1972 222.0 1.497 0.749 CT 0.755 0.07 38.10 222.0 1.498 0.750 CT 0.755 0.07 38.10 222.0 1.498 0.750 CT 0.755 0.07 38.10 1972 222.0 1.498 0.750 CT 0.755 0.07 38.10 1972 222.0 1.498 0.750 CT 0.755 0.07 38.10 1972 222.0 1.498 0.750 CT 0.755 0.07 38.10 1972 222.0 1.498 0.750 CT 0.755 0.07 38.10 1972 1972												3	ò			
225.0 1.500 0.749 CT 0.760 0.06 33.70 1972 225.0 1.502 0.756 CT 0.797 0.04 29.00 D L-T 224.0 1.497 0.694 CT 0.753 0.09 41.60 1.477 0.693 CT 0.756 0.08 41.10 222.0 1.497 0.749 CT 0.769 0.08 41.10 222.0 1.497 0.749 CT 0.769 0.09 44.40 1972 222.0 1.498 0.750 CT 0.769 0.07 38.10 1.17 220.0 1.499 0.750 CT 0.753 0.07 38.10 1.17 220.0 1.499 0.750 CT 0.759 0.10 44.40 1.18.0 1.499 0.750 CT 0.757 0.07 36.50 1972					11										0	
225.0 1.502 0.756 CT 0.790 0.04 29.00 1972 1972 223.0 1.497 0.694 CT 0.757 0.06 37.16 37.80 1972 224.0 1.497 0.694 CT 0.775 0.09 41.60 37.80 40.77 1.3 1972 224.0 1.497 0.749 CT 0.776 0.08 41.10 40.77 1.3 1972 222.0 1.497 0.749 CT 0.769 0.07 38.10 1972 222.0 1.497 0.750 CT 0.759 0.10 44.40 41.27 3.2 1972 1972 222.0 1.497 0.750 CT 0.759 0.10 44.40 41.27 3.2 1972 1972 222.0 1.497 0.750 CT 0.759 0.10 44.40 41.27 3.2 1972 1972 1972 1972 1972 1972 1972 197	400F 1000F 150	0	9				1, 500			0 760						04000
225.0 1.500 0.750 CT 0.757 0.06 33.1/ 2.9 17/2 224.0 1.495 0.694 CT 0.753 0.09 41.60 37.80 1972 224.0 1.497 0.694 CT 0.756 0.09 41.60 40.7/ 1.3 1972 222.0 1.477 0.749 CT 0.769 0.08 41.10 1972 222.0 1.478 0.750 CT 0.755 0.07 38.10 1972 222.0 1.498 0.750 CT 0.759 0.00 44.40 11.2/ 3.2 1972 1972 1972 1972 1972	4000F 1000F	_	Q (1.502			0 790						50000
0 L-T 224.0 1.499 0.694 CT 0.753 0.09 41.60 1972 1972 224.0 1.497 0.693 CT 0.776 0.08 37.80 40.77 1.3 1972 222.0 1.477 0.749 CT 0.769 0.08 41.10 1972 222.0 1.474 0.750 CT 0.755 0.07 38.10 1972 222.0 1.498 0.750 CT 0.759 0.10 44.40 41.27 3.2 1972 1972 1972 1972 1972 1972 1972 197	, 'S TH	0	99				1, 500			0. 757		3 9				
1972 224.0 1.495 0.694 CT 0.753 0.09 41.60 1972					,							}				577
224.0 1.497 0.693 CT 0.776 0.08 39.80 40.77 1.3 1972 22.0 1.497 0.749 CT 0.769 0.08 41.10 1972 222.0 1.494 0.790 CT 0.759 0.10 44.40 41.27 3.2 1972 222.0 1.498 0.750 CT 0.759 0.10 44.40 41.27 3.2 1972 1972 322.0 1.499 0.750 CT 0.757 0.07 36.50 1972 1972 1972 1972 1972 1972 1972 1972																542
40.77 1.3 40.77 1.3 1972 222.0 1.477 0.749 CT 0.769 0.08 41.10 1972 222.0 1.474 0.749 CT 0.765 0.07 38.10 1972 222.0 1.478 0.750 CT 0.759 0.10 44.40 41.27 3.2 1972 1972 222.0 1.478 0.750 CT 0.759 0.10 44.40 41.27 3.2 1972 1972 1972 1.478 0.750 CT 0.757 0.07 36.50 1972 1972	400F 1000F 3+3 148	>	20													02943
1972 222.0 1.477 0.749 CT 0.769 0.08 41.10 1972 222.0 1.474 0.749 CT 0.765 0.07 38.10 1972 1972 222.0 1.478 0.750 CT 0.759 0.10 44.40 41.27 3.2 1972 1972 1972 1972 1972 1972 1972 197	ML 212 MOOT 1 1 2											,	0.77			
1972 222.0 1.474 0.749 CT 0.765 0.07 38.10 1972 222.0 1.478 0.750 CT 0.755 0.10 44.40 41.27 3.2 1972 222.0 1.502 0.750 CT 0.759 0.07 36.50 1972		•														
222.0 1.474 0.747 CT 0.765 0.07 38.10 1972 222.0 1.478 0.750 CT 0.757 0.10 44.40 1972 1972 1972 1 1-T 218.0 1.499 0.750 CT 0.757 0.10 44.60 1972		٥ (1-,		1.497									07800
222 0 1.478 0.750 CT 0.759 0.10 44.40 1972 1972 1972 1972 1972 1972 1972 1972	4000 COOOL	> 0	3 8				1.474									
41. 27 3. 2 17. 2 2 2 0. 750 CT 0 769 0. 07 36. 50 1972 1972 1972 1972	10001	>	Ē				1, 498									
1. T 220 0 1. 502 0. 750 CT 0 769 0. 07 36. 50 1972	XI also											?	,,,			5 6 7 10
) L.T 220.0 1.502 0.750 CT 0.769 0.07 36.50 1972												•	ì			
) IT 218.0 1.499 0.750 CT 0.757 0.10 44.60	DUFNEH 975F, SO 400	1 2017, 1000	50 7F 20+7	0 =					C1							32543
) L-T 218.0 1.499 0.750 CT 0.757 0.10 44.60			•													
	1650F, AUS-BAY F	0	69	02	1-1		1.499	0.750	CI	0.757		44 40				9
	POLITICAL STATES OF ADOLES	Jr. 100.	ri Ci	≅								20			17/6	54045

TABLE 6.4.2.1 (Con't)

	E REFER	972 82543	72 82543		972 82543	8254	972 82543	72 82543					972 B2543			972 82543	972 82543								7/K 8K343			972 82543							972 82543		n	ΩI.
	DATE	6	19		19	19	2	13	19	19	19	19	10	61	13	19	2	-	-	6	13	19	6	61	- 0		- 6	19	19	19	10	19	5	6	12	<u>-</u>	0	197
	STAN DEV			9.0																																		
	K(IC) MEAN (KSI#SGRT IN)	45 60	8	Ę.						50, 30			73.20	90.60	79. 70	57.90	84, 10	68. 70	82.30	79. 50	52.00	73.60	75, 30	57. 40	94.40		39.80	60, 80		65.20		26.20	20.00			61 00	99	
•	2.5* (K(IC)/IVS)#62 (IN)		0 11		0.24												0.39		0.37		0.15		0.31		0.49										0.13		0 24	O
K (10)	CRACK LENGTH (I (IN)		0 761				0.618																0.766		0 634												~	0, 784
	DF ST CN	13	CT		CT.	c	C1	C1	5	CT	5	CI	C _T	5	CI	5	5	5	C	د	C ₁	ᇈ	5	ן כ	5 6	; t	. <u></u>	7	C1	CT	C1	ct	CI	C1	CT	CI	CI	CT
P6AC	SPECIMEN: THICK D (IN)		0, 750			0 607	0.602					0.602											0.750			0 00					0.605		0.604	0.756	609 0		0.752	
17.115	CII)		1 499		1 200	1 200	1 199	1 199	1.503	1.178	1, 201	1, 202	1.201	1.498	1.200	1.499	1, 198	1, 202	1.202	1. 200	1. 202	1, 199	1.500	1.498	1.195	200			1 199	1.200	1. 200	1.199	1, 200	1.499	1, 201	1 200	1 459	1, 502
ALL DY	YIELD STRENGTH (MS1)	œ	218 0		~	*	4	e.	ď	4	₹.	₹.	4	ď	4	4	4	4	4.	4	4	4	214.0	•					4	4	₩.	•	4	4	4	₩.		•
	HI CINED	<u>.</u>			۲																																	
	16.11 17.00 (1)	0.5			-																																	
	HICK HICK CHD	0 8 0	0H 0			08 0				0 00	0 80	0 80			0 80				0 HO				0 80		03 0								08 0					08 0
		is.		≅	L.																																	
	60111(.85)	1650F. AUS - BAY	OUTNIER 975F. SO	4004, 1000F 2+2	16FOF, AUS -BAY	PUFNCH P75F, 50	400F, 1000F	3+5 HB																														

TABLE 6.4.2.1 (Con't)

~		1			
REFER	មានមាន មាន មាន មាន មាន មាន មាន មាន មាន ម	82543 82543 82543	84277 84277 84277	84277 84277 84277 84277	
DATE	1977 1977 1977 1977 1977 1977 1977 1977	1972 1972 1972	1972 1972 1972	1972 1972 1972 1972	
STAN		0 1 E 1	0.7		0
K(IC) (HEAN I	•	77.2/	87. 7/		80.37
K(IC) MEAN (KSI#50RT IN)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80.30 77.10 74.30	86. 90 88. 30 88. 00	81.80 75.10 79.70 80.90	
2, 5* (K(IC)/TYS)**? (IN)	40040000000444444	37 34 32 	39 41 40	38 32 36 37	
2.5* RCIC) /		000 1	000	00 00	
CRACK LENGTH ((IN)	0 628 0 768 0 768 0 631 0 633 0 769 0 620 0 620 0 620 0 758 0 758	0.762	0.300	1. 400 1. 400 1. 400 1. 400	
DESIGN		555	5 5 5 5	10 10	
SPECIMENT THICK D (IN)	7.500.000.000.000.000.000.000.000.000.00	0.750 0.750 0.750	0.500 0.500 0.500	1. 000 1. 000 1. 000 1. 000	
T HIGIN	1. 198 1. 502 1. 502 1. 500 1. 500 1. 497 1. 197 1. 500 1. 198 1. 198 1. 200 1. 200 1. 500 1.	1. 500 1. 504 1. 498	1. 000 1. 000 1. 000	10 200 10 200 10 200 10 200	
YIELD STRENGTH (KSI)		208. 0 208. 0 208. 0	219 0 219 0 219 0	210.0 210.0 211.0 211.0	
SPI CIMEN	. 1	1	1	1-1	
75.7 76.NF (C.)	- -	175	6 .	# # F	
- 10 E		08 0	1.50	7 00 7 00 7 00 7 00 7 00 7 00	
FROM TH		; ; <u>µ</u> •	L.	DT 18	C+0
2	US-RAV 8735, SG	1650F, AUS-BAY GUENCH 975F, SA 400F, 1000F 2+2 HR	1650F,1 HR.FC TO 960F,DG AF 180F,AC,1025F 2+2 HR		150F, AC, 1000F 2

TABLE 6.4.2.1 (Con't)

	EK 1		1 00000 1 1 00000 1	U U U U I		ញ្ញ ព	ტი
	REFER	ិ ភេសស្ស	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 1	82543 82543 82543 82543 82543 82543 82543 82543 82543	2 82543 2 82543 2 82543	2 82543 2 82543
	DATE	197 197 197 197	197	197,	1972 1972 1972 1972 1972 1972 1972	1972	1972
	BTAN DEV	. .	1 40 1 1 + 1	- i	0 4	ni ni	
	K(IC) MEAN (KSI+SORT IN)	77.	93.77	₩	31. 4.	45.4	
	K(1C) (K81+5	78.3 76.23 77.6 76.80	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	43 70 47 90 44 60	34.00 73.20
	€## (S.)			1			
	2 5* (K(IC)/TYS)**? (IN)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0 0 0 0 1 20 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 09 0 11 0 10	0 14
K(IC)	CRACK LENGTH (F (IN)	05 75 75 69	118 139 116 097	26.44.0 1.46.0 1.00.0	774 795 748 763 799 780 759	768 772 768	779
	'		१ न्यं न्यं न्यं न्यं । १ १ १ १	1	00000000	000	00
	DESIGN	5555	5555	10010	555555555555555555555555555555555555555	50	t C C C
DEAC	SPECIMEN- THICK II (IN)	8888	1. 006 1. 006 1. 006	8888	00 7 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0. 750 0. 754 0. 747	0.752
STEEL.	T HIGH	999 995 997 002	1 995	996 001 999 996	1, 502 1, 499 1, 502 1, 502 1, 502 1, 504 1, 504 1, 506 1, 506	1. 501 1. 499 1. 503	1.502
	1		1 I	1	00000000	000	0.0
ALLOY	VIELD STRENGTH (KSI)				228 228 228 228 228 228 228 228 228 228	227. 227.	226.
	SPECIMEN	, <u>, , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·	i 1 i	<u>-</u> 1	7	<u>.</u>
		, <u> </u>	1 - 1	ا <u>ن</u> ا	೮ 9	40	50
	C1 THICK (IN)	0000	1 00 1	000	0 80 0 80 0 80 1 50 1 50 1 50 1 50	1 50 - 1 50 1 50	1 50 - 0 80 - 0 80 - 0 80 0 0 0 0 0 0 0 0 0
	FROD FORM	1	: !	l i			€ 5 • ×
		! !**	C	i L	و	. 0	2 HR
		1575 1575 2 HR.	. 1975 2 HR. 7	15751 2 HR,	5-8AY 75F, 0 0F	5 BAY 75F. U	5-8AY P 75F, UQ 0F 2+2 HR 1YS APPHOX
	01110	575F AC 3,400F 100F 2	1675F AC, 1575F 194 400F 2 HR, 800F 7 HR (RC 46 5)	75F. AC 3. 400F 30F 2 H 3C 50)	1700F, AUS-BAY GUENCH 975F, DO 140F, 1000F 242 HR	1700E, AUS BAY 99ENCH 975E, UQ 140E, 1000E 3+2 HR	1700F, AUS-BAY P 9°FRCH 775F, UQ 14°C, 1000F 2+2 HR 100FG (1) 129 APFHO (1) 129 APFHO

TABLE 6.4.2.1 (Con't)

	REFER	82543 82543 82543 82543 82543 82543	82543 82543 82543	82543 82543 82543 82543 82543 82543	82543 82543 82543	82543 82343 82343 82343 82343 82343 82343 82343 82343 82343 82343
	DATE	1972 8 1972 8 1972 8 1972 8 1972 8	1972 B 1972 E 1972 E	1972 B 1972 B 1972 B 1972 B 1972 B	1972 E 1972 E 1972 E	1972 1972 1972 1972 1972 1972 1972 1972
	K(IC) STAN K(IC) MEAN DEV I	69. 30 74. 00 50. 40 50. 40 67. 90 48. 90 62. 47. 12. 0	53.60 56.80 54.80 55.07 1.5	59. 10 58. 40 89. 90 89. 70 85. 70 71. 30 87. 20 76. 5/ 13. 5	66. 10 80. 50 64. 50 70. 4/ 8. B	101. 70 90. 60 97. 20 97. 10 97. 00 97. 00 92. 30 96. 30 99. 10
K(IC)	CFACK 2 5* LENGTH (K(IC)/TYS)**2 (IN) (IN) A	0 756 0 24 0 773 0 27 0 763 0 12 0 756 0 27 0 763 0 12 0 760 0 23	0.768 6.14 0.799 0.16 0.767 0.13	0, 788 0, 17 0, 778 0, 17 0, 770 0, 41 0, 753 0, 35 0, 762 0, 26 0, 765 0, 37	0.790 0.22 0.767 0.33 0.779 0.21	0. 761 0. 55 0 0. 759 0. 44 0. 759 0. 44 0. 759 0. 47 0. 779 0. 47 0. 779 0. 50 0. 50 0. 779
DGAC	SPECIMEN THICK DESIGN (1N) B	0 749 CT 0 754 CT 0 750 CT 0 750 CT 0 750 CT 0 750 CT 0 750 CT	0, 750 CT 0, 755 CT 0, 750 CT	0.755 CT 0.750 CT 0.754 CT 0.753 CT 0.753 CT 0.754 CT	0, 750 CT 0, 749 CT 0, 752 CT	0. 749 CT 0. 752 CT 0. 756 CT 0. 757 CT 0. 757 CT 0. 757 CT 0. 758 CT 0. 758 CT 0. 758 CT 0. 758 CT 0. 756 CT 0. 756 CT
BIFTL	WIDTH (IN)	1 504 1 504 1 504 1 506 1 501 1 502 1 502	1, 502 1, 479 1, 503	1. 500 1. 501 1. 502 1. 504 1. 504 1. 504	1, 501 1, 501 1, 499	1 479 1 506 1 506 1 500 1 502 1 497 1 503 1 503 1 503
AL! fly s	YIELD STRENGTH (KSI)	22.6.0 22.6.0 22.6.0 22.6.0 22.6.0	224. 0 224. 0 225. 0		220, 0 220, 0 220, 0	217.0 217.0 217.0 217.0 217.0 217.0 217.0 217.0
	SPECIMEN	- - -	5	5	<u>-</u> ,	ī
	11 ST 11 MD (T.)		c	50	04	<u>·</u>
	114 114 114 114 114	0 80 1 90 1 30 1 30 0 80 1 30	1 50 1 50 1 50	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 50 1 50 1 50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	- PR		۵	٤	<u>c</u>	c
	Ē	1110F, AUS DAY 99FREH 975F, UQ 140F, 100FF 242FHR	1750F, AUS BAY 93(F) AUS DO 140F, 1000F	1700F, AUS-BAY PUENCH 975F, DR 140F, 1000F 2+2 HR	1790F, AUS-BAY GUENCH 975F, 00 140F, 1006F	1700F, AUS-BAY PUENCH 975F, 00 140F, 1000F 2+2 HR

TABLE 6.4.2.1 (Con't)

					ALL IIX	811113	DOAC		K(JC)	5					
801 L1680.7	- '	PROBERT THICK STED	11.51 4.1FDP (1.)	SPICIMEN ORIENT	YIELD STRENGTH (KSI)	HIGIN (NI)	SPECIFIEN- THIOK D (IN)	FSIGN	CRACK LENGTH (1N)	2,5# (M.10)/TVS) 642 (M.10)	K(IC) MEAN (KSI*SORT IN)	STAN DEV	DATE	(REFER
US - BAY 975F, 000 000F	<u>c</u>	000000000000000000000000000000000000000	- α:	<u>د</u> -	217.0 217.0 217.0 217.0 217.0 217.0 217.0 217.0 217.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		555555555555555555555555555555555555555	0 773 0 777 0 777 0 767 0 767 0 768 0 768	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95.40 91.70 93.90 93.90 94.50 95.30 96.30 91.20 91.20 91.20 94.70				
1700F, AUS-BAY QUENCH 975F, UQ 140F, 1000F 2+2 HR	c.	1 50 0 80 0 80 0 80 0 80	175	t-T	2211.0	1.501 1.500 1.499 1.501 1.501	0, 750 0, 752 0, 752 0, 752 0, 753 0, 753	55555	0, 763 0, 760 0, 732 0, 785 0, 779 0, 761	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.20 89.20 92.70 96.30 90.70	3/ 3	1972 1972 1972 1972 1972		82543 82543 82543 82543 82543 82543
1700F, FUE BAY 9UENCH 975F, 00 140F, 1000F 2+2 HR	œ.	1 50 1 50 1 50	300	r-1	204. 0 204. 0 204. 0	1. 499 1. 499 1. 499	0, 750 0, 754 0, 749	CT CT	0, 779 0, 790 0, 758	0 0 0 0 0 0 0 7	86. 40 91. 30 88. 00 88.	α 3	1972 1972 1972		82543 82543 82543
1700F, AUS-BAY GUENCH 975F, DR 140F, 1000F 2+2 HR	L.	1 50	- 65	<u>-</u> 1		1.501 1.500 1.500 1.501 1.501	0,749 0,753 0,751 0,752 0,752 0,751	555555	0, 762 0, 758 0, 789 0, 760 0, 760 0, 760	0.00 0.00 0.00 0.00 0.00 11	52.80 41.10 47.50 42.60 41.90 47.30 45.	* /6	1972 1972 1972 1972 1972 5 1972		82343 82343 82343 82343 82343 82343
1700F. AUS-BAY F 1 50 - 2 PUFNCH 975F. DR 140F. 1000F 2+2 HR	F 140F, 1	1 50 1000F 2+	- 20 - 111 ct	157	222.0	1 501	0, 750	CT	0, 752	0.16	55, 70		1972		82543

TABLE 6.4.2.1 (Con't)
ALLINY STILL DEAC

	REFER	82543	B2543		82543	B2543	82343	B2543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82343	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543	82543
	ATE	1972				1972					1972																									1972	
	STAN	I 1 J I		58.37.10.3			66.5/8.8																														
	(1C) SI*50	69.60	9	••		76. 50		91.80	95, 30		93.00						98. 60			84, 90			98.50			98.50							89, 70			94, 30	84 80
_	2 5* K(IC)/T (IN)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0.31											0.53					0.39								0.47	0.48	0.46		0.47	0 46	0.49	6.39
K I C	CRACE LENGTH (IN)	0.777			0.741	0.778	0. 770			0.755									0.757			0.765				0.767			0.814			0.759					
	S	1 10				C				3 CT		cT CT		CT						L CT		cT .								to c			L) i		CT		CT 0
DVVC	ECIMEI HICK (IN) B	0.75	Ö		Ö	0. 750	o o				Ö	Ö	o	-	Ö	Ó		o	Ö		o	0.752	Ö	Ö	Ö	o	Ö	Ö		Ö		o	0.752	0			0.750
รารเร	EIDTE (IN)	1. 501				1, 500	E0E .1	1.501	1.499		1,494	1. 500	1.497	1.500	1.493	1.500	1.497	1.499	1.500	1, 504	1, 503	1 501	1.498	1.478	1, 503	1.498	1. 499	1.503	1.500	1.499	1.501	1.500	1, 501	1.501	1.500	1 497	1 500
\ <u>`</u> = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	L.D NGT SI)	222.0				218.0		4	÷	4		÷	÷	÷	÷	÷	.	÷.			4	21 1 0	. :	÷	÷	4	÷	4	4	4				÷		-	214.0
	O I I	· · · ·			1			L-1																													
	1031 1690 (F)	20			20			⊢ α.																													
	PHODUC 1 FORM MUCK	1 50	1 50		05 1	05 1	<u>0:</u>	0 00	0 80		0 80	0 80					0 60		08 0				1 50	0 60				1 50	0 80	0 00	1 50	0 80	1 50	0 80	1 50	0 80	0 80
	PH	! <u>L</u>		≅	i.			i.																													
	COP451 T FOR	1700F, AUS-BAY	OUENCH 975F, 00	140F, 1000F, 242 HR	1700F, AUS-BAY	OUFNCH 975F, DR	140f, 1000F 2∙2 HR	1700F, AUS-BAY	QUENCH 975F, UG	140F, 1000F	2+2 HR																										

TABLE 6.4.2.1 (Con't)

			,		1	·	
	REFER	82543 82543 82543 82543	882943 82543 1 82543	0 0 0 0 1	84277 84277 84277 84277 84277	000	0 0 0 0 4 4 4 4
	DATE	1972 1972 1972 1972	1972	197 197 197	1972 1972 1972 1972 1972	777	7777
	STAN	4	1.7	₹ 1	40 (101 (, g	
		95. 2/	97.5/	6	77.3/		
	K(IC) MEAN (KSI+SGRT IN	102.90 97.60 96.50 103.10	99. 50 96. 30 96. 70	268	78. 40 81. 10 78. 10 75. 30 77. 10	80. 10 76. 90 74. 70	3.7.2
•	2 5* (K(IC)/TVS) 642 (IN)	0.58 0.52 0.51 0.88	0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1		000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 60 74 63
K(10)	CPACK LENGTH ((IN)	0 743 0 779 0 758 0 782	0.778	1.400	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	000	1 400 1 400 1 400
	DESIGN	10 10	100	555	555555	555	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DAAC	SPECIMEN- THICK D (IN)	0, 748 0, 749 0, 750 0, 756	0.756	. 888 .	1. 000 1. 000 1. 000 1. 000 1. 000	86.3	1,000 1,000 1,000
STFEL	WIDTH (IN)	1. 504 1. 501 1. 501 1. 500	1. 501 1. 501 1. 500	000	000000	1000 1000 1000 1000	2 200
ALLOY 9	VIELD STRENGTH (KSI)	214.0 214.0 214.0 214.0	208.0 208.0 208.0	21 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	11 12 12 12 12 12 12 12 12 12 12 12 12 1	000	200°0 200°0 200°0 200°0
	SE FC JMEN OR LENT	<u>-</u>	<u>-</u>	· · · · · · · · · · · · · · · · · · ·	7	1	<u> </u>
	TEST TEBE (F)	F. T	175	ا 🛨	←	' ⊬	H → H
	FORN THICK (TN)	8888	2000	7 00 7 00 7 00 7	7 00 7 00 7 00 10 00 10 00	7 00 7 00 7 00 7 00	
	-		i.	, E	E	18	1 18
	40011100a	Thoop, AUST DAY OHTHEN 975F, UG 140F, 1000F	1700F, AUS-BAY QUENCH 975F, UR 146F, 100GF 217 HR	0F.1 HR.FC 960F.00 AT F.AC.1000F HR	700F, 1 HR, DG,	725F 1 HR.A 700F 1 HR. 000F 1 HR.	.1 HR. AC 1 HR. 0G, 2+2 HR

TABLE 6.4.2.1 (Con't)

	E E E E E E E E E E E E E E E E E E E	~ ~	~~~~	~ ~ ~
	REFER	84277	84277 84277 84277 84277 84277	84277 84277 84277
	DATE	1972	1972 1972 1972 1972 1972	1972 1972 1972
	K(IC) STAN K(IC) MEAN DEV KSI+K(RI IN)	101.27 6.1	74. 4/ 6.2	75. 17. 10. 1
		102.00 104.00	83.10 75.90 73.20 64.60 77.90	78.80 63.70 82.80
C)	2, 5* (K(IC)/TYS) **? (IN)	29 O	0.38 0.31 0.32 0.32 0.32	0.32 0.21 0.35
K C I C	CRACK LENGTH (IN)	1.400	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1. 400 1. 400 1. 400
	ESIGN	55	555555	555
DVIVO	MIDTH THICK DESIGN (IN) (IN)	1.000	1. 000 1. 000 1. 000 1. 000 000	1. 000 1. 000 1. 000
STEEL	WIDTH (IN)	2 500 2 500	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2. 500 2. 500 2. 500
AL LOY	VIELD STRENGTH (KST)	205. 0 205. 0	213.0 213.0 213.0 217.0	221.0 221.0 221.0
	SPECIMEN	<u>ب</u> ن	Ţ	ן. -
	11.ST 11.0P (1.)	- د	я. Г .	<u>د</u>
	FIRM THICK THIP (T) (T)	10 00 10 00	7 00 7 00 7 00 10 00 10 00	7 00 7 00 7 00 2+2 HR
	FORM	31	Ē	B.F. 1025F
	FIGURE AND LATER A	17056, 1 HR, AC 1700E 1 HR, 09, 1170E 2+2 HR	1725F.1 HR.AC 1709F.1 HR.DG. 1025F.2+Z.HR	1725F.1 HR. AC RT 7 00 1650F 1 HR. FC 7 00 TO 960F.5G 7.00 350F 0 9 HR. AC, 1025F 2+2 HR

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.1 INDICATING EFFECT

		EEL D6AC -BQ AT 975F, 9	69 AT 375F, 1000F	=	
DELTA ++(KSI*IN)	K		DA/DN (10**-	5 IN./CYCLE)	
(VO1×1M×	(1/2)	: A	В	С	D
		E= R.T. JP-4 FUEL 3HZ	DIST H20		
DELTA K B: MIN C: D:	9 . 70	. 963	. 930		
	10. 00 13. 00 16. 00 20. 00 25. 00 30. 00	: 1.83 : :	. 932 2. 25 4. 27 7. 55 12. 2 17. 4		
DELTA K B: MAX C: D:		3. 49 :	18. 3		
ROOT MEAN S PERCENT ES		17. 19	14.86		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	8 25 1 0	1		man ann har han par har han der han h

Figure 6.4.3.1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.2 INDICATING EFFECT

		'	JE ENVIRUNMENT		
MATERIAL: A			SQ AT 375F, 1000)F	
DELTA (KSI*IN*+		:	DA/DN (10**-	-6 IN. /CYCLE)	
(VO1 x 1 Mx)	e1/2/		В	С	D
		: : E= R.T. :JP-4 FUEL			
DELTA K B: MIN C: D:	8. 99	: . 241 : :			
	9. 00 10. 00 13. 00 16. 00 20. 00	: . 471 : 1.81 : 3.85			
DELTA K B: MAX C: D:	24. 55	: 7. 62 : :			
ROOT MEAN S		17. 15			
PREDICTION RATIO SUMMARY	0.8-1.	8 25 1 0			

Figure 6.4.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.3 INDICATING EFFECT

	ALLOY STEEL 1650F A-BG 2+2HR		Bg AT 375F, 1000F		
DELTA (KSI*IN*			DA/DN (10**-6	IN. /CYCLE)	
(V21±1I4±	*1/2/ :	A	В	С	D
			E= R.T. DIST H20		
DELTA K B: MIN C: D:		1. 94	3. 22		
	13.00 : 16.00 : 20.00 :		3. 99 7. 97 13. 9		
DELTA K B: MAX C: D:	19.86 : 22.37 : :	18.8	40. 5		
ROOT MEAN PERCENT E		23. 17	18. 87		
PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25 1. 25-2. 0 >2. 0	1	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.4 INDICATING EFFECT

			OTREGO KINTE		
MATERIAL: A CONDITION: ENVIRONMENT	1650F A-B	0 AT 975F, SQ	AT 400F, 1000F		
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6	IN. /CYCLE)	
(702 - 214 - 1	:	A	В	C	D
	:	R=+0. 10	R=+0. 50		
DELTA K B: MIN C: D:	37. 20 : 22. 01 : :	25. 7	14. 0		
	25, 00 : 30, 00 : 40, 00 : 50, 00 :		14. 0 21. 7		
DELTA K B: MAX C: D:		71. 2	25. 5		
ROOT MEAN S		8. 34	9. 73		
PREDICTION RATIO SUMMARY	0. 8-1. 25	1	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.5 INDICATING EFFECT

CONDITION:	ALLOY STEEL 1650F A-BQ 2+2HR F: R.T.,L	AT 975F, SQ	AT 400F, 1000F		
DELTA (KSI*IN*			DA/DN (10**-6	IN. /CYCLE)	
(101-114-	:	A	В	С	D
	· :	R=+0. 10	R=+0. 50		
DELTA K B: MIN C: D:	19.32 : 18.50 : :	2. 28	9. 46		
	20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 :		9. 29 14. 2		
DELTA K B: MAX C: D:	47. 75 : 26. 21 :	42. 0	16. 8		
ROOT MEAN S		17. 60			
PREDICTION RATIO SUMMARY	0.8-1.25		1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.6 INDICATING EFFECT

OF FREQUENCY

MATERIAL: ALLOY STEEL DOAC CONDITION: 1650F A-BQ AT 975F, SQ AT 400F, 1000F 2+2HR ENVIRONMENT: R.T. , DIST H20 DA/DN (10**-6 IN./CYCLE) DELTA K (KSI*IN**1/2) D : F(HZ) = 0.10 F(HZ) = 1.00DELTA K B: MIN C: D: 200.00: DELTA K B: MAX C: D: ROOT MEAN SQUARE 0.00 0.00 PERCENT ERROR LIFE 0.0-0.5 PREDICTION 0.5-0.8 0.8-1.25 RATIO SUMMARY 1, 25-2, 0 >2. 0 (NP/NA)

ALLOY CONDITION/HT: 1650F A-BQ AT 975F, SQ AT 400F, 1000F 2+2HR YIELD STRENGTH: 220. Ø KSI Ø. 80"TH PLATE STEEL ULT. STRENGTH: 238. Ø KSI SPECIMEN TYPE: CT Ø. 75Ø" SPECIMEN THK: ORIENTATION: L-T SPECIMEN WIDTH: 5. 000" +0. 08 STRESS RATIO: DBAC REFERENCES: 82543 R.T..DIST H20 **ENVIRONMENT:** $\Delta K (MPA \sqrt{m})$ ΔK (MPA √m) 100 10 40 10 40 100 10 ⁰ FREQUENCY (Hz) = FREQUENCY (Hz) = 0.10 1.00 10⁻² 10-2 10-1 10-1 10⁻³ 10⁻³ 10⁻² 10⁻² da/dN (in/cycle) 10 4 10 10⁻³ 10⁻³ 10^{.5} 10⁻⁵ 10-4 10⁻⁴ 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10-7 10⁻⁶ 10⁻⁶ 10⁻⁸ 10-8 40 100 10 40 100 10 **© (** لتلبينا 10 ⁰ 10 0 FREQUENCY (Hz) = FREQUENCY (Hz) = 10 2 10-2 10⁻¹ 10-1 10^{.3} 10⁻³ 10⁻² 10.2 da/dN (in/cycle) 10-4 10-4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10.4 10⁻⁶ 10⁻⁶ 10⁻⁵ 10.5 10.7 10⁻⁷ 10⁻⁶ 10⁻⁶ 10-8 40 10 40 10 100 100 ΔK (KSI VIn) ΔK (KSI √in) Titure (1.4. 8.)

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.7 INDICATING EFFECT

	1650F A-1 2+2HR		AT 400F, 1000F		
DELTA (KSI*IN*			DA/DN (10**-6	IN. /CYCLE)	
(W21#IN#	*1/2)	Α	В	С	а
	:	F(HZ)= 0.10	F(HZ)= 1.00	F(HZ)= 3.00	
A: DELTA K B:	13.43 :	1. 39	1. 07		
MIN C: D:	13. 52 : :			1.11	
		2. 79 5. 58	2. 45 5. 24	2. 59 5. 43	
		9. 3 9		8. 6i	
	30 . 00 :	13. 3 17. 5	12. 2 15. 6	11.5	
A:		18. 6	15 7		
DELTA K B: MAX C: D:			15. 7	14. 4	
ROOT MEAN S		7. 09	8. 90	6. 09	
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 8 0. 8-1. 25 1. 25-2. 0	5 1	1	1	

Figure 6.4.3.7

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.8 INDICATING EFFECT

	1650F A-E 2+2HR		AT 400F, 1000F		
DELTA			DA/DN (10**6	IN. /CYCLE)	
(KSI*IN*	*1/2) :	A	B	С	D
	:	F(HZ)= 0.10	F(HZ)= 1.00	F(HZ)= 3.00	
DELTA K B: MIN C: D:	10.19 : 9.80 :	2. 31	1.01	. 63 9	
	16.00 : 20.00 : 25.00 : 30.00 : 35.00 :		2.86 5.05 7.44 9.60 11.5 13.7	. 736 2. 64 4. 21 5. 31 6. 64 9. 58	
DELTA K B: MAX C: D:		67. 9	14.8	15. 1	
PERCENT E	ROR		13. 73	15. 78	
LIFE PREDICTION RATIO SUMMARY	0.0-0.5		1	1	

Figure 6.4.3.8

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.9 INDICATING EFFECT

MATERIAL: A CONDITION: ENVIRONMENT	1650F A-1 2+2HR T: R.T.	3Q AT 975	F, SQ	AT 400F;	1000F		
	K :			DA/DN (10**-6	IN. /CYCLE)	
(ND1 x 1 M x 1	:	A		В		С	D
	:	F(HZ)=	0. 10	F(HZ)=	1.00	F(HZ)= 3.00	
DELTA K B: MIN C: D:				2. 1	3	. 980	
	10.00 : 13.00 : 16.00 : 20.00 : 25.00 :			2. 1 4. 5 6. 3 9. 0 16. 4	8 7 6	1. 09 2. 83 4. 38 6. 45 11. 0	
DELTA K B: MAX C: D:	29 . 90 :			37. 2		14. 2	
ROOT MEAN S		0. 00		8. 91		12. 64	
SUMMARY	0.5-0.8 0.8-1.2	5		1		1	

Figure 6.4.3.9

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.10 INDICATING EFFECT

		EEL D6AC A-BG AT 975F;	SG AT 400F; 1000F		
DELTA *KSI*IN		;	DA/DN (10**-6	IN. /CYCLE)	
(101 114	.1,	A	В	C	D
		E= R.T.			
DELTA K B: MIN C: D:	14. 94	: 3. 56 : :			
	20.00	3. 15 5. 38 11. 2			
DELTA K B: MAX C: D:		: 11.5 : :			
ROOT MEAN : PERCENT E		16. 96			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	8 25 1 0			

Figure 6.4.3.10

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.11 INDICATING EFFECT

DELTA		DA/DN (10**-6 IN./CYCLE)						
(KSI*IN**1/2) :		Α	В	С	D			
	: :	R=+0. 10						
A: DELTA K B: MIN C: D:	19. 72 : : :	5. 50						
	40 , 00 : 50 , 00 :	5. 61 8. 34 12. 8 19. 2 27. 7 51. 3 81. 9						
DELTA K B: MAX C: D:	66, 91 : : : :	105.						
ROOT MEAN S PERCENT ER	. —	25. 51						
PREDICTION	0.8-1.25	1 2						

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.12 INDICATING EFFECT

DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)						
		Α	В	С	D			
	: :	R=+0. 50						
A: DELTA K B: MIN C: D:	15.55 : : :	3. 63						
		3. 76 6. 18						
A: DELTA K B: MAX C: D:	21.35 : : : : : : : : : : : : : : : : : : :	7. 29						
ROOT MEAN S PERCENT ER		8. 58						

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.13 INDICATING EFFECT

OF FREQUENCY

MATERIAL: ALLOY STEEL DOAC CONDITION: 1700F A-BQ AT 975F, DQ AT 140F, 1000F 2+2HR ENVIRONMENT: R. T. , DIST H20 DA/DN (10**-6 IN. /CYCLE) DELTA K (KSI*IN**1/2) D F(HZ) = 0.10 F(HZ) = 1.00DELTA K B: MIN C: D: 200.00: DELTA K B: MAX C: 0. 00 ROOT MEAN SQUARE 0. 00 PERCENT ERROR LIFE 0.0-0.5 PREDICTION 0.5-0.8 0.8-1.25 RATIO SUMMARY 1. 25-2. 0

(NP/NA)

>2. 0

• <u>,</u> } = •

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.14 INDICATING EFFECT

DELTA K (KSI*IN**1/2)			DA/DN (10**-6 IN./CYCLE)				
(W2T#IN#	*1/2) :		В	С	D		
	:	F(HZ)= 0.10	F(HZ)= 1.00	F(HZ)= 3.00			
A:	19. 47 :	4. 95					
DELTA K B:			1. 27				
	12.88 :			1. 09			
D:	:						
	13. 00 :		1. 26	1. 14			
	16.00 :		2. 61	2. 52			
		5, 28	5. 88	4. 86			
		8. 52	9, 94				
	30.00 :		13. 6	12. 1			
	35.00 :	12. 3 17. 0	17. 6	16. 9			
		23. 2	23 . 0	23. 2			
		43, 9		43 . 3			
	60 . 00 :		96. 3	83 . 0			
	70.00 :		128.				
A:	57 . 66 :	73. 2					
DELTA K B:			114.				
	63. 32 :			104.			
D:	:						
	SQUARE RROR	4. 94	11. 47	6. 89			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.15 INDICATING EFFECT

OF FREQUENCY

MATERIAL: ALLOY ST CONDITION: 1700F A 2+2HR ENVIRONMENT: R.T.	-BQ AT 975	•	AT 140F,	1000F	eper mily la _{ter} case often l _{ater} and also	Tanga Mililip Jalies Sanga pinin dalah Sanga Pri		
DELTA K (KSI*IN**1/2)	: :	DA/DN (10**-6 IN. /CYCLE)						
(V31±1M±±1\5)	: A		В		С		D	
	: F(HZ)=	0. 10	F(HZ)=	1.00	F(HZ)=	3. 00		
DELTA K B: MIN C: D:	: : : :							
A: DELTA K B: MAX C: D:	: : : :							
ROOT MEAN SQUARE PERCENT ERROR	0. 00		0. 00		0. 00			
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	8 25 0							

C: 37

FATIQUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.16 INDICATING EFFECT

			P PREGOENCY					
CONDITIO	N: 1700F 4 2+2HR	EEL DAAC A-BQ AT 975F,0Q .DIST H20	AT 140F, 1000F					
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)					
		. A	В	С	D			
		: F(HZ)= 1.00) F(HZ)= 3.00					
	A: 9.81	: 2. 20						
DELTA K			1. 32					
MIN C: D:		:						
	10. 00	: 2. 33	1. 43					
	13. 00	: 2. 33 : 4. 71	4. 18					
	16.00	7. 69	6. 44					
	20. 00	: 12.2	8. 56					
		: 18.4	11.8					
	30.00	: 24. 9	18. 6					
	A: 33.23	: 29. 1						
	B: 30.17		18. 9					
MAX	_	:						
	D:	:						
PERCENT	ERROR	16. 48	19. 47					
LIFE	0. 0-0.	5						
	ON 0. 5-0.							
	0. 8 -1.		1					
SUMMAR (NP/NA	Y 1. 25-2.) >2.		1					
(IAL / IAN	, /2.	U 1						

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.17 INDICATING EFFECT

DELTA K								
(KSI*IN**1/2)	:	A		В		c		n
	:	F(HZ)=	0. 10	F(HZ)=	1.00	F(HZ)=	3. 00	
A:	:			2.1	_			
DELTA K B: 10.80 MIN C: 10.58 D:				2. 1	4	1. 2	: 0	
	13. 00 : 16. 00 :			3. 0. 4. 9	2	2. 2 3. 9	23	
	20.00 : 25.00 :			15. 9		6. 7 12. 0	•	
	30.00 : 35.00 :			23. 4 29. 2		21. 0	•	
A: DELTA K B:				31. 7				
MAX C: D:				U 1.,		31. 9	•	
ROOT MEAN S	GUARE ROR	0. 00		15. 29		13. 65		

Figure 6.4.3.17

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.18 INDICATING EFFECT

MATERIAL: ALLOY STEEL D6AC CONDITION: 1700F A-BQ AT 975F, DQ AT 140F, 1000F 2+2HR								
ENVIRONMENT		DIST H20						
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)						
		A	В	С	D			
	:	F(HZ)= 0.10) F(HZ)= 1.00	F(HZ)= 3.00				
		5. 69						
DELTA K B:			2. 35					
MIN C:				2. 81				
D:	:							
	13.00 :	8. 66	3. 25	3. 40				
		16. 8		4. 97				
			10. 7	5. 88				
	25.00 :	41.1		7. 59				
		71. 7		12. 6				
	35.00 :	109.	26. i					
	40.00 :							
A:	46 . 20 :	151.						
DELTA K B:	39 . 73 :		32. 9					
MAX C:	30.48 :			13. 5				
D:	:							
ROOT MEAN S		16. 63	15. 16	34. 97	~			
PREDICTION	0, 8-1, 25 1, 25-2, 0	1	1	1				

Figure 6.4.3.18

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.19 INDICATING EFFECT

		EEL D6AC -BG AT 975F,	DQ AT 140F, 1000F
DELTA (KSI*IN*		:	DA/DN (10**-6 IN./CYCLE)
(1/01 = 1/4=	~1,2,	: A	B C D
		: E= R. T. : DIST H20	
DELTA K B: MIN C: D:	10. 29	: 2.39 : :	
	13. 00 16. 00 20. 00 25. 00 30. 00 35. 00	: 7. 10 : 11. 4 : 19. 0 : 30. 5	
A: DELTA K B: MAX C: D:		: 64 . 3 : : :	
ROOT MEAN PERCENT E	_	19. 29	
PREDICTION	0.8-1.	8 25 1 0	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.20 INDICATING EFFECT

OF FREQUENCY

	1700F A-E 2+2HR		AT 140F, 1000	F	
DELTA			DA/DN (10**-	6 IN. /CYCLE)	
(4214104)	*1/2) : :	A	B	С	D
	:	F(HZ)= 0.10	F(HZ)= 1.00	F(HZ)= 3.00	
DELTA K B: MIN C: D:	13. 93 : 18. 38 :	3. 18	3. 08	6 . 58	
	16.00 : 20.00 : 25.00 : 30.00 : 35.00 :		14. 3		
DELTA K B: MAX C: D:		140.	31. 4	20. 9	
ROOT MEAN S		13. 57	11. 95	13. 72	
PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25 1. 25-2. 0 >2. 0	5 2	2	1	ate tau and tau tau and tau a

• . .

6.4-67

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.4.3.21 INDICATING EFFECT

OF FREQUENCY

	1700F A-1 2+2HR	JP-4 FUEL	AT 140F, 1000F		
	K :		DA/DN (10**~6		
(K21*1N*	*1/2) : :	A	В	С	D
	:	F(HZ)= 0.10	F(HZ)= 1.00	F(HZ)= 3.00	
A:	11.55 :	1. 25			
DELTA K B:			7. 19		
	18.87 :			3. 10	
D:	:				
	:				
	13.00 :				
	16.00:	6. 78 14. 8	0 27	3. 73	
		26. 1	8. 37 12. 0	3. 73 7. 32	
	30 . 00 :		12. 0 15. 7	7. 3 <u>2</u> 12. 1	
	35.00:	48. 2	19. B	17. 9	
	40.00 :		24. 5	24. 5	
		87. 6	37. 4	38. 7	
	60.00 :	5 , . 5	3 7. 4	53. 0	
	70.00 :			66. 0	
A:	58. 94 :	123.			
DELTA K B:			41.1		
	72. 93 :			69. 5	
D:	:				
PERCENT E	RROR		6. 86	17. 19	
PREDICTION RATIO SUMMARY	0. 0~0. 5	5 2	1	i	

TABLE 6.4.3.22

	.	190	. 901	, KB3	183
	E REFER	4000 1965 63061	10000 1965 63061	5000 1968 72283	5000 1968 72283
	DATE	0 196	0 196	0 196	196
	TEST TIME (MIN)	4 00	1000	06	9
		^		. ^	^
	BTAN DEV		l !	 	
	HEAN 1		1 1 1	, 	
	(N)	7.00	45, 20	33.00	33. 00*
	K (1)		ì	ı	
	CRACK LENGTH K(Q) K(ISCC) MEAN (IN) (KSI*8GRI IN)	0.165 CANT* 0.100 61.70			
(23	CRACK LENGTH (IN) (001	. 00	;	
K(ISCC)	8954	o o	6	ı i t	i
	WIDTH THICK DESIGN (IN) (IN) (**SG)	CANT.	0.165 CANT* 0.100		CN
	ICK DIN (165	169	0.050 CNT	0. 050 CNT
D6AC	PECI		4	1	
90	RIDIH (NI)	0. 750	0. 750	, g	2. 000
<u>.</u>	300			1 1	
ALLOY STFEI	ENT 1	TER	TER	TER	
ALLO	ENVIRONMENT	7.	' } '	; ≩ . ⊬	NACL
	E EN	era (S S
	YIELD BTR (KSI)	241. 5 DIST. WATER		224, 7 DIST. WATER	224. 7 3N NACL
	SPEC	iT		ר י י	1
	1691 SPEC 16MP OR (F)	0 16 R.T. L-T	۱ <u>ب</u>	0.08 R.T. L-T	0.08 R.T. L-T
	IN IN	16	1 9	. B	80
	FORM THICK (IN)	0	1	1 0 1	Ö
	FORM	ø			ຫ
		650F	950F	. 8 	N E
	NOT !	8	2 2	25H	25M 1+1
	CONIDITION	1550F AG 650F 4HR	1550F AQ 950F	1550F 25MIN 00 S 830F 1+1 HR	1550F 25MIN 00 S 850F 1+1 HR

*NOTE-DATA MITCH DO NOT MEET MINIMUM SPECIMEN THICKNESS REGULMEMENTS OF 2. SKKISCC/TYS) SQUARED

TABLE 6.5.1.1

PROPERTY RESERVED WINNESSEE GENERAL MESSESSEE TANDESSEE THE

MEAN PLANE STRAIN FRACTURE TOUGHNESS DATA OF ALLOY STEEL HP 9-4-, 20 AT ROOM TEMPERATURE

(NUMBER OF SPECIFENS)		1				1	f	1	1 1				!
	PLAIE	1	-		EDBOING	1	136.3 ±16.8 (2)	117.7 ± 1.9 (3)	132.3 ± 6.6 (7)	111.7 ± 2.0 (2)		109.7 ± 4.7 (3)	!
HEAN KIC + STANDARD (KBI BORT(IN)) DEVIATION		ij	121. 5 ±29. 0 (2)	123.5 ±12.0 (2)	83	1-1	150.6 ± 4.5 (2)	120.6 ± 7.3 (12)	140.7 ± 4.5 (10)	1	133. 2 ± 3. 9 (5)	134. 8 ±12. 3 (5)	142.8 ±10.7 (6)
CONDITIBN/HT		CONDITION/HT	1650F 1-24R AC 1525F 1-24R 00, -100F 24R, 1025F 4-64R	1650F, 1-21ff, AC 1-27ff, AC, -100F 1. 34ff, 1023F: 4 HR, 1060F, 64ff		COND1*10N/HT		ANNEALED	HEAT TREATED	1525F 09,-100F 1HR, 1065F 4+4HR	1650F 1-2 HR AC, 1525F 1-2 HR 00, -100F 24R, 1050F 4-64R	1650F 1-24R AC, 1525F 1-2 HR AC, -100F 1-24R, 1025F 4HR	1650F 1-2HR AC 1529F 1-2HR 100, -100F 2HR,

enskink forbete beforedingen beste beste beste beste beste beste beste beste beste beste beste beste beste bes

TABLE 6.5.1.1 (Con't)

MEAN PLANE STRAIN FRACTURE TOUGHESS DATA OF ALLOY STEEL HP 9-4-. 20 AT ROOM TEMPERATURE

SPECINENS)		1	!		1		
JAND (NUMBER OF BPECIMENS)	ECRETNE	ជ	125.3 ± 1.8 (6)				
MEAN MIC ± BTANDARD (MB] BGRT(IN)) DEVIATION		ב	129. 1 ± 9. 7 (8)	94.4 ± 4.4 (3)	125, 5 ± 3, 5 (2)	128. 5 ± 0. 7 (2)	140.5 ± 0.7 (2)
CONDITION/HT		CONDITION/HT	1650F 1-2HR AC 1929F 1-2HR 00,-100F 2HR, 1029F 4-6HR	1650F 2HR AC. 1525F 2HR 00. 1000F 2+2HR AC	1650F, 1-24R, AC 1. 34R DG, 1029F 124R	1650F, 4. 3HR, AC TO 900F, HELD O. 3HR, AC, -100F 1. 3HR, 1025F 8 .HR, A-80	1700F 4. SHR, AC 1700F 1. SHR, AC -100F 1. SHR, 1025F 4HRB

TABLE 6.5.1.2

	FATIQUE CRACI	4 GROWTH RAT	E AT DEFIN	FATIQUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR	TRESS-INTENB	ITY FACTOR			
			¥rrov :	ALLOY STEEL HP9-4 20					
TEST CONDITIONS									
SPECIMEN ORIENTATION:	7			ENVIRONMENT	L. H. A. AT R. T.				
CONDITION/HT	PRODUCT	STRESS	FREG. (HZ)	DELTA K	FAT 10	FATIOUE CRACK ORDWTH RATES	COUTH RATE	99.	
				LEVELS: (KSI SORT(IN))	υ υ	10	50	8	001
WELDED	WELDMENT	80.0	1. 00				0. 42	22.2	
WELDED	WELDMENT	0.30	6 . 00				1. 02	30. 4	
HELDED	WELDMENT	o. 85	9 9				5. 25	54. 6	
								[]]]]	
1525F 2HRS DQ. -100F 2HRS, 1025F 4HRS	PLATE	8 0 °°				0.83	5. 61	31.0	
1525F 2HRS DQ, -100F 2HRS, 1025F 4HRS	PLATE	90 .0	6 . 00				9		
1525F 2HRS DG. -100F 2HRS, 1025F 4HRS	BILLET	0.05	1. 00				9. 40	35. 1	
1525F 2HRS DG. -100F 2HRS, 1025F 4HRS	BILLET	90.0	0 10				4. 58	34.3	
1925F 2HRS D0. -100F 2HRS, 1025F 4HRS	BILLET	80 0	00 1				4.96	4 0. 9	
1323F 2HRS 00, -100F 2HRS, 1023F 4HRS	וורפּג	8 0 °	8				4		

TABLE 6.5.1.2 (Con't)

FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR ALLOY STEEL HP9-4- 20

TEST CONDITIONS

SPECTHEN

CH.A

ORIENTATION L-T

AT R.T.

	PRODUCT	STRESS	FREG.	; ; i		ATTOUE	FATTOUE CRACK GROWTH RATES	WIH RAT	ES	
			Ç.	DELTA K LEVELS: (KSI SGRT(IN))	ιο Gi	I S	(MICRO IN/CYCLE)	(CLE)	20	8
1525F 2HRS 00, F-100F 2HRS, 1025F 4HRS	BILLET	80 0	9 00				89 0	₩ 4	30. 6	
1525F 2HRS D0, -100F 2HRS, 1025F 4HRS	BILLET	0. 0B	0 ₀ 9				0 57	5.85	37. 4	
1525F 2HRS DG, -100F 2HRS, 1025F 4HRS	BILLET	80 °C	9 .00					4. 57	37. 6	253
1525F 2HRS DQ, -100F 2HRS, 1025F 4HRS	BILLET	80 °0	00 .6			0.13	0 77	5. 77		
1525F 2HRS 00, -100F 2HRS, 1025F 4HRS	BILLET	0.30	00 9				0 77	6. 11		
1525F 2HRS 0g, -100F 2HRS, 1025F 4HRS	BILLET	0. 50	9 . 00				0 81			
1525F 2HRS 0G, B -100F 2HRS, 1025F 4HRS	BILLET	0. 70	9 00				44	7. 7B		

شده د الاستان المسل

TABLE 6.5.1.3

FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR ALLUY STEEL HP9-4-. 20

TEST CONDITIONS

SPECIMEN ORIENTATION

8 \$ • ያ FATIQUE CRACK OROWTH RATES (MICRO IN/CYCLE) 9. 73 **6**. 63 6. 26 7.39 7.69 8.31 8 932 o. **62** 96 0 1. 52 0 ENVIRONMENT: 100% HUM AT R. T. n ni DELTA K LEVELS: (KSI SORT(IN)) 0 10 8 1.00 FREG. 8 8 90 STRESS 80 8 0 80.0 800 30 0 20 PRODUCT FORM BILLET BILLET BILLET PLATE BILLET BILLET ני 1529F 2HRS 00, -100F 2HRS, 1025F 4HRS 1525F 2HR6 00. -100F 2HR8, 1025F 4HR8 1525F 2HRS DG, -100F 2HRS, 1025F AHRS 1525F 24RS DB, -100F 24RS, 1025F 44RS 1525F 2MRS 00, -100F 2MRS, 1025F 4MRS 1525F 2HRS 00, -100F 2HRS, 1025F 4HRS CONDITION/HT

TABLE 6.5.1.4

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL HP9-4- 20

ران الا
Ö
9
9
J
Ø
Ξ

	110N L-1
SPECIMEN	OR LENTATIO

ENVIRONMENT

	100		
93	20		
FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE)	02	6.94	5. 26.
RACK GR	21	 	4 0
ATIQUE CRACK OF	(C)		
	() ()		
DEL TA K	LEVELS:		
FREG (HZ)		1.00	1 00
STRESS		80 · 0	8 0 °°
PRODUCT		PLATE	BILLET
CONDITION/HT		1525F 2HRS DG, -100F 2HRS, 1025F 4HRS	1525F 2HRS 00, 100F 2HRS, 1025F 4HRS

TABLE 6.5.1.5
FATIOUE CRACK ORDWIH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR
ALLOY STEEL HP9-4-:20

TEST CONDITIONS										
SPECIMEN DRIENTATION	7-F	,		ENVIRONMENT	L. H. A AT - 65 F	L.		•		
CONDITION/HT	PRODUCT FORM	STRESS	FREG. (HZ)	DELTA K	ī.	ATIGUE C	RACK GRE	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	ţo,	
				(KSI SORT(IN))	is ci	īD.	10	8	20	8
1525F 2PRS 00, -100F 2PRS, 1025F 4HRS	PLATE	0.08	1 00					2. 43	29.7	
1525F 2HRS OG, -100F 2LHRS, 1025F 4HRS	PLATE	0.08	1 00				029	4 4 4		
1525F 2HRS 00, -100F 2HRS, 1025F 4HRS	BILLET	80 0	1 00					3.33	27.8	
						ļ				

TABLE 6.5.1.6 PRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTER

			50 10		29. 9	29. 7	
~			FATIGUE CRACK GROWTH RATES (HICRO IN/CYCLE) 5 10 20	۸ 85	15 O O	.v	
ITY FACTO			UE CRACK GROWTH (HICRO IN/CYCLE)				
SS-INTENS		L H. A. AT R T	FAT16				
THE STRE	Q V	ENVIRONMENT L					
D LEVELS OF	ALLUY SIEEL MP7-4-, ZO	ENVIR	DELTA K LEVELS: (KSI SQRT(IN))				
E AT DEFINE	ALLUY S		FREG (HZ)	00 9	1 00	1 00	
GROWTH RATE			STRESS	0 · 08	80 c	0.05	
FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR		T-L	PRODUCT FORM	ВІСТЕТ	PLATE	BILLET	
		SPECIMEN OF IENTATION	CONDITION/HT	1525F 2HRS AC. -100F 2HRS, 1025F 4HRS	1525F 2HRS DQ, -100F 2HRS, 1025F 4HR3	1525F 2HRS 00, -100F 2HRS, 1025F 4HRS	
FAT		AT ION		1525F 2HRS AC, -100F 2HRS, 1025F 4HRS		1525F 2HRS 00, -100F 2HRS, 1025F 4HRS	

TABLE 6.5.2.1

OND 1 1 1 ON	·	CT THICK (IN)	TEST TEMP (F)	SPECIMEN	YIELD STRENGTH (KSI)	WIDTH (IN)	SPECIMEN- THICK D (IN)	DESIGN	CRACK LENGTH (IN)	2. 5* (K(IC)/TYS)**? (IN)	K(1C) (KSI#5G	_	STAN DEV D	DATE	REFER
	1 : ! <u>!s</u> ! ,		} }		196.5 196.5	0.0	88	55		1. 53	153.80 147.39 15	-	4 1 B		HA005 HA005
		n an	⊢ œ	7	198. 0 198. 0	0.0	2.00	55			B; 4;	3	16.8		< <
ANNEALED	1 1 1 L .) 888888 ศิทิศิทิศิทิ	! ⊢: ! ac:	, ;	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1 1 20 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2	555555	1 4 0 0 0 0 0 4 4 4 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1115. 40 1120. 00 1128. 39 117. 69 119. 19	i :	; 1 1	1977 1977 1977 1977 1977 1977 1977 1977	1
		38888 						555555	1. 037 1. 037 2. 033 2. 013	0.00.1.1.0.0.1.1.1.0.0.1.1.1.1.1.1.1.1.	288888	120. 6/	6.7		NC001 NC001 NC001 NC001
NNEALED	L.	888	r or	7	190. 0 190. 0 190. 0	000	ni ni ni	555	Ď∺Ñ	0.00	119. 30 118. 30 115. 60 117.	7.7/	÷ (929	NC001 NC001 NC001
HEAT TREATED	; (LL 	।	' ⊬ ' &	; 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 44 W W W W 4 4 4 W W W W W W W W W W W		5555555555	1	 - 	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		। i m i प ्रे	1973 1973 1973 1973 1973 1973 1973 1973	69879 69879 696633 69653 69633 69633 69633 69633 69633
HEAT TREATED	ır		₽	7-1			1. 499	; 5		1. 46	8) :		83837

TABLE 6.5.2.1 (Con't) STFEL HP 9-4-20

					ALLOY	STFEL	4 #	9-4- 20	K(1C)	Ĝ					
CONDITION	FORM	DDUCT THICK (IN)	TEST TEMP (F)	SPECIMENORIENT	VIELD STRENGTH (KSI)	S	SPECIMEN- THICK D (IN)	ESION	CRACK LENGTH (IN)	2. 5* (K(IC)/TYS)**2 (IN)	- 1	~ +	BTAN DEV	DATE	REFER
EAT TREATED	ıı	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	⊢ α'		187. 0 187. 0 190. 0 196. 0 198. 0	4 4 4 4 6 6 8 8 8 8 8	88448	555555	+ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1. 22 1. 36 1. 36 1. 07 1. 07	131.0 131.0 140.0 131.0 123.0	132. 3/	40 40	1973 1973 1973 1973 1973	
325F 00,-100F HR,1065F) 1 LL 1	1 4 4	<u>۔</u>	• •	179.0	1 BB 1	. 44	; 55 ·	1 0000 1 0101	1 00 43	, 111 113	111.7/	1 O	1974	90012
550F 1-2 HR C. 1529F 1-2 R 00, -100F HR, 1050F	i i i i i i i i i i i i i i i i i i i		6 €	· -		. நின்னிறின்	66666 ਜ਼ਿਜ਼ਿਸ਼ਿਸ਼	55555	1 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25		139.00 132.00 129.00 131.00	133. 2/	i • i		44444
T	: R : 7 : 7 : 1	3.70 100F 1-21	- 69 HR, 102	L-T 1	190.0	, 8	1 00 1 0i 1	5		i i i 5	163.0	 	 	1974	- 1 0
1650F 1-2HR AC, 1525F 1-2 HR AC, -100F 1-2HR, 1025F 4HR	L.	4.4.7 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.	κ	7	190.0 190.0 190.0 190.0	5. 997 5. 999 5. 999 6. 000	1. 752 1. 756 1. 995 1. 991 1. 991	55555	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	121. 90 147. 90 141. 90	134. 8/	<u>u</u> m	1973 1973 1973 1973	83836 83836 83836 83836 83836
1650F 1-2HR F 3,70 - 65 AC.1525F 1-2 HR AC100F 1-2HR,102	F AC 1	3.70 . 100F 1-21	- 65 HR, 102	T-L 3F 4HR	190.0	9.000	2. 000	5	!	1. 21	132.00			1974	90011
1650F 1-2HR AC,1525F 1-2 HR AC,-100F 1-2HR, 1025F 4HR	F.	4.4.7. 8.88	5. ⊢	7-	190.0 190.0 190.0	6. 000 5. 999 6. 005	1. 757 1. 755 1. 992	555	3. 077 3. 071 3. 006	0.00 0.78 0.92	108.00 106.00 115.00	109. 7/	4.7	1973 1973 1973	83836 83836 83836

TABLE 6.5.2.1 (Con't)

	REFER 1	90011 90011 90011 90011	90011 84306	90011 90011 90011	82836	85836 85836 85836 85836 85836 90011	90011	84306 84306 94306 90011 90011 90011	82836
	DATE		1974	1974	1973	1973 1973 1973 1973 1973	1974	1972 1972 1974 1974 1974 1974	1973
	STAN	b. 01	29.0			142. 8/ 10. 7		6	
	HEAN RT IN	8	121. 5/	97.3/		142.8		129. 1/	
	K(IC) (KBI*80	107.00 105.00 90.00 109.00 91.00	101. 00 142. 00	96.00 104.00 92.00	127.00	140.00 136.00 136.00 138.00 164.00	139, 00	142.00 1335.00 141.00 126.00 123.00 1115.00	121. 00
G	2. 5+ (K(IC)/TY8)++2 (IN)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 71 1. 53	0. 60 0. 71 0. 36	1. 12	11.1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1.34	0.01.01.01.00.00.00.00.00.00.00.00.00.00	1.01
K(1C)	CRACK LENGTH (IN)		2. 903		2.991	2. 2. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		1.970	2. 983
HP 9-4-, 20	DESIGN	10000	55	555	C1	555555	5	55555555	5
£	SPECIMEN- THICK D (IN)	88888	u u 000 000	000 000 010101	1. 507	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1, 740
STEEL	B-HTOTH (NI)	44444	6. 000 6. 000	6. 000 6. 000 6. 000	3, 997	6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 . 000	4 L 4 L L L L L L L L L L L L L L L L L	000 9
ALLOY STEEL	VIELD BTRENGTH (KSI)	1950 1950 1950 1950 1950	189. 0 190. 0	195.0 195.0 195.0	190.0	186. 0 186. 0 186. 0 186. 0 186. 0	190.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	190.0
	SPECIMEN	L-1	7	Ĭ	55 L-F 4-6HR	7	T. L-T 4-6HR	7	82 L-T r 4-6HR
	TEST TEMP (F)	•	£. ⊢.	- 65	- 65 25F 4-	æ. ⊬.	R. T. 30F 4-	i. α	82 25f 4-
	DUCT THICK (IN)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2. 50 2. 50 4-6HR	0 0 0 0 0 0 0 0 0	3,70 - (2HR, 1025F	000000	3.00 R. 2HR, 1000F	4444444	4.00 2HR, 10
	. –	i 0.		a.	F -100F	u.	F 100F	L.	F -100F
	CONDITION	1-2HR AC 1-2HR 30F 2HR, 4-6HR	1650F 1-2HR AC P 1525F 1-2HR 00100F 2HR, 1025F	1625F 1-2HR AC 1525F 1-2HR 00100F 2HR, 1025F 4-6HR	: 1-2HR AC F : 1-2HR QG, -100F	1650F 1-2HR AC 1525F 1-2HR 00, -100F 2HR, 1025F 4-6HR	1-2HR AC F 1-2HR DB, -100F	1650F 1-2HR AC 1525F 1-2HR 00, -100F 2HR, 1025F 4-6HR	1-2HR AC F 4.00
	CONDI	1650F 1525F 00, -1 1025F	1650F 1525F 001	1650F 1525F 001	1650F 1525F	1650F 1525F 001 1025F	1650F 1525F	1650f 1525f 00, -1 1023f	1650F 1525F

TABLE 6.5.2.1 (Con't)

					ALLOY STEEL	9TEEL	÷	HP 9-4-, 20	K(10)	6					
CONDITION	FORM	FORM THICK	TEST (TEMP (F)	SPECIMEN ORIENT	VIELD STRENOTH (KSI)	HIDIH	SPECIMEN- THICK D (IN)	DESIGN	CRACK LENGTH ((IN)	2. 5* (K(IC)/TY8)**2 (IN)	K(IC) MEAN (KBI+SGRT IN)	MEAN HEAN HEAN HET IN)	BTAN	DATE	REFER
550F 1-2HR AC 525F 1-2HR DQ	F -100F	4.00 2HR, 10	82 25F 4-	L-T 6HR	190.0	8	1. 743	5	2. 971	1. 19	131. 00	126. 0/	7.1	1973	92868
1650F 1-2HR AC 1523F 1-2HR 00,-100F 2HR, 1023F 4-6HR	u.	4 4 4 4	E	7-	190.0 190.0 190.0	6. 000 6. 002 6. 003	2. 2. 2. 2. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	5555	2. 977 2. 963 2. 961 2. 959	1, 11 1, 03 1, 03	126.00 127.00 122.00 126.00	125. 3/	(i (i	1973 1973 1973 1973	85836 85836 85836 85836
1650F 1-2HR AC F 3.00 R.T. 1525F 1-2HR 00,-100F 2HR, 1000F 4-	F -100F	3.00 2HR, 10	R. T.	T-L -6HR	190.0	6 . 000	ž. 000	5	1	0. 72	102. 00			1974	90011
1650F 1-2HR AC F 4.04 1525F 1-2HR 4.04 00,-100F 2HR, 1029F 4-6HR	F 1025F 4	4. 00 4. 00 4-6HR	œ.	7	190.0	6. 006 4. 013	2. 006 1. 506	55	2. 970	1. 10	126.00	125. 5/	0.7	1973	85836 84306
1650F 1-2HR AC F 4.00 B2 1525F 1-2HR DB, -100F 2HR, 1025F 4-	F -100F	4.00 2HR, 10	82 25F 4-	7-L -6HR	185.0	6. 001	1. 752	5	3. 000	0.93	114. 00			1973	82836
1525F 1-2HR AC F 1525F 1-2HR 0G100F 2HR, 1025F		4.00 4.00 4-6HR	E	60 I	190.0	9 00 E	1. 630	55	1. 484	6.00 H	116.00	113.0/	+ 1	1973	85836 85836
OF 1-2HR, AC 5F 1-2HR, OG	F -100F	4.00 2HR, 10		L-T ₩	186. 0	8	2.01	C	96.	1. 32	8			1973	
1650F 1-2HR, AC F 1, 70 R.T. 1525F 1-2HR, DB, -100F 2HR, 1050F 4-6HR	F -100F	1, 70 2HR, 105	R. T. 30F 4-6	7-L	190.0	5.260	1. 501	C !	2. 628	1 43 1 4 1	143.00	1	1 1	1973	86428
550F 2HR AC, 525F 2HR DG, 500F 2+2HR AC	(L I	4 4 4 1	-	[-1	186 186 186	0.0.0.	111111111111111111111111111111111111111	555	1. 171 1. 136 1. 146	63	92.80 99.40 91.10	94.4/	₹ 1	1974	98136 88136 88136
,50F, 1-2HR, AC	P 1. 5HR,	2.50 1025F 4	R T. HR, 106	T	189. 0	9	5 6	5	1	1. 22	132. 00			1974	1100

TABLE 6.5.2.1 (Con't)

	REFER		011	90011	22	1 1 9E868 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28
		\$	1974 90011	90	6 6 6 6 6 6		
	₽¥ .	l	197	1974	161	761	191
	K(IC) BTAN K(IC) MEAN DEV (KBI=8GRT IN)	115. 00 123. 5/ 12.	116.00	128. 00	123.00 128.00 125.5/ 3.	129, 00 129, 00 129, 00	141. 00 140. 00 140. 57 0.
2	2. 50 (K(IC)/TYB)**2 (IN)	6.0	0. 97	1. 15	1. 10	1	
7110	CRACK LENGTH (IN)				8 & 10 in	1 050 H	6 E
09 t t t	DESIGN	5	CT.	c _t	55	55	55
è	HIDTH THICK DESIGN	8	000	000 000	8 6	1. 609 1. 390	1.39
פוננו	WIDIN (NI)	9	9.000	9.000	6. 006 6. 007	1 49 1 1 400 1 1 400 1	44 88
ALLUY SIEEL	YIELD STRENOTH (KSI)	189.0	186. 0	189. 0	185. 0 185. 0	1 89.0 1 89.0 1 9.0 1 9.0	183. 0
	SPECIMEN ORIENT	ı	# T	T-L OF 6HR		E -1	۲
	TEBT TEMP (F)	R. T.		R. T.	œ.	R. T. B	€ .
	FORM THICK TEMP (IN) (F)	2. 50 1023F 4	2. 50 R. T. R. 1025-1075F 4	2.30	88	4.00 4.00 1023F B	4 4 £
	FORM	1. 3HR,	P. SHR.	1. SHR,	u.	1.948.	7 53F 4H
	CONDITION		1650F, 1-2HR, AC P 2, 30 R, T, 1-2HR, AC, -130F I, 5HR, 1025-1073F A	1650F, 1-2HR, AC P 2. 50 R.T. T-L 1-2HR, AC, -100F 1. 5HR, 1025F 4HR, 1060F 6HR	1650F, 1-2HR, AC 1. 5HR DG, 1025F 12HR	1650F, 4. 5HR, AC F 4. 00 R. T. TO 900F, HELD 4. 00 B. T. O 5HR, AC, -100F 1. 5HR, 1023F BHR, A-	1700F 4, 5HR, AC F 4, 1700F 1, 5HR, AC 4, -100F 1, 5HR, 1025F 4HRS

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.1 INDICATING EFFECT

MATERIAL: ALLOY S'CONDITION:	TEEL HP9-4-	. 20		
DELTA K		DA/DN (10**-	-6 IN. /CYCLE)	
(KSI*IN**1/2)	: : A	В	С	D
	: E= R.T. :LAB AIR 10HZ			
A: 12.17 DELTA K B: 21.23 MIN C: D:	846 :	5. 00		
13.00 16.00 20.00 25.00 30.00 35.00 40.00 50.00 60.00 70.00	1. 93 3. 58 6. 40 10. 1 14. 6 19. 9 33. 2 50. 0	6. 42 11. 8 19. 9 26. 7 36. 6 52. 3 89. 4 133.		
A: 66.04 DELTA K B: 81.85 MAX C: D:	62.1	137.		
ROOT MEAN SQUARE PERCENT ERROR				
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	8 25 1 0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.2 INDICATING EFFECT

MATERIAL: CONDITION:	ALLOY ST	EEL HP9-4-	. 20		
DELTA *KSI*IN			DA/DN (10**-6	IN. /CYCLE)	
(1/01 1/4.	. 1, 2,	. A	В	С	Ð
	:	E= R.T. :LAB AIR .1-20HZ	SIM SEA WATER		
DELTA K B: MIN C: D:	21.08	. 0938	2. 87		
	9.00 10.00 13.00 16.00 20.00 25.00 30.00 35.00 40.00 50.00 60.00 70.00 90.00 130.00	. 180 . 435 . 833 1. 61 3. 01 4. 73 7. 41 10. 5 18. 9 30. 6 46. 3 66. 8 93. 0 126. 278.	4. 77 8. 01 12. 2 17. 4 31. 2 50. 0 74. 4 105. 144. 191. 395. 727.		
DELTA K B: MAX C: D:		1026.	12 9 9.		
ROOT MEAN ! PERCENT EI		13. 48	22. 71		
PREDICTION	0.8-1.2	3 25)			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.3 INDICATING EFFECT

DELTA (KSI*IN*	K ¥1/2)	:	DA/DN (10**-6	IN. /CYCLE)	
(101 - 114-	-1/2/	. A	B	С	D
		: E= R.T. :LAB AIR .1-20HZ	E= R.T. SIM SEA WATER .1-15HZ		
DELTA K B: MIN C: D:	18. 18	. 131 :	1. 57		
	9. 00 10. 00 13. 00 16. 00	: . 242 : . 751			
		: 2. 99 : 5. 31 : 8. 25	2. 31 4. 97 8. 36 12. 4		
	40. 00 50. 00 60. 00	: 16. 7 : 30. 7	17. 2 29. 9 49. 4 80. 3		
	80. 00 90. 00	: 165. : 285. : 490.	131. 213. 350. 1599.		
DELTA K B: MAX C: D:		1437.	5368 .		
ROOT MEAN ! PERCENT EI		14. 01	20. 32		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	O. B-1.	8 25 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.4 INDICATING EFFECT

DELTA			DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN*	: :	A	B	С	D
	; ;	R=+0. 30	R=+0. 50		
	15. 75 :	. 287	202		
DELTA K B: MIN C: D:	11. 48 : :		. 502		
	13.00 :		. 9 9 2		
	16.00 :	. 314	2. 48		
	20. 00 : 25. 00 :	1. 02 2. 82	5. 25 9. 46		
	30.00 :		14. 4		
	35 . 00 :	10. 1	20. 6		
	40.00 :	15. 6	28. 6		
	50 . 00 : 60 . 00 :	30. 4 50. 4	54. 6		
	62. 95 :	5 7. 3			
DELTA K B:	51.28 :		59 . 4		
MAX C: D:	:				
U:	:				
ROOT MEAN S PERCENT EF		6. 61	6. 65		
	0.0-0.5				
PREDICTION	0. 5-0. 8 0. 8-1. 25	1	1		
SUMMARY		ı	1		
_	>2.0				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.5 INDICATING EFFECT

DELTA M	· · ·		DA/DN (10#	*-6 IN./CYCLE)	
(KSI*IN**1			DHYDIA (10x	TH. /CICLE/	
	:	A	B	С	D
	:	R=+0. 08			
	18.87 :	. 365			
DELTA K B: MIN C:	:				
D:	:				
	:	400			
	20.00 : 25.00 :				
	30.00 :	4. 62			
	35.00 :				
	40. 00 : 50. 00 :				
	00.00	in the . the			
A:	54. 51 :	28. 3			
DELTA K B: MAX C:	:				
D:	:				
·	:				
OOT MEAN SG		7. 92			
PERCENT ERR					
LIFE					
REDICTION	0. 5~0. 8 0. 8~1. 25	1			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.6 INDICATING EFFECT

CONDITION: 1525		2HRS, 1025F 4HRS	, and and the case and the term and the case	
DELTA K (KSI*IN**1/2)		DA/DN (10**-6	IN. /CYCLE)	
/4/21 - 1/4 1/5/	A	В	С	D
	: : E= R. T. : L. H. A. , 6HZ	E= R. T. 100% HUM, 1HZ		
A: 12. DELTA K B: 10. MIN C: D:	74 : 1.41 61 : :	. 80 9		
16. 20. 25. 30. 35. 40.	00 : 1.48 00 : 2.49 00 : 4.23 00 : 7.09 00 : 10.8 00 : 15.3 00 : 20.8	1. 72 3. 26 5. 77 9. 51 14. 0 19. 5 26. 3 46. 4		
A: 48. DELTA K B: 54. MAX C: D:	33 : 32.4 53 : : :	59、4		
PERCENT ERROR		6. 66		
LIFE 0.0 PREDICTION 0.5 RATIO 0.6 SUMMARY 1.25 (NP/NA)	0-0.5 6-0.8 8-1.25 1 6-2.0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.7 INDICATING EFFECT

	525F 2HR		20 HRS, 1025F 4HRS				
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)					
(1/31 - 1/4 - 1	:	A	В	С	D		
	:	R=+0. 08					
A: DELTA K B: MIN C: D:	11.94 :	1. 15					
	30.00 :	1. 52 2. 77 4. 85 8. 01 11. 8 16. 4 21. 9					
DELTA K B: MAX C: D:	49. 98 : : : :	36. 8					
ROOT MEAN SQUARE PERCENT ERROR		3. 60					
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 SUMMARY 1.25-2.0 (NP/NA) >2.0		1					

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.8 INDICATING EFFECT

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
(11.01 111	:	A	B	С	D		
	:	R=+0. 08					
DELTA K B: MIN C: D:	14. 91 : : :	1. 68					
	20.00 : 25.00 : 30.00 : 35.00 :	2. 18 3. 79 6. 04 8. 45 12. 2 18. 9					
A: DELTA K B: MAX C: D:	46. 67 : : : :	37. 7					
ROOT MEAN SQUARE PERCENT ERROR			~~				
LIFE PREDICTION	0. 8-1. 25						

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.9 INDICATING EFFECT

DELTA K	:	DA/DN (10**-6 IN./CYCLE)				
(KSI*IN**1/2	2) : :	A	В	С	D	
	: :	E= R. T. L. H. A. 6HZ	E= R.T. DIST. H20 O.1HZ			
DELTA K B: 12 MIN C: D:		. 445	1. 92			
10 11 20 21 30 31 40 50 60 70 100	9. 00 : 0. 00	. 859 2. 14 3. 72 5. 61 7. 75 10. 2 13. 7 18. 3 31. 0 48. 0	2. 43 4. 68 8. 73 15. 2 22. 9 31. 7 41. 4 64. 0 90. 8 122. 159. 203. 254.			
DELTA K B: 100 MAX C: D:	5. 72 : 6. 00 : : :	59. 3	288.			
ROOT MEAN SQUA PERCENT ERROR		14. 55	3. 67			
PREDICTION O. RATIO O.	. 0-0. 5 . 5-0. 8 . 8-1. 2 25-2. 0 >2. 0	5 2	1			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.10 INDICATING EFFECT

DELTA		:	DA/DN (10**-6 IN./CYCLE)				
(KSI*IN*	(1/2)	: : A	В	С	D		
		: E=- 65F : L. H. A.	E= R.T. 100% HUM				
A: DELTA K B: MIN C: D:		:	. 711	1. 43			
	9. 00 10. 00 13. 00 16. 00 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00		. 754 . 932 1. 84 3. 37 6. 26 10. 2	2. 34 4. 08 6. 94 11. 1 15. 4			
ELTA K B: MAX C: D:	26. 15		11.0	19. 3			
OOT MEAN S		10. 79	16.06	16. 33			
LIFE REDICTION PATIO	0. 5-0. 0. 8-1. 1. 25-2.	8 25 2		1			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.11 INDICATING EFFECT

OF STRESS RATIO

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
	:	A	В	С	D		
	:	R=+0. 08					
A: ELTA K B: MIN C: D:	9. 54 : : :	. 473					
	20.00 :	. 620 1. 29 2. 31 4. 14 6. 65 8. 61					
A: PELTA K B: MAX C: D:	32,43 : : : :	9. 20					
OOT MEAN S		10. 93					

(NP/NA) >2.0

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.12 INDICATING EFFECT

		EL HP9-4 RS 00,-100F 21	20 HRS, 1025F 4HRS		. —
DELTA			DA/DN (10**-6	5 IN. /CYCLE)	
(KSI*IN*	*1/2) : :	A	В	С	D
		E=- 65F L. H. A.			
DELTA K B: MIN C: D:		. 738	. 968		
	13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 : 60. 00 :	4, 55 7, 54 11, 5 16, 5 29, 7	1.62 3.12 5.05 7.19 9.43 12.3 16.4 29.9 51.3		
DELTA K B: MAX C: D:		54. 3	89. O		
PERCENT E	RROR	3. 87	11. 94		
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25 1. 25-2. 0 >2. 0		1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.13 INDIGATING EFFECT

CONDITI ENVIRON	ON: IMEN	1525F 2 T: R.T.	EEL HP9-4 HRS 00,-100F 2F		3		
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
(KSI*	·IN*	*1/2)	: : A	В	С	D	
			: : R=+0.05				
DELTA K			: 6 . 79 : :				
			: 8.40 : 10.8 : 14.1 : 18.6 : 32.1 : 53.9 : 87.6 : 138.				
DELTA K MAX	B:		: 266. : : :				
ROOT ME			16. 27				
PREDICT RATIO SUMMA	ION) ARY	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2. >2.	8 25 1 0	· · · · · · · · · · · · · · · · · · ·			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.14 INDICATING EFFECT

MATERIAL: ALLOY STEEL CONDITION: 1525F 2HRS ENVIRONMENT: R.T.,L	00,-100F 2H . H. A.			
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6	IN. /CYCLE)	
(101-110-11-2)	A	В	С	D
:	R=+0. 08	R=+0.30	R=+0.50	R=+0.70
A: 12.52 : DELTA K B: 8.62 : MIN C: 9.59 : D: 5.66 :	1.28	. 505	. 674	. 183
80.00 : 90 .00 :	4, 57 7, 77 11, 8 16, 6 22, 4 37, 6 58, 7 87, 8 128,	. 568 . 771 1. 76 3. 35 6. 11 9. 32	. 819 2. 07 3. 43	. 197 . 310 . 551 . 943 1. 44 2. 87 4. 54 7. 78 13. 6 21. 2
A: 102.55 : DELTA K B: 27.08 : MAX C: 19.92 : D: 33.41 :	275.	10. 2	5. 62	27 . 3
ROOT MEAN SQUARE PERCENT ERROR	4. 66	16. 89	2. 93	17, 74
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 SUMMARY 1.25-2.0 (NP/NA) >2.0	1	1	1	1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.15 INDICATING EFFECT

DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)				
(1/21 - 1/4 - 1	:	A	В	C	D	
	:	R=+0. 30	R=+0. 50			
DELTA K B: MIN C: D:		. 371	. 615			
	7.00 : 8.00 : 9.00 : 10.00 : 13.00 : 16.00 : 20.00 : 25.00 :	4. 48 7. 69	. 670 . 923 1. 20 1. 52 2. 80 4. 90 8. 31			
A: DELTA K B: MAX C: D:	25. 00 : 23. 21 : : :	15. 0	9 . 80			
ROOT MEAN S PERCENT ER		19. 42				
PREDICTION RATIO SUMMARY	0.8-1.25	1	1			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.16 INDICATING EFFECT

DELTA K (KSI*IN**1/2)		:	DA/DN (10**-6 IN./CYCLE)				
11102 - \$14-	~ ag d been d	: A	В	С	D		
		: : E= R.T. : L. H. A. SP. THK. ≈. 260"	E= R. T. L. H. A. SP. THK. =. 504"				
A: DELTA K B: MIN C: D:		:	. 531				
	9. 00 10. 00 13. 00 16. 00 20. 00 25. 00 30. 00 35. 00	: .688 : 1.60 : 2.84 : 4.88 : 7.76 : 10.9	. 574 1. 64 3. 24 5. 85 9. 61 13. 9 19. 1				
	40. 00 50. 00 60. 00	: 19. 1 : 30. 6	25. 4 37. 4				
DELTA K B: MAX C: D:	53. 22	: 57 . 6 : : :	39. 4				
PERCENT EF	ROR	2. 81					
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 1 0	1				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.17 INDICATING EFFECT

	STEEL HP9-4- F 2HRS Og,-100F 3		:S	
DELTA K (KSI*IN**1/2)	:	DA/DN (10**	-6 IN. /CYCLE)	
(M31 #114##115)	. A	B	С	D
	E=- 65F : L. H. A.	E= R. T. L. H. A.	E= R. T. S. C. S.	E= R.T. S.T.W.
A: 14.6 DELTA K B: 12.6 MIN C: 5.6 D: 5.6	აგ :	1. 35	. 101	. 144
7. (8. (00 : 00 : 2.05 00 : 00 : 00 :	1. 49 2. 77 4. 96 8. 32 12. 6 18. 4 26. 5 40. 9	. 123 . 195 . 288 . 416 . 596 1. 53 2. 97 5. 44 8. 98 12. 6 16. 0	. 172 . 265 . 388 . 546 . 742 1. 59 2. 87 5. 26 9. 23 14. 0 19. 2 24. 4
A: 18.9 DELTA K B: 55.9 MAX C: 41.0 D: 43.2	23 : 08 :	41. 2	19. 6	27. 8
PERCENT ERROR	12. 87	13. 81	13. 85	6. 38
LIFE 0.0- PREDICTION 0.5- RATIO 0.8- SUMMARY 1.25- (NP/NA)	-0.5 -0.8 -1.25 1 -2.0	1	1	1

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.18 INDICATING EFFECT

OF FREQUENCY

MATERIAL: ALLOY ST CONDITION: 1525F 2 ENVIRONMENT: R.T.	HRS 00,-100F 2HF			
DELTA K	:	DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**1/2)	: : A	В	С	а
	: F(HZ)= 0.10	F(HZ)= 9.00		
A: 10.61 DELTA K B: 3.86 MIN C: D:	: 828 : :	. 0801		
4.00 5.00 6.00 7.00 8.00 9.00	: : : :	. 0851 . 131 . 199 . 293 . 418 . 578 . 779		
13. 00 14. 00 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00	1.54 2.74 4.58 7.19 10.3 14.3	1. 67 3. 06 5. 77 10. 5 16. 5 23. 4 30. 6		
A: 58.49 DELTA K B: 43.08 MAX C: D:	49.8	35. 1		
ROOT MEAN SQUARE PERCENT ERROR	2. 77	5. 07		
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2	8 25 1 0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.19 INDICATING EFFECT

OF FREQUENCY

DELTA			DA/DN (10**-6	IN. /CYCLE)		
(KSI*IN**1/2)		A	В	С	D	
	:	F(HZ)= 0.10	F(HZ)= 1.00			
A:	10.13:	. 423				
DELTA K B: MIN C: D:	9. 79 : : : : : : : : : : : : : : : : : :		. 555			
	10.00 :		. 623			
	13.00 :	1. 54	2. 09			
	16,00 :		4. 22			
	20 . 00 :	6. 63	7. 39			
	25.00 :		11.2			
	30.00 :		14. 9			
	35 . 00 :		18. 9			
	40 . 00 : 50 . 00 :	25. 2 38. 5	24.1 40.6			
A:	55. 79 :	49. 0				
DELTA K B:	59 , 72 :		72. 6			
MAX C:	:					
D:	:					
ROOT MEAN S PERCENT ER		6. 79				
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0, 0-0, 5 0, 5-0, 8 0, 8-1, 2	5 1	1			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.20 INDICATING EFFECT

DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)				
(1/01 - 114	:	A	В	С	D	
	:	R=+0. 08				
A: DELTA K B: MIN C: D:	17. 18 :	2. 64				
	20. 00 : 25. 00 : 30. 00 : 40. 00 : 50. 00 : 70. 00 : 80. 00 :	4. 96 7. 27 10. 5 14. 9 27. B 47. 3				
A: DELTA K B: MAX C: D:	36. 78 : : : : : : : : : : : : : : : : : : :	138.				
ROOT MEAN S PERCENT ER	SQUARE RROR	4. 77				
PREDICTION	0.8-1.25 1.25-2.0	1				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.5.3.21 INDICATING EFFECT

	1525F 2H	EEL HP9-4 HRS DG,-100F 2H ,L. H. A.			
DELTA *KSI*IN			DA/DN (10**-6	5 IN. /CYCLE)	
1101 - 111-	:	A	В	C	D
	:	R=+0. 05			
A:	24. 44 :	2. 98			
DELTA K B	:				
MIN C:	:				
5 .	:				
	25 . 0 0 :				
	30.00 :				
	35 , 00 :	13, 3 17, 9			
	50 . 00 :				
	60 . 00 :				
	70.00 :				
	80.00:				
	90 . 00 :	175.			
A:	97. 82 :	236.			
DELTA K B:	:				
MAX C:	:				
D:	:				
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	:				
ROOT MEAN SQUARE PERCENT ERROR					
PREDICTION		5 3			
	0. 8−1. 2 1. 25−2. 0 >2. 0	1			

CONDITION/HT: 1525F 2HRS DQ. -100F 2HRS. 1025F 4HRS ALLOY FORM: 4.00"TH BILLET SPECIMEN TYPE: CT YIELD STRENGTH: 188. Ø KSI STEEL ULT. STRENGTH: 204.0 KSI SPECIMEN THK: 2. ØØØ" ORIENTATION: T-L SPECIMEN WIDTH: 5. 810" 1.00 HZ FREQUENCY: HP9-4-REFERENCES88579 R. T., L. H. A. ENVIRONMENT: . 20 ΔK (MPA √m) ΔK (MPA √m) 40 100 100 10 40 10 ليليليا (B 10 ⁰ STRESS RATIO = STRESS RATIO = +Ø. Ø5 10-2 10⁻² 10.1 10-1 10⁻³ 10⁻³ 10⁻² 10⁻² (mm/cycle) da/dN (in/cycle) 10⁴ 10 10⁻³ 10⁻³ 10 5 10⁻⁵ dazdN 10-4 10-4 10^{.6} 10⁻⁶ 10⁻⁵ 10⁻⁵ 10.7 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 40 100 40 100 10 10 **(**D) لتليانا لتليليا C 10 ⁰ 10 0 STRESS RATIO = STRESS RATIO = 10-2 10⁻² 10 10⁻³ 10.3 da/dN (in/cycle) 10⁻⁴ 10⁴ 10 10⁻⁵ 10⁻⁵ Z O 10-4 10 4 10^{.6} 10⁻⁶ 10⁻⁵ 10 5 10.7 10.7 10⁻⁶ 10 6 10⁻⁸ 10 40 10 40 100 ΔK (KSI √in) ΔK (KSI 🗸 Th)

TABLE 6.5.3.22

					ALLOY STIFE	HP9-4-	50	K(ISCC)					
600 001110 0	- FRUI FOFM	PUCT- THICK (TE)	1651 1690 (6)	SIFEC	YIELD STR ENVIRONMENT (KSI)	WIDTH (IN)	DTH THICK DESIGN (IN) (#=SG)	CRACK LENGTH K(Q) F (1SCC (IN) (KSI#SGFT IN)	F(ISCC) MEAN FT IN)	9TAN DEV	TEST TIME (MIN)	DATE	REFER
	<u> </u>	5	⊢	!	N204-0, 2% H20	5. 500	0. 500 TDCB	150.0	*00 0			126	80667
	e I	0 30	E	:	SYNTH SEAWATER	1	TDCB		110.00*		1	1969	74232
	<u>u.</u> 1	1 25	α	7	198.0 SIM. SEA WATER 198.0	3, 083 3, 088	1.247 BWOL. 1.250 BWOL.	1.367	92.80 94.50 93.	7/ 1.2	195840 195840	1977	MA005
OTA WELD WELDNENT	1 1 2	0 20	. T.		BYNTH SEAWATER		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		63.00	1 1 1	1 1 1 1 1 1 1 1 1 1	1969	74232
1 1 1 1 1	! 	1	1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1 1 1 1	1 1 1 1 1 1	i i i i	1 1 1	1 1 1	1	1
VENCHED AND EMPERED	a .	1.00	P- BZ	1 !	180. 0 3. 9 PCT NACL. 195. 0		1.000 CANT#	210.0	110. 00 110. 00 110.	0 0		972	83613 83613
1525F 2HRS 00,-100F 2HRS,	i 1		1 <u>4-</u> 1 e £ 1 e £	, -	189. 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 000 DCB 1. 000 DCB 1. 000 DCB	119.00	105.00 103.00 107.00	0.21	86280 86280 08280	400	R1006 R1006 R1006
1525F 2HRS D0, -100F 2HRS, 1025F 4HRS	۵	00 00 00 00 00 00 00 00 00 00 00 00 00	#: #:	7-1	190. 0 S. T. W. 190. 0 190. 0 190. 0	000 000 000 000 000 000 000 000 000	1. 000 DCB 1. 000 DCB 1. 000 DCB 1. 000 DCB 1. 000 DCB	119.00	97. 00 97. 00 93. 00 104. 00 96. 00 97. 4/	₹	86280 86280 86280 86280 86280	1976 1976 1976 1976 1976	R1006 R1006 R1006 R1006 R1006
1525F ZHRS 00. - 100F ZHRS. 1025F 4HRS	FB .	4 4 00	æ. ⊢	L-1	186. 0 S. C. S. 186. 0	2.000	1, 000 DCB 1, 000 DCB	118.00	>122 00 >129. 00		60660 60180	1976	R1006 R1006
1525F 2HRS 00, -100F 2HRS, 1025F 4HRS	E.	4 4 4 0 0 0 0	α. -	1	186. 0 S. T. W. 186. 0 186. 0	2 5 000 5 000 5 000	1,000 DCB 1,000 DCB 1,000 DCB	118.00 118.00 118.00	126 00 129 00 110 00		86280 86280 86280	1976 1976 1976	R1006 R1006 R1006
1575F ZHRS 00. -100F ZHRS, 10	00, FB 4 1025F 4HRS	4 00 IRS	R . +	<u>-</u>	187. 0 S. T. W.	2.000	1. 000 DCB	118.00	00 601		86280	1976	R 1006
MOTE DATA IN	200	1014	1	7			700127						

TABLE 6.4.3.22 (Con't)

	TEST TIME DATE REFER (MIN)	76860 1976 R1006 86280 1976 R1006	86280 1976 R1006 86280 1976 R1006 86280 1976 R1006 116820 1976 R1006
	STAN MEAN DEV	107.0/ 2.8	78.3/ 3.1
•	H K(Q) F (1SCC) (KSI*SGRT IN)	118.00 105.00 118.00 (117.00	- 118 00 : 97 00 - 118 00 79 00 - 118 00 81 00 - 118 00 75 00
.20 K(15CC)	WIDTH THICK DESIGN LENGTI	1. 000 DCB	1. 000 DCB
HP9-4- 20	• •	2. 000 1 2. 000 1	00000000000000000000000000000000000000
ALLOY STEEL	YIFLD STR ENVIRONMENT (KSI)	187. 0 S. T. W. 187. 0	π
	HEST SPEC HEHP OR (F)	4 (10 R I, T-L 4 (10	R. T. S. T.
	FORM DHICK (IN)		4 00 4 00 4 00 4 00 4 00 4 00 4 00 4 0
	COLIDITION	1525F 2HRS 00, FB -100F 2HRS, 1025F 4HRS	1525F 2HRS 00, FB -100F 2HRS, 1025F 4HRS

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.6.3.1 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI*IN**1/2)		:	DA/DN (10**-6		
:		: : A	В	С	Д
		: E= R.T. :LAB AIR 5-10HZ	SIM. SEA WATER		
DELTA K B: MIN C: D:	11.52	: 1.04 : :	1. 04		
	50. 00 60. 00 70. 00	: 3. 62 : 6. 19 : 9. 93 : 14. 2 : 18. 9 : 24. 2 : 37. 0	1.59 3.03 5.56 9.51 14.2 19.6 25.8 40.7 59.8		
DELTA K B: MAX C: D:		: 141. : : :	67. 1		
ROOT MEAN SQUARE PERCENT ERROR			9. 60		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 2 0	2		

. .

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.6.3.2 INDICATING EFFECT

MATERIAL: CONDITION:		EEL HP9-4- D						
DELTA K : (KSI*IN**1/2) :		:	DA/DN (10**-6 IN./CYCLE)					
(K21*1N**1/2)		A	В	С	D			
			E= R.T. SIM. SEA WATER 1-10HZ					
DELTA K B: MIN C: D:	11. 55	: . 928 : :	1. 16					
	40, 00 50, 00 50, 00 70, 00	: 3. 84 : 6. 53 : 10. 5 : 15. 1 : 20. 5 : 26. 7 : 42. 9	1.73 3.22 5.78 9.77 14.6 20.2 26.8 43.6 66.6					
DELTA K B: MAX C: D:	65 . 98	188. : :	B4. 3					
ROOT MEAN SQUARE PERCENT ERROR			8. 20					
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0, 0-0, 0, 5-0, 0, 8-1, 1, 25-2,	5 8 25 2 0	2					

TABLE 6.7.1.1

MEAN PLANE STRAIN FRACTURE TOUGHNESS DATA OF ALLOY STEEL HP 9-4- 23/VAR) AT ROTH TEMPERATURE

SPECIMENS)		1	-
(NUMBER OF SPECIMENS)		1	98.9 ± 4.5 (2)
BTANDARD DEVIATION	EDROINO		98.
(KBI BORT(IN)) DEVIATION		ij	!
(KBI			Ú
CONDITION/HT		CONDITION/HT	1550F 1 HR, 00
•	•		

TABLE 6.7.2.1

	1	22	22	22	22	22	22	22
	REFER	76411 (76411 (1966 76411 (1966 76411 (76411 (76411 (76411 (76411 (1966 76411 (1966 76411 (1966 76411 (1966 76411 (1966 76411 (1966 76411 (
	DATE	194 1960	1966 1966	1966 1966	1966 1966	1966	1966 1966	1966
	STAN DEV	11.3	** *	1. 4	က က	4	2.1	ສາ ສາ
	K(IC) MEAN GRT IN)	115.0/ 11.3	111.07	106. 07	101. 77	78.97	102. 5/	108.5/
		123 00 107. 00	110.00 112.00	107.00	104, 00 99, 40	95, 70 102, 00	104. 00	111.00 106.00
(3	CRACK 2.5* LENGTH (K(IC)/TYS)**? (IN) (IN) A	1.08 0.82	0.86 0.89	0. 82 0. 79	0. 79 0. 71	0.75	0.84 0.78	0.92
HP 9-4- 25(VAR) K(1C)	CRACK LENGTH (IN)	1.834	1. 886 1. 863	1. 837 1. 879	1.868 1.954	1.822 1.808	1.853 1.855	1.834 1.824
	DESIGN	40 40	10 F	걸로	15 FO	HOL.	5 5 5 7	현호
	SPECIMEN- THICK I (IN)	2. 000 2. 000	2. 000 2. 000	2.000 2.000	2. 000 2. 000	2. 000 2. 000	2. 2. 2. 000 0. 000	iz. 000
STEEL	MIDTH THICK DESIGN (IN) (IN) E B	5, 110	5.110 5.110	5.110 9.110	9. 110 9. 110	5. 110 5. 110	9. 110 9. 110	9, 110 9, 110
ALLOY	YIELD STRENGTH (KSI)	187. 0 187. 0	188 0 188 0	187. 0 187. 0	187. 0 187. 0	175.0 175.0	180. 0 180. 0	175. 0 175. 0
	SPECIMEN	1 -t	7-	7	1-1	7-	1-1	7
	TEST TEMP (F)	. 75	40	0	32	٠ -	100	130
	UCT THICK (IN)	00 E	- 00 E	00 E	3 00 3 00	3 00 3 00	3 00 3 00 3 00	3.00 3.00
		l L	u.	LL.	L	L.	ıL	li.
	110N	1550F 1 HR, 00 1000F 2+2HR, AC	1550F 1 HR, 00 1000F 2+2HR, AC	1550F 1 HR, 00 1000F 2+2HR, AC	1 HR, 00 2+2HR, AC	1550F 1 HR, 00 1000F 2+2HR, AC	1550F 1 HR, 00 1000F 2+2HR, AC	1550F 1 HR, 00 1000F 2+2HR, AC
	CONDITION	1550F 1000F	1550F 1000F	1550F 1000F	1550F 1000F	1550F 1000F	1550F 1000F	1550F 1000F

NOTES: (1) (VAR)=(VACUUM ARC REMELTED)

TABLE 6.8.1.1

HEAN PLANE BIRAIN FRACTURE TOUGHNESS DATA OF ALLOY STEEL HP 9-4-, 30 AT ROOM TEMPERATURE

CDND1T1DN/HT	MEÁN KIC + BTANDARD (KBI BORT(IN)) DEVIATION	DARD (MANBER OF BRECIMENS) ATION	ECIMENS)
	_	PLAIE	
CONDITION/HT	17	1	귊
HEAT TREATED TO 49 RC HARDNESS		82.8 ± 5.0 ()	
	13	EDROLINO	
CONDITION/HT	1-1	រាំ	1 -1
1650F 1-2HR AC 1529F 1-2HR DG -100F 1-3HR, 1000F 4HR	106.0 ± 1.4 (2)	89.0 ± 3.0 (3)	!
1650F 1-2HR AC 1529F 1-2HR 0G -100F 1-3HR, 1050F 4HR		87. 5 ± 0.8 (2)	
1650F 1-2HR AC 1323F 1-2HR DG -100F 1-3HR 1023F 4HR	!	93.5 ± 0.7 (2)	 - - -
1650F, ZHR AC 1550F ZHR DG 1000F Z+ZHR AC	82.0 ± 0.0 (2)	-	!!!!

TABLE 6.8.1.2 FATIGUE CHACH GROWIH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALL.DY STEEL HP9-4- 30

	100	132				
	٥ç چ	30 0 25 9 49 3	98.9			
	WIH RATE CLE) 20	3 4 5 5 6 5 6 5 6 5 6 5 6 6 5 6 6 5 6	4 51	5 04	7 35	9 90
	2ACK GRO 30 1N/CY	0 4		0 89	1 15	1 17
	FATIGUE CRACE GROWTH RATES (MICRO INVEYGLE)					
A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A A T A	رم ئ					
ENV [RONMENT	DFLT# K LEVELS (KSI SGRT(IN))					
	FREG (H7)	10 00 10 00 10 00	00 9	1 00	00 9	90 9
	S1RESS RATTC	00 1 · 00 0 · 00 · 00 · 00 · 00 · 00 ·	QE Q	B O 0	6 6 0	08 o
<u> </u>	PRUDUCT FORM	BILLET	FORGED BAR	FORGED BAR	FORGED BAR	FORGED BAR
SPECENDALLIGNS OPTENIATIONS	TEMP1110N/H1	l = = =	1525F 2HRS 00, 100F 2HRS, 1025F 2+2+R	1550F 2HRS 00. 100F 1HR 1025F 2+2+8	1557F 1HR3 0@. -163F 1HR3 1025F 1+14H	1550F 24R5 00. 104F 14R 1025F 2+24R

TABLE 6.8.1.3 FATIGUE GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TEST CONDITIONS

FATIGUE CRACE GEDWIH RATES (MICRO IN/CYCLE) 5 99 8 6E 0 6: LAP AIR AT R T 5 ENVIRONMENT DELTA K LEVELS (KSI SORT(IN)) 5 0-20 0 FREG. (HZ) 1 0 SIRESS 0 05 020 PRODUCT FORM FORGING BAK SPECTMEN ORIENTATION COND1110N/HT

100

50

46 6

3, 59

0 01

50 ö

BAR

38 9

TABLE 6.8.1.4

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

	100		560	266	
	9 9	42.8 8	36 3	7 7.2	33.4
	FATIGUE CRACK GROWTH RATES (MIGRO : NACYCLE) 5		6 21 4 25	2 74	2.68
	ACK GROINZCY				
ت	TIGUE CR (MICR				
3 5% NAC! AT R T	2 S				
ENVIPONMENT	DELTA K LEVELS (KSI SORT(IN))				
	FREG (HZ)	1 0	0 10	10 00	0 10
	STRESS RAIIO	0 05	00 ŭ	ÖO ¢	1 00
r - 1	PRODUCT	SAR I	B1: CE3	BILLET	RILLET
IESI_CONDIJIONS SPECIMEN OPTENIATION	CONDITION/HI		7.15= 220-240KS1	TIIS= 220-240MS1	UTS=C20-240KG1

TABLE 6.8.1.5

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TEST CONDITIONS

SPECIMEN ORIENTATION L-1

ENVIRONMENT STW

FATIGUE CRACE GROWTH RATES (MICRO IN/CYCLE)	16 20 50 100	5.68 62.3	3 00 13.2	1 06 7.45	2 38 9.51	1 35 7 70
FATIGUE CR DELTA K (MICR LEVELS	(KSI SQRT(IN)) 2555					
FREG (HZ)		1 00	0 10	00 1	1 00	1 00
STRESS		80 6	80 0	0 30	08 0	ે.
PRODUCT		FORGED BAR	FORGED BAR	FORGED BAR	FCRGED BAR	FURGED BAR
CONDITION/HT		1525F 2HRS 09. -100F 1HR.1025F 2+24R	1550F 2HRS 00. -100F 1HR, 1025F 2+2HR	1550F 2HRS 00, -100F 1HR.1075F 2+2HR	1552F 2HRS 00. 100F 1HR.1025F 2+2HR	1550F 2HRS 00. -100F 1HR.1025F 2+2MR

TABLE 6.8.1.6

FATIGUE CRAUK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALT IMMERSION IN SEA WATER AT R T	FATIGUE CRACE GROWTH RATES (MICRO IN/CYCLE) 2 5 5 10 20 50	4 16 34 3		1 62 29 7		2 70 25 8	75 E	
EiJV I RONMFINT	DELTA K LEVELS (KSI SGRT(IN))	IMMERSED	IMMERSED	1ST HALF DRY CYCLE	1ST HALF DRY CYCLE	2ND HALF DRY CYCLE	2ND HALF DRY CYCLE	
	FREG (H7)	1 00	10 00	1 00	10 00	1 00	10 00	
	SiRESS RAIIO	00 ÷	00 0	00 0	00.0	00 0	00 c	
1-1	PRODUCT	BILLET	BILLET	BILLET	BILLET	BILLET	BILLET	
SPECIMEN OPIENTATION L-T	G05D1:10N/H1	TUS=220-240KST	105-220-240K51	TUS≈220∵240KSI	1US-220-240KSI	TUS=220-240KSI	10S 220-240KSI	

100

TABLE 6.8.1.7

FATIOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

TEST CONDITIONS

SPECIMEN
ENVIRONMENT: DRY AIR
ORIENTATION T-L
AT R T

	100				
ις.	20				
JWTH RATE	50		7. 16		
CRACK GRE	91	1		14.7	ì
FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	Ŋ				
•	2.5				
DELTA K	(KSI SGRI(IN))				
FREG. (HZ)			0 10	00 1	
STRESS			0.50	08.0	
PRODUCT FORM			PLATE	PLATE	
COND1710N/HT			1		

TABLE 6.8.1.8

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACIOR

EST CONDITIONS

₹	AT R
ENVIRONMENT	
	T-L
SPECIMEN	OPIENTATION

100		1
50	,	46.7
FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE) 5 10 20	5 13	88 6
RACK GROW RG IN/CYC	:	•
ATIGUE C		f 1 1 1 1 1 1
U IN		; 1 1 1 2 1 1 1
PELTA K FATIGUE CRA LEVELS (KSI SGRI(IN)) 2 5 5		
SS FREG	00 9	00 9
STRESS	0 08	e C
PRGDUCT FORM	FURGED BAR	FORGED BAR
CONDITION/HT	:557F 7HRE D9. -100F 1HR 1075F 2+2HR	1556F THRS 09, 100F THRS, 1000F

TABLE 6.8.1.9 : CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENS

SITY FACTOR		H20 SATURATED JP4 FUEL AT R. T	CHTCRD :	2 49		0.44	8.46	7 88
STRESS-INTEN			FATI(
FATICUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR	ALLOY STEEL HP9-4- 30	ENVIRONMENT	DELTA K LEVELS: (KSI SQRT(IN))					
TE AT DEFI	ALLOY		FREG. (HZ)	15 00	0 10	1 00	0.10	1 00
CK GROWTH RA			STRESS	0 0 0	0 10	0 10	0.50	0.50
FATIGUE CRA		1-t	PRODUCT	PLATE	PLATE	PLATE	PLATE	PLATE
		1 <u>est conditio</u> ns Specimen Orientation	CONDITION/HT					

100

TABLE 6.8.1.10

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

			100							
		ហ្វ	050			336	51.7			
		FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	50		2 86			24.0		
	; ,	RACK GRE	61	: : :					; ;	
	WATER	ATIQUE C	īv							
	DIST WATER	i.	2 2							
	ENVIRONMENT	DELTA K	LEVELS (KSI SQRT(IN))							
		FREG (HZ)			15 00	0 10	1 00	1 00		
		STRESS			00 0	0.10	0.10	0.50		
	ן-ר	PRODUCT FORM			PLATE	PLATE	PLATE	PLATE		
TEST CONDITIONS	SPECIMEN ORIENTATION	CONDITION/HT			1 1 1					

TABLE 6.8.1.11

FATICUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACIOR

TEST CONDITIONS

SPECIMEN ORIENTATION 1-L

3 5% NACL AT R T

ENVIRONMENT

CONDITION/HT	PRODUCT	STRESS	FREG (HZ)	DELTA K		FATIQUE (M)	FATIQUE CRACK GROWTH RATES (MICRO IN/CYCLE)	DWTH RATE	S.	
				LEVELS:	2.5	ın	9	&	50	001
} !	PLATE	00 0	15 00					3, 02		
	PLATE	0. 10	0 10						114	
	PLATE	0 10	1 00						53. 6	
	PLATE	0.50	0 10					18.7		
	PLATE	0.50	1.00					11.3		
	PLATE	0.80	01.0				71.0	293		

TABLE 6.8.1.12 FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

		100						
	£3.	20		208	67.0			
	OWTH RAT	50				9 57	488	
	FATIOUE CRACK GROWTH RATES	01	!				89 0	
_ ⊢	FATIQUE (MI	īυ						
S T & TA TA TA TA TA TA TA TA TA TA TA TA TA		() ()						
ENVIRONMENT	DELTA K	(KSI SGRT(IN))						
	FREG (HZ)			0 10	1 00	1 00	00 1	
	STRESS			0 10	0 10	0.50	&O O	
ſ-L	PRODUCT FORM			PLATE	PLATE	PLATE	FURGED BAR	
IEST CONDITIONS SPECIMEN ORIENTATION	CONDITION/HT			? } !			1550F 2HRS 00, -100F 1HR, 1025F 2+2HR	

TABLE 6.8.2.1

					ALLOY 8	STEEL	ė di	9-4-, 30	K(1C)	n					
CONDITION	_	FORM THICK	TEST (F)	SPECIMEN	YIELD STRENGTH (KSI)	E HIDIN	SPECIMEN- THICK D (IN)	ESIGN	CRACK LENGTH (CIN)	2. 9* (K(IC)/TY9)**? (IN)	K(IC) (KSI*SQ	91	,	ATE	REFER
	i.	K (1)	80	L-1	207. 5	2. 52 51 51	1.24	CT CT	1, 273	0.65	6. 10 8. 17	7.		1977	MA005 MA005
	L.	ម ម ម	6 0	1~L	208.3 208.3	2. 523 2. 534	2.2	C1	1, 258 1, 293	0. 58 0. 58	101, 10	2	0	1977	A005 A005
EAT TREATED B 49 RC ARDNESS	i 1 <u>a</u>	1 10 10 1 10 10 1	1 p- 1 ac	; <u>7</u>	189. 0	। एसा । 00 । 4-५	. 88	1 8 8 2 7 1	0.990	1 0 0 0 1 1 1 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, , o	1971	4 4
. 00, -100F	1 ! <u>!</u>	; ; 8	, •	1 1-	175.0	000	1 6 .	CT 1		 40 40 40	142.00	1 1	1 J	1974	1100
1650F 1-2HR AC F 1525F 1-2HR GG -100F 1-3HR, 1000F	F 000F 4F	3 00 3 00 4HR	10 	[-1	220.0	1 000 E	1. 000	1 55	! ! ! ! ! ! ! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67.00	0 /6 99	1 6	1974	90011
1650F 1-2HR AC F 3.00 R.T. 1525F 1-2HR DG, -100F 1-3HR 1025F	F -100F 1	3.00 1-3#R 1	R. T. 025F 4	L-T	205.0	3.000	1.000	13	}	0.80	116.00			1974	90011
1650F 1-2HR AC F 1525F 1-2HR OG 7-100F 1-3HR, 1000F	F 3	8 8 6 8 6 8 ¥	₹	<u>-</u>	206. 0	3.000 3.000	1.000	55		0.65 0.67	105.00 107.00	106.0/	1. 4	1974 9	90011
1650F 1-2HR AC F 1525F 1-2HR 00 ,-100F 1-3HR, 1030F	F 3 3 050F 4HR	n n ¥	₹. ÷	7	200.0	3.000 3.000	1.000	55		0.47 0.48	87. 00 88. 10	87.6/	8	1972	84306 90011
1650F 1-2HR AC F 1525F 1-2HR DG ,-100F 1-3HR 1025F	F 25F 41H	3 00	5 .	7	203.0	3. 000 3. 000	1.000	55		0.51 0.52	93.00 94.00	93. 5/ (0.7	1974 9	90011
1630F 1-2HR AC F 3.00 1525F 1-2HR 00,-100F 1-3HR,	F -100F 1		R. T. 1000F	T-L 4HR	206. 0	3.000	1.000	5	}	0. 43	86.00			1974 90011	1004

TABLE 6.8.2.1 (Con't)

	K(IC) BTAN K(IC) MEAN DEV DATE REFER K91*8GRT IN)	197 197 197. 0/ 3.0	1977 AHOO2	44	1974 90
	Ξ,	52.00 89.00	114.20		_
Ĉ	CRACK 2.5* LENGTH (K(IC)/TVS)**2 (IN) (IN)	0.46	0 1 0 1	88 89 1	0.67
K(IC)	CRACK LENGTH (IN)		1.024		· •
HP 9-4- 30	IDTH THICK DESIGN (IN) B	1.000 CT	0.997 CT	2.016 cT	1. 000 CT
STEEL	LIDIT TI	000 E	2. 008 . AC	014	3.000
ALLOY STEEL	YIELD STRENGTH (KSI)	215.0 215.0	201.8 1000F 4HR,	192.0	197. 0
	SPECIMEN ORIEN:	Ť.	4HR, AC,		1-1
	TEST TEMP (F)	r. oc	1000F	cc 1	# ## F# 4
	FORM THICK TEMP (IN) (F)	3 00 3 00 HR	HR AC.		3.00 1050F
	FORM	F 1000F 4	-100F	i L L I	F 1-3HR,
	NOILIGNOO	1650F 1-2HR AC F 3 00 R 1525F 1-2HR DQ 3 00 7-100F 1-3HR, 1000F 4HR	1550F 2HR 00100F 2HR AC. 1000F	R AC DG HR AC	550F, AC, 1525F 2HR, DQ, ~100F

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.1 INDICATING EFFECT

	K	:	DA/DN (10**-	6 IN. /CYCLE)	
(KSI*IN**1/2)		: : A	В	С	D
		: E= R.T. :H20 SATURATED JP-4 FUEL	E= R.T. DIST. WATER		
DELTA K B: MIN C: D:	14.06		. 486	. 768	
	25.00		1. 09 2. 86 5. 39 8. 58	. 880 1. 50 3. 02 6. 14 10. 2	
DELTA K B: MAX C: D:	32. 59		10. 9	11. 6	
ROOT MEAN S PERCENT ER		7. 46	16. 31	10. 25	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.2 INDICATING EFFECT

DELTA K (KSI*IN**1/2)		:	DA/DN (10##~6 IN./CYCLE)				
		. A	В	С	D		
		: H20 SATURATED	E= R.T. ALT. JP-4 FUEL & DIST. WATER	E= R.T. DIST. WATER			
		: 17. 4					
	: 31.49		16. 3				
	: 33. 22	:		25. 6			
E):	:					
	35.00	: · 19.8	23. 3	25 7			
		: 25.5		28. 7			
		: 49.2	60. 1	51. 7			
		: 131.	141.	136.			
	70.00	: 480.		472.			
	80.00	:	2264.	1984.			
4	: 79.89	: 2259.					
	: 82.06		3250 .				
MAX C	: 81 . 07	:		2335.			
E): 	:					
PERCENT	ERROR		20. 13				
LIFE PREDICTIO RATIO SUMMARY	0. 0-0. N 0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 0					

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.3 INDICATING EFFECT

DELTA K		:	DA/DN (10**-6 IN./CYCLE)				
(KSI*IN**1/2)		: : A	В	С	D		
		: : E= R.T. :3.5% NACL	E= R. T. S. T. W.				
DELTA K B: MIN C: D:		: 16. 1 :	17. 7				
	40. 00 50. 00 60. 00 70. 00	18. 3 26. 9 53. 6 135. 478.	20. 1 31. 2 67. 0 171. 574.				
DELTA K B: MAX C: D:		: 3215 . : :	1106.				
PERCENT ER	ROR	19. 65	8. 94				
	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	5 8 25 0	•				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.4 INDICATING EFFECT

DELTA		:	DA/DN (10##~	6 IN. /CYCLE)	
(KSI*IN**1/2)		: : A	В	С	D
		: E= R.T. : H2O SATURATED JP-4 FUEL	E= R.T. DIST. WATER	E= R. T. 3. 5% NACL	E= R. T S. T. W.
A:		: 37. 3			
ELTA K B:			172.		
	33. 47			81. 3	
D:	32. 86	:			74. 2
	35. 00	• •	206.	84. 1	104
	40.00		264.	=	165.
		: 67. 7		114.	208.
		: 141.	380.	135.	203.
		: 510.	430.	156.	214.
		: 3795.			268.
A:	81.35	: 5261.			
ELTA K B:	74. 25	•	459.		
	74. 38			165.	
D:	80. 85	:			275.
OOT MEAN S	GUARE RDR	27. 30	14. 62	6. 96	22. 52

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.5 INDICATING EFFECT

OF ENVIRONMENT

DELTA K (KSI*IN**1/2)			DA/DN (10**-6 IN./CYCLE)				
(1102 % 2)(4	~1, 2,	A	В	C	D		
		E= R.T.	E≔ R.T. S.T.W.				
A:	17. 66	: 7. 08					
DELTA K B:	17. 33	:	5. 32				
MIN C:		:					
D:		:					
	20.00	11.3	0.57				
	25.00	: 14.4	9. 57 15. 8				
	30.00		24. 4				
		51. 2	48. 1				
	40. 00	251.	130.				
A :	43. 14	: 946.					
DELTA K B:			360.				
MAX C:	_	:	-00 .				
D:		:					
		:					
ROOT MEAN S PERCENT ER	GUARE ROR	15. 04	9. 73	الله الله الله الله الله الله الله الله			
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 0. 5-0. 0. 8-1.	8 25					

الد. الما الد. الما

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.6 INDICATING EFFECT

DELTA I		:	DA/DN (10**-6 I	N., CLE)
(KSI*IN**1/2)		A	В	D
		: E= R.T. :H20 SATURATED JP-4 FUEL		
A: DELTA K B: MIN C: D:		5. 31	17. 0	
	20. 00 25. 00 30. 00 35. 00 40. 00	: 13. 0 : 24. 3 : 63. 4	24. 0 31. 8 37. 3 45. 6 61. 2	
A: DELTA K B: MAX C: D:		: 1210. : :	74. 9	
ROOT MEAN SO PERCENT ER		23. 03	12. 53	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.7 INDICATING EFFECT

DELTA K (KSI*IN**1/2)		:	DA/DN (10**-6 IN./CYCLE)				
		A	В	С	D		
		E= R.T.	E= R.T. H2O SATURATED JP-4 FUEL	E= R. T. 3. 5% NACL			
		: 4. 31					
DELTA K B:			7. 07				
MIN C: D:	19. 21	:		15. 1			
	20.00	: 7. 16	8. 46	18. 7			
	25.00	: 13. 2 : 19. 2 : 45. 4 : 213.	15. 5	37. 6			
	30 . 00	: 19.2	25. 4	48. 0			
	35. 00	: 45. 4	57 . 1	59 . 1			
	40. 00	: 213.	195.	82. O			
A:	46. 29	: 3988.					
DELTA K B:			4021.				
MAX C: D:		: : : : : : : : : : : : : : : : : : : :		145.			
ROOT MEAN S PERCENT ER		33. 08	35. 71	17. 05			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	8 25 0	· • • • • • • • • • • • • • • • • • • •				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.8 INDICATING EFFECT

DELTA K (KSI*IN**1/2)		:	DA/DN (10**-6 IN./CYCLE)				
(1101 111			В	С	D		
		E= R.T.					
A: DELTA K B: MIN C: D:	7. 57	: 5. 23 : :					
	10. 00 13. 00	8. 99 12. 5 14. 7 135. 7 320.					
A: DELTA K B: MAX C: D:	16. 27	: 397 . : : :					
ROOT MEAN S PERCENT ER		31. 55					
PREDICTION RATIO SUMMARY	0.8-1.	8 25 0					

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.9 INDICATING EFFECT

DELTA K :			DA/DN (10**-6 IN./CYCLE)				
(KSI*IN**	*1/2)	E= R. Γ.	В	С	α		
A: DELTA K B: MIN C: D:	7. 53	: 9. 22 :					
D.	10. 00 13. 00	: 71.3 : 201. : 287.					
DELTA K B: MAX C: D:	20. 05	293.					
ROOT MEAN S PERCENT ER		23. 29		به محمد حصره حضور بهنی موجه شنین همک همک همک همک همک همک همک همک بخوب میزند. در این این این این این این این این این این	ang ann aft, ang, and ann fan ten ten ten ten ten ten ten ten ten te		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1.	8 25 0					

Figure 6.8.3.9

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.10 INDICATING EFFECT

MATERIAL: CONDITION:		EEL HP9-4	30				
DELTA (KSI*IN*	 K *1/2)		DA/DN (10**-6 IN./CYCLE)				
11162 - 511		: А	В	С	D		
			E= R.T. LAB AIR 10HZ				
DELTA K B:	12. 31		. 880				
MIN C: D:	21. 78	: :		5. 82			
	13. 00		1.05				
	16. 00 20. 00		1. 96				
		7. 96	3. 59 6. 34	7. 60			
		11.6	10. 1				
		17. 0	15. 4	16. 3			
	40.00	24. 4	22. 6	22. 9			
	50 . 00	: 24. 4 : 46. 4	46. 6	42. 8			
	60. 00	79.8					
	70. 00	126.					
		159.					
DELTA K B:			75. 0				
MAX C:		:		59 . 4			
D:		:					
PERCENT E	ROOT MEAN SQUARE PERCENT ERROR		3. 82	2. 80			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0, 5-0, 6 0, 8-1, 7 1, 25-2, 6	5 3 25 1 O	1	1			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.11 INDICATING EFFECT

MATERIAL: ALLOY S CONDITION:	TEEL HP9-4-	30				
DELTA K (KSI*IN**1/2)		DA/DN (10**-6 IN./CYCLE)				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A	B	С	D		
		E= R.T. SIM SEA WATER .1-15HZ				
A: 6.38 DELTA K B: 20.13 MIN C: D:	: . 110 : :	1. 96				
7.00 8.00 9.00 10.00 13.00 16.00 20.00	. 200 . 286 . 399 . 901					
25. 00 30. 00 35. 00 40. 00 50. 00	: 8.83 : 13.6 : 20.0	5. 37 9. 86 15. 3 21. 6 37. 3				
60.00 70.00 80.00 90.00 100.00	: 63.8 : 89.2 :	58. 7 89. 4 135. 203. 306.				
130.00 A: 71.24 DELTA K B: 139.67 MAX C: D:	: 92.1	961. 1271.				
ROOT MEAN SQUARE PERCENT ERROR	18. 91	16. 17				
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2	. 8 . 25 . 0					

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.12 INDICATING EFFECT

CONDITION:					
DELTA K (KSI*IN**1/2)		DA/DN (10**-6 IN./CYCLE)			
(7,01 114.	~1, ~,	: A	В	С	D
		E= R.T. :LAB AIR .1-20HZ	SIM SEA WATER		
DELTA K B: MIN C: D:	15. 09	: . 181 : :	. 7 9 1		
	8. 00 9. 00 10. 00 13. 00	:			
	15. 00 20. 00 25. 00 30. 00	: 3. 34 : 5. 97	. 994 2. 45 5. 44 9. 38		
	35. 00 40. 00 50. 00	: 14.8 : 21.9 : 45.8	14. 4 20. 9 41. 6		
	60. 00 70. 00 80. 00	: 205. : 458.	82. 3 166. 345.		
	100.00	: 996. : 1883.	732. 1867.		
DELTA K B: MAX C: D:		: 3048. : : :	9836.		
ROOT MEAN SQUARE PERCENT ERROR		20. 12	19. 19		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	8 25 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.13 INDICATING EFFECT

OF STRESS RATIO

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-	6 IN./CYCLE)	
(N21+1N+	F1/2) : :	A	В	С	D
	: :	R=-1.00	R=+0.00	R=+0. 50	
	11 . 76 :	. 708			
DELTA K B: MIN C: D:	11. 75 : 5. 78 :		. 562	. 191	
	: 6. 00 : 7. 00 :			. 213 . 336	
	8 . 00 : 9 . 00 :			. 497 . 700	
	10.00 :			. 700 . 948	
	13.00 :	1.01	. 835	1. 98	
	16.00 :	1. 94	1.72	3. 49	
	20 . 00 : 25 . 00 :	3. 62 6. 31	3. 34 5. 92	6. 26	
	30 . 00 :	9. 6 4	3. 72 8. 99	10. 9 16. 8	
	35 . 00 :	13. 6	12. 5	23. 8	
	40.00	18. 4	16. 5	31. 6	
	50 . 00 :	30. 0	25. 9	49. 3	
	60 .00 :	43. 0	37. 9		
	70 . 00 :	61. 4	53. 4		
	80 . 00 :	99 . 2	73 . 2		
	90.00 : 100.00 :		98. 8 132.		
A :	85 . 73 :	141.			
DELTA K B:	118.22 :		283.		
MAX C:	58 . 56 :			65 . 7	
D:	; ;				
ROOT MEAN S PERCENT ER		11. 42	13. 18	10. 66	

>2.0

(NP/NA)

6.8-41

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.14 INDICATING EFFECT

MATERIAL: A CONDITION: ENVIRONMENT	UTS=220-24		30				
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)					
		Α	B	С	D		
	: :	R=-1.00					
DELTA K B: MIN C: D:	12. 51 : : : :	. 87					
A: DELTA K B: MAX C: D:		1. 02 1. 65 2. 88 5. 84 10. 6 16. 7 23. 0 33. 9 45. 6 63. 7 96. 1 158.					
	:						
ROOT MEAN SQUARE PERCENT ERROR		27. 30					
LIFE PREDICTION	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25						

ULT. STRENGTH: 229. Ø KSI SPECIMEN TYPE: CCP SPECIMEN THK: Ø. 250" ORIENTATION: L-T SPECIMEN WIDTH: 4. 000" FREQUENCY: Ø. 10 HZ HP9-4-REFERENCES:MAØØ7 **ENVIRONMENT:** R. T., 3.5% NACL . 30 $\Delta K (MPA \sqrt{m})$ ΔK (MPA √m) 100 40 10 100 10 40 (A)11111 **(B)** 10 ⁰ STRESS RATIO = STRESS RATIO = -1.00 10-2 10-2 10-1 10-1 10⁻³ 10-3 10⁻² 10⁻² da/dN (in/cycle) 10-4 10-4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10⁻⁴ 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ Ö 10⁻⁸ 10⁻⁸ 40 100 10 40 100 10 **(D) (C)** أباليليا 10 ⁰ 10 0 STRESS RATIO = STRESS RATIO = 10 2 10⁻² 10⁻¹ 10-1 10⁻³ 10⁻³ 10⁻² 10⁻² da/dN (in/cycle) 10-4 10 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10⁻⁴ 10⁻⁴ 10⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 40 10 100 10 40 100 ΔK (KSI √in) ΔK (KSI √in) Figure 6.8.3.14

YIELD STRENGTH: 212. Ø KSI

CONDITION/HT: UTS=22Ø-24ØKSI

3. 20"TH BILLET

FORM:

ALLOY

STEEL

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.15 INDICATING EFFECT

MATERIAL: ALLOY CONDITION: TUS=2		30		* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
DELTA K (KSI*IN**1/2)	:	DA/DN (10**-6 IN./CYCLE)				
	: A	B	С	D		
	:ALT IMMERSION IN SEA WATER-	E= R.T. ALT IMMERSION IN SEA WATER- 2ND HALF DRY CYC	ALT IMMERSION IN SEA WATER-			
A: 11.3 DELTA K B: 11.3 MIN C: 11.3 D:		. 357	. 416			
13. 0 16. 0 20. 0 25. 0 30. 0	0 : 1.62 0 : 3.28 0 : 5.63 0 : 9.59 0 : 12.5	. 665 1. 54 3. 27 5. 83 8. 63 13. 2 18. 9	. 782 1. 72 3. 51 6. 22 8. 97 12. 2 16. 9 30. 7			
A: 35.3 DELTA K B: 43.8 MAX C: 55.9 D:	2 : 12.1 7 : 7 : :	20. 0	36. 1			
ROOT MEAN SQUARE PERCENT ERROR	21. 34	19. 96		* ****		
LIFE 0.0- PREDICTION 0.5- RATIO 0.8- SUMMARY 1.25- (NP/NA)	0.5 0.8 1.25 2.0					

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.16 INDICATING EFFECT

E= R.T. IN ALT IMMERSION R- IN SEA WATER- Y IMMERSED 2.32
ON ALT IMMERSION R- IN SEA WATER- Y IMMERSED
2. 32
2. 32
2. 32
2. 40
4. 71
7 . 74
11. 4
16. 3
22. 1
34. 4
43. 0
44. 6
39. 09

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.17 INDICATING EFFECT

OF FREQUENCY

B f(HZ) = 1.00 1.34 1.35 2.45 4.25 7.00 10.5 15.1	C F(HZ)= 10.00 .813 .859 1.46 2.74 5.25 8.77	D
1. 34 1. 35 2. 45 4. 25 7. 00 10. 5	. 813 . 859 1. 46 2. 74 5. 25 8. 77	
1.35 2.45 4.25 7.00 10.5	. 859 1. 46 2. 74 5. 25 8. 77	
1.35 2.45 4.25 7.00 10.5	. 859 1. 46 2. 74 5. 25 8. 77	
2. 45 4. 25 7. 00 10. 5	. 859 1. 46 2. 74 5. 25 8. 77	
2. 45 4. 25 7. 00 10. 5	1. 46 2. 74 5. 25 8. 77	
2. 45 4. 25 7. 00 10. 5	1. 46 2. 74 5. 25 8. 77	
4. 25 7. 00 10. 5	2. 74 5. 25 8. 77	
10. 5	8. 77	
	- ' ' '	
15. 1		
	13. 1	
21.3	17. 8	
41.1	2 7. 7	
78 . 4		
540.		
	490 .	
791 .		
	426.	
7. 22	12. 29	~
		_
	149. 284. 540. 791.	78. 4 40. 6 149. 60. 4 284. 93. 9 540. 154. 266.

Figure 6.8.3.17

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.18 INDICATING EFFECT

	1525F 2		30 LHR,1025F 2+2HR				
DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
11102 2110	· • · · ·	. A	В	С	D		
		: : E= R.T. : L. H. A.	E= R. T. S. T. W.				
DELTA K B: MIN C: D:		: 1.00 : :	1. 25				
	13. 00 16. 00 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00 70. 00	: 3. 91 : : : : :	1. 98 3. 50 5. 68 8. 78 12. 8 18. 6 27. 4 62. 3 152. 388.				
DELTA K B: MAX C: D:		4. 55	550.				
ROOT MEAN S	ROR	12. 92					
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	8 25 1 0	1				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.19 INDICATING EFFECT

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)				
/1/21 × 1/4 × ×	:	A	В	С	D		
	:	R=+0. 30					
DELTA K B: MIN C: D:	11.36 : : :	. 756					
	13.00 : 16.00 : 20.00 : 25.00 : 30.00 : 35.00 : 40.00 : 50.00 :	1.34 2.62 4.51 7.34 11.5 18.6 31.2 98.9 261.					
DELTA K B: MAX C: D:	43. 58 : : : :	327.					
ROOT MEAN S PERCENT ER		9. 89					
PREDICTION	0. 8-1. 25	1					

Figure 6.8.3.19

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.20 INDICATING EFFECT

	1550F 2HRS		30 R,1025F 2+2HR				
	DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)				
	:	A	В	C	D		
	:	R=+0. 30	R≈+0. 50				
DELTA K B: M.IN C: D:	7. 73 : 7. 94 : : :	. 529	. 632				
	8.00 : 9.00 : 10.00 : 13.00 : 16.00 : 20.00 : 25.00 :	581 816 1.12 2.52 4.51 7.35 9.57	. 645 . 880 1. 17 2. 36 3. 99 6. 60 9. 91				
DELTA K B: MAX C: D:	27. 36 : 25. 94 : :	9. 82	10. 5				
ROOT MEAN S PERCENT ER		12. 81	11. 39				
PREDICTION RATIO SUMMARY	0.8-1.25	1	1				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.21 INDICATING EFFECT

MATERIAL: ALLOY STEEL HP9-430 CONDITION: 1550F 2HR5 OQ,-100F 1HR,1025F 2+2HR ENVIRONMENT: R.T.,L.H.A.							
DELTA K (KSI*IN**1/2)	:	DA/DN (10**-6 IN./CYCLE)					
(1102 1111 11 12 12 1	. A	В	С	D			
	R=+0. 08						
A: 5.05 DELTA K B: MIN C: D:	5 : . 226 : : : :						
7. 00 8. 00 9. 00 10. 00 13. 00 16. 00 20. 00 25. 00	0 : .485 0 : .669 0 : .890 0 : 1.78 0 : 3.00 0 : 5.04						
A: 29.80 DELTA K B: MAX C: D:) : 11.1 : : :						
ROOT MEAN SQUARE PERCENT ERROR	17. 24						
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2	0. 5 0. 8 1. 25 i 2. 0						

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.22 INDICATING EFFECT

CONDITION: ENVIRONMEN	1550F 2H T: R.T.		30 1HR, 1025F 2+2HR				
DELTA K (KSI*IN**1/2)			DA/DN (10**-6 IN./CYCLE)				
(1101 114	:	Α	В	С	D		
	:	R=+0. 30	R=+0. 50				
		. 449					
DELTA K B: MIN C:	7, 06 :		. 454				
D:	:						
	8.00:		. 920				
	9.00 :	1. 06	1. 59 2. 38				
	13.00		4. 89				
	16.00:		6. 96				
	20.00 :	7. 45 11. 7	9. 51				
			15. 5				
	30 . 00 : 35 . 00 :		25. 0 36. 3				
_			32 . 3				
A: DELTA K B:	27. 24 :	15. 3	62. 3				
MAX C:			JE. J				
D:	:						
PERCENT E	RROR	10. 46					
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 5	5 1	1				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.22 INDICATING EFFECT

DELTA K I	-	: A : R=+0.50	В	С	מ
DELTA K I	3:				
DELTA K I	3:	: 1.26			
MIN (-	- ·			
	™ .	:			
	5. 5:	:			
		:			
	10.00	: 1, 35 : 2, 65			
	· - ·	. 2, 65 : 4, 45			
	20. 00				
	25. 00				
	30. 00 35. 00				
	40. 00				
	A: 47. 24	: 69.8			
DELTA K I		:			
MAX (,:):	•			
• 		:			
PERCENT	ERROR	18.04			
LIFE PREDICTION	0. 0-0. DN 0. 5-0. 0. 8-1.	5 8		ante resu capa parti resus (tito parti resus tente triba regul cara alter despresa parti	~

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.24 INDICATING EFFECT

		EEL HP9-4 HRS OG,-100F 1H			
DELTA **KSI	 K *1/2)	: :	DA/DN (10##-	-6 IN. /CYCLE)	
***************************************	2 · 2 ·	A	B	С	D
		: E=- 65F : L. H. A			
A: DELTA K B: MIN C: D:	9. 19	: . 482 : :			
	10.00 13.00 16.00 20.00 25.00	1, 23 2, 15 3, 59 5, 91			
A: DELTA K B: MAX C: D:		11.1 : :			
ROOT MEAN ERCENT E		11.36			
PREDICTION RATIO SUMMARY	0.8-1.	8 25 i O			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.25 INDICATING EFFECT

		EEL HP9-4- PHRS 00,-100F 1	- 30 HR 1025F 2+2HR		
DELTA (KSI*IN*		:	DA/DN (10**6	IN. /CYCLE)	
/1/21 4 1144	*1/5/		В	С	D
		: E≅ R. f. : L. H. A.	E= R.T. S.T.W.		
DELTA K B: MIN C: D:	9 . 52	•	1. 36		
	10, 00 13, 00 16, 00 20, 00 25, 00 30, 00	: : : : : : : : : : : : : : : : : : : :	3. 00 5. 35 9. 17 13. 2 19. 1 32. 3		
DELTA K B: MAX C: D:		: : : :	41. 3		
ROOT MEAN S		0. 00	11. 98		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	8 25 0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.26 INDICATING EFFECT

DELTA (KSI*IN*+			DA/DN (10**-6	IN. /CYCLE)	
(1/21 + 1/4+)	-1/2/		В	С	D
		: E= R.T. : L. H. A. 6HZ	E= R. T. S. T. W. 1HZ		
A: DELTA K B: MIN C: D:	7. 33	: 1.18 : :	. 196		
	8.00 9.00 10.00 13.00 16.00	: : : 1.67	. 289 . 466 . 688 1. 60 2. 81		
		: 8.51 : 11.9 :	4.84 8.07 12.2 17.7 24.9		
DELTA K B: MAX C: D:	48. 54	: 12.6 : :	4 2. B		
PERCENT ER	ROR				
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	8 25 1 0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.8.3.27 INDICATING EFFECT

DELTA			DA/DN (10**	-6 IN./CYCLE)	
(KSI*IN*	*1/2) : :	A	В	C	D
	:	R=+0. 08			
A: DELTA K B: MIN C: D:		. 922			
	13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 :	6. 04 9. 64 14. 8 22. 2 46. 7			
	60.00 : 70.00 : 80.00 :	92. 3 174. 315.			
DELTA K B: MAX C: D:		507.			
ROOT MEAN S PERCENT ER	GUARE ROR				
PREDICTION RATIO SUMMARY	0.8-1.25	1			

TABLE 6.8.3.28

TEST TIME DATE REFER	1977 MA005	1977 HA005	1967 74302
STAN DEV			t ; ;
CRACK LENGTH K(Q) K(ISCC) MEAN (IN) (KSI*SORT IN) A	1, 379 < 41, 60	1,365 < 38.60 1,365 < 38.60	0.300 116.00 35 00*
SPECIMEN	7 1.250 BWOL 5 1.251 BWOL	9 1.250 BWOL 9 1.251 BWOL	0. 500 NB 0. 480 NB
HLOIR	3.08	3.07	1.500
YIELD STR ENVIRONMENT (K51)	206 0 STM. SEA WATER 206 0	204 5 SIM. SEA WATER 204.5	231.0
SPEC	7	S-1	, , , , , , , , ,
TEST TEMP (F)	⊢ α	<u>κ</u>	0 48 R.T.
THICK (TR)	1 25 1 25	1 25 1 25	0 48
CHEDITION FORM			GULHCHED + P
	FRUUCT TEST SPEC YIELD	SPECIMEN	FRUUCT TEST SPEC VIELD TORH THICK TEMP OR STR ENVIRONMENT WIDTH THICK DESIGN LENGTH K(Q) K(ISCC) MEAN DEV TIME (II) (F) (KSI) (KSI) (IN) (**SO) (IN) (KSI*SORT IN) (MIN) W B A A A A A A A A A A A A A A A A A A

#101E-DATA UHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2.5(KISCC/TYS)SQUARED

TABLE 6.9.3.1

	STAN TEST DEV TIME DATE REFER (MIN)	0000 1968 722	€8324 8961 0000E <	1971 84351
	CRACK LENGTH K(9) K(ISCC) MEAN (IN) (KSI*SORT IN)	*00 88	35.00*	00 89,00 20.00
HP9-4- 45 K(ISCC)	WIDTH THICK DESIGN (IN) (#ESG)	2. 000 0. 050 CNT	2. 000 0. 050 CNT	1. 500 0. 480 NB 0. 300
ALLOY STIEL	FEST SPEC VIELD FEMP OR SIR ENVIRONMENT (F) (KSI)	a. T 212 5 DIST. WATER	R T 212 5 3N NACL	R T 220.0 3.5 PCT NACL.
	HODUCT M THICK (14)	1650 O SHR AC S O 08 R	15/09F 0 5HR AC 5 0 08 R T	H & BF 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

*NITTE DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REGUIREMENTS OF 2. SKRISCC/TYS)SQUARED

TABLE 6.10.1.1

MEAN PLANE BIRAIN FRACTURE TOUGHNESS DATA OF
ALLOY STEEL HY-TUF AT ROOM TEMPERATURE

(NUMBER OF SPECIMENS)		7.8	1
			111. 5 + 2. 1 (2)
BTANDARD DEVIATION	FORGING		1
HEAN KIC + BTANDARD (KBI BORT(IN) DEVIATION		1	!
CONDITION/HT (Kg		CONDITION/HT	1700F 1HR, AC, 1600F 1HR, DG, 530F 2HR

TABLE 6.10.2.1

	84 PER PER PER PER PER PER PER PER PER PER	1974 91284	1974 91284	1974 91284	91284 91284
	DATE	1974	1974	1	1974 9
	K(IC) STAN K(IC) MEAN DEV (KSI*50RT IN)	120. 00	113.00	116.00	110.00 113.00 111.5/ 2.1
K(IC)	CRACK 2.5* LENGTH (K(IC)/TYS)**2 (IN) (IN)	988 0.92	0.977 0.80	0.983 0.86	0.977 0.76 0.973 0.81
HY-TUF	WIDTH THICK DESIGN (IN) (IN)	1. 003 CT	1, 999 1, 003 CT	9 1.000 CT	1. 003 CT 1. 003 CT
ALLOY STELL	VIELD STRENGTH WIDTH (KST) (IN)	0 8	200.0 1.99	198.0 1.99	198. 0 1_999 198. 0 1 999
	SPECIMENORIENT	1 1 1	Ţ	- - - - -	<u>1</u>
	PRODUCT TEST FORN THICK TEMP (JN) (F)	1700F 1HR AC, F 6.50 R.T. 1600F 1HR+1000F 20 HIN, 09, 550F 2HR	TOOP THRAG, F 6.50 RT.	1700F 1HR, AG, F 6 50 R T. 1500F 1HR, 09, 550F 2HR	F 6 50 R.T.
	CONDITION	1700F 1HR AC.	1700F THR AC. 1400F THR+1000F	1700F 1HR, AC, F	1700F 1HR.AC, 1600F 1HR.DG, 550F 2HR

TABLE 6.11.3.1

ALLOY STI-EI. HY-150 K(18CC) FRODUCT TEST SPEC YIELD SPECIMEN CRACK (IN) (F) (KSI) MEAN DEV (IN) (F) (KSI) MEAN DEV (IN) (FSI ENVIRONHENT WIDTH THICK DESIGN LENGTH K(0) K(1SCC) MEAN DEV (IN) (FSI ENGRY IN) MP N A N A N A N A N A N A N A N		DATE REFER	30000 1968 73824
ALLOY STLEI. HY-150 K(18CC) FRODUCT TEST SPEC YIELD THICK TEMP OR STR ENVIRONMENT WIDTH THICK DESIGN LENGTH K(0) K(1SCC) HEAN (IN) (F) (KSI) HAN (ESC) HEAN (IN) (RSI#SORT IN) H B A THICK DESIGN LENGTH K(0) K(1SCC) HEAN (IN) (KSI#SORT IN) H B A THICK DESIGN LENGTH K(0) K(1SCC) HEAN (IN) (RSI#SORT IN) H B A THICK DESIGN LENGTH K(0) K(1SCC) HEAN (IN) (RSI#SORT IN) H B A THICK DESIGN LENGTH K(0) K(1SCC) HEAN (IN) (RSI#SORT IN) H B A THICK DESIGN LENGTH K(0) K(1SCC) HEAN (IN) (RSI#SORT IN)		TEST TIME (MIN)	00000
ALLOY STLEI PRODUCT TEST SPEC YIELD OITION FORM THICK TEMP OR STR ENVIRONMENT (IN) (F) (KSI)		STAN DEV	1 1 1
ALLOY STLEI PRODUCT TEST SPEC YIELD OITION FORM THICK TEMP OR STR ENVIRONMENT (IN) (F) (KSI)		C) MEAN	1 *00
ALLOY STLEI PRODUCT TEST SPEC YIELD OITION FORM THICK TEMP OR STR ENVIRONMENT (IN) (F) (KSI)		K(ISC GRT IN	113
ALLOY STLEI PRODUCT TEST SPEC YIELD OITION FORM THICK TEMP OR STR ENVIRONMENT (IN) (F) (KSI)	(2281	CRACK LENGTH K(G) (IN) (KSI*S)	0.200
ALLOY STLEI PRODUCT TEST SPEC YIELD OITION FORM THICK TEMP OR STR ENVIRONMENT (IN) (F) (KSI)	Ķ	DESIGN (*=50)	CANT*
ALLOY STLEI PRODUCT TEST SPEC YIELD OITION FORM THICK TEMP OR STR ENVIRONMENT (IN) (F) (KSI)	20	CIMEN- THICK (IN)	1 000
ALLOY STLEI PRODUCT TEST SPEC YIELD OITION FORM THICK TEMP OR STR ENVIRONMENT (IN) (F) (KSI)	HY-1	WIDTH (IN)	1 000 F
FRODUCT TEST SPEC Y DITION FORM THICK TEMP OR (IN) (F) (IN) (F) THR WG F 1 00 R.T 1	ALLOY STEEL		3. O PCT NACL
PRODUCT TEST SPEC OR THICK TEMP OR (IN) (F)		TELD STR E	50.03
) TT T ON		SPEC)	' '
) TT T ON		TEST TEMP (F)	<u>+</u> 1
) TT T ON		PUCT THICK (IN)	00 1
) TTIC		FRO FORM	: . ! <u>c</u> !
		CONDITION	15COF 1HR NG

*NOTE: DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2.5(KISCC/TYS)SQUARED

TABLE 6.12.1.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL HY-180

IFSI CONDITIONS

SPECIMEN DATEON L-T

ENVIRONMENT LAB AIR
AT R T

CONDITION/HT	PRODUCT	STRESS RA110	FREG.	DELTA K		FATIGUE CRACK GROWTH RATES	RACK GRE	JUTH RATE	Į,	
				(KSI SORT(IN))	CI E	'n	61	50	90	100
51A (UTS - 180	FURGED PAR	0 10	10 00					4.29	30.8	
STA (UTS = 180 FSI)	FORGED BAR	0 10	00 OE			60 0	0 55	3.33		
97A (UTS = 180	FORGED RAR	0 20	10 00					5. 61		
GTA (UTS = 180 MSI)	FORGED BAR	0 20	30 00			60 0	0 62	4 00		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.12.3.1 INDICATING EFFECT

CONDITION:	ALLOY STEEL STA (UTS = T: R.T.,L	180KSI)			
DELTA (KSI*IN*			DA/DN (10**-6	IN. /CYCLE)	
(1102 " 214"	:	A	В	C	D
	:	R=+0. 10	R=+0. 50		
DELTA K B: MIN C: D:		. 0170	. 0105		
	3. 00 : 3. 50 : 4. 00 : 5. 00 : 6. 00 : 7. 00 : 8. 00 : 9. 00 : 10. 00 : 13. 00 : 16. 00 : 20. 00 : 30. 00 :	. 0232 . 0368 . 0539 . 0986 . 158 . 232 . 322 . 430 . 556 1. 07 1. 82 3. 33 6. 36 11. 2	.0179 .0313 .0491 .0979 .164 .248 .351 .474 .620 1.21 2.11 4.00 8.07		
DELTA K B: MAX C: D:		12. 9	9. 67		
ROOT MEAN S		14. 34	21. 78		
PREDICTION		1	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.12.3.2 INDICATING EFFECT

CONDITION: STA (UTS = 1BOKSI) ENVIRONMENT: R.T. LAB AIR	
DELTA K :	DA/DN (10**-6 IN./CYCLE)

DELTA K (KSI*IN**1/2)	: :	DA/DN (10**-	6 IN./CYCLE)	
(V21*1M**1\5)	. A	В	С	D
	: R=+0. 10	R=+0. 50		
A: 11.51 DELTA K B: 10.71 MIN C: D:		. 899		
13.00 16.00 20.00 25.00 30.00 35.00 40.00 50.00	: 2.31 : 4.29 : 7.04 : 10.1 : 13.6 : 18.0	1.84 3.37 5.61 8.57 11.9 15.8 20.6		
A: 59.28 DELTA K B: 43.61 MAX C: D:		25. 0		
ROOT MEAN SQUARE PERCENT ERROR	3. 94	5. 39		
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	8 25 1 0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.12.3.3 INDICATING EFFECT

DELTA (KSI*IN*			DA/DN (10**-	6 IN. /CYCLE)	
(1101 - 111 -	:	A	В	С	D
	:	R=+0.10			
A: DELTA K B: MIN C: D:	24. 02 : : : :	5. 47			
	25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 : 70. 00 :	11. 6 15. 8			
DELTA K B: MAX C: D:	77. 74 :	114.			
RODT MEAN S PERCENT EF					. and after the till and test day are to the till

Figure 6.12.3.3

TABLE 6.13.1.1

FATTOGE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL HII

SPECTMEN OPTENTATION	۲.			ENVIRONMENT	LAB AIR AT R T
CONDITION/HT	PRODUCT	STRESS RA11 <u>U</u>	FREG (HZ)	DELTA K LEVELS (KSI SORT(IN))	FATIOUE CRACE GROWTH RATES (MICRE IN/CYCLE)
AUSTENIZED & IEMPERED (TVS = 220NSI)	RDUND BAR	01 0	10 00		3.53
AUSTENIZED & TEMPERED DO TYS + PROMSI)	ROUND BAR	0	30 00		5 93 5 65
AUSTENTZER & TEMPERED TYS = REGNETD	RAUNT BAR	09	00 01		46 4
AUSTENIZED & TEMFERED TYS - REGKSI)	ROUND BAR	Ö 20	00 00		99 4 62 9 60 0

TABLE 6.13.1.2

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL HII

		100		
	FS	50	34 6	
	DWTH RAT	50		
	FATIGUE CRACK GROWTH RATES (MICRO INVEYCLE)	10		1 61
650 F	FATIGUE (MI	٠٠ <u> </u>		
A I R	!	() ()		
E NU I RONMENT	DELTA K	(KSI SQRT(IN))		
	FREG (HZ)		2 00	2.00
	STRESS		0 10	08-0
5	PRCIDUCT		ROUND BAR	ROUND BAR
SOEL THEN	CGMDITIONZHI		AUSTENIZED & TEMPERED (TYS = 220KSI)	AUSTENTZEN & TEMPERED (TYS = RZOKST)

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.13.3.1 INDICATING EFFECT

DELTA			DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN*	*1/2) : :	Α	В	С	D
	: :	R=+0.10	R=+0. 50		
DELTA K B: MIN C: D:	:	. 0757	. 0148		
	3. 50 : 4. 00 : 5. 00 : 6. 00 :		. 0249 . 0428 . 0905 . 163		
	7.00 : 8.00 : 9.00 : 10.00 : 13.00 :	. 163 . 240 . 339 . 791	. 262 . 390 . 549 . 738 1. 49		
	16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 :	2. 95 5. 52 8. 88 12. 9	2. 52 4. 56		
DELTA K B: MAX C: D:		21. 3	10. 5		
PERCENT ER	ROR	4.06	13. 76		
LIFE PREDICTION RATIO SUMMARY	0.0-0.5 0.5-0 8	1	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.13.3.2 INDICATING EFFECT

CONDITION:	ALLOY STEEL AUSTENIZED T: R.T., LA	& TEMPERED	(TYS = 220KSI)		
DEL.TA (KSI*IN*			DA/DN (10**-6		
(1/01 - 1)4 -	:	A	В	С	D
	:	R=+0.10	R=+0. 50		
DELTA K B: MIN C: D:	12. 92 : 10. 54 : :	. 949	. 691		
	13. 00 : 16. 00 : 20. 00 : 25. 00 : 35. 00 : 40. 00 :	. 970 1. 90 3. 53 6. 19 9. 73 14. 5 20. 9	1, 41 2, 66 4, 94		
DELTA K B: MAX C: D:	42. 50 : 22. 18 : :	24. 9	6. 46		
ROOT MEAN S		1. 90	2. 05	may park ways case and ways case care have were care and care and care and care and care and care and care and	
PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25 1. 25-2. 0 >2. 0	1	1		

Figure 6.13.3.2

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.13.3.3 INDICATING EFFECT

MATERIAL: ALLOY ST CONDITION: AUSTENI ENVIRONMENT: + 650	ZED & TEMPERED F,AIR	(TYS = 220KSI)		
DELTA K		DA/DN (10**-	6 IN./CYCLE)	
(KSI*IN**1/2)	: : A	В	С	р
	: R=+0. 10	R=+0. 50		
A: 27.33 DELTA K B: 7.01 MIN C: D:	: 7. 00 : :	1. 03		
8.00 9.00 10.00 13.00 16.00 20.00 25.00 30.00 35.00 40.00 50.00 60.00 70.00	: 8.83 : 8.83 : 13.1 : 18.6 : 34.6 : 59.8	1. 17 1. 36 1. 61 2. 97		
A: 87.90 DELTA K B: 14.69 MAX C: D:	: 216.	4. 42		
ROOT MEAN SQUARE PERCENT ERROR	6. 82	11. 15		
LIFE 0.0-0. PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	8 25 1 0	1		

Figure 6.13.3.3

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.13.3.4 INDICATING EFFECT

OF ENVIRONMENT

	-	Κ	:	DA/DT (10+	++-3 IN/HOUR)	
(KSI*	IN#1	+1/2)	: : A	В	С	D
			: E= :DIST. WATER	E= ARGON, 100% RE HUM	ïL	
	A:	17. 50	: 15.4			
K MAX	B:	22. 50	•	87 6.		
MIN	C:		:			
	D:		:			
			: 81.2			
			573.	1089.		
			: 1648.	2424. 2552		
		33.00	: 3253.	3552.		
	A:	38. 50	: 4763.			
K MAX	B:	37.00	:	5024.		
MAX	C:		:			
	D:		:			

TABLE 6.13.3.5

						ALLUT SIFEL	Ī	ž	K(ISCC)							
CORPITION	I ORM	FORM THICK (IN)	TEST TEMP (F)	TEST SPECTEMP OR	VIELD STR (KSI)	ENVIRONHENT	WIDTH (IN)	WIDTH THICK DESIGN LENGTH	CRACK LENGTH K(Q) K(ISCC) MEAN (IN) (KSI*SGRT IN) A	(0) K(SI*50RT	ISCC) ME IN)		STAN TEST DEV TIME (MIN)		DATE REFER	
OVENCHED + P TEMPEGED AT TROOP	P 11006	0 48	0 4B R T		188.0	188. 0 3. 5 PCT NACL	1, 500	1, 500 0, 480	1 1	54 00	30 00	t 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1971 84351	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 ; 1	! !	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 1 1	1 1	1	1		1	1	1	
1325F.1830F S 0 548 AC.1060F 2+24R	5 160F 2+24FF		0 GB R T.	!	205. 6	205. 6 DIST. WATER	2. 003	0.050 CNT			35.00#		4	961 00	4060 1968 72283	
1325F.1850F S 0 5HR AC.1060F 2+2HR	5 C.OF 2+2HR	BO 0	0 08 R. F	1	205. 6 3	205. 6 3N NACL	2. 000	0, 050 CNT			28 00*		002 <	00 196	> 20000 1968 72293	
:	1 1 1	1 1	1 1 ;	! :	! :	1										

*NOTE DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2.5(KISCC/TYS)SQUARED

TABLE 6.14.1.1

FAITOUR CRACK GROWTH RATE AT BEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL TONE STEEL

OF LENTALION CONDITION/HT	PRODUCT FORM	STRESS RATIO	FREG (HZ)	ENVIHONMENI DELTA K	4 R	AIR R T FATIGUE CR	T T FATIGUE CRACH GROWTH RATES (HICRG IN/SYCLE)	WTH RATI	ES	
		C AME PROPERTY AND ADDRESS OF TAXABLE		(KSI SGRT(IN))	U) IO	ι'n .	O	50	50	100
† 1 1	PLATE	010	900			-	; ;	5 20	55 6	
	PLATE	0 10	9 00				44 0	3, 90	25.2	
	PLATE	000 0	00 9				08 0	4 64		
	PLATE	0.50	6 00			60 0	1 60	4 70		
	PLATE	0 70	00 9			0 12	c 93	5 76		

TABLE 6.14.1.2

FAILOUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL TONI STEEL

-	
CAC LU	
	5!

			ur.	• •	ر. د	۳	
	ES	50	4 50	404	85	8	
	DWTH RAT	50		2 45	1 61	6 48	
	WE CRACK GROWTH R	<u> </u>		0 11	1 60	0.52	
ያ ተ ላ ጉ ጥ ተ 4	FATIGUE CRACK GROWTH RATES	īD.					
23 AT T AT	is ci						
ENVIRONMENT S T W	DELTA K	(KSI SORT(IN))					
	FREG (HZ)		0 10	1 60	0 10	1 00	
	STRESS RATIU		01 o	0 10	0.50	05 0	
r - 1	PRODUCT FORM		PLATE	PLATE	FLATE	PLATE	
SFECTMEN ORIENTATION L-1	CONDITION/HT						

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.14.3.1 INDICATING EFFECT

MATERIAL: ALLOY STEEL CONDITION: ENVIRONMENT: R.T., D		TEEL		
DELTA K (KSI*IN**1/2)		DA/DN (10**-6	IN. /CYCLE)	
(WDIAIMAA1\5)	A	В	С	D
	R=+0.10	R=+0.50		
A: 7.88: DELTA K B: 4.05: MIN C: 2 D:	. 165	. 069		
5. 00 : 6. 00 : 7. 00 : 8. 00 : 9. 00 : 10. 00 : 13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 : 70. 00 :	. 177 . 294 . 449 1. 14 2. 15 3. 90 6. 57 9. 64 13. 1 16. 8 25. 2 35. 0 46. 6	. 0971 . 168 . 294 . 484 . 730 1. 00 1. 89 2. 89 4. 70 7. 57 10. 4		
A: 71.09 : DELTA K B: 34.16 : MAX G: D:	49. 0	12. i		
ROOT MEAN SQUARE PERCENT ERROR	33. 80	24. 26		
LIFE 0.0-0 5 PREDICTION 0.5-0 8 RATIO 0.8-1.25 SUMMARY 1.25-2 0 (NP/NA) >2.0	1	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.14.3.2 INDICATING EFFECT

DELTA K (KSI*IN**1/2)		DA/DN (10**-6	IN. /CYCLE)	
(UDIATINATIVE)	Α	В	C	D
; ;	R=+0. 10	R=+0. 50		
A: 23.16 : DELTA K B: 5.79 : MIN C: :	9. 9 1	. 0829		
6.00 : 7.00 : 8.00 : 9.00 : 10.00 : 13.00 : 16.00 :		. 106 . 278 . 576 1. 02 1. 60 4. 12 7. 55		
20.00 : 25.00 : 30.00 : 35.00 : 40.00 : 50.00 :	12.8 19.9 25.5 30.5 43.5	13. 1 21. 2 30. 7 42. 1 55. 3 85. 2 114.		
A: 59.08: DELTA K B: 69.37: MAX C: D:	<u> </u>	136.		
ROOT MEAN SQUARE PERCENT ERROR	6. 88	78. 50		
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 SUMMARY 1.25-2.0 (NP/NA) >2.0	1	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.14.3.3 INDICATING EFFECT

MATERIAL: ALLOY ST CONDITION: ENVIRONMENT: R.T.		TEEL		
DELTA K		DA/DN (10**-6	IN /CYCLE)	
(KSI*IN**1/2)	: : A	В	С	D
	: R=+0.10	R=+0.30	R=+0. 70	
A: 11,50 DELTA K B: 5.39 MIN C: 3.91 D:	:	. 0561	. 0937	
4.00 5.00 6.00 7.00 8.00 9.00 10.00 13.00 16.00 20.00 25.00 30.00 35.00	1. 31 2. 82 5. 20 8. 14 10. 9 13. 5	. 0993 . 207 . 362 . 563 . 807 1. 73 2. 88 4. 64 7. 25 10. 4 14. 4	. 0943 . 122 . 185 . 290 . 446 . 660 . 931 2. 03 3. 44 5. 76 9. 31 13. 7 19. 3 27. 3	
50 . 00 40 . 00 70 . 00	: 22. 9 : 32. 6 : 47. 4 : 69. 3	16.8	55. 8	
ROOT MEAN SQUARE PERCENT ERROR	21. 23	12. 49	53. 40	
LIFE 0.0-0 PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	8 25 0 1	1	1	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.14.3.4 INDICATING EFFECT

MATERIAL: A CONDITION: ENVIRONMENT		10NI ST	EEL.		
DELTA (KSI*IN**			DA/DN (10**-6	IN. /CYCLE)	tage finds after their case area have been and also have been dead finds the
(1/01-1/4-	:	Α	В	С	D
	:	R=+0. 10	R=+0. 50		
DELTA K B: MIN C: D:		. 0224	. 0357		
	70.00 : 80.00 : 90.00 :	. 0283 . 0594 . 111 . 449 1. 18 2. 92 6. 43 11. 3 17. 4 24. 4 40. 4 58. 1 76. 8 96. 1	. 0456 . 100 . 191 . 328 . 521 1. 50 3. 17 6. 48 12. 1 18. 9 26. 3 33. 9 48. 3 60. 6		
A: DELTA K B: MAX C: D:	75 . 02 : 68. 00 : :	126.	68. <u>6</u>		
ROOT MEAN S PERCENT ER		33. 58	34.04		
SUMMARY	0.5-0.8 0.8-1.25	1 1 2	1		

Figure 6.14.3.4

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.14.3.5 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI⊀IN*	. K #1/21		DA/DN (10*	¥-6 IN./CYCLE)	
(101-114-	*1/4/	: A	В	С	D
		: E= R. T. : S. T. W.			
A: DELTA K B: MIN C: D:		: .0314 : :			
A: DELTA K B: MAX C: D:	138. 84	:			
ROOT MEAN PERCENT E	SQUARE RROR	28. 84			
LIFE PREDICTION	0. 0-0. 0. 5-0. 0. 8-1. 1. 25-2.	9 25 1 0			

TABLE 6.15.1.1

₹ •	
	AT R T
ALLOY STEEL 12-9-2 MAR	
SPECIMEN	OPIENTATION L-1

	PRODUCT STRESS FREG FALTGUE CRACK GROWTH RATES FORM RATIO (HZ) DELTAIN (MICROTIN/CYCLE)	(KSI SQRT(IN)) 25 5 10 20 50 100	HOUND BAH 0 10 00 8 17	HOUND BAR 0 10 30 00	
1	PRODUC FURM		HOUND BA	ROUND BA	
	CONDITION/HT		3 1A 900	3TA 900	

TABLE 6.15.2.1

	DATE REFER	1979 DA001
	SPECTMEN YIELDSPECIMEN CRACK 25* K(IC) STAN ORIENT SIRENGTH WIDTH THICK DESIGN LEMGTH (K(IC)/TVS)**? K(IC) MEAN DEV I (KSI) (IN) (IN) (IN) (KSI) W B A	29, 60
K(1C)	CRACK 2 5* EWGTH (K(IC)/TYS)**? (IN) (IN) A	0 942 0 03
12-9-2(MAR)	PECIMEN CONTROL CRITICAL DESIGN LEM (1N) (1 B B A	
ALLOY STIEL	VIELD STRENGTH WIDTH TO (KSI) (IN)	251 3 2.005 0.958 CT
	HICK TEMP ORIENT (N) (F)	3 00 R T L-1
	ON FORM HICK TEMP (IN) (F)	#u
	CONDITION	S1A 900

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.15.3.1 INDICATING EFFECT

OF FREQUENCY

MATERIAL: ALLOY STE CONDITION: STA 900 ENVIRONMENT: R.T.		AR		
DELTA K		DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**1/2) :	Α	В	С	D
:	F(HZ)= 10.00 SP. THK. =. 503"	F(HZ)= 30.00 SP. THK. =. 253"		
A: 12.68 : DELTA K B: 6.95 : MIN C: 6 : D:	. 730	. 014		
7.00 : 8.00 : 9.00 : 10.00 : 13.00 : 16.00 :	. 863 2. 68	.0154 .0401 .0829 .149 .581 1.86 8.92		
A: 23.91 : DELTA K B: 21.41 : MAX C: : D: :		15. 9		
ROOT MEAN SQUARE PERCENT ERROR	11. 25	14. 09		
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.2 SUMMARY 1.25-2.0 (NP/NA) >2.0	3 25 1)	1		

TABLE 6.16.3.1

					ALI OY STFEL	INCI	12NI-5CR-3MO K	K(ISCC)					
aol a Ediado	PRU FORM	HOPUT HICK	1831 TEMP (F)	SPEC	VITLD SIR ENVIRONMENT (KS1)	MIDIH (IN)	SPECIMEN	CRACK LENGTH K(Q) K(ISCC (IN) (KSI*SGRT IN)	K(ISCC) MEAN	STAN DEV	TEST TIME (MIN)	DATE 6	REFER
	1 1	: 1 :	π H	! ! ! ;	II SEAMATE	 ! 	CANT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 00 0 00 14.	86 15	11	696	C . C
	1	1	F	1-S	185 0 3 5 PCT NACI.	1 1	CANT	135.00	B3 00		4800	1967	70897
	<u>s</u>	1 1 00	۲ د	1 1 (1	185 0 3 5 PCT NACL. 185 0 190 0 190 0	3 200	1.000 WDL * CANT* 1.000 WDL * CANT*	1,520 95 80 138 00 1,520 85 00 123 00	43 60 44. 00 52. 00 50. 00 47. 4,	4. €	1 1 1 1	1969 6 1969 6 1969 6 1969 6	84317 84317 84317 84317
ELECTRIC FROMESE	' a	1 00	± ± ±	; ; ;	176 0 SYNTH SEAWATER	1.000	1. 000 CANT*	130.00	40 00	1 1	00009	1366 4	45166
TA UFLDED	· =	1 1 1		1 1	AWATER	1			33.00	1	1 1	695	€
DOM.		06 1	· ~	1	3 O SYNTH, SEAWATER	1.000	1. 000 CANT#	169.00	108.00		00009	~ ~ 7	51,
	54.	Q.	<u>ب</u> ت		O O 3. S PCT NACL	! ! ! ! ! !	1.000 CANT#	150.0	130.00*	f ; ; f	; } ; ; ; ;	972	9
1500 Jet-241	<u>د</u> :		-	' ! '	0 3 S PCT NACL		1 000 CANT*	202	*00 0	; ; ;	1 	: D	E3613
Taxb of terms	<u> </u>	1 00	<u>+</u> α	*	0 3 S PCT NACL	!!!	1 000 CANT*	155.0	110.00*			. 579	83613
166 5.1 .27	<u>.</u>	0 1	. ⊢ ,	, ,	175 0 3 5 PCT NACL		1 000 CANT#	00 1	105	1 1 1 1 1 1	i } ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	in no	83 613

ATHALL DATA LATELL FOLD NOT MEET MINIMUM SPECINEN THICKNESS REQUIREMENTS OF 2 STAISCE/ITYS) SQUARED

TABLE 6.16.3.1 (Cont't)

	N TEST V TIME DATE REFER (MIN)	1 1 1 1 1 1 1 1	1970 84342	1970 84342
	BTAN DEV	1		
	K.(ISCC) HEAR RT IN)	1 1 1 1 1 1	BO. 00	70, 00
K (15CC)	CRACK LENOTH K(G) (IN) (KBI#50 A	1 1 1 1 1 1 1	249, 00 80, 00	246.00
IZNI-5CR -3MD K	MIDTH THICK DEBICN LENGTH K(0) K(1SCC) HEAN (1N) (1N) (**SC) (1N) (KBI*SGRT IN) (**SC) (**SC) (**SC)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.500 0.500 CANT#	2.37 0.500 CANT+
I SN	WIDTH (IN)	1 1 1	2 500	2.5
ALLOY STEEL	ENVIRONMENT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	176 0 3 5 PCT NACL	176. 0 3. 5 PCT NACL
	YJELD BTR (KSI)	! ! !	0 92	76.0
	SPEC	1		
	. TEST SPEC (TEMP OR (F)	!	⊢	E.
	PRUBUCI 1 FORM THICK I	! ! !	1 00 R T L-5	1 00 R T. T-S
	PRE	: : !	C.	C.
	CORDITION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1500F, 90GF POHR AC	1500F, 900F 2018 AC

TABLE 6.17.3.1

K(ISCC)	
NI (180) (MAR	
ALLOY STEEL	

DATE REFER	972 836	, a a	1966 65166	972 E36	1972 83615	1972 81613	1972 83613	1971 81004	1971 91001
TEST TIME (MIN)	. '	1 1	: 000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	1 1 1	1 1	1 ; 1 ; 1	3 30000 1971
STAN		i i i	 	t 1	1 1 !	! !	† 	i i i	
K(ISCC) MEAN	140 00*	125 00*	108 00	130 0	120	0 09	105 0	143 00 1	130 00*
CRACK LENGTH (IN)	0 0	160 0	118.0	180 0	0 021	165 0	190		1
SPECIMEN	1 000 CA	000 CANT	1.000 CANT	20 CANT	1 000 CA	1.000 CANT	 00 CA	CANT	CANT
RIDIM (NI)	i		1 00		1	j		1	1
YIELD STR ENVIRONMENT (KSI)	170 0 3 5 PCT NACL	5 FC1	O SYNTH SEAWATE	O 3 S PCT NAC	PCT NAC	5 0 3 5 PCT N	0 0 3 5 PCT N	O SEAUAT	177 0 3 5 PCT NACL.
SPEC OR		1 i	1 1		1 :			. 	5 1
	2	~	E :	E .	œ	σ.		Н	P 1
- Tayayar - Tayayar - Tayayar - Tayayar	÷ .	0 - 1	00 1	Gr	00 t	90 -	1 90		05-7
-PR1	ũ.	2	<u>s.</u> .	2	<u>.</u>	2	2	4	* 1-
1801 1 1445	Poster Logica		1994 - 944	45 W	II 40 I	Industrial	Section 1	man in a constant of the second of the secon	03 at 0 at 23

ARTH TALA DATOTEN OF NOT MEET MINIMUM SPECIMEN THICKNESS REQUIRENEMIS OF 2 5(KISCC/TYS)SQUARED

TABLE 6.18.1.1

MEAN PLANE BTRAIN FRACTURE TOUGHNESS DATA OF ALLOY STEEL 18NI (200) (MAR) AT ROOM TEMPERATURE

zaccocontrata de postentados de propositivos de propositivos de propositivos de propositivos de propositivos de

TABLE 6.18.2.1

		: 222	222	22	222	
	REFER	83834 (83834 (83834 (83834 (83834 (83834 (83834 (83834 (83834 (83834 (83834 (1966 76411 (1)
	DATE	1972	1972 1972 1972	1972	1972 1972 1972	1966
	STAN DEV	1 7	1.2	0.7	9 0	t 1
	K(1C) K(1C) MEAN (KSI#SORT IN)	102.3/	/E '66	96.5/	100.3/	1 1
		103.00	100 00 100 00 70 00	96.00	100.00 101.00 100.00	81.00
n	# _	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 9.00 9.00 9.00 9.00 9.00	0. 48 0. 49	0.97 0.58 0.57	0.33
18NI (200) (MAR) K(IC)	CRACK LENGTH ((IN)	1 2 400 3 2 2 2 0 3 9 3 0	3, 930 2, 390 3, 940	2. 390 3. 940	3, 180 2, 360 3, 880	3, 160
200) (1	DESIGN	1 55 88 1 88	CT CT	C BB	C1 C1 C1	; ; ;
IBI	ũ	2. 400 3. 700	3. 900 2. 400 3. 940	3. 700	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.900
STFE1.	8B	7 20 31	7. 870 4. 720 6. 300	4, 730 7, 890	300 700 900	6.300
ALLOY STFEI	STRENGTH (KSI)	211.0 211.0 211.0	216. 0 216. 0 216. 0	219.0	210.0 210.0 224.0	224.0
	SPECIMEN ORJENT		7-1	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_
	(TEST (TEMP (F)	α -	E.	∝ .	F. T.	E .
	FDIM THICK TEMP (TN) (T)	4 4 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4, 25 4, 25	00 00 00 00 00 00 00 00 00 00 00 00 00	3 00
	FORM	۵	c.	<u>.</u>		
	COMPLITION	1650F 4 5 HR, AC, AGED 1000F A HR	1650F 4, 5 HR, AC, AGED 950F 24 HR	1650F 4 5 HR, AC, AGED 900F 21 HR	1650F 4 5 HR. AC. ACED 900F 6 HR	1650F, 4 5 HR, F AC. AGED 850F 24 HR

HOTES (1) VACUUM ARC REMELTED

Ç-. 3

TABLE 6.18.3.1

					₹	ALLOY STIEL	18NI	18NI (200) (MAR)		K(18CC)							
COMBITION	-	FORM THICK (IN)	TEST TEMP (F)	SPEC	VIELD STR ENVIR	ENVIRONMENT	WIDTH THICK DEI	THICK D	816N 816N 80)	CRACK LENGTH (IN)		~		STAN	TEST TIME L	DATE REFER	EFER
	a. :	0 50	æ j	1-1	207. 0	ETRICAL L. HYDRUZU	5.500	0 200	TDCB		110.00	110 00*	1 1	1 ^	47500 -	• }	- 80667
TYS-215KSI	: د ا	1 00		'	215.03.5	PCT NACI.	. '	1.000			25.00	70. 00	1 1	3 1		 579	63613
NTER	•			ហ្	6 6 0	T NACL	t 		CANT	1	115.00	70, 00	! :	1	1 00001	1967 70887	
1509F THR AC 900F 3HR	:	1 00	! <u>; </u> !	/ (5)	219.0 3.	T NAC!	1 1 1 1 1 1 1 1 1 1		< <		·	39.00 94.00#	1 1	1 ^^	20000 1	971	80824 81004
900F 3		8	₽ α	; 	197.03.5	PCT NACL	1 000	1 6	500 CANT*		1.00	104. 00	, 1 1	1 1		# 0/6	4342
1675F 2HR AC P 50°F.15H1N R50°F AHR COOL	 P OI 1148	1 (- œ	1 (197. 5 3. 5	PCT NACL	0.938	0.730 CANT#	,	0.250 144.00	1 00 .4	78.00	1 1	1 M	29149	69 296	9162
1675F 2HR AC P 0 94 500F.O 2SHR BSOF AHR, CORL 250F.HIM	P AIM	0 94 COOL	π -	S- L	192, 6.3, 5.P(5 PCT NACL	0. 938	0. 750 CANT#		0.250 146.00	6 . 00	48.00		^	39000 1967 65162	967 69	162
1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1	1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1 1	1 1	1 1	 	1	1	: 1	;	

+MGTE DATA WHICH DR NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2.5(KISCC/TYS)SQUARED

TABLE 6.19.1.1

MEAN PLANE BIRAIN FRACTURE TOUGHNESS DATA OF ALLDY STEEL 18N1 (250) (MAR) AT ROOM TEMPERATURE

1T1UN/HT AC, 850F AC, 900F AC, 950F	PLAIE L-I 76. 0 ± 1. 9 (5) 80. 7 ± 1. 2 (6) 84. 0 ± 2. 6 (6) 82. 3 ± 3. 2 (6)	L-L B	78
	82.3 ± 3.2 (6)		
CONDITION/HT	1-1	រាំ	1-1

TABLE 6.19.2.1

	;			1	222222	22222
	F. F.	ब र्दर्	: (46) (4) (4) (4)	. ខេត្តស្រាស		
	REFER	88888	, EE EE EE .		90981 90981 90981 90981 90981	90981 90981 90981 90981
	DATE	197 197 197 197	1968 1968 1968 1968 1968 1968	1961	1974 1974 1974 1974 1974 1974	1974 1974 1974 1974 1974
	ı	6	i 69 (9 1	e. U	
				1		
	K(IC) GIAN K(IC) MEAN DEV (KGI+5GRT IN)	76.	9 9	84.0/	74.3/	
	K(1C) KS1*50	20000	00000	888888	2556555	28888
	X X X	6 3 8 6 3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	74 70. 73. 77. 77. 81.	63 67 57
	(i) # #		' ' '			
	2.5* (IC)/TY8)**? (IN)	01 01 01 01 01 01 01 01 01 01 01 01 01 0	្រុស្សាលាលាលាល់ (៤៦៤៦២៤ 	23.5 23.5 23.5 1	66 66 66 66 66 66 66 66 66 66 66 66 66	22 20 10 17
	2. 5* IC) /		। ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ । ଚ୍ଚ୍ଚ୍ଚ୍ଚ୍ଚ	୍ର ପ୍ରତ୍ତ୍ତ । ଅଧାରଣ ପ୍ରତ୍ତ୍	ରାଜାରାଜାର ଜଣ ପ୍ରତ୍ତ୍ତ୍ତ୍	00000
ŝ	ž		i i	t t		
K(IC)	CRACK LENGTH (IN)	00000		ōōōōōō i		
SA.	S N I C) ಕರಕಕಕಕ !		111111	11111
18NI (250) (MAR)	Z		· !	•		
230	DESIGN	ZUUUZ	C C C C C C C C C C C C C C C C C C C	CC CC CC CC CC CC CC CC CC CC CC CC CC		2 C C E E
BNI	SE SE SE SE SE SE SE SE SE SE SE SE SE S	00000		ÖÖÖÖÖÖ	000 000 000 000 000 000	020 500 500 020 020
	SPECIMEN- THICK D (IN) B		१ संसंधिसंस्थ १ (4464466	-00
ر	1 1	00000	730	nooonn	000 000 000 000	000
STEEL	WIDTH CIN)		। ତାତାତାତାତାତାତା । ।		0 0 → 0 0 → -	נז מו בי בי מ
ALLOY	D GTH	00000	00000	000000	000000	00000
Ą	REN (KS	333333 333333 3333333	2000	01010101010	231. 231. 233. 233. 233.	232 232 232 232 232
		! 	, I	;		
	SPI:CIMEN ORIENT			:	7	<u> </u>
	SP (ن ا	ا ئـ ا ا	، ن	ن	-
	TEST TEMP (F)	_	, -	- 1	⊢	_
	× '	<u> </u>	, 6 2 ,	E 1	œ [°]	C.
	PES		. 888888 .	888888 1	0000000	00000
	ממ	•	, ((((((((()))))			ក្ខភិពិត្តិ
	FORM	<u>.</u>	. c . 1	<u>.</u>	F	٤
	ĺ		·		AC, 3HR,) # #
	8	, B	AC. 900F	່ ເ	1550F 1HR.AG. ASFD 900F 3HR AC	1500F 1 НВ, АС, А <mark>СГР 900F 3HR, АС</mark>
	COREDITION				1550F 1HR. ASFD 900F AC	≥F ±
	COM	LC .	1500F	1500F 4 HR	1500 A9FD AÇ	1500 46FT 30

HOTES CHAPOSTITIBILE FERFEIT O 014C, O OSTMEN O ONAP, O OTSI, IB AND O 10CR, 4 75MBB, 6 41TL O 11AL

TABLE 6.19.2.1 (Con't)

	1	=	1
	REFER	1974 90981 (1)	73612 73612 73612 73612 73612
	DATE		1968 1968 1968 1968 1968
	STAN	4	। । । ।
	K(IC) STAN IC) MEAN DEV IL*5GRT IN)	64.17	
	- u	61, 20	77.00 81.00 81.00 81.00 81.00
	GIGN LENGTH (K(IC)/TYS)**2 K (IN) (IN) (K)	0. 17	00000000000000000000000000000000000000
18NI (250) (MAR) K(IC)	CRACK LENGTH (K	† † †	1 800 1 800 1 800 1 800 1 800
220) (W	ESIGN	C1	
INBI	MIDTH THICK DESIGN	0. 500 CT	1.800
STE.EL	WIDTH (IN)	1. 000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALLOY STEEL	STRENGTH (KSI)	232. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	SPECIMEN ORIENT S	7	
	EMP F)	F	1 ⊭
	FORM THICK T (IN)	12 00 , R. T.	82888 82988
	FORM	וני וני וני	, , , <u>a</u> .
	CONDITION	1500F 1HR.AC, Br ACFD 900F 3HR.AC	1500F, AC, 900F

HOTES
(1) COMPOSITION(WI PERCENT) 0.014C.0.087MN.0.006P.0.07SI.18.6NI.0.10CR.4.75MOD.0.41TI.0.11AL

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.19.3.1 INDICATING EFFECT

OF ENVIRONMENT

CONDITION:	TUS=243	EEL 18NI(25 KSI	50)MAR		
DELTA I	K		DA/DN (10**	-6 IN. /CYCLE)	
		A	B	С	Œ
		E= R. T. 3. 5%NACL			
DELTA K B: MIN C: D:		2. 23			
	16. 00 20. 00 25. 00 30. 00 35. 00	5. 05 11. 1 18. 0 27. 5 42. 7 66. 9 94. 2			
DELTA K B: MAX C: D:	45. 03	113.			
ROOT MEAN SO PERCENT ER		12. 81			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 8 0. 8-1. 2	3 25 D 1			100 MT 400 AND AND AND THE AND AND AND AND AND AND

6:3

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.19.3.2 INDICATING EFFECT

DELTA K (KSI*IN**1/2)	:	DA/DN (10**-	-6 IN. /CYCLE)	
(M31*1N*#1/E)	A	В	С	D
	E= R.T.	E= R.T. 3.5%NACL		
A: 7.69 BELTA K B: MIN C: D:	: , 290 : :			
30.00	716 1.16 2.73 4.21 5.91 8.16 11.4 16.7 25.7			
A: 52.78 ELTA K B: MAX C: D:	97. 0			
OOT MEAN SQUARE PERCENT ERROR	121. 19	0. 00		
LIFE 0.0-0. REDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	8 25 0			

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.19.3.3 INDICATING EFFECT

OF ENVIRONMENT

MATERIA CONDITI		4LLOY	STEEL	18NI (25	50)		
 KSI*	MA)		:		DA/DT (10*	*-3 IN/HOUR)	
***************************************	214	- 1, -	:	Α	В	С	D
			: : 3. 5	E= 5% NACL			
K MAX MIN	A: B: C: D:		: : :				
		200. (: 00 :				
K MAX MAX	A: B: C: D:		: : : :				

0.00

ROOT MEAN SQUARE PERCENT ERROR

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.19.3.4 INDICATING EFFECT

OF ENVIRONMENT

		(DA/DT	(10**-3	IN/HOUR)	
(V21*	. 11/444	1/2)	:	A	В		С	I
			:	E≃	E=			
				DEHUMIDIFIED HYDROGEN				
	A:	18. 00) :	1494.				
K MAX MIN	B: C: D:	23. 10) : : : :		1403.			
		25. 00	5 :	4145. 8724.	2376.			
		30.00 35.00			5529. 8304.			
		40.00			10206.			
		5 0. 00	: 0		12754.			
	A:			11124.				
K MAX	_	52. 70) :		13502.			
MAX	C:		:					
	D:		:					

PERCENT ERROR

Figure 6.19.3.4

TABLE 6.19.3.5

PROPUCT	TEST SPEC	>	16N1	18N1(230)(MAR) K	K(ISCC) - CRACK			BTAN	1587		
E 1		8TR ENVIRONMENT (KBI)	WIDTH (IN)	DESIGN (*=50)	T 1	(0) 81#50 	~ !	1	TIME (MIN)	DATE R	REFER
		259. O BYNTH BEAWATER 252. O 259. O 259. O 259. O		1. 000 CANT* 1. 000 CANT* 1. 000 CANT* 1. 000 CANT* 1. 000 CANT*	0. 170 6 0. 350 7 1. 050 9	1 9 0 0 0 0	36. 50 21. 00 37. 00 38. 00	1 8 9	00009 < 00009 < 000009 < 000009 < 00000000	C 4 E E E E	74:32 63166 73829 73829 73829 73829
R. T. L-T	1	249.03	1.500	0. 480 NB] 	. 00 i	1 80	1 3 1	; ;	971	n
R. T. L-8	1	3. 9 PCT NACL	0. 300	0. 375 CANT			80.0	13.4	7000	1971	80824 80824
	Dú	30. 0 3. 5 PCT NACL	1 1 1	1. 000 CANT#	1	00.0	1 8 .	1 . 1 :	;	. 57.6	•
	, 6	0. 0 3. 5 PCT NACL		1. 000 CANT#			70.00		1 } ! 2	1972 B	3613
	L1 L1 L1	9. O SYNTH BEAWATER 9. O SYNTH BEAWATER	3. 000 3. 000 6. 000	1.000 CANT* 1.000 CANT* 1.000 CANT*		00 00	7. 00 9. 00 9. 00	1. √ 1. √		970	78065 78065 78065
R. T 23	C)	28. 0 DIST. WATER	2,000	0. 050 CNT		1	110.00	1 1 1 1	00000 <	30000 1968 72283	7283

INDIE-DATA WHICH UD NUT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2. 3(KIBCC/TYS)SQUARED

17

TABLE 6.19.3.5 (Con't)

18NI (250) (HAR) K(1SCC)

ALLOY STFEL

DATE RFFER	20000 1968 72283
TEST TIME (MIN)	20000
BTAN DEV	t i
MEAN	! ! !
(ISCC) T IN)	110.00
(0) K	
* # # # # # # # # # # # # # # # # # # #	! ! !
CRAC	
DEB16N	CN1 :
THICK I	0.030
SPECIMEN CRACK WIDTH THICK DESIGN LENGTH K(0) K(ISCC) MEAN DEV TIM (IN) (IN) (#=SG) (IN) (KSI#SGRT IN) N B A	2. 000 0. 050 CNT
	228. 0 3. 5 PCT NACL 2. 000
VIELD STR (KSI)	228.0
SPEC	
TEST TEMP (F.)	
PRODUCT TEST SPEC FORM THICK TEMP OR (IN) (F)	O CB R. T.
FORM	
MO111040	DOF ZHR AC S O GB R.T.

*NOTE-DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2.5(KISCC/TYS)SQUARED

_	
~	
2	֡
ď	•
_	
7	
TARLE	
-	

HUI LIGHOO	F ORM	FORM THICK T	1651 1649 (F)	TEST SPEC TEMP OR		T.	WIDTH (IN)	WIDTH THICK DESIGN LENGTH K(G) K(1SCC) MEAN (IN) (IN) (**SC) (IN) (KSI*SGRT IN) M B	CRACK LENGTH (IN)	K(G) K (KSI*50R	(ISCC) MEAN (IN)	6	TIME (MIN)	DATE REFER	EFER
1500F 1HR AC 900F 3HR				!	277.0	277. 0 3. 5 PCT NACL	0.750	0. 750 0. 750 CANT	1 1 1		60.00 14.00	; ; ;	14400	14400 1971 82164	2164
; ; ;	; ; ;	1	1	,	1			1			1				

TABLE 6.21.1.1 FATIQUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL 18NI (300) MAR

		106			
	S	50	23.5		į
	GROWTH RATES	50		9. 38	
	Ą C	2		1 51	1
	FATIGUE CR.	an i			
		is di			
ENVIRONMENT	DELTA K	(KSI SGRT(IN))			The second secon
	FREQ. (HZ)		2 00	00 e	
	STRESS		\$0 U	79-0	
<u>.</u>	PRODUCT F CRM		FIRGING	FURGING	
IEST CONDITIONS SPECIMEN ORIENTATION	CONDITION/HT		:		

TABLE 6.21.2.1

REFER	18425	18423 18423	8425 8425	1971 86582 (1)
DATE	1970 7	1970 7	1970 7	1971 8
K(IC) BTAN K(IC) MEAN DEV (KSI*SGRT IN)	54, 00	71.20 64.20 67.77 4.9	75.50 62.50 67.07.9.2	
2.5* (K(IC)/TYS)**? (IN)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0. 0. 11.	0. 18 0. 11	1 1 1 1
CRACK LENGTH (IN)	0.500	0.500	0.500	0.400
THICK DESIGN	0. 500 NB	0, 500 NB 0, 500 NB	0. 500 AB 0. 500 NB	0.400 CT
HLDIM (NI)	000 1	1.000	1. 000	0.800
YIELD STRENGTH (KSI)		280, 0 300, 0	280. 0 299. 0	276.0
SPECIMENORIENT	<u> </u>	ار غ	R-C	L-1
	- 65	₹. F.	e œ	- - - - - - - - - - -
THICK (IN)	00	00 00	10 00	00 1
	F 900F	L	_	, , ,
COMBITION	1500F 1HR. AC.	1700F 1HR, AC, 15n0F 1 HR, AC, 900F 6 HR	1700F 1HR, AG, 1500F 1 HR, AG, 900F 6 HR	900 F ACED P
	I'RODUC) IEST SPECIMEN VIELDSPECIMEN CRACK 2.5* K(IC) BTAN FORM THICK TEMP ORIENT STRENGTH WIDTH THICK DESIGN LENGTH (K(IC)/TYS)*+2 K(IC) MEAN DEV DATE (IN) (I) (KSI*GRR IN) (IN) (IN) (IN) (IN) (IN) (IN)	I'RODUC) IEST SPECIMEN VIELDSPECIMEN CRACK 2.5* K(IC) STAN FORTH THICK DESIGN LENGTH (K(IC)/TVS)**? K(IC) HEAN DEV DATE REFER (IN) (IN) (IN) (KSI*SORT IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN)	PRODUCT TEST SPECTHEN YIELDSPECTHEN CRACK 2.5* K(IC) HEAN DEV DATE REFER FORM THICK TEMP ORIENT STRENGTH WIDTH THICK DESTON LENGTH (K(IC)/TYS)**? K(IC) HEAN DEV DATE REFER (IN) (IN) (KSI*GORT IN) (IN) (KSI*GORT IN) (KSI*GOR	I'RODUCI ITST SPI-CIMEN YIELDSPECIMEN CRACK 2.5+ K(IC) HEAN DEV DATE REFER (IN) (IN) (IN) (IN) (IN) (IN) (IN) (IN)

140TES: (1) COMPOSITION(WT PERCENT) 0.017C, 0.05MN, 0.004P, 0.007S, 0.09SI, 18.8NI, 4.95MO, 7.2CB, 0.38TI, 0.13AL

TABLE 6.21.2.2

K(C)

18NI (300) MAR

ALLOY STIFEI.

	REFER	1 1	60578 60578 60578 60578	60578 60578 60578 60578 60578	60578 60578 60578 60578 60578	60578 60578 60578 60578 60578 60578	60578 60578 60578 60578 60578 60578
) I	1964 1964 1964		1964 1964 1964 1964	1964 1964 1964 1964 1964 1964	
CTAN	DEV DATE	 	m	•	9	e •	00 0-
2	″	 	4,	142.6/	124.2/	132. 1/	128. 5/ 3
	K(C) K8I*S(i I	97. 12 90. 70 82. 39 82. 04 79. 85		113.18 133.50 130.56 121.51	125 83 130 80 132 52 137 65 137 41	
7	- 1	! !	5	•	- HHHH		- 0
0	MEAN I	 	84	, ,	4 1/	3	128 1/ 4
3	((()		000000	0 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	18 83 96 51 40 124	693 680 681 62 131 41	41 4 72 41 40 47 41 40 41
	K(APP) (KS1*S	ı	94. 98. 98. 98. 98. 98.		113 132 130 121	123 132 132 14 14 15 15	
STRESS	MAX (KSI) S(MAX)	EDGES NOT RESTRAINED	63.80 35.50 35.00		76 50 89 50 88 00 81 90 82 50	125.00 130.00 134.00 134.00	
ORUSS	ONSET (KGI) 8(0)	OT RES					
	FINAL (IN) 2A(F)	N SJO	1. 290 1. 230 1. 250	0 370	2. 230 1. 250 1. 240 1. 240	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	11.240 11.240 11.240 19.490 19.490 19.480
CRACK LENGTH	1 INI T	, A	230	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	240	00000 440	240 240 240 240 240 240 240 240 240
1	! ! x !	,	026 1 029 1 028 1 027 1	00000	026 1 027 1 027 1 027 1	026 023 023 023 025 025 026 026	
	בי ו ני	BUCKLING OF	00000		00000		
í	HLGIN (NI)	, 6 2 ,	4. 010 010 010 010 010	020 020 020 030 030 030 030 030	3. 950 4. 020 4. 020 4. 020	0101010101 44 00000000000000000000000000	4,000 4,000 117 700 118 060 118 100 118 100
2	STR STR (KSI)	; } !	386. 0 386. 0 386. 0 386. 0		336. 0 336. 0 336. 0 336. 0	277.0 277.0 277.0 277.0 277.0	
100	ا ا و ا	 	١-1	L-1	۱-1	1-1	L-1 L-1
	- de C		423	320	320 1-1	# # # #	⊬' ⊬' æ' æ'
		f 1 i	- E0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- E0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	
60.14	ORM ORM) 	cr.	c n	w	w so	w w
	D1110N	; ; ; ;					

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.21.3.1 INDICATING EFFECT

DELTA ++(KSI+IN)			DA/DN (10*#-6	IN. /CYCLE)	
(V2141M*)	*1/2)	Α	В	С	D
		: Ε≔ R. Τ. : H. H. A.			
DELTA K B: MIN C: D:	20. 16	2. 64			
	25, 00 30, 00 35, 00 40, 00 50, 00 60, 00	8.81 11.3 14.0 22.2			
A: DELTA K B: MAX C: D:	67. 79	: 41.0 : : :			
OOT MEAN S PERCENT ER	ROR		ي جيد جيد جين وياه ويون ويل خيد جين نيي بين وياه الجو حين حين الحق ال		
LIFE REDICTION RATIO	0. 5-0.	5 8 25			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.21.3.2 INDICATING EFFECT

	K (2)		DA/DN (10**-	-6 IN. /CYCLE)	_
(KSI*IN*:	₹1/៩/	Α	В	С	D
			E= R. T. H. H. A.		
		: . 474			
DELTA K B: MIN C: D:			. 435	3. 56	
	7. 00 8. 00	: 847	. 472 . 753		
	9.00 10.00	: 1.16 : 1.49	1.10 1.51		
	13.00 16.00 20.00	4, 15	3. 11 5. 30 9. 38	4. 82 10. 2	
DELTA K B:	22. 98		13. 6		
MAX C: D:	22. 60	: : :		16. 4	
ROOT MEAN S PERCENT ER			14. 20		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1. 1. 25-2.	. 5 . 8 . 25 . 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.21.3.3 INDICATING EFFECT

DELTA		:		DA/DN (10**-	6 IN. /CYCLE)	
(KSI*IN**	†1/ <i>≟</i>)	:	Α	В	С	D
		: E= :AIR	= R. T.	E= R.T. DRY ARGON		
DELTA K B: MIN C: D:	8. 77	•		. 107		
	9, 00 10, 00 13, 00 16, 00 20, 00 25, 00 30, 00	: : : :		. 102 . 148 . 529 . 950 1. 97 3. 70 4. 98		
DELTA K B: MAX C: D:	30. 62	: : : : : : : : : : : : : : : : : : : :		5. 05		
ROOT MEAN S PERCENT ER		(0. 00	19. 14		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	8 25 0				. — — — — — — —

value to take the take to the transfer of the terms of the transfer to the transfer of the transfer

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.21.3.4 INDICATING EFFECT

MATERIAL: CONDITION:	ALLOY S	TEEL 18NI()	300) MAR		
DELTA (KSI*IN*	K *1/2)	- Ten err to the second to the	DA/DN (10**-	-6 IN. /CYCLE)	
		A	В	С	D
		E= R.T.	E= R.T. DRY ARGON		
DELTA K B: MIN C: D:	9. 05	: : : : : : : : : : : : : : : : : : : :	. 101		
	10.00 13.00 16.00 20.00 25.00 30.00 35.00 40.00	: : : :	214 519 1.09 2.14 3.68 5.19 6.72 8.78		
DELTA K B: MAX C: D:		: : :	11. 7		
ROOT MEAN S	GQUARE RROR	0. 00	10. 47		
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	5 8 25 0			~~~~~.

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.21.3.5 INDICATING EFFECT

	MAX		:	DA/DT	(10**-3	IN/HOUR)	
(KSI*	IN**	1/2)	: A : E=	B E=		С	D
			: HYDROGEN	3. 5% NACL	•		
K MAX MIN	A: B: C: D:	12. 60	: 920. : :				
		13. 00 16. 00 20. 00	: 13691.				
K MAX MAX	A: B: C: D:	22. 20	: 21037. : :				

						ALLOY STFEL	NGI	18N1 (300) (MAR) P	K(18CC)						
CONDITION		FORM THICK (IN)	TEST TEMP (F)	SPEC	YIELD STR E (KSI)	ENVIRONMENT	HIQIM (NI)	MENICK DESIGIN) (**SG	CRACK LENGT (IN)	K(@) KSI#Sa	_	A A	TEST TINE (MIN)	DATE REFER	C
AGE 900F 6HR	ir ir	1 00	α α 	tT T-L	0 0 0	ر ب ا	1. 500 1. 500 1. 000	0. 480 CANT 0. 480 CANT 0. 500 CANT	1	70.00	7.00	1 1 f		1970 78425 1970 78425 1972 84356	. 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
40F 950F 12HR	; ; ;	00 1	, ⊢	' -	302.0	5 PCT NACL	1.500	0. 480 CANT	1 1 1 1 1 1 1 1 1 1	00 .89	00.9	6.0/ 1.4	1 1 1 1	1970 78425	, g
ZACK RESTRESSED	F 0 50 Pc	9,00 F KIC	E E	, 7	284.33	S PCT NACL	1 000	0. 500 CANT	1	72 40	00 1	1 1 1	1 1	1972 84356	0
CFACK PRESTRESSED 10		F 9, 60 25 PCT KIC	™ .	7	284.3 3	S PCT NACL	1.000	0. 500 CANT		72. 40	\$ 00		1	1972 84356	.0
CRACK PRESTRESSED TO 80	F J RO PC	9,00 PCT KTC	π -	1-ר	284.3 3.	. 5 PCT NACL	1. 000	0. 500 CANT	}	72. 40	10.00			1972 84356	ø
NOF SHR ACC		0 23 0	F E	. S	~	DIST. WATER	1.000	0 250 CANT#	0.200	63. 10 93. 90	96.00	48.0/ 17.0	> 10000 > 10000	1965 63041 1965 63061	. ==
1500F 24R BOOF	· ! =	1	<u> </u>	L-5 8	280.0 D	DIST. WATER	0.625	0. 500 CANT#	1	120.00	00 6	1 1 1	> 1500	1970 77716	•
1500F 2HR 860F 10HR	2	1	R. T.	L-5	280. 0. 1N	N H2SO4	0.625	0. 500 CANT#		120.00	10 00		> 1500	1970 77716	9
1500F 2HR BOOF TOHR	æ	1	χ Γ	L-5 2	280.0 3%	K NACL PHI. 7	0.625	0.500 CANT#	1	120.00	00		> 10000	1970 77716	40
1500F 2HR 800F 104B	œ	!	۲ ۲	L-5 2	280 0 3%	WACL PH6 3	0. 625	0 500 CANT#	1	120 00	10 00		> 8500	1970 77716	-co
i I I I			,	• •	! ! !		1 1 1	1 1 1 1 1	1 1	: 1 t	1 1 1	1 1 1	1 1 1	1 : : :	

TABLE 6.21.3.6 (Con't)

COOL TONICHOS - NEW YORK AND DESCRIPTION OF THE PROPERTY OF TH

						ALLOY STEEL	18N	18N1 (300) (MAR)		K(1SCC)						
OND 1 7 1 ON	_	PUCT THICK (IN)	TEST TEMP (F)	SPEC	VIELD STR (KSI)	U I RONMENT	WIDTH (IN)	-SPECIMEN	DESIGN	CRACK LENGTH K(Q) (IN) (KSI+	ິດ	K(ISCC) MEAN BT IN)	STAN DEV	TEST TIME (MIN)	DATE R	REFER
1500F 2HR 900F 3 5HR		1	F F	, , , , , , , , , , , , , , , , , , ,	280.0	! !	0.625	0. 500		- {	9. 00	90 ·		 	1970 7	77716
1500F 2HR 900F 100HR	OF B	1	™	F8	280.0 1	1N H2SO4	0.625	0. 500 CANT#	* LN4	1	70.00	9.00		1 1 1	1970 7	77716
1500F 24R 90 1004R	900F B	i : !	⊢	L-5	280.0	32 NACL -0. 1V TO -1. 2V	0. 625	0. 500 CANT#	* LNA	1	70. 00	9. 00			1970 7	77716
1550F 2HR 90 100HR	900F B	!	œ.	LS	280.0	3% NACL 029AT	0. 625	0. 500 CANT#	* 1N4	!	70. 00	10. 00		1	1970 7	77716
1500F 2HR 900F 100HR	OF B		R F	L-3	280.0	3% NACL PH1.7	0, 625	0. 500 CANT#	AN1+		70.00	15.00		10000	1970	7:716
1550F 2HR 90	900F B	1	⊬ œ	L5	280.03	3% NACL PH1. 7	0. 625	0. 500 CA	CANT*	}	99. 00	10 00	^	00001 <	1970	77716
1500F 2HR 900F 3 5FR	10F B	! ! !	π. 	L-S	280.03	3% NACL PH11	0, 625	0. 500 C/	CANT *		99. 00	12. 00			1970 7	77716
1500F 2HR 900F	00F B	ļ	≅	L-S	280.0	3% NACL PH3. 9	0. 625	0. 500 CANT#	* L	-	99. 00	17. 00		!	1970 7	77716
1500F 2HR 90 100HR	9rof B	!	Ε. Ε.	L-3	280.0	3% NACL PH6.3	0. 625	0. 500 C	CANT*		70. 00	10 00	^	8500	1970 7	7:716
1500F 2HR 900F)OF B		r- ex	ហុ	280.0	NACL PH6. 3	0. 625	0. 500	* LNA	1	99.00	00 8	^ i	8500	1976 77716	7716
COF. 15GOF FD 900F 6F	. E	000 6	1 E	, , , ,	284.0	3. 5 PCT NACL	000 1	0.400 C	CHAR		1 6 1	7 50	1 1		970	78761
22-or 1HR B 1700F 4HP, 900F 100HR	B 1001 100H		⊢	κ'n	0 082	H2S04	0 625	0 500	* FNA		53.00	10 00			1970 77716	7716

TABLE 6.21.3.6 (Con't)

	F.E.R.	716	716	716	716	716	716	। इ.स.
	DATE REFER	2	2500 1970 77716	2500 1970 77716	2500 1970 77716	2500 1970 77716	2500 1970 77716	1970 78425
		0 19	00 19	61 0	00 19	0 19	61 0	. 66 . 67
	TEST TIME (MIN)							1
			^	^	^	^	^	1
	£0 ;							1
	HEAN I							1
	15CC)	14. 00	10. 00	B. 00	13.00	9. 00	6 .	9.00
	X (1			0		0	6	1 1
	CRACK LENGTH K(0) K(19CC) MEAN (IN) (KSI*50RT IN)	58.00	53.00	57. 00	38. 00	53 . 00	57. 00	70.00
(၁)	CRACK LENGTH (IN)	1	!		-	}		, , , , , , , , , , , , , , , , , , ,
K(1SCC)	E 3 2 1							1 j 1 1
JAR.	THICK DESIGN (IN) (*=SG)	0. 500 CANT*	0. 500 CANT#	0. 500 CANT#	0. 500 CANT+	0. 500 CANT#	•	CANT
18N1 (300) (MAR)	MEN- ICK I	200	200	500	200	. 500	200	0. 480 CANT
E) INB	SPECI							1
=	#IDTH THICK DESIGN (IN) (IN) (**SG)	0. 625	0.625	0. 625	0.625	0. 625	62	1.500
Ē.	1	^	_	_	n	en en		1 1
ALLOY STFEI.	MENT	280.0 3% NACL PH1.7	280. 0 3% NACL PH1. 7	280 0 3% NACL PHI. 7	280. 0 3% NACL PH6. 3	280. 0 3% NACL PH6. 3	9₩	306. 0 3. 5 PCT NACL.
ALLO	ENVIRONMENT	NACL	NACL	NACL.	NACL	NACL	NACL	FCT
		%E 0	λE 0	XE 0	0 3%	3E 0	0 3%	3.6
	VIELD STR (KSI)	280.	280.	280	280.	280.	280.	306.
	SPEC	L5	L-5	r. S	ر - S	L - S		<u> </u>
	TEST SPEC TEMP OR (F)	R. T. LS	⊢ œ́	⊢ œ	E.	R. T. L-5	R. T. L-S	1 22
		1	1	l į	!	!	!	1 00 1
	י א			8 3 514R				
	# OF	8 JC	80): 10		F 10	B)F 10	3 8	! <u>L.</u> !
	1	a a a	## ## 900	1HR 4HR 900F	1HR BOOF TOHR	R 90(R R 900	3HR 950F
	CONDITION	2300F 1HR BOOF TOHR	2300F 1HR B 1700F 4HR 900F 100HR		2300F 1HR 1700F 4HR	2300F 1HR B 1700F 4HR 900F 100HR	7300F 1HR B B 1700F 3 5HR	· 完
	COM	2300F 1700F	1000£	2300F 1700F	2300F 1700F	2300F 1700F	730C 170C	FOOF THR

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.22.3.1 INDICATING EFFECT

OF ENVIRONMENT

	MAX			:	DA/DT	(10**-3	IN/HOUR)	
(KSI*	IN**	1/2)		:	_		_	_
				: A	В		С	D
				: : E =				
				: 3. 5% NACL				
	A:	13.	00	: 372.				
K MAX	B:			:				
MIN	C:			:				
	D:			:				
		16.	00	: 93 0.				
		20.	00	: 1502.				
		25.	00	: 2053.				
		30.	00	: 28 78 .				
	A:	32.	00	: 3454.				
K MAX	B:			:				
MAX	C:			•				

ROOT MEAN SQUARE PERCENT ERROR

9. 79

TABLE 6.22.3.2

						ALLOY STFEL	188	18NI (350) (MAR) K	K(ISCC)							
COMDITION		THICK (IN)	TEST SPEC TEMP OR (F)	-	YIELD STR 6 (KSI)	RONMENT	WIDTH (IN)	CIMEN THICK DES (IN) (**	- CRACK LENGTH (IN)	CRACK LENGTH K(Q) K(ISCC) MEAN (IN) (KSI*SGRT IN) A	((18CC)		STAN DEV	TEST TIME (MIN)	DATE REFER	EFER
AGE BOOF BHR	¥ ,	1	ا ہے ا	' '	299.03	5 PCT NACL	0.394	0. 394 CHAR		30.00	00 · 6	, 1 1	1	1	1971 64351	1331
H. J.	8 ,		ا <u>ہ</u> ا		330.03	3. 5 PCT NACL	1 46	394 CHAR	,	42.00	10.00		1 1	! ! !	1971 84351	4351
AGE 900F BHR	E :	1 1	7. ⊢ . ⊢ . ⊢ . ⊢ . ⊢ . ⊢ . ⊢ . ⊢ . ⊢ . ⊢		0 '	5 PCT NACL	0.394	0.394 CH	<u> </u>	36.00	10.00	1 1	! !		1971 84351	1321
်င္ကို ဆူ	li.	0	μ.' αχ	ဟု	. 0	5 PCT NACL	1 0.394 1 44 1 44	0.394	; ; ;	70.10	9.00	! ; !		3000	3000 1969 75677	5677
SCOF THR	t	00 4	R. T. L-S	'	325.03	3.5 PCT NACL	0.394	0.394		35.00	10.00	1 1		8500	8500 1969 75677	5677
1500F 1HR 950F F	1 1 , is.	1 00 4	R. T. L-S	ı	325.03	3. 5 PCT NACL	0.394	0.394	1 1	40.00	10.00	1	·	9300	6300 1969 75677	5677
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l l	1 1	1 1) 	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1	;	; ; ;	1	1	1	! !	1	1

TABLE 6.23.1.1

MEAN PLANE BTRAIN FRACTURE TOUGHNESS DATA OF ALLOY STEEL 300M AT ROOM TEMPERATURE

BPEC IMENS)		1-8	1			1 -8	!	54, 1 ± 1, 1 (4)		7	1
ID (NUMBER OF SPECIMENS)) I E	1	58.6 ± 3.5 (2)	1	SING	11	52.9 ± 2.0 (4)	50.6 ± 1.7 (2)	84	11	-
MEAN MIC + BTANDARD (KSI BORT(IN)) DEVIATION	PLATE	-		51. B ± 0. 7 (3)	EORGING	1-1	52.6 ± 2.3 (4)	54.6 ± 2.5 (4)	BAR	! -!	47.9 ± 3.8 (2)
CONDITION/HT		CONDITION/HT	HEAT TREATED TO 34 RC HARDNESS	1700F 1HR AC, 1600F 1HR DG, 600F 2HR AC (AMS 6419)		CONDITION/HT		1600F 1.25 HR, OG, 600F 2+2HR		CONDITION/HT	2190F 1HR, FC TD 1600F, HOLD O. 5HR, DG, 475F 1HR

TABLE 6.23.1.2

FAILGUE CRACK GROWTH RAIE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL 300M

IF ST CONDITIONS

SPECIMEN
OPIENTATION L-T
AT R T.

	50 100	188	38 0		: 1				
RATES	٥	3 18 16	96	44	; ; ; ; ;	8	6.83	3 67	63
GROWTH /CYCLE	02	ю	Ni	5	 	4	9 06	n	ى 4
UE CRACK GROWTH	61			9 0	: (0		0 65
FATIQUE CRACK GROWTH RATES (MICRG IN/CYCLE)	יט								
LL.	e ci				, ! !				
DELTA K	(KSI SQRT(IN))								
FREG (HZ)		10.00	10 00	10.00	1	00 9	9 9	1. 00	6.00
STRESS RAIJO		-1, 00	00 ū	05.0	! ! ! ! ! !	0 0	0.50	0.08	80 ō
PRODUCT FORM		BILLET	BILLET	BILLET)	FURGING	FORGING	FORGING	FURGING
CONDITION/HT		UTS: 280-300KSI	UTS=280-300KSI	#15-280-300KSI	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1700F 1 5HRS AC. 1600F 1 5HRS DG. 500F 2+2HRS	1700F 1 5HRS AC:160CF 1 5HRS 00:600F 2+2HRS	1700F 1 SHRS AC.1600F 1 SHRS (10, 600F 2+2HRS	1700F 1 CHRS 4C, 1600F 1 SHRS

TABLE 6.23.1.3
FATIQUE CRACH GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR ALLOY STEEL 300M

		10					
	ýs	20	82.7	45 4	47 0		;
	JWTH RATE	50	3 83	97.6	3 56	6 52	
	U	01	0 71	1		1 32	
AIR 3 T	ATIGUE (HI	ın					
LAB AIR AT R T	L	ς, ζ					
ENVIRONMENT	DELTA K	LEVELS (KSI SQRT(IN))					
į	FREG (HZ)		0 10-20 00	10 00	10 00	10 00	
	STRESS RAT10		20 u	00 1-	50 O	05 0	
<u></u> 1	PRODUCT		FORGING	BAR	DAR	BAR	
IFSI COM <u>DIJ</u> IONS SPECIMEN ORIENTALION	CONDITION/HT			1US-280-300K91	12×200€-300KS1	108-380-300K°1	

TABLE 6.23.1.4

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL BOOM

	100	
	50	105
	FATIGUE CRACK GROWTH RATES (HIGRE IN/CYCLE)	05.4
	UE CRACK GROWTH (MICRO IN/CYCLE) 10 20	
NACL T	FATIGUE CR. (MICR. 2. 5 5	
3 5% AT R) (0)	
ENVIRONMENT. 3 5% NACL	DELTA K LEVELS (KSI SGRT(IN))	1 00
	FREG FREG	1 00
	STRESS FREG	00 0 00 0
١٠٠	PRODUCT FORM	BILLET 0 00
IFSI COMDITONS SPECIMEN OPTENTATION	COND1.1047H1	: US 28: - 300K¤1

TABLE 6.23.1.5

FAIIGUE CRACK GROWIH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACIOR

ALLOY STEEL 300M

] -	}		{
DWTH RATE CLE)		8.04	2.61
RACH GRO	!		
ATIGUE C			
ر ب			
DELTA K LEVELS: (KSI SQRT(IN))			
FREG.		0° 1	10 00
STRESS RATJO		0.00	00 0
PRODUCT FORM		BILLET	BILLET
CONDITION/HT		10M00E-085-80:	TUS=280-300KSI
	PRODUCT STRESS FREG. DELTA K (MIGNO IN/CYCLE) FORM RATIO (HZ) DELTA K (MIGNO IN/CYCLE) (KSI SQRT(IN)) 2 5 5 1:0 20 50	PRODUCT STRESS FREG. FORM RATIO (HZ) DELTA K LEVELS: (KSI SGRT(IN)) 2 5	PRODUCT STRESS FREG. FORM RATIO (HZ) DELTA K (MICRO IN/CYCLE) (KSI SGRT(IN)) 2 5 5 10 20 50 BILLET 0.00 1.00 8.04

TABLE 6.23.1.6

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL 300M

DRY CYCLE	100		
HALF	30	50.6	
A WATER-1S1	FATIGUE CRACK GROWTH RATES (MICRO IN/CYCLE)	7.06 50.6	2.17
IN SE	UE CRACK GROWTH (MICRO IN/CYCLE) 10 20	!	; :
IMMERSION T	FATIGUE C		
ALT AT R	U D		
ENVIRONMENT: ALT IMMERSION IN SEA WATER-1ST HALF DRY CYCLE AT R. T.	DELTA K LEVELS: (KSI SGRT(IN))		
	FREG (HZ)	1 00	10 00
	STRESS	00 0	00 0
ا- 	PRODUCT	BILLET	BILLET
IFSI. CONDILIONS SFECTMEN GRIENTATION	CONDITION/HT	1980-360-360K51	TV5=280 300KSI

TABLE 6.23.1.7 FATIQUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR ALLOY STEEL 300M

ALT IMMERSION IN SEA WATER-2ND HALF DRY CYCLE AT R T	100	
D HALF C	50	
A WATER-2N	FATIGUE CRACE GROWTH RATES (HICPG INVCYCLE) 5 10 20	2 61
1N SEA	UE CRACE GROWTH (HICRG INCYCLE)	
IMERSION I	AT19UE (
	Ul No	
ENV I RONMENT	STRESS FREG DELTAK RAJIG (HZ) LEVELS' (KSI SGRT(IN))	
	FREG (HZ)	1 00
	STRESS RATIO	00.0
	PRODUCT FCHM	BILLET
IFSI CONDITIONS SPECIMEN ORIENTATION	CONDITION/HT	1US÷280-300KSI TUS≠280-300KSI

TABLE 6.23.2.1

:	ı	22 :	ดิติด	ភាពិភ	เมิดิเภิ	เมิ เมิ เมิ
REFER	<i>વવવવ વવવ</i>	84029	84280 64280	84280 64280 64280	84280 84280 84280	84280 84280 84280
DATE	11111 1111	1971	1970 1970 1970	1970 1970 1970	1970 1970 1970	1970 1970 1970
STAN EEU	က ဝ ၊ ဂ ဂ ဂ ဂ ဂ	in 1	ල. ල	1.7	0	9
~ ~ ,	25 6/2	58.67	46.0/	57. 17	/6 44	/2 89
- 1	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56. 10 61. 10	48 40 48 00 41 50	55,30 58,70 57,20	64 30 64 60 65 70	68 10 67 70 68 90
2 5# (KOO)/TYS)*)? (IN)		0 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		0. 14 0. 16 0. 15	0 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CPACE LEPIGIH (R (IN)	293 275 267 286 271 271 288 228 228	0 485	0.752 0.758 0.734	0, 735 0, 742 0, 736	0. 737 0. 735 0. 739	0 734 0 734 0 729
M51830	12 12 12 12 12 12 12 12 12 12 12 12 12 1	8 8 H	50 10 10 10 10 10 10 10 10 10 10 10 10 10	CT CT	12 12	555
FCITIED HICK (JN) B		0, 447	0, 747 0, 750 0, 750	0 745 0 746 0 750	0 749 0 750 0 750	0 745 0 746 0 749
HIDIH II	504 503 490 476 512 507	0 904		1, 499 1, 503 1, 501	1 501	1 499 1 500 1 502
YEELD STREAGTH (KS1)	24 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250 0	245 245 0 245 0	231.0 231.0 231.0	230 0 230 0 230 0	250 0 250 0 220 0
C) PIENT TENT		ا ن ا	1	÷	· ·	i
		- ' c	65	0	-	200
- 1890 15 (FS) Fig.t. 1995 (F)	5555 KSSS	1 00	000	5 50 5 50 5 50 7 510	5 50 5 50 5 80 2+2+R	は 70 ち 20 は 70 日 110
1984 · 1864		<u>.</u> !	F 570F 2	5 3326	F 575F 2	5/56
	i 1	7F.	F 00 ± 08	16/0F 0 5 HR, F 59, 1000F 0 5-1 0 HR, B0 cm, 180F 25 MIN, 575F	1620Y 0 5 HR. F 73, 1900F 77 1 0 HR. DQ 80 1 BOF 25 MIN. 575F	1600E O 5 HR, F 10, 1000E 0 1 1 0 HR, D0 800 190F 75 HIN, 575F

ហោក្រភ ក្រា ក្រា

COPPOSTITUTUM FERCEUT) & 43C, & 65NN, O COSP, O 0065, 1 65SL, 1 77NL, O G2CR, O OBV OPTENTATION, FORU FLAP TRACK

C.F

TABLE 6.23.2.1 (Con't)

T)

	DATE REFER	1973 05836 1973 85836 1973 85836 5 1973 85836	1973 85836 7 1973 85836	1973 85836 1973 85836 1973 85836 1 1973 85836	1973 87241 (1)	1973 87241 (1)	1973 87241 (1)	1973 87241 (1)	1973 87241	70 78305 (::	1973 85883 (3)
	K(IC) STAN K(IC) MEAN DEV (KSI*SûTIIN)	0 0 0 0 184. 67 12.) 5 50.67 1.	0 54.1/ 1.		2	c	0			c
	1	51.50 53.80 56.10 57.10	51, 80 49, 40	55.10 52.80 52.80 53.60	4	34, 30	64.80	59, 40	0	0.99	47, 30
K(1C)	2.5* (K(IC)/T (IN)	495 0 13 502 0 14 491 0 15 499 0 15	7 0 13 2 0 12	27 27 27 26 26 20 21 20 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21		0.05	0. 17	0.15	0 0 15	1 0 1 1 1 1	8 0 12
3	DESIGN LENGTH (IN)	CT 0 495 CT 0 502 CT 0 491 CT 0.499	CT 0 507 CT 0.492	CT 0 496 CT 0 497 CT 0 504 CT 0 485	-	ст 1. 000	CT 1.000	ст 1. 000	CT 1.		CT 1.088
300M	-SPECIMEN THICK (IN)	0 0.249 2 0.248 2 0.247 2 0.247	2 0.248	0.248 0.248 0.247 0.247	0, 60	0 0 000	0 0 600	0 0 600	0.600	0000	
ALLOY STEEL	HIGIM HT9	0000	. 0 1. 002 . 0 0. 987	0 1.002	0	0 2 000	0 2 000	0 2 000	ci O	0 1.500	0
₹	SPECIMEN YIELD ORIENT STRENGTH (KSI)	ดเกเก	L 240. 240.	230. 230. 230. 230.	N	7 240	1 245	T 245.	Ĉi.	235	550
	TEST TEMP (F.)	-	R.T. T-L	7. T. S. T.	<u>-</u>	R T. L-T	R.T. L-F	R. T. L∸f	- -	_ - - - - -	+
	FORM THICK	00000	00 E	00 E E E	<i>2</i> 9 0	29 0	29 0	29 0	29 0	92 0	1 00
	;	25 HR. F 2+21IR	1600F 1, 25 HR. F Da. 600F 2+2HR	25 HR. F F 2+21R	R. 00. B	1660F 1HR, 00, B	HR, 09, D	IHR, DQ, B		! E !	C. 1575F P
	CONDITION	1500F 1 09. 600	1600F 1 Da. 600	1600F 1 ng, 600l	0 1	1660F 1HR, DB, 1HP, WB, 475F 1	1600F 1HR, DB, 615F 1 HR	1600F 1HR, DR, 575F 1HR	500F 15F 1	1600F, 90, 55 0F	1675F A

1491ES (-1) (-2) (-3)

CONFIDENTIAL OF FREEIT) OF ALC, O ZERM, O COBE, O ORES, I 1991, I BSMI, O 75CR, O OBV, O O4CU COLE ROLLED SOT WITH INTERMEDIATE AMMEALS AT 1275F TO GET FINE GRAIN SIZE CONFISIONMENT FEREITLE OF 35C, O BSMIN, O COBE, O O03S, I 61SI, I BONI, O BYCR, O OBV (ESTINATER TYS)

TABLE 6.23.2.1 (Con't)

i				30400	*	MATE (21) W		
PCC TMEI OR TENT	N YIELD STRENGTH (KSI)	HIQIN SIN	SPECIMEN THICK DESIGN (IN) B	CRACK LENGTH (IN)	= (NI) (NI)	K(IC) MEAN DEV (KSI*S(RT IN)	DATE	REFER
	000	1. 994 1. 998 1. 995	010 CT 010 CT 010 CT	1, 068 1, 122 1, 081	0 0 0 E E E	49.80 50.10 49.60 49.27 1.3	111	65883 85883 85883
1	240. 0 240. 0 240. 0 240. 0	2. 001 1. 996 1. 995 2. 001	1. 010 CT 1. 010 CT 1. 010 CT 1. 010 CT	1. 147	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.90 51.80 46.20 52.60 49.1/ 3.	197	85888 85888 85888 8588
1	200.00	1. 996 2. 000 1. 997 1. 989	1. 010 CT 1. 009 CT 1. 012 CT 1. 010 CT	1. 123 1. 103 1. 137 1. 139	4644 6958 	82.90 76.20 81.50 84.60		
1	236. 0 236. 0 236. 0	0.991	300 N N N N N N N N N N N N N N N N N N	0.00 0.44 0.44 0.44 0.44 0.44	1 000 1 000	52. 00 52. 00 52. 40 51. 8/ 0.	~ ~ ~	8813 8813 8813 7
!	235.0 235.0	2.000	0. 600 CT 0. 600 CT	1.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 60 5 20 47.97 3	_	
	240.0	000 2	0. 600 CT 0. 600 CT	1 000	0. 12 0 18	52.70 63.50	1973	87241

HIDTES (1) COMPOSITION OFFICERTY O 39C.O BERNALO (OBP.O 0055.1.6151.1 BONT.O B9CR.O OBV (ESTINATE) TVS)

TABLE 6 23 2 1 (Con'+)

	DATE REFER	1973 87241	1973 87241	1973 87241	1973 87241	1973 87241
	1	75.00	69, 20	71. 80	75, 50 1	74. 70 1
() L	6ACK 2.5* (GTH (K(IC)/TYS)**2: [IN) (IN)	1 000 0.29	1, 000 0, 23	1. 000 0. 24	1. 000 0. 26	1.000 0.24
HOOE	WIDTH THICK DESIGN LET (IN) (1) (1)	0. 600 CT 1	0, 600 CT 1	0, 600 CT 1	0. 600 CT 1	0. 600 CT 1
SIELL		2. 000	2. 000	5.000	2. 000	2.000
ALLUY SIELL	YIELD STRENGTH (KSI)	219.0	230. 0	232. 0	236. 0	240.0
	SPECIMEN ORIENT	11	L1	Ξ.	ן - ן	-
	TEST TEMP (F.)	⊬ œ	R. T.	E.	₽ -	<u>⊬</u>
	FURN THICK TEMP (JN) (F)	<i>2</i> "0"0	29 0	<i>2</i> 9 0	<i>2</i> 9 0	<i>2</i> 9 0
		œ	æ	B 5F 1HR	2	E C
	COREDITION	2190F 1HR, 00, 400F 1HR	2190F 1HR, 09, 475F 1HR	2190F 1HR, 00, B 475F 1HR, WG, 475F 1HR	2190F 14R, DA. 615F 14R	2190F 1HR, DG, 745F 1HR

TABLE 6.23.2.2

	EFE	73988	73988		73988	73988	73988	73988	ם ו		73988	73988	73988	73988	3968	t t		13988	13988	73988
	Ē	7 8968 7 8968 7 8968	1968 7			1968 7 1968 7		7 8961					1968 7			1 1				1968 7
	TAN DEV	1	-		-	-	-		,		-	~		4 44	-	1		-	-	-
] t i	1						1						/	; 1 1				
	(C)	! !			!		-				ļ	1			! ! !	! !		!	!	
	T AN	1 1	7 .8					,	. 1						7.0	1				3.7
	_	t t	141.17					71 17	,						71 4/	1				94 1/
	APP) S1*5	134.06	138.37 1		75.18	64.82	83, 27	71.41	; ! !				63.63		76	; 1 1				80.81
K(C)	TRESS HAX (KSI)	, 018		RAINED	9 9	2 0	0	30.30	1	RAINED	8	ရှ	8 8		90		RESTRAINED	6	8	61 20
	RUSS NSET KSI)	CRACK EDGES RESTRAINED 1. BB0 71 2. 530 63		CRACK EDGES NOT RESTRAINED					; ; ;	CRACK EDGES NOT RESTRAINED	1						NOT REST	;	1	
300M	CRACK LENGTH INIT FINAL (IN) (IN) PA(D) 2A(F)	EDGES R		EDGES N					1	EDGES N	}	}		1	-	1 1	DGES N	1	1	1
ဂိ		CRACK 1. 880 2. 530	1. 170	CRACK	1.300	1 730	2. 440	2. 300		CRACK	2. 080	1. 710	900	2. 540		1 1	CMACK EDGES		2, 280	1. 050
ALLOY STEEL	IMEN THICK (IN) B	BUCKLING OF 00 0.119	. 1	BUCKLING OF	0.374			0.372	,	BUCKLING OF			0.371	0.374			in Section 1		0.372	
ALL OY	12.	BUCKI	3 . 000	BUCK	9.000			000		BUCKI		J. 000			5.000	1 1	BUCKLING		5.000	9. 000 9.
	VIELD STR (KSI)	239.0	239.0		207.0			20%					2 6	234.0	234.0	1 1 1				236.0
	SPEC	1-1			L-1				1		L-1					1		L-1		
	16ST TEMP (F)	· +			₹. H				;		¥.					1		R. T.		
	PRUDUCT - IRM THICK (1R)	0.0			38			38	1			900		98 0	0 38	‡ † †		96 0		
	FINR	, s			۵_				1		a .					1		<u>-</u>		
	(mb1710n)	6434 280-300K			AME 6434 HTG=220-240451				1 1 1 1		6434	U15-260-280KSI				1 1 1 1 1		AMS 6434	U1S=280-300KSI	
	<u>.</u>	AMS UTS-			PAME				,		S S	510				†		7.113	្ត្រ	

•

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 5.23.3.1 INDICATING EFFECT

MATERIAL AL	LOY ST	EEL 300M			
DELTA K		:	DA/DN (10**-6	IN. /CYCLE)	
(1/31-1/4	., .,	: A	В	С	D
		E= R.T.	E= R.T. SIM SEA WATER		
DELTA K B MIN C D:		.113	. 488		
	6.00 7.00 8.00 9.00 10.00 13.00 16.00 20.00 25.00 35.00 40.00 50.00	293 415 555 716 1 33 2 18 3 83 7 04 12 2 20 5	.740 1.51 2.17 3.30 5.90 10.8 20.0 36.9		
A: DELTA K B: MAX C: D:		: 103. : :	548.		
	ROOT MEAN SQUARE PERCENT ERROR		32. 26		
LIFE PREDICTION RATIO SUMMARY 1	0.5-0. 0.8-1. 1.25-2.	8 25 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.2 INDICATING EFFECT

MATERIAL: ALLOY ST	EEL 300M			
DELTA K (KSI*IN**1/2)	: :	DA/DN (10**-6	IN. /CYCLE)	
(//0141/4441/2/	A	В	C	D
	E= R.T.	E≔ R.T. SIM SEA WATER		
A: 4.96 DELTA K B: 7.19 MIN C: D:	: . 115 : :	. 440		
5.00 6.00 7.00 8.00 9.00 10.00 13.00 16.00 20.00 25.00 30.00 35.00 40.00	206 .315 .442 .587 .749 .1.36 .2.21 .3.87 .7.31 .13.2 .23.4 .40.5	. 560 . 708 . 856 1. 32 1. 89 2. 99 5. 44 10. 3 20. 1 40. 1		
A: 52.52 DELTA K B: 48.66 MAX C: D:		138.		
ROOT MEAN SQUARE PERCENT ERROR		28. 80		
LIFE 0.0-0. PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2. (NP/NA) >2.	5 8 25 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.3 INDICATING EFFECT

OF STRESS RATIO

DELTA K (KSI*IN**1/			DA/DN (10**-	5 IN. /CYCLE)	
(101-114-41)	:	A	В	С	D
	:	R=-1. 00	R=+0. 02	R=+0.50	
		. 968			
DELTAKB: 1 MIN C: D:			. 803	. 670	
	9. 00 : .0. 00 :			. 738 1. 02	
	3.00 :	1.16	1.05	2. 11	
	6.00 :		2. 03	3. 64	
	20.00 : 25.00 :	3. 79 5. 83	3. 56 5. 85	6. 52 12. 1	
	80.00 :	8. 37	8. 89	21. 1	
		12. 1	13. 3		
		17. B	20.0		
		42. 4	47. 0		
4	0.00 :	113.	232.		
	4. 78 :	187.			
ELTA K B: 6			2803.	2/ 0	
MAX C: 3 D:	31. 7 7 : :			46. 4	
ROOT MEAN SQU	ARE	10. 81	7. 40	4. 65	
PERCENT ERROR					
LIFE 0 PREDICTION 0 RATIO 0	5-0.8				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.4 INDICATING EFFECT

OF STRESS RATIO

MATERIAL: ALLOY STEE CONDITION: UTS=280-3 ENVIRONMENT: R.T.,	OOKSI			
DELTA K		DA/DN (10**-	5 IN. /CYCLE)	
(KSI*IN**1/2) :	Α	В	С	D
: :	R=-1. 00	R=+0.00	R=+0.50	
A: 11.81 : DELTA K B: 11.83 : MIN C: 6.00 : D: :	. 39	. 45	. 17	
7. 00 : 8. 00 : 9. 00 : 10. 00 : 13. 00 : 16. 00 : 20. 00 : 25. 00 : 30. 00 : 40. 00 : 50. 00 : 70. 00 :	17. 0 34. 4	. 664 1. 42 2. 96 5. 73 9. 53 14. 5 20. 7 38. 0 63. 8 102.	. 272 . 382 . 508 . 657 1. 32 2. 65 6. 97 25. 1	
A: 55.73 : DELTA K B: 79.71 : MAX C: 27.15 : D: :	573.	154.	286.	
ROOT MEAN SQUARE PERCENT ERROR	22. 63	21. 35	26. 95	
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.25 SUMMARY 1.25-2 0 (NP/NA) >2.0				

CONDITION/HT: UTS=280-300KSI 3.50"TH BILLET YIELD STRENGTH: 248. Ø- 250. Ø KSI STEEL FORM: SPECIMEN TYPE: CCP ULT. STRENGTH: 295. 5- 298. Ø KSI ORIENTATION: L-T SPECIMEN THK: Ø. 250" 4. 000" FREQUENCY: 10.00 HZ SPECIMEN WIDTH: 3. 900-300M **ENVIRONMENT:** R. T., L. H. A. REFERENCESMAØØ7. MAØ1Ø ΔK (MPA √m) $\Delta K (MPA \sqrt{m})$ 100 100 10 40 10 البليليلي **B** 10 ⁰ STRESS RATIO = +0.00 STRESS RATIO = -1. 00 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ 10⁻² 10⁻² da/dN (mm/cycle) da/dN (in/cycle) 10-4 10-4 10-3 10⁻³ 10^{.5} 10⁻⁵ 10-4 10⁻⁴ 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 40 100 40 100 10 10 للللللل **©** لللللل لتلتليك **(D**) THE STREET 10 ⁰ 10 ⁰ STRESS RATIO = +Ø. 5Ø STRESS RATIO = 10⁻² 10 2 10⁻¹ 10-1 10⁻³ 10⁻³ 10⁻² 10.5 da/dN (in/cycle) 10⁻⁴ 10 4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10-4 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10.7 10⁻⁷ 10⁻⁶ 10⁻⁶ 10-8 10⁻⁸ 10 40 100 40 100 10 ΔK (KSI √in) ΔK (KSI √in) Figure 6.33.3.4

6.2 4.1

ALLOY

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.5 INDICATING EFFECT

DELTA			DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN*	*1/2)	Α	В	С	n
					ALT IMMERSION IN SEA WATER-
A: DELTA K B: MIN C: D:	11.30 11.22	:	. 983	. 382	. 386
	13. 00 16. 00 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00	2. 24 6. 17 12. 3 21. 5 35. 9	1.08 1.51 2.61 4.99 8.51	. 543 1. 01 2. 17 4. 65 8. 12 11. 9	. 524 . 971 2. 05 4. 41 7. 89 12. 1 16. 5
DELTA K B: MAX C: D:	37. 07	: :	10. 4	13. 4	16. 5
ROOT MEAN S PERCENT ER	RROR		8. 55		19. 59
LIFE PREDICTION RATIO SUMMARY	0.5-0. 0.8-1.	5 8 25 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.6 INDICATING EFFECT

OF ENVIRONMENT

DELTA (KSI*IN*	K		DA/DN (10**-6	IN. /CYCLE)	
(NO1 # 1 IA# 1	*1/2/	: A	В	С	D
		: : E= R.T. :3.5% NACL	IMMERSED	E= R.T. ALT IMMERSION IN SEA WATER- 1ST HALF DRY CYC	IN SEA WATER- 2ND HALF DRY
DELTA K B: MIN C:	14.75	:	1. 68	1. 42	. 575
		: 4, 20 : 7, 61 : 11, 4	2, 95 8, 04 12, 8 16, 0 19, 9 27, 2	2.51 7.06 11.7 14.9 18.0 23.3 50.6	. 955 2. 61 5. 44 8. 94 13. 5 19. 8
DELTA K B: MAX C:	44.10	:	38. 1	59. 3	38. 8
PERCENT ER	ROR	9. 87	36. 02	42. 11	

>2.0

(NP/NA)

3.50"TH BILLET YIELD STRENGTH: 248. Ø- 250. Ø KSI FORM: STEEL ULT. STRENGTH: 295. 5- 298. Ø KSI SPECIMEN TYPE: CCP SPECIMEN THK: Ø. 25Ø" ORIENTATION: L-T STRESS RATIO: +0.00 SPECIMEN WIDTH: 3. 900-300M REQUENCY: 1.00 HZ REFERENCES:MAØØ7, MAØ1Ø ΔK (MPA √m) ∆K (MPA √m) 40 100 10 40 100 10 B 10 ⁰ ENVIRONMENT: R. T. J ALT IMMERSION SEA HZØ-IMMERSED R. T. 10-2 10⁻² 10-1 10-1 10⁻³ 10⁻³ 10-2 10⁻² da/dN (in/cycle) 10-4 10 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10⁻⁴ 10⁻⁴ 10⁻⁶ 10⁶ 10⁻⁵ 10⁻⁵ Ů 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 100 40 100 10 40 10 ENVIRONMENT R. T. ALT IMMERSION SEA H20-2ND HALF DRY CYC **©** ⑫ 10 ⁰ 10 ⁰ 10-2 CYC 10 2 10⁻¹ 10-1 10⁻³ 10⁻³ 10⁻² 10⁻² da/dN (in/cycle) (mm/cycle) 10⁻⁴ 10-4 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ da/dN 10⁻⁴ 10-4 10⁻⁶ 10⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 10 40 100 10 40 ΔK (KSI √in) ΔK (KSI √in)

ALLOY

CONDITION/HT: TUS=280-300KSI

Figure 6.23.3.6

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.7 INDICATING EFFECT

OF STRESS RATIO

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-	4 IN. /CYCLE)	
(V21#1N#	*1/2) : :	A	В	С	D
	:	R=+0. 08	R=+0. 30	R=+0.50	
DELTA K B: MIN C: D:	9.74:	. 191	. 788	. 832	
	6.00 : 7.00 : 8.00 : 9.00 : 10.00 : 13.00 :		1. 52 2. 71 4. 88	. 901 1. 84 3. 23 6. 83	
	25. 00 : 30. 00 :	7. 18	8. 69 15. 3	6. 63	
A: DELTA K B: MAX C: D:	34 . 66 :	11. 4	30. 4	14. 5	
ROOT MEAN SQUARE PERCENT ERROR		5. 37		9. 34	

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.8 INDICATING EFFECT

		EEL 300M . 5HRS AC: 1600F	1.5HRS 00, 6	0:F	
DELTA (KSI*IN*	K *1/2)	:	DA/DN (10##	-6 IN./CYCLE)	
***************************************		A	В	С	D
		: E=- 65F : L. H. A. 6HZ	E= R. T. L. H. A. 1HZ		
DELTA K B: MIN C: D:		: . 577 : : : : : : : : : : : : : : : : : :	. 744		
	13. 00 16. 00 20. 00 25. 00 30. 00 35. 00	: 1.56 : 3.04	1, 20 2, 05 3, 67 6, 62 10, 9 16, 8		
DELTA K B: MAX C: D:		: 26. 0 : :	20. 6		
ROOT MEAN S PERCENT ER		7. 48	10. 79		n and the tree size day and get from the and
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0. 0. 8-1.	8 25 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.9 INDICATING EFFECT

		.5HRS AC: 1600F		OF	
DELTA K (KSI*IN**1/2			DA/DN (10**-		
(NOINIMEN)	£ }	: A	В	С	D
		: : E= R. T. : L. H. A. - 6HZ			
A: 10 DELTA K B: E MIN C: D:		: 498 :	1. 93		
10 12 16 20 25 30 35	7. 00 0. 00 3. 00 5. 00 0. 00 5. 00 0. 00 5. 00	1.34 2.41 4.01 6.73	3. 13 4. 28 7. 12 12. 0		
DELTA K B: 18 MAX C: D:		: 78. 3 : :	22. 5		
PERCENT ERROR	ROOT MEAN SQUARE PERCENT ERROR		10. 20		
LIFE O. PREDICTION O. RATIO O. SUMMARY 1.2 (NP/NA)	0-0. 5-0. 8-1. 25-2.	5 8 25 0			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.10 INDICATING EFFECT

DELTA K (KSI*IN**1/2)		DA/DN (10**-6 IN./CYCLE)				
(1/21 2 1/4%)	(1/2/	: A	B	С	D	
		E=- 65F : L. H. A. 6HZ	E= R. T. L. H. A. 6HZ	E= R. T. S. T. W. 1HZ		
DELTA K B: MIN C: D:		:	2. 08			
	13. 00 16. 00 20. 00 25. 00 30. 00 35. 00	: 1, 27 : 2, 72 : 5, 91 :	2. 29 4. 09 7. 59 13. 6 24. 2			
A: DELTA K B: MAX C: D:		: 9.36 : : :	27. 3			
ROOT MEAN S PERCENT EF		10. 41	6. 22	0. 00		

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.11 INDICATING EFFECT

OF ENVIRONMENT

	MAX		:		DA/DT	(10**-3	IN/HOUR)	
(KSI*	TMER	1/2)	:	A	В		С	D
			:					_
				E= NACL				
	A:							
K MAX	B :		:					
MIN	C:		:					
	D:		:					
		200.00	:					
	A:		:					
K MAX	₿:		:					
MAX	C :		:					
	D:		:					

PERCENT ERROR

6.23-31

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.23.3.12INDICATING EFFECT

OF ENVIRONMENT

K MAX			:	DA/DT (10**-3 IN/HOUR)			
(421*	KSI*IN**1/2)		A	В		С	D
			: E= R.T. : DIST. WATER				
	A:	12. 80	: 3. 10				
K MAX	B :		:				
MIN	C:		:				
	D:		:				
		13. 00	: : 23. 7				
		16.00					
		20.00					
		25.00	: 368 .				
		30.00	: 377 .				
		35. 00					
		40.00					
		50.00					
			: 1059.				
			1793.				
		80.00	: 3897.				
	A:	82. 00	: 7300.				
K MAX	B:		:				
MAX	C:		:				
	D:		:				

ROOT MEAN SQUARE

PERCENT ERROR

34. 18

6.23-36

TABLE 6.23.3.13

						ALLOY 91	STECL	300H		¥	K(18CC)							
CCNDITION	- PRODUCT FORM THICK		TEST TEMP (F)	SPEC	YIELD STR (KSI)	ENV I RONME	'	WIDTH THICK (IN) (IN)	1	DESIGN (CRACK LENGTH (IN) (K(G) K(ISCC (KSI*SORT IN)	~ 1	MERAN 1	STAN	TEST TIME (MIN)	DATE R	REFER
	<u>.</u> a.	1	1 2	!	289.0	3. 5 PCT NACI	1 1 5	200	0.500	ANT	ခွင့	6	12.00			! ! !	1971 8	84351
1	<u>s</u> .	0, 48	R.	5-7	236.0	3.5 PCT NACL	님	1. 500	0. 480 1	2	}	26.00	13.00			! !	1967 7	74302
	it. 1	កក្ក ស្លាស់ ស្លាស់	C	S-T	ยยย	SIM. SEA W	WATER	3. 091 3. 088 3. 101	1.242		1. 351 - 1. 358 - 1. 355 -		15.40 15.70			86400 86400 86400 86400	1977 H 1977 H 1977 H	MA005 MAC05 MAC05 MAC05
		52 1			240.2			:						19.97	10 I	1 1 1	1	1
15COT 0 SHR DQ P 0 56 1 40AF 2-2 HR CDARSE GRAINED STRUCTURE)	OR P	0 56 GRAINE	R. T.		202.0	3.5 PCT NACL	, , ,	1. 500	0.500	CANT*	 		12.0			1	1970	78305
15/0F O SHR DA P O 56 F SOF 2+2 HR (CDARSE GRAINED STRUCTURE)	OA P COARSE	0 56 GRAINE	R T.	!	232.0	3. 5 PCT NACL	ქ	1. 500	0. 500	CANT.	}	42. 00	15 00				0261	76305
1500F 0 SHR 00 P 0 56 550F 2+2 HR (FINF CRAINED STRUCTURE)	C INF C	0.56 RATNED	⊢ α⁄	<u> </u>	247.0	3.5 PCT NACL	C.	1. 500	0.500	CANT*	1	96. 00	15.00			į	1970	78305
1300F O SHR OR P O 56 400F 2+2 HR (FINE GRAINED STRUCTURE)	OG P (FINE G	0 56 RAINED	r <u>r</u>	\$ }	245.0	3. 5 PCT NACL	Ĉ.	1. 500	0.500	CANT*		8	5. Q				970	C)
1550F 0 3HR 00 P 550F 2+2 HR (FIN STRUCTURE)	00 P 0 56	0 %6 RAINED	1 22	1 1	2480	3. S PCT NACL	ČL 1	1. 500	0.500	CANT*		64.00	15 00	t 1 1	1 1 1	: ! ! ! ! !	0261	7830§
1850F O SHR DOP O 56 400F 2+2 HR (FINE ORATHED STRUCTURE)	00 P (FINE C	O 56 RATNED	⊢ ∝	1	241. 0	3 5 PCT NA	NACI.	1. 500	0. 500	CANT*		93.00	15.00			† 	1970	78305
1350F O SHR NA P O 56 T SEOF 2+2 HR COMPSE GRAINFD GIRLICHUED	no P COAPSE	O 56 GRAINF	я т 0	 - -	246 C	3, 5 PCT NACL	ij	1, 500	0.500	500 CANT#	! ! !	00 '09	15 00				1970	78305

TABLE 6.23.3.13 (Con't)

						ALLOY STFEL	300		K (1SCC)						
401 (1dt #)	FORM	DRM FHICK	1651 TEMP (f)	SPEC	YIELD STR (KSI)	ENVIRONIAENT	HIQIM (IN)	3 S = 3 S		K(G) (KS1*50	_	BTAN EAN DEV	TIME (MIN)		DATE REFER
1550F O SHR DO P O 56 R 1904 242 HR CCUARSE GRAINED STRUCTURED	CUNRSE	0 56 R T GRAINED	-	!	240	3.5 PCT NACL	1.500	0 20	.]	23 00	13 00	1 1 2	1	0261 -	78305
TACOY O SHR 09 P O C ACOF 240 HR (CDARSE GRAL STRUGTURE)	CDANSE	ı	E I			S PCT NACL	1.500	0. 500 CANT*	1 1 1 1	67 00	12 00	1 1 1	· ; · ; · ; · ;	- 1976	78305
1600F O SHR OOP O S6 R SpOF 242 HR (COARSE GRAINED STRU(TURE)	O P COARSE	0 56 R GRAINID	æ <u>c.</u>			T NACL	1.500	0. 500 CANT#	1	92.00	12 00		!	. 1970	78305
TATOT O SHR OR P 0 56	FINF GF		r c		ė.	. r NACL	1. 500	0. 500 CANT#	† ! !	65.00	12.00		1	0261	7630%
· L		0.00	: ← : œ:	1	247.0	AIR-90PCT RH	1.500	0. 480 PTSC	0.140	73.90	71 00	} ! !	1	1963	 74718
1500 100 100 But 141 HR		4 (0)	<u> </u>	- 1 8-1	2513	3 S PCT NACL	1.500	0. 480 CANT		63.50	09 61	1 1 1	i i i i i i i i i i i i i i i i i i i	1965	74718
	-	000 8	· -	1-1			1 0000	1 000 DCB 1 000 DCB 1 000 DCB		150 00 150 00 150 00	21 00 27 00 30 00			1976	 R1006 R1006 R1006
Proof 1 14P A Treot 1 4HR CT FOOT 1 4HR	~ ~ ~	0 0 0 7 7 7	~ ∝	ار	238 0 238 0 238 0	S C S	2 000	1 000 DCB 1 000 DCB 1 000 DCB	1	150 00 150 00 150 00	39 00 37 00 36 00	38 0/ 1,7	116760 116760 116760	1976 1976 1976	P1005 R1006 R1006
History I than I Bloom 1-55) 1 PQ. 60	7 00 Or 7+ΩH		1 - 1	0 863	S T 12	2 000	1 000 DCB	j 1 1	150 00	55 00) 	1976 R1006	*100¢

TABLE 6.23.3.13 (Con't)

	TEST TIME DATE REFER (MIN)	1976 R1006	1976 RIO 5200 1976 RIO 5200 1976 RIO 5200 1976 RIO	1971 84087 1971 84087 1971 84087	1971 84087 1971 84087 1971 84087
	STAN DEV		6.0	17.4/ 0.7	17.6/ 1.1
	CRACK LENGTH K(0) K(15CC) MEAN (IN) (KSI*SGRT IN)	150.00 < 21.00	2.00 × 25.00 2.00 × 25.00 3.00 16.00 3.00 15.00	3.90 18.00 7.80 17.60 1.70 16.70	51. 20 18. 90 51. 50 16. 30 55. 30 18. 00 55. 90 17. 30
K(ISCC)	1	15		, , ,	-0 mb mb m
r	WIDTH THICK DESIGN (IN) (IN) (*=SQ)	1. 000 DCB	1.000 DCB 1.000 DCB 1.000 DCB 1.000 DCB	1	0. 500 CT 0. 900 CT 0. 500 CT 0. 500 CT
300H	HTGIN (IN)	2. 000	0000	1.000	
ALLOY STEEL	STR ENVIRONMENT (KSI)	238.0 S.T.W.	3; ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	250. 0 3.5 PCT NACL.	250, 0 3.5 PCT NACL 250, 0 250, 0 250, 0
	SPEC	1-1	ဖ ်ာ	. 5	7-
		π Τ	α -	3 1. L-1	R. T. T-L
	FORM THICK (IN)	3 60 00F 24;	0000 0000 0000	0 63 0 63 0 63	0 63 0 63 0 63 0
	_	F 00,6	L	, , e	c
	CONDITTION	1700F 1 SHR F 3 60 R.T. L-T AC, 1600F 1 SHR 00, 600F 242HR	1700F 1 54R AC, 1600F 1 54R DG, 600F 2+24R	1710F+1610F 610F	1710F+1610F 510F

TABLE 6.24.1.1
MEAN PLANE BIRAIN FRACTURE TOVOHNESS DATA OF
ALLOY STEEL 300M (AM) AT ROOM TEMPERATURE

THE PARTY OF THE P

•

(NUMBER OF SPECIMENS)		1	
	Œ.	ៗ	
MEAN KIC + BTANDARD (KBI BORT(IN)) DEVIATION	EOROLING	1	46.5 ± 3.8 (3)
CONDITION/HT		CONDITION/HT	1630F 1 HR, AC, 1530F 1 HR, DQ, -320F 0, 5 HR, 600F 2+2HR, AC

TABLE 6.24.2.1

	DATE REFIP	1968 73300 (1) 1968 73300 (1) 1968 73300 (1)
	K(IC) BEAN DEV (KGIMSORT IN)	43.40 45.10 50.60 46.5/ 3.8
•	CPACE 25" ENGTH (K (IC)/TYS) **? (IN) A	0.07 0.07 0.09
	CHACH LENGTH (IN)	
times invote	SIREIGH WIDTH THICK DESIGN (KST) (IN) (IN)	1. 600 0. 900 NB 1. 600 0. 900 NB 1. 600 0 900 NB
WILLIAM BILLS	YIELD	262 0 262 0 262 0
	SPLCIMEN	r-1
	PRODUT HISTORY	4 00 R 1 4 00 A 00
	a nontrans	1500 1 18.00. F 1507 1 18.00. 330F 0 5 HR. 550F 24218.00

PROTES (AN) *AIR MELTED

TABLE 6.25.1.1

HEAN PLANE BTRAIN FRACTURE TOUGHNESS DATA DF ALLOY STEEL 300M (VAR) AT ROOM TEMPERATURE

(NUMBER OF BPECIMENB)		ij	
	Q	1	
HEAN KIC ± BTANDARD (KBI BGRT(IN)) DEVIATION	EORGING	ij	52.2 ± 1.3 (4)
CONDITION/HT		CONDITION/HT	1650F 1 HR, AC, 1350F 1 HR, DQ, -320F 0, 5 HR, 600F 2+2HR, AC

TABLE 6.25.2.1

ALLOY STEEL 300M (VAR) K(IC) PRODUCT TEST SPECIMEN VIELDSPECIMEN CRACK 2.3* K(IC) BTAN (IN) (F) (KSI) (IN) (IN) (KSI*SGRT IN) (IN) (KSI*SGRT IN) (KSI*S		1	2222
-PRODUCT TEST SPECIMEN VIELDSPECIMEN CRACK 2.5+ K(IC) BTAN FORM THICK TEMP ORIENT STRENGTH WIDTH THICK DESIGN LENGTH (K(IC)/TVB)**2 K(IC) HEAN DEV (IN) (IN) (IN) (IN) (IN) (KSI*SGRT IN)		REFER	73300 (73300 (73300 (
PRODUCT TEST SPECIMEN VIELDSPECIMEN FORM THICK TEMP ORIENT STRENGTH WIDTH THICK DESIGN (IN) (F) (KSI) (IN) (IN) W B F 4 50 R.T. L-T 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 6 4 50 259.0 1.800 0.900 NB		DATE	1968 1968 1968 1968
PRODUCT TEST SPECIMEN YIELDSPECIMEN FORM THICK TEMP ORIENT STRENGTH WIDTH THICK DESIGN (IN) (F) (KSI) (IN) (IN) W B F 4 50 R.T. L-T 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 6 4 50 259.0 1.800 0.900 NB			
PRODUCT TEST SPECIMEN YIELDSPECIMEN FORM THICK TEMP ORIENT STRENGTH WIDTH THICK DESIGN (IN) (F) (KSI) (IN) (IN) W B F 4 50 R.T. L-T 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 6 4 50 259.0 1.800 0.900 NB		K(IC) MEAN (KBI+5GRT II	91. 10 93. 60 91. 20 91. 20
PRODUCT TEST SPECIMEN YIELDSPECIMEN FORM THICK TEMP ORIENT STRENGTH WIDTH THICK DESIGN (IN) (F) (KSI) (IN) (IN) W B F 4 50 R.T. L-T 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 6 4 50 259.0 1.800 0.900 NB	_	2. 5+ K(IC)/TYB)++2 (IN)	0000
PRODUCT TEST SPECIMEN YIELDSPECIMEN FORM THICK TEMP ORIENT STRENGTH WIDTH THICK DESIGN (IN) (F) (KSI) (IN) (IN) W B F 4 50 R.T. L-T 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB 4 50 259.0 1.800 0.900 NB	X IC	CRACK LENGTH ((IN)	
ALLOY E PRODUCT TEST SPECIMEN YIELD FORM THICK TEMP ORIENT STRENGTH (IN) (F) (KSI)	(X Y)		
ALLOY E PRODUCT TEST SPECIMEN YIELD FORM THICK TEMP ORIENT STRENGTH (IN) (F) (KSI)	H000	PECIMENTHICK (IN)	0000
PRODUCT TEST SPECIMEN VI FORM THICK TEMP ORIENT STR (IN) (F) (C)	3TEEL	WIDTH (IN)	1. 800 1. 800 1. 800
PRODUCT TEST FORM THICK TEMP (IN) (F)	ALLOY 8	YIELD STRENGTH (KSI)	23.49.0
PRODUCT TEST FORM THICK TEMP (IN) (F)		SPECIMEN ORIENT	
		EST EMP F)	,
		DUCT THICK (IN)	
CCNDITION		FORM)
		CONDITION	1650F 1 HR, AC. 1550F 1 HR, DG. 320F 0 5 HR, 600F 2+2HR, AC

HOTES
(1) (VAR) "VACUUM ARC REMELTED

TABLE 6.26.1.1

PEAN PLANE BTRAIN FRACTURE TOUGHNESB DATA OF ALLOY BTEEL 300H(VM) AT ROOM TEMPERATURE

CONDITION/HT	MEAN KIC + BTANDARD (K91 BORT(IN)) DEVIATION	D (NUMBER OF BPECIMENS) ON	8PECIMENB)
	PLAIE	1	
CONDITION/HT	7	1	Ŧ.
1500F, DG, 400F 2+2HR	48.0 ±17.0 (2)		!
1500F, 00, 550F 2+2HR	49. 5 ±10. 6 (2)	1 1 1	
1350F, 00, 550F 2+2HR	62, 5 ± 3, 5 (2)		
	BITTEI	Ħ	
CONDITION/HT	=	7	1-8
1700F, AC, 1600F 1 HR, DG, 550F 2+2 HR		35.3 ± 0.3 (3)	,
1700F, AC, 1600F 1 HR, 80 975F, 00, 575F 2+2 HR		58.6 ± 2.2 (3)	7
1700F, AC. 1600F 1 HR, SG 400F, AC. 550F 2+2 HR	***************************************	58.0 ± 3.4 (3)	1

TABLE 6.26.2.1

					ALLOY	STEEL	300m(VM)	Ê	K(1C)	_					
(1000 T TON	FORM	DUCT THICK (TIN)	1EST 1EMP (F)	SPECIMENORIENT	YIELD STRENGTH (KSI)	HTOTH (SI)	SPECIMEN- THICK D (IN)	DESIGN	CRACK LENGTH (IN)	2 5* (K(IC)/TYS)**? (IN)		K(IC) STAN K(IC) MEAN DEV (KSI*SQRT IN)	DATE	REFER	~ '
4. 400F	ē.	0 56 0 56	~	<u> </u>	202 0 245 0	1 50	0 50	9 8 2 8	!!!	0 08 0 15	36.0	48.0/ 1	197	7830	~ ~
550F			۵e	1	233 0 248 0	1 20 20	00 00 00 00 00 00	+ ! ## ##	1 1 1 1 1 1 1 1 1 1	0.08	42.0 57.0	49.5/ 1	197	7830	1 00
1856F; 00, 460F 2921B	. <u>C.</u>	36	O _C	1	242.0	1 500	0	1 1 8 2	1		53.0	1 1 1	197	78	-
. 19.550	•	0 56 0 56	, Γ	1	248.0 248.0	1.50 1.50	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.15	0.09	52.57	197	7830 7830	,
12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	, , ,	0 56	, -	•	220.0	1 30	1 6	1 22	i i i i i	25 0	1 99] 1	197	7830	
and the design of the second o	٠ د	0.56	! : : :	1	233 0	1 50	0 20	•	1	20	0 99))	197	78	. .
Enter Assistant Have caperon		- 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	: : = = :	; ; ; ⊢	239. 0 239. 0 239. 0	2 500 2 500 2 500	1 000 1 000 1 000	1 10 10 10 10 10 10 10 10 10 10 10 10 10		1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	55 60 55 30 55 00	95 3/ 0	1972 1972 1972 3	84278 84278 84278	
The company of the control of the co	<u>-</u>	5 50 5 50 5 70	E G	<u>-</u> '	242 242 0 242 0	2 500 2 500 2 500	1 000 1 000 1 000	CT CT CT	1 1 1	0 14 0 15 0 16	56 40 50 50 60 80	58 6/ 2	1972 1972 1972	9 84278 9 84278 9 84278	ê ê ê • • •
House & Charles A. Charles		91. S	2	-	0 110	009 2	1 000	L	1	0 13	55.40		1972	R4278	ê

ASTA CARCHUM THE FELTO. THE SET DATA AND ANTIBACT VALUES
AND FROM THE SAY, WELL FROM THE STATE AND A LEAST CARLOTT.
AND AND A CONTROL TO A LABOUR DESIGN A LEAST CARLOTT.
AND CARCHUM MELITIDE.

TABLE 6.26.2.1 (Con't)

	REFER	1972 84278 (1) 1972 84278 (1)
	DATE	1972
	2.5* K(IC) BTAN (IC) ATAN (IC) / TYS) **2 K(IC) MEAN DEV DATE (IN) (KGI*SGRT IN)	56. 70 61. 80 58. 0/ 3. 4
K(IC)	SPECIMEN CRACK 2.9* K(IC) HEAN DEV H WIDTH THICK DESIGN LENGTH (K(IC)/TYS)**2 K(IC) MEAN DEV (IN) (IN) (IN) (KSI*SGRT IN) H B A	
300H(VH)	FELDSPECIMEN FENOTH WIDTH THICK DESIGN (KSI) (IN) (IN) W B	T-L 244.0 2.500 1.000 CT 244.0 2.500 1.000 CT
STEEL	HEOTH	90 S. S. S. S. S. S. S. S. S. S. S. S. S.
ALLOY STEEL	YIELD STRENGTH (KSI)	1 44 0 1 44 0 1 1 1 1 1 1 1 1 1 1 1 1 1
	SPECIMEN YIELD ORIENT STRENOTH (KSI)	
	TEST TEMP (F)	F 1
	PRODUCT TEST TORM THICK TEMP (IN) (F)	100 S
	FORM	
	NOTTION	1700F, AC, 1600F BF 1 HR. SQ 400F, AC, 550F 2+2 HR

(1) (VM)-(VACUUM MELIED)

TABLE 6.27.1.1

Ö

MEAN PLANE STRAIN FRACTURE, TOUGHNESS DATA OF ALLOY STEEL 4140 AT ROOM "EMPERATURE

(NUMBER OF BPECIMENS)		1.		!	
	BAR	ជ		1	
HEAN KIC + BTANDARD (KSI BGRT(IN)) DEVIATION	EDREED BAR	1-1	52.1 ± 7.4 (2)	81, 1 ±13, 2 (2)	66.1 ± 2.7 (2)
CDND IT IDN/HT		CONDITION/HT	2010F 1 HR, 00, 475F 1 HR	2190F 1 HR, DQ, 400F 1 HR	2190F 1 HR, 00, 475F 1 HR

TABLE 6.27.2.1

			î	÷	1						. 2	2	
	REFER	87241	87241	87241	MR002 MR002	MR002 MR002	HR002	1980 MR002	MR002 MR002	HR002 MR002	B	87241 (
	DATE	1973	1973	1973	1980 1980	1980 1980	1980	1980	1980 1980	1980 1980	 1973	1973	
	STAN	1 1			1 4		•		-		1		
		1 1 1				60 04			, e	79.89	1 1		
	K(IC) (KBI#50	39, 90	20. 60	50.00	62.30 74.69	41.30	85.30	58. 70	84. 40 84. 60	71. 10	59.20	46.80	
	YS) * * 2	1 1 1) 						1 1		
7.	2.5* K(IC)/T (IN)	60.0	0. 13	0.12	1 00	0. 10 0. 09	0. 71	0.28	0, 73 0, 73	0.44 0.38	1 0.22	0. 12	
KCIC)	CRACK LENGTH (1N)	000 1	1. 000	1.000	1.033	1.034 1.055	1.024	1. 040	0, 991 1, 015	1,045	1.000	1. 000	
	1 Z	1 12	t)	C1	15 15	51	CT.	ct	55	CT CT	1 1 1 1 2	t3	
4110	SPECIMEN- THICK DI (IN)	0.600	0. 600	009.0	0.994	0.994	0.994	0.994	0. 990 0. 994	0. 994 0. 990	0.600	0.600	
SILEI	HIDTH THICK DESIGN (IN) (IN)	5.00	2. 000	2. 000	2.003	2. 001 2. 003	2. 003	2, 003	2. 000 1. 998	2. 002 2. 000	2.000	2.000	
ALLOY	YIELD STRENGTH (KSI)	210.0	220.0	230.0	176.3 176.3	198.1 198.1	159.4	175.0	156.0 156.0	167 167	200.0	210.0	
	PECIMEN	Ļ	1-1	ב	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	ĭ	1- L	1	1-L	-	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	L-1	
	TEST TEMP (f)	R. T	₽ -	æ. ⊢.	t 1 \$0 1 1	£9 ~	R. T. 100F 1HR	R. T. 100F 1HR	165	169) 	κ H	
	Ê	65	<i>2</i> 9 0	0 62	000 1	1.00	1. 00 175F., 9	1.00 175F, B	1 000	1 00	25	<i>2</i> 9 0	
		10	FI	E .	p 0	P tof 14R	P 1T 150-	P T 150-	P OF 111R	P 800F 111R	8	F 39	
	7.01 7.01	1600F 1 HR. 00. 400F 111R	1650F 1 HR. DA. 745F 1HR	1600F 1 HR.00. 535F 1HR	1600F 1HR, PB 1550F 1HR, PB AF 150-175F, POOF 1HR	1600F 1HR, P 1950F 1HR, OG AT 150-175F, ROOF 1HR	1600F 1HR, P 1 00 R.T. 1550F 1HR, D0 AT 150-175F, 900F 1HR	1600F 1HR, P 1.00 R.T. 1550F 1HR, GA AT 150-175F, BOOF 1HR	1600F 1HR, P 1550F 1HR, DB AT 150-175F, 900F 1HR	нв, нв, по 175 F, 80		HR. 00. HR	
	eOubtiton	1600F 1 4	1650F 1 745F THR	1600F 1 535F 1HR	1600F 1HR, 1550F 1HR, AT 150-175	1600F 1HR, 1950F 1HR, AT 150-175	1600F 1HR, 1550F 1HR,	1600F 1 1550F 1	1609F 1HR, DB 1550F 1HR, DB AT 150~175F, °	1550F 1HR, 09 1550F 1HR, 09 AT 150-175F, E	F .	2010F 1 HR.00. 475F 1 HR	MOTER

NDTES (-1) COMPOSITION(WI FERCENT) 0-40C, 0, 94MN, 0, 008P, 0, 012S, 0, 28SI, 0, 09NI, 0, 90CR, 00, 17CU

TABLE 6.27.2.1 (Con't)

	DATE REFER	1973 87241 (1)	1973 87241 (1) 1973 87241 (1)	1973 87241 (1)	1973 87241 (1)	1973 87241 (1) 1973 87241 (1)
	K(IC) STAN K(IC) MEAN DEV (KSI#SGRT IN)	32.17 7.4				66.17 2.7
	*2 K(IC) (KSI*5(57 30	90.40	53.20	48. 50	68.00 64.20
(3)	CRACK 2 5* K(IC) STAN LENGTH (K(IC)/TYS)**? K(IC) MEAN DEV (IN) (IN) (KSI#SGRT IN) A	0 19	0.51	0.17	0.14	0.26 0.23
K(10)		1.000	1.000	1.000	1.000	1.000
4140	ECIME HICK (IN) B	. O 60	0. 600 CT 0. 600 CT	0. 600 cT	0. 600 CT	0. 600 CT 0. 600 CT
ALLOY STEEL	HLQIM (NI)	2.00	2 000	2,000	2, 000	2. 000
ALT DY	YIELD STRENGTH (KSI)	210 0	200.0	202. 0	205. 0	210.0
	PECIMEN	ا ب	L-T	1-1	1-1	L-7
	11 ST SF 17 TFMP (1)	œ ;	2	⊢	⊢ α	← '
	1 1HIGH		29 0 0 95	29 0	29 0	0 62 0 62
	TOTAL .	E .	F B	F.B	F.B	E C
	anti Idiae.	PotoF 1 MR.DQ. FB 47SF 1 HR	2150F 1 1/R. 00. 400F 1 HR	2190F 1 HR. 00. 640F 1 HR	2170F 1 HR, 00. 415F 1 HR	2190F 1 HR.00. 475F 1 HR
	<u> </u>	g ¥ Ge €	215 400	215 640	215 615	219 475

HOTES (-1) COMPOSITION(WI PERCENT) 0. 40C, 0. 94MN, 0. 008P, 0. 0128, 0. 2881, 0. 09NI, 0. 90CR, 00. 17CU

TABLE 6.27.3.1

	BTAN TEST DEV TIME DATE REFER (MIN)	1972 84963	1972 BA963		> 7000 1965 63061
	K (ISCC) MEAN RT IN)	36 00	17 50	13.00	11. 00
K(IBCC)	CRACK LENGTH K(Q) K(ISCC) MEAN (IN) (KSI*SGRT IN)	1. 000	1. 000	0.250 CANT* 0.200 49.40	0. 200 40. 10
	CIMENTHICK DESIGN (IN) (**SG)	1. 000 CT	1. 000 CT		0.250 CANT#
4140	MIDTH (IN)	3, 250	3, 250	1.000	1.000
ALLOY STEEL	YIELD STR ENVIRONMENT (KSI)	105.0 WATER SAT H2S	147.5 WATER SAT H2S	195. 0 DIST. WATER	241. 0 DIST. WATER
	TEST SPEC TEMP OR (F)	T &	R T.	· · · · · · · · · · · · · · · · · · ·	R. T.
	FORM THICK		1550F 14B 00 P	0 25	00 P 0 25
	CONDITION	1550F THR DO 1250F THR AC	1550F 1HB 00 1000F 1HR AC	1760F, 1660F UA P 750F, 1+1 HR	1700F.1500F UG P 600F 1+1 HR

TABLE 6.28.1.1

MEAN PLANE BIRAIN FRACTURE TOVORNESS DATA DF ALLOY BTEEL 4330V NOD AT ROOM TEMPERATURE

CONDITION/HT	(KBI BORT(IN) DEVIATION		(NUMBER OF BPECIMENB)
	_	PLAIE	
CONDITION/HT	Ē	11	1
HEAT TREATED TO 46 RC HARDNESS	* * * * * * * * * * * * * * * * * * * *	74.7 ± 0.8 (2)	
	E08	ECRGED RAR	
COND LT LON/HT	7	1	7
1600F 1 HR, 0g, 533F 1 HR	96.7 ± 3.8 (2)	[!
	T'B	BILLET	
CONDITION/HT	1-1	บ้	1
1650F 1 HR. AC. 1373F 1 HR. DG. 800F 2+2 HR	96.1 ± 3.2 (3)		} ! !
1650F 1 HR, AC, 1375F 1 HR, 00, 525F 2+2 HR	81. 6 ± 2. 3 (6)	-	\$ 1 1

TABLE 6.28.2.1

:	1	1		22	1	
REFER	HA011 HA011 HA011	1 040 1 4029 1 4029	87241		8427 8427 8427	84277 84277 84277 84277 84277
DATE	197		1973	1973	1972 1972 1972	1972 1972 1972 1972 1972
BTAN	-	l © l ó	l F		ເ ພັ	ni ni
K(1C) B MEAN DI ORT IN)	· 😜	7	1 1 1	96.77	96.17	81. 6/
K(IC) (KSI#9	nm ^	1 10 4	60 GB	99. 40	99. 70 93. 80 94. 70	84, 20 77, 50 81, 20 82, 20 81, 60
2 5* (K(IC)/TYS)**? (IN)	. 00 0	1 00		0 0 0 0 4 0	0.69	000000 404400 848400
CRACK LENGTH (IN)	1, 155	762	1. 000	1.000	400	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3	;		, 5	55	, 555 1 555	555555
ECIMEN HICK (IN)	1.259 1.760 1.253	1 66	1 00 0	0. 6 00 0. 600	1 000	
WIDTH (IN)	2 502 2 507 2 504	1.502	1 000 zi	2. 000 2. 000	0000 0000 0000 0000 0000	
YIELD STRENGTH (KSI)	194	. 00	198.0	202.0	191. 0 191. 0 191. 0	203.0 203.0 203.0 203.0
SPFC INEN OR LENT		, <u>†</u>	! ! -	1-1	· · · ·	L-1
	i 10: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10:	, -	, E	я. Т	Œ	⊢
: ← =		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.62	65	00 9	9 9 9 9 9 9 00 0 0 0 0 0 0 0 0 0 0 0 0 0
FORM	. 50 60	1 a .	! : 20: ! LL		. <u></u>	E
7.016.00.1.1.0014		T TREATED 46 PC PNESS	1400F 1 HR, 00.	500F 1 HR, 00, 35F 1 HR	1650F 1 HR. AC. 1575F 1 HR. DG. 900F 2+2 HR	1650F 1 HR, AC, 1575F 1 HR, DQ, 525F 2+2 HR

NDTES (1) COMPOSITION(WT PERCENT) 0 28G, 1 02HN, 0 009P, 0 005S, 0. 2881, 1. 80NI, 0. 85GR, 00. 07V, 0. 01CU

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.28.3.1 INDICATING EFFECT

			SIRESS RAIL	J	
MATERIAL: / CONDITION: ENVIRONMEN		L 4330V (MOD)		
DELTA (KSI*IN*	K :		DA/DN (10**	6 IN. /CYCLE)	
(11.02 11.11411)	:	Α	В	С	D
	:	R=+0. Q2			
DELTA K B: MIN C: D:	9 . 72 : : :	1.88			
A: DELTA K B: MAX C: D:	25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 : 54. 34 :	4. 61 6. 32 7. 44 8. 24 9. 30 11. 2 14. 3 28. 4			
ROOT MEAN S	RROR	14.16			
LIFE PREDICTION RATIO SUMMARY	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0 >2.0	-			

FIRST HICK TEMP OR STR ENVIRONMENT WITHOUT A STREET OF S																
(IN) (F) (KSI) A A A A A A A A A A A A A A A A A A A	PRU	PUC I	1631		VIFLD		•	Ť	•	,					1631	
(H) (F) (KSI) I	FUPM	FHICK	TEMP		۳ ۲	ENVIRONMENT	11111	•		,	· -		A A		11.	DATE PEFER
O 48 R T i S 196 O 3 5 PC TAACI 1 A 30 A 40 W 9 PC TAACI 1 A 30 A 40 W 9 PC TAACI 1 A 30 A 40		323	Ĵ		CKAT		2			,	** ** **	ž			ÎZ E	
O 48 R T I S 196 O T MACH T NO 400 WE TO 1 OF C 200							3	2	•							
O 48 R T I S 196 O I S PCT MAKE I ANY ABLAND I TO CO. L. OO	1	,	!	ı I		•								;	1 :	1
	GHENCHED + P. SOOF	0 48	⊢ α	w	0 961	3 S PCT MACE		į			ě	8			}	1971 84351

b	SPECIMENB)		1 -8	!	!	!	! ! !		14.1	1	!	1	1 ! !
MEAN PLANE BTRAIN FRACTURE 10V0HNESB DATA OF ALLOY STEEL 4340. AT ROOM TEMPERATURE	IDARD (NUMBER OF	PLAIE	ជ	51, 7 ± 1, 3 (2)	!		88. 2 ± 1. 5 (2)	EDRGED BAR	1		1		1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
HEAN PLANE BTRAIN FRA ALLOV BTEEL 4340 /	(KSI BGRT(IN)) DEVIATION		ij		76.6 ± 4.6 (2)	45.3 ± 2.9 (4)	, (! !	3	<u>[-1</u>	60.9 ± 0.8 (2)	76.8 ± 0.1 (2)	60.8 ± 0.8 (2)	60.1 ± 3.2 (2)
-	CONDITION/HT		CONDITION/HT	HEAT TREATED TO 51 RC HARDNESS	1550F, 0G, TEMPERED 800F	1350F, 09. TEMPERED 500F	1600F 1HR, 1525F 2. 5HR, OQ AT 150-175F, 900F 1HR		CONDITION/HT	1600F 1 HR, DQ, 535F 1 HR	2190F 1HR, FC TO 1600F, HOLD O. 5HR, 400F 1 HR	2190F 1HR, FC TO 1600F, HOLD O. 5HR, 660F 1 HR	2190F 1HR, FC TO 1600F, HOLD O. 5HR, 535F 1 HR

TABLE 6.29.1.1 (Con't)

MEAN PLANE BIRAIN FRACTURE TOUGHNEBB DATA OF ALLOY BIEEL 4340 AT ROOM TEMPERATURE

(NUMBER OF SPECIMENS)		7	
(NUMBER OF		1	
MEAN KIC + STANDARD	אוררבו	:	76.3 ± 3.6 (6)
CDND1710N/HT (K.		CONDITION/HT	1650F 1 HR, AC, 1525F 1 HR, 09, 800F 2 HR

TABLE 6.29.1.2 FATIQUE CRAUM GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

D)

ALLOY STEEL 4340

TEST CONDITIONS

SPECTMEN CHIENTATION (-7

LAP AIR AT R 1

1110 100 23 0 23 5 20 FATIGUE CRACE GROWTH RATES (MICRO INFOYCLE) 3 12 3 96 2 47 3 60 8 0.61 o 2 69 0 :-14 07 14 60 C 60 U O# DELTA K LEVELS (KSI SORT(IN)) 20 00-30 00 REG (HZ) 7 00 7.00 2 00 7 00 7 00 SIRESS RATTO G 05 0S € 01 C 01.0 0.50 0.50 08.0 PRODUCT FORM ROUNE BAR RECOND BAR ROUND BAR ROUND BAR ROUND BAR ROUND BAR PLATE COMDITION/HT UTS = 160 KSI HTS = 160 KS! U15 = 160 KSI UTS = 150 MSI 154 081 + 515 15M 08: = 510 MARTEMPERED

المنكانية بالمحافظ والمتابية والمتافية والمتابية والمتابية والمتابية والمتابية والمتابية والمتابية والمتابية المتابية والمتابية TABLE 6.29.1.3
FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR ALLOY STEEL 4340

			100				
		9	20	34.7			
		TH RATE	20	2 78	5 28		
		ACK GROW	01		9 6 0	1 04	
	650 F	FATIGUE CRACK GROWTH RATES (MICRG IN/CYCLE)	ſ'n				
;	A T A	F A	5				}
	ENCIRONMENT	DELTA K	LEVELS:				
		FPEG 6H2)		7 00	4 00	00 02	
		STRESS		 01-0	0 20	ú 9 c	
	L - J	PRODUCT STRESS FREG		ROUND BAR	ROUND BAR	ROUND BAR	
SNOTITONOS IS HI	SPECIMEN OPIENTATION	CONDITION/HI		154 98: = 51::	ISM 081 - 510	18 × 180 × 81	

TABLE 6.29.1.4

0

は、100mmので

•

FATIOUE CRACK UROWIH RAIE AT DEFINED LEVELS OF THE STRESS-INTENSITY FACTOR

ALLOY STEEL 4340

SMOTITOND ISSE

SPECTMEN PRIENTATION 1 - 1

ENVIRONMENT HHA

	100			
ഗ	20		17 8	
DWTH RATE	50	 	2 94	3 78
FATIGUE CRACE GROWTH RATES (MICRO INVEYCLE)	9			0 71
ATIGUE (מ			
_	UI IV			
DFLTA K	(KSI SQRT(IN))	CONTRACTOR OF THE PROPERTY OF		
FREG (H7)			3 90	00 E
578695 RATIO			0.05	0.50
PRODUCT			BAR	Вля
COND1 / 104/H1			TUS-180 2-0451	104 181 200Kg I

TABLE 6.29.2.1

	REFER	84029 84029	DA001		865982 865982 865982 865982 865982	87241 (87241 (1)	67241 (1)	87241 (87241 (MR002 HR002	HR002
	DATE	197	. 197	1971	197 197 197 197	1973	1973	1973	197	1980	1980
	K(IC) BTAN HEAN DEV BRT IN)	51. 7/ 1.	1 1 1 2 1 1	76.6/ 4.6	49.37	1 1 1 1 1			.9	90.1/ 1.3	
	*2 K(IC) HE/ (KBI*BORT	35 SE 50 SE 80 SE	107.2	73.30 79.80	4444	39.30	91. 20	79. 80	60	89. 19 91. 00	89.30
6	2. 5# (K(IC)/TV8)##2 (IN)	0.04	0.77	0.37	0.09	1 1	0. 47	0.34	0.19	1 40.0 1 40.0	0.61
K(1C)	CRACK LENGTH (IN)	0.0 10.0 40.00	0.933		0000	1.000	1.000	1.000	88	1.022	1. 022
	DEBION	0 Z Z	ບ	55	5555	5	5	5	55	; 55	CT
4340	SPECIMEN- THICK I	4.0	0.992		0 0 0 0 8 8 8 8	0.600	0. 600	0. 600	0. 60 0. 60	1.004	1. 030
BTEEL	B HIGH	0.99	2.007	0. 16 0. 16	0.00 44 44 44 44 44	1 000 i	2. 000	2. 000	8 8 ni ni	1.998	2. 000
ALLOY	VIELD BTRENOTH (KSI)	220.0	192.9	• •	238.0 238.0 238.0	193.0	210.0	217.0	218.0 218.0	190.3	179. 4
	SPECIMEN ORIENT	7	֓֞֞֓֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		7	- - - -	-	-			1-L. J#R
	TEST (TEMP (F)	' ~	; <u>+</u> ;	⊭ :	r- ezi	 m2	ξ .	G . ⊢	⊢ zei	: 6	R. T. 900F
	FORM THICK	99	9 9 1	88	8888	0.62	29 0	0. 62	29 0	1 00 1	
	FORM	.	! 65 !	•	۵.	, 1		8		P 11-11	4 F
	NDITION	EAT TREATED 3 51 RC ARDNESS	UTS = 180 KSI	550F, 00, EMPERED 800F	OF, 00, PERED 300F	1600F 1 HR, DG,	1600F 1 HR. DG. 745F 1 HR	1600F 1 HR, DA, 660F 1 HR	500F 1 HR. 0 35F 1 HR	1500F 1HR, P 1525F 2 514R, UQ AT 150-175F, 900F	1600F 1HR, P 1 00 1525F 2 5HR, 00 AT 150-175F,

JTES | 1) COMPOSITION(WT PERCENT) 0 40C, 0. BOMN, 0. 0105, 0. 248I, 1. 65NI, 0. 72CR, 0. 24MD, 0. 19CU

TABLE 6.29.2.1 (Con't)

	1	I		1	22	22	32 1	â	î
	REFER	8	HR002 HR002	84277 84277 84277 84277 84277	87241 (87241 (87241 (87241 (87241 (87241 (1973 87241 (
	DATE		1980	1972 1972 1972 1972 1972	1973	1973	1973	1973	1973
8 T S	DE C	1.9	m 1 € 1	ન ! જં!	0.1	છ .	81 1 E 1		
K(1C)		99	87.17	76.3/	76.8/	, 60.8/	60.17		
	K(IC) MEAN (KBI*BORT IN	87. 1	93.60	75.80 79.70 76.50 71.90 73.00 81.10	76. 70 76. 90	61. 40 60. 20	57. B0 62. 30	82. 40	62.60
in G	(K(IC)/TYB)**2 (IN)	0.54	4 to 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.39	0.24	0.00		0, 24
CRACK		1.027	1.029	444444 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000	1.000	1.000	1.000	1. 000
!	DESTON	. .	55		55	55	55	C1	5
SPECIMEN-	THICK	8	1. 030		0. 600 0. 600	0. 600 0. 600	0.600	0. 600	0.600
31EEL	WIDTH (IN)	1. 99	2.010	000000 1 000000 1 000000 1	12 12 1000 1000	2. 000 000	2,000	2.000	2.000
YIELD	E,	179. 4	171.1	197. 0 197. 0 197. 0 111. 0 211. 0	193. 0 195. 0	200. 0	202.0	200.0	202. 0
SPECIMEN	ORIENT	7 €	1	1	Ī	1-1	7	13	-
TEST		_ _ \bar{2}	165	<u>i</u> :	æ. ⊢.	π. . .	E	E.	æ. ⊢.
PRODUCT	THICK	1 00 0-175F,	1 00	100000000000000000000000000000000000000	0 0 0	0 62	0 62	63 0	0.62
A 9 - 1	FORM	P AT 15	= 1	i ;	FB	F.B	B	E E	F.B
	1	14R, 2. 54R, DQ	R, 00	R, AC,	2190F 1HR, FC TO 1600F, HOLD O SHR, 400F 1 HR	2190F 1HR, FC 1 TO 1600F, HOLD O SHR, 660F 1 HR	2150F 1HR, FC 10 1600F, HOLD 0 5HR, 535F 1 HR	2190F 1HR. 00. 475F 1HR	2190F 148,00. 535F 148
	CONDITION	55	1600F 1HR, 1525F 2. 5H AT 150-175	1650F 1 H 1553F 1 H 800F 2 HR	2190F TO 160 O SHR.	2190F TO 160 0 5HR,	2150F 10 160 0 5HR,	2190F 1H 475F 1HR	2190F 1H 535F 1HR

NOTES (1) COMPOSITION(WT FERCENT) 0.40C,0.80MN,0.0105,0.24SI,1.65NI,0.72CR,0.24MD,0.19CU

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.1 INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: CONDITION:		EL 4340 RED			
DELTA K (KSI*IN**1/2)		DA/DN (10**-6 IN./CYCLE)			
(101 - 111 -	:	A	В	С	D
		E= R.T. LAB AIR	E= R.T. DIST. WATER		
A: DELTA K B: MIN C: D:	8. 73 : :	. 20 9	. 280		
	80.00 : 90.00 : 100.00 : 130.00 : 150.00 :	. 373 . 492 1. 00 1. 75 3. 12 5. 33 8. 04 11. 2 14. 7 23. 0 33. 3 46. 2 62. 7 83. 9 111. 258. 603.	. 321 . 495 1. 14 1. 91 3. 21 5. 49 8. 51 12. 2 16. 3 25. 7 37. 4 53. 0 74. 5 105. 148. 428.		
DELTA K B: MAX C: D:	188. 45 : 189. 12 : :	1360.	3830.		
ROOT MEAN S	RROR	21. 77	20. 96		en en en en en en en en
PREDICTION RATIO	0.0-0.5	5			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.2 INDICATING EFFECT

CONDITION:	ALLOY STEEL UTS = 160 IT: R.T.,L	KSI			9 (ap. 1979 file (ap. 1929 pel (ap. 1974 per 1929 pe
DELTA K			DA/DN (10**	-6 IN. /CYCLE)	
(KSI*IN*	·*1/2) : : :	A	В	C	D
	: :	R=+0. 50			
DELTA K B: MIN C: D:	:	. 0454			
	4. 00 : 5. 00 :	. 0460 . 0930			
DELTA K B: MAX C: D:	:	. 123			
ROOT MEAN PERCENT E	RROR	3. 21		gar hay find diff hay non you hay not have her diff has done and	
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 5 0. 5-0. 8 0. 8-1. 25 1. 25-2. 0 >2. 0	1			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.3 INDICATING EFFECT

DELTA K	:	DA/DN (10**-6 IN./CYCLE)			
(KSI*IN**1/2)	: : A	В	С	D	
	: : R≃+0. 10	R=+0. 50			
A: 12,63 DELTA K B: 6.83 MIN C: D:		. 229			
7. 00 8. 00 9. 00 10. 00	: :	. 244 . 344 . 466 . 611			
13. 00 16. 00 20. 00 25. 00 30. 00	:	1. 20 2. 05 3. 60 6. 27 9. 78			
35. 00 40. 00	:	14. 1 19. 3			
A: 26.50 DELTA K B: 47.14 MAX C: D:	: 5. 79 : : :	27. 9			
ROOT MEAN SQUARE PERCENT ERROR		6. 09			
LIFE 0.0-0 PREDICTION 0.5-0 RATIO 0.8-1 SUMMARY 1.25-2 (NP/NA) >2	. 5 . 8 . 25 1 . 0	1			

the state at the site of the city of the site of the s

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.4 INDICATING EFFECT

MATERIAL: ALLOY S' CONDITION: UTS = : ENVIRONMENT: R.T.	180 KSI				
DELTA K (KSI*IN**1/2)	; :	DA/DN (10**-6 IN./CYCLE)			
	A	В	С	D	
	R=+0. 10				
A: 5.69 DELTA K B: MIN C: D:	: . 0439 : :				
6. 00 7. 00 8. 00 9. 00 10. 00 13. 00 16. 00 20. 00 25. 00 30. 00 35. 00 40. 00 50. 00 60. 00	:				
ROOT MEAN SQUARE PERCENT ERROR	37. 57	T TO THE SEC OF THE SEC OF THE SEC OF THE SEC		~~~~~~~~~~~~	
LIFE 0.0-0.		T (T) (4), 122 123 142 142 147 147 147 147 147 147 147 147 147 147			
PREDICTION 0.5-0. RATIO 0.8-1. SUMMARY 1.25-2. (NP/NA) >2.	25 1 0				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.5 INDICATING EFFECT

DELTA K : (KSI*IN**1/2) :			DA/DN (10**-6 IN./CYCLE)		
(K21+1N++	1/2)	A	В	С	D
	:	R≔+0. 50			
A: DELTA K B: MIN C: D:	6.47 : : : : : : : : : : : : : : : : : : :	. 19 8			
	7. 00 : 8. 00 : 9. 00 : 10. 00 : 13. 00 :	. 356 . 486 . 637 1. 20			
A: DELTA K B: MAX C: D:	17. 26 :	2. 26			
ROOT MEAN S PERCENT ER		5. 19			
PREDICTION RATIO SUMMARY	0.8-1.25				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.6 INDICATING EFFECT

MATERIAL: A CONDITION: ENVIRONMENT	UTS = 180	KSI					
DELTA (KSI*IN*	K :	DA/DN (10**-6 IN./CYCLE)					
\r\ \\ 2.4.	:	A	В	С	D		
	:	R=+0. 10	R=+0. 50				
DELTA K B: MIN C: D:	10. 52 : 7. 52 : :	. 249	. 511				
	B. 00 : 9. 00 : 10. 00 : 13. 00 : 16. 00 :	. 99 7 1. 95	. 675 . 813 1. 04				
DELTA K B: MAX C: D:		2. 92	2. 00				
ROOT MEAN S		15. 53	11.46				
PREDICTION RATIO SUMMARY	0.8-1.25	2	2				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.7 INDICATING EFFECT

MATERIAL: / CONDITION: ENVIRONMEN	UTS = 180	KSI			a tan all tan all tan an all an all an all an an an an an an an an an			
DELTA (KSI*IN*		DA/DN (10**-6 IN./CYCLE)						
·	:	A	В	С	D			
	· :	R=+0. 10						
DELTA K B: MIN C: D:	17. 58 : : :	1. 71						
	20. 00 : 25. 00 : 30. 00 : 35. 00 : 40. 00 : 50. 00 : 60. 00 :	2. 78 5. 16 8. 47 13. 0 19. 3 39. 7 78. 0 149.						
DELTA K B: MAX C: D:	73. 82 : : : :	190.						
ROOT MEAN S PERCENT ER		11. 96		· · · · · · · · · · · · · · · · · · ·				
PREDICTION	0. 8-1. 25	1						

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.8 INDICATING EFFECT

MATERIAL: A		EEL 4340 80 KSI			
DELTA (KSI*IN*		:	DA/DN (10**-	6 IN. /CYCLE)	
		: A	В	С	D
		: : E= R.T. :LAB AIR			
A:	4. 08	: . 0528			
DELTA K B: MIN C: D:	5. 72	: : : : : : : : : : : : : : : : : : : :	. 282		
	5 . 00	: 0924			
	6. 00		. 317		
	7.00 8.00		. 454 . 606		
	9. 00	:	. 773		
	10.00		. 960		
	13. 00 16. 00		1. 68 2. 78		
	20.00		5. 28		
A:	6. 20	: . 224			
DELTA K B:			8. 29		
MAX C: D:		:			
.		:			
PERCENT ER	ROR	11. 27	4. 65	<u></u>	
LIFE PREDICTION RATIO SUMMARY	0. 0-0. 0. 5-0. 0. 8-1.	5 8 25 1 0	1		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.9 INDICATING EFFECT

MATERIAL: A CONDITION: ENVIRONMENT	UTS=180-20	OKSI						
DELTA (KSI*IN*			DA/DN (10**-6 IN./CYCLE)					
(1194 - 114 -	:	A	B	С	D			
	:	R=+0. 00	R=+0. 50					
DELTA K B: MIN C: D:		2. 60	4. 62					
	25 . 00 :	6. 12 8. 98	5.83 9.11 13.4 19.7 45.1					
DELTA K B: MAX C: D:		12. 8	214.					
ROOT MEAN S PERCENT EF		9. 44	11. 17					
PREDICTION RATIO SUMMARY	0.0-0.5 0.5-0.8 0.8-1.25 1.25-2.0 >2.0							

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.10INDICATING EFFECT

MATERIAL: ALLOY STE CONDITION: TUS=180- ENVIRONMENT: R.T.	200K5I	**************************************					
DELTA K : (KSI*IN**1/2) :		DA/DN (10**-6 IN./CYCLE)					
(V21#1M##1\5)	A	В	С	D			
:	R=+0. 05	R=+0. 50					
A: 17.32 : DELTA K B: 9.47 : MIN C: : D: :	1. 97	. 647					
10. 00 : 13. 00 : 16. 00 : 20. 00 : 25. 00 : 35. 00 : 40. 00 : 50. 00 : 70. 00 : 80. 00 : 90. 00 :		. 714 1. 29 2. 21 3. 78					
A: 93.91 : DELTA K B: 24.31 : MAX C: : D: :	61.5	5. 43					
ROOT MEAN SQUARE PERCENT ERROR	11. 52	8. 24					
LIFE 0.0-0.5 PREDICTION 0.5-0.8 RATIO 0.8-1.2 SUMMARY 1.25-2.0 (NP/NA) >2.0				***********			

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.11INDICATING EFFECT

MATERIAL: / CONDITION:		STEEL 4340 FEMPER	0				
DELTA (KSI*IN*	K *1/2)	: :	DA/DN (10**	DA/DN (10**-6 IN./CYCLE)			
		: A	В	C	D		
		: : E≈ R.T. :DIST. WATER	E= R.T. R ARCON				
DELTA K B: MIN C: D:		7 : 174. 7 : :	1. 03				
1	16.00 20.00 25.00 30.00		1. 74 3. 21 4. 48 5. 93 8. 66				
	40.00 50.00 50.00) : 372.) : 443.) : 542.	14. 6				
DELTA K B: MAX C: D:		9 : 553. 5 : :	30. 9				
PERCENT EF	ROR	2. 83	10. 57				
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0. 5-0 0. 8-1 1. 25-2), 5), 8 ,, 25 <u>2</u> , 0					

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.12INDICATING EFFECT

MATERIAL: A CONDITION: ENVIRONMENT	750F TEMP	ER			
DELTA (KSI*IN*		مين من وي المن المن المن المن المن المن المن المن	DA/DN (10**	-6 IN. /CYCLE)	
/1/21 - 1/4 - 1		Α	В	С	p
	:	R=			
DELTA K B: MIN C: D:	15. 20 : :	1. 14			
	16.00 : 20.00 : 25.00 : 30.00 : 40.00 : 50.00 : 60.00 :	1.40 2.92 5.08 7.35 9.82 12.7 20.8 34.4			
DELTA K B: MAX C: D:	53 . 54 : : : : : : : : : : : : : : : : : :	41. 5			
ROOT MEAN S		10. 54			
PREDICTION RATIO SUMMARY	0. 8-1. 25				

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.13INDICATING EFFECT

OF FREQUENCY

DELTA					DA/DN (10**-6	IN. /CYCLE)	
(KSI*IN**	F1/2)	:	A		В		С	D
		:	F(HZ)=	0. 04	F(HZ)=	0. 40		
A: DELTA K B:		03 : 64 :	37. 3	}	17. 7			
MIN C:		:						
		00 : 00 :)	19. 5			
		00 :			38. 8 54. 4			
		00 :	546.		61.7			
	35.	00 :	596. 623.		66. 1			
			708.		71. 1 90. 8			
A: DELTA K B:			745.		98. 6			
MAX C: D:	JE.	; ; ;			70. 0			
ROOT MEAN S PERCENT ER		E	18. 78		6. 08			
LIFE PREDICTION								

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.14 INDICATING EFFECT

OF FREQUENCY

MATERIAL: CONDITION: ENVIRONMEN	750F TEM	PER						
DELTA **KSI*IN				DA/DN (10**-6 IN. /CYCLE)			
(1102 1211)	:	Α		В		C		D
	:	F(HZ)=	0. 04	F(HZ)=	0. 20	F(HZ)=	0. 40	
A:		374.		77. 6				
DELTA K B: MIN C: D:				89 . 0		55. 2		
A: DELTA K B:	30. 00 : 35. 00 : 40. 00 : 50. 00 : 47. 13 : 64. 55 :	416. 452. 489. 522. 555. 587.		90. 6 97. 8 106. 116. 126. 136. 147. 172. 201.		55. 5 58. 8 65. 0 74. 8 86. 1 98. 7 113. 144.		
MAX C: D:	52, 32 : : :					151.		
ROOT MEAN S		1. 76		2. 33		1. 41		
PREDICTION RATIO	0.8-1.25 1.25-2.0	5				·		

FATIGUE CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.15INDICATING EFFECT

UF FREQUENCY

				- KEGOEN			
MATERIAL: A CONDITION: ENVIRONMENT	750F TEM	PER					
	K :			DA/DN (10**-6 IN./CYCLE)			
(KSI*IN*	*1/2) :	A		В		C	D
	:	F(HZ)=	0. 04	F(HZ)=	0. 40		
DELTA K B: MIN C: D:	10.86 : 10.49 :			323 .			
	16.00 :	2025. 2608. 4019.		337. 499. 935. 1912.			
DELTA K B: MAX C: D:	20.01 : 27.12 : :			2241.			
ROOT MEAN S PERCENT ER	ROR	4. 95		13. 38			
LIFE PREDICTION RATIO SUMMARY (NP/NA)	0.0-0.5 0.5-0.8 0.8-1.2 1.25-2.0	5					

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.16INDICATING EFFECT

OF ENVIRONMENT

K MAX (KSI*IN**1/2)		:	DA/DT	(10**-3 IN/HOUR)	
		A	В	С	D
		: E= : HYDROGEN			
	A:	:			
K MAX MIN	B: C: D:	: : :			
	200. (; oo :			
	A:	:			
K MAX	B :	:			
MAX	C: D:	: •			
	D .	· :			

PERCENT ERROR

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.17 INDICATING EFFECT

K MAX (KSI*IN**1/2)			:	DA/DT	DA/DT (10**-3 IN/HOUR)		
(KSI#	1N*1	F1/2)	: : A	В		С	
			: E= :3.5% NACL, BUFFERED	E= 3. 5% NACL			
	A:		: 441.				
K MAX		11.00	:	107.			
MIN	C:		:				
	D:		:				
		13. 00		342.			
		16.00		690.			
		20.00		832.			
		25. 00		829.			
			: 764.	952.			
			: 1105.	1410.			
			2989.	2717.			
	A:	41. 50	: 4613.				
K MAX		42.00	_	3782.			
MAX	C:		:				
	D:		:				

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.18INDICATING EFFECT

		TEMPER		4340 1HR					
	(MA)		:		DA	/DT (10**-	3 IN/HOUR)		
(W21*	: T M # 1	÷1/2)	:	A		В	С	D	
			:	E=	E=		E≔	E=	
			: DRY	ARGON-CNT	DIST.	WATER-CNT	SEAWATER- CANT	DRY HYDR CNT	OGEN-
	A:	70.00	:	. 836					
K MAX	B:	24.00	:		224	4.			
MIN	C:	18.80	:				403.		
	D:	24. 00	:					1579.	
		20. 00	:				421.		
		25. 00			266	5 .	860.	2166.	
		30.00	•		52:		1630.	5801.	· ·
		35 . 0 0	:		81	7.	2480.	8872.	
		40.00	:		1114	4.	3517.	10742.	
		50 . 00	:		1610	٥.	7298.	13608.	
		60 . 00	:		1923	3.			
		70 . 0 0	:	. 836	2073	3.			
		80.00	:	1. 17	210	5 .			
		90. 00	:	5. 73					
	A:	95 . 30	:	25. 2					
K MAX	B:	88.00	:		2079	7.			
MAX	C:	60 . 00	:			;	18700.		
	D:	53. 00	:					14919.	
ROOT ME	AN 5	GUARE		36. 34	11.	28	7. 72	3. 27	

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.19INDICATING EFFECT

	MAX	-	:	DA/DT (10*	*-3 IN/HOUR)	
(KS1*	1N##	1/2)	: : A	B	С	D
			: : E=	E=	E=	E=
			:DIST. WATER; 50F	DIST. WATER; 75F	DIST. WATER 127F	; DIST. WATER 167F
	A:	51.00	: 256.			
K MAX	B:	14. 50	:	83 . 0		
MIN	C:	26.00	:		2 215.	
	D:	22. 50	:			5804.
		16. 00	· :	112.		
		20.00	:	218.		
		25. 00	:	412.		8072.
		30 . 00		663 .	3694.	11332.
		35. 00		947 .	5200 .	12816.
		40.00		1236.	6117.	13293.
		50. 00		1737.	6730.	13718.
		60 . 00		2040.	6825.	15332.
		70.00		2125.	7099.	
		80.00	: 1383.	2033.		
	A:	81.00	: 1367.			
K MAX		84.00		1962.		
MAX		80.00			7842.	
	D:	64.00	:			16594.

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.20INDICATING EFFECT

		: ·1/2)	:	DA/DT (10*	*-3 IN/HOUR)	
(4212	. I Mza	·1/2)	: A	В	С	D
			: : E=	E=	E=	E=
					DIST. WATER	
					KI=31KSI	
			SQRT(IN)	SQRT(IN)	SQRT(IN)	SQRT(IN)
	A:	20.00	: 83.8			
K MAX	B:	26, 00	:	30 0.		
MIN	C:	33 . 80	;		579 .	
	D:		:			
		25. 00	: : 603.			
		30.00	-	78 7.		
		35.00		1383.	756.	
		40.00		1744.	1533.	
		50.00	:		2341.	
		60.00	:		2553.	
	A:	33. 30	: 1206.			
K MAX		50.00		2136.		
MAX	C:	67. 50	•		2932.	
	D:		:			

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.29.3.21INDICATING EFFECT

	MAX IN**1/2)	:	DA/DT (10*	++-3 IN/HOUR)	
(1/21*	(1M##1/5)	A	В	С	D
		E= :3.5% NACL - .09 WT % SI IN ALLOY	E= 3.5% NACL - .54 WT % SI IN ALLOY	E= 3.5% NACL - 1.08 WT % SI IN ALLOY	E= 3.5% NACL - 1.58 WT % S IN ALLOY
K MAX MIN	A: B: C: D:	: : : : : : : : : : : : : : : : : : : :			
	200. 00	:			
	A:	:			
K MAX MAX	B: C:	: :			
	D:	:			

TABLE 6.29.3.22

				ALLOY STEEL	4340		K(18CC)			;			
18 E 1	<u> 1</u>	57.EC 08	YIELD STR (KSI)	ENVIRONMENT	MIDIH (IN)	DIH THICK DESIGN N) (IN) (±=SQ)	CRACK LENGTH K(Q) (IN) (KSI*	6 1	K(ISCC) MEAN	STAN DEV	TEST TIME (MIN)	DATE	REFER
αź		1 1		5 PCT NACL	: ! ; ; ; ;	- CS		80. 00 67. 00	10 00 10 00			1969 1968	84290 84290
R. T.		1-1	1	3.5 PCT NACL		CANT	1	57. 00	10.00		1	1968	06CVB
0 40 R.T	L.	}	200.0	DIST WATER	0.394	0. 394 CANT#	!	88.00	45.00		> 48800	1963	769
ez	! ⊢	1- 1-	125.0	SEAWATER		CANT		00 .68	70.00#	1 1		1967	70887
ı eci	<u> </u>	. 1	150.0	SFAWATER		CANT		82.00	59.00	: :		967	70.B
ne i	}	, <u> </u>	175.0	SEAWATER		CANT		75.00	27.0	1 1 1 1			76887
1 02	<u>ا</u> ا		200.0	SEAWATER		CANT		54.00	10.00) 	1	796	768
OZ.	ا ا	-	225.0	SEAWATER	!		1 1	63.00	2 00 S) ! ;	, <u>3</u>		708
1 00 R	<u>.</u> ⊭		194.0	3. 5 PCT NACL	1. 000	0. 400 CANT		72.20	1 89 . 1 89 .	1 1 1	2000	1970	.87
1550F 00 750F P 1 00 R.T. CRACK PRESTRESSED TO 60FCT RIC	1	1 1	194, 2	3. 5 PCT NACL	1,000	* I I I I I I I I I I I I I I I I I I I	1 1 1 1 1 1	72. 20	1 1 00 1 1 1 1	1 1 1	> 20000 1972		 B4336

**IDTE-DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REGUIREMENTS OF 2, DKKISCC/TYS)SQUARED

TABLE 6.29.3.22 (Con't)

	REFER	6	84356	84356	34356	0	19069	ø.	~ ~
	DATE RE	Cri				່ະທ	1965 63	•	10 to 1
	,	8	20060 1972	20000 1972	00	1			
	TEST TIME (MIM)	ရု		× 200	> 20060 1972	1 K	2640		
	STAN STAN		^	^	^	1 1 1		1 1 1 1	0/21.2
	E 1		8	8	8		9 1		1
	K(ISCC) MEAN RT IN)	ω̈	24 . 8	15.	17. 00	0-	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	01	57.
	, iii	. 20 . 20	72. 20	72. 20	72. 20	48.80	1 9 1 1		63.00
K(ISCC)	CRACK LENGTH K(G) (IN) (KSI*		!			0. 125	0.125	0.800	0.140
×	DESIGN (**50)	•	•	*	•	1 <u>*</u>	CANT*	. <u>.</u>	
			BN OC	SN OC	O. 500 NB		230 CA		480 PT
_	THICK (IN)		0. 300	0. 500	Ď.	ıö	1 0 1	o o	1 66 1
4340	WIDTH THICK (IN) B B	1. 000	1.000	1. 000	1.000	0.663		3.000	1. 300
ALLOY STEEL	ENVIRONMENT	3. 5 PCT NACL.	3. 5 PCT NACL.	3. 5 PCT NACL	3. 5 PCT NACL	DIST WATER	1	3. 5 PCT NACL	AIR 90 PCT PH
	YIELD STR (KSI)	. €	194. 2	194. 2	194. 2	1 6	7.72.4	220.0	1 0.00 I
	SPEC	i	;	1	!	1		1	
	TEST TEMP (F)	r E	۲ ۲	я. Т.	я. Т	, 	l ⊬ l ⊬ i œ	, - ~-	
	DUCT THICK (IN)	٥	1.00 0.80PCT	1. 00 0 20PCT	1. 60 n 40PCT	0.75	0.75	12. 60	B 00 B
	FORM	P STRESS	P ISED 1	P SSED T	P SSED T	1 6		ı tı	
	NO 1	750	00 750F P 1,00 PRESTRESSED TO BOPCT	1550F OG 750F P 1,00 CRACK PRESTRESSED TO 20PCT M.I.C	00 75GF P 1. GO PRESTRESSED TO 40PCT	~ G 675	. 6	1HR 0G 1+1HR	0 1525F G 1525F G 1525F
	CONDITION	1550F 00 1HR CRACK 20PCT NIC	1950F CRACK P	1550F CRACK I	1550F CRACK P	 57.5F IR	7.5F	00F	1625F Q UQ 400F 1525F Q

TABLE 6.29.3.22 (Con't)

	BTAN TEST DEV TIME DATE REFER (MIN)	> 3500 1969 750	\$ P	327 89 9 1	1968 722	1 1 1 1 1 1 1 1 1				1971 80423	1971	1971 80423						7.2.7
	CRACK LENGTH K(G) K(ISCC) MEAN (IN) (KSI*SGRT IN)	1.00 15 00	1.00 15.0	29.00*	29. 00	1 1 1 1 1 1 1	8	23	24	78.00 23.00	i ci	23	24	00 24.	00 31.		00 23.00	25. 2/
K(1SCC)) 1 1 1 1	!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NT	IN		•	IN	IN	IN	IN	CANT	IN	
4340	PECIMEN THICK D (IN) (0.975 CA	0. 575 CA	0.050 CN	0. 050 CNT	1 1 1 1 1 1 1	- 1.000 CANT	1.000 CANT	1.000	1.000	1 000 CANT	1.000	1.000	1.000 CANT	1.000 CANT	1.000	1.000 CANT	
		1 1 1 1	1. 45	າ 000 ເຄື່ອນ เຄື่ เຄື่ เຄື่ เก็บ เก็บ เก็บ เก็บ เก็บ เก็บ เก็บ เก็บ	3. 000 St.	: : :	7:	1.000	1.000	1.000	000	100	1.000	1.000	1.000	1.000	1 000	
ALLOY STEEL	YIELD STR ENVIRON (KSI)	245. 0 3. 5 PCT NACL	249. 0 3. 5 PCT N	206.0 DIST WATER	206. 0 3.5 PCT NACL	1 1 1 1 1 1 1	210. 0 3. 5 PCT NACL	210.0	210.0	210.0	210.0	210.0	210.0	210.0	210.0	210.0	210.0	
	TEST SP TEMP 0	1, 50 R. T. L-T	R. T. L-	0 08 R.T	0.08 R.T	1 1 1 1 1 1 1	1. 60 R T. L-S	1 00	1.00	00 1	8 6	1 00	1 00	1 00	00 1	1.00	1 00	
	PROD FORM	1HR AC B 2HR 00, LN 0, 25 00	1HR AC B 2HR 00, LN 0 25 00	1700F 0. 25HR S 0 08 AC 1550F DA 600F 1+11R	1750F 0.25HR S 0.08 AC 1550F DO, 600F 1+1HR	1 1 1 : 1 1 1	1900F 0, 600F F	Ŧ										
	400 000	1650F 1680F 1+1HR	1650F 14ROF 1+1HR	170 AC	175 AC	:	180	1+1HR										

*MOTE-DATA WHICH DO NOT MEET MINIMUM SPECIMEN THICKNESS REQUIREMENTS OF 2.5(KISCC/TY8)SQUARED

TABLE 6.30.1.1

MEAN PLANE BTRAIN FRACTURE TOUGHNESS DATA DF ALLDY STEEL 4340 (AM) AT ROOM TEMPERATURE

(NUMBER OF SPECIMENS)	1	
	1	
HEAN KIC + BTANDARD (KBI BORT(IN)) DEVIATION	EORGING	40.5 ± 0.5 (3)
CONDITION/HT (ME	CONDITION/HT	1600F 1 HB. AC. 1550F 1 HB. DQ. -320F 0.5 HB. 400F 2 HB. AC

TABLE 6.30.2.1

		, ;	_	=	=			í			
	REFER	1 6	0055/	73300 (1968 73300 (1)			! ! !			
	DATE	1 6	1 708	1968	1968			! ! !			
	BTAN DEV	1		_		6 6		 			
	K(IC) MEAN GRT IN					40.9		1	,		-
	K (fc) (Kg1•B	1 8	3	40.60	40.04 80.00			1			
S	CRACK 2.3* K(IC) BTAN LENGTH (K(IC)/TYB)**2 K(IC) MEAN DEV (IN) (IN) (KBI*BGRT IN) A	1 7 1 6 1	\ 0	0 07	0.07						
KCIC)	CRACK LENGTH (1N)	1 1	1	1	1			 			
4340 (AM)	ESION	1			æ						
4340	WIDTH THICK DESIGN (IN) (IN)	1 0	2	0. 400	0.900		1	 - -			
ALLUY BIREL	HTGIN (NI)	1 6	200	1.800	1.800		:	 			
ALLUY	VIELD BTRENOTH (KSI)			241.0	241.0		1				
	SPECIMEN YIELD ORIENT STRENOTH (KSI)		-				1				
	TEBT TEMP (F)	1 -					1				
	FORM THICK TEMP (IN) (F)	1 6		00	00		!				6
	FORM	! !					1				D ME! TC
	NO.	1 34 011		1 HE, CE.	-320F 0 5 HR.	HR, AC	! ! !				A 1 . AMAN AND MET TEN
	CONDITION	1,4008		10001	-320F	400F 2	1			CHUIES.	· ·

(è

TABLE 6.31.1.1

HEAN PLANE BTRAIN FRACTURE TOUGHEES DATA OF ALLOY STEEL 4340 (DH) AT ROOM TEMPERATURE

CONDITION/HT	(KBI BORT(IN)) DEVIATION		(NUMBER OF SPECIMENS)
		EGROINO	
CONDITION/HT	ij	1	ដូ
1600F 1 HR. AC. 1350F 1 HR. DG. -320F 0. S HR. 400F 2 HR. AC	51.0 ± 3.0 (7)		
		BILLET	
COMDITION/HT	1-1	12	14
1550F. 00, 900F. 1 HR		66.3 ± 6.2 (4)	

TABLE 6.31.2.1

4340 CBH)

ALLOY SIFEL

1 EK 1	0000	ō	000	2222		222
REFER	84280 84280 84280	84280	84280 84280 84280	84280 84280 84280 84280	73300 73300 73300 73300 73300 73300	73300 73300 73300
DATE	1970 1970 1970 1970	1970	1970 1970 1970	1970 1970 1970 1970	1968 1968 1968 1968 1968 1968	1968 1968 1968
STAN DEC	6 ,		oi o	ė	1 0 E	0.0
_	98.5/		60.37	66.3/	31.0/	52.5/
K(IC) MEAN (KS)*SGRT IN	88. 00 103. 00 109. 00 74. 00	107.00	62.00 62.00 57.00	75.00 66.00 63.00 61.00	5 1 10 10 10 10 10 10 10 10 10 10 10 10 1	20 00 00 00 00 00 00 00 00 00 00 00 00 0
2. * (S					1 1	
CPACK 2 5* LENGTH (K(IC)/TVS)**2: (IN) (IN) A		}			1 0000000 1 0400000	0.13 0.13 0.13
CENCE LENGTH (IN)	1 023 1 030 1 030 1 026	1.045	1 015 1 000 1 005	1.000 1.025 1.010 1.020		
DESIGN	5555	CT	555	5555		8 2 2 2 2 2
IDTH THICK DESIGN	1 000 1 000 1 000	1 000	1.000	1. 000 1. 000 1. 000 1. 000	000000000000000000000000000000000000000	0. 900 0. 900 0. 900
LIDIU (IN)	7 000 7 000 7 000 8 000	2.000	2 000 2 000	2 5 60 000 000 000 000	1. 800 1. 800 1. 800 1. 800 1. 800 1. 800	1.800 1.800 1.800
STRENGTH (KSI)	1 1 1 1 1 1 1 1 1 1 1 4) 			22.0 22.0 22.0 22.0 22.0 23.1 23.1 23.1 23.1 23.1	233.0 233.0 233.0
ORIENT	-	L-1	1~L	7-1		<u>r</u> .
	- 100	. 11	09 -	⊢	; ; ; ac	⊢
FORM THICK TEMP (TN) (F)	1 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1	1 000	1 1 00	1 444444 1 0000 1 0000 1 000 1 000	4 4 00 00 00
FORM	1 6 1	18	18	B	1 1 1 <u>4-</u> :	L.
111011	. 09. 1 HR	. 00. 1 HR	. 00. 1 HR	., 00. 1 HR	1 HR AC, 1 HR .00, 0.5 HR,	1650F 1 HR, AC, 1550F 1 HR, DA, 320F 0 5 HR, 400F 2 HR, AC
COLD 1 10R	Tittofi 100. Great I HR	15501,00,	1550F,00. 200F 1 HR	1550F, 00. 900F 1 HR	1600F 1550F - 320F 400F	1600F 1550F 320F 400F

MOTES (DB)=DEGASED

TABLE 6.32.3.1

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.32.3.1 INDICATING EFFECT

OF ENVIRONMENT

MATERIAL: ALLOY STEEL 4340(EFM) CONDITION: 1550F . 5HR, 400F 4HR K MAX DA/DT (10**-6 IN/HOUR) (KSI*IN**1/2) В С D E≈ : 0. 05% SODIUM DICHROMATE 19.00 : 340000. A: **B**: K MAX MIN C: D: 20.00 : 356822. 25.00 : 457075. 30.00 : 572661. 35.00 : 690962. 40.00 : 801767. 50.00 : 972434. 60.00 : 1053339. A: 45,00 : 1060000. K MAX B: MAX C: D:

ROOT MEAN SQUARE PERCENT ERROR

9. 39

TABLE 6.33.3.1

SUSTAINED CRACK GROWTH RATES AT DEFINED LEVELS OF STRESS INTENSITY FACTOR

DATA ASSOCIATED WITH FIGURE 6.33.3.1 INDICATING EFFECT

OF YIELD STRENGTH

MATERIAL: ALLOY STEEL 4340V CONDITION: ENVIRONMENT: K MAX DA/DT (10**-6 IN/HOUR) (KSI*IN**1/2) В С D : Y(KSI)=200.0 Y(KSI)=186.0 Y(KSI)=142.0 41.00 : 25343. K MAX **55**. 00 : 885. **B**: MIN C: D: 50.00 : 101411. **60**.00 : **174099**. 4149. 70.00 : 234544. 6304. 80.00 : 8155. 75.00 : 279053. K MAX B: 85.00 : 8927. MAX C:

ROOT MEAN SQUARE 6. 42 3. 87 0. 00 PERCENT ERROR

TABLE 6.34.1.1

MEAN PLANE BIRAIN FRACTURE TOUGHMEBB DATA OF ALLOY BTEEL 4340 (VAR) AT ROOM TEMPERATURE

(NUMBER OF BPECIMENS)		1-8	!
(NUMBER OF		1	
MEAN KIC + BTANDARD (KBI BORT(IN) DEVIATION	EORGING	Ξ	dd: 0 + 4. 4 (B)
CONDITION/HT		CONDITION/HT	1600F 1 HR. AC. 1550F 1 HR. DG. -320F 0. 5 HR. 400F 2 HR. AC

TABLE 6.34.2.1

					200	ALLIN SILLE		4.140 (VIN)	CILX	3			
HB111dh83	FORT	ORD CHENT (T)	TEST (TENP (F)		SPECIMEN VIELD ORIENT STRENGTH (KSI)	MIDTH (N.)	WIDTH THICK DESIGN ('N) (IN) W B			2 5# (K(IC)/TVS)#42 (IN)	CRACK 2 5* K(IC) STAN LENGTH (K(IC)/TYS)**2 K(IC) MEAN DEV (IN) (IN) (KSI*50R1 IN) A A	DATE	REFER
TAUDE 1 HR. AC.	L	4 00	<u>ہ</u>]-1	240 0	1.800			!	0. 13	53, 00	1968	73300 (1)
15'01 1 18' (9.		00 6			240 0	1.800					61, 30	1968	73300 (1)
JUST O B HR.		00 6			240 0	1.800			1		51, 80	1968	73300 (1)
400F 2 HR. AC		4 00			240.0	1.800					59, 20	1968	_
		4 00			241.0	1. 800	0.900	9N C	1	0. 10	48. 60	1968	73300
		4 00			241.0	1.800			1	0.13	54, 60	1968	73300
		4 00			241.0	1.800			1	0.11	51. 10	1968	73300
		4 00			241.0	1, 800			!	0.15	58.60 55.07 4.4	1968	73300

CORPOSITION(WT PERCENT) 0. 42C, 0. 81MN, 0. 008P, 0. 004S, 0. 36SI, 1. 63NI, 0. 84CR, 0. 22MD, 0. 001AL, 0. 002CA, 0. 002ZN (VAR) = (VAR) = (VAR) UM ARC REMELIED)

TABLE 6.35.3.1

	REFER	74718	74718	60423	60423	80423	B0423 B0423	= = 80423	 80423	
	DATE	1965	1965	1261	1971	1971 6	1971 E	 1971 B	 1971 B	
	TEST TINE (MIN)	0005 <	> 5000	1	1	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	STAN DEV	1		i i !	t 1	1 1 1	1 1	1	! !	
	K(ISCC) MEAN	18 00	13.00	56.00	52.00	72.00	62.00	42.00	32 00	!
	K (G) (KS1*S(78.00	73. 00	87.00	87.00	98.00	92.00 87.00	85. 00	87.00	1
K(ISCC)	CRACK LENGT (IN)							1 1	1 3	1
4340(MDD) K	CIMENTHICK DESIGN (IN) (**50)	0, 480 CANT	0. 480 CANT		1. 000 CANT	1. 000 CANT	1. 000 CANT	1. 000 CANT	1. 000 CANT	; ; ; ;
4340	MIDTH (IN)	1. 500	1.500	1.000	1.000	1.000	1, 000		1.000	1
ALLOY STEEL	YIELD STR ENVIRONMENT (KSI)	2 3 5 PCT NACL	201. B 3.5 PCT NACL.	195. 0 3. 5 PCT NACL	5. 0 3. 5 PCT NACL	5. O 3. S P	175. 0 3. 5 PCT NACL	PCT NACL	6 0 3	
	SPEC	1- - L	1-L	5 1	ن	ιτή		1 50	ιń	1 1
	TEST TEMP (F)	F 8 6	R. 7	R. T.	⊢ œ	, 	2	1 E	⊢ '	ŧ
	FORM THICK (IN)	1885 B 1 50 1 1889 DG 1+1 600F (0 09	1HR, B 1 50 H 1HR DG 1+1 400F (C, 09	t. 00	1 00	00 1	1.00	00 1	00	1
	FURM	B 1+1 6	B 1+1 4] <u> </u>	i	. <u>.</u>	! ! ! !!! !!!	; . ; . [b]	L	1
	CORDITION	1650F 14R 1600F 14P 00 51)	μ. μ.	1800F Q 460F 1+1HR (0 20C)	1800F @ 500F 1+1HR (0 21C)	OF 0 600F	4 650F 0 24C) 8 650F (0 28C	1860F Q 700F	OF @ 780F HR (0 33C)	: : : :
	ö	51	1650 1600 51)	. 60 - ,	⊕ ± ,) H	18(118(118)	186 1HR	1900F 1+1HR	i .

TABLE 6.35.3.1 (Con't)

	DATE REFER	1971 80423	80423	80423
		1471	1471	161
	TEST TIME (MIN)	1	1	i i i
	BTAN DEV		1 1 1	
	HEA		1	j !
	CRACK LENGTH K(Q) K(ISCC) MEAN (IN) (KBI*BGRT IN)	8 0. 8 0	. 8 . 8 . 8	42.00
	(KBI+80	78.00	63.00	B7. 00
K(18CC)	CRACK LENOTH (IN)		, ; ,	
	THICK DESIGN	CANT	1. 000 CANT	1. 000 CANT
4340 (MDD)	THICK (IN)	1. 000 CANT	1 000 1 1	1 000
43	LIDTH THICK DESIGN LENOT (IN) (IN) (+=SO) (IN)	1. 000	1. 000	1.000
ALLOY STEEL	ENVIRONMENT	195. 0 3. 5 PCT NACL	199. 0 3. 5 PCT NACL	195. 0 3. 5 PCT NACL
	YIELD STR (KSI)	195.0	193.0	195.0
	SPEC	ار. 8	, 's	
	1E9T 1EMP (F)	E	1 62	p= eg
	FORH THICK TEMP OR (IN) (F)	1.00 R.T. L-8	1.00 R.T. L-S	1.00 R.T. L-B
	FORM	L	! !	 <u> </u>
	CONDITION	1800F 0 800F 118 (0 46C)	1800F @ 900F 1HR (0 64C)	1800F Q 925F 1+1HR (0 53C)

TABLE 6.36

REFERENCES FOR ALLOY STEEL DATA

60578 18N1 (300)MAR Kc

Christian, J. L., Yang, C. T., and Witzell, W. E., "Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment", ASD-TDR-62-258, Part III, General Dynamics/Astronautics (December 1964).

63061 D6AC KISCC
18N1(300)MAR KISCC
4140 KISCC
4340 KISCC

Mulherin, J. H., and Hess, E. H., "Stress-Corrosion Susceptibility of Ultrahigh Strength Steel Evaluated in Terms of Fracture Toughness", Technical Report R-1782, Frankford Arsenal, Philadelphia, PA, (November 1965).

65166 12N1-5Cr-3Mo K_{Iscc} 18N1 (180)MAR K_{Iscc} 18N1 (250)MAR K_{Iscc}

Rolfe, S. T., et al., "Stress-Corrosion Testing of Ultraservice Steels Using Fatigue Cracked Specimens", Paper No. 90, Presented at the 69th Annual Meeting of the American Society for Testing and Materials in Atlantic City, NJ, June 27-July 1, 1966.

69162 18N1(200)MAR KISCC

Sandoz, G., and Newbegin, R. L., "Stress-Corrosion Cracking Resistance of an 18N1 200 Grade Maraging Steel Base Plate and Weld", NRL Report 1772, Naval Research Laboratory, Washington, D.C., (March 1967).

70887 12N1-5Cr-3Mo Kiscc 18N1 (200)MAR KIscc 18N1 (250)MAR da/dt 4340 da/dt, KIscc

Peterson, M. H., Brown, B. F., Newbegin, R. L., and Groover, R. E., "Stress Corrosion Cracking of High Strength Steels and Titanium Alloys in Chloride Solutions at Ambient Temperature", Corrosion, 23 (5), 142-148 (May 1967).

72283 D6AC KISCC
HP9-4-.45 KISCC
H11 KISCC
18N1 (250)MAR KISCC
4340 KISCC

Benjamin, W. D., and Steigerwald, E. A., "Environmentally Induced Delayed Failures in Martensitic-High-Strength Steels", Second Yearly Summary Report, AFML-TR-68-80, TRW, Inc., Cleveland, OH, Contract AF33(615)-3651(P) (April 1968).

73300 300M (AM) K_{IC}
300M (VAR) K_{IC}
4340 (AM) K_{IC}
4340 (DH) K_{IC}

Hauser, J. J., et al., "Inclusions in High-Strength Steels, Their Dependence on Processing Variables and Their Effect on Engineering Properties", Report AFML-TR-66-222, Crucible Steel Corporation, Pittsburgh, PA. (August 1968).

73612 18Ni (250)MAR K_{Ic}

Srawley, J. E., "Plane Strain Fracture Toughness Tests on Two-Inch-Thick Maraging Steel Plates at Various Strength Levels", NASA TN K-52470, Lewis Research Center, Cleveland, OH, (1968).

73824 HY-150 K_{Iscc}

Smith, J. H., and Rolfe, S. T., "Effect of Composition on the KISCC of Experimental HY-150 Steels", Technical Report No. 39.018-016(10), United States Steel Corporation, Applied Research Laboratory, Monroeville, PA, Contract NObs-94535 (FBM) (December 20, 1968)

73829 18Ni (250)MAR KISCO

Novak, S. R., and Rolfe, S. T., "Comparison of Fracture-Mechanics and Normal-Stress Analyses in Stress-Corrosion Testing", Report No. 89.018-026(3), United States Steel Corporation, Applied Research Laboratory, Monroeville, PA, Contract NObs-94535 (FBM) (December 20, 1968).

73988 300M K_c

Pendelberry, S. L., Simenz, R. F., and Walker, E. K., "Fracture Toughness and Crack Propagation of 300 M Steel", FAA Technical Report No. DS-68-18 (August 1968).

74232 HP 9-4-.20 KIscc 12N1-5Cr-3Mo KIscc 18N1 (250)MAR KIscc

> Sinclair, G. M., and Rolfe, S. T., "Analytical Procedure for Relating Subcritical Crack Growth to Inspection Requirements", University of Illinois, Urbana, Ill., and United States Steel Corporation, Applied Research Laboratory, Monroeville, PA, Paper presented at the Metals Engineering Conference of ASME, Washington, D.C., on March 31 to April 2, 1969.

74302 HP 9-4-.30 K_{Iscc} 300M K_{Iscc}

Carter, C. S., "Crack Extension in Several High-Strength Steels Loaded in 3.5% Sodium Chloride Solution", Research Report D6-19770, The Boeing Company, Renton, Wash., ARPA Contract N00014-66-C-0365 (November 1967).

74718 300M KIscc 4340 KIscc, da/dt 4340(MOD) K_{Iscc}

Carter, C. S., "The Effect of Silicon on the Stress Corrosion Resistance of Low-Alloy, High-Strength Steels", Research Report D6-23872, The Boeing Company, Renton, Wash., ARPA Contract N00014-66-C-0365 (March 1965).

74719 18N1 (200)MAR da/dt 18N1 (350)MAR da/dt

Carter, C. S., "Stress Corrosion Crack Branching in High-Strength Steels", Research Report D6-23781, The Boeing Company, Renton, Wash., ARPA Contract NO0014-66-C-0365 (March 1965).

75025 4340 Kisco

Procter, R. P. M., and Paxton, H. W., "The Effect of Prior Austenite Grain Size on the Stress Corrosion Cracking Susceptibility of A.I.S.I. 4340 Steel", Research Project, Carnegie-Mellon University, Pittsburgh, PA [Jz] Jary 1969).

75111 H11 da/dt

Wei, R. P., and Landes, J. D., "Correlation Between Sustained-Load and Fatigue Crack Growth on High-Strength Steels", Materials Research and Standards, $\underline{9}$ (7), 25-28 (July 1969).

75677 18N1 (350) MAR KISCO

Carter, C. S., "The Effect of Heat Treatment on the Fracture Toughness and Subcritical Crack Growth Characteristics of a 350-Grade Maraging Steel", Report D6-22978, The Boeing Company, Renton, Wash., Contract N00014-66-C0365 (June 1969).

76411 HP 9-4-.25 (VAR) K_{Ic} 18N1 (200) MAR K_{To}

Wessel, E. T., et al., "Engineering Methods for the Design and Selection of Materials Against Fracture", Final Technical Report, Westinghouse Research Laboratories, Pittsburgh, PA, Contract DA-30-069-AMC-602 (T) (June 24, 1966).

76972 4340 KI986

Colangelo, V. J., and Ferguson, M. S., "The Role of the Strain Hardening Exponent in Stress Corrosion Cracking of a High Strength Steel", Corrosion, <u>25</u> (12) 509-514 (December 1969).

77716 18N1(300)MAR K_{Iscc}

Stavros, A. J., and Paxton, H. W., "Stress-Corrosion Cracking Behavior of an 18% Ni Maraging Steel", Homer Research Laboratories, Bethlehem Steel Corporation, Bethlehem, PA, and Carnegie-Mellon University, Pittsburgh, PA, ARPA Contract Nonr-760(31) (April 1970).

78065 18N1 (250)MAR K_{Iscc}

Novak, S. R., and Rolfe, S. T., "Comparison of Fracture Mechanics and Nominal Stress Analysis in Stress Corrosion Cracking", Corrosion, 26(4) 121-130(April 1970).

78305 300M KIc K_{Iscc} 300M(VM) K_{Ic}

Webster, D., "Effect of Grain Refinement on the Microstructure and Mechanical Properties of 4340M", Summary Report D6-25220, The Boeing Company, Seattle, Wash., ARPA Contract N00014-66-C-0365 (April 1970).

78313 18Ni (250)MAR da/dt 300M da/dt

Hyatt, M. V., "Use of Precracked Specimens in Stress-Corrosion Testing of High-Strength Aluminum Alloys", Summary Report D6-24466, The Boeing Company, Renton, Wash., ARPA Contract N00014-66-C-0365 (November 1969).

78425 18Ni (300) MAR Kisco, da/dN Carter, C. S., "Evaluation of a High-Purity 18Ni (300) Maraging Steel Forging", Report AFML-TR-70-139, The Boeing Company, Renton, Wash., Contract F33615-69-C-1620 (June 1970). 18Ni (300) MAR K_{Iscc} 78761 KIscc Carter, C. S., "Effect of Prestressing on the Stress-Corrosion Resistance of Two High-Strength Steels", Report D6-25275, The Boeing Company, Seattle, Wash., Contract NO0014-66-C-0365 (May 1970). 4340 K_{Iscc} 4340 (MOD) K_{Iscc} 80423 Sandoz, G., "The Effects of Alloying Elements on the Susceptibility to Stress-Corrosion Cracking of Martensitic Steels in Salt Water", ASM Metallurgical Transactions, $\underline{2}$ (4) 1055-1063 (April 1971). HP 9-4-.20 K_{ISCC} 18N1 (200) MAR K_{ISCC} 80667 Raymond, L., and Usell, R. J., Jr., "The Effect of $\rm N_2O_4$ and UDMH on Subcritical Crack Growth in Various High-Toughness Low-Strength Steels", Report No. SAMSO-TR-71-106, TR-0059(6250-10)-8, The Aerospace Corporation, El Segundo, CA, Contract F04701-70-C-0059

80824 18Ni (200) MAR K_{Iscc} 18Ni (250) MAR K_{Iscc}

(June 15, 1971).

Syrett, B. C., "Stress Corrosion Cracking in 18% Ni (250) Maraging Steel", Corrosion, $\underline{27}$ (7), 270-280 (July 1971).

7. OF

81004 18N1 (180) MAR K_{Iscc} 18N1 (200) MAR K_{Iscc}

Kenyon, N., Kirk, W. W., and Van Rooyen, D., "Corrosion of 18Ni 180 and 18Ni 200 Maraging Steels in Chloride Environments", Corrosion, 27 (9), 390-400 (September 1971).

81814 4340 K_{Iscc}, da/dt

Gallagher, J. P., "Corrosion Fatigue Crack Growth Rate Behavior Above and Below K $_{\rm ISCC}$ in Steels", Journal of Materials, $\underline{6}$ (4) 941-964 (December 1971).

82164 18N1 (280) MAR KISCC

Floreen, S., Hayden, H. W., and Kanyon, N., "Stress Corrosion Cracking Behavior of Maraging Steel Composites", Corrosion, 27 (12), 519-524 (December 1971).

82543 D6AC KIC, da/dN

Feddersen, C. E., et al., "Crack Behavior in D6AC Steel", Report MCIC-72-04, Metals and Ceramics Information Center, Battelle Columbus Laboratories, Columbus, OH (January 1972).

33611 -340 (EFM) da/dt Dull, D. L., and Raymond, L., "Stress History Effect on Incubation Time for Stress Corrosion Crack Growth in E-4340 HR Steel", Air Force Report No. SAMSO-TR-72-168, Aerospace Report No. TR-0172 (2250-10)-7. The Aerospace Corporation, El Segundo, CA, Contract No. F04701-71-C-0172 (June 15, 1972). 83613 HP 9-4-.20 κ_{Iscc} 12N1-5Cr-3Mo Kisco 18N1 (180)MAR KISCC 18N1 (200)MAR KISCC 18N1 (250) MAR KISCO Sandoz, G., "The Resistance of Some High Strength Steels to Slow Crack Growth in Salt Water", NRL Memorandum Report 2454, Naval Research Laboratory, Washington, D.C. (February 1972). 83834 18N1 (200) MAR KIC 18N1 (250) MAR KIC Fisher, D. M., and Repko, A. J., "Plane Strain Fracture Toughness Tests on 2.4 and 3.9-Inch-Thick Maraging Steel Specimens at Various Yield Strength Levels", Journal of Materials, 7 (2) 167-174 (June 1972). 84029 D6AC KIc HP 9-4-.30 KIc 300M κ_{Ic} 4330V (MOD) KIC 4340 Garland, K., "Fracture Toughness of Several High Strength Steels", Report 513-965, McDonnell Aircraft Company, McDonnell Douglas Corporation, St. Louis, MO, (June 7, 1971). 84277 D6AC 4330V (MOD) KIC 4340 Maller, R., "The Effect of Heat Treatment Variations on the Fracture Toughness of D6AC Steel", Report No. M&P/MWE-1-TR-72-2, Grumman Aerospace Company, Bethpage, NY (March 13, 1972). 84278 300M (VM) KIC Maller, R., "The Effect of Heat Treatment Variations on the Fracture Toughness of 300 M Steel", Report No. M&P/MWE-1-TR-72-5, Grumman Aerospace Company, Bethpage, NY (April 13, 1972). 300M K_{Ic} 4340 (DH) K_{Ic} 84280 Gunderson, A. W., and Harmsworth, C. L., "MAAE Engineering and Design Data, Material 300 M", Test Memo No. MAAE 70-5, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio (September 24, 1970). 4340 KIscc 84290 Smith, H. R., Piper, D. E., and Downey, F. K., "A Study of Stress-Corrosion Cracking by Wedge Force Loading", Engineering Fracture Mechanics, 1, p 123-128 (1968), Pergamon Press.

Harrigan, M. J., "B-1 Fracture Mechanics Data for Air Force Handbook Usage", Report TFD-72-501, North American Rockwell, Los Angeles Division, Los Angeles, CA (April 21, 1972).

84309 H11 da/dt 4340 da/dt

Landes, J. D., "Kinetics of Sub-Critical Crack Growth and Deformation in a High Strength Steel", A Dissertation Presented to the Graduate Facility of Lehigh University in Candidacy for the Degree of Doctor of Philosophy in Applied Mechanics, Lehigh University, Bethlehem, PA, (1970).

84310 18Ni (250) MAR da/dt 18Ni (300) MAR da/dt 4340 da/dt

Wei, R. P., "The Effect of Temperature and Environment on Subcritical Crack Growth", Report IFSM-72-14, Lehigh University, Bethlehem, PA (April 1972).

84313 4340 da/dt

Wei, R. P., Novak, S. R., and Williams, D. P., "Some Important Considerations in the Development of Stress Corrosion Cracking Test Methods", Presented at the 33rd AGARD (NATO) Structures and Materials Panel Meeting, Brussels, Belgium, October 4-8, 1971.

84317 12N1-5Cr-3Mo K_{Iscc}

Novak, S. R., and Rolfe, S. T., "Modified WOL Specimen for K_{ISCC} Environmental Testing", Journal of Materials, 4 (3), 701-728 (September 1969).

Crooker, T. W., and Lange, E. A., "The Influence of Salt Water on Fatigue-Crack Growth in High-Strength Structural Steels", ASTM STP 462, "Effects of Environment and Complex Load History on Fatigue Life", p 258-271 (1970).

84351 HP 9-4-.45 KISCC
H11 KISCC
18N1 (250) MAR KISCC
18N1 (350) MAR KISCC
300M KISCC
4330V KISCC

Carter, C. S., "Stress Corrosion Crack Branching in High Strength Steels", Engineering Fracture Mechanics, 3, p 1-13 (July 1971).

84356 18N1 (300) MAR KISCC 4340 KISCC

Carter, C. S., "Effect of Prestressing on the Stress Corrosion Resistance of Two High-Strength Steels", Metallurgical Trans., 3, p 584-587 (February 1972).

84963 4140 KIscc

Bucci, R. J., Paris, P. C., Loushin, L. L., and Johnson, H. H., "Fracture Mechanics Consideration of Hydrogen Sulfide Cracking in High Strength Steels", Stress Analysis and Growth of Cracks, Proceedings of the 1971 National Symposium on Fracture Mechanics, Part I, ASTM STP 513, p 292-307, American Society for Testing and Materials, Philadelphia, PA, (1972).

85545 300M da/dt

Speidel, M. O., "Dynamic and Static Embrittlement of a High-Strength Steel in Water", preprint from L'Hydrogene Dans Les Metaux, $\underline{1}$, Editions Science et Industrie, Paris, France (no date).

85633 HP 9-4-.20 KIC

"Fracture Toughness and Tensile Properties Data for HP9-4-20 Steel", Shultz Steel Company, South Gate, CA, attached to memo from Ed Cawthorne dated March 9, 1973.

85836 HP 9-4-.20 K_{Ic} 300M K_{Ic}

"B-1 Fracture Toughness Data ($K(sub\ I_c)$) - Rockwell International", Rockwell International Corporation, Los Angeles, CA (April 24, 1973).

85837 HP 9-4-.20 da/dN HP 9-4-.30 da/dN

"Fracture Toughness Data Collection, Rockwell International Corporation, from B-1 Program", Rockwell International Corporation, Los Angeles, CA, (April 1973).

85857 HP 9-4-.20 K_{TC}

"Shultz Steel Company - Fracture Toughness Data - May 10, 1973", per memo from Ed Cawthorne of May 10, 1973.

85879 HP 9-4-.20 Kic

"Fracture Toughness Data - Shultz Steel Company - May 15, 1973", per memo from Ed Cawthorne of May 15, 1973.

85883 D6AC K_{Ic} 300M K_{Ic}

Weiss, V., Sengupta, M., and Sanford, W., "The Significance of Material Ductility to the Reliability and Load Carrying Capacity of Peak Performance Structures", Final Report, Syracuse University, Syracuse, NY, Contract N00019-72-C-214 (January 1973).

86428 HP 9-4-.20 K_{TC}

"Fracture Toughness Data for HP9-4-20 Forgings - Shultz Steel Company, July 5, 1973", test reports attached to memo from E. W. Cawthorne to J. E. Campbell (July 5, 1973).

86582 4340 K_{Ic}

McCabe, D. E., "Evaluation of the Compact Tension Specimen for Determining Plane Strain Fracture Toughness of High-Strength Materials", Journal of Materials, $\underline{7}$ (4) 449-454 (December 1972).

37241 300M KIC 4140 KIC 4330V (MOD) KIC 4340 KIC

Wood, W. E., Parker, E. R., and Zackay, V. F., "An Investigation of Metallurgical Factors Which Affect Fracture Toughness of Ultra-High Strength Steels", Report AMMRC CTR-73-24, LBL-1474, University of California, Lawrence Berkeley Laboratory, Berkeley, CA, Contracts DAAG46-72-C-8200 and W-7405-eng-48 (May 1973).

88136 HP 9-4-.20 K_{Ic}, da/dN HP 9-4-.30 K_{Ic}, da/dN 300M K_{Ic}

Dill, H. D., "Evaluation of Steel Alloys 300 M, HP-9Ni-4Co-.20, HP-9Ni-4Co-.30, and PH 13-8Mo", Report MDC-A2639, McDonnell Aircraft Company, McDonnell Douglas Corporation, St. Louis, MO, (December 21, 1973), with data supplement received May 2, 1974.

88140 HP 9-4-.30 da/dN

Hall, L. R., Finger, R. W., and Spurr, W. F., "Corrosion Fatigue Crack Growth in Aircraft Structural Materials", Report AFML-TR-73-204, Boeing Aerospace Company, Seattle, WA. Contract AF33615-71-C-1687 (September 1973).

88575 10Ni da/dN

"Advanced Metallic Air Vehicle Structure Program", Material Property Data Test Report Phase II, Report FZM-6148A, General Dynamics, Convair Aerospace Division, Fort Worth, TX, Contract AF33615-73-C-3001 (January 1974).

88579 HP 9-4-.20 da/dN HP 9-4-.30 da/dN

"B-1 Program da/dN Data for Aluminum Alloys", Rockwell International Corporation, memorandum to H. D. Moran from E. W. Cawthorne, Battelle's Columbus Laboratories (April 3, 1974).

89311 4340 da/dN

Kortovich, C. S., "Corrosion Fatigue Behavior of 4340 and D6AC Steels Below K_{ISCC}", Report ER-7717, TRW Incorporated, Cleveland, OH, Contract N00014-69-C-0286 (April 1974).

90011 HP 9-4-.20 K_{Ic} HP 9-4-.30 K_{Ic}

"Rockwell International, B-1 Program Fracture Toughness Data of August 5, 1974", with memorandum from E. W. Cawthorne to H. D. Moran of Battelle's Columbus Laboratories (August 5, 1974).

90012 RP 9-4-.20 K_{Ic}

"Ti-6Al-4V Fracture Toughness Data - Shultz Steel Company, South Gate, CA, of August 8, 1974", with memorandum from E. W. Cawthorne to H. D. Moran of Battelle's Columbus Laboratories (August 8, 1974).

90981 18N1 (250) MAR K_{Id} , da/dN

Krupp, W. E., Wimmer, F. T., Pettit, D. E., and Hoeppner, D. W., Data Sheets for Final Report on "Investigation of the Effects of Stress and Chemical Environments on the Prediction of Fracture in Aircraft Structural Materials", Rye Canyon Research Laboratory, Lockheed-California Company, Burbank, CA, Contract F33615-71-C-1688, data sheets received October 21, 1974.

91284 HY-TUF KTC

Hauser, J. J., "Data on Vacuum-Arc-Remelted (VAR) HY-Tuf", letter to J. E. Campbell, Battelle's Columbus Laboratories, Columbus, OH, from J. J. Hauser, Crucible, Incorporated, Materials Research Center, Pittsburgh, PA (December 3, 1974).

91838 18N1 (300) MAR da/dN

Van Swam, L. F., et al., "Fatigue Behavior of Maraging Steel 300", Metallurgical Transactions A, 6A, 45-54 (January 1975).

AM002 HP 9-4-.30 K_{Ic}

Fracture Toughness Data for HP9-4-.30 Steel sent from T. Matsuda, Airesearch Manufacturing Co., Torrence, CA, Data produced July 1977.

BW001 4340 da/dN

Horsley, J. J., and Harris, C. E., "Durability and Damage Tolerance Assessment (DADTA) of B-52 G/H Structure, Task II, Damage Tolerance Assessment Final Report", Boeing Company, Wichita, KS, Contract No. F34601-79-C-1515, Document No. D3-11560-3, June 1980.

BW002 4340 da/dN

Lambert, G., Mecham, P., and Mah, T., "Duribility and Damage Tolerance Assessment (DADTA) of B-52 G/H Structure, Task III, Individual Airplane Crack Growth Tracking Program", Boeing Company, Wichita, KS, Contract No. F34601-79-C-2258, Document No. D3-11560-6, November 1981.

DA001 H11 da/dN HY-180 da/dN 12-9-2 MAR KIC, da/dN 4340 KIC, da/dN

Fatigue Crack Growth Rate Data Sheets on Aluminum Alloys 2024, 7010, 7050, 7075 and 7475, Stainless Steel Alloys 17-4PH and 17-7PH, and Alloy Steels 4340, A286, H-11, HY-180 and 12-9-2, Sent from Mr. Paul Abelkis, Douglas Aircraft Company, McDonnell Douglas Corporation, Long Beach, CA, March 1982.

HD006 A286 da/dN

James, L. A., "The Effect of Temperatures on the Fatigue-Crack Propagation Behavior of A286 Steel", Report HEDL-TME 75-82, Westinghouse Hanford Company, Richland, WA, January 1976.

MA004 AF1410 da/dN

Fatigue Crack Growth Rate Data on AF1410 Steel in Bar Form, McDonnell Aircraft Company, St. Louis, MO, Data Submitted by D. L. Rich, Attachment #4, received March 12, 1982.

Garland, K., and Krieg, J. F., "Final Report - Basic Fracture Data for F-18 Material", McDonnell Aircraft Company, St. Louis, MO, Report No. 3 NA-66-7KW, Attachment #5, March 1977.

MA006 300M da/dh

Garland, K., and Krieg, J. F., "Evaluation of the Effect of Material Cyclic Softening and Hardening on Crack Initiation Life and Crack Growth, with and without Overload as a Function of Stress Ratio", McDonnell Aircraft Company, St. Louis, MO, April 1978.

MA007 HP 9-4-.30 da/dN 300M da/dN

Garland, K., and Krieg, J. F., "Environment-Load Interaction Effects on Crack Growth", McDonnell Aircraft Company, St. Louis, MO, Report No. 703-116, June 1978.

MA010 HP 9-4-.30 da/dN 300M da/dN

Garland, K., and Krieg, J. F., "Environment-Load Interaction Effects on Crack Growth in Landing Gear Steels", McDonnell Aircraft Company, St. Louis, MO, Report No. TR 703-535, TM 256-6627, February 1981.

- 1

MA011 4330V (MOD) K_{Ic}, da/dN

"Final Report, F/RF-4C/D Damage Tolerance and Life Assessment Study - Vol. II", McDonneil Aircraft Company, St. Louis, MO, Contract No. AFSC F33657-73-A-0062, Report No. MDC A2883, February 1975.

MA012 4340 da/dN

"Model F-4E Slatted Airplane Fatigue and Damage Tolerance Assessment, Vol. II", McDonnell Aircraft Company, St. Louis, MO, Contract No. F33657-73-A-0004-0015, Report No. MDC A3390, July 1975.

MD001 D6AC K_{Ic}

Davis, R. J., and Rowe, R. A., "Mechanical Properties of SRB Rolled-Ring Forgings and Large Hand Forgings", McDonnell Douglas Astronautics Company, Huntington Beach, CA. Report MDC G8545, June 1980.

MR002 4140 K_{Ic} 4340 K_{Ic}

"Damage Tolerant Test Data on 4140 and 4340 Steel", Materials Research Laboratory, Inc., Glenwood, IL, Under Contract to ARRAD COM (DAAKIO-79-C-0358), November 1980.

NC001 HP 9-4-.20 KT

Plane Strain Fracture Toughness Data Sets on Aluminum, Steel and Titanium Alloys, Data sent from P. G. Porter of Northrop Corporation, March 1, 1982.

NCOO2 HP 9-4-.20 (CEVM) da/dN

Fatigue Crack Growth Rate Data on Aluminum, Steel and Titanium Alloy. Data sent from P. G. Porter of Northrop Corporation, March 1, 1982.

RI001 AF 1410 (VIM-VAR) K_{Ic} , da/dN

Routh, W. E., "Lower Cost by Substituting Steel for Titanium", Rockwell International Corporation, Los Angeles, CA, Contract No. F33615-75-C-3109, Report No. AFFDL-TR-77-73, June 1977.

RI006 HP 9-4-.20 K_{Iscc} 300M K_{Iscc} , da/dN

Ferguson, R. R., and Berryman, R. C., "Fracture Mechanics Evaluation of B-1 Materials", Rockwell International, B-1 Division, Los Angeles, CA, Contract No. F33657-70-C-0800, Report No. AFML-TR-76-137, October 1976.

UD0Q7 HY-80 da/dN

Ruschau, J. J., "Navy Round Robin Corrosion Fatigue Crack Growth Rate Test Results for HY-80", University of Dayton Research Institute Dayton, OH, Contract No. F33615-80-C-5011, Technical Memorandum UDR-TM-81-37, November 1981.