Ben Faarit Ilyes Note: 7.5/20 (score total : 27.2/72)

+23/1/50+

THLR Contrôle (35 questions), Septembre 2016

	Non	n et prénom, lisibles : [Identifiant (de haut en bas) :
	1	BENTAAR (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		I () (S) (D)
2/2	répon restric de co pénal	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases et que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs asses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus ctive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible orriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes lisent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 6 entêtes sont +23/1/xx+···+23/6/xx+.
	Q.2	Soit L un langage sur l'alphabet Σ . Si $\overline{L}=\emptyset$ alors
-1/2		$\Box L = \{\varepsilon\} \qquad \qquad \boxtimes L = \Sigma^{\star} \qquad \qquad \textcircled{\textcircled{2}} L = \emptyset$
	Q.3	Pour $L_1 = \{a, b\}^*, L_2 = \{a\}^* \{b\}^*$:
-1/2		$\square L_1 \subseteq L_2 \qquad \boxtimes L_1 \supseteq L_2 \qquad \textcircled{\tiny } \qquad L_1 \not \supseteq \qquad L_2 \qquad \square L_1 = L_2$
	Q.4	Que vaut $\emptyset \cdot L$?
2/2		\blacksquare \emptyset \square L \square $\{arepsilon\}$ \square $arepsilon$
	Q.5	Que vaut Suff({ab, c}):
2/2		$\{ab,b,c,\varepsilon\}$ $[b,\varepsilon]$ $[b,c]$ $[a,b,c]$
	0.6	
	Q.6	Que vaut $Fact(\{a\}\{b\}^*)$ (l'ensemble des facteurs)
0/2		
	Q.7	Pour toutes expressions rationnelles e , f , g , h , on a $(e + f)(g + h) \equiv eg + fh$.
2/2		faux ☐ vrai
	Q.8	À quoi est équivalent Ø* ?
1 10	2.0	
-1/2		\square $\epsilon \emptyset$ $\textcircled{\tiny lackbox{\textcircled{@}}}$ \emptyset \boxtimes ϵ \square $\emptyset \epsilon$
	Q.9	Pour $e = (a+b)^* + \varepsilon$, $f = (a^*b^*)^*$:
-1/2		$\square L(e) \subseteq L(f) \qquad \textcircled{\textcircled{a}} L(e) \supseteq L(f) \qquad \boxtimes L(e) = L(f) \qquad \square L(e) \stackrel{\not\subseteq}{\not\supseteq} L(f)$
	Q.10	Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \implies L_1 = L_2$.
2/2		☐ faux ☐ vrai
	Q.11	L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :
2/2		☐ 'DEADBEEF' ☐ '(20+3)*3' ☐ '0+1+2+3+4+5+7+8+9' ☐ '-+-1+-+-2'

+23/2/49+

Un automate fini non-déterministe à transitions spontanées peut avoir plusieurs états initiaux. -1/2faux ∨rai Q.13 Un algorithme peut décider si un automate est déterministe en regardant sa structure. 2/2 ☐ Souvent ☐ Faux Vrai ☐ Rarement Quel automate reconnaît le langage décrit par l'expression ((ba)*b)* Q.14 0/2Quel est le résultat d'une élimination arrière des transitions spontanées? 0/2Parmi les 3 automates suivants, lesquels sont équivalents? 2/2 ☐ Aucune de ces réponses n'est correcte. Q.17 Le langage $\{a^nb^n \mid \forall n \in \mathbb{N}\}$ est 2/2 □ vide ☐ fini non reconnaissable par automate rationnel Q.18 A propos du lemme de pompage ☐ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel 2/2

Si un langage ne le vérifie pas, alors il n'est pas rationnel

On peut tester si un automate déterministe reconnaît un langage non vide.

Q.27

+23/4/47+

2/2	 □ Non □ Seulement si le langage n'est pas rationnel □ Cette question n'a pas de sens de Oui
	${f Q.28}$ Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.
-1/2	● vrai en temps constant□ faux en temps infini□ faux en temps fini□ vrai en temps fini
	Q.29 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?
2/2	☐ 6 ☐ Il n'existe pas. ■ 4 ☐ 7
	Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a,b\}^+$?
-1/2	
•	Q.31
	Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :
2/2	
	Q.32 & Quels états peuvent être fusionnés sans changer le langage reconnu.
-1/2	1 avec 2 2 avec 4 0 avec 1 et avec 2 3 avec 4 1 avec 3 Aucune de ces réponses n'est correcte.
	Q.33 Considérons \mathcal{P} l'ensemble des <i>palindromes</i> (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.
-1/2	□ Il existe un NFA qui reconnaisse P $□$ Il existe un DFA qui reconnaisse P $□$ Il existe un $ε$ -NFA qui reconnaisse P
	Q.34 Sur $\{a,b\}$, quel est le complémentaire de b ?
0/2	$ \begin{array}{c} a,b \\ \\ a,b \\ \\ a,b \end{array} $ $ \begin{array}{c} a,b \\ \\ c \\ b \end{array} $ $ \begin{array}{c} c \\ c \\ a \\ c \end{array} $
	Q.35
	<i>b</i>
0/2	Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0? $(ab^{+} + (a + b)^{+})a(a + b)^{+}$ $(ab^{+} + a + b^{+})(a(a + b^{+}))^{+}$ $(ab^{+} + a + b^{+})a(a + b)^{+}$ $(ab^{+} + a + b^{+})a(a + b^{+})$ $(ab^{+} + a + b^{+})a(a + b)^{+}$ $(ab^{+} + a + b^{+})(a + b)^{+}$

Q.36 Sur {a, b}, quel automate reconnaît le complémentaire du langage de

2/2

+23/6/45+

Fin de l'épreuve.