Final Dissertation

Simulating large-scale network attacks against Bitcoin

Advisor Alberto Montresor Student
Davide Pedranz

University of Trento
Department of Information Engineering and Computer Science

10 October 2018

- Bitcoin
 - Blockchain
 - Forks
 - Mining

- Bitcoin
 - Blockchain
 - Forks
 - Mining
- Attacks
 - Double Spending
 - Balance Attack

- Bitcoin
 - Blockchain
 - Forks
 - Mining
- Attacks
 - Double Spending
 - Balance Attack
- Experiments
 - Delay
 - Drop
 - Partition

- Bitcoin
 - Blockchain
 - Forks
 - Mining
- Attacks
 - Double Spending
 - Balance Attack
- Experiments
 - Delay
 - Drop
 - Partition
- Conclusions

- Bitcoin
 - Blockchain
 - Forks
 - Mining
- Attacks
 - Double Spending
 - Balance Attack
- 3 Experiments
 - Delay
 - Drop
 - Partition
- 4 Conclusions

Bitcoin

- Most used and valuable cryptocurrency:
 - \bullet Price = \sim 8000 \$/BTC
 - ullet Market cap $=\sim$ 141 billion \$

Bitcoin

- Most used and valuable cryptocurrency:
 - \bullet Price = \sim 8000 \$/BTC
 - ullet Market cap $=\sim$ 141 billion \$
- Usages:
 - in-shop payments
 - online purchases
 - low-cost money transfer

Blockchain

Figure: Schematic representation of a blockchain. A blockchain is a list of blocks, connected to each other with an hash pointer. Each block contains a set of transactions.

Davide Pedranz Final Dissertation 10 October 2018 5 / 19

Forks

Forks

Figure: Schematic representation of a blockchain with 2 branches. The yellow blocks 3a and 3b are in conflict. The network will pick only one of them.

Davide Pedranz Final Dissertation 10 October 2018 6 / 19

Forks

Forks

Figure: Schematic representation of a blockchain with one fork. The green block are on the longest chain. The red block 3b is in conflict with 3a.

Davide Pedranz Final Dissertation 10 October 2018 6 / 19

Mining

Mining is the process of creating new blocks:

- each valid block contains the solution of a computational puzzle
- the only known way to solve the puzzle is the brute-force approach
- the puzzle's solution proves that some work has been done
- the miner receives a reward for each completed valid block on the longest chain

Proof-of-Work prevents attackers to generate too many valid blocks.

Davide Pedranz Final Dissertation 10 October 2018 7 / 19

- Bitcoin
 - Blockchain
 - Forks
 - Mining
- Attacks
 - Double Spending
 - Balance Attack
- 3 Experiments
 - Delay
 - Drop
 - Partition
- 4 Conclusions

Double Spending

Figure: The attacker submits the transaction tx-1 to pay the merchant. At the same time, it submits the conflicting transaction tx-2.

Davide Pedranz Final Dissertation 10 October 2018 9 / 19

Double Spending

Figure: The transaction tx-2 is accepted, tx-1 is rejected. The attacker gets its money back, while the merchant does not get anything.

Davide Pedranz Final Dissertation 10 October 2018 9 / 19

Balance Attack

The attacker:

- partitions the nodes into groups with about the same computational power
- delays or drops messages between nodes in different groups

10 October 2018

10 / 19

Balance Attack

The attacker:

- partitions the nodes into groups with about the same computational power
- delays or drops messages between nodes in different groups

- Bitcoin
 - Blockchain
 - Forks
 - Mining
- Attacks
 - Double Spending
 - Balance Attack
- Experiments
 - Delay
 - Drop
 - Partition
- 4 Conclusions

Simulator

- Bitcoin protocol:
 - network bootstrap
 - topology construction
 - blocks and transactions propagation
- Simulate the Balance Attack for different:
 - delays
 - drops
 - partitions
- Evaluation metric: number of forks

Balance Attack with Delays

Davide Pedranz

Balance Attack with Delays for Different Networks

Davide Pedranz

Balance Attack with Random Message Drop

Davide Pedranz Final Dissertation 10 October 2018 15 / 19

Balance Attack with Multiple Groups

Davide Pedranz Final Dissertation 10 October 2018 16 / 19

- Bitcoin
 - Blockchain
 - Forks
 - Mining
- Attacks
 - Double Spending
 - Balance Attack
- 3 Experiments
 - Delay
 - Drop
 - Partition
- 4 Conclusions

• Bitcoin behaves well under normal network conditions

- Bitcoin behaves well under normal network conditions
- The Balance attack works and scales to different network sizes

- Bitcoin behaves well under normal network conditions
- The Balance attack works and scales to different network sizes
- The Bitcoin protocol handles well the loss of many messages

- Bitcoin behaves well under normal network conditions
- The Balance attack works and scales to different network sizes
- The Bitcoin protocol handles well the loss of many messages
- The number of groups does not affect the attack's performances

Davide Pedranz Final Dissertation 10 October 2018 18 / 19

Thanks for the attention!