Optymalizacja hiperparametrów xgboost Dokumentacja wstępna

Przemysław Stawczyk, Piotr Zmyślony

15 kwietnia 2020

Spis treści

1	Treść zadania	2
2	Dane testowe 2.1 Analiza danych	2 2
3	Algorytmy 3.1 Przestrzeń poszukiwań	3
4	Funkcja celu	3
5	Sposób mierzenia jakości rozwiązania	3

1 Treść zadania

Naszym zadaniem jest przetestowanie różnych algorytmów heurystycznych/populacyjnych w kontekście problemu strojenia hiperparametrów algorytmu xgboost. Problem wyboru hiperparametrów wynika z ich bardzo dużej ilości, co często rozwiązane jest poprzez manualny dobór parametrów klasyfikatora.

Projekt zostanie zrealizowany w języku Python 3+.

2 Dane testowe

Jako dane na których będziemy trenować i testować klasyfikatory przyjęliśmy proponowany zestaw danych https://www.kaggle.com/c/porto-seguro-safe-driver-prediction. Zawiera on 57 atrybutów opisujących klientów firmy ubezpieczeniowej i jeden atrybut binarny sygnalizujący, czy w ciągu roku od zawarcia umowy, klient skorzystał z ubezpieczenia.

Rysunek 1: Brakujące atrybuty

2.1 Analiza danych

Po wstępnej analizie danych odkryliśmy, że w zbiorze danych posiadamy około 79% niekompletnych wierszy. Rysunek 1 przedstawia pokrycie niekompletnych atrybutów - jest ich jedynie 13, z czego większość jest wybrakowana w bardzo niewielkim stopniu.

Największym winowajcą jest atrybut binarny ps_car_03_cat, którego brakuje aż w 70% wierszy, oraz atrybut ps_car_05_cat (brakuje go w 44% przypadków).

Dodatkowo, występuje znaczna dysproporcja między klasami rekordów - tylko 3% wierszy opisuje klientów, którzy skorzystali z ubezpieczenia. Stąd niezbędna będzie interpolacja danych, tak aby ilość rekordów obu klas była równa.

3 Algorytmy

Zaimplementowaliśmy następujące algorytmy:

- ullet algorytm wspinaczkowy z tabu.
 - W 2 wariantach:
 - mutacyjny z prawdopodobieństwem P mutacji jednego (losowego) z parametrów
 - z przeglądem sąsiedztwa i powracaniem
- przegląd wyczerpujący hipersiatki jako metoda bazowa

W przypadku mutacji połączonej z tablu problematycznym okazało się tworzenie mutantów z wykoorzystaniem rozkłądu normalnego, jak i mutacji w ten sam sposób wielu parametrów - tworzone były wielokrotnie już sprawdzone zestawy parametrów.

Przyjeliśmy metodę w której tworzone są wszystkie mozliwe zmiany pojedyńczego parametru [jeszcze niesprawdzone] i z pośród nich losowany jest nowy mutant.

3.1 Przestrzeń poszukiwań

Trenowane parametry - hipersiatka, iloczyn zbiorów każdego z parametrów.

nazwa parametu	zakres
liczba słabych modeli	50, 75, 100 300
eta	0.1, 0.2, 0.3, 0.4
min_split_loss gamma	0, 1, 2, 3
\max_depth	$4, 5, 6 \dots 14$
min_child_weight	1, 2
$\max_{\text{delta_step}}$	0, 1, 2
subsample	0.6, 0.8, 1
$colsample_bytree$	0.6, 0.8, 1

4 Funkcja celu

Jako funkcję celu przybraliśmy $Average\ Precision\ Recall\$ obliczając wartość funkcji celu jako średnią arytmetyczną skuteczności przypisania predykcji. Planujemy wykorzystać implementację z pakietu scikit-learn.

Ta sama funkcja zostanie wykorzystana do oceny jakości finalnych wytrenowanych modeli na zbiorze testowym.

- 5 Sposób mierzenia jakości rozwiązania
- 6 Wyniki pomiarów
- 7 Wnioski i rekomendacje

Algorytmy zbytnio nie były efektywne imho należałoby walnąc se parę paramsów i okolice obiecujących zbadać przegłądem wyczerpującym Xd