OBJECTIVE QUESTIONS DIFFERENTIATION

1. If
$$y = 2^x$$
 then $\frac{dy}{dx} = ?$

- (a) $x(2^{x-1})$ (b) $\frac{2^x}{(\log 2)}$ (c) $2^x(\log 2)$ (d) none of these

2. If
$$y = \log_{10} x$$
 then $\frac{dy}{dx} = ?$

- (a) $\frac{1}{x}$ (b) $\frac{1}{x}(\log 10)$ (c) $\frac{1}{x(\log 10)}$ (d) none of these

3. If
$$y=e^{1/x}$$
 then $\frac{dy}{dx}$ =?

- (a) $\frac{1}{x} \cdot e^{(1/x-1)}$ (b) $\frac{-e^{1/x}}{x^2}$ (c) $e^{1/x} \log x$ (d) none of these

4. If
$$y = x^x$$
 then $\frac{dy}{dx} = ?$

- (b) $x^{x} (1 + \log x)$ (c) $x(1 + \log x)$ (d) none of these

(a)
$$x^x \log x$$
 (b) 25. If $y = x^{\sin x}$ then $\frac{dy}{dx} = ?$

- (a) (sin x). $X^{(\sin x 1)}$
- (b) ($\sin x \cos x$). $x^{(\sin x 1)}$
- (c) $x^{\sin x} \left\{ \frac{\sin x + x \log x \cdot \cos x}{x} \right\}$ (d) none of these

6. If
$$y = x^{\sqrt{x}}$$
 then $\frac{dy}{dx} = ?$

- (a) \sqrt{x} . $x^{(\sqrt{x-1})}$ (b) $\frac{x^{\sqrt{x}} \log x}{2\sqrt{x}}$ (c) $x^{\sqrt{x}} \left\{ \frac{2 + \log x}{2\sqrt{x}} \right\}$ (d) none of these

7. If
$$y=e^{\sin \sqrt{x}}$$
 then $\frac{dy}{dx}$ =?

- (a) $e^{\sin\sqrt{x}}.\cos\sqrt{x}$ (b) $\frac{e^{\sin\sqrt{x}}\cos\sqrt{x}}{2\sqrt{x}}$ (c) $\frac{e^{\sin\sqrt{x}}}{2\sqrt{x}}$ (d) none of these

8. If
$$y = (\tan x)^{\cot x}$$
 then $\frac{dy}{dx} = ?$

- (a) cot x. $(\tan x)^{\cot x-1}$. $\sec^2 x$ (b) $-(\tan x)^{\cot x}$. $\csc^2 x$
- (c) $(\tan x)^{\cot x}$. $\csc^2 x(1 \log \tan x)$ (d) none of these

- 9. If $y = (\sin x)^{\log x}$ then $\frac{dy}{dx} = ?$
 - (a) (log x). $(\sin x)^{(\log x 1)}$. $\cos x$
 - (b) $(\sin x)^{\log x}$. $\left\{\frac{x \log x + \log \sin x}{x}\right\}$
 - (c) $(\sin x)^{\log x}$. $\left\{ \frac{(x \log x) \cot x + \log \sin x}{x} \right\}$
 - (d) none of these
- If y = sin(x^x) then $\frac{dy}{dx}$ = ? 10.

 - (a) $x^x \cos(x^x)$ (b) $x^x \cos x^x (1 + \log x)$
 - (c) $(\sin x)^{\log x}$. $\left\{ \frac{(x \log x) \cot x + \log \sin x}{x} \right\}$
 - (d) none of these
- If $y = \sqrt{x \sin x}$ then $\frac{dy}{dx} = ?$ 11.
 - (a) $\frac{(x\cos x + \sin x)}{2\sqrt{x\sin x}}$

(b) $\frac{1}{2}$ (x cos x + sin x). $\sqrt{x \sin x}$

(c) $\frac{1}{2\sqrt{r\sin r}}$

(d) none of these

- 12. If $e^{x+y} = xy$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{x(1-y)}{y(x-1)}$ (b) $\frac{y(1-x)}{x(y-1)}$ (c) $\frac{(x-xy)}{(xy-y)}$
- (d) none of these

- If $(x + y) = \sin(x + y)$ then $\frac{dy}{dx} = ?$
 - (a) -1 (b) 1
- (c) $\frac{1-\cos(x+y)}{\cos^2(x+y)}$
 - (d) none of these

14. If $\sqrt{x} + \sqrt{y} = \sqrt{a}$ then $\frac{dy}{dx} = ?$

(a)
$$\frac{-\sqrt{x}}{\sqrt{y}}$$

(a)
$$\frac{-\sqrt{x}}{\sqrt{y}}$$
 (b) $-\frac{1}{2} \cdot \frac{\sqrt{y}}{\sqrt{x}}$

(c)
$$\frac{-\sqrt{y}}{\sqrt{x}}$$

(d) none of these

15. If
$$x^y = y^x$$
 then $\frac{dy}{dx} = ?$

(a)
$$\frac{(y-x\log y)}{(x-y\log x)}$$
 (b) $\frac{y(y-x\log y)}{x(x-y\log x)}$ (c) $\frac{y(y+x\log y)}{x(x+y\log x)}$ (d) none of these

(b)
$$\frac{y(y-x\log y)}{x(x-y\log x)}$$

(c)
$$\frac{y(y+x\log y)}{x(x+y\log x)}$$

16. If
$$x^p y^q = (x + y)^{(p+q)}$$
 then $\frac{dy}{dx} = ?$

(a)
$$\frac{x}{y}$$
 (b) $\frac{y}{x}$

(b)
$$\frac{y}{y}$$

$$(c) \qquad \frac{x^{p-1}}{y^{q-1}}$$

(d) none of these

17. If
$$y = x^2 \sin \frac{1}{x}$$
 then $\frac{dy}{dx} = ?$

(a)
$$x \sin \frac{1}{x} - \cos \frac{1}{x}$$

$$-\cos\frac{1}{x} + 2x\sin\frac{1}{x}$$

(c)
$$-x \sin \frac{1}{x} + \cos \frac{1}{x}$$

none of these

18. If
$$y = \cos^2 x^3$$
 then $\frac{dy}{dx} = ?$

(a)
$$-3x^2 \sin(2x^3)$$

(b)
$$-3x^2 \sin^2 x^2$$

(a)
$$-3x^2 \sin(2x^3)$$
 (b) $-3x^2 \sin^2 x^3$ (c) $-3x^2 \cos^2(2x^3)$ (d) none of these

19. If y = log (x +
$$\sqrt{x^2 + a^2}$$
) then $\frac{dy}{dx}$ = ?

(a)
$$\frac{1}{2(x+\sqrt{x^2+a^2})}$$
 (b) $\frac{-1}{\sqrt{x^2+a^2}}$ (c) $\frac{1}{\sqrt{x^2+a^2}}$ (d) none of these

$$\frac{-1}{\sqrt{x^2 + a^2}}$$

(c)
$$\frac{1}{\sqrt{x^2 + a^2}}$$

20. If
$$y = \log \left(\frac{1 + \sqrt{x}}{1 - \sqrt{x}} \right)$$
 then $\frac{dy}{dx} = ?$

(a)
$$\frac{1}{\sqrt{x(1-x)}}$$

(a)
$$\frac{1}{\sqrt{x(1-x)}}$$
 (b) $\frac{-1}{x(1-\sqrt{x})^2}$ (c) $\frac{-\sqrt{x}}{2(1-\sqrt{x})}$ (d) none of these

$$(c) \frac{-\sqrt{x}}{2(1-\sqrt{x})}$$

21. If
$$y = \log \left(\frac{\sqrt{1+x^2+x}}{\sqrt{1+x^2}-x} \right)$$
 then $\frac{dy}{dx} = ?$

(a)
$$\frac{2}{\sqrt{1+x^2}}$$
 (b) $\frac{2\sqrt{1+x^2}}{x^2}$ (c) $\frac{-2}{\sqrt{1+x^2}}$ (d) none of these

22. If
$$y = \sqrt{\frac{1 + \sin x}{1 - \sin x}}$$
 then $\frac{dy}{dx} = ?$

(a)
$$\frac{1}{2} \sec^2 \left(\frac{\pi}{4} - \frac{x}{2} \right)$$
 (b) $\frac{1}{2} \csc^2 \left(\frac{\pi}{4} - \frac{x}{2} \right)$

(c)
$$\frac{1}{2}$$
 cosec $\left(\frac{\pi}{4} - \frac{x}{2}\right)$ cot $\left(\frac{\pi}{4} - \frac{x}{2}\right)$ (d) none of these

23. If
$$y = \sqrt{\frac{\sec x - 1}{\sec x + 1}}$$
 then $\frac{dy}{dx} = ?$

(a)
$$\sec^2 x$$
 (b) $\frac{1}{2} \sec^2 \frac{x}{2}$ (c) $\frac{-1}{2} \csc^2 \frac{x}{2}$ (d) none of these

24. If
$$y = \sqrt{\frac{1 + \tan x}{1 - \tan x}}$$
 then $\frac{dy}{dx} = ?$

(a)
$$\frac{1}{2} \sec^2 x \cdot \tan \left(x + \frac{\pi}{4} \right)$$
 (b) $\frac{\sec^2 \left(x + \frac{\pi}{4} \right)}{2\sqrt{\tan \left(x + \frac{\pi}{4} \right)}}$

(c)
$$\frac{\sec^2\left(\frac{x}{4}\right)}{\sqrt{\tan\left(x + \frac{\pi}{4}\right)}}$$
 (d) none of these

25. If
$$y = \tan^{-1}\left(\frac{1-\cos x}{\sin x}\right)$$
 then $\frac{dy}{dx} = ?$

(a) 1 (b) -1 (c)
$$\frac{1}{2}$$
 (d) $\frac{-1}{2}$

26. If
$$y = \tan^{-1} \left\{ \frac{\cos x + \sin x}{\cos x - \sin x} \right\}$$
 then $\frac{dy}{dx} = ?$

(a) 1 (b) -1 (c)
$$\frac{1}{2}$$
 (d) $\frac{-1}{2}$

- 27. If $y = \tan^{-1}\left\{\frac{\cos x}{1 + \sin x}\right\}$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{1}{2}$ (b) $\frac{-1}{2}$

(c) 1

(d) -1

- 28. If y = $\tan^{-1} \sqrt{\frac{1 \cos x}{1 + \cos x}}$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{-1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{(1+r^2)}$
- (d) none of these
- 29. If $y = \tan^{-1}\left(\frac{a\cos x b\sin x}{b\cos x + a\sin x}\right)$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{a}{b}$ (b) $\frac{-b}{a}$

(c) 1

(d) -1

- 30. If $y = \sin^{-1}(3x 4x^3)$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{3}{\sqrt{1-r^2}}$ (b) $\frac{-4}{\sqrt{1-r^2}}$ (c) $\frac{3}{\sqrt{1+r^2}}$
- (d) none of these

- 31. If $y = \cos^{-1}(4x^3 3x)$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{3}{\sqrt{1-x^2}}$ (b) $\frac{-3}{\sqrt{1-x^2}}$ (c) $\frac{4}{\sqrt{1-x^2}}$

- (d) $\frac{-4}{(3x^2-1)}$

- 32. If $y = \tan^{-1}\left(\frac{\sqrt{a} + \sqrt{x}}{1 \sqrt{ax}}\right)$ then $\frac{dy}{dx} = ?$

- (a) $\frac{1}{(1+x)}$ (b) $\frac{1}{\sqrt{x(1+x)}}$ (c) $\frac{2}{\sqrt{x}(1+x)}$ (d) $\frac{1}{2\sqrt{x(1+x)}}$
- 33. If $y = \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right)$ then $\frac{dy}{dx} = ?$

 - (a) $\frac{2}{(1+x^2)}$ (b) $\frac{-2}{(1+x^2)}$ (c) $\frac{2x}{(1+x^2)}$
- (d) none of these

- 34. If $y = \tan^{-1} \left(\frac{1 + x^2}{1 x^2} \right)$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{2x}{(1+x^4)}$ (b) $\frac{-2x}{(1+x^4)}$ (c) $\frac{x}{(1+x^4)}$ (d) none of these

- 35. If $y = \cos^{-1} x^3$ then $\frac{dy}{dx} = ?$

 - (a) $\frac{-1}{(1+x)}$ (b) $\frac{2}{\sqrt{(1+x)}}$ (c) $\frac{-1}{2\sqrt{x(1+x)}}$ (d) none of these

- 36. If y = $\cos^{-1} x^3$ then $\frac{dy}{dx}$ =?
- (a) $\frac{-1}{\sqrt{1-x^6}}$ (b) $\frac{-3x^2}{\sqrt{1-x^6}}$ (c) $\frac{-3}{x^2\sqrt{1-x^6}}$ (d) none of these

- 37 If $y = \tan^{-1}(\sec x + \tan x)$ then $\frac{dy}{dx} = ?$
- (b) $\frac{-1}{2}$
- (c) 1

(d) none of these

- 38. If y = $\cot^{-1} \left(\frac{1-x}{1+x} \right)$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{-1}{(1+x^2)}$ (b) $\frac{1}{(1+x^2)}$ (c) $\frac{1}{(1+x^2)^{3/2}}$ (d) none of these

- 39. If $y = \sqrt{\frac{1+x}{1-x}}$ then $\frac{dy}{dx} = ?$
- (a) $\frac{2}{(1-x)^2}$ (b) $\frac{x}{(1-x)^{3/2}}$ (c) $\frac{1}{(1-x)^{3/2}(1+x)^{1/2}}$ (d) none of these

- 40. If y = $\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)$ then $\frac{dy}{dx}$ = ?
 - (a) $\frac{-2}{(1+x^2)}$ (b) $\frac{2}{(1+x^2)}$ (c) $\frac{-1}{(1-x^2)}$
- (d) none of these

41. If y = $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$ then $\frac{dy}{dx}$ = ?

- (a) $\frac{-2}{(1+x^2)}$ (b) $\frac{-2}{(1-x^2)}$ (c) $\frac{-2}{\sqrt{1-x^2}}$

- (d) none of these

- 42. If $y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{1}{(1+x^2)}$ (b) $\frac{2}{(1+x^2)}$ (c) $\frac{1}{2(1+x^2)}$
- (d) none of these

- 43. If $y = \sin^{-1}\left\{\frac{\sqrt{1+x} + \sqrt{1-x}}{2}\right\}$ then $\frac{dy}{dx} = ?$
- (a) $\frac{-1}{2\sqrt{1-x^2}}$ (b) $\frac{1}{2\sqrt{1-x^2}}$ (c) $\frac{1}{2(1+x^2)}$
- (d)none of these

- 44. If $x = at^2$, y = 2at then $\frac{dy}{dx} = ?$

 - (a) $\frac{1}{t}$ (b) $\frac{-1}{t^2}$ (c) $\frac{-2}{t}$
- (d) none of these

- If $x = a \sec \theta$, $y = b \tan \theta$ then $\frac{dy}{dx} = ?$
 - (a) $\frac{b}{a}\sec\theta$ (b) $\frac{b}{a}\csc\theta$ (c) $\frac{b}{a}\cot\theta$ (d) none of these

- If $x = a \cos^2 \theta$, $y = b \sin^2 \theta$ then θ then $\frac{dy}{dx} = ?$

 - (a) $\frac{-a}{b}$ (b) $\frac{a}{b}\cot\theta$ (c) $\frac{-b}{a}$
- (d) none of these
- If $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta \theta \cos \theta)$ then $\frac{dy}{dx} = ?$ 47.
 - (a) $\cot \theta$
- (b) tan θ
- (c) a cot θ
- (d) a tan θ

- 48. If $y = x^{x^{x^{-\infty}}}$ then $\frac{dy}{dx} = ?$
- (a) $\frac{y}{x(1-\log x)}$ (b) $\frac{y^2}{x(1-\log x)}$ (c) $\frac{y^2}{x(1-y\log x)}$ (d) none of these

- 49. If $y = \sqrt{x + \sqrt{x + \sqrt{x + \dots}}}$... ∞ then $\frac{dy}{dx} = ?$
 - (a) $\frac{1}{(2y-1)}$ (b) $\frac{1}{(y^2-1)}$ (c) $\frac{2y}{(y^2-1)}$ (d) none of these

- If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \cdots}}}$... ∞ then $\frac{dy}{dx} = ?$ 50.
- (a) $\frac{\sin x}{(2y-1)}$ (b) $\frac{\cos x}{(y-1)}$ (c) $\frac{\cos x}{(2y-1)}$ (d) none of these

- If $y = e^{x} e^{x}$. then $\frac{dy}{dx} = ?$
 - (a) $\frac{1}{(1-y)}$ (b) $\frac{y}{(1-y)}$ (c) $\frac{y}{(y-1)}$ (d) none of these

- The value of k for which f (x) = $\begin{cases} \frac{\sin 5x}{3x}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at x=0 is 52.
 - (a) $\frac{1}{3}$ (b) 0

(c) $\frac{3}{5}$

53. Let $f(x) = \begin{cases} x \sin \frac{1}{x}, \\ 0, when x = 0. \end{cases}$

Then, which of the following is the true statement?

- (a) f (x) is not defined at x = 0
- (b) $\lim_{x \to 0} f(x)$ does not exist
- (c) f(x) is continuous at x = 0
- (d) f(x) is discontinuous at x = 0
- The value of k for which $f(x) = \begin{cases} \frac{3x + 4 \tan x}{x}, & when x \neq 0 \\ k, & when x = 0 \end{cases}$ is continuous at x = 0, is 54.
- (b)
- (c) 3
- (d) none of these

Let $f(x) = x^{3/2}$, Then, f'(0) = ?55.

(a)	$\frac{3}{2}$ (b)	$\frac{1}{2}$	(c) does not exist	(d) none of these
-----	-------------------	---------------	--------------------	-------------------

- 56. The function $f(x)=|x| \forall x \in R$ is
 - (a) continuous but not differentiable at x = 0
 - (b) differentiable but not continuous at x = 0
 - (c) neither continuous nor differentiable at x = 0
 - (d) none of these

57. The function
$$f(x) = \begin{cases} 1+x, & when & x \le 2 \\ 5-x, & when & x > 2 \end{cases}$$
 is

- (a) continuous as well as differentiable at x = 2
- (b) continuous but not differentiable at x = 2
- (c) differentiable but not continuous at x = 2
- (d) none of these

58. If the function
$$f(x) = \begin{cases} kx+5, & when \\ x-1, & when \end{cases}$$
 $x \le 2$ is continuous at $x = 2$ then $k = ?$

(a) 2 (b) -2 (c) 3 (d) -3

59. If the function
$$f(x) = \begin{cases} \frac{1-\cos 4x}{8x^2}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous at $x = 0$ then $k = ?$

(a) 1 (b) 2 (c) $\frac{1}{2}$ (d) $\frac{-1}{2}$

60. If the function
$$f(x) = \begin{cases} \frac{\sin^2 ax}{x^2}, & when & x \neq 0 \\ k, & when & x = 0 \end{cases}$$
 is continuous at x=0 then k =?

(a) a (b) a^2 (c) -2 (d) -4

If the function (x) = $\begin{cases} \frac{k \cos x}{(\pi - 2x)}, & \text{when } x \neq \frac{\pi}{2} \\ 3, & \text{when } x = \frac{\pi}{2} \end{cases}$ be continuous at x = $\frac{\pi}{2}$, then the 61.

value of k is

- 3 (a)
- (b) -3
- (c) -5
- (d) 6

- At x = 2, f(x) = [x] is 62.
 - (a) continuous but not differentiable
 - (b) differentiable but not continuous
 - (c) continuous as well as differentiable
 - (d) none of these
- Let $f(x) = \begin{cases} \frac{x^2 2x 3}{x + 1}, & when \quad x \neq -1 \\ k, & when \quad x = -1 \end{cases}$ 63. If f(x) is continuous at x=-1 then k=?
 - (a)
- (b) -4

- (c) -3
- (d) 2

- The function $f(x) = x^3-6x^2 + 15x 12is$ 64.
 - (a) strictly decreasing on R

- (b) strictly increasing on R
- (c) increasing in $(-\infty, 2]$ and decreasing in $(2, \infty)$
- (d) none of these

- The function $f(x) = 4 3x + 3x^2 x^3$ is 65.
 - (a) decreasing on R

(b) increasing on R

(c) strictly decreasing on R

- (d) strictly increasing on R
- 66. The function $f(x) = 3x + \cos 3x$ is
 - (a) increasing on R
- (b) decreasing on R (c) strictly increasing R
- (d) strictly decreasing on R
- The function $f(x) = x^3 6x^2 + 9x + 3$ is decreasing for 67.
- 1 < x < 3 (b) x > 1
- (c)
- x < 1 (d) x < 1 or x > 3
- The function $f(x) = x^3 27x + 8$ is increasing when 68.

- (a) |x| < 3 (b) |x| > 3 (c) -3 < x < 3 (d) none of these

69	$f(x) = \sin x$ is increasing in)							
05.								
	(a) $\left(\frac{\pi}{2}, \pi\right)$ (b) $\left(\pi, \frac{3\pi}{2}\right)$ (c) $(0, \pi)$ (d) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$							
70.	$f(x) = \frac{2x}{\log x}$ is increasing in							
	(a) $(0, 1)$ (b) $(1,e)$ (c) (e, ∞) (d) $(-\infty, e)$							
71.	If $(x) = (\sin x - \cos x)$ is decreasing in							
	(a) $\left(0, \frac{3\pi}{4}\right)$ (b) $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$ (c) $\left(\frac{7\pi}{4}, 2\pi\right)$ (d) none of these							
72.	$f(x) = \frac{x}{\sin x} is$							
	(a) increasing in (0,1) (b) decreasing in (0,1)							
	(c) increasing in $\left(0,\frac{1}{2}\right)$ and decreasing in $\left(\frac{1}{2},1\right)$ (d) none of these							
73.	$f(x) = x^x$ is decreasing in the interval							
	(a) (0,e) (b) $\left(0,\frac{1}{e}\right)$ (c) (0,1) (d) none of these							
74.	$f(x) = x^2 e^{-x}$ is increasing in							
	(a) (-2,0) (b) (0,2) (c) $(2,\infty)$ (d) $(-\infty,\infty)$							
75.	$f(x) = \sin x - kx$ is decreasing for all $x \in R$, when							
	(a) $k<1$ (b) $k \le 1$ (c) $k > 1$ (d) $k \ge 1$							
76.	$f(x)=(x + 1)^3 (x - 3)^3$ is increasing in							
	(a) $(-\infty,1)$ (b) $(-1,3)$ (c) $(3,\infty)$ (d) $(1,\infty)$							
77.	$f(x)=[x(x-3)]^2$ is increasing in							
	(a) $(0, \infty)$ (b) $(-\infty, 0)$ (c) $(1, 3)$ (d) $\left(0, \frac{3}{2}\right) \cup (3, \infty)$							
78.	If $f(x) = kx^3 - 9x^2 + 9x + 3$ is increasing for every real number x, then							

(c)

(b) $k \ge 3$

(a) k> 3

k < 3 (d)

 $k \le 3$

79.	f(x) =	$= \frac{x}{(x^2+1)}$	is increas	ing in							
	(a)	(-1, 1)	(b)	(-1,	$\infty)$	(c)	(-∞,-	-1) ∪ (1,∞)	(d)	none of thes	æ
80.	The le	east valu	e of k for	which f(x	$(x) = x^2$	+ 1 is	increa	sing on (1,2	2), is		
	(a)	-2	(b) -1	(c)	1	(d)	2				
81.	f(x) =	x has									
	(a) m	inimum .	at $x = 0$	(b) m	aximu	m at x	= 0				
	(c) ne	either a r	maximum	nor a mir	nimum	at x =	0				
	(d) no	one of th	ese								
82.	When	x is pos	itive, the i	minimum	value	of x ^x	is				
	(a)	e ^e	(b)		e ^{1/e}		(c)	e ^{-1/e}	(d)	(1/e)	
83.	The n	naximum	n value of	$\left(\frac{\log x}{x}\right)$ is	S						
	(a)	$\left(\frac{1}{e}\right)$	(b)	$\frac{2}{e}$	(c)	е		(d)	1		
84.	f(x) =	cosec x	in $(-\pi,0)$	has a ma	axima a	at					
	(a)	x = 0	(b)	$x = \frac{-}{2}$	$\frac{\pi}{4}$	(c)	x = -	$\frac{\pi}{3}$	(d)	$x = \frac{-\pi}{2}$	
85.	If x >	0 and xy	r = 1, the	minimum	n value	of (x	+ y) is				
	(a)	-2	(b)	1		(c)	2		(d) no	ne of these	
86.	The n	ninimum	value of	$x^2 + \frac{250}{x}$	s						
	(a)	0		(b) 25		(c)	50		(d) 75		
87.	The	minimun	n value of	f(x) = 3x	$x^4 - 8x^3$	-48x +	- 25 on	[0,3] is			
	(a)	16	(b)	25			(c)	-39	(d) non	e of these	
88.	The n	naximum	value of	f(x) = (x)	-2)(x	$(-3)^2$	is				

- (a) $\frac{7}{3}$ (b) 3 (c) $\frac{4}{27}$ (d) 0

The least value of $f(x) = (e^x + e^{-x})$ is 89.

- (a) -2 (b) 0 (c) 2 (d) none of these

ANSWERS: DIFFERENTIATION

1.(c)	2.(c)	3.(b)	4.(b)	5.(c)	6.(c)	7.(b)	8.(c)	9.(c)	10.(b)
11.(a)	12.(b)	13.(a)	14.(c)	15.(b)	16.(b)	17.(b)	18.(a)	19.(c)	20.(a)
21.(a)	22.(b)	23.(b)	24.(b)	25.(c)	26.(a)	27.(b)	28.(b)	29.(d)	30.(a)
31.(b)	32.(d)	33.(b)	34.(a)	35.(c)	36.(b)	37.(a)	38.(b)	39.(c)	40.(a)
41.(c)	42.(c)	43.(a)	44.(a)	45.(b)	46.(c)	47.(b)	48.(c)	49.(a)	50.(c)
51.(b)	52.(d)	53.(c)	54.(a)	55.(c)	56.(a)	57.(b)	58.(b)	59.(c)	60.(b)
61.(d)	62.(d)	63.(b)	64.(b)	65.(a)	66.(a)	67.(a)	68.(b)	69.(d)	70.(c)
71.(b)	72.(a)	73.(b)	74.(b)	75.(c)	76.(d)	77.(d)	78.(a)	79.(a)	80.(a)
81.(a)	82.(c)	83.(a)	84.(d)	85.(c)	86.(d)	87.(c)	88.(c)	89.(c)	

MULTIPLE CHOICE QUESTIONS(ROLLE,S/MVT THEOREM)

1.	The value of c in L	.MV theorem for f	$(x) = x^2 + x - 1.x$	$\varepsilon \in [0,4]$ is	
	(a) 3.	(b) 2	(c) 1.		(d) $\frac{3}{2}$.
2.	The value of c in	Rolle's theorem for	$f(x) = \cos x, x$	$\in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is	
	(a) $-\frac{\pi}{4}$.	(b) $\frac{\pi}{4}$.	(c)	0.	(d) 1.
3.	The value of c in F	Rolle's theorem for	$f(x) = x^2 + 2x - 8$	x∈[-4, 2].	
	(a) -1.	(b) 2.	(c)) 1.	(d) -2
4.	The value of c in L	.MV theorem for j	$f(x) = x^2, x \in [0,1]$] is	
	(a) $\frac{1}{4}$.	(b) 0.	((c) $\frac{1}{2}$.	(d) 1.
5.	The value of c in L	.MV theorem for th	e function $f(x)$	$= x + \frac{1}{x}, x \in [1$,4] is
	(a) $\frac{7}{2}$.	(b) -2.	(c) 3.	(d) 2.
6.	The value of c in F	Rolle's theorem for	the function $f($	$f(x) = x^3 - 3x$	
	In the interval $[0,$	$\sqrt{3}$] is			
	(a) 1	(b) -1 ((c) $\frac{3}{2}$.	(d) $\frac{1}{3}$.	
7.	For the function f	$f(x) = x + \frac{1}{x}, x \in [1,3],$	the value of c	for mean Val	ue theorem
	(a) 1.	(b) $\sqrt{3}$.	(c) 2.	(d) none	of these
1.	(b) 2. (c)	3. (a)	nswers 4. (c)	5. (d)	6. (a) 7. (b

MAXIMA/MINIMA: Questions

1.			at $x = \alpha$. Then, necess minima at $x = \alpha$. is	sary condition for $f(x)$ to
	(a) $f(\alpha) = 0$.	(b) $f'(\alpha) = 0$	(c) $f''(\alpha) = 0$.	(d) $f'''(\alpha) = 0$.
2.	The point of	inflexion for the f	function $f(x) = x^3$ is	
	(a) $x = 0$.	(b) $x = -1$.	(c) $x = 1$.	(d) $x = 2$.
3.	The absolute m	aximum value of	x^3 is	
	(a) 0.	(b) 8.	(c) 27. (c	l) Does not exist.
4.	The absolute m	inimum value of	x^3 is	
	(a) -8.	(b) 0.	(c) Does not exis	t. (d) 8.
5.	The absolute m	inimum value of $ \cdot $	4-x is	
	(a) 6.	(b) 0.	(c) 4.	(d) -2.
6.	If x is real, the	minimum value of	$x^2 - 8x + 17$ is	
	(a) -1.	(b) 0.	(c) 1.	(d) 2.
7.	The smallest va	alue of the polyn	nomial $x^3 - 18x^2 + 96x$. in	[0,9] is
	(a) 126.	(b) 0.	(c) 135.	(d 160.
8.	Maximum slope	of the curve $y =$	$-x^3 + 3x^2 + 9x - 27$ is	
	(a) 0.	(b) 12.	(c) 16.	(d) 32.
			<u>ANSWERS</u>	
	1 (b)	2. (a)	3. (d)	4. (c)
	(5) (b)	6. (c)	7. (b)	8' (b)

1.	The total revenue in Rs received from the sale of x units of an article is given by the equation R $(x) = 3x^2 + 36x + 5$. The marginal revenue when $x = 15$ is					
	(a) 126.	(b) 116.	(c) 96.		(d) 90.	
2.	The appro		in the volume	of a cube of side	e x m caused by	increasing
	(a) $0.9x$	c^3m^3 .	(b) $0.09x^3m^3$.	(c) $0.6x$	1 m ³ . (d) 0	$.06x^3m^3.$
3.	If $y=x^3$,	then value of	Δy for $x=2$ an	d $\Delta x = 0.02$ is		
	(a) 0.12	(b)	0.32	c) 0.24	(d) 0.16	5
4.	The function	$f(x) = x^3 + 3$	x is increasing	on		
	(a) $(-\infty,0)$.	(b) (0,	∞).	(c) R.	(d) (0,1).	
5.	The function	on $f(x) = \log_b x$	x, x > 0 is increa	sing when		
	(a) 0 <	b < 1. (b)) b > 1.	(c) b < 1.	(d) $b = 1$	
6.	The interva	al on which the	function $f(x)$	$= 2x^3 + 9x^2 + 12x$	−1 is decreasing i	S
	(a) [-1,∞	, <u>-</u>	-2,-1] (SWERS	c) (-∞,-2],	(d) [-1,1]	
1. (ā	a)	2. (b)	3. (c)	4. (c)	5. (b)	6. (b)