

Single-cell sequencing

"The single-cell revolution is just starting."

Development cell by cell

Science

SINGLE-CELL SEQUENCING

 examines the sequence information from individual cells with optimized NGS technologies.

- higher resolution of cellular differences
- better understanding of the function of an individual cell

Bulk vs single-cell

MISSION

To create comprehensive reference maps of all human cells—the fundamental units of life—as a basis for both understanding human health and diagnosing, monitoring, and treating disease.

More specifically, a human cell atlas could:

- catalog all cell types and sub-types in the human body;
- map cell types to their location within tissues and within the body;
- distinguish cell states;
- capture the key characteristics of cells during transitions, such as activation or differentiation;
- trace the history of cells through a lineage

Transcriptomics

- The study of the <u>transcriptome</u> using high-throughput techniques.
- A snapshot in time of the total transcripts present in a cell.

Main aims of transcriptomics

- to classify all types of transcripts (mRNAs, ncRNAs, sRNAs...)
- to determine the transcriptional structure of genes
 (e.g. splicing patterns and post-transcriptional modifications)
- to quantify the changing expression levels of each transcript in different organisms/conditions/timepoints

Transcriptome:

- the sum of all of the RNA transcripts
- mostly refers to mRNAs

Transcriptomics method use over time

RNA sequencing (RNA-seq)

 A technique to measure the quantity of RNA molecules by using next-generation sequencing (NGS) technology.

Advantages

- wider dynamic range,
- more accuracy,
- higher sensitivity,
- ability to discover SNPs and rare mutations, previously unrecognized gene isoforms, microbial RNAs, and regulatory micro-RNAs

Disadvantages

- biases introduced during cDNA library construction and sequence alignment,
- lack of standardization between sequencing platforms and read depth,
- higher start-up costs

Single-cell RNA sequencing (scRNA-seq)

 A promising and highly trending approach to study the transcriptomes of individual cells.

Advantages

- · can detect heterogeneity,
- · can distinguish a small number of cells,
- can portray cell maps

Disadvantages

- · bias of transcript coverage,
- low capture efficiency,
- higher level of technical noise,
- dropout events

<u>Common Applications</u>

- describing population diversity
- tracing cell lineages
- classifying cell types
- genomic profiling of rare cells

The number of cells measured in scRNA-seq experiments according to scRNA-seq protocols

April 2009: 1 cell by Tang et al.

Tang, Fuchou, et al. "mRNA-Seq whole-transcriptome analysis of a single cell." *Nature methods* 6.5 (2009): 377-382.

November 2020: ~4 million cells by Shendure Lab

Cao, Junyue, et al. "A human cell atlas of fetal gene expression." Science 370.6518 (2020).

Why to perform scRNA-seq?

- to assess transcriptional similarities and differences within a population of cells
 - heterogeneity analysis
 - identification of rare cell populations
- to examine the single cells where each one is unique
 - individual T lymphocytes expressing highly diverse T-cell receptors
 - neurons within the brain
 - cells within an early-stage embryo
- to trace lineage and developmental relationships between heterogeneous cellular states
 - embryonal development
 - differentiation of cancer cells, myoblasts or stem cells

Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat Rev Genet 20, 631-656 (2019). https://doi.org/10.1038/s41576-019-0150-2

Isolation of single cells

- an unbiased strategy to characterize and classify cell types
 - by integrating information about each cell's morphology, physiology, and gene expression into a common framework.
- can be used as a complementary method to 'annotate' cell type classification based primarily on scRNA-seq of dissociated neurons
 - 30–40 Patch-seq samples per day with 2-3 people
 ~\$21/cell

Isolation of single cells

can degrade surface proteins may alter gene expression.

more controlled, more flexible, lower-throughput, more expensive

higher possibility of doublets, efficient, high-throughput, cheaper

Isolation of single cells

Single-cell Methods

Tag-based (3' (or 5')-end) sequencing:

Nature Reviews | Immunology

- <u>Barcode:</u> identifies independent cells
- <u>UMI:</u> identifies independent molecules

Tag-based (3' (or 5')-end) sequencing:

- **cell-specific barcodes:** non-random nucleotide sequences
 - determines which cell the read originated from
 - allowing for multiplexing the cDNA amplification
 - increasing the throughput of scRNA-seq library generation by one to three orders of magnitude

- unique molecular identifiers (UMIs): random nucleotide sequences
 - tag individual mRNA molecules
 - allow for the distinction between original molecules and amplification duplicates that derive from the cDNA or library amplification
 - allow more accurate quantification
 - used to collapse PCR duplicates

Tag-based (3' (or 5')-end) sequencing:

- enables the incorporation of cell-specific barcodes and unique molecular identifiers (UMIs)
- Larger number of cells sequenced allows better identity of cell type populations
- Cheaper per cell cost
- Best results with > 10,000 cells

- ERCC spike-ins: broad concentration of synthetic RNAs of various lengths and GC content,
 - often used to measure biases in RNA-seq experiments and for quality control or normalization.
 - to better account for technical variability due to random dropout events during library preparation.

Full-length sequencing:

- tries to achieve a uniform gene body read coverage and increases the number of mappable reads.
 - detection of isoform-level differences
 - identification of allele-specific differences
- deeper sequencing of a smaller number of cells
- best for samples with low number of cells
- not possible to multiplex and pool all samples for one tube preparation of Illumina sequenceable libraries
- more expensive and troublesome
- not compatible with high-throughput methods
- no UMIs

- Developed in early 2000s
- 96/800 cells at once

- difficult to integrate with experiments that involve long processing times
- high cost of the microfluidic cartridges

Chromium Single Cell Gene Expression Solution

- Developed in 2016.
- 1-8 samples in one run,
 - 10,000 cells per sample.

Ziegenhain, Christoph, et al. "Comparative analysis of single-cell RNA sequencing methods." Molecular cell 65.4 (2017): 631-643.

Methods	Transcript coverage	UMI possibility	Strand specific	References
Tang method	Nearly full-length	No	No	Tang et al., 2009
Quartz-Seq	Full-length	No	No	Sasagawa et al., 2013
SUPeR-seq	Full-length	No	No	Fan X. et al., 2015
Smart-seq	Full-length	No	No	Ramskold et al., 2012
Smart-seq2	Full-length	No	No	Picelli et al., 2013
MATQ-seq	Full-length	Yes	Yes	Sheng et al., 2017
STRT-seq and STRT/C1	5'-only	Yes	Yes	Islam et al., 2011, 2012
CEL-seq	3'-only	Yes	Yes	Hashimshony et al., 2012
CEL-seq2	3'-only	Yes	Yes	Hashimshony et al., 2016
MARS-seq	3'-only	Yes	Yes	Jaitin et al., 2014
CytoSeq	3'-only	Yes	Yes	Fan H.C. et al., 2015
Drop-seq	3'-only	Yes	Yes	Macosko et al., 2015
InDrop	3'-only	Yes	Yes	Klein et al., 2015
Chromium	3'-only	Yes	Yes	Zheng et al., 2017
SPLiT-seq	3'-only	Yes	Yes	Rosenberg et al., 2018
sci-RNA-seq	3'-only	Yes	Yes	Cao et al., 2017
Seq-Well	3'-only	Yes	Yes	Gierahn et al., 2017
DroNC-seq	3'-only	Yes	Yes	Habib et al., 2017
Quartz-Seq2	3'-only	Yes	Yes	Sasagawa et al., 2018

Dimension Reduction Methods for scRNA-seq

PCA (Principal Component Analysis)

LINEAR

performs an orthogonal transformation of the original dataset to create a set of new, uncorrelated variables or principal components (linear combinations of variables in the original dataset.)

highly interpretable and computationally efficient

very inappropriate due to highly non-linear structure

tSNE (t-Stochastic Neighbourhood Embedding)

LINEAR

graph based and non-linear technique, projects high dimensional data onto 2D or 3D components

designed to preserve the local structures

- · stochastic method
- global structure not preserved
- only limited to data exploration or visualisation.
- computationally expensive

UMAP (Uniform Manifold Approximation and Projection) **NON-LINEAR**

graph based and principally similar to t-SNE where it constructs a high dimensional graph representation of the data, then optimizes a low-dimensional graph to be as structurally similar as possible.

- computationally efficient
- better preservation of the alobal structure

- Cons: false detection of noise accuracy of global structure

can be used as a pre-processing step

Introduction to Single-cell RNA sequencing (scRNA-seq)

Single-cell Workshop 19-20 December 2020

