1.
$$\int_{-\pi}^{\pi} (x \cos^4 x + 1) dx = \underline{\hspace{1cm}}$$

2. 对正常数
$$a$$
, $\int_0^{+\infty} e^{-ax} dx = _____.$

3.
$$\int_0^{+\infty} x^2 e^{-x^3} dx = \underline{\qquad}.$$

4.
$$\int_0^{2\pi} |\cos x| dx =$$
_____.

5. 设函数
$$f(x) = \frac{1}{1+x} + x^2 \int_0^1 f(x) dx$$
,则 $\int_0^1 f(x) dx =$ ______.

6.
$$\lim_{x \to 0} \frac{\int_{\cos x}^{1} e^{-t^2} dt}{x^2} = \underline{\qquad}.$$

8. 计算
$$\int_{1}^{e^{2}} \frac{dx}{x\sqrt{1+\ln x}}$$
.

9. 计算
$$\int_0^4 \frac{\sqrt{x} dx}{1 + x \sqrt{x}}$$
.

10. 求函数
$$f(x) = \int_{-1}^{x} (1-2t)dt$$
 的极值及 $f(x)$ 在[-1,2]上的最值.

11. 设函数
$$f(x)$$
 满足 $\int_0^x (x-t)f(t)dt = xe^{-x}$,求 $f(x)$ 的极值.

12. 设函数
$$f(x)$$
 在 $[a,b]$ 上连续,在 (a,b) 内可导,且 $f'(x) \le 0$, $F(x) = \frac{1}{x-a} \int_a^x f(t) dt$ 。证明在 (a,b) 内有 $F'(x) \le 0$ 。

13. 设函数
$$f(x)$$
 在[0,1]上连续,在(0,1) 内可导,且 $f(0) = 3\int_{\frac{2}{3}}^{1} f(x)dx$,证明至少存在一点 $\xi \in (0,1)$,使得 $f'(\xi) = 0$ 。