

Markscheme

November 2020

Physics

Standard level

Paper 3

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse suivante : https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales— no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Section A

Qı	uesti	on	Answers	Notes	Total
1.	а		«theory suggests» P_1 - P_0 is proportional to $\frac{1}{R}$ \checkmark graph/line of best fit is straight/linear «so yes» OR graph/line of best fit passes through the origin «so yes» \checkmark	MP1: Accept 'linear' MP2 do not award if there is any contradiction eg: graph not proportional, does not pass through origin.	2
1	b	i	gradient = $\ll 4\gamma$ » = 0.10 OR use of equation with coordinates of a point \checkmark γ = 0.025 \checkmark	MP1 allow gradients in range 0.098 to 0.102 MP2 allow a range 0.024 to 0.026 for γ	2
1	b	ii	kg s ⁻² ✓	Accept kg s ²	1

Qı	Question		Answers	Notes	Total
1	b	iii	straight line, gradient greater than line of best fit, and within the error bars ✓		
			2.50 2.00 1.50 1.00		1

Question		ion	Answers	Notes	Total
1	b	iv	«15% of 0.025» = 0.00375	Allow ECF from (b)(i)	
			<i>OR</i> «15% of 0.030» = 0.0045 ✓	Award [2] marks for a bald correct answer	
			rounds uncertainty to 1sf		2
			±0.004		
			OR		
			±0.005 ✓		
1	b	v	Experimental value matches this/correct, as expected value within the range ✓		
			OR		1
			experimental value does not match/incorrect, as it is not within range ✓		

Qı	Question		Answers	Notes	Total
2.	а		In order to draw a graph « of <i>W</i> versus $\frac{1}{T^2}$ » OR to confirm proportionality between « <i>W</i> and T^{-2} » OR to confirm relationship between « <i>W</i> and T » OR because <i>W</i> is the independent variable in the experiment ✓	OWTTE.	1
2	b		ALTERNATIVE 1 W + friction = $\frac{4\pi^2 mr}{T^2}$ OR centripetal force is larger «than W» / W is smaller «than centripetal» \checkmark «so» experimental mr is smaller «than calculated value» \checkmark ALTERNATIVE 2 (refers to graph) reference to «friction force is» a systematic error «and does not affect gradient» \checkmark «so» mr is the same \checkmark	MP2 awarded only with correct justification. Candidates can gain zero, MP1 alone or full marks. OWTTE	2

Question		on	Answers	Notes	Total
2	С	i	mention of mean/average value «of T» ✓	Reference to "random errors average out" scores MP1	
			this reduces uncertainty in <i>T</i> / result OR more accurate/precise ✓	Accept "closer to true value", "more reliable value" OWTTE for MP2	
2	С	ii	systematic errors «usually» constant/always present/ not influenced by repetition ✓	OWTTE	1

Section B

Option A — Relativity

Q	Question		Answers	Notes	Total	
3.	а		mention of electric <i>AND</i> magnetic fields ✓ OR mention of electromagnetic radiation/wave/fields ✓		1	
3	b		the laws of physics are the same in all «inertial» frames of reference/for all «inertial» observers ✓	OWTTE	1	
3	С	i	magnetic ✓		1	
3	С	ii	«In observer frame» protons «in the two wires» move in same/parallel direction ✓ these moving protons produce magnetic attraction ✓ there is also a smaller electrostatic repulsion due to wires appearing positive due to length contraction «of proton spacing» ✓	OWTTE	3	

Qı	Question		Answers	Notes	Total
4.	а		constancy of time OR speed of light > c is possible ✓	OWTTE.	1
4	b	i	γ = 1.15 ✓ length = 6.9 «m» ✓	Allow length in the range 6.7 to 7.0 m. Allow ECF from wrong γ Award [2] marks for a bald correct answer in the range indicated above.	2
4	b	ii	8.0 m / measurement made on the probe ✓ the measurement made by an observer at rest in the frame of the probe ✓		2
4	С		$u = \frac{0.5c + 0.8c}{1 + \frac{0.5c \times 0.8c}{c^2}}$ $u = 0.93c \checkmark$	Allow all negative signs for velocities Award [2] marks for a bald correct answer	2

Qı	ues	stion	Answers	Notes	Total
5.	а	i	0.6c ✓	Accept 1.8 x10 ⁸ ms ⁻¹ if unit given.	1
5	а	ii	line through origin and through (5, 3) ± one small square at this coordinate ✓ 10 8	Answers shown for 5(a)(ii) and (b)(i) and (b)(ii).	1
5	b	i	X value of E at 4 «ly» ✓ Y value of E at 5 «y» ✓		2

(Question 5 continued)

Question		tion	Answers	Notes	Total
5.	b	ii	light cone from E «crosses ct at 9 so» intersection on ct = 5.6 ± 0.2 y «on ct scale» \checkmark $\gamma = 1.25 \checkmark$ so $t' = (\frac{5.6}{1.25}) = 4.5$ «y after leaving Earth» \checkmark	MP1 accept use of linear equations to find t= 5.625 Allow ECF from (b)(i) and (a)	3

Option B — Engineering

Qı	Question		Answers	Notes	Total
6.	а		$\omega_f^2 = 0 + 2 \times 0.110 \times 6 \times 2\pi $ $\omega_f = 2.88 \text{ «rad s}^{-1} \text{»} \checkmark$	Other methods are possible. Answer 3 given so look for correct working At least 2 sig figs for MP2.	2
6	b		concave up from origin \checkmark		1
6	С		Γ =« I α so Γ =0.110 x 0.0216 =» 2.38 x 10 ⁻³ «N m» \checkmark		1
6	d		$\alpha = \frac{2.9^{2}}{2 \times 2\pi \times 30} = \mathbf{OR} - 0.022 \text{ «rad s}^{-2} \checkmark$ $t = \frac{\omega_{t} - \omega_{i}}{\alpha} = \frac{-2.9}{-0.0220} \text{ »} = 130 \text{ «s» } \checkmark$	Other methods are possible. Allow 131 s if 2.88 used Allow 126 s if 3 used Award [2] marks for a bald correct answer	2

Question		on	Answers	Notes	Total
7.	а		«person rotates» anticlockwise ✓ the person gains angular momentum «in the opposite direction to the new wheel motion» ✓ so that the total angular momentum is conserved ✓	OWTTE Award [1 max] for a bald statement of conservation of angular momentum.	3
	b		the rotational kinetic energy has increased ✓ energy is provided by the person doing work «flipping the wheel» ✓	OWTTE	2

8.		conservation of rotational and linear energy		
		OR		
		$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 \checkmark$	3	
		using $I = \frac{2}{5}mr^2$ AND $\omega = \frac{V}{r}$ \checkmark with correct manipulation to find the requested relationship \checkmark		

Question		on	Answers	Notes	Total
9.	а	i	«–» 3x10³ «J» ✓		1
		ii	0 «J» ✓	OWTTE	1
	b	i	use of $PV^{\frac{5}{3}}$ is constant $(4.0 \times 10^5 \times (2.0 \times 10^{-2})^{\frac{5}{3}} = P_2 \times (5.0 \times 10^{-2})^{\frac{5}{3}})$ \checkmark	Award [2] marks for a bald correct answer	2
			$P_2 = 8.7 \times 10^4 \text{ «Pa» } OR 87 \text{ «kPa» } \checkmark$		
		ii	adiabatic means no transfer of heat in or out of the system ✓	OWTTE	
			should be fast ✓		2 max
			«can be slow if» the system is insulated ✓		

Option C — Imaging

Qı	uestio	Answers	Notes	Total
10.	a	attempt to connect object and eye with ray showing equal angles of reflection such that reflection occurs within 1 hatch mark of position shown ✓ construction showing normal at point of reflection ✓ centre of the mirror object normal eye with ray showing equal angles of reflection such that reflection occurs within 1 hatch mark of position shown ✓ construction showing normal at point of reflection ✓ centre of the mirror	Allow rays that are drawn freehand without a ruler - use judgement.	2
10	b	light rays do not pass through the image OR do not form an image on a screen OR appear to have come from a point OR formed by extension of rays ✓	OWTTE.	1

Qı	uestion	Answers	Notes	Total
11.	а	wavefronts converging, approximately centered on f ✓ direction of travel of wavefronts A	By eye. Dotted construction lines are not required, allow wavefronts to extend beyond or be inside the dotted lines here. Allow [1max] if only two wavefronts drawn.	2
11	b	$\frac{1}{v} = \frac{1}{4.00} - \frac{1}{4.50} \checkmark$ $v = 36.0 \text{ «cm» } \checkmark$		2

(continued...)

(Question 11 continued)

Qı	uestion	Answers	Notes	Total
11.	С	A: $\frac{1}{-2.0} = \frac{1}{8} + \frac{1}{u} \checkmark$ $u = -1.6 \text{ «cm» } \checkmark$ distance necessary= «36.0–1.6 =» 34.4 «cm» \checkmark	Allow [2 max] for ECF for no negative in MP1. Gives u=2.7 and distance of 38.7«cm» Allow ECF from (b) in MP3.EG use of 0.4m / 40cm.	3
11	d	« $m = -\frac{i}{o} = \frac{-36}{4.5}$ for A or $\frac{-8}{-1.6}$ for B» $m_A =$ «-» 8 OR $m_B =$ «+» 5 √ total magnification = «-» 40 √	Allow [2] marks for a bald correct answer Allow ECF from (b) and (c). Eg if $u=2.7cm$ in (c) then $m_B=3$ and total $m=24$	2

Question	Answers	Notes	Total
12. a	the final image lies at the near point «often assumed to be 25 cm» ✓		1
12 b	any 2 correct rays from O for objective lens ✓	Allow ECF for MP2, MP3 & MP4 for badly drawn rays.	
	forming an intermediate image at approximate position shown <i>OR</i> use of image from objective lens as object for eyepiece lens ✓ any 2 correct rays for eyepiece lens from intermediate image ✓ ray extension to form a final image ✓	MP4 allow final image to be off the page	4

Que	estion	Answers	Notes	Total
13.		mention of attenuation ✓		
		mention of dispersion or pulse broadening ✓		3
		gives explanation for at least one of above ✓		

${\bf Option} \ {\bf D} - {\bf Astrophysics}$

Qι	Question		Answers	Notes	Total
14.	а		AU: «average» distance from the Earth to the Sun ✓Iy: distance light travels in one year ✓		2
14	b	i	made of ice «and dust» ✓ «highly» eccentric/elliptical orbit around the Sun ✓ formed in the Oort Cloud ✓		1 max
14	b	ii	star / named star / stellar cluster/ galaxy/ constellation ✓	Answer may be indicated on the photograph.	1

15.	а	substitution of $L = \sigma A T^4$ into $b = \frac{L}{4\pi d^2}$ giving $b = \frac{\sigma A T^4}{4\pi d^2}$	Removal of constants σ and 4π is optional	1
15	b	equation applies to Sirius/stars that are luminous/emit light «from fusion» ✓ but Venus reflects the Sun's light/does not emit light «from fusion» ✓	OWTTE	2

Qu	estion	Answers	Notes	Total
16.	а	$\frac{R_0}{R} = \infty$ $\frac{1}{1.11} OR 0.90 OR 90%√$		1
16	b	«Hubble's » measure of v/recessional speed uses redshift which is z OR redshift (z) of galaxies is proportional to distance «from earth» OR combines $V = Hd$ AND $Z = \frac{V}{C}$ into one expression, e.g. $Z = \frac{Hd}{C}$. \checkmark	OWTTE	1

Qı	uesti	ion	Answers	Notes	Total
17.	а		$\frac{L}{L_{\odot}} = \frac{M^{3.5}}{M_{\odot}^{3.5}} = 5.70^{3.5} = 442 \checkmark$ the luminosity of Eta (2630 L_{\odot}) is very different «so it is not main sequence» ✓	Allow calculation of $L^{\frac{1}{3.5}}$ to give $M = 9.5 M_{\odot}$ so not main sequence	2
	b	i	$d = \frac{1}{2.36 \times 10^{-3}} = 424 \text{ «pc »} \checkmark$		1
	b	ii	Use of $d = \sqrt{\frac{L}{4\pi b}} \checkmark$ $= \sqrt{\frac{2630 \times 3.83 \times 10^{26}}{4\pi \times 7.20 \times 10^{-10}}} \checkmark$ $= \frac{1.055 \times 10^{19}}{3.26 \times 9.46 \times 10^{15}} \Rightarrow = 342 \text{ «pc » } \checkmark$	Award [3] marks for a bald correct answer between 340 and 344 «pc»	3

(continued...)

(Question 17 continued)

Qı	Question		Answers	Notes	Total
17.	С		parallax angle in milliarc seconds/very small/at the limits of measurement \checkmark uncertainties/error in measuring L or b or θ \checkmark values same order of magnitude, so not significantly different \checkmark	Accept answers where MP1 and MP2 both refer to parallax angle OWTTE	2 max
	d		reference to change in size ✓		
			reference to change in temperature ✓ reference to periodicity of the process ✓		3 max
			reference to transparency / opaqueness ✓		