Nom :	
-------	--

Quiz 4

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés Le 16 avril 2020

Toute documentation permise

Durée : 3 h (9h00 – 12h00)

Suivez ces instructions:

- 1) Veuillez signer et joindre la <u>déclaration d'intégrité relative aux travaux et aux</u> examens réalisés à distance.
- 2) Répondez aux questions suivantes :

Soit le circuit de la Figure 1.

- (a) Dessinez son modèle petit signal.
- (b) Donnez son impédance d'entrée.
- (c) Donnez son impédance de sortie.
- (d) Donnez son gain de tension.
- (e) Expliquez le rôle du transistor Q₂ à l'aide d'une phrase ou deux.
- (f) Remplacez les sources de courant idéales *I* par un circuit de polarisation CMOS. Pour ce faire, utilisez des sources de courant NMOS et PMOS polarisées par un miroir de courant et une résistance. <u>Vous devez utiliser un seul miroir et une seule résistance pour polariser les deux sources de courant</u>. **Dessinez votre circuit de polarisation.** Bonus : indiquez le ratio W/L utilisé pour chaque transistor.
- (g) Si I = 100 μ A, qu'on néglige l'effet de modulation de canal et que $\mu_n C_{ox} = 270$ μ A/V², $V_{tn} = 500$ mV, W/L = 1, $V_A = 40$ V, calculez la tension V_{GS} , V_{OV} (ou V_{DS-sat}) et les paramètres petit signal g_m et r_o de Q_1 .
- (h) Serait-il approprié d'utiliser ce circuit pour conduire une charge résistive? **Expliquez votre réponse.**
- 3) Photographiez ou numérisez votre formulaire de réponses bien identifié, joignez-le avec votre déclaration signée et téléversez le tout dans la boîte de dépôt prévue à cet effet avant 12h00.

Figure 1.

Hiver 202	0 -	Quiz	4
-----------	-----	------	---