POLYNÔMES DIVIBLES PAR LEUR DÉRIVÉE SECONDE

Le but du problème est d'étudier les polynômes de $\mathbb{C}[X]$ divisibles par leur polynôme dérivée seconde.

PARTIE A: Étude de cas particuliers

- 1°) Quels sont les polynômes de degré 2 divisibles par leur polynôme dérivée seconde?
- **2°)** Montrer qu'un polynôme P de degré 3 est divisible par son polynôme dérivée seconde si et seulement si il existe $(a,b,c) \in \mathbb{C}^3$, avec $a \neq 0$, tels que: $P = a(X-c)^3 + b(X-c)$.
- 3°) Soit P un polynôme de degré $n\ (n\geqslant 2)$ divisible par son polynôme dérivée seconde. Il existe donc $Q\in\mathbb{C}[X]$ tel que P=QP".
 - a) Quel est le degré de Q? Quel est son coefficient dominant?
 - b) On suppose ici que Q admet une racine double, notée c. c est alors racine de P. Soit r son ordre de multiplicité dans P.

En écrivant $P = (X - c)^r R$, avec $R(c) \neq 0$, puis en calculant P", montrer que r = n. Quelle est alors la forme du polynôme P?

PARTIE B: Résolution du problème simplifié

On dira que $P \in \mathbb{C}[X]$ est solution du problème (\mathcal{P}'_n) $(n \ge 2)$ si il vérifie les trois conditions:

$$\begin{cases} (i) & \deg(P) = n \\ (ii) & P \text{ est normalis\'e} \\ (iii) & P = \frac{1}{n(n-1)}(X^2 - 1)P \end{cases}$$

Dans toute cette partie, P_n désigne un polynôme solution du problème (\mathcal{P}'_n) (on supposera provisoirement qu'un tel polynôme existe).

Si A est un polynôme, et si $k \in \mathbb{N}^*$, on note $A^{(k)}$ le k-ième polynôme dérivé de A; on note $A^{(0)} = A$.

1°) A partir de la relation (iii), et en utilisant la formule de Leibniz, démontrer, pour tout entier $k \in \mathbb{N}$, la relation:

$$(X^{2}-1)P_{n}^{(k+2)}+2kXP_{n}^{(k+1)}=\big(n(n-1)-k(k-1)\big)P_{n}^{(k)}\ .$$

2°) Soit
$$R_k = (X^2 - 1)^{k-1} P_n^{(k)} (k \in \mathbb{N})$$
, et $a_k = \frac{1}{n(n-1) - k(k-1)} (k \neq n)$.

Déduire de la question précédente l'égalité: $R_k = a_k R'_{k+1}$.

- **3**°) **a)** En déduire: $R_0 = a_0 a_1 \dots a_{n-1} R_n^{(n)}$.
 - **b)** En déduire : $P_n = \frac{(n-2)!}{(2n-2)!} (X^2 1) ((X^2 1)^{n-1})^{(n)}$ (on pourra remarquer que : n(n-1) k(k-1) = (n-k)(n+k-1)).

PARTIE C: Etude de la réciproque

Dans cette partie, on démontre que le polynôme
$$P_n$$
 défini par :
$$P_n=\frac{(n-2)!}{(2n-2)!}(X^2-1)\big((X^2-1)^{n-1}\big)^{(n)}\ (n\geqslant 2)$$

est effectivement solution du problème

- $\mathbf{1}^{\circ}$) Calculer P_2, P_3, P_4 .
- 2°) Quel est le degré de P_n ? son coefficient dominant? sa parité?
- **3**°) On pose: $P_n = \sum_{k=0}^n a_k X^k$. Démontrer que, pour $l \in \{1, 2, \dots, E(n/2)\}$, on a: $a_{n-2l+1}=0$ et $a_{n-2l}=(-1)^l\frac{C_n^{2l}C_{n-1}^l}{C_{2n-2}^{2l}}$.

 (on pourra développer $(X^2-1)^{n-1}$ à l'aide de la formule du binôme).
- $\mathbf{4}^{\circ}$) En déduire que P_n est effectivement solution du problème (\mathcal{P}'_n) .

PARTIE D: Résolution du cas général

On dira que $P \in \mathbb{C}[X]$ est solution du problème (\mathcal{P}_n) $(n \ge 2)$ si il vérifie les trois conditions :

$$\begin{cases} (i) & \text{il existe } Q \in \mathbb{C}[X] \text{ tel que } P = QP" \\ (ii) & Q \text{ possède deux racines distinctes} \\ (iii) & \deg(P) = n. \end{cases}$$

- $\mathbf{1}^{\circ}$) a) Si P est solution du problème (\mathcal{P}_n) , et si Q désigne le polynôme défini par (i), montrer qu'il existe deux nombres complexes a et b, avec $a \neq 0$, tels que : $Q(aX + b) = \frac{a^2}{n(n-1)}(X^2 - 1)$.
 - **b)** Montrer que, alors, le polynôme R = P(aX + b) vérifie la relation :

$$R = \frac{1}{n(n-1)}(X^2 - 1)R$$
".

- 2°) Résoudre complètement le problème (\mathcal{P}_n) à partir de la solution du problème (\mathcal{P}'_n) trouvée à la question B.3.
- 3°) Conclure: Quels sont tous les polynômes de $\mathbb{C}[X]$ divisibles par leur polynôme dérivée seconde?

PARTIE E: Etude de quelques propriétés des polynômes P_n

 $(P_n \text{ désigne ici, pour } n \text{ entier} \ge 2$, le polynôme considéré dans les parties B et C).

1°) Démontrer que, pour tout entier k compris entre 2 et n, le polynôme $P_n^{(n-k)}$ possède exactement kracines réelles distinctes, comprises entre -1 et 1, et séparées par les racines du polynôme $P_n^{(n-k+1)}$ (on pourra procéder par récurrence sur k et utiliser la relation établie en B.1).

Que peut-on en déduire, en particulier, pour les racines de P_n ?

 2°) Soit H un polynôme normalisé de $\mathbb{R}[X]$, de degré $n \geq 1$, dont les zéros x_1, x_2, \ldots, x_n sont réels et distincts.

Pour tout entier j compris entre 1 et n, on note $H'_i = H'(x_j)$ et $H''_i = H''(x_j)$.

a) Montrer que la décomposition en éléments simples de la fraction rationnelle $\frac{1}{H}$ s'écrit:

$$\frac{1}{H} = \sum_{j=1}^{n} \frac{1}{H'_{j}} \frac{1}{X - x_{j}}$$

b) Montrer que la décomposition en éléments simples de la fraction rationnelle $\frac{1}{H^2}$ s'écrit:

$$\frac{1}{H^2} = \sum_{j=1}^{n} \frac{1}{(H'_j)^2} \frac{1}{(X - x_j)^2} - \sum_{j=1}^{n} \frac{H''_j}{(H'_j)^3} \frac{1}{X - x_j}$$

- ${\bf 3}^{\circ})$ On note ici x_1, x_2, \ldots, x_n les zéros de $P_n,$ rangés par ordre croissant.
 - a) Démontrer que la décomposition en éléments simples de la fraction rationnelle $\frac{1}{P_n^2}$ s'écrit :

$$\frac{1}{P_n^2} = \sum_{j=1}^n \frac{1}{(P_n'(x_j))^2} \frac{1}{(X - x_j)^2} - \frac{n(n-1)}{2(P_n'(1))^2} \left(\frac{1}{X - 1} - \frac{1}{X + 1}\right)$$

b) Soit k un entier compris entre 2 et n-1. On note A la fraction rationnelle:

$$A(X) = \sum_{\substack{j=1 \ j \neq k}}^{n} \frac{1}{P'_n(x_j)} \frac{1}{X - x_j}$$

En utilisant les résultats de la question précédente, montrer que : $A(x_k) = 0$.