学 号	评定成绩	(分)
学生姓名	担任教师	
《高等代数》期末闭卷考试题		
(下述 一 — 四 题全作计100分, 两小时完卷) 考试日期:		
	[全文:	11-11111- C
遵守考场纪律,防止一念之差贻误终生。		
一、 填空题(共5小题,每题2	!分)	
$\begin{vmatrix} 1 & k & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix} = \underline{\qquad}$		
2、设 n 阶矩阵 A 的秩为 n, 则	リ <i>A</i> *的秩为。	
3 、设 α 、 β 、 γ 线性无关,则 k	$\alpha+\beta+\gamma$ 、 $\alpha-\beta$ 、 $\beta+\gamma$ 线性无关	的充要
条件是。		
4 、设 α 、 β 为 n 维非零列向量	t ,则 $ \alpha \beta^{\mathrm{T}} $ =。	
5、设3阶矩阵A的特征值为-	-1, 2, 1, $\mathbb{N} \left \mathbf{A}^* + A^{-1} + E \right = $	°
二、选择题(共10小题,每题2		
 设 A、B 为 n 阶矩阵,则下列设 (A)、 A+B = B + A 		
$\langle A \rangle_{S} A + B - B + A $	(b) Ab - bA	
(C), $(AB)^T = A^T B^T$	(D) 若 $AB = A$, 则 $B = E$	
2、已知 4 阶矩阵 A 的伴随矩阵的程		
(A)、1 (B)、2 3、已知 n 阶非零矩阵 A、B 满足 AB=	(C)、3 (D)、4 =O,则下列说法错误的是()	
(A), $ A =0$ $\mathbb{E} B =0$	(B)、方程组 $AX = 0$ 有非零解	
(C)、方程组 $BX = 0$ 有非零解	(D)、以上说法都不对	

- 4、设A,B为同阶可逆方阵,则()成立.
 (A) AB = BA(B) 存在可逆阵P,使 $P^{-1}AP = B$
 - (C) 存在可逆阵 C, 使 $C^TAC = B$
 - (D) 存在可逆阵 P,Q, 使 PAQ = B
 - 5、若 m×n矩阵 A 的秩为 m,则方程组 AX = B ()。 (A)、有唯一解 (B)、有无穷解 (C)、有解 (D)、可能无解
 - 6、设向量组 α_1 , α_2 , α_3 是 R^3 的一组基,则下列向量组()是 R^3 的一组基。
 - (A) $\alpha_1 \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_3$ (B) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_3$
 - (D) $\alpha_1 + \alpha_2 + \alpha_3$, $\alpha_1 + 2\alpha_2 + 2\alpha_3$, $\alpha_1 + 3\alpha_2 + 3\alpha_3$
 - 7、设T是向量空间 R^3 上的变换,下列T是线性变换的是()。
 - (A), $T(a_1, a_2, a_3) = (a_1, a_2^2, a_3)$

(C) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + \alpha_3$

- (B), $T(a_1, a_2, a_3) = (a_1 + a_2, 2a_2, a_2 + a_3)$
- (C), $T(a_1, a_2, a_3) = (a_1 + a_2, a_2 + 1, a_1 + a_3)$
- (D), $T(a_1, a_2, a_3) = (a_1 + a_2, a_1 a_2, a_3)$
- 8、设A、B都是正定矩阵,则()
 - (A)、AB,A+B一定都是正定矩阵
 - (B)、AB 是正定矩阵, A+B 不一定是正定矩阵
 - (C)、AB 不一定是正定矩阵, A+B 是正定矩阵
 - (D)、AB、A+B都不是正定矩阵
- 9、设A、B是n阶矩阵,下列结论正确的是()
 - (A)、若A、B相似,则A、B有相同特征向量
 - (B)、若 λ 是 A、B 的特征值,则 λ 也是 A+B 的特征值

- (C)、A 的特征向量即为AX = 0的所有解
- (D)、若X是A的特征向量,则X也是 A^2 的特征向量
- 10、已知 2 阶实对称矩阵 A 满足 $A^2 3A + 2E = O$,则下列矩阵中和 A 合同的是

(A),
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 (B), $\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$

(B),
$$\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$$

(C),
$$\begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix}$$
 (D), $\begin{pmatrix} -1 & 2 \\ 0 & -2 \end{pmatrix}$

(D),
$$\begin{pmatrix} -1 & 2 \\ 0 & -2 \end{pmatrix}$$

- 三、计算题(共8小题,每题8分)
- 1、已知四阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,且|A|=1,

$$|B| = (\alpha_1 + \alpha_2 + \alpha_3 - 2\alpha_4, \alpha_2 - 2\alpha_4, \alpha_1 + 3\alpha_3, \alpha_3 + \alpha_4), \ \Re|B|$$

2、设 A 的伴随矩阵
$$A^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & -8 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix}$$
,且 $ABA^{-1} = BA^{-1} + 2E$,求 B^{-1}

$$3$$
、设 $\alpha_1 = \begin{pmatrix} k \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ k \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ k \end{pmatrix}$, 求向量组 α_1 、 α_2 、 α_3 的秩和一个极大线性无关组。

- 4 、 设 $\alpha_1=(1,2,0)^T$, $\alpha_2=(1,\alpha+2,-3\alpha)^T$, $\alpha_3=(-1,-b-2,\alpha+2b)^T$, $\beta=(1,3,-3)^T,$ 试讨论当a,b为何值时,
 - (I) β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示;
 - (II) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 唯一地线性表示,并求出表示式;
 - (III) β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,但表示式不唯一,并求出表示式.

- 5、设 α_1 、 α_2 、 α_3 是 R^3 的一组基, $\beta_1=\alpha_1+\alpha_2+\alpha_3$, $\beta_2=\alpha_2+\alpha_3$, $\beta_3=\alpha_3$,求
 - (1) 由基 α_1 、 α_2 、 α_3 到基 β_1 、 β_2 、 β_3 的过渡矩阵;
 - (2) 向量 $\alpha=2\alpha_1-\alpha_2+2\alpha_3$ 在基 β_1 、 β_2 、 β_3 下的坐标。

6、设线性空间 \mathbf{R}^3 的一组基 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 在线性变换 T 下的像分

max.book118.com 别为质与源文档一致下载高清无水印

$$T(\alpha_1) = \beta_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, T(\alpha_2) = \beta_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, T(\alpha_3) = \beta_3 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$$

- (1) 求 T 在基 α_1 、 α_2 、 α_3 下的矩阵;
- (2) 求*T*(β₁)、*T*(β₂)、*T*(β₃)。**原创力文档** max.book118.com 预览与源文档—致下载高清无水印

原创力文档 max.book118.com 预览与源文档一致下载高清无水印

7、已知 3 阶实对称矩阵 A 的特征值为 λ_1 =6, λ_2 = λ_3 =3, 和属于 λ_1 =6的一个特 max.book118.com 征向量 α =(1,1,1) $^{\rm T}$,求 A 预览与源文档一致下载高清无水印

8、已知
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$$
相似于对角阵,求

(1) a的值;

(2) 求正交变换矩阵使二次型 X^TAX 为标准型。

《高等代数》(周五)标准答案(试卷 A)

一、填空题

1,
$$(k-1)^2(k+2)$$
 2, n 3, $k \neq 0$ 4, 0 5, 0

二、选择题

1, B 2, C 3, D 4, D 5, C 6, B 7, B 8, C 9, D 10, A

三、计算题

分

$$|B| = |A| \cdot \begin{vmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 3 & 1 \\ -2 & -2 & 0 & 1 \end{vmatrix} = 2 \dots 4 \%$$

$$AB = B + 3A$$

$$\Rightarrow B(E-A^{-1}) = 2E \Rightarrow B^{-1} = 2(E - \frac{1}{|A|}A^*) \dots 4 \%$$

3,
$$\begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix} = (k-1)^2(k+2) \dots 2$$

所以

当
$$\lambda = 1$$
时, $(\alpha_1 \quad \alpha_2 \quad \alpha_3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$,所以 $R(\alpha_1, \alpha_2, \alpha_3) = 1$, α_1 为其

一个极大线性无关组......2分

当 $\lambda=-2$ 时, $R(\alpha_1$ 、 α_2 、 α_3)=2, α_1 、 α_2 为其一个极大线性无关组......2分

$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ 2 & a+2 & -b-2 & 3 \\ 0 & -3a & a+2b & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & a & -b & 1 \\ 0 & 0 & a-b & 0 \end{pmatrix}$$

$$\beta = (1 - \frac{1}{a})\alpha_1 + \frac{1}{a}\alpha_2$$
.....2 \(\frac{1}{2}\)

 $_{\dot{1}}a=b\neq0$ 时, $_{\beta}$ 可由 $_{\alpha_{1}}$ 、 $_{\alpha_{2}}$ 、 $_{\alpha_{3}}$ 线性表示,且表示不唯一

5.
$$(\beta_1 \quad \beta_2 \quad \beta_3) = (\alpha_1 \quad \alpha_2 \quad \alpha_3) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

所以由基 α_1 、 α_2 、 α_3 到基 β_1 、 β_2 、 β_3 的过渡矩阵为

分

将上述基础解系标准正交化得
$$\begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} -1/\sqrt{6} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}$2 分

8、
$$|\lambda E - A| = (\lambda - 6)^2 (\lambda - 2) \dots 2$$
 分

$$6E - A = 6E - A = \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -a & 0 \end{pmatrix}$$

相应特征向量为

从而相应的正交变换矩阵为

$$\begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{pmatrix}$$
四、证明题
$$AX = AY \Rightarrow A(X - Y) = 0 \dots 2$$

$$\Rightarrow R(A) + R(X - Y) \le n \dots 2$$

$$\Rightarrow R(X - Y) = 0 \dots 2$$
所以 $X - Y = O$