Data Mining - Prova d'esame del 18.11.2019

Laboratorio: punteggi e soluzione

Punteggi

files	RMSE	Percentuale	Punti
779608.txt	2.691290	59.9%	4.8
779824.txt	2.882319	50.4%	4.0
788966.txt	2.852276	51.9%	4.2
790677.txt	2.984072	45.3%	3.6
791517.txt	2.756433	56.7%	4.5
$796724.\mathrm{txt}$	2.925061	48.2%	3.9
800691.txt	1.828194	100%	8.0
800695.txt	1.773628	100%	8.0
801768.txt	2.917458	48.6%	3.9
803335.txt	2.885299	50.2%	4.0
$804450.\mathrm{txt}$	3.767332	6.1%	0.5
$805830.\mathrm{txt}$	2.890889	50%	4.0
805913.txt	2.810467	54%	4.3
807406.txt	2.524294	68.3%	5.5
807699.txt	2.532645	67.9%	5.4
807842.txt	2.771483	55.9%	4.5
808167.txt	2.752851	56.9%	4.5
808644.txt	3.446487	22.2%	1.8
823968.txt	2.754757	56.8%	4.5
836695.txt	6.685364	0%	0.0
848786.txt	2.688093	60.1%	4.8
849323.txt	2.265654	81.2%	6.5

La percentuale è calcolata come

$$\min\left(\frac{3.89 - x}{3.89 - 1.89}, 100\%\right)$$

dove x rappresenta il proprio RMSE_{Te}. Se RMSE_{Te} > 3.89, la percentuale è 0%.

Per il modello di benchmark, RMSE_{Te} = 2.89, quindi la percentuale è 50%. Questo significa che percentuali inferiori al 50% peggiorano il modello di benchmark.

Soluzione

I p = 10 predittori $X = (X_1, \dots, X_{10})^\mathsf{T}$ sono stati generati da una distribuzioen Uniforme(0,1).

Solo 5 predittori sono stati utilizzati per determinare la variabile risposta $Y = f(X) + \varepsilon$ dove

$$f(X) = 10\sin(\pi X_1 X_2) + 20(X_3 - 0.5)^2 + 10X_4 + 5X_5$$

e
$$\varepsilon \sim N(0,1)$$
.

L'assenza di relazione tra Y e X_6 , X_7 , X_8 , X_9 , X_{10} e la la relazione non-lineare tra Y e X_1 , X_2 e X_3 si poteva notare con l'esplorazione grafica utilizzando un modello addittivo (package gam):

Un buon modello si poteva quindi ottenere utilizzando un GAM

```
fit.gam = gam::gam(fml, data=train)
yhat = predict(fit.gam, newdata = test)
RMSE = sqrt( mean( (yhat - testy)^2) )
RMSE
```

[1] 1.894177

Alternativamente, si potevano valutare diversi modelli come segue (libreria caret)

\$1m

[1] 2.890889

\$glmnet

[1] 2.831696

\$rf

[1] 2.903982

\$boost

[1] 2.251615

Infine, si poteva individuare l'effetto di interazione della coppia $X_1,\,X_2$ con Y con il seguente grafico (libreria mgcv):

```
fit2 = mgcv::gam(y ~ s(V1,V2), data=train)
plot(fit2, scheme = TRUE)
```

