Calculus

Yaohui Wu

July 23, 2024

Introduction

Calculus is the mathematical study of continuous change established by Issac Newton and Gottfried Wilhelm Leibniz. Single variable calculus studies derivatives and integrals of functions of one variable and their relationship stated by the fundamental theorem of calculus.

 $\int_{a}^{b} f(x) dx = F(b) - F(a)$

Contents

1	Fun	Functions and Limits		
	1.1	The Limit of a Function	2	
	1.2	The Precise Definition of a Limit	3	
	1.3	Calculating Limits Using the Limit Laws	4	
	1.4	Continuity	11	
	1.5	Limits Involving Infinity	14	
2	Der	ivatives	17	
	2.1	Derivatives and Rates of Change	17	
	2.2	The Derivative as a Function	18	
	2.3	Basic Differentiation Formulas	20	

1 Functions and Limits

1.1 The Limit of a Function

Functions

Definition 1.1.1. A function f is a rule that assigns to each element x in a set D exactly one element f(x) in a set E.

Definition 1.1.2. A function f is **injective** (or **one-to-one**) if $f(x_1) \neq f(x_2)$ when $x_1 \neq x_2$.

Definition 1.1.3. A function f is **surjective** (or **onto**) if for all y in range Y, there exists an x in domain X such that f(x) = y.

Definition 1.1.4. A function f is **bijective** if f is injective and surjective.

Definition 1.1.5. Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \iff f(x) = y$$

for all y in B.

Intuitive Definition of a Limit

Suppose f(x) is defined near the number a. (This means that f(x) is defined on some open interval that contains the number a, except possibly at a itself.)

Definition 1.1.6. We write

$$\lim_{x \to a} f(x) = L$$

and say that the **limit** of f(x), as x approaches a, equals L, if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a but $x \neq a$.

An alternative notation for the limit is $f(x) \to L$ as $x \to a$.

One-Sided Limits

Definition 1.1.7. We write

$$\lim_{x \to a^{-}} f(x) = L$$

and say that the **left-hand limit** of f(x) as x approaches a is equal to L if we can make the values of f(x) arbitrarily close to L by taking x sufficiently close to a and x < a.

Definition 1.1.8. We write

$$\lim_{x \to a^+} f(x) = L$$

and say that the **right-hand limit** of f(x) as x approaches a is equal to L if we can make the values of f(x) arbitrarily close to L by taking x sufficiently close to a and x > a.

Theorem 1.1.1.
$$\lim_{x\to a} f(x) = L$$
 if and only if $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$.

The limit exists if and only if the left-hand limit and the right-hand limit of f(x) as x approaches a are equal to L, otherwise the limit does not exist.

1.2 The Precise Definition of a Limit

Precise Definition of a Limit

Let f be a function defined on some open interval that contains the number a, except possibly at a itself.

Definition 1.2.1. We say that limit of f(x) as x approaches a is L, and we write

$$\lim_{x \to a} f(x) = L$$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon$$

Problem 1.2.1. Prove that $\lim_{x\to 3} (4x - 5) = 7$.

Solution. Let $\varepsilon > 0$ be a given positive number. We want to find a number δ such that

$$0 < |x-3| < \delta \implies |(4x-5)-7| < \varepsilon$$

But |(4x-5)-7|=|4x-12|=4|x-3|. Note that $4|x-3|<\varepsilon\iff |x-3|<\varepsilon/4$. Let $\delta=\varepsilon/4$, we have

$$0 < |x - 3| < \frac{\varepsilon}{4} \implies 4|x - 3| < \varepsilon \implies |(4x - 5) - 7| < \varepsilon$$

Therefore, by the definition of a limit,

$$\lim_{x \to 3} (4x - 5) = 7$$

Problem 1.2.2. Prove that $\lim_{x\to 3} x^2 = 9$.

Solution. Let ε be a given positive number. We want to find a number δ such that

$$0 < |x - 3| < \delta \implies |x^2 - 9| < \varepsilon$$

We simplify to get

$$|x^2 - 9| = |x + 3| |x - 3| < \varepsilon$$

Let C be a positive constant such that

$$|x+3| |x-3| < C |x-3| < \varepsilon \iff |x-3| < \frac{\varepsilon}{C}$$

Since we are interested only in values of x that are close to 3, it is reasonable to assume that |x-3| < 1. Then we have |x+3| < 7, and so C = 7. Let $\delta = \min\{1, \varepsilon/7\}$. If $0 < |x-3| < \delta$, then

$$|x^2 - 9| = |x + 3| |x - 3| < 7 \cdot \frac{\varepsilon}{7} = \varepsilon$$

This shows that $\lim_{x\to 3} x^2 = 9$.

Definition 1.2.2.

$$\lim_{x \to a^{-}} f(x) = L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that

$$a - \delta < x < a \implies |f(x) - L| < \varepsilon$$

Definition 1.2.3.

$$\lim_{x \to a^+} f(x) = L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that

$$a < x < a + \delta \implies |f(x) - L| < \varepsilon$$

Problem 1.2.3. Prove that $\lim_{x\to 0^+} \sqrt{x} = 0$.

Solution. Let ε be a given positive number We want to find a number δ such that

$$0 < x < \delta \implies |\sqrt{x} - 0| < \varepsilon$$

But $\sqrt{x} < \varepsilon \iff x < \varepsilon^2$. Let $\delta = \varepsilon^2$. If $0 < x < \delta$, then $\sqrt{x} < \sqrt{\delta} = \sqrt{\varepsilon^2} = \varepsilon$ so $|\sqrt{x} - 0| < \varepsilon$. This shows that $\lim_{x \to 0^+} \sqrt{x} = 0$.

1.3 Calculating Limits Using the Limit Laws

We have the following properties of limits called the **limit laws** to calculate limits. Suppose that c is a constant and the limits

$$\lim_{x \to a} f(x) = L \qquad \qquad \lim_{x \to a} g(x) = M$$

exist. Then

- 1. Sum Law: $\lim_{x \to a} [f(x) + g(x)] = L + M$
- 2. Difference Law: $\lim_{x\to a} [f(x) g(x)] = L M$
- 3. Constant Multiple Law: $\lim_{x\to a} [cf(x)] = cL$
- 4. Product Law: $\lim_{x\to a} [f(x)g(x)] = LM$
- 5. Quotient Law: $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$ if $M \neq 0$.
- 6. Power Law: $\lim_{x\to a} [f(x)]^n = \left[\lim_{x\to a} f(x)\right]^n$ where n is a positive integer.
- 7. Root Law: $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$ where n is a positive integer. If n is even, we assume that $\lim_{x\to a} f(x) > 0$.

4

8.
$$\lim_{x\to a} c = c$$

9.
$$\lim_{x \to a} x = a$$

- 10. $\lim_{x\to a} x^n = a^n$ where n is a positive integer.
- 11. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$ where n is a positive integer. If n is even, we assume that a>0.

Proof. Proof of limit law 8: Let $\varepsilon > 0$ be given, we want to find a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |c - c| < \varepsilon$$

We have $|c-c|=0<\varepsilon$ so the trivial inequality is always true for any number $\delta>0$. It is proved that $\lim_{x\to a}c=c$.

Proof. Proof of limit law 9: Let $\varepsilon > 0$ be given, we want to find a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |x - a| < \varepsilon$$

Let $\delta = \varepsilon$, we have

$$0 < |x - a| < \delta = \varepsilon \implies |x - a| < \varepsilon$$

It is proved that $\lim_{x \to a} x = a$.

Proof. Proof of the sum law: Let $\varepsilon > 0$ be given, we want to find a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x) + g(x) - (L + M)| < \varepsilon$$

By the triangle inequality,

$$|f(x) + g(x) - (L+M)| = |f(x) - L + g(x) - M| \le |f(x) - L| + |g(x) - M|$$

We make |f(x) - L| + |g(x) - M| less than ε by making each of the terms |f(x) - L| and |g(x) - M| less than $\varepsilon/2$. Since $\lim_{x \to a} f(x) = L$, there is a number $\delta_1 > 0$ such that

$$0 < |x - a| < \delta_1 \implies |f(x) - L| < \frac{\varepsilon}{2}$$

Similarly, there is a number $\delta_2 > 0$ such that

$$0 < |x - a| < \delta_2 \implies |g(x) - M| < \frac{\varepsilon}{2}$$

Let $\delta = \min\{\delta_1, \delta_2\}$. If $0 < |x - a| < \delta$, then $0 < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$ and so

$$|f(x) - L| + |g(x) - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Then

$$0 < |x - a| < \delta \implies |f(x) + g(x) - (L + M)| < \varepsilon$$

Thus, by the definition of a limit,

$$\lim_{x \to a} \left[f(x) + g(x) \right] = L + M$$

Proof. Proof of the product law: Let $\varepsilon > 0$ be given, we want to find a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x)g(x) - LM| < \varepsilon$$

In order to get terms that contain |f(x) - L| and |g(x) - M|, we add and subtract Lg(x) as follows and use the triangle inequality:

$$|f(x)g(x) - LM| = |f(x)g(x) - Lg(x) + Lg(x) - LM|$$

$$= |[f(x) - L]g(x) + L[g(x) - M]|$$

$$\leq |[f(x) - L]g(x)| + |L[g(x) - M]|$$

$$= |f(x) - L||g(x)| + |L||g(x) - M|$$

We want to make both of the terms less than $\varepsilon/2$. Since $\lim_{x\to a} g(x) = M$, there is a number $\delta_1 > 0$ such that

$$0 < |x - a| < \delta_1 \implies |g(x) - M| < \frac{\varepsilon}{2(1 + |L|)}$$

Also, there is a number $\delta_2 > 0$ such that

$$0 < |x - a| < \delta_2 \implies |g(x) - M| < 1$$

and therefore

$$|g(x)| = |g(x) - M + M| \le |g(x) - M| + |M| < 1 + |M|$$

Since $\lim_{x\to a} f(x) = L$, there is a number $\delta_3 > 0$ such that

$$0 < |x - a| < \delta_3 \implies |f(x) - L| < \frac{\varepsilon}{2(1 + |M|)}$$

Let $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. If $0 < |x - a| < \delta$, then $0 < |x - a| < \delta_1$, $0 < |x - a| < \delta_2$, and $0 < |x - a| < \delta_3$. Then we can combine the inequalities to get

$$\begin{split} |f(x)g(x)-LM| &\leq |f(x)-L|\,|g(x)|+|L|\,|g(x)-M|\\ &< \frac{\varepsilon}{2(1+|M|)}(1+|M|)+|L|\frac{\varepsilon}{2(1+|L|)}\\ &< \frac{\varepsilon}{2(1+|M|)}(1+|M|)+(1+|L|)\frac{\varepsilon}{2(1+|L|)}\\ &= \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \end{split}$$

This shows that

$$\lim_{x \to a} \left[f(x)g(x) \right] = LM$$

Proof. Proof of the constant multiple law: If we take g(x) = c then by the product law and limit law 8, we get

$$\lim_{x \to a} \left[cf(x) \right] = \lim_{x \to a} c \cdot \lim_{x \to a} f(x) = c \lim_{x \to a} f(x) = cL$$

We can prove the constant multiple law using the precise the definition. Note that if c = 0, then cf(x) = 0 and we have

$$\lim_{x \to a} [0 \cdot f(x)] = \lim_{x \to a} 0 = 0 = 0 \cdot \lim_{x \to a} f(x) = 0 \cdot L$$

Let $\varepsilon > 0$ and $c \neq 0$ be given, we want to find a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |cf(x) - cL| < \varepsilon$$

We simplify to get

$$|f(x) - L| < \frac{\varepsilon}{|c|}$$

By the definition of a limit, there is a number $\delta_1 > 0$ such that

$$0 < |x - a| < \delta_1 \implies |f(x) - L| < \frac{\varepsilon}{|c|}$$

Let $\delta = \delta_1$, we have

$$0 < |x - a| < \delta \implies |cf(x) - cL| < \varepsilon$$

This shows that $\lim_{x\to a} [cf(x)] = cL$.

Proof. Proof of the difference law: Using the sum law and the constant multiple law with c = -1, we have

$$\begin{split} \lim_{x \to a} \Big[f(x) - g(x) \Big] &= \lim_{x \to a} \Big[f(x) + (-1)g(x) \Big] = \lim_{x \to a} f(x) + \lim_{x \to a} (-1)g(x) \\ &= \lim_{x \to a} f(x) + (-1) \lim_{x \to a} g(x) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L - M \end{split}$$

Proof. Proof of the quotient law: First we prove that

$$\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{M}$$

Let $\varepsilon > 0$ be given, we want to find a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies \left| \frac{1}{g(x)} - \frac{1}{M} \right| < \varepsilon$$

Observe that

$$\left| \frac{1}{g(x)} - \frac{1}{M} \right| = \frac{|M - g(x)|}{|Mg(x)|} = \frac{|g(x) - M|}{|Mg(x)|}$$

Since $\lim_{x\to a} g(x) = M$, there is a number δ_1 such that

$$0 < |x - a| < \delta_1 \implies |g(x) - M| < \frac{|M|}{2}$$

and therefore

$$|M| = |M - g(x) + g(x)| \le |M - g(x)| + |g(x)| = |g(x) - M| + |g(x)| < \frac{|M|}{2} + |g(x)|$$

This shows that

$$0 < |x - a| < \delta_1 \implies \frac{|M|}{2} < |g(x)| \iff \frac{1}{|g(x)|} < \frac{2}{|M|}$$

and so, for these values of x,

$$\frac{1}{|Mg(x)|} = \frac{1}{|M||g(x)|} < \frac{1}{|M|} \cdot \frac{2}{|M|} = \frac{2}{M^2}$$

Also, there is a number $\delta_2 > 0$ such that

$$0 < |x - a| < \delta_2 \implies |g(x) - M| < \frac{M^2}{2} \varepsilon$$

Let $\delta = \min{\{\delta_1, \delta_2\}}$. If $0 < |x - a| < \delta$, then

$$\left|\frac{1}{q(x)} - \frac{1}{M}\right| = \frac{|M - g(x)|}{|Mq(x)|} = \frac{1}{|Mq(x)|}|g(x) - M| < \frac{2}{M^2} \frac{M^2}{2} \varepsilon = \varepsilon$$

which is what we want to show. We apply the product law to prove the quotient law

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \left(f(x) \cdot \frac{1}{g(x)} \right) = \lim_{x \to a} f(x) \lim_{x \to a} \frac{1}{g(x)} = L \cdot \frac{1}{M} = \frac{L}{M}$$

We have the following **direct substitution property** to calculate limits. If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

Problem 1.3.1. Find $\lim_{x\to 1} \frac{x^2-1}{x-1}$.

Solution.

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2$$

If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, provided that this limit exists. When computing one-sided limits, we use the fact that the limit laws also hold for one-sided limits.

Problem 1.3.2. Show that $\lim_{x\to 0} |x| = 0$.

Solution. Since |x| = x for x > 0, we have

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0$$

For x < 0 we have |x| = -x so

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} (-x) = 0$$

Therefore, it is shown that $\lim_{x\to 0} |x| = 0$.

The Squeeze Theorem

Theorem 1.3.1. If $f(x) \leq g(x)$ for all x in an open interval that contains a (except possibly at a) and

$$\lim_{x \to a} f(x) = L \qquad \qquad \lim_{x \to a} g(x) = M$$

then $L \leq M$.

Proof. We use the method of proof by contradiction. Suppose that L > M, then we have

$$\lim_{x \to a} \left[g(x) - f(x) \right] = M - L$$

Therefore, for any number $\varepsilon > 0$, there is a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies \left| \left[g(x) - f(x) \right] - (M - L) \right| < \varepsilon$$

Note that L-M>0 by the hypothesis. Let $\varepsilon=L-M$, there is a number $\delta>0$ such that

$$0 < |x - a| < \delta \implies \left| \left[g(x) - f(x) \right] - (M - L) \right| < L - M$$

Since $a \leq |a|$ for any number a, we have

$$0 < |x - a| < \delta \implies \left[g(x) - f(x) \right] - (M - L) < L - M$$

which simplifies to

$$0 < |x - a| < \delta \implies g(x) < f(x)$$

But this contradicts $f(x) \leq g(x)$. Thus the inequality L > M must be false. Therefore $L \leq M$.

Theorem 1.3.2 Squeeze Theorem. If $f(x) \leq g(x) \leq h(x)$ for all x in an open interval that contains a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L$$

Proof. Let $\varepsilon > 0$ be given. Since $\lim_{x \to a} f(x) = L$, there is a number $\delta_1 > 0$ such that

$$0 < |x - a| < \delta_1 \implies |f(x) - L| < \varepsilon \implies L - \varepsilon < f(x) < L + \varepsilon$$

Since $\lim_{x\to a} h(x) = L$, there is a number $\delta_2 > 0$ such that

$$0 < |x - a| < \delta_2 \implies |h(x) - L| < \varepsilon \implies L - \varepsilon < h(x) < L + \varepsilon$$

Let $\delta = \min\{\delta_1, \delta_2\}$. If $0 < |x - a| < \delta$, then $0 < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$, so

$$L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon$$

In particular,

$$L - \varepsilon < g(x) < L + \varepsilon$$

and so $|g(x) - L| < \varepsilon$. Therefore $\lim_{x \to a} g(x) = L$.

Problem 1.3.3. Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Solution. Since

$$-1 \le \sin\frac{1}{x} \le 1$$

then

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

 $\lim_{x\to 0} x^2 = 0$

We know that

$$\lim_{x \to 0} (-x^2) = 0$$

By the squeeze theorem,

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

If $0 < \theta < \pi/2$, then

$$\sin \theta < \theta \implies \frac{\sin \theta}{\theta} < 1$$

and $\theta \leq \tan \theta$. Therefore we have

$$\theta < \tan \theta = \frac{\sin \theta}{\cos \theta} \implies \cos \theta < \frac{\sin \theta}{\theta} < 1$$

We know that $\lim_{\theta \to 0} 1 = 1$ and $\lim_{\theta \to 0} \cos \theta = 1$, so by the squeeze theorem, we have

$$\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1$$

But the function $(\sin \theta)/\theta$ is an even function, so its left and right limits must be equal. Hence we have

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Problem 1.3.4. Find $\lim_{x\to 0} \frac{\sin 7x}{4x}$.

Solution.

$$\lim_{x \to 0} \frac{\sin 7x}{4x} = \lim_{x \to 0} \frac{7x \cdot \sin 7x}{4x \cdot 7x} = \frac{7}{4} \lim_{x \to 0} \frac{\sin 7x}{7x} = \frac{7}{4}$$

Problem 1.3.5. Evaluate $\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta}$.

Solution. We have

$$\frac{\cos \theta - 1}{\theta} = \frac{\cos \theta - 1}{\theta} \left(\frac{\cos \theta + 1}{\cos \theta + 1} \right) = \frac{\cos^2 \theta - 1}{\theta(\cos \theta + 1)} = \frac{-\sin^2 \theta}{\theta(\cos \theta + 1)} = \frac{\sin \theta}{\theta} \left(\frac{-\sin \theta}{\cos \theta + 1} \right)$$

We take the limit then

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = \lim_{\theta \to 0} \left(\frac{\cos \theta - 1}{\theta} \cdot \frac{\cos \theta + 1}{\cos \theta + 1} \right) = \lim_{\theta \to 0} \frac{\cos^2 \theta - 1}{\theta (\cos \theta + 1)} = \lim_{\theta \to 0} \frac{-\sin^2 \theta}{\theta (\cos \theta + 1)}$$
$$= -\lim_{\theta \to 0} \left(\frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{\cos \theta + 1} \right) = -\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \lim_{\theta \to 0} \frac{\sin \theta}{\cos \theta + 1} = -1 \cdot \frac{0}{1+1} = 0$$

1.4 Continuity

Definition 1.4.1. A function f is **continuous at a number** a if

$$\lim_{x \to a} f(x) = f(a)$$

Note that f is continuous at a requires that f(a) is defined and the limit exists. We say that f is **discontinuous** at a if f is not continuous at a.

Definition 1.4.2. A function f is **continuous from the right at a number** a if

$$\lim_{x \to a^+} f(x) = f(a)$$

and f is continuous from the left at a if

$$\lim_{x \to a^{-}} f(x) = f(a)$$

Definition 1.4.3. A function f is **continuous on an interval** if it is continuous at every number in the interval.

Theorem 1.4.1. If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

- 1. f + g
- 2. f g
- 3. cf
- 4. fg
- 5. $\frac{f}{g}$ if $g(a) \neq 0$.

Proof. Each of the five parts of this theorem follows from the corresponding limit law. We give the proof of part 1. Since f and g are continuous at a, we have

$$\lim_{x \to a} f(x) = f(a) \qquad \qquad \lim_{x \to a} g(x) = g(a)$$

Then

$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} \left[f(x) + g(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = f(a) + g(a) = (f+g)(a)$$

This shows that f + g is continuous at a.

Theorem 1.4.2. Any polynomial is continuous on $\mathbb{R} = (-\infty, \infty)$. Any rational function is continuous on its domain.

Proof. A polynomial is a function of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

where the coefficients a_0, a_1, \ldots, a_n are constants. P(x) is the sum of power functions with a constant multiple and therefore it is continuous. A rational function is a function of the form

$$f(x) = \frac{P(x)}{Q(x)}$$

where P and Q are polynomials. The domain of f is $D = \{x \in \mathbb{R} \mid Q(x) \neq 0\}$. We know that polynomials are continuous on \mathbb{R} so the rational function f is continuous at every number in D.

Theorem 1.4.3. The following types of functions are continuous at every number in their domains:

- Polynomials
- Rational functions

- Root functions
- Trigonometric functions
- Inverse trigonometric functions
- Exponential functions
- Logarithmic functions

Theorem 1.4.4. If f is continuous at b and $\lim_{x\to a} g(x) = b$, then

$$\lim_{x \to a} f(g(x)) = f(b)$$

Proof. Let $\varepsilon > 0$ be given. We want to find a number $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(g(x)) - f(b)| < \varepsilon$$

Since f is continuous at b, we have

$$\lim_{y \to b} f(y) = f(b)$$

and so there exists $\delta_1 > 0$ such that

$$0 < |y - b| < \delta_1 \implies |f(y) - f(b)| < \varepsilon$$

Since $\lim_{x\to a} g(x) = b$, there exists $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |g(x) - b| < \delta_1$$

Combining these two statements, we see that when $0 < |x - a| < \delta$ we have $|g(x) - b| < \delta_1$, which implies that $|f(g(x)) - f(b)| < \varepsilon$. Therefore we have proved that $\lim_{x \to a} f(g(x)) = f(b)$.

Theorem 1.4.5. If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $f \circ g = f(g(x))$ is continuous at a.

Proof. Since g is continuous at a, we have

$$\lim_{x \to a} g(x) = g(a)$$

Since f is continuous at b = g(a), we have

$$\lim_{x \to a} f(g(x)) = f(g(a))$$

which is precisely the statement that the function f(g(x)) is continuous at a.

Theorem 1.4.6 Intermediate Value Theorem. Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in the open interval (a, b) such that f(c) = N.

The intermediate value theorem states that a continuous function takes on every intermediate value between the function values f(a) and f(b). If a continuous function f(x) has values of opposite sign in an interval (a, b), then by the intermediate value theorem there exists a root of f(x) in (a, b).

1.5 Limits Involving Infinity

Infinite Limits

Definition 1.5.1. The notation

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large by taking x sufficiently close to a but $x \neq a$.

Another notation for the limit is $f(x) \to \infty$ as $x \to a$. We say that the limit of f(x), as x approaches a, is infinity.

Definition 1.5.2.

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a but $x \neq a$.

We say that the limit of f(x), as x approaches a, is negative infinity. Similar definitions can be given for the one-sided infinite limits

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a^{+}} f(x) = -\infty$$

Definition 1.5.3. The vertical line x = a is called a **vertical asymptote** of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x \to a} f(x) = \infty \qquad \qquad \lim_{x \to a^{-}} f(x) = \infty \qquad \qquad \lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \qquad \lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^{+}} f(x) = -\infty$$

Limits at Infinity

Definition 1.5.4. Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large.

Another notation is $f(x) \to L$ as $x \to \infty$. We say that the limit of f(x), as x approaches infinity, is L.

Definition 1.5.5. Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large negative.

We say that the limit of f(x), as x approaches negative infinity, is L.

Definition 1.5.6. The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L$$

or

$$\lim_{x \to -\infty} f(x) = L$$

If n is a positive integer, then

$$\lim_{x \to \infty} \frac{1}{x^n} = 0 \qquad \qquad \lim_{x \to -\infty} \frac{1}{x^n} = 0$$

Problem 1.5.1. Evaluate $\lim_{x\to\infty} \sin x$.

Solution. As x increases, the values of $\sin x$ oscillate between 1 and -1 infinitely often. Thus $\lim_{x\to\infty} \sin x$ does not exist.

Infinite Limits at Infinity

The notation

$$\lim_{x \to \infty} f(x) = \infty$$

is used to indicate that the values of f(x) become large as x becomes large. Similar meanings are attached to the following symbols:

$$\lim_{x \to \infty} f(x) = \infty \qquad \qquad \lim_{x \to \infty} f(x) = -\infty \qquad \qquad \lim_{x \to -\infty} f(x) = -\infty$$

Precise Definitions

Let f be a function defined on some open interval that contains the number a, except possibly at a itself.

Definition 1.5.7.

$$\lim_{x \to a} f(x) = \infty$$

means that for every positive number M there is a positive number δ such that

$$0 < |x - a| < \delta \implies f(x) > M$$

Problem 1.5.2. Prove that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

Solution. Let M be a given positive number We want to find a number δ such that

$$0 < |x| < \delta \implies \frac{1}{x^2} > M$$

But

$$\frac{1}{x^2} > M \iff x^2 < \frac{1}{M} \iff \sqrt{x^2} < \sqrt{\frac{1}{M}} \iff |x| < \frac{1}{\sqrt{M}}$$

Let $\delta = 1/\sqrt{M}$, then

$$0 < |x| < \delta = \frac{1}{\sqrt{M}} \implies \frac{1}{x^2} > M$$

This shows that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

Definition 1.5.8.

$$\lim_{x \to a} f(x) = -\infty$$

if for every negative number N there is a positive number δ such that

$$0 < |x - a| < \delta \implies f(x) < N$$

Definition 1.5.9. Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that for every $\varepsilon > 0$ there is a corresponding number N such that

$$x > N \implies |f(x) - L| < \varepsilon$$

Definition 1.5.10. Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means that for every $\varepsilon > 0$ there is a corresponding number N such that

$$x < N \implies |f(x) - L| < \varepsilon$$

Problem 1.5.3. Prove that $\lim_{x\to\infty} \frac{1}{x} = 0$.

Solution. Given $\varepsilon > 0$, we want to find an N such that

$$x > N \implies \left| \frac{1}{x} - 0 \right| < \varepsilon$$

Since $x \to \infty$, we can that x > 0 in computing the limit. Then $1/x < \varepsilon \iff x > 1/\varepsilon$. Let $N = 1/\varepsilon$, so

$$x > N = \frac{1}{\varepsilon} \implies \left| \frac{1}{x} - 0 \right| = \frac{1}{x} < \varepsilon$$

Therefore, by definition,

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Definition 1.5.11. Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = \infty$$

means that for every positive number M there is a corresponding positive number N such that

$$x > N \implies f(x) > M$$

Similar definitions apply when the symbol ∞ is replaced by $-\infty$.

2 Derivatives

2.1 Derivatives and Rates of Change

Tangents

Definition 2.1.1. The **tangent line** of the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided that this limit exists.

If h = x - a, then

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Let s = f(t) be a **position function** that describes the motion of an object where s is the displacement of the object from the origin at time t. In the time interval from t = a to t = a + h the change in position is f(a + h) - f(a). The average velocity over this time interval is

average velocity =
$$\frac{\text{displacement}}{\text{time}} = \frac{f(a+h) - f(a)}{h}$$

The **velocity** (or **instantaneous velocity**) of the object at time t = a is the limit of the average velocities:

$$v(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Derivatives

Definition 2.1.2. The derivative of a function f at a number a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

if this limit exists.

The tangent line to y = f(x) at the point (a, f(a)) is the line through (a, f(a)) whose slope is equal to f'(a), the derivative of f at a. The equation of the tangent line in point-slope form is

$$y - f(a) = f'(a)(x - a)$$

Rates of Change

Suppose y is a quantity that depends on another quantity x. Thus y is a function of x and we write y = f(x). If x changes from x_1 to x_2 , then the change in x (also called the **increment** of x) is

$$\Delta x = x_2 - x_1$$

and the corresponding change in y is

$$\Delta y = f(x_2) - f(x_1)$$

The difference quotient

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

is called the average rate of change of y with respect to x over the interval $[x_1, x_2]$. The limit of these average rates of change is called the (instantaneous) rate of change of y with respect to x at $x = x_1$:

instantaneous rate of change =
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_1 \to x_2} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

We recognize this limit as being the derivative $f'(x_1)$. The derivative f'(a) is the instantaneous rate of change of y = f(x) with respect to x when x = a. If s = f(t) is a position function of a particle, then f'(a) is the rate of change of the displacement s with respect to time t. f'(a) is the velocity of the particle at time t = a. The **speed** of the particle is |f'(a)|, the absolute value of the velocity.

2.2 The Derivative as a Function

Definition 2.2.1. The derivative of a function f is the function

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Problem 2.2.1. Find the derivative of $f(x) = \sqrt{x}$.

Solution.

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} \right)$$
$$= \lim_{h \to 0} \frac{x+h-x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{\sqrt{x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

Notations

The following notations for the derivative of the function y = f(x) with respect to x are equivalent:

$$y' = f'(x) = \frac{dy}{dx} = \frac{d}{dx}f(x) = D_x f(x)$$

The symbols d/dx and D_x are called **differential operators** because they indicate the operation of **differentiation**, which is the process of calculating a derivative. The symbol dy/dx is called the Leibniz notation. We can rewrite the definition of the derivative in Leibniz notation in the form

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

The following notations for the value of the derivative of y = f(x) evaluated at the number a are equivalent:

$$y'(a) = f'(a) = \frac{dy}{dx}\Big|_{x=a} = \left[\frac{dy}{dx}\right]_{x=a}$$

Differentiable Functions

Definition 2.2.2. A function f is differentiable at a if f'(a) exists. It is differentiable on an open interval (a,b) (or (a,∞) or $(-\infty,a)$ or $(-\infty,\infty)$) if it is differentiable at every number in the interval.

Theorem 2.2.1. If f is differentiable at a, then f is continuous at a.

Proof. To prove that f is continuous at a, we want to show that

$$\lim_{x \to a} f(x) = f(a)$$

Given that f is differentiable at a so

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. Then

$$\lim_{x \to a} \left[f(x) - f(a) \right] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a) = f'(a) \cdot 0 = 0$$

and

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[f(a) + (f(x) - f(a)) \right] = \lim_{x \to a} f(a) + \lim_{x \to a} (f(x) - f(a)) = f(a) + 0 = f(a)$$

Therefore f is continuous at a.

Note that there are functions that are continuous but not differentiable. The function y = |x| is continuous at 0 but it is not differentiable at 0. Since

$$f'(0) = \lim_{h \to 0} \frac{|0+h| - |0|}{h}$$

if the limit exists. But

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$

$$\lim_{h \to 0^{+}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{+}} \frac{|h|}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1$$

then the limit does not exist so f'(0) does not exist. Thus y = |x| is differentiable at all x except 0.

Higher Order Derivatives

If y = f(x) is a differentiable function and its derivative y' = f'(x) is also a differentiable function, then the **second derivative** of y = f(x) is

$$y'' = f''(x) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$

f''(x) is the slope of the curve y = f'(x) at the point (x, f'(x)), which is the rate of change of the slope of the original curve y = f(x). In general, the second derivative is the rate of change of the rate of change. If s = s(t) is the position function of an object, then its first derivative is the velocity v(t) of the object as a function of time t:

$$v(t) = s'(t) = \frac{ds}{dt}$$

The instantaneous rate of change of velocity with respect to time is called the **acceleration** a(t) of the object. Thus the acceleration function is the derivative of the velocity function and is therefore the second derivative of the position function:

$$a(t) = v'(t) = \frac{dv}{dt} = s''(t) = \frac{d^2s}{dt^2}$$

In general, the *n*th derivative of f is obtained from f by differentiating n times. If y = f(x), we write

$$y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n}$$

Problem 2.2.2. Find the first and the second derivatives of $f(x) = x^3$.

Solution. The first derivative is

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$$
$$= \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2$$

The second derivative is

$$f''(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h} = \lim_{h \to 0} \frac{3(x^2 + 2hx + h^2) - 3x^2}{h} = \lim_{h \to 0} \frac{3x^2 + 6hx + 3h^2 - 3x^2}{h}$$
$$= \lim_{h \to 0} \frac{6hx + 3h^2}{h} = \lim_{h \to 0} (6x + 3h) = 6x$$

2.3 Basic Differentiation Formulas

The derivative of the constant function f(x) = c is

$$\frac{d}{dx}(c) = 0$$

Proof.

$$f'(x) = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0$$

Power Functions

$$\frac{d}{dx}(x) = 1$$

Proof.

$$f'(x) = \lim_{h \to 0} \frac{x + h - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1$$

The power rule: If n is a positive integer, then

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Proof. Let $f(x) = x^n$, then

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

We use the binomial theorem to expand $(x+h)^n$ then

$$f'(x) = \lim_{h \to 0} \frac{\left(x^n + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \dots + nxh^{n-1} + h^n\right) - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \dots + nxh^{n-1} + h^n}{h}$$

$$= \lim_{h \to 0} (nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \dots + nxh^{n-2} + h^{n-1})$$

$$= nx^{n-1}$$

because every term except the first has h as a factor and therefore approaches 0.

The power rule (general version): If n is any real number, then

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Problem 2.3.1. Differentiate f(x) = 1/x.

Solution.

$$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{d}{dx}x^{-1} = (-1)x^{-1-1} = -x^{-2} = -\frac{1}{x^2}$$

The **normal line** to a curve C at a point P is the line through P that is perpendicular to the tangent line at P. The constant multiple rule: If c is a constant and f is a differentiable function, then

$$\frac{d}{dx} \Big[cf(x) \Big] = c \, \frac{d}{dx} f(x)$$

Proof. Let g(x) = cf(x). Then

$$g'(x) = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h} = \lim_{h \to 0} c\left(\frac{f(x+h) - f(x)}{h}\right)$$
$$= c\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = c\frac{d}{dx}f(x)$$

The sum rule: If f and g are both differentiable, then

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

Proof. Let F(x) = f(x) + g(x). Then

$$\begin{split} F'(x) &= \lim_{h \to 0} \frac{f(x+h) + g(x+h) - [f(x) + g(x)]}{h} \\ &= \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h} \\ &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ &= \frac{d}{dx} f(x) + \frac{d}{dx} g(x) \end{split}$$

The difference rule: If f and g are both differentiable, then

$$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$$

Product and Quotient Rules

Let f(x) and g(x) be differentiable functions, then we have the product rule by Leibniz and the quotient rule.

Theorem 2.3.1 Product Rule.

$$\frac{d}{dx}[f(x)g(x)] = \left[\frac{d}{dx}f(x)\right]g(x) + f(x)\left[\frac{d}{dx}g(x)\right]$$

Proof.

$$\begin{split} \frac{d}{dx}[f(x)g(x)] &= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x) + f(x+h)g(x) - f(x+h)g(x)}{h} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x) + f(x+h)g(x+h) - f(x+h)g(x)}{h} \\ &= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} g(x) \right] + \lim_{h \to 0} \left[f(x+h) \frac{g(x+h) - g(x)}{h} \right] \\ &= \left[\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right] g(x) + \lim_{h \to 0} f(x+h) \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ &= \left[\frac{d}{dx} f(x) \right] g(x) + f(x) \left[\frac{d}{dx} g(x) \right] \end{split}$$

Theorem 2.3.2 Quotient Rule.

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{\left[\frac{d}{dx} f(x) \right] g(x) - f(x) \left[\frac{d}{dx} g(x) \right]}{[g(x)]^2}$$

Proof.

$$\begin{split} \frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] &= \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} = \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x+h)}{h \cdot g(x+h)g(x)} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x) - [f(x)g(x+h) - f(x)g(x)]}{h} \cdot \lim_{h \to 0} \frac{1}{g(x+h)g(x)} \\ &= \left(\lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} g(x) \right] - \lim_{h \to 0} \left[f(x) \frac{g(x+h) - g(x)}{h} \right] \right) \frac{1}{[g(x)]^2} \\ &= \left[\left(\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right) g(x) - f(x) \left(\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \right) \right] \frac{1}{[g(x)]^2} \\ &= \frac{\left[\frac{d}{dx} f(x) \right] g(x) - f(x) \left[\frac{d}{dx} g(x) \right]}{[g(x)]^2} \end{split}$$

Trigonometric Functions

Theorem 2.3.3.

$$\frac{d}{dx}\sin x = \cos x$$

Proof. We use the **angle sum identity** of the sine function

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

then we have

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

Note that we are taking the limit with respect to h so $\sin x$ and $\cos x$ are constants then we have

$$\frac{d}{dx}\sin x = \lim_{h \to 0} \left[\frac{\sin x(\cos h - 1)}{h} + \frac{\cos x \sin h}{h} \right] = \lim_{h \to 0} \frac{\sin x(\cos h - 1)}{h} + \lim_{h \to 0} \frac{\cos x \sin h}{h}$$
$$= \left(\lim_{h \to 0} \sin x\right) \left(\lim_{h \to 0} \frac{\cos h - 1}{h}\right) + \left(\lim_{h \to 0} \cos x\right) \left(\lim_{h \to 0} \frac{\sin h}{h}\right)$$
$$= (\sin x)(0) + (\cos x)(1) = \cos x$$

Theorem 2.3.4.

$$\frac{d}{dx}\cos x = -\sin x$$

Proof. We use the angle sum identity of the cosine function

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

then we have

$$\frac{d}{dx}\cos x = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \lim_{h \to 0} \left(\frac{\cos x (\cos h - 1)}{h} - \frac{\sin x \sin h}{h}\right)$$

$$= \left(\lim_{h \to 0} \cos x\right) \left(\lim_{h \to 0} \frac{\cos h - 1}{h}\right) - \left(\lim_{h \to 0} \sin x\right) \left(\lim_{h \to 0} \frac{\sin h}{h}\right)$$

$$= (\cos x)(0) - (\sin x)(1) = -\sin x$$

Theorem 2.3.5.

$$\frac{d}{dx}\tan x = \sec^2 x$$

Proof.

$$\frac{d}{dx}\tan x = \frac{d}{dx}\left(\frac{\sin x}{\cos x}\right) = \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x}$$
$$= \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

Then we can derive the following derivatives:

$$\frac{d}{dx}\csc x = \frac{d}{dx}\left(\frac{1}{\sin x}\right) = -\frac{\cos x}{\sin^2 x} = -\csc x \cot x$$

$$\frac{d}{dx}\sec x = \frac{d}{dx}\left(\frac{1}{\cos x}\right) = \frac{\sin x}{\cos^2 x} = \sec x \tan x$$

$$\frac{d}{dx}\cot x = \frac{d}{dx}\left(\frac{\cos x}{\sin x}\right) = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x} = -\csc^2 x$$

Chain Rule

We have the **chain rule** formulated by **James Gregory** (1638–1675) to find the derivative of a composite function.

Theorem 2.3.6 Chain Rule. If f and g are differentiable functions and F = f(g(x)), then F is differentiable and F' is

$$F'(x) = f'(g(x)) \cdot g'(x)$$

If y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

Proof. We know that by definition if y = f(x), then $\Delta y = f(a + \Delta x) - f(a)$ and

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(a)$$

Let ε be the difference between the difference quotient and the derivative, then we have

$$\lim_{\Delta x \to 0} \varepsilon = \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} - f'(a) \right) = f'(a) - f'(a) = 0$$

Thus for a differentiable function f, if we define $\varepsilon = 0$ when $\Delta x = 0$, then

$$\Delta y = f'(a)\Delta x + \varepsilon \Delta x$$

where $\varepsilon \to 0$ as $\Delta x \to 0$ and ε is a continuous function of Δx . Suppose that u = g(x) is differentiable at a and y = f(u) is differentiable at b = g(a). Then we have

$$\Delta u = g'(a)\Delta x + \varepsilon_1 \Delta x = [g'(a) + \varepsilon_1]\Delta x$$

where $\varepsilon_1 \to 0$ as $\Delta x \to 0$. Similarly,

$$\Delta y = f'(b)\Delta u + \varepsilon_2 \Delta u = [f'(b) + \varepsilon_2]\Delta u$$

where $\varepsilon_2 \to 0$ as $\Delta u \to 0$. We substitute the expression for Δu then we have

$$\Delta y = [f'(b) + \varepsilon_2][g'(a) + \varepsilon_1]\Delta x$$
$$\frac{\Delta y}{\Delta x} = [f'(b) + \varepsilon_2][g'(a) + \varepsilon_1]$$

Since $\Delta u \to 0$ as $\Delta x \to 0$, then $\varepsilon_1 \to 0$ and $\varepsilon_2 \to 0$ as $\Delta x \to 0$. Therefore,

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} [f'(b) + \varepsilon_2][g'(a) + \varepsilon_1] = f'(b)g'(a) = f'(g(a))g'(a)$$

thus the chain rule is proved.