Sample Properties & Simulation

But first, a gratuitous advertisement

http://scifundchallenge.org

What is #SciFund?

- Crowdfunding your research (avg project \$1500)
- ► An opportunity to try your hand at *outreach*
- Training in video and communication
- Signup by Oct. 8th

Loops: Simulation to Estimate Precision

Last time...

How does sample size influence precision of our estimate of the mean?

1) Create a vector of sample sizes you want to iterate over

```
n \leftarrow rep(1:400, times = 4)
```

2) Create a blank vector of means

```
m <- rep(NA, times = length(n))
```

length gets length of a vector

3) The For Loop

```
for (i in 1:length(n)) {
    m[i] <- mean(sample(population, size = n[i]))
}</pre>
```

3) The For Loop

```
for (i in 1:length(n)) {
    m[i] <- mean(sample(population, size = n[i]))
}</pre>
```

i is an index to iterate over

3) The For Loop

```
for (i in 1:length(n)) {
    m[i] <- mean(sample(population, size = n[i]))
}</pre>
```

- i is an index to iterate over
- ▶ the values of i are from the vector 1:length(n)

4) Plot it

```
plot(n, m, xlab = "size", ylab = "mean")
```


Write a for loop that calculates the first 15 numbers of the fibonacci sequence

1, 1, 2, 3, 5, 8, 13... (Challenge: do it with a starting vector of only NA's)

Write a for loop that calculates the first 15 numbers of the fibonacci sequence

 $1,\ 1,\ 2,\ 3,\ 5,\ 8,\ 13...$ (Challenge: do it with a starting vector of only NA's)

(hint - create a blank vector, but with the first two entries as 1)

Write a for loop that calculates the first 15 numbers of the fibonacci sequence

```
1,\ 1,\ 2,\ 3,\ 5,\ 8,\ 13... (Challenge: do it with a starting vector of only NA's )
```

```
(hint - create a blank vector, but with the first two entries as 1) (hint - aVec[i+1] is aVec[2] if i=1)
```

```
# start with a blank vector with some 1's
fibVec <- c(1, 1, rep(NA, 13))

# now loop
for (i in 3:15) {
    fibVec[i] <- fibVec[i - 1] + fibVec[i - 2]
}

fibVec

## [1] 1 1 2 3 5 8 13 21 34 55 89 144 233 377
## [15] 610</pre>
```

Sample Properties: Variance

How variable was that population?

$$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$

- ► Sums of Squares over n-1
- ▶ n-1 corrects for both sample size and sample bias
- $ightharpoonup \sigma^2$ if describing the population
- ▶ Units in square of measurement...

Sample Properties: Standard Deviation

$$s = \sqrt{s^2}$$

- Units the same as the measurement
- ▶ If distribution is normal, 67% of data within 1 SD
- ▶ 95% within 2 SD
- $ightharpoonup \sigma$ if describing the population

Sample Properties: Skew

Sample Properties: Skew

Right-Skewed

Sample Properties: Skew

Right-Skewed

Skew calculated using additional moments (think sums of squares, but cubed)

Sample Properties: Kurtosis

Platukurtic

Sample Properties: Kurtosis

Platukurtic Leptokurtic

Sample Properties: Kurtosis

Platukurtic Leptokurtic Normal

Sample Properties: Mode

This highest point on a frequency plot.

Sample Properties: Median

This middle value of a dataset.

Sample Properties: Median

We obtain the median by sorting and picking the middle value.

```
sort(bird$Count)
##
   [1] 1 1 1 1 1 2 2 2 2 3 3 4 5 7
  [15] 7 10 12 13 14 15 16 18 23 23 25 28 33 33
              67 77 128 135 148 152 173 173 230 282 297 300
## [29]
       59 64
## [43] 625
nrow(bird) #this is the # of rows in the data frame
## [1] 43
sort(bird$Count)[22]
```

Sample Properties: Median

The midpoint of the data-set is the 50th percentile!

Percentiles, Quantiles, Quartiles, and all that

- 1. Sort a data set
- 2. The index of the *ith* value minus 0.5 divided by n is its quantile
- 3. Quantile * 100 is the percentile
- 4. Quartiles are those points that divide data into 4 equal chunks (25th, 50th, and 75th percentile)

Percentiles, Quantiles, Quartiles, and all that

```
## [1] 1 1 1 1 1 2 2 2 2 3 3 4 5 7 ## [15] 7 10 12 13 14 15 16 18 23 23 25 28 33 33 ## [29] 59 64 67 77 128 135 148 152 173 173 230 282 297 300 ## [43] 625
```

Boxplots to Represent Quartile Information

boxplot(bird\$Count, horizontal = T)

Variation in Sample Estimates

Remember Samples and Populations?

How representative of our population are the estimates from our sample?

Remember Samples and Populations?

We've seen that we get variation in point estimates at any sample size

Consider a population with some distribution (rnorm, runif, rgamma)

- Consider a population with some distribution (rnorm, runif, rgamma)
- ▶ Think of the mean of one sample as an individual replicate

- Consider a population with some distribution (rnorm, runif, rgamma)
- ▶ Think of the mean of one sample as an individual replicate
- ▶ Take many (50) 'replicates' from this population of means

- Consider a population with some distribution (rnorm, runif, rgamma)
- ▶ Think of the mean of one sample as an individual replicate
- ▶ Take many (50) 'replicates' from this population of means
- ▶ What does the distribution of means look like? Use hist

- Consider a population with some distribution (rnorm, runif, rgamma)
- Think of the mean of one sample as an individual replicate
- ▶ Take many (50) 'replicates' from this population of means
- ▶ What does the distribution of means look like? Use hist
- How does it depend on sample size (within replicates) or distribution type?

Exercise: Variation in Estimation

- Consider a population with some distribution (rnorm, runif, rgamma)
- Think of the mean of one sample as an individual replicate
- ▶ Take many (50) 'replicates' from this population of means
- ▶ What does the distribution of means look like? Use hist
- How does it depend on sample size (within replicates) or distribution type?

Extra: Show the change in distributions with sample size in one figure.

Central Limit Theorem

The distribution of means converges on normality

Central Limit Theorem Simulation

```
set.seed(697)
n <- 3
mvec <- rep(NA, times = 100)
# simulate sampling events!
for (i in 1:length(mvec)) {
    mvec[i] <- mean(runif(n, 0, 100))
}
hist(mvec, main = "n=3")</pre>
```

Estimating Variation Around a Mean

Great, so, if we can draw many replicated means from a larger population, we can the standard deviation of an estimate!

Estimating Variation Around a Mean

Great, so, if we can draw many replicated means from a larger population, we can the standard deviation of an estimate!

This standard deviation of the estimate of the mean is the **Standard Error**.

Estimating Variation Around a Mean

Great, so, if we can draw many replicated means from a larger population, we can the standard deviation of an estimate!

This standard deviation of the estimate of the mean is the **Standard Error.**

But for a single study, we only have one sample...

A Bootstrap Simulation Approach to Standard Error

- Our sample is representative of the entire population
- ► Therefore, we can resample it *with replacement* for 1 simulated sample
- ▶ We use our sample size as the new sample size as well

We set the replace argument in sample = TRUE Try sampling from the bird data with replacement.

A Bootstrap Simulation Approach to Standard Error

```
sample(bird$Count, replace = T, size = nrow(bird))
### [1] 23 135    1 23 59    4 67 15    3    1 135    13 152 128
## [15] 67 148    7    1    3    2 67    1 23    3 300 64    2 282
## [29] 297    33 297    2 25 128 128 173 14 64    1 33    2 297
## [43] 282
```

```
sample(bird$Count, replace = T, size = nrow(bird))
##
   [1] 297 2 625 230 13
                        33 25
                                12 4
                                      28 297 2 12
  Γ15]
          1 18 28 297 1 282
                                              2 33 1
        3
                                15 300 148 23
## [29] 625 282 77 23 12 25 297
                                    2 33 230 135
                                                 67
                                                    18
                                2
## [43] 77
```

Standard Error

$$SE_{\bar{Y}} = \frac{s}{\sqrt{n}}$$

 \bar{Y} - sample mean s - sample standard deviation n - sample size

95% Confidence Interval and SE

► Recall that 95% of the data in a sample is within 2SD of its mean

95% Confidence Interval and SE

- ► Recall that 95% of the data in a sample is within 2SD of its mean
- ► So, 95% of the times we sample a population, the *true* mean will lie within 2SE of our estimated mean

95% Confidence Interval and SE

- ► Recall that 95% of the data in a sample is within 2SD of its mean
- ► So, 95% of the times we sample a population, the *true* mean will lie within 2SE of our estimated mean
- ► This is the 95% Confidence Interval

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

▶ Draw 20 simulated samples with n=10 from a normal distribution of mean 0

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

- ▶ Draw 20 simulated samples with n=10 from a normal distribution of mean 0
- ► Calculate the upper and lower confidence interval for each

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

- ▶ Draw 20 simulated samples with n=10 from a normal distribution of mean 0
- Calculate the upper and lower confidence interval for each
- ▶ Compare the 95% CIs to the true value of the mean

$$\bar{Y} - 2SE \leq \mu \leq \bar{Y} + 2SE$$

- ▶ Draw 20 simulated samples with n=10 from a normal distribution of mean 0
- Calculate the upper and lower confidence interval for each
- ▶ Compare the 95% CIs to the true value of the mean
- ► Extra: graph it with segments

Tip: To bind two vectors together as columns, use cbind

```
set.seed(697)
n <- 20
upperCIvec <- rep(NA, n)
lowerCIvec <- rep(NA, n)

# loop and calculate the 95% CI
for (i in 1:n) {
    samp <- rnorm(10)
    upperCIvec[i] <- mean(samp) + 2 * sd(samp)/sqrt(n)
    lowerCIvec[i] <- mean(samp) - 2 * sd(samp)/sqrt(n)
}</pre>
```

```
# examine the numbers
cbind(upperCIvec, lowerCIvec)[1:10, ]
##
       upperCIvec lowerCIvec
##
   [1,] 0.75237 -0.09638
   [2,] 0.39117 -0.66417
##
   [3,] 0.38746 -0.81584
##
##
   [4,] 0.67183 -0.14438
##
   [5,] 0.23227 -0.30878
##
   [6,] -0.15508 -1.25684
##
   [7,] 0.28960 -0.41992
##
   [8,] 0.29285 -0.83584
##
   [9,] 0.46890 -0.18128
## [10,] -0.05229 -0.84528
```


 Many SEs and CIs of estimates have formulae and well understood properties

- Many SEs and CIs of estimates have formulae and well understood properties
- ► For those that do not, we can bootstrap the SE of any estimate e.g., the median

- Many SEs and CIs of estimates have formulae and well understood properties
- ► For those that do not, we can bootstrap the SE of any estimate e.g., the median
- Bootstrapped estimates (mean of simulated replicates) can be used to assess bias

- Many SEs and CIs of estimates have formulae and well understood properties
- ► For those that do not, we can bootstrap the SE of any estimate e.g., the median
- Bootstrapped estimates (mean of simulated replicates)
 can be used to assess bias
- Bootstrapping is not a panacea requires a good sample size to start