Nguyễn Đăng Quang

CHAPTER 2: THE LINK LAYER & ETHERNET

Contents

- Link layer functions and Terminologies
- Ethernet
- CSMA/CD
- Ethernet network devices
- Internetworking devices

Link Layer Functions

- Relies upon the physical layer to deliver a frame to a neighbor connected by physical link.
- The hosts (stations) and routers in the communication path are called *nodes*.
- The channels (wired, wireless or optical) connecting adjacent nodes along the path are called *links*.
- Data is encapsulated in a layer-2 packet called a frame.

MAC & LLC Sublayers

Multiple Access Protocols

- There are two types of links:
 - Point-to-point (PPP) and,
 - Broadcast

MAC Protocols

- 1. Channel Partitioning,
- 2. Random Access,
- 3. Token Ring.

Channel Partitioning

- TDMA

FDMA

Shard Ethernet & WLAN Random Access

- In these environment, each station transmits at the full link rate (baseband), there is no a priori coordination among stations → collisions are a regular occurrence.
- Random access MAC protocols:
 - CSMA,
 - CSMA/CD (Ethernet 802.3)
 - CSMA/CA (Ethernet 802.11)

ETHERNET

Timeline

- 1973 Documented the invention of Ethernet, building on the ALOHAnet protocol (2.94Mbps),
- 1978 Xerox developed X-Wire, a 10 Mbps Ethernet running on a coaxial cable,
- 1979 Intel, DEC, Xerox jointly develop an Ethernet specification based on X-Wire. This group was called DIX.
- 1983 802.3 Specification approved by IEEE
- 1984 ISO adopted IEEE 802.3
- 1985 Twisted-pair Ethernet Hub
- 1987 3COM developed intelligent switching hubs
- 1992 Fast Ethernet (100Mbps)

Topologies

Coaxial Cable Star Topology Switch/hub

CSMA/CD

Carrier Sense Multiple Access with Collision Detection

	Action
Step 1	The Network Interface Card (NIC) receives a datagram from the network layer and creates a frame
Step 2	If the NIC senses, via CSMA, that the channel is not being used, it begins sending a frame. If the channel is busy, it waits for an idle channel and then transmits
Step 3	If the NIC transmits the entire frame without detecting a collision, the transmission is successful; if the NIC detects a collision, via CD, while transmitting, the transmission is aborted and a jam signal, 48 bits in length, is sent to ensure that all other transmitters are aware of the collision.
Step 4	After aborting, the NIC enters what is known as <i>Exponential Backoff</i> , which is in essence an algorithm to produce a random waiting period, and then returns to step 2

Ethernet (DIXv2) & 802.2

Ethernet Network & Devices

- 10BASE-5
- 10BASE-2
- 10BASE-T
- Fast Ethernet
- Gigabit Ethernet (GbE)

Ethernet Hubs

Ethernet Cables & Connectors

Name	Rate (Mbps)	Max. Length	Cable
10BASE5	10	500 m (coax)	Coax
10BASE2	10	185 m (coax)	Coax
1BASE-T	1	250 m	UTP Cat 3
10BASE-T	10	100 m	UTP Cat 3
10BASE-FL	10	2000 m (MMF)	MMF
100BASE-TX (2p)	100	100 m (cat 5)	UTP Cat 5
100BASE-T4 (4p)	100	100 m (cat 3)	UTP Cat 3
100BASE-FX	100	MMF 2 km, SMF 10km	MMF/SMF
1000BASET (4p)	1,000	100 m (Cat 5e)	UTP Cat 5e
10GBASET (4p)	10,000	100 m	UTP Cat 6 or better

Note: SMF stands for single mode fiber and MMF for multi-mode fiber.

Cat-7 cables & RJ-45 connector

T568B

Pin	T568B Pair	Wire	T568B Color	Pins on plug face (jack is reversed)
1	2	tip	white/orange stripe	22
2	2	ring	orange solid	Pin Position
3	3	tip	white/green stripe	- 76 - 54 - 32
4	1	ring	blue solid	4
5	1	tip	white/blue stripe	
6	3	ring	green solid	
7	4	tip	white/brown stripe	
8	4	ring	brown solid	

T568A vs. T568B

8P8C Wiring (TIA/EIA-568-A T568A)

Pin	Pair	Wire	Color
1	3	1	White/green
2	3	2	green
3	2	1	White/orange
4	1	2	blue
5	1	1	white/blue
6	2	2	orange
7	4	1	white/brown
8	4	2	o brown

8P8C Wiring (TIA/EIA-568-B T568B)

Pin	Pair	Wire	Color
1	2	1	White/orange
2	2	2	orange
3	3	1	white/green
4	1	2	o blue
5	1	1	white/blue
6	3	2	green
7	4	1	white/brown
8	4	2	O brown

EIA/TIA T568B Straight Through Diagram

EIA/TIA T568B Crossover Diagram

Straight-through vs. Cross-over

Gigabit Ethernet

Name	Rate (Gbps)	Max. Length	Cable
1000BASET	1	100 m	Cat 5e
1000BASESX	1	Up to 550 m or laser-optimized multimode fiber (OM3) optic link spans up to 1 km	MMF: a single lane in each direction
1000BASELX	1	Up to 550 m over MMF or 10 km over SMF	MMF/SMF: a single lane in each direction
1000BASELH	1	Up to 100 km over SMF	MMF/SMF: a single lane in each direction
10GBASE-T	10	Up to 100 m	Cat 5e or better; 4 pairs
10GBASE-LX4	10	Up to 300 m over MMF or 10 km over SMF	MMF/SMF: a single lane in each direction
10GBASE-LR	10	Up to 10 km over SMF	SMF: a single lane (fiber) in each direction
10GBASE-ER	10	Up to 40 km over SMF	SMF: a single lane in each direction
10GBASE-CX4	10	15 m	Twin axial copper
10GBASE-SR	10	Up to 300 m over MMF	MMF: a single lane in each direction
10GBASE-ZR	10	Up to 80 km over SMF	SMF: a single lane in each direction
40GBASE-KR4	40	Up to 1 m over a backplane	Backplane copper
40GBASE-CR4	40	Up to 7 m over copper cable	Twin axial copper cable
40GBASE-SR4	40	Up to 100 m over OM3 MMF or 125 m over OM4 MMF	MMF: four lanes in each direction
40GBASE-LR4	40	Up to 10 km over SMF	SMF with 4-wavelength WDM, a single lane in each direction
100GBASE-CR10	100	Up to 7 m over copper cable	Twin axial copper cable
100GBASE-SR10	100	Up to 100 m over OM3 MMF or 125 m over OM4 MMF	MMF: ten lanes in each direction
100GBASE-LR4	100	Up to up to 10 km over SMF	SMF with 4-wavelength WDM, a single lane in each direction
100GBASE-ER4	100	Up to Up to 40 km over SMF	SMF with 4-wavelength WDM, a single lane in each direction

Single-mode and Multi-mode Fiber

SMF:

MMF:

Optical Fiber structure

Ten Gigabit Ethernet (10G)

- Commonly employed in an organization's backbones,
 Wide/Metropolitan Area Networks (WAN/MAN) or data centers.
- Does not support CSMA/CD, but works only in conjunction with a switch.

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85µ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3µ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5µ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

Collision Domain

A part of a network where packet collisions can occur

Collision Domain

Collision Domain

Expand network with Hub will enlarge collision domain

Internetworking Devices

Expanding network with internetworking devices avoids widening collision domain

Bridge

- Learning
- Filtering
- Forwarding

Router

Cisco Router

Network	Interface
123.21.1.0	FEO
123.21.3.0	FEO
123.21.5.0	FE1