Low-Voltage Quad Differential Receiver

The MC100LVEL17 is a low-voltage, quad differential receiver. The device is functionally equivalent to the E116 device with the capability of operation from either a –3.3V or +3.3V supply voltage. The MC100EL17 is pin and functionally equivalent to the MC100LVEL17, but is specified for operation at the standard 100E ECL voltage supply.

The LVEL17 provides a VBB output for either single-ended use or as a DC bias for AC coupling to the device. The VBB pin should be used only as a bias for the LVEL17 as its current sink/source capability is limited. Whenever used, the VBB pin should be bypassed to ground via a $0.01\mu f$ capacitor.

Under open input conditions, the D input will be biased at V_{CC}/2 and the D input will be pulled down to V_{EE}. This operation will force the Q output LOW and ensure stability.

- 325ps Propagation Delay
- · High Bandwidth Output Transitions
- >2000V ESD Protection
- Operates from -3.3/-4.5V (or +3.3/+5.0V) Supply

Logic Diagram and Pinout: 20-Lead SOIC (Top View)

MC100LVEL17 MC100EL17

DW SUFFIXPLASTIC SOIC PACKAGE
CASE 751D-04

PIN NAMES

Pins	Function
Dn	Data Inputs
Qn	Data Outputs
V _{BB}	Reference Voltage Output

MC100LVEL17 DC CHARACTERISTICS ($V_{EE} = -3.0V$ to -3.8V; $V_{CC} = GND$) Note 1

		–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
IEE	Power Supply Current		26	31		26	31		26	31		27	33	mA
V _{BB}	Output Reference Voltage	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
ΊΗ	Input HIGH Current			150			150			150			150	μΑ
I _{INL}	Input LOW Current Dn Dn	0.5 -300			0.5 -300			0.5 -300			0.5 -300			μΑ

1. All other DC characteristics are the same as Standard 100K ECL.

4/95

REV 2

MC100LVEL17 AC CHARACTERISTICS ($V_{EE} = -3.0V$ to -3.8V; $V_{CC} = GND$)

		-40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
^t PLH ^t PHL	Propagation Delay Diff D to Q S.E.	330 280		530 580	340 290		540 590	350 300		550 600	360 310		560 610	ps
^t SKEW	Skew Output-to-Output ¹ Part-to-Part (Diff) ¹ Duty Cycle (Diff) ²			75 200 25			75 200 25			75 200 25			75 200 25	ps
VPP	Minimum Input Swing ³	150			150			150			150			mV
VCMR	Common Mode Range ⁴ Vpp < 500mV Vpp ≥ 500mV	-2.0 -1.8		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	-2.1 -1.9		-0.4 -0.4	V
t _r	Output Rise/Fall Times Q (20% – 80%)	280		550	280		550	280		550	280		550	ps

- Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
 Duty cycle skew is the difference between a TPLH and TPHL propagation delay through a device.
- 3. Minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40.
- 4. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between Vppmin and 1V. The lower end of the CMR range varies 1:1 with Vpp. The numbers in the spec table assume a nominal $V_{EE} = -3.3V$. Note for PECL operation, the V_{CMR} (min) will be fixed at $3.3V - |V_{CMR}$ (min)|.

MC100EL17 DC CHARACTERISTICS ($V_{EE} = -4.2V$ to -5.5V; $V_{CC} = GND$) Note 1

		–40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
IEE	Power Supply Current		26	31		26	31		26	31		27	33	mA
V _{BB}	Output Reference Voltage	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
lн	Input HIGH Current			150			150			150			150	μΑ
I _{INL}	Input LOW Current Dn Dn	0.5 -300			0.5 -300			0.5 -300			0.5 -300			μА

^{1.} All other DC characteristics are the same as Standard 100K ECL.

MC100EL17 AC CHARACTERISTICS ($V_{EE} = -4.20V$ to -5.5V; $V_{CC} = GND$)

		-40°C			0°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Unit									
^t PLH ^t PHL	Propagation Delay Diff D to Q S.E.	330 280		530 580	340 290		540 590	350 300		550 600	360 310		560 610	ps
^t SKEW	Skew Output-to-Output ¹ Part-to-Part (Diff) ¹ Duty Cycle (Diff) ²			75 200 25			75 200 25			75 200 25			75 200 25	ps
V _{PP}	Minimum Input Swing ³	150			150			150			150			mV
VCMR	Common Mode Range ⁴ Vpp < 500mV Vpp ≥ 500mV	-3.2 -3.0		-0.4 -0.4	-3.3 -3.1		-0.4 -0.4	-3.3 -3.1		-0.4 -0.4	-3.3 -3.1		-0.4 -0.4	V
t _r	Output Rise/Fall Times Q (20% – 80%)	280		550	280		550	280		550	280		550	ps

- 1. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
- Duty cycle skew is the difference between a TPLH and TPHL propagation delay through a device.
- Minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈40.
- The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between Vppmin and 1V. The lower end of the CMR range varies 1:1 with VEE. The numbers in the spec table assume a nominal $V_{EE} = -4.5V$. Note for PECL operation, the V_{CMR} (min) will be fixed at $5.0V - |V_{CMR}$ (min)|.

MOTOROLA 4-2

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and was negligent regarding the design or manufacture of the part. Motorola and Parameters of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 **INTERNET**: http://Design=NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC100LVEL17/D

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com