

数字示波器的使用

理学院物理实验中心 廖飞

背景介绍

实验目的

- 1. 了解示波器的基本原理
- 2. 掌握数字示波器的使用
- 3. 学会使用示波器测量电信号参数(电压、频率等)

示波器原理

- 数字示波器 (Digital oscilloscope) ——是集成数据采集,A/D转换,软件编程等一系列技术的高性能示波器。
- 基本工作原理:

- 多功能信号发生器
- 电路板

数字示波器 -测量方式1

幅度轴分度值

时间轴分度值

1.手动测量: 分度值x格数

直观调整—scale 对齐调整--position

y = ASin(wt + B)

数字示波器—测量方式2、

2.Measure measure---电压测量/时间测量

多功能按键

3.measure---全部测量

数字示波器—测量方式4

测量对象

数字示波器—测量方式4

测量对象

实验仪器——数字示波器

CH1分度值 CH2分度值时间轴分度值

手动读数:分度值x格数

自动读数: measure/光标测量/所有参数

实验仪器——信号发生器

②频率/幅度调节

①波形形状

②调节通道选择

③输出使能

③输出端口

实验内容及步骤

1. 熟悉数字存储示波器及多功能函数信号发生器各旋钮、各按键 功能.

2. 调节出正弦波(10khz,5v)

交流信号测量

用手动调节和自动调节(MEASURE键)两种方法测量此波形的周

期和幅度.

	电压vp-p值				周期(T)值			
	手动调节			自动调节	手动调节		自动调节	
	分度值/	格数	测量值	测量值	分度值/	格数	测量值	测量值
	v/div		/v	/v	Us/div		/ms	/ms
正弦波								

3.测量一节干电池的电压.

直流信号测量

	分度/v/div	格数	测量值/v	DC耦合下测量
一节干电池电压/v				设置零点 合适的分度值

实验内容及步骤

4. 应用光标测量RC电路 (如图2.14.9) 中 U_{RC} 和 U_{C} 的值, 用光标法和李萨如图形法测量U_{RC}和U_C的位相差△Φ. 电路信号测量

$$\Delta \Psi = 2\pi \frac{\Delta t}{T}$$

光标法	U _c /v	U _{RC} /v	△t/us/	T/ms	$ riangle \Phi$ /rad
李萨如图形法	U a/(v	U₅/v	$\triangle\Phi$ /rad		

实验内容及步骤

 Δt

讨论与拓展

- 1.分析并解释相位差产生原因。
- 2.示波器测定信号参数的误差原因有哪些?
- 3.数字示波器的重要参数及其应用讨论
- 4.数字示波器的数字化的器件是什么?工作原理如何? 5.怎么使用示波器测量模拟信号(如光电、生物电、化学电 极、材料磁性/电参数、机械振动等信号的具体参数)? 请设 计实验方案,给出方案原理图、测量原理、有条件的可给出 具体测量公式。

说明:

1-5题中选择1-2个讨论——做在讨论页

模拟带宽

最大存储深度

MSO8064

模拟带宽 600MHz

模拟通道数

4

最高实时采样率

10GSa/s

最大存储深度

500Mpts

MSO8104

模拟带宽

1GHz

模拟通道数

4

最高实时采样率

10GSa/s

最大存储深度

500Mpts

MSO8204

模拟带宽

2GHz

模拟通道数

4

最高实时采样率

10GSa/s

最大存储深度

500Mpts