

Facultad de Ingeniería y Ciencias Agropecuarias Ingeniería en Biotecnología IBT743-Bioinformática

Período 2017-2

1. Identificación

Número de sesiones: 48 Número total de horas de aprendizaje: 120 Créditos – malla actual: 4.5

Profesor: Fabio Marcelo Idrovo Espín

Correo electrónico del docente: f.idrovo@udlanet.ec Coordinador: Vivian Morera

Campus: Queri

Pre-requisito: IBT404 Co-requisito:

Paralelo: 1

Tipo de asignatura:

Optativa	
Obligatoria	Χ
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	Χ
Unidad 3: Titulación	

Campo de formación:

Campo de formación							
Fundamentos teóricos	Praxis profesiona I	Integración de saberes, contextos y cultura	Comunicación y lenguajes				
	X						

2. Descripción del curso

La bioinformática es la aplicación de la tecnología informática para el estudio de la información biológica. Durante la última década los costos de secuenciación de genomas ha disminuido de forma importante, actualmente la información contenida en bases de datos genómicas de fácil acceso permite que la investigación bioinformática se desarrolle prácticamente sin límites, contribuyendo a una mejor comprensión de los procesos

biológicos, reduciendo los costos y el tiempo de una investigación estrictamente experimental en laboratorio.

La asignatura se enfoca al estudio y análisis de las secuencias de nucleótidos y aminoácidos de diferentes organismos con la finalidad de predecir funciones biológicas de esas secuencias. Entre diferentes organismos en cambio puede encontrarse relaciones evolutivas entre los mismos.

3. Objetivo del curso

Analizar e interpretar información obtenida mediante biología molecular, a través de herramientas bioinformáticas.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarroll (carrera)
 Examina bases de datos biológicas y de secuencias de ácidos nucleicos y protéicas Aplica la base teórica de la bioinformática para el análisis de secuencias y filogenia de especies 	1. Investiga, innova, crea productos y procedimientos enfocados en su aplicación, con pensamiento crítico, a través del uso de herramientas multidisciplinarias biotecnológicas.	Inicial () Medio (X) Final ()

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1	35%
Promedio de controles	
de lectura y pruebas 1	15%
Examen 1	20%
Reporte de progreso 2 Promedio de controles	35%
de lectura y pruebas 2	15%
Examen 2	20%
Evaluación final	30%

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el **EXAMEN DE RECUPERACIÓN**, es requisito que el estudiante haya asistido **por lo menos al 80% del total de las sesiones programadas** de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

Las metodologías y mecanismos de evaluación deben explicarse en los siguientes escenarios de aprendizaje:

6.1. Escenario de aprendizaje presencial.

Cada unidad se desarrollará mediante la exposición del tema de clase en Power Point. Presentaciones en clase (P). Los estudiantes realizarán análisis bioinformáticos con los softwares indicados y las secuencias que se les asigne. Análisis Bioinformáticos (AB).

6.2. Escenario de aprendizaje virtual.

Los artículos que se encuentran especificados en el presente sílabo y el aula virtual pueden ser descargados fácilmente por los estudiantes. Los estudiantes deben leer cada artículo correspondiente a cada unidad y responderán cuestionarios de cada artículo. Lecturas (L)

6.3. Escenario de aprendizaje autónomo.

Los estudiantes trabajarán en clase con los softwares indicados y las secuencias que se les asigne. Ejercicios de análisis bioinformáticos (EB).

7. Temas y subtemas del curso

RdA	Temas		Subtemas				
		1.1	Introducción	а	la		
		Bioin	formática				
1		1.2 C	onceptos básicos				
1	Introducción a la	1.2.1	Codon usage bias				
	Bioinformática básica	1.2.2	RSCU				
		1.2.3	Mapas genéticos	lapas genéticos			

		1.2.4 Homología, similitud, genes ortólogos y parálogos
2	II Formatos de bases de datos y softwares bioinformáticos	2.1 Formatos de bases de datos bioinformáticos y softwares bioinformáticos 2.2 Softwares bioinformáticos 2.2.1 Softwares útiles y plataformas bioinformáticas 2.2.1.1 GENEVESTIGATOR 2.2.1.2 WEBLOGO 2.2.1.3 Mega6, ejercicios prácticos
2	III Bases de datos de secuencias	3.1 Bases de datos bioinformáticas 3.1.1 ENTREZ (GenBank) 3.1.2 Otras bases de datos importantes
	Progreso 1	
1, 2	IV Alineamiento de secuencias	4.1 Principios de búsqueda de similitud en secuencias 4.1.1 Distancias evolutivas 4.1.1.1 Distancia p, ejercicios 4.1.1.2 Distribución de ND 4.1.1.3 Cálculo de p con MEGA 4.1.1.4 Matriz de porcentaje de identidad 4.1.1.5 Distancia Gamma 4.1.2 Modelos de substitución de nucleótidos 4.1.2.1 Cambios en el tiempo 4.1.3 Modelo de Jukes-Cantor 4.1.3.1 Distancia de Jukes-Cantor Alineamientos 4.1.4 Modelo de Kimura 4.1.5 Otros modelos 4.2 Matriz de substitución de amino ácidos 4.2.1 Alineamiento global, ejercicios 4.2.1.1 Programación dinámica: El algoritmo 4.2.2.2 Matriz de Substitución S 4.2.2.3 Matriz de Substitución PAM

		4.2.2.4 Matriz BLOSUM 62
		4.2.3 Algoritmo de secuencia de
		alineamiento múltiple
		4.2.3.1 CLUSTAL W
		4.2.3.2 MUSCLE
		Prueba escrita
		4.2.3.3 CLUSTAL W vs. MUSCLE
		4.2.4 Algoritmos de
		alineamiento de secuencias por
		pares
		4.3 BLAST
		4.3.1 Valor E
		4.3.2 Paquete BLAST
		4.3.3 Ejercicio
		4.4 PSY BLAST
	Progreso 2	
	7.10g.030 Z	5.1 Revisión de Evolución
		5.1.1 Postulados de la evolución
		por selección natural
		5.1.2 Especiación, gradualismo
		filético
		5.1.3 Equilibrio puntual
		5.1.4 Teoría de Evolución
		neutral
		5.2 Evolución molecular
		5.2.1 Reloj molecular
		5.3 Filogenética
		5.3.1 Jerarquía de Lineo
		5.4 Árboles filogenéticos
1, 2	V	5.4.1 Cambios evolutivos en
1, 2	Filogenética	secuencias
		5.5 Selección del modelo de
		evolución
		5.6 Inferencia filogenética
		5.6.1 Métodos de distancia
		5.6.1.1 UPGMA
		5.6.1.2 NJ
		5.6.2 Métodos de caracteres
		5.6.2.1 MP
		5.6.2.2 ML
		5.6.3 Determinación de la
		confiabilidad del árbol
	VI	filogenético
1, 2		6.1 Predicción de genes
	Predicción de genes	6.1.1 Cadenas de Markov

		6.1.1.1 Modelos ocultos de	
		Markov	
		6.1.2 Augustus	
		6.1.3 GENESCAN ejercicios	
		6.1.4 FGenesh	
		6.1.5 Predicción de	
		comparaciones	
		6.2 Notación de genes y	
		proteínas, ejercicio	
		7.1 Bioinformática estructural	
	VII	7.2 Revisión de conceptos	
1,2	Datos estructurales	7.2.1 Proteínas	
	Datos estructurales	Predictores de estructuras	
		proteicas	
1,2	VIII	8. Aplicaciones bioinformáticas	
1,2	Aplicaciones	6. Apricaciones biolinormaticas	
Evaluación final			

8. Planificación secuencial del curso

Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
I Introduc-ción a la Bioinformática básica	1.1 Introducción a la Bioinformática 1.2 Conceptos básicos 1.2.1 Codon usage bias	AB P L	Lectura de artículo: Kumar, S., Dudley, J. (2007). Bioinformatics software for biologists in the genomics era. Bioinformatics 23(14):1713- 1717. doi:10.1093/bioinformatics/bt m239	Control de lectura, prueba
	1.2.2 RSCU 1.2.3 Mapas genéticos 1.2.4 Homología, similitud, genes ortólogos y parálogos	AB P	AB EB	Prueba
	2.1 Formatos de bases de datos	AB	АВ	

bioinformático s y softwares bioinformático s 2.2 Softwares bioinformático s 2.2.1 Softwares útiles y plataformas bioinformática s 2.2.1.1 GENEVESTI- GATOR 2.2.1.2 WEBLOGO	P		
2.2.1.3 Mega6, ejercicios prácticos	AB P	ЕВ	Prueba acumulativa de conocimientos
3.1 Bases de datos bioinformática s	P L	Lectura de artículo: Narayanan, B., Westbrook, J., Ghosh, S., Petrov, A., Sweeney, B., Zirbel, C., Leontis, N., Berman, H. (2013). The Nucleic	Control de lectura, prueba

3.1.1 ENTREZ (GenBank) 3.1.2 Otras bases de datos importantes 4.1 Principios de búsqueda		Acid Database: new features and Capabilities. Nucleic Acids Research 42: D114–D122. doi:10.1093/nar/gkt980	
de similitud en secuencias 4.1.1 Distancias evolutivas 4.1.1.1 Distancia p, ejercicios 4.1.1.2 Distribución de ND 4.1.1.3 Cálculo de p con MEGA 4.1.1.4 Matriz de porcentaje de identidad 4.1.1.5 Distancia Gamma 4.1.2 Modelos de	P L	Lectura de artículo: Daugelaite, J., O' Driscoll, A., Sleator, R. (2013). An Overview of Multiple Sequence Alignments and Cloud Computing in Bioinformatics.	Control de lectura, prueba

substitución
de
nucleótidos
4.1.2.1
Cambios en el
tiempo
4.1.3 Modelo
de Jukes-
Cantor
4.1.3.1
Distancia de
Jukes-Cantor
Alineamientos

Semana 8-14

	Schlana 0-14						
# Rd A	Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega		
		4.1.4 Modelo de Kimura 4.1.5 Otros modelos 4.2 Matriz de substitución de amino ácidos	AB 1.1 P	ЕВ			

4.2.1 Alineamiento global, ejercicios 4.2.1.1 Programación dinámica: El algoritmo 4.2.2.2 Matriz de Substitución S 4.2.2.3 Matriz de Substitución PAM			
4.2.2.4 Matriz BLOSUM 62 4.2.3 Algoritmo de secuencia de alineamiento múltiple 4.2.3.1 CLUSTAL W 4.2.3.2 MUSCLE Prueba escrita	AB P 1.2	EB	

		I	I .
4.2.3.3			
CLUSTAL W vs.			
MUSCLE			
4.2.4			
Algoritmos de			
alineamiento			
de secuencias			
por pares			
4.3 BLAST			
4.3.1 Valor E			
4.3.2 Paquete			
BLAST			
4.3.3 Ejercicio			
4.4 PSY BLAST			
5.1 Revisión de			
Evolución			
5.1.1			
Postulados de			
la evolución			
por selección	AB		
natural	Р	EB	
5.1.2	1.3		
Especiación,			
gradualismo			
filético			
5.1.3 Equilibrio			
puntual			

Evo neu 5.2 mo 5.2 mo			
5.3 de 5.4 filo 5.4 evc sec 5.5 del evc 5.6 filo 5.6 de 5.6 UP 5.6 5.6	ogenética 3.1 Jerarquía Lineo 4 Árboles ogenéticos 4.1 Cambios olutivos en cuencias 5 Selección I modelo de olución 6 Inferencia ogenética 6.1 Métodos e distancia 5.1.1 PGMA 6.1.2 NJ 6.2 Métodos e caracteres 6.2.1 MP	Lectura de artículo: Yang, Z., Rannala, B. (2012). Molecular phylogenetics: principles and practice. Nature reviews. 13:303-314. doi:10.1038/nrg3186	Control de lectura, prueba

	5.6.2.2 ML			
	5.6.3 Determinación de la confiabilidad del árbol filogenético	AB 1.5 P	EB	
		1.6		

Semana 15-16

# Rd	Tema	Sub tema	Actividad/ metodología/clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega	
A		6.1 Predicción de genes 6.1.1 Cadenas de Markov 6.1.1.1 Modelos ocultos de Markov 6.1.2 Augustus 6.1.3 GENESCAN ejercicios 6.1.4 FGenesh	P L 1.7	Lectura de artículo: Yandel, M., Ence, E. (2012). A beginner's guide to eukaryotic genome annotation. Nature reviews. 13:329-342. doi:10.1038/nrg3174	Control de lectura, prueba	

6.1.5 Predicción de comparaciones 6.2 Notación de genes y proteínas, ejercicio			
7.1 Bioinformática estructural 7.2 Revisión de conceptos 7.2.1 Proteínas 7.3 Predictores de estructuras proteicas 8. Aplicaciones bioinformática s	P L 1.8	Lectura de artículo: Lahti, J., Tang, G., Capriotti, E., Liu, T., Altman, R. (2012). Bioinformatics and variability in drug response: a protein structural perspective. J. R. Soc. Interface. 9:1409–1437. doi:10.1098/rsif.2011.0843	Control de lectura, prueba
	1.9		

9. Normas y procedimientos para el aula

- En base a lo establecido en el Reglamento del Estudiante se consideran faltas graves aquellas conductas que atentan contra los Principios y Valores de la Universidad, y de acuerdo con los Valores de la Universidad referidos a la Conducta ética (honestidad), la copia en alguna evaluación calificada se considerará un acto deshonesto. Se retirará la evaluación del alumno que sea sorprendido copiando, se le asignará la más baja calificación posible y se notificará a la Coordinación de Carrera y posteriormente a la Dirección de Servicios Estudiantiles para la sanción respectiva.
- Se permitirá el acceso al aula hasta 10 (diez) minutos del inicio de la hora de clase.
- Las inasistencias solo se justificarán cuando estén debidamente sustentadas en la Coordinación de Carrera.
- Las clases por cada paralelo son únicas, si un estudiante no puede asistir a una clase programada normalmente según el horario establecido, no podrá recuperarla luego en el otro paralelo y se considerará como inasistencia.
- Bajo ninguna circunstancia se aceptará tomar una evaluación de alumnos de un paralelo en otro que no les corresponde.
- No se concederán justificaciones previas para ausentarse a una clase programada normalmente según el horario establecido.
- Las tareas deben ser presentadas por los estudiantes en la fecha y hora que se hayan asignado previamente para su recepción. No habrá recepción extemporánea salvo justificación debidamente sustentada.
- El uso de celulares y tablets queda prohibido en clase.
- El alumno que interfiera el correcto desarrollo de la clase será amonestado verbalmente una única vez, si reincide se solicitará que el alumno abandone el aula.
- Cualquier novedad será registrada en el diario temático por parte del docente como constancia de la misma.
- No se brindará ningún tipo de asesoría en tareas, trabajos, consultas, monografías de otra asignatura.
- Se informará a todos los alumnos el primer día de clase sobre estas observaciones generales, los estudiantes abajo firmantes las comprenden y acepta como constancia.

10. Referencias bibliográficas

10.1. Principales.

Lesk, A. (2008), Introduction to Bioinformatics, 3era edición. Oxford: Oxford University Press.

Bioinformatics

Introduction to bioinformatics

por Lesk, Arthur M.

Formato:

Extracto: Introduction to bioinformatics Lesk, Arthur M.

Disponible: 1

10.2. Referencias complementarias.

Keith, J. (2008). Bioinformatics, Data, Sequence Analysis and Evolution. Volume I. New Jersey: Humana Press.

Bioinformatics: Data, sequence analysis and evolution

por Keith, Jonathan M., ed.

Formato:

Extracto: Bioinformatics: Data, sequence analysis and evolution Keith,

Jonathan M., ed. **Disponible**: 1

Keith, J. (2008). Bioinformatics, Structure, Function and Applications. Volume II. New Jersey: Humana Press.

Bioinformatics: structure, function and applications

por Keith, Jonathan M. ed.

Formato:

Extracto: Bioinformatics: structure, function and applications Keith, Jonathan

M. ed.

Disponible: 2

11. Perfil del docente

Nombre del docente: Fabio Idrovo

Químico, Universidad Central del Ecuador.

Maestro en Ciencias en Biotecnología Agrícola. UACH, Texcoco Edo. México, México. Doctor en Ciencias Biológicas, Biotecnología. CICY, Mérida Edo. Yucatán, México.

Biotecnología vegetal-bioinformática

f.idrovo@udlanet.ec

3981000 ext.232

Atención a estudiantes

Días por definir, horario de 7:00 a 8:00

