## Конспект лекций по предмету Теория автоматического регулирования



| I | реподаватель: |
|---|---------------|
|   |               |

Суханов Владимир Андреевич

Автор конспекта:

Дмитриев Артем Константинович artem020503@gmail.com

## СОДЕРЖАНИЕ

| 1. | Аббревиатуры   | . 2 |
|----|----------------|-----|
| 2. | Вводная лекиця | . 3 |

# 1 Аббревиатуры

САР - система автоматического регулирования;

## 2 Вводная лекиця

#### Информация:

- 1. Пропускать нельзя. Больше одного пропуска приведёт к произволу начальства
- 2. Командная работа, коллективная ответсвенность

#### Целью дисциплины явлентся:

- 1. Получение знаний об основных принципах функционирования автоматического управления турбомашин
- 2. Навыки применения методов математического моделирования и рассчетных исследований этих систем с помощью современных методов (Mathlab simulink)

#### Задачи:

- 1. Классификация САР
- 2. Требования, предъявляемые к САР
- 3. Линейные математические модели САР
- 4. Типовые звенья автоматических систем
- 5. условия устойчивости автоматических систем
- 6. Способы корреции линейных автоматических систем
- 7. Законы автоматического регулирования
- 8. Математическое моделирование элементов САР турбоустановок
- 9. Основные сведение о нелинейных САР

#### Общие сведения о САР:

Это совокупность автоматического регулятора и объекта регулирования.

В состав регулятора входит:

- 1. Регулирующий орган (исполнительный механизм)
- 2. Усилитель
- 3. Чувствительный элемент
- 4. Задающее устройство

Взаимосвязь всех элементов *CAP* обеспечивается посредством каналов связи. Через эти каналы осуществляется обмен информацией между элементами *CAP*. Для передачи информации могут использоваться электрический ток, воздух, жидкость (*Синтетическое масло*), компьютерные сети.

#### Классификация САР:

- 1. По способу задания регулируемой величины.
  - Подразделяются на следующие системы:
  - Стабилизации;
    - $x_{\mathrm{opt}} = \mathrm{const}$  на всех режимах работы. Пример: 50 Гц
  - Программного регулирования;
    - $x_{\text{опт}} = \text{var}$ , характер изменения зарание известен.
  - Следящие:
    - $x_{\text{опт}} = \text{var}$ , характер изменения заранее не известен.



Рис. 2. Функциональная схема САР

x - регулируемая величина (число оборотов)

 $x_{\mathrm{ont}}$  - оптимальное значение регулируемой величины

 $\varepsilon_R$  - ошибка регулирования

«Лампочка» - сумматор

 $f_x$  - возмущения

- 2. По принципу регулирования:
  - 1. По возмущению
  - 2. По отклонению (принцип обратной связи);
  - 3. Комбинированный;
  - 4. Адаптации.

### РИСУНОК ПАРОВОЙ ТЭС