Worked solutions for MA2101 17/18 S2 exam

Written 24 Nov 2024

Note: This document was written in a great rush, so there may be many mistakes. Compared with the solutions for 23/24 S1, I am even less certain of my answers below, since they were prepared without the help of any other written solutions. Read with care!

Question 1

Let $v_1,...,v_4$ be row vectors in the row 3-space $V={f R}^3$. Form a matrix

$$A \coloneqq (v_1^t,\ldots,v_4^t) \in M_{3,4}(\mathbf{R}).$$

Suppose that A is row-equivalent to the matrix

$$R = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

1(a) Find a subset $S \subseteq \{v_1, \dots, v_4\}$ such that S is a basis of $\operatorname{span}\{v_1, \dots, v_4\}$.

The set $S = \{v_1, v_3\}$ works.

1(b) Express every vector v_i that is not in S as a linear combination of the vectors in S.

We have $v_2 = 2v_1$ and $v_4 = 3v_1 + v_3$.

1(c) Find a basis of the row space row(A) for the matrix A.

The basis with vectors (1, 2, 0, 3) and (0, 0, 1, 1) works.

 $oxed{1(d)}$ Determine the dimension of the column space $\operatorname{col}(A)$ for the matrix A.

The dimension of col(A) is two, the number of pivots in R.

1(e) Determine the nullity of the matrix A.

By the rank-nullity theorem, the nullity of A is two.

Question 2

Let $A=(a_{ij})\in M_2({f R})$ be a real matrix such that for

$$P = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

we have

$$P^{-1}AP = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

Let $y_i = y_i(x)$ (i = 1, 2) be differentiable functions in x. Solve the following system of differential equations:

$$Y' = egin{pmatrix} y_1' \ y_2' \end{pmatrix} = AY = A egin{pmatrix} y_1 \ y_2 \end{pmatrix}.$$

Note: For the differential equation z'(x)+p(x)z(x)=q(x) you may assume, without proof, that its general solution is given by $z(x)=\frac{1}{\mu}(C+\int \mu q)$ with $\mu=e^{\int p}$.

Write $D = P^{-1}AP$. It suffices to solve the new system Z' = DZ, since then Y = PZ solves the original system Y' = AY. This new system is given by

$$egin{cases} z_1'(x) = z_1(x) \ z_2'(x) = -z_1(x) + z_2(x), \end{cases}$$

from which we immediately have $z_1(x)=C_1e^x$. The second equation then becomes

$$z_2'(x)-z_2(x)=-z_1(x) \quad ext{or} \quad z_2'(x)+p(x)z_2(x)=q(x)$$

where p(x)=-1 and $q(x)=-z_1(x)=-C_1e^x$. Since $\mu(x)=\exp(\int -1\,dx)=e^{-x}$, it follows that

$$z_2(x) = rac{1}{e^{-x}}igg(\int e^{-x}(-C_1e^x)\,dx + C_2igg) = e^x(C_2 - C_1x).$$

We may then substitute Y = PZ to get

$$egin{cases} y_1(x) = z_1(x) + 2z_2(x) = e^x(C_1 + 2C_2 - 2C_1x) \ y_2(x) = 3z_1(x) + 4z_2(x) = e^x(3C1 + 4C_2 - 4C_1x). \end{cases}$$

Question 3

Let

$$V=P_3[x]=\left\{f(x)=\sum_{i=0}^2 a_i x^i \; \Big| \; a_i \in \mathbf{R}
ight\}$$

and

$$W = M_2(\mathbf{R}) = ig\{ (b_{ij}) \mid b_{ij} \in \mathbf{R}, \; 1 \leq i, j \leq 2 ig\}.$$

It is known that V and W are vector spaces over \mathbf{R} with dimensions 3 and 4 respectively.

3(a) State the definition of a linear transformation between two vector spaces over \mathbf{R} .

Let V and W be vector spaces over ${\bf R}$. A function $T:V\to W$ is a linear transformation from V to W if T(v+v')=T(v)+T(v') for all $v,v'\in V$, and T(cv)=cT(v) for all $c\in {\bf R}$ and $v\in V$.

3(b) Construct an injective linear transformation $T_1: V \to W$. Justify your answer.

Write $v_0=1$, $v_1=x$, $v_2=x^2$, $w_{11}=\left(\begin{smallmatrix} 1 & 0 \\ 0 & 0\end{smallmatrix}\right)$, $w_{12}=\left(\begin{smallmatrix} 0 & 1 \\ 0 & 0\end{smallmatrix}\right)$, $w_{21}=\left(\begin{smallmatrix} 0 & 0 \\ 1 & 0\end{smallmatrix}\right)$, and $w_{22}=\left(\begin{smallmatrix} 0 & 1 \\ 0 & 1\end{smallmatrix}\right)$. Then (v_0,v_1,v_2) is a basis for V, and $(w_{11},w_{12},w_{21},w_{22})$ is a basis for W. We define $T_1(v_0)=w_{11}$, $T_1(v_1)=w_{12}$, and $T_1(v_2)=w_{21}$, extending to V by linearity. Then T_1 is injective, since we have mapped the basis of V to an independent subset of W.

3(c) Can you construct a surjective linear transformation $T_2:V o W$? Justify your answer.

No, since $\dim(V) = 3 < 4 = \dim(W)$, and a surjective map from V to W would imply $\dim(V) \ge \dim(W)$.

Ouestion 4

Let $T\colon V o W$ be a linear transformation between vector spaces over a field F. $extbf{4(a)}$ State the definition of the kernel $\ker(T)$ of the map T.

We have $\ker(T) = \{v \in V : Tv = 0_W\}.$

4(b) Show that for any $w_1 \in W$, the preimage

$$T^{-1}(w_1)\coloneqq \{v\in V\mid T(v)=w_1\}$$
 satisfies the following inequality of cardinalities:

$$|T^{-1}(w_1)| \le |\ker(T)|.$$

If $|T^{-1}(w_1)|=0$, there is nothing to show. Thus we may fix $v_0\in T^{-1}(w_1)$. Then the translate $T^{-1}(w_1) - v_0 = \{v - v_0 : Tv = w_1\}$ is a subset of ker T. Since V is a group with respect to its addition operation, translation is a bijection, and this gives the claim.

4(c) Suppose further that T is surjective. Can we have the following equality

$$|T^{-1}(w_1)| = |\ker(T)|$$
 for all $w_1 \in W$? Justify your answer.

Yes we can. Let V and W both be the trivial vector space $\{0\}$ over \mathbf{R} , and let $T:V\to W$ be the trivial map, which is trivially surjective. Then $|T^{-1}(0)| = |\ker(T)| = 1$.

Question 5

Let $A\in M_n({f R})$ be a real matrix of size n imes n. Let A^t be the transpose of A.

5(a) State the definition for a real square matrix to be orthogonal.

A real square matrix Q is orthogonal if $Q^tQ = QQ^t = I$.

5(b) Prove the existence of an orthogonal matrix $P \in M_n({f R})$ such that

$$P^{-1}(A+A^t)P$$

Since $(A + A^t)^t = A^t + A = A + A^t$, it is symmetric. Since A is also real, it is selfadjoint, and so the principal axis theorem gives the existence of a matrix P with the desired properties.

5(c) If
$$A+A^t=\begin{pmatrix}3&-2\\-2&3\end{pmatrix},$$
 find the matrices P and D in part (b).

Write $M = A + A^t$. We compute the characteristic polynomial

$$\det(\lambda I-M)=\detegin{pmatrix}\lambda-3&2\2&\lambda-3\end{pmatrix}=(\lambda-3)^2-4=(\lambda-1)(\lambda-5).$$

The eigenvector corresponding to $\lambda_1=1$ is easily seen to be $\binom{1}{1}$. As for $\lambda_2=5$, it is also easy to find $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Thankfully these vectors are already orthogonal so we need only normalize to get $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. This orthonormal eigenbasis then yields the desired matrices

$$P = egin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \quad ext{and} \quad D = egin{pmatrix} 1 & 0 \ 0 & 5 \end{pmatrix}.$$

Question 6

$$(A - I_4)(A + I_4)(A - 2I_4) = 0$$

Let $A\in M_4({f C})$ be such that $(A-I_4)(A+I_4)(A-2I_4)=0.$ 6(a) State the definition for a complex square matrix to be diagonalizable over ${f C}$.

A complex square matrix A is diagonalizable over C if there exists an invertible complex square matrix P such that $P^{-1}AP$ is a diagonal matrix.

6(b) State the definition of a monic polynomial f(x).

A polynomial $f(x) = a_n x^n + \dots + a_1 x + a_0$ is monic if $a_n = 1$.

6(c) Is A diagonalizable over \mathbb{C} ? Justify your answer.

Yes. Since the minimal polynomial of A divides (x-1)(x+1)(x-2) by hypothesis, it must have distinct roots, and this is implies that A is diagonalizable over \mathbb{C} .

6(d) Show that A is invertible, and construct a monic polynomial g(x) of degree three such that $A^{-1}=g(A)$.

Since
$$(A - I_4)(A + I_4)(A - 2I_4) = 0$$
, we also have

$$(A-I_4)(A+I_4)(A-2I_4)\Big(A+cI_4\Big)=0.$$

This is equivalent to

$$A\cdot -rac{1}{2c}\Big((2-c)I_4-(2c+1)A+(c-2)A^2+A^3\Big)=I_4,$$

so we may set c=-1/2 to obtain

$$A\Big(A^3-rac{5}{2}A^2+rac{5}{2}I_4\Big)=I_4,$$

so $A^{-1}=g(A)$, where $g(x)=x^3-rac{5}{2}x^2+rac{5}{2}$ is our desired monic polynomial of degree three.

Question 7

7(a) State the definition for a complex square matrix to be unitary.

A complex square matrix is unitary if $AA^* = I$.

7(b) State the definition for a complex square matrix to be normal.

A complex square matrix is normal if $AA^* = A^*A$.

7(c) Is every orthogonal (real) matrix a normal matrix? Justify your answer.

Yes, since an orthogonal real matrix satisfies $AA^t = I = A^tA$, and $A^t = A^*$ since real numbers are unaffected by complex conjugation.

7(d) Let $A \in M_n(\mathbf{R})$ be an orthogonal matrix. Show that there exists a unitary matrix $U\in M_n(\mathbf{C})$ such that $U^{-1}AU=\mathrm{diag}[\lambda_1,\ldots,\lambda_n]$

$$U^{-1}AU = \operatorname{diag}[\lambda_1, \dots, \lambda_n]$$

Since A is normal by part (c), the principal axis theorem gives the existence of unitary Usuch that $U^{-1}AU = \operatorname{diag}[\lambda_1, \dots, \lambda_n]$. Thus it remains to show that $|\lambda_i| = 1$ for all i. Indeed, these are the eigenvalues of A_i , so given λ_i , we consider nonzero v satisfying $Av = \lambda_i v$. We then have

$$|\lambda_i|^2 v^* v = (\lambda_i v)^* (\lambda_i v) = (Av)^* (Av) = v^* A^* A v = v^* v,$$

so $|\lambda_i|=1$ as needed.

7(e) Conversely, let $C\in M_n({f R})$ be a real matrix and let $V\in M_n({f C})$ be a unitary

$$V^{-1}CV = \operatorname{diag}[\mu_1, \dots, \mu_n]$$

 $V^{-1}CV=\mathrm{diag}[\mu_1,\ldots,\mu_n]$

Let $D = \operatorname{diag}[\mu_1, \dots, \mu_n]$. We compute

$$C^t C = C^* C \tag{1}$$

$$= (VDV^{-1})^*(VDV^{-1}) \tag{2}$$

$$= (V^{-1})^* D^* V^* V D V^{-1} \tag{3}$$

$$= (V^*)^* D^* D V^{-1} (4)$$

$$=VV^{-1} \tag{5}$$

$$=I,$$
lows: (1) C is real, so $C^{st}=C^{t}.$ (2) Since $D=V^{-1}CV$,

where each step is justified as follows: (1) C is real, so $C^* = C^t$. (2) Since $D = V^{-1}CV$, we have $C = VDV^{-1}$. (3) We have $(AB)^* = B^*A^*$. (4) Since V is unitary, we have $V^{-1} = V^*$ and $V^*V = I$. (5) We have $(V^*)^* = I$ and $D^*D = \mathrm{diag}[|\mu_1|^2, \ldots, |\mu_n|^2]$, so that $D^*D = I$ by the hypothesis $\mu_i|=1$.

Question 8

8(a) State the definition for a real square matrix to be positive definite.

A real square matrix A is positive definite if it is symmetric ($A^t=A$) and satisfies $x^tAx>0$ for all $x\in\mathbf{R}^n_c\setminus\{0\}$.

8(b) Is every positive-definite real matrix invertible? Justify your answer.

Yes. Suppose contrapositively that A is not invertible. Then Ax=0 for some nonzero x, so $x^tAx=0$ as needed.

8(c) Find a real matrix $A \in M_2(\mathbf{R})$ such that A is positive definite, but A is not a diagonal matrix. Justify your answer.

The symmetric matrix $A={21 \choose 12}$ works, since it has all positive eigenvalues. More directly, we have $x^tAx=x_1^2+(x_1+x_2)^2+x_2^2>0$ for nonzero x.