INTRODUZIONE A LINUX

Le basi del sistema operativo Open Source più famoso al mondo

Programma

- L'architettura del PC
- Il processo di avvio
 - Fase 1: Il firmware
 - Fase 2: Il bootloader
 - Fase 3: Il kernel
 - Fase 4: L'init system
 - Fase 5: Il login manager
 - Fase 6: L'ambiente desktop
- Hands on
- Contattaci

L'architettura del PC

Come fa un blocchetto di silicio a "pensare", trasformando impulsi elettrici in dati e informazioni?

Che cosa è un PC?

Una cosa orribile costruita su una pila di roba vecchia senza senso dal 1981

L'origine del PC

12 Agosto 1981

IBM introduce sul mercato l'IBM Personal Computer, definendo l'architettura del moderno PC, il sistema operativo standard fornito è MS-DOS

L'architettura (semplificata) del PC

L'architettura del PC

Il processore

II processore

Il processo di avvio

Cosa succede nei magici "trenta secondi" che intercorrono tra l'accensione del PC e il momento in cui esso è pronto per l'uso?

Fase 1: Il firmware

I compiti del firmware

- Inizializzare e gestire l'Hardware
- Fornire un'interfaccia omogenea tra l'HW e il Software
- Permettere all'utente di personalizzare i parametri HW del proprio computer
- Permettere all'utente di decidere quale sistema operativo avviare e da quale dispositivo
- Applicare parametri di sicurezza sul sistema operativo

Il Basic I/O System (BIOS)

Il BIOS nel XXI secolo

Il sistema operativo

Fase 2: Il bootloader

I compiti del bootloader

- Rendere un dispositivo di memoria avviabile
- Preparare la memoria centrale per il caricamento di un sistema operativo
- Permettere il recupero di un'unità danneggiata o non più avviabile automaticamente

Il bootloader di Linux: GRUB

Fase 3: Il kernel

I compiti del kernel

- Fornire un'interfaccia ad alto livello per la gestione dei dispositivi
 - Spooler
 - Driver
 - Network Stack
- Fornire un'interfaccia per la gestione di processi e thread
 - Scheduler
- Gestire la memoria volatile e non volatile
 - Filesystem
 - Memory manager
- Permettere all'utente di estenderne le funzionalità tramite moduli
 - Module System

Una panoramica del Kernel

Il kernel Linux

Il kernel Linux

Breve panoramica di GNU/Linux

Userland GNU:

- compilatori
- coreutils
- shell
- software
- ecc.

Kernel **Linux**:

- · kernel
- drivers
- filesystem
- networking
- ecc.

Fase 4: L'init system

I compiti di un init system

- Il primo processo che il kernel manda in esecuzione
 - o Portare il sistema in uno stato operativo
 - Avviare i programmi e servizi necessari

I runlevel

- Potere portare il sistema in diversi livelli operativi
 - o Livelli anche con caratteristiche differenti (Avvio, Riga di comando, GUI)
- init ha il compito di impostare il runlevel iniziale, e di portare il sistema da un runlevel ad un altro

Systemd

Systemd

http://www.tecmint.com

A Modern Service

Manager for Linux

Systemd

I compiti di systemd

- Uefi bootloader
- screen brightness
- systemd-resolved
- hostnamed
- firstboot
- systemd-terminal
- policykit
- X11 in systemd
- ... e molto altro ancora!

Systemd

Targets in systemd	Runlevels with init
 poweroff.target 	- 0
 rescue.target 	• 1
 multiuser.target 	2
 multiuser.target 	• 3
 multiuser.target 	4
 graphical.target 	• 5
reboot.target	• 6

Systemd

Fase 5: Il login manager

Login manager

GDM3 SDDM

Fase 6: L'ambiente desktop

GNOME 3

KDE Plasma 5

Sway

XFCE

Pantheon

Il gestore di pacchetti

I pacchetti, le app e le dipendenze

I programmi sono distribuiti sotto forma di pacchetti

I più popolari formati sono RPM e DEB

Gestore dei pacchetti: RPM e DPKG

Gestore di pacchetti: DNF e APT (aka APT-GET) - Aptitude

Gestore pacchetti grafici: Dnfdragora e Synaptic

Gestore pacchetti grafici semplificati: KDE Discover e Gnome Software

Le tarball

Le tarball non sono pacchetti (.TAR.GZ): contengono il sorgente o il binario senza librerie e dipendenze

Hands-on

Demo 1

Proviamo ad avviare una distribuzione Linux sul nostro portatile!

Contattaci!

Visita il nostro sito https://unixmib.org/

- @unixmibinfo
- @unixmib
- @unixmibstudenti