MATLAB Onramp

Conclusion

Additional Resources

Summary of MATLAB Onramp

Basic Syntax

Example	Description
<u>x = pi</u>	Create variables and assign values with the equal sign (=). The left side (x) is the variable name, and the right side (pi) is its value.
$y = \sin(-5)$	Provide inputs to a function using parentheses.

Desktop Management

Function	Example	Description
<u>save</u>	save data.mat	Save your current workspace to a MAT-file.
<u>load</u>	load data.mat	Load the variables in a MAT-file to the workspace.
clear	clear	Clear all variables from the workspace.
clc	clc	Clear all text from the Command Window.
<u>format</u>	format long	Change how numeric output appears in the Command Window.

Array Types

Example	Description
4	scalar
[3 5]	row vector
[1;3]	column vector
[3 4 5; 6 7 8]	matrix

Evenly Spaced Vectors

Example	Description
1:4	Create a vector from 1 to 4, spaced by 1, using the colon operator (:).
1:0.5:4	Create a vector from 1 to 4, spaced by 0.5.
linspace(1,10,5)	Create a vector with 5 elements. The values are evenly spaced from 1 to 10.

Matrix Creation

Example	Description
rand(2)	Create a square matrix with 2 rows and 2 columns.
<u>zeros(2,3)</u>	Create a rectangular matrix with 2 rows and 3 columns of 0s.
ones(2,3)	Create a rectangular matrix with 2 rows and 3 columns of 1s.

Array Indexing

Example	Description	
A(<u>end</u> ,2)	Access the element in the second column of the last row.	
A(2,:)	Access the entire second row.	
A(1:3,:)	Access all columns of the first three rows.	

J		
	A(2) = 11	Change the value of the second element of an array to 11.

Array Operations

Example	Description
[1 2; 3 4] + 1	Perform <u>array addition</u> .
ans =	
2 3	
4 5	
[1 1; 1 1]*[2 2; 2 2]	Perform matrix multiplication.
ans =	
4 4	
4 4	
[1 1; 1 1].*[2 2; 2 2]	Perform <u>element-wise multiplication</u> .
ans =	
2 2	
2 2	

Multiple Outputs

Example	Description
<pre>[xrow,xcol] = size(x)</pre>	Save the number of rows and columns in x to two different variables.
[xMax,idx] = max(x)	Calculate the maximum value of x and its corresponding index value.

Documentation

Example Descrip		Description
	<u>doc</u> randi	Open the documentation page for the randi function.

Plots

Example	Description
<pre>plot(x,y,"ro","LineWidth",5)</pre>	Plot a red (r) dashed () line with a circle (o) marker, with a heavy line width.
hold on	Add the next line to the existing plot.
hold off	Create new axes for the next plotted line.
<pre>title("My Title")</pre>	Add a title to a plot.
<pre>xlabel("x") ylabel("y")</pre>	Add labels to axes.
<u>legend</u> ("a","b","c")	Add a legend to a plot.

Tables

Example	Description
<u>data.HeightYards</u>	Extract the variable HeightYards from the table data.

data.HeightMeters = data.HeightYards*0.9144 Derive a table variable from existing data.

Logical Indexing

Example	Description
[5 10 15] > 12	Compare the elements of a vector to the value 12.
<u>v1(v1 > 6)</u>	Extract all elements of v1 that are greater than 6.
x(x==999) = 1	Replace all values in x that are equal to 999 with the value 1.

Programming

Example	Description
<u>if</u> x > 0.5	If x is greater than 0.5, set y to 3.
y = 3 else y = 4 end	Otherwise, set y to 4.
eliu	
<pre>for c = 1:3 disp(c)</pre>	The loop counter (c) progresses through the values 1:3 (1, 2, and 3).
end	The loop body displays each value of c.