CS 640 Assignment #5 Hidden Markov Models

Generalized Hidden Markov Models are defined as follows:

- 1. N states: S1,...,SN
- 2. M symbols in alphabet
- 3. Initial probability distribution vector of length N: $\pi = \{\pi_1 ..., \pi_N\}$
- 4. Transition probability matrix of size N x N

where τ_{ii} is probability of transition from state i to state i

5. Emission probability matrix of size N x M

where ei(c) probability that state i emits character c

We refer to the transition probabilities, the emission probabilities and the initial distribution vector, collectively as the parameters, designated $\lambda = (\tau_{ij}, e_i(c), \pi)$.

Let Q be the sequence of visited states: $Q = (q_1, q_2, ..., q_F)$

Let O be the sequence of emitted symbols: $O = (O_1, O_2, ..., O_T)$ (the observed sequence).

Write a generalized Hidden Markov Model that employs the forward algorithm (which is a dynamic programming algorithm) for scoring. You may hard-code in a transition matrix, emissions matrix and start probabilities. Your program should read in a string of any length composed of the characters {a, c, t, g} and output the score of that string, given the HMM defined below.

Code the forward algorithm for this HMM, filling in matrix cells $\alpha_t(i)$, where t corresponds to sequence index and i corresponds to state:

- 1. N = 3, hidden states S₁, S₂, S₃
- 2. M=4 symbols in alphabet {a, c, t, g}
- 3. Initial probability distribution vector $\pi = \{.25, .5, .25\}$
- 4. Transition probability matrix $\tau =$

	S 1	S2	S3
S 1	.4	.5	.1
S2	.1	.4	.5
S 3	.3	.3	.4

5. Emission probabilities e =

	a	c	t	g
S 1	.4	.4	.1	.1
S2	.25	.25	.25	.25
S 3	.1	.1	.4	.4

Initialization: $\alpha_1(i) = \pi_i e_i(O_1)$

Iteration:
$$\alpha_{t+1}(i) = \sum_{i=1}^{N} \alpha_{t}(j) * T_{ji} * e_{i} (O_{t+1})$$