Содержание

Ι	Оп	ределения	19
1	Пер	овообразная, неопределенный интеграл	20
	1.1	Первообразная	20
	1.2	Неопределенный интеграл	20
2	Teo	рема о существовании первообразной	21
3	Таб	лица первообразных	22
4	Рав	эномерная непрерывность	23
5	Пло	ощадь, аддитивность площади, ослабленная аддитивность	24
	5.1	Первое определение площади	24
	5.2	Второе определение площади	24
	5.3	Площадь как сумма прямоугольников	25
6	Пол	пожительная и отрицательная срезки	26
	6.1	Определение	26
	6.2	Некоторые свойства	26
	6.3	Подграфик	26
7	Опр	ределённый интеграл	27
	7.1	Определение	27
	7.2	Свойства	27

8	Среднее значение функции на промежутке	28
9	Кусочно-непрерывная функция	29
10	Почти первообразная	30
11	Дробление отрезка, ранг дробления, оснащение	31
12	Риманова сумма	32
13	Постоянная Эйлера	33
14	Функция промежутка. Аддитивная функция промежутка	34
15	Плотность аддитивной функции промежутка	35
16	Гладкий путь, вектор скорости, носитель пути	36
	16.1 Гладкий путь	36
	16.2 Вектор скорости	36
	16.3 Носитель пути	36
17	Длина гладкого пути	37
18	Φ ормулы для длины пути: в \mathbb{R}^m , в полярных координатах, длина графика	38
	18.1 Длина пути в \mathbb{R}^m	38
	18.2 Длина графика	38
	18.3 Длина кривой в полярных координатах	38
19	Вариация функции на промежутке	39
20	Верхний и нижний пределы	40

	20.1 Верхняя и нижняя огибающая	40
	20.2 Верхний и нижний пределы	40
21	Частичный предел	41
22	Допустимая функция	42
23	Несобственный интеграл, сходимость, расходимость	43
	23.1 Определение	43
	23.2 Сходимость и расходимость	43
24	Критерий Больцано-Коши сходимости несобственного интеграла	44
25	Гамма функция Эйлера	45
26	Числовой ряд, сумма ряда, сходимость, расходимость	46
	26.1 Числовой ряд	46
	26.2 Сумма ряда	46
	26.3 Сходимость и расходимость	46
27	n-й остаток ряда	47
2 8	Абсолютно сходящийся ряд	48
29	Критерий Больцано-Коши сходимости числового ряда	49
30	Преобразование Абеля	50
31	Бесконечное произведение	51
32	Произведение рядов	52

33	Произведение степенных рядов	53
34	. Скалярное произведение, евклидова норма и метрика в \mathbb{R}^m	54
35	Окрестность точки в $\mathbb{R}^m,$ открытое множество	5 5
36	Сходимость последовательности в $\mathbb{R}^m,$ покоординатная сходимость	56
37	Предельная точка, замкнутое множество, замыкание	57
38	Компактность, секвенциальная компактность, принцип выбора Больцано-Вейерштрасс	a 58
	38.1 Компактность	58
	38.2 Секвенциальная компактность	58
	38.3 Принцип выбора Больцано-Вейерштрасса	58
39	Координатная функция	59
40	Двойной предел, повторный предел	60
	40.1 Повторный предел	60
	40.2 Двойной предел	60
41	Предел по направлению, предел вдоль пути	61
42	Предел отображения (определение по Коши и по Гейне)	62
	42.1 По Коши	62
	42.2 По Гейне	62
43	Линейный оператор	63
44	Отображение бесконечно малое в точке	64

45	$\mathbf{o}(\mathbf{h})$ при $h \to 0$	65
46	Отображение, дифференцируемое в точке	66
47	Производный оператор, матрица Якоби, дифференциал	67
	47.1 Производный оператор	67
	47.2 Матрица Якоби	67
	47.3 Дифференциал	67
48	Частные производные	68
49	Классы $C^r(E)$	69
50	Мультииндекс и обозначения с ним	70
51	Формула Тейлора (различные виды записи)	71
52	n-й дифференциал	72
53	Норма линейного оператора	73
54	Положительно-, отрицательно-, незнако- определенная квадратичная форма	74
55	Локальный максимум, минимум, экстремум	75
II	Теоремы	76
56	Теорема Кантора о равномерной непрерывности	77
	56.1 Формулировка	77
	56.2 Доказательство (от противного)	77

57	Teol	рема Брауэра о неподвижной точке	7 8
	57.1	Формулировка	78
	57.2	Доказательство	78
		57.2.1 Игра "Текс"	78
		57.2.2 Сама теорема	79
		57.2.3 Доказательство	79
		57.2.4 Теперь к самой теореме	80
		57.2.5 Доска	80
58	Teoj	рема о свойствах неопределенного интеграла	82
59	Инт	сегрирование неравенств. Теорема о среднем	83
	59.1	Интегрирование неравенств	83
		59.1.1 Формулировка	83
		59.1.2 Доказательство	83
		59.1.3 Следствия	83
	59.2	Теорема о среднем значении	84
		59.2.1 Формулировка	84
		59.2.2 Доказательство 1 (Кохась порофлил)	84
		59.2.3 Нормальное доказательство	84
60	Teoj	рема Барроу	85
	60.1	Определение	85
	60.2	Теорема (Барроу)	85
	60.3	Локазательство	85

	60.4	Замечания	85
61	Фор	мула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций	86
	61.1	Формулировка теоремы	86
	61.2	Доказательство	86
	61.3	Для кусочно-непрерывных функций	86
62		йства определенного интеграла: линейность, интегрирование по частям, замена пе- енных	87
	_		
	62.1	Линейность определенного интеграла	87
		62.1.1 Формулировка	87
		62.1.2 Доказательство	87
	62.2	Интегрирование по частям	87
		62.2.1 Формулировка	87
		62.2.2 доказательство	87
	62.3	Замена переменных	88
		62.3.1 Формулировка	88
		62.3.2 Доказательство	88
		62.3.3 Замечание	88
63	Инт	егральное неравенство Чебышева. Неравенство для сумм	89
	63.1	Интегральное неравенство Чебышева	89
		63.1.1 Формулировка	89
		63.1.2 Доказательство	89
	63.2	Неравенство для сумм	89

		63.2.1 Формулировка для сумм	89
		63.2.2 Доказательство	90
64	Ирр	рациональность числа π	91
	64.1	Вспомогательный интеграл	91
	64.2	Теорема	92
	64.3	Доказательство (от противного)	92
65	Фор	омула Тейлора с остатком в интегральной форме	93
	65.1	Формулировка	93
	65.2	Доказательство (по индукции)	93
	65.3	Послесловие	93
66	Лем	има об ускоренной сходимости	95
	66.1	Формулировка	95
	66.2	Доказательство	95
67	Пра	вило Лопиталя (с леммой)	96
	67.1	Формулировка	96
	67.2	Пример из жизни	96
	67.3	Доказательство	96
	67.4	Собственное доказательство	96
68	Teop	рема Штольца	98
	68.1	Формулировка	98
	68.2	Доказательство	98

69	Пример неаналитической функции	100
	69.1 Неалитическая функция	. 100
	69.2 Утверждение	. 100
	69.3 Доказательство	. 100
70	Интеграл как предел интегральных сумм	102
	70.1 Формулировка	. 102
	70.2 Доказательство	. 102
	70.3 Замечания	. 102
71	Теорема об интегральных суммах для центральных прямоугольников	104
	71.1 Формулировка	. 104
	71.2 Доказательство	. 104
72	Теорема о формуле трапеций, формула Эйлера-Маклорена	105
	72.1 Формулировка теоремы о формуле трапеций	. 105
	72.2 Доказательство	. 105
	72.3 Простейший случай формулы Эйлера-Маклорена	. 105
73	Асимптотика степенных сумм	107
74	Асимптотика частичных сумм гармонического ряда	108
75	Формула Валлиса	109
	75.1 Формулировка	. 109
	75.2 Доказательство	. 109
76	Формула Стирлинга	111

	76.1 Формулировка	111
	76.2 Доказательство	111
77	Теорема о вычислении аддитивной функции промежутка по плотности	112
	77.1 Формулировка	112
	77.2 Доказательство	112
78	Обобщенная теорема о плотности	113
	78.1 Формулировка	113
	78.2 Доказательство	113
7 9	Площадь криволинейного сектора: в полярных координатах и для параметрической	
	кривой	114
	79.1 Введение	114
	79.2 Пример	114
	79.3 Теорема	114
	79.4 Доказательство	114
	79.5 Замечание	115
80	Изопериметрическое неравенство	117
	80.1 Формулировка	117
	80.2 Доказательство	117
81	Вычисление длины гладкого пути	118
	81.1 Формулировка	118
	81.2 Доказательство	118

82	Объем фигур вращения	120
	82.1 Формулировка	. 120
	82.2 Доказательство	. 120
83	Неравенство Йенсена для сумм	122
	83.1 Формулировка	. 122
	83.2 Доказательство	. 122
84	Неравенство Йенсена для интегралов	123
	84.1 Формулировка	. 123
	84.2 Доказательство	. 123
85	Неравенство Коши (для сумм и для интегралов)	124
	85.1 Неравенство для сумм	. 124
	85.1.1 Формулировка	. 124
	85.1.2 Доказательство	. 124
	85.2 Неравенство для интегралов	. 124
	85.2.1 Формулировка	. 124
86	Неравенство Гёльдера для сумм	126
	86.1 Формулировка	. 126
	86.2 Доказательство	. 126
87	Неравенство Гёльдера для интегралов	128
	87.1 Формулировка	. 128
	87.2 Доказательство	. 128

88	Неравенство Минковского	129
	88.1 Формулировка	. 129
	88.2 Замечания	. 129
	88.3 Доказательство	. 129
89	Свойства верхнего и нижнего пределов	130
	89.1 Формулировка	. 130
	89.2 Доказательство	. 130
90	Техническое описание верхнего предела	132
	90.1 Формулировка	. 132
	90.2 Доказательство	. 132
91	Теорема о существовании предела в терминах верхнего и нижнего пределов	133
	91.1 Формулировка	. 133
	91.2 Доказательство	. 133
92	Теорема о характеризации верхнего предела как частичного	134
	92.1 Формулировка	. 134
	92.2 Доказательство	. 134
93	Простейшие свойства несобственного интеграла	135
	93.1 Формулировка	. 135
	93.2 Доказательство	. 136
94	Признаки сравнения сходимости несобственного интеграла	137
	94.1 Формулировка	. 137

94.2 Доказательство	137
95 Интеграл Эйлера-Пуассона	139
95.1 Формулировка	139
95.2 Доказательство	139
96 Гамма функция Эйлера. Простейшие свойства	141
96.1 Формулировка	141
96.2 Доказательство	141
97 Теорема об абсолютно сходящихся интегралах и рядах	143
97.1 Формулировка	143
97.2 доказательство	143
97.3 Случай рядов	143
98 Изучение сходимости интеграла $\int\limits_{2019}^{\infty} \dfrac{dx}{x^{lpha} (\ln x)^{eta}}$	144
99 Изучение интеграла $\int\limits_{1}^{\infty} \dfrac{\sin x dx}{x^p}$ на сходимость и абсолютную сходимость	145
10Признак Абеля–Дирихле сходимости несобственного интеграла	146
100.1Формулировка	146
100.2Доказательство	146
101Интеграл Дирихле	147
101.1Формулировка	147
101.2Доказательство	147

Больцано-Коши	148
102.1Линейность, свойства остатка	148
102.1.1 Формулировка	148
102.1.2 Доказательство	148
102.2Необходимое условие сходимости рядов	148
102.2.1 Формулировка	148
102.2.2 Доказательство	149
102.3Критерий Больцано-Коши	149
102.3.1 Формулировка	149
102.4Доказательство	149
103Признак сравнения сходимости положительных рядов	150
103.1Лемма	150
103.1.1 Формулировка	150
103.1.2 Доказательство	150
103.2Признак сравнения сходимости положительных рядов	150
103.2.1 Формулировка	150
103.2.2 Доказательство	151
104Признак Коши сходимости положительных рядов	152
104.1Формулировка	152
104.2Доказательство	152
105Признак Коши сходимости положительных рядов (pro)	153

105.1Формулировка	153
105.2Доказательство	153
Признак Даламбера сходимости положительных рядов	154
106.1Формулировка	154
106.2Доказательство	154
Признак Раабе сходимости положительных рядов	156
107.1Лемма	156
107.1.1 Формулировка	156
107.1.2 Доказательство	156
107.2Теорема	156
107.2.1 Формулировка	156
107.2.2 Доказательство	157
Интегральный признак Коши сходимости числовых рядов	158
108.1Формулировка	158
108.2Доказательство	158
ЯПризнак Лейбница	159
109.1Формулировка	159
109.2Доказательство	159
Признаки Дирихле и Абеля сходимости числового ряда	160
110.1Формулировка	160
110.1.1 Дирихле	160

110.1.2 Абеля	60
110.2Доказательство	60
110.2.1 Дирихле	60
110.2.2 Абеля	60
11 Пеорема об условиях сходимости бесконечного произведения 16	61
111.1Формулировка	61
111.2Доказательство	61
112Лемма об оценке приближения экспоненты ее замечательным пределом 16	62
112.1Лемма 1	62
112.1.1 Формулировка	62
112.1.2 Доказательство	62
112.2 Лемма $2 \dots 10$	62
112.2.1 Формулировка	62
112.2.2 Доказательство	62
113Формула Эйлера для гамма-функции	64
113.1Формулировка	64
113.2Доказательство	64
114Формула Вейерштрасса для Г-функции	65
114.1Формулировка	65
114.2Доказательство	65
115Вычисление произведений с рациональными сомножителями 16	66

115.1Формулировка	166
116Георема о группировке слагаемых	167
116.1Формулировка	167
116.2Доказательство	167
117Теорема о перестановке слагаемых	168
117.1Формулировка	168
117.2Доказательство	168
118Георема о произведении рядов	169
118.1Формулировка	169
118.2Доказательство	169
119Единственность производной	170
119.1Формулировка	170
119.2Доказательство	170
120Пемма о дифференцируемости отображения и его координатных функций	171
120.1Формулировка	171
120.2Доказательство	171
121Необходимое условие дифференцируемости	172
121.1Формулировка	172
121.2Доказательство	172
122Достаточное условие дифференцируемости	173
122.1Формулировка	173

122.2Доказательство	173
Лемма об оценке нормы линейного оператора	174
123.1Формулировка	174
123.2Доказательство	174
Дифференцирование композиции	175
124.1Формулировка	175
124.2Доказательство	175
Дифференцирование произведений	176
125.1Формулировка	176
125.2Доказательство	176
Теорема Лагранжа для векторнозначных функций	177
196.1Формулировка	177

Часть І

Определения

1 Первообразная, неопределенный интеграл

1.1 Первообразная

$$f:\langle a,b\rangle\to\mathbb{R}$$

 $F:\langle a,b
angle
ightarrow\mathbb{R}$ — первообразная f на $\langle a,b
angle$, если для любого $x\in\langle a,b
angle$ F дифференцируема в точке x и F'(x)=f(x).

Пример

$$f(x) = \sin x \iff F(x) = -\cos x + C$$

1.2 Неопределенный интеграл

Неопределенным интегралом функции f на промежутке $\langle a,b \rangle$ называют множество всех её первообразных.

Обозначение:
$$\int f, \int f(x) \ dx = \{F+C, C \in \mathbb{R}\}$$
, где F — любая первообразная.

2 Теорема о существовании первообразной

Пусть f непрерывна на $\langle a,b \rangle$, тогда существует такая функция F на $\langle a,b \rangle$, что F'=f.

3 Таблица первообразных

1.
$$f(x) = k$$
, $F(x) = kx$

2.
$$f(x) = x^n, F(x) = \frac{x^{n+1}}{n+1}$$
, где $n \neq -1$

3.
$$f(x) = \frac{1}{x}$$
, $F(x) = \ln|x|$

4.
$$f(x) = e^x$$
, $F(x) = e^x$

5.
$$f(x) = a^x$$
, $F(x) = \frac{a^x}{\ln a}$, $a > 0$, $a \ne 1$

6.
$$f(x) = \sin x, F(x) = -\cos x$$

7.
$$f(x) = \cos x, F(x) = \sin x$$

8.
$$f(x) = \frac{1}{\sin^2 x}$$
, $F(x) = -\operatorname{ctg} x$

9.
$$f(x) = \frac{1}{\cos^2 x}$$
, $F(x) = \operatorname{tg} x$

10.
$$f(x) = \frac{1}{\sqrt{1-x^2}}, F(x) = \arcsin x = -\arccos x$$

11.
$$f(x) = \frac{1}{1+x^2}$$
, $F(x) = \arctan x = -\arctan x$

12.
$$f(x) = \frac{1}{\sqrt{x^2 + 1}}, F(x) = \ln |x + \sqrt{x^2 \pm 1}|$$

13.
$$f(x) = \frac{1}{1 - x^2}$$
, $F(x) = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right|$

4 Равномерная непрерывность

Отображение $f:X\to Y$, где X и Y — метрические пространства, а также $A\subset X$, называется равномерно непрерывным на A, если:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x_0, x \in A : \rho(x, x_0) < \delta \Longrightarrow \rho(f(x), f(x_0)) < \varepsilon$$

5 Площадь, аддитивность площади, ослабленная аддитивность

5.1 Первое определение площади

Пусть E — множество всех ограниченных подмножество в \mathbb{R}^2 (или множество всех фигур).

Тогда площадь — это функция $\sigma: E \to [0, +\infty)$ со свойствами:

1. аддитивность

Если
$$A = A_1 \sqcup A_2$$
, то $\sigma(A) = \sigma(A_1) + \sigma(A_2)$

2. нормировка

$$\sigma(\langle a, b \rangle \times \langle c, d \rangle) = (d - c)(b - a)$$

Замечание

1. Площадь монотонна, то есть:

$$A \subset B \Rightarrow \sigma(A) \leq \sigma(B)$$

Доказательство

$$B = A \cup (B \setminus A)$$

$$\sigma(B) = \sigma(A) + \sigma(B \setminus A) \ge \sigma(A)$$

2. σ (вертикального отрезка) = 0

Доказательство

Отрезок — прямоугольник, ширина которого стремится к 0, значит и площадь также стремится к 0

5.2 Второе определение площади

$$\sigma: E \to [0, +\infty)$$

- монотонна
- нормировка

• ослабленная аддитивность:

$$E=E_1\cup E_2,\, E_1\cap E_2$$
 — вертикальный отрезок, E_1 и E_2 — по разные стороны этого отрезка.
$$\sigma(E)=\sigma(E_1)+\sigma(E_2)$$

5.3 Площадь как сумма прямоугольников

$$\sigma(A)=\inf\Big(\sum\sigma(P_i)\Big),$$
 где $A\subset\bigcup P_i$

6 Положительная и отрицательная срезки

6.1 Определение

Пусть $f:\langle a,b\rangle \to \mathbb{R}$

$$f_{+}(x) = \max(f(x), 0)$$
 — положительная срезка

$$f_{-}(x) = \max(-f(x), 0)$$
 — отрицательная срезка

6.2 Некоторые свойства

- $f = f_{+} f_{-}$
- $f_+ + f_- = |f|$

6.3 Подграфик

Пусть $E \subset \langle a, b \rangle$

 $f(E) \ge 0$

Тогда $\Pi\Gamma(f,E)$ — подграфик f на E, если:

$$\Pi\Gamma(f, E) = \{(x, y) \in \mathbb{R}^2, x \in E, 0 \le y \le f(x)\}$$

7 Определённый интеграл

7.1 Определение

Определённым интегралом функции f по промежутку [a,b] называется $f:\langle c,d\rangle\to\mathbb{R},\,[a,b]\subset\langle c,d\rangle$

$$\int_{a}^{b} f(x)dx = \sigma(\Pi\Gamma(f_{+}, [a, b])) - \sigma(\Pi\Gamma(f_{-}, [a, b]))$$

7.2 Свойства

1.
$$f \ge 0 \Rightarrow \int_{a}^{b} f \ge 0$$

2.
$$f \equiv c \Rightarrow \int_{a}^{b} f = c(b-a)$$

Доказательство

$$c = 0$$
 — очевидно

$$c > 0 \int_{a}^{b} = \sigma(\Pi\Gamma(c, [a, b])) = c(b - a)$$

$$c < 0 \int_{a}^{b} = -\sigma(\Pi\Gamma(f_{-}, [a, b])) = -(-c)(b - a) = c(b - a)$$

$$3. \int_{a}^{b} -f = -\int_{a}^{b} f$$

Доказательство

$$(-f)_+ = f_-$$

$$(-f)_{-} = f_{+}$$

4. Можно считать, что разрешён случай, когда a=b

$$\int_{a}^{a} f = 0$$

8 Среднее значение функции на промежутке

Величина
$$c=\frac{1}{b-a}\int\limits_a^b f(x)dx\;$$
 — среднее значение функции f на промежутке $\langle a,b \rangle$

9 Кусочно-непрерывная функция

Если функция f всюду непрерывна на промежутке [a,b] кроме конечного числа точек, при этом все точки разрыва I рода, то такую функцию называют кусочно-непрерывной.

10 Почти первообразная

Пусть f — кусочно-непрерывная функция на [a,b]. Тогда $F:[a,b] \to \mathbb{R}$ — почти первообразная, если существует такое F'(x), что F'(x)=f(x) для всех x кроме конечного числа точек и F(x) непрерывна на [a,b]

11 Дробление отрезка, ранг дробления, оснащение

Пусть задан невырожденный отрезок [a,b] Дробление отрезка — набор таких точек $x_0,\,x_1,\,\ldots,\,x_n,$ что $a=x_0< x_1< x_2<\ldots< x_n=b$ Оснащение — набор точек $\xi_1,\,\xi_2,\,\ldots,\,\xi_n,$ что $\forall k:\xi_k\in[x_{k-1},x_k]$ Ранг дробления — величина, равная $\max_{k=1,\ldots,n}(x_k-x_{k-1})$

12 Риманова сумма

Пусть $f:[a,b] \to \mathbb{R},$ а также задано дробление и оснащение. Тогда $\sum_{k=1}^n f(\xi_k)(x_k-x_{k-1})$ — Риманова сумма

Если ранг дробления стремится к 0, то $\sum_{k=1}^n f(\xi_k)(x_k-x_{k-1}) \to \int\limits_a^b f(x) \ dx$. Это историческое определение интеграла

13 Постоянная Эйлера

Постоянная Эйлера — математическая константа γ , определяемая следующим образом:

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \right)$$

14 Функция промежутка. Аддитивная функция промежутка

Пусть у нас задано $\langle a,b \rangle$. Тогда

Segm
$$\langle a, b \rangle := \{ [p, q] \subset \langle a, b \rangle \}$$

Тогда:

- 1. $\phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R}\ -$ функция промежутка
- 2. $\phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R},\ -$ аддитивная функция промежутка, если

$$\forall [p,q] \subset \langle a,b \rangle : \forall c \in (p,q) \Longrightarrow \phi([p,q]) = \phi([p,c]) + \phi([c,q])$$

15 Плотность аддитивной функции промежутка

Пусть $f:\langle a,b\rangle \to \mathbb{R}, \phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R}\ -$ аддитивная функция промежутка $f - \mathrm{плотность}\ \phi, \ \mathrm{если}\ \forall \Delta \in \mathrm{Segm}\ \langle a,b\rangle \Longrightarrow \inf_{x\in \Delta} f(x)\cdot l(\Delta) \leq \phi(\Delta) \leq \sup_{x\in \Delta} f(x)\cdot l(\Delta),$ где $l(\Delta)$ — длина промежутка.

16 Гладкий путь, вектор скорости, носитель пути

Путь — непрерывное отображение $\gamma:[a,b] \to \mathbb{R}^m$

- $\gamma(a)$ начало пути
- $\gamma(b)$ конец пути

16.1 Гладкий путь

$$\gamma^{(t)} = (\gamma_1(t), \gamma_2(t), \dots, \gamma_m(t))$$

 γ_i — координатная функция пути γ

Путь $\gamma^{(t)}$ называют гладким, если все $\gamma_i \in C^1[a,b]$

16.2 Вектор скорости

$$\gamma(t_0) := \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}$$

Покоординатно: $\frac{\gamma_i(t)-\gamma_i(t_0)}{t-t_0} o \gamma_i'(t)$

 $\gamma'(t_0) = (\gamma_1'(t_0), \ \gamma_2'(t_0), \ \dots, \ \gamma_n'(t_0)) \ \ -$ вектор скорости в точке t_0

16.3 Носитель пути

Носитель пути — множество всех значений $\gamma([a,b])\subset \mathbb{R}^m$

17 Длина гладкого пути

Длина гладкого путь — функция l, заданная на множестве гладких путей и удовлетворяющая свойствам:

- 1. $l \ge 0$
- 2. l аддитивна:

$$\forall [a,b]: \forall \gamma [a,b]: \forall c \in [a,b]$$

$$l(\gamma) = l\left(\gamma \middle|_{[a,c]}\right) + l\left(\gamma \middle|_{[c,b]}\right)$$

3. $\forall \gamma, \overline{\gamma}$ — гладкие пути, $C_{\gamma}, C_{\overline{\gamma}}$ — их носители в \mathbb{R}^m

Если существует такое $T:C_{\gamma} \to C_{\overline{\gamma}}$ — сжатие, т.е.:

$$\forall M_1, M_2 \in C_{\gamma}$$

$$\rho(T(M_1), T(M_2)) \le \rho(M_1, M_2)$$

то
$$l(\overline{\gamma}) \leq l(\gamma)$$

4. γ — линейный путь $(\gamma(t) = t\overline{v} + \overline{u})$

$$l(\gamma) = \rho(\gamma(a), \gamma(b))$$

Замечание

- 1. Длина хорды меньше длины дуги (это отображение сжатие)
- 2. При растяжении длины путей растут

Всякое сжатие является непрерывным, но для растяжений — неверно!!!

3. При движении \mathbb{R}^m длина пути не меняется (это сжатие и растяжение одновременно)

18 Формулы для длины пути: в \mathbb{R}^m , в полярных координатах, длина графика

18.1 Длина пути в \mathbb{R}^m

Пусть
$$\gamma:[a,b]\to\mathbb{R}^m,\,\gamma\in C^1$$

Утверждение:
$$l(\gamma) = \int\limits_a^b \|\gamma'(t)\| dt$$

18.2 Длина графика

$$\gamma: [a,b] \to \mathbb{R}^2$$

$$t\mapsto (t,f(t))\ (f\in C^1)\$$
— гладкий путь

$$\gamma' = (1, f'(t))$$

$$\|\gamma'\| = \sqrt{1^2 + (f'(t))^2}$$

$$l(f) = \int_{a}^{b} \sqrt{1 + (f'(t))^2} dt$$

18.3 Длина кривой в полярных координатах

$$r = r(\varphi)$$

$$\gamma: [\varphi_0, \varphi_1] \to \mathbb{R}^2$$

$$\gamma(\varphi) = (r(\varphi)\cos\varphi, r(\varphi)\sin\varphi)$$

$$\gamma' = (r'\cos\varphi - r\sin\varphi, r'\sin\varphi + r\cos\varphi)$$

$$\|\gamma'\|^2 = (r')^2 + r^2$$

$$l(\gamma) = \int\limits_{\varphi_0}^{\varphi_1} \sqrt{r^2(\varphi) + (r'(\varphi))^2} d\varphi$$

19 Вариация функции на промежутке

Пусть
$$f:[a,b] \to \mathbb{R}$$
 — это «путь»

Рассмотрим все такие x, что

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b$$

Тогда вариация f на [a,b]

$$\operatorname{Var}_{a}^{b} f = \sup \sum_{i=1}^{n} (|f(x_{i}) - f(x_{i-1})|)$$

При этом если
$$f \in C^1\left([a,b]\right),$$
 то $\mathrm{Var}_a^b f = \int\limits_a^b |f'(t)| dt$

20 Верхний и нижний пределы

20.1 Верхняя и нижняя огибающая

Пусть x_n — вещественная последовательность.

$$y_n = \sup(x_n, x_{n+1}, x_{n+2}, \ldots)$$
 — верхняя огибающая

$$z_n = \inf(x_n, x_{n+1}, x_{n+2}, \ldots)$$
 — нижняя огибащая

Тогда:

- 1. y_n убывает $(y_n \le y_{n+1})$
- 2. z_n возрастают $(z_n \ge z_{n+1})$
- 3. Если изменить конечное число членов x_n , изменится конечное число элементов y_n и z_n , тогда существуют $\lim_{n\to\infty}y_n$ и $\lim_{n\to\infty}z_n$

20.2 Верхний и нижний пределы

Верхний предел
$$x_n$$
 — $\overline{\lim}_{n\to+\infty} x_n = \lim_{n\to+\infty} \sup x_n := \lim y_n \in \overline{\mathbb{R}}$

Нижний предел
$$x_n$$
 — $\lim_{n\to +\infty} x_n = \lim_{n\to +\infty} \inf x_n := \lim z_n \in \overline{\mathbb{R}}$

21 Частичный предел

a — частичный предел x_n $(a \in \overline{\mathbb{R}})$, если

 $\exists n_k: x_{n_k} \to a$

 Π ример

- 1. $x_n = (-1)^n$, 1 частничный предел
- 2. $x_n = \sin n, \, \forall a \in [-1,1]$ частничный предел

22 Допустимая функция

Пусть $f:[a,b) \to \mathbb{R}$, где $-\infty < a < b \le +\infty$ называют допустимой, если

 $\forall B: a < B < b: f\big|_{[a,B]} \ -$ кусочно-непрерывная функция.

23 Несобственный интеграл, сходимость, расходимость

23.1 Определение

Пусть
$$\Phi(B) = \int\limits_a^B f(x) dx$$
, где $B \in [a,b)$, по логике f — допустима на $[a,b)$.

Если существует $\lim_{B \to b-0} \Phi(b) \in \overline{\mathbb{R}}$, то этот предел называют несобственным интегралом. Обозначается $\int\limits_{a}^{b} f(x) dx$.

23.2 Сходимость и расходимость

Если предела нет, то несобственного интеграла не существует

Если предел $\lim_{B \to b-0} \Phi(B)$ конечен, то несобственный интеграл называют сходящимся

Если предел бесконечный, то несобственный интеграл расходится.

24 Критерий Больцано-Коши сходимости несобственного интеграла

Интеграл
$$\int\limits_a^{\to b} f(x) dx \; -$$
 сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 : \exists \Delta \in (a,b) : \forall B_1, B_2 : \Delta < B_1 < B_2 < b : \left| \int_{B_1}^{B_2} f(x) dx \right| < \varepsilon$$

Если же

$$\exists \varepsilon : \exists B_n : \overline{B_n} \to b - 0 : \left| \int_{B_n}^{\overline{B_n}} f(x) dx \right| \ge \varepsilon$$

то интеграл расходится

25 Гамма функция Эйлера

$$\Gamma(t) = \int_{0}^{+\infty} x^{t-1} e^{-x} dx, \ t > 0$$

26 Числовой ряд, сумма ряда, сходимость, расходимость

26.1 Числовой ряд

Пусть a_n — вещественная последовательность. Тогда

$$\sum_{n=1}^{+\infty} a_n$$
 называется числовым рядом, а a_n — его членами.

26.2 Сумма ряда

Последовательность $S_N = \sum_{i=1}^N a_i$ называют последовательностью частичных сумм. Если последовательность S_n имеет предел, то

$$\lim_{n \to +\infty} S_n$$
 — сумма ряда.

26.3 Сходимость и расходимость

Если предел существует и конечный, то ряд сходится. Если предела нет или он бесконечный $\,-\,$ то расходится.

27 п-й остаток ряда

$$\displaystyle\sum_{k=n}^{+\infty}a_k$$
 — n-й остаток ряда.

28 Абсолютно сходящийся ряд

Ряд $\sum a_n$ — абсолютно сходится, если

- 1. $\sum a_n$ сходится
- 2. $\sum |a_n| \text{сходится}$

29 Критерий Больцано-Коши сходимости числового ряда

Сходимость ряда $\sum_{k=1}^\infty a_k$ равносильна условию

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

30 Преобразование Абеля

Пусть $a_k,\,b_k\,$ — числовые последовательности, $A_k=\sum_{j=1}^k a_j$ при $k\in\mathbb{N}.$ Тогда при всех $n\in\mathbb{N}$

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

31 Бесконечное произведение

$$\prod_{k=1}^{+\infty} p_k := \lim_{n \to +\infty} \prod_{k=1}^n p_k$$

Если предел существует, конечен и не равен нулю, то произведение сходится, иначе расходится.

32 Произведение рядов

Пусть $\sum_{k=1}^{\infty}a_k$ и $\sum_{j=1}^{\infty}b_j$ — числовые ряды, $\gamma:\mathbb{N}\to\mathbb{N}^2$ — биекция, $k\longmapsto\gamma(k)=(\varphi(k),\psi(k))$ Тогда ряд

$$\sum_{k=1}^{\infty} a_{\varphi(k)} b_{\psi(k)}$$

называется произведением рядов $\sum_{k=1}^{\infty} a_k$ и $\sum_{j=1}^{\infty} b_j$.

33 Произведение степенных рядов

Пусть $\sum a_k \cdot x^k$ и $\sum b_k \cdot x^k$ — степенные ряды. Тогда последовательность $\sum c_k$ задаётся следующим образом:

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots a_n b_0$$

и $\sum c_k \cdot x^k$ — произведение степенных рядов.

34 Скалярное произведение, евклидова норма и метрика в \mathbb{R}^m

Скалярное произведение $\langle x,y \rangle = \sum_{i=1}^n x_i y_i$

$$\|x\| = \sqrt{\langle x, x \rangle} -$$
евклидова норма

$$ho(x,y) = \|x-y\| \ -$$
 метрика в \mathbb{R}^m

35 Окрестность точки в \mathbb{R}^m , открытое множество

 $B(a,r) = \{x \in \mathbb{R}^m : |x-a| < r\} \ \ -$ открытый шар с центром в точке a и радиусом r

 $U(a)\ -$ окрестность точки a или любой шар B(a,r), где r>0

Множество A открыто, если для любой точки $a \in A : a$ — внутренняя, то есть $\exists U(a) \subset A$

36 Сходимость последовательности в \mathbb{R}^m , покоординатная сходимость

Последовательность $x^{(n)} \in \mathbb{R}^m \xrightarrow[n \to +\infty]{} a \Longleftrightarrow |x^{(n)} - a| \xrightarrow[n \to +\infty]{} 0$ — сходящаяся последовательность в \mathbb{R}^m $\forall k: 1 \le k \le m: x_k^{(n)} \xrightarrow[n \to +\infty]{} a_k$ — покоординатная сходимость.

37 Предельная точка, замкнутое множество, замыкание

 $a\,$ — предельная точка множества A,если любая проколотая окрестность точки aимеет непустое пересечение с множеством A

Замкнутое множество содержит все свои предельные точки

Замыкание множества A — объединение самого множества A и всех его предельных точек.

38 Компактность, секвенциальная компактность, принцип выбора Больцано-Вейерштрасса

38.1 Компактность

Семейство множеств $\{G_{\alpha}\}_{\alpha\in A}$ называется покрытием множества K, если $K\subset\bigcup_{\alpha\in A}G_{\alpha}$

Покрытие открыто, если все его множества открыты.

Пусть $K \in X$, (X, ρ) — метрическое пространство. K называется компактным, если из любого открытого покрытия множества K можно извлечь конечное покрытие.

38.2 Секвенциальная компактность

K называется секвенциально компактным, если из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

38.3 Принцип выбора Больцано-Вейерштрасса

Из всякой ограниченной последовательности точек K в \mathbb{R}^m можно извлечь сходящуюся подпоследовательность b.

39 Координатная функция

 $F:\mathbb{R}^m o \mathbb{R}^l$ или $F:\mathbb{C}^m o \mathbb{C}^l$ — векторнозначная функция.

Координатные функции f:

 $f_i:X\in(\mathbb{R}^m$ или $\mathbb{C}^m) o(\mathbb{R}$ или $\mathbb{C})$ — её координатная функция.

$$F(x) = (f_1(x), f_2(x), \dots, f_l(x))$$

40 Двойной предел, повторный предел

40.1 Повторный предел

Пусть $D_1,\,D_2\subset\mathbb{R},\,a_1\,$ — предельная точка $D_1,\,a_2\,$ — предельная точка D_2

Пусть
$$D \supset (D_1 \setminus \{a_1\}) \times (D_2 \setminus \{a_2\}), f: D \to \mathbb{R}$$

Если $\forall x_1 \in D_1 \setminus \{a_1\} : \exists \varphi(x_1) = \lim_{x_2 \to a_2} f(x_1, x_2)$ — конечен, то $\lim_{x_1 \to a_1} \varphi(x_1)$ называют повторным пределом.

Аналогично
$$\lim_{x_2 \to a_2} \left(\lim_{x_1 \to a_1} f(x_1, x_2) \right)$$

40.2 Двойной предел

$$\lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2}} f(x_1, x_2) = L$$

$$\forall U(l) : \exists V_1(a_1), V_2(a_2) : \forall x_1 \in \dot{V}_1(a_1), x_2 \in \dot{V}_2(a_2) : f(x_1, x_2) \in U(l)$$

41 Предел по направлению, предел вдоль пути

 $\lim_{t\to 0} f(a+tv)$, где $v\in \mathbb{R}^m,\, t\in \mathbb{R}^-$ предел по направлению к точке a.

Пусть $x_1, \, x_2, \, \dots, \, x_m \,$ — координатные функцию, для всех $x_i : x_i(0) = a_i.$

Тогда $\lim_{t \to 0} f(x_1(t), x_2(t), \dots, x_m(t))$ — предел вдоль пути к точке a.

42 Предел отображения (определение по Коши и по Гейне)

Пусть задано $f:D\subset X\to Y$ — метрические пространства, a — предельная точка D. Тогда A называют пределом отображения f в точке a, если:

42.1 По Коши

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in D \setminus \{a\} : 0 < \rho_x(x, a) < \delta : \rho_y(f(x), A) < \varepsilon$$

42.2 По Гейне

$$\forall \{x_n\} : x_n \in D \setminus \{a\}, x_n \to a : f(x_n) \to A$$

43 Линейный оператор

Пусть $X,\,Y\,$ — линейные пространства над $\mathbb R$

 $f:X \to Y$ — линейное отображение, если:

$$\forall \alpha, \beta \in \mathbb{R} : \forall x_1, x_2 \in X : f(\alpha x_1 + \beta x_2) = \alpha f(x_1) + \beta f(x_2)$$

По факту, линейное отображение и линейный оператор одно и то же.

44 Отображение бесконечно малое в точке

Пусть $\varphi: E \subset \mathbb{R}^m \to \mathbb{R}^l, x_0$ — внутрення точка E

arphi — бесконечно малое в точке $x_0,$ если $\lim_{x o x_0} arphi(x) = \mathbf{0} \in \mathbb{R}^l$

45 о(h) при $h \to 0$

Пусть $\varphi: E \subset \mathbb{R}^m \to \mathbb{R}^l, \, \mathbf{0} \in \text{Int } (E)$

$$arphi(h) = o(h)$$
 при $h o 0,$ если $\dfrac{arphi(h)}{|h|}$ — бесконечно малое

46 Отображение, дифференцируемое в точке

Пусть $F:E\subset\mathbb{R}^m\to\mathbb{R}^l,~a\in {\rm Int}~(E),~F~$ — дифференцируема в точке a, если существует линейный оператор $L:\mathbb{R}^m\to\mathbb{R}^l,$ существует бесконечно малое $\alpha:E\to\mathbb{R}^l$ при $h\to 0,$ что

$$F(a+h) = F(a) + Lh + \alpha(h) \cdot |h|$$

Или существует линейный оператор L и также существует бесконечно малое в точке a отображение $\varphi,$ что

$$F(x) = F(a) + L(x - a) + |x - a|\varphi(x)$$

47 Производный оператор, матрица Якоби, дифференциал

47.1 Производный оператор

Оператор L — производный оператор [отображение F в точке a]

47.2 Матрица Якоби

Матрица, соответствующая производному оператору называется матрицей Якоби.

47.3 Дифференциал

По определению производной F(a+h) = F(a) + F'(a)h + o(h)

Выражение F'(a)h называется дифференциалом отображение F в точке а. Это

- 1. или линейное отображение $h \longmapsto F'(a)h$
- 2. или отображение $(a,h) \longmapsto F'(a)h$

48 Частные производные

Пусть $f: E \subset \mathbb{R}^m \to \mathbb{R}, a \in \text{Int } (E).$ Фиксируем $k \in \{1, \dots, m\}$:

$$\varphi_k(u) := f(a_1, \dots, a_{k-1}, u, a_{k+1}, \dots, a_m)$$

Функция от одной переменной задана $V(a_k)$

$$\lim_{t\to 0}\frac{\varphi_k(a_k+t)-\varphi_k(a_k)}{t}=\varphi_k'(a_k)$$
 называется частной производной функции f в точке a

49 Классы $C^r(E)$

Пусть E открыто и $E\subset \mathbb{R}^m,\,r\in\mathbb{N}\cup\{\infty\}.$ Тогда

 $C^r(E)$ — множество функций $f:E \to \mathbb{R},$ у которых существуют все частные производные порядка $\leq r$ и эти производные непрерывны.

50 Мультииндекс и обозначения с ним

Мультииндекс для \mathbb{R}^m — вектор (k_1,k_2,\ldots,k_m) , все $k_i\in\mathbb{Z}^+.$

$$|k| = k_1 + k_2 + \ldots + k_m$$
 — высота мультииндекса.

$$k! = k_1!k_2! \dots k_m!$$

$$x^k = x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}$$

$$f^{(k)} = f_{x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}}^{(|k|)} = \frac{\partial^{|k|} f}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_m^{k_m}}$$

51 Формула Тейлора (различные виды записи)

Пусть $f:C^{r+1}(E),\,B(a,r)\subset E,\,x\in B(a,r)$

Тогда
$$\exists \Theta \in [0,1]$$
, что $f(x) = \sum_{|k| \le r} \frac{f^{(k)}(a)}{k!} (x-a)^k + \sum_{|k| = r+1} \frac{f^{(k)}(a + \Theta(x-a)}{k!} (x-a)^k$

И для любителей матана:

$$f(x) = \sum_{l=0}^{r} \left(\sum_{\substack{k_1 \ge 0, k_2 \ge 0, \dots, k_m \ge 0 \\ k_1 + k_2 + \dots + k_m = l}} \frac{\partial^l f(a)}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_m^{k_m}} \cdot \frac{1}{k_1! k_2! \dots k_m!} \cdot h_1^{k_1} h_2^{k_2} \dots h_m^{k_m} \right) + \sum_{\substack{k_1 \ge 0, k_2 \ge 0, \dots, k_m \ge 0 \\ k_1 + k_2 + \dots + k_m = r + 1}} \frac{\partial f(a + \Theta(x - a))}{\partial x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}} \cdot \frac{1}{k_1! k_2! \dots k_m!}$$

n-й дифференциал

$$\sum_{n=0}^{r} \left(\frac{1}{n!} \sum \frac{n!}{k_1! k_2! \dots k_m!} \cdot \frac{\partial^n f(a)}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_m^{k_m}} \cdot h_1^{k_1} h_2^{k_2} \dots h_m^{k_m} \right)$$

n-й дифференциал в точке a или однородный многочлен степени n из формулы Тейлора

53 Норма линейного оператора

$$||A||=||A||_{m,l}=\sup{(|Ax|)},$$
где $x\in\mathbb{R}^m$ и $|x|=1$

54 Положительно-, отрицательно-, незнако- определенная квадратичная форма

Квадратичная форма — однородный многочлен второй степени/

$$Q(h) = \sum a_{ij} h_i h_j, \ h \in \mathbb{R}^n$$

- $Q(h)\,$ положительно определенная форма, если для любого $h\neq 0: Q(h)>0$
- $Q(h)\,$ отрицательно определенная форма, если для любого $h\neq 0: Q(h)<0$
- $Q(h)\,$ незнако определенная форма, если существует такие h_1 и h_2 , что $Q(h_1)>0$ и $Q(h_2)<0$

55 Локальный максимум, минимум, экстремум

Пусть $f: D \subset \mathbb{R}^m \to \mathbb{R}, x_0 \in \text{Int } (D)$

$$f \in C^2(\text{Int }(D))$$
 и grad $(f(x_0)) = 0$

$$Q(h) := \partial^2 f(x_0)$$
. Тогда:

- 1. Q(h) положительно определенная, значит x_0 точка локального минимума
- 2. $Q(h)\,$ отрицательно определенная, значит $x_0\,$ точка локального максимума
- 3. $Q(h)\,\,-\,$ неопределенная, значит $x_0\,\,-\,$ не точка экстремума.

Часть II

Теоремы

56 Теорема Кантора о равномерной непрерывности

56.1 Формулировка

Пусть $f:X\to Y$ — метрические пространства, f непрерывна на X,X — компактно. Тогда f — равномерное непрерывно на X.

56.2 Доказательство (от противного)

Воспользуемся тем свойством, что если X — компактно, то X и секвенциально компактно.

Предположим противное:

$$\exists \varepsilon > 0 \ \delta = \frac{1}{n} \ \exists x_n, \ \widetilde{x_n} : \rho(x_n, \widetilde{x_n}) < \frac{1}{n} \Rightarrow \rho(f(x_n), f(\widetilde{x_n})) \geq \varepsilon$$

Тогда выберем сходящуюся подпоследовательность: $x_{n_k} \to a \in X, \ \widetilde{x_{n_k}} \to a \in X.$

Тогда
$$f(x_{n_k}) \to f(a)$$
 и $f(\widetilde{x_{n_k}}) \to f(a)$, значит

$$\rho(f(x_{n_k}),f(\widetilde{x_{n_k}})) \to 0$$
 (по неравенству треугольника)

Что и противоречит изначальному условию.

57 Теорема Брауэра о неподвижной точке

57.1 Формулировка

Пусть $f:B(0,1)\subset \mathbb{R}^m \to B(0,1)$ — непрерывная, тогда

 $\exists x_0 : f(x_0) = x_0$

57.2 Доказательство

57.2.1 Игра "Текс"

Пусть есть поле $n \times m$, состоящее из правильных шестиугольников (гексов). Также два игрока на каждом своём ходу красят гексы в белый или чёрный цвет. Тогда для любой раскраски найдётся либо чёрная тропинка, соединяющая верхнюю и нижнюю часть поля, либо белая тропинка, соединяющая левую и правую часть поля.

Доказывается от противного

57.2.2 Сама теорема

Теперь заменим гексы на обычную координатную плоскость, причём игра, по сути, останется такой же. Теперь перейдём к самой теореме.

Шар с лёгкостью заменяется на обычный квадрат $[0,1] \times [0,1]$

Пусть $f:[0,1]^2 \to [0,1]^2$ — непрерывна. Тогда

$$\exists a \in [0,1]^2, f(a) = a$$

$$a \in [0, 1]^2$$

$$a = (a_1, a_2)$$

$$f(x) \in \mathbb{R}^2$$

$$f(x) = (f(x)_1, f(x)_2)$$

57.2.3 Доказательство

Пусть $\rho~$ — функция, заданная на $[0,1]^2\times[0,1]^2$

$$\rho(x,y) = \max(|x_1-y_1|,|x_2-y_2|)$$
 — непрерывна на $[0,1]^2$

 $x_n \to a$

 $y_n \to b$

$$\rho(x_n, y_n) \to \rho(a, b)$$

Очевидно, что для любых $x,y:x \neq y \Rightarrow \rho(x,y)>0$

57.2.4 Теперь к самой теореме

Пусть для любого $x \in [0,1]^2$ $f(x) \neq x$. Тогда $\rho(x,f(x)) > 0$, но ρ непрерывно по x и $[0,1]^2$ — компакт, значит по теореме Вейерштрасса существует такое $\varepsilon > 0$, что

$$\min_{x \in [0,1]^2} \rho(x, f(x)) = \varepsilon > 0$$

По теореме Кантора для этого ε найдётся такая δ (будем считать, что $\sqrt{2}\delta<\varepsilon$), что

$$\forall x, \widehat{x} \in [0, 1]^2 : ||x - \widehat{x}|| < \delta \cdot \sqrt{2} \Rightarrow ||f(x) - f(\widehat{x})|| < \varepsilon$$

Берём
$$\frac{1}{n} < \varepsilon$$

57.2.5 Доска

Узел
$$(l,k) o \left(\frac{l}{n},\frac{k}{n}\right) \in [0,1]^2$$

$$0 \le l, k \le n$$

Красим узлы

v — логический узел, $v = (v_1, v_2)$

$$c(v) = \min \left\{ i : \left\| f\left(\frac{v}{n}\right)_i - \frac{v_i}{n} \right\| \ge \varepsilon \right\}$$

По лемме об игре в гексы есть одноцветная тропинка.

Путь $v^0 \,$ — начальная точка тропинки, $v^N \,$ — конечная.

$$v_1^0 = 0$$

$$f\left(\frac{v^0}{n}\right) \in [0,1]^2$$
, t.e. $f\left(\frac{v^0}{n}\right)_1 \geq 0$
$$\varepsilon \leq f\left(\frac{v^0}{n}\right)_1$$

Аналогично для $v_1^N=1$

$$f\left(\frac{v^N}{n}\right)_1 \le 1$$

$$f\left(\frac{v^N}{n}\right)_1 - \frac{v_1^N}{n} \le -\varepsilon$$

$$f\left(\frac{v^0}{n}\right)_1 - \frac{v_1^0}{n} \ge \varepsilon$$

Поскольку для любых x верно, что $|f(x)_1-x_1|\geq \varepsilon$, то из этого следует, что какой-то прыжок был длиной не меньше 2ε , но такое невозможно, поскольку по условию если $\|x-\widehat{x}\|<\frac{1}{n}$, то $\|f(x)-f(\widehat{x})\|<\varepsilon$

58 Теорема о свойствах неопределенного интеграла

Пусть f, g имеют первообразную на $\langle a, b \rangle$. Тогда:

1.
$$\int f + \int g = \int (f + g)$$
$$\forall \alpha \in \mathbb{R} \int (\alpha f) = \alpha \int f$$

2. $\forall \varphi: \langle c, d \rangle \rightarrow \langle a, b \rangle, \, \varphi$ дифференцируема

$$\int f(arphi(t))arphi'(t)dt = F(arphi(t)) + C$$
, где F — первообразная f

3.
$$\forall \alpha, \beta \in \mathbb{R}, \ \alpha \neq 0 : \int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$$

4. f, g — дифференцируемы на $\langle a, b \rangle$

 $f' \cdot g$ имеет первообразную на $\langle a,b \rangle$

Тогда $f \cdot g'$ тоже имеет первообразную и

$$\int f'g = fg - \int fg'$$

Доказательство

1.
$$(F+G)' = f+g$$

$$(\alpha F)' = \alpha f$$

2.
$$(F(\varphi(t)))' = f(\varphi(t))\varphi'(t)$$

3.
$$\left(\frac{1}{\alpha}F(\alpha x + \beta)\right)' = f(\alpha x + \beta)$$

4.
$$(fg)' = f'g + fg'$$
, r.e. $fg = \int f'g + \int fg'$

59 Интегрирование неравенств. Теорема о среднем

59.1 Интегрирование неравенств

59.1.1 Формулировка

$$f, g \in C[a, b], f \leq g \Rightarrow \int_{a}^{b} f \leq \int_{a}^{b} g$$

59.1.2 Доказательство

Если $0 \le f \le g$

$$\int\limits_a^b f = \sigma(\Pi\Gamma(f,[a,b])) \leq \sigma(\Pi\Gamma(g,[a,b])) = \int\limits_a^b g$$

В общем случае

$$\Pi\Gamma(f_+,[a,b])\subset\Pi\Gamma(g_+,[a,b])$$

$$\Pi\Gamma(f_{-}, [a, b]) \supset \Pi\Gamma(g_{-}, [a, b])$$

$$\sigma(\Pi\Gamma(f_+,[a,b])) - \sigma(\Pi\Gamma(f_-,[a,b])) \leq \sigma(\Pi\Gamma(g_+,[a,b])) - \sigma(\Pi\Gamma(g_-,[a,b]))$$

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

59.1.3 Следствия

1.
$$f \in C[a, b]$$

$$\min_{[a,b]} f \cdot (b-a) \le \int_{a}^{b} f \le \max_{[a,b]} f \cdot (b-a)$$

2.
$$f \in C[a, b]$$

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

T.K.
$$-\int\limits_a^b |f| \leq \int\limits_a^b f \leq \int\limits_a^b |f|$$

59.2 Теорема о среднем значении

59.2.1 Формулировка

Пусть f непрерывна на $[a,b]\Rightarrow \exists c\in [a,b]: \int\limits_a^b f=f(c)(b-a)$

59.2.2 Доказательство 1 (Кохась порофлил)

Просто берём прямую и двигаем её сверху вниз, тем самым по теореме о бутерброде мы найдём такое значение c, что $\int\limits_{-b}^{b}f=f(c)(b-a)$

59.2.3 Нормальное доказательство

Если a=b — очевидно.

Пусть a < b

$$\min f \le \frac{1}{b-a} \int_{a}^{b} f \le \max f$$

по теореме Больцано-Коши о промежуточном значении

$$\exists c : \frac{1}{b-a} \cdot \int_{a}^{b} f = f(c)$$

$$\int_{a}^{b} f = f(c)(b - a)$$

60 Теорема Барроу

60.1 Определение

$$f \in C[a,b], \, \varphi : [a,b] \to \mathbb{R}$$

$$\varphi(x) = \int_{a}^{x} f(t)dt$$

Интеграл с верхним переменным пределом

60.2 Теорема (Барроу)

В условиях определения оказывается, что φ — дифференцируема на [a,b] и $\varphi'(x)=f(x)$ для любого $x\in [a,b]$

60.3 Доказательство

Фиксируем x и при y > x

$$\lim_{y\to x+0}\frac{\varphi(y)-\varphi(x)}{y-x}=\lim_{y\to x+0}\frac{1}{y-x}\left(\int\limits_a^yf-\int\limits_a^xf\right)=\lim_{y\to x+0}\frac{1}{y-x}\int\limits_x^yf=\lim_{y\to x+0}f(c)=f(x)$$

 $\exists c \in [x,y] \ -$ следует из теоремы о среднем значении.

Аналогично доказываем, что $\lim_{y \to x-0} = \ldots = f(c)$

60.4 Замечания

• Интеграл с нижним переменным пределом

$$\psi(x) = \int\limits_{x}^{b} f$$
. Тогда $\psi'(x) = -f$

• Эта теорема также доказывает теорему о существовании неопределенного интеграла.

61 Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций

61.1 Формулировка теоремы

Пусть f непрерывна (кусочно-непрерывна) на [a,b], F — (почти) первообразная f.

Тогда
$$\int_{a}^{b} f = F(b) - F(a)$$

61.2 Доказательство

 φ (из теоремы Барроу) — тоже первообразная, значит

$$\exists c: F = \varphi + c$$

$$F(b) - F(a) = \Phi(b) - \Phi(a) = \int_{a}^{b} f - \int_{a}^{a} f = \int_{a}^{b} f$$

$$\int_{a}^{b} f = F(b) - F(a)$$

При
$$a > b \int\limits_a^b f \stackrel{\text{def}}{=} - \int\limits_b^a f$$

61.3 Для кусочно-непрерывных функций

Для кусков функции распишем формулу Ньютона-Лейбница, получим телескопическую сумму, останется только F(b)-F(a)

62 Свойства определенного интеграла: линейность, интегрирование по частям, замена переменных

62.1 Линейность определенного интеграла

62.1.1 Формулировка

$$f, g \in C[a, b], \alpha, \beta \in \mathbb{R}$$

$$\int_{a}^{b} \alpha f + \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

62.1.2 Доказательство

Из формулы Ньютона-Лейбница

$$\int_{a}^{b} f = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

Для $F,\,G: \alpha F + \beta G\,\,$ — первообразная $\alpha f + \beta g$

$$\left(\alpha F(x) + \beta G(x)\right)\Big|_a^b = \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a) = \alpha (F(b) - F(a)) + \beta (G(b) - G(a)) = \alpha \int_a^b f + \beta \int_a^b g(a) da$$

62.2 Интегрирование по частям

62.2.1 Формулировка

$$f,g\in C^1[a,b]$$
. Тогда

$$\int\limits_a^b fg' = fg \bigg|_a^b - \int\limits_a^b f'g$$

62.2.2 доказательство

Из свойств для неопределенного интеграла

$$\int_{a}^{b} fg' = \left(\int fg'\right)\Big|_{a}^{b} = \left(fg - \int f'g\right)\Big|_{a}^{b} = fg\Big|_{a}^{b} - \int_{a}^{b} f'g$$

62.3 Замена переменных

62.3.1 Формулировка

 $f \in C(\langle a, b \rangle)$

$$\varphi: \langle \alpha, \beta \rangle \to \langle a, b \rangle$$

$$\varphi \in C^1(\langle a, b \rangle)$$

$$[p,q] \in \langle \alpha,\beta \rangle$$

Тогда
$$\int\limits_{p}^{q}f(\varphi(t))\varphi'(t)\ dt=\int\limits_{\varphi(p)}^{\varphi(q)}f(x)\ dx$$

62.3.2 Доказательство

Пусть F — первообразная f

$$F(\varphi(t))$$
 — первообразная $f(\varphi(t))\varphi'(t)$ на $[p,q]$

Тогда обе части: $F(\varphi(q)) - F(\varphi(p))$

62.3.3 Замечание

- 1. Возможен случай $\varphi([p,q])\supset [\varphi(p),\varphi(q)]$
- 2. В другую сторону

$$\int_{u}^{v} f(x) \ dx = \int_{v}^{q} f(\varphi(t))\varphi'(t) \ dt$$

Тогда подбираем такие p и q, что когда t ходит от p до q и $\varphi(t)$ ходит от v до u

63 Интегральное неравенство Чебышева. Неравенство для сумм

63.1 Интегральное неравенство Чебышева

63.1.1 Формулировка

$$I_f = \frac{1}{b-a} \int_a^b f$$

 $f,g \in C[a,b]$ — монотонно возрастают

Тогда $I_f \cdot I_y \leq I_{fg}$

$$\int\limits_a^b f \cdot \int\limits_a^b g \leq (b-a) \int\limits_a^b fg \ - \ \text{неравенство Чебышева}$$

63.1.2 Доказательство

$$\forall x, y \in [a, b] (f(x) - f(y))(g(x) - g(y)) \ge 0$$

Проинтегрируем по переменной x по отрезку [a,b]

$$f(x)g(x) - f(y)g(x) - f(x)g(y) + f(y)g(y) \ge 0$$

$$I_{fg} - f(y)I_g - I_f g(y) + f(y)g(y) \ge 0$$

Интегрируем по y на $[a,b]: \frac{1}{b-a}\int\limits_{a}^{b}$

$$I_{fg} - I_f \cdot I_g - I_f \cdot I_g + I_{fg} \ge 0$$

$$I_{fg} \ge I_f \cdot I_g$$

63.2 Неравенство для сумм

63.2.1 Формулировка для сумм

Пусть задана последовательность $a_n:a_1\geq a_2\geq\ldots\geq a_n$ и $b_n:b_1\geq b_2\geq\ldots\geq b_n.$ Тогда

$$\frac{1}{n}\sum_{k=1}^{n}a_kb_k \ge \left(\frac{1}{n}\sum_{k=1}^{n}a_k\right)\left(\frac{1}{n}\sum_{k=1}^{n}b_k\right)$$

63.2.2 Доказательство

По неравенству Чебышёва

$$I_{fg} \ge I_f I_g$$

Пусть
$$I_f = \frac{1}{n} \int_0^n f = \frac{1}{n} \sum a_k$$

$$f(x) = a_{[x+1]}, \, x \in [0,n]$$
 (где $[x]$ — округление к ближайшему целому вниз)

$$I_g = \frac{1}{n} \int_{0}^{n} g = \frac{1}{n} \sum b_k$$

$$g(x) = b_{[x+1]}, x \in [0, n]$$

Отсюда следует, что

$$\frac{1}{n} \sum a_k b_k \ge \left(\frac{1}{n} \sum a_k\right) \left(\frac{1}{n} \sum b_k\right)$$

64 Иррациональность числа π

64.1 Вспомогательный интеграл

Пусть
$$H_n = \frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \ dt$$

$$H_n = \begin{bmatrix} f = \left(\frac{\pi^2}{4} - t^2\right)^n & g = \sin t \\ f' = -2nt \left(\frac{\pi^2}{4} - t^2\right)^{n-1} & g' = -\cos t \end{bmatrix}$$

$$H_n = \frac{1}{n!} \left(\frac{\pi^2}{4} - t^2 \right)^n \sin t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{1}{n!} 2n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t(\frac{\pi^2}{4} - t^2)^{n-1} \sin t \, dt$$

$$H_n = \frac{1}{n!} 2n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t(\frac{\pi^2}{4} - t^2)^{n-1} \sin t \ dt$$

$$H_n = \begin{bmatrix} f = t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} & g = -\cos t \\ f' = \left(\frac{\pi^2}{4} - t^2\right)^{n-1} - 2(n-1)t^2 \left(\frac{\pi^2}{4} - t^2\right)^{n-2} & g' = \sin t \end{bmatrix}$$

$$f' = \left(\frac{\pi^2}{4} - t^2\right)^{n-1} + 2(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-1} - \frac{\pi^2}{2}(n-1)\left(\frac{\pi^2}{4} - t^2\right)^{n-2}$$

$$f' = (2n - 1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} - \frac{\pi^2}{2}(n - 1) \left(\frac{\pi^2}{4} - t^2\right)^{n-2}$$

$$\frac{2}{(n-1)!}t\left(\frac{\pi^2}{4}-t^2\right)^{n-1}\left(-\cos t\right)\bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}-\frac{2}{(n-1)!}\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left((2n-1)\left(\frac{\pi^2}{4}-t^2\right)^{n-1}-\frac{\pi^2}{2}(n-2)\left(\frac{\pi^2}{4}-t^2\right)^{n-2}\right)\cos t\,dt$$

Пусть $n \ge 2$, тогда

$$H_n = (4n-2)H_{n-1} - \pi^2 H_{n-2} = \dots + H_2 + \dots + H_0$$

$$H_0 = 2$$

$$H_1 = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{t}{f} \frac{g'}{\sin t} = 2t(-\cos t) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \, dt = 4$$

64.2 Теорема

Число π^2 — иррациональное (и тогда π тоже)

64.3 Доказательство (от противного)

Пусть
$$\frac{1}{n!}\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{\pi^2}{4}-t^2\right)^n\cos t=P_n(\pi^2),$$
 где P_n — многочлен с целыми коэффициентами.

 $\deg P \le n$

Этого не может быть

Пусть
$$\pi^2 = \frac{m}{k} \in \mathbb{Q}$$
. Тогда $k^n P_n\left(\frac{m}{k}\right)$ — целое число

Значит
$$k^n \cdot P_n\left(\frac{m}{k}\right) \ge 1$$
, т.е.

$$\frac{k^n}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \ dt \ge 1$$

$$\frac{k^n}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t \, dt \le \frac{k^n}{n!} \left(\frac{\pi^2}{4}\right)^n \cdot \pi \xrightarrow[n \to +\infty]{} 0$$

65 Формула Тейлора с остатком в интегральной форме

65.1 Формулировка

Пусть
$$\langle a, b \rangle \in \overline{\mathbb{R}}, f \in c^{n+1}(\langle a, b \rangle)$$

 $x, x_0 \in \langle a, b \rangle$. Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt$$

65.2 Доказательство (по индукции)

•
$$n = 0$$
: $f(x) = f(x_0) = \int_{x_0}^{x} f'(t) dt$

По формуле Ньютона-Лейбница

• Переход от n к n+1

$$f(x) + T_n + \frac{1}{n!} \int_{x_0}^x (x - t)^n f^{(n+1)}(t) dt = \begin{bmatrix} u'(x - t)^n & u = -\frac{(x - t)^{n+1}}{n+1} \\ v = f^{n-1} & v' = f^{(n+2)} \end{bmatrix}$$

$$T_n + \frac{1}{n!} \left(-\frac{(x - t)^{n+1}}{(n+1)} \cdot f^{(n+1)}(t) \Big|_{t=x_0}^{t=x} + \int_{x_0}^x \frac{(x - t)^{n+1}}{n+1} \cdot f^{(n+2)}(t) dt \right)$$

$$T_n + \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} + \frac{1}{(n+1)!} \int_{x_0}^x (x - t)^{n+1} f^{(n+2)}(t) dt$$

65.3 Послесловие

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n$$

$$f(t) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k + R_n$$

$$F$$
 — первообразная $f\int\limits_{x_0}^x f(t)\ dt = F(x) - F(x_0)$

$$F(x) - F(x_0) = \sum_{k=0}^{n} \int_{x_0}^{x} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k dt + \int_{x_0}^{x} R_n = \frac{(t - x_0)^{k+1}}{k+1} \Big|_{t=x_0}^{t=x}$$

$$\sum_{k=0}^{n} \frac{F^{(k+1)}(x_0)}{(k+1)!} (x - x_0)^{k+1} + \int_{x=0}^{x} R_n$$

Мы имеем право формально интегрировать формулу Тейлора

66 Лемма об ускоренной сходимости

66.1 Формулировка

Пусть $f, g: D \to \mathbb{R}, a$ — предельная точка $D \subset \mathbb{R}, a \in \overline{\mathbb{R}}$

Пусть также существует $U(a): f \neq 0$ и $g \neq 0$ в $\dot{U}(a)$

Пусть $\lim_{x \to a} f(x) = 0$ и $\lim_{y \to a} g(x) = 0$ (Также возможен вариант, что $\lim_{x \to a} f(x) = +\infty$ и $\lim_{y \to a} g(x) = +\infty$)

Тогда для любой последовательности $x_k \to a, x_k \in D, x_k \neq a$ найдётся такая последовательность $y_k \to a$ $(y_k \in D, y_k \neq a),$ что

$$\lim_{k\to +\infty}\frac{f(y_k)}{g(x_k)}=0 \ \text{и} \ \lim_{k\to +\infty}\frac{f(y_k)}{f(x_k)}=0$$

66.2 Доказательство

1. Пусть $f, g \to 0$, тогда можно добиться того, что $\left| \frac{f(y_k)}{f(x_k)} \right| < \frac{1}{k}$ и $\left| \frac{f(y_k)}{q(x_k)} \right| < \frac{1}{k}$

Тогда найдётся такое K, что $\left|\frac{f(x_k)}{f(x_{2019})}\right|<\frac{1}{2019}$ для любых $k>K\Rightarrow y_{2019}=x_k$

Продолжаем так до бесконечности

$$\left| \frac{f(x_i)}{f(x_k)} \right| < \frac{1}{k}$$

$$\exists i > k \left| \frac{f(x_i)}{f(x_k)} \right| < \frac{1}{k} \Rightarrow y_k := x_i$$

Теперь пусть
$$\left| \frac{f(x_i)}{g(x_k)} \right| < \frac{1}{k}$$
 при $x \to +\infty$ и $\left| \frac{f(x_i)}{g(x_k)} \right| < \frac{1}{k}$ также при $i \to +\infty$

Тогда для каждого k найдётся такое K, что для всех i>K выполняется сразу оба условия, значит присвоим $y_k:=x_i$, где i — какое-то число большее K.

2. Пусть $f, g \to +\infty$. Считаем, что f > 0 и g > 0. Пусть $f(x_k)$ и $g(x_k)$ — возрастающие последовательности (остальные случаи рассматриваются аналогично). Тогда

$$i = \min n : \begin{cases} f(x_n) \ge \sqrt{g(x_k)} \\ f(x_n) \ge \sqrt{f(x_k)} \end{cases}$$

Возьмём $y_k := x_{i-1}$

Тогда
$$\frac{f(y_k)}{f(x_k)}<\frac{\sqrt{f(x_k)}}{f(x_k)}=\frac{1}{\sqrt{f(x_k)}}\to 0$$

$$\frac{f(y_k)}{g(x_k)} < \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \to 0$$

67 Правило Лопиталя (с леммой)

67.1 Формулировка

Пусть f,g — дифференцируемы на $(a,b), g' \neq 0$ на (a,b) и существует $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$

Не стоит забывать, что $\lim_{x\to a+0}\frac{f(x)}{g(x)}$ — неопределенно.

Тогда
$$\lim_{x \to a} \frac{f(x)}{g(x)} = A$$

67.2 Пример из жизни

Пусть $f, g: [0, +\infty) \to \mathbb{R}$

Пусть f — сколько прошёл студент,

g — сколько прошёл Кохась.

Тогда $f, g \to +\infty$, но если сравним скорости f' и g', то легко узнать, на сколько больше прошёл Кохась, чем студент.

67.3 Доказательство

 $g' \neq 0 \Rightarrow g'$ сохраняет знак (по теореме Дарбу), значит g~ — строго монотонна

1. $g \to +\infty \Rightarrow g > 0$ в окрестности точки a

 $2. g \rightarrow 0,$

 $g \uparrow \Rightarrow g > 0$ в окрестности точки a

 $g\downarrow\Rightarrow g<0$ в окрестности точки a

67.4 Собственное доказательство

Берём последовательность $y_k \to a$ из леммы.

По теореме Коши $\exists \xi_k \in [x_k,y_k]$ (не факт, что $x_k \leq y_k)$

$$\frac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = \frac{f'(\xi_k)}{g'(\xi_k)}$$

Домножаем правую и левую часть на $\frac{g(x_k)-g(y_k)}{g(x_k)}$

$$\frac{f(x_k)}{g(x_k)} = \frac{f(y_k)}{g(x_k)} + \frac{f'(\xi_k)}{g'(\xi_k)} \left(1 - \frac{g(y_k)}{g(x_k)}\right)$$

$$\frac{f(x_k)}{g(x_k)} \to \frac{f'(\xi_k)}{g'(\xi_k)}$$

68 Теорема Штольца

68.1 Формулировка

Пусть $x_n, y_n \to 0$

$$\lim_{n \to +\infty} \frac{x_n}{y_n} = \left\lceil \frac{0}{0} \right\rceil$$

Тогда если существует $\lim_{n\to +\infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a\in [0,+\infty]$

Также y_n — строго монотонна (если a=0, то x_n — тоже строго монотонна)

Тогда
$$\exists \lim_{n \to +\infty} \frac{x_n}{y_n} = a$$

68.2 Доказательство

1. Пусть $a>0,\ a$ — конечное, тогда можно считать, что $y_n\geq y_{n-1}$ из монотонности и $x_n\geq x_{n-1}$ при больших n.

Заметим обидный факт, что $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ и $\frac{a}{b} : \frac{c}{d} = \frac{a:c}{b:d}$, но $\frac{a}{b} + \frac{c}{d} \neq \frac{a+c}{b+d}$. Кохасю обидно, поэтому будем считать, что $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$. Если вы с этим не согласны, то окей, но заметим, что справедливо:

$$0 < \alpha < \frac{a}{b} < \beta$$

$$0 < \alpha < \frac{c}{d} < \beta$$

$$\alpha < \frac{a+c}{b+d} < \beta$$

Вернёмся к самой теореме

$$\forall \varepsilon > 0 \ (\varepsilon < a) \ \exists N_1 \ \forall n > N \ge N_1$$

$$a - \varepsilon < \frac{x_{N+1} - x_N}{y_{N+1} - y_N} < a + \varepsilon$$

$$a - \varepsilon < \frac{x_{N+2} - x_{N+1}}{y_{N+2} - y_{N+1}} < a + \varepsilon$$

:

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

Складываем всё

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon$$

Устремляем n к $+\infty$

$$a - \varepsilon \le \frac{x_N}{y_N} < a + \varepsilon$$

2. Если $a=+\infty$ — аналогично

$$\forall E > 0 \ \exists N_1, \ \forall n > N \ge N_1 \ \frac{x_{N+1} - x_N}{y_{N+1} - y_N} > E$$

$$E < \frac{x_n - X_N}{y_n - y_N}$$

$$E \le \frac{x_N}{y_N}$$

- 3. Если a=0, то $\lim_{n\to +\infty} \frac{y_n}{x_n} = +\infty$
- 4. Если a < 0 меняем знаки

69 Пример неаналитической функции

69.1 Неалитическая функция

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

69.2 Утверждение

f — бесконечное дифференцируема на \mathbb{R}

$$(\forall x \in \mathbb{R} \quad \forall k \in \mathbb{N} \quad \exists f^{(k)}(x))$$

69.3 Доказательство

Если $x \neq 0$ — то очевидно

Пусть x = 0, тогда для любого $k \exists f^{(k)}(0) = 0$

Из теоремы Лагранжа:

Если
$$\exists \lim_{x \to a+0} f'(x) = \lim_{x \to a-0} f'(x) = L$$
, где $L \in \mathbb{R}$, то

f — дифференцируема и f'(a) = L

$$f'(x) = \frac{2}{x^3} \cdot e^{\left(-\frac{1}{x^2}\right)}, x \neq 0$$

$$\lim_{x \to 0} \frac{\frac{1}{x^3}}{e^{\left(\frac{1}{x^2}\right)}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to 0} \frac{-\frac{3}{x^4}}{-\frac{2}{x^3}e^{\left(\frac{1}{x^2}\right)}} = \lim_{x \to 0} \frac{3}{2} \cdot \frac{\frac{1}{x}}{e^{\left(\frac{1}{x^2}\right)}} = \lim_{x \to 0} \frac{-\frac{1}{x^2}}{-\frac{2}{x^3}e^{\left(\frac{1}{x^2}\right)}} = \lim_{x \to 0} \cdot x \cdot e^{\left(-\frac{1}{x^2}\right)} \to 0$$

$$\lim_{x \to 0} \frac{1}{x^k} \cdot e^{\left(-\frac{1}{x^2}\right)} = \left(\lim_{x \to 0} \frac{\frac{1}{x^2}}{e^{\left(\frac{1}{x^2} \cdot \frac{2}{k}\right)}}\right)^{\frac{k}{2}} = \left(\lim_{x \to 0} \frac{-\frac{1}{x^3}}{-\frac{4}{k} \cdot \frac{1}{x^3} \cdot e^{\left(\frac{1}{x^3}\right)}}\right)^{\frac{k}{2}} = 0$$

Итого

$$f'(x) = \frac{2}{x^3} \cdot e^{\left(-\frac{1}{x^2}\right)}, x \neq 0$$

$$f'(0) = 0$$

Аналогично

$$f'' = -\frac{6}{x^4} \cdot e^{\left(-\frac{1}{x^2}\right)} - \frac{4}{x^5} \cdot e^{\left(-\frac{1}{x^2}\right)}, \ x \neq 0$$

$$\lim_{x \to 0} f''(x) = 0 \Rightarrow f''(0) = 0$$

$$x \neq 0$$
 $f^{(k)}(x) = P_k\left(\frac{1}{x}\right) \cdot e^{\left(-\frac{1}{x^2}\right)}$

$$\lim_{x \to 0} f^{(k)}(x) = 0 \Rightarrow f^{(k)}(0) = 0$$

70 Интеграл как предел интегральных сумм

70.1 Формулировка

Пусть $f \in C[a, b]$

Тогда $\forall \varepsilon > 0 \; \exists \delta > 0 \;$ что для любого дробления $\mathcal{T} \; a = x_0 < x_1 < \ldots < x_n = b \;$ ранга меньше δ и любого оснащения $\xi_1, \xi_2, \ldots, \xi_n$

$$\left| \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) - \int_{a}^{b} f(x) \ dx \right| < \varepsilon$$

70.2 Доказательство

1. Поделим на отрезки в соответствии с дроблением. Очевидно, что $\int\limits_a^b = \sum\limits_{k=1}^n \int\limits_{x_{k-1}}^{x_k}$. Тогда рассмотрим разность

$$\int\limits_{x_{k-1}}^{x_k} f(\xi_k) \ dx - \int\limits_{x_{k-1}}^{x_k} f(x) \ dx$$

$$\int\limits_{x_k}^{x_k} (f(\xi_k) - f(x) \ dx) \to 0, \text{ t.k. } x_{k-1} \to x_k, \text{ a } \xi_k \in [x_{k-1}, x_k]$$

2. По теореме Кантора о равномерной непрерывности

$$\forall \varepsilon>0 \ \exists \delta>0 \ \forall x_1,x_2: |x_1-x_2|<\delta \ |f(x_1)-f(x_2)|<\frac{\varepsilon}{b-a} \ \text{«Китайский } \varepsilon >$$

Берём $x_0, x_1, \dots, x_n, \xi_1, \xi_2, \dots, \xi_n$

$$\left| \sum_{k=1}^{n} - \int_{a}^{b} \right| = \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(\xi_{k}) \ dx - \sum_{k=1}^{n} f(x) \ dx \right| = \left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} (f(\xi_{k}) - f(x)) \ dx \right| \le \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} |f(\xi_{k}) - f(x)| \ dx$$

 $|\xi_k - x_k| < \delta$ для любых $[x_{k-1}, x_k]$ (по условию)

$$\leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} \frac{\varepsilon}{b-a} \ dx = \int_{a}^{b} \frac{\varepsilon}{b-a} \ dx = \varepsilon$$

70.3 Замечания

1.
$$\int_{a}^{b} f(x) dx = \lim_{\lambda(\mathcal{T}) \to 0} \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$$

2.
$$\omega(\delta) := \sup_{x,t|x-t|<\delta} |f(x)-f(t)|$$
 — модуль непрерывной функции f

По теореме Кантора f~-непрерывна $\Longrightarrow \omega(\delta) \xrightarrow[f \to 0]{} 0$

 $\omega(\delta)$ монотонно убывает на отрезке

$$\sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(\xi_k) - f(x)| dx \le \sum \int \omega(\delta) dx = \omega(\delta)(b-a)$$

Пусть f — дифференцируема на [a,b] $|f'| \leq M$

$$|f(x)-f(t)| \leq M \, |x-t| \, -$$
 следствие из теоремы Лагранжа

$$|f(\xi_k) - f(x)| \le M\delta |\xi_k - x|$$

$$\left| \sum - \int \right| \le M \delta(b - a)$$

71 Теорема об интегральных суммах для центральных прямоугольников

71.1 Формулировка

Пусть
$$f \in C^2[a,b]$$
 $a = x_0 < x_1 < \ldots < x_n = b$

$$\delta := \max |x_k - x_{k-1}|$$

Тогда

$$\left| \sum_{i=1}^{n} f\left(\frac{x_i + x_{i-1}}{2}\right) (x_i - x_{i-1}) - \int_{a}^{b} f(x) \ dx \right| \le \frac{\delta^2}{8} \cdot \int_{a}^{b} |f''|$$

71.2 Доказательство

$$\int\limits_{x_{i-1}}^{x_i} f(x) \ dx = \int\limits_{x_{i-1}}^{\xi_i} + \int\limits_{\xi_i}^{x_i} = \begin{bmatrix} u = f & u' = f' \\ v' = 1 & v = x - x_{i-1} \end{bmatrix} \text{ m} \begin{bmatrix} u = f & u' = f' \\ v' = 1 & v = x - x_i \end{bmatrix}$$

$$f(x)(x-x_{i-1})\Big|_{x=x_{i-1}}^{x=\xi_i} - \int_{x_{i-1}}^{\xi_i} f'(x)(x-x_{i-1}) dx + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=x_i} - \int_{\xi_i}^{x_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - \int_{\xi_i}^{\xi_i} f'(x)(x-x_i) dx = f(\xi_i)(\xi_i - x_{i-1}) + f(x)(x-x_i)\Big|_{x=\xi_i}^{x=\xi_i} - f(x)(x-x_i)\Big|_{x=\xi_i$$

$$f(\xi_i)(x_i - \xi_i) - \left(f'(x) \frac{(x - x_{c-1})^2}{2} \Big|_{x = x_{i-1}}^{x = \xi_i} - \int_{x_{i-1}}^{\xi_i} f''(x) \frac{(x - x_{i-1})^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int_{\xi_i}^{x_i} f''(x) \frac{(x - x_i)^2}{2} dx + f'(x) \frac{(x - x_i)^2}{2} \Big|_{\xi_i}^{x_i} - \int$$

$$f(\xi_i)(x_i - x_{i-1}) + \int_{x_{i-1}}^{x_i} f''(x) \varphi(x) dx$$

$$\varphi(x) = \begin{cases} \frac{(x - x_{i-1})^2}{2}, & x \in [x_{i-1}, \xi_i] \\ \frac{(x - x_i)^2}{2}, & x \in [\xi_i, x_i] \end{cases}$$

Тогда $\varphi(x)$ определена на [a,b]

$$\left| \sum_{i=1}^{n} f\left(\frac{x_{i-1} - x_{i}}{2}\right) (x_{i} - x_{i-1}) - \int_{a}^{b} f(x) dx \right| = \left| \sum_{i=1}^{n} \left(f(x_{i})(x_{i} - x_{i-1}) - \int_{x_{i-1}}^{x_{i}} f \right) \right| = \left| \sum_{i=1}^{n} \left(-\int_{x_{i-1}}^{x_{i}} f''(x)\varphi(x) dx \right) \right| = \left| \int_{a}^{b} f''(x)\varphi(x) dx \right| \le \int_{a}^{b} |f''(x)|\varphi(x)| dx \le \frac{\delta^{2}}{8} \int_{a}^{b} |f''(x)| dx$$

Поскольку
$$\max \varphi(x) = \frac{(\frac{\delta}{2})^2}{2} = \frac{\delta^2}{8}$$

72 Теорема о формуле трапеций, формула Эйлера-Маклорена

72.1 Формулировка теоремы о формуле трапеций

Пусть
$$f \in C^2[a,b]$$
 $a = x_0 < x_1 < \ldots < x_n = b$ $\delta = \max(x_i - x_{i-1})$

Тогда
$$\left|\sum_{i=1}^n \frac{f(x_{i-1})+f(x_i)}{2}(x_i-x_{i-1})-\int\limits_a^b f(x)\ dx\right|\leq \frac{\delta^2}{8}\int\limits_a^b |f''|$$

72.2 Доказательство

$$\int_{x_{i-1}}^{x_i} f(x) = \begin{bmatrix} u = f & u' = f' \\ v'1 = 1 & v = x - \xi_i \end{bmatrix}$$

$$f(x)(x - \xi_i) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f'(x)(x - \xi_i) - f(x_{i-1})(x_{i-1} - \xi_i) - \left(f'(x) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f'' \frac{(x - \xi_i)^2}{2} dx \right) = (f(x_i) + f(x_{i-1})) \frac{x_i - x_{i-1}}{2} - \left(f'(x) - \frac{1}{2} \psi(x) \Big|_{x_{i-1}}^{x_i} - \int_{x_{i-1}}^{x_i} f''(-\frac{1}{2} \psi(x)) dx \right)$$

$$\begin{bmatrix} u = f' & u' = f'' \end{bmatrix} \text{ a.e. } [x - y_i] \text{ a.e. } [x, y_i] \text{ a.e$$

$$\begin{bmatrix} u = f' & u' = f'' \\ v' = (x - \xi_i) & \psi(x) = (x - x_{i-1})(x_i - x) \end{bmatrix} \quad x \in [x_{i-1}, x_i] \text{ Ha } [a, b]$$

$$v = -\frac{1}{2}\psi(x)$$

$$(f(x_i) + f(x_{i-1}) \cdot \frac{(x_i - x_{i-1})}{2} - \frac{1}{2} \int_{x_{i-1}}^{x_i} f'' \psi(x) dx$$

$$\left| \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} \cdot (x_i - x_{i-1}) - \int_{a}^{b} f(x) \, dx \right| = \left| \sum_{i=1}^{n} \left(\frac{f(x_{i-1}) + f(x_i)}{2} (x_i - x_{i-1}) - \int_{x_{i-1}}^{x_i} f(x) \, dx \right) \right| = \left| \sum_{i=1}^{n} \frac{1}{2} \int_{x_{i-1}}^{x_i} f''(x) \psi(x) \right|$$

$$\frac{1}{2} \int_{a}^{b} |f''(x)| \, \psi(x) \, dx \le \frac{\delta^{2}}{8} \int_{a}^{b} |f''|$$

72.3 Простейший случай формулы Эйлера-Маклорена

$$m,n\in\mathbb{Z}$$
 $f\in C^2[m,n]$. Тогда

$$\int_{m}^{n} f(x) \ dx = (\sum_{i=m}^{n})^{\nabla} f(i) - \frac{1}{2} \int_{m}^{n} f''(x) \{x\} (1 - \{x\}) \ dx$$

Очевидно TM , что это формула трапеции.

$$[a,b] \leftrightarrow [m,n] \ x_0 = m, x_1 = m+1, \dots, x_{last} = n$$

$$\{x\}\,(1-\{x\})\$$
— парабола между двумя целыми точками

73 Асимптотика степенных сумм

$$f(x) = x^{p}$$

$$1^{p} + 2^{p} + \dots + n^{p} = \int_{1}^{n} x^{p} dx + \frac{n^{p} + 1}{2} + \frac{1}{2} \int_{1}^{n} (x^{p})'' \{x\} (1 - \{x\}) dx$$

$$1^{p} + 2^{p} + \dots + n^{p} = \frac{n^{p+1}}{p+1} - \frac{1^{p+1}}{p+1} + \frac{n^{p}}{2} + \frac{1}{2} + \frac{p(p-1)}{2} \int_{1}^{n} x^{p-2} \{x\} (1 - \{x\})$$

$$1^{p} + 2^{p} + \dots + n^{p} = \frac{n^{p+1}}{p+1} + \frac{n^{p}}{2} + O(\max(1, n^{p-1}))$$

74 Асимптотика частичных сумм гармонического ряда

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \int_{1}^{n} \frac{1}{x} dx + \frac{1}{2} + \frac{1}{2n} + \int_{1}^{n} \frac{1}{x^{3}} \{x\} (1 - \{x\}) dx$$

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \ln n + \frac{1}{2} + \frac{1}{2n} + \int_{1}^{n} \frac{\{x\} (1 - \{x\})}{x^3} dx$$

Интеграл постоянной возрастает и ограничен сверху $\frac{1}{4}\int\limits_{1}^{n}\frac{1}{x^{3}}dx=-\frac{1}{x^{2}}\cdot\frac{1}{8}\bigg|_{x=1}^{x=n}<\frac{1}{8}$

Всё, что правее логарифма — постоянная Эйлера или γ

Итого

$$1 + \frac{1}{2} + \ldots + \frac{1}{n} = \ln n + \gamma + o(1)$$

75 Формула Валлиса

75.1 Формулировка

$$\lim_{n\to\infty}\left(\frac{(2n)!!}{(2n-1)!!}\right)^2\cdot\frac{1}{2n}=\frac{\pi}{2}$$

75.2 Доказательство

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \begin{bmatrix} u = \sin^{n-1} x & u' = (n-1)\sin^{n-2} x \cos x \\ v' = \sin x dx & v = -\cos x \end{bmatrix}$$

$$-\cos x \sin^{n-1} x \Big|_{0}^{\frac{\pi}{2}} + (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \cos^{2} x dx = (n-1) \int_{0}^{\frac{\pi}{2}} (\sin^{n-2} x - \sin^{n} x) dx = (n-1)(I_{n-2} - I_{n})$$

$$I_{n} = \frac{n-1}{n} I_{n-2}$$

$$I_{0} = \int_{0}^{\frac{\pi}{2}} 1 dx = \frac{\pi}{2}$$

$$I_{1} = \int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos x \Big|_{0}^{\frac{\pi}{2}} = 1$$

$$I_{n} = \frac{n-1}{n} I_{n-2} = \frac{n-1}{n} \cdot \frac{n-3}{n-4} I_{n-4} = \dots$$

Посчитаем отдельно для случая чётного и нечётного n

$$I_{2n+1} = \frac{2n}{2n+1} \cdot 2n - 22n - 1 \cdot \dots \cdot 1 = \frac{(2n)!!}{(2n+1)!!}$$

$$I_{2n} = \frac{2n-1}{2n} \cdot 2n - 32n - 2 \cdot \frac{\pi}{2} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}$$

Так как при $x \in \left[0, \frac{\pi}{2}\right] - \sin^{2k+1} x \le \sin^{2k}$

То и $I_{n+1} \leq I_n$

Также, $I_{2n+1} \leq I_{2n} \leq I_{2n-1}$

$$\frac{(2n)!!}{(2n+1)!!} \le \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} \le \frac{(2n-2)!!}{(2n-1)!!}$$

Разность правой и левой части стремится к 0, значит

$$\exists \lim_{k \to +\infty} \frac{1}{2k} \left(\frac{(2k)!!}{(2k-1)!!} \right)^2 = \frac{\pi}{2}$$

76 Формула Стирлинга

76.1 Формулировка

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
 при $n \to +\infty$

$$\sqrt{\pi} = \frac{1}{\sqrt{k}} \frac{(2k)!!}{(2k-1)!!} = \lim_{k \to +\infty} \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2k)}{1 \cdot 3 \cdot \dots \cdot (2k-1)} \cdot \frac{1}{\sqrt{k}}$$

$$\sqrt{\pi} = \lim \frac{(2 \cdot 4 \cdot \dots \cdot (2k))^2}{(2k)!} \cdot \frac{1}{\sqrt{k}} = \lim \frac{2^{2k} (k!)^n}{(2k)!} \cdot \frac{1}{\sqrt{k}}$$

$$\sqrt{\pi} = \lim_{k \to \infty} \frac{2^{2k} (k^k \cdot e^{-k} \sqrt{k} \cdot c)^2}{\sqrt{k} (2k)^{2k} e^{-2k} \sqrt{2k} \cdot c} = \lim_{k \to \infty} \frac{2^{2k} \cdot k^{2k} \cdot e^{-2k} \cdot k \cdot c^2}{\sqrt{2} \cdot k \cdot 2^{2k} \cdot k^{2k} \cdot e^{-2k} \cdot c} = \frac{c}{\sqrt{2}}$$

$$c = \sqrt{2\pi}$$

77 Теорема о вычислении аддитивной функции промежутка по плотности

77.1 Формулировка

Пусть заданы f и ϕ на $\langle a,b \rangle, f$ — непрерывна, ϕ — аддитивная функция промежутка, f — плотность ϕ Тогда $\forall [p,q] \subset \langle a,b \rangle \ \phi([p,q]) = \int\limits_p^q f(x) \ dx$

77.2 Доказательство

Можно принять за факт, что у нас дан промежуток [a,b] (если это не так, то уменьшим его чуть-чуть и переобозначим)

$$F(x) = \begin{cases} 0, & x = a \\ & - \text{первообразная } f \\ \phi([a,x]), & x > a \end{cases}$$

$$\inf_{[x,x+h]} f \leq \frac{\phi([x,x+h])}{h} \leq \sup_{[x,x+h]} f$$

$$x: F'_+(x) = \lim_{h \to 0+0} \frac{F(x+h) - F(x)}{h} = \lim \frac{\phi([a,x+h]) - \phi([a,x])}{h} = \lim \frac{\phi([x,x+h])}{h} = \lim_{h \to 0+0} f(x+\Theta h) = f(x),$$
 где

$$0 < \Theta < 1$$

$$\Theta = \Theta(h)$$

Аналогично посчитаем и $F'_{-}(x)$

$$\phi([p,q]) = F(q) - F(p) = \int_{p}^{q} f(x) dx$$

78 Обобщенная теорема о плотности

78.1 Формулировка

Пусть $f:\langle a,b\rangle \to \mathbb{R}$ — непрерывная функция, $\phi: \mathrm{Segm}\ \langle a,b\rangle \to \mathbb{R}$ — аддитивная функция.

Пусть $\forall \Delta \subset \text{Segm } \langle a,b \rangle$ заданы числа $m_{\Delta},\ M_{\Delta}.$

1.
$$m_{\Delta} \cdot l(\Delta) \leq \phi(\Delta) \leq M_{\Delta} \cdot l(\Delta)$$

2.
$$\forall x \in \Delta \ m_{\Delta} \leq f(x) \leq M_{\Delta}$$

3.
$$\forall x \in \langle a, b \rangle \ M_{\Delta} - m_{\Delta} \to 0$$
, если $l(\Delta) \to 0$, $x \in \Delta$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \Delta \in \text{Segm} \quad \langle a, b \rangle : x \in \Delta, \quad l(\Delta) < \delta$$

$$|M_{\Delta} - m_{\Delta}| < \varepsilon$$

Тогда
$$f$$
 — плотность ϕ (и $\forall [p,q] \ \phi([p,q]) = \int\limits_{p}^{q} f(x) \ dx)$

78.2 Доказательство

$$F(x) = \begin{cases} 0, & x = 0\\ \phi([a, x]), & x > a \end{cases}$$

Дифференцируем F_+

$$m_{\Delta} \le \frac{F(x+h) - F(x)}{h} \le M_{\Delta}$$

$$\left| \frac{F(x+h) - F(x)}{n} - f(x) \right| \le |M_{\Delta} - m_{\Delta}| \xrightarrow[h \to 0]{} 0, \ \Delta = [x, x+h]$$

$$\frac{F(x+h) - F(x)}{h} \xrightarrow[h \to 0]{} f(x)$$

Аналогично и с F_{-}

79 Площадь криволинейного сектора: в полярных координатах и для параметрической кривой

79.1 Введение

Площадь подграфика $f:\langle a,b \rangle \to \mathbb{R}$ — непрерывная, $f\geq 0$

$$\phi([p,q]) = \sigma\Pi\Gamma(f,[p,q]) \ -$$
аддитивная функция. Мы знаем, что $\phi([p,q]) = \int\limits_p^q f(x) \ dx, \ f \ -$ плотность

79.2 Пример

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\sigma(\text{эллипса})=2\sigma(\Pi\Gamma(b\sqrt{1-\frac{x^2}{a^2}},[-a,a]))=2\cdot\int\limits_{-a}^ab\sqrt{1-\frac{x^2}{a^2}}dx$$

Путь
$$\gamma: [\alpha, \beta] \to \mathbb{R}^2, x = a \cos t$$

$$[0, 2\pi] \longmapsto (a\cos t, b\sin t)$$

$$2\int_{\pi}^{0} b\sqrt{1-\cos^{2}t}/a(-\sin t) \ dt = 2ab\int_{\pi}^{0} -\sin^{2}t \ dt = 2ab\int_{0}^{\pi} \sin^{2}t \ dt = 2ab\int_{0}^{\pi} \frac{1-\cos 2t}{2} \ dt = \pi ab$$

79.3 Теорема

$$[\alpha, \beta] \subset [0, 2\pi)$$

$$\rho: [\alpha,\beta] \to \mathbb{R} \,\, -$$
 непрерывная, $\rho \geq 0$

$$A = \{(r, \phi) : \phi \in [\alpha, \beta] \ 0 \le r \le \rho(\phi)\}$$
 — «Аналог ПГ»

Тогда
$$\sigma(A) = \frac{1}{2} \int_{-\beta}^{\beta} \rho^2(\phi) \ d\phi$$

79.4 Доказательство

 $[\alpha,\beta]\longmapsto \sigma(A)\ -$ функция промежутка $Segm[\alpha,\beta]\ -$ аддитивная функция.

Проверим, что
$$\frac{1}{2}\rho^2(\phi)$$
 — плотность

$$[\gamma, \delta]$$
 — строим $A_{\gamma, \delta}$

$$\sigma(A_{\gamma,\delta}) \leq \sigma($$
Круговой сектор $(0, \max_{[\gamma,\delta]} \rho(\phi), [\gamma,\delta]))$

$$\sigma(A_{\gamma,\delta}) \geq \sigma($$
Круговой сектор $(0, \min_{[\gamma,\delta]} \rho(\phi), [\gamma,\delta]))$

$$\min_{[\gamma,\delta]} \frac{1}{2} \rho(\phi) l([\gamma,\delta]) \leq \sigma(A_{\gamma,\delta}) \leq \max_{[\gamma,\delta]} \frac{1}{2} \rho(\phi) l([\gamma,\delta])$$

По определению плотности

79.5 Замечание

$$(x(t), y(t))$$
 $t \in [a, b]$

$$x = r \cos \phi$$

$$y = r \sin \phi$$

$$r = \sqrt{x^2 + y^2}$$

$$\phi = \operatorname{arctg} \frac{y}{x}$$

$$\begin{cases} r(t) = x(t)^2 + y(t)^2 \\ \phi = \arctan \frac{y}{x} \end{cases}$$
— параметрическое задание того же пути в полярных координатах

$$\sigma A = \frac{1}{2} \int_{\phi_0}^{\phi_1} r^2(\phi) \ d\phi = \frac{1}{2} \int_{t_0}^{t_1} (x(t)^2 + y(t)^2) \left(\operatorname{arctg} \frac{y(t)}{x(t)} \right) dx = \frac{1}{2} \int_{t_0}^{t_1} (x^2 + y^2) \frac{1}{1 + \frac{y^2}{x^2}} - \frac{y'x - x'y}{x^2} \ dt = \frac{1}{2} \int_{t_0}^{t_1} (y'(t)x(t) - x'(t)y(t)) dx$$

$$\phi = \operatorname{arctg} \frac{y(t)}{x(t)}$$

Площадь круга

$$x = \cos t$$

$$y = \sin t$$

$$S = \frac{1}{2} \int_{0}^{2\pi} \cos^2 t - (-\sin t) \sin t \, dt = \frac{1}{2} \int_{0}^{2\pi} 1 = \frac{2\pi}{2} = \pi$$

$$x = \cos t$$

$$y = -\sin t$$

$$S = \frac{1}{2} \int_{0}^{2\pi} -\cos^2 t - \sin^2 t \ dt = -\pi$$

Она ловит ориентированную площадь

$$x = x(t) = a\cos t$$

$$y = y(t) = b\sin t$$

$$\sigma = \int_{a}^{b} y(x) \ dx = \int_{a}^{b} y \ dx$$

$$\sigma$$
(эллипса) = $\int\limits_{-a}^a y(x) \ dx = \int\limits_{-a}^a y \ dx = \int\limits_{\pi}^0 y(t) x'(t) dy$

$$x = x(t)$$

80 Изопериметрическое неравенство

80.1 Формулировка

Пусть G — замкнутая выпуклая фигура в \mathbb{R}^2

diam
$$G<1$$
 (diam $G=\sup_{x,y\in G}\rho(x,y))$

Тогда
$$\sigma(G) \leq \frac{\pi}{4}$$

80.2 Доказательство

$$f(x) = \sum \left\{ t : \left[(x,0), (x,t) \right] \cap G = \varnothing \right\}$$

$$g(x)$$
 — аналогично

$$f(x)$$
 — выпуклая

$$\phi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$r(-\frac{\pi}{2}) = r(\frac{\pi}{2}) = 0$$

 $r(\phi)$ — непрерывная функция от ϕ

$$\sigma(G) = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2(\phi) \ d\phi = \frac{1}{2} \left(\int_{-\frac{\pi}{2}}^{0} + \int_{0}^{\frac{\pi}{2}} \right)$$

$$\frac{1}{2} \int_{0}^{\frac{\pi}{2}} r^{2} (\phi - \frac{\pi}{2}) + r^{2} (\phi) \ d\phi = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} AB^{2} \ d\phi \le \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 \ d\phi = \frac{\pi}{4}$$

81 Вычисление длины гладкого пути

81.1 Формулировка

Пусть $\gamma: [a,b] \to \mathbb{R}^m, \, \gamma \in C^1$.

Тогда
$$l(\gamma) = \int\limits_a^b \|\gamma'(t)\| dt$$

81.2 Доказательство

Будем дополнительно считать, что $\gamma' \neq 0$

 γ — инъективно. Если это не так, то разобьём на несколько частей, и каждую из них посчитаем отдельно.

 $\phi: Segm[a,b] \to \mathbb{R}$

$$[p,q] \rightarrow l\left(\gamma|_{[p,q]}\right)$$

Пусть ϕ — аддитивная функция промежутка по аксиоме 2. Проверим, что $\|\gamma'(t)\|$ — её плотность

Это значит, что $\forall \Delta: \exists m_\Delta, M_\Delta$ и выполняются следующие свойства:

1.
$$l(\Delta)m_{\Delta} \le \phi(\Delta) \le M_{\Delta}l(\Delta)$$

2.
$$m_{\Delta} \leq f(x) \leq M_{\Delta}, x \in \Delta$$

3.
$$\Delta \to x \ M_\Delta - m_\Delta \to 0$$

$$\Delta \supset [a, b], \, \gamma(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_m(t))$$

$$m_i(\Delta) = \min_{t \in \Delta} |\gamma_i'(t)|$$

$$M_i(\Delta) = \max_{\Delta} |\gamma_i'(t)|$$

$$m_{\Delta} = \sqrt{\sum m_i(\Delta)^2}$$

$$M_{\Delta} = \sqrt{\sum M_i \Delta^2}$$

Очевидно, что при любом $t\in \Delta$ $m_\Delta \leq \|\gamma'(t)\| \leq M_\Delta$, где $\|\gamma'(t)\| = \sqrt{\sum (\gamma_i'(t))^2}$

При $\Delta \to x \; M_\Delta - m_\Delta \to 0$ по непрерывности $\gamma_i'(t)$ в точке t=x.

Проверим, что $m_{\Delta}l(\Delta) \leq \phi(\Delta) \leq M_{\Delta}l(\Delta)$

$$\widetilde{\gamma}:\Delta \to \mathbb{R}^m$$
 $\widetilde{\gamma}(t)=(M_1(\Delta)t,M_2(\Delta)t,\ldots,M_m(\Delta)t)=M\cdot t$, где $M=(M_1(\Delta),M_2(\Delta),\ldots,M_m(\Delta))$

Отображение $T:C_{\gamma}\to C_{\overline{\gamma}}\ \gamma(t)\mapsto \overline{\gamma}(t)$ — проверим, что расстяжение

$$\rho(\gamma(t_0),\gamma(t_1)) = \sqrt{\sum_{i=1}^n (\gamma_i(t_0) - \gamma_i(t_1))^2} = \sqrt{\sum (\gamma_i'(\mathcal{T}_i))^2 (t_0 - t_1)^2} \leq \sqrt{\sum M_i \Delta^2 |t_0 - t_1|} = \rho(T(\gamma(t_0)),T(\gamma(t_1))),$$
 значит T — растяжение

$$l(\gamma|_{\Delta}) \leq l(\widetilde{\gamma})$$
, r.e. $\phi(\Delta) \leq M_{\Delta}l(\Delta)$.

Аналогично $\phi(\Delta) \geq m_{\Delta} l(\Delta)$ — сжатие.

Значит $\|\gamma'\|$ — плотность

82 Объем фигур вращения

82.1 Формулировка

Обозначим фигуры, полученную вращением по оси x за $T_x(A) = \left\{ (x,y,z) : (x,\sqrt{y^2+z^2}) \in A \right\}$

По оси
$$y - T_y(A) = \left\{ (x, y, z) : (\sqrt{x^2 + z^2}, y^2) \in A \right\}$$

Пусть $f \in C[a,b], f \geq 0$

Тогда:

1.
$$V(T_x(\Pi\Gamma(f, [a, b]))) = \pi \int_a^b f^2(x) dx$$

2.
$$[a,b] \subset [0,+\infty) \ V(T_y(\Pi\Gamma(f,[a,b]))) = 2\pi \int_a^b x f(x) \ dx$$

82.2 Доказательство

 $\phi:\Delta\in Segm([a,b])\mapsto V(T_{x\ or\ y}(\Pi\Gamma(f,\Delta)))\ -\text{аддитивная функция}.$

$$\pi \min_{x \in \Delta} f(x) \cdot l(\Delta) = V(F_{\Delta}) \le \phi(\Delta) \le V(\varepsilon_{\Delta}) = \pi \max_{x \in \Delta} f(x) \cdot l(\Delta)$$

 $arepsilon_{\Delta}$ — цилиндр прямой круговой

$$\varepsilon_{\Delta} = T_x(\Pi\Gamma(\max_{\Delta} f, \Delta)) = \Delta B(0, \max_{\Delta} f) \in \mathbb{R}^3$$

 $\mathbb{R} \times \mathbb{R}^2$

$$\phi(\Delta)$$
 — плотность, $\pi \int_a^b f^2(x) dx$

 $\Delta: m_{\Delta}, M_{\Delta}$

1.
$$m_{\Delta}l(\Delta) \le \phi(\Delta) \le M_{\Delta}l(\Delta)$$

2.
$$m_{\Delta} \leq f(x) \leq M_{\Delta}, x \in \Delta$$

3.
$$\Delta \to x \ M_{\Delta} - m_{\Delta} \to 0$$

$$V(T_y(\Pi\Gamma(f,[a,b]))) = 2\pi \int_a^b x \cdot f(x)dx$$

$$F_{\Delta} = T_y(\Pi\Gamma(\min_{\Delta} f, \Delta))$$

$$\phi(\Delta) \leq V(\varepsilon_{\Delta}) = \sigma(ring) \cdot \max_{\Delta} f = \pi(q^2 - p^2) \cdot \max_{[p,q]} f = \pi(p+q) \max f(p-q) \leq \pi \cdot \max_{x \in [p,q]} (2x) \cdot \min_{x \in [p,q]} f(x) \cdot (q-p)$$

Аналогично

$$\pi \min_{x \in [p,q]} \cdot \min_{x \in [p,q]} f(x)(q-p)$$

1.
$$m_{\Delta}l(\Delta) \le \phi(\Delta) \le M_{\Delta}l(\Delta)$$

$$\phi(\Delta) = \pi \cdot 2x \cdot f(x) \leq \pi \max(2x) \cdot \max f(x)$$

2.
$$m_{\Delta} \leq f(x) \leq M_{\Delta}$$

3.
$$p \to x_0, q \to x_0 \pi \cdot 2x_0 \cdot f(x_0)$$

83 Неравенство Йенсена для сумм

83.1 Формулировка

Пусть f — выпукла на $\langle a,b \rangle$. Тогда

$$\forall x_1, x_2, \dots, x_n \in \langle a, b \rangle$$

$$\forall \alpha_1, \alpha_2, \dots, \alpha_n \ge 0, \sum_{i=1}^n \alpha_i = 1$$

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \ldots + \alpha_n f(x_n)$$

83.2 Доказательство

Если все x совпадают, то тривиально.

Пусть
$$x^* = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n$$

$$x_{\min} \sum_{i=1}^{n} \alpha_i \le x^* \le x_{\max} \sum_{i=1}^{n} \alpha_i$$

$$a \le x_{\min} \le x^* \le x_{\max} \le b$$

К любой выпуклой функции можно провести опорную прямую $y = l(x) : f(x) \ge l(x)$, при $x = x_0$ $f(x_0) = l(x_0)$

Проведём к x^* опорную прямую l(x) = kx + b

$$f(x^*) = l(x^*) = k \sum_{i=1}^{n} \alpha_i x_i + b = \sum_{i=1}^{n} k \alpha_i x_i + \sum_{i=1}^{n} b \alpha_i = \sum_{i=1}^{n} \alpha_i (kx_i + b) = \sum_{i=1}^{n} \alpha_i l(x_i) \le \sum_{i=1}^{n} \alpha_i f(x_i)$$

84 Неравенство Йенсена для интегралов

84.1 Формулировка

Пусть f — выпукла и непрерывна на $\langle A, B \rangle$

 $\varphi:[a,b] o \langle A,B \rangle$ — непрерывна

$$\lambda:[a,b] o [0,+\infty], \int\limits_a^b \lambda = 1$$
 — непрерывна

Тогда
$$f\left(\int\limits_a^b\lambda(x)\varphi(x)dx
ight)\leq\int\limits_a^b\lambda(x)f(\varphi(x))dx$$

84.2 Доказательство

 $m := \inf \varphi(x)$

 $M := \sup \varphi(x)$

$$c:=\int\limits_a^b\lambda(x)\varphi(x)dx\leq\int\limits_a^b\lambda(x)dx\cdot M=M\leq b$$

 $c \geq m = a$ — аналогично, значит $c \in \langle a, b \rangle$

Если m = M — тривиально

Пусть y = kx + b — опорная прямая к графику f в точке c

$$f(C) = kC + b = k \int_{a}^{b} \lambda \varphi + b \int_{a}^{b} \lambda = \int_{a}^{b} \lambda (k\varphi + b) \le \int_{a}^{b} \lambda (f \circ \varphi)$$

$$f\left(\int\limits_{a}^{b}\lambda\varphi\right)\leq\int\limits_{a}^{b}\lambda(f\circ\varphi)$$

85 Неравенство Коши (для сумм и для интегралов)

85.1 Неравенство для сумм

85.1.1 Формулировка

Пусть $a_1, a_2, \ldots, a_n > 0$

Тогда
$$\frac{a_1+a_2+\ldots+a_n}{n} \geq \sqrt[n]{a_1a_2\ldots a_n}$$

85.1.2 Доказательство

$$\ln(\frac{1}{n}a_1 + \frac{1}{n}a_2 + \dots + \frac{1}{n}a_n) \ge \frac{1}{n}\ln(a_1a_2\dots a_n) = \frac{1}{n}\ln a_1 + \frac{1}{n}\ln a_2 + \dots + \frac{1}{n}\ln a_n$$

$$x_1 = a_1$$

$$x_2 = a_2$$

. . .

$$x_n = a_n$$

$$\alpha_1 = \alpha_2 = \ldots = \alpha_n = \frac{1}{n}$$

$$f(\sum \alpha_i x_i) \geq \sum \alpha f(x_i),$$
 поскольку функция l
n — вогнута

85.2 Неравенство для интегралов

85.2.1 Формулировка

$$rac{1}{b-a}\int\limits_a^b f$$
 — среднее арифметическое f на $[a,b]$

$$\exp\left(\frac{1}{b-a}\int\limits_a^b \ln f\right)$$
 — среднее геометрическое функции f $(f>0)$

Тогда если $f\in C[a,b
angle,\,f>0$

$$\exp\left(\frac{1}{b-a}\int\limits_a^b \ln f\right) \le \frac{1}{b-a}\int\limits_a^b f$$

$$\frac{1}{b-a} \int_{a}^{b} \ln f \le \ln \left(\frac{1}{b-a} \int_{a}^{b} f \right)$$

$$\ln \longleftrightarrow f$$
 — вогнутая

$$f \longleftrightarrow \varphi$$

$$\frac{1}{b-a}\longleftrightarrow\lambda$$

86 Неравенство Гёльдера для сумм

86.1 Формулировка

Пусть
$$p > 1$$
, $\frac{1}{p} + \frac{1}{q} = 1$

$$q=\frac{p}{p-1}$$

 $a_i, b_i > 0$ для всех i = 1..n

Тогда
$$\sum_{i=1}^n a_i b_i \leq (\sum a_i^p)^{\frac{1}{p}} (\sum b_i^q)^{\frac{1}{q}}$$

Если $(a_1^p, a_2^p, \dots, a_n^p) \parallel (b_1^q, b_2^q, \dots, b_n^q)$ — равенство

86.2 Доказательство

 $x^p \,$ — строго выпукла при p>1 и x>0

$$(x^p)'' = p(p-1)x^{p-2} > 0$$

По неравенству Йенсена $\sum_{i=1}^n \alpha_i x_i)^p \leq \sum_{i=1}^n \alpha_i x_i^p$

$$\alpha_i := \frac{b_i^q}{\sum b_i^q}$$

$$\alpha_i > 0, \sum \alpha_i = 1$$

Выберем такие x_i , что

$$\alpha_i \cdot x_i = a_i \cdot b_i$$

$$x_i = \frac{a_i b_i}{\alpha_i} = \frac{a_i b_i}{b_i^q} \sum_{j=1}^n b_j^q = a_i b_i^{1-q} \sum_{j=1}^n b_j^q = a_i b_i^{1-\frac{p}{p-1}} \sum_{j=1}^n b_j^q = a_i b_i^{\frac{p-1-p}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^{-\frac{1}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^{-\frac{1}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^{\frac{p-1-p}{p-1}} \sum_{j=1}^n b_j^q = a_i \cdot b_i^q = a_i \cdot b_$$

Тогда $\alpha_i x_i = a_i b_i$

$$(\sum_{i=1}^{n} \alpha_i x_i)^p = (\sum_{i=1}^{n} a_i b_i)^p$$

Тогда
$$\alpha_i x_i^p = a_i^p (\sum_{i=1}^n b_i^q)^{p-1}$$

Тогда
$$\sum_{i=1}^n \alpha_i x_i^p = (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{p-1} = (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{\frac{p}{q}}$$

Тогда
$$(\sum_{i=1}^n a_i b_i)^p \le (\sum_{i=1}^n a_i^p) (\sum_{j=1}^n b_j^q)^{\frac{p}{q}}$$

Возведём в степень $\frac{1}{p}$ и получим исходное неравенство

87 Неравенство Гёльдера для интегралов

87.1 Формулировка

Пусть
$$\frac{1}{p} + \frac{1}{q} = 1, p > 1$$

Пусть также $f,\,g\in C[a,b]$ и $f,g\geq 0$ на [a,b]. Тогда

$$\int\limits_a^b fg \leq \left(\int\limits_a^b f^p\right)^{\frac{1}{p}} \left(\int\limits_a^b g^q\right)^{\frac{1}{q}}$$

87.2 Доказательство

Делим [a,b] на n равных частей

$$x_k = a + k \cdot \frac{b-a}{n} \ \Delta x_k = x_k - x_{k-1} = \frac{b-a}{n}$$

$$\xi_k := x_k$$

$$a_k := |f(x_k)| (\Delta x_k)^{\frac{1}{p}}$$

$$b_k := |g(x_k)| (\Delta x_k)^{\frac{1}{q}}$$

$$a_k \cdot b_k = |f(x_k)g(x_k)| \cdot \Delta x_k$$

$$\sum_{k=1}^{n} |f(x_k)g(x_k)| \Delta x_k \le \left(\sum |f(x_k)|^p \Delta x_k\right)^{\frac{1}{p}} \left(\sum |g(x_k)|^q \Delta x_k\right)^{\frac{1}{q}}$$

Из неравенства Гёльдера для сумм

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f|^{p}\right)^{\frac{1}{p}} \left(\int_{a}^{b} |g|^{q}\right)^{\frac{1}{q}}$$

88 Неравенство Минковского

88.1 Формулировка

Пусть $p \ge 1$

Тогда
$$\left(\sum_{i=1}^n|a_i+b_i|^p\right)^{\frac{1}{p}}\leq \left(\sum|a_i|^p\right)^{\frac{1}{p}}+\left(\sum|b_i|^p\right)^{\frac{1}{p}}$$
 $a_i,b_i\in\mathbb{R}$

88.2 Замечания

- Здесь нет буквы q
- ullet Неравенство Минковского означает, что $(a_1,a_2,\ldots,a_n)\mapsto \left(\sum |a_i|^p\right)^{\frac{1}{p}}$ является нормой

88.3 Доказательство

При p=1 — очевидно

p>1 — применим Гёльдера

Пусть $a_i, b_i > 0$

$$\sum |a_{i}||a_{i} + b_{i}|^{p-1} \leq \left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\sum |b_{i}||a_{i} + b_{i}|^{p-1} \leq \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\sum |a_{i} + b_{i}|^{p} \leq \sum (|a_{i}| + |b_{i}|)|a_{i} + b_{i}|^{p} \leq \left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} + \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{p}} \leq \ldots \leq \left(\sum |a_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum |b_{i}|^{p}\right)^{\frac{1}{p}}$$

89 Свойства верхнего и нижнего пределов

89.1 Формулировка

Пусть x_n, x_n' — произвольные последовательности. Тогда

- 1. $\underline{\lim} x_n \le \overline{\lim} x_n$
- 2. $\forall n \quad x_n \leq x'_n$. Тогда

$$\overline{\lim} x_n \le \overline{\lim} x_n'$$

$$\underline{\lim} \, x_n \le \underline{\lim} \, x_n'$$

3. $\forall \lambda > 0$

$$\overline{\lim}(\lambda x_n) = \lambda \cdot \overline{\lim} \, x_n$$

$$\underline{\lim}(\lambda x_n) = \lambda \cdot \underline{\lim} \, x_n$$

4.
$$\overline{\lim}(-x_n) = -\underline{\lim}(x_n)$$

$$\underline{\lim}(-x_n) = -\overline{\lim}(x_n)$$

5.
$$\overline{\lim}(x_n + x'_n) \le \overline{\lim} x_n + \overline{\lim} x'_n$$

$$\underline{\lim}(x_n + x_n') \ge \underline{\lim} \, x_n + \underline{\lim} \, x_n'$$

Если правые части имеют смысл

6.
$$t_n \to l \in \overline{\mathbb{R}}$$

$$\overline{\lim}(x_n + t_n) = \overline{\lim} \, x_n + \lim t_n$$

Если правая часть имеет смысл

7.
$$t_n \to l > 0, l \in \mathbb{R}$$

$$\overline{\lim}(x_n \cdot t_n) = l \cdot \overline{\lim} x_n$$

- 1. Следует из того факта, что $z_n \leq x_n \leq y_n$
- $2. \ y_n \le y_n'$

3.
$$\sup(\lambda A) = \lambda \sum_{a} (a)$$

$$4. \sup(-A) = -\inf(A)$$

5.
$$\sum (x_n + x_n', x_{n+1} + x_{n+1}; , \ldots) \le y_n + y_n'$$
, т.к. это верхняя граница для всех сумм над sup

6.
$$l \in \mathbb{R}$$
, тогда $\forall \varepsilon > 0 \exists N_0 : \forall k > N_0$

$$x_k + l - \varepsilon < x_k + t_k < x_k + l_k + \varepsilon$$

$$y_n+l-\varepsilon \leq \sum (x_n+t_n,x_{n+1}+t_{n+1},ldots) \leq y_n+l+\varepsilon, \text{ при } N \to +\infty$$

$$(\overline{\lim} x_n) + l - \varepsilon \le \overline{\lim} (x_n + y_n) \le (\overline{\lim} x_n) + l + \varepsilon$$

7. Без доказательства

90 Техническое описание верхнего предела

90.1 Формулировка

- 1. $\overline{\lim} x_n = +\infty \Longleftrightarrow x_n$ не ограничена сверху
- 2. $\overline{\lim} x_n = -\infty \iff x_n \to -\infty$
- 3. $\overline{\lim} x_n = l \in \mathbb{R} \Longrightarrow$:
 - $\forall \varepsilon > 0 : \exists N : \forall n > N \quad x_n < l + \varepsilon$
 - $\forall \varepsilon > 0$ неравенство $x_n > l \varepsilon$ выполняется для бесконечного множества номеров n

- 1. Очевидно, что $x_n < y_n$, y_n убывает Таким образом, если $\lim y_n = +\infty \Longrightarrow y_n = +\infty \Longleftrightarrow x_n$ не ограничена сверху
- $2. \ y_n \rightarrow -\infty, \, \forall E: \exists N: \forall n > N \ x_n \leq y_n < E \Rightarrow \forall E > 0: \exists N: \forall n > N: x_n < E, \, \forall n > N: y_n \leq E$
- 3. $x_n \leq y_n, y_n \to l$
 - \Rightarrow) $\forall \varepsilon>0:\exists N: \forall n>Nx_n\leq y_n< l+arepsilon$ Если $\exists N_0: \forall N_0 \forall n< l-arepsilon,$ то $\forall n>N_0 y_n=\sup(\ldots)\leq l-arepsilon$ и тогда $y_n\to l$
 - \Leftarrow) $\forall \varepsilon : \exists N : \forall n > Ny_n \le l + \varepsilon, y_n$ супремум $x_k \ge l \varepsilon \Rightarrow y_n \ge l \varepsilon \Rightarrow y_n \to l$

91 Теорема о существовании предела в терминах верхнего и нижнего пределов

91.1 Формулировка

Пусть существует $\lim x_n = l \in \overline{\mathbb{R}}$, тогда и только тогда $\overline{\lim} x_n = \underline{\lim} x_n = l$

- ullet \Rightarrow) $\lim x_n = +\infty \Longleftrightarrow \underline{\lim} \, x_n = +\infty \Rightarrow \underline{\lim} \leq \overline{\lim} \, x_n = +\infty$ $\lim x_n = -\infty \Longleftrightarrow \underline{\lim} \, x_n \leq \overline{\lim} = -\infty$ $\lim x_n \in \mathbb{R}$ очевидно
- \Leftarrow) $z_n \le x_n \le y_n$, то по теореме о сжатой последовательности $x_n \to l$, поскольку $z_n \to l$ и $y_n \to l$

92 Теорема о характеризации верхнего предела как частичного

92.1 Формулировка

- 1. Пусть l частный предел x_n , тогда $\varliminf x_n \leq l \leq \varlimsup x_n$
- 2. Существуют такие $n_k, \, m_k, \,$ что $\lim x_{n_k} = \overline{\lim} \, x_n$ и $\lim x_{m_k} = \underline{\lim} \, x_n$

1. Пусть
$$x_{n_j} \to l$$

$$z_{n_j} \le x_{n_j} \le y_{n_j}$$
, где $z_{n_j} \to \varliminf x_n, \ x_{n_j} \to l, \ y_{n_j} \to \varlimsup x_n$

2.
$$\overline{\lim} x_k = \pm \infty$$
 — очевидно

$$\overline{\lim} \, x_k = l \in \mathbb{R} \,\, -$$
 очевидно

Для
$$arepsilon = rac{1}{k} \; \exists x_{n_k} : l - rac{1}{k} \leq x_{n_k} \leq l + rac{1}{k}$$

93 Простейшие свойства несобственного интеграла

93.1Формулировка

1. Критерий Больцано-Коши сходимости несобственного интеграла

Сходимость интеграла
$$\int\limits_a^{\to b} f$$
 равносильна

$$\forall \varepsilon > 0 : \exists \Delta \in (a,b) : \forall B_1, B_2 : \Delta < B_1 < B_2 < b : \left| \int_{B_1}^{B_2} f \right| < \varepsilon$$

2.
$$f$$
 — допустима на $[a,b)$ и $C \in (a,b)$. Тогда

$$\int\limits_a^{\to b} f$$
 и $\int\limits_c^{\to b} f$ сходятся и расходятся одновременно, и при этом в случае сходимости $\int\limits_a^{\to b} = \int\limits_a^c + \int\limits_c^{\to b}$

3. Пусть
$$f, g$$
 — допустимы на $[a, b)$, а также

$$\int\limits_{a}^{\to b}f$$
 и $\int\limits_{a}^{\to b}g$ сходятся. Пусть $\lambda\in\mathbb{R},$ тогда

$$\lambda f$$
 и $f\pm g$ — допустимые функции на $[a,b)$ и

$$\int\limits_{a}^{\rightarrow b}\lambda f=\lambda\int\limits_{a}^{\rightarrow b}f\text{ in }\int\limits_{a}^{\rightarrow b}f\pm g=\int\limits_{a}^{\rightarrow b}f\pm\int\limits_{a}^{\rightarrow b}g$$

4. Пусть
$$\int\limits_{-}^{+}^{+}f$$
 и $\int\limits_{-}^{+}^{+}g$ существуют в $\overline{\mathbb{R}},\,f\leq g$ на $[a,b)$ Тогда

$$\int_{a}^{\to b} f \le \int_{a}^{\to b} g$$

5. Пусть
$$f, g$$
 — дифференцируемы на $[a, b), f', g'$ — допустимы на $[a, b)$. Тогда (при существовании двух из трёх пределов)

$$\int\limits_{a}^{\rightarrow b}fg'=fg\bigg|_{a}^{\rightarrow b}-\int\limits_{a}^{\rightarrow b}f'g$$

6. Пусть
$$\varphi: [\alpha, \beta) \to \langle A, B \rangle, \ \varphi \in C^1([\alpha, \beta)), \ f \in C(\langle A, B \rangle).$$
 Пусть также существует $\varphi(\beta - 0) \in \overline{\mathbb{R}}$. Тогда
$$\int\limits_a^b (f \circ \varphi) \cdot \varphi' = \int\limits_{\varphi(\alpha)}^{\varphi(\beta - 0)} f$$

$$\int_{a}^{b} (f \circ \varphi) \cdot \varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta - 0)} f$$

93.2 Доказательство

1. Положим $\Phi(A)=\int\limits_a^A f.$ Сходимость интеграла равносильна сходимости $\Phi(A)$ при $A\to b-0.$ Вос-

пользуемся критерием Больцано-Коши, а также учтём, что $\Phi(B) - \Phi(A) = \int\limits_a^B$

$$\forall \varepsilon > 0 : \exists \Delta \in (a,b) : \forall B_1, B_2 : \Delta < B_1 < B_2 < b : |\Phi(B_2) - \Phi(B_1)| < \varepsilon$$

2. При всех $A \in (c, b)$ согласно аддитивности интеграла

$$\int_{a}^{A} f = \int_{a}^{c} f + \int_{c}^{A} f$$

3. Аналогично предыдущему пункту возьмём такие A и согласно линейности интеграла

$$\int_{a}^{A} (\alpha f + \beta g) = \alpha \int_{a}^{A} f + \beta \int_{a}^{A} g$$

4. Также выберем A и очевидно, что

$$\int_{a}^{A} f \le \int_{a}^{A} g$$

5. Устремим $A \kappa \rightarrow b$

$$\int_{a}^{A} fg' = fg \bigg|_{a}^{A} - \int_{a}^{A} f'g$$

6. Кохась сказал, что без доказательства. На экзамене отвечаем ему то же самое

94 Признаки сравнения сходимости несобственного интеграла

94.1 Формулировка

- 1. Пусть f допустима на $[a,b), f \ge 0, \Phi(B) = \int\limits_a^B f$. Тогда сходимость $\int\limits_a^b f$ равносильна ограниченности функции Φ (это не признак сравнения)
- 2. Признаки сравнения

Пусть f, g > 0 и допустимы на [a, b)

• Если $f \leq g$ на [a,b)

(а)
$$\int_{a}^{b} g$$
 — сходится, значит и $\int_{a}^{b} f$ — сходится

(b)
$$\int\limits_a^b f$$
 — расходится, значит и $\int\limits_a^b g$ — расходится

• Пусть существует $\lim_{x \to b-0} \frac{f(x)}{g(x)} = l$

Тогда

(а)
$$\int\limits_a^b g\ -$$
 сходится, значит и $\int\limits_a^b f$ сходится, если $l\in [0,+\infty)$

(b)
$$\int\limits_a^b f$$
 и $\int\limits_a^b g$ сходятся и расходятся одновременно, если $l\in(0,+\infty)$

94.2 Доказательство

1. Очевидно, что $\Phi~-$ монотонно возрастает, тогда существование $\lim_{B\to b-0}\Phi \Longleftrightarrow \Phi~-$ ограничена

2. • Пусть
$$\Phi(B)=\int\limits_a^B f,\,\psi(B)=\int\limits_a^B g,$$
 тогда $\Phi,\,\psi\,$ — монотонные
$$\Phi(B)\leq \psi(B)$$

(a)
$$\int\limits_a^b g$$
 — сходится, значит $G(B)$ ограничено сверху, значит $F(B)$ ограничено сверху, значит $\int\limits_a^b f$ — сходится

- (b) $\int\limits_a^b f$ расходится, значит F(B) неограничено сверху, значит и G(B) неограничено, значит и $\int\limits_a^b g$ расходится
- (а) Возьмём L>l. Тогда существует $c\in[a,b): \forall x\in[c,b)$ $f(x)\leq L\cdot g(x) \text{ Заменим } \int\limits_a^b\text{ на }\int\limits_c^b.\text{ Тогда }\int\limits_c^bg\ -\text{ сходится, значит и }\int\limits_c^bLg\ -\text{ сходится}$
 - (b) Для l>0 аналогично и $\lambda < l$ и по аналогии $\lim \frac{g}{f} = \frac{1}{l}$ и $\int\limits_a^b f$ сходится $\Rightarrow \int\limits_a^b g$ сходится

95 Интеграл Эйлера-Пуассона

95.1 Формулировка

$$\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$\varphi(t) = \int_{0}^{t} e^{-x^{2}} dx$$

$$1-x^2 \le e^{-x^2} \le \frac{1}{1+x^2},$$
 следует из неравенства $e^t >= 1+t$

$$1 + x^2 \le e^{x^2}$$

$$\frac{1}{1+x^2} \geq \frac{1}{e^{x^2}}$$

Интегрируем:
$$\int\limits_0^1 (1-x^2)^n dx \leq \int\limits_0^1 e^{-nx^2} \leq \int\limits_0^{+\infty} e^{-nx^2} \leq \int\limits_0^{+\infty} \frac{1}{(1+x^2)^n} dx$$

Левая часть:
$$x=\cos t\int\limits_{-\frac{\pi}{2}}^{0}\sin^{2n}t(-\sin t)dt=W_{2n+1}$$

Правая часть:
$$x = \operatorname{tg} t \ \frac{1}{1 + \operatorname{tg}^2 t} = \cos^2 t$$

$$\int_{0}^{\frac{\pi}{2}} \cos^{2n} t \frac{1}{\cos^{2} t} dt = \int_{0}^{\frac{\pi}{2}} \sin^{2n-2} dt = W_{2n-2}$$

Средняя часть:
$$x = \frac{t}{\sqrt{n}} \sqrt{n} \int\limits_{0}^{+\infty} e^{-t^2} dt$$

$$\sqrt{n}W_{2n+1} \le \int_{0}^{+\infty} e^{-x^2} dx \le \sqrt{n}W_{2n-2}$$

$$W_n = \frac{(n-1)!!}{n!!}$$

$$W_{2n-2} = \frac{(2n-3)!!}{(2n-2)!!} \cdot \sqrt{n} \frac{\pi}{2} = \frac{1}{\underbrace{(2n-2)!!}{(2n-3)!!} \underbrace{1}{\sqrt{n-1}} \cdot \frac{\sqrt{n}}{\sqrt{n-1}} \cdot \frac{\pi}{2} = \frac{\sqrt{\pi}}{2}$$

$$W_{2n+1} = \frac{(2n)!!}{(2n+1)!!} \cdot \sqrt{n} = \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{n}} \frac{n}{2n+1} = \frac{\sqrt{\pi}}{2}$$

96 Гамма функция Эйлера. Простейшие свойства

96.1 Формулировка

$$\Gamma(T)=\int\limits_0^{+\infty}x^{t-1}e^{-x}dx,\,t>0\;$$
 — Гамма функция Эйлера

Свойства:

- 1. Интеграл сходится при t > 0
- 2. Функция выпукла, значит она непрерывна
- 3. $\Gamma(t+1) = t\Gamma(t)$
- 4. Парабола, вершина примерно точка (1,1), ветви полностью лежат в первой четверти (когданибудь здесь будет рисунок, а так рисуйте примерно)

5.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

96.2 Доказательство

$$1. \int_{0}^{+\infty} = \int_{0}^{1} + \int_{0}^{+\infty}$$

$$\int_{0}^{1} x^{t-1}e^{-x}dx, \text{ при } x \to 0 \text{ эквивалентно } x^{t-1}, t > 1, \text{ значит сходится}$$

$$\int_{0}^{+\infty} x^{t-1}e^{-x}dx \left(x^{t-1} \cdot e^{-\frac{x}{2}}\right) \cdot e^{-\frac{x}{2}} \leq e^{-\frac{x}{2}}$$

$$\int_{1}^{+\infty} e^{-\frac{x}{2}} = \lim_{B \to +\infty} \left(2 \cdot e^{-\frac{x_{0}}{2}} - 2 \cdot e^{-\frac{B}{2}}\right) - \text{ конечен}$$

2. Подынтыгральная функция $h: t \mapsto x^{t-1}e^{-x}$ — выпукла. Продифференцируем $h'' = x^{t-1}e^{-x} \ln^2 x \ge 0$ $\forall x \in [0,1]: h\left(\alpha t_1 + (1-\alpha)t_2, x\right) \le \alpha h(t_1, x) + (1-\alpha)h(t_2, x) \quad \text{— неравенство Йенсена}$ $\Gamma(\alpha t_1 + (1-\alpha)t_2) \le \alpha \Gamma(t_1) + (1-\alpha)\Gamma(t_2)$

 $\Gamma(t)$ — выпукла, значит она непрерывна

3.
$$\int_{0}^{+\infty} x^{t} e^{-x} dx = \begin{bmatrix} f = x^{t} & f' = tx^{t-1} \\ g' = e^{-x} & g = -e^{-x} \end{bmatrix} = x^{t} (-e^{-x}) \Big|_{0}^{+\infty} + \int_{0}^{+\infty} tx^{t-1} e^{-x} dx = t\Gamma(t)$$

$$\Gamma(1)=1$$
, значит $\Gamma(n)=n!$

4.
$$\int\limits_0^{+\infty} x^{-\frac{1}{2}} e^{-x} dx = 2 \int\limits_0^{+\infty} e^{-y^2} dy$$
 — интеграл Эйлера-Пуассона

97 Теорема об абсолютно сходящихся интегралах и рядах

97.1 Формулировка

Пусть f — допустима на [a,b). Тогда эквивалентны утверждения:

1.
$$\int_{a}^{b} f$$
 абсолютно сходится

2.
$$\int_{a}^{b} |f|$$
 сходится

3.
$$\int\limits_a^b f^+$$
 и $\int\limits_a^b f^-$ абсолютно сходятся

97.2 доказательство

•
$$1 \Rightarrow 2$$
 — очевидно

•
$$2 \Rightarrow 3$$
 $0 \le f^+ \le |f|$ и $0 \le f^- \le |f|$

•
$$3\Rightarrow 1$$
 $f=f^+-f^-\Rightarrow \int f$ — сходится $|f|=f^++f^-\Rightarrow \int |f|$ — сходится

97.3 Случай рядов

Аналогично интегралам. Доказывается с помощью интегрального признака Коши.

98 Изучение сходимости интеграла $\int\limits_{2019}^{\infty} \frac{dx}{x^{lpha} (\ln x)^{eta}}$

Рассмотрим
$$\int\limits_{2019}^{+\infty} \frac{dx}{x^{\alpha}}, \, \alpha > 1 \, -$$
 сходится, $\alpha \leq 1 \, -$ расходится

Случай $\alpha > 1$: $\alpha = 1 + 2a, \, a > 0$, значит сходится

$$\frac{1}{x^{\alpha}(\ln x)^{b}} = \frac{1}{x^{1+a}} \cdot \frac{1}{x^{a}(\ln x)^{\beta}} = \frac{1}{x^{1+a}}$$

$$\lim_{x\to +\infty}\frac{1}{x^a(\ln x)^\beta}=0$$

Если
$$\beta \geq 0$$
, то всё ок. Если $\beta < 0$, то $\lim \frac{(\ln x)^{-\beta}}{x^a} = \left(\lim \frac{\ln x}{x^{a/-\beta}}\right)^{-\beta} = 0$

Если $\alpha < 1$, то $\alpha = 1 - 2\gamma, \, \gamma > 0$ — расходится

$$rac{1}{x^{1-\gamma}} \cdot rac{1}{x^{-\gamma} (\ln x)^{eta}} \geq rac{1}{x^{1-\gamma}} \ -$$
 расходится

$$\alpha = 1, \int\limits_{2019}^{+\infty} \frac{dx}{x(\ln x)^{\beta}} = \int\limits_{2019}^{+\infty} \frac{dy}{y^{\beta}}$$

 $\beta > 1$ сходится, $\beta \le 1$ расходится.

99 Изучение интеграла $\int\limits_{1}^{\infty} \frac{\sin x\,dx}{x^p}$ на сходимость и абсолютную сходимость

При
$$p>1$$
 $\left| \frac{\sin x}{x^p} \right| \leq \frac{1}{x^p}$ — абсолютная сходимость

При
$$p \le 0$$
 $\int\limits_{2\pi k}^{2\pi k + \pi} \frac{\sin x}{x^p} \ge \int\limits_{2\pi k}^{2\pi k + \pi} \sin x = 2$, значит интеграл расходится (и абсолютно тоже)

При
$$0 нет абсолютной сходимости, но есть обычная сходимость
$$\int\limits_{\pi k}^{2\pi k} \frac{|\sin x|}{x^p} dx \ge \int\limits_{\pi k}^{2\pi k} |\sin x| \cdot \frac{1}{(2\pi k)^p} dx = \frac{2k}{(2\pi k)^p} \ge \frac{2}{(2\pi)^p}$$
— это мой эпсилон$$

100 Признак Абеля—Дирихле сходимости несобственного интеграла

100.1 Формулировка

1. (Дирихле) f — допустима на $[a,b),\,g\in C^1\left([a,b)\right),\,g(x)\xrightarrow[x\to b-0]{}0$ монотонная $F(B)=\int\limits_{-\infty}^{B}f$ — ограничена, тогда $\int\limits_{-\infty}^{\infty}fg$ — сходится

2. (Абеля) f — допустима на [a,b), $\int\limits_a^{\to b}f$ — сходится $g\in C^1([a,b)),$ монотонная, ограниченная Тогда $\int\limits_a^{\to b}fg$ — сходится

100.2 Доказательство

Интегрируем по частям $\int\limits_a^B fg = F(x)g(x)igg|_a^B - \int\limits_a^B F(x)g'(x)dx \; -$ конечен

$$\int_{a}^{\rightarrow b} |F(x)| |g'(x)| dx \le k \int_{a}^{\rightarrow b} |g'(x)| dx = \pm \int_{a}^{\rightarrow b} g'(x) = \pm kg(x) \Big|_{a}^{b}$$

$$\alpha = \lim_{x \to b \to 0} g(x)$$

$$fg = f\alpha + f(g - \alpha)$$

 $\int fg \; -$ сходится, $\int\limits_a^b f(g-lpha) \; -$ сходится по уже доказанному.

101 Интеграл Дирихле

101.1 Формулировка

$$\int\limits_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

101.2 Доказательство

Будет сделано позже

102 Свойства рядов: линейность, свойства остатка, необх. условие сходимости, критерий Больцано-Коши

102.1 Линейность, свойства остатка

102.1.1 Формулировка

- 1. Пусть $\sum a_n, \sum b_n$ сходятся, тогда и ряд $\sum c_n,$ где $c_n:=a_n+b_n$ тоже сходится
- 2. Пусть $\sum a_n$ сходится, тогда и ряд $\sum \lambda a_n$ тоже сходится, где $\lambda \in \mathbb{R}$
- 3. $\sum a_n$ сходится, тогда и любой остаток ряда сходится
 - Какой-нибудь остаток ряда сходится, значит и сам ряд сходится

• Пусть
$$R_m = \sum_{k=m}^{+\infty} a_k$$
, $\sum a_n$ — сходится, значит и $R_m \xrightarrow[m \to +\infty]{} 0$

102.1.2 Доказательство

1.
$$\lim_{N \to +\infty} \sum_{n=1}^{N} (a_n + b_n) = \lim_{N \to +\infty} \sum_{n=1}^{N} a_n + \lim_{N \to +\infty} \sum_{n=1}^{N} b_n$$

$$2. \sum_{n=1}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty}$$

- 3. $S_n = \sum_{k=1}^n a_k = \sum_{k=1}^{m-1} a_k + \sum_{k=m}^N a_k$, сумма и первое слагаемое конечное, значит и второе слагаемое конечное.
 - Аналогично предыдущему

•
$$\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{m-1} a_k + \sum_{k=m}^{+\infty} a_k$$

102.2 Необходимое условие сходимости рядов

102.2.1 Формулировка

$$\sum a_n \; - \;$$
сходится, тогда $a_n \xrightarrow[n o +\infty]{} 0$

102.2.2 Доказательство

$$\sum_{n=1}^{+\infty} a_n = S, S_n \to S$$

$$a_N = S_N - S_{N-1} \xrightarrow[N \to +\infty]{} 0$$

102.3 Критерий Больцано-Коши

102.3.1 Формулировка

Сходимость ряда $\sum_{k=1}^{\infty} a_k$ равносильна условию

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

102.4 Доказательство

По определению сходимость ряда $\sum_{k=1}^{\infty} a_k$ равносильна сходимости последовательности $S_n = \sum_{k=1}^n a_k$. Воспользуемся критерием Больцано-Коши для последовательностей

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m > N | S_m - S_n | < \varepsilon$$

Не умаляя общности можно считать, что m>n. Остаётся переобозначить m=n+p, где $p\in\mathbb{N}$ и заметить, что $S_m-S_n=\sum_{k=n+1}^{n+p}a_k$

103 Признак сравнения сходимости положительных рядов

103.1 Лемма

103.1.1 Формулировка

Пусть $a_k \geq 0$, при всех $k \in \mathbb{N}$. Тогда сходимости $\sum a_k$ равносильно тому, что последовательность $S_n^{(a)}$ — ограничена

103.1.2 Доказательство

Последовательность S_n возрастает, а по теореме о монотонной последовательности сходимость равносильна ограниченности сверху.

103.2 Признак сравнения сходимости положительных рядов

103.2.1 Формулировка

Пусть $a_k, b_k \ge 0$. Тогда

1.
$$\forall k: a_k \leq b_k$$
 (или даже $\exists c > 0: \exists N: \forall k > N: a_k \leq cb_k$)

Тогда

$$\sum a_k$$
 расходится. значит и $\sum b_k$ расходится

$$\sum b_k$$
 сходится, значит и $\sum a_k$ сходится

2. Пусть
$$\exists \lim_{k \to +\infty} \frac{a_k}{b_k} = l \in [0, +\infty]$$

Тогла

При
$$0 < l < +\infty$$
 $\sum a_k$ сходится тогда и только тогда, когда $\sum b_k$ сходится

При
$$l=0\sum b_k$$
 сходится, значит и $\sum a_k$ сходится, или $\sum a_k$ расходится, значит и $\sum b_k$ расходится

При
$$l=+\infty$$
 $\sum a_k$ сходится, значит и $\sum b_k$ сходится, или $\sum b_k$ расходится, значит и $\sum a_k$ расходится

103.2.2 Доказательство

1. Следует из леммы

$$\sum a_k$$
 сходится $\Leftrightarrow \sum_{k=N}^{+\infty} a_k$ сходится

$$a_k \le cb_k \Rightarrow S_n^{(a)} \le c \cdot S_n^{(b)}$$

$$\sum a_k$$
 расходится $\Rightarrow A_n^{(a)}$ не ограничено сверху, значит и $S_n^{(b)}$ тоже не ограничено сверху

Аналогично со сходимостью

2. Следует из первой случа
иl=0 и $l=+\infty$

 $0 < l < +\infty$. По определению предела

$$\exists N: \forall k > N: \frac{l}{2} < \frac{a_k}{b_k} < \frac{3l}{2}$$

 $a_k > \frac{1}{2}b_k$, значит $\sum a_n$ сходится, значит и $\sum \frac{l}{2}b_n$ тоже сходится, значит и $\sum b_n$ сходится. Аналогично разбираются и остальные 3 случая.

104 Признак Коши сходимости положительных рядов

104.1 Формулировка

Пусть $a_n \ge 0$ для всех n и $k_n = \sqrt[n]{a_n}$

- 1. $\exists q < 1 : k_n \leq q$, начиная с некоторого места, значит ряд сходится
- 2. $k_n \geq 1$ для бесконечного числа номеров, значит ряд расходится

104.2 Доказательство

- 1. $k_n \geq q \Leftrightarrow a_n \geq q^n$ при $n \to +\infty,$ а q^n сходится, значит и $\sum a_n$ сходится
- 2. $a_n \geq 1$ верно для бесконечного числа n, значит $\exists n_k$, что $\lim a_{n_k} \neq 0$, значит $\sum a_n$ расходится.

105 Признак Коши сходимости положительных рядов (pro)

105.1 Формулировка

Пусть $a_n \ge 0, k = \overline{\lim_{n \to \infty}} \sqrt[n]{a_n}$

- 1. k > 1, значит $\sum a_n$ расходится
- $2. \ k < 1,$ значит $\sum a_n \ -$ сходится

105.2 Доказательство

- 1. Пусть k > 1, тогда для бесконечного числа номеров $\sqrt[n]{a_n} > 1$, а значит $a_n > 1$, значит a_n не стремится к 0, и поэтому ряд расходится.
- 2. Пусть k < 1. Обозначим за $\varepsilon = \frac{1-k}{2} > 0, \ q = \frac{1+k}{2}$. По свойствам верхнего предела существует такое N, что для всех n > N выполняется неравенство

$$\sqrt[n]{a_n} < k + \varepsilon = \frac{1+k}{2} = q \in (0,1)$$

Тогда $a_n < q^n$ при всех n > N, и ряд $\sum_{k=1}^{\infty} a_k$ сходится по признаку сравнения со сходящимся рядом

$$\sum_{k=1}^{\infty} q^k$$

Признак Даламбера сходимости положительных рядов 106

106.1 Формулировка

Пусть
$$a_n \ge 0$$
, $D_n = \frac{a_{n+1}}{a_n}$

light

- 1. $\exists q < 1$ начиная с некоторого места $D_n \leq q$, значит $\sum a_n$ сходится
- 2. $D_n \geq 1$ начиная с некоторого места $\sum a_n$ расходится

pro

Пусть
$$\exists \lim \frac{a_{n+1}}{a_n} = D$$

- 1. D < 1, значит $\sum a_n$ сходится
- 2. D>1, значит $\sum a_n$ расходится

106.2 Доказательство

light

1.
$$\frac{a_{N+1}}{a_N} < q$$
$$\frac{a_{N+2}}{a_{N+1}} < q$$

$$\frac{a_{N+k}}{a_{N+k-1}} < q$$

$$a_{N+k} < q^k \cdot a - N_0 - \text{CYQUITE}$$

 $a_{N+k} < q^k \cdot a - N_0$ — сходится

Значит a_n сходится

2. $a_{N_0+k} \ge a_{N_0} > 0$, значит a_k не стремится 0 -расходится

pro

1.
$$\lim \frac{a_{n+1}}{a_n} = D$$
, значит НСНМ $\frac{a_{n+1}}{a_n} < q$, значит $\sum a_n$ сходится

2.
$$\lim \frac{a_{n+1}}{a_n} = D > 1$$
, значит НСНМ $\frac{a_{n+1}}{a_n} > 1$, значит $\sum a_n$ расходится

107 Признак Раабе сходимости положительных рядов

107.1 Лемма

107.1.1 Формулировка

Пусть
$$a_n, b_n > 0$$
 и $\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$ НСНМ. Тогда

 b_n — сходится, значит и a_n сходится

или

 a_n — расходится, значит и b_n расходится.

107.1.2 Доказательство

Будем считать "НСНМ"как "1"

$$a_2 < a_1 \frac{b_2}{b_1}$$

$$a_3 < a_2 \frac{b_3}{b_2}$$

. .

$$a_n < a_{n-1} rac{b_n}{b_{n-1}},$$
 значит $a_n < rac{a_1}{b_1} b_n,$ т.е. $a_n < c \cdot b_n$

107.2 Теорема

107.2.1 Формулировка

 $a_n > 0$, тогда если

$$n\cdot\left(rac{a_n}{a_{n+1}}-1
ight)\geq r>1$$
 (НСНМ), тогда $\sum a_n$ — сходится

$$n\cdot\left(rac{a_n}{a_{n+1}}-1
ight)\leq 1$$
 (НСНМ), тогда $\sum a_n$ — расходится

107.2.2 Доказательство

1.
$$n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) \ge r \Rightarrow \frac{a_n}{a_{n+1}} \ge 1 + \frac{r}{n}$$

Пусть
$$1 < s < r, b_n := \frac{1}{n^s}$$

Итак, НСНМ
$$\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$$

$$\sum b_n = \sum \frac{1}{n^s} - \text{сходится, значит } \sum a_n - \text{сходится}$$

2.
$$n\left(\frac{a_n}{a_{n+1}} - 1\right) \le 1$$
, $\frac{a_n}{a_{n+1}} \le \frac{n+1}{n} = \frac{\frac{1}{n}}{\frac{1}{n+1}}$

$$\frac{\frac{1}{n+1}}{\frac{1}{n}} \leq \frac{a_{n+1}}{a_n}, \sum \frac{1}{n}$$
 — расходится, значит и $\sum a_n$ — расходится

108 Интегральный признак Коши сходимости числовых рядов

108.1 Формулировка

Пусть $f:[1,+\infty)\to\mathbb{R}$, непрерывна, ≥ 0 , монотонна

Тогда $\sum_{k=1}^{+\infty} f(k)$ и $\int\limits_{1}^{+\infty} f(x) dx$ — сходится или расходится одновременно. Содержательный случай f — убывает и f(1)>0

108.2 Доказательство

Ряд сходится, значит $S_n^{(f)}\,$ — ограничена сверху

Тогда
$$\Phi(A) = \int_{1}^{A} f(x)dx$$
 — ограничена сверху

$$S_n^{(f)} \le S$$

$$\Phi(A) < \Phi([A] + 1) = \int_{1}^{[A]+1} f(x)dx = \sum_{k=1}^{[A]} \int_{k}^{k+1} f(x)dx \le \sum_{k=1}^{K+1} \int_{k}^{K+1} f(x)dx = \sum_{k=1}^{[A]} f(x) \le S$$

Интеграл сходится, значит и ряд сходится

$$\Phi(A) \leq S$$

Проверим, что $S_n \leq S + f(1)$

$$S_n = \sum_{k=1}^n f(k) = f(1) + \sum_{k=2}^n \int_{k-1}^k f(k)dx \le f(1) \sum_{k=2}^n \int_{k-1}^k f(x)dx = f(1) + \int_1^n f(x)dx \le f(1) + S$$

$$\sum_{n=2}^{+\infty} \frac{1}{n^a (\ln n)^b} - \text{сходство одновременно c} \int\limits_2^{+\infty} \frac{dx}{x^a (\ln x)^b} \text{ (уже изучали)}$$

109 Признак Лейбница

109.1 Формулировка

Пусть
$$a_1 \geq a_2 \geq a_3 \geq \ldots \geq 0, \ a_n \to 0.$$
 Тогда $\sum_{k=1}^{+\infty} (-1)^{k-1} a_k$ — сходится

109.2 Доказательство

$$S_{2n} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2n-1} - a_{2n}), S_{2n+2} = S_{2n} + a_{2n+1} - a_{2n+2} \ge S_{2n}$$

$$S_{2n} \le a_1, S_{2n} = a_1 - (a_2 - a_3) - \dots (a_{2n-2} - a_{2n-1}) - a_{2n}$$

$$S_{2n+1} = S_{2n} + a_{2n+1},$$
 итого S_{-} ограничено, значит ряд сходится

110 Признаки Дирихле и Абеля сходимости числового ряда

110.1 Формулировка

110.1.1 Дирихле

Пусть $S_n^{(a)}$ — ограничена

 b_n — монотонна. $b_n \to 0$

Тогда $\sum_{k=1}^{+\infty} a_k b_k$ — сходится

110.1.2 Абеля

Пусть $\sum a_k$ — сходится, b_n — ограниченная, монотонная

Тогда $\sum_{k=1}^{+\infty} a_k b_k$ — сходится

110.2 Доказательство

110.2.1 Дирихле

Применим преобразование Абеля $\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$

Из того, что A_n ограничена, а b_n бесконечна мала, следует, что $A_nb_n\to 0$, поэтому сходимость эквивалентна сходимости ряда $\sum_{k=1}^\infty A_k(b_k-b_{k+1})$

$$\sum_{k=1}^{n-1} |A_k(b_k-b_{k+1})| \leq c_a \sum_{k=1}^{n-1} |b_k-b_{k+1}| = c_a |b_1 \cdot b_n|$$
 — ограничена

110.2.2 Абеля

Существует конечный $\lim_{n\to+\infty} b_n = \beta$

$$\sum a_k b_k = \sum a_k \beta + \sum a_k (b_k - \beta)$$

111 Теорема об условиях сходимости бесконечного произведения

111.1 Формулировка

- 1. Пусть $a_n>0$ НСНМ. Тогда равносильность $\prod (1+a_n) \text{сходится} \Leftrightarrow \sum a_n \text{сходится}$
- 2. Пусть $\sum a_n \text{сходится}$, а также $\sum a_n^2 \text{тоже сходится}$. Тогда $\prod (1+a_n) \text{сходится}$

111.2 Доказательство

- 1. \prod сходится $\Leftrightarrow \sum \ln |1+a_n|$ сходится $\Leftrightarrow \sum a_n$ сходится. НСНМ $\ln |1+a_n|$ a_n при $n \to +\infty$
- 2. \prod сходится $\Leftrightarrow \sum \ln(1+a_n)$ сходится

$$\ln(1+a_n) = a_n - \frac{a_n^2}{2} + o(a_n^2)$$

Докажем, что $\sum |o(a_n^2)|$ абсолютно сходится

$$\lim_{n\to}\frac{o(a_n^2)}{a_n^2}=0$$
из сходимости $\sum a_n^2$ следует сходимость $\sum |o(a_n^2)|,$ значит и $\sum o(a_n^2)$ сходится

112 Лемма об оценке приближения экспоненты ее замечательным пределом

112.1 Лемма 1

112.1.1 Формулировка

$$\Pi(n,x) = \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{x-1} dt$$

Тогда
$$\Pi(n,x) = \frac{1 \cdot 2 \cdot \ldots \cdot n}{x(x+1) \cdot \ldots (x+n)} \cdot n^x$$

112.1.2 Доказательство

$$\Pi(n,x) = n^x \int\limits_0^1 (1-s)^n \cdot s^{x-1} ds = n^x \left((1-s)^n \cdot \frac{s}{x} \bigg|_{s=0}^{s=1} + \frac{n}{x} \int\limits_0^1 (1-s)^{n-1} \cdot s^x ds \right) = n^x \cdot \frac{n}{x} \int\limits_0^1 (1-s)^{n-1} s^x ds = n^x \cdot \frac{n}{x} \cdot (n-1) \int\limits_0^1 (1-s)^{n-2} s^{x-1} ds = \dots$$
 получаем то, что хотели

112.2 Лемма 2

112.2.1 Формулировка

При $0 \le t \le n$

$$0 \le e^{-t} - \left(1 - \frac{t}{n}\right)^n \le \frac{1}{n}t^2 e^t$$

112.2.2 Доказательство

 $(1+y) \leq e^y leq (1-y)^{-1}, \, y \in [0,1]$ в силу выпуклости e^x

$$e^y \ge 1 + y$$

$$e^{-y} \ge 1 - y$$

возведём в
$$(-n), y := \frac{t}{n}$$

$$\left(1+\frac{t}{n}\right)^{-n} \geq e^{-t} \geq \left(1-\frac{t}{n}\right)^n$$

$$0 \leq e^{-t} - \left(1-\frac{t}{n}\right)^n = e^{-t}\left(1-e^t\left(1-\frac{t}{n}\right)^n\right) \leq e^{-t}\left(1-\left(1+\frac{t}{n}\right)^n\left(1-\frac{t}{n}\right)^n\right) = e^{-t}\left(1-\left(1-\frac{t^2}{n^2}\right)^n\right) \leq \frac{1}{n}t^2e^{-t}$$
 (это неравенство Бернулли)

113 Формула Эйлера для гамма-функции

113.1 Формулировка

При
$$x > 0$$
 $\lim_{n \to +\infty} \frac{1 \cdot 2 \cdot \ldots \cdot n}{x(x+1) \ldots (x+n)} \cdot n^x = \Gamma(x)$

113.2 Доказательство

$$\Gamma(x) - \lim_{n \to +\infty} \Pi(n, x) = \lim_{n \to +\infty} \left(\int_0^n \left(e^{-t} - \left(1 - \frac{t}{n} \right)^n \right) t^{x-1} dt + \int_n^{+\infty} t^{x-1} e^{-t} dt \right)$$

$$\int_{n}^{+\infty} e^{-t} t^{x-1} dt \to 0, \ n \to +\infty$$

$$\int_{0}^{n} \frac{1}{n} e^{-t} t^{2} t^{x-1} dt \le \frac{1}{n} \int_{0}^{+\infty} t^{x+1} e^{-t} dt \to 0$$

114 Формула Вейерштрасса для Г-функции

114.1 Формулировка

Пусть $x>0,\;\gamma\;$ — постоянная Эйлера. Тогда

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}$$

114.2 Доказательство

$$\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} n^{-x} \frac{x(x+1)\dots(x+n)}{1 \cdot 2 \dots \cdot n} = \lim_{n \to +\infty} \left(n^{-x} \cdot x \frac{x+1}{1} \frac{x+2}{2} \dots \frac{x+n}{n} \right) = \lim_{n \to +\infty} x \cdot n^{-x} \cdot \prod_{k=1}^{n} \left(1 + \frac{x}{k} \right) = \lim_{n \to +\infty} x e^{x\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)} \cdot e^{-x \ln n} \prod_{k=1}^{n} \left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} = x \cdot e^{\gamma} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}}$$

$$\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} = \left(1 + \frac{x}{k} \right) \left(1 - \frac{x}{k} + o\left(\frac{1}{k^2}\right) \right) = 1 - \frac{x^2}{k^2} + o\left(\frac{1}{x^3}\right)$$

115 Вычисление произведений с рациональными сомножителями

115.1 Формулировка

Пусть
$$\sum_{i=1}^{k} a_i = \sum_{i=1}^{k} b_i$$

$$\prod_{n=1}^{+\infty} \frac{\left(1 + \frac{a_1}{n}\right) \left(1 + \frac{a_2}{n}\right) \dots \left(1 + \frac{a_k}{n}\right)}{\left(1 + \frac{b_1}{n}\right) \left(1 + \frac{b_2}{n}\right) \dots \left(1 + \frac{b_k}{n}\right)} = \frac{\Gamma(1 + b_1) \dots \Gamma(1 + b_k)}{\Gamma(1 + a_1) \dots \Gamma(1 + a_k)}$$

Фиг его знает, что тут хочет Кохась

116 Теорема о группировке слагаемых

116.1 Формулировка

Выберем $n_0 = 1 < n_1 < n_2 < \dots$

Пусть
$$\sum a_k = (a_1 + a_2 + \ldots + a_{n_1}) + (a_{n_1+1} + \ldots + a_{n_2}) + \ldots$$

$$b_k = \sum_{i=n_{k-1}+1}^{n_k} a_i$$

Тогда

1.
$$\sum a_n$$
 — сходится $\Rightarrow \sum b_k$ сходится и имеет ту же сумму

$$2. \ a_k \ge 0 \Rightarrow \sum a_k = \sum b_k$$

116.2 Доказательство

$$S_k^{(b)} = S_{n_k}^{(a)}$$

1.
$$\lim_{k \to \infty} S_k^{(b)} = \lim_{k \to \infty} S_{n_k}^{(a)} = S^{(a)}$$

2. Если
$$\sum a_n$$
 — сходится, то смотри пункт 1

Если $\sum a_n$ — расходится, значит $S_n^{(a)}$ не ограничено сверху, значит и $S_n^{(b)}$ не ограничено сверху

117 Теорема о перестановке слагаемых

117.1 Формулировка

Пусть ряд $\sum a_n$ абсолютно сходится, тогда ряд $\sum b_n$, полученный из ряда $\sum a_n$ перестановкой, будет также абсолютно сходиться и иметь ту же сумму.

Также если $a_k \geq 0$ при всех k, то $\sum a_k = \sum b_k$

117.2 Доказательство

По определению $S_n^{(b)}=a_{\varphi(1)}+\ldots+a_{\varphi(n)}\leq S_{\max\varphi(i)}^{(a)}.$ Устремим $n\to+\infty,\ S^{(b)}\leq S^{(a)}.$ Аналогично $S^{(a)}\leq S^{(b)}.$ Берём срезки $a_n^+,\ a_n^-,\ \sum a_n^+,\ \sum a_n^-$ — сходятся.

$$a_n^+ = \max(a_n^+, 0), \, \sum b_n^+ \, -$$
 перестановка ряда a_n^+

$$a_n^- = \max(-a_n^-, 0.$$
 Аналогично $\sum b_n^-$

118 Теорема о произведении рядов

118.1 Формулировка

Пусть ряды (A) и (B) абсолютно сходятся к суммам $S^{(a)}$ и $S^{(b)}$. Тогда $\forall \gamma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ — биекция, произведение рядов абсолютно сходится и имеют сумму $S^{(a)}S^{(b)}$

118.2 Доказательство

Пусть
$$\sum |a_k| = A$$
, $\sum |b_k| = B$, $(A, B \in \mathbb{R})$. $\sum_{k=1}^N |a_{\varphi(k)}b_{\psi(k)}| \le \sum_{k=1}^n |a_n| \sum_{k=1}^m |b_k| \le A \cdot B$, где $n := \max(\varphi(1), \dots, \varphi(N))$, $m = \max(\psi(1), \dots, \psi(N))$

Значит ряд $\sum_{k=1}^{N} |a_{\varphi(k)}b_{\psi(k)}|$ — сходится, значит произведение рядов абсолютно сходится

119 Единственность производной

119.1 Формулировка

Производный оператор единственный

119.2 Доказательство

Проверим, что $\forall n \in \mathbb{R}^m \ L(n)$ задан однозначно

$$h:=tu,\,t\in\mathbb{R},\,u\in\mathbb{R}^m,\,t$$
 — "маленькое"

$$F(a + tu) = F(a) + L(tu) + o(tu)$$

$$F(a+tu) = F(a) + t \cdot L(u) + o(t)$$

120 Лемма о дифференцируемости отображения и его координатных функций

120.1 Формулировка

Пусть
$$F: E \subset \mathbb{R}^m \to \mathbb{R}^l$$
, $F = (F_1, \dots, F_l)$, $a \in \text{Int } (E)$

Тогда

- 1. F дифференцируема в точке $a \Leftrightarrow$ все F_i дифференцируемы в точке a
- 2. Строки матрицы Якоби F равны матрицы Якоби функций F_i

120.2 Доказательство

Будет написано позже когда-нибудь перед экзаменами возможно наверняка да навряд ли

121 Необходимое условие дифференцируемости

121.1 Формулировка

Пусть $f: E \subset \mathbb{R}^m \to \mathbb{R}, a \in \text{Int } E$

f — дифференцируема в точке a

Тогда $\exists f'_{x_1}(a),\dots,f'_{x_m}(a)$ и тогда $(f'_{x_1}(a),\dots,f'_{x_m}(a))$ — матрица Якоби fв точке a

121.2 Доказательство

$$f(a+h) = f(a) + L \cdot h + \alpha(h) \cdot |h|$$

$$f(a+t \cdot e_k) = f(a) + e_k \cdot t + \alpha(t \cdot e_k)|t|$$

$$l_{k_m} = \varphi_k'(a_k) = \frac{\partial f}{\partial_{x_k}}(a_k)$$

122 Достаточное условие дифференцируемости

122.1 Формулировка

Пусть
$$f: E \subset \mathbb{R}^m \to \mathbb{R}, a \in E, B(a,r) \subset E$$

Пусть в этом шаре
$$\exists f'_{x_1}(x), \dots, f'_{x_m}(x), x \in B(a,r)$$

и все эти производные непрерывны в точке a. Тогда f — дифференцируемы в точке a

122.2 Доказательство

Пусть m=2, на большую размерность обобщается легко

$$a = (a_1, a_2), x = (x_1, x_2)$$

$$f(x_1, x_2) - f(a_1, a_2) = (f(x_1, x_2) - f(a_1, x_2)) + (f(a_1, x_2) - f(a_1, a_2)) = f'_{x_1}(\overline{x_1}, x_2)(x_1 - a_1) + f'_{x_2}(x_1, \overline{x_2})(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_1}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_1}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_1}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_1}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_1}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_1}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_1}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_1}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_2}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_2}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_2}(a_1, a_2))(x_1 - a_1) + (f'_{x_2}(a, \overline{x_2}) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_2}(a_1, a_2))(x_1 - a_2) + (f'_{x_1}(\overline{x_1}, x_2) - f'_{x_2}(a_1, a_2)(x_2 - a_2) + (f'_{x_1}(\overline{x_1$$

123 Лемма об оценке нормы линейного оператора

123.1 Формулировка

Пусть $A: \mathbb{R}^m \to \mathbb{R}^l$, лин. $A = (a_{ij})$. Тогда $\forall x \in \mathbb{R}^m$

$$|Ax| \leq C_a |x|$$
, где $C_a = \sqrt{\sum_{ij} a_{ij}^2}$

123.2 Доказательство

$$|A_x|^2 = \sum_{i=1}^l \left(\sum_{j=1}^m a_{ij} x_j \right)^2 \le \sum_{i=1}^l \left(\left(\sum_{j=1}^m a_{ij}^2 \right) \left(\sum_{j=1}^m x_j^2 \right) \right) = |x|^2 \sum_{i=1}^l \sum_{j=1}^m a_{ij}^2$$

Это КБШ

124 Дифференцирование композиции

124.1 Формулировка

Пусть
$$F:E\subset\mathbb{R}^m\to\mathbb{R}^l,\,G:I\subset\mathbb{R}^l\to\mathbb{R}^n,\,F(E)\subset I$$
 $a\in {\rm Int}\;(E),\,F(a)\in {\rm Int}\;(I),\,F$ — дифференцируема в точке $a,\,G$ — дифференцируема в $b=F(a)$. Тогда $G\circ F$ — дифференцируема в точке a и $(G\circ F)'(a)=G'(F(a))\cdot F'(a)$

124.2 Доказательство

$$F(a+h) = F(a) + F'(a)h + \alpha(h)|h|$$

$$G(b+k) = G(b) + G'(b)k + \beta(k)|k|$$

$$G(F(a+h)) = G(b) + G'(b)(F'(a)h + \alpha(h)|h|) + \beta(k)|k|$$

$$G(F(a)) + G'(F(a)) \cdot F'(a)h + G'(b)\alpha(h)|h| + \beta(k)|k|, \text{ где } G'(b)\alpha(h)|h| + \beta(k)|k| = o(h)$$

125 Дифференцирование произведений

125.1 Формулировка

Пусть $F, G: E \subset \mathbb{R}^m \to \mathbb{R}^l, \lambda: E \to \mathbb{R}, a \in \text{Int } E; F, G, \lambda$ — дифференцируемые в a, тогда:

1.
$$(\lambda F)'(a)h = (\lambda'(a)h)F(a) + \lambda(a)(F'(a)h)$$

2.
$$\langle F, G \rangle'(a)h = \langle F'(a)h, G(a) \rangle + \langle F(a), G'(a)h \rangle$$

125.2 Доказательство

Будет написано позже

126 Теорема Лагранжа для векторнозначных функций

126.1 Формулировка

Пусть $F:[a,b] \to \mathbb{R}^l$ — непрерывна на [a,b], дифференцируема на [a,b]. Тогда

$$\exists c \in (a,b): |F(b) - F(a)| \leq |F'(c)| \cdot |b - a|$$