DIGITALNI VIDEO

Do sada smo govorili o statičnim slikama, pikselskoj i vektorskoj grafici a sada ćemo dobiti dimenziju vremena i govoriti o slikama koje se kreću kroz vrijeme. Informacija o pikselu je jako važna jer nam govori o rezoluciji videa koja je jedan od čimbenika kvalitete slike.

Digitalni video – serija digitalnih slika koje se izmjenjuju u nekom vremenskom periodu

Podatci digitalnog videa zapisuju se na memorijske kartic, diskove, CD/DVD medije za razliku od analognih medija koji su se zapisivali na filmove ili su se transmitirali preko radio valova. Digitalni video se određenim procesima kodira i dekodira prilikom prikazivanja.

Analogni televizijski prijenos

Postojala su tri standarda analognog televiztijskog prijenosa prije današnjeg digitalnog prijenosa. Ti analogni standardi se odnose na:

- različite načine kodiranja boje na slici
- broj slićica koje se izmjene u sekundi
- rezoluciji slike

Ta tri standarda koristila su se u različitim djelovima svijeta. Najčešći standardi koji su se koristili u Europi, djelu Afrike, Jugoistočnoj Aziji, Austračiji i Južnoj Americi su **Pal** (Phase Alternating Line), sistemi koji su se koristili u Francuskoj i njezinim kolonijama, Rusiji i srednjoj Aziji su **Secam** (Seqential colour with memory).U Sjevernoj Americi, Japanu i Filipinima koristio se sustav **NTSC** (National Television System Committee).

PAL i SECAM

- koristili su se na strujnoj mreži od 50Hz frkvencije
- slika se sastojala od 625 horizontalnih linija
- izmjena 25 slićica po sekundi

NTSC

- strujna mreža od 60Hz frekvencije
- slika se sastojala od 525 horizontalnih linija
- izmjena 30 slićica u sekundi

Digitalne inačice ovih standarda:

- **PAL DV** dimenzije 720h x 576v
- NTSC DV dimenzije 720h x 480v
- SDTV
- **HDTV** 1280 x 720 ili 1920 x 1080 (Full HD)

SD i HD se odnose na dimenziju video slike, to su karakteristike velićine dimenzija slike. Omjer horizontalne i vertikalne stranice SD formata je 4 : 3, a HD 16 : 9. HD zovemo i Widescreen odnosno široki ekran. Dobili smo i novi format koji nazivamo UHD a to su sve rezolucije koje su veće od Full HD rezolucije. Ima dimenzije stranica 4k i 8k (zadnji standard veličine koji postoji u svijetu). Sve današnje standardne rezolucije povezane su sa prijašnjim starijim rezolucijama. U najmanjem VHS standardu ukupan broj piksela bio je nekoliko desetaka tisuća a sada imamo standard sa preko pedeset miliona piksela.

OMJER

Bitan je omjer stranica slike, omjer visine i širine video slike. Početkom 20. stoljeća, za vrijeme njemog filma uspostavljen je prvi standard omjera stranica pokretne slike. Baziran je na fotografskom 35 mm filmu sa omjerom stranica 4 : 3. Nakon pojave televizije kino industrija osmišlja nove standarde (widescreen) kako bi vratila gledatelje u kina. Neki od najpoznatijih widescreen formata su: cinerama, academy ratio, cinemascope, vista vision, MGM, Panavision.Današnji popularan omjer je 16 : 9 koji se pojavio 80tih godina kao kompromis prikazivanja raznih formata širokokutnih filmova na televiziji. On je geometrijska sredina između najpopularnijih omjera 4 : 3 i cinemascope formata 2.35 : 1 .

BROJ SLIĆICA U SEKUNDI

Sljedeća bitna karakteristika je izmjena broja slićica u sekundi. Video je sastavljen od nepokretnih slika koje se izmjenjuju u nekom vremenskom intervalu. Frame rate označava koliko će se framova izmjeniti u jednoj sekundi. Zbog svoje tromosti ljudsko oko percipira kontinuirani pokret pri izmjeni slika od 10-12 fps, a sve ispod toga oko percipira kao individualne slike. Standard za sigurnu sliku koju želimo da se detektira kao pokret smatra se 24 slike u sekundi zato što neke oći koje su bolje trenirane i manje trome primječuju trzajeve i pri bržim izmjenama. Za PAL standard se uzima 25 fps, a za NTSC približno 30 fps. Za neke specijalne efekte može se koristiti kamera koja ide do 1000 fps.

NAČIN PRIKAZA SLIKE

Standardna definicija slike je koristila poseban način transmisije koji nije ispisivao cjelu sliku na ekranu u istom trenutku nego red po red slike u kratkom vremenu. To se radilo da se ubrza signal i da nebi došlo do trzanja slike zbog kašnjenja signala. Nazivamo ga isprepleteni prikaz ili Interlaced. Prvo se prikaže podslika sa neparnim redovima a djelić sekunde nakon se umeće podslika sa parnim redovima. Ljudsko oko pri brzoj izmjeni ne može razlučiti izmjenu redova. Zbog kašnjenja signala mogu se primjetiti horizontalne linije. Osim isprepletenog postoji i progresivan način prikazivanja slike, slika se prenosi u cjelosti. Svi HD formati mogu prenositi sliku na oba načina.

VELIČINA VIDEO MATERIJALA

Rezolucije videa u odnosu na veličine datoteka u bitovima. Koliku količinu podataka koristi jedan video?

Primjer:

 $640 \times 480 px = 307 200 px$

Ako govorimo o RGB slici govorimo o 24 bita odnosno 8b po kanalu. Crveni kanal zauzima 8b, zeleni kanal zauzima 8b i plavi kanal zauzima 8b. Ako to želimo pretvoriti u bajtove znamo da jedan bajt sadrži 8 bitova (24b/8 = 3B).

Ako želimo izračunati težinu cijele slike :

3 x 307 200 = 921 600 B = 900 KB – za jedan frame

Ako pridodamo 30 fps moramo pomnožit sa 30 i dobijemo :

30 x 921 600 = 27 648 000 B = 27 000 KB = **26.5 MB** – jedna sekunda videa

- Kompresija podataka smanjuje ukupnu količinu podataka video datoteka

Optimizacija veličine video datoteke

Temelji se na nekoliko stvari:

- Rezolucija
- Broj slićica u sekundi
- Jačina kompresije

Moraju se prilagoditi namjeni za koju je video stvoren kako se nebi poremetio sustav koji prikazuje video.

KOMPRESIJA

Jačina kompresije se radi pomoću različitih COODEca.

CODEC – CODE / **DEC**ODE

Sirovi podatci se pakiraju i smanjuju kako bi kako bi smanjili ukupnu veličinu video datoteke. Decodiranje se događa kada video prikaszujemo pomoću određene tehnologije.

Ukidanje i sažimanje podataka koji su:

- Suvišni i ponavljaju se
- Nevažni, ton boje

Boja spada u nevažne podatke koji se prilikom kompresije uklanjaju. Dobivamo podatke u tri kanala, RGB, zatim se u videu ti podatci matematički razlažu na ton i svjetlinu. Kompresija se primjenjuje na ton.

Vrste CODEC standarda:

- MPEG-4 Part 2/DivX formati .avi
- MPEG-4 Part 20/AVC/H.264 formati .mp4, .m4v, .mov, .mkv
- MPEG-H Part 2/HEVC/H.265
- VP8 VP9 formati .webm
- THEORA formati . ogg
- AOMedia Video 1/AV1 formati .mp4, .webm, .mkv

BIT RATE – količina podataka datoteke po jednoj sekundi videa

Mjerna jedinica bit rate-a je bps (bit po sekundi). Što je veći bit rate to je manja kompresija, dobivamo više podataka po sekundi, bolja je kvaliteta slike i veća je datoteka.

Smjernice za određivanje bit rate-a:

Za HD video od 720 p do 10 Mbpd
Za Full HD 1920 x 1080 15-25 Mbps
Za UHD 4K video 50-100 Mbps

Zadatak:

ZADANI VIDEO:

Ekstenzija videa: AVC

Trajanje videa: 21s 11ms

Rezolucija i omjer stranica: 16: 9 640 x 352

Frame rate: 29.96 frames/seconds

Veličina datoteke: 5.75 MB

CODEC kojim je kodiran video: Advanced Video Code

BIT RATE: 261 kbps

OBRAĐENI VIDEO:

Ekstenzija videa: DV

Trajanje videa: 14s 540ms

Rezolucija i omjer stranica: 4:3 720 x 480

Frame rate: 30 frames/seconds

Veličina datoteke: 25.5 MB

CODEC kojim je kodiran video: dvsd

BIT RATE: 1536 kbps