10 X 98 OH

University of Asia Pacific

Department of Basic Sciences and Humanities

Course Outline

Course Code and Title:

Semester:

Teacher:

E- mail:

Mobile:

Course Description:

MTH 203: Probability and Statistics

Fall Semester 2017

Dr. Nepal Chandra Roy

Assistant Professor

Department of Mathematics

University of Dhaka nepaldu@yahoo.com

01716418595

Probability: Static and random variables (discrete and continuous), occurrence of random variables, concept of population and using statistics to make inference on characteristic(s) of population. Experiments, events, sample space, probability. Conditional probability, partitions, total probability, Bayes' theorem. Mutually exclusive events and independent events. Probability distributions: binomial. multinomial distribution. Poisson. hyper geometric, uniform. exponential; introduction to Gamma and Weibul distributions. Concept of expected value, variance, standard deviation. Presence of the distributions in different fields particularly in engineering fields. Probability density function and (cumulative) approximation distribution function. Normal binomial. binomial: Poisson approximation to Functions of random variables, expected value, Two-dimensional variance. standard deviation. variates. marginal distributions conditional distributions, covariance, correlation, conditional expectation, central limit theorem.

Statistics: Frequency distribution: nature of data, methods of data collection, and representation of statistical data; histogram, arithmetic mean, geometric mean, harmonic mean, median, mode and other measures of central tendency; quartiles, deciles, and percentiles. Standard deviation, mean deviation and other measures of dispersion. Moment, skewness and kurtosis. Estimation: point estimation, interval estimation, estimation of mean and standard deviation,

confidence intervals, sample size. Hypothesis testing; regression analysis, correlation, chi-square and non parametric statistics; time series. Application of statistics in queuing theory and simulation, introduction to queuing models: M/M/1, M/D/1, M/G/1.

Teaching method: Lectures, assignments, interactive sessions etc.

Prerequisites: N/A

Course schedule / Class schedule:

Lecture No.	Expected topics to be delivered		
Lecture 1	Static and random variables (discrete and continuous), occurrence of random variables, concept of population and using statistics to make inference on characteristic(s) of population. Experiments, events, sample space, probability		
Lecture 2	Conditional probability, partitions, total probability, Bayes' theorem		
Lecture 3	Mutually exclusive events and independent events		
Lecture 4	Probability distributions: binomial, multinomial distribution, Poisson		
Lecture 5	Probability distributions: hyper geometric, uniform, normal, exponential		
Lecture 6	Introduction to Gamma and Weibul distributions		
Lecture 7	Class test based on Lecture 1-6 Concept of expected value, variance, standard deviation		
Lecture 8	Presence of the distributions in different fields particularly in engineering fields		
Lecture 9	Probability density function and (cumulative) distribution function		
Lecture 10	Normal approximation to binomial; Poisson approximation to binomial		
Lecture 11	Functions of random variables, expected value, variance, standard deviation		
Lecture 12	Two-dimensional variates, marginal distributions conditional distributions, covariance		
Lecture 13	Correlation, conditional expectation, central limit theorem		
Lecture 14	Review class Class test based on Lecture 7-13		

Mid Term Examination			
Lecture 15	Frequency distribution: nature of data, methods of data collection, and representation of statistical data; histogram		
Lecture 16	Arithmetic mean, geometric mean, harmonic mean		
Lecture 17	Median, mode and other measures of central tendency: quartiles, deciles, and percentiles		
Lecture 18	Standard deviation, mean deviation and other measures of dispersion		
Lecture 19	Moment		
Lecture 20	Skewness and kurtosis		
Lecture 21	Estimation: point estimation, interval estimation, estimation of mean		
Lecture 22	Class test based on Lecture 15-21 Estimation: estimation of standard deviation, confidence intervals, sample size.		
Lecture 23	Hypothesis testing; regression analysis		
Lecture 24	Correlation, chi-square		
Lecture 25	Non parametric statistics; time series		
Lecture 26	Application of statistics in queuing theory and simulation		
Lecture 27	Introduction to queuing models: M/M/1, M/D/1, M/G/1		
Lecture 28	Class test based on Lecture 22-27 Review on whole syllabus		
	Semester Final Examination		

Reference books:

- 1. Walpole and Mayers, Probability and Statistics for Engineering and Scientists, Pearson.
- 2. R.V. Hogg and E. Tanis, Probability and Statistical Inference, Pearson
- 3. W. Mendenhall, Statistics for Engineering and the Sciences, Pearson
- 4. J. L. Devore, Probability and Statistics for Engineering and Sciences, Int' Edition
- 5. L. L. Lapin, Probability and Statistics for Modern Engineering, Wadsworth Publishing Co Inc.
- 6. M. R. Spiegel and L. J. Stephens, Statistics, Schaum's Outlines.

Assessment methods:

Module	Weight/Percentage	
Class tests	20%	
Attendance	10%	
Midterm	20%	
Final	50%	
Total	100%	

Grading system:

Marks Obtained	Letter Grade	Grade Point
80% and above	A +	4.00
75% to less than 80%	A	3.75
70% to less than 75%	A -	3.50
65% to less than 70%	B+	3.25
60% to less than 65%	В	3.00
55% to less than 60%	В-	2.75
50% to less than 55%	C+	2.50
45% to less than 50%	С	2.25
40% to less than 45%	D	2.00
Less than 40%	F	0.00
Incomplete Works	I	—

Students' Responsibilities:

- 1. All the students have to attend the classes regularly (70% class attendance is mandatory)
- 2. All the students have to follow class lectures properly
- 3. Students must need to be present at scheduled quizzes/exams
- 4. All the students have to submit their assignments within the deadline determined by the course instructor