Obliczenia

Przyrządy pomiarowe

Generator p	oradu elektromagnesu	DF1731SB5	5A	
Amperomierz do po	omiaru natężenia prądu	próbki	analogowy	у
Woltomierz do pomiar	u napięcia podłużnego	na próbce	Atex DT890	OG
Woltomierz do pomiaru	napięcia poprzecznego	na próbce	Atex DT890	OG
A	analogowy amperomier	7.		1/1/2
Używany zakres 30 mA				
Klasa 0.5				. 0
Δ	tex DT890G, napięcie D	C	7	Sillo
Hżywane zakresy	Rozdzielczość		ndność	

Analogowy amperomierz			
Używany zakres 30 mA			
Klasa	0.5		

	Atex DT890G, napięcie D0	C
Używane zakresy	Rozdzielczość	Dokładność
200 mV	100 μV	1 (0 E0/ 1 2 data)
2 V	1 mV	$\pm (0.5\% + 3 \text{ dgts})$

Pomiary

Niepewności typu B przyrządów cyfrowych obliczyliśmy w następujący sposób:

$$\Delta x = a\% \cdot wynik + b \cdot rozdzielczość$$

gdzie a% – podawana w % klasa przyrządu, b-dgts

$$u_b(x) = \frac{\Delta x}{\sqrt{3}}$$

Na przykład niepewność pierwszego pomiaru napięcia podłużnego na próbce dla natężenia prądu próbki równego 12 mA:

$$\Delta U_x = 0.5\% \cdot 0.896 \text{ V} + 3 \cdot 0.001 \text{ V} = 0.00748 \text{ V}$$

$$u_b(U_x) = \frac{\Delta U_x}{\sqrt{3}} \approx 0.004319 \text{ V}$$

Niepewności typu B przyrządów analogowych obliczyliśmy w następujący sposób:

$$\Delta x = \frac{klasa \cdot zakres}{100}$$

$$u_b(x) = \frac{\Delta x}{\sqrt{3}}$$

Na przykład niepewność pomiaru natężenia prądu próbki I_s :

$$\Delta I_s = \frac{0.5 \cdot 30 \text{ mA}}{100} = 0.15 \text{ mA}$$

$$u_b(I_s) = \frac{\Delta I_s}{\sqrt{3}} \approx 0.087 \text{ mA}$$

Zależność napięcia podłużnego i napięcia poprzecznego od natężenia prądu elektromagnesu

	$I_s =$	12 mA	70.
Lp.	I_e , A	U_x , V	$U_{\mathcal{Y}}, V$
1	0.00	0.896	0.0001
2	0.20	0.896	0.0012
3	0.40	0.895	0.0030
4	0.60	0.895	0.0048
5	0.80	0.895	0.0069
6	0.97	0.895	0.0085
7	1.21	0.895	0.0105
8	1,41	0.895	0.0124
9	1.59	0.895	0.0140
10	1.80	0.895	0.0159
11	2.00	0.895	0.0176
12	2.17	0.895	0.0190
13	2.40	0.895	0.0204

$I_s = 24 \text{ mA}$							
Lp.	I_e , A	U_x , V	$U_{\mathcal{Y}}$, V				
1	0.00	1.676	0.0002				
2	0.20	1.661	0.0028				
3	0.39	1.659	0.0059				
4	0.59	1.658	0.0091				
5	0.81	1.657	0.0131				
6	0.99	1.656	0.0165				
7	1.19	1.655	0.0197				
8	1.40	1.655	0.0235				
9	1.59	1.655	0.0267				
10	1.78	1.653	0.0296				
11	1.99	1.654	0.0330				
12	2.21	1.653	0.0364				
13	2.40	1.653	0.0389				

Przeliczyliśmy wartości prądu elektromagnesu I_e na wartości indukcji pola magnetycznego B oraz obliczyliśmy niepewności pomiarowe.

$I_s = 12 \text{ mA}$						
Lp.	B, mT	U_x , V	$U_{\mathcal{Y}}, V$	$u(U_x)$, V	$u(U_y)$, V	
1	0	0.896	0.0001	0.0043	0.00017	
2	26	0.896	0.0012	0.0043	0.00018	
3	58	0.895	0.0030	0.0043	0.00018	
4	88	0.895	0.0048	0.0043	0.00019	
5	120	0.895	0.0069	0.0043	0.00019	
6	150	0.895	0.0085	0.0043	0.00020	
7	175	0.895	0.0105	0.0043	0.00020	
8	200	0.895	0.0124	0.0043	0.00021	
9	230	0.895	0.0140	0.0043	0.00021	
10	255	0.895	0.0159	0.0043	0.00022	
11	280	0.895	0.0176	0.0043	0.00022	
12	300	0.895	0.0190	0.0043	0.00023	
13	320	0.895	0.0204	0.0043	0.00023	

	$I_s = 24 \text{ mA}$						
Lp.	B, mT	U_x , V	$U_{\mathcal{Y}}, V$	$u(U_x)$, V	$u(U_y)$, V		
1	0	1.676	0.0002	0.0066	0.00017		
2	26	1.661	0.0028	0.0065	0.00018		
3	58	1.659	0.0059	0.0065	0.00019		
4	88	1.658	0.0091	0.0065	0.00020		
5	120	1.657	0.0131	0.0065	0.00021		
6	150	1.656	0.0165	0.0065	0.00022		
7	175	1.655	0.0197	0.0065	0.00023		
8	200	1.655	0.0235	0.0065	0.00024		
9	230	1.655	0.0267	0.0065	0.00025		
10	255	1.653	0.0296	0.0065	0.00026		
11	280	1.654	0.0330	0.0065	0.00027		
12	300	1.653	0.0364	0.0065	0.00028		
13	320	1.653	0.0389	0.0065	0.00029		

13	320	1.055	0.0307	0.00	03	0.00027		
Zależność r	ależność napięcia poprzecznego od natężenia prądu próbki							
			B =	: 150 mT				
Lp.	I_s ,	, mA	U_y , V	9/3	$u(I_s)$, mA	$u(U_y)$, V		
1		0	0.0000	20		0.00030		
2		2	0.0038			0.00032		
3		4	0.0075	1		0.00034		
4		6	0.0107	7		0.00035		
5		8	0.0134			0.00037		
6		10	0.0154			0.00038		
7	5	12	0.0169)	0.087	0.00038		
8	-0	14	0.0180)		0.00039		
9	1,0	16	0.0183	}		0.00039		
10	10.	18	0.0186)		0.00039		
11		20	0.0188	3		0.00039		
12		22	0.0174			0.00039		
13		24	0.0163	}		0.00038		

B = 300 mT						
Lp.	I_s , mA	$U_{\mathcal{Y}}$, V	$u(I_s)$, mA	$u(U_y)$, V		
1	0	0.0000		0.00030		
2	2	0.0058		0.00033		
3	4	0.0114		0.00036		
4	6	0.0165		0.00038		
5	8	0.0210		0.00041		
6	10	0.0249		0.00042		
7	12	0.0286	0.087	0.00044		
8	14	0.0312		0.00046		
9	16	0.0333		0.00047		
10	18	0.0354		0.00048		
11	20	0.0361	29	0.00048		
12	22	0.0366	VO,	0.00048		
13	24	0.0376	101	0.00049		

Napięcie Halla

Napięcie poprzeczne na próbce można zapisać jako sumę spadków napięć:

$$U_{\mathcal{Y}} = U_H + U_E + U_N + U_{RL} + U_A,$$

gdzie:

U – napięcie poprzeczne na próbce,

 U_H — napięcie Halla,

 U_E-n apięcie wywołane efektem Ettingshausena,

 U_N — napięcie Nernsta,

 $U_{RL}-napięcie\ Righi-Leduca,$

 U_A – napięcie asymetrii.

Ponieważ nie w naszym układzie pomiarowym nie mierzyliśmy U_E, U_N, U_{RL}, U_A , założyliśmy, że $U_H = U_y$.

Zależności napięcia Halla od indukcji pola magnetycznego

Współczynniki kierunkowe prostych wyznaczone metodą regresji liniowej

I_s , mA	$a, \frac{V}{mT}$	b,V	$u(a), \frac{V}{mT}$	u(b), V
12	$6.471 \cdot 10^{-5}$	-0.00063	$9.103 \cdot 10^{-7}$	0.00018
24	$1.218 \cdot 10^{-4}$	-0.00098	$1.910 \cdot 10^{-6}$	0.00038

Zapisy skrócone

$I_s = 12 \text{ mA}$	$a = 6.471(91) \cdot 10^{-5} \frac{V}{\text{mT}}$	b = -0.00063(18) V
$I_s = 24 \text{ mA}$	$a = 1.218(19) \cdot 10^{-4} \frac{\text{V}}{\text{mT}}$	b = -0.00098(38) V

h-soliaino Idania: III Ma

Obliczenie stałej Halla

Wzór na napięcie Halla

$$U_H = R_H \frac{I_s}{d} B,$$

gdzie:

$$d = 8 \cdot 10^{-5} \,\mathrm{m}$$

 R_H — stała Halla.

$$U_H = a \cdot B$$

$$a = R_H \frac{I_s}{d}$$

$$R_H = \frac{ad}{I_s}$$

$$R_{H_{I_s=12 \text{ mA}}} = 4.314 \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$$

$$R_{H_{I_s=24 \text{ mA}}} = 4.059 \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$$

Niepewność stałej Halla z prawa propagacji niepewności

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u(R_H) = \sqrt{\left(\frac{\partial R_H}{\partial a}u(a)\right)^2 + \left(\frac{\partial R_H}{\partial I_S}u(I_S)\right)^2} = \sqrt{\left(\frac{d}{I_S} \cdot u(a)\right)^2 + \left(-\frac{ad}{I_S^2} \cdot u(I_S)\right)^2}$$

$$u(I_s) = 0.087 \text{ mA}$$

$$u\left(R_{H_{I_s=12 \text{ mA}}}\right) = 6.827 \cdot 10^{-6} \frac{\text{m}^3}{\text{C}}$$

 $u\left(R_{H_{I_s=24 \text{ mA}}}\right) = 6.534 \cdot 10^{-6} \frac{\text{m}^3}{\text{C}}$

$$u\left(R_{H_{I_s=24 \text{ mA}}}\right) = 6.534 \cdot 10^{-6} \frac{\text{m}^3}{\text{C}}$$

Zapisy skrócone:

$$R_{H_{I_s=12 \text{ mA}}} = 4.314(68) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$$

$$R_{H_{I_s=24\,\text{mA}}} = 4.059(65) \cdot 10^{-4} \, \frac{\text{m}^3}{\text{C}}$$

dithub contact think posts of the contact the contact

Zależności napięcia Halla od natężenia prądu próbki

Metodą regresji liniowej dopasowaliśmy proste tylko do zakresu, gdzie zależność $f=U_H(I_S)$ jest liniowa.

Współczynniki prostych wyznaczonych metodą regresji liniowej

B, mT	$a, \frac{V}{mA}$	b,V	$u(a), \frac{V}{mA}$	u(b), V
150	$1.790 \cdot 10^{-3}$	0.00013	$4.950 \cdot 10^{-5}$	0.00019
300	$2.635 \cdot 10^{-3}$	0.00040	$7.654 \cdot 10^{-5}$	0.00037

Zapisy skrócone

B = 150 mT	$a = 1.790(50) \cdot 10^{-3} \frac{\text{V}}{\text{mA}}$	b = 0.00013(19) V
B = 300 mT	$a = 2.635(77) \cdot 10^{-3} \frac{\text{V}}{\text{mA}}$	b = 0.00040(37) V

Obliczenie stałej Halla

$$U_H = R_H \frac{I_s}{d} B,$$

$$U_H = a \cdot I_s$$

$$a = R_H \frac{B}{d}$$

$$R_H = \frac{ad}{R}$$

$$R_{H_{B=150 \text{ mT}}} = 9.547 \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$$

$$R_{H_{B=300 \text{ mT}}} = 7.027 \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$$

$$R_{HB=150 \, \mathrm{mT}} = 9.547 \cdot 10^{-4} \, \frac{\mathrm{m}^3}{\mathrm{C}}$$

$$R_{HB=300 \, \mathrm{mT}} = 7.027 \cdot 10^{-4} \, \frac{\mathrm{m}^3}{\mathrm{C}}$$
 Niepewność stałej Halla z prawa propagacji niepewności
$$u(R_H) = \sqrt{\left(\frac{\partial R_H}{\partial a} u(a)\right)^2} = \sqrt{\left(\frac{d}{B} \cdot u(a)\right)^2}$$

$$u(I_s) = 0.087 \, \mathrm{mA}$$

$$u(R_{HB=150 \, \mathrm{mT}}) = 2.640 \cdot 10^{-5} \, \frac{\mathrm{m}^3}{\mathrm{C}}$$

$$u(R_{HB=300 \, \mathrm{mT}}) = 2.041 \cdot 10^{-5} \, \frac{\mathrm{m}^3}{\mathrm{C}}$$
 Zapisy skrócone:
$$R_{HB=150 \, \mathrm{mT}} = 9.55(26) \cdot 10^{-4} \, \frac{\mathrm{m}^3}{\mathrm{C}}$$

$$R_{HB=300 \, \mathrm{mT}} = 7.03(20) \cdot 10^{-4} \, \frac{\mathrm{m}^3}{\mathrm{C}}$$

$$u(I_s) = 0.087 \text{ mA}$$

$$u(R_{H_{B=150 \text{ mT}}}) = 2.640 \cdot 10^{-5} \frac{\text{m}^3}{\text{C}}$$

$$u(R_{H_{B=300 \text{ mT}}}) = 2.041 \cdot 10^{-5} \frac{\text{m}^3}{\text{C}}$$

$$R_{H_{B=150 \text{ mT}}} = 9.55(26) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$$

 $R_{H_{B=300 \text{ mT}}} = 7.03(20) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$

$$R_{H_{B=300 \text{ mT}}} = 7.03(20) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$$

Koncentracja nośników ładunku

$$n_0 = \frac{1}{eR_H},$$

gdzie:

$$e = 1.602 \cdot 10^{-19} \,\mathrm{C} - \mathrm{ladunek} \,\mathrm{elektronu}$$

$$u(n_0) = \sqrt{\left(\frac{\partial n_0}{\partial R_H} u(R_H)\right)^2} = \sqrt{\left(-\frac{1}{eR_H}^2 \cdot u(R_H)\right)^2}$$

Niepewność koncentracji nośników ładunku z prawa propagacji niepewności				
$u(n_0) = \sqrt{\left(\frac{\partial n_0}{\partial R_H} u(R_H)\right)^2} = \sqrt{\left(-\frac{1}{eR_H^2} \cdot u(R_H)\right)^2}$				
		78		
R_H , $10^{-4} \frac{\text{m}^3}{\text{C}}$	$u(R_H)$, $10^{-6} \frac{{ m m}^3}{{ m C}}$	$n_0, 10^{21} \frac{1}{\text{m}^3}$	$u(n_0), 10^{20} \frac{1}{\text{m}^3}$	
4.314	6.827	14.47	2.290	
4.059	6.534	15.38	2.475	
9.547	26.40	6.538	1.808	
7.027	20.41	8.883	2.580	

Zapisy skrócone:

$R_{H_{I_s=12 \text{ mA}}} = 4.314(68) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$	$n_0 = 1.447(23) \cdot 10^{22} \ \frac{1}{\text{m}^3}$		
$R_{H_{I_s=24 \text{ mA}}} = 4.059(65) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$	$n_0 = 1.538(25) \cdot 10^{22} \ \frac{1}{\text{m}^3}$		
$R_{H_{B=150 \text{ mT}}} = 9.55(26) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$	$n_0 = 6.54(18) \cdot 10^{21} \frac{1}{\text{m}^3}$		
$R_{H_{B=300 \text{ mT}}} = 7.03(20) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$	$n_0 = 8.88(26) \cdot 10^{21} \frac{1}{\text{m}^3}$		

Rząd wielkości otrzymanych wartości koncentracji nośników ładunku (10^{22}) odpowiada półprzewodnikom domieszkowanym w celu zwiększenia przewodnictwa.

Zależności oporu podłużnego próbki od indukcji pola magnetycznego

Opór podłużny próbki obliczyliśmy jako iloraz $U_{xi}/I_{si}=R_i.$

Zestawienie wyników końcowych

	·
stała Halla dla $I_s=12~\mathrm{mA}$	$R_{H_{I_S=12 \text{ mA}}} = 4.314(68) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$
stała Halla dla $I_s=24~\mathrm{mA}$	$R_{H_{I_S=24 \text{ mA}}} = 4.059(65) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$
stała Halla dla $B=150~ m mT$	$R_{H_{B=150 \text{ mT}}} = 9.55(26) \cdot 10^{-4} \frac{\text{m}^3}{\text{C}}$
stała Halla dla $B=300~\mathrm{mT}$	$R_{H_{B=300\mathrm{mT}}} = 7.03(20) \cdot 10^{-4} \frac{\mathrm{m}^3}{\mathrm{C}}$
koncentracja nośników ładunku dla $I_{\scriptscriptstyle S}=12~{ m mA}$	$n_0 = 1.447(23) \cdot 10^{22} \frac{1}{\text{m}^3}$
koncentracja nośników ładunku dla $I_{\scriptscriptstyle S}=24~\mathrm{mA}$	$n_0 = 1.538(25) \cdot 10^{22} \frac{1}{\text{m}^3}$
koncentracja nośników ładunku dla $B=150~\mathrm{mT}$	$n_0 = 6.54(18) \cdot 10^{21} \frac{1}{\text{m}^3}$
koncentracja nośników ładunku dla $B=300~\mathrm{mT}$	$n_0 = 8.88(26) \cdot 10^{21} \frac{1}{\text{m}^3}$

Wnioski

Uzyskane przez nas wartości stałej Halla różniły się od siebie w zależności od natężenia prądu próbki lub indukcji pola magnetycznego. Uzyskaliśmy zgodne pomiary stałej Halla dla dwóch różnych nateżeń prądu próbki i te pomiary uznajemy za najbardziej wiarygodne. Pomiary stałej Halla wykonane dla stałej indukcji pola magnetycznego uznajemy za niewiarygodne, ponieważ zostały wykonane z użyciem tylko kilku punktów, dla których zależność napięcia Halla od natężenia prądu próbki była liniowa. Zgodnie ze wzorem ($U_H=R_H\frac{I_S}{d}B$) zależność napięcia Halla od natężenia prądu próbki powinna być liniowa w pełnym zakresie, a dla wykonanych pomiarów była liniowa tylko dla natężenia prądu próbki w zakresie $0 \div 8 \text{ mA}$. Analogicznie uważamy, że pomiary koncentracji ładunków wykonane przy stałym prądzie próbki są wiarygodne, a te wykonane przy stałej indukcji pola magnetycznego są niewiarygodne. Wszystkie otrzymane wyniki są zgodne co do rzędu wielkości, es est przy daunku i c co świadczy o poprawnych założeniach eksperymentu, pomimo niepełnej zgodności wyników. Wątpliwość może budzić założenie, że $U_H=U_{\nu}$, które być może jest przyczyną niepełnej zgodności wyników. Uzyskane wartości stałej Halla, koncentracji nośników ładunku i oporu podłużnego próbki sa odpowiednie dla półprzewodników.