

# What is clustering?

• **Clustering** is the classification of objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often according to some defined distance measure.

# Types of clustering:

#### 1. Hierarchical algorithms:

- 1. Agglomerative ("bottom-up"):
- 2. <u>Divisive ("top-down")</u>:
- **2.** <u>Partitional clustering</u>: Partitional algorithms determine all clusters at once. They include:
  - K-means and derivatives
  - Fuzzy c-means clustering
  - QT clustering algorithm

DataCrux Insights @2018 All Rights Reserved

## **Common Distance measures:**

1. The <u>Euclidean distance</u> (also called 2-norm distance) is given by:

$$\sqrt{\sum_{i=1}^k (x_i - y_i)^2}$$

2. The <u>Manhattan distance</u> (also called taxicab norm or 1-norm) is given by:

$$\sum_{i=1}^{k} |x_i - y_i|$$

### K-MEANS CLUSTERING

- The **k-means algorithm** is an algorithm to cluster n objects based on attributes into k partitions, where k < n.
- It assumes that the object attributes form a vector space.

$$J = \sum_{k=1}^{K} \sum_{i \in C_k} ||x_i - \mu_k||^2$$



## **Applications of K-Mean Clustering**

- It is relatively *efficient and fast*. It computes result at **O(tkn)**, where n is number of objects or points, k is number of clusters and t is number of iterations.
- k-means clustering can be applied to machine learning or data mining
- Used on acoustic data in speech understanding to convert waveforms into one of k categories (known as Vector Quantization or Image Segmentation).
- Also used for choosing color palettes on old fashioned graphical display devices and Image Quantization.

DataCrux Insights @2018 All Rights Reserved

#### Difference between K means and KNN

|                     | K Means Clustering                                                                         | K Nearest neighbors                                                                                                                                                                          |
|---------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithm objective | Clustering                                                                                 | Classification                                                                                                                                                                               |
| Nature              | Unsupervised                                                                               | Supervised                                                                                                                                                                                   |
| Hyper parameter K   | "k" is the number of clusters                                                              | "k" is the number of neighbors it checks                                                                                                                                                     |
| How it works        | it takes a bunch<br>of <i>unlabeled</i> points and<br>tries to group them into<br>clusters | it takes a bunch<br>of <i>labeled</i> points and uses<br>them to learn how to<br>label other points. To<br>label a new point, it looks<br>at the labeled points<br>closest to that new point |