Lecture: Pixels and Filters

Juan Carlos Niebles and Ranjay Krishna
Stanford Vision Lab

Announcements

- HW1 due Monday
- HW2 is out
- Class notes Make sure to find the source and cite the images you use.

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Types of Images

Binary

Types of Images

Binary

Gray Scale

Types of Images

Binary

Gray Scale

cale Color

Binary image representation

Grayscale image representation

Color Image - one channel

Slide credit: Ulas Bagci

Color image representation

Slide credit: Ulas Bagci

Images are sampled

What happens when we zoom into the images we capture?

Errors due Sampling

Slide credit: Ulas Bagci

Resolution

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density, and its standard value for recent screen technologies is 72 dpi

Slide credit: Ulas Bagci

Images are Sampled and Quantized

- An image contains discrete number of pixels
 - A simple example
 - Pixel value:
 - "grayscale" (or "intensity"): [0,255]

Images are Sampled and Quantized

- An image contains discrete number of pixels
 - A simple example
 - Pixel value:
 - "grayscale"

(or "intensity"): [0,255]

- "color"
 - RGB: [R, G, B]
 - Lab: [L, a, b]
 - HSV: [H, S, V]

[213, 60, 67]

With this loss of information (from sampling and quantization),

Can we still use images for useful tasks?

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Histogram

 Histogram of an image provides the frequency of the brightness (intensity) value in the image.

```
def histogram(im):
    h = np.zeros(255)
    for row in im.shape[0]:
        for col in im.shape[1]:
        val = im[row, col]
        h[val] += 1
```

Histogram

 Histogram captures the distribution of gray levels in the image.

How frequently each gray level occurs in the

image

Histogram

Count: 10192 Mean: 133.711 StdDev: 55.391 Min: 9 Max: 255 Mode: 178 (180)

Count: 10192 Mean: 104.637 StdDev: 89.862 Min: 11 Max: 254 Mode: 23 (440)

Slide credit: Dr. Mubarak Shah

Histogram – use case

Slide credit: Dr. Mubarak Shah

Histogram – another use case

Slide credit: Dr. Mubarak Shah

23

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Images as discrete functions

- Images are usually digital (discrete):
 - Sample the 2D space on a regular grid
- Represented as a matrix of integer values

							pi	xei
	j							
	62	79	23	119	120	05	4	0
i	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
1	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

امينما

Images as coordinates

Cartesian coordinates

Images as functions

- An Image as a function f from R^2 to R^M :
 - f(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

$$f: [a,b] \times [c,d] \to [0,255]$$

Domain range support

Images as functions

- An Image as a function f from R^2 to R^M :
 - f(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

$$f: [a,b] \times [c,d] \rightarrow [0,255]$$

Domain range support

• A color image:
$$f(x, y) = \begin{vmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{vmatrix}$$

Histograms are a type of image function

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Systems and Filters

Filtering:

 Forming a new image whose pixel values are transformed from original pixel values

Goals:

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
 - Features (edges, corners, blobs...)
 - super-resolution; in-painting; de-noising

System and Filters

- we define a system as a unit that converts an input function f[n,m] into an output (or response) function g[n,m], where (n,m) are the independent variables.
 - In the case for images, (n,m) represents the spatial position in the image.

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S}} \rightarrow g[n,m]$$

De-noising

Super-resolution

In-painting

33

Bertamio et al

Images as coordinates

Cartesian coordinates

2D discrete-space systems (filters)

S is the **system operator**, defined as a mapping or assignment of a member of the set of possible outputs g[n,m] to each member of the set of possible inputs f[n,m].

$$f[n,m] \to$$
 System $\mathcal{S} \to g[n,m]$

$$g = \mathcal{S}[f], \quad g[n, m] = \mathcal{S}\{f[n, m]\}$$

$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m]$$

Filter example #1: Moving Average

2D DS moving average over a 3 × 3 window of neighborhood

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{m+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

ĺ	h					
1	1	1	1			
<u> </u>	1	1	1			
9	1	1	1			

$$(f^*h)[m,n] = \mathring{a}f[k,l]h[m-k,n-l]$$

k,l

38

$$(f^*h)[m,n] = \mathring{a}f[k,l]h[m-k,n-l]$$

$$(f^*h)[m,n] = \mathring{a}f[k,l]h[m-k,n-l]$$

$$(f^*h)[m,n] = \mathring{a}f[k,l]h[m-k,n-l]$$

$$(f^*h)[m,n] = \mathring{a}f[k,l]h[m-k,n-l]$$

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$(f * h)[m,n] = \mathring{a} f[k,l] h[m-k,n-l]$$

k,l Source: S. Seitz

In summary:

 This filter "Replaces" each pixel with an average of its neighborhood.

 Achieve smoothing effect (remove sharp features)

Filter example #2: Image Segmentation

 Image segmentation based on a simple threshold:

$$g[n, m] = \begin{cases} 255, & f[n, m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

- Amplitude properties:
 - Additivity

$$S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$$

- Amplitude properties:
 - Additivity

$$S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$$

Homogeneity

$$S[\alpha f_i[n, m]] = \alpha S[f_i[n, m]]$$

- Amplitude properties:
 - Additivity

$$S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$$

Homogeneity

$$S[\alpha f_i[n, m]] = \alpha S[f_i[n, m]]$$

Superposition

$$S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$$

- Amplitude properties:
 - Additivity

$$S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$$

Homogeneity

$$S[\alpha f_i[n, m]] = \alpha S[f_i[n, m]]$$

Superposition

$$S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$$

Stability

$$|f[n,m]| \le k \implies |g[n,m]| \le ck$$

- Amplitude properties:
 - Additivity

$$S[f_i[n, m] + f_j[n, m]] = S[f_i[n, m]] + S[f_j[n, m]]$$

Homogeneity

$$S[\alpha f_i[n, m]] = \alpha S[f_i[n, m]]$$

Superposition

$$S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$$

Stability

$$|f[n,m]| \le k \implies |g[n,m]| \le ck$$

Invertibility

$$S^{-1}[S[f_i[n,m]]] = f[n,m]$$

- Spatial properties
 - Causality

for
$$n < n_0, m < m_0$$
, if $f[n, m] = 0 \implies g[n, m] = 0$

– Shift invariance:

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Is the moving average system is shift invariant?

$$f[n,m] \stackrel{\mathcal{S}}{\longrightarrow} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
 $F[x,y] \qquad G[x,y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Is the moving average system is shift invariant?

$$f[n,m] \xrightarrow{S} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

$$f[n-n_0, m-m_0]$$

$$\xrightarrow{\mathcal{S}} \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[(n-n_0) - k, (m-m_0) - l]$$

$$= g[n-n_0, m-m_0]$$

Yes!

Is the moving average system is casual?

$$f[n,m] \stackrel{\mathcal{S}}{\longrightarrow} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
 $F[x,y] \qquad G[x,y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

for
$$n < n_0, m < m_0$$
, if $f[n, m] = 0 \implies g[n, m] = 0$

Linear Systems (filters)

$$f[n,m] \to \boxed{ \text{System } \mathcal{S} } \to g[n,m]$$

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point
- **S** is a linear system (function) iff it *S* satisfies

$$S[\alpha f_i[n,m] + \beta f_j[h,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[h,m]]$$

superposition property

Linear Systems (filters)

$$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S} } \rightarrow g[n,m]$$

Is the moving average a linear system?

- Is thresholding a linear system?
 - f1[n,m] + f2[n,m] > T
 - f1[n,m] < T

No!

- f2[n,m]<T

56

2D impulse function

- 1 at [0,0].
- 0 everywhere else

Impulse response

$$\delta_2[n,m] \to \boxed{\mathcal{S}} \to h[n,m]$$

$$\delta_2[n-k,m-l] \rightarrow \boxed{\mathcal{S}(SI)} \rightarrow h[n-k,m-l]$$

Example: impulse response of the 3 by 3 moving average filter:

$$h[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

$$= \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

 2D DS moving average over a 3 × 3 window of neighborhood

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{m+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

$$(f*h)[m,n] = \frac{1}{9} \sum_{k,l} f[k,l] h[m-k,n-l]$$

60

A simple LSI is one that shifts the pixels of an image:

shifting property of the delta function

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \,\delta_2[n-k,m-l]$$

A simple LSI is one that shifts the pixels of an image:

shifting property of the delta function

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \,\delta_2[n-k,m-l]$$

Remember the superposition property:

$$S[\alpha f_i[n,m] + \beta f_j[h,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[h,m]]$$

superposition property

With the superposition property, any LSI system can be represented as a weighted sum of such shifting systems:

$$\alpha_{1} \sum_{k} \sum_{l} f[k, l] \delta_{2,1}[k - n, l - m]$$

$$+ \alpha_{2} \sum_{k} \sum_{l} f[k, l] \delta_{2,2}[k - n, l - m]$$

$$+ \alpha_{3} \sum_{k} \sum_{l} f[k, l] \delta_{2,3}[k - n, l - m]$$

$$+ \dots$$

Rewriting the above summation:

$$\sum_{k} \sum_{l} f[k, l] (\alpha_{1} \delta_{2,1}[k - n, l - m] + \alpha_{2} \delta_{2,2}[k - n, l - m] + \alpha_{3} \delta_{2,3}[k - n, l - m] + \ldots)$$

We define the filter of a LSI as:

$$h[k, l] = \alpha_1 \delta_{2,1}[k, l - m]$$

$$+ \alpha_2 \delta_{2,2}[k - n, l - m]$$

$$+ \alpha_3 \delta_{2,3}[k - n, l - m]$$

$$+ \dots$$

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

What we will learn today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

$$g[n] = \sum_{k} f[k]h[n-k]$$

We are going to convolve a function **f** with a filter **h**.

$$g[n] = \sum_k f[k]h[n-k]$$

We first need to calculate h[n-k, m-l]

68

Discrete convolution (symbol: *)

We are going to convolve a function f with a filter h.

Discrete convolution (symbol: *)

We are going to convolve a function f with a filter h.

Discrete convolution (symbol: *)

In summary, the steps for discrete convolution are:

- Fold h[k,l] about origin to form h[-k]
- Shift the folded results by n to form h[n k]
- Multiply h[n k] by f[k]
- Sum over all k
- Repeat for every n

$$g[n] = \sum_{k} f[k][h-k]$$

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

2D convolution is very similar to 1D.

The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

LSI (linear shift invariant) systems

An LSI system is completely specified by its impulse response.

shifting property of the delta function

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \,\delta_2[n-k,m-l]$$

Discrete convolution

$$f[n,m] * h[n,m]$$

1	2	3
4	5	6
7	8	9
Input		

m	_1	0	1
n	-1		
-1	-1	-2	-1
0	0	0	0
1	1	2	1
Kernel			

-13	-20	-17
-18	-24	-18
13	20	17

Output

$$= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$$

$$+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$$

$$+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$$

Output

$$= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$$

$$+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$$

$$+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$$

Output

$$\begin{aligned} & : x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1] \\ & + x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0] \\ & + x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1] \\ & = 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17 \end{aligned}$$

Output

$$= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$$

$$+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$$

$$+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$$

Output

$$= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$$

$$+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$$

$$+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$$

$$= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$$

Output

1	1 2	2 3	1
4	<mark>0</mark> 5	0 6	0
7	-1 8	<mark>-2</mark> 9	-1

$$= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1]$$

$$+ x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0]$$

$$+ x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1]$$

$$= 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18$$

Output

•0	•0	•0
•0	•1	•0
•0	•0	•0

Original

Convolution in 2D - examples

Original

*

Filtered (no change)

•0	•0	•0
•0	•0	•1
•0	•0	•0

Original

Original

Shifted right By 1 pixel

Original

Blur (with a box filter)

Convolution in 2D - examples

"details of the image"

(Note that filter sums to 1)

+•0

What does blurring take away?

Let's add it back:

Convolution in 2D – Sharpening filter

Original

Sharpening filter: Accentuates differences with local average

Image support and edge effect

- •A computer will only convolve **finite support signals.**
 - That is: images that are zero for n,m outside some rectangular region
- numpy's convolution performs 2D DS convolution of finite-support signals.

Image support and edge effect

- •A computer will only convolve **finite support signals.**
- What happens at the edge?

- zero "padding"
- edge value replication
- mirror extension
- **more** (beyond the scope of this class)
- -> Matlab conv2 uses zero-padding

Slide credit: Wolfram Alpha

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

(Cross) correlation (symbol: **)

Cross correlation of two 2D signals f[n,m] and g[n,m]

$$r_{fg}[k,l] \triangleq \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f[n,m] g^*[n-k,m-l]$$

$$=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}f[n+k,m+l]\,g^*[n,m],\quad k,l\in\mathbb{Z},$$
 (k, l) is called the \log

Equivalent to a convolution without the flip

$$r_{fq}[n,m] = f[n,m] * g^*[-n,-m]$$

(g* is defined as the *complex conjugate* of g. In this class, g(n,m) are real numbers, hence g*=g.)

Courtesy of J. Fessler

Courtesy of J. Fessler

Convolution vs. (Cross) Correlation

Cross Correlation Application: Vision system for TV remote control

- uses template matching

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

properties

Associative property:

$$(f ** h_1) ** h_2 = f ** (h_1 ** h_2)$$

• Distributive property:

$$f ** (h_1 + h_2) = (f ** h_1) + (f ** h_2)$$

The order doesn't matter! $h_1 ** h_2 = h_2 ** h_1$

properties

Shift property:

$$f[n,m] ** \delta_2[n-n_0,m-m_0] = f[n-n_0,m-m_0]$$

• Shift-invariance:

$$g[n,m] = f[n,m] ** h[n,m]$$

$$\implies f[n-l_1, m-l_1] ** h[n-l_2, m-l_2]$$

$$= g[n-l_1-l_2, m-l_1-l_2]$$

Convolution vs. (Cross) Correlation

- A <u>convolution</u> is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation
- <u>Correlation</u> compares the *similarity* of *two* sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals

What we have learned today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation