

TCU-565

Errol Darío Fallas Chavarría

UTILIDAD DE LOS
MÉTODOS DE
SEPARACIÓN FÍSICOS EN
ACTIVIDADES
DOMÉSTICAS E
INDUSTRIALES QUE
BENEFICIEN EL AMBIENTE.

Mezcla:

- Sistema formado por dos o más sustancias puras
- no es una reacción química
- Cada componente mantiene sus propiedades químicas(6)

mezclas

Mezcla homogénea
Las partículas de sus diferentes
constituyentes no se pueden
distinguir con un
microscopio óptico ordinario.(7)

Ejemplos:
Leche
Agua salada
Bronce
Chocolate
Cloro+Agua
Azucar+Agua
Agua+Alcohol

Mezcla heterogénea
Las partículasde sus diferentes
constituyentes se pueden
distinguir a simple vista o con la
ayuda de una lupa o de un
microscopio óptico ordinario.(7)

Ejemplos: Arena+Agua Agua+Aceite Ensalada Sopa de vegetales Granito

Mezcla:

En las mezclas los componentes pueden separarse por medios físicos.(6) Esto se debe a que no estan combinados químicamente

métodos físicos de separación

Mezcla homogénea

- Evaporación
- Cromatografía
- Destilación

(Gómez, 2018)

Mezcla heterogénea

- Decantación
- Centrifugación
- Filtración

(Gonzalo, 2017)

Métodos físicos de separación

Evaporación: Es el paso de líquido a sólido. Para ello se debe aplicar energía al sistema.

Destilación: Se separa los componentes de la disolución líquido, al pasar el componente más volátil a vapor y recogerlo después mediante la condensación.(7)

Cromatografía: Basado en la velocidad de los componentes de una mezclaavanzan a través de un medio estacionario como un papel absorbente bajo la acciónde un medo móvil. (7)

Filtración: Técnica utilizada para separar con mayor eficiente el sólido del líquido, al utilizar una superficie porosa, cuya función es retener únicamente las partículas sólidas.

Centrifugación: Método utilizado para acelerar la decantación. La mezcla gira alrededor de un eje, debido al movimiento rotacional y el componente más denso es proyectado hacia afuera.

Decantación: método que utiliza la densidad, para separar los componentes líquidos de los sólidos. Los sólidos forman un sedimento en laparte inferior del contenedor.

Importancia de los metodos físicos de separación de mezclas

En el ámbito de alimentos, se puede mencionar:

- la filtración, por ejemplo, en la preparación del café, quedando en el filtro únicamente las partículas sólido.
- 2. La evaporación, utilizada para la sal de mesa, alevaporar el agua salada del mar.
 - 3.La destilación se aplica para la fabricación de bebidas alcohólicas.

En el ámbito de la salud, se puede mencionar: la centrifugación, es utilizada para el análisis de sangre.(4)

En el sector de la industria: se presenta:

- la destilación para la fabricación de la gasolina.
 - 2. La suspensión: aplicado en laxantes y antibióticosque atacan microorganismos.(4)

En la cosmetología y pinturas, se aplica:

- 1. la cromatografía, para el análisis del origen de sus componentes.
 - 2. La destilación, para la extraer fragancias de plantas.

Bibliografía

1.Gómez, J. (2018) Éste es el único chocolate del supermercado que recomiendan los nutricionistas. Recuperado de:

https://www.elespanol.com/ciencia/nutricion/20181108/unico-chocolate-supermercado-recomiendan-nutricionistas/351465916_0.html

https://bdigital.uexternado.edu.co/bitstream/001/1180/1/CAA-Spa-2018-

El_estudio_del_suelo_mediante_la_experimentacion_aprendizajes_sobre_mezclas_Trabajo.pdf

2.Gonzalo, M.(2017) Cereales del desayuno. MAPFRE. Recuperado de:

https://www.salud.mapfre.es/nutricion/alimentos/cereales-del-desayuno/

5.Pavón, Z. S., Esaa, A. E., Delgado, E. C., & Monagas, C. M. (2015). Un modelo de secuencia de enseñanza de la temática: mezclas. Tipos y separación de mezclas. Diálogos educativos. P.127-128,133

4.Ramírez Regalado, V. (2017) Química 2. Grupo Editorial Patria. pp.66,74-76. Recuperado de: https://books.google.co.cr/books?

id=xpWbDwAAQBAJ&pg=PA40&dq=importancia+de+los+m%C3%A9todos+f%C3%ADsicos+de+separaci%C3%B3n+de+mezclas&hl=es&sa=X&ved=2ahUKEwiG_bL_m4vrAhWvT98KHeBgD3kQ6AEwAXoECAEQAg#v=onepage&q=importancia%20de%20los%20m%C3%A9todos%20f%C3%ADsicos%20de%20separaci%C3%B3n%20de%20mezclas&f=false

5.Ruiz, M. y Solís R. (2016) PMAR - Ámbito Científico y Matemático I 2016. EDITEX. pp.186 Recuperado de: https://books.google.co.cr/books?

id=XsEQDAAAQBAJ&pg=PA172&dq=mezclas+homog%C3%A9neas+y+heterog%C3%A9neas&hl=es&sa=X&ved=2ahUKEwiaovGCy4rrAhUtU98KHQKiDAsQ6AEwA3oECAQQAg#v=onepage&q=mezclas%20homog%C3%A9neas%20y%20heterog%C3%A9neas&f=false

6.Valentín, K.(2016)Mezclas y grumos. Problemas y soluciones. Ediciones Paraninfo. pp.1. Recuperado

de:https://books.google.co.cr/books?id=Dg-

kCwAAQBAJ&printsec=frontcover&dq=mezclas&hl=es&sa=X&ved=2ahUKEwiPnfT2yorrAhXsUd 8KHaGcD6cQ6AEwAHoECAAQAg#v=onepage&q=mezclas&f=false

7. Vaquero, A.(2019) Física y Química 3º ESO. EDITEX. pp.41-42. Recuperado de:

https://books.google.co.cr/books?

id=686UDwAAQBAJ&pg=PA41&dq=mezclas+homog%C3%A9neas+y+heterog%C3%A9neas&hl=es&sa=X&ved=2ahUKEwiaovGCy4rrAhUtU98KHQKiDAsQ6AEwAXoECAlQAg#v=onepage&q=mezclas%20homog%C3%A9neas%20y%20heterog%C3%A9neas&f=false