Welcome to Biostats Recitation!

Eric R. Scott, Avalon Owens

Information

Office Hours:

• Avalon: **Friday 1:30–2:30 pm** in SEC 300H8

• Eric: Monday 2-3 pm in SEC 300H8

Objectives

- Learn to work with, explore, visualize, and analyze data
- Learn tools you'll need to complete homework assignments
- Practice lecture concepts
- Learn how to find resources to get help with R

Expectations

- Attendance (Recitation is required)
- Collaboration
 - Ask for help from your classmates
 - Ask your classmates if they need help
- Experiment, play, and have fun with R!
- Tell us if we need to slow down!

Suggested additional readings

- Modern Dive chapters 2–5 (moderndive.com)
- R for Data Science section I. Explore (r4ds.had.co.nz)

Why R?

- Open source (free!)
- Vibrant, helpful, friendly community online
- Reproducibility of code vs. point-and-click
- Used in biology research, statistics, data science, and other STEM careers

What is R? What is R Studio?

R is a programing language, but it's one that's designed to work interactively.

x <- 25

That means I can run one line of code at a time, instead of having to write a whole program.

x^2

[1] 625

This makes it easy to learn and debug

What is R? What is R Studio?

R Studio is an integrated development environment, or IDE. Think of R as a car's engine and RStudio as the car's dashboard.

R: Engine	RStudio:	Dashboard

In this class we will always interact with R through RStudio, never directly.

Tour of RStudio

Launch RStudio

```
Launch RStudio NOT R
```

Review of DataCamp Lesson

R as a calculator

```
5+5
10^10
## [1] 10
## [1] 1e+10
```

Variable Assignment

```
x <- 2
y <- 3
x + y

## [1] 5
z <- "Hello"
z</pre>
## [1] "Hello"
```

Functions

```
sqrt(25)
abs(-5)
round(1.522222, digits = 3)
```

```
## [1] 5
## [1] 5
## [1] 1.522
```

Commenting your code

```
Use "#" to add notes in your code
```

```
x <- c(1, 3, 7)
#the 'c()' function concatenates elements into a vector
x
## [1] 1 3 7
mean(x) #this takes the mean of 'x'</pre>
```

Extending R

[1] 3.666667

Packages

- Packages extend the capabilities of R
- Think of them like apps for a smartphone
- For example, the abd package contains all the datasets used in your textbook
- We will use abd, ggplot2, and dplyr heavily in this course

Install Packages

- Install R packages using the "Packages" tab in RStudio
- Install abd and ggplot2 now
 - Packages only need to be installed **once**
- Load packages with library(<<package name>>)
 - Packages need to be loaded **once per R session**

Exploring Data

Example Dataset

- Today we'll be using a built-in dataset called iris
- What is the iris dataset?
 - (hint: use help())
- Try head(iris).
 - What does the head() function do?

Iris Data

head(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Visualize Data

The Grammar of Graphics

A statistical graphic is a mapping of data variables to aesthetic attributes of geometric objects.

All plots require three parts:

- 1. data, which must be a data frame
- 2. A geom, which describes how the data are to be plotted (points, lines, boxplots, etc.)
- 3. aes, which describes the aesthetic mapping of variables to representation by the geom

Aesthetic Mapping

- What variable is mapped to x?
- What variable is mapped to y?
- What variable is mapped to color?
- What variable is mapped to size?

ggplot2 Code

- Find the data, the aesthetic mappings, and the geom
- Try changing them!

Histogram in ggplot2

• Histograms only require one aesthetic, the x-axis. The y-axis gets calculated by geom_histogram()

```
p <- ggplot(data = iris, aes(x = Sepal.Length)) +
   geom_histogram(bins = 10)
p</pre>
```


Adding axis labels

Faceting

- For separate histograms for each species use facet_wrap()
- Must put variable name in quotes

```
p + labs(x = "Sepal Length (cm)", y = "Frequency") +
facet_wrap("Species")
```


Boxplots

- with geom_boxplot()
- needs an \mathbf{x} and \mathbf{y} aesthetic mapping at minimum

```
ggplot(data = iris, aes(x = Species, y = Sepal.Length)) +
geom_boxplot()

8

7

5

setosa

versicolor

Species
```

Customizing color

- Instead of mapping a variable to color, let's say you want to change the color of *all* of your points/bars/lines, etc.
- Simply put color = ... outside of the aes() function, inside the geom_ function.

```
ggplot(data = iris, aes(x = Sepal.Length)) +
  geom_histogram(bins = 10, color = "red")
```


Customizing other aesthetics

- You can use this same strategy to change things like fill, alpha(transparency), size (of points), etc.
- Run colors() to get a list of all the named colors R knows.

R Notebooks

Make an R Notebook

- Start a new notebook with File > New File > R Notebook
- Take a look
- Click "Preview"

What is an R Notebook?

- R Notebooks are a file type that can be opened in R Studio
- They mix "prose" (regular typing), code, and the output from code
- They get "knit" into beautifully formatted pdf, html, or Word documents

• Your first homework uses an R Notebook document

R Notebook Anatomy

- YAML header
 - Don't touch for now!
- Code chunks
 - Grey background
 - Bounded by three backticks (don't edit these)
 - Edit code inside and type your own code to complete homework
 - You can test code by clicking the "play" button in a chunk
- "Prose"
 - Not evaluated as R code, just writing
 - Type your answers to questions in the white spaces

"Knitting" an R Notebook

When you are finished with your homework, click the "knit" button and it should output a Word doc! Print, write your name, and hand it in.

Getting Help With R

help() / ?

?round
#or
help(round)

With RStudio Help Tab:

Google R Help:

- Include "R" or "rstats" and the name of the function in your search
- Stack Overflow and blog posts can be good sources

Help On Social Media:

- Twitter: #rstats and #r4ds (R for Data Science) are often very helpful
- The R community is usually *very* friendly to beginners.

Come to office hours!

• All of the TAs for this course know R and use it for their work