#### Data Science 1

STAT/CS 287
Jim Bagrow, UVM Dept of Math and Statistics

LECTURE 10

#### Here's an incredibly useful and powerful idea!

Suppose we have a sample of numeric data (a list of numbers)

$$x_1, x_2, \ldots, x_N$$

and we want to know something about its probability distribution P(x)

We could compute the histogram

Here's another idea→

#### Question

Imagine we take our data and **sort** (or rank) the numbers from smallest to largest.

Meaning we now know that

$$x_1 \le x_2 \le \cdots \le x_N$$
 is true

You can think of this sorting as *computing* a new ordering or indexing of the points (replacing the subscripts)

What else have we computed?

| i   | $x_i$                       |  |
|-----|-----------------------------|--|
| 1   | $\boldsymbol{x}_1$          |  |
| 2   | $\boldsymbol{x}_2$          |  |
| 3   | $\boldsymbol{x}_3$          |  |
| • • | • •                         |  |
| N   | $\mathcal{X}_{\mathcal{N}}$ |  |

Let me swap these columns

| $\boldsymbol{x_i}$          | i   |  |
|-----------------------------|-----|--|
| $\boldsymbol{x}_1$          | 1   |  |
| $\mathcal{X}_2$             | 2   |  |
| $\mathcal{X}_3$             | 3   |  |
| • •                         | • • |  |
| $\mathcal{X}_{\mathcal{N}}$ | N   |  |

How does i relate to  $x_i$ ?

| $x_i$              | i   | <i>i</i> -1 |  |
|--------------------|-----|-------------|--|
| $\boldsymbol{x}_1$ | 1   | 0           |  |
| $\mathcal{X}_2$    | 2   | 1           |  |
| $\mathcal{X}_3$    | 3   | 2           |  |
| •                  | • • | • •         |  |
| $x_N$              | N   | <b>N-1</b>  |  |

What about i-1?

It's the number of points  $< x_i$ 

| $x_i$                       | i   | <i>i</i> -1 | (i-1)/N |  |
|-----------------------------|-----|-------------|---------|--|
| $\boldsymbol{x}_1$          | 1   | 0           | 0       |  |
| $\boldsymbol{x}_2$          | 2   | 1           | 1/N     |  |
| $x_3$                       | 3   | 2           | 2/N     |  |
| • •                         | • • | • •         | • •     |  |
| $\mathcal{X}_{\mathcal{N}}$ | N   | N-1         | 1-1/N   |  |

What about (i-1)/N?

It's the *fraction* of points  $< x_i$ 



| $\boldsymbol{x_i}$          | i      | <i>i</i> -1 | (i-1)/N | $\approx P(X < x_i)$ |
|-----------------------------|--------|-------------|---------|----------------------|
| $\boldsymbol{x}_1$          | 1      | 0           | 0       | 0                    |
| $\boldsymbol{x}_2$          | 2      | 1           | 1/N     | 1/N                  |
| $\mathcal{X}_3$             | 3      | 2           | 2/N     | 2/N                  |
| •                           | •<br>• | •           | •<br>•  | •<br>•               |
| $\mathcal{X}_{\mathcal{N}}$ | N      | N-1         | 1-1/N   | 1-1/N                |

It's the *fraction* of points  $< x_i$ 

Probability that a randomly chosen element of the sample is less than  $x_i$ 

#### P(X < x) is the cumulative distribution function (CDF)

For a random variable X with associated probability distribution P(x) If X is continuous

$$P(X < x) = \int_{-\infty}^{x} P(x) dx$$

If X is discrete

$$P(X \le x) = \sum_{x_i \le x} P(X = x_i) = \sum_{x_i \le x} P(x_i)$$

Complementary cumulative distribution function (CCDF):  $P(X \ge x) = 1 - P(X < x)$ 

#### Back to our table

| $x_i$              | (i-1)/N | $\approx P(X < x_i)$ |
|--------------------|---------|----------------------|
| $\boldsymbol{x}_1$ | 0       | 0                    |
| $\mathcal{X}_2$    | 1/N     | 1/N                  |
| $x_3$              | 2/N     | 2/N                  |
| •<br>•             | •<br>•  | • •                  |
| $x_N$              | 1-1/N   | 1-1/N                |

What we have is an empirical estimate of the CDF (Empirical CDF = ECDF)

$$P(X < x) \approx \frac{\text{(number of datapoints} < x)}{\text{(number of datapoints)}}$$
$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{x_i < x}$$

The *fraction* of points  $< x_i$ 

### Recall our question

Imagine we take our data and **sort** (or rank) the numbers from smallest to largest.

Meaning we now know that

$$x_1 \le x_2 \le \cdots \le x_N$$
 is true

You can think of this sorting as *computing* a new ordering or indexing of the points (replacing the subscripts)

What else have we computed?

### Recall our question

Imagine we take our data and **sort** (or rank) the numbers from smallest to largest.

You can think of this sorting as *computing* a new ordering or indexing of the points (replacing the subscripts)

We have computed the cumulative distribution

Meaning we now know that

$$x_1 \le x_2 \le \cdots \le x_N$$
 is true

What else have we computed?

sorting = integrating

#### Another question

| $x_i$                       | (i-1)/N | $\approx P(X < x_i)$ |
|-----------------------------|---------|----------------------|
| $\boldsymbol{x}_1$          | 0       | 0                    |
| $\mathcal{X}_2$             | $1/_N$  | $1/_N$               |
| $\chi_3$                    | 2/N     | $2/_N$               |
| •<br>•                      | •<br>•  | •<br>•               |
| $\mathcal{X}_{\mathcal{N}}$ | 1-1/N   | $1-1/_{N}$           |

What happens if we plot these columns?

P(X < x) as a function of x...

(x-axis) — (y-axis

# Back to the notebook

