Paper Code: A

Registration No.: 11-106027

PNR No:: 117181MTH55253

COURSE CODE: MTH165 COURSE TITLE : MATHEMATICS FOR ENGINEERS

Read the following instructions	carofully before - u		Max.Marks: 70		
Read the following instructions of 1. Match the Paper Code shade that both are the same. 2. This question paper contains 3. Do not write or mark anything 4. Submit the question paper an examination hall.	70 questions of 1 mark each. on the question paper except d the rough sheet(s) along wit	Paper code mentioned on the 0.25 marks will be deducted to your registration no. on the c th the OMR sheet to the invigi	for each wrong answer.		
* Q1. A matrix $A = (a_{ij})_{m \times n}$ is said a) $m = n$	to be a square matrix if				
a) $m = n$	b) $m \le n$	c) $m \ge n$	d) m < n		
Q2. In an upper triangular matrix a) $i < j$	$A = (a_{ij})_{n \times n'}$ the element $a_{ij} = b$) $i > j$	= 0 for $c) i = j$	d) $i \leq j$		
Q3. If A and B are two matrices, that AB=BA) AB=I		
Q4. The value of the determinant					
Q4. The value of the determinant a) $a + b + c$	1 c a + b b) 0	c) 1	d) abc		
Q5. If A is of order 2×3 and B is a a) 2×3	of order 3×2 , then AB is of ord b) 3×3	c) 2 × 2	d) 3 × 2		
Q6. If A and B are square matrices a) -9	D) -2/	B = 3, then the determinant c) -81	of 3AB is d) 81		
*Q7. If $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} +$ a) $-y$	$-+\infty$, then $\frac{dy}{dx}$ is equal to b) $\frac{1}{y}$	c) y	d) none of these		
a) $-y$ 8 Q8. If $y = n^x$, $n > 0$ then $\frac{dy}{dx}$ is equal a) xn^{x-1}	al to b) $\frac{x}{\log n}$	c) $n^x \log n$	d) none of these		
• Q9. The derivative of $(3x^2 + 2)^2$ is	s				
a) $12x(3x^2+2)$	b) $12(3x^2+2)$	c) $x(3x^2 + 2)$ d) $12x($	$3x^2 + 2)^2$		
Q10. If $y = \log [(x+2)(x^3-x)]$ (a) $(x+2) + (x^3-x)$	then $\frac{dy}{dx}$ is b) $\frac{1}{x+2} + \frac{3x^2 - 1}{x^3 - x}$	c) $\frac{1}{x+2} + \frac{3x^2}{x^3-x}$	d) $\frac{3x^2-1}{x^3-x}$		
Q11. If $y = a^5$, then $\frac{dy}{dx}$ is equal to a) $5a^4$	b) $a^5 \log a$	c) $\frac{a^5}{\log a}$	d) 0		
Q12. If $x = 2at$, $y = at^2$, then $\frac{dy}{dx}$ is a) 2		c) 2at	d) t		
*Q13.Which of the following is an "	(-)	$(c)\sin 2t + 3t$	(d) $t^3 + 6$		
Q14. A "periodic function" is given		b) satisfies $f(t+T) = f(t)$ d) has a period $T = \pi$ the value of the fourier coefficient b_n can be computed as (c) 0 (d) none of these			
015 Given the periodic function f	$f(x) = \begin{cases} -x, -n < x < 0 \\ x, 0 < x < \pi \end{cases}$, then	the value of the fourier coef	ncient b _n can be computed as		
QLS. dive	as 1	(c) 0	(d) none of these		

(c) 0

• Q16. For Fourier series expansion of periodic function f(x) defined in (-1,1) if f(x) is an even function then, (a) $a_n = 0$ (c) $a_0 = 0$ (d) both a_0 and

(b) $\frac{1}{n\pi}$

(d) both ao and an is zero Page 1 of 4

```
Q17. Fourier series of the periodic function with period 2\pi defined by
f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases} \text{ is } \frac{\pi}{4} + \sum \left[ \frac{1}{\pi n^2} (\cos n\pi - 1) \cos nx - \frac{1}{n} \cos n\pi \sin nx \right].
But putting x = \pi, we get the sum of the series 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots is
(a)^{\frac{\pi^2}{8}}
                                                                                                                                                                                                    (d) \frac{\pi^2}{12}
                                                                                                                                                                                                    (d) π
         • Q18. The value of Cos 2n\pi, if n is positive integer is (a) -1
                                                                                                                                          (c) 1
       • Q19. If u = y^x, the values of \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} are:

(a) yx^{y-1}, x^y \log x (b) y^x \log y, xy^{x-1}
                                                                                                                                        (c) xy^{x-1}, x^y \log x
                                                                                                                                                                                                    (d) none of these
       • Q20. If f = \log(x \tan^{-1} y), then f_{xy} is equal to
       • Q21. If f(x, y) = \sin x + \cos y + xy^2, x = \cos t, y = \sin t, then \frac{df}{dt} at t = \frac{\pi}{2} is

(a) -2

(b) 2
                                                                                                                                                                                                    (d) 0
     • Q22. If z = e^{\left(\frac{x^2 + y^2}{x + y}\right)}, then x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =
(a) 0 (b) z^2 \ln z
                                                                                                                                                                                                    (d) z
                                                                                                                                        (c) z \ln z
                                                                                                                                                                                                         (d)3
       • Q23. If u = f(r, s), r = \frac{x}{y}, s = \frac{y}{x} then xu_x + yu_y is
(a) 0 (b) 1
                                                                                                                                        (c) 2
     Q24. If x^2y + xz + z^2 = 4, then \frac{\partial z}{\partial x} =
(a) -\left(\frac{2xy+x}{3z}\right)
(b) -\left(\frac{x+2z}{2xy+z}\right)
                                                                                                                                                                                                        (d) 2xy + z
                                                                                                                                       (c) - \left(\frac{2xy+z}{x+2z}\right)
                                                                                                                                                                                                        (d)(2,-1)
       • Q25. Critical point of f(x,y) = 2x^2 + 2xy + 2y^2 - 6x is
                                                                                                                                       (c)(-2,3)
          Q26. No. of critical points for f(x,y) = 4 + x^3 + y^3 - 3xy are
                                                                                                                                                                                                         (d)4
                                                                                                                                       (c)3
       • Q27. Nature of (1, 1) for f(x,y) = 2x^2 - 4xy + y^4 + 2 is
                                                                                                                                                                                                   (d) none of these
                                                                                                                                       (c) saddle point
                                                                            (b) relative maxima
          (a) relative minima
    • Q28. If z = f(u, v), u = x^2y, v = 3x + 2y, then \frac{\partial z}{\partial y} =
(a) x^2 \frac{\partial z}{\partial u} + 2 \frac{\partial z}{\partial v} (b) 2xy \frac{\partial z}{\partial u} + 2 \frac{\partial z}{\partial v}
                                                                                                                                                                                                   (d) 2xy \frac{\partial u}{\partial z} + 2 \frac{\partial v}{\partial z}
                                                                                                                                      (c) x^2 \frac{\partial u}{\partial z} + 3 \frac{\partial v}{\partial x}
     • Q29. \lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}} =
                                                                                                                                                                                                         (d) does not exist
                                                                                                                                      (c) 0
                                                                           (b) -1
   Q30. Value of \alpha, for which f(x, y) = \begin{cases} \frac{x^2 + xy + x + y}{x + y}, & (x, y) \neq (x, 2) \\ \alpha, & (x, y) = (2, 2) \end{cases} is continuous at (2, 2), is
                                                                                                                                                                                                         (d) No such α exist
                                                                                                                                      (c) 3
• Q31. \lim_{(x,y)\to(0,0)} \frac{y^2x^4}{(x^4+y^2)^2} does not exist along the path
(a) y^3 = mx (b) y^2 = mx
                                                                                                                                                                                                    (d) y = mx^2
                                                                                                                                      (c) y = mx
   Q32. If x = u(1 + v), y = v(1 + u), then \frac{\partial(x,y)}{\partial(u,v)} = (a) 2uv (b) 1 - u - v
                                                                                                                                      (c) 1 + u + v
                                                                                                                                                                                                          (d) 1
Q33. \lim_{(x,y)\to(0,0)} \frac{y^3x}{(x^2+y^6)} =
                                                                       (b)-1
                                                                                                                                     (c) Does not exist
                                                                                                                                                                                                          (d) None of these.
 Q34. Which of the following is homogeneous?

(a) \frac{x^3 - xy^2}{x - 1} (b) \tan \left(\frac{x}{x^2 + 1}\right)
                                                                      (b) \tan\left(\frac{x^3}{x^2+v^2}\right)
                                                                                                                                    (c) \log \left[ \frac{x^2 - y^2}{x^2 + y^2} \right]
                                                                                                                                                                                                          (d) \frac{x^2-y}{y-y}
 c_{\theta} = Q35. \lim_{(x,y)\to(0,0)} \frac{x+y}{x^2+y^2+1} =
                                                                       (b) 0
                                                                                                                                                                                                          (d) does not exist
                                                                                                                                     (c) -1
Q36. Evaluate \int_{x=0}^{x=2} \int_{y=0}^{y=1} dx dy a. 0
                                                                      b. 2
                                                                                                                                     c. 3
                                                                                                                                                                                                           d. 4
```

Page 2 of 4

```
Q37. Area of the region bounded by 0 \le x \le 1. 0 \le y \le x
                                                                                                                                                       d) None of these
                                                                                                          c) 1/4
    Q38. Evaluate \int_{x=0}^{x=2} \int_{y=0}^{y=2} \int_{z=0}^{z=2} dz \, dx dy
                                                                                                                                                           d. 1
                                                                                                          c. 2
    * Q39. Evaluate \int_{x=0}^{x=1} \int_{y=0}^{y=2} \int_{z=0}^{3} 3dz \, dx dy
                                                                                                                                                           d. 15
                                                                                                         c. 10
     Q40. Find area enclosed by x^2+y^2=1
                                                                                                                                                           d. 4 n
      a. 5n
                                                                                                          c.3\pi
   • Q41. Find volume of x^2+y^2+z^2=1, x \ge 0, y \ge 0, z \ge 0
                                                                                                                                                           d. \pi/3
                                                                                                          c. 3 \pi / 2
                                                                                                                                                       d) \iint dxdy = \iint rcos\theta drd\theta
    . Q42. Which of the following is correct?
                                                           b) \iint dxdy = \iint 2rdrd\theta . c) \iint dxdy = \iint r^2drd\theta
      a) \iint dxdy = \iint rdrd\theta
   e Q43. Change the order of \int_{y=-4}^{y=1} \int_{x=0}^{x=y+4} dx dy

a) \int_{x=0}^{x=5} \int_{y=x-4}^{y=5} dx dy b) \int_{x=0}^{x=5} \int_{y=x}^{y=1} dx dy
                                                                                                                                                      d) \int_{x=0}^{x=5} \int_{y=x-4}^{y=1} dx dy
                                                                                                         c) \int_{x=0}^{x=5} \int_{y=x+4}^{y=1} dx dy
  Q44. Volume bounded by x²+y²=4 and y+z=4,z=0 is given by
                                                                                                         b) \int_{y=-2}^{y=2} \int_{x=-\sqrt{4-y^2}}^{x=\sqrt{4-y^2}} \int_{z=0}^{4-y} dz \, dx dy
      a) \int_{y=0}^{y=2} \int_{x=-\sqrt{4-y^2}}^{x=\sqrt{4-y^2}} \int_{z=0}^{4-y} dz \, dx dy
c) \int_{y=-1}^{y=1} \int_{x=-\sqrt{4-y^2}}^{x=\sqrt{4-y^2}} \int_{z=0}^{4+y} dz \, dx dy
   Q45. To find area bounded between y^2 = 4x and x^2 = 4y, which of the following is correct?

a) \int_{x=0}^{x=1} \int_{y=x^2/4}^{y=2\sqrt{x}} dx dy b) \int_{x=0}^{x=4a} \int_{y=x^2/4}^{y=2\sqrt{x}} dx dy c) \int_{x=0}^{x=4} \int_{y=x^2/4a}^{y=2\sqrt{x}} dx dy
                                                                                                                                                       d) None of these
  • Q46. Area bounded by the circles x^2+y^2=4 and x^2+y^2=1 is
                                                                                                                                                           d.3\pi
                                                                                                          c. 2n
     Q47. The value of \iint_{1}^{e} \int_{1}^{e} \int_{xyz}^{1} dxdydz is
                                                                                                                                                           d. None of these
                                                                                                          c. 1
    • Q48. Evaluate \int_{x=0}^{x=1} \int_{y=0}^{y=2} 5 dx dy
                                                                                                                                                           d. 10
                                                                                                          c. 3
    • Q49. Evaluate \int_{x=0}^{x=2} \int_{y=0}^{y=x} dx dy
                                                                                                                                                            d. 2
                                                                                                          c. 3
    Q50. Which of the following is correct
       a) \iiint dxdydz = \iiint sin\theta drd\theta d\phi b) \iiint dxdydz = \iiint r^2 sin\theta drd\theta d\phi
                                                                                                          d) None of these
        c) ∭ dxdydz = ∭ rsin0 drd0d0
   e Q51. The integral \int_{x=0}^{x=\infty} \int_{y=0}^{y=\infty} e^{(x^2+y^2)} dx dy, into polar coordinates is equal to a) \int_{\theta=0}^{\pi/2} \int_{r=0}^{1} dr d\theta b) \int_{\theta=0}^{\pi/2} \int_{r=0}^{\infty} e^{r^2} r dr d\theta c) \int_{\theta=0}^{\pi} \int_{r=0}^{\infty} e^{r^2} r dr d\theta
                                                         b) \int_{\theta=0}^{\pi/2} \int_{r=0}^{\infty} e^{r^2} r dr d\theta c) \int_{\theta=0}^{\pi} \int_{r=0}^{\infty} e^{-r^2} dr d\theta
                                                                                                                                                       d) \int_{\theta=0}^{\pi/2} \int_{r=0}^{\infty} r dr d\theta
    ② Q52. To evaluate \iint f(x,y)dxdy over the area between y=x^2 and y=x, which of the following is correct:

a) \int_{x=0}^{x=1} \int_{y=x^2}^{y=1} f(x,y)dxdy b) \int_{x=0}^{x=1} \int_{y=x^2}^{y=x} f(x,y)dxdy c) \int_{x=0}^{x=1} \int_{y=0}^{y=x} f(x,y)dxdy d) \int_{x=0}^{x=1} \int_{y=0}^{y=1} f(x,y)dxdy
  Q53. In linear programming, objective function and constraints are
                                                            (b) Quadratic
                                                                                                                                              (d) None of these
   • Q54. In maximization problem, optimal solution occurring at corner point yields the
       (a) Average values of objective function
                                                                          (b) Highest value of objective function
       (c) Lowest value of objective function
                                                                          (d) None of these
  Q55. Graphical method to solve a LPP is applicable, only if LPP involves
                                                                                        (b) Three decision variables
       (a) Four decision variables
                                                                                       (d) One decision variable
      (c) Two decision variables
  Q56. Which of the following is a valid objective function for the linear programming problem?
                                                                                       (b) Max Z = 7xy + 3y
      (a) Max Z = 2x - y - 3z
                                                                                       (d) Max Z = xy/z
     (c) Max Z - x^3 + y^3 + z^3
• Q57. The optimal point of the LPP Max Z = 6x + 11y subjected to 2x + y \le 104, x + 2y \le 76, x, y \ge 0 is
     (a) x = 44, y = 16 (b) x = 0, y = 38 (c) x = 52, y = 0
                                                                                                                                               (d) x = 80, y = 40
```

Page 3 of 4

	5x + 3	h of the following	g is not a corner			ion represented	d by the constra	ints	
	(2) (9 0 0		-3 TO				(1 10)		1
	050 p	3)	(b) (8, 10)		(c) (3, 10)		(u) (*/**	naximum valu	e of Z is
	(a) 350	ie LPP Max Z	(b) $(8, 10)$ = $22x + 18y s$ (b) 303	ubiected	to 3x + 2y =	$48, x + y \le$	20, x, y = 0,		
	060 r		(b) 392	((c) 360		(a) v		
	(a) All cone	ole solution of li	(b) 392 near programmir neously	ng problem	satisfies				
	(b) All Cons	traintena				ion variables			
	(c) Only the	e condition of no	as the condition on the control of the condition of the c	of non-nega decision va	itivity for decis	IOII Variation		- 17	= 14a
	Oct m	these	megativity for	accision v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		= 11,3x +	y + 5z + 7	
ľ	(a) c	tal number of b	on-negativity for asic solution of th	ie system o	of equations 25	c+y+4z+	W	(a) 5	to find
	063.16		asic solution of th (b) 5 Ions consisting fir 1			(c) 4	ariables are to	be considered	10
•	basic solution	e are two equat	ions consisting fi	ve variable	s, then how ma	iny non-basic v	arita	(d) 6	
	(a) 2	on of the systen	1 (1.) 2			(c) 4	13	can be conve	rted to
	Q63. In case	of I DD +ha:	(0) 3		S the time $ abla^n$	$a_{i} \cdot x_{i} \leq b_{i}$	i = 1, 2,, K	Can o	
	equalities h	y adding which	the contraction (b) 3 qualities of the contraction (b) 3 quariables	instraints (if the type Zif-	.117-7	(d) slack v	ariable	
	(a) surplus	variables	variables (b) artifi	cial variab	le (c) dec	ision variable	(a) stacit		
			pp (b) at an	olal various		0 -	-2 r.V.Z≥	0 is	
	Max Z = 3	3x + 5y + 7z	.PP sub to 6x — 4y	$0 \le 5,3x$	$+2y+5z \ge$	11,4x + 3z	£ 2, ×171		
		x = 3x + 5y + 4			(b) Max	Z = 3x + 5y	T 12		
		6x - 4y + s			subto	6x - 4y = 3	5,		
		$-4y + 3z - s_2 = 1$			3x + 2y	+5z = 11,			
	4x + 3z		1,		4x + 3z				
		-	· · · 0		where	$x, y, z \geq 0$			
	where .	x, y, z, s_1, s_2, s	3 5 0						
	(c) Max Z	x = 3x + 5y + 1	7 <i>z</i>		(d) Max 2	z = 3x 5y	7 <i>z</i>		
		6x - 4y + s			sub to	6x - 4y + 5	$i_1 = 5$,		
		$+5z-s_2=1$				$+5z-s_2=$	11,		
	4x + 3z -	_			4x + 3z	$+ s_3 = 2$			
18		x, y, z, s_1, s_2, s_3	$_{3} \geq 0$		where	x, y, z, s_1, s_2, s	$s_3 \ge 0$		
	Q65. In simp	lex method, opt	imal basic feasibl	le solution	is obtained if				7
Г	$c_j \rightarrow$	iT.	[5	3	0	0	0	
-	1	Basic	Basic	X ₁	x ₂	s ₁	Sz	s_3	
		Variables	Solution				0	0	\dashv
1	, 0	s_1	2	1	1	1	0		_
F	0	<i>S</i> ₂	12	5	2	0	1	0	_
T	0	<i>S</i> ₃	12	3	8	0	0	1	
		. ^	(b) $c_1 - c_2 = c_1 + c_2 = $	- > ∩		$(c)c_1-z_1-$.0 ((d) none of th	200
($a) c_j - z_j \le$. 0		-	ation the ente	, ,		-	1636
	•		or the problem of (c)	maximiz Ya	ation the ente	(d) <i>S</i> ₁	i the below giv	en table is	
	a) x ₁	(b) 5	• ,,,	-	u cuh to v⊥				
	-		he LPP Max Z						
(a) 2	(b)	1 1 1112	(c)		(d)			
• Q	68. In the sin	nplex method, s (b)	lack variables ar	e introduc (c)	ieu in the obje	ctive functions (d)	with coefficie	nts as	
(a) 0 69 In the lin	ear programmi	ng problem to co	nvert unr	, – estricted varia	hle (v. cou) +	S		
, 4) v v' 1	v suhavav	$x_i'' \ge 0 \qquad (1)$	r = v	- r" when	$a_{\nu}' = a_{\nu}' - a_{\nu}$	o restricted va	riable we as	sume
	$x_i = x_i + x_i + x_i + x_i + x_i = 0$	xi, wherexi,		d) none of		$c_{\lambda_{ij}} x_{ij} \ge 0$			
•	•		,	,					
• Q	70. In the sta	ndard form of a	n LPP, the const		st be				
(2	a) " ≤" Type		(b) "≥" Ty	pe E	nd of Question Pap	(c) "=" Type		(d) All of the	n n h =
					Canada Fap			(~) intot me	above

Page 4 of 4