Assignment 17

Sri Harsha CH

Abstract—This document explains the representation of transformations by matrix.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment17/code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment17

1 Problem

Let T be a linear operator on $\mathbf{F^n}$, let \mathbf{A} be the matrix of T in the standard ordered basis for $\mathbf{F^n}$, and let W be the subspace of $\mathbf{F^n}$ spanned by the column vectors of \mathbf{A} . What does W have to do with T?

2 EXPLANATION

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be an ordered basis of \mathbf{F}^n . **A** is a matrix of T in the standard ordered basis. We know that the i^{th} column of matrix **A** is given by $T\epsilon_i$, hence columns of **A** are the images of the standard basis elements of \mathbf{F}^n .

We know that $\{T\epsilon_1, T\epsilon_2, \cdots, T\epsilon_n\}$ generate the range of T. Hence the columns of matrix **A** generate the range of T.

Since any generating set contains a basis for the generated space, we can say that the columns of **A** contains a basis of the range of T.

1