Topological organization

Tianqin Li Sep 11, 2024

Functional organization is among the most ubiquitous of neuroscience findings, appearing in the topographic maps of the visual system, and in auditory, parietal, sensorimotor, and entorhinal areas

What processes govern their emergence? What computational function they serve?

Orientation tuning in V1

Hypothesis

- Wiring Cost Hypothesis:
 - Neuron fire together wire together.
 - To minimize total wiring cost

- Multiple Behavior Demand Hypothesis:
 - Function specialization emerges evolutionary to parallel process distinct tasks

Topographic Deep Artificial Neural Network (TDANN)

Method

Spatial loss The spatial loss function encourages nearby model units on the simulated cortical sheet to be correlated in their responses to the training stimuli. Specifically, SL_l is the spatial correlation loss computed for the l-th layer and SL_l is computed on a given batch by randomly sampling a local cortical zone and calculating for pairs of units, (1) correlation (Pearson's r) between the response profiles, (\overrightarrow{R}) , and (2) the the stabilized reciprocal Euclidean distances (\overrightarrow{D}) :

$$\overrightarrow{D} = \frac{1}{(1+\overrightarrow{d})} \tag{S1}$$

where \overrightarrow{d} is the vector of pairwise cortical distances. These two terms are then related as follows:

$$\mathrm{SL}_l = 1 - \mathrm{Corr}\left(\overrightarrow{R}, \overrightarrow{D}\right)$$
 (S2)

such that SL_l is minimized when nearby units have correlated responses to the training stimuli.

TDANN hurts classification performance

Method	ImageNet classification accuracy
Baseline (ResNet-18)	48.5%
TDANN (ResNet-18 + spatial loss)	43.9%

TDANN successfully encourage spatial arrangement

TDANN successfully encourage spatial organization in V1

TDANN reproduce spatial organization in ventral temporal cortex

Topological map in TDANN

Other Topological Organization Generation

DNN-SOM

Doshi, Fenil R., and Talia Konkle. "Cortical topographic motifs emerge in a self-organized map of object space." *Science Advances* 9.25 (2023): eade8187.

Train a self-organizing map

Other Topological Organization Generation

$$L_w^{(a,b)} = \sum_{i,j} \frac{\left(D_{ij}^{(a,b)}\right)^2 \left(W_{ij}^{(a,b)}\right)^2}{1 + \left(W_{ij}^{(a,b)}\right)^2}.$$

ITN

$$\tau \frac{dx_t^{(a)}}{dt} = -x_t^{(a)} + W^{(a,a)} r_t^{(a)} + W^{(a-1,a)} r_t^{(a-1)} + b^{(a)}$$

Blauch, Nicholas M., Marlene Behrmann, and David C. Plaut. "A connectivity-constrained computational account of topographic organization in primate high-level visual cortex." *Proceedings of the National Academy of Sciences* 119.3 (2022): e2112566119.

TDANN is doing better than previous topological networks

Another perspective of functional specialization

Topological organization is due to functional specialization of modules

Dobs, Katharina, et al. "Brain-like functional specialization emerges spontaneously in deep neural networks." *Science advances* 8.11 (2022): eabl8913.

Simulate different region by separately trained CNNs

Swap the input domain and use the feature to predict

Functional Specialization using two models

Face trained Network can't see object very well and vice visa

What happens if we use a shared networks?

Fully-shared dual-task CNN

Face identity classifier

Object category classifier

This is expected to perform worse than the separation specialists

Experiments on shared networks

Experiments on shared networks

Larger networks can have better capability of incorporating both tasks

Can functional separation achieved automatically?

Did the network discover the segregation automatically?

Lesion test to drop specialist neurons

Lesion test to drop specialist neurons

Functional segregation in the large networks

At which stage the system become specialized?

Do any two tasks requires specialization?

Food-101 dataset: 101 categories

Food - Object CNN

Car dataset: 1109 categories

Car - Object CNN

Food and Car shows less segregation than Face / Objects

Benefits of having such segregation

Having such segregation capability will boost the shared network performance

Topological Organization

- The above experiments suggest another possible explanation for why we observe the topological organization
 - They might emerge as functional segregation due to the nature of dataset
 - Each region can be a specialized module for prototypical tasks
- Brings the question of the necessity of having explicit loss to enforce smooth topological structures.
- Such segregation has clear benefit of performance improvement

Brain data mapping: TDANN v.s. Functional Specialists

Who is better match for the brain data? (Finzi, Dawn, et al, 2023)

Mapping model neurons to brain voxels

c) Linking models to brains Measure brain & model responses Find optimal 1-to-1 mapping that minimizes cost using iterative algorithm to the same images Unit-to-voxel assignments Pairwise distances between responses of each model unit and voxel Model Initial cost matrix Anthroping of the State of the Natural Scenes Dataset Voxel v: Units Activations for each model unit Example for unit u_i Fixation Voxels (V) x100 Previously assigned Minimize $A = \sum_{ij} c_{ij}x_{ij}$ New "spatially Updated cost matrix Brain where $cost c_{ij} = 1 - corr(u_i, v_j)$, valid" zone $s.t. \quad \sum_{i=1}^n x_{ii} = 1 \ \forall \ i \in U$ $\sum_{i=1}^m x_{ij} = 1 \,\forall \, j \in V$ Voxels $x_{ii} \in \{0,1\}$ Activations for each voxel

TDANN matches the brain topology better

a) Model to brain topography

Spatial and functional correspondence

Functional segregation emerges from the TDANN

Summary

- Two hypothesis on the emergence of topological structure.
- TDANN is most brain like
- Most of the work is not focused on the computational advantages of topological organization

Potential advantages:

- Learn faster (Convergence)
- Caching system (inference faster)

Future direction

- Closer look at the recurrent connections