DOCUMENT 7: extrait de la fiche technique du kit Biolabo LDH (méthode SFBC modifiée)

Source : adapté de http://www.biolabo.fr/

Principe

Le schéma réactionnel est le suivant

$$Pyruvate + NADH + H^{+} \xrightarrow{LDH} L - lactate + NAD^{+}$$

Le NADH, H+ absorbe à 340 nm.

Réactifs

Falcon R1 : Tampon-substrat	Tampon Tris pH 7,2 Pyruvate	80 mmol·L ⁻¹ 1,6 mmol·L ⁻¹
	Conservateur	
Flacon R2 :	NADH	≥ 20 mmol·L ⁻¹
Coenzyme	NaCl	200 mmol·L ⁻¹

Préparation des réactifs : ajouter le contenu du flacon R1 dans le flacon R2.

Procédure opératoire

Porter les réactifs et échantillons à température ambiante

Introduire dans une cuve thermostatée de 1 cm de trajet optique :

V_{réactif} = 1 mL

Laisser la température s'équilibrer à 30 °C ou 37 °C puis ajouter :

- $V_{plasma} = 20 \mu L$

Mélanger. Après 30 secondes, lire l'absorbance initiale à 340 nm puis toutes les minutes pendant 2 min.

Obtention du résultat

Calculer la moyenne des variations d'absorbance par minute $\frac{\Delta A}{\Delta t}$.

La concentration d'activité catalytique de la LDH dans le plasma, notée $b_{(LDH;plasma)}$ est déterminée par le calcul suivant :

$$b_{(LDH;plasma)} = \frac{\Delta A}{\Delta t} \times \frac{1}{\mathcal{E}_{NADH}^{340 \text{ nm}} \times I} \times \frac{V_{réactif} + V_{plasma}}{V_{plasma}} \times 10^{6}$$

Données

Bonnecs:		
	ε _{NADH} = 6300 L·mol⁻¹·cm⁻¹	
Compléments sur des grandeurs de l'équation	I = trajet optique en cm	
	(cuve de trajet optique 1 cm)	
Indication de mesure pour le plasma du patient	$\frac{\Delta A}{\Delta t} = 0,125 \text{ min}^{-1}$	
Valeurs physiologiques de la concentration		
d'activité catalytique de la LDH chez l'adulte	[200 à 400] µmol·min-1·L-1	
(à 37 °C)		

Données métrologiques pour l'expression du résultat de mesure :

Résultat de mesure = valeur mesurée retenue ± incertitude élargie ; le niveau de confiance de l'incertitude élargie est à préciser.

L'incertitude élargie (U) est calculée en multipliant l'incertitude type composée (u_c) par le facteur d'élargissement (par exemple k=2 pour un intervalle de confiance, ou niveau de confiance, de 95 %).

 $u_c = 30 \, \mu \text{mol·min}^{-1} \cdot \text{L}^{-1}$