Exercise 4.1 If f and g are regular functions on open sets U and V of a variety X, and if f = g on $U \cap V$, show that the function which is f on U and g on V is a regular function on $U \cup V$. Conclude that if f is a rational function on X, then there is a largest open subset U of X on which f is represented by a regular function. We say that f is defined at the points of U.

Open sets in U and V are also open sets in $U \cap V$, so f on U and g on V is a regular function by definition. For the second claim, consider the set of open sets on which f is represented by a regular function. The union of them is the largest open set on which f is represented by a regular function.

Exercise 4.2 Same problem for rational maps. If φ is a rational map of X to Y, show there is a largest open set on which φ is represented by a morphism. We say the rational map is defined at the points of that open set.

We should prove that if φ and ψ are morphisms from open sets U and V of a variety X to Y, and if $\varphi = \psi$ on $U \cap V$, then the function φ' which is φ on U and ψ on V is a morphism on $U \cup V$. For all regular function f on an open set W of Y, $f \circ \varphi' : \varphi'^{-1}(W) \to k$ is a function which is $f \circ \varphi$ on $\varphi^{-1}(W)$ and $g \circ \psi$ on $\psi^{-1}(W)$. By exercise 4.1 we know this is regular, hence φ' is a morphism. The proof to the second claim is exactly as in exercise 4.1.

- **Exercise 4.3** (a) Let f be the rational function on \mathbf{P}^2 given by $f = x_1/x_0$. Find the set of points where f is defined and describe the corresponding regular function.
 - (b) Now think of this function as a rational map from \mathbf{P}^2 to \mathbf{A}^1 . Embed \mathbf{A}^1 in \mathbf{P}^1 , and let $\varphi: \mathbf{P}^2 \to \mathbf{P}^1$ be the resulting rational map. Find the set of points where φ is defined, and describe the corresponding morphism.
 - (a) f is defined on $x_0 \neq 0$, and the corresponding regular function is x_1/x_0 . It can also be thought of taking the isomorphism to \mathbf{A}^2 then taking its first coordinate.
 - (b) φ is defined on $\mathbf{P}^2 \{(0,0,1)\}$, and the corresponding morphism is given by $(x_0, x_1, x_2) \mapsto (x_0, x_1)$.
- **Exercise 4.4** A variety Y is rational if it is birationally equivalent to \mathbf{P}^n for some n (or, equivalently by (4.5), if K(Y) is a pure transcendental extension of k).
 - (a) Any conic in \mathbf{P}^2 is a rational curve.
 - (b) The cuspidal cubic $y^2 = x^3$ is a rational curve.
 - (c) Let Y be the nodal cubic curve $y^2z=x^2(x+z)$ in \mathbf{P}^2 . Show that the projection φ from the point P=(0,0,1) to the line z=0 (Ex. 3.14) induces a birational map from Y to \mathbf{P}^1 . Thus Y is a rational curve.
 - (a) Any conic in \mathbf{P}^2 is isomorphic to \mathbf{P}^1 (exercise 3.1(c)), hence birationally equivalent to \mathbf{P}^1 .
 - (b) The cuspidal cubic has function field $\operatorname{Frac}(k[x,y]/(y^2-x^3)) \cong \operatorname{Frac} k[t^2,t^3] = k(t)$, a pure transcendental extension of k.
 - (c) We identify the line z=0 with \mathbf{P}^1 , then the projection induces morphisms

$$\varphi: Y - \{(0,0,1)\} \to \mathbf{P}^1, (x,y,z) \mapsto (x,y)$$

$$\psi: \mathbf{P}^1 - \{(1,1), (1,-1)\} \to Y, (x,y) \mapsto \left(x, y, \frac{x^3}{y^2 - x^2}\right)$$

which obviously satisfy that $\varphi\psi$ and $\psi\varphi$ are equivalent to the identity rational map.

- **Exercise 4.5** Show that the quadric surface Q: xy = zw in \mathbf{P}^3 is birational to \mathbf{P}^2 , but not isomorphic to \mathbf{P}^2 (cf. Ex. 2.15).
 - By intersecting with $x \neq 0$ we know $K(Q) = \operatorname{Frac}(k[y, z, w]/(y zw)) = \operatorname{Frac}(k[z, w] = K(\mathbf{P}^2))$, hence Q is birational to \mathbf{P}^2 . They are not isomorphic because any two curves on \mathbf{P}^2 must intersect (exercise 3.7a), while exercise 2.15 shows that Q contains two disjoint lines.
- **Exercise 4.6** Plane Cremona Transformations. A birational map of \mathbf{P}^2 to itself is called a plane Cremona transformation. We give an example, called a quadratic transformation. It is the rational map $\varphi: \mathbf{P}^2 \to \mathbf{P}^2$ given by $(a_0, a_1, a_2) \to (a_1 a_2, a_0 a_2, a_0 a_1)$ when no two of a_0, a_1, a_2 are 0.
 - (a) Show that φ is birational, and is its own inverse.
 - (b) Find open sets $U, V \subseteq \mathbf{P}^2$ such that $\varphi: U \to V$ is an isomorphism.
 - (c) Find the open sets where φ and φ^{-1} are defined, and describe the corresponding morphisms. See also (V, 4.2.3).
 - (a) To make things clearer, Let $A = \{(a_0, a_1, a_2) \in \mathbf{P}^2 : a_0 \neq 0, a_1 \neq 0, a_2 \neq 0\}$. Then $\varphi(A) \subseteq A, \varphi: A \to A$ is a morphism, and obviously $\varphi^2 = \mathrm{id}_A$.
 - (b) We already see $\varphi: A \to A$ is an isomorphism.
 - (c) φ and φ^{-1} are both defined on the open set $\mathbf{P}^2 \{(0,0,1), (0,1,0), (1,0,0)\}$, while the corresponding morphism is $(a_0, a_1, a_2) \mapsto (a_1 a_2, a_0 a_2, a_0 a_1)$.
- **Exercise 4.7** Let X and Y be two varieties. Suppose there are points $P \in X$ and $Q \in Y$ such that the local rings $\mathcal{O}_{P,X}$ and $\mathcal{O}_{Q,Y}$ are isomorphic as k-algebras. Then show that there are open sets $P \in U \subseteq X$ and $Q \in V \subseteq Y$ and an isomorphism of U to V which sends P to Q.

Varieties have affine covers, and taking closure does not change the result; hence we may assume X and Y are affine varieties. By a translation we can assume P = 0, Q = 0. Let $f : \mathcal{O}_{P,X} \leftrightarrow \mathcal{O}_{Q,Y} : g$ be the isomorphism. The coordinate function y_j is in $\mathcal{O}_{Q,Y}$, hence we define $\varphi = (g(y_j))_j$ from an open set U_0 of X to Y. We must have $g(y_j)(0) = 0$ or else $\frac{1}{g(y_j)} \in \mathcal{O}_{P,X}$ but $\frac{1}{y_j} \notin \mathcal{O}_{Q,Y}$, thus $\varphi(P) = Q$. Similarly we define $\psi = (f(x_i))_i$ from an open set V_0 of Y to X. On where they are defined, $\psi \varphi$ and $\varphi \psi$ are both identities, hence they induce an isomorphism from $\varphi^{-1}(\psi^{-1}(U_0)) \subseteq X$ to $\psi^{-1}(\varphi^{-1}(V_0)) \subseteq Y$ (see proof of (4.5)).

- **Exercise 4.8** (a) Show that any variety of positive dimension over k has the same cardinality as k. [Hints: Do \mathbf{A}^n and \mathbf{P}^n first. Then for any X, use induction on the dimension n. Use (4.9) to make X birational to a hypersurface $H \subseteq \mathbf{P}^{n+1}$. Use (Ex. 3.7) to show that the projection of H to \mathbf{P}^n from a point not on H is finite-to-one and surjective.]
 - (b) Deduce that any two curves over k are homeomorphic (cf. Ex. 3.1).
 - (a) It is obvious for \mathbf{A}^n and \mathbf{P}^n because |k| is infinite implies $|k|^n = |k|$. Any variety X can be embedded into one of \mathbf{A}^n or \mathbf{P}^n , so $|X| \leq |k|$.

 If X is a quasi-affine variety of dimension 1, Noether normalization gives a geometric fact that there exists a subspace k and a linear surjection $f: \overline{X} \to k$ (see Atiyah-Macdonald Exercise 16 of Chapter 5), hence has cardinality $\geq |k|$. The irreducible closed sets of \overline{X} containing a point P corresponds to prime ideals of $\mathcal{O}_{P,\overline{X}}$ which has dimension 1, hence

the only proper irreducible closed subset containing P is $\{P\}$. Thus the closed sets of \overline{X} are finite union of irreducible components, i.e. finite points, hence open subsets of \overline{X} has cardinality |k|.

As every variety contains a quasi-affine curve, they must have cardinality at least |k|, hence equal to |k|.

(b) Any two curves are sets of cardinality |k| with cofinite topology, hence homeomorphic.

Exercise 4.9 Let X be a projective variety of dimension r in \mathbf{P}^n with $n \geq r + 2$. Show that for suitable choice $P \notin X$, and a linear $\mathbf{P}^{n-1} \subseteq \mathbf{P}^n$, the projection from P to \mathbf{P}^{n-1} (Ex. 3.14) induces a birational morphism of X onto its image $X' \subseteq \mathbf{P}^{n-1}$. You will need to use (4.6A), (4.7A), and (4.8A). This shows in particular that the birational map of (4.9) can be obtained by a finite number of such operations.

¹Assume $X \cap U_0 \neq \emptyset$, then the rational functions $\frac{x_i}{x_0}$ generate K(X). By (4.7A) and (4.8A) these generators contain a transcendence base. We assume $\frac{x_1}{x_0}, \ldots, \frac{x_r}{x_0}$ are algebraically independent, and by (4.6A) we can take a k-linear combination of $\frac{x_{r+1}}{x_0}, \ldots, \frac{x_n}{x_0}$ to be the other generator. After composing a linear transformation we may assume $K(X) = k(\frac{x_1}{x_0}, \ldots, \frac{x_r}{x_0}, \frac{x_{r+1}}{x_0})$. We take $P = (0, p_1, \ldots, p_r, 0, 1, p_{r+3}, \ldots) \notin X$, whose existence is guaranteed by r < n - 1,

We take $P = (0, p_1, \ldots, p_r, 0, 1, p_{r+3}, \ldots) \notin X$, whose existence is guaranteed by r < n-1, and the hyperplane $\{x_{r+2} = 0\}$. The projection π sends point (x_0, \ldots, x_n) to $(x_i - x_{r+2}p_i)_i$ where $p_0 = p_{r+1} = 0, p_{r+2} = 1$. Hence the k-algebra homomorphism $K(\pi(X)) \to K(X)$ has image containing

$$k\left(\frac{x_1 - x_{r+2}p_1}{x_0}, \dots, \frac{x_r - x_{r+2}p_r}{x_0}, \frac{x_{r+1}}{x_0}\right) = k\left(\frac{x_1}{x_0}, \dots, \frac{x_r}{x_0}, \frac{x_{r+1}}{x_0}\right) = K(X)$$

as $\frac{x_{r+2}}{x_0} \in k(\frac{x_1}{x_0}, \dots, \frac{x_r}{x_0}, \frac{x_{r+1}}{x_0})$. Hence $K(\pi(X)) = K(X)$, thus π is birational.

Exercise 4.10 Let Y be the cuspidal cubic curve $y^2 = x^3$ in \mathbf{A}^2 . Blow up the point O = (0,0), let E be the exceptional curve, and let \widetilde{Y} be the strict transform of Y. Show that E meets \widetilde{Y} in one point, and that $\widetilde{Y} \cong \mathbf{A}^1$. In this case the morphism $\varphi : \widetilde{Y} \to Y$ is bijective and bicontinuous, but it is not an isomorphism.

Similarly to example 4.9.1 we find \widetilde{Y} is defined by $u^2 = x, y = xu$ where t, u are the homogeneous coordinates and we assumed t = 1. \widetilde{Y} intersects with E at u = 0, and it clearly does not pass through t = 1, u = 0 in E, hence $|\widetilde{Y} \cap E| = 1$.

We have $\widetilde{Y} \subseteq \mathbf{A}^2 \times (\mathbf{P}^1 - \{(1,0)\}) \cong \mathbf{A}^3$, where it has coordinates (x,y,u) and is defined by $u^2 = x, y = xu$. The map $\widetilde{Y} \leftrightarrow \mathbf{A}^1 : (u^2,u^3,u) \leftrightarrow u$ is clearly seen to be an isomorphism. Using this coordinate, $\varphi : \widetilde{Y} \to Y$ maps (u^2,u^3,u) to (u^2,u^3) , which is clearly bijective and continuous; the continuity of its inverse is guaranteed by the fact that any f = 0 has the same solutions as $f^2 = 0$, where f^2 is easily written as a polynomial in u^2, u^3 . It is not an isomorphism because \widetilde{Y} is regular but Y is not.

¹This solution is based on this math stackexchange answer, which needs the following stronger version of (4.6A): In the condition of (4.6A), for all infinite set $S \subseteq K$ we can take $\alpha = \sum_{i=1}^{n} c_i \beta_i$ where $c_i \in S$.