

Instituto Superior de Ciências de Saúde

Biofísica para Cursos de Licenciatura em Anatomia Patológica e Tecnologia Biomédica Laboratoial

Docentes: Bartolomeu Joaquim Ubisse & Eduardo Machiana

2021-AP # 01-Mecânica

1. Dê as propriedades dos vectores \vec{a} e \vec{b} , tal que sejam válidas as seguintes condições:

(a)
$$\left| \vec{a} + \vec{b} \right| = |\vec{c}| e |\vec{a}| + \left| \vec{b} \right| = |\vec{c}|$$

(b)
$$\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|$$

- 2. No sistema dextrogiro de coordenadas cartesianas ortogonais, encontrar os seguintes produtos vectoriais: $\vec{i} \times \vec{i}$; $\vec{i} \times \vec{j}$; $\vec{i} \times \vec{k}$; $\vec{k} \times \vec{j}$ e $\vec{k} \times \vec{i}$.
- 3. Demonstrar que quando dois vectores \vec{a} e \vec{b} tem o mesmo módulo e entre eles formam um ângulo θ , o módulo da soma expressa-se por $S=2|\vec{a}|cos(\theta/2)$ e o módulo da diferença por $D=2|\vec{a}|sin(\theta/2)$
- 4. Na Fig.1 estão representados três vectores. Sendo $|\vec{a}|=30, |\vec{c}|=60,$ $\theta=70^o$ e $\gamma=20^o$, determine o ângulo β e o módulo do vector \vec{b} de modo que o vector resultante seja nulo.

Figura 1:

5. Dois vectores \vec{a} e \vec{b} tendo módulos iguais a 10 unidades cada e ângulos $\theta_1 = 30^o$ e $\theta_2 = 105^o$ são orientados conforme se ilustra na Fig.2. Sendo a sua soma representada por \vec{r} , determine:

- (a) As componentes de \vec{r} nos eixos OX e OY;
- (b) O módulo de \vec{r} ;
- (c) O ângulo que \vec{r} forma com o eixo OY.

Figura 2:

6. A tíbia é um osso mais vulnerável da perna do ser humano e sofre fractura para esforços de compressão da ordem de 5×10^4 N. Suponha que um homem de 75 kg salte de uma altura H e, ao cair no chão,

- não dobre os seus joelhos. Qual é a altura máxima a partir do qual o homem deve saltar de modo que não fracture a sua tíbia, sabendo que a sua deformação máxima é de 1 cm ($\Delta \ell = 1.0$ cm) ?
- 7. O músculo quadríceps se encontra na coxa e seu tendão chega até a perna. Considere a perna ligeiramente dobrada de modo que atensão *T* no tendão seja 1400N. Determine a direção e amagnitude da força F, exercida pelo fêmur sobre a patela.
- 8. Considere um paciente de 70 kg de massa submetido a um tratamento de tracção conforme se ilustra na Fig. Qual é o valor máximo da massa M de modo que o paciente não deslize ao longo da cama sabendo que o coeficiente de atrito entre a cama e o paciente é de 0.2 (μ = 0.20)

Figura 3:

- 9. Considere que, em um braço esticado, o músculo deltoide exerce uma força de tração T, que forma um ângulo de 20° com o úmero. Entre esse osso e o ombro existe uma força de contato F. Se o peso P do membro superior completo é 35N e T=300N. Determine P, para que o úmero se mantenha em equilíbrio.
- 10. A perna de uma pessoa mantém-se em equilibrio graças à acção de ligamento patelar. Determine a tensão de ligamento, a direcção e o módulo da força R sabendo que $\alpha = 40^{\circ}$, as massas da pessoa e da perna são respectivamente 90 e 9.0 kg.

Figura 4:

11. A Fig.5 representa a cabeça de um estudante inclinado sobre o seu livro. A cabeça tem 5.0 kg de massa e é sustentada pela força muscular do pescoço (F_m) e pela força de contacto (F_v) exercida na articulação atlantooccipital. Sabendo que a força muscular faz um ângulo de 33^o com a horizontal e a sua magnitude é de 50N, determine a magnitude e a direcção da força de contacto (F_v)

Figura 5:

12. O maior tendão do corpo, o tendão de Aquiles, conecta o músculo da panturilha ao osso do calcanhar do pé. Esse tendão tem tipicamente 25.0 cm do comprimento, 5.0 mm de diâmetro e um módulo de Young de $1.47 \times 10^9 N/m^2$. Se um atleta alongou o tendão até um comprimento de 26.1 cm, qual é a traacção no tendão?

- 13. O fêmur em uma perna humana tem uma secção transversal mínima efectiva de $3.0cm^2$. Que força compressiva ele pode suportar antes de quebrar? Suponha que a tensão máxima admissível do osso seja de $1.7 \times 10^8 N/m^2$
- 14. O ligamento cruzado anterior no joelho de uma mulher tem 2.5cm de comprimento e uma área de secção transversal de $0.54cm^2$. Se uma força de 300 N é aplicada longitudinalmente, de quanto o ligamento irá se alongar? (O módulo de Young é de $10^8 N/m^2$)
- 15. Uma bola de 0.65 kg é arremessada com velocidade inicial de 20*m/s* a um ângulo de 35° a partir de uma altura de 1.5 m. Determine: a) A velocidade da bola a uma altura de 1.5 m. b) O trabalho mecânico necessário para se apanhar a bola nessa altura de 1.5 m; c) A energia mecânica da bola nessa altura.
- 16. Os extensores do joelho se inserem na tíbia a um ângulo de 30° a uma distância de 3 cm do eixo de rotação do joelho. Que força os extensores do joelho precisam exercer para produzir uma aceleração angular no joelho de $1 \ rad/s^2$, considerando a massa de perna e de pé de $4.5 \ kg$ e k = $23 \ cm$?