MA4413 Statistics for Computing

Lecture images/: Normal Distribution

Kevin O'Brien

kevin.obrien@ul.ie

Dept. of Mathematics & Statistics, University of Limerick

Autumn 2012

Introduction to the Normal Distribution

- Recall the experiment whereby a die was rolled 100 times, and the sum
 of the 100 values was recorded.
- This experiment was repeated a very large number of times (e.g. 100,000 times) in a simulation study.
- A histogram was drawn to depict the distribution of outcomes of this experiment.
- Recall that we agreed that "bell-shaped" was a good description of the histogram.

2/1

Normal Distribution

IMAGE

Normal Distribution

- The normal distribution is perhaps the most widely used distribution for a random variable.
- Normal distributions have the same general shape: the bell curve.
- They are symmetric with scores more concentrated in the middle than in the tails.
- The height of a normal distribution can be defined mathematically in terms of two fundamental parameters: the mean (μ) and the standard deviation (σ) .
- A normally distributed random variable X is denoted $X \sim N(\mu, \sigma^2)$ (note that we use the variance term here)
- The mean and standard deviation are vital for calculating probabilities.

The Normal Distribution

The *probability density function* of the normal distribution is given as

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Integrating this formula would allow us to compute probabilities. However, we will not use this formula, although we later discuss what a probability density function is.

Normal Distribution

6/1

Characteristics of the Normal probability distribution

- 1 The highest point on the normal curve is at the mean, which is also the median and mode of the distribution.
- 2 [VERY IMPORTANT] The normal probability curve is bell-shaped and symmetric, with the shape of the curve to the left of the mean a mirror image of the shape of the curve to the right of the mean.
- **3** The standard deviation determines the width of the curve. Larger values of the standard deviation result in wider flatter curves, showing more dispersion in data.
- **4** The total area under the curve for the normal probability distribution is 1.

Characteristics of the Normal probability distribution

- The interval defined by the mean $\pm 1 \times$ standard deviation includes approximately 68% of the observations, leaving 16% (approx) in each tail.
- The interval defined by the mean $\pm 1.96 \times$ standard deviation includes approximately 95% of the observations, leaving 2.5% (approx) in each tail.
- The interval defined by the mean $\pm 2.58 \times$ standard deviation includes approximately 99% of the observations, leaving 0.5% (approx) in each tail.

Remark: It is useful to know this numbers, but we will do all calculations from first principles.

The Standard Normal Distribution

- The standard normal distribution is a special case of the normal distribution with a mean $\mu = 0$ and a standard deviation $\sigma = 1$.
- We denote the standard normal random variable as Z rather than X.
- The distribution is well described in statistical tables (i.e. Murdoch Barnes Table 3)
- Rather than computing probabilities from first principles, which is very difficult, probabilities from distributions other than the Z distribution (e.g. $X \sim (\mu = 100, \sigma = 15)$) can be computed using the Z distribution, a much easier approach. (We shall demonstrate how shortly.)

Standardization formula

All normally distributed random variables have corresponding *Z* values, called *Z*-scores.

For normally distributed random variables, the z-score can be found using the *standardization formula*;

$$z_o = \frac{x_o - \mu}{\sigma}$$

where x_o is a score from the original normal ("X") distribution, μ is the mean of the original normal distribution, and σ is the standard deviation of original normal distribution.

Therefore z_o is the z-score that corresponds to x_o .

- Terms with subscripts mean particular values, and are not variable names.
- The z distribution will only be a normal distribution if the original distribution (X) is normal.

The Standardized Value

- Suppose that mean $\mu = 80$ and that standard deviation $\sigma = 8$.
- What is the Z-score for $x_o = 100$?

$$z_{100} = \frac{x_0 - \mu}{\sigma} = \frac{100 - 80}{8} = \frac{20}{8} = 2.5$$

• Therefore $z_{100} = 2.5$

11/1

Z scores

A Z-score always reflects the number of standard deviations above or below the mean a particular score is. Suppose the scores of a test are normally distributed with a mean of 50 and a standard deviation of 9 For instance, if a person scored a 68 on a test, then they scored 2 standard deviations above the mean.

Converting the test scores to z scores, an X value of 68 would yield:

$$Z = \frac{68 - 50}{9} = 2$$

So, a Z score of 2 means the original score was 2 standard deviations above the mean.

The Standard Normal (Z) Distribution Tables

- Importantly, probabilities relating to the z distribution are comprehensively tabulated in *Murdoch Barnes table 3*.
- Given a value of k (with k usually between 0 and 4), the probability of a standard normal "Z" random variable being greater than (or equal to) k $P(Z \ge k)$ is given in Murdoch Barnes table 3.
- Other statistical tables can be used, but they may tabulate probabilities in a different way.

An Important Identity

If two values z_o and x_o are related in the following way, for some values μ and σ ,

$$z_0 = \frac{x_0 - \mu}{\sigma}$$

Then we can can say

$$P(X \ge x_o) = P(Z \ge z_o)$$

or alternatively

$$P(X \le x_o) = P(Z \le z_o)$$

This is fundamental to solving problems involving normal distributions.

Using Murdoch Barnes tables 3

- For some value z_o , between 0 and 4, the Murdoch Barnes tables set 3 tabulate $P(Z \ge z_o)$
- Ideally *z_o* would be specified to 2 decimal places. If it is not, round to the closest value.
- We call the third digit (i.e. the digit in the second decimal place) the "second precision".

Using Murdoch Barnes tables 3

- To compute the relevant probability we express z_o as the sum of z_o without the second precision, and the second precision. (For example 1.28 = 1.2 + 0.08.)
- Select the row that corresponds to z_o without the second precision (e.g. 1.2).
- Select the column that corresponds to the second precision(e.g. 0.08).
- The value that contained on the intersection is $P(Z \ge z_o)$

Find $P(Z \ge 1.28)$

	 	0.006	0.07	0.08	0.09
1.0	 	0.1446	0.1423	0.1401	0.1379
1.1	 	0.1230	0.1210	0.1190	0.1170
1.2	 	0.1038	0.1020	0.1003	0.0985
1.3	 	0.0869	0.0853	0.0838	0.0823

Using Murdoch Barnes tables 3

- Find $P(Z \ge 0.60)$
- Find $P(Z \ge 1.64)$
- Find $P(Z \ge 1.65)$
- Estimate $P(Z \ge 1.645)$

Find $P(Z \ge 0.60)$

	0.00	0.01	0.02	0.03	
0.4	0.3446	0.3409	0.3372	0.3336	
0.5	0.3085	0.3050	0.3015	0.2981	
0.6	0.2743	0.2709	0.2676	0.2643	
0.7	0.2420	0.2389	0.2358	0.2327	
		•••	•••		

Find $P(Z \ge 1.64)$ and $P(Z \ge 1.65)$

	 	0.04	0.05	0.06	0.07
1.5	 0.0630	0.0618	0.0606	0.0594	
1.6	 0.0516	0.0505	0.0495	0.0485	
1.7	 0.0418	0.0409	0.0401	0.0392	
	 	•••	•••		

Using Murdoch Barnes tables 3

- $P(Z \ge 1.64) = 0.505$
- $P(Z \ge 1.65) = 0.495$
- $P(Z \ge 1.645)$ is approximately the average value of $P(Z \ge 1.64)$ and $P(Z \ge 1.65)$.
- $P(Z \ge 1.645) = (0.0495 + 0.0505)/2 = 0.0500$. (i.e. 5%)

Exact Probability

Remarks: This is for continuous distributions only.

- The probability that a continuous random variable will take an exact value is infinitely small. We will usually treat it as if it was zero.
- When we write probabilities for continuous random variables in mathematical notation, we often retain the equality component (i.e. the "...or equal to..").
 - For example, we would write expressions $P(X \le 2)$ or $P(X \ge 5)$.
- Because the probability of an exact value is almost zero, these two expression are equivalent to P(X < 2) or P(X > 5).
- The complement of $P(X \ge k)$ can be written as $P(X \le k)$.

Complement and Symmetry Rules

Any normal distribution problem can be solved with some combination of the following rules.

1. Complement rule

• Common to all continuous random variables

$$P(Z \ge k) = 1 - P(Z \le k)$$

Similarly

$$P(X \ge k) = 1 - P(X \le k)$$

$$P(Z \le 1.28) = 1 - P(Z \ge 1.28) = 1 - 0.1003 = 0.8997$$

Complement and Symmetry Rules

2. Symmetry rule

- This rule is based on the property of symmetry mentioned previously.
- Only the probabilities corresponding to values between 0 and 4 are tabulated in Murdoch Barnes.
- If we have a negative value of k, we can use the symmetry rule.

$$P(Z \le -k) = P(Z \ge k)$$

by extension, we can say

$$P(Z \ge -k) = P(Z \le k)$$

Example

Find $P(Z \ge -1.28)$ **Solution**

• Using the symmetry rule

$$P(Z \ge -1.28) = P(Z \le 1.28)$$

• Using the complement rule

$$P(Z \ge -1.28) = 1 - P(Z \ge 1.28)$$

$$P(Z \ge -1.28) = 1 - 0.1003 = 0.8997$$

Find the probability of a "z" random variable being between -1.8 and 1.96? i.e. Compute $P(-1.8 \le Z \le 1.96)$

Solution

- Consider the complement event of being in this interval: a combination of being too low or too high.
- The probability of being too low for this interval is $P(Z \le -1.80) = 0.0359$ (check)
- The probability of being too high for this interval is $P(Z \ge 1.96) = 0.0250$ (check)
- Therefore the probability of being **outside** the interval is 0.0359 + 0.0250 = 0.0609.
- Therefore the probability of being **inside** the interval is 1- 0.0609 = $0.9391 P(-1.8 \le Z \le 1.96) = 0.9391$

Solutions

Let x be the normal random variable describing waiting times $P(X \ge 15) = ?$

First , we find the z-value that corresponds to x = 15 (remember $\mu = 10$ and $\sigma = 3$)

$$z_o = \frac{x_o - \mu}{\sigma} = \frac{15 - 10}{3} = 1.666$$

- We will use $z_o = 1.67$
- Therefore we can say $P(X \ge 15) = P(Z \ge 1.67)$
- The Murdoch Barnes tables are tabulated to give $P(Z \ge z_o)$ for some value z_o .
- We can evaluate $P(Z \ge 1.67)$ as 0.0475.
- Necessarily $P(X \ge 15) = 0.0475$.