LABORATORIUM PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE							
Autorzy sprav	Autorzy sprawozdania Informacje o ćwiczeniu						
Imię i nazwisko:	Numer indeksu:	Numer ćwiczenia:	Data wykonania:				
Marta Kubińska	236434	3	7.11.2018r.				
Jakub Siembida	236728						
Joanna Stecura	Joanna Stecura 236629						
	Tytuł ćwiczenia:						

Wyznaczanie mocy akustycznej przetwornika piezoelektrycznego poprzez pomiar ciśnienia promieniowania ultradźwięków w wodzie.

1. Cel ćwiczenia

Celem wykonanego ćwiczenia było:

- Wykonanie pomiarów mocy elektrycznej pobranej przez przetwornik i masy padającej na tarczę odbijającą w zależności od częstotliwości przy stałym napięciu 15V
- Obliczenie mocy akustycznej
- Wyznaczenie częstotliwości rezonansowych oraz obliczenie dla nich dobroci, sprawności i natężenia fali przetwornika
- Wykonanie pomiarów mocy elektrycznej i masy padającej na tarczę odbijającą w
 zależności od napięcia, przy stałej częstotliwości równej częstotliwości rezonansowej
 i obserwacja zależności mocy akustycznej od napięcia generatora oraz mocy
 akustycznej od mocy elektrycznej

2. Przebieg pomiarów

Na samym początku zmierzono temperaturę wody w zbiorniku, aby wykonać potrzebne obliczenia.

Doświadczenie było podzielone na dwie części.

CZEŚĆ PIERWSZA:

Wykonano pomiar mocy elektrycznej pobranej przez przetwornik i masy wskazywanej przez wagę torsyjną zmieniając częstotliwość w zakresie od 300 do 380 kHz. Pomiary zostały wykonane co ok 4-5mg zmiany masy wskazywanej na wadze.

CZĘŚĆ DRUGA:

Wybrano z wyników otrzymanych w części pierwszej trzy wartości częstotliwości rezonansowych i dla nich wykonano pomiar mocy elektrycznej i masy zmieniając napięcie generatora w zakresie 1-15V co 1 V.

3. Schemat układu pomiarowego

Rys 1 Schemat blokowy układu pomiarowego

Objaśnienie symboli użytych na Rys1:

G – generator ultradźwiękowy

V- woltomierz

Cz. – częstościomierz

MI – mostek impedancji

WT – waga torsyjna

P – przetwornik ultradźwiękowy

R – tarcza odbijająca (reflektor)

Z – wytłumiony zbiornik wodny

4. Wyniki pomiarów wraz z obliczeniami

4.1 Prędkość rozchodzenia się fali ultradźwiękowej w wodzie wyznaczono za pomocą wzoru:

$$c_{woda} = \sum_{i=0}^{5} k_i t^i = 1488,39 \frac{m}{s}$$

Zmierzona przez nas temperatura wody to 22°C

Tabela 1. Wartości współczynników k użytych do wyznaczenia prędkości fali ultradźwiękowej w wodzie.

I	$k_i[\frac{m}{s}]$
0	1402,385
1	5,038813
2	$5,799136 \cdot 10^{-2}$
3	$3,28716\cdot10^{-4}$
4	$-1,39885\cdot10^{-6}$
5	$2,78786\cdot10^{-9}$

4.2 Zakres pola bliskiego wyliczono ze wzoru:

$$r_0 = \frac{d^2}{4\lambda} = \frac{d^2 * f_r}{4 * c_{woda}} = \frac{(38mm)^2 * 340kHz}{4 * 1488,39\frac{m}{s}} = 82mm$$

d — śrenica przetwornika f_r — częstotliwość rezonansowa przetwornika

4.3 Wyznaczanie kąta α

Rys 2 Sposób rozchodzenia się fali ultradźwiękowej w czasie pomiaru ciśnienia promieniowania

Rys 3 Tarcza odbijająca z zaznaczonymi kątami

Z Rys 3 wynika że:

$$\alpha = 90^{\circ} - 65^{\circ} = 25^{\circ}$$

4.4 Wyznaczenie współczynnika k

Siła, którą wywiera ciśnienie promieniowania na reflektor przy ukośnym kącie padania zależy od mocy akustycznej P_{ak}

$$F_{P_{ak}} = \frac{2P_{ak}}{c_{woda}} \cos^2 \alpha = mg$$

$$P_{ak} = \frac{mgc_{woda}}{2\cos^2 \alpha} = \frac{m*10^{-3}*9,81*1488,39}{2\cos^2 25^{\circ}} = 8,885 \left[\frac{mW}{mg}\right] * m[mg] = k*m$$

$$k = 8,885 \left[\frac{mW}{mg}\right]$$

CZĘŚĆ PIERWSZA

4.5 Wyniki pomiarów dla części pierwszej ćwiczenia

W pierwszej części ćwiczenia mierzono masę oraz moc elektryczną w zależności od częstotliwości (zakres 300-380kHz) przy napięciu o stałej wartości 15V

Tabela 2. Wyniki pomiaru masy i mocy elektrycznej w zależności od częstotliwości przy stałym napięciu 15V. Częstotliwości rezonansowe zostały przyciemnione.

ıu	tym napięc	ciu 15 v. C.	2çsioiii wo.	oci i czonai	isone zosia	iy przycienii
	f	C	m	P_{el}	P_{ak}	δP_{ak}
	[kHz]	[V]	[mg]	[mW]	[mW]	OT ak
	299,904		3,9	300	34,65	2,56
	307,932		9,6	400	85,30	1,04
	310,357		14	500	124,39	0,71
	311,496		18,1	500	160,82	0,55
	312,526		22,5	600	199,91	0,44
	313,479		28,4	600	252,33	0,35
	313,888		32,9	600	292,32	0,30
	314,908		38,1	600	338,52	0,26
	315,264		33,3	600	295,87	0,30
	315,595		27,5	500	244,34	0,36
	315,899		22,4	500	199,02	0,45
	316,289		17,4	500	154,60	0,57
	316,876		13,2	400	117,28	0,76
	319,418		7,8	400	69,30	1,28
	329,441	15	13,9	500	123,50	0,72
	331,061		17,6	600	156,38	0,57
	333,442		22,4	700	199,02	0,45
	334,496		27,9	800	247,89	0,36
	335,176		32,9	900	292,32	0,30
	335,869		38,9	1000	345,63	0,26
	336,273		42,5	1000	377,61	0,24
	336,886		48,6	1100	431,81	0,21
	337,544		53,8	1100	478,01	0,19
	338,916		58,4	1200	518,88	0,17
	340,491		53,7	1100	477,12	0,19
	341,095		48	1000	426,48	0,21
	341,646		43,6	900	387,39	0,23
	342,167		38,1	800	338,52	0,26
	342,875		32,9	700	292,32	0,30
	343,276		28,5	600	253,22	0,35
	344,143		22,4	500	199,02	0,45

344,830	19,1	500	169,70	0,52
345,451	14,6	400	129,72	0,68
346,672	9,4	400	83,52	1,06
348,479	5,4	300	47,98	1,85
355,985	9,1	500	80,85	1,10
357,170	15	600	133,28	0,67
357,691	18,8	600	167,04	0,53
357,895	21,5	600	191,03	0,47
358,658	27,8	700	247,00	0,36
359,031	31,4	800	278,99	0,32
359,559	35,1	900	311,86	0,28
361,270	40,2	900	357,18	0,25
362,150	43,9	1000	390,05	0,23
362,596	47,1	1000	418,48	0,21
363,304	52,5	1100	466,46	0,19
363,834	58,8	1100	522,44	0,17
363,942	60,5	1100	537,54	0,17
364,192	64,4	1100	572,19	0,16
364,678	70,4	1100	625,50	0,14
364,897	73,9	1100	656,60	0,14
365,215	79	1100	701,92	0,13
365,694	84,4	1100	749,89	0,12
366,039	87,8	1100	780,10	0,11
366,454	90,1	1100	800,54	0,11
367,567	95,3	1200	846,74	0,10
368,305	101,8	1200	904,49	0,10
368,911	107,7	1200	956,91	0,09
369,802	102,9	1000	914,27	0,10
370,554	95,9	900	852,07	0,10
371,204	90,4	700	803,20	0,11
371,561	85,1	700	756,11	0,12
372,083	77,5	600	688,59	0,13
372,537	73	600	648,61	0,14
373,688	67,7	500	601,51	0,15
375,258	63,4	500	563,31	0,16
375,779	56,6	400	502,89	0,18
376,145	49,4	400	438,92	0,20
376,745	42,4	300	376,72	0,24
377,103	37,1	300	329,63	0,27
377,619	33,4	300	296,76	0,30
378,982	28,7	300	255,00	0,35
381,564	24	300	213,24	0,42

4.6 Obliczenia dla części pierwszej ćwiczenia Przykładowe obliczenie mocy akustycznej:

$$P_{ak} = k * m = 8,885 \frac{mW}{mg} * 3,9mg = 34,65mW$$

Niepewności pomiarowe:

$$\Delta f = 1 \text{Hz} = 0,001 \text{kHz}$$

$$\Delta U = \frac{\text{klasa} * \text{zakres}}{100} = \frac{1,5 * 20\text{V}}{100} 0,3\text{V}$$

$$\Delta m = 0,1 \text{mg}$$

$$\Delta P_{el} = \frac{\text{klasa} * \text{zakres}}{100} = \frac{1,5 * 3\text{W}}{100} = 0,045\text{W}$$

$$\Delta P_{ak} = \sqrt{\left(\frac{d(km)}{dm}\right)^2 * (\Delta m)^2} = k * \Delta m = 8,885 * 0,1 = 0,89 \text{mW}$$

Przykładowe obliczenie błędu względnego:

$$\delta P_{ak} = \frac{\Delta P_{ak}}{P_{ak}} * 100\% = \frac{0.89}{34.65} * 100\% = 2.57\%$$

4.7 Wykres

Wykres 1. Zależność mocy elektrycznej i mocy akustycznej od częstotliwości

4.8 Z tabeli 2 wybrano częstotliwości rezonansowe dla mocy elektrycznej i mocy akustycznej. Oba rezonanse pokrywają się.

Tabela 3. Częstotliwości rezonansowe wraz z mocą elektryczną i akustyczną oraz obliczonymi

parametrami

	f [kHz]	P _{el} [mW]	P _{ak} [mW]	δP_{ak}	Szerokość pasma [kHz]	Q [-]	I [mW/cm²]	μ[%]
REZONANS 1	314,908	600	338,52	0,26	2,116	148,82	29,85	56,42
REZONANS 2	338,916	1200	518,88	0,17	5,373	63,08	45,75	43,24
REZONANS 3	368,911	1200	956,91	0,09	7,186	51,34	84,38	79,74

4.9 Dla częstotliwości rezonansowych wyznaczono:

Szerokość pasma i dobroć:

Aby wyznaczyć te wielkości należy wykonać wykres zależności mocy akustycznej w dB od częstotliwości.

Aby zamienić moc akustyczną wyrażoną w mW na wyrażoną w dB korzystamy ze wzoru:

$$P_{ak[dB]} = 20log_{10} \left(\frac{P_{ak[mW]}}{P_{0ak[mW]}} \right) = 20log_{10} \left(\frac{34,65}{314,908} \right) = -19,797dB$$

P₀-jest to moc akustyczna w rezonansie

Aby poprawnie zamienić moc akustyczną na dB należy znaleźć trzy przedziały częstotliwości, które odpowiadają najpierw narastaniu wielkości mocy akustycznej, osiągnięciu przez niej maksimum(P₀), a następnie zmniejszaniu jej do osiągnięcia lokalnego minimum.

Wykres 2. Zależność mocy akustycznej w dB od częstotliwości

Dzięki wykresowi możemy odczytać wartości:

f₀- jest to wartość częstotliwości rezonansowej

f₁-jest to wartość częstotliwości dla mocy akustycznej o wartości -3dB

f₂- jest to wartość częstotliwości dla mocy akustycznej o wartości -3dB, gdzie f₂>f₁

Szerokość pasma obliczamy ze wzoru: $f_2 - f_1$ Dobroć obliczamy ze wzoru:

$$Q = \frac{f_0}{f_2 - f_1}$$

Np. obliczenia dla pierwszego rezonansu:

$$Q = \frac{314,908}{315,595 - 313,479} = 148,82$$

Sprawność:

$$\mu = \frac{P_{ak}}{P_{el}} * 100\% = \frac{338,52}{600} * 100\% = 56,42\%$$

• Natężenie generowanej fali ultradźwiękowej:

$$I = \frac{P_{ak}}{A} = \frac{P_{ak}}{\pi r^2} = \frac{338,52}{\pi * (1,9cm)^2} = 29.85 \frac{mW}{cm^2}$$

A-powierzchnia przetwornika, obliczymy ją wiedząc, że średnica przetwornika wynosi 38mm=3,9cm

CZĘŚĆ DRUGA

4.10 Dla trzech rezonansów wykonano pomiary mocy elektrycznej i masy w zależności od napięcia generatora (zakres 1-16V co 1 V) oraz obliczono moc akustyczną. Pierwszy rezonans był przy częstotliwości 314,908 kHz. Z powodu trudności w dokładnym odwzorowaniu tej wartości została ustawiona wartość zbliżona, czyli 314,958 kHz

Tabela 4. Wyniki pomiaru mocy elektrycznej i masy w zależności od napięcia generatora dla pierwszego rezonansu

U	Pel	m	P_{ak}
[V]	[mW]	[mg]	[mW]
16	700	41,6	369,62
15	600	36,7	326,08
14	600	32,7	290,54
13	500	28,4	252,33
12	400	24,4	216,79
11	400	22,9	203,47
10	300	17,5	155,49
9	300	14,1	125,28
8	200	11,4	101,29
7	200	8,4	74,63
6	200	6,2	55,09
5	100	3,8	33,76

4	100	2,3	20,44
3	100	1	8,89
2	100	0,3	2,67
1	100	0	0

Drugi rezonans był przy częstotliwości 338,916 kHz. Z powodu trudności w dokładnym odwzorowaniu tej wartości została ustawiona wartość zbliżona, czyli 338,557 kHz *Tabela 5. Wyniki pomiaru mocy elektrycznej i masy w zależności od napięcia generatora dla drugiego rezonansu*

IJ	D	m	D
_	P _{el}	m	P_{ak}
[V]	[mW]	[mg]	[mW]
16	1500	78,2	694,81
15	1300	66,9	594,41
14	1100	57,6	511,78
13	1000	50,6	449,58
12	800	42,7	379,39
11	700	36,7	326,08
10	600	31,9	283,43
9	500	26,9	239,01
8	400	12,2	108,40
7	300	15,3	135,94
6	300	11,2	99,51
5	200	7,7	68,41
4	100	4,9	43,54
3	100	2,5	22,21
2	100	0	0,00
1	100	0	0,00

Trzeci rezonans był przy częstotliwości 368,911 kHz. Z powodu trudności w dokładnym odwzorowaniu tej wartości została ustawiona wartość zbliżona, czyli 369,510 kHz

Tabela 6. Wyniki pomiaru mocy elektrycznej i masy w zależności od napięcia generatora dla trzeciego rezonansu

U	P _{el}	m	P_{ak}
[V]	[mW]	[mg]	[mW]
16	1200	119,2	1059,09
15	1100	104,6	929,37
14	1000	91,7	814,75
13	800	81,1	720,57
12	700	68,4	607,73
11	600	57,5	510,89
10	500	49	435,37
9	400	39,6	351,85
8	300	32,3	286,99
7	300	24,3	215,91

6	200	17,9	159,04
5	200	12,4	110,17
4	100	6,8	60,42
3	100	4,3	38,21
2	100	1,4	12,44
1	100	0	0,00

4.11 Na podstawie trzech powyższych tabel narysowano wykresy

Wykres 3. Zależność mocy akustycznej od napięcia generatora

5. Wnioski

Wykres 1, który przedstawia zależność mocy akustycznej i mocy elektrycznej od częstotliwości wyróżniają się po trzy maksima dla każdej mocy, czyli po trzy częstotliwości rezonansowe. Częstotliwości rezonansowe dla mocy elektrycznej i akustycznej pokrywają się. Moc elektryczna przyjmuje wyższe wartości niż moc akustyczna. Wraz ze wzrostem częstotliwości wzrasta wartość mocy dla częstotliwości rezonansowych osiągając maksimum przy trzecim rezonansie.

Na podstawie Tabeli 3 możemy stwierdzić, że:

- Szerokość pasma rośnie wraz z kolejnymi rezonansami i przyjmuje największą wartość w rezonansie trzecim (7,186kHz). Dobroć zaś maleje wraz z kolejnymi wartościami częstotliwości rezonansowych (największa wartość dla rezonansu pierwszego to 148,82, a najmniejsza dla rezonansu trzeciego 51,34).
- Natężenie dźwięku rośnie z każdym kolejnym rezonansem i osiąga największą wartość dla trzeciego rezonansu, czyli 84,38 mW/cm².
- Sprawność osiąga największą wartość dla rezonansu trzeciego 79,74%, a najmniejszą dla rezonansu drugiego 43,24%, dla rezonansu pierwszego wartość ta wynosi 56,42%.

Z Wykresu 3 wnioskujemy, że wraz ze wzrostem napięcia generatora wzrasta moc akustyczna. Z wykresu 4 z wygenerowanymi liniami trendu dla każdego pomiaru zauważamy zaś, że moc akustyczna zależy od mocy elektrycznej liniowo.

Tabela 7. Zestawienie typowych natężeń fali ultradźwiękowej wytwarzanej przez współczesne aparaty diagnostyczne

	Moc akust	I _{SATA}	I _{SPTA}
Rodzaj badania	[mW]	[mW/cm ²]	[mW/cm ²]
Prezentacja B i M	0,1-20	0,01 - 20	0,6 - 200
Głowica sektorowa	3,5 - 20	0,4-20	45 – 160
Głowica liniowa macierzowa	0,1-33	0,06 - 10	0,1-12
Doppler PW kardiologia	8 – 24	3 – 32	50 – 200
Doppler PW położnictwo	1 – 18	0,26 - 25	0,6 - 75
Okulistyczne	0,02-0,06	0,07 - 0,2	0,2-0,6
Doppler CW naczyniowe	6 – 105	38 – 840	110-2500
Doppler PW naczyniowe	6 – 10	87 – 175	350 - 700
Doppler CW położnictwo	1 – 37	0,2-20	0,6 - 80

I_{SATA} – uśredniona wartość przestrzenna, uśredniona w czasie

I_{SPTA} – szczytowa wartość przestrzenna uśredniona w czasie

I_{SPPA} – szczytowa wartość przestrzenna uśredniona na czas trwania impulsu

Tabela 8. Normy ograniczające natężenie ultradźwięków do poziomu uzależnionego od rodzaju badania

Rodzaj badania	I _{SPPA} [W/cm ²]	I _{SPTA} [mW/cm ²]
Dorośli		
Kończyny i naczynia obwodowe	350	1500
Kardiologiczne	350	730
Brzuszne, neurologiczne	350	180
Oftalmologiczne	110	68
Dzieci i dzieci nienarodzone	350	180

Porównując dane zawarte w Tabeli 6 i 7 z wynikami natężenia otrzymanymi z naszego ćwiczenia zauważamy, że przetwornik generował fale ultradźwiękowe o natężeniu maksymalnie 84,38 mW/cm², co oznacza, że aparat USG wykorzystujący fale o takim natężeniu byłby całkowicie bezpieczny dla badania kończyn i naczyń obwodowych, do USG kardiologicznego, brzusznego, neurologicznego, ale dla badania oftalmologicznego byłaby to wartość zbyt duża i należałoby przejść np. na wartość częstotliwości drugiego rezonansu.

W medycynie stosujemy krótkie sygnały, czyli o niskiej dobroci i szerokim paśmie, czyli w naszym przypadku, wykorzystując nasz przetwornik najbardziej wyraźny obraz otrzymamy ustawiając wartość częstotliwości na 368,911, czyli na wartość rezonansu trzeciego.

Źródła:

http://www.ire.pw.edu.pl/~arturp/Dydaktyka/aus/paus_4.pdf