Clasificación Bayesiana

Clasificación Bayesiana

Tags: Reconocimiento de Patrones

Un experimento estocástico es definido como un conjunto $\Omega=\{w_1,w_2,\ldots,w_k\}$ de k clases. Asumir que las clases son mutuamente exclusivas. La probabilidad $P(w_k)$ de ocurrir una clase w_k es la probabilidad a priori. Esta representa el conocimiento que se tiene sobre la clase de un objeto antes de hacer las mediciones de ese objeto. Ya que el número de clases posibles es k_i se tiene que:

$$\sum_{k=1}^{k} P(w_k) = 1 \qquad (2.1.1)$$

El sistema de censado produce un vector de mediciones z de dimensión N. Objetos de diferente clase tienen diferente vector de mediciones, aunque vectores de objetos de la misma clase también pueden variar por diversos factores y fenómenos impredecibles (Ruido cuántico, Ruido térmico, etc.)

La función de densidad de probabilidad condicional del vector de medición z está denotado como $P(z|w_k)$. Si z viene de un objeto con clase desconocida, su densidad es indicada por P(z) (Probabilidad no condicional)

Ya que las clases son supuestas a ser mutuamente exclusivas, la densidad no condicional, puede ser derivada de las densidades condicionales, mediante:

$$P(z) = \sum_{k=1}^{K} P(z|w_k)P(w_k)$$
 (2.1.2)

Un clasificador bayesiano es un clasificador de patrones que está basado en los siguientes 2 prerrequisitos:

- 1. El daño o perdida de valor, involucrado cuando un objeto es erróneamente clasificado, puede ser cuantificado como un costo
- 2. La esperanza del costo es aceptable como un criterio de optimización

Ejemplo:

Sea w denotar el estado del entorno (naturaleza), con $w=w_1$ para un pez lubina y $w=w_2$ para un pez salmón. w es una variable impredecible, descrita probabilísticamente. Cada pez es igualmente probable de ser pescado. Se asume que hay una probabilidad a priori $P(w_1)$ de que el pez capturado sea lubina y una probabilidad $P(w_2)$ de que sea salmón. Considere:

$$P(w_1) + P(w_2) = 1$$
 (2.1.1)

Se asume que una clasificación incorrecta implica el mismo costo o consecuencia. Si queremos predecir el tipo de pez a ser pescado, entonces se usa la siguiente regla de decisión:

Decide w_1 si $P(w_1) > P(w_2)$ de otra manera, decide w_2

Sea x una medición que se modela como una variable continua aleatoria cuya distribución depende del estado del entorno (Naturaleza) y se expresa como:

P(x|w) es la probabilidad condicional de que para una x dado que el estado del entorno es w.

Suponer que se conocen las probabilidades a priori $P(w_j)$ y las probabilidades condicionales $P(x|w_j)$ para j=1,2

Suponer que se mide la luminosidad de cada pez y se descubre que su valor es x. La probabilidad conjunta de que la categoría w_i y el valor característico x es:

$$P(w_j, x) = P(w_j|x)P(x) = P(x|w_j)P(w_j)$$
 (2.1.3)

$$P(A|B) = P(A|B)P(B) = P(B|A)P(A)$$
 (2.1.4)

Despejando $P(w_j|x)$

$$P(w_j|x) = rac{P(x|w_j)P(w_j)}{P(x)}
ightarrow ext{Regla de Bayes} \hspace{0.5cm} (2.1.5)$$

/ Teorema de Bayes

$$P(A_j|E) = \frac{P(A_j)P(E|A_j)}{\sum_{i=1}^k P(A_j)P(E|A_i)}, j = 1, 2, \dots, k$$
 (1.3.14)

donde para el caso de las 2 categorías

$$P(x) = \sum_{i=1}^{2} P(x|w_i)P(w_i)$$
 (2.1.6)

$$posteriori = \frac{verosimilitud x priori}{Evidencia}$$

Para calcular la probabilidad del error $P(\operatorname{error}|x) = P(w_1|x)$ si se decide w_2 , $P(w_2|x)$ si se decide w_1

Sí se decide w_1 si $P(w_1|x)>P(w_2|x)$, decidir w_2 en caso contrario. Bajo la regla anterior

$$P(\text{error}|x) = \min[P(w_1|x), P(w_2|x)] \qquad (2.1.7)$$

Si de la regla de Bayes decimos que P(x) es solo un factor de escala, entonces podemos establecer que:

$$P(w_1|x) + P(w_2|x) = 1$$
 (2.1.8)

Por lo tanto, la próxima regla de decisión es:

/ Note

Si $P(x|w_1)P(w_1) > P(x|w_2)P(w_2)$ decidir w_1 . Por otro lado, decidir w_2 .

Casos especiales:

₽ Tip

- Si $P(x|w_1) = P(x|w_2)$, entonces recurrir a las probabilidades a priori, para hacer la decision.
- Si $P(w_1) = P(w_2)$ la decision se hace con las verosimilitudes $P(x|w_j)$

Sea $\{w_1,w_2,\ldots,w_c\}$ un conjunto finito de "c" estados $\{clases,categorias\}$ y sea $\{a_1,a_2,\ldots,a_d\}$ un conjunto finito de "d" posibles acciones. La función de perdida $\lambda(a_1|w_j)$ describe la perdida incurrida por tomar la acción a_i cuando el estado es w_j . Sea un vector de características x una variable aleatoria con "n" componentes y sea $P(x|w_j)$ la probabilidad estado-condicional para "x" condicionada sobre w_j . Sabemos que $P(w_j)$ describe la probabilidad a priori de que el estado sea w_j .

Entonces la probabilidad a posteriori

$$P(w_j|x) = rac{P(x|w_j)P(w_j)}{P(x)}$$
 (2.1.9)

donde
$$P(x) = \sum_{i=1}^{c} P(x|w_i) P(w_i)$$

Suponga que observamos un x particular y se considera tomar la acción a_i . Si el estado verdadero es w_j , por definición se incurre en una perdida $\lambda(a_i|w_j)$

Por tanto, el error esperado o Riesgo

$$R(a_i|x) = \sum_{j=1}^c \lambda(a_i|w_j) P(w_j|x), i = 1, 2, \dots, d$$
 (2.1.10)

References

Clasificación de 2 clases

Tarea 3 - RDC