

Fundamentos de computadores

TEMA 4. CIRCUITOS SECUENCIALES

Objetivos

- Estudiar los circuitos secuenciales más sencillos.
- Introducir el concepto de cronograma.
- Comprender el funcionamiento básico de los biestables.
- Conocer los sistemas secuenciales básicos más importantes
 - Registros, Banco de registros, Memoria, Contadores

Índice

- Introducción
 - Circuitos secuenciales, reloj, cronogramas, símbolos lógicos
- Biestables
 - Biestable S-R
 - Biestable D
 - Activo por nivel
 - Activo por flanco
 - Con entradas asíncronas
 - Biestable J-K
 - Biestable T

Índice

- Bloques secuenciales básicos
 - Registros de almacenamiento
 - Banco de Registros, Memoria
 - Registros de desplazamiento
 - Contadores
- Análisis de SS por cronograma

- Circuitos secuenciales:
 - las salidas del circuito en el instante actual S(t) dependen no sólo del valor actual de las entradas del circuito E(t), sino también de su "memoria" o "estado almacenado" Q(t)
 - Están formados por
 - un bloque combinacional
 - un bloque de elementos de memoria para almacenar el estado Q
 - una entrada de reloj que decide cuando pasamos del tiempo t al t+1, y que marca cuando se almacena interiormente el estado del sistema

 La señal de reloj indica a los elementos de memoria cuándo deben cambiar su estado

- Cronograma: Representación de la evolución temporal de las entradas y salidas de un circuito.
 - Los valores desconocidos se representan sombreados

- Símbolos lógicos
 - Entradas y salidas

Entradas activas a nivel alto Entradas activas a nivel bajo Salidas Q y /Q

- Señal de reloj

Biestables

 Biestable: Circuito secuencial con dos estados estables (0 y 1)

Podemos almacenar un bit en un circuito haciendo que de vueltas y vueltas, de manera que la información recircule indefinidamente

Biestables

FCO

¿Cómo cambiar el estado del biestable?

Biestable S-R

- Biestable S-R con puertas NOR
 - ¿Cómo se determina su comportamiento?
 - 1. Obtención de una tabla con todos los casos
 - A partir de las ecuaciones (sin realimentación)
 - Las entradas externas y el estado actual (t) son las entradas y el estado siguiente (t+1) son las salidas
 - Análisis de dicha tabla
 - a) Los casos se agrupan para cada combinación de valores de las entradas externas
 - b) Se aplica la tabla una y otra vez (la realimentación del circuito) hasta que el estado permanece estable (siempre sin cambiar las entradas externas)
 - Este método sirve para cualquier biestable por nivel

Biestable S-R

FCO

• Tabla: ecuaciones Q(t+1) = R + Q(t) y Q(t+1) = S + Q(t)

S	R	Q(t)	/Q(t)	Q(t+1)	/Q(t+1)
0	0	0	0	1	1
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

• Análisis: Agrupando por los casos de S y R

	S	R	Q(t)	/Q(t)	Q(t+1)	/Q(t+1)		Q(t+1)	/Q(t+1)
A0	0	0	0	0	1	1	→ A3 (Oscila)		
A1	0	0	0	1	0	1	→ A1 (Estable)	Q(t)	/O(+)
A2	0	0	1	0	1	0	→ A2 (Estable)	Q(1)	/ Q(i)
А3	0	0	1	1	0	0	→ A0 (Oscila)		
В0	0	1	0	0	0	1	→ B1		
B1	0	1	0	1	0	1	→ B1 (Estable)	0	1 1
B2	0	1	1	0	0	0	→ B0	U	1
В3	0	1	1	1	0	0	→ B0		
C0	1	0	0	0	1	0	→ C2		
C1	1	0	0	1	0	0	→ C0	1	
C2	1	0	1	0	1	0	→ C2 (Estable)	ı	
C3	1	0	1	1	0	0	→ C0		
D0	1	1	0	0	0	0	→ D0 (Estable)		
D1	1	1	0	1	0	0	→ D0	0*	0*
D2	1	1	1	0	0	0	→ D0	U	
D3	1	1	1	1	0	0	→ D0		

Biestable S-R

- Biestable S-R con puertas NOR
 - Comentarios a los valores de resumen del análisis
 - Cuando el estado siguiente (los valores de Q(t+1) y /Q(t+1)) es el mismo para todos los casos agrupados, resumir es fácil
 - Se indica el valor numérico (casos Bn, Cn y Dn)
 - En el caso (D*n*) en el que los valores resumen cumplan Q(t+1) = /Q(t+1) se indica con un * que la situación es "no deseada" ya que no se cumple la condición habitual $/Q(t+1) = \overline{Q(t+1)}$
 - 2. Cuando los valores de estado siguiente de los casos agrupados es diferente (casos An), el resumen es más difícil
 - Se expresa Q(t+1) y /Q(t+1) a partir de los valores de Q(t) y /Q(t)
 - La oscilación (el estado siguiente pasa de 00 a 11 y de 11 a 00 de forma indefinida) no aparece en el resumen (casos A0 y A3)

Biestable S-R con puertas NOR

S	R	Q(t+1)	/Q(t+1)
0	0	Q(t)	/Q(t)
0	1	0	1
1	0	1	0
1	1	0*	0*

Tabla de <u>funcionamiento</u>

* =situación no deseada

Biestable S-R

 El cronograma se utiliza para conocer la evolución temporal del estado cuando cambian sus entradas

Valor inicial de Q y /Q (supuesto)

 Se utilizan para la implementación de elementos de memoria, cuya única finalidad es almacenar el valor de una línea de información (un bit)

C	D	Q(t+1)	/Q(t+1)
0	X	Q(t)	/Q(t)
1	1	1	0
1	0	0	1

Tabla de funcionamiento

FCO

Podemos construir un biestable D a partir de un S-R
 Circuito

- Especificación del circuito combinacional
 - Si C=0, queremos que Q(t+1) = Q(t), por tanto la salida debe ser S=R=0
 - Si C=1 y D=0, queremos que Q(t+1) = 0, por tanto la salida debe ser S=0 y R=1
 - Si C=1 y D=1, queremos que Q(t+1) = 1, por tanto la salida debe ser S=1 y R=0

Entr	adas	Sali	idas
_	7	2	ח

С	D	S	R
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	0

Efecto en S-R

Q(t+1)	/Q(t+1)	
Q(t)	/Q(t)	
Q(t)	/Q(t)	
0	1	
1	0	

 De la tabla del circuito combinacional se obtiene S=CD y R=CD

FCO

Una implementación alternativa:

Biestable D activo por flanco

Si se activa el biestable por nivel y hay un pulso no deseado en la entrada de datos

el pulso no deseado se trasladará a la salida

Biestable D activo por flanco de bajada

 Para implementar biestables que se activen por flanco se utiliza con frecuencia un par de biestables por nivel en configuración MASTER-SLAVE (maestro-esclavo)

Biestable D activo por flanco de bajada

FCO

Biestable D activo por flanco de bajada

- Como se puede observar:
 - La línea interna Qm cambia cuando CLK = 1, siguiendo la evolución de la entrada D
 - La salida Q sólo cambia en los flancos de CLK
- El efecto neto de la configuración maestro-esclavo es que el último valor de la entrada D justo antes del flanco es el valor que aparece en la salida Q

Biestable D activo por flanco de subida

Implementación (maestro activo a nivel bajo, esclavo a nivel alto)

- A un biestable D activo por nivel (alto o bajo)
 se le pueden añadir entradas asíncronas del tipo:
 - CLEAR (CL): puesta a cero asíncrona
 - PRESET (PR): puesta a uno asíncrona
- Las entradas asíncronas:
 - Tienen prioridad sobre las demás entradas
 - Permiten cambiar el estado del biestable en cualquier momento (independientemente del valor de las demás entradas)

- Si CLEAR=PRESET=0 ⇒ Q = Q', /Q = /Q'
- Si CLEAR=1,PRESET= $0 \Rightarrow Q = 1 \Rightarrow Q' = 0 \Rightarrow Q = 0$
- Si CLEAR=0,PRESET=1 \Rightarrow Q = 1 \Rightarrow /Q' = 0 \Rightarrow /Q = 0
- Si CLEAR=1,PRESET=1 ⇒ Q=/Q=1*

FCO

Tabla de funcionamiento

PR	CL	C	D	Q(t+1)	/Q(t+1)
0	1	X	X	0	1
1	0	X	X	1	0
1	1	X	X	1*	1*
0	0	1	1	1	0
0	0	1	0	0	1
0	0	0	X	Q(t)	/Q(t)

FCO

FCO

- A un biestable D activo por flanco (subida o bajada) también se le pueden añadir entradas asíncronas
 - Se puede implementar usando un diseño maestro-esclavo donde tanto maestro como esclavo disponen de entradas asíncronas

Ejemplo: Biestable D activo por flanco de subida con

entradas PRESET y CLEAR

Biestable J-K

- El biestable S-R presenta problemas cuando se activan simultáneamente las dos entradas S y R
- El biestable J-K tiene un funcionamiento similar al S-R, pero evita el problema anterior invirtiendo el estado cuando J y K están activas simultáneamente

CLK	J	K	Q(t+1)	/Q(t+1)
0	X	X	Q(t)	/Q(t)
1	X	X	Q(t)	/Q(t)
↑	0	0	Q(t)	/Q(t)
↑	0	1	0	1
↑	1	0	1	0
<u> </u>	1	1	/Q(t)	Q(t)

Tabla de funcionamiento

Biestable T

- Sólo tiene una entrada llamada T (toggle)
- Mantiene el estado (si T=0) o lo invierte (si T=1) cada vez que llega un flanco activo de reloj
- No se construye comercialmente, pero se puede implementar fácilmente utilizando un biestable J-K

 De manera análoga, se puede construir un biestable T activo por flanco de bajada usando un biestable J-K activo por flanco de bajada

Bloques secuenciales básicos

- Existen bloques secuenciales tan importantes y de uso tan común que se les ha dado nombre
 - Registro de almacenamiento
 - Almacén de un dato de N bits
 - Banco de Registros y Memoria
 - Agrupación de varios registros de almacenamiento
 - Misma funcionalidad básica. Difieren fundamentalmente en aspectos de capacidad, velocidad de funcionamiento y diseño

Bloques secuenciales básicos

- Existen bloques secuenciales tan importantes y de uso tan común que se les ha dado nombre (cont.)
 - Registro de desplazamiento
 - Almacén de un dato de N bits en los se necesitan N ciclos de reloj para que la información entre (escritura) y/o salga (lectura)
 - Contador
 - Circuito que cambia de valor de forma autónoma en cada ciclo de reloj siguiendo una secuencia de valores predeterminada
 - Generalmente la cuenta es binaria (ascendente o descendente)

Registros de almacenamiento

- Agrupación síncrona de biestables D activos por flanco
 - Tantos biestables D como bits queramos almacenar
 - Cada biestable D almacena un bit
 - Las entradas/salidas de datos del registro coinciden con las de los biestables D
 - Un único reloj (sistema síncrono) interconecta las entradas de reloj de todos los biestables
 - Todos los biestables deben ser activos en el mismo flanco de reloj

Registros de almacenamiento

FCO

• Ejemplo: Registro de almacenamiento de 4 bits activo

por flanco de bajada

Símbolos lógicos posibles

Registros de almacenamiento

FCO

- Circuito integrado '175
- 4 biestables tipo D, activos por flanco de subida con entrada asíncrona de puesta a 0

Function Table

(Each Flip-Flop)

Inputs			Outputs	
Clear	Clock	D	Q	Q†
L	X	X	L	Н
Н	1	Н	Н	L
н	1	L	L	Н
Н	L	X	Q_0	\overline{Q}_0

H = HIGH Level (steady state) L = LOW Level (steady state)

Registros de almacenamiento

- Señal de escritura en paralelo (parallel load)
 - Permite habilitar o deshabilitar la escritura en el registro durante el flanco activo de reloj

Registros de almacenamiento

- Operación de escritura
 - Operación destructiva
 - El dato (previamente) almacenado desaparece y es sobre-escrito con el dato de la operación de escritura
 - Operativa
 - 1) Establecer el valor de las entradas D de los biestables
 - 2) Activar la señal de escritura
 - 3) La escritura se hará efectiva en el flanco activo de la señal de reloj
- Operación de lectura
 - Operación no destructiva
 - El dato almacenado permanece inalterado
 - Operativa
 - Examinar las salidas Q de los biestables

Banco de Registros

- Agrupación de registros
 - Permite la escritura de un dato sobre un registro
 - Hay que seleccionar qué registro queremos escribir
 - Esta información es la dirección de escritura
 - Internamente, un decodificador selecciona qué registro trabaja
 - Permite la lectura de, al menos, un dato almacenado
 - Hay que seleccionar qué registro queremos leer
 - Esta información es la dirección de lectura
 - Internamente, un multiplexor selecciona qué dato se obtiene
 - Para permitir la lectura simultánea de dos o más datos es necesario disponer de tantas entradas de dirección de lectura y multiplexores internos como datos se deseen leer

Banco de Registros

- Ejemplo: Banco de registros de 4 registros de 8 bits con un puerto (vía de acceso) de escritura y otro de lectura
 - 4 registros => 2 bits de dirección
 - Datos de entrada/salida de 8 bits

- Símbolo lógico

- Ejemplo (cont):
 - Esquema interno

Banco de Registros

- Operación de escritura
 - Operativa
 - 1) Establecer el valor del dato de escritura
 - 2) Establecer el valor de la dirección de escritura
 - 3) Activar la señal de escritura (habilita el decodificador)
 - 4) La escritura se efectuará en el flanco activo de la señal de reloj
- Operación de lectura
 - Operativa
 - 1) Establecer el valor de la dirección de lectura
 - 2) Examinar el valor del dato de lectura

Memoria

- Misma funcionalidad que un banco de registros, pero
 - Mucha más capacidad (Kbytes, Mbytes, Gbytes, ...)
 - Mucho más lenta
 - Tecnología diferente
- Una única operación (lectura/escritura) en un momento dado
 - Una única entrada de dirección y otra de dato
 - Líneas de órdenes de lectura y escritura
 - Para que la memoria sepa qué hacer en cada momento
 - Leer, escribir o nada (si no se activa ni lectura ni escritura)

- Agrupación síncrona de biestables D por flanco
 - Tantos biestables D como bits queramos almacenar
 - La información necesita varios ciclos de reloj para entrar (escritura) o salir (lectura)
 - Se conocen como entrada serie y salida serie, respectivamente
 - Cuando todos los bits entran o salen en el mismo ciclo de reloj se dice que el registro tiene entrada o salida paralelo
 - Estructura con entrada serie
 - El primer biestable conecta su entrada con la única entrada de datos
 - El resto, cada entrada con la salida del anterior
 - Estructura con salida serie
 - Sólo es accesible la salida del último biestable

- Entrada serie, salida paralelo
 - Esquema interno

- Funcionamiento
 - Un bit (el valor de la entrada serie) entra por la izquierda y desplaza la información almacenada una posición hacia la derecha
 - El bit almacenado en el extremo derecho se pierde

- Entrada serie, salida paralelo (cont.)
 - Ejemplo de funcionamiento
 - Estado inicial Q3Q2Q1Q0 = 0000
 - La entrada serie toma los valores indicados en el cronograma (como ejemplo de secuencia de valores)

FCO

- Entrada serie, salida serie
 - Mismo circuito interno que con salida paralelo, excepto que la única salida disponible es la del último biestable

- Entrada paralelo, salida serie
 - Necesitamos una entrada adicional (que podemos llamar, por ejemplo, LOAD) para determinar si el sistema debe cargar el dato de entrada (LOAD=1) o desplazar (LOAD=0)

- Registros de desplazamiento (resumen)
 - Un registro de desplazamiento puede desplazar
 - A izquierdas o a derechas
 - No hay unanimidad en lo que significa "a izquierdas" o "a derechas"
 - Mejor indicar el sentido explícitamente
 - Incluso puede desplazar en ambos sentidos
 - No simultáneamente, a veces a izquierdas y a veces a derechas
 - Con una entrada de control adicional que indique el sentido
 - En este caso puede disponer de
 - » Una única entrada de datos serie
 - » Una entrada de datos serie para cada uno de los sentidos de desplazamiento (entrada serie por la izquierda, entrada serie por la derecha)

- Registros de desplazamiento (resumen, cont.)
 - La entrada de datos puede ser
 - Serie: Cuando la entrada de datos es de un bit por ciclo de reloj
 - Paralelo: Cuando todo el registro se escribe en un único ciclo de reloj
 - La salida puede ser
 - Serie: Cuando para observar el valor almacenado en el registro necesitamos tantos ciclos de reloj como biestables
 - Paralelo: Cuando podemos observar el valor de todos los biestables en un único ciclo de reloj

FCO

Preguntas:

- ¿Cómo podemos construir un registro de desplazamiento con entrada y salida serie, con desplazamiento de Q3 a Q0?
- ¿Y que se pueda escoger el sentido del desplazamiento con una señal llamada "sentido" y con dos entradas serie?
- Ahora, ¿cómo le añadimos carga paralela?
- ¿Y hacerlo cíclico a veces sí y a veces no?

Contadores

Contador

- Circuito que cambia de valor <u>de forma autónoma</u> en cada ciclo de reloj siguiendo una secuencia, generalmente una cuenta binaria (ascendente o descendente)
- La cuenta puede ser ascendente o descendente
- La cuenta también puede ser ascendente/descendente (reversible)
 - No simultáneamente, a veces ascendente y a veces descendente
 - Una entrada de control adicional indica el sentido

- Contadores síncronos
 - Suelen estar construidos con biestables T o J-K (con J=K)
 - El circuito resultante utiliza menos puertas lógicas que si se usan biestables D
 - Ejemplo: Contador síncrono ascendente de 4 bits
 - Salida 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, ...

Contadores

- Contadores: Clasificación por el tipo de cuenta
 - Binarios
 - Hacen todas las cuentas posibles entre 0 y 2^{variables de estado}-1
 - De módulo N
 - Hacen N cuentas distintas, siendo N < 2^{variables de estado}
 - Suelen incluir la cuenta 0...00, contando entonces de 0 a N-1
 - Ejemplo
 - Un contador de décadas es un contador de módulo 10 que cuenta de 0 a 9

Preguntas:

- ¿Cómo hacer un contador síncrono descendente de 4 bits con biestables T?
- Y ahora, ¿cómo podemos hacer que sea ascendente y descendente, controlando el sentido de la cuenta con una señal llamada "SUBE"?

Análisis de SS: Introducción

- Análisis de sistemas secuenciales
 - Consiste en obtener la salida del sistema a partir del circuito
 - Existen varios métodos
 - Cronograma:
 - Obtiene la salida del sistema <u>para una secuencia</u> de entradas particular

Análisis de SS: Cronograma

FCO

Análisis por cronograma

- Diagrama temporal
 - Incorpora todas las entradas y salidas del sistema
 - Puede ser de utilidad para simplificar el análisis añadir también señales internas del circuito

Necesitamos

- El circuito
- El estado inicial del sistema (si no se puede deducir por las entradas)
- Una secuencia de entradas

Obtenemos

 La secuencia de salidas del sistema para la secuencia de entradas concreta que hemos empleado en el análisis

Análisis de SS: Cronograma (ii)

- Análisis por cronograma
 - Para realizar el análisis debemos recurrir a las tablas de verdad
 - De cada biestable del circuito
 - Para cada una de las combinaciones de entrada que tenga a lo largo del tiempo
 - Debemos aplicar las combinaciones de entrada una por una en el tiempo
 - Porque el nuevo valor (de un biestable) puede influir en el comportamiento futuro (del mismo biestable o de otro)

Análisis de SS: Cronograma (ii)

FCO

- Ejemplo
 - Analizar

- Valor inicial Q1Q0 = 00_2
- Secuencia de entrada I = 1 0 1 1 0
- Cronograma

Fundamentos de computadores

TEMA 4. CIRCUITOS SECUENCIALES