Assignment 4 _Solutions_6637

11/19/2024

1) In the most recent (week10) class workspace, you will find a dataset called theories which represents data from a theories of intelligence scale. The items are at the end of this assignment.

Fit the generalized partial credit model to these data.

```
mirt(theories,1,"gpcm")->m1
```

a) Which item do you think is the most "difficult". Why? Check to see if it has the lowest raw rating of the 8 items.

If we look at the thresholds in the IRT parameter format (b is a difficulty parameter), we see that thresholds for item 6 are farthest to the right. This means higher levels of θ are required to score in the higher categories as compared with the other items. Checking the item means (the column averages), we see that indeed item 6 has the lowest score.

```
round(colMeans(theories),2)
## intell_1 intell_2 intell_3 intell_4 intell_5 intell_6 intell_7 intell_8
## 4.07 4.18 4.15 4.24 3.91 3.49 4.27 3.90
```

b) Plot the overall score as a function of theta. (Hint –this the default for plot(model)) What is the approximate scale score for someone with a theta score of 0?

```
plot(m1)
```

Expected Total Score

The expected total

test score at $\theta=0$ seems to be roughly 30. (The exact answer is found by summing the 8 item response functions and their respective response option probabilities at $\theta=0$, but that is a lengthy calculation.)

c) Here's some code to find the 20 worst fitting people to the model: order(personfit(gpctheory)[,5])[1:20]

What is the likely issue with the data from the very worst fitting people?

theorie	<pre>theories[order(personfit(m1)[,5])[1:10],]</pre>											
##	_	intell_2	intell_3	intell_4	intell_5	intell_6	intell_	7				
intell_ ## 591 6	1	1	6	1	6	1	(6				
## 605 6	1	1	6	1	6	1	(6				
## 788 6	1	1	6	1	6	1	(6				
## 792 6	1	1	6	1	6	1	(6				
## 900 6	1	1	6	1	6	1	(6				
## 1437 6	1	1	6	1	6	1		6				
## 582 6	3	1	6	1	6	1	(6				

## 95 1	6	1	1	5	6	6	4
5	C	_	1	2	2	1	c
## 852	6	6	1	2	2	1	Ь
## 1212	1	5	6	6	5	1	4
1							

The most poorly fitting people seem to have some very contradictory responses. The worst six people disagree strongly with the idea that you can't change intelligence much (first two items) - but then they fully endorse that anyone can significantly change their intelligence (item 3). It is very likely that these people just answered down one side of the scale, indifferent to the fact that the items were worded in different directions, affirming and denying the growth mindset view. Remember that we see their responses shifting sides here, but that is after the reverse scoring.

```
d) Rerun the model, now eliminating these cases:
mirt(theories[-order(personfit(m1)[,5])[1:20],],1,'gpcm')->m1b
```

Give an overall comparison to the results from your previous model. Consider the following: model coefficients, information plot, item fit statistics, residual correlations.

There's a lot to go through here - but here's a quick rundown.

Coefficients: comparing the slopes and thresholds from the analysis with, and without, the 20 biggest outliers are similar in pattern but slightly higher signaling improved discrimination.

Information function: The plots of the information functions for the two models are similar, but slightly higher after removing outliers.

Item fit statistics: In both models, the items have substantial amounts of misfit. When looking at the default S-X2 (see below), the degree of misfit is reduced after dropping the outliers on person fit.

```
itemfit(m1)
                 S X2 df.S X2 RMSEA.S X2 p.S X2
         item
## 1 intell 1 117.736
                           69
                                   0.020
## 2 intell_2 173.856
                                   0.031
                                              0
                           66
## 3 intell 3 203.631
                           72
                                   0.032
                                              0
## 4 intell_4 153.913
                           59
                                   0.030
                                              0
## 5 intell_5 151.717
                           71
                                   0.026
                                              0
## 6 intell 6 215.150
                           80
                                   0.031
                                              0
## 7 intell 7 281.867
                           82
                                   0.037
                                              0
## 8 intell_8 156.613
                           75
                                   0.025
itemfit(m1b)
                 S_X2 df.S_X2 RMSEA.S_X2 p.S_X2
## 1 intell_1 105.043
                          66 0.019 0.002
```

```
## 2 intell 2 137.869
                           61
                                          0.000
                                   0.027
## 3 intell 3 166.609
                           66
                                   0.030
                                          0.000
## 4 intell_4 109.797
                           55
                                   0.024 0.000
## 5 intell 5 109.600
                           65
                                   0.020
                                          0.000
## 6 intell_6 198.328
                           77
                                   0.030
                                          0.000
## 7 intell_7 202.197
                           77
                                   0.031
                                          0.000
## 8 intell_8 117.274
                           72
                                   0.019
                                          0.001
```

Residuals: Here's another place where there is substantial difference. Comparing the residual correlations ("Q3" statistic with residuals), they are slightly, but consistently, smaller in the model without the outliers. The LD (local dependence) X2 are huge for both models, but substantially smaller when the bad response patterns are dropped.

In summary - removing 1 percent of the poorest fitting data does seem to improve things a bit. The presence of outliers is impacting issues for item fit and residual analysis. It makes sense that these wildly out of character responses would contribute to local dependence. However, it is important also to note that the LD and item fit statistics are still signalling quite a few issues with fit even after the outliers are removed.

e) For kicks, what was the best fitting response pattern from the first model.

First, find out which pattern has the highest fit. We can reverse the ordering from the earlier command, and find the 10 best fits.

<pre>theories[order(personfit(m1)[,5], decreasing = T)[1:10],]</pre>										
	ntell_1 into	ell_2 int	ell_3 inte	ell_4 int	ell_5 int	ell_6 int	ell_7			
intell_8 ## 716 4	3	4	4	4	4	3	4			
## 1122 4	3	4	4	4	4	3	4			
## 123 2	2	2	2	2	2	2	2			
## 206 2	2	2	2	2	2	2	2			
## 299 2	2	2	2	2	2	2	2			
## 349 2	2	2	2	2	2	2	2			
## 628 2	2	2	2	2	2	2	2			
## 634 2	2	2	2	2	2	2	2			
## 748 2	2	2	2	2	2	2	2			
## 815 2	2	2	2	2	2	2	2			

The above list comes from the model with all students in it. It seems that the best fitting response patterns show a lot of continuity across the responses categories. No wild swings from side to side of the response scale.

- 2) Fit the nominal model to the fci data (Force Concept Inventory). To use the post-test items only, fit the nominal model this way: mirt(fci[,34:63],1,'nominal').
- a) Plot the information function for your model. What is the approximate peak of the information curve.

```
mirt(fci[,34:63],1,"nominal")->mQ2
plot(mQ2, type="info")
```

Test Information

The information function peaks at around height of 12, somewhere in the $\theta=-1$ area.

b) Show the result of plot(model). What pattern do you see - does this make sense? Explain what you think is going on.

plot(mQ2)

Expected Total Score

This is a strange looking plot. In the previous question, we showed that the test total score as a function of θ had a strong monotonic relationship. Indeed, the test function is just the sum of all the item response functions. Here the plot seems flat, and stuck between a narrow range of points.

The issue is that the individual item responses, of 1 through 5, are *nominal* and do not have a low to high ordinal, let alone interval, interpretation. For some questions 1 is the right answer, and for some it is 5. Adding together the item responses just gets you a meaningless mess - and that's reflected in the plot. The plot "makes sense" in that it is understandable why it looks flat - but it has no actual interpretation because summing nominal responses for a total score doesn't make sense.

c) On this version of the FCI – items 5 and 18 are actually almost identical in the specific concept they assess. They also have the same correct response (choice 2 for both) and same main distractor (choice 4 for both). Examine the data and your model diagnostics to find evidence consistent with the claim that they are highly similar items.

If items 5 and 18 are almost identical, both in content, and in the correct and most popular incorrect nominal answers, then they should have some shared features. They will have an excess similarity, more than can be explained simply due to their common dependence on θ .

As a starting point, we can make a table of the raw response options.

```
table(fci[,c("Post.Q5","Post.Q18")])
##
         Post.Q18
## Post.Q5
            1
                  2
                       3
                           4
                                 5
                                 7
##
        1
            27 103
                      6
                           17
        2 31 1252
##
                      30 108
                                45
##
        3
            10 118
                      38 105
                                42
        4
            14 242
##
                      24 426
                                88
        5
                 72
##
             5
                      21
                          125
                                92
```

Here we see two large cells - the people who got both items correct (1252 people in the 2-2 cell), and people who got the answer wrong in the same way (426 people in the 4-4 cell). It's possibly interesting that more than half of the 3048 students fall into two of the possible 25 cells in the table. However, this pattern could also happen for very easy items, or very difficult items where there are a lot of similar responses due to floor and ceiling effects.

A second place we could look could be the correlation between items 5 and 18 in terms of correct/incorrect. We can't do this in the nominal data set for the reasons discussed above. But we can look to the 0 = wrong, 1 = correct data set. Interestingly, if we look at all the correlations among the 30 items, the correlation between 5 and 18 is highest.

```
cor(fcirw[,c(34:63)])->temp
diag(temp)<-0
max(temp)
## [1] 0.5233228
temp[5,18]
## [1] 0.5233228</pre>
```

That's pretty telling. Usually the highest correlating items on a scale are somehow excessively similar. They might have similar wording, or be asking about the same aspect of a broad construct.

An important way to evaluate this "extra similarity" is to see if the model residuals for items 5 and 18 have a high correlation. That is, after fitting the model and fully conditioning on θ - do the responses for items 5 and 18 still correlate highly? Under the assumption that the items are conditionally *independent* given θ , they are not expected to correlate at all, let alone highly.

We can look at the residuals for the nominal model. The residuals indicate an extra correlation among the responses to items 5 and 18, even after controlling for ability.

```
residuals(mQ2) ->modresiduals

## LD matrix (lower triangle) and standardized values.
##
## Upper triangle summary:
```

щи	M	1-+ 0	M = d = = :=	M '	O., J. O.,	Mass			
##		1st Qu.	Median		3rd Qu.	Max.			
##	-0.171	-0.059	0.050	0.015	0.067	0.224			
##		Doct O1	Doct 02	Doct O2	Doct 04	Doct OF	Doct Oc	Doct 07	Doct OS
##	Doct O1	_	Post.Q2	_	_	_	_	_	_
	Post.Q1	NA	0.116	-0.048	-0.049	0.044	-0.044	0.047	0.039
	Post.Q2	163.944	NA	-0.071	-0.084	0.074	0.085	-0.043	0.096
	Post.Q3	27.569	61.947	NA	-0.059	0.054		0.051	0.047
	Post.Q4	29.544	85.514	42.293	NA	-0.072		0.059	-0.068
	Post.Q5	23.806	67.585	34.929	63.666	NA	0.080	0.057	0.064
	Post.Q6	24.077	87.980	44.217	38.366	78.515	NA	0.203	0.082
	Post.Q7	27.127	22.393	31.726	42.918		501.927	NA	-0.070
	Post.Q8		112.501	27.041	56.776	50.171	81.842	59.687	NA
	Post.Q9	23.958	37.517	26.300	43.211	67.340	27.440		375.896
##	Post.Q10	37.761	64.395	33.083	54.752	46.859	64.819	24.891	110.457
##	Post.Q11	70.757	62.483	26.156	41.437	219.847	52.902	32.928	45.311
##	Post.Q12	38.351	73.529	41.096	32.530	53.630	32.030	33.282	40.212
##	Post.Q13	36.816	72.408	66.433	24.529	190.007	83.648	41.373	52.981
##	Post.Q14	35.453	28.633	20.596	82.021	25.190	95.059	47.041	134.250
##	Post.Q15	67.650	51.124	22.466	275.144	64.981	38.523	49.644	70.747
##	Post.Q16	20.486	27.216	43.170	51.238	45.384	53.923	25.587	42.152
	Post.Q17		31.436	59.794	81.953	55.512	99.014	24.076	61.304
	Post.Q18		75.070	29.652		612.591	66.709	38.102	59.626
	Post.Q19		22.156	26.296	25.990	44.984	63.153	33.992	24.728
	Post.Q20		27.468	19.456	14.369	60.145	42.036	16.475	24.543
	Post.Q21		37.070	16.048	55.263	61.788	39.568		278.674
	Post.Q22		45.888	64.332	98.131	57.504	44.529	27.912	33.263
	Post.Q23		46.288	11.479	43.393	31.463	52.860	28.941	
	Post.Q24		29.999	63.312	72.501	50.985	63.231	66.300	63.617
	Post.Q25		47.981	41.820	59.847	88.735	40.785	47.612	55.415
	Post.Q25		70.556	18.120	65.539	45.244	45.612	17.773	52.246
	Post.Q27		31.994	28.730	68.018	38.823	32.703	28.653	46.969
	_								38.865
	Post Q28		51.180	32.631	266.815	96.768	42.363	36.128	
	Post Q29		48.879		33.209	78.529	28.612	13.863	14.666
	Post.Q30		41.672		105.275		80.525	36.228	88.569
##	+ 016	Post.Q9	Post.Q10	Post.Q.	II POST.	JIZ POST	.QI3 POST	t.Q14 Pos	st.Q15
	st.Q16	0.044	0.056	0.0	7.6	25.0	055	0.54	0.074
	Post.Q1	0.044	0.056	0.0	/6 0.6	956 -0	.055 -0	0.054	0.074
0.6						.=.			0.055
	Post.Q2	0.055	0.073	0.0	/2 0.6	978 -0	.077 -0	0.048	0.065 -
0.6									
	Post.Q3	-0.046	0.052	-0.04	46 0.6	958 -0	.074 -0	0.041	0.043
	960								
	Post.Q4	-0.060	0.067	-0.0	58 0.6	ð52 -0	.045 -0	ð.082	-0.150 -
0.6	965								
##	Post.Q5	0.074	0.062	-0.13	34 0.6	966 -0	.125	0.045	0.073
0.6	961								
##	Post.Q6	-0.047	0.073	-0.06	66 0.6	951 -0	.083	0.088	0.056
0.6	967								
##	Post.Q7	-0.048	0.045	0.0	52 0.6	952 -0	.058 -6	0.062	0.064
0.6	946								

## Post.Q8 0.059	0.176	0.095	-0.061	0.057	-0.066	0.105	0.076	
## Post.Q9	NA	0.052	-0.075	0.069	-0.075	-0.056	0.113	
0.049 ## Post.Q10	32,462	NA	-0.046	0.059	0.052	0.075	-0.078	_
0.048								
## Post.Q11 0.056	67.821	25.807	NA	0.124	0.130	-0.035	0.090	
## Post.Q12 0.059	57.659	42.902	186.020	NA	0.076	-0.077	0.104	
## Post.Q13 0.069	68.571	33.168	205.535	70.084	NA	-0.066	-0.123	
## Post.Q14	37.802	68.556	14.554	72.099	53.183	NA	0.065	
0.056								
## Post.Q15 0.112	156.844	74.376	98.895	132.240	185.231	52.070	NA	-
## Post.Q16	29.831	28.231	38.841	42.518	58.397	38.015	153.271	
NA ## Post.Q17	30.328	62.754	38.718	30.172	66.268	77.360	159.397	
131.625 ## Post.Q18	60.095	39.638	226.892	77.695	160 702	76.689	66.466	
47.410	00.095	33.030	220.092	77.095	169.792	70.009	00.400	
## Post.Q19	33.864	37.778	61.007	35.937	50.939	47.504	78.602	
38.482 ## Post.Q20	18.346	21.450	22.340	32.224	24.978	49.826	63.046	
40.665								
## Post.Q21	84.133	39.083	44.772	28.581	57.422	141.772	42.646	
46.062 ## Post.Q22	35,135	127.016	57.249	39.048	50.007	52.985	85.599	
81.384	551255		27.12	2210.0		5_115	001000	
## Post.Q23 25.213	46.735	24.431	33.717	43.353	78.319	50.396	40.360	
## Post.Q24	40.419	277.774	98.802	87.911	114.040	168.865	238.105	
97.574	20.00=	44.400	440 000		=0.000	20 452	40.004	
## Post.Q25 49.371	30.997	44.128	142.093	68.114	70.838	38.653	40.021	
## Post.Q26 48.478	21.633	44.083	48.365	42.090	18.418	57.719	59.225	
## Post.Q27	31.384	41.381	43.985	90.801	45.923	111.762	69.836	
65.561 ## Post.Q28	67.236	48.338	160.665	44.002	91.519	51.271	351.089	
53.412	07.230	40.550	100.005	44.002	J1.J1J	J1.2/1	331.003	
## Post.Q29 69.636	39.558	42.775	110.009	46.065	71.753	72.270	138.456	
## Post.Q30 47.025	30.334	48.799	257.573	109.969	266.360	45.897	47.223	
##	Post.Q17	Post.Q18	Post.Q19	Post.Q20	Post.Q21	Post.Q22	Post.Q23	
## Post.Q1	-0.058	0.060	-0.035	0.037	0.034	0.063	0.036	
_	-0.051			0.047				
## Post.Q3	-0.070	0.049	-0.046	-0.040	-0.036	-0.073	0.031	

	Post.Q4	-0.082	-0.062	-0.046	-0.034	-0.067	-0.090	0.060	
	Post.Q5	-0.067		0.061	-0.070	0.071	0.069	-0.051	
	Post.Q6	0.090		-0.072	-0.059		0.060	-0.066	
	Post.Q7	0.044		-0.053	0.037	-0.058	0.048	-0.049	
	Post.Q8	0.071		-0.045	0.045	0.151	0.052	0.116	
	Post.Q9	-0.050	0.070	0.053	0.039	0.083	0.054	-0.062	
	Post.Q10	0.072	0.057	0.056	0.042	0.057	0.102	0.045	
##	Post.Q11	0.056		-0.071	-0.043		-0.069	0.053	
##	Post.Q12	0.050		0.054	0.051	0.048	0.057	0.060	
##	Post.Q13	0.074		-0.065	-0.045	-0.069	-0.064	0.080	
##	Post.Q14	-0.080	0.079	-0.062	0.064	0.108	-0.066	-0.064	
##	Post.Q15	0.114	0.074	0.080	0.072	0.059	0.084	0.058	
##	Post.Q16	0.104	0.062	0.056	0.058	0.061	0.082	0.045	
##	Post.Q17	NA	-0.087	-0.076	-0.048	-0.054	0.069	0.064	
##	Post.Q18	91.244	NA	0.067	0.058	0.070	0.065	0.057	
##	Post.Q19	70.833	54.089	NA	0.073	0.050	0.050	0.038	
##	Post.Q20	28.440	41.578	65.600	NA	-0.044	-0.065	-0.038	
##	Post.Q21	35.752	59.891	30.101	24.075	NA	0.134	0.215	
##	Post.Q22	57.805	52.082	31.003	51.094	219.196	NA	0.076	
##	Post.Q23	50.127	40.201	17.804	17.698	563.648	70.683	NA	
##	Post.Q24	113.795	58.662	72.553	72.300	76.165	140.697	361.952	
##	Post.Q25	355.480	109.393	30.200	56.312	38.509	57.699	26.886	
##	Post.Q26	111.948	54.963	19.641	14.150	28.125	103.507	25.511	
##	Post.Q27	72.164	41.201	37.204	55.946	36.018	40.969	35.207	
##	Post.Q28	53.919	65.994	31.726	42.641	44.475	65.307	43.193	
##	Post.Q29	88.266	99.954	42.044	27.548	38.315	56.692	54.054	
##	Post.Q30	112.997	254.884	33.984	20.654	52.582	29.688	29.766	
##	_	Post.Q24	Post.Q25	Post.Q26	Post.Q27	Post.Q28	Post.Q29	Post.Q30	
##	Post.Q1	0.058	0.042	0.050	0.043	-0.044	-0.033	0.055	
##	Post.Q2	0.050	0.063	-0.076	0.051	-0.065	0.063	0.058	
##	Post.Q3	0.072	-0.059	-0.039	0.049	-0.045	-0.052	0.042	
##	Post.Q4	-0.077	-0.070	-0.073	-0.075	0.148	-0.052	-0.093	
##	Post.Q5	0.065	0.085	-0.061	-0.056	-0.089	0.080	0.121	
##	Post.Q6	0.072	-0.058	0.061	0.052	-0.059	0.048	0.081	
##	Post.Q7	-0.074	0.062	0.038	-0.048	0.054	0.034	0.055	
##	Post.Q8	0.072	0.067	0.065	0.062	-0.056	0.035	0.085	
##	Post.Q9	-0.058	0.050	0.042	0.051	-0.074	0.057	0.050	
##	Post.Q10	0.151	-0.060	0.060	0.058	0.063	0.059	0.063	
##	Post.Q11	-0.090	-0.108	-0.063	-0.060	-0.115	-0.095	-0.145	
##	Post.Q12	0.085	0.075	0.059	0.086	0.060	0.061	0.095	
##	Post.Q13	-0.097	-0.076	0.039	-0.061	-0.087	0.077	-0.148	
	Post.Q14	-0.118	-0.056	0.069	0.096	-0.065	0.077	-0.061	
	Post.Q15	-0.140	0.057	0.070	0.076	-0.170	0.107	0.062	
	Post.Q16	0.089	0.064	0.063	0.073	-0.066	0.076	0.062	
	Post.Q17	0.097	-0.171	0.096	0.077	-0.067	0.085	-0.096	
	Post.Q18	-0.069	0.095	-0.067	0.058	0.074	0.091	0.145	
	Post.Q19	-0.077	0.050	-0.040	-0.055	-0.051	-0.059	0.053	
	Post.Q20	-0.077	0.068	0.034	-0.068	0.059	-0.048	-0.041	
	Post.Q21	-0.079	0.056	0.048	0.054	-0.060	0.056	-0.066	
	Post.Q22	0.107	-0.069	0.092	0.058	-0.073	0.068	0.049	
	- · £			- -					

```
## Post.023
                0.172
                         -0.047
                                   0.046
                                             0.054
                                                       0.060
                                                                0.067
                                                                          0.049
## Post.Q24
                   NA
                         -0.106
                                  -0.082
                                             0.125
                                                      -0.103
                                                                0.086
                                                                         -0.082
## Post.Q25
              136.407
                             NA
                                  -0.142
                                            -0.069
                                                      0.085
                                                                0.075
                                                                          0.099
## Post.Q26
               82.880
                       245.167
                                      NA
                                             0.076
                                                      -0.048
                                                                0.059
                                                                         -0.075
## Post.Q27
              189.312
                        57.556
                                  69.867
                                                NA
                                                      -0.066
                                                                0.059
                                                                         -0.064
## Post.Q28
              130.240
                        87.272
                                  28.546
                                            53.904
                                                          NA
                                                               -0.087
                                                                         -0.095
## Post.Q29
               90.237
                        69.376
                                  42.181
                                            42.803
                                                      93.274
                                                                          0.093
                                                                   NA
## Post.Q30
               81.010
                       119.804
                                  68.003
                                            50.183
                                                    110.269
                                                              106.414
                                                                             NA
modresiduals[5,18]
## [1] 0.2241546
modresiduals[18,5]
## [1] 612.5905
```

Relative to all the item pairs (except 21 and 23 which also have high similarity on LD), items 5 and 18 are showing large evidence for local dependence.

If we look at the residual correlations, we see that items 5 and 18 have a 0.4 positive correlation.

```
residuals(mQ2, "Q3") ->modresiduals
## Q3 summary statistics:
##
      Min. 1st Qu.
                                Mean 3rd Qu.
                                                 Max.
                     Median
##
    -0.235
             -0.006
                      0.025
                               0.025
                                        0.052
                                                0.404
##
             Post.Q1 Post.Q2 Post.Q3 Post.Q4 Post.Q5 Post.Q6 Post.Q7 Post.Q8
##
## Post.Q1
               1.000
                       0.124
                                0.029
                                         0.003
                                                 0.042
                                                          0.017
                                                                   0.053
                                                                           0.014
               0.124
                               -0.040
## Post.Q2
                       1.000
                                        -0.019
                                                  0.050
                                                         -0.011
                                                                  -0.010
                                                                           0.053
## Post.Q3
               0.029
                      -0.040
                                1.000
                                        -0.045
                                                 0.022
                                                          0.032
                                                                  -0.011
                                                                           0.025
## Post.Q4
               0.003
                      -0.019
                               -0.045
                                         1.000
                                                -0.051
                                                          0.014
                                                                   0.058
                                                                           -0.012
## Post.Q5
               0.042
                       0.050
                                0.022
                                        -0.051
                                                  1.000
                                                          0.062
                                                                   0.042
                                                                           0.041
## Post.Q6
               0.017
                      -0.011
                                0.032
                                         0.014
                                                 0.062
                                                          1.000
                                                                   0.286
                                                                           0.070
## Post.Q7
               0.053
                      -0.010
                               -0.011
                                         0.058
                                                 0.042
                                                          0.286
                                                                   1.000
                                                                           -0.032
                                                          0.070
## Post.Q8
               0.014
                       0.053
                                0.025
                                        -0.012
                                                 0.041
                                                                  -0.032
                                                                           1.000
               0.036
                       0.043
                                0.004
                                        -0.065
                                                 0.095
                                                          0.021
                                                                  -0.014
                                                                           0.132
## Post.Q9
                       0.024
                                                 0.015
## Post.Q10
               0.034
                                0.039
                                         0.052
                                                          0.066
                                                                   0.002
                                                                           0.133
## Post.Q11
               0.039
                       0.057
                                0.000
                                        -0.049
                                                 0.018
                                                          0.007
                                                                   0.021
                                                                           -0.017
## Post.Q12
               0.100
                       0.048
                                0.058
                                         0.023
                                                 0.005
                                                          0.061
                                                                   0.008
                                                                           0.082
                                                                           0.020
## Post.Q13
               0.010
                       0.029
                                0.000
                                        -0.040
                                                 -0.019
                                                          0.025
                                                                   0.028
## Post.Q14
              -0.022
                      -0.012
                               -0.019
                                        -0.036
                                                 0.072
                                                          0.076
                                                                  -0.002
                                                                           0.060
               0.072
                       0.079
                               -0.009
                                        -0.235
                                                 0.095
                                                          0.027
                                                                  -0.005
## Post.Q15
                                                                           0.008
## Post.Q16
               0.004
                      -0.009
                                0.038
                                        -0.051
                                                 0.040
                                                          0.059
                                                                  -0.018
                                                                           0.030
## Post.Q17
              -0.014
                      -0.006
                                0.037
                                        -0.004
                                                 0.008
                                                          0.073
                                                                   0.017
                                                                           0.030
## Post.Q18
               0.056
                       0.056
                                0.035
                                        -0.017
                                                 0.404
                                                         -0.002
                                                                   0.007
                                                                           0.008
              -0.008
                       0.046
                                0.003
                                        -0.061
                                                 0.086
                                                         -0.010
## Post.Q19
                                                                  -0.047
                                                                           0.026
## Post.Q20
               0.051
                       0.029
                               -0.005
                                        -0.038
                                                 0.047
                                                         -0.007
                                                                   0.027
                                                                           0.027
## Post.Q21
               0.027
                       0.065
                               -0.010
                                        -0.103
                                                 0.114
                                                         -0.019
                                                                  -0.016
                                                                           0.128
```

## Post.Q22	0.072	0.063	0.012	-0.029	0.047 0	.008 0.0	0.06°	7
## Post.Q23			0.003			.016 -0.6		
## Post.Q24	0.044	0.002	0.033	0.045 -	0.061 0	.036 -0.6	0.03	2
## Post.Q25	0.014	0.043	-0.013	-0.038	0.120 -0	.002 0.6	924 -0.00	2
## Post.Q26	0.044	0.022	-0.004	-0.041	0.003 0	.061 0.6	0.05	4
## Post.Q27	0.020	0.020	0.026	-0.055	0.019 0	.058 -0.6	0.07	8
## Post.Q28	0.017	0.038	-0.034	0.210	0.061 -0	.018 0.6	0.00	5
## Post.Q29	-0.002	0.031	0.007	-0.006	0.072 0	.050 0.6	0.02	2
## Post.Q30	0.058	0.018	0.054	-0.021	0.179 0	.024 0.6	0.01	3
##	Post.Q9	Post.Q10	Post.Q11	Post.Q12	Post.Q13	Post.Q14	Post.Q15	
Post.Q16								
## Post.Q1	0.036	0.034	0.039	0.100	0.010	-0.022	0.072	
0.004								
## Post.Q2	0.043	0.024	0.057	0.048	0.029	-0.012	0.079	-
0.009								
## Post.Q3	0.004	0.039	0.000	0.058	0.000	-0.019	-0.009	
0.038								
## Post.Q4	-0.065	0.052	-0.049	0.023	-0.040	-0.036	-0.235	-
0.051								
## Post.Q5	0.095	0.015	0.018	0.005	-0.019	0.072	0.095	
0.040								
## Post.Q6	0.021	0.066	0.007	0.061	0.025	0.076	0.027	
0.059								
## Post.Q7	-0.014	0.002	0.021	0.008	0.028	-0.002	-0.005	-
0.018								
## Post.Q8	0.132	0.133	-0.017	0.082	0.020	0.060	0.008	
0.030								
## Post.Q9	1.000	0.068	-0.051	0.065	-0.065	-0.010	0.084	
0.067								
## Post.Q10	0.068	1.000	-0.008	0.068	0.085	0.019	-0.028	-
0.016								
## Post.Q11	-0.051	-0.008	1.000	0.103	0.014	-0.029	0.061	
0.007								
## Post.Q12	0.065	0.068	0.103	1.000	0.069	-0.002	0.029	
0.016								
## Post.Q13	-0.065	0.085	0.014	0.069	1.000	-0.050	0.005	
0.036								
## Post.Q14	-0.010	0.019	-0.029	-0.002	-0.050	1.000	0.013	
0.033								
## Post.Q15	0.084	-0.028	0.061	0.029	0.005	0.013	1.000	-
0.038								
## Post.Q16	0.067	-0.016	0.007	0.016	0.036	0.033	-0.038	
1.000								
## Post.Q17	-0.011	0.033	0.005	0.030	0.015	0.014	0.032	
0.077								
## Post.Q18	0.097	-0.010	0.004	0.021	-0.047	0.053	0.041	-
0.006	0.005	0.0=:	0.045		0.000	0.01=	0.075	
## Post.Q19	0.026	0.071	0.013	0.059	-0.030	-0.017	0.052	
0.017	0 015	0.074	0 00-		0.040	0.004	0.000	
## Post.Q20	0.015	0.071	0.005	0.048	-0.010	0.001	0.023	

0.045	0.020	0.005	0.020	0.040	0.000	0 074	0.001	
## Post.Q21 0.020	0.028	0.085	-0.030	0.049	-0.088	0.074	0.091	
## Post.Q22	0.073	0.148	0.028	0.044	0.001	-0.008	0.037	
0.056	0.073	0.140	0.020	0.044	0.001	-0.000	0.037	
## Post.Q23	0.007	0.068	0.040	0.042	0.031	-0.013	0.002	
0.035	0.007	0.000	0.010	0.012	0.031	0.013	0.002	
## Post.Q24	0.049	0.176	0.036	0.044	0.057	-0.001	-0.039	
0.023								
## Post.Q25	0.067	0.017	0.051	0.028	0.021	-0.008	0.061	
0.035								
## Post.Q26	-0.006	0.071	-0.096	0.052	-0.025	-0.017	0.062	
0.031								
## Post.Q27	0.058	0.061	-0.042	0.046	-0.071	0.051	0.049	
0.062								
## Post.Q28	-0.041	0.084	-0.011	0.099	-0.084	-0.068	-0.112	-
0.023	0.000	0.020	0.000	0.000	0.040	0.026	0.027	
## Post.Q29	0.028	0.030	0.000	0.029	0.049	0.036	0.027	
0.012 ## Post.Q30	0 071	0.015	0.035	0.027	-0.130	0.029	0.028	
0.027	0.074	0.013	0.055	0.027	-0.130	0.029	0.028	
##	Post 017	Post 018	Post 019	Post 020	Post.Q21	Post .022	Post . 023	
	-0.014	_	_	_	0.027	_	_	
_	-0.006				0.065			
## Post.Q3		0.035						
## Post.Q4	-0.004							
## Post.Q5	0.008			0.047			-0.042	
## Post.Q6	0.073						-0.016	
_	0.017						-0.015	
## Post.Q8	0.030	0.008	0.026	0.027	0.128	0.067	0.108	
## Post.Q9	-0.011	0.097	0.026	0.015	0.028	0.073	0.007	
## Post.Q10	0.033	-0.010	0.071	0.071	0.085	0.148	0.068	
## Post.Q11	0.005	0.004	0.013	0.005	-0.030	0.028	0.040	
## Post.Q12	0.030	0.021	0.059	0.048	0.049	0.044	0.042	
## Post.Q13	0.015	-0.047	-0.030	-0.010	-0.088	0.001	0.031	
## Post.Q14	0.014	0.053	-0.017	0.001	0.074	-0.008	-0.013	
## Post.Q15	0.032	0.041	0.052	0.023	0.091	0.037	0.002	
## Post.Q16	0.077	-0.006	0.017	0.045	0.020	0.056	0.035	
## Post.Q17	1.000	-0.053	-0.041	0.002	0.002	0.047	0.042	
## Post.Q18	-0.053	1.000	0.113	0.066	0.130	0.033	-0.027	
## Post.Q19	-0.041	0.113	1.000	0.038	0.050	0.041	0.015	
## Post.Q20	0.002	0.066	0.038	1.000	-0.011	0.021	0.014	
## Post.Q21	0.002	0.130	0.050	-0.011	1.000	0.122	0.081	
## Post.Q22	0.047	0.033	0.041	0.021	0.122	1.000	0.066	
## Post.Q23	0.042	-0.027	0.015	0.014	0.081	0.066	1.000	
## Post.Q24	0.074	-0.080	0.009	0.025	0.042	0.062	0.266	
## Post.Q25	-0.054	0.129	0.085	0.074	0.057	-0.009	-0.022	
## Post.Q26	0.100	-0.006	-0.032	-0.016	-0.029	0.044	0.062	
## Post.Q27	0.030	0.020	-0.001	-0.027	0.058	0.044	0.052	
## Post.Q28	-0.039	0.072	0.007	0.054	-0.067	-0.001	0.046	

```
## Post.029
                0.098
                          0.077
                                    0.024
                                             0.010
                                                       0.033
                                                                 0.012
                                                                           0.024
## Post.Q30
               -0.013
                          0.230
                                             0.036
                                    0.083
                                                       0.056
                                                                 0.010
                                                                           0.024
##
             Post.Q24 Post.Q25 Post.Q26 Post.Q27 Post.Q28 Post.Q29 Post.Q30
## Post.Q1
                0.044
                          0.014
                                    0.044
                                             0.020
                                                       0.017
                                                                -0.002
                                                                           0.058
## Post.Q2
                0.002
                          0.043
                                    0.022
                                             0.020
                                                       0.038
                                                                 0.031
                                                                           0.018
## Post.Q3
                0.033
                                   -0.004
                                             0.026
                                                      -0.034
                                                                 0.007
                         -0.013
                                                                           0.054
## Post.Q4
                0.045
                         -0.038
                                   -0.041
                                             -0.055
                                                       0.210
                                                                -0.006
                                                                          -0.021
## Post.Q5
               -0.061
                          0.120
                                    0.003
                                             0.019
                                                       0.061
                                                                 0.072
                                                                           0.179
## Post.Q6
                0.036
                         -0.002
                                    0.061
                                             0.058
                                                      -0.018
                                                                 0.050
                                                                           0.024
## Post.Q7
               -0.028
                          0.024
                                    0.032
                                             -0.033
                                                       0.046
                                                                 0.001
                                                                           0.008
                0.032
## Post.Q8
                         -0.002
                                    0.054
                                             0.078
                                                       0.005
                                                                 0.022
                                                                           0.013
## Post.Q9
                0.049
                          0.067
                                   -0.006
                                                      -0.041
                                                                           0.074
                                             0.058
                                                                 0.028
## Post.Q10
                0.176
                          0.017
                                    0.071
                                             0.061
                                                       0.084
                                                                 0.030
                                                                           0.015
## Post.Q11
                0.036
                          0.051
                                   -0.096
                                             -0.042
                                                      -0.011
                                                                 0.000
                                                                           0.035
## Post.Q12
                0.044
                          0.028
                                    0.052
                                             0.046
                                                       0.099
                                                                 0.029
                                                                           0.027
## Post.Q13
                0.057
                          0.021
                                   -0.025
                                             -0.071
                                                      -0.084
                                                                 0.049
                                                                          -0.130
## Post.Q14
               -0.001
                         -0.008
                                   -0.017
                                             0.051
                                                      -0.068
                                                                 0.036
                                                                           0.029
## Post.Q15
               -0.039
                          0.061
                                    0.062
                                             0.049
                                                      -0.112
                                                                 0.027
                                                                           0.028
## Post.Q16
                0.023
                          0.035
                                    0.031
                                             0.062
                                                      -0.023
                                                                 0.012
                                                                           0.027
## Post.Q17
                0.074
                         -0.054
                                    0.100
                                             0.030
                                                      -0.039
                                                                 0.098
                                                                          -0.013
## Post.Q18
               -0.080
                          0.129
                                   -0.006
                                             0.020
                                                       0.072
                                                                 0.077
                                                                           0.230
## Post.Q19
                0.009
                          0.085
                                  -0.032
                                             -0.001
                                                       0.007
                                                                 0.024
                                                                           0.083
## Post.Q20
                0.025
                          0.074
                                   -0.016
                                             -0.027
                                                       0.054
                                                                 0.010
                                                                           0.036
## Post.Q21
                0.042
                          0.057
                                   -0.029
                                             0.058
                                                      -0.067
                                                                 0.033
                                                                           0.056
                                                                           0.010
## Post.Q22
                0.062
                                    0.044
                                             0.044
                         -0.009
                                                      -0.001
                                                                 0.012
## Post.Q23
                0.266
                         -0.022
                                    0.062
                                             0.052
                                                       0.046
                                                                 0.024
                                                                           0.024
## Post.Q24
                1.000
                                             0.040
                         -0.037
                                    0.055
                                                       0.018
                                                                 0.028
                                                                          -0.044
               -0.037
                                   -0.128
                                             -0.008
                                                                 0.020
## Post.Q25
                          1.000
                                                       0.068
                                                                           0.118
## Post.Q26
                0.055
                         -0.128
                                    1.000
                                             0.083
                                                      -0.065
                                                                 0.035
                                                                          -0.012
                0.040
                         -0.008
                                    0.083
## Post.Q27
                                             1.000
                                                      -0.061
                                                                 0.057
                                                                           0.014
## Post.Q28
                0.018
                          0.068
                                   -0.065
                                             -0.061
                                                       1.000
                                                                -0.033
                                                                           0.105
## Post.Q29
                0.028
                          0.020
                                    0.035
                                             0.057
                                                      -0.033
                                                                 1.000
                                                                           0.031
## Post.Q30
               -0.044
                          0.118
                                   -0.012
                                             0.014
                                                       0.105
                                                                 0.031
                                                                           1.000
modresiduals[5,18]
## [1] 0.4043104
```

d) Compare the information function from the standard 2PLfit to the fcirw (correct/incorrect) dataset to the information function from the nominal model above.

```
mirt(fcirw[,34:63],1,"2PL")->m2q2PL
plot(mQ2, type="info")
```

Test Information

plot(m2q2PL, type = "info")

Test Information

The nominal model has used all the available data by considering all response options. It makes sense that it has slightly higher maximum information, and that it can give more information at the lower end of the distribution by considering the specific patterns of errors.

- 3) The textbook describes the condom dataset, a 6 item questionnaire on condom attitudes. Fit a generalized partial credit model to the condom data. We can also fit a standard one dimension factor analysis model.
- a) Conduct a factor analysis of the data. Using the psych package, you can do

fa(condom,1)->famodel

The factor model loadings are found by: famodel\$loadings

Compare to the slopes from the gpcm.

```
library(psych)
fa(condom,1)->famodel
mirt(condom,1,"gpcm") ->q3gpcm
famodel$loadings
##
## Loadings:
      MR1
## I1 0.462
## I2 0.626
## I3 0.621
## I4 0.342
## I5 0.411
## I6 0.376
##
##
                    MR1
## SS loadings
                  1.417
## Proportion Var 0.236
coef(q3gpcm, simplify = T)$items[,1]
##
          I1
                    12
                               I3
                                         14
                                                    15
                                                              16
## 0.4546532 0.9208777 0.9676019 0.3108090 0.3753964 0.3696279
```

We can also correlate the loadings from the FA with the slopes from the gpcm.

```
cor(famodel$loadings,coef(q3gpcm,simplify=T)$items[,1])
## [,1]
## MR1 0.981589
```

Clearly there is a high correspondence here between the two approaches.

b) Compare the factor scores from the two models. (For fa take famodel\$scores) What pattern do you see?

We can plot the fscores of each model. Note the high level of correspondence, and the slight non-linearity due to model assumptions.

```
plot(famodel$scores ~fscores(q3gpcm))
```


And here's the correlation:

```
cor(famodel$scores,fscores(q3gpcm))
## F1
## MR1 0.9948293
```

Again, a super high similarity in the ability estimates.

c) Discuss the information available in var(condom) and unique(condom).

The factor model and gpcm each use one of what you just calculated. Explain.

```
round(var(condom),2)

## I1 I2 I3 I4 I5 I6

## I1 1.61 0.41 0.37 0.25 0.29 0.43

## I2 0.41 1.44 0.68 0.23 0.37 0.25

## I3 0.37 0.68 1.34 0.25 0.39 0.20

## I4 0.25 0.23 0.25 1.47 0.32 0.31
```

```
## I5 0.29 0.37 0.39 0.32 1.77 0.27

## I6 0.43 0.25 0.20 0.31 0.27 1.40

dim(unique(condom))

## [1] 1209 6
```

The traditional factor analysis model treats the item responses as continuous. There are 3473 cases but the FA only works with the 6 by 6 covariance matrix of the items.

The factor analysis is derived entirely from the covariances of the items. Once the covariance matrix is calculated, the rest of the data can be discarded. The algorithm to estimate factor loadings and fit the model uses only the covariance matrix.

With regard to IRT - there are 1209 unique data patterns in the data, unique combinations of scores for six items and four response options on each item. The maximum number of unique combinations, incidentally, is $4^6=4096$. With a sample size of 3473 it isn't even possible to represent them all, and many are extremely unlikely given the underlying model. The IRT analysis proceeds using only the observed frequencies of the unique data patterns.

The factor model and the IRT model are working with different data, but of course they are aligned. The FA treats the variables as continuous, and fits a linear regression on a latent factor to fit the covariance matrix. The IRT treats the variables as categorical and ordinal, and fits a non-linear response probability model based on a latent factor.

Finally, the 1209 unique response patterns represent a limit. If two people have exactly the same response vector, there is nothing else to differentiate them. Therefore, 1209 must be the maximum resolution that either model can give in terms of scores. So let's just see how many unique factor scores there are for each model.

```
length(unique(fscores(q3gpcm)))
## [1] 1209
length(unique(famodel$scores))
## [1] 1209
```