For a relation R on a set X and $x, y \in X$ we have the following definitions:

- An R-walk from x to y is a list of elements (a_0, a_1, \dots, a_k) of elements in X with $x = a_0$ and $y = a_k$ so that for $i \in \{1, \dots, k\}$, $a_{i-1}Ra_i$ (k is a allowed to be 0, so a list consisting could be (a_0) .)
- An R-walk a_0, \dots, a_k is an R-path if all of the elements appearing are distinct.
- We say y is R-reachable from x, denoted $x \longrightarrow_R y$ if there is an R-walk from x to y.
- The R-reachability relation, R^{\longrightarrow} is the relation on X whose pair set is all (x, y) such that $x \longrightarrow_R y$.
- 1. For all relations R on X and $x, y \in X$, if $x \longrightarrow_R y$ then there is an R-path to from x to y.

Suppose for arbitrary $x, y \in X$ that $x \longrightarrow_R y$. We want to show that there exist an R-path from x to y. By definition of \longrightarrow_R there exist an R-walk from x to y. Therefore by the definition of R-path, we must show that there exist an R-walk from x to y with a list of unique elements in X. Assume the R-walk is not a list of distinct elements. Therefore there exist at least one element a_d that appears in the list (a_0, a_1, \cdots, a_k) more then once. Suppose that a_d has occurrences at indices i and j. Therefore the R-walk can be written as $(a_0, \cdots, a_{i-1}, a_d, a_{i+1}, \cdots, a_{j-1}, a_d, a_{j+1}, \cdots, a_k)$. By definition of R-walk, a_dRa_{i+1} and $a_{j-1}Ra_d$. Therefore if you removed all of the elements from index i+1 to index j from the list, it would still satisfy the definition of being an R-walk as the chain of relations from x to y is unbroken. Since the list $(a_0, \cdots, a_{i-1}, a_d, a_{j+1}, \cdots, a_k)$ consist of entirely unique elements, and has already been established as an R-walk, then by definition it is an R-path.

- 2. For all relations R, R^{\longrightarrow} is transitive and reflexive.
 - Suppose that the relation R has a subset that is an R-reachability relation. We want to show that $R \to i$ is transitive. By definition of R-reachability we have $x, y, z \in R \to i$, where $x \to_R y$ and $y \to_R z$. By definition of transitivity we must show for all $x, y, z \in R \to i$ that if $x \to_R y$ and $y \to_R z$ then $x \to_R z$. By definition of R-walk there exist lists (a_0, \dots, a_k) and $(b_0, \dots b_l)$ where $a_0 = x, a_k = b_0 = y, b_l = z$ in which each element is related to the next. Therefore $a_{k-1}Ry$ and yRb_0 . Thus the list taken by removing b_0 from the second list and concatenating with the first list $(a_0, \dots, a_{k-1}, a_k, b_1, \dots, b_l)$ satisfies the definition of R-walk, as every single pair of successive elements is related. Therefore $x \to_R z$.
 - Suppose that the relation R has a subset that is an R-reachability relation. We want to show that R^{\longrightarrow} is transitive. By definition we want to show that for all $x \in X$, $(x, x) \in R^{\longrightarrow}$. Therefore by definition of R^{\longrightarrow} we must show that for all $x \in X$, $x \longrightarrow_R x$. Suppose x is an element of X. By definition of the R-reachability relation, it contains all pairs from $(x, y) \in X^2$ for which $x \longrightarrow_R y$. By definition of R-walk, an R-walk consisting of the list (x) constitutes a valid R-walk. Since the first and last element are both the same, then by definition xRx. Therefore R-reachability is reflexive.