Topic Mining and Analysis: Mining One Topic

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Probabilistic Topic Models: Mining One Topic

Simplest Case of Topic Model: Mining One Topic

Language Model Setup

- **Data**: Document $d = x_1 x_2 ... x_{|d|}$, $x_i \in V = \{w_1, ..., w_M\}$ is a word
- **Model**: Unigram LM θ (=topic) : $\{\theta_i = p(w_i \mid \theta)\}$, i=1, ..., M; $\theta_1 + ... + \theta_M = 1$ $\theta_i \neq i$ take $\theta_i \neq i$
- **Likelihood** function: $p(d \mid \theta) = p(x_1 \mid \theta) \times ... \times p(x_{|d|} \mid \theta)$

 $\begin{aligned} & \text{white docume} \\ & = p(w_1 \mid \theta) \times ... \times p(x_{|d|} \mid \theta) \end{aligned} \\ & = \prod_{i=1}^{M} p(w_i \mid \theta)^{c(w_i,d)} \times ... \times p(w_M \mid \theta)^{c(w_M,d)} \end{aligned} \\ & = \prod_{i=1}^{M} p(w_i \mid \theta)^{c(w_i,d)} = \prod_{i=1}^{M} \theta_i^{c(w_i,d)} \end{aligned} \\ & = \prod_{i=1}^{M} p(w_i \mid \theta)^{c(w_i,d)} = \prod_{i=1}^{M} \theta_i^{c(w_i,d)} \end{aligned} \\ & = \prod_{i=1}^{M} p(w_i \mid \theta)^{c(w_i,d)} = \prod_{i=1}^{M} \theta_i^{c(w_i,d)} \end{aligned}$

• ML estimate: $(\hat{\theta}_1,...,\hat{\theta}_M) = \arg\max_{\theta_1,...,\theta_M} p(d \mid \theta) = \arg\max_{\theta_1,...,\theta_M} p(d \mid \theta)$

Computation of Maximum Likelihood Estimate

Maximize
$$p(d | \theta)$$
 $(\hat{\theta}_1, ..., \hat{\theta}_M) = \arg\max_{\theta_1, ..., \theta_M} p(d | \theta) = \arg\max_{\theta_1, ..., \theta_M} \prod_{i=1}^M \theta_i^{c(w_i, d)}$

Max. Log-Likelihood $(\hat{\theta}_1, ..., \hat{\theta}_M) = \arg\max_{\theta_1, ..., \theta_M} \log[p(d | \theta)] = \arg\max_{\theta_1, ..., \theta_M} \sum_{i=1}^M c(w_i, d) \log \theta_i$

Subject to constraint: $\sum_{i=1}^M \theta_i = 1$

Use Lagrange multiplier approach

Lagrange function: $f(q | d) = \sum_{i=1}^M c(w_i, d) \log q_i + \lambda(\sum_{i=1}^M q_i - 1)$

Normalized Counts

 $\frac{\partial f(q | d)}{\partial q_i} = \frac{c(w_i, d)}{q_i} + \lambda = 0$
 $\lambda = \sum_{i=1}^N c(w_i, d) + \lambda = 0$
 $\lambda = \sum_{i=1}^N c(w_i, d) + \lambda = \sum_{i=1}^N c(w_i, d)$

What Does the Topic Look Like?

