COURSE PLAN

Department : Computer Science and Engineering

Course Name & code : Advanced Database Systems & CSE 5153

Semester & branch : | & MTech (CSE and CSIS)

Name of the faculty : Vivekanand Bhat

No of contact hours/week:

L	T	Р	С
3	1	0	4

Course Outcomes (COs)

	At the end of this course, the student should be able to:	No. of Contact	Marks
604		Hours	
CO1:	Understand the concepts of Distributed Database Systems (DDBSs), its Design issues and View Management.	10	21
CO2:	Analyse the techniques in Distributed Query Processing and Optimization.	8	18
CO3:	Evaluate problems with Transactions Management and Concurrency Control in a Distributed system.	8	18
CO4:	Use the different protocols to handle Reliability and Replication in DDBSs.	10	21
CO5:	Evaluate and apply NoSQL Data Models for Data Intensive Applications.	12	22
	Total	48	100

(Page 1 of 5) MIT/GEN/F-01/R2

Assessment Plan

Components	Assignments	Sessional Tests	End Semester/ Make-up Examination	
Duration	20 to 30 minutes	60 minutes	180 minutes	
Weightage	20 % (4 X 5 marks)	30 % (2 X 15 Marks)	50 % (1 X 50 Marks)	
Typology of Questions	Understanding/ Comprehension; Application; Analysis; Synthesis; Evaluation	Knowledge/ Recall; Understanding/ Comprehension; Application	Understanding/ Comprehension; Application; Analysis; Synthesis; Evaluation	
Pattern	Answer one randomly selected question from the problem sheet (Students can refer their class notes)	MCQ: 10 questions (0.5 marks) Short Answers: 5 questions (2 marks)	Answer all 5 full questions of 10 marks each. Each question may have 2 to 3 parts of 3/4/5/6/7 marks	
Schedule	4, 7, 10, and 13 th week of academic calendar	Calendared activity	Calendared activity	
Topics Covered	Quiz 1 (L 1-8 & T _{y1-y2}) (CO1) Quiz 2 (L 9-16 & T _{y3-y4}) (CO1-2) Quiz 3 (L 18-26 & T _{y5-y6}) (CO3-4) Quiz 4 (L 27-35 & T _{y7-y8}) (CO4-5)	Test 1 (L 1-20 & T _{b1-b2}) (CO1-2) Test 2 (L 21-40 & T _{b3-b4}) (CO3-4)	Comprehensive examination covering full syllabus. Students are expected to answer all questions (CO1-5)	

Lesson Plan

L. No.	Topics			
L0	Click or tap here to enter text.	CO1		
L1	INTRODUCTION: Distributed Data Processing	CO1		
L2	Promises of DDBSs, Complications Introduced by Distribution	CO1		
L3	DDBS Design Issues, Distributed DDMS Architecture			
L4	DISTRIBUTED DATABASE DESIGN: Top-Down Design Process	CO1		
L5	Distributed Design Issues	CO1		
L6	Fragmentation, Allocation	CO1		
L7	Data Directory	CO1		
L8	DATA ACCESS CONTROL: View Management	CO1		
L9	Data Security	CO1		
L10	Semantic Integrity Control	CO1		

(Page 2 of 5) MIT/GEN/F-01/R2

L11	QUERY PROCESSING:	CO2	
L12	Query Processing Problem, Objectives of Query Processing	CO2	
L13	Complexity of Relational Algebra Operations	CO2	
L14	Characterization of Query Processors	CO2	
L15	Layers of Query Processing	CO2	
L16	Query Decomposition	CO2	
L17	Data Localization, Global Query Optimization	CO2	
L18	Distributed Query Optimization	CO2	
L19	TRANSACTION MANAGEMENT AND CONCURRENCY CONTROL:	CO3	
L20	Properties of Transactions	CO3	
L21	Types of Transactions	CO3	
L22	Serializability Theory	CO3	
L23	Locking-Based Concurrency Control Algorithm	CO3	
L24	Timestamp-Based Concurrency Control Algorithm	CO3	
L25	Dead lock Management		
L26	"Relaxed" Concurrency Control	CO3	
L27	DISTRIBUTD DATA RELIABILITY:	CO4	
L28	Reliability Concepts	CO4	
L29	Failures in Distributed DBMS	CO4	
L30	Local Reliability Protocols	CO4	
L31	Distributed Reliability Protocols	CO4	
L32	DATA REPLICATION: Consistency of Replicated Databases	CO4	
L33	Update Management Strategies	CO4	
L34	Replication Protocls	CO4	
L35	Group Communication, Replication and Failures	CO4	
L36	Replication Mediator Service	CO4	
L37	NoSQL DATA MODELS:	CO5	
L38	Aggregate Data Models	CO5	
L39	More details on Data Models	CO5	

(*Page 3 of 5*)

L40	Distribution Models	CO5		
L41	Distribution Models (Contd.)	CO5		
L42	Consistency			
L43	Version Stamps	CO5		
L44	Map Reduce	CO5		
L45	Schema Migration	CO5		
L46	Polyglot Persistence	CO5		
L47	Beyond NoSQL	CO5		
L48	Choosing the database	CO5		
L/T	Click or tap here to enter text.			

References:

- 1. M. Tamer Ozsu, Patrick Valduriez, "Principles of Distributed Database Systems", (3e), Springer, 2011
- 2. Pramod J. Sadalage, Martin Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", (1e), Person Education, Inc., 2013.
- 3. Saeed K. Rahimi and Frank S, Haug, "Distributed Database Management Systems: A Practical Approach", (1e), John Wiely & Sons, 2010.
- 4. Martin Kleppmann, "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems", (1e), O'Reilly Media, Inc., 2017.
- 5. Guy Harrison, "Next Generation Databases: NoSQL, NewSQL and BigData", (1e), Apress, 2015.
- **6.** Click or tap here to enter text.
- 7. Click or tap here to enter text.

Submitted by: VIVEKANAND BHAT

(Signature of the faculty)

Date: 22-07-2019

(*Page 4 of 5*)

MIT/GEN/F-01/R2

Appro	ved by:	DR. ASHALATHA NAYAK				
(Signat	ure of HO	OD)				
Date:	22-07-2	2019				

FACULTY MEMBERS TEACHING THE COURSE (IF MULTIPLE SECTIONS EXIST):

FACULTY	SECTION	FACULTY	SECTION
