

Análisis Avanzado - Completitud de ${\mathbb R}$

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

OBJETIVO: Probar que $\mathbb R$ es completo.

OBJETIVO: Probar que $\mathbb R$ es completo.

Recordemos....

OBJETIVO: Probar que \mathbb{R} es completo.

Recordemos....

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

OBJETIVO: Probar que $\mathbb R$ es completo.

Recordemos....

Definición

Un espacio métrico (E, d) se dice completo si toda sucesión de Cauchy es convergente a un punto $x \in E$.

- Si $(x_n)_n$ es de Cauchy, entonces es acotada.
- Si $(x_n)_n$ es de Cauchy y tiene alguna subsucesión convergente, entonces $(x_n)_n$ es convergente.

• Si $(x_n)_n$ es una sucesión de Cauchy, entonces es acotada.

- Si $(x_n)_n$ es una sucesión de Cauchy, entonces es acotada.
- Veremos que toda sucesión acotada en $\mathbb R$ tiene una subsucesión convergente.

- Si $(x_n)_n$ es una sucesión de Cauchy, entonces es acotada.
- Veremos que toda sucesión acotada en $\mathbb R$ tiene una subsucesión convergente.
- Entonces, $(x_n)_n$ es de Cauchy y tiene subsucesión convergente.

- Si $(x_n)_n$ es una sucesión de Cauchy, entonces es acotada.
- Veremos que toda sucesión acotada en ℝ tiene una subsucesión convergente.
- Entonces, (x_n)_n es de Cauchy y tiene subsucesión convergente.
- $(x_n)_n$ converge.

- Si $(x_n)_n$ es una sucesión de Cauchy, entonces es acotada.
- Veremos que toda sucesión acotada en $\mathbb R$ tiene una subsucesión convergente.
- Entonces, $(x_n)_n$ es de Cauchy y tiene subsucesión convergente.
- $(x_n)_n$ converge.

Proposición

Toda sucesión acotada en $\mathbb R$ tiene una subsucesión convergente.

Proposición

Toda sucesión en $\mathbb R$ tiene una subsucesión monótona.

Proposición

Toda sucesión en $\mathbb R$ tiene una subsucesión monótona.

Recordemos: Las sucesiones monótonas y acotadas convergen.

Proposición

Toda sucesión en $\mathbb R$ tiene una subsucesión monótona.

Recordemos: <u>Las sucesiones monótonas y acotadas convergen.</u>

Luego, si una sucesión es acotada, la subsucesión monótona que tiene también va a ser acotada y por lo tanto, convergente.

Proposición

Toda sucesión en $\mathbb R$ tiene una subsucesión monótona.

Proposición

Toda sucesión en $\ensuremath{\mathbb{R}}$ tiene una subsucesión monótona.

Definición

Sea $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Decimos que $m\in\mathbb{N}$ es un punto cumbre de $(x_n)_{n\in\mathbb{N}}$ si \forall n>m se tiene x_n

A C le prediu pasar 3 como: 4) #C = 00, 2) $\#C < \infty$ y #C > 0, 3) $C = \emptyset$ Sup que para 1) - C= {mu: uc mix m2 < m2 < m3.... Afirmo: (Xmu)n subsuc. de (xu), momótora ducrec. En efecto: como me < mui, y mu, mui e C =0 ×mhti < Xun. / Si 2) Seo mo el elm. més grande de Casantlas 3 m 1 > mo+1 / au 7 aux+1 (xg mo+1 & C) 3 M2 > M1+1 / aux 7 aux (xq M1+1 €C) (aun) n es monó tono crec.

Si 3) répetius el argument de 2

Bonus track

\mathbb{R}^m también es completo

Deu:
$$(2eu)u \subseteq IZ^{u}$$
, $zu = (zu, zu, ..., zu)$
Si $(2eu)u$ eo de $(2eu)$ eu $(2eu)$ con $(2eu)$ = $(1x-1)e$
 $(2eu)$ $(2eu$