

ИСПОЛЬЗОВАНИЕ МОДУЛЕЙ ПАМЯТИ

SIFO LAB PRACTICUM PART 1 – Л.Р. 3

ЗАДАНИЕ

Разработать схему, включающую в себя буфер данных, модули ROM и RAM, подключенные к общей шине данных.

Прочитать N последовательных байт из ROM\RAM в буфер (заполнить буфер полностью). После ожидания М тактов clk этот блок данных передается из буфера в RAM. Повторить данные действия для другого источника памяти.

- RAM -> буфер (N байт) (подождать M тактов clk) -> RAM
- ROM -> буфер (N байт) (подождать M тактов clk) -> RAM

СИГНАЛЫ В СХЕМЕ

ВХОДНЫЕ

- clk
- Address[] Общая ША
- ROM_RAM выбор источника
- Read чтение из памяти
- Write запись в RAM

ВЫХОДНЫЕ

• Data[7..0] - Общая ШД

ПРИМЕР

Addr	+0	+1	+2	+3	+4	+5	+6	+7
00	00	00	00	00	00	00	00	00
08	00	00	00	00	00	00	00	00
10	00	00	00	00	00	00	00	00
18	00	00	00	00	00	00	00	00
20	00	00	00	00	00	00	00	00
28	00	00	00	00	00	00	00	00
30	00	00	00	00	00	00	00	00
38	00	00	00	00	00	00	00	00
40	00	00	00	00	00	00	00	00
48	00	00	00	00	00	00	00	00
50	00	00	00	00	00	00	00	00
58	00	00	00	00	00	00	00	00
60	00	00	00	00	00	00	00	00
68	00	00	00	00	00	00	00	00
70	00	00	00	00	00	00	00	00
78	00	00	00	00	00	00	00	00

lab3 lp	lab3 lpm_ram_io:inst1 altram:sram altsyncram:ram							
Addr	+0	+1	+2	+3	+4	+5	+6	+7
00	00	00	00	00	00	00	00	00
08	00	00	00	00	00	00	00	00
10	00	00	04	05	06	00	00	00
18	00	00	00	00	00	00	00	00
20	00	00	00	00	00	00	00	00
28	00	00	00	00	00	00	00	00
30	00	00	00	00	00	00	00	00
38	00	00	00	00	00	00	00	00
40	00	00	00	00	00	00	00	00
48	00	00	00	00	00	00	00	00
50	00	00	00	00	00	00	00	00
58	00	00	00	00	00	00	00	00
60	00	00	00	00	00	00	00	00
68	00	00	00	00	00	00	00	00
70	00	00	00	00	00	00	00	00
78	00	00	00	00	00	00	00	00

одному виду (DEC или HEX)

• Прочитанные данные из ROM и RAM должны отличаться между собой

Вид шин (ША, ШД) на моделировании и дампы памяти привести к

СИНХРОННЫЙ \АСИНХРОННЫЙ ВЫВОД

• Синхронный \ асинхронный вывод памяти (ROM или RAM) заключается в наличии \ отсутствии входа outclock у соответствующего модуля

Table 3–1. lpm_rom Input Ports (User Guide)							
Name Required		Description	Comment				
address[]	Yes	Address input to the memory	Input port LPM_WIDTHAD wide.				
inclock	No	Clock for input registers.	The address[] port is synchronous (registered) when inclock port is connected, and is asynchronous (unregistered) when the inclock port is not connected.				
outclock	No	Clock for output registers.	Addressed memory content-to-q[] response is synchronous when outclock port is connected, and is asynchronous when it is not connected.				
memenab No Memory enable input.		,	High = data output on $q[\]$, Low = high-impedance outputs.				

СИНХРОННЫЙ \АСИНХРОННЫЙ ВЫВОД

• Синхронный \ асинхронный вывод памяти (ROM или RAM) заключается в наличии \ отсутствии входа outclock у соответствующего модуля

ВЫБОР СИНХРОНИЗАЦИИ ПАМЯТИ

ВЫБОР СИНХРОНИЗАЦИИ ПАМЯТИ

СИНХРОННЫЙ ВЫВОД

- Без разделения данные будут получены на 2 такте
- Раздельная синхронизация позволяет более гибко построить схему

АСИНХРОННЫЙ ВЫВОД

• В любом случае данные будут получены на 1 такте

- Двунаправленный буфер с тремя состояниями
- Примитивы <u>TRI</u>, которые управляют портами OUTPUT или BIDIR, имеют вход разрешения выхода (Output Enable), который переводит выход в высокоимпедансное состояние

	Nº	Inp	uts	Bidirectional	Output	
	I∕I⊡	enabledt	enabletr	tridata[LPM_WIDTH-10]	result[LPM_WIDTH-10]	
	0	0	0	Z (input)	Z	
	1	0	1	Z (input)	tridata[LPM_WIDTH-10]	
	2	1	0	data[LPM_WIDTH-10]	Z	
	3	1	1	data[LPM_WIDTH-10]	data[LPM_WIDTH-10]	

QUARTUS

- Увеличить время моделирования: Edit -> End Time...
- Кнопка "Generate Functional Simulation Netlist" нажимается 1 раз после каждой компиляции
- Создание символа: SIFO lab practicum part 1 (стр 16)
- Схему в виде блока пересохранять нужно только при изменении пинов

Горячие клавиши:

- Ctrl + Space увеличить масштаб
- Ctrl + Shift + Space уменьшить масштаб