ÜBUNGEN ZUR "EICHFELDTHEORIE" ABGABE: 03.05.2015

Aufgabe 10. (4 Punkte) Sei M eine Mannigfaltigkeit der Dimension n. Dann heißt M orientierbar, falls GL(M) eine Reduktion der Strukturgruppe zu $GL(n)^+ = \{A \in GL(n) \mid \det(A) > 0\}$ besitzt. Man zeige: M ist genau dann orientierbar, wenn das Geradenbündel $\Lambda^n(TM) \to M$ trivial ist.

Hinweis: Man kann etwa die Charakterisierung aus Korollar 1.4.9 benutzen. Hilfreich ist es folgende Räume und Abbildungen zu betrachten: Für $v \in \Lambda^n(\mathbb{R}^n) - \{0\}$ induziert die Abbildung $A \mapsto \det(A)/|\det(A)|v$ Isomorphismen $GL(n)/GL(n)^+ \cong \{\pm v\}$ und $GL(n)/SL(n) \cong \Lambda^n(\mathbb{R}^n) - \{0\}$. Ferner definiert $GL(n)^+ \to SL(n)$, $A \mapsto \det(A)^{-n}A$, eine Retraktion zur Inklusion $SL(n) \to GL(n)^+$.

Aufgabe 11. (4 Punkte) Sei Σ eine orienterte Fläche mit Riemannscher Metrik g. Man definiere auf

$$S(T\Sigma) = \{ v \in T\Sigma \mid ||v||^2 = 1 \} \longrightarrow \Sigma$$

die Struktur eines SO(2)-Prinzipalbündels.

Aufgabe 12. (4 Punkte) Sei $P \to M$ ein H-Prinzipalbündel und sei $\alpha \colon H \to G$ ein Morphismus von Lie-Gruppen. Eine Erweiterung von $P \to M$ entlang α ist ein G-Prinzipalbündel $P' \to M$ zusammen mit einer H-äquivarianten Bündelabbildung $P \to P'$. Hierbei wirkt H auf P' durch α . Zwei Erweiterungen $P_1 \to M$ und $P_2 \to M$ entlang α heißen äquivalent, falls es eine G-äquivariante Abbildung $P_1 \to P_2$ gibt, so dass das Diagramm

kommutiert. Man zeige: Eine Erweiterung von $P\to M$ entlang α existiert und je zwei Erweiterungen entlang α sind äquivalent.

Hinweis: Für die Existenz statte man das Faserbündel $P \times^H G \to M$ (siehe Proposition 1.3.2) mit der Struktur eines G-Prinzipalbündels aus. Für die Eindeutigkeit betrachte man für eine Erweiterung $i \colon P \to P'$ die Abbildung $P \times G \to P'$, $(p,g) \to i(p) \cdot g$.