Foundations of Software Fall 2020

Week 9

Different Kinds of Maps

What is missing?

```
Term \rightarrow Term (\lambda x.t)

Type \rightarrow Term (\Lambda X.t)
```

Different Kinds of Maps

What is missing?

Agenda today:

- Type operators
- Dependent types

Type Operators and System F_{ω}

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at type-level.

 $\lambda X :: K.T$

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at type-level.

```
\lambda X :: K.T
```

Two Problems:

- ► Type checking of type operators
- Equivalence of types

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

Kinding

```
Problem: avoid meaningless types, like MkFun[Int, String].
```

```
* proper types, e.g. Bool, Int \rightarrow Int

* \Rightarrow * type operators: map proper type to proper type

* \Rightarrow * \Rightarrow * two-argument operators

(* \Rightarrow *) \Rightarrow * type operators: map type operators to proper types
```

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

```
* proper types, e.g. \textit{Bool}, \textit{Int} \rightarrow \textit{Int}
```

 $*\Rightarrow *$ type operators: map proper type to proper type

 $* \Rightarrow * \Rightarrow *$ two-argument operators

 $(* \Rightarrow *) \Rightarrow *$ type operators: map type operators to proper types

Equivalence of Types

Problem: all the types below are equivalent

$$Nat o Bool$$
 $Nat o Id Bool$ $Id Nat o Id Bool$ $Id Nat o Bool$ $Id (Nat o Bool)$ $Id (Id (Id Nat o Bool)$

We need to introduce *definitional equivalence* relation on types, written $S \equiv T$. The most important rule is:

$$(\lambda X :: K.S) T \equiv [X \mapsto T]S$$
 (Q-AppAbs)

And we need one typing rule:

$$\frac{\Gamma \vdash t : S \qquad S \equiv T}{\Gamma \vdash t : T} \tag{T-EQ}$$

First-class Type Operators

Scala supports passing type operators as argument:

```
def makeInt[F[_]](f: () => F[Int]): F[Int] = f()
makeInt[List](() => List[Int](3))
makeInt[Option](() => None)
```

First-class type operators supports *polymorphism* for type operators, which enables more patterns in type-safe functional programming.

System F_{ω}

Formalizing first-class type operators leads to *System* F_{ω} :

$$t ::= ...$$

 $\lambda X :: K.t$

terms type abstraction

$$T ::= \\ \begin{matrix} X \\ \mathcal{T} \to \mathcal{T} \end{matrix}$$

type variable type of functions universal type

$$\forall X :: K.T$$
$$\lambda X :: K.T$$
$$T T$$

operator abstraction operator application

kinds

types

 $K \Rightarrow K$

kind of proper types kind of operators

Dependent Types

Why Does It Matter?

Example 1. Track length of vectors in types:

```
Vector :: Nat \rightarrow *
first : (n:Nat) \rightarrow Vector(n+1) \rightarrow D
```

 $(x:S) \rightarrow T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

Why Does It Matter?

Example 1. Track length of vectors in types:

```
\begin{array}{lll} \textit{Vector} & :: & \textit{Nat} \rightarrow * \\ \textit{first} & : & (\textit{n:Nat}) \rightarrow \textit{Vector} \; (\textit{n}+1) \rightarrow \textit{D} \end{array}
```

 $(x:S) \to T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

Example 2. Safe formatting for *sprintf*:

```
sprintf : (f:Format) \rightarrow Data(f) \rightarrow String

Data([]) = Unit

Data('''\%d'' :: cs) = Nat * Data(cs)

Data('''\%s'' :: cs) = String * Data(cs)

Data(c :: cs) = Data(cs)
```

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

If T does not depend on x, it degenerates to function types:

 $(x:S) \rightarrow T = S \rightarrow T$ where x does not appear free in T

The Calculus of Constructions

The Calculus of Constructions: Syntax

```
t ::=
                                                 terms
                                                  sort
        S
                                                  variable
        \lambda x:t.t
                                                  abstraction
                                                  application
        t t
        (x:t) \rightarrow t
                                                  dependent type
s ::=
                                                 sorts
                                                  sort of proper types
        sort of kinds
Γ ::=
                                                 contexts
                                                  empty context
        \Gamma, x: T
                                                  term variable binding
```

The semantics is the usual β -reduction.

The Calculus of Constructions: Typing

$$\vdash * : \Box \text{ (T-AXIOM)}$$
 $\frac{x: T \in \Gamma}{\Gamma \vdash x: T} \text{ (T-VAR)}$

$$\frac{\Gamma \vdash S : s_1 \qquad \Gamma, x:S \vdash t : T}{\Gamma \vdash \lambda x:S.t : (x:S) \to T}$$
 (T-Abs)

$$\frac{\Gamma \vdash t_1 : (x:S) \to T \qquad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 \ t_2 : [x \mapsto t_2]T}$$
 (T-APP)

$$\frac{\Gamma \vdash S : s_1 \qquad \Gamma, x : S \vdash T : s_2}{\Gamma \vdash (x : S) \to T : s_2}$$
 (T-PI)

$$\frac{\Gamma \vdash t : T \qquad T \equiv T' \qquad \Gamma \vdash T' : s}{\Gamma \vdash t : T'} \qquad \text{(T-Conv)}$$

The equivalence relation $T \equiv T'$ is based on β -reduction.

Four Kinds of Lambdas

Example	Туре	
λx : $\mathbb{N}.x + 1$	$\mathbb{N} o \mathbb{N}$	
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$	

Four Kinds of Lambdas

Example	Type
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times \mathbb{N}$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *.\lambda x: F \mathbb{N}. x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$

Four Kinds of Lambdas

Example	Туре
$\lambda x: \mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times \mathbb{N}$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *.\lambda x: F \mathbb{N}.x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
λF :* \rightarrow *. F \mathbb{N}	(* o *) o *

Four Kinds of Lambdas

Example	Type
λx : $\mathbb{N}.x + 1$	$\mathbb{N} o \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \ x$	$(\mathbb{N} o \mathbb{N}) o \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *.\lambda x: F \mathbb{N}. x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
λF :* \rightarrow *. F $\mathbb N$	$(* \rightarrow *) \rightarrow *$
λn : \mathbb{N} . Vec n	$\mathbb{N} o *$
$\lambda f: \mathbb{N} \to \mathbb{N}. Vec (f 6)$	$(\mathbb{N} \to \mathbb{N}) \to *$

Strong Normalization

Given the following β -reduction rules

$$\frac{t_1 \longrightarrow t_1'}{\lambda x: T_1.t_1 \longrightarrow \lambda x: T_1.t_1'} \tag{β-Abs}$$

$$rac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2}$$
 (\beta-App1)

$$rac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_2'}$$
 (\beta-App2)

$$(\lambda x: T_1.t_1)t_2 \longrightarrow [x \mapsto t_2]t_1 \qquad (\beta-APPABS)$$

Theorem [Strong Normalization]: if $\Gamma \vdash t : T$, then there is no infinite sequence of terms t_i such that $t = t_1$ and $t_i \longrightarrow t_{i+1}$.

Dependent Types in Coq

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ▶ proofs ←→ programs
- ▶ propositions ←→ types

Coq is based on *Calculus of Inductive Construction*, which is an extension of CC with inductive definition.

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ▶ proofs ←→ programs
- ▶ propositions ←→ types

Coq is based on *Calculus of Inductive Construction*, which is an extension of CC with inductive definition.

Two impactful projects based on Coq:

- CompCert: certified C compiler
- Mechanized proof of 4-color theorem

Coq 101 - inductive definitions and recursion

Coq 101 - inductive definitions and recursion

Coq 101 - inductive definitions and recursion

Coq 101 - proofs

Coq 101 - proofs

The 2nd branch has the type even S(S(double n')), and Coq knows by normalizing the types:

$$even S(S(double n')) \equiv_{\beta} even(double(S n'))$$

Recap: Curry-Howard Correspondence

Proposition	Term & Type
$A \wedge B$	t: (A, B)

Recap: Curry-Howard Correspondence

Propositions as types in the context of intuitionistic logic.

Proposition	Term & Type
$A \wedge B$	t: (A, B)
$A \vee B$	t: A + B

Recap: Curry-Howard Correspondence

Proposition	Term & Type
$A \wedge B$	t: (A, B)
$A \vee B$	t: A + B
$A \rightarrow B$	$t:A \rightarrow B$

Recap: Curry-Howard Correspondence

Propositions as types in the context of intuitionistic logic.

Proposition	Term & Type
$A \wedge B$	t: (A, B)
$A \vee B$	t: A + B
$A \rightarrow B$	t:A o B
$\neg A$	$t: A ightarrow extit{False}$

Recap: Curry-Howard Correspondence

Proposition	Term & Type
$A \wedge B$	t:(A,B)
$A \lor B$	t: A + B
A o B	$t:A \to B$
$\neg A$	$t:A o extit{False}$
Δ	t : False

Recap: Curry-Howard Correspondence

Propositions as types in the context of intuitionistic logic.

Proposition	Term & Type
$A \wedge B$	t:(A,B)
$A \lor B$	t: A + B
$A \rightarrow B$	$t:A \to B$
$\neg A$	t: A o False
1	t : False
∀ <i>x</i> : <i>A</i> . <i>B</i>	$t:(x:A)\to B$

Recap: Curry-Howard Correspondence

Proposition	Term & Type
$A \wedge B$	t: (A, B)
$A \lor B$	t: A + B
$A \rightarrow B$	$t:A \rightarrow B$
$\neg A$	$t:A o extit{False}$
	t : False
∀ <i>x</i> : <i>A</i> . <i>B</i>	$t:(x:A)\to B$
∃ <i>x</i> : <i>A</i> . <i>B</i>	t: (x:A, B)

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.
```

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.
```

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.

Inductive False : Prop :=.
```

Curry-Howard correspondence in Coq

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.

Definition iff (A B:Prop) := (A -> B) /\ (B -> A).

Notation "A <-> B" := (iff A B) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "'exists' x ... y , p" :=
(ex (fun x => ... (ex (fun y => p)) ..)) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : x = x :>A

Notation "x = y" := (eq x y) : type_scope.
```

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) do not hold.

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) do not hold.

► LEM: ∀*P*.*P* ∨ ¬*P*

▶ DNE: $\forall P.\neg\neg P \rightarrow P$

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved.

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) do not hold.

▶ LEM: $\forall P.P \lor \neg P$

 \triangleright DNE: $\forall P. \neg \neg P \rightarrow P$

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved. How?

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) do not hold.

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

```
However, \forall P.P \rightarrow \neg \neg P can be proved. How?
```

We will prove that LEM is equivalent to DNE:

```
Definition LEM: Prop := forall P: Prop, P \/~P.
Definition DNE: Prop := forall P: Prop, ~~P -> P.
Definition LEM_DNE_EQ: Prop := LEM <-> DNE.
```

$\mathsf{LEM} \to \mathsf{DNE}$

```
Definition LEM_To_DNE :=

fun (lem: forall P : Prop, P \/ ~ P) (Q:Prop) (q: ~~Q)

match lem Q with

or_introl l =>

l or_intror r =>
match (q r) with end
end.

Check LEM_To_DNE : LEM -> DNE.
```

DNE → LEM

```
Definition DNE_To_LEM :=

fun (dne: forall P : Prop, ~~P -> P) (Q:Prop) =>

(dne (Q \/ ~ Q))

(fun H: ~(Q \/ ~Q) =>

let nq := (fun q: Q => H (or_introl q))

in H (or_intror nq)

).

Check DNE_To_LEM : DNE -> LEM.

Definition proof := conj LEM_To_DNE DNE_To_LEM.

Check proof : LEM <-> DNE.
```

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- Scala supports path-dependent types and literal types.
- Dependent Haskell is proposed by researchers.

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- Scala supports path-dependent types and literal types.
- Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking.

Problem with Type Checking: Vector Again

Value constructors:

```
egin{array}{lll} \emph{Vec} & : & \mathbb{N} \rightarrow * \\ \emph{nil} & : & \emph{Vec} \ 0 \\ \emph{cons} & : & (n:\mathbb{N}) \rightarrow \mathbb{N} \rightarrow \emph{Vec} \ n \rightarrow \emph{Vec} \ n+1 \end{array}
```

Appending vectors:

```
\begin{array}{ll} \textit{append} & : & (m:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{Vec } m \to \textit{Vec } n \to \textit{Vec } (m+n) \\ \textit{append} & = & \lambda m:\mathbb{N}.\ \lambda n:\mathbb{N}.\ \lambda l:\textit{Vec } m.\ \lambda t:\textit{Vec } n. \\ & & \textit{match } l \textit{ with} \\ & | \textit{nil} \Rightarrow t \\ & | \textit{cons } r \times y \Rightarrow \textit{cons } (r+n) \times (\textit{append } r \textit{ n } y \textit{ t}) \end{array}
```

Question: How does the type checker know r + 1 + n = r + n + 1?