КАФЕДРА № 14

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

должность, уч. степень, звание

подпись, дат

инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №3 Решение задач линейного программирования

по курсу:

Теория принятия решений

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ гр. №

1145

подпись, дата

инициалы, фамилия

Оглавление

ПОСТАНОВКА ЗАДАЧИ	2
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ	
Уравнения	
Матрицы	2
ПРОГРАММА	2
Сценарий	4
РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ	5
Графики	
выволы	

Постановка задачи

Целью работы является исследование метода решения задач линейного программирования, построив алгоритм и отладив программу реализации для применения функции *linprog* математического пакета *MatLab*.

Вариант	Порядок задачи	Число	Число
	линейного	неравенств	равенств
	программирования		
8	7	9	3

Математическая модель

В рамках данной математической модели рассматривается задача линейного программирования общего вида.

Уравнения

$$c^T \cdot x \to \min$$

$$A_1 \cdot x \leq b_1$$

$$A_2 \cdot x = b_2$$

$$\chi^m \le \chi \le \chi^M$$

Матрицы

Нет

Программа

```
NOR=100;
hide_ind_results= true;
avg_iterations = 0;
avg_time = 0;

for run = 1:NOR
    found_solution = false;
    iterations = 0;
    tic;
```

```
while ~found solution
                    iterations = iterations + 1;
                    matrixA1 = rand(9, 7); % Неравенства
                    matrixA2 = rand(3, 7); % Равенства
                    xM = rand(7, 1) * 5;
                    xm = zeros(7, 1);
                    b1 = rand(9, 1);
                    b2 = rand(3, 1);
                    c = ones(7, 1);
                    options = optimoptions('linprog', 'Display', 'off');
                    [x, C] = linprog(c, matrixA1, b1, matrixA2, b2, xm, xM,
options);
                    if ~isempty(x)
                        found_solution = true;
                    end
                end
                time_elapsed = toc;
                avg_iterations = avg_iterations + iterations;
                avg_time = avg_time + time_elapsed;
                if ~hide ind results
                    disp("X vector:")
                    disp(x);
                    disp("C value: ")
                    disp(C);
                    disp(['Time taken: ' num2str(time_elapsed) ' seconds']);
                    disp(['Number of iterations: ' num2str(iterations)]);
                end
            end
            avg_iterations = avg_iterations / NOR;
            avg_time = avg_time / NOR;
            disp(' ');
            disp(['Number of runs:' num2str(NOR)])
            disp(['Average number of iterations: ' num2str(avg_iterations)]);
            disp(['Average time taken: ' num2str(avg_time) ' seconds']);
            break;
```

Листинг 1 - Программа

Сценарий

X vector: 0.1141 0 0 0.0885 0 0 0.0441						
C value: 0.2468						
matrixA1						
0.3795	0.9866	0.6428	0.2723	0.7445	0.2193	0.7269
0.9554	0.6719	0.5216	0.2906	0.1147	0.8643	0.0483
0.9545	0.2485	0.8877	0.9616	0.7119	0.2791	0.4877
0.3634	0.6579	0.8704	0.1439	0.8341	0.3077	0.7823
0.6975	0.5341	0.0062	0.6833	0.1026	0.0069	0.8704
0.4592	0.4725	0.8463	0.4865	0.1393	0.5087	0.3830
0.5372	0.1927	0.8640	0.9699	0.0518	0.4980	0.7504
0.4826	0.7300	0.3326	0.7878	0.9378	0.9011	0.1254
0.8513	0.2063	0.5540	0.8145	0.9399	0.0102	0.5465
matrixA2						
0.7815	0.5864	0.3785	0.9663	0.2819	0.3099	0.0453
0.6380	0.8840	0.8289	0.8439	0.2604	0.8321	0.9908
0.9185	0.0354	0.0038	0.4450	0.4119	0.1688	0.1309
xM						
3.9179						
4.4843						
2.4057						
2.5075 0.9570						
1.4475						
3.2568						
xm 0						
0						
0						
0						
0						
0						
0						

Time taken: 2.3449 seconds Number of iterations: 350

Number of runs:1

Average number of iterations: 350 Average time taken: 2.3449 seconds

>>

Функции

Нет

Результаты моделирования

Результатом моделирования является код, который решает задачу линейного программирования, где случайным образом генерируются коэффициенты матриц и векторов для неравенств, равенств, а также вектор функции для оптимизации. Затем используется функция linprog из MATLAB для решения этой задачи. Результатом функции linprog является вектор x, который является оптимальным решением задачи оптимизации, и значение C, которое представляет оптимальное значение целевой функции.

Средние значения за 100 проходов:

Среднее время выполнения программы: 622ms

• Среднее количество итераций: 134

Диалог

Lab3

ЛР3

>> lab3

ЛР3

. . .

X vector:

0

0.0305

0.0759

0

0.3712

0.0981

0.1359

C value:

0.7116

Time taken: 0.21632 seconds Number of iterations: 53

Number of runs:5

Average number of iterations: 97 Average time taken: 0.39802 seconds

Графики

Нет

Выводы

В ходе работы был изучен и протестирован метод решения линейных задач оптимизации с помощью функции linprog в MATLAB. Разработанный алгоритм успешно решает задачи с произвольными параметрами, генерируемыми случайным образом. Полученные оптимальные значения переменных и целевой функции подтверждают эффективность метода.