Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Currently amended) A compound having the structure (I):

$$R^3$$
 $X \cdot R^2$
 R^1
 R^3
 R^2

and pharmaceutically acceptable derivatives thereof;

wherein \mathbb{R}^1 is hydrogen, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

n is 1-5;

R² is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

X is -O-, $-C(R^{2A})_2$ -, -S-, or $-NR^{2A}$ -, wherein R^{2A} is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

or wherein two or more occurrences of R² and R^{2A}, taken together, form an alicyclic or heterocyclic moiety, or an aryl or heteroaryl moiety;

R³ is an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety; and

Y is hydrogen or an aliphatic, alicyclic, heteroaliphatic, heteroeyelic, aromatic or heteroaromatic moiety.

2. (Currently amended) The compound of claim 1, wherein:

R¹ is hydrogen, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, - (aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety;

R² is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or - (heteroaliphatic)heteroaryl moiety;

X is -O-, -C(R^{2A})₂-, -S-, or -NR^{2A}-, wherein R^{2A} is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, - (aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety;

or wherein two or more occurrences of R² and R^{2A}, taken together, form an alicyclic or heterocyclic moiety, or an aryl or heteroaryl moiety;

R³ is an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety; and

Y is hydrogen or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, - (aliphatic)aryl, - (aliphatic)heteroaryl, or - (heteroaliphatic)aryl, or - (heteroaliphatic)heteroaryl moiety.

3. (Original) The compound of claim 1, wherein the compound has the structure as shown in formula (Ia):

4. (Original) The compound of claim 1, wherein the compound has the structure as shown in formula (Ib):

5. (Previously presented) The compound of claim 1, wherein when R³ represents a phenyl group substituted with a moiety having the structure -P-Q, the following groups do not occur simultaneously as defined:

P is selected from the group consisting of substituted or unsubstituted C₄-C₈ alkylene, C₄-C₈ alkenylene, C₄-C₈ alkynylene, and –R-T-U-, wherein R and U are independently absent or represent a C₂-C₇ alkylene, a C₂-C₇ alkenylene, or a C₂-C₇ alkynylene, and T represents O, S or NR^T, wherein R^T represents hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl or heterocyclyl; and

Q is selected from the group consisting of:

and a boronic acid moiety; wherein W is O or S; V is O, S or –NR^{Vd}, wherein R^{Vd} is hydrogen, alkyl, alkoxycarbonyl, aryloxycarbonyl, alkylsulfonyl, arylsulfonyl, or aryl; R^{Va} is hydrogen, alkyl, alkenyl, alkynyl, or aryl; R^{Vb} is hydrogen, alkyl, aryl, alkoxy, aryloxy, amino, hydroxylamino, alkoxylamino or halogen; and R^{Vc} is hydrogen, alkyl, aryl, hydroxyl, alkoxy, aryloxy or amino.

6. (Original) The compound of claim 1, wherein when R³ represents a phenyl group substituted with a moiety having the structure -P-Q, the following groups do not occur simultaneously as defined:

P is selected from the group consisting of:

Page 4 of 34 Attorney's Docket

and Q is selected from the group consisting of:

wherein W and R^{Va-d} are as defined above; X^1 is a good leaving group (e.g., diazo, halogen, a sulfate or sulfonate ester such as a tosylate or mesylate); R^{Ve} is hydrogen, alkyl, aryl, alkoxy, aryloxy, halogen; and R^{Vf} is hydrogen, alkyl or halogen.

- 7. (Original) The compound of claim 1, wherein Y is an aryl or heteroaryl moiety substituted with Z, wherein Z is hydrogen, $-(CH_2)_qOR^Z$, $-(CH_2)_qSR^Z$, $-(CH_2)_qN(R^Z)_2$, $-C(=O)R^Z$, $-C(=O)N(R^Z)_2$, or an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic) aryl, -(aliphatic) heteroaryl, -(aliphatic) aryl, or -(beteroaliphatic) aryl, wherein q is 0-4, and wherein each occurrence of R^Z is independently hydrogen, a protecting group, a solid support unit, or an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic) aryl, -(aliphatic) heteroaryl, -(aliphatic) heteroaryl, -(beteroaliphatic) aryl, or -(beteroaliphatic) moiety.
- 8. (Original) The compound of claim 1, wherein Y is a substituted phenyl moiety and the compound has the structure (II):

$$Z \xrightarrow{R^3} O \xrightarrow{R^3} O \xrightarrow{R^3} (II)$$

 $\label{eq:charge_equation} \text{wherein Z is hydrogen, -(CH_2)_qOR^Z, -(CH_2)_qSR^Z, -(CH_2)_qN(R^Z)_2, -C(=O)R^Z, -C(=O)N(R^Z)_2, \text{ or an alkyl, heteroalkyl, aryl, heteroaryl, -(alkyl)aryl, -(alkyl)heteroaryl, -(alkyl)heteroa$

(heteroalkyl)aryl, or –(heteroalkyl)heteroaryl moiety, wherein q is 0-4, and wherein each occurrence of R^Z is independently hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heteroayl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or –(heteroalkyl)heteroaryl moiety.

9. (Original) The compound of claim 1, wherein Y is a substituted phenyl moiety and the compound has the structure (III):

wherein R^Z is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heteroayl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or – (heteroalkyl)heteroaryl moiety.

10. (Original) The compound of claim 1, wherein Y is a substituted phenyl moiety and X is S and the compound has the structure (IV):

wherein R^Z is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heteroayl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or - (heteroalkyl)heteroaryl moiety.

11. (Original) The compound of claim 1, wherein Y is a substituted phenyl moiety and X is $-NR^{2A}$ and the compound has the structure (V):

Page 6 of 34

$$\begin{array}{c|c}
R^3 \\
O \\
O \\
R^{2A} \\
N \\
R^2 \\
OR^2
\end{array}$$
(V)

wherein R² is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heteroayl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or – (heteroalkyl)heteroaryl moiety.

12. (Original) The compound of claim 1, wherein Y is a substituted phenyl moiety and X is -O- and the compound has the structure (VI):

wherein R^Z is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkýl, heteroalkyl, heteroaryl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or - (heteroalkyl)heteroaryl moiety.

13. (Original) The compound of claim 1, wherein Y is a substituted phenyl moiety and R^3 is a phenyl moiety substituted with R^4 and the compound has the structure (VII):

$$Z$$
 R^4
 $X \cdot R^2$
 $X \cdot R^2$
 $X \cdot R^2$
 $X \cdot R^2$

Page 7 of 34

wherein R^4 is $-(CH_2)_rN(R^{4A})_2$, $-(CH_2)_rSR^{4A}$, $-(CH_2)_rOR^{4A}$, $-(CH_2)_rNR^{4A}C(=O)R^{4B}$, -(CH₂)_rC(=O)N(R^{4A})₂, -S(O)₂R^{4A}, or is an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, wherein each occurrence of R^{4B} is independently hydrogen, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety; and each occurrence of R^{4A} is independently hydrogen, a protecting group, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or –(heteroaliphatic)heteroaryl moiety, or is –C(=O)CH(R^{4C})NH(SO₂)R^{4D}, $-SO_2R^{4C}$, $-C(=O)R^{4C}$, $-C(=O)N(R^{4C})_2$, $-C(=S)N(R^{4C})_2$, or $-C(=O)(CH_2)_1C(=O)NHR^{4C}$, wherein each occurrence of R^{4C} and R^{4D} is independently hydrogen, a protecting group, hydroxyl, protected hydroxyl, or an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, wherein r and t are each independently 0-5; and Z is hydrogen, -(CH₂)_aOR^Z, -(CH₂)_aSR^Z, $-(CH_2)_0N(R^Z)_2$, $-C(=O)R^Z$, $-C(=O)N(R^Z)_2$, or an alkyl, heteroalkyl, aryl, heteroaryl, -(alkyl)aryl, -(alkyl)aryl(alkyl)heteroaryl, -(heteroalkyl)aryl, or -(heteroalkyl)heteroaryl moiety, wherein q is 0-4, and wherein each occurrence of R^Z is independently hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or -(heteroalkyl)heteroaryl moiety.

14. (Original) The compound of claim 13, wherein Z is -CH₂OR^Z, and the compound has the structure (VIII):

$$R^4$$
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2

wherein R^Z is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heteroayl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or – (heteroalkyl)heteroaryl moiety.

- 15. (Original) The compound of claim 1, wherein R¹ is hydrogen, methyl, or phenyl.
- 16. (Previously presented) The compound of claim 1, wherein X-R² has one of the structures:

17. (Previously presented) The compound of claim 1, wherein R³ is one of the following structures:

wherein L is a substituted or unsubstituted C_{4-8} alkylene or C_{4-8} alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R^{AA} comprises a metal chelator.

- 18. (Previously presented) The compound of claim 17, wherein L is (CH₂)_rN(R^{4C})Alk¹-, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; and Alk¹ is a substituted or unsubstituted C₃₋₇alkylene or C₃₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.
- 19. (Previously presented) The compound of claim 17, wherein L is $(CH_2)_rN(R^{4C})C(=O)Alk^2$ -, wherein r is 0 or 1; R^{4C} is hydrogen, a nitrogen protecting group, alkyl, acyl, heteroalkyl, aryl or heteroaryl; and Alk^2 is a substituted or unsubstituted C_{3-6} alkylene or C_{3-6} alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

- 20. (Previously presented) The compound of claim 17, wherein L is $(CH_2)_rNHC(=O)(CH_2)_t$, wherein r is 0 or 1; and t is 3, 4, 5 or 6.
- 21. (Original) The compound of any one of claims 17-20, wherein R^{4A} is $-C(=O)OR^{4B}$, $-C(=O)NHOR^{4B}$ or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

22. (Original) The compound of claim 1, wherein the compound has the structure:

$$\mathbb{R}^4$$
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^2
 \mathbb{R}^2

wherein R^4 is $-(CH_2)_rN(R^{4A})_2$, $-(CH_2)_rSR^{4A}$, $-(CH_2)_rOR^{4A}$, $-(CH_2)_rNR^{4A}C(=O)R^{4B}$, $-(CH_2)_rC(=O)N(R^{4A})_2$, $-S(O)_2R^{4A}$, or is an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, wherein each occurrence of R^{4B} is independently hydrogen, an aliphatic, alycyclic, heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl, -(aliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety; and each occurrence of R^{4A} is independently hydrogen, a protecting group, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, or is $-C(=O)CH(R^{4C})NH(SO_2)R^{4D}$, $-SO_2R^{4C}$, $-C(=O)R^{4C}$, $-C(=O)N(R^{4C})_2$, $-C(=S)N(R^{4C})_2$, or $-C(=O)(CH_2)_1C(=O)NHR^{4C}$, wherein each occurrence of R^{4C} and R^{4D} is independently hydrogen, a protecting group, hydroxyl, protected hydroxyl, or an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(

Page 12 of 34 Attor

(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, wherein r and t are each independently 0-5; and R^Z is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or -(heteroalkyl)heteroaryl moiety.

- The compound of claim 22, wherein R¹ is hydrogen, phenyl or methyl, R² 23. (Original) is hydrogen or a solid support unit; R² is a substituted or unsubstituted alkyl or heteroalkyl moiety, or a substituted or unsubstituted aryl or heteroaryl moiety; and R⁴ is -(CH₂)_rN(R^{4A})₂, - $(CH_2)_rSR^{4A}$, $-(CH_2)_rOR^{4A}$, $-(CH_2)_rNR^{4A}C(=O)R^{4B}$, $-(CH_2)_rC(=O)N(R^{4A})_2$, $-S(O)_2R^{4A}$, or is an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, wherein each occurrence of R^{4B} is independently hydrogen, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety; and each occurrence of R^{4A} is independently hydrogen, a protecting group, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, or is $-C(=O)CH(R^{4C})NH(SO_2)R^{4D}$, $-SO_2R^{4C}$, $-C(=O)R^{4C}$, $-C(=O)N(R^{4C})_2$, $-C(=O)N(R^{4$ C(=S)N(R^{4C})₂, or -C(=O)(CH₂)₁C(=O)NHR^{4C}, wherein each occurrence of R^{4C} and R^{4D} is independently hydrogen, a protecting group, hydroxyl, protected hydroxyl, or an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or –(heteroaliphatic)heteroaryl moiety, wherein r and t are each independently 0-5.
- 24. (Previously presented) The compound of claim 22, wherein R⁴ represents a moiety having the structure -L-R^{4A} and the compound has the structure:

Page 13 of 34

wherein L is a linker and R^{4A} comprises a metal chelator.

- 25. (Previously presented) The compound of claim 24, wherein L is a substituted or unsubstituted C₄₋₈alkylene or C₄₋₈alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO, NR^{Z1}CO, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.
- 26. (Previously presented) The compound of claim 25, wherein L is (CH₂)_tNHC(=O)(CH₂)_t-, wherein r is 0 or 1; and t is 3, 4, 5 or 6.
- 27. (Original) The compound of claim 24, wherein R^{4A} is -C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

28. (Previously presented) The compound of claim 24, wherein the compound has the structure:

wherein r is 0 or 1; Alk¹ is a substituted or unsubstituted C₄₋₇alkylene or C₄₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by

CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; R^{4A} comprises a metal chelator; and R^Z is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, -(alkyl)aryl, -(alkyl)heteroaryl, - (heteroalkyl)aryl, or -(heteroalkyl)heteroaryl moiety.

29. (Previously presented) The compound of claim 28, wherein Alk^1 is a moiety having the structure $-C(=0)-Alk^2$ - and the compound has the structure:

wherein Alk² is a substituted or unsubstituted C₃₋₆alkylene or C₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

- 30. (Previously presented) The compound of claim 29, wherein Alk^2 is a substituted or unsubstituted C_{3-6} alkylene chain.
- 31. (Original) The compound of claim 29, wherein R^{4A} is $-C(=O)OR^{4B}$, $-C(=O)NHOR^{4B}$ or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

32. (Original) The compound of claim 28 having the structure:

$$\begin{array}{c} & & & \\$$

wherein s is an integer from 2-5; w is an integer from 0-4; R^{4A} comprises a metal chelator and each occurrence of R^{4D} is independently hydrogen, alkyl, heteroalkyl, cycloalkyl, heterocyclic, alkenyl, alkynyl, aryl, heteroaryl, halogen, CN, NO₂, or WR^{W1} wherein W is O, S, NR^{W2}, -C(=O), -S(=O), -SO₂, -C(=O)O-, -OC(=O), -C(=O)NR^{W2}, -NR^{W2}C(=O); wherein each occurrence of R^{W1} and R^{W2} is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR^{W2}, R^{W1} and R^{W2}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or any two adjacent occurrences of R^{2B}, taken together with the atoms to which they are attached, form a substituted or unsubstituted, saturated or unsaturated alicyclic or heterocyclic moiety, or a substituted or unsubstituted aryl or heteroaryl moiety.

33. (Original) The compound of claim 32, wherein R^{4A} is $-C(=O)OR^{4B}$, $-C(=O)NHOR^{4B}$ or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

34. (Original) The compound of claim 1, wherein the compound has the structure:

$$R^4$$
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2

wherein R^4 is $-(CH_2)_rN(R^{4A})_2$, $-(CH_2)_rSR^{4A}$, $-(CH_2)_rOR^{4A}$, $-(CH_2)_rNR^{4A}C(=O)R^{4B}$ (CH₂)_rC(=O)N(R^{4A})₂, -S(O)₂R^{4A}, or is an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, wherein each occurrence of R^{4B} is independently hydrogen, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety; and each occurrence of R^{4A} is independently hydrogen, a protecting group, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic) aryl, or – (heteroaliphatic) heteroaryl moiety, or is – $C(=O)CH(R^{4C})NH(SO_2)R^{4D}$, $-SO_2R^{4C}$, $-C(=O)R^{4C}$, $-C(=O)N(R^{4C})_2$, $-C(=S)N(R^{4C})_2$, or $-C(=O)(CH_2)_1C(=O)NHR^{4C}$, wherein each occurrence of R^{4C} and R^{4D} is independently hydrogen, a protecting group, hydroxyl, protected hydroxyl, or an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or -(heteroaliphatic)heteroaryl moiety, wherein r and t are each independently 0-5; R^{2A} is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aryl or heteroaryl moiety; and R^Z is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or -(heteroalkyl)heteroaryl moiety.

35. (Original) The compound of claim 34, wherein R^1 is hydrogen, phenyl or methyl, R^2 is hydrogen or a solid support unit; R^2 is a substituted or unsubstituted alkyl or heteroalkyl moiety, or a substituted or unsubstituted aryl or heteroaryl moiety; either or both of R^2 and R^{2A} , or R^2 and R^{2A} taken together with the nitrogen atom to which they are attached, forms a substituted or unsubstituted cycloalkyl or heterocyclic moiety, or a substituted or unsubstituted aryl or heteroaryl moiety; and R^4 is $-(CH_2)_rN(R^{4A})_2$, $-(CH_2)_rSR^{4A}$, $-(CH_2)_rOR^{4A}$, -

(CH₂)_rNR^{4A}C(=O)R^{4B}, -(CH₂)_rC(=O)N(R^{4A})₂, -S(O)₂R^{4A}, or is an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, - (heteroaliphatic)aryl, or –(heteroaliphatic)heteroaryl moiety, wherein each occurrence of R^{4B} is independently hydrogen, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or –(heteroaliphatic)heteroaryl moiety; and each occurrence of R^{4A} is independently hydrogen, a protecting group, an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or –(heteroaliphatic)heteroaryl moiety, or is –C(=O)CH(R^{4C})NH(SO₂)R^{4D}, -SO₂R^{4C}, -C(=O)R^{4C}, -C(=O)N(R^{4C})₂, -C(=S)N(R^{4C})₂, or –C(=O)(CH₂)₁C(=O)NHR^{4C}, wherein each occurrence of R^{4C} and R^{4D} is independently hydrogen, a protecting group, hydroxyl, protected hydroxyl, or an aliphatic, alycyclic, heteroaliphatic, heterocyclic, aryl, heteroaryl, -(aliphatic)aryl, -(aliphatic)heteroaryl, -(heteroaliphatic)aryl, or –(heteroaliphatic)heteroaryl moiety, wherein r and t are each independently 0-5.

36. (Previously presented) The compound of claim 34, wherein R⁴ represents a moiety having the structure –L-R^{4A} and the compound has the structure:

wherein L is a linker and R^{4A} comprises a metal chelator.

37. (Previously presented) The compound of claim 36, wherein L is a substituted or unsubstituted C₄₋₈alkylene or C₄₋₈alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

- 38. (Previously presented) The compound of claim 37, wherein L is $(CH_2)_tNHC(=O)(CH_2)_t$, wherein r is 0 or 1; and t is 3, 4, 5 or 6.
- 39. (Original) The compound of claim 36, wherein R^{4A} is -C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

40. (Previously presented) The compound of claim 34, wherein the compound has the structure:

wherein r is 0 or 1; Alk¹ is a substituted or unsubstituted C₄₋₇alkylene or C₄₋₇alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; R^{4A} comprises a metal chelator; and R^Z is hydrogen, a protecting group, a solid support unit, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, -(alkyl)aryl, -(alkyl)heteroaryl, -(heteroalkyl)aryl, or -(heteroalkyl)heteroaryl moiety.

41. (Previously presented) The compound of claim 40, wherein Alk^1 is a moiety having the structure $-C(=O)-Alk^2$ - and the compound has the structure:

wherein Alk² is a substituted or unsubstituted C₃₋₆alkylene or C₃₋₆alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

- 42. (Previously presented) The compound of claim 41, wherein Alk^2 is a substituted or unsubstituted C_{3-6} alkylene chain.
- 43. (Original) The compound of claim 41, wherein R^{4A} is $-C(=O)OR^{4B}$, $-C(=O)NHOR^{4B}$ or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

44. (Original) The compound of claim 34 having the structure:

wherein s is an integer from 2-5; w is an integer from 0-4; R^{4A} comprises a metal chelator and each occurrence of R^{4D} is independently hydrogen, alkyl, heteroalkyl, cycloalkyl, heterocyclic, alkenyl, alkynyl, aryl, heteroaryl, halogen, CN, NO₂, or WR^{W1} wherein W is O, S, NR^{W2}, -C(=O), -S(=O), -SO₂, -C(=O)O-, -OC(=O), -C(=O)NR^{W2}, -NR^{W2}C(=O); wherein each occurrence of R^{W1} and R^{W2} is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR^{W2}, R^{W1} and R^{W2}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or any two adjacent occurrences of R^{2B}, taken together with the atoms to which they are attached, form a substituted or unsubstituted, saturated or unsaturated alicyclic or heterocyclic moiety, or a substituted or unsubstituted aryl or heteroaryl moiety.

45. (Original) The compound of claim 44, wherein R^{4A} is -C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

46. (Previously presented) The compound of claim 1, 22, 32, 34 or 44, wherein R² is one of the following structures:

Page 21 of 34 Attorney's Docket Number: 2001180-0075 Client Reference: HU 1917-01/CIP

U.S.S.N. 10/621,276

wherein m and p are each independently integers from 0 to 3; q_1 is an integer from 1 to 6; R^{2C} is hydrogen, lower alkyl, aryl or a nitrogen protecting group; R^{2D} is hydrogen or lower alkyl; and each occurrence of R^{2B} is independently hydrogen, halogen, -CN, -COOH, NO₂, alkyl, heteroalkyl, aryl, heteroaryl, or WR^{W1} wherein W is O, S, NR^{W2} , -C(=O), -S(=O), -SO₂, -C(=O)O-, -OC(=O), -C(=O)NR^{W2}, -NR^{W2}C(=O); wherein each occurrence of R^{W1} and R^{W2} is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR^{W2} , R^{W1} and R^{W2} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or any two adjacent occurrences of R^{2B} , taken together with the atoms to which they are attached, form a substituted or unsubstituted, saturated or unsaturated alicyclic or heterocyclic moiety, or a substituted or unsubstituted aryl or heteroaryl moiety.

47. (Original) The compound of claim 34 or 44, wherein either or both of R², R^{2A}, or R²

and R^{2A}, taken together with the nitrogen atom to which they are attached comprise ^E G^J k, wherein k is an integer from 0-3; A-B, B-D, D-E, E-G, G-J, two or more occurrences of J, and J-A are each connected by a single or double bond; A is CH, C, or N; B is CR^B, C(R^B)₂, C(=O), NR^B, N, O or S; D is CR^D, C(R^D)₂, C(=O), NR^D, N, O or S; E is CR^E, C(R^E)₂, C(=O), NR^E, N, O or S; G is CR^G, C(R^G)₂, C(=O), NR^G, N, O or S; and each occurrence of J is independently CR^J, C(R^J)₂, C(=O), NR^J, N, O or S; wherein each occurrence of R^B, R^D, R^E, R^G and R^J is independently hydrogen, halogen, hydroxyl, protected hydroxyl, thiol, protected thiol, amino, protected amino, -COOH, -CONH₂, -NHCOOH, -NHCOO(alkyl), -NHCO(alkyl), or a substituted or unsubstituted, cyclic or acyclic, linear or branched alkyl or heteroalkyl moiety, or a substituted or unsubstituted aryl or heteroaryl moiety, or any two or R^B, R^D, R^E, R^G or R^J taken together comprises a substituted or unsubstituted aryl or heteroaryl moiety.

Page 23 of 34

- 48. (Original) The compound of claim 34 or 44, wherein one or both of R² and R^{2A} is an aryl or heteroaryl moiety substituted with -COOH, halogen, alkyl, heteroalkyl, aryl, heteroaryl, OH, SH, NO₂, NH₂, or -NHC(=O)alkyl.
- 49. (Previously presented) The compound of claim 32 or 44, wherein R^{4A} is C(=O)OH, -C(=O)NHOH or a moiety having the structure:

- 50. (Previously presented) The compound of claim 32 or 44, wherein R^{4A} is C(=O)NHOH.
- 51. (Original) The compound of claim 1 having the structure:

52. (Original) The compound of claim 1 having the structure:

53. (Original) A pharmaceutical composition comprising:

a compound of any one of claims 1, 22, 32, 34 or 44; and

a pharmaceutically acceptable carrier or diluent, optionally further comprising an additional therapeutic agent.

- 54. (Original) The pharmaceutical composition of claim 53, wherein the compound is present in an amount effective to inhibit histone deacetylase activity.
- 55. (Withdrawn) A method for inhibiting histone deacetylase activity in a patient or a biological sample, comprising administering to said patient, or contacting said biological sample with an effective inhibitory amount of a compound of claim 1, 22, 32, 34 or 44.
- 56. (Withdrawn) A method for inhibiting histone deacetylase activity in a cell comprising contacting a cell with a compound of any one of claims 1, 22, 32, 34 or 44.
- 57. (Withdrawn) The method of claim 55, wherein the histone deacetylase is HDAC1 or HDAC6.
- 58. (Withdrawn) A method for treating cancer comprising: administering to a subject in need thereof a therapeutically effective amount of a compound of any one of claims 1, 22, 32, 34 or 44.
- 59. (Withdrawn) The method of claim 58, further comprising administering an additional therapeutic agent.
- 60. (Withdrawn) A method for the synthesis of a compound of claim 9 wherein n is 1, and the compound has the structure:

$$R^3$$
 $X \cdot R^2$
 OR^2
(III^A)

Page 25 of 34

said method comprising steps of:

providing an epoxy alcohol having the structure:

reacting the epoxy alcohol with a reagent having the structure R²XH under suitable conditions to generate a diol having the core structure:

$$OH OH X R^2$$

reacting the diol with a reagent having the structure R³CH(OMe)₂ under suitable conditions to generate a scaffold having the core structure:

$$R^3$$
 R^2
 R^2
 R^2
 R^3
 R^2
 R^2

wherein \mathbf{R}^1 is hydrogen, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

R² is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

X is -O-, $-C(R^{2A})_2$ -, -S-, or $-NR^{2A}$ -, wherein R^{2A} is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

or wherein two or more occurrences of R² and R^{2A}, taken together, form an alicyclic or heterocyclic moiety, or an aryl or heteroaryl moiety;

R³ is an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety; and

Page 26 of 34

R^Z is an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety and is attached to a solid support.

61. (Withdrawn) The method of claim 60, wherein R³ has the following structure:

and the method generates a scaffold having the core structure:

$$R^4$$
 $X \cdot R^2$
 QR^2

(VIII^A)

62. (Withdrawn) A method for the synthesis of a compound of claim 28 having the structure:

$$\begin{array}{c} R^{4C} \\ R^{4A} \\ R^{4C} \\ R^{4A} \\ R^{4A} \\ R^{2} \\ R^$$

said method comprising steps of:

providing an epoxy alcohol having the structure:

Page 27 of 34

reacting the epoxy alcohol with a reagent having the structure R²XH under suitable conditions to generate a diol having the core structure:

subjecting the diol with a reagent having the structure:

to suitable conditions to generate an amine having the structure:

$$X \\ R^2$$
 R^2
 R^2
 R^2
 R^2
 R^2

reacting the amine with a reagent having the structure:

under suitable conditions to generate a scaffold having the core structure:

$$\begin{array}{c} & & & \\ & &$$

wherein \mathbb{R}^1 is hydrogen, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

R² is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

X is -O-, $-C(R^{2A})_2$ -, -S-, or $-NR^{2A}$ -, wherein R^{2A} is hydrogen, a protecting group, or an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety;

or wherein two or more occurrences of R² and R^{2A}, taken together, form an alicyclic or heterocyclic moiety, or an aryl or heteroaryl moiety;

r is 0 or 1;

s is an integer from 2-5;

w is an integer from 0-4;

R^{4A} comprises a metal chelator;

each occurrence of R^{4D} is independently hydrogen, alkyl, heteroalkyl, cycloalkyl, heterocyclic, alkenyl, alkynyl, aryl, heteroaryl, halogen, CN, NO₂, or WR^{W1} wherein W is O, S, NR^{W2}, -C(=O), -S(=O), -SO₂, -C(=O)O-, -OC(=O), -C(=O)NR^{W2}, -NR^{W2}C(=O); wherein each occurrence of R^{W1} and R^{W2} is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR^{W2}, R^{W1} and R^{W2}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or any two adjacent occurrences of R^{2B}, taken together with the atoms to which they are attached, form a substituted or unsubstituted, saturated or unsaturated alicyclic or heterocyclic moiety, or a substituted or unsubstituted aryl or heteroaryl moiety; and

R^Z is an aliphatic, alicyclic, heteroaliphatic, heterocyclic, aromatic or heteroaromatic moiety and is attached to a solid support.

- 63. (Withdrawn) The method of claim 60 or 62, wherein the method further comprises cleaving the core structure from the solid support to which it is attached.
- 64. (Withdrawn) The method of claim 60 or 62, wherein R^{4A} comprises -C(=O)OR^{4B}, -C(=O)NHOR^{4B} or a moiety having the structure:

wherein each occurrence of R^{4B} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

65. (Withdrawn) The method of claim 64, wherein R^{4B} is hydrogen.