```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings('ignore')
data=pd.read_csv("/home/placement/Downloads/fiat500.csv")
```

### In [2]: data.describe()

## Out[2]:

|   |      | ID          | engine_power | age_in_days | km            | previous_owners | lat         | lon         | price        |
|---|------|-------------|--------------|-------------|---------------|-----------------|-------------|-------------|--------------|
| C | ount | 1538.000000 | 1538.000000  | 1538.000000 | 1538.000000   | 1538.000000     | 1538.000000 | 1538.000000 | 1538.000000  |
| m | nean | 769.500000  | 51.904421    | 1650.980494 | 53396.011704  | 1.123537        | 43.541361   | 11.563428   | 8576.003901  |
|   | std  | 444.126671  | 3.988023     | 1289.522278 | 40046.830723  | 0.416423        | 2.133518    | 2.328190    | 1939.958641  |
|   | min  | 1.000000    | 51.000000    | 366.000000  | 1232.000000   | 1.000000        | 36.855839   | 7.245400    | 2500.000000  |
| ; | 25%  | 385.250000  | 51.000000    | 670.000000  | 20006.250000  | 1.000000        | 41.802990   | 9.505090    | 7122.500000  |
|   | 50%  | 769.500000  | 51.000000    | 1035.000000 | 39031.000000  | 1.000000        | 44.394096   | 11.869260   | 9000.000000  |
|   | 75%  | 1153.750000 | 51.000000    | 2616.000000 | 79667.750000  | 1.000000        | 45.467960   | 12.769040   | 10000.000000 |
|   | max  | 1538.000000 | 77.000000    | 4658.000000 | 235000.000000 | 4.000000        | 46.795612   | 18.365520   | 11100.000000 |
|   |      |             |              |             |               |                 |             |             |              |

In [3]: datal=data.loc[(data.previous\_owners==1)]

In [4]: data1

Out[4]:

|      | ID   | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       | price |
|------|------|--------|--------------|-------------|--------|-----------------|-----------|-----------|-------|
| 0    | 1    | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  | 8900  |
| 1    | 2    | рор    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 | 8800  |
| 2    | 3    | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 | 4200  |
| 3    | 4    | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 | 6000  |
| 4    | 5    | рор    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 | 5700  |
|      |      |        |              |             |        |                 |           |           |       |
| 1533 | 1534 | sport  | 51           | 3712        | 115280 | 1               | 45.069679 | 7.704920  | 5200  |
| 1534 | 1535 | lounge | 74           | 3835        | 112000 | 1               | 45.845692 | 8.666870  | 4600  |
| 1535 | 1536 | рор    | 51           | 2223        | 60457  | 1               | 45.481541 | 9.413480  | 7500  |
| 1536 | 1537 | lounge | 51           | 2557        | 80750  | 1               | 45.000702 | 7.682270  | 5990  |
| 1537 | 1538 | рор    | 51           | 1766        | 54276  | 1               | 40.323410 | 17.568270 | 7900  |

1389 rows × 9 columns

# Out[5]:

|      | model  | engine_power | age_in_days | km     | previous_owners | price |
|------|--------|--------------|-------------|--------|-----------------|-------|
| 0    | lounge | 51           | 882         | 25000  | 1               | 8900  |
| 1    | pop    | 51           | 1186        | 32500  | 1               | 8800  |
| 2    | sport  | 74           | 4658        | 142228 | 1               | 4200  |
| 3    | lounge | 51           | 2739        | 160000 | 1               | 6000  |
| 4    | pop    | 73           | 3074        | 106880 | 1               | 5700  |
|      |        |              |             |        |                 |       |
| 1533 | sport  | 51           | 3712        | 115280 | 1               | 5200  |
| 1534 | lounge | 74           | 3835        | 112000 | 1               | 4600  |
| 1535 | pop    | 51           | 2223        | 60457  | 1               | 7500  |
| 1536 | lounge | 51           | 2557        | 80750  | 1               | 5990  |
| 1537 | pop    | 51           | 1766        | 54276  | 1               | 7900  |

1538 rows × 6 columns

In [6]: data2=pd.get\_dummies(data2)
data2

### Out[6]:

|      | engine_power | age_in_days | km     | previous_owners | price | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|-------|--------------|-----------|-------------|
| 0    | 51           | 882         | 25000  | 1               | 8900  | 1            | 0         | 0           |
| 1    | 51           | 1186        | 32500  | 1               | 8800  | 0            | 1         | 0           |
| 2    | 74           | 4658        | 142228 | 1               | 4200  | 0            | 0         | 1           |
| 3    | 51           | 2739        | 160000 | 1               | 6000  | 1            | 0         | 0           |
| 4    | 73           | 3074        | 106880 | 1               | 5700  | 0            | 1         | 0           |
|      |              |             |        |                 |       |              |           |             |
| 1533 | 51           | 3712        | 115280 | 1               | 5200  | 0            | 0         | 1           |
| 1534 | 74           | 3835        | 112000 | 1               | 4600  | 1            | 0         | 0           |
| 1535 | 51           | 2223        | 60457  | 1               | 7500  | 0            | 1         | 0           |
| 1536 | 51           | 2557        | 80750  | 1               | 5990  | 1            | 0         | 0           |
| 1537 | 51           | 1766        | 54276  | 1               | 7900  | 0            | 1         | 0           |

1538 rows × 8 columns

In [7]: #adding to seperate dataframe the value, we want to predict
y=data2['price']
#removing the value we want to predict from orginal dataframe
x=data2.drop('price',axis=1)

```
In [8]: y
Out[8]: 0
                    8900
                    8800
          2
                    4200
          3
                    6000
           4
                    5700
          1533
                    5200
          1534
                    4600
          1535
                    7500
          1536
                    5990
          1537
                    7900
          Name: price, Length: 1538, dtype: int64
In [9]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [10]: x\_train

Out[10]:

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 527  | 51           | 425         | 13111  | 1               | 1            | 0         | 0           |
| 129  | 51           | 1127        | 21400  | 1               | 1            | 0         | 0           |
| 602  | 51           | 2039        | 57039  | 1               | 0            | 1         | 0           |
| 331  | 51           | 1155        | 40700  | 1               | 1            | 0         | 0           |
| 323  | 51           | 425         | 16783  | 1               | 1            | 0         | 0           |
|      |              |             |        |                 |              |           |             |
| 1130 | 51           | 1127        | 24000  | 1               | 1            | 0         | 0           |
| 1294 | 51           | 852         | 30000  | 1               | 1            | 0         | 0           |
| 860  | 51           | 3409        | 118000 | 1               | 0            | 1         | 0           |
| 1459 | 51           | 762         | 16700  | 1               | 1            | 0         | 0           |
| 1126 | 51           | 701         | 39207  | 1               | 1            | 0         | 0           |

1030 rows × 7 columns

In [11]: x\_test

Out[11]:

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 481  | 51           | 3197        | 120000 | 2               | 0            | 1         | 0           |
| 76   | 62           | 2101        | 103000 | 1               | 0            | 1         | 0           |
| 1502 | 51           | 670         | 32473  | 1               | 1            | 0         | 0           |
| 669  | 51           | 913         | 29000  | 1               | 1            | 0         | 0           |
| 1409 | 51           | 762         | 18800  | 1               | 1            | 0         | 0           |
|      |              |             |        |                 |              |           |             |
| 291  | 51           | 701         | 22000  | 1               | 1            | 0         | 0           |
| 596  | 51           | 3347        | 85500  | 1               | 0            | 1         | 0           |
| 1489 | 51           | 366         | 22148  | 1               | 0            | 1         | 0           |
| 1436 | 51           | 1797        | 61000  | 1               | 1            | 0         | 0           |
| 575  | 51           | 366         | 19112  | 1               | 1            | 0         | 0           |

508 rows × 7 columns

```
In [12]: y_train
Out[12]: 527
                   9990
         129
                   9500
         602
                   7590
         331
                   8750
         323
                   9100
         1130
                 10990
         1294
                  9800
         860
                   5500
         1459
                   9990
         1126
                   8900
         Name: price, Length: 1030, dtype: int64
In [13]: y_test
Out[13]: 481
                   7900
         76
                   7900
         1502
                   9400
         669
                   8500
                   9700
         1409
         291
                 10900
         596
                   5699
         1489
                  9500
         1436
                   6990
         575
                 10900
         Name: price, Length: 508, dtype: int64
```

localhost:8889/notebooks/elastic.ipynb

```
In [14]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train, y train)
Out[14]:
                GridSearchCV
          ▶ estimator: ElasticNet
                ▶ ElasticNet
In [19]: elastic regressor.best params
Out[19]: {'alpha': 0.01}
In [20]: elastic=ElasticNet(alpha=0.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [21]: from sklearn.metrics import mean squared error#calculating MSE
         elastic Error=mean squared error(y pred elastic,y test)
         elastic Error
Out[21]: 581390.7642825295
In [18]: from sklearn.metrics import r2_score
         r2 score(y test,y pred elastic)
Out[18]: 0.841688021120299
```

localhost:8889/notebooks/elastic.ipynb

```
In [22]: Results=pd.DataFrame(columns=['actual','predicted'])
    Results['actual']=y_test
    Results['predicted']=y_pred_elastic
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(15)
```

## Out[22]:

|    | index | actual | predicted    | ld |
|----|-------|--------|--------------|----|
| 0  | 481   | 7900   | 5867.742075  | 0  |
| 1  | 76    | 7900   | 7136.527402  | 1  |
| 2  | 1502  | 9400   | 9865.726723  | 2  |
| 3  | 669   | 8500   | 9722.573593  | 3  |
| 4  | 1409  | 9700   | 10038.936496 | 4  |
| 5  | 1414  | 9900   | 9653.407122  | 5  |
| 6  | 1089  | 9900   | 9672.438692  | 6  |
| 7  | 1507  | 9950   | 10118.075470 | 7  |
| 8  | 970   | 10700  | 9903.219809  | 8  |
| 9  | 1198  | 8999   | 9350.750929  | 9  |
| 10 | 1088  | 9890   | 10433.808937 | 10 |
| 11 | 576   | 7990   | 7731.059127  | 11 |
| 12 | 965   | 7380   | 7697.260395  | 12 |
| 13 | 1488  | 6800   | 6569.177338  | 13 |
| 14 | 1432  | 8900   | 9662.252449  | 14 |

In [23]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='actual',data=Results.head(50))
sns.lineplot(x='Id',y='predicted',data=Results.head(50))
plt.plot()

# Out[23]: []

