

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Introdução ao Cálculo — Avaliação P1 Prof. Adriano Barbosa

Química	11/07/2023

1	
2	
3	
4	
5	
Nota	

Aluno(a):....

Todas as respostas devem ser justificadas.

1. Represente os intervalos abaixo geometricamente:

(a)
$$A = [0, 3]$$

(e)
$$A \cap B$$

(b)
$$B = (-2, 2]$$

(f)
$$A \cup B$$

(c)
$$C = (-\infty, 1]$$

(g)
$$C \cap D$$

(d)
$$D = (0, \infty)$$

(h)
$$C \cup D$$

2. Determine os algarismos que faltam em cada fração:

(a)
$$\frac{3}{5} + \frac{3}{2} = \frac{3}{35}$$

(b)
$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} = \frac{2}{2}$$

(c)
$$\frac{126}{8} = \frac{21}{8}$$

- 3. Duas pessoas combinaram de se encontrar entre 13h e 14h, no exato instante em que a posição do ponteiro dos minutos do relógio coincidisse com a posição do ponteiro das horas. Dessa forma, qual o horário que o encontro foi marcado?
- 4. Que condições a medida do lado de um quadrado deve satisfazer para que sua área seja numericamente maior que seu perímetro?
- 5. Uma sorveteria vende 130 picolés por dia por R\$ 5,00 cada. Observou-se que, durante uma promoção de verão, cada vez que diminuia R\$ 0,50 no preço do picolé, vendia 20 unidades a mais por dia. Qual deve ser o preço do picolé para que a receita da sorveteria seja máxima?

$$\frac{1}{-3} \frac{1}{-2} \frac{1}{-1} \frac{0}{0} \frac{1}{2} \frac{1}{3}$$

$$\frac{2}{3} = \frac{1}{-3} = \frac{1}{-2} = \frac{1}{1} = \frac{1}{2} = \frac{1}{3}$$

(2) a) Como
$$35 = 5.7$$
, temos $\frac{3}{5} + \frac{3}{7} = \frac{3.7 + 3.5}{35} = \frac{36}{35}$

b) Temos que mmc(2,4,6) = 12, logo

$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} = \frac{1.6 + 3.3 + 5.2}{12} = \frac{25}{12}$$

C) Como
$$126 = 2.3^2.7$$
 e $21 = 3.7$, 0 $126 \mid 2$

numerador da primeira fraçau foi $21 \mid 3$

dividido por 6. Testando o deno-

minador, o único divisível por 6 é

84. Assim, a primeira fraçau é $\frac{126}{84}$

e a segunda é $\frac{21}{14}$.

3 A cada minuto o ponteiro das horas se move $\frac{360}{12.60} = 0.5^{\circ}$ enquanto que o ponteiro dos minutos se move $\frac{360}{60} = 6^{\circ}$.

Assim, o ângulo que o ponteiro das horas faz com a vertical quando o ponteiro dos minutos aponta para o minuto x, $0 \le x \le 60$, é $H(x) = \frac{360^{\circ}}{12} + 0.5^{\circ}x = 30^{\circ} + 0.5^{\circ}x$.

De modo que em uma hora ele $\frac{7}{4}$ ando de $H(0) = 30^{\circ} (13h)$ até $H(60) = 60^{\circ} (14h)$.

Já o ponteiro dos minutos faz ângulo M(x) = 6x.

Ourremos o valor de x tal que $H(x) = M(x) \implies 0.5x + 30 = 6x$

$$\Rightarrow \frac{5}{10}x + 30 = 6x \Rightarrow 6x - \frac{5}{10}x = 30 \Rightarrow \frac{55}{10}x = 30$$

$$\Rightarrow$$
 $\chi = \frac{300}{55} = \frac{60}{11} \approx 5,45$. O encontro foi marcado às 13h05m275.

$$\bigoplus_{\chi} \begin{bmatrix} \chi \\ \chi \\ \chi \end{bmatrix} \chi$$

Queremos x tal que:

$$x^{2} > 4x \Rightarrow x^{2} - 4x > 0 \Rightarrow x(x-4) > 0$$

 $A = x^2$ Como x > 0 sempre, precisamos que P = 4x $x-4>0 \Rightarrow x>4.$

#piolés 130 130+20 130+2·20 130+3·20
$$\frac{1}{5}$$
 pre $\frac{1}{9}$ un. $\frac{1}{5}$ 100 $\frac{1}{5}$ 100-2·0,50 $\frac{1}{5}$ 100-3·0,50 $\frac{1}{5}$ faturamento $\frac{1}{5}$ 650,00 $\frac{1}{5}$ 680,00 $\frac{1}{5}$ 665,00

Chamando de x o número de vezes que o desconto foi aplicado, temos que o faturamento é dodo por

$$f(x) = (130 + 20x) \cdot (5 - 0.5x) = 650 - 65x + 100x - 10x^{2}$$

$$=) f(x) = -10x^{2} + 35x + 650$$

Calculando os zeros de f:

$$\Delta = 35^2 - 4(-10) \cdot 650 = 27225$$

$$\therefore \chi = \frac{-35 \pm 165}{-20} \implies \chi = -6.5 \text{ ou } \chi = 10.$$

O máximo de f ocorre em x=1,75 e o picolé deve ser vendido a R\$4,125 para que o faturamento seja máximo.