Task 3: Quick Sort Recurrence

(ii) Let $g(n) = \frac{f(n)}{n+1}$. Can you write what you have in terms of the function g?

From (3)
$$n \cdot f(n) = 2n + (n+1) f(n-1)$$

$$f(n) = \frac{2n + (n+1) f(n-1)}{n}$$

$$g(n) = \frac{f(n)}{n+1} = \frac{2n + (n+1) f(n-1)}{n} \cdot \frac{1}{n+1}$$

$$= \frac{2n}{n(n+1)} + \frac{(n+1) f(n-1)}{n(n+1)}$$

$$g(n) = \frac{2}{(n+1)} + \frac{f(n-1)}{n}$$

$$(4)$$

Since $g(n) = \frac{f(n)}{n+1}$ then $g(n-1) = \frac{f(n-1)}{n}$, let's plug it in equation (4)

So
$$g(n) = \frac{2}{(n+1)} + g(n-1)$$

(iii) Your task in this step is to find a closed form for g

Since,
$$g(n) = \frac{f(n)}{n+1}$$
 and $f(0) = 0$, then $g(0) = \frac{0}{1} = 0$

$$g(n) = \frac{2}{(n+1)} + g(n-1)$$

$$g(n) = \frac{2}{(n+1)} + \frac{2}{(n)} + g(n-2)$$

$$g(n) = \frac{2}{(n+1)} + \frac{2}{(n)} + \frac{2}{(n-1)} + g(n-3)$$

$$g(n) = \frac{2}{(n+1)} + \frac{2}{(n)} + \frac{2}{(n-1)} + \frac{2}{(n-2)} + g(n-4)$$

$$g(n) = \frac{2}{(n+1)} + \frac{2}{(n)} + \frac{2}{(n-1)} + \frac{2}{(n-2)} + \dots + \frac{2}{3} + \frac{2}{2} + 2$$

$$g(n) = 2\left[\frac{1}{(n+1)} + \frac{1}{(n)} + \frac{1}{(n-1)} + \frac{1}{(n-2)} + \dots + \frac{1}{3} + \frac{1}{2} + 1\right]$$
(5)

We now see the pattern of the n-th Harmonic number $H_n = \frac{1}{(n)} + \frac{1}{(n-1)} + \frac{1}{(n-2)} + \dots + \frac{1}{2} + 1$

Then
$$H_{n+1} = \frac{1}{(n+1)} + \frac{1}{(n)} + \frac{1}{(n-1)} + \frac{1}{(n-2)} + \dots + \frac{1}{2} + 1$$
, substitute H_{n+1} in (5)
$$g(n) = 2[H_{n+1}]$$

In terms of an expression involving Harmonic numbers, $g(n) = 2[H_{n+1}]$

(iv) Let's find a closed form for f(n) and conclude that f(n) is $O(n \ln(n))$

Since
$$g(n) = \frac{f(n)}{n+1}$$
 then $f(n) = (n+1) \cdot g(n)$

$$f(n) = (n+1) \cdot g(n) \qquad ----(6)$$

From(iii), we know that $g(n) = 2[H_{n+1}]$, let substitute g(n) in (6)

So,
$$f(n) = (n+1)(2H_{n+1})$$

In terms of Big-O calculation the constant can be eliminated and now we have.

Running time of
$$f(n) = O(n) \cdot O(H_{n+1})$$

According from the fact that $H_n \le 1 + ln(n)$, then the worst-case running time H_n is O(ln(n)).

And the worst-case running time H_{n+1} is O(ln(n+1)).

Running time of
$$f(n) = O(n) \cdot O(\ln(n+1))$$

To conclude, the running time of f(n) is $O(n \ln(n))$