Exercice 1

Afin de chauffer un liquide, on fait passer un courant électrique dans une résistance. La température, en °C, du liquide à l'instant t, en secondes, est noté T(t). On admet que la fonction T, définie sur [0; 80], est solution de l'équation différentielle :

(E)
$$T' = -0.02T + 1$$

- **1.** Interpréter l'information T(0) = 20.
- **2.** Résoudre (E) sur [0; 80].
- 3. Déterminer la solution de (E) qui vérifie la condition initiale T(0)=20.
- **4.** Déterminer l'instant t_0 , en s, à partir duquel la température du liquide dépasse 40 °C. On arrondira au dixième de seconde.
- **1.** La température du liquide à l'instant t=0 est de 20 °C.
- **2.** On résout l'équation différentielle (E):
 - · Recherche d'une solution particulière constante :

Soit T_0 une solution particulière constante de (E).

On a donc : $T_0'=0$ et $-0.02T_0+1=0$. On en déduit : $T_0=\frac{1}{0.02}=50$.

· Recherche des solutions de l'équation homogène :

On résout l'équation différentielle T' = -0.02T:

Les solutions de cette équation homogène sont les fonctions définies sur [0; 80] par :

$$T(t) = ke^{-0.02t}$$

avec $k \in \mathbf{R}$.

· Conclusion:

Les solutions de (E) sont donc les fonctions définies sur [0; 80] par :

$$T(t) = ke^{-0.02t} + 50$$

avec $k \in \mathbf{R}$.

3. Soit T la solution de (E) telle que T(0) = 20.

$$T(0) = 20 \qquad \Longleftrightarrow \qquad ke^{-0.02 \times 0} + 50 = 20$$

$$\iff \qquad k + 50 = 20$$

$$\iff \qquad k = 20 - 50$$

$$\iff \qquad k = -30$$

Donc la solution T de (E) telle que T(0) = 20 est la fonction définie sur [0; 80] par :

$$T(t) = -30e^{-0.02t} + 50$$

4. On cherche l'instant t_0 , en s, à partir duquel la température du liquide dépasse 40 °C. On résout donc l'inéquation : T(t)>40

$$T(t) > 40 \qquad \Longleftrightarrow \qquad -30e^{-0.02t} + 50 > 40$$

$$\iff \qquad -30e^{-0.02t} > 40 - 50$$

$$\iff \qquad -30e^{-0.02t} > -10$$

$$\iff \qquad e^{-0.02t} < \frac{1}{3}$$

$$\iff \qquad -0.02t < \ln\left(\frac{1}{3}\right)$$

$$\iff \qquad t > -\frac{\ln\left(\frac{1}{3}\right)}{0.02}$$

$$\iff \qquad t > 50\ln(3)$$

La valeur approchée de $t_0=50\ln(3)$ est $t_0\approx 54.9$ s.

Donc la température du liquide dépasse 40 °C à partir de l'instant $t_0 \approx 54.9 \mathrm{\ s.}$

Dans cet exercice, les questions 1, 2, 3 et 4 peuvent être traitées de façon indépendante les unes des autres.

Un parachutiste est en chute libre dans l'air jusqu'à l'instant t=0 où il ouvre son parachute. Sa vitesse est alors de 50 m.s⁻¹. On admet par la suite que sa vitesse v, en m.s⁻¹, en fonction du temps t, en s, est solution de l'équation différentielle sur l'intervalle $[0; +\infty[$:

$$(E): y' = -5y + 10.$$

Question 1

La fonction constante g définie sur l'intervalle $[0 ; +\infty[$ par g(t)=2 est-elle une solution de l'équation différentielle (E)? Justifier la réponse.

Question 2

Montrer que les solutions de l'équation différentielle (E) sur l'intervalle $[0; +\infty[$ sont les fonctions f définies sur cet intervalle par $f(t) = ke^{-5t} + 2$, où k est un nombre réel donné.

Question 3

En admettant le résultat de la question précédente, montrer que la fonction v est donnée sur $[0 ; +\infty[$ par $v(t) = 48e^{-5t} + 2$.

Question 4

La distance parcourue, en mètre, par le parachutiste pendant les 10 premières secondes après ouverture du parachute est donnée par l'intégrale :

$$\int_0^{10} \left(48 e^{-5t} + 2 \right)$$

Calculer cette intégrale (arrondir à 10^{-1}).

Question 1

Soit g la fonction constante définie sur l'intervalle $[0 ; +\infty[$ par g(t)=2. g'(t)=0 et $-5g(t)+10=-5\times 2+10=0$ donc g'(t)=-5g(t)+10. Donc g est solution de l'équation différentielle (E).

Question 2

D'après le cours, les solutions de l'équation différentielle y'=ay sur l'intervalle $[0\;;\;+\infty[$ sont les fonctions f définies sur cet intervalle par $f(t)=k\mathrm{e}^{at}$, où k est un nombre réel quelconque, donc les solutions de l'équation différentielle y'=-5y sur l'intervalle $[0\;;\;+\infty[$ sont les fonctions f définies sur cet intervalle par $f(t)=k\mathrm{e}^{-5t}$, où k est un nombre réel quelconque.

Une solution de l'équation différentielle y'=-5y+10 est la somme d'une solution de l'équation différentielle y'=-5y et d'une solution constante de l'équation différentielle y'=-5y+10, donc les solutions de l'équation différentielle (E) sur l'intervalle $[0; +\infty[$ sont les fonctions f définies sur cet intervalle par $f(t)=k\mathrm{e}^{-5t}+2$, où k est un nombre réel quelconque.

Question 3

On sait que v est solution de (E) et que v(0)=50; donc $k\mathrm{e}^0+2=50$ donc k=48. La fonction v est donc donnée sur $[0\ ;\ +\infty[$ par $v(t)=48\mathrm{e}^{-5t}+2.$

Question 4

La distance parcourue, en mètre, par le parachutiste pendant les 10 premières secondes après ouverture du parachute est donnée par l'intégrale : $\int_0^{10} \left(48\mathrm{e}^{-5t} + 2\right)$.

Pour calculer cette intégrale, il faut trouver une primitive de la fonction v.

La fonction $t \mapsto \mathrm{e}^{at}$ avec $a \neq 0$, a pour primitive la fonction $t \mapsto \frac{\mathrm{e}^{at}}{a}$, donc la fonction v a pour primitive la fonction V définie par $V(t) = 48 \frac{\mathrm{e}^{-5t}}{-5} + 2t$ soit $V(t) = -9, 6\mathrm{e}^{-5t} + 2t$.

$$\int_0^{10} (48e^{-5t} + 2) = \left[V(t) \right]_0^{10} = V(10) - V(0) = \left(-9, 6e^{-5 \times 10} + 2 \times 10 \right) - \left(-9, 6e^{-5 \times 0} + 2 \times 0 \right)$$
$$= -9, 6e^{-50} + 20 + 9, 6 = 29, 6 - 9, 6e^{-50} \approx 29, 6$$