Package 'LSBP'

June 21, 2020

Type Package

Title Tractable Bayesian density regression via logit stick-breaking priors
Version 0.0.4
Date 2020-06-21
Author Tommaso Rigon
Maintainer Tommaso Rigon <tommaso.rigon@gmail.com></tommaso.rigon@gmail.com>
Description Posterior inference for the logit stick-breaking model with Gaussian kernels. The LSBP package is an implementation of the algorithms described in the paper: Rigon, T. and Durante, D. (2020). Tractable Bayesian Tractable Bayesian density regression via logit stick-breaking priors. Journal of Statistical Planning and Inference.
LazyData TRUE
Imports Rcpp (>= 0.12.9), Formula, mvtnorm, cluster, BayesLogit (>= 2.1)
LinkingTo Rcpp, RcppArmadillo
License MIT + file LICENSE
RoxygenNote 6.1.1
••
R topics documented:
control_ECM
control_Gibbs
control_VB
LSBP_density
LSBP_ECM
LSBP_Gibbs
LSBP_VB
predict.LSBP_ECM
predict.LSBP_Gibbs
predict.LSBP_VB 9 prior_LSBP 10
Index 12

2 control_Gibbs

control_ECM	Control parameters for the ECM algorithm	

Description

This auxiliary function can be used for specifying the settings (i.e. maximum number of iterations, tolerance level, initialization method), of the LSBP_ECM main function.

Usage

```
control_ECM(maxiter = 10000, tol = 0.001, method_init = "cluster")
```

Arguments

maxiter	An integer indicating the maximum number of iterations for the LSBP_ECM algorithm.
tol	A real number controlling the convergence of the algorithm. The LSBP_ECM algorithm stops when the difference between consecutive values of the log-posterior is smaller than tol.
method_init	The initialization criterium. By default, method_init='cluster' preallocates covariates into groups using clara. Other available methods are: method_init='random' and method_init='deterministic'.

Value

The function returns a list having the same entries provided as argument. Missing arguments are filled with default values.

control_Gibbs	Control parameters for the Gibbs sampling algorithm	

Description

This auxiliary function can be used for specifying the technical settings (i.e. number of MCMC iterations, burn-in, initialization method), of the LSBP_Gibbs main function.

Usage

```
control_Gibbs(R = 5000, burn_in = 1000, method_init = "cluster")
```

•	
R	An integer indicating the number of replications to be computed after the burn- in.
burn_in	An integer indicating the number of replication discarded as burn-in period.
method_init	The initialization criterium. By default, method_init='cluster' preallocates covariates into groups using clara. Other available possibilities are: method_init='random' and method_init='deterministic'.

control_VB 3

Value

The function returns a list having the same entries provided as argument. Missing arguments are filled with default values.

control_VB	Control parameters for the VB algorithm	

Description

This auxiliary function can be used for specifying the technical settings (i.e. maximum number of iterations, tolerance level, initialization method), of the LSBP_VB main function.

Usage

```
control_VB(maxiter = 10000, tol = 0.01, method_init = "cluster")
```

Arguments

A real number controlling the convergence of the algorithm. The LSBP_VB algorithm stops when the difference between consecutive values of the log-posterior is smaller than tol. method_init The initialization criterium. By default, method_init='cluster' preallocates covariates into groups using clara. Another available method is method_init='random'	maxiter	An integer indicating the maximum number of iterations for the VB algorithm.
is smaller than tol. method_init The initialization criterium. By default, method_init='cluster' preallocates	tol	A real number controlling the convergence of the algorithm. The LSBP_VB algo-
method_init The initialization criterium. By default, method_init='cluster' preallocates		rithm stops when the difference between consecutive values of the log-posterior
· · · · · · · · · · · · · · · · · · ·		is smaller than tol.
covariates into groups using clara. Another available method is method_init='random'	method_init	The initialization criterium. By default, method_init='cluster' preallocates
		$covariates\ into\ groups\ using\ \verb clara .\ Another\ available\ method\ is\ \verb method_init='random' .$

Value

The function returns a list having the same entries provided as argument. Missing arguments are filled with default values.

LSBP_density	Conditional density for a LSBP model	
--------------	--------------------------------------	--

Description

Evaluate the conditional density of a LSBP given the parameters.

Usage

```
LSBP_density(y, X1, X2, beta_kernel, beta_mixing, tau)
```

У	A value of which the conditional density has to be computed
X1	Anxp_kernel design matrix for the kernel
X2	An xp_mixing design matrix for the stick-breaking weights
beta_kernel	A $\mbox{H} \times \mbox{p_kernel}$ dimensional matrix of coefficients for the linear predictor of the kernel
beta_mixing	A H-1 \times p_mixing dimensional matrix of coefficients for the linear predictor of the stick-breaking weights
tau	A H dimensional vector of coefficients for the kernel precision

4 LSBP_ECM

Details

The function LSBP_density evaluates the conditional density of y given the parameters

LSBP_ECM	ECM algorithm for the LSBP model

Description

This function is an implementation of the expectation maximization Algorithm 2 in Rigon, T. and Durante, D. (2020).

Usage

```
LSBP_ECM(Formula, data, H, prior, control = control_ECM(),
  verbose = TRUE)
```

Arguments

Formula	An object of class Formula: a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
data	A data frame containing the variables of Formula. The data frame MUST be provided.
Н	An integer indicating the number of mixture components.
prior	A list of prior hyperparameters as returned by prior_LSBP. If missing, default prior values are used.
control	A list as returned by control_ECM.
verbose	A logical value indicating whether additional information should be displayed while the algorithm is running.

Details

The Formula specification contains the response, separated from the covariates with the symbol ' \sim ', and two sets of covariates. The latters are separated by the symbol ' \mid ', indicating the kernel covariates and the mixing covariates, respectively. For example, one could specify $y \sim x1 + x2 \mid x3 + x4$. NOTE: if the second set of covariates is omitted then it is implicitly assumed that the two sets are the same.

If offsets or weights are provided in the Formula they will be ignored in the current version. A predict method is available and described at predict.LSBP_ECM.

Value

The output is an object of class 'LSBP_ECM' containing the following quantities:

- $\bullet \ \ \mathsf{param}. \ A \ \mathsf{list} \ \mathsf{containing} \ \mathsf{the} \ \mathsf{maximum} \ \mathsf{a} \ \mathsf{posteriori}, for \ \mathsf{each} \ \mathsf{set} \ \mathsf{of} \ \mathsf{coefficients} \ \mathsf{beta_mixing}, \mathsf{beta_kernel}, \mathsf{tau}.$
- cluster. A n dimensional vector containing, for each observation, the mixture component having with the highest probability.
- z. A n x H matrix containing the probabilities of belonging to each of the mixture components, where n denotes the number of observations.
- logposterior. The log-posterior of the model at convergence.

LSBP_Gibbs 5

- call. The input Formula.
- data. The input data frame.
- control. The control list provided as input.
- H. The input number of mixture components.
- prior. The input prior hyperparameters.

References

Rigon, T. and Durante, D., (2020), Tractable Bayesian density regression via logit stick-breaking priors. Journal of Statistical Planning and Inference.

Examples

```
## Not run:
data(cars)

# A model with constant kernels
fit_em <- LSBP_ECM(dist ~ 1 | speed, data=cars, H=4)
plot(cars)
lines(cars$speed,predict(fit_em))

# A model with linear kernels
fit_em <- LSBP_ECM(dist ~ speed | speed, data=cars, H=2)
plot(cars)
lines(cars$speed,predict(fit_em))

## End(Not run)</pre>
```

LSBP_Gibbs

Gibbs sampling algorithm for the LSBP model

Description

This function is an implementation of the Gibbs sampling Algorithm 1 in Rigon, T. and Durante, D. (2020).

Usage

```
LSBP_Gibbs(Formula, data, H, prior, control = control_Gibbs(), verbose = TRUE)
```

Formula	An object of class Formula: a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
data	A data frame containing the variables of Formula.
Н	An integer indicating the number of mixture components.
prior	A list of prior hyperparameters as returned by prior_LSBP. If missing, default prior values are used.
control	A list as returned by control_Gibbs.
verbose	A logical value indicating whether additional information should be displayed while the algorithm is running.

6 LSBP_Gibbs

Details

The Formula specification contains the response, separated from the covariates with the symbol ' \sim ', and two sets of covariates. The latters are separated by the symbol ' \mid ', indicating the kernel covariates and the mixing covariates, respectively. For example, one could specify $y \sim x1 + x2 \mid x3 + x4$. NOTE: if the second set of covariates is omitted it is implicitly assumed that the two sets are the same.

If offsets or weights are provided in the Formula they will be ignored in the current version. A predict method is available and described at predict.LSBP_Gibbs.

Value

The output is an object of class 'LSBP_Gibbs' containing the following quantities:

- param. A list containing MCMC replications for each set of coefficients: beta_mixing, beta_kernel, tau.
- logposterior. The log-posterior of the model at each MCMC iteration.
- call. The input Formula.
- data. The input data frame.
- control. The control list provided as input.
- H. The input number of mixture components.
- prior. The input prior hyperparameters.

References

Rigon, T. and Durante, D., (2020), Tractable Bayesian density regression via logit stick-breaking priors. Journal of Statistical Planning and Inference.

Examples

```
## Not run:
data(cars)

# A model with constant kernels
fit_gibbs <- LSBP_Gibbs(dist ~ 1 | speed, data=cars, H=4)
plot(cars)
lines(cars$speed,colMeans(predict(fit_gibbs)))

# A model with linear kernels
fit_gibbs <- LSBP_Gibbs(dist ~ speed | speed, data=cars, H=2)
plot(cars)
lines(cars$speed,colMeans(predict(fit_gibbs)))

## End(Not run)</pre>
```

LSBP_VB

LSBP_VB	Variational Bayes algorithm for the LSBP model	

Description

This function is an implementation of the variational Bayes Algorithm 3 in Rigon, T. and Durante, D. (2020).

Usage

```
LSBP_VB(Formula, data, H, prior, control = control_VB(),
  verbose = TRUE)
```

Arguments

Formula	An object of class Formula: a symbolic description of the model to be fitted. The details of model specification are given under 'Details'.
data	A data frame containing the variables of Formula.
Н	An integer indicating the number of mixture components.
prior	A list of prior hyperparameters as returned by prior_LSBP. If missing, default prior values are used.
control	A list as returned by control_VB.
verbose	A logical value indicating whether additional information should be displayed while the algorithm is running.

Details

The Formula specification contains the response, separated from the covariates with the symbol ' \sim ', and two sets of covariates. The latters are separated by the symbol ' \mid ', indicating the kernel covariates and the mixing covariates, respectively. For example, one could specify $y \sim x1 + x2 \mid x3 + x4$. NOTE: if the second set of covariates is omitted it is implictely assumed that the two sets are the same.

If offsets or weights are provided in the Formula they will be ignored in the current version. A predict method is available and described at predict.LSBP_VB.

Value

The output is an object of class 'LSBP_VB' containing the following quantities:

- param. A list containing the parameters for the variational approximation of each distribution: mu_mixing,Sigma_mixing,mu_kernel,Sigma_kernel,a_tilde,b_tilde.
- cluster. A n dimensional vector containing, for each observation, the mixture component having with the highest probability.
- z. A n x H matrix containing the probabilities of belonging to each of the mixture components, where n denotes the number of observations.
- logposterior. The log-posterior of the model at convergence.
- call. The input Formula
- data. The input data frame.

8 predict.LSBP_ECM

- control. The control list provided as input.
- H. The input number of mixture components.
- prior. The input prior hyperparameters.

References

Rigon, T. and Durante, D., (2020), Tractable Bayesian density regression via logit stick-breaking priors. Journal of Statistical Planning and Inference.

Examples

```
data(cars)

# A model with constant kernels
fit_vb <- LSBP_VB(dist ~ 1 | speed, data=cars, H=4)
plot(cars)
lines(cars$speed,colMeans(predict(fit_vb)))

# A model with linear kernels
fit_vb <- LSBP_VB(dist ~ speed | speed, data=cars, H=2)
plot(cars)
lines(cars$speed,colMeans(predict(fit_vb)))</pre>
```

predict.LSBP_ECM

Predict method for the LSBP

Description

Predict method for a LSBP estimated using the LSBP_ECM function.

Usage

```
## S3 method for class 'LSBP_ECM'
predict(object, type = "mean", newdata = NULL,
    threshold = NULL, ...)
```

Arguments

object An object of class LSBP_ECM.

type String indicating the type of prediction: type="mean",type="variance" or

type="cdf". See details.

newdata A new data frame containing the same variables declared in Formula. If missing,

the dataset provided for estimation is used.

threshold Only needed if type="cdf" is selected. See details. . . . Further arguments passed to or from other methods.

Details

The method predict.LSBP_ECM produces predicted values, obtained by evaluating the conditional mean (if type="mean"), the conditional variance (if type="variance") or the conditional cumulative distribution function (if type="cdf") at a given threshold, after plugging-in the MAP, and using the observations contained in the newdata data frame.

predict.LSBP_Gibbs 9

predict.LSBP_Gibbs	Predict method for the LSBP		
--------------------	-----------------------------	--	--

Description

Predict method for a LSBP estimated using the LSBP_Gibbs function.

Usage

```
## S3 method for class 'LSBP_Gibbs'
predict(object, type = "mean", newdata = NULL,
    threshold = NULL, ...)
```

Arguments

object	An object of class LSBP_Gibbs.
type	String indicating the type of prediction: type="mean",type="predictive",type="variance" or type="cdf". See details.
newdata	A new data frame containing the same variables declared in Formula. If missing, the dataset provided for estimation is used.
threshold	Only needed if type="cdf" is selected. See details.
	Further arguments passed to or from other methods.

Details

The method predict.LSBP_Gibbs produces a sample of predicted values, obtained by evaluating the conditional mean of the LSBP model or the predictive distribution, using the observations contained in the newdata data frame.

If type="mean" a sample from the posterior distribution of the LSBP mean is returned. If type="predictive" is selected, then a sample from the predictive distribution is returned. If type="variance" a sample from the posterior distribution of the LSBP variance is returned. If type="cdf" a sample from the posterior distribution of the LSBP cumulative distribution function is returned, evaluated at threshold.

|--|

Description

Predict method for a LSBP estimated using the LSBP_VB function.

Usage

```
## S3 method for class 'LSBP_VB'
predict(object, type = "mean", R = 5000,
   newdata = NULL, threshold = NULL, ...)
```

10 prior_LSBP

Arguments

object	An object of class LSBP_VB.
type	String indicating the type of prediction: type="mean",type="predictive", type="variance" or type="cdf". See details.
R	An integer indicating the number of replications for the returned sample.
newdata	A new data frame containing the same variables declared in Formula. If missing, the dataset provided for estimation is used.
threshold	Only needed if type="cdf" is selected. See details.
	Further arguments passed to or from other methods.

Details

The method predict.LSBP_VB produces a sample of predicted values, obtained by evaluating the conditional mean of the LSBP model or the predictive distribution, using the observations contained in the newdata data frame.

If type="mean" a sample from the posterior distribution of the LSBP mean is returned. If type="predictive" is selected, then a sample from the predictive distribution is returned. If type="variance" a sample from the posterior distribution of the LSBP variance is returned. If type="cdf" a sample from the posterior distribution of the LSBP cumulative distribution function is returned, evaluated at threshold.

prior_LSBP Prior specification for the LSBP model	prior_LSBP	Prior specification for the LSBP model	
---	------------	--	--

Description

This auxiliary function can be used for specifying the prior hyperparameters in the LSBP_Gibbs, LSBP_ECM, LSBP_VB main functions.

Usage

```
prior_LSBP(p_kernel, p_mixing, b_kernel = rep(0, p_kernel),
B_kernel = diag(10^6, p_kernel), b_mixing = rep(0, p_mixing),
B_mixing = diag(10^4, p_mixing), a_tau = 0.1, b_tau = 0.1)
```

5		
p_kernel, p_mixing		
	The dimension of the design matrices for the kernel component and the mixing component, respectively.	
b_kernel	A p_kernel dimensional vector representing the prior mean for the Gaussian kernel coefficients.	
B_kernel	A p_kernel x p_kernel matrix representing the prior covariance of the Gaussian kernel coefficients.	
b_mixing	A p_mixing dimensional vector containing the prior mean of the Gaussian mixing coefficients	
B_mixing	A p_mixing x p_mixing matrix representing the prior covariance of the Gaussian mixing coefficients.	
a_tau, b_tau	The hyperparameters of a Gamma prior distribution for the kernel precision.	

prior_LSBP 11

Value

The function returns a list having the same entries provided as argument. Missing arguments are filled with default values, although this is NOT recommended in general.

Examples

```
## Not run:
data(cars)
prior <- prior_LSBP(p_kernel=1, p_mixing=2, a_tau=1.5 ,b_tau=1.5)
fit_em <- LSBP_ECM(dist ~ 1 | speed, data=cars, H=4, prior=prior)
## End(Not run)</pre>
```

Index

```
clara, 2, 3
control_ECM, 2, 4
control_Gibbs, 2, 5
control_VB, 3, 7

Formula, 4, 5, 7

LSBP_density, 3
LSBP_ECM, 2, 4, 8, 10
LSBP_Gibbs, 2, 5, 9, 10
LSBP_VB, 3, 7, 9, 10

predict.LSBP_ECM, 4, 8
predict.LSBP_Gibbs, 6, 9
predict.LSBP_VB, 7, 9
prior_LSBP, 4, 5, 7, 10
```