Justification

George Salafatinos

December 19th, 2022

Definition 1 (Justified Proposition). A proposition Q is justified when for some proposition P, P and $P \implies Q$ are justified.

Definition 2. We call a set S of propositions **self-justifying** if for every $Q \in S$, P and $(P \implies Q)$ are elements of S. That is, every element of S is justified by some elements of S.

Corollary 0.1. If S_1, S_2 are self-justifying sets of propositions, $S_1 \cup S_2$ is self-justifying.

Theorem 0.2. For any $n \in \mathbb{N}$, there exists a self-justifying set S of propositions with |S| = n.

Proof. In the case n=0, there are no elements of S, so the definition self-justifying technically holds true. Otherwise, for $1 \le i \le n$, call $P_i := P_i \implies P_i$, and let $S = \{P_i : 1 \le i \le n\}$. Now let $Q \in S$. Then $Q \in S$, so $Q = Q \implies Q$ and in turn $(Q \implies Q) \in S$. Hence Q and $Q \implies Q$ are elements of S and Q is justified. Thus all elements of S are justified.

Theorem 0.3. Every finite self-justifying set S of propositions consists entirely of elements of the form $P := Q \implies R$ for some $Q, R \in S$.

Proof. Since every element of S is justified, there exists |S| elements in S of the form $Q \Longrightarrow R$ for some $Q, R \in S$. But that is all of the elements in S, so every element must be of the form $Q \Longrightarrow R$ for some $Q, R \in S$.