媒体与认知 第一次作业

(V1.0 2020.3.13)

本次作业通过多层感知机的编程实现,帮助同学们理解深度学习架构的基本要素。作业内容为多层感知机模型及优化求解方法实现,以及在手写数字样本集上进行训练和验证。

具体任务包括:

- 一、 选择题 (有助于理解本次编程作业)
- 二、补全程序代码
- 三、 自动评判程序实现效果
- 四、 调整参数运行程序
- 五、 提交程序及作业报告

本次作业原始成绩 100 分,选择题 5 分,补全程序代码 85 分,作业报告 10 分。

任务一、选择题

- 1. 根据如下代码,指出b,c的数组维度。
- a = np.arange(60.).reshape(3, 4, 5)
- b = np.sum(a , axis=0, keepdims=True)
- c = np.sum(a, axis=0)
- (A) b.shape=(3, 4, 5) c.shape=(4, 5)
- (B) b.shape=(1, 4, 5) c.shape=(4, 5)
- (C) b.shape=(3, 4, 5) c.shape=(1, 4, 5)
- (D) b.shape=(3, 4, 5) c.shape=(3, 4, 5)
- 2. 关于批量归一化,请阅读 https://tangshusen.me/Dive-into-DL-PyTorch/#/ "5.10.1.1 对全连接层做批量归一化",指出均值 (μ B) 和方差(σ ²)的含义。
 - (A) 神经网络中每层每个神经元节点输出都有均值和方差,是依据每个批次数据计算的。
 - (B) 神经网络中每层都有均值和方差,是依据每层所有神经元节点计算的。
 - (C) 神经网络中每层每个神经元节点输出都有均值和方差,是依据所有测试集数据计算的。
 - 3. 对于 Batchnorm, 是否有必要保持训练数据的均值和均值?

- (A) 是。因此我们需要记录训练过程的均值和方差的估计值,以便在测试时使用。
- (B) 否。
- 4. 关于 python 编程中的 zip 函数,请阅读 https://www.geeksforgeeks.org/zip-in-python/。 zip 函数有助于在一行代码中关联数据,例如,本次作业所附自动评判程序 "\autograder\hw1_autograder\tests\test_problems.py"中的第 163 行 "for i, (pred, gt) in enumerate(zip(dW, soldW)):"。请问你是否已阅读推荐的网页:
 - (A) 是。
 - (B) 否。
- 5. 如下哪种说法是正确的? 其中 w.shape = (input, output), x.shape = (batch size, input), b.shape = (1, output)。注: 如下使用点乘 dot 的地方也可以使用矩阵乘法 matmul。
 - (A) z = activationFunction(np.dot(x, b) + w)
 - (B) z = activationFunction(np.dot(x, w)) + b
 - (C) z = activationFunction(np.dot(x, w) + b)

任务二、补全程序代码

程序清单如下:

目录	说明		注意事项
\program\hw1	hw1.py	MLP 程序	需要补全代码
\program\mytorch	activation.py	激活函数	需要补全代码
	batchnorm.py	批归一化	
	linear.py	线性层	
	loss.py	目标函数	
\program\autograder\h	problems.py	自动评判编程作业任务	1. 运行 runner.py
w1_autograde	runner.py	自动评判编程作业的主控程	自动评判程序利用
	序		data.pkl 文件中存储的数
	data.pkl	自动评判编程作业参照数据	据及标准结果,与同学们
			完成的模型得到的结果
	test.py	训练及测试 MLP 的主控程序	进行比较,给出编程作业
			积分,此环节分值为 85
	setup.cfg	系统配置文件	分。
			2. 运行 test.py
			在 作 业 所 附 的
			MNIST 手写数字数据集
			上进行训练和验证。
\program\autograder\h	MNIST 手写	数字样本训练集、验证集和测	-
w1_autograder\data	试集,已转为	I numpy 格式	
\program\autograder\h	自动评判程序	具体实现	-
w1_autograder\tests			

请在程序"#ToDo:"及"???"提示处补全代码;补全代码后,将原有的"raise NotImplemented"语句删除或注释掉。

需要补全代码的清单如下:

序号	内容	程序	初始程序中	说明
, , ,		,—, •	"#ToDo:"	
			所在行数	
1	激活函数及其	\mytorch\activation	68	Sigmoid、Tanh、ReLU 相关说明可参见:
	导数:	.py	76	https://tangshusen.me/Dive-into-DL-
	Sigmoid	1.	92	PyTorch/#/
	Tanh		99	3.8.2.1 ReLU 函数
	ReLU		114	3.8.2.2 sigmoid 函数
	KCLO		121	3.8.2.3 tanh 函数
				310.213 tulin El 32
2	线性层(Linear	\mytorch\linear.py	39	线性层原理参见:
	Layer)		55	https://tangshusen.me/Dive-into-DL-
	<i>j</i> /			PyTorch/#/
				3.1 线性回归
				3.1.2.2 矢量计算表达式
3	目标函数	\mytorch\loss.py	57	LogSumExp Trick:
		,	67	http://cs231n.github.io/linear-
				classify/#softmax
				Derivative:
				https://web.stanford.edu/class/cs224n/read
				ings/gradient-notes.pdf
				参见第 4 页 "Cross-entropy loss with
				respect to logits"
4	批量归一化	\mytorch\batchnor	52	批量归一化原理参见:
		m.py	63	https://tangshusen.me/Dive-into-DL-
			73 98	PyTorch/#/
			98	5.10.1.1 对全连接层做批量归一化
				求导数的方法参见:
				水导数的万法参见: https://kevinzakka.github.io/2016/09/14/b
				atch normalization/
5	多层感知机	\hw1\hw1.py	67	多层感知机原理参见:
	2 /4 /G-/ IR- I/ U	1 7	102	https://tangshusen.me/Dive-into-DL-
			117	PyTorch/#/
			121	3.8 多层感知机
			139	
			143	
			147	
			151	
			178	
			233	
			240	

任务三、自动评判程序实现效果

Windows 平台	在 Windows 搜索框中搜索并打开 Anaconda Prompt。若需安装软
	件,可用鼠标右键点击"Anaconda Prompt"应用图标,选"以管
	理员身份运行"。 用 cd 命令进入作业所附程序解压生成的子目录
	program。若要换盘符,需用 "<盘符>:"命令,比如从 c 盘换至 d
	盘, 键入 d: 和回车即可。
	运行 python .\autograder\hw1_autograder\runner.py
Linux 平台	用 cd 命令进入作业所附程序解压生成的子目录 program。
	运行 python ./autograder/hw1_autograder/runner.py

若程序运行无误,将输出如图1所示的信息。

图 1. 自动评判程序预期输出信息

任务四、调整参数运行程序

Windows 平台	新建用于保存运行结果的目录,比如"c:\output"		
	打开 Anaconda Prompt, 用 cd 命令进入作业所附程序解压生成的		
	子目录 program。		
	运行 python .\autograder\hw1_autograder\test.pyoutpath c:\output		
Linux 平台	新建用于保存运行结果的目录,比如"~/output"。"~"代表用户主		
	目录,即 "/home/<用户名>"。		
	用 cd 命令进入作业所附程序解压生成的子目录 program。		
	运行 python ./autograder/hw1_autograder/test.pyoutpath ~/output		

尝试至少一种不同的 MLP 网络结构,修改 test.py 程序 visualize()函数中的如下语句,比如增加隐含层的层数或节点数,对比训练集和验证集上的错误率。

mlp = nn. MLP(784, 10, [32, 32, 32], [nn.Sigmoid(), nn.Sigmoid(), nn.Sigmoid(), nn.Sigmoid(), nn.Identity()], np.random.randn, bias_init, nn.SoftmaxCrossEntropy(),1e-3, momentum=0.856)

在运行程序命令行参数 "--outpath"所指定的输出目录中,有程序生成的 4 幅图片,如图 2 所示,分别是训练过程中随训练轮数(Epoch,一轮即是将训练集数据全部处理一遍)变化的训练集上的损失和错误率、验证集上的损失和错误率。关于网络结构调整的实验结果对比,同学们可自行设计图表展示展示训练集和验证集上的错误率的变化。

图 2 训练过程中训练集和验证集上的损失和错误率

任务五、提交作业

将 \hw1 和 \mytorch 子目录打包在一个文件中, Linux 平台可运行 sh create_tarball.sh 命令打包修改后的程序,将程序打包文件和作业报告一同提交到网络学堂。 作业报告中包括选择题答案,任务三、四运行结果,本次作业遇到的问题及解决方法,对本次作业的意见及建议。

相关 python 语言 numpy 数值计算编程知识请参见:

https://github.com/lijin-THU/notes-python/blob/master/03-numpy

其中矩阵的切片索引和不完全索引、转置和点乘等操作请参见:

https://github.com/lijin-THU/notes-python/blob/master/03-numpy/03.23-from-matlab-to-numpy.ipynb

【关于 Python 编程中的缩进】

Python 使用缩进来表示代码块隶属关系,不需要使用大括号 {} 。同一个代码块的语句必须包含相同的缩进空格数。每一级缩进的空格数规范为 4 个,不能出现Tab、中文空格混用现象。可用 sublime text 工具软件(https://www.sublimetext.com/)打开代码,全选所有内容就能看到哪些地方是空格,哪些地方是 Tab,(全选所有内容状态下,点表示空格,横线表示 Tab),需要将 Tab 替换成空格。

【关于程序的编辑与调试】建议使用 Anaconda 所带的 Spyder, 在 Anaconda Prompt 命令行窗口键入 spyder 即可启动 Spyder IDE 环境。 程序编辑也可以常用的编辑器,并在程序需要之处用 print 函数输出程序运行相关信息(比如某个变量的取值)进行手动调试。

【关于作业迟交的说明】 由于平时作业计入总评成绩,希望同学们能按时提交作业。若有特殊原因不能按时提交,请在提交截止时间之前给本次作业责任助教发 Email 说明情况并给出预计提交作业的时间。对于未能按时说明原因的迟交作业,若 迟交在一周以内本次作业成绩予以九折(90%)处理,一周以上本次作业成绩予以八 折(80%)处理。希望同学们理解并争取按时提交作业。

本次作业责任助教为黄翌青(Email: <u>huang-yq17@mails.tsinghua.edu.cn</u>)。

【致谢】本次编程作业原始资料由 CMU 11-785 Deep Learning 课程 http://deeplearning.cs.cmu.edu/ 主讲教师 Bhiksha Raj 教授提供,程序源代码由 6 字班 秦达飞、彭逸凡同学协助整理,黄翌青助教测试。