L. z.	L. m.	T1	T2	Т3	C1	C2	C3	C _{śr}	T _{śr}	metoda
500	20	9.79478	11.1067	10.049	31248	30781	30636	30888	10.3168	Normal (26997)
200	10	11.081	10.7892	11.4464	12550	12241	12304	12365	11.1055 333	ex10942
100	10	2.6193	1.95679	2.24937	6079	6648	6530	6419	2.27515 333	ex5375
20	10	0.90700	0.98847	0.58559	1976	1964	1990	1976.6 6667	0.82702	ex1557
L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
500	20	37.7346	37.7871	30.132	30119	30370	30132	30207	35.2179	Better Solution
200	10	38.6801	41.7135	39.8671	11887	11877	12087	11950. 3333	40.0869	
100	10	2.53261	2.84434	3.94788	6153	6361	6278	6264	3.10827 667	
20	10	0.91858	0.99498	0.71558	1790	1755	1770	1771.6 6667	0.87638	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	$T_{\acute{sr}}$	metoda
200	10	13.4779	14.3776	11.5622	12488	12249	12213	12316. 6667	13.1392 333	U=0.85
100	10	3.5478	2.2102	6.47028	6331	6368	6396	6365	4.07609 333	5375
20	10	1.63185	1.00662	1.28603	1802	1976	1814	1864	1.30816 667	1557
L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
200	10	20.8194	31.2834	33.1302	12627	12336	12364	12442. 3333	28.411	U=0.90
100	10	4.47439	4.91548	4.8405	6595	6665	6254	6504.6 6667	4.74345 667	
20	10	1.54846	3.50408	3.60959	1857	1947	2014	1939.3 3333	2.88737 667	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	Cśr	T _{śr}	metoda
200	10	60.3023	61.7782	28.7128	12388	12356	12160	12301. 3333	50.2644 333	U=0.95
100	10	11.0257	9.59069	10.0927	6591	6486	6707	6594.6 6667	10.2363 633	
20	10	2.2555	6.29053	7.24047	1923	1881	2043	1949	5.26216 667	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	Cśr	T _{śr}	metoda
200	10	281.622	306.659	249.123	12108	12246	12237	12197	279.134 667	U=0.99
100	10	50.0593	54.1099	49.2825	6606	6430	6411	6482.3 3333	51.1505 667	
20	10	24.2676	34.7333	27.5138	1954	1861	1882	1899	28.8382 333	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	Cśr	T _{śr}	metoda
200	10	10.71	12.604	9.9587	12336	12266	12197	12266. 3333	11.0909	insert
100	10	3.75461	2.25607	2.06128	6008	6481	6442	6310.3 3333	2.69065 333	

20	10	0.65490	0.54025	0.78714	2015	1871	1871	1919	0.66076 333	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	$T_{\acute{sr}}$	metoda
200	10	13.0668	12.8122	14.07	12063	12210	12256	12176. 3333	13.3163 333	Neh first
100	10	7.23128	6.63464	5.6642	6373	6492	6418	6427.6 6667	6.51004	
20	10	2.58338	1.34068	1.4856	1883	2003	1808	1898	1.80322	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
200	10	9.92298	9.61885	6.34718	12167	12404	12321	12297. 3333	8.62967	Cmax rozn
100	10	3.82554	7.01085	2.96395	6545	6235	6421	6400.3 3333	4.60011 333	
20	10	1.35584	0.66608	0.57893	1903	1840	1820	1854.3 3333	0.86695	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
200	10	4.62727	3.21787	3.36373	12125	12499	11968	12197. 3333	3.73629	prawdo p
100	10	7.74764	4.89998	4.12278	6512	6456	6681	6549.6 6667	5.59013 333	
20	10	1.42768	0.90342	0.77282	2029	1909	1909	1949	1.03464	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
200	10	2.27899	2.22605	3.50874	12357	12175	12313	12281. 6667	2.67126	Tk=1 Tp=100 0
200	10	1.65846	1.05938	0.52259	12259	12197	12203	12219. 6667	1.08014 333	Tk=1 Tp = 10
100	10	1.3746	0.83076	1.1703	6322	6503	6583	6469.3 3333	1.12522	Tk=1 Tp=100 0
100	10	0.57644	0.44346	0.38447	6569	6505	CEOE	6526.3	0.46812	Tk=1
20			0.44540	0.36447	0309	0303	6505	3333	333	Tp = 10
20	10		0.27576		1921	1838	1838			
20	10							3333 1865.6	333 0.54897	Tp = 10 Tk=1 Tp=100
		1.10059	0.27576	0.27058	1921	1838	1838	3333 1865.6 6667	333 0.54897 667	Tp = 10 Tk=1 Tp=100 0 Tk=1
20	10	1.10059 0.11003	0.27576	0.27058	1921 1739	1838 1739	1838 1739	3333 1865.6 6667 1739	333 0.54897 667 0.08339	Tp = 10 Tk=1 Tp=100 0 Tk=1 Tp = 10
20 L. z.	10 L. m.	1.10059 0.11003	0.27576 0.09740 T2	0.27058 0.05750	1921 1739 C1	1838 1739	1838 1739 C3	3333 1865.6 6667 1739	333 0.54897 667 0.08339	Tp = 10 Tk=1 Tp=100 0 Tk=1 Tp = 10 metoda

¹⁾ Wykonanie programu na 3.0

2) Porównanie najlepszego rozwiązania dla symulowanego wyżarzania z NEHem

L. z.	L. m.	T1	T2	T3	C1	C2	C3	Cśr	T _{śr}	metoda
500	20	37.7346	37.7871	30.132	30119	30370	30132	30207	35.2179	BetSol
200	10	38.6801	41.7135	39.8671	11887	11877	12087	11951	40.0869	
100	10	2.53261	2.84434	3.94788	6153	6361	6278	6264	3.10828	
20	10	0.91858	0.99498	0.71558	1790	1755	1770	1772	0.87638	
L. z.	L. m.	T1	T2	T3	C1	C2	C3	Cśr	T _{śr}	metoda
200	10	224.186	257.354	219.245	10942	10942	10942	10942	233,595	Q_NEH
100	10	33.0503	37.8120	29.3650	5375	5375	5375	5375	33.4091	
20	10	1.21354	1.02658	1.14967	1557	1557	1557	1557	1.12993	

L. z.	L. m.	C _{śr} BetSol	C _{śr} NEH	T _{śr}	T _{śr}
200	10	11951	10942	40.0869	233,595
100	10	6264	5375	3.10828	33.4091
20	10	1772	1557	0.87638	1.12993

Najbardziej zbliżony do najlepszych wyników (do wyników NEHa) okazuje się algorytm z modyfikacją zapamiętywania najlepszego rozwiązania. Okazuje się znacznie szybszy od NEHa, ale nie tak dokładny (jednak dużo dokładniejszy niż dla pozostałych modyfikacji).

3) Porównanie wyników dla ruchów Swap i Insert

L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
500	20	9.79478	11.1067	10.049	31248	30781	30636	30888	10.3168	Normal
								30000	10.5100	(26997)
200	10	11.081	10.7892	11.4464	12550	12241	12304	12365	11.1055	ex10942
								12303	333	
100	10	2.6193	1.95679	2.24937	6079	6648	6530	6419	2.27515	ex5375
								0415	333	
20	10	0.90700	0.98847	0.58559	1976	1964	1990	1976.6	0.82702	ex1557
								6667	0.82702	
200	10	10.71	12.604	9.9587	12336	12266	12197	12266.	11.0909	insert
								3333		
100	10	3.75461	2.25607	2.06128	6008	6481	6442	6310.3	2.69065	
								3333	333	
20	10	0.65490	0.54025	0.78714	2015	1871	1871	1919	0.66076	
									333	

L. z.	L. m.	C _{śr} Swap	C _{śr} Insert	T _{śr}	T _{śr}
200	10	12365	12266.3333	11.1055333	11.0909
100	10	6419	6310.33333	2.27515333	2.69065333
20	10	1976.66667	1919	0.82702	0.66076333

Dużo lepszy oraz szybszy okazuje się ruch typu Insert od ruchu typu Swap.

4) Analiza wpływu współczynnika u na wynik

L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
200	10	13.4779	14.3776	11.5622	12488	12249	12213	12316	13.1392	U=0.85
100	10	3.5478	2.2102	6.47028	6331	6368	6396	6365	4.07609	
20	10	1.63185	1.00662	1.28603	1802	1976	1814	1864	1.30816	
200	10	20.8194	31.2834	33.1302	12627	12336	12364	12442	28.411	U=0.90
100	10	4.47439	4.91548	4.8405	6595	6665	6254	6504.6	4.74345	
20	10	1.54846	3.50408	3.60959	1857	1947	2014	1940	2.88737	
200	10	60.3023	61.7782	28.7128	12388	12356	12160	12302	50.2644	U=0.95
100	10	11.0257	9.59069	10.0927	6591	6486	6707	6595	10.2363	
20	10	2.2555	6.29053	7.24047	1923	1881	2043	1949	5.26216	
200	10	281.622	306.659	249.123	12108	12246	12237	12197	279.134	U=0.99
100	10	50.0593	54.1099	49.2825	6606	6430	6411	6484	51.1505	
20	10	24.2676	34.7333	27.5138	1954	1861	1882	1899	28.8382	

Oczywistym wnioskiem jest fakt, że im większy współczynnik u tym więcej operacji musi zostać wykonanych, ponieważ temperatura zmniejsza się tym wolniej im większy jest współczynnik, zatem ilość iteracji rośnie. Cmax jest w losowych przypadkach leszy dla różnej wartości współczynników.

5) Analiza doboru temperatury końcowej i początkowej

L. z.	L. m.	T1	T2	T3	C1	C2	C3	Cśr	T _{śr}	metoda
200	10	2.27899	2.22605	3.50874	12357	12175	12313			Tk=1
								12282	2.67126	Tp=100 0
200	10	1.65846	1.05938	0.52259	12259	12197	12203			Tk=1
200	10	1.05040	1.05550	0.32233	12233	12137	12203	12220	1.08014	Tp = 10
100	10	1.3746	0.83076	1.1703	6322	6503	6583			Tk=1
								6470	1.12522	Tp=100
										0
100	10	0.57644	0.44346	0.38447	6569	6505	6505	6527	0.46812	Tk=1
								0327	0.40012	Tp = 10
20	10	1.10059	0.27576	0.27058	1921	1838	1838			Tk=1
								1866	0.54898	Tp=100
										0
20	10	0.11003	0.09740	0.05750	1739	1739	1739	1739	0.08339	Tk=1
								1/39	0.00555	Tp = 10

Im większy stosunek temperatury początkowej do końcowej tym więcej iteracji musi wykonać algorytm przy założeniu, że nie zmieniamy współczynnika u. Zatem operacja dla większego stosunku tych temperatur jest wolniejsza, przy tym w losowych przypadkach lepsza. Dla naszych badań lepszy daje rezultat, gdy stosunek temperatur jest mniejszy.

6) Analiza z pominięciem ruchu, gdy pomijamy prawdopodobieństwo równe 1 dla lepszego rozwiązania

L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
200	10	11.081	10.7892	11.4464	12550	12241	12304	12365	11.1055	normal
100	10	2.6193	1.95679	2.24937	6079	6648	6530	6419	2.27515	
20	10	0.90700	0.98847	0.58559	1976	1964	1990	1977	0.82702	
200	10	4.62727	3.21787	3.36373	12125	12499	11968	12197	3.73629	Prawd.
100	10	7.74764	4.89998	4.12278	6512	6456	6681	6550	5.59013	
20	10	1.42768	0.90342	0.77282	2029	1909	1909	1949	1.03464	

Losowo raz jedna raz druga metoda jest lepsza i szybsza.

7) Analiza dla różnych C_{maxów}

L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
200	10	11.081	10.7892	11.4464	12550	12241	12304	12365	11.1055	normal
100	10	2.6193	1.95679	2.24937	6079	6648	6530	6419	2.27515	
20	10	0.90700	0.98847	0.58559	1976	1964	1990	1977	0.82702	
200	10	9.92298	9.61885	6.34718	12167	12404	12321	12297	8.62967	Cmax R
100	10	3.82554	7.01085	2.96395	6545	6235	6421	6400	4.60011	
20	10	1.35584	0.66608	0.57893	1903	1840	1820	1854	0.86695	

Metoda dla pominięcia i uwzględniania tylko różnych Cmax'ów okazuje się znacznie lepsza od standardowej, jednak nie jest zawsze szybsza (tylko w jednym przypadku dla większej ilości zadań).

8) Analiza między kolejnością neutralną a kolejnością uzyskana przy pomocy algorytmu NEH

L. z.	L. m.	T1	T2	T3	C1	C2	C3	Cśr	T _{śr}	metoda
200	10	11.081	10.7892	11.4464	12550	12241	12304	12365	11.1055	normal
100	10	2.6193	1.95679	2.24937	6079	6648	6530	6419	2.27515	
20	10	0.90700	0.98847	0.58559	1976	1964	1990	1977	0.82702	
200	10	13.0668	12.8122	14.07	12063	12210	12256	12176	13.316	Neh first
100	10	7.23128	6.63464	5.6642	6373	6492	6418	6428	6.51004	
20	10	2.58338	1.34068	1.4856	1883	2003	1808	1898	1.80322	

Dokładniejsza okazuje się metoda, gdy najpierw posortujemy algorytmem neh, następnie dokonamy symulacji. Jest to jednak bardziej czasochłonna operacja.

9) Analiza dodatkowej modyfikacji

Modyfikacja została zrealizowana w taki sposób, że zostaje zainicjalizowane na samym początku dodatkowe rozwiązanie, które w późniejszym etapie służy do zapamiętywania lepszego rozwiązania, które jest zwracane na sam koniec. Dokładany dodatkowe operacje, zatem metoda ta jest wolniejsza od standardowej, jednak jej efekty są zdecydowanie lepsze.

L. z.	L. m.	T1	T2	T3	C1	C2	C3	C _{śr}	T _{śr}	metoda
500	20	9.79478	11.1067	10.049	31248	30781	30636	30888	10.3168	Normal
								30000	10.5100	ex26997
200	10	11.081	10.7892	11.4464	12550	12241	12304	12365	11.1055	ex10942
100	10	2.6193	1.95679	2.24937	6079	6648	6530	6419	2.27515	ex5375
20	10	0.90700	0.98847	0.58559	1976	1964	1990	1977	0.82702	ex1557
L. z.	L. m.	T1	T2	T3	C1	C2	C3	Cśr	T _{śr}	metoda
500	20	37.7346	37.7871	30.132	30119	30370	30132	30207	35.2179	Better
								30207	33.2179	Solution
200	10	38.6801	41.7135	39.8671	11887	11877	12087	11950	40.0869	
100	10	2.53261	2.84434	3.94788	6153	6361	6278	6264	3.10827	
20	10	0.91858	0.99498	0.71558	1790	1755	1770	1771	0.87638	

Стах	
Better Solution	Normal
30207	30888
11950	12365
6264	6419
1771	1977

Tśr	
Better Solution	Normal
35.2179	10.3168
40.0869	11.1055
3.10827	2.27515
0.87638	0.82702

Wykorzystane instancje:

```
200 10
17 30 28 15 52 5 53 55 81 47
37 26 82 67 82 44 43 65 44 51
22 2 88 57 17 2 43 38 46 44
71 29 33 64 66 98 56 76 3 27
79 98 69 23 62 27 48 45 93 76
37 67 28 9 57 10 83 99 14 4
69 92 92 1 58 25 34 84 86 76
53 51 66 2 91 27 93 67 23 49
59 53 92 43 42 41 95 40 59 5
64 82 30 73 69 59 48 93 47 25
11 86 67 94 48 89 63 70 76 23
```

```
67 47 53 96 46 36 93 45 45 67
27 36 93 78 18 62 91 75 64 55
64 23 45 14 94 29 94 91 10 40
59 34 7 32 83 17 32 21 4 58
31 66 70 23 48 37 81 72 29 26
43 43 58 83 81 35 69 15 69 36
42 71 58 29 57 47 29 73 46 83
56 31 17 75 93 37 44 43 68 65
88 36 41 55 67 52 2 62 89 91
71 41 56 91 19 3 66 40 48 77
86 6 34 44 65 87 25 43 68 62
6 28 62 46 49 4 60 96 13 6
54 43 81 59 45 50 69 39 36 57
92 18 44 11 22 96 44 23 85 87
75 64 95 20 92 74 34 79 35 4
83 28 50 68 41 68 68 66 25 11
2 13 88 3 38 30 77 19 21 60
60 7 19 17 26 69 31 41 44 23
62 13 50 55 2 17 10 71 40 87
83 93 25 59 90 34 57 60 20 50
73 93 88 18 79 95 21 72 83 18
55 56 1 31 17 3 56 62 76 23
3 72 6 84 61 24 36 17 26 24
71 71 45 61 81 51 26 25 50 82
34 28 29 55 67 55 11 59 98 16
40 95 2 46 18 60 6 95 6 96
13 96 54 77 1 61 86 47 83 37
62 55 71 59 36 15 2 10 51 29
56 58 81 98 31 38 89 94 46 19
28 66 22 23 85 83 28 39 99 26
53 3 57 18 92 62 62 53 65 56
71 77 16 17 6 84 63 50 46 33
5 80 88 70 78 44 52 99 24 53
73 2 5 73 83 80 12 63 47 6
95 82 52 38 39 48 13 59 24 95
23 86 23 13 74 45 43 30 32 63
49 16 21 77 77 54 99 67 66 84
17 29 21 74 85 71 11 18 48 13
81 24 58 79 88 10 70 12 83 6
88 89 96 51 25 96 82 9 3 19
62 96 37 48 33 23 14 41 74 16
35 99 46 16 36 8 39 67 97 80
78 15 78 93 32 56 83 52 39 37
90 49 87 29 82 35 4 39 80 20
36 78 91 28 98 72 86 90 27 62
46 48 9 6 3 53 93 25 70 81
98 64 96 82 46 13 87 13 65 52
75 3 93 40 68 72 82 81 1 14
36 63 98 9 11 38 78 3 26 67
74 14 31 88 30 1 32 8 46 19
86 95 78 51 75 69 82 66 8 86
67 88 20 48 42 85 24 67 74 1
87 9 75 1 93 2 88 51 47 53
68 61 18 4 36 28 45 54 19 21
1 24 34 77 97 18 48 85 85 33
87 38 48 48 1 10 67 10 62 68
87 50 49 6 63 70 14 95 33 28
7 47 69 1 86 67 34 59 96 25
34 42 88 32 54 95 76 64 33 69
1 30 30 79 33 72 1 90 5 71
91 97 34 40 71 64 51 28 23 60
7 49 22 14 1 19 15 48 43 69
```

```
6 79 81 20 18 60 67 57 63 99
46 19 50 86 75 31 57 85 10 53
3 80 40 40 55 29 3 78 47 77
45 30 73 25 62 43 37 18 73 27
55 24 91 94 21 17 15 59 1 29
92 58 7 73 71 78 50 11 19 83
67 43 1 44 80 28 75 67 92 22
13 6 71 98 5 47 80 36 31 10
30 95 72 94 48 78 3 24 29 42
27 43 8 61 87 77 9 59 68 64
19 99 68 65 22 92 28 24 31 80
51 22 49 44 5 42 44 39 92 73
86 99 7 75 71 86 2 1 48 91
20 11 47 4 69 6 71 80 87 38
95 99 90 17 75 19 89 58 8 60
79 60 59 1 72 28 24 76 90 53
48 42 39 12 36 18 73 59 57 38
83 33 49 78 54 4 28 90 40 19
91 68 28 51 24 24 98 92 25 14
78 78 22 55 55 57 17 3 49 35
41 26 10 53 5 82 27 51 26 10
61 77 96 96 40 7 90 1 35 44
90 1 2 92 56 4 4 55 90 97
57 13 88 82 8 94 13 50 99 17
4 67 90 20 19 9 83 15 30 50
21 87 69 22 7 57 43 31 5 22
68 31 44 13 12 82 63 99 52 19
87 49 74 40 44 98 68 8 12 70
62 90 16 43 66 54 74 44 11 88
69 6 90 23 39 2 12 91 72 31
79 76 7 30 41 71 69 83 32 7
69 94 14 16 60 94 38 75 81 81
35 76 47 76 11 69 74 66 21 58
25 79 48 30 31 51 98 98 81 2
68 66 36 59 65 80 86 77 64 89
14 51 62 64 16 79 72 8 45 1
9 14 1 72 67 85 76 6 4 80
74 89 63 61 19 56 53 26 10 52
61 87 86 13 69 79 94 47 90 15
58 1 49 81 56 46 45 55 11 25
81 65 48 25 96 71 30 39 88 11
52 53 3 90 78 85 39 91 52 97
93 19 51 67 36 52 60 78 96 90
44 21 80 21 56 42 69 49 92 62
57 98 86 70 12 66 12 23 44 69
89 90 97 96 37 82 83 92 54 34
81 45 4 99 1 91 21 68 28 66
69 77 58 64 50 48 25 88 85 54
98 54 79 68 43 70 50 9 51 84
78 86 28 61 58 21 47 38 21 62
70 2 19 36 13 82 43 60 4 71
3 3 93 57 55 12 58 2 42 70
70 88 88 86 87 94 11 8 43 60
62 39 44 10 20 17 63 86 55 54
81 56 74 57 84 45 74 62 89 52
61 24 18 88 28 68 6 41 4 71
65 91 95 59 59 60 23 66 1 9
65 86 2 73 65 93 94 94 97 99
33 80 22 43 56 30 93 54 65 41
62 58 7 25 2 5 26 9 38 30
19 54 82 37 36 31 49 75 87 23
57 57 52 70 41 30 30 43 58 60
```

```
82 42 17 97 7 71 50 9 47 1
78 32 59 29 23 29 47 10 53 67
94 5 42 33 25 82 89 79 51 55
65 43 51 99 81 20 43 10 40 64
14 80 79 34 6 13 32 97 80 21
9 86 93 96 67 94 45 39 20 16
29 47 65 65 5 47 47 30 24 94
70 95 27 90 89 57 68 74 77 11
90 86 25 52 71 95 13 52 37 90
86 40 60 95 86 8 86 90 13 48
12 31 72 3 48 46 97 12 29 85
40 61 29 64 50 80 2 61 28 34
12 12 55 21 54 32 16 34 18 7
64 64 58 16 21 7 27 88 22 79
32 17 22 70 83 34 38 27 75 95
18 52 58 67 27 33 53 68 24 50
11 56 61 13 38 33 37 14 79 78
40 35 89 96 79 18 94 88 99 39
14 60 67 57 71 29 78 74 35 79
22 75 14 7 53 19 84 71 45 69
49 10 10 30 2 74 49 14 95 27
95 50 40 96 9 58 25 16 46 42
82 66 11 98 49 52 59 46 15 15
7 53 99 72 79 10 36 47 7 51
19 58 7 31 39 70 33 54 24 44
95 12 20 11 28 78 15 91 45 71
39 66 78 36 39 59 36 89 20 32
71 81 6 10 70 32 47 59 35 66
34 51 71 20 72 20 83 39 61 49
89 75 48 26 70 12 24 52 97 8
63 71 39 67 38 98 71 91 69 7
85 46 58 13 48 18 7 21 78 44
60 88 7 60 57 12 6 90 13 1
91 58 17 50 11 57 55 58 53 15
49 73 63 28 38 73 43 74 16 6
46 27 73 32 37 91 82 30 94 51
10 26 43 49 56 46 40 63 59 91
19 38 14 54 64 64 78 19 64 33
50 48 66 46 64 92 64 18 72 77
65 8 59 15 68 45 96 88 13 69
41 14 75 49 27 86 27 22 47 28
58 58 96 94 36 84 99 43 22 8
62 89 28 63 94 15 11 60 9 8
45 44 12 96 65 99 91 20 68 48
67 16 99 43 89 8 78 32 4 7
64 20 63 73 23 87 97 67 67 55
6 69 19 19 93 61 23 1 92 51
77 67 26 19 14 42 48 42 49 89
94 80 8 81 57 25 20 95 23 61
24 81 72 82 93 35 99 84 37 82
38 82 55 69 60 64 39 37 16 39
73 27 67 13 82 74 53 30 39 89
59 5 1 85 16 40 3 12 47 47
61 44 23 32 69 89 65 87 94 24
14 38 35 34 57 4 81 13 71 79
59 53 6 57 8 43 47 60 36 86
83 16 89 69 52 12 25 92 72 60
3 48 93 63 98 28 36 52 67 67
46 16 88 49 67 68 44 51 78 10
16 31 86 56 19 46 29 91 13 61
56 79 37 37 56 23 85 76 68 60
40 75 53 54 38 3 26 32 36 68
```

7 14 45 60 75 70 4 81 69 72 79 67 32 97 69 81 9 57 28 9 55 70 69 44 14 14 59 71 69 47

^5375

20 10 49 3 60 12 75 31 70 20 88 9 49 53 88 47 19 61 78 78 30 41 15 59 15 46 60 47 41 38 34 22 18 7 26 17 87 32 9 26 33 34 65 65 11 43 27 34 47 64 21 83 55 58 16 16 48 69 94 62 7 55 1 24 55 91 72 32 26 11 94 3

```
79 55 59 94 88 1 65 38 10 8
10 26 81 73 48 1 17 68 73 75
37 40 53 89 59 80 42 37 85 30
77 89 92 12 74 19 59 74 82 57
80 94 23 58 86 57 80 9 62 65
79 51 55 25 49 98 7 65 99 89
84 74 79 24 94 37 75 16 67 60
93 54 13 55 15 31 63 38 61 90
21 86 89 1 95 51 96 85 10 84
85 22 2 67 41 66 7 50 4 74
64 83 17 3 94 38 10 62 70 17
46 19 97 1 15 62 47 39 31 2
35 44 41 71 71 72 38 97 49 19
```

^1557