Homework 4 - Math 525

Jack Brolin

July 2023

- **P.** 1 Consider the simplex method applied to a standard form problem and assume that the rows of the matrix A are linearly independent. For each of the statements that follow, give either a proof or a counterexample.
 - a. An iteration of the simplex method may move the feasible solution by a positive distance while leaving the cost unchanged.
 - b. A variable that has just left the basis cannot reenter in the very next iteration.
 - c. A variable that has just entered the basis cannot leave in the very next iteration.
 - d. If there is a nondegenerate optimal basis, then there exists a unique optimal basis.
 - e. If x is an optimal solution found by the simplex method, no more than m of its components can be positive, where m is the number of equality constraints.

P. 3 Solve completely (i.e., both Phase I and Phase II) via the simplex method the following problem:

$$\begin{array}{ll} \text{minimize} & 2x_1+3x_2+3x_3+x_4-2x_5\\ \text{subject to} & x_1+3x_2+4x_4+x_5=2\\ & x_1+2x_2-3x_4+x_5=2\\ & -x_1-4x_2+3x_3=1\\ & x_1,x_2,x_3,x_4,x_5\geq 0 \end{array}$$

We see 4 iterations of Phase I. We construct the first tableau with the introduction of auxiliary variables:

-5	-1	-1	-3	-1	-2	0	0	0
2	1	3	0	4	1	1	0	0
2 2 1	1	2	0	-3	1	0	1	0
1	-1	-4	3	0	0	0	0	1

We get 3 as the pivot variable with x_3 entering the basis and x_6 exiting. Performing the necessary operations we get:

-4	-2	-5	0	1	-2	0	1
2	1	3	0	4	1	0	0
2	1	2	0	-3	1	1	0
$^{1}/_{3}$	$ \begin{array}{c c} -2 \\ 1 \\ 1 \\ -\frac{1}{3} \end{array} $	$-\frac{4}{3}$	1	0	0	0	$^{1}\!/_{3}$

Note that we completely removed x_6 from the tableau as it no longer serves any purpose. We now let x_2 enter the basis with x_7 exiting:

$-^{2}/_{3}$	$-\frac{1}{3}$	0	0	$^{17}/_{3}$	$-\frac{1}{3}$	0
$^{2}/_{3}$	$^{1}/_{3}$	1	0	$^{4}/_{3}$	$^{1}/_{3}$	0
$^{2}/_{3}$	$\frac{1}{3}$	0	0	$-^{17}/_{3}$	$^{1}/_{3}$	1
$^{11}/_{9}$	$\frac{1}{9}$	0	1	$\frac{16}{9}$	$\frac{4}{9}$	0

Now we let x_1 enter with x_7 exiting. Thus we get the final tableau:

0	0	0	0	0	0
0	0	1	0	0	0
2	1	0	0	-17	1
1	0	0	1	$^{11}/_{3}$	$^{1}/_{3}$

and the basic feasible solution is x = (2, 0, 1, 0, 0).

Phase II

We copy over the same tableau and calculate the new reduced cost and cost to get :

7	2	3	3	-2	3
2	1	0	0	-17	0
0	0	1	0	7	0
1	0	0	1	$^{11}/_{3}$	$^{1}/_{3}$

We do one more iteration to get:

7	2	$^{23}/_{7}$	3	0	3
2	1		0	0	1
0	0		0	1	0
1	0		1	0	0

We now see that there are no more negative values in c so the optimal solution is x = (2,0,1,0,0). Note that we can leave some values blank as calculating them does not give any information useful to the problem.

P. 4 While solving a standard form problem, we arrive at the following tableau, with x_3, x_4 , and x_5 being the basic variables:

-10	δ	-2	0	0	0
4	-1	$\overline{\eta}$	1	0	0
1	α	-4	0	1	0
β	γ	3	0	0	1

The entries $\alpha, \beta, \gamma, \delta, \eta$ in the tableau are unknown parameters. For each one of the following statements, find some parameter values that will make the statement true:

- a. The current solution is optimal and there are multiple optimal solutions.
- b. The optimal cost is $-\infty$.
- c. The current solution is feasible but not optimal.

a.

b. Note that $\beta \geq 0$ for x to be feasible. We then have to find some u such that no component is positive. This, as seem from section 3.2, ensures that the optimal cost is $-\infty$. Thus, we choose $\delta \leq 0$ and $\alpha, \gamma < 0$. η is free. A possible tableau could be:

-10	-1	-2	0	0	0
4	-1	7	1	0	0
1	-1	-4	0	1	0
1	-1	3	0	0	1

c. To be feasible $\beta \geq 0$. The rest of the variables are free as long as at least one $\delta, \gamma, \alpha \geq 0$ to avoid an optimal cost of $-\infty$. We will require $\alpha, \beta, \gamma, \delta, \eta > 0$ giving a possible tableau of:

-10	5	-2	0	0	0
4	-1	1	1	0	0
1	1	-4	0	1	0
5	1	3	0	0	1

P. 6 Consider the following linear programming problem with a single constraint:

minimize
$$\sum_{i=1}^{n} c_i x_i$$

subject to
$$\sum_{i=1}^{n} a_i x_i = b$$

$$x_i \ge 0, \quad i = 1, \dots, n.$$

- a. Derive a simple test for checking the feasibility of this problem. (Hint: Discuss when b=0, b>0 and b<0)
- b. Assuming that the optimal cost is finite, develop a simple method for obtaining an optimal solution directly.
- a. As instructed, we break b into 3 cases:
 - * b = 0: This is trivial as x = 0 is always a solution
 - * b > 0: We only require some $a_j > 0$ as we can choose x such that $x_i = 0 \quad \forall i \neq j$ and $x_j = \frac{b}{a_j}$.
 - * b < 0: Similarly, this is feasible of some $a_j < 0$. Again, we can always choose some x such that $x_i = 0 \forall i \neq j$ and $x_j = \frac{b}{a_j}$.
- b. Noticing that we only have one constraint, we note that the solution will only have 1 non-zero value. To find this value, consider $\frac{b}{a_i}$. The smallest of these ratios is the optimal cost if we let all other values be 0 and a=1. Because $a\neq 1$ in most cases, we account for this by multiplying c_i to the ratio and considering the smallest. That is, $\frac{b \cdot c_i}{a_i}$. The smallest of this gives an optimal solution. That is, $x_i = \frac{b}{a_j}$ and $x_j = 0 \forall j \neq i$ where i is the smallest of the $\frac{b \cdot c_i}{a_i}$.

P. 8 Consider the following optimization problem (P): find a vector $x \in \mathbb{R}^n$ that satisfies Ax = 0 and $x \ge 0$, and such that the number of positive components of x is maximized. Let (P') be the linear program defined as:

$$\begin{aligned} & \text{maximize } \sum_{i=1}^n y_i \\ & \text{subject to } A(z+y) = 0 \\ & z,y \geq 0 \\ & y_i \leq 1, \quad i=1,\dots,n. \end{aligned}$$

Show that (P') can be used to solve (P). (Hint: You can show that (P) and (P') are equivalent - you must specify how to map a feasible solution of (P) to a feasible solution of (P') with greater or equal cost, and viceversa.)