Results

Demographic

Descriptive Statistics

	Age
Valid	200
Missing	0
Median	35.000
Mean	36.040
Std. Deviation	10.762
Minimum	18.000
Maximum	62.000

Boxplots

Age

Total

Job Performance - Descriptive

Descriptive Statistics

		z_Job performance rating							
	female	male	non-binary						
Valid	96	75	8						
Missing	16	4	1						
Median	0.054	-0.006	0.375						
Mean	0.005	-0.065	0.550						
Std. Deviation	0.950	1.078	0.709						
Minimum	-2.497	-2.774	-0.292						
Maximum	2.226	2.679	1.572						

Boxplots

z_Job performance rating

Job Performance (Gender) - ANOVA

ANOVA - z_Job performance rating

Cases	Sum of Squares	df	Mean Square	F	р	ω_{p}^{2}
Gender	2.732	2	1.366	1.372	0.256	0.004
Residuals	175.268	176	0.996			

Note. Type III Sum of Squares

Descriptives

Descriptives - z_Job performance rating

Gender	N	Mean	SD	SE	Coefficient of variation
female	96	0.005	0.950	0.097	203.588
male	75	-0.065	1.078	0.125	-16.695
non- binary	8	0.550	0.709	0.251	1.289

Assumption Checks

Test for Equality of Variances (Levene's)

F	df1	df2	р
0.605	2.000	176.000	0.547

Q-Q Plot

Post Hoc Tests

Standard (LSD)

Post Hoc Comparisons - Gender

		Mean Difference	SE	t	Cohen's d	p _{tukey}
female	male	0.069	0.154	0.450	0.069	0.894
	(non- binary)	-0.545	0.367	-1.484	-0.546	0.301
male	(non- binary)	-0.614	0.371	− 1.655	-0.616	0.226

Note. P-value adjusted for comparing a family of 3

Job Performance - Linear Regression

Model Summary - z_Job performance rating

									Durbin-Watson		
Model	R	R²	Adjusted	I R ² RMSE	R² Change	df1	df2	р	Autocorre	ela Sobant istic	р
M_0	0.000	0.000	0.000	1.017	0.000	0	143		-0.124	2.242	0.143
M_1	0.591	0.349	0.325	0.836	0.349	5	138	< .001	-0.086	2.170	0.293
M ₂	0.619	0.383	0.356	0.816	0.034	1	137	0.007	-0.085	2.169	0.302
M ₃	0.652	0.426	0.392	0.794	0.043	2	135	0.008	-0.061	2.121	0.448
M_4	0.654	0.428	0.385	0.798	0.003	2	133	0.739	-0.069	2.137	0.397

Note. M₁ includes z_education attainment, z_income, z_age, Gender

Note. M2 includes z_education attainment, z_income, z_age, Gender, z_income:z_education attainment

Note. M₃ includes z_education attainment, z_income, z_age, Gender, z_income:z_education attainment, z_education attainment; z_age, z_income:z_age

 $\textit{Note}.\ M_4\ \text{includes}\ z_\text{education}\ \text{attainment},\ z_\text{income},\ z_\text{age},\ \text{Gender},\ z_\text{income}:z_\text{education}\ \text{attainment},\ z_\text{education}\ \text{attainment}:z_\text{age},\ z_\text{income}:z_\text{age},\ z_\text{income}:z_\text{education}\ \text{attainment}:z_\text{age},\ z_\text{income}:z_\text{education}\ \text{attainment}:z_\text{education}\ \text{attainment}:z_\text{education}\ \text{education}\ \text{ed$

ANOVA

Model		Sum of Squares	df	Mean Square	F	р
M_1	Regression	51.629	5	10.326	14.785	< .001
	Residual	96.376	138	0.698		
	Total	148.005	143			
M_2	Regression	56.679	6	9.446	14.171	< .001
	Residual	91.326	137	0.667		
	Total	148.005	143			
M_3	Regression	63.000	8	7.875	12.507	< .001
	Residual	85.005	135	0.630		
	Total	148.005	143			
M_4	Regression	63.385	10	6.338	9.962	< .001
	Residual	84.620	133	0.636		
	Total	148.005	143			

 $\textit{Note.}\ M_1$ includes z_education attainment, z_income, z_age, Gender

 $\textit{Note}.\ M_2\ includes\ z_education\ attainment,\ z_income,\ z_age,\ Gender,\ z_income:z_education\ attainment$

Note. M₃ includes z_education attainment, z_income, z_age, Gender, z_income:z_education attainment, z_education attainment:z_age, z_income:z_age

 $\textit{Note}.\ M_4\ \text{includes}\ z_\text{education}\ \text{attainment},\ z_\text{income},\ z_\text{age},\ \text{Gender},\ z_\text{income}:z_\text{education}\ \text{attainment},\ z_\text{education}\ \text{attainment}:z_\text{age},\ z_\text{income}:Z_\text{age},\ z_\text{income}:Z_\text{education}\ \text{attainment}:z_\text{education}\ \text{education}\ \text{education}$

Note. The intercept model is omitted, as no meaningful information can be shown.

							959	% CI	Collinearity Statistics	
Model		Unstanda	ardi &ŧd ndard	Eri St andardi	ized ^a t	р	Lower	Upper	Tolerance	VIF
Mo	(Intercept)	-0.003	0.085		-0.041	0.968	-0.171	0.164		
M_1	(Intercept)	0.070	0.097		0.723	0.471	-0.122	0.262		
VI1	z education		0.078	0.377	4.762	< .001	0.217	0.526	0.868	1.152
	attainment						V			
	z_income	0.292	0.079	0.298	3.703	< .001	0.136	0.448	0.854	1.171
	z_age	-0.011	0.070	-0.011	-0.163	0.871	-0.150	0.127	0.991	1.009
	Gender (male)	-0.223	0.147		-1.519	0.131	-0.514	0.067	0.986	1.014
	Gender (non- binary)	0.734	0.354		2.072	0.040	0.034	1.435		
M_2	(Intercept)	0.139	0.098		1.418	0.159	-0.055	0.333		
VIZ	z_education attainment		0.076	0.365	4.714	< .001	0.209	0.511	0.866	1.154
	z income	0.274	0.077	0.280	3.545	< .001	0.121	0.427	0.851	1.175
	z_age	-0.027	0.069	-0.027	-0.399	0.691	-0.164	0.109	0.987	1.013
	Gender (male)	-0.179	0.145		-1.240	0.217	-0.465	0.107	0.982	1.019
	Gender (non-	0.822	0.348		2.364	0.019	0.134	1.509		
	binary) z_education attainment * z_income	n-0.178	0.065	-0.189	-2.752	0.007	-0.305	-0.050	0.980	1.021
Из	(Intercept)	0 167	0.096		1.744	0.083	-0.022	0.356		
VI3	z_education attainment		0.076	0.373	4.861	< .001	0.218	0.518	0.850	1.176
	z_income	0.255	0.075	0.260	3.383	< .001	0.106	0.404	0.848	1.179
	z_age	-0.065	0.068	-0.064	-0.955	0.341	-0.199	0.070	0.972	1.029
	Gender (male)	-0.182	0.140		-1.299	0.196	-0.460	0.095	0.977	1.023
	Gender (non- binary)	0.930	0.341		2.730	0.007	0.256	1.603		
	z_education attainment * z income	n-0.201	0.063	-0.214	-3.184	0.002	-0.326	-0.076	0.972	1.029
	z_education attainment * z_age	n0.146	0.081	0.143	1.794	0.075	-0.015	0.307	0.816	1.225
	z_income * z_age	-0.253	0.080	-0.253	-3.167	0.002	-0.411	-0.095	0.815	1.227
M_4	(Intercept)	0.175	0.097		1.799	0.074	-0.017	0.367		
4	z_education attainment		0.077	0.379	4.881	< .001	0.222	0.525	0.844	1.184
	z income	0.281	0.096	0.286	2.935	0.004	0.091	0.470	0.673	1.486
	z_age	-0.061	0.090	-0.060	-0.886	0.377	-0.197	0.470	0.073	1.034
	Gender (male)	-0.185	0.141	0.000	-1.313	0.192	-0.465	0.094	0.969	1.032
	Gender (non- binary)	0.881	0.349		2.526	0.013	0.191	1.570		
	z_education attainment * z income	n-0.203	0.064	-0.216	-3.169	0.002	-0.330	-0.076	0.963	1.039
	z_education attainment	n0.146	0.082	0.143	1.777	0.078	-0.017	0.309	0.813	1.230

^a Standardized coefficients can only be computed for continuous predictors.

							959	6 CI	Collinearity	Collinearity Statistics	
Model		Unstandardi 2std ndard Err ®t andardized ^a t			р	Lower	Upper	Tolerance	VIF		
	* z_age										
	z_income * z_age	-0.260	0.081	-0.260	-3.205	0.002	-0.420	-0.099	0.807	1.239	
	z_income * Gender (male)	-0.043	0.141		-0.308	0.758	-0.322	0.235	0.821	1.219	
	z_income * Gender (non- binary)	-0.241	0.316		-0.761	0.448	-0.865	0.384			

^a Standardized coefficients can only be computed for continuous predictors.

Influential Cases

Case Number	Std. Residual	z_Job performance ratinge	dicted Value	Residual	Cook's Distance
•				•	

Note. No influential cases found.

Standardized Residuals Histogram

Job Performance - Mediation Analysis

Parameter estimates

Direct effects

						95% Confid	95% Confidence Interval		
		Estimate	Std. Error	z-value	р	Lower	Upper		
z_education → attainment	z_Job performance rating	0.370	0.076	4.878	< .001	0.221	0.519		

Note. Delta method standard errors, normal theory confidence intervals, ML estimator.

Indirect effects

							95% Confid	lence Interval
			Estimate	Std. Error	z-value	р	Lower	Upper
z_education→ attainment	z_income →	z_Job performan rating	0.127 ce	0.042	3.060	0.002	0.046	0.209

Note. Delta method standard errors, normal theory confidence intervals, ML estimator.

Total effects

						95% Confid	dence Interval
		Estimate	Std. Error	z-value	р	Lower	Upper
z_education → attainment	z_Job performance rating	0.498	0.068	7.334	< .001	0.365	0.630

Note. Delta method standard errors, normal theory confidence intervals, ML estimator.

Path coefficients

							95% Confide	nce Interval
			Estimate	Std. Error	z-value	р	Lower	Upper
z_income	\rightarrow	z_Job performance rating	0.264	0.077	3.431	< .001	0.113	0.415
z_education attainment	\rightarrow	z_Job performance rating	0.370	0.076	4.878	< .001	0.221	0.519
z_education attainment	\rightarrow	z_income	0.482	0.071	6.804	< .001	0.343	0.621

Note. Delta method standard errors, normal theory confidence intervals, ML estimator.

R-Squared

	R²
z_Job performance rating	0.301
z_income	0.222

Job Performance - Flexplot

Flexplot

One-rep max - Descriptive Statistics

Descriptive Statistics

		z_One-rep max	
	female	male	non-binary
Valid	104	69	9
Missing	8	10	0
Median	-0.009	-0.032	-0.239
Mean	0.037	-0.044	-0.089
Std. Deviation	0.982	1.078	0.527
Minimum	-2.295	-2.135	-0.721
Maximum	2.720	3.286	0.887

Boxplots

z_One-rep max

One-rep max gender ANOVA

ANOVA - z_One-rep max

Cases	Sum of Squares	df	Mean Square	F	р	ω²	ω² _p
Gender	0.341	2	0.171	0.169	0.845	0.000	0.000
Residuals	180.659	179	1.009				

Note. Type III Sum of Squares

Assumption Checks

Test for Equality of Variances (Levene's)

F	df1	df2	р
1.452	2.000	179.000	0.237

Q-Q Plot

Post Hoc Tests

Standard (LSD)

Post Hoc Comparisons - Gender

		Mean Difference	SE	t	Cohen's d	p _{tukey}
female	male	0.080	0.156	0.514	0.080	0.865
	(non- binary)	0.125	0.349	0.359	0.125	0.931
male	(non- binary)	0.045	0.356	0.127	0.045	0.991

Note. P-value adjusted for comparing a family of 3

One-rep max - Correlation

Pearson's Correlations

Variable		z_Self-efficacy rating	z_Hours of strength tra	ining z_One-rep max
1. z_Self- efficacy rating	Pearson's r	_		
	p-value	_		
2. z_Hours of strength training	Pearson's r	-0.303	_	
	p-value	< .001	_	
3. z_One- rep max	Pearson's r	0.665	0.433	_
	p-value	< .001	< .001	_

One-rep max - Linear Regression

Model Summary - z_One-rep max

									D	urbin-Watso	n
Model	R	R²	Adjusted	RRMSE	R² Chang	e df1	df2	р	Autocorre	ela Sobant istic	р
Mo	0.000	0.000	0.000	1.003	0.000	0	144		0.032	1.933	0.683
M_1	0.926	0.857	0.855	0.382	0.857	2	142	< .001	-0.029	2.051	0.764
M_2	0.933	0.871	0.868	0.364	0.014	1	141	< .001	-0.028	2.053	0.747

Note. M₁ includes z_Hours of strength training, z_Self-efficacy rating

Note. M2 includes z_Hours of strength training, z_Self-efficacy rating, z_Self-efficacy rating:z_Hours of strength training

ANOVA

Model		Sum of Squares	df	Mean Square	F	р
M_1	Regression	124.053	2	62.026	424.996	< .001
	Residual	20.724	142	0.146		
	Total	144.777	144			
M_2	Regression	126.060	3	42.020	316.549	< .001
	Residual	18.717	141	0.133		
	Total	144.777	144			

Note. M₁ includes z_Hours of strength training, z_Self-efficacy rating

Note. M2 includes z_Hours of strength training, z_Self-efficacy rating, z_Self-efficacy rating:z_Hours of strength training

Note. The intercept model is omitted, as no meaningful information can be shown.

							Collinearit	y Statistics
Model		Unstandard	dize & tandard E	Error Standardized	t	р	Tolerance	VIF
M_0	(Intercept)	-0.035	0.083		-0.420	0.675		
M_1	(Intercept)	0.009	0.032		0.298	0.766		
	z_Hours of strength training	0.660	0.033	0.666	20.006	< .001	0.911	1.098
	z_Self- efficacy rating	0.865	0.033	0.872	26.219	< .001	0.911	1.098
M ₂	(Intercept)	0.049	0.032		1.531	0.128		
	z_Hours of strength training	0.656	0.032	0.661	20.810	< .001	0.909	1.100
	z_Self- efficacy rating	0.861	0.031	0.868	27.348	< .001	0.910	1.099
	z_Hours of strength training * z_Self- efficacy rating	0.131	0.034	0.118	3.889	< .001	0.998	1.002

				Collinearity	Statistics
Model	Unstandardizedstandard ErrorStandardized	t	р	Tolerance	VIF

Influential Cases

Case Number	Std. Residual	z_One-rep max	Predicted Value	Residual	Cook's Distance

Note. No influential cases found.

Standardized Residuals Histogram

Parameter estimates

Direct effects

							95% Confid	dence Interval
			Estimate	Std. Error	z-value	р	Lower	Upper
z_Hours of strength training	\rightarrow	z_One- rep max	0.664	0.032	20.617	< .001	0.601	0.728

Note. Delta method standard errors, normal theory confidence intervals, ML estimator.

Indirect effects

							95% Confid	lence Interval
			Estimate	Std. Error	z-value	р	Lower	Upper
z_Hours → of strength training	z_Self- → efficacy rating	z_One- rep max	-0.243	0.063	-3.828	< .001	-0.367	-0.119

Note. Delta method standard errors, normal theory confidence intervals, ML estimator.

Total effects

							95% Confi	dence Interval
			Estimate	Std. Error	z-value	р	Lower	Upper
z_Hours of strength training	\rightarrow	z_One- rep max	0.422	0.069	6.136	< .001	0.287	0.556

Note. Delta method standard errors, normal theory confidence intervals, ML estimator.

Path coefficients

							95% Confid	dence Interval
			Estimate	Std. Error	z-value	р	Lower	Upper
z_Self- efficacy rating	\rightarrow	z_One- rep max	0.862	0.032	26.746	< .001	0.799	0.925
z_Hours of strength training	\rightarrow	z_One- rep max	0.664	0.032	20.617	< .001	0.601	0.728
z_Hours of strength training	\rightarrow	z_Self- efficacy rating	-0.282	0.073	-3.873	< .001	-0.424	-0.139

 $\textit{Note}. \ \ \text{Delta method standard errors, normal theory confidence intervals, ML estimator.}$

R-Squared

	R²
z_One-rep max	0.858
z_Self-efficacy rating	0.079

One-rep - Flexplot

Flexplot

Loneliness - Descriptive Statistics

Descriptive Statistics

	Loneliness 1 month prior		Loneline	Loneliness at the time		Loneliness 1 month after		Loneliness 2 months after	
	1	2	1	2	1	2	1	2	
Valid	85	82	86	77	84	79	83	80	
Missing	8	4	7	9	9	7	10	6	
Mean	31.605	30.745	29.418	32.161	30.511	25.866	29.046	18.914	
Std. Deviation	9.898	9.345	9.718	9.775	9.760	10.209	10.906	9.473	
Minimum	8.969	12.301	6.914	13.126	6.025	2.150	1.570	-9.148	
Maximum	51.247	49.406	60.866	49.508	55.396	50.367	50.608	41.296	

Note. Excluded 21 rows from the analysis that correspond to the missing values of the split-by variable Intervention (1 = placebo, 2 = treatment)

Boxplots

Loneliness 1 month prior

Intervention (1 = placebo, 2 = treatment)

Loneliness at the time

Intervention (1 = placebo, 2 = treatment)

Loneliness 1 month after

Intervention (1 = placebo, 2 = treatment)

Loneliness 2 months after

Intervention (1 = placebo, 2 = treatment)

Loneliness - Independent Samples T-Test

Independent Samples T-Test

							95% CI fo	or Cohen's d
	t	df	р	VS-MPR*	Cohen's d	SE Cohen's d	Lower	Upper
Loneliness 1 month prior	0.577	165	0.565	1.000	0.089	0.155	-0.214	0.393
Loneliness at the time	-1.794	161	0.075	1.899	-0.281	0.158	-0.590	0.028
Loneliness 1 month after	2.970	161	0.003	18.870	0.465	0.161	0.153	0.776
Loneliness 2 months after	6.323	161	< .001	7.648×10 ⁺⁶	0.991	0.175	0.664	1.315

Note. Student's t-test.

^{*} Vovk-Sellke Maximum p-Ratio: Based on a two-sided p-value,the maximum possible odds in favor of H_1 over H_0 equals $1/(-e p \log(p))$ for $p \le .37$ (Sellke, Bayarri, & Berger, 2001).

Assumption Checks

Test of Normality (Shapiro-Wilk)

		W	р
Loneliness 1 month prior	1	0.984	0.358
	2	0.967	0.032
Loneliness at the time	1	0.982	0.261
	2	0.966	0.037
Loneliness 1 month after	1	0.986	0.511
	2	0.991	0.869
Loneliness 2 months after	1	0.984	0.412
	2	0.990	0.820

Note. Significant results suggest a deviation from normality.

Test of Equality of Variances (Levene's)

	F	df ₁	df ₂	р
Loneliness 1 month prior	0.003	1	165	0.958
Loneliness at the time	1.151	1	161	0.285
Loneliness 1 month after	0.081	1	161	0.777
Loneliness 2 months after	1.709	1	161	0.193

Raincloud Plots

Loneliness 1 month prior

Intervention (1 = placebo, 2 = treatment)

Loneliness at the time

Intervention (1 = placebo, 2 = treatment)

Loneliness 2 months after

