Samstag, 2. November 2024

15:20

Exercise 2.1.13 Show that if W is an isotropic, coisotropic or symplectic subspace of a symplectic vector space (V,ω) , then any standard basis for (W,ω) extends to a symplectic basis for (V, ω) .

Let din V= 2n

symplectic: By lemma 2.1.1, (W, \omega, \omega \) symplectic. Hence we can find a symplectic basis for W. The union of any standard basis for W and W is a standard basis for V.

Case Wisotropic:

A standard basis for Wis of the form { a, ..., a, }, k=n Assume we have constructed (b,,, be) e V 5.t.

{a₁,..., a₄, b₁,..., b_e} lin. independent, l ε[0,..., h-1], } (*)
α(a_i, b_j)=δ_{ij}, ω(b_i, b_j)=0, ω(a_i, a_j)=0.

We find be+1 s.t. (*) holds.

E:= (a,,, âen, a, b,,.., be) has dimension 4+l-1=2n-2<2n so E has nonzero dimension. Since al EE,

I beti E E s.t. W(aeti, beti)=1.

This way we get symplectic subspace (a,,, a4, b4,..., b4). We are finished by previous case.

We use the same construction as in the previous