Learning Unsupervised Hierarchies Of Audio Concepts

Darius Afchar^{1,2}, Romain Hennequin¹, Vincent Guigue²

¹Deezer Research, Paris

²MLIA, ISIR - Sorbonne Université - CNRS, France

deezer

Introduction

Raw music signals are challenging to interpret

→ concept learning was proposed in *computer vision*

However, music has specificities not well handled:

- → high number of concepts
- → strong correlation of concepts (eg. Funk-Rock)

We propose a **novel task** more suited to MIR:

Learning and hierarchising concepts

- → open the doors to new music descriptors (eg. folksonomy)
- → better understand how music is organised
- → solution to a new task in concept learning

Explainability goals

Informed by XAI papers, we define three explanation goals to ensure the relevance of our description:

Identify music concept within a music track

Generality

Invariance of hierarchy, make sense in general

We explore this idea purely for audio signals

- → experiment with playlists as concepts
- → (co)-first paper on concept learning in MIR

Learning audio concepts

We **adapt TCAV** to music tracks spectrograms

→ consider playlists as source of concepts

→ we obtain a concept vector

 $f^{[\ell]}(C_{\blacksquare})$

Background on TCAV [Kim2018]

- → was proposed in *computer vision*
- → we learn to linearly discriminate:

$$\{\vec{f}^{[\ell]}(x) \mid x \in C\} \text{ versus } \{\cdots \mid x \not\in C\}$$
 backbone few-shot examples

- → solved in practice with a logistic regression
- → learned parameter: *concept activation vector*

Hierarchising concepts

Useful observation: similarities make sense

→ we propose a fast similarity estimation:

$$S_{i,j}(\mathcal{V}) = \mathbb{E}_{x \sim \mathcal{C}_i} \left[\sigma(\langle \vec{v}_j, \vec{f}^{[\ell]}(x) \rangle) \right]$$

Useful algorithm: centrality-based hierarchy

- → proposed in NLP to folksonomies from tags
- \rightarrow we show that the hypotheses work for music

Betweeness hierarchy [Heymann2006]

- * INPUT: similarity graph S
- * compute betweeness-centrality of S
- * for nodes of S ordered by centrality:
- * add new node to hierarchy H
- * edge to most similar node in H
- * OUTPUT: tree H

Resulting hierarchy of APM's genres

Resulting hierarchy of 3443 Deezer playlists

Experiments

Leverage three datasets:

- → APM Music's genres (219)
- → APM Music's moods (165)
- → Deezer playlists (3443) ie. 3443³⁴⁴¹ trees

Attribution Sylvanian Attribution Sylvanian Attribution Sylvanian Attribution Test balanced accuracy

Transferability

→ related to the design, choice of backbone, concepts

Generality

- → discuss and analysis of priors and expected hierarchy
- → ground-truth evaluation for genre and mood
- → proxy evaluation for concept of mixed types
- → quantitative discussion

Source	Audio (↓)	CF (↓)	BERT (†)	$W2V_1 (\uparrow)$	W2V ₂ (↑)
$H(S(\mathcal{V}_D))$	$\textbf{2.449} \pm \textbf{0.022}$	0.845 ± 0.013	0.345 ± 0.007	0.286 ± 0.009	0.542 ± 0.007
$H(S_{\mathrm{CF}})$	2.413 ± 0.021	$\textbf{0.345} \pm \textbf{0.007}$	0.416 ± 0.008	0.336 ± 0.010	0.601 ± 0.008
$H(S_{ m BERT})$	2.858 ± 0.028	0.868 ± 0.013	$\textbf{0.726} \pm \textbf{0.005}$	0.505 ± 0.011	0.652 ± 0.008
$H(S_{ ext{W2V-1}})$	2.952 ± 0.028	0.932 ± 0.012	0.523 ± 0.008	$\textbf{0.804} \pm \textbf{0.005}$	0.721 ± 0.007
$H(S_{ m W2V-2})$	2.843 ± 0.026	0.847 ± 0.012	0.531 ± 0.008	0.596 ± 0.009	$\textbf{0.836} \pm \textbf{0.004}$
Random	3.388 ± 0.027	1.104 ± 0.006	0.239 ± 0.004	0.142 ± 0.006	0.452 ± 0.006

Gist of the table: the hierarchy found from audio compared to one we can find through collaborative filtering or specialised w2v.

Take-away

- → First paper of concept learning on spectrograms
- → Novel idea to hierarchise learned concepts
- → Framed through XAI to be as relevant as possible
- → Complementary to expert ontologies, our method enables seeing how music is organically described by users and editors

Future work

- → Better performances, curb biases, save humanity
- → Dynamic recommendations
- → Play with concepts evolution through time

ور @dafchar

research@deezer.com

research.deezer.com/concept_hierarchy/