Simulating Aerosol Chemistry with Graph Neural Networks

Fabiana Ferracina, Laura Fierce, Mahantesh Halappanavar, Bala Krishnamoorthy

April 27, 2024

Why should we care about aerosol dynamics?

Radioactive forcing

- Radioactive forcing
- Cloud formation

- Radioactive forcing
- Cloud formation
- Regional variations

- Radioactive forcing
- Cloud formation
- Regional variations
- Feedback mechanisms

Why use simulation?

Why use simulation?

Aerosols are difficult to measure

Why use simulation?

- Aerosols are difficult to measure
- Study behavior and interactions for different scenarios

Ferracina et al. Chem GNS April 27, 2024 3 / 15

Why use simulation?

- Aerosols are difficult to measure
- Study behavior and interactions for different scenarios

What about existing simulators?

Why use simulation?

- Aerosols are difficult to measure
- Study behavior and interactions for different scenarios

What about existing simulators?

• MOSAIC: Model for Simulating Aerosol Interactions and Chemistry

Why use simulation?

- Aerosols are difficult to measure
- Study behavior and interactions for different scenarios

What about existing simulators?

- MOSAIC: Model for Simulating Aerosol Interactions and Chemistry
- Computational complexity associated with the detailed representations of aerosol

Why use simulation?

- Aerosols are difficult to measure
- Study behavior and interactions for different scenarios

What about existing simulators?

- MOSAIC: Model for Simulating Aerosol Interactions and Chemistry
- Computational complexity associated with the detailed representations of aerosol
- Closed-source

Can we do better?

Maybe

Can we do better?

Maybe

Figure: Results from Chem GNS on a simple particle-gas system. 142 timesteps, 808 particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types. MSE $\approx 8.126\times 10^{-7}$ in rate of change rate. Time to predict ≈ 0.4 seconds

Graph Neural Networks (Scarselli et al. 2008)

Figure: A single layer of a simple GNN. A graph is the input, and each component (V,E,U) gets updated by a MLP to produce a new graph. Each function subscript indicates a separate function for a different graph attribute at the n-th layer of a GNN model. source: https://distill.pub/2021/gnn-intro/

Ferracina et al. Chem GNS April 27, 2024 5/15

GNN Schematics

Graph Network Simulator (GNS) by Sanchez-Gonzalez et al. 2020

Figure: d_{θ} uses an "encode-process-decode" scheme, which computes dynamics information, Y, from input state, X

Ferracina et al. Chem GNS April 27, 2024 7/15

Chem GNS

Figure: Uses an "encode-process-decode" scheme, which computes dynamics information, Y, from input state, X

Ferracina et al. Chem GNS April 27, 2024 8 / 15

Results from GNS Simulations: Water

Figure: Results from Chem GNS on a simple particle-gas system. 142 timesteps, 808 particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types. NMAE $\approx 0.004.$ Time to predict ≈ 0.4 seconds

Results from GNS Simulations: Sulfate

Figure: Results from Chem GNS on a simple particle-gas system. 142 timesteps, 808 particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types. NMAE $\approx 0.007.$ Time to predict ≈ 0.4 seconds

Results from GNS Simulations: Sulfuric Acid

Figure: Results from Chem GNS on a simple particle-gas system. 142 timesteps, 808 particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types. NMAE $\approx 0.011.$ Time to predict ≈ 0.4 seconds

Ferracina et al. Chem GNS April 27, 2024 11 / 15

Training on Different Examples

Figure: Results from Chem GNS trained on 9 different simple particle-gas systems. 142 timesteps, 1132 particles, 3 time changing features, 3 time fixed particle properties, 2 chemical types. MSE ≈ 0.03 in rate of change rate. Time to predict ≈ 0.03 seconds

Future Directions

Performance issues in high dimensions may require more careful selection of functions

 Ferracina et al.
 Chem GNS
 April 27, 2024
 13 / 15

Future Directions

- Performance issues in high dimensions may require more careful selection of functions
- Particle-particle interaction

Future Directions

- Performance issues in high dimensions may require more careful selection of functions
- Particle-particle interaction
- Global nodes with environmental information

Conclusion

 Originally proposed for physics applications, GNS can work in chemical domain

 Ferracina et al.
 Chem GNS
 April 27, 2024
 14 / 15

Conclusion

- Originally proposed for physics applications, GNS can work in chemical domain
- Making it bigger and better will require thinking outside Euclidean space

 Ferracina et al.
 Chem GNS
 April 27, 2024
 14 / 15

Conclusion

- Originally proposed for physics applications, GNS can work in chemical domain
- Making it bigger and better will require thinking outside Euclidean space
- If fasts speeds can be maintained, inclusion in climate models would be significant

 Ferracina et al.
 Chem GNS
 April 27, 2024
 14 / 15

References

Sanchez-Gonzalez, Alvaro et al. (2020). "Learning to simulate complex physics with graph networks". In: International conference on machine learning. PMLR, pp. 8459-8468.

Scarselli, Franco et al. (2008). "The graph neural network model". In: IEEE transactions on neural networks 20.1, pp. 61–80.