Thermodynamics Analysis of NILC Formation

대기열역학 발표 6조

김복진 맹준영 손영오 송주영

contents

- 1. Mesosphere / NLC
 - 2. Data 수집
 - $3.~z_{LCL}$ 과 T_{LCL} 계산
 - 4. 결과 분석
 - 5. 결론

1 Mesosphere / NLC

1 Mesosphere / NLC

Noctilucent Cloud(NLC)

- Composed of small ice particles(diameter ~100 nm)
- Builds up nearby mesopause(75~85km), thin stratiform cloud
- Mesosphere pressure < Triple point pressure (=6.11mb): no liquid form of water exists
- Nuclei in mesosphere move towards high latitudes(specific procedure not examined)
- Formation is favorable in extremely low temperature(nearby -120°C)
- Formed usually during summer in high latitudes(50~66.5°)
- Seldom seen in Arctic, Antarctic circles due to midnight sun(shed by sunlight)
- Mesosphere is colder in summer than in winter
 - ✓ Ascending current in summer/descending current in winter
 - ✓ Ascending current results in low temperature and more moist air due to expansion (Mesopause anomaly)
- Recent southern advance of NLCs(nearby 40°) allegedly caused by global warming
 - CO_{2} , CH_{4} cause greenhouse effect: blocking radiation energy flowing out from troposphere
 - ✓ Increase in GHG results in mesospheric temperature decline
 - ✓ Temperature decline derives more formation of NLCs in lower latitudes

		Scale			Potential
Altitude	Temperature		Pressure	Concentration	$Temperature^{(2)}$
(km)	(K)	(km)	(hPa)	(cm^{-3})	(K)
0	288	8.4	1013.3	2.55 (19)(1)	288
5	256	7.5	540.5	1.53(19)	307
10	223	6.5	265.0	8.61 (18)	327
15	217	6.4	121.1	4.04 (18)	398
20	217	6.4	55.3	1.85 (18)	498
25	222	6.5	25.5	8.33 (17)	636
30	227	6.6	12.0	3.83 (17)	807
35	237	6.9	5.7	1.74 (17)	1043
40	250	7.3	2.3	6.67 (16)	1426
45	264	7.7	1.5	4.12 (16)	1702
50	271	7.9	8.0 (-1)	2.14 (16)	2091
55	261	7.6	4.3 (-1)	1.19 (16)	2405
60	247	7.2	2.2(-1)	6.45 (15)	2757
65	233	6.8	1.1 (-1)	3.42 (15)	3170
70	220	6.4	5.2(-2)	1.71 (15)	3709
75	208	6.1	2.4(-2)	8.36 (14)	4374
80	198	5.8	1.1 (-2)	4.03 (14)	5205
85	189	5.5	4.5(-3)	1.72(14)	6416
90	187	5.5	1.8 (-3)	6.98 (13)	8250
95	188	5.5	7.6 (-4)	2.93 (13)	10613
100	195	5.7	3.2(-4)	1.19(13)	14098
105	209	6.1	1.5 (-4)	5.20 (12)	18767
110	240	7.0	7.1 (-5)	2.14(12)	26690
115	300	8.8	4.0 (-5)	9.66 (11)	39313
120	360	10.5	2.5 (-5)	5.03 (11)	53963

⁽¹⁾ read 2.55 (19), for example, as 2.55×10^{19} . (2) calculated with $p_0 = 1013$ hPa.

T(z), p(z)

Day # / Altitude, km / Lat, deg	H ₂ O VMR, ppmv (Nedoluha et al., 2007)	H ₂ O VMR, ppmv (this work)
076/50.0/45.0 S	7.0±0.2	7.1±0.7
076/60.0/45.0 S	7.7 ± 0.3	7.5 ± 0.8
076/70.0/45.0 S	5.9±0.2	5.8±0.9
265/50.0/45.0 S	6.7 ± 0.3	6.9 ± 0.7
265/60.0/45.0 S	6.2 ± 0.6	5.9±0.6
265/70.0/45.0 S	4.1 ± 0.7	3.3 ± 0.5
340/50.0/45.0 S	6.9 ± 0.3	7.2 ± 0.7
340/60.0/45.0 S	7.1 ± 0.2	7.3 ± 0.7
340/70.0/45.0 S	5.6 ± 0.3	6.0 ± 0.9
076/50.0/19.5 N	6.4 ± 0.2	6.6 ± 0.7
076/60.0/19.5 N	6.7±0.2	6.7±0.7
076/70.0/19.5 N	4.9 ± 0.3	4.5 ± 0.7
186/50.0/19.5 N	6.2±0.2	6.5±0.7
186/60.0/19.5 N	7.0 ± 0.3	6.7 ± 0.7
186/70.0/19.5 N	5.7±0.4	5.8±0.8
265/50.0/19.5 N	6.7±0.2	6.6 ± 0.7
265/60.0/19.5 N	7.0 ± 0.3	6.9 ± 0.7
265/70.0/19.5 N	5.8±0.6	5.8±0.8
Below this line: c	omparisons with Sonnema	nn et al. (2009)
076/50.0/69.2 N	4.5±0.3	4.5±0.5
076/60.0/69.2 N	4.0 ± 0.3	3.7 ± 0.4
076/70.0/69.2 N	2.2 ± 0.2	2.6 ± 0.4
076/80.0/69.2 N	1.4 ± 0.2	1.6 ± 0.4
186/50.0/69.2 N	7.0 ± 0.5	6.2 ± 0.6
186/60.0/69.2 N	6.5±0.5	6.0 ± 0.6
186/70.0/69.2 N	6.7±0.6	5.7±0.8
186/80.0/69.2 N	3.6 ± 0.6	4.5 ± 1.0
265/50.0/69.2 N	7.5±0.5	6.5 ± 0.6
265/60.0/69.2 N	6.5±0.7	6.0 ± 0.6
203/00.0/07.214		
265/70.0/69.2 N	5.0±0.6	4.7 ± 0.6

w(z)

$\frac{Z_{LCL},T_{LCL}}{$ 계산

사용 수식

$$e_{sw} = 6.11 \exp(19.83 - \frac{5417}{T})$$
 $T_{LCL} = \frac{1}{\frac{1}{T - 55} - \frac{\ln r}{2840}} + 55$
 $w = \frac{\varepsilon e}{p - e}$ $T_{dew} = \frac{T}{\frac{-TR_v \ln r}{l_s} + 1}$
 $r = \frac{e}{e_{sw}}$ $Z_{LCL} = z + \frac{T - T_{dew}}{8}$

$$R_v$$
=461.51J/Kg*K
 l_s = 2.8345*10⁶J/Kg

$$Z = 50km$$

$$T = 271K$$

$$Z = 50 \text{km}$$
 $T = 271 K$ $w = 6.2 \times 10^{-6}$

$$e_{sw} = 6.11 \exp\left(19.83 - \frac{5417}{271}\right) = 5.212mb$$

$$6.2 * 10^{-6} = \frac{0.622e}{8 * 10^{-1} - e}$$
 e = 7.974*10⁻⁶mb

$$e = 7.974*10^{-6} mb$$

$$r = \frac{7.974 *_{10^{-6}}}{_{5.212}} = 1.530 *_{10^{-6}}$$

$$r = \frac{7.974 *_{10^{-6}}}{_{5.212}} = 1.530 *_{10^{-6}} \qquad T_{LCL} = \frac{1}{\frac{1}{271 - 55} - \frac{\ln 1.530 *_{10^{-6}}}{2840}} + 55 = 162.014K$$

$$T_{dew} = \frac{\frac{271}{-271 \ln 1.530*10^{-6}}}{\frac{2.8345*10^{6}}{10.8351}} = 170.351K$$

$$\varepsilon = 0.622$$

$$z_{LCL} = 50 + \frac{271 - 170.351}{8} = 62.581Km$$

$$p = 8 * 10^{-1} \mathrm{mb}$$

$$R_v = 461.51 \text{J/Kg*K}$$

$$l_s = 2.8345*10^6 \text{J/Kg}$$

$$Z = 60k$$

$$T = 247K$$

$$Z = 60 \text{km}$$
 $T = 247K$ $w = 6.0 \cdot 10^{-6}$

$$e_{sw} = 6.11 \exp\left(19.83 - \frac{5417}{247}\right) = 0.741 mb$$

$$6.0 * 10^{-6} = \frac{0.622e}{2.2 * 10^{-1} - e}$$
 e = 2.122*10⁻⁶mb

$$r = \frac{2.122*_{10^{-6}}}{_{0.741}} = 2.841*10^{-6} \qquad T_{LCL} = \frac{1}{\frac{1}{247 - 55} - \frac{\ln 2.841*10^{-6}}{2840}} + 55 = 158.306K$$

$$T_{dew} = \frac{\frac{247}{-247 \ln 2.841 \times 10^{-6}}}{\frac{2.8345 \times 10^{6}}{+1}} = 163.185 \text{K}$$

$$\varepsilon = 0.622$$

$$z_{LCL} = 60 + \frac{247 - 163.185}{8} = 73.851Km$$

$$p = 2.2 * 10^{-1}$$
mb

$$R_v = 461.51 \text{J/Kg*K}$$

$$l_s = 2.8345*10^6 \text{J/Kg}$$

$$T = 220K$$

$$Z = 70 \text{km}$$
 $T = 220 K$ $w = 5.7*10^{-6}$

$$e_{sw} = 6.11 \exp\left(19.83 - \frac{5417}{220}\right) = 0.0506mb$$

$$5.7 * 10^{-6} = \frac{0.622e}{5.2 * 10^{-2} - e}$$
 $e = 0.478*10^{-6} mb$

$$e = 0.478*10^{-6} mb$$

$$r = \frac{0.478 * 10^{-6}}{0.0506} = 9.44 * 10^{-6}$$

$$r = \frac{0.478*_{10^{-6}}}{_{0.0506}} = 9.44*10^{-6} \qquad T_{LCL} = \frac{1}{\frac{1}{220 - 55} - \frac{\ln 9.44*10^{-6}}{2840}} + 55 = 153.71K$$

$$T_{dew} = \frac{220}{\frac{-220 \ln 9.44 * 10^{-6}}{2.8345 * 10^{6}} + 1} = 155.537 \text{K}$$

$$\varepsilon = 0.622$$

$$z_{LCL} = 50 + \frac{220 - 155.537}{8} = 78.125Km$$

$$p = 5.2 * 10^{-2} \text{mb}$$

$$R_{v}$$
=461.51J/Kg*K

$$l_s = 2.8345*10^6 \text{J/Kg}$$

$$T = 198K$$

$$Z = 80 \text{km}$$
 $T = 198K$ $w = 5.7*10^{-6}$

$$e_{sw} = 6.11 \exp\left(19.83 - \frac{5417}{198}\right) = 0.00328mb$$

$$6.2 * 10^{-6} = \frac{0.622e}{1.1 * 10^{-2} - e}$$
 $e = 0.0798*10^{-6} mb$

$$e = 0.0798*10^{-6} mb$$

$$r = \frac{0.0798 *_{10^{-6}}}{0.00328} = 2.4 *_{10^{-5}}$$

$$r = \frac{0.0798 *_{10^{-6}}}{_{0.00328}} = 2.4 *_{10^{-5}} \qquad T_{LCL} = \frac{1}{\frac{1}{198 - 55} - \frac{\ln 2.4 *_{10^{-5}}}{2840}} + 55 = 148.19K$$

$$T_{dew} = \frac{198}{\frac{-198 \ln 2.4 \times 10^{-5}}{2.8345 \times 10^{6}} + 1} = 147.483 \text{K}$$

$$\varepsilon = 0.622$$

$$z_{LCL} = 50 + \frac{198 - 147.483}{8} = 86.314Km$$

$$p = 1.1 * 10^{-2} \text{mb}$$

$$R_v = 461.51 \text{J/Kg*K}$$

$$l_s = 2.8345*10^6 \text{J/Kg}$$

4 결과 분석

$$\Gamma_{S} = \frac{g}{c_{p}} \frac{1 + l_{s} \omega_{sw} / RT}{1 + l_{s}^{2} \omega_{sw} / c_{p} R_{v} T^{2}} \cong \frac{g}{c_{pd}} \frac{1 + l_{s} \omega_{sw} / RT}{1 + l_{s}^{2} \omega_{sw} / c_{p} R_{v} T^{2}}$$

$$\omega_{sw} = 6 \times 10^{-6}, \qquad T = 160K$$

$$\Gamma_{S} = \frac{9.8}{1005} \frac{1 + \frac{2.8345 \times 10^{6} \times 6 \times 10^{-6}}{287 \times 160}}{1 + \frac{(2.8345 \times 10^{6})^{2} \times 6 \times 10^{-6}}{1005 \times 461.51 \times 160^{2}}} \cong 0.0097K/m = 9.7K/km$$

계산한 습윤단열감률을 이용하여 고도에 따른 구름의 온도를 구할 수 있다.

$$T_{LCL} = 150.95K$$
, $z_{LCL} = 82.2195km$ (average of $70 - 80km$)

$$\frac{T - 150.95}{z - 82.2195} = -9.7$$

$$T = -9.7z + 948.48$$

4 결과 분석

	Α	В	С	D	Е	F	G	Н	I
1	h	Tsurr	Tparcel		Tsurr	h		Tparcel	h
2	70	220	269.48		220	70		269.48	70
3	75	208	220.98		208	75		220.98	75
4	80	198	172.48		198	80		172.48	80
5	85	189	123.98		189	85		123.98	85
6	90	187	75.48		187	90		75.48	90
7	95	188	26.98		188	95		26.98	95
8	100	195	-21.52		195	100		-21.52	100
9	105	209	-70.02		209	105		-70.02	105
10	110	240	-118.52		240	110		-118.52	110
11	115	300	-167.02		300	115		-167.02	115
12	120	360	-215.52		360	120		-215.52	120

4 결과 분석

Cloud temperature

Environment temperature

5 결론

1. 중간권에서 구름을 만드는 공기덩이를 강제로 상승시키는 원동력은 성층권계면에서의 부등가열 보다는 75km 고도에서부터 발달하는 상승기류

2. 중간권에서 생성된 구름은 안정하기 때문에 위로 발달하지 못한 층운형 구름이 된다.

- A. G. Feofilov et al. (2009). Daytime SABER/TIMED observations of water vapor in the mesosphere: retrieval approach and first results. Atmospheric Chemistry and Physics, 9, 8139-8158.
- C. Tomasi et al. (2011). Monthly mean vertical profiles of pressure, temperature and water vapour volume mixing ratio in the polar stratosphere and low mesosphere from a multi-year set of MIPAS-ENVISAT limb-scanning measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 2237-2271.
- G. P. Brasseur. (2006). Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Dordrecht: Springer.
- M. E. Summers et al. (2001). Discovery of a Water Vapor Layer in the Arctic Summer Mesosphere: Implications for Polar Mesospheric Clouds. Geophysical Research Letters, 28, 3601-3604.
- M. Y. Kulikov et al. (2009). Retrieval of water vapor profile in the mesosphere from satellite ozone and hydroxyl measurements by the basic dynamic model of mesospheric photochemical system. Atmospheric Chemistry and Physics, 9, 8199-8210.
- R. A. Houze. (1993). Cloud Dynamics. San Diego: Academic Press.
- T. Flury et al. (2008). Water vapor transport in the lower mesosphere of the subtropics: a trajectory analysis. Atmospheric Chemistry and Physics, 8, 7273-7280.

대기열역학 6조 발표

감사합니다.