Dengue prediction project #grupa 1

Analiza zbioru danych dotyczących ilości przypadków zachorowań na gorączkę Denga

Dane wejściowe - przygotowanie danych do analizy (EDA)

Dostarczone dane zawierają 602 wiersze i 24 kolumny danych z warunkami pogodowymi oraz ilością przypadków zachorowań 'cases' jako zmienna zależna.

Zmienne niezależne tempmax, tempmin, temp. feelslikemax. feelslikemin, feelslike. dew. humidity. precip. precipprob precipcover snow snowdepth windspeed winddir sealevelpressure cloudcover visibility solarradiation solarenergy uvindex conditions

Zmienne zależne cases

stations

labels

Wykres pairplot - pokazujący zależności pomiędzy danymi. Jest on mało czytelny, jednak wzrokowo można wytypować z niego korelacje pomiędzy niektórymi danymi i następnie zająć się ich obróbka Dane nieadekwatne do analizy takie jak snow, snowdepth, winddir zostaly usuniete ze zbioru, jako niemające wpływu na zana zależna - ilość zachorowań 'cases'.

Przypadek solarradiation i solarenergy - sa ze sobą ściśle skorelowane i jedna z nich została usunieta

Pozostałe dane niezależne zostały poddane działaniom mającym na celu usunięcie wartości odstających albo nierealistycznych. Do celu tego posłużyły histogramy i arbitralne decyzje o pozostawinieu lub usunięciu wierszy. Najczesciej byly usuwane wartości powyżej 99-ego percentyla (po kilka sztuk lub pojedyncze wartości).

Po przeprowadzeniu EDA zbiór zawiera 592 wiesze i 17 kolumn

Regresia liniowa

Celem poniższych działań jest stworzenie modelu predykcyjnego. Model ma za zadanie przewidzieć ilość zachorowań na podstawie danych meteorologicznych i środowiskowych.

Dane z poprzedniej analizy EDA zostały podzielone na dwa zestawy treningowy train oraz test w stosunku 80/20%.

- X zbiór danych niezależnych (meteorologiczne i środowiskowe)
- y zbiór danych zależnych (ilość zachorowań)

Przed stworzeniem modeli regresji dane dodatkowo zostały poddane procesowi standaryzacji mającej na celu usprawnienie procesu uczenia modeli ML.

Model LinearRegression

TRAIN: TEST:

MAE: 4210.929 MAF: 4498 861 RMSE: 5221.816, RMSE: 5672.107 R2: 0.316 R2: 0.405

Model Ridge

TRAIN: TEST:

MAF: 4282 884 MAE: 4587.643 RMSE: 5277.084 RMSE: 5690.729 R2: 0.393 R2: 0.312

Model Lasso

TRAIN: TEST:

MAE: 4497.805 MAE: 4212.36 RMSE: 5670.3 RMSF: 5221 963 R2: 0.317 R2: 0.405

Do oceny sprawnosci dzialania modeli zostaly uzyte następujace metryki:

MAE - mean square error RMSE - root mean square error R2 - coefficient of determination

Zasadniczo wszystkie modele wykazują się porównywalnym poziomem sprawności. Przy czym model Ridge przewiduje wartość ilości zachorowań nieznacznie gorzej od LinearRegression i Lasso. Zasada ta obowiązuje zarówno danych ze zbioru uczącego jak i testowego.

Modele klasyfikacyjne

Ze względu na fakt że dane wejściowe nie posiadały żadnych cech kategorycznych które można byłoby wykorzystać jako klasę (etykietę / label) do predykcyjnego modelu klasyfikacyjnego. Utworzona została dodatkowa kolumna bazująca na ilości przypadków zachorowań. Ilość przypadków zachorowań została podzielona na 3 przedziały wynikające z rozkładu widocznego na histogramie z 3-ma wartościami. Kolumna z danymi dotyczącymi ilości przypadków została usunięta ze zbioru.

label	ilość przypadków	zachorowalność
1	poniżej 8362	niska
2	8362 - 16672	średnia
3	powyżej 16672	wysoka

Dane zostaly poddane standaryzacji.

TEST	TRAIN					
RandomForest TEST	RandomForest TRAIN					
2- 18 21 3	(8) 2 × 0 347 0	RandomForest				
3 - 6 4 4 1 2 3 Predicted label	3 - 0 0 71 1 2 3 9 Predicted label					
Logistic Regression TEST Logistic Regression TRAIN						
2 - 45 25 7	1- 201 45 9					
2 - 10 17 3	10 2- 61 71 15	Logistic Regression				
3- 6 2 6	3- 24 18 29	i tegression				
Predicted label DecisionTree TEST	Predicted label Predicted label					
1- 45 20 2	Decision free TRAIN 1 - 201 43 9					
27 S	20 2 - e1 71 13	DecisionTree				
3- 3 6 5	3- 24 18 29					
i 2 3 Predicted label Predicted label						

accuracy_test 0.630 0.571 0.655 accuracy_train 1.000 0.636 0.778 f1_test 0.549 0.511 0.578 f1_train 1.000 0.572 0.760 precision_test 0.556 0.509 0.581 precision_train 1.000 0.593 0.780 recall_test 0.543 0.516 0.585 recall_train 1.000 0.560 0.769		RandomForest	LogisticRegression	DecisionTreeClassifier
f1_test 0.549 0.511 0.578 f1_train 1.000 0.572 0.760 precision_test 0.556 0.509 0.581 precision_train 1.000 0.593 0.780 recall_test 0.543 0.516 0.585	accuracy_test	0.630	0.571	0.655
f1_train 1.000 0.572 0.760 precision_test 0.556 0.509 0.581 precision_train 1.000 0.593 0.780 recall_test 0.543 0.516 0.585	accuracy_train	1.000	0.636	0.778
precision_test 0.556 0.509 0.581 precision_train 1.000 0.593 0.780 recall_test 0.543 0.516 0.585	f1_test	0.549	0.511	0.578
precision_train 1.000 0.593 0.780 recall_test 0.543 0.516 0.585	f1_train	1.000	0.572	0.760
recall_test 0.543 0.516 0.585	precision_test	0.556	0.509	0.581
100 (100 (100 (100 (100 (100 (100 (100	precision_train	1.000	0.593	0.780
recall_train 1.000 0.560 0.769	recall_test	0.543	0.516	0.585
	recall_train	1.000	0.560	0.769

decyzyjne) wykazał się najlepszymi zdolnością poprawnego zakwalifikowania zmiennych niezależnych i wytypowania odpowiedniej przynależności do klasy. Wyższą skuteczność modelu uzyskana została po dostosowaniu hyperparametru max_depth=7 ograniczająca 'głębokość gałęzi decyzyjnych'. Pozwoliło to również zapobiec nadmiernemu dopasowaniu modelu jakim się charakteryzował bez tego parametru.

Model DecisionTreeClasifier (drzewo

Metryki modelu **RandomForest** (Las losowy) przyjmują wartość 1.0 co oznacza nadmierne dopasowanie modelu (przetrenowanie).

Model **LogisticRegression** charakteryzuje się wynikami wyraźnie gorszymi w porównaniu z modelem DecisionTree

Model ANN - Artificial Neural Network z wykorzystaniem biblioteki TensorFlow / keras

Do budowy modelu uczenia głębokiego DL została użyta sieć neuronowa składająca się z 2 warstw + warstwa wyjściowa.

Do treningu modelu zostały użyte dane po ówczesnej standaryzacji.

Hyperparametry modelu

- Warstwa (1) **128** neuronów, funkcja aktywacyjna **Leaky_Relu**
- Warstwa (2) **32** neurony, funkcja aktywacyjna **Relu**
- Warstwa (wyjściowa) 1 neuron
- Algorytm optymalizacyjny Adam
- Learning rate = 0.005
- Ilość epok = 180
- Funkcja straty loss = mean squared error

Parametry modelu takie jak: ilość warstw, ilość neuronów oraz ilość epok, były dobierane ręcznie, na zasadzie obserwacji a metryka użyta do oceny jego sprawności to R2_SCORE

R2_SCORE TEST: 0.211 R2_SCORE TRAIN: 0.559

Zwiększenie liczby epok, nie przynosiło poprawy sprawności modelu dla danych testowych, a jedynie dla danych treningowych, co w zasadzie prowadziło jedynie do przetrenowania modelu

Dyskusja wyników i wnioski końcowe

Regresja:

Z porównania sprawności modeli regresyjnych najkorzystniejsze wartości metryki R2_SCORE wykazały się modele regresji liniowej z wartościami **0.31**. Znacznie gorszymi wynikami wykazał się model ANN oparty o 3 warstwowa sieć neuronowa R2_SCORE = **0.21**. Wartym zaznaczenia jest fakt że wyniki te były mocno zależne od wartości parametru random_seed służącej do inicjalizacji generatora liczb losowych przy podziale danych na zbiór treningowy i testowy. Oznaczać to może iż zbiór danych jest zbyt mały do stabilnego wytrenowania modeli oraz słabe zbalansowanie różnorodnych wartości zmiennej zależnej w tych zbiorach. Próby zmiany podziału z domyślnie użytego stosunku 80/20 na 70/30 i nawet 50/50 nie przynosiły poprawy sprawności modeli.

Klasyfikacja:

Potencjalnym sposobem na poprawę sprawności działania modeli klasyfikacyjnych jest zbalansowanie danych, w chwili obecnej w klasie '3' odpowiadającej wysokiej liczbie zachorowań jest niewiele danych. Pomocnym również mogłaby okazać się zaawansowany dobór hyperparametrow modeli.

Zalecenia:

Użycie technik balansowania przy podziale danych na zbiór treningowy i testowy w celu uniknięcia niedoprobkowania i nadpróbkowania.

Użycie zaawansowanych technik do strojenia hyperparametrow modeli.

Konkluzja:

Najlepsze rezultaty uzyskane zostały przy użyciu następujących modeli:

Regresja: Model Lasso R2=0.31

Klasyfikacja: DecisionTreeClassifier accuracy=0.67