1.9.27 SubsetSum. Úloha: Jsou dána kladná čísla a_1, a_2, \ldots, a_n a číslo K. Otázka: Lze vybrat podmnožinu čísel a_1, a_2, \ldots, a_n tak, aby jejich součet byl roven číslu K?

Jinými slovy, existuje $J\subseteq\{1,2,\ldots,n\}$ tak, že

$$\sum_{i \in I} a_i = K.$$

1.9.28 Tvrzení. Platí

problém rozkladu \triangleleft_p SubsetSum.

1.9.29 Převod problému rozkladu na SubsetSum. Je dána konečná množina X a systém jejích podmnožin S. Přejmenujeme prvky X tak, že $X = \{0, 1, \ldots, n-1\}$ a $S = \{S_1, S_2, \ldots, S_r\}$.

Zvolíme přirozené číslo p větší než r (počet prvků S). Každé podmnožině S_i přiřadíme kladné číslo a_i takto: Ke každé množině S_i označíme χ_{S_i} její charakteristíckou funkci; tj. $\chi_{S_i}(j) = 1$ iff $j \in S_i$. Pak

$$S_i \longrightarrow \sum_{i=0}^{n-1} p^{\chi(S_i)} = a_i.$$

Nakonec zvolíme číslo $K = \sum_{i=0}^{n-1} p^i$.

Protože p > r, není těžké ukázat, že

$$\sum_{i \in I} a_i = K \text{ iff } \mathcal{A} = \{S_i \mid i \in J\} \text{ je rozklad } X.$$

- **1.9.30 Důsledek.** Protože SubsetSum je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.
- **1.9.31** Poznámka. Nyní není těžké sestrojit polynomiální redukci problému SubsetSum na problém dělení kořisti nebo na problém batohu. Proto jsou i tyto dvě úlohy \mathcal{NP} úplné
- **1.9.32** Vrcholové pokrytí. Je dán prostý neorientovaný graf bez smyček G=(V,E). Podmnožina vrcholů $B\subseteq V$ se nazývá $vrcholové\ pokrytí\ G$, jestliže každá hrana grafu G má alespoň jeden krajní vrchol v množině B.

Poznamenejme, že celá množina vrcholů V je vrcholovým pokrytím, problém je najít vrcholové pokrytí o co nejmenším počtu vrcholů.

Úloha: Je dán prostý neorientovaný graf G bez smyček a číslo k.

Otázka: Existuje v grafu G vrcholové pokrytí o k vrcholech?

1.9.33 Tvrzení. Platí

nezávislé množiny \lhd_p vrcholové pokrytí.

1.9.34 Nástin převodu nezávislých množin na vrcholové pokrytí. Platí: Je-li množina N nezávislá množina grafu G, pak množina $V\setminus N$ je vrcholovým pokrytím grafu G. A naopak, je-li B vrcholové pokrytí grafu G, pak množina $V\setminus B$ je nezávislá množina v G.

Proto: Je dán prostý neorientovaný graf G bez smyček a číslo k. Pak v G existuje nezávislá množina o k vrcholech právě tehdy, když v G existuje vrcholové pokrytí o n-k vrcholech, kde n=|V| je počet vrcholů grafu G.

1.9.35 Důsledek. Protože problém vrcholového pokrytí je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.

1.9.36 Existence hamiltonovského cyklu. Je dán orientovaný graf G.

Otázka: Existuje v grafu G hamiltonovský cyklus? (Jinými slovy, existuje v grafu G cyklus procházející všemi vrcholy?)

1.9.37 Tvrzení. Platí

vrcholové pokrytí \lhd_p existence hamiltonovského cyklu.

1.9.38 Základní myšlenka převodu. Převod je založen na využití speciálního grafu H o 4 vrcholech a 6 orientovaných hranách. Graf H má tuto vlastnost: Máli být graf součástí hamiltonovského cyklu, pak jsou jen dva základní způsoby průchodu grafem H, buď se projdou všechny vrcholy za sebou, nebo při dvojím průchodu vždy dva a dva.

Předpokládejme, že je dán neorientovaný prostý graf G=(V,E) bez smyček a číslo k. Je možno vytvořit orientovaný graf G' takový, že v G existuje vrcholové pokrytí o k vrcholech právě tehdy, když v G' existuje hamiltonovský cyklus.

Graf G' se, zhruba řečeno, vytvoří takto: Za každou hranu grafu G do G' dáme kopii grafu H. Kromě takto získaných vrcholů přidáme ještě vrcholy $1,2,\ldots,k$. Celkově tedy počet vrcholů grafu G je 4|E|+k. Hrany grafu G' jsou jednak hrany všech kopií grafu H, jednak hrany vedoucí mezi nimi a dále hrany do a z vrcholů $1,2,\ldots,k$. Celkově je hran grafu G' také uměrně počtu hran grafu G plus dvojnásobek počtu vrcholů grafu G.

1.9.39 Důsledek. Protože problém existence hamiltonovského cyklu je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.

1.9.40 Tvrzení. Platí

vrcholové pokrytí \lhd_p existence hamiltonovské kružnice.

Idea převodu je stejná jako v případě existence hamiltonovského cyklu, pouze musíme užít neorientovaný graf H, který ovšem musí mít obdobné vlastnosti jako ten, z důkazu tvrzení 1.9.37.

1.9.41 Důsledek. Protože problém existence hamiltonovské kružnice je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.

Marie Demlová: Teorie algoritmů Před. 12: 10/4/2012

1.9.42 Tvrzení. Platí

existence hamiltonovské kružnice \vartriangleleft_p problém obchodního cestujícícho.

Převod zmíněný v tvrzení je velmi jednoduchý a je ponechán studentům jako domácí úkol.

1.9.43 Důsledek. Protože problém obchodního cestujícího je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.