

# Process Management

Jayesh Deep Dubey Technical Officer C-DAC Patna

#### What is a Process?

- A process is an instance of a program that is currently executing on a computer system.
  - Process a program in execution
- Program is passive entity stored on disk (executable file), process is active
  - Program becomes process when executable file loaded into memory
- Execution of program started via GUI mouse clicks, command line entry of its name, etc
- One program can be several processes
  - Consider multiple users executing the same program

#### Parts of a Process

- The program code, also called text section
- Current activity including program counter, processor registers
- Stack containing temporary data
  - Function parameters, return addresses, local variables
- Data section containing global variables
- Heap containing memory dynamically allocated during run time

# Process in memory

.



#### Preemptive and Non-Preemptive Process

- Preemptive and non-preemptive processes refer to the way processes are managed by an operating system.
- In a preemptive system, the operating system can interrupt a running process to allow another process to run
- In a non-preemptive system, a process runs until it voluntarily relinquishes control of the CPU.

- The process control block (PCB) is a data structure used by an operating system to manage each process
- It contains all the information about a process that is necessary for the operating system to manage the process

Pointer

**Process State** 

**Process Number** 

Program Counter

Registers

**Memory Limits** 

Open File Lists

Misc. Accounting and Status Data

- Process Identification (ID) Section: This section contains the unique identifier (PID) for the process.
- Process State Section: It stores the respective state of the process such as whether it is running, blocked, or ready to run
- Program counter Section: It stores the counter which contains the address of the next instruction that is to be executed for the process.
- **Register Section:** It contains information such as the values of CPU registers which includes: accumulator, base registers and general purpose registers.

- Memory Management Information Section: This section contains information about the memory resources allocated to the process, such as the starting address, size.
- Open files list Section: This information includes the list of files opened for a process.
- Pointer Section: It contains pointers to various resources that the process may need. The purpose of the Pointer Section is to provide the operating system with quick access to the resources associated with a process, such as memory, files, or I/O devices.

- Accounting Information Section: This section contains information about the resources used by the process, such as CPU time used, memory usage, and I/O operations performed.
- Input/Output (I/O) Status Information Section: This section contains information about the I/O devices used by the process, such as the files and devices the process has opened, the status of I/O operations, and the I/O requests made by the process

#### Process Life Cycle

- The process life cycle consists of several stages: new, ready, running, blocked, and terminated.
- As a process executes, it changes state
  - new: The process is being created
  - running: Instructions are being executed
  - waiting: The process is waiting for some event to occur
  - ready: The process is waiting to be assigned to a processor
  - terminated: The process has finished execution

### Process Life Cycle



#### Introduction to Schedulers

- Schedulers are an essential part of process management. They determine which process should run next and for how long.
- They are responsible for managing and coordinating the execution of multiple processes in a way that optimizes system resources and ensures fair and efficient execution of tasks.
- There are three types of schedulers short-term, medium-term, and long-term

# Two Types of Processes

- Processes can be described as either:
  - I/O-bound process spends more time doing I/O than computations, many short CPU bursts
  - CPU-bound process spends more time doing computations; few very long CPU bursts

#### Short Term Scheduler

- The short-term scheduler, also known as the CPU scheduler, determines which process should run next in the ready queue.
- It runs frequently, typically every few milliseconds, to ensure that the CPU is used efficiently

#### Long Term Scheduler

- The long-term scheduler, also known as the job scheduler, determines which processes should be admitted into the system
- Long-term scheduler is responsible for selecting processes from the pool of incoming processes and adding them to the pool of processes that are ready to be executed
- Long-term scheduler is invoked infrequently (seconds, minutes) (may be slow)
- Long-term scheduler strives for good process mix(I/O bound and CPU bound)

#### Medium Term Scheduler

- Medium-term scheduler (also known as swapping scheduler) is responsible for managing the process's memory allocation. It determines which processes should be swapped out of main memory and onto secondary storage.
- It is responsible for managing memory and disk space.
- When the number of processes in the system exceeds the available physical memory, the medium-term scheduler selects processes that have been idle for a long time and moves them to the disk. This helps to free up memory space and improve system performance.

#### **Process Scheduling**

- Process scheduling is an essential operating system function that determines the order and timing of executing different processes or threads
- The primary purpose of process scheduling is to allocate the system's resources, such as CPU time, memory, and input/output devices, to the processes in a fair and efficient manner.

#### Benefits of Process Scheduling

Here are some of the uses and benefits of process scheduling:

- Fair resource allocation: Process scheduling ensures that each process gets a fair share of the available resources, such as CPU time and memory. This ensures that no process monopolizes the system resources, which can lead to poor system performance and stability.
- **Optimal system performance**: By scheduling processes effectively, the operating system can maximize the utilization of the CPU and other resources, which can result in improved system performance.

#### Benefits of Process Scheduling

- Prioritization of processes: Process scheduling allows the operating system to prioritize critical processes, such as those involved in system maintenance or security, over other less important tasks.
- Multitasking: Process scheduling enables the operating system to perform multiple tasks simultaneously, even on a single-core processor. This is achieved by rapidly switching between different processes, giving the illusion of parallelism.
- **Time-sharing**: Process scheduling allows the operating system to time-share the CPU among multiple processes. This means that each process gets a small time slice of the CPU's attention, which is typically a few milliseconds long. This provides the illusion of each process running continuously, even though they are sharing the CPU with other processes.

#### **Process Scheduling Algorithms**

- Process scheduling algorithms are the methods and techniques used by the operating system to determine which process should be executed next.
- The scheduling algorithm is responsible for selecting the next process from the pool of processes waiting to be executed and allocating system resources, such as the CPU, to that process.
- Switching the CPU to another process requires performing a state save of the current process and a state restore of a different process. This task is known as a context switch

## Process Scheduling Algorithms

- First-Come, First-Serve (FCFS)
- Shortest Job First (SJF)
- Priority Scheduling
- Round Robin (RR)
- Multilevel Queue (MLQ)

# Some Important Terms w.r.t Process Scheduling

In process scheduling, different types of time are used to measure and manage the execution of processes:

- Arrival time: This is the time when a process arrives in the ready queue and requests the CPU for execution.
- Burst time: This is the time required by a process to complete its execution once it gets the CPU
- **Completion time**: This is the time when a process completes its execution, i.e., when it finishes its last instruction

#### Some Important Terms w.r.t Process Scheduling

Different types of time are used to measure and manage the execution of processes:

- Waiting time: This is the total amount of time a process spends in the ready queue waiting for the CPU to become available.
- **Turnaround time**: This is the total amount of time a process takes from when it arrives in the ready queue to when it completes its execution.

#### Process Scheduling Algorithms

- First Come First Serve (FCFS)
  - First come first serve scheduling algorithm states that the process that requests the CPU first is allocated the CPU first.
  - It is implemented by using the FIFO queue
  - Tasks are always executed on a First-come, First-serve concept.
  - FCFS is easy to implement and use.
  - This algorithm is not much efficient in performance, and the wait time is quite high

## An example (FCFS)

**Example-1**: Consider the following table of arrival time and burst time for five processes P1, P2, P3, P4 and P5.

| Processes | Arrival Time | Burst Time |
|-----------|--------------|------------|
| P1        | 0            | 4          |
| P2        | 1            | 3          |
| P3        | 2            | 1          |
| P4        | 3            | 2          |
| P5        | 4            | 5          |

# An example (FCFS)

#### Waiting Time

$$\circ$$
 P1 = 0 - 0 = 0

$$\circ$$
 P2 = 4 - 1 = 3

$$\circ$$
 P3 = 7 - 2 = 5

$$\circ$$
 P4 = 8 - 3 = 5

$$\circ$$
 P5 = 10 – 4 = 6



#### Average Waiting time

$$= (0 + 3 + 5 + 5 + 6)/5 = 19/5 = 3.8$$

# An example (FCFS)

#### Turnaround Time

- $\circ$  P1 = 4 0 = 4
- $\circ$  P2 = 7 1 = 6
- $\circ$  P3 = 8 2 = 6
- $\circ$  P4 = 10 3 = 7
- $\circ$  P5 = 15 4 = 11

# Question (FCFS)

Consider the following table of arrival time and burst time for five processes P0, P1, P2, P3 and P4.

| Processes | Arrival Time | Burst Time |
|-----------|--------------|------------|
| P0        | 0            | 2          |
| P1        | 1            | 6          |
| P2        | 2            | 4          |
| P3        | 3            | 9          |
| P4        | 6            | 12         |

# Solution

| PO | P1 | P2 | Р3 | P4 |    |
|----|----|----|----|----|----|
| 0  | 2  | 8  | 12 | 21 | 33 |

.

| Completion Time | Turnaround Time Waiting Time |    |
|-----------------|------------------------------|----|
| 2               | 2                            | 0  |
| 8               | 7                            | 1  |
| 12              | 10                           | 6  |
| 21              | 18                           | 9  |
| 33              | 29                           | 17 |

#### Process Scheduling Algorithms

#### Shortest Job First(SJF)

- SJF selects the waiting process with the smallest execution time to execute next.
- Shortest Job first has the advantage of having a minimum average waiting time among all scheduling algorithms.
- SJF can be used in specialized environments where accurate estimates of running time are available

# An example (SJF)

**Example-1**: Consider the following table of arrival time and burst time for five processes P1, P2, P3, P4 and P5.

| Processes | Processes Arrival Time Burst Time |   |
|-----------|-----------------------------------|---|
| P1        | 2                                 | 6 |
| P2        | 5                                 | 2 |
| P3        | 1                                 | 8 |
| P4        | 0                                 | 3 |
| P5        | 4                                 | 4 |

## An example (SJF)

#### Waiting Time

$$\circ$$
 P4 = 0 - 0 = 0

$$\circ$$
 P1 = 3 - 2 = 1

$$\circ$$
 P2 = 9 - 5 = 4

$$\circ$$
 P5 = 11 – 4 = 7

$$\circ$$
 P3 = 15 – 1 = 14



Average Waiting Time

$$= 0 + 1 + 4 + 7 + 14/5 = 26/5 = 5.2$$

# Question (SJF)

Consider the following table of arrival time and burst time for five processes P1, P2, P3, P4 and P5.

| Processes | Arrival Time | Burst Time |
|-----------|--------------|------------|
| P1        | 1            | 7          |
| P2        | 3            | 3          |
| P3        | 6            | 2          |
| P4        | 7            | 10         |
| P5        | 9            | 8          |

# Solution

|   | P1 | Р3 | P2 | P5 | P4 |    |
|---|----|----|----|----|----|----|
| 0 | 1  | 8  | 10 | 13 | 21 | 31 |

.

| Completion Time | Turnaround Time Waiting Time |    |
|-----------------|------------------------------|----|
| 8               | 7                            | 0  |
| 13              | 10                           | 7  |
| 10              | 4                            | 2  |
| 31              | 24                           | 14 |
| 21              | 12                           | 4  |