Theoretical background

The proposed problem is the problem of stochastic matrix factorization. For it to have a unique solution, it has to be regularized as follows:

$$\sum_{d,w} n_{dw} \ln \sum_{t} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \to \max_{\Phi, \Theta}$$
 (1)

Where $R(\Phi, \Theta)$ — additive regularization term. This is the classic problem of ARTM. BigARTM authors proposed a solution using expectation-maximization algorithm:

$$\begin{cases} p_{tdw} \equiv p(t|d, w) = \underset{t \in T}{\text{norm}} \\ \phi_{wt} = \underset{w \in W}{\text{norm}} \left(n_{wt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right), & n_{wt} = \sum_{d \in D} n_{dw} p_{tdw} \\ \theta_{td} = \underset{t \in T}{\text{norm}} \left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right), & n_{td} = \sum_{w \in d} n_{dw} p_{tdw} \end{cases}$$

$$(2)$$

Quick comparison to sota-model

	Proposed model	BigARTM
Parallel calculation on cpu	No	Yes
GPU enabled	Yes	No
Input types	torch.Tensor,	Vowpal Wabbit,
	pandas.DataFrame	UCI bow

Table 1: Brief comparison of BigARTM and proposed model

Model architecture

Figure 1: Calculation graph

Experiments

We evaluate the proposed model on the 20newsgroups dataset, which contains a collection of approximately 20,000 newsgroup documents, partitioned nearly evenly across 20 different newsgroups. We extracted approximately 70,000 unique words as vocabulary in bag-of-words format.

Metric	Ours, 10 topics	BigARTM, 10 topics	Ours, 120 topics	BigARTM, 120 topics
Perplexity@10step	3750	2600	2780	1170
Perplexity@20step	2800	2520	1310	1120
Perplexity@30step	2670	2500	1190	1110
Training time CPU (30 steps, sec)	400	30	1400	130
Training time GPU (30 steps, sec)	40	_	40	_
Topic similarity	0.65		0.4	

Рис.: Quantiative results

Qualitative Experiments

We analyze our outcomes in terms of top-k words, representing the topic, focusing on models with 10 topics. These particular examples demonstrate the same logic of clusterization in both models.

topic 1: max, q, r, g, p topic 2: one, would, say, people, write topic 3: game, team, line, subject, organization topic 4: would, people, write, gun, article topic 5: god, hell, atheist, line, subject topic 6: x, file, use, window, program topic 7: say, armenian, people, one, go topic 8: line, subject, get, organization, car topic 9: space, organization, subject, line, db topic 10: line, subject, organization, use, university

topic 2: line, one, get, subject, use topic 3: god, would, say, one, people topic 4: line, subject, organization, university, article topic 5: game, team, line, drive, subject topic 6: say, armenian, one, go, people topic 7: x, file, line, use, subject topic 8: use, line, subject, organization, window topic 9: would, people, write, get, article topic 10: use, key, system, data, space

topic 1: max, q, r, g, p