(X,d) a metric space, $A \subset X$

Definition 0.1 A set A is open if A = intA. Equivalently, A is open if $A \subset intA$ (because int A = A) $intA = \{x : \exists r > 0, B_r(x) \subset A\}$

Proposition 0.2 int A is open.

Proof: Let $x \in int A$. Then $\exists r > 0$ s.t. $B_r(x) \subset A$.

ClaimL $B_r(x) \subset int(A)$

 $y \in B_r(x)$.

 $s = d(x,y) \ B_{s-r}(y) \subset B_r(x)$ by triangle inequality. $\therefore y$ is an interior point of $A \therefore B_1(x) \subset intA$

Note: ext A also open by similar argument.

Theorem 0.3 If $A_1,...A_k$ are open sets, then $\bigcap_{i=1}^k A_i$ is open.

If $\{A_i\}_{i\in I}$ is a collection of open sets, then $\bigcup_{i\in I} A_i$ is open.

Proof: Let $x \in \cap_j = 1^k A_j$. Then for each $j \exists r_j > 0$ s.t. $B_{r_j} \subset A_j$

$$\therefore B_r(x) \subset B_{r_i}(x) \subset A_j \forall j = 1, ..., k \therefore B_r(x) \subset \bigcap_{i=1}^k A_j$$

ii) If $x \in cup_{i \in I} A_i$ then $x \in A_j$ for some $j \in I$: $\exists r > 0 \text{s.t.} B_r(x) \subset A_j$: $B_r(x) \subset \bigcup_{i \in I} A_i$

Definition 0.4 A set A is closed if A^c is open.

Theorem 0.5 A set is closed iff $\bar{A} = A$

Proof: A closed \iff A^c open \iff $A^c = int(A^c) \iff$ $A^c = ext(A) \iff intA \cup \partial A = \bar{A}$.

Recall $X = int(a) \cup \partial A \cup ext(A)$, but $\bar{A} = intA \cup \partial A$ as the set is pairwise disjoint.

A is closed iff it contains all it's limit points.

Theorem 0.6 i) If $B_1, ..., B_k$ are closed sets, the $\bigcup_i = 1^k isclosed$.

 $ii) \cap_{i \in I} B_i$ is closed.

Proof: A is closed if A^c is open. $(\bigcup_i A_i)^c = \cap A_i^c$, $(\cap A_i)^c = \bigcup_i A_i^c$

Note: If A is open, then $\forall x \in A, \exists r_x > 0 s.t. \{y \in X : d(x,y) < r_x\} = B_{\ell}r_x) \subset A$.

$$\therefore \bigcup_{x \in A} B_r(x) = A$$

Any open set is a union of open balls.

(X,d) a metric space.

If $S \subset X$, then (S, d_s) is a metric space if we define $d_s(x, y) = d(x, y)$ if $x, y \in S$

Proposition 0.7 Ket $x \in S$. $B_r^S(x) = \{y \in S : d_s(y, x) < r\}$

$$= x \in S. \ B_r^S(x) = \{ y \in S : d(y,x) < r \}$$

$$= S \cap \{y \in S : d_s(y, x) < r\} = S \subset B_r(x)$$

Consequence A set $A\subset S$ is open in S iff \exists an open set $U\subset X$ s.t. $A=U\cap S$

A open in
$$S \implies A = \bigcup_{x \in A} B^s_r(x) = \bigcup_{x \in A} S \cap B^s_r(x) = S \cap (\bigcup_{x \in A} B^s_r(x))$$

A set $A\subset S$ is closed in S iff \exists a closed set $C\subset X$ s.t. $A=C\cap S$