

Optimization des Hyperparamètres appliquée au Fine Tuning de LLM

Basé sur l'article : Bayesian and Partition-Based Optimization for Hyperparameter Optimization of LLM Fine-Tuning

Nathan Dayouse

Semester A24 Soutenance ST30

Sommaire

- 1. Introduction
- 2. Design et Implémentation
- 3. Résultats et Analysis

4. Conclusion

Large Language Models

Point clés

- ► Etat de l'art pour le traitement de language naturel.
- Réseaux de Neurones avec une architecture basé sur le transformer^a (annexe 1)
- ➤ Taille : entre 1 et 405 Milliards de neurones

Auto-attention

Figure: Illustration du mécanisme d'auto-attention

L'auto-attention est la clé du LLM, en permettant de comprendre le contexte

^aVaswani et al, Attention is all you need,2017

Fine Tuning

19/02/2025

Aspect	Pre-entrainement	Fine Tuning		
Objectif	Apprentissage general	Adaptation à un domaine		
Données	Larges et diverses	Restreintes et Spécifiques		
Ressources	Centaines de GPU	au moins 1 GPU		
Durée	Semaine/Mois	Heures/Jours		

Table: Comparaison entre le Pre-entrainement et le Fine Tuning de LLM

Parameter-Efficient Fine-Tuning (PEFT)

- ► Ensemble de méthodes pour réduire le nombre de paramètres à entrainer
- ► Utilisation de la méthode LoRA (annexe 3)
- ► Amène des nouveaux hyperparamètres

Optimisation des Hyperparamètres (OHP)

Hyperparamètres

Paramètres qui ne sont pas entrainés par le modèle (learning rate, dropout ...)

Objectifs

- Meilleur performance qu'en manuel
- ► Retirer le besoin d'expertise

Figure: Fonctionnement général de l'optimisation des hyperparamètres

Formulation du problème

Equation

$$\eta^* \in \arg\max_{\eta \in \mathcal{A}} f(\eta), \quad f: \mathbb{R}^d \to \mathbb{R}$$
 (1)

Avec η une solution de dimension d et f la fonction représentant l'entrainement et l'évaluation d'un modèle.

Charactéristiques de la fonction f

- ► Boite-noire : non dérivable
- ► Couteux : une évaluation se compte en dizaine de minutes
- ► Bruité : évaluer 2 fois la même solution peut donner un résultat différent
- ► Variables mixes : les variables sont de plusieurs type (entier, continu...)

Travaux connexes

Figure: Classification des travaux similaires

19/02/2025

Sommaire

- 2. Design et Implémentation

Espace de Recherche

Hyperparamètres	Plage d'Optimisation		Туре	Conversion
riyperparametres	Borne Inf.	Borne Sup.	Туре	Conversion
Learning Rate	-10	-1	log.	$f(x)=10^x$
LoRA rank	1	64	ent.	f(x) = round(x)
LoRA scale	1	64	ent.	f(x) = round(x)
Dropout	0	0.5	cont.	f(x) = x
Weight Decay	-3	-1	log.	$f(x)=10^x$

Table: Résumé de l'espace de recherche

► Variables mixes : étape de conversion nécessaire

Strategie de Recherche : Optimisation Bayésienne par Process Gaussien

Algorithm

- ► Echantillon de *n* Points (LHS)
- ► Evaluer ces *n* points
- ► Jusqu'à fin du budget
- Entrainer le Process Gaussien (GP)
- Optimiser ce GP pour obtenir un nouveau Point
- Evaluer ce nouveaux point

Figure: Example d'un surrogate sur une fonction en 1D

Strategie de Recherche : Simultaneous Optimistic Optimization (SOO)

Figure: Partition de l'espace de recherche par SOO

Figure: Arbre correspondant à SOO

Search Strategy: BaMSOO (TO DO)

Figure: Partition de l'espace de recherche par SOO

Figure: Arbre correspondant à SOO

Stratégie d'Evaluation de Solutions

Implémentation

- ► Fine Tuning
- modèle : LlaMa-3.2-1B
- .
- ▶ Evaluation
- librairie lm_eval
- Evaluation par la précision sur des jeu de données Benchmark : Hellaswag et MMLU

Implémentation

- ► Programmation Orienté Object en Python
- ➤ Travail de documentation : *readme*, indication de type...
- ► Objectif : permettre le réusage
- ► Utilisable en ligne de commande pour Grid5000

Figure: Diagramme de l'implémentation

Sommaire

- 1. Introduction
- 2. Design et Implémentation
- 3. Résultats et Analysis
- 4. Conclusion

Echantillonnage avec LHS

Principe

Explorer l'espace et proposer une borne inférieure

Figure: Illustration du Latin Hypercube Sampling avec g = 5

Figure: Résumé des résultats par sampling

Résultats des 3 algorithms

Analyse

Prospectives

Sommaire

- 1. Introduction
- 2. Design et Implémentation
- 3. Résultats et Analysis
- 4. Conclusion

Conclusion

Une conclusion

Merci.

Annexe 1: Transformer architecture

Annexe 2: Multi-Head Attention

Figure: Illustration du mécanisme d'auto-attention : A droite le mécanisme complet, a gauche le Scaled Dot-product Attention

Annexe 3: Low Rank Adaptation (LoRA)

Figure: Illustration de l'application du Low Rank Adaptation (LoRA)

Annexe 4 : Résultats pour BO

19/02/2025

Annexe 5 : Résultats pour SOO

19/02/2025

Annexe 6 : Résultats pour BaMSOO

6