Stereo

16-385 Computer Vision Fall 2019, Lecture 11

Overview of today's lecture

- Revisiting triangulation.
- Disparity.
- Stereo rectification.
- Stereo matching.
- Improving stereo matching.
- Structured light.

Revisiting triangulation

Left image

Right image

Left image

Right image

1. Select point in one image (how?)

Left image

Right image

- 1. Select point in one image (how?)
- 2. Form epipolar line for that point in second image (how?)

Left image

Right image

- 1. Select point in one image (how?)
- 2. Form epipolar line for that point in second image (how?)
- 3. Find matching point along line (how?)

Left image

Right image

- 1. Select point in one image (how?)
- 2. Form epipolar line for that point in second image (how?)
- 3. Find matching point along line (how?)
- 4. Perform triangulation (how?)

Triangulation

Left image

Right image

- 1. Select point in one image (how?)
- 2. Form epipolar line for that point in second image (how?)
- 3. Find matching point along line (how?)
- 4. Perform triangulation (how?)

What are the disadvantages of this procedure?

Stereo rectification

What's different between these two images?

Objects that are close move more or less?

The amount of horizontal movement is inversely proportional to ...

The amount of horizontal movement is inversely proportional to ...

... the distance from the camera.

$$\frac{b-X}{Z} = \frac{x'}{f}$$

$$\frac{b-X}{Z} = \frac{x'}{f}$$

Disparity

$$d=x-x'$$
 (wrt to camera origin of image plane) $=rac{bf}{7}$

$$\frac{b-X}{Z} = \frac{x'}{f}$$

Disparity

$$d=x-x'$$
 inversely proportional to depth $=rac{bf}{7}$

Real-time stereo sensing

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Subaru Eyesight system

Pre-collision braking

What other vision system uses disparity for depth sensing?

Stereoscopes: A 19th Century Pastime

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Teesta suspension bridge-Darjeeling, India

Mark Twain at Pool Table", no date, UCR Museum of Photography

This is how 3D movies work

Is disparity the only depth cue the human visual system uses?

So can I compute depth from any two images of the same object?

So can I compute depth from any two images of the same object?

- Need sufficient baseline
- 2. Images need to be 'rectified' first (make epipolar lines horizontal)

- 1. Rectify images
 (make epipolar lines horizontal)
- 2. For each pixel
 - a. Find epipolar line
 - b. Scan line for best match
 - c. Compute depth from disparity

$$Z = \frac{bf}{d}$$

How can you make the epipolar lines horizontal?

What's special about these two cameras?

When this relationship holds:

$$R = I \qquad \qquad t = (T, 0, 0)$$

$$oldsymbol{x}' = \mathbf{R}(oldsymbol{x} - oldsymbol{t})$$

When this relationship holds:

$$R = I \qquad t = (T, 0, 0)$$

Let's try this out...

$$E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

This always has to hold for rectified images

$$x^T E x' = 0$$

Write out the constraint

When this relationship holds:

$$R = I \qquad t = (T, 0, 0)$$

Let's try this out...

$$E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

This always has to hold for rectified images

$$x^T E x' = 0$$

$$\begin{pmatrix} u & v & 1 \\ -T \\ Tv' \end{pmatrix} = 0$$

Write out the constraint

When this relationship holds:

$$R = I \qquad t = (T, 0, 0)$$

Let's try this out...

$$E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

This always has to hold

$$x^T E x' = 0$$

The image of a 3D point will always be on the same horizontal line

$$\begin{pmatrix} u & v & 1 \\ -T \\ Tv' \end{pmatrix} = 0$$

$$Tv = Tv'$$

always the same!

It's hard to make the image planes exactly parallel

How can you make the epipolar lines horizontal?

Use stereo rectification?

What is stereo rectification?

What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

How can you do this?

What is stereo rectification?

Reproject image planes onto a common plane parallel to the line between camera centers

Need two homographies (3x3 transform), one for each input image reprojection

- Rotate the right camera by R
 (aligns camera coordinate system orientation only)
- 2. Rotate (**rectify**) the left camera so that the epipole is at infinity
- 3. Rotate (**rectify**) the right camera so that the epipole is at infinity
- 4. Adjust the **scale**

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by Rrect
- 4. Scale both images by **H**

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by Rrect
- 4. Scale both images by **H**

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by Rrect
- 4. Scale both images by **H**

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by **R**_{rect}
- 4. Scale both images by **H**

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by **R**_{rect}
- 4. Scale both images by **H**

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by **R**_{rect}
- 4. Scale both images by **H**

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by **R**_{rect}
- 4. Scale both images by **H**

- 1. Compute **E** to get **R**
- 2. Rotate right image by **R**
- 3. Rotate both images by **R**_{rect}
- 4. Scale both images by **H**

Step 1: Compute E to get R

SVD:
$$\mathbf{E} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$$
 Let $\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

We get FOUR solutions:

$$\mathbf{R}_1 = \mathbf{U}\mathbf{W}\mathbf{V}^ op \ \mathbf{R}_2 = \mathbf{U}\mathbf{W}^ op \mathbf{V}^ op \ \mathbf{T}_1 = U_3 \ \mathbf{T}_2 = -U_3$$
 two possible rotations

We get FOUR solutions:

$$\mathbf{R}_1 = \mathbf{U}\mathbf{W}\mathbf{V}^{ op}$$
 $\mathbf{R}_1 = \mathbf{U}\mathbf{W}\mathbf{V}^{ op}$ $\mathbf{T}_1 = U_3$ $\mathbf{T}_2 = -U_3$

$$\mathbf{R}_2 = \mathbf{U}\mathbf{W}^{\top}\mathbf{V}^{\top}$$
 $\mathbf{R}_2 = \mathbf{U}\mathbf{W}^{\top}\mathbf{V}^{\top}$ $\mathbf{T}_2 = -U_3$ $\mathbf{T}_1 = U_3$

Which one do we choose?

Compute determinant of R, valid solution must be equal to 1 (note: det(R) = -1 means rotation and reflection)

Compute 3D point using triangulation, valid solution has positive Z value (Note: negative Z means point is behind the camera)

Let's visualize the four configurations...

Find the configuration where the point is in front of both cameras

Find the configuration where the points is in front of both cameras

Find the configuration where the points is in front of both cameras

- 1. Compute **E** to get **R**
- 2. Rotate right image by R
- 3. Rotate both images by Rrect
- 4. Scale both images by **H**

When do epipolar lines become horizontal?

Parallel cameras

Where is the epipole?

Parallel cameras

epipole at infinity

Setting the epipole to infinity

(Building **R**_{rect} from **e**)

Let
$$R_{
m rect}=\left[egin{array}{c} m{r}_1^{ op} \ m{r}_2^{ op} \ m{r}_3^{ op} \end{array}
ight]$$
 Given: epipole $m{e}$ (using SVD on E) (translation from $m{E}$)

$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 epipole coincides with translation vector

$$m{r_2} = rac{1}{\sqrt{T_x^2 + T_y^2}} \left[egin{array}{c} -T_y & T_x & 0 \end{array}
ight]
ight.$$
 cross product of e and the direction vector of the optical axis

$$\boldsymbol{r}_3 = \boldsymbol{r}_1 \times \boldsymbol{r}_2$$

orthogonal vector

If
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 and $oldsymbol{r}_2$ $oldsymbol{r}_3$ orthogonal

then
$$R_{ ext{rect}}oldsymbol{e}_1=\left[egin{array}{c} oldsymbol{r}_1^ op oldsymbol{e}_1 \ oldsymbol{r}_2^ op oldsymbol{e}_1 \ oldsymbol{r}_3^ op oldsymbol{e}_1 \end{array}
ight]=\left[egin{array}{c}?\ ?\ ?\ \end{array}
ight]$$

If
$$oldsymbol{r}_1 = oldsymbol{e}_1 = rac{T}{||T||}$$
 and $oldsymbol{r}_2$ $oldsymbol{r}_3$ orthogonal

then
$$R_{ ext{rect}}oldsymbol{e}_1 = \left[egin{array}{c} oldsymbol{r}_1^ op oldsymbol{e}_1 \ oldsymbol{r}_2^ op oldsymbol{e}_1 \ oldsymbol{r}_3^ op oldsymbol{e}_1 \end{array}
ight] = \left[egin{array}{c} 1 \ 0 \ 0 \end{array}
ight]$$

Where is this point located on the image plane?

If
$$m{r}_1 = m{e}_1 = rac{T}{||T||}$$
 and $m{r}_2$ $m{r}_3$ orthogonal

then
$$R_{ ext{rect}}oldsymbol{e}_1 = \left[egin{array}{c} oldsymbol{r}_1^ op oldsymbol{e}_1 \ oldsymbol{r}_2^ op oldsymbol{e}_1 \ oldsymbol{r}_3^ op oldsymbol{e}_1 \end{array}
ight] = \left[egin{array}{c} 1 \ 0 \ 0 \end{array}
ight]$$

Where is this point located on the image plane?

At x-infinity

Stereo Rectification Algorithm

- 1. Estimate **E** using the 8 point algorithm
- 2. Estimate the epipole **e** (solve **Ee**=0)
- 3. Build Rrect from e
- 4. Decompose **E** into **R** and **T**
- 5. Set $\mathbf{R}_1 = \mathbf{R}_{rect}$ and $\mathbf{R}_2 = \mathbf{R}\mathbf{R}_{rect}$
- 6. Rotate each left camera point $\mathbf{x'} \sim \mathbf{H}\mathbf{x}$ where $\mathbf{H} = \mathbf{K}\mathbf{R}_1$ *You may need to alter the focal length (inside \mathbf{K}) to keep points within the original image size
- 7. Repeat 6 for right camera points using \mathbf{R}_2

What can we do after rectification?

Stereo matching

Depth Estimation via Stereo Matching

- 1. Rectify images
 (make epipolar lines horizontal)
- 2. For each pixel
 - a. Find epipolar line
 - b. Scan line for best match

c. Compute depth from disparity

$$Z = \frac{bf}{d}$$

How would you do this?

Reminder from filtering

How do we detect an edge?

Reminder from filtering

How do we detect an edge?

• We filter with something that looks like an edge.

We can think of linear filtering as a way to evaluate how similar an image is *locally* to some template.

horizontal edge filter

vertical edge filter

How do we detect the template **n** in he following image?

What will the output look like?

Solution 1: Filter the image using the template as filter kernel.

Solution 1: Filter the image using the template as filter kernel.

What went wrong?

Solution 1: Filter the image using the template as filter kernel.

Increases for higher local intensities.

How do we detect the template **n** in he following image?

What will the output look like?

Solution 2: Filter the image using a zero-mean template.

How do we detect the template **m** in he following image?

output

Solution 2: Filter the image using a zero-mean template.

What went wrong?

detections

False

How do we detect the template **m** in he following image?

output

Not robust to highcontrast areas

Solution 2: Filter the image using a zero-mean template.

image

How do we detect the template **n** in he following image?

What will the output look like?

Solution 3: Use sum of squared differences (SSD).

How do we detect the template **m** in he following image?

1-output

Solution 3: Use sum of squared differences (SSD).

What could go wrong?

How do we detect the template **m** in he following image?

1-output

output
$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$

Not robust to local intensity changes

Solution 3: Use sum of squared differences (SSD).

image

How do we detect the template **n** in he following image?

Observations so far:

- subtracting mean deals with brightness bias
- dividing by standard deviation removes contrast bias

Can we combine the two effects?

Solution 4: Normalized cross-correlation (NCC).

1-output

thresholding

Solution 4: Normalized cross-correlation (NCC).

1-output

thresholding

Solution 4: Normalized cross-correlation (NCC).

What is the best method?

It depends on whether you care about speed or invariance.

- Zero-mean: Fastest, very sensitive to local intensity.
- Sum of squared differences: Medium speed, sensitive to intensity offsets.
- Normalized cross-correlation: Slowest, invariant to contrast and brightness.

Stereo Block Matching

- Slide a window along the epipolar line and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Normalized cross-correlation

Similarity Measure	Formula
Sum of Absolute Differences (SAD)	$\sum_{(i,j)\in W} I_1(i,j) - I_2(x+i,y+j) $
Sum of Squared Differences (SSD)	$\sum_{(i,j)\in W} (I_1(i,j) - I_2(x+i,y+j))^2$
Zero-mean SAD	$\sum_{(i,j)\in W} I_1(i,j) - \bar{I}_1(i,j) - I_2(x+i,y+j) + \bar{I}_2(x+i,y+j) $ $\bar{I}_2(i,j)$
Locally scaled SAD	$\sum_{(i,j)\in W} I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i,y+j)} I_2(x+i,y+j) $ $\sum_{(i,j)\in W} I_1(i,j).I_2(x+i,y+j)$
Normalized Cross Correlation (NCC)	$\frac{\sum_{(i,j)\in W} I_1(i,j).I_2(x+i,y+j)}{\sqrt[2]{\sum_{(i,j)\in W} I_1^2(i,j).\sum_{(i,j)\in W} I_2^2(x+i,y+j)}}$

Effect of window size

W = 3

W = 20

Effect of window size

W = 20

Smaller window

- + More detail
- More noise

Larger window

- + Smoother disparity maps
- Less detail
- Fails near boundaries

When will stereo block matching fail?

When will stereo block matching fail?

Improving stereo matching

Block matching

Ground truth

What are some problems with the result?

How can we improve depth estimation?

How can we improve depth estimation?

Too many discontinuities.
We expect disparity values to change slowly.

Let's make an assumption:

depth should change smoothly

Energy Minimization

What defines a good stereo correspondence?

1. Match quality

Want each pixel to find a good match in the other image

2. Smoothness

 If two pixels are adjacent, they should (usually) move about the same amount energy function (for one pixel)

$$E(d) = E_d(d) + \lambda E_s(d)$$
data term smoothness term

Want each pixel to find a good match in the other image
(block matching result)

Adjacent pixels should (usually) move about the same amount (smoothness function)

$$E(d) = E_d(d) + \lambda E_s(d)$$

$$E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

SSD distance between windows centered at I(x, y) and J(x+d(x,y), y)

$$E(d) = E_d(d) + \lambda E_s(d)$$

$$E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$$

SSD distance between windows centered at I(x, y) and J(x+d(x,y), y)

$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$
 smoothness term $(p,q) \in \mathcal{E}$ \mathcal{E} : set of neighboring pixels

$$E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p,d_q)$$
 smoothness term
$$(p,q) \in \mathcal{E}$$

$$V(d_p,d_q) = |d_p - d_q| \label{eq:Vdp}$$
 L_1 distance

$$V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$$
"Potts model"

One possible solution...

Dynamic Programming

$$E(d) = E_d(d) + \lambda E_s(d)$$

Can minimize this independently per scanline using dynamic programming (DP)

D(x,y,d): minimum cost of solution such that d(x,y) = d

$$D(x, y, d) = C(x, y, d) + \min_{d'} \{D(x - 1, y, d') + \lambda |d - d'|\}$$

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

All of these cases remain difficult, what can we do?

Structured light

NEXT LECTURE

References

Basic reading:

- Szeliski textbook, Section 8.1 (not 8.1.1-8.1.3), Chapter 11, Section 12.2.
- Hartley and Zisserman, Section 11.12.