

Certificate of Analysis

Certified Reference Material

UPER-1

Natural Uranium Ore Concentrate (UO₄) Powder Certified Reference Material for Uranium Content, Uranium Isotope Ratios, and Trace Elements

UPER-1 is a natural uranium ore concentrate powder Certified Reference Material (CRM) prepared at the National Research Council Canada (NRC). A unit of UPER-1 consists of approximately 25 g of natural uranium ore concentrate. This CRM is intended for the calibration of measurement procedures and the development of methods for the determination of uranium content, uranium isotope ratios, and trace elements in uranium ore concentrate or similar matrices.

The following tables show those constituents for which certified, reference and information values have been established for this CRM. The expanded uncertainty (U_{CRM}) in the certified value is equal to $U = ku_c$ where u_c is the combined standard uncertainty calculated according to the principles of JCGM Guide 100 [1] and k is the coverage factor. A coverage factor of two (2) was applied which corresponds to approx. 95 % confidence. It is intended that U_{CRM} accounts for every aspect that reasonably contributes to the uncertainty of the measurement. All values are expressed on an "as-is" basis, without dry weight correction. The moisture content in UPER-1 is estimated at approximately 0.022 g/g.

Table 1: Uranium content and expanded uncertainty (k=2) in UPER-1

Quantity	Value	Туре
uranium content, w(U), mg/kg	762 000 ± 9000	certified

Table 1 shows the consensus value of uranium content in UPER-1. The primary method used was multi-collector inductively-coupled plasma mass spectrometry (MC-ICP-MS) using external calibration and isotope dilution approaches. Other methods were also used and the instrumentation used were thermal ionization mass spectrometry (TIMS), inductively-coupled plasma atomic emission spectroscopy (ICP-AES), electron microprobe analysis (EMPA), and potentiometric titration. The consensus value for uranium content was assigned from the interlaboratory study using Laplace random effects statistical model [2].

NRC UPER-1 2/8

Table 2: Uranium isotope ratios and expanded uncertainties (k=2) in UPER-1

Quantity	Value	Expanded uncertainty	Туре
Isotope ratio, $n(^{234}U)/n(^{238}U)$, mol/mol	0.000 053 61	0.000 000 04	certified
Isotope ratio, $n(^{235}U)/n(^{238}U)$, mol/mol	0.007 254 2	0.000 001 1	certified

Table 2 shows the consensus values of uranium isotope ratios in UPER-1. Uranium isotope ratios were determined by MC-ICP-MS and TIMS using mass bias correction models which include gravimetric isotope mixture method, standard-sample bracketing, and exponential law. The consensus values for the isotope ratios were assigned from the interlaboratory study using Gaussian random effects model (DerSimonian-Laird) [2].

Table 3: Mass fractions and expanded uncertainties (k=2) for trace elements in UPER-1

Element, E	Mass fraction, w(E), mg/kg	Mass fraction ratio, w(E)/w(U), mg/kg	Туре	International recognition of measurement capability (CMC)
aluminium	12.3 ± 1.6	16.1 ± 2.5	certified	
antimony	0.45 ± 0.04	0.59 ± 0.08	certified	<u>TES01</u>
arsenic	23.3 ± 1.1	30.6 ± 3.0	certified	<u>TES02</u>
barium	4.9 ± 0.2	6.4 ± 0.7	certified	MYC01
cadmium	0.54 ± 0.19	0.71 ± 0.27	certified	<u>TES04</u>
calcium	1350 ± 150	1770 ± 229	certified	MES25
cerium	0.99 ± 0.04	1.30 ± 0.15	certified	MYC03
caesium	0.012	0.016	information	MYC04
chromium	0.8 ± 0.3	1.1 ± 0.4	reference	<u>TES05</u>
cobalt	0.060 ± 0.008	0.079 ± 0.015	certified	TES06
copper	2.4 ± 0.2	3.2 ± 0.4	certified	<u>TES07</u>
dysprosium	0.45 ± 0.02	0.60 ± 0.08	certified	
erbium	0.58 ± 0.02	0.76 ± 0.09	certified	MYC05
europium	0.047 ± 0.003	0.061 ± 0.009	certified	MYC06
gadolinium	0.28 ± 0.03	0.37 ± 0.06	certified	MYC07
gallium	0.23	0.30	information	MYC08
hafnium	12 ± 3	16 ± 5	certified	
holmium	0.143 ± 0.008	0.188 ± 0.026	certified	MYC10
indium	0.020 ± 0.011	0.026 ± 0.014	reference	MYC11
iridium	0.026 ± 0.018	0.034 ± 0.024	reference	
iron	106 ± 9	139 ± 16	certified	MES26
lanthanum	0.39 ± 0.02	0.51 ± 0.06	certified	MYC12

NRC UPER-1 3/8

Element, E	Mass fraction, w(E), mg/kg	Mass fraction ratio, w(E)/w(U), mg/kg	Туре	International recognition of measurement capability (CMC)
lead*	-	-	-	TES21
lithium	0.056 ± 0.014	0.074 ± 0.021	certified	TES09
lutetium	0.129 ± 0.006	0.170 ± 0.023	certified	MYC13
magnesium	63 ± 3	83 ± 8	certified	MES28
manganese	0.58 ± 0.05	0.76 ± 0.11	certified	TES10
molybdenum	135 ± 7	177 ± 17	certified	TES12
neodymium	0.66 ± 0.03	0.87 ± 0.10	certified	MYC14
nickel	0.32 ± 0.23	0.42 ± 0.31	reference	TES13
niobium	2.10 ± 0.07	2.76 ± 0.30	certified	MYC15
palladium	0.19	0.24	information	MYC16
phosphorus	282 ± 23	369 ± 40	certified	MES30
platinum*	-	-	-	
potassium	177 ± 14	232 ± 25	certified	MES27
praseodymium	0.127 ± 0.006	0.166 ± 0.022	certified	
rhenium	0.33 ± 0.16	0.43 ± 0.22	reference	MYC18
rubidium	0.29 ± 0.02	0.38 ± 0.05	certified	MYC17
samarium	0.158 ± 0.013	0.207 ± 0.031	certified	MYC19
scandium	0.73	0.96	information	MYC20
selenium	1.3	1.8	information	TES14
silicon*	-	-	-	MES33
silver*	-	-	-	TES15
sodium	3290 ± 120	4310 ± 309	certified	MES29
strontium	11.6 ± 0.5	15.2 ± 1.5	certified	TES16
sulfur	830 ± 60	1090 ± 105	certified	MES31
tantalum	0.0026 ± 0.0005	0.0035 ± 0.0009	certified	MYC21
tellurium*	-	-	-	MYC22
terbium	0.048 ± 0.003	0.062 ± 0.009	certified	MYC23
thallium	0.119 ± 0.008	0.157 ± 0.023	certified	
thorium	0.034 ± 0.004	0.044 ± 0.008	certified	
thulium	0.097 ± 0.004	0.127 ± 0.017	certified	MYC24
tin	7.3 ± 1.2	9.6 ± 1.8	certified	
titanium	9.0 ± 1.5	11.8 ± 2.3	certified	
tungsten	1.81 ± 0.14	2.38 ± 0.31	certified	MYC25
vanadium	2970 ± 130	3900 ± 295	certified	
ytterbium	0.77 ± 0.03	1.01 ± 0.12	certified	MYC26
yttrium	6.8 ± 0.3	9.0 ± 0.9	certified	MYC27

NRC **UPER-1** 4/8

Element, E	Mass fraction, w(E), mg/kg	Mass fraction ratio, w(E)/w(U), mg/kg	Туре	International recognition of measurement capability (CMC)
zirconium	1030 ± 50	1350 ± 114	certified	MYC28

^{*}No consensus was obtained for the mass fraction of these elements. Reported data are provided in the supplementary document available at: doi.org/10.4224/crm.2020.uper-1.

Table 3 shows the consensus values of trace element impurities in UPER-1. The primary method used was ICP-MS using external calibration, standard addition and isotope dilution approaches. A total reflection X-ray fluorescence (TXRF) spectrometer was also used to obtain mass fraction of trace element impurities. The consensus values for the mass fractions of all elements were assigned from the interlaboratory study using Laplace random effects model [2].

A supplementary data file is also available at doi.org/10.4224/crm.2020.uper-1 showing all the reported mass fractions for UPER-1 that were used to obtain the consensus values.

International recognition of measurement capability

The measurement capabilities supporting these results are registered at the Calibration and Measurement Capabilities (CMC) database of the *Bureau international des poids et mesures* (BIPM) indicating recognition of the measurement certificates by National Metrology Institutes (NMIs) participating in the Mutual Recognition Arrangement (MRA) with the corresponding identifiers. Lists of all registered measurement capabilities in sediments, soils, ores and particulates matrices can be found in the BIPM database at https://www.bipm.org/kcdb/

Certified values

Certified values are considered to be those for which the NRC has the highest confidence in accuracy and that all known and suspected sources of bias have been taken into account and are reflected in the stated expanded uncertainties. Certified values are the best estimate of the true value and uncertainty.

Reference values

Reference values are those for which insufficient data are available to provide a comprehensive estimate of uncertainty.

Information values

Information values are those for which insufficient data are available to provide any estimate of uncertainty.

Additional data

For elements where no consensus was obtained for the mass fraction, reported data are provided in the supplementary document available at: doi.org/10.4224/crm.2020.uper-1.

Intended use

This CRM is primarily intended for the calibration of procedures and the development of methods for the determination of uranium content, uranium isotopic ratios and trace elements in uranium ore concentrate or similar matrices. A minimum sample mass of 250 mg is recommended to analyze the uranium content, uranium isotope ratios, and trace elements.

NRC **UPER-1** 5/8

Storage and sampling

It is recommended that the material is stored at room temperature and the vials opened immediately prior to use in a clean area with precautions taken against contamination. Prior to each use, contents of the bottle should be well mixed by gentle shaking and rolling of the container, and tightly closed immediately thereafter.

Preparation of material

UPER-1 is an industrial-grade uranium ore concentrate. The material was homogenized and bottled in 60 mL amber glass bottles.

Stability

Similar NRC CRMs have been monitored for trace elements for more than ten years and found to be both physically and chemically stable over this time. We expect similar behaviour of UPER-1. Effects from potential instabilities due to long-term storage and transport were deemed to be negligible on the isotopic composition, the trace element impurities and the uranium content.

Homogeneity

The material was tested for homogeneity at NRC. Results from 10+ sub-samples (250 mg) were evaluated using DerSimonian-Laird random effects model and the resulting relative uncertainty due to homogeneity was regressed against the mass fraction of the element using Horwitz-type power law. The obtained trend was used to assign uncertainty due to homogeneity for all elements with the exception of uranium.

Uncertainty

Included in the overall combined uncertainty estimate are the uncertainties in the batch characterization, uncertainties related to possible between-unit variation, and uncertainties related to inconsistency between the various measurement methods/laboratories. The latter is estimated as the heterogeneity in the random effects model fitted to the results of individual methods, also known as the dark uncertainty [3,4]. Standard random effects model (DerSimonian-Laird) was adopted for isotope ratios. Measurements of trace elements and uranium content, however, were challenging in this material and consequently the consensus building necessitated a more robust statistical model. As a result, we selected Laplace random effects model.

Metrological traceability

Results presented in this certificate are traceable to the SI through gravimetrically-prepared standards of established purity, CRM and international measurement intercomparisons. As such, UPER-1 serves as a suitable reference material for laboratory quality assurance programs, as outlined in ISO/IEC 17025.

Quality Management System (ISO 17034, ISO/IEC 17025)

This material was produced in compliance with the NRC Metrology Quality Management System, which conforms to the requirements of ISO 17034 and ISO/IEC 17025. The Metrology Quality Management System supporting NRC Calibration and Measurement Capabilities, as listed in the *Bureau international des poids et mesures* (BIPM) Key Comparison Database (kcdb.bipm.org/), has been reviewed and approved under the authority of the Inter-American Metrology System

NRC UPER-1 6/8

(SIM) and found to be in compliance with the expectations of the *Comité international des poids et mesures* (CIPM) Mutual Recognition Arrangement. The SIM approval is available upon request.

Updates

Users should ensure that the certificate they have is current. Our website at www.nrc.gc.ca/crm will contain any new information.

References

- 1. Evaluation of measurement data: Guide to the expression of uncertainty in measurement, JCGM 100:2008.
- 2. Rukhin AL, Possolo A (2011) Laplace random effects models for interlaboratory studies. Computational Statistics & Data Analysis, 55(5): 1815-1827.
- 3. Possolo A, Toman B (2007) Assessment of measurement uncertainty via observation equations. Metrologia, 44: 464-475.
- 4. Thompson M, Ellison SLR (2011) Dark uncertainty. Accreditation and Quality Assurance, 16: 483-487.

Cited by

A list of scientific publications citing UPER-1 can be found at doi.org/10.4224/crm.2020.uper-1.

Authorship

Kenny Nadeau¹, Juris Meija¹, Kelly LeBlanc¹, Lu Yang¹, Enea Pagliano¹, Yetunde Aregbe², Paola Alejandra Babay³, Carrie Broome⁴, Michelle Chartrand¹, Don Chipley⁵, Jung Youn Choi⁶, Joanna S. Denton⁷, Ali El-Jaby⁸, Mostafa Fayek⁹, Barbara B. A. Francisco¹⁰, Anais Fourny⁴, Viorel Fugaru¹¹, Bernard Gartner¹², Eduardo Amilcar Gautier³, Patricia Grinberg¹, Allan Holsten¹², Jeremy D. Inglis⁷, Slobodan Jovanovic⁸, Elizabeth Keegan¹³, Tara Kell⁸, Yoshiki Kimura¹⁴, William S. Kinman⁷, William E. Kieser¹⁰, Stephen Kiser¹⁵, Derek Knaack⁵, Eva Kovacs-Szeles¹⁶, Rachel E. Lindvall¹⁷, Elaine Loi¹³, Naomi E. Marks¹⁷, Klaus Mayer¹⁸, Jean-François Mercier¹⁵, Robert Millar¹², Liana Orlovskaya⁴, José Luis Ramella³, Rachel Reavie⁴, Stephan Richter², Hana Seo⁶, Andreea Elena Serban¹¹, Brandi Shabaga⁹, Ryan Sharpe⁹, Youqing Shi⁴, Michael J. Singleton¹⁷, Csaba Tobi¹⁶, Anny Toch¹³, Marina Totland⁴, Zsolt Varga¹⁸, Célia Venchiarutti², Anna Vesterlund¹⁹, Marian Virgolici¹¹, April Vuletich⁵, Maria Wallenius¹⁸, Hitoshi Yamazaki¹⁴, Xiaolei Zhao¹⁰, and Zoltán Mester¹

¹ National Research Council Canada (NRC), Ottawa, Canada;

² European Commission, Joint Research Centre (JRC-GEEL), Directorate G – Nuclear Safety & Security, Standards for Nuclear Safety, Security & Safeguards, Geel, Belgium;

³ Comisión Nacional de Energía Atómica (CNEA) (National Atomic Energy Commission), Buenos Aires, Argentina;

⁴ Canadian Nuclear Laboratories (CNL), Chalk River, Canada:

⁵ Queen's Facility for Isotope Research (QFIR), Queen's University, Kingston, Canada;

⁶ Korea Institute of Nuclear-nonproliferation And Control (KINAC), Daejeon, South Korea;

⁷ Nuclear and Radiochemistry Group, Chemistry Division, Los Alamos National Laboratory (LANL), Los Alamos, United States of America;

⁸ Canadian Nuclear Safety Commission Laboratory (CNSC), Ottawa, Canada;

⁹ University of Manitoba, Department of Geological Sciences (UM), Manitoba, Canada;

¹⁰ André E. Lalonde AMS Laboratory, University of Ottawa (UO), Ottawa, Canada;

NRC UPER-1 7/8

¹¹ Horia Hulubei National Institute for Research and Development in Physics and Nuclear Engineering (IFIN-HH), Măgurele, Romania;

- ¹²Geoanalytical Laboratories Saskatchewan Research Council (SRC), Saskatoon, Canada;
- ¹³ Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Australia;
- ¹⁴ Integrated Support Center for Nuclear Nonproliferation and Nuclear Security, Japan Atomic Energy Agency (JAEA), Funaishikawa, Tokai-mura, Naka-gun, Ibaraki, Japan;
- ¹⁵ Health Canada, Radiation Protection Bureau (RPB-HC), Ottawa, Canada;
- ¹⁶ Centre for Energy Research, Budapest, Hungary;
- ¹⁷ Lawrence Livermore National Laboratory (LLNL), Livermore, United States of America;
- ¹⁸ European Commission, Joint Research Centre (JRC-KRU), Directorate for Nuclear Safety and Security, Karlsruhe, Germany;
- ¹⁹ Swedish Defence Research Agency (FOI), Umeå, Sweden.

Acknowledgments

The cooperation of the following is gratefully acknowledged for the organization of the Uranium ore concentrate data review meeting of February 24 to 27, 2020 in Ottawa: Dr. Chris Cochrane, Canadian Nuclear Safety Commission, Ottawa, Canada.

Citation

Nadeau K, Meija J, LeBlanc K, Yang L, et al. UPER-1: Natural Uranium Ore Concentrate (UO₄) Powder Certified Reference Material for Uranium Content, Uranium Isotope Ratios, and Trace Elements. Ottawa: National Research Council Canada; 2020.

Available from: doi.org/10.4224/crm.2020.uper-1

NRC UPER-1 8/8

UPER-1

Date of issue: August 2020 Date of expiry: August 2030

Approved by:

Zoltan Mester, Ph. D.

Team Leader, Inorganic Chemical Metrology

NRC Metrology

This Certificate is only valid if the corresponding material was obtained directly from the NRC or an Authorized Reseller.

National Research Council Canada Metrology 1200 Montreal Road Building M36, Room 1029 Ottawa, Ontario K1A 0R6

Telephone: 613-993-2359

Fax: 613-993-8915

Email: CRM-MRCOttawa@nrc-cnrc.gc.ca

