MATH 633 (FINAL EXAM)

HIDENORI SHINOHARA

Exercise. (1) Since f is holomorphic and $f \neq 0$, 1/f is a non-constant, holomorphic function on the region Ω . By the maximum modulus principle, 1/f cannot attain a maximum value in Ω . Therefore, f cannot attain a minimum value in Ω .

Exercise. (2) It suffices to show that, for every R > 0, f is holomorphic on the open disk centered at 0 with radius R. Let R > 0 be given. Let T be a triangle inside the open disk D centered at 0 with radius R. If none of the three edges of T lies on the x or y axis, then $\int_T f(z)dz = 0$. Suppose some of the three edges of T lies on the x and/or y axis. Then $T_n = T + (1+i)/n$ lies in D for any $n \ge N$ for a sufficiently large N. Since none of the three edges of T_n lies on the x or y axis, $\int_{T_n} f = 0$ for any $n \ge N$. Then $\int_T f = \lim_{n \to \infty} \int_{T_n} f = 0$.

Exercise. (6) Let $f = 3z^2$ and $g = z^5 + 1$. Then |f| > |g| on the unit circle. By Rouche's theorem, f and f + g have the same number of zeros inside the unit circle. Clearly, f only has one zero with multiplicity 2. Thus p = f + g has exactly two zeros inside the unit circle. Let $f = z^5$ and $g = 3z^2 + 1$. Then |f| > |g| on the circle centered at 0 with radius 2 because $|g| \le 3 \cdot 2 \cdot 2 + 1 = 13 < 32 = |f|$. By Rouche's theorem, f and f + g have the same number of zeros inside C. f clearly has one zero with multiplicity 5, so p = f + g has exactly 5 zeros inside C.

Therefore, in the annulus, p has 5 - 2 = 3 zeros.

Exercise. (7) Let $R > a^2$ be given. Let $T_1 = [-R, R]$ and T_2 be the upper half of the circle centered at 0 with radius R. Let $f(z) = \exp(iz)/(z^2 + a^2)$.

• $\int_{T_1+T_2} f(z)$ can be calculated using residues. The only singularity of f is ia. Since it is a simple pole, the residue is $\lim_{z\to ia}(z-ia)\exp(iz)/(z^2+a^2)=\exp(-a)/2ia$ by Theorem 1.4 on P.76. By the residue formula, $\int_{T_1+T_2} f(z)=\pi \exp(-a)/2a$.

$$\left| \int_{T_2} f(z) \right| = \left| \int_0^1 \frac{\exp(iRe^{\pi it})}{R^2 e^{2\pi it} + a^2} R\pi i e^{\pi it} dt \right|$$

$$\leq \int_0^1 \left| \frac{\exp(iRe^{\pi it})}{R^2 e^{2\pi it} + a^2} R\pi i e^{\pi it} \right| dt$$

$$\leq \int_0^1 \frac{\left| \exp(iRe^{\pi it}) \right|}{\left| R^2 e^{2\pi it} + a^2 \right|} \left| R\pi i e^{\pi it} \right| dt$$

$$\leq \int_0^1 \frac{\exp(-\operatorname{Im}(Re^{\pi it}))}{\left| R^2 e^{2\pi it} + a^2 \right|} \left| R\pi i e^{\pi it} \right| dt$$

$$\leq \int_0^1 \frac{1}{\exp(R\sin(\pi t)) \left| R^2 e^{2\pi it} + a^2 \right|} \left| R\pi i e^{\pi it} \right| dt$$

$$\leq \int_0^1 \frac{1}{\exp(R\sin(\pi t)) \left| R^2 e^{2\pi it} + a^2 \right|} R\pi dt$$

$$\leq \pi \int_0^1 \frac{1}{\exp(R\sin(\pi t)) \left| R^2 e^{2\pi it} + a^2 \right|} R\pi dt$$

$$\leq \pi \int_0^1 \frac{1}{\exp(R\sin(\pi t)) \left| R^2 e^{2\pi it} + a^2 \right|} dt$$

$$\to 0$$

Based on these, we obtain that $\int_{T_1} f(z) = \pi e^{-a}/2a$ as $R \to \infty$. The desired integral is the real part of $\int_{T_1} f(z)$, and it is simply $\pi e^{-a}/2a$.

Exercise. (8) By repeatedly applying Theorem 5.3 (P.54), the dth derivative of f is 0 in the open unit disk. By induction, this implies that f is a polynomial of degree at most d.