DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KG REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

(Accredited by NAAC, Approved by AICTE, New Delhi, Affiliated to JNTUH, Hyderabad) Chilkur (Village), Moinabad (Mandal), R. R Dist, TS-501504

CERTIFICATE

This is to certify that the Project report on "MOBILE AIR POLLUTION MONITORING AND BUS TRACKING SYSTEM FOR METROPOLITAN AREAS" is a bonafide record work carried out by K. MANOHAR REDDY (19QM1A0431), N.V.V. RAMANA REDDY (19QM1A0446), P. SAI KARTHIKA (19QM1A0455), R. DEEPAK REDDY (19QM1A0456), in partial fulfillment for the requirement for the award of degree of BACHELOR OFTECHNOLOGY in "ELECTRONICS AND COMMUNICATION ENGINEERING", JNTUH, Hyderabad during the year 2022-2023.

Internal Guide

Mr. Vijaya Bhaskar Reddy M.Tech (Ph.D) Assistant Professor Head of the department

Dr. M N Narsaiah Ph.D Associate Professor

External Examiner

ACKNOWLEDGEMENT

We wish to thanks the Management, Sri. Ln. K. Krishna Reddy, Chairman of KG Reddy College of Engineering and Technology for providing the facilities to complete our project work.

We would also especially like to express our extreme gratitude and sincere thanks to our beloved **Director**, **Dr. Rohit Kandakatla**, KG Reddy College of Engineering and Technology, who encouraged and given support to complete the project successfully.

At the very outset, we wish to place on record our sincere thanks and gratitude to our beloved head of the Institution, **Dr. Y. Vijayalata Reddy, Principal**, KG Reddy College of Engineering and Technology, who allowed us to complete this endeavor successfully.

We would like to express our sincere deep sense of gratitude and indebtedness to **Dr. M N Narsaiah**, **HOD**, Department of Electronics and Communication Engineering, for his significant suggestions and help in every respect to accomplish the project work. His persisting encouragement, everlasting patience and keen interest in discussions have benefited us to the extent that cannot be spanned by words. He has been the continuous source of inspiration for us throughout the work.

We would like to sincerely thank to our Minor **Project coordinator**, **Dr. B Vandana**, **Associate Professor** who stimulated many thoughts for this project and Staff-Members of Department of Electronics and Communication Engineering Department for their goodwill gestures towards us.

We would especially like to express our extreme gratitude and sincere thanks to our project guide **Mr. Vijaya Bhasker Reddy, Assistant Professor,** Department of Electronics and Communication Engineering for his enthusiastic and innovative guidance and support.

Last but not least we would also like to thank teaching and non-teaching staff and also all my family, friends without whose support this project work would remain unfulfilled.

K. Manohar Reddy
N.V.V. Ramana Reddy
P. Sai Karthika
R. Deepak Reddy
19QM1A0455
R. Deepak Reddy
19QM1A0456

ABSTRACT

We need a smart and portable management system which provides us with an efficient method to track the current location of a bus and help the stakeholders with efficient time management. And also, air pollution levels are constantly on rise. Even rural areas are affected by the overall increase in vehicle emissions, which is one of the major causes of the increase in pollution. So, a system is needed where we can constantly monitor the surrounding pollution levels. Instead of an inert system, we are proposing a more flexible one.

Combining present technology with the requirement of information transmission, we planned for a creative approach to track a bus and monitor the pollution levels at the same time using GPS and PM sensors. This system can also be used for *Accident Detection Alert System*, *Soldier Tracking System* and many more, by just making few changes in hardware and software, widely in tracking school/colleges buses Cabs/Taxis, stolen vehicles, Etc.

Keywords- Tracking, GPS, Pollution, PM Sensor, Monitoring

List of Figures

Fig No	Name of the Figure	Page No
Figure 1.1	Number of deaths attributable to air pollution across India from 1990	2
Figure 1.2	Block diagram of embedded system	4
Figure 3.1	An Overview of the complete working process	14
Figure 3.2	Block diagram of Mobile Air Pollution Monitoring and Bus Tracking System	15
Figure 4.1	NodeMCU ESP8266	18
Figure 4.2	NodeMCU ESP8266 Pinout diagram	20
Figure 4.3	Bread Board	22
Figure 4.4	DHT-11 Sensor	24
Figure 4.5	SDS 011 Sensor	27
Figure 4.6	GSM Module	29
Figure 4.7	GPS Module	31
Figure 4.8	Three Elements of GPS	33
Figure 4.9	Arduino IDE main window	35
Figure 4.10	Select the type of nodeMCU	36
Figure 4.11	Arduino IDE main window	37
Figure 4.12	Sign up process of Thingspeak	39
Figure 4.13	Dashboard of Thingspeak	40
Figure 4.14	Channel creation in Thingspeak	40
Figure 4.15	Field creation in Thingspeak	42

Figure 4.16	API keys of Thingspeak	43
Figure 4.17	Hardware connections	44
Figure 5.1	Circuit Connections	59
Figure 5.2	Thingspeak Graph PM sensor readings	60
Figure 5.3	GPS Readings in Server	61
Figure 5.4	Redirect page of location from server	61
Figure 5.5	GPS module ThingSpeak readings and map	62
Figure 5.6	ThingSpeak Graph of Humidity	63
Figure 5.7	ThingSpeak Graph of Temperature	63
Figure 5.8	ThingSpeak Graph of Temperature and Humidity and location Readings	64
Figure 5.9	Past Collected Readings in an Excel sheet	64

List of Tables

Table No	Name of Table	Page No
Table 4.1	Interfacing pins of ESP8266 and Arduino Alias	21
Table 4.2	SDS 011 Sensor Specifications	28
Table 4.3	GPS Module Specifications	35

ABBREVIATIONS

S.NO	Abbreviation	Acronyms
1.	Global System for Mobile Communication	GSM
2.	Global Positioning System	GPS
3.	Application Specific Integrated Circuit	ASIC
4.	Internet of Things	IOT
5.	Electronic Stability Program	ESP
6.	Particulate Matter Sensor	PM Sensor
7.	Digital humidity and temperature sensor	DHT-11 Sensor
8.	Electrically Erasable Programmable Read-only Memory	EEPROM
9.	Global Navigation Satellite System	GLONASS
10.	Air Pollution Monitoring Device	APMD
11	Wireless Fidelity	Wi-Fi
12.	Artificial neural networks	ANN
13	Universal asynchronous receiver-transmitter	UART
14.	Transmission Control Protocol/Internet Protocol	TCP/IP
15.	Static random access memory	SRAM