

EE141-Spring 2010 Digital Integrated Circuits

Lecture 16
Ratioed Logic
Dynamic Logic

EECS141

Lecture #16

1

Administrativia

- □ Project Phase 1 Done Thanks for the timely response.
- □ Phase 2 to be announced We Launched on Fr
- □ Hw 6 due on Fr.

EECS141

Class Material Last lecture Pass transistor logic CMOS Layout Today's lecture Ratioed Logic Dynamic Logic Reading (Ch 6)

Lecture #16

Ratioed Logic LE

- □ Rising and falling delays aren't the same
 - Calculate LE for the two edges separately

- □ For tpLH:
 - $C_{qate} = WC_G$ $C_{inv} = (3/2)WC_G$ $LE_{LH} =$

EECS141

Lecture #16

Ratioed Logic LE (pull-down edge)

- □ What is LE for t_{pHL}?
- \square Switch model would predict $R_{eff} = R_n || R_p$
 - Would that give the right answer for LE?

EECS141

Lecture #16

8

Response on Falling Edge

$$\frac{v_o(t)}{V_{DD}} = \frac{Rn}{Rn + Rp} + \left(1 - \frac{Rn}{Rn + Rp}\right)e^{-t/\tau}$$

- □ Time constant is smaller, but it takes more time to complete 50% V_{DD} transient (arguably)
 - Rp actually takes some current away from discharging C

EECS141 Lecture #16

Ratioed Logic Pull-down Delay

- □ Think in terms of the current driving C_{load}
- □ When you have a conflict between currents
 - Available current is the difference between the two
 - In pseudo-nMOS case:

$$R_{drive} = \frac{1}{1/Rn^{-1}/Rp} \longrightarrow R_{drive} = \frac{Rn}{1 - \left(\frac{Rn}{Rp}\right)}$$

(Works because Rp >> Rn for good noise margin)

Ratioed Logic LE (pull-down edge)

- □ For t_{pHL} (assuming $R_{sqp} = 2R_{sqn}$):
 - $R_{gate} = R_n/(1-Rn/Rp) = 2Rn \qquad R_{inv} = R_n$
 - $C_{gate} = WC_G$ $C_{inv} = 3WC_G$
 - LE_{HL} =
- □ LE is lower than an inverter!
 - But have static power dissipation...

EECS141 Lecture #16

Improved Loads

Adaptive Load

DCVSL Example1: AND

Dynamic Logic

EECS141 Lecture #16 17

Dynamic CMOS

- □ In static circuits, at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of n requires 2n (n N-type + n P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - only requires n + 2 (n+1 N-type + 1 P-type) transistors

Conditions on Output

- □ Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- □ Inputs to the gate can make at most one transition during evaluation.
- □ Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_L

Properties of Dynamic Gates

- □ Logic function is implemented by the PDN only
 - number of transistors is N + 2 (versus 2N for static complementary CMOS)
- \Box Full swing outputs (V_{OL} = GND and V_{OH} = V_{DD})
- □ Non-ratioed sizing of the devices does not affect the logic levels
- □ Faster switching speeds
 - reduced capacitance due to lower input capacitance (C_{in})
 - no I_{sc}, so all the current provided by PDN goes into discharging C_L

EECS141 Lecture #16 21

LE of Dynamic Gates

Properties of Dynamic Gates

- Overall power dissipation usually higher than static CMOS
 - no static current path ever exists between V_{DD} and GND (including P_{sc})
 - no glitching
 - higher transition probabilities
 - extra load on Clk
- ightharpoonup PDN starts to work as soon as the input signals exceed V_{Tn} , so V_{M} , V_{IH} and V_{IL} equal to V_{Tn}
 - low noise margin (NM_I)
- □ Needs a precharge/evaluate clock

Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic

EECS141 Lecture #16 25

Dynamic Gate VTC

Issues in Dynamic Design 2: Charge Sharing

- □ Charge initially stored on C_L clk ⊣ M_M
 - C_A previously discharged

- □ When A rises, this charge is redistributed (shared) between C₁ and C₄
- $\ \square$ Makes Out drop below V_{DD}

EECS141 Lecture #16 27

Charge Sharing

- Two cases:
 - M_a stays on complete charge share
 - M_a turns off incomplete charge share
- •Complete charge share:

•
$$Q_{Ca} = V_{Out}C_a$$

 $\Delta Q_{CL} = -V_{Out}C_a$
 $\rightarrow \Delta V_{Out} = -V_{DD}C_a/(C_a + C_L)$

•Incomplete charge share:

$$\bullet Q_{Ca} = (V_{DD} - V_{TN}^*)C_a$$

$$\Delta Q_{CL} = -(V_{DD} - V_{TN}^*)C_a$$

$$\rightarrow \Delta V_{Out} = -(V_{DD} - V_{TN}^*)C_a/C_L$$

EECS141 Lecture #16 29

Solution to Charge Sharing

- Keeper helps a lot
 - Can still get failures if Out drops below inverter V_{sw}
- Another option: precharge internal nodes
 - Increases power and area

Issues in Dynamic Design 3: Clock Feedthrough

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above V_{DD}. The fast rising (and falling edges) of the clock couple to Out.

Other Effects

- □ Capacitive coupling
- □ Substrate coupling
- □ Minority charge injection
- □ Supply noise (ground bounce)

EECS141 Lecture #16 35

Domino Logic

Properties of Domino Logic

- □ Only non-inverting logic can be implemented
- □ Very high speed
 - static inverter can be skewed, only L-H transition critical
 - Input capacitance reduced smaller logical effort

