

ABOUT THIS SESSION

After this session you will:

- Understand how to spin-up a Kubernetes cluster, concepts on Kubernetes Networking and compute
- Learn how DPDK, OVS, VPP, SRIOV are implemented in Kubernetes context
- Get hands-on deployment of simulated Cloud Native NFV infrastructure

Target Audience – Technical at all levels

Addressing barriers on the path to Cloud Native Step 0 – Containers and looking at the Industry gaps

CONTAINERS NETWORKING DEPLOYMENTS CONSIDERATIONS

MULTIPLE DEPLOYMENT MODELS

ADDRESS KEY CHALLENGES IN CONTAINERS BARE METAL

CHALLENGES BEING ADDRESSED

SOLUTION

Open Source: Available on github https://github.com/intel & https://github.com/redhat-nfvpe
NFD at https://github.com/kubernetes-incubator/node-feature-discovery

MULTIPLE NETWORK INTERFACES FOR VNFS

PROBLEM

- Kubernetes support only one Network interface "eth0"
- In NFV use cases, it is required to provide multiple network interfaces to the virtualized operating environment of the VNF

USE CASES

- Functional separation of control and data network planes link aggregation/bonding for redundancy of the network
- Support for implementation of different network SLAs
- Network segregation and Security

REFERENCE

- Multus CNI Founded by Intel & a collaboration projects between Intel & Red Hat https://github.com/intel/multus-cni (v3.1 Aug 18)
- Native Kubernetes Mailing list with details on discussions: https://groups.google.com/forum/#!forum/kubernetes-sig-network

USERSPACE CNI PLUGIN

PROBLEM

 No Container Networking with software acceleration for NFV, particularly for East – West Traffic

SOLUTION

- Virtio_user/ vhost_user performance better than VETH pairs
- Supports VPP as well as DPDK OVS
- Vhost_user CNI plugin enables K8s to leverage data plane acceleration

REFERENCE

 Userspace CNI - Founded by Intel, and a Collaboration projects between Intel & Red Hat https://github.com/intel/vhost-user-net-plugin (V1.1 July '18)

DPDK - SR-IOV CNI PLUGIN

PROBLEM

- Lack of support for physical platform resource isolation
- No guaranteed network IO performance
- No support for Data Plane Networking

SOLUTION

- Allows SR-IOV support in Kubernetes via a CNI plugin
- Supports two modes of operation:
- 1. SR-IOV: SR-IOV VFs are allocated to pod network namespace
- 2. DPDK: SR-IOV VFs are bounded to DPDK drivers in user space

REFERENCE

 SRIOV CNI - A Collaboration projects between Intel & Red Hat https://github.com/intel/sriov-cni(V0.3 May '18)

DEVICE PLUGINS OVERVIEW

WHY?

- Device vendors have to write custom Kubernetes code in order to integrate their device with the ecosystem
- Results in multiple vendors maintaining custom code making it difficult for a customer to consume

HOW?

- Provide a device plugin framework which enables vendors to advertise, schedule and setup devices with native Kubernetes integration
- Device Plugins are easily deployed and workload device requests are made via extended resource requests in the Pod Specification

BENEFITS

Enables effective resource utilization

REFERENCE

https://kubernetes.io/docs/concepts/cluster-administration/device-plugins/

KUBERNETES RESOURCE MANAGEMENT

PROBLEM STATEMENT

Kubernetes clusters are deployed on a wide array of heterogeneous environments with different hardware resources

Today, CPU and Memory are the core resources orchestrated by Kubernetes. Workloads have a wide variety of hardware resource requirements as well as CPU and Memory but Kubernetes is agnostic to these.

GOAL

Introduce a broader array of resources representing cluster abilities to cater for the wide range of workloads being deployed using Kubernetes

SRIOV NETWORK DEVICE PLUGIN

PROBLEM

- SRIOV CNI has no mechanism to expose number of VFs available in a host.
- Allocated network resources are not guaranteed from same NUMA node.

SOLUTION

- SRIOV Network device plugin provides a mechanism to advertise SRIOV network capabilities of a host.
- VNF application that demands high performance NICs as resource requests then can be scheduled to this host by K8s scheduler.
- SRIOV device plugin allocates required VFs meeting NUMA alignment.

REFERENCE

SRIOV Network device plugin
A Collaboration project between Intel & Red Hat
https://github.com/intel/sriov-network-device-plugin

SRIOV NETWORK DEVICE PLUGIN

CNI Model

CNI & Device plugin approach pluggable models

Challenge resolved with new approach:

The CNI interface has no mechanism to enable k8s to:

- Schedule consumable network resources e.g. SR-IOV VFs
- Guarantee NUMA node resource alignment
- · Restrict access to allocated devices only

INTEL & RED HAT ENABLING CONTAINER NETWORKING COMMERCIAL DEPLOYMENT

OPEN SOURCE SOFTWARE

CONSUME

Red Hat & Intel is addressing key challenges to using containers for NFV use cases

Many of these have been open sourced already

Explore more information available on Intel's Network Builders site https://networkbuilders.intel.com/network-technologies/container-experience-kits

https://www.okd.io/

