Frankfurt University of Applied Sciences Fachbereich 2: Informatik und Ingenieurwissenschaften

Grundlagen adaptiver Wissenssysteme (SS2025)

Prof. Dr. Thomas Gabel

Aufgabenblatt 5

Aufgabe 1: Linear Least Squares

Stellen Sie sich vor, dass Sie das Wertiterationsverfahren für ein Problem mit eindimensionalem, kontinuierlichem Zustandsraum S anwenden. Sie haben Ihren Algorithmus so implementiert, dass die Aktualisierungsvorschrift Zielwerte für mehrere Zustände (konkret für p=3) berechnet und anschließend die Aktualisierung der Wertfunktion vornimmt.

Die Wertfunktion wird mittels eines linearen Modells repräsentiert, also durch eine Funktion $V: S \to \mathbb{R}$, bei der für alle $s \in S$ gilt, dass sich V(s) berechnen lässt gemäß $V(s) = w_0 + w_1 \cdot s$. Hierbei ist $\vec{w} = (w_0, w_1)$ der Parametervektor (Gewichtsvektor), der einzustellen ist.

Zur Erinnerung: Die Mustermenge beim Lernen eines linearen Modells mit der Methode der kleinsten Quadrate ist gegeben als

$$D = \{(x^1, t^1), (x^2, t^2), \dots, (x^p, t^p)\}.$$

Die zu Beginn der Aufgabenstellung erwähnte Menge berechneter Zielwerte (Menge von V-Werten, d.h. Menge von Zuständen mit per Value Iteration berechneten erwarteten Kosten/Belohnungen), umfasse in dieser Aufgabe p=3 Elemente. Die vom Wertiterationsverfahren betrachteten Zustände seien $s_1=2,\ s_2=4$ und $s_3=6$ und die zugehörigen Zielwerte (per Aktualisierungsvorschrift berechnet) seien $v_1=1,\ v_2=3,$ und $v_3=4$. Die sich somit ergebende Mustermenge ist damit

$$D = \{(s^1, v^1), (s^2, v^2), (s^3, v^3)\} = \{(2, 1), (4, 3), (6, 4)\}.$$

- a) Ermitteln Sie die Gewichte w_0 und w_1 in der Geradengleichung $V(s) = w_0 + w_1 \cdot s$ so, dass die quadrierten Abstände der Funktionswerte V(s) von den Zielwerten v_i minimiert werden. Benutzen Sie hierfür den in der Vorlesung besprochenen "Linear-Least-Squares"-Ansatz.
- b) Stellen Sie Ihre Ergebnisse auch graphisch dar.
- c) Welche erwarteten Belohnungen/Kosten sagt die von Ihnen mit einem linearen Modell approximierte Wertfunktion V für den Zustand s=3 voraus?

Aufgabe 2: Tile Coding mit dem CMAC

Wir betrachten eine einfache CMAC-Architektur mit drei Gittern (A, B und C), die gemäß der folgenden Abbildung definiert sind und die je 6, 20 sowie 12 Zellen umfassen. Der betrachtete zugrundeliegende Zustandsraum $X = [0,8] \times [0,6]$ ist ebenfalls in der Abbildung dargestellt.

Abbildung 1: Drei übereinandergelegte Gitter bilden einen CMAC

Wir benennen dabei die in den Gitterzellen gespeicherten Gewichte wie folgt: w_1 bis w_6 für die Zellen des Gitters A, w_7 bis w_{26} für die Zellen des Gitters B, w_{27} bis w_{38} für die Zellen des Gitters C. Die Basisfunktionen Φ_i sind dazu passend für $i=1,\ldots,38$ nummeriert.

a) Geben Sie für eine Lernrate von $\alpha=0.5$ die Gewichtsänderungen an, die der CMAC lernt, wenn er mit den folgenden Traininsgmustern in dieser Reihenfolge trainiert wird:

$$D = \{(x^1, t^1), (x^2, t^2), (x^3, t^3)\} = \left\{ \left(\begin{pmatrix} 0.4 \\ 0.3 \end{pmatrix}, 2 \right), \left(\begin{pmatrix} 1.1 \\ 0.4 \end{pmatrix}, 4 \right), \left(\begin{pmatrix} 0.2 \\ 2.1 \end{pmatrix}, 3 \right) \right\}.$$

Gehen Sie dabei von einer Null-Initialisierung aller Gewichte aus, d.h. $w_i = 0 \forall i$.

b) Welchen Wert liefert der CMAC-Funktionsapproximator nach dem Training für den Datenpunkt $x = \binom{0.9}{1.4}$?