

In the claims:

1. (currently amended) A method for operating an injection valve of an internal combustion engine (100), whereby the metering of fuel is adjustable not only by varying the injection time, but also by varying ~~the~~ stroke of ~~the~~ a nozzle needle of the injection valve (120), comprising the following steps:

- a) The internal combustion engine (100) is monitored for proper function (Sa);
- b) A jammed-open operating state of the nozzle needle of the injection valve (120) is detected, due to soiling in particular, whereby the nozzle of the injection valve (120) cannot be closed any further by the nozzle needle, but it can be opened further (Sb); and
- c) The nozzle is scavenged with fuel by setting an essentially maximum stroke of the nozzle needle to remove the soiling (Sc).

2. (original) The method as recited in Claim 1, wherein, in a), the internal combustion engine (100) is monitored to detect a richer air-fuel mixture (Sa1) and, in step b), the jammed-open operating state is detected when the richness of the air-fuel mixture is greater than a specifiable threshold value for richness, or the gradient of the enrichment is greater than a specifiable gradient threshold value for enrichment (Sb1).

3. (Currently amended) The method as recited in Claim 1, wherein, in step a), the internal combustion engine (100) or a single cylinder of the internal combustion engine (100) is monitored –possibly in addition– to detect misfires (Sa2), and, in step b), the jammed-open operating state is–possibly also- detected when the number of detected misfires of a cylinder per unit of time exceeds a specified threshold value for frequency (Sb2).

4. (currently amended) The method as recited in Claim 1, wherein in step a) a pressure in one of the fuel accumulators (110) assigned to the internal combustion engine (100) is monitored (Sa3) –possibly in addition- and that, in step b), the jammed-open operating state is –possibly also- detected when the pressure in the fuel accumulator (110) falls below a specifiable threshold value for pressure, or when the course of the pressure in the fuel accumulator (110) over time deviates from a specifiable, expected course of pressure over time by more than specifiable tolerance values for pressure (Sb3).

5. (previously presented) The method as recited in Claim 1, wherein, while scavenging is carried out according to step c), the duration of actuation t_1 , during which time the maximum nozzle needle stroke is set, is reduced to the point that the fuel injected by the injection valve (120) into the

combustion chamber of the internal combustion engine (100) does not exceed a specified means fuel value (Sd1).

6. (previously presented) The method as recited in Claim 1, wherein, while scavenging is carried out according to step c), a combustion misfire is artificially induced in the cylinder in which the jammed-open operating state of the nozzle needle was detected, by delaying the moment of ignition for this cylinder until the air-fuel mixture in the combustion chamber is no longer flammable and/or until the high-pressure efficiency of combustion is minimal (Sd2).

7. (previously presented) The method as recited in Claim 1, wherein, when the internal combustion engine (100) operates in an homogenous operating condition, the moments of ignition are delayed-while scavenging, is carried out according to step c)-to the point at which the ignition timing efficiency is adjusted according to the following formula (Sd3):

$$\eta_{zw} = (M_d \text{ soll} / M_i \text{ opt}) \cdot (1 / \eta_{lam}),$$

$$\eta_{lam} = f(\lambda), \lambda + r_l / r_k \text{ soll}; \text{ and}$$

$$r_k \text{ soll} = f(\text{scavenging stroke})$$

wherein

η_{zw} is the ignition timing efficiency;

Md_solle is the target value for the engine torque and/or for the internal combustion engine

Mi_opt is the optimum engine torque and/or the optimum torque of the internal combustion engine (100);

eta_lam is the λ efficiency;

r_l is the air mass; and

rk_soll is the target value for the mass.

8. (Previously presented) The method as recited in Claim 1, wherein, the internal combustion engine (100) operates in the stratified-charge mode, before or after the scavenging is carried out according to step c), at least a few of the generally numerous fuel injections designed to take place during a single multiple-injection cycle are not carried out (Sd4).

9. (previously presented) The method as recited in Claim 1, wherein, the maximum stroke of the nozzle needle according to step c) is adjusted for only one cylinder of the internal combustion engine (100) and for only a few injection processes.

10. (previously presented) The method as recited in Claim 9, wherein the execution of step c) is blocked for a specifiable period of time before it is allowed to continue (Se).

11. (previously presented) A computer program for a control device (130) of an internal combustion engine (100) with program code that is suitable for executing the method as recited in Claim 1, when it runs on a computer or microprocessor.

12. (original) The computer program is recited in Claim 11, wherein the program code is stored on a computer-readable data carrier.

13. (currently amended) A control device (130) for controlling an injection valve (120) of an internal combustion engine (100), whereby the injection valve (120) is configured such that fuel supplied by said injection valve is capable of being metered into the combustion chambers of the internal combustion engine (100) by varying thea stroke of thea nozzle needle of the injection valve (120), wherein, with the aid of the control device (130), a jammed-open operating state of the nozzle needle of the injection valve (120) is detectable, in particular due to soiling of the nozzle, and, in this case an essentially maximum stroke of the nozzle needle is

adjustable by the control device (130) for scavenging of the nozzle with fuel.

14. (currently amended) An internal combustion engine (100) with an injection valve (120) for injecting fuel, whereby the injection valve (120) is configured such that it enables metering of an amount of fuel supplied by it into the combustion chambers of the internal combustion engine (100) by varying the stroke of the nozzle needle of the injection valve (120), wherein a control device (130) is assigned to the internal combustion engine (100), with the aid of which a jammed-open operating state of the nozzle needle of the injection valve (12) is detachable, due to soiling in particular, and, with the aid of which said control device a substantially maximum stroke of the nozzle needle is adjustable in this case for scavenging the nozzle with fuel.