AI MATH Exercises

Elsiddig

July 2023

1 Functions

Example: Find the domain of the function

$$f(x) = x + \frac{\sqrt{1 - x^2}}{\log(1 + x)}$$

Solution: We need to consider the following restrictions

- Square root argument must be non-negative.
- log argument must be positive.
- $\log(1+x)$ must be non-zero since it is in the denominator.

The first condition is $1 - x^2 \ge 0$ which can be manipulated further as

$$1 - x^{2} \ge 0$$

$$\Leftrightarrow 1 \ge x^{2}$$

$$\Leftrightarrow 1 \ge |x|$$

$$\Leftrightarrow 1 \ge x \ge -1$$

The second condition is simply 1 + x > 0 which is equivalent to x > -1.

The third condition is $\log(1+x) \neq 0$. Since log equals 0 only when its input is 1 the condition becomes $1+x \neq 1$ which is simplified to $x \neq 0$.

Putting all these conditions together the domain is $(-1,0) \cap (0,1]$. This domain can be represented on the real line as shown in figure 1.

Figure 1: real line representation

Exercise 1: Graph the following functions.

•
$$f(x) = 2x + 3$$

•
$$f(x) = 13$$

•
$$sgn(x) = \begin{cases} 1 & ; x > 0 \\ 0 & ; x = 0 \\ -1 & ; x < -1 \end{cases}$$

•
$$f(x) = \log(x-1)$$

$$f(x) = 3\sin(2x)$$

$$f(x) = 2\sin(3x)$$

•
$$ReLU(x) = max(x, 0)$$

•
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

Exercise 2: Find the domain of the following functions.

•
$$f(x) = \frac{x}{x-1}$$

•
$$f(x) = \frac{x-2}{x^2-3x+2} + \frac{1}{x+5}$$

•
$$f(x) = \log\left(\frac{1}{x-7}\right)$$

Exercise 3: Let $f(x+1) = x^2 - x + 1$. Express f(x) and f(x-1).

Exercise 4: Let $h \neq 0$. Express and simplify the expression $\frac{f(x+h)-f(x)}{h}$ for the following functions

•
$$f(x) = 2x + 3$$
.

$$f(x) = 5x^2.$$

•
$$f(x) = 5x^2 - 2x - 3$$
.

Exercise 5: Write the equation of the line that passes through the points (3,4) and (0,5).

Exercise 6: Let

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$$
 defined by $f(x,y) = (x^2, y^2)$
 $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $g(x,y) = x + y$
 $h: \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by $h(x) = (\sin(x), \cos(x))$

Express $g \circ f \circ h$

Exercise 7: Let $f(x) = 2^x - 1$ and $g(x) = \log_2(x+1)$. What is $g \circ f$ and $f \circ g$?

Exercise 8: Differentiate the following functions

$$f(x) = \sin(3x)$$

•
$$f(x) = x \ln(x)$$

$$f(x) = x\sqrt{x} + \sqrt[3]{x}$$

•
$$\tan(x^2 + 1)$$

•
$$(e^x + x^3 - 1)^6$$

Challenge: Solve $x = \sin(x)$

Exercise 9: Study the monotonic behaviour of the following functions and find their maximum and minimum:

- $x^2 5x + 1$
- $x^4 4x^2 + 1$
- $(x^4 4x^2 + 1)^4$
- $(x^4 4x^2 + 1)^3$
- $\sin(x) + \cos(x)$
- $x \ln(x)$
- $\sqrt{x} \ln(x)$
- $x^3 + x + 1$
- $(2x-1)^2 + (3x-5)^2$. Where have we seen this before?

Exercise 10: Check the functions $x \ln(x)$ and $\sqrt{x} \ln(x)$ have the same tangent line at x = 1. What is the equation of the line?

Challenge: How many critical points does $2^x - x^2$ have? Why we only asked about their number, can you find them?