Laboratório de Controle

Versão 2017a

Escola Politécnica da Universidade de São Paulo

Sumário

Apresentação	
O curso Laboratório de Controle	
A documentação disponível	
Os relatórios	
Entrega de documentos	
Experiência 1	
Conhecendo e modelando a planta	
1.1 Introdução	
1.2 O servomecanismo MS15 e a fonte de alimentação SP90	
1.2.1 Análise física do servomecanismo	
1.2.2 O painel de operação	
1.2.3 Conectando o servomecanismo e a fonte de alimentação	
1.3 O sistema de aquisição de dados	
1.3.1 O módulo Lynx AC1160-VA	
1.3.2 O módulo de conexão	
1.3.3 O aplicativo AC1160 Panel	
1.4 Atividades	
1.4.1 Atividades em sala	
1.4.2 Apresentação de resultados	
1.4.3 Relatório	
1.5 Bibliografia sugerida	1-9
Apêndice A	
Como identificar um sistema de primeira ordem aplican	do um degrau
Introdução	1-10
O sistema	1-10
Identificação	1-10
Apêndice B	
Procedimento para determinar K_p	
Introdução	1-13
O procedimento	

Experiência 2 Validando o modelo da planta

2.1	Introdução	2-1
2.2	Recursos disponíveis	
	2.2.1 O Matlab	2-1
	2.2.2 O Simulink	2-1
2.3	Atividades	2-1
	2.3.1 Atividades em sala	2-1
	2.3.2 Apresentação de resultados	2-2
	2.3.3 Relatório	
2.4	Bibliografia sugerida	2-2
Apo	êndice A	
•	torial do Matlab	
	Introdução	2-3
	Operações básicas	
	Criando matrizes e vetores	
	Cálculos básicos	
	Números complexos e aritmética IEEE	2-6
	Manipulação de matrizes e vetores	
	Operações com elementos de vetores ou matrizes	
	Concatenação	
	Polinômios	2-9
	Codificando polinômios em vetores	2-9
	Operações com polinômios	
	Ajuste de curva com polinômios	
	Gráficos	
	Criando um gráfico simples	2-11
	Dividindo os gráficos	2-13
	Propriedades avançadas dos gráficos	
	O toolbox de controle	
	Programação com o Matlab	2-15
	Comentário final	2-16
Apo	êndice B	
Bre	eve tutorial do Simulink	
	Introdução	2-17
	Como iniciar o simulink	
	Operação básica	
	O uso do Simulink em conjunto com o módulo Lynx AC1160-VA	
	O bloco SERVOMECANISMO	
	Diagnóstico do módulo Lynx AC1160-VA	
	Diagnóstico de software	
	Problemas e dúvidas frequentes	

Experiência 3

Us	sando resposta em frequência para modela	r a planta
3.1	Introdução	3-1
3.2	Conceito de resposta em frequência	3-1

3.1	Introdução	3-1
3.2	Conceito de resposta em frequência	3-1
3.3	Obtenção da resposta em frequência	3-1
3.4	Obtenção da função de transferência	3-2
	3.4.1 Ajuste manual por assíntotas	3-2
	3.4.2 Ajuste por otimização numérica	3-2
3.5	Atividades	
	3.5.1 Atividades em sala	
	3.5.2 Apresentação de resultados	
	3.5.3 Relatório	
	Bibliografia sugerida	3-4
•	êndice A	
Reg	gressão linear	
	Introdução	3-5
	Ajustando uma senoide	
	O problema	3-5
	A formulação	3-5
	A solução	
	A implementação	
	Ajustando o ganho do sistema	
	O problema	
	Uma formulação simples	
	Uma formulação mais complexa	3-8
Ape	êndice B	
0 t	orograma respfreq	
	Introdução	3-10
	Preparação e conexões.	
	Acessando o programa	3-10
	A interface do programa	3-11
	Armazenamento de dados	3-12
	êndice C	
Ob ¹	tendo uma função de transferência a partir da resposta em frec	quência
	Introdução	-
	Associando a função de transferência à resposta em frequência	
	Ajustando a função de transferência à resposta em frequência	
	Incertezas no levantamento em termos de módulo e fase	
Apa	êndice D	
•	programa bodefit	
~ F	Introdução	3_15
	Instruções de uso	
	O uso de programação não linear em problemas variados	
	O Código (resumido)	

Experiência 4 Um modelo não linear para a planta 4.1 Introdução

4.1	introdução	4-1
4.2	Um modelo não linear	4-1
	4.2.1 Identificando modelos com atrito de Coulomb	4-3
4 3	Atividades	
	4.3.1 Atividades em sala	
	4.3.2 Relatório	
11	Bibliografia sugerida	
		T-C
	periência 5	
	ontrole proporcional de posição e velocidade	
5.1	• • • • • • • • • • • • • • • • • • • •	
5.2	Controle de posição	
	5.2.1 Realimentação unitária	
	5.2.2 O controlador proporcional	
5.3	Controle de velocidade	
	5.3.1 Realimentação unitária	
	5.3.2 Controlador proporcional	5-4
5.4	Atividades	
	5.4.1 Atividades em sala	5-5
	5.4.2 Apresentação de resultados	5-6
	5.4.3 Relatório	5-6
5.5	Bibliografia sugerida	5- 6
	periência 6 ontrole PID	
6.1	Introdução	6-1
6.2	Controladores PID	6-1
	6.2.1 Controladores industriais	
	6.2.2 Formulação básica do controlador	
	6.2.3 Implementação da ação diferencial	
	6.2.4 Wind up e anti-windup	
6.3	Sintonia de PIDs	
	6.3.1 Método de Ziegler-Nichols para o domínio do tempo	
	6.3.2 Método de Ziegler-Nichols para o domínio da frequência	
	6.3.3 Método do Relé	
	6.3.4 Advertência sobre os métodos	
	6.3.5 Outras técnicas	
6.4		
J. I	6.4.1 Simulações em sala	
	6.4.2 Atividades em sala	
	6.4.3 Relatório	
6.5		
5.5	210110 Bratia Dagorida	

Experiência 7 Controle de posição com realimentação auxiliar de velocidade

7.1	Introdução	7-1
7.2	Realimentação auxiliar de velocidade	7-1
	7.2.1 Estrutura do controlador	
	7.2.2 Análise do sistema em malha fechada	7-2
7.3	Atividades	7-3
	7.3.1 Atividades prévias	7-3
	7.3.2 Atividades em sala	7-3
	7.3.3 Apresentação de resultados	7-4
	7.3.4 Relatório	7-4
7.4	Bibliografia sugerida	7-4
E.	vmaviânaia 0	
	xperiência 8 ontrole de posição com compensador por a	avanco de
_	ise	avango ac
8.1	Introdução	8-1
8.2	,	
8.3		
0.0	8.3.1 O compensador e as especificações de projeto	
	8.3.2 Limitações no projeto do compensador	
8.4	Atividades	
	8.4.1 Atividades prévias	
	8.4.2 Atividades em sala	
	8.4.3 Apresentação de resultados	
	8.4.4 Relatório	
8.5		
- -	···· - ··· - ·· - · - · - · - · - · -	
	xperiência 9	
Co	ontrole de velocidade com compensador F	' I
9.1	,	
9.2	Fundamentos teóricos	9-1
9.3	Atividades	9-2
	9.3.1 Atividades prévias	
	9.3.2 Atividades em sala	
	9.3.3 Relatório	
9.4	Bibliografia sugerida	9-3

Experiência 10

Atraso de trans	porte e	controlador	de ı	modelo	interno
-----------------	---------	-------------	------	--------	---------

10.1	Introdução	10-1
10.2	Sistemas com atraso	10-1
10.3	Uma proposta de atraso para o servomecanismo	10-1
10.4	Controladores de modelo interno	10-2
10.5	Uma proposta de controle para o servomecanismo com atraso	10-4
	10.5.1 Um controlador simples	10-4
	10.5.2 Um controlador de melhor desempenho	
10.6	Atividades	
	10.6.1 Atividades prévias	10-5
	10.6.2 Atividades em sala	10-5
	10.6.3 Relatório	10-6
10 7	Bibliografia sugerida	10-6

Apresentação

O curso Laboratório de Controle

O curso **Laboratório de Controle** tem por objetivo complementar o curso de **Sistemas de Controle**, que é ministrado simultaneamente. Enquanto que no curso teórico a ênfase é dada na apresentação dos conceitos básicos e das diferentes metodologias de análise e projeto de sistemas de controle, no curso de laboratório a ênfase recai principalmente nos aspectos práticos e na instrumentalização das técnicas apresentadas no outro curso.

O curso é dividido em três partes contendo um total de dez experiências. A estrutura geral é apresentada na Tabela 1. Cada experiência deve ser realizada em uma aula, após a qual resultados deverão ser apresentados. As primeiras experiências (PARTE I) visam basicamente a familiarização com os equipamentos e recursos disponíveis no laboratório, especialmente sua peça principal, o servomecanismo didático LJ MS15. Além disso, o tempo será empregado na obtenção de um modelo preliminar para o equipamento. As experiências seguintes (PARTE II) abordam diferentes metodologias disponíveis para a obtenção de modelos matemáticos que descrevam o comportamento dinâmico desse servomecanismo. De posse desses modelos é possível explorar as diferentes possibilidades de Controle do sistema e suas variações, o que é feito na parte final do curso (PARTE III), que é composta de uma sequência de projetos de controle com diferentes características.

Além disso as experiências se relacionam entre si tendo em vista três objetivos interconectados: (i) Identificação do sistema, (ii) Controle de posição e (iii) Controle de velocidade, como esquematizado na Figura 1

Figura 1 Relacionamento entre experiências

Todo o curso de laboratório gira basicamente em torno desse servossistema didático, que é apresentado em detalhe na Experiência 1. Ele consiste de um motor DC, ligado a sensores de posição e velocidades angulares. Caso a tensão de alimentação do motor seja constante, digamos de 3 V, o motor girará a uma velocidade mais ou menos constante, digamos de 200 rpm, que vai depender da carga mecânica aplicada ao seu eixo (e que variará, caso a carga varie), e consequentemente a posição angular crescerá indefinidamente. Para um sistema como esse, pode-se desejar controlar sua velocidade, por exemplo fazendo com que o motor gire à velocidade desejada, mesmo que a carga mecânica varie (imagine uma esteira transportando caixas, que devem ser conduzidas a uma velocidade constante, quer sejam leves ou muito pesadas). Pode-se ainda controlar a posição angular do eixo, por exemplo fazendo com que o eixo gire até uma posição desejada e permaneça nela (imagine o braço de robô, que deve ser movido vazio até uma dada posição e que uma vez tendo atingido essa posição deva agarrar um objeto sem ceder ao seu peso, ou ainda um guindaste, que deva ser erguido até uma determinada altura). Apesar de se tratar de um equipamento eminentemente didático, em escala de bancada, uma infinidade de problemas práticos de controle é muito semelhante.

ľE I JZAÇÃO	Consiste na apresentação dos equipamentos e programas de computador disponíveis e nas	Exp. 1	Conhecendo e modelando a planta	Primeira apresentação do laboratório. Nesta experiência um primeiro modelo (fenomenológico) para o servomecanismo é obtido.
Consiste na apresentação dos equipamentos e programas de computador disponíveis e nas instruções para sua utilização. Como parte das atividades iniciais do curso, um modelo preliminar para o servomecanismo é obtido.		Exp. 2	Validando o modelo da planta	Apresentação da plataforma computacional usada no laboratório.
II NÇÃO	São utilizadas técnicas diferentes para a obtenção de modelos matemáticos de trabalho para o servomecanismo. Os modelos obtidos nessa parte do curso serão utilizados para projeto de controladores e análise de desempenho (via simulação computacional) na parte final do curso.		Usando resposta em frequência para modelar a planta	Obtenção de um modelo (entrada/saída) no domínio da frequência.
PARTE II IDENTIFICAÇÃO			Um modelo não linear	Obtenção de um modelo não linear (entrada/saída) no domínio do tempo.
PARTE III CONTROLE	Nesta parte do curso diversas abordagens e possibilidades para o controle do servomecanismo são exploradas. São implementados controladores de velocidade e posição com diferentes objetivos e especificações. A aplicação de diferentes técnicas de projeto e comparações entre elas constituem-se no principal objetivo desta parte do curso.	Exp. 5	Controle proporcional (posição e velocidade)	Primeiros sistemas básicos de controle. São considerados controladores proporcionais de velocidade e posição.
		Exp. 6	Controle PID (posição)	Uma breve introdução ao uso dos controladores mais populares dentro da Indústria, projetados e analisados segundo os métodos comumente empregados no meio industrial.
		Exp. 7	Controle de posição com realimentação auxiliar de velocidade	Um controlador de posição que visa obter um desempenho superior em comparação ao controle proporcional simples
		Exp. 8	Controle de posição com compensador por avanço de fase	Controle de posição via compensação de avanço.
		Exp. 9	Controle de velocidade com compensador PI	Um outro tipo de compensador, utilizado para controle de velocidade.
		Exp. 10	Atraso de transporte e controlador de modelo interno (velocidade)	Uma introdução à técnica de controladores de modelo interno, especialmente adequada a sistemas com atraso de transporte. Para esta experiência um atraso de transporte é artificialmente introduzido no servomecanismo

Tabela 1 Esquema geral do curso de Laboratório de Controle

A documentação disponível

Este volume contém a documentação básica do curso. Ele é composto de uma Introdução seguida de uma sequência de dez experimentos. Cada uma dessas experiências trata de um assunto diferente e todas elas contêm tópicos comuns:

- i) Introdução. Um breve parágrafo descrevendo os objetivos do experimento.
- ii) Descrição do problema. Uma ou mais seções, que conforme o caso, apresentam alguns fundamentos teóricos necessários, metodologias de projeto a serem utilizadas, detalhamento de objetivos a serem alcançados, aspectos técnicos, etc.
- iii) Atividades. Uma sequência de atividades a serem realizadas pelos alunos. Algumas experiências dividem as atividades em atividades prévias (que devem ser feitas antes da realização da experiência, usualmente envolvendo preparação para o experimento em si), atividades em aula (implementações, simulações, medidas, etc. a serem realizadas em laboratório), apresentação de resultados (listando dados e resultados que deverão estar disponíveis para as experiências seguintes) e relatório (listando análises, etc. que devam ser incluídas nos relatórios). Mais do que uma sequência de meras tarefas, os itens relacionados servem de guia para a realização dos objetivos gerais das experiências. São passos a serem seguidos para a obtenção de resultados gerais, e não constituem um fim em si mesmo. Por exemplo, a primeira experiência contém diversos itens, mas toda a série possui um único objetivo (além é claro do objetivo colateral de aprender o funcionamento dos equipamentos), que é a obtenção de um modelo matemático para o servomecanismo. Esse modelo será utilizado posteriormente para se fazer projetos de controladores, bem como para avaliar seu desempenho por meio de simulações. Note que cada item, considerado isoladamente, tem uma significância mínima.
- iv) *Bibliografia sugerida*. Contém uma lista referências de fácil acesso comentadas, que complementam os assuntos tratados em cada experiência. São boas fontes para aprofundar o aprendizado e reciclar o conhecimento obtido em outros cursos, bem como esclarecer eventuais dúvidas.

Os relatórios

Três relatórios deverão ser redigidos ao longo do curso, a saber.

- O Modelo do Servomecanismo,
 - que consolidará os resultados das Experiências 1 a 4.
 - Este relatório deve apresentar os diversos modelos matemáticos obtidos para o servomecanismo e comparálos. Uma análise crítica deve ser feita dos resultados. Questões tais como *qual modelo é melhor ou mais confi*ável e *quando e porque um ou outro modelo deve ser utilizado* devem ser respondidas.
- Controle de Posição
 - que consolidará resultados das Experiências 5, 6, 7 e 8.
 - Este relatório deve apresentar as diferentes abordagens utilizadas para o controle de posição do servomecanismo e discutir suas características, vantagens, desvantagens, etc. Questões tais como *qual é o melhor tipo de controle num dado contexto* e *quando e porque um ou outro tipo deve ser utilizado* devem ser respondidas.
- Controle de Velocidade
 que consolidará resultados das Experiências 5, 9 e 10.
 Similar ao relatório acima, tratando de controle de velocidade.

Os relatórios devem ser breves, concisos e completos, e principalmente: devem ser escritos tendo-se em mente, do começo ao fim, que um objetivo, enunciado no começo, deva ser atingido ao final. No corpo do relatório devem constar os passos necessários à obtenção desses resultados. Alguns pontos importantes na redação dos relatórios são apresentados a seguir.

• Um relatório não é a sequência de itens apresentada na apostila e nem depende diretamente dela. Um relatório deve ser um texto completo, com sustentação própria. Os itens da apostila são apenas guias para a realização

das experiências, explicitando o que deve obrigatoriamente ser medido e o que deve ser comparado com o quê. Os relatórios devem visar objetivos, por exemplo obter um modelo matemático para o servomecanismo, ou projetar um controlador de posição e compará-lo com outros equivalentes.

- Repetir num relatório o texto das apostilas é desnecessário e de mau tom. Quando for necessário fazer menção a qualquer assunto tratado nas apostilas basta referenciá-las (e.g. "veja a equação (x.x) da Exp. Y")
- Consolide os dados obtidos sempre que possível na forma de gráficos e tabelas e faça figuras para explicar e exemplificar pontos mais complexos. É extremamente importante referenciar as figuras no texto, e não simplesmente deixá-las soltas. É também importante fazer títulos e legendas explicativos. Um título como "gráfico de V x T" por exemplo, deixa muita margem a dúvidas. Algo como "gráfico de V x T para o sistema em malha fechada com controlador X e excitação degrau de amplitude 3V" é bem melhor.

Entrega de documentos

A Tabela 2 a seguir apresenta a lista de documentos a serem entregues ao professor no decorrer do curso. Estes documentos podem ser *preparação de experimentos* (tarefas da seção *Atividades prévias* de cada experiência), *apresentação de resultados* (tarefas da seção *apresentação de resultados* (em número de três conforme a tabela).

Exp.	preparação	resultados anteriores	relatórios
1	-	-	
2	-	T ₂ : 1 item: modelo Exp.1	
3	-	T_3 : 1 item: modelo revisado na Exp.2	
4	-	T_4 : 1 item: modelo Exp. 3	
5	-	-	R_1 : Modelo do Servomecanismo
6	-	T_6 : 1 item: respostas ao degrau Exp. 5	
7	S_7 : 3 itens	T_7 : 1 item: respostas ao degrau Exp. 6	
8	S_8 : 2 itens	T_8 : 1 item: respostas ao degrau Exp. 7	
9	S_9 : 5 itens	-	
10	S ₁₀ : 1 item	-	
Final do curso	-	-	R ₂ : Controle de Posição R ₃ : Controle de Velocidade

Tabela 2 Entrega de documentos

Experiência 1

Conhecendo e modelando a planta

1.1 Introdução

Esta experiência apresenta a planta que será utilizada ao longo do curso, um servomecanismo didático. Além disso ela inclui uma série de tarefas que envolvem a familiarização com o servomecanismo e demais equipamentos utilizados no laboratório. O objetivo final é obter um primeiro modelo para a planta, usando uma combinação de identificação de sistemas e modelagem física.

1.2 O servomecanismo MS15 e a fonte de alimentação SP90

O conjunto formado por servomecanismo e fonte de alimentação é o principal equipamento do curso e será utilizado em todas as experiências.

1.2.1 Análise física do servomecanismo

A Figura 1.1 mostra um diagrama do servomecanismo. Trata-se de um equipamento didático para a aplicação de concei-

Figura 1.1: Esquema do servomecanismo

tos e técnicas de controle. Compõe-se de um motor elétrico de corrente contínua controlado pela armadura, acionamentos associados e sensores de posição e velocidade angulares. O eixo do motor e do tacogerador (o sensor de velocidade) está ligado ao eixo do potenciômetro (o sensor de posição) através de correias dentadas. Cada par de engrenagens, correspon-

dente a uma correia, possui uma constante de redução n = 1/3.

A Figura 1.2 apresenta um diagrama de blocos referente ao sistema da Figura 1.1. O primeiro bloco, dado pela

Figura 1.2 Diagrama de blocos do servomecanismo

função de transferência K/(1+sT), contém toda a dinâmica do motor. Um modelo baseado em relações físicas incluiria diversos parâmetros e variáveis tais como tensão e corrente de armadura, torques e fluxos. É um fato conhecido que o modelo físico resultante (sob algumas hipóteses simplificadoras) apresenta uma estrutura como a dessa função de transferência (veja Oga10 - exemplo A.3.9). Isso posto, é bem mais fácil obter os parâmetros K e T a partir de um ensaio do que medindo e estimando os parâmetros eletromecânicos do motor. A entrada deste bloco é a tensão aplicada ao motor $V_m(t)$, medida em V e a saída é sua velocidade angular $\omega_m(t)$, medida em rad/s no eixo do motor.

Na prática esse bloco tem um comportamento marcadamente não linear, o que será objeto das atividades práticas desta experiência. Particularmente observa-se que há um perceptível atrito de Coulomb (comum em sistemas mecânicos) cujo caráter se torna evidente quando as tensões de entrada são pequenas. Para tensões de entrada elevadas aparece outro comportamento não linear: a saída deste bloco satura em um valor máximo.

O segundo bloco representa a redução das correias. Como há duas correias, cada uma reduzindo a velocidade angular de um fator n, a redução total é $n^2=1/9$. A entrada deste bloco é a velocidade angular $\omega_m(t)$, medida em rad/s no eixo do motor e a saída a velocidade angular $\omega_p(t)$, medida em rad/s no eixo do potenciômetro.

O terceiro bloco, dado pela função de transferência 1/s, associa a velocidade à posição angular no eixo do potenciômetro. A entrada deste bloco é a velocidade angular $\omega_p(t)$, medida em rad/s no eixo do potenciômetro e a saída é a posição angular $\theta_n(t)$ medida em rad no eixo do potenciômetro.

Finalmente, há um bloco para cada sensor. Os sensores converterm velocidade e posição angulares em tensões elétricas, e cada um deles possui uma constante de proporcionalidade característica. A do tacômetro é K_t , medida em V/(rad/s) e a do potenciômetro é K_p , expressa em V/rad.

O equacionamento da Figura 1.2 é feito em termos de posições e velocidades angulares, mas como a monitoração do sistema, e consequentemente qualquer realimentação, tem de ser feita através dos sensores de velocidade e posição, é necessário incluir as constantes de proporcionalidade do tacômetro e do potenciômetro no diagrama.

1.2.2 O painel de operação

A Figura 1.3 mostra o painel de operação do servomecanismo. Os bornes na parte superior do painel se destinam à alimentação do aparelho e conexão da fonte de tensão. O bloco denominado *motor drive input* se destina à alimentação da armadura do motor. O bloco abaixo, denominado *tachometer output* fornece a tensão gerada pelo tacômetro, e o último bloco *potentiometer output* dá acesso à tensão no potenciômetro.

Note que para que o servomecanismo opere aproximadamente segundo o modelo da Figura 1.2 é necessário que o

Figura 1.3 Painel do servomecanismo MS15

freio eletromagnético seja desativado, o que é feito suspendendo-se a alavanca até a posição 0. No decorrer de todas as experiências, a menos quando mencionado explicitamente o contrário, o freio deve estar desativado. Além disso, verifique sempre se as chaves $motor\ drive$ e tachogenerator estão nas posições corretas. A chave $motor\ drive$ deve estar na posição V_{in} e a chave tachogenerator deve estar na posição V_{out} .

O mostrador digital localizado na parte inferior central do painel apresenta a velocidade angular do eixo do potenciômetro medida em rpm.

1.2.3 Conectando o servomecanismo e a fonte de alimentação

A Figura 1.4 mostra um diagrama para a ligação da fonte de alimentação ao servomecanismo. Essas ligações são apenas para a alimentação elétrica dos equipamentos, e ligações adicionais serão necessárias para se controlar o servomecanismo.

1.3 O sistema de aquisição de dados

1.3.1 O módulo Lynx AC1160-VA

O módulo Lynx AC1160-VA (veja a Figura 1.5) é produzido pela Lynx Tecnologia Eletrônica e possui 16 entradas analógicas que utilizam um conversor A/D de 16 bits operando em uma faixa pré-programada de ± 10 V com impe-

Figura 1.4 Ligação da fonte de alimentação

dância de entrada de $100k\Omega$. Dessas, somente duas são utilizadas, denotadas por INP0 e INP1. As duas saídas analógicas têm resolução de 12 bits, operam na faixa de $\pm 10V$ e admitem uma carga mínima de $2k\Omega$, portanto muito cuidado deve ser tomado ao se conectar as saídas analógicas para não danificar o equipamento. As saídas analógicas são denotadas por OUT0 e OUT1.

O módulo se comunica com o computador através de uma conexão Ethernet 10BaseT de 10Mbit/s.

Adicionalmente o módulo possui entradas e saídas digitais e diferentes opções de sincronismo, porém esses recursos não serão utilizados no curso.

O módulo possui três indicadores luminosos (LEDs) no painel traseiro que apresentam informações diversas sobre seu funcionamento.

a) ATV (LED verde) sinaliza o estado do módulo (veja a Tabela 1.6 a seguir);

b) LAN (LED amarelo) sinaliza a troca de mensagens na conexão Ethernet;

c) LINK (LED amarelo) sinaliza que a conexão Ethernet está ativada.

O principal indicador é o LED ATV. A Tabela 1.6 apresenta a codificação do estado do módulo em função das

(a) vista do painel frontal

(e) vista de painer traserre

Figura 1.5 O módulo Lynx AC1160-VA

mensagens do indicador.

Tabela 1.6 Indicador luminoso ATV

Mensagem	Significado	Observações
Aceso	Módulo ligado, mas não configurado.	Imediatamente após ser ligado.
OFF + 1P ¹	Módulo com configuração válida.	Não esperado em situação normal.
OFF + 2P	Módulo executando aquisição de dados.	Durante a operação.
OFF + 3P	Módulo em pausa na aquisição.	Não esperado em situação normal.
OFF + 4P	Módulo encerrou aquisição de dados.	Após o término da operação.
OFF + 5P (ou mais)	Erro de comunicação ou operação.	Não esperado em situação normal. Pode indicar problemas na conexão de rede.
Apagado	Módulo desligado ou em falha.	

^{1.} OFF (pausa apagado) + 1P (1 piscada)

1.3.2 O módulo de conexão

Para se facilitar o manuseio do sistema, a conexão com o módulo Lynx AC1160-VA é feita através de um módulo de conexão, cujo painel frontal é mostrado na Figura 1.7.

Os terminais de referência GND são conectados entre si e devem ser conectados aos terminais 0 do servomeca-

Figura 1.7 Painel de conexões

nismo e da fonte de alimentação, conforme a Figura 1.8.

Figura 1.8 Ligação do módulo de conexão (somente sinal de referência)

IMPORTANTE

Jamais ligue os terminais OUT0 ou OUT1 diretamente a um terminal de terra ou aos terminais GND.

Jamais ligue os terminais OUT0 ou OUT1 a uma fonte de tensão (como um gerador de funções ou a rede elétrica).

Jamais ligue os terminais INP0 ou INP1 a fontes de tensão acima da faixa de $\pm 10 \, \mathrm{V}$ (como por exemplo a rede elétrica).

1.3.3 O aplicativo AC1160 Panel

Este aplicativo, disponível nos computadores do laboratório, permite o acesso às funções básicas do módulo Lynx AC1160-VA, isto é, permite ler na tela do computador os valores de tensão em cada um dos canais de entrada (de modo

similar a um multímetro) e escrever valores nos canais de saída do módulo. Seu uso é bastante simples e dispensa maiores explicações. A tela principal do aplicativo é apresentada na Figura 1.9. Note a semelhança com o painel do módulo de

Figura 1.9 O aplicativo AC1160 Panel

conexão.

O indicador de conexão deve estar em verde para que o aplicativo opere corretamente.

IMPORTANTE

O aplicativo AC1160 Panel não pode ser utilizado ao mesmo tempo que o Simulink (em modo de comunicação com o sistema de aquisição de dados), tal como será apresentado na Experiência 2. É necessário fechar o aplicativo para executar ensaios com o Simulink e vice-versa.

Caso o indicador de conexão esteja em vermelho, o aplicativo não operará corretamente.

1.4 Atividades

1.4.1 Atividades em sala

O objetivo das atividades a seguir é a obtenção de um primeiro modelo para o servomecanismo, isto é, identificar cada um dos parâmetros do diagrama da Figura 1.2.

IMPORTANTE: Sempre anote os números de identificação dos equipamentos que você utilizar. Espera-se que você utilize no decorrer de todo o curso sempre a mesma bancada e os mesmos equipamentos. Os modelos obtidos nesta e em futuras experiências valem apenas para o equipamento específico utilizado.

Faça a conexão da fonte de alimentação ao servomecanismo como na Figura 1.4 e utilize o aplicativo AC1160_PANEL para gerar tensões na faixa de -10 a 10 V. Obviamente é necessário conectar os terminais do módulo de conexão aos terminais correspondentes do servomecanismo.

- a) Levante a curva característica V_t (tensão no tacômetro) contra V_m (tensão de armadura). Obtenha a partir desta curva e da do próximo item o valor de K (em (rad/s)/V).
 - Devido ao comportamento não linear do sistema, há o aparecimento nessa curva de zonas de atrito e saturação. Identifique-as claramente.
 - Se o sistema fosse realmente linear, esta curva seria uma reta passando pela origem com coeficiente angular KK_t . Como não é o caso, é necessário encontrar a reta que melhor aproxima a curva obtida. O coeficiente angular desta reta dá a melhor estimativa para o ganho KK_t .

DICA: Realize o item (a) juntamente com o item (b) a seguir.

- b) Utilizando o mostrador digital do painel do servomecanismo e a medida da tensão do tacômetro, levante a curva característica V_t (tensão no tacômetro) contra ω_m (velocidade angular no eixo do motor). Obtenha a partir desta curva o valor de K_t (em V/(rad/s)).
 - ATENÇÃO: O mostrador digital apresenta a velocidade angular no eixo do potenciômetro (isto é, ω_p), e NÃO do eixo do tacômetro. Além disso, o valor é apresentado em rpm e não rad/s .
- c) Com o motor desacoplado (isto é, com o terminal V_{in} desconectado ou alimentado com 0 V), gire manualmente o eixo do motor e determine a característica V/rad, isto é, a constante K_p .

IMPORTANTE: NÃO gire o motor pelo disco graduado amarelo, pois isso pode comprometer a transmissão (ele está do lado lento da redução) ou descalibrar o disco. Gire sempre pelos discos óticos do eixo do motor.

LEIA NOVAMENTE: NÃO gire o motor pelo disco graduado amarelo.

DICA: Há um método alternativo para realizar este item. Veja o Apêndice B.

d) Aplicando um degrau ao sistema, obtenha a função de transferência $\frac{V_t(s)}{V_m(s)}$, isto é, determine os valores de K e T. Utilize o osciloscópio para coletar a curva.

DICA: Veja o Apêndice A.

1.4.2 Apresentação de resultados

O item desta seção deve ser apresentado ao professor para a realização da Exp. 2. em uma única folha de papel A4 identificada com os nomes dos integrantes de seu grupo.

e) Apresente o diagrama da Figura 1.2 com os valores de cada parâmetro devidadmente identificados. Note que esses parâmetros serão necessários para a realização da próxima experiência.

1.4.3 Relatório

Esta experiência deve ser incluída no relatório "O Modelo do Servomecanismo".

1.5 Bibliografia sugerida

(CBS11) Castrucci, P. L.; Bittar, A.; Sales, R. M. Controle Automático. LTC, 1a. ed., 2011.

A Seção 2.7 apresenta um sistema bastante similar ao do laboratório. Respostas a degrau de sistemas de primeira e segunda ordem são abordados nas Seções 3.4 e 3.5.

(Oga10) Ogata, K. Engenharia de Controle Moderno. Pearson, 5a. ed., 2010.

Na Seção 3.3 é apresentado um modelo relativamente detalhado de um servomecanismo similar ao do laboratório. Respostas a degrau de sistemas lineares de primeira ordem são abordadas na Seção 5.2. A seção seguinte, que trata de sistemas de segunda ordem, utiliza um servomecanismo a título de exemplo.

(FPE13) Franklin, G. F.; Powell, J. D.; Emami-Naeini, A. **Sistemas de Controle para Engenharia**. Bookman, 5a. ed., 2013.

A Seção 2.3 apresenta uma boa discussão sobre modelagem de sistemas eletromecânicos (motores e geradores).

(DB98) Dorf, R. C.; Bishop, R. H. Modern Control Systems. Addison-Wesley, 8th. ed., 1998.

A Seção 2.5 discute a modelagem de diversos sistemas físicos, inclusive motores elétricos.

(Kuo85) Kuo, B. C. Sistemas de Controle Automático. Prentice-Hall do Brasil, 4a. ed., 1985.

A Seção 4.5 apresenta o funcionamento de alguns tipos de sensores, em particular detalhes sobre potenciômetros e tacômetros.

O aplicativo AC1160 Panel foi escrito por Thiago Ragozo Contim.

RPM/2017a

Apêndice A

Como identificar um sistema de primeira ordem aplicando um degrau

A.1 Introdução

Este apêndice apresenta um procedimento simples e rápido para identificar um sistema de primeira ordem aplicando um degrau à entrada.

A.2 O sistema

Considere um sistema descrito pelo diagrama de blocos da figura ao lado. A função de transferência G(s) é dada por

$$G(s) = \frac{Y(s)}{U(s)} = \frac{K_{dc}}{1 + sT},$$
 (A.1)

onde T>0 é denominada constante de tempo e $K_{dc}>0$ é chamado ganho DC, por ser este o valor final da saída quando a entrada é constante e de amplitude unitária.

Note que para T como dado acima, G(s) é sempre estável.

A.3 Identificação

Assumindo que a entrada é um degrau de amplitude A, tem-se que

$$U(s) = \frac{A}{s}. (A.2)$$

Substituindo (A.2) em (A.1) tem-se

$$sY(s) + Ts^2Y(s) = K_{dc}A (A.3)$$

Note que (A.3) é equivalente, a menos de condições iniciais (assumidas nulas para funções de transferência), à seguinte equação diferencial:

$$T\ddot{y}(t) + \dot{y}(t) = K_{dc}A. \tag{A.4}$$

Resolvendo-se (A.4) tem-se

$$y(t) = K_{dc} A \left(1 - e^{-\frac{t}{T}} \right). \tag{A.5}$$

Com base em (A.5), pode-se utilizar as seguintes relações para se determinar os parâmetros $K_{dc}\,\,{\rm e}\,\,T$.

a) Ganho DC K_{dc} : Note que

$$y_{\infty} = \lim_{t \to \infty} y(t) = K_{dc}A, \qquad (A.6)$$

portanto basta utilizar o valor final da resposta ao degrau para se determinar K_{dc} .

b) Constante de tempo T: Note que para t = T, (A.5) equivale a

$$y(T) = K_{dc}A(1 - e^{-1}) = 0.632121K_{dc}A \cong 63\%K_{dc}A.$$
 (A.7)

Portanto basta utilizar o tempo em que a resposta ao degrau leva para atingir 63% do valor final para se determinar *T* .

A figura abaixo resume o procedimento.

Apêndice B

Procedimento para determinar K_p

B.1 Introdução

Este apêndice apresenta um procedimento alternativo para identificar o parâmetro K_p (o ganho do potenciômetro).

B.2 O procedimento

- a) Alimente o servomecanismo com uma tensão constante. Após atingir o regime, o motor deverá girar com velocidade angular aproximadamente constante.
- b) Utilize o osciloscópio e capture a forma de onda do sinal $V_p(t)$, que deve ser similar à da figura ao lado. O formato de dente de serra da curva é devido às características do potenciômetro de volta única sem esbarro utilizado como sensor de posição (a cada volta completa a medida do sensor volta à posição inicial). Note que cada dente está associado a uma volta completa do potenciômetro.

c) Meça os parâmetros da curva capturada conforme a figura abaixo.

d) O ganho K_p é dado pelo coeficiente angular da reta na região linear da curva. Como o intervalo Δt se refere a uma volta completa do potenciômetro, ele pode ser associado ao ângulo 2π rad, ao passo que o trecho entre os ângulos a e b pode ser associado ao intervalo $(t_b - t_a)$. Nesse intervalo, $V_p(t)$ varia entre V_{min} e V_{max} de modo que o ângulo percorrido na região linear é dado por

$$\Delta \varphi = 2\pi \frac{t_a - t_b}{\Delta t} \tag{B.1}$$

e

$$K_p = \frac{V_{max} - V_{min}}{\Delta \varphi}. \tag{B.2}$$

Experiência 2

Validando o modelo da planta

2.1 Introdução

Esta experiência visa validar o modelo obtido na experiência anterior. Para tanto ela inclui uma etapa de familiarização com alguns recursos adicionais do laboratório, o Matlab (R2008a ou superior) e o Simulink (R2008a ou superior).

O Matlab e o Simulink são programas para análise de dados, processamento numérico e simulação de sistemas dinâmicos. Eles serão usados em conjunto com o módulo Lynx, apresentado na experiência anterior, para coleta de dados e eventualmente implementação de controladores.

2.2 Recursos disponíveis

2.2.1 O Matlab

O Matlab (de *MATrix LABoratory*) é um programa produzido pela The Mathworks, Inc. (maiores informações em http://www.mathworks.com), e a grosso modo serve para tratar matrizes e números complexos da mesma forma que uma calculadora trata números reais. Além disso ele possui recursos de programação, agindo como uma linguagem interpretada, semelhante a C ou Pascal, porém voltada para processamento numérico intensivo.

O sistema operacional utilizado no laboratório é o Windows XP, portanto você provavelmente encontrará o Matlab em algum lugar dentro da opção "Programas" do menu "Iniciar". A interface do Matlab é composta basicamente de uma janela de comandos, com um *prompt* característico (>>). Além dessa janela de comandos, podem coexistir diversas janelas gráficas, denominadas *figures* e outras formas auxiliares de interface.

Mais informações podem ser encontradas no Apêndice A desta experiência.

2.2.2 O Simulink

O Simulink é um programa destinado à simulação de sistemas dinâmicos, integrado ao Matlab. Sua interface com o usuário é totalmente gráfica, baseada na configuração e interconexão de blocos funcionais.

Mais informações podem ser encontradas no Apêndice B desta experiência.

2.3 Atividades

2.3.1 Atividades em sala

As atividades a seguir têm por objetivo fixar a operação do uso do Matlab e do Simulink, programas que serão usados no decorrer de todo o curso, tanto como ferramenta para projeto de controladores, como para simulação de sistemas e análise de dados, e especialmente como ferramenta para implementação de programas em tempo real.

É fundamental para o bom desenvolvimento do curso que você entenda perfeitamente o funcionamento dos recursos apresentados a seguir.

- a) Crie uma pasta para o seu grupo sob a pasta \HOME (e.g. \HOME\MEUGRUPO) e copie o conteúdo do diretório \LABCTRL para o seu diretório. NÃO altere o conteúdo do diretório \LABCTRL em hipótese nenhuma. Outros grupos precisarão também desses arquivos.
- b) Siga as instruções do Apêndice A, o tutorial do Matlab.
- c) Siga as instruções do Apêndice B, o tutorial do Simulink.
- d) Crie um diagrama de simulação, usando os *drivers* de comunicação com a placa, que aplique uma onda quadrada de baixa frequência ao servomecanismo e que leia os valores de tensão correspondentes. Os valores da entrada (a onda quadrada) e as tensões lidas deverão ser armazenadas em variáveis do Matlab. Use esses dados para produzir gráficos mostrando a entrada e as saídas do sistema. Implemente em paralelo um diagrama correspondente à Figura

1.2 da experiência 1, com os valores obtidos naquela experiência. Tanto os *drivers* como o modelo deverão receber os mesmos sinais de entrada, como na figura acima. Utilize o diagrama para validar o modelo obtido na experiência anterior e ajuste os parâmetros caso necessário. Comente os resultados obtidos.

2.3.2 Apresentação de resultados

O item desta seção deve ser apresentado ao professor para a realização da Exp. 3. em uma única folha de papel A4 identificada com os nomes dos integrantes de seu grupo.

e) Apresente o diagrama da Figura 1.2 com os valores de cada parâmetro identificados e revisados, tendo em vista o item (d) acima.

2.3.3 Relatório

Esta experiência deve ser incluída no relatório "O Modelo do Servomecanismo".

IMPORTANTE: Você está autorizado a manter os arquivos de seu grupo no disco rígido do microcomputador da bancada que você utilizar ao longo de todo o curso, porém NÃO há garantias de que esses arquivos estarão no lugar em que você os deixou ou de que eles ainda existirão na próxima vez que você usar o laboratório, portanto MANTENHA SEMPRE CÓPIAS DE TODOS OS SEUS ARQUIVOS.

2.4 Bibliografia sugerida

Há diversos livros-texto de controle que apresentam exemplos em Matlab e Simulink e são direcionados para o uso desses programas, como por exemplo (DB98). Há também diversos livros que tratam exclusivamente do Matlab e dos pacotes associados (não citados aqui), além é claro da sua documentação eletrônica.

- (DB98) Dorf, R. C.; Bishop, R. H. Modern Control Systems. Addison-Wesley, 8th. ed., 1998.
- (Oga10) Ogata, K. Engenharia de Controle Moderno. Pearson, 5a. ed., 2010.

RPM/2016a

Os drivers de comunicação com o módulo Lynx AC1160-VA foram escritos por Thiago Ragozo Contim.

Apêndice A

Tutorial do Matlab

A.1 Introdução

O Matlab (de **Mat**rix **Lab**oratory) é um pacote matemático capaz de tratar matrizes, vetores e outras estruturas, com números reais ou complexos, da mesma forma que uma calculadora trata com valores escalares. Além disso, o Matlab possui recursos de programação estruturada que permitem a implementação de procedimentos mais complexos, além de visualização gráfica e simulação de sistemas dinâmicos (através do pacote integrado Simulink).

A janela básica para o uso do Matlab é a janela de comandos, identificada pelo *prompt* ">>". A partir dessa janela é possível acessar todos os recursos do programa.

Este tutorial apresenta apenas os conceitos mais básicos. A consulta à documentação do sistema ou ao *site* do fabricante (http://www.mathworks.com), bem como aos diversos livros já publicados sobre o pacote é indispensável para um aprendizado mais aprofundado.

Este tutorial considera a versão 6.5 e posteriores. Todos os recursos apresentados são suportados em versões posteriores, mas alguns recursos não estão disponíveis para versões mais antigas.

A.2 Operações básicas

A.2.1 Criando matrizes e vetores

Ao se digitar

>> a = 2

obtém-se a seguinte resposta:

a =

2

Este comando cria a variável "a" com o valor 2. Para se criar uma matriz, deve-se colocar os valores entre colchetes, separados por espaço (para separar colunas em uma mesma linha) ou por ";" (para separar linhas), assim

```
>> A = [1 2 3;3 2 1;5 0 0]
```

produz

A =

1	2	3
3	2	1
5	0	0

A variável "A" agora possui o valor matricial acima. Para evitar que o resultado do comando apareça na tela, basta terminá-lo com um ";".

```
>> b = [10;5;3];
```

cria um vetor coluna, mas não imprime o resultado na janela de comandos. Isso é bastante útil caso o vetor ou matriz seja muito grande. Um exemplo de como criar vetores muito grandes é apresentado a seguir.

```
>> t = 0:0.01:10;
```

O comando acima cria um vetor em "t" da forma

```
[ 0 0.01 0.02 0.03 . . . 9.99 10 ].
```

Vetores e matrizes podem também ser facilmente criados a partir de outros vetores e matrizes. Por exemplo,

```
>> y = sin(t);
```

cria um vetor "y" contendo o seno dos elementos (supostos em radianos) do vetor "t". Note que a função "sin" (seno trigonométrico) de um vetor resulta num novo vetor com o seno de cada elemento do vetor original.

VEJA TAMBÉM

Os comandos "who" e "whos" fornecem uma lista das variáveis criadas. Variáveis podem ser apagadas com o comando "clear".

Os comandos "linspace" e "logspace" são também bastante úteis para a criação de vetores.

Para saber mais sobre um comando, basta digitar "help <comando>" ou "doc <comando>".

O Matlab também trabalha com strings.

cria uma variável string. O sinal " ' " delimita strings.

As variáveis criadas podem ser salvas em um arquivo e recuperadas posteriormente com o uso dos comandos "save" e "load".

Para recuperar comandos já digitados, use as setas para cima e para baixo do teclado (ou o histórico de comandos).

A.2.2 Cálculos básicos

Os operadores básicos "+", "-", "*", "^", etc. operam matricialmente, portanto

- a) somente é possível adicionar e subtrair variáveis de mesmas dimensões;
- b) somente é possível multiplicar duas variáveis se o número de colunas da primeira for igual ao número de linhas da segunda;
- c) somente é possível exponenciar matrizes quadradas. (com a função "expm").

Uma exceção é s soma de uma matriz com um número escalar, assim

$$>> r = [1 2 3] + 10$$

é uma operação permitida e resulta em

r =

11 12 13

Os operadores "/" e "\" são ligeiramente mais complexos e podem ser entendidos como sendo divisão à direita e divisão à esquerda.

x = A b é a solução do sistema A x = b

x = A/B é a solução do sistema x*A = B

de modo que

$$>> x = A b$$

fornece

x =

0.6000

0.0500

3.1000

De fato

fornece o resultado esperado:

ans =

0

0

0

Note que como não atribuímos o resultado desta operação a nenhuma variável, o Matlab automaticamente criou a variável "ans" (de *answer*).

Há também operadores que operam sobre cada elemento de um vetor ou matriz, por exemplo: ".*", "./", ".^" e boa parte das funções, como "sin", "cos", "log", "sqrt" (raiz quadrada), "exp", etc.

resulta em

ans =

1 4

.

VEJA TAMBÉM

Algumas funções que operam matricialmente são "det" (determinante), "inv" (matriz inversa), "sqrtm", "logm", "expm" (versões matriciais das funções já vistas).

Note que "log" é o logaritmo neperiano. O logaritmo base 10 é denotado por "log10".

A.2.3 Números complexos e aritmética IEEE

O Matlab opera naturalmente com números complexos. O comando

$$>> f = sqrt(-2)$$

fornece

f =

Para facilitar a entrada de valores complexos, o Matlab fornece duas funções: "i" e "j", ambas iguais a $\sqrt{-1}$. Assim

$$>> g = 2 + 3*i$$

resulta em (poderíamos também ter usado "j")

g =

2.0000 + 3.0000i

IMPORTANTE: Caso sejam criadas variáveis "i" ou "j" pelo usuário, as funções originais deixam de ser acessíveis.

O Matlab utiliza o modelo aritmético dado pelo padrão ANSI/IEEE 754-1985. Uma característica importante desse padrão é a introdução dos conceitos de "infinito" e de "não-número" (para valores indefinidos). O comando

$$>> w = 1/0$$

não produz uma mensagem de erro, apenas um aviso (ou não, conforme a versão do Matlab) e o resultado "infinito".

Warning: Divide by zero.

w =

Inf

Ao passo que o comando abaixo produz o resultado "não-número".

$$>> q = 0/0$$

Warning: Divide by zero.

q =

NaN

O uso desses conceitos é bastante conveniente, especialmente em sequências complexas de cálculos, pois o Matlab não interrompe operações que podem eventualmente resultar válidas mesmo que um resultado intermediário divirja, como por exemplo:

$$>> 1/w + 10$$

ans =

10

(lembrando que $1/\infty \rightarrow 0$)..

VEJA TAMBÉM

As funções "inf" e "nan" permitem criar diretamente valores na situação "infinito" ou "não-número".

A.3 Manipulação de matrizes e vetores

A.3.1 Operações com elementos de vetores ou matrizes

É possível acessar diretamente valores de matrizes ou vetores, bem como alterá-los ou eliminar submatrizes de uma matriz. A forma básica de se referir a um elemento de uma matriz é colocando os índices (linha e coluna) entre parênteses, separados por vírgula, ou seja:

como a matriz "A" é dada por
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 5 & 0 & 0 \end{bmatrix}$$
 linha 2

temos

ans =

1

Podemos também extrair submatrizes da matriz "A". Basta colocar vetores nos índices.

>> A(:,2)

O símbolo ":" nesse caso pode ser entendido como "todos os elementos", resultando em

2

2

0

Poderíamos substituir ":" por 1:3

gerando o mesmo resultado.

Para eliminar uma linha, coluna ou submatriz, podemos proceder da seguinte forma:

$$>> A(3,:) = []$$

O símbolo "[]" pode ser lido como "matriz vazia", tendo como efeito eliminar a terceira linha da matriz, resultando em

3 2 1

A.3.2 Concatenação

É possível também concatenar matrizes e vetores, de modo que para acrescentar uma nova linha à matriz "A", basta o seguinte comando.

$$>>$$
 A = [A ; [10 1 11]]

$$>>$$
 B = [A A]

resulta em

B =

3	2	1	3	2	1
1	2	3	1	2	3
11	1	10	11	1	10

.

VEJA TAMBÉM

Todos os exemplos deste tutorial usam matrizes bidimensionais, porém o Matlab também tem capacidade de tratar matrizes *n*-dimensionais com comandos específicos. No caso mais simples em que a matriz se resume a um vetor, isto é, possui uma única linha ou coluna, podemos referenciá-

$$A(1,n) \rightarrow A(n)$$

 $A(m,1) \rightarrow A(m)$

lo com um único índice, ou seja

Um comando extremamente útil para se localizar valores em um vetor ou matriz é o comando "find". Procure saber mais sobre este comando.

A.4 Polinômios

Uma série de comandos e funções do Matlab, particularmente úteis, tratam com polinômios, conforme veremos a seguir.

A.4.1 Codificando polinômios em vetores

A codificação é extremamente simples, basta colocar os coeficientes de cada grau do polinômio em ordem decrescente (incluindo todos os graus, mesmo que tenham coeficientes nulos) em um vetor. Por exemplo:

```
>> poli1 = [1 4 2 0 20];
equivale a x^4 + 4x^3 + 2x^2 + 20.
>> poli2 = [5 7 0 0];
equivale a 5x^3 + 7x^2.
```

A.4.2 Operações com polinômios

que é equivalente a $x^4 + 9x^3 + 9x^2 + 20$.

Para somar ou subtrair polinômios é necessário ajustar as dimensões e então somá-los ou subtraí-los como vetores comuns.

```
>> soma = poli1 + [ 0 poli2 ]
```

É necessário concatenar um zero ao polinômio "poli2" para que ambos tenham a mesma dimensão, resultando em

Para realizar o produto de polinômios (ou convolução), basta usar a função "conv".

>> prod = conv(poli1,poli2)

prod =

$$5 27 38 14 100 140 0 0$$

equivalente a $5x^7 + 27x^6 + 38x^5 + 14x^4 + 100x^3 + 140x^2$.

Para extrair as raízes do polinômio acima, usamos a função "roots".

O comando apresenta todas as raízes, incluindo as raízes múltiplas e as complexas..

VEJA TAMBÉM

Divisão polinomial pode ser feita com o uso da função "deconv".

A.4.3 Ajuste de curva com polinômios

Suponha que queiramos ajustar os pontos do gráfico ao lado (feito com o Matlab, como veremos no próximo item) a um polinômio de determinada ordem.

Inicialmente criamos os vetores com os dados.

>>
$$x = [0 \ 1 \ 2 \ 3];$$

>> $y = [3 \ 4 \ 7 \ 12];$

Usamos então o comando "polyfit" para ajustar um polinômio de 3ª. ordem.

equivalente a $x^2 + 3$. O resultado nos sugere que um polinômio de grau 2 seria suficiente, assim

```
>> p2 = polyfit(x,y,2)
p2 =

1.0000  0.0000  3.0000
```

Caso quiséssemos ajustar uma reta aos pontos dados, bastaria usar um polinômio de grau 1.

```
>> p1 = polyfit(x,y,1)
p1 =
3.0000 2.0000
```

Os polinômios obtidos ajustam os dados conforme a figura abaixo.

VEJA TAMBÉM

O comando "polyval" permite calcular um dado polinômio em pontos escolhidos.

O Matlab também possui recursos de interpolação. Veja as funções "interp1" e "interp2".

A.5 Gráficos

O Matlab possui recursos gráficos extremamente sofisticados, porém neste tutorial somente os recursos mais simples serão explorados.

A.5.1 Criando um gráfico simples

O comando mais simples para se gerar um gráfico é o comando "plot". Inicialmente vamos gerar alguns vetores.

```
>> t = 0:0.01:10;

>> y = sin(t);

>> z = 0.5*cos(t);

>> w = y.*z;
```

O comando

traça um gráfico com o vetor "y" na ordenada e os índices do vetor (indo de 1 até 1001), conforme a figura ao lado. Esta é a forma mais simples de se gerar um gráfico. Mais interessante seria traçar um gráfico do tipo $t \times y$.

Isso pode ser feito utilizando-se a forma

que gera um gráfico como este ao lado.

É possível traçar gráficos com diversas curvas. O comando

traça três curvas no mesmo gráfico. Para identificá-las, o comando "legend" é bastante útil.

identifica as curvas com uma legenda. Para mover a caixa de legendas para um lugar mais conveniente basta arrastá-la com o *mouse*.

O resultado final está no gráfico ao lado.

Para melhorar a aparência do gráfico podemos alterar a escala do gráfico, usando a função "axis". O argumento da função é um vetor de quatro elementos, do tipo

$$\left[x_{min} \ x_{max} \ y_{min} \ y_{max}\right]$$

onde basta escolher os valores desejados ou "-inf" ou "inf" para deixar isso a cargo do Matlab. Assim

deixa o gráfico mais apresentável (ao lado).

Podemos alterar o tipo ou a cor das linhas diretamente no momento de traçar o gráfico. O Matlab possui diversas opções, para saber quais são consulte a documentação do programa. O comando a seguir produz uma linha azul (<u>b</u>lue) continua para a primeira curva, uma linha tracejada vermelha (<u>r</u>ed) para a segunda curva e uma linha pontilhada preta (blac<u>k</u>) para a terceira.

Podemos também incluir títulos, rótulos e textos diversos, utilizando os comandos

```
>> title('Título para o gráfico')
>> xlabel('Rótulo para o eixo x')
>> ylabel('Rótulo para o eixo y')
```

>> gtext('texto geral')

resultando em

VEJA TAMBÉM

Gráficos com escalas logarítmicas podem ser produzidos com os comandos "semilogx", "semilogy" e "loglog". Para sobrepor gráficos, basta utilizar o comando "hold on". Os comandos a seguir farão com que os novos gráficos sejam traçados sobre os anteriores. "hold off" desativa a função. Da mesma forma, "grid on" e "grid off" servem para colocar grades nos gráficos.

Também é possível traçar os pontos sem ligá-los, usando símbolos como "o" ou "+".

Novas janelas gráficas podem ser criadas com o comando "figure".

A.5.2 Dividindo os gráficos

Os gráficos podem ser subdivididos com o uso do comando "subplot". O comando possui a seguinte sintaxe.

Este comando divide a janela em uma matriz de 1 linhas e c colunas, e ativa o n-ésimo elemento dessa matriz. Por exemplo:

subplot(1,2,1)		subplot(2,1,4)		subplot(3,3,5)		
		1	2	1	1	3
1	2			4	5	6
		3	4	7	8	9

Divisões diferentes podem coexistir. Os comandos

- >> subplot(2,2,1)
- >> plot(t,y)
- >> subplot(2,2,3)
- >> plot(t,z)
- >> subplot(1,2,2)
- >> plot(t,w)

produzem o resultado do gráfico ao lado. Todos os comandos que se aplicam aos gráficos (como "title", "xla-bel", etc. podem ser usados nos subgráficos.

A.5.3 Propriedades avançadas dos gráficos

Todos os comandos vistos até o momento podem ser executados a partir da interface gráfica através de formulários e menus. Além disso, tarefas mais complexas, tais como alterar um tipo de linha, sua cor ou espessura podem ser realizados sem a necessidade de se refazer o gráfico. Outros recursos como alterar o tipo ou o tamanho dos caracteres, etc. também podem ser realizados através desta interface.

Para manipular os elementos de um gráfico, basta colocá-lo no modo de edição, o que é feito ativando o ícone de edição, localizado na janela gráfica.

VEJA TAMBÉM

O Matlab define a janela gráfica como um objeto, que possui propriedades que podem ser manipuladas pelo usuário. Não faz parte do escopo deste tutorial a manipulação de gráficos neste nível, porém o leitor interessado poderá consultar a documentação do Matlab a este respeito.

.

A.6 O toolbox de controle

O Matlab possui uma biblioteca de funções específicas para projeto e análise de sistemas de controle lineares, o "Control System Toolbox". Para mais informações basta digitar

```
>> help control
```

ou

```
>> doc control
```

Dentre as principais funções, pode-se citar "impulse", "step", "bode", "rlocus", entre outras.

Um aspecto importante do toolbox de controle é o objeto "Linear Invariante no Tempo" (LTI). Ele permite armazenar o modelo completo de um sistema linear invariante no tempo, assim como diversas de suas propriedades, em uma única variável. Além disso, diversas operações envolvendo sistemas podem ser realizadas diretamente com objetos LTI. Este é um tópico complexo demais para este tutorial, mas para sistemas descritos por funções de transferência (que são a regra neste curso), podemos criar um objeto LTI com o seguinte comando

```
>> sis = tf(num,den)
```

onde num e den são o numerador e denominador da função de transferência, descritos no padrão de polinômios, como visto acima. Definido sis, as diversas funções do toolbox podem ser utilizadas, tais como

```
>> step(sis); bode(sis)
```

dentre outras.

Com esses objetos pode-se fazer diversas operações. Por exemplo

```
>> sisp = sis1 + sis2
```

cria um sistema sisp com a soma das saídas dos sistemas sis1 e sis2 para uma mesma entrada (isso equivale a implementar sis1 e sis2 em paralelo num diagrama de blocos).

```
>> siss = sis1*sis2
```

cria um sistema siss com composição em série dos sistemas sis1 e sis2 (isso equivale a implementar sis1 e sis2 em sequência num diagrama de blocos)..

VEJA TAMBÉM

O toolbox de sistemas de controle é uma ferramenta extremamente poderosa para projeto e análise de sistemas de controle como os considerados neste curso. Recomenda-se um estudo detalhado deste toolbox e de sua documentação.

A.7 Programação com o Matlab

Diversos comandos e funções não são codficados internamente no próprio Matlab, e estão definidos em arquivos de texto denominados *M-files*, escritos em uma linguagem de programação própria, denominada de "M". A função "bode" por exemplo, é uma rotina cujo conteúdo pode ser visto com o comando

```
>> type bode
```

Os *M-files* podem ser de dois tipos: *functions* e *scripts*. *Scripts* são simplesmente seqüências de comandos, como acima, dispostos em um arquivo texto com extensão ".m". *Functions* são estruturas mais complexas, que apresentam certas características básicas, que são as seguintes: i) Existe passagem de parâmetros entre o *workspace* do Matlab (*workspace* ou espaço de trabalho pode ser entendido a grosso modo como o conjunto de variáveis que pode ser observado com o comando whos na janela de comandos) e esta é a única troca de informações. Por exemplo, o comando y=cos (x) passa à função cos um argumento x e recebe como resposta y. Não há além disso nenhuma troca de informações. ii) O ambiente de cada função é independente, isto é, uma função não reconhece variáveis definidas fora dela, e outras funções

ou o *workspace* não reconhecem variáveis definidas nela. Programadores de Pascal perceberão uma analogia clara entre *scripts* e *functions* do Matlab com *procedures* e *functions* de Pascal.

Um exemplo simples de função é o arquivo log10.m, que é uma função escrita para calcular logaritmos base 10 a partir de logaritmos naturais. O comando

mostra o conteúdo deste arquivo. Analise-o e entenda o seu funcionamento.

Espera-se que você seja capaz de escrever seus próprios *scripts* e *functions* para automatizar tarefas repetitivas e eventualmente realizar algumas mais complexas. A linguagem de programação do Matlab é muito semelhante a outras linguagens estruturadas, e se você estiver familiarizado com qualquer uma delas não terá problemas em fazer programas para o Matlab. Lembre de usar somente o seu diretório para armazenar programas e dados e de documentar bem os seus programas. É importante que você crie um cabeçalho inicial de comentários, pois o que o comando help faz nada mais é do que apresentar na tela o conteúdo deste cabeçalho. O comando

ou

apresenta basicamente tudo o que é necessário saber para se iniciar em programação Matlab.

A.8 Comentário final

Tenha em mente que o número de comandos e funções do Matlab, numa instalação normal, é usualmente da ordem de milhares, portanto é quase impossível memorizá-los todos, e é óbvio que este tutorial apresenta somente o mínimo necessário para se ter alguma desenvoltura com o Matlab. Use os comandos doc, help e demo sempre que estiver em dúvida sobre como fazer algo.

Apêndice B

Breve tutorial do Simulink

B.1 Introdução

Este é um tutorial simplificado para o uso da versão 7.1 (R2008a) ou superiores do Simulink em conjunto com o módulo Lynx AC1160-VA. Ao contrário do Matlab, que é um programa com interface relativamente consolidada, o Simulink tem apresentado grandes variações em sua interface com a evolução das versões, de modo que a aparência do programa efetivamente utilizado no laboratório pode ser diferente da apresentada neste tutorial.

B.2 Como iniciar o simulink

O simulink é acessado a partir do Matlab com o seguinte comando

>> simulink

ou a partir do botão com o ícone . A janela principal do Simulink tem a aparência da figura ao lado. Note que cada uma das bibliotecas (*Commonly Used Blocks*, *Continuous*, etc.) pode ser acessada a partir de um clique duplo do mouse, fazendo com que se tenha uma lista de blocos funcionais, que podem ser arrastados para os diagramas que você criar.

B.3 Operação básica

A idéia geral é que você utilize o Simulink para simular os sistemas que você mesmo criar, e principalmente para implementação de controladores em tempo real em conjunto com o módulo Lynx AC1160-VA. Para criar um novo sistema basta escolher FILE>NEW>MODEL no menu da parte superior da janela. Com isso uma nova janela em branco com uma barra de menus aparecerá na tela.

Como primeira tarefa você deverá criar um diagrama como este ao lado, copiando os blocos de suas respectivas bibliotecas. Faça isso arrastando-os com o mouse. A conexão entre os blocos é feita da mesma forma.

Uma vez que você tenha feito isso, use cliques duplos em cada bloco para acessar seus parâmetros. Configure o gerador de sinal para gerar uma onda dente de serra com uma freqüência de 1 Hz e com uma amplitude de pico unitária. Configure o osciloscópio para exibir pelo menos uns 10 períodos da onda.

Antes de se iniciar a simulação é necessário entender um pouco

o seu funcionamento. O simulink, como de resto todos os programas que fazem simulação de sistemas dinâmicos, se utiliza de algoritmos de integração para resolver a evolução temporal das equações do sistema numericamente. A janela abaixo, acessada a partir do menu SIMULATION>CONFIGURATION PARAMETERS ilustra como o usuário pode fazer uso dos diferentes algoritmos e de suas características.

É importante ressaltar que o Simulink utiliza algoritmos de passo variável, isto é, o passo de integração varia entre os valores mínimo e máximo da janela de parâmetros conforme um algoritmo interno de escolha, relacionado com o valor do parâmetro de tolerância. Via de regra, os valores *default* desses parâmetros NÃO serão adequados para o seu sistema (qualquer que seja ele). Portanto verifique sempre se a simulação ocorre como esperado. Se você tiver problemas com o passo de integração, experimente fazer o passo mínimo igual ao passo máximo e diminuí-lo aos poucos.

Dos diversos algoritmos de integração, neste curso o preferido é o algoritmo de Euler com passo fixo. Mais detalhes sobre os algoritmos de integração, suas aplicações específicas e escolha de parâmetros você encontra no documentação eletrônica do Simulink.

Finalmente, para se iniciar a simulação basta usar a opção SIMULATION>START do menu principal.

Uma vez que você tenha cumprido a primeira tarefa, passe ao seguinte exercício.

Monte o diagrama ao lado. Note que você pode utilizar as variáveis do Matlab num e den como argumentos do bloco de função de transferência. Via de regra, qualquer bloco do Simulink aceita variáveis do *workspace* do Matlab como parâmetros de entrada.

Escolha a frequência do gerador de pulsos de modo que o sistema saia de uma situação de regime e atinja novamente o regime entre transições na entrada (isto é, use um período suficientemente grande para que a resposta do sistema a cada pulso seja parecida com

a resposta do sistema a um degrau). Faça a simulação para alguns períodos e verifique ao final, o conteúdo das variáveis

u e y do Matlab (variáveis referidas nos blocos "To Workspace").

B.4 O uso do Simulink em conjunto com o módulo Lynx AC1160-VA

B.4.1 O bloco SERVOMECANISMO

O módulo Lynx pode ser usado em conjunto com o Simulink por meio de um bloco especial, que se encontra no modelo sim_template que pode ser acessado diretamente do Matlab (como de resto qualquer diagrama do Simulink) por meio do seguinte comando:

que deve carregar o diagrama abaixo.

O bloco SERVOMECANISMO, que no esquema de controle do laboratório cumpre o papel de planta, pode ser conectado a outros blocos e permite que se implemente sistemas de controle com o Simulink, bastando que se utilize os blocos adequados para montar a realimentação e eventuais compensadores. Note que para a configuração deste bloco funcionar corretamente é necessário conectar o terminal INPO do módulo de conexão ao tacômetro do servomecanismo, INP1 ao potenciômetro, e qualquer dos terminais OUTO ou OUT1 ao terminal da armadura do servomecanismo (assinalado como Vin no painel do dispositivo).

Um clique duplo no bloco fará com que seja exibida a janela de diálogo ao lado.

O único parâmetro deste bloco é a frequência de trabalho, ajustada para 100 Hz (não se recomenda alterar este valor). Esta frequência, combinada com um algoritmo de integração de passo fixo de 0,01 s (já configurado no diagrama sim_template), faz com que este diagrama seja simulado em tempo real, isto é, com o cronômetro da simulação (o tempo simulado) em sincronia com o tempo físico (o tempo real).

IMPORTANTE

O bloco SERVOMECANISMO não pode ser utilizado ao mesmo tempo que o aplicativo AC1160 Panel (vide Experiência 1).

É necessário fechar o aplicativo para executar ensaios com o Simulink e vice-versa.

A simulação em tempo real requer que uma série de condições sejam satisfeitas, principalmente as seguintes:

- a) Que o sistema operacional, ou outros aplicativos não interrompam ou bloqueiem a execução da simulação. No Windows, não é possível garantir que tal não vá ocorrer, mas sob condições controladas (i.e. sem nenhum outro aplicativo ativo durante a simulação e sem intervenções do usuário), espera-se um desempenho adequado na maioria das vezes;
- b) Que o computador seja capaz de efetuar todas as operações necessárias para o cálculo de um passo da simulação no tempo alocado. De um modo geral, a capacidade de cálculo dos computadores do laboratório permite que isso seja satisfeito com bastante folga, porém tarefas mais complexas ou que requeiram acesso ao disco ou ao vídeo podem comprometer a sincronização e devem ser evitadas. Exemplos típicos são:
 - Traçado de gráficos durante a simulação, incluindo o uso de blocos do tipo Scope;
 - Acesso ao disco rígido, incluindo o uso de blocos To File e From File;
 - Exibição de valores na tela, incluindo o uso de blocos do tipo Display;

Caso o sistema perca a sincronização com o tempo real, uma mensagem de aviso (código R501) é enviada ao Matlab.

Monte o diagrama ao lado. Escolha uma onda senoidal de frequência baixa, por exemplo 1 Hz (equivalente a aproximadamente 6,2832 rad/s) e ligue a saída da placa ao osciloscópio.

Verifique se a simulação ocorre em tempo real e se não há avisos ou mensagems de erro na janela de comandos do Matlab.

IMPORTANTE

Não arraste o bloco SERVOMECANISMO para outros diagramas. Para criar um diagrama que use este bloco, salve o diagrama sim_template com outro nome e use-o. A razão para isso é que a correta operação do diagrama depende de uma série de configurações incluídas em sim template.

B.4.2 Diagnóstico do módulo Lynx AC1160-VA

O diagnóstico do módulo Lynx AC1160-VA deve ser feito inicialmente a partir de seus indicadores luminosos e de seus estados típicos. Quando ligado, devemos ter a seguinte configuração: ATV aceso; LAN apagado (ou piscando esporadicamente); LINK aceso. Após o início da simulação devemos ter a seguinte configuração: ATV (OFF+2P); LAN aceso; LINK aceso. Após o término da simulação devemos ter: ATV (OFF+4P); LAN apagado (ou piscando esporadicamente); LINK aceso.

Qualquer configuração diferente das acima indica problemas no sistema, e deve ser reportada ao responsável.

Em qualquer situação, se o indicador LINK estiver apagado isso é uma indicação de ausência de conexão entre o computador e o módulo, o que impede o correto funcionamento do sistema.

B.4.3 Diagnóstico de software

O sistema de acesso ao módulo emite mensagens de erro de dois tipos básicos: erros de parâmetros, denotados por

PXXX e erros de runtime, denotados por RXXX. Erros de parâmetros interrompem obrigatoriamente a execução do programa, ao passo que erros de runtime apenas produzem mensagens de advertência na tela de comandos do Matlab. Apesar de não interromperem a execução do código, erros de runtime indicam situações que devem obrigatoriamente ser corrigidas.

Nem todas as possibilidades de uso incorreto das rotinas são contempladas pelos códigos acima, de modo que configurações não previstas podem gerar erros não listados neste documento.

Há dois módulos funcionais distintos no software, o módulo SRT (Soft Real Time) que controla a sincronização com o tempo real e o módulo DAS (Digital Acquisition System) que controla a comunicação com o módulo Lynx AC1160-VA.

A Tabela 1 abaixo apresenta a lista de erros de parâmetros,.

Tabela 1: Erros de parâmetro

SRT				
erro	etapa	comentário		
P401	configuração	Ausência do timer HRPC. Indica uma incompatibilidade do hardware do computador com o sistema de acesso ao módulo.		
DAS				
DAS				
DAS erro	etapa	comentário		

A Tabela 2 apresenta os erros de runtime. Estes erros não interrompem a execução do programa, porém indicam

problemas que devem ser obrigatoriamente abordados para o seu correto funcionamento.

Tabela 2: Erros de runtime

DAS					
erro	etapa	comentário			
R002	configuração				
R003	configuração	Estes erros indicam falhas internas do software ou problemas de integração com o MS-Windows. A ocorrência de qualquer destes erros impede a correta operação do sistema.			
R004	configuração				
R005	configuração				
R006	configuração				
R007	configuração	Este erro pode indicar uma falha na conexão de rede com o módulo Lynx AC1160-VA ou falha de hardware no módulo.			
R008	configuração	Estes erros indicam falhas de hardware no módulo Lynx AC1160-VA.			
R009	configuração				
R010	configuração				
R011	configuração	Este erro pode indicar uma falha na conexão de rede com o módulo Lynx AC1160-VA ou falha de hardware no módulo.			
R012	configuração	Este erro indica uma falha interna do software ou problema de integração com o MS-Windows.			
R013	configuração	Este erro pode indicar uma falha na conexão de rede com o módulo Lynx AC1160-VA ou falha de hardware no módulo.			
R014	configuração	Este erro indica uma falha interna do software ou problema de integração com o MS-Windows			
R015	configuração	Erro inesperado de software (sem diagnóstico).			
R201	execução	Este erro indica uma falha interna do software ou problemas de inte- gração com o MS-Windows.			
R301	finalização	Estes erros indicam falhas internas do software ou problemas de inte- gração com o MS-Windows.			
R302	finalização	Este erro pode indicar uma falha na conexão de rede com o módulo Lynx AC1160-VA ou falha de hardware no módulo.			
R303	finalização				
R304	finalização	Estes erros indicam falhas de hardware no módulo Lynx AC1160-VA.			
R309	finalização				
R310	finalização	Erro inesperado de software (sem diagnóstico).			
SRT	SRT				
R501	execução	Este erro indica perda de tempo real. As causas mais frequentes para esse erro são as seguintes: (i) Frequência de amostragem alta demais para a quantidade de cálculos determinada (neste caso o erro R501 ocorre com frequência elevada, possivelmente em todos os períodos de amostragem); (ii) Outros processos interferem com a execução do programa atrasando sua execução (neste caso o erro R501 ocorre esporadicamente).			

B.4.4 Problemas e dúvidas frequentes

Alguns problemas mais frequentemente encontrados.

a) Algum canal de entrada (INP0, INP1) não coleta nenhum sinal ou coleta sinais estranhos.

Diagnóstico 1: Verifique se o canal de entrada não se encontra desconectado. Canais de entrada desconectados podem copiar sinais de outros canais por indução (esta parece ser uma característica do hardware do módulo Lynx AC1160-VA).

Diagnóstico 2: Verifíque o aterramento. O módulo e o sistema conectado a ele (a planta) devem ter referências comuns.

b) Erros de configuração.

A causa mais comum de erros de configuração é tentar operar o módulo Lynx AC1160-VA desligado.

c) Sinais coletados apresentam discontinuidades ou degraus.

Isso pode indicar perda de tempo real. Consulte o professor ou responsável.

Experiência 3

Usando resposta em frequência para modelar a planta

3.1 Introdução

Esta experiência visa obter um modelo para a planta a partir de sua resposta em frequência. O modelo terá como entrada a tensão aplicada ao motor $V_m(t)$ e como saída a tensão no tacômetro $V_t(t)$.

3.2 Conceito de resposta em frequência

Seja $U(j\omega)$ a representação complexa (módulo e fase) de um sinal senoidal de frequência angular ω . Admita que este sinal excite um sistema linear estável e invariante no tempo. Uma vez que o sistema é estável, há o estabelecimento de um regime permanente com um sinal senoidal $Y(j\omega)$ na saída. A resposta em frequência $G(j\omega)$ do sistema é definida como o quociente entre as representações complexas da saída e da entrada, isto é:

$$G(j\omega) = \frac{Y(j\omega)}{U(j\omega)}. (3.1)$$

A resposta em frequência se relaciona com a função de transferência G(s) do sistema por meio da expressão

$$G(j\omega) = G(s)|_{s=j\omega}.$$
(3.2)

Comumente a resposta em frequência é expressa por meio de diagramas de Bode¹, compostos por dois gráficos, o primeiro exibindo o módulo de $G(j\omega)$ (em escala logarítmica ou em dB) contra a frequência angular ω , em escala logarítmica, e o segundo exibindo a fase de $G(j\omega)$ (em escala linear) contra ω em escala logarítmica.

Uma vez que se conheça a resposta em frequência do sistema (e um dos objetivos desta experiência é exatamente obter um gráfico dessa resposta) pode-se obter a sua função de transferência, como se verá a seguir.

3.3 Obtenção da resposta em frequência

A obtenção da resposta em frequência é realizada através do procedimento de excitar o sistema com entradas senoidais de diferentes frequências e analisar as saídas correspondentes.

Ao se excitar um sistema linear estável e variante no tempo com uma entrada senoidal, a saída será, após estabelecido o regime estacionário, um sinal também senoidal (porém defasado e com uma amplitude diferente).

Para cada frequência utilizada, o ganho é determinado pela relação entre as amplitudes dos sinais senoidais da saída e da entrada, enquanto que a fase é determinada pela diferença entre as fases dos sinais da saída e da entrada.

Para isso é necessário associar os sinais de entrada e saída a funções senoidais, isto é, assumir que para cada frequência angular ω ,

$$u(t) = A_i \operatorname{sen}(\omega t) \tag{3.3}$$

^{1.} Introduzidos por Hendrik W. Bode (1905-1982), dos laboratórios Bell, na década de 30.

e

$$y(t) = A_0 \operatorname{sen}(\omega t + \phi). \tag{3.4}$$

O ganho na frequência ω é dado por $G_{\omega}=\frac{A_o}{A_i}$ e a defasagem por $\Phi_{\omega}=\phi$.

Resta o problema de identificar os parâmetros ω , A_i , A_o e ϕ .

Nesta experiência o sinal de entrada u(t) é gerado numericamente pelo Simulink e convertido em um sinal elétrico pelo Módulo Lynx. Como esse é um procedimento bastante preciso, pode-se assumir que ω e A_i são valores escolhidos pelo usuário e portanto conhecidos.

O sinal de saída y(t) é coletado pelo Módulo Lynx. Para se obter A_o e ϕ é necessário ajustar (3.4) ao sinal adquirido, que devido a uma série de fatores tais como ruído, não linearidade do sistema, etc. pode não ser perfeitamente senoidal. Para realizar o ajuste, um algoritmo de regressão linear é utilizado (veja o Apêndice A).

Para agilizar esse processo é disponibilizado o programa respfreq. Veja o Apêndice B para as instruções de uso.

3.4 Obtenção da função de transferência

O procedimentos descrito acima permite que se obtenha os gráficos da resposta em frequência, porém do ponto de vista de controle, é desejável que seja disponível uma equação que descreva a função de transferência. Tal equação pode ser obtida a partir dos gráficos da resposta em frequência de diversas maneiras, sendo citadas duas a seguir.

3.4.1 Ajuste manual por assíntotas

Como consta de qualquer bom livro básico de controle (veja a bibliografia sugerida), diagramas de Bode podem ser razoavelmente aproximados por meio de assíntotas. Não cabe discutir aqui como isso é feito (para tanto consulte algum desses livros), mas você deve ser capaz de, a partir de curvas de módulo e fase, obter aproximações assintóticas graficamente e associá-las a uma função de transferência.

A identificação das assíntotas é tarefa simples quando as frequências de canto apresentam-se razoavelmente espaçadas (isto é, distantes entre si por uma década ou mais).

Por exemplo, a função de transferência $G(s) = \frac{1}{s+1}$ pode ser aproximada por meio de assíntotas, a partir da curva de resposta em frequência (módulo) da figura abaixo. :

3.4.2 Ajuste por otimização numérica

Uma forma conveniente de se obter uma função de transferência correspondente à curva de resposta em frequência é ajustar o diagrama de Bode de uma função de transferência arbitrária aos pontos levantados. Infelizmente este é um problema um pouco mais complexo, e regressão linear não pode ser utilizada. O ajuste pode ser feito por um algoritmo de otimização não linear (veja o Apêndice C).

O programa bodefit foi disponibilizado para implementar esse procedimento. Veja o Apêndice D para as instruções de uso.

3.5 Atividades

3.5.1 Atividades em sala

O objetivo básico destas atividades é obter um modelo matemático para o servomecanismo do laboratório a partir de sua resposta em frequência. É importante que você leia as instruções de uso dos programas e familiarize-s com sua operação antes de realizar a experiência.

Para minimizar o efeito de não-linearidades e maximizar a relação sinal/ruído, é conveniente que você use sinais de amplitude tão grande quanto possível, obviamente sem saturar os amplificadores. O valor padrão de amplitude utili-

Figura 3.1 Aproximação de uma função de transferência por meio de assíntotas

zado pelo programa respfreq, de 4V é usualmente adequado.

As atividades propostas são as seguintes:

a) Obtenha a resposta em frequência do servomecanismo utilizando o programa respfreq para auxiliar no procedimento.

OBS.: Use como entrada a tensão de alimentação do motor $V_m(t)$ e como saída a tensão no tacogerador $V_t(t)$. Note que para esses sinais a função de transferência a ser identificada é

$$G_t(s) = \frac{KK_t}{1+sT}. (3.5)$$

DICA 1: Uma boa referência para o que deve ser obtido neste item é o diagrama de Bode da função de transferência obtida nas experiências anteriores. Use o programa respfreq para obter as curvas de referência e planeje o levantamento dos pontos para cobrir todo o diagrama.

DICA 2: Levantar pontos em baixa frequência é um processo bastante demorado e o levantamento de pontos em alta frequência é sujeito a incertezas. Exercite o bom senso ao levantar as curvas.

b) Obtenha a função de transferência $G_t(s)$ utilizando o programa bodefit.

DICA: Uma boa condição inicial para a otimização é a função de transferência obtida e validada nas experiências anteriores.

- c) Não é possível levantar a resposta em frequência (pelo menos como definida aqui) tomando como saída a tensão no potenciômetro $V_n(t)$. Explique o porquê.
- d) (OPCIONAL) Ainda sobrou algum tempo? Repita os itens (a) e (b) usando senoides com uma amplitude diferente (se você usou uma amplitude alta, como 4V, experimente com uma amplitude menor, como 2V). Compare a função de transferência obtida anteriormente tendo em vista a não linearidade observada nas Experiências 1 e 4.

3.5.2 Apresentação de resultados

O item desta seção deve ser apresentado ao professor para a realização da Exp. 4. em uma única folha de papel A4

identificada com os nomes dos integrantes de seu grupo.

e) Apresente a resposta em frequência (em módulo e fase) levantada e a função de transferência ajustada.

3.5.3 Relatório

Esta experiência deve ser incluída no relatório "O Modelo do Servomecanismo".

3.6 Bibliografia sugerida

(CBS11) Castrucci, P. L.; Bittar, A.; Sales, R. M. Controle Automático. LTC, 1a. ed., 2011.

As Seções 5.2 a 5.6 apresentam um panorama bastante completo de resposta em frequência e Diagramas de Bode e Nyquist.

(Oga10) Ogata, K. Engenharia de Controle Moderno. Pearson, 5a. ed., 2010.

A Seção 6.1 trata de Diagramas de Bode e de Nyquist.

(Kuo85) Kuo, B. C. Sistemas de Controle Automático. Prentice-Hall do Brasil, 4a. ed., 1985.

Diagramas de Bode, bem como Diagramas de Nyquist são apresentados no Apêndice A.

RPM/2016a

Apêndice A

Regressão linear

A.1 Introdução

Este apêndice detalha o uso de regressão linear pelo método dos mínimos quadrados para se obter amplitude e fase de um sinal coletado suposto senoidal e de frequência conhecida. A mesma técnica também pode ser utilizada para se refinar o ajuste do ganho do sistema realizado na Experiência 1.

A.2 Ajustando uma senoide

A.2.1 O problema

Considere o problema de se levantar a resposta em frequência de um sistema linear invariante no tempo e estável. Aplica-se ao sistema uma entrada u(t) dada por

$$u(t) = A_i \operatorname{sen}(\omega t). \tag{A.1}$$

Pelas hipóteses de linearidade, estabilidade e invariância no tempo, tem-se que a saída y(t) correspondente, após estabelecido o regime permanente senoidal, é dada por

$$y(t) = A_o \operatorname{sen}(\omega t + \phi). \tag{A.2}$$

A amplitude A_i e a frequência ω são obviamente conhecidas. Resta então determinar A_o e ϕ .

(A.2) pode ser reescrita em uma forma mais conveniente para o problema de regressão:

$$y(t) = A_o \operatorname{sen}(\omega t + \phi) = A_o \cos \phi \operatorname{sen}(\omega t) + A_o \operatorname{sen}\phi \cos(\omega t) = \left[\operatorname{sen}(\omega t) \cos(\omega t) \right] \cdot \begin{bmatrix} A_o \cos \phi \\ A_o \operatorname{sen}\phi \end{bmatrix}. \quad (A.3)$$

A.2.2 A formulação

O sinal y(t) é adquirido em instantes discretos (no caso do laboratório usualmente a cada 0,01s) dados por $\tau = \{t_0, t_1, ..., t_N\}$, gerando um vetor de dados Υ dado por

$$\Upsilon = \begin{bmatrix} y(t_0) \\ y(t_1) \\ \vdots \\ y(t_N) \end{bmatrix}.$$
(A.4)

Substituindo (A.3) em (A.4) tem-se

$$\begin{bmatrix} y(t_0) \\ y(t_1) \\ \vdots \\ y(t_N) \end{bmatrix} = \begin{bmatrix} \operatorname{sen}(\omega t_0) & \cos(\omega t_0) \\ \operatorname{sen}(\omega t_1) & \cos(\omega t_1) \\ \vdots & \vdots \\ \operatorname{sen}(\omega t_N) & \cos(\omega t_N) \end{bmatrix} \cdot \begin{bmatrix} A_o \cos \phi \\ A_o \sin \phi \end{bmatrix}$$
(A.5)

ou na forma mais compacta

$$\Upsilon = Q \cdot p \tag{A.6}$$

$$\operatorname{com} \quad Q = \begin{bmatrix} \operatorname{sen}(\omega t_0) & \cos(\omega t_0) \\ \operatorname{sen}(\omega t_1) & \cos(\omega t_1) \\ \vdots & \vdots \\ \operatorname{sen}(\omega t_N) & \cos(\omega t_N) \end{bmatrix} e p = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} A_o \cos \phi \\ A_o \operatorname{sen} \phi \end{bmatrix}.$$

A equação (A.6) é um sistema linear. Obtendo-se a solução p do sistema, pode-se determinar A_o e ϕ através de

$$A_o = \sqrt{(p_1)^2 + (p_2)^2} e$$
 (A.7)

$$\phi = \operatorname{atan}\left(\frac{p_2}{p_1}\right). \tag{A.8}$$

Caso a matriz Q tivesse apenas duas linhas e estas fossem linearmente independentes, a solução p seria única. Porém o vetor Υ tem um número muito maior de elementos, podendo chegar à ordem de dezenas de milhares para intervalos de coleta de dados mais longos. Nesse caso a matriz Q é retangular com mais linhas do que colunas e o sistema é superdeterminado (há mais equações do que incógnitas).

A.2.3 A solução

No caso geral, o sistema (A.6) não tem solução, mas sempre é possível obter uma solução aproximada que seja ótima segundo alguma métrica. A forma mais comum é apresentada a seguir.

Seja o vetor de resíduos ε definido como

$$\varepsilon = Q \cdot p - \Upsilon. \tag{A.9}$$

Note que se o sistema tivesse uma solução única tería-se $\varepsilon=0$. Como não é o caso, o que se deseja é obter um vetor p tal que o resíduo ε seja mínimo. Como ε é um vetor, é preciso definir uma métrica para que o conceito de minimização possa ser utilizado. A norma euclidiana do vetor ε será utilizada para isso.

$$\|\varepsilon\| = \sqrt{(\varepsilon_1)^2 + (\varepsilon_2)^2 + \dots + (\varepsilon_N)^2} e$$
 (A.10)

$$\|\varepsilon\|^2 = (\varepsilon_1)^2 + (\varepsilon_2)^2 + \dots + (\varepsilon_N)^2. \tag{A.11}$$

Prefere-se utilizar (A.11) em vez de (A.10), o que simplifica bastante a obtenção da solução, levando então ao seguinte problema:

^{1.} Em homenagem ao matemático Euclides de Alexandria (circa 300AC).

Método de Gauss-Legendre¹:
$$\min_{p} \|\epsilon\|^2$$
 sujeito a $\epsilon = Q \cdot p - \Upsilon$.

Pode-se mostrar que a solução p do problema acima é também a solução do seguinte sistema linear, que é perfeitamente determinado.

$$Q' \cdot Q \cdot p = Q' \cdot \Upsilon. \tag{A.12}$$

Note que Q' denota a transposta de Q.

A.2.4 A implementação

A obtenção de uma solução numérica para (A.12) é um problema bem consolidado e há diversos algoritmos para sua solução. No Matlab o comando

$$>> p = Q \setminus Y$$

resolve o sistema $Q \cdot p = \Upsilon$ caso ele seja determinado ou aplica o método de Gauss-Legendre caso ele seja superdeterminado, resolvendo (A.12) por decomposição QR.

A.3 Ajustando o ganho do sistema

A.3.1 O problema

A curva característica $V_m \times V_t$ levantada na Experiência 1 possui o aspecto da figura ao lado. O ganho linear equivalente a essa curva é dado pelo coeficiente angular da reta que passa pela origem e que melhor se ajusta aos pontos levantados (a reta vermelha da figura).

Note que os pontos não precisam ser igualmente espaçados. De fato, a curva fica melhor caracterizada se houver um menor espaçamento próximo às transições entre zonas.

Os pontos da zona de saturação devem ser ignorados no ajuste, pois o sistema deve ser operado fora dessa zona.

A.3.2 Uma formulação simples

Como a reta a ser obtida é dada por

$$V_t = KK_t \cdot V_m \tag{A.13}$$

e são disponíveis os pares de pontos $(V_m^{(i)}, V_t^{(i)})$ para i = 1, 2, ..., N, pode-se montar um sistema linear similar ao da seção anterior, dado por

^{1.} Devido a Johan Carl Friedrich Gauss (1777 - 1855), matemático alemão, e Adrien-Marie Legendre (1752 - 1833), matemático francês, que desenvolveram o método independentemente.

$$\begin{bmatrix} V_t^{(1)} \\ V_t^{(2)} \\ \vdots \\ V_t^{(N)} \end{bmatrix} = \begin{bmatrix} V_m^{(1)} \\ V_m^{(2)} \\ \vdots \\ V_m^{(N)} \end{bmatrix} \cdot KK_t$$
(A.14)

e aplicar o método de Gauss-Legendre para obter KK, que melhor ajusta os pontos levantados.

A.3.3 Uma formulação mais complexa

A formulação de (A.14) apresenta uma característica indesejável: caso haja uma concentração de pontos levantados em uma dada região, a reta ajustada tenderá a se aproximar dessa região, como ilustrado na figura ao lado.

Uma métrica mais razoável seria tentar minimizar a área entre a reta ajustada e a curva experimental formada pelos pontos levantados, o que eliminaria esse efeito, pois essa área não depende, a princípio, do espaçamento entre os pontos.

Este é um problema bem estudado, denominado *integração numérica* ou *quadratura numérica*. Para a reta ajustada, a área sob a curva $S_{(k,\,k+1)}$ entre pontos contíguos $V_m^{(k)}$ e $V_m^{(k+1)}$ pode ser calculada facilmente.

$$S_{(k, k+1)} = \int_{V_m^{(k)}}^{V_m^{(k+1)}} KK_t V_m dV_m = KK_t \cdot \frac{(V_m)^2}{2} \Big|_{V_m^{(k)}}^{V_m^{(k+1)}} = \frac{KK_t}{2} \cdot \left[(V_m^{(k+1)})^2 - (V_m^{(k)})^2 \right]. \tag{A.15}$$

A área sob os pontos levantados pode ser aproximada de diversas formas. Uma forma simples e conveniente é utilizar a regra trapezoidal, já que ela admite uma reta entre pontos contíguos, o que é sugestivamente similar à forma da reta ajustada. A aproximação trapezoidal é calculada como ilustrado na figura ao lado. Assim

$$\hat{S}_{(k,k+1)} = \frac{(V_t^{(k+1)} - V_t^{(k)})(V_m^{(k+1)} + V_m^{(k)})}{2}$$
(A.16)

e a área entre a reta ajustada e a curva levantada é dada por

$$S_{(k, k+1)} - \hat{S}_{(k, k+1)}$$
 (A.17)

para k = 1, 2, ..., N-1. Note que o valor é negativo caso a reta ajustada passe por sobre os pontos e positivo caso a reta passe por baixo.

Com isso pode-se montar um sistema linear análogo a (A.14).

$$\begin{bmatrix} \hat{S}_{(1,2)} \\ \hat{S}_{(2,3)} \\ \vdots \\ \hat{S}_{(N-1,N)} \end{bmatrix} = \begin{bmatrix} S_{(1,2)} \\ S_{(2,3)} \\ \vdots \\ S_{(N-1,N)} \end{bmatrix} \cdot KK_t$$
(A.18)

ou

$$\begin{bmatrix} (V_t^{(2)} - V_t^{(1)})(V_m^{(2)} + V_m^{(1)}) \\ (V_t^{(3)} - V_t^{(2)})(V_m^{(3)} + V_m^{(2)}) \\ \vdots \\ (V_t^{(N)} - V_t^{(N-1)})(V_m^{(N)} + V_m^{(N-1)}) \end{bmatrix} = \begin{bmatrix} (V_m^{(2)})^2 - (V_m^{(1)})^2 \\ (V_m^{(2)})^2 - (V_m^{(1)})^2 \\ \vdots \\ (V_m^{(2)})^2 - (V_m^{(1)})^2 \end{bmatrix} \cdot KK_t.$$
(A.19)

e da mesma forma que em (A.14), o método de Gauss-Legendre pode ser aplicado para se obter KK_t que melhor ajusta os pontos levantados no sentido de minimizar a área entre as curvas.

Agradecimentos ao Prof. L. A. Baccalá pela formulação da regressão linear para o ajuste da senoide.

Apêndice B

O programa respfreq

B.1 Introdução

O programa respfreq é utilizado para auxiliar e gerenciar o levantamento da resposta em frequência do servomecanismo tendo como entrada a tensão aplicada ao motor V_m e como saída a tensão no tacogerador V_t . Para esses sinais, a função de transferência do servomecanismo é assumida da forma

$$\frac{V_t(s)}{V_m(s)} = \frac{KK_t}{1+sT}. ag{B.1}$$

B.2 Preparação e conexões.

Conecte o servomecanismo ao computador como descrito no Apêndice B da Experiência 2. Note que o sinal $V_p(t)$, tensão do potenciômetro, não é utilizado pelo programa.

B.3 Acessando o programa

Para acessar o programa, digite >> respfreq no prompt do Matlab. A janela abaixo deve ser exibida na tela do computador.

B.4 A interface do programa

A interface do programa é composta por três paineis principais:

- a) Gerenciamento (painel inferior), que permite a visualização dos pontos já levantados e em levantamento e possui recursos simples de seleção e eliminação de pontos não desejados (através dos botões SELECIONAR PONTO e EXCLUIR SELEÇÃO). Além disso o painel permite exibir uma curva de referência (ganho KK_t e constante de tempo T) para facilitar o levantamento.
 - OBS. A primeira tarefa ao se iniciar o programa deve ser escolher valores adequados para a curva de referência através do painel ilustrado ao lado. Os valores de KK_t e T obtidos nas experiências anteriores são a escolha natural.

- b) Sequência de processamento (painel superior esquerdo), que auxilia no levantamento de cada ponto da resposta em frequência. A sequência é composta de três etapas para as quais há três subpainéis disponíveis:
 - (1), que permite especificar uma entrada senoidal (amplitude e frequência angular) a ser aplicada ao sistema.
 - OBS 1. O valor da amplitude de entrada A_i (4,0V) normalmente não precisa ser alterado.
 - OBS 2. A frequência máxima é 50 rad/s devido a limitações do equipamento e do software.
 - (2), que inicia a coleta de dados (ativada pelo botão COLETAR DADOS). O tempo estimado de coleta é apresentado na parte inferior e varia conforme a frequência escolhida. Ao final da coleta os dados são exibidos no painel de **Visualização de dados**.
 - OBS. Note que para frequências muito baixas o tempo de coleta pode ser extremamente longo.
 - (3), que permite aceitar o ponto coletado (através do botão ACEITAR O PONTO). Caso o ponto não seja satisfatório, basta refazer as etapas (1) ou (2). Pontos aceitos são armazenados e incorporados ao painel de Gerenciamento.

c) Visualização de dados (painel superior esquerdo), que apresenta os dados coletados ao fim da etapa (2), como no exemplo ilustrado abaixo.

Os seguintes sinais são apresentados:

Entrada u(t) (na cor negra);

Saída coletada (na cor cinza durante o transitório e na cor verde durante o regime permanente senoidal); Saída ajustada por regressão linear y(t) (na cor vermelha).

OBS. Somente o regime permanente senoidal (curva em verde) é utilizado para estimar o sinal y(t). O número de períodos do transitório e do regime permanente senoidal são ajustados pelo programa conforme a frequência escolhida. O algoritmo para o cálculo de y(t) é descrito no Apêndice A desta experiência.

B.5 Armazenamento de dados

O programa mantém automaticamente as seguintes variáveis no espaço de trabalho do Matlab, correspondentes aos pontos coletados e exibidos no painel de **Gerenciamento**.

wdata vetor de frequências angulares em rad/s;

 $\hbox{\tt Gdata} \qquad \hbox{\tt vetor de ganhos em dB correspondente a wdata;}$

Fdata vetor de fases em graus correspondente a wdata.

Adicionalmente um arquivo respfreq_data.mat (no formato binário padrão do Matlab) é criado no diretório corrente com as variáveis acima. Ele pode ser carregado a qualquer momento com o comando

>> load respfreq data.mat

OBS. Ao iniciar, o programa respfreq carrega o arquivo respfreq_data.mat caso ele exista. Com isso, pontos levantados anteriormente ficam disponíveis nas variáveis acima e no painel de **Gerenciamento**. Caso isso não seja desejável, exclua os pontos manualmente, apague o arquivo ou mude seu nome. Note que o programa somente lê o arquivo de dados na inicialização.

Apêndice C

Obtendo uma função de transferência a partir da resposta em frequência

C.1 Introdução

Este apêndice apresenta um procedimento, baseado em programação não linear, para se obter uma função de transferência para o servomecanismo a partir de sua resposta em frequência. A função de transferência assume como entrada a tensão aplicada ao motor V_m e como saída a tensão no tacogerador V_t e tem a forma

$$G_t(s) = \frac{V_t(s)}{V_m(s)} = \frac{KK_t}{1+sT}.$$
 (C.1)

C.2 Associando a função de transferência à resposta em frequência

Considere a função de transferência de um sistema linear estável e invariante no tempo G(s) e uma resposta em frequência formada pelos conjuntos de pontos $\Gamma = \{g_1(\omega_1), g_2(\omega_2), ..., g_N(\omega_N)\}$ (ganhos) e $\Phi = \{\phi_1(\omega_1), \phi_2(\omega_2), ..., \phi_N(\omega_N)\}$ (fases) correspondentes às frequências angulares $\Omega = \{\omega_1, \omega_2, ..., \omega_N\}$.

Sabe-se que a função de transferência de um sistema calculada em $s=j\omega$ coincide com a resposta em frequência do mesmo sistema, ou seja

$$G(j\omega_i) = \Gamma|_{\omega_i} \angle \Phi|_{\omega_i} = g_i(\omega_i) \angle \phi_i(\omega_i). \tag{C.2}$$

Esse fato pode ser utilizado para se determinar a função de transferência de um sistema a partir de sua resposta em frequência. Basta ajustar a curva $G(j\omega)$ aos pontos levantados

A descrição dos pontos levantados em termos de módulo e fase não é adequada para se realizar o ajuste. Mais conveniente é a descrição no plano complexo, isto é, em partes real e imaginária (coordenadas retangulares) ou em termos de módulo e fase de um número complexo (coordenadas polares), pois daí associa-se a uma dada frequência um único número em um espaço normado.

Tendo isso em vista, a resposta em frequência pode ser descrita pelo conjunto

$$V = \{g_1(\omega_1) \angle \phi_1(\omega_1), g_2(\omega_2) \angle \phi_2(\omega_2), ..., g_N(\omega_N) \angle \phi_N(\omega_N)\}$$
 (C.3)

ou por seu equivalente em coordenadas retangulares. Note que V é um conjunto de fasores no plano complexo.

C.3 Ajustando a função de transferência à resposta em frequência

Para a função de transferência dada por (C.1) pode-se verificar que

$$G_t(j\omega) = \frac{KK_t}{1 + j\omega T} = \frac{KK_t}{1 - \omega^2 T^2} - j\frac{\omega T}{1 - \omega^2 T^2}.$$
 (C.4)

Note que a expressão (C.4) não é linear em T, e portanto regressão linear não pode ser utilizada para o ajuste. Em casos como esse o ajuste pode ser feito por algoritmos não-lineares (a isso se dá o nome de programação não linear) e uma métrica adequada.

Possivelmente a métrica adequada mais simples é a norma euclidiana das diferenças entre os fasores de $G(j\omega_i)$ e os fasores dos pontos levantados $g_i(\omega_i)\angle\phi_i(\omega_i)$ para $\omega_i\in\Omega$, ou seja, deseja-se minimizar o módulo do vetor em vermelho na figura ao lado.

Programação não linear é um tópico relativamente complexo e seu aprofundamento não cabe aqui. Para facilitar a implementação da regressão não linear, o programa bodefit foi disponibilizado. Veja o Apêndice D para mais informações e instruções de uso.

C.4 Incertezas no levantamento em termos de módulo e fase

A representação por fasores permite evidenciar com mais clareza como incertezas no levantamento afetam o ganho e a fase obtidos. Considere o gráfico de uma função de transferência $G(j\omega)$ de primeira ordem similar à (C.1) no plano complexo, o chamado diagrama de Nyquist¹.

As setas vermelhas representam os fasores em duas situações: (a) baixa frequência e ganho elevado e (b) alta frequência e ganho bastante reduzido. As incertezas são representadas pelas bolas vermelhas. As setas cinza representam os fasores respectivos afetados pelas incertezas. Pode-se ver que em termos absolutos o efeito das incertezas é pequeno na situação (a), tanto em ganho como em fase, ao passo que em (b) o efeito é similar para o ganho porém extremamente pronunciado para a fase, mesmo com bolas de tamanhos idênticos para as situações (a) e (b).

^{1.} Em homenagem a Harry Theodor Nyquist (1889 - 1976), engenheiro dos Laboratórios Bell.

Apêndice D

O programa bodefit

D.1 Introdução

O programa bodefit é empregado para ajustar os parâmetros KK, e T de uma função de transferência dada por

$$\frac{KK_t}{1+sT}$$
 a pontos levantados de resposta em frequência.

D.2 Instruções de uso

Para executar bodefit digite no Matlab

```
>> [KKt,T] = bodefit(KKto,To,wdata,Gdata,Fdata)
```

As variáveis wdata (frequências angulares em rad/s), Gdata (ganhos em dB) e Fdata (fases em graus) devem conter os pontos levantados, e seu formato é o mesmo dos vetores produzidos pelo programa respfreq. De fato a utilização conjunta de respfreq e bodefit é imediata.

As variáveis KKto e To devem conter estimativas preliminares para KK_t e T e são necessárias para o procedimento de otimização.

DICA: Boas estimativas preliminares são essenciais para que o algoritmo de otimização convirja para o valor correto. Valores usualmente adequados são aqueles obtidos nas duas primeiras experiências.

Ao se iniciar a otimização, a janela apresentada ao lado deve surgir. Ela permite acompanhar o procedimento de otimização e apresenta o diagrama de Bode da função de transferência ajustada (em vermelho) no lado esquerdo e o diagrama de Nyquist (também em vermelho) no lado direito. Note que a métrica otimizada (veja o Apêndice C) é mais imediatamente percebida no diagrama de Nyquist. À medida que o algoritmo de otimização produz solucões melhores, as curvas vermelhas devem convergir para os pontos levantados (em preto). As retas em cinza no diagrama de Nyquist representam os fasores dos pontos levantados.

A rigor, em se tratando de programação linear, não há garantias de que a solução de fato será ótima, por isso é importante acompanhar o procedimento e avaliar a qualidade dos resultados.

Caso eles não sejam satisfatórios, pode ser necessário alterar as estimativas preliminares, levantar novos pontos ou

mesmo excluir pontos existentes que se mostrem inconsistentes.

Ao final da otimização, são produzidas as variáveis KKt e T referentes aos valores ajustados de KK, e T.

D.3 O uso de programação não linear em problemas variados

Os princípios e a estrutura básica do programa bodefit constituem-se numa ferramenta útil e poderosa para se resolver uma diversidade de problemas, desde ajustes de curva complexos, otimização de projeto de controladores, solução de problemas de otimização em geral, etc.

O código pode ser facilmente adaptado e vale a pena entender melhor seu funcionamento.

D.4 O Código (resumido)

end

A função bodefit é composta por uma função principal (a própria bodefit) e uma função interna (erquad) que calcula a norma do erro entre os fasores.

A otimização é realizada pela função fminsearch (digite >> doc fminsearch no Matlab para mais informações), que emprega uma versão do algoritmo simplex de Nelder-Mead¹.

A listagem abaixo apresenta apenas os pontos principais do código. A geração do gráfico de acompanhamento da otimização não é relevante para o entendimento do código e é omitida aqui.

```
function [KKt,T] = bodefit(KKto,To,wdata,Gdata,Fdata)
\% BODEFIT Ajusta uma função de transferência do tipo KKt/(1+sT) a um
           conjunto de dados contendo a sua resposta em frequência.
응
                   [KKt,T] = bodefit(KKto,To,wdata,Gdata,Fdata)
                   KKto é uma condição inicial para o ganho
            onde:
                    To é uma condição inicial para a cte. de tempo
                    wdata, Gdata, Fdata são os pontos levantados
                    KKt é o valor ajustado para o ganho
                    T é o valor ajustado para a cte. de tempo
            wdata (em rad/s), Gdata (em dB) e Fdata (em graus) são
            compatíveis com as variáveis geradas por RESPFREQ.
            RPM/V2016a
% Prepara os dados
wdata=wdata(:); Gdata=Gdata(:); Fdata=Fdata(:); % converte em vetores coluna
Gdata = 10.^{(Gdata/20)}:
                                                % converte dB em linear
Fdata = Fdata*pi/180;
                                                % converte graus em rad
V = Gdata .* (cos(Fdata) + j.*sin(Fdata));
                                                % converte G,F em fasor
% Prepara otimização
% (em caso de problemas de convergência pode se alterar as opções abaixo)
options = optimset('Display','off','TolFun',1e-3,'TolX',1e-3);
xo = [KKto To];
                                                % condição inicial
% Otimização
                                                                                         esta é a parte
% Digite " >> doc fminsearch " no Matlab para saber mais sobre o algoritmo
                                                                                          principal do
xf = fminsearch(@(x) erquad(x,wdata,Gdata,Fdata,V),xo,options);
                                                                                         código
KKt = xf(1); T = xf(2);
                                                % os resultados finais
```

^{1.} Proposto por John A. Nelder (1924 - 2010) e Roger Mead (1938 - 2015), estatísticos ingleses, em 1965.

end

```
function erq = erquad(KKtT, wdata, Gdata, Fdata, V)
                                                                                 a função erquad define o critério
% Calcula a raiz quadrada do erro quadrático entre a função de
                                                                                 para o problema de otimização, e
% transferência candidata e os pontos levantados
                                                                                 pode ser facilmente alterada para
\mbox{\ensuremath{\$}} chamada pelo comando FMINSEARCH de BODEFIT.
                                                                                 resolver problemas diversos.
KKt=KKtT(1); T=KKtT(2);
                                   % desempacota o vetor
sis=tf(KKt,[T 1]);
                                  % cria uma função de transferência
[GG,FF]=bode(sis,wdata);
                                  % GG,FF são equivalentes a Gdata,Fdata
                                  % acerta dimensões
GG=squeeze(GG);
FF=squeeze(FF)*pi/180;
                                  % acerta dimensões
VV=GG.*cos(FF) + j*GG.*sin(FF); % VV é equivalente a V
                                                                                                este é o cálculo
                                                                                                 do erro quadrá-
erq=norm(VV-V);
                                  % raiz quadrada do erro quadrático
                                                                                                tico.
% Exibe gráficos para acompanhamento da otimização
   (trecho omitido)
```

Experiência 4

Um modelo não linear para a planta

4.1 Introdução

Esta experiência visa obter um modelo não linear para a planta. Tanto a tensão no tacogerador como a tensão no potenciômetro podem ser utilizados como saída do modelo.

A descrição do comportamento do servomecanismo por meio de modelos puramente lineares apresenta deficiências consideráveis. Para se obter modelos mais consistentes com o comportamento real se faz necessário considerar não linearidades, tais como o atrito seco (atrito de Coulomb¹) e saturações nos amplificadores e outros componentes do sistema eletromecânico. Mais especificamente, apenas o atrito de Coulomb será considerado aqui, e um modelo que inclui sua influência será obtido.

Note que o modelo não linear não se presta para o projeto de controladores lineares com a teoria de controle clássico utilizada neste curso, porém é uma ferramenta útil para verificação e validação de controladores projetados a partir de modelos lineares como os obtidos nas experiências anteriores.

4.2 Um modelo não linear

Sempre que superficies mecânicas escorregam umas sobre as outras há o aparecimento de forças de atrito, podendo ser classificadas dentre os três tipos abaixo:

- i) atrito viscoso linear, proporcional à velocidade relativa entre as superfícies;
- ii) **atrito de Coulomb**, composto por uma força constante, sempre se opondo ao movimento relativo entre as superfícies e;
- iii) **atrito de destaque** (ou atrito de Coulomb de destaque), que é uma força de oposição que só aparece ao se iniciar o movimento.

A modelagem linear do servomecanismo apresentada na Experiência 1 parte do pressuposto de que no motor de corrente contínua a relação entre torque e velocidade angular no regime estacionário é linear, isto é, considera-se apenas a influência do atrito viscoso. Nesse caso o torque total do sistema, em regime estacionário, que se resume ao torque de atrito (medido no eixo do potenciômetro) é dado por

$$T_{at_p} = B\omega_p, (4.1)$$

onde B é o coeficiente de atrito viscoso e ω_n é a velocidade angular em regime estacionário do eixo do potenciômetro.

Assumindo-se que tanto a força de atrito viscoso como a força de atrito de Coulomb sejam significativas, obtémse a curva característica de torque contra velocidade de regime da Figura 4.1 (referidos, tanto o torque como a velocidade de regime ao eixo do potenciômetro). Neste caso, o torque total do sistema, que se resume ao torque de atrito seria dado nor

^{1.} Em homenagem ao físico francês Charles-Augustin de Coulomb (1736-1806). Coulomb estudou o atrito no maquinário de moinhos de vento e propôs os modelos apresentados aqui.

Figura 4.1 Característica Torque X Velocidade

$$T_{at_p} = B\omega_p + C\operatorname{sgn}(\omega_p), \tag{4.2}$$

onde $B \in C$ (torque de atrito de Coulomb) estão indicados na figura, sgn(x) é a função "sinal algébrico" de $x \in T_{at_p}$ é o torque total de atrito referido ao eixo do potenciômetro.

Sem considerar o atrito de Coulomb, o torque no eixo do potenciômetro seria dado por

$$T_p(t) = J\ddot{\theta}_p(t) + B\dot{\theta}_p(t). \tag{4.3}$$

A equação diferencial associada à função de transferência $G_p(s) = \frac{\Theta_p(s)}{V_m(s)} = \frac{Kn^2}{s(1+sT)}$ da Experiência 1 (tendo como saída o ângulo do potenciômetro e não sua medida $V_p(s)$) é

$$\ddot{\theta}_p(t) + \frac{\dot{\theta}_p(t)}{T} = \frac{Kn^2}{T} V_m(t) . \tag{4.4}$$

Ao se considerar o atrito de Coulomb, tem-se

$$T_p(t) = J\ddot{\theta}_p(t) + B\dot{\theta}_p(t) + C\operatorname{sgn}(\dot{\theta}_p(t)). \tag{4.5}$$

Note que J representa uma associação de momentos de inércia referidos ao eixo do potenciômetro. Tem-se também que

$$\ddot{\theta}_p(t) + \frac{\dot{\theta}_p(t)}{T} + \frac{\varphi}{T} \operatorname{sgn}(\dot{\theta}_p(t)) = \frac{Kn^2}{T} V_m(t), \qquad (4.6)$$

onde φ é uma constante proporcional a *C* de (4.2). Esse termo adicional leva ao diagrama de blocos modificado da Figura 4.2 (compare com o seu equivalente da Experiência 1). Por abuso de notação, transformadas de Laplace¹ e funções de transferência são utilizados junto do bloco de atrito não linear.

O modelo acima é capaz de descrever o comportamento do sistema com bastante acurácia dentro de limites de validade bem determinados. Note que o termo que expressa o torque resistente do atrito de Coulomb, sob certas situações, pode ser maior em módulo e de sinal algébrico oposto ao termo que representa o torque motor aplicado ao sistema, o que levaria à criação de movimento pelo torque de atrito, o que fisicamente não faz sentido. Assim, este modelo deve ser utilizado apenas para descrever a velocidade do sistema, desde que esta não mude de sentido ou seja nula ou muito pequena.

^{1.} Pierre-Simon, Marquês de Laplace (1749-1827). Matemático, astrônomo e físico francês.

Figura 4.2 Diagrama de blocos do servomecanismo com atrito de Coulomb (a variável de Laplace *s* aparece por abuso de notação, já que o sistema resultante é não-linear).

É desejável utilizar este modelo também para descrever a posição do sistema, o que pode ser feito de maneira limitada, mas com razoável fidelidade ao comportamento real do sistema. Para tanto é necessário mitigar algumas das inconsistências físicas do modelo expresso no diagrama da Figura 4.2. Note no diagrama que caso $Kn^2V_m(t)$ seja menor em módulo que φ , a velocidade angular $\omega_p(t)$ pode mudar de sentido. Para eliminar essa inconsistência, basta impor que o termo de atrito não seja maior que o outro termo nas situações em que tal ocasionaria reversão do movimento. Fisicamente isso pode ser associado ao fato de que o movimento do servomecanismo é interrompido sempre que a velocidade angular se aproxima de zero e o torque aplicado não seria capaz de vencer o atrito. Nessa situação o movimento somente seria retomado quando o torque aplicado for maior que o atrito de destaque.

O arquivo nl_template.mdl (digite >> nl_template no prompt do Matlab) contém uma versão adaptada do diagrama da Figura 4.2 sem as inconsistências físicas do diagrama da fígura. Note que não há diferenças entre os comportamentos produzidos pelos modelos nas condições de validade de (4.6).

4.2.1 Identificando modelos com atrito de Coulomb

Considere um sistema descrito pela equação (4.6). Suponha que para uma entrada $V_{m1}(t)$ sua resposta seja $\dot{\theta}_{p1}(t) = \omega_{p1}(t)$ e que para uma entrada $V_{m2}(t)$ a resposta seja $\dot{\theta}_{p2}(t) = \omega_{p2}(t)$. Admita também que para $t > t_0$, $\mathrm{sgn}(\omega_{p1}(t)) = \mathrm{sgn}(\omega_{p2}(t))$. Assim, para $t > t_0$, a diferença

$$z(t) = \omega_{p1}(t) - \omega_{p2}(t) \tag{4.7}$$

entre as duas respostas é regida pelo modelo

$$\dot{z}(t) + \frac{z(t)}{T} = \frac{Kn^2}{T} (V_{m1}(t) - V_{m2}(t)). \tag{4.8}$$

Note que a equação (4.8) é linear, apesar do atrito de Coulomb, e pode ser comparada diretamente com (4.4). Uma situação em que essa equação é válida pode ser facilmente criada no laboratório. Basta excitar o servomotor inicialmente com um degrau de amplitude V_{m1} , e quando atingido o regime permanente (i.e. quando a velocidade angular no eixo do potenciômetro for $\overline{\omega}_{p1}$ constante, ou seja quando $t=t_0$), altera-se a entrada adicionando mais um degrau ΔV_m de modo que a entrada adquira o valor $V_{m2}=V_{m1}+\Delta V_m$, obtendo-se uma curva como a da Figura 4.3, onde $\overline{\omega}_{p2}$ é a velocidade angular resultante em regime estacionário após a aplicação do segundo degrau. Note que $z=\omega_p-\overline{\omega}_{p1}$, e que tanto z como ω_p representam velocidades angulares no eixo do potenciômetro. Apenas as referências dos eixos (veja a figura) são diferentes.

A partir dessa curva obtém-se diretamente T e calcula-se

$$K = \frac{z_{\infty}}{n^2 \Delta V_m} \tag{4.9}$$

Figura 4.3 Curva para identificação do atrito seco (note que z representa a velocidade angular no eixo do potenciômetro e é similar à ω_p , exceto pela referência - veja o gráfico)

e

$$\varphi = Kn^2 V_{m1} - \overline{\omega}_{p1} \,. \tag{4.10}$$

Note que o valor de K obtido para o modelo não linear é geralmente diferente daquele obtido anteriormente para o modelo linear.

4.3 Atividades

4.3.1 Atividades em sala

- a) Obtenha um modelo não-linear para o sistema, como sugerido pela Figura 4.3, realizando um ensaio de degrau duplo com o diagrama exp4_template. Obtenha esse modelo por inspeção visual do gráfico, utilizando as relações (4.9) e (4.10).
- b) Verifique o modelo obtido realizando um ensaio de degrau duplo e comparando as curvas coletadas do servomecanismo real com as produzidas pelo modelo não linear.
- c) Compare os modelos obtidos (nesta experiência e nas anteriores) e comente as diferenças.

IMPORTANTE: O modelo não linear produzido aqui deverá ser utilizado em todas as experiências futuras. O procedimento normal de projeto de controladores será:

- i) Projetar um controlador utilizando algum modelo linear;
- ii) Verificar a correção do projeto simulando o sistema controlado com o modelo linear;
- iii) Prever o desempenho real do controlador simulando o sistema controlado com o modelo não linear
- iv) Validar o projeto controlando a planta real e comparando com (ii) e (iii). Note que (ii) e (iii) devem preferencialmente ser realizados simultaneamente.

4.3.2 Relatório

Esta experiência conclui o relatório "O Modelo do Servomecanismo".

4.4 Bibliografia sugerida

(Kuo85) Kuo, B. C. Sistemas de Controle Automático. Prentice-Hall do Brasil, 4a. ed., 1985.

A Seção 4.3 faz uma breve apresentação de diversos tipos de atrito.

(Oga92) Ogata, K. System Dynamics. Prentice-Hall. 2nd. ed., 1992.

A Seção 3-4 trata exclusivamente de modelos para atrito.

(JJC,RPM/96) / rev. RPM/2016a

Experiência 5

Controle proporcional de posição e velocidade

5.1 Introdução

Esta experiência tem como objetivo a montagem de controladores de posição e velocidade do tipo proporcional para o servomecanismo do laboratório.

O desempenho desses controladores é bastante limitado, mas eles servem como a referência com a qual futuros controladores mais sofisticados devem ser comparados.

5.2 Controle de posição

5.2.1 Realimentação unitária

Para se controlar a posição angular do servomecanismo, é necessário fechar a malha através do potenciômetro (o sensor de posição), comparando essa medida com um sinal de referência. O erro obtido é então aplicado à entrada do sistema, resultando na malha de realimentação esquematizada na figura5.1.

Figura 5.1 Esquema do controlador de posição.

A função de transferência do servomecanismo em malha aberta (correspondente ao bloco MOTOR/REDUCÃO da Figura 5.1) é

$$G_{\theta}(s) = \frac{\Theta_p(s)}{V_m(s)} = \frac{Kn^2}{s(1+sT)},$$
 (5.1)

ao passo que o bloco POTENCIÔMETRO obedece à seguinte relação característica:

$$V_p(s) = K_p \Theta_p(s). ag{5.2}$$

Pode-se supor que a tensão de referência r(t) seja proporcional a uma posição angular de referência $\theta_r(t)$, e que

elas guardam entre si a mesma relação que entre V_p e $\theta_p(t)$. Daí

$$R(s) = K_p \Theta_r(s), \tag{5.3}$$

de onde se tem a seguinte função de transferência em malha aberta:

$$G_{\theta/\theta}(s) = \frac{\Theta_p(s)}{\Theta_r(s)} = \frac{KK_p n^2}{s(1+sT)}.$$
 (5.4)

Na prática é muito mais simples tratar com as tensões produzidas pelos sensores do que com posições angulares, portanto a seguinte é a função de transferência que será efetivamente utilizada.

$$G_p(s) = \frac{V_p(s)}{U(s)} = \frac{KK_p n^2}{s(1+sT)}.$$
 (5.5)

Note que esta função de transferência é igual a (5.4).

Finalmente, o diagrama de blocos é o da Figura 5.2.

Figura 5.2 O controlador de posição por realimentação unitária.

5.2.2 O controlador proporcional

No item anterior considerou-se apenas um sistema de controle por realimentação unitária. Em um sistema de controle deste tipo, a entrada da planta é o sinal de erro, formado pela diferença entre a referência e a saída da planta.

Nem sempre alimentar a planta meramente com o sinal de erro é por si só suficiente para satisfazer os requisitos exigidos, sendo necessário alterá-lo pelo uso de *compensadores*.

A forma mais simples de se alterar o sinal de erro que alimenta a planta é a utilização de um ganho proporcional, que dá ao sistema de controle a estrutura abaixo:

Figura 5.3 O controlador proporcional.

A função de transferência em malha fechada $G_{mf}(s)$ é dada por

$$G_{mf}(s) = \frac{KK_c K_p n^2}{s(1+sT) + KK_c K_p n^2}.$$
 (5.6)

O diagrama do lugar geométrico das raízes (LGR) do sistema é apresentado na Figura 5.4.

Figura 5.4 Lugar geométrico das raízes para o sistema da equação (5.6).

5.3 Controle de velocidade

5.3.1 Realimentação unitária

A construção de um regulador de velocidade requer que se realimente o sinal de velocidade. Para tanto utiliza-se o tacômetro como sensor de velocidade e compara-se a tensão de saída deste com o sinal de referência que se deseja acompanhar. A diferença entre esses sinais é o erro de acompanhamento (Figura 5.5)

Figura 5.5 Esquema do controlador de velocidade.

A função de transferência entre a tensão de entrada $V_m(s)$ e a velocidade angular $\Omega_m(s)$ do eixo do motor é:

$$G_{\omega}(s) = \frac{K}{1 + sT}.\tag{5.7}$$

O tacômetro fornece uma tensão $V_t(s)$ proporcional a $\Omega_m(s)$, com constante de proporcionalidade K_t , então

$$V_t(s) = K_t \Omega_m(s). (5.8)$$

Supondo que a tensão de referência represente uma velocidade angular tal que

$$R(s) = K_t \Omega_r(s), \tag{5.9}$$

então pode-se desenhar o diagrama de blocos que representa o controlador de velocidade em malha fechada da Figura 5.6

Figura 5.6 Diagrama de blocos do regulador de velocidade.

Redesenhando o diagrama acima obtém-se a forma com realimentação unitária da Figura 5.7.

Figura 5.7 Diagrama de blocos do regulador de velocidade com realimentação unitária.

A função de transferência de malha fechada do sistema acima é dada por

$$G_{\omega/\omega}(s) = \frac{KK_t}{1 + KK_t + sT}. ag{5.10}$$

Ou, considerando as proporcionalidades expressas por (5.8) e (5.10),

$$G_t(s) = \frac{KK_t}{1 + KK_t + sT}. (5.11)$$

Da mesma forma que no caso do controlador de posição, esta forma será utilizada aqui por simplicidade na manipulação das tensões em vez das velocidades angulares.

5.3.2 Controlador proporcional

De modo similar ao início da seção 5.2.2, considera-se aqui um controlador proporcional conforme a Figura 5.8.

Figura 5.8 Diagrama de blocos do controlador proporcional de velocidade.

Neste controlador, a tensão V_m aplicada na entrada do motor é proporcional ao erro entre a tensão de referência r e a tensão do tacômetro V_t . A função de transferência em malha fechada $G_{mf}(s)$ resulta

$$G_{mf}(s) = \frac{KK_tK_c}{1 + KK_tK_c + sT}. (5.12)$$

Observe que a constante de tempo do sistema em malha fechada, que é de primeira ordem, é

$$T_{mf} = \frac{T}{1 + KK_t K_c} \tag{5.13}$$

e que, aumentado-se o ganho do controlador proporcional K_c , obtém-se maior rapidez de resposta do sistema (isto é, T_{mf} menor).

O lugar das raízes do sistema da Figura 5.8 é o seguinte:

Figura 5.9 Lugar das raízes do sistema de controle de velocidade.

5.4 Atividades

5.4.1 Atividades em sala

- a) Implemente um controlador proporcional de posição utilizando o Simulink e registre as respostas do sistema a um degrau de referência com tensão correspondente a uma rotação de 90° no eixo da escala graduada do servo (calcule esse valor a partir do ganho do potenciômetro K_p). Utilize para isso três valores de ganho do controlador proporcional:
 - a.1) $K_c = 1$;
 - a.2) escolha K_c tal que a resposta do sistema resulte superamortecida (anote o valor de K_c);
 - a.3) escolha K_c tal que a resposta do sistema resulte sub-amortecida (anote o valor de K_c);
 - OBSERVAÇÃO: Utilize a mesma tensão de referência para os três ensaios.
- b) Compare as respostas obtidas no item (b) com simulações do controlador tanto para o modelo linear como para o modelo não linear da planta.
 - DICA: O item (a) pode ser feito simultaneamente com o item (b). Basta incluir a simulação do controlador em paralelo à sua implementação.
- c) Implemente um controlador proporcional de velocidade e registre as respostas do sistema a um degrau de referência correspondente a uma rotação de 100 rpm no eixo do potenciômetro (para o caso em que $K_c \to \infty$. Note que para ganhos finitos o valor de regime do sistema não será igual ao do degrau aplicado. Utilize o ganho do tacômetro K_t para calcular esse valor). Utilize para isso três valores de ganho:

- c.1) $K_c = 1$;
- c.2) $K_c = 1.5$;
- c.3) $K_c = 2.5$.

OBSERVAÇÃO 1: Utilize a mesma tensão de referência para os três ensaios.

OBSERVAÇÃO 2: Lembre que se espera erro de regime para o controlador proporcional de velocidade.

d) Compare as respostas obtidas no item (c) com simulações do controlador tanto para o modelo linear como para o modelo não linear da planta.

DICA: Este item também pode ser feito juntamente com o anterior.

e) Registre a resposta a degrau para algum dos valores de K_c que você utilizou no item (c), mas abaixe a alavanca do freio eletromagnético após o sistema ter atingido o regime permanente. Comente o resultado obtido.

OBSERVAÇÃO: A resposta do sistema controlado a perturbações como esta é um dos índices de qualidade utilizado na comparação entre este e futuros controladores.

5.4.2 Apresentação de resultados

O item desta seção deve ser apresentado ao professor para a realização da próxima experiência em uma única folha de papel A4 identificada com os nomes dos integrantes de seu grupo.

f) Apresente os gráficos com as respostas ao degrau dos itens (a) e (c) - dois gráficos com três curvas cada um.

5.4.3 Relatório

Esta experiência deve ser incluída nos relatórios "Controle de Velocidade" e "Controle de Posição".

5.5 Bibliografia sugerida

Todos os livros citados abaixo apresentam os fundamentos de Lugar Geométrico das Raízes e os princípios básicos de Controle por Realimentação.

- (CBS11) Castrucci, P. L.; Bittar, A.; Sales, R. M. Controle Automático. LTC, 1a. ed., 2011.
- (Oga10) Ogata, K. Engenharia de Controle Moderno. Pearson, 5a. ed., 2010.
- (DB98) Dorf, R. C.; Bishop, R. H. Modern Control Systems. Addison-Wesley, 8th. ed., 1998.
- (FPE86) Franklin, G. F.; Powell, J. D.; Emami-Naeini, A. **Feedback Control of Dynamic Systems**. Addison-Wesley, 1st. ed., 1986.
- (Kuo85) Kuo, B. C. Sistemas de Controle Automático. Prentice-Hall do Brasil, 4a. ed., 1985.

(atual. JJC, JCA/97) rev. RPM/2016a

Experiência 6

Controle PID

6.1 Introdução

Esta experiência tem por objetivo o estudo, implementação e sintonia de controladores PID (de Proporcio-nal+Integral+Derivativo) aplicados ao servomecanismo do Laboratório.

6.2 Controladores PID

6.2.1 Controladores industriais

A maioria absoluta dos controladores empregados na Indústria é baseada em algoritmos PID. Eles são empregados desde a década de 30 em diferentes implementações. Os primeiros eram implementados por meio de sistemas hidráulicos ou pneumáticos, tendo evoluido depois para eletrônica analógica, sendo hoje implementados digitalmente por meio de microprocessadores.

Os PIDs aparecem em inúmeros produtos industriais para controle de processos, desde os mais simples, chamados de *single-loops* ou *multi-loops*, equipamentos dedicados em tamanho padrão, que implementam apenas algoritmos PIDs, capazes de controlar uma ou diversas malhas (como os da Figura 6.1) até os mais sofisticados equipamentos, que são

(a) SMAR CD 600 (Brasil)

(b) Foxboro 718 (EUA)

(c) Yokogawa YS100 (Japão)

Figura 6.1 Alguns controladores industriais de pequeno porte

programados graficamente (de maneira semelhante ao Simulink, utilizado no Laboratório) onde os PIDs aparecem como blocos básicos utilizados para compor sistemas de controle que podem conter centenas de malhas (um equipamento desse tipo é apresentado na Figura 6.2).

Conceitualmente falando, os modernos PIDs não são diferentes de seus ancestrais das décadas de 30 e 40. A evolução se deu principalmente no que se refere a métodos de sintonia (isto é, a escolha dos ganhos do controlador), e hoje diversos produtos contêm PIDs que se auto-sintonizam, utilizando as mais variadas técnicas.

6.2.2 Formulação básica do controlador

Em um controlador PID, como o do diagrama abaixo (Figura 6.3), a ação de controle é gerada por uma soma de três termos, isto é

Figura 6.2 Um sistema de controle de maior porte (Siemens S-5).

Figura 6.3 Controle PID

$$u(t) = u_p(t) + u_l(t) + u_D(t), (6.1)$$

onde os termos se referem às parcelas proporcional, integral e diferencial respectivamente.

Essas parcelas são dadas por

$$u_p(t) = K_p e(t), (6.2)$$

$$u_I(t) = \frac{K_P}{T_i} \int_0^t e(\tau) d\tau$$
, ou no domínio da frequência $U_I(s) = \frac{K_P}{sT_i} E(s)$ e (6.3)

$$u_D(t) = K_P T_D \frac{de(t)}{dt} \text{ ou } U_D(s) = K_P T_D s E(s).$$

$$(6.4)$$

De forma que a equação total do controlador no domínio da frequência é

$$U(s) = K_{P} \left(1 + \frac{1}{sT_{i}} + sT_{D} \right) E(s).$$
 (6.5)

Esta parametrização do controlador em termos de K_P , T_i e T_D é chamada de *forma padrão* ou *forma ISA* (de Instrument Society of America - atualmente International Society of Automation). Ela, é claro, não é a única possível, mas apresenta algumas vantagens. A principal é que os ganhos assumem significados físicos. K_P representa a amplificação geral da ação de controle, enquanto que T_i representa, para um sinal de erro constante, o tempo que a ação integral de controle varia de 0 até um valor igual ao erro, conforme ilustrado no gráfico da Figura 6.4. Por esse motivo, T_i é usualmente denominado *tempo de repetição*. A ação diferencial pode ser entendida como dando um caráter antecipativo ao controle. Considere o gráfico da Figura 6.5, onde é apresentado um sinal de erro variando no decorrer do tempo. Pode-se ver no gráfico que a ação de controle diferencial no instante t é baseada em uma extrapolação linear do sinal de erro e(t) T_D instantes de tempo à frente, ou seja $e(t) + T_D \frac{de(t)}{dt}$. Por esse fato, T_D é usualmente denominado tempo temp

Outra parametrização popular é a chamada forma paralela, dada por

Figura 6.4 Ilustração de uma ação integral de controle

Figura 6.5 Ilustração de uma ação diferencial de controle

$$U(s) = \left(k + \frac{k_i}{s} + sk_d\right)E(s). \tag{6.6}$$

Na parametrização paralela os parâmetros perdem seu significado físico, porém esta parametrização é mais interessante quando se deseja tratar separadamente as diferentes ações de controle ou para se fazer manipulações algébricas.

6.2.3 Implementação da ação diferencial

Uma ação diferencial como a da equação (6.4) apresenta alguns problemas de implementação.

O primeiro deles se refere à variação do ganho com a frequência do sinal de entrada. Uma função de transferência do tipo sT_D apresenta ganho tendendo a infinito com o aumento da frequência, o que é altamente indesejável do ponto de vista de controle, pois sinais espúrios de alta frequência, como ruídos de medida, seriam amplificados em escala muito maior que o sinal de erro pertinente ao controle. Além disso é sabidamente impossível se realizar fisicamente uma implementação desse tipo. Geralmente é feita a seguinte aproximação

$$sT_D \cong \frac{sT_D}{1 + sT_D/N},\tag{6.7}$$

onde N é tipicamente escolhido como um valor entre 3 e 20 (veja a Figura 6.6).

O outro problema é que usualmente o sinal de referência (ou *setpoint*) é um sinal constante por trechos (como os degraus aplicados aos diferentes sistemas implementados no Laboratório), de maneira que o sinal de erro pode vir a ser descontínuo, o que do ponto de vista da ação diferencial é bastante inconveniente. Uma maneira simples de se evitar esse

Figura 6.6 Diagrama de Bode da ação diferencial (apenas as assíntotas foram traçadas)

problema é aplicar a saída da planta com sinal trocado à parcela diferencial do controlador, e não o sinal de erro, tendo-se então no lugar de (6.4)

$$U_D(s) = \frac{-sT_D}{1 + sT_D/N}Y(s), (6.8)$$

de forma que o controlador PID fica (no domínio da frequência)

$$U(s) = K_P \left(1 + \frac{1}{sT_i} \right) E(s) + K_P \left(\frac{-sT_D}{1 + sT_D/N} \right) Y(s).$$
 (6.9)

6.2.4 Wind up e anti-windup

Frequentemente, durante a operação de um sistema de controle, ocorre da saída do controlador saturar sem que a saída da planta atinja o setpoint, especialmente no caso de saturação do atuador (e. g. uma válvula que abre ou fecha totalmente, um amplificador que satura, um motor que atinge sua velocidade máxima, etc.) ou caso o setpoint escolhido esteja fora da capacidade da planta (e. g. especificar uma vazão ou nível maior que a capacidade do sistema ou exigir que um fusquinha acelere até atingir 180 km/h). Nessa situação, caso o controlador possua características de integrador, a saída calculada crescerá cada cada vez mais (dado que um erro não nulo será constantemente integrado), mesmo que a saída física já tenha saturado e não seja capaz de fazer com que o erro se anule.

Essa situação em que a componente integral do controle cresce cada vez mais com a saída física do controlador saturada é denominada *wind up*. O real problema não é o *wind up* em si, mas a volta do sistema a uma situação normal após algum tempo em *wind up*. Caso se altere o setpoint ou se corrija algum problema que estivesse causando a saturação do atuador, o controlador demorará muito tempo a sair da saturação, pois o integrador terá nesse momento um valor muito alto, que cairá lentamente de acordo com a constante de tempo implementada.

Para evitar que esse problema ocorra, basta que o integrador seja congelado quando a saída do controlador atingir o máximo ou mínimo de sua excursão admissível, de modo que não haja acumulação desnecessária no integrador, impedindo a ocorrência de wind up. A essa estratégia se dá o nome de *anti-windup*.

6.3 Sintonia de PIDs

A sintonia de um controlador PID, ou seja, a escolha adequada de seus parâmetros, pode ser realizada de diversas maneiras, tendo em vista a otimização de algum índice de desempenho. Exemplos de índices comuns de desempenho são o erro de regime estacionário (ou acompanhamento de setpoint), rejeição de perturbações, robustez a variações na planta, máximo sobressinal, etc. A obtenção de parâmetros adequados pode ser feita analiticamente a partir dos modelos do controlador e da planta, por tentativa e erro, por processos iterativos e por utilização direta de regras práticas de sintonia.

Regras práticas de sintonia têm sido desenvolvidas ao longo do tempo com o fim de se caracterizar de maneira

rápida uma dada planta e a partir dessa caracterização se obter uma sintonia para o controlador. Três regras bastante conhecidas são apresentadas nesta apostila. As duas primeiras usam a resposta a degrau da planta em malha aberta para caracterizá-la, enquanto que a terceira utiliza propriedades de sua resposta em frequência.

6.3.1 Método de Ziegler-Nichols para o domínio do tempo

Considere um sistema estável em malha aberta cuja resposta a degrau tenha o aspecto ilustrado na Figura 6.7. A

Figura 6.7 Parâmetros de uma resposta a degrau típica

partir dos parâmetros identificados α e L pode-se obter uma sintonia utilizando-se o método de Ziegler-Nichols para resposta ao degrau (Tabela 6.1) ou uma variação que permite tentar ajustar o sobressinal da resposta em malha fechada, o

Controlador	K_P	T_I	T_D
P	1/α		
P+I	0,9/α	3L	
P+I+D	1,2/α	2L	0,5L

Tabela 6.1: Método de Ziegler-Nichols para resposta ao degrau

método de Chien-Hrones-Reswick (Tabela 6.2).

Sobressinal	0%		20%			
Controlador	K_{P}	T_I	T_D	K_{P}	T_I	T_D
P	0,3/α			0,7/α		
P+I	0,6/α	4L		0,7/α	2,3 <i>L</i>	
P+I+D	0,95/α	2,4 <i>L</i>	0,42L	1,2/α	2L	0,42L

Tabela 6.2: Método de Chien-Hrones-Reswick

6.3.2 Método de Ziegler-Nichols para o domínio da frequência

Outro método, também devido a Ziegler e Nichols, se aplica quando a resposta em malha fechada com controlador proporcional tem caráter oscilatório. Ela pode ser esquematizado da seguinte maneira: Inicialmente feche a malha

apenas com controle proporcional, isto é, $T_D=0$ e $T_I\to\infty$. Aumente o ganho proporcional K_P até que se atinja o limite de estabilidade, situação em que o sistema passa a oscilar espontaneamente e praticamente sem amortecimento. O ganho limite K_u e o período de oscilação T_u levam à regra de sintonia do método de Ziegler-Nichos para resposta em frequência, apresentado na Tabela 6.3

Controlador	K_P	T_I	T_D
P	$0,5K_{u}$		
P+I	$0,45K_{u}$	$T_u/1,2$	
P+I+D	0,6K _u	$T_u/2$	$T_u/8$

Tabela 6.3: Método de Ziegler-Nichols para resposta em frequência

6.3.3 Método do Relé

Seja um relé com histerese, conforme a curva característica esquematizada na Figura 6.8. A saída u do relé pode

Figura 6.8 Relé com histerese

assumir os valores $\pm d$ conforme o valor da entrada e e da trajetória (ascendente ou descendente) em que o sistema se encontra. A histerese do relé é representada pelo parâmetro ε . Se $\varepsilon=0$ o relé não apresenta histerese.

Para se aplicar o método do relé, fecha-se a malha utilizando o relé acima como compensador, conforme a Figura

Figura 6.9 Compensador a relé

6.9. Caso o arranjo gere uma oscilação sustentada na saída y(t) do sistema, como a da Figura 6.10, é possível identificar

Figura 6.10 Oscilação sustentada

os parâmetros a (amplitude de oscilação) e T_u (período de oscilação). Nessas condições, o sinal u(t) deve ser uma onda quadrada de amplitude d, mesmo período e fase oposta ao sinal y(t).

Para o caso mais simples em que não há histerese (ou em que ela é muito pequena), pode-se mostrar que para a oscilação sustentada acima, a função descritiva Γ do compensador a relé é dada por

$$\Gamma(a) = \frac{4d}{\pi a},\tag{6.10}$$

derivada grosseiramente da componente fundamental da expansão em série de Fourier de uma onda quadrada (este é um tópico cujos fundamentos teóricos não são vistos neste curso). O que nos sugere o seguinte valor para o ganho limite.

$$K_u = \Gamma(a) = \frac{4d}{\pi a}.\tag{6.11}$$

Com isso, pode-se utilizar os valores obtidos de K_u e T_u na Tabela 6.3 para ajustar um compensador PID.

O método do relé apresenta uma vantagem importante em relação ao método de Ziegler-Nichols no domínio da frequência: Não é necessário levar o sistema à instabilidade para a obtenção dos parâmetros do controlador, e frequentemente sistemas para os quais não é possível fazer isso oscilam para a entrada relé. Além disso, pode-se ajustar o parâmetro d do relé para se obter uma amplitude de entrada adequada a cada planta.

Para o caso em que não se quer ou não se pode adotar histerese nula, pode-se mostrar que a função descritiva do compensador a relé é dada por

$$\Gamma(a) = \frac{4d}{\pi a} \left(\sqrt{1 - \left(\frac{\varepsilon}{a}\right)^2} - j\frac{\varepsilon}{a} \right),\tag{6.12}$$

o que nos sugere o ganho limite

$$K_{\nu} = |\Gamma(a)|. \tag{6.13}$$

A histerese pode ser útil para evitar que ruídos ocasionem o chaveamento indevido do relé, para limitar a frequência de chaveamento ou para adequar o modelo do relé a dispositivos reais com histerese conhecida.

6.3.4 Advertência sobre os métodos

É importante ter em mente que esses métodos são baseados em aproximações e hipóteses que podem não se aplicar a todos os tipos de sistema, sendo que as regras apresentadas acima podem eventualmente levar a resultados bastante pobres ou nem serem passíveis de aplicação. Há casos em que a resposta a degrau de um dado sistema não apresenta os parâmetros α e L bem definidos (como é o caso da tensão do tacômetro no nosso sistema) ou em que se aumentando o ganho do controlador proporcional não ocorra instabilidade (como é o caso da tensão do potenciômetro) ou ainda em que seja possível se atingir o limite de instabilidade, mas que essa situação seja proibida pela operação normal da planta ou mesmo perigosa. Os métodos de Ziegler-Nichols assumem um decaimento do sinal de 1/4, isto é, o segundo pico da resposta a degrau do sistema deve apresentar um erro 4 vezes menor que o primeiro, o que para algumas aplicações pode ser uma característica indesejável.

Pode ser impossível obter uma sintonia pelo método do relé caso o sistema não apresente comportamento oscilatório, ou mesmo que seja possível, não há garantias de que a sintonia seja minimamente adequada ou que o comportamento esperado seja atingido.

6.3.5 Outras técnicas

Nas próximas experiências veremos diversas formas de se sintonizar analiticamente (ou projetar) controladores semelhantes a um PID (por exemplo o controle de posição proporcional com realimentação auxiliar de velocidade, semelhante a um controlador PD, ou o controle por avanço de fase ou o próprio controlador PI com cancelamento de polo).

Uma das abordagens mais utilizadas na Indústria, tem sido a sintonia por tentativa e erro, e talvez seja esse o motivo de ser tão comum se encontrar controladores mal sintonizados ou com a ação diferencial desativada. De fato, ajustar três parâmetros por tentativa e erro com conhecimento limitado sobre o comportamento da planta pode-se tornar uma tarefa bastante difícil e eventualmente demorada.

6.4 Atividades

6.4.1 Simulações em sala

- a) Utilizando o diagrama Simulink zn1_template, (digite >> zn1_template no prompt do Matlab) ajuste o compensador PID pelo método de Ziegler-Nichols para o domínio do tempo (Seção 6.3.1). Apresente o resultado ao professor.
- b) Utilizando o diagrama Simulink zn2_template, (digite >> zn2_template no prompt do Matlab) ajuste o compensador PID pelo método de Ziegler-Nichos para o domínio da frequência (Seção 6.3.2). Apresente o resultado ao professor.

6.4.2 Atividades em sala

c) Utilize o método do relé, com histerese nula ou muito pequena, para ajustar os parâmetros do PID para controlar a posição do servomecanismo nas configurações da Tabela 6.4.

	Amplitude de d	Compensador	Observações
i)	baixa	PI	
ii)	baixa	PID	Explore a influência do parâmetro N
iii)	elevada	PI	
iv)	elevada	PID	Explore a influência do parâmetro N

Tabela 6.4: Variações para a sintonia do PID

Apresente as respostas a degrau correspondentes (escolha a amplitude do degrau para evitar saturação do controlador) e comente as diferenças. Seria de se esperar que o ajuste se alterasse com a mudança da amplitude

d?

- OBS. 1: Utilize o diagrama Simulink relay template.
- OBS. 2: Não há garantias de que o método funcione.
- OBS. 3: Compare os resultados com as simulações (linear e não linear).
- d) Tente refinar o ajuste do item anterior por tentativa e erro. Comente os resultados obtidos.

6.4.3 Relatório

Esta experiência deve ser incluída no relatório "Controle de Posição". As simulações dos itens (a) e (b) não precisam ser incluídas no relatório.

6.5 Bibliografia sugerida

(Lev96) Levine, W. S., ed. The Control Handbook. CRC-IEEE, 1996.

O texto apresentado aqui é baseado principalmente na Seção 10.5 deste livro.

(Oga10) Ogata, K. Engenharia de Controle Moderno. Pearson, 5a. ed., 2010.

Sintonia de PID's é apresentada na Seção 8.2. As ações básicas de controle são apresentadas na Seção 2.3.

(Shi94) Shinskey, F. G. Feedback Controllers for the Process Industries. McGraw-Hill, 1994.

Contém informações extensivas sobre controladores PID, sintonia e aplicações.

(Ast95) Aström, K.; Hägglund, T. **PID Controllers: Theory, Design and Tuning**. Instrumentation Society of America, 2nd ed., 1995.

O método do relé é discutido na Seção 2.6. O livro é todo dedicado a controladores PID.

RPM/2016a

Experiência 7

Controle de posição com realimentação auxiliar de velocidade

7.1 Introdução

Nesta experiência far-se-á a montagem de um controlador de posição para o servomecanismo utilizando realimentação auxiliar de velocidade. O método do Lugar Geométrico das Raízes (LGR) será utilizado para analisar os efeitos desse tipo de realimentação e para se comparar com o controlador proporcional estudado anteriormente.

7.2 Realimentação auxiliar de velocidade

7.2.1 Estrutura do controlador

O controlador proporcional apresenta o seguinte conflito: é desejável fazer o ganho do controlador K_c tão grande quanto possível a fim de se reduzir o tempo de subida para a entrada degrau e/ou o erro de regime para entradas rampa, e adicionalmente minimizar os efeitos de não-linearidades como o atrito seco. Porém valores grandes de K_c tendem a aumentar o sobressinal da resposta a degrau do sistema em malha fechada, o que é indesejável.

Nem sempre é possível atingir um compromisso razoável apenas com uma realimentação de posição, tornando necessário o uso de outros tipos de ação de controle. Um tipo específico de ação de controle que atua nesse sentido é a *realimentação auxiliar de velocidade*, que consiste na realimentação de um sinal proporcional à velocidade angular do servomecanismo somado a um sinal proporcional à posição, como no diagrama da Figura 7.1.

Figura 7.1 O controlador de posição com realimentação auxiliar de velocidade.

Note que foi introduzido um ganho K_r multiplicando o sinal V_t fornecido pelo tacogerador. Esse ganho determina o efeito da malha auxiliar de velocidade sobre o controlador. Em particular, observe que se $K_r=0$, então a malha de controle se resume a um controlador proporcional.

O diagrama da Figura 7.1 pode ser simplificado, resultando no diagrama da Figura 7.2.

Figura 7.2 Simplificação do diagrama da Figura 7.1.

7.2.2 Análise do sistema em malha fechada

Conforme mencionado, quando se considera $K_r = 0$, o sistema de controle se reduz a um controlador proporcional. O lugar das raízes para um sistema como esse é o seguinte (Figura 7.3):

Figura 7.3 Lugar das raízes para $K_r = 0$.

Se entretanto $K_r \neq 0$, pode-se verificar que há a introdução de um zero real em $s = -\frac{n^2 K_p}{K_r K_t}$ na função de transfe-

rência de malha aberta (lembrando que a função de transferência de malha aberta para um sistema como o da Figura 7.2 é dada pelo produto da função de transferência direta pela função de transferência da malha de realimentação). Deste modo, dependendo de onde o zero se situar no eixo real, se entre os pólos ou à esquerda deles, resultam os lugares de raízes da Figura 7.4.

Ao contrário do sistema com realimentação de posição (veja a Figura 7.3), onde, aumentando-se o ganho de malha, obtém-se pólos de malha fechada cada vez mais afastados do eixo real, o que implica em um comportamento oscilatório cada vez mais pronunciado para o sistema, o sistema com realimentação auxiliar de velocidade apresenta em qualquer um dos casos (Figura 7.4) um valor de ganho acima do qual ambos os pólos de malha fechada serão reais e negativos. E mesmo no segundo caso (na parte inferior da Figura 7.4), onde há uma faixa de valores de ganho para a qual o sistema apresenta comportamento oscilatório, o coeficiente de amortecimento do sistema se apresenta limitado inferiormente, não havendo o risco, como no caso em que $K_r=0$, de se produzir um coeficiente de amortecimento cada vez menor à medida que se aumenta o ganho de malha, o que implica em um sobressinal cada vez maior.

Figura 7.4 Lugares das raízes para $K_r \neq 0$.

7.3 Atividades

7.3.1 Atividades prévias

Atividades a serem realizadas antes da realização da experiência. Os resultados obtidos nestes ítens deverão estar disponíveis para uso no laboratório.

- a) Obtenha a fórmula da função de transferência $G_{mf}(s) = \frac{V_p(s)}{R(s)}$ do sistema em malha fechada conforme a Figura 7.2.
- b) Calcule, a partir dos valores conhecidos de K, T, K_t e K_p , os intervalos de valores de K_r em que devem ocorrer as situações descritas na Figura 7.4. Considere que o ganho K_r possa variar entre 0 e 10.
- c) Descreva qualitativamente, no que se refere a oscilações, como evolui a forma de resposta a degrau do sistema em malha fechada à medida que o ganho K_c varia de 0 a ∞ . Considere as duas situações da Figura 7.4.

IMPORTANTE: A realização da experiência em tempo hábil requer a realização prévia dos itens acima.

7.3.2 Atividades em sala

- d) Monte o controlador de posição com realimentação auxiliar de velocidade (Figura 7.1) para o servomecanismo, utilizando-se do computador para fechar a malha.
- e) Obtenha as respostas a degrau do sistema em malha fechada para diversas combinações de valores de K_r e K_c variando entre 0 e 10. Utilize pelo menos 3 valores de K_r ($K_r = 0$ e outros dois valores, um para cada situação da Figura 7.4) e, para cada um desses valores, varie o ganho K_c de modo a percorrer o lugar das raízes. Use preferencialmente os mesmos valores de K_c da experiência de controle proporcional.

IMPORTANTE: Certifique-se de que não ocorra saturação em nenhuma das situações, especialmente para valores altos de K_c .

7.3.3 Apresentação de resultados

O item desta seção deve ser apresentado ao professor para a realização da próxima experiência em uma única folha de papel A4 identificada com os nomes dos integrantes de seu grupo.

f) Apresente os gráficos com as respostas ao degrau do item (e) - um gráfico para cada valor de K_c contendo cada um deles uma curva para cada valor utilizado de K_r (não é necessário incluir $K_r = 0$).

7.3.4 Relatório

Esta experiência faz parte do relatório "Controle de Posição".

g) Compare as respostas a degrau obtidas com as simulações dos modelos linear e não-linear do sistema. Comente os resultados e explique eventuais discrepâncias.

7.4 Bibliografia sugerida

(CBS11) Castrucci, P. L.; Bittar, A.; Sales, R. M. Controle Automático. LTC, 1a. ed., 2011.

Realimentação auxiliar pode ser vista no item 4.6.4, num contexto bastante similar ao presente.

(Kuo85) Kuo, B. C. Sistemas de Controle Automático. Prentice-Hall do Brasil, 4a. ed., 1985.

Realimentação de velocidade, referida como realimentação tacométrica ou de relação, é discutida na Seção 8.5, e também na Seção 4.5.

(Oga10) Ogata, K. Engenharia de Controle Moderno. Pearson, 5a. ed., 2010.

O Exemplo 5.1 apresenta um esquema de realimentação de velocidade.

(atual. JJC, JCA/97) rev. RPM/2016a

Experiência 8

Controle de posição com compensador por avanço de fase

8.1 Introdução

Esta experiência tem por objetivo o projeto e implementação de um compensador por avanço de fase para controlar a posição angular do servomecanismo do laboratório.

8.2 Formulação básica

Via de regra, a resposta transitória pode ser associada à resposta do sistema a altas frequências, ao passo que o regime permanente pode ser relacionado às baixas frequências.

Um compensador por avanço de fase serve basicamente para aumentar o ganho em altas frequências da planta em malha aberta, podendo ao mesmo tempo melhorar a sua margem de fase. Uma vez que se feche a malha, isso tem por efeito uma melhor resposta transitória do sistema, com pouca influência na situação de regime permanente.

A estrutura de um compensador por avanço de fase é a seguinte:

$$G_{av}(s) = \frac{K_{oc}(1 + s\alpha T_c)}{1 + sT_c},$$
(8.1)

com $\alpha > 1$. Caso se tivesse $\alpha < 1$ o compensador acima seria denominado compensador por atraso de fase. Esse segundo tipo de compensação não será discutido aqui.

O projeto de um compensador por avanço de fase consiste na escolha adequada de valores de K_{oc} , α e T_c de forma que o sistema em malha fechada atenda a certas especificações de desempenho. A Figura 8.1 apresenta a resposta em frequência do compensador.

8.3 Projeto do controlador para o servomecanismo

8.3.1 O compensador e as especificações de projeto

Associando-se o compensador por avanço de fase em série com a planta (veja a Figura 8.2) obtém-se a seguinte função de transferência de malha aberta, para realimentação unitária:

$$G_{av}(s)G_{p}(s) = \frac{K_{oc}(1 + s\alpha T_{c})}{1 + sT_{c}} \cdot \frac{KK_{p}n^{2}}{s(1 + sT)}.$$
(8.2)

Escolhendo adequadamente os valores de α e T_c , pode-se fazer o zero do compensador cancelar o polo do motor, de modo que se tenha

$$G_{av}(s)G_{p}(s) = \frac{K_{oc}KK_{p}n^{2}}{s(1+sT_{c})}.$$
(8.3)

Figura 8.1 Resposta em frequência do compensador por avanço de fase.

Figura 8.2 Compensador em série com a planta.

Note que, com esse compensador, a dinâmica de malha aberta passa a ser dada por $T_c\,$ e não mais pelo polo do motor.

Pode-se escrever (8.3) na forma abaixo, em termos de ζ e ω_n , obtendo-se:

$$G_{av}(s)G_{p/u}(s) = \frac{K_{oc}KK_{p}n^{2}}{s(1+sT_{c})} = \frac{\omega_{n}^{2}}{s(s+2\zeta\omega_{n})},$$
(8.4)

sendo ζ o coeficiente de amortecimento, e ω_n a frequência natural do sistema. Note que essa é a mesma estrutura da função de transferência de malha aberta quando se usa apenas um controlador proporcional, porém com o polo realocado.

Fechando a malha com realimentação unitária, os valores de ζ e ω_n determinam a localização no plano s dos polos do sistema de segunda ordem da equação (8.4), como se pode ver na Figura 8.3.

Valem então as seguintes relações:

 $s_{1,2}=$ polos de malha fechada $\theta=\cos^{-1}(\zeta)$ $\int_{\omega_n}^{\delta_n} \omega_n \sqrt{1-\zeta^2}$

Figura 8.3 Os parâmetros ζ e ω_n e sua relação com os polos de malha fechada do sistema.

$$t_s = \frac{4}{\zeta \omega_n}$$
 (tempo de acomodação para 2%) (8.5)

$$t_r = \frac{\pi - \cos^{-1}(\zeta)}{\omega_n \sqrt{1 - \zeta^2}}$$
 (tempo de subida - 0 a 100%) (8.6)

$$M_p(\%) = 100e^{\left(\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right)}$$
 (sobressinal)

$$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$
 (instante de pico do sobressinal) (8.8)

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$
, $\zeta < 0.707$ (frequência de ressonância) (8.9)

$$M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$
, $\zeta < 0.707$ (pico de ressonância) (8.10)

$$\gamma = \tan^{-1} \left(2\zeta \sqrt{\frac{1}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}} \right) \approx 100\zeta$$
 (margem de fase em graus) (8.11)

A Figura 8.4 apresenta a resposta do sistema em malha fechada a um degrau de amplitude A. Na figura estão indicados os valores de M_p , t_p e t_s . A resposta em freqüência do sistema em malha fechada pode ser vista na Figura 8.5. Nessa figura estão indicados ω_n , ω_r , M_r e γ .

As equações (8.5) a (8.11) podem ser usadas para se determinar um par (ζ, ω_n) que satisfaça especificações de projeto pré-determinadas. Usa-se então (8.4) para se determinar valores de K_{oc} e T_c necessários para se obter esse par.

8.3.2 Limitações no projeto do compensador

A resposta a um degrau de amplitude A de um compensador como (8.1) apresenta o aspecto da Figura 8.6. Caso o valor de α seja muito grande, pode haver problemas de saturação. Se o procedimento de projeto acima gerar um compensador que apresente esse tipo de problema, deve-se considerar uma solução diferente, com outro tipo de compensador

Figura 8.4 Resposta a degrau de um sistema de segunda ordem subamortecido.

Figura 8.5 Resposta em frequência de um sistema de segunda ordem subamortecido.

(e.g. avanço-atraso, PID).

8.4 Atividades

8.4.1 Atividades prévias

Atividades a serem realizadas antes da realização da experiência. Os resultados obtidos nestes itens deverão estar disponíveis para uso no laboratório.

a) Projete um compensador por avanço de fase para o controlador de posição (use a função de transferência $G_p(s)$ identificada anteriormente). As especificações de desempenho para o sistema em malha fechada são as seguintes:

$$t_r = 0.5 \,\mathrm{s} \,\mathrm{s}$$
 $M_p = 20 \,\%$

Figura 8.6 Resposta a degrau do compensador por avanço de fase.

b) Determine os valores de t_p , γ , ω_r e M_r para o sistema compensado, assumindo que o modelo utilizado no item 8.4.1-(a) represente fielmente o seu comportamento.

IMPORTANTE: A realização da experiência em tempo hábil requer a realização prévia dos itens acima.

8.4.2 Atividades em sala

Os itens a seguir devem ser feitos no laboratório. Não se esqueça de que os dados tomados no laboratório serão utilizados posteriormente, e por isso a tomada de dados deve ser feita com o rigor necessário.

- c) Implemente o compensador projetado no Simulink e obtenha a resposta a degrau do sistema controlado, determinando t_n e M_n . Tome cuidado para que não ocorram saturações durante os ensaios.
- d) Caso o sistema não satisfaça às especificações, ajuste o compensador até obter aproximadamente o desempenho desejado e verifique as fontes de discrepâncias.

8.4.3 Apresentação de resultados

O item desta seção deve ser apresentado ao professor para a realização da Exp. 9 em uma única folha de papel A4 identificada com os nomes dos integrantes de seu grupo.

e) Apresente o gráfico com as respostas ao degrau dos itens (c) e (d) - um gráfico com duas curvas.

8.4.4 Relatório

Esta experiência deve ser incluída no relatório "Controle de Posição".

- f) Compare as respostas a degrau obtidas nesta experiência com as respostas a degrau do sistema com o controlador proporcional e com o controlador com realimentação auxiliar de velocidade, obtidas nas experiências anteriores.
- g) Compare as respostas a degrau obtidas nesta experiência com as especificações e o desempenho previsto quando do projeto. Considere também simulações do sistema de controle com os modelos linear e não linear. Analise qualitativamente quaisquer discrepâncias encontradas.

8.5 Bibliografia sugerida

(CBS11) Castrucci, P. L.; Bittar, A.; Sales, R. M. Controle Automático. LTC, 1a. ed., 2011.

A Seção 5.11 apresenta compensação por avanço, atraso e avanço-atraso.

(Oga10) Ogata, K. Engenharia de Controle Moderno. Pearson, 5a. ed., 2010.

A Seção 7.11 trata do projeto de compensadores por avanço de fase via resposta em frequência e a Seção 6.7 via LGR..

(DB98) Dorf, R. C.; Bishop, R. H. Modern Control Systems. Addison-Wesley, 8th. ed., 1998.

A Seção 10.5 apresenta a compensação por avanço no plano "s". Compensação por avanço, no domínio da freqüência, é vista na Seção 10.4.

(FPE86) Franklin, G. F.; Powell, J. D.; Emami-Naeini, A. **Feedback Control of Dynamic Systems**. Addison-Wesley, 1st. ed., 1986.

Compensadores por avanço são apresentados na Seção 4.5, juntamente com redes avanço-atraso.

(Kuo85) Kuo, B. C. Sistemas de Controle Automático. Prentice-Hall do Brasil, 4a. ed., 1985.

Compensação por avanço de fase é vista na Seção 8.3. Na Seção 10.2 ela é apresentada sob um enfoque diferente.

atual. RPM/2011a

Experiência 9

Controle de velocidade com compensador PI

9.1 Introdução

Esta experiência tem por objetivo projetar e implementar um compensador PI para um sistema de controle de velocidade, verificar o desempenho do sistema compensado em malha fechada e comparar o seu desempenho com o do controlador proporcional (Experiência 5) com relação ao erro estacionário.

9.2 Fundamentos teóricos

Os sistemas de controle usualmente designados como "reguladores" são caracterizados pela existência de um erro de regime finito na resposta temporal de malha fechada a um degrau de entrada. Sua resposta em freqüência de malha aberta é caracterizada por um ganho constante e finito nas baixas freqüências.

O funcionamento em regime permanente dos reguladores pode ser consideravelmente melhorado pela introdução de um integrador na função de transferência de malha aberta, o que leva o ganho de baixas frequências a infinito e o erro de regime estacionário a zero.

O compensador dinâmico com função de transferência

$$G_c(s) = K_{PI} \left(1 + \frac{1}{T_I s} \right) \tag{9.1}$$

é denominado um compensador Proporcional+Integral (PI). O procedimento de projeto para se obter um compensador deste tipo consiste em se escolher o ganho K_{PI} e a constante de integração T_I de modo que o sistema compensado em malha fechada atenda a especificações de desempenho.

A resposta em frequência de um compensador PI é mostrada na Figura 9.1 e a resposta a um degrau de amplitude *A* , na Figura 9.2.

A função de transferência de malha aberta para o controlador de velocidade $G_{\omega}(s)$, em série com o compensador PI, é:

$$G_{ma}(s) = G_c(s)G_{\omega}(s) = K_{PI}\left(1 + \frac{1}{T_I s}\right) \cdot \frac{K}{1 + sT},$$
 (9.2)

onde K_{PI} e T_{I} são os parâmetros do compensador PI, e K e T são parâmetros da planta.

Escolhendo-se o parâmetro T_I de modo a cancelar o polo de $G_{\omega}(s)$, a função de transferência de malha aberta torna-se:

$$G_{ma}(s) = G_c(s)G_{\omega}(s) = \frac{KK_{PI}}{T_I s} = \frac{K_{ma}}{s} ,$$
 (9.3)

onde K_{ma} é o ganho total de malha aberta.

O ganho K_{ma} pode ser obtido por uma especificação sobre o transitório como, por exemplo, o tempo de subida.

Figura 9.1 Resposta em frequência de compensador PI.

Figura 9.2 Resposta temporal de um compensador PI a um degrau de amplitude A.

9.3 Atividades

9.3.1 Atividades prévias

Atividades a serem realizadas antes da realização da experiência. Os resultados obtidos nestes itens deverão estar disponíveis para uso no laboratório.

- a) Refaça o equacionamento da Seção 9.2 utilizando a tensão no tacogerador como saída, ou seja utilizando $G_t(s) = \frac{KK_t}{1+sT} \text{ para descrever a planta}.$
- a) Usar T_I igual à constante de tempo da planta. Nessas condições, determine a função de transferência de malha fechada do controlador de velocidade e o correspondente erro estacionário para entradas do tipo degrau.
- b) Nas condições do ítem anterior, deduza uma expressão para o valor do ganho do compensador PI (K_{PI}) em função do tempo de subida da resposta temporal do sistema em malha fechada para entradas do tipo degrau.

- c) Usando a expressão desenvolvida no item anterior, obtenha valores de ganho do compensador PI para os seguintes tempos de subida: $t_{r1} = 0.3 \text{ s}$, $t_{r2} = 0.5 \text{ s}$ e $t_{r3} = 1.0 \text{ s}$.
 - OBSERVAÇÃO: Use a definição de tempo de subida de sua preferência e justifique a escolha.
- d) Analise, através do Lugar Geométrico das Raízes, o que acontece com o desempenho do sistema em malha fechada se o cancelamento do polo do motor for imperfeito. Considere os dois casos possíveis.
 - IMPORTANTE: A realização da experiência em tempo hábil requer a realização prévia dos itens acima.

9.3.2 Atividades em sala

- e) Implemente o controlador e levante as respostas a degrau correspondentes aos ganhos do ítem (c) e verifique se os valores projetados estão coerentes. Justifique eventuais diferenças.
- f) Compare as respostas obtidas no ítem anterior com as respostas a degrau obtidas com o controlador proporcional, com relação a tempo de subida e erro estacionário.
- g) Compare também com as simulações dos modelos linear e não-linear.
- h) Aplique um degrau como sinal de referência para o controlador de velocidade e aguarde até o sistema atingir o regime permanente. Aplique em seguida o freio eletromagnético e registre a resposta do sistema. Compare o resultado obtido com o correspondente da Experiência 5 e justifique as diferenças observadas.

9.3.3 Relatório

Esta experiência deve ser incluída no relatório "Controle de Velocidade".

9.4 Bibliografia sugerida

(CBS11) Castrucci, P. L.; Bittar, A.; Sales, R. M. Controle Automático. LTC, 1a. ed., 2011.

O Capítulo 6 trata de controladores PID sob diversos aspectos.

(Oga10) Ogata, K. Engenharia de Controle Moderno. Pearson, 5a. ed., 2010.

Veja cancelamento de polos na Seção 6.2 e controladores PI na Seção 2.3.

(DB98) Dorf, R. C.; Bishop, R. H. Modern Control Systems. Addison-Wesley, 8th. ed., 1998.

A Seção 7.7 trata de controladores PID (O controlador PI sendo um caso particular) do ponto de vista do Lugar Geométrico das Raízes.

rev. JJC,JCA/97 RPM/2016a

Experiência 10

Atraso de transporte e controlador de modelo interno

10.1 Introdução

Esta experiência tem por objetivos servir como uma breve e simplificada apresentação a sistemas com atraso de transporte, introduzir controladores de modelo interno, conhecidos por IMC (do inglês *Internal Model Controllers*) e usá-los para realizar o controle da velocidade angular do servomecanismo. O desempenho será comparado com um controlador do tipo PI, fechando a malha do servomecanismo com um atraso de transporte.

10.2 Sistemas com atraso

Sistemas com atraso de transporte são bastante comuns em aplicações de controle, e representam um desafio para o projetista, resultando em dificuldades tanto para estabilização como para se atingir um desempenho adequado.

O atraso de transporte pode ser entendido como a existência de um intervalo de tempo entre uma atuação sobre um dado sistema e a manifestação de seus efeitos sobre o comportamento deste. Veja a Figura 10.1 para uma ilustração simples de sistemas com atraso.

Se a duração do atraso for constante ou se ela depender apenas do tempo, o fenômeno é certamente linear, e para o caso de duração constante, o atraso tem uma representação simples e elegante no domínio de Laplace,

$$\Theta(s) = e^{-\theta s},\tag{10.1}$$

onde θ é a duração do atraso. A função de transferência acima possui ganho unitário em toda a faixa de frequências e defasagem aumentando linearmente com a frequência. Tendo essas características em mente, é fácil entender como a presença de atraso causa complicações ao projeto de controle.

10.3 Uma proposta de atraso para o servomecanismo

Como o servomecanismo do laboratório não apresenta atraso de transporte, um atraso na entrada do sistema de duração constante foi artificialmente introduzido através do computador. A introdução deste atraso afeta consideravelmente a dinâmica do sistema, que passa a requerer estratégias de controle capazes de lidar com esse efeito.

Com a introdução do atraso, a função de transferência do sistema pode ser descrita por

$$H(s) = e^{-\theta s} \frac{KK_t}{Ts+1}, \tag{10.2}$$

onde θ é a duração do atraso de transporte.

O servomecanismo com atraso pode ser acessado através do diagrama de simulação delay_template. Note que a menos do atraso, o comportamento do sistema é totalmente similar ao observado anteriormente.

Figura 10.1 Exemplos de sistemas com atraso de transporte

10.4 Controladores de modelo interno

Os controladores de modelo interno constituem-se numa classe de sistemas de controle que se distinguem por conterem em sua implementação explicitamente um modelo do processo a ser controlado. Na abordagem usual de controle por realimentação, um modelo da planta pode ser utilizado para o projeto do sistema de controle, mas a implementação contém apenas filtros e compensadores. Com isso, a estrutura básica para os IMCs difere um pouco da usual, como pode ser visto na Figura 10.2.

Esta estrutura permite que se trate sem grandes dificuldades efeitos como o atraso de transporte, o que facilita o projeto de sistemas de controle com bom desempenho, bastando que um modelo fiel do processo seja disponível, e que alguns requisitos técnicos sejam satisfeitos.

Considere o esquema de controle da Figura 10.2. Para essa estrutura de controle, pode-se mostrar com relativa facilidade que

$$\frac{Y(s)}{R(s)} = \frac{G_c(s)G_p(s)}{1 + G_c(s)(G_p(s) - \hat{G}_p(s))}$$
e (10.3)

Figura 10.2 Esquema típico do IMC (para sistemas lineares invariantes no tempo)

$$\frac{E(s)}{R(s)} = \frac{1 - G_c(s)\hat{G}_p(s)}{1 + G_c(s)(G_p(s) - \hat{G}_p(s))}.$$
 (10.4)

Supondo que o modelo $\hat{G}_p(s)$ seja uma descrição quase perfeita da planta $G_p(s)$ ou seja, que $\hat{G}_p(s) \cong G_p(s)$, pode-se simplificar as equações acima resultando em

$$\frac{Y(s)}{R(s)} \cong G_c(s)G_p(s) \text{ e}$$
 (10.5)

$$\frac{E(s)}{R(s)} \cong 1 - G_c(s)\hat{G}_p(s). \tag{10.6}$$

Note que a função de transferência aproximada de malha fechada (10.5) depende da planta $G_p(s)$ e que a função de transferência do erro em malha fechada (10.6) depende do modelo $\hat{G}_p(s)$.

Supondo que o objetivo do sistema de controle seja rastrear o sinal de referência R(s), seria desejável que tivés-semos $G_c(s)\hat{G}_p(s)=1$ ou seja, que $G_c(s)=\hat{G}_p(s)^{-1}$. Nessa situação a saída da planta Y(s) seria uma cópia fiel do sinal de referência e o sistema de controle teria um desempenho perfeito.

A condição de estabilidade do sistema em malha fechada nesse caso é simplesmente que tanto $G_c(s)$ como $G_n(s)$ sejam estáveis (pense no porquê).

Apesar de desejável, a estratégia acima cria uma série de problemas e conflitos que a tornam praticamente inviável. Para citar alguns: a inversão do modelo somente pode ser feita se $\hat{G}_p(s)$ for uma função de transferência biprópria (em qualquer outra situação a função ou a sua inversa seriam impróprias); $\hat{G}_p(s)$ não pode ter polos ou zeros no semiplano direito, pois eles seriam cancelados por $G_c(s)$, o que torna o sistema em malha fechada instável.

Uma solução de compromisso é escolher

$$G_c(s)\hat{G}_p(s) = G_f(s),$$
 (10.7)

onde $G_f(s)$ é uma função de transferência pré-escolhida para evitar os problemas acima e garantir algum tipo de desempenho ao sistema. Nesse contexto, o projeto de controle se resume a uma escolha adequada de $G_f(s)$, e há diversas técnicas e abordagens para esse fim. Aqui será explorada apenas uma abordagem muito simples, adequada ao problema de controle em mão.

10.5 Uma proposta de controle para o servomecanismo com atraso

Seja o diagrama a seguir, na versão para o controle do servomecanismo com atraso.

Figura 10.3 Esquema IMC para o servomecanismo com atraso

De (10.5) e supondo que o modelo seja perfeito, temos que a função de transferência de malha fechada é dada por $G_f(s)$. Definimos então os seguintes requisitos para o controlador.

- a) $G_f(s)$ deve ser estável, por razões óbvias.
- b) $G_f(s)$ deve ser um filtro passa-baixa. A ideia é imunizar o sistema a ruídos (evitando a amplificação excessiva de sinais de alta frequência) e minimizar a agressividade do controle, limitando a banda do sistema em malha fechada, pois sabe-se que bandas excessivamente largas são associadas a respostas temporais muito rápidas, que para serem atingidas exigem sinais de controle muito rápidos e de amplitude elevada.
- c) Erro de regime nulo para entrada degrau, que é um requisito quase sempre desejável.
- d) $G_c(s)$ deve ser uma função de transferência própria, por questões de causalidade.
- e) $G_c(s)$ deve ser uma função de transferência estável.

10.5.1 Um controlador simples

Como vimos,

$$G_c(s) = G_f(s)\hat{H}(s)^{-1},$$
 (10.8)

ou seja

$$G_c(s) = G_f(s) \cdot \frac{e^{\theta s} (Ts+1)}{KK_t}. \tag{10.9}$$

Uma proposta imediata, e que atende os requisitos acima é adotar a dinâmica mais simples possível para a função de transferência de malha fechada, que é aproximada por $G_f(s)$,

$$G_f(s) = \frac{e^{-\theta s}}{Ts+1}$$
 (10.10)

Como $\hat{H}(s)^{-1}$ possui um avanço de transporte e é imprópria, é necessário cancelar a sua dinâmica, como é feito ao se adotar $G_f(s)$ como em (10.10). Note que com isso a função de transferência de malha fechada é um filtro passa-baixa, estável. Para se ter erro de regime nulo à entrada degrau, conforme (10.6) e o teorema do valor final, é necessário que

$$\lim_{s \to 0} G_c(s) \hat{H}(s) = 1, \tag{10.11}$$

de modo que $G_c(s)$ é dado por

$$G_c(s) = \frac{1}{KK_t}. ag{10.12}$$

Note que $G_c(s)$ assim especificada é própria e estável.

10.5.2 Um controlador de melhor desempenho

Uma limitação do compensador dado por (10.12) é que a função de transferência de malha fechada tem a dinâmica dada aproximadamente por (10.10). Há um atraso de transporte igual ao da planta em malha aberta (o que é inevitável), erro de regime ao degrau nulo (o que é bastante desejável), mas a mesma constante de tempo T da malha aberta (o que pode estar aquém do desejado).

Uma alternativa relativamente simples para melhorar o desempenho, é fazer com que $G_c(s)$ cancele o polo da planta, substituindo-o por outro mais rápido, ou seja

$$G_c(s) = \frac{1}{KK_t} \cdot \frac{T_s + 1}{T_c s + 1}. \tag{10.13}$$

Com isso,

$$G_f(s) = \frac{e^{-\theta s}}{T_c s + 1}$$
 (10.14)

Escolhendo-se adequadamente T_c é possível impor a dinâmica da função de transferência de malha fechada. Tipicamente deseja-se que o sistema em malha fechada responda mais rapidamente do que em malha aberta, e portanto $T_c < T$.

Por fim, cabem algumas advertências sobre esta estratégia de controle. A técnica tende a produzir compensadores que invertem a planta e visam o cancelamento indiscriminado de polos e zeros, o que é uma estratégia não recomendável caso estes se situem no semi-plano direito ou possuam caráter muito oscilatório. Outra característica é que requisitos não realistas para o desempenho do sistema em malha fechada levam a ganhos excessivos do controle ou bandas muito largas para o sistema em malha fechada, características extremamente indesejáveis do ponto de vista prático. Cabe ao projetista identificar e evitar tais situações.

10.6 Atividades

10.6.1 Atividades prévias

a) Esboce o diagrama de Bode em malha aberta do modelo linear do servomecanismo com atraso (por exemplo de 0,3s) em série com um compensador do tipo PI (por exemplo, como na Experiência 8). Verifique que devido ao atraso as margens de ganho e de fase do sistema são reduzidas.

DICA: Veja no Matlab os comandos margin, bode e a propriedade ioDelay dos objetos de sistema.

10.6.2 Atividades em sala

- b) No Matlab, abra o diagrama delay_template (digite >> delay_template no prompt do Matlab)
- c) Identifique a duração do atraso de transporte do servomecanismo com atraso.
- d) Implemente um compensador PI para controlar o servomecanismo conforme a experiência anterior. Dentre as sintonias utilizadas naquela experiência, use aquela que apresentou melhor desempenho.
- e) Avalie o desempenho obtido. É comparável ao da experiência anterior? Reduza o ganho do compensador, caso necessário, até que o nível de oscilação seja aceitável.

- f) Implemente um controlador de modelo interno como sugerido na Seção 10.5. Tenha como objetivo obter um sistema em malha fechada com uma constante de tempo equivalente a 65% da constante de tempo da malha aberta.
- g) Compare as respostas obtidas e avalie o desempenho do IMC.
- h) Compare também com as simulações dos modelos linear e não-linear.

10.6.3 Relatório

Esta experiência deve ser incluída no relatório "Controle de Velocidade".

10.7 Bibliografia sugerida

(Mor89) Morari, M.; Zafiriou, E. Robust Process Control. Prentice-Hall, 1998.

O capítulo 3 trata de controle IMC num caso similar ao do laboratório. Este livro está disponível on-line em http://books.google.com.br/books?isbn=0137821530

(Lev11) Levine, W. (org.). The Control Handbook. CRC Press, 2nd. ed., 2011.

Veja a Seção 32.24.3.

FMP,RPM/2016a