FATEC Desenvolvimento de Software Multiplataforma

2º SEMESTRE 2024

IAL-011 - Internet das Coisas e Aplicações

Prof. Me. Eng. Santana

C++ e Ambiente de Desenvolvimento

C++ / Wiring

- A linguagem "Wiring" é uma linguagem de programação e uma estrutura de software utilizada no Arduino e em outras plataformas de prototipagem eletrônica baseadas no microcontrolador Atmel AVR. Ela foi desenvolvida por Hernando Barragán como parte de sua tese de mestrado na Interaction Design Institute Ivrea, na Itália, e serve como a base para a linguagem de programação utilizada no Arduino.
- A linguagem Wiring é baseada na linguagem de programação C/C++ e foi projetada para ser acessível e fácil de aprender, especialmente para iniciantes em eletrônica e programação. Ela simplifica a interação com os pinos de entrada e saída do microcontrolador, fornecendo uma série de funções e bibliotecas que permitem aos desenvolvedores escreverem código para controlar dispositivos eletrônicos e interagir com o ambiente físico de forma intuitiva.

Declaração de variaveis

int ledPin = 13; // Declara uma variável do tipo inteiro

float temperature = 24.5; // Declara uma variável do tipo float

char myChar = 'A'; // Declara uma variável do tipo char

const int ledpin=13;// constante que não poderá ser alterada

Vetores e Matrizes

 Vetores (Arrays Unidimensionais): Um vetor é uma coleção ordenada de elementos do mesmo tipo, acessados por um índice inteiro.

```
int vetor[5];
int vetor[5] = {10, 20, 30, 40, 50};
```

Matrizes (Arrays Multidimensionais):

Uma matriz é uma coleção multidimensional de element organizados por combinações de índices.

```
int matriz[3][3];
int matriz[3][3] = \{ \{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\} \};
```


Declaração de variaveis

Tipo	Especificação	
boolean	Dados do tipo booleano podem possuir apenas o valor Verdadeiro (TRUE) ou Falso (FALSE).	
byte	Um dado do tipo byte armazena um número de 8 bits sem sinal que deve possuir um valor entre 0 e 255.	
char	O tipo caractere utiliza 1 byte de memória e armazena o valor de um caractere. A repre- sentação simbólica do caractere deve ser escrita entre aspas simples (").	
int	ipo de dados inteiro é referente aos valores conjuntos dos numéricos inteiros natura sitivos e negativos, incluindo o zero e abrangendo a faixa de -32.768 a 32.767. Necessit 2 bytes da memória para armazenamento.	
float	Tipo de dado que representa o conjunto de números reais, positivos e negativos. Chamados de números de ponto flutuante, abrangem a faixa de 3,4028235E+38 a -3,4028235E+38. São necessários 4 bytes da memória para armazenar um valor desse tipo de dados.	
String	Strings representam um conjunto ou cadeia de caracteres, como quando formamos uma palavra ou frase. Seu armazenamento é variável, dependendo da quantidade de caracteres que formam a cadeia. Um valor String deve ser delimitado por aspas duplas ("").	

Operadores Aritmeticos

	Operadores Aritméticos
Símbolo	Operação
+	Adição
724	Subtração
*	Multiplicação
1	Divisão
=	Atribuição
++	Incremento; dessa forma, a++ significa o mesmo que a = a + 1
-	Decremento; dessa forma, a representa o mesmo que a = a - 1
+=	Operação composta de adição; assim, a += b significa o mesmo que a = a + b
-=	Operação composta de subtração; assim, a -= b tem o mesmo significado que a = a - b
*=	Operação composta de multiplicação; assim, a *= b representa o mesmo que a = a * b
/=	Operação composta de divisão; assim, a /= b tem o mesmo efeito que a = a / b

Operadores Relacionais e Lógicos

Operadores Relacionais				
Símbolo	Operação			
==	Igual			
!=	Diferente			
>	Maior			
<	Menor			
>=	Maior ou igual			
<=	Menor ou igual			

Operadores Lógicos		
Símbolo	Operação	
8:8:	E (AND)	
II	OU (OR)	
ı	NÃO (NOT)	

Operadores Bit a Bit

Operadores Bit a Bit				
Símbolo	Operação			
&	E (AND)			
1	OU (OR)			
2	NÃO (NOT)			
٨	OU Exclusivo (XOR)			
<<	Deslocamento de bit à esquerda			
>>	Deslocamento de bit à direita			

```
int a = 0b0001; // 1 em binário
result = a << 2; // Resulta em 0b0100 (4 em decimal)
```


Estruturas de Controle

```
if (sensorValue > 500) {
     // Código a ser executado se a condição for verdadeira
     digitalWrite(ledPin, HIGH);
} else {
     // Código a ser executado se a condição for falsa
     digitalWrite(ledPin, LOW);
}
```


Estrutura de Seleção

```
switch (opcao) {
   case 1:
            //executar instruções
   break;
   case 2:
            //executar instruções
   break;
   default: //executar instruções caso não
            encontre um case com a opção
                   informada
   break;
```


Estruturas de Repetição

```
for (int i = 0; i < 10; i++) {
     // Executa este bloco 10 vezes
     digitalWrite(ledPin, HIGH);
     delay(100);
     digitalWrite(ledPin, LOW);
     delay(100);
int contador = 1;
while (contador <= 10) {
         Serial.println (contador);
         contador = contador + 1;
```


Funcoes

```
int sum(int a, int b) {
 return a + b;
void loop() {
 int result = sum(5, 10); // Chama a função sum
// Use o resultado da função
```


Bibliotecas

```
#include <Wire.h> // Inclui a biblioteca Wire para comunicação I2C
void setup() {
 Wire.begin(); // Inicializa a biblioteca Wire
void loop() {
 Wire.beginTransmission(8); // Inicia a transmissão para o
dispositivo com endereço 8
 Wire.write("Hello"); // Envia dados
 Wire.endTransmission(); // Finaliza a transmissão
 delay(1000);
```


Metodos/Funcoes Especificas Arduino

```
void setup() {
// Inicializa o pino 13 como saída
 pinMode(13, OUTPUT);
void loop() {
// Acende o LED conectado ao pino 13
 digitalWrite(13, HIGH);
 delay(1000); // Espera por um segundo
// Apaga o LED conectado ao pino 13
 digitalWrite(13, LOW);
 delay(1000); // Espera por um segundo
```


Funções - Arduino

- Entrada e Saída Digital
- Função pinMode()

```
void setup() {
  pinMode(13, OUTPUT); // Configura o pino 13 como
saída
  pinMode(7, INPUT); // Configura o pino 7 como
entrada
}
```


Funcoes - Arduino

Função digitalWrite()

```
digitalWrite(13, HIGH); // Define o pino 13 como HIGH (5V)
digitalWrite(13, LOW); // Define o pino 13 como LOW (0V)
```


Funcoes - Arduino

Função digitalRead()

int buttonState = digitalRead(7);

Ambientes de Desenvolvimento

https://www.tinkercad.com/

https://wokwi.com/

Arduino IDE

- VSCODE + Arduino Plugin
- VSCODE + WOKWI Plugin

Lab 1

- Criar uma conta no Tinkercad
- Criar um Circuito Novo
- Adicionar um Arduino Uno R3
- Simular

Lab 1

```
• //
void setup()
Serial.begin(9600);
• }
void loop()
• Serial.println("Ola Mundo!");
```

