1 Предварительные сведения

Опр. 1. Пусть $\Omega = \{\omega\}$ - произвольное множество, а \mathcal{F} - σ -алгебра его подмножеств, то есть система множется, таких что:

- 1. $\Omega \in \mathcal{F}$
- 2. Если $A \in \mathcal{F}$, то $\bar{A} := \Omega A \in \mathcal{F}$
- 3. Ecau $A_1, A_2, \ldots \in \mathcal{F}$, mo $\bigcup_i A_i \in \mathcal{F} \ u \cap_i A_i \in \mathcal{F}$

Пример 1.1. Система всех подмножеств \mathcal{F} - σ -алгебра

Пример 1.2. $\{0,\Omega\}$ - σ -алгебра

Опр. 2. Пусть $\Omega = \mathbb{R}$, а \mathcal{F} - наименьшая сигма-алгебра, содержащая все интервалы (α, β) . Такая \mathcal{F} обозначается $\mathfrak{B}(\mathbb{R})$ и называется **борелевской сигма-алгеброй**.

Опр. 3. Мера μ , определенная на \mathcal{F} , называется **сигма-аддитивной**, если это неотрицательная функция, $\mu(A) \geq 0$ для $A \in \mathcal{F}$, и она удовлетворяет условию сигма-аддитивности, то есть:

$$\mu(\bigcup_{i} A_i) = \sum_{i} \mu(A_i), \ A_i \in \mathcal{F}, A_i \cap A_j \underset{i \neq j}{=} \varnothing$$

Опр. 4. Мера μ называется **сигма-конечной**, если \exists множетсва $A_i \in \mathcal{F}$ такие, что $\bigcup_i A_i = \Omega$ и $\mu(A_i) < \infty$

Пример 4.1 (Считающая мера). Пусть Ω - счетное, \mathcal{F} - множество всех подмножеств Ω . Положим для $A \in \mathcal{F}$

$$\mu(A) := \{ \text{числу точек } \Omega, \text{ nonaewux } e A \}$$

Такая мера называется считающей, она сигма-конечна.

Пример 4.2 (Лебегова мера). Пусть $\Omega = \mathbb{R}, \mathcal{F} = \mathfrak{B}(\mathbb{R})$. $\exists !$ мера μ на $\mathfrak{B}(\mathbb{R})$ такая, что

$$\mu((\alpha, \beta]) = \beta - \alpha$$

Это мера Лебега, она сигма-конечна.

Опр. 5. (Ω, \mathcal{F}) - измеримое пространство. $(\Omega, \mathcal{F}, \mu)$ - пространство с мерой.

Опр. 6. Если $\mu(\Omega) = 1$, то μ - вероятностная мера, она обозначается через P.

Опр. 7. Тройка (Ω, \mathcal{F}, P) - вероятностное пространство.

Опр. 8. Измеримая функция $\xi:(\Omega,\mathcal{F})\to (\mathbb{R}.\mathfrak{B}(\mathbb{R}))$ (то есть $\forall B\in\mathfrak{B}(\mathbb{R})\ \xi^{-1}(B):=(\omega:\xi(\omega)\in B)\in\mathcal{F}$) называется **случайной величной**.

Измеримая функция $\phi: (\mathbb{R}.\mathfrak{B}(\mathbb{R})) \to (\mathbb{R}.\mathfrak{B}(\mathbb{R}))$ называется **борелевской**.

Опр. 9. Рассмотрим сл. в. $\xi \in \mathbb{R}^1$. Для $x \in \mathbb{R}^1$ функция $F(x) = P(\omega : \xi(\omega) \le x) = P(\xi \le x)$ называется функцией распределения.

Опр. 10. Мера $P_{\xi}(A) := P(\omega : \xi(\omega) \in A), \ A \in \mathfrak{B}(\mathbb{R}),$ называется распределением случайной величины ξ . Тогда $F(x) = P_{\xi}((-\infty, x]),$ то есть P_{ξ} определяет F(x).

Обратно: $P(\alpha < \xi \leq \beta) = F(\beta) - F(\overline{\alpha})$, $u \exists !$ вероятност ная мера P_{ξ} такая, что $P_{\xi}((\alpha, \beta]) = F(\beta) - F(\alpha)$, то есть F(x) определяет P_{ξ} .

Опр. 11. Пусть на $(\mathbb{R},\mathfrak{B}(\mathbb{R}))$ задана σ -конечная мера μ . Если \exists борелевская функция $f(x),f(x)\geq 0$, такая что:

$$P_{\xi}(A) = \int_{A} f(x)\mu(dx) \ \forall A \in \mathfrak{B}(\mathbb{R})$$

то f(x) называется плотностью вероятностни по мере μ .

Если μ - мера Лебега, то f(x) - обычная плотность вероятности сл. в. ξ , введенная на 2-ом курсе. Если же ξ дискретна со значениями x_1, x_2, \ldots , а μ - считающая мера, сосредоточенная в этих точках, то, очевидно,

$$P_{\xi}(A) = \int_{A} P(\xi = x) \mu(dx) \ \forall A \in \mathfrak{B}(\mathbb{R})$$

Последнее равенство означает, что у дискретной случайной величины ξ есть плотность вероятности $f(x) = P(\xi = x), \ x = x_1, x_2, \ldots$ по считающей мере. (При $x \neq x_1, x_2, \ldots$ значения не важны, их можно положить равными 0)

Опр. 12. Математическим ожиданием случайной величины ξ называется число

$$\mathbf{E}\xi = \int_{\Omega} \xi(\omega) \mathbf{P}(d\omega)$$

(в предположении, что $\int_{\Omega} |\xi(\omega)| P(d\omega) < \infty$, иначе говорим, что мат. ожидание \nexists)

Если f(x) - плотность вероятности случайной величины ξ по мере μ , а $\phi(x)$ - борелевская функция, то

$$E\phi(\xi) = \int_{\mathbb{R}} \phi(x) P_{\xi}(dx) = \int_{\mathbb{R}} \phi(x) f(x) \mu(dx)$$

В частности, если ξ - абсолютно непрерывная случайная величина в терминологии 2-го курса (то есть μ - мера Лебега), то пишем

$$E\phi(\xi) = \int_{\mathbb{R}} \phi(x) f(x) dx$$

Разумеетса, только в случае $\int_{\mathbb{R}} |\phi(x)| f(x) dx < \infty$. Если же ξ дискретна со значениями x_1, x_2, \ldots и соответствующими вероятностями, то

$$\mathrm{E}\phi(\xi)=\sum_{i\geq 1}\phi(x_i)p_i$$
 (если ряд сходится абсолютно)

Опр. 13. Обозначим $\mathfrak{B}(\mathbb{R}^K)$ борелевскую σ -алгебру подмножеств \mathbb{R}^K . Вектор $\xi = (\xi_1, \dots, \xi_k)^T$ называется k-мерным случайным вектором, если ξ - измеримое отображение $\xi: (\Omega, \mathcal{F}) \to (\mathbb{R}^K, \mathfrak{B}(\mathbb{R}^K))$

Известно: ξ - случайный вектор \Leftrightarrow каждая компонента ξ_i - одномерная случайная величина.

Опр. 14. Функция распределения случайного вектора ξ : $F(x_1,\ldots,x_K)=\mathrm{P}(\xi_1\leq x_1,\ldots,\xi_K\leq x_K), x_i\in\mathbb{R}$

Опр. 15. *Распределение*: $P_{\xi}(A) = P(\omega : \xi(\omega) \in A), A \in \mathfrak{B}(\mathbb{R}^K).$

Опр. 16. Плотность вероятности вектора ξ по мере μ (μ определена на элементах $\mathfrak{B}(\mathbb{R}^K)$) - борелевская функция $f(x), x = (x_1, \dots, x_K)$ такая, что:

$$P_{\xi}(A) = \int_{A} p(x)\mu(dx), \ \forall A \in \mathfrak{B}(\mathbb{R}^{K})$$

Опр. 17. Случайные величины $\{\xi_1, \dots, \xi_K\}$ **независимы**, если

$$P(\xi_1 \in A_1, \dots, \xi_K \in A_K) = \prod_{i=1}^K P(\xi_i \in A_i) \ \forall A_i \in \mathfrak{B}(\mathbb{R})$$

Бесконечная последовательность будет последовательностью независимых величин, если каждая конечная подпоследовательность независима.

Теорема 1 (Необходимые и достаточные условия независимости).

Рассмотрим
$$x = (x_1, \dots, x_K) \in \mathbb{R}^K$$
 $F(x) = F_{\xi_1}(x_1)F_{\xi_2}(x_2)\dots F_{\xi_K}(x_K) \ \forall x \in \mathbb{R}^K$ Если \exists плотность $f(x)$: $f(x) = f_{\xi_1}(x_1)f_{\xi_2}(x_2)\dots f_{\xi_K}(x_K)$ для μ -почти всех $x \in \mathbb{R}^K$

Пусть случайные векторы ξ, ξ_1, ξ_2, \dots размера K со значениями в $(\mathbb{R}, \mathfrak{B}(\mathbb{R}^K))$ определены на некотором вероятностном пространстве (Ω, \mathcal{F}, P) . Пусть $|\cdot|$ означает Евклидову норму вектора, то есть $|\xi| = \sqrt{\sum_{i=1}^K \xi_i^2}$.

Опр. 18. Говорят, что последовательность ξ_n сходится **слабо** κ ξ , если для любой непрерывной и ограниченной $g: \mathbb{R}^K \to \mathbb{R}^1 \int_{\mathbb{R}^K} g(x) \mathrm{P}_n(dx) \to \int_{R^K} g(x) \mathrm{P}(dx), \ n \to \infty$. Здесь P_n и P - распределения соотвественно ξ_n и ξ . Пишем $\xi_n \xrightarrow{w} \xi$, $n \to \infty$.