Snake Oil Crypto:

How I stopped to worry and started to love crypto

Team CIRCL https://www.d4-project.org/

2019/11/27

Jean-Louis Huynen

OUTLINE

- Cryptography 101,
- Cryptography and Network captures,
- D4 passiveSSL Collection,
- Leveraging OpenPGP metedata,
- Checking for weak crypto.

Cryptography 101

CRYPTOGRAPHY CONCEPTS

- Plaintext P: Text in clear,
- **Encryption** E: Process of disguising the plaintext to hide its content,
- Ciphertext C: Result of the Encryption process,
- Decryption D: Process of reverting encryption, transforming C into P,
- Encryption Key EK: Key to encrypt P into C,
- Decryption Key DK: Key to decrypt C into P,
- **Cryptanalysis**: Analysis of C to recover P without knowing K.

CRYPTOGRAPHY SERVICES

- Confidentiality: Ensure the secrecy of the message except for the intended recipient,
- Authentication : Proving a party's identity,
- Integrity: Verifying that data transmitted were not altered,
- **Non-repudiation**: Proving that the sender sent a given message.

Type of Encryption Applications

- In-transit encryption: protects data while it is transferred from one machine to another,
- **At-rest encryption**: protects data stored on one machine.

KERCKHOFFS'S PRINCIPLE

It [cipher] should not require secrecy, and it should not be a problem if it falls into enemy hands.

There is no security in obscurity.

ATTACKERS MODEL I

Black Box - Attackers may only see inputs / outputs:

- Ciphertext-Only Attackers (COA): see only the ciphertext,
- Known-Plaintext Attackers (KPA): see ciphertext and plaintext,
- Chosen-Plaintext Attacker (CPA): encrypt plaintext, and see ciphertext,
- Chosen-Ciphertext Attakers (CCA): encrypt plaintext, decrypt ciphertext.

ATTACKERS MODEL II

Grey Box - Attackers see cipher's implementation:

- **Side-Channel Attacks:** study the behavior of the implementation, for instanc **timing attacks** ¹:
 - Osvik, Shamir, Tromer [OSTo6]: Recover AES-256 secret key of Linux's dmcrypt in just 65 ms
 - ► AlFardan, Paterson [AFP13]: "Lucky13" recovers plaintext of CBC-mode encryption in pretty much all TLS implementations
 - Yarom, Falkner [YF14]: Attack against RSA-2048 in GnuPG 1.4.13: "On average, the attack is able to recover 96.7% of the bits of the secret key by observing a single signature or decryption round."
 - Benger, van de Pol, Smart, Yarom [BvdPSY14]: "reasonable level of success in recovering the secret key" for OpenSSL ECDSA using secp256k1 "with as little as 200 signatures"

ATTACKERS MODEL III

Most recent one: tpm-fail [24420]

We discovered timing leakage on Intel firmware-based TPM (fTPM) as well as in STMicroelectronics' TPM chip. Both exhibit secret-dependent execution times during cryptographic signature generation. While the key should remain safely inside the TPM hardware, we show how this information allows an attacker to recover 256-bit private keys from digital signature schemes based on elliptic curves.

ATTACKERS MODEL IV

Invasive Attacks:

▶ injecting faults [MFS+18],

ATTACKERS MODEL V

decapping chips ², reverse engineering ³ ⁴, etc.

https://cryptojedi.org/peter/data/croatia-20160610.pdf

² https://siliconpron.org/wiki/doku.php?id=decap:start

³ http://siliconzoo.org

⁴ http://degate.org

SEMANTIC SECURITY

Cryptography and Network captures

D4 passiveSSL Collection

Leveraging OpenPGP metedata

Checking for weak crypto

SNAKE OIL CRYPTO⁵ - PROBLEM STATEMENT

IoT devices are often the weakest devices on a network:

- Usually the result of cheap engineering,
- sloppy patching cycles,
- sometimes forgotten-not monitored,
- few hardening features enabled.

We feel a bit safer when they use TLS, but should we?

⁵https://github.com/d4-project/snake-oil-crypto

SNAKE OIL CRYPTO - TLS FINGERPRINTING

Keep a log of links between:

- x509 certificates,
- ports,
- IP address,
- client (ja3),
- server (ja3s),

"JA3 is a method for creating SSL/TLS client fingerprints that should be easy to produce on any platform and can be easily shared for threat intelligence."

Pivot on additional data points during Incident Response

⁶https://github.com/salesforce/ja3

SNAKE OIL CRYPTO - OBJECTIVES

Collect and **store** x509 certificates and TLS sessions:

- Public keys type and size,
- moduli and public exponents,
- curves parameters.

Detect anti patterns in crypto:

- Moduli that share one prime factor,
- Moduli that share both prime factors, or private exponents,
- Small factors,
- Nonces reuse / common preffix or suffix, etc.

Focus on low hanging fruits that appeal to attackers

SNAKE OIL CRYPTO - RSA ON IOT

Researchers have shown that several devices generated their keypairs at boot time without enough entropy⁷:

```
prng.seed(seed)
p = prng.generate_random_prime()
// prng.add_entropy()
q = prng.generate_random_prime()
n = p*q
```

Given n=pq and n' = pq' it is trivial to recover the shared p by computing their **Greatest Common Divisor (GCD)**, and therefore **both private keys**⁸.

⁷Bernstein, Heninger, and Lange: http://facthacks.cr.yp.to/

⁸http://www.loyalty.org/~schoen/rsa/

SNAKE OIL CRYPTO - GCD

In Snake-Oil-Crypto we compute GCD9 between:

- between certificates having the same issuer,
- between certificates having the same subject,
- on keys collected from various sources (PassiveSSL, Certificate Transparency, shodan, censys, etc.),

"Check all the keys that we know of for vendor X"

⁹using Bernstein's Batch GCD algorithm

SNAKE OIL CRYPTO - MISP FEED

SNAKE OIL CRYPTO - MISP FEED

The MISP feed:

- Allows for checking automatic checking by an IDS on hashed values,
- **contains** thousands on broken keys from a dozen of vendors,
- will be accessible upon request (info@circl.lu).

In the future:

- Automatic the vendor checks by performing TF-IDF on x509's subjects,
- **automatic** vendors notification.

FIRST RELEASE

- ✓ sensor-d4-tls-fingerprinting ¹⁰: **Extracts** and **fingerprints** certificates, and **computes** TLSH fuzzy hash.
- √ analyzer-d4-passivessl ¹¹: Stores Certificates / PK details in a PostgreSQL DB.
- snake-oil-crypto ¹²: Performs crypto checks, push results in MISP for notification
- lookup-d4-passivessl ¹³: Exposes the DB through a public REST API.

¹⁰ github.com/D4-project/sensor-d4-tls-fingerprinting

[&]quot;github.com/D4-project/analyzer-d4-passivessl

¹²github.com/D4-project/snake-oil-crypto

¹³github.com/D4-project/lookup-d4-passivessl

GET IN TOUCH IF YOU WANT TO JOIN/SUPPORT THE PROJECT, HOST A PASSIVE SSL SENSOR OR CONTRIBUTE

- Collaboration can include research partnership, sharing of collected streams or improving the software.
- Contact: info@circl.lu
- https://github.com/D4-Projecthttps://twitter.com/d4_project

REFERENCES I

- TPM-FAIL: TPM MEETS TIMING AND LATTICE ATTACKS, 29TH USENIX SECURITY SYMPOSIUM (USENIX SECURITY 20) (BOSTON, MA), USENIX ASSOCIATION, AUGUST 2020.
- NADHEM J. AL FARDAN AND KENNETH G. PATERSON, LUCKY THIRTEEN: Breaking the tls and dtls record protocols, Proceedings of the 2013 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (WASHINGTON, DC, USA), SP '13, IEEE COMPUTER SOCIETY, 2013, PP. 526-540.
- ROSS J. ANDERSON, SECURITY ENGINEERING: A GUIDE TO BUILDING DEPENDABLE DISTRIBUTED SYSTEMS, 2 ED., WILEY PUBLISHING, 2008.
- JEAN-PHILIPPE AUMASSON, SERIOUS CRYPTOGRAPHY: A PRACTICAL INTRODUCTION TO MODERN ENCRYPTION, NO STARCH PRESS, 2017.

REFERENCES II

- NAOMI BENGER, JOOP VAN DE POL, NIGEL P. SMART, AND YUVAL YAROM, "OOH AAH... JUST A LITTLE BIT": A SMALL AMOUNT OF SIDE CHANNEL CAN GO A LONG WAY, CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS -CHES 2014 (BERLIN, HEIDELBERG) (LEJLA BATINA AND MATTHEW ROBSHAW, EDS.), SPRINGER BERLIN HEIDELBERG, 2014, PP. 75-92.
- DIETER GOLLMANN. COMPUTER SECURITY (3. Ed.). WILEY. 2011.
- KOHEI MATSUDA, TATSUYA FUJII, NATSU SHOJI, TAKESHI SUGAWARA, KAZUO SAKIYAMA, YU-ICHI HAYASHI, MAKOTO NAGATA, AND NORIYUKI MIURA. A 286 F2/CELL DISTRIBUTED BULK-CURRENT SENSOR AND SECURE FLUSH CODE ERASER AGAINST LASER FAULT INJECTION ATTACK ON CRYPTOGRAPHIC PROCESSOR, IEEE JOURNAL OF SOLID-STATE CIRCUITS 53 (2018), NO. 11, 3174-3182.
- ALFRED J. MENEZES, SCOTT A. VANSTONE, AND PAUL C. VAN OORSCHOT, HANDBOOK OF APPLIED CRYPTOGRAPHY, 1ST ED., CRC PRESS, INC., BOCA RATON, FL, USA, 1996.

REFERENCES III

DAG ARNE OSVIK, ADI SHAMIR, AND ERAN TROMER, CACHE ATTACKS AND COUNTERMEASURES: THE CASE OF AES, TOPICS IN CRYPTOLOGY - CT-RSA 2006 (BERLIN, HEIDELBERG) (DAVID POINTCHEVAL, ED.), SPRINGER BERLIN HEIDELBERG, 2006, PP. 1-20.

YUVAL YAROM AND KATRINA FALKNER, FLUSH+RELOAD: A HIGH RESOLUTION, LOW NOISE, L3 CACHE SIDE-CHANNEL ATTACK, 23RD USENIX SECURITY SYMPOSIUM (USENIX SECURITY 14) (SAN DIEGO, CA), USENIX ASSOCIATION, AUGUST 2014, PP. 719-732.