ECOLES PRIVEES ERRAJA

Ilot L - Près de l'Etat Major de la Garde Nationale

مدارس الرجاء الحرة

حى ل - قرب قيادة أركان الحرس الوطنى

6C DEVOIR DE MATHS DUREE 4H 22/02/2010

EXERCICE 1 (4 POINTS)

On se propose dans cet exercice de calculer par deux méthodes la limite : $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n$.

- 1) Soient f la fonction de variable réelle définie par: $f(x) = e^x x 1$.
- a) Etudier les variations de f et montrer que pour tout réel non nul x: $1+x < e^x$.

En déduire que: $\forall x \in]0;1[; e^x < \frac{1}{1-x}]$

- b) Montrer que pour tout $n \in IN^*$: $\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$.
- c) En déduire que pour tout $n \in IN^*$: $1 < \frac{e}{\left(1 + \frac{1}{n}\right)^n} < 1 + \frac{1}{n}$; puis calculer $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$.
- 2) Soient g la fonction définie par tout réel strictement positif x par: $g(x) = \left(1 + \frac{1}{x}\right)^x$

En utilisant une modification d'écriture, calculer $\lim_{x\to +\infty} g(x)$. En déduire $\lim_{n\to +\infty} \left(1+\frac{1}{n}\right)^n$.

EXERCICE 2 (5 POINTS)

- 1) Résoudre dans \mathbb{C} l'équation $E: z^2 6iz 9 2i = 0$. On note z_1 et z_2 ces solutions avec $|z_2| < |z_1|$.
- 2) On muni le plan complexe d'un repère orthonormal direct (O,\vec{u},\vec{v}) et on note A et B les points d'affixes respectives z_1 et z_2 . Soit Ω le milieu du segment [AB]. Soit f l'application qui associe au point M d'affixe z le point M' d'affixe z' telle que $z' = \frac{3iz+9+2i}{z-3i}$. on note f(M)=M'.
- a) Déterminer l'ensemble des points invariants par f.
- b) Montrer que les points A,B,M,M' sont cocycliques ou alignés.
- 3.a) Montrer que (z'-3i)(z-3i)=2i, en déduire que $\Omega M \times \Omega M'=2$.
- b) Montrer que $(\vec{u}, \overline{\Omega M}) + (\vec{u}, \overline{\Omega M}') = \frac{\pi}{2}$ [2 π]; en déduire une construction géométrique (justifiée) du point M' à partir d'une position donnée du point M non situé sur la droite (AB).
- 4) Déterminer le lieu géométrique du point M' à partir du lieu de M dans les cas suivants :
- a) M décrit le cercle de centre Ω et de rayon r.
- b) M; distinct de Ω ; décrit la droite passant par Ω et parallèle à la droite d'équation y = x
- 5) Réciproquement; déterminer le lieu géométrique de M à partir du lieu de M' dans les cas suivants :
- a) M' décrit le cercle de centre O et de rayon 1.
- b) M' décrit le cercle de centre O et de rayon 3.

PROBLEME (11 POINTS)

Pour chaque entier $n \ge 1$, on définit la fonction f_n sur \mathbb{R}_+ par:

$$\begin{cases} f_n(x) = x(\ln x)^n; & x > 0 \\ f_n(0) = 0 \end{cases}$$

On désigne par C_n sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$; unité 2cm.

PARTIE A

- 1 .a) Etudier la continuité et la dérivabilité de $\overline{f_n}$ à droite de zéro. Interpréter graphiquement.
- b) Vérifier que: $f'_n(x) = (n + \ln x)(\ln x)^{n-1}$.
- 2.a) Dresser les tableaux de variations de f_n suivant la parité de n (On distinguera le cas n=1).
- b) Montrer que les courbes C_n passent par trois points fixes : l'origine O et deux points A et B tels que $0 < x_A < x_B$.
- c) Etudier les positions relatives de C_1 et C_2 ; et les représenter dans le même repère.
- 3) On pose $I_n(\alpha) = \int_{\alpha}^1 f_n(t) dt$ où $n \in IN^*$ et $0 < \alpha < 1$. On note $I_n = \lim_{\alpha \to 0^+} I_n(\alpha)$.
- a) Calculer $I_1(\alpha)$. En déduire que $I_1 = -\frac{1}{4}$.
- b) En utilisant une intégration par parties, montrer que pour tout $\alpha \in \left]0,1\right[$ et $n \in IN^*$ on a :

$$I_{n+1}(\alpha) = -\frac{\alpha^2}{2} (\ln \alpha)^{n+1} - \frac{n+1}{2} I_n(\alpha)$$
.

- c) En déduire que pour tout $n \in IN^*$ on a : $I_{n+1} = -\frac{n+1}{2}I_n$.
- 4) Soit A_n l'aire, en cm², du domaine plan délimité par C_n , les axes (Ox), (Oy) et la droite d'équation x=1. On admet que $A_n=4\big|I_n\big|$ cm².
- a) Montrer par récurrence que pour tout $n \in IN^*$: $A_n = \frac{n!}{2^{n-1}}$.
- b) Montrer que pour tout $n \ge 3$: $A_{n+1} \ge 2A_n$. En déduire $\lim_{n \to +\infty} A_n$.

PARTIE B

Pour tout $n \in IN$ on pose $J_n = \int_1^e f_n(x) dx$.

- 1.a) Calculer J_0 .
- b) Montrer que la suite (J_n) est décroissante.
- 2.a) Montrer que pour tout $n \in IN^*$: $2J_n + nJ_{n-1} = e^2$.
- b) En déduire le calcul de J_1 et J_2 .
- c) Montrer que pour tout $n \in IN : \frac{e^2}{n+3} \le J_n \le \frac{e^2}{n+2}$.
- d) En déduire les limites des suites (J_n) et (nJ_n) .

FIN.