

CSCI-GA.3033-012

Graphics Processing Units (GPUs): Architecture and Programming

Lecture 12: Power-Wall

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

This Lecture

- Why do we have power-wall?
- Techniques to solve the problem
- Real-life example processor
- What can you do in software?
 - Is there power-aware software?

* "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

Source: http://www.prism.gatech.edu/~shong9/ISCA_2010.pptx

Power is also increasing!

Source: http://www.prism.gatech.edu/~shong9/ISCA_2010.pptx

The Problem

- Cooling for GPUs is becoming prohibitively expensive.
 - Exasperated by the low profit margins in these market segments
- Today's cooling solutions are designed for worst-case behavior.
- Reducing the hot spots will help reduce cooling requirements.

Why Power Aware?

- Servers and Workstations
 - Packaging cost

- High temperature = more expensive cooling

system

- · Embedded Devices
 - Battery Life
 - No place for fans,
 etc.

More transistors/mm²

So ... What is it about Moore's law?

- Power and temperature are becoming crucial
- GPU power consumption =
 Runtime power + idle power
- Power = dynamic + leakage
- Given power budget, how to get best performance?
- Given required performance, how to achieve it with lowest power?

GeForce 285 GTX

GeForce 285 GTX

Be Careful

- Static power is no longer trivial
- Higher utilization does not necessarily mean higher performance but for sure means higher power consumption/dissipation
- · Goal: maximize performance/watt

Power-Aware Computing is:

Reducing power without loosing performance

Dynamic Power Consumption

$$P_{\text{dynamic}} = \alpha C V_{DD}^2 f A$$

Dynamic Power Consumption

Static Power Consumption

- 20% or more in sub-micron era
- Mostly leakage
 - represents the power dissipated by a transistor whose gate is intended to be off

$$P = V\left(ke^{-qV_{\rm th}/(ak_{\rm a}T)}\right)$$

Temperature

- Lost power
- Leakage increases by order of magnitude at high temperature
- Higher temperature = lower mean-timeto-failure (MTTF)
- · We need temperature-aware computing

Temperature -> Hot Spot

applu benchmark on a single core (source: Kevin Skadron Tutorial in ISCA'04)

What To Do About Dynamic Power

- DFVS
 - At OS level
 - idle time represents energy waste
 - deadlines for interactive programs
 - Offline compiler analysis
 - insert mode-set instructions
 - depends on program phases
 - · lowers the voltage for memory-bound sections
 - Online dynamic compiler analysis
 - phase detection
 - binary instrumentation
- Reducing switching activity

What To Do About Leakage?

- Stacking transistor
- Dynamically resized caches (mainly Icaches)
 - gated Vdd
 - Non-state-preserving
- Drowsy caches
 - Scale supply voltage to reduce leakage

What To Do About Temperature?

- Better sensors position
- Predicting temperature at places without sensors
- Avoid hot spots
- Must be taken care of from design-time

Real-Life Example: SandyBridge

PMA: Power Management Agent

PCU: Package Control Unit DMI: Direct Media Interface

SVID: Serial Voltage ID

PECI: Platform Environment Control Interface

IMC: Integrated Memory Controller

Real-Life Example: SandyBridge

Two independent power planes:

- CPU cores, LLC, and ring
 - Each core can be turned off indept.
 - Portion of the LLC can be tuned off
- GPU
 - •On chip logic and embedded controller running power management firmware
 - •Communicates internally with cores, ring
 - •Monitors physical conditions Voltage, temperature, power consumption
 - •Controls power states CPU and GPU voltage and frequency

Real-Life Example: SandyBridge

Power Performance Management Is:

Enhance User Experience:

- Throughput performance
- Responsiveness burst performance
- CPU / PG performance
- Battery life / Energy bills
- Ergonomics (acoustic noise, heat)

Given Physical Constraints:

- Silicon capabilities
- System Thermo-Mechanical capabilities
- Power delivery capabilities
- S/W and Operating system explicit control
- Workload and usage

Intel Turbo Boost in SandyBridge

CPU-GPU Interaction

Power-Aware Software!! Is It for Real?

What Can A Software Application Do?

- Use less expensive operations
- Less stress on power-hungry parts
- Access and make use of internal GPU performance counters
 - PAPI
 - nvidia-smi
- Pass power-related info to OS
- Interaction of three players:
 - The application software
 - The Compiler
 - The OS

Power-Aware Applications

- Applications must be Designed and tested for power management
- Applications must handle sleep transitions seamlessly
- You can differentiate your application with power management features
 - Handle power management events
 - Scale behavior based on user's power preference
- OS provides APIs

Power Breakdown: GeForce 285 GTX

Advanced Configuration and Power Interface (ACPI)

- An open industry specification co-developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba.
- Devices must support power saving modes
- ACPI must be supported by the computer motherboard, BIOS, and the operating system
- Power management platform at the hardware level
- Establishes industry-standard interfaces for OSdirected configuration and power management on laptops, desktops, and servers.

http://www.acpi.info

OS directed Power Management

- ACPI Spec Covers this area.

- OS specific technology, not part of ACPI.

Hardware/Platform specific technology, not part of ACPI.

Conclusions

- Power is not longer to be neglected, both static and dynamic, for both CPU and GPU.
- Power-wall cannot be dealt with at one level, but requires cooperation from algorithms to circuits.