Math 312

Worksheet for November 20

Jacob Harkins jah6863@psu.edu

May 20, 2024

Exercise 1) Explain why the function g in Example 8, page 142, satisfies the squeezing inequality

$$-|2x| \le g(x) \le |2x|$$

Use this to give another proof that $\lim_{x\to 0} g(x) = 0$.

This works because g(x) is bounded by the inequality $|g(x)| \le |2x| \, \forall x$.

Proof:

Let $\delta = \frac{\epsilon}{2}$.

$$|x - 0| < \delta = \frac{\epsilon}{2}$$
$$= |2x| < \epsilon$$

Therefore the limit is 0.

If *x* is negative, $\left|\frac{x}{2}\right| \le |2x|$, so the limit from the left must equal 0 by the squeeze theorem.

If *x* is positive, $|2x\sin(\frac{1}{x})| \le |2x|$, so the limit from the right must equal 0 by the sequeeze theorem.

Therefore, since the lim from the left is equal to the lim from the right, the limit must be 0.

Exercise 2) Let f be the function whose graph consists of the two line segments joining (0,0), (1,1), (2,-1). Show that f is continuous at x = 0 and at x = 1.

Equation of the function:

$$F(x) = \begin{cases} x & 0 \le 1 \\ -2x + 3 & 1 < x \le 2 \end{cases} \tag{1}$$

Since we have shown in class that the function f(x) = x is continuous at all points, and the point (0,0) is defined by this function and in our bounds, f is continuous at x = 0.

Proof for x = 1. We want to show that both the functions f(x) = x and f(x) = -2x + 3 exist and have the same limit at x = 1.

$$f(x) = x$$
:

Let $\delta = \epsilon$.

$$|x-1| < \delta = \epsilon$$

So the limit is 1, and the function equals 1 at x = 1.

$$f(x) = -2x + 3$$
:

Let $\delta = \frac{\epsilon}{2}$.

$$|x-1| < \delta = \frac{\epsilon}{2}$$

= $|2x-2| = |-2x+2| = |-2x+3-1| < \epsilon$

So the limit is 1, and the function equals 1 at x = 1.

Therefore, the function F(x) is continous at 1.

Exercise 3) Does the function $f(x) = x^4 - 1$ achieve maximum and/or minimum values on the interval (-1,2)? If the answer is "yes" find them. If it is "no", explain why. Does the Extreme Value Theorem apply in this case? A detailed graph can be used as supporting evidence.

Yes, at 0 f = -1 which is a min, and at 2 f = 15 which is a local max because of the boundary. The Extreme Value Theorem applies because on the interval $(-1,2) f(0) < f(a) \forall a \neq 0$ and $f(2) > f(b) \forall b \neq 2$. This can be seen in the graph below.

Disregard the values from x < -1 and x > 2 as I did not know how to hide them on the calculator but do not effect the answer.

Exercise 4) Let *I* be an open interval containing zero, and $f: I \to \mathbb{R}$ any function that is bounded on *I*. Define a new function, $g: I \to \mathbb{R}$ by g(x) = xf(x).

(a) Show that g is continuous at x = 0.

Let $\delta = \frac{\varepsilon}{M}$ and recall that f(x) < M for some $M \ge 0 \in \mathbb{R}$, $\forall x \in I$ since it is bounded.

$$\frac{\epsilon}{M} > |x - 0|$$

$$\implies \epsilon > |xM| > |xf(x)| = |xf(x) - x0|$$

Therefore, the function is continuous at x = 0.

Exercise 5) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) is a rational number for every real number input x. Show that f must be a constant function.

Assume for contradiction there exists such a function f(x), that is not constant.

Let *a* and *b* be two real numbers with a < b and $f(a) \neq f(b)$.

Let $\alpha = \min(f(a), f(b))$ and $\beta = \max(f(a), f(b))$.

Let *C* be equal to $\frac{\beta - \alpha)\pi}{4} + \alpha$.

Note that *C* is irrational and $\alpha < C < \beta$.

By The Intermediate Value Theorem there exists a c such that f(c) = C, and a < c < b.

Therefore, this forms a contradiction because f(x) must take on irrational values. So f(x) must be a constant function.

Exercise BONUS The Intermediate Value Theorem's statement from class reads: "Let f be a continuous function on a closed interval [a, b], with $f(a) \not\vdash f(b)$. Let u be any intermediate value between f(a) and f(b).

Then there exists a number c in [a, b] such that f(c) = u."

The proof seen in class used the set $S = \{x \in [a, b] | f(x) < u\}$, showed that S has a sup(let $\beta = \sup S$), and then concluded that $f(\beta) = u$.

The goal of this exercise is to provide a different (but structurally similar) proof, using the set $T = \{x \in [a, b] | f(x) > u\}$. Prove that, because of the properties of T, there exists $\alpha = \inf T$, and then prove that $f(\alpha) = u$.

Proof

Note that *T* is not empty, because f(b) > u,

Since the sequence is continuous, T has a sup, β , and an inf, α .

There is a sequence $\{x_n\}$ which converges to α .

Since *f* is continuous, the sequence $\{y_n = f(x_n)\}$ converges to $f(\alpha)$.

 $\forall n. f(x_n) > u$, so $f(\alpha) \ge u$.

Assume that $f(\alpha) > u$.

 \implies the existence of an interval around α , so that $f(\alpha \pm \delta) > u$.

This would mean every value in the interval would be in our original set, S, and form a contradiction because $\alpha = \inf T$.

Therefore α must be equal to u.