Correction Partiel S1

Exercice 1 : encore des intégrales

1. Sans intégration par parties ni changement de variable, calculer $I = \int_{1}^{2} (x-1)\sqrt{x-1} \, dx$

$$I = \int_{1}^{2} (x-1)^{\frac{3}{2}} dx = \left[\frac{(x-1)^{\frac{3}{2}+1}}{\frac{3}{2}+1} \right]_{1}^{2} = \left[\frac{2}{5} (x-1)^{\frac{5}{2}} \right]_{1}^{2} = \frac{2}{5} \times 1^{\frac{5}{2}} - 0 = \frac{2}{5}$$

2. Sans intégration par parties ni changement de variable, calculer $J = \int_0^1 \frac{x^2 + 2}{x^3 + 6x + 1} dx$

$$J = \frac{1}{3} \int_0^1 \frac{3x^2 + 6}{x^3 + 6x + 1} \, \mathrm{d}x = \frac{1}{3} \left[\ln \left(x^3 + 6x + 1 \right) \right]_0^1 = \frac{1}{3} \left(\ln(8) - \ln(1) \right) = \frac{3 \ln(2)}{3} = \ln(2)$$

Exercice 2 : cours sur les polynômes

Soient A et B deux polynômes à coefficients réels.

1. Que savez-vous du degré de A + B et de $A \times B$?

On a
$$deg(A + B) \le Max(deg(A), deg(B))$$
 et $deg(AB) = deg(A) + deg(B)$

2. Un étudiant doit énoncer le théorème de la division euclidienne de A par B. Il écrit sur sa copie :

$$\forall \exists (Q,R) \in (\mathbb{R}[X])^2 \text{ tel que } A = BQ + R \text{ et } 0 \leq R < B \text{ }$$

Son professeur lui compte faux. Rectifier correctement l'énoncé ci-dessus pour qu'il corresponde effectivement au théorème demandé (et avoir tous les points).

$$\exists ! (Q,R) \in (\mathbb{R}[X])^2$$
 tel que $A = BQ + R$ et $\deg(R) < \deg(B)$

3. Effectuer la division euclidienne de $A = 2X^4 + X - 3$ par $B = X^2 - X + 1$.

- 4. Soit $\alpha \in \mathbb{R}$. Que signifie que α est une racine de A? Donner un exemple d'un polynôme A de degré 3 qui admet 42 comme racine.
 - α racine de $A \iff A(\alpha) = 0$.
 - Exemple : $A = (X 42)(X^2 + X + 1)$ est une polynôme de degré 3 qui admet 42 comme racine.

Exercice 3: nombres complexes

Considérons l'équation (E) $(z + \sqrt{3} - i)(z^2 - 2z + 2) = 0$ d'inconnue $z \in \mathbb{C}$.

- 1. Résoudre (E) dans \mathbb{C} .
 - $(z+\sqrt{3}-i)(z^2-2z+2)=0 \iff z+\sqrt{3}-i=0 \text{ ou } z^2-2z+2=0.$
 - $z + \sqrt{3} i = 0 \iff z = -\sqrt{3} + i$.
 - Le discriminant de $z^2 2z + 2 = 0$ est $\Delta = -4$. Ainsi,

$$z^2 - 2z + 2 = 0 \iff z_1 = \frac{2+2i}{2} = 1+i \text{ ou } z_2 = \overline{z_1} = 1-i$$

En conclusion : $S = \{-\sqrt{3} + i, 1 + i, 1 - i\}$

2. Donner la forme exponentielle de chacune des solutions de (E).

$$-\sqrt{3} + i = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2e^{i\frac{5\pi}{6}}, \ 1 + i = \sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \sqrt{2}e^{i\frac{\pi}{4}} \text{ et } 1 - i = \overline{1+i} = \sqrt{2}e^{-i\frac{\pi}{4}}$$

Exercice 4: arithmétique

Les parties sont indépendantes. Les résultats de la question 1. peuvent être admis et utilisés par la suite.

- 1. Soient p un nombre premier et $a \in \mathbb{Z}$.
 - (a) Montrer que $p \wedge a = 1$ ou $p \mid a$.

On sait que $p \wedge a \mid p$ et comme p est premier, on en déduit que $p \wedge a = 1$ ou $p \wedge a = p$. Dans le cas où $p \wedge a = p$, comme on sait aussi que $p \wedge a \mid a$, on obtient $p \mid a$.

(b) Montrer que $p \land a = 1$ si et seulement si $\exists b \in \mathbb{Z}$ tel que $ab \equiv 1[p]$.

Par le théorème de Bézout, on a

$$p \wedge a = 1 \iff \exists \, (b,v) \in \mathbb{Z}^2 \text{ tel que } ab + pv = 1 \iff \exists \, (b,v) \in \mathbb{Z}^2 \text{ tel que } ab = 1 - pv \iff \exists \, b \in \mathbb{Z} \text{ tel que } ab \equiv 1 \, [p]$$

- 2. Considérons le nombre premier p=47. On cherche à résoudre l'équation (E) $23x \equiv 1[47]$ d'inconnue $x \in [1,46]$.
 - (a) Trouver dans \mathbb{Z}^2 une solution particulière (x_0, y_0) à l'équation (E_1) 23x + 47y = 1.

On a $47 = 23 \times 2 + 1$ ainsi $23 \times (-2) + 47 \times 1 = 1$. Le couple $(x_0, y_0) = (-2, 1)$ convient.

- (b) Résoudre (E_1) dans \mathbb{Z}^2 .
 - Soit $(x,y) \in \mathbb{Z}^2$ une solution de (E_1) . On a 23x + 47y = 1. Or $23x_0 + 47y_0 = 1$, ainsi, (\star) $23(x x_0) = 47(y_0 y)$. On en déduit que $47 \mid 23(x x_0)$. Comme $47 \land 23 = 1$, on a alors par le lemme de Gauss : $47 \mid x x_0$. Ce qui revient à dire qu'il existe $k \in \mathbb{Z}$ tel que $x x_0 = 47k$, c'est-à-dire $x = x_0 + 47k = -2 + 47k$.

En reportant dans (\star) , on a alors $23 \times 47k = 47(y_0 - y)$. D'où, $23k = y_0 - y$, ce qui donne $y = y_0 - 23k = 1 - 23k$.

• Réciproquement, supposons que x = -2 + 47k et y = 1 - 23k avec $k \in \mathbb{Z}$. On a alors

$$23x + 47y = 23(-2 + 47k) + 47(1 - 23k) = 23 \times (-2) + 47 \times 1 + 23 \times 47k - 47 \times 23k = 1$$

Ainsi, (x, y) est bien solution de (E_1) .

- En conclusion, $S_1 = \{(-2 + 47k, 1 23k), k \in \mathbb{Z}\}.$
- (c) En déduire toutes les solutions dans \mathbb{Z} de (E). En déduire les solutions de (E) dans [1,46].

$$23x \equiv 1[47] \iff \exists q \in \mathbb{Z} \text{ tel que } 23x = 1 + 47q \iff \exists y \in \mathbb{Z} \text{ tel que } 23x + 47y = 1$$

Par la question précédente, $S = \{-2 + 47k, k \in \mathbb{Z}\}.$

Cela revient à dire que les solutions de (E) sont tous les entiers congrus à -2 modulo 47. Il n'y a qu'un seul entier $x \in [1, 46]$ qui vérifie cela : x = 45.

3. Soit $(a,b) \in \mathbb{Z}^2$.

- (a) Montrer que $ab \equiv 0[47] \iff a \equiv 0[47]$ ou $b \equiv 0[47]$.
 - L'implication réciproque (est évidente.
 - Faisons l'implication directe \implies . Supposons $ab \equiv 0[47]$. On a ainsi $47 \mid ab$. Comme 47 est premier, on sait par la question 1.(a) que
 - Soit $47 \mid a$ et dans ce cas là, cela donne $a \equiv 0[47]$.
 - Soit $47 \wedge a = 1$. Comme $47 \mid ab$, on obtient par le lemme de Gauss, $47 \mid b$, c'est-à-dire $b \equiv 0$ [47].
- (b) En déduire que $a^2 \equiv 1[47] \iff a \equiv 1[47]$ ou $a \equiv -1[47]$.

 \leftarrow Supposons $a \equiv 1[47]$ ou $a \equiv -1[47]$.

Si $a \equiv 1/47$ alors $a^2 \equiv 1/47 \equiv 1/47$. Si $a \equiv -1/47$ alors $a^2 \equiv (-1)/47 \equiv 1/47$.

 \implies Supposons que $a^2 \equiv 1[47]$. Ainsi, $a^2 - 1 \equiv 0[47]$ ce qui donne $(a-1)(a+1) \equiv 0[47]$. On obtient par la question précédente : $a-1 \equiv 0[47]$ ou $a+1 \equiv 0[47]$, ce qui implique $a \equiv 1[47]$ ou $a \equiv -1[47]$.

(c) Trouver tous les $a \in [1, 46]$ tels que $a^2 \equiv 1[47]$.

Par la question précédente, cela revient à trouver tous les $a \in [1, 46]$ tels que $a \equiv 1[47]$ ou $a \equiv -1[47]$. Or $a \in [1, 46]$ et $a \equiv 1[47] \iff a = 1$. De plus, $a \in [1, 46]$ et $a \equiv -1[47] \iff a = 46$. Il n'y a donc que deux solutions : 1 et 46.

(d) Soient $a \in [1, 46]$ et $k \in \mathbb{N}$. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier.

On a $a^{46k} = (a^{46})^k$. Comme a < 47, 47 ne divise pas a. 47 étant premier, par le petit théorème de Fermat, $a^{46} \equiv 1[47]$. Ainsi, $(a^{46})^k \equiv 1^k[47] \equiv 1[47]$. Comme $0 \le 1 < 47$, 1 est le reste de la division euclidienne de a^{46k} par 47.

Exercice 5: suites 1

1. Soient (u_n) et (v_n) deux suites ne s'annulant pas. Rappeler la définition de : $u_n \sim v_n$, $u_n = o(v_n)$ et $u_n = O(v_n)$ en $+\infty$?

$$u_n \sim v_n \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 1, \ u_n = o(v_n) \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 0 \text{ et } u_n = O(v_n) \iff \left(\frac{u_n}{v_n}\right) \text{ born\'ee}$$

On pourrait aussi écrire :

- $-u_n \sim v_n \text{ si } u_n = v_n(1+\varepsilon_n) \text{ avec } \varepsilon_n \longrightarrow 0 \text{ quand } n \to +\infty.$
- $-u_n = o(v_n)$ si $u_n = v_n \varepsilon_n$ avec $\varepsilon_n \longrightarrow 0$ quand $n \to +\infty$.
- $-u_n = O(v_n)$ si $u_n = v_n b_n$ avec (b_n) bornée.
- 2. Comparer en $+\infty$ les suites (u_n) et (v_n) suivantes à l'aide des comparateurs de Landau \sim , $= o(\cdot)$, $= O(\cdot)$ en citant toutes les comparaisons possibles et en justifiant vos réponses.
 - (a) $u_n = n^2 + 1$ et $v_n = e^n n$.

 $\frac{u_n}{v_n} = \frac{n^2(1+\frac{1}{n^2})}{e^n(1-\frac{n}{e^n})}.$ Par croissance comparée, $\lim_{n\to+\infty}\frac{n}{e^n}=0$ et $\lim_{n\to+\infty}\frac{n^2}{e^n}=0$. On en déduit que $\lim_{n\to+\infty}\frac{u_n}{v_n}=0$. Par conséquent $u_n=o(v_n)$. Comme $\left(\frac{u_n}{v_n}\right)$ converge, elle est donc bornée. D'où, $u_n=O(v_n)$.

(b) $u_n = n^2 - n + 1$ et $v_n = n^2 - 1$.

$$\frac{u_n}{v_n} = \frac{n^2(1-\frac{1}{n}+\frac{1}{n^2})}{n^2(1-\frac{1}{n^2})} = \frac{1-\frac{1}{n}+\frac{1}{n^2}}{1-\frac{1}{n^2}}. \text{ On en déduit que } \lim_{n\to+\infty}\frac{u_n}{v_n} = 1. \text{ Par conséquent } u_n \sim v_n. \text{ Comme } \left(\frac{u_n}{v_n}\right) \text{ converge, elle est donc bornée. D'où, } u_n = O(v_n).$$

3. Soit (u_n) une suite telle que $u_n = \frac{-1}{2n} + o\left(\frac{1}{n}\right)$ au voisinage de $+\infty$. Donner un équivalent simple de (u_n) en $+\infty$. Justifier.

On peut écrire
$$u_n = \frac{-1}{2n} + \frac{1}{n}\varepsilon_n$$
 avec $\lim_{n \to +\infty} \varepsilon_n = 0$. Ainsi, $\frac{u_n}{\frac{-1}{2n}} = 1 - 2\varepsilon_n \longrightarrow 1$. Donc $u_n \sim \frac{-1}{2n}$.

Exercice 6: suites 2

 $Considérons \ la \ fonction \ f: x \longmapsto \frac{x^2+6x-8}{8} \ d\'efinie \ sur \ \mathbb{R} \ et \ la \ suite \ (u_n) \ d\'efinie \ par \left\{ \begin{array}{ll} u_{n+1} & = & f(u_n) \\ u_0 & \in & \mathbb{R} \ donn\'efinie \end{array} \right.$

1. Pour quelle(s) valeur(s) de u_0 cette suite est-elle constante?

$$(u_n)$$
 constante $\iff \forall n \in \mathbb{N}, u_{n+1} = u_n.$

Or
$$u_{n+1} = u_n \iff \frac{u_n^2 + 6u_n - 8}{8} = u_n \iff u_n^2 + 6u_n - 8 = 8u_n \iff u_n^2 - 2u_n - 8 = 0 \iff (u_n - 4)(u_n + 2) = 0.$$

Ainsi, pour $u_0 = 4$ ou $u_0 = -2$, la suite (u_n) est constante.

2. Faire le tableau (complet) des variations de f sur $[0, +\infty[$.

Pour $x \in \mathbb{R}$, $f'(x) = \frac{2x+6}{8}$ qui s'annule pour x = -3. On en déduit le tableau de variations suivant :

3. Pour la suite de l'exercice, on prend $u_0 \in]-2,4[$. Montrer que $\forall n \in \mathbb{N}, u_n \in]-2,4[$.

On fait une récurrence sur $n \in \mathbb{N}$.

- $u_0 \in]-2,4[$. La propriété est donc vraie au rang 0.
- Supposons la propriété vraie pour un $n \in \mathbb{N}$. On a alors, $-2 < u_n < 4$. Par le tableau de variations, f est strictement croissante entre -2 et 4. D'où, $f(-2) < f(u_n) < f(4)$ ce qui donne $-2 < u_{n+1} < 4$. La propriété est vraie au rang n+1.
- Conclusion : $\forall n \in \mathbb{N}, u_n \in]-2,4[$
- 4. Étudier la monotonie de (u_n) .

On a

$$u_{n+1} - u_n = \frac{u_n^2 + 6u_n - 8}{8} - u_n = \frac{u_n^2 - 2u_n + 8}{8} = \frac{(u_n - 4)(u_n + 2)}{8}$$

Via 3., $u_n + 2 > 0$ et $u_n - 4 < 0$ car $-2 < u_n < 4$. Par conséquent, $u_{n+1} - u_n \le 0$. Ainsi, (u_n) est décroissante.

5. La suite (u_n) est-elle convergente? Si oui, donner sa limite.

La suite (u_n) est décroissante et minorée par -2 ainsi elle converge. Notons $l \in \mathbb{R}$ sa limite. l vérifie l = f(l). Ainsi, l = -2 ou l = 4. Or comme (u_n) est décroissante, on a $\forall n \in \mathbb{N}$, $u_n \leq u_0 < 4$. Pour $n \to +\infty$, on obtient $l \leq u_0 < 4$. Donc l = -2.

Exercice 7: une démonstration

Soit (u_n) une suite.

1. Soit $l \in \mathbb{R}$. Rappeler la définition avec les quantificateurs de « (u_n) converge vers l ».

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N}, \; \forall n \in \mathbb{N}, \; n > N \implies |u_n - l| < \varepsilon$$

2. Rappeler la définition avec les quantificateurs de « (u_n) est bornée ».

$$\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ |u_n| \leq M$$

3. Montrer que si (u_n) converge alors (u_n) est bornée.

Supposons que (u_n) converge et notons $\ell \in \mathbb{R}$ sa limite. On sait donc que

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N, \ |u_n - \ell| < \varepsilon$$

Comme cela est vrai pour tout $\varepsilon > 0$, pour $\varepsilon = 1$ par exemple, il existe donc un rang N à partir duquel $|u_n - \ell| < 1$. Ainsi, pour tout entier $n \ge N$, on a

$$|u_n| = |(u_n - \ell) + \ell| \le |u_n - \ell| + |\ell| < 1 + |\ell|$$

ce qui signifie que la suite (u_n) est bornée à partir du rang N.

Définissons alors le réel $M = \max(|u_0|, |u_1|, \dots, |u_{N-1}|, 1 + |\ell|)$. On a alors $\forall n \in \mathbb{N}, |u_n| \leq M$. La suite (u_n) est donc bornée.

4. Expliquer pourquoi la réciproque est fausse.

La suite $((-1)^n)$ est bornée par 1 mais diverge. La réciproque est donc fausse.

Exercice 8: exercice original

Soit (u_n) une suite réelle. On suppose que

$$\forall (p,q) \in (\mathbb{N}^*)^2, \ 0 \le u_{p+q} \le \frac{p+q}{pq}$$

En considérant des suites extraites de (u_n) , étudier le comportement de (u_n) en $+\infty$ (convergence ou divergence). Justifier avec soin.

• Comme l'inégalité précédente est vraie pour tout entier p et tout entier q non nuls, on peut prendre p = q = n. On obtient alors

$$\forall n \in \mathbb{N}^*, \ 0 \le u_{2n} \le \frac{2n}{n^2} = \frac{2}{n}$$

Comme $\lim_{n\to+\infty}\frac{2}{n}=0$, on en déduit par le théorème des Gendarmes, que la suite (u_{2n}) est convergente vers 0.

• En prenant cette fois ci p = n et q = n + 1, on a

$$\forall n \in \mathbb{N}^*, \ 0 \le u_{2n+1} \le \frac{2n+1}{n(n+1)}$$

Or $\frac{2n+1}{n(n+1)} = \frac{n(2+\frac{1}{n})}{n^2(1+\frac{1}{n})} = \frac{2+\frac{1}{n}}{n(1+\frac{1}{n})}$. Donc, $\lim_{n\to+\infty} \frac{2n+1}{n(n+1)} = 0$. On en déduit par les Gendarmes que la suite (u_{2n+1}) converge vers 0.

• Les deux suites (u_{2n}) et (u_{2n+1}) convergent donc vers une même limite (zéro) donc la suite (u_n) converge vers 0.