The general methodology for nowcasting heavy/extreme rainfall events has been detailed in the manuscript. The following steps illustrates a typical nowcasting procedure using cloud properties acquired from the NASA Langley Cloud and Radiation Research Group (http://www-angler.larc.nasa.gov) which is derived from the Meteosat-8 images. A sample data for executing the code can be found at:

https://drive.google.com/file/d/1ooJCU04lqV4o6LvsxPBpRGdnQ4uc0NQQ/view?usp=share link.

For executing the code, please download the sample data into the Data folder.

STEP 1: On executing the "main.py", an RGB composite image with red for visible reflectance, green for 3.9 μ m brightness temperature, and blue for 10.8 μ m brightness temperature is compiled. The composite image can be found in the Output folder.

STEP 2: The developed RGB composite image can be used as a visual tool to identify a window containing individual cloud clusters with cloud elements representing all the stages of cloud growth, typically containing several thousand pixels. The coordinates of the window (four corners as [latitude, longitude]) is to be provided. For the sample data let us consider the cloud cluster within the latitude-longitude: 9, 74, 9, 77, 12, 77, 12, 74.

STEP 3: Once the coordinates are entered, the corresponding T-r_e profile is generated, and can be found in the Output folder. In the next step we must identify the microphysical zones.

STEP 4: The $T-r_e$ profile for the sample data is shown in Figure 1. The profile can be identified with a distinct rain washout zone and then a mixed phase zone. This is a typical characteristic of normal rainfall events. Moreover, the diffusion zone is absent. More details about the various implications of the microphysical zones can be found in the manuscript.

Figure 1: Derived T-r_e profile

STEP 5: The various characteristics of the T- r_e profile shall be extracted manually. In the present case as the diffusion zone is absent, $D_z = 0$; r_b is approximately 14 μ m with a T_b of 20 °C; T_{14} is approximately 5 °C (as the rain washout zone marked by the vertical profile ranges from 20 °C to -10 °C); Finally, $T_L = -10$ °C, where the mixed phase zone starts. These values shall be inputted for computing the probabilities.

STEP 6: Finally, logistic regression is fitted and the nowcasted rainfall event is displayed (normal or extreme) along with its probability.