Métodos Numéricos I

Tema 3. Sistemas de Equações Lineares e Algébricas

Prof. Dany S. Dominguez dsdominguez@uesc.br Sala 1 – NBCGIB (73) 3680 5212 – ramal 30

ROTEIRO

- Introdução
- Representação de SELAs
- Métodos diretos
 - Eliminação de Gauss
 - Estratégias de pivoteamento
 - Pivotamento parcial
 - Pivotamento parcial com escala
 - Pivotamento completo
 - Inversão de matrizes
 - Fatoração LU

- Na estratégia de pivotamento parcial cada multiplicador $m_{ii} \leq 1$
- Esta estratégia é suficiente para a grande maioria dos sistemas
- Entretanto, pode apresentar problemas de arredondamento em alguns sistemas
- Exemplo 6: Considere o sistema linear

$$f_1: 30,00x_1 + 591400x_2 = 591700$$

$$f_2$$
: 5,291 x_1 - 6,130 x_2 = 46,78

resolva-lo utilizando o método de Gauss com pivotamento parcial e aritmética de quatro dígitos.

• **Exemplo 6**: ... f_1 : 30,00 x_1 + 591400 x_2 = 591700

$$f_2$$
: 5,291 x_1 - 6,130 x_2 = 46,78

Pivotamento

$$\max\{|a_{11}|, |a_{21}|\} = \max\{|30,00|, |5,291|\} = |a_{11}|$$

• Não precisamos troca de linhas

Quatro algarismos

$$m_{21} = \frac{a_{21}}{a_{11}} = \frac{5,291}{30,00}$$
 $m_{21} = 0,1764$

$$m_{21} = 0.1763667$$

$$\left(f_2 - m_{21} f_1\right) \to f_2$$

$$\begin{bmatrix} 30,00 & 591400 & 591700 \\ 0 & -104300 & -104400 \end{bmatrix} \begin{bmatrix} 30,00 & 591400 & 591700 \\ 0 & -104309,39 & -104309,39 \end{bmatrix}$$

• Exemplo 6: ...

Quatro algarismos Valores precisos $x_2 = \frac{a_{23}}{a_{22}}$ $x_2 \approx 1,001$ $x_2 = 1,000$ $x_1 = \frac{a_{13} - a_{12}x_2}{a_{11}}$ $x_1 \approx -10,00$

 Os erros de arredondamento conduzem a um resultado incorreto mesmo com pivotamento parcial

- Uma alternativa para resolver o problema anterior é o pivotamento parcial com escala ou pivotamento por coluna com escala
- Nele, utilizamos como pivô o elemento que é maior em relação aos outros elementos da linha (maior relativo)
- Primeiro passo, calcular o fator de escala s_i para cada linha como o elemento de maior valor absoluto da linha

$$s_i = \max_{1 \le i \le n} \left| a_{ij} \right|$$

• Como pivô (p) escolhemos o elemento de maior tamanho relativo em sua coluna, isto é

$$\frac{\left|a_{pi}\right|}{S_i} = \max_{1 \le k \le n} \frac{\left|a_{ki}\right|}{S_k}$$

- Se a posição do pivô for diferente de i, fazemos a troca de linhas $f_i \leftrightarrow f_p$
- Os fatores de escala são calculados uma vez
- Os fatores de escala devem ser trocados quando ocorram trocas de linha.

 Exemplo 7: Resolver o sistema do exemplo 6 considerando a estratégia de pivotamento parcial com escala e aritmética de quatro algarismos

$$f_1: 30,00x_1 + 591400x_2 = 591700$$

 $f_2: 5,291x_1 - 6,130x_2 = 46,78$

Cálculo dos fatores de escala

$$s_1 = \max\{|a_{11}|, |a_{12}|\} = \max\{|30,00|, |591400|\} = |a_{12}| = 591400$$

$$s_2 = \max\{|a_{21}|, |a_{22}|\} = \max\{|5,291|, |-6.130|\} = |a_{22}| = 6,130$$

• Exemplo 7 . . .

$$f_1: 30,00x_1 + 591400x_2 = 591700$$

Pivotamento

$$f_2$$
: $5,291x_1 - 6,130x_2 = 46,78$

$$\max\left\{\frac{\left|a_{11}\right|}{s_{1}}, \frac{\left|a_{12}\right|}{s_{2}}\right\} = \max\left\{\left|0,5073E - 04\right|, \left|0,8631\right|\right\} \Rightarrow p = 2$$

• Precisamos trocar $f_2 \leftrightarrow f_1$

Eliminação

$$m_{21} = \frac{a_{21}}{a_{11}} = \frac{30,00}{5,291} = 5,670$$

$$\begin{bmatrix} 5,291 & -6,130 & 46,78 \\ 0 & ? & ? \end{bmatrix}$$

• Exemplo 7 . . .

$$f_1: 30,00x_1 + 591400x_2 = 591700$$

Pivotamento

$$f_2$$
: $5,291x_1 - 6,130x_2 = 46,78$

$$\max\left\{\frac{\left|a_{11}\right|}{s_{1}}, \frac{\left|a_{12}\right|}{s_{2}}\right\} = \max\left\{\left|0,5073E - 04\right|, \left|0,8631\right|\right\} \Rightarrow p = 2$$

• Precisamos trocar $f_2 \leftrightarrow f_1$

Eliminação

- Exemplo 7 . . .
 - Substituição regressiva

$$x_2 = \frac{a_{23}}{a_{22}} = 1,000$$
 $x_1 = \frac{a_{13} - a_{12}x_2}{a_{11}} = 10,00$

 A estratégia de pivotamento parcial com escala computa satisfatoriamente as soluções do sistema

Pivotamento parcial com escala - Algoritmo

- O algoritmo de GPPE é muito semelhante ao de GPP (slides 46 e 47)
- As mudanças são:
 - Calculo dos fatores de escala na inicialização
 - Linhas 1:2 no GPP

1	Para i=1:n faça	
2	nlin[i] = i	
3	s[i] = A[1,j]	
4	Para j=2:n faça	
5	Se (s[i]< A[i,j]) Então s[i]= A[i,j]	

Pivotamento parcial com escala - Algoritmo

- Mudanças . . .
 - Escolha do pivô
 - Linhas 4:6 no GPP

1	p = i	
2	Para k=1+1:n faça	
3	Se $\left(\frac{\left A_{nlin_pi} \right }{S_{nlin_p}} < \frac{\left A_{nlin_ki} \right }{S_{nlin_k}} \right)$ Então p = k	

 Os outras etapas do algoritmo permanecem inalteradas

- Custo computacional do PPE
- O pivotamento parcial com escala incorpora algumas operações com relação ao pivotamento parcial
 - Cálculo dos fatores de escala
 - Operações de divisão na escolha do pivô
- Cálculo dos fatores de escala
 - Comparações: n(n-1)
- Escolha do pivô

- Divisões:
$$2\left(\frac{n^2}{2} - \frac{3n}{2} + 1\right)$$

• Total de operações: $2n^2 - 4n + 2$

Custo computacional do PPE ...

$$NOP_{GPPE} = NOP_{GPP} + (2n^2 - 4n + 2)$$

$$= \left(\frac{2n^3}{3} + 2n^2 - \frac{5}{3}n\right) + (2n^2 - 4n + 2)$$

$$= \frac{2}{3}n^3 + 4n^2 - \frac{17}{3}n + 2$$

- O PPE tem um custo computacional $O(n^3)$ com coeficiente 2/3
- O custo não difere significativamente do método de Gauss sem pivotamento

- Para alguns sistemas as estratégias de pivotamento parcial (com e sem escala) não são suficientes
- Nestes sistemas deve-se utilizar o pivotamento completo ou maximal
- No pivotamento completo a seleção do pivô e feita na forma

$$a_{pi} = \max_{\substack{i \le k \le n \\ i \le j \le n}} \left| a_{kj} \right|$$

 Escolhe-se como pivô o elemento de maior módulo entre os elementos não processados

Pivotamento completo

- Se a posição do pivô for diferente da posição a_{ii} são feitas trocas de linhas e colunas
- Qual o significado da troca de colunas?
- Desafio: Proponha um algoritmo para implementar o método de Gauss com pivotamento completo (enviar no classroom)

- O pivotamento completo adiciona algumas comparações ao algoritmo de eliminação de Gauss
- Comparações na escolha do pivô

Passagem - i	Comparações adicionais
1	n^2-1
2	$(n-1)^2-1$
3	$(n-2)^2-1$
• • •	• • •
n-1	$[n-(n-2)]^2-1$

$$\sum_{k=2}^{n} (k^2 - 1) = \frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}$$

Custo do método de Gauss com pivotamento completo

$$NOP_{GPC} = NOP_G + \left(\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}\right)$$

$$= \left(\frac{2n^3}{3} + \frac{3n^2}{2} - \frac{n}{6} - 1\right) + \left(\frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}\right)$$

$$= n^3 + 2n^2 - n - 1$$

- O método com pivotamento completo é $O(n^3)$
- Entanto, com coeficiente l, o que representa um aumento significativo no custo computacional
- A utilização do pivotamento completo deve ser justificada pelo tipo de sistema

Custo - Método de Gauss

Comentários – Método de Gauss

- Oferece resultados após um numero conhecido de operações
- Custo $O(n^3)$, inapropriado para sistemas grandes
- Problemas com erros de arredondamento
- Estratégias de pivotamento
 - Parcial
 - Parcial com escala
 - Completo (alto custo computacional)

- **Definição**: Uma matriz A de $n \times n$, é não singular (ou invertível) se existir uma matriz A^{-1} , $n \times n$, tal que $AA^{-1} = A^{-1}A = I$. A matriz A^{-1} é chamada inversa de A.
- Uma matriz que não tem inversa, é chamada singular ou não invertível
- Propriedades da inversa

$$-A^{-1}$$
 é única

$$-A^{-1}A = AA^{-1}$$

$$-A^{-1}$$
 é não singular

$$- (AB)^{-1} = B^{-1}A^{-1}$$

$$-(A^{-1})^{-1}=A$$

- Dado um sistema Ax = b
- Se conhecermos A^{-1} o sistema pode ser resolvido facilmente

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$Ix = A^{-1}b$$

$$x = A^{-1}b$$

• **Exemplo 8**: Considere o sistema $f_1: x_1 + x_2 = 0$ $f_2: x_1 - 2x_2 = 3$

conhecendo A^{-1} obtenha a solução do mesmo.

- Exemplo 8 ...
 - Notação matricial

$$Ax = b \qquad A = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

if
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

- Matriz inversa $A^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{2} & -\frac{1}{3} \end{bmatrix}$
- Solução

$$x = A^{-1}b = \begin{vmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{vmatrix} \begin{vmatrix} 0 \\ 3 \end{vmatrix} \Rightarrow x = \begin{bmatrix} 1 \\ -1 \end{vmatrix}$$

- Embora seja fácil resolver um sistema quando A^{-1} for conhecida
- Não é recomendável calcular A^{-1} a fim de resolver o sistema
- É mais custoso computacionalmente calcular A^{-1} que resolver o sistema
- No entanto, em muitas aplicações é desejável termos um método para calcular A^{-1}

- Suponha que A é uma matriz não singular
- Então existe $B = A^{-1}$ de forma que

$$AA^{-1} = AB = I$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \vdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \vdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

 Considere a multiplicação de A pela j-esima coluna de B teremos

$$AB_{j} = I_{j}$$

$$\begin{bmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1j} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{j-1,1} & \cdots & a_{j-1,j-1} & a_{j-1,j} & a_{j-1,j+1} & \cdots & a_{j-1,n} \\ a_{j1} & \cdots & a_{j,j-1} & a_{jj} & a_{j,j+1} & \cdots & a_{jn} \\ a_{j+1,1} & \cdots & a_{j+1,j-1} & a_{j+1,j} & a_{j+1,j} & \cdots & a_{j+1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{nj} & a_{n,j+1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{1j} \\ \vdots \\ b_{j-1,j} \\ b_{jj} \\ \vdots \\ b_{nj} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
O valor I aparece na j -esima linha do veto

• O valor 1 aparece na j-esima linha do vetor independente

• Podemos calcular a coluna j da matriz inversa resolvendo o sistema anterior

$$AB_j = I_j$$

- Para calcularmos a matriz inversa devemos resolver n sistemas
- Para cada sistema
 - o vetor solução corresponde a uma coluna da inversa
 - o vetor independente a uma coluna da matriz identidade

 Exemplo 9: Utilize o método de eliminação de Gauss com substituição regressiva para calcular a inversa de

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$$

Considere a matriz ampliada*

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -2 & 0 & 1 \end{bmatrix}$$

Eliminação de Gauss

•
$$(f_2-f_1) \rightarrow f_2$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -3 & -1 & 1 \end{bmatrix}$$

- Exemplo 9: . ..
 - Substituição regressiva 1, coluna B_1

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & -1 \end{bmatrix} \qquad b_{21} = \frac{1}{3} \qquad b_{11} = \frac{2}{3}$$

— Substituição regressiva 2, coluna B_2

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \qquad b_{22} = -\frac{1}{3} \qquad b_{12} = \frac{1}{3}$$

Inversa

$$B = A^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix}$$

Comprobação do resultado (quadro)

- Para calcular a matriz inversa
 - Realizamos a eliminação de Gauss (triangulação) na matriz ampliada de 2n colunas A/I
 - Executamos a substituição regressiva n vezes
- Custo do cálculo da matriz inversa

$$NOP_{ELIM} + nNOP_{sub}$$

$$O(n^{3}) + nO(n^{2})$$

$$O(n^{3}) + O(n^{3})$$

$$O(n^{3})$$

A inversão tem custo cúbico

- Dado um sistema na forma Ax = b
- Podemos fatorar a matriz A na forma A = LU
- onde L é uma matriz triangular inferior (*lower*)

$$L = \{l_{ij}\} = \begin{cases} 1, & i = j \\ l_{ij}, & i > j \\ 0, & i < j \end{cases} \qquad \begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & 1 \end{bmatrix}$$

• e U é uma matriz triangular superior (upper)

$$U = \{u_{ij}\} = \begin{cases} u_{ij}, & i \leq j \\ 0, & i > j \end{cases} \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \vdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

• Rescrevemos o sistema Ax = b na forma

$$LUx = b$$

• Considerando y = Ux obtemos

$$Ly = b$$

- Podemos calcular os valores de x em duas etapas
 - Substituição progressiva, $Ly = b \rightarrow y$
 - Substituição regressiva, $Ux = y \rightarrow x$

- Qual é a vantagem da fatoração LU?
 - Resolver um sistema utilizando eliminação de Gauss tem custo $O(n^3)$
 - O processo de substituição regressiva (progressiva) tem custo $O(n^2)$
 - Se a matriz estiver fatorada podemos resolver o sistema em $O(n^2)$ operações
 - Entretanto, fatorar a matriz tem custo $O(n^3)$
 - Uma vez fatorada a matriz podemos resolver o sistema para diversos vetores independentes

• Como calcular as matrizes $L \in U$?

• **Teorema**: Se a eliminação de Gauss pode ser realizada no sistema Ax = b sem trocas de linha (pivotamento), então a matriz A pode ser fatorada na forma A = LU onde

$$L = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ m_{21} & 1 & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & 1 \end{bmatrix} \qquad U = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \vdots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}^{(n)} \end{bmatrix}$$

- ullet A matriz U é a matriz triangular superior da eliminação de Gauss
- Na matriz L os elemento m_{ij} são os multiplicadores da eliminação de Gauss
- A construção das matrizes L e U é justificada na seguinte sequência de passos,
 - O primeiro passo da eliminação de Gauss consiste em

$$(f_j - m_{j1} f_1) \rightarrow f_j, \qquad m_{j1} = \frac{a_{j1}^{(1)}}{a_{11}}, \qquad j = 2:n$$

isto, equivale a

$$M^{(1)}A^{(1)}x = A^{(2)}x$$

• Construção das matrizes L e $U\,\dots$

$$M^{(1)}A^{(1)} = A^{(2)}$$

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ -m_{21} & 1 & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -m_{n1} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & \vdots & a_{2n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}^{(1)} & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} \end{bmatrix} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \vdots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(2)} & \cdots & a_{nn}^{(2)} \end{bmatrix}$$

O segundo passo da eliminação de Gauss

$$(f_j - m_{j2} f_2) \rightarrow f_j, \qquad m_{j2} = \frac{a_{j2}^{(2)}}{a_{22}}, \qquad j = 3:n$$

- isto, equivale a transformação

$$M^{(2)}A^{(2)}x = A^{(3)}x$$

- Construção das matrizes L e $U\,\dots$
 - Segunda transformação de Gauss

$$M^{(2)}A^{(2)} = A^{(3)}$$

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \vdots & 0 \\ 0 & -m_{32} & 1 & \vdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -m_{n2} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & a_{32}^{(2)} & a_{32}^{(2)} & \cdots & a_{3n}^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(2)} & a_{n3}^{(2)} & \cdots & a_{nn}^{(2)} \end{bmatrix} =$$

$$= \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{32}^{(3)} & \cdots & a_{3n}^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{n3}^{(3)} & \cdots & a_{nn}^{(3)} \end{bmatrix}$$

- Construção das matrizes L e U ...
 - Generalizando, a k-esima transformação de Gauss corresponde a

$$(f_j - m_{jk} f_k) \rightarrow f_j, \qquad m_{jk} = \frac{a_{jk}^{(k)}}{a_{kk}}, \qquad j = k+1:n$$

isto, equivale a transformação

$$M^{(k)}A^{(k)}x = A^{(k+1)}x$$

$$\begin{bmatrix}
1 & 0 & \cdots & 0 & \cdots & \cdots & 0 \\
0 & 1 & \cdots & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & & & \vdots \\
0 & 0 & \cdots & 1 & \ddots & 0 \\
0 & 0 & \cdots & -m_{k+1,k} & \ddots & \ddots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & -m_{n,k} & \cdots & \cdots & 1
\end{bmatrix}$$

- Construção das matrizes L e $U\,\dots$
 - A k-esima transformação de Gauss

$$M^{(k)}A^{(k)} = A^{(k+1)}$$

$$A^{(k)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1k}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \cdots & a_{2k}^{(2)} & \cdots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{kk}^{(k)} & \ddots & a_{kn}^{(k)} \\ 0 & 0 & \cdots & a_{k+1,k}^{(k)} & \ddots & \vdots \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nk}^{(k)} & \cdots & \cdots & a_{nn}^{(k)} \end{bmatrix}$$

- Construção das matrizes L e $U\,\dots$
 - A k-esima transformação de Gauss

$$M^{(k)}A^{(k)} = A^{(k+1)}$$

$$A^{(k+1)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1k}^{(1)} & \cdots & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \cdots & a_{2k}^{(2)} & \cdots & \cdots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots \\ 0 & 0 & \cdots & a_{kk}^{(k)} & \ddots & & a_{kn}^{(k)} \\ 0 & 0 & \cdots & 0 & \ddots & \ddots & a_{k+1,n}^{(k+1)} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & \cdots & a_{nn}^{(k+1)} \end{bmatrix}$$

- Construção das matrizes L e U ...
 - O processo termina na transformação (n-1), onde obtemos $A^{(n)}x$, sendo A(n)=U uma matriz triangular superior
 - Desta forma U é definida como

$$U = A^{(n)} = M^{(n-1)}M^{(n-2)}\cdots M^{(2)}M^{(1)}A$$

- A construção da matriz L visa preservar a matriz A em cada etapa de eliminação
- Na primeira transformação

$$M^{(1)}A^{(1)} = A^{(2)}$$

– Se multiplicarmos pela inversa de $M^{(1)}$

$$\lceil M^{(1)} \rceil^{-1} M^{(1)} A^{(1)} = IA^{(1)} = A^{(1)} = A$$

- Construção das matrizes L e $U\,\ldots$
 - Definimos então $L^{(1)}$

$$L^{(1)} = \begin{bmatrix} M^{(1)} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ m_{21} & 1 & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & 0 & \cdots & 1 \end{bmatrix}$$

Na segunda transformação

$$M^{(2)}A^{(2)} = A^{(3)}$$

$$\left[M^{(2)} \right]^{-1} M^{(2)}A^{(2)} = IA^{(2)} = A^{(2)}$$

- Construção das matrizes L e $U\,\dots$
 - Definimos então $L^{(2)}$

$$L^{(2)} = \begin{bmatrix} M^{(2)} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \vdots & 0 \\ 0 & m_{32} & 1 & \vdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & m_{n2} & 0 & \cdots & 1 \end{bmatrix}$$

- Construção das matrizes L e $U\,\dots$
 - Na transformação k-ésima

$$L^{(k)} = \begin{bmatrix} M^{(k)} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 & & \ddots & & 0 \\ 0 & 0 & \cdots & m_{k+1,k} & \ddots & \ddots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & m_{n,k} & \cdots & \cdots & 1 \end{bmatrix}$$

- Construção das matrizes L e $U\,\dots$
 - Finalmente, calcula-se a matriz L como

$$L = L^{(1)}L^{(2)}\cdots L^{(n-2)}L^{(n-1)}$$

$$L = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_{21} & 1 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{n,n-1} & 1 \end{bmatrix}$$

• A fatoração LU pode ser escrita como

$$LU = L^{(1)}L^{(2)}\cdots L^{(n-2)}L^{(n-1)}M^{(n-1)}M^{(n-2)}\cdots M^{(2)}M^{(1)}A$$

$$= \left[M^{(1)}\right]^{-1}\left[M^{(2)}\right]^{-1}\cdots \left[M^{(n-2)}\right]^{-1}\left[M^{(n-1)}\right]^{-1}M^{(n-1)}M^{(n-2)}\cdots M^{(2)}M^{(1)}A$$

$$= A$$

• Exemplo 10: Dado o sistema

$$f_1: x_1 + x_2 + 3x_4 = 4$$

$$f_2: 2x_1 + x_2 - x_3 + x_4 = 1$$

$$f_3: 3x_1 - x_2 - x_3 + 2x_4 = -3$$

$$f_4: -x_1 + 2x_2 + 3x_3 - x_4 = 4$$

Utilize a técnica de fatoração LU para resolver o sistema

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & l_{32} & 1 & 0 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

- Exemplo 10 ...
 - Fatoração, etapa 1

$$(f_2 - 2f_1) \rightarrow f_2$$
 $m_{21} = 2$
 $(f_3 - 3f_1) \rightarrow f_3$ $m_{31} = 3$
 $(f_4 + f_1) \rightarrow f_4$ $m_{41} = -1$

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & -4 & -1 & -7 \\ 0 & 3 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & l_{32} & 1 & 0 \\ -1 & l_{42} & l_{43} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

- Exemplo 10 ...
 - Fatoração, etapa 2

$$(f_3 - 4f_2) \rightarrow f_3 \qquad m_{32} = 4$$
$$(f_4 + 3f_2) \rightarrow f_4 \qquad m_{42} = -3$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & l_{43} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

- Exemplo 10 ...
 - Fatoração, etapa 3

$$(f_4 - 0f_3) \rightarrow f_4 \qquad m_{43} = 0$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix}$$

- Comprovar LU = A

- Exemplo 10 ...
 - Substituição progressiva, Ly = b

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ -3 \\ 4 \end{bmatrix} \qquad \begin{aligned} y_1 &= 4 \\ 1 \\ -3 \\ 4 \end{bmatrix} \qquad \begin{aligned} y_2 &= -7 \\ y_3 &= 13 \\ 4 \end{bmatrix}$$

— Substituição regressiva, Ux = y

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & 5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ -7 \\ 13 \\ x_1 = -1 \end{bmatrix}$$

$$x_4 = 1$$

$$x_3 = 0$$

$$x_2 = 2$$

$$x_1 = -1$$

- Para resolver SELAs usando fatoração LU
 - Construir as matrizes LU
 - Resolver usando substituição progressiva Ly = b
 - Resolver utilizando substituição regressiva Ux = y
- Algoritmo de fatoração LU
 - Primeira linha de U, primeira coluna de L (L1:6)
 - Linhas i=2:n-1 de U, colunas j=2:n-1 de L (L7:23)
 - Elementos da diagonal (L7:12)
 - Elementos abaixo/direita da diagonal (L13:23)
 - Elementos u_{nn} e l_{nn} (L24:28)

Algoritmo – Fatoração LU

```
Entrada: n, A=a[i,j], i=1:n, j=1:n
Saída: L[i,j], i=1:n, j=i:n; U[i,j], i=1:n, j=1:i
     L[1,1]=1
     U[1,1] = A[1,1]
     Para j=2:n faça
4
       U[1,j] = A[1,j]
5
       L[i,1] = A[i,1]/U[1,1]
     Fim-para
6
     Para i = 2:n-1 faça
       L[i,i] = 1
       sum = 0
       Para k = 1:i-1 faça
10
11
         sum = sum + L[i,k]*U[k,i]
12
       U[i,i] = A[i,i] - sum
```

Algoritmo – Fatoração LU

```
Para j=i+1:n faça
13
          sum1 = 0
14
          sum2 = 0
15
16
          Para k=i:n+1 faça
17
            sum1 = sum1 + L[i,k]*U[k,j]
18
            sum2 = sum2 + L[j,k]*U[k,i]
19
          Fim-para
20
          U[i,j] = (A[i,j]-sum1)/L[i,j]
21
          L[j,i] = (A[i,j]-sum2)/U[i,j]
2.2
        Fim-para //j=i+1:n
2.3
      Fim-para //i=2:n-1
24
      L[n,n] = 1
      sum3 = 0
25
      Para k=1:n-1 faça
26
2.7
        sum3 = sum3 + L[n,k]*U[k,n]
2.8
      U[n,n] = A[n,n] - sum3
29
      SAIDA(L, U)
```

Comentários finais

- O método de Gauss pode ser utilizado (com alguns ajustes) para calcular a inversa de uma matriz
- A fatoração LU é recomendável quando devemos resolver vários sistemas que
 - Compartilham a matriz do sistema
 - Apresentam diferentes vetores independentes
- Esta situação aparece em
 - Diversos métodos iterativos
 - Na inversão de matrizes (útil para n grande)

Comentários finais

- A fatoração apresentada não inclui técnicas de pivotamento
- O pivotamento pode ser incluso usando matrizes de permutação
- Para matrizes especiais (diagonal dominante, definida positiva) as técnicas de fatoração podem ser aprimoradas
 - Fatoração de Cholesky
 - Fatoração de Crout