

Assignment on 1-D Diffusion Groundwater Flow

Course Name: Computational Geology Lab
GML 505

Submitted By,

Sihab Hossain

Master of Science (Geology) in Hydrogeology and Water Resources Management

Reg. No: 2018-226-504

Roll:1269

Session: 2022-23

DEPARTMENT OF GEOLOGY FACULTY OF EARTH AND ENVIRONMENTAL SCIENCES UNIVERSITY OF DHAKA DHAKA-1000

1-D Diffusion Groundwater Flow

tig: cross section view of an island

we know,

$$3 \frac{1}{12} = -\frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} \frac{1}{12} + \frac{1}{12} \frac{1}{12} \right)$$

$$NOW, \text{ the boundary condition is } x = 0, f = 0$$

$$x = 1, f = 0$$

$$When, x = 0, f = 0$$

$$3 = -\frac{1}{12} + \frac{1}{12} + \frac{$$

Now organize them for matrix visualization

-2h1+h2=-dx"--ho

h1-2h2+h3=-dx"-
h2-2h3+h1=-dx"-
h3-2h1+h5=-dx"-
h4-2h5+h(=dx"-
h5-2h6+h7=-dx"-
h6-2h7+h8=-dx"-
h8-2h9+h10=-dx"-
h9-2h10+h10xx-h1

Here,
Recharge, $P = 0.002 \, \text{m/d}$ Transmissivity, $T = 1500 \, \text{m/d}$ length, $L = 5000 \, \text{m}$ idx = $\frac{L}{10} = \frac{5000 \, \text{m}}{10} = 500 \, \text{m}$ idx = $(500)^{x} = 250000 \times 0.002$ idx = $\frac{-250000 \times 0.002}{5000} = -0.3333$

From the Motority solution in excel we found the hi, him ho is given below

Li z 1.66667 m hz z 3 m hz = 4 m ha = 4.6667 m

h5 = 5 m

h6 = 5 m

h7 = 4.6667 m

48 = 4 m

hg = 3 m

ha 0 = 1.6667 m.

4	Α	В	С	D	E	F	G	Н	1	J	K	L		M	N	0
	Parameters						dx^2(R/T)-h0	-0.33333								
2	Recharge	0.002	m/d				dx^2(R/T)	-0.33333				Recharg				
3	Transmissivity	1500	m²/d				dx^2(R/T)	-0.33333		1	1	1 1				
ļ	Length	5000	m	dx ²			dx^2(R/T)	-0.33333		•				_	_	
,	dx	5000/10	500	250000			dx^2(R/T)	-0.33333		_/			1	h(x)		
,							dx^2(R/T)	-0.33333	h=0			Ť				h=0
7							dx^2(R/T)	-0.33333		_			ь		\longrightarrow	
							dx^2(R/T)	-0.33333		—	Flow Direct	tion		Flow Di	rection	
9							dx^2(R/T)	-0.33333								
0							dx^2(R/T)-h11	-0.33333					L			
1									•	x=0		Acu	itard		x=t	
2												Ado	matu			
	Coefficient Mat	rix														
4	-2	1		0	0	0	0	0	0	0		h1			-0.33333	
5	1	-2	1	0	0	0	0	0	0	0		h2			-0.33333	
6	0	1	-2	1	0	0	0	0	0	0		h3			-0.33333	
7	0	0	1	-2	1	0	0	0	0	0		h4			-0.33333	
8	0	0	0	1	-2	1	0	0	0	0	X	h5			-0.33333	
9	0	0	0	0	1	-2	1	0	0	0		h6			-0.33333	
0	0	0	0	0	0	1	-2	1	0	0		h7			-0.33333	
1	0	0	0	0	0	0	1	-2	1	0		h8			-0.33333	
2	0	0	0	0	0	0	0	1	-2	1		h9			-0.33333	
3	0	0	0	0	0	0	0	0	1	-2		h10			-0.33333	
4																
5																
6		Inverse Co	efficient N	//atrix											Solution	
7	-0.909090909	-0.81818	-0.72727	-0.63636	-0.54545	-0.45455	-0.363636364	-0.27273	-0.18182	-0.09091		-0.333	333	h1	1.666667	
8	-0.818181818	-1.63636	-1.45455	-1.27273	-1.09091	-0.90909	-0.727272727	-0.54545	-0.36364	-0.18182		-0.333	333	h2	3	
9	-0.727272727	-1.45455	-2.18182	-1.90909	-1.63636	-1.36364	-1.090909091	-0.81818	-0.54545	-0.27273		-0.333	333	h3	4	
0	-0.636363636	-1.27273	-1.90909	-2.54545	-2.18182	-1.81818	-1.454545455	-1.09091	-0.72727	-0.36364		-0.333	333	h4	4.666667	
1	-0.545454545	-1.09091	-1.63636	-2.18182	-2.72727	-2.27273	-1.818181818	-1.36364	-0.90909	-0.45455	X	-0.333	333	h5	5	
2	-0.454545455	-0.90909	-1.36364	-1.81818	-2.27273	-2.72727	-2.181818182	-1.63636	-1.09091	-0.54545		-0.333	333	h6	5	
3	-0.363636364	-0.72727	-1.09091	-1.45455	-1.81818	-2.18182	-2.545454545	-1.90909	-1.27273	-0.63636		-0.333	333	h7	4.666667	
4	-0.272727273	-0.54545	-0.81818	-1.09091	-1.36364	-1.63636	-1.909090909	-2.18182	-1.45455	-0.72727		-0.333	333	h8	4	
5	-0.181818182	-0.36364	-0.54545	-0.72727	-0.90909	-1.09091	-1.272727273	-1.45455	-1.63636	-0.81818		-0.333	333	h9	3	
36	-0.090909091	-0.18182	-0.27273	-0.36364	-0.45455	-0.54545	-0.636363636	-0.72727	-0.81818	-0.90909		-0.333	333	h10	1.666667	
37																

Figure 1 Matrix Solution by Excel

1-D Diffusion solution by R

Analytical Solution of the 1-D diffusion groundwater flow:

R=0.002 # Recharge is m/d

T=1500 #Transmissivity is m^2/d

L=5000 # Length is m

dx=500 #small distance divided by the total cell number

x=seq(from=0, to=L, by=dx)

 $h=R*(L*x-x^2)/(2*T)$

plot(x,h, type="l",col="red",lwd=3, main = "Analytical Solution for island problem", xlab =
 "Horizontal distance", ylab = "Water Head")

Analytical Solution for island problem

Figure 2 Analytical Solution Graph

Numerical Solution of the 1-D diffusion groundwater flow:

```
z=10 \ \#number of equations
A = matrix(c(rep(c(-2,1,rep(0, times=z-2),1), times=z-1),-2), nrow = z, ncol = z, byrow = TRUE)
a=inv(A) \ \#used by matlib package
R=0.002
T=1500
L=5000
dx=L/(z+1)
x=seq(from=0, to=L, by=dx)
p=-dx^2*(R/T)
a1=a*p
h1=rowSums(a1)
h=c(0,h1,0)
plot(x,h,type="l",col="red",lwd=3, main = "Numerical Solution for island problem", xlab = "Horizontal distance", ylab = "Water Head")
```

Numerical Solution for island problem

Figure 3 Numerical Solution Graph

Numerical Solution for 5th equation of the 1-D diffusion groundwater flow:

```
z=10 #number of equations
s=5 #discharge equation no
A = matrix(c(rep(c(-2, 1, rep(0, times=z-2), 1), times=z-1), -2),
      nrow = z, ncol = z, byrow = TRUE)
a=inv(A) #requires matlib package
R=0.002 #recharge
R1=-0.001 #discharge
T=1500 #
L=5000
dx=L/(z+1)
x=seq(from=0, to=L, by=dx)
p=-dx^2*(R/T)
p1 = -dx^2 * (R1/T)
q=c(rep(p, times=z))
Q=matrix(q, nrow = z, ncol = 1, byrow = TRUE)
Q[s,1]=p1
h1 = a\% *\%Q
h=c(0,h1,0)
plot(x,h,type="l",col="red",lwd=3, main = "Numerical Solution for island problem", xlab =
    "Horizontal distance", ylab = "Water Head")
```

Numerical Solution for island problem

Figure 4 Numerical Solution graph of 5th Equation