Recurrent Neural Networks

Quiz, 10 questions

1 point

1

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

- $\bigcirc \quad x^{(i) < j >}$
- $igcap_x^{< i > (j)}$
- $\bigcirc \quad x^{(j) < i > }$
- $\bigcirc \quad x^{< j > (i)}$

1 point

2.

Consider this RNN:

This specific type of architecture is appropriate when:

- $\int T_x = T_y$
- $T_x > T_y$

 $T_x < T_y$

 $\bigcap T_x = 1$

1 point

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

4.

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- Stimating $P(y^{<1>}, y^{<2>}, \dots, y^{<t-1>})$
- $\bigcirc \quad \text{Estimating } P(y^{< t>}) \\$
- Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$
- Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

1 point

5.

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

1 point

6.

You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

- Vanishing gradient problem.
- Exploding gradient problem.
- ReLU activation function g(.) used to compute g(z), where z is too large.
- Sigmoid activation function g(.) used to compute g(z), where z is too large.

7.

Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

- 1
- 100
- 300
- 10000

1 point

8.

Here're the update equations for the GRU.

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[\ c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

	Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay. Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay. Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.	
1 poin	nt	
). Here a	are the equations for the GRU and the LSTM:	
	GRU	LSTM
	$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$
	$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	$\Gamma_u = \sigma(W_u[a^{< t-1>},x^{< t>}] + b_u)$
	$\Gamma_r = \sigma(W_r[c^{< t-1>},x^{< t>}] + b_r)$	$\Gamma_f = \sigma(W_f[a^{< t-1>},x^{< t>}] + b_f)$
($c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$	$\Gamma_o = \sigma(W_o[a^{< t-1>},x^{< t>}] + b_o)$
	$a^{} = c^{}$	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$
		$a^{< t>} = \Gamma_o * c^{< t>}$
	these, we can see that the Update Gate and Forget in the GRU. What should go in the the blanks?	Gate in the LSTM play a role similar to and
	Γ_u and $1-\Gamma_u$	
	Γ_u and Γ_r	
	$1-\Gamma_u$ and Γ_u	
	Γ_r and Γ_u	

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$
- Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

Upgrade to submit

