PROYECTO APRENDIZAJE CHDEDVICANA

"You can't manage what you don't measure", Tom De Marco, 1982

"We're drowning in data but starving for knowledge", John Naisbitt, 1982

DESCRIPCIÓN

En este curso corto (4 sesiones), utilizando un enfoque práctico, se repasarán los conceptos básicos de la analítica de datos, en especial los propios del aprendizaje supervisado (regresión y clasificación).

DESCRIPCIÓN

Aprendizaje Supervisado

- Tareas de regresión
- Tareas de clasificación

UNIDADES

Unidad 1

Aprendizaje supervisado Regresión

Unidad 2

Aprendizaje supervisado Clasificación

METODOLOGÍA

Sesión de clase

- Repaso de los conceptos básicos a utilizar dentro del proyecto.
- Presentación y discusión del proyecto
- · Revisión del conjunto de datos a utilizar en la tarea.
- Trabajo grupal (breakout rooms)

ANDRÉS A. ARISTIZÁBAL P.

Formación

- Ingeniero de Sistemas y Computación de la Universidad Javeriana Cali, 2006
- Doctorado en Informática, École Polytechnique de París, Francia, 2012

Experiencia académica

- Investigador en el grupo Avispa de la Universidad Javeriana Cali, 2006 2009
- Investigador Posdoctoral en el grupo de Lenguajes de Programación de la Universidad de Wrocław, Polonia 2014 - 2015
- Profesor hora cátedra de la Universidad Javeriana Cali, 2015
- Profesor hora cátedra de la Universidad Icesi Cali, 2016 2017
- Desde 2017, profesor tiempo completo Universidad Icesi, Facultad de Ingeniería

AGENDA

- Aprendizaje automático
- Aprendizaje supervisado
- Tareas de regresión
- Modelos de regresión
- Proyecto de regresión

APRENDIZAJE AUTOMÁTICO

Definición:

El aprendizaje automático es la ciencia que permite a los computadores aprender, sin ser explícitamente programados¹

1. Andrew Ng, Stanford University, 2014

Modelo tradicional

Ciencia de datos

APRENDIZAJE SUPERVISADO

- Aprender a partir de un "experto"
- Datos de entrenamiento etiquetados con una clase o valor:

• Meta: predecir una clase o valor

TAREAS DE REGRESIÓN

- Encontrar modelos, f, que permitan predecir valores continuos:
 - KNN
 - Regresión lineal
 - Regresión polinómica
 - Árboles de regresión
 - ...
- Valores numéricos de la variable o función objetivo
- Baseline: medida de evaluación dada por un modelo que predice una medida de tendencia central (e.g. el promedio) (→"modelo nulo")

• Regresión lineal: busca una relación lineal entre los atributos predictores (x_i) y el atributo objetivo (Y) $Y = h_{\Theta}(X) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n + \varepsilon$

Los parámetros θ_i son estimados teniendo como objetivo la minimización de los residuos o diferencias cuadradas entre las predicciones (Y) y los valores reales (Y):

$$argmin_{\Theta} \sum_{1}^{m} (y - \hat{y})^2$$

• Regresión Lasso: regularización Ll (suma de los valores absolutos de los coeficientes multiplicados por un lambda)

$$argmin_{\Theta} \sum_{1} (y - \hat{y})^2 + \lambda \sum_{1} |\theta_i|$$

• Regresión Ridge: regularización L2 (suma de los valores cuadrados de los coeficientes multiplicados por un lambda)

$$argmin_{\Theta} \sum_{1}^{m} (y - \hat{y})^2 + \lambda \sum_{1}^{m} \theta_i^2$$

• Regresión polinomial: busca una relación polinomial entre los atributos predictores y la variable objetivo (Y)

$$Y = h_{\Theta}(X) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 \dots + \theta_n x^n + \varepsilon$$

- KNN
- Árboles de decisión
- Random Forest
- Boosting

KNN:

- Algoritmo de aprendizaje supervisado para clasificación y regresión.
- Asigna la clase o valor agregado de las instancias conocidas que se encuentran mas cerca de la instancia a predecir.

Árboles de decisión:

- Algoritmo de aprendizaje supervisado para clasificación y regresión.
- Posee una estructura de árbol, donde sus nodos internos representan las características, las ramas las decisiones y cada hoja el resultado.

Random Forest:

- Algoritmo de aprendizaje supervisado para clasificación y regresión.
- Basado en el concepto de ensambles, el cual es un proceso de combinación de múltiples regresores o clasificadores para resolver un problema complejo y mejorar el rendimiento del modelo.

Boosting:

- Algoritmo de aprendizaje supervisado para clasificación y regresión.
- Mejora la exactitud y rendimiento de los modelos de aprendizaje automático convirtiendo múltiples modelos débiles en uno mucho más potente.

Boosting

Sequential

Proyecto de regresión

- Exploración y visualización
- Ingeniería de características
- Limpieza de datos
 - Imputación de variables
- Protocolos de evaluación
- Métricas de evaluación
- Modelo base
- Uso de pickle para guardar un modelo y sus métricas
- Modelo de regression lineal
- Selección de características
- Modelos Lasso y Ridge
- Modelos polinomiales
- Modelo de K vecinos más cercanos
- Modelo de árboles de decisión
- Modelo de Random forest
- Modelos de Boosting
- Comparación de modelos

