

Computer Vision Course

Lab 4: Features detection & Classification

Niccolò Bisagno niccolo.bisagno@unitn.it

Histogram of Gradients (HOG)

We want to perform binary classification

Exercise

- * Plot HOG features using skimage library
- * Try google it (solution in the last slide)

SIFT

- * The idea is to make scale-invariant the image of concern
- 1. Construct a subspace representation of the image and progressively apply a Gaussian smoothing filter
- 2. At every iteration, each image becomes a blurred version of the previous one.

Stitching

translation

affine

rotation

perspective

aspect

cylindrical

Stitching

Stitching

Exercise

- * Test with image 'book.png'
- * What's the difference?

HOG display-Solution

```
from skimage import exposure from skimage import feature
```