Paralelné programovanie

doc. Ing. Michal Čerňanský, PhD.

FIIT STU Bratislava

Prehľad tém

- Paralelné a distribuované spracovanie
- Témy predmetu
- Programátorské modely
- Organizácia predmetu
- Podmienky abslovovania

NVidia Tesla Supercomputer

- Dôvody
 - Vysoký výkon (vedecké výpočty, grafika)
 - Spoľahlivosť
 - Prirodzená distribuovanosť
- Najvyšší cieľ automatická paralelizácia (Holy Grail)
- Zdroje paralelizmu inštrukcie, dáta, úlohy
- Výsledky
 - Moderné kompilátory
 - Moderné procesory

- Problémy
 - Tepelná disipácia
 - Rýchlosť šírenia signálu

- Riešenie
 - Viacej výpočtových jadier na procesor

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Theoretical GFLOP/s

- Ale
 - Komplikovanejšia tvorba programov

- Výskum
 - Nové jazyky alebo rozšírenia jazykov
 - Podporné prostriedky
 - Čiastočná automatická paralelizácia

- Výskumné trendy
 - Vysokovýkonné počítanie (High Performance computing)
 - Vedecké počítanie (Scientific Computing)
 - Adaptácia algoritmov pre využitie masívneho paralelizmu
 - Špecializované programovacie jazyky a podporné nástroje

- Súčasné HW prostriedky
 - Viacjadrové procesory
 - Mnohojadrové (grafické) procesory
 - Počítačové klastre
 - Počítačové gridy
- Súčasné SW prostriedky
 - Message Passing Interface (MPI)
 - Open Multiprocessing (OpenMP)
 - Cuda a Open Computing Language (OpenCL)

Predpokladané znalosti, zručnosti a schopnosti:

 Znalosti súvisiace s návrhom a realizáciou sekvenčných algoritmov v programovacom jazyku C/C++.

Spôsob hodnotenia a ukončenia štúdia predmetu:

Zápočet (50%) a skúška (50% z celkového hodnotenia)

Priebežné hodnotenie:

- Projekt riešený na jednom cvičení zadaná synchronizačná úloha
- Projekt riešený na cvičeniach MPI+OpenMP
- Projekt úloha zvolená študentom

Záverečné hodnotenie:

Záverečný test

Ciel' predmetu:

- Poskytnúť znalosti o metódach a prostriedkoch paralelného spracovania s dôrazom na ich využitie pri tvorbe aplikácií.
- Získať praktické skúsenosti s návrhom efektívnych paralelných algoritmov pomocou programovacích modelov pre symetrické multiprocesory a počítačové klastre,
- Pozornosť bude venovaná programovacím modelom pre mnohojarové grafické procesory.

Stručná osnova predmetu:

- Flynnova taxonómia, Amhdalov zákon, Gustafsonov zákon
- Systémy so zdieľanou a distribuovanov pamäťou, multiprocesory a multipočítače
- Podmienky paralelizmu, dátová a zdrojová nezávislosť
- Zdroje paralelizmu, paralelizmus na úrovni inštrukcí, dátový paralelizmus, paralelizmus úloh
- Návrh paralelných programov, komunikácia, synchronizácia (atomické operácie, bariery, semafóry, mutexy), závislosť medzi dátami, dekompozícia, granularita, rozkladanie záťaže

Stručná osnova predmetu (pokračovanie):

- Paralelné programovacie modely, model vlákien, model zasielania správ
- Explicité použitie vláken Pthreads (resp. Java threads, Win32 threads, C++11 Threads, ...)
- Implicitné použitie vlákien OpenMP
- Programovanie systémov s distribuovanou pamäťou MPI
- Programovanie mnohojadrových grafických procesorov CUDA, OpenCL
- Analytické modelovanie paralelných programov, analýza výkonnosti, ladenie

Pthreads – POSIX Threads

Explicitné použitie vlákien

```
static void *thread func(void *vptr args)
  return NULL;
pthread t thread;
pthread create (&thread, NULL, thread func, NULL);
pthread join(thread, NULL);
```

OpenMP – Open Multiprocessing

Implicitné použitie vlákien

```
int main(int argc, char* argv[])
  #pragma omp parallel
  printf("Hello, world.\n");
  return 0;
#pragma omp parallel for
for (i = 0; i < N; i++)
```

MPI – Message Passing Interface

```
MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);

MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);
```

Cuda – Compute Unified Device Architecture

```
\dim 3 \operatorname{blockDim}(16, 16, 1);
dim3 gridDim(width / blockDim.x, height / blockDim.y, 1);
kernel<<< gridDim, blockDim, 0 >>>(d odata, width, height);
 global void kernel(float* odata, int height, int width)
   unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
   unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
   float c = tex2D(tex, x, y);
   odata[y*width+x] = c;
```

- Stránka predmetu: https://michalcernansky.github.io/paralprg-fiit/
- Prednášky Michal Čerňanský
 - Streda 11:00 až 12:40
 - Účasť povinná (v rámci možností)
- Cvičenia Michal Čerňanský, Peter Lacko, Lukáš Markovič
 - Účasť nepovinná (podľa potreby)
 - Kozultačný charakter
 - Nutnosť odprezentovať a obhájiť úlohy a projekt

- Vypracovanie úlohy
 - Synchronizačná úloha (PThreads alebo iný model) 5 týžden na cvičeniach (10b)
 - bude zadaná a vypracovaná na cvičení, max. čas na vypracovanie 90 min
- OpenMP a MPI 10 týždeň (20b)
 - Úlohy budú zadané v predstihu, bude možné ich vypracovať mimo cvičení a na cvičeniach ich prísť odprezentovať
 - 4 body za každý týždeň oneskoreného odprezentovania
 - je možné prezentovať iba počas cvičení

- Vypracovanie a odprezentovanie projektu za 20 bodov
 - Tému dohodnúť a odovzdať zadanie najneskôr v 10 týždni
 - Vypracovať a odprezentovať v 12 týždni
 - 4 body za každý týždeň oneskoreného odprezentovania
 - Je možné prezentovať iba počas cvičení
 - Prezentuje sa produkt a odovzdáva sa krátka správa spolu s produktom
- Možné témy:
 - Použitie metód a prostriedkov paralelného spracovania vo vašej bakalarskej práce alebo semestrálnom projekte – oznámiť aj vedúcemu
 - Spracovanie a odprezentovanie zvolenej problematiky
 - Témy z oblasti strojového učenia
 - Témy z oblasti počítačovej grafiky

- Podmienky absolvovania predmetu
 - Vypracovanie, odprezentovanie a odovzdanie všetkých úloh a projektov
 - Úlohy aj projekty musia byť funkčné, v zhode so zadaním posúdi cvičiaci
 - Pri prezentácií je potrebné preukázať patričné vedomosti posúdi cvičiaci
 - Najneskoršie odovzdanie na cvičeniach do konca semestra (- body)
 - Získanie aspoň 20 bodov za prácu počas semestra
 - Získanie aspoň 4 bodov za synchronizačnú úlohu
 - Získanie aspoň 8 bodov za projekt
 - Získanie aspoň 56 bodov z celkového hodnotenie

 Prednášajúci aj cvičiaci si vyhradzujú právo udeliť bonusové body v prípade práce, ktorej kvalita alebo rozsah výrazne prevyšujú požadované parametre

- Plagiarizmus a iné formy akademickej nečestnosti budú posúdené v zmysle štúdijného poriadku fakulty
 - Hodnotenie predmetu FX
 - Informácia pre disciplinárnu komusiu