Empowering Genomic Prediction: Two Essential Tools for Democratizing the Access to Statistical Machine Learning Methods

Talk given to the Center for Quantitative Genetics and Genomics (CQGG), Aarhus University, Denmark.

Dr. Osval Antonio Montesinos López

oamontes1@ucol.mx

Facultad de Telemática Universidad de Colima México April, 20, 2023.

Outline

Introduction

SKM library

 Book: Multivariate Statistical Machine Learning Methods for genomic prediction

Introduction

- Genomic selection (GS) is revolutionizing plant breeding (Meuwissen, et al., 2001). But, because it is a predictive methodology, a basic understanding of statistical machine learning methods is necessary for its successful implementation.
- However, due to lack of time and appropriate training, it is difficult for breeders and scientists of related fields to learn all the fundamentals of prediction algorithms.
- Fortunately, with smart or highly automated software, it is possible for these professionals to appropriately implement any state-of-the-art statistical machine learning method.

Figure 1. Diagram about the logic of genomic selection

SKM library

Sparse kernel methods (SKM) library

- SKM is an R library that allows us to implement seven of the most powerful state-of -the-art algorithms.
 - Bayesian methods
 - Random Forest (RF)
 - Support vector Machine (SVM)
 - Generalized linear models (GLM)
 - Grandient boosting machine (GBM)
 - Partial Least Squares (PLS)
 - Feed-forward artificial neural networks

Sparse kernel methods (SKM) library

- SKM not implement the algorithms itself but internally uses some already popular libraries for this purpose, which are known to have efficient and complete implementations of the algorithms.
- SKM use the same format for implementing 6 out of the 7 state of the art statistical machine learning algorithms.
- For algorithms with hyperparameters, SKM has an easy way to specify the conditions for hyperparameter tuning.

Sparse kernel methods (SKM) library

Also, has many easy-to-use functions for computing metrics for evaluation of the prediction accuracy.

Additionally provides many function for implementing many cross-validation strategies and for making summaries of prediction accuracy.

Hyperparameter tuning in statistical machine learning algorithms

Figure 5.9. Schematic representation of the training, validation and testing sets adapted by Cook (2017).

Hyperparameter tuning in statistical machine learning algorithms

Figure 1: Machine learning algorithm evaluation in one iteration of cross validation.

Installation of the SKM library

```
# Script to install all the required packages for SKM library
is_installed <- function(package) {</pre>
  return(all(package %in% rownames(installed.packages())))
is_windows_os <- function() {</pre>
  return(.Platform$0S.type == "windows")
ok <- TRUE
if (is_windows_os()) {
  if (!is_installed("installr")) {
    install.packages("installr")
   ok <- install.Rtools(check = TRUE, check_r_update = FALSE)</pre>
```

Installation of the SKM library

```
if (ok) {
  if (!is_installed("devtools")) {
    install.packages("devtools")
  devtools::install_github("gdlc/BGLR-R", upgrade = "default")
  devtools::install_github("rstudio/tensorflow", upgrade = "default")
  devtools::install_github("rstudio/keras", upgrade = "default")
  devtools::install_github("brandon-mosqueda/SKM", upgrade = "default")
```

Installation of the SKM library

If devtools can not be installed try:

https://cran.rproject.org/bin/windows/Rtools/rtools42/files/rtools42-5355-5357.exe

Kernel implementation on the SKM library

• One important aspect of the SKM library is the availability of kernels to capture non-linear patterns in data, giving the library its name.

• In the SKM library, you can find seven kernels that can be implemented: Linear, Polynomial, Sigmoid, Gaussian, Exponential, Arc-Cosine 1 and Arc-Cosine L (with L=2,3,...).

Metrics for regression problems available in SKM

Mean Squared Error (mse),

Root Mean Squared Error (rmse),

Normalized Root Mean Squared Error (nrmse),

Mean Absolute Error (mae) and

Mean Arctangent Absolute Percentage Error (maape)

numeric_summary() provides all the above numeric metrics

Metrics for classification problems available in SKM

```
Accuracy (accuracy),
precision (precision),
recall (recall),
sensitivity (sensitivity),
specificity (specificity),
Brier's score (brier_score).
```

Details of most of these metrics can be found in Montesinos-López et al. (2022a)

Metrics for classification problems available in SKM

```
F1 score (f1_score),
```

Kappa coefficient (kappa_coeff),

Matthews coefficient (matthews_coeff),

ROC area under the curve (roc_auc) and

precision-recall area under curve (pr_auc)

categorical_summary() provides all the above categorical metrics

Specific functions for genomic prediction

gs_summaries is a function specific for the context of genomic prediction

gs_summaries expects a data frame with 5 columns: *Fold*, the fold number; *Line*, the line; *Env*, the environment; *Observed* and *Predicted*.

The type of response variable is automatically inferred so numeric or categorical metrics are computed and reported depending on that.

This function returns three different summaries computed by line, by environment and by fold.

The following block of code shows how we can use the function gs_summaries with the predictions in the data frame generated.

```
# Errors metrics for prediction performance
Summaries <- gs_summaries(Predictions)
# Print summaries by line, environment and fold
Summaries$line
Summaries$env
Summaries$fold</pre>
```

Types of cross-validation

K-fold: cv_kfold() is the function in SKM

Stratified k-fold: cv_kfold_strata() is the name of the function in SKM

Random partition: cv_random() is the function to implement this cross-validation in SKM.

Random stratified partitions: cv_random_strata()

Types of cross-validation

Leave-one-group-out: cv_leve_one_group_out()

Random line: cv_random_line()

Missing: cv_na()

Five algorithms in SKM are of models with hyperparameters (with the exception of bayesian_model and partial_least_squares that require hyperparameters but they are computed internally efficiently).

tune_type: It can be "Grid_search" or "Bayesian_optimization".

• tune_cv_type: Cross validation for tuning, it can be "K_fold" or "Random" that call a random partition.

```
# Grid search
model <- SKM::random forest(</pre>
 X training,
  y training,
  # Tunable hyperparameters
  trees number = c(100, 200, 500),
  node size = c(5, 2),
  sampled x vars number = c(0.1, 0.5, 0.8),
  tune_type = "Grid search",
  tune cv type = "k fold",
  tune folds number = 5,
  tune grid proportion = 0.5,
  tune loss function = "mae"
```

```
# Bayesian optimization
model <- SKM::random forest(</pre>
  X training,
  y training,
  # Tunable hyperparameters
  trees number = list(min = 100, max = 500),
  node size = list(min = 2, max = 5),
  sampled x vars number = list(min = 0.2, max = 0.8),
  tune type = "Bayesian optimization",
  tune cv type = "k fold",
  tune folds number = 5,
  tune bayes samples number = 10,
  tune bayes iterations_number = 20,
  tune loss function = "mae"
```

Show all the evaluated combinations with its loss value model\$hyperparams_grid

Show the best combination used for fitting the final model model model hyperparams

• In SKM we refer to Bayesian models to all those models of the BGLR library (Perez & de los Campos, 2014).

• To implement these models can be used the function bayesian_model() of SKM, but, in contrast with the other six algorithms in SKM, the expected format of the predictor consist of a list with the different components of the model.

• Furthermore, instead of partitioning the data in training and testing sets, all the data is provided and the positions used for testing are set to NA or specified in a parameter included for this purpose.

$$Y_{ij} = \mu + L_i + g_j + gL_{ij} + \epsilon_{ij}$$

where $L = (L_1, ..., L_I)^T \sim \mathcal{N}_{\mathcal{I}}(\mathbf{0}, \sigma_L^2 \boldsymbol{H})$, where \boldsymbol{H} denotes the environmental relationship matrix, that is, $\boldsymbol{H} = \frac{X_E X_E^T}{r}$, $\boldsymbol{g} = (g_1, ..., g_J)^T \sim \mathcal{N}_{\mathcal{I}}(\mathbf{0}, \sigma_g^2 \boldsymbol{G})$, $\boldsymbol{gL} = (gL_{11}, ..., gL_{1J}, ..., gL_{IJ})^T \sim \mathcal{N}_{\mathcal{I}\mathcal{I}}(\mathbf{0}, \sigma_{gL}^2 \boldsymbol{H} \odot Z_g \boldsymbol{G} Z_g^T)$, where \boldsymbol{G} is the genomic relationship matrix as computed by (VanRaden, 2008), \odot denotes the Hadamard product and \boldsymbol{H} is the environmental relationship matrix of size I.

```
X <- list(
 list(x = K e, model = "BGLUP"),
 list(x = K g, model = "BGBLUP"),
 list(x = K ge, model = "BGBLUP")
# Sample of 20% of the observations used as testing set
testing_indices <- sample(nrow(X), nrow(X) * 0.2)
SKM::bayesian_model(
 Χ,
 у,
```

```
iterations_number = 100,
burn_in = 50,
thinning = 5,

testing_indices = testing_indices)
```

Example:

Ex_S0. Univariate_Continous_GBLUP

All code are available at:

https://github.com/osval78/SKM_Genomic_Selection_Example

Random forest

Random Forest

```
# Bayesian optimization
model <- SKM::random forest(</pre>
 X training,
  y training,
  # Tunable hyperparameters
  trees number = list(min = 100, max = 500),
  node size = list(min = 2, max = 5),
  sampled x vars number = list(min = 0.2, max = 0.8),
  tune_type = "Bayesian optimization",
  tune cv type = "k fold",
  tune folds number = 5,
  tune bayes samples number = 10,
  tune bayes iterations_number = 20,
  tune loss function = "mae"
```

Random Forest

Example:

Ex_S1.Univariate_Continous

Support Vector Machine

- The support_vector_machine() in the SKM library can be used to implement SVM models.
- For example, a SVM with radial kernel $\left(K(x_i,x_{i'})=exp\left(-\gamma\sum_{j=1}^p(x_{ij}-x_{i'j})\right)\right)$ with γ a positive constant can be implemented using the following code:

Support Vector Machine

```
SKM::support_vector_machine(
 X_training, y_training,
 # Tunable hyperparameters
  kernel = "radial",
  gamma = 1/NCOL(x),
  coef0 = 0,
  cost = 1)
```

Support Vector Machine (SVM)

Example:

Ex_S2. Univariate_Binary

Under generalized linear models, we use a set of p predictor variables and a response variable to fit a model of the form:

Distribution: y_i is distributed among those which are considered exponential families of probability distributions (like normal, binomial, Poisson, etc.)

Linear predictor:
$$\eta_i = \beta_0 + X_{i1}\beta_1 + \cdots + X_{ip}\beta_p$$

Link function: $g(\mu_i) = \eta_i$

where y_i is the response variable for the i-th individual (sample), x_i is the predictor variable, with i=1, 2,...3, β_0 denotes and intercept term, β_i is the beta coefficient corresponding to the predictor x_i .

The loss function that is minimized is

$$minimize\{-\ell(\boldsymbol{\beta};\boldsymbol{y}) + 0.5\lambda \sum_{j=1}^{P} \{(1-\alpha)\beta_j^2 + \alpha|\beta_j|\}$$

Where λ is the penalization parameter, when α =0 a Ridge penalization is implemented, while when α =1 a Lasso penalization is implemented and when 0< α <1 the Elastic Net penalization is implemented. Can be implemented prediction models for continuous response variables (identity link function) for binary (logit link function) for categorical (generalized logit link function) and for counts (exponential logit link function) (Friedman, Hastie, & Tibshirani, 2010).

 Under the SKM library for continuous response variables, it is possible to train multi-trait models.

 The function to implement all these models is the generalized_linear_model() function.

The required parameters for this function are shown in the following block of code:

```
SKM::generalized linear model(
  X training, y training,
 # Tunable hyperparameters
  alpha = 1, ###Lasso Regression
 # Tune configuration parameters
 tune type = "Grid search",
 tune folds number = 5,
 tune grid proportion = 1,
 tune bayes samples_number = 10,
 tune bayes iterations number = 10,
```

```
# Other algorithm's parameters
lambdas_number = 100,

# Seed for reproducible results
seed = NULL,
verbose = TRUE
)
```

Example:

Ex_S3. Univariate_Categorical

Gradiente boosting machine

shrinkage = 0.1,

sampled records proportion = 0.5)

```
following
                block of code
                                      provides the
                                                       specification
The
generalized boosted machine() function:
SKM::generalized_boosted_machine(
 X_training, y_training,
 # Tunable hyperparameters
  trees number = 500,
 max_depth = 1,
  node size = 10,
```

Gradiente boosting machine

Example

Ex_S7.Univariate_Continous_GBM

Partial Least Squares (PLS)

Partial Least Square (PLS) regression is one of the most popular in biological sciences, because it can model complex biological events, it is flexible for considering different factors, and it is unaffected by data collinearity.

• For this reason, authors suggest that the PLS is a potentially valuable method for modeling high-dimensional biological data (as derived from genomics, proteomics and peptidomics) (Palermo et al., 2009).

 PLS can model multiple responses, while efficiently dealing with multicollinearity.

Partial Least Squares (PLS)

Example:

Ex_S8.Univariate_Continous_PLS

Book

State-of-the-art material for genomic prediction

Osval Antonio Montesinos López Abelardo Montesinos López José Crossa

Multivariate Statistical Machine Learning Methods for Genomic Prediction

Foreword by Fred van Eeuwijk

		ents of Genomic Selection and Statistical
Lear	ning	
1.1		a Powerful Weapon
1.2	Genom	ic Selection
	1.2.1	Concepts of Genomic Selection
	1.2.2	Why Is Statistical Machine Learning a Key
		Element of Genomic Selection?
1.3	Modeli	ng Basics
	1.3.1	What Is a Statistical Machine Learning Model?
	1.3.2	The Two Cultures of Model Building: Prediction
		Versus Inference
	1.3.3	Types of Statistical Machine Learning Models
		and Model Effects
1.4	Matrix	Algebra Review
1.5	Statistic	cal Data Types
	1.5.1	Data Types
	1.5.2	Multivariate Data Types
1.6	Types of	of Learning
	1.6.1	Definition and Examples of Supervised Learning
	1.6.2	Definitions and Examples of Unsupervised
		Learning
	1.6.3	Definition and Examples of Semi-Supervised
		Learning
Refer	ences	
Prep	rocessing	Tools for Data Preparation
2.1		or Random Effects
2.2	BLUEs	and BLUPs
2.3	Marker	Depuration
2.4	Method	ls to Compute the Genomic Relationship Matrix

xviii			C	ontents
	2.5	Genom	ic Breeding Values and Their Estimation	. 52
	2.6		ization Methods	
	2.7		Suggestions for Removing or Adding Inputs	
	2.8	Principa	al Component Analysis as a Compression Method	. 63
	Apper			
	Apper	ndix 2		. 68
	Refere	ences		. 69
3	Eleme	ents for B	Building Supervised Statistical Machine	
	Learr	ning Mod	els	. 71
	3.1	Definiti	on of a Linear Multiple Regression Model	. 71
	3.2	Fitting	a Linear Multiple Regression Model	
		via the	Ordinary Least Square (OLS) Method	. 71
	3.3	Fitting	the Linear Multiple Regression Model	
		via the	Maximum Likelihood (ML) Method	. 75
	3.4	Fitting	the Linear Multiple Regression Model	
		via the	Gradient Descent (GD) Method	. 76
	3.5	Advant	ages and Disadvantages of Standard Linear	
		Regress	sion Models (OLS and MLR)	. 80
	3.6	Regular	rized Linear Multiple Regression Model	. 81
		3.6.1	Ridge Regression	. 81
		3.6.2	Lasso Regression	. 93
	3.7	Logistic	c Regression	. 98
		3.7.1	Logistic Ridge Regression	. 100
		3.7.2	Lasso Logistic Regression	. 102
	Apper	ndix 1: R	Code for Ridge Regression Used in Example 2	. 104
	Refere	ences		. 107
4			odel Tuning, and Evaluation of Prediction	
	4.1		oblem of Overfitting and Underfitting	. 109
	4.2		ade-Off Between Prediction Accuracy	
			odel Interpretability	
	4.3		alidation	
		4.3.1	The Single Hold-Out Set Approach	
		4.3.2	The k-Fold Cross-validation	
		4.3.3	The Leave-One-Out Cross-validation	
		4.3.4	The Leave-m-Out Cross-validation	
		4.3.5	Random Cross-validation	
		4.3.6	The Leave-One-Group-Out Cross-validation	
		4.3.7	Bootstrap Cross-validation	
		4.3.8	Incomplete Block Cross-validation	
		4.3.9	Random Cross-validation with Blocks	. 121
		4.3.10	Other Options and General Comments on Cross-	
			validation	. 122

	4.4	Model Tuning	124
		4.4.1 Why Is Model Tuning Important?	126
		4.4.2 Methods for Hyperparameter Tuning	
		(Grid Search, Random Search, etc.)	127
	4.5	Metrics for the Evaluation of Prediction Performance	128
		4.5.1 Quantitative Measures of Prediction Performance	129
		4.5.2 Binary and Ordinal Measures of Prediction	
		Performance	131
		4.5.3 Count Measures of Prediction Performance	137
	Refere	ences	138
5	Linear	r Mixed Models	141
	5.1	General of Linear Mixed Models	141
	5.2	Estimation of the Linear Mixed Model	142
		5.2.1 Maximum Likelihood Estimation	142
	5.3	Linear Mixed Models in Genomic Prediction	148
	5.4	Illustrative Examples of the Univariate LMM	148
	5.5	Multi-trait Genomic Linear Mixed-Effects Models	152
	5.6	Final Comments	157
	Appen	odix 1	158
		odix 2	158
		odix 3	159
	Appen	dix 4	159
		ndix 5	160
		ndix 6	163
		dix 7	165
	Refere	ences	168
6	Rower	ian Genomic Linear Regression	171
	6.1	Bayes Theorem and Bayesian Linear Regression	171
	6.2	Bayesian Genome-Based Ridge Regression	172
	6.3	Bayesian GBLUP Genomic Model	176
	6.4	Genomic-Enabled Prediction BayesA Model	178
	6.5	Genomic-Enabled Prediction BayesB and BayesC Models	180
	6.6	Genomic-Enabled Prediction Bayesian Lasso Model	184
	6.7	Extended Predictor in Bayesian Genomic Regression	
		Models	186
	6.8	Bayesian Genomic Multi-trait Linear Regression Model	188
		6.8.1 Genomic Multi-trait Linear Model	190
	6.9	Bayesian Genomic Multi-trait and Multi-environment	The state of the s
		Model (BMTME)	195
	Appen	idix 1	198
		ndix 2: Setting Hyperparameters for the Prior Distributions	
		BRR Model	199
		ndix 3: R Code Example 1	200

xx		Contents
App	ndix 4: R Code Example 2	. 202
App	ndix 5	. 204
	R Code Example 3	
	R Code for Example 4	. 206
Refe	ences	. 207
7 Baye	sian and Classical Prediction Models for Categorical	
and	Count Data	. 209
7.1	Introduction	
7.2	Bayesian Ordinal Regression Model	. 209
	7.2.1 Illustrative Examples	
7.3	Ordinal Logistic Regression	. 221
7.4	Penalized Multinomial Logistic Regression	. 2:2:5
	7.4.1 Illustrative Examples for Multinomial Penalized	
	Logistic Regression	. 228
7.5	Penalized Poisson Regression	. 232
7.6	Final Comments	. 235
App	ndix 1	. 236
App	ndix 2	. 238
App	ndix 3	240
	ndix 4 (Example 4)	
	ndix 5	
	ndix 6	
	ences	
	oducing Kernel Hilbert Spaces Regression Classification Methods	251
8.1	The Reproducing Kernel Hilbert Spaces (RKHS)	
8.2	Generalized Kernel Model	
0.2	8.2.1 Parameter Estimation Under the Frequentist	. 233
		253
	Paradigm	
	8.2.2 Kernels	
	8.2.3 Kernel Trick	
	8.2.4 Popular Kernel Functions	
	8.2.5 A Two Separate Step Process for Building Kernels	
8.3	Kernel Methods for Gaussian Response Variables	
8.4	Kernel Methods for Binary Response Variables	
8.5	Kernel Methods for Categorical Response Variables	
8.6	The Linear Mixed Model with Kernels	
8.7	Hyperparameter Tuning for Building the Kernels	
8.8	Bayesian Kernel Methods	. 280
	8.8.1 Extended Predictor Under the Bayesian Kernel	
	8.8.1 Extended Predictor Under the Bayesian Kernel BLUP	. 283

xxii			Contents
	10.4	The Universal Approximation Theorem	. 392
	10.5	Artificial Neural Network Topologies	. 393
	10.6	Successful Applications of ANN and DL	
	10.7	Loss Functions	. 399
		10.7.1 Loss Functions for Continuous Outcomes	
		10.7.2 Loss Functions for Binary and Ordinal Outcomes	. 401
		10.7.3 Regularized Loss Functions	. 402
		10.7.4 Early Stopping Method of Training	. 405
	10.8	The King Algorithm for Training Artificial Neural	
		Networks: Backpropagation	. 407
		10.8.1 Backpropagation Algorithm: Online Version	. 412
		10.8.2 Illustrative Example 10.1: A Hand Computation	
		10.8.3 Illustrative Example 10.2—By Hand Computation	. 418
	Refere	nces	. 424
11	A retiffic	cial Neural Networks and Deep Learning for Genomic	
		tion of Continuous Outcomes	427
	11.1	Hyperparameters to Be Tuned in ANN and DL	
		11.1.1 Network Topology	
		11.1.2 Activation Functions	
		11.1.3 Loss Function	
		11.1.4 Number of Hidden Layers	
		11.1.5 Number of Neurons in Each Layer	
		11.1.6 Regularization Type	
		11.1.7 Learning Rate	
		11.1.8 Number of Epochs and Number of Batches	
		11.1.9 Normalization Scheme for Input Data	
	11.2	Popular DL Frameworks	
	11.3	Optimizers	
	11.4	Illustrative Examples	
	Appen	dix 1	
		dix 2	
		odix 3	
	Appen	dix 4	. 467
		dix 5	
		nces	
12		cial Neural Networks and Deep Learning for Genomic	
		tion of Binary, Ordinal, and Mixed Outcomes	
	12.1	Training DNN with Binary Outcomes	
	12.2	Training DNN with Categorical (Ordinal) Outcomes	
	12.3	Training DNN with Count Outcomes	
	12.4	Training DNN with Multivariate Outcomes	
		12.4.1 DNN with Multivariate Continuous Outcomes	
		The Article 1994 Not regardly indicated and the Company of Burkey annual	

		12.4.3 DNN with Multivariate Ordinal Outcomes	498
		12.4.4 DNN with Multivariate Count Outcomes	501
		12.4.5 DNN with Multivariate Mixed Outcomes	504
	Appen	dix 1	507
	Appen	dix 2	512
		dix 3	517
		dix 4	521
		dix 5	526
	Refere	nces	531
13	Convo	olutional Neural Networks	533
	13.1	The Importance of Convolutional Neural Networks	533
	13.2	Tensors	534
	13.3	Convolution	539
	13.4	Pooling	542
	13.5	Convolutional Operation for 1D Tensor for Sequence Data	545
	13.6	Motivation of CNN	546
	13.7	Why Are CNNs Preferred over Feedforward Deep Neural	
		Networks for Processing Images?	548
	13.8	Illustrative Examples	554
	13.9	2D Convolution Example	560
	13.10	Critics of Deep Learning	566
	Appen	dix 1	568
	Appen	dix 2	572
	Refere	nces	576
14	Functi	ional Regression	579
	14.1	Principles of Functional Linear Regression Analyses	579
	14.2	Basis Functions	584
		14.2.1 Fourier Basis	584
		14.2.2 B-Soline Basis	585
	14.3	Illustrative Examples	589
	14.4	Functional Regression with a Smoothed Coefficient	
		Function	598
	14.5	Bayesian Estimation of the Functional Regression	604
	Appen	dix I	611
	Appen	dix 2 (Example 14.4)	617
		dix 3 (Example 14.5)	621
	Appen	dix 4 (Example 14.6)	626
		nces	631
15	Rando	om Forest for Genomic Prediction	633
	15.1	Motivation of Random Forest	633
	15.2	Decision Trees	634
	15.3	Random Forest	637

·	CT
XXIV	Contents

	Response Variables	63 64
15.5	15.4.1 Splitting Rules	65
15.6	RF Algorithm for Multivariate Response Variables	65
15.7	Final Comments	66
Apper	dix 1	- 66
Apper	dix 2	66
	dix 3	66
	dix 4	66
	dix 5	67
	dix 6	67
	mees	68

Open Source:

https://link.springer.com/book/10.1007/978-3-030-89010-

0#toc

Conclusions

Due to ghe fact that the GS is a predictive methodology still is challenging its implementation in many breeding programs since many factors affect its accuracy.

For this reason, a lot of research is being conducted to improve some of the factors that affects its accuracy.

However, as pointed out before statistical machine learning methods are key for the sucessful implementation of the GS methodology.

Conclusions

The SKM library provides an opportunity to utilize various statistical machine learning techniques for Genomic prediction without the need for extensive expertise in statistics and programming.

Additionally, SKM offers the advantage of incorporating other types of omics data, such as genomic, phenotypic and other omics information, which has been shown to enhance predictive accuracy based on empirical evidence.

Conclusions

In order to democratize the implementation of genomic prediction, there is a need for software that is easier to use, more automatic, and open source.

The book provides fundamental concepts, illustrative examples, and open-source code for various statistical machine learning methods that are useful for genomic selection.

Furthermore, this document contains most of the state-of-theart algorithms utilized in genomic prediction, presenting a comprehensive resource for researchers in the field.

Questions?

Thanks!

REFERENCES

Montesinos-López A, Montesinos-López OA, Montesinos-López JC, Flores-Cortes CA, de la Rosa R, Crossa J. (2021). A guide for kernel generalized regression methods for genomic-enabled prediction. Heredity (Edinb). 126(4):577-596. doi: 10.1038/s41437-021-00412-1.

Montesinos-López O. A., Montesinos-López A., Crossa, J. (2022a). Multivariate Statistical Machine Learning methods for genomic prediction. Springer Nature, Switzerland, ISBN: 978-3-030-89012-4.

Montesinos-López, O.A., Mosqueda-González, B.A., Palafox-González, A., Montesinos-López, A. and Crossa, J. (2022). A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction. Front. Genet. 13:887643. doi: 10.3389/fgene.2022.887643