IN THE SPECIFICATION:

BEST AVAILABLE COPY

Please amend the paragraph beginning at page 14, line 5, as follows:

Fig. 7 illustrates a first exemplary construction of sub-demultiplexer $\frac{133-1}{135-1}$. As shown in Fig. 7, sub-demultiplexer $\frac{133-1}{135-1}$ receives channels $\lambda_1-\lambda_8$ at an input 525 of a 1 x 8 splitter 515, commercially available from IOT, for example. Splitter-515-has eight outputs, each-of-which supplying channels- $\lambda_1-\lambda_8$ to a corresponding one of eight optical selectors 530. Splitter 515, as well as splitter 110, may include a waveguide doped with an optically active material, such as erbium. Such a waveguide may further be optically pumped so that splitter 515 has reduced loss or provides optical gain.

BEST AVAILABLE COPY

Please amend the paragraph beginning at page 15, line 1, as follows:

Fig. 8 illustrates an alternative construction for subdemultiplexer $\frac{133-1}{135-1}$. Here, the channel group $\lambda_1 - \lambda_8$ is supplied to a planar arrayed waveguide grating (AWG) 610 or dielectric thin film demultiplexer, which supplies a respective channel on each of outputs 610-1 to 610-8. If the spacing between adjacent ones of channels λ_1 - λ_8 is relatively narrow, AWG 610 can introduce an unacceptably high level of undesired cross-talk. Accordingly, additional filtering may be required. selector 630 is further illustrated in Fig. 8 to isolate a single channel, e.g., λ_1 , and remove any cross-talk. In this case, selector 630 includes a coupler 655 receiving substantially channel λ_1 at a first port 655-1. The input light is next supplied to in-fiber Bragg grating 640 through second port 655-2. In-fiber Bragg grating 640 substantially reflects only channel λ_1 , while passing other wavelengths. Thus, channel λ_1 is reflected back to second port 655-2 and output to one of photodiodes 150 via third output port 655-3 of coupler 655.

BEST AVAILABLE COP

Please amend the paragraph beginning at page 16, line 1, as follows:

Fig. 9 illustrates a further exemplary construction of subdemultiplexer 133-1 135-1. In this instance, sub-demultiplexer 133-1 135-1 comprises a plurality of Mach-Zehnder interferometers. It is known that Mach-Zehnder interferometers, which include optical waveguides of varying lengths, can be used to separate wavelengths (see for example, published European Patent Application EP0482461). Accordingly, as shown in Fig. 9, Mach-Zehnder interferometers can be cascaded to separate a group of wavelengths. For example, Mach-Zehnder interferometer 710 separates input channels λ_1 - λ_8 into sub-groups of channels λ_1 , 3, 5, 7 and λ_2 , 4, 6, 8, respectively. Channel sub-group λ_1 , 3, 5, 7 is supplied to Mach-Zehnder interferometer 715 and channel sub-group λ_2 , 4, 6, 8 is supplied to Mach-Zehnder interferometer 720. As further shown in Fig. 9, Mach-Zehnder interferometers 715 and 720 further break down these channel sub-groups to channel pairs $\lambda_{1,5}$, $\lambda_{3,7}$, $\lambda_{2,6}$, and $\lambda_{4,8}$, which are further demultiplexed into individual channels by Mach-Zehnder interferometers 725, 730, 735 and 740, respectively.