

ESTATÍSTICA PARA SAÚDE COLETIVA Aula 9

Recados

• Na próxima aula inicia-se as apresentação de seminário!

Nomes (Aluno ou Dupla)	Nome do artigo
ALEX SILVA + WILLIAM	Quedas entre idosos brasileiros residentes em áreas urbanas: ELSI-Brasil
) + (¬() K + \	Resistência insulínica e sua relação com excesso de peso em adolescentes de uma capital do Nordeste Brasileiro
	Problemas emocionais e uso de medicamentos psicotrópicos: uma abordagem da desigualdade racial

Próxima semana

Nomes (Aluno ou Dupla)	Data seminário	Nome do artigo	
ELZA DA SILVA	06/10/2020	Carga de trabalho de enfermagem em unidade de terapia intensiva destinada a pacientes com queimaduras	
LETICIA GOMES	06/10/2020	Clima organizacional e trabalho em equipe na estratégia saúde da família	
THAIS RIBEIRO	06/10/2020	Estudo quanti-qualitativo sobre amamentação exclusiva por gestantes de alto risco	
CLAUDIA MARTINS	08/10/2020	Análise Espacial dos Casos de COVID-19 e leitos de terapia intensiva no estado do Ceará, Brasil	
CLAUDINEIA SOARES TORRES	08/10/2020	Estimativas de impacto do Covid-19 na mortalidade de idosos institucionalizados no Brasil	
PRISCILA PRATES	08/10/2020	Promoção comercial ilegal de produtos que competem com o aleitamento materno	

Feedback lista 7 e 8

• Revisão das questões com maior erro

Pergunta 6. Existe evidências de que há diferença na média do número de anos de prática de atividade física (Coluna) entre homens e mulheres (Coluna Sexo)? Para responder essa questão, aplique o teste de Wilcoxon-Mann-Whitney para amostras independentes. Assuma um nível de significância de 5%. Assuma que a distribuição dos dados não é normal.(Basta adaptar o nome das colunas da tabela linha 83 do script da aula)

4 / 10 respostas corretas

> # Pergunta 6

```
Wilcoxon rank sum test with continuity correction data: tabela1$AtividadePrevia by tabela1$Sexo
W = 1488, p-value = 0.09546
```

alternative hypothesis: true location shift is not equal to 0

> boxplot(tabela1\$AtividadePrevia~tabela1\$Sexo)

> wilcox.test(tabela1\$AtividadePrevia~tabela1\$Sexo)

0.09 > 0.05

> # Pergunta 6

```
> boxplot(tabela1$AtividadePrevia~tabela1$Sexo)
> wilcox.test(tabela1$AtividadePrevia~tabela1$Sexo)

Wilcoxon rank sum test with continuity correction

data: tabela1$AtividadePrevia by tabela1$Sexo
W = 1488, p-value = 0.09546
alternative hypothesis: true location shift is not equal to 0
```

Selecione as respostas corretas: Pergunta 6. Existe evidências de que há diferença na média do número de anos de prática de atividade física (Coluna) entre homens e mulheres (Coluna Sexo)? Para responder essa questão, aplique o teste de Wilcoxon-Mann-Whitney para 1 pontos amostras independentes. Assuma um nível de significância de 5%. Assuma que a distribuição dos dados não é normal.(Basta adaptar o nome das colunas da tabela linha 83 do script da aula) Existe (sim) evidências de que há diferença. Não existe evidencias de que há diferença. Não é possível responder essa pergunta com os dados apresentados. Não consegui responder essa perguntar porque não entendi como aplicar o teste. Não consegui responder essa perguntar porque não tenho computador disponível para executar o teste. Não sei/Não quero responder essa pergunta. Adicionar feedback da resposta

Concluido

Pergunta 2. De forma geral, qual é principal diferença entre o Teste T (teste paramétrico) e um teste de Wilcoxon (teste não-paramétrico) - para amostras pareadas?

6 / 11 respostas corretas

Selecione as respostas corretas:

Pergunta 2. De forma geral, qual é principal diferença entre o Teste T (teste paramétrico) e um teste de Wilcoxon (teste não-paramétrico) - para amostras pareadas?

O Teste T é usado quando a diferença entre duas observações, de uma mesma unidade amostral, apresenta distribuição normal. Ao passo que o teste de Wilcoxon é usado essa diferença não apresenta distribuição normal.

- O Teste T é usado quando ambos os conjuntos de dados comparados apresentam distribuição normal, e o teste de Mann-Whitney é usado quando qualquer um dos conjuntos de dados comparados apresentam distribuição diferente da normal.
- O Teste T é usado para comparar médias entre 2 grupos, e o teste de Wilcoxon é usado para comparar médias entre mais de 2 grupos
- Todas as alternativas anteriores estão erradas
- Adicionar feedback da resposta

ANOVA

Aula de hoje

Contínua

Categórica

UF de residência

Mesma ideia do teste t, com a diferença que a variável categórica pode mais de 2 grupos

Aula de hoje

Variável resposta Variável preditora

UF de residência Expectativa de vida -

Mesma ideia do teste t, com a diferença que a variável categórica pode mais de 2 grupos

Tópicos dessa semana

1 variável preditora

Variável resposta

Variável preditora

Expectativa de vida <

UF de residência

2 variáveis preditoras

Variável resposta Variáveis preditoras

Expectativa de vida — UF de residência + Sexo

ANOVA simples (uma entrada)

• 1 Variável preditora: Variáveis qualitativa que divide os dados em 3 grupos ou mais

• Variável resposta: 1 Variável quantitativas contínuas

ANOVA dupla (duas entradas)

• 2 Variáveis preditora: Variáveis qualitativa que divide os dados em grupos

• Variável resposta: 1 Variável quantitativas contínuas

Exemplos de adaptações de perguntas da Lista um que podem ser respondidas com essa metodologia

 A incidências de Síndrome de Bornout é maior entre os profissionais de enfermagem, comparado a outros profissionais da área da saúde? (Alex, Rafaela Pereira)

OBS: próxima aula vamos ver uma forma alternativa de testar a mesma ideia

Exemplos de adaptações de perguntas: identificar variáveis

- Qual categoria de profissional da saúde, apresenta maior incidência de Síndrome de Bornout?
 - Incidência de Síndrome de Bornout:
 - variável resposta
 - quantitativas contínua (número de 0-100%)
 - Categoria de profissional da saúde:
 - variável preditora
 - qualitativa (Enfermeiro, Médico, Nutricionista ou Psicólogo)

Desenho experimental

- Para comparar valores de média entre 3 ou mais grupos, você deve usar alguma técnica para obter dados de cada um dos grupos que estão comparados. Exemplos:
 - a. Entrevistar aleatoriamente diferentes profissionais da saúde em diferentes hospitais, e a frequência de profissionais acometidos pela síndrome Burnout em cada hospital. Nesse estudo cada hospital seria uma unidade amostral.

Hipóteses

 H₀: Não há diferenças entre as médias de todos os grupos comparados

• H₁: Existe diferença de pelo menos uma das médias comparadas

Como fica uma tabela desse tipo de dado?

Nome	Profissão	Numero de horas de trabalho semanal
Lorena	Enfermeiro	30
Livia	Enfermeiro	27
Maria Luiza	Enfermeiro	40
Cecilia	Médico	40
Eloa	Médico	20
Giovanna	Médico	35
Maria Clara	Nutricionista	30
Maria Eduarda	Nutricionista	25
Mariana	Nutricionista	15
Lara	Psicólogo	40
Beatriz	Psicólogo	23
Antonella	Psicólogo	35

Identificação do dado

Variável categórica

Variável numérica

S	+ i
35 U	

Nome	Profissão	Numero de horas abalho semanal
Lorena	Enfermeiro	30
Livia	Enfermeiro	27
Maria Luiza	Enfermeiro	40
Cecilia	Médico	40
Eloa	Médico	20
Giovanna	Médico	35
Maria Clara	Nutricionista	30
Maria Eduarda	Nutricionista	25
Mariana	Nutricionista	15
Lara	Psicólogo	40
Beatriz	Psicólogo	23
Antonella	Psicólogo	35

E se tiver mais de uma entrada?

Exemplo de 1 entrada

Nome	Profissão	Numero de horas de trabalho semanal
Lorena	Enfermeiro	30
Livia	Enfermeiro	27
Maria Luiza	Enfermeiro	40
Cecilia	Médico	40
Eloa	Médico	20
Giovanna	Médico	35
Maria Clara	Nutricionista	30
Maria Eduarda	Nutricionista	25
Mariana	Nutricionista	15
Lara	Psicólogo	40
Beatriz	Psicólogo	23
Antonella	Psicólogo	35

Observação única

Exemplo de 1 entrada

Nome	Profissão	Numero de horas arabalho semanal
Lorena	Enfermeiro	30
Livia	Enfermeiro	27
Maria Luiza	Enfermeiro	40
Cecilia	Médico	40
Eloa	Médico	20
Giovanna	Médico	35
Maria Clara	Nutricionista	30
Maria Eduarda	Nutricionista	25
Mariana	Nutricionista	15
Lara	Psicólogo	40
Beatriz	Psicólogo	23
Antonella	Psicólogo	35

Exemplo de 2 entradas

Nome	Profissão	Sexo	Dados da variável 1
Lorena	Enfermeiro	M	18.6
Livia	Enfermeiro	F	24.33
Maria Luiza	Enfermeiro	F	10.42
Cecilia	Médico	M	22.04
Eloa	Médico	F	21.2
Giovanna	Médico	M	28.3
Maria Clara	Nutricionista	F	17.95
Maria Eduarda	Nutricionista	F	17.17
Mariana	Nutricionista	M	17.57
Lara	Psicólogo	M	19.68
Beatriz	Psicólogo	M	18.6
Antonella	Psicólogo	F	24.33

	Variável categórica		Variável categórica	Dados
Exempl		trad		

Nome	Profiss	Sexo	Dados da el
Lorena	Enfermeiro	M	18.6
Livia	Enfermeiro	F	24.33
Maria Luiza	Enfermeiro	F	10.42
Cecilia	Médico	M	22.04
Eloa	Médico	F	21.2
Giovanna	Médico	M	28.3
Maria Clara	Nutricionista	F	17.95
Maria Eduarda	Nutricionista	F	17.17
Mariana	Nutricionista	M	17.57
Lara	Psicólogo	M	19.68
Beatriz	Psicólogo	M	18.6
Antonella	Psicólogo	F	24.33

Exemplo de 2 entradas

Nome	Profissão	Dados da variável 1	Dados da variável 2
Lorena	Enfermeiro	18.6	12.92
Livia	Enfermeiro	24.33	19.1
Maria Luiza	Enfermeiro	10.42	5.57
Cecilia	Médico	22.04	17.09
Eloa	Médico	21.2	16.97
Giovanna	Médico	28.3	23.12
Maria Clara	Nutricionista	17.95	13.06
Maria Eduarda	Nutricionista	17.17	11.63
Mariana	Nutricionista	17.57	12.08
Lara	Psicólogo	19.68	14.55
Beatriz	Psicólogo	18.6	12.92
Antonella	Psicólogo	24.33	19.1

Dados 1 Dados 2

Exemplo de 2 entrado

Nome	Profissão	Dados aa vel 1	Dados da v = 212
Lorena	Enfermeiro	18.6	12.92
Livia	Enfermeiro	24.33	19.1
Maria Luiza	Enfermeiro	10.42	5.57
Cecilia	Médico	22.04	17.09
Eloa	Médico	21.2	16.97
Giovanna	Médico	28.3	23.12
Maria Clara	Nutricionista	17.95	13.06
Maria Eduarda	Nutricionista	17.17	11.63
Mariana	Nutricionista	17.57	12.08
Lara	Psicólogo	19.68	14.55
Beatriz	Psicólogo	18.6	12.92
Antonella	Psicólogo	24.33	19.1

Portanto

- Se você tem 1 fator, seu teste vai avaliar apenas as diferenças na média entre as médias daquele fator
 - No exemplo, você vai saber apenas se tem ou não diferença no número de horas médio trabalhado por cada profissional
- Se você tem 2 fatores, pode ser que você esteja interessado no efeito do segundo fator ou não
 - Se você tem interesse no segundo fator: ANOVA de duas entradas
 - Se você não tem interesse no segundo fator: ANOVA mista (de medidas repetidas)

Qual diferença entre anova mista e anova duas entradas?

 A diferença é que na anova mista você não está interessado em saber o efeito das duas variáveis. O seu objetivo é apenas descontar o "peso" de uma mesma variável ter sido medida repetidas vezes para uma mesma unidade amostral

Pressupostos: Normalidade

Pressupostos: Homogeneidade de variâncias

Padrão que sugere variâncias iguais

Padrão que sugere variâncias diferentes

Pressupostos: Outliers

• Confira se não tem nenhum numero muito discrepante na sua tabela.

 Pode ser que ao digitar num número, você sem querer escreveu errado. Exemplo: se a pessoa não digitar a virgula em 2,50 o dado vira 250.

Pós-teste!

 Ao aplicar a ANOVA você descobre se existe ou não diferença entre ao menos 1 dos grupos comparados, mas como saber qual grupo é diferente de qual?

Teste de Tukey

Faz comparações entre todos os pares

 Teste de Tukey HSD (Teste de Tukey da Diferença Honestamente Significativa)

ANOVA vs. Kruskal-Wallis

ANOVA:

- todas as populações em confronto são normalmente distribuídas
- todas as populações em confronto apresentam variâncias iguais

Kruskal-Wallis:

não coloca nenhuma restrição sobre a comparação

Prática – 1 Existe diferença no número de plaquetas em relação ao estado?

- Tabela "Dados Fleury.xlsx"
- Variável preditora: UF
- Variável resposta: Plaquetas
- Tipo de dado: distribuição normal
- ANOVA de uma entrada

Interpretação dos resultados

Resultado: P maior que 0.05

Conclusão: H₀ é verdadeira

Prática – 2 Existe diferença no número de plaquetas em relação a categoria de idade?

- Tabela "Dados Fleury.xlsx"
- Variável preditora: Categorialdade
- Variável resposta: Plaquetas
- Tipo de dado: distribuição normal
- ANOVA de uma entrada

Interpretação dos resultados

Resultado: P menor que 0.05

Conclusão: H₁ é verdadeira

```
> summary(modelo)

Df Sum Sq Mean Sq F value Pr(>F)
tabela1$CategoriaIdade 4 3.127e+10 7.817e+09 2.902 0.0214 *

Residuals 576 1.551e+12 2.693e+09

---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
>
```

Pós teste

```
> TukeyHSD(modelo)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = tabela1$Plaquetas ~ tabela1$CategoriaIdade)
$`tabela1$CategoriaIdade`
                                       diff
                                                  lwr
                                                            upr
                                  767.7645 -19127.50 20663.027 0.9999719
De 30 a 44 anos-De 15 a 29 anos
De 45 a 59 anos-De 15 a 29 anos
                                -8945.9727 -30136.44 12244.494 0.7767881
De 60 a 74 anos-De 15 a 29 anos -20321.0685 -45627.93
                                                       4985.797 0.1821229
Mais de 75 anos-De 15 a 29 anos -26274.1935 -86992.81 34444.427 0.7605407
De 45 a 59 anos-De 30 a 44 anos -9713.7372 -23651.25
                                                      4223.775 0.3146047
De 60 a 74 anos-De 30 a 44 anos -21088.8330 -40726.95 -14
Mais de 75 anos-De 30 a 44 anos -27041.9580 -85624.97 31541.054 0.7139549
De 60 a 74 anos-De 45 a 59 anos -11375.0959 -32324.33
Mais de 75 anos-De 45 a 59 anos -17328.2209 -76363.67 41707.224 0.9296039
Mais de 75 anos-De 60 a 74 anos -5953.1250 -66587.98 54681.727 0.9988549
```

Prática – 3 Existe diferença na testosterona em relação a categoria de idade?

- Tabela "Dados Fleury.xlsx"
- Variável preditora: Categorialdade
- Variável resposta: Testosterona
- Tipo de dado: distribuição não-normal
- Kruskal-Wallis

Interpretação dos resultados

Resultado: P menor que 0.05

Conclusão: H₁ é verdadeira

Kruskal-Wallis rank sum test

```
data: Testosterona by CategoriaIdade
Kruskal-Wallis chi-squared = 13.336, df = 4, p-value = 0.009746
```

Pós teste

```
n2 statistic
                                                                        p.adj p.adj.signif
             group1
                          group2
                                          n1
                                                        <db7>
                          <chr>
                                       <int> <int>
                                                                 <db1> <db1>
                                                                               <chr>
                                           20
                                                       -1.60
                                                              0.109
   Testoste~ De 15 a 29~ De 30 a 44~
                                                 93
                                                                               ns
                                                              0.009<u>79</u> 0.097<u>9</u>
   Testoste~ De 15 a 29~ De 45 a 59~
                                           20
                                                       -2.58
                                                       -2.57
                                                              0.010<u>1</u>
  Testoste~ De 15 a 29~ De 60 a 74~
                                           20
                                                 36
                                                                       0.101
                                                                               ns
                                                       -2.78
                                                              0.00537 0.0537
  Testoste~ De 15 a 29~ Mais de 75~
                                           20
                                                       -1.64
                                                              0.100
                                          93
  Testoste~ De 30 a 44~ De 45 a 59~
                                                                               ns
                                                       -1.64
                                          93
  Testoste~ De 30 a 44~ De 60 a 74~
                                                 36
                                                              0.100
                                                                               ns
                                          93
                                                       -2.17
                                                              0.0299
                                                                       0.299
   Testoste~ De 30 a 44~ Mais de 75~
                                                                               ns
                                                       -0.335 0.738
                                           75
   Testoste~ De 45 a 59~ De 60 a 74~
                                                                               ns
                                                       -1.61
 9 Testoste~ De 45 a 59~ Mais de 75~
                                                              0.108
                                                                               ns
                                           36
                                                              0.158
   Testoste~ De 60 a 74~ Mais de 75~
                                                       -1.41
                                                                               ns
>
```

Prática – 4 Existe diferença na glicose em relação a categoria de idade e registro de COVID?

- Tabela "Dados Fleury.xlsx"
- Variável preditora: Categorialdade + Covid19PCR
- Variável resposta: Glicose
- Tipo de dado: distribuição normal
- ANOVA de duas entradas

Interpretação dos resultados

Resultado: P menor que 0.05

Conclusão: H₁ é verdadeira

```
> summary(modelo)

Df Sum Sq Mean Sq F value Pr(>F)
tabela1$CategoriaIdade 4 8630 2157.5 17.756 9.37e-14 ***
tabela1$Covid19PCR 1 45 45.2 0.372 0.542
Residuals 575 69870 121.5

---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

OBS: $9.37e-14 = 9.37 \times 10^{-14} = 0.00000000000000937$

Gráfico de barras

pwc: T test; p.adjust: Bonferroni

Utilize o R para conhecer a média de desvio

```
> with(tabela1, tapply(Glicose, CategoriaIdade,
mean)) # Media
De 15 a 29 anos De 30 a 44 anos
       86.58065
                       87.87762
De 45 a 59 anos De 60 a 74 anos
       93.04294
                       98.42188
Mais de 75 anos
      100.83333
> with(tabela1, tapply(Glicose, CategoriaIdade,
 sd)) # Desvio
De 15 a 29 anos De 30 a 44 anos
       9.313393
                       7.794896
De 45 a 59 anos De 60 a 74 anos
      11.337336
                      18.944199
Mais de 75 anos
      27.838223
>
```

Transcreve esses dados para o Excel

- Selecione os grupos e valores de média
- Clique em inserir
- Selecione a opção gráfico de barras

- Selecione os grupos e valores de média
- Clique em inserir
- Selecione a opção gráfico de barras

Clique no botão "+"

• Marque a caixa Barra de erros

Clique o símbolo >

Clique em mais opções

• Clique em Personalização

Clique em especificar valor

- Clique na seta apontando para cima
- Selecione a coluna de desvio
- Clique na seta apontando para baixo
- Repita o procedimento para o erro negativo

 Clique na seta apontando para cima

• Selecione a coluna de desvio

Clique na seta apontando para baixo

Repita o pr

 Clique na seta apontando para cima

Selecione a coluna de desvio

Clique na seta apontando para baixo

 Repita o procedimento para o erro negativo

 Clique na seta apontando para cima

Selecione a coluna de desvio

Clique na seta apontando para baixo

 Repita o procedimento para o erro negativo

 No final deve estar algo mais ou menos assim

• Clique em Design para personalizar seu gráfico

