

Universidade Estadual do Rio Grande do Sul

Prof. Dr. Éder Julio Kinast

Métodos Numéricos

08 Resolução de Sistemas Lineares. Método de Gauss-Jacobi

Sistemas Lineares

Método de Gauss-Jacobi

Sistemas Lineares

Aqui serão tratados somente os sistemas possíveis e que possuem solução única, com o número de equações igual ao número de variáveis.

$$\begin{cases} a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2 \\ & \ddots \\ a_{n1} \cdot x_1 + a_{n2} \cdot x_2 + \dots + a_{nn} \cdot x_n = b_n \end{cases}$$

Além disso, os métodos utilizados aqui necessitam que $a_{ii} \neq 0$ (os coeficientes da diagonal principal não sejam nulos. Caso isto ocorra, deve-se promover mudanças entre as linhas.

Método de Gauss-Jacobi

Este método numérico consiste no refinamento (ciclo de iterações) de valores iniciais atribuídos às variáveis \vec{x} até que estes verifiquem determinado critério de parada.

Inicialmente, isola-se cada variável x_i na i-ésima linha. No caso 3×3 , tem-se:

$$\begin{cases} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 = b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 = b_2 \\ a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 = b_3 \end{cases} \rightarrow \begin{cases} x_1 = \frac{b_1 - a_{12} \cdot x_2 - a_{13} \cdot x_3}{a_{11}} \\ x_2 = \frac{b_2 - a_{21} \cdot x_1 - a_{23} \cdot x_3}{a_{22}} \\ x_3 = \frac{b_3 - a_{31} \cdot x_1 - a_{32} \cdot x_2}{a_{33}} \end{cases}$$

Valores Iniciais

Para sistemas que *convergem* com o Método de Gauss-Jacobi, pode-se utilizar quaisquer conjunto de valores iniciais para as variáveis \vec{x} .

Contudo, utiliza-se o conjunto específico abaixo (caso 3×3), que em geral gera o menor número de iterações.

$$x_1^{(0)} = \frac{b_1}{a_{11}}$$

$$x_2^{(0)} = \frac{b_2}{a_{22}}$$

$$x_3^{(0)} = \frac{b_3}{a_{33}}$$

Método de Gauss-Jacobi

Com os valores, recalcula-se cada valor x_i da linha i, em função dos outros valores de \vec{x} . Os passos são iniciados por k=0 (valores iniciais) e incrementados de 1 em 1.

No caso 3×3 tem-se:

$$\begin{cases} x_1^{(1)} = \frac{b_1 - a_{12} \cdot x_2^{(0)} - a_{13} \cdot x_3^{(0)}}{a_{11}} \\ x_2^{(1)} = \frac{b_2 - a_{21} \cdot x_1^{(0)} - a_{23} \cdot x_3^{(0)}}{a_{22}} \\ x_3^{(1)} = \frac{b_3 - a_{31} \cdot x_1^{(0)} - a_{32} \cdot x_2^{(0)}}{a_{33}} \end{cases}$$

Exemplo (**MetNum08.xlsx!3x3**): Determine os valores de x, y e z no sistema abaixo com precisão de $\varepsilon_3 = 5 \times 10^{-2}$.

$$\begin{cases} 10 \cdot x + 2 \cdot y + z = 7 & x \to x_1 \\ x + 5 \cdot y + z = -8 & y \to x_2 \\ 2 \cdot x + 3 \cdot y + 10 \cdot z = 6 & z \to x_3 \end{cases}$$

Isolando as variáveis em cada linha:

$$\begin{cases} x_1^{(1)} = \frac{b_1 - a_{12} \cdot x_2^{(0)} - a_{13} \cdot x_3^{(0)}}{a_{11}} = \frac{7 - 2 \cdot x_2^{(0)} - x_3^{(0)}}{10} \\ x_2^{(1)} = \frac{b_2 - a_{21} \cdot x_1^{(0)} - a_{23} \cdot x_3^{(0)}}{a_{22}} = \frac{-8 - x_1^{(0)} - x_3^{(0)}}{5} \\ x_3^{(1)} = \frac{b_3 - a_{31} \cdot x_1^{(0)} - a_{32} \cdot x_2^{(0)}}{a_{33}} = \frac{6 - 2 \cdot x_1^{(0)} - 3 \cdot x_2^{(0)}}{10} \end{cases}$$

Exemplo (**MetNum08.xlsx!3x3**): Determine os valores de x, y e z no sistema abaixo com precisão de $\varepsilon_3 = 5 \times 10^{-2}$.

$$\begin{cases} 10 \cdot x + 2 \cdot y + z = 7 \\ x + 5 \cdot y + z = -8 \\ 2 \cdot x + 3 \cdot y + 10 \cdot z = 6 \end{cases}$$

Os valores iniciais das variáveis ficam:

$$x_1^{(0)} = \frac{b_1}{a_{11}} = \frac{7}{10} = 0.7$$

$$x_2^{(0)} = \frac{b_2}{a_{22}} = -\frac{8}{5} = -1.6$$

$$x_3^{(0)} = \frac{b_3}{a_{33}} = \frac{6}{10} = 0.6$$

Substituindo os valores iniciais nas equações das variáveis isoladas:

$$\begin{cases} x_1^{(1)} = \frac{7 - 2 \cdot x_2^{(0)} - x_3^{(0)}}{10} = \frac{7 - 2 \cdot (-1,6) - (0,6)}{10} = 0,96 \\ x_2^{(1)} = \frac{-8 - x_1^{(0)} - x_3^{(0)}}{5} = \frac{-8 - (0,7) - (0,6)}{5} = -1,86 \\ x_3^{(1)} = \frac{6 - 2 \cdot x_1^{(0)} - 3 \cdot x_2^{(0)}}{10} = \frac{6 - 2 \cdot (0,7) - 3 \cdot (-1,6)}{10} = 0,94 \end{cases}$$

O processo é repetido até que os valores satisfaçam o *critério de* parada.

Critério de Parada

O *critério de parada* é utilizado para indicar o passo em que as iterações podem cessar.

$$d^{(k+1)} = \max_{1 \le i \le n} \left| x_i^{(k+1)} - x_i^{(k)} \right|$$
onde
$$d^{(k+1)} < \varepsilon_3$$

No exemplo:

$$d^{(1)} = \max_{1 \le i \le 3} \left\{ \begin{vmatrix} x_1^{(1)} - x_1^{(0)} \\ x_1^{(1)} - x_2^{(0)} \\ x_2^{(1)} - x_2^{(0)} \end{vmatrix} = |-1,86 - (-1,6)| = 0,26 \\ \left| x_3^{(1)} - x_3^{(0)} \right| = |0,94 - 0,6| = 0,34 \end{vmatrix} = 0,34$$

Como $d^{(1)} = 0.34 \ge 5 \times 10^{-2} = \varepsilon_3$ então deve-se continuar o processo.

0,9994

-1,9888

Passo

Gauss-Jacobi 3×3

Exemplo (MetNum08.xlsx!3x3): Determine os valores de x, y e z

no sistema abaixo com precisão de $\varepsilon_3 = 5 \times 10^{-2}$.

$$\begin{cases} 10 \cdot x + 2 \cdot y + z = 7 \\ x + 5 \cdot y + z = -8 \\ 2 \cdot x + 3 \cdot y + 10 \cdot z = 6 \end{cases}$$

Observação:

Caso as soluções convirjam para valores notoriamente inteiros, pode-se testar estas soluções.

							X 3	0,9984
	Α	В	C	D	E	F	G	Н
1	10	2	1	7		ε₃		
2	1	5	1	-8		0,05		
3	2	3	10	6				
4								
5	Valores Iniciais			Critério das Linhas		Tem garantia de convergência.		
6	X ₁	0,7		α1	0,3			
7	X ₂	-1,6		α2	0,4			
8	Хз	0,6		α₃	0,5			
9								
10	Passo	1		Conclusão	Continuar			
11	X ₁	0,96		d₁	0,26			
12	X ₂	-1,86		d₂	0,26			
13	X ₃	0,94		d₃	0,34			
14								
15	Passo	2		Conclusão	Continuar			
16	X ₁	0,978		d₁	0,018			
17	X ₂	-1,98		d₂	0,12			
18	X ₃	0,966		d₃	0,026			

Critério das Linhas

O Critério das Linhas é do tipo "suficiente, mas não necessário". Quer dizer, caso ele seja verdadeiro, o sistema certamente gera uma série convergente para a solução com o Método de Gauss-Jacobi. Contudo, caso este critério não seja verdadeiro, ainda assim o Método de Gauss-Jacobi pode gerar uma sequência convergente para a solução. Ele é expresso como "há garantia de convergência se":

$$\max_{1 \le k \le n} \alpha_k < 1$$
 onde

$$\alpha_k = \frac{\sum_{\substack{j=1\\j\neq k}}^{n} |a_{kj}|}{|a_{kk}|}$$

Critério das Linhas

No exemplo:

$$\max_{1 \le i \le 3} \left\{ \alpha_1 = \frac{|2| + |1|}{|10|} = 0,3 \right\}$$

$$\alpha_2 = \frac{|1| + |1|}{|5|} = 0,4$$

$$\alpha_3 = \frac{|2| + |3|}{|10|} = 0,5$$

Como $\max_{1 \le k \le 3} \alpha_k = 0,5 < 1$ então há garantia de convergência deste sistema com o Método de Gauss-Jacobi.

Caso não houvesse garantia, pode-se tentar promover troca entre as linhas e recalcular o critério. Além disso, mesmo que o critério não seja satisfeito, ainda há chance do método funcionar.

Exemplo (MetNum08.xlsx!3x3b): Determine os valores de x, y e z no sistema abaixo com precisão de $\varepsilon_3 = 10^{-5}$.

$$\begin{cases} 5 \cdot y + 8 \cdot z = 9 \\ 2 \cdot x - 19 \cdot y + 3 \cdot z = 5 \\ 10 \cdot x - y + 2 \cdot z = 1 \end{cases}$$

Passo	10
ζ1	-0,14565394
ζ2	-0,091800286
K 3	1,182370538