Wave Interference

When the disturbances from two sources combine the instantaneous amplitudes add

$$\Delta \ell = n\lambda$$

$$\Delta \ell = (n + \frac{1}{2})\lambda$$

Reflection and refraction of waves provide a mechanical model for light and sound

http://www.falstad.com/ripple/ http://www.falstad.com/mathphysics.html

Reflection off a boundary acts as a second source that can produce standing waves

http://www.acs.psu.edu/drussell/Demos/

Three-dimensional standing waves are used to build microphones, antenna, and atoms

Double slit experiment provides definitive evidence for the wave nature of light

$$\sin\theta = n\lambda/d$$

$$\Delta \ell = d \sin \theta$$

Single slit diffraction can be understood as the interference of a series of single sources

$$\theta = n\lambda/a$$

$$I = \left[\left(\frac{\lambda}{\pi a \theta} \right) \sin \left(\frac{\pi a \theta}{\lambda} \right) \right]^2$$

Iridescence in nature is usually from thin-film interference

The difference between incandescent and laser light is the coherence of the waves

