Problem 2.1 (Feature Selection)

(25 P.)

Given the following dataset for a binary classification problem consisting of 4 instances and 3 features each:

	Feature A	Feature B	Feature C	Class
Instance 1	-2.0	-1.0	0.0	-1.0
Instance 2	-2.0	-1.0	1.4	-1.0
Instance 3	2.0	1.0	-1.0	1.0
Instance 4	-0.2	-0.1	-1.0	1.0

Compute for each subset of features $(\{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\})$ the average featureclass correlation $\overline{|r_{fc}|}$, the average feature-feature correlation $\overline{|r_{ff}|}$, and the "Merit". Answer the following questions:

- a) Which subset of features would be chosen by the algorithm NaiveFS for k=2?
- b) Which subset(s) of features with cardinality 2 would be optimal according to the merit?
- c) Which subset of features with arbitrary cardinality would be optimal according to the merit?

Note: To solve you can either write a python program yourself (submit with solution) or compute the solution manually ("per Hand").

Problem 2.2 (Principal Components Analysis)

(25 P.)

Given the following dataset

	Feature A	Feature B
Instance 1	0	-5
Instance 2	1	-5
Instance 3	1	-6
Instance 4	2	-4
Instance 5	3	-2
Instance 6	3	-3
Instance 7	4	-3

Conduct the principal component analysis (PCA) manually. Give the following intermediate results:

- a) The 7×2 data matrix (X)
- b) The mean-corrected data matrix
- c) The 2×2 covariance matrix (C_{emp})
- d) Eigenvalues and (normalized) eigenvectors of the covariance matrix (Λ, W)
- e) The data set in in the new coordinate system which is given by the principal components (i.e. the eigenvectors) (Y)

Note: Eigenvalues of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be determined by finding the roots ("Nullstellen") of the characteristic polynomial which is given by

The circumsetor
$$a$$
 corresponding to a circumslus a can be computed by $\chi(\lambda) = \det(A - \lambda I) = \det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + (ad - bc).$
The solutions are $\lambda_{1,2} = \frac{a+d}{2} \pm \sqrt{\frac{(a+d)^2}{4} + bc - ad} = \frac{a+d}{2} \pm \frac{\sqrt{4bc+(a-d)^2}}{2}$.

The eigenvector v_{λ} corresponding to a eigenvalue λ can be computed by solving the equation $(A-\lambda I)v_{\lambda}=0$ for v_{λ} $(v_{\lambda} \neq 0)$.

On the hand-in date, 16.11.2016, you must hand-in the following: ¹

- a) a text file stating how much time you (all together) used to complete this exercise sheet
- b) your solutions / answers / code

for problem 2.1 and 2.2.

¹upload via StudIP (if there are problems with the upload contact me **beforehand**: krell@uni-bremen.de)