

Disease Mapping of Tuberculosis Cases in Gyeonggi-do region (2013-2022) using R-INLA

EV/HA, THE FUTURE V/E CREATE

Variable Explanation

변수	설명
신규결핵	신규결핵환자 수
평균 아황산가스농도	단일 측정값
의료보험비율	지역보험가입인구
근로소득평균	근로소득평균
성별비율	남성인구
유동인구	단일 측정값
인구밀도	총면적 대비 총인구
총인구	Offset

Data

시군구	신규 결핵 _201 6	신규 결핵 _2017	신규 결핵 _2018	신규 결핵 _2019	신규 결핵 _2020	신규 결핵 _2021	신규 결핵 _2022	평균_ 아황 산가 스농 도	의료 보험 적용 _2016	의료 보험 적용 _2017	의료 보험 적용 _2018	의료 보험 적용 _2019	의료 보험 적용 _2020	의료 보험 적용 _2021	의료 보험 적용 _2022	남자 _2016	남자 _2017	남자 _2018	남자 _2019	남자 _2020	남자 _2021	남자 _2022	총합_ 유동 인구	인구 밀도 _2016	인구 밀도 _2017	인구 밀도 _2018	인구 밀도 _2019	인구 밀도 _2020	인구 밀도 _2021	인구 밀도 _2022	평균 소득 _2016	평균 소득 _2017	평균 소득 _2018	평균 소득 _2019	평균 소득 _2020	평균 소득 _2021	평균 소득 _2022
가평군	45	38	38	47	33	33	30	0.0030	0.3569 530	0.3545 964	0.3555 421	0.3530 081	0.3535 758	0.3553 096	0.3753 500	0.5121 221	0.5125 371	0.5131 759	0.5133 702	0.5155 105	0.5160 125	0.5165 245	1.0770 816	0.0000 743	0.0000 749	0.0000 748	0.0000 742	0.0000 742	0.0000 740	0.0000 739	0.5675 719	0.6875 233	0.7064 384	0.7331 972	0.7355 836	0.8309 739	0.8162 945
고양시	467	447	387	353	310	295	219	0.0044	0.2578 697	0.2573 171	0.2573 749	0.2582 067	0.2598 099	0.2592 192	0.2718 620).4914 214	0.4909 523	0.4906 765	0.4902 223	0.4896 888	0.4892 690	0.4883 641	1.7796 468	0.0039 015	0.0039 101	0.0039 184	0.0040 015	0.0040 498	0.0040 503	0.0040 398	0.5541 712	0.4987 822	0.4490 089	0.4065 660	0.3312 567	0.2613 552	0.2736 906
			Υ					X1			>	< 2						>	X 3			,	X4				X	5						X	5		

Г	총인구_2016	총인구_2017 총	인구_2018 총인	인구_2019 총인·	구_2020 총인구	^L _2021 총인구_	2022
1	62448	62973	62918	62415	62377	62264	62150
2	2 1039684	1041983	1044189	1066351	1079216	1079353	1076535
3	63778	57527	58142	58289	63231	73345	78137
4	339484	332790	326841	316552	298599	292893	287945
5	327723	345947	363782	372654	382054	387289	391462
6	193763	200042	203553	199265	197454	191948	188701

offset

Bayesian & Hierarchical Regression

Bayesian Regression

Poisson Bayesian Regression

 $y_i \sim Poisson(\lambda_i)$: 해당 년도(2016~2022) 의 신규 결핵 환자 수 비율(=신규환자/총인구)

$$\log\left(\frac{\lambda_i}{pop}\right) = x_i^T \cdot \beta \qquad \qquad \log(\lambda_i) = x_i^T \cdot \beta + \log(pop)$$

 $\lambda_i =$ 해당 년도(단위 기간 내)의 신규 환자 수(발생 횟수의 기대값) $E_i = \text{해당 년도의 총인구수}$ $\rho_i = \text{해당 년도의 신규 환자 비율 } (\rho_i = \frac{\lambda_i}{E_i})$

$$\eta_i = \log(\lambda_i) = \beta_0 + \beta_1 \cdot$$
 아황산가스농도 + $\beta_2 \cdot$ 의료보험 + $\beta_3 \cdot$ 성비 + $\beta_4 \cdot$ 유동인구 + 《빨간색 글씨는 scaled》 $\beta_5 \cdot$ 인구밀도 + $\beta_6 \cdot$ 근로소득 + offset(log(pop))

R 코드

formula.inla_16 = 신규결핵_2016 ~ 1 + 평균_아황산가스농도 + 의료보험적용_2016 + 남자_2016 + 총합_유동인구 + 인구밀도_2016 + 평균소득_2016

inla(**formula.inla_16**, family="poisson", data=poisson_data, control.compute = list(dic=TRUE), **offset = log(총인구_2016))**

Poisson Regression Coefficients Results

2016년	Doiceon	Reg.결과
ZUIOII	LOI22011	K65' 5 71

mean	sd	0.025quant(.5quant0	.975quant
-11.530	0.978	-13.446	-11.530	-9.613
34.474	15.609	3.881	34.474	65.066
2.646	0.722	1.231	2.646	4.062
6.192	1.774	2.715	6.192	9.669
-0.025	0.018	-0.061	-0.025	0.011
14.192	3.770	6.803	14.192	21.581
-0.039	0.033	-0.104	-0.039	0.026
	-11.530 34.474 2.646 6.192 -0.025 14.192	-11.530 0.978	-11.530 0.978 -13.446 34.474 15.609 3.881 2.646 0.722 1.231 6.192 1.774 2.715 -0.025 0.018 -0.061 14.192 3.770 6.803	-11.530 0.978 -13.446 -11.530 34.474 15.609 3.881 34.474 2.646 0.722 1.231 2.646 6.192 1.774 2.715 6.192 -0.025 0.018 -0.061 -0.025 14.192 3.770 6.803 14.192

2017년 Poisson Reg.결과

	mean	sd	0.025quant	0.5quant0	.975quant
(Intercept)	-11.171	0.959	-13.051	-11.171	-9.292
평균_아황산가스농도	16.325	16.040	-15.112	16.325	47.763
의료보험적용_2017	3.844	0.735	2.403	3.844	5.285
남자_2017	4.781	1.745	1.361	4.781	8.202
총합_유동인구	-0.021	0.019	-0.058	-0.021	0.017
인구밀도_2017	12.966	3.899	5.324	12.966	20.607
평균소득_2017	0.029	0.033	-0.036	0.029	0.094

2018년 Poisson Reg.결과

	mean	sd	0.025quant0	.5quant0	.975quant
(Intercept)	-13.030	0.938	-14.869	-13.030	-11.190
평균_아황산가스농도	-3.508	16.594	-36.032	-3.508	29.016
의료보험적용_2018	5.279	0.733	3.843	5.279	6.715
남자_2018	7.557	1.725	4.176	7.557	10.939
총합_유동인구	-0.030	0.020	-0.068	-0.030	0.009
인구밀도_2018	20.769	3.996	12.938	20.769	28.600
평균소득_2018	880.0	0.033	0.023	880.0	0.152

2019년 Poisson Reg.결과

mean	sd	0.025quant	:0.5quant	0.975quant
-12.220	0.902	-13.988	-12.220	-10.451
43.697	16.943	10.489	43.697	76.905
4.693	0.680	3.360	4.693	6.026
5.753	1.730	2.363	5.753	9.144
-0.085	0.020	-0.124	-0.085	-0.046
31.083	4.132	22.984	31.083	39.182
0.077	0.034	0.011	0.077	0.143
	-12.220 43.697 4.693 5.753 -0.085 31.083	-12.220 0.902 43.697 16.943 4.693 0.680 5.753 1.730 -0.085 0.020 31.083 4.132	-12.220 0.902 -13.988 43.697 16.943 10.489 4.693 0.680 3.360 5.753 1.730 2.363 -0.085 0.020 -0.124 31.083 4.132 22.984	43.697 16.943 10.489 43.697 4.693 0.680 3.360 4.693 5.753 1.730 2.363 5.753 -0.085 0.020 -0.124 -0.085 31.083 4.132 22.984 31.083

2020년 Poisson Reg.결과

	mean	sd	0.025quant	0.5quant	0.975quant
(Intercept)	-11.704	0.943	-13.552	-11.704	-9.856
평균_아황산가스농도	16.766	18.130	-18.768	16.766	52.300
의료보험적용_2020	4.086	0.774	2.569	4.086	5.604
남자_2020	4.853	1.784	1.356	4.853	8.349
총합_유동인구	-0.057	0.022	-0.100	-0.057	-0.015
인구밀도_2020	23.153	4.623	14.092	23.153	32.215
평균소득_2020	0.071	0.039	-0.004	0.071	0.147

2021년 Poisson Reg.결과

	mean	sd	0.025quant	0.5quant().975quant
(Intercept)	-13.080	0.893	-14.830	-13.080	-11.331
평균_아황산가스농도	47.341	18.346	11.384	47.341	83.298
의료보험적용_2021	4.426	0.773	2.911	4.426	5.941
남자_2021	7.099	1.706	3.754	7.099	10.443
총합_유동인구	-0.046	0.023	-0.091	-0.046	-0.002
인구밀도_2021	22.715	4.861	13.188	22.715	32.242
평균소득_2021	0.086	0.038	0.012	0.086	0.160

2022년 Poisson Reg.결과

	mean	sd	0.025quant	t0.5quant0	.975quant
(Intercept)	-14.048	0.910	-15.831	-14.048	-12.266
평균_아황산가스농도	17.343	19.226	-20.338	17.343	55.024
의료보험적용_2022	5.714	0.774	4.198	5.714	7.231
남자_2022	8.001	1.719	4.632	8.001	11.371
총합_유동인구	-0.063	0.024	-0.110	-0.063	-0.017
인구밀도_2022	34.806	5.219	24.577	34.806	45.036
평균소득_2022	0.134	0.040	0.055	0.134	0.212

해석

- 신뢰구간에서 0이 없으면서 일관성 있는 변수
- : <u>의료보험가입자비율(양의 관계)</u>, 성별(양의 관계), **인구밀도**(양의 관계)
- <u>유동인구:</u> 16~18년 제외 (0포함) 모두 <u>음의 관계</u>
- **평균소득:** 16, 17, 20년 제외(0포함) 모두 <u>양의 관계</u>
- **아황산가스:** 17, 18, 20, 22년 제외(0포함) 모두 양의 관계

Hierarchical Regression

Hierarchical Poisson Regression

```
y_i \sim Poisson(\lambda_i): 해당 년도(2016~2022) 의 신규 결핵 환자 수 비율(=신규환자/총인구) Random Intercept \eta_i = \log(\lambda_i) = \frac{(\beta_0 + v_0)}{(\beta_0 + v_0)} + \beta_1 \cdot \text{아황산가스농도} + \beta_2 \cdot \text{의료보험} + \beta_3 \cdot \text{성비} + \beta_4 \cdot 유동인구 + \beta_5 \cdot 인구밀도 + \beta_6 \cdot 근로소득 + offset(log(pop))
```

- Prior: $\beta_0 \sim \text{Normal}(\mu_{b_0} = 0, \ \sigma_{b_0}^2 = 10000), \ \tau_{b_0} = \frac{1}{\sigma_{b_0}^2} = 0.001$ $\beta_j \sim \text{Normal}(\mu_{b_j} = 0, \ \sigma_{b_j}^2 = 10000), \ \tau_{b_j} = \frac{1}{\sigma_{b_j}^2} = 0.001, \ j = 1..., 5(3 \%)$
- Random Intercept: $v_0 \sim \text{Normal}(0, \sigma_{v_0}^2)$, $\beta_0 \sim \text{Normal}(0, \frac{1}{\sigma_{v_0}^2}), \ \frac{1}{\sigma_{v_0}^2} = \tau = \text{logGamma}(0, 10^{-5})$

R 코드

formula.inla_16 = 신규결핵_2016 ~ 1 + 평균_아황산가스농도 + 의료보험적용_2016 + 남자_2016 + 총합_유동인구 + 인구 밀도_2016 + 평균소득_2016 + <mark>f(ID, model="iid", hyper=list(prec=list(prior="loggamma", param=c(1, 0.00001))))</mark>

model.poisson.H_16 = inla(**formula.inla_16**, family="poisson", data=poisson_data, control.compute = list(dic=TRUE), **offset = log(총인구_2016)**, control.fixed = list(mean = 0, prec = 0.00001, mean.intercept = 0, prec.intercept = 0.00001))

Hierarchical Poisson Regression Coefficients Results

2016년 Hierarchical Poisson Reg. 결	2016년	Hierarchica	l Poisson	Reg.	결글
-----------------------------------	-------	-------------	-----------	------	----

	mean	sd().025quant0	.5quant0	.975quant
(Intercept)	-10.971	1.664	-14.149	-11.013	-7.560
평균_아황산가스농도	26.9172	29.321	-33.532	27.842	82.248
의료보험적용_2016	1.845	1.058	-0.305	1.870	3.860
남자_2016	5.550	3.052	-0.675	5.612	11.431
총합_유동인구	-0.009	0.029	-0.065	-0.010	0.051
인구밀도_2016	12.676	7.081	-1.825	12.833	26.330
평균소득_2016	-0.073	0.051	-0.177	-0.071	0.024

2019년 Hierarchical Poisson Reg. 결과

	mean	sd0).025quant0	.5quant0	.975quant
(Intercept)	-12.619	0.934	-14.450	-12.619	-10.788
평균_아황산가스농도	61.9152	20.159	22.378	61.917	101.442
의료보험적용_2019	4.762	0.684	3.420	4.762	6.104
남자_2019	6.394	1.775	2.914	6.394	9.875
총합_유동인구	-0.091	0.020	-0.130	-0.091	-0.051
인구밀도_2019	32.733	4.267	24.358	32.735	41.096
평균소득_2019	0.090	0.034	0.022	0.090	0.157

2022년 Hierarchical Poisson Reg. 결과

	mean	sd0	.025quant0	.5quant0	.975quant
(Intercept)	-14.176	1.296	-16.713	-14.194	-11.521
평균_아황산가스농도	27.0393	31.666	-36.480	27.194	89.645
의료보험적용_2022	5.798	1.011	3.797	5.794	7.824
남자_2022	8.146	2.436	3.141	8.184	12.910
총합_유동인구	-0.058	0.033	-0.119	-0.060	0.010
인구밀도_2022	35.426	8.044	18.496	35.637	51.030
평균소득_2022	0.123	0.056	0.003	0.126	0.227

2017년 Hierarchical Poisson Reg. 결과

	mean	sd().025quant0	.5quant0	.975quant
(Intercept)	-10.238	1.939	-14.031	-10.252	-6.366
평균_아황산가스농도	8.7443	34.292	-58.931	8.749	76.433
의료보험적용_2017	2.869	1.240	0.397	2.879	5.285
남자_2017	3.499	3.585	-3.650	3.521	10.528
총합_유동인구	-0.024	0.035	-0.095	-0.024	0.044
인구밀도_2017	12.356	088.8	-5.285	12.375	29.894
평균소득_2017	-0.001	0.059	-0.116	-0.001	0.115

2020년 Hierarchical Poisson Reg. 결과

	mean	sd(0.025quant0	.5quant0	.975quant
(Intercept)	-11.797	1.511	-14.800	-11.802	-8.770
평균_아황산가스농도	8.632	32.925	-59.344	9.710	70.842
의료보험적용_2020	3.521	1.129	1.180	3.562	5.639
남자_2020	5.394	2.851	-0.219	5.365	11.167
총합_유동인구	-0.049	0.033	-0.111	-0.049	0.018
인구밀도_2020	22.621	8.050	6.096	22.772	38.375
평균소득_2020	0.030	0.060	-0.096	0.033	0.141

2018년 Hierarchical Poisson Reg. 결과

	mean	sd(0.025quant(.5quant0	.975quant
(Intercept)	-13.065	0.980	-14.989	-13.064	-11.145
평균_아황산가스농도	-4.572	19.825	-43.555	-4.543	34.238
의료보험적용_2018	5.296	0.743	3.837	5.296	6.754
남자_2018	7.622	1.791	4.113	7.620	11.140
총합_유동인구	-0.030	0.020	-0.069	-0.030	0.009
인구밀도_2018	21.121	4.175	12.949	21.114	29.335
평균소득_2018	0.089	0.034	0.022	0.089	0.156

2021년 Hierarchical Poisson Reg. 결과

	mean	sd0	.025quant0	.5quant0	.975quant
(Intercept)	-13.517	0.924	-15.328	-13.517	-11.705
평균_아황산가스농도	71.7462	22.565	27.488	71.748	115.987
의료보험적용_2021	4.541	0.777	3.016	4.541	6.064
남자_2021	7.751	1.746	4.328	7.751	11.175
총합_유동인구	-0.054	0.023	-0.099	-0.054	-0.009
인구밀도_2021	24.764	5.026	14.904	24.765	34.618
평균소득_2021	0.102	0.039	0.026	0.102	0.178

해석

- 아황산가스: 19, 21년만 양의 관계 (나머지는 유의x)
- <u>의료보험적용비율</u>: 16년 제외(0포함) 모두 <u>양의 관계</u>
- 성별: 18, 19, 21, 22년만 양의 관계 (나머지는 유의x)
- <u>유동인구:</u> 19, 21년만 <u>음의 관계</u> (나머지는 유의x)
- **인구밀도:** 18~22년만 양의 관계 (나머지는 유의x)
- <u>평균소득:</u> 18, 19, 21, 22년만 <u>양의 관계</u> (나머지는 유의x)

Spatio-temporal Model

Spatial-temporal Disease Mapping

1. Parametric Trend

```
y_{it} \sim Poisson(\lambda_{it}) i = \mbox{지역}(1,...,31), \ t = \mbox{년도}(1,...,7) \lambda_{it} = E_{it} \cdot \rho_{it} \log(\rho_{it}) = \eta_{it} Area (Specific) Trend Time Trend BYM: \eta_{it} = b_0 + \frac{1}{u_i} + \frac{1}{v_i} + \frac{1}{(\beta + \delta_i)} \cdot t + offset(\log(<table-cell>)) \frac{377}{600} \frac{377}{600
```

R 코드

```
formula.par = 신규결핵 ^{b_0}_{\sim}1 + f(ID, model='bym', graph = TBtotal.adj) u_i + v_i + f(ID2, year, model="iid", constr = TRUE) + year \beta \cdot t model.par = inla(formula.par, family="poisson", data=total_data, control.predictor, offset = log(총인구)) round(model.par$summary.fixed[,1:5], 3) ## Fixed Effect (=global trend b_0, \beta)
```

• $\delta_i > 0$ 이라면 \rightarrow Area (Specific) Trend > Global Trend $(b_0 + \beta)$

1∕HA, lE FUTURE ∕E CREATE

Parametric Trend Result (Fixed Effect)

해석: Global Time Trend (βt)를 봤을 때, 시간이 지날수록 신규 결핵 환자들의 발생 확률이 감소한다.

Parametric Trend Result (Random Effect)

즉, 공간적 상관성이 포함된 Spatial Effect는 결핵 데이터(y)로만 볼 때 외곽 지역에서 더 크게 나타난다

THE FUTURE

WE CREATE

Xi 값들이 거의 0에 근접함. 상대성 을 비교하기 위해 Q1, Q2, Q3로 Factor 분할함

→ ξ_i = u_i + v_i : Spatial Effectm = model.par\$marginals.random[[1]][1:nrow(total data)] \downarrow $\zeta_i = \exp(u_i + v_i)$: Posterior Mean of Spatial Effect **EV/HA**, zeta.ST1 = unlist(lapply(m, function(x) inla.emarginal(exp, x))) length(zeta.ST1) head(zeta.ST1) $\rightarrow \delta_i$: Differential Time Effect m1 = model.par\$summary.random

Spatial-temporal Disease Mapping

2. Nonparametric Trend

```
y_{it} \sim Poisson(\lambda_{it}) i = 지역(1,...,31), t= 년도(1,...,7)
                                                                           \lambda_{it} = E_{it} \cdot \rho_{it}
                                                                            \log(\rho_{it}) = \eta_{it}
                                                                                                            \phi_t \sim Normal(0, \frac{1}{\tau_t})
                                     Area (Specific) Trend Time Trend
                                                                                                        RW(Random Walk, \gamma_t):
                                \eta_{it} = b_0 + u_i + v_i
                    BYM:
                                                                                                        • RW1: \gamma_t | \gamma_{t-1} \sim N(\gamma_{t-1}, \sigma^2)
                                                                                    시간적
                                                                                                           RW2: \gamma_t | \gamma_{t-1}, \gamma_{t-2} \sim N(2 \cdot \gamma_{t-1} + \gamma_{t-2}, \sigma^2)
                                                                                 상관성 고려X
                                                                                    (noise)
                  R 코드
              formula.ST1 = 신규결핵 ~ f(ID, model="bym", graph=TBtotal.adi) + f(ID.year, model="rw2") + f(ID.year2, model="iid")
             lcs = inla.make.lincombs(ID.year = diag(7), ID.year2 = diag(7))
             model.ST1 = inla(formula.ST1, family="poisson", data=total_data, control.predictor=list(compute=TRUE), offset = log(총인구), lincomb=lcs)
\exp(\gamma_t)
              temporal.CAR = lapply(model.ST1$marginals.random$ID.year,
                                function(X){
                                 marg <- inla.tmarginal(function(x) exp(x), X)
                                 inla.emarginal(mean, marg) })
\exp(\phi_t)
                                                                                                                                                                   VHΑ,
              temporal.IID = lapply(model.ST1$marginals.random$ID.year2,
                                                                                                                                                                   IE FUTURE
                                function(X){
                                 marg <- inla.tmarginal(function(x) exp(x), X)
                                                                                                                                                                   E CREATE
                                 inla.emarginal(mean, marg) })
```

Spatial-temporal Disease Mapping

• $\exp(\phi_t)$: 노이즈는 꽤 평탄함 (당연함)

Nonparametric Time Trend 결과					
	$\exp(\phi_t)$	$\exp(\gamma_t)$			
	exp_psi	exp_gamma			
2016년	0.9852669	1.3872190			
2017년	1.0027808	1.2509508			
2018년	1.0133252	1.1279013			
2010 [1.0100202	1.12.5515			
2019년	1.0277404	1.0098108			
2015 [.	1.0277404	1.0050100			
2020년	0.9708535	0.8952204			
2020	0.5700555	0.0332204			
2021년	1.0082043	0.7989564			
2021인	1.0062043	0.1363364			
202214	0.0003304	0.7124502			
2022년	0.9962364	0.7124502			

$\exp(\gamma_t + q)$)_t)
year	$\exp(\gamma_t + \phi_t) \\ \exp_{-time}$
2016년	1.368
2017년	1.254
2018년	1.138
2019년	1.031
2020년	0.872
2021년	0.804
2022년	0.710

Space-Time Interaction

Area (Specific) Trend Time Trend

BYM:
$$\eta_{it} = b_0 + u_i + v_i + v_t + \phi_t + \delta_{it}$$
 $\begin{array}{c} \text{SYM} : \\ \text{SY$

Type I Interaction

: Unstructured(상관성 x) effect인 👣 와 🐠 의 Interaction 고려

R 코드

Formula.intl = 신규결핵 ~
$$+$$
 f(ID, model="bym", graph = Tbtotal.adj) $+$ f(ID.year, model="rw2") $+$ f(ID.year2, model="iid") $+$ f(ID.year.area, model="iid") $+$ $+$ f(ID.year.area, model="iid") $+$ $+$ f(ID.year.area, model="iid") $+$ f(ID.year.area, model="iid")

Type 1 Interaction: δ_it 결과

	2016년	2017년	2018년	2019년	2020년	2021년	2022년
가평군	-0.004	-0.008	-0.003	0.014	0.003	0.006	0.007
고양시	0.000	0.016	0.000	-0.004	0.000	0.010	-0.029
과천시	-0.007	0.010	0.005	-0.002	-0.004	-0.006	-0.004
광명시	0.001	0.000	-0.015	0.016	0.001	-0.003	-0.001
광주시	-0.016	0.009	0.019	-0.017	-0.005	0.014	-0.006
구리시	-0.002	0.007	-0.015	-0.005	0.013	-0.001	0.001

Posterior Plot Results

no spatial and/or temporal structure

Type I Interaction (δit 값)

Space-Time Interaction

Type II Interaction

: Unstructured(상관성 x) effect인 v_i 와 Structed(상관성O) Effect인 γ_t 의 Interaction 고려

$$R_{\delta} = R_{\upsilon} \otimes R_{\gamma}$$
 I_{υ} : noise

RW of order 1

$$\gamma_t \mid \gamma_{t-1} \sim \text{Normal}(\gamma_{t-1}, \sigma^2)$$
 (7.4)

RW of order 2

$$\gamma_t \mid \gamma_{t-1}, \gamma_{t-2} \sim \text{Normal}(2\gamma_{t-1} + \gamma_{t-2}, \sigma^2).$$
 (7.5)

 $\operatorname{rank}(\mathbf{R}_{\delta})$:
• γ 가 RW1인 경우 $\rightarrow n(T-1)$ • γ 가 RW2인 경우 $\rightarrow n(T-2)$

Type II Interaction: 8 it 결과

R 코드	
## RW2 version ###	$u_i + v_t$
	f(ID, model="bym", graph=TBtotal.adj) +
γ_{t} f(ID.year, model="rw2") +	
$oldsymbol{\phi}_{ ext{t}}$ f(ID.year2, model="iid") +	
δ_{it} f(ID.area.int, model="iid",	, group = ID.year.int, control.group=list(model="rw2"))
Noise는 n(area)임	Group을 T(year)별로 나눔

Type II Inter	action: o_it {	⊒ 1[
	2016년	2017년	2018년	2019년	2020년	2021년	2022년
가평군	0.243	0.284	0.326	0.368	0.408	0.449	0.488
고양시	-0.170	-0.192	-0.216	-0.242	-0.269	-0.299	-0.332
과천시	-0.169	-0.230	-0.291	-0.354	-0.417	-0.481	-0.545
광명시	-0.032	-0.046	-0.060	-0.073	-0.087	-0.102	-0.117
광주시	-0.084	-0.091	-0.100	-0.112	-0.123	-0.135	-0.147
구리시	-0.081	-0.088	-0.095	-0.101	-0.106	-0.112	-0.118

Posterior Plot Results

Temporal Structure 위주로 고려

2018년

2021년

[-1,-0.01] (0.01,1]

[-1,-0.01]

(0.01,1]

Type II Interaction (δ급값)-

łΑ, **FUTURE** CREATE

Space-Time Interaction

Spatial Structure 위주로 고려

Type III Interaction : Unstructured(상관성 x) effect인 v₁와 Structed(상관성O) Effect인 水의 Interaction 고려

$$R_{\delta} = R_{\upsilon} \otimes R_{\upsilon} \longrightarrow rank(R_{\delta}): T(n-1)$$

$$I_{\gamma}^{\prime}: noise$$

```
R 코드
formula.intIII = 신규결핵 ~ f(ID, model="bym", graph=TBtotal.adj) +
                                                           u_i + v_t
f(ID.year, model="rw2") +
f(ID.year2, model="iid") +
f(ID.year.int,model="iid", group=ID.area.int,
 control.group=list(model="besag", graph=TBtotal.adj))
```

Space-Time Interaction

Type V Interaction : Structured(상관성O) effect인 ui 와 🎢 의 Interaction 고려

$$\mathbf{R}_{\delta} = \mathbf{R}_{\mathrm{u}} \otimes \mathbf{R}_{\gamma}$$

• γ 가 RW1인 경우 $\rightarrow (n-1)(T-1)$ $rank(\mathbf{R}_{\delta})$: • γ 가 RW2인 경우 $\rightarrow (n-1)(T-2)$

R 코드

formula.intIV = 신규결핵 ~ f(ID, model="bym",graph=TBtotal.adj) + $u_i + v_t$ γ_t f(ID.year, model="rw2") + ϕ_t f(ID.year2, model="iid") + δ_{it} f(ID.area.int, model="besag", graph=TBtotal.adj, group=ID.year.int, control.group=list(model="rw2"))

Type IV Interaction: δ it 결과

2016년	2017년	2018년	2019년	2020년	2021년	2022년
0.272	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
-0.138	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
-0.140	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
-0.004	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
-0.054	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
-0.053	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003

Posterior Plot Results

both spatial and temporal structure

Type IV Interaction (δ급값)

시간이 지날수록 delta값이 동일해짐. + 연해진다 (delta 영향 낮음) \rightarrow Type II와 비슷하게 γ_t 라는 시간적 요소가 들어가서 유사한 결과가 나옴.

DIC Result

Model별 DIC 결과						
model	DIC					
Parametric	1746.629					
Nonparametric (no interaction)	1753.815					
Nonparametric (Linteraction)	1743.875					
Nonparametric (II interaction)	1744.240					
Nonparametric (IV interaction)	1742.149					

Fitted value vs 실제 결핵 비율 비교

