Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.12.13

Key words: Combinatorial Nullstellensatz, Sumset, Zero-Sum Set

Recall (Combinatorial Nullstellensatz). Let $f \in F[x_1, \dots, x_n]$ be a polynomial of degree d. Suppose $[x_1^{t_1}x_2^{t_2}\cdots x_n^{t_n}]f\neq 0$ and $\sum_{i=1}^{n} t_i = d. \text{ If } S_i \subset F \text{ with } |S_i| \geqslant t_i + 1, i \in [n], \text{ then } \exists x \in S_1 \times \cdots \times S_n$ s.t. $f(x) \neq 0$.

Theorem 6. Let G = (V, E). G has no loops but multiple edges are allowed. Let p be a prime. If average degree of G > 2p-2, max degree of $G \leq 2p-1$, then G contains a p-regular subgraph.

proof: Associate
$$\forall e \in E$$
 with a variable x_e .
Define $f = \prod_{v \in V} [1 - (\sum_{e \in E} a_{v,e} x_e)^{p-1}] - \prod_{e \in E} (1 - x_e) \in \mathbb{F}_p[x_1, \dots, x_{|E|}],$ where $a_{v,e} = 1$ if $v \in e$ and $a_{v,e} = 0$ if $v \notin e$.

Note that degree in the first product is (p-1)|V|, and degree in the second product is |E|. By Handshaking Lemma, average degree

$$\frac{\sum_{v \in V} d(v)}{|V|} = \frac{2|E|}{|V|} > 2p - 2 \Longrightarrow (p - 1)|V| < |E|. \text{ So } deg(f) = |E|,$$
 and $[\prod_{e \in E} x_e]f = (-1)^{|E|+1} \neq 0.$

Apply Combinatorial Nullstellensatz with $S_i = \{0,1\}, t_e = 1$ for $\forall e \in E \Longrightarrow \exists x = (x_e)_{e \in E} \in \{0, 1\}^{|E|} \text{ s.t. } f(x) \neq 0.$

Now consider the subgraph H consisting of all edges $e \in E$ with $x_e = 1$. If $x = (0, \dots, 0), f(x) = 0$. So $x \neq (0, \dots, 0)$. $\Longrightarrow H$ is not empty.

So

$$0 \neq f(x) = \prod_{v \in V} [1 - (\sum_{e \in E} a_{v,e} x_e)^{p-1}],$$

which implies $(\sum_{e \in E} a_{v,e} x_e)^{p-1} \neq 1$ for $\forall v \in V$.

By Fermat's Little Theorem, $\sum_{e \in E} a_{v,e} x_e \equiv 0 \pmod{p}$ for $\forall v \in V$.

$$\Longrightarrow \sum_{e \in E: v \in e} x_e = \sum_{e \in E} a_{v,e} x_e \equiv 0 \pmod{p} \text{ for } \forall v \in V$$

 \Longrightarrow Each vertex has degree 0 (mod p) in H.

Since the maximum degree $\leq 2p-1$, all positive degrees are precisely p, *i.e.* H is p-regular.

Additive Combinatorics

Definition (Sumset). $A + B = \{a + b : a \in A, b \in B\}.$

Theorem 7 (Cauchy-Davenport). If p is a prime, and A, B are two non-empty subsets of \mathbb{F}_p , then $|A + B| \ge \min \{p, |A| + |B| - 1\}$.

proof:

- (1) If $|A| + |B| 1 \ge p$, then $|A| + |B| \ge p + 1$, which implies $|A \cap B| \ne \emptyset$. For $\forall x \in \mathbb{F}_p$, $|\{x\} - B| = |B|$. So $A \cap (\{x\} - B) \ne \emptyset$. $\implies \exists a \in A, a \in \{x\} - B$. $\implies \exists b \in B, a = x - b, i.e. \ x = a + b$.
 - $\implies A + B = \mathbb{F}_p$. So $|A + B| \geqslant p$.
- (2) If $|A| + |B| 1 \le p 1$, then $|A| + |B| \le p$. We need to show $|A + B| \ge |A| + |B| 1$. Assume $|A + B| \le |A| + |B| - 2 \le p - 2$, then $\exists C \subset \mathbb{F}_p$ with |C| = |A| + |B| - 2 s.t. $A + B \subset C$. Define $f = \prod_{c \in C} (x_1 + x_2 - c) \in \mathbb{F}_p[x_1, x_2]$, then $f(x_1, x_2) = 0$ for $\forall (x_1, x_2) \in A \times B$ and deg(f) = |C| = |A| + |B| - 2. Let $t_1 = |A| - 1$, $t_2 = |B| - 1$, then $[x_1^{t_1} x_2^{t_2}]f = \binom{|C|}{|A| - 1} = \binom{|C|}{|A| - 1}$

Zero-Sum Set

Question 1. Any sequence a_1, \dots, a_n of n integers contains a nonempty consecutive subsequence $a_i, a_{i+1}, \dots, a_{i+m}$ whose sum is 0 (mod n).

proof: Assume there are n holes labeled from 0 to n-1. Consider n sequences: $(a_1), (a_1, a_2), \dots, (a_1, a_2, \dots, a_n)$. If the sum of a sequence is $i \pmod{n}$, put it into the i-th hole.

If the 0-th hole is not empty, we're done.

Suppose not. Then by Pigeonhole Principle, there are two sequences in the same hole, say, (a_1, \dots, a_{i-1}) and $(a_1, \dots, a_{i-1}, a_i, \dots, a_{i+m})$, which means they have the same sum \pmod{n} . Then the subsequence (a_i, \dots, a_{i+m}) has sum $0 \pmod{n}$.

Question 2. Given n > 0, what is the smallest N such that any sequence of N integers contains a subsequence of n integers (not necessarily consecutive) whose sum is $0 \pmod{n}$?

Example. Consider (a_1, \dots, a_{2n-2}) where $a_i = 0$ for $i = 1, \dots, n-1$ and $a_i = 1$ for $i = n, \dots, 2n-2$. $\Longrightarrow N > 2n-2$.

Theorem 8. p is a prime, then any integer sequence of length 2p-1 contains a subsequence of length p whose sum is $0 \pmod{p}$.

proof 1: Assume $a_1 \leqslant a_2 \leqslant \cdots \leqslant a_{2p-1}$. If $\exists i \in [p-1]$ such that $a_i = \cdots = a_{i+p-1}$, we're done. Suppose not. Define $A_i = \{a_i, a_{i+p-1}\}$ for $i \in [p-1]$. Then by Cauchy-Davenport Theorem, we have $|A_1 + A_2 + \cdots + A_{p-1}| \geqslant \min \{p, |A_2 + \cdots + A_{p-1}| + 1\} \geqslant \min \{p, |A_3 + \cdots + A_{p-1}| + 2\} \geqslant \cdots \geqslant n$

min
$$\{p, |A_{p-1}| + p - 2\} = p$$
. Hence $A_1 + A_2 + \dots + A_{p-1} = \mathbb{F}_p$. So $\exists a_{i_j} \in A_j$ such that $-a_{2p-1} = a_{i_1} + a_{i_2} + \dots + a_{i_{p-1}}$.

proof 2: Define
$$f_1 = \sum_{i=1}^{2p-1} a_i x_i^{p-1}$$
 and $f_2 = \sum_{i=1}^{2p-1} x_i^{p-1} \in \mathbb{F}_p[x_1, \cdots, x_{2p-1}],$ then $f_1(0) = f_2(0) = 0$, and $deg(f_1) + deg(f_2) = 2(p-1) < 2p-1$. So $\exists \ x = (x_1, \cdots, x_{2p-1}) \neq 0$ such that $f_1(x) = f_2(x) = 0$. Here, we use the fact that if $f_1, \cdots, f_m \in F[x_1, \cdots, x_n], \sum_{i=1}^m deg(f_i) < n$, and (c_1, \cdots, c_n) is a common root of all f_i , then \exists another common root.

Let
$$I = \{i \in [2p-1] : x_i \neq 0\}$$
. Then $f_2(x) = 0 \Longrightarrow |I| \equiv 0 \pmod{p}$ $\Longrightarrow |I| = p$, and $f_1(x) = 0 \Longrightarrow \sum_{i \in I} a_i \equiv 0 \pmod{p}$.

Theorem 8' (generalization of Theorem 8). n is an integer, then any integer sequence of length 2n-1 contains a subsequence of length n whose sum is $0 \pmod{n}$.

proof: Prove by induction on the number of primes in n.

 $\overline{\text{If } n = p}$, we're done. (i.e. Theorem 8)

Assume $n = pm \ge 2p$, and Theorem 8' holds for m.

Consider sequence a_1, \dots, a_{2p-1} , and apply Theorem 8 for p, we get $I_1 \subset \{a_1, \dots, a_{2p-1}\}$ with $|I_1| = p$ and $\sum_{i \in I_1} a_i \equiv 0 \pmod{p}$.

Now consider sequence $\{a_1, \dots, a_{2p-1}\}\setminus I_1, a_{2p}, \dots, a_{2n-1}, \text{ and apply Theorem 8 for } p \text{ again, we get } I_2 \text{ with } |I_2| = p, I_2 \cap I_1 = \emptyset \text{ and } \sum_{i \in I_2} a_i \equiv 0 \pmod{p}.$

Repeat this process until we can't do it any more, we get disjoint I_1, \dots, I_l with $|I_j| = p$ and $\sum_{i \in I_j} a_i \equiv 0 \pmod{p}$ for $\forall j \in [l]$.

Claim: $l \ge 2m - 1$.

Proof of Claim: If $l \leq 2m-2$, then $(2n-1)-lp \geq (2pm-1)-(2m-2)p=2p-1$, which means we can get I_{l+1} , a contradiction.

Let
$$b_j = \frac{\sum_{i \in I_j} a_i}{p}$$
 for $j \in [l]$, then b_j is an integer.

Since $l \ge 2m-1$, by assumption, $\exists J \subset [2m-1]$ with |J| = m such that $\sum_{j \in J} b_j \equiv 0 \pmod{m}$.

$$\implies \sum_{j \in J} \sum_{i \in I_j} \frac{a_i}{p} = \sum_{j \in J} b_j \equiv 0 \pmod{m}$$

$$\implies \sum_{j \in J} \sum_{i \in I_j} a_i \equiv 0 \pmod{pm} \quad i.e. \quad \sum_{j \in J} \sum_{i \in I_j} a_i \equiv 0 \pmod{n}$$