Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	
1.2 Описание выходных данных	5
2 МЕТОД РЕШЕНИЯ	6
3 ОПИСАНИЕ АЛГОРИТМОВ	7
3.1 Алгоритм конструктора класса Test	7
3.2 Алгоритм деструктора класса Test	7
3.3 Алгоритм функции main	7
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	9
5 КОД ПРОГРАММЫ	10
5.1 Файл main.cpp	10
5.2 Файл Test.cpp	10
5.3 Файл Test.h	11
6 ТЕСТИРОВАНИЕ	12
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	17

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект, который сообщает об отработке конструктора и деструктора. У объекта нет свойств и функциональности.

Написать программу, которая:

- 1. Создает объект с использованием оператора функции new.
- 2. Уничтожить объект оператором функции delete.

1.1 Описание входных данных

Отсутствует.

1.2 Описание выходных данных

Первая строка, с первой позиции:

Constructor

Вторая строка, с первой позиции:

Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект Example класса Test;
- cout Объект потокового вывода.

Класс Test:

- функционал:
 - о метод Test Конструктор по умолчанию;
 - о метод ~Test Деструктор по умолчанию.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса Test

Функционал: Конструктор по умолчанию.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Test

N₂	Предикат	Действия	No
			перехода
1		Вывод в консоль "Constructor"	Ø

3.2 Алгоритм деструктора класса Test

Функционал: Деструктор по умолчанию.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса Test

N₂	Предикат	Действия	N₂
			перехода
1		Вывод в консоль "Destructor"	Ø

3.3 Алгоритм функции main

Функционал: основная функция программы.

Параметры: нет.

Возвращаемое значение: int - Код ошибки.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции таіп

No	Предикат	Действия	No
			перехода
1		Инициализация указателя Example адресом объекта класса Test	2
2		Удаление указателя Example	3
3		Возврат значения 0	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-1.

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include "Test.h"

using namespace std;

int main()
{
   Test *Example = new Test;

   delete Example;
   return(0);
}
```

5.2 Файл Test.cpp

```
#include "Test.h"
#include <iostream>

// возвращаемое_значение имя_класса :: имя_метода () {}

Test :: Test () { std::cout << "Constructor\n"; }

Test :: ~Test () { std::cout << "Destructor"; }
```

5.3 Файл Test.h

Листинг 3 – Test.h

```
#ifndef __TEST__H
#define __TEST__H

class Test
{
  public:
    Test();
    ~Test();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 4.

Таблица 4 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
	Constructor Destructor	Constructor Destructor

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).