

January 2024

REV	DATA	ZMIANY
0.1	07.05.2016	Bogusław Cyganek (cyganek@agh.edu.pl)

KALKULATOR DLA ELEKTRONIKÓW I INFORMTYKÓW

Autor: Jakub Puch

January 2024

Akademia Górniczo-Hutnicza

2024

AGH University of Science and Technology

January 2024

Spis treści

- <u>1.</u> 4
- <u>2.</u> 7
- <u>3.</u> 7
- <u>4.</u> 9
- 5. Błąd! Nie zdefiniowano zakładki.
- <u>6.</u> 12
- <u>7.</u> 13

BIBLIOGRAFIA 19

AGH University of Science and Technology

January 2024

Lista oznaczeń

[tu dodajemy swoje oznaczenia użyte w tym dokumencie]

bin	System binarny
oct	System ósemkowy
hex	System szesnastkowym
float	Liczby zmiennoprzecinkowe

January 2024

1. Wstęp

Ten projekt to implementacja kalkulatora w języku C++, który obsługuje różne operacje matematyczne, takie jak dodawanie, odejmowanie, mnożenie, dzielenie oraz potęgowanie. Kalkulator umożliwia również konwersję liczb między różnymi systemami liczbowymi, takimi jak binarny, ósemkowy, dziesiętny i szesnastkowy. Dodatkowo, projekt zawiera mechanizmy obsługi błędów, takie jak sprawdzanie dzielenia przez zero, niepoprawnych operacji matematycznych czy nieprawidłowych danych wejściowych

January 2024

1. Wymagania projektowe

- a) Celem projektu jest stworzenie aplikacji kalkulatora wykonującego kilka podstawowych działań dla elektroników, czyli z możliwością przełączenia się na systemy: bin, oct, hex, albo float.
 - b) Aplikacja składa się zasadniczo z dwóch modułów:
- sytemu klas, hierarchii, design patterns realizujących działania kalkulatora (jak najbardziej niezależne od platformy i języka)
- interfejsu użytkownika (prosty dialog pod Windows lub Linux)
- c) Należy zwrócić szczególną uwagę na przejrzystość projektu oraz możliwość zastosowania poznanych technik projektowania i programowania obiektowego.
- d) Obowiązkowe jest korzystanie z narzędzi: debugger, CMake, git oraz bazy GitHub (osobiste konto); Ważne jest podłączenie biblioteki do testowania oprogramowania Google Test GTest (opis m.in. znajduje się z appendixie książki o C++).

January 2024

2. Funkcjonalność (functionality)

Kalkulator został zaprojektowany z myślą o intuicyjnym interfejsie, który umożliwia łatwe korzystanie z różnych funkcji oraz w dowolnym momencie zmianę sytemu liczbowego. W programie jest też zawarta kolejność działań co jest bardzo ciekawym dodatkiem do całego programu. Program także "chroni użytkownika przed nim samym": W przypadku dzielenia przez zero, program zgłasza wyjątek "Division by zero". Również obsługuje błędy, takie jak próba konwersji liczby ujemnej na system binarny, ósemkowy czy szesnastkowy.

January 2024

3. Analiza problemu (problem analysis)

Problemem jest różnorodność sposobów w jaki odbywają się działania arytmetyczne w różnych systemach liczbowych każde działanie generuje ten sam wynik w innym systemie liczbowym.

AGH University of Science and Technology

January 2024

January 2024

4. Projekt techniczny (technical design)

January 2024

ExponentiationExpression Class Referen	Public Member Functions List of all member	rs
Inheritance diagram for ExponentiationExpression:	Expression ExponentiationExpression	
Public Member Functions		
	> baseExpression, std::unique_ptr< Expression > exponentExpression)	
double evaluate () const override		
Member Function Documentation		
• evaluate()		
double ExponentiationExpression::evaluate () const	CHRIST MALE	
Implements Expression.		
NumberExpression Class Reference	Public Member Functions List	of all members
Inheritance diagram for NumberExpression:	Expression NumberExpression	
Public Member Functions		
NumberExpression (double value)		
double evaluate () const override		
Member Function Documentation		
• evaluate()		
double NumberExpression::evaluate () const		rride virtual
Implements Expression.		

Wykorzystano program doxygen.

5. Opis realizacji (implementation report)

Projekt wykonano wykorzystując:

- Microsoft Visual Studio 2022
- Kompilator MSCV 2022
- CMake (3.28.1)
- Google test

January 2024

- Doxygen (do tworzenia diagramu hierarchii klas)

Rozwiązania:

- Utworzono interfejs użytkownika
- Zastosowanie narzędzi: debugger, CMake
- Utworzenie kalkulatora wykonującego podstawowe działania dla wszystkich systemów liczbowych
- Wykonano przejrzysty kod stosując poznane techniki projektowania oraz programowania obiektowego

January 2024

6. Opis wykonanych testów

Testy były przeprowadzane za pomocą GTestu, sprawdzone zotały wszystkie funkcję.

```
Running 5 tests from 1 test suite.
           Global test environment set-up.
           5 tests from CalculatorTests
         CalculatorTests.CanAddNumbers
     OK ] CalculatorTests.CanAddNumbers (0 ms)
          | CalculatorTests.CanAddMoreNumbers
     OK ] CalculatorTests.CanAddMoreNumbers (0 ms)
         CalculatorTests.OrderOfOperations_AdditionAndMultiplication
      OK ] CalculatorTests.OrderOfOperations_AdditionAndMultiplication (0 ms)
           {\tt CalculatorTests.0rder0f0perations\_MultiplicationAndAddition}
      OK ] CalculatorTests.OrderOfOperations_MultiplicationAndAddition (0 ms)
         CalculatorTests.OrderOfOperations_SubtractionAndDivision
CalculatorTests.OrderOfOperations_SubtractionAndDivision (0 ms)

    -] 5 tests from CalculatorTests (3 ms total)

       --] Global test environment tear-down
=======] 5 tests from 1 test suite ran. (6 ms total)
PASSED ] 5 tests.
```

Zdjęcie Gtestu dla kilku funkcji reszta została przeprowadzona w ten sam sposób

January 2024

7. Podręcznik użytkownika (user's manual)

Program startowo posługuję się system zmiennoprzecinkowym ma również zablokowaną możliwość wyboru opcji nie dostępnych dla float. Aby wyświetlić wynik po wypisaniu wszystkich operacji należy wcisnąć przycisk =, aby wyzerować trzeba wybrać system jakiego będziemy chcieli stosować następnie.

Aby zmienić wybieramy jeden z dostępnych sytemów: bin, oct, hex, flt

W lewej dolnej części ekranu wyświetla się stosowany przez nas system liczbowy.

AGH University of Science and Technology

January 2024

Bibliografia

1. Cyganek b.: Programowanie w języku C++

Wprowadzenie dla inżynierów. PWN, 2023.

2. Strona internetowa: cplusplus.com

3. Strona internetowa: https://cpp0x.pl

5. Strona internetowa: https://www.geeksforgeeks.org/

6. Strona internetowa: https://chat.openai.com