SUNUM İÇİN HAZIRLANMIŞ SLAYTTAN EKRAN GÖRÜNTÜLERİ

Giriş

Problem Tanımı

- -Sosyal medya ve dijital platformlarda nefret söyleminin yaygınlığı artmaktadır.
- -Nefret söylemi; bireyler ve topluluklar üzerinde ciddi psikolojik ve sosyal etkiler yaratabilir.
- -Bu projede, nefret söylemini otomatik olarak tespit eden bir model geliştirilmektedir.

Amaç

Nefret söylemini, hakaret içeren söylemleri ve tarafsız ifadeleri ayırabilen bir sistem oluşturmak.

Derin öğrenme yaklaşımlarıyla başarımlı bir sınıflandırma modeli geliştirmek

Kullanılan Veri Seti

- -Kaynak: Kaggle hate-speech-and-offensive-language-master
- -Veri Seti İçeriği:
 - -Toplam 25.000+ tweet.
 - -İçerikler 3 sınıfa ayrılmıştır:
 - -Nefret Söylemi (Hate Speech)
 - -Hakaret (Çirkin Dil) (Offensive)
 - -Tarafsız (Çoklu Sınıf Neutral)
- -Sınıf Dağılımı dengelenmiştir (oversampling kullanılmıştır).

Yöntem ve Teknolojiler

BERT (Bidirectional Encoder Representations from Transformers) modeli Model

Transformers kütüphanesi yardımıyla BERT tümleştirildi.

Metin temizleme: Metin İşleme

-URL'ler, özel karakterler ve büyük/küçük harf farklılıkları giderildi.

Tokenization: BERT tokenizer kullanıldı.

Modelleme Model, 10 epoch boyunca eğitildi(Son versiyon için(7'de zorla durduruldu)).

AdamW optimizasyonu ve linear scheduler kullanıldı.

Koddaki Önemli Noktalar

BERT Modelinin Kullanımı:

- Transformer tabanlı modellerin gücü, metinlerin anlamını anlamada ve sınıflandırmada önemli bir rol oynar. BertForSequenceClassification bu projeyi özel kılıyor.
- Oversampling ve Ağırlıklı Kayıp Fonksiyonu: 2 Veri dengesizliğini dengelemek için kullanılan oversampling ve sınıf ağırlıklarının kayıp fonksiyonuna eklenmesi, modelin nadir sınıfları öğrenmesini sağlıyor.
- Erken Durdurma ve Model Kaydetme: 3 Eğitim sırasında aşırı öğrenmenin (overfitting) önlenmesi ve en iyi modelin kaydedilmesi, uygulama açısından kritik.

Sonuçlar

Model Performansi

Eğitim ve Doğrulama Doğrulukları

En iyi epoch sonucunda doğrulama doğruluğu: 96.37%

Ortalama eğitim kaybı: 0.1520

Modelin tahmin doğruluğu, normalize edilmiş karışıklık matrisi ile görsel olarak sunuldu.

Karışıklık Matrisi Sınıf Performansı

Precision, Recall ve F1-Score

Hate Speech: F1-Score: 0.95

Offensive: F1-Score: 0.93

Neutral: F1-Score: 0.98

Celecek Çalışmalar Veri seti daha fazla dil ve kültüre genelleştirilebilir. Daha karmaşık modeller (örneğin, BERT Large veya RoBERTa) kullanılabilir. Gerçek zamanlı analiz için optimizasyon yapılabilir.

İkinci versiyonda 16 epoch (9'da durduruldu) Eğitim: 100% | Eğitim Doğruluğu: 97.44% | Doğrulama: 100% | Poğrulama: 100% | Eğitim Doğruluğu: 97.44% | Doğrulama: 100% | Eğitim Doğruluğu: 07.44% | Eğitim 2098/2098 [12:43<00:00, 2.75it/s, accuracy=97.4, loss=0.00462] | 525/525 [00:57<00:00, 9.09it/s, accuracy=92.5, loss=0.00212] Doğrulama Kaybı: 0.3014, Doğrulama Doğruluğu: precision recall f1-score Hate Speech Offensive 3679 3870 840 Neutral accuracy | 2098/2098 [12:43<00:00, 2.75it/s, accuracy=97.9, loss=0.00141] Eğitim Kaybı: 0.0646, Eğitim Doğruluğu: 97.93% Doğrulama: 100% Doğrulama Doğrulama Doğruluğu: | 525/525 [00:57<00:00, 9.09it/s, accuracy=93.1, loss=0.00301] 0.94 0.93 0.87 3679 3870 840 Hate Speech Offensive Neutral 8389 8389

Genel Sonuç

Sonuç olarak, denenmiş 7 değiştirilmiş hiperparametreli örneklerden sonra ulaşılan en iyi,örnek;

Eğitim Kaybı: 0.0670, Eğitim Doğruluğu: 97.82%

Doğrulama Kaybı: 0.1520, Doğrulama Doğruluğu: 96.37%

değerlerine sahiptir.

İŞLEME İÇİN KULLANILAN KODLAR VE PARÇALANMIŞ İŞ BÖLÜMLERİ

```
# Gerekli kütüphaneleri yükleyin
import pandas as pd
import numpy as np
import nltk
import re
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import torch
from torch.utils.data import DataLoader, Dataset
import torch.nn as nn
from transformers import BertTokenizer, BertForSequenceClassification, get_scheduler
from tqdm import tqdm
```

```
nltk.download('stopwords')
from nltk.corpus import stopwords
data path = "C:\\Users\\mamie\\Downloads\\hate-speech-and-offensive-language-master\\data\\labeled data.csv"
df = pd.read_csv(data_path)
def clean_text(text):
    text = text.lower()
    text = re.sub(r'http\S+', '', text) # URL'leri kaldır
    text = re.sub(r'[^a-zA-Z\s]', '', text) # Özel karakterleri kaldır
    text = text.strip()
    return text
df['tweet'] = df['tweet'].apply(clean text)
# Sınıf dağılımını dengeleme (oversampling)
class counts = df['class'].value counts()
df balanced = pd.concat([df[df['class'] == cls].sample(class counts.max(), replace=True) for cls in class counts.index])
df = df_balanced.reset_index(drop=True)
texts = df['tweet'].values
labels = df['class'].values
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
```

```
# Dataset sinifi
class HateSpeechDataset(Dataset):
   def __init__(self, texts, labels, tokenizer, max_len):
       self.texts = texts
       self.labels = labels
       self.tokenizer = tokenizer
       self.max len = max len
   def __len__(self):
       return len(self.texts)
   def __getitem__(self, item):
        text = str(self.texts[item])
       label = self.labels[item]
        encoding = self.tokenizer.encode_plus(
           text,
           add special tokens=True,
           max length=self.max len,
           return token type ids=False,
           padding="max_length",
           truncation=True,
           return_attention_mask=True,
           return_tensors='pt',
            'input_ids': encoding['input_ids'].squeeze(0),
            'attention mask': encoding['attention mask'].squeeze(0),
            'label': torch.tensor(label, dtype=torch.long)
```

Parametreler

```
EPOCHS = 10
MAX LEN = 128
BATCH SIZE = 16
LEARNING_RATE = 2e-5
X_train, X_test, y_train, y_test = train_test_split(texts, labels, test_size=0.2, random_state=42)
train_dataset = HateSpeechDataset(X_train, y_train, tokenizer, MAX_LEN)
test_dataset = HateSpeechDataset(X_test, y_test, tokenizer, MAX_LEN)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test loader = DataLoader(test dataset, batch_size=BATCH_SIZE)
# Model vükleme
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=3, hidden_dropout_prob=0.4)
device = torch.device("cuda" if torch.cuda.is available() else "cpu")
model = model.to(device)
class_counts = df['class'].value_counts().sort_index().values
class_weights = torch.tensor([sum(class_counts) / c for c in class_counts]).to(device)
loss fn = nn.CrossEntropyLoss(weight=class weights)
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE, weight_decay=0.01)
scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=len(train_loader) * EPOCHS)
best_val_loss = float('inf')
early_stopping_patience = 3
early_stopping_counter = 0
```

```
def train_epoch(model, data_loader, loss_fn, optimizer, device, scheduler):
   model.train()
   total loss = 0
   correct = 0
    total = 0
    loop = tqdm(data_loader, leave=True, desc="Eğitim")
    for batch in loop:
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        labels = batch['label'].to(device)
        optimizer.zero grad()
        outputs = model(input ids=input ids, attention mask=attention mask, labels=labels)
        loss = outputs.loss
        total_loss += loss.item()
       preds = torch.argmax(outputs.logits, dim=1)
        correct += (preds == labels).sum().item()
        total += labels.size(0)
        loss.backward()
        optimizer.step()
        scheduler.step()
        loop.set_postfix(loss=loss.item(), accuracy=100 * correct / total)
   return total_loss / len(data_loader), 100 * correct / total
```

```
def eval model(model, data loader, loss fn, device):
   model.eval()
   total loss = 0
   correct = 0
   total = 0
   all_preds = []
   all_labels = []
   loop = tqdm(data loader, leave=True, desc="Doğrulama")
   with torch.no_grad():
       for batch in loop:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
           labels = batch['label'].to(device)
           outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
            loss = outputs.loss
           total_loss += loss.item()
            preds = torch.argmax(outputs.logits, dim=1)
            correct += (preds == labels).sum().item()
            total += labels.size(0)
            all_preds.extend(preds.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())
            # İlerleme çubuğunu güncelle
            loop.set_postfix(loss=loss.item(), accuracy=100 * correct / total)
   return total_loss / len(data_loader), 100 * correct / total, all_preds, all_labels
```

```
accuracies = []
history = {'train_acc': [], 'val_acc': []}
for epoch in range(EPOCHS):
    print(f"\n==== Epoch {epoch + 1}/{EPOCHS} =====")
    train_loss, train_acc = train_epoch(model, train_loader, loss_fn, optimizer, device, scheduler)
   print(f"Eğitim Kayba: {train loss:.4f}, Eğitim Doğruluğu: {train acc:.2f}%")
   val_loss, val_acc, val_preds, val_labels = eval_model(model, test_loader, loss fn, device)
   print(f"Doğrulama Kaybı: {val_loss:.4f}, Doğrulama Doğruluğu: {val_acc:.2f}%")
    accuracies.append((epoch + 1, val_acc))
   history['train_acc'].append(train_acc)
   history['val acc'].append(val acc)
   print(classification report(val labels, val preds, target names=['Hate Speech', 'Offensive', 'Neutral']))
   # Early Stopping kontrolü
   if val_loss < best_val_loss:</pre>
       best val loss = val loss
        early stopping counter = 0
        torch.save(model.state_dict(), "best_model.pt")
        early_stopping_counter += 1
    if early stopping counter >= early stopping patience:
        print("Erken durdurma tetiklendi.")
        break
```

```
model.load_state_dict(torch.load("best_model.pt"))
def plot_confusion_matrix(preds, labels):
    cm = confusion_matrix(labels, preds, normalize='true')
    plt.figure(figsize=(8, 6))
    sns.heatmap(cm, annot=True, fmt='.2f', cmap='Blues', xticklabels=['Hate Speech', 'Offensive', 'Neutral'], yticklabels=['Hate Speech',
    'Offensive', 'Neutral'])
plt.xlabel('Tahmin Edilen')
    plt.ylabel('Gerçek')
    plt.title('Karişiklik Matrisi')
    plt.show()
val_loss, val_acc, val_preds, val_labels = eval_model(model, test_loader, loss_fn, device)
print(f"Test Kayba: {val loss:.4f}, Test Doğruluğu: {val acc:.2f}%")
plot_confusion_matrix(val_preds, val_labels)
def plot_history(history):
    plt.figure(figsize=(10, 6))
    plt.plot(history['train_acc'], label='Eğitim Doğruluğu')
    plt.plot(history['val_acc'], label='Doğrulama Doğruluğu')
    plt.xlabel('Epochs')
plt.ylabel('Doğruluk (%)')
    plt.title('Model Eğitimi ve Doğrulama Doğruluğu')
    plt.legend()
    plt.show()
plot history(history)
```