Aboutness and Higher-Order Contingentism

Andrej Jovićević (KU Leuven) andrej.jovicevic@student.kuleuven.be

1 Modal Metaphysics

Is the framework of objects necessary or contingent (Williamson 2013)?

Some things exist contingently. (Contingentism)
Necessarily, everything necessarily exists. (Necessitism)
Some properties/propositions/etc. exist contingently. (H. O.C)
Necessarily, every property/proposition/etc.
necessarily exists. (H. O.N)

How do these positions connect? Does H. O. C./N. follow from Contingentism/Necessitism? (Goodman 2016, Fairchild 2024)

A prominent thought: Patterns of contingency in what individuals there are produce patterns of contingency in what entities of higher types there are.

But how? A prominent suggestion: Relations of **aboutness** between entities of higher types and individuals. (Prior 1957, Fine 1980, Adams 1981, Fitch 1996)

2 Background

2.1 Typed Languages

Existing formal discussions of these positions are couched in higherorder modal languages (Gallin 1975, Williamson 2013, Fritz 2023).

A higher-order language is any typed language. Types are defined as follows:

- \bullet e is the basic type, the type of individuals;
- If τ is a type, $\langle \tau \rangle$ is a type;

Examples:

- $\langle e_1, ..., e_n \rangle$: the type of *n*-ary relations between individuals
- $\langle \rangle$: the type of propositions
- $\langle \langle \rangle_1, \ldots, \langle \rangle_n \rangle$: the type of *n*-ary relations between propositions

We also employ λ , a variable-binding operator that takes open sentences as inputs and outputs predicates. Example:

• The open sentence Rx and the predicate $\lambda x.Rx$. The predicate denotes a function from entities of type x to propositions.

Standard signatures like that of propositional, first-order, and first-order modal logic can be enriched by indexing terms by appropriate types, yielding **typed** propositional, first-order, and first-order modal logic.

2.2 Modal Metaphysics Regimented

 $E =_{df} \lambda x. \exists y \ (x = y)$ (Existence) $\exists x \Diamond \neg Ex$ (Necessitism) $x_{\sigma} \equiv y_{\sigma} =_{df} \forall X_{\langle \sigma \rangle} \ (Xx \leftrightarrow Yx)$ (H.O. Identity) $E_{\langle \sigma \rangle} =_{df} \lambda X_{\sigma}. \exists Y_{\sigma} \ (X \equiv_{\langle \sigma, \sigma \rangle} Y)$ (H.O. Existence) $\Box \forall X_{\sigma} \Box E_{\langle \sigma \rangle} X$ (H.O.N.) $\exists X_{\sigma} \Diamond \neg E_{\langle \sigma \rangle} X$ (H.O.C.)

3 The Aboutness-Theoretic Argument

An argument for the contingent existence of propositions from the contingent existence of individuals:

- (1) Socrates possibly does not exist. (Contingentism)
- (2) The proposition [that Socrates exists] is about Socrates. (Aboutness)
- (3) If a proposition is about an individual, the proposition exists only if the individual exists (Aboutness)
- (4) The proposition [that Socrates exists]
 exists only if Socrates exists (from [2, 3])
- (5) The proposition [that Socrates exists] possibly does not exist (from [1], [4]

A formalised version of the argument. ¹

(1)
$$\Diamond \neg \exists y \ (s = y)$$
 (Contingentism)

(2)
$$\square(\mathfrak{A}((\lambda x.\exists y\ (x=y))(s),s))$$
 (Aboutness)

(3)
$$\square \forall p_{\langle \backslash} \square \forall x_e \square (\mathfrak{A}(p,x) \to (Ep \to Ex))$$
 (Aboutness)

(4)
$$\Box(E((\lambda x.\exists y\ (x=y))(s)\to Es))$$
 (from [2, 3])

(5)
$$\lozenge \neg \exists q \ (q \equiv (\lambda x. \exists y \ (x = y))(s))$$
 (from [1], [4]

Premise (2): the particular aboutness-claim used to motivate higher-order contingentism;

Premise (3): the general thesis that relations of aboutness induce relations of existential dependence.

Question of **adequacy**: Is there a theory of aboutness capable of delivering independently plausible verdicts about patterns of higher-order contingency? Potential problems for a theory of aboutness:

- 1) **under**generation less entities of higher types than we have independent reasons to accept;
- 2) **over**generation more entities of higher types than we have independent reasons to accept.

 $^{{}^{1}\}mathfrak{A}(p,x)$ is a relation of type $\langle \langle \rangle, e \rangle$ Intuitively: p is about x.

 $^{^{2}\}mathcal{A}(p)$ denotes a function from propositions to the entity(ies) it is about.

4 Theories of Aboutness

4.1 A Structured Theory of Aboutness

Rough proposal: A proposition is about whichever individuals are denoted by constants mentioned in the sentence by which the proposition is expressed.

Regimentation (cf. Dorr 2016):²

$$\mathcal{A}((\lambda x.\Phi x)(a)) = \mathcal{A}((\lambda x.\Phi x)(b)) \to a = b \tag{1}$$

Extended to include predicates:

$$\mathcal{A}((\lambda x.\Phi x)(a)) = \mathcal{A}((\lambda x.\Psi x)(b))$$

$$\to ((\lambda x.\Phi x) \equiv (\lambda x.\Psi x) \land a = b)$$
 (2)

Extended to higher types:

$$(\mathcal{A}\left((\lambda x_{\langle\rangle}.\Phi x)(p)\right) \equiv \mathcal{A}\left((\lambda y_{\langle\rangle}.\Psi y)(q)\right)) \to \left((\lambda x.\Phi x)_{\langle\langle\rangle\rangle} \equiv (\lambda x.\Psi x)_{\langle\langle\rangle\rangle} \land p \equiv q\right)$$
(3)

Concerns:

- ! Russell-Myhill Theorem: $\exists \mathcal{P} \exists \mathcal{F} (\mathcal{F} p \equiv \mathcal{P} p \land \mathcal{F} \not\equiv \mathcal{P})$
- ! Undergeneration: Williamson's knife-blade and -handle example.

4.2 A Coarse-Grained Theory of Aboutness

Rough (Lewisian) proposal: Subject matters are partitions of the logical space in which worlds belong to some equivalence class based on relevant overlaps. A proposition is about a given subject matter if and only if it is equivalent to a union of cells in the subject matter's partition. (Lewis 1988a, 1988b)

Regimentation:

- W: logical space (set of possible worlds)
- $\{X_i\}_{i\in I}$: partition of W if and only if
 - $-X_i \cap X_j = \emptyset$, whenever $i \neq j$ and $i, j \in I$; and
 - $-\bigcup_{i\in I} X_i = X$
- p is about $\{X_i\}_{i\in I}$: $p=S=\bigcup_{i\in I}X_i$, for some $i\in I$

Concern:

! Overgeneration: Tautologous propositions. Intuitively about something, rather than everything?

References

- [1] Adams, Robert Merrihew. 1981. "Actualism and Thisness." Synthese 49 (1): 3–41.
- [2] Dorr, Cian. 2016. "To Be F Is To Be G." *Philosophical Perspectives* 30 (1): 39–134.
- [3] Fairchild, Maegan. 2024. "Symmetry and Hybrid Contingentism." In *Higher-Order Metaphysics*, edited by Nicholas K. Jones and Peter Fritz. Oxford: Oxford University Press.
- [4] Fine, Kit. 1980. "First-Order Modal Theories. Ii: Propositions." *Studia Logica* 39: 159.
- [5] Fritz, Peter. 2023. The Foundations of Modality. Oxford: Oxford University Press.

- [6] Gallin, Daniel. 1975. Intensional and Higher-Order Modal Logic: With Applications to Montague Semantics. New York: American Elsevier Pub. Co.
- [7] Goodman, Jeremy. 2016. "Williamson on Necessitism." Canadian Journal of Philosophy 46 (4–5): 613–39.
- [8] Lewis, David. 1988a. "Relevant Implication." Theoria 54 (3): 161–74.
- [9] Lewis, David. 1988b. "Statements Partly About Observation." *Philosophical Papers* 17 (1): 1–31.
- [10] Williamson, Timothy. 2013. *Modal Logic as Metaphysics*. Oxford: Oxford University Press.