CS3230 AY21/22 SEM 2

github/jovyntls

01. COMPUTATIONAL MODELS

- algorithm → a well-defined procedure for finding the correct solution to the input
- correctness
- worst-case correctness → correct on every valid input
- other types of correctness: correct on random input/with high probability/approximately correct
- efficiency / running time → measures the number of steps executed by an algorithm as a function of the input size (depends on computational model used)
- number input: typically the length of binary representation
- worst-case running time \to max number of steps executed when run on an input of size n

 ${\sf adversary\ argument}$ o

inputs are decided such that they have different solutions

Comparison Model

- algorithm can **compare** any two elements in one time unit (x > y, x < y, x = y)
- running time = number of pairwise comparisons made
- · array can be manipulated at no cost

Decision Tree

- each comparison represents the relationship between two elements
- · each node is a comparison
- · each branch is an outcome of the comparison
- log base is determined by the number of branches per node
- each leaf is a class label (decision after all comparisons)
- lower bound of worst-case runtime = height of tree
- # of leaves = # of permutations $\Rightarrow \lg(n!) = \Theta(n \lg n)$
- any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Max Problem

 $\ensuremath{\textit{problem}}$: find largest element in array A of n distinct elements

Proof. n-1 comparisons are needed

fix an algorithm M that solves the Max problem on all inputs using < n-1 comparisons. construct graph G where nodes i and j are adjacent iff M compares $i \ \& \ j$.

M cannot differentiate A and A'.

Second Largest Problem

problem: find the second largest element in <2n-3 comparisons (2x Maximum $\Rightarrow (n-1)+((n-1)-1)=2n-3$)

• solution: knockout tournament $\Rightarrow n + \lceil \lg n \rceil - 2$

- 1. bracket system: n-1 matches
 - · every non-winner has lost exactly once
- 2. then compare the elements that have lost to the largest
 - the 2nd largest element must have lost to the winner
 - compares $\lceil \lg n \rceil$ elements that have lost to the winner using $\lceil \lg n \rceil 1$ comparisons

Sorting

Claim. there is a sorting algorithm that requires $\leq n \lg n - n + 1$ comparisons.

Proof. every sorting algorithm must make $\geq \lg(n!)$ comparisons.

- 1. let set $\mathcal U$ be the set of all permutations of the set $\{1,\dots,n\}$ that the adversary could choose as array A. $|\mathcal U|=n!$
- 2. for each query "is $A_i > A_j$?", if $\mathcal{U}_{yes} = \{A \in \mathcal{U} : A_i > A_j\}$ is of size $\geq |\mathcal{U}|/2$, set $\mathcal{U} := \mathcal{U}_{ues}$. else: $\mathcal{U} := \mathcal{U} \backslash \mathcal{U}_{ues}$
- 3. the size of $\ensuremath{\mathcal{U}}$ decreases by at most half with each comparison
- 4. with $< \lg(n!)$ comparisons, ${\cal U}$ will still contain at least 2 permutations

$$\begin{array}{c} n! \geq (\frac{n}{e})^n \\ \Rightarrow \lg(n!) \geq n \lg(\frac{n}{e}) = n \lg n - n \lg e \\ \approx n \lg n - 1.44n \end{array}$$

 \Rightarrow roughly $n\lg n$ comparisons are **required** and **sufficient** for sorting n numbers

String Model

input	string of n bits
each query	find out one bit of the string

- n queries are necessary and sufficient to check if the input string is all 0s.
- $\mbox{\bf query complexity} \to \mbox{number of bits of the input string queried by the algorithm}$
- **evasive** \rightarrow a problem requiring n query complexity

Graph Model

input	(symmetric) adjacency matrix of an n -noc undirected graph	
each query	find out if an edge is present between two chosen nodes (one entry of G)	

• **evasive** \rightarrow requires $\binom{n}{2}$ queries

- *Proof.* determining whether the graph is connected is evasive (requires $\binom{n}{2}$ queries)
- 1. suppose M is an algorithm making $\leq \binom{n}{2}$ queries.
- 2. whenever ${\cal M}$ makes a query, the algorithm tries not adding this edge, but adding all remaining unqueried edges.
 - 2.1. if the resulting graph is connected, M replies 0 (i.e. edge does not exist)
 - 2.2. else: replies 1 (edge exists)
- 3. after $<\binom{n}{2}$ queries, at least one entry of the adjacency matrix is unqueried.

02. ASYMPTOTIC ANALYSIS

- algorithm → a finite sequence of well-defined instructions to solve a given computational problem
- word-RAM model → runtime is the total number of instructions executed
- · operators, comparisons, if, return, etc
- each instruction operates on a word of data (limited size) ⇒ fixed constant amount of time

Asymptotic Notations

$$\begin{array}{l} \text{upper bound (\leq): } f(n) = O(g(n)) \\ \text{if } \exists c > 0, n_0 > 0 \text{ such that } \forall n \geq n_0, \\ \boxed{0 \leq f(n) \leq cg(n)} \end{array}$$

$$\begin{array}{l} \text{lower bound (\geq): } f(n) = \Omega(g(n)) \\ \text{if } \exists c > 0, n_0 > 0 \text{ such that } \forall n \geq n_0, \\ \boxed{0 \leq cg(n) \leq f(n)} \end{array}$$

$$\begin{array}{c} o\text{-notation (<): } f(n) = o(g(n)) \\ \text{if } \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \\ \hline 0 \leq f(n) < cg(n) \\ \end{array}$$

$$\begin{array}{c} \omega\text{-notation (>): } f(n) = \omega(g(n)) \\ \text{if } \forall c>0, \exists n_0>0 \text{ such that } \forall n\geq n_0, \\ \boxed{0\leq cg(n)< f(n)} \end{array}$$

Proof.
$$(n+1)! \neq O(n!)$$
 since $\frac{(n+1)!}{n!} = (n+1) > c$

Limits

Assume f(n), g(n) > 0.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \qquad \Rightarrow f(n) = o(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \qquad \Rightarrow f(n) = O(g(n))$$

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty \qquad \Rightarrow f(n) = \Theta(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0 \qquad \Rightarrow f(n) = \Omega(g(n))$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \qquad \Rightarrow f(n) = \omega(g(n))$$

Proof. 1.Since $\lim_{n\to\infty}=0$, we have for all $\epsilon>0$, there exists $\delta>0$ s.t $\frac{f(n)}{g(n)}<\epsilon$ for $n>\delta$ 2.Set $c=\epsilon$ and $n_0=\delta$ 3. $\forall n\geq n_0, \frac{f(n)}{g(n)}<\mathbf{c}$ 4. $\forall n\geq n_0, f(n)< cg(n)$ 5.By definition, $\mathbf{f}(\mathbf{n})=\mathbf{o}(\mathbf{g}(\mathbf{n}))$

Properties of Big O

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

- transitivity applies for $O, \Theta, \Omega, o, \omega$
- $f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
- reflexivity for $O, \Omega, \Theta, \quad f(n) = O(f(n))$
- symmetry $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$
- · complementarity -
- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$
- misc
- if $f(n) = \omega(g(n))$, then $f(n) = \Omega(g(n))$
- if f(n) = o(g(n)), then f(n) = O(g(n))

$$\log \log n < \log n < (\log n)^k < n^k < (n+1)! < k^n$$

insertion sort: $O(n^2)$ with worst case $\Theta(n^2)$

03. ITERATION, RECURSION, DIVIDE-AND-CONQUER

Iterative Algorithms

- **iterative** \rightarrow loop(s), sequentially processing input elements
- loop invariant implies correctness if
- initialisation true before the first iteration of the loop
- maintenance if true before an iteration, it remains true at the beginning of the next iteration
- *termination* true when the algorithm terminates

examples

- insertionSort: with loop variable as $j,\,A[1..J-1]$ is sorted.
 - A[1...i]=A'[1...i]. Elements not considered are unaffected.
 - A[i+2...j]=A'[i+1...j-1]. Relative order of shifted elements is preserved.
 - A[i+2...j] >key. Elements to its right are sorted and greater.
- selectionSort: with loop variable as j, the array A[1..j-1] is sorted and contains the j-1 smallest elements of A.

Dijkstra's:

Proof. 1.invariant $\mathbf{1} \forall x \in R$: $dist[x] = \sigma(s,x)$ 2.invariant $\mathbf{2} \forall$ y neighbouring $x \in R$: $dist[y] = min_{x \in R} \sigma(s,x) + W(x,y)$

Recursive Algorithm

- **recursive** → solves sub problems
- Correctness is proven using mathematical induction on size of problem
- Use strong induction, prove base case, show algorithm works assuming it works for all smaller cases

Examples

BINARY-SEARCH $(A, a, b, x) \triangleright A[a ... b]$ if a > b then return false else $mid = \lfloor (a+b)/2 \rfloor$ if x == A[mid] then return true if x < A[mid] then return BINARY-SEARCH (A, a, mid-1, x)else return BINARY-SEARCH (A, mid+1, b, x)

- binary search(A,a,b,x) returns the correct answer when
- Base case: n=b-a+1=0, since a=b+1, A[a..b] is empty and the answer is false
- Inductive step: n = b a + 1 > 0
- By strong induction, assume (A,a',b',x) returns the correct answer for all j s.t $0 \le j \le n-1$ where j = b' - a' + 1
- By the algorithm, $mid=\lfloor\frac{a+b}{2}\rfloor$ and $a\leq mid\leq b$ If x==A[mid] then $x\in A[a..b]$ and the algorithm returns true correctly
- If x < A[mid] then $x \in A[a..mid 1]$ if $fx \in A[a..b]$
- By the inductive hypothesis, (A,a,mid-1,x) is correct since 0 < (mid - 1) - a + 1 = mid - a < n - 1
- The x > A[mid] is similar

Divide-and-Conquer

powering a number

problem: compute $f(n,m) = a^n \pmod{m}$ for all $n, m \in \mathbb{Z}$

- observation: $f(x+y,m) = f(x,m) * f(y,m) \pmod{m}$
- · naive solution: recursively compute and combine $f(n-1,m) * f(1,m) \pmod{m}$
- $T(n) = T(n-1) + T(1) + \Theta(1) \Rightarrow T(n) = \Theta(n)$
- better solution: divide and conquer (only one sub problem computed)
- · divide: trivial
- conquer: recursively compute $f(\lfloor n/2 \rfloor, m)$
- - $f(n,m) = f(|n/2|, m)^2 \pmod{m}$ if n is even
- $f(n,m) = f(1,m) * f(|n/2|,m)^2 \pmod{m}$ if odd
- $T(n) = T(n/2) + \Theta(1) \Rightarrow \Theta(\log n)$

Peak finding

problem: Find the peak element (no neighbours are greater) in 2D array

- · Naive O(mn)
- for the middle column, find the maximum element
- · return if it is peak
- p1=Find2DPeak(left)
- p2=Find2DPeak(right)
- return p1 or p2 if one is a peak
- Divide and conquer O(mlogn), T(n) = T(n/2) + O(1)n is number of columns
- find the middle column, find the maximum element
- if it is a peak, return it
- if not, recurse on the side with a larger element
- · Optimised O(m+n)

- find the middle column, find the maximum element
- · recurse on the quarter with the larger element

Solving Recurrences

for a sub-problems of size $\frac{n}{l}$ where f(n) is the time to divide and combine.

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Telescoping

Express $\frac{T(n)}{g(n)}as\frac{T(\frac{n}{b})}{g(\frac{n}{b})}+h(n)$

Choose the poly(n) part of f(n) as $\frac{f(n)}{f(n)}$

- 1. Example: T(n) = 2T(n/2) + n
- 2. $\frac{T(n)}{n} = \frac{T(n/2)}{n/2} + 1$

If g(n)=n, we need a=b since $g(n)=n^{\log_b(a)}$

Recursion tree

total = height × number of leaves

- each node represents the cost of a single subproblem
- · height of the tree = longest path from root to leaf

Master method

- $a \ge 1, b > 1$, and f is asymptotically positive.
- a (number of sub problems), b(size of sub problems), f(time to divide and combine)

$$\begin{split} T(n) &= aT(\frac{n}{b}) + f(n) = \\ \begin{cases} \Theta(n^{\log_b a}) & \text{if } f(n) < n^{\log_b a} \text{ polynomially} \\ \Theta(n^{\log_b a} \log n) & \text{if } f(n) = n^{\log_b a} \\ \Theta(f(n)) & \text{if } f(n) > n^{\log_b a} \text{ polynomially} \end{cases} \end{split}$$

three common cases

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$,
 - f(n) grows polynomially slower than $n^{\log_b a}$ by n^{ϵ} factor.
 - then $T(n) = \Theta(n^{\log_b a})$.

- This is when overhead at leaf > overhead at root
- 2. If $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some k > 0,
 - f(n) and $n^{\log_b a}$ grow at similar rates.
 - then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$,
 - and f(n) satisfies the **regularity condition**
 - af(n/b) < cf(n) for some constant c < 1 and all sufficiently large n
 - · this guarantees that the sum of subproblems is smaller than f(n).
 - f(n) grows polynomially faster than $n^{\log_b a}$ by n^ϵ
 - then $T(n) = \Theta(f(n))$.
 - This is when the root (splitting) > leaf

Substitution method

- 1. guess that T(n) = O(f(n)).
- 2. verify by induction:
- 2.1. to show that for $n \geq n_0$, $T(n) \leq c \cdot f(n)$
- 2.2. set $c = \max\{2, q\}$ and $n_0 = 1$
- 2.3. verify base case(s): $T(n_0) = q$
- 2.4. recursive case $(n > n_0)$:
 - by strong induction, assume $T(k) \le c \cdot f(k)$ for $n > k > n_0$
- 2.5. hence T(n) = O(f(n)).

! may not be a tight bound!

example

Proof.
$$T(n) = 4T(n/2) + n^2/\lg n \Rightarrow \Theta(n^2 \lg \lg n)$$

$$T(n) = 4T(n/2) + \frac{n^2}{\lg n}$$

$$= 4(4T(n/4) + \frac{(n/2)^2}{\lg n - \lg 2}) + \frac{n^2}{\lg n}$$

$$= 16T(n/4) + \frac{n^2}{\lg n - \lg 2} + \frac{n^2}{\lg n}$$

$$= \sum_{k=1}^{\lg n} \frac{n^2}{\lg n - k}$$

$$= n^2 \lg \lg n \text{ by approx. of harmonic series } (\sum \frac{1}{k})$$
 Can also be solved via telescoping using $g(n) = n^2$

Proof.
$$T(n) = 4T(n/2) + n \Rightarrow O(n^2)$$

To show that for all $n \geq n_0$, $T(n) \leq c_1 n^2 - c_2 n$

- 1. Set $c_1 = a + 1$, $c_2 = 1$, $n_0 = 1$.
- 2. Base case (n = 1): subbing into $c_1 n^2 c_2 n$, $T(1) = q \le (q+1)(1)^2 - (1)(1)$
- 3. Recursive case (n > 1):
- · by strong induction, assume $T(k) \le c_1 \cdot k^2 - c_2 \cdot k$ for all n > k > 1

$$\begin{split} T(k) &\leq c_1 \cdot k^2 - c_2 \cdot k \text{ for all } n > k \geq 1 \\ \bullet T(n) &= 4T(n/2) + n \\ &= 4(c_1(n/2)^2 - c_2(n/2)) + n \\ &= c_1 n^2 - 2c_2 n + n \\ &= c_1 n^2 - c_2 n + (1 - c_2) n \\ &= c_1 n^2 - c_2 n \quad \text{since } c_2 = 1 \Rightarrow 1 - c_2 = 0 \end{split}$$

Non-comparison sort

Counting sort

```
for i \leftarrow 1 to k
                                     do C[i] \leftarrow 0
Set C[i] be the number
                                 for i \leftarrow 1 to n
                                     do C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|
Set C[i] be the number
                                 for i \leftarrow 2 to k
                                    or i \leftarrow 2 to k perple_{i,k} S \land m

do C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{ \text{key } \leq i \}|
of elements smaller
than or equal i.
                                 for j \leftarrow n downto 1
Move elements equal
                                     \mathbf{do}\,B[C[A[j]]] \leftarrow \mathbf{A}[j]
                                           C[A[j]] \leftarrow C[A[j]] - 1
```

- O(n+k), where k is the number of elements
- Stable

Radix sort

```
Suppose there are T digits.
                            329
                             457
for t \leftarrow 1 to T
                             657
                                       436
   do sort by the tth least
                             839
                                      457
   significant digit using a
                             436
                                      657
   stable sorting
                                      329
                             720
   algorithm:
                             3 5 5
                                      839
Example: We can use counting
sort as the stable sorting
algorithm.
```

- Each pass processes r digits at $O(n+2^r)$
- $T(n,b) = \theta(\frac{b}{2}(n+2^r))$ where b is the number of bits in
- Optimal r=lg n T(n,b)= $\theta(\frac{bn}{\lg n})$
- Fast when the number of passes $(\frac{b}{a})$ is small
- · Little locality of reference, not cache friendly

04. AVERAGE-CASE ANALYSIS & RANDOMISED ALGORITHMS

- average case $A(n) \rightarrow$ expected running time when the input is chosen uniformly at random from the set of all n!permutations
- $A(n) = \frac{1}{n!} \sum_{\pi} Q(\pi)$ where $Q(\pi)$ is the time complexity when the input is permutation π .
- $A(n) = \mathbb{E}$ [Runtime of Alg on x]
- $\mathbb{E}_{x \sim \mathcal{D}_n}$ is a probability distribution on U restricted to inputs of size n.

Quicksort Analysis

- divide & conquer, linear-time $\Theta(n)$ partitioning subroutine
- · assume we select the first array element as pivot
- $T(n) = T(j) + T(n j 1) + \Theta(n)$
- if the pivot produces subarrays of size j and (n-j-1)
- worst-case: $T(n) = T(0) + T(n-1) + \Theta(n) \Rightarrow \Theta(n^2)$

Proof. for quicksort, $A(n) = O(n \log n)$

let P(i) be the set of all those permutations of elements $\{e_1, e_2, \dots, e_n\}$ that begins with e_i .

Let G(n,i) be the average running time of guicksort over P(i). Then

$$G(n) = A(i-1) + A(n-i) + (n-1).$$

$$A(n) = \frac{1}{n} \sum_{i=1}^{n} G(n,i)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (A(i-1) + A(n-i) + (n-1))$$

$$= \frac{2}{n} \sum_{i=1}^{n} A(i-1) + n - 1$$

 $= O(n \log n)$ by taking it as area under

quicksort vs mergesort

	average	best	worst
quicksort	$1.39n \lg n$	$n \lg n$	n(n-1)
mergesort	$n \lg n$	$n \lg n$	$n \lg n$

- · disadvantages of mergesort:
- overhead of temporary storage
- · cache misses
- advantages of quicksort
- in place
- reliable (as $n \uparrow$, chances of deviation from avg case \downarrow)
- issues with quicksort
- **distribution-sensitive** → time taken depends on the initial (input) permutation. Resolved with median pivot or randomised partitions

Randomised Algorithms

- randomised algorithms → output and running time are functions of the input and random bits chosen
- · vs non-randomised: output & running time are functions of the input only
- expected running time = worst-case running time = $E(n) = \max_{\text{input } x \text{ of size } n} \mathbb{E}[\text{Runtime of RandAlg on } x]$
- randomised quicksort: choose pivot at random
- probability that the runtime of randomised quicksort exceeds average by $x\% = n^{-\frac{x}{100} \ln \ln n}$
- P(time takes at least double of the average) = 10^{-15}
- · distribution insensitive

Balls into bins - Indicator Random Variable

There are n balls and m bins. Each ball is placed into a bin at random. How many empty bins?

- $X_i = 1$ if ball i is in bin j, 0 otherwise
- $E(X_i) = 1 * P(i^{th}bin_{empty}) + 0 * P(...) = (1 \frac{1}{\pi})^m$
- $E(X) = E(X_1) + E(X_2) + ... + E(X_n) = n(1 \frac{1}{n})^m$

Randomised Quicksort Analysis

T(n) = n - 1 + T(q - 1) + T(n - q)Let $A(n) = \mathbb{E}[T(n)]$ where the expectation is over the randomness in expectation.

Taking expectations and applying linearity of expectation: $A(n) = n - 1 + \frac{1}{n} \sum_{q=1}^{n} (A(q-1) + A(n-q))$

$$= n - 1 + \frac{2}{n} \sum_{q=1}^{n-1} A(q) + \frac{2}{n} \sum_{q=1}^{n-1} A(q)$$

 $A(n) = n \log n \implies$ same as average case quicksort

Randomised Quickselect

- O(n) to find the k^{th} smallest element
- · randomisation: unlikely to keep getting a bad split

Types of Randomised Algorithms

- · randomised Las Vegas algorithms
 - · output is always correct
 - runtime is a random variable
 - e.g. randomised guicksort, randomised guickselect
- · randomised Monte Carlo algorithms

- output may be incorrect with some small probability
- runtime is deterministic

Examples

- *smallest enclosing circle*: given *n* points in a plane, compute the smallest radius circle that encloses all n
- best **deterministic** algorithm: O(n), but complex
- Las Vegas: average O(n), simple solution
- minimum cut: given a connected graph G with n vertices and m edges, compute the smallest set of edges whose removal would disconnect G.
- best **deterministic** algorithm: O(mn)
- Monte Carlo: $O(m \log n)$, error probability n^{-c} for
- primality testing: determine if an n bit integer is prime
- best **deterministic** algorithm: $O(n^6)$
- Monte Carlo: $O(kn^2)$, error probability 2^{-k} for k checks

Geometric Distribution

Let X be the number of trials repeated until success. X is a random variable and follows a geometric distribution with probability p.

Expected number of trials,
$$E[X] = \frac{1}{p}$$

 $Pr[X = k] = q^{k-1}p$

Linearity of Expectation

For any two events X, Y and a constant a, E[X + Y] = E[X] + E[Y]E[aX] = aE[X]

Coupon Collector Problem

n types of coupon are put into a box and randomly drawn with replacement. What is the expected number of draws needed to collect at least one of each type of coupon?

- let T_i be the time to collect the *i*-th coupon after the i-1coupon has been collected.
- Probability of collecting a new coupon, $p_i = \frac{(n-(i-1))}{n}$ T_i has a **geometric distribution**
- $E[T_i] = 1/p_i$
- total number of draws, $T = \sum_{i=1}^{n} T_i$
- $E[T] = E[\sum_{i=1}^{n} T_i] = \sum_{i=1}^{n} E[T_i]$ by linearity of expectation $= \sum_{i=1}^{n} \frac{n}{n - (i - 1)} = n \cdot \sum_{i=1}^{n} \frac{1}{i} = \Theta(n \lg n)$

05. HASHING

Dictionary ADT

- · different types:
- static fixed set of inserted items; only care about
- insertion-only only insertions and gueries
- · dynamic insertions, deletions, queries
- implementations
- sorted list (static) $O(\log N)$ query
- balanced search tree (dynamic) $O(\log N)$ all operations
- · direct access table

- x needs items to be represented as non-negative integers (prehashing)
- × huge space requirement
- using \mathcal{H} for dictionaries: need to store both the hash table and the matrix A.
- additional storage overhead = $\Theta(\log N \cdot \log |U|)$, if $M = \Theta(N)$
- other universal hashing constructions may have more efficient hash function evaluation
- associative array has both key and value (dictionary in this context has only key)

Hashing

desired properties

- hash function, $h: U \to \{1, \dots, M\}$ gives the location of where to store in the hash table
 - notation: $[M] = \{1, \dots, M\}[M] = \{1, \dots, M\}$
 - storing N items in hash table of size M
- **collision** \rightarrow for two different keys x and y, h(x) = h(y)
- resolve by chaining, open addressing, etc.
- ✓ minimise collisions query(x) and delete(x) take time $\Theta(|h(x)|)$
- \checkmark minimise storage space aim to have M = O(N)
- ✓ function h is easy to compute (assume constant time)
- if |U| > (N-1)M+1, for any $h: U \to [M]$, there is a set of N elements having the same hash value.
- Proof: pigeonhole principle
- use randomisation to overcome the adversary
- e.g. randomly choose between two deterministic hash functions h_1 and h_2
- \Rightarrow for any pair of keys, with probability $> \frac{1}{2}$, there will be no collision

Universal Hashing

Suppose \mathcal{H} is a set of hash functions mapping U to [M].

$$\begin{array}{c} \mathcal{H} \text{ is } \frac{\text{universal } \text{if } \forall \, x \neq y, \, \frac{|h \in \mathcal{H}: h(x) = h(y)|}{|H|} \leq \frac{1}{M} \\ \text{or } \Pr_{h \in \mathcal{A}} [h(x) = h(y)] \leq \frac{1}{M} \end{array}$$

- aka: for any $x \neq y$, if h is chosen uniformly at random from a universal \mathcal{H} , then there is at most $\frac{1}{M}$ probability that h(x) = h(y)
- probability where h is sampled uniformly from ${\cal H}$
- aka: for any $x \neq y$, the fraction of hash functions with collisions is at most $\frac{1}{M}$.

Properties of universal hashing

Collision Analysis

- ullet for any N elements $x_1,\ldots,x_N\in\mathcal{U}$, the **expected number of collisions** between x_N and other elements is < N/M.
- it follows that for K operations, the expected cost of the last operation is < K/M = O(1) if M > K.

Proof. by definition of Universal Hashing, each element $x_1,\ldots,x_{N-1}\in\mathcal{U}$ has at most $\frac{1}{M}$ probability of collision with x_N (over random choice of h). by indicator r.v., $E[A_i] = P(A_i = 1) \le \frac{1}{M}$. expected number of collisions = $(N-1) \cdot \frac{1}{M} < \frac{N}{M}$.

• if x_1, \ldots, x_N are added to the hash table, and M > N, the expected **number of pairs** (i, j) with collisions is < 2N.

Proof. let A_{ij} be an indicator r.v. for collision.

$$\mathbb{E}\left[\sum_{1 \le i, j \le N} A_{ij}\right] = \sum_{i=1}^{N} \mathbb{E}[A_{ii}] + \sum_{i \ne j} \mathbb{E}[A_{ij}]$$
$$\leq N \cdot 1 + N(N-1) \cdot \frac{1}{M} < 2N$$

Expected Cost

• for any sequence of N operations, if M > N, then the **expected total cost** for executing the sequence is O(N).

Proof. linearity of expectation; sum up expected costs

Construction of Universal Family

Obtain a universal family of hash functions with M = O(N).

- Suppose U is indexed by u-bit strings and $M=2^m$.
- For any $m \times u$ binary matrix A, $h_A(x) = Ax \pmod{2}$
- each element x => x % 2
- x is a $u \times 1$ matrix $\Rightarrow Ax$ is $m \times 1$
- Claim: $\{h_A: A \in \{0,1\}^{m \times u}\}$ is universal
- e.g. $U = \{00, 01, 10, 11\}, M = 2$

•	h_{ab} means $A = [a \ b]$							
		00	01	10	11			
	h_{00}	0	0	0	0			
	h_{01}	0	1	0	- 1			
	h_{10}	0	0	1	1			
	h_{11}	0	1	1	0			

Proof. Let $x \neq y$. Let z = x - y. We know $z \neq 0$.

Collision:
$$P(Ax=Ay)=P[A(x-y)=0]=P(Az=0)$$
.

To show
$$P(Az=0) \leq \frac{1}{M}$$
.

Special case - Suppose z is 1 at the i-th coordinate but 0 everywhere else. Then Az is the i-th column of A. Since the *i*-th column is uniformly random, $P(Az=0) = \frac{1}{2m} = \frac{1}{M}$

General case - Suppose z is 1 at the i-th coordinate. Let $z = [z_1 \ z_2 \ \dots \ z_u]^T$. $A = [A_1 \ A_2 \ \dots \ A_u]$ hence A_k is the k-th column of A.

Then $Az = z_1 A_1 + z_2 A_2 + \cdots + z_n A_n$. $Az = 0 \Rightarrow z_1 A_1 = -(z_2 A_2 + \dots + z_n A_n)$ (*) We fix $z_1 A_1$ to be an arbitrary $m \times 1$ matrix of 1s

Perfect Hashing

static case - N fixed items in the dictionary x_1, x_2, \ldots, x_N To perform Ouerv in O(1) worst-case time.

and 0s. The probability that (*) holds is $\frac{1}{2m}$.

Quadratic Space: $M = N^2$

if \mathcal{H} is universal and $M=N^2$, and h is sampled uniformly from \mathcal{H} , then the expected number of collisions is < 1.

Proof. for $i \neq j$, let indicator r.v. A_{ij} be equal to 1 if $h(x_i) = h(x_i)$, or 0 otherwise.

> By universality, $E[A_{ij}] = P(A_{ij} = 1) < 1/N^2$ $E[\text{\# collisions}] = \sum_{i \in I} E[A_{ij}] \leq {N \choose 2} \frac{1}{N^2} < 1$

It follows that there exists $h \in \mathcal{H}$ causing no collisions (because if not, \mathbb{E} [#collisions] would be ≥ 1).

2-Level Scheme: M = N

· No collision and less space needed

Construction

Choose $h: U \to [N]$ from a universal hash family.

- Let L_k be the number of x_i 's for which $h(x_i) = k$.
- Choose h_1,\ldots,h_N second-level hash functions $h_k:[N] \to [(L_k)^2]$ s.t. there are no collisions among the L_k elements mapped to k by h.
- quadratic second-level table \rightarrow ensures no collisions using quadratic space

Analysis

if \mathcal{H} is universal and h is sampled uniformly from \mathcal{H} , then

$$E\left[\sum_{k}L_{k}^{2}\right]<2N$$

Proof. For $i, j \in [1, N]$, define indicator r.v. $A_{ij} = 1$ if $h(x_i) = h(x_j)$, or 0 otherwise.

$$A_{ij} = \text{\# possible collisions} = \text{\# pairs * 2} = L_k^2$$
 Hence $\sum\limits_k L_k^2 = \sum\limits_{i,j} A_{ij}$

$$\begin{split} E[\sum_{i,j} A_{ij}] &= \sum_i E[A_{ii}] + \sum_{i \neq j} E[A_{ij}] \\ &\leq N \cdot 1 + N(N-1) \cdot \frac{1}{N} \\ &< 2N \end{split}$$

Hash Table Resizing

- ullet when number of inserted items, N is not known
- rehashing choose a new hash function of a larger size and re-hash all elements
- costly but infrequent ⇒ amortize

06. FINGERPRINTING & STREAMING

String Pattern Matching

 $\ensuremath{\textit{problem}}$: does the pattern string P occur as a substring of the text string T ?

 $m = \text{length of } P, n = \text{length of } T, \ell = \text{size of alphabet}$

- assumption: operations on strings of length $O(\log n)$ can be executed in O(1) time. (word-RAM model)
- naive solution: $\Theta(n^2)$

Fingerprinting approach (Karp-Rabin)

- · faster string equality check:
- for substring X, check h(X) == h(P) for a hash function $h\Rightarrow \Theta(1)$ + cost of hashing instead of $\Theta(|X|)$
- Rolling Hash: O(m+n)
- update the hash from what we already have from the previous hash ${\cal O}(1)$
- $\bullet \ {\rm compute} \ n-m+1 \ {\rm hashes} \ {\rm in} \ O(n) \ {\rm time}$
- · Monte Carlo algorithm

Division Hash

Choose a random **prime** number p in the range $\{1,\ldots,K\}$. For integer $x,\,h_p(x)=x\ (\mathrm{mod}\ p)$

- if p is small and x is b-bits long in binary, hashing $\Rightarrow O(b)$
- hash family $\{h_p\}$ is approximately universal
- if $0 \le x < y < 2^b$, then $P_{_{\!\!L}} r[h_p(x) = h_p(y)] < \frac{b \ln K}{K}$

Proof. $h_p(x) = h_p(y)$ when $y - x = 0 \pmod{p}$.

Let z = y - x.

Since $z < 2^b$, then z can have at most b distinct prime factors.

p divides z if p is one of these $\leq b$ prime factors. number of primes in range $\{1,\ldots,K\}$ is $>\frac{K}{\ln K}$, hence the probability is $b/\frac{K}{\ln K}=\frac{b\ln K}{K}$

values of K

ullet higher K = lower probability of false positive

• for $\delta = \frac{1}{100n}$, P(false positive) i 1%.

 $\forall \delta>0\text{, if }X\neq Y\text{ and }K=\frac{2m}{\delta}\cdot\lg\ell\cdot\lg(\frac{2m}{\delta}\lg\ell)\text{, then }Pr[h(X)=h(Y)]<\delta$

Streaming

problem: Consider a sequence of insertions or deletions of items from a large universe \mathcal{U} . At the end of the stream, the *frequency* f_i of item i is its net count.

Let ${\cal M}$ be the sum of all frequencies at the end of stream.

naive solutions

- direct access table $\Omega(U)$ space
- sorted list $\Omega(M)$ space, no O(1) update
- binary search tree O(M) space

Frequency Estimation

an approximation \hat{f}_i is ϵ -approximate if $f_i - \epsilon M < \hat{f}_i < f_i + \epsilon M$

Using Hash Table

$$f_i \le \mathbb{E}[\hat{f}_i] \le f_i + M/k$$

- increment/decrement A[h(j)] on an empty table A of size \ensuremath{k}
- collision \Rightarrow false positives \Rightarrow may give overestimate of f_i $A[h(i)] = \sum_{j:h(j)=h(i)} f_j \geq f_i$
- if h is drawn from a universal family, overestimate, $\mathbb{E}[A[h(i)] f_i] \leq M/k$
- space: $O(\frac{1}{\epsilon} \cdot \lg M + \lg U \cdot \lg M)$ let $k = \frac{1}{\epsilon}$ for some $\epsilon > 0$.
- number of rows = $O(\frac{1}{2})$
- size of each row = $O(\lg M)$
- size of hash function (using universal hash family from $\mathrm{ch.05}) = O(\lg U \cdot \lg M)$
- Count-Min Sketch \to gives a bound on the probability that \hat{f}_i deviates from f_i instead of a bound on the expectation of the gap

07. AMORTIZED ANALYSIS

- amortized analysis → guarantees the average performance of each operation in the worst case.
- total amortized cost provides an *upper bound* on the total true cost
- For a sequence of n operations o_1, o_2, \ldots, o_n ,
- ullet let t(i) be the time complexity of the i-th operation o_i
- let f(n) be the worst-case time complexity for any of the n operations
- let T(n) be the time complexity of all n operations

$$T(n) = \sum_{i=1}^{n} t(i) = nf(n)$$

Types of Amortized Analysis

Aggregate method

- look at the whole sequence, sum up the cost of operations and take the average - simpler but less precise
- e.g. binary counter amortized O(1)
- e.g. queues (with INSERT and EMPTY) amortized O(1)
- Find (a) The number of operations and (b) the upperbound of each operation
- $\bullet \ a = n$
- $b = \sum_{i=1}^{n} t(i) = nf(n)$

Accounting method

- ullet charge the i-th operation a fictitious amortized cost c(i)
- amortized $\cos t \ c(i)$ is a fixed $\cos t$ for each operation
- true cost t(i) depends on when the operation is called
- amortized cost c(i) must satisfy:

$$\sum_{i=1}^n t(i) \leq \sum_{i=1}^n c(i)$$
 for all n

- take the extra amount for cheap operations early on as "credit" paid in advance for expensive operations
- invariant: bank balance never drops below 0
- the total amortized cost provides an upper bound on the total true cost

Potential method

- ϕ : potential function associated with the algo/DS
- $\phi(i)$: potential at the end of the *i*-th operation
- c_i : amortized cost of the i-th operation
- ullet t_i : true cost of the i-th operation

$$c_{i} = t_{i} + \phi(i) - \phi(i-1)$$

$$\sum_{i=1}^{n} c_{i} = \phi(n) - \phi(0) + \sum_{i=1}^{n} t_{i}$$

- hence as long as $\phi(n)\geq 0,$ then amortized cost is an upper bound of the true cost.

$$\sum_{i=1}^{n} c_i \ge \sum_{i=1}^{n} t_i$$

- Validity $\phi(0) = 0$ and $\phi(i) \ge 0$ for all i
- e.g. for queue:
- let $\phi(i)$ = # of elements in queue after the *i*-th operation
- · amortized cost for insert:

$$c_i = t_i + \phi(i) - \phi(i-1) = 1 + 1 = 2$$

ullet amortized cost for empty (for k elements):

- $c_i = t_i + \phi(i) \phi(i-1) = k+0-k = 0$ • try to keep c(i) small: using $c(i) = t(i) + \Delta\phi_i$
- if t(i) is small, we want $\Delta\phi_i$ to be positive and small
- if t(i) is large, we want $\Delta \phi_i$ to be negative and large

e.g. Dynamic Table (insertion only)

Aggregate method

Accounting method

- charge \$3 per insertion
- \$1 for insertion itself
- \$1 for moving itself when the table expands

\$1 for moving one of the existing items when the table expands

Potential method

 \bullet show that SUM of amortized cost \geq SUM of actual cost

Actual cost of n insertions = O(n)

- conclude that sum of amortized cost is $O(f(n))\Rightarrow$ sum of actual cost is O(f(n))

08. DYNAMIC PROGRAMMING

- overlapping subproblems recursive solution contains a small number of distinct subproblems repeated many times
- optimal substructure optimal solution to a problem contains optimal solutions to subproblems

Longest Common Subsequence

- for sequence $A: a_1, a_2, \ldots, a_n$ stored in array
- C is a subsequence of A → if we can obtain C by removing zero or more elements from A.

problem: given two sequences A[1..n] and B[1..m], compute the *longest* sequence C such that C is a subsequence of A and B.

brute force solution

- check all possible subsequences of A to see if it is also a subsequence of B, then output the longest one.
- analysis: $O(m2^n)$
 - checking each subsequence takes O(m)
 - 2^n possible subsequences

recursive solution

let LCS(i,j): longest common subsequence of A[1..i] and B[1..j]

- base case: $LCS(i,0) = \emptyset$ for all $i, LCS(0,j) = \emptyset$ for all j
- · general case:
- if last characters of A, B are $a_n = b_m$, then LCS(n, m) must terminate with $a_n = b_m$
- the optimal solution will match a_n with b_m • if $a_n \neq b_m$, then either a_n or b_m is not the last symbol
- optimal substructure: (general case) • if $a_n = b_m$,
- $LCS(n,m) = LCS(n-1,m-1) :: a_n$
- $LCS(n,m) = LCS(n-1,m) \mid\mid LCS(n,m-1)$

- simplified problem:
- L(n,m) = 0 if n = 0 or m = 0
- if $a_n = b_m$, then L(n, m) = L(n 1, m 1) + 1
- if $a_n \neq b_m$, then
- $L(n,m) = \max(L(n,m-1),L(n-1,m))$

analysis

- number of distinct subproblems = $(n+1) \times (m+1)$
- to use $O(\min\{m,n\})$ space: bottom-up approach, column by column
- memoize for $\mathsf{DP} \Rightarrow \mathsf{makes}$ it O(mn) instead of exponential time

Knapsack Problem

- input: $(w_1, v_1), (w_2, v_2), \ldots, (w_n, v_n)$ and capacity W
- output: subset $S\subseteq\{1,2,\ldots,n\}$ that maximises $\sum_{i\in S}v_i$ such that $\sum_{i\in S}w_i\leq W$

- 2^n subsets \Rightarrow naive algorithm is costly
- · recursive solution:
- let m[i,j] be the maximum value that can be obtained using a subset of items $\{1,2,\ldots,i\}$ with total weight no more than j.

- analysis: O(nW)
- ! O(nW) is **not** a polynomial time algorithm
- · not polynomial in input bitsize
- W can be represented in $O(\lg W)$ bits
- n can be represented in $O(\lg n)$ bits
- polynomial time is strictly in terms of the number of bits for the input

Changing Coins

problem: use the fewest number of coins to make up n cents using denominations d_1, d_2, \ldots, d_n . Let M[j] be the fewest number of coins needed to change j cents.

· optimal substructure:

•
$$M[j] = \begin{cases} 1 + \min_{i \in [k]} M[j - d_i], & j > 0 \\ 0, & j = 0 \\ \infty, & j < 0 \end{cases}$$

$$\begin{aligned} \textit{Proof.} & \text{ Suppose } M[j] = t, \text{ meaning} \\ & j = d_{i_1} + d_{i_2} + \dots + d_{i_t} \text{ for some} \\ & i_1, \dots, i_t \in \{1, \dots, k\}. \end{aligned}$$
 Then, if $j' = d_{i_1} + d_{i_2} + \dots + d_{i_{t-1}},$ $M[j'] = t-1,$ because otherwise if $M[j'] < t-1,$ by **cut-and-paste** argument, $M[j] < t.$

• runtime: O(nk) for n cents, k denominations

Dijsktra's Algorithm

- property 1: The nearest neighbor is also the vertex nearest to s
- Violated by negative edges since there can exist a shorter path to a vertex that is not the nearest neighbor
- · property 2: Optimal subpath property
- Violated when there are negative cycles since the final parth can consist of a subparth that is not the optimal subpath

09. GREEDY ALGORITHMS

- · solve only one subproblem at each step
- beats DP and divide-and-conquer when it works
- $\mbox{greedy-choice property} \rightarrow \mbox{a locally optimal choice is globally optimal}$
- Note: This is not true for DP, a clear counter-example is that the LCS of a substring is not necessarily in the LCS of the entire string

Examples

Fractional Knapsack

- $O(n \log n)$
- greedy-choice property: let j^* be the item with maximum value/kg, v_j/w_i . Then there exists an optimal knapsack containing $\min(w_{j^*}, W)$ kg of item j^* .
- optimal substructure: if we remove w kg of item j from the optimal knapsack, then the remaining load must be the optimal knapsack weighing at most W-w kgs that one can take from n-1 original items and w_j-w kg of item j.

Proof. cut-and-paste argument

Suppose the remaining load after removing w kgs of item j was not the optimal knapsack weighing ...

Then there is a knapsack of value $> X - v_j \cdot \frac{w}{w_j}$ with weight ...

Combining this knapsack with w kg of item j gives a knapsack of value $> X \Rightarrow$ contradiction!

Minimum Spanning Trees

for a connected, undirected graph G=(V,E), find a spanning tree T that connects all vertices with minimum weight. Weight of spanning tree T,

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

• optimal substructure: let T be a MST. remove any edge $(u,v)\in T$. then T is partitioned into T_1,T_2 which are MSTs of $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$.

Proof. cut-and-paste: $w(T)=w(u,v)+w(T_1)+w(T_2)$ if $w(T_1')< w(T_1)$ for G_1 , then $T'=\{(u,v)\}\cup T_1'\cup T_2$ would be a lower-weight spanning tree than T for G.

- \Rightarrow contradiction, T is the MST
- Prim's algorithm at each step, add the least-weight edge from the tree to some vertex outside the tree
- Exchange Argument:

- *Proof.* Let T' be the optimal solution without edge (u,v). Swap (u,v) with the first edge along the simple path from u to v in T'. Clearly, a lighter weight spanning tree than T' results.
- Kruskal's algorithm at each step, add the least-weight edge that does not cause a cycle to form

Binary Coding

Given an alphabet set $A : \{a_1, a_2, \dots, a_n\}$ and a text file F (sequence of alphabets), how many bits are needed to encode a text file with m characters?

- fixed length encoding: $m \cdot \lceil \log_2 n \rceil$
- encode each alphabet to unique binary string of length $\lceil \log_2 n \rceil$
- total bits needed for m characters = $m \cdot \lceil \log_2 n \rceil$
- · variable length encoding
 - different characters occur with different frequency ⇒ use fewer bits for more frequent alphabets
 - average bit length, $ABL(\gamma) = \sum_{i}^{\infty} f(x) \cdot |\gamma(x)|$
 - BUT overlapping prefixes cause indistinguishable characters
 - E.g. 0|10|10|111,0|101|0|111

Prefix coding

Problem: Given a set A of n alphabets and their frequencies, compute coding γ such that:

- γ is a prefix code
- ABL(γ) is minimum
- a coding $\gamma(A)$ is a **prefix coding** if $\not\exists x,y\in A$ such that $\gamma(x)$ is a prefix of $\gamma(y)$.
- labelled binary tree: $\gamma(A)$ = label of path from root

- for each prefix code A of n alphabets, there exists a binary tree T on n leaves such that there is a **bijective mapping (1-1)** between the alphabets and the leaves
- $ABL(\gamma) = \sum_{x \in A} f(x) \cdot |\gamma(x)| = \sum_{x \in A} f(x) \cdot |depth_T(x)|$
- the binary tree corresponding to an *optimal* prefix coding must be a **full binary tree**.
- every internal node has degree exactly 2
- multiple possible optimal trees most optimal depends on alphabet frequencies
- accounting for alphabet frequencies:
- let a_1, a_2, \ldots, a_n be the alphabets of A in non-decreasing order of their frequencies.
- a_1 must be a leaf node; a_2 can be a sibling of a_1 .
- If a_1 swapping a_1 with a higher (frequency) none-leaf node results in a less optimal solution
- there exists an optimal prefix coding in which a_1 and a_2 are siblings
- Greedy algorithm for prefix coding:
- A = $\{a_1, a_2, \dots, a_n\}$ in ascending order of freq

- A' = $\{a_3, a_4, \dots, a-i \dots a_n\}$ in ascending order of freq
- $f(a') = f(a_1) + f(a_2)$
- $OPT_ABL(A) = OPT_ABL(A') + f(a_1) + f(a_2)$
- derivation of optimal prefix coding: Huffman's algorithm

```
    keep merging the two least frequent items
```

```
Huffman(C):
   Q = new PriorityQueue(C)
   while Q:
    allocate a new node z
   z.left = x = extractMin(Q)
   z.right = y = extractMin(Q)
   z.val = x.val + y.val
   Q.add(z)
   return extractMin(Q) // root
```

10. REDUCTIONS & INTRACTABILITY

Reduction

Consider two problems A and B, A can be solved as follows:

- 1. convert instance α of A to an instance of β in B
- 2. solve β to obtain a solution
- 3. based on the solution of β , obtain the solution of α .
- 4. \Rightarrow then we say A reduces B.

instance → another word for input

e.g. Matrix Multiplication & Squaring

- MAT-MULTI: matrix multiplication
- input: two $N \times N$ matrices A and B.
- output: $A \times B$
- · MAT-SQR: matrix squaring
- input: one $N \times N$ matrix C. output: $C \times C$
- Mat-Sqr can be reduced to Mat-Multi
- *Proof.* Given input matrix C for Mat-Sqr, let A=C and B=C be inputs for Mat-Multi. Then $AB=C^2$.
- Mat-Multi can also be reduced to Mat-Sqr!
- Proof. let $C = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$ $\Rightarrow C^2 = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix} = \begin{bmatrix} AB & 0 \\ 0 & BA \end{bmatrix}$

T-Sum

- o-Sum: given array A, output $i,j\in(1,n)$ such that A[i]+A[j]=0
- T-Sum: given array B, output $i,j \in (1,n)$ such that B[i]+B[j]=T
- reduce T-Sum to o-Sum:
- given array B, define array A s.t. A[i] = B[i] T/2.
- if i, j satisfy A[i] + A[j] = 0, then B[i] + B[j] = T.

p(n)-time Reduction

- p(n)-time Reduction \rightarrow if for any instance α of problem A of size n,
- an instance β for B can be constructed in p(n) time
- a solution to problem A for input α can be recovered from a solution to problem B for input β in time p(n).
- ! *n* is in **bits**!
- if there is a p(n)-time reduction from problem A to B and a T(n)-time algorithm to solve problem B, then there is a T(O(p(n))) + O(p(n)) time algorithm to solve A.

- $A \leq_P B \to$ if there is a p(n)-time reduction from A to B for some polynomial function $p(n) = O(n^c)$ for some constant c. ("A is a special case of B")
- if B has a polynomial time algorithm, then so does A
- "polynomial time" ≈ reasonably efficient
- $A \leq_P B, B \leq_P C \Rightarrow A \leq_P C$

Polynomial Time

- polynomial time
 → runtime is polynomial in the length
 of the encoding of the problem instance
- "standard" encodings
- · binary encoding of integers
- list of parameters enclosed in braces (graphs/matrices)
- pseudo-polynomial algorithm → runs in time polynomial in the numeric value if the input but is exponential in the length of the input
- ullet e.g. DP algo for KNAPSACK since W is in numeric value
- KNAPSACK is NOT polynomial time: $O(nW\log M)$ but W is not the number of bits
- Fractional Knapsack is polynomial time: $O(n \log n \log W \log M)$

Decision Problems

- decision problem \to a function that maps an instance space I to the solution set $\{YES, NO\}$
- · decision vs optimisation problem:
- decision problem: given a directed graph G, is there a path from vertex u to v of length $\leq k$?
- optimisation problem: given ..., what is the *length* of the shortest path ... ?
- convert from **decision** \rightarrow **optimisation**: given an instance of the optimisation problem and a number k, is there a solution with value < k?
- the decision problem is *no harder than* the optimisation problem.
- given the optimal solution, check that it is $\leq k$.
- if we cannot solve the decision problem quickly ⇒ then we cannot solve the optimisation problem quickly
- decision

Reductions between Decision Problems

given two decision problems A and B, a polynomial-time reduction from A to B denoted $A \leq_P B$ is a

transformation from instances α of A and β of B such that

- 1. α is a YES-instance of $A\iff \beta$ is a YES-instance of B
- 2. the transformation takes polynomial time in the size of α

Examples

- INDEPENDENT-SET: given a graph G=(V,E) and an integer k, is there a subset of $\leq k$ vertices such that no 2 are adjacent?
- VERTEX-COVER: given a graph G=(V,E) and an integer k, is there a subset of $\leq k$ vertices such that each edge is incident to *at least one* vertex in this subset?
- INDEPENDENT-SET ≤ P VERTEX-COVER
 - Reduction: to check whether G has an independent set of size k, we check whether G has vertex cover of size n-k.

Proof. If INDEPENDENT-SET, then VERTEX-COVER.

Suppose (G,k) is a YES-instance of INDEP-SET. Then there is subset S of size $\geq k$ that is an independent set.

V-S is a vertex cover of size $\leq n-k$. Proof: Let $(u,v)\in E$. Then $u\not\in S$ or $v\not\in S$.

So either u or v is in V-S, the vertex cover.

Proof. If Vertex-Cover, then Independent-Set. Same as above, but flip IS and VC

e.g. SET-COVER

Given integers k and n, and collection $\mathcal S$ of subsets of $\{1,\ldots,n\}$, are there $\leq k$ of these subsets whose union equals $\{1,\ldots,n\}$?

Claim: Vertex-Cover < P Set-Cover

Reduction: given (G,k) instance of VERTEX-COVER, generate an instance (n,k',\mathcal{S}) of SET-COVER.

 ${\it Proof.}$ For each node v in G, construct a set S_v containing all its outgoing edges. (Number each edge)

e.g. 3-SAT

- SAT: given a CNF formula Φ , does it have a satisfying truth assignment?
- literal: a boolean variable or its negation x, \bar{x}
- · clause: a disjunction (OR) of literals
- conjunctive normal form (CNF): formula Φ that is a conjunction (AND) of clauses
- 3-SAT \rightarrow SAT where each clause contains exactly 3
- 3-SAT <_P INDEPENDENT-SET
- Reduction: Construct an instance (G,k) of INDEP-SET s.t. G has an independent set of size $k \iff \Phi$ is satisfiable

- node: each literal term
- edge: connect 3 literals in a clause in a triangle
- · edge: connect literal to all its negations
- reduction runs in polynomial time
- \Rightarrow for k clauses, connecting k vertices form an independent set in G.

11. NP-COMPLETENESS

- P → the class of decision problems solvable in (deterministic) polynomial time
- NP → the class of *decision* problems for which polynomial-time verifiable **certificates** of YES-instances exist.
- aka non-deterministic polynomial
- i.e. no poly-time algo, but verification can be poly-time
- certificate
 → result that can be checked in poly-time to verify correctness
- $P \subseteq NP$: any problem in **P** is in **NP**.
- if P=NP, then all these algos can be solved in poly time

NP-Hard and NP-Complete

- a problem A is said to be NP-Hard if for every problem $B \in NP$, $B \leq_P A$.
- aka A is at least as hard as every problem in **NP**.
- a problem A is said to be NP-Complete if it is in NP and is also NP-Hard
- · aka the hardest problems in NP.
- Cook-Levin Theorem
 → every problem in NP-Hard can
 be poly-time reduced to 3-SAT. Hence, 3-SAT is NP-Hard
 and NP-Complete.
- NP-Complete problems can still be approximated in poly-time! (e.g. greedy algorithm gives a 2-approximation for Vertex-Cover)

showing NP-Completeness

- show that X is in NP. ⇒ a YES-instance has a certificate that can be verified in polynomial time
- 2. show that X is NP-hard
 - by giving a poly-time reduction from another NP-hard problem A to X. $\Rightarrow X$ is at least as hard as A
 - reduction should not depend on whether the instance of A is a YES- or NO-instance
- 3. show that the reduction is valid
- 3.1. reduction runs in poly time

- 3.2. if the instance of *A* is a YES-instance, then the instance of *X* is also a YES-instance
- 3.3. If the instance of *A* is a NO-instance, then the instance of *X* is also a NO-instance

```
def INDEPENDENT-SET(G, k) -> bool:
1. G', k' = reduction(G, k)
2. yes_or_no: bool = CLIQUE(G', k') # magically given
3. return yes_or_no
```

What to show for a correct reduction:

- (G, k) is YES-instance → (G', k') is also a YES-instance
- (G', k') is YES-instance → (G, k) is also a YES-instance
- The transformation takes polynomial time in the size of (G, k)

showing NP-HARD

- 1. take any ${\bf NP\text{-}Complete}$ problem A
- 2. show that $A \leq_P X$

helpful approximations

```
stirling's approximation: T(n) = \sum_{i=0}^n \log(n-i) = \log \prod_{i=0}^n (n-i) = \Theta(n\log n) loglog(2) + loglog(4) + \dots + loglog(n) = log(n)loglog(n) harmonic number, H_n = \sum_{k=1}^n \frac{1}{k} = \Theta(\lg n) basel problem: \sum_{n=1}^N \frac{1}{n^2} \le 2 - \frac{1}{N} \xrightarrow{N \to \infty} 2 because \sum_{n=1}^N \frac{1}{N^2} \le 1 + \sum_{x=2}^{\log_3 n} \frac{1}{(x-1)x} = 1 + \sum_{n=2}^N (\frac{1}{n-1} - \frac{1}{n}) = 1 + 1 - \frac{1}{N} = 2 - \frac{1}{N} number of primes in range \{1, \dots, K\} \text{ is } > \frac{K}{\ln K}
```

asymptotic bounds

```
\begin{array}{l} 1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < 2^n < 2^{2n} \\ \log_a n < n^a < a^n < n! < n^n \\ \text{for any } a,b>0, \quad \log_a n < n^b \end{array}
```

multiple parameters

for two functions f(m,n) and g(m,n), we say that f(m,n) = O(g(m,n)) if there exists constants c,m_0,n_0 such that $0 \le f(m,n) \le c \cdot g(m,n)$ for all $m \ge m_0$ or $n \ge n_0$.

set notation

```
\begin{array}{l} O(g(n)) \text{ is actually a } \textit{set of functions.} \ f(n) = O(g(n)) \text{ means } f(n) \in O(g(n)) \\ \bullet \ O(g(n)) = \{f(n): \exists c, n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq f(n) \leq cg(n)\} \\ \bullet \ \Omega(g(n)) = \{f(n): \exists c, n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq cg(n) \leq f(n)\} \\ \bullet \ \Theta(g(n)) = \{f(n): \exists c_1, c_2, n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)\} = O(g(n)) \cap \Omega(g(n)) \\ \bullet \ o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq f(n) < cg(n)\} \\ \bullet \ \omega(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \mid \forall n \geq n_0, \ 0 \leq cg(n) < f(n)\} \end{array}
```

example proofs

```
\begin{aligned} &\textit{Proof.} \text{ that } 2n^2 = O(n^3) \\ &\text{ let } f(n) = 2n^2. \text{ then } f(n) = 2n^2 \leq n^3 \text{ when } n \geq 2. \\ &\text{ set } c = 1 \text{ and } n_0 = 2. \\ &\text{ we have } f(n) = 2n^2 \leq c \cdot n^3 \text{ for } n \geq n_0. \end{aligned} &\textit{Proof.} \ n = o(n^2) \\ &\text{For any } c > 0 \text{, use } n_0 = 2/c.
```

Proof. $n^2 - n = \omega(n)$

For any c > 0, use $n_0 = 2(c+1)$.

Example. let f(n) = n and $g(n) = n^{1+\sin(n)}$.

Because of the oscillating behaviour of the sine function, there is no n_0 for which f dominates g or vice versa.

Hence, we cannot compare f and q using asymptotic notation.

```
Example. let f(n)=n and g(n)=n(2+\sin(n)). Since \frac{1}{3}g(n)\leq f(n)\leq g(n) for all n\geq 0, then f(n)=\Theta(g(n)). (note that limit rules will not work here)
```

mentioned algorithms

- ullet ch.3 Misra Gries space-efficient computation of the majority bit in array A
- ch.3 Euclidean efficient computation of GCD of two integers
- ch.3 Tower of Hanoi $T(n) = 2^n 1$
 - 1. move the top n-1 discs from the first to the second peg using the third as temporary storage.
 - 2. move the biggest disc directly to the empty third peg.
 - 3. move the n-1 discs from the second peg to the third using the first peg for temporary storage.
- ch.3 MergeSort $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n)$
- ch.3 Karatsuba Multiplication multiply two n-digit numbers x and y in $O(n^{\log_2 3})$
- worst-case runtime: $T(n) = 3T(\lceil n/2 \rceil) + \Theta(n)$

uncommon notations

NP-Complete problems

- Circuit-SAT
 CNF-SAT
- 3. 3-SAT
- 4. Independent Set
- 5. Vertex Cover
- 6. Max-Clique7. Hamiltonian Cycle (both directed and undirected)8. Hamiltonian Path (undirected)
- 9. Traveling Sales Person
- 10. Subset Sum
- 11. Knapsack
- 12. Hitting Set