Fault-Tolerate Gathering Algorithms for Autonomous Mobile Robots

N. AGMON AND D. PELEG

Outline

- Why gathering algorithms
- ❖ Definition of gathering and fault-tolerance in robotic
- Model parameters
- \bullet Impossibility of gathering under (3,1) Byzantine failures in asynchronous and semisynchronous systems
- \diamond An algorithm for Fully-synchronous gathering with $N \geq 3f+1$
- ❖The algorithm in practice

Why Cooperative Activities by Robots?

- Perform tasks not possible by a single robot.
- Decreases the cost of operation.
- Various applications
 - Military
 - Space mission e.g. exploration

Types of pattern formation problems

- Gathering and convergence
- Flocking (following a leader)
- Even Distribution
- Partitioning

The Gathering Problem

- N autonomous robots to occupy a single point within a finite number of steps.
- Similar to *Convergence* problem in message passing systems.

Fault-Tolerance

- *N robots with f faulty ones should reach a point.
- Only simple failures are addressed before:
 - Transient failure (robots get lost)
 - Sensor failure which is known to other robots
- This paper addresses crash and Byzantine failures

Robot operation cycle

- Every Cycle include:
- Look: identify the locations of all robots (ids Unknown)
- **\diamond** Compute: execute an algorithm to choose a goal point P_G
- **Move:** move towards P_G , at least by a distance S

Synchronization models

- 1. Semi-Synchronous (SSYNC): robots use same clock but not necessarily active in all cycles.
- 2. Fully- Asynchronous(ASYNC): every robot acts independently.
- 3. Fully-Synchronous (FSYNC):
 - All robots are active in all cycles
 - A lower and upper bound for maximum movements

Proposed model assumption

- Robots are assumed *Oblivious*
 - In dynamic environment knowledge is not useful
 - Obliviousness is the worst case scenario
- \diamond The only input is the set of positions P of all robots.
- Robots are Transparent

The role of "Adversary"

- An external adversary is assigned that can,
 - ODecide the distance a non-faulty robot can travel (no less than S)
 - Define arbitrary action for faulty robots

Gathering Under Byzantine Failure

- ❖ It is impossible to perform gathering in SSYNC and ASYNC models
 - o If a problem is solvable in ASYNC, it is also in SSYNC
 - o If prove no solvable in SSYNC, it also proves not solvable in ASYNC

Definition 1

A gathering algorithm is *hyperactive* if it instructs every robot to make a move in every cycle

Theorem 1

N = 3 and f = 1, under the **SSYNC** model => no non-hyperactive algorithm exists for gathering or convergence

Theorem 1(proof)

- ightharpoonupIn C_1 , R_1 active and instructed to stay and R_2 is passive i.e. doesn't move
- Since R_2 in C_2 is in the same state as R_1 in C_1 , it stays
- \diamond Adversary can switch from C_1 to C_2 , forcing R_1 and R_2 to stay in place indefinitely.

Definition 2

An algorithm is N-diverging if the distance of two non-faulty robots increases after a cycle

Lemma 1

In the **SSYNC** (or even **FSYNC**) model a 3 - diverging algorithm will fail to achieve gathering or convergence.

Lemma 1(proof)

- Suppose ∃ an algorithm A
- ❖ Consider a (3,1) − Byzantine system T with robots R_1 , R_2 and R_3
- $\bullet \sigma = \{ C_0, C_1, \dots, C_k \}$ is a sequence of configurations
- Adversary only intervenes in C_0 to C_1 and increases $dist(R_1, R_2)$, i.e. $d_1 > d_0$
- \diamond At C_k all robots are gathered in one point

Lemma 1(proof)

Assume a system T'

Lemma 1(proof)

 R_3 is faulty and R_1 and R_2 are stopped at p_1 and p_2 .

Observation

- Let A be an algorithm operating in (3,1) Byzantine system
- \bullet In any of the following scenarios, A will be 3-diverging:

$$\circ$$
C1- $0 \le \mu_i \le \pi \le \mu_j \le 2\pi \ \mathit{OR} \ 0 \le \mu_j \le \pi \le \mu_i \le 2\pi$

C2-
$$0 \le \mu_i < \mu_j \le \pi \ AND \ \mu_i \ge \frac{\pi}{2} \ OR \ \mu_j \le \frac{\pi}{2}$$

$$\circ$$
C3- $0 \le \mu_i \le \mu_i \le \pi$

$$\circ$$
C4- $\pi \le \mu_i \le \mu_i \le 2\pi$

oC5-
$$\pi$$
 ≤ μ_j < μ_i ≤ 2π and either μ_i ≤ $\frac{3\pi}{2}$ or μ_j ≤ $\frac{3\pi}{2}$

Theorem 2

In a (3,1) – *Byzantine* system under the **SSYNC** model it is impossible to perform successful gathering or convergence.

Theorem 2(proof)

- \diamond Algorithm A in which R_1 , R_2 and R_3 are collinear, and R_2 is in middle.
- \clubsuit If R_2 = stationary => non-hyperactive => by Theorem 1 gathering is not possible.

Theorem 2(proof)

- From Observation \Rightarrow if $0 \le \mu_1, \mu_2, \mu_3 \le \pi$, to avoid 3-diverging, necessarily $\mu_3 > \mu_2 > \mu_1$.
- a) If $\mu_2 \ge \frac{\pi}{2} \Rightarrow$ by C2, p_2 and p_3 are diverging.
- b) If $\mu_2 \leq \frac{\pi}{2} \Rightarrow$ by C2, p_1 and p_2 are diverging.
- Similar argument for $\pi \leq \mu_1, \mu_2, \mu_3 \leq 2\pi$.

Theorem 2(proof)

 \clubsuit By $C_1 \Rightarrow$ If $\mu_1 > \pi$ and μ_2 , $\mu_3 < \pi$ **OR** If μ_1 , $\mu_2 > \pi$ and $\mu_3 < \pi$ A is diverging

❖ By **Lemma 1**, A fails to achieve gathering or convergence.

Fault tolerant gathering in the FSYNC model

Geometric span of the set of point P:

$$Span(P) = \max\{dist(p,q)|p,q \in P\}$$

The center of gravity of a multiset P of $n \ge 3$ points $p_i = (x_i, y_i)$:

$$C_{grav}(P) = \left(\frac{\sum_{i=1}^{N} x_i}{N}, \frac{\sum_{i=1}^{N} y_i}{N}\right)$$

Definitions

- ❖ A distributed robot algorithm is **Concentrating** if,
 - 1. It is non-diverging
 - 2. Exist a constant c > 0 at least one pair of non-faulty robots get closer by c.
- ❖ The Hull Intersection $H_{int}^k(P)$ is the convex set created as the intersection of all $\binom{N}{k}$ sets $H(P \setminus \{p_{i1}, ..., p_{ik}\})$, for $1 \le k \le N$, $p_{ij} \in P$.

A gathering algorithm for $N \ge 3f + 1$ in the FSYNC model

The Algorithm

Procedure $Gather_{Byz}(P)$

- 1. Compute $Q \leftarrow V_H(H_{int}^f(P))$.
- 2. Set $p_G \leftarrow C_{grav}(Q)$.
- V_H denotes the set of vertices of $V_{int}^f(P)$.

Analysis

- The Objective is to show if,
 - *****K Robots at points $P = \{p_1, \dots, p_K\}$ move towards a point p_G in their convex hull H(P)
 - **Their geometric span** decreases by at least cS for some constant $c \ge 1/4$
 - The robots meet within finite states

Some Lemmas

- **Lemma 2:** Two robots R_1 and R_2 , and let $\alpha = \angle p_1 p_G p_2$.
- \Leftrightarrow If $\alpha \leq \frac{\pi}{2}$ then the distance between them decreases by at least $S'(1-\cos\alpha)$.

$$d_{1}^{2} = (a + S')^{2} + (b + S')^{2} - 2(a + S')(b + S')\cos\alpha$$

$$d_{2}^{2} = a^{2} + b^{2} - 2ab\cos\alpha$$

$$d_{1}^{2} - d_{2}^{2} = (d_{1} - d_{2})(d_{1} + d_{2}) \Rightarrow d_{1} - d_{2} = \frac{2a + 2b + 2S'}{d_{1} + d_{2}} \cdot S'(1 - \cos\alpha)$$

$$\Delta p_{1}p_{G}p_{2} \Rightarrow a + b + 2S' > d_{1}, \ \Delta p'_{1}p_{G}p'_{2} \Rightarrow a + b > d_{2}$$

$$\frac{2a + 2b + 2S'}{d_{1} + d_{2}} > 1 \Rightarrow d_{1} - d_{2} > S'(1 - \cos\alpha)$$

Some Lemmas

- **\Lemma 3:** $\alpha \ge \frac{\pi}{2} \Rightarrow dist(p_1, p_2)$ decreases by at least 0.7S
- **Proof:** given $d_2 \le d_3 =$ suffice to show $\Delta = d_1 d_3 > 0.7S$
- $\Delta' = dist(p_0, p_1) \le \Delta \text{ show } \Delta' \ge 0.7S$
- $\alpha \geq \frac{\pi}{2} \Rightarrow \beta + \gamma \leq \frac{\pi}{2}$. w.l.o.g. assume $\beta \leq \frac{\pi}{4}$
- ❖ Given $S_i \ge S$, by **sine theorem** on triangle $\Delta p_1 p_1' p_0$,

$$S \le S_1 = \frac{S_1}{\sin\left(\frac{\pi}{2}\right)} = \frac{\Delta'}{\sin\left(\frac{\pi}{2} - \beta\right)} \qquad \Delta'$$

♦ Hence, $\Delta' \ge S$. $\cos(\beta) \ge S$. $\cos(\frac{\pi}{4}) \ge 0.7S$

Some Lemmas

♦ Lemma 4: $Span(P) = dist(p_a, p_b) \Rightarrow$ for every point P_G in H(P), ∠ $p_a p_G p_b \ge \pi/4$.

Proof:

- •By contradiction assume $\alpha < \frac{\pi}{4}$ and $w.l.o.g \beta \ge \gamma$
- $^{\bullet}\alpha < \frac{\pi}{4} < \frac{3\pi}{8} < \frac{\pi \alpha}{2} = \frac{\beta + \gamma}{2} < \beta < \beta + \gamma = \pi \alpha \Rightarrow \sin\beta > \sin\alpha$
- •On $\Delta p_a p_b p_G$, $\frac{dist(p_a, p_b)}{dist(p_a, p_G)} = \frac{sin\alpha}{sin\beta}$
- •dist $(p_a, p_G) > dist(p_a, p_b) = Span(P) => contradiction$

Lemma 5

- $\bigstar K$ robots R_1, \dots, R_K at $P = \{p_1, \dots, p_K\}$
- Traverse same distance S towards a point p_G in the convex hull H(P),
- New positions are $P' = \{p'_1, ..., p'_K\} \Rightarrow$
- $Span(P') \leq Span(P) cS, c \geq 1/4$

Lemma 5(proof)

- $p_a, p_b \in V_H(H(P))$ and $Span(P) = dist(p_a, p_b)$
- $p_a', p_b' \in V_H(H(P'))$ and $Span(P') = dist(p_a', p_b')$
- ♦ By Lemma 4 $\alpha = ∠p_a p_G p_b ≥ π/4$.
- $rightharpoonup^{\pi}$ If $\frac{\pi}{4} \le \alpha < \frac{\pi}{2}$, according to Lemma 2,

$$dist(p'_a, p'_b) \le dist(p_a, p_b) - (1 - \cos \alpha)S \le dist(p_a, p_b) - 0.25S.$$

 \P If $\alpha \geq \pi/2$, by Lemma 3

$$dist(p'_a, p'_b) \le dist(p_a, p_b) - 0.7S$$

❖So in any case we have,

$$dist(p'_a, p'_b) \le dist(p_a, p_b) - 0.25S \Rightarrow Span(P') \le Span(P) - 0.25S$$

Corollary 1

- From Lemma 5 we conclude,
- \Leftrightarrow If a set of K robots traverse at least by S,
- $Span(P') \leq Span(P) cS$.

Lemma 6

- ❖ Using the algorithm, Robots meet finite number of cycles
- **Proof:** for $t \ge 1$, H_t = convex hull at the beginning of cycle t.
- ightharpoonup Robots move at least S in each cycle towards p_G in the convex hull
- ❖ By Corollary 1 ⇒ $Span(H_{t+1}) \le Span(H_t) 0.25S$ for every t
- At most 4. $Span(H_1)/S$ cycles $\Rightarrow Span(P) = 0$.
- Thus all robots meet.

Theorem 3

- Algorithm $Gather_{byz}$ solves (N, f) Byzantine gathering for any $N \ge 3f + 1$, in **FSYNC**
- **Proof:** by Lemma 6 it is sufficient to show that $p_G \in H(R_{NF})$
- ❖ Set $H_{int}^f(P) \subseteq H(P)$ as well as every N-f subsets of $P \Rightarrow H_{int}^f(P) \subseteq H(R_{NF})$
- $C_{grav}(P) \in H(P) \Rightarrow p_G \in H(R_{NF})$
- ❖ Therefore, C_{grav} of the set $V_H\left(H_{int}^f(P)\right)$ is well defined.

This concludes the proof of the algorithm

The algorithm in practice

Timing of the algorithm

Remarks

- ❖A Formal analysis of Gathering problem
- Fault tolerance for crash and Byzantine
- •• Offers solutions for $N \ge 3f$ crash and $N \ge 3f + 1$ Byzantine failure models
- In practice, only viable for few number of failures
- ❖No speculation on upper bound for move

Helly's theorem

Helly's Theorem for d = 2 (cf. [27, Theorem.4.1.1]): Let \mathcal{A} be a finite family of at least three convex sets in \mathbb{R}^2 . If every three members of \mathcal{A} have a point in common, then there is a point common to all members of \mathcal{A} .

Lemma 6.1. For a multiset $P = \{p_1, \ldots, p_N\}, N \geq 3k+1, H_{int}^k(P)$ is convex and nonempty.

Proof: $H_{\text{int}}^k(P)$ is convex as it is the intersection of $\binom{N}{k}$ convex sets. We prove that it is nonempty by Helly's Theorem. Consider three arbitrary sets $P^l = \{p_1^l, \ldots, p_k^l\} \subseteq P, 1 \le l \le 3$, and let $Q^l = H(P \setminus P^l)$, $1 \le l \le 3$. Then $Q^1 \cap Q^2 \cap Q^3$ contains at least $P' = P \setminus (P^1 \cup P^2 \cup P^3)$. As $|P| \ge 3k + 1$, $|P'| \ge 1$. It follows that the intersection of every three such sets is nonempty, and by Helly's Theorem $V_H(H_{\text{int}}^k(P))$ is nonempty as well.