PRML assignment 3

PART 1

1. 计算LSTM单元的单步梯度

相对于常规的RNN,LSTM增加了保存较长短期记忆的单元状态——Cell State,同时使用更多的门控单元来控制信息的流动。

LSTM用两个门来控制单元状态cell的内容,一个是遗忘门 $\mathbf{f}_{\mathbf{t}}$ (forget gate),它决定了上一时刻的单元状态有多少保留到当前时刻;另一个是输入门 $\mathbf{i}_{\mathbf{t}}$ (input gate),它决定了当前时刻网络的输入有多少保存到单元状态。LSTM用输出门 $\mathbf{o}_{\mathbf{t}}$ (output gate)来控制单元状态有多少输出到LSTM的当前输出值。

LSTM的前向计算过程如下:

$$egin{aligned} \mathbf{z_t} &= [\mathbf{h_{t-1}}, \mathbf{x_t}] \ \mathbf{f_t} &= \sigma(W_f \cdot \mathbf{z_t} + \mathbf{b_f}) \ \mathbf{i_t} &= \sigma(W_i \cdot \mathbf{z_t} + \mathbf{b_i}) \ \hline \mathbf{C_t} &= anh(W_c \cdot \mathbf{z_t} + \mathbf{b_c}) \ \mathbf{C_t} &= \mathbf{f_t} * \mathbf{C_{t-1}} + \mathbf{i_t} * \overline{\mathbf{C_t}} \ \mathbf{o_t} &= \sigma(W_o \cdot \mathbf{z_t} + \mathbf{b_o}) \ \mathbf{h_t} &= \mathbf{o_t} * anh(\mathbf{C_t}) \end{aligned}$$

为了更方便地推导LSTM的反向传播梯度公式,我们先计算LSTM在单步中产生的梯度公式:

$$\frac{\partial \mathbf{h_t}}{\partial \mathbf{o_t}} = diag(\tanh(\mathbf{C_t}))$$

$$\frac{\partial \mathbf{h_t}}{\partial \mathbf{C_t}} = diag(\mathbf{o_t} \odot (1 - \tanh(\mathbf{C_t})^2))$$

$$\frac{\partial \mathbf{h_t}}{\partial \mathbf{f_t}} = \frac{\partial \mathbf{h_t}}{\partial \mathbf{C_t}} \frac{\partial \mathbf{C_t}}{\partial \mathbf{f_t}} = diag(\mathbf{o_t} \odot (1 - \tanh(\mathbf{C_t})^2) \odot \mathbf{C_{t-1}})$$

$$\frac{\partial \mathbf{h_t}}{\partial \mathbf{i_t}} = \frac{\partial \mathbf{h_t}}{\partial \mathbf{C_t}} \frac{\partial \mathbf{C_t}}{\partial \mathbf{i_t}} = diag(\mathbf{o_t} \odot (1 - \tanh(\mathbf{C_t})^2) \odot \overline{\mathbf{C_t}})$$

$$\frac{\partial \mathbf{h_t}}{\partial \overline{\mathbf{C_t}}} = \frac{\partial \mathbf{h_t}}{\partial \mathbf{C_t}} \frac{\partial \mathbf{C_t}}{\partial \overline{\mathbf{C_t}}} = diag(\mathbf{o_t} \odot (1 - \tanh(\mathbf{C_t})^2) \odot \overline{\mathbf{C_t}})$$

$$\frac{\partial \mathbf{h_t}}{\partial \overline{\mathbf{C_t}}} = \frac{\partial \mathbf{h_t}}{\partial \mathbf{C_t}} \frac{\partial \mathbf{C_t}}{\partial \overline{\mathbf{C_t}}} = diag(\mathbf{o_t} \odot (1 - \tanh(\mathbf{C_t})^2) \odot \mathbf{i_t})$$

$$\begin{split} \frac{\partial h_t}{\partial \mathbf{C}_{\mathbf{t}-1}} &= \frac{\partial h_t}{\partial \mathbf{C}_t} \frac{\partial \mathbf{C}_t}{\partial \mathbf{C}_t} = \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{f}_t) \\ &= \frac{\partial h_t}{\partial \mathbf{net}_{\mathbf{o},t}} = \operatorname{diag}(\tanh(\mathbf{C}_t) \odot \mathbf{o}_t \odot (1 - \mathbf{o}_t)) \\ \\ \frac{\partial h_t}{\partial \mathbf{net}_{\mathbf{f},t}} &= \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_{t-1} \odot \mathbf{f}_t \odot (1 - \mathbf{f}_t)) \\ \\ \frac{\partial h_t}{\partial \mathbf{net}_{\mathbf{f},t}} &= \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_t \odot \mathbf{i}_t \odot (1 - \mathbf{i}_t)) \\ \\ \frac{\partial h_t}{\partial \mathbf{net}_{\mathbf{c},t}} &= \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_t \odot \mathbf{i}_t \odot (1 - \mathbf{i}_t)) \\ \\ \frac{\partial h_t}{\partial \mathbf{net}_{\mathbf{c},t}} &= \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{i}_t \odot (1 - \mathbf{C}_t^2)) \\ \\ \frac{\partial h_t}{\partial \mathbf{h}_{t-1}} &= \frac{\partial h_t}{\partial \mathbf{o}_t} \frac{\partial \mathbf{o}_t}{\partial \mathbf{h}_{t-1}} + \frac{\partial h_t}{\partial \mathbf{f}_t} \frac{\partial \mathbf{f}_t}{\partial \mathbf{h}_{t-1}} + \frac{\partial h_t}{\partial \mathbf{f}_t} \frac{\partial \mathbf{f}_t}{\partial \mathbf{h}_{t-1}} \\ &= \operatorname{diag}(\tanh(\mathbf{C}_t) \odot \mathbf{o}_t \odot (1 - \mathbf{o}_t)) \cdot W_{oh} \\ \\ + \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_{t-1} \odot \mathbf{f}_t \odot (1 - \mathbf{f}_t)) \cdot W_{fh} \\ \\ + \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_t \odot \mathbf{i}_t \odot (1 - \mathbf{f}_t)) \cdot W_{fh} \\ \\ + \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_t \odot \mathbf{i}_t \odot (1 - \mathbf{f}_t)) \cdot W_{fh} \\ \\ + \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_t \odot \mathbf{i}_t \odot (1 - \mathbf{c}_t^2)) \cdot W_{ch} \\ \\ \frac{\partial \mathbf{h}_t}{\partial \mathbf{x}_t} &= \frac{\partial \mathbf{h}_t}{\partial \mathbf{o}_t} \frac{\partial \mathbf{o}_t}{\partial \mathbf{x}_t} + \frac{\partial \mathbf{h}_t}{\partial \mathbf{f}_t} \frac{\partial \mathbf{f}_t}{\partial \mathbf{x}_t} + \frac{\partial \mathbf{h}_t}{\partial \mathbf{i}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{x}_t} + \frac{\partial \mathbf{h}_t}{\partial \mathbf{c}_t} \frac{\partial \mathbf{c}_t}{\partial \mathbf{x}_t} \\ \\ = \operatorname{diag}(\tanh(\mathbf{C}_t) \odot \mathbf{o}_t \odot (1 - \mathbf{o}_t)) \cdot W_{ox} \\ \\ + \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_{t-1} \odot \mathbf{f}_t \odot (1 - \mathbf{f}_t)) \cdot W_{fx} \\ \\ + \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_{t-1} \odot \mathbf{f}_t \odot (1 - \mathbf{f}_t)) \cdot W_{fx} \\ \\ + \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_{t-1} \odot \mathbf{f}_t \odot (1 - \mathbf{f}_t)) \cdot W_{fx} \\ \\ + \operatorname{diag}(\mathbf{o}_t \odot (1 - \tanh(\mathbf{C}_t)^2) \odot \mathbf{C}_{t-1} \odot \mathbf{f}_t \odot (1 - \mathbf{f}_t)) \cdot \mathbf{V}_{fx} \\ \\ \frac{\partial \mathbf{h}_t}{\partial \mathbf{W}_0} &= \frac{\partial \mathbf{h}_t}{\partial \mathbf{net}_{t,t}} \frac{\partial \mathbf{net}_{t,t}}{\partial \mathbf{W}_0} = (\mathbf{o}_t \cdot (1 - \tanh(\mathbf{C}_t)^2) \cdot \mathbf{C}_{t-1} \cdot \mathbf{f}_t \cdot (1 - \mathbf{f}_t)) \cdot \mathbf{z}_t^T \\ \\ \frac{\partial \mathbf{h}_t}{\partial \mathbf{W}_t} &= \frac{\partial \mathbf{h}_t}{\partial \mathbf{net}_{t,t}} \frac{\partial \mathbf{net}_{t,t}}{\partial \mathbf$$

$$\frac{\partial \mathbf{h_t}}{\partial \mathbf{b_c}} = \frac{\partial \mathbf{h_t}}{\partial \mathbf{net_{\overline{c},t}}} \frac{\partial \mathbf{net_{\overline{c},t}}}{\partial \mathbf{b_c}} = \frac{\partial \mathbf{h_t}}{\partial \mathbf{net_{\overline{c},t}}} = diag(\mathbf{o_t} \odot (1 - \tanh(\mathbf{C_t})^2) \odot \mathbf{i_t} \odot (1 - \overline{\mathbf{C_t}}^2))$$

2. 描述LSTM的反向传播

在训练过程中,我们需要计算Loss对各个参数的导数。通过BPTT算法,从loss开始,沿时间反向计算梯度 (如果是多层LSTM,还要沿层反向计算):

1. 由于我们之前已经计算过 h_t 对各个参数的导数,因此现在只要找出L与 h_t 之间的导数关系,就能通过链式求导法则求出L与各个t时刻参数的偏导数:

$$\begin{split} \mathbf{i} \ddot{\mathbf{g}} \hat{\mathbf{y}}_{\mathbf{t}} &= softmax(\mathbf{net_{y,t}}) \\ \mathbf{net_{y,t}} &= V \cdot \mathbf{h_{t}} + \mathbf{b_{q}} \end{split}$$

$$L = -\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} y_{t,i} \log(\hat{y}_{t,i})$$

$$\frac{\partial L}{\partial \mathbf{net_{y,t}}} = \hat{y}_{t} - y_{t}$$

$$\frac{\partial L}{\partial \mathbf{h_{t}}} = (\frac{\partial \mathbf{h_{t+1}}}{\partial \mathbf{h_{t}}})^{T} \frac{\partial L}{\partial \mathbf{h_{t+1}}} + (\frac{\partial \mathbf{net_{y,t}}}{\partial \mathbf{h_{t}}})^{T} \frac{\partial L}{\partial \mathbf{net_{y,t}}}$$

在最后时刻T:

$$\frac{\partial L}{\partial \mathbf{h_T}} = (\frac{\partial \mathbf{net_{y,T}}}{\partial \mathbf{h_T}})^T \frac{\partial L}{\partial \mathbf{net_{y,T}}}$$

观察前向计算可知,反向传播中 C_t 之前的节点还还有 C_{t+1} ,因此:

$$\frac{\partial L}{\partial \mathbf{C_t}} = \frac{\partial L}{\partial \mathbf{C_{t+1}}} \frac{\partial \mathbf{C_{t+1}}}{\partial \mathbf{C_t}} + \frac{\partial L}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{C_t}}$$

2. 对于各个W和b,我们知道它们的梯度是各个时刻梯度之和:

$$\begin{split} \frac{\partial \mathbf{L}}{\partial \mathbf{W_o}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{W_o}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{W_f}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{W_f}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{W_i}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{W_i}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{W_c}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{W_c}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{b_o}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{w_c}} \end{split}$$

$$\begin{split} \frac{\partial \mathbf{L}}{\partial \mathbf{b_f}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{b_f}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{b_i}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{b_i}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{b_c}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{h_t}} \frac{\partial \mathbf{h_t}}{\partial \mathbf{b_c}} \end{split}$$

3. 对于embedding层的矩阵E, 其偏导数同理:

$$X = [\mathbf{x}_1, \mathbf{x}_2, \ ..., \mathbf{x}_T]$$
 $X = E \cdot \mathbf{sentence} \quad (sentence$ 为单热点码的序列)
 $\mathbf{sentence} = [word1, word2, ..., word_T]$
 $rac{\partial \mathbf{L}}{\partial E} = \sum_t rac{\partial \mathbf{L}}{\partial \mathbf{h_t}} rac{\partial \mathbf{h_t}}{\partial \mathbf{x_t}} rac{\partial \mathbf{x_t}}{\partial \mathbf{E}}$

4. 可轻松计算出全连接层参数的偏导数:

$$\begin{split} \frac{\partial \mathbf{L}}{\partial \mathbf{b_q}} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{net_{y,t}}} \\ \frac{\partial \mathbf{L}}{\partial V} &= \sum_t \frac{\partial \mathbf{L}}{\partial \mathbf{net_{y,t}}} \mathbf{h_t}^T \end{split}$$

PART 2

1. 处理数据集与初始化模型

本次实验使用了handout提供的唐诗小数据集,以及来自于《神经网络与深度学习》练习中的唐诗大数据 集"poems.txt"(近5万首唐诗)。处理数据集的方法如下:

- 1. 设定输入单句的最大长度sentence length(结尾标识符不计算在内)
- 2. 逐行检查原始数据集中的诗句(或检查每一首诗),若长度太小(会造成padding过多)则舍去,若长度超过设定最大长度则按最大长度截断。为筛选出的每一个诗句末尾添加结尾标识符E。
- 3. 使用fastNLP的DataSet和Vocabulary:将所有筛选出的诗句添加进数据集中,根据该数据集生成词表(添加unknown word标识符和padding标识符),对词表中的词作筛选(本实验选取词频>2的所有词汇,控制词表大小在6000以下)
- 4. 将数据集中的每个诗句的文字映射到词表中的索引,更新数据集。通过在单条数据末尾加padding的方法,将每条数据变为等长(使用fastNLP的Trainer训练时,fastNLP的Batch会帮助我们完成padding)
- 5. 将数据集按8:2的比例分为训练集和验证集

之后我们需要构建模型并初始化参数。本实验采用的网络结构是"embedding层--激活函数--单层LSTM", 其中LSTM为自己编写,只使用了Pytorch的autograd模块。

在开始训练前我们要对embedding层和权重进行初始化。参数不能全部初始化为0,原因:

- 1. 初始参数需要破坏单元间的对称性。如果初始化权重为0,则对于有相同输入的单元,它们会一直 以相同的梯度更新权重。迭代次数增加,各个单元的权重却基本相同,使得网络失去提取不同特 征的能力。因此权重不能全部初始化为0。
- 2. embedding层的初始化与权重初始化同理。

通常初始化LSTM参数的方法有随机初始化,标准初始化和正交初始化。为避免引入超参,这里直接使用torch.nn默认的方法——随机初始化:

对于m个输入,n个输出的全连接层,权重初始化为 $U(-\sqrt{\frac{1}{m}},\sqrt{\frac{1}{m}})$,对偏置采取相同的随机初始化对于embedding层,采用默认的高斯分布初始化:N(0,0.1)

2. 用LSTM生成唐诗

2.1 利用FastNLP的Trainer模块和自建trainer函数训练

使用fastNLP的Trainer及其封装的方法,对模型进行训练。我们需要按trainer的要求来定义自己的模型,如模型forward和predict的输出必须是一个词典,且键必须与trainer中的默认设置相同或建立映射。

fastNLP提供了很好的early stop方法,帮助我们自动重新载入在给定评价方法下最好的模型。

```
trainer = Trainer(
    train_data=train_data,
    model=lstm_model,
    loss=CrossEntropyLoss(pred='pred', target='target'),
    metrics=AccuracyMetric(),
    n_epochs=50,
    batch_size=batch_size,
    print_every=10,
    validate_every=-1,
    dev_data=dev_data,
    use_cuda=True,
    optimizer=Adam(lr=learning_rate, betas=(0.5, 0.99)),
    check_code_level=2,
    metric_key='acc',
    use_tqdm=False,
)
```

目前trainer.py中封装的优化算法、准确率等接口很少。如果要使用我们所需的metrics方法——perplexity,必须自己建立一个继承fastNLP中MetricBase的类。

出于练习目的,我也使用了自己定义的trainer函数,结合fastNLP中的Batch模块,进行更加个性化的训练。

对干给出的小数据集, 超参数设定:

```
Vocabulary size = 1445
Batch size = 16
```

Sentence length = 25 (包含一个结尾标识符) Hidden size = 512 Input size = 256 Adam, learning rate = 0.001, betas=(0.5, 0.99)

训练过程:

在给出的小数据集上尝试多次后,发现:

- 1. 由于数据集过小,如果在数据集中包含标点符号,则模型不能很好地学习到唐诗中标点符号的合适位置。而且生成的诗句往往达不到设定的sentence length。
- 2. 在小数据集上,模型十分容易过拟合,这体现为在训练过程中,经常出现:模型在训练集上的交叉熵损失下降,但在验证集上的困惑率(perplexity)单调上升。
- 3. 当模型刚能生成可阅读的诗句时perplexity=525,loss=0.6。而在loss<0.03时,perplexity>4000。

基本上只会生成数据集中有的诗句,如:

日:日夕故园意,汀洲春草生。何时一杯酒,与倚春风弄。

海:海亭秋日望,委曲见江山。染翰聊题壁,倾壶一解颜。

总之,该简单的模型在小数据集上的诗歌生成表现并不好,很容易过拟合,在训练的后期基本上只会生成内容相近的诗句,缺乏多样性。

2.2 更大的数据集

我使用了来自于《神经网络与深度学习》练习中的唐诗大数据集"poems.txt",这之中大概有近50000首唐诗。处理后得到包含42110首诗的数据集。然后按1.1中的数据集处理方式拆分为训练集和验证集。

https://github.com/nndl/exercise/blob/master/for chapter 6 RNN/poems.txt

超参数设定:

Vocabulary size = 5416

Batch size = 64

Sentence length = 49 (包含一个结尾标识符)

Hidden size = 512

Input size = 512

Adam, learning rate = 0.001, betas=(0.5, 0.99)

使用GPU在大数据集上训练的注意事项:

- 1. 在训练时,不涉及到反向传播的代码部分,例如验证、测试部分,请关闭autograd(比如用"with torch.no_grad():"),否则显存很容易溢出。
- 2. 在显存允许的情况下可以适当增大Batch,增加并行计算,更快地拟合模型。

在大数据集上,在跑了2个epoch后,模型便能较好地学到标点符号的位置,生成工整的诗句。还能学习到 结尾标识符,生成长短不同的诗句。

跑了5个epoch后,模型便在验证集上达到最低的困惑率。

训练过程:

Adam learning rate=1.0e-03

选取完成5个epoch时的模型。

在[0.6, 1.0]之间调整temperature term来使得诗句生成多样化,生成的诗句如下:Perplexity=87.2,temperture=0.8

日:

日日出门时,登高望远天。云山初出岫,云雨入天山。 地僻人来久,山深水自闲。何当见山水,相对一相思。

红:

红烛下高楼,楼中望玉京。月明三峡晓,云里一阳台。 万里无人到,千家万里馀。明年江汉使,应见此时心。

山:

山中有酒熟,此去何时还。独有东山意,无人知此心。

夜:

夜来江上月明时,一夜风吹万里秋。 一片玉山千万里,一声风雨夜凄凉。

湖:

湖上春风满,春风日日长。绿苔生绿草,红树绿阴阴。

海:

海燕双飞去不回,一双飞去又回头。 人间有酒唯多病,一夜无心一夜愁。

月:

月出照南山,南山临古城。风烟入户牖,水宿鹭群鸥。山色连云远,山川带夕阳。何时归故里,应见此中人。

2.3 使用numpy实现LSTM

由part1中关于前向计算和反向传播算法的推导,建立numpy实现的LSTM类。在反向传播中,用循环的方式实现公式中的"累加",并注意在整个反向传播链上计算loss对ht和Ct的偏导数。

随机生成输入,使用数值梯度对反向传播计算出的梯度进行验证。也可以实现pytorch的LSTM方法,给2个模型以相同的初始参数,在相同的随机输入下比较2个模型计算的梯度是否相同。方法包含在 lstm numpy.py中。

(代码实现参考了 http://blog.varunajayasiri.com/numpy_lstm.html)

3. 梯度下降的优化算法

3.1 Adam

Adam算法是一种学习率自适应的优化算法,相当于结合了RMSprop和动量,利用梯度的一阶矩估计和二阶矩估计动态调整参数学习率,且包含偏置修正,使得参数变化比较平稳。Adam算法有默认的超参数设置,但它对超参数的选择鲁棒性也特别高,比如学习率取0.001和0.1,模型参数都不会发散,只是学习率较大时参数更新路径在极小值点附近的环绕区域会更大。一般取学习率为0.001,根据实际情况大致调整就行。

对于betas的选择,默认设置为(0.99, 0.999)。但根据实验,减小第一个超参数,会缩小更新路径在极小值附近的环绕区域;而减小第二个超参数,会使更新路径变得更加曲折。因此很多文献和项目中使用betas=(0.5, 0.99)

下面给出了2种Adam超参选择方法在小数据集上的loss下降曲线,可见超参的选择对Adam算法影响不大, 但观察具体数据可以发现,第二种参数选择方法收敛速度略快且最后得到的loss更小。

 $\begin{array}{c} & \text{Adam} \\ \text{learning_rate} = 1.0\text{e-}03, \ \text{batch} = 16, \ \text{betas} = (0.9, \ 0.999) \end{array}$

3.2 带动量的SGD

带动量的SGD算法对学习率的选取要求比较高,相差10倍的学习率,训练效果可能十分不一样(如下2 图)

一般的方法是选择较大的动量(momentum=0.9),和"小"的学习率(learning_rate<=0.1),但这个学习率的选取还是依靠具体情况下的试验。动量也可以在训练过程中调整,往往大动量可以加速收敛。

Momentum learning rate=1.0e-01, batch=16

3.3 优化方法的numpy代码实现

大部分优化算法在计算一步梯度下降时,往往需要用到之前(所有)的梯度,所以需要在每个参数上增加额外的空间,记录之前一步梯度下降的计算信息(比如Adagrad对梯度平方的累加)。

SGD,Adagrad,RMSprop,带动量的SGD方法,代码实现如下:

```
# p是参数, p.v是参数值, p.d是梯度, p.m是记录之前梯度下降中的额外计算信息
def update_sgd(self, learning_rate):
    for p in self.all():
       p.v -= learning_rate * p.d
def update_Adagrad(self, learning_rate, epsilon=1e-8):
    for p in self.all():
       p.m += p.d * p.d
       p.v -= learning_rate * p.d / np.sqrt(p.m + epsilon)
def update_RMSprop(self, learning_rate, beta, epsilon=1e-8):
   for p in self.all():
       p.m = beta * p.m + (1 - beta) * p.d * p.d
       p.v -= learning_rate * p.d / np.sqrt(p.m + epsilon)
def update_sgd_momentum(self, learning_rate, momentum=0.9):
   for p in self.all():
       p.m = momentum * p.m - learning_rate * p.d
       p.v += p.m
```

3.4 对5种优化方法的比较

采用以下5种优化方法,在大数据集上进行训练,观察损失下降情况:

Adam:learning rate=1e-3, betas=(0.5, 0.99)

RMSprop: learning rate = 1e-2, alpha=0.99, eps=1e-8

Adagrad: learning rate=1e-2 SGD: learning rate=1e-3

SGD(momentum=0.9): learning rate=1e-1

训练集损失下降如下图所示:

可见:

- 1. 若固定学习率,则SGD方法收敛速度很慢;而带动量的SGD方法则比普通的SGD方法表现好很多,但仍比不上Adam、RMSprop和Adagrad。使用动量法时,若要取得更好的效果,则需要在训练过程中动态调整学习率和动量大小。
- 2. 在曲线所演示的前5个epoch中,Adam、RMSprop和Adagrad表现差不多。RMSprop和Adagrad在训练初期会让损失下降得很快,但随着迭代次数增加,RMSprop和Adagrad逐渐陷入瓶颈,但Adam损失下降的持久力更强(在3个epochs后Adam得到的损失值便比其他方法都低,且仍在以比其他方法更快的速率下降)
- 3. 在上面的实验中,RMSprop优化算法采用的是默认配置。经过调参,在调整学习率为1e-3后,RMSprop的表现变好,其训练的最终损失值与Adam得到的最终损失值基本相同,且初期损失下降更快。
- 4. 我们知道,Adagrad算法的缺点是在经过一定次数的迭代依然没有找到最优点时,由于这时的学习率已经非常小,很难再继续找到最优点。这应该是Adagrad在后期乏力的原因之一。