CENG 114 BİLGİSAYAR BİLİMLERİ İÇİN AYRIK YAPILAR Doç. Dr. Tufan TURACI tturaci@pau.edu.tr

· Pamukkale Üniversitesi

· Hafta 12

- Mühendislik Fakültesi
- Bilgisayar Mühendisliği Bölümü

Ders İçeriği

- Hafta 10-11 Kısa tekrar (Öklit Algoritması, Diyafont Denklem Çözümleri,
 Doğrusal Denklikler ve Çözümleri, Çinli Kalan Teoremi)
- Sayılar Teorisi ile İlgili Önemli Teoremler
 (Wilson Teoremi Fermat Teoremi Euler Teoremi)
- Sayılar Teorisinin Kriptolojiye Uygulaması

Öklit Algoritması

For zedelim ke alpes ornon. Aselopri is on or ardinize solvide duran chisa (こ) 100) のくしいくり しゅんらんらららららららららい p=10.91+1, 2/2/2 10= 1. 92 + 12 , 0612 X -1 The = (+1 9 +1 + 16+2 , 0 / 16+2 2 0 16+1 12 =0 ise god(0,6)= Ck+1 gir.

$$205 = 39.2 + 1$$

$$39 = 7.14 + 1$$

$$7 = 1.7 + 0$$

302 (20), 91) 'F Vercloyme. 203 = 91.2 + 21, 06 21 691 067621 21=7.3 + 0 ged(a,b) = 7 gcd(a,b)=> greatest common divisor (Ortak bölenlerin en büyüğü - OBEB)

lcm(a,b)=> least common multiple (Ortak katların en küçüğü - OKEK)

Teorem: a ve b iki pozitif tamsayı olmak üzere gcd(a,b)*lcm(a,b) = a*b

NOT: Öklit algoritması ve yukarıdaki teorem yardımıyla iki sayının OKEK değeri de bulunabilir.

Diyafont Denklemler

a=240, 6=936 obon. gcd (a, b) = ax+ by dorklenin: sos loyer x ve y tem sos bons 936=2603+216 9cd(240,976)= 26 240 = 216.1 + 26 216 = 24.5 + 6

$$24 = 240 \times + 936 \text{ y 'y} = 256000 \times \text{ xey}$$

$$24 = 240 - 216.1$$

$$= 240 - (936 - 240.3)$$

$$= 240 - 536 + 740.3$$

$$= 4.240 + (-1) > 36$$

$$8 = 64x + 202.y \quad exthering soften$$

$$202 = 64.3 + 10$$

$$64 = 10.6 + 4$$

$$10 = 4.2 + 26$$

$$4 = 2.2 + 0$$

$$= 10 - 64.2 + 10.12$$

$$= 13.10 - 64.2$$

$$= 13.(202 - 66.3) - 66.7$$

$$= 13.207 - 39.64 - 66.7$$

$$2 = 13.207 - 41.64$$

$$8 = 52.202 - 164.64$$

$$= 52.207 + (-164).64$$

$$y = 57$$

Çalışma Sorusu: d= a.x+b.y şeklinde diyafont denklemleri çözen bir program yazınız. (d=gcd(a,b), a ve b pozitif tamsayılardır.)

Moderator Aritable Tonm: MEZ dison. Eger m sayon 2 tomsquin forki a-b'ys bölügersa, modül bige göre a deriction to dering up a = b (melon) solchide soute:). 64 = 4 (mad(0)

Dogrusal Denkliklur Tanini ax = b (newan) dentisionin assermi x, ise a ×1 = 6 (modm) yportlobilir. Geralleten x, bir Costum ve x, = x2 (modm) ise, x2'de bir Gostudir. Bu domma xa ve xz agni côtim sayilira Buns X = X, (modm) ERhinde Bisherip,

CX = 6(modm) donkliginin aszimi dige dounne,

27 =
$$\times$$
 (mod 5) ise $\times = ?$

2 = $2 + 5$ k yer $2 = 2 - 3$, $2 + 12$,

2 = $2 + 5$ k yer $2 = 2 - 3$, $2 + 12$,

10. $\times = 4$ (mod 13) ise $\times = ?$
 $\times = 1$ icin $\times = 3$ on $\times = 4$
 $\times = 2$ if $\times = 4 + 13$ k

 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$ is $\times = 4$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times = 4 + 2$
 $\times =$

Çözümü birazdan yapılacaktır...

Tearent $0 \times = 6 \pmod{n}$ desklipinin bir azzonos

dinosi deneste $0 \times -my = 6$ digrefort deskleninin

bir azzonos denestir.

Oir 10 x = 14 (mod 24) ise x = ?

CENG 114-Bilgisayar Bilimleri için Ayrık Yapılar

Böylece;

elde edilir.

$$(3)^{1/2} = 28 (nod 1943) ise x=7$$

11x-1943y=28 diyafont denkleminin çözümünün olması gerekir.

= 530.11-3.1963

Her iki taraf 28 ile çarpılırsa: 28 = 14840.11 - 84.1943 × => harroys box cistin 14840 = 1239 (mad 1963) X=1239 year X= 1239+19976 x = 1239x = 3182 elde edilir.

Girli Kolon Teoremi	
dog-usal don'elik sistenderini	asznek igin bu teoren
kullander, yani	daldik sistems
x = 5 (med 3)	X=?

Teorem: mr 9kijer ilcizer andlærnda asa) 005: J. J + c ~ 200, 10 0/200. (mi,mi) = 1 ve i + i olson. X = a1 (mgm1) x = 02 (mod ~ 2) x = ar (madmr) dentile sistemi madit) n = (m1.m2. - - m) 'ye sore 6- tele Caseline Soniptic. B15 C5720m $X = \left(\frac{m}{m!}\right) \cdot a_1 \cdot b_1 + \left(\frac{m}{m}\right) \cdot a_2 \cdot b_3 + - - - + \left(\frac{m}{m}\right) \cdot a_5 \cdot b_5 dic$ bo le iains $\left(\frac{m}{m^2}\right)$. $bi \equiv L \pmod{mi}$ formiste kullanter.

$$x = 2(mod 3)$$

$$x = 3(mod 5)$$

$$x = 5(mod 7) \quad \text{ise} \quad x = 7 \left(\begin{array}{c} x = 68 \text{ bir assumation} \\ \text{Kontrol edinia.} \end{array} \right)$$

$$a_1 = 2 \quad m_1 = 3 \quad m = 3.5 \cdot 7 = 105$$

$$a_2 = 3 \quad m_2 = 5$$

$$a_3 = 5 \quad m_3 = 7$$

$$X = \left(\frac{105}{3}\right) \cdot 2 \cdot b_1 + \left(\frac{105}{5}\right) \cdot 3 \cdot b_2 + \left(\frac{105}{7}\right) \cdot 5 \cdot b_3$$

$$X = 30 \cdot b_1 + 63 \cdot b_2 + 75 \cdot b_3$$

$$\frac{b_1}{(\frac{105}{3}) \cdot b_1} = 1 \pmod{3}$$

$$\frac{(\frac{105}{3}) \cdot b_1}{35 \cdot b_1} = 1 \pmod{3}$$

$$\frac{b_1}{5 \cdot b_2} = 1 \pmod{3}$$

$$\frac{b_1}{5 \cdot b_3} = 1 \pmod{4}$$

$$\frac{b_2}{5 \cdot b_3} = 1 \pmod{4}$$

$$\frac{b_3}{5 \cdot b_3} = 1 \pmod{4}$$

$$\frac{b_3}{5 \cdot b_3} = 1 \pmod{4}$$

Böylece;

$$X = 7061 + 6362 + 7563$$

$$= 140 + 63 + 75 = 278$$

$$x = 68 + 1058$$
 $x = 68 + 1058$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 68$
 $x = 6$

Seignler Tearisi ile ilgili Whemis Tearente Wilson Tooremi P asal ise; (p-1) = -1 (madp) Eger (p-1)1+1 = 0 (modp) ise p cselder.

fernet Teoremi sagi ve P/q alson, Q = 1 (modp) dir.

Esser & Fondisingro ve Euler Teoremi Tonn:] m>1 dnde itere, Ø(m) gosterin mich kirist re mile arderinda asal segularn seguin verir. \$\phi(1)=1 alore terimbur. \$\phi\$ fork. no equaliste Enler & fook. dorok ifede edilir. \Rightarrow then my 1 degariation $\varphi(m) \geq m-1$ directly ascalase $\varphi(m) = m-1$ directly.

$$\phi(15) = ? \phi(3.5) = \phi(3) \cdot \phi(5)$$

Tester!
$$\rho$$
 asol ise $\varphi(\rho^k) = \rho^k - \rho^{k-1}$ is:
 $\varphi(125) = ? \varphi(5^3) = 5^3 - 5^2$
 $= 125 - 25 = 100$

Theorem
$$M = p_1^{x_1} \cdot p_2^{x_2} \cdot \dots \cdot p_r^{x_r}$$
 ise

 $Q(m) = Q(p_1^{x_1} \cdot p_2^{x_2} \cdot \dots \cdot p_r^{x_r}) \, d_1 \cdot \dots \cdot Q(m)$

Cor provol for fork. eld. day;

 $Q(m) = Q(p_1^{x_1}) \cdot Q(p_2^{x_2}) \cdot \dots \cdot Q(p_r^{x_r}) \, d_1 \cdot \dots \cdot Q(p_r^{x_r})$

Entr Toreni =
$$m \in 2^{+}$$
 ve $(m,a) = 1$ olson.

 $a^{(k)} = 1 (mod m)^{-} 3i^{-}$.

 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$
 $a = 3$

Soyilor Teorisi Dygulama (Sifreleme Dygulamalon)

- Bilginin desirationi lenek komennessi ile ugrazan bilim kriptolosi darak adlan dirilir

- Elektronic ortenda bilginin kommons, galinnesnin önlennesi bilgik önem tari. - Klasik Eifrelene genelikle - yerine kosma - yer desistione mentigi de adusir. ABU sifrelemense sinck daroit Sezar Sifresi (The Coesser cipher) 305 toile67/10.

Sezar Sifrebne Belirlenen bir anahtar desoine sone Houthin De 92, stillnesse page, al zifrelene sönknider. Herfler öncolikle numeraladirilir. A -> 0 (instre Allebrinder norfbr) B - 1 C>2 D -> 3 Z >25

Bir harf: sifrelemek iain bir f forksingon! f(P) = (P+F) (mob26) Pir harf: temsil eler. E, kaa binn öteleæsin tensil eder. Sifre assamble ifin franksiben: t-1(6)= (6-F) (mogse) Ecklindedir.

(.) rnek: DENIZLI kelimoin Sezor zifrekme ile fif clessemme [K=3 ablim Tum 62: 3,4,13,8,25,41,8 D -3 E-> 4 Her soy in sifrelene: N -> 13 f(p)=(p+10)(mo226) 1 ->8 f(3)=6, f(4)=7, f(13)=16 Z -7 25 f18)=11, f(25)=2, f(11)=16, L-9 11

Sifrelemin metin: 6-56,7-54,16-30,11-3 L,2-0,14-0 Timber: 6,7,16,11,2,14,11 Firelemin Metin: 649LCOL Edurabetic.

Sifre Gizare!

GHQLCOL ve t=3.

Giscolura covir

6,7,16,11,2,14,11

$$f''(6) = 6-3 \pmod{26} = 3$$

 $f''(4) = 6$
 $f''(16) = 13$
 $f''(16) = 25$

Tem 2:27: 3,4,13,8,25,11,8

metin: DENIZLI

Bu tie bonten les kolonièles aizületiles.

Givent por kripte sistem expelitele Matematikal
aciden cistimi zon den NP prophentere desals
osmacinader.

RSA kriptosistemi biblicik sabilom Corphabra abrilmena devali bir väntemdir.

RSA sifreleme

1977 gunda R. Rivest, A. Shamir Le L. Adleman tocoting conspicionsspic.

est aboritmessada enoltre cretimi assigniti agrunda, jacemeligia.

1) pred Ebrings iki tore passif azul Early Service services i fargar.

ve \$ = (p-1).(q-1) he>corbons. 2) n=p.9

3) 1<e< \$ seklinde gcd(e,\$)=1 ماصحد محولة لم دريع المعلال في و محديء، وادسة. 4) 1226 & ac/21-ga 6.9 = 1 (mod \$) sortin sostebon of sayis, hereplan. 5) Bisolece genel another (n.e) Osel cuema q ela egalic

Sifrekme:

1) Mesosin Sombrileus: Eisinin Genel onehrri (n.e) elde edilin.

حرد کی کی عدد سعی رون ۱۰۰۱ عدد کی مینایه دینی ای د.

3) c=ne (modn) hesoplant.

(1) Olozfon pu c Eitus! vorcez, ajicida

82,9×410~

Desifichme!

1) d'asel enchant ile m= cd (modn)
hesselant ve ortinal metin elde edille.

RSA'nn Swerlisti:

- V Zenis, vo regal pripige siste -

o koga Siraligir.

- n=10.9 elduzunden cok Geneilt ikt asel sky, almesa sistem zerent obecher. Erneki Anahda Gredini icin p=13 q = 23 2200.

n=r=9 = 13.23 = 299 e/& ebilm.

Ø=(P-1).(q-1) = 12-22 = 269 OWT.

gcd (e, d)-1 oboli zehilde e=35 dim. gc2(35, 289) = 1 'bir.

35. 6 = 1 (ma) 264) about sekild 9=83 elp egyer. 35.83 = 2505 2905 = 1 (mod 2661) sellandedir. Genel crohter: (288,35) Osel cupper: 83 em egylgi.

Zeta kelimesini esa ile sifrelebolim.

ASCII lose toloronoson

Z > 127

Zeta kelimesi

e > 101

) 122101 107 057

E > 107

Felima Goznan.

4 Sifrebreak sander n'en Etick drobber. Br nederle sousol maken winin besomet seguent Pir Gray nsiningongori Gadala canin. - Br son Peren garde agportion - 13298 012. da Leber = 2 elle all'in Bisblece: 12 21 01 10 30 97 Sorpyon Rosyku Her block Lelea bearnown olnok zanown. Gorelingersa sofr ellerir.

Sificelema!

$$12^{35} \equiv 259 \pmod{199}$$
 $21^{35} \equiv 226 \pmod{299}$
 $01^{35} \equiv 4 \pmod{299}$
 $10^{35} \equiv 49 \pmod{279}$
 $10^{35} \equiv 49 \pmod{279}$
 $20^{35} \equiv 49 \pmod{279}$
 $20^{35} \equiv 49 \pmod{279}$

yens elle Edilar Sasarlar no se cons Lesendan elmahar. Bu sons 2 cipher dack adlardribus Lesenar = 3 elle edilar.

Bisslece: 255 226 001 1953 047 257

Solve poper.

Dosificeme:

Eifrel: meter Lc:rher uzwamin plakler astrin

m = cd (moda) wssulence 259 83 (mod 283) =17 226 83 (med 299) = 21 0 183 (ma) 2587 = 1 13583 (mg 255) = 10 04783 (moz 253) =70 287 83 (mod 277) = 97

Oppler Schar nown * for omeyour, Se dispased sifu chlows. 12 21 601 10 70 53 16 1221 01 107057 业 097 122 101 107 a " elle elive pue q asol shorider. Asal dummers derromanda abaritma Galizmoz.

Kaynaklar

- *Discrete Mathematics and Its Applications*, Kennet H. Rosen (Ayrık Matematik ve Uygulamaları, Kennet H. Rosen (Türkçe çeviri), Palme yayıncılık)
- Discrete Mathematics: Elementary and Beyond, L. Lovász, J. Pelikán, K. Vesztergombi, 2003.
- *Introduction to Algorithms*, T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, 2009.
- Introduction To Design And Analysis Of Algorithms, A. Levitin, 2008.