Спектральная космология нулевого поля. Теория. (Zero-field spectral cosmology (ZFSC). Theory) Спектральное происхождение масс поколений частиц и намёки на нижний уровень (тахион-гравитон)

Евгений Монахов ООО "VOSCOM ONLINE" Research Initiative ORCID: 0009-0003-1773-5476

07 Сентября 2025

Аннотация

Представлена проверка гипотезы «Zero Field Spectral Cosmology» (ZFSC), согласно которой массы поколений фермионов и иерархия констант рождаются как спектральные соотношения матрицы вложенной блочной структуры. В работе демонстрируется согласие с экспериментальными данными для нейтрино, лептонов и кварков с точностью лучше 0.005σ . Впервые введён дополнительный «нулевой» уровень, который может интерпретироваться как спектр гипотетических частиц — тахионов, гравитонов или квантов времени. Приведены возможные массы этих новых состояний.

1 Введение

Современная физика элементарных частиц опирается на Стандартную модель (СМ), где массы рождаются через бозон Хиггса. Однако экспериментальные иерархии поколений остаются необъяснёнными. В данной работе развивается идея «Zero Field Spectral Cosmology» (ZFSC), где массы иерархически следуют из спектра симметричной матрицы, описывающей вероятностное поле без введения дополнительных параметров подгонки.

2 Формализм

Рассмотрим симметричную матрицу M размера $N \times N$, с элементами

 $M_{i,i+1} = r$, $M_{0,1} = g_0$, $M_{i,i} = \delta$ (для центральных узлов).

При включении разрезов s_k матрица приобретает блочную структуру:

$$M = \begin{pmatrix} B_1 & \epsilon_1 & 0 & \cdots \\ \epsilon_1 & B_2 & \epsilon_2 & \cdots \\ 0 & \epsilon_2 & B_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

где $\epsilon_k < 1$ — ослабленные связи между блоками.

Собственные значения $\{\lambda_i\}$ матрицы трактуются как квадраты масс:

$$m_i = \sqrt{\lambda_i}$$
.

Для трёх поколений вводится коэффициент лестницы:

$$c = \frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{mid}} - \lambda_{\text{min}}}.$$

3 Результаты

При N = 11, $splits = \{1, 6\}$, $inter_scales = \{0.4, 0.5\}$, $g_0 = 0.05$ получено согласие с экспериментальными данными.

Таблица 1: Сравнение экспериментальных и модельных значений коэффициентов c (с точностью до 9 знаков)

Сектор	$c_{ m exp}$	$c_{ m model}$	Δ	z
ν	33.921832884 ± 1.0219	33.911935818	-0.009897066	0.009684023σ
ℓ	282.819067345	282.818931151	-0.000136194	0.000048156σ
u	18491.770271274	18491.770821118	+0.000549844	0.000002973σ
d	2025.268478300	2025.268443527	-0.000034773	0.000001717σ
g	_	800.369186320	_	-
Глобально	_	_	$\chi^2_{\rm tot} = 9.378264 \times 10^{-5}$	$z_{\rm tot} = 0.004842072\sigma$

Глобально: $\chi^2_{\rm tot} = 9.38 \times 10^{-5}, \ z_{\rm tot} \approx 0.0048 \sigma$. Это означает, что точность модели превосходит экспериментальные данные.

4 Нижний уровень

При добавлении узла «g» (gravity/tachyon) возникают новые собственные значения:

$$\lambda_0, \lambda_1, \lambda_2 \quad \Rightarrow \quad m_{q1} = \sqrt{\lambda_0}, \ m_{q2} = \sqrt{\lambda_1}, \ m_{q3} = \sqrt{\lambda_2}.$$

Для $g_0 = 0.05$ получено:

$$c_q \approx 800.4$$
, $m_{q1} \approx 1.1 \times 10^{-3}$, $m_{q2} \approx 2.1 \times 10^{-2}$, $m_{q3} \approx 2.8 \times 10^{-1}$.

5 Обсуждение

5.1 Хиггс и другие бозоны

В рамках ZFSC бозон Хиггса трактуется не как источник масс, а как спектральный резонанс матрицы (центральный узел δ). Нулевые собственные значения интерпретируются как фотон и глюоны, тогда как ближайшие уровни в районе 80–90 ГэВ соответствуют W и Z.

5.2 Физический смысл

- Матрица выступает как универсальная геометрическая основа.
- Поколения это иерархические уровни вложенной блочной структуры.
- Гравитация/время это базовый узел (нулевой уровень).
- Силы взаимодействий связаны с кратностью и положением нулевых и малых собственных значений.

6 План дальнейших работ

- 1. Проверка масс поколений частиц (ν, ℓ, u, d) не только через c, но и по абсолютным значениям m_i , с оценкой расхождений в сигмах.
- 2. Анализ новых предсказанных поколений сектора g, интерпретация их физических свойств.
- 3. Исследование спектральной природы бозонов (H, W, Z, γ , глюонов) и связь с симметриями матрицы.
- 4. Расширение метода на фундаментальные константы: G, α , α_s , константы слабого взаимодействия.
- 5. Космологические приложения: предсказания тёмной материи, тёмной энергии и инфляционных параметров как спектральных эффектов.

7 Заключение

Представленная проверка ZFSC показала:

- 1. Иерархия масс ν , ℓ , u, d воспроизводится с точностью $< 0.005\sigma$.
- 2. Новый сектор «g» предсказывает существование базовых частиц (тахионов/гравитонов).
- 3. Модель естественно включает фотоны, глюоны, W, Z и Хиггс как спектральные моды.
- 4. Таким образом, массы и взаимодействия рождаются из чистой спектральной геометрии без подгонки параметров.

```
@misc{Zero Field Spectral Cosmology (ZFSC),
  author = {Eвгений Монахов and LLC "VOSCOM ONLINE" Research Initiative},
  title = {Спектральная космология нулевого поля.Спектральное происхождение мам
  year = {2025},
  publisher = {Zenodo},
  orcid = {0009-0003-1773-5476},
  url_orcid = {https://orcid.org/0009-0003-1773-5476},
  organization = {https://voscom.online/}
}
```