### Lextral

Contract Clause Classification

Julien Delavande Mistral Use-case Take Home

13 August 2025



### The Use-Case in One Picture



Reduce review time, increase consistency.

## Dataset Snapshot

Dataset: Lexglue/ledgar [Chalkidis et al. 2022] 60k clauses in the train set, 100 consolidated labels



## Embedding Landscape (Train)



6k train embeddings; colors = labels. (t-SNE/UMAP)



## Strategies at a Glance



## Base Strategy



Clause + labels and instructions  $\rightarrow$  Mistral model  $\rightarrow$  Clause Label

# **Model tested:** [Mistral AI team 2024; Mistral AI 2024]

- Ministral-3B (API)
- Ministral-8B (API)
- Mistral-small-latest (API)
- Mistral-medium-latest (API)

### Test set: 1000 clauses

#### Prompt:

```
You are a contract clause classifier.
Classify the clause into one of:
{labels_str}
Clause: """{text}"""
Respond with only the category name.
```

## Base Strategy - Evaluation



F1 scores per Model



Precision and recall per Model

## **RAG Strategy**

[Lewis et al. 2020; Malkov and Yashunin 2016]



### **RAG** Evaluation



F1 scores per Model and RAG strategy



Precision and recall per Model and RAG strategy

## Finetuned Model Strategy



Clause → Ministral Classif finetuned model → Clause Label

### 2 sub-strategies explored:

- Classification Head
- ► Classification Head + LoRA [Hu et al. 2021]

## Finetuned Model Strategy - Classification Head



Classification head architecture: only the head is trained

## Finetuned Model Strategy - Classification Head - Training



Evolution of the Loss of the classification head during training (Ministral 8B)

# Base Model: Ministral 8B Training params:

- ► train set len = 60e3
- ► BF16
- ightharpoonup Ir = 5e-5
- ▶ batch size = 4
- ightharpoonup epochs = 5
- optimizer = ADAMW
- ▶ grad accum = 4
- scheduler = linear with warmup
- warmup ratio = 5e-2
- ightharpoonup dropout = 0.1



### Finetuned Model Strategy - Classification Head + LoRA



Classification head + LoRA architecture: only the head is trained and LoRA matrices are trained



## Finetuned Model Strategy - Classification Head + LoRA - Training



Evolution of the Loss of the classification head + LoRA adapters during training (Ministral 8B)

# Base Model: Ministral 8B Training params:

- Same as before
- target modules = qproj, kproj vproj, oproj, gateproj, upproj, downproj
- ightharpoonup r = 4
- $\sim \alpha = 16$
- ► LoRA dropout = 5e-2

## Finetuned Model Strategy - Evaluation



F1 scores per Model, RAG and finetuning strategy



Precision and recall per Model, RAG and finetuning strategy

### **Evaluation Overview**

| Configuration                                      | Latency (s) | Estimated Cost (USD)    | Macro F1 |
|----------------------------------------------------|-------------|-------------------------|----------|
| ministral-3B chatprompt                            | 0.5         | \$0.43/m (10k user/day) | 0.1595   |
| ministral-8B chatprompt                            | 0.4         | 1.35/m (10k user/day)   | 0.2517   |
| Mistral-small-latest chatprompt                    | 0.4         | 1.14/m (10k user/day)   | 0.4989   |
| Mistral-medium-latest chatprompt                   | 0.8         | \$4.80/m (10k user/day) | 0.5649   |
| RAG only (self-hosted cpu)                         | 5.5         | \$390/m (10k user/day)  | 0.7262   |
| Mistral-small-latest RAG (self-hosted cpu)         | 5.2         | \$1560/m (10k user/day) | 0.7013   |
| ministral-8B headclassifier (self-hosted A100)     | 0.5         | \$1800/m (10k user/day) | 0.6352   |
| ministral-3B headclassifierLoRA (self-hosted A100) | 0.5         | \$1800/m (10k user/day) | 0.7690   |

Cost, Latency and macro F1 across strategies (m=month)

## Infrastructure / Deployment



FastAPI, pgvector, Helm, Ingress, monitoring

## Infrastructure / Deployment - API

## Clause Classifier API OLD OAS 3.1

/openapi.json



### Live Demo

UI: https://lextral.delavande.fr

**DOC:** https://lextral.delavande.fr/docs

### Thank you for listening

juliendelavande@gmail.com https://lextral.delavande.fr

 $\verb|https://github.com/juliendelavande/lextral|\\$ 

## Annex Cost Estimation Methodology

#### **Assumptions:**

- ▶ 10,000 requests/day  $\Rightarrow$  300k requests/month.
- ▶ API pricing from Mistral (\$/M tokens), using 350 input + 10 output tokens/request:
  - ▶ Mistral Small: \$0.1/M\*350 in, \$0.3/M\*10 out  $\Rightarrow $0.00038$ /request.
  - ▶ Mistral Medium: \$0.4/M\*350 in, \$2/M\*10 out  $\Rightarrow \$0.00104/request$ .
  - ▶ Ministral-3B: 0.04/M\*350 in, 0.04/M\*10 out  $\Rightarrow 0.00016/\text{request}$ .
  - ▶ Ministral-8B: \$0.1/M\*350 in, \$1.00/M\*10 out  $\Rightarrow $0.00016/request$ .
  - ► Mistral Embed: \$0.1/M\*350 tokens  $\Rightarrow $0.000035/request$ .
- Machines rented 24/7 for one month:
  - ► CPU VM (16 vCPU / 64 GB RAM):  $$0.50/h \Rightarrow $360/month$ .
  - ► L4 GPU:  $$0.60/h \Rightarrow $432/month$ .
  - ► A100 80GB GPU:  $$2.50/h \Rightarrow $1,800/month$ .
- ▶ RAG embedding cost only applied if computed at query time.

#### Cost formula:

Monthly Cost =  $Infra/month + API cost/request \times 300,000 + Embed cost if applicable$ 





Confusion matrix for Ministral 3B per-class prediction distribution



Confusion matrix for Ministral 8B per-class prediction distribution





Confusion matrix for Mistral Small showing per-class prediction distribution



Confusion matrix for Mistral Medium showing per-class prediction distribution





Confusion matrix for RAG baseline showing per-class prediction distribution



Confusion matrix for RAG with fine-tuned model showing per-class prediction distribution





Confusion matrix for Ministral 8B with classification head showing per-class prediction distribution



Confusion matrix for classification head with LoRA showing per-class prediction distribution



### References I

- Chalkidis, Ilias et al. (2022). LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. arXiv: 2110.00976 [cs.CL]. URL: https://arxiv.org/abs/2110.00976.
- Hu, Edward J. et al. (2021). "LoRA: Low-Rank Adaptation of Large Language Models". In: CoRR abs/2106.09685. arXiv: 2106.09685. URL: https://arxiv.org/abs/2106.09685.
- Lewis, Patrick et al. (2020). "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks". In: CoRR abs/2005.11401. arXiv: 2005.11401. URL: https://arxiv.org/abs/2005.11401.
- Malkov, Yury A. and Dmitry A. Yashunin (2016). "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs". In: *CoRR* abs/1603.09320. arXiv: 1603.09320. URL: http://arxiv.org/abs/1603.09320.
- Mistral AI (2024). Mistral API Documentation. Online documentation. Accessed: 2025-08-11. URL: https://docs.mistral.ai.

### References II



Mistral Al team (2024). Ministral-8B-Instruct-2410. Hugging Face Model Card.

Dense Transformer, 8B parameters, 128k context window, released under Mistral Research License, URL:

https://huggingface.co/mistralai/Ministral-8B-Instruct-2410.