

Team 22: Smart Cricket Bat

Team members: Pablo Barron

Gavin Dahl

Jiakai Hu

Nolapat Pipitvitayakul

TA: Fardeen Hasib Mozumder

Sponsor: Pranav Dhulipala

Project description

- Problem: "Cricket practice equipment lacks effectiveness without the assistance and guidance of a coach"
- Solution proposal: "Create a device that will mount on the cricket bat and, through a user friendly app, gives real time feedback on the user's cricket swing i.e. efficiency and swing angle. Must be easy to use and set up"

Diagram of subsystems and interface

Subsystem Overview

- Android App: Will handle user interaction and communication between the MCU and the ML algorithm.
 The app receives data from the MCU via a bluetooth connection. The app will then send received data to ML algorithm to be processed
- Power: Contains the boost-converter, on-board lithium battery power supply, and recharging station
- ML Algorithm: Develop the ML algorithm for finding the specific characteristics of users swing
- Control: A sensing unit that will communicate the IMU values from the swing to the user app through an MCU with bluetooth capabilities

Major Changes For 404

- Switching from Low-Energy Bluetooth 4.0 to Standard Bluetooth 3.0
- App language changed from Java to Kotlin due to lack of updated reference/source videos.

Project Timeline

Control System

Gavin Dahl

Accomplishments since 403 1 hr of effort	Ongoing progress/problems and plans until the next presentation			
Confirmed MCU and IMU communication is still working as intended	 Integration with power system and finalization of combined PCB design Integration between MCU and App through new bluetooth module 			

Control System

Gavin Dahl

- Microcontroller: ATmega328P
- Bluetooth Module: HC-05
- Inertial Measurement Unit: MPU-6050

Android App

- Accomplishments since 403: 8 Hrs
 - Have established a stable bluetooth connection to received data from MCU
- Ongoing Progress:
 - Fully integrate app with Control Subsystem
 - Make app "prettier"
 - ML and app integration

Android App

Power System

Accomplishments since 403 1 hr of effort	Ongoing progress/problems and plans until the next presentation				
Confirmed boost converter circuit on perfboard is still working	 Design PCB for boost converter circuit Integration with control system and finalization of combined PCB design 				

Power System

- 5V DC-DC Boost Converter Circuit
- 3.7V 150mAh LiPo Battery
- LiPo Battery Charger

Machine Learning

Achieved in 403:

Subsystem completed, get around 13% accuracy

Ongoing process:

- Data gathering to increase accuracy
- ML integration with Android App

Machine Learning

- Chunking over time period
- PSD and FFT and each period
- Take peaks
- Separate data70% for training30% for testing
- recognize each hit to each area

Machine Learning

Execution plan

	9/2/2022	9/9/2022	9/16/2022	9/23/2022	9/30/2022	10/7/2022	10/14/2022	10/21/2022	10/28/2022	11/4/2022	11/11/2022	11/18/2022	11/25/2022	12/2/2022
Status Update 1														
Control System PCB														
Control System and App Communication														
Power System PCB Design														
App/Control System Itegration via Bluetooth				Î										
Status Update 2														
PCB Fabrication and Assembly														
Make App "prettier" by using images														
ML and App Intergration														
ML Data Collection														
Data Training with New Data							i i							
Status Update 3								2						
PCB Testing and Validation	8													
Sensing Unit Housing Design														
Status Update 4														
Validate ML with Real Time Swings					0		<u>, </u>							
Sensing Unit Housing Manufacturing														
Sensing Unit Handle Mount Manufacturing														
Status Update 5														
Complete System Integration														
System Validation														
Final Design Presentation														
Final Demo														
Final Report														

Validation plan

Paragraph	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
3.2.1.2	Sending Data via Android device	The app should be able to send and receive data	Upload the app to a simulated android phone and test by outputting data to a localized device to test data sending	UNTESTED	Pablo Barron
3.2.1.2	ML Algorithm Precision	The ML algorithm provides precise result of output data within small error range	g Give a set of test input and see if algorithm returns the hit positions precisely.	UNTESTED	Jiakai Hu
3.2.1.3	Communication Range	Communication between the sensing unit and app stays active for a distance of up to 100ft.		IN PROGRESS	Gavin Dahl Pablo Barron
3.2.1.4	Wireless Connection Stablilty	Connection between sensing unit and smartphone app does not drop.	Sensing unit connected to smartphone app via bluetooth, set to default mode, and left to run for 1 hour. Connection is monitored via smart phone app.	IN PROGRESS	Gavin Dahl Pablo Barron
3.2.1.4	Full Range of Motion	Sensing unit can measure the angle of the bat at a full 360°.		TESTED: Sensing unit tracks accurate degree of turn for all 3 axes	Gavin Dahl
3.2.1.5	Easy to Use GUI	The app is easily naviagble to allow any person, regardless of technical skills, to use our device		TESTED: App is able to run on physical device and does not crash	Pablo Barron
3.2.1.5	Operation Time	System operates continously on battery power for a minimum of 2 hours.	Sensing unit is turned on, set to defualt mode, and left to run for 2 hours. Power is monitored via a digital multimeter.	UNTESTED	Nolapat Pipitvitayakul
3.2.1.6	Detection Range	Sensing unit can detect vibrations from at least 38in away when mounted on a bat.		TESTED: Hits on the end of the bat are noticed by the IMU	Gavin Dahl
3.2.1.7	Detection Accuracy	Sensing unit is able to detect a collison between ball and bat on any area of the cricket bat.	Mount sensing unit on cricket bat, measure data from hits in a variety of areas	TESTED: Hitting any location (including edge cases) of the bat is noticed by the IMU	Gavin Dahl
3.2.1.8	Detection Sensitivity	Sensors are able to detect degree's of motion within 1deg of change and is able to give changes in speed to 1 decimal places.	IN PROGRESS	Gavin Dahl	
3.2.1.9	Ease of Use	System is easily attached to end of handle of the cricket bat, is easily connected to the app via bluetooth, and is easy to calibrated during first time start up calibrations. Whole process should take no more than 5 minutes. Use stopwatch to measure how long it takes te user to mount device, pair to phone, and do the calibration setup.		IN PROGRESS	Full Team
3.2.3.1.1	Input Voltage (MCU)	The input voltage for our Beetle BLE board shall be between 5V - 8V. Use multimeter to validate input voltage level.		TESTED: Boost Converter Output is 5V +- 0.1	Nolapat Pipitvitayakul
3.2.3.1.3	Battery Charging Voltage and Current	The sensing unit has a 3.7V 150mAh Lo-Pi batteries as its power supply. These can be charged through a microUSB cable that can supply 100mA of charge current with a 4.2V charge voltage. Use multimeter and osciloscope to validate voltage levels and charge current levels.		UNTESTED	Nolapat Pipitvitayakul
3.2.3.2.1	App Data Gathering via Bluetooth	The Android device should be able to recieve data from our MCU via bluetooth		TESTED: Connection Error with Bluetooth Socket	Pablo Barron
3.2.4.1	Thermal Resistance	The system should be able to operate in environments with tempatures ranging from 0°C to 85°C.	Use heating mechanism to raise tempature to 85°C and test systems functionalitly. Place system in cooling mechanism to lower tempature to 0°C and test systems.	IN PROGRESS	Gavin Dahl
3.2.4.2	Shock Tolerance	The IMU should be able to handle g shocks up to a max of 10,000g.	IN PROGRESS	Gavin Dahl	

Parts Ordered

Part Description	Order Status
3 x Bluno Ble Microcontroller	Order Placed
3 x HC-05 Bluetooth Module	Awaiting Order Placement
3 x gy-521 IMU	Awaiting Order Placement

Questions?