Wireline Transceiver Circuits

Dr. Mohamed Salah Mobarak
Email: mohamedmobarak@eng.cu.edu.eg
Department of Electronics and Electrical
Communications Engineering
Cairo University

VCO Phase Noise Summary

- To reduce VCO phase noise
 - ➤ Improve quality factor and reduce loss
 - ➤ Improve symmetry
 - Select topology that has current injected at voltage peaks
 - ➤ Increase power consumption
- ➤ Ring oscillator is used in application where area is most critical and phase noise is not very stringent

PLL Phase Noise Contributions

- Reference oscillator noise, and PFD/dividers has low pass response, while VCO has high pass response
- Large division ratio causes high noise
 - > Use fractional dividers to avoid large N

Frequency Dividers

- Frequency divider takes the form of a counter
- VCO frequency is usually very high
- Divider power consumption is proportional to its frequency
 - Power consumption of single CMOS inverter $P = fCV_{DD}^2$

Frequency Dividers

• Divide by 2 circuit

Counter Types

- Counters can be asyncrhonous or synchronous
- Asynchrounous counters have
 - Less loading on the clock
 - Lower power consumption
- Asynchronous counters suffer from higher noise

Counter Types

• Synchronous counters have less noise but more power consumption

Program Counter

• Divide by 7 counter

Program Counter

• Programmable counter can be done using count up or count down counters

Program Counter

- Note that output pulse of divider does not have 50% duty cycle
 - Works fine with PFD

Pulse Swallow Counter

- Pulse swallow counter is used to lower power consumption of synchronous divider
- Counter consists of
 - Dual modulus prescaler which divides by N+1 or N according to its logic input
 - Pulse swallow counter which divides the input frequency by S
 - Program counter which divide the input by P

Pulse Swallow Counter

- Prescaler divides the input by N+1 then gives S counter one pulse
- After the S counter receives S pulses it changes the modulus of prescaler to divide by N and holds its state
 - The main input require to receive (N+1)×S pulses
- The P counter so far received S pulses and requires (P-S) pulses to return to its starting state
 - The main input require to receive N×(P-S) pulses
- The total number of pulses needed is (N+1)S+N(P-S)=PN+S
- Note that P must be greater than S
 (P>S)

Swallow Counter

- Asynchronous logic
- After reaching the desired division ratio the counter holds its state
- After receiving reset pulse counter goes back to active mode

Dual Modulus Prescaler

- Divide by 3
- Suppose that \overline{Q}_2Q_1 initially is 10
- $\overline{Q}_2Q_1=11,01,10$ and then repeats

Dual Modulus Prescaler

- If MC=0 circuit is a divide by 3
- If MC=1 circuit is a divide by 2 (feedback from Q₂ to D₂).

- Divide by 7 can be obtained by cascading divide by 2/3 and divide by 3
- If divide by 3 is replaced by divide by 2 then we obtain divide by 5 \overline{Q}_{2} \overline{Q}_{3}

MC

- If MC2=0, then total division by 7. If MC2=1. so division by 5
- If both MC1, MC2=1 then divide by 4

 ➤ Need to force MC1=1
- If MC1=1, MC2=0 then divide by 6

- Saves layout time
- Output is sampled at input clock speed
 - Low jitter on output
- Tout= $2^{n}T_{in}+2^{n-1}p_{n-1}T_{in}+\dots+2T_{in}p_{1}+T_{in}p_{0}$
- Slow response if division ratio change, might be challenge for fractional PLL

Modified architecture to extend division ratio

• C. S. Vaucher, I. Ferencic, M. Locher, S. Sedvallson, U. Voegeli and Z. Wang, "A family of low-power truly modular programmable dividers in standard 0.35-/spl mu/m CMOS technology," in IEEE Journal of Solid-State Circuits, vol. 35, no. 7, pp. 1039-1045, July 2000

Effect of Frequency Division on Phase Noise

- Phase noise also gets divided by division ratio
- Assume timing jitter is the same, if frequency is lower the relative error is less
 - \bullet $\phi_n = 2\pi f_0 t_n$

Crystal Oscillator

- PLL reference signal should be
 - Very accurate (0.01%-0.001%)
 - Has very low noise
- Crystals are used to achieve both requirement

E. A. Vittoz, M. G. R. Degrauwe and S. Bitz, "High-performance crystal oscillator circuits: theory and application," in IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 774-783, June 1988

Crystal Oscillator

- Crystal are made of piezoelectric material
 - Piezoelectric Material converts electric signals to mechanical vibrations
 - Mechanical resonance frequency is set by physical dimensions
 - Quartz is the most commonly used material
 - There are many different ways to cut crystal, most common is AT cut

Crystal Model

- Crystals can be modeled as RLC circuit
- Has very high quality (10⁴ to 10⁶)
- For example a 10MHz crystal
 - $-R=100\Omega$, L=159mH, C=1.59fF, Q=10⁵

Basic Three Point Oscillator

- Ground can be at source or drain of gate
- If ground is chosen to be at source node, topology is called Pierce oscillator
- Pierce oscillator requires two external pins on chip while Colpitts/Clapp oscillator require only one external pin

Small Signal Model of Crystal Oscillator

Ignoring the affect of \mathbb{Z}_3

- $V_t = I_t(Z_1 + Z_2 + gmZ_1Z_2)$
- $Z_{in} = \frac{V_t}{I_t} = Z_1 + Z_2 + g_m Z_1 Z_2$
- If Z_1 and Z_2 are capacitors then

•
$$Z_{in} = \frac{V_t}{I_t} = \frac{1}{j\omega C_1} + \frac{1}{j\omega C_2} - \frac{g_m}{\omega^2 C_1 C_2}$$

 To form oscillator inductance is needed between drain and gate

Crystal Impedance

•
$$Z_m = R + j\omega L_m - \frac{j}{\omega c_m} = R + \frac{j}{\omega_m c_m} \left(\frac{\omega}{\omega_m} - \frac{\omega_m}{\omega} \right)$$

- Define pulling factor $p = \frac{\omega \omega_m}{\omega_m}$, usually p<<1
- $Z_m \approx R + \frac{j2p}{\omega C_m}$
- Oscillation condition $Z_{total} = 0$

•
$$R + \frac{j2p}{\omega c_m} + \frac{1}{j\omega c_1} + \frac{1}{j\omega c_2} - \frac{g_m}{\omega^2 c_1 c_2} = 0$$

• If $C_1 = C_2 = 1$ PF, $C_m = 1$ fF, then p = 0.001

Crystal Oscillator Circuit

- Start up Rm is higher that steady state Rm
- Current at startup need to be higher than current at steady state
- Automatic gain control can be also used
- What the relation ship between V_G and V_D ?
- Where is the output?

Effect of Z3

•
$$Z_{in} = \frac{Z_1 Z_3 + Z_2 Z_3 + g_m Z_1 Z_2 Z_3}{Z_1 + Z_2 + Z_3 + g_m Z_1 Z_2}$$

• If Z_1 , Z_2 and Z_3 are capacitors then

• Re(
$$Z_{in}$$
)= $\frac{-g_m C_1 C_2}{(g_m C_3)^2 + \omega^2 (C_1 C_2 + C_2 C_3 + C_1 C_3)^2}$

• Re(
$$Z_{in}$$
)= $\frac{-g_m C_1 C_2}{(g_m C_3)^2 + \omega^2 (C_1 C_2 + C_2 C_3 + C_1 C_3)^2}$
• Im(Z_{in})= $\frac{g_m^2 C_3 + \omega^2 (C_1 + C_2)(C_1 C_2 + C_2 C_3 + C_1 C_3)}{\omega [(g_m C_3)^2 + \omega^2 (C_1 C_2 + C_2 C_3 + C_1 C_3)^2]}$

Effect of Z3

• Re(
$$Z_{in}$$
)= $\frac{-g_m C_1 C_2}{(g_m C_3)^2 + \omega^2 (C_1 C_2 + C_2 C_3 + C_1 C_3)^2}$

- Max –ve impedance is obtained when
- $g_m = g_{mopt} = \omega \left(C_1 + C_2 + \frac{C_1 C_2}{C_3} \right)$
 - Max –ve impedance $\operatorname{Re}(Z_{in}) = \frac{-1}{2\omega C_3 \left(1 + \frac{C_1 + C_2}{C_1 C_2} C_3\right)}$

Which Topology is Better?

• Where should we put ground?