Serie numeriche 15

Sia $\{a_n\}$ una successione $S \to \mathbb{R}$ una successione $S \to \mathbb{R}$. Vogliamo definire $\sum_{n \in S} a_n$, la somma di tutti i termini della successione.

Esempio 15.0.1. Dato $a_n = \frac{1}{2^n}$, con $S = \{n \ge 1\}$. Voglio definire $a_1 + a_2 + a_3 + ... + a_n$. Questo sarà uguale a $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + ... + \frac{1}{2^n}$.

Notiamo che aggiungendo termini sembra che la somma si avvicini sempre di pi a 1. In effetti si ha che $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8}$

 $\frac{1}{16}+\ldots+\frac{1}{2^n}=1-\frac{1}{2^n}.$ Prendendo il limite per $n\to+\infty$ sembra ragionevole che $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^n} = 1.$

Definizione 15.0.1. Dato $\{a_n\}: \mathbb{N} \to \mathbb{R}$, definiamo $s_n = \sum_{j=0}^n a_j = a_0 + a_i + ... + a_n$ (somma parziale n-esima), se $\{s_n\}_{n\in\mathbb{N}}$ è una nuova successione. Definiamo $\sum_n a_n$ (questa è la serie associata alla successione $\{a_n\}$) come $s = \lim_{n \to +\infty} s_n$, se questo esiste.

- Se il limite non esiste, si dice che la serie è indeterminata.
- Altrimenti, se $s \in \mathbb{R}$, si dice che la serie è convergente.
- Mentre se $s = +\infty$ si dice che la serie diverge positivamente.
- Mentre se $s = -\infty$ si dice che la serie diverge negativamente.

Esempio 15.0.2. Vediamo alcuni esempi di serie.

- $a_n = 0 \ \forall \ n \in \mathbb{N}, \ s_n = a_0 + a_1 + \dots + a_n = 0 + \dots + 0 = 0 \ e \ s = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} 0 = 0$
- $a_n = 1 \,\forall n \in \mathbb{N}, \, s_n = a_0 + a_1 + \dots + a_n = 1 + \dots + 1 = n + 1 \text{ e } s = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} (n+1) = +\infty.$
- $a_n = n$, $s_n = 0 + 1 + 2 + ... + n = \frac{n(n+1)}{2}$ e quindi $\sum_{n \in \mathbb{N}} a_n = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{n^2 + n}{2} = +\infty$.

Serie geometrica 15.1

Prendiamo un $\alpha \in \mathbb{R}$, $a_n = \alpha^n$ (l'esempio di sopra è $\alpha = \frac{1}{2}$). Proviamo ora a calcolare $\sum_{n \in \mathbb{N}} a_n = \sum_{n \in \mathbb{N}} \alpha^n$.

Per farlo dobbiamo calcolare le serie parziali $s_n = \sum_{j=0}^n a_j = 1 + \alpha + \alpha^2 + \dots + \alpha^n = \frac{\alpha^{n+1}-1}{\alpha-1}$.

Questa può essere dimostrata per induzione oppure usando la seguente uguaglianza: $x^{n+1} - y^{n+1} =$ $(x-y)(x^n+x^{n-1}y+x^{n-1}y^2+\ldots+xy^{n-1}+y^n).$ Facciamo $\lim_{n\to+\infty}s_n=\lim_{n\to+\infty}\frac{a^{n+1}-1}{\alpha-1}$ e questo può fare:

- Se $|\alpha| < 1$, abbiamo $\alpha^{n+1} \to 0$, quindi $\sum_{n \in \mathbb{N}} \alpha^n = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{a^{n+1}-1}{\alpha-1} = \frac{-1}{\alpha-1} = \frac{1}{1-\alpha}$. Quindi converge.
- Se $|\alpha| > 1$, allora $\alpha^{n+1} \to +\infty$, quindi $\sum_{n \in \mathbb{N}} \alpha^n = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{a^{n+1}-1}{\alpha-1} = +\infty$, quindi diverge positivamente.
- Se $\alpha=1$ allora $a_n=\alpha^n=1^n=1 \forall n\in\mathbb{N},$ quindi $\sum_{n\in\mathbb{N}}\alpha^n=\sum_{n\in\mathbb{N}}1=+\infty.$
- Se $\alpha = 0$, $a_n = \alpha^n = 0 \,\forall \, n \geq 1$, quindi $\sum_{n \in \mathbb{N}} \alpha^n = \sum_{n \in \mathbb{N}} 0 = 0$ quindi converge.
- Se $\alpha < -1$, α^{n+1} non ha limite e questo perché se n è pari (quindi n+1 è dispari) $\alpha^{n+1} < 0$ tende a $-\infty$ (perché $|\alpha| > 1$). Se n è dispari (quindi n+1 è pari) abbiamo che $\alpha^{n+1} > 0$ e tende a $+\infty$. Abbiamo quindi due sottosuccessioni $d_{2n} \to -\infty$ e $d_{2n+1} \to -\infty$ e segue per i teoremi precedentemente visti che

 $b_n=\alpha^{n+1}$ non ha limite. Quindi anche $s_n=\frac{a^{n+1}-1}{\alpha-1}$ non ha limite. $s_{2n}=\frac{b_{2n}-1}{\alpha-1}\to\frac{-\infty}{\alpha-1}=+\infty,\ s_{2n+1}=\frac{b_{2n+1}-1}{\alpha-1}\to\frac{+\infty}{\alpha-1}=-\infty.$ Dunque s_n non ha limite e $\sum_{n\in\mathbb{N}}\alpha^n$ è indeterminata se $\alpha<-1$.

•
$$\alpha = -1$$
, $\alpha^n = (-1)^n = \begin{cases} 1 & \text{n pari} \\ -1 & \text{n dispari} \end{cases}$
 $s_0 = a_0 = (-1)^0 = 1$, $s_1 = a_0 + a_1 = 1 + (-1)^1 = 0$, $s_2 = a_0 + a_1 + a_2 = 1 + (-1)^1 + 1 = 1$, $s_3 = a_0 + a_1 + a_2 + a_3 = 1 + (-1) + 1 + (-1) = 0 \dots$

$$s_n = \begin{cases} 1 & \text{n pari} \\ 0 & \text{n dispari} \end{cases}$$
 non ha limite, anche in questo caso $\sum_{n \in \mathbb{N}} (-1)^n$ è indeterminata.

Riassumendo questi esempio possiamo dire che $\sum_{n=0}^{+\infty} \alpha^n$:
• Se $|\alpha| < 1$ allora fa $\frac{1}{1-\alpha}$.

- Se $\alpha \geq 1$ allora fa $+\infty$.
- Se $\alpha < 1$ allora è indeterminata.

Ora chiediamoci cosa fa $\sum_{n=k}^{+\infty} \alpha^n = \alpha^k + \alpha^{k+1} + \alpha^{k+2} + \dots$ (per $|\alpha| < 1$ con $\alpha \neq 0$) $= \alpha^k (1 + \alpha + \alpha^2 + \dots) = \frac{\alpha^k}{1-\alpha}$. Ad esempio se $\alpha = \frac{1}{2}$ e k = 1, quindi guardo $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \frac{\alpha^k}{1-\alpha} = \frac{\alpha^k}{1-\alpha}$ $\frac{(\frac{1}{2})^1}{1-\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1$ (come ci asoettavamo).

Invece $\sum_{n=0}^{+\infty} (\frac{1}{2})^4 = 1 + \frac{1}{2} + \frac{1}{4} + \dots = 1 + 1 = 2$ (= $\frac{1}{1-\alpha}$ in questo caso $\alpha = \frac{1}{2}$ quindi = $\frac{1}{1-\frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2$).

Esempio 15.1.1. Prendiamo $\alpha = -\frac{1}{3}$, e con k = 0, quindi ho $\sum_{n=0}^{+\infty} (-\frac{1}{3})^n = \frac{1}{1+\frac{1}{3}} = \frac{3}{4}$.

Osservazione 15.1.1. Se $-1 < \alpha < 0$, la somma $\sum_{n=0}^{+\infty} \alpha^n = \frac{1}{1-\alpha}$. Vediamo che $0 < -\alpha < 1 \Longrightarrow 1 < \infty$ $1 - \alpha < 2$ quindi la somma è compresa tra $\frac{1}{2}$ e 1.

Quindi $\sum_{n=0}^{+\infty} \alpha^n = 1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \dots$, i vari elementi sono tutti $\alpha > 0, \alpha^2 > 0, \alpha^3 > 0\alpha^4 > 0$.

Esempio 15.1.2. Un caso per calcolare il valore preciso di una serie è quando si può usare gli sviluppi di taylor. Vediamo per esempio $\sum_{n} \frac{1}{n!}$ che converge ed è uguale a e.

Partiamo da $e^x = \sum_{j=0}^n \frac{x^j}{j!} + R_n(x)$ sviluppo di taylor di e^x con io resto di lagrange che in generale è

 $R_n = \frac{f^{n+1}(z)}{(n+1)!} (x - x_0)^{n+1} \text{ con z compresa tra } x \text{ e } x_0.$ Nel nostro caso $R_n(x) = \frac{e^z}{(n+1)!} (x - 0) = \frac{e^z}{(n+1)!} \cdot x^n \text{ con z compreso tra } 0 \text{ e x. Ora specifichiamo } x = 1,$ troviamo $e^1 = \sum_{j^0}^n \frac{1}{j!} + R_n(1) = \frac{e^z}{(n+1)!} \cdot 1$. (Ricordiamo che $\sum_{j^0}^n = s_n$ per $\sum_n \frac{1}{n!}$). Quindi ricavo che $|e - s_n| = \frac{e^z}{(n+1)!}$ (la z dipende da n! ma è sempre 0 < z < 1) quindi posso dire che

 $\frac{e^z}{(n+1)!} < \frac{e}{(n+1)!}$ Prendo il limite per $n \to +\infty$, visto che $\frac{e}{(n+1)!} \to 0$ e quindi concludo che $s_n \to e$. Quindi concludo che $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$.

15.2 Condizione necessaria per l'esistenza di una serie

Teorema 15.2.1 (Condizione necessaria di una serie). Se a_n è una successione qualsiasi, e $\sum_n a_n$ converge, allora concludo che $\lim_{n\to+\infty} a_n = 0$.

Dimotrazione 15.2.1. $s_{n+1} = a_0 + a_1 + a_2 + ... + a_n + a_{n+1} = s_n + a_{n+1}$. Quindi se $s_{n+1} - s_n = a_{n+1}$. Se suppongo che $\sum_n a_n = l \in \mathbb{R}$ allora $s_{n+1} - s_n \to (l-l) = 0$, ma differenza $s_{n+1} - s_n = a_n$ quindi

La conseguenza pratica di questo teorema è che se ho una successione $\{a_n\}$ e controllo che $\lim_{n \to \infty} a_n$ non è 0 (quindi può non esistere oppure essere $\pm \infty$ o essere un numero $\neq 0$) allora sicuramente $\sum_n a_n$ non converge.

Esempio 15.2.1. Alcuni esempio in cui è utile usare questo teorema.

- $a_n = 1 \ \forall \ n \in \mathbb{N}$. $\lim_{n \in \mathbb{N}} a_n = \lim_{n \to +\infty} 1 = 1$, quindi $\sum_{n \in \mathbb{N}}$ non converge.
- $a_n = n$, $\lim_{n \to +\infty} a_n = +\infty \Longrightarrow \sum_{n \in \mathbb{N}} n$ non converge.

Attenzione che se $\lim_{n\to+\infty} a_n = 0$, non è detto che $\sum_n a_n$ converga.

15.3 Valore della somma di sue serie

Teorema 15.3.1. se a_n e b_n sono due successioni e $\sum_n a_n$ e $\sum_n b_n$ hanno senso (cioè non sono indeterminate) allora anche $\sum_n (a_n + b_n)$ ha senso e vale $\sum_n (a_n + b_n) = \sum_n a_n + \sum_n b_n$ questo supponendo che la somma non sia una forma indeterminata.

Esempio 15.3.1. Alcuni esempi di utilizzo di questo teorema.

- $a_n = (\frac{1}{2})^n$, $b_n = (\frac{1}{3})^n$. Abbiamo $\sum_{n=0}^{+\infty} a_n = \frac{1}{1-\frac{1}{2}} = 2$, $\sum_{n=0}^{+\infty} b_n = \frac{1}{1-\frac{1}{3}} = \frac{3}{2}$. Quindi $\sum_{n=0}^{+\infty} (a_n + b_n) = \sum_{n=0}^{+\infty} ((\frac{1}{2})^n + (\frac{1}{3})^n) = 2 + \frac{3}{2} = \frac{7}{2}$.
- $a_n = 1$, $b_n = -1$, ho $\sum_n a_n = +\infty$, $\sum_n b_n = -\infty$ quindi $\sum_n (a_n + b_n)$ non si può sapere tramite il teorema perché non si applica. Però $a_n + b_n = 1 1 = 0$, quindi $\sum_n (a_n + b_n) = 0$.
- $a_n = n^2$, $b_n = -n$, ho quindi $\sum_n a_n = +\infty$, $\sum_n b_n = -\infty$. Questa volta $a_n + b_n = n^2 n \to +\infty$ (perché $n^2 n = n(n-1)$) e segue dalla condizione necessaria che $\sum_n (a_n + b_n)$ non converge (ma diverge positivamente, visto che $a_n + b_n \to +\infty$).

Osservazione 15.3.1. Non c'è un teorema analogo riguardo a $\sum_n (a_n \cdot b_n)$. In particolare non è vero che $\sum_n (a_n \cdot b_n) = (\sum_n a_n) \cdot (\sum_n b_n)$.

Esempio 15.3.2. Possiamo vedere del perché di questa osservazione prendendo $a_n = (\frac{1}{2})^n$, $b_n = (\frac{1}{3})^n$. $\sum_n a_n = 2$, $\sum_n b_n = \frac{3}{2}$. $a_n \cdot b_n = (\frac{1}{6})^2$ e $\sum_n a_n \cdot b_n = \sum_n (\frac{1}{6})^n = \frac{1}{1-\frac{1}{6}} = \frac{6}{5}$ e $\frac{6}{5} \neq 2 \cdot \frac{3}{2}$.

Può anche succedere che $\sum_n a_n$ e $\sum_n b_n$ convergano ma $\sum_n a_n \cdot b_n$ non converge.

15.4 Serie definitivamente a termini positivi

Teorema 15.4.1. Se ho $a_n \ge 0$ definitivamente ¹⁵ allora $\sum_n a_n$ converge oppure diverge positivamente (non pu essere indeterminata o andare a $-\infty$).

Dimotrazione 15.4.1. Come prima abbiamo visto che $s_{n+1} = s_n + a_{n+1}$. Se $a_n \ge 0$ definitivamente, ho che $s_{n+1} \ge s_n$ definitivamente. Quindi $\{s_n\}$ è definitivamente (debolmente) crescente, quindi ammette limite, che può essere un numero reale, oppure $+\infty$ (non $-\infty$ perchè ho una successione che sta crescendo).

Osservazione 15.4.1. Se $a_n \leq 0$ definitivamente, analogamente si può dire che $\sum_n a_n$ converge oppure diverge negativamente.

15.5 Criterio del confronto

Teorema 15.5.1 (Criterio del confronto). Se $o \le a_n \le b_n$ definitivamente. Allora:

- 1. Se $\sum_n b_n$ converge $\Longrightarrow \sum_n a_n$ converge.
- 2. Se $\sum_n a_n$ diverge $\Longrightarrow \sum_n b_n$ diverge.

L'idea è che se $0 \le a_n \le b_n \ \forall \in \mathbb{N}$, allora $0 \le \sum_n a_n \le \sum_n b_n$

Esempio 15.5.1. Alcuni esempi su questo teorema.

• Sapendo che $\sum_n 1 = +\infty$, posso concludere che $\sum_{n=0}^{+\infty} n = +\infty$ (perché $0 \le 1 \le n \forall n \ge 1$) e anche $\sum_{n=0}^{+\infty} n^2 = +\infty$ (perché $0 \le 1 \le n^2 \ \forall n \ge 1$)

 $^{^{14}\}mathrm{Le}$ forme indeterminate possibili sono $+\infty-\infty$ o $-\infty+\infty$

 $^{^{15}\}mathrm{Questo}$ vuol dire che da un certo punto in poi è sempre positiva

• Voglio sapere cosa fa $\sum_{n} \frac{\sin n^2}{2^2}$. $a_n = \frac{\sin n^2}{2^n} \le \frac{1}{2^n} = b_n$. So che $\sum_{n} b_n$ converge e sappiamo calcolare la somma, dunque per il teorema anche questa $\sum_{n} a_n$ converge.

• Cosa fa $\sum_n n!$. Abbiamo $n! \ge n \ \forall \ n \ge 1$, e sappiamo che $\sum_n n = +\infty$, quindi concludiamo che $\sum_n n! = +\infty$

15.6 Criterio del confronto asintotico

Teorema 15.6.1 (Criterio del confronto asintotico). Prendiamo $\{a_n\}, \{b_n\}$ successioni, tale che $a_n > 0$ e $b_n > 0$ definitivamente, e supponiamo che $\lim_{n \to +\infty} \frac{a_n}{b_n} = l \in \overline{\mathbb{R}}$. Allora si può dire che:

- 1. Se $l \in (0, +\infty)$, allora $\sum_n a_n$ e $\sum_n b_n$ hanno lo stesso comportamento (cioè entrambe convergono o entrambe divergono a $+\infty$).
- 2. Se l=0 e $\sum_n b_n$ converge allora $\sum_n a_n$ converge. ("infatti" $\frac{a_n}{b_n} \to 0 \Longrightarrow \frac{a_n}{b_n} < 1$ definitivamente $\Longrightarrow a_n < b_n$ definitivamente e da qui è chiaro che $se \sum_n b_n$ converge allora anche $\sum_n a_n$)
- 3. Se $l = +\infty$ e $\sum_n b_n$ diverge, allora $\sum_n a_n$ diverge. $\left(\frac{a_n}{b_n} \to +\infty \Longrightarrow \frac{a_n}{b_n} > 1$ definitivamente $\Longrightarrow a_n > b_n$ definitivamente)

Osservazione 15.6.1. Ad esempio nel punto (2), se $\sum_n b_n = +\infty$, non posso concludere niente riguardo a $\sum_a a_n$.

Esempio 15.6.1. $\sum_{n} \frac{1}{2^n - \log(n)}$. $a_n = \frac{1}{2^n - \log(n)}$, definitivamente > 0 perché $2^n > \log(n)$ definitivamente. L'idea qui è che per n grande, $\log(n)$ "conta molto meno di 2^n " quindi faccio confronto asintotico con $b_n = \frac{1}{2^n}$.

Abbiamo $\lim_{n\to+\infty} \frac{a_n}{b_n} = \lim_{n\to+\infty} \frac{\frac{1}{2^n-\log(n)}}{\frac{1}{2^n}} = \lim_{n\to+\infty} \frac{2^n}{2^n-\log(n)} = \lim_{n\to+\infty} \frac{1}{1-\frac{\log(n)}{2^n}} = 1$ questo è l. Quindi in questo caso $l \in (0,+\infty)$, quindi $\sum_n a_n$ ha lo stesso comportamento di $\sum_n b_n = \sum_n (\frac{1}{2})^n$ che converge. Quindi $\sum_n a_n$ converge.

15.7 Criterio della radice

Teorema 15.7.1 (Criterio della radice). Prendo una $\{a_n\}$ una successione tale che $a_n > 0$ definitivamente. Se $\exists \lim_{n \to +\infty} \sqrt[n]{a_n} = l \in \overline{\mathbb{R}}$.

- 1. Se $0 \le l \le 1$, allora $\sum_n a_n$ converge. $(\Longrightarrow \text{per la condizione necessaria } \lim_{n \to +\infty} a_n = 0)$.
- 2. Se l > 1, allora $\sum_{n} a_n$ diverge.

Dimotrazione 15.7.1. Dimostriamo i due casi del teorema.

- 1. Se l < 1, scelgo $\alpha \in \mathbb{R}$ tale che $l < \alpha < 1$, e visto che $\sqrt[n]{a_n} \to l$, definitivamente avrò $\sqrt[n]{a_n} < \alpha$ quindi $a_n < \alpha^n$ definitivamente. Per confronto, visto che $\sum_n \alpha^n$ converge, concludo che anche $\sum_n a_n$ converge.
- 2. Discorso simile anche per questo punto, quindi prendo $< \alpha < l$, e poi definitivamente $\alpha < \sqrt[n]{a_n}$ quindi $\alpha^n < a_n$ definitivamente, e ora però $\sum_n \alpha^n = +\infty$ perché $\alpha > 1$, quindi anche $\sum_n a_n$ diverge.

Osservazione 15.7.1. Come per le successioni quando l=1 no si può concludere niente.

Esempio 15.7.1. $\sum_n \frac{n}{3^n}$, $a_n = \frac{n}{3^n}$, e $\sqrt[n]{a_n} = \frac{\sqrt[n]{n}}{3} \to \frac{1}{3} = l$ quindi l < 1, e quindi la serie converge.

15.8 Criterio del rapporto

Teorema 15.8.1 (Criterio del rapporto). Prendo $\{a_n\}$ successione, $a_n > 0$ definitivamente. Se $\exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l \in \overline{\mathbb{R}}$.

- 1. Se $0 \le l < 1$, allora $\sum_{n} a_n$ converge.
- 2. Se l > 0, allora $\sum_{n} a_n$ diverge.

Dimotrazione 15.8.1. Sappiamo che se $\exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$, allora esiste anche $\lim_{n \to +\infty} \sqrt[n]{a_n}$, ed è uguale a l. Quindi la conclusione segue dal criterio della radice (appena visto).

Esempio 15.8.1. $\sum_n \frac{n^2}{n!}$, $a_n = \frac{n^2}{n!}$. Usiamo il criterio del rapporto. $\frac{a_{n+1}}{a_n} = \frac{(n+1)^2}{(n+1)!} \cdot \frac{n!}{n^2} = \frac{(n+1)^2}{(n+1)n!} \cdot \frac{n!}{n^2} = \frac{n+1}{n^2} \to 0 = l$. Quindi visto che l = 0, concludo che la serie converge.

Osservazione 15.8.1. Questi criteri per successioni definitivamente positive si applicano anche a successioni definitivamente negative. Infatti se $a_n < 0$ definitivamente allora $-a_n > 0$ definitivamente, quindi applico i criteri visti alla successioni $\{-a_n\}$ e poi $\sum_{j=0}^n a_j = -\sum_{j=0}^n (-a_j)$ dunque $\sum_{n=0}^{+\infty} a_n = -\sum_{n=0}^{+\infty} (-a_n)$ (se i limiti esistono).

15.9 Legami con gli integrali impropri

Una serie $\sum_n a_n$ si può scrivere come integrale improprio. Considero una $f:[0,+\infty)\to\mathbb{R}$ data da $f(x)=a_{[x]}$ ([x] parte intera di un x).

Si crea dunque una funzione a gradini. Si ha $\sum_{j=0}^{n} a_j = \int_0^{n+1} f(x) \ dx$. Quindi prendendo il limite per $n \to +\infty$, trovo $\sum_n a_n = \int_0^{+\infty} f(x) \ dx$ (se i limiti hanno senso).

Viceversa, partendo da $f:[0,+\infty)\to\mathbb{R}$, posso considerare la successione $a_n=f(n)$ e la serie $\sum_n a_n=\sum_n f(n)$ (in questo caso la serie $\sum_n a_n$ è la somma delle aree dei rettangoli blu). Questa volta $\sum_n a_n$ e $\int_0^{+\infty} f(x) dx$ non saranno proprio uguali.

Teorema 15.9.1 (Criterio dell'integrale). Fissiamo $\overline{n} \in \mathbb{N}$, e $f : [\overline{n}, +\infty) \to \mathbb{R}$ che sia debolmente crescente, continua, con $f(x) \geq 0 \ \forall x \in [\overline{n}, +\infty)$, e poniamo $a_n = f(n)$. Allora $\sum_n a_n$ e $\int_{\overline{n}}^{+\infty} f(x) \ dx$ hanno lo stesso comportamento, e $\sum_{n=\overline{n}+1}^{+\infty}$.

Questo teorema può essere usato per entrambi i versi.

Esempio 15.9.1. Vediamo alcuni esempi del criterio.

- $\sum_{n} \frac{1}{n^{\alpha}}$. Serie armonica generalizzata ($\alpha = 1 \longrightarrow \sum_{n} \frac{1}{n}$ serie armonica). Converge se $\alpha > 1$, e dunque se $\alpha \le 1$. Infatti se prendo $f(x) = \frac{1}{x^{\alpha}}$ è decrescente e continua. Quindi abbiamo che $\int_{1}^{+\infty} \frac{1}{x^{\alpha}}$:
 - Converge se $\alpha > 1$.
 - Diverge a $+\infty$ se $\alpha \leq 1$

Quindi applicando il criterio dell'integrale si conclude quello scritto sopra.

Osservazione 15.9.1. Se $\alpha \leq 0$, $\sum_{n} \frac{1}{x^{\alpha}}$ diverge perché non è soddisfatta nemmeno la condizione necessaria.

- Calcoliamo $\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha}(\log(n))^{\beta}}$. Usiamo il criterio dell'integrale con $f(x) = \frac{1}{x^{\alpha}(\log(x))^{\beta}}$. $\int_{2}^{+\infty} \frac{1}{x^{\alpha}(\log(x))^{\beta}}$ posiamo notare che:
 - Converge se $\alpha > 1, \beta \in \mathbb{R}$.
 - Diverge se $\alpha < 1, \beta \in \mathbb{R}$.
 - Converge se $\alpha = 1, \beta > 1$.
 - Diverge se $\alpha = 1, \beta \leq 1$.

(Questo come visto in precedenza). La serie si comporta allo stesso modo.

Esempio 15.9.2. Prendiamo $\sum_{n=1}^{+\infty} (e^{\frac{1}{n}} - 1)$. $a_n = e^{\frac{1}{n}} - 1 > 0$ (essendo maggiore di zero posso usare in seguito il confronto asintotico).

 $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} (e^{\frac{1}{n}}-1) = e^0-1 = 1-1 = 0$. Quindi la condizione necessaria è soddisfatta e la serie può convergere. Possiamo usare lo sviluppo di talyor con $e^t = 1+t+o(t)$ per $t\to 0$, quindi $e^{\frac{1}{n}} = 1 + \frac{1}{n} + \frac{1}{n}$ ($t=\frac{1}{n}$). In termini di "importante" sarà $\frac{1}{n}$. In questi casi pongo $b_n = \frac{1}{n}$ e uso il confronto asintotico:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{e^{\frac{1}{n}} - 1}{\frac{1}{n}} = \lim_{n \to +\infty} \frac{\frac{1}{n} + o(\frac{1}{n})}{\frac{1}{n}} = \lim_{n \to +\infty} (1 + o(1)) = 1.$$

Per confronto asintotico, concludo che $\sum_n a_n$ ha lo stesso comportamento di $\sum_n b_n = \sum_n \frac{1}{n}$ (che è la serie armonica) che sappiamo diverge. Quindi $\sum_n a_n$ diverge a $+\infty$.

15.10 Convergenza assoluta

Prendiamo $\{a_n\}$ un successione qualsiasi (quindi non supponiamo che sia ne definitivamente positivo ne def. negativo).

Definizione 15.10.1 (Convergenza assoluta). Diamo che $\sum_n a_n$ converge assolutamente se $\sum_n |a_n|$ converge.

Teorema 15.10.1 (Criterio dell'assoluta convergenza). Se la serie $\sum_n a_n$ converge assolutamente, allora converge, e $|\sum_n a_n| \leq \sum_n |a_n|$.

Dimotrazione 15.10.1. Dimostrazione che segue quella dell'analogo per gli integrali impropri. Vediamo innanzitutto che $a_n=a_n^+-a_n^-$, mentre $|a_n|=a_n^++a_n^-$ e $0\leq a_n^+\leq |a_n|,\ 0\leq a_n^-\leq |a_n|$ e se $\sum_n |a_n|$ converge, per confronto convergono anche $\sum_n a_n^+$ e $\sum_n a_n^-$. Quindi converge anche $\sum_n a_n=\sum_n a_n^+-\sum_n a_n^-$. Per la disuguaglianza triangolare se prendo $|\sum_{j=0}^n a_j|\leq \sum_{j=0}^n |a_j|$ e prendendo il limite per $n\to+\infty$ trovo $|\sum_n a_n|\leq \sum_n |a_n|$.

Esempio 15.10.1. Prendo $\sum_{n=1}^{+\infty} \frac{\sin n}{n^2}$. $a_n = \frac{\sin n}{n^2}$ è a segno variabile.

 $|a_n| = \left|\frac{\sin n}{n^2}\right| = \frac{|\sin n|}{n^2} < \frac{1}{n^2}$. Visto che $\sum_n \frac{1}{n^2}$ converge (serie armonica generalizzata con $\alpha = 2 > 1$) per confronto segue che $\sum_n \left|\frac{\sin n}{n^2}\right|$ converge, quindi per il criterio di assoluta convergenza, concludo che anche $\sum_n \frac{\sin n}{n^2}$ converge (notiamo che però non sappiamo a che numero converge sappiamo solo che converge).

Osservazione 15.10.1. Se $\sum_n |a_n|$ diverge, non si può dire niente riguardo a $\sum_n a_n$ (cioè la $\sum a_n$ potrebbe converge o divergere).

15.11 Criterio di Leibnitz

Definizione 15.11.1 (Serie a segno alterno). Una serie a segno alterno è una serie della forma $\sum_{n} (-1)^{n} \cdot a_{n}$, dove $\{a_{n}\}$ è una successione a segno costante.

Esempio 15.11.1. $\sum_n \frac{(-1)^n}{n^3}$ è a segno alterno. $\sum_n (-1)^n (-\frac{1}{n})$ è a segno alterno. $\sum_n (-1)^n \sin n$ non è a segno alterno.

Teorema 15.11.1 (Criterio di Leibnitz). Se ho $\{a_n\}$ definitivamente ≥ 0 e debolmente crescente e tale che $\lim_{n\to+\infty}a_n=0$, allora $\sum_n(-1)^na_n$ converge. E $\left|\sum_{j=0}^{+\infty}(-1)^ja_j-\sum_{j=0}^n(-1)^ja_j\right|\leq a_{n+1}$.

Esempio 15.11.2. Vediamo alcuni esempi di questo criterio.

• $\sum_n \frac{(-1)^n}{n}$ converge, perché $a_n = \frac{1}{n}$ è ≥ 0 e debolmente decrescente e $\lim_{n \to +\infty} \frac{1}{n} = 0$. Notare che la serie dei valori assoluti è $\sum_n |\frac{(-1)^n}{n}| = \sum_n \frac{1}{n} = +\infty$. Questo è un esempio in cui $\sum_n |b_n|$ diverge ma $\sum_n b_n$ converge.

• $\sum_n \frac{(-1)^{n+1}}{n}$ vediamo se si può applicare Laibnitz. $b_n = \frac{(-1)^{n+1}}{n} = -\frac{(-1)^n}{n}$ converge, quindi converge anche $\sum_n \frac{(-1)^{n+1}}{n} = -\sum_n \frac{(-1)^n}{n}$.

Esempio 15.11.3. Vediamo alcuni esempi particolari "di avvertimento".

- Può essere che $\sum_n a_n$ e $\sum_n b_n$ convergano, ma $\sum_n a_n b_n$ non converga. $a_n = \frac{(-1)^n}{n}, \ b_n = \frac{(-1)^n}{\log(n)}. \ \sum_n a_n$ converge. $\sum_n b_n = \sum_{n \geq 0} \frac{(-1)^n}{\log(n)}$ converge per Leibnitz. $a_n b_n = \frac{(-1)^n}{n} \cdot \frac{(-1)^n}{\log(n)} = (-1)^{2n} \cdot \frac{1}{n \log(n)} = \frac{1}{n \log(n)}$ e $\sum_n a_n b_n = \sum_n \frac{1}{n \log(n)}$ diverge (visto prima).
- Il confronto asintotico non funziona se il segno della successione non è definitivamente costante. $a_n = \frac{(-1)^n}{\sqrt{n}}, b_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n} = \frac{(-1)^n\sqrt{n}+1}{n}. \text{ Si ha } \lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{\frac{(-1)^n}{\sqrt{n}}}{\frac{(-1)^n\sqrt{n}+1}{n}} = \lim_{n \to +\infty} \frac{(-1)^n\sqrt{n}}{(-1)^n\sqrt{n}+1} = \lim_{n \to +\infty} \frac{1}{1+\frac{1}{(-1)^n\sqrt{n}}} = 1 \text{ (perché } \frac{1}{(-1)^n\sqrt{n}} \to 0).$ Quindi il confronto asintotico (se funzionasse) mi diverge che $\sum a_n$ e $\sum b_n$ hanno lo stesso comportamento. Ma $\sum_n a_n = \sum_n \frac{(-1)^n}{\sqrt{n}}$ converge per Leibnitz e $\sum_n b_n = \sum_n b_n = \sum_n \frac{(-1)^n}{\sqrt{n}} + \sum_n \frac{1}{n}$ ($\sum_n \frac{(-1)^n}{\sqrt{n}}$ converge e $\sum_n \frac{1}{n} = +\infty$) quindi $\sum_n b_n$ diverge.