

1 Ознакомительные шаги

- 1. Откроем в Micro-Cap файл adm3p.cir, в котором подготовлены схемы лестничных фильтров порядка n=3, реализующих входной адмиттанс. Ознакомимся со схемами фильтров нижних частот и результатами их преобразования в фильтры верхних частот, полюсовые и режекторные фильтры.
- 2. Далее ознакомимся с подготовленными графиками, открыв диалог Limits для режима AC. Запустим моделирование в режиме AC для обоих файлов. Убедимся, что топологически совершенно разные схемы в imp3p.cir и adm3p.cir демонстрируют тождественное поведение графиков.

2 Трехполюсные лестничные фильтры

1. Откроем модель adm3p.cir и реализуем лестничные фильтры третьего порядка с параметрами:

$$R_0 = 50, \quad f_0 = 1MHz, \quad Q = 10.$$

Для этого вычислим эталонные значения:

$$L_0 = \frac{R_0}{2\pi f_0}, \quad C_0 = \frac{1}{2\pi f_0 R_0}$$

и установим на схеме номиналы компонентов f_0, Q, R_0, L_0, C_0 (это уже было готово, поэтому переходим к следующему пункту).

- 2. Сравним частотный характеристики фильтров с теоретическими, удостоверимся в правильности расчетов. Также сменим интервал моделирования по частоте на $5 {
 m Meg}$, 0
- 3. Сравним частотные характеристики по напряжению и по мощности. Измерим уровни затухания по мощности на границах полос пропускания, там где затухание по напряжению составляет 0.7. Запишем получившиеся данные в таблицу:

	ФНЧ	ФВЧ	Полосовой	Режекторный
Затухание по мощности	0,5	0,5	0,5	0,5

Исследуем степень деградации характеристик фильтра нижних частот при варьировании сопротивления источника RSL и нагрузки RLL от 25 до 75 с шагом 25, также запишем это в таблицу:

	RLL		RSL	
	Напряжение	Мощность	Напряжение	Мощность
25	0,33	0,44	0,66	1,77
50	0,5	1	0,5	1
75	0,6	1,43	0,4	0,625

4. Изучим фазовые характеристики фильтров, измерим значения фазовых сдвигов на нулевой и бесконечной частотах:

ω	ФНЧ	ФВЧ	Полосовой	Режекторный
0	0	$-\pi/2$	$3\pi/2$	0
∞	$-3\pi/2$	-2π	$-3\pi/2$	0

5. Выведем логарифмическую частотную характеристику фильтра нижних частот в диапазоне 1Meg, 100k (логарифмическая шкала) и измерим по ней уровни затухания в децибелах на частотах 0, f_0 , $2f_0$, $10f_0$:

f	0	f_0	$2f_0-$	$10f_0$
$K(f_0)$	-6	-9	-24,2	-66

6. Выведем логарифмическую частотную характеристику полосового фильтра в диапазоне 1500k, 500k (линейная шкала) и измерим по ней уровень подавления на частоте f_0 :

$$K(f_0) = -6 dB.$$

Измерим одностороннюю ширину $\triangle f$ полосы пропускания по уровню -3dB и уровень затухания при расстройках на $2 \triangle f$, $10 \triangle f$ от частоты f_0 :

$$\triangle f = 49 k$$

$$K(f_0 - 2 \triangle f) = -19 dB$$
, $K(f_0 + 2 \triangle f) = -16 dB$

$$K(f_0 - 10 \triangle f) = -69,7 dB, \quad K(f_0 + 10 \triangle f) = -55 dB$$

7. По логарифмической частотной характеристике режекторного фильтра в диапазоне частот 1500, 500k измерим ширины полос по уровням -3dB, -43dB, -63dB:

$K(f_0 \pm \triangle f), dB$	-3	-43	-63
$\triangle f$	50k	10k	4,5k

3 Фильтры низших частот высших порядков

1. Откроем модель batt.cir, в которой реализованы фильтры Баттерворта нижних частот с параметрами $R_0 = 100, f_0 = 1MHz(L_0 = 15.916, C_0 = 1.592n)$ порядков от 3 до 7. Изучим их частотные и переходные характеристики. По логарифмическим графикам в диапазоне 10Meg, 100k измерим затухания на частотах $f_0, 2f_0$ и $10f_0$:

Фильтр Баттерворта	n=3	n=4	n=5	n=6	n=7
$K(f_0), dB$	-3.03	-3.04	-3.04	-3.04	-3.04
$K(2f_0), dB$	-18.15	-24.13	-30.13	-36.15	-42.18
$K(10f_0), dB$	-60.02	-80.03	-100.03	-120.03	-140.03

2. Повторим те же исследования для фильтров Чебышева с неравномерностями 0.5 dB (файл cheb0-5.cir) и 3 dB (файл cheb3-0.cir)

Фильтр Чебышева 0.5 dB	n=3	n=4	n=5	n=6	n=7
$K(2f_0), dB$	-19,2	-30,6	-42,1	-53,5	-64,9
$K(10f_0), dB$	-62,8	-88,9	-114,9	-140,9	-166,9
Фильтр Чебышева 3.0 dB	n=3	n=4	n=5	n=6	n=7
$K(2f_0), dB$	-28,3	-39,7	-51,2	-62,6	-74,1
$K(10f_0), dB$	-72,0	-98,0	-124,0	-150,0	-176

3. Вернемся к batt.cir и перенастроим фильтры на $R_0 = 50, f_0 = 10 MHz.$

4 Фильтры пятого порядка

- 1. Настроим фильтры на $Q=5, R_0=50, f_0=1MHz$ (полученные вычислениями значения: $L_0=7,96u, C_0=3,18n$)
- 2. Превратим все 4 фильтра в нормализованные фильтры Баттерворта, Чебышева с неравномерностями 0,5 и 3,0 dB с помощью коэффициентов, представленных в таблице ниже. Убедимся, что частотные характеристики получившихся фильтров соответствуют теории.

Иммитанс	Реализация импедансом	Реализация адмиттансом
q s	$\underline{\qquad}$ qL_0	$\frac{ qC_0 }{ $
$\frac{q}{s}$	$\frac{C_0}{q}$	$\frac{L_0}{q}$
$qQ\left(s+\frac{1}{s}\right)$	$\frac{qQL_0}{qQ}$	$qQC_0 \longrightarrow \frac{L_0}{qQ}$
$\frac{q}{Q\left(s+\frac{1}{s}\right)}$	$\frac{q}{Q}L_0$ $\frac{Q}{q}C_0$	$\frac{\sum_{q} Q}{q} L_0$ $\frac{q}{Q} C_0$

5 Семиполюсной фильтр

1. Открыв заготовку pb7p.cir реализуем семиполюсной фильтр Чебышева с неравномерностью 3 dB. для тракта усилителя промежуточной частоты приемника с параметрами $R_0=600,\ f_0=465kHz$ и двухсторонней полосой $\Delta f=24kHz,\ Q=\frac{f_0}{\Delta f}=19.375$. По логарифмической частотной характеристике измерим избирательность по соседнему каналу - уровень затухания при расстройках на $\pm 24kHz$ от f_0 :

+24kHz	-72.294 dB
-24kHz	-75.923 dB

Аналогично посчитаем разрешающую способность для фильтра Чебышева 0.5 dB:

+24kHz	-63.173 dB
-24kHz	-66.802 dB

И для фильтра Баттерворта:

+24kHz	-40.655 dB
-24kHz	-43.798 dB