Deep Reinforcement Learning

Yuchu Luo Computer Animation and Multimedia Analysis LAB Monday, 28 August 2017

Play Ataria Game

- Objective: Complete the game with the highest score
- State: Raw pixel inputs of the game state
- Action: Game controls e.g. Left,
 Right, Up, Down
- Reward: Score increase/decrease at each time step

Markov Decision Process

- A set of states $s \in S$
- A set of actions (per state) a ∈ A
- A model T(s,a,s')
- A reward function R(s,a,s')
- Looking for a policy $\pi^*(s)$ that maximizes cumulative discounted reward: $\sum \gamma^t r_t$

Policy Learning

Find optimal policy $\pi^*(s)$ a $\sim \pi^*(s)$

local information

Value Learning

Find optimal Q-Value Function Q*(s,a) a = arg max Q*(s,a') a'

global information

$$Q^*(s_t, a_t) = \max_{\pi} E \left[\sum_{i=t}^{T} \gamma^{i-t} r_i \right]$$

Maximum expected future rewards starting at state s_i , choosing action a_i , and then following an optimal policy π^*

Bellman Equation

$$Q^*(s,a) = E_{s'\sim\varepsilon} \left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a \right]$$

Intuition:

从最佳选择的路径末端截取一小部分,余下的路径仍然是最佳路径

Solving Optimal Q-Value

Value Iteration

$$Q_{k+1}(s,a) = E\left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \mid s,a\right] = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')]$$

Reinforcement Learning

Life is always hard — We don't know P(s,a,s') and R(s,a,s')

Partially Observed MDP (POMDP)

Episode: sequence of states and actions S₀,a₀,r₀,S₁,a₁,r₁,S₂,a₂,r₂,...,S_{T-1},a_{T-1},r_{T-1},S_T,r_T

observations (states), actions

obtain reward R

Learn to maximize the expected cumulative reward per episode

Model-Based or Model-Free?

Model-Free

Q-Learning

Policy Gradient

Policy-based

Value-based

Actor-Critic Algorithm

Recap: Approximate Q-Learning

Linear Value Functions

$$Q(s,a) = w_1 f_1 + w_2 f_2 + ... + w_n f_n(s,a)$$

Feature-Based Representations

- Distance to closest ghost
- Distance to closest dot
- Number of ghosts
- 1 / (dist to dot)2
- Is Pacman in a tunnel? (0/1)
- •

Update

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r+\gamma \max_{a'} Q(s',a'))$$

Historical experience

Learned from new (s,a,r,s') pair

$$difference = [r + \gamma \max_{a'} Q(s', a')] - Q(s, a)$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha \cdot difference$$

$$w_i \leftarrow w_i + \alpha \cdot difference \cdot f_i(s,a)$$

Now, we have deep learning

Deep Q-Learning

$$Q(s,a;\theta) \approx Q^*(s,a)$$

Make the function approximate be a deep neural network

Loss function:
$$L_i(\theta_i) = E_{s,a\sim\rho(\cdot)}[(y_i - Q(s,a;\theta_i))^2]$$

Where
$$y_i = E_{s'\sim\varepsilon}[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) \mid s, a]$$

Deep Q-Learning

Feedforward Pass

Cutest state s_t (84x84x4) stack of last 4 frames

Convolutional
Neural
Network

Fully Connected Layer

Output (4 Q-Values)

Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions (st, at, rt, st+1) as game (experience) episodes are played
- Train Q-network on random mini batches of transitions from the replay memory, instead of consecutive samples
- Each transition can also contribute to multiple weight updates => greater data efficiency

Experiments

Policy Gradients

Instead of learning exact value of every (state, action) pair, just riding the best policy from a collection of policies

REINFORCE algorithm

$$\nabla_{\theta} J(\theta) \approx \sum_{t \ge 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)$$

Intuition:

- If $r(\tau)$ is high, push up the probabilities of the actions seen
- If $r(\tau)$ is low, push down the probabilities of the actions seen

Actor-Critic

Probability

Example: Recurrent Attention Model (RAM)

Considered as a control problem

Summary

- Policy gradients: general but suffer from high variance so requires a lot of samples. Challenge: sample-efficiency
- Q-learning: does not always work but when it works, usually more sample-efficient. Challenge: exploration
- Guarantees:
 - Policy Gradients: Converges to a local minima of J(3), often good enough!
 - Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function approximator