MT2: Extraction Practice Quiz 1

2: Cross-current extraction calculation [Use MATLAB/python to solve this problem]

Chapter 8	Liquid-I	Liquid Extra	action	_	- 1. 30 S. S.		-	Name of the last o	1
APLE 8.3 (Con containing as the solvent (98% by B. Determinal affinate and ene: B; TM	Cross-cur ng 35 ma vent. A to benzene, ne the fra I the ext	rent extra extransis trime three-stage 2% TMA	ethyl ami	irrent extused in s	raction sc uccessive	stages a	re 815 k deal. Th	in The among tg, 950 kg e compos	ounts g and sitions
phase:	x_B	0.004 0.05	0.006 0.10	0.01 0.15	0.02 0.20	0.03 0.35	0.036	0.07 0.35	0.13 0.40
ch phase:	у _В Ус	0.95 0.05	0.90 0.10	0.84 0.15	0.78 0.20	9.71 0.25	0.63 0.30	0.50 0.35	0.26
ı:	x _C y _C	0.04 0.035	0.083 0.068	0.13 0.09	0.215 0.145	0.395 0.31			

The ternary equilibrium curve on the right-angled triangular co-ordinate system is plotted in the following MATLAB code. Locate feed point and solvent point. xbf = 0; xcf = 0.35; ybs = 0.98; ycs = 0.02; Solvent amount for stage 1: 815 kgs.

- a. Fit two polynomials [in the form, $y = ax^n + bx^{n-1} + \dots + c$], one with the raffinate phase (order n= 3) and one with the extract phase data (order 2) using polyfit function. [5]
- b. Plot the actual points in blue circles for the raffinate phase (only raffinate phase or water rich phase) and predicted points in red circles [using the polynomial that you have fitted for the raffinate phase]. Plot the polynomial using points from 0.003 to 0.13 in an interval of 0.001. [5]
- c. The slope of 5 tie lines are given as follows: [-0.0052 -0.0162 -0.0443 -0.0849 -0.1758]. You need not to draw the existing tie lines.
 - Suppose for the first stage the mixture point M1 is given by $x_{c, M}$ =0.19, $x_{B, M}$ =0.45. Using these slopes calculate the slope through the point Mx=0.45, My=0.19. What is the equation for this tie line? Based on this find the composition of raffinate and extract from stage 1 using vpasolve/fsolve function. And show the tie line through M1 point. [25]
- d. Calculate the flow rate of the raffinate and extract for this stage [stage 1] using solve function.
- e. Suppose you want to use the same flow rate for solvent (S) for three stages [Please do not use the solvent scheme mentioned in the problem above]. Plot the removal of solute [solutes present in extract phases] as a function of solvent amount in each stage [from 600 to 840 kg, in an interval of 20]. Also determine the solute removed [in E1, E2 and E3 phases] at each stage in the **equal sovent ineach stage** scheme.

```
Hints:
LLE data
B = [0.0004\ 0.006\ 0.01\ 0.02\ 0.03\ 0.036\ 0.07\ 0.13\ 0.16\ 0.19\ 0.23\ 0.26\ 0.5\ 0.63\ 0.71\ 0.78\ 0.84\ 0.9\ 0.95];
C = [0.005 \ 0.1 \ 0.15 \ 0.2 \ 0.25 \ 0.3 \ 0.35 \ 0.4 \ 0.4025 \ 0.402 \ 0.402 \ 0.4 \ 0.35 \ 0.3 \ 0.25 \ 0.2 \ 0.15 \ 0.1 \ 0.05];
F1 = [0 \ 0.995];
S1 = [0.5 \ 0.005];
plot(F1,S1,'g^-','linewidth',0.35)
text(0,0.5,'F')
text(0.995,0.005,'- S')
tie line intervals
if ((0 < My) && (My <= 0.04));
     slope = 0 + (My - 0)*tie_slope(1)/(0.04);
  elseif((0.04< My) && (My <= 0.083));
     slope = tie\_slope(1) + (My - 0.04)*tie\_slope(2)/(0.083 - 0.04);
  elseif ((0.083 < My) && (My <= 0.13));
     slope = .....
  elseif ((0.13 < My) \&\& (My <= 0.215));
     slope = .....
  elseif ((0.215 < My) && (My <= 0.395));
     slope = .....
  elseif((My > 0.395));
     slope = tie_slope(5) + (My - 0.395)*(-0.155)/(0.4 - 0.395);
  end
```


