ECE 250 Data Structures & Algorithms

AVL Trees

Ziqiang Patrick Huang
Electrical and Computer Engineering
University of Waterloo

WATERLOO | ENGINEERING

Last Time: BSTs

- Binary Search Trees
 - Idea: O(log(n)) access time (we hope)

- Can end up with degenerated BSTs
 - Example: add 1, 2, 3, 4, 5
 - O(N) access time
 - How likely are bad cases to come up? It depends ...

So what do we do about it?

- Two approaches (know both)
 - AVL (Adelson-Velskii and Landis) trees
 - Faster for lookup
 - Red-black trees
 - Faster for adding & removing

Evgenii Landis

- Will not guarantee "perfect tree" (very hard)
 - Perfect (binary) tree: all internal nodes have two children & all leaf nodes at same level
 - But will guarantee O(log(n))

AVL Trees

- AVL: A self-balancing BST used to eliminate O(n) worst case
 - Worst case for search/add/remove becomes O(log(n))
- AVL trees work on principle of balance
 - Height of two children(sub-trees) cannot differ by more than 1
 - Otherwise → "out-of-balance" or "imbalanced"
 - Difference of heights of two children → "balance factor"
 - Height(node) = max(height(node->left), height(node->right)) + 1
 - Base cases: height(leaf) = 0, Height(NULL) = -1
 - Some people define height(leaf) = 1, height(NULL) = 0
 - AVL = order property(from BST) + shape property

AVL Insertion

- Insertion starts as normal BST insertion
 - Using recursion
- After each recursive call returns:
 - Update the height information for each node
 - Stores heights to make calculations O(1) as opposed to O(n)
 - Check for imbalance
 - If so, rotate the tree to fix

 $\binom{1}{1}$

- Add 1 to empty tree
 - Heights are show next to nodes
 - Green = OK
 - Red = violating AVL rule
 - All good so far

- Add 2 to tree
 - Children of 1 have height 0 and -1(NULL), differ by 1
 - Everything is still fine

- Add 3 to tree
 - Now we have a problem at 1
 - Right child: height = 1
 - Left child: height = -1
 - Difference: 2

- Fix with single left rotation
 - Wait ... what just happened?

- Fix with single left rotation
 - v = violated node, r = v->right
 - Rotation step 1: v->right = NULL
 - More generally: v->right = r->left

- Fix with single left rotation
 - v = violated node, r = v->right
 - Rotation step 1: v->right = r->left
 - Rotation step 2: r->left = v
 - How do we know this respects the BST rules?

- Resulting tree respects AVL rules
 - Now let's add 4 and see what happens

- Adding 4 works fine: no re-balance needed
 - Height difference at most 1 everywhere
 - Add 5?

- Adding 5: looks like two violations of rules
 - First one at 3 : (-1 vs 1)
 - Second one at 2: (0 vs 2)
 - Reality: fix the one at 3, and everything is fine

- Single left rotation at 3
 - 4 is the new root of that subtree

v could be left or right child of some other node

Subtrees of height N (don't really care about the details, abstract it away)

- More generally
 - Start with something like this
 - Adding to the right side of r and increasing its height

- More generally
 - Start with something like this
 - Adding to the right side of r and increasing its height
 - This causes the violation

Rotate Left: v->right = r->left

- More generally
 - Start with something like this
 - Adding to the right side of r and increasing its height
 - This causes the violation

```
Rotate Left:

v->right = r->left

r->left = v

r is root of subtree
```


- More generally
 - Start with something like this
 - Adding to the right side of r and increasing its height
 - This causes the violation

- More generally
 - Start with something like this
 - Adding to the right side of r and increasing its height
 - This causes the violation
 - Rotating fixes the violation

- Summary
 - r moved up, v moved down
 - Restore the height of the subtree back to N+2

- Mirror image case for left
 - E.g., if we added 5, 4, 3, 2, 1

Rotate Right: v->left = L->right r->right = v L is root of subtree

- Mirror image case for left
 - E.g., if we added 5, 4, 3, 2, 1

Rotate Right: v->left = L->right r->right = v L is root of subtree

- Mirror image case for left
 - E.g., if we added 5, 4, 3, 2, 1

- Summary
 - L moved up, v moved down
 - Restore the height of the subtree back to N+2

- But what if we add to the left-side of the right
 - (or the right side of the left)
- Now doing a single rotation doesn't fix it
 - Just puts the problem on the other side

Return to this situation ...

- For this case we need double rotation
 - First rotate right at r, put excess height on right side
 - Then rotate left at v, rebalance the tree

To see how to do this, we need to "look inside" the yellow tree

Remember v < L < r

One has to be N, the other could be N or N-1

Now, rotate right at r

Remember v < L < r

Observe that all nodes are balanced...

...and that the subtree's height is reduced back to N+2

Remember v < L < r

Symmetric case for other side

First rotate left at L Then rotate right at v

Remember L < r < v

Exercise for you: 1. Draw the resulting tree after rotation;

2. Work out the pointer manipulations yourself from the drawing

AVL Deletion

- Deletion from AVL tree
 - Start with basic BST deletion algorithm (recursive)
 - On the way back up
 - Calculate balance
 - Rotate as needed
 - Same rotations
 - Update heights
 - Unlike add, multiple rotations may be required

Delete 56 Right at 32

Wrap Up

- In this lecture we talked about
 - AVL trees
 - Self-balancing BSTs (via rotating nodes)
 - Ensure log(n) behavior
 - How insertion & deletion works
- Next up
 - Red-black trees

Suggested Complimentary Readings

Data Structure and Algorithms in C++: Chapter 4.4

CloudPleasers by Forrest Brazeal

"We want our interviewees to solve real-world problems. So while you balance this binary search tree, I'll be changing the requirements, imposing arbitrary deadlines and auditing you for regulatory compliance."

Acknowledgement

- This slide builds on the hard work of the following amazing instructors:
 - Andrew Hilton (Duke)
 - Mary Hudachek-Buswell (Gatech)