EKONOMETRIA WNE

Sebastian Zalas

University of Warsaw s.zalas@uw.edu.pl

ightharpoonup Jesteśmy zainteresowani oszacowaniem jak $x \longrightarrow y$

$$y = \beta_0 + \beta_1 x + \varepsilon = X\beta + \varepsilon$$

► Prawdziwy model:

$$y = \beta_0 + \beta_1 x + \gamma z + \varepsilon = X\beta + z\gamma + \varepsilon \tag{1}$$

z - pominięta zmienna; niech z będzie skorelowane z x

► Co stanie się z β?

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon})$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{z}\boldsymbol{\gamma} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon}$$

$$= \boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{z}\boldsymbol{\gamma} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon}$$

ightharpoonup Jesteśmy zainteresowani oszacowaniem jak $x \longrightarrow y$

$$y = \beta_0 + \beta_1 x + \varepsilon = X\beta + \varepsilon$$

Prawdziwy model:

$$y = \beta_0 + \beta_1 x + \gamma z + \varepsilon = X\beta + z\gamma + \varepsilon \tag{1}$$

z - pominięta zmienna; niech z będzie skorelowane z x

► Co stanie się z $\hat{\beta}$?

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'(\boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon})$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{z}\boldsymbol{\gamma} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon}$$

$$= \boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{z}\boldsymbol{\gamma} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon}$$

obciążenie:

$$\mathbb{E}[\hat{\boldsymbol{\beta}} \mid \boldsymbol{X}] - \boldsymbol{\beta} = \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{z}\boldsymbol{\gamma} \mid \boldsymbol{X}] + \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon} \mid \boldsymbol{X}]$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\gamma} \mathbb{E}[\boldsymbol{z} \mid \boldsymbol{X}] + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \underbrace{\mathbb{E}[\boldsymbol{\varepsilon} \mid \boldsymbol{X}]}_{=0}$$

$$= \boldsymbol{\gamma}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \mathbb{E}[\boldsymbol{z} \mid \boldsymbol{X}] \neq 0$$
(2)

Szacując model bez γz pozostanie on w składniku losowym:

$$y = \beta_0 + \beta_1 x + (\underbrace{\gamma z + \varepsilon}_{=\gamma})$$

▶ wtedy $\mathbb{E}[v \mid X] = \mathbb{E}[\gamma z \mid X] + \mathbb{E}[\varepsilon \mid X] = \mathbb{E}[\gamma z \mid X] \neq 0 \longrightarrow z$ łamanie założenia KMRL prowadzi do **obciążenia** estymatora MNK

obciążenie:

$$\mathbb{E}[\hat{\boldsymbol{\beta}} \mid \boldsymbol{X}] - \boldsymbol{\beta} = \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{z}\boldsymbol{\gamma} \mid \boldsymbol{X}] + \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon} \mid \boldsymbol{X}]$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\gamma} \mathbb{E}[\boldsymbol{z} \mid \boldsymbol{X}] + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \underbrace{\mathbb{E}[\boldsymbol{\varepsilon} \mid \boldsymbol{X}]}_{=0}$$

$$= \boldsymbol{\gamma}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \mathbb{E}[\boldsymbol{z} \mid \boldsymbol{X}] \neq 0$$
(2)

Szacując model bez γz pozostanie on w składniku losowym:

$$y = \beta_0 + \beta_1 x + (\underbrace{\gamma z + \varepsilon}_{=\gamma})$$

▶ wtedy $\mathbb{E}[v \mid X] = \mathbb{E}[\gamma z \mid X] + \mathbb{E}[\varepsilon \mid X] = \mathbb{E}[\gamma z \mid X] \neq 0 \longrightarrow z$ łamanie założenia KMRL prowadzi do **obciążenia** estymatora MNK

obciążenie:

$$\mathbb{E}[\hat{\boldsymbol{\beta}} \mid \boldsymbol{X}] - \boldsymbol{\beta} = \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{z}\boldsymbol{\gamma} \mid \boldsymbol{X}] + \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon} \mid \boldsymbol{X}]$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\gamma} \mathbb{E}[\boldsymbol{z} \mid \boldsymbol{X}] + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \underbrace{\mathbb{E}[\boldsymbol{\varepsilon} \mid \boldsymbol{X}]}_{=0}$$

$$= \boldsymbol{\gamma}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \mathbb{E}[\boldsymbol{z} \mid \boldsymbol{X}] \neq 0$$
(2)

Szacując model bez γz pozostanie on w składniku losowym:

$$y = \beta_0 + \beta_1 x + (\underbrace{\gamma z + \varepsilon}_{=\gamma})$$

▶ wtedy $\mathbb{E}[v \mid X] = \mathbb{E}[\gamma z \mid X] + \mathbb{E}[\varepsilon \mid X] = \mathbb{E}[\gamma z \mid X] \neq 0 \longrightarrow z$ łamanie założenia KMRL prowadzi do **obciążenia** estymatora MNK

▶ obciążenie:

$$\mathbb{E}[\hat{\boldsymbol{\beta}} \mid \boldsymbol{X}] - \boldsymbol{\beta} = \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{z}\boldsymbol{\gamma} \mid \boldsymbol{X}] + \mathbb{E}[(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\varepsilon} \mid \boldsymbol{X}]$$

$$= (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{\gamma} \,\mathbb{E}[\boldsymbol{z} \mid \boldsymbol{X}] + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \,\underbrace{\mathbb{E}[\boldsymbol{\varepsilon} \mid \boldsymbol{X}]}_{=0}$$

$$= \boldsymbol{\gamma}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \,\mathbb{E}[\boldsymbol{z} \mid \boldsymbol{X}] \neq 0$$

Szacując model bez γz pozostanie on w składniku losowym:

$$y = \beta_0 + \beta_1 x + (\underbrace{\gamma z + \varepsilon}_{=\gamma})$$

▶ wtedy $\mathbb{E}[v \mid \textbf{\textit{X}}] = \mathbb{E}[\gamma z \mid \textbf{\textit{X}}] + \mathbb{E}[\varepsilon \mid \textbf{\textit{X}}] = \mathbb{E}[\gamma z \mid \textbf{\textit{X}}] \neq 0 \longrightarrow z$ łamanie założenia KMRL prowadzi do **obciążenia** estymatora MNK

(2)

► Kiedy błąd zmiennej pominiętej zachodzi? Przekształcimy (2):

$$\mathbb{E}[\hat{\beta} \mid \mathbf{X}] - \beta = \gamma \frac{\text{Cov}[z, x]}{\mathbb{V}[x]}$$
$$= \gamma \frac{\sigma_z}{\sigma_x} \rho_{x, z}$$
(3)

▶ x jest skorelowana z pominiętą zmienną z, czyli

$$\rho_{X,Z} \neq 0$$

▶ pominięta zmienna z jest skorelowana ze zmienną zależną y, czyli:

$$\gamma \neq 0$$

Kiedy błąd zmiennej pominiętej zachodzi? Przekształcimy (2):

$$\mathbb{E}[\hat{\beta} \mid \mathbf{X}] - \beta = \gamma \frac{\text{Cov}[z, x]}{\mathbb{V}[x]}$$
$$= \gamma \frac{\sigma_z}{\sigma_x} \rho_{x, z}$$
(3)

▶ x jest skorelowana z pominiętą zmienną z, czyli

$$\rho_{X,Z} \neq 0$$

▶ pominięta zmienna z jest skorelowana ze zmienną zależną y, czyli:

$$\gamma \neq 0$$

Kiedy błąd zmiennej pominiętej zachodzi? Przekształcimy (2):

$$\mathbb{E}[\hat{\beta} \mid \mathbf{X}] - \beta = \gamma \frac{\text{Cov}[z, x]}{\mathbb{V}[x]}$$
$$= \gamma \frac{\sigma_z}{\sigma_x} \rho_{x, z}$$
(3)

x jest skorelowana z pominiętą zmienną z, czyli

$$\rho_{X,Z} \neq 0$$

▶ pominięta zmienna z jest skorelowana ze zmienną zależną y, czyli:

$$\gamma \neq 0$$

BŁĄD ZMIENNEJ POMINIĘTEJ - WNIOSKI

- Błąd zmiennej pominiętej zachodzi gdy oba warunki są spełnione (via (3)):
 - 1. zmienna w modelu jest skorelowana z pominiętą zmienną
 - 2. pominięta zmienna jest skorelowana ze zmienną zależna
- Pominięcie zmiennej w modelu prowadzi do obciążenia estymatora
 MNK z powodu złamania założenia KMRL: Ε[ε | X] = 0

BŁĄD ZMIENNEJ POMINIĘTEJ - WNIOSKI

- Błąd zmiennej pominiętej zachodzi gdy oba warunki są spełnione (via (3)):
 - 1. zmienna w modelu jest skorelowana z pominietą zmienną
 - 2. pominięta zmienna jest skorelowana ze zmienną zależna
- ▶ Pominięcie zmiennej w modelu prowadzi do obciążenia estymatora MNK z powodu złamania założenia KMRL: $\mathbb{E}[\varepsilon \mid \textbf{\textit{X}}] = 0$

- ▶ wpływ *profocc* na płace
 - profocc =1 gdy osoba pracuje w wysoko wyspecjalizowanym zawodzie
- oszacujmy dwa modele:

$$log(wage) = profocc + exper + expersq + female + \varepsilon$$

$$log(wage) = profocc + educ + exper + expersq + female + \varepsilon$$

Czy edukacja może być pominięta? Czy są inne możliwości?

- ▶ wpływ *profocc* na płace
 - profocc =1 gdy osoba pracuje w wysoko wyspecjalizowanym zawodzie
- oszacujmy dwa modele:

$$log(wage) = profocc + exper + expersq + female + \varepsilon$$

$$log(wage) = profocc + educ + exper + expersq + female + \varepsilon$$

Czy edukacja może być pominięta? Czy są inne możliwości?

- ▶ wpływ *profocc* na płace
 - profocc =1 gdy osoba pracuje w wysoko wyspecjalizowanym zawodzie
- oszacujmy dwa modele:

$$log(wage) = profocc + exper + expersq + female + \varepsilon$$

$$log(wage) = profocc + educ + exper + expersq + female + \varepsilon$$

Czy edukacja może być pominięta? Czy są inne możliwości?

	Zmienna zależna: log(wage)	
	(1)	(2)
profocc	0.402***	0.227***
	(0.040)	(0.043)
educ		0.063***
		(800.0)
exper	0.038***	0.037***
	(0.005)	(0.005)
expersq	-0.001***	-0.001***
	(0.0001)	(0.0001)
female	-0.312***	-0.310***
	(0.038)	(0.036)
N	526	526
R^2	0.359	0.430
Note:	*p<0.1; **p<	0.05; *** p<0.01

Edukacja jest pominiętym czynnikiem:

- edukacja jest skorelowana z płacą
- ▶ profocc jest skorelowane z edukacją

Współczynnik przy *profocc* w kol. (1)

▶ jest obciążony (przeszacowany):

$$\hat{\beta}_{profocc} - \beta_{profocc} = \beta_{educ} \frac{\sigma_{educ}}{\sigma_{profocc}} \rho_{educ,profocc} > 0$$

$$\hat{\beta}_{profocc} > \beta_{profocc}$$

 mierzy wpływ pracy w wysoko wyspecjalizowanym zawodzie oraz edukacji

Edukacja jest pominiętym czynnikiem:

- edukacja jest skorelowana z płacą
- ▶ profocc jest skorelowane z edukacją

Współczynnik przy *profocc* w kol. (1):

jest obciążony (przeszacowany):

$$\hat{\beta}_{profocc} - \beta_{profocc} = \beta_{educ} \frac{\sigma_{educ}}{\sigma_{profocc}} \rho_{educ,profocc} > 0$$

$$\hat{\beta}_{profocc} > \beta_{profocc}$$

 mierzy wpływ pracy w wysoko wyspecjalizowanym zawodzie oraz edukacji

BŁĄD ZMIENNEJ POMINIĘTEJ - CO ZROBIĆ?

Jak go wykryć?

- nie da się przetestować czy pominięto ważną zmienną
- należy bazować na własnej ocenie/ teorii/ literaturze

Co robić:

- warto wyznaczyć, który współczynnik jest interesujący
- włączyć do modelu zmienną proxy (zastępczą) dla pominiętej
- można wyznaczyć kierunek obciążenia korzystając z (3) oraz ocenić jego siłę

BŁĄD ZMIENNEJ POMINIĘTEJ - CO ZROBIĆ?

Jak go wykryć?

- nie da się przetestować czy pominięto ważną zmienną
- należy bazować na własnej ocenie/ teorii/ literaturze

Co robić?

- warto wyznaczyć, który współczynnik jest interesujący
- włączyć do modelu zmienną proxy (zastępczą) dla pominiętej
- można wyznaczyć kierunek obciążenia korzystając z (3) oraz ocenić jego siłę

BŁĄD ZMIENNEJ POMINIĘTEJ - CO ZROBIĆ?

Przykład zmiennej proxy zastępczej:

- cena samochodu zależy od wieku
- wieku samochodu nie obserwujemy
- ▶ może obserwujemy jak długo posiada go obecny właściciel ← zmienna proxy

Pytania? Wątpliwości? Dziękuję!

e: s.zalas@uw.edu.pl