Assignment -3

Build CNN Model for Classification Of Flowers

Assignment Date	30 September 2022
Student Name	Helen Roshna A
Student Roll Number	211419104099
Maximum Marks	2 Marks

Question-1:

Download the dataset

Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator

 $train_datagen=ImageDataGenerator(rescale=1./255, zoom_range=0.2, horizontal_flip=True, vertical_flip=True)$

test_datagen=ImageDataGenerator(rescale=1./255)

2)Image Augmentation		↑ ↓ Œ	Q ,	<i>P</i> 2	1:	
[]	from tensorflow.keras.preprocessing.image import ImageDataGenerator					
[]	train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)					
[]	test_datagen=ImageDataGenerator(rescale=1./255)					
Loa	d Data					
[]	x_train=train_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Training",target_size=(64,64),class_materials.	ode='cate	gorica	l',bat	ch_siz	ię.
	Found 3293 images belonging to 5 classes.					
[]	x_test=test_datagen.flow_from_directory(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing",target_size=(64,64),class_mode	='categor	ical',	batch_	size=2	12
	Found 1317 images belonging to 5 classes.					
[]	x_train.class_indices					
	{'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}					

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

3)Create Model	
[] from tensorflow.keras.models import Sequential	
[] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten	
[] model=Sequential()	↑ ↓ ⊕ 目 / ∏ Î :

Question-4:

Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output)

Solution

a)Convolution Layer

 $model. add (Convolution 2D(32, (3,3), kernel_initializer = "random_uniform", activation = "relu", strides = (1,1), input_shape = (64,64,3)))$

b) MaxPooling Layer

model.add(MaxPooling2D(pool_size=(2,2)))

c) Flatten Layer

model.add(Flatten())

d) Dense(Hidden layer)

model.add(Dense(300,activation="relu"))
model.add(Dense(300,activation="relu"))

e) Output layer

model.add(Dense(5,activation="softmax"))

a)Convolution Layer	
[] model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_	shape=(64,64,3)))
b)MaxPooling Layer	
[] model.add(MaxPooling2D(pool_size=(2,2)))	
c)Flatten	
[] model.add(Flatten())	
d)Dense(Hidden layer)	
[] model.add(Dense(300,activation="relu"))	
[] model.add(Dense(300,activation="relu"))	
d)Dense(Hidden layer)	
[] model.add(Dense(300,activation="relu"))	
[] model.add(Dense(300,activation="relu"))	
e)Output layer	
<pre>model.add(Dense(5,activation="softmax"))</pre>	↑ ↓ © 目 ‡ [] i :

Question-5:

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

5)Compile the model

```
[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

Question-6:

Fit The Model

Solution

 $model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))$

6)Fit the model	^	V	9	4	/	_ i	1
[] model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))							
Epoch 1/5 138/138 [====================================							
138/138 [===========] - 26s 190ms/step - loss: 0.0765 - accuracy: 0.9787 - val_loss: 1.8115 - val_accuracy: 0.721 Epoch 4/5 138/138 [===========] - 27s 193ms/step - loss: 0.0675 - accuracy: 0.9757 - val_loss: 1.8917 - val_accuracy: 0.716							
Epoch 5/5 138/138 [====================================	13						

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

7)Save the model

[] model.save("Flowers.h5")

Question-8:

Test The Model

Solution

```
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model=load_model("Flowers.h5")
img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-
Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))
x=image.img_to_array(img)
x=np.expand_dims(x,axis=0)
pred=model.predict(x)
pred
index=['daisy','dandelion','rose','sunflower','tulip']
index[np.argmax(pred)]
```

8)Tes	t the model
1	import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image
[] [model=load_model("Flowers.hs")
[]	img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64))
[]	ing
,	
[]	x=image.img_to_array(img)
[]	x=np.expand_dims(x,axis=0)

[]	x=image.img_to_array(img)	
[]	x=np.expand_dims(x,axis=0)	
[]	<pre>pred=model.predict(x)</pre>	
[]	pred	
	array([[1., 0., 0., 0., 0.]], dtype=float32)	
[]	<pre>index=['daisy','dandelion','rose','sunflower','tulip']</pre>	
0	<pre>index[np.argmax(pred)]</pre>	
	'daisy'	