Analyse dans \mathbb{R}^n

Feuille 2 Ouverts et fermés de \mathbb{R}^n

Questions de cours.

1. Rappeler la définition d'un ouvert et d'un fermé de \mathbb{R}^n .

2. Qu'est-ce qu'une application continue de \mathbb{R}^n dans \mathbb{R}^m ?

Exercice 1. En utilisant la définition des ouverts et des fermés de \mathbb{R}^n , déterminer si les parties suivantes sont ouvertes, fermées, ni l'un ni l'autre ou les deux :

1.
$$\{(x,y) \in \mathbb{R}^2 | x > 0\}$$

5.
$$\{(x,y) \in \mathbb{R}^2 | x \ge 0 \text{ et } y = 0\}$$

2.
$$\{(x,y) \in \mathbb{R}^2 | y > 0\}$$

6.
$$\{(x, y, z) \in \mathbb{R}^3 | x = y = 2z\}$$

3.
$$B((x_0, y_0), r)$$
 pour $(x_0, y_0) \in \mathbb{R}^2$ et $r > 0$ 7. $\{(x, y, z) \in \mathbb{R}^3 | x > y > z\}$

7.
$$\{(x, y, z) \in \mathbb{R}^3 | x > y > z\}$$

4.
$$\{(x,y) \in \mathbb{R}^2 | x > 0 \text{ et } y = 0\}$$

8.
$$\{(x, y, z) \in \mathbb{R}^3 | x > 0 \text{ et } y > 0\}$$

Exercice 2.

1. Montrer que l'intervalle [0, 1] peut s'écrire comme une intersection dénombrable d'ouverts.

2. Montrer que l'intervalle [0, 1[peut s'écrire comme une réunion dénombrable de fermés.

Exercice 3. Dans tout l'exercice on munit \mathbb{R}^n de la distance euclidienne. Pour cet exercice, il est fortement recommandé de faire des figures.

1. Soit dans \mathbb{R}^2 un point $M=(x_0,y_0)$ et r>0. Montrer que B(M,r) est un ouvert de \mathbb{R}^2 et que $\overline{B}(M,r)$ est un fermé de \mathbb{R}^2 . Déterminer l'adhérence de B(M,r).

2. Montrer que $A = \{(x, y, z) \in \mathbb{R}^3 : x \neq 0\}$ est un ouvert de \mathbb{R}^3 .

3. Trouver l'adhérence et l'intérieur de l'ensemble $A = \mathbb{R}^2 - \{(x,0) : x \leq 0\}$ dans \mathbb{R}^2 .

4. Trouver l'adhérence et l'intérieur des ensembles suivants dans \mathbb{R} :

$$B = \bigcup_{n \in \mathbb{N}^*} \left[\frac{1}{n+1}, \frac{1}{n} \right[, C = \mathbb{N}.$$

Exercice 4. Parmi les parties suivantes de \mathbb{R}^n , déterminer celles qui sont fermées et bornées (on note $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$:

1.
$$A = \{x \in \mathbb{R}^n | \forall i, x_i \ge 0\}$$

4.
$$D = \{x \in \mathbb{R}^n | \sum_{i=1}^n x_i^2 = 1\}$$

2.
$$B = \{x \in \mathbb{R}^n | \forall i, 1 \ge x_i \ge 0\}$$

5.
$$E = C \cap D$$

3.
$$C = \{x \in \mathbb{R}^n | \exists i | x_i \ge 0\}$$

6.
$$F = C \cup D$$

7.
$$G = \{x \in \mathbb{R}^n | x_1^2 - \sum_{i=2}^n x_i^2 = 1\}$$

7.
$$G = \{x \in \mathbb{R}^n | x_1^2 - \sum_{i=2}^n x_i^2 = 1\}$$
 8. $H = \{x \in \mathbb{R}^n | \sum_{i=1}^n (x_i - i)^2 \le 1\}$

Exercice 5. L'ensemble F suivant est-il fermé? Est-il compact?

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x^2yz + xy^2z = 0 \text{ et } \cos(x)\cos(y) = 1\}.$$

Exercice 6. Montrer que le sous-ensemble de \mathbb{R}

$$A = \{0\} \cup \left\{ \frac{1}{n}, \ n \in \mathbb{N}^* \right\}$$

est une partie compacte de \mathbb{R} .

Exercice 7 (Topologie de $M_n(\mathbb{R})$).

- 1. Montrer que l'ensemble des matrices symétriques \mathscr{S}_n est fermé dans $M_n(\mathbb{R})$.
- 2. (a) Montrer que l'application determinant $M_n(\mathbb{R}) \longrightarrow \mathbb{R}$ est polynomiale.
 - (b) En déduire que $Gl_n(\mathbb{R})$ est ouvert dans $M_n(\mathbb{R})$.
- 3. Montrer que O_n est un compact de $M_n(\mathbb{R})$.
- 4. Soit $r \in \{0, 1, ..., n\}$ et $A_r = \{M \in M_n(\mathbb{R}) : \operatorname{rg}(M) \leq r\}$. Montrer que A_r est fermé.
- 5. Montrer que l'ensemble des matrices diagonalisables (complexes) est dense dans $M_n(\mathbb{C})$.
- 6. En considérant $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, montrer que l'ensemble des matrices diagonalisables (réelles) n'est pas dense dans $M_n(\mathbb{R})$.

Exercice 8. Montrer qu'une réunion finie de compacts est compacte. Que peut-on dire d'une réunion infinie? Et de l'intersection?

Exercice 9.

- 1. Montrer que si $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ est une fonction continue, l'image réciproque par f d'un ouvert de \mathbb{R}^m est ouvert dans \mathbb{R}^n .
- 2. Montrer que les fonctions

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

 $(x, y, z) \longmapsto \ln(x^2 + 1)\sin z - \exp(y)$

et

$$g: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}$$
$$(x, y, z) \quad \longmapsto \quad x + y - z$$

sont des fonctions continues sur \mathbb{R}^3 .

3. En déduire que

$$U_1 = \{(x, y, z) \in \mathbb{R}^3 \mid \ln(x^2 + 1) \sin z < \exp(y)\},$$

$$U_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z > 1\} \quad \text{et}$$

$$U_3 = \{(x, y, z) \in \mathbb{R}^3 \mid \ln(x^2 + 1) \sin z < \exp(y) \text{ et } x + y - z > 1\}$$

sont des ouverts de \mathbb{R}^3 .

Exercice 10. Soient f et g deux fonctions continues définies sur la boule fermée unitée $\overline{B}(0,1)$ de \mathbb{R}^n . On suppose que pour tout $x \in \overline{B}(0,1)$, f(x) > g(x). Montrer qu'il existe c > 0 telle que pour tout $x \in \overline{B}(0,1)$, $f(x) \ge g(x) + c$.

Exercice 11 (Graphe). Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction.

- 1. Montrer que si f est continue, son graphe est un fermé de \mathbb{R}^{n+1} .
- 2. Montrer que toute suite bornée de réels admettant une unique valeur d'adhérence est convergente.
- 3. On suppose f bornée et de graphe fermé. Montrer que f est continue.