Wyznaczanie współczynnika rozszerzalności liniowej ciał stałych

Student Seweryn Wasilewski

Nr Albumu 160128 Kierunek Inforamtyka

Wydział Wydział Informatyki i Teleinforamtyki

Ćwiczenie 103

Wstęp teoretyczny

Zmiana dugości przy elementarnej zmianie temperatury Zjawisko polegające na zwiększaniu lub zmniejszaniu długości ciała stałego pod wpływem niewielkiej zmiany temperatury. Wynika to z faktu, że wzrost temperatury powoduje większe drgania atomów, co skutkuje wzrostem odległości między nimi.

Elementarny przyrost temperatury dT którego długość całkowita wynosi I, powoduje przyrost długości dI określony wzorem

$$dI = \alpha I \ dT$$

Współczynnik rozszerzalności liniowej i objętościowej

- Współczynnik rozszerzalności liniowej: Stała określająca względną zmianę długości materiału na jednostkę temperatury, wyrażana jako $\alpha = \frac{\Delta I}{I_0 \Delta T}$, gdzie I_0 to początkowa długość, ΔI to zmiana długości ($\Delta I = I I_0$), a ΔT to zmiana temperatury.
- Współczynnik rozszerzalności objętościowej: Stała określająca względną zmianę objętości materiału na jednostkę temperatury, wyrażana jako $\beta = \frac{\Delta V}{V_0 \Delta T}$, gdzie V_0 to początkowa długość, ΔV to zmiana długości, a ΔT to zmiana temperatury.

Długosé i objctosć w dowolnej temperaturze

- Długość w dowolnej temperaturze: Można obliczyć za pomocą wzoru: $I = I_0(1+\alpha\Delta T)$, gdzie L_0 to początkowa długość, a ΔT to zmiana temperatury.
- Objętość w dowolnej temperaturze: Można obliczyć za pomocą wzoru: $V=V_0(1+\beta\Delta T)$, gdzie V_0 to początkowa długość, a ΔT to zmiana temperatury.

Wplyw temperatury na amplitudę drgań i odleglość miedzy atomami Wzrost temperatury powoduje zwiększenie amplitudy drgań atomów, ponieważ wzrasta ich energia kinetyczna. W efekcie średnia odległość między atomami również się zwiększa, co prowadzi do rozszerzalności cieplnej materiału.

Energia potencjalna oddziaływania dwóch atomów Energia związana z siłami działającymi między dwoma atomami, zależna od ich odległości. Przy małych odległościach energia potencjalna rośnie ze względu na odpychanie elektrostatyczne, a przy większych odległościach maleje w wyniku przyciągania międzyatomowego. Krzywa energii potencjalnej ma minimum, odpowiadające równowagowej odległości między atomami.

Rozszerzalność cial anizotropowych W ciałach anizotropowych (np. kryształach) rozszerzalność cieplna różni się w różnych kierunkach, ponieważ właściwości mechaniczne materiału są zależne od kierunku. Opisuje się ją za pomocą tensorów rozszerzalności cieplnej.

Pomiar temperatury Proces określania wartości temperatury za pomocą termometrów, które mogą wykorzystywać różne zasady fizyczne, takie jak rozszerzalność cieplna (termometry cieczowe), zmiana oporu elektrycznego (termometry rezystancyjne) czy emisję promieniowania podczerwonego (pirometry).

Ultratermostat Urządzenie służące do precyzyjnego utrzymywania stałej temperatury z bardzo dużą dokładnością (nawet na poziomie tysięcznych części stopnia). Używane w laboratoriach i badaniach wymagających kontrolowania temperatury w ekstremalnych warunkach.

Pomiary

Błąd pomiaru Temperatury: $0,05[^{\circ}C]$ Błąd pomiaru zmiany długości : 0,005[mm]

• miedź: $I_p = 0$, 12[cm], $I_k = 77$, 29[cm] dla $T_0 = 21$, 2[°C], czyli $I_0 = I_k - I_p = 77$, 17[cm]

• mosiądz: $I_p = 0$, 12[cm], $I_k = 77$, 10[cm] dla $T_0 = 21$, 1[°C], czyli $I_0 = I_k - I_p = 76$, 98[cm]

• stal: $I_p = 0$, 12[cm], $I_k = 77$, 36[cm] dla $T_0 = 21$, 4[°C], czyli $I_0 = I_k - I_p = 77$, 24[cm]

gdzie I_p to odległość początku metalowego prętu od relatywnego punktu A, I_k to odległość końca metalowego prętu od relatywnego punktu A

Ogrzewanie

miedź		mosiądz		stal	
$T[^{\circ}C]$	/[mm]	$T[^{\circ}C]$	I[mm]	$T[^{\circ}C]$	I[mm]
24,7	0,05	24,7	0,06	25,0	0,03
29,5	0,11	29,5	0,13	29,7	0,07
36,7	0,24	34,7	0,26	34,9	0,14
40,8	0,30	40,9	0,34	39,0	0,19
44,9	0,36	45,1	0,41	43,2	0,24
49,0	0,41	49,1	0,47	49,2	0,28
54,9	0,49	55,1	0,55	55,1	0,34
58,9	0,55	59,1	0,62	59,0	0,37
64,3	0,60	64,5	0,66	64,2	0,41
69,7	0,66	69,8	0,75	69,9	0,45

Chłodzenie

miedź		mosiądz		stal	
$T[^{\circ}C]$	/[mm]	$T[^{\circ}C]$	I[mm]	$T[^{\circ}C]$	I[mm]
68,8	0,6	69	0,68	69,9	0,42
65,6	0,56	65,7	0,62	66,9	0,39
60,5	0,49	60,8	0,55	61,9	0,38
55,5	0,43	55,6	0,47	59,9	0,31
50,4	0,36	50,5	0,4	56,7	0,29
45,6	0,29	46,7	0,32	50,7	0,23
40,2	0,22	40,2	0,24	45,9	0,18
35,2	0,15	35,3	0,18	35,9	0,09

Obliczenia

W celu obliczenia współczynnika rozszerzalności z danych pomiarowych napiszemy równanie w postaci (wynika z przekształcenia wzoru na współczynnik rozszerzalności liniowej we wstępie teoretycznym, gdzie $\Delta T = T - T_0$)

$$\Delta I = \alpha_{sr} I_0 T - \alpha_{sr} I_0 T_0$$

gdzie T_0 jest temperaturą początkową danego ciała (miedź, mosiądz, stal), w której długość pręta wynosi l_0 Oznacza to że wydłużenie jest liniową funckją temperatury T i że współczynnik nachylenia

$$a = \alpha_{sr} I_0$$

Rysunek 1: Pomiary wydłużenia ΔI dla kolejnych prętów podczas stygnięcia po osiągnięciu temperattury $70^{\circ}C$. Na wykresie zaznaczono regresję liniową wyznaczoną z pomiarów dla kolejnych pretów. Błąd regresji liniowej dla miedzi $\Delta a = 0.0001$, dla mosiądzu $\Delta a = 0.00031$, dla stali $\Delta a = 0.00054$

Rysunek 2: Pomiary wydłużenia ΔI dla kolejnych prętów podczas ogrzewania. Na wykresie zaznaczono regresję liniową wyznaczoną z pomiarów dla kolejnych prętów. Błąd regresji liniowej dla miedzi $\Delta a=0.00033$, dla mosiądzu $\Delta a=0.00043$, dla stali $\Delta a=0.00029$

Miedź

$$a = \frac{0.014 + 0.013}{2} = 0.0135 \left[\frac{mm}{K} \right]$$

$$\Delta a = \frac{0,0001 + 0,00033}{2} = 0,000215 \left[\frac{mm}{K} \right]$$

$$I_0 = 77,17[cm] = 771,7[mm]$$

$$\Delta I_0 = 0,005[mm]$$

$$\alpha_{sr} = \frac{a}{l_0} = \frac{0.0135}{771,7} = 1,75 \cdot 10^{-5} \left[\frac{1}{K}\right]$$
$$\Delta \alpha_{sr} = 0,0297 \cdot 10^{-5} \left[\frac{1}{K}\right]$$

Mosiądz

$$a = 0.015 \left[\frac{mm}{K} \right]$$

$$\Delta a = \frac{0,00031 + 0,00043}{2} = 0,00037 \left[\frac{mm}{K} \right]$$

$$I_0 = 76,98 [cm] = 769,8 [mm]$$

$$\Delta I_0 = 0,005 [mm]$$

$$\alpha_{sr} = \frac{a}{l_0} = \frac{0.015}{769.8} = 1,95 \cdot 10^{-5} \left[\frac{1}{K}\right]$$

$$\Delta \alpha_{sr} = 0,0481 \cdot 10^{-5} \left[\frac{1}{K}\right]$$

• Stal

$$a = 0.01 \left[\frac{mm}{K} \right]$$

$$\Delta a = \frac{0,00054 + 0,00029}{2} = 0,000415 \left[\frac{mm}{K} \right]$$

$$I_0 = 77,24 \left[cm \right] = 772,4 \left[mm \right]$$

$$\Delta I_0 = 0,005 \left[mm \right]$$

$$\alpha_{sr} = \frac{a}{l_0} = \frac{0.01}{772, 4} = 1,29 \cdot 10^{-5} \left[\frac{1}{K}\right]$$

$$\Delta \alpha_{sr} = 0,0537 \cdot 10^{-5} \left[\frac{1}{K}\right]$$

Wnioski

Przeprowadzone pomiary można uznać za poprawne, ponieważ uzyskane wartości współczynników rozszerzalności cieplnej dla badanych materiałów (miedzi, mosiądzu i stali) są zgodne z wartościami rzeczywistymi podawanymi w literaturze. Na podstawie wyników można stwierdzić, że metoda pomiarowa była właściwie dobrana, a proces pomiarowy został przeprowadzony z należytą starannością.

Otrzymane dane potwierdzają liniowy charakter zależności wydłużenia od temperatury, co jest zgodne z teoretycznym modelem rozszerzalności cieplnej. Regresja liniowa wykorzystana do analizy pomiarów pozwoliła w akceptowalnym przybliżeniu wyznaczyć współczynniki rozszerzalności cieplnej.

Drobne różnice między wynikami a wartościami rzeczywistymi mogą wynikać z niedoskonałości aparatury pomiarowej, takich jak ograniczona precyzja odczytu temperatury i długości, jednak ich wpływ na końcowe rezultaty jest niewielki. Mogą też wynikać z drobnych różnic stopów tych metali które są badane, a metalami dla jakich zostały zbadane rzeczywiste wartości współczynników rozszerzalności cieplnej(dlatego też dla stali został podany przedział dla współczynnika, gdyż zależy to od stopów stali). Wyniki te potwierdzają prawidłowość przebiegu eksperymentu i pozwalają na wyciągnięcie wiarygodnych wniosków dotyczących właściwości termicznych badanych materiałów i poprawności przeprowadzonej metody badawczej.

metal	rzeczywista $\alpha_{sr}[\frac{1}{K}]^*$	obliczona $\alpha_{sr}[\frac{1}{K}]$
miedź	$17.0 \cdot 10^{-6}$	$(17.5 \pm 0.297) \cdot 10^{-6}$
mosiądz	$19.0 \cdot 10^{-6}$	$(19.5 \pm 0.481) \cdot 10^{-6}$
stal	$< 11.0, 13.0 > \cdot 10^{-6}$	$(12.9 \pm 0.537) \cdot 10^{-6}$

Tabela 1: Wynik przeprowadzonego eksperymentu. *Wartości rzeczywiste zostały uzyskane z strony Wikipedi Wolnej Encyklopedii na temat Rozszzerzalnosci cieplnej.

Bibliografia

- Krzysztof Łapsa, Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Politechniki Poznańskiej, Poznań 2008
- Wikipedia Wolna Encyklopedia, Rozszerzalność Cieplna: https://pl.wikipedia.org/wiki/Rozszerzalność cieplna