

Big Mountain Resort Project

TABLE OF CONTENTS

PROBLEM IDENTIFICATION

INCREASE PROFITS

Big Mountain Resort (BMR) is a ski resort in Montana. BMR recently installed a new chair lift which increased OPEX by ~\$1.54M per annum

The problem we are addressing is, how can we increase profits, starting this year, by a minimum of +\$1.54M per annum to offset the costs of the chair lift?

* Three (3) resorts in Alaska not shown on the map.

GENERAL DELIVERABLES

THREE (3) DELIVERABLES GENERATED

- 1. The **source code** for the modeling developed to analyze the aforementioned problem ()
- 2. A **report** found here ()
- 3. This presentation outlining our advice to mgmt to potentially address the problem

GENERAL DELIVERABLES

SOURCE CODE DEFINED

Name The name of the resort.

Region The region within the United States where the resort is located.

state The state within the United States where the resort is located.

summit_elev The elevation in feet of the summit mountain at the resort.

vertical_drop The vertical change in elevation from the summit to the base in

feet

base_elev Elevation in feet at the base of the resort.

trams The number of operational trams.

fastEight The number of fast eight chairs.

fastSixes The number of fast six chairs.

fastQuads The number of fast four chairs.

quad The number of regular speed four person chairs.

triple The number of regular speed three person chairs.

double
The number of regular speed two person chairs.

surface The number of regular speed single person chairs.

total_chairs The number of chairlifts at the resort

Runs The total number of runs at the resort.

TerrainParks The total number of terrain parks at the resort.

LongestRun_mi The length of the longest run at the resort in miles.

SkiableTerrain_ac The total amount of skiable acres at the resort.

Snow Making_ac The total number of acres covered by snow making machines.

daysOpenLastYear The total number of days open last year.

yearsOpen The total number of years the resort has been open.

averageSnowfall Average annual snow fall at the resort in inches.

AdultWeekday Cost of an adult weekday chairlift ticket

AdultWeekend Cost of an adult weekend chairlift ticket

projectedDaysOpeThe projected number of days open in the upcoming season.

NightSkiing_ac Total number of acres covered by light for night skiing.

03
DATA
PRE-PROCESSING
STEPS

Alyeska Alaska Alaska 3939 2500 250 0.0 Resort Eaglecrest 2600 1540 1200 0 0.0 Hilltop Ski Alaska Alaska 2090 294 1796 0 0.0 Arizona Arizona 11500 2300 9200 0 0.0 Sunrise 11100 Park Arizona Arizona 1800 9200 0 NaN

state summit elev vertical drop base elev trams fastEight

DATA CLEANING

- I was provided a single CSV file was provided by the Database Manager
- I amended SkiableTerrain_ac for a resort* as the data was noticeably off kilter with the dataset & did not comply with the data on their website (**); I used the website's data
- 3. The **fastEight column was removed** as **50%** of the resorts **had no values**

	count	%
fastEight	166	50.303030
NightSkiing_ac	143	43.333333
AdultWeekday	54	16.363636
AdultWeekend	51	15.454545
daysOpenLastYear	51	15.454545
TerrainParks	51	15.454545
projectedDaysOpen	47	14.242424
Snow Making_ac	46	13.939394
averageSnowfall	14	4.242424
LongestRun_mi	5	1.515152
Runs	4	1.212121
SkiableTerrain_ac	3	0.909091
yearsOpen	1	0.303030
total_chairs	0	0.000000
Name	0	0.000000
Region	0	0.000000
double	0	0.000000
triple	0	0.000000
quad	0	0.000000
fastQuads	0	0.000000
fastSixes	0	0.000000
trams	0	0.000000
base_elev	0	0.000000
vertical_drop	0	0.000000
summit_elev	0	0.000000
state	0	0.000000
surface	0	0.000000

Name Region

#	Column	Non-Null Count	Dtype
0	Name	330 non-null	object
1	Region	330 non-null	object
2	state	330 non-null	object
3	summit_elev	330 non-null	int64
4	vertical_drop	330 non-null	int64
5	base_elev	330 non-null	int64
6	trams	330 non-null	int64
7	fastEight	164 non-null	float64
8	fastSixes	330 non-null	int64
9	fastQuads	330 non-null	int64
10	quad	330 non-null	int64
11	triple	330 non-null	int64
12	double	330 non-null	int64
13	surface	330 non-null	int64
14	total_chairs	330 non-null	int64
15	Runs	326 non-null	float64
16	TerrainParks	279 non-null	float64
17	LongestRun_mi	325 non-null	float64
18	SkiableTerrain_ac	327 non-null	float64
19	Snow Making_ac	284 non-null	float64
20	daysOpenLastYear	279 non-null	float64
21	yearsOpen	329 non-null	float64
22	averageSnowfall	316 non-null	float64
23	AdultWeekday	276 non-null	float64
24	AdultWeekend	279 non-null	float64
25	projectedDaysOpen	283 non-null	float64
26	NightSkiing_ac	187 non-null	float64
dtyp	es: float64(13), in	t64(11), object(3)

DATA PRE-PROCESSING

^{*} The resort is Silver Mountain, based in Colorado

0	82.317073
2	14.329268
1	3.353659
dty	oe: float64

	Name	Region	state	yearsOpen
34	Howelsen Hill	Colorado	Colorado	104.0
115	Pine Knob Ski Resort	Michigan	Michigan	2019.0

DATA CLEANING (cont.)

- 4. Our goal is to predict prices & as such, I removed ~14% of the resorts as their price data* was incomplete; thus not useful
- 5. Wikipedia () was used to directly draw population & state size data to establish per capita & acre metrics
- 6. For one of the resort's columns, data pertaining to the total years open was 2019. This was removed as that data is unlikely to be true**

EXPLORATORY DATA ANALYSIS

Two datasets were pulled from the previous step; namely:

1. ski_resort_data:

o provided by the Database Manager on information which was cleaned down to 277 resorts across 34 states

2. **state_summary**:

o an assembled dataset from Wikipedia which provided high level population / state size information

Name	Region	state	summit_elev	vertical_drop	base_elev	trams	fastEight	fastSixes	fastQuads	
Alyeska Resort	Alaska	Alaska	3939	2500	250	1	0.0	0	2	
Eaglecrest Ski Area	Alaska	Alaska	2600	1540	1200	0	0.0	0	0	
Hilltop Ski Area	Alaska	Alaska	2090	294	1796	0	0.0	0	0	
Arizona Snowbowl	Arizona	Arizona	11500	2300	9200	0	0.0	1	0	
Sunrise Park Resort	Arizona	Arizona	11100	1800	9200	0	NaN	0	1	

EXPLORATORY DATA ANALYSIS (cont.)

The categorical features are

- The resort names
- Respective region (which did not appear useful)
- The state in which the resort is located in

Numerical features inside the 2 datasets **are plentiful** & additional variables (x7) were added. **Initial correlations with Adult Weekend prices were drawn** (next page)

EXPLORATORY DATA ANALYSIS (cont.)

DATA PRE-PROCESSING

EXPLORATORY DATA ANALYSIS (cont.)

Using the Feature Correlation Heatmap (next page) I identified numerical features that have the strongest correlations to AdultWeekend prices (easier to read than previous page) & may provide valuable insights to achieve our goal of higher prices; notably the below & possible justification for the positive correlation:

- Vertical Drop
 - Desire for speed
- Total Chairs
 - Limited wait time(s)
- Runs
 - Value on different run options
- Longest Run
 - Desire for being in motion longer
- Snow Making acres
 - Some guarantee of snow

EXPLORATORY DATA ANALYSIS (Feature Correlation Heatmap)

DATA PRE-PROCESSING

EXPLORATORY DATA ANALYSIS (cont.)

Issues of the data & it's visualization that I addressed modeling include but are not limited to:

- I **filled in missing numbers with averages** of others to address missing data which may throw off scatter plots & quartile numbers
- I **utilized seaborn rather than** relying on **matplotlib** for scatter plots which may not be the ideal display candidate
- I **scaled the numbers** when required

PRE-PROCESSING

- 1. The **first** pre-processing step was to **split the data** into a training and testing splits, 70% / 30% respectively, & removing any object types so that the dataset is only composed of numeric types
- 2. **With the help of a standard mean** & the **DummyRegressor** functions, I then **determined the "Best Guess"** number which was determined to be **63.81**
- 3. Using the mean absolute error, I determined that on average the metric may be off by ~\$19
- 4. I then **scaled the data** to ensure that the data can work better together
- 5. Once scaled, the train & test R squared became ~81% & 72%. The mean absolute errors dropped down to ~\$9; much better than the \$19 unscaled guess
- 6. I also replaced any missing data but the results weren't much different

vertical_drop	10.767857
Snow Making_ac	6.290074
total_chairs	5.794156
fastQuads	5.745626
Runs	5.370555
LongestRun_mi	0.181814
trams	-4.142024
SkiableTerrain_ac	-5.249780
dtype: float64	
total_chairs fastQuads Runs LongestRun_mi trams SkiableTerrain_ac	5.745626 5.370555 0.181814 -4.142024

DATA PRE-PROCESSING (cont.)

- 7. Next, I ran the training & testing splits through the **Pipeline function**. With **cross-validation**, I determined that the **best k value is 8**
- 3. Using the linear coefficient numbers for each item versus AdultWeekend price, the **most positively** correlated item was vertical_drop

vertical_drop	10.767857
Snow Making_ac	6.290074
total chairs	5.794156
fastQuads	5.745626
Runs	5.370555
LongestRun_mi	0.181814
trams	-4.142024
SkiableTerrain_ac dtype: float64	-5.249780

DATA PRE-PROCESSING (cont.)

- 7. Next, I ran the training & testing splits through the Pipeline function. With cross-validation, I determined that the best k value is 8.
- 8. Using the linear coefficient numbers for each item versus AdultWeekend price, the most positively correlated item was vertical_drop & most negative correlation was SkiableTerrain_ac
 - Vertical Drop we touched on earlier (speed), but Skiable Terrain (acres) brings thoughts about a potential "exclusivity" consideration
 - Touch on this later

DATA PRE-PROCESSING (cont.)

- 9. I then moved to a Random Forest Generator which marginally improved our cross-validation results & showed that the top four dominate features were similar to those in the linear model
- 10. I chose the Random Forest Model for my modeling, as it: o Has a lower cross-validation mean absolute error ~\$1 o Exhibits less variability

To note, the verifying performance on the test set produced performance consistent with the cross-validation results.

ASSUMPTION

This model relies on the implicit assumption that all other resorts are largely setting prices based on how the market values certain facilities; essentially prices are set by the free market

RANDOM FORESTS

As mentioned, the model I used was the Random Forest Model with the goal of determining what price BMR's facilities support as well as sensitivity of changes to various resort parameters.

MODEL FINDINGS

As the business sought to review potential scenarios for either cutting costs or increasing revenue from ticket prices, I explored where BMR stands against BMR's competitors nationally

To begin, I find that BMR's price is slightly above the mean of the country

As the business sought to review potential scenarios for either cutting costs or increasing revenue from ticket prices, I explored where BMR stands against BMR's competitors nationally

To begin, I find that BMR's price is only slightly above the mean for the country **but the most expensive in Montana**. No actionable requirement, it's just something to note

Heading back to the Feature Correlation Heatmap, I start by investigating where BMR stands against competitors with the most positively correlated features for ticket prices:

- Vertical Drop

- Doing well albeit a notable amount have steeper drops

- Vertical Drop
- Total # of Chairs
 - Currently amongst the highest; others may be outliers

- Vertical Drop
- Total # of Chairs
- Total # of Runs
 - Currently quite competitive albeit some offer more

- Vertical Drop
- Total # of Chairs
- Total # of Runs
- Longest Run
 - Again, quite competitive albeit BMR's longest run is ~half of the longest

- Vertical Drop
- Total # of Chairs
- Total # of Runs
- Longest Run
- Acres covered by Snow Makers
 - Currently, very competitive

COST CUTTING OR REVENUE INCREASING SOLUTIONS MODELLED IN 4 SCENARIOS

SCENARIO 2 an additional chair lift

Increasing the vertical drop to a point 150 feet lower but requiring the installation of without additional snow making coverage

SCENARIO 3

Same as Scenario 2 albeit adding 2 acres of snow making cover

SCENARIO 4

Increasing the longest run by 0.2 miles to 3.5 miles in length & adding 4 additional acres of snow making cover to cover it

SCENARIO 1

Permanently closing down up to 10 of the least used runs

SCENARIO #1

The model shows that closing 1 run makes no difference to either Ticket Prices or Revenue.

The impact begins when 2 runs are closed. If 3 runs are closed, BMR could also close 4 or 5 as they have the same impact on Ticket prices and Revenue.

Closing 6 or more is when the model indicates a substantially negative impact would occur.

print(finis scenario increases support for ticket price by \${ticket2_increase:.2f}) print(f'Over the season, this could be expected to amount to \${revenue2_increase:.0f}')

This scenario increases support for ticket price by \$1.99 Over the season, this could be expected to amount to \$3474638

SCENARIO #2

I modeled increasing the vertical drop to a point 150 feet lower but requiring the installation of an additional chair lift without additional snow making coverage.

In this scenario, the model increases support for ticket prices by \$1.99 to \$82.99 which could increase revenue by \$3,474,638 over the season.

SCENARIO #3

I modeled the same as Scenario 2 but added 2 additional acres of snow making.

The model's **output was identical as Scenario 2** as the model **increases support for ticket prices by \$1.99** to \$82.99 & **may increase revenue by \$3,474,638 over the season**.

print(f'This scenario increases support for ticket price by \${ticket3_increase:.2f}')
print(f'Over the season, this could be expected to amount to \${revenue3_increase:.0f}')

This scenario increases support for ticket price by \$1.99 Over the season, this could be expected to amount to \$3474638

SCENARIO #4

I increased the longest run by 0.2 miles & added 4 acres of additional snow making cover.

The output showed no difference from the current. I believe this output is a result of the Random Forest Model placing the longest run low on the importance list.

06

NEXT STEPS

NEXT STEPS | GETTING TO THE ANSWER

<u>I advise Scenario 2 be taken under consideration</u> as it presented a possible solution. While Scenario 3 presents the same, I believe it may incorporate additional cost(s) above those in Scenario 2.

Additional analysis can be undertaken with different departments; notably:

- Accounting & Finance Department
 - Further details and or structure of operational expenses
- Operations Department
 - The perceived benefit to operations by an additional chair lift
- Database Department
 - Review data sourcing methodology; particularly those that were removed
- Marketing Department
 - The most negative correlation to prices was skiable terrain; exclusivity possibly

Other data that may paint an even clearer picture could be proximity to the respective airports. This may not be relevant but if BMR's distance to an airport is comparatively higher than the competition in the dataset, this may make it less competitive and negatively impact our models.

THANKS

rand.sobczak@gmail.com +1 313 447 8634

This is where I give credit to the ones who are part of this project.

- Presentation template by Slidesgo
- Icons by Flaticon
- Infographics by Freepik
- Images created by Freepik Freepik
- Author introduction slide photo created by Freepik
- Text & Image slide photo created by Freepik.com