

Tuning Robotti

Content

- 1. Background
- 2. Design Space Exploration in INTO-CPS
- 3. The Robotti Study: setup
- 4. The Pilot Study DSE:
 - Overview & Workflow
 - Workflow
 - Results
- 5. Discussion and Next Steps

Background

- Challenge in CPS Design lies in estimating properties of the physical product
- Can Design Space Exploration (DSE) help?
- We report progress on a pilot study
 - Aim: is to determine optimal steering control parameters for a field robot, Robotti
 - Minimise cross-track error by co-simulation of a simple model representing robot dynamics in a continuous-time (CT) formalism with a model representing the steering controller in a discreteevent (DE) formalism.
- So far ... model of machine dynamics tuned experimentally to ensure that it satisfactorily captures the motion of the robot over a series of scenarios

DSE in INTO-CPS

- DSE is activity of evaluating multi-models from a collection of alternatives (the design space) to reach a basis for subsequent more detailed design.
- Multi-models may differ in terms of design
 parameters or more fundamental properties such
 as architecture.
- Ranking against an objective or cost function.
- Design spaces may be large!
- Multiple competing objectives

Outline of INTO-CPS approach to DSE

The Robotti Study

Purpose: assess the viability of DSE as a tool in improving model fidelity, based on real-world data during field trials of the prototype product.

Field Tests and Scenarios

- 27 runs, 4 scenarios
- Each scenario is a pattern of control outputs selected to assess dynamical response to different motion profiles (not to reflect typical field use)
- Control outputs and GPS positions recorded for each run:

Baseline Robotti Multi-model

x,y are vehicle position theta is vehicle rotation

(Not used in pilot study)

velocity is vehicle velocity
delta_f is steering angle
(O = straight ahead)

Overview of DSE

- Configuration file defines and orchestrates
 DSE
- External python scripts code objective functions to quantify and rank designs.
- SN is manoeuvring scenario files
- MM is the multi-model
- Algorithm 1 compares simulated results with actual recorded Robotti positions.
- Config file specifies process parameters:
 - cAlpha is tyre stiffness
 - mass is total vehicle mass
 - mu is surface friction
- OP is optimisation algorithm returning best fitting parameter values for all scenarios

DSE Config

- DSE search algorithm
- Definition of objective function and simulation outputs
- Specifies ranges of design parameters used by exhaustive algorithm
- Identifies the scenarios

```
"algorithm": {"type":"exhaustive"},
3
 "objectiveDefinitions": {"externalScripts":{ "robottiCrossTrack":
 {"scriptFile": "robottiCrossTrack.py", "scriptParameters": {
6 "1":"time",
7 "2":"{Robotti}.RobottiInstance.y3 out",
8 "3":"{Robotti}.RobottiInstance.y4 out"}
9 },
10 "parameterConstraints":[],
11 "parameters":{
12 "{Robotti}.RobottiInstance.cAlphaF": [20k, 24.5k, 29k, 33.5k, 38k],
13 "{Robotti}.RobottiInstance.mu":[0.3,0.4,0.5,0.6,0.7],
14 "{Robotti}.RobottiInstance.m robot":[1k,1.5k,2k,2.5k,3k]
15 },
16 "scenarios": ["sin1, sin2, sin3,
                 turn ramp1, turn ramp2, turn ramp3,
                 speed ramp1, speed ramp2,
                 speed step1, speed step2, speed step3"]
17 }
```


Objective function

- Aim for minimal distance between measured and simulated results
- Implemented as a Python script
- Cost computed for all permutations of the parameters and scenarios and returned as dse_results.csv

rmse =
$$\frac{\sum_{i=1}^{n} \sqrt{(x_{i2} x_{i1})^2 - (y_{i2} yi_1)^2}}{n}$$

Optimum parameter search

- Find best fitting parameter value of the model
- Implemented as external Python script

$$f^- = arg \min \sum_{s \in S} \mathcal{E}_s$$
 (cAlpha,mass,mu)

Summary of Results

- 12 scenarios, each with 125 parameter value variations
- Speed-step scenario error value unaffected by parameter variations and so had no effect on tuning parameters.

scenario	min_error	max_error	average_error	computed
sin1	1.188	1.371	1.323	1.318 (-5E-3)
sin2	1.680	1.960	1.884	1.891 (+7e-3)
sin3	2.139	9.218	4.561	5.486 (+9.25e-1)
speed_step1	0.742	0.742	0.742	0.742(0)
speed_step2	0.578	0.578	0.578	0.578 (0)
speed_step3	0.482	0.482	0.482	0.482(0)
turn_ramp	2.056	2.222	2.188	2.194 (+6e-3)
turn_ramp2	1.408	1.560	1.525	1.542 (+1.7e-2)
turn_ramp3	2.233	2.497	2.431	2.456 (+2.5e-2)
speed_ramp1	0.307	5.120	3.244	0.312 (-2.932)
speed_ramp2	0.367	3.965	3.328	0.430 (-2.898)
speed_ramp3	0.431	1.460	1.214	0.431 (-1.1709)

Best fitting parameter values are CAlphaF= 38000, mass= 1000, mu = 0.3 resulting in a total mean cross track error of 17.865. These give above average errors in 5 and below average errors in 4.

Summary of Results

- Sin1 and turn_ramp1 manoeuvres show similar correlations to chaging parameter values
- ... but speed_ramp has lowest error at mu=0.3 and only slightly affected by the other parameters.
- For most groups of scenarios, the parameters affect error unevenly.

Observations

- Much of the work was initial data engineering
- Demonstrated DSE-based tuning of the model to real observed data over three design parameters against objective based on men deviation between model and field data.
- Study incomplete: next step is co-simulation with ADRC controller and confirm extent of fidelity to field trial data.
- Requirement for Python 2.7
- Ranking set up for two parameters
 - Awkward to find 1-parameter ranking
 - Missed ability to compare across scenarios
- Considering scenarios as well as parameters
 - Parameters not influencing speed_step,

