

IAA6007: Computer Architecture Logisim을 이용한 기본 컴퓨터 설계 실습 (Micro-programmed control)

Wooil Kim
Dept. of Computer Science & Engineering
Incheon National University

2019 Fall

기본 컴퓨터 설계

- Micro-programed control 구조를 갗는 8-bit 기본 컴퓨터
 - 2가지 명령어 수행
- Logisim을 이용하여 설계
 - 회로설계
 - 다음의 프로그램을 메모리에 적재하여 수행 동작 확인
 - 메모리에 저장되어 있는 값을 AC와 더한 후 임의의 주소에 저장

Logisim

- GUI tool for designing & simulating digital logic circuits
- Webpage
 - http://www.cburch.com/logisim/index.html
 - Download & documentations

명령어

- 명령어 형식
 - 8 bit 명령어

• 메인메모리: 16(24) 번지 x 8 비트

명령어

• 지원 명령어

Symbol	Opcode	Description	
ADD	000	$AC \leftarrow AC + M[EA]$	
STORE	001	$M[EA] \leftarrow AC$	

마이크로 명령어

- 마이크로 명령어 형식
 - 16 bit 명령어

• 제어 메모리: 64(26) 번지 x 16 비트

마이크로 명령어

• 마이크로 연산 필드

F1	Micro-op.	Sym.	
00	None	NOP	
01	$AC \leftarrow AC + DR$	ADD	
10	$AR \leftarrow DR(0-3)$	DRTAR	
11	$AR \leftarrow PC$	PCTAR	
F2	Micro-op.	Sym.	
00	Name	NOD	

F2	Micro-op.	Sym.
00	None	NOP
01	$DR \leftarrow M[AR]$	READ
10	$DR \leftarrow AC$	ACTDR

F3	Micro-op.	Sym.
00	None	NOP
01	PC ← PC + 1	INCPC
10	$M[AR] \leftarrow DR$	WRITE

마이크로 명령어

• 조건 필드

CD	Condition	Symbol	Comments
00	Always = 1	U	Unconditional branch
01	DR(7)	I	Indirect address bit

• 분기 필드

BR	Symbol	Function
00	JMP	CAR \leftarrow AD if condition = 1 CAR \leftarrow CAR + 1 if condition = 0
01	CALL	CAR \leftarrow AD, SBR \leftarrow CAR + 1 if condition = 1 CAR \leftarrow CAR + 1 if condition = 0
10	RET	CAR ← SBR (Return from subroutine)
11	MAP	$CAR(2-4) \leftarrow DR(4-6), CAR(0,1,5) \leftarrow 0$

컴퓨터 구성

- 메모리
 - 메인 메모리, 제어 메모리
- 레지스터 (그림 7-4)
 - AR, PC, DR, AC, CAR, SBR
- 멀티플렉서 (그림 7-4)
- 가산기

Figure 7-4 Computer hardware configuration.

마이크로 프로그램 설계

• 마이크로 프로그램

Label	Micro operation	CD	BR	AD
	ORG 0			
ADD:	NOP	1	CALL	INDRCT
	READ	U	JMP	NEXT
	ADD	U	JMP	FETCH
	ORG4			
STORE:	NOP	I	CALL	INDRCT
	ACTDR	U	JMP	NEXT
	WRITE	U	JMP	FETCH
	ORG 32			
FETCH:	PCTAR	U	JMP	NEXT
	READ, INCPC	U	JMP	NEXT
	DRTAR	U	MAP	
INDRCT	READ	U	JMP	NEXT
	DRTAR	U	RET	

제어 회로 설계 1

- 제어 회로 설계 (그림 7-7)
 - F1, F2, F3 디코더
 - 각 마이크로 연산을 위한 제어신호

Figure 7-7 Decoding of microoperation fields.

제어회로설계2

• 주소 sequencer 설계 (그림 7-8)

Figure 7-8 Microprogram sequencer for a control memory.