Introduction to Geometry (20222)

2018

COURSEWORK

This assignment counts for 20% of your marks.

Solutions are due by 22 March, 3pm

Write solutions in the provided spaces.

STUDENT'S NAME:

Academic Advisor (Tutor):

a) Let (x^1, x^2, x^3) be coordinates of the vector \mathbf{x} , and (y^1, y^2, y^3) be coordinates of the vector \mathbf{y} in \mathbf{R}^3 .

Does the formula $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^3 + x^3 y^2$ define a scalar product on \mathbf{R}^3 ? Justify your answer.

b) Consider the matrix $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Calculate the matrix A^2 in the case, if $\theta = \frac{\pi}{4}$.

Calculate the matrix A^{18} in the case, if $\theta = \frac{\pi}{108}$.

Calculate the matrix $A^T \circ A^{2018} \circ A^T$ in the case, if $\theta = \frac{\pi}{14}$ (here A^T is a transposed matrix.)

Find all 2×2 orthogonal matrices A such that

$$2A^3 = \begin{pmatrix} \sqrt{3} & -1\\ 1 & \sqrt{3} \end{pmatrix}.$$

 \mathbf{c}) In oriented Euclidean space \mathbf{E}^3 consider the following linear operator

$$A(\mathbf{x}) = \mathbf{x} - \mathbf{a} \times (\mathbf{a} \times \mathbf{x}),$$

where the vector $\mathbf{a} = \mathbf{e} + 2\mathbf{f} + 2\mathbf{g}$. Here $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is an orthonormal basis in \mathbf{E}^3 defining orientation, and \times is the vector product.

Find the eigenvectors of operator A. (Describe eigenvectors via the basis vectors $\mathbf{e}, \mathbf{f}, \mathbf{g}.)$

Calculate the trace and determinant of the operator A.

a) Consider a vector $\mathbf{a} = 2\mathbf{e} + 3\mathbf{f} + 6\mathbf{g}$, where $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is an orthonormal basis in \mathbf{E}^3 . Show that the angle θ between vectors \mathbf{a} and \mathbf{g} belongs to the interval $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$.

Find a unit vector **b** such that this vector is orthogonal to vectors **a** and **g**, and the basis $\{a, b, g\}$ has the same orientation as the basis $\{e, f, g\}$.

Calculate the angle between vectors **b** and **e**.

b) In oriented Euclidean space \mathbf{E}^3 consider the following function of three vectors:

$$F(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = (\mathbf{X}, \mathbf{Y} \times \mathbf{Z}),$$

where (,) is the scalar product and $\mathbf{Y} \times \mathbf{Z}$ is the vector product in \mathbf{E}^3 .

Show that $F(\mathbf{X}, \mathbf{X}, \mathbf{Z}) = 0$ for arbitrary vectors \mathbf{X} and \mathbf{Z} .

Deduce, that $F(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = -F(\mathbf{Y}, \mathbf{X}, \mathbf{Z})$ for arbitrary vectors $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$.

What is the geometrical meaning of the function F?

- c) Let ABCD be a rhombus (parallelogram with equal sides) such that
- i) vertex A is at the origin
- ii) the diagonal AC belongs to the line y = x.
- iii) vertex B has integer coordinates.

Find the area of this rhombus, if the vertex B has coordinates (20, 21). Justify your answer.

Find all the rhombi, which obey the conditions i), ii) and iii) above, and which have area S=25.

We consider in this question a 3-dimensional Euclidean space. We suppose that $\{e, f, g\}$ is an orthonormal basis in this space.

a) Consider an operator P such that

$$P(\mathbf{e}) = \frac{2}{3}\mathbf{e} + \frac{2}{3}\mathbf{f} + \frac{1}{3}\mathbf{g}, P(\mathbf{f}) = -\frac{1}{3}\mathbf{e} + \frac{2}{3}\mathbf{f} - \frac{2}{3}\mathbf{g}, P(\mathbf{g}) = -\frac{2}{3}\mathbf{e} + \frac{1}{3}\mathbf{f} + \frac{2}{3}\mathbf{g}.$$

Show, that it is an orthogonal operator preserving orientation.

Show, that this operator defines rotation, and find the axis and the angle of this rotation.

b) Let P be a linear orthogonal operator acting in \mathbf{E}^3 , such that it preserves the orientation of \mathbf{E}^3 and the following relations hold:

$$P(\mathbf{e}) = \cos \frac{\pi}{5} \mathbf{e} + \sin \frac{\pi}{5} \mathbf{f}, \quad P(\mathbf{g}) = -\mathbf{g}.$$

Write down the matrix of operator P in the basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$.

Show that this operator defines rotation, and find the axis and the angle of this rotation.

c) Orthogonal operator P obeys the condition

$$P \neq I$$
, and $P^3 = I$.

Show that P is a rotation operator, and calculate the angle of rotation.