A coroot calculation

March 4, 2023

Abstract

An informal account of the proof of the lemma is_root_system.coroot_symmetry_apply_eq.

1 The coroot of the reflection of a root

Recall our definition of the (pre)symmetry associated to a pair:

Definition 1.1. Let k be a field of characteristic zero and V a vector space over k. Given a vector $x \in V$ and a linear form $f \in V^*$ the **pre-symmetry** associated to the pair (x, f) is the linear endomorphism of V:

$$s_{x,f}: y \mapsto y - f(y)x.$$

If the condition f(x) = 2 holds then $s_{x,f}$ is invertible, satisfies $s_{x,f}^{-1} = s_{x,f}$, and we call it a **symmetry**.

Recall the uniqueness lemma:

Lemma 1.2. Let k be a field of characteristic zero, V a vector space over k, and $\Phi \subseteq V$ a finite subset which spans V. Given a vector $x \in V$ and two linear forms $f, g \in V^*$ such that:

- f(x) = 2 and $s_{x,f}(\Phi) \subseteq \Phi$,
- g(x) = 2 and $s_{x,g}(\Phi) \subseteq \Phi$,

then f = g.

Recall the definition of a root system:

Definition 1.3. Let k be a field of characteristic zero, V and vector space over k, and $\Phi \subseteq V$. Then we say Φ is a **root system** for V over k if:

- Φ is finite,
- Φ spans V,
- for all $\alpha \in \Phi$, there exists $f \in V^*$ such that f(x) = 2 and $s_{x,f}(\Phi) \subseteq \Phi$,
- for all $\alpha \in \Phi$ and $f \in V^*$ such that f(x) = 2 and $s_{x,f}(\Phi) \subseteq \Phi$, we have $f(\Phi) \subseteq \mathbb{Z} \subseteq k$.

We call the elements of $\alpha \in \Phi$ roots.

Recall the definition of the coroot and symmetry of a root:

Definition 1.4. Let Φ be a root system for V over k and let $\alpha \in \Phi$ be a root. We define the **coroot** $\alpha^* \in V^*$ to be the unique linear form such that:

- $\alpha^*(\alpha) = 2$,
- $s_{\alpha,\alpha^*}(\Phi) \subseteq \Phi$.

We emphasise that uniqueness follows from lemma 1.2. Furthermore we write:

$$s_{\alpha} = s_{\alpha,\alpha^*},$$

and speak of the **symmetry** of a root.

Now if α and β are two roots of some root system then $s_{\alpha}(\beta) \in \Phi$ is another root and thus has a coroot $(s_{\alpha}(\beta))^*$. In order to show that the set of coroots form a root system in V^* we need to calculate this coroot in terms of the coroots α^* and β^* . The following lemma gives the answer:

Lemma 1.5 (is_root_system.coroot_symmetry_apply_eq). Let Φ be a root system for V over k and let $\alpha, \beta \in \Phi$ be a roots, then:

$$(s_{\alpha}(\beta))^* = \beta^* - (\beta^*(\alpha))\alpha^*.$$

Proof. Let $\gamma = s_{\alpha}(\beta)$ and $g = \beta^* - (\beta^*(\alpha))\alpha^*$. By the uniqueness lemma 1.2 it is sufficient to show that:

- (i) $q(\gamma) = 2$,
- (ii) $s_{\gamma,q}(\Phi) \subseteq \Phi$.

We did the proof of (i) together on Wednesday: you just unfold all definitions, expand brackets, and use $\alpha^*(\alpha) = \beta^*(\beta) = 2$.

To prove (ii), since s_{α} and s_{β} both preserve Φ , it is sufficient to show that:

$$s_{\gamma,q} = s_{\alpha} \circ s_{\beta} \circ s_{\alpha}.$$

To prove this we just pick any vector $v \in V$ and unfold the left and right hand sides applied to v and observe that they are equal.