

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría analítica I - PM - LM - LCC - PF - LF - 2020

Relaciones sobre un conjunto. Problemas resueltos.

- 13. En cada uno de los siguientes casos, determinar si la relación \mathcal{R} definida en \mathbb{Z} es reflexiva, simétrica, transitiva o antisimétrica. Para los casos a, b, c, d y e determinar $\mathcal{R}(1)$ y $\mathcal{R}^{-1}(1)$.
 - (a) $(x,y) \in \mathcal{R}$ si $x = y^2$;

(d) $(x,y) \in \mathcal{R}$ si x+y es par;

(b) $(x,y) \in \mathcal{R} \text{ si } x > y;$

(e) $(x,y) \in \mathcal{R}$ si x-y es impar;

(c) $(x,y) \in \mathcal{R} \text{ si } x \geq y;$

(f) $(x,y) \in \mathcal{R}$ si $x^3 + y^3$ es par.

Solución:

Haremos solamente los apartados a,b y d.

Comencemos recordando algunas definiciones.

Si \mathcal{R} es una relación definida en un conjunto A y $x \in A$, los conjuntos $\mathcal{R}(x)$ y $\mathcal{R}^{-1}(x)$ se definen, respectivamente, como

$$\mathcal{R}(x) = \{ y \in A : (x, y) \in \mathcal{R} \}$$

у

$$\mathcal{R}^{-1}(x) = \{ y \in A : (y, x) \in \mathcal{R} \}.$$

Una relación \mathcal{R} definida en un conjunto A se dice:

- i) reflexiva si el par $(x, x) \in \mathcal{R}$ para todo $x \in A$.
- ii) simétrica si

$$(x,y) \in \mathcal{R} \Rightarrow (y,x) \in \mathcal{R}.$$

iii) antisimétrica si

$$((x,y) \in \mathcal{R} \land (y,x) \in \mathcal{R}) \Rightarrow x = y.$$

iv) transitiva si

$$((x, y) \in \mathcal{R} \land (y, z) \in \mathcal{R}) \Rightarrow (x, z) \in \mathcal{R}.$$

(a) Consideremos la relación $\mathcal R$ definida en $\mathbb Z$ por $(x,y)\in\mathcal R$ sii $x=y^2$. Para ver que $\mathcal R$ no es reflexiva es suficiente con exhibir un elemento $x\in\mathbb Z$ tal que el par $(x,x)\notin\mathcal R$. Por ejemplo, si elegimos el elemento x=2, tenemos que, como $2\neq 2^2$, el par $(2,2)\notin\mathcal R$. También, para ver que $\mathcal R$ no es simétrica, basta con mostrar un par de elementos $x,y\in\mathbb Z$ tales que $(x,y)\in\mathcal R$ pero $(y,x)\notin\mathcal R$. Por ejemplo, el par $(4,2)\in\mathcal R$ (puesto que $4=2^2$), mientras que $(2,4)\notin\mathcal R$ ($2\neq 4^2$). $\mathcal R$ tampoco es transitiva. En efecto, $(16,4)\in\mathcal R$ y $(4,2)\in\mathcal R$, pero $(16,2)\notin\mathcal R$. Veamos ahora que la relación es antisimétrica. Para esto, supongamos que $(x,y)\in\mathcal R$ y $(y,x)\in\mathcal R$. Luego, tenemos que $x=y^2$ y $y=x^2$. De estas igualdades sigue que $x=x^4$, y por lo tanto, tenemos que x=0 o x=1. Ahora, como $y=x^2$, si x=0 tenemos que y=0, mientras que si x=1 resulta y=1. Así, si $(x,y)\in\mathcal R$ y $(y,x)\in\mathcal R$, entonces x=y.

Finalmente,

$$\mathcal{R}(1) = \{ y \in \mathbb{Z} : (1, y) \in \mathcal{R} \}$$

= $\{ y \in \mathbb{Z} : 1 = y^2 \}$
= $\{ -1, 1 \},$

У

$$\mathcal{R}^{-1}(1) = \{x \in \mathbb{Z} : (x,1) \in \mathcal{R}\}\$$

= $\{x \in \mathbb{Z} : x = 1^2\}\$
= $\{1\}.$

(b) Sea $\mathcal R$ la relación definida en $\mathbb Z$ por $(x,y)\in \mathcal R$ sii x>y. $\mathcal R$ no es reflexiva $((1,1)\notin \mathcal R)$, $\mathcal R$ no es simétrica $((2,1)\in \mathcal R)$, mientras que $(1,2)\notin \mathcal R$. $\mathcal R$ es transitiva. En efecto, si $(x,y)\in \mathcal R$ y $(y,z)\in \mathcal R$, entonces tenemos que x>y e y>z, de donde sigue que x>z, i.e., $(x,z)\in \mathcal R$. Para ver que $\mathcal R$ es antisimétrica, notemos que no existe ningún par de enteros x,y para los cuales se verifiquen simultáneamente las desigualdades x>y e y>x. Luego, la condición

$$((x,y) \in \mathcal{R} \land (y,x) \in \mathcal{R}) \Rightarrow x = y,$$

se verifica trivialmente. Finalmente,

$$\mathcal{R}(1) = \{ y \in \mathbb{Z} : (1, y) \in \mathcal{R} \}$$
$$= \{ y \in \mathbb{Z} : 1 > y \}$$

У

$$\mathcal{R}^{-1}(1) = \{x \in \mathbb{Z} : (x,1) \in \mathcal{R}\}$$
$$= \{x \in \mathbb{Z} : x > 1\}.$$

(d) Sea $\mathcal R$ la relación definida en $\mathbb Z$ por $(x,y)\in \mathcal R$ sii x+y es par. $\mathcal R$ es reflexiva. En efecto, x+x=2x es par, cualquiera sea $x\in \mathbb Z$, i.e., para todo $x\in \mathbb Z$, $(x,x)\in \mathcal R$. $\mathcal R$ es simétrica (si x+y es par, entonces y+x es par). $\mathcal R$ es transitiva. Para ver esto, supongamos que $(x,y)\in \mathcal R$ y $(y,z)\in \mathcal R$. Luego, existen $k,j\in \mathbb Z$ tales que x+y=2k y y+z=2j. Sumando miembro a miembro las igualdades anteriores tenemos que

$$x + y + y + z = 2k + 2j,$$

de donde sigue que

$$x+z = 2k+2j-2y$$
$$= 2(k+j-y).$$

Esto muestra que x+z es par, o equivalentemente, $(x,z)\in\mathcal{R}$. \mathcal{R} no es antisimétrica $((1,3)\in\mathcal{R}$ y $(3,1)\in\mathcal{R}$ pero $1\neq 3$).

Los conjuntos $\mathcal{R}(1)$ y $\mathcal{R}^{-1}(1)$ están dados por

$$\mathcal{R}(1) = \{ y \in \mathbb{Z} : (1, y) \in \mathcal{R} \}$$

= \{ y \in \mathbb{Z} : 1 + y = 2k, k \in \mathbb{Z} \}
= \{ y \in \mathbb{Z} : y = 2k - 1, k \in \mathbb{Z} \},

у

$$\mathcal{R}^{-1}(1) = \{x \in \mathbb{Z} : (x,1) \in \mathcal{R}\}\$$

= \{x \in \mathbb{Z} : x + 1 = 2k, k \in \mathbb{Z}\}\
= \{x \in \mathbb{Z} : x = 2k - 1, k \in \mathbb{Z}\},

i.e., tanto $\mathcal{R}(1)$ como $\mathcal{R}^{-1}(1)$ están constituidos por los enteros impares.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría analítica I - PM - LM - LCC - PF - LF - 2020

- 14. Sea $A = \{1, 2, 3, 4\}$. Proporcionar ejemplos de relaciones en A que tengan las propiedades especificadas en cada caso.
 - a) Reflexiva, simétrica y no transitiva.
 - b) Reflexiva, no simétrica y no antisimétrica.
 - c) Reflexiva, antisimétrica y no transitiva.
 - d) No reflexiva, simétrica y transitiva.

Solución:

Haremos solo los apartados a y b.

(a) Buscamos una relación $\mathcal R$ definida sobre A que sea reflexiva, simétrica y no transitiva. Como queremos que $\mathcal R$ sea reflexiva, los elementos de la forma (x,x), con $x\in A$, deben estar en $\mathcal R$, i.e., $\{(1,1),(2,2),(3,3),(4,4)\}\subseteq \mathcal R$. Notemos que si $\mathcal R$ fuese la relación $\mathcal R=\{(1,1),(2,2),(3,3),(4,4)\}$, resultaría reflexiva y simétrica pero también transitiva, por lo que debemos agregar algo más. Consideremos la relación

$$\mathcal{R} = \{(1,1), (1,3), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4)\}.$$

Así definida, \mathcal{R} satisface las condiciones que pide el enunciado. En efecto, \mathcal{R} es, claramente, reflexiva y simétrica, pero \mathcal{R} no es transitiva $((1,3) \in \mathcal{R} \text{ y } (3,2) \in \mathcal{R}, \text{ pero } (1,2) \notin \mathcal{R}).$

(b) Queremos definir en A una relación que sea reflexiva, no simétrica y no antisimétrica. Veamos que la relación

$$\mathcal{R} = \{(1,1), (1,3), (2,2), (3,1), (3,2), (3,3), (4,4)\}$$

cumple con estos requisitos. \mathcal{R} es, claramente, reflexiva. \mathcal{R} no es simétrica $((3,2) \in \mathcal{R}, \text{ pero } (2,3) \notin \mathcal{R})$. \mathcal{R} no es antisimétrica $((1,3) \in \mathcal{R}, \text{ y} (3,1) \in \mathcal{R}, \text{ pero } 1 \neq 3)$.

- 17. Sea A un conjunto finito no vacío con |A|=n. Determinar si las siguientes afirmaciones son verdaderas o falsas justificando adecuadamente la respuesta.
 - a) Si \mathcal{R} es una relación reflexiva sobre A, entonces $|\mathcal{R}| \geq n$.
 - b) Si \mathcal{R}_1 y \mathcal{R}_2 son relaciones en A y $\mathcal{R}_1 \subseteq \mathcal{R}_2$ entonces, si \mathcal{R}_1 es reflexiva (simétrica, antisimétrica o transitiva), entonces \mathcal{R}_2 es reflexiva (resp. simétrica, antisimétrica o transitiva).
 - c) Si \mathcal{R}_1 y \mathcal{R}_2 son relaciones en A y $\mathcal{R}_1 \subseteq \mathcal{R}_2$ entonces, si \mathcal{R}_2 es reflexiva (simétrica, antisimétrica o transitiva), entonces \mathcal{R}_1 es reflexiva (resp. simétrica, antisimétrica o transitiva).

Solución:

- (a) La afirmación es verdadera. En efecto, si $A=\{a_1,a_2,...,a_n\}$, entonces, como $\mathcal R$ es una relación reflexiva sobre A, tenemos que $\{(a_1,a_1),(a_2,a_2),...,(a_n,a_n)\}\subseteq \mathcal R$. Por lo tanto $|\mathcal R|\geq n$.
- (b) Si \mathcal{R}_1 es reflexiva, entonces $\{(x,x):x\in A\}\subseteq \mathcal{R}_1$ y como $\mathcal{R}_1\subseteq \mathcal{R}_2$, resulta $\{(x,x):x\in A\}\subseteq \mathcal{R}_2$, i.e., \mathcal{R}_2 es reflexiva. Por lo tanto la primera afirmación es verdadera.

Para mostrar que \mathcal{R}_1 puede ser simétrica o transitiva sin que necesariamente lo sea \mathcal{R}_2 , consideremos las relaciones \mathcal{R}_1 y \mathcal{R}_2 definidas en $A = \{1, 2, 3\}$ por

$$\mathcal{R}_1 = \{(2,2), (2,3), (3,2), (3,3)\}$$

У

$$\mathcal{R}_2 = \{(1,3), (2,2), (2,3), (3,2), (3,3)\}$$

Claramente, $\mathcal{R}_1 \subseteq \mathcal{R}_2$, \mathcal{R}_1 es simétrica y además transitiva, mientras que \mathcal{R}_2 no es simétrica ni transitiva.

Para ver que \mathcal{R}_1 puede ser antisimétrica sin que necesariamente lo sea \mathcal{R}_2 , consideremos las relaciones \mathcal{R}_1 y \mathcal{R}_2 definidas en $A = \{1, 2, 3\}$ por

$$\mathcal{R}_1 = \{(2,2), (3,3)\}$$

У

$$\mathcal{R}_2 = \{(2,2), (2,3), (3,2), (3,3)\}$$

Claramente, $\mathcal{R}_1 \subseteq \mathcal{R}_2$, \mathcal{R}_1 es antisimétrica, mientras que \mathcal{R}_2 no es antisimétrica.

(c) Veamos que \mathcal{R}_2 puede ser reflexiva sin que lo sea \mathcal{R}_1 . Por ejemplo, si \mathcal{R}_1 y \mathcal{R}_2 son las relaciones definidas en $A = \{1, 2, 3\}$ por

$$\mathcal{R}_1 = \{(2,2), (3,2), (3,3)\}$$

У

$$\mathcal{R}_2 = \{(1,1), (2,2), (2,3), (3,2), (3,3)\},\$$

tenemos que $\mathcal{R}_1\subseteq\mathcal{R}_2$ y \mathcal{R}_2 es reflexiva, mientras que \mathcal{R}_1 no lo es.

Para ver que si \mathcal{R}_2 es antisimétrica, entonces \mathcal{R}_1 también lo es, supongamos que \mathcal{R}_2 es antisimétrica y consideremos $x,y\in A$ tales que $(x,y)\in \mathcal{R}_1$ y $(y,x)\in \mathcal{R}_1$. Como $\mathcal{R}_1\subseteq \mathcal{R}_2$, tenemos que $(x,y)\in \mathcal{R}_2$ y $(y,x)\in \mathcal{R}_2$. Luego, como supusimos que \mathcal{R}_2 es antisimétrica, resulta que x=y. En consecuencia, \mathcal{R}_1 también es antisimétrica.