

METHOD FOR THE SELECTIVE PRODUCTION OF RACEMIC METALLOCENE COMPLEXES

Patent number: WO0200672

Publication date: 2002-01-03

Inventor: DAMRAU ROBERT [DE]; MUELLER PATRIK [DE]; ROYO EVA [DE]; BRINTZINGER HANS-HERBERT [CH]

Applicant: BASELL POLYOLEFINE GMBH [DE]; DAMRAU ROBERT [DE]; MUELLER PATRIK [DE]; ROYO EVA [DE]; BRINTZINGER HANS H [CH]

Classification:

- **international:** C07F17/00; C07B31/00; C08F4/00

- **european:** C07B53/00; C07F17/00; C08F10/00

Application number: WO2001EP07389 20010628

Priority number(s): DE20001030638 20000629

Also published as:

US2004010157 (A1)

DE10030638 (A1)

EP1294734 (B1)

Cited documents:

WO9209545

WO9502567

EP0970964

XP001024875

XP004093720

[more >>](#)

Abstract of WO0200672

The invention relates to a method for producing racemic metallocene complexes by reacting bridged or non-bridged transition metal complexes with cyclopentadienyl derivatives of alkaline or alkaline earth metals and optionally, subsequently substituting the phenolate ligands.

Data supplied from the esp@cenet database - Worldwide

This Page Blank (uspto)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
3. Januar 2002 (03.01.2002)

(10) Internationale Veröffentlichungsnummer
WO 02/00672 A1

(51) Internationale Patentklassifikation⁷: C07F 17/00, C07B 31/00, C08F 4/00

(21) Internationales Aktenzeichen: PCT/EP01/07389

(22) Internationales Anmeldedatum:
28. Juni 2001 (28.06.2001)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
100 30 638.1 29. Juni 2000 (29.06.2000) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): BASELL POLYOLEFINE GMBH [DE/DE]; Am Yachthafen 2, 77694 Kehl (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): DAMRAU, Robert [DE/DE]; Bodanstrasse 21, 78462 Konstanz (DE). MÜLLER, Patrik [DE/DE]; Erfurter Strasse 91, 67663 Kaiserslautern (DE). ROYO, Eva [ES/DE]; Bodanplatz 3, 78462 Konstanz (DE). BRINTZINGER, Hans-Herbert [DE/CH]; Unterdorfstrasse 17, 8274 Tägerwilen (CH).

(74) Anwalt: BASELL POLYOLEFINE GMBH; Intellectual Property, F 206, 67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

A1

(54) Title: METHOD FOR THE SELECTIVE PRODUCTION OF RACEMIC METALLOCENE COMPLEXES

WO 02/00672

(54) Bezeichnung: VERFAHREN ZUR SELEKTIVEN HERSTELLUNG RACEMISCHER METALLOCENKOMPLEXE

(57) Abstract: The invention relates to a method for producing racemic metallocene complexes by reacting bridged or non-bridged transition metal complexes with cyclopentadienyl derivatives of alkaline or alkaline earth metals and optionally, subsequently substituting the phenolate ligands.

(57) Zusammenfassung: Verfahren zur Herstellung von racemischen Metallocenkomplexen durch Umsetzung von verbrückten oder nicht-verbrückten Übergangsmetallkomplexen mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen und gegebenenfalls anschließende Substitution der Phenolatliganden.

Verfahren zur selektiven Herstellung racemischer Metallocenkomplexe

5 Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von racemischen Metallocenkomplexen durch Umsetzung von verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexen

10 der allgemeinen Formel I

15

20 in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal,
25 Chrom, Molybdän, Wolfram, sowie Elemente der
III. Nebengruppe des Periodensystems und der
Lanthanoiden,

X gleich oder verschieden Fluor, Chlor, Brom, Iod,
Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl,
30 Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6
bis 20 C-Atomen im Arylrest, -OR¹⁰ oder -NR¹⁰R¹¹,

n eine ganze Zahl zwischen 1 und 4, wobei n der Wertigkeit
keit von M minus der Zahl 2 entspricht,

35 R¹, R⁸ gleich oder verschieden Wasserstoff, Fluor, Chlor,
Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges
Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl
als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl
mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-
40 Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen
in Alkylrest und 6 bis 20 C-Atomen im Arylrest,
Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis
C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,
wobei die genannten Reste teilweise oder vollständig
45 mit Heteroatomen substituiert sein können,

2

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

5

R² bis R⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,
10 benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste können vollständig
15 oder teilweise mit Heteroatomen substituiert sein,
20 -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

25

R¹⁰, R¹¹ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

30

Y, Y¹ gleich oder verschieden

35

40

45

3

= BR¹², = AlR¹², -Ge-, -Sn-, -O-, -S-, = SO, = SO₂,
= NR¹², = CO, = PR¹² oder = P(O)R¹²,

wobei

5 R¹² gleich oder verschieden Wasserstoff, Halogen,
C₁-C₁₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₆-C₁₀-Fluoraryl,
C₆-C₁₀-Aryl, C₁-C₁₀-Alkoxy, C₂-C₁₀-Alkenyl,
C₇-C₄₀-Arylalkyl, C₈-C₄₀-Arylalkenyl, C₇-C₄₀-Alkylaryl
10 bedeuten, oder wobei zwei Reste R¹² mit den sie
verbindenden Atomen einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

m 0, 1, 2, 3 bedeutet,

15 oder Y nicht-verbrückend ist und für zwei Reste R'
und R" steht, wobei

R' und R" gleich oder verschieden sind und für Wasserstoff,
20 Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis
8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis
C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl,
Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6
bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10
25 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Aryl-
rest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis
C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,
oder zusammen mit benachbarten Resten R⁴ oder R⁵ für
30 4 bis 15 C-Atome aufweisende gesättigte, teilweise
gesättigte oder für ungesättigte cyclische Gruppen
stehen, und die genannten Rest vollständig oder teil-
weise mit Heteroatomen substituiert sein können,

35 -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder
verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃-
bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸,
gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis
C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

40 mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen,
erwärmen des so erhaltenen Reaktionsgemisches auf eine Temperatur
im Bereich von -78 bis 250°C, gegebenenfalls unter Zusatz von Ra-
dikalalen oder Radikalbildnern und gegebenenfalls anschließende
Substitution des verbrückten phenolischen Liganden oder der bei-
45 den nicht verbrückten phenolischen Liganden zum Mono- oder Bisub-
stitutionsprodukt; racemische Metallocenkomplexe der allgemeinen
Formel III

4

10 in der die Substituenten und Indizes folgende Bedeutung haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal,
Chrom, Molybdän, Wolfram, sowie Elemente der
15 III. Nebengruppe des Periodensystems und der
Lanthanoiden,

wobei:

25 R¹, R⁸ gleich oder verschieden Wasserstoff, Fluor, Chlor,
Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges
Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl
als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl
30 mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-
Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen
in Alkylrest und 6 bis 20 C-Atomen im Arylrest,
Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis
C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,
35 wobei die genannten Reste teilweise oder vollständig
mit Heteroatomen substituiert sein können,
-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder
verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃-
40 bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸,
gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis
C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl
R² bis R⁷ gleich oder verschieden Wasserstoff, C₁- bis
45 C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das
seinerseits ein C₁- bis C₁₀-Alkylrest tragen kann -,
C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im
Alkylrest und 6 bis 20 C-Atomen im Arylrest, Aryl-

5

alkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

5 benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein,

10 -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

15 Y, Y¹ gleich oder verschieden

30 = BR¹², = AlR¹², -Ge-, -Sn-, -O-, -S-, = SO, = SO₂,
= NR¹², = CO, = PR¹² oder = P(O)R¹²,

35 wobei

40 R¹² gleich oder verschieden Wasserstoff, Halogen, C₁-C₁₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryl, C₁-C₁₀-Alkoxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C₈-C₄₀-Arylalkenyl, C₇-C₄₀-Alkylaryl bedeuten, oder wobei zwei Reste R¹² mit den sie verbindenden Atomen einen Ring bilden,

45 M¹ Silicium, Germanium oder Zinn ist und m 0, 1, 2, 3 bedeutet,

6

oder Y nicht-verbrückend ist und für zwei Reste R' und R" steht, wobei

R' und R"
5 gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, oder zusammen mit benachbarten Resten R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen substituiert sein können,

10 -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl.

15 25 R¹³ bis R¹⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann -, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R¹⁸)₃ mit

20 R¹⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

25 30 Z für steht,

30 35

35 40 wobei die Reste

40 45 R¹⁹ bis R²³ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann -, C₆- bis C₁₅-Aryl oder Arylalkyl

7

bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder $\text{Si}(\text{R}^{24})_3$ mit

5 R^{24} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

oder wobei die Reste

10 R^{16} und Z gemeinsam eine Gruppierung $-\text{T}(\text{R}^{25})(\text{R}^{26})_q\text{-E-}$ bilden, in der

T gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht,

15 $\text{R}^{25}, \text{R}^{26}$ für Wasserstoff, C_1 - bis C_{10} -Alkyl, C_3 - bis C_{10} -Cycloalkyl oder C_6 - bis C_{15} -Aryl

20 q für die Zahlen 1, 2, 3 oder 4,

25 E für oder A steht, wobei A ---O--- ,

---S--- , $\text{---NR}^{27}\text{---}$ oder $\text{---PR}^{27}\text{---}$ bedeutet,

30 mit R^{27} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $\text{Si}(\text{R}^{28})_3$

35 mit R^{28} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl oder Alkylaryl

und die Verwendung von racemischen Metallocenkomplexen gemäß Formel III als Katalysatoren oder als Bestandteil von Katalysatoren für die Polymerisation von olefinisch ungesättigten Verbindungen oder als Reagentien oder als Katalysatoren in der Stereoselektivensynthese.

Neben der stereospezifischen Olefinpolymerisation bietet in zunehmendem Maße die enantioselektive organische Synthese interessante Anwendungsmöglichkeiten für chirale Metallocenkomplexe von Metallen der III. - VI. Nebengruppe des Periodensystems der

Elemente. Beispielsweise seien hier enantioselektive Hydrierungen prochiraler Substrate genannt, beispielsweise prochiraler Olefine, wie in R. Waymouth, P. Pino, J. Am. Chem. Soc. 112 (1990), S. 4911-4914 beschrieben, oder prochiraler Ketone, Imine und 5 Oxime, wie in der WO 92/9545 beschrieben.

Weiterhin seien genannt die Herstellung optisch aktiver Alkene durch enantioselektive Oligomerisation, wie in W. Kaminsky et al., Angew. Chem. 101 (1989), S. 1304-1306 beschrieben, sowie 10 die enantioselektive Cyclopolymerisation von 1,5-Hexadienen, wie in R. Waymouth, G. Coates, J. Am. Chem. Soc. 113 (1991), S. 6270 - 6271 beschrieben.

Die genannten Anwendungen erfordern im allgemeinen den Einsatz 15 eines Metallocenkomplexes in seiner racemischen Form, d.h. ohne meso-Verbindungen. Von dem bei der Metallocensynthese des Standes der Technik anfallenden Diastereomerengemisch (rac.- u. meso- Form) muß zunächst die meso-Form abgetrennt werden. Da die meso- Form verworfen werden muß, ist die Ausbeute an racemischem 20 Metallocenkomplex gering.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur selektiven Herstellung von racemischen, praktisch (NMR-Meß- genauigkeit) meso-Isomer-freien Metallocenkomplexen zu finden.

25 Eine weitere Aufgabe war es, racemische Metallocenkomplexe zu finden, welche entweder direkt als oder in Katalysatoren, vornehmlich für die Olefinpolymerisation, verwendet werden können, oder die nach Modifizierung, beispielsweise nach der Substitution 30 eines "Hilfsliganden", als, oder in Katalysatoren, vornehmlich für die Olefinpolymerisation, verwendet werden können, oder die als Reagenzien oder Katalysatoren in der stereoselektiven Synthese verwendet werden können.

35 Demgemäß wurde das in den Patentansprüchen definierte Verfahren, die racemischen Metallocenkomplexe III, sowie deren Verwendung als Katalysatoren oder in Katalysatoren für die Polymerisation von olefinisch ungesättigten Verbindungen oder als Reagenzien oder Katalysatoren in der stereoselektiven Synthese gefunden.

40 Die Begriffe "meso-Form", "Racemat" und somit auch "Enantiomere" in Verbindung mit Metallocenkomplexen sind bekannt und beispielsweise in Rheingold et al., Organometallics 11 (1992), S. 1869 - 1876 definiert.

45

9

Der Begriff "praktisch meso-frei" wird hier so verstanden, daß mindestens 90 % einer Verbindung in Form des Racemats vorliegen.

Die erfindungsgemäßen, verbrückten oder unverbrückten Übergangs-
5 metallaromatkomplexe haben die allgemeine Formel I

10

15 in der die Substituenten und Indizes folgende Bedeutung haben:

- M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal,
Chrom, Molybdän, Wolfram, sowie Elemente der
III. Nebengruppe des Periodensystems und der
20 Lanthanoiden,
- X gleich oder verschieden Fluor, Chlor, Brom, Iod,
Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl,
Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und
25 6 bis 20 C-Atomen im Arylrest, -OR¹⁰ oder -NR¹⁰R¹¹,
- n eine ganze Zahl zwischen 1 und 4, wobei n der Wertigkeit von M minus der Zahl 2 entspricht,
- 30 R¹, R⁸ gleich oder verschieden Wasserstoff, Fluor, Chlor,
Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges
Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl
als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl
mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-
35 Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen
in Alkylrest und 6 bis 20 C-Atomen im Arylrest,
Si(R⁹)₃ mit R⁹ gleich oder verschiedenen C₁- bis
C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,
wobei die genannten Reste teilweise oder vollständig
40 mit Heteroatomen substituiert sein können,
-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder
verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃-
bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸,
gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis
45 C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

10

R² bis R⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

5 benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein,

10 -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

15 R¹⁰, R¹¹ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

20 Y, Y¹ gleich oder verschieden

25 30

R ¹²	R ¹²	R ¹²	R ¹²
— M ¹ — CR ₂ ¹² —			
R ¹²	R ¹²	R ¹²	R ¹²

35 40

R ¹²	R ¹²	R ¹²	R ¹²
— C —	— O —	M ¹ —	— C — C —
R ¹²	R ¹²	R ¹²	R ¹²

= BR¹², = AlR¹², -Ge-, -Sn-, -O-, -S-, = SO, = SO₂,
= NR¹², = CO, = PR¹² oder = P(O)R¹²,

wobei

45 R¹² gleich oder verschieden Wasserstoff, Halogen, C₁-C₁₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryl, C₁-C₁₀-Alkoxy, C₂-C₁₀-Alkenyl,

11

$C_7\text{-}C_{40}\text{-Arylalkyl}$, $C_8\text{-}C_{40}\text{-Arylalkenyl}$, $C_7\text{-}C_{40}\text{-Alkylaryl}$ bedeuten, oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen einen Ring bilden,

5 M^1 Silicium, Germanium oder Zinn ist und
m 0, 1, 2, 3 bedeutet,
oder Y nicht-verbrückend ist und für zwei Reste R'
10 und R" steht, wobei
R' und R" gleich oder verschieden sind und für Wasserstoff,
Fluor, Chlor, Brom, Iod, C_1 - bis C_{20} -Alkyl, 3- bis
15 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis
 C_{10} -Alkyl als Rest tragen kann -, C_6 - bis C_{15} -Aryl,
Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6
bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10
C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Aryl-
rest, $Si(R^9)_3$ mit R^9 gleich oder verschiedenen C_1 - bis
20 C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,
oder zusammen mit benachbarten Resten R^4 oder R^5 für
4 bis 15 C-Atome aufweisende gesättigte, teilweise
gesättigte oder für ungesättigte cyclische Gruppen
stehen, und die genannten Rest vollständig oder teil-
weise mit Heteroatomen substituiert sein können.
25
-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder
verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 -
30 bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R²⁸,
gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis
 C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl
Bevorzugte Metalle M sind Titan, Zirkonium und Hafnium, ins-
besondere Zirkonium.
35 Gut geeignete Substituenten X sind Fluor, Chlor, Brom, Iod,
vorzugsweise Chlor, weiterhin C_1 - bis C_6 -Alkyl, wie Methyl, Ethyl,
n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, i-Butyl, vorzugsweise
tert.-Butyl. Außerdem gut geeignet als Substituenten X sind
40 Alkoholate -OR¹⁰ oder Amide -NR¹⁰R¹¹ mit R¹⁰ oder R¹¹ C_1 - bis
 C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder
Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis
20 C-Atomen im Arylrest. Derartige Reste X sind beispielsweise
Methyl, Ethyl, i-Propyl, tert.-Butyl, Phenyl, Naphthyl, p-Tolyl,
45 Benzyl, Trifluormethyl, Pentafluorphenyl.

12

Die Substituenten R¹ und R⁸ sind gleich oder verschieden und bedeuten Wasserstoff, Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest, wie Methyl, Ethyl Propyl tragen kann. Beispiele für derartigen Cycloalkylreste sind Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl, Norbornyl. Weiterhin bedeuten die Substituenten R¹ und R⁸ C₆- bis C₁₅-Aryl, wie Phenyl, Naphthyl; Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie p-Tolyl; Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl wie Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, beispielsweise Trimethylsilyl, tert.-Butyldimethylsilyl, Triphenylsilyl. Die genannten Reste können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte Reste R¹ und R⁸ genannt die Trifluormethyl-, Pentafluorethyl-, Heptafluorpropyl-, Heptafluorisopropyl-, Pentafluorphenylgruppe.

25

Bevorzugte Substituenten R¹ und R⁸ sind solche, die viel Raum in Anspruch nehmen. Üblicherweise nennt man solche Substituenten sperrige Substituenten. Sie zeichnen sich dadurch aus, daß sie sterische Hinderung hervorrufen können.

30

Im allgemeinen versteht man unter diesen Gruppen kohlenstoff- oder siliziumorganische Reste mit hohem Raumbedarf (sperrige Reste), aber auch Fluor und vorzugsweise Chlor, Brom und Iod. Die Anzahl der Kohlenstoffatome die in derartigen kohlenstoff- oder siliziumorganischen Resten enthalten sind, liegt üblicherweise nicht unter drei.

Bevorzugte nicht-aromatische, sperrige Reste sind solche kohlenstoff- oder siliziumorganischen Reste, die in α-Stellung oder höherer Stellung verzweigt sind. Beispiele für derartige Reste sind verzweigte C₃- bis C₂₀-aliphatische, C₉- bis C₂₀-arali-phatische Reste und C₃- bis C₁₀-cycloaliphatische Reste, wie iso-Propyl, tert.-Butyl, iso-Butyl, neo-Pentyl, 2-Methyl-2-phenyl-propyl (Neophyl), Cyclohexyl, 1-Methylcyclohexyl, Bicyclo[2.2.1]-hept-2-yl (2-Norbornyl), Bicyclo[2.2.1]hept-1-yl (1-Norbornyl), Adamantyl. Weiterhin kommen als solche Reste siliziumorganische Reste mit drei bis dreißig Kohlenstoffatomen in Frage, beispiels-

13

weise Trimethylsilyl, Triethylsilyl, Triphenylsilyl, tert.-Butyl-dimethylsilyl, Tritolylsilyl oder Bis(trimethylsilyl)methyl.

Bevorzugte aromatische, sperrige Gruppen sind in der Regel C₆- bis 5 C₂₀-Arylreste, wie Phenyl, 1- oder 2-Naphthyl oder vorzugsweise C₁- bis C₁₀-alkyl- oder C₃- bis C₁₀-cycloalkylsubstituierte aromatische Reste wie 2,6-Dimethylphenyl, 2,6-Di-tert.-Butylphenyl, Mesityl.

10 Ganz besonders bevorzugte Substituenten R¹ und R⁸ sind i-Propyl, tert.-Butyl, Trimethylsilyl, Cyclohexyl, i-Butyl, Trifluormethyl, 3,5-Dimethylphenyl.

15 Im bevorzugten Substitutionsmuster sind R¹ und R⁸ in Formel I gleich.

Die Substituenten R² bis R⁷ sind gleich oder verschieden und bedeuten Wasserstoff, C₁- bis C₂₀-Alkyl, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- 20 bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest, wie Methyl, Ethyl, Propyl tragen kann. Beispiele für derartigen Cycloalkylreste sind 25 Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl, Norbornyl. Weiterhin bedeuten die Substituenten R² bis R⁷ C₆- bis C₁₅-Aryl, wie Phenyl, Naphthyl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie p-Tolyl, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Aryl- 30 rest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl wie Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, beispielsweise Trimethylsilyl, tert.-Butyldimethylsilyl, Triphenylsilyl. Die Reste R² bis R⁷ können aber auch derartig miteinander verbunden sein, daß benach- 35 barte Reste für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder ungesättigte cyclische Gruppen stehen. Vorzugsweise sind die Reste R³ und R⁴ und/oder die Reste R⁵ und R⁶ mit einer C₂-Brücke derartig verbunden, daß ein benzoanellierte 40 R⁷ können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte Reste R² bis R⁷ genannt die Trifluor-methyl-, Pentafluorethyl-, Heptafluorpropyl-, Heptafluoriso- 45 propyl-, Pentafluorphenylgruppe.

14

Besonders bevorzugt sind die Reste R² und R⁷ gleich und bedeuten Wasserstoff und R³, R⁴, R⁵, R⁶ haben die bereits genannte Bedeutung.

5 Als Brückenglieder Y, Y¹ kommen die folgenden in Frage:

20 = BR¹², = AlR¹², -Ge-, -Sn-, -O-, -S-, = SO, = SO₂, = NR¹², = CO,
= PR¹² oder = P(O)R¹²,

wobei

25 R¹² gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder eine C₇-C₄₀-Alkylarylgruppe bedeuten oder R¹² und R¹³ oder R¹² und R¹⁴ jeweils mit den sie verbindenden Atomen einen Ring bilden,

35 M¹ Silicium, Germanium oder Zinn ist.

Für das erfindungsgemäße Verfahren ist eine Ringstruktur in (I) ($m \neq 0$) von Vorteil, und Ringgrößen mit m = 1 bis 3 sind bevorzugt.

40 Bevorzugte Brückenglieder Y, Y¹ sind Methylen -CH₂-, S, O, -C(CH₃)₂-, wobei m in Formel I vorzugsweise 1 oder 2 ist; Y¹ ist ganz besonders bevorzugt gleich und bedeutet Sauerstoff -O-.
Bevorzugt sind auch Phenolattyp-Strukturen in welchen m in Formel 45 I 0 ist, das heißt, daß die aromatischen Ringsysteme direkt miteinander verknüpft sind, vorzugsweise zum Biphenolderivat.

15

Von den erfundungsgemäßen unverbrückten Übergangsmetallaromatkomplexen der allgemeinen Formel I sind diejenigen bevorzugt, in denen Y für Reste R' und R" steht, die gleich oder verschieden sind und Fluor, Chlor, Brom, Iod, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit 5 R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl, C₁- bis C₂₀-Alkyl oder 3- bis 10-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest, wie Methyl, Ethyl, Propyl tragen kann - bedeuten. Beispiele für derartige Cycloalkylreste sind Cyclopropyl, Cyclopentyl, vorzugsweise Cyclohexyl, Norbornyl. Weiterhin bedeuten die Substituenten R' und R" C₆- bis C₁₅-Aryl, wie Phenyl, Naphthyl; Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie p-Tolyl; Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie Benzyl, Neophyl oder sie bedeuten Triorganosilyl wie Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, beispielsweise Trimethylsilyl, tert.-Butyldimethylsilyl, 15 Triphenylsilyl. Die genannten Reste können selbstverständlich auch teilweise oder vollständig mit Heteroatomen substituiert sein, beispielsweise mit S-, N-, O-, oder Halogenatom-haltigen Strukturelementen. Exemplarisch seien für derartige substituierte Reste R' und R" genannt die Trifluormethyl-, Pentafluorethyl-, 20 Heptafluorpropyl-, Heptafluorisopropyl-, Pentafluorphenylgruppe.

25

Bevorzugt sind R' und R" gleich. Besonders bevorzugte unverbrückte Übergangsmetallaromatkomplexe sind solche, in welchen R¹, R⁸, R' und R" gleich sind, ein ganz besonders bevorzugtes Substitutionsmuster ist jenes in welchem R¹, R³, R' und R⁶, R⁸, R" H bedeuten und R², R⁴ und R⁵, R⁷ die oben genannte Bedeutung, vorzugsweise tert.-Butyl, jedoch nicht H haben. Der phenolische Rest in (I) ist vorzugsweise ein Biphenolatrest, mit den oben beschriebenen Substitutionsmustern.

35

Die verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexe I werden im allgemeinen nach Methoden hergestellt, die dem Fachmann bekannt sind.

40 Die Synthese der verbrückten Übergangsmetallphenolatkomplexe ist beispielsweise in C. J. Schaverien, J. Am. Chem. Soc. (1995), Seiten 3008 bis 3012, beschrieben. Als gut geeignet hat sich hierbei folgendes Vorgehen erwiesen, wobei in der Regel im Temperaturbereich von -78 bis 110°C, vorzugsweise zunächst bei ca. 45 20°C gearbeitet wird und die Reaktion dann durch Kochen am Rückfluß vervollständigt wird. Das Biphenol wird zunächst in einem Lösungsmittel, beispielsweise Tetrahydrofuran (THF) deprotoniert,

16

zum Beispiel mit Natriumhydrid oder n-Butyllithium, und anschließend die Übergangsmetallverbindung, beispielsweise das Halogenid, wie Titan-, Zirkonium- oder Hafniumtetrachlorid, vorteilhaft in Form des Bis-THF-Adduktes, hinzugegeben. Nach erfolgter Umsetzung wird das Produkt in der Regel nach Abtrennung von Salzen durch Auskristallisieren erhalten. Die Herstellung von nicht-verbrückten Übergangsmetallphenolatkomplexen kann beispielsweise nach H. Yasuda et. al., J. Organomet. Chem. 473 (1994), Seiten 105 bis 116 erfolgen.

10

Die erfindungsgemäßen, verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexe I enthalten in der Regel noch 1 bis 4 Äquivalente einer Lewis-Base, welche in der Regel über die Syntheseroute eingeschleppt wird. Als derartige Lewisbasen sind, beispielsweise zu nennen Ether, wie Diethylether oder Tetrahydrofuran (THF) aber auch Amine wie TMEDA. Es ist aber auch möglich die Übergangsmetallaromatkomplexe Lewis-Basen-frei zu erhalten, beispielsweise durch Trocknung im Vakuum oder Wahl anderer Lösungsmittel bei der Synthese. Derartige Maßnahmen sind dem Fachmann bekannt.

Die erfindungsgemäßen racemischen Metallocenkomplexe werden hergestellt durch Umsetzung der verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexe I mit Cyclopentadienylderivaten der Alkali- oder Erdalkalimetalle und anschließender Erhitzung des so erhaltenen Reaktionsgemisches, gegebenenfalls in Gegenwart von Radikalen oder Radikalbildnern, wie im folgenden beschrieben.

Vorzugsweise setzt man Übergangsmetallaromatkomplexe I ein, in welchen M Zirkonium bedeutet und die Reste R¹ und R⁸ die oben beschriebene, bevorzugte Bedeutung haben. Sehr gut geeignet sind Dichlorobis(3,5-di-tert.-Butylphenolatzirkon · (THF)₂, Dichlorobis(3,5-di-tert.-Butylphenolatzirkon · (DME), Dichlorbis(2,6-Dimethylphenolatzirkon · (THF)₂, Dichlorbis(2,6-Dimethylphenolatzirkon · (DME), Dichlorbis(2,4,6 Trimethylphenolatzirkon · (THF)₂, Dichlorbis(2,4,6 Trimethylphenolatzirkon · (DME) und die in den Beispielen genannten Zirkon-Phenolat-Verbindungen.

Prinzipiell kommen als Cyclopentadienylderivate der Alkali- oder Erdalkalimetalle diejenigen in Frage, welche nach der Umsetzung mit den erfindungsgemäßen, verbrückten Übergangsmetallaromatkomplexen I selektiv, praktisch meso-Isomeren-freie, racemische Metallocenkomplexe liefern.

Die erfindungsgemäßen racemischen Metallocenkomplexe können verbrückt sein, müssen es aber nicht sein. Es genügt im allgemeinen eine hohe Rotationsbarriere, insbesondere im Temperaturbereich

17

von 20 bis 80°C, (bestimmbar mit der Methode der ^1H und/oder ^{13}C -NMR-Spektroskopie) der unverbrückten Cyclopentadienyltyp-Liganden im Metallocen, damit die Metallocenkomplexe, direkt in ihrer racemischen Form isoliert werden können, ohne daß sie sich in 5 die meso-Form umwandeln können. Die Rotationsbarriere, die dies gewährleistet, liegt üblicherweise über 20 kJ/mol.

Gut geeignete Cyclopentadienderivate von Alkali- oder Erdalkalimetallen sind solche der allgemeinen Formel II

10

15

in der die Substituenten und Indizes folgende Bedeutung haben:

20

M^2 Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba,

25

R^{13} bis R^{17} gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann, C_6 - bis C_{15} -Aryl oder Arylalkyl, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder $\text{Si}(\text{R}^{18})_3$ mit

30

R^{18} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

35

wobei die Reste

40

R^{19} bis R^{23} gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent tragen kann, C_6 - bis C_{15} -Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder $\text{Si}(\text{R}^{24})_3$ mit

45

18

R²⁴ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

oder wobei die Reste

5

R¹⁶ und Z gemeinsam eine Gruppierung -[T(R²⁵) (R²⁶)]_n-E- bilden, in der

T gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht,

10 R²⁵, R²⁶ für Wasserstoff, C₁- bis C₁₀-Alkyl, C₃- bis C₁₀-Cycloalkyl oder C₆- bis C₁₅-Aryl

15 n für die Zahlen 1, 2, 3 oder 4,

20 E für oder A steht, wobei A —O— ,

25 —S— , oder bedeutet,

mit R²⁷ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃

30

mit R²⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl oder Alkylaryl,

35

wobei p = 1 für Be, Mg, Ca, Sr, Ba und
p = 2 für Li, Na, K, Rb, Cs.

Bevorzugte Verbindungen der Formel II sind solche in welchen M² Lithium, Natrium und insbesondere Magnesium bedeutet. Ferner sind solche Verbindungen der Formel II a)

40

45

19

besonders bevorzugt in welchen M^2 Magnesium, R^{17} und R^{23} von Wasserstoff verschiedene Substituenten bedeuten, wie C_1 - bis 15 C_{10} -Alkyl, also Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, i.-Butyl, Hexyl, weiterhin C_6 - C_{10} -Aryl, wie Phenyl oder Trialkylsilyl, wie Trimethylsilyl, $T(R^{25}R^{26})$ für Bis- C_1 - C_{10} -alkylsilyl oder Bis- C_6 - C_{10} -arylsilyl steht wie Dimethylsilyl, Diphenylsilyl, weiterhin für 1,2-Ethyandiyl, Methylen und 20 die Reste R^{13} bis R^{15} und R^{19} bis R^{25} die bereits genannte Bedeutung haben und insbesondere ein Indenyltyp-Ringsystem oder ein Benzoindenyltyp-Ringsystem bilden.

Ganz besonders bevorzugte Verbindungen II sind jene, welche in 25 den Beispielen beschrieben werden und außerdem

Dimethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)-magnesium

30 Diethylysandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)-magnesium

Dimethylsilandiylbis(3-tert.-butyl-5-ethylcyclopentadienyl)-magnesium

35 Dimethylsilandiylbis(3-tert.-pentyl-5-methylcyclopentadienyl)-magnesium

Dimethylsilandiylbis(2,4,7-trimethylindenyl)magnesium

40 1,2-Ethandiylbis(1-{2,4,7-trimethylindenyl})magnesium

Dimethylsilandiylbis(1-indenyl)magnesium

45 Dimethylsilandiylbis(4,5,6,7-tetrahydro-1-indenyl)magnesium

20

*Dimethylsilandiylibis(2-methylindenyl)magnesium**Phenyl(methyl)silandiylibis(2-methylindenyl)magnesium***5 Diphenylsilandiylibis(2-methylindenyl)magnesium***Dimethylsilandiylibis(2-methyl-4,5,6,7-tetrahydro-1-indenyl)-magnesium***10 Dimethylsilandiylibis(2,4-dimethyl-6-isopropylindenyl)magnesium***Dimethylsilandiylibis(2-methyl-1-benzindenyl)magnesium**Dimethylsilandiylibis(2-ethyl-1-benzindenyl)magnesium***15***Dimethylsilandiylibis(2-propyl-1-benzindenyl)magnesium**Dimethylsilandiylibis(2-phenyl-1-benzindenyl)magnesium***20 Diphenylsilandiylibis(2-methyl-1-benzindenyl)magnesium***Phenylmethylibis(2-methyl-1-benzindenyl)magnesium**Ethandiylbis(2-methyl-1-benzindenyl)magnesium***25***Dimethylsilandiylibis(2-methyl-1-tetrahydrobenzindenyl)magnesium**Dimethylsilandiylibis(2-methyl-4-isopropyl-1-indenyl)magnesium***30 Dimethylsilandiylibis(2-methyl-4-phenyl-1-indenyl)magnesium***Dimethylsilandiylibis(2-methyl-4-naphtyl-1-indenyl)magnesium**Dimethylsilandiylibis(2-methyl-4-{3,5-trifluoromethyl}phenyl-1-indenyl)magnesium**Dimethylsilandiylibis(2-ethyl-4-isopropyl-1-indenyl)magnesium**Dimethylsilandiylibis(2-ethyl-4-phenyl-1-indenyl)magnesium***40***Dimethylsilandiylibis(2-ethyl-4-naphtyl-1-indenyl)magnesium**Dimethylsilandiylibis(2-ethyl-4-{3,5-trifluoromethyl}phenyl-1-indenyl)magnesium***45***Ethandiylbis(2-methyl-4-phenyl-1-indenyl)magnesium*

21

Ethandiylbis(2-methyl-4-naphtyl-1-indenyl)magnesium

Ethandiylbis(2-methyl-4-(3,5-di-(trifluoromethyl)phenyl)-1-indenyl)magnesium

5

Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-10 (2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

Dimethylsilandiylbis(2-cyclohexyl-4-phenyl-indenyl)magnesium

Dimethylsilandiylbis(2-butyl-4-phenyl-indenyl)magnesium

15

Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

20

Dimethylsilandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

Diethylgermandiylbis(2-meth-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

25

Diethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

Diethylsilandiylbis(2-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

30

Dimethylsilandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-(4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

35

Dimethylsilandiylbis(2-butyl-4-(4'-tert.-butyl-phenyl)-6-(4'-tert.-butyl-phenyl)-indenyl)magnesium

Dimethylsilandiylbis(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

40

Dimethylsilandiylbis(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

Dimethylsilandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)-2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

45

Dimethylsilandiyl(2-methyl-4-naphthyl-indenyl)-(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)magnesium

sowie die jeweiligen Lewis-Basenaddukte dieser vorstehend genannten Verbindungen mit beispielsweise THF, DME, TMEDA.

Derartige Alkali- oder Erdalkalimetallverbindungen II lassen sich nach literaturbekannten Methoden erhalten, beispielsweise durch die, vorzugsweise stöchiometrische, Umsetzung einer Organometallverbindung oder eines Hydrids des Alkali- oder Erdalkalimetalls mit dem entsprechenden Cyclopentadienyltyp-Kohlenwasserstoff. Geeignete Organometallverbindungen sind beispielsweise n-Butyl-lithium, Di-n-butylmagnesium oder (n,s)-Dibutylmagnesium (Bomag).

Die Umsetzung der verbrückten oder nicht-verbrückten Übergangsmetallaromatkomplexe I mit den Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen, vorzugsweise der Formeln II oder IIa) findet üblicherweise in einem organischen Lösungs- oder Suspensionsmittel, vorzugsweise in einem Lösungsmittelgemisch, welches ein Lewis-basisches Lösungsmittel enthält im Temperaturbereich von ~ 78°C bis 250°C, vorzugsweise im Temperaturbereich von 0 bis 110°C statt. Gut geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, aromatische Kohlenwasserstoffe wie Toluol, ortho-, meta- oder para Xylool oder Isopropylbenzol (Cumol), Ether, wie Tetrahydrofuran (THF), Diethylether, Metyl-tert-Butylether oder Dimethoxyethan (DME), Amine wie Diisopropylamin, Tetramethylethandiamin (TMEDA) oder Pyridin. Gut geeignete Lösungsmittelgemische sind solche aus Toluol und THF, Toluol und DME oder Toluol und TMEDA, wobei die Lewis-Base im allgemein in einer Menge von 0,1 bis 50 mol-%, vorzugsweise 1 bis 20 mol-%, bezogen auf das Lösungsmittelgemisch, vorliegt. Das molare Verhältnis des Übergangsmetallaromatkomplexes I zu dem Cyclopentadienylderivat von Alkali- oder Erdalkalimetallen liegt üblicherweise im Bereich von 0,8 : 1 bis 1 : 1,2, vorzugsweise bei 1 : 1.

Es wurde gefunden, daß eine anschließende Erwärmung des Reaktionsgemisches, auf Temperaturen im Bereich von -78 bis 250°C, vorzugsweise 20 bis 150°C und insbesondere 80 bis 110°C und gegebenenfalls in Gegenwart von Radikalen oder Radikalbildnern schnell zu einer höheren Ausbeute, im allgemeinen 80 bis 100 %, vorzugsweise 95 bis 100 %, an racemischen Komplexen (I) führt. Als Radikale seien genannt Sauerstoff, 2,2'-6,6'-tetramethyl-Pyrimidin-N-Oxid (TEMPO). Als Radikalbildner sind alle diejenigen organischen und anorganischen Verbindungen geeignet, welche in dem oben genannten Temperaturintervall und/oder bei Bestrahlung zu Radikalen zerfallen, wie Peroxide, Diacylperoxide - beispielsweise Ben-

23

zoylperoxid, Acetylperoxyd - Peroxydicarbonate, Perester, Azoal-kane, Nitrite, Hypochloride, Polyhalomethane, N-Chloramine. Be-sonders bevorzugt verwendet man TEMPO. Radikalbildner werden be-vorzuget dann eingesetzt, wenn das Metallocen (I) als Cyclopenta-5 dienyl-Typ-Ligand ein benzoannelliertes Indenylsystem wie Dime-thylsilyl-Bis(2-Methylbenzoindenyl) enthält.

Die erfindungsgemäßen, racemischen Metallocenkomplexe sind vorzugsweise solche der allgemeinen Formel III

10

15

in der die Substituenten und Indizes folgende Bedeutung haben:

20

M Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

25

X¹

30

wobei:

35 R¹, R⁸

gleich oder verschieden Wasserstoff, Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder ver-schieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis

40

45

24

C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R^{28} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl

5 R^2 bis R^7 gleich oder verschieden Wasserstoff, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis C_{10} -Alkylrest tragen kann -, C_6 - bis C_{15} -Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, $Si(R^9)_3$ mit R^9 gleich oder verschieden C_1 - bis C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,
 10 benachbarte Reste R^2 bis R^7 können für 4 bis
 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein, $-OR^{27}$, $-SR^{27}$, $-N(R^{27})_2$, $-P(R^{27})_2$, mit R^{27} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R^{28} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl

25 Y , Y^1 gleich oder verschieden

40 = BR^{12} , = AlR^{12} , -Ge-, -Sn-, -O-, -S-, = SO, = SO_2 ,
 = NR^{12} , = CO, = PR^{12} oder = $P(O)R^{12}$,

wobei

45 R^{12} gleich oder verschieden Wasserstoff, Halogen, C_1 - C_{10} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryl, C_1 - C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl,

25

$C_7\text{-}C_{40}\text{-Arylalkyl}$, $C_8\text{-}C_{40}\text{-Arylalkenyl}$, $C_7\text{-}C_{40}\text{-Alkylaryl}$ bedeuten, oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen einen Ring bilden,

5 M^1 Silicium, Germanium oder Zinn ist und
m 0, 1, 2, 3 bedeutet,
oder Y nicht-verbrückend ist und für zwei Reste R'
10 und R'' steht, wobei
R' und R'' gleich oder verschieden sind und für Wasserstoff,
Fluor, Chlor, Brom, Iod, C_1 - bis C_{20} -Alkyl, 3- bis
15 8-gliedriges Cycloalkyl - das seinerseits ein C_1 - bis
 C_{10} -Alkyl als Rest tragen kann -, C_6 - bis C_{15} -Aryl,
Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6
bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10
C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Aryl-
rest, $Si(R^9)_3$ mit R^9 gleich oder verschieden C_1 - bis
20 C_{20} -Alkyl, C_3 - bis C_{10} -Cycloalkyl, C_6 - bis C_{15} -Aryl,
oder zusammen mit benachbarten Resten R^4 oder R^5 für
25 4 bis 15 C-Atome aufweisende gesättigte, teilweise
gesättigte oder für ungesättigte cyclische Gruppen
stehen, und die genannten Rest vollständig oder teil-
weise mit Heteroatomen substituiert sein können,
-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R^{27} , gleich oder
verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 -
30 bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R^{28} ,
gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis
 C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl
 R^{13} bis R^{17} gleich oder verschieden Wasserstoff, C_1 - bis
35 C_{20} -Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das
seinerseits ein C_1 - bis C_{10} -Alkyl als Substituent
tragen kann -, C_6 - bis C_{15} -Aryl oder Arylalkyl, wobei
benachbarte Reste gemeinsam für 4 bis 15 C-Atome
aufweisende cyclische Gruppen stehen können, oder
 $Si(R^{18})_3$ mit
40 R^{18} gleich oder verschieden C_1 - bis C_{10} -Alkyl, C_6 - bis
 C_{15} -Aryl oder C_3 - bis C_{10} -Cycloalkyl,

45 z für

wobei die Reste

5

R¹⁹ bis R²³ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl,
 - das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann -, C₆- bis C₁₅-Aryl oder Arylalkyl
 10 bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R²⁴)₃ mit

10

15

R²⁴ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

oder wobei die Reste

20

R¹⁶ und Z gemeinsam eine Gruppierung -[T(R²⁵) (R²⁶)]_q-E- bilden, in der

T

gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht,

25

R²⁵, R²⁶ für Wasserstoff, C₁- bis C₁₀-Alkyl, C₃- bis C₁₀-Cycloalkyl oder C₆- bis C₁₅-Aryl

q

für die Zahlen 1, 2, 3 oder 4,

30

E für

oder A steht, wobei A

— O — ,

35

— S — , — NR²⁷ — oder — PR²⁷ bedeutet,

40 mit R²⁷

gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃

45

mit R²⁸

gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl oder Alkylaryl.

Bevorzugte Verbindungen der Formel III sind solche in welchen M Titan, Hafnium und insbesondere Zirkonium bedeutet. Ferner sind verbrückte Verbindungen der Formel III besonders bevorzugt (ansa-Metallocene) in welchen R¹⁷ und R²³ von Wasserstoff verschiedene Substituenten bedeuten, wie C₁- bis C₁₀-Alkyl, also Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, i.-Butyl, Hexyl, weiterhin C₆-C₁₀-Aryl, wie Phenyl oder Trialkylsilyl, wie Trimethylsilyl, T(R²⁵R²⁶) für Bis-C₁-C₁₀-alkylsilyl oder Bis-C₆-C₁₀-arylsilyl steht wie Dimethylsilyl, Diphenylsilyl, weiterhin für 1,2-Ethandiyl, Methylen und die Reste R¹³ bis R¹⁵ und R¹⁹ bis R²⁵ die bereits genannte Bedeutung haben und insbesondere ein Indenyltyp-Ringsystem oder ein Benzoindenyltyp-Ringsystem bilden.

Ganz besonders bevorzugte Verbindungen III sind jene, welche in den Beispielen beschrieben werden, und außerdem

Dimethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Diethylsilandiylbis(3-tert.-butyl-5-methylcyclopentadienyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(3-tert.-butyl-5-ethylcyclopentadienyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(3-tert.-pentyl-5-methylcyclopentadienyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2,4,7-trimethylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

1,2-Ethandiylbis(1-{2,4,7-trimethylindenyl})zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(1-indenyl)Zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(4,5,6,7-tetrahydro-1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-methylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Phenyl(methyl)silandiylbis(2-methylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Diphenylsilandiylbis(2-methylindenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-methyl-4,5,6,7-tetrahydro-1-indenyl)
5 zirconium-3,3', 5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2,4-dimethyl-6-isopropylindenyl)
zirconium-3,3', 5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

10 Dimethylsilandiylbis(2-methyl-1-benzindenyl)zirconium-3,3',
5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-ethyl-1-benzindenyl)zirconium-3,3',
5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

15 Dimethylsilandiylbis(2-propyl-1-benzindenyl)zirconium-3,3',
5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-phenyl-1-benzindenyl)zirconium-3,3',
20 5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Diphenylsilandiylbis(2-methyl-1-benzindenyl)zirconium-3,3',
5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

25 Phenylmethylsilandiylbis(2-methyl-1-benzindenyl)zirconium-3,3',
5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Ethandiylbis(2-methyl-1-benzindenyl)zirconium-3,3',5,5'-tetra-t-
30 butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-methyl-1-tetrahydrobenzindenyl)zirconium-
3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

35 Dimethylsilandiylbis(2-methyl-4-isopropyl-1-indenyl)zirconium-
3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-methyl-4-phenyl-1-indenyl)zirconium-
3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

40 Dimethylsilandiylbis(2-methyl-4-naphtyl-1-indenyl)zirconium-
3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-methyl-4-{3,5-trifluoromethyl}phenyl-
45 1-indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

29

Dimethylsilandiylbis(2-ethyl-4-isopropyl-1-indenyl)zirconium-
3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl)zirconium-
5 3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-ethyl-4-naphtyl-1-indenyl)zirconium-
3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

10 Dimethylsilandiylbis(2-ethyl-4-{3,5-trifluoromethyl}phenyl-
1-indenyl)zirconium- 3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Ethandiylbis(2-methyl-4-phenyl-1-indenyl)zirconium-3,3',5,5'- te-
tra-t-butyl-1,1'-bi-2-phenolat

15 Ethandiylbis(2-methyl-4-naphtyl-1-indenyl)zirconium-3,3',5,5'-
tetra-t-butyl-1,1'-bi-2-phenolat

20 Ethandiylbis(2-methyl-4-{3,5-di-(trifluoromethyl)}phenyl-1-
indenyl)zirconium-3,3',5,5'-tetra-t-butyl-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-
idenyl)zirconium-3,3',5,5'tetra-tBu-1,1'-bi-2-phenolat

25 Dimethylsilandiy1(2-methyl-4-(4'-tert.-butyl-phenyl)-idenyl)-
(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)-zirconium-
3,3'5,5'tetra-tBu-1,1'-bi-2-phenolat

30 Dimethylsilandiylbis(2-cyclohexyl-4-phenyl-indenyl)
zirconium-3,3',5,5'tetra-tBu-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-butyl-4-phenyl-indenyl)zirconium-
3,3',5,5'tetra-tBu-1,1'-bi-2-phenolat

35 Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)-
zirconium-3,3',5,5'tetra-tBu-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)-
zirconium-3,3',5,5'tetra-tBu-1,1'-bi-2-phenolat

40 Dimethylgermandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-
zirconium-3,3',5,5'tetra-tBu-1,1'-bi-2-phenolat

45 Diethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-
zirconium-3,3',5,5'tetra-tBu-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)
zirconium-3,3'5,5'tetra-tBu-1,1'-bi-2-phenolat

5 Dimethylsilandiy1(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3'5,5'tetra-tBu-1,1'-bi-2-phenolat

10 Dimethylsilandiylbis(2-butyl-4-(4'-tert.-butyl-phenyl)-6-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3'5,5'tetra-tBu-1,1'-bi-2-phenolat

Dimethylsilandiylbis(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3'5,5'tetra-tBu-1,1'-bi-2-phenolat

15 Dimethylsilandiy1(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)-(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3'5,5'tetra-tBu-1,1'-bi-2-phenolat

20 Dimethylsilandiy1(2-methyl-4-naphthyl-indenyl)-(2-isopropyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirconium-3,3'5,5'tetra-tBu-1,1'-bi-2-phenolat

Die racemischen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III, lassen sich im allgemeinen weiter modifizieren.

25

Insbesondere kann beispielsweise ein verbrückter Biphenolatligand X¹ vollständig oder hälftig oder einer oder beide unverbrückten Phenolatliganden in dem Komplex III durch Mono- oder Bis-Substitution abgespalten und gegebenenfalls wiederverwendet werden. Geeignete Abspaltungs-(Substitutions-)methoden sind die Umsetzung der racemischen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III mit SOCl₂, Siliciumtetrachlorid, Methylaluminiumpdichlorid, Dimethylaluminiumchlorid, Aluminiumtrichlorid einer Brönsted-Säure wie Halogenwasserstoff, also HF, HBr, HI, vorzugsweise HCl, welche in der Regel in Substanz oder als Lösung in Wasser oder organischen Lösungsmitteln wie Diethylether, THF angewandt wird. Gut geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, aromatische Kohlenwasserstoffe wie Toluol, ortho-, meta- oder para Xylol oder Isopropylbenzol (Cumol), Ether, wie Tetrahydrofuran (THF), Diethylether, Metyl-tert-Butylether oder Dimethoxyethan (DME), Amine wie Diisopropylamin, Tetramethylethandiamin (TMEDA) oder Pyridin. Sehr gut geeignet sind Lewis-Base-haltige Lösungsmittelgemische aus Kohlenwasserstoffen und Ethern oder Aminen oder beidem, beispielsweise solche aus Toluol und THF, Toluol und DME oder Toluol und TMEDA; wobei die Lewis-Base im allgemein in einer Menge von

31

0,01-50 mol-%, vorzugsweise 0,1-10 mol-%, bezogen auf das Lösungsmittelgemisch, vorliegt. Besonders gut eignen sich Carbonsäurehalogenide wie Acetylchlorid, Phenylacetylchlorid, 2-Thiophenacylchlorid, Trichloracetylchlorid, Trimethylacetylchlorid,
5 O-Acetylmandelsäurechlorid, 1,3,5-Benzenetricarboxylicacidchlorid, 2,6-Pyridincarbonsäurechlorid, tert-Butylacetylchlorid, Chloroacetylchlorid, 4-Chlorobenzeneacetylchlorid, Dichloroacetylchlorid, 3-Methoxyphenylacetylchlorid, Acetyl bromid, Bromoacetyl bromid, Acetylfluorid, Benzoylfluorid, als "Abspaltungsreaktion", wobei diese in der Regel in den o.g. Lösungsmittel oder auch in Substanz verwendet werden. Hierbei entsteht üblicherweise das der Formel III analoge Di-Halogenid ($X = F, Cl, Br, I$) oder bei teilweiser (hälftiger) Substitution des phenolischen Liganden ein Monohalogenid. Ein weiteres gut geeignetes Substitutions-
10 Verfahren ist die Umsetzung der racemischen Metallocenkomplexe, vorzugsweise jene der allgemeinen Formel III mit Organo-Aluminiumverbindungen wie Tri-C₁-bis C₁₀-Alkylaluminium, also Trimethylaluminium, Triethylaluminium, Tri-n-butylaluminium, Tri-iso-butylaluminium. Hierbei entsteht nach derzeitigem Kenntnis-
15 stand im allgemeinen die zu III analoge Organo-Verbindung ($X = \text{organischer Rest, z.B. C}_1\text{- bis C}_{10}\text{-Alkyl, wie Methyl, Ethyl, n-Butyl, i-Butyl}$) und beispielsweise das Organo-Aluminiumbinaphtholat. Analog kann auch verfahren werden, wenn der Ligand X¹ in dem Komplex III zwei nicht verbrückte Phenolatliganden ist.
20
25 Bei den Spaltungsreaktionen werden die Komponenten üblicherweise im stöchiometrischen Verhältnis eingesetzt, davon abhängig, ob ein mono- oder disubstituiertes Produkt erhalten werden soll.
30 Die Spaltungsreaktionen finden im allgemeinen unter Erhaltung der Stereochemie der Metallocenkomplexe statt, das bedeutet, es findet im allgemeinen keine Umwandlung der racemischen Form in die meso-Form der Metallocenkomplexe statt. Vielmehr kann, insbesondere mit den oben beschriebenen Chlorierungsmethoden, die rac-
35 Selektivität gesteigert werden, wobei jedoch die Stereochemie der Ausgangs(bi)phenolat-Typ- oder Ausgangsbis-phenolat-Komplexe in der Regel erhalten bleibt.

Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß es sehr selektiv die racem-Form von Metallocenkomplexen zugänglich macht. Besonders vorteilhaft lassen sich verbrückte Indenyl- oder Benzoindenyltyp-Metallocene erhalten, welche in der Nachbarschaft des Brückenglieds (sogenannte 2-Stellung) einen von Wasserstoff verschiedenen Liganden haben.

Die erfindungsgemäßen racemischen Metallocenkomplexe, insbesondere jene der allgemeinen Formel III oder ihre, beispielsweise durch Substitution der Phenolatliganden zugänglichen, bereits beschriebenen Derivate lassen sich als Katalysatoren oder 5 in Katalysatorsystemen für die Polymerisation von olefinisch ungesättigten Verbindungen, wie Ethylen, Propylen, 1-Buten, 1-Hexen, 1-Octen, Styrol, verwenden. Besonders vorteilhaft kommen sie zur Geltung bei der stereoselektiven Polymerisation von prochiralen, olefinisch ungesättigten Verbindungen, wie Propylen, 10 Styrol. Geeignete Katalysatoren oder Katalysatorsysteme, in welchen die erfindungsgemäßen racemischen Metallocenkomplexe als "Metallocenkomponente" fungieren können, werden üblicherweise mittels metalloceniumionenbildenden Verbindungen enthalten, wie beispielsweise in EP-A-0 700 935, Seite 7, Zeile 34 bis Seite 8, 15 Zeile 21 und Formeln (IV) und (V) beschrieben. Weitere metalloceniumionenbildenden Verbindungen sind Alumoxan (RA_2O)_n wie Methylalumininoxan.

Die erfindungsgemäßen racemischen Metallocenkomplexe, insbesondere jene der allgemeinen Formel III oder ihre, beispielsweise durch Abspaltung der Phenolatliganden zugänglichen, bereits beschriebenen Derivate lassen sich weiterhin als Reagenzien oder als Katalysatoren oder in Katalysatorsystemen in der stereoselektiven, insbesondere organischen Synthese verwenden. 25 Beispielsweise seien genannt die stereoselektive Reduktionen oder stereoselektiven Alkylierungen von C=C-Doppelbindungen oder C=O-, C=N-Doppelbindungen.

Beispiele
30 Abkürzungen:
bpo = 1,1'-Bi-2-Phenolat
bip = 3,3'-5,5'tetra-t-Bu-1,1'-bi-2-Phenolat

35 Beispiele bei denen man rac-Selektivität durch thermische Isomerisierung erreicht.

Beispiel 1
Darstellung von rac-Me₂Si(2-Me-ind)₂Zr[3,3',5,5'-(t-Bu)₄-1,1'-bi-40 2-phenolat]
(rac-Me₂Si(2-Me-ind)₂Zr(bip) (4C)
0.64g (1.95 mmol) Me₂Si(2-Me-ind)₂Li₂ und 1.39 g (1.95 mmol)
Cl₂(THF)₂Zr(bip) wurden trocken vermischt und ca. 15 ml eines 10:1 Gemisches Toluol/THF (Volumenverhältnis) zugegeben. Die Reaktion 45 mischung wurde 12 h bei Raumtemperatur gerührt. Hierbei bildete sich eine orange-farbene Lösung und ein weißer Niederschlag. (LiCl). Das ¹H-NMR-Spektrum der Rohmischung zeigte ein Isomeren-

33

verhaeltnis von ca. 1:1. Die Reaktionsmischung wurde 5 h bei 80°C gerührt. Das ¹H-NMR-Spektrum zeigte nun ein rac/meso-Verhaeltnis von ca. 16:1. Die Lösung wurde abfiltriert und das Lösungsmittelgemisch am Hochvakuum entfernt. Es wurden 1.17 g (74%) Me₂Si(2-Me-ind)₂Zr(bip) als gelber Schaum in einem rac/meso-Verhaeltnis von 16:1 NMR-spektroskopisch rein erhalten. Der gelbe Schaum wurde in Hexan aufgenommen und auf -30°C gekühlt. Nach einem Tag wurden durch Filtration 0.35 g (22%) rein racemisches Me₂Si(2-Me-ind)₂Zr(bip) als mikrokristallines gelbes Pulver erhalten. ¹H-NMR-Spektrum in C₆D₆ siehe Tabelle B. ¹³C-NMR-Spektrum in C₆D₆(25°C, 600 MHz) 161.1, 141.2, 135.3, 134.8, 134.3, 131.8, 130.9, 129.7, 126.0, 126.8, 124.9, 123.3, 121.8, 111.6, 92.4, 34.3, 32.5, 32.1, 31.8, 18.8, 2.55. Das Massenspektrum (EI-MS/ 70eV) zeigte Molekularionenpeak bei m/e 812-821 mit der typischen Isotopenverteilung. Elementaranalyse Gefunden: C 73.64%; H 7.73%; Zr 11.06. berechnet C 73.74%; H 7.67%; Zr 11.20%.

Tabelle B

1H-NMR-shifts für Komplex rac-4C (in ppm, C₆D₆, 25°C, 600 MHz)

		Zuordnung ^a
20	7.60 (d, 2H) ³ J (8.4 Hz)	C ₉ H ₅ (H ₇ , H _{7'})
	7.49 (d, 2H) ⁴ J (2.4 Hz)	C ₆ H ₂ (H ₄ , H _{4'})
	7.26 (d, 2H) ³ J (8.4 Hz)	C ₉ H ₅ (H ₄ , H _{4'})
	7.18 (d, 2H) ⁴ J (2.4 Hz)	C ₆ H ₂ (H ₆ , H _{6'})
25	6.85 (dd, 2H) ³ J (8.4 Hz) ³ J (7.2 Hz)	C ₉ H ₅ (H ₆ , H _{6'})
	6.77 (dd, 2H) ³ J (8.4 Hz) ³ J (7.2 Hz)	C ₉ H ₅ (H ₅ , H _{5'})
	5.83 (s, 2H)	C ₉ H ₅ (H ₃ , H _{3'})
	2.21 (s, 6H)	(2-CH ₃ -C ₉ H ₅)
	1.36, 1.33 (s, 18H)	(CH ₃) ₃ C
	0.80 (s, 6H)	(CH ₃) ₂ Si
30		

^a Zuordnung durch 1H-NMR-ROESY-Technik

Beispiel 2

35 Synthese von Me₂Si(2-Me-ind-4-Ph)₂Zr(3,3'-5,5'-tetra-^tBu-1,1'-bi-2-phenolat)
(Me₂Si(2-Me-4-Ph-ind)₂Zr(bip))

A) Synthese von ZrCl₄(THF)₂

40 Zu einer Suspension von g 4.99 (21.41mmol) ZrCl₄ in 80 ml Toluol wurden bei 0°C (Eisbadkühlung) 3.1g (43.0 mmol) THF innerhalb 15 min. langsam zugetropft. Die Suspension wurde auf Raumtemperatur erwärmt und 1 h gerührt.

45 B) Synthese von (3,3'-5,5'-tetra-^tBu-1,1'-bi-2-phenolat)Li₂

34

Zu einer Lösung von 8.79 g (21.4 mmol) 3,3'-5,5'-tetra-^tBu-1,1'-bi-2-phenol in 120 ml Toluol und 3.1g (43.0 mmol) THF wurden bei 0°C (Eisbadkühlung) 17.0 ml (45.56 mmol) einer 2.68 molaren BuLi-Lösung in Toluol innerhalb 20 min. langsam zugetropft. Die klare Lösung wurde auf Raumtemperatur erwärmt und 1 h gerührt.

5 C) Synthese von Cl₂Zr(3,3'-5,5'-tetra-^tBu-1,1'-bi-2-phenolat)(THF)₂

10 Zu der ZrCl₄(THF)₂-Suspension aus Teilreaktion A) wurde unter Stickstoff mittels Kanüle die Dilithiumbipenolatlösung aus Teilreaktion B) zugegeben. Verbleibende Reste im Kolben an Dilithiumbipenolatlösung wurden mit 10 ml Toluol nachgespült.

15 Die Suspension wurde 4h bei Raumtemperatur gerührt.

D) Synthese von Me₂Si(2-Me-4-Ph-ind)₂Li₂

20 Zu einer Lösung von 9.8 g (20.90 mmol) Me₂Si(2-Me-4-Ph-indH)₂ in 110ml Toluol und 5g (69.33 mmol) THF wurden bei Raumtemperatur 16.4 ml (43.95 mmol) einer 2.68 molaren BuLi-Lösung in Toluol innerhalb 20 min. langsam zugetropft. Die hellgelbe Suspension wurde auf 60°C erwärmt, 1h gerührt und auf Raumtemperatur gekühlt.

25 E) Synthese von Me₂Si(2-Me-4-Ph-ind)₂Zr(bip)

30 Zu der Me₂Si(2-Me-4-Ph-ind)₂Li₂-Suspension aus Teilschritt D) wurde bei Raumtemperatur die Suspension aus C) mittels Kanüle unter Stickstoff zugegeben. Nach vollständiger Zugabe färbte sich die Suspension gelb-orange. Die Reaktionsmischung wurde 12h bei Raumtemperatur gerührt. Ein ¹H-NMR-Spektrum der Reaktion zeigte ein rac-meso-Verhältnis von ca. 1:1. Die Suspension wurde 9h auf 85°C erwärmt. Die ¹H-NMR-Spektroskopische Untersuchung der Rohmischung zeigte ein rac-meso-Verhältnis von ca. 15:1 ohne Anzeichen von Verunreinigungen oder Zersetzungspprodukten. Die Suspension wurde filtriert, der weiße Niederschlag mit wenig Toluol gewaschen und die vereinigten Filtrate unter Hochvakuum auf ca. 1/4 eingeengt. Nach einigen Tagen bildete sich ein orangener kristalliner Niederschlag, der durch Filtration und anschließender Trocknung isoliert wurde. Es wurden 8 g (39.5 %) rein racemisches Me₂Si(2-Me-4-Ph-ind)₂Zr(bip) erhalten. Durch analoges Vorgehen (mehrfaches kristallisieren) wurden insgesamt 17.1g (85 %) rein racemisches Me₂Si(2-Me-4-Ph-ind)₂Zr(bip) erhalten.

35

Elementaranalyse $\text{Me}_2\text{Si}(2\text{-Me-4-Ph-ind})_2\text{Zr}(3,3'\text{-}5,5'\text{-tetra-t-Bu-1,1'-bi-2-Phenol})$

Gefunden C: 77,0 %; H: 7.4. berechnet 77,0 %; H 7.3%

5 1H-NMR-Spektrum in C_6D_6 siehe Tabelle C.

Tabelle C

1H-NMR-shifts für Komplex (in ppm, C_6D_6 25°C, 200 MHz)

		Anordnung
10	7.78 (d, 2H)	H (aromatisch)
	7.44 (d, 2H)	$\text{C}_6\text{H}_2\text{O}$ (bip)
	7.34-6.96 (m, 14H)	H (aromatisch)
	6.49 (d, 2H)	$\text{C}_6\text{H}_2\text{O}$ (bip)
	6.36 (s, 2H)	C_5H
	2.27 (s, 6H)	CH_3
15	1.32, (s, 18H)	$\text{C}(\text{CH}_3)_3$
	1.25 (s, 18H)	$\text{C}(\text{CH}_3)_3$
	0.99 (s, 6H)	Me_2Si

Beispiel 3

20

Synthese von $\text{Me}_2\text{Si}(2\text{-Me-4-(4-tBu-Ph-ind})_2\text{Zr}(3,3'\text{-}5,5'\text{-tetra-tBu-1,1'-bi-2-phenolat})$

$\text{Me}_2\text{Si}(2\text{-Me-4-(4-tBu-Ph)-ind})_2\text{Zr}$ (bip)

25 A) Synthese von $\text{ZrCl}_4(\text{THF})_2$

Zu einer Suspension von 5.45 g (23.38 mmol) ZrCl_4 in 100 ml Toluol wurden bei 0°C (Eisbadkühlung) 3.8g (52.7 mmol) THF innerhalb 15 min. langsam zugetropft. Die Suspension wurde auf Raumtemperatur erwärmt und 1 h gerührt.

B) Synthese von $(3,3'\text{-}5,5'\text{-tetra-tBu-1,1'-bi-2-phenolat})\text{Li}_2$

Zu einer Lösung von 9.6g (23.38 mmol) 3,3'-5,5'-tetra-tBu-1,1'-bi-2-phenol in 130 ml Toluol und 3.8 g (52.7 mmol) THF wurden bei 0°C (Eisbadkühlung) 18.3 ml (49.1 mmol) einer 2.68 molaren BuLi-Lösung in Toluol innerhalb 20 min. langsam zugetropft. Die klare hellgelbe Lösung wurde auf Raumtemperatur erwärmt und 1 h gerührt.

40

C) Synthese von $\text{Cl}_2\text{Zr}(3,3'\text{-}5,5'\text{-tetra-tBu-1,1'-bi-2-phenolat})(\text{THF})_2$

Zu der $\text{ZrCl}_4(\text{THF})_2$ -Suspension aus Teilreaktion A) wurde unter Stickstoff mittels Kanüle die Lithiumbiphenolatlösung aus Teilreaktion B) zugegeben. Verbleibende Reste im Kolben wur-

36

den mit 10 ml Toluol nachgespült. Die Suspension wird 4h bei Raumtemperatur gerührt.

D) Synthese von $\text{Me}_2\text{Si}(2\text{-Me}-4-(4'\text{-t-Bu-Ph})\text{-ind})_2\text{Li}_2$

5

Zu einer Lösung von 13.0 g (22.38 mmol) $\text{Me}_2\text{Si}(2\text{-Me}-4-(4'\text{-t-Bu-Ph})\text{-indH})_2$ in 150 ml Toluol und 6 g (83.20 mmol) THF wurden bei Raumtemperatur 17.5 ml (46.9 mmol) einer 2.68 molaren BuLi-Lösung in Toluol innerhalb 20 min. langsam zugetropft

10 Die hellgelbe Suspension wurde auf 60°C erwärmt, 1h gerührt und auf Raumtemperatur gekühlt.

E) Synthese von $\text{Me}_2\text{Si}(2\text{-Me}-4-(4'\text{-t-Bu-Ph})\text{-ind})_2\text{Zr}(\text{bip})$

15 Zu der $\text{Me}_2\text{Si}(2\text{-Me}-4-(4'\text{-t-Bu-Ph})\text{-ind})_2\text{Li}_2$ -Suspension aus Teilschritt D) wurde bei Raumtemperatur die Suspension aus C) mittels Kanüle unter Stickstoff zugegeben. Nach vollständiger Zugabe färbte sich die Suspension gelblich. Die Reaktionsmischung wurde 12h bei Raumtemperatur gerührt. Ein $^1\text{H-NMR}$ -Spektrum der Reaktion zeigte ein rac-meso-Verhältnis von ca. 1:2. Die Suspension wurde 9h auf 85°C erwärmt. Die $^1\text{H-NMR}$ -Spektroskopische Untersuchung der Rohmischung zeigte ein rac-meso-Verhältnis von ca. 15:1 ohne Anzeichen von Verunreinigungen oder Zersetzungspunkten. Die Suspension wurde filtriert, der weiße Niederschlag mit wenig Toluol gewaschen und die vereinigten Filtrate unter Hochvakuum auf ca. 1/4 eingeengt. Durch mehrmaliges Kristallisieren bei Raumtemperatur, Filtration und Trocknung wurden insgesamt 21.1g (88%) rein racemisches $\text{Me}_2\text{Si}(2\text{-Me}-4-(4'\text{-t-Bu-Ph-ind})_2\text{Zr}(\text{bip})$ erhalten.

30

$\text{Me}_2\text{Si}(2\text{-Me}-4-(4'\text{-t-Bu-Ph})_2\text{Zr}(3,3'\text{-5,5'-tetra-t-Bu-1,1'-bi-2-Phenol})$

$^1\text{H-NMR}$ -Verschiebungen (in ppm, C_6D_6 25°C, 200 MHz)

35

7.76 (m, 4H)	H _{arom.}
7.76 (m, 4H)	H _{arom.}
7.47 (d, 2H)	C ₆ H ₂ (Biphenol)
7.35-6.95 (m, 10H)	H _{arom.}
6.56 (d, 2H)	C ₆ H ₂ (Biphenol)
6.34 (s, 2H)	C ₅ H
2.26 (s, 6H)	CH ₃
1.33 (s, 18H)	(CH ₃) ₃ C
1.28 (s, 18H)	(CH ₃) ₃ C
1.27 (s, 18H)	(CH ₃) ₃ C
0,99 (s, 6H)	Me ₂ Si

37

Beispiel bei dem man rac-Selektivität durch Zugabe von Radikalquellen und Erhitzen erreicht (Isomerisierung)

Beispiel 4) Synthese von rac-Me₂Si(2-Me-benz[e]ind)₂Zr(bip) (5C)

5

0.89g (2.10 mmol) Me₂Si(2-Me-benz[e]ind)₂Li₂ und 1.50g (2.10 mmol) Cl₂(THF)₂Zr(bip) wurden trocken vermischt und ca. 15 ml eines 10:1 Gemisches Toluol/THF (Volumenverhältnis) zugegeben. Die Reaktionsmischung wurde 12 h bei Raumtemperatur gerührt. Hierbei bildete sich eine orange-farbene Lösung und ein weißer Niederschlag. (LiCl). Das ¹H-NMR-Spektrum der Rohmischung zeigte ein Isomerenverhältnis von ca. 1:1. Die Reaktionsmischung wurde filtriert. Zum Filtrat wurden bei Raumtemperatur 0.30g (1.92 mmol) TEMPO hinzugegeben und die Reaktionsmischung 1 h auf 75°C erwärmt. Das ¹H-NMR-Spektrum der Rohmischung zeigte rein racemisches Me₂Si(2-Me-benz[e]ind)₂Zr(bip). Durch Einengen der Lösung am Hochvakuum und mehrfaches kristallisieren bei Raumtemperatur wurden insgesamt 1.6g, (1.76 mmol; 84%) rac-Me₂Si(2-Me-benz[e]ind)₂Zr(bip) erhalten.

20

¹H-NMR-Spektrum in CDCl₃, siehe Tabelle E. ¹³C-NMR-Spektrum in CDCl₃ (25°C, 600 MHz 158.1, 139.1, 133.3, 133.1, 131.8, 131.6, 130.1, 128.9, 128.2, 127.6, 127.2, 126.4, 125.6, 124.1, 124.0, 121.2, 110.8, 97.3, 35.3, 34.0, 33.1, 31.8, 19.1, 2.9.. Das Massenspektrum (EI-MS/ 70eV) zeigt Molekularionenpeak bei m/e 906-915 mit der typischen Isotopenverteilung. Elementaranalyse Gefunden: C 75.9 9% ; H 7.09 %; Zr 9.83. berechnet C 76.18 %; H 7.27 %; Zr 9.97 %.

30 Tabelle E

¹H-NMR-shifts für Komplex rac-5C (in ppm, CDCl₃, 25°C, 600 MHz)

Zuordnung ^a			
7.62 (d, 2H)	³ J (8.5 Hz)		C ₁₃ H ₇ (H8/9, H8'/9')
7.47 (d, 2H)	³ J (7.8 Hz)		C ₁₃ H ₇ (H7, H7')
35 7.19 (d, 2H)	³ J (8.5 Hz)		C ₁₃ H ₇ (H8/9, H8'/9')
7.11 (d, 2H)	⁴ J (2.5 Hz)		C ₆ H ₂ (H4/6, H4'/6')
7.10 (dd, 2H)	³ J (7.8 Hz) ³ J (7.3 Hz)		C ₁₃ H ₇ (H6, H6')
6.95 (dd, 2H)	³ J (7.9 Hz) ³ J (7.3 Hz)		C ₁₃ H ₇ (H5, H5')
6.65 (d, 2H)	³ J (7.9 Hz)		C ₁₃ H ₇ (H4, H4')
6.34 (s, 2H)			C ₁₃ H ₇ (H3, H3')
40 6.24 (d, 2H)	⁴ J (2.5 Hz)		C ₆ H ₂ (H4/6, H4'/6')
2.63 (s, 6H)			(2-CH ₃ -C ₁₃ H ₇)
1.38 (s, 6H)			(CH ₃) ₂ Si
1.28, 1.02 (s, 18H)			(CH ₃) ₃ C

^a Zuordnung durch ¹H-NMR-ROESY-Technik

Beispiele zur Abspaltung von Phenolaten an ansa-Metallocenbisphe-nolatkomplexen

Beispiel 5

5

Darstellung von $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{ZrCl}_2$ durch Umsetzung von $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{Zr}(3,5\text{-Me}_2\text{-OC}_6\text{H}_3)_2$ mit CH_3COCl .

Zu einer Lösung von 2.8 g (3.74 mmol) rac- $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{Zr}(3,5\text{-Me}_2\text{-OC}_6\text{H}_3)_2$ in 48 g Toluol und 0.6 g (8.3 mmol) THF wurden bei Raumtemperatur 0.63 g (8.02 mmol) Acetylchlorid in 13 g Toluol bei Raumtemperatur zugetropft. Die Lösung wurde 2 Tage bei Raumtemperatur gerührt. Die leicht orangene Lösung färbte sich zunehmend gelb. Nach einigen Stunden ist die Bildung eines hellgelben kristallinen Niederschlages zu beobachten. Das $^1\text{H-NMR}$ -Spektrum zeigte neben den Resonanzen des 3,5-Me₂-Phenolmethylesters Signale rein racemischen $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{ZrCl}_2$. Der hellgelbe kristalline Niederschlag wurde durch Filtration isoliert, mit wenig Toluol gewaschen und im Hochvakuum getrocknet. Hierbei werden 1.97 g (3.42 mmol) (92%) rein racemisches $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{ZrCl}_2$ analysenrein erhalten.

Darstellung von $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{Zr}(3,5\text{-Me}_2\text{-OC}_6\text{H}_3)\text{Cl}$ durch Umsetzung von $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{Zr}(3,5\text{-Me}_2\text{-OC}_6\text{H}_3)_2$ mit 25 CH_3COCl .

Zu einer Lösung von 2.5 g (3.34 mmol) rac- $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{Zr}(3,5\text{-Me}_2\text{-OC}_6\text{H}_3)_2$ in 60 g Toluol und 0.25 g (3.4 mmol) THF wurden bei Raumtemperatur 0.26 g (3.34 mmol) Acetylchlorid in 10 g Toluol bei Raumtemperatur zugetropft. Die Lösung wurde 2 Tage bei Raumtemperatur gerührt. Die leicht orangene Lösung färbte sich zunehmend gelb. Das $^1\text{H-NMR}$ -Spektrum zeigte neben den Resonanzen des 3,5-Me₂-Phenolmethylesters Signale rein racemischen $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{Zr}(3,5\text{-Me}_2\text{-OC}_6\text{H}_3)\text{Cl}$. Die Lösung wurde am Hochvakuum auf ca 1/4 eingeengt. Nach einigen Tagen bildete sich ein hellgelber kristalliner Niederschlag der filtriert, mit wenig Toluol gewaschen und im Hochvakuum getrocknet wurde, hierdurch wurden 2.0 g (90 %) rein racemisches $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{Zr}(3,5\text{-Me}_2\text{-OC}_6\text{H}_3)\text{Cl}$ analysenrein erhalten.

40

Elementaranalyse $\text{Me}_2\text{Si}(\text{Me-benz[e]ind})_2\text{ZrCl}(3,5\text{-di-Me-Phenolat})$
Gefunden C: 67.5 %; H: 5.3. berechnet C 68,8 %; H 5.3 %

45 $\text{Me}_2\text{Si}(2\text{-Me-benz[e]ind})_2\text{ZrCl}(3,5\text{-di-Me-Phenolat})$
 $^1\text{H-NMR}$ -Verschiebungen (in ppm, CDCl_3 , 25°C, 200 MHz)

39

	7.90 (d, 1H)	H _{arom.}
	7.78 (d, 1H)	H _{arom.}
	7.70-6.88 (11m, H)	H _{arom.}
5	6.69 (s, 1H)	C ₅ H oder C ₆ H ₃ (4-Position Phenolat)
	6.33 (s, 1H)	C ₅ H oder C ₆ H ₃ (4-Position Phenolat)
	5.81 (s, 2H)	C ₆ H ₃ (2,6-Position Phenolat)
	2.29 (s, 3H)	CH ₃
10	2.20 (s, 3H)	CH ₃
	2.12 (s, 6H)	3,5-(CH ₃) ₂ (Phenolat)
	0.95 (s, 3H)	Me ₂ Si
	0,89 (s, 3H)	Me ₂ Si

15

20

25

30

35

40

45

Patentansprüche

1. Verfahren zur Herstellung von racemischen Metallocenkomplexen
 5 durch Umsetzung von verbrückten oder nicht-verbrückten Über-
 gangsmetallaromatkomplexen der allgemeinen Formel I

15 in der die Substituenten und Indizes folgende Bedeutung
 haben:

M Titan, Zirkonium, Hafnium, Vanadium, Niob,
 20 Tantal, Chrom, Molybdän, Wolfram, sowie Elemente
 der III. Nebengruppe des Periodensystems und der
 Lanthanoiden,

x gleich oder verschieden Fluor, Chlor, Brom, Iod,
 25 Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl,
 Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest
 und 6 bis 20 C-Atomen im Arylrest, -OR¹⁰ oder
 -NR¹⁰R¹¹,

n eine ganze Zahl zwischen 1 und 4, wobei n der
 Wertigkeit von M minus der Zahl 2 entspricht,

R¹, R⁸ gleich oder verschieden Fluor, Chlor, Brom, Iod,
 30 C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl
 - das seinerseits ein C₁- bis C₁₀-Alkyl als
 Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl
 mit 1 bis 10 C-Atomen im Alkylrest und 6 bis
 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis
 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen
 im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder ver-
 schieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cyclo-
 alkyl, C₆- bis C₁₅-Aryl,

41

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

5

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

10

R² bis R⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis

15

10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

20

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein,

25

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

30

R¹⁰, R¹¹ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

35

y, y¹ gleich oder verschieden

40

45

15 = BR¹², = AlR¹², -Ge-, -Sn-, -O-, -S-, = SO,
= SO₂, = NR¹², = CO, = PR¹² oder = P(O)R¹²,

wobei

20 R¹² gleich oder verschieden Wasserstoff, Halogen,
C₁-C₁₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₆-C₁₀-Fluoraryl,
C₆-C₁₀-Aryl, C₁-C₁₀-Alkoxy, C₂-C₁₀-Alkenyl,
C₇-C₄₀-Arylalkyl, C₈-C₄₀-Arylalkenyl,
C₇-C₄₀-Alkylaryl bedeuten, oder wobei zwei
25 Reste R¹² mit den sie verbindenden Atomen
einen Ring bilden,

M¹ Silicium, Germanium oder Zinn ist und

30 m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste
R' und R" steht, wobei

35 R' und R" gleich oder verschieden sind und für Wasser-
stoff, Fluor, Chlor, Brom, Iod, C₁- bis
C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das
seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen
kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10
40 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im
Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in
Alkylrest und 6 bis 20 C-Atomen im Arylrest,
Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis
C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis
45 C₁₅-Aryl, oder zusammen mit benachbarten Resten
R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende ge-
sättigte, teilweise gesättigte oder für unge-

43

sättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen substituiert sein können, -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl

mit Cyclopentadienylderivaten von Alkali- oder Erdalkalimetallen, erwärmen des so erhaltenen Reaktionsgemisches auf eine Temperatur im Bereich von -78 bis 250°C, gegebenenfalls unter Zusatz von Radikalen oder Radikalbildnern und gegebenenfalls anschließende Substitution des verbrückten phenolischen Liganden oder der beiden nicht verbrückten phenolischen Liganden zum Mono- oder Bisubstitutionsprodukt.

2. Verfahren nach Anspruch 1, wobei R¹ und R⁸ in Formel I sperrige Substituenten sind.
3. Verfahren nach den Ansprüchen 1 bis 2, wobei m in Formel I 0 bedeutet.
- 25 4. Verfahren nach den Ansprüchen 1 bis 3, wobei Y¹ gleich ist und Sauerstoff bedeutet.
5. Verfahren nach den Ansprüchen 1 bis 4, wobei Cyclopentadienylderivate des Magnesiums oder des Lithiums verwendet werden.
- 30 6. Racemische Metallocenkomplexe der allgemeinen Formel III

in der die Substituenten und Indizes folgende Bedeutung haben:

44

M

Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, sowie Elemente der III. Nebengruppe des Periodensystems und der Lanthanoiden,

5

X¹

10

wobei:

15

R¹, R⁸

gleich oder verschieden Fluor, Chlor, Brom, Iod, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

20

wobei die genannten Reste teilweise oder vollständig mit Heteroatomen substituiert sein können,

25

-OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl.

35

R² bis R⁷

gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 3- bis 8-gliedriges Cycloalkyl - das seinerseits ein C₁- bis C₁₀-Alkylrest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl,

40

benachbarte Reste R² bis R⁷ können für 4 bis 15 C-Atome aufweisende gesättigte, teilweise ge-

45

45

sättigte oder für ungesättigte cyclische Gruppen stehen und die genannten Reste können vollständig oder teilweise mit Heteroatomen substituiert sein, $-OR^{27}$, $-SR^{27}$, $-N(R^{27})_2$, $-P(R^{27})_2$, mit R^{27} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 -bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl oder $Si(R^{28})_3$ mit R^{28} , gleich oder verschieden, C_1 - bis C_{10} -Alkyl, C_6 - bis C_{15} -Aryl, C_3 - bis C_{10} -Cycloalkyl, Alkylaryl,

10

Y, Y^1 gleich oder verschieden

15

20

25

= BR^{12} , = AlR^{12} , -Ge-, -Sn-, -O-, -S-, = SO,
= SO_2 , = NR^{12} , = CO, = PR^{12} oder = $P(O)R^{12}$,

wobei

30

R^{12} gleich oder verschieden Wasserstoff, Halogen, C_1 - C_{10} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_6 - C_{10} -Fluoraryl, C_6 - C_{10} -Aryl, C_1 - C_{10} -Alkoxy, C_2 - C_{10} -Alkenyl, C_7 - C_{40} -Arylalkyl, C_8 - C_{40} -Arylalkenyl, C_7 - C_{40} -Alkylaryl bedeuten, oder wobei zwei Reste R^{12} mit den sie verbindenden Atomen einen Ring bilden,

M^1

Silicium, Germanium oder Zinn ist und

40

m 0, 1, 2, 3 bedeutet,

oder Y nicht-verbrückend ist und für zwei Reste R' und R'' steht, wobei

45

R' und R'' gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Iod, C_1 - bis C_{20} -Alkyl, 3- bis 8-gliedriges Cycloalkyl - das

46

seinerseits ein C₁- bis C₁₀-Alkyl als Rest tragen kann -, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, Arylalkyl mit 1 bis 10 C-Atomen in Alkylrest und 6 bis 20 C-Atomen im Arylrest,

5 Si(R⁹)₃ mit R⁹ gleich oder verschieden C₁- bis C₂₀-Alkyl, C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl, oder zusammen mit benachbarten Resten R⁴ oder R⁵ für 4 bis 15 C-Atome aufweisende gesättigte, teilweise gesättigte oder für ungesättigte cyclische Gruppen stehen, und die genannten Rest vollständig oder teilweise mit Heteroatomen substituiert sein können,

10 -OR²⁷, -SR²⁷, -N(R²⁷)₂, -P(R²⁷)₂, mit R²⁷, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃ mit R²⁸, gleich oder verschieden, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl,

15

20 R¹³ bis R¹⁷ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann -, C₆- bis C₁₅-Aryl oder Arylalkyl,

25 wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R¹⁸)₃ mit

30 R¹⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

35 Z für steht,

wobei die Reste

40 R¹⁹ bis R²³ gleich oder verschieden Wasserstoff, C₁- bis C₂₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, - das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann -, C₆- bis C₁₅-Aryl oder Arylalkyl bedeuten, wobei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen können, oder Si(R²⁴)₃ mit

45

47

R²⁴ gleich oder verschieden C₁- bis C₁₀-Alkyl,
C₆- bis C₁₅-Aryl oder C₃- bis C₁₀-Cycloalkyl,

oder wobei die Reste

5

R¹⁶ und Z gemeinsam eine Gruppierung -[T(R²⁵) (R²⁶)]_q-E- bilden, in der

10

T gleich oder verschieden sein kann und für Silicium, Germanium, Zinn oder Kohlenstoff steht,

15

R²⁵, R²⁶ für Wasserstoff, C₁- bis C₁₀-Alkyl, C₃- bis C₁₀-Cycloalkyl oder C₆- bis C₁₅-Aryl

q für die Zahlen 1, 2, 3 oder 4,

20

E für oder A steht, wobei A —O— ,

25

—S— , NR²⁷ oder PR²⁷ bedeutet,

30

mit R²⁷ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²⁸)₃

35

mit R²⁸ gleich oder verschieden C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, C₃- bis C₁₀-Cycloalkyl oder Alkylaryl.

40

7. Racemische Metallocenkomplexe nach Anspruch 6, wobei R¹⁷ und R²³ nicht Wasserstoff bedeuten, wenn R¹⁶ und Z gemeinsam eine Gruppierung -[T(R²⁵) (R²⁶)]_q-E- bilden.

45

8. Verwendung von racemischen Metallocenkomplexen gemäß den Ansprüchen 6 bis 7 als Katalysatoren oder als Bestandteil von Katalysatoren für die Polymerisation von olefinisch ungesättigten Verbindungen oder als Reagenzien oder Katalysatoren in der stereoselektiven Synthese.

INTERNATIONAL SEARCH REPORT

Inte Application No
PCT/EP 01/07389A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07F17/00 C07B31/00 C08F4/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07F C07B C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ENGELHARDT, LUTZ M. ET AL: "Axially asymmetric metal alkyls. Part 5. Synthesis and reduction to zirconium(III) species of Group 4 metallepines 'ML(.eta.-C ₅ H ₅) ₂ ' 'L = (2-CHRC ₆ H ₄) ₂ -, R = H, M = Ti, Zr, or Hf!, isomers of 'ZrL(.eta.-C ₅ H ₅) ₂ ' (R = SiMe ₃), and meso-'M'1,8-(CHSiMe ₃) ₂ C ₁₀ H ₆ ! (.eta.-C ₅ H ₅) ₂ ! (M = Zr or Hf); x-ray crystal" J. CHEM. SOC., DALTON TRANS., no. 10, 1987, pages 2347-2357, XP001024875 page 2348 ----	6,7
A	----- -/-	1

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the International search

16 October 2001

Date of mailing of the international search report

29/10/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Authorized officer

Bader, K

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 01/07389

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HUTTENLOCH, MONIKA E. ET AL: "ansa-Metallocene derivatives. XXXIX. Biphenyl-bridged metallocene complexes of titanium, zirconium, and vanadium: syntheses, crystal structures and enantioseparation" J. ORGANOMET. CHEM., vol. 541, no. 1-2, 1997, pages 219-232, XP004093720 * Schema 6 * page 225 ---	6,7
A		1
X	SCHMIDT ET AL: "photochemical isomerization of me ₂ si-bridged zirconocene complexes. application to stereoselective synthesis of ansa-zirconocene binaphtholate stereoisomers" ORGANOMETALLICS, WASHINGTON, DC, US, vol. 16, no. 8, 15 April 1997 (1997-04-15), pages 1724-1728, XP002089634 ISSN: 0276-7333 page 1725 ---	6,7
A		1
X	WILLOUGHBY, CHRISTOPHER A. ET AL: "Catalytic Asymmetric Hydrogenation of Imines with a Chiral Titanocene Catalyst: Kinetic and Mechanistic Investigations" J. AM. CHEM. SOC., vol. 116, no. 26, 1994, pages 11703-11714, XP001030671 page 11708 ---	6-8
X	HERON, NICOLA M. ET AL: "Stereoselective Heteroatom-Assisted Allylic Alkylation of Cyclic Allylic Ethers with Grignard Reagents. A Convenient Route to Enantiomerically Pure Carbocycles" J. AM. CHEM. SOC. (1997), 119(26), 6205-6206 , vol. 119, no. 26, 1997, pages 6205-6206, XP001032921 the whole document ---	6-8
X	XU, ZHONGMIN ET AL: "Applications of Zr-Catalyzed Carbo-Magnesation and Mo-Catalyzed Macroyclic Ring Closing Metathesis in Asymmetric Synthesis. Enantioselective Total Synthesis of Sch 38516 (Fluvirucin B1)" J. AM. CHEM. SOC. (1997), 119(43), 10302-10316 , vol. 119, no. 43, 1997, pages 10302-10316, XP001032951 page 10305 ---	6-8

INTERNATIONAL SEARCH REPORT

Inter Application No
PCT/EP 01/07389

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	XIN, SHIXUAN ET AL: "Enantioselective hydrosilation of ketones in the presence of an S,S-'1,2-bis(tetrahydroindenyl)ethane!titanium catalyst" CAN. J. CHEM., vol. 73, no. 3, 1995, pages 999-1002, XP001030670 page 1001 ---	6-8
X	WO 92 09545 A (MASSACHUSETTS INST TECHNOLOGY) 11 June 1992 (1992-06-11) cited in the application page 15, line 16 - line 20 ---	6-8
X	WO 95 02567 A (MASSACHUSETTS INST TECHNOLOGY) 26 January 1995 (1995-01-26) page 15 -page 18; examples 9-14 ---	6-8
X	EP 0 970 964 A (SUMITOMO CHEMICAL CO) 12 January 2000 (2000-01-12) page 37; examples 8-10 -----	6-8

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 01/07389

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9209545	A	11-06-1992	US	5286878 A	15-02-1994
			US	5227538 A	13-07-1993
			US	5292893 A	08-03-1994
			US	5220020 A	15-06-1993
			AT	136878 T	15-05-1996
			CA	2096747 A1	22-05-1992
			DE	69118906 D1	23-05-1996
			EP	0558656 A1	08-09-1993
			JP	6502867 T	31-03-1994
			US	5442119 A	15-08-1995
			WO	9209545 A2	11-06-1992
			US	5489682 A	06-02-1996
WO 9502567	A	26-01-1995	US	5442119 A	15-08-1995
			US	5489682 A	06-02-1996
			AU	7324694 A	13-02-1995
			WO	9502567 A1	26-01-1995
			US	5491233 A	13-02-1996
EP 0970964	A	12-01-2000	JP	2000086679 A	28-03-2000
			JP	2000086678 A	28-03-2000
			EP	0970964 A2	12-01-2000
			JP	2000119287 A	25-04-2000
			US	6090961 A	18-07-2000

INTERNATIONALER RECHERCHENBERICHT

Inter. Aktenzeichen
PCT/EP 01/07389

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07F17/00 C07B31/00 C08F4/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C07F C07B C08F

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

CHEM ABS Data, EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	ENGELHARDT, LUTZ M. ET AL: "Axially asymmetric metal alkyls. Part 5. Synthesis and reduction to zirconium(III) species of Group 4 metallepines 'ML(.eta.-C5H5)2! 'L = (2-CHRC6H4)22-, R = H, M = Ti, Zr, or Hf!, isomers of 'ZrL(.eta.-C5H5)2! (R = SiMe3), and meso-'M'1,8-(CHSiMe3)2C10H6!(.eta.-C5H5)2! (M = Zr or Hf); x-ray crystal" J. CHEM. SOC., DALTON TRANS., Nr. 10, 1987, Seiten 2347-2357, XP001024875 Seite 2348	6,7
A	---	1 -/--

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmelde datum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifehaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem Internationalen Anmelde datum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmelde datum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
16. Oktober 2001	29/10/2001
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Bader, K

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 01/07389

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	HUTTENLOCH, MONIKA E. ET AL: "ansa-Metallocene derivatives. XXXIX. Biphenyl-bridged metallocene complexes of titanium, zirconium, and vanadium: syntheses, crystal structures and enantioseparation" J. ORGANOMET. CHEM., Bd. 541, Nr. 1-2, 1997, Seiten 219-232, XP004093720 * Schema 6 * Seite 225 ---	6,7
A		1
X	SCHMIDT ET AL: "photochemical isomerization of me ₂ si-bridged zirconocene complexes. application to stereoselective synthesis of ansa-zirconocene binaphtholate stereoisomers" ORGANOMETALLICS, WASHINGTON, DC, US, Bd. 16, Nr. 8, 15. April 1997 (1997-04-15), Seiten 1724-1728, XP002089634 ISSN: 0276-7333 Seite 1725 ---	6,7
A		1
X	WILLOUGHBY, CHRISTOPHER A. ET AL: "Catalytic Asymmetric Hydrogenation of Imines with a Chiral Titanocene Catalyst: Kinetic and Mechanistic Investigations" J. AM. CHEM. SOC., Bd. 116, Nr. 26, 1994, Seiten 11703-11714, XP001030671 Seite 11708 ---	6-8
X	HERON, NICOLA M. ET AL: "Stereoselective Heteroatom-Assisted Allylic Alkylation of Cyclic Allylic Ethers with Grignard Reagents. A Convenient Route to Enantiomerically Pure Carbocycles" J. AM. CHEM. SOC. (1997), 119(26), 6205-6206 Bd. 119, Nr. 26, 1997, Seiten 6205-6206, XP001032921 das ganze Dokument ---	6-8
X	XU, ZHONGMIN ET AL: "Applications of Zr-Catalyzed Carbo-Magnesation and Mo-Catalyzed Macroyclic Ring Closing Metathesis in Asymmetric Synthesis. Enantioselective Total Synthesis of Sch 38516 (Fluvirucin B1)" J. AM. CHEM. SOC. (1997), 119(43), 10302-10316 Bd. 119, Nr. 43, 1997, Seiten 10302-10316, XP001032951 Seite 10305 ---	6-8

INTERNATIONALER RECHERCHENBERICHT

Inter Aktenzeichen
PCT/EP 01/07389

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	XIN, SHIXUAN ET AL: "Enantioselective hydrosilation of ketones in the presence of an S,S-'1,2-bis(tetrahydroindenyl)ethane!titanium catalyst" CAN. J. CHEM., Bd. 73, Nr. 3, 1995, Seiten 999-1002, XP001030670 Seite 1001 ---	6-8
X	WO 92 09545 A (MASSACHUSETTS INST TECHNOLOGY) 11. Juni 1992 (1992-06-11) in der Anmeldung erwähnt Seite 15, Zeile 16 - Zeile 20 ---	6-8
X	WO 95 02567 A (MASSACHUSETTS INST TECHNOLOGY) 26. Januar 1995 (1995-01-26) Seite 15 -Seite 18; Beispiele 9-14 ---	6-8
X	EP 0 970 964 A (SUMITOMO CHEMICAL CO) 12. Januar 2000 (2000-01-12) Seite 37; Beispiele 8-10 -----	6-8

INTERNATIONALE RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 01/07389

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9209545	A	11-06-1992	US	5286878 A		15-02-1994
			US	5227538 A		13-07-1993
			US	5292893 A		08-03-1994
			US	5220020 A		15-06-1993
			AT	136878 T		15-05-1996
			CA	2096747 A1		22-05-1992
			DE	69118906 D1		23-05-1996
			EP	0558656 A1		08-09-1993
			JP	6502867 T		31-03-1994
			US	5442119 A		15-08-1995
			WO	9209545 A2		11-06-1992
			US	5489682 A		06-02-1996
WO 9502567	A	26-01-1995	US	5442119 A		15-08-1995
			US	5489682 A		06-02-1996
			AU	7324694 A		13-02-1995
			WO	9502567 A1		26-01-1995
			US	5491233 A		13-02-1996
EP 0970964	A	12-01-2000	JP	2000086679 A		28-03-2000
			JP	2000086678 A		28-03-2000
			EP	0970964 A2		12-01-2000
			JP	2000119287 A		25-04-2000
			US	6090961 A		18-07-2000