Лекция 9

Геометрия точек и плоскостей в пространстве

Содержание лекции:

В лекции обсуждаются в общем виде наиболее важные задачи о расположении плоскостей друг относительно друга, а также задачи о взаимном расположении точек и плоскостей.

Ключевые слова:

Условие параллельности плоскостей, условие совпадения плоскостей, угол между плоскостями, пересечение плоскостей, ортогональная проекция точки на плоскость, расстояние от точки до плоскости, расстояние между параллельными плоскостями, расположение точек относительно плоскости, полупространство.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

9.1 Взаимное расположение плоскостей

Рассмотрим теперь основные варианты расположения плоскостей друг относительно друга. Пусть плоскости \mathcal{L}_1 и \mathcal{L}_2 заданы своими нормальными уравнениями:

$$\mathcal{L}_1: \quad (\vec{r}, \vec{n}_1) = D_1, \quad \mathcal{L}_2: \quad (\vec{r}, \vec{n}_2) = D_2.$$

1. Условие параллельности плоскостей \mathcal{L}_1 и \mathcal{L}_2 :

$$\vec{n}_1 \parallel \vec{n}_2 \quad \Leftrightarrow \quad \vec{n}_1 \times \vec{n}_2 = 0.$$

2. Условие совпадения плоскостей \mathcal{L}_1 и \mathcal{L}_2 :

$$\vec{n}_1 \times \vec{n}_2 = 0, \quad (\vec{r}_1 - \vec{r}_2, \vec{n}_1) = 0.$$

3. Условие перпендикулярности плоскостей \mathcal{L}_1 и \mathcal{L}_2 :

$$\vec{n}_1 \perp \vec{n}_2 \quad \Leftrightarrow \quad (\vec{n}_1, \vec{n}_2) = 0.$$

4. Угол между плоскостями \mathcal{L}_1 и \mathcal{L}_2 :

$$\varphi = \angle(\mathcal{L}_1, \mathcal{L}_2) = \angle(\vec{n}_1, \vec{n}_2) \quad \Rightarrow \quad \cos \varphi = \left| \frac{(\vec{n}_1, \vec{n}_2)}{|\vec{n}_1| |\vec{n}_2|} \right|.$$

5. Пересечение плоскостей \mathcal{L}_1 и \mathcal{L}_2 :

$$\mathcal{L}_1 \cap \mathcal{L}_2 = \{ P(\vec{r_0}) : (\vec{r_0}, n_1) = D_1, (\vec{r_0}, \vec{n_2}) = D_2 \}.$$

Дальнейший разбор мы отложим до разговора о прямой в пространстве.

9.2 Взаимное расположение точки и плоскости

Пусть заданы плоскость \mathcal{L} и точка M, рассмотрим основные задачи, возникающие при исследовании их взаимного расположения. Будем полагать, что

$$\mathcal{L}: (\vec{r}, \vec{n}) = D, \quad M(\vec{r}_M)$$

Условие принадлежности точки M плоскости \mathcal{L} эквивалентно требованию

$$(\vec{r}_M, \vec{n}) = D$$

Рассмотрим возможные расположения:

1. Ортогоальная проекция M' точки $M \not\in \mathcal{L}$ на плоскость \mathcal{L} .

$$M'(\vec{r}_{M'}), \quad (\vec{r}_{M'}, \vec{n}) = D, \quad \vec{r}_{M'} - \vec{r}_{M} = \alpha \cdot \vec{n}$$

Подставляя второе уравнение в первое, получим

$$(\vec{r}_M + \alpha \cdot \vec{n}, \vec{n}) = D \quad \Rightarrow \quad \alpha = \frac{D - (\vec{r}_M, \vec{n})}{|\vec{n}|^2}.$$

Отсюда сразу получим решение:

$$\vec{r}_{M'} = \vec{r}_M + \frac{D - (\vec{r}_M, \vec{n})}{|\vec{n}|^2} \cdot \vec{n}.$$

2. Расстояние от точки M до плоскости \mathcal{L} .

$$\vec{r}_{M'} - \vec{r}_{M} = \frac{D - (\vec{r}_{M}, \vec{n})}{|\vec{n}|^{2}} \cdot \vec{n}, \quad \Rightarrow \quad \rho(M, \mathcal{L}) = |\vec{r}_{M'} - \vec{r}_{M}| = \frac{|D - (\vec{r}_{M}, \vec{n})|}{|\vec{n}|}.$$

3. Точка M'', симметричная точке M относительно плоскости \mathcal{L} .

$$\vec{r}_{M''} = \vec{r}_M + 2 \cdot \frac{D - (\vec{r}_M, \vec{n})}{|\vec{n}|^2} \cdot \vec{n}.$$

4. Расстояние между параллельными плоскостями \mathcal{L}_1 и \mathcal{L}_2 .

$$\rho(\mathcal{L}_1, \mathcal{L}_2) = \frac{|(\vec{r}_1, \vec{n}_1)|}{|\vec{n}_1|} - \frac{|(\vec{r}_2, \vec{n}_2)|}{|\vec{n}_2|} = \frac{|D_1|}{|\vec{n}_1|} - \frac{|D_2|}{|\vec{n}_2|}.$$

5. Расположение точек относительно плоскости.

$$\mathcal{L}: (\vec{r}, \vec{n}) = (\vec{r_0}, \vec{n}), \quad M_1 \leftrightarrow \vec{r_1}, \quad M_2 \leftrightarrow \vec{r_2}$$

Аналогично задаче о расположении двух точек относительно прямой на плоскости, для плоскости в пространстве будем иметь

где

$$L(\vec{r}) = (\vec{r} - \vec{r}_0, \vec{n}).$$

и условие $(\vec{r}) = 0$ соответствует точкам, которые принадлежат плоскости. Если $L(\vec{r}) \neq 0$, тогда в этом случае наше условие можно переписать:

$$L(\vec{r}_1) \cdot L(\vec{r}_2) = \mathcal{R}(\vec{r}_1, \vec{r}_2).$$

Функционал \mathcal{R} задает на плоскости отношение эквивалентности между точками, именно

$$\vec{r}_1 \sim \vec{r}_2 \quad \Leftrightarrow \quad R(\vec{r}_1, \vec{r}_2) > 0.$$

Множество классов по этому отношению состоит из двух, каждый из которых представляет собой полупространство, на которые плоскость делит все пространство.