2013-2014 学年度第 1 学期《电磁场理论》期中考试试卷

题目	_	_	= 1	四	五	合计
分数						

	JJ &X							
,	、 填空	题 (每空2分	· 共 20 分)					
1.	亥姆霍兹策	定理指出,在	E有限区域内	的任何一个结	天量场由它的	勺		
	唯一地确定							
2		_	络产生极化	,若已知其机	B 化强度为 F	5 . 则该由介	质中的	极化
۷.		度可由			大门五/文/77	, 100.07	W 1 HJ	1/2 1
2					由左宓鹿公	別事子光章 :	ΠÜΒ	Ī a
3.	. 设电场、电位移、磁场、磁感应强度、电流密度和电荷密度分别表示为 \bar{E} , \bar{D} , \bar{H} , \bar{B} , \bar{J} , ρ 则麦克斯韦微分方程组中,描述时变电场产生时变磁场的方程是							
						7 在定		;
				是			1. 31. 4	
4.	若已知某场	汤域内的矢量	d磁位 A ,则	该场域内的码	兹感应强度可	丁由	_来计算	旱。
5.	某隔离变压	玉器原边和副	引边自感均为	L(单位: ml	H),互感为	M(单位: ml	H),则当	当该
	变压器原、	副边电流均	为1A时,	其磁场能量为	J	_(单位: mJ)。		
6.	用镜像法式	求解电磁场的	力理论依据是		定理。			
7.	已知直角學	坐标系中空气	与电介质的	分界面为 y=0)的平面,假	设空气与电	介质的	电容
	率分别为&	ε0和16ε0,且	空气中的电场	汤强度为 $\bar{E}_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	$\vec{e}_x + 32\vec{e}_y$ (其	某中 \vec{e}_x , \vec{e}_y 为单	色位矢量	<u>!</u>),
	则该电介质	质中的电场强	且度矢量 \bar{E}_2 =		· · ·			
8.	若时变电码	兹场的电场强	展度、电位移	、磁场强度和	和磁感应强度	度分别为 \bar{E},\bar{D}	$,ec{H},ec{B}$,	则
	该电磁场的	能量密度为_		, 作流	密度矢量为		>	
_				入括号中,卷				
1.	关于矢量均	多 \vec{F} 的斯托克	瓦斯定理的数	学表达式,	正确的是		()。
	A. $\int_{S} \nabla \times$	$\vec{F}dS = \mathbf{\Phi}_{C}\vec{F}dl$; B. $\int_{S} \nabla$	$\vec{r} \times \vec{F} \cdot d\vec{S} = \vec{\Phi}_C$	$\vec{F} \cdot d\vec{l}$; C	$. \int_{V} \nabla \times \vec{F} dV$	$= \oint_{\mathbb{S}} \vec{F} \cdot$	$d\vec{S}$
2.	磁场强度	Ĥ 的单位是					()。
	A. 特斯拉	T, T;	B. 亨利	/米,H/m;	C.	安培/米,A	m'	
3.	磁介质的码	滋感应强度、	磁场强度和	磁化强度矢量	$\vec{B}, \vec{H}, \vec{M}$ 之	间的关系是	()。
	A. $\vec{B} = \mu$	$\mu_0 \vec{H} + \mu_0 \vec{M}$;	B.	$\vec{B} = \mu_0 \vec{H} - \vec{M}$	í;	C. $\vec{B} = \mu_0 \vec{H}$	$-\mu_0ec{M}$	
4.	两个通有甲	电流的线圈之	上间存在互感	,下述参数中	中对其互感治	设有影响的是	()。

北京航空航	天大学
-------	-----

仪器科学与光电工程学院

5	关于由	位参考点的选择,	下述说法正确的是
,	7 I III.	11/ 2/2/4 11/11/11/11/11	

- A. 可以选择点电荷所在的点: B. 总是可以选择无限远处为电位参考点;
- C. 同一个问题一般只能选取一个参考点。
- 6. 在直角坐标系中有下述三个矢量函数,不可能是磁感应强度矢量的是 ().
 - A. $\vec{B} = v\vec{e}_{x} + x\vec{e}_{y}$;
- B. $\vec{B} = x\vec{e}_x + y\vec{e}_y$; C. $\vec{B} = x\vec{e}_x y\vec{e}_y$

7. 关于位移电流,下述说法错误的是

-)
- A. 位移电流是电位移矢量随时间的变化率,能像电流一样产生磁场。
- B. 位移电流表示电场的变化率,它也能产生热效应。
- C. 在一般介质中, 既有传导电流, 又有位移电流。
- 已知坡印廷定理的复数形式为:

$-\iint_{S} \frac{1}{2} (\dot{E} \times \dot{H}^*) \cdot d\mathbf{S} = \int_{V} \frac{1}{2} \sigma \, \mathbf{E} \cdot \dot{\mathbf{E}}^* dV + j\omega \int_{V} \frac{1}{2} (\mu \, \dot{H} \cdot \dot{H}^* - \varepsilon^* \, \dot{\mathbf{E}} \cdot \dot{\mathbf{E}}^*) dV$

其中表示焦耳热损耗能量的项是

A. $\int_{V} \frac{1}{2} \sigma \, \mathbf{E} \cdot \dot{\mathbf{E}}^{*} dV \qquad \qquad B. \quad j\omega \int_{V} \frac{1}{2} \mu \, \dot{\mathbf{H}} \cdot \dot{\mathbf{H}}^{*} dV \qquad \qquad C. \qquad -j\omega \int_{V} \frac{1}{2} \varepsilon^{*} \, \dot{\mathbf{E}} \cdot \dot{\mathbf{E}}^{*} dV$

判断正误题 (正确的画"√",错误的画"×",每小题 2 分,共 16 分)

- 1. 标量场在某给定点处沿任意方向的方向导数等于其梯度在该方向上的投影。(
- 2. 标量场的梯度的散度恒等于零。
- 3. 矢量场的旋度描述了场分量在与其垂直的方向上的变化规律。
- 4. 麦克斯韦方程组中的四个方程是相互独立的。
- 5. 不论空间内是否存在自由电流,均可以引入矢量磁位 \overline{A} 和标量磁位 α_{∞} 。
- 6. 如果空间某一点的电位为零,则该点的电场强度也为零。
- 7. 输电线上的恒定电场同时存在于导体内部和外部,导体表面不是等位面。
- 8) 时变电场和时变磁场可以相互激发, 互为场源。

证明题 (8分) 四、

利用麦克斯韦方程画图证明: 在不同介质分界面两侧电场强度的切向分量是连续的。

五、 计算题 (每小题 20 分, 共 40 分)

1. 如题 1 图所示,在直角坐标系中,电容率分别为 ε_1 和 ε_2 的两种电介质的分界面为 z=0的平面,在上半空间距离分界面为 h 处有一电荷量为 q 的点电荷。试求: 1) z>0和 z<0 的两个半空间内的电位分布; 2)点电荷 q 所受到的电场力。

若自由空间中瞬时电场强度为 $\bar{E}(z,t) = \bar{e}_x 800 \cos(\omega t - kz)$ V/m, 式中 $k = \omega \sqrt{\mu_0 \varepsilon_0} = 0.2$ rad/m, 试求: 1) 该空间中的瞬时磁场强度 $\bar{H}(z,t)$; 2) 瞬时坡印廷矢量 $\bar{S}(z,t)$; 3) 平均坡印廷矢量 \bar{S}_{av} ; 4) 任意时刻流出如题 2 图所示平行六面体(长度为 1m、垂直于 z 轴的横截面积为 0.5m^2)中的净功率 P(t)。已知自由空间的电容率为 $\varepsilon_0 = (1/36\pi) \times 10^{-9}$ F/m,磁导率为 $\mu_0 = 4\pi \times 10^{-7}$ H/m。

题 2 图