Stavebnice logických obvodů

TTL

1. Napájecí napětí:

$$U_{CC}=5V$$

Napěťové rozsahy

$$U_{IL}=0-0,8V$$

$$U_{IH}=2-5,5V$$

$$U_{OL}=0-0,4V$$

$$U_{OH}=2,4-U_{CC}$$

2. Šumová imunita

$$\delta_H = U_{OH} - U_{IH} = 2, 4 - 2V = 0, 4V$$
 $\delta_L = U_{IL} - U_{OL} = 0, 8 - 0, 4V = 0, 4V$

3. Logický zisk

(zatížitelnost výstupu)

$$N=10-30$$

Na výstup můžeme připojit až N hradel stejné modifikace

4. Zpoždění signálu na jedno hradlo

$$t_p=19ns$$

5. Převodní charakteristika

CMOS

1. Napájecí napětí

$$U_{CC} = 3 - 18V$$

Pro:
$$U_{CC}=5V$$

Napěťové rozsahy

$$U_{IL}=1,5V(0,3U_{CC})$$

$$U_{IH} = 3,5V(0,7U_{CC})$$

$$U_{OL}=0-0,5V(0U_{CC})$$

$$U_{OH} = 4,95(U_{CC})$$

2. Šumová imunita

$$\delta_{HL}=2,2(0,4U_{CC})$$

3. Logiký zisk

velký

4. Zpoždění signálu na jedno hradlo

$$t_{pd}=20ns$$

5. Převodní charkteristika

HC

1. Napájecí napětí

$$U_{CC}=2-6V$$

2. Šumová imunita

$$\delta_H = U_{OH} - U_{IH} = 2,5V$$
 $\delta_L = U_{IL} - U_{OL} = 1,8V$

- Logický zisk neznámý
- 4. Zpoždění signálu na jedno hradlo $t_{pd}=20ns$
- 5. Převodní charakteristika

Sekvenční logické obvody

RS klopný obvod

Pomocí nand

Set

Reset

Memory

Synchronní RS

obohaceno o dva nandy na začátek

D klopný obvod

JK klopný obvod

Posuvný registr

Asynchronní binární čítač

Programovatelné logické obvody a polovodičové paměti

PLD

Programovatelné logické pole jsou realizovány kombinací:

- AND hradel
- OR hradel
- propojovacích polí
- inventurů a klopných obvodů

PROM

Programovatelné read only memory jsou realizovány kombinací:

- neprogramovatelné propojovací pole hradel AND
- programovatelné pole hradel OR

PAL

Programovatelné array (pole) logic jsou realizovány kombinací:

- programovatelné propojovací pole hradel AND
- neprogramovatelné pole hradel OR

FPLA

Field (polové) programovatelné logické array (pole) jsou realizovány kombinací:

- programovatelné propojovací pole hradel AND
- programovatelné pole hradel OR

GAL

Obecná (generic) polová logika

Čítače a časovače

- dva binární čítače/časovače
- jejich stav je softwarově dostupný v registrech TH0, TL0 resp. TH1,TL1
- použití:
 - o generování časových intervalů
 - čítání událostí
 - o generování přenosové rychlosti pro sériový port (seriová komunikace zabere jeden čítač)
- řízení spuštění a zastavování čítačů/časovačů
 - hardware
 - software
- kommparační regidtry záchytné registry
- generování přerušení (bude popsáno později)

Režimy čítačů/časovačů 8051

Režim činnosti čítačů/časovačů je určen nastavením registru TMOD

b7	b6	b5	b4	b3	b2	b1	b0	bit	
GATE	C/T	M1	MO	GATE	C/T	M1	MO	adresa=89H	
1				0				čítač	

C/T -výběr hodin čítače

- (=1) -externí
- (=0) -oscilátor

TCON - obsahuje stavové a řídící bity časovače 0 a časovače 1

b7	b6	b5	b4	b3	b2	b1	b0	bit
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	

Generování pulzů

```
sbit LED=P3^4
main ()
{
    TMOD = 0x02;
    TH0 = -50;
    TL0 = -50;
    TR0 = 1;
cycle:
    while (!TF0);
    TF0 = 0;
    LED = (!LED);
    goto cycle;
}
```