摂動項が時間に依存する場合の摂動 (time-dependent perturbation)¹を扱う. 本節では、量子系の時間発展が状態ベクトルの時間変化で描像する Schrödinger 描像で記述する. 時間に依存する Schrödinger 方程式,

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 (0.0.1)

を考える. なお, $|\psi(t)\rangle$ は $\hat{H}^{(0)}$ の固有ベクトルを用いて,

$$|\psi(t)\rangle = \sum_{n} c_n(t) |n\rangle$$
 (0.0.2)

と展開できたとする. $\hat{H}^{(0)}$ の固有ベクトルが完全系を成すので、状態ベクトルが時間変化した空間は $\{|n\rangle\mid n=0,1,\cdots\}$ が張る空間の部分空間となることに注意する. 以下の議論では特に断らない限り, $\hat{H}^{(0)}$ の固有ベクトルは Schmidt の直交化法などを用いて,正規直交化してあるものとする. \hat{H} の性質ごとに $|\psi(t)\rangle$ の具体的な形を議論する.

1. $\hat{H} = \hat{H}^{(0)}$ の場合²

量子状態 $|\psi(t)\rangle$ の時間発展は時間発展演算子 $^{34}\exp\left(-\mathrm{i}\frac{\hat{H}}{\hbar}t\right)$ を用いて、

$$|\psi(t)\rangle = \exp\left(-i\frac{\hat{H}^{(0)}}{\hbar}t\right)|\psi(0)\rangle$$
 (0.0.3)

$$= \sum_{n} c_n(0) \exp\left(-i\frac{\hat{H}^{(0)}}{\hbar}t\right) |n\rangle \tag{0.0.4}$$

$$= \sum_{n} c_n(0) \exp\left(-i\frac{E_n}{\hbar}t\right) |n\rangle \tag{0.0.5}$$

のように表すことができる.

時間発展演算子を用いることなく計算することもできる.式 (0.0.2) を式 (0.0.1) に代入すると, \hat{H} が時間に依存しないことに注意すれば,

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{n} c_n(t) |n\rangle \right) = \hat{H} \left(\sum_{n} c_n(t) |n\rangle \right)$$
(0.0.6)

$$\Leftrightarrow \sum_{n} \left(i\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_n(t) |n\rangle \right) = \sum_{n} \left(c_n(t) E_n |n\rangle \right) \tag{0.0.7}$$

$$\Leftrightarrow \forall n \ i\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_n(t) |n\rangle = c_n(t) E_n |n\rangle \tag{0.0.8}$$

$$\Leftrightarrow \forall n \ c_n(t) = \exp\left(-i\frac{E_n}{\hbar}t\right)$$
 (0.0.9)

を用いれば,

$$|\psi(t)\rangle = \sum_{n} \exp\left(-i\frac{E_n}{\hbar}t\right)|n\rangle$$
 (0.0.10)

を得る.

$$|\psi(\Delta t)\rangle = \exp\left[-\mathrm{i}\frac{\hat{H}}{\hbar}\Delta t\right]|\psi(0)\rangle \approx \left(\hat{I} - \mathrm{i}\frac{\hat{H}}{\hbar}\Delta t\right)|\psi(0)\rangle = |\psi(0)\rangle + \Delta t\left.\left(\frac{\mathrm{d}}{\mathrm{d}t}\left|\psi(t)\right\rangle\right)\right|_{t=0}$$

より微分の形で書けることから、確かに時間発展すると解釈できる。

⁴演算子が交換するときは数字と同じ扱いをしても良いと考える. 一般に演算子は,

$$\mathrm{e}^{\hat{A}}\mathrm{e}^{\hat{B}} = \exp\!\left\{\hat{A} + \hat{B} + \frac{1}{2}\!\left[\hat{A},\hat{B}\right] + \cdots\right\} \neq \mathrm{e}^{\hat{A} + \hat{B}}$$

なる BCH 公式を満たす.

¹電磁波による摂動など.

 $^{^{2}\}hat{H}^{(0)}$ は厳密に解けるハミルトニアン.

 $^{^3\}Delta t \ll 1 \; \& \; \mathsf{LT}$

2. $\hat{H} = \hat{H}^{(0)} + \hat{V}(t)$ の場合

このときは $|\psi(t)\rangle$ を簡単な形で書き下すことが出来ないから、便宜的に、

$$\psi(t) = \sum_{n} c_n(t) \exp\left(-i\frac{E_n}{\hbar}t\right) |n\rangle$$
 (0.0.11)

と展開しておく.なお, $c_n(t)$ が定数のときの $|\psi(t)\rangle$ との整合性をとるために $c_n(t)$ に $\exp\left(-\mathrm{i}\frac{E_n}{\hbar}t\right)$ をかけてある.原理的には $c_n(t)$ が求まれば量子系の時間発展の様子がわかる.

さて、いずれの場合でも、量子系の性質を調べるには $c_n(t)$ の具体的な形がわかればよいことを発見した。本節では、まず Schrödinger 表示から相互作用表示に書き換え、 $c_n(t)$ を厳密に特定することが困難であることを知り、 $c_n(t)$ の近似解を導く。式 (0.0.1) と式 (0.0.11) をまとめて、Schrödinger 表示の非定常摂動基本方程式と呼ぶ。

