Progress Report

Victor Huang

November 17, 2020

Overview:

Concerned variables and underlying Monte-Carlo model:

```
nSims: Number of simulations to run for each groups of parameter.
N: Size of population.
p: Probablity an observation is sampled.
sigma_e2: Variance of Model error e.
sigma_epi2: variance of unpredicted error epislon.
yi: Dependent variable without unpredicted error.
xi: Independent variable.
cap_y: Dependent variable with unpredicted error.
```

Simulation2: A function that randomly draws samples from population given. Each observation \\ has probability p of being samapled. It repeats this operation nSims times and will output a \\ vector of beta, the empirical value for an OLS fitting model based on cap_y and xi.

```
# setting parameters
sigma_e2<-1
N<-10000
beta<-2
nSims<-10000

p<-c(0.01,0.1,0.5,0.9,0.99)
sigma_epi2<-c(0,1,2)

x_para<-set_para(0,1)
e_para<-set_para(0,sigma_e2)

# generating population
xi<-pop_gen(x_para,N,'uniform')
ei<-pop_gen(e_para,N,'normal')

yi<-xi*beta+ei

# for each group of simulations, generate one population with</pre>
```

```
# independent error epislon.
for (j in c(1:length(sigma epi2))){
    epi_para<- set_para(0,sigma_epi2[j])</pre>
    epi<-pop_gen(epi_para,N,'normal')</pre>
    cap_y<-yi+epi
# sample from the population with probability p and return the
# variance of the beta.
 for (i in c(1:length(p))){
    start.time.small<-Sys.time()</pre>
    var_beta<-var(simulation2(cap_y,xi,p[i],nSims))</pre>
    theo_var<-sigma_epi2[j]/(sum(xi**2))+((1-p[i])/p[i])*
      (sum(xi**2*ei**2))/((sum(xi**2))**2)
    end.time.small<-Sys.time()</pre>
# rearranging the data for presentation and making graph
    out<-cbind(obs=var_beta,theo=theo_var,prob=sprintf('p = %f ',p[i]),</pre>
                sigma=sprintf('sigma_epi2 = %f',sigma_epi2[j]),
                time=end.time.small-start.time.small)
    result <- rbind (result, out)
  }
}
result1<-as.data.frame(result) %>% gather(type,num,obs:theo) %>% type_convert()
## Parsed with column specification:
## cols(
##
     prob = col_character(),
```

sigma = col_character(), time = col_double(), ## ## type = col_character(), ## num = col_double() ##) for (i in (c(1:length(p)))){ a<-ggplot(result1 %>% filter(prob==sprintf('p = %f',p[i])))+ geom_col(aes(sigma,num,fill=type),position='dodge',width = 0.9)+ geom_text(aes(sigma,num,label=round(as.numeric(num),5),group=type), position = position_dodge(width = 0.9))+ theme(axis.title.x=element_blank(), axis.ticks.x=element_blank(), plot.margin = unit(c(1,1,1,1), "cm"))+ggtitle(sprintf('Observation with p= %f',p[i])) plot(a) }

Observation with sigma= 0.000000

Observation with sigma= 1.000000

Observation with sigma= 2.000000

prob	sigma	obs	theo
p = 0.010000	$sigma_epi2 = 0.000000$	0.0296398600749798	0.029818226013555
p = 0.100000	$sigma_epi2 = 0.000000$	0.00267956093873299	0.0027107478194141
p = 0.500000	$sigma_epi2 = 0.000000$	0.0003028899894226	0.000301194202157122
p = 0.900000	$sigma_epi2 = 0.000000$	3.35704889090169e-05	3.34660224619024e-05
p = 0.990000	$sigma_epi2 = 0.000000$	3.14393782217354e-06	3.04236567835477e-06
p = 0.010000	$sigma_epi2 = 1.000000$	0.0580273295277495	0.0301176602174658
p = 0.100000	$sigma_epi2 = 1.000000$	0.00545862226973184	0.00301018202332482
p = 0.500000	$sigma_epi2 = 1.000000$	0.00060984009264221	0.000600628406067849
p = 0.900000	$sigma_epi2 = 1.000000$	6.70799974305426e-05	0.00033290022637263
p = 0.990000	$sigma_epi2 = 1.000000$	6.04860168772048e-06	0.000302476569589082
p = 0.010000	$sigma_epi2 = 2.000000$	0.0914136242509702	0.0304170944213765
p = 0.100000	$sigma_epi2 = 2.000000$	0.00844070521524059	0.00330961622723555
p = 0.500000	$sigma_epi2 = 2.000000$	0.000909414464277947	0.000900062609978577
p = 0.900000	$sigma_epi2 = 2.000000$	0.000102568101660501	0.000632334430283357
p = 0.990000	$sigma_epi2 = 2.000000$	9.20542776949471e-06	0.00060191077349981

prob	sigma	time
p = 0.010000	$sigma_epi2 = 0.000000$	12.8805449008942
p = 0.100000	$sigma_epi2 = 0.000000$	13.6524529457092
p = 0.500000	$sigma_epi2 = 0.000000$	18.4526400566101
p = 0.900000	$sigma_epi2 = 0.000000$	29.4681849479675
p = 0.990000	$sigma_epi2 = 0.000000$	25.671352148056
p = 0.010000	$sigma_epi2 = 1.000000$	13.921758890152
p = 0.100000	$sigma_epi2 = 1.000000$	15.1973180770874
p = 0.500000	$sigma_epi2 = 1.000000$	21.329941034317
p = 0.900000	$sigma_epi2 = 1.000000$	22.3698928356171
p = 0.990000	$sigma_epi2 = 1.000000$	24.6600370407104
p = 0.010000	$sigma_epi2 = 2.000000$	12.9942419528961
p = 0.100000	$sigma_epi2 = 2.000000$	13.2555420398712
p = 0.500000	$sigma_epi2 = 2.000000$	17.8093581199646
p = 0.900000	$sigma_epi2 = 2.000000$	20.9838688373566
p = 0.990000	$sigma_epi2 = 2.000000$	22.9446251392365
time in total	time in total	4.79798349936803