14.4 GRADIENTS AND DIRECTIONAL DERIVATIVES IN THE PLANE

The Rate of Change in an Arbitrary Direction: The Directional Derivative

For each of the functions f, g, and h in Figure 14.30, decide whether the directional derivative at the indicated point is positive, negative, or zero, in the direction of the vector $\vec{v} = \vec{i} + 2\vec{j}$, and in the direction of the vector $\vec{w} = 2\vec{i} + \vec{j}$.

Figure 14.30: Contour diagrams of three functions with direction vectors $\vec{v} = \vec{i} + 2\vec{j}$ and $\vec{w} = 2\vec{i} + \vec{j}$ marked on each

The Gradient Vector of a differentiable function f at the point (a, b) is

$$\operatorname{grad} f(a,b) = f_x(a,b)\vec{i} + f_y(a,b)\vec{j}$$

The Directional Derivative and the Gradient

If f is differentiable at (a,b) and $\vec{u} = u_1 \vec{i} + u_2 \vec{j}$ is a unit vector, then

$$f_{\vec{u}}(a, b) = f_x(a, b)u_1 + f_y(a, b)u_2 = \text{grad } f(a, b) \cdot \vec{u}$$
.

Example 3 Calculate the directional derivative of $f(x,y) = x^2 + y^2$ at (1,0) in the direction of the vector $\vec{i} + \vec{j}$.

Solution First we have to find the unit vector in the same direction as the vector $\vec{i} + \vec{j}$. Since this vector has magnitude $\sqrt{2}$, the unit vector is

$$\vec{u} = \frac{1}{\sqrt{2}}(\vec{i} + \vec{j}) = \frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$$
.

Thus,

$$f_{\vec{u}}(1,0) = \lim_{h \to 0} \frac{f(1+h/\sqrt{2}, h/\sqrt{2}) - f(1,0)}{h} = \lim_{h \to 0} \frac{(1+h/\sqrt{2})^2 + (h/\sqrt{2})^2 - 1}{h}$$
$$= \lim_{h \to 0} \frac{\sqrt{2}h + h^2}{h} = \lim_{h \to 0} (\sqrt{2} + h) = \sqrt{2}.$$

Example 5 Find the gradient vector of $f(x, y) = x + e^y$ at the point (1, 1).

Solution Using the definition, we have

$$\operatorname{grad} f = f_x \vec{i} + f_y \vec{j} = \vec{i} + e^y \vec{j} ,$$

so at the point (1,1)

grad
$$f(1,1) = \vec{i} + e\vec{j}$$
.

Geometric Properties of the Gradient Vector in the Plane

If f is a differentiable function at the point (a, b) and $\operatorname{grad} f(a, b) \neq \vec{0}$, then:

- The direction of grad f(a, b) is
 - · Perpendicular to the contour of f through (a, b);
 - · In the direction of the maximum rate of increase of f.
- The magnitude of the gradient vector, || grad f ||, is
 - · The maximum rate of change of f at that point;
 - · Large when the contours are close together and small when they are far apart.

Figure 14.32: Close-up view of the contours around (a, b), showing the gradient is perpendicular to the contours

Figure 14.33: A temperature map showing directions and relative magnitudes of two gradient vectors

Let $f(x,y) = x^2y^3$. At the point (-1,2), find a vector

- (a) In the direction of maximum rate of change.
- (b) In the direction of minimum rate of change.
- (c) In a direction in which the rate of change is zero.

Example 7 Use the gradient to find the directional derivative of $f(x,y) = x + e^y$ at the point (1,1) in the direction of the vectors $\vec{i} - \vec{j}$, $\vec{i} + 2\vec{j}$, $\vec{i} + 3\vec{j}$.

Solution In Example 5 we found

grad
$$f(1,1) = \vec{i} + e\vec{j}$$
.

A unit vector in the direction of $\vec{i} - \vec{j}$ is $\vec{s} = (\vec{i} - \vec{j})/\sqrt{2}$, so

$$f_{\vec{s}}\left(1,1\right) = \operatorname{grad} f(1,1) \cdot \vec{s} \, = \left(\vec{i} \, + e\vec{j}\,\right) \cdot \left(\frac{\vec{i} \, - \vec{j}}{\sqrt{2}}\right) = \frac{1-e}{\sqrt{2}} \approx -1.215.$$

A unit vector in the direction of $\vec{i} + 2\vec{j}$ is $\vec{v} = (\vec{i} + 2\vec{j})/\sqrt{5}$, so

$$f_{\vec{v}}(1,1) = \operatorname{grad} f(1,1) \cdot \vec{v} = (\vec{i} + e\vec{j}) \cdot \left(\frac{\vec{i} + 2\vec{j}}{\sqrt{5}}\right) = \frac{1 + 2e}{\sqrt{5}} \approx 2.879.$$

A unit vector in the direction of $\vec{i} + 3\vec{j}$ is $\vec{w} = (\vec{i} + 3\vec{j})/\sqrt{10}$, so

$$f_{\vec{w}}(1,1) = \operatorname{grad} f(1,1) \cdot \vec{w} = (\vec{i} + e\vec{j}) \cdot \left(\frac{\vec{i} + 3\vec{j}}{\sqrt{10}}\right) = \frac{1 + 3e}{\sqrt{10}} \approx 2.895.$$

Example: find Duf(x,y) if $f(x,y) = x^3 - 3xy + 4y^2$ and is the unit vector given by angle $\theta = \frac{7}{6}$,
what is $D_{\alpha}f(1,2)$?

THE SPRANIENT

De For f(x,y)=xy-4y³, finel Def(2,1) for û in

The a disertin of & from (2,1) to (4,0)

Example: $f(n,y,2) = x \sin y2$ a) find ∇f b) Du f(1,3,0) in the disertin if $v = \hat{i} + 2\hat{j} - \hat{k}$