

SESIUNEA DE COMUNICĂRI ȘTIINȚIFICE STUDENȚEȘTI 9 MAI 2025

FACULTATEA DE AUTOMATICĂ ȘI CALCULATOARE UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI" DIN IAȘI

Creșterea rezilienței și securității datelor stocate în sisteme distribuite împotriva atacurilor ransomware

Domeniu: Criptografie si Blockchain

Program de studii: Tehnologia Informației

An de studiu: IV licenta

Autor (Voineag Diana-Ioana)

Îndrumător: Mironeanu Catalin

Context

→ Creşterea utilizării stocării distribuite a datelor

Descrierea problemei

- → Necesitatea unui sistem de securizare robust şi eficient
- → Atacurile crypto-ransomware

Soluții prezente de stocare distribuită

Feature	GlusterFS	HDFS	Ceph	MooseFS	Proposed System
Transparent Data Encryption (TDE)	×	~	~	×	✓
File-level Ransomware Detection	×	×	×	×	✓
Key Rotation Support	×	✓	✓	×	✓ (via Vault)
Agent-based Behavioral Monitoring	×	×	×	×	✓
Vault Integration (KMS)	×	Partial*	~	×	✓
Performance-Aware Encryption	×	×	×	×	~

- 1. Proxy Man-in-the-middle (MITM) care implementează un strat de criptare prin Transparent Data Encryption (TDE)
- Implementarea unui model de tip Zero Knowledge folosind HashiCorp Vault
- Mecanism de detecţie timpurie Ransomware prin un model de tip Observer-Agent
- 4. Experimente de interoperabilitate cu sistemele GlusterFS si HDFS

1. Arhitectura proxy MITM

1. TDE cu criptare file-aware

- → Mecanism de encriptie dinamica:
 - are în vedere anumite caracteristici ale fișierului (marime, indicatori importanta, senzitivitate)
 - Chacha20–Poly135 vs AES-GCM
 - chunking & streaming

1. File-aware encryption

1. File-aware encryption

$$S(A) = 0.4 \cdot f_{size}(A) + 0.3 \cdot f_{sens}(A) + 0.3 \cdot f_{value}(A)$$

- $f_{size}(A)$ favors AES-GCM for small files and ChaCha20 for large ones:
 - $f_{size}(AES-GCM) = 0.9$ for files ≤ 5 MB
 - $f_{size}(ChaCha20) = 0.9$ for files > 5 MB
- $f_{sens}(A) = 1.0$ for highly sensitive files, 0.5 otherwise
- $f_{value}(A) = 1.0$ for high-value files, 0.5 otherwise

$$P(A) = \frac{e^{S(A)}}{\sum_{j=1}^{m} e^{S(A_j)}}$$

- 1. Proxy Man-in-the-middle (MITM) care implementează un strat de criptare prin Transparent Data Encryption (TDE)
- Implementarea unui model de tip Zero Knowledge folosind HashiCorp Vault
- Mecanism de detecție timpurie Ransomware prin un model de tip Observer-Agent
- 4. Experimente de interoperabilitate cu sistemele GlusterFS si HDFS

2. Zero knowledge architecture

- principii - cu check datorita vault

- 1. Proxy Man-in-the-middle (MITM) care implementează un strat de criptare prin Transparent Data Encryption (TDE)
- Implementarea unui model de tip Zero Knowledge folosind HashiCorp Vault
- 3. Mecanism de detecție timpurie Ransomware prin un model de tip Observer-Agent
- 4. Experimente de interoperabilitate cu sistemele GlusterFS si HDFS

3.5

chema detectie

Front-end

- 1. Proxy Man-in-the-middle (MITM) care implementează un strat de criptare prin Transparent Data Encryption (TDE)
- 2. Implementarea unui model de tip Zero Knowledge folosind HashiCorp Vault
- 3. Mecanism de detecție timpurie Ransomware prin un model de tip Observer-Agent
- 4. Experimente de interoperabilitate cu sistemele GlusterFS si HDFS

Concluzii

- Figuri ilustrative
- Tabele

Referințe (dacă este cazul)

- Text
- Text
- Text