МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Информационных систем

ОТЧЕТ

по практической работе №2 по дисциплине «Объектно-ориентированное программирование»

Студент гр. 8374	 Пихтовников К.С
Студент гр. 8374	 Подсекин Г.С.
Преподаватель	Егоров С.С.

Санкт-Петербург

Задание на практическую работу

Рис.1. Диаграмма классов работы №2

Создать консольное приложение, реализующее функции перечисленные в описании работы №1 (вычисление корней, вычисление значения, представление полинома в классической и канонических формах) на множестве рациональных чисел.

Приложение должно включать основной модуль, модуль «application», модуль «polinom» и модуль «rational».

Для этого в проект лабораторной работы №1 следует добавить модуль с описанием и реализацией класса рациональных чисел TRational. Класс TRational должен быть встроен в проект согласно диаграмме классов на рис.1. При этом основной модуль, модуль «application» и модуль «polinom» не должны изменяться.

В классе **TRational** следует определить только те члены класса и спецификации, которые необходимы для совместимости модулей проекта и реализации отношений, приведенных в ДК объектной модели.

Реализовать и отладить программу, удовлетворяющую сформулированным требованиям и заявленной цели. Разработать контрольные примеры и оттестировать на них программу. Оформить отчет, сделать выводы по работе.

Спецификация классов

Класс Tapplication

Предназначен для выполнения функций ввода коэффициентов полинома, значения аргумента, инициализации процесса вычисления корней, инициализации процесса вычисления и вывода полинома в классической и канонической формах.

Метод/атрибут	Описание
Метод ехес()	Формальных параметров нет, тип void, область видимости-public. В этом методе идет вызов функции menu(), задается конкретное действие, которое пожелал сделать пользователь и результат выводится на экран.
Метод menu()	Формальных параметров нет, тип возвращаемого значения-int, область видимости-private. Вывод на экран необходимого меню, с помощью которого пользователь взаимодействует с программой.
Метод Tapplication()	Конструктор класса

Таблица 1. Класс Tapplication

Класс Tpolinom

Методы и атрибуты данного класса необходимы для выполнения цели разрабатываемой программы (например, получение значений коэффициентов полинома, вычисление дискриминанта, вывод уравнения на экран).

Метод/атрибут	Описание
Атрибут number a, b, c	область видимости – private, хранит
	значение коэффициентов. По умолчанию
	коэффициенты равны: a=1, b=2, c=1.
Атрибут EPrintMode printMode	область видимости – private, содержит вид
	уравнения для печати, который выбрал
	пользователь
Метод TPolinom(number,number,number)	Конструктор класса
Метод Void setPrintMethod(EPrintMode ePrintMethod)	Тип формального параметра - EPrintMode, область видимости public. Метод устанавливает вид полинома, в
	котором его необходимо вывести (классический или канонический)
Методы getA(), getB(), getC()	Формальных параметров нет, тип number, область видимости public.

	Предназначены для получения коэффициентов a, b, c.
Mетод Int QuantityOfRoots()	Формальных параметров нет, тип возвращаемого значения - int, область видимости public. Возвращает количество корней полинома
Метод number getValue(number x)	Тип формального параметра - number, тип возвращаемого значения - number, область видимости public. Метод вычисляет и возвращает значение полинома.
Метод number Discriminant()	Формальных параметров нет, тип возвращаемого значения - number, область видимости private. Возвращает значение дискриминанта
Метод Bool RootsInteger (number*ArrayOfRoots, int quantityRoots, number a, number b, number c)	Тип возвращаемого значения - bool, область видимости private. Типы формальных параметров: указатель на массив с корнями (number*), int количество корней, number коэффициенты a, b, c. Метод позволяет определить, являются ли корни уравнения целыми числами.
Mетод number *Roots()	Формальных параметров нет, тип возвращаемого значения - number, область видимости public. Возвращает указатель на массив с корнями.
Метод ostream& operator << (ostream& os, TPolinom& p)	Тип возвращаемого значения – ostream object, область видимости – public. Данный метод выводит на экран полином в классической или канонической форме.

Таблица 2. Класс Tpolinom

Класс TRational

Методы и атрибуты данного класса необходимы для вычисления корней, значений, представления полинома в классической и канонических формах на множестве рациональных чисел.

Метод/атрибут	Описание
Атрибут int numerator	область видимости - private. Является числителем дроби (целое число)
Атрибут unsigned int denominator	область видимости - private. Является знаменателем дроби (целое число, большее нуля)
Метод TRational()	Конструктор класса
Метод TRational(const int&)	Конструктор класса

Метод unsigned int NOK(const TRational&)	Тип формального параметра - const TRationals&, тип возвращаемого значения - unsigned int, область видимости private. Предназначен для вычисления наименьшего общего кратного.
Метод int NOD(const int&,const int&)	Тип формального параметра - const int&, тип возвращаемого значения - int, область видимости private. Предназначен для вычисления наибольшего общего кратного.
Метод void decrease()	Формальных параметров нет, область видимости private. Метод позволяет привести дробь к несократимому виду
Метод TRational operator+ (const TRational&)	Тип формального параметра - const TRationals&, тип возвращаемого значения - объект класса TRational, область видимости public. Перегрузка оператора сложения
Метод TRational operator* (const TRational&)	Тип формального параметра - const TRational&, тип возвращаемого значения - объект класса TRational, область видимости public. Перегрузка оператора умножения
Метод TRational operator* (const int&)	Тип формального параметра - const int&, тип возвращаемого значения - объект класса TRational, область видимости public. Перегрузка оператора умножения на число
Метод TRational operator/ (const TRational&)	Тип формального параметра - const TRational&, тип возвращаемого значения - объект класса TRational, область видимости public. Перегрузка оператора деления
Mетоды: bool operator > (int) bool operator < (int) bool operator == (int)	Тип формального параметра - int, тип возвращаемого значения - bool, область видимости public. Перегрузка операторов сравнения (для целых чисел)
Метод bool operator == (TRational)	Тип формального параметра - TRational, тип возвращаемого значения - bool, область видимости public. Перегрузка оператора сравнения (проверка сравнения дробей)
Метод TRational operator- (const TRational&)	Тип формального параметра - const TRational&, тип возвращаемого значения - объект класса TRational,

	область видимости public. Перегрузка бинарного минуса
Метод TRational operator- ()	Формальных параметров нет, тип возвращаемого значения - объект класса TRational, область видимости public. Перегрузка унарного минуса
Метод friend TRational sqrt(TRational)	Тип формального параметра - TRational, тип возвращаемого значения - объект класса TRational, область видимости public. Перегрузка оператора, который вычисляет квадратный корень
Метод friend ostream& operator<< (ostream& os, const TRational&)	Тип формальных параметров- ostream& os, const TRational&, тип возвращаемого значения - ostream object, область видимости – public. Перегрузка оператора вывода
Метод friend istream& operator>> (istream& is, TRational&)	Тип формальных параметров - istream& is, TRational&, тип возвращаемого значения – istream object, область видимости – public. Перегрузка оператора ввода

Таблица 3. Класс TRational

Диаграмма классов

Рис.2. Реализация диаграммы классов работы №2

Символ	Значение
+	public - открытый доступ
-	private - только из операций того же класса
#	protected - только из операций этого же класса и классов, создаваемых на его основе

Таблица 4. Обозначение аттрибутов и методов класса

Описание контрольного примера с исходными и ожидаемыми (расчетными) данными

Пример 1:

Исходные данные:

Коэффициенты:

$$a = \frac{4}{8}$$
; $b = \frac{9}{12}$; $c = -\frac{16}{32}$;

Ожидаемые данные:

$$x1=-2, x2=0.5$$

$$p(1/6) = \left(\frac{4}{8}\right) * \left(\frac{1}{6}\right)^2 + \left(\frac{9}{12}\right) * \left(\frac{1}{6}\right) - \left(\frac{16}{32}\right) = \frac{13}{36}$$

Классический вид:
$$\frac{4}{8}x^2 + \frac{9}{12}x - \frac{16}{32}$$

Канонический вид:
$$\frac{4}{8}*(x-\frac{1}{2})*(x+2)$$

Пример 2:

Исходные данные:

Коэффициенты:

$$a=\frac{1}{2}$$
, $b=\frac{1}{2}$, $c=\frac{1}{8}$

Ожидаемые данные:

$$x1=x2=-0.5$$

$$p(1/3) = \frac{1}{2} * (\frac{1}{3})^2 + (\frac{1}{2}) * (\frac{1}{3}) + (\frac{1}{8}) = \frac{25}{72}$$

Классический вид:
$$\frac{1}{2}x^2 + \frac{1}{2}x + \frac{1}{8}$$

Канонический вид:
$$\frac{1}{2}*(x+\frac{1}{2})^2$$

Пример 3:

Исходные данные:

Коэффициенты:

$$a = \frac{2}{5}$$
; $b = \frac{1}{3}$; $c = \frac{5}{6}$;

Ожидаемые данные:

Корней нет

$$p(\frac{2}{5}) = (\frac{2}{5})*(\frac{2}{5})^2 + (\frac{1}{3})*(\frac{2}{5})+(\frac{5}{6}) = \frac{773}{750}$$

Классический вид:
$$\frac{2}{5}x^2 + \frac{1}{3}x + \frac{5}{6}$$

Канонический вид: полином не имеет корней, поэтому его невозможно вывести в канонической форме.

Скриншоты программы на контрольных примерах

Пример 1:

```
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>1
Enter a,b,c:
a= 4 8
b= 9 12
c= -16 32
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>2
Enter x:
>1 6
P((1/6))=-(13/36)
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>3
There are two roots: x1=(1/2) x2=-2
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>4
(4/8)x^2+(9/12)x-(16/32)
1- coefficients
```

```
/4
(4/8)x^2+(9/12)x-(16/32)
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>5
(4/8)*(x-(1/2))*(x+2)
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
```

Пример 2:

```
Enter a,b,c:
a= 1 2
b= 1 2
c= 1 8
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>2
Enter x:
>1 3
P((1/3))=(25/72)
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
There is one root: x=-(1/2)
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
(1/2)x^2+(1/2)x+(1/8)
1- coefficients
2- value
3- roots
4- print (classic)
5- print (canonical)
0- exit>
>5
(1/2)*(x+(1/2))^2
```

Пример 3:

```
>1
Enter a,b,c:
a= 2 5
b= 1 3
c= 5 6
1 coefficients
2 value
3 roots
4 print (classic)
5 print (canonical)
0 extt>
>2
Enter x:
>2 5
P((2/5))=(773/750)
1 coefficients
2 value
3 roots
4 print (classic)
5 print (canonical)
0 exit>
>4
(2/5)x^2+(1/3)x+(5/6)
1 coefficients
2 value
3 roots
4 print (classic)
5 print (canonical)
0 exit>
>5
The polynomial has no roots, so it is impossible to derive in canonical form
1 coefficients
2 value
3 roots
4 print (classic)
5 print (canonical)
0 exit>
>5
The polynomial has no roots, so it is impossible to derive in canonical form
1 coefficients
2 value
3 roots
4 print (classic)
5 print (canonical)
0 exit>
5 print (classic)
5 print (classic)
5 print (canonical)
0 exit>
5
```

Вывод

В ходе данной лабораторной работы было создано консольное приложение согласно представленной на рис.1 диаграмме классов. Модули «application», «polinom» и основной модуль (функция main) были задействованы из 1 практической работы и не подвергались изменениям. Также был введен новый модуль «rational», который позволяет решать квадратные уравнения над полем рациональных чисел.

Помимо этого, была создана диаграмма классов (рис.2) и произведена отладка работы программы. Разработаны контрольные примеры с исходными и ожидаемыми данными, которые затем были протестированы в созданном консольном приложении. Все результаты совпали.