Experiment 2: Email Spam or Ham Classification using Naïve Bayes and KNN

M. Tech (Integrated) Computer Science & Engineering Semester V

Machine Learning Algorithms Laboratory (ICS1512) Academic year: 2025–2026 (Odd)

Name: Akshith Viswanathan RegNo: 3122237001002

Aim and Objective

To classify emails as spam or ham using Naïve Bayes (Gaussian, Multinomial, Bernoulli) and K-Nearest Neighbors (KNN) classifiers on the Spambase dataset. Evaluate performance using test metrics and K-Fold cross-validation.

Libraries Used

- pandas, numpy
- scikit-learn (train_test_split, StratifiedKFold, StandardScaler, OneHotEncoder, SimpleImputer)
- scikit-learn models: GaussianNB, MultinomialNB, BernoulliNB, KNeighborsClassifier
- scikit-learn metrics: accuracy_score, precision_score, recall_score, f1_score, matthews_corrcoef, confusion_matrix, roc_curve, auc
- matplotlib.pyplot, seaborn

Code for All Variants and Models

Python Implementation

```
14 from sklearn.preprocessing import StandardScaler
15 from sklearn.metrics import accuracy_score, precision_score,
     recall_score, f1_score, confusion_matrix, roc_curve, auc
16
17 # Models
18 from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
19 from sklearn.neighbors import KNeighborsClassifier
20 from sklearn.svm import SVC
22 # 1. Load Dataset
23 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/
     spambase/spambase.data"
24 dataset = pd.read_csv(url, header=None)
25 columns = [f"feature_{i}" for i in range(57)] + ["label"]
26 dataset.columns = columns
27 print("Dataset shape:", dataset.shape)
print(dataset.head())
30 # 2. EDA
glain plt.figure(figsize=(5,4))
sns.countplot(x="label", data=dataset, palette="Set2")
plt.title("Class Distribution (0=Ham, 1=Spam)")
34 plt.show()
print("\nClass distribution:\n", dataset["label"].value_counts())
37 # 3. Preprocessing
38 X = dataset.drop("label", axis=1)
39 y = dataset["label"]
40 scaler = StandardScaler()
41 X_scaled = scaler.fit_transform(X)
43 X_train_raw, X_test_raw, y_train, y_test = train_test_split(
      X, y, test_size=0.2, stratify=y, random_state=42
45 )
46 X_train_scaled, X_test_scaled, _, _ = train_test_split(
      X_scaled, y, test_size=0.2, stratify=y, random_state=42
49
50 # 4. Train Models
51 # --- Naive Bayes Variants ---
52 results = \{\}
nb_models = {
      "GaussianNB": (GaussianNB(), X_train_scaled, X_test_scaled),
54
      "MultinomialNB": (MultinomialNB(), X_train_raw, X_test_raw),
      "BernoulliNB": (BernoulliNB(), X_train_raw, X_test_raw)
56
57 }
for name, (model, Xtr, Xte) in nb_models.items():
      model.fit(Xtr, y_train)
      y_pred = model.predict(Xte)
60
      results[name] = {
61
          "Accuracy": accuracy_score(y_test, y_pred),
          "Precision": precision_score(y_test, y_pred),
          "Recall": recall_score(y_test, y_pred),
64
          "F1 Score": f1_score(y_test, y_pred)
65
67 nb_df = pd.DataFrame(results).T
                 Naive Bayes Results:\n", nb_df)
68 print("\ n
69
_{70} # --- KNN with different k ---
71 knn_results = []
```

```
72 for k in [1, 3, 5, 7]:
       knn = KNeighborsClassifier(n_neighbors=k, algorithm="kd_tree")
       knn.fit(X_train_scaled, y_train)
74
       y_pred = knn.predict(X_test_scaled)
75
       knn_results.append([
76
77
           k,
           accuracy_score(y_test, y_pred),
78
           precision_score(y_test, y_pred),
79
           recall_score(y_test, y_pred),
80
           f1_score(y_test, y_pred)
81
82
  knn_df = pd.DataFrame(knn_results, columns=["k", "Accuracy", "Precision"
      , "Recall", "F1 Score"])
84 print("\ n
                  KNN Results (varying k):\n", knn_df)
85
  # --- KNN KDTree vs BallTree ---
87 tree_results = {}
  for algo in ["kd_tree", "ball_tree"]:
       start = time.time()
89
       knn = KNeighborsClassifier(n_neighbors=5, algorithm=algo)
an
       knn.fit(X_train_scaled, y_train)
91
       y_pred = knn.predict(X_test_scaled)
92
       end = time.time()
93
       tree_results[algo] = {
94
           "Accuracy": accuracy_score(y_test, y_pred),
95
           "Precision": precision_score(y_test, y_pred),
96
           "Recall": recall_score(y_test, y_pred),
97
           "F1 Score": f1_score(y_test, y_pred),
98
           "Training Time (s)": round(end-start, 4)
100
tree_df = pd.DataFrame(tree_results).T
102 print("\ n
                  KNN KDTree vs BallTree:\n", tree_df)
104 # --- SVM with different kernels ---
105 svm_results = []
  kernels = {
       "Linear": {"kernel": "linear", "C": 1},
107
       "Polynomial": {"kernel": "poly", "C": 1, "degree": 3, "gamma": "
108
          scale"},
       "RBF": {"kernel": "rbf", "C": 1, "gamma": "scale"},
109
       "Sigmoid": {"kernel": "sigmoid", "C": 1, "gamma": "scale"}
110
111 }
112
  for kernel_name, params in kernels.items():
       start = time.time()
113
       svm = SVC(**params)
114
       svm.fit(X_train_scaled, y_train)
115
       y_pred = svm.predict(X_test_scaled)
116
       end = time.time()
117
       svm_results.append([
118
           kernel_name,
119
           str(params),
120
           accuracy_score(y_test, y_pred),
           f1_score(y_test, y_pred),
122
           round(end-start, 4)
123
       ])
124
  svm_df = pd.DataFrame(
125
       svm_results,
126
       columns=["Kernel", "Hyperparameters", "Accuracy", "F1 Score", "
127
          Training Time"]
128
```

```
print("\ n SVM Kernel Comparison:\n", svm_df)
131 # 5. Cross Validation
cv = KFold(n_splits=5, shuffle=True, random_state=42)
133 cv_results = []
  for model_name, (model, X_all) in {
       "Naive Bayes": (GaussianNB(), X_scaled),
135
       "KNN": (KNeighborsClassifier(n_neighbors=5), X_scaled),
136
       "SVM": (SVC(kernel="rbf"), X_scaled)
137
  }.items():
138
       scores = cross_val_score(model, X_all, y, cv=cv, scoring="accuracy")
139
       for i, score in enumerate(scores):
140
           cv_results.append([i+1, model_name, score])
141
142 cv_df = pd.DataFrame(cv_results, columns=["Fold", "Model", "Accuracy"])
                   Cross-Validation Results:\n", cv_df.groupby("Model")["
143 print("\ n
      Accuracy"].mean())
144
  # 6. Confusion Matrix & ROC
145
146 from sklearn.metrics import ConfusionMatrixDisplay
147
  def plot_confusion_and_roc(model, Xtr, Xte, ytr, yte, title):
       model.fit(Xtr, ytr)
149
       y_pred = model.predict(Xte)
150
       cm = confusion_matrix(yte, y_pred)
151
152
       disp = ConfusionMatrixDisplay(confusion_matrix=cm)
153
       disp.plot(cmap="Blues")
      plt.title(f"Confusion Matrix
                                         {title}")
154
      plt.show()
155
       if hasattr(model, "predict_proba"):
156
           y_prob = model.predict_proba(Xte)[:,1]
157
       else:
158
           y_prob = model.decision_function(Xte)
159
       fpr, tpr, _ = roc_curve(yte, y_prob)
160
       roc_auc = auc(fpr, tpr)
161
      {\tt plt.plot(fpr, tpr, label=f"AUC = \{roc\_auc:.2f\}")}
162
       plt.plot([0,1],[0,1],'r--')
163
       plt.xlabel("False Positive Rate")
164
      plt.ylabel("True Positive Rate")
165
      plt.title(f"ROC Curve
                                {title}")
166
      plt.legend()
167
      plt.show()
168
169
plot_confusion_and_roc(GaussianNB(), X_train_scaled, X_test_scaled,
      y_train, y_test, "GaussianNB")
plot_confusion_and_roc(MultinomialNB(), X_train_raw, X_test_raw, y_train_
      , y_test, "MultinomialNB")
plot_confusion_and_roc(BernoulliNB(), X_train_raw, X_test_raw, y_train,
      y_test, "BernoulliNB")
plot_confusion_and_roc(KNeighborsClassifier(n_neighbors=1, algorithm="
      ball_tree"), X_train_scaled, X_test_scaled, y_train, y_test, "KNN (k
      =1, BallTree)")
174 plot_confusion_and_roc(KNeighborsClassifier(n_neighbors=1, algorithm="
      kd_tree"), X_train_scaled, X_test_scaled, y_train, y_test, "KNN (k=1,
       KDTree)")
```

Listing 1: Email Spam Classification using Naive Bayes, KNN, and SVM

Confusion Matrix and ROC for Each Model

GaussianNB

• Confusion matrix: $\begin{bmatrix} 422 & 136 \\ 17 & 346 \end{bmatrix}$

• ROC AUC: 0.9449

• Test metrics: Accuracy: 0.833, Precision: 0.715, Recall: 0.959, F1: 0.819, MCC: 0.674

Figure 1: Confusion Matrix - GaussianNB

Figure 2: ROC Curve – GaussianNB

Multinomial NB

• Confusion matrix: $\begin{bmatrix} 458 & 100 \\ 106 & 257 \end{bmatrix}$

• ROC AUC: 0.8248

• Test metrics: Accuracy: 0.776, Precision: 0.720, Recall: 0.708, F1: 0.714, MCC: 0.560

Figure 3: Confusion Matrix – MultinomialNB

Figure 4: ROC Curve – MultinomialNB

${\bf BernoulliNB}$

• Confusion matrix: $\begin{bmatrix} 515 & 43 \\ 71 & 292 \end{bmatrix}$

• ROC AUC: 0.9496

 \bullet Test metrics: Accuracy: 0.876, Precision: 0.872, Recall: 0.804, F1: 0.837, MCC: 0.762

Figure 5: Confusion Matrix – BernoulliNB

Figure 6: ROC Curve – BernoulliNB

KNN (k = 1, BallTree)

- Confusion matrix: $\begin{bmatrix} 514 & 44 \\ 50 & 313 \end{bmatrix}$
- ROC AUC: 0.8917
- \bullet Test metrics: Accuracy: 0.898, Precision: 0.877, Recall: 0.862, F1: 0.869, MCC: 0.816

Figure 7: Confusion Matrix – KNN (k = 1, BallTree)

Figure 8: ROC Curve – KNN (k = 1, BallTree)

KNN (k = 1, KDTree)

- Confusion matrix: $\begin{bmatrix} 514 & 44 \\ 50 & 313 \end{bmatrix}$
- ROC AUC: 0.8917
- \bullet Test metrics: Accuracy: 0.898, Precision: 0.877, Recall: 0.862, F1: 0.869, MCC: 0.816

Figure 9: Confusion Matrix – KNN (k = 1, KDTree)

Figure 10: ROC Curve – KNN (k = 1, KDTree)

All Comparison Tables

Table 1: Performance Comparison of Naïve Bayes Variants

Metric	Gaussian NB	Multinomial NB	Bernoulli NB
Accuracy	0.833	0.776	0.876
Precision	0.715	0.720	0.872
Recall	0.959	0.708	0.804
F1 Score	0.819	0.714	0.837
MCC	0.674	0.560	0.762
ROC AUC	0.9449	0.8248	0.9496

Table 1: Test set performance for all Naïve Bayes variants.

Table 2: Best KNN (k = 1) Performance with BallTree and KDTree

Metric	BallTree	KDTree
Accuracy	0.898	0.898
Precision	0.877	0.877
Recall	0.862	0.862
F1 Score	0.869	0.869
MCC	0.816	0.816
ROC AUC	0.8917	0.8917

Table 2: Comparison of best KNN variant (k=1) using BallTree and KDTree algorithms.

Table 3: Comparing Training Time

KD Tree	Ball Tree	
0.1195 seconds	0.1177 seconds	

Table 3: KD Tree vs Ball Tree Training time

Table 4: KNN: Varying k values

k	Accuracy	Precision	Recall	F1 Score
1	0.898	0.877	0.862	0.869
3	0.901	0.882	0.865	0.873
5	0.906	0.888	0.871	0.879
7	0.908	0.895	0.868	0.881

Table 4: KNN Performance for Different k Values

Observations and Conclusions

- Best Overall Classifier: KNN with k=7 achieved the highest accuracy and F1 score.
- Naïve Bayes: BernoulliNB outperformed other Naïve Bayes variants, but KNN still surpassed it.
- BallTree vs KDTree: BallTree and KDTree produced identical results on accuracy and metrics, with BallTree training slightly faster.
- Class Imbalance: All models handled the class imbalance well, reflected by high recall and MCC.