DM 2. Corrigé

Première partie

 $\mathbf{1}^{\circ}$) Pour toute personne X de V, notons f(X) le nombre de personnes qu'elle espionne.

L'ensemble $\{f(X)/X \in V\}$ est une partie non vide de \mathbb{N} , majorée par le cardinal de V. D'après le cours elle admet un maximum, noté m. Il existe donc une personne X_0 dans V tel que $f(X_0) = m$: le nombre de personnes espionnées par X_0 est alors maximal.

 2°) Montrons que X_0 est bien un espion, par l'absurde.

Supposons donc que X_0 n'est pas un espion. Il existe alors $Z \in V$ tel que, pour tout $Y \in V$, ou bien X_0 n'espionne pas Y, ou bien Y n'espionne pas Z.

Ainsi, pour tout Y espionné par X_0 , Y n'espionne pas Z, donc d'après les hypothèses de l'énoncé, Z espionne Y.

Ainsi, $\{Y \in V/X_0 \text{ espionne } Y\} \subset \{Y \in V/Z \text{ espionne } Y\}.$

En particulier, Z espionne X_0 mais $Z \neq X_0$, donc X_0 n'espionne pas Z alors que Z s'espionne lui-même. L'inclusion précédente est donc stricte.

On en déduit que $f(Z) > f(X_0)$, ce qui est impossible.

 $\mathbf{3}^{\circ}$) Notons W l'ensemble des personnes différentes de X qui espionnent X. W est non vide par hypothèse, donc c'est aussi un village. Alors W possède un espion, noté E. Par construction E espionne X et $E \neq X$: cf figure:

Il suffit donc de montrer que E est un espion pour le village V.

Soit $Z \in V$. Si $Z \in W$, E étant un espion du village W, il existe bien $Y \in V$ tel que E espionne Y qui espionne Z.

Si maintenant $Z \notin W$, alors Z n'espionne pas X ou bien Z = X, donc X espionne Z. Mais $E \in W$, donc E espionne X.

Alors E espionne X qui espionne Z, ce qu'il fallait démontrer.

 $\mathbf{4}^{\circ}$) Supposons que E est l'unique espion de V.

Supposons qu'il existe X tel que E n'espionne pas X. Alors $X \neq E$ et X espionne E. D'après la question précédente, il existe un espion différent de E qui espionne E, ce qui est impossible.

On a montré que E espionne tous les éléments de V.

Réciproquement, supposons qu'il existe $E \in V$ tel que E espionne toutes les personnes de V. Alors E est clairement un espion. Montrons que c'est le seul.

Supposons l'existence d'un autre espion F dans V.

E espionne F, donc F n'espionne pas E.

De plus, F étant un espion, il existe $X \in V$ tel que F espionne X qui espionne E. Mais E espionne X, donc X = E ce qui est faux.

En conclusion, V possède un unique espion si et seulement si il existe une personne de V qui espionne toutes les autres.

 5°) Supposons que V possède exactement 2 espions E et F, distincts.

D'après la question précédente, il existe $X \in V$ tel que E n'espionne pas X. Alors X espionne E et $X \neq E$, donc d'après la question 3, F espionne E.

De même on montre que E espionne F, ce qui est impossible.

Seconde partie:

Pour dire que X espionne Y, on notera $X \longrightarrow Y$.

1°) On suppose qu'il existe un $V = \{x_1, \ldots, x_m\}$, de cardinal m, admettant exactement k espions, où $k \leq m$.

Soit y un élément qui n'est pas dans V. Posons $W = V \cup \{y\}$.

Conformément à la figure ci-dessus, on prolonge la relation d'espionnage sur W en convenant que, pour tout $i \in \{1, ..., m\}$, x_i espionne y. Ainsi W est bien un village, de cardinal m+1.

Les k espions de V espionnent y, donc ce sont aussi des espions pour W.

y n'espionne aucun élément de V, donc il n'atteint aucun élément de V, même en utilisant un intermédiaire. Ainsi y n'est pas un espion dans W.

Si $x \in V$ n'est pas un espion dans V, il existe $x'' \in V$ tel que pour tout $x' \in V$,

 $\neg(x \longrightarrow x' \text{ et } x' \longrightarrow x'')$. Clairement, pour tout $x' \in W = V \cup \{y\}$,

 $\neg(x \longrightarrow x' \text{ et } x' \longrightarrow x'')$. Ainsi x n'est toujours pas un espion dans W.

On a montré que W est un V(m+1,k). Par récurrence, sur m, on en déduit que s'il existe un V(n,k), alors pour tout $m \ge n$, il existe un V(m,k).

 $\mathbf{2}^{\circ}$) Posons à nouveau $V = \{x_1, \dots, x_n\}$. Soit x_0 et x_{n+1} deux éléments distincts et différents des éléments de V.

Posons $W = \{x_0, ..., x_{n+1}\}.$

Conformément à la figure ci-dessus, on définit la relation binaire d'espionnage sur W de la manière suivante :

Pour tout $X, Y \in W$, X espionne Y dans W si et seulement si

- $-X, Y \in V$ et X espionne Y dans V, ou bien
- $-X \in V$ et $Y = x_0$, ou bien
- $X = x_{n+1}$ et $Y \in V$, ou bien
- $-X = x_0$ et $Y = x_{n+1}$, ou bien
- -X = Y.

On vérifie que W est alors bien un village.

Soit $X \in V$. X espionne x_0 qui espionne x_{n+1} , or X est un espion de V, donc X est un espion de W.

Soit $X \in V$. x_0 espionne x_{n+1} qui espionne X, donc x_0 est un espion de W.

De même, x_{n+1} espionne X qui espionne x_0 , donc x_{n+1} est aussi un espion de W. On a montré que W est un V(n+2, n+2).

On a montre que W est un V(n+2,n+2).

 3°) $V = \{a\}$, où a s'espionne lui-même est un V(1,1).

La question 2 permet de construire un V(2k+1,2k+1) pour tout $k \in \mathbb{N}$, puis la question 1 permet de construire un V(n,2k+1) pour tout $k \in \mathbb{N}$ et $n \geq 2k+1$.

On obtient ainsi tous les couples (n,k) (avec $1 \le k \le n$) tels que k est impair.

Le procédé de la question 1, tout comme le procédé de la question 2, permettent de passer d'un couple (n,k) à un couple (n',k') où k et k' ont la même parité, donc ces procédés, à partir seulement d'un V(1,1) ne permettent pas d'accéder à d'autres couples (n,k), avec k pair.

 4°) Voici un exemple de V(5,4).

En effet, on vérifie que 1, 2, 3 et 4 sont des espions. Au contraire, 5 n'espionne que 4 lequel n'espionne que 1 et 2, donc 5 n'est pas un espion : il n'atteint pas 3.

 5°) Voici un exemple de V(6,6).

6°) Supposons qu'il existe un V(4,4), que l'on note $V = \{A, B, C, D\}$.

Pour tout $M \in V$, notons E(M) le nombre de personnes de V espionnées par M et différentes de M.

Sans perdre en généralité, on peut supposer que $E(A) \ge E(B) \ge E(C) \ge E(D)$.

Si E(A)=3, d'après la question I.4, A est l'unique espion de V, ce qui est faux. Ainsi $E(A)\leq 2$.

Si E(D)=0, alors D n'espionne que lui-même et ce n'est pas un espion, ce qui est faux. Ainsi $E(D)\geq 1$.

De plus pour chacune des $\binom{4}{2}$ = 6 paires de V, il y a exactement une relation

d'espionnage, donc S = E(A) + E(B) + E(C) + E(D) = 6.

Si E(B) = 1, alors $S \le 5$, donc E(A) = E(B) = 2,

puis nécessairement, E(C) = E(D) = 1.

C et D jouant des rôles symétriques, on peut supposer que $C \longrightarrow D$.

Alors D ne peut espionner C, donc l'unique personne qu'il espionne est A ou B.

A et B jouant des rôles symétriques, on peut supposer que $D \longrightarrow A.$

Alors, avec éventuellement un intermédiaire, C atteint D et A, mais il n'atteint pas B, donc C n'est pas un espion, ce qui est faux.

En conclusion, il n'existe pas de V(4,4).

 7°) D'après les questions 4 et 1, pour tout n > 4, il existe un V(n,4).

D'après les questions 5, puis 2, puis 1, il existe un V(n,2p) pour tout $p \ge 3$, et $n \ge 2p$. D'après la question I.4, il n'existe aucun V(n,2) (avec $n \ge 2$).

En conclusion, pour tout $(n,k) \in \mathbb{N}^2$ tel que $1 \leq k \leq n$, il existe un V(n,k), sauf lorsque k=2 et lorsque (n,k)=(4,4).