SỞ GIÁO DUC VÀ ĐÀO TAO HÀ NÔI TRƯỜNG THPT CHU VĂN AN

Mã đề 001

ĐỀ KIỂM TRA KHẢO SÁT HỌC SINH LỚP 12 LÀN THỨ 2 – NĂM 2017

Môn: TOÁN

Thời gian làm bài: 90 phút (không kể thời gian phát đề)

Trong không gian Oxyz, tìm phương trình tham số của trục Oz? Câu 1:

$$\mathbf{A.} \begin{cases} x = t \\ y = t \\ z = t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 0 \\ y = t \\ z = 0 \end{cases}$$

A.
$$\begin{cases} x = t \\ y = t \end{cases}$$

$$z = t$$
B.
$$\begin{cases} x = t \\ y = 0 \end{cases}$$

$$z = 0$$
C.
$$\begin{cases} x = 0 \\ y = t \end{cases}$$

$$z = 0$$

$$z = 0$$
D.
$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$

$$z = t$$

Hàm số $y = x^3 - 3x^2$ nghịch biến trên khoảng nào dưới đây? Câu 2:

A.
$$(-1;1)$$
.

B.
$$(-\infty;1)$$
.

$$\mathbf{C.}\ (0;2).$$

D.
$$(2; +\infty)$$
.

Tính giá trị của biểu thức $A = \log_a \frac{1}{a^2}$, với a > 0 và $a \ne 1$. Câu 3:

A.
$$A = -2$$
.

B.
$$A = -\frac{1}{2}$$
. **C.** $A = 2$.

C.
$$A = 2$$
.

D.
$$A = \frac{1}{2}$$
.

Tìm phương trình đường tiệm cận ngang của đồ thị hàm số $y = \frac{3x+2}{x+1}$. Câu 4:

A.
$$x = -1$$
.

B.
$$x = 1$$
.

C.
$$y = 3$$
.

D.
$$y = 2$$
.

Trong không gian Oxyz, cho mặt phẳng (P): x-y+3=0. Véctơ nào sau đây **không** phải là Câu 5: vécto pháp tuyến của mặt phẳng (P)?

A.
$$\vec{a} = (3; -3; 0)$$

B.
$$\vec{a} = (1; -1; 3)$$

C.
$$\vec{a} = (-1;1;0)$$

A.
$$\vec{a} = (3; -3; 0)$$
. **B.** $\vec{a} = (1; -1; 3)$. **C.** $\vec{a} = (-1; 1; 0)$. **D.** $\vec{a} = (1; -1; 0)$.

Cho hai hàm số $y = f_1(x)$ và Câu 6: $y = f_2(x)$ liên tục trên đoạn [a;b] và có đồ thi như hình vẽ bên. Goi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x = a, x = b. Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh truc Ox được tính bởi công thức nào sau đây?

C.
$$V = \int_{a}^{b} (f_1^2(x) - f_2^2(x)) dx$$
.

B.
$$V = \pi \int_{a}^{b} (f_1(x) - f_2(x)) dx$$
.

D.
$$V = \pi \int_{a}^{b} (f_1(x) - f_2(x))^2 dx$$
.

Cho hàm số y = f(x) liên tục trên đoạn Câu 7: [-2;3], có bảng biến thiên như hình vẽ bên. Khẳng định nào sau đây là khẳng định đúng? A. Giá tri cực tiểu của hàm số là 0.

- **B.** Hàm số đạt cực đại tại điểm x = 1.
- C. Hàm số đạt cực tiểu tại điểm x = 1.
- D. Giá trị cực đại của hàm số là 5.

B.
$$y = \frac{-2x+1}{x+1}$$
.

C.
$$y = \frac{-2x+1}{x-1}$$
.

D.
$$y = \frac{2x-1}{x+1}$$
.

C. −3.

Câu 10: Tìm nguyên hàm của hàm số
$$f(x) = \cos 3x$$
.

$$\mathbf{A.} \int \cos 3x \, \mathrm{d}x = \frac{1}{3} \sin 3x + C \,.$$

$$\mathbf{B.} \int \cos 3x \, \mathrm{d}x = \sin 3x + C.$$

$$\mathbf{C.} \int \cos 3x \, \mathrm{d}x = 3\sin 3x + C.$$

D.
$$\int \cos 3x \, dx = -\frac{1}{3} \sin 3x + C$$
.

Câu 11: Gọi (C) là đồ thị của hàm số
$$y = \log x$$
. Tìm khẳng định đúng?

A. Đồ thị (C) có tiệm cận đứng.

B. \overrightarrow{D} bì thị (C) có tiệm cận ngang.

C. Đồ thị (C) cắt trục tung.

D. Đồ thị (C) không cắt trục hoành.

A. M(0;0;3).

B. M(0;-2;0).

C. M(-1;0;2).

D. M(1;0;0).

Câu 13: Trong không gian với hệ toạ độ
$$Oxyz$$
, cho hai điểm $A(1;4;2)$, $B(-1;2;4)$ và đường thẳng $\Delta: \frac{x-1}{-1} = \frac{y+2}{1} = \frac{z}{2}$. Tìm toạ độ điểm M thuộc Δ sao cho $MA^2 + MB^2 = 28$.

A. Không có điểm M nào.

B. M(1;-2;0).

C. M(-1;0;4).

D. M(2;-3;-2).

Câu 14: Cho số phức
$$z = 2 - i$$
. Trên mặt phẳng tọa độ Oxy , tìm điểm biểu diễn số phức $w = iz$.

B. M(2;-1).

C. M(2;1).

D. M (1;2).

Câu 15: Tìm số giao điểm
$$n$$
 của đồ thị hàm số $y = x^2 |x^2 - 3|$ và đường thẳng $y = 2$.

A. n = 6.

Câu 16: Tìm giá trị nhỏ nhất của hàm số
$$y = \frac{x^2 - 4x}{2x + 1}$$
 trên đoạn [0;3].

A. $\min_{[0:3]} y = 0$.

B. $\min_{[0:3]} y = -\frac{3}{7}$. **C.** $\min_{[0:3]} y = -4$. **D.** $\min_{[0:3]} y = -1$.

Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và đường thẳng d có phương trình $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{1}$. Tính đường kính của mặt cầu (S) có tâm A và tiếp xúc với đường thẳng d.

A. $5\sqrt{2}$.

B. $10\sqrt{2}$.

C. $2\sqrt{5}$.

D. $4\sqrt{5}$.

- **Câu 18:** Hàm số $y = \sin x$ đạt cực đại tại điểm nào sau đây?
 - **A.** $x = -\frac{\pi}{2}$. **B.** $x = \pi$. **C.** x = 0.
- **D.** $x = \frac{\pi}{2}$.
- **Câu 19:** Gọi z_1 , z_2 là hai nghiệm phức của phương trình $z^2 + 2z + 5 = 0$. Tính $|z_1| + |z_2|$.
 - **A.** $|z_1| + |z_2| = 5$.
- **B.** $|z_1| + |z_2| = 2\sqrt{5}$. **C.** $|z_1| + |z_2| = 10$. **D.** $|z_1| + |z_2| = \sqrt{5}$.

- **Câu 20:** Tính giới hạn $A = \lim_{x \to 0} \frac{\log_2(1+x)}{\sin x}$.
- C. $A = \log_2 e$.
- **D.** A = 1.
- **Câu 21:** Tính tổng T tất cả các nghiệm của phương trình $4.9^x 13.6^x + 9.4^x = 0$.
 - **A.** T = 2.
- **B.** T = 3.
- C. $T = \frac{13}{4}$. D. $T = \frac{1}{4}$.
- **Câu 22:** Cho số phức z = a + bi $(ab \ne 0, a, b \in \mathbb{R})$. Tìm phần thực của số phức $w = \frac{1}{z^2}$.
- **A.** $-\frac{2ab}{\left(a^2+b^2\right)^2}$. **B.** $\frac{a^2+b^2}{\left(a^2+b^2\right)^2}$. **C.** $\frac{b^2}{\left(a^2+b^2\right)^2}$. **D.** $\frac{a^2-b^2}{\left(a^2+b^2\right)^2}$.
- Câu 23: Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.
 - **A.** $\frac{a^3\sqrt{3}}{12}$.
- **B.** $\frac{a^3\sqrt{3}}{4}$.
- $C. \frac{a^3}{2}$.
- **D.** $\frac{a^3\sqrt{3}}{2}$.
- Câu 24: Cho hàm số f(x) có đạo hàm $f'(x) = \frac{1}{1-x}$ và f(0) = 1. Tính f(5).
- **A.** $f(5) = 2 \ln 2$. **B.** $f(5) = \ln 4 + 1$. **C.** $f(5) = -2 \ln 2 + 1$. **D.** $f(5) = -2 \ln 2$.
- **Câu 25:** Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số $y = x^2 4$ và y = x 4.
 - **A.** $S = \frac{43}{6}$.
- **B.** $S = \frac{161}{6}$. **C.** $S = \frac{1}{6}$. **D.** $S = \frac{5}{6}$.
- **Câu 26:** Gọi n là số mặt phẳng đối xứng của hình bát diện đều. Tìm n.
 - **A.** n = 7.
- **B.** n = 5.
- **C.** n = 3.
- **D.** n = 9.
- **Câu 27:** Hàm số nào sau đây có tập xác định **không** phải là khoảng $(0;+\infty)$?
 - **A.** $v = x^{\sqrt{3}}$.
- **B.** $y = x^{\frac{\sqrt{2}}{2}}$. **C.** $y = x^{\frac{3}{2}}$. **D.** $y = x^{-5}$.
- Câu 28: Xét hình trụ T có thiết diện qua trục của hình trụ là hình vuông có cạnh bằng a. Tính diện tích toàn phần S của hình trụ.
 - **A.** $S = \frac{3\pi a^2}{2}$. **B.** $S = \frac{\pi a^2}{2}$. **C.** $S = 4\pi a^2$. **D.** $S = \pi a^2$.

- **Câu 29:** Tìm tập nghiệm S của bất phương trình $\log_{\frac{1}{2}}(x-1) > \log_{\frac{1}{2}}(5-2x)$.
- **B.** $S = \left(2; \frac{5}{2}\right)$. **C.** $S = \left(\frac{5}{2}; +\infty\right)$. **D.** S = (1; 2).
- Câu 30: Cho hình lăng trụ lục giác đều có cạnh đáy bằng a, cạnh bên bằng 2a. Tính bán kính R của mặt cầu ngoại tiếp lăng trụ.
 - **A.** $R = a\sqrt{2}$.
- **B.** R = a.
- **C.** $R = a\sqrt{3}$
- **D.** R = 2a.

Câu 31: Cho đồ thị (C): $y = \frac{x-3}{x+1}$. Biết rằng, có hai điểm phân biệt thuộc đồ thị (C) và cách đều hai trục toạ độ. Giả sử các điểm đó lần lượt là M và N . Tìm độ dài của đoạn thẳng MN .

A. $MN = 4\sqrt{2}$.

B. $MN = 2\sqrt{2}$.

C. $MN = 3\sqrt{5}$.

Câu 32: Tìm tập nghiệm S của bất phương trình $\frac{\log(x^2-1)}{\log(1-x)} \le 1$.

A. S = (-2; -1).

B. S = [-2; -1). **C.** S = [-2; 1). **D.** S = [-2; -1].

Câu 33: Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các tia Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho $T = \frac{1}{QA^2} + \frac{1}{QR^2} + \frac{1}{QC^2}$ đạt giá trị nhỏ nhất.

A. (*P*): x + 2y + 3z - 14 = 0.

B. (P): 6x-3y+2z-6=0.

C. (P): 6x + 3y + 2z - 18 = 0.

D. (P): 3x+2y+z-10=0.

Câu 34: Cho hàm số y = f(x) thỏa mãn hệ thức $\int f(x) \sin x dx = -f(x) \cos x + \int \pi^x \cos x dx$. Hỏi y = f(x) là hàm số nào trong các hàm số sau?

A. $f(x) = -\frac{\pi^x}{\ln \pi}$.

B. $f(x) = \frac{\pi^x}{1 - \pi}$.

C. $f(x) = \pi^x . \ln \pi$.

D. $f(x) = -\pi^x . \ln \pi$.

Câu 35: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d_1: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+2}{1}$ và $d_2: \frac{x+1}{1} = \frac{y-1}{7} = \frac{z-3}{-1}$. Đường vuông góc chung của d_1 và d_2 lần lượt cắt d_1 , d_2 tại A và B. Tính diện tích S của tam giác OAB.

A. $S = \frac{\sqrt{3}}{2}$.

B. $S = \sqrt{6}$. **C.** $S = \frac{\sqrt{6}}{2}$. **D.** $S = \frac{\sqrt{6}}{4}$.

Câu 36: Tìm tất cả các giá trị thực của tham số m để hàm số $y = mx - (m+1)\cos x$ đồng biến trên \mathbb{R} .

A. không có m.

B. $-1 \le m \le -\frac{1}{2}$. **C.** $m < -\frac{1}{2}$.

Trên mặt phẳng tọa độ Oxy, tìm tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện |z-2|+|z+2|=10.

A. Đường tròn $(x-2)^2 + (y+2)^2 = 100$. **B.** Elip $\frac{x^2}{25} + \frac{y^2}{4} = 1$.

C. Đường tròn $(x-2)^2 + (y+2)^2 = 10$. **D.** Elip $\frac{x^2}{25} + \frac{y^2}{21} = 1$.

Câu 38: Tìm tất cả các giá trị thực của tham số m để bất phương trình $4(\log_2 \sqrt{x})^2 + \log_2 x + m \ge 0$ nghiệm đúng mọi giá trị $x \in (1,64)$.

A. m < 0.

B. $m \le 0$.

C. $m \ge 0$.

D. m > 0.

- Một que kem ốc quế gồm hai phần: phần kem có dang hình cầu, phần ốc quế có dang hình nón. Giả sử hình cầu và hình nón có bán kính bằng nhau; biết rằng nếu kem tan chảy hết thì sẽ làm đầy phần ốc quế. Biết thể tích phần kem sau khi tan chảy chỉ bằng 75% thể tích kem đóng băng ban đầu. Gọi h và r lần lượt là chiều cao và bán kính của phần ốc quế. Tính tỉ số $\frac{h}{r}$.
 - **A.** $\frac{h}{a} = 3$.

- **B.** $\frac{h}{r} = 2$. **C.** $\frac{h}{r} = \frac{4}{3}$. **D.** $\frac{h}{r} = \frac{16}{3}$.
- Câu 40: Có bao nhiều số thực $a \in (0;10\pi)$ thỏa mãn điều kiện $\int_0^{\pi} \sin^5 x \cdot \sin 2x dx = \frac{2}{7}$?
 - A. 4 số.
- **B.** 6 số.
- **C.** 7 số.
- **D.** 5 số.

Câu 41: Cho hàm số y = f(x) liên tục và có đạo hàm cấp hai trên \mathbb{R} . Đồ thị của các hàm số y = f(x), y = f'(x) và y = f''(x) lần lượt là các đường cong nào trong hình vẽ bên?

B.
$$(C_1), (C_2), (C_3)$$
.

$$C. (C_3), (C_2), (C_1).$$

D.
$$(C_1), (C_3), (C_2)$$
.

Câu 42: Một điện thoại đang nạp pin, dung lượng pin nạp được tính theo công thức $Q(t) = Q_0 \cdot (1 - e^{-t\sqrt{2}})$ với t là khoảng thời gian tính bằng giờ và Q_0 là dung lượng nạp tối đa (pin đầy). Hãy tính thời gian nạp pin của điện thoại tính từ lúc cạn hết pin cho đến khi điện thoại đạt được 90% dung lượng pin tối đa (kết quả được làm tròn đến hàng phần trăm).

A.
$$t \approx 1,65$$
 giờ.

B.
$$t \approx 1,61$$
 giờ.

C.
$$t \approx 1,63$$
 giờ.

D.
$$t \approx 1,50$$
 giờ.

Câu 43: Cho hình lập phương ABCD.A'B'C'D' có diện tích tam giác ACD' bằng $a^2\sqrt{3}$. Tính thể tích V của hình lập phương.

A.
$$V = 3\sqrt{3}a^3$$
.

B.
$$V = 2\sqrt{2}a^3$$
. **C.** $V = a^3$.

C.
$$V = a^3$$
.

D.
$$V = 8a^3$$
.

Câu 44: Cho số phức z thỏa mãn điều kiện $|z-1|=\sqrt{2}$. Tìm giá trị lớn nhất của T=|z+i|+|z-2-i|.

A. max
$$T = 8\sqrt{2}$$
.

B.
$$\max T = 4$$

B. max
$$T = 4$$
. **C.** max $T = 4\sqrt{2}$.

D.
$$\max T = 8$$
.

Câu 45: Biết rằng đường thẳng d: y = -3x + m cắt đồ thị $(C): y = \frac{2x+1}{x-1}$ tại 2 điểm phân biệt A và Bsao cho trọng tâm của tam giác OAB thuộc đồ thị (C), với O(0;0) là gốc tọa độ. Khi đó giá trị của tham số m thuộc tập hợp nào sau đây?

A.
$$(-\infty;3]$$
.

B.
$$(-3; +\infty)$$
.

$$\mathbf{C}. (-1;3]$$

- **Câu 46:** Hỏi phương trình $2\log_3(\cot x) = \log_2(\cos x)$ có bao nhiều nghiệm trong khoảng $(0;2017\pi)$?
 - A. 1009 nghiệm.
- **B.** 1008 nghiệm.
- **C.** 2017 nghiệm.
- **D.** 2018 nghiệm.

Câu 47: Cho hàm số $y = x^4 - 3x^2 + m$ có đồ thị (C_m) với m là tham số thực. Giả sử (C_m) cắt trục Oxtại bốn điểm phân biệt như hình vẽ:

Gọi S_1 , S_2 và S_3 là diện tích các miền gạch chéo được cho trên hình vẽ. Tìm m để $S_1 + S_2 = S_3$.

A.
$$m = -\frac{5}{2}$$
.

B.
$$m = -\frac{5}{4}$$
. **C.** $m = \frac{5}{2}$. **D.** $m = \frac{5}{4}$.

C.
$$m = \frac{5}{2}$$
.

D.
$$m = \frac{5}{4}$$
.

Câu 48: Cho hai mặt cầu (S_1) , (S_2) có cùng bán kính R thỏa mãn tính chất: tâm của (S_1) thuộc (S_2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S_1) và (S_2) .

$$\mathbf{A.}\ V = \pi R^3.$$

B.
$$V = \frac{\pi R^3}{2}$$
.

B.
$$V = \frac{\pi R^3}{2}$$
. **C.** $V = \frac{5\pi R^3}{12}$. **D.** $V = \frac{2\pi R^3}{5}$.

D.
$$V = \frac{2\pi R^3}{5}$$

Câu 49: Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2;0;0), B(0;3;0) và C(0;0;-4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:

$$\mathbf{A.} \begin{cases} x = 6t \\ y = -4t \\ z = -3t \end{cases}$$

B.
$$\begin{cases} x = 6t \\ y = 2 + 4t \\ z = -3t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 6t \\ y = 4t \\ z = -3t \end{cases}$$

A.
$$\begin{cases} x = 6t \\ y = -4t \\ z = -3t \end{cases}$$
B.
$$\begin{cases} x = 6t \\ y = 2 + 4t \\ z = -3t \end{cases}$$
C.
$$\begin{cases} x = 6t \\ y = 4t \\ z = -3t \end{cases}$$
D.
$$\begin{cases} x = 6t \\ y = 4t \\ z = 1 - 3t \end{cases}$$

Câu 50: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AB. Biết rằng AB = 2a, AD = DC = CB = a, cạnh bên SA vuông góc với đáy, mặt phẳng (SBD) hợp với đáy một góc 45° . Gọi G là trọng tâm tam giác SAB. Tính khoảng cách d từ điểm G đến mặt phẳng (SBD).

A.
$$d = \frac{a}{6}$$
.

B.
$$d = \frac{a\sqrt{2}}{6}$$
.

C.
$$d = \frac{a}{2}$$
.

B.
$$d = \frac{a\sqrt{2}}{6}$$
. **C.** $d = \frac{a}{2}$. **D.** $d = \frac{a\sqrt{2}}{2}$.