

FIGURE 1A

9.1 (SEQ ID NO:1): 5' GGGAGAGAGG AAGAGGGAUG GG CCGCCAGU
GGGAAGCUAU ACCCAACGCC CCAGCCCCAG AGCAUAACCC AGAGGUUCGAU AGUACUGGAU
CCCCCC 3'

9.2 (SEQ ID NO:2): 5' GGGAGAGAGG AAGAGGGAUG GGCUAUAUAC ACGCUGGUGA
UCCCAUCUCA AUUGAAACAA CACAUAAACCC AGAGGUUCGAU AGUACUGGAU CCCCCC 3'

9.3 (SEQ ID NO:3): 5' GGGAGAGAGG AAGAGGGAUG GGGACUAUAC CGCGUAAUGC
UGCCUCCCCA UUCCGGAACG CUCAUAACCC AGAGGUUCGAU AGUACUGGAU CCCCCC 3'

9.4 (SEQ ID NO:4): 5' GGGAGAGAGG AAGAGGGAUG GGCACUAUAC GCAUCUJGCU
GCCUGCCCCG GAGUAAAUU GCAUAACCC GAGGUUCGAU GUACUGGAU CCCCCC 3'

9.5 (SEQ ID NO:5): 5' GGGAGAGAGG AAGAGGGAUG GGCCUACCAAG UUCGUGGCUA
GCGUGACGUA CCACCCAGGG ACCAUAAACCC AGAGGUUCGAU AGUACUGGAU CCCCCC 3'

9.7 (SEQ ID NO:6): 5' GGGAGAGAGG AAGAGGGAUG GGCGAUAACC AACAUUGGUGA
UCCCAUUCAU CAUACCUAC AACAUAAACCC AGAGGUUCGAU AGUACUGGAU CCCCCC 3'

9.8 (SEQ ID NO:7): 5' GGGAGAGAGG AAGAGGGAUG GGGCCACCUA CUAUACCGGU
CAUCGUGCAU AGGUCGCUGC CACAUAAACCC AGAGGUUCGAU AGUACUGGAU CCCCCC 3'

9.9 (SEQ ID NO:8): 5' GGGAGAGAGG AAGAGGGAUG GGUCUCACAC CCGAAGAUGG
CCAAAGAGGG AGAUGAGUUU CCAUAACCC GAGGUUCGAU GUACUGGAU CCCCCC 3'

9.11 (SEQ ID NO:9): 5' GGGAGAGAGG AAGAGGGAUG GGACUAUAUJ CGGAAUCUGG
ACUCCCACCU GCCUGCCCCA GACAUAAACCC AGAGGUUCGAU AGUACUGGAU CCCCCC 3'

9.12 (SEQ ID NO:10): 5' GGGAGAGAGG AAGAGGGAUG GGCGAUUAUAC
ACAUUGGUGA UCCCACCCAC AUGAAACCAAC AGCAUAACCC AGAGGUUCGAU AGUACUGGAU
CCCCCC 3'

9.13 (SEQ ID NO:11): 5' GGGAGAGAGG AAGAGGGAUG GGCUCAUCAC
AGGCAGAAGUG AACAAACACUA CCGNCNAGUU ACCAUAAACCC AGAGGUUCGAU AGUACUGGAU
CCCCCC 3'

9.14 (SEQ ID NO:12): 5' GGGAGAGAGG AAGAGGGAUG GG GACUAUAC
GUGAACGACU GCAUCCACUUC CCCGCCAUGG CAUAACCCAG AGGUCGAUAG
UACUGGAUCC CCCC 3'

FIGURE 1B

9.16 (SEQ ID NO:13): 5' GGGAGAGAGG AAGAGGGAUG GGCAUACGU
GGACGACUGC ACCCGACCCU UCAGCCCAGG UCCAUAAACCC AGAGGUCGAU AGUACUGGAU
CCCCCC 3'

9.17 (SEQ ID NO:14): 5' GGGAGAGAGG AAGAGGGAUG GGACCAUACG
CACAUUGCUG AAUCCCCUC AAUAGCACCU ACCAUAAACCC AGAGGUCGAU AGUACUGGAU
CCCCCC 3'

9.18 (SEQ ID NO:15): 5' GGGAGAGAGG AAGAGGGAUG GGCAUAACC
ACUUUGGUGA ACCCACCCAG CUCC/UUGUGAU UGCAUAAACCC AGAGGUCGAU
AGUACUGGAU CCCCCC 3'

9.19 (SEQ ID NO:16): 5' GGGAGAGAGG AAGAGGGAUG GGACCAUAAC
GACUACUCGUGA AUCCCCCAU CAGCGCACAA CAUAACCCAGA GGUCGAUAG
UACUGGAUCC CCCC 3'

9.20 (SEQ ID NO:17): 5' GGGAGAGAGG AAGAGGGAUG GGGACUAUAC
CGGCÀAUCGU GCAUCCCCUG GACCUAACAA UACAUAAACCC AGAGGUCGAU AGUACUGGAU
CCCCCC 3'

9.21 (SEQ ID NO:18): 5' GGGAGAGAGG AAGAGGGAUG GG AACACCAU
UAAAUGCUCGG CCAGGUAAACC CCGGCGCAUA CUCAUAAACCC AGAGGUCGAU AGUACUGGAU
CCCCCC 3'

9.25 (SEQ ID NO:19): 5' GGGAGAGAGG AAGAGGGAUG GGGACCAUAA
CUCUAACGGG UGAAUCCCGC AUCUCGACAA UACAUAAACCC AGAGGUCGAU AGUACUGGAU
CCCCCC 3'

9.26 (SEQ ID NO:20): 5' GGGAGAGAGG AAGAGGGAUG GG UGAUAACC
ACUCUGGUGA ACCCCUCCCG ACUUGCUCGC ACAUAACCCCA GAGGUCGAUA GUACUGGAUC
CCCCCC 3'

9.27 (SEQ ID NO:21): 5' GGGAGAGAGG AAGAGGGAUG GGUAUAACU
GUAUGGUGAA CCCACCCAAA CUCCAUGGC UACAUAAACCC AGAGGUCGAU AGUACUGGAU
CCCCCC 3'

9.28 (SEQ ID NO:22): 5' GGGAGAGAGG AAGAGGGAUG GG CGCCAUAC
GCACAUJGGCU GCAUCGCCUU CCCGUAAGAA CCAUAACCCCA GAGGUCGAUA GUACUGGAUC
CCCCCC 3'

FIGURE 2A

FIGURE 2B

Figure 3A

Figure 3B

Figure 3C

Figure 4A

Figure 4B

Figure 4C

Figure 5A

Figure 5B

Figure 5C

Figure 6A

10.1 (SEQ ID NO:23): 5' GGGAGAGAGG AAGAGGGAUG GGAAAAUAGC
CCCAGCGAGA UAAUACUUGG CCCCCGUACCA CCAUAACCCA GAGGUCGAUA
GUACUGGAUC CCCCC 3'

10.5 (SEQ ID NO:24): 5' GGGAGAGAGG AAGAGGGAUG GGCCAGAAGG
AACUAAACAC CUGAACCCCC CAUCGCGAGAG ACCAUAAACCC AGAGGUCGAU
AGUACUGGAU CCCCCC 3'

10.6 (SEQ ID NO:25): 5' GGGAGAGAGG AAGAGGGAUG GGAUGUCACU
UGGCCCUUCG CGCACc/aCGCC AGCGAGCCCA UAACCCAGAG GUCGAUAGUA
CUGGAUCCCC CC 3'

10.7 (SEQ ID NO:26): 5' GGGAGAGAGG AAGAGGGAUG GGACACGCC
AGCGAGCUA AACUUGGCC CCGUGCAUCA CC CCAUAACC CAGAGGUCGA
UAGUACUGGA UCCCCC 3'

10.8 (SEQ ID NO:27): 5' GGGAGAGAGG AAGAGGGAUG GGAAGUGCCA
CAGCGAGCAC AUGACUUGGC CCCGCAUUGC ACCAUAAACC CAGAGGUCGA UAGUACUGGA
UCCCCC 3'

10.11 (SEQ ID NO:28): 5' GGGAGAGAGG AAGAGGGAUG GGAAACUAAU
GCCCUAGCGA GCAUACCCGG ACUGGCCCG CCAUAACCC AGAGGUCGAU AGUACUGGAU
CCCCCC 3'

10.12 (SEQ ID NO:29): 5' GGGAGAGAGG AAGAGGGAUG GGAAAAUAGC
CCCAGCGAGA UAAUACUUGG CCCCCGUACU ACCAUAAACC CAGAGGUCGA UAGUACUGGA
UCCCCC 3'

10.13 (SEQ ID NO:30): 5' GGGAGAGAGG AAGAGGGAUG GGCGACCCCA
CUGGCGGAAA CCGACAAUCA CUCCCCACGA CCAUAACCC AGAGGUCGAU AGUACUGGAU
CCCCCC 3'

10.14 (SEQ ID NO:73): 5' GGGAGAGAGG AAGAGGGAUG GGAAAAUAGC
CCCAGCGAGA UAAUACUUGG CCCCCGUACU ACCAUAAACCC AGAGGUCGAU AGUACUGGAU
CC 3'

Figure 6B

10.15 (SEQ ID NO:31) : 5' GGGAGAGAGG AAGAGGGAUG GGCAAGCCCAG
CGAGGGACAC UUAACCCCCU GUCCCCAUC CAAACAUAA CCCAGAGGUC GAUAGUACUG
GAUCCCCCC 3'

10.18 (SEQ ID NO:32) : 5' GGGAGAGAGG AAGAGGGAUG GGCCAGAACGU
CACCGCGACG GUACUGAACCC ACCCAUAACC CAGAGGUCGA UAGUACUGGA
UCCCCCCC 3'

10.19 (SEQ ID NO:33) : 5' GGGAGAGAGG AAGAGGGAUG GGCCAGAACGU
GCUCACUACA ACGCUUUGAC CCCCCCAUCC ACAUCCAUAA ACCCAGAGGU CGAUAGUACU
GGAUCCCCCC 3'

10.21 (SEQ ID NO:34) : 5' GGGAGAGAGG AAGAGGGAUG GG CCAGCAAC
CGAAGGGCGG AAUACCCCCC GUCUCCACAU ACCCAUAACC CAGAGGUCGA UAGUACUGGA
UCCCCCCC 3'

10.22 (SEQ ID NO:35) : 5' GGGAGAGAGG AAGAGGGAUG GG ACGCGACU
CAGGCAGCAC UUGACUUGGC CCCUUGCGAU CACCAUAACC CAGAGGUCGA UAGUACUGGA
UCCCCCCC 3'

10.23 (SEQ ID NO:36) : 5' GGGAGAGAGG AAGAGGGAUG GG CCAGCAAC
GCUAACACGG AAUACCCCCC ACCCAACGU GCCCAUAACC CAGAGGUCGA UAGUACUGGA
UCCCCCCC 3'

10.24 (SEQ ID NO:37) : 5' GGGAGAGAGG AAGAGGGAUG GG CUUCUCAA
CCGAAAUACA ACUUUAAAUC AUUUUAUCACU UACCAUAACC CAGAGGUCGA UAGUACUGGA
UCCCCCCC 3'

10.30 (SEQ ID NO:38) : 5' GGGAGAGAGG AAGAGGGAUG GGAAUACGCCG
AUGCAAGCAU GUCCACACAC CGCAUGCCGU ACCCAUAACC CAGAGGUCGA UAGUACUGGA
UCCCCCCC 3'

Figure 7A

Figure 7B

FIGURE 8

RNA:Protein Complexes

Free RNA

FIGURE 9

Figure 10

16.1: (SEQ ID NO:39) 5' GGGAGAGAGG AAGAGGGAUG GGUACAGAGG AGUACAAGUA
GCAUGGUCCC CUCGUGUAAA AACAUAAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

16.2 (SEQ ID NO:40): 5' GGGAGAGAGG AAGAGGGAUG GGUGCAGAAG AGCUUCUUGU
AGUAUGAUCC CUCAACCGCA AGCAUAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

16.3 (SEQ ID NO:41): 5' GGGAGAGAGG AAGAGGGAUG GG UACAGAGG AGUACAAGUA
GCAUGAUCCC CUCGUGUAAA AACAUAAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

16.5 (SEQ ID NO:42): 5' GGGAGAGAGG AAGAGGGAUG GGAGCCUAUG UAACAGAUGC
AGAUCCCUAG UCGUCCCAAC ACCAUAAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

16.7 (SEQ ID NO:43): 5' GGGAGAGAGG AAGAGGGAUG GGCACAACGA ACACCGCAUC
CCUUGACAGA AAGAGCACGC CUCAUAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

16.10 (SEQ ID NO:44): 5' GGGAGAGAGG AAGAGGGAUG GGUACAGAGG AGUACAAGUA
ACAUGAUCCC CUCGUGUAAA AACAUAAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

16.11 (SEQ ID NO:45): 5' GGGAGAGAGG AAGAGGGAUG GG CACAACGA ACACCGCAUC
CCUUGACAGA AAGAACACGC CUCAUAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

16.18 (SEQ ID NO:46): 5' GGGAGAGAGG AAGAGGGAUG GGCACAAGGA ACACCGCAUC
CCUUGACAGA AAGAACACGC CUCAUAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

16.20 (SEQ ID NO:47): 5' GGGAGAGAGG AAGAGGGAUG GGAGCCUAUG UAACAGAUGC
AGAUCCCUAG ACGACCCAAC ACCAUAAACCC AGAGGUCGAU AGUACUGGAU CCCCCC 3'

FIGURE 11

Random region sequences (Round 13)	K _d Human Thrombin	K _d Porcine Thrombin
PIG 5 UGCGAACAAAGCUGAAGUACUUACGCACAACCCGUAGAAU	3 nM	1 nM
PIG 7 AAACACUGAAGAACUACCUUCUUACUGACGAAUUA	1 nM	<0.5 nM
PIG 8 AAACAAAGCUGAACGUACUUAUUCCAUCAUCACCACGCCGGAA	1 nM	0.5 nM
PIG 10 UAUUUGGCUUCUCAGUGCCGCAGAGACAGCAACAAUAGU	>>50 nM	0.5 nM
HUMAN ACAAAGCUGGAGAACUUACCGUUCCCCUCUCCAGAGAUCAA	2 nM	0.5 nM
TOGGLE 25 GAACAAAGCUGAACGUACUUAACCAAGAUCAUCCCACGAA	5 nM	0.5 nM
TOGGLE 30 ACAAAGCUGGAGAACUUAACGUUCCCCUCUCCAGCGGUAA	3 nM	0.5 nM

FIGURE 12

FIGURE 13

FIGURE 14

Figure 15

Figure 16

Figure 17
E2F-3 Round 10 Aptamers

5' Primer GGG AGA GAG GAA GAG GGA UGG G (SEQ ID NO: 62)

3' Primer C AUA ACC CAG AGG UCG A A GUA CUG GA UCCC CCC (SEQ ID NO: 63)

10-1 and 10-8 (SEQ ID NO: 64)

5' P-AAU GGA AU C ACU GAA GCC CCU CCG UAG CAC CUA ACA CAG U-3' P

10-2 (SEQ ID NO: 65)

5' P-GCA UCC UGC CAG CGG CGA CGG ACC UUC GCC CAC AGG CC UU C-3' P

10-3, 10-7, 10-11, and 10-12 (SEQ ID NO: 66)

5' P-UUA UA AGC ACA CUG AAG CCC UCA GCA AAA CCU CCA CAG G-3' P

10-4 (SEQ ID NO: 67)

5' P-UAU GAA AU C ACA GAA GCC CGC GUU CGA CAC CUC CAC UGUU 3' P

10-5 (SEQ ID NO: 68)

5' P-CAA AC UAC AGA CUC CAA CUG CAG GAG CAC CCA CCC ACA CUG
GGA CAG-3' P

10-6 (SEQ ID NO: 69)

5' P-AUC CCC GCC GUA AGC CGU CCU GAGGA CAC CAC ACU CCG C-3' P

	S1	L1	S2	L2	S2	L3	S1
*9-3 5'	gggauggggGA	CUAUACC	GCG	UAAUGC	UGC	C	UCCCCAUUCC
*9-20 5'	auggggGA	CUAUACCG	GCA	AUCG	UGC	A	UCCCCU
*9-25 5'	gggauggggGA	CCAUA	ACUC	UAAC	GGGU	GAA	UCCCGCAUCU
*9-26 5'	gggaugggg	UGAUA	ACCA	CUC	UGGU	GAA	CCCCUCCC
*9-28 5'	gggauggggCG	CCAUAC	GCA	CAU	UGC	UGCAU	CGCCUUCCC
*9-19 5'	gagggauggggA	CCAUA	ACGA	CUAC	UCGU	GAA	UCCCACCAUC
9-17 5'	gagggauggggA	CCAUAC	GCA	CAU	UGC	UGAA	UCCCCCUC
9-11 5'	gggauggggA	CUAUA	UUCGG	AAU	CUGGA		CUCCCACCU
9-4 5'	gggauggggCA	CUAUAC	GCA	UCU	UGC		UGCCUGCCC
9-16 5'	agggaugggg	CCAUA	CGU	GG	ACG	ACUGCA	CCCGACCCU
9-18 5'	gggaugggg	CCAUA	ACCA	CUU	UGGU	GAA	CCCACCCA
9-7 5'	ggaugggg	CGAUA	ACCA	ACA	UGGU	GAU	CCCAUUC
9-12 5'	gggaugggg	CGAUA	UAC	ACAUUG	GUG	AU	CCCACCC
9-2 5'	gggaugggg	CUAUUA	CAC	GCUG	GUG	AU	CCCAUCUC
9-14 5'	gggauggggGA	CUAUA	CGU	GAACG	ACU	GCA	UCCACUUCCC
9-27 5'	gggaugggg	UAAAUA	ACU	GUA	UGG	UGAA	CCCACCC

FIGURE 18

Fig. 19A

Fig. 19B

Figure 20

Figure 21

Figure 22A

Figure 22B

Figure 23A

Figure 23B

Figure 24

ANG9-4 Binding

Figure 25

blot:

pTie2

Tie2

Ang1*:	-	+	+	+	+	+
fold-excess of aptamer:	0	0	10	100	10	100
aptamer:	none		9-4		control	

Figure 26

Figure 27

Figure 28

Figure 29

plt22.jpg by D. Stewart and M. Zuker
© 2001 Washington University

$$\Delta G = -1.43 \text{ [initially } -4.2] \text{ ANG11-1.41}$$

Figure 30

Figure 31

Figure 32

