

In the Claims:

Please amend the claims indicated below.

1. (Amended) A system comprising a central processing unit (CPU)[, wherein the
2 CPU includes] including power management logic [that that enables] to enable the CPU
3 to operate in a first execution mode whenever the temperature of the CPU exceeds the
4 predetermined threshold and [operates] to operate in a second execution mode whenever
5 the temperature of the CPU is below the predetermined threshold, wherein the CPU
6 executes a first quantity of instructions per cycle in the first execution mode and executes
7 a second quantity of instructions per cycle in the second execution mode.

1 2. (Unchanged) The system of claim 1 wherein the power management logic
2 comprises:
3 a thermal sensor;
4 a digital filter coupled to the thermal sensor; and
5 an interrupt generating hardware coupled to the digital filter, wherein the interrupt
6 generating hardware generates a first interrupt whenever the temperature of the CPU
7 exceeds the predetermined threshold and generates a second interrupt whenever the
8 temperature of the CPU is below the predetermined threshold.

1 3. (Unchanged) The system of claim 2 wherein the power management logic further
2 comprises an analog to digital converter coupled between the thermal sensor and the
3 digital filter.

1 4. (Unchanged) The system of claim 2 further comprising programmable array logic
2 (PAL), wherein the PAL includes an interrupt handler for receiving the first and second
3 interrupts.

1 5. (Unchanged) The system of claim 4 wherein the power management logic further
2 comprises:

3 an instruction execution unit coupled to the interrupt handler; and
4 an artificial activity generator coupled to the interrupt handler.

1 6. (Amended) The system of claim 5 wherein the instruction execution unit [causes
2 the CPU to operate in a full dispersal] executes six instructions per cycle in the first
3 execution mode whenever the die temperature is below the predetermined threshold
4 temperature and[to operate in a single dispersal mode] executes one instruction per cycle
5 in the second execution whenever the die temperature is above the predetermined
6 threshold temperature.

1 7. (Unchanged) The system of claim 5 wherein the artificial activity generator
2 causes the CPU artificial activity generator to suspend artificial activity within the CPU
3 whenever the die temperature is above the predetermined threshold temperature.

1 8. (Amended) A method comprising:

- 2 determining whether the temperature of a central processing unit (CPU) exceeds a
- 3 predetermined threshold;
- 4 generating a first interrupt if the temperature of the CPU exceeds the
- 5 predetermined threshold; and

6 transitioning from a first execution mode to a second execution mode, wherein the
7 CPU executes a first quantity of instructions per cycle in the first execution mode and
8 executes a second quantity of instructions per cycle in the second execution mode.

1 9. (Unchanged) The method of claim 8 wherein the process of transitioning from the
2 first execution mode to the second execution mode comprises:

3 interrupting an artificial activity mode; and
4 transitioning from a full instruction execution mode to a single instruction
5 execution mode.

1 10. (Unchanged) The method of claim 9 further comprising:
2 suspending the execution of code at the CPU after generating the first interrupt;
3 and
4 resuming the execution of code at the CPU after transitioning to the single
5 instruction execution mode.

1 11. (Unchanged) The method of claim 10 further comprising:
2 determining whether the temperature of the CPU exceeds the predetermined
3 threshold after transitioning to the single instruction execution mode; and
4 terminating the operation of the CPU if the temperature of the CPU exceeds the
5 predetermined threshold after transitioning to the single instruction execution mode.

1 12. (Unchanged) The method of claim 10 further comprising:
2 determining whether the temperature of the CPU exceeds the predetermined
3 threshold after transitioning to the single instruction execution mode; and

4 generating a second interrupt if the CPU does not exceed the predetermined
5 threshold after transitioning to the single instruction execution mode.

1 13. (Unchanged) The method of claim 12 further comprising transitioning from the
2 second execution mode to the first execution mode.

1 14. (Unchanged) The method of claim 13 wherein the process of transitioning from
2 the second execution mode to the first execution mode comprises:

3 resuming the artificial activity mode; and
4 transitioning from the single instruction execution mode to the full instruction
5 execution mode.

1 15. (Unchanged) The method of claim 12 wherein the first interrupt is a high
2 temperature interrupt and the second interrupt is a normal temperature interrupt.

1 16. (Amended) A central processing unit (CPU) comprising:
2 a thermal sensor; and
3 [an analog to digital converter coupled to the thermal sensor
4 a digital filter coupled to the analog to digital converter; and
5 an interrupt generating hardware coupled to the digital filter, wherein the interrupt
6 generating hardware generates a first interrupt whenever the temperature of the CPU
7 exceeds the predetermined threshold and generates a second interrupt whenever the
8 temperature of the CPU is below the predetermined threshold]
9 an instruction execution unit to generate a first quantity of instructions per cycle
10 in a first execution mode whenever the thermal sensor measures temperature exceeding a
11 predetermined threshold and to generate a second quantity of instructions per cycle in a

12 second execution mode whenever the thermal sensor measures temperature below the
13 predetermined threshold.

1 17. (Amended) The CPU of claim 16 further comprising:
2 interrupt generating hardware coupled to generate a first interrupt whenever the
3 thermal sensor measures a temperature that exceeds the predetermined threshold and
4 generates a second interrupt whenever the thermal sensor measures a temperature below
5 the predetermined threshold.

6 [an instruction execution unit; and
7 an artificial activity generator.]

1 18. (Amended) The CPU of claim 17 further comprising [wherein the instruction
2 execution unit causes the CPU to operate in a full dispersal mode whenever the die
3 temperature is below the predetermined threshold temperature and to operate in a single
4 dispersal mode whenever the die temperature is above the predetermined threshold
5 temperature] an artificial activity generator.

1 19. (Amended) The CPU of claim [16] 18 wherein the artificial activity generator
2 causes the artificial activity generator to suspend artificial activity within the CPU
3 whenever the die temperature is above the predetermined threshold temperature.

1 20. (Amended) Power management logic comprising:
2 a thermal sensor; and
3 [an analog to digital converter coupled to the thermal sensor
4 a digital filter coupled to the analog to digital converter; and

5 an interrupt generating hardware coupled to the digital filter, wherein the interrupt
6 generating hardware generates a first interrupt whenever the temperature a central
7 processing unit (CPU) exceeds the predetermined threshold and generates a second
8 interrupt whenever the temperature of the CPU is below the predetermined threshold.]

9 an instruction execution unit to generate a first quantity of instructions per cycle
10 in a first execution mode whenever the thermal sensor measures a temperature exceeding
11 a predetermined threshold and to generate a second quantity of instructions per cycle in a
12 second execution mode whenever the thermal sensor measures temperature below the
13 predetermined threshold.

1 21. (Amended) The power management logic of claim 20 further comprising:

2 [an instruction execution unit; and
3 an artificial activity generator]

4 interrupt generating hardware to generate a first interrupt whenever the thermal
5 sensor measures a temperature that exceeds the predetermined threshold and generates a
6 second interrupt whenever the thermal sensor measures a temperature below the
7 predetermined threshold..

1 22. (Amended) The power management logic of claim 20 further comprising
2 [wherein the instruction execution unit causes the CPU to operate in a full dispersal mode
3 whenever the die temperature is below the predetermined threshold temperature and to
4 operate in a single dispersal mode whenever the die temperature is above the
5 predetermined threshold temperature] an artificial activity generator.

1 23. (Amended) The power management logic of claim [20] 22 wherein the artificial
2 activity generator causes the artificial activity generator to suspend artificial activity

3 within the CPU whenever the die temperature is above the predetermined threshold
4 temperature.

Please add the following new claim.

1 24. (New) The power management logic of claim 21 further comprising:
2 an analog to digital converter coupled to the thermal sensor; and
3 a digital filter coupled to the analog to digital converter and the interrupt
4 generating hardware.