Models of Computation Assignment 1

Name: Riley Mitchell

Email: rmmitc@student.unimelb.edu.au

Student ID: 1353040

Q1 Propositional Logic: Island Puzzle

Task A

Propositional Letters

A: A is a knight

B: B is a knight

 $C: \mathbf{C}$ is a knight

 M_K : Mimic is a knight

 M_A : A is the mimic

 $M_B: \mathbf{B}$ is the mimic

 M_C : C is the mimic

Using these propositional letters we will form our propositional formulas based on each of the statements made:

 $A \to (M_C \vee C)$

C is either the mimic or a knight, or both.

 $B \to \neg (M_A \wedge \neg C)$ It is not the case that both A is the mimic and C is a knave

 $C o (B o
eg M_K)$

If B is a knight, then the mimic is a knave

Task B

Assume Mimic is a knave:

Assume A is the Mimic:

 $\therefore \{A\mapsto 0, M_A\mapsto 1, M_K\mapsto 0\}$ and A's hence the following is true

- $\bullet \ \, C$ is NEITHER a mimic or a knight or both
- That is $\{M_C\mapsto 0,C\mapsto 0\}$
- ullet .: C's statement is false and they are a knave

And so far $\{A \mapsto 0, M_A \mapsto 1, M_K, \mapsto 0, M_C \mapsto 0, C \mapsto 0\}$

So if A is the mimic and a knave and C is also a knave, we know that B too must be a knave because their statement would be a lie in this case and otherwise we get a contradiction.

$$B \mapsto 0$$

So for C's statement to be a lie the Mimic must be a knave which it is making it "not the case that if B is a knight, then the mimic is a knave"

So if all of A, B and C are lying, their statements hold and in this case A is the mimic

Q2 Propositional Logic: Validity and Satisfiability

1.

Simplify to a logically equivalent formula

$$\neg P \wedge (P \rightarrow \neg P)$$

$$\equiv \neg P \wedge (\neg P \vee \neg P)$$

$$\equiv \neg P \wedge \neg P$$

$$\equiv \neg P$$

Under the truth assignment $\{P\mapsto 1\}$, the equation comes out to 0, and under $\{P\mapsto 0\}$ and the formula comes out to 1.

Hence, $\neg P \wedge (P \rightarrow \neg P)$ is contingent

2.

Simplify to a logically equivalent formula

$$\begin{split} & (P \vee (P \wedge (Q \to Q))) \wedge (\neg P \vee \neg (\neg Q \to \neg Q)) \\ & \equiv (P \vee (P \wedge \top)) \wedge (\neg P \vee \neg \top) \\ & \equiv (P \vee (P \wedge \top)) \wedge (\neg P \vee \bot) \\ & \equiv (P \vee (P \wedge \top)) \wedge (\neg P \vee \bot) \end{split}$$

Consider the following:

$$(P \wedge \top) \equiv P$$
 and $(\neg P \vee \bot) \equiv \neg P$

Knowing this we can now put the formula in CNF:

$$(P \lor P) \land \neg P$$
$$\equiv (P \land \neg P)$$

Then using refutation resolution we get:

$$P$$
 $\neg P$

Hence,
$$(P \lor (P \land (Q \to Q))) \land (\neg P \lor \neg (\neg Q \to \neg Q))$$
 is unsatisfiable

Formula:

$$\neg((Q \lor P) \to P) \lor (P \leftrightarrow Q) \lor (P \land \neg Q)$$

Truth table for the formula:

P	Q	$(Q \lor P)$	$((Q \lor P) \to P)$	$\neg((Q \lor P) \to P)$	$egin{pmatrix} (P \leftrightarrow Q) \end{matrix}$	$(\neg Q)$	$(P \wedge \neg Q)$	Formula Result
0	0	0	1	0	1	1	0	1
0	1	1	0	1	0	0	0	1
1	0	1	1	0	0	1	1	1
1	1	1	1	0	1	0	0	1

According to our truth table the formula is valid

Let us prove using resolution refutation:

Eliminate the implication: $(Q \lor P) \to P \equiv \neg (Q \lor P) \lor P$

Deal with the biimplication: $(P \leftrightarrow Q)$

$$\begin{array}{l} (P \leftrightarrow Q) \\ \equiv (P \wedge Q) \vee (\neg P \wedge \neg Q) \end{array}$$

To prove that the formula is valid using refutation we will assume the the contrary (that it is unsatisfiable) and negate it:

$$\neg(\neg(\neg(Q\vee P)\vee P)\vee((P\wedge Q)\vee(\neg P\wedge\neg Q))\vee(P\wedge\neg Q))$$

$$\equiv(\neg(Q\vee P)\vee P)\wedge\neg((P\wedge Q)\vee(\neg P\wedge\neg Q))\wedge\neg(P\wedge\neg Q)$$

$$\equiv((\neg Q\wedge\neg P)\vee P)\wedge(\neg(P\wedge Q)\wedge\neg(\neg P\wedge\neg Q))\wedge(\neg P\vee Q)$$

$$\equiv((P\vee\neg Q)\wedge(P\vee\neg P))\wedge((\neg P\vee\neg Q)\wedge(P\vee Q))\wedge(\neg P\vee Q)$$

$$\equiv((P\vee\neg Q)\wedge\top)\wedge(\neg P\vee\neg Q)\wedge(P\vee Q)\wedge(\neg P\vee Q)$$

$$\equiv(P\vee\neg Q)\wedge(\neg P\vee\neg Q)\wedge(P\vee Q)\wedge(\neg P\vee Q)$$

Now resolving the CNF formula:

$$(P \lor \neg Q) \qquad (\neg P \lor \neg Q) \qquad (P \lor Q) \qquad (\neg P \lor Q)$$

$$(\neg Q \lor \neg Q) \qquad (Q \lor Q)$$

$$\neg Q \qquad \qquad Q$$

 \perp

Therefore because the resolution of the negation of the formula: $\neg((Q \lor P) \to P) \lor (P \leftrightarrow Q) \lor (P \land \neg Q)$ is unsatisfiable, $\neg((Q \lor P) \to P) \lor (P \leftrightarrow Q) \lor (P \land \neg Q)$ is valid

4.

Formula:

$$(R \leftrightarrow P) \rightarrow ((R \rightarrow Q) \leftrightarrow (P \leftrightarrow Q))$$

Truth table for the formula:

P	Q	R	$egin{pmatrix} (R \leftrightarrow P) \end{bmatrix}$	$egin{pmatrix} (P \leftrightarrow Q) \end{bmatrix}$	$(R \to Q)$	$egin{aligned} ((R o Q) \leftrightarrow \ (P \leftrightarrow Q)) \end{aligned}$	$(R \leftrightarrow P) ightarrow ((R ightarrow Q) \leftrightarrow (P \leftrightarrow Q))$
0	0	0	1	1	1	1	1
0	0	1	0	1	0	0	1
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	1
1	0	0	0	0	1	0	1
1	0	1	1	0	0	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

According to our truth table the formula is contingent

Let us now validate this with two different truth assignments to show both case

Consider the truth assignment $\{P\mapsto 0, Q\mapsto 1, R\mapsto 0\}$ to the formula:

$$(0 \leftrightarrow 0) \rightarrow ((0 \rightarrow 1) \leftrightarrow (0 \leftrightarrow 1))$$

= $1 \rightarrow (1 \leftrightarrow 0)$
= $1 \rightarrow 0$
= 0

Consider the truth assignment $\{P\mapsto 0, Q\mapsto 0, R\mapsto 0\}$ to the formula:

$$(0 \leftrightarrow 0) \rightarrow ((0 \rightarrow 0) \leftrightarrow (0 \leftrightarrow 0))$$

$$= 1 \rightarrow (1 \leftrightarrow 1)$$

$$= 1 \rightarrow 1$$

$$= 1$$

Q3 Predicate Logic: Translation and Semantics

Task A

1. Iron is heavier than oxygen

$$i:$$
 Iron (Const.)
 $o:$ Oxygen (Const.)
 $H(a,b)$ "a" heavier than "b" (Pred.)
 $H(i,o)$ Iron is heavier than oxygen

2. All actinides are radioactive

A(x)	x is an actinide
R(x)	x is radioactive
$\forall x$	All x

 $\forall x (A(x) \rightarrow R(x))$ All actinides are radioactive

3. Some, but not all, lanthanides are radioactive

x, y variables within the universe of discourse

L(a) "a" is a lanthanide

 $\exists x(L(x) \land R(x)) \land \exists y(L(y) \land R(y))$ Some, but not all, lanthanides are radioactive

4. Actinides are heavier than lanthanides

 $\forall x \forall y ((A(x) \land L(y)) \rightarrow H(x,y))$ Actinides are heavier than lanthanides

5. Both lanthanides and actinides are heavier than iron and oxygen

 $\forall x((L(x) \vee A(x)) \rightarrow (H(x,i) \wedge H(x,o)))$ Both lanthanides and actinides are heavier than iron and oxygen

6. At least three isotopes of lanthanides are radioactive, but the only lanthanide without any non-radioactive isotopes is promethium

P(x) x is prometium

I(x) x is an isotope

 $x_n \hspace{1cm} n ext{th element}$

 $\exists x_1 \exists x_2 \exists_3 ((I(x_1) \land I(x_2) \land I(x_3)) \land (R(x_1) \land R(x_2) \land R(x_3)))$

Task B

To prove that the universe of every model of the formula;

$$orall x orall y(P(x,y)
ightarrow
eg P(y,x)) \wedge orall x \exists y(P(x,y))$$

has at least 3 distict elements that is $U = \{a, b, c\}$, we shall assume for the sake of contradiction that the universe has 1 $U = \{a\}$, or 2 $U = \{a, b\}$ distinct elements.

Universe with 1 Element

Let
$$U = \{a\}$$

If we obvserve the formula $\forall x\exists y(P(x,y))$ for a we need some y such that P(a,y) holds,

However, since a is the only element in U, y must also be a.

 \therefore we need P(a,a) to hold.

For $\forall x \forall y (P(x,y) \to \neg P(y,x))$ to be true we require $P(a,a) \to \neg P(a,a)$ to hold.

However this is a contradiction as it implies that if P(a,a) holds, then P(a,a) doesn't hold.

Universe with 2 Elements

Let
$$U = \{a, b\}$$

The formula $\forall x \exists y (P(x,y))$ requires that P(a,b) and P(b,a) hold for the elements a and b respectively.

For the constraint $\forall x \forall y (P(x,y) \to \neg P(y,x))$, if P(a,b) is true then P(b,a) must false and vis versa.

However, $\forall x \exists y (P(x,y))$ requires both P(a,b) and P(b,a) to be true which is a contradiction.

Q4 Predicate Logic: Red-Black Trees

To prove that it is not a red black tree we must first negate the 2nd constraint:

$$eg \forall x (R(x)
ightarrow (\neg R(l(x)) \land \neg R(r(x)))) \ \equiv \exists x \neg (\neg R(x) \lor (\neg R(l(x)) \land \neg R(r(x)))) \ \equiv \exists x (R(x) \land \neg (\neg R(l(x)) \land \neg R(r(x)))) \ \equiv \exists x (R(x) \land (R(l(x)) \lor R(r(x))))$$

This translates to:

"There exists an x such that x is a root node and it's left or right child is also red"

To apply resolution we then convert the second constraint to CNF:

$$egin{aligned} R(x) &
ightarrow (\lnot R(l(x)) \land \lnot R(r(x))) \ &\equiv \lnot R(x) \lor (\lnot R(l(x)) \land \lnot R(r(x))) \ &\equiv (\lnot R(x) \lor \lnot R(l(x))) \land (\lnot R(x) \lor \lnot R(r(x))) \end{aligned}$$

Now we have our clauses so we perform refutation:

$$R(x)$$
 $(\neg R(x) \lor \neg R(l(x)))$ $(R(l(x)) \lor R(r(x)))$ $(\neg R(x) \lor \neg R(r(x)))$ $(\neg R(x)) \lor \neg R(x))$

$$\neg R(x)$$

At this point we have derived $\neg R(x)$, however this contradicts our assumption R(x).

 \therefore since the assumption was that $R(x) \wedge (R(l(x)) \vee R(r(x)))$ and that was shown to lead to $\neg R(x)$ when resolved against $(\neg R(x) \vee \neg R(l(x))) \wedge (\neg R(x) \vee \neg R(r(x)))$, it must be that tree in question is not a red-black tree.

Q5 Informal Proof: Palindromes

Issues

- ullet The theory doesn't explicitly show how the reverse of the concatenation ss and how it results in ss.
- The theory fails to explicitly apply the definition of reversal correctly.
- The conclusion is uncrear, confusing and doesn't provide a clear and logical progression.

Corrected Proof

Theorem: Let s be a palindrome. Then their concatenation ss is also a palindrome

Proof: Let $s=a_1...a_n$ be a string of length n such that s is a palindrome. By definition, the palindrome s is equal to its reverse, so $s=a_n...a_1$.

As s is a string and ss is their concatenation, it is also a string and is given by:

$$ss = a_1...a_n \ a_1...a_n$$

We want to reverse ss to show it is equal to ss:

$$reverse(ss) = reverse(s) reverse(s)$$

$$= reverse(a_1...a_n) reverse(a_1...a_n)$$

We then apply the definition of reversal from definition 4.c , that is "the reverse of a nonempty string $a_1...a_n$ of length n is the reverse $b_1...b_n$ " which gives us for i=1...i=n:

$$= b_1...b_n \ b_1...b_n$$

In the definition $b_i=a_{n-i+1}$ for all positive integers, so we now have:

$$= a_n...a_1 a_n...a_1$$

SO

$$reverse(ss) == a_n...a_1 a_n...a_1$$

 \therefore as per our original definition of the reverse of s and our derived s

$$a_n...a_1$$
 $a_n...a_1$ = reverse $(a_1...a_n)$ reverse $(a_1...a_n) = ss$

 \therefore , ss is also a palindrome