Homework 7

Songyu Ye

October 16, 2025

Let K be a non-Archimedean complete valued field (CVF). By \mathcal{A} we mean its valuation ring, \mathfrak{m} the unique maximal ideal of \mathcal{A} , and $k := \mathcal{A}/\mathfrak{m}$ the residue field.

Definition 1. We say K is a **perfectoid field** if the following three conditions hold:

- (P1) char(k) = p > 0 (but char(K) can be either 0 or p);
- (P2) the valuation is non-discrete, i.e. the value group

$$\Gamma := |K^{\times}| \subset \mathbb{R}_{>0}^{\times}$$

is not a discrete subgroup;

(P3) the Frobenius map

$$\Phi: \mathcal{A}/p\mathcal{A} \to \mathcal{A}/p\mathcal{A}, \quad x \mapsto x^p$$

is surjective.

In typical examples, one does not have an isomorphism in (P3).

Non-Example 1. If K is a finite extension of \mathbb{Q}_p , then K is not perfectoid as the valuation is still discrete. Similarly, the completion of $\mathbb{Q}_p^{\text{unr}}$ is not perfectoid. A finite field is perfect of characteristic > 0 but not perfectoid because it has trivial valuation (thus not a CVF).

Example 1. If char(K) = p, then it is a simple exercise to show that K is a perfect oid field if and only if K is a perfect field (in addition to being a non-Archimedean CVF). A concrete example is

$$K = \mathbb{F}_p((t^{1/p^{\infty}})) := \bigcup_{n \ge 1} \mathbb{F}_p((t^{1/p^n})),$$

where |t| = a, $|t^{1/p^n}| = a^{1/p^n}$ for a fixed constant 0 < a < 1.

Example 2. The completion $C = \widehat{\mathbb{Q}}_p$, which is a CVF, appeared in the previous problem set. It is perfected — this will be verified in the first problem below. In this case, we usually write \mathcal{O}_C for the valuation ring \mathcal{A} . Write $\mathcal{O}_{\overline{\mathbb{Q}}_p}$ for the valuation ring of $\overline{\mathbb{Q}}_p$, and $\mathfrak{m}_C, \mathfrak{m}_{\overline{\mathbb{Q}}_p}$ for the maximal ideals in the corresponding valuation rings. We verify this example in the following problem.

Example 3. The completion of $\mathbb{Q}_p(\mu_{p^{\infty}})$ turns out to be a perfectoid field as well. A general intuition is that a perfectoid field is "infinitely ramified" to allow the valuation to be non-discrete.

Problem 1

(1) Show that the inclusion $\mathcal{O}_{\overline{\mathbb{Q}}_p} \subset \mathcal{O}_C$ induces isomorphisms

$$\mathcal{O}_{\overline{\mathbb{Q}}_p}/p\mathcal{O}_{\overline{\mathbb{Q}}_p} \cong \mathcal{O}_C/p\mathcal{O}_C$$
 and $\mathcal{O}_{\overline{\mathbb{Q}}_p}/\mathfrak{m}_{\overline{\mathbb{Q}}_p} \cong \mathcal{O}_C/\mathfrak{m}_C$.

(It is not hard to see that the residue field $\mathcal{O}_{\overline{\mathbb{Q}}_p}/\mathfrak{m}_{\overline{\mathbb{Q}}_p} \cong \overline{\mathbb{F}}_p$, since it is an algebraic extension of \mathbb{F}_p containing an arbitrary finite extension of \mathbb{F}_p .)

- (2) Show that $\Gamma = p^{\mathbb{Q}} = \{p^a : a \in \mathbb{Q}\}$ in this case, if we normalize the valuation such that |p| = 1/p.
- (3) Check that the Frobenius map

$$\mathcal{O}_C/p\mathcal{O}_C \to \mathcal{O}_C/p\mathcal{O}_C$$

is surjective.

Solution: We first show that the natural inclusion $\mathcal{O}_{\overline{\mathbb{Q}}_p} \subset \mathcal{O}_C$ induces isomorphisms

$$\mathcal{O}_{\overline{\mathbb{Q}}_p}/p \cong \mathcal{O}_C/p$$
 and $\mathcal{O}_{\overline{\mathbb{Q}}_p}/\mathfrak{m}_{\overline{\mathbb{Q}}_p} \cong \mathcal{O}_C/\mathfrak{m}_C$.

Since $\mathcal{O}_{\overline{\mathbb{Q}}_p}$ is dense in \mathcal{O}_C , given any $\bar{x} \in \mathcal{O}_C/p$, we may choose a lift $x \in \mathcal{O}_C$ and find $y \in \mathcal{O}_{\overline{\mathbb{Q}}_p}$ such that $|x - y| \leq |p|$. This implies $x \equiv y \pmod{p}$, establishing surjectivity. Conversely, if $a \in \mathcal{O}_{\overline{\mathbb{Q}}_p}$ maps to 0 in \mathcal{O}_C/p , then $a \in p\mathcal{O}_C$. Writing a = pb with $b \in \mathcal{O}_C$ and using that \mathcal{O}_C and $\mathcal{O}_{\overline{\mathbb{Q}}_p}$ share the same valuation, we have $b \in \mathcal{O}_{\overline{\mathbb{Q}}_p}$. Hence $a \in p\mathcal{O}_{\overline{\mathbb{Q}}_p}$, proving injectivity. The same argument, applied to the maximal ideals $\mathfrak{m}_{\overline{\mathbb{Q}}_p}$ and \mathfrak{m}_C , shows that the reduction maps mod \mathfrak{m} also induce an isomorphism of residue fields. In particular, both residue fields are algebraic closures of \mathbb{F}_p .

Next we compute the value group. Since completion does not change valuations, we have

$$|C^{\times}| = |\overline{\mathbb{Q}}_{p}^{\times}|.$$

For each finite extension L/\mathbb{Q}_p with ramification index e, the value group satisfies $|L^{\times}| = p^{\frac{1}{e}\mathbb{Z}}$. Taking the union over all finite extensions inside $\overline{\mathbb{Q}}_p$ gives

$$|\overline{\mathbb{Q}}_p^{\times}| = \bigcup_{e>1} p^{\frac{1}{e}\mathbb{Z}} = p^{\mathbb{Q}}.$$

Hence $\Gamma = |C^{\times}| = p^{\mathbb{Q}}$, which is non-discrete and p-divisible when the normalization $|p| = p^{-1}$ is used.

Finally, we verify that Frobenius on \mathcal{O}_C/p is surjective. By the first part, it suffices to check surjectivity on $\mathcal{O}_{\overline{\mathbb{Q}}_p}/p$. Given $\bar{a} \in \mathcal{O}_{\overline{\mathbb{Q}}_p}/p$, choose a lift $a \in \mathcal{O}_{\overline{\mathbb{Q}}_p}$, which lies in the ring of integers \mathcal{O}_L of some finite extension L/\mathbb{Q}_p . In $\mathcal{O}_L/p \cong k_L$, the residue field k_L is finite of

characteristic p, so Frobenius $x \mapsto x^p$ is bijective. Thus there exists $b \in \mathcal{O}_L \subset \mathcal{O}_{\overline{\mathbb{Q}}_p}$ such that $b^p \equiv a \pmod{p}$. Therefore Frobenius is surjective on $\mathcal{O}_{\overline{\mathbb{Q}}_p}/p$, and hence also on \mathcal{O}_C/p .

For problems 2–4, we work in the following general setting. Let K be a perfectoid field with valuation ring A. Fix a nonzero element $\varpi \in A$ such that

$$|p| \leq |\varpi| < 1.$$

Such an element is called a *pseudo-uniformizer*, as it plays a similar role to a uniformizer for a DVR.

If $\operatorname{char}(K) = 0$, we can take $\varpi = p$. If $\operatorname{char}(K) = p$, we should make a different choice, e.g. for $K = \mathbb{F}_p((t^{1/p^{\infty}}))$, take $\varpi = t$. In either case, (P3) implies that the *p*-th power map induces a surjection

$$\mathcal{A}/\varpi\mathcal{A} \twoheadrightarrow \mathcal{A}/\varpi\mathcal{A} \quad (x \mapsto x^p).$$

Consider the inverse limit along this p-th power map:

$$\mathcal{A}^{\flat} := \varprojlim_{x \mapsto x^p} \mathcal{A}/\varpi \mathcal{A} = \{(x_0, x_1, \dots) : x_i \in \mathcal{A}/\varpi \mathcal{A}, \ x_{i+1}^p = x_i \text{ for all } i \ge 0\}.$$

Problem 2

- (1) Prove that \mathcal{A}^{\flat} is a perfect ring of characteristic p. (Addition and multiplication are defined term-by-term.)
- (2) Show that the canonical map

$$f: \underbrace{\lim}_{x \mapsto x^p} \mathcal{A} = \{(y_0, y_1, \dots) : y_i \in \mathcal{A}, \ y_{i+1}^p = y_i\} \to \mathcal{A}^{\flat}$$

given by $f((y_i)) = (y_i \mod \varpi)$ is a bijection.

Solution: Each \mathcal{A}/ϖ has characteristic p, hence so does the inverse limit; addition and multiplication are defined termwise and respect the transition maps, so \mathcal{A}^{\flat} is a ring. The Frobenius

$$\varphi: \mathcal{A}^{\flat} \to \mathcal{A}^{\flat}, \quad (x_0, x_1, \ldots) \mapsto (x_0^p, x_1^p, \ldots)$$

is bijective: its inverse is the right shift

$$\varphi^{-1}(x_0, x_1, \ldots) = (x_1, x_2, \ldots),$$

which is well-defined because $x_{i+1}^p = x_i$. Thus \mathcal{A}^{\flat} is perfect.

Lemma 1 If $a \equiv b \pmod{\varpi^m}$ in \mathcal{A} , then $a^p \equiv b^p \pmod{\varpi^{m+1}}$. Consequently, for any $r \geq 1$,

$$a^{p^r} \equiv b^{p^r} \pmod{\varpi^{m+r}}.$$

Proof. Write $a = b + \varpi^m u$. Then

$$a^{p} - b^{p} = \sum_{j=1}^{p} \binom{p}{j} b^{p-j} (\varpi^{m} u)^{j}.$$

For $j \geq 2$ the term is divisible by ϖ^{2m} . For j = 1 it equals $p \, b^{p-1} \, \varpi^m u$, which is divisible by $p\varpi^m$; since $v(p) \geq v(\varpi)$ (i.e. $|p| \leq |\varpi|$), we have $p\varpi^m \in \varpi^{m+1} \mathcal{A}$. Hence $a^p \equiv b^p \pmod{\varpi^{m+1}}$. Iterate to get the p^r statement. \square

Injectivity of f. Suppose (y_i) and (y'_i) in $\varprojlim \mathcal{A}$ have the same reduction mod ϖ . Then $d_i := y_i - y'_i \in \varpi \mathcal{A}$ for all i, and

$$d_i = y_{i+1}^p - (y_{i+1}')^p$$
.

By Lemma 1 with m = 1, $d_i \in \varpi^2 \mathcal{A}$. Repeating, we get $d_i \in \varpi^n \mathcal{A}$ for all $n \geq 1$. Since \mathcal{A} is ϖ -adically separated, $\bigcap_{n \geq 1} \varpi^n \mathcal{A} = \{0\}$, hence $d_i = 0$ for all i. Thus f is injective.

Surjectivity of f. Let $x = (x_0, x_1, \ldots) \in \mathcal{A}^{\flat}$. Choose arbitrary lifts $y_n^{(0)} \in \mathcal{A}$ of x_n for each $n \geq 0$. For fixed i, define a sequence (indexed by $n \geq i$)

$$z_i^{(n)} := (y_n^{(0)})^{p^{n-i}} \in \mathcal{A}.$$

If $n > m \ge i$ and $y_n^{(0)} \equiv y_m^{(0)} \pmod{\varpi}$ (true because both reduce to x_n transported along p-power to x_m), then by Lemma 1

$$(y_n^{(0)})^{p^{n-i}} \equiv (y_m^{(0)})^{p^{n-i}} \equiv (y_m^{(0)})^{p^{m-i}} \pmod{\varpi^{(n-i)+1}}.$$

Hence $(z_i^{(n)})_{n\geq i}$ is Cauchy in the ϖ -adic topology. Since \mathcal{A} is ϖ -adically complete, the limit

$$y_i := \lim_{n \to \infty} z_i^{(n)} \in \mathcal{A}$$

exists. Define $y = (y_0, y_1, \ldots)$.

By construction, $y_i \equiv x_i \pmod{\varpi}$ (pass to the limit of the reductions), and

$$y_{i+1}^p = \left(\lim_{n\to\infty} (y_n^{(0)})^{p^{n-(i+1)}}\right)^p = \lim_{n\to\infty} (y_n^{(0)})^{p^{n-i}} = y_i,$$

using continuity of $t \mapsto t^p$. Thus $y \in \varprojlim \mathcal{A}$ and f(y) = x. So f is surjective and hence a bijection.

For each $x \in \mathcal{A}^{\flat}$, write $f^{-1}(x) = (y_0, y_1, \dots)$. Define $x^{\sharp} \in \mathcal{A}$ to be y_0 , the first coordinate in $f^{-1}(x)$. Thus we obtain a map

$$(\cdot)^{\sharp}: \mathcal{A}^{\flat} \to \mathcal{A}, \qquad x \mapsto x^{\sharp}.$$

Problem 3

- (1) Given $x \in K^{\times}$, show there exists $y \in K^{\times}$ such that $|y^p| = |x|$. (This tells us that $\Gamma = |K^{\times}|$ is not only non-discrete but p-divisible.)
- (2) Prove that there exists an element $\varpi^{\flat} \in \mathcal{A}^{\flat}$ such that $|(\varpi^{\flat})^{\sharp}| = |\varpi|$.
- (3) Consider the localization

$$K^{\flat} := \mathcal{A}^{\flat}[1/\varpi^{\flat}].$$

Show that the map $(\cdot)^{\sharp}$ extends to a multiplicative map $K^{\flat} \to K$, still denoted $(\cdot)^{\sharp}$, making K^{\flat} a field of characteristic p.

(4) Show that the function

$$|\cdot|: K^{\flat} \to \mathbb{R}_{\geq 0}, \qquad |y|:=|y^{\sharp}|$$

is a valuation on K^{\flat} , and that \mathcal{A}^{\flat} is its valuation ring.

Solution:

1. First treat the case 0 < v(x) < v(p). By surjectivity of Frobenius on \mathcal{A}/p , pick $b \in \mathcal{A}$ with $b^p \equiv x \pmod{p}$, so $x = b^p + pc$ for some $c \in \mathcal{A}$. Since $v(pc) \ge v(p) > v(x)$, the ultrametric inequality gives $v(x) = v(b^p)$ and hence $|b^p| = |x|$. Thus the claim holds with y = b in this range.

For general $x \neq 0$, choose $N \in \mathbb{Z}$ with $0 < v(xp^{-N}) < v(p)$; apply the previous paragraph to $x' := xp^{-N}$ to get $y_0 \in K^{\times}$ with $|y_0^p| = |x'|$.

2. By (1) choose $y \in \mathcal{A}$ with $|y^p| = |\varpi|$. Using surjectivity of Frobenius on \mathcal{A}/ϖ , choose inductively a sequence

$$x_0 := \overline{y} \in \mathcal{A}/\varpi, \quad x_{i+1} \in \mathcal{A}/\varpi \text{ with } x_{i+1}^p = x_i \text{ for all } i \ge 0.$$

Let $\varpi^{\flat} := (x_0, x_1, x_2, \ldots) \in \mathcal{A}^{\flat}$. Pick arbitrary lifts $\tilde{x}_i \in \mathcal{A}$ of x_i . Then by the defining formula,

$$(\varpi^{\flat})^{\sharp} = \lim_{i \to \infty} \tilde{x}_i^{p^i},$$

and (since \tilde{x}_0 may be taken to be y) we get $|(\varpi^{\flat})^{\sharp}| = |y|^p = |\varpi|$.

3. Define $(\cdot)^{\sharp}$ on K^{\flat} by

$$\left(\frac{a}{(\varpi^{\flat})^n}\right)^{\sharp} := \frac{a^{\sharp}}{\left((\varpi^{\flat})^{\sharp}\right)^n} \quad \in K \qquad (a \in \mathcal{A}^{\flat}, \ n \in \mathbb{Z}_{\geq 0}).$$

This is well-defined because $(\cdot)^{\sharp}$ is multiplicative on \mathcal{A}^{\flat} and $(\varpi^{\flat})^{\sharp} \neq 0$. It is again multiplicative by construction.

Since \mathcal{A}^{\flat} is perfect of characteristic p (Problem 2) and ϖ^{\flat} is a nonzerodivisor in the valuation setting below, inverting ϖ^{\flat} yields a nonzero characteristic-p domain.

4. Multiplicativity is immediate:

$$|xy|_{\flat} = |(xy)^{\sharp}| = |x^{\sharp}y^{\sharp}| = |x^{\sharp}| \cdot |y^{\sharp}| = |x|_{\flat} |y|_{\flat}.$$

The ultrametric inequality follows from that in K and continuity of $(\cdot)^{\sharp}$:

$$|x+y|_{\flat} = |(x+y)^{\sharp}| \le \max\{|x^{\sharp}|, |y^{\sharp}|\} = \max\{|x|_{\flat}, |y|_{\flat}\}.$$

Nontriviality holds because $|(\varpi^{\flat})|_{\flat} = |(\varpi^{\flat})^{\sharp}| = |\varpi| < 1$.

We claim $\mathcal{A}^{\flat} = \{z \in K^{\flat} : |z|_{\flat} \leq 1\}$. If $a \in \mathcal{A}^{\flat}$, then $a^{\sharp} \in \mathcal{A}$ so $|a|_{\flat} = |a^{\sharp}| \leq 1$. Conversely, let $z = a/(\varpi^{\flat})^n$ with $a \in \mathcal{A}^{\flat}$. If $|z|_{\flat} \leq 1$, then

$$|a^{\sharp}| \le |(\varpi^{\flat})^{\sharp}|^n = |\varpi|^n,$$

so $a^{\sharp} \in \varpi^n \mathcal{A}$. Using multiplicativity and that $(\cdot)^{\sharp}$ detects divisibility by ϖ^{\flat} via absolute values, this implies $a \in (\varpi^{\flat})^n \mathcal{A}^{\flat}$, hence $z \in \mathcal{A}^{\flat}$. Therefore \mathcal{A}^{\flat} is exactly the valuation ring for $|\cdot|_{\flat}$, and its fraction field is K^{\flat} .