PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-325437

(43)Date of publication of application: 10.12.1996

(51)Int.CI.

CO8L 63/00 CO8L 63/00 CO8J 7/00 H05K 3/00 H05K 3/46

(21)Application number: 07-135090

01.06.1995

(71)Applicant: HITACHI CHEM CO LTD

(72)Inventor: OGAWA NOBUYUKI

SHIMIZU HIROSHI SHIBATA KATSUJI NAKASO AKISHI

(54) ETCHANT FOR CURED EPOXY RESIN

(57)Abstract:

(22)Date of filing:

PURPOSE: To enable the removal of an unmodified epoxy resin and attain good handleability by using an amide solvent and an aqueous solution of an alkali metal compound to form an etchant for a specific cured epoxy resin composition.

CONSTITUTION: A bifunctional epoxy resin is mixed with a halogenated dihydric phenol in such a ratio that the amount of the phenolic hydroxyl groups is 0.9 to 1.1 equivalent based on the epoxy groups. This mixture is thermally polymerized at 60-150° C in an amide or ketone solvent having a b.p. of 130° C or higher at a reactant solid concentration of 50wt.% or lower in the presence of a catalyst to obtain a film-forming epoxy polymer (A) having a mol.wt. of 100,000 or higher. The ingredient (A) is compounded with a masked isocyanate and a polyfunctional epoxy resin as crosslinking agents, a curing agent, a curing accelerator, an amide solvent, and a 0.5-60wt.% aqueous solution of an alkali metal hydroxide. The amount of the isocyanate groups of the masked isocyanate is 0.1-1.0 equivalent based on the hydroxyl groups of the ingredient (A), and that of the polyfunctional epoxy resin is 20-100wt.% based on the ingredient (A).

LEGAL STATUS

[Date of request for examination]

20.10.1998

[Date of sending the examiner's decision of

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3286116

[Date of registration]

08.03.2002

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

TP. 08-325437 A

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The etching reagent of the epoxy resin hardened material which is the solution which etches the hardened material of the thermosetting epoxy resin constituent which consists of a with a molecular weight of 100,000 or more which has the film organization potency to which a 2 organic-functions epoxy resin and halogenation 2 organic-functions phenols were heated under existence of a catalyst, and carried out the polymerization epoxy polymer, a cross linking agent, and a polyfunctional epoxy resin, and is characterized by consisting of an amide system solvent and a water solution of an alkali metal compound.

[Claim 2] The etching reagent of the epoxy resin hardened material according to claim 1 with which an amide system solvent is characterized by being N.N-dimethylformamide, N,Ndimethylacetamide, or a N-methyl-2-pyrrolidone.

[Claim 3] The etching reagent of the epoxy resin hardened material according to claim 1 or 2 with which an alkali metal compound is characterized by being an alkali-metal hydroxide. [Claim 4] The etching reagent of the epoxy resin hardened material according to claim 3 with which an alkali metal compound is characterized by being a lithium hydroxide, a sodium hydroxide, or a potassium hydroxide.

[Translation done.]

* NOTICES *

TP 08-325437 A

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] this invention is used for an insulating material, adhesives, a coating, etc. — a film — it is related with the etching reagent of the thermosetting epoxy resin hardened material [-izing / a hardened material].

[0002]

[Description of the Prior Art] Since the epoxy resin is excellent in the electrical property and an adhesive property like polyimide resin, it is used in various fields. As for an epoxy resin and polyimide resin, roughening and an application which is removed and used came out of some resin as an application spread. About etching of polyimide resin, it is often carried out from the former and the approach of etching with basic solutions, such as a hydrazine, is learned by JP,50-4577,A, JP,51-27464,A, JP,53-49068,A, etc.

[0003] Moreover, about roughening and etching of an epoxy resin, the approach of etching by the concentrated sulfuric acid used for surface roughening processing of the epoxy resin hardened material used for a printed wired board, DESUMIA processing, and etchback processing, the chromic acid, an alkali permanganate, etc. is learned by JP,54-144968,A and JP,62-104197,A, and it is *********. Moreover, the approach of adding and etching acrylic resin meltable to alkali into an epoxy resin is learned by JP,5-218651,A.

[Problem(s) to be Solved by the Invention] Although concentrated sulfuric acid, the chromic acid, and the alkali permanganate were being used for roughening and etching the hardened material of a non-denaturalized epoxy resin, these liquid is the chemicals applicable to the specified chemical substances of labor security and hygiene law, sufficient cautions for the handling on insurance are required for it, it is dealt with further, and a duty of a medical checkup is periodically imposed upon a person. Since absorptivity of concentrated sulfuric acid was strong, it needed sufficient concentration management, and in order to have removed the epoxy resin completely by the alkali permanganate, the elevated temperature around 80 degrees C and the time amount for 30 minutes or more were still more nearly required for it. Moreover, since etching of an epoxy resin is enabled, in the case of the modified epoxy resin which added acrylic resin, the outstanding properties, such as the thermal resistance of an epoxy resin and chemical resistance, will be reduced.

[0005] This invention is easy handling and it aims at offering the etching reagent which enables removal of a non-denaturalized epoxy resin.
[0006]

[Means for Solving the Problem] The etching reagent of the epoxy resin hardened material of this invention is a solution which etches the hardened material of the thermosetting epoxy resin constituent which consists of a with a molecular weight of 100,000 or more which has the film organization potency to which a 2 organic—functions epoxy resin and halogenation 2 organic—functions phenols were heated under existence of a catalyst, and carried out the polymerization epoxy polymer, a cross linking agent, and a polyfunctional epoxy resin, and is characterized by consisting of an amide system solvent and a water solution of an alkali metal compound.

[0007] this invention persons make a header and this invention for the amount epoxy polymer of macromolecules decomposing with an alkali metal compound in an amide system solvent, as a result of examining many things about the decomposition reaction of the amount epoxy polymer of macromolecules wholeheartedly as a result of examination.

[0008] Hereafter, this invention is explained to a detail. The hardened material of the thermosetting epoxy resin constituent set as the object of etching of this invention is a hardened material of the thermosetting epoxy resin constituent which consists of a with a molecular weight of 100,000 or more which has the film organization potency to which a 2 organic—functions epoxy resin and halogenation 2 organic—functions phenols were heated under existence of a catalyst, and carried out the polymerization epoxy polymer, a cross linking agent, and a polyfunctional epoxy resin.

[0009] Molecular weight is 100,000 or more so-called amount epoxy polymers of macromolecules, and combination equivalent ratio of a 2 organic-functions epoxy resin and halogenation 2 organic-functions phenols is set to an epoxy group / phenolic hydroxyl group =1:0.9-1.1, the boiling point is 50 or less % of the weight of reaction solid content concentration under existence of a catalyst among an amide system 130 degrees C or more or a ketone system solvent, and the epoxy polymer which has such film organization potency heats a 2 organic-functions epoxy resin and halogenation 2 organic-functions phenols, can carry out a polymerization, and can be obtained.

[0010] If this 2 organic-functions epoxy resin is a compound which has two epoxy groups in intramolecular, what kind of thing is sufficient as it, for example, it has the bisphenol A mold epoxy resin, a bisphenol female mold epoxy resin, a bisphenol smooth S form epoxy resin, an aliphatic series chain-like epoxy resin, etc. What kind of thing is sufficient as the molecular weight of these compounds. These compounds can use several kinds together. Moreover, components other than a 2 organic-functions epoxy resin may be contained as an impurity. [0011] Halogenation 2 organic-functions phenols have the halogenide of bisphenol A which is the hydroquinone which what kind of thing is sufficient as as long as it is a compound with a halogen atom and two phenolic hydroxyl groups, for example, is a monocycle 2 organic-functions phenol, resorcinol, a catechol, and a polycyclic 2 organic-functions phenol, Bisphenol F, naphthalene diols, bisphenols, and these alkyl group substitution products etc. What kind of thing is sufficient as the molecular weight of these compounds. These compounds can use several kinds together and may use together the 2 organic-functions phenols which are not halogenated. Moreover, components other than 2 organic-functions phenols may be contained as an impurity. [0012] If a catalyst is a compound with catalyst ability which promotes the etherification reaction of an epoxy group and a phenolic hydroxyl group, what kind of thing is sufficient as it, for example, it has an alkali metal compound, an alkaline-earth-metal compound, imidazole derivatives, an organic **** compound, a secondary amine, a tertiary amine, quarternary ammonium salt, etc. Especially, an alkali metal compound is the most desirable catalyst and there are sodium, a lithium, the hydroxide of a potassium, a halogenide, an organic-acid salt, an alcoholate, a phenolate, a hydride, a HOU hydride, an amide, etc. as an example of an alkali metal compound. These catalysts can be used together.

[0013] although an amide system or a ketone system solvent is desirable, and there will be especially no limit as a reaction solvent if the epoxy resin and phenols from which the boiling point is 130 degrees C or more, and serves as a raw material as an amide system solvent are dissolved — a formamide, N-methyl formamide, N.N-dimethylformamide, an acetamide, N-methyl acetamide, N,N-dimethylacetamide, N and N, N', and N' — there are – tetramethylurea, 2-pyrrolidone, a N-methyl-2-pyrrolidone, carbamic-acid ester, etc. These solvents can be used together. Moreover, you may use together with the solvent of others which are represented by a ketone system solvent, the ether system solvent, etc.

[0014] As for the combination equivalent ratio of a 2 organic—functions epoxy resin, 2 organic—functions phenols, or halogenation 2 organic—functions phenols, as synthetic conditions for a polymer, it is desirable that it is an epoxy group / phenolic hydroxyl group =1:0.9-1.1. Although especially a limit does not have the loadings of a catalyst, generally a catalyst is about 0.0001-0.2 mols to one mol of epoxy resins. As for polymerization reaction temperature, it is desirable

that it is 60-150 degrees C. If higher [when lower than 60 degrees C, a macromolecule quantification reaction is remarkably slow, and] than 150 degrees C, side reaction will increase and it will not consider as macromolecule quantification at the shape of a straight chain. Although the solid content concentration in the case of the polymerization reaction using a solvent should just be 50% or less, it is desirable to make it to 30 more% or less. Thus, the molecular weight which has film organization potency can obtain 100,000 or more so-called amount epoxy polymers of macromolecules.

[0015] As a cross linking agent of this amount epoxy polymer of macromolecules, reactant control of a cross linking agent is easy, and the mask isocyanates which the preservation stability of a varnish tends to secure and which carried out the mask (block) of the isocyanates with the compound with other active hydrogen can be used.

[0016] The hexamethylene di-isocyanate by which what kind of thing is sufficient as it as long as isocyanates have two or more isocyanate radicals in intramolecular, for example, the mask was carried out by mask agents, such as phenols, oximes, and alcohols, diphenylmethane diisocyanate, isophorone diisocyanate, tolylene diisocyanate, etc. are mentioned. The isophorone diisocyanate and tolylene diisocyanate by which the mask was especially carried out by phenols for the heat-resistant improvement in a hardened material are desirable. As for the amount of this cross linking agent, it is desirable that an isocyanate radical makes it 0.1–1.0Eq to 1.0Eq of alcoholic hydroxyl groups of the amount epoxy polymer of macromolecules.

[0017] As long as it is the compound which has two or more epoxy groups in intramolecular as a polyfunctional epoxy resin, what kind of thing may be used. For example, a phenol novolak mold epoxy resin, a cresol novolak mold epoxy resin, The epoxy resin and cycloaliphatic epoxy resin which are glycidyl ether of phenols, such as a resol mold epoxy resin and a bisphenol mold epoxy resin, Epoxidation polybutadiene, a glycidyl ester mold epoxy resin, a glycidyl amine mold epoxy resin, Although it is an isocyanurate mold epoxy resin, a flexible epoxy resin, etc., and anything may be used as long as it is an epoxy resin, the mixture of a phenol mold epoxy resin or a phenol mold epoxy resin, and a polyfunctional epoxy resin is especially desirable because of improvement in thermal resistance. As for the amount of this polyfunctional epoxy resin, it is desirable to carry out to 20 – 100% of the weight to the amount epoxy polymer of macromolecules.

[0018] These polyfunctional epoxy resins are independent, or two or more kinds may be mixed and they may be used. Furthermore, the curing agent and hardening accelerator of a polyfunctional epoxy resin are used. As the curing agent and hardening accelerator of an epoxy resin, novolak mold phenol resin, a dicyandiamide, an acid anhydride, amines, imidazole derivatives, and phosphoretted hydrogen are mentioned. Moreover, you may use combining these. Furthermore, a silane coupling agent may be added. As a silane coupling agent to add, an epoxy silane, an amino silane, a urea silane, etc. are desirable.

[0019] It can blend and mix and the etching reagent of this invention can prepare the water solution of an amide system solvent and an alkali metal compound.

[0020] What kind of thing is sufficient as the amide system solvent which is the etching-reagent constituent of this invention, for example, it has a formamide, N-methyl formamide, N.N-dimethylformamide, an acetamide, N-methyl acetamide, N,N-dimethylacetamide, N and N, N', N'-tetramethylurea, 2-pyrrolidone, a N-methyl-2-pyrrolidone, carbamic-acid ester, etc. It is [among these] effective in N.N-dimethylformamide, N,N-dimethylacetamide, and a N-methyl-2-pyrrolidone making an epoxy resin hardened material swell, and especially since the solubility of a decomposition product is good, it is desirable. These solvents can be used together. Moreover, you may use together with the solvent of others which are represented by a ketone system solvent, the ether system solvent, etc.

[0021] What kind of thing is sufficient as the ketone system solvent which can be used together here, for example, it has an acetone, an ethyl ethyl ketone, 2-pentanone, 3-pentanone, 2-heptanone, 4-heptanone, diisobutyl ketone, a cyclohexanone, etc.

[0022] What kind of thing is sufficient as the ether system solvent which can be used together here, for example, it has the dipropyl ether, diisopropyl ether, dibutyl ether, an anisole, a

phenetole, dioxane, a tetrahydrofuran, ethylene glycol wood ether, ethylene glycol diethylether, diethylene-glycol wood ether, diethylene-glycol diethylether, etc.

[0023] If it dissolves in water with alkali metal compounds, such as a lithium, sodium, a potassium, a rubidium, and caesium, what kind of thing is sufficient as the alkali metal compound which is the etching-reagent constituent of this invention, for example, metals, such as a lithium, sodium, a potassium, a rubidium, and caesium, a hydride, a hydroxide, a HOU hydride, an amide, a fluoride, a chloride, a bromide, an iodide, a borate, phosphate, a carbonate, a sulfate, a nitrate, an organic-acid salt, a phenol salt, etc. can be used for it. An alkali-metal hydroxide is desirable and a lithium hydroxide, a sodium hydroxide, and especially a potassium hydroxide are [among these] desirable.

[0024] Although the etching reagent of this invention may consist of a water solution of an amide system solvent and an alkali metal compound and what kind of concentration is sufficient as the alkali-metal-compound concentration of an alkali-metal-compound water solution, 0.5 to 60% of the weight of the range is desirable. Since the catabolic rate of an epoxy resin hardened material will fall if the alkali-metal-compound concentration of an alkali-metal-compound water solution is lower than 0.5 % of the weight, since an alkali metal compound cannot dissolve in water completely if higher than 60 % of the weight, it is not desirable preferably.

[0025] Although the etching reagent of this invention blends and prepares the water solution of an alkali metal compound to an amide system solvent, no matter it may blend at what rate, phase separation will occur. However, since phase separation is carried out, the decomposition product of an epoxy resin can dissolve in an amide system solvent phase easily. Moreover, an etching reagent may be heated and used till around 90 degrees C in the case of etching.

[0026] Although you may dip as the etching approach into the etching reagent which carried out phase separation, it is desirable to dip into the etching reagent which carried out high-speed stirring and which homogeneity was made to distribute. Furthermore air bubbles may be generated or vibration may be given with a supersonic wave. Even if it does not dip into liquid, a spray etc. may be used and high pressure may be applied further.

[0027]

[Example]

The thickness of a film it is thin from the amount epoxy polymer of example 1 bromination giant molecules, phenol resin mask-ized diisocyanate, and a cresol novolak mold epoxy resin heated 170 degrees C thermosetting epoxy adhesive film AS-3000E (the Hitachi Chemical Co., Ltd. make, trade name) which is 50 micrometers for 30 minutes, and produced the hardening film of an epoxy resin constituent. Even if this hardening film is tough, it pulled it and it folded it, it did not break or go out. As an etching reagent, 80 % of the weight of N.N-dimethylformamide and the mixed solution of 20 % of the weight of water solutions of a sodium hydroxide (sodium-hydroxide concentration: 50 % of the weight) were prepared. When the hardening film was dipped in the 60-degree C etching reagent and shaken lightly, the hardening film dissolved completely in 15 minutes.

[0028] As example 2 etching reagent, the mixed solution of 80 % of the weight of N.N-dimethylformamide and water-solution (potassium-hydroxide concentration: 50 % of the weight) 20 weight of a potassium hydroxide was prepared. When the hardening film produced in the example 1 was dipped in the 60-degree C etching reagent and shaken lightly, the hardening film dissolved completely in 15 minutes.

[0029] As example 3 etching reagent, 80 % of the weight of N.N-dimethylformamide and the mixed solution of 20 % of the weight of water solutions of a lithium hydroxide (lithium-hydroxide concentration: 10 % of the weight) were prepared. When the hardening film produced in the example 1 was dipped in the 60-degree C etching reagent and shaken lightly, the hardening film dissolved completely in 45 minutes.

[0030] As example 4 etching reagent, 80 % of the weight of N.N-dimethylformamide and the mixed solution of 20 % of the weight of water solutions of a sodium hydroxide (sodium-hydroxide concentration: 10 % of the weight) were prepared. When the hardening film produced in the example 1 was dipped in the 60-degree C etching reagent and shaken lightly, the hardening film dissolved completely in 25 minutes.

[0031] As example 5 etching reagent, the mixed solution of 20 % of the weight of water solutions of 80 % of the weight of N,N-dimethylacetamide and a sodium hydroxide (sodium-hydroxide concentration: 20 % of the weight) was prepared. When the hardening film produced in the example 1 was dipped in the 60-degree C etching reagent and shaken lightly, the hardening film dissolved completely in 20 minutes.

[0032] As example 6 etching reagent, 80 % of the weight of N-methyl-2-pyrrolidones and the mixed solution of 20 % of the weight of water solutions of a sodium hydroxide (sodium-hydroxide concentration: 20 % of the weight) were prepared. When the hardening film produced in the example 1 was dipped in the 60-degree C etching reagent and shaken lightly, the hardening film dissolved completely in 25 minutes.

[0033] When the hardening film produced in the example of comparison 1 example 1 was dipped in 60-degree C N.N-dimethylformamide and shaken lightly, the film had stopped the original form also after 24 hours.

[0034] When the hardening film produced in the example of comparison 2 example 1 was dipped in the 60-degree C water solution of a 20-% of the weight sodium hydroxide and was shaken lightly, the film had stopped the original form also after 24 hours.

[0035] When the hardening film produced in the example of comparison 3 example 1 was dipped in the mixed water solution of a sodium hydroxide and 5-% of the weight potassium permanganate 5 60-degree C% of the weight and was shaken lightly, as for the film, the front face was only roughened also after 60 minutes.
[0036]

[Effect of the Invention] The etching reagent which consists of a water solution of an amide system solvent and an alkali metal compound by this invention as explained above and which carried out phase separation, The solution which can be etched without using the chemical which can etch the hardened material of the thermosetting epoxy resin constituent which consists of a with a molecular weight of 100,000 or more which has the film organization potency to which a 2 organic—functions epoxy resin and halogenation 2 organic—functions phenols were heated under existence of a catalyst, and carried out the polymerization epoxy polymer, a cross linking agent, and a polyfunctional epoxy resin, and the handling of concentrated sulfuric acid, a chromic acid, an alkali permanganate, etc. takes cautions can be offered.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-325437

(43)公開日 平成8年(1996)12月10日

C08L 63/00 NKU C08L 63/00 NKU NLB NLB C08J 7/00 CFC C08J 7/00 CFCA H05K 3/00 H05K 3/00 Z 3/46 6921-4E 3/46 Z 審查請求 未請求 請求項の数4 OL (全	≥ 5.頁)
C 0 8 J 7/00 CFC C 0 8 J 7/00 CFCA H 0 5 K 3/00 H 0 5 K 3/00 Z 3/46 6921-4E 3/46 Z	全 5 頁)
H 0 5 K 3/00 Z 3/46 6921-4E 3/46 Z	全 5 頁)
3/46 6921 – 4 E 3/46 Z	全 5 頁)
	全 5 頁)
審査請求 未請求 請求項の数4 OL (全	è 5 頁) ————
(21)出願番号 特願平7-135090 (71)出願人 000004455	
日立化成工業株式会社	
(22)出願日 平成7年(1995)6月1日 東京都新宿区西新宿2丁目1番1号	号
(72)発明者 小川 信之	
茨城県下館市大字小川1500番地	日立化成
工業株式会社下館研究所内	•
(72)発明者 清水 浩	
茨城県下館市大字小川1500番地	日立化成
工業株式会社下館研究所内	
(72)発明者 柴田 勝司	
茨城県つくば市和台48 日立化成	工業株式
会社筑波開発研究所内	
(74)代理人 弁理士 若林 邦彦	
最終	頁に続く

(54) 【発明の名称】 エポキシ樹脂硬化物のエッチング液

(57)【要約】

【目的】取り扱いが容易で、無変性のエポキシ樹脂の除 去を可能とするエッチング液を提供すること。

【構成】特定の熱硬化性エポキシ樹脂組成物の硬化物を エッチングする溶液であって、アミド系溶媒と、アルカ リ金属化合物の水溶液からなること。

【特許請求の範囲】

【請求項1】二官能エポキシ樹脂とハロゲン化二官能フ エノール類を触媒の存在下、加熱して重合させたフィル ム形成能を有する分子量100,000以上のエポキシ 重合体、架橋剤、多官能エポキシ樹脂からなる熱硬化性 エポキシ樹脂組成物の硬化物をエッチングする溶液であ って、アミド系溶媒と、アルカリ金属化合物の水溶液か らなることを特徴とするエポキシ樹脂硬化物のエッチン グ液。

【請求項2】アミド系溶媒が、N. N-ジメチルホルム 10 アミド、N、Nージメチルアセトアミド、Nーメチルー 2-ピロリドンのいずれかであることを特徴とする請求 項1に記載のエポキシ樹脂硬化物のエッチング液。

【請求項3】アルカリ金属化合物が、アルカリ金属水酸 化物であることを特徴とする請求項1または2に記載の エポキシ樹脂硬化物のエッチング液。

【請求項4】アルカリ金属化合物が、水酸化リチウム、 水酸化ナトリウム、水酸化カリウムのいずれかであるこ とを特徴とする請求項3に記載のエポキシ樹脂硬化物の エッチング液。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、絶縁材料、接着剤、塗 料などに用いられるフィルム化可能な熱硬化性エポキシ 樹脂硬化物のエッチング液に関する。

[0002]

【従来の技術】エポキシ樹脂は、ポリイミド樹脂と同様 にその電気特性、接着性に優れているため、種々の分野 で利用されている。エポキシ樹脂及びポリイミド樹脂 は、用途が広がるにつれ、樹脂の一部を粗化や除去して 30 使用するような用途がでてきた。ポリイミド樹脂のエッ チングに関しては、従来からよく行われており、ヒドラ ジン等の塩基性溶液でエッチングする方法が、特開昭5 0-4577号公報、特開昭51-27464号公報、 及び特開昭53-49068号公報などにより知られて

【0003】また、エポキシ樹脂の粗化やエッチングに 関しては、プリント配線板に用いられるエポキシ樹脂硬 化物の表面粗化処理、デスミア処理、エッチバック処理 に用いられる濃硫酸、クロム酸、アルカリ過マンガン酸 塩などでエッチングする方法が、特開昭54-1449 68号公報や、特開昭62-104197号公報によっ て知られれている。また、エポキシ樹脂に、アルカリに 可溶なアクリル樹脂を添加して、エッチングする方法 が、特開平5-218651号公報によって知られてい る。

[0004]

【発明が解決しようとする課題】無変性のエポキシ樹脂 の硬化物を、粗化、エッチングするのは、濃硫酸、クロ

らの液は労働安全衛生法の特定化学物質に該当する薬品 であり、安全上取扱いに十分な注意が必要であり、さら に取扱い者には定期的に健康診断が義務付けられる。さ らに濃硫酸は吸水性が強いために、十分な濃度管理が必 要であり、アルカリ過マンガン酸塩でエポキシ樹脂を完 全に除去するには、80℃前後の高温と30分以上の時 間が必要であった。また、エポキシ樹脂をエッチング可 能にするためにアクリル樹脂を添加した変性エポキシ樹 脂の場合、エポキシ樹脂の耐熱性、耐薬品性等の優れた 特性を低下させてしまう。

【0005】本発明は、取り扱いが容易で、無変性のエ ポキシ樹脂の除去を可能とするエッチング液を提供する ことを目的とする。

[0006]

【課題を解決するための手段】本発明のエポキシ樹脂硬 化物のエッチング液は、二官能エポキシ樹脂とハロゲン 化二官能フェノール類を触媒の存在下、加熱して重合さ せたフィルム形成能を有する分子量100,000以上 のエポキシ重合体、架橋剤、多官能エポキシ樹脂からな る熱硬化性エポキシ樹脂組成物の硬化物をエッチングす る溶液であって、アミド系溶媒と、アルカリ金属化合物 の水溶液からなることを特徴とする。

【0007】本発明者らは、鋭意検討の結果、高分子量 エポキシ重合体の分解反応について種々検討した結果、 高分子量エポキシ重合体が、アミド系溶媒中でアルカリ 金属化合物により分解することを見出し、本発明をなし たものである。

【0008】以下、本発明を詳細に説明する。本発明の エッチングの対象となる、熱硬化性エポキシ樹脂組成物 の硬化物は、二官能エポキシ樹脂とハロゲン化二官能フ ェノール類を触媒の存在下、加熱して重合させたフィル ム形成能を有する分子量100、000以上のエポキシ 重合体、架橋剤、多官能エポキシ樹脂からなる熱硬化性 エポキシ樹脂組成物の硬化物である。

【0009】このようなフィルム形成能を有するエポキ シ重合体は、分子量が100,000以上の、いわゆる 高分子量エポキシ重合体であり、二官能エポキシ樹脂と ハロゲン化二官能フェノール類を二官能エポキシ樹脂と ハロゲン化二官能フェノール類の配合当量比をエポキシ 基/フェノール性水酸基=1:0.9~1.1とし、触 媒の存在下、沸点が130℃以上のアミド系またはケト ン系溶媒中、反応固形分濃度50重量%以下で、加熱し て重合させて得ることができる。

【0010】この二官能エポキシ樹脂は、分子内に二個 のエポキシ基を持つ化合物であればどのようなものでも よく、例えば、ピスフェノールA型エポキシ樹脂、ビス フェノールF型エポキシ樹脂、ピスフェノールS型エポ キシ樹脂、脂肪族鎖状エポキシ樹脂などがある。これら の化合物の分子量はどのようなものでもよい。これらの ム酸、アルカリ過マンガン酸塩を使用していたが、これ 50 化合物は何種類かを併用することができる。また、二官

能エポキシ樹脂以外の成分が不純物として含まれていて も構わない。

【0011】ハロゲン化二官能フェノール類は、ハロゲン原子および二個のフェノール性水酸基を持つ化合物であればどのようなものでもよく、例えば、単環二官能フェノールであるヒドロキノン、レゾルシノール、カテコール、多環二官能フェノールであるビスフェノールA、ビスフェノールF、ナフタレンジオール類、ビスフェノール類、これらのアルキル基置換体のハロゲン化物などがある。これらの化合物の分子量はどのようなものでも 10 よい。これらの化合物は何種類かを併用することができるし、ハロゲン化されていない二官能フェノール類を併用してもよい。また、二官能フェノール類以外の成分が不純物として含まれていても構わない。

【0012】触媒はエポキシ基とフェノール性水酸基のエーテル化反応を促進させるような触媒能を持つ化合物であればどのようなものでもよく、例えば、アルカリ金属化合物、アルカリ土類金属化合物、イミダゾール類、有機りん化合物、第二級アミン、第三級アミン、第四級アンモニウム塩などがある。中でもアルカリ金属化合物が最も好ましい触媒であり、アルカリ金属化合物の例としては、ナトリウム、リチウム、カリウムの水酸化物、ハロゲン化物、有機酸塩、アルコラート、フェノラート、水素化物、ホウ水素化物、アミドなどがある。これらの触媒は併用することができる。

【0013】反応溶媒としては、アミド系またはケトン系溶媒が好ましく、アミド系溶媒としては、沸点が130℃以上で、原料となるエポキシ樹脂とフェノール類を溶解すれば、特に制限はないが、例えば、ホルムアミド、Nーメチルホルムアミド、Nーメチルホルムアミド、アセトアミド、Nーメチルアセトアミド、N, Nージメチルアセトアミド、N, N, N', N'ーテトラメチル尿素、2ーピロリドン、Nーメチルー2ーピロリドン、カルバミド酸エステルなどがある。これらの溶媒は併用することができる。また、ケトン系溶媒、エーテル系溶媒などに代表されるその他の溶媒と併用しても構わない。

【0014】重合体の合成条件としては、二官能工ポキシ樹脂と二官能フェノール類またはハロゲン化二官能フェノール類の配合当量比は、エポキシ基/フェノール性水酸基=1:0.9~1.1であることが望ましい。触媒の配合量は特に制限はないが、一般にはエポキシ樹脂1モルに対して触媒は0.0001~0.2モル程度である。重合反応温度は、60~150℃であることが望ましい。60℃より低いと高分子量化反応が著しく遅く、150℃より高いと副反応が多くなり直鎖状に高分子量化としない。溶媒を用いた重合反応の際の固形分濃度は50%以下であればよいが、さらには30%以下にすることが望ましい。このようにしてフィルム形成能を有する分子量が100.00以上の、いわゆる高分子

量エポキシ重合体を得られる。

【0015】この高分子量エポキシ重合体の架橋剤として、架橋剤の反応性制御が容易でワニスの保存安定性が確保し易い、イソシアネート類を他の活性水素を持つ化合物でマスク(プロック)したマスクイソシアネート類を用いることができる。

【0016】イソシアネート類は、分子内に二個以上のイソシアネート基を有するものであればどのようなものでもよく、例えば、フェノール類、オキシム類、アルコール類などのマスク剤でマスクされたヘキサメチレンジイソシアネート、シフェニルメタンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネートなどが挙げられる。特に硬化物の耐熱性の向上のためフェノール類でマスクされたイソホロンジイソシアネート、トリレンジイソシアネートが好ましい。この架橋剤の量は高分子量エポキシ重合体のアルコール性水酸基1.0当量に対し、イソシアネート基が0.1~1.0当量にすることが好ましい。

【0017】多官能工ポキシ樹脂としては、分子内に二個以上のエポキシ基を持つ化合物であればどのようなものでもよく、例えば、フェノールノボラック型エポキシ樹脂、レゾール型エポキシ樹脂、レゾール型エポキシ樹脂、ピスフェノール型エポキシ樹脂などのフェノール類のグリシジルエーテルであるエポキシ樹脂や脂環式エポキシ樹脂、エポキシ化ポリブタジエン、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、可とう性エポキシ樹脂などであり、エポキシ樹脂ならば何を用いても構わないが、特にフェノール型エポキシ樹脂ならば何を用いても構わないが、特にフェノール型エポキシ樹脂ならば何を用いても構わないが、特にフェノール型エポキシ樹脂ならば何を用いても構わないが、特にフェノール型エポキシ樹脂ならば何を用いても構わないが、特にフェノール型エポキシ樹脂ならであり、エポキシ樹脂と多官能エポキシ樹脂によるで、20~100重量%にすることが好ましい。

【0018】これらの多官能エポキシ樹脂は、単独でまたは二種類以上混合して用いても構わない。さらに、多官能エポキシ樹脂の硬化剤および硬化促進剤を用いる。エポキシ樹脂の硬化剤および硬化促進剤としては、ノボラック型フェノール樹脂、ジシアンジアミド、酸無水物、アミン類、イミダゾール類、フォスフィン類などが挙げられる。また、これらを組み合わせて用いても構わない。さらにシランカップリング剤を添加しても構わない。添加するシランカップリング剤としては、エポキシシラン、アミノシラン、尿素シラン等が好ましい。

【0019】本発明のエッチング液は、アミド系溶媒、アルカリ金属化合物の水溶液を配合、混合して調製することができる。

子量化としない。溶媒を用いた重合反応の際の固形分濃 【0020】本発明のエッチング液構成成分であるアミ 度は50%以下であればよいが、さらには30%以下に ド系溶媒は、どのようなものでもよく、例えば、ホルム することが望ましい。このようにしてフィルム形成能を アミド、Nーメチルホルムアミド、N, Nージメチルホ 有する分子量が100,000以上の、いわゆる高分子 50 ルムアミド、アセトアミド、Nーメチルアセトアミド、 5

N, N-ジメチルアセトアミド、N, N, N', N'-テトラメチル尿素、2-ピロリドン、N-メチル-2-ピロリドン、カルバミド酸エステルなどがある。これら のうち、N, N-ジメチルホルムアミド、N, N-ジメ チルアセトアミド、N-メチル-2-ピロリドンがエポ キシ樹脂硬化物を膨潤させる効果があり、分解物の溶解 性が良好なために特に好ましい。これらの溶媒は併用す ることができる。また、ケトン系溶媒、エーテル系溶媒 などに代表されるその他の溶媒と併用しても構わない。

【0021】ここで併用できるケトン系溶媒は、どのよ 10 うなものでもよく、例えば、アセトン、エチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、メチルイソプチルケトン、2-ヘプタノン、4-ヘプタノン、ジイソプチルケトン、シクロヘキサノンなどがある。

【0022】ここで併用できるエーテル系溶媒は、どのようなものでもよく、例えば、ジプロピルエーテル、ジイソプロピルエーテル、ジプチルエーテル、アニソール、フェネトール、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどがある。

【0023】本発明のエッチング液構成成分であるアルカリ金属化合物は、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属化合物で水に溶解するものであればどのようなものでもよく、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等の金属、水素化物、水酸化物、ホウ水素化物、アミド、フッ化物、塩化物、臭化物、ヨウ化物、ホウ酸塩、リン酸塩、炭酸塩、硫酸塩、硝酸塩、有機酸塩、フェノール塩などが使用できる。これらのうち、アルカリ金属水酸化物が好ましく、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが特に好ましい。

【0024】本発明のエッチング液は、アミド系溶媒とアルカリ金属化合物の水溶液からなり、アルカリ金属化合物液度はどのような濃度でも構わないが、0.5重量%から60重量%の範囲が好ましい。アルカリ金属化合物水溶液のアルカリ金属化合物濃度が0.5重量%より低いとエポキシ樹脂硬化物の分解速度が低下するため好ましくなく、60重量%より高いと水にアルカリ金属化合物が完全に溶解できないので好ましくない。

【0025】本発明のエッチング液は、アミド系溶媒に、アルカリ金属化合物の水溶液を配合して調製するが、どのような割合で配合しても相分離が起きてしまう。しかしながら相分離しているために、エポキシ樹脂の分解物が容易にアミド系溶媒相に溶解が可能である。また、エッチングの際にエッチング液を90℃前後まで加熱して使用しても構わない。

o 法として、相分離したエッラ

【0026】エッチング方法として、相分離したエッチング液中に浸してもよいが、高速攪拌して均一に分散させたエッチング液中に浸すのが好ましい。さらに気泡を発生させたり、超音波により振動を与えたりしても構わない。液中に浸さなくともスプレー等を使用しても構わないし、さらに高圧をかけても構わない。

[0027]

【実施例】

実施例1

臭素化高分子量エポキシ重合体、フェノール樹脂マスク化ジイソシアネート、クレゾールノボラック型エポキシ樹脂からなる、フィルムの厚さが50μmの熱硬化性エポキシ接着フィルムAS-3000E(日立化成工業株式会社製、商品名)を、170℃、30分加熱して、エポキシ樹脂組成物の硬化フィルムを作製した。この硬化フィルムは、強靭であり、引っ張っても折っても割れたり切れたりしなかった。エッチング液として、N,N-ジメチルホルムアミド80重量%、水酸化ナトリウムの水溶液(水酸化ナトリウム濃度:50重量%)20重量%の混合溶液を調製した。硬化フィルムを60℃のエッチング液に浸し、軽く振とうしたところ、硬化フィルムは15分で完全に溶解した。

[0028] 実施例2

エッチング液として、N, N-ジメチルホルムアミド80重量%、水酸化カリウムの水溶液(水酸化カリウム濃度:50重量%)20重量の混合溶液を調製した。実施例1で作製した硬化フィルムを60℃のエッチング液に浸し、軽く振とうしたところ、硬化フィルムは15分で完全に溶解した。

0 【0029】実施例3

エッチング液として、N, N-ジメチルホルムアミド80重量%、水酸化リチウムの水溶液(水酸化リチウム濃度:10重量%)20重量%の混合溶液を調製した。実施例1で作製した硬化フィルムを60℃のエッチング液に浸し、軽く振とうしたところ、硬化フィルムは45分で完全に溶解した。

【0030】実施例4

エッチング液として、N, N-ジメチルホルムアミド80重量%、水酸化ナトリウムの水溶液(水酸化ナトリウム濃度:10重量%)20重量%の混合溶液を調製した。実施例1で作製した硬化フィルムを60℃のエッチング液に浸し、軽く振とうしたところ、硬化フィルムは25分で完全に溶解した。

【0031】実施例5

エッチング液として、N, N-ジメチルアセトアミド80 重量%、水酸化ナトリウムの水溶液(水酸化ナトリウム濃度:20 重量%)20 重量%の混合溶液を調製した。実施例1で作製した硬化フィルムを60℃のエッチング液に浸し、軽く振とうしたところ、硬化フィルムは5020分で完全に溶解した。

【0032】実施例6

エッチング液として、N-メチル-2-ピロリドン80 重量%、水酸化ナトリウムの水溶液(水酸化ナトリウム 濃度:20重量%)20重量%の混合溶液を調製した。 実施例1で作製した硬化フィルムを60℃のエッチング 液に浸し、軽く振とうしたところ、硬化フィルムは25 分で完全に溶解した。

【0033】比較例1

実施例1で作製した硬化フィルムを60℃のN, N-ジメチルホルムアミドに浸し、軽く振とうしたところ、24時間後でもフィルムは原形をとどめていた。

【0034】比較例2

実施例1で作製した硬化フィルムを60℃の20重量%水酸化ナトリウムの水溶液に浸し、軽く振とうしたところ、24時間後でもフィルムは原形をとどめていた。 【0035】比較例3 【0036】 【発明の効

(5)

【発明の効果】以上に説明したように、本発明によって、アミド系溶媒、アルカリ金属化合物の水溶液からなる相分離したエッチング液により、二官能エポキシ樹脂とハロゲン化二官能フェノール類を触媒の存在下、加熱10 して重合させたフィルム形成能を有する分子量100,000以上のエポキシ重合体、架橋剤、多官能エポキシ樹脂からなる熱硬化性エポキシ樹脂組成物の硬化物をエッチングすることができ、かつ、濃硫酸、クロム酸、アルカリ過マンガン酸塩等の取り扱いに注意を要する薬品を用いずにエッチングできる溶液を提供することができる

実施例1で作製した硬化フィルムを60℃の5重量%水

酸化ナトリウム、5重量%過マンガン酸カリウムの混合

水溶液に浸し、軽く振とうしたところ、60分後でもフ

ィルムは表面が粗化されただけだった。

フロントページの続き

(72)発明者 中祖 昭士

茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内