平均をもとに、散らばり具合を調べたい

	V		
	\boldsymbol{x}	$(x-\overline{x})$	$(x-\overline{x})^2$
A	14	2	4
В	10	-1	4
C	13	1	1
D	13	(1	1(
E	15	3	9
F	18	6	36
G	6	-6	36
H	10	-1	4
I	11	- (1
J	10	-2	4
計	120	0	(00

(偏差・分散・標準偏差) (偏差・分散・標準偏差) (偏差・分散・標準偏差) (偏差・分散・標準偏差) (最差・分散・標準偏差) (最差・分散・標準偏差・ (最差・) (最差・) (まり、) (ま

冷散… 偏差の 2颗なり 平空

$$\int = \frac{1}{n} \left\{ (x_1 - \overline{x})^2 + \dots + (x_n - \overline{x})^2 \right\}$$

$$= \frac{1}{n} \sum_{k=1}^{n} (x_k - \overline{x})^k$$

標準偏差… かっ」10

計算してみよう.

1) 分散

2) 標準偏差

偏差・分散・標準偏差のイメージ

分散と平均の関係を調べてみよう.

$$s^{2} = \frac{1}{N} \sum_{\lambda=1}^{N} \left(\chi_{\lambda} - \chi_{\lambda} \right)^{2}$$

$$= \frac{1}{N} \sum_{\lambda=1}^{N} \left(\chi_{\lambda}^{2} - 2 \sqrt{\chi} \chi_{\lambda}^{2} + \sqrt{\chi}^{2} \right)$$

$$= \frac{1}{N} \left(\sum_{\lambda=1}^{N} \chi_{\lambda}^{2} - 2 \sqrt{\chi} \sum_{\lambda=1}^{N} \chi_{\lambda}^{2} + \sum_{\lambda=1}^{N} \chi_{\lambda}^{2} \right)$$

$$= \frac{1}{N} \left(\sum_{\lambda=1}^{N} \chi_{\lambda}^{2} \right) - 2 \sqrt{\chi} \cdot \frac{1}{N} \sum_{\lambda=1}^{N} \chi_{\lambda}^{2} + \frac{1}{N} \sqrt{\chi}^{2}$$

$$= \frac{1}{N} \left(\sum_{\lambda=1}^{N} \chi_{\lambda}^{2} \right) - \left(\sqrt{\chi} \right)^{2}$$

$$= \frac{1}{N} \left(\sum_{\lambda=1}^{N} \chi_{\lambda}^{2} \right) - \left(\sqrt{\chi} \right)^{2}$$