MATH 307: Individual Homework 1

Spring 2021, Dr. Guo John Mays (jkm100@case.edu) 02/07/2021

- 1. a) $(\mathbb{N}, +, 0)$ is a monoid, because it satisfies all three monoid conditions
 - 1. Closure: any addition of two natural numbers must be a natural number
 - 2. Associativity: order does not matter in the addition of natural numbers
 - 3. Identity: there exists the identity element $0 \in \mathbb{N}$.

$$a \in \mathbb{N}, 0 + a = a + 0 = a$$

- b) $(\mathbb{N}, +)$ is a not a group. It is a monoid, yet it fails to satisfy the fourth additional condition for groups:
 - 4. Inverse: Because the natural numbers only contain positive integers, there are no two elements besides (0,0) that can be added to equal 0, the identity element.
- c) $(\mathbb{N}, +, 0)$ is not an Abelian group, because it is not a group.
- 2. $(\mathbb{Z}, +)$ is an Abelian group, because it satisfies all five requirements of Abelian groups:
 - 1. Closure: any addition of two integers must also be an integer.
 - 2. Associativity: order of addition does not matter when adding integers
 - 3. Identity: there exists the identity element $0 \in \mathbb{Z}$.

$$a \in \mathbb{Z}, 0 + a = a + 0 = a$$

- 4. Inverse: For all $a \in \mathbb{Z}$, there exists $b \in \mathbb{Z}$ to satisfy the equations a + b = 0 and b + a = 0.
- 5. Commutativity: For all $a, b \in \mathbb{Z}$, a + b = b + a.
- (\mathbb{Z}, \cdot) is a monoid, because it satisfies the three monoid conditions:
 - 1. Closure: any multiplication of two integers must also be an integer.
 - 2. Associativity: No matter the order in which a set of three integers is multiplied, the product will always be the same.
 - 3. Identity: there exists the identity element $1 \in \mathbb{Z}$.

$$a \in \mathbb{Z}, 1 \cdot a = a \cdot 1 = a$$

(cont. on next page)

However, (\mathbb{Z}, \cdot) is not an Abelian group, because it is not a group. It does not satisfy the inverse condition:

Proof by counterexample:

Claim: For all $a \in \mathbb{Z}$, there exists $b \in \mathbb{Z}$, for which $a \cdot b = id = 1$.

Take $3 \in \mathbb{Z}$.

 $3 \cdot b = 1$

b could only be $1/3 \notin \mathbb{Z}$.

Therefore not all integers have an inverse in this monoid.