

Prediksi Harga Saham Harian Pada Sektor Alat Berat Dan Bank Menggunakan Model Black-Scholes Termodifikasi Dan Algoritma Artificial Neural Network

Nama : Zefanya Finney Simijaya

NIM : 19/445600/PA/19424

Pembimbing: Dr. Dwi Satya Palupi, S.Si., M.Si.

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA YOGYAKARTA 2023

PENDAHULUAN

- Ekonofisika merupakan ilmu multidisipliner yang menarik karena menggabungkan antara ekonomi dan fisika.
- Dalam dunia Ekonomi terdapat data *real* yang melimpah yang dapat dianalisa dan dimodelkan oleh para fisikawan.
- Mempelajari ilmu ekonomi dengan demikian mempelajari data dalam jumlah besar yang dapat dianalogikan sebagai sistem kompleks.
- Ilmu dasar yang dipakai dalam ekonofisika yaitu teori peluang dan metode statistik yang banyak digunakan pada fisika statistik.

- Salah satu bidang di ekonomi yang dapat dikaji dengan ekonofisika adalah **pasar modal**.
- Pasar modal merupakan pasar yang memperdagangkan berbagai instrument keuangan jangka panjang.
- Contoh dari pasar modal sendiri adalah saham dan derivatif

- Saham adalah sertifikat yang menunjukkan bukti kepemilikan suatu perusahaan dan pemegang saham memiliki hak klaim atas laba dan aktika perusahaan.
- **Derivatif** adalah instrument keuangan yang nilainya bergantung pada nilai aset lainnya

LATAR BELAKANG

- Salah satu contoh instrument derivatif adalah Opsi saham
- **Opsi saham** merupakan perjanjian di antara kedua belah pihak yang masing masing memiliki hak untuk melakukan pembelian (*call option*) dan penjualan (*put option*) pada harga dan waktu yang telah ditentukan .

- *Call option* adalah hak untuk membeli saham pada harga kesepakatan (*strike price*) dalam jangka waktu yang telah disepakati.
- **Put option** adalah hak untuk menjual saham pada harga kesepakatan (strike price) dalam jangka waktu yang telah disepakati.

- Harga Opsi saham dapat ditentukan dengan model Black-Scholes
- Model Black-Scholes diperkenalkan pertama kali oleh Fischer Black dan Myron Scholes pada tahun 1973.

- Black dan Scholes mengasumsikan harga saham mengikuti proses Ito, yaitu proses yang dapat dinyatakan oleh persamaan diferensial stokastik.
- Secara khusus Black dan Scholes mengasumsikan harga saham mengikuti Brownian Geometri.

- Data harga saham bersifat *time series*
- Data *time series* harga saham mencerminkan pergerakan harga saham setiap saat dalam periode waktu tertentu.
- *Time series* data saham berupa kumpulan data yang sangat besar, sehingga penggunaan *machine learning* menjadi salah satu pilihan yang tepat untuk memprediksi harga saham.
- Beberapa algoritma dari *machine learning* diantaranya adalah decision tree, support vector machine, k-nearest neighbors.
- Dikenal juga istilah *deep learning* yang merupakan sub bidang dari *machine learning* dengan beberapa algoritma adalah artificial neural network, convolutional neural network, dan recurrent neural network.

- Harga saham berperilaku seperti gerak acak (random walk) dan sangat sulit untuk diprediksi.
- Metode *Machine learning* menjadi metode yang tepat untuk memprediksi harga saham
- Penggunaan *machine learning* telah banyak digunakan pada berbagai bidang.
 - 1. Bidang fisika : fisika partikel dan kosmologi, fisika material
 - 2. Bidang ekonomi : forecasting saham.

Tahun	Peneliti	Deskripsi
1973	Black dan Scholes	Menemukan formula harga opsi dengan mengasumsikan harga saham mengikuti proses stokastik.
2018	Moawia Algalith	Mengajukan metode yang sederhana, eksak, dan analitik untuk opsi amerika dengan menggunakan formula Black- Scholes
2019	Dev Shah	Melakukan review dan taksonomi metode-metode prediksi harga saham dengan mengelompokkan kedalam empat kategori (teknik statistical, teknik pattern recognition, teknik machine learning, teknik sentiment analysis)

Tahun	Peneliti	Deskripsi
2020	Raquel Gaspar	Melakukan penentuan harga pada opsi jual tipe Amerika di empat perusahaan besar di AS dengan menggunakan dua model ANN dan metode Least Squares Monte Carlo (LSM). Kedua model ANN lebih unggul dibandingkan LSM
2020	Reaz Chowdhury	Melakukan perhitungan prediksi harga saham pada harga penutupan dengan menggunakan model Black-Scholes termodifikasi dan metode machine learning dengan algoritma decision tree, ANN, dan ensemble method.
2022	Gurjeet Singh	Melakukan penelitian prediksi index saham nifty 50 index (indeks saham india) menggunakan machine learning dengan algoritma adaboost, KNN, linear regression, ANN, random forest, SGD, SVM, dan decision tree

- Melakukan prediksi harga saham dengan menggunakan *Black-Scholes Option Pricing Model (BSOPM)*.
- Melakukukan prediksi pada data *time series* dengan menggunakan algoritma *Artificial Neural Network (ANN)*.
- Mengetahui kombinasi variabel *feature* mana yang memiliki nilai *MAE* yang paling kecil untuk memprediksi saham.

- Dataset menggunakan data saham harian pada saat **harga penutupan** (*close price*) dan saham diambil dari dua sektor dan Indeks saham :
 - 1. Sektor alat berat : Saham United Tractor (UNTR), Hexindo Adiperkasa (HEXA), Kobexindo Tractors (KOBX), Petrosea (PTRO).
 - 2. Sektor Bank: Saham Bank BCA (BBCA), Bank BNI (BBNI), Bank BRI (BBRI), Bank Mandiri (BMRI).
 - **3. Indeks saham :** IHSG dan LQ45
- Sektor alat berat dan sektor Bank dilakukan prediksi dengan beberapa model :
 - Model Black-Scholes termodifikasi
 - 2. Model ANN variabel feature Black-Scholes termodifikasi & historical data.
 - 3. Model *ANN* variabel *feature historical data*
- Indeks saham dilakukan prediksi dengan model ANN variabel feature historical data

- 1. **Sektor alat berat**: Saham United Tractor (UNTR), Hexindo Adiperkasa (HEXA), Kobexindo Tractors (KOBX), Petrosea (PTRO).
- 2. Sektor Bank: Saham Bank BCA (BBCA), Bank BNI (BBNI), Bank BRI (BBRI), Bank Mandiri (BMRI).
- **3. Indeks saham :** IHSG dan LQ45
- Saham tersebut diambil dari website Yahoo *finance* dengan rentang waktu awal Januari 2016 hingga 5 Mei 2023.
- Data saham dibuat ketetapan pada nilai window dan horizon masing-masing 3 dan 1.

DASAR TEORI

Black-Scholes Termodifikasi

Black-Scholes • Prediksi harga saham dapat dilakukan dengan model termodifikasi. Dengan rumus berikut :

$$C = Xe^{-qT}N(d_1) - Se^{-rT}N(d_2)$$

$$P = Se^{-rT}N(-d_2) - Xe^{-qT}N(-d_1)$$

Dengan:

$$d_1 = \frac{\ln\left(\frac{X}{S}\right) + \left(r - q + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$

$$d_1 = \frac{\ln\left(\frac{X}{S}\right) + \left(r - q + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}} \qquad d_2 = \frac{\ln\left(\frac{X}{S}\right) + \left(r - q - \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$

Dengan keterangan setiap variabel adalah:

C = Call option

P = Put option

S = Strike price

r = risk free interest rate

q = Divident yield

 $X = Current \ stock \ price$

 $\sigma = Stock \ volatility$

N(x) = Cummulative normal distribution function

T = Time to maturity

Rumus untuk mencari variabel strike price adalah :

$$S = (X * e^{\mu})$$
, dengan $\mu = \ln \left(\frac{Today\ close\ price}{Yesterday\ close\ price} \right)$

Rumus untuk mencari Time to maturity adalah:

$$T = rac{Jumlah hari perdagangan saham sebulan}{Jumlah hari perdagangan saham setahun}$$

- Prediksi harga saham juga dapat dilakukan dengan menggunakan machine learning.
- Secara sederhana **machine learning** akan belajar dari sekumpulan banyak data yang kita berikan. Kemudian dari hasil pembelajaran tersebut digunakan untuk prediksi suatu output.

Misal kita memiliki dataset harga suatu rumah:

Variable Feature (X) Variable Target (y)

			\	Ī
Index	Jumlah Kamar tidur	Jumlah toilet	Luas halaman	Harga
0	2	1	65	Rp 300.000.000
1	4	3	75	Rp 1.000.000.000
2	2	3	60	Rp 500.000.000
3	3	4	80	Rp 750.000.000
4	1	1	60	Rp 255.000.000
5	5	2	65	Rp 400.000.000
6	3	1	65	Rp 350.000.000
7	2	2	60	Rp 450.000.000
8	4	2	85	Rp 650.000.000
9	3	6	68	Rp 500.000.000

- Variabel feature (X) adalah variabel input agar machine learning belajar untuk dapat memprediksi variabel target.
- Variabel target (y) adalah yang akan diprediksi.

Langkah pertama adalah Splitting data.

	Variable Feature (X)			Variable target (y)
Index	Jumlah Kamar tidur	Jumlah toilet	Luas halaman	Harga
0	2	1	65	Rp 300.000.000
1	4	3	75	Rp 1.000.000.000
2	2	3	60	Rp 500.000.000
3	3	4	80	Rp 750.000.000
4	1	1	60	Rp 255.000.000
5	5	2	65	Rp 400.000.000
6	3	1	65	Rp 350.000.000
7	2	2	60	Rp 450.000.000
8	4	2	85	Rp 650.000.000
9	3	6	68	Rp 500.000.000

Total dataset = 10

Kita bagi:

• Train set: 60%

• Test set: 40%

Data akan terbagi secara acak

index	Jumlah Kamar tidur	Jumlah toilet	Luas halaman	Harga
0	2	1	65	Rp 300.000.000
1	4	3	75	Rp 1.000.000.000
3	3	4	80	Rp 750.000.000
5	5	2	65	Rp 400.000.000
7	2	2	60	Rp 450.000.000
9	3	6	68	Rp 500.000.000

——— Train data

Jumlah Kamar tidur Jumlah toilet Luas halaman Harga index 60 Rp 500.000.000 Rp 255.000.000 4 65 Rp 350.000.000 6 3 Rp 650.000.000 8 85 4

── Test data

Langkah kedua adalah melakukan training data pada train data

index	Jumlah Kamar tidur	Jumlah toilet	Luas halaman	Harga
0	2	1	65	Rp 300.000.000
1	4	3	75	Rp 1.000.000.000
3	3	4	80	Rp 750.000.000
5	5	2	65	Rp 400.000.000
7	2	2	60	Rp 450.000.000
9	3	6	68	Rp 500.000.000

Langkah ketiga adalah melakukan prediksi data pada test data

index	Jumlah Kamar tidur	Jumlah toilet	Luas halaman	Harga
2	2	3	60	Rp 500.000.000
4	1	1	60	Rp 255.000.000
6	3	1	65	Rp 350.000.000
8	4	2	85	Rp 650.000.000

index	Jumlah Kamar tidur	Jumlah toilet	Luas halaman
2	2	3	60
4	1	1	60
6	3	1	65
8	4	2	85

Hasil model machine learning yang sudah belajar di train data Output prediksi harga

	Prediksi Harga
Rp	400.000.000
Rp	200.000.000
Rp	300.000.000
Rp	000.000.000

Langkah terakhir adalah melakukan evaluasi antara harga sesungguhnya dengan harga prediksi

Harga	Prediksi harga
Rp 500.000.000	Rp 400.000.000
Rp 255.000.000	Rp 200.000.000
Rp 350.000.000	Rp 300.000.000
Rp 650.000.000	Rp 600.000.000

$$MAE = \frac{1}{n} \sum_{j=1}^{n} \left| y_j - \hat{y}_j \right|$$

$$MAE = \text{Rp } 117.222.222$$

- Prediksi harga saham dengan menggunakan machine learning dilakukan dengan algoritma
 ANN (Artificial Neural Network)
- Arsitektur ANN terdiri dari **input layer**, **hidden layer**, **output layer**, **dan jumlah neuron**.

- Input Layer menyesuaikan jumlah variabel feature pada data yang miliki.
- Output layer juga menyesuaikan jumlah variabel target pada data yang kita miliki.

 Variable Feature (X)

 Variable Target (y)

			1	l
Index	Jumlah Kamar tidur	Jumlah toilet	Luas halaman	Harga
0	2	1	65	Rp 300.000.000
1	4	3	75	Rp 1.000.000.000
2	2	3	60	Rp 500.000.000
3	3	4	80	Rp 750.000.000
4	1	1	60	Rp 255.000.000
5	5	2	65	Rp 400.000.000
6	3	1	65	Rp 350.000.000
7	2	2	60	Rp 450.000.000
8	4	2	85	Rp 650.000.000
9	3	6	68	Rp 500.000.000

• Karena arsitektur ANN pada slide sebelumnya memiliki bentuk yang kompleks, mari terlebih dahulu kita melihat pada arsitektur yang sederhana yaitu hanya **satu neuron**.

Non-linear activation function

Atau kita bisa sederhanakan formulanya menjadi :

$$output = g(z)$$

Bias

Jenis – jenis non-linear activation function :

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g(z) = \max(0, z)$$

• Sekarang mari kita coba lihat untuk arsitektur yang lebih kompleks.

• Sekarang mari kita coba lihat untuk arsitektur yang lebih kompleks

Hyperparameter Tuning

- Terdapat beberapa **hyperparameter** yang nilainya mesti kita tentukan untuk membuat model algoritma *ANN*.
- **Hyperparameter** pada algoritma *ANN* yang mesti kita tentukan nilainya adalah **jumlah hidden layer** dan **jumlah neuron setiap hidden layer**.

Reminder mengenai hidden layer dan jumlah neuron :

- Jumlah hidden layer dan jumlah neuron pada setiap hidden layer bisa kita tentukan nilainya.
- Berapa jumlah hidden layer dan jumlah neuron pada setiap hidden layer yang ideal ?

→ Menggunakan bantuan **Hyperparameter tuning**

Hyperparameter Tuning

- Hyperparameter tuning adalah metode untuk mencari hyperparameter yang ideal pada suatu model machine learning maupun deep learning sehingga bisa menghasilkan prediksi yang baik dan akurat.
- Misal kita mau melakukan hyperparameter tuning pada jumlah hidden layer dan jumlah neuron pada setiap hidden layer yang ideal untuk model *ANN*
- Hyperparameter tuning akan melakukan kombinasi hyperparameter pada nilai yang kita berikan.

Misal:

Jumlah hidden layer : 1 - 2

Jumlah neuron setiap hidden layer : [32 dan 64]

Hidden layer	Jumlah neuron	MAE
1	32	
1	64	
2	32 dan 64	
2	64 dan 32	
2	32 dan 32	
2	64 dan 64	

Hyperparameter Tuning

• Dengan menggunakan library **Kerastuner** pada Python.

```
Jumlah hidden layer: 1-3

Jumlah neuron setiap hidden layer: 32-128 , step = 32
```

Dari hyperparameter tuning ini, didapatkan hyperparameter ideal dengan nilai :

- Jumlah hidden layer : 2
- **Jumlah neuron setiap hidden layer** : 128 dan 64

```
# membuat model untuk prediksi saham
model = tf.keras.Sequential([
    tf.keras.layers.Dense(128, activation="relu"),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dense(1, activation="linear")
])
```


Tahapan Penelitian

Secara garis besar, Tahapan penelitian terdiri dari beberapa tahapan :

Sektor Alat Berat:

- 1. United Tractor (UNTR)
- 2. Hexindo Adiperkasa (HEXA) 2.
- 3. Kobexindo Tractors (KOBX)
- 4. Petrosea (PTRO)

Sektor Bank:

- 1. Bank BCA (BBCA)
- 2. Bank BNI (BBNI)
- 3. Bank BRI (BBRI)
- 4. Bank Mandiri (BMRI)

Dilakukan prediksi dengan beberapa model:

- Model Black-Scholes termodifikasi.
- 2. Model *ANN* (variabel feature Black-Scholes termodifikasi & historical data)
- 3. Model *ANN* (variabel feature historical data)

Melihat hasil prediksi berdasarkan nilai *MAE* (*Mean Absolute Error*)

Data saham yang dikumpulkan adalah sebagai berikut :

Sektor A	A lat	· Ra	rat	•
DUNIUI A	Alai	DU	ıaı	•

- 1. United Tractor (UNTR)
- 2. Hexindo Adiperkasa (HEXA)
- 3. Kobexindo Tractors (KOBX)
- 4. Petrosea (PTRO)

Sektor Bank:

- 1. Bank BCA (BBCA)
- 2. Bank BNI (BBNI)
- 3. Bank BRI (BBRI)
- 4. Bank Mandiri (BMRI)

Indeks saham:

- 1. IHSG
- 2. LQ45

Train & test split

Periode waktu: Januari 2016 – 5 Mei 2023

Langkah Komputasi

UNIVERSITAS GADJAH MADA

Model Black-Scholes termodifikasi

Langkah Komputasi

Model ANN (historical data)

Date	
2016-01-04	16100.0
2016-01-05	16350.0
2016-01-06	16725.0
2016-01-07	16225.0
2016-01-08	16250.0
2023-04-28	28900.0
2023-05-02	26900.0
2023-05-03	25025.0
2023-05-04	24500.0
2023-05-05	24150.0

	Close	Close+1	Close+2	Close+3
Date				
2016-01-07	16225.0	16725.0	16350.0	16100.0
2016-01-08	16250.0	16225.0	16725.0	16350.0
2016-01-11	15875.0	16250.0	16225.0	16725.0
2016-01-12	16650.0	15875.0	16250.0	16225.0
2016-01-13	16650.0	16650.0	15875.0	16250.0
2023-04-28	28900.0	31075.0	31400.0	31075.0
2023-05-02	26900.0	28900.0	31075.0	31400.0
2023-05-03	25025.0	25025.0 26900.0 289	28900.0	31075.0
2023-05-04	24500.0	25025.0	26900.0	28900.0
2023-05-05	24150.0	24500.0	25025.0	26900.0

membuat model untuk prediksi saham
<pre>model = tf.keras.Sequential([</pre>
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(64, activation="relu"),
tf.keras.layers.Dense(1, activation="linear")
])

MAE (Mean Absolute Error)

Langkah Komputasi

Model ANN (variabel Black-Scholes termodifikasi & historical data)

2016-01-04	16100.0
2016-01-05	16350.0
2016-01-06	16725.0
2016-01-07	16225.0
2016-01-08	16250.0
2023-04-28	28900.0
2023-04-28 2023-05-02	20000.0
	26900.0
2023-05-02	26900.0 25025.0

2023-05-05 24150.0

Date

Date				
2016-01-04	16100.0	15857.755578		
2016-01-05	16350.0	16090.126154		
2016-01-06	16725.0	15642.088912		
2016-01-07	16225.0	15218.923495		
2016-01-08	16250.0	15329.961662		
2023-04-28	28900.0	26722.499797		
2023-05-02	26900.0	28137.564056		
2023-05-03	25025.0	28873.671769		
2023-05-04	24500.0	29024.382353		
2023-05-05	24150.0	29004.550699		

Close average black scholes

	Close	average_black_scholes	Close+1	Close+2	Close+3
Date					
2016-01-07	16225.0	15218.923495	16725.0	16350.0	16100.0
2016-01-08	16250.0	15329.961662	16225.0	16725.0	16350.0
2016-01-11	15875.0	14737.888087	16250.0	16225.0	16725.0
2016-01-12	16650.0	14727.974588	15875.0	16250.0	16225.0
2016-01-13	16650.0	14185.508943	16650.0	15875.0	16250.0
2023-04-28	28900.0	26722.499797	31075.0	31400.0	31075.0
2023-05-02	26900.0	28137.564056	28900.0	31075.0	31400.0
2023-05-03	25025.0	28873.671769	26900.0	28900.0	31075.0
2023-05-04	24500.0	29024.382353	25025.0	26900.0	28900.0
2023-05-05	24150.0	29004.550699	24500.0	25025.0	26900.0

Langkah Komputasi

Model ANN (variabel Black-Scholes termodifikasi & historical data)

Sektor Alat Berat

- Nilai *MAE* model Black-Scholes termodifikasi lebih besar dibandingkan dengan model ANN.
- Pada sektor alat berat, model ANN (historical data) memiliki hasil prediksi yang lebih baik.

Sektor Alat Berat

Sektor Bank

Saham	<i>MAE</i>			
	Black-Scholes temodifikasi	Model ANN (Black-Scholes termodifikasi & historical data)	Model ANN (historical data)	
BBCA	402,55	85,07	84,33	
BBNI	477,24	94,15	93,25	
BBRI	213,59	50,35	50,73	
BMRI	286,25	102,41	111,86	

- Pada sektor Bank nilai *MAE* model Black-Scholes termodifikasi juga lebih besar dibandingkan dengan model ANN.
- Secara umum pada sektor Bank model ANN (historical data)
 memiliki nilai ANN paling kecil dibandingkan model lain.
- Pada Bank BRI (BBRI) dan Bank Mandiri (BMRI) model terbaik adalah model ANN (Black-Scholes termodifikasi & historical data)

Sektor Bank

Sektor Alat Berat

- Grafik disamping merupakan perbandingan nilai *MAE* setiap model untuk saham di sektor alat berat.
- Dapat terlihat secara keseluruhan, model Black-Scholes termodifikasi memiliki hasil prediksi yang kurang baik jika dibandingkan dengan model ANN.

Kenapa setiap saham memiliki nilai MAE yang cukup jauh?

Saham	Minimum	Maksimum	Mean
UNTR	12600	40425	24521,43
PTRO	281	5600	1683,33
HEXA	1110	7450	3508,49
KOBX	64	625	176,95

 Setiap saham memiliki range harga yang berbeda.

Sektor Bank

Saham	Minimum	Maksimum	Mean
BBCA	2260	9300	5192,79
BBNI	3160	10175	6887,88
BBRI	1660	5225	3433,17
BMRI	1860	10225	3332,81

- Grafik disamping merupakan perbandingan nilai *MAE* setiap model untuk saham di sektor Bank.
- Dapat terlihat secara keseluruhan juga, model Black-Scholes termodifikasi memiliki hasil prediksi yang kurang baik jika dibandingkan dengan model ANN.

Indeks saham

- Hasil prediksi di sektor alat berat maupun di sektor Bank, model yang memiliki hasil prediksi yang paling baik adalah model ANN dengan kombinasi variabel feature.
- Sehingga juga dilakukan prediksi pada indeks saham untuk melihat apakah model ANN juga dapat melakukan prediksi dengan baik atau tidak .

• Grafik disamping merupakan nilai *MAE* untuk indeks saham IHSG dan LQ45.

Indeks saham

Kesimpulan:

- Model Black-Scholes termodifikasi dapat dilakukan untuk memprediksi harga saham di sektor alat berat dan Bank.
- Model algoritma ANN dapat dilakukan untuk memprediksi harga saham di sektor alat berat dan sektor Bank.
- Pada penelitian ini, model ANN dengan kombinasi variabel feature memberikan hasil prediksi yang baik dibandingkan dengan model Black-Scholes termodifikasi. Nilai MAE setiap saham terdapat pada tabel berikut:

•

Sektor	Saham	Model ANN (Black-Scholes termodifikasi & historical data)	Model ANN (historical data)
Sektor alat berat	UNTR	445,58	444,04
	HEXA	55,74	54,72
	KOBX	6,62	6,56
	PTRO	70,86	69,49
Sektor Bank	BBCA	85,07	84,33
	BBNI	94,15	93,25
	BBRI	50,35	50,73
	BMRI	102,41	111,86

Saran:

- Meningkatkan jumlah data yang digunakan untuk meningkatkan akurasi model.
- Menambah data saham baru dari berbagai sektor di Indonesia untuk melihat performa setiap model di sektor tersebut.
- Menerapkan model machine learning yang lain untuk dapat membandingkan performa setiap model.

Terima Kasih