MEPCO SCHLENK ENGINEERING COLLEGE

Department of Electronics and Communication Engineering

IBM NALAIYA THIRAN

PROJECT DEVELOPMENT PHASE

TEAM ID : PNT2022TMID18128

TITLE : Smart Farmer- IoT Enabled Smart Farmi Application

DOMAIN NAME : Internet of Things

LEADER NAME : NAMEERA NAZININ M

MEMBER NAME: DEVI PRIYA S

SIVA HARITHA S

BHUVANESHWARI N

MENTOR NAME : VARUN PRAKASH R

SPRINT 4

Receiving commands from IBM cloud using Python program

import time import sys
import ibmiotf.application
import ibmiotf.device import random

#Provide your IBM Watson Device Credentials

```
organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321"
```

Initialize GPIO

```
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event
of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
                                 data =
{ 'temp': temp, 'Humid': Humid, 'Mois':
Mois}
    #print data
                    def
myOnPublishCallback():
       print ("Published Temperature = %s C" % temp, "Humidity = %s
%%" % Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
                                       if not success:
print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```

```
- ø ×
ibmiotpublishsubscribe.py - C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py (3.7.0)
File Edit Format Run Options Window Help
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
    if status=="motoron":
         print ("motor is on")
     elif status == "motoroff"
        print ("motor is off")
     else :
         print ("please send proper command")
try:
         deviceOptions = { "org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
         deviceCli = ibmiotf.device.Client(deviceOptions)
         #.....
                                                                                                                 Ln: 22 Col: 21
```


6.Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9. Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.