50. Pow(x, n) ¹

Average Rating: 4.02 (50 votes)

Input: 2.00000, 10

Implement pow(x, n), which calculates x raised to the power $n(x^n)$.

Output: 1024.00000

Example 1:

```
Example 2:
  Input: 2.10000, 3
```

```
Output: 9.26100
```

```
Input: 2.00000, -2
Output: 0.25000
Explanation: 2^{-2} = 1/2^2 = 1/4 = 0.25
```

Note:

Approach 1: Brute Force

 \bullet -100.0 < x < 100.0

Just simulate the process, multiply x for n times.

• n is a 32-bit signed integer, within the range $[-2^{31}, 2^{31} - 1]$

But we need to take care of the corner cases, especially different range limits for negative and positive

integers. **Algorithm**

We can use a straightforward loop to compute the result.

ans = ans * x;

Copy C++ Java class Solution { public: double myPow(double x, int n) {

if (N < 0) { 6 x = 1 / x; 7 N = -N;8 double ans = 1;

```
14
     };
Complexity Analysis
  • Time complexity : O(n). We will multiply x for n times.
  • Space complexity : O(1). We only need one variable to store the final product of x.
Approach 2: Fast Power Algorithm Recursive
```

Using this optimization, we can reduce the time complexity of our algorithm.

Java

Assume we have got the result of $x^{n/2}$, and now we want to get the result of x^n . Let A be result of $x^{n/2}$, we can talk about x^n based on the parity of n respectively. If n is even, we can use the formula $(x^n)^2 = x^{2*n}$

double half = fastPow(x, n / 2);

return half * half * x;

return half * half;

double myPow(double x, int n) {

if (n % 2 == 0) {

long long N = n;

x = 1 / x;

if (N < 0) {

public: double fastPow(double x, long long n) { 4 if (n == 0) { 5 return 1.0;

Сору

Сору

Next **1**

Sort By ▼

Post

A Report

A Report

A Report

to get $x^n = A * A$. If **n** is odd, then $A * A = x^{n-1}$. Intuitively, We need to multiply another x to the

result, so $x^n = A * A * x$. This approach can be easily implemented using recursion. We call this method

10 11 12

```
N = -N;
 19
             return fastPow(x, N);
  20
  21
  22
      };
Complexity Analysis
   ullet Time complexity : O(\log n). Each time we apply the formula (x^n)^2=x^{2*n}, n is reduced by half. Thus
     we need at most O(\log n) computations to get the result.
   • Space complexity : O(\log n). For each computation, we need to store the result of x^{n/2}. We need to
     do the computation for O(\log n) times, so the space complexity is O(\log n).
```

We can use the binary representation of n to better understand the problem. Let the binary representation of n to be $b_1, b_2, ..., b_{length_limit}$, from the Least Significant Bit(LSB) to the Most Significant Bit(MSB). For the $oldsymbol{i}$ th bit, if $b_i=1$, it means we need to multiply the result by x^{2^i} .

requires $O(\log n)$ time.

Java

class Solution {

double myPow(double x, int n) {

double current_product = x;

if ((i % 2) == 1) {

for (long long i = N; i; $i \neq 2$) {

ans = ans * current_product;

1. https://en.wikipedia.org/wiki/Exponentiation_by_squaring

Type comment here... (Markdown is supported)

myproudname * 46 • August 30, 2018 3:30 AM

calvinchankf * 2917 • April 24, 2019 3:11 PM

cache to avoid redundant calculation

BryanBo-Cao ★ 1434 ② July 7, 2018 12:44 AM

11 A V C Share Reply

typical Java class coding style doesn't need that.

matonglidewazi 🛊 9 🗿 October 5, 2018 11:51 PM

Suggestion for Approach 2: Fast Power Algorithm Recursive:

Try not to use n=-n or it would cause int overflow on INT_MIN, instead, try this:

I know maybe it is a stupid question, but why need to transfer n from int to long?

current_product = current_product * current_product;

long long N = n;

x = 1 / x;

N = -N;

double ans = 1;

return ans;

Rate this article: * * * * *

Preview

Why?

Thank you!

SHOW 2 REPLIES

if (N < 0) {

Using fast power recursively or iteratively are actually taking different paths towards the same goal. For more information about fast power algorithm, you can visit its wiki¹.

 x^{2^i} in $O(\log n)$ time. After that, for all $oldsymbol{i}$ s that satisfy $b_i=1$, we can multiply x^{2^i} to the result. This also

}; **Complexity Analysis** • Time complexity : $O(\log n)$. For each bit of n 's binary representation, we will at most multiply once. So the total time complexity is $O(\log n)$. • Space complexity : O(1). We only need two variables for the current product and the final result of x. **Footnotes**

Approach 1 is NOT accepted for submission! There is a red warning: Time Limit Exceeded!

[Just for fu] besides the approaches above, u can also do it with a dynamic programming approach

Thanks for explanation. But why is there a ; after a class in Java solution? That's for C++ class, but a

Read More

33 A V Share Share **SHOW 5 REPLIES**

Read More

• by splitting the n, we can get into subproblems.

9 A V C Share Reply SHOW 1 REPLY tzl00166 🛊 9 🧿 May 14, 2018 10:22 PM

7 A V C Share Share

katruskin ★4 ② May 23, 2020 6:29 PM

deva402 🖈 11 🗿 April 20, 2019 3:55 AM

kosmur * 142 @ February 14, 2019 1:57 PM

There is one more solution - math solution.

1 A Y C Share Share

double myPow(double x, int n){

this is tricky..dont think I can solve without knowing before !!..practice and repeated practice needed

SHOW 7 REPLIES

I am having hard time understanding description of approach # 3. Can someone help me with some pointers? Thanks 1 A V C Share Reply

zero in power zero is undefine, not 1 as in accepted testcase.

We can use natural logarithm rule -> $y = E^Ln(y)$ - where E is Euler's number and Ln is logarithm. Now let's substitute y with our case x^n , we will get $x^n = E^Ln(x^n)$. After we get last expression, we can apply logarithm power rule $Log(a^b) = b * Log(a)$, so we can cast our last expression from $x^n = E^Ln(x^n)$ to ** $x^n = E^n *Ln(x)$.

JS translation (approach #2):

var myPow = function(x, n) {

SHOW 3 REPLIES

1 A V C Share Reply **SHOW 4 REPLIES** ProfNandaa ★ 36 ② December 17, 2018 10:48 PM

Read More

const fastPow = $(x, n) \Rightarrow \{$ if (n == 0) return 1 Read More 1 A V C Share Reply

Example 3:

Intuition

If n<0, we can substitute x,n with $\frac{1}{x},-n$ to make sure $n\geq 0$. This restriction can simplify our further discussion.

3 4

long long N = n; 5 9

for (long long i = 0; i < N; i++) return ans;

Intuition Assuming we have got the result of x^n , how can we get x^{2*n} ? Obviously we do not need to multiply x for another n times. Using the formula $(x^n)^2 = x^{2*n}$, we can get x^{2*n} at the cost of only one computation. Algorithm

"Fast Power", because we only need at most $O(\log n)$ computations to get x^n . C++ class Solution { 6

7 8

9

Approach 3: Fast Power Algorithm Iterative Intuition Using the formula $x^{a+b}=x^a*x^b$, we can write $oldsymbol{n}$ as a sum of positive integers, $n=\sum_i b_i$. If we can get the result of x^{b_i} quickly, the total time for computing x^n will be reduced. Algorithm

It seems to have no improvement with this representation, since $\sum_i b_i * 2^i = n$. But using the formula $(x^n)^2=x^{2*n}$ we mentioned above, we can see some differences. Initially $x^1=x$, and for each i>1, we can use the result of $x^{2^{i-1}}$ to get x^{2^i} in one step. Since the number of b_i is at most $O(\log n)$, we can get all

C++

4

5

6

7

8 9

10

11

12

13 14

15 16

17

18

19

}

Comments: 18

O Previous

