Datum:	SPŠ CHOMUTOV	Třída:
Číslo úlohy:	TEST HRADLA TTL	Jméno: LEDVINKOVÁ

<u>Zadání:</u>

Ručně změřte vstupní a odběrovou charakteristiku a vytvořte program v prostředí VEE, který pomocí zjistí stav TTL hradla 7400.

Schéma:

1. VEE - Přechodová charakteristika

- 2. Ruční měření
- a. Vstupní charakteristika

b. Odběrová charakteristika

Tabulka použitých přístrojů

1. VEE – přechodová charakteristika

Název zařízení	Označení	Údaje	Evidenční číslo
generátor	G	Agilent 33220A	LE 108
multimetr	V	Agilent 34401A	LE 5021
TTL	MH7400	TESLA MH7400	-
zdroj	+5 V	STABILIZED POWER SUPPLY UNIT	LE3 30

2. Ruční měření

Název zařízení	Označení	Údaje	Evidenční číslo
zdroj	U ₁	AUL 310	LE2 5003
potenciometr	Р	100 Ω, 1,8 A	LE 5084
číslicový ampérmetr	ČA	M547	LE2 61
číslicový voltmetr	ČV	U3401A	LE 5097
TTL	-	MH 7440	-

Teorie:

Logické obvody TTL jsou nejrozšířenější číslicové integrované obvody s největším sortimentem a přesně definovanými parametry. Zkratka TTL znamená, že se jedná o tranzistorově vázané tranzistorové logické obvody s bipolárními tranzistory.

Obvody TTL mají definované hodnoty pro logickou 0 (0-0,8 V) a logickou 1 (2-5 V). Pásmo mezi 0,8 až 2 V se nazývá zakázané pásmo a logická úroveň při tomto napětí "není definována" tzn. může být náhodná.

Postup:

- 1. VEE přechodová charakteristika
- > Navrhneme schéma zapojení
- > Zapojíme dle schéma
- > Zjistíme souřadnice zakázaného pásma
- > Vytvoříme program
- > Spustime program
- 2. Ruční měření
- a. Vstupní charakteristika
- > Na zdroji nastavíme 5 V
- > Měříme od nuly až do dosažení 5 V
- > Poté prohodíme svorky zdroje (nikoliv hradla) a měříme do -1 V
- > Nastavujeme napětí a odečítáme proud
- > Výsledné hodnoty zpracujeme do grafu
- b. Odběrová charakteristika
- > Zvyšujeme U_{VST} a odečítáme I_{CC}
- > Zapneme funkci MMAX a zaznamenáme maximální hodnotu Icc
- > Měření skončíme při U_{VST} = 5 V.

Program:

- VEE přechodová charakteristika
- 1. Nastavení generátoru (=U, vysoká impedance, zapnutí výstupu)
- 2. Rozsah měření 0-5 V s krokem 100 mV
- 3. Nastavení požadovaného napětí na generátoru
- 4. Zpoždění 0,2 s
- 5. Odečet napětí z multimetru
- 6. Zjištění, zda charakteristika neprochází zakázaným pásmem pomocí porovnávání naměřených hodnot a hodnot hraničních se zakázaným pásmem
- 7. Shromáždění souřadnic x,y pro vykreslení přechodové charakteristiky
- 8. Souřadnice zakázaného pásma
- 9. zajištění KO až dokonce i při jediném zásahu do zakázaného pásma
- 10. uzel
- 11. Vyhodnocení OK/KO (charakteristika neprošla/prošla zakázaným pásmem)
- 12. Graf s vykreslenou přechodovou charakteristikou a zakázaným pásmem

Tabulka naměřených hodnot:

- 1. Ruční měření
- a. Vstupní charakteristika:

U [V]	I [mA]
-0,820	-2,900
-0,800	-2,640
-0,700	-1,360
-0,500	-1,151
-0,300	-1,089
-0,200	-1,062
-0,100	-1,034
-0,025	-1,015
0,000	-1,005
0,025	-1,000
0,099	-0,983
0,400	-0,907
0,600	-0,854
0,700	-0,824
0,900	-0,766
1,200	-0,680
1,400	-0,622
1,600	-0,110
1,700	-0,007
2,000	-0,007
4,000	-0,007
5,000	-0,006

b. Odběrová charakteristika:

U [V]	I _{CC} [mA]
0,0006	9,90
0,6000	9,81
0,7500	9,90
0,9000	10,00
1,3500	10,50
1,4000	11,00
1,4550	13,00
1,4600	13,50
1,4780	13,70
1,4800	13,90
1,4990	11,80
1,5100	11,75
3,0000	11,73
5,0000	11,72

Grafy:

1. VEE – přechodová charakteristika

$$U_2 = f(U_1) [V]$$

2. Ruční měření

a. Vstupní charakteristika

měřítko:

U: 1 dílek ≅ 1 V I: 1 dílek ≅ 0,5 mA

b. Odběrová charakteristika

měřítko:

U: 1 dílek \cong 1 V I: 1 dílek \cong 2 mA

Měření proběhlo v pořádku. V grafu odběrové charakteristiky jde vidět maximální hodnota I _{cc,} která není úplně přesná, jen přiblížená. To jest způsobeno nedostatečným množstvím hodnot v jejím okolí a ČV. Při automatizovaném měření jsme v programu vytvořili jsme zakázané pásmo a vykreslili přechodovou charakteristiku, která odpovídala teoretickým předpokladům. Měření pomocí programu VEE bylo několikanásobně rychlejší než manuální měření.