

Dimensionality Reduction: Supervised Variable Selection

Pilsung Kang
School of Industrial Management Engineering
Korea University

Exhaustive Search

- Exhaustive search
 - √ Search all possible combinations
 - Ex) 3 variables
- **X**₁
- X₂
- **X**₃
- A total of 7 possible subsets are tested

- ✓ Performance criteria for variable selection
 - Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Adjusted R²,
 Mallow's C_p, etc.

 X_1

 X_2

 X_3

Exhaustive Search

- Exhaustive search
 - ✓ Assume that we have a computer that can evaluate 10,000 models/second

- Forward Selection example
 - √ Forward Selection in the multiple linear regression
 - √ 8 input variables

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1, \quad R_{adj}^2 = 0.48$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2, \quad R_{adj}^2 = 0.56$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_3 x_3, \quad R_{adj}^2 = 0.51$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_4 x_4, \quad R_{adj}^2 = 0.50$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_5 x_5, \quad R_{adj}^2 = 0.38$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_6 x_6, \quad R_{adj}^2 = 0.32$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_7 x_7, \quad R_{adj}^2 = 0.50$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.19$$

- Forward Selection example
 - √ Forward Selection in the multiple linear regression
 - √ 8 input variables

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_1 x_1, \quad R_{adj}^2 = 0.60$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3, \quad R_{adj}^2 = 0.64$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_4 x_4, \quad R_{adj}^2 = 0.58$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_5 x_5, \quad R_{adj}^2 = 0.61$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_6 x_6, \quad R_{adj}^2 = 0.57$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7, \quad R_{adj}^2 = 0.70$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.56$$

- Forward Selection example
 - √ Forward Selection in the multiple linear regression
 - √ 8 input variables

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_1 x_1, \quad R_{adj}^2 = 0.71$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_3 x_3, \quad R_{adj}^2 = 0.72$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4, \quad R_{adj}^2 = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_5 x_5, \quad R_{adj}^2 = 0.73$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_6 x_6, \quad R_{adj}^2 = 0.69$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.70$$

- Forward Selection example
 - √ Forward Selection in the multiple linear regression
 - √ 8 input variables

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4 + \hat{\beta}_1 x_1, \quad R_{adj}^2 = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4 + \hat{\beta}_3 x_3, \quad R_{adj}^2 = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5, \quad R_{adj}^2 = 0.75$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4 + \hat{\beta}_6 x_6, \quad R_{adj}^2 = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.75$$

✓ Final model:
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4$$
, $R_{adj}^2 = 0.76$

• Forward selection

- √ From the model with no variable, significant variables are sequentially added
- ✓ Once the variable is selected, it will never be removed (The number of variables gradually increases)

Illustrative Example

Forward stepwise selection example with 5 variables:

Backward Elimination

- √ From the model with all variables, irrelevant variables are sequentially removed.
- ✓ Once a variable is removed, it will never be selected (The number of variables gradually decreases)

- Backward Elimination Example
 - ✓ Backward elimination in the multiple linear regression
 - ✓ Begins with the model with all variable

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.77$$

Backward Elimination Example: Linear Regression

✓ Remove the most irrelevant variable

Remove the most irrelevant variable
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.77$$

$$\hat{y} = \hat{\beta}_0 \qquad + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.65$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 \qquad + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.60$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \qquad + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.77$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 \qquad + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.62$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 \qquad + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.73$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 \qquad + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.71$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 \qquad + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.71$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 \qquad + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.71$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 \qquad + \hat{\beta}_7 x_7 + \hat{\beta}_8 x_8, \quad R_{adj}^2 = 0.71$$

 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 \qquad , \quad R_{adi}^2 = 0.74$

- Backward Elimination Example: Linear Regression
 - ✓ Remove the most irrelevant variable

• Backward Elimination Example: Linear Regression

✓ Remove the second most irrelevant variable

$$\hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{4}x_{4} + \hat{\beta}_{5}x_{5} + \hat{\beta}_{6}x_{6} + \hat{\beta}_{7}x_{7} + \hat{\beta}_{8}x_{8}, \quad R_{adj}^{2} = 0.77$$

$$\hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{4}x_{4} + \hat{\beta}_{5}x_{5} + \hat{\beta}_{6}x_{6} + \hat{\beta}_{7}x_{7} + \hat{\beta}_{8}x_{8}, \quad R_{adj}^{2} = 0.63$$

$$\hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{4}x_{4} + \hat{\beta}_{5}x_{5} + \hat{\beta}_{6}x_{6} + \hat{\beta}_{7}x_{7} + \hat{\beta}_{8}x_{8}, \quad R_{adj}^{2} = 0.59$$

$$\hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{4}x_{4} + \hat{\beta}_{5}x_{5} + \hat{\beta}_{6}x_{6} + \hat{\beta}_{7}x_{7} + \hat{\beta}_{8}x_{8}, \quad R_{adj}^{2} = 0.61$$

$$\hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{4}x_{4} + \hat{\beta}_{5}x_{5} + \hat{\beta}_{6}x_{6} + \hat{\beta}_{7}x_{7} + \hat{\beta}_{8}x_{8}, \quad R_{adj}^{2} = 0.70$$

$$\hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{4}x_{4} + \hat{\beta}_{5}x_{5} + \hat{\beta}_{6}x_{6} + \hat{\beta}_{7}x_{7} + \hat{\beta}_{8}x_{8}, \quad R_{adj}^{2} = 0.69$$

$$\hat{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{1} + \hat{\beta}_{2}x_{2} + \hat{\beta}_{4}x_{4} + \hat{\beta}_{5}x_{5} + \hat{\beta}_{6}x_{6} + \hat{\beta}_{7}x_{7} + \hat{\beta}_{8}x_{8}, \quad R_{adj}^{2} = 0.60$$

 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$

 $R_{adi}^2 = 0.76$

 $+\hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7$

- Backward Elimination Example: Linear Regression
 - ✓ Remove the most irrelevant variable

• Backward Elimination Example: Linear Regression

✓ Remove the second most irrelevant variable

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_{adj} = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_{adj} = 0.62$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_{adj} = 0.58$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_{adj} = 0.60$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6 + \hat{\beta}_7 x_7 + \hat{\beta}_{adj} = 0.66$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_7 x_7 + \hat{\beta}$$

No variable is eliminated.

 $+\hat{\beta}_4 x_4 + \hat{\beta}_5 x_5 + \hat{\beta}_6 x_6$

 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$

 $R_{adi}^2 = 0.59$

Illustrative Example

Backward stepwise selection example with 5 variables:

Stepwise Selection

- ✓ From the model with no variable, conduct the forward selection and backward elimination alternately
- √ Takes longer time than forward selection/backward elimination, but has more chances
 to find the optimal set of variables
- √ Variables that is either selected/removed can be reconsidered for selection/removal
- ✓ The number of variables increases in the early period, but it can either increase or decrease

- Stepwise Selection Example: Linear Regression
 - ✓ Step 1: Select the most relevant variable

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2, \quad R_{adj}^2 = 0.56$$

- Stepwise Selection Example: Linear Regression
 - ✓ Step 2: Remove the most irrelevant variable

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2, \quad R_{adj}^2 = 0.56$$

No variable is eliminated.

- Stepwise Selection Example: Linear Regression
 - ✓ Back to the Step 1: Select the second most relevant variable

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2, \quad R_{adj}^2 = 0.56$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7, \quad R_{adj}^2 = 0.70$$

- Stepwise Selection Example: Linear Regression
 - ✓ Back to the Step 2: Remove the most irrelevant variable

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2, \quad R_{adj}^2 = 0.56$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7, \quad R_{adj}^2 = 0.70$$

No variable is eliminated.

• Stepwise Selection Example: Linear Regression

✓ Back to the Step 1: Select the third most relevant variable

- Stepwise Selection Example: Linear Regression
 - ✓ Back to the Step 2: Remove the most irrelevant variable

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2, \quad R_{adj}^2 = 0.56$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7, \quad R_{adj}^2 = 0.70$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4, \quad R_{adj}^2 = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4, \quad R_{adj}^2 = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4, \quad R_{adj}^2 = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7 + \hat{\beta}_4 x_4, \quad R_{adj}^2 = 0.76$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_4 x_4, \quad R_{adj}^2 = 0.58$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 + \hat{\beta}_7 x_7, \quad R_{adj}^2 = 0.70$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_4 + \hat{\beta}_7 x_7, \quad R_{adj}^2 = 0.77$$

The case which cannot be considered when x2 is selected in the forward selection method

- Stepwise Selection Example: Linear Regression
 - ✓ Back to the Step 2: Remove the most irrelevant variable

✓ Repeat Step I & 2 until no variable is either selected or eliminated.

Stepwise selection example

Stepwise Selection

- √ Stepwise selection process
 - Start with model with no predictors.
 - ▶ Add variable with largest *F*-statistic (provided *P* less than some cut-off).
 - ▶ Refit with this variable added. Recompute all F statistics for adding one of the remaining variables and add variable with largest F statistic.
 - ▶ At each step after adding a variable try to eliminate any variable not significant at some level (that is, do BACKWARD elimination till that stops).
 - After doing the backwards steps take another FORWARD step.
 - Continue until every remaining variable is significant at cut-off level and every excluded variable is insignificant OR until variable to be added is same as last deleted variable.

Comparison among FS/BE/SS

Illustrative Example

Forward Selection

Backward Elimination

Stepwise Selection

Performance Metrics

Akaike Information Criteria (AIC)

✓ Sum of squared error (SSE) with the number of variables as a penalty term

$$AIC = n \cdot ln\left(\frac{SSE}{n}\right) + 2k$$

Bayesian Information Criteria (BIC)

✓ SSE, number of variables, standard deviation obtained by the model with all variables

$$BIC = n \cdot ln\left(\frac{SSE}{n}\right) + \frac{2(k+2)n\sigma^2}{SSE} - \frac{2n^2\sigma^4}{SSE^2}$$

Performance Metrics

Adjusted R²

✓ Simple R² increases when the number of variable increases

Model 1:
$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon$$

Model 2: $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \ldots + \beta_{k+m} x_{k+m} \epsilon$ $R^2(M2) \ge R^2(M1)$

 \checkmark Use the adjusted R² that account for the number of variables (k)

Adjusted
$$R^2 = 1 - \left(\frac{n-1}{n-k-1}\right)(1-R^2) = 1 - \frac{n-1}{n-k-1}\frac{SSE}{SST}$$

References

Other materials

• Figures in the front page: https://medium.com/@arora.nishank91/feature-selection-for-faster-analytics-70a56132349e

