Games I

Course plan

A simple game

Example: game 1-

You choose one of the three bins.

I choose a number from that bin.

Your goal is to maximize the chosen number.

A

-50 50

R

L 3

-5 15

Roadmap

Modeling

Learning

Modeling Games

Temporal Difference Learning

Algorithms

Other Topics

Game Evaluation

Simultaneous Games

Expectimax

Non-Zero-Sum Games

Minimax

Expectiminimax

Evaluation Functions

Alpha-Beta Pruning

Games: modeling

Game tree

Key idea: game tree-

Each node is a decision point for a player.

Each root-to-leaf path is a possible outcome of the game.

Two-player zero-sum games

 $\mathsf{Players} = \{\mathsf{agent}, \mathsf{opp}\}$

Definition: two-player zero-sum game-

 s_{start} : starting state

Actions(s): possible actions from state s

Succ(s, a): resulting state if choose action a in state s

 $\mathsf{IsEnd}(s)$: whether s is an end state (game over)

Utility(s): agent's utility for end state s

 $Player(s) \in Players$: player who controls state s

Example: chess

 $Players = \{white, black\}$

State s: (position of all pieces, whose turn it is)

 $\mathsf{Actions}(s)$: legal chess moves that $\mathsf{Player}(s)$ can make

 $\mathsf{IsEnd}(s)$: whether s is checkmate or draw

Utility(s): $+\infty$ if white wins, 0 if draw, $-\infty$ if black wins

Characteristics of games

• All the utility is at the end state

• Different players in control at different states

CS221 16

The halving game

Problem: halving game-

Start with a number N.

Players take turns either decrementing N or replacing it with $\lfloor \frac{N}{2} \rfloor$.

The player that is left with 0 wins.

[live solution: HalvingGame]

Policies

Deterministic policies: $\pi_p(s) \in \mathsf{Actions}(s)$

action that player p takes in state s

Stochastic policies $\pi_p(s, a) \in [0, 1]$:

probability of player p taking action a in state s

[live solution: policies, main loop]

Games: game evaluation

Game evaluation example

Game evaluation recurrence

Analogy: recurrence for policy evaluation in MDPs

Value of the game:

$$V_{\text{eval}}(s) = \left\{ \begin{array}{ll} \text{Utility}(s) & \text{IsEnd}(s) \\ \sum_{a \in \text{Actions}(s)} \pi_{\text{agent}}(s, a) V_{\text{eval}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \sum_{a \in \text{Actions}(s)} \pi_{\text{opp}}(s, a) V_{\text{eval}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{array} \right.$$

Games: expectimax

Expectimax example

Expectimax recurrence

Analogy: recurrence for value iteration in MDPs

$$V_{\mathsf{exptmax}}(s) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} V_{\mathsf{exptmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{agent} \\ \sum_{a \in \mathsf{Actions}(s)} \pi_{\mathsf{opp}}(s, a) V_{\mathsf{exptmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{opp} \end{cases}$$

Games: minimax

Problem: don't know opponent's policy

Approach: assume the worst case

CS221 3

Minimax example

Minimax recurrence

No analogy in MDPs:

$$V_{\mathsf{minmax}}(s) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{agent} \\ \min_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{opp} \end{cases}$$

CS221 40

Extracting minimax policies

$$\pi_{\max}(s) = \arg\max_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s, a))$$

$$\pi_{\min}(s) = \arg\min_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s, a))$$

The halving game

Problem: halving game-

Start with a number N.

Players take turns either decrementing N or replacing it with $\lfloor \frac{N}{2} \rfloor$.

The player that is left with 0 wins.

[live solution: minimaxPolicy]

Face off

Recurrences produce policies:

$$V_{\text{exptmax}} \Rightarrow \pi_{\text{exptmax}(7)}, \pi_7 \text{ (some opponent)}$$
 $V_{\text{minmax}} \Rightarrow \pi_{\text{max}}, \pi_{\text{min}}$

Play policies against each other:

$$\pi_{\min}$$
 π_{7} $V(\pi_{\max}, \pi_{\min})$ $V(\pi_{\max}, \pi_{7})$ $V(\pi_{\max}, \pi_{7})$ $V(\pi_{\exp t \max(7)}, \pi_{\min})$ $V(\pi_{\exp t \max(7)}, \pi_{7})$

What's the relationship between these values?

CS221 4

Minimax property 1

Proposition: best against minimax opponent-

 $V(\pi_{\max}, \pi_{\min}) \geq V(\pi_{\text{agent}}, \pi_{\min})$ for all π_{agent}

Minimax property 2

Proposition: lower bound against any opponent-

 $V(\pi_{\max}, \pi_{\min}) \leq V(\pi_{\max}, \pi_{\mathsf{opp}})$ for all π_{opp}

Minimax property 3

Proposition: not optimal if opponent is known-

 $V(\pi_{\max}, \pi_7) \leq V(\pi_{\exp t\max(7)}, \pi_7)$ for opponent π_7

Relationship between game values

$$\pi_{\min} \qquad \pi_{7}$$

$$\pi_{\max} \qquad V(\pi_{\max}, \pi_{\min}) \leq V(\pi_{\max}, \pi_{7})$$

$$1 \qquad \leq 2$$

$$| \vee \qquad | \wedge$$

$$V(\pi_{\exp{tmax}(7)}, \pi_{\min}) \qquad V(\pi_{\exp{tmax}(7)}, \pi_{7})$$

$$\pi_{\exp{tmax}(7)} \qquad -5 \qquad 5$$

Games: expectiminimax

A modified game

Example: game 2-

You choose one of the three bins.

Flip a coin; if heads, then move one bin to the left (with wrap around).

I choose a number from that bin.

Your goal is to maximize the chosen number.

Α

-50 50

R

L 3

-5 15

Expectiminimax example

Expectiminimax recurrence

 $\mathsf{Players} = \{\mathsf{agent}, \mathsf{opp}, \mathsf{coin}\}$

$$V_{\mathsf{exptminmax}}(s) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} V_{\mathsf{exptminmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{agent} \\ \min_{a \in \mathsf{Actions}(s)} V_{\mathsf{exptminmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{opp} \\ \sum_{a \in \mathsf{Actions}(s)} \pi_{\mathsf{coin}}(s, a) V_{\mathsf{exptminmax}}(\mathsf{Succ}(s, a)) & \mathsf{Player}(s) = \mathsf{coin} \end{cases}$$

CS221 6

Summary so far

Primitives: max nodes, chance nodes, min nodes

Composition: alternate nodes according to model of game

Value function V...(s): recurrence for expected utility

Scenarios to think about:

What if you are playing against multiple opponents?

What if you and your partner have to take turns (table tennis)?

Some actions allow you to take an extra turn?

Games: evaluation functions

Computation

Approach: tree search

Complexity:

• branching factor b, depth d (2d plies)

• O(d) space, $O(b^{2d})$ time

Chess: $b \approx 35$, $d \approx 50$

25515520672986852924121150151425587630190414488161019324176778440771467258239937365843732987043555789782336195637736653285543297897675074636936187744140629

68

Speeding up minimax

- Evaluation functions: use domain-specific knowledge, compute approximate answer
- Alpha-beta pruning: general-purpose, compute exact answer

Depth-limited search

Limited depth tree search (stop at maximum depth d_{max}):

$$V_{\mathsf{minmax}}(s,d) = \begin{cases} \mathsf{Utility}(s) & \mathsf{IsEnd}(s) \\ \mathsf{Eval}(s) & d = 0 \\ \max_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s,a),d) & \mathsf{Player}(s) = \mathsf{agent} \\ \min_{a \in \mathsf{Actions}(s)} V_{\mathsf{minmax}}(\mathsf{Succ}(s,a),d-1) & \mathsf{Player}(s) = \mathsf{opp} \end{cases}$$

Use: at state s, call $V_{\rm minmax}(s,d_{\rm max})$

Convention: decrement depth at last player's turn

CS221 72

Evaluation functions

Definition: Evaluation function-

An evaluation function $\mathrm{Eval}(s)$ is a (possibly very weak) estimate of the value $V_{\mathrm{minmax}}(s)$.

Analogy: FutureCost(s) in search problems

Evaluation functions

Example: chess-

 $\begin{aligned} \text{Eval}(s) &= \text{material} + \text{mobility} + \text{king-safety} + \text{center-control} \\ \text{material} &= 10^{100}(K-K') + 9(Q-Q') + 5(R-R') + \\ &3(B-B'+N-N') + 1(P-P') \end{aligned}$

mobility = 0.1(num-legal-moves - num-legal-moves')

. . .

Summary: evaluation functions

Depth-limited exhaustive search: $O(b^{2d})$ time

- ullet Eval(s) attempts to estimate $V_{\mathsf{minmax}}(s)$ using domain knowledge
- No guarantees (unlike A*) on the error from approximation

21

Games: alpha-beta pruning

Pruning principle

Choose A or B with maximum value:

A: [3, **5**]

B: **[5**, 100]

Key idea: branch and bound-

Maintain lower and upper bounds on values.

If intervals don't overlap non-trivially, then can choose optimally without further work.

Pruning game trees

Once we see 2, we know that value of right node must be ≤ 2

Root computes $\max(3, \leq 2) = 3$

Since branch doesn't affect root value, can safely prune

Alpha-beta pruning

Key idea: optimal path-

The optimal path is path that minimax policies take. Values of all nodes on path are the same.

- a_s : lower bound on value of max node s
- b_s : upper bound on value of min node s
- Prune a node if its interval doesn't have non-trivial overlap with every ancestor (store $\alpha_s = \max_{s' \preceq s} a_{s'}$ and $\beta_s = \min_{s' \prec s} b_{s'}$)

Alpha-beta pruning example

Move ordering

Pruning depends on order of actions.

Can't prune the 5 node:

Move ordering

Which ordering to choose?

CS221

- Worst ordering: $O(b^{2 \cdot d})$ time
- Best ordering: $O((\sqrt{b-\frac{3}{4}}+\frac{1}{2})^{2\cdot d})\simeq O(b^{2\cdot 0.5d})$ time
- Random ordering: $O(b^{2 \cdot 0.75d})$ time when b=2
- Random ordering: $O((\frac{b-1+\sqrt{b^2+14b+1}}{4})^{2\cdot d})$ for general b

In practice, can use evaluation function Eval(s):

- Max nodes: order successors by decreasing Eval(s)
- Min nodes: order successors by increasing Eval(s)

Games: recap

Summary

- Game trees: model opponents, randomness
- Minimax: find optimal policy against an adversary
- Evaluation functions: domain-specific, approximate
- Alpha-beta pruning: domain-general, exact