1. Load the data correctly.

```
load('data6.mat');
```

You already have the necessary parameters...

```
% The ECG sampling rate is 1000 Hz
FS = 1000;
% QRS detector operates on 200 Hz signals
FS_QRS = 200;
% The number of subjects
N = numel(data);
% Windowing length
window = 50;
% Number of overlapped samples
nbroverlap = 45;
% Specify nfft parameter as empty.
nfft = [];
% Minimum spectrogram threshold
th = -30;
```

2. First you will use the cycles variable from the data file. Check the data you have!

cycles

cycles = 1×5 struct

Fields	t	ECG	PCG
1 .	1×1800 double	1×1800 double	1×1800 double
2	1×2500 double	1×2500 double	1×2500 double
3	1×1350 double	1×1350 double	1×1350 double
4	1×900 double	1×900 double	1×900 double
5	1×1450 double	1×1450 double	1×1450 double

class(cycles)

```
ans =
'struct'
```

cycles(1)

```
ans = struct with fields:
    t: [1×1800 double]
    ECG: [1×1800 double]
    PCG: [1×1800 double]
```

```
figure
subplot(2,1,1), plot(cycles(1).t, cycles(1).ECG)
subplot(2,1,2), plot(cycles(1).t, cycles(1).PCG)
```


You need to calculate the PCG spectrogram for each subject save the results in a structure called "SPCs"

Check these resources/examples:

- 1. https://se.mathworks.com/help/matlab/ref/struct.html
- 2. https://se.mathworks.com/help/signal/ref/spectrogram.html
- 3. openExample('signal/SpectrogramReassignmentAndThresholdingExample')
- 4. openExample('signal/TrackChirpsInAudioSignalExample')

Struct examples:

Var3: [1 2 3 4 5]

S.Var4 = 1:1:10

```
S = struct with fields:
    Var1: 'a'
    Var2: []
    Var3: [1 2 3 4 5]
    Var4: [1 2 3 4 5 6 7 8 9 10]
```

S(1).Var4 = 1:1:10

```
S = struct with fields:
    Var1: 'a'
    Var2: []
    Var3: [1 2 3 4 5]
    Var4: [1 2 3 4 5 6 7 8 9 10]
```

S(2).Var4 = 11:1:20

$S = 1 \times 2$ struct

Fields	s Var1	Var2	Var3	Var4
1	'a'	[]	[1,2,3,4	[1,2,3,4
2	[]	[]	[]	[11,12,1

3. Then you need to use the variable "data" from the data file. Again check your data!

data

data = 1×5 struct

Fields	t	ECG	PCG	subject
1 .	1×21500 dou ′	l×21500 dou	1×21500 dou	'normal'
2 .	1×20500 dou ′	l×20500 dou	1×20500 dou	'normal'
3 .	1×16500 dou ′	l×16500 dou	1×16500 dou	'ventricula
4	l×19900 dou ′	l×19900 dou	1×19900 dou	'ventricula
5	1×22000 dou ′	l×22000 dou	1×22000 dou	'aortic ste

The syntax for the QRSDetection function is given as follows:

• [QRSOnsets, QRSOffsets] = QRSDetection(data);

You only need to save the onsets in a cell array called "onsets".

• [onset with some indexing, ~] = QRSDetection(The resampled data); ----> do not forget mapping the output afterwards!!!!

Example for mapping:

onset_times = [1,2,3,4,5]

onset_times = 1×5

. 2 3 4 5

onsets_200Hz = onset_times * FS_QRS

onsets_200Hz = 1×5

200

400

800

600

1000

onsets_1000HZ = onset_times * FS

onsets_1000HZ = 1×5

1000

2000

3000 4000

5000

Cell examples:

A = cell(5)

 $A = 5 \times 5$ cell

	1	2	3	4	5
1	[]	[]	[]	[]	[]
2	[]	[]	[]	[]	[]
3	[]	[]	[]	[]	[]
4	[]	[]	[]	[]	[]
5	[]	[]	[]	[]	[]

A = cell(2,5)

 $A = 2 \times 5$ cell

A	- 2/3 CCII						
	1	2	3	4	5		
1	[]	[]	[]	[]	[]		
2	[]	[]	[]	[]	[]		

$A\{1\} = 5$

 $A = 2 \times 5$ cell

	1	2	3	4	5
1	5	[]	[]	[]	[]
2	[]	[]	[]	[]	[]

$A{2,5} = [10:10:100]$

 $A = 2 \times 5$ cell

•	•	275 CC11				
		1	2	3	4	5
	1	5	[]	[]	[]	[]
	2	[]	[]	[]	[]	[10,20,3

 $A = \{1,2,3; \text{ 'text', rand}(5,10,2),\{11; 22; 33\}\}$

$A = 2 \times 3 \text{ cell}$								
	1	2	3					
1	1	2	3	3				
2	'text'	5×10×2 double	3×1 cell					

4. At the end you need to use the "pwelch" function to estimate the power spectral density of PCG

Use these resources:

- 1. https://se.mathworks.com/help/signal/ref/pwelch.html
- 2. openExample('signal/VerifyOrderOfFIRFilterExample')