Olin College of Engineering ENGR2410 – Signals and Systems

Quiz 9

Instructions

- A. Collaboration is not allowed on quizzes.
- B. Students may only use a page of notes and the tables from the website during the quizzes.
- C. Time is limited to one continuous hour.
- D. Quizzes are due at the beginning of lecture on Thursday.
- E. Late or missed quizzes will be given a score of zero. Any excuses must come directly from the Office of Student Life.
- F. The two lowest quiz scores will be eliminated to allow for unforeseeable circumstances.
- G. In case of doubt, students are expected to base their behavior on the values expressed in the Honor Code.

Name:

Start time:

Problem 1 (10 points) The system shown below introduces the concept of quadrature, where we send multiple signals that share not only a common channel, but also the same frequency band. Signals $x_1(t)$ and $x_2(t)$ are bandlimited to f_B and have a frequency content as shown below. The receiver has an ideal low-pass filter $H(j\omega)$ with a cutoff frequency of f_B as shown below.

A. Show that the frequency content of $M(j\omega)$ is

$$M(j\omega) = \frac{1}{2}X_1(\omega - \omega_1) + \frac{1}{2}X_1(\omega + \omega_1) - j\frac{1}{2}X_2(\omega - \omega_1) + j\frac{1}{2}X_2(\omega + \omega_1)$$

The result can be either the expression above or neatly labeled sketches of both the real and imaginary parts of $M(j\omega)$. Hint: You can use either equations or sketches to find the solution, but using both may help you avoid algebra mistakes.

Solution:

$$\begin{split} m(t) &= x_1 \cos(\omega_1 t) + x_2 \sin(\omega_1 t) \\ M(j\omega) &= \frac{1}{2\pi} X_1(j\omega) * [\pi \delta(\omega - \omega_1) + \pi \delta(\omega + \omega_1)] + \frac{1}{2\pi} X_2(j\omega) * [\frac{\pi}{j} \delta(\omega - \omega_1) - \frac{\pi}{j} \delta(\omega + \omega_1)] \end{split}$$

B. Find an expression for y(t). Justify your answer clearly.

Solution:

 $Y(j\omega)$ has no imaginary part and the high-frequency component is filtered by $H(j\omega)$. Therefore, $Y(j\omega) = \frac{1}{2}X_1(j\omega)$ and $y(t) = \frac{1}{2}x_1(t)$.

C. Bonus: Find an expression for y(t) if m(t) is multiplied by $\sin(\omega_1 t)$ in the receiver instead of multiplied by $\cos(\omega_1 t)$. Hint: You can use your intuition (and should!) to guess the answer, but a clear justification will get more points.

Solution:

$$D(j\omega) = \frac{1}{2\pi}M(j\omega) * \left[-\frac{j\pi\delta}{2}\delta(\omega - \omega_1) + \frac{j\pi\delta}{2}\delta(\omega + \omega_1) \right]$$

$$D(j\omega) = -\frac{j}{4}X_1(\omega - 2\omega_1) + \frac{j}{4}X_1(\omega) - \frac{j}{4}X_1(\omega) + \frac{j}{4}X_1(\omega + 2\omega_1) - \frac{1}{4}X_2(\omega - 2\omega_1) + \frac{1}{4}X_2(\omega) + \frac{1}{4}X_2(\omega) - \frac{1}{4}X_2(\omega + 2\omega_1)$$

$$Y(j\omega) = \frac{j}{4}X_1(\omega) - \frac{j}{4}X_1(\omega) + \frac{1}{4}X_2(\omega) + \frac{1}{4}X_2(\omega) = \frac{1}{2}X_2(\omega) \Rightarrow y(t) = \frac{1}{2}x_2(t)$$

Course feedback

Feel free to send any additional feedback directly to us.

Name (optional):		
A.	End time:	How long did the quiz take you?
В.	Was the quiz a fair measure of your understanding?	
С.	Was the assignment effective p	preparation for the quiz?
D.	Is the Monday session effective	e?
Ε.	Are the connections between l	ecture, assignment and quiz clear?
F.	Are the objectives of the courthose objectives?	se clear? Do you feel you are making progress towards
G.	Anything else?	

Assignment grades
Date:
Assignment number:
Group member 1:
Grade:
Group member 2:
Grade:
Group member 3:
Grade: