18-Month Upgrade Presentation

Divakar Kumar

OxWaSP, University of Warwick

13 April 2016

Outline

Motivation

Problem specification Langevin Diffusion

ReScaLE Methodology

Rejection sampling on diffusion path Quasi-stationarity ReScaLE Algorithm

Example-sampling from Cauchy density

Some outputs Current Challenges & Further Research Thesis Structure

Bibliography

- How to simulate from an intractable distribution π ?
- Specifically, we might be interested in Bayesian inference of parameter x in parameter space.

$$\pi(\mathbf{x}) = \rho(\mathbf{x}) \prod_{i=1}^{N} f_i(\mathbf{x})$$

- MCMC Approach
 - Expensive calculation of product in every iteration in MCMC.
 - Memory bottleneck.
- Break → Compute Posterior → Recombine¹
- Gradient Method

pages 1–22

¹Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and Mcculloch, R. E.

- How to simulate from an intractable distribution π ?
- Specifically, we might be interested in Bayesian inference of parameter x in parameter space.

$$\pi(\mathbf{x}) = \mathbf{p}(\mathbf{x}) \prod_{i=1}^{N} f_i(\mathbf{x})$$

- MCMC Approach
 - Expensive calculation of product in every iteration in MCMC.
 - Memory bottleneck.
- Break → Compute Posterior → Recombine¹
- Gradient Method

(2013). Bayes and Big Data : The Consensus Monte Carlo Algorithm pages 1–22

¹Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and Mcculloch, R. I

- How to simulate from an intractable distribution π ?
- Specifically, we might be interested in Bayesian inference of parameter x in parameter space.

$$\pi(\mathbf{x}) = \mathbf{p}(\mathbf{x}) \prod_{i=1}^{N} f_i(\mathbf{x})$$

- MCMC Approach
 - Expensive calculation of product in every iteration in MCMC.
 - Memory bottleneck.
- Break → Compute Posterior → Recombine
- Gradient Method

(2013). Bayes and Big Data : The Consensus Monte Carlo Algorithm pages 1–22

¹Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and Mcculloch, R. I

- How to simulate from an intractable distribution π ?
- Specifically, we might be interested in Bayesian inference of parameter x in parameter space.

$$\pi(\mathbf{x}) = \rho(\mathbf{x}) \prod_{i=1}^{N} f_i(\mathbf{x})$$

- MCMC Approach
 - Expensive calculation of product in every iteration in MCMC.
 - Memory bottleneck.
- Break → Compute Posterior → Recombine¹

(2013). Bayes and Big Data: The Consensus Monte Carlo Algorithm.

pages 1-22

¹Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and Mcculloch, R. E.

- How to simulate from an intractable distribution π ?
- Specifically, we might be interested in Bayesian inference of parameter x in parameter space.

$$\pi(\mathbf{x}) = \mathbf{p}(\mathbf{x}) \prod_{i=1}^{N} f_i(\mathbf{x})$$

- MCMC Approach
 - Expensive calculation of product in every iteration in MCMC.
 - Memory bottleneck.
- Break → Compute Posterior → Recombine¹
- Gradient Method

(2013). Bayes and Big Data: The Consensus Monte Carlo Algorithm.

pages 1-22

¹Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and Mcculloch, R. E.

Langevin Diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t \quad X_0 = x, t \in [0, T]$$

- Invariant distribution of above diffusion is π .
- How do we simulate?
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$X_{t+\delta} = X_t + \frac{1}{2} \nabla \log \pi(X_t) \delta + \epsilon, \quad \epsilon \sim N(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence.
 - Storage bottleneck
 - High computational cost.
 - Discretisation biases.

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data.

Upcoming paper, (2):1–20

²Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions. and Their Discrete Approximations.

Langevin Diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$
 $X_0 = x, t \in [0, T]$

- Invariant distribution of above diffusion is π . ¹
- How do we simulate:
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$X_{t+\delta} = X_t + rac{1}{2}
abla \log \pi(X_t) \delta + \epsilon, \quad \epsilon \sim N(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence.
 - Storage bottleneck
 - High computational cost
 - Discretisation biases

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20

²Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions and Their Discrete Approximations.

**Report J. (1970) 1. (19

Langevin Diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$
 $X_0 = x, t \in [0, T]$

- Invariant distribution of above diffusion is π . ¹
- How do we simulate?
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$\mathbf{X}_{t+\delta} = \mathbf{X}_t + \frac{1}{2} \nabla \log \pi(\mathbf{X}_t) \delta + \epsilon, \quad \epsilon \sim \mathit{N}(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence.
 - Storage bottleneck
 - High computational cost
 - Discretisation biases

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20

"Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions.

**Bernoulli 2(4):pp. 341–363

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$
 $X_0 = x, t \in [0, T]$

- Invariant distribution of above diffusion is π . ¹
- How do we simulate?
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$\mathbf{X}_{t+\delta} = \mathbf{X}_t + rac{1}{2}
abla \log \pi(\mathbf{X}_t) \delta + \epsilon, \quad \epsilon \sim \mathit{N}(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence
 - Storage bottleneck
 - High computational cost.
 - Discretisation biases

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20

²Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions and Their Discrete Approximations.

Bernoulli, 2(4):pp. 341–363

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t \quad X_0 = x, t \in [0, T]$$

- Invariant distribution of above diffusion is π . ¹
- How do we simulate?
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$\mathbf{X}_{t+\delta} = \mathbf{X}_t + rac{1}{2}
abla \log \pi(\mathbf{X}_t) \delta + \epsilon, \quad \epsilon \sim \mathbf{N}(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence.
 - * Storage Dottleneck.
 - High computational cost
 - Discretisation biases

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20

²Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions and Their Discrete Approximations.

Bernoulli, 2(4):pp. 341–363

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t \quad X_0 = x, t \in [0, T]$$

- Invariant distribution of above diffusion is π . ¹
- How do we simulate?
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$\mathbf{X}_{t+\delta} = \mathbf{X}_t + rac{1}{2}
abla \log \pi(\mathbf{X}_t) \delta + \epsilon, \quad \epsilon \sim \mathbf{N}(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence.
 - High computational cost.
 - Discretisation biases

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20

²Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions and Their Discrete Approximations.

Bernoulli, 2(4):pp. 341–363

Langevin Diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t \quad X_0 = x, t \in [0, T]$$

- Invariant distribution of above diffusion is π . ¹
- How do we simulate?
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$\mathbf{X}_{t+\delta} = \mathbf{X}_t + rac{1}{2}
abla \log \pi(\mathbf{X}_t) \delta + \epsilon, \quad \epsilon \sim \mathit{N}(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence.
 - Storage bottleneck.
 - High computational cost.
 - Discretisation biases.

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20

²Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions and Their Discrete Approximations.

Bernoulli, 2(4):pp. 341–363

Langevin Diffusion

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t \quad X_0 = x, t \in [0, T]$$

- Invariant distribution of above diffusion is π . ¹
- How do we simulate?
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$\mathbf{X}_{t+\delta} = \mathbf{X}_t + rac{1}{2}
abla \log \pi(\mathbf{X}_t) \delta + \epsilon, \quad \epsilon \sim \mathbf{N}(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence.
 - Storage bottleneck.
 - High computational cost.

Discretisation biases.

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20

²Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions and Their Discrete Approximations.

Bernoulli, 2(4):pp. 341–363

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t \quad X_0 = x, t \in [0, T]$$

- Invariant distribution of above diffusion is π . ¹
- How do we simulate?
 - Metropolis Adjusted Langevin Algorithm (MALA)²
 - Euler-Maruyama Scheme

$$\mathbf{X}_{t+\delta} = \mathbf{X}_t + rac{1}{2}
abla \log \pi(\mathbf{X}_t) \delta + \epsilon, \quad \epsilon \sim \mathbf{N}(0, \delta)$$

- Pitfalls:
 - Non-exact method
 - Infinite time horizon for convergence.
 - Storage bottleneck.
 - High computational cost.
 - Discretisation biases.

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20

²Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions and Their Discrete Approximations.

Bernoulli, 2(4):pp. 341–363

- Exact Algorithm ¹: Rejection sampling on diffusion path space
 - Difficult to draw according to target measure Q
 - Choose a proposal measure W which is easier to draw from. Requires
 - ullet $\mathbb Q$ is absolutely continuous w.r.t $\mathbb W$ with

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \le N$$

- Accept each sample X with probability $\frac{1}{M} \frac{d\mathbb{Q}}{d\mathbb{W}}(X)$
- R-N Derivative for Langevin diffusion

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) = \frac{d\mathbb{Q}_{|X_t = y}}{d\mathbb{W}_{|X_t = y}}(X) \frac{p_{0,t}(\cdot, y)}{w_{0,t}(\cdot, y)}$$

The transition density

$$\rho_{0,t}(\cdot,y) = w_{0,t}(\cdot,y) \mathbf{E}_{\mathbb{W}_{|X_{\xi}=y}} \left(\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \right)$$

The transition density $p_{0,t}(\cdot,\cdot) \longrightarrow \pi$ as $t \longrightarrow \infty$.

¹Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications.

Bernoulli, 12(6):1077–1098

- Exact Algorithm 1: Rejection sampling on diffusion path space
 - Difficult to draw according to target measure \mathbb{Q} .
 - Choose a proposal measure W which is easier to draw from. Requires
 - ullet ${\mathbb Q}$ is absolutely continuous w.r.t ${\mathbb W}$ with

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \le N$$

- Accept each sample X with probability $\frac{1}{M} \frac{d\mathbb{Q}}{d\mathbb{W}}(X)$
- · R-N Derivative for Langevin diffusion

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) = \frac{d\mathbb{Q}_{|X_t=y}}{d\mathbb{W}_{|X_t=y}}(X) \frac{\rho_{0,t}(\cdot,y)}{w_{0,t}(\cdot,y)}$$

The transition density

$$\rho_{0,t}(\cdot,y) = w_{0,t}(\cdot,y) \mathbb{E}_{\mathbb{W}_{|X_{\xi}=y}} \left(\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \right)$$

The transition density $p_{0,t}(\cdot,\cdot) \longrightarrow \pi$ as $t \longrightarrow \infty$.

¹Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications. Bernoulli, 12(6):1077–1098

- Exact Algorithm ¹: Rejection sampling on diffusion path space
 - Difficult to draw according to target measure Q.
 Choose a proposal measure W which is easier to draw from. Requires:
 - * $\,\mathbb{Q}$ is absolutely continuous w.r.t \mathbb{W} with

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \leq \Lambda$$

- Accept each sample X with probability $\frac{1}{M} \frac{d\mathbb{Q}}{d\mathbb{W}}(X)$
- R-N Derivative for Langevin diffusion

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) = \frac{d\mathbb{Q}_{|X_t=y}}{d\mathbb{W}_{|X_t=y}}(X) \frac{p_{0,t}(\cdot,y)}{w_{0,t}(\cdot,y)}$$

The transition density

$$\rho_{0,t}(\cdot,y) = w_{0,t}(\cdot,y) \mathbf{E}_{\mathbb{W}_{|X_{\xi}=y}} \left(\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \right)$$

The transition density $p_{0,t}(\cdot,\cdot) \longrightarrow \pi$ as $t \longrightarrow \infty$.

¹Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications.

Bernoulli, 12(6):1077–1098

- Exact Algorithm ¹: Rejection sampling on diffusion path space
 - Difficult to draw according to target measure \mathbb{Q} .
 - Choose a proposal measure W which is easier to draw from. Requires:
 - * $\mathbb Q$ is absolutely continuous w.r.t $\mathbb W$ with

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \le M$$

- Accept each sample X with probability $\frac{1}{M} \frac{d\mathbb{Q}}{d\mathbb{W}}(X)$
- R-N Derivative for Langevin diffusion

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) = \frac{d\mathbb{Q}_{|X_t=y}}{d\mathbb{W}_{|X_t=y}}(X) \frac{p_{0,t}(\cdot,y)}{w_{0,t}(\cdot,y)}$$

The transition density

$$\rho_{0,t}(\cdot,y) = w_{0,t}(\cdot,y) \mathbb{E}_{\mathbb{W}_{|X_{\xi}=y}} \left(\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \right)$$

The transition density $p_{0,t}(\cdot,\cdot) \longrightarrow \pi$ as $t \longrightarrow \infty$.

¹Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications.

Bernoulli, 12(6):1077–1098

- Exact Algorithm ¹: Rejection sampling on diffusion path space
 - Difficult to draw according to target measure $\mathbb{Q}.$
 - Choose a proposal measure W which is easier to draw from. Requires:
 - * $\,\mathbb{Q}$ is absolutely continuous w.r.t \mathbb{W} with

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \le M$$

- Accept each sample X with probability $\frac{1}{M} \frac{d\mathbb{Q}}{d\mathbb{W}}(X)$
- R-N Derivative for Langevin diffusion

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) = \frac{d\mathbb{Q}_{|X_t=y}}{d\mathbb{W}_{|X_t=y}}(X) \frac{p_{0,t}(\cdot,y)}{w_{0,t}(\cdot,y)}$$

The transition density

$$p_{0,t}(\cdot,y) = w_{0,t}(\cdot,y) \mathbf{E}_{\mathbb{W}_{|X_{\xi}=y}} \left(\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \right)$$

The transition density $p_{0,t}(\cdot,\cdot)\longrightarrow\pi$ as $t\longrightarrow\infty$.

¹Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications.

Bernoulli, 12(6):1077–1098

- Exact Algorithm ¹: Rejection sampling on diffusion path space
 - Difficult to draw according to target measure \mathbb{Q} .
 - Choose a proposal measure W which is easier to draw from. Requires:
 - * $\,\mathbb{Q}$ is absolutely continuous w.r.t \mathbb{W} with

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \leq M$$

- Accept each sample X with probability $\frac{1}{M} \frac{d\mathbb{Q}}{d\mathbb{W}}(X)$
- R-N Derivative for Langevin diffusion

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) = \frac{d\mathbb{Q}_{|X_t=y}}{d\mathbb{W}_{|X_t=y}}(X) \frac{p_{0,t}(\cdot,y)}{w_{0,t}(\cdot,y)}$$

The transition density

$$\rho_{0,t}(\cdot,y) = w_{0,t}(\cdot,y) \mathbf{E}_{\mathbb{W}_{|X_{\xi}=y}} \left(\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \right)$$

The transition density $p_{0,t}(\cdot,\cdot) \longrightarrow \pi$ as $t \longrightarrow \infty$.

¹Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications.

Bernoulli, 12(6):1077–1098

- Exact Algorithm ¹: Rejection sampling on diffusion path space
 - Difficult to draw according to target measure \mathbb{Q} .
 - Choose a proposal measure W which is easier to draw from. Requires:
 - * $\,\mathbb{Q}$ is absolutely continuous w.r.t \mathbb{W} with

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \le M$$

- Accept each sample X with probability $\frac{1}{M} \frac{d\mathbb{Q}}{d\mathbb{W}}(X)$
- R-N Derivative for Langevin diffusion

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) = \frac{d\mathbb{Q}_{|X_t=y}}{d\mathbb{W}_{|X_t=y}}(X) \frac{p_{0,t}(\cdot,y)}{w_{0,t}(\cdot,y)}$$

The transition density

$$\rho_{0,t}(\cdot,y) = w_{0,t}(\cdot,y) \mathbf{E}_{\mathbb{W}_{|X_t=y}} \left(\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \right)$$

The transition density $p_{0,t}(\cdot,\cdot) \longrightarrow \pi$ as $t \longrightarrow \infty$.

¹Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications.

Bernoulli, 12(6):1077–1098

- Exact Algorithm ¹: Rejection sampling on diffusion path space
 - Difficult to draw according to target measure \mathbb{Q} .
 - Choose a proposal measure W which is easier to draw from. Requires:
 - * $\,\mathbb{Q}$ is absolutely continuous w.r.t \mathbb{W} with

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \leq M$$

- Accept each sample X with probability $\frac{1}{M} \frac{d\mathbb{Q}}{d\mathbb{W}}(X)$
- R-N Derivative for Langevin diffusion

$$\frac{d\mathbb{Q}}{d\mathbb{W}}(X) = \frac{d\mathbb{Q}_{|X_t=y}}{d\mathbb{W}_{|X_t=y}}(X) \frac{p_{0,t}(\cdot,y)}{w_{0,t}(\cdot,y)}$$

The transition density

$$\rho_{0,t}(\cdot,y) = w_{0,t}(\cdot,y) \mathbf{E}_{\mathbb{W}_{|X_t=y}} \left(\frac{d\mathbb{Q}}{d\mathbb{W}}(X) \right)$$

• The transition density $p_{0,t}(\cdot,\cdot)\longrightarrow\pi$ as $t\longrightarrow\infty$.

¹Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications.

For $\mu(\mathbf{x}) = \frac{1}{2} \nabla \log \pi(\mathbf{x})$,

$$\begin{split} \rho_{0,t}(0,\mathbf{x}) &\propto \exp\left\{-\frac{(\mathbf{X})^2}{2t}\right\} \pi(\mathbf{X})^{\frac{1}{2}} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}} \left(\exp\left\{-\int\limits_0^t \phi(\mathbf{X}_{\mathrm{S}}) ds\right\}\right) \\ l &:= \inf_{\mathbf{X}} \frac{\mu^2 + \mu'}{2}(\mathbf{X}) \quad \phi(\mathbf{X}_{\mathrm{S}}) := \frac{\left((\mu(\mathbf{X}_{\mathrm{S}})^2 + \mu'(\mathbf{X}_{\mathrm{S}})\right)}{2} - l \end{split}$$

- It is still difficult to draw according to $ho_{0,t}(0,x)$
- Drop $\pi(x)^{\frac{1}{2}}$ and converge to wrong density $\pi(x)^{\frac{1}{2}}$
- Double the drift!

$$\rho_{0,t}(0,\mathbf{x}) \propto \exp\left\{-\frac{(\mathbf{x})^2}{2t}\right\} \pi(\mathbf{x}) \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}} \left(\exp\left\{-\int_0^t \phi(X_s) ds\right\}\right)$$

Drop $\pi(x)$ again and converge to correct density $\pi(x)$

¹Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the Coefficients of a Diffusion from Discrete Observations. Stochastics, 19(4):263–284

For $\mu(\mathbf{x}) = \frac{1}{2} \nabla \log \pi(\mathbf{x})$,

$$\begin{split} \rho_{0,t}(0,\mathbf{x}) &\propto \exp\left\{-\frac{(\mathbf{X})^2}{2t}\right\} \pi(\mathbf{X})^{\frac{1}{2}} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}} \left(\exp\left\{-\int\limits_0^t \phi(\mathbf{X}_{\mathbf{S}}) d\mathbf{s}\right\}\right) \\ \ell &:= \inf_{\mathbf{X}} \frac{\mu^2 + \mu'}{2}(\mathbf{X}) \quad \phi(\mathbf{X}_{\mathbf{S}}) := \frac{\left((\mu(\mathbf{X}_{\mathbf{S}})^2 + \mu'(\mathbf{X}_{\mathbf{S}})\right)}{2} - \ell \end{split}$$

- It is still difficult to draw according to $p_{0,t}(0, x)$.

$$\rho_{0,t}(0,\mathbf{x}) \propto \exp\left\{-\frac{(\mathbf{x})^2}{2t}\right\} \pi(\mathbf{x}) \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}} \left(\exp\left\{-\int_0^t \phi(X_s)ds\right\}\right)$$

Stochastics, 19(4):263-284

¹Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the Coefficients of a

For $\mu(\mathbf{x}) = \frac{1}{2} \nabla \log \pi(\mathbf{x})$,

$$\begin{split} \rho_{0,t}(0,\mathbf{X}) &\propto \exp\left\{-\frac{(\mathbf{X})^2}{2t}\right\} \pi(\mathbf{X})^{\frac{1}{2}} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{X}}} \left(\exp\left\{-\int\limits_0^t \phi(\mathbf{X}_{\mathbf{S}}) d\mathbf{S}\right\}\right) \\ l &:= \inf_{\mathbf{X}} \frac{\mu^2 + \mu'}{2}(\mathbf{X}) \quad \phi(\mathbf{X}_{\mathbf{S}}) := \frac{\left((\mu(\mathbf{X}_{\mathbf{S}})^2 + \mu'(\mathbf{X}_{\mathbf{S}})\right)}{2} - l \end{split}$$

- It is still difficult to draw according to $p_{0,t}(0, x)$.
- Drop $\pi(\mathbf{x})^{rac{1}{2}}$ and converge to wrong density $\pi(\mathbf{x})^{rac{1}{2}}$.
- Double the drift!

$$\rho_{0,t}(0,\mathbf{x}) \propto \exp\left\{-\frac{(\mathbf{x})^2}{2t}\right\} \pi(\mathbf{x}) \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}} \left(\exp\left\{-\int_0^t \phi(X_s)ds\right\}\right)$$

Drop $\pi(x)$ again and converge to correct density $\pi(x)$!

Stochastics, 19(4):263-284

¹Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the Coefficients of a OxWaSP Diffusion from Discrete Observations.

For $\mu(\mathbf{x}) = \frac{1}{2} \nabla \log \pi(\mathbf{x})$,

$$\begin{split} \rho_{0,t}(0,\mathbf{x}) &\propto \exp\left\{-\frac{(\mathbf{X})^2}{2t}\right\} \pi(\mathbf{X})^{\frac{1}{2}} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}} \left(\exp\left\{-\int\limits_0^t \phi(\mathbf{X}_{\mathsf{S}}) d\mathbf{s}\right\}\right) \\ \ell &:= \inf_{\mathbf{X}} \frac{\mu^2 + \mu'}{2}(\mathbf{X}) \quad \phi(\mathbf{X}_{\mathsf{S}}) := \frac{\left((\mu(\mathbf{X}_{\mathsf{S}})^2 + \mu'(\mathbf{X}_{\mathsf{S}})\right)}{2} - \ell \end{split}$$

- It is still difficult to draw according to $p_{0,t}(0,x)$.
- Drop $\pi(x)^{\frac{1}{2}}$ and converge to wrong density $\pi(x)^{\frac{1}{2}}$.
- Double the drift!

$$m{p}_{0,t}(0,\mathbf{x}) \propto \exp\left\{-rac{(\mathbf{x})^2}{2t}
ight\}\pi(\mathbf{x})\mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}}\left(\exp\left\{-\int\limits_0^t\phi(\mathbf{X}_s)ds
ight\}
ight)$$

Drop $\pi(x)$ again and converge to correct density $\pi(x)$

¹Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the Coefficients of a Diffusion from Discrete Observations.

Stochastics, 19(4):263–284

6/18

For $\mu(\mathbf{x}) = \frac{1}{2} \nabla \log \pi(\mathbf{x})$,

$$\begin{split} \rho_{0,t}(0,\mathbf{x}) &\propto \exp\left\{-\frac{(\mathbf{X})^2}{2t}\right\} \pi(\mathbf{X})^{\frac{1}{2}} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}} \left(\exp\left\{-\int\limits_0^t \phi(\mathbf{X}_{\mathbf{S}}) d\mathbf{s}\right\}\right) \\ \ell &:= \inf_{\mathbf{X}} \frac{\mu^2 + \mu'}{2}(\mathbf{X}) \quad \phi(\mathbf{X}_{\mathbf{S}}) := \frac{\left((\mu(\mathbf{X}_{\mathbf{S}})^2 + \mu'(\mathbf{X}_{\mathbf{S}})\right)}{2} - \ell \end{split}$$

- It is still difficult to draw according to $p_{0,t}(0,x)$.
- Drop $\pi(x)^{\frac{1}{2}}$ and converge to wrong density $\pi(x)^{\frac{1}{2}}$.
- Double the drift!

$$p_{0,t}(0, \mathbf{x}) \propto \exp\left\{-rac{(\mathbf{x})^2}{2t}\right\} \pi(\mathbf{x}) \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}} \left(\exp\left\{-\int\limits_0^t \phi(\mathbf{X}_s) ds\right\}\right)$$

• Drop $\pi(x)$ again and converge to correct density $\pi(x)$!

¹Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the Coefficients of a Diffusion from Discrete Observations.

Stochastics, 19(4):263–284

$$q_{0,t}(0, \mathbf{x}) = \exp\left\{-rac{(\mathbf{x})^2}{2t}\right\} \mathbf{E}_{\mathbb{W}_{|X_t = \mathbf{x}}}\left(\exp\left\{-\int\limits_0^t \phi(\mathbf{X}_s)d\mathbf{s}\right\}\right)$$

- $q_{0,t}(0,x)$ is the quasi-stationary density of a killed Brownian motion¹ with state dependent killing rate $\phi(X_s)$.
- Problem-1: How to continuously sample trajectory of a Browniar motion?
- Problem-2: How to simulate the quasi-stationary density of a killed Brownian motion?
- Solution-1: Need to simulate finite dimensional distribution of sample path of Brownian motion.
- Solution-2: Need a mechanism to simulate from the quasi-stationary density of a killed Brownian motion.
 - ScaLE Algorithm uses SMC approach to sample from QSE
 - ReScaLE uses Glynn & Blanchet method to sample from QSD.

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data.

Upcoming paper, (2):1–20

$$q_{0,t}(0, \mathbf{x}) = \exp\left\{-rac{(\mathbf{x})^2}{2t}\right\} \mathbf{E}_{\mathbb{W}_{|X_t = \mathbf{x}}}\left(\exp\left\{-\int\limits_0^t \phi(\mathbf{X}_s)d\mathbf{s}\right\}\right)$$

- $q_{0,\epsilon}(0,x)$ is the quasi-stationary density of a killed Brownian motion¹ with state dependent killing rate $\phi(X_s)$.
- Problem-1: How to continuously sample trajectory of a Brownian motion?
- Problem-2: How to simulate the quasi-stationary density of a killed Brownian motion?
- Solution-1: Need to simulate finite dimensional distribution of sample path of Brownian motion.
- Solution-2: Need a mechanism to simulate from the quasi-stationary density of a killed Brownian motion.
 - ScaLE Algorithm uses SMC approach to sample from QSD
 - ReScaLE uses Glynn & Blanchet method to sample from QSD

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data.

Upcoming paper, (2):1–20

$$q_{0,t}(0, \mathbf{x}) = \exp\left\{-\frac{(\mathbf{x})^2}{2t}\right\} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}}\left(\exp\left\{-\int_0^t \phi(\mathbf{X}_s)d\mathbf{s}\right\}\right)$$

- $q_{0,\ell}(0,x)$ is the quasi-stationary density of a killed Brownian motion¹ with state dependent killing rate $\phi(X_s)$.
- Problem-1: How to continuously sample trajectory of a Brownian motion?
- Problem-2: How to simulate the quasi-stationary density of a killed Brownian motion?
- Solution-1: Need to simulate finite dimensional distribution of sample path of Brownian motion.
- Solution-2: Need a mechanism to simulate from the quasi-stationary density of a killed Brownian motion.
 - ScaLE Algorithm uses SMC approach to sample from QSD
 - ReScaLE uses Glynn & Blanchet method to sample from QSD

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data.

Upcoming paper, (2):1–20

$$q_{0,t}(0, \mathbf{x}) = \exp\left\{-\frac{(\mathbf{x})^2}{2t}\right\} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}}\left(\exp\left\{-\int_0^t \phi(\mathbf{X}_s)d\mathbf{s}\right\}\right)$$

- $q_{0,\ell}(0,x)$ is the quasi-stationary density of a killed Brownian motion¹ with state dependent killing rate $\phi(X_s)$.
- Problem-1: How to continuously sample trajectory of a Brownian motion?
- Problem-2: How to simulate the quasi-stationary density of a killed Brownian motion?
- Solution-1: Need to simulate finite dimensional distribution of sample path of Brownian motion.
- Solution-2: Need a mechanism to simulate from the quasi-stationary density of a killed Brownian motion.
 - ScaLE Algorithm uses SMC approach to sample from QSD
 - ReScaLE uses Glynn & Blanchet method to sample from QSD

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data.

Upcoming paper, (2):1–20

$$q_{0,t}(0, \mathbf{x}) = \exp\left\{-\frac{(\mathbf{x})^2}{2t}\right\} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}}\left(\exp\left\{-\int_0^t \phi(\mathbf{X}_s)ds\right\}\right)$$

- $q_{0,\ell}(0,x)$ is the quasi-stationary density of a killed Brownian motion¹ with state dependent killing rate $\phi(X_s)$.
- Problem-1: How to continuously sample trajectory of a Brownian motion?
- Problem-2: How to simulate the quasi-stationary density of a killed Brownian motion?
- Solution-1: Need to simulate finite dimensional distribution of sample path of Brownian motion.
- Solution-2: Need a mechanism to simulate from the quasi-stationary density of a killed Brownian motion.
 - Scale Algorithm uses SMC approach to sample from QSD.
 ReScale uses Glynn & Blanchet method to sample from QSD

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data.

Upcoming paper, (2):1–20

$$q_{0,t}(0, \mathbf{x}) = \exp\left\{-\frac{(\mathbf{x})^2}{2t}\right\} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}}\left(\exp\left\{-\int_0^t \phi(\mathbf{X}_s)d\mathbf{s}\right\}\right)$$

- $q_{0,\ell}(0,x)$ is the quasi-stationary density of a killed Brownian motion¹ with state dependent killing rate $\phi(X_s)$.
- Problem-1: How to continuously sample trajectory of a Brownian motion?
- Problem-2: How to simulate the quasi-stationary density of a killed Brownian motion?
- Solution-1: Need to simulate finite dimensional distribution of sample path of Brownian motion.
- Solution-2: Need a mechanism to simulate from the quasi-stationary density of a killed Brownian motion.
 - ScaLE Algorithm uses SMC approach to sample from QSD.
 RescalE uses Glynn & Blanchet method to sample from QSD.

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data.

Upcoming paper, (2):1–20

$$q_{0,t}(0, \mathbf{x}) = \exp\left\{-\frac{(\mathbf{x})^2}{2t}\right\} \mathbf{E}_{\mathbb{W}_{|X_t=\mathbf{x}}}\left(\exp\left\{-\int_0^t \phi(\mathbf{X}_s)d\mathbf{s}\right\}\right)$$

- $q_{0,\ell}(0,x)$ is the quasi-stationary density of a killed Brownian motion¹ with state dependent killing rate $\phi(X_s)$.
- Problem-1: How to continuously sample trajectory of a Brownian motion?
- Problem-2: How to simulate the quasi-stationary density of a killed Brownian motion?
- Solution-1: Need to simulate finite dimensional distribution of sample path of Brownian motion.
- Solution-2: Need a mechanism to simulate from the quasi-stationary density of a killed Brownian motion.
 - ScaLE Algorithm uses SMC approach to sample from QSD.
 - ReScaLE uses Glynn & Blanchet method to sample from QSD.

¹Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data.

Upcoming paper, (2):1–20

Solution-1:

Coloring Scheme 1

Let $au_1,..., au_k$ be the Poisson Process with rate M where M is such that $\sup_{\mathbf{x}}\phi(\mathbf{x})\leq M$. Let $X_{\tau_1},...,X_{\tau_k}$ be the realised skeleton of a Brownian motion $\{X_t:t\geq 0\}$ at times $au_1,..., au_k$. If process is killed at au_j with probability $\frac{\phi(X_{\tau_j})}{M}$. Then,

$$\mathbb{P}(\text{Process survived until time } t) = \exp \left\{ -\int_{0}^{t} \phi(X_{s}) ds \right\}$$

Suggests to simulate $\tau_1, ..., \tau_k$ from homogeneous Poisson Process of rate M and decide to kill the process at time of event τ_j with probability $\frac{\phi(X_{\tau_j})}{dt}$.

Solution-1:

Coloring Scheme ¹

Let $au_1,..., au_k$ be the Poisson Process with rate M where M is such that $\sup_{\mathbf{x}}\phi(\mathbf{x})\leq M$. Let $X_{\tau_1},...,X_{\tau_k}$ be the realised skeleton of a Brownian motion $\{X_t:t\geq 0\}$ at times $\tau_1,...,\tau_k$. If process is killed at τ_j with probability $\frac{\phi(X_{\tau_j})}{M}$. Then,

$$\mathbb{P}(\text{Process survived until time } t) = \exp \left\{ -\int_{0}^{t} \phi(X_{s}) ds \right\}$$

* Suggests to simulate $\tau_1, ..., \tau_k$ from homogeneous Poisson Process of rate M and decide to kill the process at time of event τ_j with probability $\frac{\phi(X_{\tau_j})}{M}$.

- ① Initialize the probability vector $\pi=\pi_0$ on the non-absorbing states of Markov chain.
- ② Select a non-absorbing state of the Markov chain x_0 and set $X_0 = x_0$.
- Simulate the Markov chain normally starting with X₀ until absorption. Update πby counting the number of visits to each state until absorption.
- **a** Choose an initial position according to normalized vector π and goto step 3.
- § Steps 3, and 4, are repeated many times to get an estimate of quasi-stationary dist.

- \blacksquare Initialize the probability vector $\pi=\pi_0$ on the non-absorbing states of Markov chain.
- ② Select a non-absorbing state of the Markov chain x_0 and set $X_0 = x_0$
- ③ Simulate the Markov chain normally starting with X_0 until absorption. Update π by counting the number of visits to each state until absorption.
- **4** Choose an initial position according to normalized vector π and goto step 3.
- Steps 3. and 4. are repeated many times to get an estimate of quasi-stationary dist.

- ① Initialize the probability vector $\pi=\pi_0$ on the non-absorbing states of Markov chain.
- 2 Select a non-absorbing state of the Markov chain x_0 and set $X_0 = x_0$.
- Simulate the Markov chain normally starting with X₀ until absorption. Update πby counting the number of visits to each state until absorption.
- ${}_{rak{A}}$ Choose an initial position according to normalized vector π and goto step 3.
- (s) Steps 3. and 4. are repeated many times to get an estimate of quasi-stationary dist.

¹Blanchet, J., Glynn, P., and Zheng, S. (2012). Empirical Analysis of a Stochastic Approximation Approach for Computing Quasi-stationary Distributions.

Evolve - A bridge between Probability, pages 19–37

- $foldsymbol{0}$ Initialize the probability vector $\pi=\pi_0$ on the non-absorbing states of Markov chain.
- 2 Select a non-absorbing state of the Markov chain x_0 and set $X_0 = x_0$.
- - Φ Choose an initial position according to normalized vector π and goto step 3.
- § Steps 3. and 4. are repeated many times to get an estimate of quasi-stationary dist.

¹Blanchet, J., Glynn, P., and Zheng, S. (2012). Empirical Analysis of a Stochastic Approximation Approach for Computing Quasi-stationary Distributions.

Evolve - A bridge between Probability, pages 19–37

- $foldsymbol{0}$ Initialize the probability vector $\pi=\pi_0$ on the non-absorbing states of Markov chain.
- 2 Select a non-absorbing state of the Markov chain x_0 and set $X_0 = x_0$.
- **4** Choose an initial position according to normalized vector π and goto step 3.
- Steps 3. and 4. are repeated many times to get an estimate of quasi-stationary dist.

¹Blanchet, J., Glynn, P., and Zheng, S. (2012). Empirical Analysis of a Stochastic Approximation Approach for Computing Quasi-stationary Distributions.

Evolve - A bridge between Probability, pages 19–37

- $foldsymbol{0}$ Initialize the probability vector $\pi=\pi_0$ on the non-absorbing states of Markov chain.
- 2 Select a non-absorbing state of the Markov chain x_0 and set $X_0 = x_0$.
- 3 Simulate the Markov chain normally starting with X_0 until absorption. Update π by counting the number of visits to each state until absorption.
- **4** Choose an initial position according to normalized vector π and goto step 3.
- § Steps 3. and 4. are repeated many times to get an estimate of quasi-stationary dist.

¹Blanchet, J., Glynn, P., and Zheng, S. (2012). Empirical Analysis of a Stochastic Approximation.

Approach for Computing Quasi-stationary Distributions.

Evolve - A bridge between Probability, pages 19–37

ReScaLE Algorithm - Pseudocode

Algorithm 2.1: ReScaLE Algorithm (μ, x_0)

1.
$$l \leftarrow \inf_{\mathbf{x} \in \mathbb{R}} \frac{\mu^2 + \mu'}{2}, \phi \leftarrow \frac{\mu^2 + \mu'}{2} - l, M \leftarrow \sup_{\mathbf{x} \in \mathbb{R}} \phi(\mathbf{x})$$

- 2. $t_0 \leftarrow 0; X_{t_0} \leftarrow x_0$ 3.

$$\label{eq:dode} \textbf{do} \begin{cases} (t_1, t_2, \ldots) \sim \text{Poisson Process of rate M starting at t_0} \\ (X_{t_1}, X_{t_2}, \ldots) \sim \text{Brownian Motion started at position X_{t_0}} \\ \text{Kill the process at X_{t_i} with probability $\phi(X_{t_i})/M$} \\ \textbf{exit} \text{ once kill occurs} \end{cases}$$

- 4. starting time $\sim U[0, \mathbf{t_{kill}}]$
- 5. **starting value** \sim Brownian Bridge conditioned on neighbors of **starting time**
- 6. GOTO 2. with $t_0 \leftarrow \mathbf{t_{kill}}; X_{t_0} \leftarrow \mathbf{starting}$ value return $((X_{t_1}, X_{t_2}, ...))$

An Illustration of ReScaLE

Figure: A run of ReScaLE

An Illustration of ReScaLE

Figure: A run of ReScaLE

An Example

: Density Comparison

Figure: Implementation of ReScaLE algorithm to Cauchy density

Different Initial Positions

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - Choose **Starting Time** $\sim U[\frac{\mathbf{t_{kill}}}{2},\mathbf{t_{kill}}]$
- Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi:=rac{\mu^-+\mu^-}{2}-l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - $m{\cdot}$ Choose **Starting Time** $\sim \textit{U}[rac{\mathbf{t_{kill}}}{2},\mathbf{t_{kill}}]$
- Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - · Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - $m{\cdot}$ Choose **Starting Time** $\sim \mathit{U}[rac{\mathbf{t_{kill}}}{2},\mathbf{t_{kill}}]$
- Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - · Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
 - ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - Choose **Starting Time** $\sim U[\frac{v_{\rm kill}}{2}, t_{\rm kill}]$
- Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - · Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
 - ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - Choose **Starting Time** $\sim U[\frac{v_{\rm kill}}{2}, t_{\rm kill}]$
 - Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - · Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - ullet What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - Choose **Starting Time** $\sim U[\frac{v_{\rm kill}}{2}, t_{\rm kill}]$
 - Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - ullet Choose **Starting Time** $\sim U[rac{\mathbf{t_{kill}}}{2},\mathbf{t_{kill}}]$
 - Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - Optimal version of ReScaLE

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - Choose Starting Time
 - Computational aspects
 - Rate of convergence analysis
 - Parallel execution of ReScaLE and its theory
 - Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi:=rac{\mu^2+\overline{\mu'}}{2}-l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - Choose **Starting Time** $\sim \textit{U}[\frac{\mathbf{t_{kill}}}{2},\mathbf{t_{kill}}]$

Computational aspects

- Rate of convergence analysis
- Parallel execution of ReScaLE and its theory.
- Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - Choose **Starting Time** $\sim \textit{U}[\frac{\mathbf{t_{kill}}}{2},\mathbf{t_{kill}}]$
- Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory
 - Optimal version of ReScaLE.

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - Choose **Starting Time** $\sim \textit{U}[\frac{\mathbf{t_{kill}}}{2},\mathbf{t_{kill}}]$
- Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - Optimal version of ReScaLE

- No formal proof of Glynn & Blanchet algorithm for CTMC on general state space.
- So far ReScaLE captures restricted class of models only!
 - What happens if $\phi := \frac{\mu^2 + \mu'}{2} l$ is unbounded?
 - What if $\mu = \nabla \log \pi$ is not differentiable e.g. double exponential?
 - What if π has bounded support?
- ReScaLE shows strong affinity towards its chosen initial position.
 - How to construct an 'adaptive' ReScaLE?
 - It takes infinite time horizon for convergence; can we speed it up?
 - ullet Choose **Starting Time** $\sim \emph{U}[rac{\mathbf{t_{kill}}}{2},\mathbf{t_{kill}}]$
- Computational aspects
 - Rate of convergence analysis.
 - Parallel execution of ReScaLE and its theory.
 - Optimal version of ReScaLE.

- Chapter One Motivation
 - Sampling from intractable distributions problem specification and literature reviews of some current methodologies.
 - Literature review of ScaLE method.
 - How the method links to Big Data Problem?
- Chapter Two ReScaLE methodology
 - Ways to simulate from quasi-stationary distribution.
 - Proof of G-B algorithm in general
 - Formal analysis of ReScaLE.
 - Adaptive ReScaLE?
 - ReScale for general ϕ —function.
- Chapter Three Computational aspects
 - Adaptive ReScal F algorithm.
 - Parallel execution of ReScaLE
 - Comparison of convergence analysis.
- Chapter Four An application to real data.
- © Chapter Five Conclusion and further research

- Chapter One Motivation
 - Sampling from intractable distributions problem specification and literature reviews of some current methodologies.
 - Literature review of ScaLE method.
 - How the method links to Big Data Problem?
- Chapter Two ReScaLE methodology
 - Ways to simulate from quasi-stationary distribution.
 - Proof of G-B algorithm in general.
 - Formal analysis of ReScaLE.
 - Adaptive ReScaLE?
 - ReScaLE for general $\phi-$ function.
 - Chapter Three Computational aspects
 - Adaptive ReScal F algorithm.
 - Parallel execution of ReScaLE
 - Comparison of convergence analysis.
- Chapter Four An application to real data.
- 6 Chapter Five Conclusion and further research

- Chapter One Motivation
 - Sampling from intractable distributions problem specification and literature reviews of some current methodologies.
 - Literature review of ScaLE method.
 - How the method links to Big Data Problem?
- Chapter Two ReScaLE methodology
 - Ways to simulate from quasi-stationary distribution.
 - Proof of G-B algorithm in general.
 - Formal analysis of ReScaLE.
 - Adaptive ReScaLE?
 - ReScaLE for general $\phi-$ function.
- 3 Chapter Three Computational aspects
 - Adaptive ReScaLE algorithm.
 - Parallel execution of ReScaLE.
 - · Comparison of convergence analysis.
- 4 Chapter Four An application to real data.
- 5 Chapter Five Conclusion and further research

- Chapter One Motivation
 - Sampling from intractable distributions problem specification and literature reviews of some current methodologies.
 - Literature review of ScaLE method.
 - How the method links to Big Data Problem?
- Chapter Two ReScaLE methodology
 - Ways to simulate from quasi-stationary distribution.
 - Proof of G-B algorithm in general.
 - Formal analysis of ReScaLE.
 - Adaptive ReScaLE?
 - ReScaLE for general ϕ -function.
- 3 Chapter Three Computational aspects
 - Adaptive ReScaLE algorithm.
 - Parallel execution of ReScaLE.
 - · Comparison of convergence analysis.
- 4 Chapter Four An application to real data.
- Chapter Five Conclusion and further research

- Chapter One Motivation
 - Sampling from intractable distributions problem specification and literature reviews of some current methodologies.
 - Literature review of Scale method.
 - How the method links to Big Data Problem?
- Chapter Two ReScaLE methodology
 - Ways to simulate from quasi-stationary distribution.
 - Proof of G-B algorithm in general.
 - Formal analysis of ReScaLE.
 - Adaptive ReScaLE?
 - ReScaLE for general ϕ -function.
- 3 Chapter Three Computational aspects
 - Adaptive ReScaLE algorithm.
 - Parallel execution of ReScaLE.
 - · Comparison of convergence analysis.
- 4 Chapter Four An application to real data.
- 5 Chapter Five Conclusion and further research

Bibliography

- [1] Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact simulation of diffusion sample paths with applications. *Bernoulli*, 12(6):1077–1098.
- [2] Blanchet, J., Glynn, P., and Zheng, S. (2012). Empirical Analysis of a Stochastic Approximation Approach for Computing Quasi-stationary Distributions. *Evolve A bridge between Probability*, pages 19–37.
- [3] Dacunha-Castelle, D. and Florens-Zmirou, D. (1986). Estimation of the Coefficients of a Diffusion from Discrete Observations. Stochastics, 19(4):263–284.
- [4] Kingman, J. F. C. (1993). *Poisson Processes*. The Clarendon Press Oxford University Press, New York.
- [5] Roberts, G. O., Pollock, M., Fearnhead, P., and Johansen, A. M. (2016). An Unbiased and Scalable Monte Carlo Method for Bayesian Inference for Big Data. *Upcoming paper*, (2):1–20.
- [6] Roberts, G. O. and Tweedie, R. L. (1996). Exponential Convergence of Langevin Distributions and Their Discrete Approximations. *Bernoulli*, 2(4):pp. 341–363.
- [7] Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and Mcculloch, R. E. (2013). Bayes and Big Data: The Consensus Monte Carlo (Algorithm. pages 1–22.