Mathématiques 1

Chapitre 3: Dérivation

Mohamed Essaied Hamrita

IHEC, Université de Sousse

Octobre 2021

Table des matières

- Définitions
- Dérivées des fonctions de références
- Opérations sur les fonctions dérivables
 - Règles de calcul des dérivées
 - Dérivée d'une fonction composée
 - Dérivée de la réciproque
 - Dérivée d'ordre supérieur
- Applications de la dérivation
 - Sens de variation
 - Théorème de Rolle, théorème des accroissement finis
 - Théorème de Rolle
 - Théorème des accroissement finis
 - Règle de l'Hopital
 - Optimisation
 - Concavité et convexité
 - Maximum et minimum
 - Condition d'existence d'extremum
 - Condition du second ordre

Définitions

Définition 1

Soit f une fonction définie sur un intervalle $I \subseteq \mathbb{R}$. On dit que f est dérivable en x_0 si $\lim_{x_0} \frac{f(x) - f(x_0)}{x - x_0}$ existe et est finie.

Dans ce cas, on note : $f'(x_0) = \lim_{x_0} \frac{f(x) - f(x_0)}{x - x_0}$ la **dérivée** de f en x_0 .

Exemple 1

En utilisant la définition, déterminer la dérivée de $f(x) = x^2$.

$$f'(x_0) = \lim_{x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = 2x_0.$$
 D'où $f'(x) = 2x$, $\forall x \in \mathbb{R}$.

Définitions

Définition 2

On dit que f est dérivable à gauche (resp. à droite) en x_0 si $\lim_{x_0^-(x_0^+)} \frac{f(x) - f(x_0)}{x - x_0}$ existe et est finie.

Dans ce cas, cette limite est appelée dérivée à gauche (resp. à droite) de f en x_0 et est notée $f_g'(x_0)$ (resp. $f_d'(x_0)$).

Théorème 1

Soit f une fonction définie sur un voisinage $V(x_0)$. f est dérivable en x_0 ssi f est dérivable à droite et à gauche en x_0 et $f_d'(x_0) = f_q'(x_0)$.

Exercice 1

Étudier la dérivabilité de la fonction f au point $x_0 = 0$ dans les deux cas suivants : a) $f(x) = \sqrt{1 + 2x + x^2}$; b) f(x) = |x|.

Définitions

Théorème 2

Si f est dérivable en x_0 , alors f est continue en x_0 .

Exercice 2

Démontrer le théorème précédent.

Fonctions de références

Les fonctions de références suivantes sont dérivables sur leurs domaines respectifs dont les expressions de leurs dérivées sont données comme suit :

f(x)	D_f	f'(x)	f(x)	D_f	f'(x)
$a (a \in \mathbb{R})$	\mathbb{R}	0	$x^{\alpha} \ (\alpha \in \mathbb{Q})$	\mathbb{R} ou \mathbb{R}^* ou \mathbb{R}^*_+	$\alpha x^{\alpha-1}$
$\exp x$	\mathbb{R}	$\exp x$	$\ln x$	\mathbb{R}_+^*	$\frac{1}{x}$
$\sin x$	\mathbb{R}	$\cos x$	$\tan x$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} [2\pi] \right\}$	$\frac{1}{\cos^2 x}$
$\cos x$	\mathbb{R}	$-\sin x$			

Calcul de dérivées

Soient f et g deux fonctions continues et dérivables sur un intervalle I, soit $\lambda \in \mathbb{R}.$ On a alors :

- $\frac{f}{g}$ est dérivable et $\left(\frac{f}{g}\right)' = \frac{f'g g'f}{g^2} \; (g \neq 0)$
- $\frac{1}{g}$ est dérivable et $\left(\frac{1}{g}\right)' = \frac{-g'}{g^2} \ (g \neq 0)$
- \bullet si f>0, et si $\alpha\in\mathbb{Q}$, f^{α} est dérivable et $(f^{\alpha})'=\alpha f'f^{\alpha-1}$

Exemple 2

Déterminer les dérivées des fonctions suivantes :

$$f(x) = \frac{4\sqrt{x}}{x^2 - 2};$$
 $g(x) = 4x^{\frac{1}{6}}.$

Dérivée d'une fonction composée

Proposition 1

Soit $f: I \mapsto \mathbb{R}$ et $g: J \mapsto \mathbb{R}$ tel que $f(I) \subseteq J$. Si f est dérivable sur I et g est dérivable sur f(I), alors $g \circ f$ est dérivable sur I et $(g \circ f)' = f'(g' \circ f)$

Exercice 3

- 1) Montrer que la dérivée de $f(x) = \sqrt{u(x)}$ est $\frac{u'(x)}{2\sqrt{u(x)}}$
- 2) Montrer que la dérivée de $f(x) = \ln{(u(x))}$ est $\frac{u'(x)}{u(x)}$

Dérivé de la réciproque

Théorème 3

Si f est une fonction dérivable et strictement monotone sur I et si $f'(x) \neq 0, \ \forall x \in I$, alors $f^{-1}(x)$ est dérivable sur J = f(I) et on a

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} \ \forall x \in J$$

Exemple 3

La fonction $f(x)=x^2$ définie sur \mathbb{R}_+ est une bijection de \mathbb{R}_+ dans \mathbb{R}_+ , donc sa réciproque f^{-1} est dérivable sur \mathbb{R}_+^* et $\forall x>0$, on a

$$\left(f^{-1}\right)'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{2f^{-1}(x)} = \frac{1}{2\sqrt{x}}$$

Dérivée d'ordre supérieur

Définition 3

Soit f une fonction définie et dérivable sur $I \subseteq \mathbb{R}$. Sa dérivée f' est appelée dérivée **première**.

Si f' est dérivable, on appelle la dérivée de f' la dérivée seconde de f, notée f'' ou $f^{(2)}$.

La dérivée **troisième**, notée $f^{(3)}$, est la dérivée de la dérivée seconde. La dérivée **n-ième** de f, notée $f^{(n)}$ est la dérivée de la dérivée n-1) ième de f (si elle existe).

RQ: $f^{(n)}$ existe ssi $f', f'', \dots, f^{(n-1)}$ existent et $f^{(n-1)}$ est dérivable.

Théorème 4 (Formule de Leibniz)

Soient f et g deux fonctions n fois dérivables sur $I\subseteq\mathbb{R}$. Alors $f\times g$ est n fois dérivable sur I et on a :

$$(f \times g)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}$$

Dérivée d'ordre supérieur

Exercice 4

Calculer la dérivée n-ième des fonctions suivantes :

$$f(x) = x^2 \exp(x),$$
 $g(x) = x \ln(x)$

Exercice 5

- 1) Déterminer par récurrence la dérivée d'ordre n de la fonction :
- $x \to (x+a)^{-1}$, pour tout $x \neq -a$.
- 2) Trouver deux réels α et β tels que :

$$\forall x \in \mathbb{R} \setminus \{-1, 2\}, \quad \frac{2x - 5}{(x - 2)(x + 1)} = \frac{\alpha}{x - 2} + \frac{\beta}{x + 1}.$$

En déduire la dérivée d'ordre n de la fonction : $x \to \frac{2x-5}{(x-2)(x+1)}$.

Dérivée d'ordre supérieur

Définition 4

Soit f une fonction définie sur $I \subseteq \mathbb{R}$. On dit que f est de classe \mathcal{C}^n si f est n fois dérivable et que $f^{(n)}$ est continue.

Si f est de classe $C^n \ \forall n \in \mathbb{N}$, alors f est dite de classe C^{∞} .

Exemple 4

La fonction $\exp(x)$ est n fois dérivable et $f^{(n)}$ est continue pour tout $n \in \mathbb{N}$, donc elle est de classe \mathcal{C}^{∞}

Sens de variation

Proposition 2

Soit f une fonction de \mathbb{R} dans \mathbb{R} , dérivable sur un intervalle ouvert I.

- Si f' > 0 sur I, alors f est strictement croissante sur I.
- Si f' < 0 sur I, alors f est strictement décroissante sur I.
- Si $f' \ge 0$ (resp. $f' \le 0$) sur I, alors f est croissante (resp. décroissante) sur I.
- Si f' = 0 sur I, alors f est constante sur I.

Exercice 6

Étudier les variations de la fonction $f(x) = x \exp(-x)$ sur \mathbb{R} .

Théorème de Rolle

Théorème 5

Soit $f:[a,b] \to \mathbb{R}$ telle que

- f est continue sur [a,b],
- ullet f est dérivable sur]a,b[,
- f(a) = f(b).

Alors il existe au moins $c \in]a,b[$ tel que f'(c)=0.

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est horizontale.

T.A.F

Théorème 6 (T.A.F)

Si f est continue sur [a,b] et dérivable sur]a,b[, alors il existe un réel $c\in]a,b[$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est parallèle à la droite (AB) où A=(a,f(a)) et B=(b,f(b)).

T.A.F

Exercice 7

- 1) Soit $f(x) = \sqrt{x}$. Appliquer le T.A.F sur l'intervalle [100, 101]. En déduire l'encadrement $10 + \frac{1}{22} \le \sqrt{101} \le 10 + \frac{1}{20}$.
- 2) En utilisant le T.A.F, montrer que

$$\forall x > 0, \frac{1}{x+1} < \ln(x+1) - \ln(x) < \frac{1}{x}$$

1) f est continue et dérivable sur \mathbb{R}_+^* , donc elle est continue sur [100,101] et dérivable sur]100,101[. D'où, d'après le T.A.F, il existe un réel $c\in]100,101[$ tel que $f'(c)=\frac{1}{2\sqrt{c}}=\sqrt{101}-\sqrt{100}.$

$$100 < c < 101 \Longrightarrow 20 < 2\sqrt{c} < 2\sqrt{101} < 22 \Longrightarrow \frac{1}{22} < \frac{1}{2\sqrt{c}} < \frac{1}{20}$$

Donc
$$\frac{1}{22} < \sqrt{101} - \sqrt{100} < \frac{1}{20} \Longrightarrow 10 + \frac{1}{22} < \sqrt{101} < 10 + \frac{1}{20}$$

I.A.F

Théorème 7 (Inégalité des accroissements finis)

Si f est continue sur [a,b] et dérivable sur]a,b[et s'il existe deux réels m et M tels que : $\forall x \in]a,b[,\ m \leq f'(x) \leq M$, alors

$$m \le \frac{f(b) - f(a)}{b - a} \le M$$

Exemple 5

En appliquant les I.A.F, montrer que :

$$\forall x > 0, \ \frac{1}{2\sqrt{x+1}} < \sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}}$$

Règle de l'Hopital

Théorème 8 (Règle de l'Hopital)

Soient f et g deux fonctions dérivables sur un intervalle]a,b[contenant un réel c et $g'(x) \neq 0 \ \forall \ x \in]a,b[\setminus \{c\}.$

$$\operatorname{Si} \lim_{c} \frac{f(x)}{g(x)} = \frac{0}{0} \text{ ou } \frac{\infty}{\infty} \text{ et } \lim_{c} \frac{f'(x)}{g'(x)} = \ell, \text{ alors } \lim_{c} \frac{f(x)}{g(x)} = \ell.$$

RQ:c peut être fini ou infini.

On peut appliquer la règle de l'Hopital n fois successives.

Cette règle est applicable pour d'autres formes indéterminées telles que :

$$0 \times \infty$$
, 0^0 , ∞^0 et $\infty - \infty$.

Exemple 6

$$\lim_{1} \frac{x-1}{\ln x} = \lim_{1} \frac{1}{1/x} = \lim_{1} x = 1.$$

Règle de l'Hopital

Exercice 8

En utilisant la règle de l'Hopital, déterminer les limites suivantes :

$$\lim_{0^+} x^x, \ \lim_{\infty} \frac{e^x}{x^n}, \ \lim_{+\infty} x \ln \left(1 + \frac{1}{x} \right)$$

Concavité et convexité

Définition 5

Une fonction f est dite **convexe** sur un intervalle [a,b] si quels que soient deux points A et B du graphe de la fonction, le segment [AB] est entièrement situé **au-dessus** du graphe. Formellement, f est convexe si :

$$f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y), \ \ \forall \ x,y \in [a,b] \ \text{et} \ \alpha \in [0,1]$$

Concavité et convexité

Définition 6

Une fonction f est dite **concave** sur un intervalle [a,b] si -f est **convexe**. Formellement, f est concave si :

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y), \ \ \forall \ x, y \in [a, b] \ \text{et} \ \alpha \in [0, 1]$$

Concavité et convexité

Proposition 3

Si f est deux fois dérivable sur [a,b], f est **convexe** (resp. **concave**) si et seulement si $\mathbf{f''}(\mathbf{x}) \geq \mathbf{0}$ (resp. $\mathbf{f''}(\mathbf{x}) \leq \mathbf{0}$).

Exemple 7

La fonction ln(x) est concave sur \mathbb{R}_{+}^{*} , en effet

$$(\ln(x))'' = -1/x^2 < 0, \ \forall \ x > 0.$$

Par contre la fonction $\exp(x)$ est convexe sur \mathbb{R} car

$$(\exp(x))'' = \exp(x) > 0, \ \forall \ x \in \mathbb{R}.$$

Exercice 9

Étudier la concavité des fonctions suivante :

$$f(x) = \sqrt{x}, \ g(x) = 3x^2 - 1.$$

Maximum et minimum

Définition 7

Soit f une fonction définie sur I contenant a.

- **①** On dit que f admet un **maximum local** (resp. **minimum local**) en a si et seulement si il existe un intervalle ouvert J contenant a tel que $J \subset I$ et pour tout $x \in J$ on $a : \mathbf{f}(\mathbf{x}) \leq \mathbf{f}(\mathbf{a})$ (resp. $\mathbf{f}(\mathbf{x}) \geq \mathbf{f}(\mathbf{a})$)
- ② On dit que f admet un **maximum global** (resp. **minimum global**) en a si et seulement si pour tout $x \in I$ on $a : \mathbf{f}(\mathbf{x}) \leq \mathbf{f}(\mathbf{a})$ (resp. $\mathbf{f}(\mathbf{x}) \geq \mathbf{f}(\mathbf{a})$).
- **3** On dit que f admet un extremum en a si et seulement si f admet un maximum ou un minimum en a.

Maximum et minimum

Condition d'existence d'extremum

Proposition 4

Si f est continue sur [a,b], alors f admet un maximum global et un minimum global sur [a,b].

Théorème 9 (Condition nécessaire)

Si f est dérivable en $a \in I$ et si f admet un extremum local en a, alors f'(a) = 0.

Définition 8

Un point a en lequel f est dérivable et f'(a) = 0 est appelé **point** critique.

Condition du second ordre

Théorème 10

Soit f une fonction deux fois dérivable sur un intervalle ouvert I et x_0 un point critique de f . Alors :

- Si $f''(x_0) > 0$, f présente en x_0 un minimum local.
- 2 Si f''(x0) < 0, f présente en x_0 un maximum local.
- 3 Si f''(x0) = 0, on ne peut rien dire.

Condition du second ordre

Théorème 10

Soit f une fonction deux fois dérivable sur un intervalle ouvert I et x_0 un point critique de f . Alors :

- Si $f''(x_0) > 0$, f présente en x_0 un minimum local.
- 2 Si f''(x0) < 0, f présente en x_0 un maximum local.
- 3 Si f''(x0) = 0, on ne peut rien dire.

Théorème 11

Soit f une fonction concave (resp. convexe) sur intervalle ouvert I. Si x_0 est un point critique pour f, alors f présente en x_0 un maximum (resp. minimum) **global** sur I.

Exercice 10

Soit f la fonction définie par $f(x) = x^3 - 12x + 3$.

- lacktriangle Déterminer les extrema de f.
- 2 Les extrema de f sont-ils globaux?