

Programmazione Lineare: Analisi di Sensitività

Daniele Vigo
D.E.I. – Università di Bologna
daniele.vigo@unibo.it

rev. 1.0 - 2023

Analisi di sensitività

- Studio della variazione della soluzione ottima (base ottima) al variare dei coefficienti del problema:
 - costi
 - termini noti
 - coefficienti della matrice tecnologica
- determinazione del range di variazione nel quale la base ottima non cambia
- si considera la variazione di un solo coefficiente alla volta

Esempio: mix fertilizzanti

- 2 tipi di fertilizzanti (A e B),
- 2 materie prime (Azoto e Potassio)

tipo q. Azoto q. Potassio prezzo (€/q)

A 0.1 0.3 200

B 0.2 0.1 300

• disponibilità: 8 q. di Azoto, 9 q. di Potassio

determinare il mix che massimizza il ricavo

Modello di PL

• x_1 = q. di fertilizzante A da produrre x_2 = q. di fertilizzante B da produrre

max
$$200x_1 + 300 x_2$$

 $0.1 x_1 + 0.2 x_2 \le 8 *10$
 $0.3 x_1 + 0.1 x_2 \le 9 *10$
 $x_1, x_2 \ge 0$

meglio avere coefficienti interi e piccoli in v. ass.

Forma standard

min-200
$$x_1 - 300 x_2$$

 $x_1 + 2 x_2 + x_3 = 80$
 $3 x_1 + x_2 + x_4 = 90$
 $x_1, x_2, x_3, x_4 \ge 0$

		x_1	x_2	x_3	\mathcal{X}_4
Z	0	-200	-300	0	0
x_3	80	1	2	1	0
x_4	90	3	1	0	1

Soluzione (1)

		$\overset{\bullet}{x}_1$	x_2	x_3	\mathcal{X}_4
Z	0	-200	-300	0	0
x_3	80	1	2	1	0
\mathcal{X}_4	90	3	1	0	1
				•	•
		x_1	$\overset{\bullet}{x}_2$	x_3	x_4
Z	6000	0	-700/3	0	200/3
x_3	50	0	5/3	1	-1/3
x_1	30	1	1/3	0	1/3

$r_0' = r_0 + 200/3r_2$
$r_1' = r_1 - r_2'$
$r_2' = r_2/3$

Soluzione (2)

		x_1	\mathcal{X}_2	x_3	\mathcal{X}_4
Z	6000	0	-700/3	0	200/3
x_3	50	0	(5/3)	1	-1/3
x_1	30	1	1/3	0	1/3
1			1/ 5		1/

$$r_0' = r_0 + 700/3 r_1'$$
 $r_1' = r_1 * 3/5$
 $r_2' = r_2 - r_1/5$

		x_1	\mathcal{X}_2	x_3	x_4
Z	13000	0	0	140	20
x_2	30	0	1	3/5	-1/5
x_1	20	1	0	-1/5	2/5

STOP

$$z = 13*10^3 E$$

Soluzione grafica

Variazione di un coeff. di costo

Variazione di un termine noto

Condizioni di ottimalità

(P) min {
$$c^T x : Ax = d, x \ge 0$$
 }

- $x_B = B^{-1}d B^{-1}F x_F$
- soluzione base: $x_B = B^{-1}d \ge 0$, $x_F = 0$
- $z = c_B^T B^{-1} d + (c_F^T c_B^T B^{-1} F) x_F$
- è ottima se: $B^{-1}d \ge 0$, $c' = (c_F^T c_B^T B^{-1}F) \ge 0$

Variazione di un termine noto (1)

• termine noto della riga $k: d_k \to (d_k + \varepsilon_k)$

$$\Rightarrow x_B = B^{-1} (d + \varepsilon_k I_k) \ge 0$$

 ε_k tale che x_B rimanga ammissibile

definiamo $B^{-1} = [b_{ij}]$

$$x_{\beta(i)} = \sum_{j=1,m} b_{ij}d_j + \varepsilon_k b_{ik} \ge 0 \qquad i = 1, ..., m$$

- Tre casi:
- a) $b_{ik} = 0 \implies$ sempre verificato

Variazione di un termine noto (2)

b)
$$b_{ik} > 0 \Rightarrow \qquad \varepsilon_k \ge \frac{-\sum_{j=1,m} b_{ij} d_j}{b_{ik}} \qquad \forall i: b_{ik} > 0$$

c)
$$b_{ik} < 0 \Rightarrow \qquad \varepsilon_k \le \frac{-\sum_{j=1,m} b_{ij} d_j}{b_{ik}} \qquad \forall i: b_{ik} < 0$$

$$\max_{b_{ik}>0} \frac{-\sum_{j=1,m} b_{ij} d_j}{b_{ik}} \leq \varepsilon_k \leq \min_{b_{ik}<0} \frac{-\sum_{j=1,m} b_{ij} d_j}{b_{ik}}$$

Esempio fertilizzanti

Esempio fertilizzanti

Variazione di un costo (1)

- Caso 1: variabile non in base
- costo colonna $h (> m) : c_h \rightarrow (c_h + \varepsilon_h)$
- determinare ε_h tale che x_B rimanga ottima

$$c'_{h} = c_{h} - [c_{B}B^{-1}F]_{h}$$

$$c'_{h} \rightarrow (c_{h} + \varepsilon_{h}) - [c_{B}B^{-1}F]_{h} =$$

$$c'_{h} + \varepsilon_{h} \ge 0$$

$$da \text{ cui } \varepsilon_{h} \ge -c'_{h}$$

Variazione di un costo (2)

- Caso 2: variabile in base
- costo colonna $h (\leq m) : c_h \to (c_h + \varepsilon_h)$
- sia $b_h = h$ -sima riga di B^{-1}

$$c'_{j} \to c_{j} - ([c_{B} B^{-1} F]_{j} + \varepsilon_{h} b_{h} A_{j}) \ge 0 \quad j = m+1, ..., n$$

$$c'_{j} - \varepsilon_{h} b_{h} A_{j} = c'_{j} - \varepsilon a'_{hj} \ge 0 \quad j = m+1, ..., n$$

- Tre casi:
- a) $a'_{hj} = 0 \implies$ sempre verificato

Variazione di un costo (3)

b)
$$a'_{hj} > 0 \Rightarrow \varepsilon_h \le \frac{c'_j}{a'_{hj}} \quad \forall j : a'_{hj} > 0$$

c)
$$a'_{hj} < 0 \Rightarrow \varepsilon \ge \frac{c'_{j}}{a'_{hj}} \quad \forall j : a'_{hj} < 0$$

$$\max_{\substack{a'_{hj} < 0}} \frac{c'_{j}}{a'_{hj}} \leq \varepsilon_{h} \leq \min_{\substack{a'_{hj} > 0}} \frac{c'_{j}}{a'_{hj}}$$

Esempio fertilizzanti

		x_1	x_2	x_3	\mathcal{X}_4
Z	13000	0	0	140	20
x_2	30	0	1	3/5	-1/5
x_1	20	1	0	-1/5	2/5

$$\varepsilon_h \ge \max_{a'_{hj} < 0} \frac{(c'_j)}{a'_{hj}}$$

$$\varepsilon_h \leq \min_{\substack{a'_{hj} > 0}} \frac{c'_j}{a'_{hj}}$$

$$\sqrt{k} = 1$$

$$\varepsilon_h \le 20 / (2/5) = 50$$

$$\varepsilon_h \ge 140 / (-1/5) = -700$$

$$-200-700 = -900 \le c_1 \le -200+50 = -150$$

Esempio fertilizzanti

		x_1	x_2	x_3	x_4
Z	13000	0	0	140	20
x_2	30	0	1	3/5	-1/5
x_1	20	1	0	-1/5	2/5
	—— —				

$$\varepsilon_h \ge \max_{a'_{hj} < 0} \frac{(c'_j)}{a'_{hj}}$$

Esempio 2: Mix di produzione

- 2 tipi di prodotti (A e B),
- 2 materie prime (P e Q)

- produzione di B ≤ 1.5 volte produzione di A
- disponibilità: 30 t di P, 32 t di Q
- determinare il mix che massimizza il ricavo

ST ON ORUM

Mix di produzione (2)

• x_1 = tonnellate di A da produrre x_2 = tonnellate di B da produrre

$$z = \text{Max}$$
 100 $x_1 + 100 x_2$
s.t. $6 x_1 + 5 x_2 \le 30$
 $4 x_1 + 8 x_2 \le 32$
 $-3 x_1 + 2 x_2 \le 0$
 $x_1 x_2 \ge 0$

• z è espressa in decine di Euro

Mix di produzione (3)

$$-z = - \text{Min } -100 \ x_1 -100 \ x_2$$
s.t.
$$6 \ x_1 +5 \ x_2 + x_3 = 30$$

$$4 \ x_1 +8 \ x_2 + x_4 = 32$$

$$-3 \ x_1 +2 \ x_2 + x_3 = 0$$

$$x_1 x_2 x_3 x_4 x_5 \ge 0$$

_		x_1	x_2	x_3	\mathcal{X}_4	x_5
- Z	0	-100	-100	0	0	0
x_3	30	6	5	1	0	0
x_4	32	4	8	0	1	0
x_5	0	-3	2	0	0	1

Mix di produzione (4)

_		x_1	x_2	x_3	x_4	x_5
- Z	500	0	-50/3	50/3	0	0
x_1	5	1	5/6	1/6	0	0
x_4	12	0	14/3	2/3	1	0
x_5	15	0	9/2	1/2	0	1
•		34	34	36	30	36

		x_1	x_2	x_3	\mathcal{X}_4	x_5
- Z	3800/7	0	0	100/7	25/7	0
x_1	20/7	1	0	2/7	-5/28	0
x_2	18/7	0	1	-1/7	3/14	0
x_5	24/7	0	0	8/7	-27/28	1

Mix di produzione (4)

• Soluzione Ottima : $x_1 = 20/7$ ton, $x_2 = 18/7$ ton; profitto complessivo 38.000/7 Euro

Mix di produzione (5)

Analisi di sensitività rispetto a d₁

(colonna x₃ in base su riga 1 nel tableau iniziale)

	x_1	x_2	x_3	x_4	x_5
3800/7	0	0	100/7	25/7	0
20/7	1	0	2/7	-5/28	0
18/7	0	1	-1/7	3/14	0
24/7	0	0	8/7	-27/28	1
	20/7	3800/7 0 20/7 1 18/7 0	3800/7 0 0 20/7 1 0 18/7 0 1	3800/7 0 0 100/7 20/7 1 0 2/7 18/7 0 1 -1/7	3800/7 0 0 100/7 25/7 20/7 1 0 2/7 -5/28 18/7 0 1 -1/7 3/14

•
$$\varepsilon \ge \max\{-(20/7)/(2/7), -(24/7)/(8/7)\} = -3,$$

•
$$\varepsilon \le -(18/7)/-(1/7) = 18$$

•
$$30-3 \le d_1 \le 30 + 18 \implies 27 \le d_1 \le 48$$

Mix di produzione (6)

Analisi di sensitività rispetto a d₂

(colonna x₄ in base su riga 2 nel tableau iniziale)

_		x_1	x_2	x_3	x_4	x_5
- Z	3800/7	0	0	100/7	25/7	0
x_1	20/7	1	0	2/7	-5/28	0
x_2	18/7	0	1	_1/7	3/14	0
x_5	24/7	0	0	8/7	-27/28	1
•				_		

- $\varepsilon \ge -(18/7)/(3/14) = -12$,
- $\varepsilon \le \min\{-(20/7)/-(5/28), -(24/7)/-(27/28)\} = 32/9$
- $32-12 \le d_2 \le 32 + 32/9 \implies 20 \le d_2 \le 35.55...$

Mix di produzione (7)

- Analisi di sensitività rispetto ai costi
- Dal tableau si ottengono gli intervalli rispetto ai costi del problema in forma standard (c')
- In questo caso siccome il problema originale è in forma di massimo si ha che c' = -c
- Gli intervalli ottenuti rispetto ai c' vanno quindi moltiplicati per –1 per ottenere quelli rispetto ai c

Mix di produzione (8)

- Analisi di sensitività rispetto a c₁
 - (colonna x_1 in base su riga 1 nel tableau finale)

_		x_1	x_2	x_3	\mathcal{X}_4	x_5
- Z	3800/7	0	0	100/7	25/7	0
x_1	20/7	1	0	2/7	-5/28	0
x_2	18/7	0	1	-1/7	3/14	0
x_5	24/7	0	0	8/7	-27/28	1

•
$$\varepsilon \ge (25/7)/-(5/28) = -20$$
; $\varepsilon \le (100/7)/(2/7) = 50$

•
$$-100-20 \le c_1' \le -100 + 50 \implies -120 \le c_1' \le -50$$

•
$$50 \le c_1 \le 120$$

Mix di produzione (9)

- Analisi di sensitività rispetto a c₂
 - (colonna x_2 in base su riga 2 nel tableau finale)

_		x_1	x_2	x_3	\mathcal{X}_4	x_5
- Z	3800/7	0	0	100/7	25/7	0
x_1	20/7	1	0	2/7	-5/28	0
x_2	18/7	0	1	-1/7	3/14	0
x_5	24/7	0	0	8/7	-27/28	1

•
$$\varepsilon \ge (100/7)/-(1/7) = -100$$
; $\varepsilon \le (25/7)/(3/14) = 50/3$

•
$$-100-100 \le c_2' \le -100 + 50/3$$

•
$$83.333... \le c_2 \le 200$$