

Experimento 2: Simulações com Amplificadores Operacionais

Yuri Shumyatsky

231012826@aluno.unb.br 231012826 Turma T02

Objetivo

O experimento tem por objetivo difundir o entendimento sobre como funcionam os amplificadores operacionais e suas diversas configurações, como a não inversora, a inversora, buffer e diferencial. Além disso, os circuitos foram simulados no software LTspice de forma a demonstrar que todos os conceitos estudados (curto virtual, a necessidade de alimentação externa, entre outros) são válidos.

1. Introdução

Os amplificadores operacionais (amps. ops.) são dispositivos eletrônicos fundamentais na área de eletrônica analógica, amplamente utilizados em diversas aplicações como amplificação de sinais, filtros ativos, circuitos matemáticos e instrumentação. Devido à sua alta versatilidade, permitem a implementação de uma grande variedade de configurações, cada uma com propriedades específicas de ganho, impedância e resposta em frequência.

Neste experimento, buscou-se explorar algumas das configurações mais comuns de amplificadores operacionais, a saber: inversora, não inversora, buffer (seguidor de tensão), integradora e amplificadora de diferença. Além de observar experimentalmente os efeitos de cada uma dessas configurações, também foi possível verificar fenômenos intrínsecos ao funcionamento dos amps. ops., como a existência do curto virtual, a saturação da saída quando a tensão excede os limites de alimentação e as propriedades de impedância de entrada e saída.

A simulação foi realizada no software LTspice, que possibilita analisar de forma prática e visual o comportamento dos circuitos, reforçando a teoria estudada em sala de aula. Os resultados obtidos permitem compreender não apenas o funcionamento ideal dos amps. ops., mas também os efeitos não ideais inerentes aos modelos reais utilizados.

2. Fundamentação teórica

O amplificador operacional ideal é um dispositivo de ganho infinito, com impedância de entrada infinita e impedância de saída nula. Na prática, esses valores são limitados, mas ainda suficientemente elevados para que os conceitos básicos de projeto se mantenham válidos.

A seguir, são apresentadas as configurações estudadas:

 Amplificador inversor: Nesta configuração, a entrada é aplicada ao terminal inversor através de um resistor R₁, enquanto o resistor R₂ faz a realimentação negativa. O ganho é dado por:

$$G = -\frac{R_2}{R_1}$$

A saída é defasada de 180° em relação à entrada.

 Amplificador não inversor: A entrada é aplicada ao terminal não inversor, enquanto o divisor resistivo (R₁ e R₂) faz a realimentação no terminal inversor. O ganho é:

$$G = 1 + \frac{R_2}{R_1}$$

A saída está em fase com a entrada e apresenta elevada impedância de entrada.

- Buffer (seguidor de tensão): É o caso particular do amplificador não inversor com $R_1 \to \infty$ e $R_2 = 0$, resultando em ganho unitário (G = 1). Sua principal utilidade é isolar estágios de circuito, devido à alta impedância de entrada e baixa impedância de saída.
- Integrador: Obtido substituindo R₂ por um capacitor
 C no circuito inversor. A saída passa a ser proporcional à integral da entrada:

$$V_{out}(t) = -\frac{1}{R_1 C} \int V_{in}(t) dt$$

Por exemplo, para uma entrada quadrada, a saída será uma forma de onda triangular.

1

Amplificador de diferença: Essa configuração amplifica a diferença entre dois sinais de entrada, sendo sua equação:

$$V_{out} = \frac{R_2}{R_1} (V_2 - V_1)$$

quando os resistores estão devidamente casados. Essa configuração é base para amplificadores de instrumentação e sistemas de rejeição de ruído em modo comum.

Além dessas configurações, o estudo também permite observar fenômenos importantes como a **saturação**, que ocorre quando V_{out} tenta ultrapassar os limites impostos pelas tensões de alimentação do amp. op., e o **curto virtual**, conceito essencial em que os terminais de entrada (inversor e não inversor) apresentam praticamente o mesmo potencial em regime linear, devido ao ganho elevado do dispositivo.

3. Simulações

3.1. Importação de Componentes

Foi feita a importação do modelo SPICE do amp. op. **MC1458** e montado com ele um amplificador inversor, com $R_1=1k\Omega$ e $R_2=3k\Omega$, valores escolhidos para que o ganho seja |G|=3. Como sabemos, para essa configuração o ganho é de $G=-\frac{R_2}{R_1}$.

Figura 1. Circuito inversor com MC1458

3.2. Circuito inversor

Foi montado o circuito inversor com $R_1=31k\Omega$, $R_2=1k\Omega$ e alimentado por tensões de $\pm 20V$. Primeiro, a entrada é dada como uma senoide de 28Hz e amplitude de 0.26V

Figura 2. Circuito inversor com LM741

Figura 3. Saída do circuito inversor

Como esperado, de fato o ganho é baixo, de -0.0322.

Foram medidas as tensões nos pinos 2 e 3, no entanto o pino 3 está conectado diretamente ao GND e portanto não sua tensão não pôde ser plotada.

Figura 4. Tensão pino 2

A tensão é baixa, tendo amplitude máxima de aproximadamente 1mV. De fato, o esperado é que V+ e V- sejam iguais para que haja o curto virtual, mas como o componente não é ideal, esse é o resultado.

Aumentando a tensão gradualmente, nada acontece até V_{out} chegar em 20V de amplitude (a tensão de V_{cc}), em que a saturação começa a fazer efeito. Isso acontece com V_{in} tendo amplitude de 620V.

Figura 5. Saturação

Substituindo R_2 por um capacitor e a entrada por uma onda quadrada de amplitude 10V e período de 20ms, obtemos a seguinte curva:

Figura 6. Substituição para onda quadrada e capacitor

Essa configuração é conhecida como integrador, e de fato a integral deve ser uma onda triangular. Essa simulação foi realizada com 0.1nF. Diminuindo a capacitância para 0.005nF, obtemos a seguinte curva saturada:

Figura 7. Diminuição da capacitância

3.3. Amplificador Não-Inversor

A configuração do circuito agora muda:

Figura 8. Circuito Não-Inversor

Usamos $R_1=31k\Omega$, $R_2=1k\Omega$, o amplificador operacional é alimentado por fontes de $\pm 25V$. Com uma entrada senoidal de 28Hz e amplitude de 0.26V, obtemos as seguintes plotagens para a entrada e saída:

Figura 9. Tensões Não-Inversor

Como esperado, o ganho é de 1.0322, e portanto as tensões são muito próximas.

Para verificar que a impedância de entrada é alta, foi adicionado uma resistência de $1k\Omega$ entre a V_in e a entrada não inversora do amp. op., e a corrente nessa resistência é medida, tendo um valor extremamente baixo, comprovando assim a hipótese.

Medindo as tensões dos pinos 2 e 3 para comprovar o curto virtual, obtemos novamente que um dos pinos está conectado no GND e por isso não é possível plotar a sua tensão, enquanto a outra tensão apresenta amplitude baixa.

Figura 10. Tensões Pinos amp. op.

3.4. Buffer

Novamente a configuração é alterada, dessa vez sem resistências mas com entrada senoidal de frequência 28Hz e amplitude 0.26V.

Figura 11. Circuito Buffer

Como o ganho é unitário, espera-se que a saída seja igual à entrada, o que de fato ocorre na simulação:

Adicionando resistências de $31k\Omega$ e $1k\Omega$,

Figura 13. Buffer com resistências

Espera-se que a dissipação de tensão de R_2 seja a mesma de caso R_1 fosse igual a 0, na situação em que R_1 e R_2 estivessem em série. Isso é comprovado pela simulação, que mostra a amplitude de 260mV esperada.

Figura 14. Saída Buffer

3.5. Amplificador de Diferença

O circuito é montado com $R_1=31k\Omega,\,R_2=1k\Omega,\,V_1=1$ e $V_2=sin(40\pi t),$ i.e. frequência de 20 Hz.

Figura 15. Amplificador de Diferença

Como esperado, a saída é proporcional a $V_1 - V_2$.

Figura 16. Saída Amplificador de Diferença

Referências

 Razavi, B. Fundamentos de Microeletrônica, 2ªEdição, LTC, 2014.