Višje računske metode 2012/13

5. naloga – Molekularna dinamika

Jože Zobec

1 Uvod

Z Nosé-Hooverjevim modelom termostata spremljamo dinamiko čisto klasične verige. Vsak člen koordinato q_i in gibalno količino p_i . Skrajno levi člen je sklopljen s kopeljo, ki je na temperaturi T_L , skrajno desni člen pa s kopeljo ki je na fiksni temperaturi T_R .

Za verigo dolžine N imamo 2N+2 spremenljivk – 2 dodatni spremenljivki prideta iz termostatov. Gibalne enačbe se glase (v brezdimenzijskih količinah predpostavimo, da je $m_j = 1, \forall j$):

$$\frac{\mathrm{d}q_{j}}{\mathrm{d}t} = p_{j}$$

$$\frac{\mathrm{d}p_{j}}{\mathrm{d}t} = -\frac{\partial \tilde{V}(\underline{q})}{\partial q_{j}} - \delta_{j,1}\zeta_{L}p_{1} - \delta_{j,N}\zeta_{R}p_{N}$$

$$\frac{\mathrm{d}\zeta_{L}}{\mathrm{d}t} = \frac{1}{\tau} \left(p_{1}^{2} - T_{L} \right)$$

$$\frac{\mathrm{d}\zeta_{R}}{\mathrm{d}t} = \frac{1}{\tau} \left(p_{N}^{2} - T_{R} \right)$$

Potencial \tilde{V} je v našem primeru

$$\tilde{V}(\underline{q}) = \sum_{k=1}^{N-1} V(q_{k+1} - q_k) + \sum_{k=1}^{N} U(q_k),$$

kjer $V(q_{k+1}-q_k)$ predstavlja interakcijo med členi, $U(q_k)$ pa interakcijo s substratom.

$$V(x) = \frac{1}{2}x^2$$
, $U(x) = \frac{1}{2}x^2 + \frac{\lambda}{4}x^4$.

Odvod (gradient) potenciala \tilde{V} je torej

$$\frac{\mathrm{d}\tilde{V}(\underline{q})}{\mathrm{d}q_{j}} = \frac{\mathrm{d}}{\mathrm{d}q_{j}} \left[\sum_{k=1}^{N-1} V(q_{k+1} - q_{k}) + \sum_{k=1}^{N} U(q_{k}) \right] = \begin{cases} 3q_{j} - q_{j-1} - q_{j+1} + \lambda q_{j}^{3}, & 1 < j < N \\ 2q_{j} - q_{j+1} + \lambda q_{j}^{3}, & j = 1 \\ 2q_{j} - q_{j-1} + \lambda q_{j}^{3}, & j = N \end{cases}$$

Parametra ζ_L in ζ_R predstavljata interakcijo s kopelmi. Parameter τ je časovna konstanta, s katero kopeli regulirata obnašanje na koncéh verige.

2 Račun

Zaradi interakcije s termostatom sistem ni več Hamiltonski (enačbe ne opišejo celotnega sistema, zaradi tega se energija verige ne ohranja). To pomeni, da ne bomo mogli uporabiti simplektičnih integratorjev. Uporabil sem metodo Runge-Kutta reda 8 iz numerične knjižnjice GSL.

Po navodilih je $T_L = 1$ in $T_R = 2$. Časovni parameter τ sem postavil na 1. Najprej si poglejmo temperaturni profil za različne dolžine in različne vrednosti anharmonskega parametra λ . Indeksi verižnih členov za verigo dolžine N tečejo od 1 do N-1.

2.1 Temperaturni profil

Definiran je kot

$$\langle T_i \rangle = \lim_{t \to \infty} \langle p_i^2(t) \rangle = \lim_{t \to \infty} \frac{1}{t} \int_0^t dt' \ p_i^2(t')$$

Slika 1: Vidimo, da je v primeru $\lambda=0$ res profil nekoliko izravnan, v $\lambda\neq0$ pa ne. Kljub temu preveč fluktuira, da bi lahko zanesljivo rekli.

Slika 2: Profil za $\lambda=0$ zelo izravnan, zadržuje se med $\frac{1}{2}(T_L+T_R)$. Ko $\lambda\neq 0$ imamo tudi obnašanje premice ki je na robovih $T_{L,R}$.

Slika 3: Mrtvi čas in čas vzorčenja sta morala biti že zelo dolga ($t_{\rm mrtvi}=20000$ in $t_{\rm vzorčenja}=5000$). Imamo pa zato zelo dobro izpolnjen pogoj Fourierovih fenomenoloških zakonov. Vidimo, da kljub temu graf za $\lambda=4$ pobezlja.

Slika 4: Mrtvi čas in čas vzorčenja je bilo treba še dodatno priviti. Rezultati se bistveno ne razlikujejo od tistih za N=60.

2.2 Toplotni tok

Tok J_j je definiran kot

$$J_j = -\frac{1}{2} (q_{j+1} - q_{j-1}) p_j.$$

Kaj to pomeni za robove ne vemo, zaradi tega sem ga pustil na 0. Rezultati so predstavljeni na sledečih grafih.

Slika 5: Vidimo, da se z večanjem parametra λ tok hitro spreminja in da Fourierov zakon kar dobro drži.

Slika 6: Isto kot prej. Z večanjem N zakon bolje drži.

Slika 7: Isto kot prej. Z večanjem N zakon bolje drži.

Slika 8: Isto kot prej. Z večanjem N zakon bolje drži.

Fourierov zakon napoveduje, da za $\lambda>0$ z večanjem
 N J_j pada kot1/N,oz.

$$\langle J \rangle = \kappa \frac{T_R - T_L}{N}.$$

Tu sem si vzel

$$\langle J \rangle = \frac{1}{N} \sum_{j} \langle J_j \rangle,$$

kar je isto kot dalj časa povprečen $\langle J_j \rangle$, saj je slednji neodvisen od J. Poiščimo κ , oz. poglejmo, če ga je moč poiskati. Mrtvi čas sem vzel 60000, čas merjenja pa 15000, da bi se res znebil čim več fluktuacij in dobil karseda natančno meritev. Meril sem tudi napako

$$\sigma_{\langle J_i \rangle}^2 = \langle J_j^2 \rangle - \langle J_j \rangle^2.$$

Podatki, ki sem jih tako dobil sicer imajo res trend 1/N, vendar so napake ogromne:

Tabela 1: Meritve povprečnih tokov za $\lambda=4$ pri različnih dolžinah verige N. Napake so v primerjavi s povprečnimi vrednostmi ogromne. Menim, da so prevelike za našo oceno parametra κ .

N	$\langle J \rangle$	$\sigma_{\langle J angle}$
10	-0.009294	0.437881
20	-0.006743	0.465594
30	-0.004664	0.461505
40	-0.004223	0.477830
50	-0.002353	0.416358
60	-0.005125	0.399880
70	-0.000791	0.421343
80	-0.002877	0.518759

Kljub vsemu bomo poiskali krivuljo, ki se s trendom κ/N najbolj ujema. Za prilagajanje sem uporabil kar isto orodje, ki ga uporabljam za izris, tj. gnuplot.

Slika 9: Napaka je res velika. Težko je videti rezultat. Numerično je program vrnil, da je $\kappa=-0.11106\pm0.01464=-0.11106\cdot(1\pm0.1318)$.

Sumljivo se mi zdi, da bi bila napaka tako majhna, kljub temu, da je fit upošteval tudi napake v tabeli. Graf narišimo še enkrat brez napak.

Slika 10: Merske napake so očitno upoštevane, sicer bi fit tekel nižje. Vendar pa verjetno niso upoštevane v izračunu napake κ .