

A Systematic Review of Translating Omics Research into Practice: Implementing Precision Rehabilitation Strategies for Spinal Cord Injury

Alexander Stacul^{1,2}, Ezra Valido¹, Nicole Nyfeler¹, Alessandro Bertolo^{1,3}, Ramona Maria Zeh¹, Andrea Fontana⁴, Carla Sabariego^{1,5,6}, Jürgen Pannek^{4,7}, Jörg Krebs⁴, Margaret Hund⁸, Xavier Jordan⁹, Onur Boyman^{10,11}, Alexander Leichtle¹², Marija Glisic^{1,3} and Jivko Stoyanov^{1,3}

¹Swiss Paraplegic Research, Nottwil, Switzerland; ²Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland, ³Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland, ⁴Swiss Paraplegic Center, Nottwil, Switzerland, Clinical Trial Unit, Swiss Paraplegic Center, Nottwil, Switzerland, ⁵Faculty of Lucerne, Lucerne, Switzerland, ⁶Center for Rehabilitation in Global Health Systems, WHO Collaborating Center, University of Lucerne, Lucerne, Switzerland, ⁷Department of Urology, Inselspital, Bern University of Bern, Switzerland, ⁸REHAB Basel, Clinic for Neurorehabilitation and Paraplegiology, Basel, Switzerland, ⁹Clinique Romande de Réadaptation, Sion, Switzerland, ¹⁰Department of Immunology, University of Zurich, Zurich, Switzerland, ¹¹Faculty of Medicine and Faculty of Science, University of Zurich, Zurich, Zurich, Switzerland, ¹²University Institute of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland

pinal cord injury (SCI) can disrupt sensory, motor, and autonomic functions, significantly affecting recovery and quality of life (QoL)¹. Despite these advancements, rehabilitation remains limited due to the complexity of neuronal regeneration and plasticity². Omics-based approaches (genomics, epigenomics, metagenomics, transcriptomics, proteomics, and metabolomics) can provide insights into the molecular mechanisms, such as neuroinflammation, metabolic shifts, and neurological recovery, influencing rehabilitation outcomes³.

Objectives

- Give a comprehensive overview of omics technologies used in analyzing rehabilitation interventions
- Effectiveness of different interventions in SCI rehabilitation, where omics technologies are used to assess biological changes triggered by rehabilitation strategies and assess molecular outcomes.

Three databases (Embase, Medline [Ovid], Web of Science) were searched. The search was last conducted from inception until 27 November 2024 without language and year restrictions. The research was limited to traumatic SCI in humans. Study Articles screening, data extraction and risk of bias assessment (National Heart Lung and Blood Institute Quality Assessment Tool) were done independently by two reviewers.

Literature research:

Main Results

6,021 references retrieved, 136 full-text articles reviewed, 23 trials included

Study characteristics:

> 8 randomized controlled trials (RCTs)

10 pre-post trials

Molecular outcomes

Conclusion

SCI. These methods enable the early identification of molecular changes endocrine function, and inflammation. While not yet part of clinical 30 setting and hold potential for informing the design and monitoring of future strategies

References

¹Ahuja, C.S., et al., Traumatic spinal cord injury. Nature Reviews Disease Omics technologies are increasingly applied in research trials, Primers, 2017. 3(1): p. 17018 DOI: 10.1038/nrdp.2017.18. investigating molecular adaptations of rehabilitation interventions after ²Nagappan, P.G., H. Chen, and D.-Y. Wang, Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving and have shown relevance in analyzing processes related to metabolism, functional recovery postinjury. Military Medical Research, 2020. 7(1): p. DOI: 10.1186/s40779-020-00259-3. routine, omics approaches provide valuable insights in the rehabilitation ³Lee, C.Y., et al., Modulating neuroinflammation through molecular,

cellular and biomaterial-based approaches to treat spinal cord injury. Bioeng Transl Med, 2023. 8(2): p. e10389 DOI: 10.1002/btm2.10389.