1. Find the Thévenin equivalent with respect to the terminals a and b for the circuit in Fig. P4.66.

2. Find the Thévenin equivalent with respect to the terminals a and b for the circuit seen in Fig. P4.77.

3. The variable resistor (R_0) in the circuit in Fig. P4.83 is adjusted until the power dissipated in the resistor is 250 W. Find the values of R_0 that satisfy this condition.

4. a) In the circuit in Fig. P4.95, before the 10 mA current source is attached to the terminals a,b, the current i_0 is calculated and found to be 3.5 mA. Use superposition to find the value of i_0 after the current source is attached.

b) Verify your solution by finding i_0 when all three sources are acting simultaneously.

5. Laboratory measurements on a dc voltage source yield a terminal voltage of 75 V with no load connected to the source and 60 V when loaded with a 20Ω resistor.

- a) What is the Thévenin equivalent with respect to the terminals of the dc voltage source?
- b) Show that the Thévenin resistance of the source is given by the expression

$$R_{Th} = \left(\frac{v_{Th}}{v_0} - 1\right) R_L,$$

where

 $v_{Th} = the The veninvoltage,$

 $v_0 = the terminal voltage corresponding to the load resistance R_L \\$

6. The initial voltage on the $0.5\mu F$ capacitor shown in Fig. P6.19(a) is -20V. The capacitor current has the waveform shown in Fig. P6.19(b).

- a) How much energy, in microjoules, is stored in the capacitor at $t = 500 \mu F$
- b) Repeat (a) for $t = \infty$.

Figure P6.19

7. The two series-connected capacitors in Fig. P6.31 are connected to the terminals of a black box at t = 0 The resulting current i(t) for t > 0 is known to be $800e^{-25t}\mu A$.

- a) Replace the original capacitors with an equivalent capacitor and find $v_0(t)$ for $t \ge 0$.
- b) Find $v_1(t)$ for $t \geq 0$.
- c) Find $v_2(t)$ for $t \ge 0$.
- d) How much energy is delivered to the black box in the time interval $0 \le t < \infty$.
- e) How much energy was initially stored in the series capacitors?
- f) How much energy is trapped in the ideal capacitors?
- g) Show that the solutions for v_1 and v_2 agree with the answer obtained in (f).

Figure P6.31

Ans7:

8. The current in the circuit in Fig. P6.35 is known to be $i_0 = 3e^{-5000t}(cos2000t + 6sin2000t)A$ for $t \le 0^+$. Find $v_1(0^+)$ and $v_2(0^+)$.

Figure P6.35

