Monash University
Faculty of Information Technology

# Lecture 15 Universal Turing Machines

Slides by David Albrecht (2011), modified by Graham Farr (2013).

FIT2014 Theory of Computation

#### Overview

- Tables for Turing Machines
- Encoding
- Decoding
- Definition of a Universal Turing Machine
- Algorithm for a Universal Turing Machine

## Assumptions

- Input Alphabet

  a b
- Tape Alphabet

  a b #
- Start State
  - Numbered I.
- Accept State
  - Numbered 2

## Example



| From | To | Read     | Write    | Move |
|------|----|----------|----------|------|
| 1    | 3  | a        | а        | R    |
| 1    | 3  | b        | b        | R    |
| 3    | 4  | b        | b        | R    |
| 4    | 2  | $\Delta$ | $\Delta$ | R    |

### TM for anbnan



## Table

| From | То | Read | Write | Move |
|------|----|------|-------|------|
| 1    | 3  | а    | #     | R    |
| 3    | 3  | а    | а     | R    |
| 3    | 4  | b    | b     | R    |
| 4    | 4  | b    | b     | R    |
| 4    | 5  | а    | а     | L    |
| 5    | 6  | b    | а     | R    |
| 6    | 6  | а    | а     | R    |
| 6    | 7  | Δ    | Δ     | L    |
| 7    | 8  | а    | Δ     | L    |
| 8    | 9  | а    | Δ     | L    |
| 9    | 9  | а    | а     | L    |
| 9    | 9  | b    | b     | L    |
| 9    | 1  | #    | #     | R    |
| 1    | 2  | Δ    | Δ     | R    |

#### Conditions to Check

- Check whether there is a row with a 1 in the From column.
- Check that there is no row with a 2 in the From column.
- Check there are no two rows with the same numbers in the From and the same letter in the Read column.

## Coding

Integer n

• Code as:  $\mathbf{a}^n \mathbf{b}$ 

| Letter              | Code |
|---------------------|------|
| a                   | aa   |
| b                   | ab   |
| $\overline{\Delta}$ | ba   |
| #                   | bb   |
| L                   | а    |
| R                   | b    |

## Coding the Table

| From | То | Read | Write | Move | Code                    |
|------|----|------|-------|------|-------------------------|
| 1    | 3  | а    | #     | R    | abaaabaabbb             |
| 3    | 3  | а    | а     | R    | aaabaaabaaaab           |
| 3    | 4  | b    | b     | R    | aaabaaaabababb          |
| 4    | 4  | b    | b     | R    | aaaabaaaabababb         |
| 4    | 5  | а    | а     | L    | aaaabaaaabaaaaa         |
| 5    | 6  | b    | а     | R    | aaaaabaaaaababaab       |
| 6    | 6  | а    | а     | R    | aaaaaabaaaabaaaab       |
| 6    | 7  | Δ    | Δ     | L    | aaaaaabaaaaaabbabaa     |
| 7    | 8  | а    | Δ     | L    | aaaaaaabaaaaaaabaabaa   |
| 8    | 9  | а    | Δ     | L    | aaaaaaabaaaaaaabaabaa   |
| 9    | 9  | а    | а     | L    | aaaaaaaabaaaaaaaabaaaaa |
| 9    | 9  | b    | b     | L    | aaaaaaaabaaaaaaaabababa |
| 9    | 1  | #    | #     | R    | aaaaaaaababbbbbb        |
| 1    | 2  | Δ    | Δ     | R    | abaabbabab              |

## Encoding of the TM

## Code Word Language (CWL)

- CWL is the regular language
   (a<sup>+</sup>ba<sup>+</sup>b (a ∪ b)<sup>5</sup>)\*
- Words which encode a TM belong to CWL.
- Note:

Not all words in CWL encode a TM

#### Decode

| From | To | Read     | Write    | Move |
|------|----|----------|----------|------|
| 1    | 3  | a        | а        | R    |
| 1    | 3  | b        | b        | R    |
| 3    | 4  | b        | b        | R    |
| 4    | 2  | $\Delta$ | $\Delta$ | R    |

## Algorithm

- I. Count the initial clump of a's.
- 2. Count the next clump of a's.
- 3. Read the next two letters.
- 4. Read the next two letters.
- 5. Read the next letter.
- 6. Repeat until there are no more letters.

#### Definition

#### An Universal Turing Machine (UTM) is

A Turing Machine

Can run any TM on any input data.

## Example



- Turing Machine
   abaaabaaaababababababaaabaaaab
- Databaa

## Input for UTM

Turing Machine (encoded)



Start of Tape

Mark to indicate start of Data



#### Exercise

#### Suppose:

- **U** is a UTM,
- T is a TM
- $\bullet$  x is an input string for T, with length(x) = n.
- When T is run on input x, it takes time t and visits at most s tape cells.

Using the algorithm outline of the previous slide, and the encoding scheme for TMs given in this lecture:

Determine an upper bound for the time taken by U to simulate the running of T on input x.

Give the bound in terms of t, s and n.

## Importance of UTMs

- theoretical model of one computer simulating another
- Stored-program computer
- von Neumann architecture
- Enables us to ask whether various problems about computers can be solved algorithmically.
- For example, are there algorithmic solutions for:
  - Given a program, with some input, does it eventually stop?
  - Given two programs, do they always behave the same?
  - Does a given program meet its specifications?

#### Revision

- Know how to encode a Turing Machine.
- Know how to decode Turing Machine representation.
- Know what a Universal Turing Machine is, and what it does.
- Understand why UTMs exist.