Reijo Jaakkola reijo.jaakkola@tuni.fi

Tampere University

April 24, 2024

April 24, 2024

April 24, 2024

Herd behavior in the stock market

The Cont-Bouchand model for stock price changes

- Let G = (V, E) be a graph. Each connected component $C \subseteq V$ is active with probability p_a and either **buys** with probability p_b or **sells** with probability $1 p_b$.
- The parameter p_a can be seen as a "time-scale" parameter. Smaller (larger) p_a corresponds to smaller (larger) time-scale.
- Price change is defined as

$$R := \frac{1}{L^2} \Big(\sum_{C \text{ buys}} |C| - \sum_{C \text{ sells}} |C| \Big).$$

• In the original paper the graph G was generated by adding an edge between two nodes with probability $p \ll 1/|V|$.

Site percolation

10 / 14

Site percolation

• The cluster size distribution is defined as

$$n_s(p) = \lim_{L \to \infty} \frac{\text{average number of clusters of size } s \text{ in a grid of size } L^2}{L^2}$$

• When $p < p_c$ we have that

$$n_s(p) \sim s^{-\tau} e^{s/s_{\xi}}$$
 as $s \to \infty$,

where $s_{\xi} \propto |p-p_c|^{-1/\sigma}$. Here $\tau \approx 2.06$ and $\sigma \approx 0.3956$.

- $n_s(p)$ has finite variance \Rightarrow for large p_a the price changes follow a normal distribution.
- $n_s(p)$ follows an exponentially truncated power law \Rightarrow for small p_a the same is true for price changes.

Distribution of price changes for large p_a

Distribution of price changes for small p_a

Distribution of price changes for small p_a

