Teopeмa[subsection*]

Лекции по Методам Оптимизации

Авторы

2022 - 2023

Содержание

1 Лекция 1. Безусловная оптимизация

Постановка задачи и определения

def: Методы оптимизации — это раздел математики, посвящённый решению (экстремальных) задач, то есть задач на нахождение минимумов и максимумов функций.

Rem: Задачу на нахождение максимума функции "f(x)"можно свести к задаче на нахождение минимума функции " $f_1(x) = -f(x)$ " и наоборот.

Общий вид оптимизационной задачи

Найти экстремум (минимум или максимум) функции $f: X \to R$ определенной на некотором множестве $X \in R^n$ при ограничении $X \in D(D \subset X)$ то есть $f(x) \to extr, X \in D(y$ функции есть экстремум на промежутке D). В большинстве задач область определения функции "f(x)" $X = R^n$. Ограничение $X \in D$ записывается, как правило, в виде уравнений или неравенств . Если множество D = X, то имеет место задача без ограничений или задача безусловной оптимизации.

При решении оптимизационной задачи находятся как локальные, так и глобальные экстремумы функции.

def: Точка " x^* " является точкой локального минимума(максимума) функции "f(x)" if \exists " ε " - окрестность $\mathcal{U}_{\varepsilon} = \{x: |x-x^*|\} < \varepsilon$. Точка $x^*: f(x^*) \leq f(x)$ ($f(x^*) \geq f(x)$) $\forall x \in \mathcal{U}_{\varepsilon}$

Rem: то что пишется в скобках - для максимума, а то что без - для минимума

def: Точка " x^* " является точкой глобального минимума(максимума) функции "f(x)" if $f(x^*) \leq f(x)$ ($f(x^*) \geq f(x)$) $\forall x \in D$

Необходимые и достаточные условия экстремума

def: Точка $X^0=(x_1^0,...,x_n^0)$ называется стационарной точкой дифференцируемой функции $f(x)=f(x_1...x_n)$, если в ней все частные производные равны нулю, то есть $f'(x^0)=0$ или $\frac{\partial f(x^0)}{\partial x_1}=...=\frac{\partial f(x^0)}{\partial x_n}=0$

Необходимые условия экстремума I порядка

Теорема: іf точка $x^* = (x_1^*, ..., x_n^*)$ - точка локального extr дифференцируемой в точке x^* функции $f(x_1, ...x_n) \Rightarrow then \frac{\partial f(x^*)}{\partial x_1} = ... = \frac{\partial f(x^*)}{\partial x_n} = 0$ (1) (то есть - точка x^* - точка локального экстремума \Rightarrow точка x^* - стационарная точка (обратное утверждение неверно))

Доказательство: Рассмотрим функцию одной переменной:

 $\varphi(x_i) = f(x_1^*,...,x_{i-1}^*,x_i^*,x_{i+1}^*,x_n^*)$ точка $x^* = (x_1^*,...,x_n^*)$ - т. локального extr функции "f" $\Rightarrow x_i^*$ - т. локального extr функции " φ " \Rightarrow по необходимому условию для функции одной переменной (по т. Ферма) 've:

$$\varphi(x_i^*) = 0 \Leftrightarrow \frac{\partial f(x^*)}{\partial x_i} = 0$$
 — что и требовалось доказать :)

Для формулировки достаточных условий extr, позволяющих отобрать среди стационарных точек именно точки локального extr(среди стационарных точек могут быть также точки перегиба, седловые точки и т.д.), рассмотрим матрицу вторых производных функции - матрицу Гессе(гессиан):

$$A=f''(x^*)=(rac{\partial^2 f(x^*)}{\partial x_i\partial x_j})_{i,j=\overline{1,n}}=(a_{i,j})_{i,j=\overline{1,n}}$$
 (от 1 до n)

def: Матрица "А"называется неотрицательно определённой $(A \ge 0)$, если $\forall h = (h_1, ..., h_n) \in \mathbb{R}^n$ неотрицательной является квадратичная форма:

$$(A*h,h) = \sum_{i,j=1}^{n} a_{ij} h_i h_j \ge 0$$

def: Матрица "А"называется положительно определённой (A>0), если $(A*h,h)>0, \forall h\in R^n(h\neq 0)$

Необходимые и достаточные условия extr II порядка

Теорема: Пусть f(x) - дважды дифференцируема в точке x^* . Необходимые условия условия extr:

іf точка x^* - точка локального минимума (максимума) функции $f(x) \Rightarrow f'(x^*) = 0; (f''(x^*) * h, h) \ge 0 \; ((f''(x^*) * h, h) \le 0) \forall h \in \mathbb{R}^n$

Достаточные условия extr

 $f^{'}(x*)=0; (f^{''}(x^*)*h,h)>0\; ((f^{''}(x^*)*h,h)<0) \forall h\in R^n(h\neq 0)\Rightarrow \text{точка }x^*$ - т. локального минимума (максимума) функции f(x)

Доказательство:

Для случая минимума (для максимума аналогично)

По формуле Тейлора 've:

$$f(x^* + h) = f(x^*) + (f'(x^*), h) + \frac{1}{2}(f''(x^*) * h, h) + r(h),$$
 где $r(h) = o(|h|^2).(*)$

1) Необходимость:

Пусть точка x^* - точка локального минимума \Rightarrow по необходимому условию І порядка $f'(x^*) = 0$, а также $f(x^* + \lambda h) \ge f(x^*)$ (при достаточно малых " λ ") \Rightarrow из (*) get (g при малых " λ " и фиксированном "h"):

$$f(x^* + \lambda h) - f(x^*) = 0 + \frac{\lambda^2}{2} (f''(x^*) * h, h) + r(\lambda * h) \ge 0| : \lambda^2$$
 (где $r(\lambda * h) = 0(|\lambda|^2)$). $\frac{1}{2} (f''(x^*) * h, h) + \frac{r(\lambda * h)}{\lambda^2} \ge 0$

При $\lambda \to 0$ $'ve: (f''(x^*)*h) \ge 0 (\forall h \in R^n) \Rightarrow$ необходимость доказана

2) Достаточность:

Можно показать, что в \mathbb{R}^n имеет место эквивалентность условий:

$$(A*h,h)>0 \forall h\in R^n(h\neq 0) \Leftrightarrow \exists \alpha>0: (A*h,h)\geq \alpha*|R|^2 \ (\forall h\in R^n)$$
 Учитывая, что $f'(x^*)=0$ и $(f''(x^*)*h,h)\geq \alpha*|h|^2$

По формуле Тейлора 've:

$$f(x^*+h)-f(x^*)=0+\frac{1}{2}(f''(x^*)*h,h)+r(h)\geq \frac{\alpha}{2}|h|^2+r(h)\geq 0)),$$
 то есть $f(x^*+h)\geq f(x^*)\Rightarrow$ точка x^* - точка локального extr функции $f(x)\Rightarrow$ достаточность доказана.

что и требовалось доказать

Rem: Для квадратичной функции

 $Q(x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ условие положительной (отрицательной) определённости матрицы $A = (a_{ij})_{i,j=1}^{n} > 0$ - это достаточное условие абсолютного минимума (максимума) Q(x) в стационарной точке.

Теорема Вейерштрасса

Теорема:

Непрерывная функция $f: \mathbb{R}^n \to \mathbb{R}$ на непустом ограниченном замкнутом подмножестве (компакте) множества \mathbb{R}^n достигает своих абсолютных минимума и максимума [или 1) в стационарной точке внутри; 2) в граничной точке - без доказательства

Следствие:

іf функция "f(x)" непрерывна на R^n и $\lim_{|x|\to\infty} f(x)=\infty$ ($\lim_{|x|\to\infty} f(x)=-\infty$) \Rightarrow then она достигается своего абсолютного минимума (максимума) на \forall замкнутом подмножестве и R^n . (без доказательства).

Критерий Сильвестра

Rem: В необходимых и достаточных условиях extr-а II порядка use-ся знакоопределённость матрицы вторых производных (гессиана) A = f''(x). Знакоопределённость матрицы устанавливается с помощью критерия Сильвестра.

Теорема:

Пусть А - симметричная матрица

- 1) Матрица "А"положительно определена $(A>0)\Leftrightarrow$ все её последовательные гл. миноры положительны, т.е. $A_{1...k}=\begin{vmatrix} a_{11} & a_{ik} \\ a_{k1} & a_{kk} \end{vmatrix}>0 \ (k=\overline{1,n})$
- 2) Матрица "А"отрицательно определена $(A < 0) \Leftrightarrow$ все её последовательные главные миноры чередуют знак, начиная с отрицательного, т.е. $(-1)^k * A_k > 0 \ (k = \overline{1,n})$
- 3) Матрица "А"неотрицательно определена $(A \ge 0) \Leftrightarrow$ все её гл. миноры (необязательно только последовательные) неотрицательны, т.е. $A_{1...k} = \begin{vmatrix} a_{i_1i_1} & a_{i_1i_k} \\ a_{i_ki_1} & a_{i_ki_k} \end{vmatrix} \ge 0 \ (1 \ge i_1 \ge ... \ge i_k \ge n) (k = \overline{1,n})$
- 4) Матрица "А"неположительно определена $(A \le 0) \Leftrightarrow$ все её последовательные главные миноры чередуют знак, начиная с неположительного, т.е.

$$(-1)^k * A_{i_1 \dots i_k} \ge 0 \quad (\mathbf{k} = \overline{1, n})$$

(Теорема без доказательства)

Rem:

- 1) Можно показать, что $A>0 (A\geq 0) \Leftrightarrow \forall \lambda_i>0 (\lambda\geq 0),$ где λ_i собственные значения матрицы.
- 2)
- $2.1) A_{1...k} > 0 \Leftrightarrow A_{i_1...i_k} > 0$
- 2.2) $A_{1...k} \ge 0 \Rightarrow A_{i_1...i_k} \ge 0 \text{ (r.e. } \Rightarrow A \ge 0)$

ex:

$$A = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$$
 \Rightarrow последовательные главные миноры $A_1 = 0; A_{12} = \begin{vmatrix} 0 & 0 \\ 0 & -1 \end{vmatrix} = 0$, но A не является неотрицательно определённой, так как $(Ah, h) = ((0; -h), (h, h)) = -h^2 < 0 (\forall h \neq 0)$

Правило решения задачи безусловной оптимизации

1) Найти стационарные точки, то есть точки, удовлетворяющие необх. усл. extr I порядка 7

$$\begin{cases} \frac{\partial f}{\partial x_1} = 0\\ \frac{\partial f}{\partial x_n} = 0 \end{cases}$$

- 2) Во всех стационарных точках " x^0 " проверяем достаточное условие extr II порядка, то есть проверяем знаки последовательных главных миноров гессиана " $f''(x^0)$ " :
- 2.1) if $A_{1..k} > 0$ (k от 1 до n) \Rightarrow then $x^0 \in locminf$;
- 2.2) if $(-1)^k * A_{1...k} > 0$ (при k от 1 до n) $\Rightarrow then \ x^0 \in locmax f;$
- 3) Если достаточное условие extr II порядка не выполняется \Rightarrow , то проверяем в стационарной точке необходимое условие extr II порядка, то есть проверяем знаки главных миноров гессиана " $f''(x^0)$ "
- 3.1) іf гессиан $f''(x^0) \ngeq 0$ не является неотрицательным отрезком, то есть не выполняется условие $A_{i1...ik} \ge 0 \Rightarrow then \ x^0 \notin locminf;$
- 3.2) іf гессиан $f''(x^0) \nleq 0$ не является неположительным отрезком, то есть не выполняется условие что все $(-1)^k A_{i1...ik} \geq 0 \Rightarrow then \ x^0 \notin locmaxf;$

Лекция №2

Условная оптимизация

Условная оптимизация с ограничениями-равенствами. Функция Лагранжа

def: Задачей условной оптимизации с ограничениями-равенствами называется следующая задача: $f_1 \to extr; \ f_i(x) = 0 (i = \overline{1,m}), (m < n),$ где $f_i(x): R^n \to R(i = \overline{0,m})$ и $\forall f_i(x)$ - дифференцируема.

Теорема 1. необходимое условие экстремума I порядка.

Іf т. $x^* = (x_1^*, ..., x_n^*) \in locextr f_0 \Rightarrow$ then \exists вектор множителей Лагранжа $\lambda^* = (\lambda_1^*, ..., \lambda_m^*) \in R^m \; (\lambda) \; (\lambda^* \neq 0)$ такой, что для функции Лагранжа:

$$\mathcal{L}(x_1, ..., x_n; \lambda_1, ..., \lambda_m) = f_0(x_1, ..., x_n) + \sum_{i=1}^m \lambda_i f_i(x_1, ..., x_n)$$
 (1)

выполняется условия стационарности:

$$\frac{\partial \mathcal{L}(x^*, \lambda^*)}{\partial x_j} = \frac{\partial f_1(x^*)}{\partial x_j} + \sum_{i=1}^m \lambda_i \frac{\partial f_i(x^*)}{\partial x_j} = 0 \quad (j = \overline{1, n})$$

$$\frac{\partial \mathcal{L}(x^*, \lambda^*)}{\partial \lambda_i} = f_i(x^*) = 0 \quad (i = \overline{1, m})$$
(2)

т.е. 've систему n+m уравнений для нахождения n+m неизвестных $\{x_1^*,...,x_n^*;\lambda_1^*,...,\lambda_m^*\}$

Теорема 2. необходимое условия экстремума II порядка.

Іf т. $x^*=(x_1^*,...,x_n^*)\in locmin f_0$ (условие регулярности) и векторы $f_1'(x^*),...,f_m'(x^*)$ - линейно независимы \Rightarrow then \exists вектор множителей Лагранжа $\lambda^*=(\lambda_1^*,...,\lambda_m^*)\in R^m(\lambda^*\neq 0)$ такой, что для функции Лагранжа

$$\mathcal{L}(x,\lambda) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

выполняются условия:

- 1. стационарности (2)
- 2. неотрицательной определенности матрицы вторых производных:

(3)
$$(\mathcal{L}''(x^*, \lambda^*)h, h) \ge 0 \ \forall h \in \{(f_i'(x^*), h) = 0(i = \overline{1, m})\}$$

Rem: Для т. $x^* \in locmax f_0$ need $\mathcal{L}(x,\lambda) = -f_0(x) + \sum_{i=1}^m \lambda_i f_i(x)$

Теорема 3. достаточное условие экстремума II порядка.

Іf в т. $x^*=(x_1^*,...,x_n^*)$ векторы $f_1'(x^*),...,f_m'(x^*)$ - линейно независимы и \exists вектор множителей Лагранжа $\lambda^*=(\lambda_1^*,...,\lambda_m^*)\in R^m(\lambda^*\neq 0)$ такой, что для функции Лагранжа

$$\mathcal{L}(x,\lambda) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

в т. x^* выполняются условия:

- 1. стационарности (2)
- 2. положительной определенности матрицы вторых производных:

$$(\mathcal{L}(x^*, \lambda^*)h, h) > 0 \ \forall h \in \{(f_i'(x^*), h) = 0(i = \overline{1, m}), (h \neq 0)\} \Rightarrow$$

 \Rightarrow then $\mathbf{T}. \ x^* \in locminf_0$

Rem: Для т. $x^* \in locmax f_0$ need $\mathcal{L}(x,\lambda) = -f_0(x) + \sum_{i=1}^m \lambda_i f_i$

Частный случай

 $z=f(x,y) o {
m extr};$ при $\varphi(x,y)=0\Rightarrow$ функция Лагранжа 've вид:

$$\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$$

Условия стационарности(необх. усл. І порядка)(2):

$$\begin{cases} \mathcal{L}'_{x}(x^{*}, y^{*}, \lambda^{*}) = f'_{x}(x^{*}, y^{*}) + \lambda \varphi'_{x}(x^{*}, y^{*}) = 0 \\ \mathcal{L}'_{y}(x^{*}, y^{*}, \lambda^{*}) = f'_{y}(x^{*}, y^{*}) + \lambda \varphi'_{y}(x^{*}, y^{*}) = 0 \\ \mathcal{L}'_{\lambda}(x^{*}, y^{*}, \lambda^{*}) = \varphi'(x^{*}, y^{*}) = 0 \end{cases}$$

⇒ система трех уравнений с тремя неизвестными

 \Rightarrow находим стационарные точки (x^*,y^*,λ^*)

Вычисляется в каждой из get-х стационарных точек (x^*, y^*, λ^*) определитель:

$$\Delta =$$
 - $egin{array}{ccc} 0 & arphi_x' & arphi_y' \ arphi_x' & \mathcal{L}_{xx}'' & \mathcal{L}_{xy}'' \ arphi_y' & \mathcal{L}_{yx}'' & \mathcal{L}_{yy}'' \ \end{array}$

if $\Delta > 0 \Rightarrow$ then $\mathbf{T}(x^*, y^*, \lambda^*) \in \text{locmin z}$

if $\Delta < 0 \Rightarrow$ then $\mathbf{T}.(x^*, y^*, \lambda^*) \in \text{locmax z}$

Условная оптимизация с ограничениями-равенствами и неравенствами. Математическое программирование

def: Задачей условной оптимизации с ограничениями-равенствами и ограниченияминеравентсвами называется следующая задача:

$$(4) f_0(x) \to min; (5) f_i(x) \le 0 \ (i = \overline{1,p}), (6) f_i(x) = 0 \ (i = \overline{p+1,m}),$$
 где $f_i(x): R^n \to R(i = \overline{0,m})$

def: Эта задача называется задачей математического программирования (ЗМП)

Rem:

1) Обычно в ЗМП присутствуют условия неотрицательности переменных

 $x_i \ge (i = \overline{1,n})$ эти условия записываются в системе неравенств (5) в виде: $-x_i \le 0 (i = \overline{1,n})$

2) Каждое ограничение-равенство (6) можно заменить двумя неравенствами:

$$f_i(x) = 0 \Leftrightarrow \begin{cases} f_i(x) \le 0 \\ -f_i(x) \le 0 \end{cases} \quad (i = \overline{p+1, m})$$
Results a true prove the provening PMTI when the provening PMTI we have provening PMTI.

В силу этих замечаний ЗМП можно записать в виде:

$$f_0(x) \to min$$

$$f_i(x) \le 0 \ (i = \overline{1,m}) \ (8)$$
 где $x = (x_1,...,x_n)$

Для ЗМП составляется функция Лагранжа

$$\mathcal{L}(x_1, ..., x_n; \lambda_1, ..., \lambda_m) = f_0(x_1, ..., x_n) + \sum_{i=1}^m \lambda_i f_i(x_1, ..., x_n)$$

С помощью функции Лагранжа выписываются необходимые и достаточные условия экстремума тип (2)-(3). Однако, проверка выполнения этих условий становится еще более сложной. При этом требуется решать систему, вообще говоря, нелинейных уравнений и неравенств. Для этого применяются итерационные численные методы, формирующие последовательность точек, сходящуюся к точке экстремума. Однако, эта точка может оказаться точкой локального(а не глобального) экстремума. Это объясняется тем, что ЗМП в такой общей постановке, без каких-либо предположений относительной функций $f_i(x)$, является многоэкстремальной задачей. Не существует универсальных методов решения таких задач. Содержательная теория построена лишь для отдельных классов ЗМП, в частности, задач оптимизации выпуклых функций на выпуклом множестве решений систем ограничений-неравенств. Такие задачи, называемые задачами выпуклого программирования(ЗВП), являются, как будет показано ниже, одноэкстремальными задачами.

2 Лекция №3

Выпуклый анализ

Ввиду важности задачи выпуклого программирования (ЗВП) рассматриваемые основные понятия раздела математики, называемого выпуклым анализом:

1) Выпуклое множество 2) Выпуклая(вогнутая) функция и ее дифференциальные свойства

Выпуклые множества точек

def: Множество точек называется выпуклым, если оно вместе с \forall двумя своими точками содержит весь отрезок, соединяющий эти точки **ex:** — Тут нужно иллюстрацию **ex:** круг, сектор, отрезок, прямая, полуплоскость, куб, пирамида

Теорема 4. Пересечение \forall числа выпуклых множеств-выпуклое множеств, too

Доказательство. Для простоты - пересечение двух выпуклых множеств: $\forall N, M \in (A \cap B)$. Множество A - выпуклое \Rightarrow отрезок $MN \in A$. Аналогично

 $MN \in B \Rightarrow MN \in (A \cap B) \Rightarrow (A \cap B)$ - выпуклое — тут нужно иллюстрацию

 $\mathbf{def:}$ Внутренняя т. множества - \exists окрестность этой точки: в ней - только точек \in множеству.

def: Граничная точка множества - \forall окрестность этой точки содержит как точки \in множеству, так и точек \notin множеству

def: Угловая точка множества - она не является внутренней ни для какого отрезка, целиком ∈-го множеству.

 \mathbf{ex} : — Тут нужно иллюстрацию точка \mathbf{M} - внутренняя, точка \mathbf{N} граничная, точка \mathbf{A} - угловая (AP \in множеству целиком, но точка \mathbf{A} - не внутренняя точка для \mathbf{AP} ; точка внутренняя точка для \mathbf{KL} , но $\mathbf{KL} \notin$ множеству целиком

def: Замкнутое множество точек - if оно включает все свои граничные точки.

 $\mathbf{def:}$ Ограниченное множество точек - if \exists шар конечного радиуса с центром в \forall точке множества, который полностью содержит в себе данное множество.

Можно показать, что если фигура ограничена only прямыми или их отрезками, то она 've конечное число угловых точек. При криволинейности границ - бесконечное множество угловых точек.

def: Выпуклое замкнутое множество точек пространства (плоскости), имеющее конечное число угловых точек, называется выпуклым многогранником (многоугольником), если оно ограниченное, и выпуклой многогранной (многоугольной) областью, если оно неограниченное.

Rem: Для выпуклого многогранника(многоугольника) угловые точки \equiv его вершинам.

Для невыпуклого - не обязательно

 $\mathbf{ex:}$ — Тут нужна иллюстрация точка E - вершина, но не угловая точка, т.к. $KL \in \mathsf{множеству}$ целиком и точка E - внутренняя точка для KL.

Rem: В ЗЛП часто число параметров объекта $n > 3 \Rightarrow$ имеем дело с гипермногогранниками в гиперпространстве с координатами $x_i (i = (\overline{1, n}, n > 3))$

Геометрический смысл решений СЛН и СЛУ

Теорема 5. Множество всех решений линейного неравенства

$$a_{11}x_1 + \dots + a_{1n}x_n \le b_1$$

- это одно из полупространств, на которые п-мерные гиперпространство делится гиплоскостью

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

включая и эту гиперплоскость

Выпуклые множества в п-мерном пространстве. Свойства ЗЛП Выпуклые множества в п-мерном пространстве

Рассмотрим в п-мерном пространстве к точек (векторов):

$$x_1 = (x_1^{(1)}, ..., x_n^{(1)}), ..., x_k = (x_1^{(k)}, ..., x_n^{(k)})$$

def: Точка(вектор) $X = (x_1, ..., x_n)$ называется линейной комбинацией точек(векторов) $X_1, ..., X_k$, если справедливо соотношение:

$$X = \alpha_1 X_1 + \dots + \alpha_k X_k \tag{3}$$

где α_j - const $j = (\overline{1,k})$

 $\mathbf{def:}$ Точка(вектор) X называется выпуклой линейной комбинацией точек(векторов) $X=\alpha_1X_1+...+\alpha_kX_k,$ если:

label = 0), ref = 0

$$X = \alpha_1 X_1 + \dots + \alpha_k X_k$$

lbbel = 0, ref = 0

$$\alpha_j \ge 0j = (\overline{1,k}) \tag{4}$$

lcbel = 0), ref = 0

$$\sum_{j=1}^{k} \alpha_j = 1 \tag{5}$$

Очевидно, что в частном случае при k=2 выпуклой линейной комбинацией двух точек X_1 и X_2 является соединяющий их отрезок, т.к.

$$X = \alpha_1 X_1 + \alpha_2 X_2 = \begin{cases} \alpha_1 + \alpha_2 = 1 \\ \alpha_2 = \alpha_1 - 1 \end{cases} \alpha X_1 + (1 - \alpha_1) X_2$$

- уравнение точек $X \in [X_1, X_2]$ (см. аналитич. геометр.) — добавить иллюстрацию

Лекция №4

Выпуклые и вогнутые функции

Пусть функция "f(x)", def-на на множестве $M \subset R^n$ (т.е. $x = (x_1, ..., x_n) \in M$

def: График функции "f(x)" - это множество $\Gamma(f) \subset R^{n+1}$ состоящее из точек $(x,f(x)=(x_1,...,x_n,f(x)),$ где $x\in M.$

def: Надграфик функции "f(x)" - это множество $\Gamma(f) \subset R^{n+1}$, состоящее из точек $(x,x_{n+1})=(x_1,...,x_n,x_{n+1})$, где $x\in M,\,x_{n+1}\leqslant f(x)$

def: Функция "f(x)", заданная на множестве $m \subset R^n$ наз-ся выпуклой, если ее надграфик $\Gamma(f)$ является выпуклым множеством в R^{n+1}

Rem: Функция "f(x)" вогнута \leftrightarrow функция -"f(x)" выпукла.

Кроме данного геометрического def-я выпуклых (вогнутых) функций, часто use-ся следующее аналитическое def-e: def: Функция "f(x)", заданная на множестве $M \subset R^n$ наз-ся выпуклой(вогнутой), если 1) М - выпуклое, 2) $\forall x_1 \in M, x_2 \in M$ и числа $t \in [0,1]$ 've: $f((1-t)*x_1+tx_2) \leqslant (1-t)*f(x_1)+t*f(x_2)$ (1) (\geqslant - для вогнутой функции)

Rem: 1) Можно показать, что геометрические и аналитические def- я эквивалентны; (Rem: $(1-t)*f(x_1)+t*f(x_2)$ - уравнение отрезка $[x_1,x_2](t\in[0,1])$ при $x_1\neq x_2$ и $t\in(0,1)$

2) Если (1) 've строгое неравенство \Rightarrow , то функция "f(x)" наз-ся строго выпуклой (строго вогнутой).

3)

Свойства выпуклых (вогнутых) функций

- **1.** f(x) = const и f(x) = ax + b всюду выпуклы (вогнуты).
- **2.** *if* функции $f_i(x)(i=\overline{1,m})$, заданные на $M\subset R^n$, выпуклы \Rightarrow then функция $f(x)=\sum_{i=1}^m \alpha_i f_i(x)$ выпукла (при $\forall \alpha_i\geqslant 0$)
- **3.** *if* функция "f(x)", заданная на выпуклом множестве $M \subset R^n$, выпукла \to

then \forall " α " множество решений неравенства $f(x) \leq \alpha$, т.е. множество $M_{\alpha} = \{x \in M : f(x) \leq \alpha\}$, является выпуклым.

3.1 *if* функции $f_1(x), ..., f_m(x)$, заданные на выпуклом множестве $M \subset \mathbb{R}^n$, выпуклы \Rightarrow

then множество решений системы неравенств $f_i(x) \leqslant \alpha_i \ (i=\overline{1,m})$ является выпуклым.

4. Выпуклая (вогнутая) функция, заданная на выпуклом множестве $M \subset \mathbb{R}^n$, непрерывна в \forall внутренней точке множества. (вставка на страницу 25)

def: Выпуклая оболочка множества - это совокупность всех выпуклых линейных комбинаций его конечных подмножеств $\{x_1,...,x_k \ (\text{где } x_i \in M).$ (Конечное подмножество - это конечный набор точек $x_1,...,x_k$)

Теорема (Крейна-Мильмана)

Выпуклый компакт в нормированном пространстве является выпуклой оболочкой своих угловых (крайних) точек.

Теорема

Пусть выпуклая (вогнутая) функция "f(x)" задана на выпуклом множестве $M \subset \mathbb{R}^n \Rightarrow$

Каждый локальный минимум (максимум) функции "f(x)" является её глобальным минимумом (максимумом) на множестве М.

Доказательство (для выпуклой функции)

Пусть точка $x^* \in M$ - точка локального min-a. Пусть точка точка $x \in M$ - произвольная точка множества M. Need доказать: $f(x) \geqslant f(x^*)$.

Отрезок $[x^*,x]=(1-t_0)x^*+tx$ $(t\in[0,1])$ принадлежит "М". При малом значении $t_0\in(0,1)$ /-щая точка отрезка $[x^*,x]$ находится в малой окресности т. x^* , в котором имеем:

$$f((1-t_0)x^* + t_0x) \geqslant f(x^*)$$

Из def-я выпуклой функции f(x) 've:

$$f((1-t_0)x^* + t_0x) \leqslant (1-t_0)f(x^*) + t_0f(x)$$

T.o.:

$$(1 - t_0) * f(x^*) + t_0 * f(x) \ge f(x^*) \Rightarrow$$

 $\Rightarrow f(x) \geqslant f(x^*)$ ч. и т.д. (для вогнутой "f(x)" доказательство аналогичное.)

Rem:

- 1) Задачи выпуклой оптимизации называются одноэкстремальными. В многоэкстремальных задачах может З-ть локальные экстремумы, не совпадающие в глобальными.
- 2) Одноэкстремальность задач выпуклой оптимизации не означает, что каждая такая задача имеет решение и при том единственное. f.e.: 1) Выпуклая функция одной переменной f(x) = x, при $x \in (0,1)$ не достигает min-a (и max-a) на (0,1); 2) Множество точек min-a выпуклой фукнции f(x) = C -

 $const, x \in M$, совпадает со всем M.

3) Если функция "f(x)" - строго выпуклая (строго вогнутая), то разрешимая задача выпуклой оптимизации (т.е. множество $M \neq \emptyset$ и ограничено) имеет единственное решение.

def: Производной $\frac{\partial f(x)}{\partial \ell}$ функции $f(x) = f(x_1, ..., x_n)$ по направлению ненулевого единичного вектора $\ell = (\ell_1, ..., \ell_n)$ в т. $x = (x_1, ..., x_n)$ называется предел

$$\frac{\partial f(x)}{\partial \ell} = \lim_{\lambda \to +0} \frac{f(x + \lambda \ell) - f(x)}{\lambda}$$

Если функция дифференциируема в т. x, то она в этой точке производную по \forall направлению $\ell = (\ell_1, ..., \ell_n)$, которая выражается через частные производные по следующей формуле:

$$\frac{\partial f(x)}{\partial \ell} = \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_i} \ell_i$$

Производная по направлению равна скалярному произведению вектора " ℓ " и вектора градиента функции "f(x)" в т. x

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, ..., \frac{\partial f(x)}{\partial f(x_n)}\right) : \frac{\partial f(x)}{\partial \ell} = \nabla f(x) * \ell = \nabla f(x) * |\ell|$$

ИЛИ

$$\frac{\partial f(x)}{\partial \ell} = |f(x)| * |\ell| * \cos \phi$$

T.o.:

 \forall направления " ℓ " производная $\frac{\partial f}{\partial \ell} \leqslant |\nabla f(x)|$.

- \Rightarrow Вывод:
- 1) Производная по направлению " $\frac{\partial f}{\partial \ell}$ " это скорость изменения функции "f(x)" по направлению " ℓ " (знак " $\frac{\partial f}{\partial \ell}$ " это характер изменения функции (возрастание

или убывание)).

2) Направление градиента $\nabla f(x)$ - это направление наибольшего возрастания функции "f(x)" в т. x; длина градиента $\nabla f(x)$ " равна наибольшей скорости возрастания функции в этой точке.

Теорема

Пусть 've дифференциируемую выпуклую функцию "f(x)", def-ую на выпуклом множестве $M \subset \mathbb{R}^n$.

- 1) $\forall x, y \in M$ 've: $\lambda f(x) * (y x) \leq f(y) f(x)$
- 2) T. $x^* \in absminf \Leftrightarrow \nabla f(x^*) = 0$ (2)

Теорема (дифференциальный признак выпуклых функций)

Дважды дифференциируемая функция "f(x)", def-ная на выпуклом множестве $M \subset R^n$ является выпуклой $\Leftrightarrow \forall x = (x_1, ..., x_n) \in M$ и $\forall \ell = (ell_1, ..., \ell_n) \in R^n$

've:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}} \ell_{i} \ell_{j} \geqslant 0, (3)$$

т.е. гессиан функции всюду неотрицательно определён:

$$A = f''(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_i}\right) \geqslant 0, (\forall x \in M)$$

Rem:

1) Функция является строго выпуклой \Leftrightarrow гессиан положительно определён, т.е.

$$\left(\frac{\partial^2 f(x)}{\partial x_i \partial x_i}\right) > 0, (\forall x \in M)$$

2) Знакоопределённость гессиана устанавливается с помощью критерия Сильвестра.

ex 1:

Проверить выпуклость функции:

$$f(x_1,x_2)=4x_1+x_2^2-2x_1x_2+6x_1-5x_2-2$$

$$f'_{x1}=8x_1=2x_2+6;\ f''x_1x_1=8;\ f''_{x_1x_2}=-2;\ f''x_2x_2=2;\ f'_{x2}=2x_2-2x_1-5$$
 Гессиан A= $\begin{pmatrix} 8 & -2 \\ -2 & 2 \end{pmatrix};\ \Delta_1=8>0;\ \Delta_2=12>0$ \Rightarrow функция является строго выпуклой.

ex 2:

Проверить выпуклость функции: $f(x) = -\sqrt{x_1x_2}$ на множестве

$$\begin{split} M &= \{(x_1,x_2)|x_1>0,x_2>0\}.\\ f'_{x1} &= -\frac{1*x_2}{2\sqrt{x_1x_2}} = -\frac{1}{2}\sqrt{\frac{x_2}{x_1}};\\ f'_{x2} &= -\frac{1}{2}\sqrt{\frac{x_1}{x_2}};\\ f''x_1x_1 &= (-\frac{\sqrt{x_2}}{2}*x_1^{-\frac{1}{2}})' = \frac{1}{4}\frac{\sqrt{x_2}}{\sqrt{x_1^3}} = \frac{1}{4x_1}\sqrt{\frac{x_2}{x_1}};\\ f''_{x_1x_2} &= -(\frac{1}{2\sqrt{x_1}}*x_2^{\frac{1}{2}})' = \frac{1}{4\sqrt{x_1x_2}};\\ f''x_2x_2 &= (-\frac{1*\sqrt{x_1}}{2}*x_2^{-\frac{1}{2}})' = \frac{1\sqrt{x_1}}{4\sqrt{x_2^3}} = \frac{1}{4x_2}*\sqrt{\frac{x_1}{x_2}}\\ \Gamma \text{ессиан } \mathbf{H} &= \begin{pmatrix} \frac{1}{4x_1}*\sqrt{\frac{x_2}{x_1}} & -\frac{1}{4\sqrt{x_1x_2}}\\ -\frac{1}{4\sqrt{x_1x_2}} & \frac{1}{4x_1}*\sqrt{\frac{x_1}{x_2}} \end{pmatrix}\\ \Delta_1 &= \frac{1}{4x_1}\sqrt{\frac{x_2}{x_1}} > 0(\forall x_1,x_2>0);\\ \Delta_2 &= \frac{1}{16x_1x_2}\sqrt{\frac{x_2x_1}{x_1x_2}} - \frac{1}{16x_1x_2} = 0 \Rightarrow \end{split}$$

Гессиан $H\geqslant 0\Rightarrow$ функция является на множестве $M=\{(x_1,x_2)|x_1>0,x_2>0\}$ выпуклой (но не является строго выпуклой).

Лекция №5. Общая постановка выпуклого программирования (ЗВП). Теорем Куна-Таккера

Общая постановка ЗВП

ЗВП называется следующей задачей математического программирования (ЗМП) $f(x_1,...,x_n) \to min$ при ограничениях:

$$\begin{cases} g_1(x_1, ..., x_n) \le 0 \\ g_m(x_1, ..., x_n) \le 0 \end{cases},$$

где $f, g_1, ..., g_m$ - выпуклые функции, def-ные на некотором выпуклом множестве $M \subset \mathbb{R}^n$.

При этом множество M содержит допустимую область значений, то есть множество, удовлетворяющее системе ограничений. Заметим, что свойству 3.1 выпуклых функций допустимая область $3B\Pi$ также выпукла

Rem:

1) Аналогично формулируется задача максимизации вогнутой функции "f" при вогнутых функциях " $g_1, ..., g_m$ ", def-х на некотором выпуклом множестве $M \subset \mathbb{R}^n$. При этом знак неравенств — " > ".

Аналогично допустимая область ЗВП будет также выпуклым множеством(свойство для вогнутых функций)

2) В ??? с теор. на с.??? в ЗВП каждый локальный минимум является глобальным минимумом функции "f" в допустимой области. Причём, если функция "f" строго выпуклая и ограниченная снизу на ограниченном непустом множестве M, то ЗВП 've единственное решение, то есть минимумом функции "f" достигается в одной точке

$$x^0 = (x_1^0, ..., x_n^0)$$

(см с.???)

Теорема Куна-Таккера.

Теорема: Пусть на ЗВП налагаются следующие требования:

1. Множество, удовлетворяющее системе строгих неравенств:

$$\begin{cases} g_1(x_1, ..., x_n) < 0 \\ g_m(x_1, ..., x_n) < 0 \end{cases}$$

и называемое внутренней частью допустимой области, не пусто (т.н. условие Слейтера)

2. Часть допустимой области, в которой некоторые ограничения обращаются в равенства, называется границей допустимой области, а эти ограничения - активными. Пусть градиенты активных ограничений в отвечающих им точках границы линейно независимы(т.н. условие регулярности (см с.???))

Теорема Куна-Таккера (необходимые и достаточные условия решения (глобального минимума) ЗВП)

Точка $x^0 = (x_1^0, ..., x_n^0)$ является решением ЗВП (то есть точкой глобального минимума функции "f") \Leftrightarrow (Н. и Д.) в ней выполнены следующие условия(Условия Куна-Таккера):

1)Условие стационарности функции Лагранжа (см.с.???)

$$\lambda(x_1, ..., x_n; \lambda_1, ..., \lambda_m) = f(x_1, ...x_n) \sum_{i=1}^m * \lambda_i * g_i * (x_1, ..., x_n)$$
$$\frac{\partial L}{\partial x_1} = ... = \frac{\partial L}{\partial x_n} = 0 \text{ (то есть } \nabla(x^0) = 0);$$

2)Условия "дополняющей нежёсткости":

$$\lambda_i * g_i * (x_1^0, ..., x_m^0) = 0 \ (i = \overline{1, m});$$

3) Условия неотрицательности:

$$\lambda_i \geq 0 \ (i_A = \overline{1,m})$$

Доказательство:

Заметим, что в условиях К.-Т. множители Лагранжа $\lambda_1,...,\lambda_m$ являются "выключателями" делящих ограничений. Если, например, $\lambda_k=0$, то ограничение $g_k\leq 0$ исключается из условий К.-Т., так как : 1) это ограничение не входит в функцию Лагранжа (слагаемое $\lambda_k*g_k=0$) и,??? не входит в условие 1; 2) условия 2 и 3 для этого ограничения выполняются автоматически

1. Необходимость

Пусть точка $x^0 = (x_1^0, ..., x_n^0)$ - решение ЗВП, то есть $minf(x_1, ..., x_n) = f(x_1^0, ... x_n^0)$. Целевая функция "f" может достигать минимума внутри допустимой области или на её границе.

Пусть минимум достигается внутри области \Rightarrow в точке x^0 выполняются необходимые условия локального (безусловного экстремума функции "f"):

$$\frac{\partial f}{\partial x_1} = \dots = \frac{\partial f}{\partial x_n}$$

Это частный случай условия 1 К.-Т.(условия стационарности функции Лагранжа) при $\lambda_1 = ... = \lambda_m = 0$ все ограничения выключены, так как 've безусловную оптимизацию)

Условия 2 и 3 при этом (при $\lambda_i=0 (i=\overline{1,m})$ выполняются автоматически. Пусть минимум достигается на границе допустимой области, то есть является условным ехtr функции "f" с активными ограничениями задачи для точки минимума точки x^0 . Необходимые условия условного extr (см. с. ???) ($\frac{\partial L}{\partial x_j}=0; (\frac{\partial L}{\partial \lambda_j}=0(j=\overline{1,n};i=\overline{1,m}))$ влекут за собой выполнение условий 1 и 2 К.-Т., если положительно равынми нулю множит. Лагранжа для неактивных ограничений (так как реально они не входят в функцию Лагранжа). Остаётся доказать, что выполняется 3 условие К.-Т. : $\lambda_i \geq 0 (i=\overline{1,m})$ Для наглядности ограничимся случаем двух переменных (n=2).

Уравнение $g(x_1,x_2)$ означает плоскую кривую, а неравенство $g(x_1,x_2)\leq 0$ - одну из частей плоскости, ограниченную этой кривой

Система ограничений

$$\begin{cases} g_1(x_1, x_2) \le 0 \\ \dots \\ g_m(x_1, x_2) \le 0 \end{cases}$$

задает криволинейный многоугольник, в каждой вершине которого пересекаются две кривые.

Минимум на границе допустимой области достигается либо на строке этого многоугольника, либо в его вершине.

Пусть минимум - на стороне многоугольника $\Rightarrow \lambda_k \neq 0$. Функция Лагранжа 've вид:

$$L = f(x_1, ...x_n) + \lambda_k * g_k(x_1, ..., x_n),$$

где $g_k = 0$ - активное ограничение.

В точке минимума выполняются необходимые условия. Условия условного extr(см. с. ???):

$$\frac{\partial L}{\partial x_1} = \dots \frac{\partial L}{\partial x_n} = \frac{\partial L}{\partial \lambda_k}$$

или

$$\begin{cases} \nabla L = \nabla f + \lambda_k * \nabla g_k = 0 \\ g_k = 0 \end{cases},$$

$$\Rightarrow \nabla f = -\lambda_k * \nabla g_k, (*),$$

то есть векторы ∇f и ∇g_k — коллинеарны

Функция $g_k < 0$ внутри допустимой области и $g_k > 0$ вне её \Rightarrow вектор ∇g_k направлен из допустимой области (в сторону возрастания функции " g_k ") Значение функции "f" внутри допустимой области больше, чем в точке минимума $\Rightarrow \nabla f$ направлен внутрь допустимой области.

Таким образом, векторы ∇f и ∇g_k противонаправлены и в равенстве (*)

коэффиценты коллинеарности $\lambda_k \leq 0 \Rightarrow \lambda_k \geq 0$, то есть условие 3 К.-Т. доказано для случая, когда минимум достигается на стороне допустимого многоугольника.

Можно показать, что условие 3 К.-Т. ($\lambda_i \geq 0 (i=\overline{1,m})$) выполняется и для случая, когда минимум достигается в вершине допустимого многоугольинка.

Таким образом, необходимость К.-Т. доказана.

Лекция №6

Доказательство теоремы Куна-Таккера 2. Достаточность

Пусть в точке $x^0=(x_1^0,...,x_n^0)$ выполняются условия 1-3 теоремы Куна-Таккера.

Имеем выпуклые функции " $f, g_1, ..., g_n$ " и выпуклую допустимую область \Rightarrow

⇒ Функция Лагранжа

 $L=f+\lambda_1g_1+...+\lambda_mg_m\;(\lambda_1\geqslant 0,...,\lambda_m\geqslant 0)$ также выпукла (см. св-во 2 выпуклых ф-ий)

Если в точке $x^0 == (x_1^0,...,x_n^0)$ выполняется условие 1 теоремы Куна-Таккера $\frac{\partial L}{\partial x_1} = ... = \frac{\partial L}{\partial x_n} = 0$, (т.е. $\nabla L(x^0) = 0$) то эта точка - точка min выпуклой функции Лагранжа "L"в допустимой области.

Обозначим $minL(x) = L(x^0) = L^0 \Rightarrow L^0 \leqslant L$

Но вследствие условия 2 теоремы Куна-Таккера

$$\lambda_1 g_1^0 = \dots = \lambda_m g_m^0 = 0 \Rightarrow L^0 = f^0, f^0 \leqslant L$$

Кроме того, в допустимой области $g_1\leqslant 0,...,g_m\leqslant 0$ и по условию 3 теоремы Куна-Таккера, $\lambda_1\geqslant 0,...,\lambda_m\leqslant 0\Rightarrow \lambda_1g_1=...=\lambda_mg_m\leqslant 0\Rightarrow$ в допустимой области

 $L = f + \lambda_1 g_1 + ... + \lambda_m g_m \leqslant f \Rightarrow$ в допустимой области:

 $f^0\leqslant L\leqslant f$, т.е. $f^0\leqslant f\Rightarrow minf=f^0=f(x^0)$, т.е. точка $x^0=(x_1^0,...,x_n^0)$ - точка минимума (глобального) целевой функции в допустимой области. Т. О. достаточность теоремы Куна-Таккера доказана.

чит.д.

Теорема Куна-Таккера (в "седловом"варианте)

Точка $x^0=(x_1^0,...,x_n^0)$ является решением ЗВП (т.е. точкой глобального min-а функции "f") $\Leftrightarrow \exists$ неотрицательный вектор множителей Лагранжа $\lambda^0=(\lambda_1^0,...,\lambda_m^0)(\lambda_i^0\geqslant 0; i=\overline{1,m})$ такой, что для функции Лагранжа $L=(x_1,...,x_n;\lambda_1,...,\lambda_m)=f(x_1,...,x_n)+\sum_{i=1}^m\lambda_ig_i(x_1,...,x_n)$ точка $(x^0;\lambda^0)$ является седловой точкой, т.е.

$$L(x^0, \lambda) \leqslant (x^0, \lambda^0) \leqslant L(x, \lambda^0)$$
 (*)

 $\forall x \in$ допустимой области, $\lambda \geqslant 0$

(без доказательства)

Rem:

- 1. Из неравенства (*) следует, что точка точка минимума функции, а точка точка максимума функции по. Существование седловой точки означает равенство минимакса максимуму.
- 2. Можно показать, что необходимые и достаточные условия того, чтобы являлась седловой точкой функции Лагранжа, имеют вид:
- **Rem:** 1. При доказательстве необходимости условий теоремы Куна-Таккера выпуклость функций и допустимой области не требовалась ⇒ условия Куна-Таккера являются необходимыми для произвольной (необязательно выпуклой) ЗМП.
- 2. Множители Лагранжа " λ_k " представляют собой "цену" ограничения " $g_k \leqslant 0$ ", т.е. чувствительность оптимального значения целевой функции " f^0 " к нарушению этого ограничения. В функции Лагранжа слагаемые " $\lambda_k g_k$ " представляет собой как бы "штраф" за нарушение ограничения " $g_k \leqslant 0$ ". Чем больше значение множителя Лагранжа " λ_k " и чем больше наруше-

но /-щее ограничение (т.е. стало " $g_k > 0$ "), тем больше величина этого "штрафа". На этой идее основан один из методов решения ЗМП - метод штрафных функций, который был рассмотрен ниже.

- 3. Условия теоремы Куна-Таккера представляют собой систему нелинейных (в общем случае) уравнений и неравенств, которая допускает лишь приближенное решение численными методами. Для решения ЗВП разработали специальные итерационные численные методы, которые заключаются в построении последовательных приближений к точке целевой функции в допустимой области. Критерием окончания итерационного процесса является достижение заданной точности вычислений. В результате определяются приближенные значения.
- 4. Точное решение ЗВП допускает в случае, когда и целевая функция и все ограничения являются линейными функциями переменных (линейные функции являются выпуклыми в /-ии со свойством 1 выпуклых функций). Такая ЗВП называется задачей линейного программирования (ЗЛП).

Линейное программирование