Part1

Question 1

What is t memory-mapped I/O

I/O 與 memory 共同使用同一個記憶體空間,可以提高效率 與簡化設計。

How it works

將 memory 與 I/O port mapping 至 memory address。

Question 2

在不需要 CPU 的協助處理之下(協助轉移資料等等),直接存取 memory 的技巧為 DMA。

可以減少傳輸所耗費的時間,也可以使不同速度的硬體裝置溝通。

Question 3

a

picture

b

	FCFS	SJF	priority	RR
P_1	8	18	17	18
P_2	9	1	1	2
P_3	11	4	9	7
P_4	12	2	18	4
P_5	18	10	7	16

C

	FCFS	SJF	priority	RR
P_1	0	10	9	10
P_2	8	0	0	1
P_3	9	2	7	5
P_4	11	1	17	3
P_5	12	4	1	10

d

SJF,
$$1+2+4+10=17$$
 waiting time Avg. waiting time = $17/5=3.4$

Question 4

Subroutine. 因為當 user process 取用 kernel service 時,kernel space 會在同個地方開始