TOÁN RỜI RẠC

GV LÊ VĂN HỢP

CHUONG V

TẬP HỢP SỐ NGUYÊN Z

I. <u>SỰ CHIA HẾT CỦA SỐ NGUYÊN:</u>

- 1.1/ $\underline{\mathbf{DINH NGH\tilde{I}A:}}$ Cho a, b $\in \mathbf{Z}$.
 - a) Ta nói a | b (a là *một ước số* của b hay a *chia hết* b) nếu $\exists k \in \mathbb{Z}$, b = ka. Lúc đó ta cũng nói là b: a (b là *một bội số* của a hay b *chia hết cho* a).
 - b) Suy ra: a không chia hết b (hay b không chia hết cho a hay a không là một ước số của b hay b không là một bội số của a) nếu ∀k ∈ Z, b ≠ ka. Lúc này ta dùng ký hiệu a|b hay b:a.

Ví dụ:

- a) $12 \mid (-48)$ [hay (-48) : 12] $\forall i \exists (-4) \in \mathbb{Z}, (-48) = (-4)12.$
- b) 17 không chia hết 65 (vì $\forall k \in \mathbb{Z}$, 65 > 17| k | nếu | k | \leq 3 và 65 < 17| k | nếu | k | \geq 4, nghĩa là $\forall k \in \mathbb{Z}$, 65 \neq 17k).
- 1.2/ TÍNH CHÁT: Cho a, b, c, $d \in \mathbb{Z}$. Đặt $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Khi đó
 - a) $a = \pm 1 \iff \forall k \in \mathbb{Z}, a \mid k$.

- b) $a \neq 0 \Leftrightarrow a \text{ chỉ có } h \tilde{u} u \text{ hạn } u \acute{o} c s \acute{o}.$
- c) $a = 0 \iff \forall k \in \mathbb{Z}, k \mid a \iff a \text{ có vô hạn ước số.}$ $a \neq 0 \iff \exists k \in \mathbb{Z}, \overline{k \mid a} \iff a \text{ có chỉ có hữu hạn ước số.}$
- $d) \ a \ | \ b \ \Leftrightarrow \ (- \ a \) \ | \ b \ \Leftrightarrow \ a \ | \ (- \ b \) \ \Leftrightarrow \ (- \ a) \ | \ (- \ b \).$
- e) Nếu $a \mid b$ thì $(b = 0 \text{ hay } 0 < |a| \le |b|)$.
- f) $(a \mid b \ va \ b \mid a) \Leftrightarrow a = \pm b \Leftrightarrow |a| = |b|.$
- g) $(a \mid b, b \mid a \ va \ ab \ge 0) \iff a = b.$
- h) Nếu $(a \mid \mathbf{b} \ va \ \mathbf{b} \mid c)$ thì $a \mid c$.

- i) Nếu $(\mathbf{a} \mid \mathbf{b} \text{ và } \mathbf{a} \mid \mathbf{c})$ thì $[\mathbf{a} \mid (\mathbf{b} \pm \mathbf{c}) \text{ và } \mathbf{a} \mid \mathbf{bc}]$.
- j) Nếu (a | b và c | d) thì ac | bd.

k)
$$a \mid b \iff \forall k \in \mathbb{Z}, a \mid kb \iff \forall k \in \mathbb{Z}, ka \mid kb \iff$$

$$\Leftrightarrow \forall k \in \mathbb{Z}^*, a \mid kb \Leftrightarrow \forall k \in \mathbb{Z}^*, ka \mid kb \Leftrightarrow \exists k \in \mathbb{Z}^*, ka \mid kb.$$

Việc chứng minh các tính chất trên là các bài tập đơn giản về số nguyên.

1.3/ THUÂT CHIA EUCLIDE: Cho a, $b \in \mathbb{Z}$ và $b \neq 0$.

Khi đó *có duy nhất* $\mathbf{q}, \mathbf{r} \in \mathbf{Z}$ thỏa $\mathbf{a} = \mathbf{q}\mathbf{b} + \mathbf{r}$ và $0 \le \mathbf{r} < |\mathbf{b}|$.

Ta nói a là $s\acute{o}$ bị chia, b là $s\acute{o}$ chia, \mathbf{q} là $s\acute{o}$ thương và \mathbf{r} là $s\acute{o}$ du.

Ta ký hiệu $q = a \operatorname{div} b$, $r = a \operatorname{mod} b$ và $a \equiv r \pmod{b}$.

Ví dụ:
$$140 = 9(15) + 5$$
 với $0 \le 5 < |15| = 15$ (phép chia Euclide).

$$-140 = -10(15) + 10$$
 với $0 \le 10 < |15| = 15$ (phép chia Euclide).

$$140 = -9(-15) + 5$$
 với $0 \le 5 < |-15| = 15$ (phép chia Euclide).

$$-140 = 10(-15) + 10$$
 với $0 \le 10 < |-15| = 15$ (phép chia Euclide).

$$140 = 8(15) + 20$$
 và $-140 = 9(-15) - 5$ (không phải phép chia Euclide).

II. <u>ƯỚC SỐ CHUNG DƯƠNG LỚN NHẤT:</u>

2.1/ **DINH NGHĨA:** Cho a, b $\in \mathbb{Z}^*$.

Xét $S = \{ c \in \mathbb{Z} / c \mid a \text{ và } c \mid b \} = Tập hợp$ *các wớc số chung*của a và b.

 $Ta~c\acute{o}~S\neq\varnothing~\left(v\grave{i}~\pm~1~\in~S\right)v\grave{a}~\forall~c\in~S,~1\leq|~c~|\leq min~\{~|~a~|,~|~b~|~\}~n\acute{e}n~S~h\~{u}u~h\rlap{a}n.$

Đặt $\mathbf{d} = \max(S)$ và gọi \mathbf{d} là ước số chung dương lớn nhất của a và b.

Ký hiệu
$$\mathbf{d} = (a, b) = (b, a)$$
. Ta có $1 \le \mathbf{d} \le \min \{ |a|, |b| \}$.

Ví du: Cho a = -36 và b = 48.

$$X\acute{e}t \;\; S = \{\; c \in \mathbf{Z} \, / \, c \mid (-\,36) \;\; v\grave{a} \;\; c \mid 48 \; \} = \{\, \pm \, 1, \, \pm \, 2, \, \pm \, 3, \, \pm \, 4, \, \pm \, 6, \, \pm \, 12 \; \}.$$

Đặt
$$d = max(S) = 12$$
 thì $d = (-36, 48) = (48, -36) = 12$.

2.2/ MÊNH ĐÈ: Cho a, b \in **Z*** và **d** \in **N*** = **N** \ {0}. Khi đó

$$\mathbf{d} = (\mathbf{a}, \mathbf{b}) \iff [(\mathbf{d} \mid \mathbf{a}), (\mathbf{d} \mid \mathbf{b}) \text{ và } \forall \mathbf{k} \in \mathbf{Z}, (\mathbf{k} \mid \mathbf{a} \text{ và } \mathbf{k} \mid \mathbf{b}) \implies \mathbf{k} \mid \mathbf{d}].$$

(d là một ước số chung của a và b) và (d là bội của mọi ước chung của a và b).

<u>Ví dụ:</u> Cho a = 75, b = 100 và $S = \{c \in \mathbb{Z} / c \mid 75 \text{ và } c \mid 100\} = \{\pm 1, \pm 5, \pm 25\}.$

Ta có d = (75, 100) = 25 vì $25 \in S \cap \mathbb{N}^*$ và $\forall k \in S, k \mid 25$.

2.3/ $\mathbf{M}\hat{\mathbf{E}}\mathbf{N}\mathbf{H}\,\mathbf{D}\hat{\mathbf{E}}$: Cho a, b \in \mathbf{Z}^* và $\mathbf{d}\in\mathbf{N}^*$. Khi đó

 $\mathbf{d} = (\mathbf{a}, \mathbf{b}) \iff [(\mathbf{d} \mid \mathbf{a}), (\mathbf{d} \mid \mathbf{b}) \text{ và } \exists r, s \in \mathbf{Z}, \mathbf{d} = r\mathbf{a} + s\mathbf{b} \text{ } (r \text{ và } s \text{ } không duy nhất)}]$

(d là một ước số chung của a và b) và (d là một tổ hợp nguyên của a và b).

Ví dụ:

a) (12, -32) = 4 vì $4 \mid 12, 4 \mid (-32)$ và $\exists (-5), (-2) \in \mathbb{Z}, 4 = (-5)12 + (-2)(-32)$.

Ta cũng thấy $\exists 3, 1 \in \mathbb{Z}, 4 = 3(12) + 1(-32).$

b) (9, 20) = 1 vì $1 \mid 9, 1 \mid 20$ và $\exists 9, (-4) \in \mathbb{Z}, 1 = (9)9 + (-4)20$.

Ta cũng thấy $\exists (-11), 5 \in \mathbb{Z}, \mathbf{1} = (-11)9 + 5(20).$

2.4/ **TÍNH CHÁT:** Cho a, b, $\lambda \in \mathbb{Z}^*$. Khi đó

a)
$$(a, b) = (-a, b) = (a, -b) = (-a, -b)$$
 và $(\lambda a, \lambda b) = |\lambda| (a, b)$.

b) Nếu $a \mid b$ thì (a, b) = |a|. Đặc biệt $(\pm a, \pm a) = |a|$.

Ví dụ:

a)
$$(36, 48) = (-36, 48) = (36, -48) = (-36, -48) = 12$$
.

b)
$$(-7 \times 36, -7 \times 48) = |-7|(36, 48) = 7 \times 12 = 84.$$

c)
$$(-15, 90) = |-15| = 15$$
 vì $(-15) | 90$. Đặc biệt $(\pm 57, \pm 57) = |\pm 57| = 57$.

2.5/ $\underline{\mathbf{BO}} \underline{\mathbf{DE}}$: Cho a, b $\in \mathbf{Z}^*$ thỏa | a | > | b | và b không chia hết a.

Chia Eucide $\mathbf{a} = q\mathbf{b} + \mathbf{r} \text{ v\'oi } 0 < \mathbf{r} < |\mathbf{b}|$. Khi đó $(\mathbf{a}, \mathbf{b}) = (\mathbf{b}, \mathbf{r})$.

$$a = qb + r$$
 với $0 < r < |b|$

Ý nghĩa: Tìm (\mathbf{b}, \mathbf{r}) thay cho (\mathbf{a}, \mathbf{b}) với sự thuận lợi là $\mathbf{r} < |\mathbf{b}| < |\mathbf{a}|$.

Ví du: Cho
$$a = 79.822$$
 và $b = -57.442$ với $|a| > |b|$. Tính $d = (a, b)$.

Chia Euclide liên tiếp (**số chia** và **số dư** ở bước trước lần lượt trở thành **số bị chia** và **số chia** ở bước ngay sau) và quá trình chia sẽ dừng khi số dư bằng 0:

$$a = qb + r$$
 $v \circ i \quad 0 < r < |b|$
 $b = sr + t$ $v \circ i \quad 0 < t < |r|$

$$\mathbf{a} = -\mathbf{b} + 22.380 \quad [1], \quad \mathbf{b} = -3(22.380) + 9.698 \quad [2],$$

$$22.380 = 2(9.698) + 2.984$$
 [3], $9.698 = 3(2.984) + 746$ [4] và

2.984 =
$$4(746) + \underline{0}$$
 [5]. Từ [1], [2], [3], [4], [5], ta có

$$d = (a, b) = (b, 22.380) = (22.380, 9.698) = (9.698, 2.984) = (2.984, 746) = 746.$$

2.6/ THUẬT TOÁN TÌM ƯỚC SỐ CHUNG DƯƠNG LỚN NHẤT VÀ BIỂU DIỄN TỔ HƠP NGUYÊN:

a) Vấn đề : Cho $a, b \in \mathbb{Z}^*$ thỏa |a| > |b|.

Tìm
$$\mathbf{d} = (\mathbf{a}, \mathbf{b})$$
 và tìm $r, s \in \mathbf{Z}$ thỏa $\mathbf{d} = r\mathbf{a} + s\mathbf{b}$.

b) Chia Euclide liên tiếp

$$\mathbf{a} = \mathbf{q_o} \cdot \mathbf{b} + \mathbf{r_o} (0 < \mathbf{r_o} < |\mathbf{b}|) [1].$$

$$\mathbf{b} = \mathbf{q}_1 \cdot \mathbf{r}_0 + \mathbf{r}_1 (0 < \mathbf{r}_1 < |\mathbf{r}_0| = \mathbf{r}_0) [2].$$

$$\mathbf{r_0} = \mathbf{q_2} \cdot \mathbf{r_1} + \mathbf{r_2} (0 < \mathbf{r_2} < |\mathbf{r_1}| = \mathbf{r_1}) \quad [3].$$

$$\mathbf{r_1} = \mathbf{q_3}.\mathbf{r_2} + \mathbf{r_3} (0 < \mathbf{r_3} < |\mathbf{r_2}| = \mathbf{r_2}) [4].$$

$$\mathbf{r_{n-4}} = \mathbf{q_{n-2}}.\mathbf{r_{n-3}} + \mathbf{r_{n-2}} (0 < \mathbf{r_{n-2}} < |\mathbf{r_{n-3}}| = \mathbf{r_{n-3}}) [n-1].$$

$$\mathbf{r_{n-3}} = \mathbf{q_{n-1}} \cdot \mathbf{r_{n-2}} + \mathbf{r_{n-1}} \left(0 < \mathbf{r_{n-1}} < |\mathbf{r_{n-2}}| = \mathbf{r_{n-2}} \right) [n].$$

$$\mathbf{r}_{n-2} = \mathbf{q}_{n} \cdot \mathbf{r}_{n-1} + \mathbf{0}$$
 (phép chia dùng khi số dư $\mathbf{r}_{n} = \mathbf{0}$) [n + 1].

Từ các đẳng thức $[1], [2], [3], \ldots, [n], [n+1]$ và theo (2.5), ta có $\mathbf{d} = (\mathbf{a}, \mathbf{b}) = (\mathbf{b}, \mathbf{r}_0) = (\mathbf{r}_0, \mathbf{r}_1) = (\mathbf{r}_1, \mathbf{r}_2) = \ldots = (\mathbf{r}_{n-3}, \mathbf{r}_{n-2}) = (\mathbf{r}_{n-2}, \mathbf{r}_{n-1}) = \mathbf{r}_{n-1}.$ Từ các đẳng thức $[n], [n-1], \ldots, [3], [2]$ và [1], ta biểu diễn các số dư $\mathbf{d} = \mathbf{r}_{n-1} = 1.\mathbf{r}_{n-3} - \mathbf{q}_{n-1}.\mathbf{r}_{n-2} = 1.\mathbf{r}_{n-3} - \mathbf{q}_{n-1}(\mathbf{r}_{n-4} - \mathbf{q}_{n-2}.\mathbf{r}_{n-3}) = \\ = -\mathbf{q}_{n-1}.\mathbf{r}_{n-4} + (1 + \mathbf{q}_{n-1}.\mathbf{q}_{n-2})\mathbf{r}_{n-3} = \ldots,$ $\mathbf{d} \text{ lần lượt được biểu diễn là một tổ hợp nguyên của } \{\mathbf{r}_{n-2}, \mathbf{r}_{n-3}\}, \text{ của } \{\mathbf{r}_{n-3}, \mathbf{r}_{n-4}\}, \ldots, \text{ của } \{\mathbf{r}_1, \mathbf{r}_0\}, \text{ của } \{\mathbf{r}_0, \mathbf{b}\} \text{ và sau hết là của } \{\mathbf{b}, \mathbf{a}\}.$ $\mathbf{Ví} \mathbf{du}: \text{ Cho } \mathbf{a} = -718.729 \text{ và } \mathbf{b} = 397.386 \text{ với } |\mathbf{a}| > |\mathbf{b}|.$ Tính $\mathbf{d} = (\mathbf{a}, \mathbf{b})$ và tìm $\mathbf{r}, \mathbf{s} \in \mathbf{Z}$ thỏa $\mathbf{d} = \mathbf{ra} + \mathbf{sb}.$ Chia Euclide liên tiếp : $\mathbf{a} = -2\mathbf{b} + 76.043$ $[1], \mathbf{b} = 5(76.043) + 17.171$ [2], $\mathbf{76.043} = 4(17.171) + 7.359$ [3], 17.171 = 2(7.359) + 2.453 [4] và

76.043 = 4(17.171) + 7.359 [3], 17.171 = 2(7.359) + 2.453 [4] và 7.359 = 3(2.453) + $\underline{\mathbf{0}}$ [5]. Từ [1], [2], [3], [4] và [5], ta có \mathbf{d} = (\mathbf{a} , \mathbf{b}) = = (\mathbf{b} , 76.043) = (76.043, 17.171) = (17.171, 7.359) = (7.359, 2.453) = 2.453. Từ [4], [3], [2] và [1], ta biểu diễn liên tiếp các số dư \mathbf{d} = 2453 = = 17.171 - 2(7.359) = 17.171 - 2[76.043 - 4(17.171)] = -2(76.043) + 9(17.171) = -2(76.043) + 9[\mathbf{b} - 5(76.043)] = 9 \mathbf{b} - 47(76.043) = 9 \mathbf{b} - 47(\mathbf{a} + 2 \mathbf{b})] = = -47 \mathbf{a} - 85 \mathbf{b} . Vây \mathbf{d} = 2.453 = r \mathbf{a} + s \mathbf{b} với \mathbf{r} = -47 và \mathbf{s} = -85.

III. BỘI SỐ CHUNG DƯƠNG NHỎ NHẤT:

3.1/ $\underline{\text{DINH NGHIA:}}$ Cho a, b $\in \mathbb{Z}^*$ và

 $T = \{ c \in \mathbb{N}^* / c : a \ và \ c : b \} = Tập hợp$ *các bội số chung dương*của a và b.

Ta có $T \neq \emptyset$ (vì $|ab| \in T$) và $\forall c \in T, c \ge \max\{|a|, |b|\}.$

Đặt e = min(T) và gọi e là *bội số chung dương nhỏ nhất* của a và b.

Ký hiệu e = [a, b] = [b, a]. Ta có $max \{|a|, |b|\} \le e \le |ab|$.

Ví dụ: Cho $a = -36 = -2^2 \cdot 3^2$ và $b = 48 = 2^4 \cdot 3^1$.

Xét $T = \{ c \in \mathbb{N}^* / c : (-36) \text{ và } c : 48 \} = \{ 2^4.3^2.t / t \in \mathbb{N}^* \}.$

Đặt $e = min(T) = 2^4 \cdot 3^2 = 144$ (với t = 1) thì e = [-36, 48] = [48, -36] = 144.

3.2/ MÊNH ĐÈ: Cho a, b \in Z* và $e \in$ N*. Khi đó

 $e = [a, b] \Leftrightarrow [(e:a), (e:b) \ va \ \forall k \in \mathbb{Z}, (k:a \ va \ k:b) \Rightarrow k:e].$

(e là một bội số chung của a và b) và (e là ước của mọi bội chung của a và b).

Ví dụ: Cho $a = 75 = 3.5^2$, $b = 100 = 2^2 5^2$ và

 $L = \{ c \in \mathbf{Z} / c:75 \text{ và } c:100 \} = \{ 2^2.3.5^2.t / t \in \mathbf{Z^*} \} = \{ 300t / t \in \mathbf{Z^*} \}.$

Ta có $e = [75, 100] = 300 \text{ vì } 300 \in L \cap \mathbb{N}^* \text{ và } \forall k \in L, 300 \mid k.$

3.3/ MÊNH ĐÈ: Cho $a, b \in \mathbb{Z}^*$ và $e \in \mathbb{N}^*$. Khi đó

 $\mathbf{e} = [\mathbf{a}, \mathbf{b}] \Leftrightarrow [(\mathbf{e}:\mathbf{a}), (\mathbf{e}:\mathbf{b}) \text{ và } \exists \mathbf{u}, \mathbf{v} \in \mathbf{Z}, \frac{1}{e} = \frac{u}{a} + \frac{v}{b} (\mathbf{u} \text{ và } \mathbf{v} \text{ không duy nhất})].$ $(e \text{ là một bội số chung của a và b) và } (\frac{1}{e} \text{ là một tổ hợp nguyên của } \frac{1}{a} \text{ và } \frac{1}{b}).$

Ví dụ:

[12, -32] = 96 vì **96**:12, **96**:(-32) và \exists (-1), (-3) \in **Z**, $\frac{1}{96} = \frac{(-1)}{12} + \frac{(-3)}{(-32)}$. Ta cũng thấy \exists 2, 5 \in **Z**, $\frac{1}{96} = \frac{2}{12} + \frac{5}{(-32)}$.

3.4/ **TÍNH CHÁT:** Cho a, b, $\lambda \in \mathbb{Z}^*$. Khi đó

- $a)\;[\;a,\,b\;] = [\;-a,\,b\;] = [\;a,\,-b\;] = [\;-a,\,-b\;]\;\;\mathrm{v\grave{a}}\;\;[\;\lambda a,\,\lambda b\;] = |\;\lambda\;|\;[\;a,\,b\;].$
- b) Nếu $a \mid b$ thì [a, b] = |b|. Đặc biệt $[\pm a, \pm a] = |a|$.

Ví dụ:

a)
$$[36, 48] = [-36, 48] = [36, -48] = [-36, -48] = 144.$$

b)
$$[-7 \times 36, -7 \times 48] = |-7|[36, 48] = 7 \times 144 = 1.008.$$

c)
$$[15, -90] = |-90| = 90$$
 vì $15|(-90)$. Đặc biệt $[\pm 57, \pm 57] = |\pm 57| = 57$.

3.5/ $\underline{\textbf{PINH LY:}}$ Cho a, b \in $\mathbf{Z^*}$ với $\mathbf{d} = (a, b)$ và $\mathbf{e} = [a, b]$. Khi đó

a)
$$\mathbf{de} = |\mathbf{ab}|$$
. Suy ra $\mathbf{e} = \frac{|\mathbf{ab}|}{d}$. (nên tính $\mathbf{e} = \frac{|\mathbf{a}|}{d}$. $|\mathbf{b}|$ thì thuận tiện hơn).

b) Chọn
$$r, s \in \mathbb{Z}$$
 thỏa $\mathbf{d} = r\mathbf{a} + s\mathbf{b}$ thì $\frac{1}{e} = \frac{d}{|ab|} = \frac{ra + sb}{|ab|} = \frac{u}{a} + \frac{v}{b}$ trong đó * Nếu $a\mathbf{b} > 0$ thì $\frac{1}{e} = \frac{ra + sb}{ab} = \frac{s}{a} + \frac{r}{b}$ ($u = s$ và $v = r$).

* Nếu ab < 0 thì
$$\frac{1}{e} = \frac{ra + sb}{-ab} = \frac{(-s)}{a} + \frac{(-r)}{b}$$
 ($u = -s$ và $v = -r$).

Ví du: a = -718.729 và b = 397.386 có d = (a, b) = 2453 nên

$$e = [a, b] = \frac{|ab|}{d} = \frac{|a|}{d}.|b| = 293 \times 397.386 = 116.434.098.$$

Hon nữa do ab < 0 và d = ra + sb với r = -47 và s = -85 nên

$$\frac{1}{e} = \frac{d}{|ab|} = \frac{-47a - 85b}{-ab} = \frac{85}{a} + \frac{47}{b}. \text{ Vây } \frac{1}{e} = \frac{u}{a} + \frac{v}{b} \text{ với } u = 85 \text{ và } v = 47.$$

IV. <u>SƯ NGUYÊN TỐ CÙNG NHAU:</u>

4.1/ **DINH NGHĨA:** Cho a, b \in **Z***.

- a) Ta nói a và b là hai số nguyên tố cùng nhau nếu a và b chỉ có hai ước số chung là ± 1, nghĩa là (a, b) = 1.
- b) Suy ra a và b là hai số không nguyên tố cùng nhau nếu $(a, b) \ge 2$.

<u>Ví dụ:</u> Do (-25, 42) = 1 nên -25 và 42 là hai số nguyên tố cùng nhau.

Do $(84, 56) = 28 \ge 2$ nên 84 và 56 là hai số không nguyên tố cùng nhau.

4.2/ MÊNH ĐÈ: Cho a, $b \in \mathbb{Z}^*$. Khi đó

$$(a, b) = 1 \iff \exists r, s \in \mathbb{Z} \text{ tho a } 1 = ra + sb.$$

<u>Ví du:</u> Ta có 5(17) + (-12)7 = 1 nên ta thấy có 16 cặp số nguyên tố cùng nhau là $(\pm 5, \pm 12) = (\pm 5, \pm 7) = (\pm 17, \pm 12) = (\pm 17, \pm 7) = 1$.

4.3/ MÊNH ĐÈ: Cho a, b, $c \in \mathbb{Z}^*$.

a) Nếu
$$(a, b) = 1 = (a, c)$$
 thì $(a, bc) = 1$.

- b) Nếu $[\mathbf{a} \mid bc \ và \ (\mathbf{a}, b) = \mathbf{1}]$ thì $\mathbf{a} \mid c$.
- c) Nếu $[a \mid c, b \mid c \text{ và } (a, b) = 1]$ thì $ab \mid c$.

Ví dụ:

- a) (12, 25) = 1 = (12, -47) nên $(12, 25 \times [-47]) = 1$.
- b) $\mathbf{19} \mid (76 \times 31) \text{ và } (\mathbf{19}, 31) = 1 \text{ nên } \mathbf{19} \mid 76.$
- c) $9 \mid 1188, -22 \mid 1188 \text{ và } (9, -22) = 1 \text{ nên } 9(-22) \mid 1188.$

4.4/ <u>DẠNG TỐI GIẢN CỦA MỘT SỐ HỮU TỈ:</u>

Cho a, b $\in \mathbb{Z}^*$ và $\frac{a}{b} \in \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$. Đặt d = (a, b) và viết a = da', b = db'.

Ta có
$$\frac{a}{b} = \frac{a'}{b'} = \frac{-a'}{-b'}$$
 với $(a', b') = (-a', -b') = 1$.

Ta nói $\frac{a}{b}$ có hai dạng tối giản (không giản ước được) là $\frac{a'}{b'}$ và $\frac{-a'}{-b'}$.

Ví dụ:

$$a = 79.822$$
 và $b = -57.442$. Ta có $d = (a, b) = 746$, $a = 107d$ và $b = -77d$.

Suy ra
$$\frac{a}{b} = \frac{107d}{-77d} = \frac{107}{-77} = \frac{-107}{77}$$
. Vậy $\frac{a}{b}$ có hai dạng tối giản là $\frac{-107}{77}$ và $\frac{107}{-77}$

vì
$$(-107, 77) = (107, -77) = 1.$$

V. <u>SỰ PHÂN TÍCH NGUYÊN TỐ:</u>

- **5.1**/ **SÓ NGUYÊN TÓ :** Cho $p \in \mathbb{Z}$ và $|p| \ge 2$ (nghĩa là $0 \ne p \ne \pm 1$).
 - a) Ta nói p là một số nguyên tố nếu p chỉ có hai ước số dương là 1 và | p |
 (nghĩa là p chỉ có 4 ước số là ± 1 và ± p).
 - b) Suy ra q là một số không nguyên tố (còn gọi là hợp số) nếu q có hơn hai ước số dương.

Ví du:

Các số nguyên tố đầu tiên \pm 2, \pm 3, \pm 5, \pm 7, \pm 11, \pm 13, \pm 17, \pm 19, \pm 23, \pm 29, ...

Tập hợp các số nguyên tố là một tập hợp vô han (một bài tập hay).

Ta có ± 28 là một hợp số vì ± 28 có hơn hai ước số dương là 1, 2, 4, ...

5.2/ **MÊNH ĐÊ:** Cho $p \in \mathbb{Z}$ và $|p| \ge 2$. Các phát biểu sau là *tương đương*:

b)
$$\forall k \in \mathbb{Z}^*, \overline{p \mid k} \implies (p, k) = 1.$$

c)
$$\forall k \in \mathbb{Z}^*, (p, k) \neq 1 \implies p \mid k$$

c)
$$\forall k \in \mathbb{Z}^*$$
, $(p, k) \neq 1 \Rightarrow p \mid k$. d) $\forall a, b \in \mathbb{Z}^*$, $p \mid ab \Rightarrow (p \mid a \text{ hay } p \mid b)$.

e)
$$\forall a, b \in \mathbb{Z}^*, (\overline{p \mid a} \ \text{và } \overline{p \mid b}) \Rightarrow \overline{p \mid ab}$$
.

<u>Ví du:</u> 83 là số nguyên tố, $\overline{83|724}$ và $\overline{83|615}$ nên (83, 724) = 1 và $\overline{83|(724).(615)}$.

5.3/ ĐỊNH LÝ PHÂN TÍCH NGUYÊN TỐ: Cho $k \in \mathbb{Z}$ và $|k| \ge 2$.

Khi đó k được phân tích một cách duy nhất dưới dạng $k = \pm p_1^{r_1} p_2^{r_2} ... p_m^{r_m}$ (*)

trong đó $p_1 < p_2 < \dots < p_m$ là các số nguyên tố > 0 và $r_1, r_2, \dots, r_m \in \mathbf{N}^*$.

(*) được gọi là sự phân tích nguyên tổ của k.

Ví dụ: $178.200 = 2^3.3^4.5^2.11^1$ và $-102.375 = -3^2.5^3.7^1.13^1$.

5.4/ **MÊNH ĐÊ:** Cho a, b \in **Z** \ { 0, \pm 1 }.

Phân tích nguyên tố $a = \pm p_1^{r_1} p_2^{r_2} ... p_m^{r_m}$ và $b = \pm q_1^{s_1} q_2^{s_2} ... q_n^{s_n}$. Khi đó

a)
$$(a, b) = 1 \Leftrightarrow \{ p_1, p_2, ..., p_m \} \cap \{ q_1, q_2, ..., q_n \} = \emptyset.$$

$$b)\ (a,\,b)\geq 2 \ \Leftrightarrow \ \{\ p_1,\,p_2,\,...\;,\,p_m\,\}\,\cap\,\{\ q_1,\,q_2,\,...\;,\,q_n\,\}\neq\varnothing.$$

<u>Ví dụ:</u> Ta có $(\pm 2^3.5^4.11^2.19^8.29^5, \pm 3^6.7^{10}.13^2.17^7.23^1.31^4) = 1$ vì

$$\{2, 5, 11, 19, 29\} \cap \{3, 7, 13, 17, 23, 31\} = \emptyset.$$

Ta có $(\pm 2^2.3^4.11^1.13^5.29^4, \pm 3^3.5^2.7^8.17^4.29^6) \ge 2$ vì

$$\{2, 3, 11, 13, 29\} \cap \{3, 5, 7, 17, 29\} = \{3, 29\} \neq \emptyset.$$

5.5/ $\angle AP DUNG$: Cho a, b $\in \mathbb{Z} \setminus \{0, \pm 1\}$. Ta có thể tìm $\mathbf{d} = (a, b), \mathbf{e} = [a, b]$ và các dạng tối giản của phân số $\frac{a}{b}$ dựa theo sự phân tích nguyên tố của a và b.

Phân tích nguyên tố một cách "thỏa hiệp "giữa a và b như sau:

$$a = \pm p_1^{r_1} p_2^{r_2} ... p_m^{r_m}$$
 và $b = \pm p_1^{s_1} p_2^{s_2} ... p_m^{s_m}$ trong đó $p_1 < p_2 < ... < p_m$ là các số nguyên

$$t \acute{o} \geq 0 \ \ v \grave{a} \ \ r_1, \, s_1, \, r_2, \, s_2, \, \ldots \, , \, r_m, \, s_m \in \mathbf{N} \ \ sao \ cho \ \ r_i + s_i \geq 1 \ (1 \leq i \leq m).$$

Đặt
$$u_i = \min\{ r_i, s_i \}$$
 và $v_i = \max\{ r_i, s_i \}$ $(1 \le i \le m)$.

Khi đó
$$\mathbf{d} = (\mathbf{a}, \mathbf{b}) = p_1^{u_1} p_2^{u_2} ... p_m^{u_m}$$
, $\mathbf{e} = [\mathbf{a}, \mathbf{b}] = p_1^{v_1} p_2^{v_2} ... p_m^{v_m}$ và các dạng tối giản của

$$\frac{a}{b}$$
 lần lượt là

$$\frac{a}{b} = \frac{\operatorname{sgn}(a) p_1^{r_1 - u_1} p_2^{r_2 - u_2} \dots p_m^{r_m - u_m}}{\operatorname{sgn}(b) p_1^{s_1 - u_1} p_2^{s_2 - u_2} \dots p_m^{s_m - u_m}} \text{ hay } \frac{a}{b} = \frac{-\operatorname{sgn}(a) p_1^{r_1 - u_1} p_2^{r_2 - u_2} \dots p_m^{r_m - u_m}}{-\operatorname{sgn}(b) p_1^{s_1 - u_1} p_2^{s_2 - u_2} \dots p_m^{s_m - u_m}} \text{ trong } \text{ d\'o}$$

sgn(a) và sgn(b) là dấu của a và b.

<u>Ví du:</u> $a = 2^3.3^5.7^4.13^2.17^3$ và $b = -2^8.5^2.7^2.11^3.17^9.19^1$ có các dạng phân tích nguyên tố một cách "thỏa hiệp " lần lượt là

$$a=2^3.3^5.5^0.7^4.11^0.13^2.17^3.19^0 \text{ và } b=-2^8.3^0.5^2.7^2.11^3.13^0.17^9.19^1 \text{ . Ta suy ra}$$

$$d=(a,b)=2^33^05^07^211^013^017^319^0=2^37^217^3 \text{ và } e=[\ a,b\]=2^83^55^27^411^313^217^919^1$$

Các dạng tối giản của số hữu tỉ
$$\frac{a}{b}$$
 lần lượt là $\frac{3^5.7^2.13^2}{-2^5.5^2.11^3.17^6.19^1}$ và $\frac{-3^5.7^2.13^2}{2^5.5^2.11^3.17^6.19^1}$.

5.6/ MÔ TẢ CÁC ƯỚC SỐ CỦA SỐ NGUYÊN: Cho $k \in \mathbb{Z}$ với $|k| \ge 2$.

Phân tích nguyên tố $k = \pm p_1^{r_1} p_2^{r_2} ... p_m^{r_m}$. Khi đó

a) Tập hợp *các ước số nguyên dương* và tập hợp *các ước số nguyên* của k lần lượt là

$$\begin{split} &A = \, \{ \, \, p_1^{t_1} \, p_2^{t_2} \, ... \, p_m^{t_m} \, \, / \, \, t_1, t_2, \, \, \ldots \, , \, \, t_m \, \in \, \mathbf{N} \ \ \, \text{và} \ \, 0 \leq t_j \leq r_j \, \, (1 \leq j \leq m) \, \, \} \, \, \text{và} \\ &B = \, \{ \, \pm \, p_1^{t_1} \, p_2^{t_2} \, ... \, p_m^{t_m} \, \, / \, t_1, t_2, \, \, \ldots \, , \, t_m \, \in \, \mathbf{N} \ \, \text{và} \, \, 0 \leq t_j \leq r_j \, \, (1 \leq j \leq m) \, \, \}. \end{split}$$

b) Dùng nguyên lý nhân cho đồng thời các số nguyên $t_1,t_2,\ldots,t_m\in \mathbf{N},$ ta có $\mid A\mid = (r_1+1)(r_2+1)\ldots(r_m+1) \ \text{và} \ \mid B\mid = 2. \mid A\mid = 2(r_1+1)(r_2+1)\ldots(r_m+1).$

 $\underline{\text{Ví dụ:}}$ k = $-2^5.3^2.5^4.11^3.19^4$ có tập hợp các ước số nguyên dương và tập hợp các ước số nguyên lần lượt là

$$\begin{split} A &= \{\ 2^a.3^b.5^c.11^d.19^e\ /\ a,\ b,\ c,\ d,\ e \in \mathbf{N}\ \ v\grave{a}\ \ a \le 5,\ b \le 2,\ c \le 4,\ d \le 3\ \ v\grave{a}\ \ e \le 4\ \} \\ v\grave{a}\ B &= \{\pm\ 2^a.3^b.5^c.11^d.19^e\ /\ a,\ b,\ c,\ d,\ e \in \mathbf{N}\ v\grave{a}\ \ a \le 5,\ b \le 2,\ c \le 4,\ d \le 3\ v\grave{a}\ \ e \le 4\} \\ Suy\ ra\ \ |\ A\ | &= (5+1)(2+1)(4+1)(3+1)(4+1) = 1.800\ \ v\grave{a}\ |\ B\ | = 2.|\ A\ | = 3.600. \end{split}$$
