ЛЕКЦИЯ №5

«Протоколирование и аудит»

по дисциплине

«Безопасность операционных систем»

Текст лекции рассмотрен и одобрен на заседании кафедры протокол № ______ от " 201 г.

(Слайд 1. Титульный слайд)

Уважаемые студенты! Сегодня вы продолжаете изучение дисциплины «Безопасность операционных систем». Лекция №6 «Протоколирование и аудит», за ней одноименное практическое занятие. Продолжительность лекции - два академических часа, практического занятия - 2 академических часа.

Слайд 2 (вопросы занятия)

- Протоколирование событий в современных ОС.
- Журналы событий.
- Аудит событий в современных ОС.

Основные понятия

Регистрация - механизм подотчетности системы ОБИ, фиксирующий все события, касающиеся безопасности, такие как:

- вход и выход субъектов доступа;
- запуск и завершение программ;

- выдача печатных документов;
- попытки доступа к защищаемым ресурсам;
- изменение полномочий субъектов доступа и статуса объектов доступа
- ит. д.

Протоколирование - сбор и накопление информации о событиях, происходящих в информационной системе.

События: внешние (вызванные действиями других сервисов), внутренние (вызванные действиями самого сервиса) и клиентские (вызванные действиями пользователей и администраторов).

Аудит — это анализ накопленной информации, проводимый оперативно, в реальном времени или периодически.

Реализация механизма регистрации и аудита преследует следующие цели:

- обеспечение подотчетности пользователей и администраторов;
- обеспечение возможности реконструкции последовательности событий;
- обнаружение попыток нарушений информационной безопасности;
- предоставление информации для выявления и анализа проблем.

Подсистема аудита в Windows

Важный элемент политики безопасности – аудит событий в системе. ОС Windows ведет аудит событий по 9 категориям:

- Аудит событий входа в систему.
- Аудит управления учетными записями.
- Аудит доступа к службе каталогов.
- Аудит входа в систему.
- Аудит доступа к объектам.
- Аудит изменения политики.
- Аудит использования привилегий.
- Аудит отслеживания процессов.
- Аудит системных событий.

Рассмотрим более подробно, какие события отслеживает каждая из категорий.

Аудит событий входа в систему

Аудит попыток пользователя войти в систему с другого компьютера или выйти из нее, при условии, что этот компьютер используется для проверки подлинности учетной записи.

Аудит управления учетными записями

Аудит событий, связанных с управлением учетными записями на компьютере: создание, изменение или удаление учетной записи пользователя или группы; переименование, отключение или включение учетной записи пользователя; задание или изменение пароля.

Аудит доступа к службе каталогов

Аудит событий доступа пользователя к объекту каталога Active Directory, для которого задана собственная системная таблица управления доступом (SACL).

Аудит входа в систему

Аудит попыток пользователя войти в систему с компьютера или выйти из нее.

Аудит доступа к объектам

Аудит событий доступа пользователя к объекту – например, к файлу, папке, разделу реестра, принтеру и т. п., - для которого задана собственная системная таблица управления доступом (SACL).

Аудит изменения политики

Аудит фактов изменения политик назначения прав пользователей, политик аудита или политик доверительных отношений.

Аудит использования привилегий

Аудит попыток пользователя воспользоваться предоставленным ему правом.

Аудит отслеживания процессов

Аудиту таких событий, как активизация программы, завершение процесса, повторение дескрипторов и косвенный доступ к объекту.

Аудит системных событий

Аудит событий перезагрузки или отключения компьютера, а также событий, влияющих на системную безопасность или на журнал безопасности.

Решения об аудите конкретного типа событий безопасности принимаются в соответствии с политикой аудита локальной системы. Политика аудита, также называемая локальной политикой безопасности (local security policy), является частью политики безопасности, поддерживаемой LSASS в локальной системе, и настраивается с помощью редактора локальной политики безопасности (Оснастка gpedit.msc, Конфигурация компьютера - Конфигурация Windows – Параметры безопасности – Локальные политики – Политика аудита).

Для каждого объекта в SD содержится список SACL, состоящий из записей ACE, регламентирующих запись в журнал аудита удачных или неудачных попыток доступа к объекту. Эти ACE определяют, какие операции, выполняемые над объектами конкретными пользователями или группами, подлежат аудиту. Информация аудита хранится в системном журнале аудита. Аудиту могут подлежать как успешные, так и неудачные операции. Подобно записям ACE DACL, правила аудита объектов могут наследоваться дочерними объектами. Процедура наследования определяются набором флагов, являющихся частью структуры ACE.

Настройка списка SACL может быть осуществлена в окне дополнительных свойств объекта (пункт "Дополнительно", закладка "Аудит")

Для программного просмотра и изменения списков SACL можно использовать API-функции GetSecutityInfo и SetSecutityInfo.

При инициализации системы и изменении политики LSASS посылает SRM сообщения, информирующие его о текущей политике аудита. LSASS отвечает за прием записей аудита, генерируемых на основе событий аудита от SRM, их редактирование и передачу Event Logger (регистратору событий). SRM посылает записи аудита LSASS через свое LPC-соединение. После этого Event Logger заносит записи в журнал безопасности.

События аудита записываются в журналы следующих типов:

- Журнал приложений. В журнале приложений содержатся данные, относящиеся к работе приложений и программ.
- Журнал безопасности. Журнал безопасности содержит записи о таких событиях, как успешные и безуспешные попытки доступа в систему, а также о событиях, относящихся к использованию ресурсов.
- Журнал системы. В журнале системы содержатся события системных компонентов Windows. Например, в журнале системы регистрируются сбои при загрузке драйвера или других системных компонентов при запуске системы.
- Журнал службы каталогов. В журнале службы каталогов содержатся события, заносимые службой каталогов Windows (на контроллере домена AD).

• Журнал службы репликации. В журнале службы репликации файлов содержатся события, заносимые службой репликации файлов Windows (на контроллере домена AD).

Просмотр журнала безопасности осуществляется в оснастке «Просмотр событий» (eventvwr.msc). Сами журналы хранятся в файлах SysEvent.evt, SecEvent.evt, AppEvent.evt в папке %WinDir%\system32\config.

В журнал записываются события 3 основных видов:

• Информационные сообщения о событиях.

Описывают успешное выполнение операций, таких как запуск или некоторое действие системной службы.

• Предупреждающие сообщения о событиях.

Описывают неожиданные действия, означающие проблему, или указывают на проблему, которая возникнет в будущем, если не будет устранена сейчас.

• Сообщения о событиях ошибок.

Описывают ошибки, возникшие из-за неудачного выполнения задач.

Журнал событий (Event Log)— в Microsoft Windows стандартный способ для приложений и операционной системы записи и централизованного хранения информации о важных программных и аппаратных событиях. Служба журналов событий сохраняет события от различных источников в едином журнале событий, программа просмотра событий позволяет пользователю наблюдать за журналом событий, программный интерфейс (API) позволяет приложениям записывать в журнал информацию и просматривать существующие записи.

Записи журнала событий хранятся в ключе реестра HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EventLog

Данный ключ содержит подключи, называемые файлами журнала. По умолчанию имеются:

- файл журнала приложений для событий приложений и служб;
- файл журнала безопасности для событий системы аудита;
- файл системного журнала для событий драйверов устройств.

Журналирование в Linux

- Журналы хранятся в каталоге /var/log.
- Основным системным демоном логирования является syslog/rsyslog
- Другие сервисы и программы также могут размещать свои log-файлы в каталоге /var/log.
- Большинство журналов доступны для чтения только суперпользователю root, но это можно легко изменить, скорректировав права доступа к файлам.
- Журнал сообщений /var/log/messages основной системный log-файл. Он содержит сообщения о ходе загрузки системы, а также другие сообщения о статусе работающей системы. В этом файле накапливаются сообщения об ошибках ввода/вывода (IO), проблемах с сетью и другие сообщения о системных ошибках и др. С изучения файла /var/log/messages обычно начинают выявление и устранение неполадок.
- /var/log/boot.log
- /var/log/lastlog
- /var/log/kern.log
- /var/log/mail.log
- /var/log/btmp
- /var/log/dmesg

Аудит в Linux

Системный аудит (или аудит системных событий) - это постоянное и подробное протоколирование любых событий, происходящих в операционной системе. Аудиту могут быть подвержены такие события, как чтение/запись файлов, выполнение входа в ОС, запуск и остановка приложений, инициация сетевого соединения и многое, многое другое. Кроме самого факта возникновения события, система аудита представляет такую информацию, как дата и время возникновения события, ответственность пользователя за событие, тип события и его успешность. Сама по себе она способна лишь сообщать о произошедшем событии, тогда как процесс журналирования возлагается на плечи демона auditd.

Ядро Linux >= 2.6 включает в себя подсистему для проведения аудита. Она позволяет вести слежение за такими системными событиями, как:

- Запуск и завершение работы системы (перезагрузка, остановка);
- Чтение/запись или изменение прав доступа к файлам;
- Инициация сетевого соединения или изменение сетевых настроек;
- Изменение информации о пользователе или группе;
- Изменение даты и времени;
- Запуск и остановка приложений;
- Выполнение системных вызовов.

Демон auditd доступен в любом современном Linux-дистрибутиве и может быть установлен с помощью стандартного менеджера пакетов.

Подсистема аудита состоит из модуля ядра, демона auditd, демона audispd и вспомогательных утилит (auditctl, aureport, ausearch, autrace).

Используемые конфигурационные файлы:

- /etc/sysconfig/auditd содержит настройки используемые при старте демона auditd;
- /etc/audit/auditd.conf настройки поведения демона auditd;
- /etc/audit/audit.rules файл содержащий правил аудита.

Архитектура подсистемы аудита в Linux

Ни одно событие в любой операционной системе не может произойти без использования системных вызовов ядра. Запуск нового процесса, открытие файлов и работа с ними, запрос времени или типа ОС, обращение к оборудованию, создание сетевого соединения, вывод информации на экран — все эти операции производятся с помощью обращения к функциям ядра операционной системы, для краткости называемых системными вызовами. Чтобы отследить любое системное событие, достаточно просто перехватывать все обращения к системным вызовам. Именно это делает подсистема аудита. Она устанавливает триггеры до и после всех функций, ответственных за обработку системных вызовов, и ждет. Когда происходит системный вызов, триггер срабатывает, подсистема аудита получает всю информацию о вызове и его контексте, передает ее демону auditd и отдает дальнейшее управление функции, обрабатывающей системный вызов. После ее завершения срабатывает «выходной» триггер, и вся информация о системном вызове вновь поступает к подсистеме аудита и демону auditd.

Для создания, удаления и модификации правил аудита предназначена утилита auditctl. Есть три основных опции, которые принимает эта команда:

- -а добавить правило в список;
- -d удалить правило из списка;
- -D удалить все правила;
- -1 вывести список заданных правил.

Если ты сейчас выполнишь команду «auditctl -l» от имени администратора, то, скорее всего, увидишь «No rules», а это значит, что они одного правила аудита еще не существует. Для добавления правил используется следующая форма записи команды auditctl:

auditctl -a список,действие -S имя_системного_вызова -F фильтры

Здесь список – это список событий, в который следует добавить правило. Всего существует пять списков:

- task события, связанные с созданием процессов;
- entry события, происходящие при входе в системный вызов;
- exit события, происходящие во время выхода из системного вызова;
- user события, использующие параметры пользовательского пространства, такие как uid, pid и gid;
- exclude используется для исключения событий.

Второй параметр опции — '-a' — это действие, которое должно произойти в ответ на возникшее событие. Их всего два: never и always. В первом случае события не записываются в журнал событий, во втором — записываются.

Далее указывается опция '-S', которая задает имя системного вызова, при обращении к которому должен срабатывать триггер (например, open, close, exit, и т.д.). Вместо имени может быть использовано числовое значение.

Необязательная опция '-F' используется для указания дополнительных параметров фильтрации события. Например, если мы хотим вести журнал событий, связанных с использованием системного вызова open(), но при этом желаем регистрировать только обращения к файлам каталога /etc, то должны использовать следующее правило:

auditctl -a exit, always -S open -F path=/etc/

Чтобы еще более сузить круг поисков, сделаем так, чтобы регистрировались только те события, при которых файл открывается только на запись и изменение атрибутов:

auditctl -a exit, always -S open -F path=/etc/ -F perm=aw

Здесь 'a' — изменение атрибута (то есть attribute change), а 'w' — запись (то есть write).

Также можно использовать 'r' — чтение (read) и 'x' — исполнение (execute). Другие полезные фильтры включают в себя: **pid** — события, порождаемые указанным процессом, **apid** — события, порождаемые указанным пользователем, **success** — проверка на то, был ли системный вызов успешным, **a1**, **a2**, **a3**, **a4** — первые четыре аргумента системного вызова. Фильтр **key** используется для указания ключа поиска, который может быть использован для поиска всех событий, связанных с этим ключом.

Для слежения за файлами в auditctl предусмотрен специальный синтаксис, при котором опцию '-S' можно опустить.

Например, описанное выше правило может быть задано следующим образом (здесь опция '-p' – это эквивалент фильтра perm):

auditctl -a exit,always -F dir=/etc/ -F perm=wa или

auditctl -w /etc/ -p wa

Анализ журнальных файлов

Журнальные файлы, создаваемые auditd демоном В каталоге /var/log/audit, не предназначены для чтения человеком, но хорошо подходят для анализа с помощью специальных утилит, устанавливаемых вместе с самим демоном. Самая важная из них – утилита aureport, генерирующая отчеты из логфайлов. Вызвав ее без аргументов, мы узнаем общую статистику использования системы, включая такие параметры, как количество входов и выходов из системы, открытых терминалов, системных вызовов и т.д. Эта информация малоинтересна, поэтому лучше запросить более детальный отчет. Например, запустив команду с флагом '-f', мы получим список файлов, к которым происходил доступ:

\$ sudo aureport -f

Получив список всех попыток доступа и номера событий, каждое из них можно проанализировать индивидуально с помощью утилиты ausearch:

\$ sudo auserch -а номер_события

Также ausearch можно использовать для поиска событий по именам системных вызовов:

\$ sudo ausearch -sc ptrace -i Идентификаторам пользователей:

\$ sudo ausearch -ui 2010

Именам исполняемых файлов:

\$ sudo ausearch -x /usr/bin/nmap

В данной лекции мы рассмотрели такой важный механизм безопасности как протоколирование и аудит. Изучили конкретные реализации механизмов протоколирования и аудита в ОС Linux, Windows.