MP-1 TUTORIAL-2 PRELAB

1. Write the algorithm to solve the simple simplex method. What is the usage of slack variables

MP-1 Lab-2 19003/187 Prelab Radhabrishna

1. Algorithm for simplex method

step-1 = check whether objective function is to minimized on maximized. If it is to be minimized then we convert it into a problem of maximizing it by using result Minimum z = - Maximum (-z).

non-negative, If any one of bi is negative then multiply the corresponding eqn of the constraints by -1.

step-3: convert au the inequations of the constraints into equations by introducing slack/surplus and artificial variables in the constraints

step-y: obtain an initial basic feasible solution by setting $x_1 = x_2 = ... = x_n = 0$. in equations obtained in step-3

step-5: Determine which variable to enter into solution next. Identify the column - hence the variable - with the largest tre number in the cj-zj now of the previous

Cto Splead with Camscanner

step-6: Determine which variable to replace

step-7: Compute new values for the pivot

In pivot now each value is previous value

In other wws each new value is

previous previous value * New value in value in pivot column pivot row

step-8:- compute the zj and (j-zj rows as demonstrated in the initial tableau. If all numbers in cj-zj rows are zero or negative we have found an optimal solution. If this is not the case, we must return to step 5:

Usage of slack variable

A slack variable is a variable that added to an inequality constraint to transform it into an equality.

 $2. \ \ \, \text{Consider the following linear programming problem}$

Maximize:

P = 7x + 12y

Subject to:

 $2x + 3y \le 6$

 $3x + 7y \le 12$

SetUp the Initial Simplex Tableau.

the second of th

$$2x + 3y + 51 = 6$$

$$3x + 7y + 52 = 12$$

For instance suppose that

S2 = 2

Initial simplex tableau

CBi	cj	7	12_	0	0_	
	Basic Variable	λ	9	21	S2	so
0	Sı	2	3	.	0	6
0	S ₂	3	7	0	ı	12
	4	0	0	0	0	0
	G-2j	7	12	0	0	
					_	Τ .

INLAB

1. A hotel has requested a manufacturer to produce pillows and blankets for their room service. For materials, the manufacturer has 750 m² of cotton textile and 1,000 m² of silk. Every pillow needs 2 m² of cotton and 1 m² of silk. Every blanket needs 2 m² of cotton and 5 m² of silk. The price of the pillow is fixed at \$5 and the blanket is fixed at \$10. What is the number of pillows and blankets that the manufacturer must give to the hotel so that these items obtain a maximum sale? Formulate and Solve using Python.

In lab:

1. Let $x = no \cdot of \quad pillocos$ $y = no \cdot of \quad blankets$ Maximize $z = 5x + toy \quad (objective func)$ subject To $2x + 2y \subseteq 750$ $x + 5y \subseteq 1000$ $x, y \ge 0$ using 'slack variables 2x + 2y + 11 = 750 x + 5y + 52 = 1000Objective function

Max z = 5x + toy + 0.51 + 0.5.

Code:

import numpy as np
import scipy as sp
#create the matrix for objective function and constraints
z=np.array([-5,-10])
a=np.array([[2,2],[1,5]])
b=np.array([750,1000])
x1_bound=(0,None)
x2_bound=(0,None)
from scipy.optimize import linprog
#Required command to get result
result=linprog(z,A_ub=a,b_ub=b,bounds=[x1_bound,x2_bound])
print result

2. Kiran owns a petroleum company, which consists of two refineries. Refinery 1 costs \$32,000 per day to operate, and it can produce 455 barrels of high-grade oil, 280 barrels of medium-grade oil, and 232 barrels of low-grade oil each day. Refinery 2 is newer and more modern. It costs \$40,000 per day to operate, and it can produce 350 barrels of high-grade oil, 438 barrels of medium-grade oil, and 522 barrels of low-grade oil each day. The company has orders totaling 25,625 barrels of high-grade oil, 24,992 barrels of medium-grade oil, and 29,568 barrels of low-grade oil. How many days should it run each refinery to minimize its costs and still refine enough oil to meet its orders? Formulate the problem and solve using Python.

<u>Code:</u> import numpy as np import scipy as sp

190031187

NERELLA VENKATA RADHAKRISHNA

```
c = [-32000,-40000]
A = [[455,350], [280,438], [232,522]]
b = [25625,24992,29568]
x0_bounds = (0, None)
x1_bounds = (0, None)
from scipy.optimize import linprog
# Solve the problem by Simplex method in Optimization
res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds), method='simplex', options={"disp": True})
print res
```

| DUTPUT | | DUTPUT |

POSTLAB

```
1. Maximize Z=3 x1 + 5 x2

Subject TO:

3 x1 + 2 x2 =18

X1 <= 4

2 x2 <= 12

X1 >=0

X2 >= 0
```

Solve LP using simplex method using Python

Code:

import numpy as np import scipy as sp c = [-3, -5] A = [[1, 0], [0, 2], [3, 2]] b = [4, 12, 18] x0_bounds = (0, None) x1_bounds = (0, None)

from scipy.optimize import linprog
Solve the problem by Simplex method in Optimization
res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds), method='simplex',
options={"disp": True})
print res

2. Solve Linear Programming Model Using Simplex Method

Maximize: P=40x1+35x2 Subject To: x1 +x2 <=24 3x1 +2x2<=60 X1,x2 >=0

2. Maximize:
$$P = 40x_1 + 35x_2$$

Subject To: $x_1 + x_2 \le 24$
 $3x_1 + 2x_2 \le 60$
 $x_1, x_2 \ge 0$

Adding slack variables.

$$x_1 + x_2 + s_1 = 24$$

 $3x_1 + 2x_2 + s_2 = 60$

objective function p = 40x, +35x, +05, +052

Initial table

CB;	cj	40	35	0	0	
	Bauc Variable	x,1	Χ,	31	52	Sol .
0	12	[1]	1	1	0	24
0	52	3	2	0	1	.60
	zj	O	0	0	00	1
	(j-2j	40	35	0	0	

Iteration - 1

CBi	Cj	40	35	0	0		
	Basic varia - ble	×	× 2	S 1	<u>S</u> 2	102	
0	Sı	0	1/3	ı	-1/3	4)	12
40	×ı	1	2/3	0	1/3	20	30
	zj	40	30/3	0	40/3		
	9-24	0	25/3	0	-40/3		

Iteration - 2

C Bi	cj	40	35	0	0	
	Basic Variables	х,	X 2	1.5	52	161
35	×2	0	,	3	-1	12
40	×,		0	-2	ı	12
	zj	40	35	25	5	
	9-29	0	0	-25	-5	

$$x_1 = 12$$
 $x_2 = 12$

$$P = 40(12) + 37(12)$$

= 480 + 420