

2. Boolean Algebra and Logic Gates

2.1 Boolean Algebra and Logic Gates

- Boolean Algebra
 - Define
 - a set of elements, a set of operators
 - a number of unproved axioms or postulates

2.2 Basic Definition

- Various algebraic structures
- 1. Closure: A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique elements of S.
- 2. Associative law: $(x^*y)^*z=x^*(y^*z)$ for all $x,y,z \in S$
- 3. Commutative law: $x^*y=y^*x$ for all $x,y \in S$
- 4. Identity elements: for all x∈S, e*x=x*e=x ex) set of integers I={..., -3, -2, -1, 0, 1, 2, 3, ...}, x+0=0+x=x
- 5. Inverse : A set S having the identity elements for all $x \in S$, $y \in S$, $x^*y = e$
- 6. Distributive law : $x^*(y \cdot z) = (x^*y) \cdot (x^*z)$

2.3 Axiom Definition of Boolean Algebra

- Boolean algebra is an algebraic structure defined by a set of elements, B, together with two binary operators, + and ·, provided that the following(Huntington) postulates are satisfied
- 1. (a) Closure with respect to the operator +.
 - (a) Closure with respect to the operator ·.
- 2. (a) An identity element with respect to +, designated by 0: x+0=0+x=x
 - (b) An identity element with respect to \cdot , designated by 1: $x \cdot 1 = 1 \cdot x = x$
- 3. (a) Commutative with respect to +: x + y = y + x
 - (a) Commutative with respect to $\cdot : x \cdot y = y \cdot x$
- 4. (a) · is distributive over + : $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$
 - (a) + is distributive over \cdot : $x+(y-z)=(x+y) \cdot (x+z)$
- 5. For every element $x \in B$, there exists an element $x' \in B$ such that (a)x+x'=1 and $(b) x \cdot x' = 0$
- 6. There exists at least two elements x, y ∈B such that x≠y

2.4 Basic Theorems and Properties of Boolean Algebra

Duality

- interchange OR and And operators and replace 1's by 0's and 0's by 1's

Table 2-1Postulates and Theorems of Boolean Algebra

Name of the Control o	AND	
Postulate 2	(a) x + 0 = x	$(b) x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	$(b) x \cdot x' = 0$
Theorem 1	(a) x + x = x	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) xy = yx
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) x(yz) = (xy)z
Postulate 4, distributive	(a) x(y+z) = xy + xz	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	$(a) \qquad (x+y)' = x'y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) x(x+y) = x

Operator precedence

- 1. Parentheses
- 2. NOT
- 3. AND
- 4. OR

2.5 Boolean Functions

Table 2-2 Truth Tables for F_1 and F_2

X	У	Z	F ₁	F ₂
0	0	. 0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

•
$$F_1 = x + y'z$$

•
$$F_2 = x'y'z + x'yz + xy'$$

= $x'z(y'+y) + xy'$
= $x'z + xy'$

Fig. 2-1 Gate implementation of $F_1 = x + y'z$

(b) $F_2 = xy' + x'z$

Fig. 2-2 Implementation of Boolean function F_2 with gates

2.5 Boolean Functions – Algebraic Manipulation

Ex 2-1) Simplify the following Boolean functions to a minimum number of literals.

1.
$$x(x'+y) = xx' + xy = 0 + xy = xy$$
.
2. $x + x'y = (x+x')(x+y) = 1(x+y) = x + y$.
3. $(x+y)(x+y') = x + xy + xy' + yy' = x(1+y+y') = x$.
4. $xy + x'z + yz = xy + x'z + yz(x+x')$
 $= xy + x'z + xyz + x'yz$
 $= xy(1+z) + x'z(1+y)$
 $= xy + x'z$

5. (x+y)(x'+z)(y+z) = (x+y)(x'+z): by duality from function 4.

○
$$(A + B + C)' = (A+x)'$$
 let $B+C=x$
 $= A'x'$ by theorem $5(a)(DeMorgan)$
 $= A'(B+C)'$ substitute $B+C=x$
 $= A'(B'C')$ by theorem $5(a)(DeMorgan)$
 $= A'B'C'$ by theorem $4(b)(associative)$
 $\rightarrow (A+B+C+D+...+F)' = A'B'C'D'...F'$
 $(ABCD...F)' = A' + B' + C' + D' + ... + F'$

2.5 Boolean Functions - Complement of a Function

Ex 2-2) Find the complement of the functions

$$F_1 = x'yz' + x'y'z, F_2 = x(y'z' + yz).$$

$$F_1' = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z')$$

$$F_2' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')'(yz)' = x' + (y+z)(y'+z')$$

 Ex 2-3) Find the complement of the functions F₁ And F₂ Ex 2-2 by taking their duals and complementing each literal.

1.
$$F_1 = x'yz' + x'y'z$$
.
The dual of F_1 is $(x'+y+z')(x'+y'+z)$
Complement each literal: $(x+y'+z)(x+y+z')=F_1'$
2. $F_2 = x(y'z'+yz)$.

The dual of F_2 is x+(y'+z')(y+z)이다.

Complement each literal : $x'+(y+z)(y'+z')=F_2'$

Minterms and Maxterms

Table 2-3 *Minterms and Maxterms for Three Binary Variables*

			M	interms	Max	kterms
Х	У	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Table 2-4 *Functions of Three Variables*

Х	у	Z	Function f ₁	Function f ₂
0	0	0	se expan o o the est	0
0	0	1	may sale ii 4 minimos	0
0	eim 1d l	0	0	0
0	1	1	0 0	anties Ihis prop
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	mus 1 an	011	the Transford out	xpress the Bool

$$f_{1} = x'y'z+xy'z'+xyz = m_{1}+m_{4}+m_{7}$$

$$f_{2} = x'yz+xy'z+xyz'+xyz = m_{3}+m_{5}+m_{6}+m_{7}$$

$$f_{1} = (x+y+z)(x+y'+z)(x'+y+z')(x'+y'+z)$$

$$= M_{0}M_{2}M_{3}M_{5}M_{6}$$

$$f_{2} = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)$$

$$= M_{0}M_{1}M_{2}M_{4}$$

- Sum of Minterms
- Ex 2-4) Express the Boolean function F=A+B'C in a sum of minterms.

$$A = A(B+B') = AB + AB'$$

 $= AB(C+C') + AB'(C+C')$
 $= ABC + ABC' + AB'C + AB'C'$
 $B'C = B'C(A+A') = AB'C + A'B'C$
 $F = A + B'C$
 $= A' B'C + AB'C' + AB'C + ABC' + ABC$
 $= m_1 + m_4 + m_5 + m_6 + m_7$
 $= \Sigma(1, 4, 5, 6, 7)$

Α	В	C	F
0	0	0	0
0	0	1 lei	1
0	or harps	0	0
0	0.01	75 1 A	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- Product of maxterms
- Ex 2-5) Express the Boolean function F = xy + x'z in a product of maxterm form.

$$F = xy + x'z = (xy+x')(xy+z)$$

$$= (x+x')(y+x')(x+z)(y+z)$$

$$= (x'+y)(x+z)(y+z)$$

$$x' + y = x' + y + zz' = (x'+y+z)(x'+y+z')$$

$$x + z = x + z + yy' = (x+y+z)(x+y'+z)$$

$$y + z = y + z + xx' = (x+y+z)(x'+y+z)$$

$$F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')$$

$$= M_0 M_2 M_4 M_5$$

$$F(x, y, z) = \Pi(0, 2, 4, 5)$$

Conversion between Canonical Forms

$$\begin{split} &F(A,\,B,\,C) = \sum (1,\,4,\,5,\,6,\,7) \\ &F'(A,\,B,\,C) = \sum (0,\,2,\,3) = m_0 + m_2 + m_3 \\ &F = (m_0 + m_2 + m_3)' = m_0' m_2' m_3' = M_0 M_2 M_3 = \prod (0,\,2,\,3) \;,\; m_j' = M_j \end{split}$$

Ex)
$$F = xy + x'z$$

 $F(x, y, z) = \sum (1, 3, 6, 7)$
 $F(x, y, z) = \prod (0, 2, 4, 5)$

X	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	- 1	1	1

Standard Forms

- Sum of product : $F_1 = y' + xy + x'yz'$
- Product of sum : $F_2 = x(y'+z)(x'+y+z'+w)$

(a) Sum of Products

(b) Product of Sums

Fig. 2-3 Two-level implementation

- Ex)
$$F_3 = AB + C(D+E) = AB + CD + CE$$

Fig. 2-4 Three- and Two-Level implementation

2.7 Other Logic Operations

Truth Tables for the 16 Functions of Two Binary Variables

X	у	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
		0															
		0															
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
		0															

Boolean Expressions for the 16 Functions of Two Variables

Boolean functions	Operator symbol	Name	Comments
$F_0 = 0$	de product and some	Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x'
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>x F</i>	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	r	F = x + y	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	x	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	x — F	F = x	x F 0 0 1 1

Fig. 2-5 Digital logic gates

Name	Graphic symbol	Algebraic function		uth ble	
1			х	y	F
	x —		0	0	1
NAND	y	F = (xy)'	0	1	1
	,		1	0	1
			1	1	0
			Х	y	F
	x — —		0	0	1
NOR	,	$F = (x + y)^r$	0	1	0
	,—		1	0	0
			1	1	0
			х	у	F
Exclusive-OR	x_ \	$F = \mathbf{v}\mathbf{v}' + \mathbf{v}'\mathbf{v}$	0	0	0
(XOR)		F = xy' + x'y = $x \oplus y$	0	1	1
(secto)	у —I	- x & y	1	0	1
			1	1	0
			Х	у	F
Exclusive-NOR	x — H	F = xy + x'y'	0	0	1
or	v → F	$= (x \oplus y)'$	0	1	0
equivalence	, 1	6. a. 23	1	0	0
			1	1	1

Fig. 2-5 Digital logic gates

Extension to Multiple Inputs

- The NAND and NOR operators are not associative.

$$(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$$

$$(x \downarrow y) \downarrow z = [(x+y)'+z]'$$

$$= (x+y)z' = xz' + yz'$$

$$x \downarrow (y \downarrow z) = [x+(y+z)'] '$$

$$= x'(y+z) = x'y + x'z$$

$$x \downarrow y \downarrow z = (x+y+z)'$$

 $x \uparrow y \uparrow z = (xyz)'$

$$F = [(ABC)'(DE)']' = ABC + DE$$

Fig. 2-6 Demonstrating the nonassociativity of the NOR operator; $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

Fig. 2-7 Multiple-input and cascated NOR and NAND gates

- exclusive-OR

Fig. 2-8 3-input exclusive-OR gate

Positive and Negative Logic

Fig. 2-9 signal assignment and logic polarity

