ACTIVITÉ 1

Graphiquement, le nombre dérivé d'une fonction f en a, est le coefficient directeur de la tangente à f au point d'abscisse a. La tangente étant la « limite » des sécantes à la fonction, le nombre dérivé est lui aussi une « limite » que l'on peut calculer.

On a une sécante [AM], de coefficient directeur $\frac{f(x_M)-f(x_A)}{x_M-x_A}$.

 $On \ fait \ « \ tendre \ » \ A \ vers \ M.$

On obtient la tangente en A: le nombre dérivé est le coefficient directeur de celleurin: evulpo.co

Ainsi, la valeur de f'(a) est la « limite » quand h « tend » vers 0 du taux de variation $\frac{f(a+h)-f(a)}{h}$.

L'objectif de cette activité est de donner une formule pour calculer la dérivée de la fonction $f: x \mapsto \frac{1}{2}x^2$ en n'importe quel nombre.

1. a. Remplir le tableau suivant.

Valeur de h	Valeur de $\frac{f(3+h)-f(3)}{h}$
1	
0,1	
0,01	

b. Conjecturer la valeur de f'(3).

2. a. Remplir le tableau suivant.

Valeur de h	Valeur de $\frac{f(-1+h)-f(-1)}{h}$
1	
0, 1	
0,01	

b. Conjecturer la valeur de f'(-1).

3. Soit $x \in \mathbb{R}$. Conjecturer la valeur de f'(x).

ACTIVITÉ 2 📐

- 1. Soit f la fonction définie sur [-3;5] par $f(x) = -0.5x^2 + x + 4$.
 - a. Sur Geo Gebra, tracer la courbe représentative \mathscr{C}_f de la fonction f.
 - **b.** Créer un curseur a ayant pour valeur minimum -3 et pour valeur maximum 5, puis placer le point A(a; f(a))
 - **c.** Construire la tangente \mathcal{T}_a à la courbe \mathcal{C}_f en A.
 - **d.** Afficher le coefficient directeur de \mathcal{T}_a . On le note p.
 - **e.** Quel est le lien entre f'(a) et p?
 - **f.** Placer le curseur sur -3. Quel est le signe de p?
 - **g.** En déplaçant le curseur, observer le signe de p, puis compléter le tableau de signes suivant.

Valeur de a	-3	 5
Signe de $p = f'(a)$		

h. Compléter le tableau de variations suivant.

Valeur de x	-3	 5
Variations de f		

- i. Quel lien y a-t-il entre ces deux tableaux?
- **2.** Reprendre la question **1.** avec la fonction $g: x \mapsto x^3 + x^2 5x$ définie sur [-2; 2] afin de compléter les tableaux suivants.

Valeur de a	
Signe de $p = g'(a)$	

Valeur de x	
Variations de g	

3. Reprendre la question **1.** avec la fonction $h: x \mapsto x^3 - 3x^2 + 3x - 1$ définie sur [-2;2] afin de compléter les tableaux suivants.

Valeur de a	
Signe de $p = h'(a)$	

Valeur de x	
Variations de h	

4. Écrire une conjecture sur le lien entre la dérivée d'une fonction et ses variations.

D'après irem.univ-rennes.fr