Math 547: Mathematical Foundations of Statistical Learning Theory Fall 2017

Lecture 14 — September 22

Instructor: Stas Minsker Scribe: Mose Wintner

14.1 Generic chaining and metric entropy

(T,d) a finite metric space, $\{x(t),\,t\in T\}$ a stochastic process with sub-Gaussian increments with respect to d, meaning

$$x(t) - x(s) \in SG(d^2(t, s)).$$

A sequence $T_n \subset T$ not necessarily nested such that $card(T_n) \leq 2^{2^n}$ with $|T_0| = 1$ is an admissible sequence of subsets. The generic chaining complexity is

$$\gamma_2(T, d) = \inf_{T_n} \sup_{t \in T} \sum_{j \ge 0} 2^{j/2} d(t, T_n).$$

For given T_n it's the maximum weighted sum of distances to T_n among all $t \in T$.

Theorem 1. Under the assumptions on $\{x(t), t \in T\}$, for all u > 0,

$$Pr(\sup_{t \in T} |x(t) - x(t_0)| \ge 2u\gamma_2(T, d)) \le 10e^{-u^2/4}.$$

In other words, $\sup_{t \in T} |x(t) - x(t_0)| - \mathbb{E} \sup_{t \in T} |x(t) - x(t_0)| \in SG(c_0\gamma_2(T, d))$, so that

$$\sup_{t \in T} (x(t) - x(t_0)) - \mathbb{E} \sup_{t \in T} (x(t) - x(t_0)) \in SG(c_1 \gamma_2(T, d)).$$

Problem 1. What is $\mathbb{E} \sup_{t \in T} (x(t) - x(t_0))$?

Assume that T is arbitrary (i.e. not necessarily finite). Then

$$\mathbb{E}\sup_{t\in T} (x(t) - x(t_0)) := \sup_{\substack{S\subseteq T\\S \text{ finite}}} \mathbb{E}\sup_{t\in S} x(t) - x(t_0).$$

Remark 1.

$$\sup_{t \in T} (x(t) - x(t_0)) \ge 0.$$

For any nonnegative random variable Y,

$$\mathbb{E}Y = \int_0^\infty Pr(Y \ge t) \, dt.$$

Corollary 1.

$$\mathbb{E}\sup_{t\in T} (x(t) - x(t_0)) \le c_2 \gamma_2(T, d)$$

for c_2 a numerical constant.

14.1.1 Metric entropy and Dudley's theorem

Suppose x(t) is a Gaussian process, i.e. for all $k \geq 1, t_1, \ldots, t_k \in T$, $(x(t_1), \ldots, x(t_k))$ is multivariate normal. Assume $\mathbb{E}x(t) = 0$ for all t. Then x(t) has sub-Gaussian increments with respect to d(s,t). Then

$$d^2(s,t) = Var(x(s) - x(t))$$

is a natural metric associated to the Gaussian process.

Definition 1. Let (T,d) be a relatively compact metric space. The ε covering number of (T,d), written $N(T,d,\varepsilon)$ is the minimum n such that there exist $t_1,\ldots,t_n\in T$ with $T\subseteq \bigcup_{j=1}^n B(t_j,\varepsilon)$.

Definition 2. The metric entropy of (T, d) is defined as

$$H(\varepsilon) = \log N(T, d, \varepsilon).$$

Example 1. $T = [0, 1]^d$

- a) $d(t,s) = ||t-s||_{\infty}$, $N(\varepsilon) = \varepsilon^{-d}$, $H(\varepsilon) = -d\log \varepsilon$.
- b) $d(t,s) = ||t s||_2$.

$$\frac{1}{vol(B_2(\epsilon))} = const(d)\varepsilon^{-d} \le N(\epsilon) \le \left(\frac{\sqrt{d}}{\varepsilon}\right)^d$$

c) T is a set of smooth functions $f:[0,1]^d\to\mathbb{R},\ f\in C^\alpha.\ d(f,g)=\sup_x|f(x)-g(x)|,$ then $H(\varepsilon)\propto \varepsilon^{-d/k},\ N(T,d,\varepsilon)\propto e^{\varepsilon^{-d/k}}.$

Theorem 2. Let x(t) be a process with sub-Gaussian increments with respect to d, then for all $t_0 \in T$,

$$\mathbb{E}\sup_{t\in T}|x(t)-x(t_0)|\leq c\int_0^\infty \sqrt{H(\varepsilon)}\,d\varepsilon.$$

Note that $H(\varepsilon) = 0$ for ε greater than the diameter.