

for s & S

$$\alpha_a[s] = R(s,a) + \gamma \sum T(s'|s,a) \sum (o'|a,s') \alpha_{a,a}[s']$$

return argmax XaTb

Original PBVI

for
$$b \in B$$

 $B = \{T(b,a,o): a \in A, o \in O\}$ add furthest
 $B' = B'U$ argmen $||B,b'||$ b away from

Perseus - randomly choose B

B =
$$\emptyset$$

b = b_0

loop until $|B| = n$
 $a = rand(A)$
 $o = rond(P(o|b,a))$

B = $B \cup \{T(b,a,o)\}$

HSU [Hewistic Search Volue Iteration

 $V(b)$ imper bound

 $V(b)$ lover bound

while $V(b, -V(b) > E$

explore $(b, +)$

if $V(b) - V(b) > E y^T$

upper bound

 $O^{E} = arg_{max} P(o|b,a) P(o|b,a) P(o|b,a)$
 $O^{E} = arg_{max} P(o|b,a) P(o|b,a) P(o|b,a)$

explore $(T(b,a,a), ++1)$
 $P = P \cup B_{ack} P(o|b)$
 $V(b) = B_{b}[V(b)]$

B_b[V(b)] = max R(b,a)+y \(\sigma\)P(0 | b,a)\(\bar{V}(\tau(b,0))\)

SARSOP

Successive Approximation of Reachable Space under Optimal Policies

Similar to HSUI BCR BCR*

Belief points that could be in B

if Q(b,a') < Q(b,az') then prune all b below (b,ez') from B

Instead of pruning of that are dominated over the whole belief space, prune a dominated over B fruned by Any

Pruned by SARSOP

Policy Graph Vertex labeled with a eadge labeled with 0 Feed when (rying Policy Groph -> a vector evaluate plan a vectors -> policy graphs a vectors -> policy graphs

MCVI Monte Carlo Value Iteration "

V6(b) = max \(\alpha_v(s) b(s) dg \) Approx w/MC

365

MS.

MC-Backup
$$(G, b, N)$$

Ra=0 $V_{a,o,v} = 0$

For $a \in A$

For $i : n : N$

Si=sumple (b)

Si, Oi, $r_i \leftarrow G$

 $S_{i}, o_{i}, r_{i} \leftarrow G(s_{i}, a)$ $R_{a} + r_{i}$ for $i \in G$

 $V_{a,oi,v} = V_{a,oi,v} + Simulate(G,v,s,L)$ for o in O $V_{a,o} = \max_{v \in G} V_{a,o,v}$ $V_{a,o} = argmax V_{a,o,v}$ $v \in G$

Va = Ra + y > Vao/N

a = argmax Va

add new node to 6 labeled with at

V = value V = node in graph