HW #7

1. Free particle path integral

a) Propagator

To simplify the notation, we write t = t'' - t', x = x'' - x' and work in 1D. Since $[x_i, p_j] = i \hbar \delta_{ij}$, we can just construct the 3D solution.

First of all, because the base kets evolve according to the "wrong sign" Schrödinger equation (see pp. 87–89),

$$|x', t'\rangle = e^{+iHt'/\hbar} |x', 0\rangle, \langle x'', t''| = \langle x'', 0| e^{-iHt''/\hbar}.$$

Therefore,

$$\begin{split} &\langle x'',t'' \mid x',t'\rangle = \langle x'' \mid e^{-iH(t''-t')/\hbar} \mid x'\rangle = \int\!\! d\,p\,\langle x'' \mid p\rangle \, \langle p \mid e^{-iHt/\hbar} \mid x'\rangle \\ &= \int\!\! d\,p\, \frac{e^{i\,p\,x''/\hbar}}{(2\,\pi\,\hbar)^{1/2}} \, \langle p \mid e^{-i\,(p^2/2\,m)\,t/\hbar} \mid x'\rangle \\ &= \int\!\! d\,p\, \frac{e^{i\,p\,x''/\hbar}}{(2\,\pi\,\hbar)^{1/2}} \, e^{-i\,(p^2/2\,m)\,t/\hbar} \, \frac{e^{-i\,p\,x'/\hbar}}{(2\,\pi\,\hbar)^{1/2}} \\ &= \int\!\! d\,p\, \frac{e^{i\,p\,x'/\hbar}}{2\,\pi\,\hbar} \, e^{-i\,p^2\,t/2\,m\,\hbar} \\ &= \int\!\! d\,p\, \frac{1}{2\,\pi\,\hbar} \, \exp\!\left(\!\!-i\,\frac{t}{2\,m\,\hbar} \, \left(p - \frac{m\,x}{t}\right)^2 + i\,\frac{m\,x^2}{2\,\hbar\,t}\right) \\ &= \frac{1}{2\,\pi\,\hbar} \, \sqrt{\frac{2\,\pi\,m\,\hbar}{i\,t}} \, e^{i\,m\,x^2/2\,\hbar\,t} \\ &= \sqrt{\frac{m}{2\,\pi\,i\hbar\,t}} \, e^{i\,m\,x^2/2\,\hbar\,t} \end{split}$$

The analogous expression in three dimensions is simply

$$\langle \overrightarrow{x'}, t', | \overrightarrow{x}, t' \rangle = \left(\frac{m}{2\pi i \hbar t}\right)^{3/2} e^{i m \overrightarrow{x}^2 / 2 \hbar t}$$
.

b) Action in exponent

For the classical trajectory, the velocity is simply $\vec{v} = \frac{\vec{x}}{t}$, and hence the action is $S_c = \int \frac{1}{2} m \left(\frac{d\vec{x}}{dt} \right) dt = \frac{1}{2} m \left(\frac{\vec{x}}{t} \right)^2 t = \frac{m\vec{x}^2}{2t}$, and so the exponent of the propagator is indeed $(i S_c / \hbar)$.

c) Partition function

The partition function from statistical mechanics is

$$Z = \sum_{n=\square}^{\infty} \langle n \mid e^{-\beta H} \mid n \rangle,$$

where $|n\rangle$ can denote elements of any basis. Obviously, the Hamiltonian eigenstates themselves are generally most useful for calculating the sum directly; however, we can use the basis elements $|\vec{x}\rangle$ as well:

$$Z = \int d^3 x \langle \overrightarrow{x} | e^{-\beta H} | \overrightarrow{x} \rangle.$$

We observe that βH looks an awful lot like iHt/\hbar , except that the latter is purely imaginary whereas the former is purely real. Therefore, we define the "Euclidean" time τ by the analytic continuation $t \to -i\tau$ and get

$$Z = \int d^3 x \langle \vec{x} | e^{-H\tau/\hbar} | \vec{x} \rangle,$$

in which we set $\tau = \hbar \beta$, the thermal quantum timescale. Noting that $\langle \vec{x}, 0 | e^{-iHt/\hbar} = \langle \vec{x}, t |$ with "Minkowski" time in the Heisenberg picture (see part (a)), we get

$$Z = \int d^3 x \langle \vec{x}, -i \hbar \beta | \vec{x}, 0 \rangle.$$

The conversion to Euclidean time is already complete, since $\vec{x}_f = \vec{x}_i = \vec{x}$. This is because if the topology of Minkowski time is an open line from $-\infty$ to ∞ , the topology of Euclidean time must be a circle. Periodic functions of time become hyperbolic, and hyperbolic functions become periodic. Accordingly, in the exponent of the path integral, the action integral is now on a loop, and all trajectories return to their origin. Instead of computing the path integral, we can just convert our result for part (a) to get

$$Z = \int d^3 x \left(\frac{m}{2\pi \hbar^2 \beta} \right)^{3/2} e^{-m0/2\hbar^2 \beta}$$

$$Z = V \left(\frac{m}{2\pi\hbar^2 \beta}\right)^{3/2}$$

where V is the volume of the system. This is nothing but the single-particle partition function for the classical ideal gas in three dimensions, as expected.

It is interesting that changing from Minkowski time to Euclidean time would effect a change from a propagator that obeys the Schrödinger equation to a diffusion kernel that obeys the heat equation, and moreso that substituting $\hbar \beta$ for the Euclidean time yields the thermodynamic partition function per unit volume.

d) Superfluid transition temperature in He-4

In Euclidean time, the action integral is

$$S_E = \oint_0^{\hbar\beta} d\tau L = \oint_0^{\hbar\beta} d\tau \, \frac{m}{2} \left(\frac{d\vec{x}}{d\tau}\right)^2$$

where all paths are periodic, including particle exchange operations.

If one imagines Euclidean 1+1 spacetime as a cylinder, the trajectories of two umolested particles are just single loops around. However, if we switch the particles, the trajectories cross — the trajectory starting at particle 1 attaches to the start of the trajectory of particle 2 after wrapping around the cylinder, and vice—versa. In order for this switching operation to be undone (i.e., for the trajectories to be closed), the trajectories have to make *one more* trip around, to connect to where they started originally. So, with a switching operation, each particle has an average of one extra loop in calculating the action.

Naively, one might simply make the thermal quantum substitutions λ (the thermal de Broglie wavelength) and $\hbar \beta$ for $|d\vec{x}| = dx$ and $d\tau$ respectively. While this makes sense for $d\tau$, one must be careful with dx. Trying it, one would find the result $S_E \sim N \hbar$, where we define N to be the number of loops around the Euclidean spacetime cylinder, with all the other constants cancelling. That is, it would quantize "too far" — we need to retain some length scale that's relevant to the inter–particle dynamics that changes the normal fluid to a superfluid.

Generally, the relevant length scale is the "mean free path" l_f , which is the average distance a particle travels between collisions. In the low temperature regime where the particles are evenly distributed in Boltzmann fashion as in part (c), multiple bosons would pile up as a condensate. That is, many particles would share the same ground state wavefunction; moreover, the classical interactions between particles would be sphere–like, with no "screening" effects (and ignoring mean field effects). In this case,

$$l_f \approx \left(\sqrt{2} \ n \times \sigma\right)^{-1} \approx \left(\sqrt{2} \ n \times \frac{\pi n^{-2/3}}{4}\right)^{-1} \approx \frac{2^{3/2}}{\pi} n^{-1/3}$$

where n is the number density, and the factor of $\sqrt{2}$ comes from the Maxwell-like distribution of particle velocities. (If a particle of interest were much faster than all the other particles, we would just use $(n \times \sigma)^{-1}$, which is easy to see geometrically.) Note we just substituted $n^{-1/3}$ for the cross-sectional diameter.

Let us try $dx \approx l_f$:

$$\begin{split} S_E &\approx \oint_0^{\,\,\hbar\beta} \,d\tau \,\, \frac{m}{2} \left(\frac{l_f}{\hbar\beta}\right)^2 = \frac{m}{2} \left(\frac{l_f}{\hbar\beta}\right)^2 \,\oint_0^{\,\,\hbar\beta} \,d\tau \\ &= \frac{m}{2} \left(\frac{l_f}{\hbar\beta}\right)^2 \,N\,\hbar\,\beta = \,\frac{m}{2} \,\, \frac{8}{\pi^2 \,n^{2/3}} \,\, \frac{1}{\hbar\beta} \,N = \frac{4\,m}{\pi^2 \,n^{2/3} \,\,\hbar\beta} \,N \,\,. \end{split}$$

Now, we want the temperature at which the change in S_E is \hbar with each additional loop:

$$\Delta S_E = \frac{4m}{\pi^2 n^{2/3} \hbar \beta} \simeq \hbar \Longrightarrow T_\lambda \simeq \frac{\pi^2 \hbar^2 n^{2/3}}{4 k_B m} = \frac{\pi^2 \hbar^2 \rho^{2/3}}{4 k_B m^{5/3}}$$

where ρ is the mass density at the superfluid transition T_{λ} . Let us compute it, with a figure of 7.798 lb/ft^3 for the mass density of liquid He-4 @ 4 K (from the liquid helium safety data sheet; 4.22 K is the boiling point according to Wikipedia):

$$\frac{\pi^2 \ \hbar^2 \ \rho^{2/3}}{4 \ k_B \ m^{5/3}} \ /. \ \{k_B \ -> 1.38 * 10^{-23} \ , \ \hbar \rightarrow 1.055 * 10^{-34} \ , \ m \rightarrow 4 * 1.66 * 10^{-27} \ , \ \rho \rightarrow 7.798 * 16\}$$

This result is embarrassingly close to the measured value of 2.1768 K (Wikipedia), for having used such hand-wavy arguments!

2. Propagator of harmonic oscillator

a) Propagator with energy eigenvalues

As in 1(a) above,

$$K = \langle x_f, t_f \mid x_i, t_i \rangle = \langle x_f, t_i \mid e^{-iH(t_f - t_i)/\hbar} \mid x_i, t_i \rangle.$$

We can insert the unity operator, on the basis of Hamiltonian eigenstates $|n\rangle$:

$$\begin{split} &\langle x_f \,,\, t_f \mid x_i \,,\, t_i \,\rangle = \sum_{n=0}^{\infty} \,\langle \,x_f \,,\, t_i \mid e^{-iH(t_f - t_i)/\hbar} \mid n \,\rangle \,\langle \,n \mid x_i \,,\, t_i \,\rangle \\ &= \sum_{n=0}^{\infty} \,\langle \,x_f \,,\, t_i \mid n \,\rangle \,\langle \,n \mid x_i \,,\, t_i \,\rangle \,e^{-iE_n \,(t_f - t_i)/\hbar} \\ &= \sum_{n=0}^{\infty} \,\psi_n (x_f)^* \,\psi_n (x_i) \,e^{-iE_n \,(t_f - t_i)/\hbar} \,\,. \end{split}$$

Making the usual substitution $t_f - t_i = -i\tau$, we obtain the desired result

$$K = \sum_{n=0}^{\infty} \psi_n(x_f)^* \psi_n(x_i) e^{-E_n \tau/\hbar}.$$

b) Leading behavior

We implement the harmonic oscillator propagator and make the substitution for $t_f - t_i = -i\tau = i \ln(\epsilon)/\omega$:

kho =
$$\sqrt{\frac{m\omega}{2\pi I \hbar \sin[\omega (t-t0)]}}$$
 Exp $\left[\left(\frac{I m\omega}{2\hbar \sin[\omega (t-t0)]}\right) ((x^2 + x0^2) \cos[\omega (t-t0)] - 2xx0)\right] / .$

$$(t-t0) \rightarrow I \log[\varepsilon] / \omega;$$

As $\tau \to \infty$, $\epsilon \to 0$, so we can expand it around $\epsilon = 0$:

Series[kho, {
$$\epsilon$$
, 0, 1}]
$$\frac{e^{-\frac{mx^2}{2\hbar} - \frac{mx0^2}{2\hbar}} \sqrt{\frac{m\omega}{\hbar}} \sqrt{\epsilon}}{\sqrt{\pi}} + O[\epsilon]^{3/2}$$

We see that the leading order is $e^{1/2}$ as expected.

c) Expansion to arbitrary order

Expand the propagator to order 10 + 1/2 = 21/2:

khos = Series[kho,
$$\{\epsilon, 0, 11\}$$
];

Extract the wavefunctions:

khos0 = Simplify [(SeriesCoefficient[khos, 1] /. x0
$$\rightarrow$$
 x) $^{1/2}$, Assumptions \rightarrow { \hbar > 0, m > 0, ω > 0, x \in Reals}] khos5 = Simplify [(SeriesCoefficient[khos, 11] /. x0 \rightarrow x) $^{1/2}$, Assumptions \rightarrow { \hbar > 0, m > 0, ω > 0, x \in Reals}] khos10 = Simplify [(SeriesCoefficient[khos, 21] /. x0 \rightarrow x) $^{1/2}$, Assumptions \rightarrow { \hbar > 0, m > 0, ω > 0, x \in Reals}]
$$\frac{e^{-\frac{mx^2}{2\hbar}} \left(\frac{m\omega}{\hbar}\right)^{1/4}}{\pi^{1/4}}$$

$$\frac{e^{-\frac{mx^2}{2\hbar}} \left(\frac{m\omega}{\hbar}\right)^{3/4}}{2\sqrt{15}} \frac{15 \hbar^2 x - 20 \hbar m x^3 \omega + 4 m^2 x^5 \omega^2}{2\sqrt{15}}$$

$$\frac{1}{720 \sqrt{7} \pi^{1/4}} \left(e^{-\frac{mx^2}{2\hbar}} \left(\frac{m\omega}{\hbar^{21}}\right)^{1/4}\right)$$
Abs[945 \hbar 5 - 9450 \hbar 4 m x² ω + 12600 \hbar 3 m² x⁴ ω 2 - 5040 \hbar 2 m³ x⁶ ω 3 + 720 \hbar m⁴ x⁸ ω 4 - 32 m⁵ x¹⁰ ω 5]

So we find the wavefunctions:

$$\psi k0 = \frac{e^{-\frac{mx^2 \omega}{2\hbar}} \left(\frac{m\omega}{\hbar}\right)^{1/4}}{\pi^{1/4}};$$

$$\psi k5 = \frac{e^{-\frac{mx^2 \omega}{2\hbar}} \left(\frac{m\omega}{\hbar}\right)^{3/4} \left(15 \hbar^2 x - 20 \hbar m x^3 \omega + 4 m^2 x^5 \omega^2\right)}{2 \sqrt{15} \hbar^2 \pi^{1/4}};$$

$$\psi k10 = \frac{1}{720 \sqrt{7} \pi^{1/4}} \left(e^{-\frac{mx^2 \omega}{2\hbar}} \left(\frac{m\omega}{\hbar^{21}}\right)^{1/4} \left(945 \hbar^5 - 9450 \hbar^4 m x^2 \omega + 12600 \hbar^3 m^2 x^4 \omega^2 - 5040 \hbar^2 m^3 x^6 \omega^3 + 720 \hbar m^4 x^8 \omega^4 - 32 m^5 x^{10} \omega^5\right)\right);$$

d) Graph and check normalization

Let us plot our wavefunctions:

```
nums = \{m \to 1, \hbar \to 1, \omega \to 1\};

Plot[\psix0 /. nums, \{x, -3, 3\}];

Plot[\psix5 /. nums, \{x, -6, 6\}];

Plot[\psix10 /. nums, \{x, -7, 7\}];
```


And show that they're normalized to 1:

```
Integrate [\psi k0^2, \{x, -\infty, \infty\}, Assumptions -> \{\hbar > 0, m > 0, \omega > 0\}]

Integrate [\psi k5^2, \{x, -\infty, \infty\}, Assumptions -> \{\hbar > 0, m > 0, \omega > 0\}]

Integrate [\psi k10^2, \{x, -\infty, \infty\}, Assumptions -> \{\hbar > 0, m > 0, \omega > 0\}]
```

3. Discretized HO path integral [optional]

See path integral notes pp. 15–19.