EPFLx: AlgebreX Algèbre Linéaire (Partie 1)

Pdf Notes

Chapitre 4:

4.1

DÉFINITION 1:

Soient V un \mathbb{R} -espace vectoriel et $S\subset V$ une collection de vecteurs dans V. On dit que S est $\mathit{linéairement}$ $\mathit{dépendante}$ (ou $\mathit{liée}$) s'il existe des vecteurs distincts $v_1,\ldots,v_r\in S$ et des scalaires $\lambda_1,\ldots,\lambda_r\in \mathbb{R}$ non tous nuls tels que $\lambda_1v_1+\cdots+\lambda_rv_r=0$. (Autrement dit, s'il existe une combinaison linéaire (non triviale) de vecteurs de S qui se réduit au vecteur nul.) S'il n'existe pas de tels vecteurs dans S, alors on dit que S est $\mathit{linéairement indépendante}$ (ou libre).

REMARQUE 2:

Si $0 \in S$, alors S est liée car $\lambda \cdot 0 = 0$ pour tout $\lambda \in \mathbb{R}$.

4.2

PROPOSITION 1:

Soient V un \mathbb{R} -espace vectoriel et $v_1,\ldots,v_r\in V$ des vecteurs de V. Alors ces derniers sont linéairement dépendants si et seulement s'il existe $1\leq i\leq r$ tels que $v_i\in \mathrm{Vect}(\{v_1,\ldots,v_{i-1},v_{i+1},\ldots,v_r\})$, c'est-à-dire si et seulement si l'on peut exprimer un des vecteurs de la liste comme une combinaison linéaire des autres.

PROPOSITION 2:

Soient V un \mathbb{R} -espace vectoriel et $S\subset V$ une famille libre de vecteurs dans V. Alors tout sous-ensemble $T\subset S$ est aussi libre.

PROPOSITION 3:

Soient V un \mathbb{R} -espace vectoriel et $S\subset V$ une famille liée de vecteurs dans V. Alors toute collection de vecteurs T contenant S est également liée.

DÉFINITION 1:

Soient V un \mathbb{R} -espace vectoriel et $\mathscr{B} \subset V$ un ensemble de vecteurs de V. On dit que \mathscr{B} est une base de V si les deux conditions suivantes sont vérifiées.

- 1. Tout $v \in V$ est une combinaison linéaire de vecteurs de \mathscr{B} , i.e. $\mathrm{Vect}(\mathscr{B}) = V$.
- 2. Le sous-ensemble ${\mathscr B}$ est linéairement indépendant.

DÉFINITION 2:

On dit d'un \mathbb{R} -espace vectoriel V qu'il est *de dimension finie* s'il possède une base finie. Sinon, on dit que V est *de dimension infinie*.

THÉORÈME 3:

Soit V un \mathbb{R} -espace vectoriel de dimension finie. Alors toutes les bases de V sont finies et possèdent le même nombre d'éléments.

4.4

DÉFINITION 1:

Soit V un \mathbb{R} -espace vectoriel de dimension finie. Le nombre d'éléments dans une base s'appelle la dimension de V et on le désigne par $\dim V$.

PROPOSITION 2:

Soit V un \mathbb{R} -espace vectoriel de dimension finie. Alors les deux affirmations suivantes sont vérifiées.

- 1. Si $\{v_1,\ldots,v_r\}$ est un ensemble générateur de V, alors il existe une base \mathscr{B} de V telle que $\mathscr{B}\subset\{v_1,\ldots,v_r\}$. On parle d'extraction de base.
- 2. Si $\{v_1,\ldots,v_r\}$ est une partie libre de V, alors il existe une base \mathscr{B} de V telle que $\{v_1,\ldots,v_r\}\subset\mathscr{B}$. On parle de *complétion en une base*.

THÉORÈME 1:

Soit V un $\mathbb R$ -espace vectoriel de dimension finie n. Alors les deux affirmations suivantes sont vérifiées.

- 1. Si $S \subset V$ est une famille génératrice qui possède n éléments, alors S est une base de V .
- 2. Si $S' \subset V$ est une famille libre qui possède n éléments, alors S' est une base de V .

4.6

RAPPEL 1:

Soient $A \in M_{m \times n}(\mathbb{R})$ et $X = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^T$, où x_1, \dots, x_n sont des inconnues. Alors l'ensemble des solutions du système linéaire AX = 0 est un sous-espace vectoriel de \mathbb{R}^n .

PROPOSITION 1:

Soient A et X comme ci-dessus. Alors la dimension de l'espace des solutions du système AX=0 est égale au nombre de variable(s) libre(s) dans une forme échelonnée de A.

PROPOSITION 2:

Soient A et X comme ci-dessus. Pour trouver une base de l'espace des solutions du système AX = b, on pose successivement une des variables libre égale à 1 et toutes les autres égales à 0.

4.7

THÉORÈME 1:

Soient V un \mathbb{R} -espace vectoriel de dimension finie et W un sous-espace vectoriel de V. Alors les affirmations suivantes sont vérifiées.

- 1. Le sous-espace vectoriel \boldsymbol{W} est de dimension finie.
- 2. La dimension de W satisfait $\dim W \leq \dim V$.
- 3. Si $\dim W = \dim V$, alors W = V.

THÉORÈME 1:

Soient V un \mathbb{R} -espace vectoriel de dimension finie et W_1, W_2 des sous-espaces vectoriels de V. Alors

$$\dim(W_1+W_2)=\dim W_1+\dim W_2-\dim(W_1\cap W_2).$$

COROLLAIRE 2:

Soient V un \mathbb{R} -espace vectoriel et W_1, W_2 deux sous-espaces vectoriels de V tels que $V=W_1\oplus W_2$. Alors $\dim V=\dim W_1+\dim W_2$.

4.9

DÉFINITION 1:

Soit $A \in M_{m \times n}(\mathbb{R})$ une matrice de taille $m \times n$ à coefficients réels.

- 1. Le $rang\ ligne\ de\ A$ est la dimension de l'espace ligne de A.
- 2. Le rang colonne de A est la dimension de l'espace colonne de A.

REMARQUES 2:

- 1. Le rang ligne de A est plus petit ou égal à n, car c'est un sous-espace vectoriel de \mathbb{R}^n .
- 2. Le rang ligne de A est plus petit ou égal à m, car engendré par m vecteurs.
- 3. Le rang colonne de A est plus petit ou égal à m et n, par le même raisonnement.
- 4. Le rang colonne de A est égal au rang ligne de A^T .
- 5. Le rang ligne de A est égal au rang colonne de A^T .

PROPOSITION 3:

Soient $A,B\in M_{m\times n}(\mathbb{R})$ des matrices ligne équivalentes. Alors l'espace ligne de A est égal à l'espace ligne de B. Par conséquent, le rang ligne de A est égal au rang ligne de B.

PROPOSITION 4:

Soit A une matrice échelonnée. Alors le rang ligne de A est égal au nombre de pivots. Aussi, une base de l'espace ligne de A est donnée par les lignes contenant un pivots.

LEMME 5:

Soient S un système de m équations linéaires à n inconnues, A la matrice des coefficients de S et \hat{A} sa matrice augmentée. Alors S possède une solution si et seulement si le rang colonne de A est égal au rang colonne de \hat{A} .

4.11

DÉFINITION 1:

Soient V un \mathbb{R} -espace vectoriel de dimension finie $n,\mathscr{B}=(v_1,\ldots,v_n)$ une base ordonnée de V et $v\in V$. Comme \mathscr{B} est une base de V, il existe des uniques scalaires $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ tels que $v=\alpha_1v_1+\cdots+\alpha_nv_n$. On appelle α_1,\ldots,α_n les coordonnées de v par rapport à la base \mathscr{B} et on écrit

$$[v]_{\mathscr{B}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

PROPOSITION 2:

Soient V un \mathbb{R} -espace vectoriel de dimension finie n et $\mathscr{B}=(v_1,\ldots,v_n)$ une base ordonnée de V. Alors les deux affirmations suivantes sont vérifiées.

- 1. Pour tous $v_1,v_2\in V,$ on a $[v_1+v_2]_{\mathscr{B}}=[v_1]_{\mathscr{B}}+[v_2]_{\mathscr{B}}.$
- 2. Pour tout $v\in V$ et tout $\lambda\in\mathbb{R},$ on a $[\lambda v]_{\mathscr{B}}=\lambda[v]_{\mathscr{B}}.$

4.12

MÉTHODE POUR TROUVER UNE BASE À PARTIR D'UN SYSTÈME DE GÉNÉRATEURS :

Soient V un \mathbb{R} -espace vectoriel de dimension finie n, $\mathscr{B}=(v_1,\ldots,v_n)$ une base de V, $S\subset V$ une partie finie et $W=\mathrm{Vect}(S)$. Pour trouver une base de W et la compléter en une base de V, on procède comme suit.

- 1. Pour chaque $v \in S$, on écrit $[v]_{\mathscr{B}} = (\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n)^T$.
- 2. On définit la matrice A dont les lignes sont les vecteurs $[v]_{\mathscr{B}}^T$ ($v \in S$).
- 3. On échelonne la matrice A : les lignes non-nulles ainsi obtenues forment une base de l'espace ligne de cette matrice. De plus, Les vecteurs de W correspondants forment une base de W.
- 4. On remplace les lignes nulles de la matrice échelonnée par des lignes non-nulles de manière à ce que celleci contienne n pivots. Les vecteurs de V associés aux lignes de cette nouvelle matrice forment une base de V.