This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

07225530

PUBLICATION DATE

22-08-95

APPLICATION DATE

15-02-94

APPLICATION NUMBER

06018203

APPLICANT: CANON INC;

INVENTOR: KIMIZUKA JUNICHI;

INT.CL.

G03G 15/20 G03G 21/00

TITLE

DIAGNOSTIC DEVICE FOR IMAGE

RECORDING THERMAL FIXING DEVICE AND IMAGE RECORDER

ABSTRACT : PURPOSE: To diagnose the presence of a defect of a resistance type temp. senser such as a thermistor, etc., detecting a temp. of a thermal fixing device and to prevent abnormal heat generation in the thermal fixing device by impressing a voltage to the resistance type temp. senser, generating self heat generation and comparing detected resistances before/after the voltage is impressed to the temp. senser.

> CONSTITUTION: A voltage impressing means is constituted of a circuit impressing the voltage to make the thermistor 1 generate the self heat generation. When the thermistor 1 is self heat generated, the voltage exceeding the breakdown strength of an A/D converter port of a CPU 3 occurs on both ends of the thermmstor 1. Then for preventing the port from destroying, a resistor 12 and a diode 14 are used. Then, the resistance type temp. senser such as the thermistor 1, etc., provided in the thermal fixing device is self heat generated, and from the change in resistance values before/after the self heat generation, the resistance type temp. senser such as the thermistor 1, etc., is diagnosed. Thus, the presence of the defect of the resistance type temp, senser is judged in a remarkably short time without heat generating the thermal fixing device.

COPYRIGHT: (C) JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-225530

(43)公開日 平成7年(1995)8月22日

(51) IntCL ⁴	微別記号	庁内整理番号	FΙ	技術表示箇所
G 0 3 G 15/20	109			
21/00	510			

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出顧番号	特顏平6-18203	(71)出願人 000001007 キヤノン株式会社
(22)出願日	平成6年(1994)2月15日	東京都大田区下丸子3丁目30番2号 (72)発明者 君塚 純一
		東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
		(74)代理人 弁理士 谷 義一 (外1名)
		·

(54)【発明の名称】 画像記録用熱定着器の診断装置および画像記録装置

(57)【要約】

【目的】 熱定着器の温度を検出するサーミスタ等の抵抗式温度センサの故障の有無を診断して、熱定着器の異常な発熱を防止することができる画像配録用熱定着器の診断装置および画像配録装置を提供すること。

【構成】 サーミスタ1に短時間だけ電圧Vcc 2を印加し、その印加の前後におけるサーミスタ1の端子電圧Vtzを検出して、間接的にサーミスタ1の抵抗値変化の程度を求め、その変化の程度に基づいてサーミスタ1の断線の有無を判別する。

1

【特許請求の範囲】

【請求項1】 記録媒体上の現像剤を加熱して定着させる画像記録用の熱定着器の故障の有無を判別する診断装置において、

前記熱定着器に取付けられた抵抗式温度センサと、 該温度センサに自己発熱を生じさせるべく電圧を印加する電圧印加手段と、

該電圧印加手段を短時間のみ動作させる制御手段と、 前配温度センサの抵抗を検知する検知手段と、

前配温度センサに前配電圧印加手段によって電圧を印加 10 する前と後における前配検知手段の検出抵抗を比較し て、該温度センサの故障の有無を判別する判別手段とを 備えたことを特徴とする画像配録用熱定着器の診断装 優.

【請求項2】 記録媒体に現像剤を転写する転写手段 レ

前記記録媒体に転写された現像剤を加熱しつつ加圧して 定着させる熱定着器と、

前記熱定着器の故障の有無を判別する診断装置とを有 し、

前記診断装置は、

前記熱定着器に取付けられた抵抗式温度センサと、 該温度センサに自己発熱を生じさせるべく電圧を印加す る電圧印加手段と、

該電圧印加手段を短時間のみ動作させる制御手段と、 前配温度センサの抵抗を検知する検知手段と、

前配温度センサに前記電圧印加手段によって電圧を印加する前と後における前配検知手段の検出抵抗を比較して、該温度センサの故障の有無を判別する判別手段とを備えたことを特徴とする画像記録装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば、電子写真方式 等の画像配録装置における熱定着器の診断装置、および 画像記録装置に関するものである。

[0002]

【従来の技術】従来より、例えば、電子写真方式の画像 記録装置用の熱定着装置として、熱ローラ式の定着器が 使用されている。

【0003】この定着器は、アルミニウム製のローラ内 40 部のハロゲンヒータによって、そのローラを加熱する。そのローラの表面には、サーミスタ(抵抗式温度センサ)がパネで押されて当接されている。このサーミスタでローラ表面温度を検知し、その検知温度に基づいてハロゲンヒータへの通電を制御して、ローラ表面の温度を一定に保っている。

【0004】その湿度制御のための装置を図5に示す。 電圧を印加する電圧印加手段と、酸電圧印加手段を短時 【0005】1はサーミスタ、2は抵抗(抵抗値は数k 間のみ動作させる制御手段と、前配温度センサの抵抗を Q)、3はCPU(ワンチップマイクロプロセッサ) 検知する検知手段と、前配温度センサに前配電圧印加手 で、I/Oボート、A/Dコンパータ、ROM、RAM 50 段によって電圧を印加する前と後における前配検知手段

を内蔵している。4はソリッドステートリレー(SSR)等の半導体リレー、5はハロゲンヒータ、6はヒータ5の過昇温防止用のサーモスイッチである。サーミスタ1は、ハロゲンヒータ5の熱を受けた熱ローラ表面の温度を測定する。サーミスタ1と抵抗2は直列に接続され、サーミスタ1の両端には、サーミスタ1の抵抗値と抵抗2の値とで電源電圧Vccを分圧した電圧が生じる。この電圧をCPU3のA/Dコンパータボート(A/D)で読取り、熱ローラ表面の温度を検知する。そして、その検知結果に従い、CPU3の出力ボートO」から駆動信号を出力し、それに伴いリレー4がヒータ5をオン、オフ制御する。

[0006]

【発明が解決しようとする課題】ところで、上述した従来例におけるサーミスタ1は、その抵抗値が温度に対して非直線的に変化し、定着器の定着温度180℃近辺では、その抵抗値は数kΩとなり、常温に近いと数百kΩと大きな値になる。このため、常温近くでは、温度が変化してもサーミスタ1の両端の電圧はほとんど変化しない。さらに、図5の回路では、サーミスタ1の両端の電圧はほぼ電源電圧Vccに等しい電圧になってしまう。

【0007】従来は、サーミスタ1が断線しているかどうか調べるため、ヒータ5を一定時間発熱させて、サーミスタ1の抵抗値が変化するかどうか調べている。

【0008】ところが、このような検査方法では、熱ローラの時定数が大きく、かつ常温付近の状態では、少しの温度変化だけではサーミスタ1の両端の電圧変化が微小であるため、その電圧変化を検知できず、その電圧変化が検知できるような温度にまで熱ローラの温度を上げるには長時間を要した。しかも、この時に、サーミスタ1が断線していて、かつ熱ローラの温度が上がっている時、すなわち電源スイッチ1を一度切って再投入したような時には、サーミスタ1の断線検知をしている間に熱ローラの温度が上りすぎて、熱ローラの周囲にあるブラスチック部品等が焼損してしまうおそれがある。

【0009】本発明の目的は、熱定着器の温度を検出するサーミスタ等の抵抗式温度センサの故障の有無を診断して、熱定着器の異常な発熱を防止することができる國像配録用熱定着器の診断装置および画像配録装置を提供することにある。

[0010]

【課題を解決するための手段】本発明の画像記録用熱定 着器の診断装置は、記録媒体上の現像剤を加熱して定着 させる画像配録用の熱定着器の故障の有無を判別する診 断装置において、前配熱定着器に取付けられた抵抗式温 度センサと、該温度センサに自己発熱を生じさせるべく 電圧を印加する電圧印加手段と、該電圧印加手段を短時 間のみ動作させる制御手段と、前配温度センサに前配電圧印加手 段知する検知手段と、前配温度センサに前配電圧印加手 段によって電圧を印加する前と後における前配検知手段

の検出抵抗を比較して、該温度センサの故障の有無を判 別する判別手段とを備えたことを特徴とする。

【0011】本発明の画像配録装置は、配録媒体に現像 剤を転写する転写手段と、前配記録媒体に転写された現 像剤を加熱しつつ加圧して定着させる熱定着器と、前記 熱定着器の故障の有無を判別する診断装置とを有し、前 記診断装置は、前記熱定着器に取付けられた抵抗式温度 センサと、該温度センサに自己発熱を生じさせるべく電 圧を印加する電圧印加手段と、該電圧印加手段を短時間 のみ動作させる制御手段と、前記温度センサの抵抗を検 10 知する検知手段と、前配温度センサに前記電圧印加手段 によって電圧を印加する前と後における前記検知手段の 検出抵抗を比較して、酸温度センサの故障の有無を判別 する判別手段とを備えたことを特徴とする。

【0012】ところで、抵抗式温度センサとしてのサー ミスタは、それ自身を流れる電流により自己発熱し、そ の熱でそれ自身の抵抗が変化する特性を持っている。こ の特性は、通常は測定誤差となるため、例えば、図5に おいて、サーミスタ1に流れる電流を抵抗2で制限し て、サーミスタ1の自己発熱をできるだけ小さくしてい 20 る。

【0013】本発明では、そのサーミスタの自己発熱に よる抵抗変化を利用して、そのサーミスタの診断を行

[0014]

【作用】本発明によれば、熱定着器に備わるサーミスタ 等の抵抗式温度センサに自己発熱を起こさせて、その自 己発熱の前後における抵抗値変化から、サーミスタ等の 抵抗式温度センサの診断を行うから、熱定着器を発熱さ せることなく、その抵抗式温度センサの故障の有無を極 30 めて短時間に判断する。

【0015】このことにより、従来の問題、つまりサー ミスタ等の抵抗式温度センサが断線した時に、その診断 に時間がかかって熱定着器が焼損してしまうといった問 題を回避する。

[0016]

【実施例】以下、本発明の実施例を図面に基づいて説明

【0017】 (第1の実施例) 図1は、本発明の第1の 実施例を示す。

【0018】1はサーミスタ(抵抗式温度センサ)、2 は抵抗、3はCPU (ワンチップマイクロプロセッ サ)、4はソリッドステートリレー(SSR)等の半導 体リレー、5はハロゲンヒータ、6はサーモスイッチで あり、これは、前述した図5の従来例と同様である。

【0019】7、10はトランジスタ、8、9、11、 12は抵抗、13はノイズ除去用のコンデンサ、14は CPU3のA/D入力保護用のダイオードである。

【0020】 CPU3の出力ポート〇』の出力がハイレ

8,9に電流が流れ、トランジスタ7がオンとなる。ト ランジスタ7はCPU3の電源電圧Vccより高い電圧V cc 2 の電源に接続されている。このため、トランジスタ 7がオンすることにより、サーミスタ1には通常よりも 大きな電流が流れ、サーミスタ1は自己発熱を起こす。 このように、サーミスタ1に自己発熱させるべく電圧を 印加する回路によって、電圧印加手段が構成されてい る。サーミスタ1が自己発熱した時、サーミスタ1の両 端には、CPU3のA/Dコンパータポートの耐圧をオ ーパする電圧が生じる。そこで、そのCPU3のA/D コンパータポートが破損するのを防止するため、抵抗1 2とダイオード14が用いられ、A/Dコンパータポー トはダイオード14を通してVccの電源に接続されてい る。抵抗12は、ダイオード14に電流が流れすぎない よう制御する。このダイオード14の代りに、ツェナー ダイオードをCPU3のA/DコンパータポートとGN D端子との間に接続してもよい。

【0021】図2は、サーミスタ1の診断を行うCPU 3の動作を説明するためのフローチャートである。

【0022】この診断動作は、電源オンの後、ヒータ5 がまだ通電されていない時点において開始する。

【0023】まず、ステップS20でA/Dコンパータ ポートに入力される電圧Vァュが電源電圧Vィィと等しいか 否か、つまりサーミスタ1が低温状態で抵抗値が高い状 盤か否かを確認する。Vrg ≠Vcc ならば、サーミスタ1 が導通して、そのサーミスタ1と抵抗2とで電源電圧V ccを分圧している状態であるので、ステップS21でサ ーミスタ1が定常と判断する。

【0024】一方、ステップS20の判定でVァル=V゚゚ の時は、ステップS22でCPU3の出力ポートO2の 出力を「H」 (ハイレベル) とする。すると、前述のご とく、サーミスタ1には電源電圧Vcc 2が印加され、自 己発熱を起こす。サーミスタ1の熱時定数は小さいの で、1秒程度の短時間で抵抗値が変化する。そこで、ス テップS23で、CPU3内に構成されたタイマーAを スタートさせ、そして、そのタイマーAが予め設定され た時間t。の後にタイムアップするのを待ってステップ S24からステップS25に進み、出力ポートO2の出 力を「L」(ロウレベル)とする。タイマーAは、1秒 程度の短時間でサーミスタ1に電圧Vcc 2を印加させる 制御手段を構成している。そして、出力ポート〇1 を 「L」とした直後に、サーミスタ1の端子電圧をA/D コンパータポートに取込み、ステップS26でV: とV ccとの比較を行う。Vrs ≠Vccならば、ステップS27 でサーミスタ1が正常であると判断して、その結果をメ モリに格納する。一方、ステップS26でVrg=Vccな らば、ステップS28でサーミスタ1が断線していると 判断し、その結果をメモリに格納する。 このような Vェ とVccの比較は、間接的にサーミスタ1の抵抗値変化を ベル「H」になるとトランジスタ10がオンレ、抵抗 50 比較することになり、このような比較機能を果す部分、

およびその比較結果によりサーミスタ1の断線の有無を 判断する機能を果す部分のそれぞれは、比較手段、およ び判別手段を構成している。

【0025】以上のようにして、ごく短時間のうちに、 ヒータ5を通電せずにサーミスタ1が断線しているか否 かを聞べることができる。

[0026] Δt , Δt , てもⅤァェ≒Ⅴccの時は、その時のⅤァェを配億し、その記 憶したVrgと新たに読込んだVrgとをステップS26で 比較して、判断してもよい。こうすることによりA/D 10 コンパータポートにオフセットがあってもその影響を防 止できることになる。

【0027】 (第2の実施例) 第2の実施例を図3に示 す。

【0028】前述した第1の実施例ではヒータ5を通電 させる前にサーミスタ1の異常を調べたが、この第2の 実施例では、その第1の実施例による異常診断後のヒー 夕5の通電中に、サーミスタ1の断線またはショートを 診断する。

【0029】まず、前述した第1の実施例で、サーミス 20 れた紙が排紙される積載トレイである。 夕正常と判断したら、すぐに、その時のサーミスタ電圧 Viaを測定して記憶する。これが図3(a)のステップ S29である。サーミスタ1の自己発熱はすでに終って いるので、サーミスタ1の温度は下降し、その抵抗値は 上昇することになる。そこで、0.5秒程度のタイマー Bをスタートさせる。これがステップS30である。そ のタイマーBはCPU3内に構成されている。ステップ S31でタイマーBのタイムオーバーを検出すると、ス テップS32でサーミスタ1の電圧Vrmを再度測定して 記憶する。次のステップS33で、先のステップS29 30 とS32にて記憶した2つの電圧Vrxの値の差を求め、 さらに所定の時間 t。 におけるサーミスタ 1 の温度勾配 を求めて、その値を記憶しておく。

【0030】次に、図3(b)により、ヒータ5の通電 後の診断動作を説明する。

【0031】まず、ステップS34で、CPU3が出力 ポートO: の出力を「H」 (ハイレベル) とし、半導体 リレー4が動作してヒータ5の通電が開始される。その 後、上述した図3 (a) の温度勾配測定ルーチンを使っ て、サーミスタ1の温度勾配を測定する(ステップS3 6) . そして、この温度勾配が、先の図3(a)のステ ップS33で計算したものより大きいか否かをステップ S36で判定する。温度勾配が大きくなっていればステ ップS33でサーミスタ1が故障であると判断する。逆 に、それが小さくなっているか、もしくは等しいならば ステップS38でサーミスタ1が正常であると判断す る。

【0032】なお、この温度勾配は、絶対値を使えば、 熱ローラの温度制御中にヒータ5がオフしている時でも サーミスタ1の診断ができる。

【0033】 (画像記録装置の構成例) 図4に、その代 表的な構成例を示す。

【0034】図4において、9はマルチペーパートレ イ、10は給紙ローラ、12は給紙センサ、2はドラ ム、5は露光器、6は現像器、7は転写器、25はCP U、13は熱定着器である。CPU25は、プリンタコ ントローラ26からのプリント信号に基づいて、給紙ロ ーラ10を駆動してトレイ9から紙を給紙すると共に、 スキャナユニット3内のレーザ光顔(不図示)とスキャ ナモータ(不図示)を動作させる。そして、給紙された 紙がレジストローラ11により搬送され、ドラム2に近 づくのに同期して、プリンタコントローラ26からCP U25にビデオ信号が送信され、そのビデオ信号に基づ いて感光ドラム2上をレーザ光が走査して、ビデオ信号 に対応した潜像を形成する。その後、威光ドラム2にト ナーが付着され、潜像が可視画像化されて、その画像が 搬送中の紙に転写器7により転写され、さらに熱定着器 13により定着される。8は、感光ドラム2に残留する トナーを回収するクリーナ装置、15は、画像が転写さ

【0035】このような画像形成装置の定着器が前述し たような診断装置の診断対象となる。

[0036]

【発明の効果】以上のごとく、本発明によれば、熱定着 器に備わるサーミスタ等の抵抗式温度センサに自己発熱 を起こさせて、その自己発熱の前後における抵抗値変化 から、サーミスタ等の抵抗式温度センサの診断を行うこ とにより、熱定着器を発熱させなくても、その抵抗式温 度センサの故障の有無を極めて短時間に判断することが できる。

【0037】このため、従来の問題、つまりサーミスタ 等の抵抗式温度センサが断線した時に、その診断に時間 がかかって熱定着器が焼損してしまうといった問題を回 避することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施例の要部の回路構成図であ

【図2】本発明の第1の実施例の動作を説明するための フローチャートである。

【図3】本発明の第2の実施例の動作を説明するための フローチャートである。

【図4】本発明を適用可能な画像記録装置の概略構成図 である。

【図5】従来の熱定着器の制御装置の回路構成図であ る.

【符号の説明】

- 1 サーミスタ (抵抗式温度センサ)
- 2 抵抗
- 3 CPU (ワンチップマイクロプロセッサ)
- 50 4 ソリッドステートリレー (半導体リレー)

(5) 特開平7-225530 5 ヒータ 7 トランジスタ 【図1】 【図5】 TO AC LINE TO AC LINE 【図3】 (a) (b) 温度勾配測定 <u> 19-1</u> || スタート| VTHの測定値と **S34** メモリに記憶する 通电 11マーB **S30** 温度勾配 スタート 测定 **.**S36 NO 勾配大 -tb **S38** YES _{_}S37 YES VTHの測定値を サーミスク サーミスタ **S32** メモリに記憶する 正常 故阵

エンド

勾配を計算して

メモリに記憶する

エンド

S33

[図2]

(7)

特開平7-225530

【図4】

