Some Recent Results in Database Theory

Yufei Tao

CSE Dept Chinese University of Hong Kong

I: Machine Learning

Classification

Monotone Classifier

Monotone Classifier

Examples:

 k^* = minimum error of all monotone classifiers

k^* = minimum error of all monotone classifiers

Active Monotone Classification

Question: How many points must we probe to return a monotone classifier whose error is k^* ?

Dominance width w of P

Thm 1 [Tao and Wang'21]: $\Omega(n)$ to ensure error k^* , even in 1D.

Thm 1 [Tao and Wang'21]:

 $\Omega(n)$ to ensure error k^* , even in 1D.

Thm 2 [Tao'18]:

 $\Omega(w \log \frac{n}{(1+k^*)w})$ to ensure error ck^* , regardless of constant c>0.

Thm 1 [Tao and Wang'21]:

 $\Omega(n)$ to ensure error k^* , even in 1D.

Thm 2 [Tao'18]:

 $\Omega(w \log \frac{n}{(1+k^*)w})$ to ensure error ck^* , regardless of constant c>0.

Thm 3 [Tao and Wang'21]:

 $O(w \log \frac{n}{w} \cdot \log n)$ to ensure error $(1+\epsilon)k^*$, for any constant $\epsilon > 0$.

Thm 1 [Tao and Wang'21]:

 $\Omega(n)$ to ensure error k^* , even in 1D.

Thm 2 [Tao'18]:

 $\Omega(w \log \frac{n}{(1+k^*)w})$ to ensure error ck^* , regardless of constant c>0.

Thm 3 [Tao and Wang'21]:

 $O(w \log \frac{n}{w} \cdot \log n)$ to ensure error $(1+\epsilon)k^*$, for any constant $\epsilon > 0$.

Thm 4 [Tao'18]:

 $O(w \log \frac{n}{w})$ (expected) probes to ensure (expected) $2k^*$.

First probe $= p_1$

First probe = p_1 Second = p_8

First probe = p_1 Second = p_8 Returns a classifier with error 5 II: Crowdsourcing

Partial Order Search

Crowdsourcing

n = number of nodes

d = maximum out-degree

k = number of questions in each round

Thm 1 [Lu, Martens, Niewerth, Tao'21] $\Omega(\log_{1+k} n + \frac{d}{k} \log_{1+d} n)$ probes necessary.

Thm 2 [Lu, Martens, Niewerth, Tao'21] $O(\log_{1+k} n + \frac{d}{k} \log_{1+d} n)$ probes suffice.

With roughly 1 + d/k probes, we can achieve:

III: Massively Parallel Computation

Subgraph Enumeration

Goal: Minimize the amount of communication on every machine.

Minimize $w_1 + w_2 + w_3$ subject to

$$w_1 + w_2 \ge 1$$

$$w_1 + w_3 \ge 1$$

$$w_2 + w_3 \ge 1$$

Minimize $w_1 + w_2 + w_3$ subject to

$$w_1 + w_2 \ge 1$$

$$w_1 + w_3 \ge 1$$

$$w_2 + w_3 \ge 1$$

Answer: 1.5 — the fractional edge covering number ρ

Minimize $w_1 + w_2 + w_3 + w_4$ subject to

$$\begin{array}{cccc} w_1 + w_2 & \geq & 1 \\ w_1 + w_3 & \geq & 1 \\ w_2 + w_3 + w_4 & \geq & 1 \\ w_4 & \geq & 1 \end{array}$$

Minimize $w_1 + w_2 + w_3 + w_4$ subject to

$$\begin{array}{rcl}
w_1 + w_2 & \geq & 1 \\
w_1 + w_3 & \geq & 1 \\
w_2 + w_3 + w_4 & \geq & 1 \\
w_4 & > & 1
\end{array}$$

Answer: 2 — the fractional edge covering number ρ

The maximum number of occurrences of Q in a graph of m edges is $\Theta(m^{\rho})$.

p = number of machines

Thm 1 At least one machine must communicate $\Omega(m/p^{1/\rho})$.

Thm 1 At least one machine must communicate $\Omega(m/p^{1/\rho})$.

Every machine sees at most *L* edges

Thm 1 At least one machine must communicate $\Omega(m/p^{1/\rho})$.

Every machine sees at most L edges

 \Rightarrow Each machine can generate $O(L^{\rho})$ occurrences of Q

Thm 1 At least one machine must communicate $\Omega(m/p^{1/\rho})$.

Every machine sees at most *L* edges

- \Rightarrow Each machine can generate $O(L^{\rho})$ occurrences of Q
- \Rightarrow In total, $O(p \cdot L^{\rho})$ occurrences

Thm 1 At least one machine must communicate $\Omega(m/p^{1/\rho})$.

Every machine sees at most *L* edges

- \Rightarrow Each machine can generate $O(L^{\rho})$ occurrences of Q
- \Rightarrow In total, $O(p \cdot L^{\rho})$ occurrences

But in the worst case G has $\Omega(m^{\rho})$ occurrences of Q

p = number of machines

Thm 1 At least one machine must communicate $\Omega(m/p^{1/\rho})$.

Every machine sees at most *L* edges

- \Rightarrow Each machine can generate $O(L^{\rho})$ occurrences of Q
- \Rightarrow In total, $O(p \cdot L^{\rho})$ occurrences

But in the worst case G has $\Omega(m^{\rho})$ occurrences of Q

$$\Rightarrow p \cdot L^{\rho} = \Omega(m^{\rho})$$

p = number of machines

Thm 1 At least one machine must communicate $\Omega(m/p^{1/\rho})$.

Every machine sees at most *L* edges

- \Rightarrow Each machine can generate $O(L^{\rho})$ occurrences of Q
- \Rightarrow In total, $O(p \cdot L^{\rho})$ occurrences

But in the worst case G has $\Omega(m^{\rho})$ occurrences of Q

$$\Rightarrow p \cdot L^{\rho} = \Omega(m^{\rho})$$

Thm 2 [Kestman, Suciu, Tao'20] $\tilde{O}(m/p^{1/\rho})$ communication per machine suffices.

IV: Dynamic Graphs

Triangle Counting

3 triangles

Dynamic Triangle Counting

Design a structure to support

- update(e): insert/delete e
- query: count the number of triangles

OMv Conjecture

Need to calculate $\boldsymbol{M}\boldsymbol{v}_i$ for i=1,2,...,n. Can do $O(n^{3-\delta})$?

Dynamic Triangle Counting

Thm 1 Subject to the OMv conjecture:

- either update needs $\Omega(\sqrt{m})$ time
- or a query needs $\Omega(m)$ time.

Design a structure to support

- update(e): insert/delete e
- ullet query: count the number of triangles up to relative error ϵ

Design a structure to support

- update(e): insert/delete e
- ullet query: count the number of triangles up to relative error ϵ

Thm 2 Subject to the OMv conjecture, for $\epsilon = 0.49$,

- either update needs $\Omega(\sqrt{m})$ time
- or a query needs $\Omega(m)$ time.

(ϵ, Γ) -guarantee:

- $\Gamma(m)$: a function of m
- If at least $\Gamma(m)$ triangles, **relative** error ϵ . Otherwise, **absolute** error $\epsilon \cdot \Gamma(m)$.

(ε, Γ)-guarantee:

- $\Gamma(m)$: a function of m
- If at least $\Gamma(m)$ triangles, relative error ϵ . Otherwise, absolute error $\epsilon \cdot \Gamma(m)$.

Design a structure to support

- update(e)
- query: give an estimate with the (ϵ, Γ) -guarantee.

Thm 3 [Lu and Tao'21] Subject to the OMv conjecture, for $\epsilon = 0.49$,

- either update needs $\Omega(\frac{\sqrt{m}}{\Gamma(m)})$ time
- or a query needs $\Omega(m^{2/3})$ time.

Thm 3 [Lu and Tao'21] Subject to the OMv conjecture, for $\epsilon = 0.49$,

- either update needs $\Omega(\frac{\sqrt{m}}{\Gamma(m)})$ time
- or a query needs $\Omega(m^{2/3})$ time.

Thm 4 [Lu and Tao'21] Can do $\tilde{O}(\frac{\sqrt{m}}{\Gamma(m)})$ per update and O(1) per query for any constant

 $\epsilon > 0$.

THANK YOU