Introduction to Probability Conditional distributions of random variables

Conditional probability, law of total probability

Recall the conditional probability of an event E, given F:

$$P(E \mid F) = \frac{P(EF)}{P(F)}$$

and the Law of Total Probability: if $\{E_1, ..., E_n\}$ partitions Ω ,

$$P(F) = \sum_{i=1}^{n} P(FE_i) = \sum_{i=1}^{n} P(F \mid E_i) P(E_i).$$

We will now translate these to the language of random variables.

Conditional probability, conditional expectation

For discrete RVs, the **conditional PMF** of X = x, given the event F, gives the probability of the event $E(x) = \{X = x\}$ under the evidence F.

$$p_{X|F}(x) = P(E(x)|F) = P(X = x|F) = \frac{P(\{X = x\} \cap F)}{P(F)}.$$

Conditional probability, conditional expectation

The **conditional expectation** of X, given the event F, is

$$E(X \mid F) = \sum_{x \in X(\Omega)} x \, p_{X|F}(x).$$

Note that we only need to sum over the values in X(F), not $X(\Omega)$, since our conditional probability only gives values from F positive probability. However, we will write $X(\Omega)$ here for consistency.

Expectation, PMF via conditional expectations, PMFs

If $\{F_1, ..., F_n\}$ partitions Ω , then we can compute the "regular" unconditioned PMF as a sum of conditional PMFs, mirroring the Law of Total Probability:

$$p_X(x) = \sum_{i=1}^n P(X = x \mid F_i) P(F_i) = \sum_{i=1}^n p_{X \mid F_i}(x) P(F_i).$$

Expectation, PMF via conditional expectations, PMFs

Likewise, we can compute the "regular" unconditioned expectation as a sum of conditional expectations:

$$E(X) = \sum_{i=1}^{n} E(X \mid F_i) P(F_i) = \sum_{i=1}^{n} \left(\sum_{x \in X(\Omega)} x \, p_{X \mid F_i}(x) P(F_i) \right)$$
$$= \sum_{x \in X(\Omega)} x \, \left(\sum_{i=1}^{n} p_{X \mid F_i}(x) P(F_i) \right) = \sum_{x \in X(\Omega)} x \, p_X(x).$$

For discrete RVs, the **conditional PMF** of X = x, given Y = y, uses the joint PMF and the marginal PMF of Y in the same way.

Consider the events $E(x) = \{X = x\}$ and $F(y) = \{Y = y\}$. Then

$$p_{X|Y}(x|y) = P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p_{X,Y}(x,y)}{p_Y(y)}.$$

Likewise, the conditional PMF of Y = y, given X = x, is

$$p_{Y|X}(y|x) = P(Y = y \mid X = x) = \frac{P(X = x, Y = y)}{P(X = x)} = \frac{p_{X,Y}(x,y)}{p_X(x)}.$$

Joint PMF via conditional PMF

We can recover the joint PMF of X and Y if we start with the conditional PMF:

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} \implies p_{X,Y}(x,y) = p_{X|Y}(x|y) p_Y(y).$$

This joint PMF can be written even when $p_Y(y) = 0$, since for these y, $p_{X,Y}(x,y) = 0$ as well.

Bayes' Law with random variables

This means Bayes' Law works similarly: in the general setting,

$$P(E \mid F) = \frac{P(F \mid E)P(E)}{P(F)}.$$

In the specific case of random variables,

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)}.$$

Also, notice how $p_Y(y)$ uses the law of total probability:

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{\sum_{z \in X(\Omega)} p_{Y|X}(y|z)p_X(z)}.$$

Expectation, PMF via conditional expectations, PMFs

If $\{F(y)\}_{y\in Y(\Omega)}$ partitions Ω , then we can compute the "regular" unconditioned PMF as a sum of conditional PMFs, mirroring the Law of Total Probability:

$$p_X(x) = \sum_{i=1}^n P(X = x \mid Y = y) P(Y = y) = \sum_{y \in Y(\Omega)} p_{X|Y}(x|y) p_Y(y).$$

Expectation, PMF via conditional expectations, PMFs

Likewise, we can compute the "regular" unconditioned expectation as a sum of conditional expectations:

$$E(X) = \sum_{y \in Y(\Omega)} E(X \mid Y = y) P(Y = y)$$

$$= \sum_{x \in X(\Omega)} x \sum_{y \in Y(\Omega)} p_{X|Y}(x|y) p_Y(y) = \sum_{x \in X(\Omega)} x p_X(x).$$

Expectation of a function of an RV

If $g : \mathbb{R} \to \mathbb{R}$ is a function, we can likewise compute the expectation of g(X) using conditional expectations:

$$E(g(X) | F) = \sum_{x \in X(\Omega)} g(x) p_{X|F}(x),$$

$$E(g(X) | Y = y) = \sum_{x \in X(\Omega)} g(x) p_{X|Y}(x|y),$$

$$E(g(X)) = \sum_{y \in Y(\Omega)} E(g(X) | Y = y) P(Y = y).$$

The experiment: flip a fair coin 4 times. Let

- ► X = number of H flipped on all four flips and
- ightharpoonup Y = number of T flipped in the first three flips.
- (a) What is the probability that X = 3?
- (b) What is the probability that X=3, given that Y=1?
- (c) Say we play a game: you win \$1 for each H and lose \$1 for each T. What is the probability you "win" the game, i.e. you finish with positive winnings?
- (d) What are your expected winnings on the game in (c)?

The experiment: flip a fair coin 4 times. Let

- X = number of H flipped on all four flips and
- Y = number of T flipped in the first three flips.
- (a) P(X = 3) = ?
- (b) P(X = 3 | Y = 1) = ?
- (c) X = number of H flipped, so 4 X = number of tails. Hence, your winnings on this game are

$$W = X - (4 - X) = 2X - 4.$$

Thus, the probability you "win" the game is P(W > 0) = ?

(d)
$$E(W) = ?$$

The experiment: flip a fair coin 4 times. Let

- ► X = number of H flipped on all four flips and
- Y = number of T flipped in the first three flips.

(a)
$$P(X=3)=?$$

Note that $X \sim Bin(4, 1/2)$.

Hence,

$$P(X=3) = {4 \choose 3} \left(\frac{1}{2}\right)^4 = \frac{1}{4}.$$

(This is from the marginal PMF for X.)

The experiment: flip a fair coin 4 times. Let

- ► X = number of H flipped on all four flips and
- ightharpoonup Y = number of T flipped in the first three flips.

(b)
$$P(X = 3 | Y = 1) = ?$$

To find P(X = 3 | Y = 1), we need the joint PMF for (X, Y).

We'll calculate it by writing out all $2^4 = 16$ possible cases.

We can first compute the marginals: we know

 $X \sim Bin(4,1/2)$, and it should also be clear that $Y \sim Bin(3,1/2)$.

	Y=0	Y=1	Y=2	Y=3	$p_X(x)$
X=0					$\frac{1}{16}$
X=1					$\frac{4}{16}$
X=2					$\frac{6}{16}$
X=3					$\frac{4}{16}$
X=4					$\frac{1}{16}$
$p_Y(y)$	$\frac{1}{8}$	<u>3</u> 8	<u>3</u> 8	$\frac{1}{8}$	1

	Y=0	Y=1	Y=2	Y=3	$p_X(x)$
X=0	0	0	0	TTTT	$\frac{1}{16}$
X=1	0	0	TTHT, THTT, HTTT	тттн	4 16
X=2	0	THHT, HTHT, HHTT	TTHH, THTH, HTTH	0	6 16
X=3	нннт	THHH, HTHH, HHTH	0	0	<u>4</u> 16
X=4	НННН	0	0	0	$\frac{1}{16}$
$p_Y(y)$	$\frac{2}{16} = \frac{1}{8}$	$\frac{6}{16} = \frac{3}{8}$	$\frac{6}{16} = \frac{3}{8}$	$\frac{2}{16} = \frac{1}{8}$	1

	Y=0	Y=1	Y=2	Y=3	$p_X(x)$
X=0	0	0	0	$\frac{1}{16}$	$\frac{1}{16}$
X=1	0	0	3 16	$\frac{1}{16}$	4 16
X=2	0	3 16	3 16	0	<u>6</u> 16
X=3	<u>1</u> 16	3 16	0	0	<u>4</u> 16
X=4	$\frac{1}{16}$	0	0	0	$\frac{1}{16}$
$p_Y(y)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1

- (a) Note that $X \sim Bin(4, 1/2)$. Hence, $P(X = 3) = {4 \choose 3}(\frac{1}{2})^4 = \frac{1}{4}$.
- (b) $P(X = 3 \mid Y = 1) = \frac{p_{X,Y}(3,1)}{p_Y(1)} = \frac{\frac{3}{16}}{\frac{3}{9}} = \frac{1}{2}$.
- (c) $P(2X-4>0) = P(X>2) = P(X=3) + P(X=4) = \frac{5}{16}$.
- (d) $E(W) = E(2X 4) = \sum_{j=0}^{4} (2j 4)p_X(j)$

$$= -4\left(\frac{1}{16}\right) - 2\left(\frac{4}{16}\right) + 0\left(\frac{6}{16}\right) + 2\left(\frac{4}{16}\right) + 4\left(\frac{1}{16}\right) = 0.$$

Continuous conditional density, Bayes' law, joint density

The **conditional PDF** of X given Y is defined in a similar fashion as the discrete case.

If $f_{X,Y}(x,y)$ is the joint PDF of X and Y, and the marginal PDFs are $f_X(x)$ and $f_Y(y)$, then the conditional densities are

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}, \ f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)},$$

where the marginals are positive.

Bayes' law follows similarly:

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}.$$

Continuous marginal density, law of total probability

We can recover the joint density from a conditional density as in the discrete case:

$$f_{X,Y}(x,y) = f_{Y|X}(y \mid x) f_X(x).$$

The marginal PDF of X can be computed as before, by integrating over all possible conditions for Y:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{-\infty}^{\infty} f_{X|Y}(x \mid y) f_Y(y) dy.$$

Thus, the law of total probability here gives us

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_Y(y)}{\int_{-\infty}^{\infty} f_{X|Y}(x|z)f_Y(z)dz}.$$

Conditional expectation of X given Y

The **conditional expectation** of X, given Y, is a random variable that can be considered a function of the random variable Y.

For fixed $y \in Y(\Omega)$,

$$E(X \mid Y = y) = \sum_{x \in X(\Omega)} x \, p_{X|Y}(x|y).$$

Thus, we define the function $h(y) = E(X \mid Y)(y)$ by

$$E(X \mid Y)(y) = E(X \mid Y = y).$$

Conditional expectation of X given Y

We can use the conditional expectation function to compute results about X if you have the scenario where you can only access X through observations of Y.

For example, we can compute E(X) using only conditioning on Y:

$$E(X) = \sum_{x \in X(\Omega)} x \, p_X(x)$$

$$= \sum_{x \in X(\Omega)} x \, \sum_{Y \in Y(\Omega)} p_{X|Y}(x|y) p_Y(y)$$

$$= \sum_{Y \in Y(\Omega)} \left(\sum_{x \in X(\Omega)} x \, p_{X|Y}(x|y) \right) p_Y(y)$$

$$= \sum_{Y \in Y(\Omega)} E(X|Y)(y) p_Y(y) = E(E(X|Y)).$$

Conditional variance of X given Y

Likewise, we can compute the variance of X using only conditioning on Y: defining the **conditional variance** of X given Y = y by

$$Var(X | Y = y) = E[(X - E(X | Y = y))^2 | Y = y],$$

we have the conditional variance as a function of y:

$$v(y) = Var(X \mid Y)(y) = Var(X \mid Y = y),$$

and we can compute the following identity:

Conditional Variance Formula:

$$Var(X) = E[Var(X \mid Y)] + Var(E(X \mid Y)).$$

Independence of X and Y via conditional, joint PDF

Two continuous random variables X and Y are called **independent** if conditioning one with the other yields no change in PDF. That is, $X \perp Y$ if

$$f_{X|Y}(x|y) = f_X(x)$$

for every $x, y \in \mathbb{R}$. Equivalently, $X \perp Y$ if, for every $x, y \in \mathbb{R}$,

$$f_{Y|X}(y \mid x) = f_Y(y).$$

We can state this in terms of the joint PDF, as we have before: $X \perp Y$ iff, $\forall x, y \in \mathbb{R}$, the joint PDF factors into marginals:

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Wald's Identity

Theorem

Wald's Identity:

Let X_1, X_2, X_3, \ldots are IID RVs with $E(X_1) = \mu < \infty$. Let $N \in \{0, 1, 2, \ldots\}$ be a RV with $E(N) = \nu < \infty$ and $N \perp X_i \ \forall i$. Set

$$S_N = \sum_{i=1}^N X_i.$$

Then,

$$E(S_N) = E(N) \cdot E(X_1) = \nu \mu.$$

This theorem allows us to easily calculate the expectation of the sum of a random number of random variables, as long as all the variables (and the counting RV N) are all independent.