Supplemental Instructions

1

a)
$$y' = -\frac{3x}{\sqrt{1-3x^2}}$$

- b) -2sin(x)cos(2cos(x))
- c) $2(\sin(2x) + \cos(2x))$

2

a)
$$2x + 2yy' = 0$$
$$2yy' = -2x$$
$$y' = \frac{-2x}{2y} = -\frac{x}{y}$$

b)
$$3x^2 + 3y^2y' = 1 + 2y'$$

 $3x^2 - 1 = -3y^2y' + 2y'$
 $3x^2 - 1 = y'(2 - 3y^2)$
 $\frac{3x^2 - 1}{2 - 3y^2} = y'$

3

a)
$$y(x) = x^2 \implies x(y) = \sqrt{y}$$

b)
$$y(x) = 2^x \implies x(y) = \log_2 y$$

c)
$$y(x) = tan(x) \implies x(y) = \arctan y$$

d)
$$y(x) = 1/x \implies x(y) = 1/y$$

4

$$f(x) = x^{2} \implies f^{-1}(x) = \sqrt{x}$$

$$f'(x) = 2x$$

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))} \frac{d}{dx}\sqrt{x} = \frac{1}{f'(\sqrt{x})} = \frac{1}{2(\sqrt{x})}$$

5

- a) 3
- b) $2\sqrt{2}$

- c) 1
- d) x^5
- e) $ln\frac{64}{81}$
- f) $x = \frac{ln(2)}{ln(2) ln(3)}$

6

- a) $e^x(x+1) 1$
- b) e^{x+e^x}
- c) ln(x)

7

- a) $\frac{1}{\sqrt{-x^2+x+2}}$
- b) 2xarctan(x) + 1
- c) $arccos(x) \frac{x}{\sqrt{1-x^2}}$