PROBLEMAS I

JUAN FERRERA

- (1) Prueba que la unión numerable de conjuntos de medida 0 tiene medida 0. En particular todo conjunto numerable tiene medida 0
- (2) Probar que las caras de un rectángulo tienen medida 0.
- (3) Sea $\mathbb{Q} \cap [0,1] = \{x_n\}_n$. Para todo $\varepsilon > 0$ y para todo $n \in \mathbb{N}$, definimos

$$G_n(\varepsilon) = (x_n - \varepsilon 2^{-n}, x_n + \varepsilon 2^{-n}),$$

$$G(\varepsilon) = \bigcup_{n=1}^{\infty} G_n(\varepsilon), \quad \text{y} \quad H = \bigcap_{n=1}^{\infty} G\left(\frac{1}{n}\right)$$

- (a) Para todo $\varepsilon > 0$, $G(\varepsilon)$ es abierto y $\mu(G(\varepsilon)) \leq \varepsilon$.
- (b) $G(\varepsilon)^c$ es diseminado para todo $\varepsilon > 0$.
- (c) H es denso en [0,1], H^c es unión numerable de conjuntos diseminados, pero $\mu(H^c) = 1$.
- (4) Prueba que todo conjunto abierto es unión numerable de cubos abiertos.
- (5) Consideramos el intervalo [0,1]. Definimos $I_1=I_1^1=(\frac{1}{3},\frac{2}{3})$. Definimos $I_2^1=(\frac{1}{9},\frac{2}{9}),\ I_2^2=(\frac{7}{9},\frac{8}{9}),\ y\ I_2=I_2^1\cup I_2^2$. Seguimos el procedimiento de la siguiente forma: dado n, denotamos por

$$C_n = [0,1] \setminus \bigcup_{k=1}^n I_k.$$

 C_n es la unión de 2^n intervalos cerrados disjuntos. Cada uno de estos intervalos lo dividimos en 3 y llamamos a los intervalos abiertos centrales $I_{n+1}^1, \ldots I_{n+1}^{2^n}$. Denotamos su unión por I_{n+1} , y continuamos el proceso. El conjunto $C = \bigcap_n C_n$ se denomina Conjunto ternario de Cantor.

- (a) $\mu(C) = 0$.
- (b) Los únicos subconjuntos conexos de C son los puntos (C es extremadamente disconexo).
- (c) C es diseminado
- (d) C es cerrado y todos sus puntos son de acumulación.
- (e) $x \in C$ si y solo si admite un desarrollo decimal en base 3 en el que no aparece el 1.

Date: January 19, 2022 (925).

- (f) C es no numerable.
- (6) Definimos la función $f:[0,1]\setminus C\to [0,1]$ como

$$f(x) = \frac{2i-1}{2^k}$$
 si $x \in I_k^i$, $i = 1, \dots, 2^{k-1}$. $k \in \mathbb{N}$.

Probar que f es uniformemente continua, y por tanto se puede extender a una función continua $g:[0,1]\to [0,1]$, conocida como función de Cantor, que es no decreciente y tiene derivada cero en casi todo punto.

- (7) Sea $F: \mathbb{R}^n \to \mathbb{R}^n$ una función Lipschitz. Demuestra primero que existe una constante K > 0 tal que si Q es un n-cubo de lado ℓ , entonces F(Q) está contenido en un n-cubo de lado $K\ell$. Deduce que si $N \subset \mathbb{R}^n$ tiene medida cero, entonces F(N) también tiene medida cero.
- (8) Sea m < n, sea $F : \mathbb{R}^m \to \mathbb{R}^n$ Lipschitz. Demuestra que $F(\mathbb{R}^m)$ tiene medida cero en \mathbb{R}^n . Deduce que toda recta en el plano tiene medida cero y que todo plano en el espacio tiene medida cero.
- (9) Sea $G \subset \mathbb{R}^n$ abierto, sea $F: G \to \mathbb{R}^m$, $m \geq n$, de clase C^1 . Prueba que si N satisface $\overline{N} \subset G$ y tiene medida cero, entonces F(N) tiene medida cero.
- (10) Con la notación del ejercicio anterior, prueba que se puede prescindir de la hipótesis $\overline{N} \subset G$.