Esercizio 1

Si converta il numero 4413 in base 5 a numero in base 10.

Soluzione

4	4	1	3
5 ³	5 ²	5 ¹	5 ⁰
500	100	5	3

Quindi, 4413₅ = 500+100+5+3 = **608**₁₀

Esercizio 2

Si converta il numero 164 in base 10 a numero in base 4.

Soluzione

Divisione	Quoziente	Resto
164:4	41	0 (meno significativo)
41:4	10	1
10:4	2	2
2:4	0	2 (più significativo)

Quindi, 164₁₀ = **2210**₄

Esercizio 3

La sequenza di bit 10010110

- (1) a quale numero naturale in base 10 corrisponde?
- (2) a quale numero naturale in base 7 corrisponde?
- (3) a quale numero naturale in base 8 corrisponde?
- (4) in complemento a due, a quale intero in base 10 corrisponde?

Al punto 3, verificare che effettuando la conversione da binario a decimale e poi da decimale a ottale (ovvero, base 8), ed effettuando la conversione in base alla tabella riportata sulle slide del corso (vedi "basi che sono potenze di 2"), si ottiene lo stesso numero.

Soluzione punto 1

1	0	0	1	0	1	1	0
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128			16		4	2	

Quindi, $10010110_2 = 128+16+4+2 = 150_{10}$

Soluzione punto 2

Divisione	Quoziente	Resto
150:7	21	3 (meno significativo)
21:7	3	0
3:7	0	3 (più significativo)

Quindi, 10010110₂ = **303**₇

Soluzione punto 3

Divisione	Quoziente	Resto
150:8	18	6 (meno significativo)
18:8	2	2
2:8	0	2 (più significativo)

Quindi, 10010110₂ = 226₈

Usando la tabella di conversione otteniamo sempre:

010 010 110 = **226**8

Si noti che per convertire gli ultimi 2 bit, ci occorre aggiungere uno 0 perché la conversione tramite la tabella richiede di convertire 3 bit per volta.

Soluzione punto 4

1	0	0	1	0	1	1	0	Sequenza di bit
0	1	1	0	1	0	0	1+	Complemento a 1
							1 =	Sommo 1
0	1	1	0	1	0	1	0	
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰	
	64	32		8		2		64+32+8+2 = 106

Dal momento che il bit più a sinistra del byte originale è 1, si tratta del numero negativo: -106.

Come verifica del procedimento, possiamo effettuare la somma della rappresentazione in complemento a 2 di -106 e +106. Ci aspettiamo che esca 0, esattamente come se sommassimo -106 e +106. Infatti, otteniamo:

1	0	0	1	0	1	1	0 +	-106
0	1	1	0	1	0	1	0 =	+106
(1)0	0	0	0	0	0	0	0	Il bit in eccesso (ovvero, l'overflow) lo
								ignoriamo perché stiamo lavorando con 8 bit.

Esercizio 4

La sequenza di bit 1101 0101

- (1) a quale numero naturale in base 10 corrisponde?
- (2) in complemento a due, a quale numero intero in base 10 corrisponde?

Per rispondere al quesito 1, effettuare prima la conversione da sistema binario a sistema decimale e poi la conversione da binario ad esadecimale e da esadecimale a decimale. Verificare quindi che si è ottenuto lo stesso numero con entrambe i metodi.

Soluzione parte 1

1	1	0	1	0	1	0	1
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64		16		4		1

Quindi, $11010101_2 = 128 + 64 + 16 + 4 + 1 = 213_{10}$

Binario -> esadecimale -> decimale

1	1	0	1	
2 ³	2 ²	2 ¹	2 ⁰	
8	4		1	

Quindi, otteniamo: 8 + 4 + 1 = 13 che corrisponde a D

0	1	0	1
2 ³	2 ²	2 ¹	2 ⁰
	4		1

4 + 1 = 5

Quindi, 11010101₂ = **D5**₁₆

Verifica: $13*16 + 5 = 213_{10}$

D (13)	5
16 ¹	16 ⁰
13*16	1*5

Soluzione parte 2

1	1	0	1	0	1	0	1	Sequenza originale
0	0	1	0	1	0	1	0 +	Complemento a uno
							1 =	Sommo 1
0	0	1	0	1	0	1	1	
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
		32		8		2	1	32+8+2+1 = 43

Dal momento che il bit più a sinistra nel byte originale è 1, si tratta di un numero negativo, quindi otteniamo: -43.

Esercizio 5

Avendo 8 bit a disposizione e dato il numero intero -35 in base 10, calcolare la rappresentazione in complemento a 2.

Soluzione

Divisione	Quoziente	Resto
35:2	17	1 (meno significativo)
17:2	8	1
8:2	4	0
4:2	2	0
2:2	1	0
1:2	0	1 (più significativo)

Il numero 35 con 8 bit corrisponde a 00 100011 (primi due bit aggiunti per arrivare a 8 bit).

0	0	1	0	0	0	1	1	
1	1	0	1	1	1	0	0 +	Complemento a uno
							1 =	Sommo 1
1	1	0	1	1	1	0	1	

Quindi, -35 in complemento a 2 è **11011101**.

Esercizio 6

Fornire la rappresentazione in complemento a 2, con 8 bit, dei numeri interi -58 e +58.

Soluzione

Iniziamo da 58.

Divisione	Quoziente	Resto
58:2	29	0 (meno significativo) ↑
29:2	14	1
14:2	7	0
7:2	3	1
3:2	1	1
1:2	0	1 (più significativo)

Quindi con 8 bit in complemento a due, +58 corrisponde a **0011 1010**.

Passiamo a -58.

0	0	1	1	1	0	1	0	
1	1	0	0	0	1	0	1+	Complemento a uno
							1 =	Sommo 1
1	1	0	0	0	1	1	0	

Quindi con 8 bit in complemento a due, -58 corrisponde a **11000110**.

Esercizio 7

Indicare qual è il più piccolo intero in base 10 rappresentabile utilizzando il complemento a 2 su 8 bit e fornire la sua rappresentazione.

Soluzione

Con 8 bit, ovvero un byte, in complemento a due possiamo rappresentare i numeri tra $[-2^7, 2^{7-1}]$ cioè tra [-128, 127].

Infatti, in generale con N bit possiamo rappresentare i numeri da -2^{N-1} a $+2^{N-1}-1$.

Quindi il numero più piccolo rappresentabile con 8 bit in complemento a due è -128.

Calcoliamo 128:

Divisione	Quoziente	Resto
128:2	64	0 (meno significativo) ♠
64:2	32	0
32:2	16	0
16:2	8	0
8:2	4	0
4:2	2	0
2:2	1	0
1:2	0	1 (più significativo)

Quindi 128 si rappresenta come 1000 0000 con la rappresentazione classica. Infatti per rappresentare numeri naturali, 8 bit sono sufficienti a rappresentare i numeri da 0 a 256.

Osservazione. Notiamo invece che +128 non è rappresentabile con 8 bit in complemento a due né con la rappresentazione in modulo e segno. Infatti il più grande intero rappresentabile con queste due rappresentazioni con 8 bit è +127.

Calcoliamo ora -128.

1	0	0	0	0	0	0	0	
0	1	1	1	1	1	1	1+	Complemento a uno
							1 =	Sommo 1
1	0	0	0	0	0	0	0	

Esercizio 8

Si converta in complemento a due, utilizzando il minor numero di bit possibile, il numero -38 in base 10.

Soluzione

Per rappresentare -38 abbiamo bisogno di 7 bit. Con 7 bit possiamo rappresentare in complemento a 2, 128 numeri, ovvero i numeri interi nell'intervallo [-64,+63].

Divisione	Quoziente	Resto
38:2	19	0 (meno significativo) ↑
19:2	9	1
9:2	4	1
4:2	2	0
2:2	1	0
1:2	0	1 (più significativo)

Si ottiene **100 110**. Lo 0 come bit iniziale si aggiunge per ottenere la rappresentazione in complemento a 2 di +38 con 7 bit -> **0100110**

Dunque, per ottenere -38:

0	1	0	0	1	1	0	Byte originale
1	0	1	1	0	0	1+	Complemento a uno
						1 =	Sommo 1
1	0	1	1	0	1	0	

Quindi in complemento a due, -38 corrisponde a 1011010

Esercizio 9

Fornire la rappresentazione binaria in complemento a 2, con 8 bit, dei numeri in base 10, -122 e +122.

Soluzione

Per +122 otteniamo:

Divisione	Quoziente	Resto
122:2	61	0 (meno significativo) ▲
61:2	30	1
30:2	15	0
15:2	7	1
7:2	3	1
3:2	1	1
1:2	0	1 (più significativo)

Quindi 122₂ = **01111010**.

Per -122 otteniamo:

	0	1	1	1	1	0	1	0	Byte originale
Ī	1	0	0	0	0	1	0	1+	Complemento a uno
								1 =	Sommo 1
Ī	1	0	0	0	0	1	1	0	

Quindi in complemento a due, -122 corrisponde a 10000110

Esercizio 10

Convertire la stringa costituita dal proprio nome seguito da uno spazio e dal proprio cognome nelle rappresentazioni nel formato ASCII binario, esadecimale e decimale.

Suggerimento: per svolgere questo esercizio è sufficiente fare riferimento alla tabella sulle slide del corso sullo standard ASCII (vedi "caratteri stampabili").

Soluzione

Come esempio, supponendo di dover convertire "Maria Rossi" otteniamo:

Carattere	In binario	In esadecimale	In decimale
M	01001101	4D	77
a	01100001	61	97
r	01110010	72	114
i	01101001	69	105
a	01100001	61	97
	00100000	20	32
R	01010010	52	82
0	01101111	6F	111
S	01110011	73	115
S	01110011	73	115
i	01101001	69	105