Математический анализ — 1.

Юрий Сергеевич Белов

Литература:

- В. А. Зорич "Математический анализ"
- О. Л. Виноградов "Математический анализ"
- (подходит попозже) Г. М. Фихтенгельц "Курс дифференциального и интегрального исчисления"
- У. Рудин "Основы анализа"
- М. Спивак "Математический анализ на многообразиях"

1 Множества, аксиоматика и вещественные числа.

Мы начинаем с теории множеств.

Определение 1.

- Множества и элемменты понятно.
- $a \in B$ понятно.
- $A \cup B := \{x \mid x \in A \lor x \in B\}$ объединение.
- $A \cap B := \{x \mid x \in A \land x \in B\}$ пересечение.
- $A \setminus B := \{x \mid x \in A \lor x \notin B\}$ разность.
- $A \triangle B := A \setminus B \cup B \setminus A$ симметрическая разница.
- $A^C:=X\backslash A-\mathit{dononhehue}$, где X- некоторое фиксированное рассматриваемое множество.
- $A \subset B$ "A подмножество B", т.е. $\forall x (X \in A \Rightarrow x \in B)$.

Следствие.

• (первое правило Моргана) $(A \cup B)^C = A^C \cap B^C$.

$$x \in (A \cup B)^C \Leftrightarrow x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{cases} \Leftrightarrow \begin{cases} x \in A^c \\ x \in B^C \end{cases} \Leftrightarrow x \in A^C \cap B^C$$

• (второе правило Моргана) $(A \cap B)^C = A^C \cup B^C$. Аналогично.

Определение 2. (Аксиома индукции.) Пусть есть функция $A : \mathbb{N} \to true; false,$ что:

- 1. A(1) = true;
- 2. $\forall n(A(n) \rightarrow A(n+1))$.

Тогда $\forall n A(n)$.

Определение натуральных чисел сложно, рассматривать его не будем. Важно также иметь в виду натуральные числа с операциями сложения и умножения.

Определение 3. Пусть есть кольцо без делителей нуля R. Рассмотрим отношение эквивалентности \sim на $R \times (R \setminus \{0\})$, что $(a;b) \sim (c;d) \Leftrightarrow ad = bc$. Тогда $\mathrm{Quot}(R)$ — фактор-множество по \sim и поле.

Определение 4. Рациональные числа — $\mathbb{Q} := \operatorname{Quot}(\mathbb{Z})$.

Теорема 1. $\nexists x \in \mathbb{Q}, x^2 = 2.$

Доказательство. Предположим противное, т.е. существуют взаимно простиые $m \in \mathbb{Z}$ и $n \in \mathbb{N} \setminus \{0\}$, что $(\frac{m}{n})^2 = 2$. Тогда $m^2 = n^2$. Очевидно, что тогда m^2 :2, значит m:2, значит m:4, значит n^2 :2, значит n:2, значит n и m не взаимно просты, так как делятся на 2 — противоречие.

Теперь мы хотим понять, что есть вещественные числа. Тут есть несколько подходов.

Определение 5 (аксиоматический подход). Вещественные числа — это полное упорядоченное поле \mathbb{R} , состоящее не из одного элемента.

Здесь "поле" значит, что на множестве (вместе с его операциями и выделенными элементами) верны аксиомы поля A_1 , A_2 , A_3 , A_4 , M_1 , M_2 , M_3 , M_4 и D (т.е. сложение и умножение ассоциативны, коммутативны имеют нейтральные элементы и удовлетворяют условию существованию обратных (по умножению — для всех кроме нуля), а также дистрибутивности).

Упорядоченность значит, что есть рефлексивное транзитивное антисимметричное отношение ≼, что все элементы сравнимы, согласованное с операциями, т.е.:

- $A) \ a \leq b \Rightarrow a + x \leq b + x.$
- $M) \ 0 \le a \land 0 \le b \Rightarrow 0 \le ab.$

Полнота поля значит любое из следующих утверждений (они равносильны):

- любое ограниченное сверху (снизу) подмножество поля имеет точную верхнюю (нижнюю) грань;
- (аксиома Кантора-Дедекинда) для любых двух множеств A и B, что $A \preccurlyeq B$, есть разделяющий их элемент.

Итого мы имеем 9 аксиом поля, 2 аксиомы упорядоченности и 1 акиома полноты упорядоченности.

Утверждение. $Had \mathbb{Q}$ нет элемента разделяющего $A := \{a > 0 \mid a^2 < 2\}$ $u B := \{b > 0 \mid b^2 > 2\}.$

Доказательство. Предположим противное, т.е. есть c > 0, что A < c < B.

Если $c^2 < 2$, то найдём ε , что $\varepsilon \in (0;1)$ и $(c+\varepsilon)^2 < 2$. Заметим, что $(c+\varepsilon)^2 = c^2 + 2c\varepsilon + \varepsilon^2 < c^2 + (2c+1)\varepsilon$. Пусть $\varepsilon < \frac{2-c^2}{2c+1}$, тогда такое ε точно подойдёт, ну а посокольку $\frac{2-c^2}{2c+1} > 0$, то такое ε есть. Значит $c^2 \geqslant 2$.

Аналогично имеем, что $\varepsilon \leq 2$. А значит $c^2 = 2$, что не бывает над \mathbb{Q} .

Следствие. \mathbb{Q} не полно.

Определение 6.

- Закрытый интервал или отрезок $[a;b] := \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}.$
- Открытый интервал или просто интервал $(a;b) := \{x \in \mathbb{R} \mid a < x < b\}.$
- Полуоткрытый интервал или полуинтервал $(a;b] := \{x \in \mathbb{R} \mid a < x \leqslant b\}, [a;b) := \{x \in \mathbb{R} \mid a \leqslant x < b\}.$

Теорема 2 (Лемма о вложенных отрезках). Пусть имеется $\{I_i\}_{i=1}^{\infty}$ — множество вложенных (непустых) отрезков, т.е. $\forall n > 1$ $I_{n+1} \subset I_n$. Тогда $\bigcap_{i=1}^{\infty} I_i \neq \emptyset$.

Доказательство. Заметим, что для любых натуральных n < m верно, что $a_n \leqslant a_m \leqslant b_m \leqslant b_n$, где $I_n = [a_n; b_n]$. Тогда для $A := \{a_i\}_{i=1}^{\infty}$ и $B := \{b_i\}_{i=1}^{\infty}$ верно, что $A \leqslant B$. Значит есть разделяющий их элемент t, значит $A \leqslant t \leqslant B$, значит $t \in I_i$ для всех i, значит $t \in \bigcap_{i=1}^{\infty} I_i$. \square

Замечание 1. Теорема 2 не верна для не отрезков.

Замечание 2. Если в теореме 2 $b_i - a_i$ "сходится к 0", т.е. $\forall \varepsilon > 0 \, \exists n \in \mathbb{N} : \forall i > n \, b_i - a_i < \varepsilon$, то пересечение всех отрезков состоит из ровно одного элемента.

Теорема 3 (индукция на вещественных числах). Пусть дано множество $X \subseteq [0;1]$, что

- 1. $0 \in X$;
- 2. $\forall x \in X \ \exists \varepsilon > 0 : U_{\varepsilon}(x) \cap [0; 1] \subseteq X;$
- 3. $\forall Y \subseteq X \sup(Y) \in X$.

 $Tor \partial a X = [0; 1].$

Доказательство. Предположим противное: $X \neq [0;1]$. Рассмотрим $Z := [0;1] \setminus X$ ($Z \neq \varnothing!$) и $Y := \{y \in [0;1] \mid y < Z\}$ ($Y \neq \varnothing!$). Заметим, что $Y \subseteq X$ и $\sup(Y) = \inf(Z) = t$. Тогда $t \in X$ по второму условию. Значит для некоторого $\varepsilon > 0$ верно, что $U_{\varepsilon}(t) \cap [0;1] \in X$, а т.е. $(U_{\varepsilon}(t) \cap [0;1]) \cap Z = \varnothing$, а тогда $t \neq \inf(Z)$ — противоречие. Значит X = [0;1].

2 Топология прямой, пределы и непрерывность.

Определение 7. ε -окрестность точки x (для $\varepsilon > 0$) — $(x - \varepsilon; x + \varepsilon)$. Обозначение: $U_{\varepsilon}(x)$. Проколотая ε -окрестность точки $x - (x - \varepsilon; x) \cup (x; x + \varepsilon)$. Обозначение: $V_{\varepsilon}(x)$.

Определение 8. Пусть дано некоторое множество $X \subseteq \mathbb{R}$. Тогда точка $x \in X$ называется внутренней точкой множества X, если она содержится в X вместе со своей окрестностью. Само множество X называется открытым, если все его точки внутренние.

Пример 1. Следующие множества открыты:

- \bullet (a;b);
- $(a; +\infty);$
- ℝ;
- Ø;

• $\bigcup_{i=0}^{\infty} (a_i; b_i)$ (интервалы не обязательно не должны пересекаться).

Определение 9. Пусть дано множесство $X \subseteq \mathbb{R}$. Точка $x \in \mathbb{R}$ называется *предельной точкой* множества, если в любой проколотой окрестности x будет какая-либо точка X.

Множество предельных точек X называется npouseodhum множеством множества X и обозначается как X'.

Множество X называется замкнутым, если $X \supseteq X'$.

Определение 10. Пусть дано множество $X \subseteq \mathbb{R}$. Если у любой последовательности его точек есть предельная точка из самого множества X.

Определение 11. Предел последовательности $\{x_n\}_{n=0}^{\infty}$ — такое число x, что для любой окрестности x эта последовательность с некоторого момента будет лежать в этой окрестности:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \geqslant N \quad x_n \in U_{\varepsilon}(x)$$

Обозначение: $\lim \{x_n\}_{n=0}^{\infty} = x$.

Предельная точка последовательности $\{x_n\}_{n=0}^{\infty}$ — такое число x, что в любой его окрестности после любого момента появится элемент данной последовательности:

$$\forall \varepsilon > 0 \,\forall N \in \mathbb{N} \,\exists n > N : \quad x_n \in U_{\varepsilon}(x)$$

Определение 12. Последовательность $\{x_n\}_{n=0}^{\infty}$ называется ϕy н ∂ аментальной, если

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \; \forall n_1, n_2 > N \quad |x_{n_1} - x_{n_2}| < \varepsilon$$

Теорема 4. Последовательность сходится тогда и только тогда, когда фундаментальна.

Доказательство.

1. Пусть последовательность $\{x_n\}_{n=0}^{\infty}$ сходится к некоторому значению X, тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n > N \quad |x_n - X| < \varepsilon/2 \Rightarrow \\ \forall n_1, n_2 > N \quad |x_{n_1} - x_{n_2}| = |x_{n_1} - X + X - x_{n_2}| \leqslant |x_{n_1} - X| + |X - x_{n_2}| < \varepsilon$$

2. Пусть последовательность $\{x_n\}_{n=0}^{\infty}$ фундаментальна. Мы знаем, что для каждого $\varepsilon>0$ все члены, начиная с некоторого различаются менее чем на ε . Тогда возьмём какой-нибудь такой член y_0 для некоторого ε , затем какой-нибудь такой член y_1 для $\varepsilon/2$, который идёт после y_0 и так далее. Получим последовательность, что все члены, начиная с n-ого лежат в $\varepsilon/2^n$ -окрестности y_n . Тогда рассмотрим последовательность $\{I_n\}_{n=0}^{\infty}$, где $I_n=[y_n-\varepsilon/2^{n-1};y_n+\varepsilon/2^{n-1}]$. Несложно понять, что $I_n\supseteq I_{n+1}$, поэтому в пересечении $\{I_n\}_{n=0}^{\infty}$ лежит некоторый X. Несложно понять, что все члены начальной последовательности, начиная с y_{n+2} , лежат в $\varepsilon/2^{n+2}$ -окрестности y_{n+2} . При этом $|y_{n+2}-X|\leqslant \varepsilon/2^{n+1}$, что значит, что все члены главной последовательности, начиная с y_{n+2} лежат в $3\varepsilon/2^{n+2}$ -окрестности X, а значит и в $\varepsilon/2^n$.

Утверждение 1. Для последовательностей $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ верно (если определено), что

1.
$$\lim \{x_n\}_{n=0}^{\infty} + \lim \{y_n\}_{n=0}^{\infty} = \lim \{x_n + y_n\}_{n=0}^{\infty}$$

2.
$$-\lim\{x_n\}_{n=0}^{\infty} = \lim\{-x_n\}_{n=0}^{\infty}$$

3. $\lim \{x_n\}_{n=0}^{\infty} \cdot \lim \{y_n\}_{n=0}^{\infty} = \lim \{x_ny_n\}_{n=0}^{\infty}$

4.
$$\frac{1}{\lim\{x_n\}_{n=0}^{\infty}} = \lim\{\frac{1}{x_n}\}_{n=0}^{\infty} \ (ecnu \lim\{x_n\}_{n=0}^{\infty} \neq 0)$$

и всегда, когда определена левая сторона определена, правая тоже определена.

Доказательство.

1. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$, $\lim \{y_n\}_{n=0}^{\infty} = Y$. Тогда

$$\forall \varepsilon > 0 \; \exists N, M \in \mathbb{N} : \quad \forall n > N \; |x_n - X| < \varepsilon/2 \quad \land \quad \forall m > M \; |y_m - Y| < \varepsilon/2,$$

тогда

$$\forall n > \max(N, M) \quad |(x_n + y_n) - (X + Y)| \leqslant |x_n - X| + |y_n - Y| < \varepsilon,$$

что означает, что $\{x_n+y_n\}_{n=0}^{\infty}$ сходится и сходится к X+Y.

2. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$. Тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \quad \forall n > N \ |x_n - X| < \varepsilon,$$

тогда

$$\forall n > N \quad |(-x_n) - (-X)| = |X - x_n| = |x_n - X| < \varepsilon,$$

что означает, что $\{-x_n\}_{n=0}^{\infty}$ сходится и сходится к -X.

3. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$, $\lim \{y_n\}_{n=0}^{\infty} = Y$. Определим также

$$\delta: (0; +\infty) \to \mathbb{R}, \varepsilon \mapsto \frac{\varepsilon}{\sqrt{\left(\frac{|x| + |y|}{2}\right)^2 + \varepsilon + \frac{|x| + |y|}{2}}} = \sqrt{\left(\frac{|x| + |y|}{2}\right)^2 + \varepsilon} - \frac{|x| + |y|}{2}$$

Несложно видеть, что $\delta(\varepsilon)$ всегда определено и всегда положительно. Также несложно видеть, что $\delta(\varepsilon)$ есть корень уравнения $t^2+t(|X|+|Y|)=\varepsilon$. Тогда

$$\forall \varepsilon > 0 \; \exists N, M \in \mathbb{N} : \quad \forall n > N \; |x_n - X| < \delta(\varepsilon) \quad \land \quad \forall m > M \; |y_m - Y| < \delta(\varepsilon),$$

тогда

$$\forall n > \max(N, M) \quad |x_n \cdot y_n - X \cdot Y| = |x_n \cdot y_n - x_n \cdot Y + x_n \cdot Y - X \cdot Y|$$

$$\leq |x_n \cdot (y_n - Y)| + |(x_n - X) \cdot Y|$$

$$< |x_n| \cdot \delta(\varepsilon) + \delta(\varepsilon) \cdot |Y|$$

$$< (|X| + \delta(\varepsilon)) \cdot \delta(\varepsilon) + |Y| \cdot \delta(\varepsilon)$$

$$= \delta(\varepsilon)^2 + (|X| + |Y|)\delta(\varepsilon)$$

$$= \varepsilon,$$

что означает, что $\{x_n \cdot y_n\}_{n=0}^{\infty}$ сходится и сходится к $X \cdot Y$.

4. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$. Определим также

$$\delta: (0; +\infty) \to \mathbb{R}, \varepsilon \mapsto \frac{\varepsilon |X|}{1 + \varepsilon |X|}$$

Несложно видеть, что $\delta(\varepsilon)$ всегда определено и всегда меньше |X|. Также несложно видеть, что $\delta(\varepsilon)$ есть корень уравнения $\frac{t}{|X|(|X|-t)} = \varepsilon$. Тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \quad \forall n > N \ |x_n - X| < \delta(\varepsilon),$$

тогда

$$\forall n > N \quad \left| \frac{1}{x_n} - \frac{1}{X} \right| = \left| \frac{X - x_n}{X \cdot x_n} \right| < \frac{\delta(\varepsilon)}{|X| \cdot |x_n|} < \frac{\delta(\varepsilon)}{|X|(|X| - \delta(\varepsilon))} = \varepsilon,$$

что означает, что $\{\frac{1}{x_n}\}_{n=0}^{\infty}$ сходится и сходится к 1/X.

Определение 13. Последовательность $\{x_n\}_{n=0}^{\infty}$ ассимптотически больше последовательности $\{y_n\}_{n=0}^{\infty}$, если $x_n > y_n$ для всех натуральных n, начиная с некоторого. Обозначение: $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$.

Аналогично определяются ассимптотически меньше $(\{x_n\}_{n=0}^{\infty} \prec \{y_n\}_{n=0}^{\infty})$, ассимптотически не больше $(\{x_n\}_{n=0}^{\infty} \prec \{y_n\}_{n=0}^{\infty})$ и ассимптотически не меньше $(\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty})$.

Утверждение 2. Если $\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty}$, то $\lim \{x_n\}_{n=0}^{\infty} \geqslant \lim \{y_n\}_{n=0}^{\infty}$.

Доказательство. Предположим противное, т.е. Y > X, где $X := \lim\{x_n\}_{n=0}^{\infty}$, $Y := \lim\{y_n\}_{n=0}^{\infty}$. Тогда пусть $\varepsilon = \frac{|X-Y|}{2}$. С каких-то моментов $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ находятся в ε -окрестностях X и Y соответственно. Тогда начиная с позднего из этих моментов, $y_n > Y - \varepsilon = X + \varepsilon > x_n$, т.е. $\{x_n\}_{n=0}^{\infty} \prec \{y_n\}_{n=0}^{\infty}$ — противоречие. Значит $X \geqslant Y$.

Утверждение 3. Если $\lim \{x_n\}_{n=0}^{\infty} > \lim \{y_n\}_{n=0}^{\infty}$, то $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$

Доказательство. Пусть $X := \lim\{x_n\}_{n=0}^{\infty}$, $Y := \lim\{y_n\}_{n=0}^{\infty}$. Тогда пусть $\varepsilon = \frac{|X-Y|}{2}$. С каких-то моментов $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ находятся в ε -окрестностях X и Y соответственно. Тогда начиная с позднего из этих моментов, $x_n > X - \varepsilon = Y + \varepsilon > y_n$, т.е. $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$.

Утверждение 4 (леммма о двух полицейских). *Если*

$$\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty} \succcurlyeq \{z_n\}_{n=0}^{\infty}$$

u

$$\lim \{x_n\}_{n=0}^{\infty} = \lim \{z_n\}_{n=0}^{\infty} = A,$$

то предел $\{y_n\}_{n=0}^{\infty}$ определён и равен A.

Доказательство. Для каждого $\varepsilon > 0$ есть $N, M \in \mathbb{N}$, что

$$\forall n > N |x_n - A| < \varepsilon \quad \land \quad \forall m > M |z_n - A| < \varepsilon,$$

значит

$$\forall n > \max(N, M) \quad A + \varepsilon > x_n \geqslant y_n \geqslant z_n > A - \varepsilon \quad \text{r.e. } |y_n - A| < \varepsilon,$$

что означает, что $\{y_n\}_{n=0}^{\infty}$ сходится и сходится к A.

Утверждение 5. Если $\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty}$, $\lim \{x_n\}_{n=0}^{\infty} = A$, $a \{y_n\}_{n=0}^{\infty}$, неубивает (с некоторого момента), то предел $\{y_n\}_{n=0}^{\infty}$ существует и не превосходит A.

Доказательство. Если последовательность $\{y_n\}_{n=0}^{\infty}$ возрастает не с самого начала, то отрежем её начало с до момента начала возрастания. Заметим, что она ограничена сверху (из-за последовательности $\{x_n\}_{n=0}^{\infty}$), тогда определим $B:=\sup(\{y_n\}_{n=0}^{\infty})$. Тогда $\forall \varepsilon>0 \ \exists N\in \mathbb{N}: \ |B-x_N|<\varepsilon$, тогда $\forall n>N \ |B-x_n|<\varepsilon$, что означает, что $\{y_n\}_{n=0}^{\infty}$ сходится и сходится к B. По утверждению $2\ A\geqslant B$.

Определение 14 (по Коши). *Предел* функции $f: X \to \mathbb{R}$ при в точке x — такое значение y, что

$$\forall \varepsilon > 0 \,\exists \delta > 0 : f(V_{\delta}(x) \cap X) = U_{\varepsilon}(y)$$

Обозначение: $\lim_{t \to x} f(t) = y$.

Определение 15 (по Гейне). Предел функции $f: X \to \mathbb{R}$ при в точке x — такое значение y, что для любой последовательность $\{x_n\}_{n=0}^{\infty}$ элементов $X \setminus \{x\}$ последовательность $\{f(x_n)\}_{n=0}^{\infty}$ сходится к y. Обозначение: $\lim_{t\to x} f(t) = y$.

Теорема 5. Определения пределов по Коши и по Гейне равносильны.

Доказательство. Будем доказывать равносильность отрицаний утверждений, ставимых в определениях.

- 1. Пусть функция $f: X \to \mathbb{R}$ не сходится по Коши в x к значению y. Значит есть такое $\varepsilon > 0$, что в любой проколотой окрестности x (в множестве X) есть точка, значение f в которой не лежит в ε -окрестности. Рассмотрев любую такую проколотую окрестность $I_0 = V_{\delta_0}(x)$, берём в ней любую такую точку x_0 . Далее рассмотрев $I_1 = V_{\delta_1}(x)$, где $\delta_1 = \min(\delta_0/2, |x-x_0|)$, берём там любую точку x_1 , где значение f вылетает вне ε -окрестности y. Так далее строим последовательность $\{x_n\}_{n=0}^{\infty}$, сходящуюся к x, значения f в которой не лежат в ε -окрестности y, что означает, что $\{f(x_n)\}_{n=0}^{\infty}$ не сходится к y, что означает, что f не сходится по Гейне в x к значению y.
- 2. Пусть функция $f: X \to \mathbb{R}$ не сходится по Гейне в x к значению y. Значит есть последовательность $\{x_n\}_{n=0}^{\infty}$, сходящаяся к x, что последовательность её значений не сходится к y. Значит есть $\varepsilon > 0$, что после любого момента в последовательности будет член, значение в котором вылезает вне ε -окрестности y. Поскольку для любой проколотой окрестности x есть момент, начиная с которого вся последовательность лежит в этой окрестности, то в любой проколотой окрестности x есть член, значение которого вылезает вне ε -окрестности y, что означает, что f не сходится по Коши в x к y.

Утверждение 6. Функция $f:X \to \mathbb{R}$ имеет в x предел тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x_1, x_2 \in V_{\delta}(x) \quad |f(x_1) - f(x_2)| < \varepsilon$$

Доказательство. Такое же как для последовательностей: см. теорему 4.

Утверждение 7. Для функций $f: \mathbb{R} \to \mathbb{R} \ u \ g: \mathbb{R} \to \mathbb{R} \ верно, что$

1.
$$\lim_{x \to a} f(x) + \lim_{x \to a} g(x) = \lim_{x \to a} (f+g)(x)$$

2.
$$\lim_{x \to a} (-f)(x) = -\lim_{x \to a} f(x)$$

3.
$$\lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = \lim(f \cdot g)(x)$$

4.
$$\lim_{x \to a} f(x) = \lim_{x \to a} \left(\frac{1}{f}\right)(x) \ (ecnu \lim_{x \to a} f(x) \neq 0)$$

5.
$$\lim_{y \to \lim_{x \to a} g(x)} f(y) = \lim_{x \to a} (f \circ g)(x)$$

и всегда, когда определена левая сторона определена, правая тоже определена.

Замечание 3. Утверждения 2, 3 и 4 верны, если заменить последовательности на функции, пределы последовательностей на пределы функций в некоторой точке x, а асимптотические неравенства на неравенства на окрестности x.

Определение 16. Сумма ряда $\{a_k\}_{k=0}^{\infty}$ есть значение $\sum_{k=0}^{\infty} a_k := \lim \left\{\sum_{i=0}^{k}\right\}_{k=0}^{\infty}$. Частичной же суммой s_k этого ряда называется просто $\sum_{i=0}^{k} a_i$.

Определение 17. Последовательность $\{x_i\}_{i=0}^{\infty}$, удовлетворяет условию

$$\forall \varepsilon > 0 \ \exists N : \ \forall n_1, n_2 > N \quad |x_{n_1} - x_{n_2}| < \varepsilon,$$

то она называется фундаментальной.

Теорема 6. Если $\sum_{i=0}^{\infty} |a_i|$ существует, то и $\sum_{i=0}^{\infty} a_i$ существует.

Следствие 6.1. Если $\{b_i\}_{i=0}^{\infty}\succcurlyeq\{|a_i|\}_{i=0}^n\ u\ \sum_{i=0}^{\infty}|b_i|\ cyществует,\ mo\ u\ \sum_{i=0}^{\infty}a_i\ cyществует.$

Определение 18. Осцелляцией называется $\operatorname{osc}_E f = \sup_E f - \inf_E f$.

Определение 19. Функция $f: X \to \mathbb{R}$ называется непрерывной в точке x, если $\lim_{t \to x} f(t) = f(x)$.