

Numerical Analysis (1)

DR. Betty Nagy

Betty.nagy@eng.asu.edu.eg

Agenda

- Introduction
- First Order ODE Numerical Methods
- Higher Order ODE Numerical Methods

Numerical Methods

Methods of solution for Mathematical problems by formulating them into a number of arithmetic operations

Why?

Exact Methods are limited

Solution of Exact Methods may be implicit functions

Geometrical Methods are not accurate

How?

Idea?

$$\frac{dy}{dx} = -2x^3 + 12x^2 - 20x + 8.5$$

$$y = -0.5x^4 + 4x^3 - 10x^2 + 8.5x + 1$$

Idea?

$$\frac{dy}{dx} = -2x^3 + 12x^2 - 20x + 8.5$$

at
$$x = 0$$
, $y = 1$.

IVP

system of 1 or more
Differential Equations,
together with 1 or more
initial conditions.

Idea?

Solution of IVP Numerical methods gets the solution in a tabular form

n	x_n	y_n
0	0.0	0.000
1	0.2	0.000
2	0.4	0.04
3	0.6	0.128
4	0.8	0.274
5	1.0	0.488

Series Approximation

Maclaurin Series

$$f(x) = e^x$$
 can be approximated near $x = 0$

$$f(x) \cong e^0 = a = 1$$

$$f(x) \cong a + bx = 1 + f'(x = 0) x = 1 + x$$

$$f(x) \cong a + bx + cx^2 = 1 + x + \frac{f''(x=0)}{2!}x^2$$

Near
$$x = 0$$

$$f(x) \cong P(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x=0)}{k!} x^k$$

Taylor Series

Near x = a

$$f(x) \cong \sum_{k=0}^{\infty} \frac{f^{(k)}(x=a)}{k!} (x-a)^k$$

$$f(x) \cong f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Taylor Series

The *n*th order Taylor polynomial of f centered at x = a is given by

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x - a)^k.$$

This degree n polynomial approximates f(x) near x=a and has the property that $P_n^{(k)}(a)=f^{(k)}(a)$ for $k=0\ldots n$.

Taylor Series

Near x = a

$$f(x) \cong T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k = \sum_{k=0}^n c_k (x-a)^k$$

This approximation is valid as long as

$$\lim_{k\to\infty}\left|\frac{c_{k+1}(x-a)^{k+1}}{c_k(x-a)^k}\right|=L$$

Smaller than 1

Taylor Series

Error
$$E_{n,a}(x) = f(x) - T_n(x) = 0 + 0 + \dots + \frac{f^{(k+1)}(a)}{k+1!}(x-a)^{k+1} + \frac{f^{(k+2)}(a)}{k+2!}(x-a)^{k+2} \dots$$

$$E_{n,a}(x)$$
 is of order $(x-a)^{k+1}$

ODE

$$f(x, y, y', y'', ..., y^{(m)}) = 0$$

Order => Highest derivative

Degree => Power of the highest derivative

Solution => all the functions y(x) that satisfy the ODE

Agenda

- Introduction
- First Order ODE Numerical Methods
- Higher Order ODE Numerical Methods

To solve an ODE numerically over the interval [a,b]

Step 1 Let $x_0 = a$, $x_n = b$ and subdivide the interval into n equal parts such that $x_i = x_0 + ih$, i = 1, 2, 3, ... n

To solve an ODE numerically over the interval [a,b]

Step 2 Define y_i for each x_i according to the ODE Method

Step 3

Solve the defined equation and get all y_i

New value = old value + slope \times step size

ODE Methods

Single Step

compute new value y_{i+1} using only a single step (only previous y_i)

Multi-Step

uses, in each step, values from two or more previous steps.

1- Method

$$\frac{dy}{dx} = f(x, y)$$

$$y(x_0) = y_0,$$

Then!

$$y_1 = y_0 + hf(x_0, y_0)$$

$$y_2 = y_1 + hf(x_1, y_1),$$

$$y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$$

New value = old value + slope \times step size

2- Example 1

Apply Euler-Cauchy method with h = 0.1 to find the solution of the initial-value problem

$$y' = 1 - x + 4y$$
, $y(0) = 1$

on the interval [0, 0.5] Given the exact solution below compute the error $E_n = y(x_n) - y_n$ in each step. Use 5 decimal points in your calculations.

$$y(x) = \frac{1}{4} x - \frac{3}{16} + \frac{19}{16} e^{4x}$$

2- Example 1
$$y' = 1 - x + 4y, y(0) = 1$$
 $y(x) = \frac{1}{4}x - \frac{3}{16} + \frac{19}{16}e^{4x}$

From Euler formula $y_{n+1} = y_n + h f(x_n, y_n)$, we have

$$y_{n+1} = y_n + 0.1 (1 - x_n + 4 y_n), n = 0, 1, 2, ...$$

The numerical solution is given in the following table:

n	x _n	y _n	f _n	y _{n + 1} = y _{approx}	y _{exact}	Error = y _{exact} - y _{approx}
0	0					
1	0.1					
2	0.2					
3	0.3					
4	0.4					

2- Example 1
$$y' = 1 - x + 4y, y(0) = 1$$
 $y(x) = \frac{1}{4}x - \frac{3}{16} + \frac{19}{16}e^{4x}$

From Euler formula $y_{n+1} = y_n + h f(x_n, y_n)$, we have

$$y_{n+1} = y_n + 0.1 (1 - x_n + 4 y_n), n = 0, 1, 2, ...$$

The numerical solution is given in the following table:

n	x _n	y _n	f _n	y _{n + 1} = y _{approx}	y _{exact}	Error = y _{exact} - y _{approx}
0	0	1.0	5.0	1.5	1.60904	0.10904
1	0.1	1.5	6.9	2.19	2.50533	0.31533
2	0.2	2.19	9.56	3.146	3.83014	0.68414
3	0.3	3.146	13.284	4.4744	5.79423	1.31923
4	0.4	4.4744	18.4976	6.32416	8.71200	2.38784

2- Example 2

Apply Euler-Cauchy method with h = 0.2 to find the solution of the initial-value problem

$$y' = x + y \quad , y(0) = 0$$

on the interval [0, 1] Given the exact solution below compute the error $E_n = y(x_n) - y_n$ in each step. Use 3 decimal points in your calculations.

$$y = e^x - x - 1$$

2- Example 2

$$y'=x+y ,$$

$$y(0) = 0$$

$$y' = x + y$$
, $y(0) = 0$ $y = e^x - x - 1$

n	x_n	y_n	$y(x_n)$	Error
0	0.0	0.000	0.000	0.000
1	0.2	0.000	0.021	0.021
2	0.4	0.04	0.092	0.052
3	0.6	0.128	0.222	0.094
4	0.8	0.274	0.426	0.152
5	1.0	0.488	0.718	0.230

2- Example 2

3- Error

$$y(x+h) = y(x) + \frac{h}{1!}y'(x) + \frac{h^2}{2!}y''(x) + \dots + \frac{h^n}{n!}y^{(n)}(x) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi)$$

1- Round-off Error

2- Truncation Error Local

$$\frac{f'(x_i, y_i)}{2!}h^2 + \cdots + O(h^{n+1})$$

Global

Remark!

The error between the $y_{\rm exact}$ and $y_{\rm euler}$ is considerably large And decreasing the step size h n $\uparrow \uparrow$ to reach an acceptable approximate y, will make h very small leading to many operations

Improvements in Euler Method

Improvements in Euler Method Improved Euler

Improvements in Euler Method

Runge-Kutta 4

Improvements in Euler Method

Improved Euler

Runge-Kutta 4

1- Method

$$\frac{dy}{dx} = f(x, y)$$

$$y(x_0)=y_0,$$

Calculate

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_1)$$

$$k_3 = hf(x_n + \frac{1}{2}h, y_n + \frac{1}{2}k_2)$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + \Phi$$

2- Example 1

Apply Runge-Kutta 4 method with h = 0.1 to find the solution of the initial-value problem

$$y' = 1 - x + 4y$$
, $y(0) = 1$

Find y(0.2).

2- Example 1

Take
$$x_0 = 0$$
, $y_0 = 1$, and $h = 0.1$

Calculate k_1 = h f (x₀, y₀)

Calculate $k_2 = h f (x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} w_1)$

Calculate
$$k_3 = h f (x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} w_2)$$

Calculate k_4 = h f (x₀ + h, y₀ + w₃)

Calculate
$$\triangle$$
 y = k_1 + 2 k_2 + 2 k_3 + k_4

Calculate $y_1 = y (x_0 + h) = y (0 + 0.1) = y (0.1) = y(0) + 1/6 \Delta y$

n	x	У	k = h (1 – x + 4 y)	Δу
0				
			sum	

$$y(0.1) = 1.00000 + (1/6)(3.65360) = 1.60893$$

2- Example 1

Take
$$x_0 = 0$$
, $y_0 = 1$, and $h = 0.1$

Calculate k_1 = h f (x₀, y₀) Calculate k_2 = h f (x₀ + ½ h, y₀ + ½ w₁)

Calculate $k_3 = h f (x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} w_2)$

Calculate $k_4 = h f (x_0 + h, y_0 + w_3)$

Calculate \triangle y = k_1 + 2 k_2 + 2 k_3 + k_4

Calculate $y_1 = y (x_0 + h) = y (0 + 0.1) = y (0.1) = y(0) + 1/6 \Delta y$

n	x	У	W = h (1 – x + 4 y)	Δγ
0	0.00	1.00000	0.500000	0.50000
	0.05	1.25000	0.595000	1.19000
	0.05	1.29750	0.614000	1.22800
	0.10	1.61400	0.735600	0.73560
			sum	3.65360

2- Example 1

Take
$$x_0 = 0$$
, $y_0 = 1$, and $h = 0.1$

Calculate $k_{\underline{1}} = h f(x_0, y_0)$

Calculate $k_2 = h f (x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} w_1)$

Calculate $k_3 = h f (x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} w_2)$

Calculate k_4 = h f (x_0 + h, y_0 + w_3)

Calculate \triangle y = k_1 + 2 k_2 + 2 k_3 + k_4

Calculate $y_1 = y (x_0 + h) = y (0 + 0.1) = y (0.1) = y(0) + 1/6 \Delta y$

n	х	У	W = h (1 – x + 4 y)	Δу
1	0.10	1.60893	0.733572	0.733572
	0.15	1.97572	0.875288	1.75058
	0.15	2.04657	0.903628	1.80726
	0.20	2.51250	1.08502	1.08502
			sum	5.37643

$$y(0.2) = 1.60893 + (1/6)(5.37643) = 2.50500$$

3- Error

Method	Function Evaluation per Step	Global Error	Local Error
Euler	1	O(h)	$O(h^2)$
Improved Euler	2	$O(h^2)$	$O(h^3)$
RK (fourth order)	4	$O(h^4)$	$O(h^5)$

Agenda

- Introduction
- First Order ODE Numerical Methods
- **Higher Order ODE Numerical Methods**

The second order ordinary differential equation

$$x^{\prime\prime}=f(t,x,x^\prime)$$

$$x'' = f(t, x, x')$$
 $x(t_0) = a, x'(t_0) = b$

Let
$$x' = y$$
 Then.

$$x'=y$$
 , $x(t_0)=a$

$$y' = f(t, x, y)$$
 , $y(t_0) = b$

2 First Order Differential Eq.

2 First Order Differential Eq. solved using RK4

$$x' = y$$

$$,x(t_{0})=a$$

$$v_1 = h f(t_n, x_n, y_n),$$

$$v_2 = h f(t_n + \frac{h}{2}, x_n + \frac{v_1}{2}, y_n + \frac{w_1}{2}),$$

$$v_3 = h f(t_n + \frac{h}{2}, x_n + \frac{v_2}{2}, y_n + \frac{w_2}{2})$$

$$v_4 = h f(t_n + h, x_n + v_3, y_n + w_3)$$

$$y' = f(t, x, y)$$
 , $y(t_0) = b$

$$w_1 = h g(t_n, x_n, y_n)$$

$$w_2 = h g(t_n + \frac{h}{2}, x_n + \frac{v_1}{2}, y_n + \frac{w_1}{2})$$

$$w_3 = h g(t_n + \frac{h}{2}, x_n + \frac{v_2}{2}, y_n + \frac{w_2}{2})$$

$$w_4 = h g(t_n + h, x_n + v_3, y_n + w_3)$$

$$x_{n+1} = x_n + \frac{1}{6}\Delta x = x_n + \frac{1}{6}(v_1 + 2v_2 + 2v_3 + v_4)$$

$$y_{n+1} = y_n + \frac{1}{6}\Delta y = y_n + \frac{1}{6}(w_1 + 2w_2 + 2w_3 + w_4)$$

2 First Order Differential Eq. solved using RK4

n	t _n	X n	Уn	v = h f (x _n , y _n)	w = h g (x _n , y _n)	Δх	Δγ
0	t _o	х _о	Уо	V ₁	W ₁	V 1	W ₁
1	t _o + h/2	x ₀ +v ₁ /2	y ₀ +w ₁ /2	V ₂	W ₂	2 v ₂	2 W ₂
2	t _o + h/2	x ₀ +v ₂ /2	y ₀ +w ₂ /2	V 3	W ₃	2 v ₃	2 w ₃
3	t _o + h	x ₀ + v ₃	y ₀ +w ₃	V 4	W 4	V 4	W ₄
					sum	Sum (1)	Sum (2)

Example

Use Runge – Kutta method with step size h = 0.25 to obtain x (0.5) with 5 decimal places for the IVP

$$x'' - t x' - x = 0$$
, $x(0) = 0$, $x'(0) = 1$

Solution

Assuming x' = y. Therefore x'' = y'. The equivalent system is

$$x' = y = f(t, x, y), y' = x + t y = g(t, x, y)$$
 such that $x(0) = 0, y(0) = 1$.

$$x' = y = f(t, x, y), y' = x + t y = g(t, x, y)$$
 such that $x(0) = 0, y(0) = 1$.

n	t	X	y	v	w	$\Delta \mathbf{x}$	$\Delta \mathbf{y}$
0	0.000						
	0.125						
	0.125						
	0.25						

$$x(0.25) = x(0) + (1/6)(\Delta x) = 0 + (1/6)*(1.53154) = 0.25526$$

$$y(0.25) = y(0) + (1/6)(\Delta y) = 1 + (1/6)*(0.38289) = 1.0638$$

$$x' = y = f(t, x, y), y' = x + t y = g(t, x, y)$$
 such that $x(0) = 0, y(0) = 1$.

n	t	X	y	v	w	$\Delta \mathbf{x}$	$\Delta \mathbf{y}$
0	0.250						
	0.375						
	0.375						
	0.5						

$$X(0.5) = x(0.250) + (1/6)(\Delta x) = 0.25526 + (1/6)*(1.73118) = 0.54379$$

 $y(0.5) = y(0.250) + (1/6)(\Delta y) = 1.0638 + (1/6)*(1.24878) = 1.2719$

Thank you ©