In [119]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import KFold, LeaveOneOut, ShuffleSplit, StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.naive_bayes import BernoulliNB
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix,classification_report
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree
import warnings
warnings.filterwarnings('ignore') #ignoring warmings
```

In [2]:

```
data = pd.read_csv("data.csv")
data
```

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	
564	926424	М	21.56	22.39	142.00	1479.0	
565	926682	М	20.13	28.25	131.20	1261.0	
566	926954	М	16.60	28.08	108.30	858.1	
567	927241	М	20.60	29.33	140.10	1265.0	
568	92751	В	7.76	24.54	47.92	181.0	
569 r	ows × 33 c	columns					
4							•

Data Cleaning

In [3]:

data.head()

Out[3]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_ı
0	842302	М	17.99	10.38	122.80	1001.0	0.1
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.1
3	84348301	М	11.42	20.38	77.58	386.1	0.1
4	84358402	М	20.29	14.34	135.10	1297.0	0.1
5 rows × 33 columns							

In [4]:

data.head(10)

Out[4]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_ı
0	842302	М	17.99	10.38	122.80	1001.0	0.1
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.1
3	84348301	М	11.42	20.38	77.58	386.1	0.1
4	84358402	М	20.29	14.34	135.10	1297.0	0.1
5	843786	М	12.45	15.70	82.57	477.1	0.1
6	844359	М	18.25	19.98	119.60	1040.0	0.0
7	84458202	М	13.71	20.83	90.20	577.9	0.1
8	844981	М	13.00	21.82	87.50	519.8	0.1
9	84501001	М	12.46	24.04	83.97	475.9	0.1
10	rows × 33	columns					
4							•

In [5]:

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
```

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	<pre>fractal_dimension_worst</pre>	569 non-null	float64
32	Unnamed: 32	0 non-null	float64
	63 164/34\ 1164/4\	1 • (/4)	

dtypes: float64(31), int64(1), object(1)

memory usage: 146.8+ KB

In [6]:

```
data.shape
```

Out[6]:

(569, 33)

In [7]:

data.isnull()

Out[7]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
0	False	False	False	False	False	False	Fŧ
1	False	False	False	False	False	False	Fŧ
2	False	False	False	False	False	False	Fa
3	False	False	False	False	False	False	Fŧ
4	False	False	False	False	False	False	Fŧ
564	False	False	False	False	False	False	Fŧ
565	False	False	False	False	False	False	Fŧ
566	False	False	False	False	False	False	Fŧ
567	False	False	False	False	False	False	Fŧ
568	False	False	False	False	False	False	Fŧ
569 r	ows × :	33 columns					
4							•

In [8]:

sns.heatmap(data.isnull())

Out[8]:

<AxesSubplot:>

In [9]:

```
sns.countplot(x='diagnosis', data=data)
```

Out[9]:

<AxesSubplot:xlabel='diagnosis', ylabel='count'>

In [10]:

data.diagnosis.value_counts()

Out[10]:

B 357 M 212

Name: diagnosis, dtype: int64

```
In [11]:
data.dtypes
Out[11]:
id
                              int64
diagnosis
                             object
                            float64
radius_mean
                            float64
texture_mean
                            float64
perimeter_mean
area_mean
                            float64
                            float64
smoothness_mean
compactness_mean
                            float64
                            float64
concavity_mean
concave points_mean
                            float64
                            float64
symmetry_mean
fractal_dimension_mean
                            float64
                            float64
radius_se
texture_se
                            float64
                            float64
perimeter_se
                            float64
area_se
                            float64
smoothness_se
compactness_se
                            float64
concavity_se
                            float64
                            float64
concave points_se
                            float64
symmetry_se
                            float64
fractal_dimension_se
radius_worst
                            float64
texture_worst
                            float64
perimeter_worst
                            float64
                            float64
area_worst
                            float64
smoothness_worst
                            float64
compactness_worst
                            float64
concavity_worst
concave points_worst
                            float64
                            float64
symmetry_worst
                            float64
fractal_dimension_worst
Unnamed: 32
                            float64
dtype: object
In [12]:
data['diagnosis'].unique()
Out[12]:
array(['M', 'B'], dtype=object)
In [13]:
channel_map = {'M':0, 'B':1}
```

```
In [14]:
data['diagnosis'] = data['diagnosis'].map(channel_map)
```

In [15]:

data

Out[15]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	842302	0	17.99	10.38	122.80	1001.0	
1	842517	0	20.57	17.77	132.90	1326.0	
2	84300903	0	19.69	21.25	130.00	1203.0	
3	84348301	0	11.42	20.38	77.58	386.1	
4	84358402	0	20.29	14.34	135.10	1297.0	
564	926424	0	21.56	22.39	142.00	1479.0	
565	926682	0	20.13	28.25	131.20	1261.0	
566	926954	0	16.60	28.08	108.30	858.1	
567	927241	0	20.60	29.33	140.10	1265.0	
568	92751	1	7.76	24.54	47.92	181.0	
569 rows × 33 columns							

In [16]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
```

Column	Non-Null Count	Dtype
id	569 non-null	int64
diagnosis	569 non-null	int64
radius_mean	569 non-null	float64
texture_mean	569 non-null	float64
perimeter_mean	569 non-null	float64
area_mean	569 non-null	float64
smoothness_mean	569 non-null	float64
compactness_mean	569 non-null	float64
concavity_mean	569 non-null	float64
concave points_mean	569 non-null	float64
symmetry_mean	569 non-null	float64
<pre>fractal_dimension_mean</pre>	569 non-null	float64
radius_se	569 non-null	float64
texture_se	569 non-null	float64
perimeter_se	569 non-null	float64
area_se	569 non-null	float64
smoothness_se	569 non-null	float64
compactness_se	569 non-null	float64
concavity_se	569 non-null	float64
concave points_se	569 non-null	float64
symmetry_se	569 non-null	float64
<pre>fractal_dimension_se</pre>	569 non-null	float64
radius_worst	569 non-null	float64
texture_worst	569 non-null	float64
perimeter_worst	569 non-null	float64
area_worst	569 non-null	float64
smoothness_worst	569 non-null	float64
compactness_worst	569 non-null	float64
concavity_worst	569 non-null	float64
concave points_worst	569 non-null	float64
symmetry_worst	569 non-null	float64
<pre>fractal_dimension_worst</pre>	569 non-null	float64
Unnamed: 32	0 non-null	float64
	id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean concave points_mean symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se area_se smoothness_se compactness_se concavity_se concave points_se symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst smoothness_worst compactness_worst compactness_worst concavity_worst concave points_worst symmetry_worst fractal_dimension_worst	id 569 non-null diagnosis 569 non-null radius_mean 569 non-null texture_mean 569 non-null perimeter_mean 569 non-null smoothness_mean 569 non-null concavity_mean 569 non-null concave points_mean 569 non-null symmetry_mean 569 non-null radius_se 569 non-null radius_se 569 non-null sexture_se 569 non-null sexture_se 569 non-null sexture_se 569 non-null concavity_se 569 non-null concavity_se 569 non-null symmetry_se 569 non-null symmetry_se 569 non-null radius_worst 569 non-null radius_worst 569 non-null symmetry_se 569 non-null symmetry_se 569 non-null concavity_se 569 non-null radius_worst 569 non-null sexture_worst 569 non-null sexture_worst 569 non-null sexture_worst 569 non-null compactness_worst 569 non-null compactness_worst 569 non-null concavity_worst 569 non-null symmetry_worst 569 non-null symmetry_worst 569 non-null fractal_dimension_worst 569 non-null fractal_dimension_worst 569 non-null symmetry_worst 569 non-null fractal_dimension_worst 569 non-null fractal_dimension_worst 569 non-null

dtypes: float64(31), int64(2)
memory usage: 146.8 KB

Data Visualization

In [117]:

```
#plot the histograms for each feature:
data.hist(figsize = (30,30), color = 'pink')
plt.show()
```


In [121]:

```
#scatterplot
data.plot.scatter(x='diagnosis',y='radius_mean');
```

c argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2D arr ay with a single row if you intend to specify the same RGB or RGBA value for all points.

In [125]:

```
# Analyzing the target variable

plt.title('Count of cancer type')
sns.countplot(data['diagnosis'])
plt.xlabel('Cancer Type Count')
plt.ylabel('Count')
plt.show()
```


In [127]:

Out[127]:

<seaborn.axisgrid.PairGrid at 0x19ebc9ac190>

In [122]:

```
cor = data.corr()
cor
```

Out[122]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	are
id	1.000000	-0.039769	0.074626	0.099770	0.073159	0
diagnosis	-0.039769	1.000000	-0.730029	-0.415185	-0.742636	-0
radius_mean	0.074626	-0.730029	1.000000	0.323782	0.997855	0
texture_mean	0.099770	-0.415185	0.323782	1.000000	0.329533	0
perimeter_mean	0.073159	-0.742636	0.997855	0.329533	1.000000	0
area_mean	0.096893	-0.708984	0.987357	0.321086	0.986507	1
smoothness_mean	-0.012968	-0.358560	0.170581	-0.023389	0.207278	0
compactness_mean	0.000096	-0.596534	0.506124	0.236702	0.556936	0
concavity_mean	0.050080	-0.696360	0.676764	0.302418	0.716136	0
concave points_mean	0.044158	-0.776614	0.822529	0.293464	0.850977	0
symmetry_mean	-0.022114	-0.330499	0.147741	0.071401	0.183027	0
fractal_dimension_mean	-0.052511	0.012838	-0.311631	-0.076437	-0.261477	-0
radius_se	0.143048	-0.567134	0.679090	0.275869	0.691765	0
texture_se	-0.007526	0.008303	-0.097317	0.386358	-0.086761	-0
perimeter_se	0.137331	-0.556141	0.674172	0.281673	0.693135	0
area_se	0.177742	-0.548236	0.735864	0.259845	0.744983	0
smoothness_se	0.096781	0.067016	-0.222600	0.006614	-0.202694	-0
compactness_se	0.033961	-0.292999	0.206000	0.191975	0.250744	0
concavity_se	0.055239	-0.253730	0.194204	0.143293	0.228082	0
concave points_se	0.078768	-0.408042	0.376169	0.163851	0.407217	0
symmetry_se	-0.017306	0.006522	-0.104321	0.009127	-0.081629	-0
fractal_dimension_se	0.025725	-0.077972	-0.042641	0.054458	-0.005523	-0
radius_worst	0.082405	-0.776454	0.969539	0.352573	0.969476	0
texture_worst	0.064720	-0.456903	0.297008	0.912045	0.303038	0
perimeter_worst	0.079986	-0.782914	0.965137	0.358040	0.970387	0
area_worst	0.107187	-0.733825	0.941082	0.343546	0.941550	0
smoothness_worst	0.010338	-0.421465	0.119616	0.077503	0.150549	0
compactness_worst	-0.002968	-0.590998	0.413463	0.277830	0.455774	0
concavity_worst	0.023203	-0.659610	0.526911	0.301025	0.563879	0
concave points_worst	0.035174	-0.793566	0.744214	0.295316	0.771241	0
symmetry_worst	-0.044224	-0.416294	0.163953	0.105008	0.189115	0
fractal_dimension_worst	-0.029866	-0.323872	0.007066	0.119205	0.051019	0
Unnamed: 32	NaN	NaN	NaN	NaN	NaN	

(569,)

From above correlation we can see that 'concave points_worst' has the highest absolute correlation with diagnosis

```
In [20]:
srx = data['concave points_worst']
srx.shape
Out[20]:
```

```
In [21]:
srxx = srx.values.reshape(-1,1)
srxx.shape
Out[21]:
```

We will use 'concave points_worst' as feature for simple LR

```
In [22]:
y = data['diagnosis']
y.shape
Out[22]:
(569,)
In [23]:
ydt = y.values.reshape(-1,1)
ydt.shape
Out[23]:
(569, 1)
In [24]:
xtr, xts, ytr, yts = train_test_split(srxx,ydt, test_size = 0.1, random_state = 0)
print("Size of training set:", xtr.shape)
print("Size of testing set:", xts.shape)
Size of training set: (512, 1)
Size of testing set: (57, 1)
```

Linear Regression

(569, 1)

```
In [25]:
LR=LinearRegression()

In [26]:
LR.fit(xtr,ytr)
Out[26]:
LinearRegression()
```

```
In [27]:
y_pred = LR.predict(xts)
In [28]:
acc = mean_squared_error(yts, y_pred)
acc
Out[28]:
0.09377714853706122
In [29]:
LR.score(xts,yts)
```

Out[29]:

0.604309148575439

In [30]:

```
df=pd.DataFrame({'Actual': yts.flatten(),'Predicted': y_pred.flatten()})
df
```

Out[30]:

	Actual	Predicted
0	0	0.107895
1	1	0.951039
2	1	0.822518
3	1	0.862394
4	1	1.008702
5	1	0.803569
6	1	0.665341
7	1	0.966385
8	1	1.300096
9	1	1.063284
10	1	0.656040
11	1	0.896341
12	1	1.151057
13	1	0.809730
14	1	0.488051
15	0	0.238102
16	1	0.634533
17	0	0.391559
18	0	0.239264
19	0	0.076506
20	0	0.401441
21	0	0.293323
22	1	0.524090
23	1	0.898259
24	0	0.157304
25	1	0.900410
26	1	1.070317
27	0	0.016635
28	1	0.893958
29	0	0.109639
30	1	1.068166
31	0	0.218920
32	1	0.613607
33	0	0.537460

Actual	Predicted
1	1.300096
0	0.302624
1	0.737536
0	0.592100
1	0.836760
0	0.413066
0	0.917906
1	1.023292
0	0.720272
1	1.161694
1	0.511302
0	0.011985
1	1.300096
1	0.837225
1	1.049798
0	0.304949
0	0.272978
0	0.296229
0	0.498514
1	0.818333
1	0.856872
1	0.919476
1	1.179016
	1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1

In [31]:

```
df1=df.head(25)
df1.plot(kind='bar',figsize=(16,10))
plt.grid(which='major',linestyle='-',linewidth='0.5',color='green')
plt.grid(which='major',linestyle=':',linewidth='0.5',color='black')
plt.show()
```


In [32]:

```
print('Mean Absolute Error:',mean_absolute_error(yts,y_pred))
print('Mean Squared Error:',mean_squared_error(yts,y_pred))
print('Root Mean Squared Error:',np.sqrt(mean_squared_error(yts,y_pred)))
```

Mean Absolute Error: 0.24369328283525543 Mean Squared Error: 0.09377714853706122 Root Mean Squared Error: 0.3062305480141738

Logistic Regression

In [33]:

LR=LogisticRegression()

```
In [34]:
LR.fit(xtr,ytr)
C:\Users\T2910\anaconda3\lib\site-packages\sklearn\utils\validation.py:993:
DataConversionWarning: A column-vector y was passed when a 1d array was expe
cted. Please change the shape of y to (n_samples, ), for example using ravel
  y = column_or_1d(y, warn=True)
Out[34]:
LogisticRegression()
In [35]:
y_pred = LR.predict(xts)
In [36]:
acc = mean_squared_error(yts, y_pred)
acc
Out[36]:
0.22807017543859648
In [37]:
LR.score(xts,yts)
Out[37]:
```

0.7719298245614035

In [38]:

```
df=pd.DataFrame({'Actual': yts.flatten(),'Predicted': y_pred.flatten()})
df
```

Out[38]:

	Actual	Predicted
0	0	0
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1
9	1	1
10	1	1
11	1	1
12	1	1
13	1	1
14	1	1
15	0	0
16	1	1
17	0	1
18	0	0
19	0	0
20	0	1
21	0	1
22	1	1
23	1	1
24	0	0
25	1	1
26	1	1
27	0	0
28	1	1
29	0	0
30	1	1
31	0	0
32	1	1
33	0	1

	Actual	Predicted
34	1	1
35	0	1
36	1	1
37	0	1
38	1	1
39	0	1
40	0	1
41	1	1
42	0	1
43	1	1
44	1	1
45	0	0
46	1	1
47	1	1
48	1	1
49	0	1
50	0	1
51	0	1
52	0	1
53	1	1
54	1	1
55	1	1
56	1	1

In [39]:

```
df1=df.head(25)
df1.plot(kind='bar',figsize=(16,10))
plt.grid(which='major',linestyle='-',linewidth='0.5',color='green')
plt.grid(which='major',linestyle=':',linewidth='0.5',color='black')
plt.show()
```


In [40]:

```
print('Mean Absolute Error:',mean_absolute_error(yts,y_pred))
print('Mean Squared Error:',mean_squared_error(yts,y_pred))
print('Root Mean Squared Error:',np.sqrt(mean_squared_error(yts,y_pred)))
```

Mean Absolute Error: 0.22807017543859648 Mean Squared Error: 0.22807017543859648 Root Mean Squared Error: 0.4775669329409193

Multiclass Linear Regression

```
In [41]:
```

```
myx = data.drop(['id','Unnamed: 32','diagnosis'],axis=1)
```

In [42]:

myx

Out[42]:

radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_
17.99	10.38	122.80	1001.0	0.11840	0.
20.57	17.77	132.90	1326.0	0.08474	0.
19.69	21.25	130.00	1203.0	0.10960	0.
11.42	20.38	77.58	386.1	0.14250	0.
20.29	14.34	135.10	1297.0	0.10030	0.
21.56	22.39	142.00	1479.0	0.11100	0
20.13	28.25	131.20	1261.0	0.09780	0.
16.60	28.08	108.30	858.1	0.08455	0.
20.60	29.33	140.10	1265.0	0.11780	0.
7.76	24.54	47.92	181.0	0.05263	0.
	17.99 20.57 19.69 11.42 20.29 21.56 20.13 16.60 20.60	17.99 10.38 20.57 17.77 19.69 21.25 11.42 20.38 20.29 14.34 21.56 22.39 20.13 28.25 16.60 28.08 20.60 29.33	17.99 10.38 122.80 20.57 17.77 132.90 19.69 21.25 130.00 11.42 20.38 77.58 20.29 14.34 135.10 21.56 22.39 142.00 20.13 28.25 131.20 16.60 28.08 108.30 20.60 29.33 140.10	17.99 10.38 122.80 1001.0 20.57 17.77 132.90 1326.0 19.69 21.25 130.00 1203.0 11.42 20.38 77.58 386.1 20.29 14.34 135.10 1297.0 21.56 22.39 142.00 1479.0 20.13 28.25 131.20 1261.0 16.60 28.08 108.30 858.1 20.60 29.33 140.10 1265.0	17.99 10.38 122.80 1001.0 0.11840 20.57 17.77 132.90 1326.0 0.08474 19.69 21.25 130.00 1203.0 0.10960 11.42 20.38 77.58 386.1 0.14250 20.29 14.34 135.10 1297.0 0.10030 21.56 22.39 142.00 1479.0 0.11100 20.13 28.25 131.20 1261.0 0.09780 16.60 28.08 108.30 858.1 0.08455 20.60 29.33 140.10 1265.0 0.11780

569 rows × 30 columns

In [43]:

```
myy = data['diagnosis']
```

```
In [44]:
myy
Out[44]:
0
       0
1
       0
2
       0
3
       0
4
       0
564
       0
       0
565
       0
566
567
       0
       1
568
Name: diagnosis, Length: 569, dtype: int64
In [45]:
myx.shape
Out[45]:
(569, 30)
In [46]:
myy.shape
Out[46]:
(569,)
In [47]:
myyy = myy.values.reshape(-1,1)
myyy
Out[47]:
array([[0],
       [0],
        [0],
        [0],
        [0],
        [0],
       [0],
       [0],
        [0],
       [0],
       [0],
        [0],
       [0],
       [0],
       [0],
        [0],
       [0],
        [0].
```

```
In [48]:
myyy.shape
Out[48]:
(569, 1)
In [49]:
xtr, xts, ytr, yts = train_test_split(myx,myyy, test_size = 0.3, random_state = 0)
print("Size of training set:", xtr.shape)
print("Size of training set:", xts.shape)
Size of training set: (398, 30)
Size of training set: (171, 30)
In [50]:
LR=LinearRegression()
In [51]:
LR.fit(xtr,ytr)
Out[51]:
LinearRegression()
In [52]:
y_pred = LR.predict(xts)
In [53]:
acc = mean_squared_error(yts, y_pred)
acc
Out[53]:
0.062384962436604595
In [54]:
LR.score(xts, yts)
Out[54]:
0.7318931971474494
```

In [55]:

```
df=pd.DataFrame({'Actual': yts.flatten(),'Predicted': y_pred.flatten()})
df
```

Out[55]:

	Actual	Predicted
0	0	0.177074
1	1	0.819875
2	1	0.973552
3	1	0.806176
4	1	0.956128
166	0	0.347625
167	0	0.188163
168	1	0.704667
169	1	0.902653
170	1	1.126109

171 rows × 2 columns

In [56]:

```
df1=df.head(25)
df1.plot(kind='bar',figsize=(16,10))
plt.grid(which='major',linestyle='-',linewidth='0.5',color='green')
plt.grid(which='major',linestyle=':',linewidth='0.5',color='black')
plt.show()
```


In [57]:

```
print('Mean Absolute Error:',mean_absolute_error(yts,y_pred))
print('Mean Squared Error:',mean_squared_error(yts,y_pred))
print('Root Mean Squared Error:',np.sqrt(mean_squared_error(yts,y_pred)))
```

Mean Absolute Error: 0.1960125785952852 Mean Squared Error: 0.062384962436604595 Root Mean Squared Error: 0.24976981890653763

Multiclass Logistic Regression

In [58]:

```
LR=LogisticRegression()
```

```
In [59]:
LR.fit(xtr,ytr)
C:\Users\T2910\anaconda3\lib\site-packages\sklearn\utils\validation.py:993:
DataConversionWarning: A column-vector y was passed when a 1d array was expe
cted. Please change the shape of y to (n_samples, ), for example using ravel
().
 y = column_or_1d(y, warn=True)
C:\Users\T2910\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.p
y:814: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scik
it-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regre
ssion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
gression)
  n_iter_i = _check_optimize_result(
Out[59]:
LogisticRegression()
In [60]:
y_pred = LR.predict(xts)
In [61]:
acc = mean_squared_error(yts, y_pred)
acc
Out[61]:
0.04678362573099415
In [62]:
LR.score(xts, yts)
Out[62]:
```

0.9532163742690059

In [63]:

```
df=pd.DataFrame({'Actual': yts.flatten(),'Predicted': y_pred.flatten()})
df
```

Out[63]:

	Actual	Predicted
0	0	0
1	1	1
2	1	1
3	1	1
4	1	1
166	0	0
167	0	0
168	1	1
169	1	1
170	1	1

171 rows × 2 columns

In [64]:

```
df1=df.head(25)
df1.plot(kind='bar',figsize=(16,10))
plt.grid(which='major',linestyle='-',linewidth='0.5',color='green')
plt.grid(which='major',linestyle=':',linewidth='0.5',color='black')
plt.show()
```


In [65]:

```
print('Mean Absolute Error:',mean_absolute_error(yts,y_pred))
print('Mean Squared Error:',mean_squared_error(yts,y_pred))
print('Root Mean Squared Error:',np.sqrt(mean_squared_error(yts,y_pred)))
```

Mean Absolute Error: 0.04678362573099415 Mean Squared Error: 0.04678362573099415 Root Mean Squared Error: 0.21629522817435004

Naive-Bayes

In [66]:

```
nb = BernoulliNB()
gnb = GaussianNB()
mnb = MultinomialNB()
```

```
In [67]:
nb.fit(xtr,ytr)
gnb.fit(xtr,ytr)
mnb.fit(xtr,ytr)
C:\Users\T2910\anaconda3\lib\site-packages\sklearn\utils\validation.py:993:
DataConversionWarning: A column-vector y was passed when a 1d array was expe
cted. Please change the shape of y to (n_samples, ), for example using ravel
().
  y = column or 1d(y, warn=True)
C:\Users\T2910\anaconda3\lib\site-packages\sklearn\utils\validation.py:993:
DataConversionWarning: A column-vector y was passed when a 1d array was expe
cted. Please change the shape of y to (n_samples, ), for example using ravel
().
 y = column_or_1d(y, warn=True)
C:\Users\T2910\anaconda3\lib\site-packages\sklearn\utils\validation.py:993:
DataConversionWarning: A column-vector y was passed when a 1d array was expe
cted. Please change the shape of y to (n_samples, ), for example using ravel
 y = column_or_1d(y, warn=True)
Out[67]:
MultinomialNB()
```

BernoulliNB

```
In [68]:

ypred = nb.predict(xts)
```

In [69]:

accuracy_score(yts,ypred)

Out[69]:

0.631578947368421

In [70]:

print(classification_report(yts,ypred))

	precision	recall	f1-score	support
0	0.00	0.00	0.00	63
1	0.63	1.00	0.77	108
accuracy			0.63	171
macro avg	0.32	0.50	0.39	171
weighted avg	0.40	0.63	0.49	171

C:\Users\T2910\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and be ing set to 0.0 in labels with no predicted samples. Use `zero_division` para meter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\T2910\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and be ing set to 0.0 in labels with no predicted samples. Use `zero_division` para meter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\T2910\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and be ing set to 0.0 in labels with no predicted samples. Use `zero_division` para meter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

In [71]:

```
cf = confusion_matrix(yts,ypred)
cf
```

Out[71]:

```
array([[ 0, 63], [ 0, 108]], dtype=int64)
```

In [72]:

```
sns.heatmap (cf,annot=True)
plt.axis('equal')
plt.show()
```


In [73]:

nb.score(xts,yts)

Out[73]:

0.631578947368421

In [74]:

```
df=pd.DataFrame({'Actual': yts.flatten(),'Predicted': y_pred.flatten()})
df
```

Out[74]:

	Actual	Predicted
0	0	0
1	1	1
2	1	1
3	1	1
4	1	1
166	0	0
167	0	0
168	1	1
169	1	1
170	1	1

171 rows × 2 columns

In [75]:

```
df1=df.head(25)
df1.plot(kind='bar',figsize=(16,10))
plt.grid(which='major',linestyle='-',linewidth='0.5',color='green')
plt.grid(which='major',linestyle=':',linewidth='0.5',color='black')
plt.show()
```


GaussianNB

```
In [76]:
```

```
ypred = gnb.predict(xts)
```

In [77]:

```
accuracy_score(yts,ypred)
```

Out[77]:

0.9239766081871345

In [78]:

```
print(classification_report(yts,ypred))
```

	precision	recall	f1-score	support
0	0.89	0.90	0.90	63
1	0.94	0.94	0.94	108
accuracy			0.92	171
macro avg	0.92	0.92	0.92	171
weighted avg	0.92	0.92	0.92	171

In [79]:

```
cf = confusion_matrix(yts,ypred)
cf
```

Out[79]:

```
array([[ 57, 6], [ 7, 101]], dtype=int64)
```

In [80]:

```
sns.heatmap (cf,annot=True)
plt.axis('equal')
plt.show()
```


In [81]:

gnb.score(xts,yts)

Out[81]:

0.9239766081871345

In [82]:

```
df=pd.DataFrame({'Actual': yts.flatten(),'Predicted': y_pred.flatten()})
df
```

Out[82]:

	Actual	Predicted
0	0	0
1	1	1
2	1	1
3	1	1
4	1	1
166	0	0
167	0	0
168	1	1
169	1	1
170	1	1

171 rows × 2 columns

In [83]:

```
df1=df.head(25)
df1.plot(kind='bar',figsize=(16,10))
plt.grid(which='major',linestyle='-',linewidth='0.5',color='green')
plt.grid(which='major',linestyle=':',linewidth='0.5',color='black')
plt.show()
```


MultinomialNB

```
In [84]:
```

```
ypred = mnb.predict(xts)
```

In [85]:

```
accuracy_score(yts,ypred)
```

Out[85]:

0.9005847953216374

In [86]:

```
print(classification_report(yts,ypred))
```

	precision	recall	f1-score	support
0	0.96	0.76	0.85	63
1	0.88	0.98	0.93	108
accuracy			0.90	171
macro avg	0.92	0.87	0.89	171
weighted avg	0.91	0.90	0.90	171

In [87]:

```
cf = confusion_matrix(yts,ypred)
cf
```

Out[87]:

In [88]:

```
sns.heatmap (cf,annot=True)
plt.axis('equal')
plt.show()
```


In [89]:

mnb.score(xts,yts)

Out[89]:

0.9005847953216374

In [90]:

```
df=pd.DataFrame({'Actual': yts.flatten(),'Predicted': y_pred.flatten()})
df
```

Out[90]:

	Actual	Predicted
0	0	0
1	1	1
2	1	1
3	1	1
4	1	1
166	0	0
167	0	0
168	1	1
169	1	1
170	1	1

171 rows × 2 columns

In [91]:

```
df1=df.head(25)
df1.plot(kind='bar',figsize=(16,10))
plt.grid(which='major',linestyle='-',linewidth='0.5',color='green')
plt.grid(which='major',linestyle=':',linewidth='0.5',color='black')
plt.show()
```


DT Regressor

```
In [92]:
myx.shape
Out[92]:
(569, 30)
In [93]:
myy.shape
Out[93]:
(569,)
In [94]:
feat = myx.values
classes = myy.values
In [95]:
(train_feat, test_feat, train_classes, test_classes) = train_test_split(feat, classes, rand
m = DecisionTreeRegressor().fit(train_feat, train_classes)
In [96]:
ypred = m.predict(test_feat)
print("MSE:",metrics.mean_squared_error(test_classes, ypred))
```

MSE: 0.06293706293706294

In [97]:


```
text_representation = tree.export_text(m)
print(text_representation)
```

```
|--- feature_7 <= 0.05
   |--- feature_13 <= 38.16
       |--- feature_27 <= 0.13
            |--- feature_21 <= 33.27
              |--- value: [1.00]
            |--- feature_21 > 33.27
               |--- feature_21 <= 33.80
                  |--- value: [0.00]
               |--- feature 21 > 33.80
              | |--- value: [1.00]
        |--- feature_27 > 0.13
           |--- feature_1 <= 22.61
               --- feature_18 <= 0.01
                  |--- value: [0.00]
               |--- feature_18 > 0.01
               | |--- value: [1.00]
            |--- feature_1 > 22.61
              |--- value: [0.00]
    |--- feature_13 > 38.16
       |--- feature_19 <= 0.00
           |--- feature_11 <= 1.10
              |--- value: [1.00]
            |--- feature_11 > 1.10
           | |--- value: [0.00]
       |--- feature_19 > 0.00
           |--- value: [1.00]
--- feature_7 > 0.05
   |--- feature_26 <= 0.22
        |--- feature_8 <= 0.16
          |--- value: [0.00]
       |--- feature_8 > 0.16
       | |--- value: [1.00]
    |--- feature 26 > 0.22
        |--- feature 23 <= 810.25
            |--- feature 21 <= 25.71
               |--- feature_25 <= 0.50
                  |--- value: [1.00]
               |--- feature 25 > 0.50
                  |--- value: [0.00]
            --- feature 21 > 25.71
               |--- feature_12 <= 1.53
                   |--- feature 15 <= 0.02
                      |--- value: [0.00]
                   |--- feature 15 > 0.02
                   | |--- value: [1.00]
               |--- feature 12 > 1.53
                  |--- value: [0.00]
        --- feature_23 > 810.25
           |--- value: [0.00]
```

```
In [99]:
```

```
m.score(test_feat,test_classes)
```

Out[99]:

0.7358374384236454

Cross Validation

In [100]:

```
# k-fold cross validation technique
kf = KFold(n_splits=5, random_state=1,shuffle=True)
# stratified kfold cross validation technique
skf = StratifiedKFold(n_splits=5)
# LeaveOneOut cross validation technique
loocv = LeaveOneOut()
# shuffle split cross validation technique
shvc = ShuffleSplit()
```

In [101]:

```
# evaluating the data sets with kfold and DecisionTreeClassifier
dst = DecisionTreeClassifier()
scores = cross_val_score(dst,feat,classes,scoring='accuracy',cv=kf)
print('Accuracy using Decision Tree: %2f%%'%(scores.mean()*100))
print(scores)
```

Accuracy using Decision Tree: 93.848781%
[0.95614035 0.92982456 0.89473684 0.97368421 0.9380531]

In [102]:

```
# evaluating the data sets with kfold and Naive Bayes Classifier
nb = GaussianNB()
scores = cross_val_score(nb,feat,classes,scoring='accuracy',cv=kf)
print('Accuracy using GaussianNB: %2f%%'%(scores.mean()*100))
print(scores)
```

Accuracy using GaussianNB: 93.851886% [0.94736842 0.93859649 0.9122807 0.93859649 0.95575221]

In [103]:

```
# evaluating the data sets with kfold and SVM
svm = SVC()
scores = cross_val_score(svm,feat,classes,scoring='accuracy',cv=kf)
print('Accuracy using SVC: %2f%%'%(scores.mean()*100))
print(scores)
```

```
Accuracy using SVC: 91.386431%
[0.90350877 0.92982456 0.88596491 0.94736842 0.90265487]
```

```
In [104]:
```

```
# evaluating the data sets with kfold and KNN Classifier
knn = KNeighborsClassifier()
scores = cross_val_score(knn,feat,classes,scoring='accuracy',cv=kf)
print('Accuracy using KNN: %2f%%'%(scores.mean()*100))
print(scores)
```

Accuracy using KNN: 92.268281% [0.93859649 0.89473684 0.88596491 0.96491228 0.92920354]

In [105]:

```
# evaluating the data sets with Stratified KFold and DecisionTree
scores = cross_val_score(dst,feat,classes,scoring='accuracy',cv=skf)
print('Accuracy using Decision Tree: %2f%%'%(scores.mean()*100))
print(scores)
```

Accuracy using Decision Tree: 91.210992% [0.9122807 0.89473684 0.9122807 0.93859649 0.90265487]

In [106]:

```
# evaluating the data sets Stratified KFold and Naive Bayes Classifier
scores = cross_val_score(nb,feat,classes,scoring='accuracy',cv=skf)
print('Accuracy using GaussianNB: %2f%%'%(scores.mean()*100))
print(scores)
```

Accuracy using GaussianNB: 93.851886% [0.92105263 0.92105263 0.94736842 0.94736842 0.95575221]

In [107]:

```
# evaluating the data sets Stratified KFold and SVM
scores = cross_val_score(svm,feat,classes,scoring='accuracy',cv=skf)
print('Accuracy using SVM: %2f%%'%(scores.mean()*100))
print(scores)
```

Accuracy using SVM: 91.217202% [0.85087719 0.89473684 0.92982456 0.94736842 0.9380531]

In [108]:

```
# evaluating the data sets Stratified KFold and KNN
scores = cross_val_score(knn,feat,classes,scoring='accuracy',cv=skf)
print('Accuracy using KNN: %2f%%'%(scores.mean()*100))
print(scores)
```

Accuracy using KNN: 92.794597% [0.88596491 0.93859649 0.93859649 0.94736842 0.92920354]

In [109]:

```
# evaluating the data sets with LeaveOneOut and DecisionTree
scores = cross_val_score(dst,feat,classes,scoring='accuracy',cv=loocv)
print('Accuracy using GaussianNB: %2f%%'%(scores.mean()*100))
print(scores)
```

```
Accuracy using GaussianNB: 92.442882%
[1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1.
1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1.
1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 1. 1. 1.
1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1.
```

In [110]:

```
# evaluating the data sets LeaveOneOut and Naive Bayes Classifier
scores = cross_val_score(nb,feat,classes,scoring='accuracy',cv=loocv)
print('Accuracy using GaussianNB: %2f%%'%(scores.mean()*100))
print(scores)
```

```
Accuracy using GaussianNB: 93.848858%
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 1. 1. 1.
1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0.
1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
```

In [111]:

```
# evaluating the data sets LeaveOneOut and SVM
scores = cross_val_score(svm,feat,classes,scoring='accuracy',cv=loocv)
print('Accuracy using SVM: %2f%%'%(scores.mean()*100))
print(scores)
```

```
Accuracy using SVM: 91.212654%
[1. 1. 1. 0. 1. 0. 1. 1. 0. 0. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 0.
1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.
```

```
In [112]:
```

```
# evaluating the data sets LeaveOneOut and KNN
scores = cross_val_score(knn,feat,classes,scoring='accuracy',cv=loocv)
print('Accuracy using KNN: %2f%%'%(scores.mean()*100))
print(scores)
Accuracy using KNN: 93.321617%
[1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 0. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0.
In [113]:
# evaluating the data sets with ShuffleSplit and DecisionTree
scores = cross_val_score(dst,feat,classes,scoring='accuracy',cv=shvc)
print('Accuracy using GaussianNB: %2f%%'%(scores.mean()*100))
print(scores)
Accuracy using GaussianNB: 92.982456%
[0.94736842 0.89473684 0.92982456 0.92982456 0.96491228 0.96491228
0.89473684 0.9122807 0.94736842 0.9122807 ]
In [114]:
# evaluating the data sets with ShuffleSplit and Naive Bayes Classifier
scores = cross_val_score(nb,feat,classes,scoring='accuracy',cv=shvc)
print('Accuracy using GaussianNB: %2f%%'%(scores.mean()*100))
print(scores)
Accuracy using GaussianNB: 93.333333%
[0.9122807  0.89473684  0.9122807  0.9122807  0.92982456  0.96491228
0.94736842 0.94736842 0.94736842 0.96491228]
```

In [115]:

```
# evaluating the data sets with ShuffleSplit and SVM
scores = cross_val_score(svm,feat,classes,scoring='accuracy',cv=shvc)
print('Accuracy using GaussianNB: %2f%%'%(scores.mean()*100))
print(scores)
```

```
Accuracy using GaussianNB: 92.631579%
[0.89473684 0.9122807 0.92982456 0.94736842 0.87719298 0.87719298 0.94736842 0.94736842 0.96491228 0.96491228]
```

In [116]:

```
# evaluating the data sets with ShuffleSplit and KNN
scores = cross_val_score(knn,feat,classes,scoring='accuracy',cv=shvc)
print('Accuracy using KNN: %2f%%'%(scores.mean()*100))
print(scores)
```

```
Accuracy using KNN: 94.561404%

[0.92982456 0.92982456 0.9122807 0.96491228 0.9122807 0.94736842 0.92982456 0.96491228 0.98245614 0.98245614]
```

```
In [21]:
```

```
#split the dataset into training and testing sets
features = df.drop(['diagnosis'],axis=1).values
classes=df['diagnosis'].values
```

In [22]:

```
feat_train, feat_test, class_train, class_test = train_test_split(features, classes, test_s
```

In [23]:

```
print('features train shape: ', feat_train.shape)
print('classes train shape: ', class_train.shape)
print('features test shape: ', feat_test.shape)
print('classes test shape: ', class_test.shape)
```

```
features train shape: (455, 30) classes train shape: (455,) features test shape: (114, 30) classes test shape: (114,)
```

Decision Tree Classifier

Criterion=Gini

In [24]:

```
#Training
dectree=DecisionTreeClassifier(criterion='gini')
dectree.fit(feat_train,class_train)
```

Out[24]:

DecisionTreeClassifier()

In [25]:

```
#predict target values
pred=dectree.predict(feat_test)
print(pred)
```

```
'B' 'B' 'M' 'B' 'B' 'M' 'M' 'B' 'B' 'B'
                         'M'
                           'M'
                                'M'
                                   'M'
     'M'
                     'B'
                       'M'
                                   'B'
                                     'B'
'M' 'B'
       'B' 'B'
            'B'
              'B'
                'B'
                  'B'
                          'M'
                                       'B'
                            'B'
                                'B'
                              'M'
     'B'
       'M' 'B'
           'B' 'M' 'M' 'M' 'B'
                       'B'
                         'B'
                            'M'
                              'B'
                                'M'
                                  'B'
                                     'B'
                                       'B'
'B' 'B' 'B' 'B' 'B'
           'B' 'B' 'B' 'B' 'B' 'M']
```

In [26]:

```
#confusion matrix and accuracy
print("Accuracy",accuracy_score(class_test,pred))
print("Classification Report\n",classification_report(class_test,pred))
print("Confusion Matrix\n",confusion_matrix(class_test,pred))
```

Accuracy 0.9298245614035088

Classification Report

	precision	recall	f1-score	support
В	0.95	0.95	0.95	74
М	0.90	0.90	0.90	40
accuracy			0.93	114
macro avg	0.92	0.92	0.92	114
weighted avg	0.93	0.93	0.93	114

Confusion Matrix

[[70 4] [4 36]]

In [27]:

```
#Testing
pred=dectree.predict(feat_test)
print("Accuracy:",metrics.accuracy_score(class_test,pred))
```

Accuracy: 0.9298245614035088

In [28]:

```
from sklearn import tree
fig=plt.figure(figsize=(30,20))
_=tree.plot_tree(dectree,feature_names=features,class_names=classes,filled=True)
```


text_representation=tree.export_text(dectree)
print(text_representation)

```
|--- feature_20 <= 16.80
   |--- feature_27 <= 0.16
       |--- feature_27 <= 0.13
           --- feature_13 <= 38.35
               |--- feature_21 <= 33.27
                  |--- class: B
               --- feature_21 > 33.27
                   |--- feature 21 <= 33.80
                      --- class: M
                   --- feature_21 > 33.80
                  | |--- class: B
           --- feature_13 > 38.35
               |--- feature_21 <= 28.13
                   |--- feature_6 <= 0.03
                       --- class: M
                   |--- feature_6 > 0.03
                  | |--- class: B
               --- feature_21 > 28.13
                  |--- class: M
       --- feature_27 > 0.13
           --- feature_21 <= 28.78
               |--- feature_18 <= 0.01
               | |--- class: M
               |--- feature 18 > 0.01
              | |--- class: B
           |--- feature_21 > 28.78
              |--- class: M
   --- feature_27 > 0.16
       |--- feature_21 <= 23.47
           |--- class: B
       --- feature_21 > 23.47
          --- class: M
  - feature_20 > 16.80
   |--- feature_1 <= 14.99
       |--- feature_16 <= 0.04
          |--- class: B
       |--- feature 16 > 0.04
       | |--- class: M
   |--- feature 1 > 14.99
       |--- feature_26 <= 0.22
           |--- feature_15 <= 0.02
              |--- class: M
           |--- feature 15 > 0.02
             |--- class: B
        --- feature_26 > 0.22
           |--- class: M
```

Criterion=Entropy

```
In [30]:
```

```
#Training
dectree=DecisionTreeClassifier(criterion='entropy')
dectree.fit(feat_train,class_train)
```

Out[30]:

DecisionTreeClassifier(criterion='entropy')

In [31]:

```
#confusion matrix and accuracy
pred=dectree.predict(feat_test)
print(pred)
print("Accuracy",accuracy_score(class_test,pred))
print("Classification Report\n",classification_report(class_test,pred))
print("Confusion Matrix\n",confusion_matrix(class_test,pred))
```

```
'M' 'M' 'B' 'B'
'B' 'B' 'M' 'B' 'B' 'M' 'B' 'B' 'B'
             'B'
              'B'
                    'M'
                     'B'
                'M'
                  'B'
'B'
                  'M'
                    'M' 'B' 'B'
                        'B'
'M' 'B' 'B' 'B'
'B' 'B' 'M'
'B' 'B' 'B' 'B' 'M']
```

Accuracy 0.956140350877193

Classification Report

	precision	recall	f1-score	support
В	0.96	0.97	0.97	74
М	0.95	0.93	0.94	40
accuracy			0.96	114
macro avg	0.95	0.95	0.95	114
weighted avg	0.96	0.96	0.96	114

Confusion Matrix

[[72 2] [3 37]]

In [32]:

text_representation=tree.export_text(dectree)
print(text_representation)

```
|--- feature_22 <= 105.95
   |--- feature_27 <= 0.13
       |--- feature_10 <= 0.64
           --- feature_21 <= 33.27
               |--- class: B
           |--- feature 21 > 33.27
              |--- feature_21 <= 33.80
                   --- class: M
               |--- feature_21 > 33.80
              | |--- class: B
       |--- feature_10 > 0.64
           |--- feature_28 <= 0.21
              |--- class: M
           --- feature_28 > 0.21
             |--- class: B
           |--- feature_27 > 0.13
       |--- feature_21 <= 28.55
           |--- feature_28 <= 0.36
              |--- class: B
            --- feature_28 > 0.36
              |--- feature 17 <= 0.03
               | |--- class: M
               |--- feature_17 > 0.03
              | |--- class: B
       |--- feature_21 > 28.55
          |--- class: M
 -- feature_22 > 105.95
   --- feature_22 <= 117.45
       |--- feature_21 <= 27.46
           |--- feature 24 <= 0.14
              |--- class: B
           --- feature_24 > 0.14
              |--- feature_10 <= 0.22
                  |--- class: B
               |--- feature_10 > 0.22
               | |--- class: M
       |--- feature 21 > 27.46
           |--- feature_4 <= 0.09
               |--- feature 0 <= 15.06
                  |--- class: B
               |--- feature_0 > 15.06
               | |--- class: M
           |--- feature 4 > 0.09
              |--- class: M
    --- feature_22 > 117.45
       |--- feature_19 <= 0.00
           |--- feature_3 <= 1016.55
              |--- class: B
            --- feature_3 > 1016.55
           | |--- class: M
       |--- feature_19 > 0.00
           |--- class: M
```

KNN Classifier

```
In [33]:
feat_train, feat_test, class_train, class_test = train_test_split(features, classes, test_s
In [34]:
knn=KNeighborsClassifier(n_neighbors=4)
knn.fit(feat_train,class_train)
Out[34]:
KNeighborsClassifier(n_neighbors=4)
In [35]:
pred=knn.predict(feat_test)
print("Accuracy:",metrics.accuracy_score(class_test,pred))
Accuracy: 0.9210526315789473
In [36]:
neighbors=np.arange(1,9)
train_accuracy=np.empty(len(neighbors))
test_accuracy=np.empty(len(neighbors))
for i,k in enumerate(neighbors):
    #setup as knn vlassifier with k neighbors
   knn1=KNeighborsClassifier(n_neighbors=k)
   #fit the model
   knn1.fit(feat_train,class_train)
   pred=knn1.predict(feat_test)
   #compute accuracy on the training set
   train_accuracy[i]=knn1.score(feat_train,class_train)
   #compute accuracy on the test set
   test_accuracy[i]=knn1.score(feat_test,class_test)
    print("Accuracy:",i,metrics.accuracy_score(class_test,pred))
print("train_accuracy\n",train_accuracy)
print("test_accuracy\n",test_accuracy)
Accuracy: 0 0.9122807017543859
Accuracy: 1 0.9298245614035088
Accuracy: 2 0.9385964912280702
Accuracy: 3 0.9210526315789473
Accuracy: 4 0.9385964912280702
Accuracy: 5 0.9298245614035088
Accuracy: 6 0.9298245614035088
Accuracy: 7 0.9122807017543859
train accuracy
             0.94725275 0.95824176 0.94285714 0.94725275 0.94505495
 [1.
0.94065934 0.934065931
test_accuracy
 [0.9122807  0.92982456  0.93859649  0.92105263  0.93859649  0.92982456
 0.92982456 0.9122807 ]
```

```
In [37]:
```

```
plt.title('K-NN varying number of neighbors')
plt.plot(neighbors,test_accuracy,label='Testing Accuracy')
plt.plot(neighbors,train_accuracy,label='Training Accuracy')
plt.legend()
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.show()
```


Conclusion: From above graph we see training accuracy is more than that of testing accuracy

Support Vector Machine

```
In [38]:
```

```
df.head()
```

Out[38]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
0	М	17.99	10.38	122.80	1001.0	0.11840	
1	М	20.57	17.77	132.90	1326.0	0.08474	
2	М	19.69	21.25	130.00	1203.0	0.10960	
3	М	11.42	20.38	77.58	386.1	0.14250	
4	М	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 31 columns

4

```
In [39]:
df['diagnosis'].unique()
Out[39]:
array(['M', 'B'], dtype=object)
In [40]:
df['diagnosis'] = df['diagnosis'].map({'M':1,'B':0})
In [41]:
classess=df.diagnosis
classess
Out[41]:
0
       1
1
       1
2
       1
       1
3
4
       1
564
       1
565
       1
       1
566
567
       1
568
Name: diagnosis, Length: 569, dtype: int64
```

In [42]:

```
featuress = df.drop(['diagnosis'],axis=1)
featuress
```

Out[42]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_
0	17.99	10.38	122.80	1001.0	0.11840	0.
1	20.57	17.77	132.90	1326.0	0.08474	0.
2	19.69	21.25	130.00	1203.0	0.10960	0.
3	11.42	20.38	77.58	386.1	0.14250	0.
4	20.29	14.34	135.10	1297.0	0.10030	0.
564	21.56	22.39	142.00	1479.0	0.11100	0
565	20.13	28.25	131.20	1261.0	0.09780	0.
566	16.60	28.08	108.30	858.1	0.08455	0.
567	20.60	29.33	140.10	1265.0	0.11780	0.
568	7.76	24.54	47.92	181.0	0.05263	0.
569 r	ows × 30 colu	mns				
4						>

In [43]:

```
from sklearn import preprocessing
#get col names
names = featuress.columns
#create scaler object
scaler = preprocessing.StandardScaler()
#fit data on the scaler object
scaled_df = scaler.fit_transform(featuress)
featuress = pd.DataFrame(scaled_df,columns=names)
```

In [44]:

featuress

Out[44]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_		
0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.2		
1	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.4		
2	1.579888	0.456187	1.566503	1.558884	0.942210	1.0		
3	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.4		
4	1.750297	-1.151816	1.776573	1.826229	0.280372	0.5		
564	2.110995	0.721473	2.060786	2.343856	1.041842	0.2		
565	1.704854	2.085134	1.615931	1.723842	0.102458	-O.C		
566	0.702284	2.045574	0.672676	0.577953	-0.840484	-O.C		
567	1.838341	2.336457	1.982524	1.735218	1.525767	3.2		
568	-1.808401	1.221792	-1.814389	-1.347789	-3.112085	-1.1		
569 r	569 rows × 30 columns							
4						•		

In [45]:

feat_train, feat_test, class_train, class_test = train_test_split(featuress, classess, trai

In [46]:

```
svlassifier=SVC(kernel='linear')
svlassifier.fit(feat_train,class_train)
```

Out[46]:

SVC(kernel='linear')

In [47]:

```
print('features train shape: ', feat_train.shape)
print('classes train shape: ', class_train.shape)
print('features test shape: ', feat_test.shape)
print('classes test shape: ', class_test.shape)
```

features train shape: (512, 30) classes train shape: (512,) features test shape: (57, 30) classes test shape: (57,)

```
In [48]:
```

```
pred=svlassifier.predict(feat_test)
```

In [49]:

```
accuracy_score(class_test,pred)
```

Out[49]:

0.9473684210526315

In [50]:

```
print(classification_report(class_test,pred))
```

	precision	recall	f1-score	support
0	0.92	1.00	0.96	35
1	1.00	0.86	0.93	22
accuracy			0.95	57
macro avg	0.96	0.93	0.94	57
weighted avg	0.95	0.95	0.95	57

In [51]:

```
cf=confusion_matrix(class_test,pred)
cf
```

Out[51]:

```
array([[35, 0],
[ 3, 19]], dtype=int64)
```

In [52]:

```
kernels = ['linear','rbf','poly']
for kernel in kernels:
    sv = SVC(kernel=kernel).fit(feat_train,class_train)
    pred=sv.predict(feat_test)
    print("Accuracy:("+kernel+")", accuracy_score(class_test,pred))
```

Accuracy:(linear) 0.9473684210526315 Accuracy:(rbf) 0.9649122807017544 Accuracy:(poly) 0.8947368421052632

```
In [53]:
gammas = [0.1, 1, 10, 100]
for gamma in gammas:
    sv = SVC(kernel='rbf', gamma=gamma).fit(feat_train,class_train)
    pred=sv.predict(feat_test)
    print("Accuracy:(", gamma , ")", accuracy_score(class_test,pred))
Accuracy: (0.1) 0.9473684210526315
Accuracy:( 1 ) 0.6140350877192983
Accuracy: (10) 0.6140350877192983
Accuracy: (100) 0.6140350877192983
In [54]:
degrees = [0,1,2,3,4,5,20]
for degree in degrees:
    sv = SVC(kernel='poly', degree=degree).fit(feat_train,class_train)
    pred=sv.predict(feat_test)
    print("Accuracy:(", degree , "):", accuracy_score(class_test,pred))
Accuracy:( 0 ): 0.6140350877192983
Accuracy:( 1 ): 0.9473684210526315
Accuracy:( 2 ): 0.8771929824561403
Accuracy:( 3 ): 0.8947368421052632
Accuracy: (4): 0.8596491228070176
Accuracy:( 5 ): 0.8596491228070176
Accuracy: (20): 0.7543859649122807
Support Vector Regression
In [55]:
feat_train, feat_test, class_train, class_test = train_test_split(featuress, classess, trail
In [56]:
regressor=SVC(kernel='linear')
regressor.fit(feat_train,class_train)
Out[56]:
SVC(kernel='linear')
In [57]:
pred=svlassifier.predict(feat_test)
In [58]:
mean_squared_error(class_test,pred)
Out[58]:
0.05263157894736842
```

```
In [59]:
```

```
regressor.score(feat_test,class_test)
```

Out[59]:

0.9473684210526315

K Means Clustering

In [60]:

```
X,y_true = make_blobs(n_samples=300,centers=4,cluster_std=0.5,random_state=0)
plt.scatter(X[:, 0],X[:,1],s=50);
```


In [61]:

```
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
```

In [62]:

```
y_kmeans
```

Out[62]:

```
In [63]:
```

```
plt.scatter(X[:, 0],X[:,1],c=y_kmeans,s=50,cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:,0],centers[:,1],c='red',s=200,alpha=0.5);
```

```
8 - 6 - 4 - 2 - 1 0 1 2 3
```

In [64]:

```
df1 = datasets.load_breast_cancer()
df1.data.shape
```

Out[64]:

(569, 30)

In [65]:

df1.data

Out[65]:

```
array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01, 1.189e-01],
[2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01, 8.902e-02],
[1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01, 8.758e-02],
...,
[1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01, 7.820e-02],
[2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01, 1.240e-01],
[7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01, 7.039e-02]])
```

In [66]:

```
kmeans= KMeans(n_clusters=10, random_state=42)
clusters = kmeans.fit_predict(df1.data)
kmeans.cluster_centers_.shape
```

Out[66]:

(10, 30)

In [67]:

clusters

Out[67]:

```
array([9, 9, 1, 0, 1, 7, 1, 2, 7, 7, 5, 5, 5, 2, 7, 2, 2, 5, 4, 7, 7, 8,
       2, 4, 9, 5, 2, 1, 5, 5, 1, 2, 5, 9, 5, 5, 2, 0, 7, 7, 7, 0, 1, 2,
       7, 1, 8, 7, 0, 7, 0, 7, 0, 5, 2, 0, 9, 2, 7, 8, 8, 8, 2, 8, 2, 2,
       8, 0, 8, 0, 9, 8, 1, 2, 7, 5, 7, 1, 1, 7, 0, 7, 6, 5, 0, 1, 2, 1,
       0, 2, 2, 2, 2, 7, 2, 1, 0, 8, 0, 2, 2, 8, 0, 8, 8, 7, 0, 0, 4, 0,
       8, 0, 7, 8, 8, 0, 8, 2, 5, 5, 0, 1, 4, 7, 7, 7, 2, 1, 2, 1, 0, 5,
       5, 2, 1, 7, 0, 0, 2, 0, 8, 5, 0, 7, 0, 0, 0, 2, 7, 7, 7, 8, 8, 0,
       7, 0, 5, 5, 0, 0, 0, 1, 9, 0, 4, 2, 8, 5, 1, 2, 0, 2, 2, 8, 8, 8,
       8, 2, 7, 0, 6, 9, 5, 0, 2, 8, 5, 0, 0, 0, 7, 7, 8, 7, 2, 7, 2, 5,
       1, 2, 7, 5, 4, 2, 7, 2, 8, 5, 7, 2, 1, 0, 6, 5, 2, 7, 0, 8, 9, 4,
       7, 7, 8, 2, 7, 2, 8, 2, 7, 7, 5, 0, 0, 9, 8, 7, 6, 1, 7, 5, 7, 0,
       0, 7, 1, 8, 7, 7, 0, 0, 9, 0, 9, 5, 9, 2, 9, 2, 5, 2, 9, 5, 5, 2,
       5, 6, 8, 7, 7, 8, 7, 0, 4, 8, 5, 0, 0, 5, 7, 7, 1, 0, 1, 2, 7, 0,
       0, 7, 0, 0, 2, 2, 7, 0, 0, 7, 8, 0, 2, 8, 9, 0, 1, 8, 0, 0, 7, 8,
       7, 7, 0, 2, 7, 0, 8, 0, 0, 1, 8, 0, 8, 1, 7, 9, 0, 0, 7, 0, 5, 2,
       2, 7, 0, 0, 0, 5, 7, 9, 8, 6, 2, 8, 0, 1, 0, 8, 0, 2, 0, 0, 0, 2,
       6, 2, 0, 0, 7, 7, 8, 8, 0, 7, 0, 2, 7, 9, 1, 7, 6, 4, 5, 2, 1, 9,
       7, 2, 8, 7, 7, 0, 0, 0, 0, 0, 7, 2, 0, 7, 0, 5, 8, 8, 5, 9, 0, 7,
       7, 7, 0, 0, 5, 0, 7, 7, 0, 0, 2, 7, 5, 7, 0, 0, 8, 2, 2, 0, 8, 1,
       0, 0, 0, 2, 0, 7, 8, 8, 8, 0, 0, 7, 2, 0, 1, 1, 2, 2, 7, 7, 7,
       0, 5, 7, 8, 5, 0, 5, 2, 2, 9, 0, 1, 0, 7, 7, 7, 0, 7, 7, 8, 1, 3,
       7, 0, 7, 7, 8, 5, 0, 8, 0, 2, 0, 0, 7, 2, 7, 0, 2, 0, 2, 7, 7,
       2, 0, 2, 1, 0, 5, 7, 5, 5, 0, 7, 2, 7, 7, 1, 9, 2, 7, 0, 6, 8, 8,
       0, 8, 2, 2, 0, 2, 2, 2, 2, 0, 1, 1, 7, 7, 8, 6, 0, 7, 8, 8, 7, 0,
       7, 0, 0, 0, 7, 1, 8, 9, 7, 0, 8, 8, 0, 2, 2, 7, 7, 7, 8, 8, 8, 0,
       8, 0, 7, 8, 7, 8, 8, 8, 7, 0, 7, 0, 2, 9, 9, 1, 5, 9, 8])
```

In [68]:

kmeans.cluster_centers_

Out[68]:

```
array([[1.17684058e+01, 1.79862319e+01, 7.55610870e+01, 4.25743478e+02,
        9.38014493e-02, 7.83112319e-02, 4.32502659e-02, 2.46985362e-02,
        1.75413768e-01, 6.29150000e-02, 2.76519565e-01, 1.27060362e+00,
        1.96543261e+00, 1.99787174e+01, 7.22113043e-03, 2.04303768e-02,
        2.34826855e-02, 9.85089855e-03, 2.10551449e-02, 3.33913913e-03,
        1.29645652e+01, 2.40863043e+01, 8.42486957e+01, 5.13605797e+02,
        1.27910217e-01, 1.82056739e-01, 1.62445254e-01, 7.42174783e-02,
        2.76171014e-01, 7.95076812e-02],
       [1.91604762e+01, 2.14050000e+01, 1.26369048e+02, 1.14311905e+03,
        9.98419048e-02, 1.42173810e-01, 1.68243571e-01, 9.62930952e-02,
        1.93209524e-01, 5.99416667e-02, 7.13964286e-01, 1.27272143e+00,
        4.93688095e+00, 8.57366667e+01, 6.97321429e-03, 3.25688095e-02,
        4.46107143e-02, 1.63225714e-02, 2.27640476e-02, 3.93226190e-03,
        2.29930952e+01, 2.84192857e+01, 1.52921429e+02, 1.61173810e+03,
        1.38404762e-01, 3.40352381e-01, 4.35235714e-01, 1.82757143e-01,
        3.16050000e-01, 8.44071429e-02],
       [1.48048889e+01, 1.95548889e+01, 9.68246667e+01, 6.78477778e+02,
        9.82186667e-02, 1.18621889e-01, 1.05034444e-01, 5.72743333e-02,
        1.83950000e-01, 6.25370000e-02, 3.70153333e-01, 1.05712111e+00,
        2.65971111e+00, 3.36827778e+01, 6.25054444e-03, 2.72024333e-02,
        3.36346556e-02, 1.28329667e-02, 1.92910667e-02, 3.63720889e-03,
        1.71068889e+01, 2.64898889e+01, 1.13773333e+02, 8.96530000e+02,
        1.36545333e-01, 3.14547556e-01, 3.47453667e-01, 1.41027667e-01,
        3.04734444e-01, 8.76576667e-02],
       [2.74200000e+01, 2.62700000e+01, 1.86900000e+02, 2.50100000e+03,
        1.08400000e-01, 1.98800000e-01, 3.63500000e-01, 1.68900000e-01,
        2.06100000e-01, 5.62300000e-02, 2.54700000e+00, 1.30600000e+00,
        1.86500000e+01, 5.42200000e+02, 7.65000000e-03, 5.37400000e-02,
        8.05500000e-02, 2.59800000e-02, 1.69700000e-02, 4.55800000e-03,
        3.60400000e+01, 3.13700000e+01, 2.51200000e+02, 4.25400000e+03,
        1.35700000e-01, 4.25600000e-01, 6.83300000e-01, 2.62500000e-01,
        2.64100000e-01, 7.42700000e-02],
       [2.19266667e+01, 2.32366667e+01, 1.46633333e+02, 1.50011111e+03,
        1.05876667e-01, 1.77311111e-01, 2.41588889e-01, 1.27676667e-01,
        1.94844444e-01, 6.00200000e-02, 9.22911111e-01, 1.39977778e+00,
        6.71611111e+00, 1.31922222e+02, 7.83422222e-03, 4.41288889e-02,
        5.84833333e-02, 1.67322222e-02, 2.11144444e-02, 4.27744444e-03,
        2.75322222e+01, 3.09733333e+01, 1.88311111e+02, 2.32477778e+03,
        1.44977778e-01, 4.16088889e-01, 5.59288889e-01, 2.28133333e-01,
        3.10455556e-01, 8.43200000e-02],
       [1.71307843e+01, 2.14549020e+01, 1.12686275e+02, 9.14935294e+02,
        9.86378431e-02, 1.29746667e-01, 1.34528235e-01, 7.78741176e-02,
        1.88533333e-01, 6.05247059e-02, 5.50582353e-01, 1.26919020e+00,
        3.95376471e+00, 5.98396078e+01, 6.62015686e-03, 3.02961961e-02,
        3.82084314e-02, 1.48891176e-02, 1.94684314e-02, 4.03854902e-03,
        2.02923529e+01, 2.87207843e+01, 1.34923529e+02, 1.26694118e+03,
        1.36350588e-01, 3.13267843e-01, 3.74625490e-01, 1.63206863e-01,
        3.10478431e-01, 8.42862745e-02],
       [2.43160000e+01, 2.23750000e+01, 1.61910000e+02, 1.85420000e+03,
        1.03174000e-01, 1.68032000e-01, 2.35580000e-01, 1.40631000e-01,
        1.79210000e-01, 5.89640000e-02, 1.23297000e+00, 1.14835000e+00,
        8.82800000e+00, 1.99120000e+02, 6.61970000e-03, 2.92370000e-02,
        3.93590000e-02, 1.50810000e-02, 1.95370000e-02, 3.44310000e-03,
        3.09990000e+01, 2.98160000e+01, 2.08940000e+02, 2.93600000e+03,
        1.40180000e-01, 3.64520000e-01, 4.68620000e-01, 2.28060000e-01,
```

```
2.76880000e-01, 8.10070000e-02],
       [1.33393496e+01, 1.87629268e+01, 8.62058537e+01, 5.48933333e+02,
        9.22819512e-02, 8.97267480e-02, 5.94710976e-02, 3.34234309e-02,
        1.72340650e-01, 6.13792683e-02, 2.78245528e-01, 1.06987073e+00,
        1.97310813e+00, 2.29121138e+01, 5.74791870e-03, 2.19371138e-02,
        2.58573659e-02, 9.79302439e-03, 1.79366829e-02, 3.29744146e-03,
        1.48126016e+01, 2.49307317e+01, 9.69660163e+01, 6.73665041e+02,
        1.25623008e-01, 2.35954309e-01, 2.28506683e-01, 9.55779593e-02,
        2.80860976e-01, 8.24360163e-02],
       [9.67473077e+00, 1.77228205e+01, 6.18244872e+01, 2.87002564e+02,
        9.72243590e-02, 8.23483333e-02, 4.67906282e-02, 1.86753077e-02,
        1.84562821e-01, 6.93942308e-02, 3.03461538e-01, 1.52944872e+00,
        2.08427821e+00, 1.81051923e+01, 1.03231923e-02, 2.62625513e-02,
        3.52811410e-02, 1.03885641e-02, 2.58941026e-02, 5.29807692e-03,
        1.06348590e+01, 2.28014103e+01, 6.85088462e+01, 3.45534615e+02,
        1.33208077e-01, 1.65925128e-01, 1.44518590e-01, 5.28589744e-02,
        2.72964103e-01, 8.68620513e-02],
       [2.00092593e+01, 2.18959259e+01, 1.32700000e+02, 1.24794815e+03,
        1.03467407e-01, 1.61638519e-01, 1.97029259e-01, 1.09776296e-01,
        1.94181481e-01, 6.17955556e-02, 7.38003704e-01, 1.01643704e+00,
        5.13155556e+00, 9.47937037e+01, 5.93300000e-03, 3.06088889e-02,
        4.16533333e-02, 1.52032593e-02, 1.73874074e-02, 3.84103704e-03,
        2.52788889e+01, 2.92848148e+01, 1.68740741e+02, 1.95666667e+03,
        1.45407407e-01, 4.14522222e-01, 5.19233333e-01, 2.14877778e-01,
        3.23803704e-01, 9.26714815e-02]])
In [69]:
#fig, ax = plt.subplots(2,5, figsize=(8,3))
#centers = kmeans.cluster_centers_.reshape(1,1,1)
#for axi, center in zip(ax.flat,centers):
 # axi.set(xticks=[],yticks=[])
    axi.imshow(center,interpolation='nearest',cmap=plt.cm.binary)
In [70]:
mat= confusion_matrix(df1.target,clusters)
Out[70]:
                   52,
                              9,
                                  49, 10,
                                                       27],
array([[ 5,
             42,
                                             17,
                                                   0,
                         1,
                   38,
                                   2,
                                         0, 106,
                                                  78,
       [133,
               0,
                         0,
                              0,
                                                        01,
               0,
                    0,
                         0,
                                         0,
                                              0,
                                                   0,
                                                        0],
          0,
                              0,
                                    0,
                                              0,
                                   0,
          0,
               0,
                    0,
                         0,
                              0,
                                         0,
                                                   0,
                                                        0],
                         0,
       Γ
          0,
               0,
                    0,
                              0,
                                                        0],
                         0,
                                   0,
                                         0,
          0,
               0,
                                              0,
       [
                    0,
                              0,
                                                   0,
                                                        0],
       0,
               0,
                    0,
                         0,
                              0,
                                   0,
                                         0,
                                              0,
                                                        0],
                              0,
          0,
               0,
                         0,
                                         0,
       0,
                                   0,
                                              0,
                                                   0,
                                                        0],
```

Principal Component Analysis

0,

0,

0,

0,

0,

0,

0,

0,

0,

0],

0]], dtype=int64)

mat

0,

0,

0,

```
In [71]:
from sklearn import datasets
cancer = datasets.load_breast_cancer()
In [72]:
X=cancer.data
y=cancer.target
In [73]:
pca = decomposition.PCA(n_components=3)
pca.fit(featuress)
X1 = pca.transform(featuress)
In [74]:
print(cancer.data.shape)
print(featuress.shape)
print(X1.shape)
(569, 30)
(569, 30)
(569, 3)
In [75]:
from sklearn.model_selection import train_test_split
(train_feat,test_feat,train_classes,test_classes)= train_test_split(featuress,classess,trai
dectree = DecisionTreeClassifier()
dectree.fit(train_feat,train_classes)
Out[75]:
DecisionTreeClassifier()
```

In [76]:

```
from sklearn import metrics
pred=dectree.predict(test_feat)
print("Accuracy:",metrics.accuracy_score(test_classes,pred))
```

Accuracy: 0.9228070175438596

In [77]:

```
from sklearn.model_selection import train_test_split
  (train_feat,test_feat,train_classes,test_classes)= train_test_split(X1,classess,train_size=
  dectree = DecisionTreeClassifier()
  dectree.fit(train_feat,train_classes)
```

Out[77]:

DecisionTreeClassifier()

In [78]:

```
from sklearn import metrics
pred=dectree.predict(test_feat)
print("Accuracy:",metrics.accuracy_score(test_classes,pred))
```

Accuracy: 0.9228070175438596

In [79]:

```
plt.scatter(X1[:,0],X1[:,1],c=cancer.target,edgecolor='none',alpha=0.5,cmap=plt.cm.get_cmap
plt.xlabel('M')
plt.ylabel('B')
plt.colorbar();
```


Select K Percentile and K Best

```
In [80]:
```

X_train,X_test,y_train,y_test = train_test_split(featuress,classess,test_size=0.2,random_st

In [81]:

```
select = SelectPercentile(percentile=80)
select.fit(X_train,y_train)
```

Out[81]:

SelectPercentile(percentile=80)

In [82]:

```
X_train_selected = select.transform(X_train)
print("X_train.shape: {}".format(X_train.shape))
print("X_train_selected.shape: {}".format(X_train_selected.shape))
```

```
X_train.shape: (455, 30)
X_train_selected.shape: (455, 24)
```

```
In [83]:
```

In [84]:

```
from sklearn.tree import DecisionTreeClassifier
X_test_selected = select.transform(X_test)
lr = DecisionTreeClassifier()
lr.fit(X_train,y_train)
print("Score with all features: {:.3f}".format(lr.score(X_test,y_test)))
lr.fit(X_train_selected,y_train)
print("Score with all features: {:.3f}".format(lr.score(X_test_selected,y_test)))
```

Score with all features: 0.912 Score with all features: 0.939

In [85]:

```
select=SelectKBest(k=1)
select.fit(X_train,y_train)
```

Out[85]:

SelectKBest(k=1)

In [86]:

```
X_train_selected = select.transform(X_train)
print("X_train.shape: {}".format(X_train.shape))
print("X_train_selected.shape: {}".format(X_train_selected.shape))
```

X_train.shape: (455, 30)
X_train_selected.shape: (455, 1)

```
In [87]:
```

```
mask = select.get_support()
print(mask)
plt.matshow(mask.reshape(1,-1),cmap='gray_r')
plt.xlabel("Sample index")
plt.yticks(())
```

[False False False

Out[87]:

```
([], [])
```


In [88]:

```
from sklearn.tree import DecisionTreeClassifier
X_test_selected = select.transform(X_test)
lr = DecisionTreeClassifier()
lr.fit(X_train,y_train)
print("Score with all features: {:.3f}".format(lr.score(X_test,y_test)))
lr.fit(X_train_selected,y_train)
print("Score with all features: {:.3f}".format(lr.score(X_test_selected,y_test)))
```

Score with all features: 0.904 Score with all features: 0.877

Feature Seletion-Model Based

In [126]:

```
from sklearn.feature_selection import SelectFromModel
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
select = SelectFromModel(RandomForestClassifier(n_estimators=25,random_state=1),threshold="
#select = SelectFromModel(SVC(kernel='linear'))
```

In [127]:

```
select.fit(X_train,y_train)
X_train_l1 = select.transform(X_train)
print("X_train.shape: {}".format(X_train.shape))
print("X_train_l1.shape: {}".format(X_train_l1.shape))
```

X_train.shape: (455, 30)
X_train_l1.shape: (455, 15)

In [128]:

```
mask = select.get_support()
print(mask)
plt.matshow(mask.reshape(1,-1),cmap='gray_r')
plt.xlabel("Sample index")
plt.yticks(())
```

Out[128]:

([],[])

In [129]:

```
X_test_l1 = select.transform(X_test)
score = SVC().fit(X_train,y_train).score(X_test,y_test)
print("Test Score: {:.3f}".format(score))
score = SVC().fit(X_train_l1,y_train).score(X_test_l1,y_test)
print("Test Score: {:.3f}".format(score))
```

Test Score: 0.974 Test Score: 0.965

Iterative Feature Selection

In [109]:

```
from sklearn.feature_selection import RFE
select = RFE(RandomForestClassifier(n_estimators=1,random_state=0),n_features_to_select=10)
select.fit(X_train,y_train)
```

Out[109]:

In [110]:

```
mask = select.get_support()
print(mask)
plt.matshow(mask.reshape(1,-1),cmap='gray_r')
plt.xlabel("Sample index")
plt.yticks(())
```

[False False True False True True True True True True False True False False]

Out[110]:

([], [])

In [113]:

```
from sklearn.linear_model import LogisticRegression
X_train_rfe =select.transform(X_train)
X_test_rfe = select.transform(X_test)
score = LogisticRegression().fit(X_train_rfe,y_train).score(X_test_rfe,y_test)
print("Test score: {:.3f}".format(score))
print("Test score: {:.3f}".format(select.score(X_test,y_test)))
```

Test score: 0.956 Test score: 0.965

Conclusion

Top 5 Accuracy:
Random Forest=0.97
SVM kernel:rbf= 0.96
KNN shvc=95.96
Multticlass Logistic Regression=95.3
Decision Tree Classifier entropy=0.94

	Decision Tree Classifier entropy=0.94
In	[]:
In	[]:
In	[]: