Motion Planning

Yaw: 繞物體的z軸旋轉

Pitch: 繞物體的y軸旋轉

Roll: 繞物體的 x 軸旋轉

PID Control

Theory

調整方式	上升時間	超調量	穩態誤差	穩定性
↑ K _p	減少↓	增加个	減少↓	變差↓
↑ K _i	小幅減少」	增加个	大幅減少↓↓	變差↓
↑ K _d	小幅減少凶	減少↓	變動不大→	變好 个

Algorithm

#Note: Set dt to small value, tuning constants Kp, Ki and Kd to appropiate values, and goal_speed to the desired flight speed.

```
previous_error = 0
integral = 0
while true{
 actual_speed = getGroundSpeed()
 error = goal_speed - actual_speed
 integral = integral + error*dt
 derivative = (error - previous_error)/dt
 output = Kp*error + Ki*integral + Kd*derivative
 previous error = error
 setThrottleLevel(output)
 wait(dt)
```

Landing

Lab06 PID Control

PID Control (100%)

• 目標: 調整 PID 參數使無人機能流暢穩定地移動,且在追蹤 marker

時能保持一定距離並讓 marker 在畫面中間

• 評分: 1~10分由助教依各組無人機表現狀況給分,而實際總分則為70+得分*3

Midterm Project

