# AUSLEGESCHRIFT 1 171 222

Internat. Kl.:

F06h

47 h - 2

Deutsche Kl.:

1171222

Aktenzeichen:

Nummer:

E 18584 XII / 47 h 24. Oktober 1959

Anmeldetag:

Auslegetag:

27. Mai 1964

Zum Gewichtsausgleich von Lasten, welche nicht horizontal bewegt werden, kann man unter Verwendung geeigneter Umlenkmittel (Seile, Ketten usw.) z. B. entsprechende Gegengewichte verwenden. Da man jedoch die zu bewegende Masse bis zum doppelten Wert vergrößert, wirkt dieser Umstand einer leichten Bewegbarkeit hemmend entgegen.

Es werden daher im zunehmenden Maße Federkräfte zur Kompensation der Lastgewichte herangezogen. Dafür gibt es je nach den Weglängen der 10 Lastgewichte verschiedene Methoden. Sind die Weglängen groß, so besteht das Problem im wesentlichen im Ersatz einer Seilumlenkung mit Gegengewicht durch eine solche mit Federkraft. Wirkt die Last nicht lotrecht, sondern wird längs einer schiefen, 15 aber geraden Bahn geführt, dann ist nur die entsprechende Komponente auszugleichen.

Beim Federausgleich ist die Federkraft Z = f(s)der Federdehnung s proportional. Daher kann der Ausgleich Z = Q ohne besondere Hilfsmittel nur bei 20 der Federausdehnung  $s = Z \cdot \frac{s_0}{Z_0}$  erreicht werden.

Um den Ausgleich in jeder Lage der Last Q zu erzielen, sind deshalb die Hebelarme, an denen QLast Q und damit von der Federdehnung s zu bringen. Dies kann in bekannter Weise dadurch bewirkt werden, daß man entweder den Hebelarm der Lastseite oder jenen der Federseite durch Anwendung einer Spirale als Seilrolle veränderlich gestaltet. Bei 30 Verwendung der Spiralrolle z. B. auf der Lastseite lautet die Gleichgewichtsbedingung:

$$Q \cdot q = Z \cdot a = \frac{Z_0}{s_0} \cdot s \cdot a. \tag{1}$$

Da der Seilablaufpunkt an der Spirale, auch wenn man annimmt, daß sich die Ablaufrichtung des Seiles nur in sich parallel verschiebt, sich in bezug auf den Mittelpunkt der Spirale laufend in der Ablaufrichtung verschiebt, ergibt die allgemeine Ableitung 40 der Funktion der Spirale  $r = f(\varphi)$  keine einfache Funktion. Es läßt sich die Integration der aufzustellenden Differentialgleichung zweiter Ordnung jedoch durchführen. Aus fertigungstechnischen Gründen werden für die Federausgleichsvorrichtungen viel- 45 fach archimedische oder nahezu archimedische Spiralen verwendet, deren Fehler gegenüber der rechnerischen Funktion  $r = f(\varphi)$  in Kauf genommen wird. Der Fehler der archimedischen Spirale wird um so kleiner, je größer  $\varphi$  wird, d. h. je weiter die benutzten Win- 50 dungen außen liegen. Darauf kann man konstruktiv gegebenenfalls Rücksicht nehmen.

Kurvengetriebe zum Ausgleich einer über ihre Exkursion konstant wirkenden Last

Anmelder:

ELIN-UNION Aktiengesellschaft für elektrische Industrie, Wien

Vertreter:

Dipl.-Ing. Dipl. oec. publ. D. Lewinsky, Patentanwalt, München-Pasing, Agnes-Bernauer-Str. 202

Als Erfinder benannt: Dipl.-Ing. Harald Angel, Wien

Beanspruchte Priorität: Österreich vom 30. Oktober 1958 (A 7540)

Die Nachteile eines solchen Federausgleiches gemäß der allgemeinen Formel (1) liegen auf der Hand: und Z wirken, in Abhängigkeit von der Stellung der 25 Für eine bestimmte auszugleichende Last Q gilt

$$q = \frac{Z_0}{s_0} \cdot \frac{s \cdot a}{Q} = \frac{Z_0}{s_0} \cdot \frac{a^3}{Q} \cdot \varphi = K_f \cdot \frac{1}{Q} \cdot A \cdot \varphi.$$
(2)

Hierin ist  $\frac{Z_0}{s_0} = K_f$  die Federkonstante, während  $A = a^2$  die Ablaufkonstante des Systems darstellt und konstruktiv für eine bestimmte Spirale mit an-35 geschlossener Zylinderrolle festliegt. Ändert man Q auf  $Q + \Delta Q$ , so ergibt sich eine neue Spiralenfunktion

$$\bar{q} = \frac{K_f \cdot A}{Q + \Delta Q} \cdot \varphi \tag{3}$$

also eine Spirale anderer Steigung. Soll diese wieder auf die ursprüngliche Spirale

$$q = \frac{K_f \cdot A}{Q} \cdots \cdot \varphi$$

zurückgeführt werden, so bleibt noch der Weg offen 
$$\frac{K_f \cdot A}{Q} = \frac{\overline{K}_f A}{Q + Q Q} \quad \text{oder} \quad \frac{K_f \cdot \overline{A}}{Q + Q Q}. \quad (4)$$

Dies bedeutet jedoch entweder die Änderung der Federkonstante (andere Feder) oder die Änderung der Ablaufkonstante A (Ändern von  $a = \sqrt{A}$ , dem

Radius der Zylinderrolle). Beides wäre praktisch nur durch Teileaustausch möglich. Diese schwerwiegenden Tatsachen bilden für die praktische Anwendung der Federausgleiche sehr erhebliche Einschränkungen, die nur dort in Kauf zu nehmen sind, wo die Verringerung der bewegten Massen schwerwiegender ist als der Mangel an Nachstellbarkeit.

Außer der mangelnden Nachstellbarkeit für eine geänderte Last Q fehlt auch jede Möglichkeit, bei Fertigungsabweichungen der verwendeten Feder- 10 charakteristik vom für ein bestimmtes Q und ein bestimmtes Rollensystem errechneten Wert eine Korrektur (Einstellbarkeit) vorzunehmen. Dies ist vielfach noch schwerwiegender, da die Steifigkeit

einer einmal gewickelten Feder nicht mehr ohne weiteres korrigiert werden kann.

Um alle genannten Nachteile zu vermeiden und eine universell verwendbare beliebig nach- und einstellbare Ausgleichsvorrichtung zu erhalten, muß man einen neuen Weg gehen, der aus folgender Überlegung resultiert:

Die Änderung der Ablauffunktion infolge einer um 40 geänderten Last lautet nach den Gleichungen (2)

$$\Delta q = q - \overline{q} = Kf \cdot A \cdot q \cdot \frac{\Delta Q}{Q(Q + \Delta Q)}$$
 (5)

oder bei

$$q = m \cdot \varphi$$

$$q = \overline{m} \cdot \varphi$$

$$\Delta m = m - \overline{m} = K_f \cdot A \cdot \frac{\Delta Q}{Q \cdot (Q + \Delta Q)} \approx K_f \cdot A \cdot \frac{\Delta Q}{Q^2} \cdots \Delta Q \ll Q$$

$$\overline{m} = m - \Delta m \approx m - K_f \cdot A \cdot \frac{\Delta Q}{Q^2} \approx m \cdot \left(1 - \frac{\Delta Q}{Q}\right)$$

$$\overline{q} \approx m \cdot \left(1 - \frac{\Delta Q}{Q}\right) \cdot \varphi \approx q \cdot \left(1 - \frac{\Delta Q}{Q}\right).$$
(6)

Man ersieht daraus, daß die korrigierte Spirale Sie läßt sich nicht durch Justiermaßnahmen auf die ursprüngliche Spirale zurückführen, da sie, wie schon oben bemerkt, eine andere Steigung besitzt.

Will man eine Abhängigkeit schaffen, um zu einer Fehlerkompensation auf Justierwegen zu kommen, 35 kann dies durch eine einfach durchzuführende Maßnahme ohne Teileaustausch erfolgen, indem sowohl der Hebelarm der Last als auch der der Federseite durch getriebliche oder geometrische Maßnahmen zum Zwecke einer vollkommenen Justierbarkeit der 40 Federgewichtsanordnung in jeder Lage der Last veränderlich gestaltet sind. So ist es bekanntgeworden, z. B. für den federseitigen Aufhängedraht eine konische Nutentrommel vorzusehen, von der der Aufhängedraht zum Gerät über eine weitere Nutentrommel 45 geführt wird. Indem die Ganghöhe der Nutenwindungen mit zunehmendem Durchmesser größer gemacht wird, kann erreicht werden, daß der Aufhängedraht immer genau aufgewickelt bzw. daß der Angriffspunkt des Aufhängedrahtes auf der Führungs- 50 trommel auf der Geräteseite einer der Verschiebung des Angriffspunktes auf der federseitigen Aufwickeltrommel entsprechenden Verschiebung unterworfen wird.

Weiterhin ist ein Kurvengetriebe zur Erzeugung 55 eines konstant bleibenden Drehmomentes bei Verwendung einer Feder als Kraftspeicher bekanntgeworden, bei der Getriebeteile in Form logarithmischer Spiralen angewendet werden. Diese logarithmischen Spiralräder, die gegensinnig laufen, weisen 60 divergierende Drehzahlen auf, wobei das Verhältnis der Winkelgeschwindigkeiten stellungsabhängig vom gerade in Eingriff bzw. Funktion befindlichen Radius der treibenden Spirale abhängt.

Sollte diese Vorrichtung für einen Lastausgleich 65 mit Federgegenkraft entsprechend der erfindungsgemäßen Anordnung verwendet werden, müßten weitere kreisförmige Rollen für Last und Federaus-

gleichsseil an die Drehachsen der logarithmischen Spiralräder gekoppelt werden. Außerdem müßten durch eine neue Konstante  $m \cdot \left(1 - \frac{\Delta Q}{Q}\right)$  dargestellt ist. Spiralräder gekoppelt werden. Außerdem müßten die Achsabstände der Spiralräder entsprechend den notwendigerweise zu variierenden relativen Eingriffsbzw. Ablaufpunkten jeweils verändert werden können, wodurch sich ein äußerst umständliches Gebilde ergeben würde.

Eine auf ähnlichen Grundüberlegungen beruhende weitere bekannte Anordnung ist auf außerordentlich kleine Verstellmöglichkeit beschränkt.

Die Erfindung betrifft ein Kurvengetriebe zum Ausgleich einer über ihre Exkursion konstant wirkenden Last mit Hilfe von Federn linearer oder annähernd linearer Kennlinie, wobei die Hebelarme sowohl der Last- als auch der Federseite in jeder Lage der Last veränderlich gestaltet sind. Die Aufgabe der Erfindung besteht in der Schaffung eines Kurvengetriebes unter Verwendung von zwei Spiralrollen, eine für die Last und eine für die Federseite, bei dem die Spiralrollen bei geänderter Last weder ausgetauscht noch die Ausgleichsfeder ausgebaut und durch eine andere, mit der erforderlichen abgeänderten Federkonstante ersetzt zu werden braucht. Zur Lösung der gestellten Aufgabe werden zwei logarithmische Spiralrollen verwendet, deren Ablauffunktionen untereinander verschieden sind. Gemäß einem weiteren Erfindungsvorschlag werden die beiden Spiralrollen auf gemeinsamer Achse gelagert und gekuppelt.

Der Ablaufweg der lastseitigen Spirale entspricht hierbei stets genau oder zumindest annähernd genau dem Quadrat des Auflaufweges auf der federseitigen Spirale. Die Bildung der Quadratfunktion der lastseitigen Spirale kann entweder durch ein Getriebe, vorzugsweise jedoch dadurch hergestellt werden, daß die lastseitige Spirale die doppelte Steigung der gewichtsseitigen Spirale aufweist.

Zu Justierzwecken sind die beiden Spiralrollen gegeneinander stufenweise oder kontinuierlich verdrehbar angeordnet. Die Grundvorspannung der Ausgleichsfeder kann in der erfindungsgemäßen Anordnung durch Längenänderung des federseitigen Zugmittels eingestellt werden. Insbesondere kann die Änderung der Grundvorspannung zur Feineinstellung und die stufenweise oder kontinuierliche Verdrehung der beiden Spiralen zur Grobeinstellung verwendet werden. Die Justiereinstellung kann auch dadurch erfolgen, daß man die normalerweise parallel, d. h. vertikal wirkenden Kräfte der Last und der Feder unter einem Winkel aufeinander wirken läßt und diesen Winkel auf ein bestimmtes Maß einstellt.

Zum Zweck einer geringen Bauhöhe des Feder- 10 systems und einfacher Justierbarkeit des federseitigen Zugmittels kann dieses gemäß einem weiteren Vorschlag der Erfindung an einer oder mehreren beweglichen Rollen in Art eines Flaschenzuges umgelenkt werden. Es kann auch eine Kombination der Einstell- 15 barkeit der Federlänge des federseitigen Zugmittels

und der gegenseitigen Winkelverdrehung der Spiralen erreicht werden durch die Vorsehung einer Auslenkung in Form einer Umlenkrolle, die nahe an die Spirale gelegt wird und den Auflaufwinkel des Zugmittels ändert und gegebenenfalls bewegbar ist.

Die nähere Erläuterung der Erfindung erfolgt an Hand rechnerischer Überlegungen.

Setzt man für  $q = f(\varphi)$  die Funktion

$$q = e^{m \varphi} \tag{7}$$

an, ergibt sich für die lastseitige Spirale

$$q = e^{m\varphi}$$

$$q = e^{m\varphi}$$

$$\Delta q = q - \bar{q} = \frac{K_f \cdot A}{Q} \cdot \varphi \cdot \frac{\Delta Q}{Q + \Delta Q} = q \cdot \frac{\Delta Q}{Q + \Delta Q},$$

andererseits ist

$$\Delta q = e^{m\varphi} - \frac{e^{m\varphi}}{e^{\Delta m\varphi}}$$

weil  $\overline{m} = m - \Delta m$ , weiter ist

$$e^{Am\varphi} = \frac{e^{m\varphi}}{e^{m\varphi} - \Delta q} = \frac{q}{q - \Delta q} = \frac{q}{q - q \cdot \frac{\Delta Q}{Q + \Delta Q}} = \frac{Q + \Delta Q}{Q}$$

50

und

$$e^{\overline{m}\,\varphi} = \overline{q} = e^{(m-\Delta\,m)\,\varphi} = e^{m\,\varphi - \ln\frac{Q+\Delta\,Q}{Q}}$$

Jetzt hat die neue Spirale  $\bar{q}$  die erwünschte Eigenschaft, durch Verdrehung um ein

$$\delta \varphi = \ln \frac{Q + \Delta Q}{Q}$$

die Korrektur zuzulassen. Allerdings stimmt durch 40 den Ansatz  $q = e^{m \varphi}$  das Ausgleichsgesetzt nicht mehr, welches gemäß der Gleichung (1) lautet:

$$Q\cdot q=\frac{Z_0}{s_0}\cdot s\cdot a,$$

solange a als konstant angesehen wird, da wegen der Gleichung (7)

$$Q \cdot e^{m \varphi} = \frac{Z_0}{s_0} \cdot s \cdot a$$

und daraus

$$s \cdot a = Q \frac{s_0}{Z_0} e^{m \varphi} \tag{8}$$

ist, d. h. das Produkt a · s der federseitigen Korrekturspirale muß ebenfalls in einer e-Funktion geändert werden, worin a und s Funktionen von  $\varphi$  darstellen.

Da bei der logarithmischen Spirale die Bogenlänge eine abgeleitete e-Funktion des Drehwinkels  $\varphi$  ist, 60 muß zwangsläufig für s der Ansatz gelten:

$$s = s_0 + \frac{K}{c} (e^{c \varphi} - 1)$$
 (9)

oder weiter nach Gleichung (1)

$$Q \cdot e^{m\varphi} = \frac{Z_0}{s_0} K \cdot e^{c\varphi} \left( s_0 + \frac{K}{c} e^{c\varphi} - \frac{K}{c} \right).$$

$$a = e^{m\varphi}$$

und aus Gleichung (5)

$$1q \doteq e^{m\varphi} - \frac{e^{m\varphi}}{e^{\Delta m\varphi}},$$

Macht man die Vorspannung  $s_0 = \frac{K}{c}$ , so wird

$$e^{m\varphi} = \frac{Z_0}{Q} \cdot K \cdot e^{2c\varphi},$$

daher ist

$$m\varphi = \ln \frac{Z_0}{Q} + \ln K + 2c\varphi$$

$$c \varphi = \frac{m \varphi}{2} - \frac{1}{2} \ln \frac{Z_0}{Q} - \frac{1}{2} \ln K.$$
 (10)

Der Ablaufpunkt der Korrekturspirale auf der Federseite hat also gegenüber der Gewichtsspirale em p dem Gesetz

$$e^{c \varphi} = e^{\frac{m \varphi}{2}}$$

zu gehorchen und eine konstante Grundverschiebung

$$\frac{1}{2} \ln \frac{Z_0}{Q} + \frac{1}{2} \ln K = \text{const}$$

aufzuweisen. Der enorme Vorteil eines solchen Systems liegt darin, daß sämtliche nur möglichen Fehlerquellen nunmehr als additives Glied im Exponenten der logarithmischen Spirale liegen und daher z. B. durch einfache Verdrehung der beiden Spiralen gegeneinander kompensiert werden können.

Während die bisherigen Überlegungen nur das allgemeine neue Prinzip ohne Berücksichtigung von Anfangsbedingungen erläuterten, seien in der folgen-65 den Ableitung noch alle konstruktiv interessanten Konstanten, insbesondere auch das Zustandekommen der oben eingeführten Konstanten K und der Einfluß der Grundvorspannung so der Ausgleichsfeder dar-

gestellt. Ausgangspunkt dieser Ableitung bietet aus Gründen der einfacheren Ableitbarkeit die federseitige Spirale. Beim Vergleich des exakten Ergebnisses zu den vorangegangenen, mehr qualitativen Überlegungen muß dies berücksichtigt werden.

Aus Gleichung (1) sei  $Z \cdot s = Qq = M$  das Zugmoment der Feder, welches durch das Lastmoment Qq aufzuheben ist.

Hierbei ist

$$Z=\frac{Z_0}{s_0} (s_0 + \Delta s).$$

Falls die Kurve der federseitigen Spirale gegeben ist durch

$$r = e^{\pi \varphi}$$
,

so ist der jeweilige Hebelarm a vom Ablaufpunkt des Seiles gegeben durch

$$a = r \cdot \sin w \,. \tag{12}$$

Da der Winkel w bekanntlich konstant ist, ist

$$\operatorname{tg} \psi = \frac{r}{r'} = \frac{1}{n},$$

$$\sin \varphi = \frac{1}{\sqrt{n^2 + 1}} = N, \qquad (13)$$

$$\cos \psi = \frac{n}{\sqrt{n^2 + 1}} = n \cdot N \tag{14}$$

$$a=r\cdot N. \tag{15}$$

Für die Änderung des Federweges \( \Delta \) s gilt

$$\Delta s = \Delta b - \Delta h, \tag{16}$$

des Ablaufpunktes in vertikaler Richtung für eine bestimmte Änderung des Federweges sind. Für die 20 Bogenlänge ergibt sich bei einer Verdrehung um den Winkel  $\Delta \varphi$  mit  $\varphi = \varphi_0 + \Delta \varphi$ :

$$\Delta b = \int_{-\infty}^{\varphi_0 + \Delta \varphi} \sqrt{r^2 + r'^2} \, d\varphi = \int_{-\infty}^{\varphi_0 + \Delta \varphi} \sqrt{e^{2n\varphi} + n^2} \cdot e^{2n\varphi} \, d\varphi = \int_{-\varphi_0}^{\varphi_0 + \Delta \varphi} \sqrt{1 + n^2}$$

$$\mathrm{d}\varphi = \frac{1}{N} \int_{-\infty}^{\varphi_0 + \Delta \varphi} \mathrm{d}\varphi = \frac{1}{Nn} \cdot \mathrm{e}^{n\varphi} \int_{-\varphi_0}^{\varphi_0 + \Delta \varphi} = \frac{1}{nN} \left( \mathrm{e}^{n\varphi_0} \, \mathrm{e}^{n\Delta \varphi} - \mathrm{e}^{n\varphi_0} \right) = \frac{1}{nN} \cdot \mathrm{e}^{n\varphi_0} \left( \mathrm{e}^{n\Delta \varphi} - 1 \right). \tag{17}$$

Für ∆h ergibt sich

$$\Delta h = (r - r_0) \cdot \cos \psi = (e^{n \varphi_0} e^{n\Delta \varphi} - e^{n \varphi_0}) \cdot n \cdot N = n \cdot N e^{n \varphi_0} \cdot (e^{n\Delta \varphi} - 1). \tag{18}$$

Nach der Gleichung (16) ist daher

$$\Delta s = \left(\frac{1}{n \cdot N} - n \cdot N\right) \cdot e^{n \varphi_0} \cdot \left(e^{n\Delta \varphi} - 1\right) = \frac{N}{n} \cdot e^{n \varphi_0} \cdot \left(e^{n\Delta \varphi} - 1\right), \tag{19}$$

und nach der Gleichung (11) ergibt sich für das Zugmoment der Feder

$$M = Z \cdot a = \frac{Z_0}{s_0} \cdot (s_0 + \Delta s) \cdot a = \frac{Z_0}{s_0} \left( s_0 + \frac{N}{n} e^{n \varphi_0} + n \Delta \varphi - \frac{N}{n} e^{n \varphi_0} \right) r \cdot N. \tag{20}$$

Stellt man

$$s_0 = \frac{N}{n} \cdot e^{n \varphi} \tag{21}$$

ein, um für M zu einer einfachen e-Funktion zu kommen, so wird

$$M = \frac{Z_0 N}{s_0 n} \cdot e^{n \varphi_0} + n \Delta \varphi e^{n \varphi_0} \cdot e^{n \Delta \varphi} \cdot N$$

und weiter also

$$M = N \cdot Z_0 \cdot e^{2n\Delta \varphi} + n \varphi_0. \tag{22}$$

Das ist das Zugmoment der Feder, welches durch das Lastmoment  $oldsymbol{ec{Q}}\cdotoldsymbol{q}$  aufzuheben ist. Daher muß sein:

$$Q \cdot q = M = N \cdot Z_0 \cdot e^{2n\Delta \varphi} + n \varphi_0,$$

woraus sich für den lastseitigen Hebelarm die Funktion 65 damit wird

$$q = \frac{Z_0 N}{Q} \cdot e^{2n\Delta \varphi} + n \dot{\varphi}_0 \qquad \qquad \ddot{r} = \frac{q}{p} \cdot$$

wobei  $\Delta b$  die Bogenlänge und  $\Delta h$  die Abwanderung

$$\mathrm{d}\varphi = \frac{1}{N} \int_{\varphi_0} \mathrm{e}^{n\varphi} \,\mathrm{d}\varphi = \frac{1}{Nn} \cdot \mathrm{e}^{n\varphi} \int_{\varphi_0} = \frac{1}{nN} \left( \mathrm{e}^{n\varphi_0} \,\mathrm{e}^{n\Delta\varphi} - \mathrm{e}^{n\varphi_0} \right) = \frac{1}{nN} \cdot \mathrm{e}^{n\varphi_0} \left( \mathrm{e}^{n\Delta\varphi} - 1 \right). \tag{17}$$

$$Ah = (r - r_0) \cdot \cos w = (e^{n \varphi_0} e^{n\Delta \varphi} - e^{n \varphi_0}) \cdot n \cdot N = n \cdot N e^{n \varphi_0} \cdot (e^{n\Delta \varphi} - 1). \tag{18}$$

$$+\frac{N}{n}e^{n\,\varphi_0}+n\,\Delta\,\varphi\,-\,\frac{N}{n}\,e^{n\,\varphi_0}\Big)\,r\cdot N. \tag{20}$$

$$q = e^{2n\Delta \varphi} + n \varphi_0 + \ln \frac{Z_0}{Q} + \ln N \quad (23)$$

ergibt. Die Funktion der lastseitigen Spirale lautet analog der Gleichung (12)

$$\bar{r}=\frac{q}{\sin\overline{\psi}}$$
,

worin  $\sin \bar{\psi} = \text{const}$ , daher

$$\frac{\overline{r}}{r} = \frac{q}{q'} = \operatorname{tg}\overline{\psi} = \frac{1}{2n}$$

$$\sin \overline{\psi} = \frac{\operatorname{tg} \overline{\psi}}{\sqrt{1 + \operatorname{tg} \overline{\psi}^2}} = \frac{1}{\sqrt{4 \operatorname{n}^{2+1}}} = P,$$

Somit beträgt die Funktion der lastseitigen Spirale

$$\bar{r} = e^{2n \Delta \varphi} + n \varphi_0 + \ln \frac{Z_0}{Q} + \ln \frac{N}{P}$$
. (24)

Nach der Gleichung (21) ist  $N \cdot e^{n\varphi} = s_0 \cdot n$ , wo- 5 durch sich für  $\bar{r}$ 

$$\bar{r} = e^{n \Delta \varphi} + \ln s_0 + \ln \frac{Z_0}{O} + \ln \frac{n}{P}$$
 (25)

ergibt. Diese Schlußformeln stellen die tatsächliche 10 Kurvenform der lastseitigen Ablaufspirale

$$\bar{r} = f(\Delta \varphi)$$

dar, während in den allgemeinen Überlegungen nur die wirksamen Hebelarme der beiden Seilabläuse 15 diskutiert waren.

Wie erwartet, zeigt das Ergebnis richtig an, daß die Lastspirale r die doppelte Steigung der Federspirale aufweist und im übrigen alle Korrekturwerte im Exponenten enthält. Die Formel (24) legt die 20 Grundverdrehung In  $\frac{N}{P}$  fest, welche durch die Eigenschaft aller Spiralen bedingt ist, daß der Ablaufpunkt nicht mit dem Schnittpunkt von Zugrichtung und deren Normalen durch den Mittelpunkt zusammen- 25 fällt. Bei allen nichtlogarithmischen Spiralen verursacht die Berücksichtigung dieser Tatsache große Schwierigkeiten. Den sehr wichtigen Einfluß der Ausgangsstellung  $\varphi_0$  im Verhältnis zu dem für diese Anfangsbeiden Exponentsummanden

$$n \varphi_0$$
 und  $\ln \frac{Z_0}{Q}$ 

an. Weiter wurde während der Ableitung der Ansatz

$$s_0 = \frac{N}{n} \cdot e^{n \varphi_0}$$

gemacht und die Anfangsbedingung der Spiralen- 40 gruppe mit der Anfangsbedingung der Feder für die Anfangskraft  $Z_0$  damit festlegt. Die Formel (24) kann daher auch wie Formel (25) geschrieben werden. Weicht das Kräfteverhältnis  $\frac{Z_0}{Q}$  vom Sollwert ab, 45

muß also  $\varphi_0$  um ein  $\Delta \varphi$  korrigiert werden gemäß Formel (24). Dabei verändert sich auch

$$s_0 = \frac{N}{n} \cdot e^{n \varphi_0}$$

50

auf den Wert

$$s_0 \pm \Delta s_0 = \frac{N}{n} \cdot e^{n(\varphi_0 \pm \Delta \varphi_0)},$$

also mit einer e-Funktion. In genügend kleinen 55 Bereichen ist die e-Funktion als linear anzusehen, und es können daher kleine Korrekturen durch reine  $s_0$ -Veränderungen durchgeführt werden.

Die erfindungsgemäße Lösung sieht vor, die so-Justiereinstellung nur zur Feineinstellung zu ver- 60 wenden, wogegen die Grobeinstellung durch stufenweise Verdrehung der beiden Spiralen gegeneinander bewerkstelligt werden kann.

Durch die Wahl der logarithmischen Spiralen ist die Einstellmöglichkeit auf verschiedene an sich 65 konstant bleibende Lasten gegeben. Auch ist es möglich, ein und dieselbe Vorrichtung für stark verschiedene Lasten justierbar zu machen, d. h. für verschiedene

schwere Geräte, die auf dem gleichen Stativ mit einheitlichen Ausgleichsfedern montiert werden können. Durch die Erfindung wird eine vereinfachte Montage und Lagerhaltung ermöglicht.

Eine kurze schematische Darstellung der erfindungsgemäßen Anordnung erfolgt an Hand der Figuren.

In Fig. 1 sind die beiden üblicherweise verwendeten Lastausgleichsvorrichtungen durch Anwendung von Gegengewichten G bzw. von Ausgleichsfedern Z dargestellt. In F i g. 2 ist die ebenfalls bereits bekannte Anordnung mit Hilfe einer Ablaufrolle in Form einer archimedischen Spirale für die Last gezeigt. Die Ausgleichsfeder wirkt über eine zylindrische Rolle. In Fig. 3 ist die erfindungsgemäße Anordnung unter Verwendung von last- und federseitigen Spiralrollen gezeichnet, wobei die Spiralrollen dem Gesetz einer logarithmischen Spirale gehorchen. Der Ablaufpunkt Ao in der Anfangsstellung der beiden Spiralrollen zueinander (Winkel  $\varphi_0$ ) wandert nach einer Verdrehung um  $\Delta \varphi$  bis zum Punkt A. Die zugehörigen Hebelarme sind mit  $a_0$  bzw. a bezeichnet.

In Fig. 3a sind die Abhängigkeiten der Federlängen bzw. Federkräfte graphisch dargestellt.

Fig. 4 zeigt im kartesischen Koordinatensystem die einzelnen Teile des Exponenten gemäß Gleichung (23) sowie die Gewinnung verschiedener Ausgangspunkte S

bei Änderung des Lastfederverhältnisses  $\frac{Z_0}{\tilde{Q}}$ .

In den Fig. 5 und 5a sind in schematischer Form stellung geltenden Kräfteverhältnis  $\frac{Z_0}{O}$  zeigen die  $\frac{30}{O}$  weitere erfindungsgemäße Vorschläge dargestellt, bei der Kräfte Q und Z längs eines Winkels aufeinanderwirken bzw. eine Auslenkung mit vorzugsweise bewegbarer Rolle, beispielsweise an der Federseite, vorgesehen ist, durch die gleichzeitig sowohl die Grundvorspannung der Feder als auch die Anderung des Grundverdrehungswinkels beider Spiralen zueinander durch die Änderung des Auslaufwinkels ermöglicht wird.

#### Patentansprüche:

- 1. Kurvengetriebe zum Ausgleich einer über ihre Exkursion konstant wirkenden Last mit Hilfe von Federn linearer oder annähernd linearer Kennlinie, wobei die Hebelarme sowohl der Lastals auch der Federseite in jeder Lage der Last veränderlich gestaltet sind, gekennzeichnet durch Verwendung von zwei logarithmischen Spiralrollen, deren Ablauffunktionen für die Lastund für die Ausgleichsfeder untereinander verschieden sind.
- 2. Getriebe nach Anspruch 1, dadurch gekennzeichnet, daß der Ablaufweg der lastseitigen Spirale stets genau oder zumindest annähernd dem Quadrat des Auflaufweges auf der federseitigen Spirale entspricht.

3. Getriebe nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Bildung der Quadratfunktion der lastseitigen Spirale durch ein Getriebe oder die doppelte Steigung der gewichtsseitigen Spirale hergestellt wird.

4. Getriebe nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß Einrichtungen vorgesehen sind, um die Spiralrollen zu Justierzwecken gegeneinander stufenweise oder kontinuierlich zu verdrehen.

5. Getriebe nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß Einrichtungen vor-

409 597/220

12

gesehen sind, um die Grundvorspannung der Federn durch Längenänderung des federseitigen

Zugmittels einzustellen.

6. Getriebe nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß das federseitige Zug- 5 mittel in an sich bekannter Weise über eine oder mehrere bewegliche Rollen umgelenkt wird, um eine geringe Bauhöhe des Federsystems und eine einfache Justierbarkeit zu erzielen.

7. Getriebe nach den Ansprüchen 1 bis 4, da- 10 durch gekennzeichnet, daß eine bewegliche Rolle vorgesehen ist, durch deren Auslenkung gleichzeitig die Grundvorspannung der Feder und die

Änderung des Grundverdrehungswinkels beider Spiralen zueinander durch die Änderung des Auflaufwinkels vorgenommen wird.

8. Getriebe nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die logarithmischen Spiralrollen auf gemeinsamer Achse gelagert und gekuppelt sind.

In Betracht gezogene Druckschriften: Schweizerische Patentschrift Nr. 203 756: französische Patentschrift Nr. 809 158; USA.-Patentschrift Nr. 2061 322.

Hierzu 1 Blatt Zeichnungen

Nummer: Internat. Kl.: Deutsche Kl.: Auslegetag:

1 171 222 F 06 h 47 h - 2 27. Mai 1964



Nummer: 1 171 222
Internat. Kl.: F 06 h
Deutsche Kl.: 47 h - 2
Auslegetag: 27. Mai 1964





Home > Tools > Babel Fish Translation > Translated Text



## **Babel Fish Translation** ®

Help

**Global Services** 

Calling Cards World Travel Language School Cellular Phones ⋖ Learn German Germany Travel

#### In English:

Cam gear for the reconciliation of uber its Exkursion constantly working load

Search the web with this text

Translate again - Enter up to 150 words

Kurvengetriebe zum Ausgleich einer uber ihre Exkursion konstant wirkenden Last

Use the World Keyboard to enter accented or Cyrillic characters.

German to English

Translate

Sponsored Matches About Become a sponsor

Study in France, Spain, Italy or China Some of the best language schools and programs at a wide range of locations in France, Spain, Italy, Japan and China. Links and information. www.mystudyadvisor.com

Add Babel Fish Translation to your site. Tip: You can now follow links on translated web pages.



About AltaVista Privacy Policy **Business Services** Submit a Site

© 2004 Overture Services, Inc.

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

### IMAGES ARE BEST AVAILABLE COPY.

□ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.