## KARNAUGH MAPS

-Graphical Device used to Simplify Boolean expressions

-Relates inputs to Outputs

-Useful upto six variables

## Minimal sums of products

- When used properly, Karnaugh maps can reduce expressions to a minimal sum of products, or MSP, form.
  - There are a minimal number of product terms.
  - Each product has a minimal number of literals.
- Circuit-wise, this leads to a minimal two-level implementation.

Row of a Truth Table corresponds to a square in K-map

Adjacent square differ in only one variable

Combine squares with 1's

#### Organizing the minterms

- Recall that an n-variable function has up to 2<sup>n</sup> minterms, one for each possible input combination.
- A function with inputs x, y and z includes up to eight minterms, as shown below.

| Х | у | Z | Minterm |         |  |
|---|---|---|---------|---------|--|
| 0 | 0 | 0 | x'y'z'  | $(m_0)$ |  |
| 0 | 0 | 1 | x'y'z   | $(m_1)$ |  |
| 0 | 1 | 0 | x'y z'  | $(m_2)$ |  |
| 0 | 1 | 1 | x'y z   | $(m_3)$ |  |
| 1 | 0 | 0 | x y'z'  | $(m_4)$ |  |
| 1 | 0 | 1 | x y'z   | $(m_5)$ |  |
| 1 | 1 | 0 | xyz'    | $(m_6)$ |  |
| 1 | 1 | 1 | хух     | $(m_7)$ |  |

 We'll rearrange these minterms into a Karnaugh map, or K-map.

|   | 00     | 01             | 11             | 10             |
|---|--------|----------------|----------------|----------------|
| 0 | x'y'z' | x'y'z          | x'y z          | x'y z'         |
| 1 | x y'z' | x y'z          | хух            | x y z'         |
|   | 00     | 01             | 11             | 10             |
| 0 | $m_0$  | m <sub>1</sub> | $m_3$          | m <sub>2</sub> |
| 1 | $m_4$  | m <sub>5</sub> | m <sub>7</sub> | m <sub>6</sub> |

- You can show either the actual minterms or just the minterm numbers.
- Notice the minterms are almost, but not quite, in numeric order.

#### Reducing two minterms

- In this layout, any two adjacent minterms contain at least one common literal. This is useful in simplifying the sum of those two minterms.
- For instance, the minterms x'y'z' and x'y'z both contain x' and y', and we can use Boolean algebra to show that their sum is x'y'.

|   | 00     | 01    | 11    | 10     |
|---|--------|-------|-------|--------|
| 0 | x'y'z' | x'y'z | x'y z | x'y z' |
| 1 | x y'z' | x y'z | хух   | x y z' |

$$x'y'z' + x'y'z = x'y'(z' + z)$$
  
=  $x'y' \cdot 1$   
=  $x'y'$ 

 You can also "wrap around" the sides of the K-map—minterms in the first and fourth columns are considered to be next to each other.

$$x y'z' + x y z' = xz'(y' + y)$$
  
= xz' • 1  
= xz'

## Reducing four minterms

Similarly, rectangular groups of four minterms can be reduced as well.
 You can think of them as two adjacent groups of two minterms each.

|   | 00     | 01    | 11    | 10     |
|---|--------|-------|-------|--------|
| 0 | x'y'z' | x'y'z | x'y z | x'y z' |
| 1 | x y'z' | x y'z | хух   | x y z' |

These four green minterms all have the literal y in common. Guess what happens when you simplify their sum?

$$x'yz + x'yz' + xyz + xyz' = y(x'z + x'z' + xz + xz')$$
  
=  $y(x'(z + z') + x(z + z'))$   
=  $y(x' + x)$   
=  $y(x' + x)$ 

## Reducible groups

- Only rectangular groups of minterms, where the number of minterms is a power of two, can be reduced to a single product term.
  - Non-rectangular groups do not even contain a common literal.

|   | 00     | 01    | 11    | 10     |
|---|--------|-------|-------|--------|
| 0 | x'y'z' | x'y'z | x'y z | x'y z' |
| 1 | x y'z' | x y'z | хуг   | x y z' |

Groups of other sizes cannot be simplified to just one product term.

|   | 00     | 01    | 11    | 10     |
|---|--------|-------|-------|--------|
| 0 | x'y'z' | x'y'z | x'y z | x'y z' |
| 1 | x y'z' | x y'z | хуг   | x y z' |

#### Filling in the K-map

- Since our labels help us find the correct position of minterms in a K-map, writing the minterms themselves is redundant and repetitive.
- We usually just put a 1 in the K-map squares that correspond to the function minterms, and 0 in the other squares.
- For example, you can quickly fill in a K-map from a truth table by copying the function outputs to the proper squares of the map.



$$f(x,y,z) = x'y'z + xy'z + xyz' + xyz$$

### Multiple groups

- If our function has minterms that aren't all adjacent to each other in the K-map, then we'll have to form multiple groups.
- Consider the expression x'y'z' + x'y'z + xyz + xyz'.

|            | 00     | 01    | 11 )  | / 10   |
|------------|--------|-------|-------|--------|
| 0          | x'y'z' | x'y'z | x'y z | x'y z' |
| <b>x</b> 1 | x y'z' | x y'z | хух   | xyz'   |
|            |        | 7     |       |        |

- These minterms form two separate groups in the K-map. As a result, the simplified expression will contain two product terms, one for each group.
  - The sum x'y'z' + x'y'z simplifies to x'y', as we already saw.
  - Then we can also simplify xyz + xyz' to xy.
- The result is that x'y'z' + x'y'z + xyz + xyz' = x'y' + xy.

### Four steps in K-map simplifications

Start with a sum of minterms or truth table.

$$x'y'z' + x'y'z + xyz + xyz'$$

2. Plot the minterms on a Karnaugh map.

|                       | 00 | 01 | 11 \ | / 10 |
|-----------------------|----|----|------|------|
| 0                     | 1  | 1  | 0    | 0    |
| <b>x</b> <sub>1</sub> | 0  | 0  | 1    | 1    |
|                       |    | z  |      |      |

Find rectangular groups of minterms whose sizes are powers of two. Be sure to include all the minterms in at least one group!

|                       | 00 | 01 | 11 | <sup>/</sup> 10 |
|-----------------------|----|----|----|-----------------|
| 0                     | 1  | 1  | 0  | 0               |
| <b>x</b> <sub>1</sub> | 0  | 0  | 1  | 1               |
|                       |    | Z  |    |                 |

Reduce each group to one product term.

## The tricky part

- The tricky part is finding the best groups of minterms.
- Which groups would you form in the following example map?

|    | 00 | 01 | 11 \ | / 10 |
|----|----|----|------|------|
| 0  | 0  | 0  | 1    | 1    |
| χ1 | 1  | 1  | 1    | 1    |
|    |    | Z  |      |      |

- You should aim for two goals when forming minterm groups.
  - Each group represents one product term, so making as few groups as possible will result in a minimal number of products.
  - Making each group as large as possible corresponds to combining more minterms, and will result in a minimal number of literals.
- Doing this properly will result in a minimal sum of products.

## Minimizing the number of groups

The following two possibilities have more groups than necessary.



|     | 00 | 01 |  | 11 | ١ | / | 10 |  |
|-----|----|----|--|----|---|---|----|--|
| 0   | 0  | 0  |  | 1  |   |   | 1  |  |
| x 1 | 1  | 1  |  | 1  |   |   | 1  |  |
|     |    | z  |  |    |   |   |    |  |

We can put all six minterms into just two groups. Two ways of doing this
are shown below.

|    | 00 | 01 | 11 1 | / <sub>10</sub> |
|----|----|----|------|-----------------|
| 0  | 0  | 0  | 1    | 1               |
| χ1 | 1  | 1  | 1    | 1               |
|    |    | 7  | 7    |                 |



## Maximizing the size of each group

 Since we want to make each group as large as possible, the solution on the right is better than the one on the left.



|    | 00 | 01 | 11 | / 10 |
|----|----|----|----|------|
| 0  | 0  | 0  | 1  | 1    |
| χ1 | 1  | 1  | 1  | 1    |
|    |    | 7  | 7  |      |

- Note that overlapping groups are acceptable, and often necessary.
- Making poor choices of groups will produce an expression that is still equivalent to the original one, but it won't be minimal.
  - The maps on the left and right here yield xy' + y and x + y.
  - These are equivalent, but only x + y is a minimal sum of products.

# Practice K-map 1

• Simplify the sum of minterms  $f(x,y,z) = m_1 + m_3 + m_5 + m_6$ .



## Solutions for practice K-map 1

- Here is the K-map for  $f(x,y,z) = m_1 + m_3 + m_5 + m_6$ , with all groups shown.
  - The magenta and green groups overlap, which makes each of them as large as possible.
  - Minterm m<sub>6</sub> is in a group all by its lonesome.

|   |   |   |   | ) | / |
|---|---|---|---|---|---|
|   | 0 | 1 |   | 1 | 0 |
| Χ | 0 | 1 |   | 0 | 1 |
|   |   |   | 7 | 7 |   |

■ The final MSP here is x'z + y'z + xyz'.

## Multiple solutions are possible

Sometimes there are multiple possible correct answers.



|                | 00 |  | 01 |  | 11 | / | 10 |  |
|----------------|----|--|----|--|----|---|----|--|
| 0              | 0  |  | 1  |  | 0  |   | 1  |  |
| χ1             | 0  |  | 1  |  | 1  |   | 1  |  |
| Z              |    |  |    |  |    |   |    |  |
| y'z + yz' + xy |    |  |    |  |    |   |    |  |

- Both maps here contain the fewest and largest possible groups.
- The resulting expressions are both minimal sums of products—they have the same number of product terms and the same number of literals.

## Four-variable Karnaugh maps

- We can do four-variable Karnaugh maps too!
- A four-variable function f(w,x,y,z) has sixteen possible minterms. They
  can be arranged so that adjacent minterms have common literals.
  - You can wrap around the sides and the top and bottom.
  - Again the minterms are almost, but not quite, in numeric order.

|   |          |         |         | у        | _ |     |                             |                 | ,               | /               |   |
|---|----------|---------|---------|----------|---|-----|-----------------------------|-----------------|-----------------|-----------------|---|
|   | w'x'y'z' | w'x'y'z | w'x'y z | w'x'y z' |   |     | $m_{\scriptscriptstyle{0}}$ | m <sub>1</sub>  | $m_3$           | m <sub>2</sub>  |   |
|   | w'x y'z' | w'x y'z | w'x y z | w'x y z' | v |     | $m_4$                       | m <sub>5</sub>  | m <sub>7</sub>  | m <sub>6</sub>  | V |
|   | w x y'z' | w x y'z | wxyz    | w x y z' | X | 14/ | m <sub>12</sub>             | m <sub>13</sub> | m <sub>15</sub> | m <sub>14</sub> | X |
| W | w x'y'z' | w x'y'z | w x'y z | w x'y z' |   | W   | m <sub>8</sub>              | m <sub>9</sub>  | m <sub>11</sub> | m <sub>10</sub> |   |
|   |          |         | Z       |          | - |     |                             |                 | 7               |                 |   |

#### Four-variable example

• Let's say we want to simplify  $m_0 + m_2 + m_5 + m_8 + m_{10} + m_{13}$ 

|   | 00 01           |                 | 11 y            |                             |   |
|---|-----------------|-----------------|-----------------|-----------------------------|---|
|   | $m_0$           | m <sub>1</sub>  | $m_3$           | m <sub>2</sub>              |   |
|   | $m_4$           | m <sub>5</sub>  | m <sub>7</sub>  | $m_{\scriptscriptstyle{6}}$ |   |
|   | m <sub>12</sub> | m <sub>13</sub> | m <sub>15</sub> | m <sub>14</sub>             | Х |
| W | m <sub>8</sub>  | m <sub>9</sub>  | m <sub>11</sub> | m <sub>10</sub>             |   |
|   |                 |                 |                 |                             | ' |

| ( | 00 01 |   |   | <sup>/</sup> 10 |   |
|---|-------|---|---|-----------------|---|
|   | 1     | 0 | 0 | 1               |   |
|   | 0     | 1 | 0 | 0               |   |
| w | 0     | 1 | 0 | 0               | Χ |
|   | 1     | 0 | 0 | 1               |   |
| z |       |   |   |                 | • |

The following groups result in the minimal sum of products x'z' + xy'z.

|    |   |     | ١ | / |    |
|----|---|-----|---|---|----|
| _  | 1 | 0   | 0 | 1 |    |
|    | 0 | 1   | 0 | 0 | ., |
|    | 0 | 1   | 0 | 0 | Х  |
| W- | 1 | 0   | 0 | 1 | _  |
|    |   | - 7 | Z |   |    |

## Prime implicants

- Finding the best groups is even more difficult in larger K-maps.
- One good approach to deriving an MSP is to first find the largest possible groupings of minterms.
  - These groups correspond to prime implicant terms.
  - The final MSP will contain a subset of the prime implicants.
- Here is an example K-map with prime implicants marked.



#### Essential prime implicants

- If any minterm belongs to only one group, then that group represents an essential prime implicant.
- Essential prime implicants must appear in the final MSP, which has to include all of the original minterms.

|   |   |   | ۱ ا | / |   |
|---|---|---|-----|---|---|
|   | 1 | 1 | 0   | 0 |   |
|   | 1 | 1 | 0   | 0 |   |
|   | 0 | 1 | 1   | 0 | Х |
| W | 0 | 0 | 1   | 1 |   |
| Z |   |   | z   |   | • |

- This example has two essential prime implicants.
  - The red group (w'y) is essential, since m<sub>0</sub>, m<sub>1</sub> and m<sub>4</sub> are not in any other group.
  - The green group (wx'y) is essential because of  $m_{10}$ .

## Covering the other minterms

Finally, pick as few other prime implicants as necessary to ensure that all
of the original minterms are included.

|   |   |   | ١ | / |   |
|---|---|---|---|---|---|
|   | 1 | 1 | 0 | 0 |   |
|   | 1 | 1 | 0 | 0 | v |
|   | 0 | 1 | 1 | 0 | Х |
| W | 0 | 0 | 1 | 1 |   |
| Z |   |   | z |   |   |

- After choosing the red and green rectangles in our example, there are just two minterms remaining, m<sub>13</sub> and m<sub>15</sub>.
  - They are both included in the blue prime implicant, wxz.
  - The resulting MSP is w'y' + wxz + wx'y.
- The magenta and sky blue groups are not needed, since their minterms are already included by the other three prime implicants.

# Practice K-map 2

Simplify the following K-map.

|     |   |   | ) | / |   |
|-----|---|---|---|---|---|
|     | 0 | 0 | _ | 0 |   |
|     | 1 | 0 | 1 | 1 | v |
| 147 | 1 | 1 | 1 | 1 | Χ |
| W   | 0 | 0 | 1 | 0 |   |
|     |   |   | 7 |   |   |

## Solutions for practice K-map 2

Simplify the following K-map.

|   |   |   |   | / |   |
|---|---|---|---|---|---|
| _ | 0 | 0 | 1 | 0 |   |
|   | 1 | 0 | 1 | 1 | V |
| [ | 1 | 1 | 1 | 1 | Х |
| W | 0 | 0 | 1 | 0 |   |
|   |   | 7 | 7 |   | - |

- All prime implicants are circled.
- The essential prime implicants are xz', wx and yz.
- The MSP is xz' + wx + yz. (Including the group xy would be redundant.)

## **Don't Care Conditions**

- Unspecified outputs for certain inputs

- Used in Map to provide further simplification

- X is marked inside the square for don't care input

- Choose to include each don't care minterm with either 1 or 0

#### Don't care conditions

- There are times when we don't care what a function outputs—some input combinations might never occur, or some outputs may have no affect.
- We can express these situations with don't care conditions, denoted with X in truth table rows.
- An expression for this function has two parts.
  - One expression corresponds to outputs of 1.
  - Another describes the don't care conditions.

$$f(x,y,z) = m_3, d(x,y,z) = m_2 + m_4 + m_5$$

 Circuits always output 0 or 1; there is no value called "X". Instead, the Xs just indicate cases where both 0 or 1 would be acceptable outputs.

| Х | у | Z | f(x,y,z) |
|---|---|---|----------|
| 0 | 0 | 0 | 0        |
| 0 | 0 | 1 | 0        |
| 0 | 1 | 0 | Χ        |
| 0 | 1 | 1 | 1        |
| 1 | 0 | 0 | Χ        |
| 1 | 0 | 1 | Χ        |
| 1 | 1 | 0 | 0        |
| 1 | 1 | 1 | 0        |

## Don't care simplifications

 In a K-map we can treat each don't care as 0 or 1. Different selections can produce different results.

|   |   |   | ) | / |
|---|---|---|---|---|
|   | 0 | 0 | 1 | χ |
| Х | Χ | Χ | 0 | 0 |
|   |   | 7 |   |   |

- In this example we can use the don't care conditions to our advantage.
  - It's best to treat the bottom two Xs as 0s. If either of them were 1, we'd end up with an extra, unnecessary term.
  - On the other hand, interpreting the top X as 1 results in a larger group containing m<sub>3</sub>.
- The resulting MSP is x'y.



Fig. 3-17 Example with don't-care Conditions

## Practice K-map 3

Find a minimal sum of products for the following.

$$f(w,x,y,z) = \Sigma m(0,2,4,5,8,14,15), d(w,x,y,z) = \Sigma m(7,10,13)$$



#### Solutions for practice K-map 3

Find a minimal sum of products for the following.

$$f(w,x,y,z) = \Sigma m(0,2,4,5,8,14,15), d(w,x,y,z) = \Sigma m(7,10,13)$$

|    |   |   | ) | / |   |
|----|---|---|---|---|---|
| _  | 1 | 0 | 0 | 1 |   |
|    | 1 | 1 | Χ | 0 |   |
| W- | 0 | Χ | 1 | 1 | Х |
|    | 1 | 0 | 0 | Х |   |
| z  |   |   |   |   |   |

- All prime implicants are circled. We can treat Xs as 1s if we want, so the red group includes two Xs, and the light blue group includes one X.
- The only essential prime implicant is x'z'. The red group is not essential because the two minterms in it also appear in other groups.
- The MSP is x'z' + wxy + w'xy'. It turns out the red group is redundant; we
  can cover all of the minterms in the map without it.

# **POS Simplification**

- Combine valid adjacent squares containing 0's

- Obtain simplified expression of the complement in SOP form

- Compliment further to get function in POS form

 $F(A,B,C,D) = \Sigma(0,1,2,5,8,9,10)$ 

| 1 | 1 | 0 | 1 |
|---|---|---|---|
| 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 |

 $F(A,B,C,D) = \Sigma(0,1,2,5,8,9,10)$ 

| 1 | 1 | 0 | 1 |
|---|---|---|---|
| 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 |

$$F' = AB + CD + BD'$$

By De Morgan's

$$F = (A'+B') (C'+D')(B'+D)$$

|                |    |    | <i>A</i> = | = 0 |    |                                                 | _       |     | <i>A</i> = | = 1   |    |                      |
|----------------|----|----|------------|-----|----|-------------------------------------------------|---------|-----|------------|-------|----|----------------------|
|                |    | DE |            | D   |    |                                                 |         | DE  |            | D     |    |                      |
| Ì              | BC | 00 | 01         | 11  | 10 | B                                               | $C_{L}$ | 0.0 | 01         | 11    | 10 | ı                    |
|                | 00 | 0  | 1          | 3   | 2  | (                                               | 00      | 16  | 17         | 19    | 18 |                      |
|                | 01 | 4  | 5          | 7   | 6  | $\left. \begin{array}{c} C \end{array} \right.$ | 01      | 20  | 21         | 23    | 22 | $\left. \right _{C}$ |
| B              | 11 | 12 | 13         | 15  | 14 |                                                 | 11      | 28  | 29         | 31    | 30 |                      |
|                | 10 | 8  | 9          | 11  | 10 |                                                 | 10      | 24  | 25         | 27    | 26 |                      |
| $\overline{E}$ |    |    |            |     |    |                                                 |         | •   |            | <br>E |    |                      |

Fig. 3-12 Five-variable Map



Fig. 3-13 Map for Example 3-7; F = A'B'E' + BD'E + ACE