## 2024학년도 7월 고3 전국연합학력평가 문제지

제 4 교시

# 과학탐구 영역(물리학 I)

성명 수험번호 제 [ ] 선택

1. 그림과 같이 수평면에서 물체 A와 B 사이에 용수철 을 넣어 압축시킨 후 동시 에 가만히 놓았더니, 정지해



있던 A와 B가 분리되어 서로 반대 방향으로 각각 등속도 운동하 였다. 분리된 후 A, B의 속력은 각각 v,  $v_{\rm B}$ 이다. A, B의 질량은 각각 3m, m이다.

 $v_{\rm B}$ 는? (단, 용수철의 질량, 모든 마찰과 공기 저항은 무시한다.) ① 3v ② 4v3 6v 4 7v 5 9v

- 2. 다음은 두 가지 핵반응이다.
  - (7)  $\bigcirc +_1^2 H \rightarrow _2^3 He +_0^1 n + 3.27 MeV$
  - $(\ \ \ \ \ ) \stackrel{235}{}_{92}\text{U} + \boxed{\bigcirc} \rightarrow \stackrel{141}{}_{56}\text{Ba} + \stackrel{92}{}_{36}\text{Kr} + 3^1_0\text{n} + \stackrel{92}{}_{} 200\,\text{MeV}$

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

―<보 기>

- ¬. ①은 <sup>2</sup>H이다.
- L. (L)은 중성자이다.
- ㄷ. (나)는 핵분열 반응이다.

- 3. 그림 (가), (나)와 같이 직육면체 모양의 물체 A 또는 B를 용수철 과 연직 방향으로 연결하여 저울 위에 올려놓았더니 A와 B가 정지 해 있다. (가)와 (나)에서 용수철이 늘어난 길이는 서로 같고, (가) 에서 저울에 측정된 힘의 크기는 35N이다. A, B의 질량은 각각 1kg, 3kg이다.





이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 중력 가속도는 10m/s²이고, 용수철의 질량은 무시한다.)

- -----<보 기>---
- ¬. (가)에서 A가 용수철을 당기는 힘의 크기는 5N이다.
- ㄴ. (나)에서 저울에 측정된 힘의 크기는 35N보다 크다.
- c. (가)에서 A가 B를 누르는 힘의 크기는 (나)에서 A가 B를 떠받치는 힘의 크기의  $\frac{1}{5}$ 배이다.
- 37, 47, 57, 4, 5 ① L

4. 그림은 보어의 수소 원자 모형에 에너지



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 플랑크 상수는 *h*이다.)



----<보 기>-

- ¬. a에서 방출되는 빛은 적외선이다.
- ㄴ. b에서 흡수되는 빛의 진동수는  $\frac{|E_5 E_3|}{h}$ 이다.
- 다. d에서 흡수되는 빛의 파장은 c에서 방출되는 빛의 파장 보다 길다.
- (2) L  $\bigcirc$
- 3 7,  $\Box$  4  $\Box$ ,  $\Box$  5 7,  $\Box$ ,  $\Box$
- 5. 그림과 같이 자기화되어 있지 않은 자성체 A, B, C, D를 균일 하고 강한 자기장 영역에 놓아 자기화시킨다. 표는 외부 자기장 이 없는 영역에서 그림의 A~D 중 두 자성체를 가까이했을 때 자성체 사이에 서로 작용하는 자기력을 나타낸 것이다. A~D는 각각 강자성체, 상자성체, 반자성체 중 하나이다.

균일하고 강한 자기장

| 자성체  | 자기력   | 자성체  | 자기력  |
|------|-------|------|------|
| А, В | 미는 힘  | В, С | _    |
| A, C | 당기는 힘 | B, D | 미는 힘 |
| A, D | 당기는 힘 | C, D | 9    |

(-: 힘이 작용하지 않음)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-<보 기>

- 기. A는 강자성체이다.
- ㄴ. ①은 '당기는 힘'이다.
- 다. D는 하드디스크에 이용된다.

- 6. 표는 입자 A, B의 질량과 운동량의 크기를 나타낸 것이다.

| 입자 | 질량 | 운동량의 크기 |
|----|----|---------|
| A  | m  | 2p      |
| В  | 2m | p       |

입자의 물리량이 A가 B보다 큰 것만을 <보기>에서 있는 대로 고른 것은?

<보 기> ㄱ. 물질파 파장 ㄴ. 속력

ㄷ. 운동 에너지

② L 37, 5 4 4, 5 57, 6, 5  $\bigcirc$ 

7. 그림과 같이 수평면에서 질량 2kg인 물체가 5m/s의 속력으로 등속도 운동을 하다가 구간 I을 지난 후 2m/s의 속력으로 등속도 운동을 한다. I을 지나는 데 걸린 시간은 0.5초이다.



물체가 I을 지나는 동안 물체가 받은 평균 힘의 크기는? (단, 물체는 동일 직선상에서 운동하고, 물체의 크기는 무시한다.)

① 6N ② 12N ③ 14N ④ 24N ⑤ 30N

8. 그림과 같이 관찰자 A에 대해 광원, 검출기가 정지해 있고, 관찰자 B가 탄 우주선이 광원과 검출기를 잇는 직선과 나란하게 0.8c의 속력으로 등속도 운동하고 있다. A, B



의 관성계에서 광원에서 방출된 빛이 검출기에 도달하는 데 걸린 시간은 각각  $t_{\rm A},\ t_{\rm B}$ 이다. A의 관성계에서 광원과 검출기 사이의 거리는 L이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, c는 빛의 속력이다.) [3점]

----<보 기>-

¬. A의 관성계에서, A의 시간은 B의 시간보다 빠르게 간다.

ㄴ. B의 관성계에서, 광원과 검출기 사이의 거리는 L보다 크다.

 $\mathsf{L}. \ t_{\mathsf{A}} < t_{\mathsf{B}}$ 이다.

9. 그림과 같이 xy평면에 일정한 전류가 흐르는 무한히 긴 직선도선 A가 x=-3d에 고정되어 있고, 원형 도선 B는 중심이 원점 O가 되도록 놓여있다. 표는 B가 움직이기 시작하는 순간, B의 운동 방향에 따라 B에 흐르는 유도 전류의 방향을 나타낸것이다.



| B의<br>운동 방향 | B에 흐르는<br>유도 전류의 방향 |  |
|-------------|---------------------|--|
| +x          | 9                   |  |
| -x          | 시계 반대 방향            |  |

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>---

¬. A에 흐르는 전류의 방향은 +y 방향이다.

ㄴ. □은 '시계 방향'이다.

 $\Box$ . B의 운동 방향이 +y 방향일 때, B에는 일정한 세기의 유도 전류가 흐른다.

10. 그림 (가), (나)는 시간 t=0일 때, x축과 나란하게 진행하는 파동 A, B의 변위를 각각 위치 x에 따라 나타낸 것이다. A와 B의 진행 속력은 1 cm/s로 같다. (가)의  $x=x_1$ 에서의 변위와 (나)의  $x=x_2$ 에서의 변위는  $y_0$ 으로 같다. t=0.1초일 때,  $x=x_1$ 에서의 변위는  $y_0$ 보다 작고,  $x=x_2$ 에서의 변위는  $y_0$ 보다 크다.





이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

- <보 기>

¬. 주기는 A가 B의 2배이다.

 $\cup$ . B의 진행 방향은 -x방향이다.

ㄷ. t=0.5초일 때,  $x=x_1$ 에서 A의 변위는 4cm이다.

11. 다음은 p-n 접합 발광 다이오드의 특성을 알아보는 실험이다.

#### [실험 과정]

(가) 그림과 같이 동일한 직류 전 원 2개, p-n 접합 발광 다 이오드(LED) A, A와 동일 한 LED 4개, 저항, 스위치 S<sub>1</sub>, S<sub>2</sub>로 회로를 구성한다. X는 p형 반도체와 n형 반도 체 중 하나이다.



(나)  $S_1$ 을 a 또는 b에 연결하고,  $S_2$ 를 열고 닫으며 LED를 관찰한다.

[실험 결과]

| $S_1$                                 | $S_2$ | 빛이 방출된 LED의 개수 |  |
|---------------------------------------|-------|----------------|--|
| a에 연결                                 | 열림    | 0              |  |
| a에 연결                                 | 닫힘    | 9              |  |
| b에 연결                                 | 열림    | 1              |  |
| D에 연결                                 | 닫힘    | 3              |  |
| · · · · · · · · · · · · · · · · · · · |       |                |  |

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>--

¬. X는 p형 반도체이다.

ㄴ.  $S_1$ 을 b에 연결하고  $S_2$ 를 닫았을 때, A에는 순방향 전압 이 걸린다.

ㄷ. ①은 '2'이다.

12. 그림과 같이 단색광 X가 공기와 매질 A  $_{Z/I}$ 의 경계면 위의 점 p에 입사각  $\theta_i$ 로 입사 한 후, A와 매질 B의 경계면에서 굴절하고 옆면 Q에서 전반사하여 진행한다.

이에 대한 설명으로 옳은 것만을 <보기>에 서 있는 대로 고른 것은? [3점]



― <보 기>-

- ㄱ. X의 속력은 공기에서가 A에서보다 작다.
- ㄴ. 굴절률은 B가 A보다 크다.
- $\Box$ . p에서  $\theta_i$ 보다 작은 각으로 X가 입사하면 Q에서 전반사가 일어난다.

1 7

② L

- 37, 5 4 4, 5 5 7, 6, 5
- 13. 그림과 같이 스피커 A, B에서 진폭 과 진동수가 동일한 소리를 발생시키면 점 O에서 보강 간섭이 일어나고, 점 P 에서는 상쇄 간섭이 일어난다.

이에 대한 설명으로 옳은 것만을 <보기> 에서 있는 대로 고른 것은? (단, 스피커의 크기는 무시한다.)



----<보 기>-

- 기. A와 B에서 같은 위상으로 소리가 발생한다.
- L. A와 B에서 발생한 소리는 점 Q에서 보강 간섭한다.
- ㄷ. B에서 발생하는 소리의 위상만을 반대로 하면 A와 B에서 발생한 소리가 P에서 보강 간섭한다.

14. 그림은 서로 다른 금속판 P, Q에 각각 단색광 A, B 중 하나를 비추는 모습을 나타낸 것이다. 표는 단색광을 비추었을 때 금속판 에서 방출되는 광전자의 최대 운동 에너지를 나타낸 것이다.





|   | A      | В      |
|---|--------|--------|
| Р | $3E_0$ | $5E_0$ |
| Q | $E_0$  | 7      |

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

―<보 기>

- ㄱ. 문턱 진동수는 Q가 P보다 크다.
- ㄴ. 파장은 B가 A보다 길다.
- □. ¬은 *E*<sub>0</sub>보다 크다.

2 L

③ 7, 6 4 4, 6 5 7, 6, 6

15. 그림과 같이 가늘고 무한히 긴 직선 도선 A, B, C가 xy평 면에 고정되어 있다. A, B, C에 는 방향이 일정하고 세기가 각 각  $I_0$ ,  $2I_0$ ,  $I_C$ 인 전류가 흐르고 있다. A. C의 전류의 방향은 화 살표 방향이고, 점 p에서 A, B, C에 흐르는 전류에 의한 자기 A= 장은 0이다. p에서 A에 흐르는 전류에 의한 자기장의 세기는  $B_0$ 이다.



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

一 <보 기>-

- $\neg$ . B에 흐르는 전류의 방향은 +y방향이다.
- ㄴ.  $I_{\mathbb{C}} = \frac{\sqrt{2}}{2} I_0$ 이다.
- C. q에서 A, B, C에 흐르는 전류에 의한 자기장의 세기는 *6B*₀이다.

① ¬ ② ⊏

37, 4 4 4, 5 7, 4, 5

16. 그림 (가)는 물체 A, B를 실로 연결하고 A를 손으로 잡아 정지시킨 모습을 나타낸 것이다. 그림 (나)는 (가)에서 A를 가 만히 놓은 순간부터 A의 속력을 시간에 따라 나타낸 것이다. 4t일 때 실이 끊어졌다. A, B의 질량은 각각 3m, 2m이다.





이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 실의 질량, 공기 저항과 모든 마찰은 무시한다.) [3점]

----<보 기>-

- ¬. A의 운동 방향은 t일 때와 5t일 때가 같다.
- ㄴ. 5t일 때, 가속도의 크기는 B가 A의  $\frac{11}{4}$ 배이다.
- ㄷ. 4t부터 6t까지 B의 이동 거리는  $\frac{19}{4}vt$ 이다.

1 L

2 = 3 7, = 4 7, = 5 7, =, =

# 4 (물리학 I )

## 과학탐구 영역

고 3

17. 그림은 일정량의 이상 기체의 상태가 cqA→B→C를 따라 변할 때 기체의 압력 과 절대 온도를 나타낸 것이다. A→B과

정은 부피가 일정한 과정이고, B→C과 정은 압력이 일정한 과정이다.

A→B→C 과정을 나타낸 그래프로 가장 적절한 것은? [3점]











19. 그림과 같이 직선 도로에서 서로 다른 가속도로 등가속도 운 동하는 물체 A, B가 시간 t=0일 때 기준선 P, Q를 각각 v,  $v_0$ 의 속력으로 지난 후, t=T일 때 기준선 R, P를 4v의 속력으 로 지난다. P와 Q 사이, Q와 R 사이의 거리는 각각 x, 3L이다. 가속도의 방향은 A와 B가 서로 반대이고, 가속도의 크기는 B 가 A의 2배이다.



이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, A, B의 크기는 무시한다.)

― <보 기>

 $\neg v_0 = 2v$ 이다.

L. x = 2L이다.

ㄷ. t=0부터 t=T까지 B의 평균 속력은  $\frac{5}{2}v$ 이다.

37. 47. 57. 4. 5 ② ㄷ

20. 그림은 높이 h인 점 p에서 속력 4v로 운동하는 물체가 궤도 를 따라 마찰 구간 Ⅰ, Ⅱ를 지나 높이가 2h인 최고점 t에 도달 하여 정지한 순간의 모습을 나타낸 것이다. 점 q, r, s의 높이는 각각 2h, h, h이고, q, r, s에서 물체의 속력은 각각 3v,  $v_r$ ,  $v_s$ 이다. 마찰 구간에서 손실된 역학적 에너지는 Ⅱ에서가 Ⅰ에서의 3배이다.



 $rac{v_{
m r}}{-}$ 는? (단, 마찰 구간 외의 모든 마찰과 공기 저항, 물체의 크 기는 무시한다.) [3점]

①  $\frac{\sqrt{5}}{2}$  ②  $\frac{3}{2}$  ③  $\frac{\sqrt{13}}{2}$  ④  $\frac{7}{3}$  ⑤  $\sqrt{13}$ 

18. 그림과 같이 x축상에 점전하  $A \sim D$ 를 고정하고 양(+)전하인 점전하 P를 옮기며 고정한다. A와 B의 전하량의 크기는 서로 같고, C와 D의 전하량의 크기는 서로 같다. B, C는 양(+)전하 이고 A, D는 음(-)전하이다. P가 x=4d에 있을 때, P에 작용 하는 전기력은 0이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>--

- ㄱ. 전하량의 크기는 A가 C보다 크다.
- $\cup$ . P가 x = d에 있을 때, P에 작용하는 전기력의 방향은 -x방향이다.
- ㄷ. P에 작용하는 전기력의 크기는 x = 6d에 있을 때가 x = 10d에 있을 때보다 크다.

\* 확인 사항

○ 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.