SWC Test April 20 '2016

Track Robot Movement

Question

A robot is placed at any point in a open field.

Robot can move in given four directions -> North (N), South (S), East (E) and West (W)

Maximum **moves** the robot can make is N ($1 \ge N \le 100$)

Also, the distance the robot can **move** in a particular direction is given $(1 \ge 1,00,000)$

Conditions:

Next Line:

a. No two consecutive moves would be in the same direction

No. of Moves (test case no. 2)

- b. If the robot does not intersect the already traversed path, print -1
- c. If the robot intersects/overlaps the already traversed path, print the path no.
- d. If the robot touches only a point in already traversed path & then deviates, its is not considered as intersection.

Find the fastest intersection the robot will encounter with its earlier visited paths. (Refer to

diagrams in next slide)

		Jampie	
Input:		Input:	
The move directions are given as integers, N=1, S=2, E=3, W 2 4			
First line has no of test cases		4	
For each test case, first line has no of moves		3 200	
From next line to no.of move lines there is direction & distanceline			
separated by space		4 100	
		2 200	
Line 1:	No. of test cases $(1 \sim 20)$	4	
Line 2:	No. of moves $(1 \sim 100)$	3 20	
Line 3:	Ni Di $(1 \sim 1,00,000)$	1 10	
	Ni+1 Di+1	4 20	
Line N:	Move info N	2 20	

Sample Output:

Sample

Case #1 4

Case #2 -1

Examples

Fig.1 Input: E2 -> N1 -> W1 -> S2 Here, Robot traverses 2 units in East, turns North & traverses 1 unit, then turns West and then turns South and it intersects Path-1

i.e., MoveNo.4 intersects MoveNo.1

Answer: 4

Fig.3 Input: E2 -> N1 -> W2 -> S2 Here, there are total 4 moves, 4th move touches the 1st move's start point but this is not considered an intersection.

Answer: -1

Fig.2 Input: E1 -> N1 -> W2 -> S2 -> E1

Here, there are total 5 moves, but the robot does not intersect any previous moves/paths.

Answer: -1

Fig.4 Input: E1 -> N1 -> W2 -> S1 -> E3 Here, there are total 5 moves, out of which the 5^{th} move overlaps with 1^{st} move and hence

Answer: 5

Sample Input & Output (simulated, not actual ones)

Input 100 31 32 11 4 31 11 31 11 31 41 11 31 41 11 31 41 11 31 31 11 31 42 31 11 42 11 31 31 11 31 42 11 31 31 11 31 42 11 31 31 11 31 31 11 31 31 11 31 31 11 31 31 11 31 31 11 31 31 11 31 31 11 31 31 11 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31	1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
---	---

```
2
1 95000
2 97000
8
3 2000
1 2000
2 1000
4 1000
1 2000
4 1000
2 6000
```

Outp ut

```
Case #1
4
Case #2 -
1
Case #3 -
1
Case #4
5
Case #5 -
1
Case #6
98
Case #7
2
Case #8
6
```