

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. Juli 2005 (21.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/065456 A2

- (51) Internationale Patentklassifikation⁷: **A01N 47/00**
- (21) Internationales Aktenzeichen: PCT/EP2004/014710
- (22) Internationales Anmeldedatum:
24. Dezember 2004 (24.12.2004)
- (25) Einreichungssprache: Deutsch
- (26) Veröffentlichungssprache: Deutsch
- (30) Angaben zur Priorität:
10 2004 001 271.7 8. Januar 2004 (08.01.2004) DE
- (71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **BAYER CROPSCIENCE AG [DE/DE]**; Alfred-Nobel-Str. 50, 40789 Monheim (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (*nur für US*): **THIELERT, Wolfgang [DE/DE]**; Buschweg 69, 51519 Odenthal (DE). **KRAUS, Anton [DE/DE]**; Bremersheide 15, 42799 Leichlingen (DE). **NEUWINGER, Lothar [DE/DE]**; Kamiansweg 4, 53604 Bad Honnef (DE). **HUNGENBERG, Heike [DE/DE]**; Louveciennesstr. 2a, 40764 Langenfeld (DE). **WECKWERT, Holger [DE/DE]**; Krähwinkeler Weg 34, 42799 Leichlingen (DE).
- (74) Gemeinsamer Vertreter: **BAYER CROPSCIENCE AG**; Law and Patents, Patents and Licensing, 51368 Leverkusen (DE).
- (81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

WO 2005/065456 A2

(54) Title: ACTIVE SUBSTANCE COMBINATIONS HAVING INSECTICIDAL PROPERTIES

(54) Bezeichnung: WIRKSTOFFKOMBINATIONEN MIT INSEKTIZIDEN EIGENSCHAFTEN

(57) Abstract: The novel active substance combinations consisting of triflumuron, and the active substances (1) to (24) listed in the description have very good insecticidal properties.

(57) Zusammenfassung: Die neuen Wirkstoffkombinationen aus Triflumuron und die in der Beschreibung aufgeführten Wirkstoffe (1) bis (24) besitzen sehr gute insektizide Eigenschaften.

Wirkstoffkombinationen mit insektiziden Eigenschaften

Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die aus Triflumuron einerseits und weiteren bekannten insektiziden Wirkstoffen andererseits bestehen und sehr gut zur Bekämpfung von tierischen Schädlingen geeignet sind.

- 5 Es ist bereits bekannt, dass Triflumuron insektizide Eigenschaften besitzt (DE-A 02 60 1780).

Weiterhin ist schon bekannt, dass Pyrethroide insektizide Eigenschaften besitzen (vgl. WO 93-22 297, WO 93-10 083, DE-A 2 641 343, EP-A-347 488, EP-A-210 487, US-A 3 264 177 und EP-A-234 045). Allerdings ist die Wirkung dieser Stoffe nicht immer befriedigend.

Es wurde nun gefunden, dass Triflumuron und Pyrethroide, bevorzugt

- 10 1. Acrinathrin

bekannt aus EP-A-048 186

und/oder

2. Alpha-cypermethrin

15

bekannt aus EP-A-067 461

und/oder

- 2 -

3. Betacyfluthrin

bekannt aus EP-A-206 149

und/oder

5 4. Cyhalothrin

bekannt aus DE-A-2 802 962

und/oder

5. Cypermethrin

10

bekannt aus DE-A-2 326 077

und/oder

- 3 -

6. Deltamethrin

bekannt aus DE-A-2 326 077

und/oder

5 7. Esfenvalerat

bekannt aus DE-A-2 737 297

und/oder

8. Ethofenprox

10

bekannt aus DE-A-3 117 510

und/oder

9. Fenpropathrin

15

bekannt aus DE-A-2 231 312

und/oder

- 4 -

10. Fenvalerat

bekannt aus DE-A-2 335 347

und/oder

5 11. Flucythrinat

bekannt aus DE-A-2 757 066

und/oder

12. Lambda-cyhalothrin

10

bekannt aus EP-A-106 469

und/oder

- 5 -

13. Permethrin

bekannt aus DE-A-2 326 077

und/oder

5 14. Taufluvalinat

bekannt aus EP-A-038 617

und/oder

15. Tralomethrin

10

bekannt aus DE-A-2 742 546

und/oder

16. Zeta-cypermethrin

- 6 -

bekannt aus EP-A-026 542

und/oder

17. Cyfluthrin

5 bekannt aus DE-A-27 09 264

und/oder

18. Bifenthrin

bekannt aus EP-A-049 977

10 und/oder

19. Cycloprothrin

bekannt aus DE-A-2653189

und/oder

- 7 -

20. Eflusilanat

bekannt aus DE-A-36 04 781

und/oder

5 21. Fubfenprox

bekannt aus DE-A-37 08 231

und/oder

22. Pyrethrin

10

 $R = -CH_3$ oder $-CO_2CH_3$ $R_1 = -CH=CH_2$ oder $-CH_3$ oder $-CH_2CH_3$

bekannt aus The Pesticide manual, 1997, 11.Ausgabe, S.1056

und/oder

15 23. Resmethrin

bekannt aus GB-A-1 168 797

- 8 -

und/oder

24. gamma-Cyhalothrin

bekannt aus GB-A-2 143 823

5 sehr gute insektizide Eigenschaften besitzen.

Folgende Pyrethroide sind besonders bevorzugt:

Acrinathrin, Betacyfluthrin, Cyhalothrin, Lambda-Cyhalothrin, Tau-fluvalinat, Tralomethrin, Zeta-Cypermethrin, Cyfluthrin, Bifenthrin, Cycloprothrin, Eflusilanat, Fubfenprox, Pyrethrin, Resmethrin, Gamma-Cyhalothrin.

10 Ganz besonders bevorzugt ist Betacyfluthrin. Insbesondere bevorzugt ist Lambda-Cyhalothrin.

Überraschenderweise ist die insektizide Wirkung der erfindungsgemäßen Wirkstoffkombination wesentlich höher als die Summe der Wirkungen der einzelnen Wirkstoffe. Es liegt ein nicht vorhersehbarer echter synergistischer Effekt vor und nicht nur eine Wirkungsergänzung.

15 Die erfindungsgemäßen Wirkstoffkombinationen enthalten neben Triflumuron mindestens einen Wirkstoff der Verbindungen 1 bis 24.

Die Wirkstoffkombinationen können darüber hinaus auch weitere fungizid, akarizid oder insektizid wirksame Zumischkomponenten enthalten.

Wenn die Wirkstoffe in den erfindungsgemäßen Wirkstoffkombinationen in bestimmten Gewichtsverhältnissen vorhanden sind, zeigt sich der synergistische Effekt besonders deutlich. Jedoch 20 können die Gewichtsverhältnisse der Wirkstoffe in den Wirkstoffkombinationen in einem relativ

großen Bereich variiert werden. Im Allgemeinen enthalten die erfindungsgemäßen Kombinationen Triflumuron und den Mischpartner in den in der nachfolgenden Tabelle angegeben bevorzugten und besonders bevorzugten Mischungsverhältnissen:

- * die Mischungsverhältnisse basieren auf Gewichtsverhältnissen. Das Verhältnis ist zu verstehen als Triflumuron:Mischpartner

Mischpartner	bevorzugtes Mischungsverhältnis	besonders bevorzugtes Mischungsverhältnis
Acrinathrin	25:1 bis 1:50	10:1 bis 1:1
Alpha-Cypermethrin	50:1 bis 1:5	10:1 bis 1:1
Betacyfluthrin	50:1 bis 1:5	25:1 bis 1:1
Cyhalothrin	50:1 bis 1:5	10:1 bis 1:1
Cypermethrin	50:1 bis 1:5	10:1 bis 1:1
Deltamethrin	50:1 bis 1:5	25:1 bis 1:1
Esfenvalerat	50:1 bis 1:5	10:1 bis 1:1
Etofenprox	25:1 bis 1:25	5:1 bis 1:5
Fenpropathrin	25:1 bis 1:25	5:1 bis 1:5
Fenvalerat	25:1 bis 1:25	10:1 bis 1:1
Flucythrinat	50:1 bis 1:5	10:1 bis 1:1
Lambda-Cyhalothrin	50:1 bis 1:5	25:1 bis 1:1
Permethrin	50:1 bis 1:10	25:1 bis 1:5
Tau-fluvalinat	20:1 bis 1:5	10:1 bis 1:2
Tralomethrin	50:1 bis 1:5	10:1 bis 1:1
Zeta-Cypermethrin	50:1 bis 1:5	10:1 bis 1:2
Cyfluthrin	50:1 bis 1:5	10:1 bis 1:1
Bifenthrin	25:1 bis 1:25	10:1 bis 1:1
Cycloprothrin	25:1 bis 1:25	5:1 bis 1:5
Eflusilanat	25:1 bis 1:25	5:1 bis 1:5
Fubfenprox	25:1 bis 1:25	5:1 bis 1:5
Pyrethrin	50:1 bis 1:10	5:1 bis 1:1
Resmethrin	50:1 bis 1:10	5:1 bis 1:1
Gamma-Cyhalothrin	50:1 bis 1:5	25:1 bis 1:1

Die erfindungsgemäßen Wirkstoffkombinationen eignen sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, der Tiergesundheit in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

- 10 -

Aus der Ordnung der Isopoda z.B. *Oniscus asellus*, *Armadillidium vulgare*, *Porcellio scaber*.

Aus der Ordnung der Diplopoda z.B. *Blaniulus guttulatus*.

Aus der Ordnung der Chilopoda z.B. *Geophilus carpophagus*, *Scutigera spp.*

Aus der Ordnung der Symphyla z.B. *Scutigerella immaculata*.

- 5 Aus der Ordnung der Thysanura z.B. *Lepisma saccharina*.

Aus der Ordnung der Collembola z.B. *Onychiurus armatus*.

Aus der Ordnung der Orthoptera z.B. *Acheta domesticus*, *Gryllotalpa spp.*, *Locusta migratoria migratorioides*, *Melanoplus spp.*, *Schistocerca gregaria*.

- 10 Aus der Ordnung der Blattaria z.B. *Blatta orientalis*, *Periplaneta americana*, *Leucophaea maderae*,
Blattella germanica.

Aus der Ordnung der Dermaptera z.B. *Forficula auricularia*.

Aus der Ordnung der Isoptera z.B. *Reticulitermes spp.*

Aus der Ordnung der Phthiraptera z.B. *Pediculus humanus corporis*, *Haematopinus spp.*,
Linognathus spp., *Trichodectes spp.*, *Damalinia spp.*

- 15 Aus der Ordnung der Thysanoptera z.B. *Hercinothrips femoralis*, *Thrips tabaci*, *Thrips palmi*,
Frankliniella accidentalis.

Aus der Ordnung der Heteroptera z.B. *Eurygaster spp.*, *Dysdercus intermedius*, *Piesma quadrata*,
Cimex lectularius, *Rhodnius prolixus*, *Triatoma spp.*

- 20 Aus der Ordnung der Homoptera z.B. *Aleurodes brassicae*, *Bemisia tabaci*, *Trialeurodes vaporariorum*, *Aphis gossypii*, *Brevicoryne brassicae*, *Cryptomyzus ribis*, *Aphis fabae*, *Aphis pomi*,
Eriosoma lanigerum, *Hyalopterus arundinis*, *Phylloxera vastatrix*, *Pemphigus spp.*, *Macrosiphum avenae*, *Myzus spp.*, *Phorodon humuli*, *Rhopalosiphum padi*, *Empoasca spp.*, *Euscelis bilobatus*,
Nephrotettix cincticeps, *Lecanium corni*, *Saissetia oleae*, *Laodelphax striatellus*, *Nilaparvata lugens*,
Aonidiella aurantii, *Aspidiotus hederae*, *Pseudococcus spp.*, *Psylla spp.*

- 25 Aus der Ordnung der Lepidoptera z.B. *Pectinophora gossypiella*, *Bupalus piniarius*, *Cheimatobia brumata*, *Lithocolletis blancardella*, *Hyponomeuta padella*, *Plutella xylostella*, *Malacosoma neustria*, *Euproctis chrysorrhoea*, *Lymantria spp.*, *Bucculatrix thurberiella*, *Phylloconistis citrella*,
Agrotis spp., *Euxoa spp.*, *Feltia spp.*, *Earias insulana*, *Heliothis spp.*, *Mamestra brassicae*, *Panolis*

- 11 -

flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.

- 5 Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.

10 Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

15 Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp..

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.

20 Aus der Klasse der Arachnida z.B. Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermacentor gallinae, Eriophyes ribis, Phyllocoptes oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp.

25 Zu den pflanzenparasitären Nematoden gehören z.B. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp.

30 Die Wirkstoffkombinationen können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver,

- 12 -

Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen,
5 gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in
10 Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

15 Als feste Trägerstoffe kommen in Frage:

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims,
20 Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
25

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und
30 Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffkombinationen können in handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden 10 zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

Die erfindungsgemäßen Wirkstoffkombinationen können ferner beim Einsatz als Insektizide in 15 ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muss.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen 20 kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnen sich die Wirkstoffkombinationen durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

Die erfindungsgemäßen Wirkstoffkombinationen wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:

- 14 -

Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.

Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.

- Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp.,
10 Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp.

Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.

- 15 Aus der Ordnung der Heteroptera z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.

Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp.

- Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B.
20 Argas spp., Ornithodoros spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp.

- Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp.

- Die erfindungsgemäßen Wirkstoffkombinationen eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel,
30 Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen

- 15 -

Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) verminder werden, so dass durch den Einsatz der erfindungsgemäßen Wirkstoffkombinationen eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

Die Anwendung der erfindungsgemäßen Wirkstoffkombinationen geschieht im Veterinärsektor in
5 bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through-Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitoneal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on)
10 und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Haltern, Markierungsvorrichtungen usw.

Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffkombinationen als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer
15 Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.

Außerdem wurde gefunden, dass die erfindungsgemäßen Wirkstoffkombinationen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.

Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:

20 Käfer wie

Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins,
25 Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.

Hautflügler wie

Sirex juvencus, Urocerus gigas, Urocerus gigas tagnus, Urocerus augur.

Termiten wie

Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes,
30 Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.

Borstenschwänze wie Lepisma saccharina.

Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.

Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden Material um
5 Holz und Holzverarbeitungsprodukte.

Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen:

Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten,
Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Span-
10 platten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bau-
tischlerei Verwendung finden.

Die Wirkstoffkombinationen können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

- 15 Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.
- 20 Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.

Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung
25 jeweils durch Testreihen ermittelt werden. Im Allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.

Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches
30 Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.

Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.

5 Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.

In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem 10 Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindeöl und/oder Monochlornaphthalin, vorzugsweise α -Monochlornaphthalin, verwendet.

Die organischen schwerflüchtigen ölichen oder ölartigen Lösungsmittel mit einer Verdunstungszahl 15 über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organisch-chemische Lösungsmittel ersetzt werden, mit der Maßgabe, dass das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und dass das Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.

Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel 20 oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.

Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sich 25 bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaronharz, 30 Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.

Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu

10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasser-abweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.

Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz
5 bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.

Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungsmittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe
10 sowie einer Kristallisation bzw. Ausfällen vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).

Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributylphosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat,
15 Glycerinether oder höhermolekulare Glykolether, Glycerinester sowie p-Toluolsulfonsäureester.

Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinylmethylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.

Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organisch-chemischen Lösungs- bzw.
20 Verdünnungsmittel, Emulgatoren und Dispergatoren.

Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.

Zugleich können die erfindungsgemäßen Wirkstoffkombinationen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken, Kaianlagen und
25 Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.

Bewuchs durch sessile Oligochaeten, wie Kalkröhrenwürmer sowie durch Muscheln und Arten der Gruppe Ledamorpha (Entenmuscheln), wie verschiedene Lepas- und Scalpellum-Arten, oder durch Arten der Gruppe Balanomorpha (Seepocken), wie Balanus- oder Pollicipes-Species, erhöht den Reibungswiderstand von Schiffen und führt in der Folge durch erhöhten Energieverbrauch und
30 darüber hinaus durch häufige Trockendockaufenthalte zu einer deutlichen Steigerung der Betriebskosten.

Neben dem Bewuchs durch Algen, beispielsweise Ectocarpus sp. und Ceramium sp., kommt insbesondere dem Bewuchs durch sessile Entomostraken-Gruppen, welche unter dem Namen Cirripedia (Rankenflusskrebse) zusammengefasst werden, besondere Bedeutung zu.

Es wurde nun überraschenderweise gefunden, dass die erfindungsgemäßen Wirkstoffkombinationen eine hervorragende Antifouling (Antibewuchs)-Wirkung aufweisen.

Durch Einsatz der erfindungsgemäßen Wirkstoffkombinationen kann auf den Einsatz von Schwermetallen wie z.B. in Bis(trialkylzinn)-sulfiden, Tri-*n*-butylzinnlaurat, Tri-*n*-butylzinnchlorid, Kupfer(I)-oxid, Triethylzinnchlorid, Tri-*n*-butyl(2-phenyl-4-chlorphenoxy)-zinn, Tributylzinnoxid, Molybdändisulfid, Antimonoxid, polymerem Butyltitannat, Phenyl-(bispyridin)-wismutchlorid, Tri-*n*-butylzinnfluorid, Manganethylenbisthiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylenbisthiocarbamat, Zink- und Kupfersalze von 2-Pyridinthiol-1-oxid, Bisdimethyldithiocarbamoylzinkethylenbisthiocarbamat, Zinkoxid, Kupfer(I)-ethylen-bisdithiocarbamat, Kupferthiocyanat, Kupfernaphthenat und Tributylzinnhalogeniden verzichtet werden oder die Konzentration dieser Verbindungen entscheidend reduziert werden.

Die anwendungsfertigen Antifoulingfarben können gegebenenfalls noch andere Wirkstoffe, vorzugsweise Algizide, Fungizide, Herbizide, Molluskizide bzw. andere Antifouling-Wirkstoffe enthalten.

Als Kombinationspartner für die erfindungsgemäßen Antifouling-Mittel eignen sich vorzugsweise:

Algizide wie

2-*tert*.-Butylamino-4-cyclopropylamino-6-methylthio-1,3,5-triazin, Dichlorophen, Diuron, Endothal, Fentinacetat, Isoproturon, Methabenzthiazuron, Oxyfluorfen, Quinoclamine und Terbutryn;

Fungizide wie

Benzo[*b*]thiophencarbonsäurecyclohexylamid-S,S-dioxid, Dichlofluanid, Fluorfolpet, 3-Iod-2-propinyl-butylcarbamid, Tolylfuanid und Azole wie Azaconazole, Cyproconazole, Epoxyconazole, Hexaconazole, Metconazole, Propiconazole und Tebuconazole;

Molluskizide wie

Fentinacetat, Metaldehyd, Methiocarb, Niclosamid, Thiodicarb und Trimethacarb;

oder herkömmliche Antifouling-Wirkstoffe wie

4,5-Dichlor-2-octyl-4-isothiazolin-3-on, Diiodmethylparatrylsulfon, 2-(N,N-Dimethylthiocarbamoylthio)-5-nitrothiazyl, Kalium-, Kupfer-, Natrium- und Zinksalze von 2-Pyridinthiol-1-oxid,

Pyridin-triphenylboran, Tetrabutyldistannoxyan, 2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin, 2,4,5,6-Tetrachloroisophthalonitril, Tetramethylthiuramdisulfid und 2,4,6-Trichlorphenylmaleimid.

Die verwendeten Antifouling-Mittel enthalten die erfindungsgemäßen Wirkstoffkombinationen in einer Konzentration von 0,001 bis 50 Gew.-%, insbesondere von 0,01 bis 20 Gew.-%.

Die erfindungsgemäßen Antifouling-Mittel enthalten desweiteren die üblichen Bestandteile wie z.B. in Ungerer, *Chem. Ind.* 1985, 37, 730-732 und Williams, *Antifouling Marine Coatings*, Noyes, Park Ridge, 1973 beschrieben.

Antifouling-Anstrichmittel enthalten neben den algiziden, fungiziden, molluskiziden und erfindungsgemäßen insektiziden Wirkstoffen insbesondere Bindemittel.

Beispiele für anerkannte Bindemittel sind Polyvinylchlorid in einem Lösungsmittelsystem, chlorierter Kautschuk in einem Lösungsmittelsystem, Acrylharze in einem Lösungsmittelsystem insbesondere in einem wässrigen System, Vinylchlorid/Vinylacetat-Copolymersysteme in Form wässriger Dispersionen oder in Form von organischen Lösungsmittelsystemen, Butadien/Styrol-/Acrylnitril-Kautschuke, trocknende Öle, wie Leinsamenöl, Harzester oder modifizierte Harzharze in Kombination mit Teer oder Bitumina, Asphalt sowie Epoxyverbindungen, geringe Mengen Chlorkautschuk, chloriertes Polypropylen und Vinylharze.

Gegebenenfalls enthalten Anstrichmittel auch anorganische Pigmente, organische Pigmente oder Farbstoffe, welche vorzugsweise in Seewasser unlöslich sind. Ferner können Anstrichmittel Materialien, wie Kolophonium enthalten, um eine gesteuerte Freisetzung der Wirkstoffe zu ermöglichen. Die Anstriche können ferner Weichmacher, die rheologischen Eigenschaften beeinflussende Modifizierungsmittel sowie andere herkömmliche Bestandteile enthalten. Auch in Self-Polishing-Antifouling-Systemen können die erfindungsgemäßen Verbindungen oder die oben genannten Mischungen eingearbeitet werden.

Die Wirkstoffkombinationen eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.ä. vorkommen. Sie können zur Bekämpfung dieser Schädlinge in Haushaltsinsektizid-Produkten verwendet werden. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:

Aus der Ordnung der Scorpionidea z.B. *Buthus occitanus*.

Aus der Ordnung der Acarina z.B. *Argas persicus*, *Argas reflexus*, *Bryobia* ssp., *Dermanyssus gallinae*, *Glyciphagus domesticus*, *Ornithodoros moubat*, *Rhipicephalus sanguineus*, *Trombicula*

- 21 -

alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.

Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae.

Aus der Ordnung der Opiliones z.B. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium,

5 Opiliones phalangium.

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp.

Aus der Ordnung der Chilopoda z.B. Geophilus spp.

Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina, Lepismodes

10 inquilinus.

Aus der Ordnung der Blattaria z.B. Blatta orientalis, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.

Aus der Ordnung der Saltatoria z.B. Acheta domesticus.

15 Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.

Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.

Aus der Ordnung der Coleoptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae,

20 Sitophilus zeamais, Stegobium paniceum.

Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysotoma pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.

25 Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.

Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.

Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.

Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus corporis, Phthirus pubis.

- 5 Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.

Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggen, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.

10 Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen).

- 15 Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft, Blätter, Nadeln, Stengel, 20 Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

- 25 Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

- 30 Die gute insektizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe in der Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungssummierung hinausgeht.

- 23 -

Ein synergistischer Effekt liegt bei Insektiziden und Akariziden immer dann vor, wenn die Wirkung der Wirkstoffkombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe.

Die zu erwartende Wirkung für eine gegebene Kombination zweier Wirkstoffe kann nach S.R. 5 Colby, Weeds 15 (1967), 20-22) wie folgt berechnet werden:

Wenn

- X den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha oder in einer Konzentration von m ppm bedeutet,
- 10 Y den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes B in einer Aufwandmenge von n g/ha oder in einer Konzentration von n ppm bedeutet und
- 15 E den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Wirkstoffe A und B in Aufwandmengen von m und n g/ha oder in einer Konzentration von m und n ppm bedeutet,

dann ist

$$E = X + Y - \frac{X \cdot Y}{100}$$

Ist der tatsächliche insektizide Abtötungsgrad größer als berechnet, so ist die Kombination in ihrer Abtötung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muss der tatsächlich beobachtete Abtötungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Abtötungsgrad (E).

Beispiel A**Heliothis armigera - Test**

Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 2 Gewichtsteile Alkylarylpolyglykolether

- 5 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

- Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Baumwollkapselwurms (*Heliothis armigera*) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Blatt 1).

- Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

- 25 -

Tabelle A

Pflanzenschädigende Insekten
***Heliothis armigera* - Test**

Wirkstoff	Konzentration in ppm	Abtötung in % nach 6d
Triflumuron		
bekannt	4	0
β-Cyfluthrin		
bekannt	0,16	65
Triflumuron + β-Cyfluthrin (25 : 1)		
erfindungsgemäß		<u>gef.*</u> <u>ber.**</u>
	4 + 0,16	80 65

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

- 26 -

Tabelle A

Pflanzenschädigende Insekten

***Heliothis armigera* - Test**

Wirkstoff	Konzentration in ppm	Abtötung in % nach 3d
Triflumuron		
bekannt	0,8	0
Deltamethrin		
bekannt	0,032	10
Triflumuron + Deltamethrin (25 : 1)		
erfindungsgemäß		<u>gef.*</u> <u>ber.**</u>
	0,8 + 0,032	30 10

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

- 27 -

Tabelle A**Pflanzenschädigende Insekten*****Heliothis armigera* - Test**

Wirkstoff	Konzentration in ppm	Abtötung in % nach 6d
Triflumuron		
bekannt	4	0
Permethrin		
bekannt	0,16	15
Triflumuron + Permethrin (25 : 1)		
erfindungsgemäß	<u>gef.*</u> 4 + 0,16	<u>ber.**</u> 40 15

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel B**Phaedon cochleariae – Larven -Test**

Lösungsmittel: 7 Gewichtsteile Dimethylformamid

Emulgator: 2 Gewichtsteile Alkylarylpolyglykolether

- 5 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

- 10 Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven des Meerrettichblattkäfers (*Phaedon cochleariae*) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Blatt 1).

- Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine
15 synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

- 29 -

Tabelle B

Pflanzenschädigende Insekten

Phaedon cochleariae Larven - Test

Wirkstoff	Konzentration in ppm	Abtötung in % nach 3d
Triflumuron		
bekannt	4	35
β-Cyfluthrin		
bekannt	0,16	15
Triflumuron + β-Cyfluthrin (25 : 1)		
erfindungsgemäß		
	<u>gef.*</u>	<u>ber.**</u>
	4 + 0,16	55 44,75

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

- 30 -

Tabelle B

Pflanzenschädigende Insekten

Phaedon cochleariae Larven - Test

Wirkstoff	Konzentration in ppm	Abtötung in % nach 6d
Triflumuron		
bekannt	4	65
Deltamethrin		
bekannt	0,16	50
Triflumuron + Deltamethrin (25 : 1)		
erfindungsgemäß		<u>gef.*</u> <u>ber.**</u>
	4 + 0,16	85 82,5

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

- 31 -

Tabelle B

Pflanzenschädigende Insekten
Phaedon cochleariae Larven - Test

Wirkstoff	Konzentration in ppm	Abtötung in % nach 3d
Triflumuron		
bekannt	4	25
Lambda-Cyhalothrin		
bekannt	0,16	15
Triflumuron + Lambda-Cyhalothrin (25 : 1)		
erfindungsgemäß		
	<u>gef.*</u>	<u>ber.**</u>
	4 + 0,16	55 36,25

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel C**Spodoptera exigua - Test**

Lösungsmittel: 7 Gewichtsteile Dimethylformamid

Emulgator: 2 Gewichtsteile Alkylarylpolyglykolether

- 5 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

- Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Zuckerrübeneule (*Spodoptera exigua*) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Blatt 1).

- Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

- 33 -

Tabelle C

Pflanzenschädigende Insekten

Spodoptera exigua - Test

Wirkstoff	Konzentration in ppm	Abtötung in % nach 6d
Triflumuron		
bekannt	4	20
Permethrin		
bekannt	0,16	0
Triflumuron + Permethrin (25 : 1)		
erfindungsgemäß	<u>gef.*</u> 4 + 0,16	<u>ber.**</u> 30 20

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel D**Grenzkonzentrations-Test / Bodeninsekten-Behandlung transgener Pflanzen**

Testinsekt: Diabrotica balteata - Larven im Boden
Lösungsmittel: 7 Gewichtsteile Aceton
5 Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Die Wirkstoffzubereitung wird auf den Boden gegossen. Dabei spielt die Konzentration des Wirkstoffs in der Zubereitung praktisch keine Rolle, entscheidend ist allein die Wirkstoffgewichtsmenge pro Volumeneinheit Boden, welche in ppm (mg/l) angegeben wird. Man füllt den Boden in 0,25 l Töpfe und lässt diese bei 20°C stehen.

Sofort nach dem Ansatz werden je Topf 5 vorgekeimte Maiskörner der Sorte YIELD GUARD (Warenzeichen von Monsanto Domp., USA) gelegt. Nach 2 Tagen werden in den behandelten 15 Boden die entsprechenden Testinsekten gesetzt. Nach weiteren 7 Tagen wird der Wirkungsgrad des Wirkstoffs durch Auszählen der aufgelaufenen Maispflanzen bestimmt (1 Pflanze = 20 % Wirkung).

Beispiel E**Heliothis virescens - Test - Behandlung transgener Pflanzen**

Lösungsmittel: 7 Gewichtsteile Aceton

Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

- 5 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

- 10 Sojatriebe (Glycine max) der Sorte Roundup Ready (Warenzeichen der Monsanto Comp. USA) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Tabakknospenraupe Heliothis virescens besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung der Insekten bestimmt.

Patentansprüche

1. Mittel enthaltend Mischungen aus Triflumuron und mindestens eine der nachfolgenden Verbindungen

Acrinathrin
Alpha-Cypermethrin
Betacyfluthrin
Cyhalothrin
Cypermethrin
Deltamethrin
Esfenvalerat
Etofenprox
Fenpropathrin
Fenvalerat
Flucythrinate
Lambda-Cyhalothrin
Permethrin
Tau-fluvalinat
Tralomethrin
Zeta-Cypermethrin
Cyfluthrin
Bifenthrin
Cycloprothrin
Eflusilanat
Fubfenprox
Pyrethrin
Resmethrin
Gamma-Cyhalothrin.

- 5 2. Mittel enthaltend Mischungen aus Triflumuron und Betacyfluthrin.
3. Mittel enthaltend Mischungen aus Triflumuron und Lambda-Cyhalothrin.
4. Verwendung von Mischungen, wie in Anspruch 1 definiert, zur Bekämpfung tierischer Schädlinge.

- 37 -

5. Verfahren zur Bekämpfung tierischer Schädlinge, dadurch gekennzeichnet, dass man Mischungen, wie in Anspruch 1 definiert, auf tierische Schädlinge und/oder deren Lebensraum einwirken lässt.
6. Verfahren zur Herstellung insektizider Mittel, die dadurch gekennzeichnet sind, dass man Mischungen, wie in Anspruch 1 definiert, mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.