声明:百科词条人人可编辑,创建和修改均免费

<u>详情</u> ×

考虑: 偏导数与连续性的关系

在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。

中文名 偏导数

外文名 Partial derivative

别称 导数

表达式 f'x(x0,y0)

提出者 Marquis de Condorcet

目录

TA

≔

(1)

在 xOy 平面内,当动点由 $P(x_0,y_0)$ 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,因此就需要研究 f(x,y) 在 (x_0,y_0) 点处沿不同方向的变化率。

在这里我们只学习函数 f(x,y) 沿着**平行于 x 轴**和**平行于 y 轴**两个特殊方位变动时 f(x,y) 的变化率。

偏导数的表示符号为:∂。

偏导数反映的是函数沿坐标轴正方向的变化率。

定义

x方向的偏导

设有二元函数 z=f(x,y) ,点 (x_0,y_0) 是其定义域D 内一点。把 y 固定在 y_0 而让 x 在 x_0 有增量 $\triangle x$,相应地函数 z=f(x,y) 有增量 (称 为对 x 的偏增量) $\triangle z=f(x_0+\triangle x,y_0)-f(x_0,y_0)$ 。

如果 $\triangle z = f(x,y)$ 在 (x_0,y_0) 处对 x 的偏导数,记作 $f'_x(x_0,y_0)$ 或。函数 z=f(x,y) 在 (x_0,y_0) 处对 x 的偏导数,实际上就是把 y 固定在 y_0 看成常数后,一元函数 $z=f(x,y_0)$ 在 x_0 处的导数。

y方向的偏导

同样,把 x 固定在 x_0 ,让 y 有增量 $^{\triangle}$ y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x_0,y_0) 处对 y 的偏导数。记作 $f'_y(x_0,y_0)$ 风

求法

目录

的母一点均可导,那么称凼致 f(x,y) 仕域 D 可导。

此时,对应于域 D 的每一点 (x,y),必有一个对 x (对 y)的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y)对 x (对 y)的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

几何意义

表示固定面上一点的切线斜率。

偏导数 $f'_x(x_0,y_0)$ 表示固定面上一点对 x 轴的切线斜率;偏导数 $f'_y(x_0,y_0)$ 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 $f'_x(x,y)$ 与 $f'_y(x,y)$ 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个: f''_{xx} , f''_{yy} , f''_{yy} 。

注意:

 f''_{xy} 与 f''_{yx} 的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f''_{xy} 与 f''_{yx} 都连续时,求导的结果与先后次序无关。[1]

TA

参考资料

猜你关注

男士spa养生

高一数学

男士spa会所

数据库文件恢复

hot 百度百科有奖小调研

内容均由网友贡献,百度百科无任何收费代编服务

百度百科吧 意见反馈 权威合作 百科协议

