MATH 8090: State-Space Models II

Whitney Huang, Clemson University

11/28 - 30/2023

Contents

Local level model	2
Simulate data from local level models	2
Plot state vectors and observation vectors	2
Carrying out Kalman filter	3
Kalman filter: forecasting	5
Forecasting interval	5
Nile rvier flows missing values imputation	6
Kalman smoothing	9
Kalman smoothing: local level model example	10
Parameter estimation	11
Generate data	11
Initial estimates	11
Function to evaluate the likelihood	12
Estimation	12
Global temperature example	13
EM algorithm example	16
Generate data (same as Example 6.6)	16
Initial Estimates	16
Standard Errors	17
Evaluate likelihood at estimates	18
Display summary of estimation	18
Bayesian Estimation Local Level Model	18
Generate data	18
Set up the Gibbs sampler	19
Progress bar	19
Pull out the results for easy plotting	20
Plot the results	20
References	91

Local level model

Simulate data from local level models

```
Y_t = X_t + W_t, \qquad W_t \sim \mathcal{N}(0, \sigma_W^2),

X_t = X_{t-1} + V_t, \qquad V_t \sim \mathcal{N}(0, \sigma_v^2).
```

Here $\mu_0 = 0$, $\sigma_0^2 = 1$, $\sigma_V^2 = 1$, $\sigma_W^2 = \sigma_V^2/\text{SNR}$.

```
set.seed(123)
mu0 <- 0; sig0 <- 1; sig2.V <- 1
X.0 <- rnorm(1, mean = mu0, sd = sqrt(sig0))
X <- cumsum(c(X.0, rnorm(99, sd = sqrt(sig2.V))))
W <- rnorm(100)
SNR <- 2; Y.2 <- X + W * sqrt(sig2.V / SNR)
SNR <- 100; Y.100 <- X + W * sqrt(sig2.V / SNR)</pre>
```

Plot state vectors and observation vectors

Carrying out Kalman filter

The function below is adapted from Dr. Donald B. Percival's UW Stat $519~\mathrm{R}$ codes.

1. Compute innovation:

$$U_t = Y_t - Y_t^{t-1} = Y_t - \mu_t^f.$$

2. Compute MSE for \boldsymbol{Y}_t^{t-1} :

$$\Sigma_t^f + \sigma_W^2 = F_t.$$

3. Compute the new filtered value:

$$\mu_t^a = \mu_t^f + K_t U_t,$$

where $K_t = \Sigma_t^f/F_t$ is the Kalman gain.

4. Compute MSE for new filtered value:

$$\Sigma_t^a = \Sigma_t^f (1 - K_t).$$

5. Compute new forecast:

$$\mu_{t+1}^f = \mu_t^f + K_t U_t = \mu_t^a.$$

6. Compute MSE for new forecast:

$$\Sigma_{t+1}^f = \Sigma_t^f (1 - K_t) + \sigma_V^2 = \Sigma_t^a + \sigma_V^2$$

```
KF.one.step.local.level <- function(X.t.tm1, P.t.tm1, Y.t, sig2.W, sig2.V){</pre>
  U.t <- if(is.na(Y.t)) NA else Y.t - X.t.tm1
  F.t <- P.t.tm1 + sig2.W
  K.t <- if(is.na(Y.t)) 0 else P.t.tm1 / F.t</pre>
  X.t.t <- X.t.tm1 + if(is.na(Y.t)) 0 else K.t * U.t</pre>
  P.t.t \leftarrow P.t.tm1 * (1 - K.t)
  X.tp1.t <- X.t.t
  P.tp1.t <- P.t.t + sig2.V
  structure(list(filter = X.t.t, forecast = X.tp1.t, filter.var = P.t.t,
                  forecast.var = P.tp1.t, innovation = U.t, innovation.var = F.t,
                  gain = K.t))
}
KF.n.steps.local.level \leftarrow function(ts, m.1 = 0, P.1 = 1, sig2.W = 1, sig2.V = 1){
  n <- length(ts)
  filter.ts <- forecast.ts <- filter.var.ts <- innovations.ts <- rep(0, n)
  forecast.var.ts <- innovations.var.ts <- gain.ts <- rep(0, n)</pre>
  X.forecast.in <- m.1; X.forecast.var.in <- P.1</pre>
  forecast.ts[1] <- X.forecast.in; forecast.var.ts[1] <- X.forecast.var.in</pre>
  Y.in <- ts[1]
  for(t in 1:n){
    temp <- KF.one.step.local.level(X.forecast.in, X.forecast.var.in, Y.in,</pre>
                                      sig2.W, sig2.V)
    filter.ts[t] <- temp$filter; filter.var.ts[t] <- temp$filter.var</pre>
    innovations.ts[t] <- temp$innovation; innovations.var.ts[t] <- temp$innovation.var
    gain.ts[t] <- temp$gain</pre>
    if(t < n){
      forecast.ts[t + 1] <- temp$forecast</pre>
      forecast.var.ts[t + 1] <- temp$forecast.var</pre>
      X.forecast.in <- temp$forecast</pre>
      X.forecast.var.in <- temp$forecast.var</pre>
      Y.in \leftarrow ts[t + 1]
    }
  }
  structure(list(filter.ts = filter.ts, forecast.ts = forecast.ts,
                  filter.var.ts = filter.var.ts, forecast.var.ts = forecast.var.ts,
                  innovations.ts = innovations.ts, innovations.var.ts = innovations.var.ts,
                  gain.ts = gain.ts))
```

Kalman filter: forecasting

Forecasting interval

Nile rvier flows missing values imputation

The analysis below is adapted from Dr. Donald B. Percival's UW Stat $519~\mathrm{R}$ codes.

Kalman smoothing

The function below is adapted from Dr. Donald B. Percival's UW Stat 519 R codes.

```
KS.local.level <- function(KF.results){</pre>
  n <- length(KF.results$filter.ts)</pre>
  L.t.ts <- 1 - KF.results$gain.ts
  r.ts \leftarrow rep(0, n + 1)
  bg <- is.na(KF.results$innovations.ts)</pre>
  innov.O.for.NA <- KF.results$innovations.ts</pre>
  innov.O.for.NA[bg] <- 0</pre>
  for(t in n:1) r.ts[t] <- innov.0.for.NA[t] / KF.results$innovations.var.ts[t]</pre>
  + L.t.ts[t] * r.ts[t+1]
  smooth.ts <- KF.results$forecast.ts + KF.results$forecast.var.ts * r.ts[-(n + 1)]</pre>
  N.t.ts \leftarrow rep(0, n + 1)
  for(t in n:1) N.t.ts[t] <- 1 / KF.results$innovations.var.ts[t] +</pre>
    (L.t.ts[t])^2 * N.t.ts[t+1]
  smooth.var.ts <- KF.results$forecast.var.ts -</pre>
    (KF.results\forecast.var.ts)\forecast. \text{N.t.ts}[-(n + 1)]
  structure(list(L.t.ts = L.t.ts, r.ts = r.ts, smooth.ts = smooth.ts,
                  N.t.ts = N.t.ts, smooth.var.ts = smooth.var.ts))
```

Kalman smoothing: local level model example

Parameter estimation

This example is taken from Shumway and Stoffer (2017) example 6.6

Generate data

```
library(astsa)
set.seed(123)
num = 100
N = num + 1
x <- sarima.sim(n = N, ar = .8)
y <- ts(x[-1] + rnorm(num, 0, 1))</pre>
```

Initial estimates

$$\begin{split} \phi^{(0)} &= \frac{\hat{\rho}_Y(2)}{\hat{\rho}_Y(1)}. \\ \sigma_W^{2^{(0)}} &= (1 - \phi^{2^{(0)}}) \hat{\gamma}_Y(1) / \phi^{(0)}. \\ \sigma_V^{2^{(0)}} &= \hat{\gamma}_Y(0) - \left[\frac{\sigma_W^{2^{(0)}}}{1 - \phi^{2^{(0)}}} \right] \\ \mathbf{u} &= \mathsf{ts.intersect}(\mathbf{y}, \, \mathsf{lag}(\mathbf{y}, \, -1), \, \mathsf{lag}(\mathbf{y}, \, -2)) \\ \mathsf{varu} &= \mathsf{var}(\mathbf{u}) \\ \mathsf{coru} &= \mathsf{cor}(\mathbf{u}) \end{split}$$

```
phi = coru[1, 3] / coru[1, 2]
q = (1 - phi^2) * varu[1, 2] / phi
r = varu[1, 1] - q / (1 - phi^2)
(init.par = c(phi, sqrt(q), sqrt(r)))
```

[1] 0.7614651 1.0020091 0.8744762

Function to evaluate the likelihood

```
Linn <- function(para){
  phi <- para[1]; sigw <- para[2]; sigv <- para[3]
  Sigma0 <- (sigw^2) / (1 - phi^2); Sigma0[Sigma0 < 0] = 0
  kf = Kfilter(y, 1, mu0 = 0, Sigma0, phi, sigw, sigv)
  return(kf$like)
}</pre>
```

Estimation

```
## initial value 84.170842
## iter 2 value 84.102702
## iter 3 value 83.916203
## iter 4 value 83.915653
## iter 5 value 83.889723
## iter 6 value 83.885783
## iter 7 value 83.885762
## iter 7 value 83.885762
## iter 7 value 83.885762
## final value 83.885762
## converged
## $par
## [1] 0.8213276 0.8308274 0.9691287
##
## $value
## [1] 83.88576
##
## $counts
## function gradient
##
        29
##
## $convergence
## [1] 0
##
## $message
## NULL
##
```

```
## $hessian
##
              [,1]
                       [,2]
                                 [,3]
## [1,] 263.738652 74.14214 -9.936399
## [2,] 74.142142 69.77014 44.355806
        -9.936399 44.35581 85.616367
SE = sqrt(diag(solve(est$hessian)))
cbind(estimate = c(phi = est$par[1], sigw = est$par[2], sigv = est$par[3]), SE)
##
                          SE
         estimate
## phi 0.8213276 0.08831157
## sigw 0.8308274 0.20920610
## sigv 0.9691287 0.15849779
```

Global temperature example

This example is taken from Shumway and Stoffer (2017) example 6.7

```
tsplot(cbind(gtemp_land, gtemp_ocean), spaghetti = TRUE,
    lwd = 2, pch = 20, type = "o", col=astsa.col(c(4,2),.5),
    ylab = "Temperature Deviations", main = "Global Warming")
legend("topleft", legend = c("Land Surface", "Sea Surface"), lty = 1,
    pch = 20, col = c(4, 2), bg = "white")
```

Global Warming


```
#### Setup
y = cbind(globtemp/sd(globtemp), globtempl/sd(globtempl))
num = nrow(y)
input = rep(1, num)
A = matrix(c(1, 1), nrow = 2)
mu0 = -.35; Sigma0 = 1; Phi = 1
#### Function to Calculate Likelihood
Linn=function(para){
  sQ = para[1]
                 # siqma_w
 sR1 = para[2]
                 # 11 element of sR
  sR2 = para[3]
                  # 22 element of sR
  sR21 = para[4]
                 # 21 element of sR
  sR = matrix(c(sR1, sR21, 0, sR2), 2) # put the matrix together
 drift = para[5]
 kf = Kfilter(y, A, mu0, Sigma0, Phi, sQ, sR,
              Ups = drift, Gam = NULL, input) # NOTE Gamma is set to NULL now (instead of 0)
 return(kf$like)
}
#### Estimation
init.par = c(.1, .1, .1, 0, .05) # initial values of parameters
(est = optim(init.par, Linn, NULL, method = "BFGS", hessian = TRUE,
            control = list(trace = 1, REPORT = 1)))
## initial value 66.388539
## iter 2 value -168.023751
## iter 3 value -176.435356
## iter 4 value -177.391799
## iter 5 value -179.269359
## iter 6 value -188.964297
## iter 7 value -198.772440
## iter 8 value -202.788250
## iter 9 value -203.540106
## iter 10 value -204.946439
## iter 11 value -205.940174
## iter 12 value -206.647210
## iter 13 value -206.670493
## iter 14 value -206.684192
## iter 15 value -206.694809
## iter 16 value -206.695776
## iter 17 value -206.695794
## iter 18 value -206.695801
## iter 18 value -206.695802
## iter 18 value -206.695805
## final value -206.695805
## converged
## $par
## [1] 0.09461713 0.32401331 0.20283345 0.14761763 0.02472785
##
## $value
## [1] -206.6958
```

```
##
## $counts
## function gradient
##
        86
                  18
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
                        [,2]
                                   [,3]
                                              [,4]
              [,1]
                                                          [,5]
## [1,] 2285.12223 494.6403 252.9334 715.3184
                                                      44.60378
## [2,] 494.64029 2075.6433 1505.5115 -1460.9779 -146.63890
## [3,] 252.93339 1505.5115 4001.0586 -665.6213
                                                     214.95949
## [4,] 715.31842 -1460.9779 -665.6213 2791.7353
                                                      31.79560
## [5,]
        44.60378 -146.6389 214.9595
                                           31.7956 14613.01275
SE = sqrt(diag(solve(est$hessian)))
#### Summary of estimation
estimate = est$par; u = cbind(estimate, SE)
rownames(u)=c("sigw","sR11", "sR22", "sR21", "drift"); u
##
          estimate
## sigw 0.09461713 0.025974347
## sR11 0.32401331 0.038005698
## sR22 0.20283345 0.019122980
## sR21 0.14761763 0.029219285
## drift 0.02472785 0.008292723
#### Smooth
sQ = est*par[1]
sR1 = est*par[2]
sR2 = est*par[3]
sR21 = est par [4]
sR = matrix(c(sR1, sR21, 0, sR2), 2)
(R = sR \% * \% t(sR)) # to view the estimated R matrix
##
              [,1]
                         [,2]
## [1,] 0.10498463 0.04783008
## [2,] 0.04783008 0.06293237
drift = est$par[5]
ks = Ksmooth(y, A, mu0, Sigma0, Phi, sQ, sR, Ups = drift,
            Gam = NULL, input) # NOTE Gamma is set to NULL now (instead of 0)
#### Plot the results
tsplot(y, spag = TRUE, margins = .5, type = 'o', pch = 2:3, col = 4:3,
      lty = 6, ylab = 'Temperature Deviations')
xsm = ts(as.vector(ks$Xs), start = 1880)
```

```
rmse = ts(sqrt(as.vector(ks$Ps)), start = 1880)
lines(xsm, lwd = 2, col = 6)
    xx = c(time(xsm), rev(time(xsm)))
    yy = c(xsm - 2 * rmse, rev(xsm + 2 * rmse))
polygon(xx, yy, border = NA, col = gray(.6, alpha = .25))
```


EM algorithm example

Generate data (same as Example 6.6)

```
library(nlme)
set.seed(123); num = 100; N = num+1
x = sarima.sim(ar = .8, n = N)
y = ts(x[-1] + rnorm(num, 0, 1))
```

Initial Estimates

```
u = ts.intersect(y,lag(y, -1), lag(y, -2))
varu = var(u); coru = cor(u)
phi = coru[1,3] / coru[1,2]
q = (1 - phi^2) * varu[1, 2] / phi
r = varu[1, 1] - q/(1 - phi^2)
cr = sqrt(r); cq = sqrt(q); mu0 = 0; Sigma0 = 2.8
(em = EM(y, 1, mu0, Sigma0, phi, cq, cr, 75, .00001))
```

```
## iteration
                -loglikelihood
##
                   84.36778
       1
       2
                  83.97942
##
##
       3
                  83.82139
##
       4
                   83.74255
##
       5
                  83.69475
##
       6
                   83.66085
       7
##
                  83.63427
##
       8
                  83.61222
##
       9
                  83.59335
##
       10
                    83.57691
##
                    83.56242
       11
##
       12
                    83.54955
##
       13
                    83.53808
##
       14
                    83.52781
##
       15
                    83.51859
##
       16
                    83.5103
## $Phi
## [1] 0.8106963
##
## $Q
## [1] 0.7752158
##
## $R
##
              [,1]
## [1,] 0.8704274
##
## $mu0
##
              [,1]
## [1,] 0.7842457
##
## $Sigma0
##
              [,1]
## [1,] 0.1469216
##
## $like
   [1] 84.36778 83.97942 83.82139 83.74255 83.69475 83.66085 83.63427 83.61222
   [9] 83.59335 83.57691 83.56242 83.54955 83.53808 83.52781 83.51859 83.51030
## $niter
## [1] 16
##
## $cvg
## [1] 9.921766e-05
```

Standard Errors

```
phi = em$Phi; cq = chol(em$Q); cr = chol(em$R)
mu0 = em$mu0; Sigma0 = em$Sigma0
para = c(phi, cq, cr)
```

Evaluate likelihood at estimates

```
Linn = function(para){
   kf = Kfilter(y, 1, mu0, Sigma0, para[1], para[2], para[3])
   return(kf$like)
   }
emhess = fdHess(para, function(para) Linn(para))
SE = sqrt(diag(solve(emhess$Hessian)))
```

Display summary of estimation

Bayesian Estimation Local Level Model

This example is taken from Shumway and Stoffer (2017) example 6.7

Generate data

```
set.seed(1)
sQ = 1; sR = 3; n = 100
mu0 = 0; Sigma0 = 10; x0 = rnorm(1, mu0, Sigma0)
w = rnorm(n); v = rnorm(n)
x = c(x0 + sQ * w[1])  # initialize states
y = c(x[1] + sR * v[1])  # initialize obs
for (t in 2:n){
    x[t] = x[t - 1] + sQ*w[t]
    y[t] = x[t] + sR * v[t]
}

tsplot(x, pch = 16)
points(1:100, y, pch = 16, col = "blue")
```


Set up the Gibbs sampler

```
burn = 50; n.iter = 1000
niter = burn + n.iter
draws = c()
# priors for R (a,b) and Q (c,d) IG distributions
a = 2; b = 2; c = 2; d = 1
# (1) initialize - sample sQ and sR
sR = sqrt(1/rgamma(1, a, b)); sQ = sqrt(1/rgamma(1, c, d))
```

Progress bar

```
sR = sqrt(R)
Q = 1/rgamma(1,c + (n - 1)/2, d + sum(diff(Xs)^2)/2)
sQ = sqrt(Q)
## store everything
draws = rbind(draws, c(sQ, sR, Xs))
setTxtProgressBar(pb,iter)
}
## |
close(pb)
```

Pull out the results for easy plotting

```
draws = draws[(burn + 1):(niter),]
q025 = function(x){quantile(x, 0.025)}
q975 = function(x){quantile(x, 0.975)}
xs = draws[, 3:(n + 2)]
lx = apply(xs, 2, q025)
mx = apply(xs, 2, mean)
ux = apply(xs, 2, q975)
```

Plot the results

References

Shumway, Robert H, and David S Stoffer. 2017. Time Series Analysis and Its Applications. 4th ed. Springer.