# Quantitative Population Genomics

# Important concepts for population genetics

 Heritability, Mutations, Genetic Drift, Linkage, and Recombination

- List of words to define:
  - Get in groups of 2-3 and spend 5 minutes seeing if you can define these words.





Allele: variant form of a gene

Can be dominant or recessive

Variance is at a specific genetic
locus

Frequency of observing this allele in a population can be determined

Penetrance is the proportion of individuals carrying a particular allele that also expresses an associated phenotype

GATCTTCGTACTGAGT
GATCTTCGTACTGAGT
GATTTTCGTACGGAAT
GATCTTCGTACTGAGT
GATCTTCGTACTGAAT
GATTTTCGTACGGAAT
GATTTTCGTACTGAAT
GATCTTCGTACTGAAT

Binary (biallelic) single nucleotide polymorphisms

#### D6S474



Fig. 13.1. [This figure also appears in the color insert.] Allele frequencies associated with two microsatellite markers in human populations taken from seven different regions. Each allele has a different color code, and the size of the sector in the pie chart indicates allele frequency. Reproduced with permission. Copyright 2002 NA Rosenberg.

|      | Allele Frequencies |     |      |           |
|------|--------------------|-----|------|-----------|
| Gene | Population I       |     | Popu | lation II |
|      | 1                  | 2   | 1    | 2         |
|      |                    |     |      |           |
| A    | 0.8                | 0.2 | 0.2  | 0.8       |
| B    | 0.8                | 0.2 | 0.2  | 0.8       |
| C    | 0.8                | 0.2 | 0.2  | 0.8       |

Given this population data on these three alleles, how would you go about identifying which population a person most likely belonged to? What do you predict would happen in a person from population I and a person from population II had a child?

GATCTTCGTACTGAGT CTG
GATCTTCGTACTGAGT CTG
CTG/CTG
GATTTTCGTACCGGAAT TGA
GATTTTCGTACTGAGT TTG

An individual has 2 haplotypes per set of loci

What are potential haplotypes for a offspring between these two individuals?

GATCTTCGTACTGAGT CTG
GATCTTCGTACTGAGT CTG
CTG/CTG
GATTTTCGTACCGGAAT TGA
GATTTTCGTACTGAGT TTG

GATCTTCGTACTGAGT CTG

GATTTTCGTACGGAAT TGA

CTG/TGA

GATCTTCGTACTGAGT CTG

GATTTTCGTACTGAGT TTG

CTG/TTG

Does this always hold?

## Linkage

| Phenotype     | Mendelian expected numbers | Actual results |
|---------------|----------------------------|----------------|
| Purple, long  | 3911                       | 4831           |
| Purple, round | 1303                       | 390            |
| Red, long     | 1303                       | 393            |
| Red, round    | 435                        | 1338           |

Why?

What data are unexplained by this explanation? How might this occur?

### Recombination



Recombination Frequency:

RF=recombinants/total

If not linked, recombination frequency is 50%

Griffiths AJF, Miller JH, Suzuki DT, et al. An Introduction to Genetic Analysis. 7th edition. New York: W. H. Freeman; 2000. Recombination. Figure 5-6.

### Recombination via Crossovers

|                                                         | Meiotic chrom | osomes | Meiotic pro | ducts |             |
|---------------------------------------------------------|---------------|--------|-------------|-------|-------------|
| Meioses<br>with no<br>crossover<br>between<br>the genes | A             | В      | A           | В     | Parental    |
|                                                         | A             | В      | A           | В     | Parental    |
|                                                         | a             | b      | a           | b     | Parental    |
|                                                         | а             | b      | a           | b     | Parental    |
| Meioses<br>with a<br>crossover<br>between<br>the genes  | A             | В      | A           | В     | Parental    |
|                                                         | A             | В      | A           | b     | Recombinan  |
|                                                         | a             | ь      | a           | В     | Recombinant |
|                                                         | a             | b      | a           | b     | Parental    |

Griffiths AJF, Miller JH, Suzuki DT, et al. An Introduction to Genetic Analysis. 7th edition. New York: W. H. Freeman; 2000. Recombination. Figure 5-7.

There are 3 genes A B and C. A and B have a recombination frequency of 7%. B and C have a recombination frequency of 10%. Are genes A and C linked? What are the potential cMs between them?





These are the results of a testcross.

In cross 1: you cross female heterozygotes of gene *A*, *B*, and *C* with homozygous recessive males.

You get the following flies:

| Genotype                | Number of flies |
|-------------------------|-----------------|
| $A \bullet B \bullet C$ | 625             |
| a•b•c                   | 620             |
| A•B•c                   | 5               |
| A•b•C                   | 76              |
| A•b•c                   | 45              |
| a∙B•C                   | 40              |
| a•B•c                   | 73              |
| a•b•C                   | 7               |

Draw a map with the appropriate distances between A, B, and C.



In cross 2: you cross female heterozygotes of gene *A*, *B*, and *D* with homozygous recessive males.

You get the following flies:

| Genotype | Number of flies |
|----------|-----------------|
| A•B•D    | 527             |
| a•b•d    | 528             |
| A•B•d    | 530             |
| a•b•D    | 525             |
| A•b•D    | 97              |
| A•b•d    | 99              |
| a•B•D    | 98              |
| a•B•d    | 99              |

Add gene D to your map from the 1<sup>st</sup> cross.



- The closer two alleles are on chromosome,
   the less likely they are to assort independently
- When they don't assort independently they are out of equilibrium
- This lack of equilibrium is known as Linkage
   Disequilibrium (LD)
- This LD is decreased by recombination event

## Probability of being linked

- 2 Haplotypes: A<sub>1</sub>B<sub>1</sub> and A<sub>2</sub>B<sub>2</sub>
- Probability of each haplotype is p<sub>A1B1</sub> and p<sub>A2B2</sub>
- Alelle frequencies are:

$$p_{A1}, p_{B1}, p_{A2}, p_{B2}$$

- These probabilities need to be calculated from population genetic data
- How would we determine linkage?
  - Difference in probability of haplotype from the probability of getting those two alleles separately

## Linkage Disequilibrium Value

D is the amount of disequilibrium

$$D=p_{A1B1}-p_{A1}*p_{B1}=p_{A2B2}-p_{A2}*p_{B2}$$

$$-D=p_{A2B1}-p_{A2}*p_{B1}=p_{A1B2}-p_{A1}*p_{B2}$$

$$D=(p_{A1B1}*p_{A2B2})-(p_{A1B2}*p_{A2B1})$$

# Ideally compare linkages – normalize to expected values

$$D'=D/D_{max}$$

$$D_{\max} = \min\{p_{A_2}p_{B_1}, p_{A_1}p_{B_2}\}, \text{ if } D > 0,$$
  

$$D_{\max} = \min\{p_{A_1}p_{B_1}, p_{A_2}p_{B_2}\}, \text{ if } D < 0.$$

If complete linkage |D'| = 1



For 1,2 and 2,3: Determine |D'|

[1,2] 
$$p_{AT}=0.3$$
,  $p_{TA}=0.2$ ,  $p_{AA}=0.2$ ,  $p_{TT}=0.3$   
 $p_{1(A)}=0.5$ ,  $p_{1(T)}=0.5$ ,  $p_{2(T)}=0.6$ ,  $p_{2(A)}=0.4$   
 $D=0.00$ ,  $D_{max}=0.20$   $|D'|=0.00$ 



[2,3] 
$$p_{TG}$$
=0.4,  $p_{AC}$ =0.3,  $p_{TC}$ =0.2,  $p_{AG}$ =0.1  
 $p_{2(T)}$ =0.6,  $p_{2(A)}$ =0.4,  $p_{3(G)}$ =0.5,  $p_{3(C)}$ =0.5,  
D=0.1,  $D_{max}$ =0.20 | D' | =0.5



[2,5] 
$$p_{TA}=0.2$$
,  $p_{AT}=0.0$ ,  $p_{TT}=0.4$ ,  $p_{AA}=0.4$ ,  $p_{2(T)}=0.4$ ,  $p_{2(A)}=0.6$ ,  $p_{5(A)}=0.6$ ,  $p_{5(A)}=0.6$ ,  $p_{5(T)}=0.4$ ,  $p_{1}=0.4$ ,  $p_{2}=0.4$ ,  $p_{2$ 



# A. Sub-Saharan African sample, region 19a



# B. Sub-Saharan African sample, region 32a



r<sup>2</sup> in SNP data from a population of individuals (Black: r<sup>2</sup>=1, white: r<sup>2</sup>=0)



Linkage isn't equal across the genome

## Determining recombination rates

$$p'_{A1B1} = (1-r)p_{A1B1} + rp_{A1}*p_{B1}$$

$$D'' = (1-r)D$$

$$D_t = (1-r)^t D_o$$

For genes that are close (1%)

recombination), ~69

generations or 1400 years to

come to equilibrium

r<sup>2</sup> in SNP data from a population of individuals (Black: r<sup>2</sup>=1, white: r<sup>2</sup>=0)



Population 1
Reproduced from Seyoung Kim



Population 1

Recombination isn't equally likely across the genome

# How does evolution with a population affect genotype and haplotype?

### D6S474



### D12S2070



# As small groups separate, they evolve in isolation







Nature Reviews | Genetics



### All Genomes are a mixture of ancestral genomes



### **Summarization of Class**