African Master's Of Machine Intelligence AMMI

Densely Connected Convolutional Networks

Engelbert TCHINDE WAMBA

AMMI Student

BootCamp - Week 1

August 20, 2021

Content

- Convolutional Neural Network (CNN)
- DenseNet Architecture
- Multiple densely connected blocks
- Dense connectivity
- DenseNet architecture for ImageNet
- Results
- Conclusion and perspective

Convolutional Neural Network (CNN)

How do we define CNN?

Convolutional Neural Network (CNN)

How do we define CNN?

• CNN is a class of deep neural networks, designed for processing structured arrays of data such as images.

Convolutional Neural Network (CNN)

How do we define CNN?

- CNN is a class of deep neural networks, designed for processing structured arrays of data such as images.
- Types: AlexNet VGGNet GoogLeNet ResNet.

Why DenseNet?

Why DenseNet?

• Every layer is connected to every other layer.

Why DenseNet?

- Every layer is connected to every other layer.
- The input of a layer inside DenseNet is the concatenation of feature maps from previous layers.

DenseNets have several compelling advantages.

• they alleviate the vanishing-gradient problem.

DenseNets have several compelling advantages.

- they alleviate the vanishing-gradient problem.
- strengthen feature propagation.

DenseNets have several compelling advantages.

- they alleviate the vanishing-gradient problem.
- strengthen feature propagation.
- encourage feature reuse.

DenseNets have several compelling advantages.

- they alleviate the vanishing-gradient problem.
- strengthen feature propagation.
- encourage feature reuse.
- substantially reduce the number of parameters.

• Feature maps the same size problem throughout the network.

• Feature maps the same size problem throughout the network.

Figure: VGG architecture.

• Feature maps the same size problem throughout the network.

Figure: VGG architecture.

• Essential part of concvolutional networks: down-sampling layers that change the size of feature maps.

• Solution: divided the network into multiple densely connected dense blocks.

- Solution: divided the network into multiple densely connected dense blocks.
- Inside the dense blocks the feature map size remains the same.

- Solution: divided the network into multiple densely connected dense blocks.
- Inside the dense blocks the feature map size remains the same.
- The size of the feature map grows after a pass through each dense layer and the new features are concatenated to the existing features.

- Solution: divided the network into multiple densely connected dense blocks.
- Inside the dense blocks the feature map size remains the same.
- The size of the feature map grows after a pass through each dense layer and the new features are concatenated to the existing features.
- Each layer adds *k* features on top to the global state, *k* growth rate of the network.

Dense connectivity

• Traditional convolutional feed-forward networks connect the output of the ℓ^{th} layer to the $(\ell+1)^{th}$ layer. Layer transition: $\mathbf{x}_{\ell} = \mathbf{H}_{\ell}(\mathbf{x}_{\ell-1})$.

Dense connectivity

- Traditional convolutional feed-forward networks connect the output of the ℓ^{th} layer to the $(\ell+1)^{th}$ layer. Layer transition: $\mathbf{x}_{\ell} = \mathbf{H}_{\ell}(\mathbf{x}_{\ell-1})$.
- The skip connection can be represented as:

$$\mathsf{x}_{\ell} = \mathsf{H}_{\ell}(\mathsf{x}_{\ell-1}) + \mathsf{x}_{\ell-1}. \tag{1}$$

Dense connectivity

- Traditional convolutional feed-forward networks connect the output of the ℓ^{th} layer to the $(\ell+1)^{th}$ layer. Layer transition: $\mathbf{x}_{\ell} = \mathbf{H}_{\ell}(\mathbf{x}_{\ell-1})$.
- The skip connection can be represented as:

$$\mathsf{x}_{\ell} = \mathsf{H}_{\ell}(\mathsf{x}_{\ell-1}) + \mathsf{x}_{\ell-1}. \tag{1}$$

• In DenseNet architecture, the dense connectivity can be represented as:

$$\mathbf{x}_{\ell} = \mathbf{H}_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_{\ell-1}]) \tag{2}$$

DenseNet architectures for ImageNet

Layers	Output Size	DenseNet-121 DenseNet-169 DenseNet-201		DenseNet-264						
Convolution	112 × 112	7×7 conv, stride 2								
Pooling	56 × 56	3×3 max pool, stride 2								
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$					
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$3 \times 3 \text{ conv}$							
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$								
(1)	28×28	2×2 average pool, stride 2								
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$					
(2)	26 × 26	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$3 \operatorname{conv} \int_{-\infty}^{\infty} \left[3 \times 3 \operatorname{conv} \right]^{\infty} $	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$					
Transition Layer	28×28	$1 \times 1 \text{ conv}$								
(2)	14×14	2×2 average pool, stride 2								
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 64$					
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{64}$					
Transition Layer	14×14	$1 \times 1 \text{ conv}$								
(3)	7 × 7	2 × 2 average pool, stride 2								
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 48$					
(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3/2}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$					
Classification	1×1	7×7 global average pool								
Layer		1000D fully-connected, softmax								

Result: Error rate

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k=24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k=24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Result: Comparison of the parameter

Conclusion and perspective

• DenseNets achieved state-of-the-art results on several highly competitive datasets.

Conclusion and perspective

- DenseNets achieved state-of-the-art results on several highly competitive datasets.
- They require far fewer parameters and less computation to achieve the best performance.

Conclusion and perspective

- DenseNets achieved state-of-the-art results on several highly competitive datasets.
- They require far fewer parameters and less computation to achieve the best performance.
- Future work: study such feature transfer with DenseNets

Reference

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger; *Densely Connected Convolutional Networks*. CVPR 2017.

End

Thank you for your attention!