

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
 - TEXT CUT OFF AT TOP, BOTTOM OR SIDES
 - FADED TEXT
 - ILLEGIBLE TEXT
 - SKEWED/SLANTED IMAGES
 - COLORED PHOTOS
 - BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS
-

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number: 0 518 313 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92109812.5

(51) Int. Cl.⁵: C12N 15/51, C07K 15/00,
C12Q 1/70, A61K 39/29,
G01N 33/576

(22) Date of filing: 11.06.92

A request for correction of the sequence listing has been filed pursuant to Rule 88 EPC. A decision on the request will be taken during the proceedings before the Examining Division (Guidelines for Examination in the EPO, A-V, 2.2).

(30) Priority: 11.06.91 JP 139268/91
12.07.91 JP 172794/91
07.10.91 JP 287008/91
16.12.91 JP 332329/91
20.04.92 JP 99957/92

(43) Date of publication of application:
16.12.92 Bulletin 92/51

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU MC
NL PT SE

(71) Applicant: MITSUBISHI KASEI CORPORATION
5-2, Marunouchi 2-chome Chiyoda-ku
Tokyo 100(JP)

(72) Inventor: Seki, Makoto
10-406, Machida-cooptown, 2-11-3, Ogawa
Machida-shi, Tokyo-to(JP)
Inventor: Honda, Yoshikazu
2-3-16, Nishimikado
Kamakura-shi, Kanagawa-ken(JP)
Inventor: Takahashi, Kazuhiro
10-201, Popuragaoka-coop, 2-10-1, Naruse
Machida-shi, Tokyo-to(JP)
Inventor: Murakami, Tomoko
3-2-9, Narusegaoka
Machida-shi, Tokyo-to(JP)
Inventor: Teranishi, Yutaka
1-14-2, Takane, Sagamihara-shi
Kanagawa-ken(JP)
Inventor: Hayashi, Norio
1-1-112, Suimeldai
Kawanishi-shi, Hyogo-ken(JP)

(74) Representative: Hansen, Bernd, Dr.
Dipl.-Chem. et al
Hoffmann, Eitle & Partner Patent- und
Rechtsanwälte Arabellastrasse 4 Postfach
81 04 20
W-8000 München 81(DE)

(54) Gene of hepatitis C virus or fragment thereof, polypeptide encoded by the same.

(57) A novel gene encoding HCV polypeptide including HCV-associated antigen, a polypeptide encoded by the same, an expression vector containing the gene, a transformant transformed with the vector, a process for producing HCV polypeptide by culturing the transformant, which polypeptide produced by the process is useful for a diagnosis of hepatitis C and for the preparation of vaccine against hepatitis C virus.

Field of the invention

This invention relates to an isolated gene encoding a polypeptide of human hepatitis C virus (hereinafter, referred to as HCV), or a fragment thereof, and a polypeptide encoded thereby.

5

Background of the invention

Hepatitis viruses A, B and D have been identified and the serodiagnosis for each virus has been established before the present invention. However, there was at least one hepatitis whose cause remained 10 unknown (*Digestive Diseases and Sciences*, 31: 122S-132S (1986); and *Seminars in Liver Diseases*, 6: 56-66 (1986)).

Serodiagnosis for hepatitis A virus (HAV) or hepatitis B virus (HBV) has been established and clinically employed since middle of 1970's, which revealed that most of the blood-transfusion-associated hepatitis are caused by unknown pathogen(s) other than viruses capable of growing in hepatocytes, such as HAV or 15 HBV. The hepatitis caused by unknown pathogen was designated as "non-A, non-B hepatitis (NANBH)". In the United States, the incidence of hepatitis following the "transfusion" is about 1 to 10% of the total patients undergone transfusion, and more than 90% of said post-transfusional hepatitis are reported to be NANBH (*Jikken Igaku*, 8: 3: 15-18 (1990)). In Japan, about 200,000 patients, corresponding to about 10 - 20% of those undergone transfusion, are suffering from the post-transfusional hepatitis every year, and 20 about 95% of them are diagnosed as NANBH. Furthermore, about 300,000 people are diagnosed as sporadic hepatitis every year and about 40 to 50% of them are considered to be NANBH. There are also epidemic NANBH in Japan. Although infectious route for NANBH has not been established in contrast with hepatitis A or B, it is likely different from those for hepatitis A and B (*Jikken Igaku*, 8, 3: 13-14 (1990)).

Chiron Corp. (May, 1988) has succeeded in isolating a gene fragment of a virus responsible for NANBH 25 by means of an unique technique quite different from conventional ones and designated said virus as hepatitis C virus (HCV). Many researchers followed the work and sequenced the entire gene encoding both of non-structural and structural proteins of HCV (*Shimotohno et al.*, *Proc. Natl. Acad. Sci. USA*, 87: 9524-9526 (1990); and *Takamizawa et al.*, *Journal of Virology* 65, 3: 1105-1113 (1991)).

Many Patent Applications directed to HCV gene have been done so far, for example, European Patent 30 Publication Nos. 318216, 388232, 398748, 419182, 450931, 464287, 463848, 468657, WO 91/01376, WO 91/15516 and British Patent No. 2239245, and the like.

Chiron corp. and Ortho, Inc. have developed an Enzyme-linked Immunosorbent Assay (ELISA) for HCV and a kit therefor, using a recombinant antigen (clone C100-3) which was obtained by transforming yeast cells with an expression plasmid encoding a fused peptide comprising a human super-oxide dismutase and 35 a 363 amino acid polypeptide encoded by a gene encoding a region from NS3 to NS4 encoding a part of non-structural protein, growing transformants under a condition to allow the transformants express said fused peptide (WO No. 89/04669; and European Patent Publication No.318216).

The Japanese Welfare Ministry (KOSEI-SHO), leading other nations in the world, decided to introduce 40 said Chiron's kit into the screening and detection of anti-HCV antibody and the import thereof started on December 26, 1989. From the next day, the Japanese Red Cross began screening for anti-HCV antibody in blood offered by volunteers using the kit. About 1.7 million of people are estimated to undergo blood transfusion yearly. Before the screening, the incidence of post-transfusional hepatitis among them was about 12.3% (about 173,000), and thereafter, it reduced to about 3%.

As an outstanding and critical feature, the variability of HC-associated antigen is often suggested. For 45 instance, homology in amino acid and base sequences between C100-3 clone and a clone obtained in Japan was reported to be about 80%. The difference is only 20% though, it can affect on the accuracy of the detection of HCV. In another aspects, homology between HC-associated antigens varies from a region to region, for example, it is only 70% regarding the all or a part of NS1, NS2, NS3 and NS5 regions (according to the designation by Chiron Corp.), which indicates that some substances may be overlooked 50 by Chiron's kit. As is often the case with virus, especially that has RNA genome, a genetic mutation occurs at a high frequency, which leads to a change in antigen determinant sites. As a result, HC-associated antigen presented by antigen-presenting cells in serum and antibody raised against it also change in the course of disease.

The another kit provided by Ortho, Inc. is accurate in detecting anti-HCV antibodies raised during a 55 restricted period of disease, that is, antibodies raised during a period while the disease progresses from an acute stage to a chronic stage, which begins about 24.7 weeks after the infection (*SAISHIN IGAKU*, 45, 12: 2331-2336 (19909); *IGAKUNOAYUMI*, 151: 892-896). Thus, the Ortho's kit is not effective for detecting antibodies raised against all the HC-associated antigens throughout the disease, especially those presented

during acute and chronic stages.

Accordingly, an assay method useful for the detection of any anti-HCV antibodies raised against various HC-associated antigens exist in serum of a patient throughout the disease has been needed. HCV is detectable in hepatocytes of patients in various phases of disease, including acute, chronic hepatitis, 5 hepatocirrhosis, and hepatoma. Recently, interests are concentrated on the pathogenetic relationship between HCV infection and hepatoma because about 50 - 60% of patients of hepatoma are HCV positive. Although the pathogenetic relationship between HCV infection and hepatoma has not been established, it is generally accepted that there are some relationships between chronic hepatitis, hepatocirrhosis and hepatoma. Therefore, screening for anti-HCV antibody in serum of a subject susceptible to them may 10 helpful for preventing such serious diseases. Thus, more accurate and efficient screening method, as well as serodiagnosis, is strongly desired to prevent HCV-related diseases. For this purpose, a reagent and a kit having a extended utility in, for example, the assay of serum of a variety of subjects including carriers of HCV without manifesting symptoms, patients suffering from HC of various stages, such as acute, chronic, or progressed hepatitis, is necessary. As the number of HCV-infected patients increases, the% of HCV-contamination in blood offered by volunteers increases. This causes a serious problem all over the world, 15 for instance, the% of HCV positive blood in total blood offered by volunteers is about 10, 0.8, 1.5, and 1.2% in Japan, USA, Italy, and Spain, respectively (TANPAKUSITU, KAKUSAN, KOSO, 36, 10: 1679-1691 (1991)-). However, there are no effective methods for treating HCV infection, and therefore a method for detection of HCV in serum of suspected subjects is strongly required to prevent HCV-related diseases.

20

Summary of the Invention

As previously mentioned, HCV gene is extremely liable to vary and subtypes of HCV should differ to a great extent at various sites including surface antigenic sites and others responsible for the determination of 25 significant features of HCV protein. As these mutated viruses induce hepatitis C of different symptoms depending on the type when infected to human, variants low in homology are considered to be different from each other.

In this regard, the present inventors isolated plural viruses which differ from each other in terms of amino acid and DNA sequences from sera of patients of HC (HC patients).

30 The present invention was established by isolating a novel hepatitis C virus, separating RNA encoding viral protein, converting RNA into cDNA using reverse transcriptase, and cloning and sequencing the resultant DNA. When the isolated DNA was transformed into host cells after ligating to an appropriate expression vector, transformants expressed HC-associated antigen.

DNA obtained by transcribing the RNA of HCV encodes recombinant antigen which is immunochemical- 35 ly the same as HCV-associated antigen. Therefore, for the purpose of the invention, the terms "cDNA", "DNA" and "gene" are used interchangeably, as far as they encode the same protein(s) or antigens as those encoded by RNA gene of HCV. As one of skill will easily appreciate, a DNA fragment encoding an epitopic site of HCV-associated antigen is also useful to produce a polypeptide capable of specifically reacting with anti-HCV antibody in the same manner as intact HC-associated antigen. Therefore such a DNA 40 fragment is also useful for the purpose of the invention.

Thus, the present invention provides an isolated gene of a novel hepatitis C virus and a fragment thereof. The HCV gene and its fragment of the invention are useful for the development of a diagnostic method which is more accurate and effective than conventional ones in the detection of antibodies raised against a wide range of HCVs which have been hardly detected before the present invention. The gene and 45 fragments thereof are also useful for the preparation of a novel vaccine.

In another aspects of the invention, an *in vitro* screening system for a substance capable of specifically suppressing or controlling a proteolytic processing of a precursor polypeptide of HCV can be obtained. The screening system can be established by analyzing viral protease intimately. The analysis can be carried out by synthesizing a + strand of RNA from a double-stranded DNA containing HCV-originated protease gene 50 and its adjoining regions, producing a polypeptide comprising viral protease *in vitro*, characterizing said protease as to the activity, specificity, function, and the like.

In another aspects, the present invention provides an *in vivo* screening system for the substance capable of suppressing the processing of viral precursor protein. The screening can be carried out using a transformant, for example, eucaryotic cells such as animal cells which have been transformed with DNA 55 fragment of the invention, and can express a precursor polypeptide of HCV and process the product intracellularly.

Specifically, the present invention provides an isolated DNA (gene) encoding all or a part of polypeptide having an amino acid sequence of any of SEQ ID NO 1 to 43, 64 to 75 and 101 to 104, or fragment thereof.

The present invention further provides polypeptide having all or a part of amino acid sequence of any of SEQ ID. Nos. 1 to 43, 64 to 75 and 101 to 104.

The polypeptides of the invention have an ability to immunochemically and specifically react with antiserum obtained from patients suffering from hepatitis C.

5 As the amino acid and DNA sequences of polypeptide of HCV are determined, it is easy to obtain active derivatives of viral protein which falls within the scope of the present invention by conventional methods which leads to the insertion, deletion, replacement or addition of amino acids without changing the specific reactivity with sera from patients suffering from hepatitis C. This can be conducted by, for example, a site-specific mutagenesis of DNA.

10 Therefore, the present invention also provides active derivatives of HCV protein obtained by conventional methods, and DNA fragments encoding it, which can immunochemically react with antiserum raised against HC-associated antigen.

In this regard, the present invention provides a polypeptide fragment having a modified amino acid sequence derived from polypeptides having amino acid sequence of SEQ ID NO 1 - 104, and being capable of reacting with serum of HC patients with a different specificity, for example, those claimed in Claims 119, 121, 123, 125, 127, 129, 131 - 136, 138, 140 - 154, 157 - 179, 185 - 199, wherein the modification has been done by deletion, insertion, modification or addition of amino acid(s) subject to that the ability to react with antiserum from HC patients is not decreased:

15 Furthermore, the present invention provides an expression vector which comprises DNA shown by either of SEQ ID NO 1 to 43, 64 to 75 and 101 to 104 or a fragment thereof and has an ability to allow a host cell to express said DNA when transformed into the same.

The present invention also provides a transformant transformed with the expression vector.

The present invention further provides a method for preparing HCV protein or HCV-associated antigen by culturing a transformant in a medium and recovering the product from the cultured broth.

25

Definition

For the purpose of the invention, the following terms are defined below.

HCAG: HCV- or HC-associated antigen. For the purpose of the invention, as hepatitis C is caused by HCV, the terms "HC-associated antigen" and "HCV-associated antigen" are used exchangeably.

HCAb: antibody raised against HCV-associated antigen.

HCV protein or HCV polypeptide: protein or polypeptide encoded by HCV gene.

HCV gene: generally, it is RNA gene of HCV. However, for the purpose of the invention, it refers to gene encoding HCV polypeptide or protein encoded by RNA gene. Therefore, the terms "gene", "cDNA", and "DNA" obtained from RNA gene are used exchangeably.

Recombinant HCAG: a product (protein or polypeptide, including glycosylated ones) produced in host cells transformed by DNA of the invention and is capable of immunochemically reacting with HCAb.

Recombinant polypeptide: polypeptide expressed by host cells transformed by HCV gene of the invention.

40 HC patient: a patient suffering from hepatitis C.

Detailed Description of the Invention

[1] Gene Encoding Core-envelope Region

45

(1) Preparation of cDNA clone of SEQ ID NO 1 - 12 and sequencing thereof

The cDNA clones of SEQ ID NO 1 - 12 which encode a novel polypeptide of core-envelope region of HCV protein were cloned from serum from HC patients as follows.

50 The cloning and sequencing of cDNA encoding HCV polypeptide can be carried out using any of known methods. However, it is hardly accomplished by known "Okayama-Berg" or "Gubler-Hoffman" method because the content of HCV in serum is only a slight amount and HCV gene is liable to variation. The present inventors succeeded in the cloning of gene from a slight amount of serum as will be hereinafter described in Example 1. Briefly, it was conducted by extracting nucleic acids from a serum of a patient suffering from HC. It is preferable to use serum showing OD value of 3.5 on a screening kit of Ortho. Before the extraction, it is desirable to add tRNA or polyribonucleoside to the serum as a carrier for viral RNA. For the purpose of the invention, tRNA is preferable because the degradation of RNA can be easily detected, at least after the addition of tRNA, by monitoring the existence of a sufficient amounts of tRNA having an

intact length on electrophoresis.

The resultant RNA is converted into cDNA using transcriptase in the presence of an appropriate oligonucleotide primer. The cDNA is then cloned and amplified by modified polymerase chain reaction (PCR) (Saiki et al., *Nature* 324: 126 (1986)) in the presence of a pair of primers. Although commercially available random primers can be used in the PCR, synthetic primers having the following base sequences are suitable for the present invention.

Synthetic Primers

10

5' 3'

15

S1:CTCCACCATAGATCACTCC (SEQ ID NO:105)

S2:AGGTCTAGTAGACCGTGC (SEQ ID NO:106)

S3:AGGAAGACTTCCGAGCGG (SEQ ID NO:107)

S4 : CGTGAACATATGCAACAGGG (SEQ ID NO:108)

20

AS1:ACCGCTCGGAAGTCTTCC (SEQ ID NO:109)

AS2:GGGCAAGTTCCCTGTTGC (SEQ ID NO:110)

25

AS3:GCTGGATTCTCTGAGACG (SEQ ID NO:111)

PCR can be conducted under appropriate conditions, for example, those described in Example 2 using the first complementary DNA (1st cDNA) as a template. The condition may vary depending on the primers used such as base sequence or combination, length to be amplified, or the like. Examples of pair of primers are: S1 - AS1; S1 - AS2; S1 - AS3; S2 - AS1; S2 - AS2; S2 - AS3; S3 - AS2; S3 - AS3; and S4 - AS3.

The minimum amount of serum required for the cloning described in Example 2 [2] varies depending on the content of virus in serum used, however, it may be about 5 to 7 μ l when the serum shows OD 3 or more on aforementioned Ortho's kit. The base sequence of cDNA obtained using random primer in the synthesis of the 1st strand cDNA was the same as that of cDNA obtained using antisense primer which was designed and synthesized (Example 8).

Thus, a region (clone N1-1) was obtained by two different methods. Three clones independently obtained from a serum of a patient using random primers are shown as a clone of SEQ ID NO 1. When synthetic DNA (S1 and AS1) was used as primers, two clones of three clones obtained independently have the same base sequence as that of SEQ ID NO 1 and one clone had a modified base sequence wherein three amino acids of SEQ ID NO 1 were changed, i.e., No.345 A to C, No.332 A to T, and No. 95 A to C, which shows that there are more than one virus in one patient.

The resultant DNA fragment is then subjected to the determination of base sequence. Generally, three clones obtained independently are employed and the base sequence of the both strands are determined to obtain an entire base sequence. The base sequence is conveniently determined using a fluorescence sequencer GENESIS 2000 (DUPONT) according to the protocol attached thereto. Alternatively, a conventional subcloning can be used when the DNA fragment consists more than 180 nucleotides or contains a region which is hardly determined by fluorescence sequencer.

Thus obtained base sequences are shown in SEQ ID NO 1 to 12.

For the purpose of the invention, a part of base sequences may be changed, for example, No. 345 A to C, No. 332 A to T, and No. 95 A to C, respectively.

(2) Expression of Polypeptides Encoded by Clones

55

DNA fragments of SEQ ID NO 1 to 12 can be used to produce a recombinant HCAg by constructing an expression vector containing DNA encoding a clone, by inserting the DNA into a known expression vector at an appropriate site of the vector, downstream from a promoter, using a well known method *per se*, and

introducing the expression vector harboring the DNA into a host cell such as Escherichia coli cell, yeast c II, animal c II or the like according to the method known to one of skill, culturing the transformant in a medium under an appropriate condition, and recovering a product from the cultured broth.

The present invention can be accomplished using any expression vectors which have a promoter at an appropriate site to direct the expression of a DNA encoding HCV polypeptide or a fragment thereof. Expression vectors preferably contain promoter, ribosome binding (SD) sequence, gene encoding HCV polypeptide, transcription termination factor, and a regulator gene.

Expression vectors functional in microorganisms such as Escherichia coli, Bacillus subtilis or the like will preferably comprise promoter, ribosome binding (SD) sequence, HCV-associated-protein-encoding gene, transcription termination factor, and a regulator gene.

Examples of promoters include those derived from Escherichia coli or phages such as tryptophane synthetase (trp), lactose operon (lac), λphage P_L and P_R, T_S early gene P₂₅, P₂₆ promoter and the like. These promoter may have modified or designed sequence for each expression vector such as pac promoter.

Although the SD sequence may be derived from Escherichia coli or phage, a sequence which has been designed to contain a consensus sequence consisting of more than 4 bases, which is complementary to the sequence at the 3' terminal region of 16S ribosome RNA, may also be used.

The transcription termination factor is not essential. However, it is preferable that an expression vector contains a p-independent factor such as lipoprotein terminator, trp operon terminator or the like.

Preferably, these sequences required for the expression of the a gene encoding HCAg originated from HCV are located, in an appropriate expression plasmid, in the order of promoter, SD sequence, said gene and transcription termination factor from 5' to 3' direction.

Typical example of expression vectors is commercially available pKK233-2 (Pharmacia). However, a series of plasmids pGEX (Pharmacia), which are provided for the expression of a fused protein, are also employable for the expression of HCAg-encoding gene of the present invention.

A suitable host cell such as Escherichia coli can be transformed with an expression vector comprising a DNA of the invention by any of known methods such as protocol provided by TOYOB0 Japan (Example 3).

The cultivation of the transformants can be carried out using any of well known procedures in literatures such as Molecular Cloning, 1982, and the like. The cultivation is preferably conducted at a temperature from about 28°C to 42°C.

Expression vectors used for transforming other host cells, such as those derived from insects or animals including mammals, consist of substantially the same elements as those described in the above. However, there are certain preferable factors as follows.

When insect cells are used, a commercially available kit MAXBAC™ is employed according to the teaching of the supplier (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4). In this case, it is desirable to make a modification to reduce the distance between the promoter of polyhedrin gene and the initiation codon so as to improve the expression of the gene.

When animal cells are used as hosts, expression vectors preferably contain SV40 early promoter, SV40 late promoter, apolipoprotein E gene promoter, or the like. Specifically, known expression vectors such as pKCR (Proc. Natl. Acad. Sci. USA, 78: 1528 (1981)), pBPV MT1 (Proc. Natl. Acad. Sci. USA, 80: 398 (1983)-), or the like may be employed after minimum modification, for example, an insertion of cloning site as described in a literature (Nature, 307: 604 (1984)), so that the resultant vectors maintain essential functions to serve as expression vectors.

Animal cells usable in the present invention are CHO cell, COS cell, mouse L cell, mouse C127 cell, mouse FM3A cell and the like.

The recombinant polypeptide expressed by host cells such as microorganisms including E. coli, insect cells and animal cells can be recovered from the cultured broth by known methods and identified by, for example, immunoreactions between the expressed product and antiserum obtained from HC patients using a conventional method such as Western blot analysis.

As the result, polypeptides having amino acid sequence of SEQ ID NO 1 to 12 were obtained as expression products of cDNA obtained from serum of HC patients and identified as HCAg. Among them, polypeptides having 191 amino acid sequence from No. 1 to No. 191 of SEQ ID NO 5, 6 and 8 are assumed to be polypeptides which were expressed and cleaved by processing in insect cells. Thus, the sequences of SEQ ID NO 5, 6 and 8 comprise: from No. 174 to No. 188 (region A), amino acid sequence containing mainly hydrophobic amino acids having a large side chain of high molecular weight; and at Nos. 189 and 191, alanine, a r side having a small side chain of lower molecular weight. This pattern of sequence keeps a feature of signal region which is recognized by signal peptidase in animal (including insect) cell. The 5'- and 3'- regions of said sequence contain many variations in amino acid sequence

resulting from variations in base sequence due to the replacement of a part of said sequence, when compared with known HCV genes cloned before the present invention. However, the regions A and B contain less variations which indicates that the polypeptide may be cleaved at C-terminus of the No. 191 alanin by signal peptidase.

5 Polypeptide having amino acid sequence from No. 1 to No.191 of SEQ ID NO 5, 6, and 8 is assumed to be core or matrix protein on the basis of the homology between said amino acid sequence and a known sequence of core or matrix region of viral protein of Japanese encephalitis virus or yellow fever virus. The polypeptide comprising said 191 amino acid sequence is herein referred to as "core protein" or "core region".

10 Polypeptides having 18 amino acid sequence from No. 1 to No.18 of SEQ ID NO 1, 9, 10, 11 and 12, 34 amino acid sequence from No. 40 to No.73 of SEQ ID NO 3, and 35 amino acid sequence from No. 81 to No.115 of SEQ ID NO 3 are relatively highly hydrophilic and highly homologous to polypeptides having amino acid sequences deduced from known HCV genes cloned by Chiron, Shimotohno or Takamizawa (*ibid*) and are useful as HCV-associated antigenic peptide in diagnosis and/or for the preparation of vaccine.

15 Polypeptides having 18 amino acid sequence from No. 40 to No.57 of SEQ ID NO 4, and 12 amino acid sequence from No. 240 to No.251 of SEQ ID NO 4 are relatively highly hydrophilic and extremely low in homology with polypeptides having amino acid sequences deduced from known HCV genes cloned before the present invention and are useful as HCV-associated antigenic peptide in diagnosis. These polypeptides can be produced by chemical synthesis, as well as by DNA recombinant technique.

20 Furthermore, a polypeptide having 115 amino acid sequence from No. 1 to No. 115 of SEQ ID NO 3, corresponding to an epitopic region of core protein, and a polypeptide having 191 amino acid sequence from No. 1 to No.191 of SEQ ID NO 3, corresponding to the total region of core protein, can be produced in large scale by DNA recombinant technique and are useful as diagnostic reagent and/or vaccine.

25 Among them, a polypeptide having 192 amino acid sequence from No. 31 to No. 222 of SEQ ID NO 4 is assumed to be a polypeptide which was expressed and cleaved by processing in insect cells. Thus, the sequence of SEQ ID NO 4 comprises: from No. 13 to No. 29 (region A), amino acid sequence containing mainly hydrophobic amino acids having a side chain of higher molecular weight; at No. 30, alanine, a residue having a side chain of lower molecular weight; from No. 210 to No. 221 (region B), amino acid sequence containing mainly hydrophobic amino acids having a side chain of higher molecular weight; at No. 222, glycine, a residue having a side chain of lower molecular weight. This pattern of sequence keeps a feature of signal region which is recognized by signal peptidase in animal (including insect) cell.

30 The 5'- and 3'- regions of said sequence contain many variations in amino acid sequence resulting from those in base sequence due to the replacement of base sequences, when compared with known HCV gene cloned before the present invention. However, the regions A and B contain less variations, indicating that the polypeptide may be cleaved by signal peptidase at C-terminus of the No. 30 alanine.

35 The polypeptide is assumed to be envelope protein of HCV or a fragment thereof on the basis of the low homology between the base sequence encoding said polypeptide and a known base sequence which encodes a corresponding region of HCV protein. The polypeptide comprising said 192 amino acid sequence is herein referred to as "M-gp35 protein" or "M-gp35 region".

40 Polypeptides having 19 amino acid sequence from No. 134 to No.152 of SEQ ID NO 4, 17 amino acid sequence from No. 223 to 239 of SEQ ID NO 4, and 18 amino acid sequence from No. 92 to No.109 of SEQ ID NO 4 are relatively highly hydrophilic and highly homologous to polypeptides having amino acid sequences deduced from known HCV genes and are useful as HCV-associated antigenic peptide in diagnosis and/or for the preparation of vaccine.

45 Polypeptides having 18 amino acid sequence from No. 40 to No.54 of SEQ ID NO 4, and 12 amino acid sequence from No. 240 to No.251 of SEQ ID NO 4 are relatively highly hydrophilic and extremely low in homology with polypeptides having amino acid sequences deduced from known HCV genes cloned before the present invention and are useful as HCV-associated antigenic peptide for diagnosis.

50 These polypeptides can be produced by chemical synthesis, as well as by DNA recombinant technique. Furthermore, polypeptides having 76 amino acid sequence from No. 31 to No. 106 of SEQ ID NO 4; and 36 amino acid sequence from No. 134 to No. 169 of SEQ ID NO 4, which correspond to an epitopic region of M-gp35 protein can be produced in large scale by DNA recombinant technique and are useful as diagnostic reagent and/or vaccine.

55 [2] Gene Encoding NS1(gp70) Region

(1) Preparation of cDNA clone of SEQ ID NO 13 - 27 and sequencing thereof

The cDNA clones of SEQ ID NO 13 - 27 which encode a novel polypeptide of NS1(gp70) region of HCV protein and fragments thereof were cloned from serum from HC patients as follows.

The cloning and sequencing of cDNA encoding HCV polypeptide can be carried out using any of known methods. However, it is hardly accomplished by known "Okayama-Berg" or "Gubler-Hoffman" method because the content of HCV in serum is only a slight amount and HCV gene is liable to variation. The present inventors succeeded in the cloning of gene from a slight amount of serum as will be hereinafter described in Example 1. Briefly, it was conducted by extracting nucleic acids from a serum of a patient suffering from HC. It is preferable to use serum showing OD value of 3.5 on a screening kit of Ortho. Before the extraction, it is desirable to add tRNA or polyribonucleoside to the serum as a carrier for viral RNA. For the purpose of the invention, tRNA is preferable because the degradation of RNA can be easily detected, at least after the addition of tRNA, by monitoring the existence of a sufficient amounts of tRNA having an intact length on electrophoresis.

The resultant RNA is converted into cDNA using transcriptase in the presence of an appropriate oligonucleotide primer. The cDNA is then cloned and amplified by modified PCR (Saiki et al., Nature 324: 126 (1986)) in the presence of a pair of primers. Although commercially available random primers can be used in the above procedures, synthetic primers having the following base sequences are suitable for the present invention.

Synthetic Primers for Cloning of HCV Gene

20

5' 3'

25
THE CONSTITUTION OF THE UNITED STATES OF AMERICA (SEE ID NO.112).

MS148:TTCTCTAAGGTGGCNTCNGCNTG (SEQ ID NO:113)

MS157:CCGGACGCGTTGAANCTNTGNGT (SEQ ID NO:114)

30 MS123:CATCCAGGTACAACCGAACCA (SEQ ID NO:115)

MS146: AACACACGGCCGCCNCANGNAA (SEQ ID NO:116)

MS156:CCGGATCCCACAAGCCGTNGTNGA (SEQ ID NO:117)

In the above sequences, the letter "N" refers to inosine. The above sequences are only illustrative and these base sequences are not critical. They can be modified by replacing nucleotide(s) with other(s), or deleting or inserting nucleotide(s). The replacement may be preferably introduced within 10 bases from 5' terminus involving 1 to several nucleotides, more preferably, within 5 bases involving less than 5 nucleotides. The deletion may occur in the 5' terminal region involving 4 to 5 nucleotides, preferably, within several bases from the 5' terminus involving a few nucleotides. In case of insertion, it may be an addition of 8 to 12, preferably 5 to 6, more preferably, a few nucleotides in 5' terminal region.

45 PCR can be conducted under appropriate conditions, for example, those described in Example 9 using
the first complementary DNA (1st cDNA) as a template. The condition may vary depending on the primers
used such as base sequence or combination, length to be amplified, or the like. Examples of pair of primers
are : MS122 - MS123; MS157 - MS156; and MS148 - MS146. The resultant cDNA is then inserted into an
appropriate site of a cloning vector such as at SmaI site of pUC19. A cloning vector harboring the DNA
fragment is subjected to the determination of base sequence. Generally, three clones obtained independently
50 are employed and the base sequence of the both strands are determined to obtain an entire base
sequence. The sequence is conveniently determined using a fluorescence sequencer GENESIS 2000
(DUPONT) according to the protocol attached thereto. Alternatively, a conventional subcloning can be used
when the DNA fragment consists more than 180 nucleotides or contains a region which is hardly
55 determined by fluorescence sequencer.

Thus obtained base sequences of DNA fragments are shown in SEQ ID NO 13 to 27.

Clones N19-1, 2, 3, N27-1, 2 and 3 were obtained from serum of a patient N, and clones H19-2, 4, 10, Y19-4, 6 and 7 were obtained independently from patients H, and Y, respectively. Clones MX24-4, 5 and 13

were obtained from a pool comprising sera from multiple patients.

Clones of SEQ ID NO 13 to 15 were obtained using primers MS157 and MS156 represent the same region of HCV gene designated as N27. Clones of SEQ ID NO 16 to 24 were obtained using primers MS122 and MS123 also represent the same region of HCV gene designated as N19, and clones of SEQ ID NO 25 to 27 were obtained using primers MS148 and MS146 also represent the same region of HCV gene designated as MX24. The comparison between base sequence of each clone and that of known HCV gene (Kato et al., Proc. Natl. Acad. Sci. USA, 87: 9524-9528 (1990); and Takamizawa et al., Journal of Virology, 65,3: 1105-1113 (1991)) indicates that clones align on HCV gene in the other of N27, N19 and MX24, from 5' to 3'. As there are overlapping regions between clones, these regions were used to ligate clones each other as will be hereinafter described.

(2) Ligation of Clones of SEQ ID NO 13 to 27

CDNA clones obtained from serum of HC patients shown by sequences of SEQ ID NO 13 to 27 were ligated in the following manners.

1) Ligation of Clones of SEQ ID NO 13 to 15, and Clones of SEQ ID NO 16 to 24

Each clones of SEQ ID NO 13 to 15 was cleaved at MluI site at Nos. 330 to 335 from 5' terminus of base sequences of SEQ ID NO 13 to 15 and ligated to the MluI site at No. 71 from 5' terminus of base sequences of SEQ ID NO 16 to 24 by ligation reaction to yield 27 clones having a DNA fragment which comprises, at 5' region, a DNA fragment from clone N27-1, 2 or 3, and at 3' region, a DNA fragment from clone N19-1, 2, 3, clone H19-2, 4, 10, clone Y19-4, 6 or 7. Thus, by the ligation reaction between N27-3 and N19-1, a clone N27N19-1 of SEQ ID NO 28 was obtained.

2) Ligation of Clones of SEQ ID NO 16 to 24, and Clones of SEQ ID NO 25 to 27

Each clones of SEQ ID NO 16 to 24 was ligated to each clones of SEQ ID NO 25 to 27 by PCR. There obtained 54 kinds of clones. Thus, 27 clones have a DNA fragment which encodes either of polypeptides which contain: from N-terminus (amino-terminus) to amino acid No. 131, amino acid sequence comprising 131 amino acid residues from N- to C-termini of SEQ ID NO 16 to 24, and from amino acid No. 132 to C-terminus (carboxy-terminus), amino acid sequence from No. 16 to C-terminus of SEQ ID NO 25 to 27. Thus, a clone obtained by the ligation reaction between N19-1 and MX24-4 is the clone N19MX24A-1 of SEQ ID NO 29. The others have a DNA fragment which encodes either of polypeptides which contain: at N-terminal region, amino acid sequence from N-terminus to amino acid No. 116 of SEQ ID NO 16 to 24, and from amino acid No. 117 to C-terminus (carboxy-terminus), amino acid sequence comprising 209 amino acid sequence from N- to C-termini of SEQ ID NO 25 to 27. Thus, a clone obtained by the ligation reaction between N19-1 and MX24-4 is the clone N19MX24B-1 of SEQ ID NO 30.

3) Ligation of Clones of SEQ ID NO 13 to 27

Each clones of SEQ ID NO 13 to 15 was cleaved at MluI site at base Nos. 330 to 335 from 5' terminus of base sequences of SEQ ID NO 13 to 15 and ligated to the MluI site at base Nos. 71 to 76 from 5' of the base sequences of the above (2), 2) by ligation reaction to yield clones of N27MX24 series. Thus, a clone obtained by the ligation reaction between N27-3 and N19MX24A-1 is the clone N27MX24A-1 of SEQ ID NO 31 and a clone obtained by the ligation reaction between N27-3 and N19MX24B-1 is the clone N27MX24B-1 of SEQ ID NO 32.

On the basis of the homology between the amino acid sequence of the clone and that reported previously (Kato et al., Proc. Natl. Acad. Sci. USA, 88: 5547-5551 (1991); and Hijikata et al., in: Congress of Association of Japan Molecular Biology, November 29, 1990), the clone N27N19MX24A-1 proved to be the entire region of a gene encoding gp70 polypeptide reported by Kato et al. Thus, polypeptide comprising amino acids from Nos. 46 to 395 of SEQ ID NO 31 and 32 corresponds to the gp protein presented by Kato et al.

On the other hand, polypeptide comprising amino acids from Nos. 1 to 45 and polypeptide comprising amino acids from No. 46 to the C-terminus of SEQ ID NO 13 to 15 correspond to the C-terminal region of gp 35 polypeptide and N-terminal region of gp70 polypeptide reported by Hijikata et al, respectively. Further, the amino acid sequence from No. 46 to C-terminus of SEQ ID NO 13 to 15 corresponds to a sequence from N-terminus to amino acid No. 67 of gp70 reported by Kato et al, and the amino acid

sequence from N- to C-termini of SEQ ID NO 16 to 24 corresponds to a sequence from amino acid Nos. 42 to 172 of gp70 and represents a fragment of gp70 protein presented by Kato et al.

The amino acid No.1 of SEQ ID NO 25 to 27 corresponds to the amino acid No.158 from N-terminus of a sequence reported by Hijikata et al., and also the amino acid No. 350 of SEQ ID NO 25 to 27 corresponds to C-terminal amino acids of gp70 reported by Shimotohno et al., and a polypeptide comprising amino acids from Nos. 194 to C-terminus of SEQ ID NO 25 to 27 corresponds to the N-terminal region of non-structural protein of HCV (NS2).

The ligation products prepared in 2) code all or a part of gp70 polypeptide reported by Hijikata et al. For example, the polypeptide from amino acid Nos. 46 to 395 of SEQ ID NO 31 or 32 corresponds to gp70 protein of Hijikata et al. Although a protein expressed from a HCV gene encoding a polypeptide from amino acid Nos. 46 to 395 of SEQ ID NO 31 or 32 is gp70 protein, said expression product is herein referred to as M-gp70, in contrast with gp70 reported by Hijikata et al in: Congress of Association of Japan Molecular Biology, November 29, 1990.

15 (3) Expression of Polypeptides Encoded by Clones

DNA fragments obtained in the above 1) and 2) can be used to produce a recombinant HCAg by constructing an expression vector containing DNA encoding a clone, by inserting the DNA into a known expression vector at an appropriate site of the vector, downstream from a promoter, using a well known method per se, and introducing the expression vector harboring the DNA into a host cell such as Escherichia coli cell, yeast cell or the like according to the method known to one of skill, culturing the transformant in a medium under an appropriate condition, and recovering a product from the cultured broth.

The present invention can be accomplished using any expression vectors which have a promoter at an appropriate site to direct the expression of a DNA encoding HCV polypeptide or a fragment thereof. Expression vectors preferably contain promoter, ribosome binding (SD) sequence, gene encoding HCV polypeptide, transcription termination factor, and a regulator gene.

Expression vectors functional in microorganisms such as Escherichia coli, Bacillus subtilis or the like will preferably comprise promoter, ribosome binding (SD) sequence, HCV-associated-protein-encoding gene, transcription termination factor, and a regulator gene.

Examples of promoters include those derived from Escherichia coli or phages such as tryptophane synthetase (trp), lactose operon (lac), λ phage P_L and P_R , T_5 early gene P_{25} , P_{26} promoter and the like. These promoter may have modified or designed sequence for each expression vector such as pac promoter.

Although the SD sequence may be derived from Escherichia coli or phage, a sequence which has been designed to contain a consensus sequence consisting of more than 4 bases, which is complementary to the sequence at the 3' terminal region of 16S ribosome RNA, may also be used.

The transcription termination factor is not essential. However, it is preferable that an expression vector contains a p -independent factor such as lipoprotein terminator, trp operon terminator or the like.

Preferably, these sequences required for the expression of a gene encoding HCAg originated from HCV are located, in an appropriate expression plasmid, in the order of promoter, SD sequence, said gene and transcription termination factor from 5' to 3' direction.

Typical example of expression vectors is commercially available pKK233-2 (Pharmacia). However, a series of plasmids pGEX (Pharmacia), which are provided for the expression of fused protein, are also employable for the expression of HCAg-encoding gene of the present invention.

A suitable host cell such as Escherichia coli can be transformed with an expression vector comprising a DNA of the invention by any of known methods such as protocol provided by TOYOB[®] Japan as described in Example 10.

The cultivation of the transformants can be carried out using any of well known procedures in literatures such as Molecular Cloning, 1982, and the like. The cultivation is preferably conducted at a temperature from about 28°C to 42°C.

Expression vectors used for transforming other host cells, such as those derived from insects, consist of substantially the same elements as those described in the above. However, there are certain preferable factors as follows.

When insect cells are used, a commercially available kit, MAXBAC™ is employed according to the teaching of the supplier (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4). In this case, it is desirable to make a modification to reduce the distance between the promoter of polyhedrin gene and the initiation codon so as to improve the expression of the gene.

A clone of the invention can be inserted into an expression vector for prokaryotic cells such as E.coli or

eucaryotic cells such as animal cells after modifying the DNA sequence to bring it in conformity with a frame of initiation codon of said vector. Alternatively, an initiation codon is added at the 5' terminus of DNA so as to an appropriate translational frame can be produced. The term "a translational frame" of a clone refers to a frame of a base sequence in which bases are described as triplets capable of encoding amino acid sequence as illustrated in SEQ ID NO 13 to 32.

The recombinant polypeptide expressed by host cells such as microorganisms including *E. coli* and insect cells and animal cells can be recovered from the cultured broth by known methods and identified by, for example, immunoreactions between the expressed product and antiserum obtained from HC patients using a conventional method such as Western blot analysis.

10 *E. coli* cells transformed with any of clones obtained in the above (1) and (2) express polypeptides encoded thereby as a single polypeptide without cleaving between regions gp35, gp70 and NS2.

When any of clones obtained in the above (1) and (2) is expressed in insect cells, the expressed polypeptide is cleaved between regions gp35, gp70 and NS2. Thus, clone N27MX24A-1 or N27MX24B-1 was transformed into insect or animal cells, polypeptide M-gp70 derived from each clone N27MX24A-1 or 15 N27MX24B-1 was expressed as a glycoprotein after processing.

15 The following polypeptides comprising amino acid sequence of SEQ ID NO 31 or 32 are relatively highly hydrophilic and homologous to amino acid sequence deduced from known HCV gene cloned before the present invention: a polypeptide consisting of 13 amino acids from amino acid Nos. 143 to 155; a polypeptide consisting of 21 amino acids from amino acid Nos. 171 to 191 subject to that it contains at least amino acids from Nos. 182 to 187; a polypeptide consisting of 14 amino acids from amino acid Nos. 202 to 215 subject to that it contains at least amino acids from Nos. 202 to 209; a polypeptide consisting of 20 amino acids from amino acid Nos. 244 to 256; and a polypeptide consisting of 21 amino acids from amino acid Nos. 299 to 319.

20 The M-gp70 is a glycoprotein which located adjacent to C-terminus of envelope protein (M-gp35) on HCV gene and contains potential trans-membrane region. These facts lead to an assumption that all or a part of gp70, whose function has not been established yet, may be a part of envelope protein. On the basis of this assumption, the above five kinds of polypeptide fragments, as well as a polypeptide consisting of 106 amino acids from Nos. 109 to 214 and that consisting of 92 amino acids of amino acid sequence from Nos. 233 to 324 of SEQ ID NO 31 or 32, which include said fragments, are useful as vaccine.

25 Furthermore, the following polypeptides which comprise amino acid sequence of SEQ ID NO 31 or 32 and are expected to be epitopic region of M-gp70 are also useful as vaccine: a polypeptide consisting of 10 amino acids from amino acid Nos. 252 to 261 subject to that it contains at least amino acids from Nos. 252 to 256; a polypeptide consisting of 34 or less than 34 amino acids from amino acid Nos. 250 to 283 subject to that it contains at least amino acids from Nos. 273 to 279; a polypeptide consisting of 20 amino acids from amino acid Nos. 77 to 96; a polypeptide consisting of 18 amino acids from amino acid Nos. 306 to 323; and a polypeptide consisting of 16 amino acids from amino acid Nos. 122 to 137.

30 The following polypeptides comprising amino acid sequence of SEQ ID NO 31 or 32 are relatively highly hydrophilic and low in homology with amino acid sequences deduced from known HCV genes cloned before the present invention: a polypeptide consisting of 12 amino acids from amino acid Nos. 136 to 147 subject to that it contains at least amino acids from Nos. 136 to 142; a polypeptide consisting of 27 amino acids from amino acid Nos. 45 to 71 subject to that it contains at least amino acids from Nos. 53 to 69; a polypeptide consisting of 9 amino acids from amino acid Nos. 193 to 201.

These polypeptides can be produced by chemical synthesis, as well as by DNA recombinant technique.

Furthermore, a polypeptide having 106 amino acid sequence from Nos. 109 to 214 and a polypeptide 45 having 92 amino acid sequence from Nos. 233 to 324 of SEQ ID NO 31 or 32 can be produced in large scale by DNA recombinant technique.

[3] Genes Encoding NS2 - NS4 Regions

50 (1) Preparation of cDNA clone of SEQ ID NO 33 - 44 and sequencing thereof

The cDNA clones of SEQ ID NO 33 - 44 which encode a novel polypeptide of NS2 - NS4 regions of HCV protein and fragments thereof were cloned from serum from HC patients as follows.

55 The cloning and sequencing of cDNA encoding HCV polypeptide can be carried out using any of known methods. However, it is hardly accomplished by known "Okayama-Berg" or "Gubler-Hoffman" method because the content of HCV in serum is only a slight amount and HCV gene is liable to variation. The present inventors succeeded in the cloning of gene from a slight amount of serum as will be hereinafter described in Example 1. Briefly, it was conducted by extracting nucleic acids from a serum of a patient

suffering from HC. It is preferable to use serum showing OD value of 3.5 on a screening kit of Ortho. Before the extraction, it is desirable to add tRNA or polyribonucleoside to the serum as a carrier for viral RNA. For the purpose of the invention, tRNA is preferable because the degradation of RNA can be easily detected, at least after the addition of tRNA, by monitoring the existence of a sufficient amounts of tRNA having an intact length on electrophoresis.

The resultant RNA is converted into cDNA using transcriptase in the presence of an appropriate oligonucleotide primer. The cDNA is then cloned and amplified by modified PCR (Saiki et al., Nature 324: 126 (1986)) in the presence of a pair of primers. Although commercially available random primers can be used in the above PCR, synthetic primers having the following base sequences are suitable for the present invention.

Synthetic Primers for Cloning of HCV Gene

15	5'	3'
	MS49:GACATGCATGTCATGATGTA (SEQ ID NO:118)	
20	MS88:GGCTGCAGCCGGTTCATCCACTGCAC (SEQ ID NO:119)	
	MS100:GCGGATCCTGCTTCGCCAGAAGGTC (SEQ ID NO:120)	
	MS132:GACACATGTGTTGCAGTCGATC (SEQ ID NO:121)	
25	MS152:CGGTCCNAGNAGTATCTCNTTNCC (SEQ ID NO:122)	
	MS158:ATGGGCCCCGGNGANAGNAGNCTCCCCCTNCTNTC (SEQ ID NO:123)	
30	MS48:GGCTATAACCGGCCACTTCGA (SEQ ID NO:124)	
	MS86:GCGGATCCGGCCTCACCCACATAGATG (SEQ ID NO:125)	

35	MS97:GCGGATCCTCCACCTCCATCGTG (SEQ ID NO:126)	
	MS135:CTGCTGTCGCCNGNCCCAT (SEQ ID NO:127)	
40	MS151:ATCACGTGGGNGCAGANACNGC (SEQ ID NO:128)	
	MS155:TGTGCCTGNTNTGGATGATG (SEQ ID NO:129)	

45 In the above sequences, the letter "N" refers to inosine. The above sequences are only illustrative and these base sequences are not critical. They can be modified by replacing nucleotide(s) with other(s), or deleting or inserting nucleotide(s). The replacement may be preferably introduced within 10 bases from 5' terminus involving 1 to several nucleotides, more preferably, within 5 bases involving less than 5 nucleotides. The deletion may occur in the 5' terminal region involving 4 to 5 nucleotides, preferably, within several bases from the 5' terminus involving a few nucleotides. In case of insertion, it may be an addition of 8 to 12, preferably 5 to 6, more preferably, a few nucleotides in 5' terminal region. Primers MS86, MS97, and MS100 contains additional 8 nucleotides encoding a restriction site at 5' terminus (MS88: 5' GGCTGCAG 3'; MS86, MS97 and MS100: 5' GCGGATCC 3'), however, these are not critical for the isolation of the desired DNA fragments.

PCR can be conducted under appropriate conditions, for example, those described in Example 15 using the first complementary DNA (1st cDNA) as a template. The condition may vary depending on the primers used such as base sequence or combination, length to be amplified, or the like. Examples of pair of primers

are : MS48 - MS49; MS86 - MS100; MS97 - MS88; MS135 - MS132; MS155 - MS152; and MS151 - MS158. The resultant cDNA is then inserted into an appropriate site of a cloning vector such as at SmaI site of pUC19. A cloning vector harboring the DNA fragment is subjected to the determination of base sequence. Generally, three clones obtained independently are employed and the base sequence of the both strands are determined to obtain an entire base sequence. The sequence is conveniently determined using a fluorescence sequencer GENESIS 2000 (DUPONT) according to the protocol attached thereto. Alternatively, a conventional subcloning can be used when the DNA fragment consists more than 180 nucleotides or contains a region which is hardly determined by fluorescence sequencer. Thus obtained base sequences of DNA fragments are shown in SEQ ID NO 33 - 39, 44 - 55, and 103 and 104.

Clones N13-1, N15-1, N16 and N23 were obtained from serum of a patient N, clone O26 from patient O, clone U16-4 from patient U, and clone MX25 from a pool comprising sera from multiple patients. Clone of SEQ ID NO 37 obtained from primers MS48 and MS49 and clones of SEQ ID. Nos. 53 to 55 represent the same region on HCV gene (N16 region). The region of clones of SEQ ID NO 44 to 46 obtained using primers MS155 and MS152 on HCV gene was designated as MX25 region. In the same manner, regions of clones of SEQ ID NO 47 to 49, and regions of clones of SEQ ID NO 50 to 52, each obtained by primers MS151 and MS158, or MS135 and MS132, were designated as O26 and N23 regions, respectively.

Clones N13-1, N15-1, O15-1, and O15-2 of SEQ ID NO 38, 39, 103, and 104, which were obtained by primers MS86 and MS100, MS97 and MS88, were designated as regions N13 and N15.

The comparison between base sequences of each clone and known HCV gene (Kato et al., Proc. Natl. Acad. Sci. USA, 87:9524-9528 (1990); and Takamizawa et al., Journal of Virology, 65,3: 1105-1113 (1991)) indicates that clones align in the other of MX25, O26, N23, N16, N13 and N15, from 5' to 3' on the gene.

The clone N16 of SEQ ID NO 36 was obtained by isolating independently three plasmids containing DNA fragment of N16 region, and determining the entire base sequence of DNA fragment originated from HCV.

As there are overlapping region between clones, these regions were used to ligate clones each other. Clones are highly homologous though, they are distinguishable from each other in terms of nucleotide and amino acid sequences (e.g., clones of SEQ ID NO 33, 34 and 35), which indicates that one patient may carry more than one HCVs at the same time. It is generally accepted that core protein is well conserved even in HCV. When core-protein-encoding gene was cloned in the same manner as that used for the cloning of gene encoding HCV polypeptide, few variations were observed between clones. Among regions on HCV gene, MX25, O26, N23 and N16 regions, especially MX25 region, appear to be highly liable compared with core-protein-encoding region and upstream region thereof.

(2) Ligation of Clones of SEQ ID NO 33 to 39

cDNA clones obtained from serum of HC patients shown by sequences of SEQ ID NO 33 to 37 and 39 were ligated in the following manners.

1) Ligation of Clone N16 of SEQ ID NO 36 and clone N15-1 of SEQ ID NO 39

The ligation was conducted at restriction sites common to both clones. Thus, clone 16 was digested with restriction enzyme to cleave at the BstEII site located at nucleotide Nos. 576-582 of SEQ ID NO 36 and ligated to the BstEII site of clone N15-1 at Nos. 114 to 120 of SEQ ID NO 39 to obtain a DNA fragment consisting of DNA fragments from clones N16 and N15-1 from 5' to 3'. The resultant clones are summarized as clone of SEQ ID NO 41.

2) Ligation of Clones MX25 (SEQ ID NO 33) and O26 (SEQ ID NO 34)

Clones MX25 and O26 were ligated by PCR. By this procedure, multiple DNA fragments encoding different polypeptides were obtained, for example, a DNA fragment encoding a polypeptide which comprises, at the N-terminal region, 284 amino acids of N- to C-termini of SEQ ID NO 33 and, from amino acid No. 285 to the C-terminus, amino acids from No. 32 to the C-terminus of SEQ ID NO 34; a DNA fragment encoding a polypeptide which comprises, at the N-terminal region, amino acid residues of N-terminus to amino acid No. 252 of SEQ ID NO 33 and, from amino acid No. 253 to the C-terminus, 174 amino acid residues from N- to C-termini of SEQ ID NO 34. Thus obtained fused clones were inclusively shown in SEQ ID NO 40.

Clones of SEQ ID NO 36 and 39 or clones of DEQ ID NO 37 and 39 can be ligated by PCR and the resultant clone is shown in SEQ ID NO 41 together with a base sequence obtained in the above 1). Clone

MX25 of SEQ ID NO 33 and clone O26 of SEQ ID NO 34, both of which contain different DNA fragments from those used in the above, were ligated to give multiple DNA fragments having different base sequences. These base sequences are summarized in SEQ ID NO 40.

5 3) Ligation of Clones of SEQ ID NO 35 and 41

Ligation of clones N23 and N16N15 can be conducted in the same manner as the above 1) to obtain various clones which are designated as N23N15 of SEQ ID NO 42 inclusively. The following illustrative DNA fragments were obtained: a DNA fragment encoding a polypeptide comprising, at the N-terminal region, 307 amino acid residues from N-to C-termini of SEQ ID NO 35 (clone N23) and, from amino acid No. 308 to the C-terminus, amino acids from No. 17 to C-terminus of SEQ ID NO 41; a DNA fragment encoding a polypeptide comprising, at the N-terminal region, amino acids from N-terminus to amino acid No. 291 of SEQ ID NO 33 and from amino acid No. 292 to the C-terminus, 477 amino acid residues from N- to C-termini of SEQ ID NO 41.

15 4) Ligation of Clones of SEQ ID NO 40 and 42

Ligation of clones MX25O26 and N23N15 can be conducted in the same manner as the above 1) to obtain clones shown in SEQ ID NO 43 inclusively.

20 The protease activity of viral protein of Flavivirus, a related strain of HCV, exists in the N-terminal domain of non-structural protein of said virus (see, Proc. Natl. Acad. Sci. USA, 87: 8898-8902 (1990)). It is likely that the protease activity of HCV protein also exists in the presumed N-terminal region, NS3. It was confirmed that clone MX25N15 comprises the known entire amino acid sequence encoded by HCV gene (Kato et al., Proc. Natl. Acad. Sci. USA, 87: 9524-9528 (1990)), and a region responsible for the protease activity reported by Hijikata et al (in: Congress of Japan Cancer Association (NIHON Gan-Gakkai (1991)).

25 Although the both of N- and C-termini of NS3 domain of HCV protein had not been established, it can be presumed to be a region between amino acid Nos. 276 and 884 of SEQ ID NO 43 (clone MX25N15) on the basis of the primary structure of regions to be cleaved by protease and hydrophilic and hydrophobic patterns of Flavivirus protein, referring to a literature (Houghton et al. Hepatology, 14, 2: 381-388 (1991)).

30 The presumed NS3 region of clone MX25N15 is hereinafter referred to as MK/NS3 region.

In the same manner, the NS2 region was presumed to be a polypeptide region between amino acid Nos. 3 and 275 of SEQ ID NO 43 (clone MX25N15) and 40 (clone MX25O26). The presumed NS2 region is hereinafter referred to as MK/NS2 region.

35 3) Expression of Polypeptides Encoded by Clones

DNA fragments obtained in the above 1) and 2) can be used to produce a recombinant HCAg by constructing an expression vector containing DNA encoding a clone, by inserting the DNA into a known expression vector at an appropriate site of the vector, downstream from a promoter, using a well known method per se, and introducing the expression vector harboring the DNA into a host cell such as Escherichia coli cell, yeast cell, animal cell or the like according to the method known to one of skill, culturing the transformant in a medium under an appropriate condition, and recovering a product from the cultured broth.

The present invention can be accomplished using any expression vectors which have a promoter at an appropriate site to direct the expression of a DNA encoding HCV polypeptide or a fragment thereof. Expression vectors preferably contain promoter, ribosome binding (SD) sequence, gene encoding HCV polypeptide, transcription termination factor, and a regulator gene.

45 Expression vectors functional in microorganisms such as Escherichia coli, Bacillus subtilis or the like will preferably comprise promoter, ribosome binding (SD) sequence, HCV-associated-protein-encoding gene, transcription termination factor, and a regulator gene.

50 Examples of promoters include those derived from Escherichia coli or phages such as tryptophane synthetase (trp), lactose operon (lac), λphage P_L and P_R, T₅ early gene P₂₅, P₂₆ promoter and the like. These promoter may have modified or designed sequence for each expression vector such as pac promoter.

55 Although the SD sequence may be derived from Escherichia coli or phage, a sequence which has been designed to contain a consensus sequence consisting of more than 4 bases, which is complementary to the sequence at the 3' terminal region of 16S ribosome RNA, may also be used.

The transcription termination factor is not essential. However, it is preferable that an expression vector

contains a ρ -independent factor such as lipoprotein terminator, trp operon terminator or the like.

Preferably, these sequences required for the expression of a gene encoding HCAg originated from HCV are located, in an appropriate expression plasmid, in the order of promoter, SD sequence, HCV-associated-protein-encoding gene and transcription termination factor from 5' to 3' direction.

5 Typical example of expression vectors is commercially available pKK233-2 (Pharmacia). However, a series of plasmids pGEX (Pharmacia), which are provided for the expression of fused protein, are also employable for the expression of HCAg-encoding gene of the present invention.

A suitable host cell such as *Escherichia coli* can be transformed with an expression vector comprising a DNA of the invention by any of known methods such as protocol provided by TOYOB^O Japan as described in Example 16.

The cultivation of the transformants can be carried out using any of well known procedures in literatures such as Molecular Cloning, 1982, and the like. The cultivation is preferably conducted at a temperature from about 28°C to 42°C.

15 Expression vectors used for transforming other host cells, such as those derived from insects or animals including mammals, consist of substantially the same elements as those described in the above. However, there are certain preferable factors as follows.

When insect cells are used, a commercially available kit, MAXBAC™ is employed according to the teaching of the supplier (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4). In this case, it is desirable to make a modification to reduce the distance between the promoter of polyhedrin 20 gene and the initiation codon so as to improve the expression of the gene.

When animal cells are used as hosts, expression vectors preferably contain active-type promotor from adenovirus E1A gene (ZOKUSEIKAGAKU JIKKEN KOZA I, IDENSHI KENKYU-HO II, 189-190, 1986), SV40 early promoter, SV40 late promoter, apolipoprotein E gene promoter, SR α promotor (Molecular and Cellular Biology, 8, 1, 466-472, 1988) or the like. Specifically, known expression vectors such as pKCR (Proc. Natl. Acad. Sci. USA, 78: 1528 (1981)) or a derivative thereof, pBPV MT1 (Proc. Natl. Acad. Sci. USA, 80: 398 (1983)), which prepared by modifying pKCR maintaining its essential functions, pBPV MT1 (Proc. Natl. Acad. Sci. USA, 80: 398 (1983)), or the like may be employed.

25 Animal cells usable in the present invention are CHO cell, COS cell, mouse L cell, mouse C127 cell, mouse FM3A cell and the like.

30 A clone of the invention can be inserted into an expression vector for prokaryotic cells such as *E.coli* or eucaryotic cells such as animal cells after modifying the DNA sequence to bring it in conformity with a frame of initiation codon of said vector. Alternatively, an initiation codon is added at the 5' terminus of DNA so as to an appropriate translational frame can be produced. The term "a translational frame" of a clone refers to a frame of a base sequence in which bases are described as triplets capable of encoding amino acid sequence as illustrated in SEQ ID NO 33 to 43.

35 The recombinant polypeptide expressed by the host cells such as microorganisms including *E. coli*, insect cells and animal cells can be recovered from the cultured broth by known methods and identified by, for example, immunoreactions between the expressed product and antiserum obtained from HC patients using a conventional method such as Western blot analysis.

40 Hydrophilic study and prediction of higher-order structure of protein, the following peptide fragments contained in a polypeptide having amino acid sequence of SEQ ID NO 43 appeared to be highly hydrophilic and can take so-called "turn structure" not α -helix or β -sheet structure in high probability. Therefore, these fragments possibly represent antigen determinants, or can contain at least one antigen determinant of HCAg. Although the higher-order structure in serum and the specific reactivity of each fragment are not 45 established, it can be concluded that the following peptide fragments are highly reactive with antiserum raised against HCV-associated antigens. A polypeptide consisting of 19 amino acids from amino acid Nos. 247 to 265 of SEQ ID NO 43; a polypeptide consisting of 8 to 25 amino acids subject to that it contains at least 8 amino acids from Nos. 300 to 307; a polypeptide consisting of 13 to 25 amino acids subject to that it contains at least 13 amino acids from Nos. 410 to 428; a polypeptide consisting of 10 amino acids from 50 Nos. 283 to 292; a polypeptide consisting of 14 amino acids from Nos. 477 to 490; a polypeptide consisting of 14 amino acids from Nos. 498 to 512; a polypeptide consisting of 12 amino acids from Nos. 538 to 550; a polypeptide consisting of at least 21 amino acids from Nos. 747 to 767; a polypeptide consisting of at least 12 amino acids from Nos. 841 to 852; a polypeptide consisting of at least 12 amino acids from Nos. 867 to 878; a polypeptide consisting of 8 to 25 amino acids subject to that it contains at least 8 amino acids from Nos. 665 to 672; and a polypeptide consisting of 15 amino acids from Nos. 315 to 327.

55 The above polypeptide fragments can be obtained by means of chemical synthesis, as well as DNA recombinant technique.

Other polypeptide fragments of clone of SEQ ID NO 43, that is, a polypeptides containing the entire or a

part of a polypeptide consisting of 266 amino acids from Nos. 461 to 726; a polypeptide consisting of 74 amino acids from Nos. 477 to 550; a polypeptide consisting of 42 amino acids from Nos. 963 to 1004; and a polypeptide consisting of 45 amino acids from Nos. 283 to 327, can be prepared in a large scale by recombinant DNA technique.

5

[4] Gene Encoding NS4 to NS5 Regions

(1) Preparation of cDNA clone of SEQ ID NO 64 - 75 and sequencing thereof

10 The cDNA clones of SEQ ID NO 64 - 75 which encode a novel polypeptide of NS4 to NS5 regions of HCV protein and fragments thereof were cloned from serum from HC patients as follows.

The cloning and sequencing of cDNA encoding HCV polypeptide can be carried out using any of known methods. However, it is hardly accomplished by known "Okayama-Berg" or "Gubler-Hoffman" method because the content of HCV in serum is only a slight amount and HCV gene is liable to variation. The 15 present inventors succeeded in the cloning of gene from a slight amount of serum as will be hereinafter described in Example 1. Briefly, it was conducted by extracting nucleic acids from a serum of a patient suffering from HC. It is preferable to use serum showing OD value of 3.5 on a screening kit of Ortho. Before the extraction, it is desirable to add tRNA or polyribonucleoside to the serum as a carrier for viral RNA. For the purpose of the invention, tRNA is preferable because the degradation of RNA can be easily detected, at 20 least after the addition of tRNA, by monitoring the existence of a sufficient amounts of tRNA having an intact length on electrophoresis.

The resultant RNA is converted into cDNA using transcriptase in the presence of an appropriate oligonucleotide primer. The cDNA is then cloned and amplified by means of polymerase chain reaction (PCR) (Saiki et al., Nature 324: 126 (1986)) in the presence of a pair of primers. Although commercially 25 available random primers can be used in the PCR, synthetic primers having the following base sequences are suitable for the present invention.

Synthetic Primers for Cloning of HCV Gene

30

35

40

45

50

55

5'

3'

- 5 MS126 : GGTGAGCATGGAGGTGACCAC (SEQ ID NO:130)
- 10 MS119 : TCATCCTCCTCCGCTCGAAGC (SEQ ID NO:131)
- 15 MS161 : GTGGACGCCTTNGCCTTCATNTC (SEQ ID NO:132)
- 20 MS162 : ACGGATGTCNTTCTCNGTNAC (SEQ ID NO:133)
- 25 MS121 : GCCGGAATT CCTGGTCATAGCCTCCGTGAA (SEQ ID NO:134)
- 30 MS163 : GGGGNATGCCCTATTGGCCTG (SEQ ID NO:135)
- 35 MS127 : GGCATGTGGGCCAGGGGAGG (SEQ ID NO:136)
- 40 MS118 : TGTGAGCCCCAACCGGATGT (SEQ ID NO:137)
- 45 MS159 : GTGGTANTCCTGGACTCNTTNGA (SEQ ID NO:138)
- 50 MS160 : ACTACCGNGACGTGCTNAANGA (SEQ ID NO:139)
- 55 MS120 : TGGGGATCCCGTATGATAACCGCTGCTTG (SEQ ID NO:140)
- 60 MS174 : ATTGTCAGATCTACGGGGCCACTT (SEQ ID NO:141)
- 65 MS175 : GCAAGCTTAAAAAAAAAAAAAGGGGGATGGCCTATTGGCCTGGA (SEQ ID NO:142)

In the above sequences, the letter "N" refers to inosine. The above sequences are only illustrative and these base sequences are not critical. They can be modified by replacing nucleotide(s) with other(s), or deleting or inserting nucleotide(s). The replacement may be preferably introduced within 10 bases from 5' terminus involving 1 to several nucleotides, more preferably, within 5 bases involving less than 5 nucleotides. The deletion may occur in the 5' terminal region involving 4 to 5 nucleotides, preferably, within several bases from the 5' terminus involving a few nucleotides. In case of insertion, it may be an addition of 8 to 12, preferably 5 to 6, more preferably, a few nucleotides in 5' terminal region.

PCR can be conducted under appropriate conditions, for example, those described in Example 21 using the first complementary DNA (1st cDNA) as a template. The condition may vary depending on the primers used such as base sequence or combination, length to be amplified, or the like. Examples of pair of primers are : MS127 - MS126; MS118 - MS119; MS159 - MS161; MS160 - MS162; MS120 - MS163; and MS120 - MS121. The resultant cDNA is then inserted into an appropriate site of a cloning vector such as at SmaI site of pUC19. A cloning vector harboring the DNA fragment is subjected to the determination of base sequence. Generally, three clones obtained independently are employed and the base sequence of the both strands are determined to obtain an entire base sequence. The sequence is conveniently determined using a fluorescence sequencer GENESIS 2000 (DUPONT) according to the protocol attached thereto. Alternatively, a conventional subcloning can be used when the DNA fragment consists more than 180 nucleotides or contains a region which is hardly determined by fluorescence sequencer. Thus obtained base sequences of DNA fragments are shown in SEQ ID NO 64 - 69, and 76 - 100.

Clones N22-1, 3, N17-1, 2, 3, N29-1, 2, 3, N18-2, 3 and 4 were obtained from serum of a patient N, clone H22-3, 8, 9, H17-1, 3, H18-1, 2 and 3 from patient H, clone O28-1, 2, 4, O30-2, 3 and 4 from patient O. It is generally accepted that region encoding core protein or its 5' region generally contain few variations and are well conserved even in HCV. When regions encoding core protein and/or a upstream region thereof were cloned in the same manner as the above, variations were hardly observed between clones. In the present invention, clones obtained from a same region on HCV gene were highly homologous though, they

proved to be DNA fragments distinguishable from each other in terms of nucleotide and amino acid sequences. This indicates that one patient may carry more than one HCVs at the same time.

From the above fact, N22, N17, O28, N18, N29, and O30 regions assumed to be highly liable compared with core-protein-encoding region and upstream region thereof.

- 5 Region on HCV gene which corresponds to each clone was designated as follows. The region of clones N22-1, 3, H-22, 3, 8 and 9 obtained using primers MS127 and MS126 was designated as N22. In the same manner, the regions on HCV gene corresponding to clones N17-1, 2, 3, H17-1 and 3 obtained using primers MS118 and MS119, clones O28-1, 2 and 4 obtained using primers MS159 and MS161, clones N29-1, 2 and 3 obtained using primers MS160 and MS162, clones N18-2, 3, 4, H18-1, 2 and 3 obtained using primers 10 MS120 and MS121, clones O30-2, 3 and 4 obtained using primers MS120 and MS163 were designated as N17, O28, N29, N18 and O30, respectively.

15 The comparison between base sequences of each clone and known HCV gene (Kato et al., Proc. Natl. Acad. Sci. USA, 87:9524-9528 (1990); and Takamizawa et al., Journal of Virology, 65,3: 1105-1113 (1991)) indicates that clones align in the order of N22, N17, O28, N29, and O30, from 5' to 3' on the gene (N18 is included in O30 region).

There are overlapping region between clones, which were used to ligate clones each other.

(2) Ligation of Clones of SEQ ID NO 64 to 69

- 20 Regions N22, N17, O28, N29, and O30 of clone N15 (see, the above [3]), a cDNA clone obtained from serum of HC patients, were ligated in the following manners.

1) Ligation of N17 and O28 Regions

- 25 The ligation of N17 and O28 regions can be conducted using, for instance, clones N17-3 (SEQ ID NO 81) and O28-1 (SEQ ID NO 86). The ligation was carried out by PCR. Thus, about equimolar of DNA fragments (as template) of clones N17-3 and O28-1 in a solution were subjected to PCR in the presence of primers MS118 and MS161 to yield clone 1728.

30 2) Ligation of N29 and N18 Regions

In the same manner as the above 1), N29 and N18 regions were ligated using clones N29-1 (SEQ ID NO 89) and N18-4 (SEQ ID NO 92), and primers MS160 and MS121 to yield clone 2918.

35 3) Ligation of Regions N 17 to N18

- PCR was carried out using DNA fragments of clones 1728 and 2918, primers MS118 and MS121 to yield clone 1718 which contains clones N17, O28, N29, N18 from 5' to 3'. The clone 1718 was cloned into SmaI site of PUC19 to give plasmid 1718 in which EcoRI site from pUC19, clone N17-3 and N18 regions on 40 HCV gene are aligned in this order from 5' to 3'.

4) Ligation of Regions N 22 to N17

- 45 In the same manner as the above 1), DNA fragments of clones N22-1 (SEQ ID NO 76) and N17-3 (SEQ ID NO 81) were ligated by PCR using primers MS127 and MS119 to yield a DNA fragment designated as clone 2217 which contains N22 and N17 from 5' to 3'. The clone 2217 was cloned into SmaI site of pUC19 in the same manner as the above 3) to give plasmid 2217 in which EcoRI site located at 5' terminus.

5) Ligation of Clones 2217 and 1718

- 50 Upon digestion with restriction enzyme XbaI, clone 1718 is cleaved at one site. Plasmid pUC1718 was digested with XbaI and a DNA fragment comprising DNA fragment of clone 1718 and XbaI site of pUC19 was isolated. The DNA fragment derived from clone 2217 was inserted into XbaI site of pUC2217 such that the XbaI site in N17 region of pUC2217 and XbaI site from pUC19 are ligated to obtain plasmid pUC2218.

55 6) Ligation of N15 Region and O30 Region Corresponding to 3' Terminal Region of HCV Gene

An example of DNA fragment of O30 region is clone O30-3 of SEQ ID NO 98. Plasmid pUCO30

contains the DNA fragment of O30-3 at Smal site of pUC19 in the order of, from 5' to 3', EcoRI site and clone O30-3. Plasmid pUCN15 contains a DNA fragment of HCV gene, clone N15 (see, [3]), forwardly at Smal site of pUC19 in the order of, from 5' to 3', EcoRI site and clone N15.

Plasmid pUCO30 was cleaved by SacI and blunt ended, which was followed by the cleavage at another cloning site, HindIII, to isolate a DNA fragment derived from HCV gene, which was ligated to a DNA fragment from plasmid pUCN15 which was digested with XbaI, blunt ended, digested with HindIII to yield plasmid pUC15-30. Taking advantage of the fact that said plasmid pUC15-30 has only one site which can be cleaved by restriction enzymes BglII and HindIII, it was subjected to PCR using a primer MS174 having a BglII site in sequence derived from clone O30-3 in order to add poly U at 3' terminus of clone O30-3.

PCR was conducted using, as a template, pUC15-30 and primers MS174 and MS175. PCR fragment was then digested with BglII and HindIII and the resultant fragment ligated to a BglII-HindIII fragment of pUCO30 containing the vector fragment of pUCO30 to obtain plasmid pUC15-30U having polyU attached to the 3' terminus of clone O30-3.

7) Ligation of N15 to O30 Regions

There is an Apal site within a region common to N15 and N22 regions. There is an Apal site within a region common to N18 and O30. A DNA fragment isolated from pUC2218 with Apal was inserted into Apal site of pUC15-30U appropriately to obtain plasmid pUC1530U.

The ligated N15 to O30 regions encodes amino acid sequence which is highly homologous to amino acid sequence of NS5, a part of non-structural protein NS4 of Flavivirus, a related strain of HCV. It was also confirmed that said region is homologous to a sequence encoding a part of NS4 region AND NS5 region by comparison with a known sequence of HCV gene disclosed by aforementioned Chiron, Shimotohno, or Takamizawa. As a conclusion, clone disclosed in Seq. Lis. represents DNA sequence assumed to be NS4 and NS5 regions of HCV gene. The clone was then inserted into an expression plasmid to produce polypeptide encoded by said clone. The polypeptide was then evaluated as to the ability to react immunologically with antiserum of HC patients.

(3) Expression of Polypeptides Encoded by Clones

DNA fragments obtained in the above (2) can be used to produce a recombinant HCAg by constructing an expression vector containing DNA encoding a clone, by inserting the DNA into a known expression vector at an appropriate site of the vector, downstream from a promoter, using a well known method per se, and introducing the expression vector harboring the DNA into a host cell such as Escherichia coli cell, yeast cell, animal cell or the like according to the method known to one of skill, culturing the transformant in a medium under an appropriate condition, and recovering a product from the cultured broth.

The present invention can be accomplished using any expression vectors which have a promoter at an appropriate site to direct the expression of a DNA encoding HCV polypeptide or a fragment thereof. Expression vectors preferably contain promoter, ribosome binding (SD) sequence, gene encoding HCV polypeptide, transcription termination factor, and a regulator gene.

Expression vectors functional in microorganisms such as Escherichia coli, Bacillus subtilis or the like will preferably comprise promoter, ribosome binding (SD) sequence, HCV-associated-protein-encoding gene, transcription termination factor, and a regulator gene.

Examples of promoters include those derived from Escherichia coli or phages such as tryptophane synthetase (trp), lactose operon (lac), λphage P_L and P_R, T₅ early gene P₂₅, P₂₆ promoter and the like. These promoter may have modified or designed sequence for each expression vector such as pac promoter.

Although the SD sequence may be derived from Escherichia coli or phage, a sequence which has been designed to contain a consensus sequence consisting of more than 4 bases, which is complementary to the sequence at the 3' terminal region of 16S ribosome RNA, may also be used.

The transcription termination factor is not essential. However, it is preferable that an expression vector contains a ρ-independent factor such as lipoprotein terminator, trp operon terminator or the like.

Preferably, these sequences required for the expression of a gene encoding HCAg originate d from HCV are located, in an appropriate expression plasmid, in the order of promoter, SD sequence, said gene and transcription termination factor from 5' to 3' direction.

Typical example of expression vectors is commercially available pKK233-2 (Pharmacia). However, a series of plasmids pGEX (Pharmacia), which are provided for the expression of fused protein, are also employable for the expression of HCAg-encoding gene of the present invention.

A suitable host cell such as Esch richia coli can b transformed with an expression vector comprising a DNA of the invention by any of known methods such as protocol provided by TOYOB^O Japan as described in Example 22.

The cultivation of the transformants can b carried out using any of well known proc dur s in literatur s 5 such as Molecular Cloning, 1982, and the like. The cultivation is preferably conducted at a temperature from about 28°C to 42°C.

Expression vectors used for transforming other host cells, such as those derived from insects or animals including mammals, consist of substantially the same elements as those described in the above. However, there are certain preferable factors as follows.

When insect cells are used, a commercially available kit, MAXBAC™ is employed according to the teaching of the supplier (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4). In this case, it is desirable to make a modification to reduce the distance between the promoter of polyhedrin gene and the initiation codon so as to improve the expression of the gene.

When animal cells are used as hosts, expression vectors preferably contain active-type promotor from adenovirus E1A gene (ZOKUSEIKAGAKU JIKKEN KOZA I, IDENSHI KENKYU-HO II, 189-190, 1986), SV40 early promoter, SV40 late promoter, apolipoprotein E gene promoter, SRα promotor (Molecular and Cellular Biology, 8, 1, 466-472, 1988) or the like. Specifically, known expression vectors such as pKCR (Proc. Natl. Acad. Sci. USA, 78: 1528 (1981)) or a derivative thereof, pBPV MT1 (Proc. Natl. Acad. Sci. USA, 80: 398 (1983)), which prepared by modifying pKCR maintaining its essential functions, pBPV MT1 (Proc. Natl. Acad. Sci. USA, 80: 398 (1983)), or the like may be employed.

Animal cells usable in the present invention are CHO cell, COS cell, mouse L cell, mouse C127 cell, mouse FM3A cell and the like.

A clone of the invention can be inserted into an expression vector for prokaryotic cells such as E.coli or eucaryotic cells such as animal cells after modifying the DNA sequence to bring it in conformity with a frame of initiation codon of said vector. Alternatively, an initiation codon is added at the 5' terminus of DNA 25 so as to an appropriate translational frame can be produced. The term "a translational frame" of a clone refers to a frame of a base sequence in which bases are described as triplets capable of encoding amino acid sequence as illustrated in SEQ ID NO 64 to 75.

The recombinant polypeptide expressed by host cells such as microorganisms including E. coli, insect 30 cells and animal cells can be recovered from the cultured broth by known methods and identified by, for example, immunoreactions between the expressed product and antiserum obtained from HC patients using a conventional method such as Western blot analysis.

Hydrophilic study and prediction of higher-order structure of protein, the following peptide fragments contained in a polypeptide having amino acid sequence of SEQ ID NO 75 appeared to be highly hydrophilic 35 and can take so-called "turn structure" not α-helix or β-sheet structure in high probability. Therefore, these fragments possibly represent antigen determinants, or can contain at least one antigen determinant of HCAg. Although the higher-order structure in serum and the specific reactivity of each fragment are not established, it can be concluded that the following peptide fragments are highly reactive with antiserum raised against HCV-associated antigens. A polypeptide comprising at least 20 amino acids from amino acid 40 Nos. 324 to 343; a polypeptide comprising at least 14 amino acids from Nos. 356 to 369; a polypeptide comprising at least 18 amino acids from Nos. 584 to 601; a polypeptide comprising 10 amino acids from Nos. 588 to 597; a polypeptide consisting of 10 amino acids from Nos. 620 to 629; a polypeptide consisting of 18 amino acids from Nos. 901 to 918; and a polypeptide which contains at least any of those described in the above and comprises 25 or less amino acids of SEQ ID NO 75.

The above polypeptide fragments can be obtained by means of chemical synthesis, as well as DNA recombinant technique.

Other polypeptide fragments of SEQ ID NO 75, that is, a polypeptides containing the entire or a part of a polypeptide consisting of 74 amino acids from Nos. 413 to 486; a polypeptide consisting of 997 amino acids from Nos. 415 to 1411; a polypeptide consisting of 74 amino acids from Nos. 655 to 728; a polypeptide 50 consisting of 98 amino acids from Nos. 858 to 955; a polypeptide consisting of 92 amino acids from Nos. 1009 to 1100; a polypeptide consisting of 66 amino acids from Nos. 1160 to 1225; and a polypeptide consisting of 54 amino acids from Nos. 763 to 816 can be prepared in a large scale by recombinant DNA technique.

55 [5] Preparation of a cDNA Clone T7N1-30U Originated from Serum of HC Patient (SEQ ID NO 101)

The gene or a DNA fragment encoding a novel polypeptide of SEQ ID NO 101 can be obtained by following procedures.

- The ligation of clones N19MX24A-1 and MX25-1 by PCR gives a DNA fragment in which either of the 3' sequence of MX24 region and 5' sequence of MX25 region, which are overlapping each other, is preferentially used (Clone 1925). A synthetic DNA was synthesized in order to introduce into clone N1-1, from 5' to 3', restriction sites HindIII and SpeI and T7 promoter and clone T7N1-1 was obtained by cassette ligation. Clone T7N1N3N10 was obtained in the same manner as that used for the preparation of clone N1N3N10 except that clone T7N1-1 was used instead of clone N1-1. This clone was ligated to clone N27N19-1 by restriction enzyme BamHI to obtain clone T7N119. The clones T7N119 and 1925 have N19 regions and the both clones were ligated using PvuII restriction site in the N19 region to yield clone T7N1-25.
- A EcoRI-NotI-BamHI adapter (Toyobo) was ligated to plasmid pUC1530U at the HindIII site in its 3' terminal region to obtain Clone 1530UNot which contains NotI site at 3' terminus of clone 1530U.
- For the ligation of clones T7N1-25, 1530UNot, and MX25N15-1, prepared in [3], the three clones were ligated at PstI site in MX25 region common to clones T7N1-25 and MX25N15-1 and EcoT22I site in N15 region common to clones 1530UNot and MX25N15-1. Clone T7N1-25 has SpeI site at 5' terminus and clone 1530UNot has NotI site at 3' terminus.
- HCV gene can be prepared by ligating clones T7N1-25, MX25N15-1 and 1530UNot in this order without overlapping. Thus, clone T7N1-25 is digested with SpeI and PstI, clone MX25N15-1 with PstI and EcoT22I, clone 1530UNot with EcoT22I and NotI, λZapII (Stratagene) with SpeI and NotI, respectively, and the resultant fragments were ligated to yield a phage in which a single DNA fragment having a sequence of HCV gene between SpeI and NotI sites of λZapII (from 5' to 3': clone T7N1-25, MX25N15-1 and 1530UNot). The resultant HCV derived clone was designated as T7N1-30U. Ligation to λZapII (Stratagene), isolation of phage DNA, subcloning into pBluescriptII can be conducted according to the protocol attached to the kit. The packaging for the preparation of phage particles were carried out using Gigapack II Packaging Extracts (Stratagene) according to the protocol attached thereto. The clone T7N1-30U is a DNA fragment which comprises a cDNA originated from HCV having an inserted T7 phage promoter at 5' terminus, and poly T at 3' terminus.

[6] Expression of Fused Polypeptides Encoded by cDNA Originated from Serum of HC Patients

- Recombinant HCV-associated antigen can be obtained by expressing all or a part of clones prepared in [1], [2], [3] or [4], or DNA sequence encoding all the protein of HCV prepared in [5].
- The present invention can be accomplished using any expression vectors which have a promoter at an appropriate site to direct the expression of a DNA encoding HCV polypeptide or a fragment thereof. Expression vectors preferably contain promoter, ribosome binding (SD) sequence, gene encoding HCV polypeptide, transcription termination factor, and a regulator gene.
- Expression vectors functional in microorganisms such as *Escherichia coli*, *Bacillus subtilis* or the like will preferably comprise promoter, ribosome binding (SD) sequence, HCV-associated-protein-encoding gene, transcription termination factor, and a regulator gene.
- Examples of promoters include those derived from *Escherichia coli* or phages such as tryptophane synthetase (trp), lactose operon (lac), λphage P_L and P_R, T₅ early gene P₂₅, P₂₆ promoter and the like. These promoter may have modified or designed sequence for each expression vector such as pac promoter.
- Although the SD sequence may be derived from *Escherichia coli* or phage, a sequence which has been designed to contain a consensus sequence consisting of more than 4 bases, which is complementary to the sequence at the 3' terminal region of 16S ribosome RNA, may also be used.
- The transcription termination factor is not essential. However, it is preferable that an expression vector contains a ρ-independent factor such as lipoprotein terminator, trp operon terminator or the like.
- Preferably, these sequences required for the expression of a gene encoding HCAg originated from HCV are located, in an appropriate expression plasmid, in the order of promoter, SD sequence, said gene and transcription termination factor from 5' to 3' direction.
- Typical example of expression vectors is commercially available pKK233-2 (Pharmacia). However, a series of plasmids pGEX (Pharmacia), which are provided for the expression of fused protein, are also employable for the expression of HCAg-encoding gene of the present invention.
- A suitable host cell such as *Escherichia coli* can be transformed with an expression vector comprising a DNA of the invention by any of known methods such as protocol provided by TOYOB0 Japan as described in Example 30.
- The cultivation of the transformants can be carried out using any of well known procedures in literatures such as Molecular Cloning, 1982, and the like. The cultivation is preferably conducted at a temperature from

about 28°C to 42°C.

Expression vectors used for transforming other host cells, such as those derived from insects or animals including mammals, consist of substantially the same elements as those described in the above. However, there are certain preferable factors as follows.

When insect cells are used, a commercially available kit, MAXBAC™ is employed according to the teaching of the supplier (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4). In this case, it is desirable to make a modification to reduce the distance between the promoter of polyhedrin gene and the initiation codon so as to improve the expression of the gene.

When animal cells are used as hosts, expression vectors preferably contain active-type promoter from adenovirus E1A gene (ZOKUSEIKAGAKU JIKKEN KOZA I, IDENSHI KENKYU-HO II, 189-190, 1986), SV40 early promoter, SV40 late promoter, apolipoprotein E gene promoter, SRα promoter (Molecular and Cellular Biology, 8, 1, 466-472, 1988) or the like. Specifically, known expression vectors such as pKCR (Proc. Natl. Acad. Sci. USA, 78: 1528 (1981)) or a derivative thereof, pBPV MT1 (Proc. Natl. Acad. Sci. USA, 80: 398 (1983)), which prepared by modifying pKCR maintaining its essential functions, pBPV MT1 (Proc. Natl. Acad. Sci. USA, 80: 398 (1983)), or the like may be employed.

Animal cells usable in the present invention are CHO cell, COS cell, mouse L cell, mouse C127 cell, mouse FM3A cell and the like.

A clone of the invention can be inserted into an expression vector for prokaryotic cells such as *E.coli* or eucaryotic cells such as animal cells after modifying the DNA sequence to bring it in conformity with a frame of initiation codon of said vector. Alternatively, an initiation codon is added at the 5' terminus of DNA so as to an appropriate translational frame can be produced. The term "a translational frame" of a clone refers to a frame of a base sequence in which bases are described as triplets capable of encoding amino acid sequence as illustrated in SEQ ID NO 1 to 104.

The recombinant polypeptide expressed by host cells such as microorganisms including *E. coli*, insect cells and animal cells can be recovered from the cultured broth by known methods and identified by, for example, immunoreactions between the expressed product and antiserum obtained from HC patients using a conventional method such as Western blot analysis.

Polypeptide encoded by gene of the invention contains region(s) which seem to be immunologically highly reactive with antiserum of HC. These regions were ligated and expressed in various cells as fused protein. For example, polypeptide having amino acids from Nos. 1 to 115 of SEQ ID NO 3 was expressed using expression vector pCZCORE. The expression vector was modified to replace the 3' region from the epitopic region of said polypeptide with clone N23 which encodes a desired polypeptide to express a fused protein. It was followed by the ligation of a polypeptide having amino acids from Nos. 963 to 1005 of SEQ ID NO 43 to the C-terminus of polypeptide encoded by N23 region. Thus, regions encoding polypeptides which seem to be immunologically highly reactive with antiserum of HC patients were ligated to cDNA and inserted into an expression vector to express said polypeptides.

Specifically, as shown in Example 30, a polypeptide CN23 which contains an epitopic region of core protein of HCV and a region comprising an epitope which is encoded by clone N23, a part of non-structural protein region NS3 and is seem to be immunologically highly reactive with antiserum of HC patients, was expressed directly in *E. coli*.

Thus, clone N23, from No. 107 (G), was inserted in frame into pCZCORE at the SacII site within core gene. Expression vector pCZCN23 capable of expressing epitopic regions of core protein and a polypeptide encoded by N23 as a fused protein was constructed by ligating a part of N23 to the 3' terminus of the N-terminal gene of core protein. A DNA fragment which encodes HCV protein and has SD sequence at 5' terminus was ligated in tandem to the vector, resulting in the expression of desired polypeptide in large scale.

The resultant fused protein comprising epitopic regions of core protein and N23 region reacted with antiserum of HC patient in high probability.

Thus, the present invention provides a novel gene of HCV or a fragment thereof and polypeptide encoded by the same. The recombinant polypeptide is highly reactive with HCAb and can be used for the development of a method for detecting HCAb efficiently, and for the preparation of vaccine. DNA and polypeptides of the invention are also useful for the development of *in vivo* or *in vitro* system for the estimation of protease activity of HCV.

The following Examples further illustrate and detail the invention disclosed, but should not be construed to limit the invention. Throughout the Examples concerning the isolation of RNA and cloning of cDNA, tip or pipet used for the preparation of samples and/or reagents employed for reaction was changed to cleaned and/or sterilized one every time for preventing the sample from contamination. The procedures which are not specifically described were conducted substantially in accordance with the teachings of literatures given

in parentheses.

- Electrophoresis of nucleic acids (Molecular Cloning (1982), Cold Spring Harbor): cleavage of DNA fragment with restriction enzymes (Molecular Cloning (1982), Cold Spring Harbor); or a catalogue "IDENSHIKOGAKU KENKYU-YO SIYAKU SOGO KATALIOGU", Toyobo): ligation reaction of DNA fragments (TAKARA Biotechnology Catalog, 1991, vol. 1, Takara Shuzo): extraction of DNA from acrylamide gel or agarose gel (Molecular Cloning (1982), Cold Spring Harbor): cultivation of *E. coli* transformants transformed with a plasmid on agarose plate and isolation of colony therefrom (Molecular Cloning (1982), Cold Spring Harbor).

10 Example 1

Extraction of Nucleic Acids from Serum of a Patient Suffering from Hepatitis C

- To 10 ml of a serum from a patient of HC (OD = 3.5 or more on HCV EIA kit of Ortho & Co.) was added 25 ml of Tris buffer (50 mM Tris-HCl (pH 8.0), 1 mM EDTA, 100 mM NaCl), mixed and centrifuged (20,000 x g, 20 min) at 20 °C. The supernatant was centrifuged (100,000 x g, 5 hr) at 20 °C. The pellet was dissolved into 1.5 ml of Protease K solution (1% sodium dodecyl sulfate, 10 mM EDTA, 10 mM Tris-HCl (pH 7.5), 2 mg/ml Protease K (Pharmacia), and 6.6 µg yeast tRNA mixture) and the solution incubated at 45 °C for 90 min. The solution was then subjected to the phenol/chloroform extraction (more than 4 times) which was carried out by adding an equal volume of phenol/chloroform to the solution, vigorously mixing, and centrifuging to recover the aqueous layer containing nucleic acids. It was followed by chloroform treatments (more than two times) and ethanol precipitation. The ethanol precipitation was carried out by mixing the aqueous solution with 2.5 volumes of ethanol containing either of 1/10 volume of 3M sodium acetate or an equal volume of 4 M ammonium acetate, allowing to stand for overnight at -20 °C, or more than 15 min at -80 °C, centrifuging (35,000 rpm, 4 hr) by SW41 Ti Rotor (Beckman) to pellet nucleic acids, and recovering the pellet. The pellet of nucleic acid was then dried for the subsequent use.

Example 2

30 Synthesis of cDNA

[1] Preparation of RNA Sample Solution

- RNA sample solution was prepared by resolving the dried nucleic acid obtained in Example 1 in 30 µl of water containing 10 µl of ribonuclease inhibitor (100 U/µl, Takara Shuzo, Japan).

[2] Synthesis of cDNA Using Random Primer

- To 2 µl of RNA sample solution was added 2.7 µl of random primer (0.170D, Amersham), 2 µl of 10 x PCR (Mg) buffer (100 mM Tris-HCl (pH 8.3), 500 mM KCl, 60 mM MgCl₂), 8 µl of 1.25 mM 4dNTPs, 2 µl of water and the mixture incubated at 65 °C for 5 min then at 25 °C for 5 min. To the mixture was added 1 µl of reverse transcriptase (25 U, Life Science), 1 µl of ribonuclease inhibitor (100 U/µl, Takara Shuzo) and the mixture incubated at 37 °C for 20 min, at 42 °C for 30 min, and finally at 95 °C for 5 min, which was followed by prompt cooling to 0 °C (synthesis of cDNA). Amplification of DNA having specific sequences was conducted substantial in accordance with the polymerase chain reaction (PCR) of Saiki et al. (Nature 324: 126 (1986)). Throughout the specification, the expression that PCR was carried out according to Saiki's method means that the PCR was conducted substantial in accordance with the polymerase chain reaction (PCR) of Saiki et al. For the PCR, a 100 µl of a mixture containing 2 µl of cDNA solution, 10 µl of 10 x PCR buffer (100 mM Tris-HCl (pH 8.3), 500 mM KCl, 150 mM MgCl₂, 1% gelatin), 8 µl of 2.5 mM 4 dNTPs, 50 pmol each of two synthetic primers (the pair of primers consists of S1 - AS1, S2 - AS1, S2 - AS2, or S4 - AS3) and water was incubated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, it was mixed with 0.5 µl of Taq DNA polymerase (7 U/µl, AmpliTaq™, Takara Shuzo) and overlaid with mineral oil. The resultant sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 40 - 55 °C for 1 min; and at 72 °C for 1 - 5 min in DNA Thermal Cycler (Perkin Elmer Cetus). The reaction mixture was then subjected to phenol/chloroform extraction and ethanol precipitation to obtain amplified DNA fragments. The ethanol precipitation was generally carried out by adding 2.5 volumes of ethanol and either of about 1/10 volume of 3 M sodium acetate or an equal volume

of 4 M ammonium acetate to the aqueous solution, mixing, centrifuging at 15,000 rpm for 15 min using a rotor of about 5 cm in diameter under cooling at 4 °C to pellet the precipitates, and drying the pellet. Throughout the specification, the procedure "ethanol precipitation" means the above-mentioned procedures. In the same manner as the above, various DNA fragments were obtained using different pair of primers in PCR.

[3] Synthesis of cDNA Using Antisense Primer

To 2 µl of RNA sample solution prepared in above [1] was added 1 µl of 15 pmol/µl anti-sense primer (synthesized primer AS1, AS2 or AS3), 2 µl of 10 x RT buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl), 4 µl of 25 mM MgCl₂, 8 µl of 2.5 mM 4dNTPs, 1 µl of water and the mixture incubated at 65 °C for 5 min then at room temperature for 5 min. To the mixture was added 1 µl of reverse transcriptase (25 U, Life Science), 1 µl of ribonuclease inhibitor (100 U/µl, Takara Shuzo) and the mixture incubated at 37 °C for 20 min, at 42 °C for 30 min, and finally at 95 °C for 2 min, which was followed by an immediate cooling to 0 °C (synthesis of cDNA).

Amplification of DNA containing specific sequences was conducted by PCR (Saiki et al., Nature 324: 126 (1986)). Thus, 100 µl mixture containing 10 µl of cDNA solution, 10 µl of 10 x PCR buffer (100 mM Tris-HCl (pH 8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 µl of 2.5 mM 4 dNTPs, 2 µl of 15 pmol/µl synthetic DNA primer (the same primer as used in the synthesis of cDNA), 3 µl of 15 pmol/µl synthetic DNA primer (a counterpart of paired primers) and water was incubated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, it was mixed with 0.5 µl of Taq DNA polymerase (7 U/µl, AmpliTaq™ Takara Shuzo) and overlaid with mineral oil. The resultant sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 40 - 55 °C for 1 min; and at 72 °C for 1 - 5 min in DNA Thermal Cycler (Parkin Elmer Cetus). Finally, the reaction mixture was incubated at 72 °C for 7 min, which was followed by phenol/chloroform extraction and ethanol precipitation to obtain different amplified DNA fragments derived from either of above-mentioned pairs of primers.

Example 3

Cloning and Sequencing of Amplified DNA Fragments

Dried DNA fragment (at least 1 pmole) obtained in the above Example 2, [2] or [3] was blunt-ended with T4 DNA polymerase (Toyobo) and 5'-end phosphorylated with polynucleotide kinase (Toyobo) and ligated into SmaI site of multi-cloning sites of 5 ng to 10 ng of pUC19 cloning vector. The cloning vector had been previously treated as follows: digestion with a restriction enzyme SmaI (Toyobo), phenol/chloroform extraction, ethanol precipitation, 5'-end dephosphorylation with alkaline phosphatase (Behring-Mannheim), phenol/chloroform extraction, and ethanol-precipitation. The ligated DNA was used to transform into a competent E.coli JM 109 or DH5 cells (Toyobo). The transformation was carried out according to the protocol of the manufacturer's instruction (COMPETENT HIGH, Toyobo). Plasmid clones were recovered from transformed cells conventionally. At least 20 transformants were obtained using pUC19 cloning vectors containing either of DNA fragments obtained in the above Example 2, [2] and [3] using each pair of primers.

The determination of base sequence of DNA fragment was conducted by Fluorescent DNA Sequencer (GENESIS 2000, Dupont) using, as sequence primer, the following synthetic primers:
 45 5' d(GTAAACGACGGCCAGT)3' (SEQ ID NO 143) and
 5'd(CAGGAAACAGCTATGAC)3' (SEQ ID NO 144) for the + and - strands of DNA fragment to be sequenced.

Base sequences of clones is given in SEQ ID NO 1 to 4 and 9 to 12. Base sequences of SEQ ID NO 1, 2, 3, 4, 9, 10, 11 and 12 correspond to that of + strand of clones N1-1, N2-1, N3-1, N10-1, N1-2, S1-1, S1-2 and S1-3 of transformants, respectively. These clones are double stranded DNA which were prepared in the same manner as those described in Examples 2 and 3 using 4 kinds of pairs of primers shown in Example 2, [2]. Plasmid used for sequencing the clones were designated as pUCN1-1, pUCN2-1, pUCN3-1, pUCN10-1, pUCN1-2, pUCS1-1, pUCS1-2 and pUCS1-3, respectively. Each plasmid contained one DNA molecule corresponding to each DNA fragment.

These base sequences represents base sequences of clones obtained by cloning the cDNA synthesized from RNA isolated from serum of patient(s) suffering from HC. Therefore, these sequences are specific for clones originated from serum of HCV-infected patients but can not be found or obtained from serum of healthy subjects. Thus, cDNA prepared from RNA (if there are any) obtained from a healthy

subject under more strict conditions, for instance, by increasing (3 or 4 folds) the reaction cycles of PCR in Example 2, [2] and [3], by repeating them 60 - 100 times, did not show any homology in base sequence with those shown in SEQ ID NO 1 to 4. Consequently, base sequences of clones N1-1, N2-1, N3-1, N10-1, N1-2, S1-1, S1-2 and S1-3 are specific for those obtained from serum of patients suffering from HC.

5 As the next step, the resultant DNA fragment was modified so that a polypeptide encoded by a open reading frame should be expressed in a host cell transformed by the modified DNA, and the resultant product was then evaluated as to the ability to react, as a antigenic polypeptide of HCV, with HCAb in serum of HC patients.

10 Example 4

Preparation of Clone N1N3N10 or N3N10

[1] Preparation of Clone N3N10

15 One μ l of each DNA fragments (about 200 - 300 ng) from clones N3-1 and N10-1 was added into a reaction mixture containing 10 μ l of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 μ l of 2.5 mM 4 dNTPs, 5 μ l each of 20 pmol/ μ l synthetic primers S2 and AS3, and 76.5 μ l of water. After an intimate mixing, the mixture was heated at 95 °C for 5 min, then immediately
20 cooled to 0 °C. One minute later, to the mixture was added 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo), mixed and overlaid with mineral oil. The sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 40 °C for 1 min; and at 72 °C for 2 min in DNA Thermal Cycler (Parkin Elmer Cetus). It was followed by an incubation at 97 °C for 2 min. The mixture was immediately cooled to 0 °C, kept at 0 °C
25 for 2 min, mixed with 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo). The sample was then treated in the same manner as the above by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 50 °C for 1 min; and at 72 °C for 2 min. After the final treatment at 72 °C for 7 min, the resultant reaction solution was treated with phenol/chloroform then precipitated with ethanol. The amplified DNA samples were fractionated on agarose gel electrophoresis and a gel containing
30 a desired fragment having an expected length was removed (Molecular Cloning (1982) Cold Spring Harbor) to isolate the DNA fragment therefrom conventionally. The resultant DNA fragment was then modified as described in Example 3 and ligated into Smal site of multi-cloning sites of pUC19, cloned and screened as described in Example 3 to obtain plasmid pUCN3N10. The resultant cDNA derived from serum of HC patient was referred to as clone N3N10 whose base sequence is given in SEQ ID NO 5.

35 [2] Preparation of Clone N1N3N10

Two overlapping clones N1-1 and N3N10 were ligated by taking advantage of unique restriction site which exists in the overlapping regions of the both clones. Upon digestion with restriction enzyme BssHII, 40 clone N1-1 is cleaved at the 3' site of a nucleotide No. 455 G and clone N3N10 at the 3' site of a nucleotide No.159 G. The ligation of two clones N1-1 and N3N10 was accomplished on the basis of an assumption that plasmids pUCN1 and pUCN3N10 contain each clone in the same orientation. Thus, plasmid pUCN1 was digested with HindIII and BssHII to yield a 492 bp DNA fragment comprising a HindIII-Smal DNA fragment of plasmid pUC19 attached to the 5' end of the No. 455 bp nucleotide of clone N1-1 derived from 45 serum of HC patient, which fragment was then exchanged with 159 bp HindIII - BssHII fragment of Plasmid pUCN3N10, cloned and screened to obtain a plasmid pUCN1N3N10. The plasmid pUCN1N3N10 contained the desired clone N1N3N10 comprising clones N1-1, N3-1 and N10-1 ligated without overlapping. The base sequence of clone N1N3N10 is shown in SEQ ID NO 6.

50 Example 5

Modification of DNA for the Expression of HCV Polypeptide Encoded by Clones N3-1 or N3N10

[1] Modification of DNA for the Expression of HCV Polypeptide Encoded by Clone N3-1 in E.coli

55 Clone N3-1 contains a DNA fragment capable of encoding a structural protein of HCV which begins at nucleotide No. 22 (A). The DNA can be expressed utilizing ATG codon at nucleotides Nos. 22 to 24. The modification of DNA was carried out using PCR. The following synthetic oligonucleotide primers were used.

5' primer:

5' GCAAGCTTATGAGCACAAATCCAAAACCCCAAAGA 3' (SEQ ID NO 145)

3' primer:

5' GCGAATTAGATCTTCACCTACGCCGGGGTCCGTGGG 3' (SEQ ID NO 146)

5 The synthetic DNA was adjusted to 20 pmol/ml before use.

PCR was carried out in the same manner as described in the above according to Saiki's method in a total volume of 100 µl containing 100 ng of plasmid pUCN3, as a template, and 2 µl each of 3' and 5' primers. The reaction mixture was heated at 95 °C for 5 min and quenched at 0 °C. One minute later, to the mixture was added 0.5 µl of Taq DNA polymerase (7 U/ml, AmpliTaq™ Takara Shuzo), mixed thoroughly and overlaid with mineral oil. The sample was reacted by repeating 25 cycles of treatments which comprises: at 95 °C for 1 minute; at 60 °C for 1 min; and at 72 °C for 5 min in DNA Thermal Cycler (Parkin Elmer Cetus). The resultant reaction solution was extracted with phenol/chloroform, and precipitated with ethanol conventionally. The amplified DNA samples were digested with HindIII and EcoRI, and fractionated on acrylamide gel electrophoresis and extracted (Molecular Cloning, Cold Spring Harbor (1982)).

10 15 The resultant DNA fragment was then ligated into HindIII and EcoRI sites of a cloning vector pUC19, cloned and screened to obtain plasmid pUCHN3. The resultant plasmid was sequenced and shown in SEQ ID NO 7. The sequence shows that it contains, at the 5'-terminus, a HindIII site followed by ATG initiation codon, and at the 3'-terminus, a termination codon TGA, BgIII and EcoRI restriction sites, from 5' to 3'.

20 [2] Modification of DNA for the Expression of HCV Polypeptide Encoded by Clone N3N10 in E.coli

Clone N3N10 contains a DNA fragment capable of encoding structural protein of HCV which begins at nucleotide No. 22 (A). The DNA can be expressed utilizing ATG codon at nucleotides Nos. 22 to 24. The modification of DNA was carried out using PCR. The following synthetic oligonucleotide primers were used.

25 5' primer:

5' GCAAGCTTATGAGCACAAATCCAAAACCCCAAAGA 3' (SEQ ID NO 145)

3' primer:

5' GCGAATTAGATCTTCAGATTCTCTGAGACGGCCCTCGT 3' (SEQ ID NO 147)

The synthetic DNA was adjusted to 20 pmol/ml before use.

30 35 PCR was carried out in the same manner as the above [1] except that the above two primers and plasmid pUCN3N10, as a template, were used and PCR was conducted by repeating 10 cycles of treatments which comprises: at 95 °C for 1 minute; at 50 °C for 1 min; and at 72 °C for 5 min, and then 20 cycles of treatments which comprises: at 95 °C for 1 minute; at 65 °C for 1 min; and at 72 °C for 5 min.

The amplified DNA sample was digested with HindIII and EcoRI, and fractionated on acrylamide gel electrophoresis and extracted the gel containing a DNA fragment of desired length (Molecular Cloning, Cold Spring Harbor (1982)). The resultant DNA fragments were then ligated into HindIII and EcoRI sites of cloning vector pUC19, cloned and screened conventionally to obtain plasmid pUCHN3N10. The plasmid pUCHN3N10 was then sequenced.

40 Thus obtained clone HN3N10 contains, at the 5'-terminus, a HindIII site followed by ATG initiation codon, and at the 3'-terminus, a termination codon TGA, BgIII and EcoRI restriction sites, from 5' to 3'.

For the removal or BamHI site from the clone HN3N10, a nucleotide sequence: 5'GGATCC3' was converted to 5'GGATAC3' by PCR using the following synthetic DNA fragments as primers.

5' primer:

5' GCTACTCCGGATACCAC 3' (SEQ ID NO 148)

45 3' primer:

5' GTAAACGACGGCCAGT 3' (SEQ ID NO 143)

The synthetic DNA was adjusted to 20 pmol/ml before use.

The nucleotide "G" at the 5'-terminus of 5' primer corresponds to the No.1016 G of the base sequence of clone N3N10. The 3' primer is derived from plasmid pUC19 and the same as one of primers used for sequencing in Example 3. The PCR was conducted by repeating 25 cycles of treatments which comprises: at 95 °C for 1 minute; at 55 °C for 1 min; and at 72 °C for 1 min. For the reaction, 3 µl of each primer and 100 ng of plasmid pUCHN3N10, as a template DNA, were used. The reaction mixture was then subjected to phenol/chloroform extraction and ethanol precipitation as conventionally. The amplified DNA sample was digested with MroI, BgIII, and BamHI, fractionated on acrylamide gel electrophoresis, and extracted the gel containing a desired 226 bp DNA fragment (Molecular Cloning, Cold Spring Harbor (1982)). The resultant DNA fragments were then ligated into MroI and BgIII sites of plasmid pUCHN3N10, cloned and screened by conventional method to obtain plasmid pUCHN3N10ΔB. The resultant plasmid pUCHN3N10ΔB was then sequenced and base sequence of clone HN3N10ΔB is shown in SEQ ID NO 8.

[3] Modification of DNA for the Expression of HCV Polypeptide Encoded by Clone N3N10 in Insect Cells

Clone N3N10 appears to contain entire viral protein-encoding genes including those encoding core, envelope (M-gp35) proteins. The region beginning at nucleotide No. 22 (A) which encodes structural protein was expressed in insect cells utilizing ATG codon at nucleotides Nos. 22 to 24. When insect cells were transfected with the DNA and cultivated, core and envelope (M-gp35) proteins were expressed in the fused form as a precursor polypeptide, which was then processed to separate core and envelope (M-gp35). At least the latter envelope (M-gp35) was then glycosylated incompletely and accumulated intracellularly. The modification of DNA of clone N3N10 for the construction of expression vector was carried out by PCR using following synthetic oligonucleotide primers.

5' primers:

MS106: 5' GCGTCGACGCTAGCATGAGCACAAATCCAAAACCC 3' (SEQ ID NO 149)

MS107: 5' GCGTCGACGCTAGCAGGTCTCGTAGACCGTGCATC 3' (SEQ ID NO 150)

3' primer:

15 MS108: 5' GCGAATTGCTAGCTCAGGATTCTCTGAGACGGCCCTCGA 3' (SEQ ID NO 151)

These three synthetic DNAs were separately adjusted to 20 pmol/ml before use.

The PCR was carried out using the same reaction solution and worked up in the same manner as described in the above [1] except that plasmid pUCN3N10 was used as a template plasmid, and, as 5' primer, primer MS106 or MS107 and, as 3' primer, MS108 were used. PCR was accomplished by repeating 10 times of reaction cycles consisting of: 1 min at 95 °C; 1 min at 50 °C and 5 min at 72 °C ; and then 20 times of reaction cycles consisting of: 1 min at 95 °C; 1 min at 65 °C; 5 min at 72 °C. A combination of primers MS106 and MS108 gave a desired 1265 bp DNA fragment 106-108 and that of primers MS107 and MS108 gave a desired 1286 bp DNA fragment 107-108.

These DNA fragments were digested with NheI, fractionated on acrylamide gel electrophoresis and extracted by conventional means (Molecular Cloning, Cold Spring Harbor (1982)) to obtain DNA fragments of desired length. Each of the resultant DNA fragments was then ligated into NheI restriction site of a transfer vector pBlueBac (Invitrogen), cloned and screened by the usual method to yield plasmids pBlueN3N10-1 and pBlueN3N10-2, which are derived from DNA fragments 106-108 and 107-108, respectively.

Plasmids pBlueN3N10-1 and pBlueN3N10-2 were digested with NheI or BamHI completely to confirm that each plasmid contains only one DNA fragment, either of 106-108 or 107-108 inserted at NheI site. Furthermore, taking account of the instruction provided by the manufacturer (Invitrogen), the expression unit of these plasmids contain a gene encoding HCV structural polypeptide (core and envelope) oriented forward and ligated to the NheI cloning site down stream from a polyhedrin promoter.

35 Example 6Expression of HCV Polypeptides Encoded by Clones HN3, HN3N10ΔB[1] Expression of Polypeptide Encoded by Clone HN3 in E.coli

40 Clone HN3 encodes a part of polypeptide encoded by cDNA originated from serum of HC patient. The polypeptide encoded by clone HN3 was expressed directly in E.coli, as it is, by subcloning said clone into an expression vector pCZ44 (Japanese Patent Publication No. 124387/1989).

Clone HN3 was digested thoroughly with restriction enzymes HindIII and BglII, extracted with phenol/chloroform, precipitated with ethanol, separated on acrylamide gel electrophoresis. From the gel was extracted a DNA fragment having cohesive HindIII- and BglII-restricted ends (Molecular Cloning, Cold Spring Harbor, 1982). The expression vector pCZ44 was digested with HindIII and BglII. The larger DNA fragment containing a region functional for the replication in E.coli was separated, treated in the same manner, ligated to the HindIII-BglII fragment of clone HN3 so as to have only one insertion, and cloned by conventional method to yield plasmid pCZCORE.

Alternatively, an expression vector was constructed using an expression vector pGEX-2T (Pharmacia) for the expression of a fused protein of a desired polypeptide and β -glutathione-S-transferase (GST). The construction was carried out substantially in accordance with the protocol taught by the manufacturer (Pharmacia). Thus, the expression vector pGEX-2T was digested with BamHI. The linearized vector was ligated with a HindIII linker to obtain a DNA fragment having EcoRI and HindIII restriction sites at the 3'- and 5'-termini. The fragment was ligated to HindIII-EcoRI fragment of HN3 such that every reading frame of codon is consistent with an amino acid of clone N3-1 to yield an expression vector pGEXCORE.

E.coli K12 strains (e.g., JM109, KS476) or those derived from B strains transformed with plasmid

pCZCORE was grown in L-Broth at 37 °C overnight (Molecular Cloning, Cold Spring Harbor, 1982). The cultured broth was diluted 50-folds by inoculating it into a freshly prepared L-Broth and the cultivation continued with shaking at 30 °C for 2 hr. At this time, IPTG (isopropyl- β -D-galactopyranoside) was added to the culture to a final concentration of 1 or 2 mM in order to induce the expression of DNA encoding HCV-originated CORE-N3 polypeptide by single-clone-derived transformants (*E.coli* cells transformed solely by plasmid pCZCORE derived from clone HN3). Base sequence and deduced amino acid sequence of clone HN3 is shown in SEQ ID NO 7.

As mentioned in the above, plasmid pGEXCORE can be used to obtain transformants capable of expressing a fused protein include desired polypeptide and GST. The plasmid encodes a fused protein GST-CORE comprising GST, which has a thrombin-cleaving site at its C-terminus, and a polypeptide derived from a clone HN3, the same polypeptide as that encoded by plasmid pCZCORE. The transformants containing pGEXCORE were grown in the presence of IPTG using the same protocol as that used for the expression of CORE-N3 polypeptide of HCV from transformants harboring pCZCORE to produce the fused polypeptide GST-CORE.

15 [2] Expression of Polypeptides Encoded by Clone HN3N10 Δ B

Clone HN3N10 Δ B encoding a part of polypeptide encoded by cDNA originated from serum of HC patient was expressed in *E.coli* to give polypeptide CME-N3N10 Δ B in the same manner as the above [1].
 20 The cDNA used was that contained in clone HN3N10 Δ B obtained from serum of HC patient, which clone had been previously isolated and sequenced as described in Examples 3, Example 4 [1], and Example 5 [2]. The expression plasmid pCZCME Δ B was constructed by subcloning a DNA fragment isolated from plasmid pUCHN3N10 Δ B by ligating its HindIII and BglII cohesive ends to HindIII and BglII sites of plasmid pCZ44 such that only one DNA fragment should be inserted in an appropriate orientation by the same
 25 method used for the preparation of plasmid pCZCORE. Plasmid pCZCME Δ B was then subjected to the sequencing and restriction enzyme mapping to confirm that an expression unit of plasmid pCZCME Δ B was reconstructed properly.

The cultivation of transformants was carried out in the presence of IPTG in order to induce the expression of HCV-originated CME-N3N10 Δ B polypeptide by single-clone-derived transformants (*E.coli* JM 109 cells transformed solely by plasmid pCZCME Δ B derived from clone HN3N10 Δ B, a variant of clone N3N10). Base sequence and deduced amino acid sequence of cDNA obtained from serum of HC patient contained in clone HN3N10 Δ B is shown in SEQ ID NO 8. The amino acid sequences deduced from base sequences of a clone HN3N10 Δ B and its original clone N3N10 were exactly the same.

In the same manner as the above [1], plasmid pGEXCME Δ B was constructed, transformed into host cells. The transformants, when grown under a same condition for transformants harboring plasmid pCZCME Δ B inducing by IPTG, expressed a fused protein GST-CME-N3N10 Δ B.

[3] Expression of Polypeptide Encoded by Clone N3N10 in Insect Cells

40 The expression of structural polypeptide (core, envelope (M-gp35) of HCV encoded by plasmid pBlueN3N10-1 prepared in Example 5 [3] was conducted substantial in accordance with a known expression manual for baculovirus (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4, hereinafter, referred to as Maxbac, Invitrogen).

Plasmids pBlueN3N10-1 and pBlueN3N10-2, plasmids prepared by inserting DNA fragment containing 45 HCV structural gene at the NheI site of a transfer vector pBlueBac (Maxbac, pp.37), were recovered from *E.coli* host cells transformed thereby, and purified according to the method of Maniatis et al.(Molecular Cloning, Cold Spring Harbor Laboratory, pp.86 - 96 (1982)). Thus, a large amount of HCV structural gene-containing transfer plasmid DNA was obtained. Sf9 cells were co-transfected with 2 μ g of either of plasmids pBlueN3N10-1 or pBlueN3N10-2 and 1 μ g of AcNPV viral DNA (Maxbac, pp.27). Sf9 cells were grown in 50 TMN-FH medium (Invitrogen) containing 10% FCS (fetal calf serum) in a 6 cm dish (60 x 15 mm, FALCON®; Nippon Becton Dickinson Co., Ltd.) until a cell density reached to about 2 x 10⁶/plate. The TMN-F medium was removed and a 0.75 ml Grace medium (Gibco) containing 10% FCS was added thereto. To the DNA mixture described in the above was added 0.75 ml of transfection buffer (attached to the kit) was thoroughly mixed by vortex and gradually added dropwise onto the Grace medium. After the culture being 55 allowed to stand for 4 hr at 27 °C, Grace medium was replaced with 3 ml of TMN-FH medium containing 10% FCS and the dish incubated at 27 °C for 6 days. Three days from the incubation, there observed a few multinucleate cells and on sixth day, almost all the cells were multinuclear. The supernatant was taken into a centrifuging tube and centrifuged at 1,000 rpm, 10 min to obtain the supernatant as a cotransfected viral

solution.

The cotransfected viral solution contains about 10^8 viruses/ml and 0.5% of which were recombinant viruses. The isolation of recombinant virus was carried out by a plaque isolation method described below.

Thus, cells were adsorbed onto a 6 cm dish by seeding 1.5 $\times 10^6$ cells on medium and removing the medium completely. To the dish was added 100 μl of a diluted viral solution (10^{-4} and 10^{-5} folds), separately and incubated at room temperature for 1 hr while slanting the 6 cm dish every 15 min to spread the virus extensively. X-gal medium containing agarose was prepared by adding 5-bromo-4-chloro-3-indolyl- β -D-galactoside to a final concentration of 150 $\mu\text{g}/\text{l}$ (Maxbac, pp. 16-17) to a warm medium which had been prepared by autoclaving 2.5% baculovirus agarose (Invitrogen) at 105 °C for 10 min, mixing with TMN-FH medium containing 10% FCS preheated at 46 °C at the mixing ratio of 1 : 3, and keeping the temperature at 46 °C.

After the completion of infection, virus solution was aspirated thoroughly from the 6 cm dish and 4 ml of the warm X-gal medium containing agarose (previously prepared) was gently added to every 6 cm dish not to peel off cells. The dish kept open by slightly sliding a lid until the agarose solidified and dried, and thereafter the dish covered, turned upside down, and incubated at 27 °C for 6 days. The plaques were observed under a phase difference microscope to find blue plaques which do not form multinucleate cells. Agarose containing blue recombinant plaques were removed with a Pasteur pipet and suspended into 1 ml of TMN-FH medium by pipetting many times. The above process which comprised: infection, 6-day incubation, and isolation of virus containing transfer plasmid DNA is called the "plaque method". The plaque method was repeated using 100 μl of viral suspension. After repeating said process three times, there obtained a recombinant virus having a gene encoding structural protein derived from HCV free from contamination with that of wild-type strain.

A viral solution of the primary recombinant virus was prepared by aspirating plaques with a Pasteur pipet, and mixing thoroughly with 1 ml of TMN-FH medium. Because the primary viral solution was low in virus density for infection, it required further treatments for concentration. Thus, 100 μl of viral solution was adsorbed onto Sf9 cells grown in 6 cm dish to a semi-confluent, and 4 ml of TMN-FH medium was added thereto and incubated three days. The culture supernatant was recovered to yield a recombinant viral solution for infection.

For the production of HCV structural protein, a suspension of Sf9 cells in TMN-FH medium containing 10% FCS (5×10^6 cells/10 ml medium) was added into a 9 cm dish and kept 1 hr for adsorption. After the removal of medium, 250 μl of recombinant viral solution was added to the 9 cm dish and spread extensively. To the dish was added 10 ml TMN-FH medium containing 10% FCS and incubated at 27 °C for 4 days. The cells expressing recombinant glycoprotein of HCV were harvested by scraping up and suspended into 1,000 ml of phosphate buffered saline.

Thus, HCV structural gene was expressed in Sf9 cells transfected with said virus. The transformants transformed with plasmids pBlueN3N10-1 and pBlueN3N10-2 expressed the same HCV polypeptide.

Example 7

40 Identification of Expression Products as HCAg

The expression products obtained in Example 6, which are CORE-N3 and CME-N3N10 Δ B polypeptides, and HCV polypeptide encoded by clone N3N10 expressed in insect cells, were immunologically reactive with antiserum obtained from HC patients, demonstrating that these expression products are HC associated antigens.

Identification of these expression products as HCAg were carried out by Western blot as follows. E. coli cells transformed with either of plasmids pCZCORE and pCZCME Δ B encoding CORE-N3 and CME-N3N10 Δ B polypeptides, respectively were grown under the presence of IPTG for 3 hr or overnight in the same manner as described in Example 6.

Recombinant strains were harvested by centrifuging 1,000 μl of the cultured broth at 6,500 rpm, 10 min. The pellet was dissolved into a sample solution (50 mM Tris-HCl, pH6.8 containing 2% SDS, 5% mercaptoethanol, 10% glycerin, and 0.005% bromophenol blue) for SDS-polyacrylamide gel electrophoresis to a final volume of 0.2 ml. Sf9 cells infected with viruses which had been treated more than 3 times by plaque method were collected by scraping up and suspended into 1,000 ml of phosphate-buffered saline (PBS) and 100 μl of the suspension was centrifuged at 6,500 rpm, 10 min to pellet the cells. The pellet was dissolved into a sample solution for SDS-polyacrylamide gel electrophoresis to a final volume of 0.2 ml.

The sample solutions were then boiled at 100 °C for 10 min. Ten μl of the boiled solution was loaded

onto 0.1% SDS-15% polyacrylamide gel (70 x 85 x 1 mm) together with a marker protein LMW Kit E (low-molecular weight marker prot in, Pharmacia). Electrophoresis was carried out at a constant current of 30 mA for 45 min in Tris buffer (25 mM Tris, pH 8.3, 192 mM glycine, 0.1% SDS) as electrode buffer. Thereafter, DNA was transferred electrophoretically to a nitrocellulose filter by superposing the gel onto a filter BA-83 (S & S), impressing a constant current of 120 mA for about 20 min between gel (cathode) and the filter (anode) as conventionally.

The transcribed filter was cut to remove a part containing a marker protein (referred to as marker filter) and that containing the sample (referred to as sample filter). The former was stained with 0.1% (w/v) amideblack 10B and the latter immersed into 0.01 M PBS (pH 7.4) containing 5% (w/v) bovine serum albumin (BSA). Serum from a HC patient was diluted 50 times with 0.01 M PBS (pH 7.4) containing 5% (w/v) BSA. To the sample filter was added 10 µl of diluted serum and the filter allowed to stand for 2 hr at room temperature. Thereafter, the filter was washed with PBS containing 0.1% (v/v) Tween 20 for 20 min (x3).

The sample filter was then reacted with 10 ml of horseradish peroxidase conjugated anti human IgG (Gappel) at 37 °C for 1 hr and washed with PBS containing 0.1% (v/v) Tween 20 for 20 min (x3). The filter was then immersed into peroxidase-color-producing solution (60 mg 4-chloro-1-naphthol, 20 ml methanol, 80 ml PBS, and 20 µl aqueous hydrogen peroxide). The colored filter was washed with distilled water and compared with the marker filter, demonstrating that polypeptides CORE-N3 and CME-N3N10ΔB contain only one colored protein having a reasonable molecular weight as an expression product of cDNAs originated from serum of HC patients and contained in plasmid pZCORE and pZCMEΔB, respectively.

Cells transformed with pBlueN3N10-1 or plasmid pBlueN3N10-2, both of which encode polypeptide encoded by clone N3N10, expressed HCV polypeptides showing the same pattern on the detection. A protein of molecular weight of about 22 kD was expressed which corresponds to calculated molecular weight of an expression product from core-encoding gene contained in clone N3N10. Thus, said core-encoding gene, when expressed, gives a protein of calculated molecular weight of about 22 kD (without modification). As the result, the expressed product was identified as hepatitis C associated antigenic polypeptide presumably derived from HCV core protein.

Example 8

Comparison of Clones Obtained in Example 2 [2] and [3]

Three clones corresponding to SEQ ID NO 1 were separately cloned using serum from a HC patient according to the method described in Example 2 [2] (using random primers) and sequenced. On the other hand, three clones corresponding to SEQ ID NO 1 were separately cloned using serum from the same HC patient according to the method described in Example 2 [3] (using antisense primers) and sequenced.

Clones obtained using random primers had the same base sequence as that shown by SEQ ID NO 1, whereas the synthetic primers S1 and AS1 were used, two of three clones obtained independently had the base sequence of SEQ ID NO 1, and one clone had a base sequence which differed from that of SEQ ID NO 1 as to three nucleotides. Thus, at No. 345, A was changed to C, No. 322 A changed to T, and No. 95 A changed to C. These differences indicate that a patient is infected at least 2 kinds of viruses.

The above facts demonstrate that there are no substantial difference between clones obtained by methods in Example 2 [2] and those obtained in Example 2 [3].

Example 9

Synthesis of cDNA

[1] Preparation of RNA Sample Solution

RNA sample solution was prepared by resolving the dried nucleic acid obtained in Example 1 in 30 µl of water containing 10 µl of ribonuclease inhibitor (100 U/µl, Takara Shuzo, Japan).

[2] Synthesis of cDNA Using Antisense Primer

To 2 µl of RNA sample solution prepared in above [1] was added 1 µl of 15 pmol/µl anti-sense primer (synthesized primer MS122, MS157 or MS148), 2 µl of 10 x RT buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl), 4 µl of 25 mM MgCl₂, 8 µl of 2.5 mM 4dNTPs, 1 µl of water and the mixture incubated at 65 °C for 5

min then at room temperature for 5 min. To the mixture was added 1 μ l of reverse transcriptase (25 U, Life Science), 1 μ l of ribonuclease inhibitor (100 U/ μ l, Takara Shuzo) and the mixture incubated at 37 °C for 20 min, at 42 °C for 30 min, and finally at 95 °C for 2 min, which was followed by an immediate cooling to 0 °C (synthesis of cDNA).

- 5 Amplification of DNA containing specific sequences was conducted by PCR (Saiki et al., Nature 324: 126 (1986)). Thus, 100 μ l mixture containing ten μ l of cDNA solution, 10 μ l of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 μ l of 2.5 mM 4 dNTPs, 2 μ l of 150 pmol/ μ l synthetic DNA primer (the same primer as used in the synthesis of cDNA), 3 μ l of 15 pmol/ μ l synthetic DNA primer (a counterpart of pair of primers, i.e., MS122-MS123, MS157-MS156, or MS148-MS146) and water was incubated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, it was mixed with 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo) and overlaid with mineral oil. The resultant sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 40 - 55 °C for 1 min; and at 72 °C for 1 - 5 min in DNA Thermal Cycler (Parkin Elmer Cetus). Finally, the reaction mixture was incubated at 72 °C for 7 min, which was followed by phenol/chloroform extraction and ethanol precipitation to obtain different amplified DNA fragments derived from either of above-mentioned pairs of primers.

Example 10

20 Cloning and Sequencing of Amplified DNA Fragments

Dried DNA fragment (at least 1 pmole) obtained in the above Example 9, [2] was blunt-ended with T4 DNA polymerase (Toyobo) and 5'-end phosphorylated with polynucleotide kinase (Toyobo) and ligated into SmaI site of multi-cloning sites of 5 ng to 10 ng of pUC19 cloning vector. The cloning vector had been previously treated as follows: digestion with a restriction enzyme SmaI (Toyobo), phenol/chloroform extraction, ethanol precipitation, 5'-end dephosphorylation with alkaline phosphatase (Behringer-Manheim) (Molecular Cloning (1982) Cold Spring Harbor), phenol/chloroform extraction, and ethanol-precipitation. The ligated DNA was used to transform a competent *E.coli* JM 109 or DH5 cells (Toyobo). The transformation was carried out according to the protocol of the manufacturer's instruction (COMPETENT HIGH, Toyobo). Plasmid clones were recovered from transformed cells conventionally. At least 20 transformants were obtained using pUC19 cloning vectors containing either of DNA fragments obtained using either of pairs of primers in the same manner as that described in Example 9, [2].

Plasmid DNA was isolated from corresponding transformant by an usual method and sequenced. The determination of base sequence was conducted by means of Fluorescent DNA Sequencer (GENESIS 2000, Dupont) using, as sequence primer, the following synthetic primers:
 5' d(GTAAACGACGGCCAGT)3' (SEQ ID NO 143) and
 5'd(CAGGAAACAGCTATGAC)3' (SEQ ID NO 144) for the + and - strands of DNA fragment to be sequenced.

Base sequences of DNA fragments are given in SEQ ID NO 13 to 27, which show the base sequences of + strand of HCV genes inserted into each plasmid used for the transformation. These clones are double stranded DNA. Plasmids used for the sequencing of clones N19-1, N19-2 and N19-3 were designated as plasmids pUCN19-1, pUCN19-2 and pUCN19-3, respectively. Each plasmid contained one DNA molecule corresponding to each DNA fragment. In the same manner, a plasmid which contains a single clone and is used for the sequencing of the same is designated by adding a prefix "pUC" to the name of the clone.

These base sequences represents base sequences of clones obtained by cloning the cDNA synthesized from RNA isolated from serum of patient(s) suffering from HC. Therefore, these sequences are specific for clones originated from serum of HCV-infected patients but can not be found or obtained from serum of healthy subjects. Thus, cDNA prepared from RNA (if there are any) obtained from a healthy subject under more strict conditions, for instance, by increasing (3 or 4 folds) the reaction cycles of PCR in Example 9 [2] and [3], by repeating them 60 - 100 times, did not show any homology in base sequence with those shown in SEQ ID NO 13 to 27. Consequently, base sequences of clones shown in SEQ ID NO 13 to 27 are specific for those obtained from serum of HC patient.

The base sequences of DNA fragments were compared with a known base sequence of HCV gene. As can be seen from the fact that three clones N19-1, N19-2 and N19-3 were obtained from serum of one HC patient in Example 9 [2] using primers MS122 and MS123, there must be more than one virus in a patient.

Example 11

Preparation of Clones N27MX24A-1 and N27MX24B-1[1] Preparation of Clones N19MX24A-1 and N19MX24B-1

5 One μ l (about 0.5 to 1 μ g/ μ l) of each DNA fragment from clones N19-1 and MX24-4 was added into a reaction mixture containing 10 μ l of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 μ l of 2.5 mM 4 dNTPs, 5 μ l each of 20 pmol/ μ l synthetic primers S2 and AS3, and 76.5 μ l of water. After an intimate mixing, the mixture was heated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, to the mixture was added 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo), mixed and overlaid with mineral oil. The sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 40 °C for 1 min; and at 72 °C for 2 min in DNA Thermal Cycler (Parkin Elmer Cetus). It was followed by an incubation at 97 °C for 2 min. The mixture was immediately cooled to 0 °C, kept at 0 °C for 2 min, mixed with 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo). The sample was 10 then treated in the same manner as the above by repeating 25 times of reaction cycle, which comprises the following treatments: at 95°C for 1 min; at 50 °C for 1 min; and at 72 °C for 2 min. After the final treatment at 72 °C for 7 min, the resultant reaction solution was treated with phenol/chloroform then precipitated with ethanol. The amplified DNA samples were fractionated on agarose gel electrophoresis and a gel containing a fragment having a desired length was removed (Molecular Cloning (1982) Cold Spring Harbor) to isolate 15 the DNA fragment therefrom conventionally. The resultant DNA fragment was then modified as described in Example 10 and ligated into Smal site of multi-cloning sites of pUC19, cloned and screened as described in Example 10 to obtain plasmids pUCN19MX24A-1 and pUCN19MX24B-1. The resultant cDNAs derived from serum of HC patient were referred to as clones N19MX24A-1 and N19MX24B-1, of which base sequences 20 are given in SEQ ID NO 29 and 30.

25

[2] Preparation of Clone N27N19-1

Two overlapping clones N27-3 and N19-1 were ligated by taking advantage of unique restriction site which exists in the overlapping regions of the both clones. Upon digestion with restriction enzyme MluI, 30 clone N27-3 is cleaved at the 3' site of a nucleotide No. 330 (A) and clone N19-1 at the 3' site of a nucleotide No.51 (A). The ligation of clones N27-3 and N19-1 was accomplished on the basis of an assumption that plasmids pUCN27-3 and pUCN19-1 contain each DNA fragment in the same orientation. Thus, plasmid pUCN27-3 was digested with HindIII and MluI to isolate a DNA fragment containing 5' region of clone N27-3 which comprises a HindIII-Smal DNA fragment of plasmid pUC19 attached to the 5' end of 35 the clone N27-3, a cDNA derived from serum of HC patient. The DNA fragment was then exchanged with a HindIII-MluI fragment of clone N19-1 containing 3' region of said clone, cloned and screened to obtain a plasmid pUCN27N19-1. The plasmid pUCN27N19-1 contained the desired clone N27N19-1 comprising clones N27-3 and N19-1 ligated without overlapping. The base sequence of clone N27N19-1 is shown in 40 SEQ ID NO 28.

40

[3] Preparation of Clones N27MX24A-1 and N27MX24B-1

Overlapping clones N27-3 and either of clones N19MX24A-1 and N19MX24B-1 were ligated by taking 45 advantage of unique restriction site which exists in the overlapping regions of the both clones. Upon digestion with restriction enzyme MluI, clone N27-3 is cleaved at the 3' site of a nucleotide No. 330 (A) and clones N19MX24A-1 and N19MX24B-1 at the 3' site of a nucleotide No.71 (A). The ligation of clones was accomplished on the basis of an assumption that plasmids pUCN27-3, pUCN19MX24A-1 and pUCN19MX24B-1 contain each DNA fragment in the same orientation. Thus, plasmid pUCN27-3 was digested with HindIII and MluI to isolate a 363 bp DNA fragment which comprises a HindIII-Smal DNA 50 fragment of plasmid pUC19 attached to the 5' end of the clone N27-3, a cDNA derived from serum of HC patient. The DNA fragment was then exchanged with a 363 bp DNA fragment of clone N19MX24A-1 or N19MX24B-1 which were excised from plasmids pUCN19MX24A-1 and pUCN19MX24B-1 with HindIII and MluI restriction enzymes, followed by cloning and screening. The resultant plasmids pUCN27MX24A-1 and pUCN27MX24B-1 contained the desired clones N27MX24A-1 and N27MX24B-1, each comprising a clone 55 N27-3 and either of clones N19MX24A-1 and N19MX24B-1 ligated without overlapping. The base sequences of clones N27MX24A-1 and N27MX24B-1 are shown in SEQ ID NO 31 and 32, respectively.

Example 12

Modification of DNA for the Expression of HCV Polypeptide Encoded by Clones N27MX24A-1 and N27MX24B-1

[1] Modification of DNA for the Expression of HCV Polypeptide Encoded by Clones N27MX24A-1 and N27MX24B-1 in E.coli

Clones N27MX24A-1 and N27MX24B-1 appeared to encode an open reading frame from the nucleotide No.2 (C) derived from HCV gene, which can be expressed by inserting an ATG initiation codon inframe and upstream from said gene so that the expression of the DNA might be properly effected in host cells. The insertion of an ATG initiation codon at the upstream from 5' terminus of said gene may be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N' terminus (amino terminus) of an amino acid sequence of SEQ ID NO 31 or 32. When an expression vector containing an initiation codon for E. coli. is used, a DNA fragment from the clone is ligated to the vector such that frame of said DNA is in confirmation with that of the ATG codon. The modification of DNA can be carried out by PCR. The modification procedures are hereinafter illustrated using clone N27MX24A-1. It will be appreciated that clone N27MX24B-1 can be modified just in the same manner.

The following synthetic oligonucleotide primers were used.

5' primer:

MS2724-1; 5' GCAAGCTTATGCGGATCCCACAAGCCGTGGTGGAT 3' (SEQ ID NO 152)

20 5' primer for inserting DNA fragment into a vector containing initiation codon.

MS2724-2; 5' CGGATCCCACAAGCCGTGGTGGAT 3' (SEQ ID NO 153)

3' primer:

MS2724-3; 5' GCGAATTTCAGATTTCATCACTCTAAGGTGGCGTCGGCGTGGG 3' (SEQ ID NO 154)

The synthetic DNA was adjusted to 20 pmol/ml before use.

25 PCR was carried out in the same manner as described in the above according to Saiki's method in a total volume of 100 µl containing 100 ng of plasmid pUCN27MX24A-1, as a template, and 2 µl each of 3' and 5' primers. The reaction mixture was heated at 95 °C for 5 min and quenched at 0 °C. One minute later, to the mixture was added 0.5 µl of Taq DNA polymerase (7 U/ml, AmpliTaq™ Takara Shuzo), mixed thoroughly and overlaid with mineral oil. The sample was reacted by repeating 25 cycles of treatments 30 which comprises: at 95 °C for 1 minute; at 60 °C for 1 min; and at 72 °C for 5 min in DNA Thermal Cycler (Parkin Elmer Cetus). The resultant reaction solution was extracted with phenol/chloroform and precipitated with ethanol conventionally. The amplified DNA samples were digested with HindIII and EcoRI (when MS2724-2 was used as 5' primer, the DNA was blunt ended with T4 DNA polymerase and digested with EcoRI), and fractionated on acrylamide gel electrophoresis and the gel containing a DNA fragment of 35 desired length was extracted (Molecular Cloning, Cold Spring Harbor (1982)).

The resultant DNA fragment was then ligated into HindIII (when MS2724-2 was used as 5' primer, SmaI) and EcoRI sites of a cloning vector pUC19, cloned and screened to obtain plasmid pUCHN27MX24A-1 (plasmid pUCH2N27MX24A-1, when MS2724-2 was used). The resultant plasmid was sequenced. Clone CHN27MX24A-1 comprises a DNA fragment shown by a base sequence of SEQ ID NO 31, 32 except that 40 the 5' terminal C was removed and the following DNA fragment:

5' GCAAGCTTATG 3'

45 3' CGTTCGAACATAC 5' (SEQ ID NO 155)

which comprises a HindIII restriction site followed by an initiation codon ATG, was added thereto, and 3' terminal two bases (AA) were removed from the base sequence of SEQ ID NO 31 and the following DNA 50 fragment:

5' TGATGAAGATCTGAATT CGC 3'

55 3' ACTACTTCTAGACTTAAGCG 5' (SEQ ID NO 156)

which comprises two termination codons, and EcoRI sites from 5' to 3', was added thereto.

Another clone H2N27MX24A-1 obtained using primers MS2724-2 and MS2724-3 was sequenced showing that said clone has no additional DNA fragment at the 5' terminus but, at the 3' terminus, has the same additional DNA fragment as that of the above clone HN27MX24A-1.

5 [2] Modification of a DNA Fragment for the Expression of HCV Polypeptide Comprising 106 Amino Acid Sequence from No. 109 to 214 of SEQ ID NO 31, 32 in E.coli

A DNA fragment encoding a polypeptide comprising 106 amino acid sequence from Nos. 109 to 214 amino acids of SEQ ID NO 31, 32 appeared to encode an open reading frame (ORF) from HCV gene, which 10 can be expressed by inserting an ATG initiation codon in frame and upstream from said gene. The insertion of an ATG initiation codon at the upstream from 5' terminus of said gene may be accompanied by an addition of a foreign polypeptide to the N' terminus (amino terminus) of said polypeptide. When an expression vector containing an initiation codon for E. coli. is used, a DNA fragment from the clone is ligated to the vector such that the frame of said DNA is in conformity with that of the codon. The 15 modification of DNA can be carried out by PCR using the following synthetic oligonucleotide primers.

5' primer:

MSHNS1-1: 5' GCAAGCTTATGTTCAACCGTCCGGATGTCCGGA 3' (SEQ ID NO 157)

5' primer for inserting DNA fragment into a vector containing initiation codon.

MSHNS1-2: 5' TTCAACCGTCCGGATGTCCGGA 3' (SEQ ID NO 158)

20 3' primer:

MSHNS1-3: 5' GCGAATTCAAGATCTTCATCAACAACCGAACCGTTGCCCTGCG 3' (SEQ ID NO 159)

The synthetic DNA was adjusted to 20 pmol/ml before use.

PCR was carried out in the same manner as described in the above according to Saiki's method in a total volume of 100 μ l containing 100 ng of plasmid pUCN27MX24A-1 (or plasmid pUCN27MX24B-1), as a template, and 2 μ l each of 3' and 5' primers. The reaction mixture was heated at 95 °C for 5 min and quenched at 0 °C. One minute later, to the mixture was added 0.5 μ l of Taq DNA polymerase (7 U/ml, AmpliTaq™ Takara Shuzo), mixed thoroughly and overlaid with mineral oil. The sample was reacted by repeating 25 cycles of treatments which comprises: at 95 °C for 1 minute; at 60 °C for 1 min; and at 72 °C for 5 min in DNA Thermal Cycler (Parkin Elmer Cetus). The resultant reaction solution was extracted with phenol/chloroform and precipitated with ethanol conventionally. The amplified DNA samples were digested with HindIII and EcoRI (when MSHNS1-2 was used as 5' primer, the DNA was blunt ended with T4 DNA polymerase and digested with EcoRI), and fractionated on acrylamide gel electrophoresis and extracted (Molecular Cloning, Cold Spring Harbor (1982)).

The resultant DNA fragment was then ligated into HindIII (when MSHNS1-2 was used as 5' primer, 35 SmaI) and EcoRI sites of a cloning vector pUC19, cloned and screened to obtain plasmid pUCH48 (plasmid pUCH48-2, when primers MSHNS1-2 and MSHNS1-3 were used). The resultant plasmid was sequenced, demonstrating that the clone H48 has a modified base sequence of SEQ ID NO 31, 32 wherein, at the 5' site of No. 326 T, the following DNA fragment:

40

5' GCAAGCTTATG 3'

3' CGTCGAATAAC 5' (SEQ ID NO 155)

45

which fragment comprises a HindIII restriction site at 5' terminus and ATG initiation codon, followed by an initiation codon ATG, was added, and, at the 3' terminus, the following DNA fragment:

50

5' TGATGAAGATCTGAATTCGC 3'

3' ACTACTTCTAGACTTAAGCG 5' (SEQ ID NO 156)

55 which fragment comprises two termination codons, BglII and EcoRI sites from 5' to 3', was added.

Another clone H48-2 obtained using primers MSHNS1-2 and MSHNS1-3 was sequenced showing that said clone has no additional DNA fragment at the 5' site of No. 326 T, while has the same additional DNA fragment as that of clone H48.

[3] Modification of a DNA Fragment for the Expression of HCV Polypeptide Comprising 92 Amino Acid Sequence from No. 233 to 324 of SEQ ID NO 31, 32 in E.coli

5 A DNA fragment encoding a polypeptid comprising 92 amino acid sequence from Nos. 233 to 324 amino acids of SEQ ID NO 31, 32 appeared to encode an open reading frame (ORF) from HCV gene. The modification of DNA fragment was conducted in the same manner as that used for the modification of DNA fragment encoding a polypeptide of 106 amino acid sequence from amino acid Nos. 109 to 214 of SEQ ID NO 31, 32 in the above [2] except that the following primers were employed.

5' primer:
10 MSNS1-4: 5' GCAAGCTTATGATCGGGGGGGTCGGCAACAATAC 3' (SEQ ID NO 160)
5' primer for inserting DNA fragment into a vector containing initiation codon.
MSNS1-5: 5' ATCGGGGGGGTCGGCAACAATAC 3' (SEQ ID NO 161)
3' primer:
MSNS1-6: 5' GCGAATTTCAGATCTTCATCAAAGCTCTGATCTATCCCTGTCT 3' (SEQ ID NO 162)

15 Each synthetic DNA was adjusted to 20 pmole/ μ l.
The resultant clones are H49 (primers MSNS1-4 and MSNS1-6) and H49-2 (primers MSNS1-5 and MSNS1-6).

[4] Modification of DNA for the Expression of HCV Polypeptide Encoded by Clones N27MX24A-1, N27MX24B-1, H48-2 and H49-2 in Insect Cells

20 Clones N27MX24A-1 and N27MX24B-1 appears to contain an ORF which starts from the nucleotide No.2 (C). Clones H48-2 and H49-2 contain an ORF which starts from the nucleotide No.1. For the expression of polypeptide encoded by these ORF, an initiation codon ATG is inserted in frame and at an appropriate site upstream from said gene so that the expression of the DNA might be properly effected in insect cells. The insertion of an ATG initiation codon at the upstream from 5' terminus of said gene may be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N' terminus (amino terminus) of amino acid sequence encoded by clones N27MX24A-1, N27MX24B-1, H48-2 and H49-2. When an expression vector containing an initiation codon for insect cells is used, a DNA fragment from the clone is ligated to the vector such that the frame of said DNA is in confirmity with that of the initiation codon on said vector. It also can be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N' terminus (amino terminus) of amino acid sequence encoded by clones N27MX24A-1, N27MX24B-1, H48-2 and H49-2. The modification of vector DNA was carried out by PCR. Although the modification procedures are described using clone N27MX24A-1, it can be conducted as well using clone N27MX24B-1. When insect cells were transfected with the DNA and cultivated, clones N27MX24A-1, N27MX24B-1 were expressed as in the fused form as a precursor, which was then processed, glycosylated incompletely to give a mature glycoprotein of about 70 kD accumulated intracellularly. The modification of DNA of clones N27MX24A-1, N27MX24B-1, H48-2 and H49-2 was carried out by PCR using the following synthetic DNA as primers.

40 5' primers:
MS2724-4: 5' GCGTCGACGCTAGCATGCGGATCCCACAAGCCGTGGTGGAT 3' (SEQ ID NO 163)
MSNS1-7: 5' GCGTCGACGCTAGCATGTTCAACCGCGTCCGGATGTCGGGA 3' (SEQ ID NO 164)
MSNS1-8: 5' GCGTCGACGCTAGCATGATCGGGGGGGTCGGCAACAATAC 3' (SEQ ID NO 165)
3' primer:
45 MS2724-5: 5' GCGAATTTCGCTAGCTCACTCTAACGGTGGCGTCGGCGTGGG 3' (SEQ ID NO 166)
MSNS1-9: 5' GCGAATTTCGCTAGCTAACACCCGAACCCAGTTGCCCTGCG 3' (SEQ ID NO 167)
MSNS1-10: 5' GCGAATTTCGCTAGCTCAAAGCTCTGATCTATCCCTGTCT 3' (SEQ ID NO 168)

These three synthetic DNAs were separately adjusted to 20 pmol/ml before use.

The PCR was carried out using the same reaction solution and worked up in the same manner as described in the above [1] except that plasmid pUCHN27MX24A-1 (primers MS2724-4 and MS2724-5), pUCH48 (primers MSNS1-7 and MSNS1-9) or pUCH49 (primers MSNS1-8 and MSNS1-10) was used as a template plasmid. PCR was accomplished by repeating 10 times of reaction cycles consisting of: 1 min at 95 °C; 1 min at 50 °C and 5 min at 72 °C ; and then 20 tim s of reaction cycles consisting of: 1 min at 95 °C; 1 min at 65 °C; 5 min at 72 °C. When plasmid pUCHN27MX24A-1, as a template DNA, and primers MS2724-4 and MS2724-5 were used, a desired 1268 bp DNA fragment was obtained. The other combination of plasmid pUCH48 and primers MSNS1-7 and MSNS1-9 gave a desired 352 bp DNA fragment and that of pUCH49 and primers MSNS1-8 and MSNS1-10 gave a desired 322 bp DNA fragment.

Each DNA fragment was digested with NheI, fractionated on acrylamide gel electrophoresis and

extracted by conventional means (Molecular Cloning, Cold Spring Harbor (1982)) to obtain a DNA fragment of desired length. The resultant DNA fragment was then ligated into NheI restriction site of a transfer vector pBlueBac (Invitrogen), cloned and screened for a clone which contains a single DNA fragment inserted at NheI site. Thus, plasmids pBlueN27MX24A-1 derived from 1268 bp DNA obtained by primers MS2724-4 and MS2724-5, pBlueH48 derived from 352 bp DNA fragment obtained by primers MSNS1-7 and MSNS1-9, and pBlueH49 derived from 322 bp DNA fragment obtained by primers MSNS1-8 and MSNS1-10 were prepared.

According to the teaching shown in the protocol given by Invitrogen, the expression unit of these plasmid contains DNA fragment derived from HCV gene oriented forward and ligated to the NheI cloning site downstream from a polyhedrin promoter.

Example 13

Expression of HCV Polypeptides Encoded by Clones HN27MX24A-1, HN27MX24B-1, H2N27MX24A-1, H2N27MX24B-1, H48, H48-2, H49, and H49-2

[1] Expression of Polypeptide Encoded by Clone HN27MX24A-1, HN27MX24B-1, H48, or H49 in E.coli

Each clone encodes a part of polypeptide encoded by cDNA originated from serum of HC patient. The polypeptide encoded by each clone was expressed directly in E.coli, as it is, by subcloning said clone into an expression vector pCZ44 (Japanese Patent Publication No. 124387/1989).

A clone was digested thoroughly with restriction enzymes HindIII and BglII, extracted with phenol/chloroform, precipitated with ethanol, separated on acrylamide gel electrophoresis. From the gel was extracted a larger DNA fragment having cohesive HindIII- and BglII-restricted ends (Molecular Cloning, Cold Spring Harbor, 1982). The expression vector pCZ44 was digested with HindIII and BglII. The larger fragment containing a region functional for the replication in E.coli was separated, treated in the same manner, ligated to the HindIII-BglII fragment obtained from a clone such that the vector contains only one insertion, and cloned conventionally. The resultant plasmids were designated as plasmid pCZ2724A-1, pCZ2724B-1, pCZ48 and pCZ49 after clones HN27MX24A-1, HN27MX24B-1, H48, or H49, respectively.

Alternatively, an expression vector was constructed using an expression vector pGEX-2T (Pharmacia), instead of pCZ44, for the expression of a fused protein between a desired polypeptide and GST. The construction was carried out substantially in accordance with the protocol taught by the manufacturer (Pharmacia). Thus, the expression vector pGEX-2T was digested with BamHI. The linearized vector was ligated with a HindIII linker, and ligated with a HindIII-EcoRI DNA fragment prepared from a clone to yield expression vectors pGEX2724A-1, pGEX2724B-1, pGEX48 and pGEX49.

E.coli JM109 strain transformed with plasmid pCZ2724A-1, pCZ2724B-1, pCZ48 or pCZ49 was grown in L-Broth at 37 °C overnight (Molecular Cloning, Cold Spring Harbor, 1982). The cultured broth was diluted 50-folds by inoculating it into a freshly prepared L-Broth and the cultivation continued with shaking at 30 °C for 2 hr. At this time, IPTG was added to the culture to a final concentration of 2 mM and cultured for more than 3 hr in order to induce the expression of DNA encoding HCV-originated polypeptide by single-clone-derived transformants (E.coli JM 109 cells transformed solely by one plasmid derived from corresponding clone). Base sequences of cDNA contained in clones HN27MX24A-1 and HN27MX24B-1, and amino acid sequences deduced therefrom are shown in SEQ ID NO 31. Base sequences of cDNA contained in clones H48 and H49, and deduced amino acid sequence are shown by amino acid sequences from amino acid No. 109 to 214 and from amino acid No. 233 to 324 of in SEQ ID NO 31, respectively.

In the same manner as the above, clone HN27MX24B-1 can be used instead of clone HN27MX24A-1 to give a polypeptide encoded by said clone. The deduced amino acid sequence of the polypeptide is shown in SEQ ID NO 32.

As mentioned in the above, plasmids pGEX2724A-1, pGEX2724B-1, pGEX48 and pGEX49 can be used to obtain transformants capable of expressing a fused protein comprising desired polypeptide and GST. The plasmid encodes a fused protein GST-CORE comprising GST, which has a thrombin-cleaving site at its C-terminus, and a polypeptide derived from a clone HN27MX24A-1, HN27MX24B-1, H48 or H49. Fused protein comprising at C-terminal region a HCV polypeptide was produced in E.coli transformant transformed with either of plasmids pGEX2724A-1, pGEX2724B-1, pGEX48 and pGEX49, by culturing the cells in the same manner as that used to produce polypeptide in transformants harboring plasmid pCZ2724A-1, pCZ2724B-1, pCZ48 or pCZ49 in the presence of IPTG.

[2] Expression of Polypeptides Encoded by Clones H2N27MX24A-1, H2N27MX24B-1, H48-2, and H49-2

Polypeptides were expressed in E.coli using cDNA contained in clones H2N27MX24A-1, H2N27MX24B-1, H48-2, and H49-2 obtained from serum of HC patient in the same manner as the above [1]. The cDNA used was that contained in clone H2N27MX24A-1, H2N27MX24B-1, H48-2, or H49-2, which clone had been previously isolated and sequenced.

5 Expression plasmid for each clone was constructed using pOFA (Japanese Patent Publication (KOKAI) No.84195/1990). DNA fragment from each clone was blunt-ended with T4 DNA polymerase. The expression vector pOFA was digested with KpnI and blunt-ended with T4DNA polymerase. Thus obtained DNA fragments were ligated, cloned and screened for a clone having a insertion of one DNA fragment. Thus, the desired plasmids pOFA2724A-1, pOFA2724B-1, pOFA48 and pOFA49 were prepared by subcloning a clone
10 so that the + strand capable of expressing HCV protein should be inserted appropriately for the correct translation of said strand. It was confirmed that the cDNA from HCV was properly reconstructed by the determination of base sequence and restriction enzyme mapping of each plasmid.

Cultivation was carried out in the presence of IPTG in order to induce the expression of DNA encoding HCV-originated polypeptide by single-clone-derived transformants (E.coli JM 109 cells transformed solely
15 by one plasmid). Base sequences of cDNAs derived from serum of a HC patient contained in clones H2N27MX24A-1, H2N27MX24B-1, H48-2 and H49-2 and amino acid sequences deduced therefrom are shown by the amino acid sequences of SEQ ID NO 31, 32, amino acid sequence from No. 109 to 214 of SEQ ID NO 31, and that from No. 233 to 324 of SEQ ID NO 31, respectively.

20 [3] Expression of Polypeptide Encoded by Clones N27MX24A-1, N27MX24B-1, H48-2 and H49-2 in Insect Cells

The expression of HCV-originated glycoprotein encoded by plasmid pBlueN27MX24A-1, pBlueH48 and pBlueH49 prepared in Example 12 [4] was conducted substantial in accordance with a known expression
25 manual for baculovirus (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4, hereinafter, referred to as Maxbac, Invitrogen).

Plasmids pBlueN27MX24A-1, pBlueH48 and pBlueH49 prepared in Example 12 [4] by inserting DNA fragment containing HCV gene at the NheI site of a transfer vector pBlueBac (Maxbac, pp.37), were recovered from E.coli host cells transformed thereby, and purified according to the method of Maniatis et al.(Molecular Cloning, Cold Spring Harbor Laboratory, pp.86 - 96 (1982)). Thus, a large amount of HCV gene-containing transfer plasmid DNA was obtained. Sf9 cells were cotransfected with 2 µg of a plasmid containing a DNA fragment from HCV gene and 1 µg of AcNPV viral DNA (Maxbac, pp.27). Sf9 cells were grown in TMN-FH medium (Invitrogen) containing 10% FCS (fetal calf serum) in a 6 cm dish until a cell density reached to about 2 × 10⁶/plate. The TMN-F medium was removed and a 0.75 ml Grace medium (Gibco) containing 10% FCS was added thereto. To the DNA mixture described in the above was added 0.75 ml of transfection buffer (attached to the kit) was thoroughly mixed by vortex and gradually added dropwise onto the Grace medium. After the culture being allowed to stand for 4 hr at 27 °C, Grace medium was replaced with 3 ml of TMN-FH medium containing 10% FCS and the dish incubated at 27 °C for 6 days. Three days from the incubation, there observed a few multinucleate cells and on sixth day, almost all the
40 cells were multinuclear. The supernatant was taken into a centrifuging tube and centrifuged at 1,000 rpm, 10 min to obtain the supernatant as a cotransfected viral solution.

The cotransfected viral solution contains about 10⁸ viruses/ml and 0.5% of which were recombinant viruses. The isolation of recombinant virus was carried out by a plaque isolation method described below.

Thus, cells were adsorbed onto a 6 cm dish by seeding 1.5 × 10⁶ cells on medium and removing the
45 medium completely. To the dish was added 100 µl of a diluted viral solution (10⁻⁴ and 10⁻⁵ folds), separately and incubated at room temperature for 1 hr while slanting the dish every 15 min to spread the virus extensively. X-gal medium containing agarose was prepared by adding 5-bromo-4-chloro-3-indolyl-β-D-galactoside to a final concentration of 150 µg/l (Maxbac, pp.16-17) to a warm medium which had been prepared by autoclaving 2.5% baculovirus agarose (Invitrogen) at 105 °C for 10 min, mixing with TMN-FH
50 medium containing 10% FCS preheated at 46 °C at the mixing ratio of 1 : 3, and keeping the temperature at 46 °C.

After the completion of infection, virus solution was aspirated thoroughly from the dish and 4 ml of the warm X-gal medium containing agarose (previously prepared) was gently added to every dish not to peel off cells. The dish kept open by slightly sliding a lid until the agarose solidified and dried, and thereafter the
55 dish covered, turned upside down, and incubated at 27 °C for 6 days. The plaques were observed under a phase difference microscope to find blue plaques which do not form multinucleate cells. Agarose containing blue recombinant plaques were removed with a Pasteur pipet and suspended into 1 ml of TMN-FH medium by pipetting many times. The above process which comprises: infection, 6-day incubation, and isolation of

virus containing transfer plasmid DNA is called the "plaque method". The plaque method was repeated using 100 µl of viral suspension. After repeating said proc ss three times, there obtained a recombinant virus having a gene encoding HCV glycoprotein free from contamination with that of wild-type strain.

A viral solution of the primary recombinant virus was prepared by aspirating plaques with a Pasteur

5 pipet, and mixing thoroughly with 1 ml of TMN-FH medium. Because the primary viral solution was low in virus density for infection, it required further treatments for concentration. Thus, 100 µl of viral solution was adsorbed onto Sf9 cells grown in a 6 cm dish to a semi-confluent, and 4 ml of TMN-FH medium was added thereto and incubated three days. The culture supernatant was recovered to yield a recombinant viral solution for infection.

10 For the production of HCV structural protein , a suspension of Sf9 cells in TMN-FH medium containing 10% FCS (5×10^6 cells/10 ml medium) was added into a 9 cm dish and kept 1 hr for adsorption. After the removal of medium, 250 µl of recombinant viral solution was added to the dish and spread extensively. To the dish was added 10 ml TMN-FH medium containing 10% FCS and incubated at 27 °C for 4 days. The cells expressing recombinant glycoprotein of HCV were harvested by scraping up and suspended into 15 1,000 ml of phosphate buffered saline.

Thus, HCV-derived glycoprotein was expressed in Sf9 cells transfected with said virus.

Example 14

20 Identification of Expression Products as HCAg

Each expression product obtained in Example 13 was identified as HCAg because it reacted immunologically with antiserum obtained from HC patients.

Identification was conducted by Western blot technique.

25 E. coli cells transformed with either of expression plasmids pCZ2724A-1, pCZ2724B-1, pCZ48, pCZ49, pOFA2724A-1, pOFA2724B-1, pOFA48, pOFA49, pGEX2724A-1, pGEX2724B-1, pGEX48, pGEX49, pBlueN27MX24A-1, pBlueH48 and pBlueH49 for polypeptides encodid by clones HN27MX24A-1, HN27MX24B-1, H2N27MX24A-1, H2N27MX24B-1, H48, H48-2, H49, and H49-2 were grown in the presence of IPTG for 3 hr or a overnight in the same manner as described in Example 13.

30 Recombinant strains were harvested by centrifuging 1,000 µl of the cultured broth at 6,500 rpm, 10 min. The pellet was dissolved into a sample solution (50 mM Tris-HCl, pH6.8 containing 2% SDS, 5% mercaptoethanol, 10% glycerin, and 0.005% bromophenol blue) for SDS-polyacrylamide gel electrophoresis to a final volume of 0.2 ml. Sf9 cells infected with viruses which had been treated more than 3 times by plaque method were collected by scraping up and suspended into 1,000 ml of PBS and 100 µl of the 35 suspension was centrifuged at 6,500 rpm, 10 min to pellet the cells. The pellet was dissolved into a sample solution for SDS-polyacrylamide gel electrophoresis to a final volume of 0.2 ml.

The sample solutions were then boiled at 100 °C for 10 min. Ten µl of the boiled solution was loaded onto 0.1% SDS-15% polyacrylamide gel (70 x 85 x 1 mm) together with a marker protein LMW Kit E (low-molecular weight marker protein, Pharmacia). Electrophoresis was carried out at a constant current of 30 40 mA for 45 min in Tris buffer (25 mM Tris, pH 8.3, 192 mM glycine, 0.1% SDS) as electrode buffer. Thereafter, DNA was transferred electrophoretically to a nitrocellulose filter by superposing the gel onto a filter BA-83 (S & S), impressing a constant current of 120 mA for about 20 min between gel (cathode) and the filter (anode) as conventionally.

The transcribed filter was cut to remove a part containing a marker protein (referred to as marker filter) 45 and that containing the sample (referred to as sample filter). The former was stained with 0.1% (w/v) amideblack 10B and the latter immersed into 0.01 M PBS (pH 7.4) containing 5% (w/v) bovine serum albumin (BSA). Serum from a HC patient was diluted 50 times with 0.01 M PBS (pH 7.4) containing 5% (w/v) BSA. To the sample filter was added 10 µl of diluted serum and the filter allowed to stand for 2 hr at room temperature. Thereafter, the filter was washed with PBS containing 0.1% (v/v) Tween 20 for 20 min 50 (x3).

The sample filter was then reacted with 10 ml of horseradish peroxidase conjugated anti human IgG (Gappel) at 37 °C for 1 hr and washed with PBS containing 0.1% (v/v) Tween 20 for 20 min (x3). The filter was th n immersed into peroxidase-color-producing solution (60 mg 4-chloro-1-naphthol, 20 ml methanol, 80 ml PBS, and 20 µl aqueous hydrogen peroxide). The colored filter was washed with distilled water and 55 compared with the marker filter, demonstrating that colored prot in expressed by transformants transformed with plasmid pCZ2724A-1, pCZ2724B-1, pCZ48 and pCZ49 had a reasonable molecular weight as an expression product of inserted HCV gene and was identified as HCAg.

The expression product from host cells transformed with pOFA-d rived plasmids such as pOFA2724A-

1, pOFA2724B-1, pOFA48 or pOFA49 is a fused protein consisting of HCV originated polypeptide and OmpF signal peptide of *E.coli* and the product from host cells transformed with pGEX-d rived plasmid such as pGEX2724A-1, pGEX2724B-1, pGEX48 or pGEX49 is also a fused protein consisting of HCV originated polypeptide and GST and thrombin cleaving site wherein the latter two attached at th N-terminus of the former. Each fused protein has a reasonable molecular weight and was also identified as HCAg.

Insect cells transfected with pBlueN27MX24A-1 and pBlueN27MX24B-1, as shown in Example 13 [3], expressed HCV polypeptide encoded by clones N27MX24A-1, N27MX24B-1, H48-2, and H49-2. The expression product (M-gp70) was a glycoprotein of molecular weight of about 70 kD, which has a base sequence corresponding to the base sequence from about No.46 to about No. 395 of SEQ ID NO 31 or 32. Also glycoprotein of HCV was expressed in insect cells tranformed with plasmid pBlueH48 or pBlueH49. Thus produced glycoproteins were encoded by clones H48-2 and H49-2 and had amino acid sequences which correspond to a polypeptide having 106 amino acids from No. 109 to 214 and that of 96 amino acids from No. 233 to 324 of SEQ ID NO 31 and 32, respectively. As a result, theses glycoproteins were identified as HCAg.

15

Example 15

Synthesis of DNA

20 [1] Preparation of RNA Sample Solution

RNA sample solution was prepared by resolving the dried nucleic acid obtained in Example 1 in 30 μ l of water containing 10 μ l of ribonuclease inhibitor (100 U/ μ l, Takara Shuzo, Japan).

Oligonucleotide primers of the following base sequences were synthesized using a method well known to one of skill. Among them, antisence primers such as MS49, MS88, MS100, MS132, MS152, and MS158 were used for cloning of cDNA.

[2] Synthesis of cDNA Using Antisence Primer

To 2 μ l of RNA sample solution was added 1 μ l of 15 pmol/ μ l anti-sense primer (e.g., synthetic DNA primer such as MS158, MS152, MS132, MS49, MS88, or MS100) 2 μ l of 10 x RT buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl), 4 μ l of 25 mM MgCl₂, 8 μ l of 2.5 mM 4dNTPs, 1 μ l of water and the mixture incubated at 65 °C for 5 min then at room temperature for 5 min. To the mixture was added 1 μ l of reverse transcriptase (25 U, Life Science), 1 μ l of ribonuclease inhibitor (100 U/ μ l, Takara Shuzo) and the mixture incubated at 37 °C for 20 min, at 42 °C for 30 min, and finally at 95 °C for 2 min, which was followed by an immediate cooling to 0 °C to yield cDNA.

Amplification of DNA encoding HCAg was conducted by polymerase chain reaction (PCR) (Saiki et al., Nature 324: 126 (1986)). For the PCR, primers synthesized in the above were used as a pair of: MS48 - MS49; MS86 - MS100; MS97 - MS88; MS135 - MS132; MS155 - MS152; or MS151 - MS158.

A 100 μ l mixture containing ten μ l of cDNA solution, 10 μ l of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 μ l of 2.5 mM 4 dNTPs, 2 μ l of 15 pmol/ μ l synthetic primer (the same primer as used in the preparation of cDNA), 3 μ l of 15 pmol/ μ l synthetic primer (a counterpart of pairs of primers) and water was incubated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, it was mixed with 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo) and overlaid with mineral oil. The resultant sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 40 - 55 °C for 1 min; and at 72 °C for 1 - 5 min in DNA Thermal Cycler (Parkin Elmer Cetus). Finally, the reaction mixture was incubated at 72 °C for 7 min, which was followed by phenol/chloroform extraction and ethanol precipitation. The ethanol precipitation was carried out by adding 2.5 volumes of ethanol and either of about 1/10 volume of 3 M acetic acid or an equal volume of 4 M ammonium acetate to the aqueous solution, mixing, centrifuging at 15,000 rpm for 15 min using a rotor of about 5 cm in diameter under cooling at 4 °C to pellet the precipitates, and drying the pellet. Various amplified DNA fragments were obtained using different primers, for the cloning of cDNA and amplification thereof.

55 Example 16

Cloning and Sequencing of Amplified DNA Fragments

The cloning was carried out substantial in accordance with the method of Molecular Cloning, Cold Spring Harbor (1982).

Dried DNA fragment (at least 1 pmole) obtained in the above Example 15 [2] was blunt-ended with T4 DNA polym rase (Toyobo) and 5'-end phosphorylated with polynucleotide kinase (Toyobo) and ligated into small site of multi-cloning sites of 5 ng to 10 ng of pUC19 cloning vector. The cloning vector had been previously treated as follows: digestion with a restriction enzyme SmaI (Toyobo), phenol/chloroform-extraction, ethanol-precipitation, 5'-end dephosphorylation with alkaline phosphatase (Behringer-Manheim) (Molecular Cloning (1982) Cold Spring Harbor), phenol/chloroform extraction, and ethanol-precipitation. The ligated DNA was used to transfet into a competent E.coli JM 109 or DH5 cells (Toyobo). The transfection was carried out according to the protocol of the manufacture's instruction (COMPETENT HIGH, Toyobo). Plasmid clones were recovered from transformed cells conventionally. At least 20 transformants were obtained using pUC19 cloning vectors containing either of DNA fragments obtained using either of pairs of primers in the same manner as that described in the above Example 15 [2].

The determination of base sequence of DNA fragment was conducted by Fluorescent DNA Sequencer (GENESIS 2000, Dupont) using, as sequence primer, the following synthetic primers: 5' d(GTAAACGACGGCCAGT)3' (SEQ ID NO 143) and 5'd(CAGGAAACAGCTATGAC)3' (SEQ ID NO 144) for the + and - strands of DNA fragment to be sequenced. Base sequences of each clone are shown in SEQ ID NO 37 - 39, 44 - 55, 103 and 104. Clones belong to the same region of HCV gene were summarized and of which sequences are shown in SEQ ID NO 33 to 36. For example, clones MX25-1, MX25-2 and MX25-3 are summarized and shown by SEQ ID NO 33.

In the same manner, clones shown by SEQ ID NO 47 to 55 are summarized as clones shown by SEQ ID NO 34 to 36.

In the Sequence Listings, base sequences shown in SEQ ID NO 33 to 39, 44 and 55 are those of + strand of HCV gene inserted into cloning vector to transfet into host cells. All the clones are double-stranded and a plasmid containing one clone and used for the sequencing of said clone is designated by adding a prefix "pUC" to the name of clone. Thus, plasmid containing clone MX25-1 is pUCMX25-1, containing MX25-2 is pUCMX25-2, containing MX25-3 is pUCMX25-3, and so on.

The base sequence shown in the Sequence Listing represents a specific sequence of cDNA corresponding to RNA isolated from serum of patient(s) suffering from HC and differs from that of cDNA obtained from RNA in serum of a healthy subject in the same manner. It was confirmed that cDNA prepared from RNA obtained from a healthy subject under more strict conditions, for instance, by repeating a reaction cycles in Example 15 [2] and [3] about 60 - 100 times (= about 3- or 4-folds), did not show any homology in base sequence with those shown in SEQ ID NO 33 to 43. Consequently, base sequences of clones shown in SEQ ID NO 33 to 43 are specific for those obtained from serum of HC patient.

The base sequences of DNA fragments were compared with a known base sequence of HCV gene. The fact that three clones MX25-1, MX25-2 and MX25-3 were obtained from serum of one HC patient in Example 9 [2] using primers MS155 and MS152 strongly suggests that there must be more than one virus in a patient.

Example 17

Preparation of Fused Clones MX25O26A-1, MX25026B-1, N16N15A-1 and N16N15B-1, U16N15A-1 U16N15B-1, N23N15A-1, N23N15B-1, MX25N15A-1, and MX25N15B-1

[1] Preparation of Clones MX25026A-1 and MX25026B-1

One μ l (about 0.5 to 1 μ g/ μ l) each of DNA fragments from clones MX25-1 and O26-1 (prepared in Example 16) was added into a reaction mixture containing 10 μ l of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 μ l of 2.5 mM 4 dNTPs, 5 μ l each of 20 pmol/ μ l synthetic primers MS155 and MS158, and 76.5 μ l of water. After an intimate mixing, the mixture was heated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, to the mixture was added 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo), mixed and overlaid with mineral oil. The sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 37 °C for 1 min; and at 72 °C for 2 min in DNA Thermal Cycler (Parkin Elmer Cetus). It was followed by an incubation at 97 °C for 2 min. The mixture was immediately cooled to 0 °C, kept at the same temperature for 2 min, mixed with 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo), and overlaid with mineral oil. The sample was then treated

in the same manner as the above by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 50 - 55 °C for 1 min; and at 72 °C for 2 min. After the final treatment at 72 °C for 7 min, the resultant reaction solution was treated with phenol/chloroform then precipitated with ethanol. The amplified DNA samples were fractionated on agarose gel electrophoresis and a gel containing a desired fragment having an expected length was removed (Molecular Cloning (1982) Cold Spring Harbor) to isolate the DNA fragment therefrom conventionally. The resultant DNA fragment was then modified at the N-terminal region as described in Example 16 and ligated into SmaI site of multi-cloning sites of pUC19, cloned and screened as described in Example 3 to obtain plasmids pUCMX25026A-1 and pUCMX25026B-1. cDNAs derived from serum of HC patient contained in said plasmids were designated as clones MX25026A-1 and MX25026B-1, respectively and of which base sequences are summarized in SEQ ID NO 40. Base and deduced amino acid sequences of each clone MX25026A-1 and MX25026B-1 are shown in SEQ ID NO 56 and 57. Overlapping region in clone MX25026A-1 is derived from clone MX25-1 and that of MX25026B-1 from O26-1.

In the same manner as the above, clones N16N15A-1 and N16N15B-1, and U16N15A-1 and U16N15B-1 were prepared using clones N15-1 (SEQ ID NO 39) and either of N16 (SEQ ID NO 36) and U16-4 (SEQ ID NO 37). Base sequences of clones are summarized in SEQ ID NO 41. Base and amino acid sequences of clones N16N15A-1 and N16N15B-1 are shown in SEQ ID NO 26 and 27, respectively.

[2] Preparation of Clone N16N15-1

Two overlapping clones N16-1 and N15-1 were ligated by taking advantage of unique restriction site which exists in the overlapping regions of the both clones. Upon digestion with restriction enzyme BstE11, clone N16-1 is cleaved at the 3' site of a nucleotide No. 576 and clone N15-1 at the 3' site of a nucleotide No. 114. The ligation of A clones N16-1 and N15-1 were conducted on the basis of assumption that plasmids pUCN16-1 and pUCN15-1 contains each clone in the same orientation. As a result, a clone N16N15-1 in which clones N16-1 and N15-1 are ligated without overlapping was conducted. Thus, plasmid pUCN16-1 was digested with HindIII and BstE11 to obtain a 609 bp DNA fragment comprising a HindIII-SmaI DNA fragment of plasmid pUC19 attached to the 5' end of clone N16-1 (a cDNA clone from serum of a HC patient). Plasmid pUCN15-1 was digested with HindIII and BstE11 to obtain a 147 bp DNA fragment containing clone N15-1. These 609 bp and 147 bp HindIII-BstE11 fragments are then exchanged each other, cloned and screened to obtain plasmid pUCN16N15-1 containing the desired clone N16N15-1. Clones obtainable in the same manner are summarized in SEQ ID NO 41. The base and amino acid sequences of clone N16N15-1 are shown in SEQ ID NO 60.

[3] Preparation of Clones N23N15A-1 and N23N15B-1

One μ l (about 0.5 to 1 μ g/ μ l) of DNA fragment from each clone N23-1 (Example 16), and N16N15A-1, N16N15B-1 and N16N15-1 (Example 17 [1],[2]) was added to a reaction solution containing 10 μ l of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 μ l of 2.5 mM 4 dNTPs, 5 μ l each of 20 pmol/ μ l synthetic primers MS135 and MS88, and 76.5 μ l of water. After an intimate mixing, the mixture was heated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, to the mixture was added 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo), mixed and overlaid with mineral oil. The sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following steps: at 95 °C for 1 min; at 37 °C for 1 min; at 72 °C for 3.5 - 4 min in DNA Thermal Cycler (Parkin Elmer Cetus). After the final incubation at 92 °C for 2 min, the mixture was immediately cooled to 0 °C, kept at the same temperature for 2 min, mixed with 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo), and overlaid with mineral oil. The sample was then treated in the same manner as the above by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 50 - 55 °C for 1 min; and at 72 °C for 3.5 - 4 min. After the final treatment at 72 °C for 7 min, the resultant reaction solution was treated with phenol/chloroform then precipitated with ethanol. The amplified DNA samples were fractionated on agarose gel electrophoresis and a gel containing a desired fragment having an expected length was removed (Molecular Cloning (1982) Cold Spring Harbor) to isolate the DNA fragment therefrom conventionally. The resultant DNA fragment was then modified at the N-terminal region and ligated into SmaI site of the multi-cloning sites on pUC19, cloned and screened as described in Example 16 to obtain plasmids pUCN23N15A-1 and pUCN23N15B-1. cDNAs obtained from these plasmids are designated as clones N23N15A-1 and N23N15B-1, whose base and deduced amino acid sequences are shown in SEQ ID NO 61 and 62, respectively and are summarized in SEQ ID NO 42. The overlapping region in clones N23N15A-1, a fused clone of N23-1, N16N15A-1, N16N15B-1 and

N16N15A-1, is originated from clone N23-1, and that of clone N23N15B-1 is originated from clones N16N15A-1, N16N15B-1 and N16N15-1.

[4] Preparation of Clone MX25N15-1

5 Two overlapping clones MX25O26A-1 and N23N15A-1 were ligated by taking advantage of a unique restriction site which exists in the overlapping regions of the both clones. Upon digestion with restriction enzyme Apal, clone MX25O26A-1 was cleaved at the 3' site of C at nucleotide No. 1277 and clone N23N15A-1 at the 3' site of nucleotide No.17. A plasmid pUCMX25N15-1 in which clones MX25O26A-1 and
10 N23N15A-1 are ligated without overlapping was constructed in the following manner by taking advantage of the fact that plasmids pUCMX25O26A and pUCN23N15A-1 contain clones MX25O26A-1 and N23N15A-1 in the same orientation at SmaI site of multi-cloning sites of pUC19. Plasmid pUCMX25O26A-1 was digested with HindIII and Apal to obtain a 1310 bp DNA fragment comprising a HindIII-SmaI DNA fragment of plasmid pUC19 attached to the 5' end of clone MX25O26A-1 (a cDNA clone from serum of a HC patient).
15 Plasmid pUCN23N15A-1 was digested with HindIII and Apal to obtain a 50 bp DNA fragment containing clone N15-1. These 1310 bp and 50 bp HindIII-Apal fragments are then exchanged each other, cloned and screened to obtain plasmid pUCMX25N15-1 containing desired clone MX25N15-1. The base and amino acid sequences of clone MX25N15-1 shown in SEQ ID NO 63.

The clones MX25O26A-1 and N23N15A-1 are ligated by PCR. The resultant base sequences are
20 summarized in SEQ ID NO 43.

Example 18

Modification of DNA for the Expression of HCV Polypeptide Encoded by MX25N15-1

25 [1] Modification of DNA for the Expression of HCV Polypeptide Encoded by clone MX25N15-1 in E.coli

Clone MX25N15-1 appeared to contain multiple open reading frames each originated from HCV gene such as NS2 ORF (hereinafter, referred to as MK/NS2) from No. 7 (T) to 825 (G), and NS3 ORF (MK/NS3) from No. 826(G) to 2652(G) of base sequence of SEQ ID NO 43. Genes contained therein can be expressed by inserting an ATG initiation codon in frame and upstream from said gene so that the expression thereof might be properly effected in host cells. When a partial DNA fragment derived from MK/NS2 or MK/NS3 is to be expressed, an ATG initiation codon and a termination codon are inserted upstream and downstream from the DNA to be expressed, respectively, such that the frame of each inserted codon is in conformity with that of the DNA. The insertion of an ATG initiation codon at the upstream from 5' terminus of a gene may be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N' terminus (amino terminus) of an amino acid sequence of SEQ ID NO 43. When an expression vector containing an initiation codon for *E. coli*. is used, a DNA fragment from the clone is ligated to the vector such that the frame of said DNA is in conformity with that of the codon. The modification of DNA can be carried out by PCR.

For the expression of MK/NS2, the following synthetic oligonucleotide primers were used.

5' primer:

MSNS2-1: 5' GCAAGCTTATGTGGTTGTGGATGATGCTGCTG 3' (SEQ ID NO 169)

45 5' primer for the insertion of said DNA fragment into a vector having an initiation codon from a prokaryotic expression vector:

MSNS2-2: 5' TGGTTGTGGATGATGCTGCTG 3' (SEQ ID NO 170)

3' primer:

MSNS2-3: 5' GCGAATTTCAGATCTTCATCACCTCCGGCGGAGACNGGNAGNCC 3' (SEQ ID NO 171)

The synthetic DNA was adjusted to 20 pmol/ml before use.

50 PCR was carried out in the same manner as described in the above according to Saiki's method in a total volume of 100 μ l containing 100 ng of plasmid pUCMX25N15-1 (or plasmid pUCMX25O26A-1), as a template, and 2 μ l each of 3' and 5' primers MSNS2-1 and MSNS2-3. The reaction mixture was heated at 95 °C for 5 min and quenched at 0 °C. One minute later, to the mixture was added 0.5 μ l of Taq DNA polymerase (7 U/ml, AmpliTaq™ Takara Shuzo), mixed thoroughly and overlaid with mineral oil. The sample was reacted by repeating 25 cycles of treatments which comprises: at 95 °C for 1 minute; at 60 °C for 1 min; and at 72 °C for 3 min in DNA Thermal Cycler (Parkin Elmer Cetus). The resultant reaction solution was extracted with phenol/chloroform, and precipitated with ethanol conventionally. The amplified DNA samples were digested with HindIII and EcoRI, and fractionated on acrylamide gel electrophoresis and

extracted (Molecular Cloning, Cold Spring Harbor (1982)).

The DNA fragment is then ligated into HindIII (in case of MSNS2-2 primer, SmaI site) and EcoRI sites of cloning vector pUC19 to obtain plasmid pUCHNS2-1. The base sequence of said plasmid is determined to show that it comprises a DNA fragment shown by a base sequence from No. 7 to 825 in SEQ ID NO 43 having additional DNA fragments attached to the both 5'- and 3'-termini. That is, at its 5'-terminus, the following DNA fragment comprises a HindIII restriction site followed by an initiation codon ATG was attached.

10 5' GCAAGCTTATG 3'
 3' CGTTCGAATAC 5' (SEQ ID NO 155)

15 And at its 3'-terminus, the following DNA fragment comprises two termination codons, BglII and EcoRI sites from 5' to 3' was attached.

20 5' TGATGAAGATCTGAATT CGC 3'
 3' ACTACTTCTAGACTTAAGCG 5' (SEQ ID NO 156)

For an expression vector containing E.coli-derived initiation codon, DNA was modified in the same manner as the above except that primers MSNS2-2 and MSNS2-3 are employed and the amplified DNA is first blunt-ended with T4 DNA polymerase and then digested with EcoRI instead of the digestion with HindIII and EcoRI to obtain plasmid pUCH2NS2-1. The sequencing of resultant clone H2NS2-1 showed that said clone has no additional DNA fragment at the 5' terminus but, at the 3' terminus, has the same DNA fragment as that of the above clone HNS2-1.

30 Modification of DNA for the expression of MK/NS3 was conducted substantially in the same manner as the above except that primers MSNS3-1, 3-2 and 3-3 are used in stead of MSNS2-1, 2-2, and 2-3, respectively to obtain plasmids pUCHNS3-1 and pUCH2NS3-1, corresponding to the above plasmids pUCHNS2-1 and pUCH2NS2-1.

MSNS3-1: 5' GCAAGCTTATGGGCAACGAGANTNCTNCTIGG 3' (SEQ ID NO 172)

35 MSNS3-2: 5' GGCAACGAGANTNCTNCTNGG 3' (SEQ ID NO 173)

MSNS3-3: 5' GCGAATTTCAGATCTTCATCACTTCAGCCGTATGAGACACTT 3' (SEQ ID NO 174)

[2] Modification of DNA for the Expression of DNA encoding HCV Polypeptide MK1 in E. coli

40 DNA encoding MK1 polypeptide shown by 305 amino acid sequence from No. 422 to 726 in SEQ ID NO 43 was modified in the same manner as the above [1] by inserting an initiation codon ATG in frame and the upstream from 5' terminus of said DNA in ORF encoding MK1. The insertion of an ATG initiation codon at the upstream from 5' terminus of said gene may be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene. When an expression vector containing an initiation codon for E. coli. is used, a DNA fragment from the clone is ligated to the vector such that the frame of said DNA is in confirmity with that of the codon. The modification of DNA can be carried out by PCR using the following synthetic oligonucleotide primers.

5' primer:

MSMK1-1: 5' GCAAGCTTATGCTGCGCCGGGCCATCTC 3' (SEQ ID NO 175)

50 5' primer for the insertion of a DNA fragment into a vector having an initiation codon from prokaryotic expression vector:

MSMK1-2: 5' CTGTCGCCGGGCCATCTC 3' (SEQ ID NO 176)

3' primer:

MSMK1-3: 5' GCGAATTTCAGATCTTCATCAACATGTGTTGCAGTCGATCAC 3' (SEQ ID NO 177)

55 The synthetic DNA was adjusted to 20 pmol/ml before use.

PCR, cloning and subcloning were carried out in the same manner as described in the above [1].

Plasmid pUCMK1 was prepared by cloning a DNA fragment obtained by PCR using MSMK1-1 and MSMK1-3. The base sequence of clone MK-1 contained in plasmid pUCMK1 is determined to show that it

comprises a DNA fragment having a base sequence from No. 1264 (G) to 2178 (G) in SEQ ID NO 43 having additional DNA fragments attached to the both 5'- and 3'-termini. That is, at its 5'-terminal G, a DNA fragment comprises a HindIII restriction site followed by an initiation codon ATG as follows:

5

5' GCAAGCTTATG 3'
3' CGTCGAATAC 5' (SEQ ID NO 155).

10

And at its 3'-terminal G, a DNA fragment comprises two termination codons, BglII and EcoRI sites from 5' to 3' as follows:

15

5' TGATGAAGATCTGAATTGC 3'
3' ACTACTCTAGACTTAAGCG 5' (SEQ ID NO 156)

20 Another plasmid pUCMK1-2 was constructed in the same manner as the above except that primers MSMK1-2 and MSMK1-3 were employed. The sequencing of resultant clone MK1-2 showed that said clone has no additional DNA fragment at the 5' terminus but has the same additional DNA fragment as that of the above clone MK1 at its 3' terminus.

25 [3] Modification of DNA for the Expression of DNA Encoding HCV Polypeptide MK2

MK2 polypeptide shown by 322 amino acid sequence from No. 712 to 1033 in SEQ ID NO 43 appears to be HCV-derived antigenic protein which is highly reactive with antiserum from a HC patient. For the expression of DNA encoding MK2 in E.coli, said DNA was modified in the same manner as the above [2]

30 using the following synthetic oligonucleotide primers.

5' primer:

MSMK2-1: 5' GCAAGCTTATGGGCTATACCGGNGACTTNGAC 3' (SEQ ID NO 178)

5' primer for the insertion of a DNA fragment into a vector having an initiation codon from prokaryotic expression vector:

35 MSMK2-2: 5' GGCTATAACCGGNGACTTNGAC 3' (SEQ ID NO 179)

3' primer:

MSMK2-3: 5' GCGAATTCAAGATCTTCAGTGCTTCGCCAGAAGGT 3' (SEQ ID NO 180)

The synthetic DNA was adjusted to 20 pmol/ml before use. The resultant clones were designated as clone MK2 (prepared using primers MSMK2-1 and MSMK2-3) and MK2-2 (prepared using primers MSMK2-2 and MSMK2-3).

[4] Modification of DNA for the Expression of HCV Polypeptide Encoded by Clone MX25N15-1 in Insect Cells

45 Clone MX25N15 contains an open reading frame which starts from the nucleotide No.1 (T). For the construction of expressing plasmids for insect cells, DNA was modified essentially in the same manner as described in the above by inserting an initiation codon ATG to the upstream from 5' terminus of said DNA in ORF. The insertion of an ATG initiation codon at the upstream from 5' terminus of said gene may be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N-

50 terminus (amino-terminus) of the total or a part of amino acid sequence which is encoded by clone MX25N15. When an expression vector containing an initiation codon for insect cells is used, a DNA fragment from the clone is ligated to the vector such that the expression of said DNA can be initiated at the codon. In this case, the modification may be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N-terminus (amino-terminus) of the total or a part of amino acid sequence

55 which is encoded by clone MX25N15. When an insect cell transformed with an expression plasmid containing MK25N15, said clone was expressed as a precursor polypeptide having an amino acid sequence, which at least contains amino acids from No. 167 to 502, which was then processed, glycosylated and accumulated intracellularly.

The modification of clone MX25N15 DNA was carried out by PCR employing the following synthetic oligonucleotides as primers.

5' primer:

MS2515-1: 5' GCGCTAGCATGTGGTTGTGGATGATGCTG 3' (SEQ ID NO 181)

5 3' primer:

MS2515-2: 5' GCGAATTGCGTAGCTCACAGCCGGTTCATCCACTGCAC 3' (SEQ ID NO 182)

The synthetic DNA was adjusted to 20 pmol/ml before use.

The PCR was carried out using the same reaction solution and worked up in the same manner as described in the above except that plasmid pUCMX25N15-1 was used as a template plasmid, primers 10 MS2515-1 and MS2515-2 were used as primers, and the PCR was carried out repeating 10 times the following reaction cycles consisting of: 1 min at 95 °C; 1 min at 50 °C and 5 min at 72 °C ; and then repeating 20 times of the following reaction cycle consisting of: 1 min at 95 °C; 1 min at 65 °C; 5 min at 72 °C to obtain a desired 3586 bp DNA fragment.

15 The amplified DNA samples were digested with NheI and fractionated on acrylamide gel electrophoresis and extracted as conventionally (Molecular Cloning, Cold Spring Harbor (1982)). The DNA fragment was then ligated into NheI restriction site of a transfer vector pBlueBac (Invitrogen) , cloned and screened for a clone containing a single DNA insert at NheI site conventionally to obtain a plasmid pBlueMX25N15-1.

20 Taking account of the instruction provided by the manufacture (Invitrogen), the expression unit of the resultant plasmid contains a DNA fragment derived from HCV gene oriented forward and ligated to the NheI cloning site down stream from a polyhedrin promoter.

Example 19

25 Expression of HCV Polypeptides Encoded by MX25N15, and Polypeptides MK/NS2, MK/NS3, MK1 and MK3

[1] Expression of Polypeptide Encoded by Clones HNS2-1, HNS3-1, MK1 or MK2

30 Clones HNS2-1, HNS3-1, MK1 and MK2 encode polypeptide fragments derived from a polypeptide encoded by cDNA obtained from a serum of a HC patient and were expressed as it is in E.coli. Construction of expression vector for each clone was carried out by subcloning it into an expression vector pCZ44 (Japanese Patent Publication No. 1-124387/1989).

35 Each clone was digested thoroughly with restriction enzymes HindIII and BglII, extracted with phenol/chloroform, precipitated with ethanol, separated on acrylamide gel electrophoresis, and extracted a DNA fragment having cohesive HindIII- and BglII-restricted ends from the gel (Molecular Cloning, Cold Spring Harbor, 1982). The expression vector pCZ44 was digested with HindIII and BglII and the larger fragment containing functional region for expressing DNA was separated and treated in the same manner. The both DNA fragments were ligated at their HindIII and BglII sites and cloned. The resultant plasmids were named plasmids pCZHNS2-1, pCZHNS3-1, pCZMK1 and pCZMK2 after clones HNS2-1, HNS3-1, 40 MK1 and MK2, respectively.

45 Alternatively, expression vectors encoding polypeptides encoded by clones HNS2-1, HNS3-1, MK1 and MK2 were constructed using an expression vector pGEX-2T (Pharmacia) designed to express a fused protein of desired peptide and β -glutathione-S-transferase (GST). The construction was carried out substantial in accordance with the protocol taught by the manufacture (Pharmacia).

50 The expression vector pGEX-2T was digested with BamHI. To the linearized vector was ligated a HindIII linker to obtain a DNA fragment having EcoRI and HindIII restriction sites at its 3'- and 5'-termini. Each clone was digested with HindIII and EcoRI to obtain DNA fragments encoding desired HCV polypeptides. The two fragments were then ligated at their HindIII and EcoRI sites to obtain expression vectors pGEXHNS2-1, pGEXHNS3-1, pGEXMK1, and pGEXMK2, respectively. These plasmids contain DNAs encoding GST, thrombin-cleaving sequence, and desired clone from upstream to downstream.

55 E.coli JM109 strain was transformed with a plasmid pCZHNS2-1, pCZHNS3-1, pCZMK1 or pCZMK2 and transformant was grown in L-Broth at 37 °C conventionally (Molecular Cloning, Cold Spring Harbor, 1982). The cultured broth was inoculated into a fresh L-Broth to decrease the concentration to 1/50 and cultured with shaking at 30 °C for 2 hr. IPTG (isopropyl- β -D-galactopyranoside) was added to the culture to a final concentration of 2 mM in order to induce exclusively the expression of DNA by single-clone-derived transformant (E.coli transformed with a single plasmid) and cultivation continued for more than 3 hr. Thus, the transformant produced a polypeptide encoded by the clone. Deduced amino acid sequences of polypeptides encoded by cDNA derived from clones HNS2-1, HNS3-1, MK1 and MK2 are shown by amino

acid sequences from 422 to 726 and 712 to 1033 in SEQ ID NO 43.

E.coli JM 109 cells were transformed with expression v ctor pGEXHNS2-1, pGEXHNS3-1, pGEXMK1, or pGEXMK2 and cultured in the same manner as the above. The expression of gene encoding a fused polypeptide was induced by IPTG. The resultant fused protein comprises GST, a thrombin-cleaving site at its C-terminus, and a polypeptide derived from a clone HNS2-1, HNS3-1, MK1 or MK2.

[2] Expression of Polypeptides Encoded by Clones H2NS2-1, H2NS3-1, MK1-2, and MK2-2

Clones H2NS2-1, H2NS3-1, MK1-2, and MK2-2, whcih had been isolated and sequenced, were expressed in E.coli to give an fused protein using a substantially the same manner as the above.

The fused protein comprises, for instance, a signal peptide of OmpF, an outer membrane protein of E.coli, and a polypeptide encoded by either of the above-mentioned clones can be expressed using, as the expression vector, pOFA (Japanese Patent Publication No. 84195/1990). DNA fragment from each clone H2NS2-1, H2NS3-1, MK1-2, or MK2-2 was blunt-ended with T4DNA polymerase. The expression vector pOFA was digested with KpnI and blunt-ended with T4DNA polymerase. Thus obtained DNA fragments were ligated, cloned and screened for a clone having a insertion of one DNA fragment. Thus, the desired plasmids pOFANS2-1, pOFANS3-1, pOFAMK1, and pOFAMK2 were prepared by subcloning a clone so that the + strand responsible for the expression of HCV protein should be inserted appropriately for the correct translation of the clone. It was confirmed by the determination of base sequence and mapping of each plasmid that the HCV-derived cDNA was reconstructed properly.

E.coli JM109 cells were transformed with an expression vector obtained in the above and induced the expression of DNA by growing host cells under the presence of IPTG as previously described. Transformants expressed a fused protein of a signal peptide of OmpF and a HCV polypeptide encoded by each clone. DNA sequences and deduced amino acid sequences of polypeptides encoded by clones HNS2-1, HNS3-1, MK1 and MK2 are shown by amino acid sequences from 422 to 726 and 712 to 1033 in SEQ ID NO 43. Thus, according to this method, HCV polypeptide was expressed as a fused protein between OmpF signal peptide and polypeptide encoded by each clone.

[3] Expression of Polypeptide Encoded by Clone MX25N15 in Insect Cells

The expression of HCV polypeptide encoded by plasmid pBlueMX25N25 prepared in Example 18, [4] was conducted substantial in accordance with a known expression manual for baculovirus (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4, hereinafter, referred to as Maxbac, Invitrogen).

Plasmid pBlueMX25N15, a plasmid prepared by inserting DNA fragment containing HCV gene at the NheI site of a transfer vector pBlueBac (Maxbac, pp.37) was recovered from E.coli/pBlueMX25N15, and purified according to the method of Maniatis et al.(Molecular Cloning, Cold Spring Harbor Laboratory, pp.86 - 96 (1982)) to obtain a large amount of HCV gene-containing transfer plasmid DNA. Sf9 cells were cotransfected with 2 µg of plasmid pBlueMX25N15 and 1 µg of AcNPV viral DNA (Maxbac, pp.27). Thus, Sf9 cells were grown in TMN-FH medium (Invitrogen) containing 10% FCS (fetal calf serum) in 6 cm dish until a cell density reached to about 2×10^6 /plate. The TMN-F medium was removed and a 0.75 ml Grace medium (Gibco) containing 10% FCS was added thereto. A DNA solution of 2 µg plasmid pBlueMX25N15 DNA and 1 µg AcNPV viral DNA in 0.75 ml of transfection buffer (attached to the kit) was thoroughly mixed by vortex and gradually added dropwise onto the Grace medium. After allowing to stand for 4 hr at 27 °C, the Grace medium was replaced with 3 ml of TMN-FH medium containing 10% FCS and the dish incubated at 27 °C for 6 days. Three days from the incubation, there observed a few multinucleate cells and on sixth day, almost all the cells were multinuclear. The supernatant was taken into a centrifuging tube and centrifuged at 1,000 rpm, 10 min to obtain the supernatant as a cotransfected viral solution.

The cotransfected viral solution contains about 10^8 virus/ml and 0.5% of which were recombinant virus. The isolation of recombinant virus was carried out by plaque isolation method described below.

Thus, cells were adsorbed onto a 6 cm dish by seeding 1.5×10^6 cells on medium and removing the medium. To the dish was added 100 µl of a diluted viral solution (10^{-4} and 10^{-5} folds), separately and incubated at room temperature for 1 hr while slanting the dish every 15 min to spread th virus extensively. X-gal medium containing agarose was prepared by adding 5-bromo-4-chloro-3-indolyl-β-D-galactoside to a final concentration of 150 µg/l to a warm medium which had been prepared by autoclaving 2.5% baculovirus agarose (Invitrogen) at 105 °C for 10 min, mixing with TMN-FH medium containing 10% FCS preheated at 46 °C at the mixing ration of 1 : 3, and keeping the temperature at 46 °C.

After the completion of infection, virus solution was aspirated thoroughly from the dish and 4 ml of the

- warm X-gal medium containing agarose (previously prepared) was gently added to every dish not to peel off cells. The dish kept open by slightly sliding a lid until the agarose solidified and dried, and thereafter the dish covered, turned upside down, and incubated at 27 °C for 6 days. The plaques were observed under a phase difference microscope to find blue plaques which do not form multinucleate cells. Agarose containing blue recombinant plaques were removed by an aspirating pipet and suspended into 1 ml of TMN-FH medium by pipetting many times. The above process which comprises: infection, 6-day incubation, and isolation of virus containing transfer plasmid DNA is called the "plaque method". The plaque method was repeated using 100 µl of viral suspension. After repeating said process three times, there obtained a recombinant virus having a gene encoding HCV glucoprotein free from contamination with wild-type strain.
- A viral solution of the primary recombinant virus was prepared by aspirating plaques with a Pasteur pipet, and mixing thoroughly with 1 ml of TMN-FH medium. Because the primary viral solution was low in virus density for infection, it was further treated. Thus, 100 µl of viral solution was adsorbed onto Sf9 cells grown in a petri dish (6 cm in diameter) to a semi-confluent, and 4 ml of TMN-FH medium was added thereto and incubated three days. The culture supernatant was recovered to yield a recombinant viral solution for infection.

2. Infection of Sf9 Cells with Recombinant Viral Solution

- A suspension of Sf9 cells in TMN-FH medium containing 10% FCS (5×10^6 cells/10 ml medium) were added into a Petri dish (9 cm, in diameter) and kept 1 hr for adsorption. After the removal of medium, 250 µl of recombinant viral solution was added to the dish and spread extensively. To the dish was added 10 ml TMN-FH medium containing 10% FCS and incubated at 27 °C for 4 days. The cells expressing recombinant glycoprotein of HCV were harvested by scraping up and suspended into 1,000 ml of phosphate buffered saline. Thus, HCV glycoproteins were expressed by Sf9 cells infected with said viral solution.

Example 20

Identification of Expression Product as HCAg

- Each expression product obtained in Example 19 was identified as HCAg because it reacted immunologically with antiserum obtained from HC patient. Identification of the expression product as HCAg was conducted by Western blot as follows. E. coli cells were transformed with either of plasmids described in Example 19 [1], [2], such as plasmids pCZHNS2-1, pCZHNS3-1, pCZMK1, pCZMK2, pGEXHNS2-1, pGEXHNS3-1, pGEXMK1, pGEXMK2, pOFANS2-1, pOFANS3-1, pOFAMK1, and pOFAMK2 for polypeptides encoded by clones HNS2-1, HNS3-1, MK1, MK2, HNS2-1, HNS3-1, MK1, MK2, H2NS2-1, H2NS3-1, MK1-2, and MK2-2, respectively and grown under the presence of IPTG for 3 hr or overnight.

Recombinant strains were harvested by centrifuging 1,000 µl of the cultured broth at 6,500 rpm, 10 min. The pellet was dissolved into a sample solution (50 mM Tris-HCl, pH 6.8 containing 2% SDS, 5% mercaptoethanol, 10% glycerin, and 0.005% bromophenol blue) for SDS-polyacrylamide gel electrophoresis to a final volume of 0.2 ml. The sample solution was then boiled at 100 °C for 10 min. Ten µl of the boiled solution was loaded on 0.1% SDS-15% polyacrylamide gel (70 x 85 x 1 mm) together with a marker protein LMW Kit E (low-molecular weight marker protein, Pharmacia). Electrophoresis was carried out at a constant current of 30 mA for 45 min in Tris buffer (25 mM Tris, pH 8.3, 192 mM glycine, 0.1% SDS) as electrode buffer. Thereafter, DNA was transferred electrophoretically to a nitrocellulose filter by superposing the gel onto a filter BA-83 (S & S), impressing a constant current of 120 mA for about 20 min between gel (cathode) and the filter (anode) as conventionally.

The transcribed filter was cut to separate a region containing a marker protein (marker filter) and that containing the sample (sample filter) and the former was stained with 0.1% (w/v) amideblack 10B and the latter immersed into 0.01 M PBS (pH 7.4) containing 5% (w/v) bovine serum albumin (BSA). A serum from a patient suffering from hepatitis C was diluted 50 times with 0.01 M PBS (pH 7.4) containing 5% (w/v) BSA. To the sample filter was added 10 µl of diluted serum and the filter allowed to stand for 2 hr at room temperature. Thereafter, the filter was washed with PBS containing 0.1% (v/v) Tween 20 for 20 min (x3).

The sample filter was then reacted with 10 ml of horseradish peroxidase conjugated anti human IgG (Gappel) at 37 °C for 1 hr and washed with PBS containing 0.1% (v/v) Tween 20 for 20 min (x3). The filter was then immersed into peroxidase-color-producing solution (60 mg 4-chloro-1-naphthol, 20 ml methanol, 80 ml PBS, and 20 µl aqueous hydrogen peroxide). The colored filter was washed with distilled water and compared with the marker filter to demonstrate that the product developed color had a reasonable

molecular weight as an expression product of HCV gene contained in expression plasmid pCZHNS2-1, pCZHNS3-1, pCZMK1 or pCZMK2, and was identified as HC-associated antigens.

The expression product from host cells transformed with plasmid pOFANS2-1, pOFANS3-1, pOFAMK1 or pOFAMK2 is a fused protein consisting of HCV originated polypeptide and OmpF signal peptide of E.coli 5 wherein the latter two attached at the N-terminus of the former. The expression product from host cells transformed with plasmid pGEXHNS2-1, pGEXHNS3-1, pGEXMK1 or pGEXMK2 is also a fused protein consisting of HCV originated polypeptide and GST and thrombin cleaving site wherein the latter attached at the N-terminus of the former. These fused proteins have reasonable molecular weight and was also identified as HC-associated antigens.

10

Example 21

Synthesis of cDNA

15 In the present Example 21, water used is ultra-pure water which was prepared by autoclaving (x 2) distilled water.

[1] Preparation of RNA Sample Solution

20 RNA isolated in Example 1 was dried, dissolved into 0.3 M (pH 7.0) sodium acetate, treated with phenol/chloroform (x 1), mixed with 2.5 volumes of ethanol, and centrifuged (15000 rpm, 20 min, at room temperature) with a rotor of about 5 cm in diameter to yield a pellet of nucleic acid. The pellet was then dried and dissolved into 30 µl of water containing 10 µl of ribonuclease inhibitor (100 U/µl, Takara Shuzo, Japan) to give a nucleic acid solution, which was then subjected to the cDNA synthesis.

25

[2] Synthesis of cDNA Using Antisense Primer

To 2 µl of RNA sample solution prepared in above [1] was added 1 µl of 15 pmol/µl anti-sense primer selected from a group of synthesized primers MS126, MS119, MS161, MS162, MS121, and MS163 shown 30 in Table, 2 µl of 10 x RT buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl), 4 µl of 25 mM MgCl₂, 8 µl of 2.5 mM 4dNTPs, 1 µl of water and the mixture incubated at 65 - 70 °C for 5 min then at room temperature for 5 min. To the mixture was added 1 µl of reverse transcriptase (25 U, Life Science), 1 µl of ribonuclease inhibitor (100 U/µl, Takara Shuzo) and the mixture incubated at 37 °C for 20 min, at 42 °C for 30 min, and finally at 95 °C for 2 min, which was followed by an immediate cooling to 0 °C (synthesis of cDNA).

35 Amplification of DNA containing specific sequences was conducted by PCR (Saiki et al., Nature 324: 126 (1986)). Thus, 100 µl mixture containing ten µl of cDNA solution, 10 µl of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 µl of 2.5 mM 4 dNTPs, 2 µl of 15 pmol/µl synthetic DNA primer (the same primer as used in the synthesis of cDNA), 3 µl of 15 pmol/µl synthetic DNA primer (a counterpart of pair of primers, i.e., MS127-MS126, MS118-MS119, MS159-MS161, MS160-40 MS162, MS120-MS163, or MS120-MS121) and water was incubated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, it was mixed with 0.5 µl of Taq DNA polymerase (7 U/µl, AmpliTaq™ Takara Shuzo) and overlaid with mineral oil. The resultant sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 40 - 55 °C for 1 min; and at 72 °C for 1 - 5 min in DNA Thermal Cycler (Parkin Elmer Cetus). 45 Finally, the reaction mixture was incubated at 72 °C for 7 min, which was followed by phenol/chloroform extraction and ethanol precipitation to obtain different amplified DNA fragments derived from either of above-mentioned pairs of primers. The ethanol precipitation was carried out by adding 2.5 volumes of ethanol and either of about 1/10 volume of 3 M acetic acid or an equal volume of 4 M ammonium acetate to the aqueous solution, mixing, centrifuging at 15,000 rpm for 15 min using a rotor of about 5 cm in diameter 50 under cooling at 4 °C to pellet the precipitates, and drying the pellet.

Example 22

Cloning and Sequencing of Amplified DNA Fragments

55

The cloning was carried out substantially in accordance with the method of Molecular Cloning, Cold Spring Harbor (1982).

Dried DNA fragment (at least 1 pmole) obtained in the above Example 21, [2] was blunt-ended with T4

- DNA polymerase (Toyobo) and 5'-end phosphorylated with polynucleotide kinase (Toyobo) and ligated into smal site of multi-cloning sites of 5 ng to 10 ng of pUC19 cloning vector. The cloning vector had been previously treated as follows: digestion with a restriction enzyme Smal (Toyobo), phenol/chloroform extraction, ethanol precipitation, 5'-end dephosphorylation with alkaline phosphatase (Behring-Mannheim) (Molecular Cloning (1982) Cold Spring Harbor), phenol/chloroform extraction, and ethanol-precipitation. The ligated DNA was used to transfet into a competent E.coli JM 109 or DH5 cells (Toyobo). The transfection was carried out according to the protocol of the manufacturer's instruction (COMPETENT HIGH, Toyobo). Plasmid clones were recovered from transformed cells conventionally. At least 20 transformants were obtained using pUC19 cloning vectors containing either of DNA fragments obtained using either of pairs of primers in the same manner as that described in Example 21, [2].

- Plasmid DNA was isolated from corresponding transformant by an usual method and sequenced. The determination of base sequence was conducted by means of Fluorescent DNA Sequencer (GENESIS 2000, Dupont) using, as sequence primer, the following synthetic primers:
 5' d(GTAAACGACGCCAGT)3' (SEQ ID NO 143) and
 5'd(CAGGAAACAGCTATGAC)3' (SEQ ID NO 144) for the + and - strands of DNA fragment to be sequenced. When the DNA fragment is longer than about 200 bp, the determination was conducted by subcloning said DNA into a clone of dilation mutant in order to make sure the sequencing.

DNA fragment obtained using either of pairs of primers shown in Example 21 and whose base sequence was determined is listed below.

20

Pair of primers	clone(s)
MS127-MS126	N22-1, N22-3, N22-4, H22-3, H22-8, H22-9
MS118-MS119	N17-1, N17-2, N17-3, H17-1, H17-3
MS159-MS161	O28-1, O28-2, O28-4
MS160-MS162	N29-1, N29-2, N29-3
MS120-MS163	O30-2, O30-3, O30-4
MS120-MS121	N18-2, N18-3, N18-4, H18-1, H18-2, H18-3

30

The alphabet letter used to express each clone represents the serum of HC patient used in Example 1. The base sequence of clones proved to have a homology with a known base sequence of HCV gene. The region on HCV gene corresponding to each clone was designated as follows.

35

Pair of primers	region on HCV gene
MS127-MS126	N22
MS118-MS119	N17
MS159-MS161	O28
MS160-MS162	N29
MS120-MS163	O30
MS120-MS121	N18

40

- Among resultant clones, base and amino acid sequences of clones N22-1, N17-3, O28-1, N29-1, N18-4, O30-3 are shown in SEQ ID NO 76, 81, 86, 89, 92, and 98, respectively. Base sequences of other clones obtained in the same manner are listed below in alignment with a base sequence of a clone which disclosed in Seq. Lis. In the list, the base sequence of a clone disclosed in the Seq. Lis. is given at the uppermost column, which is followed by others in the same region, showing only the bases which are different from those of the clone to be referred to (that shown in the uppermost column). The figure following the name of clone represents the nucleotide number of the base at 5' terminus of the sequence. The nucleotide is numbered from 5' terminus (base No. 1) conventionally.

55

BASE SEQUENCE OF EACH CLONE IN N22 REGION

	N22-1.NUC	1 : GGCATGTGGGCCAGGGGAGGGGGCTGTGCAGTGGATGAACCGGCTGATA
5	(SEQ ID NO: 76)	
	N22-3.NUC	1 :
	(SEQ ID NO: 77)	
10	H22-3.NUC	1 :
	(SEQ ID NO: 78)	
	H22-8.NUC	1 :
15	(SEQ ID NO: 79)	
	H22-9.NUC	1 :
	(SEQ ID NO: 80)	
20	N22-1.NUC	51 : GCGTTTGCTTCGCGGGCAACCATGTCTCCCCACGCACATGTGCCTGA
	N22-3.NUC	51 :
	H22-3.NUC	51 :C.....T.....C.....T.....
25	H22-8.NUC	51 :C..C.....T..C.....T.....
	H22-9.NUC	51 :C.....T.....C.....T.....
	N22-1.NUC	101 : AAGCGACGCCGCAGCGCGTCACCCAGATCCTCTCAAACCTTACCATCA
30	N22-3.NUC	101 :
	H22-3.NUC	101 : G.....T.....G.....
	H22-8.NUC	101 : G.....G.....T.....G.....C.....
35	H22-9.NUC	101 : G.....T.....G.....
	N22-1.NUC	151 : CTCAGCTGTTGAAGAGGGCTTCACCAAGTGGATTAAATGAGGACTGCTCCACG
	N22-3.NUC	151 :T.....C.....
40	H22-3.NUC	151 :C.....C.....G.....
	H22-8.NUC	151 :C.....C.....

45

50

55

	H22-9.NUC	151 : ..C.....T.....
	N22-1.NUC	201 : CCATGCTCCGGCTCGTGGCTCAGGGATGTTGGACTGGATATGCACGGT
5	N22-3.NUC	201 :
	H22-3.NUC	201 :T..T..T.....
	H22-8.NUC	201 :T..T..T.....
10	H22-9.NUC	201 :T..T..T.....
	N22-1.NUC	251 : ATTGGCTGATTGCAAGACCTGGCTCCAGTCCAAGCTCCTGCCGCGGTAC
	N22-3.NUC	251 :T.....
15	H22-3.NUC	251 : G...AG...C.T.....C...
	H22-8.NUC	251 : G...AG...C.T.....C...
	H22-9.NUC	251 : G...AG...C.T.....C...
20	N22-1.NUC	301 : CGGGGGTCCCTTTTCTCATGCCAGCGTGGGTACAAGGGGTTTGGCGG
	N22-3.NUC	301 :C.....
	H22-3.NUC	301 :A.....CC.....A.....A..C.....
25	H22-8.NUC	301 :A.....CC.T.....A.....A..C.....
	H22-9.NUC	301 :A.....CC.....A.....A..C.....
	N22-1.NUC	351 : GGAGATGGCATCATGTATAACCACCTGCCATGTGGAGCACAAATCACCGG
30	N22-3.NUC	351 :C.....
	H22-3.NUC	351 :C.G.....C.....G....
	H22-8.NUC	351 :C.A.....C.....G....
35	H22-9.NUC	351 :C.....C.....C.....G....
	N22-1.NUC	401 : ACATGTAAAAACGGTTCTATGAGGATCGTTGGCCTAGAACCTGTAGCA
	N22-3.NUC	401 :T.....
40	H22-3.NUC	401 :T.....AC..C..C.....
	H22-8.NUC	401 :T.....AC..C..C.....

45

50

55

	H22-9.NUC	401 :T.....C.....AC...C..C.....
	N22-1.NUC	451 : ACACGTGGCACGGAACATTCATCAACGCGTACACCACAGGCCCTGC
5	N22-3.NUC	451 :C.....
	H22-3.NUC	451 :G..C.....
	H22-8.NUC	451 :G..C.....
10	H22-9.NUC	451 :G.....G..C.....
	N22-1.NUC	501 : ACACCCCTCCCCGGCGCAAACATATTCCAGGGCGTTGTGGCGGGTGCCAT
15	N22-3.NUC	501 :T..A....G.....C.....A.....A....GC
	H22-3.NUC	501 :A....G.....C.....A.....A....TGC
	H22-8.NUC	501 :A....G.....T.....A....TGC
20	H22-9.NUC	501 :A....G.....T..A.....A....TGC
	N22-1.NUC	551 : TGAGGAGTATGTGGAGGTACGCGGGTGGGGGATTCCACTACGTGACGG
	N22-3.NUC	551 :C.....
25	H22-3.NUC	551 :C.....
	H22-8.NUC	551 :C.....
	H22-9.NUC	551 :C.....
30	N22-1.NUC	601 : GCATGACCACTGACAACGTGAAATGCCATGCCAGGTTCCGGCCCCGAA
	N22-3.NUC	601 :A.....
	H22-3.NUC	601 :T.....C.....
35	H22-8.NUC	601 :T.....C.....
	H22-9.NUC	601 :T.....C.....
	N22-1.NUC	651 : TTCTTCACAGAATTGGATGGGTGCGGCTGCACAGGTACGCTCCGGCGTG
40	N22-3.NUC	651 :G.....
	H22-3.NUC	651 :G..G.....A.....A.....
	H22-8.NUC	651 :G..G.....A.....A.....A.....

45

50

55

	H22-9.NUC	651 : ..T.....G..G.....A.....A.....
5	N22-1.NUC	701 : CAAACCTCTCCTGCAGGGATGAGGTACACATTCCAGGTCGGGCTCAACCAAT
	N22-3.NUC	701 :
	H22-3.NUC	701 :A.....
	H22-8.NUC	701 :A.....
10	H22-9.NUC	701 :A.....
	N22-1.NUC	751 : ATACGGTTGGGTACAGCTCCATGTGAGCCGAACCGGATGTAACAGTG
	N22-3.NUC	751 :G....
15	H22-3.NUC	751 : TCC.....G.....C.....T....
	H22-8.NUC	751 : TCC.....G.....C.....
	H22-9.NUC	751 : TCC.....G.....A.....C.....G....
20	N22-1.NUC	801 : GTCACCTCCATGCTCACC
	N22-3.NUC	801 :
	H22-3.NUC	801 :
25	H22-8.NUC	801 :
	H22-9.NUC	801 :

BASE SEQUENCE OF EACH CLONE IN N17 REGION

30	N17-3.NUC	1 : TGTGAGCCGAACCGGATGTAACAGTGGTCACCTCCATGCTCACCGACCC (SEQ ID NO: 81)
	N17-1.NUC	1 :
35	(SEQ ID NO: 82)	
	N17-2.NUC	1 :
	(SEQ ID NO: 83)	
40	H17-1.NUC	1 :C.....T..... (SEQ ID NO: 84)

45

50

55

H17-3.NUC 1 :T.....

(SEQ ID NO: 85)

5	N17-3.NUC 51 : CTCCCACATTACAGCAGAGGCGGCTAGGCGTAGGCTGACCAGAGGGTCTC
	N17-1.NUC 51 :C.....G.....
	N17-2.NUC 51 :C.....G.....
10	H17-1.NUC 51 :A.....A.....G.....
	H17-3.NUC 51 :G.....G.....
	N17-3.NUC 101 : CCCCTTCCTCGACCAGTTCTTCAGCTAGTCAGTTGTCTGCGCTTCTCG
15	N17-1.NUC 101 : .T.....T...G....C.....C.....CA.....T.
	N17-2.NUC 101 : .T.....T.T.G....C.....CA.....T.
20	H17-1.NUC 101 :C....T.G....C.....CC...CCT.
	H17-3.NUC 101 :T.G....C.....CC...CT.
	N17-3.NUC 151 : CAGGCAACATGCACTACCCATCAGGGCGCCCCAGACACTGACCTCATCGA
25	N17-1.NUC 151 : A....G.....T.....A.A.T.....G.....
	N17-2.NUC 151 : A....G.....T.A.T.....G.....
	H17-1.NUC 151 : A....G.....T.A.T.....G...G.....
30	H17-3.NUC 151 : A....G.....T.A.T.....G...G.....
	N17-3.NUC 201 : GGCCAACCTCCTGTGGCGGCAGGAGATGGGCGGAAACATCACCCGCGTGG
	N17-1.NUC 201 :G.....
35	N17-2.NUC 201 :G.....
	H17-1.NUC 201 :A...G.....T....
	H17-3.NUC 201 :A.....A...G.....
40	N17-3.NUC 251 : AGTCAGAGAACAGATAAGTAATTCTAGACTCTTGAACCGCTTCGAGCG
	N17-1.NUC 251 :G.....C.....
	N17-2.NUC 251 : ...T.....

45

50

55

	H17-1.NUC	251 :	G.....G.....C..C.....
	H17-3.NUC	251 :	G....G.....G.....C..C.....
5	N17-3.NUC	301 : GAGGAGGATGA	
	N17-1.NUC	301 :	
	N17-2.NUC	301 :	
10	H17-1.NUC	301 :	
	H17-3.NUC	301 :	

BASE SEQUENCE OF EACH CLONE IN 028 REGION

15	O28-1.NUC	1 : GTGGTAGTCCTGGACTCGTTGGAGCCGCTTCAAGCGAAGGAAGGTGAGAG (SEQ ID NO: 86)	
	O28-2.NUC	1 :C.....G....G....A.....	
20	(SEQ ID NO: 87)		
	O28-4.NUC	1 :C.....G....G....A.....	
	(SEQ ID NO: 88)		
25	O28-1.NUC	51 : GGAAAGTGTCCGTTGCCGGAGATCCTGCCGAAGACCAAGGAAATTCCCCG	
	O28-2.NUC	51 :A.....A.....	
	O28-4.NUC	51 :A.....A.....	
30	O28-1.NUC	101 : CAGCGATGCCGTATGGCACGCCGGACTACAACCCACCATTACTAGAG	
	O28-2.NUC	101 :A.....A.....	
	O28-4.NUC	101 :A.....A.....	
35	O28-1.NUC	151 : TCTTGGAAGAACCCGGACTACGTCCCTCCAGTGGTACACGGGTGCCATT	
	O28-2.NUC	151 :G.....G.....	
	O28-4.NUC	151 :G.....G.....	
40	O28-1.NUC	201 : GCCGCCTACCAAGGCCCTCCAATACCACCTCCACGAAGAAAGAGAACGG	
	O28-2.NUC	201 :G.....G.....	

45

50

55

	O28-4.NUC	201 :T.....G.....G.....
5	O28-1.NUC	251 : TTGTCTGACAGAATCCTCCGTGTCCTCTGCCCTGGCGGAGCTTGCTACA
	O28-2.NUC	251 : ...C.....A.....
	O28-4.NUC	251 :A.....
	O28-1.NUC	301 : AAGACCTTGGCAGTTCCGGATCGTCGGCGTCGACAGCGGACGGCGAC
10	O28-2.NUC	301 :
	O28-4.NUC	301 :
	O28-1.NUC	351 : CGGCCCTCCTGACCAGGCCTCCGCCGAAGGAGATGCAGGATCCGACGCTG
15	O28-2.NUC	351 : T.....
	O28-4.NUC	351 :
	O28-1.NUC	401 : AGTCGTACTCCTCCATGCCCGGCTTGAGGGAGAGCCGGGGACCCGAT
20	O28-2.NUC	401 :
	O28-4.NUC	401 :
	O28-1.NUC	451 : CTCAGCGACGGGTCTTGGTCTACCGTAAGCGAGGAGGCCAGCGAGGACGT
25	O28-2.NUC	451 :T.....G.....
	O28-4.NUC	451 :T.....G.....
	O28-1.NUC	501 : CGTCTGCTGCTCGATGTCCTACACATGGACAGGCCCTTAATTACACCAT
30	O28-2.NUC	501 :
	O28-4.NUC	501 :
	O28-1.NUC	551 : GCGCCGCGGAGGAGAGCAAGCTGCCATTAAATGCGCTGAGCAACCCTTG
35	O28-2.NUC	551 :
	O28-4.NUC	551 : ..A.....T.....
	O28-1.NUC	601 : CTGCGCCACCAACATGGTCTATGCCACAACATCCCGCAGCGCAAGCCA
40	O28-2.NUC	601 :
	O28-4.NUC	601 :T.....

45

50

55

O28-1.NUC	651 :	GCGGCAGAAAAGGTACATTTGACAGACTGCAAGTCCTGGATGACCACT
O28-2.NUC	651 :
5 O28-4.NUC	651 :
O28-1.NUC	701 :	ACCGGGACGTGCTCAAGGACATGAAGGCCAAGGCGTCCAC
O28-2.NUC	701 :
10 O28-4.NUC	701 :

BASE SEQUENCE OF EACH CLONE IN N29 REGION

N29-1.NUC	1 :	ACTACCGGGACGTGCTGAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAG
15 (SEQ ID NO: 89)		
N29-2.NUC	1 :
(SEQ ID NO: 90)		
20 N29-3.NUC	1 :
(SEQ ID NO: 91)		
N29-1.NUC	51 :	GCTAAACTCTATCTGTAGAGGAAGCCTGCAAGCTGACCCCCCACACTC
25 N29-2.NUC	51 :T.....
N29-3.NUC	51 :T.....
N29-1.NUC	101 :	GGCCAGATCTAAATTGGCTACGGGCAAAGGACGTCCGGAGCCTGTCCA
30 N29-2.NUC	101 :
N29-3.NUC	101 :G.....
N29-1.NUC	151 :	GCAAGGCCGTTAACCATCCGCTCCGTGGAAGGACTTGCTGGAAGAC
35 N29-2.NUC	151 :
N29-3.NUC	151 :G.....
N29-1.NUC	201 :	ACTGAGACACCAATTGACACCACATGGCAAAAATGAGGTTTCTG
40 N29-2.NUC	201 :
N29-3.NUC	201 :A.....

45

50

55

	N29-1.NUC	251 :	TGTTCAACCAGAGAAAGGAGGCCAAGCCAGCTGCCATTACGTATTCC
5	N29-2.NUC	251 :
	N29-3.NUC	251 :
	N29-1.NUC	301 :	CAGACTTGGGGTTCGTGTGCGAGAAAATGCCCTACGACGTGGTC
	N29-2.NUC	301 :
10	N29-3.NUC	301 :
	N29-1.NUC	351 :	TCCACTCTCCTCAGGCCGTGATGGCTCCTCATAACGGATTCCAGTACTC
	N29-2.NUC	351 :
15	N29-3.NUC	351 :
	N29-1.NUC	401 :	CCCTGGACAGCGGGTCGAGTTCTGGTGAATGCCCTGGAAGTCAAAGAAGA
	N29-2.NUC	401 :
20	N29-3.NUC	401 :
	N29-1.NUC	451 :	GCCCTATGGGTTGCATATGACACCCGCTGTTTGACTAACGGTCACC
	N29-2.NUC	451 :	.T.....
25	N29-3.NUC	451 :	.T.....T.....
	N29-1.NUC	501 :	GAGAACGACATCCGT
	N29-2.NUC	501 :
30	N29-3.NUC	501 :	...

BASE SEQUENCE OF EACH CLONE IN O30 REGION

	O30-3.NUC	1 :	TGGGGATCCGTATGATAACCGCTGCTTGACTAACGGTCACTGAGAAT
35	(SEQ ID NO: 98)		
	O30-2.NUC	1 :
	(SEQ ID NO: 99)		
40	O30-4.NUC	1 :A.....
	(SEQ ID NO: 100)		

45

50

55

	O30-3.NUC	51 :	GACATCCGTGTCGAGGAGTCAATTACCAATGTTGTGACTTGGCCCCGA
	O30-2.NUC	50 :T.....
5	O30-4.NUC	51 :T.....
	O30-3.NUC	101 :	GGCCAGACAGGCCATAAGGTCACTCACAGAGCGGCTTACATCGGGGCC
	O30-2.NUC	100 :G.....
10	O30-4.NUC	101 :G.....
	O30-3.NUC	151 :	CCCTGACTAATTCAAAGGGCAGAACTGCGTTATGCCGGTGCCCGTC
	O30-2.NUC	150 :A.....C.....
15	O30-4.NUC	151 :C..
	O30-3.NUC	201 :	AGCGCGTGCTGACGACTAGCTGCGTAATACCCTCACATGTTACTTGAA
	O30-2.NUC	200 :C.....
20	O30-4.NUC	201 :
	O30-3.NUC	251 :	GGCCTCTGCAGCCTGTCGAGCTGCAAAGCTCCAGGACTGCACGATGCTTG
	O30-2.NUC	250 :
25	O30-4.NUC	251 :
	O30-3.NUC	301 :	TGTGCGGAGACGACCTTGTGTTATCTGTGATAGCGCGGAACTCAGGAG
	O30-2.NUC	300 :A.....
30	O30-4.NUC	301 :A.....
	O30-3.NUC	351 :	GACGCCGGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTACTCTGC
	O30-2.NUC	350 :
35	O30-4.NUC	351 :
	O30-3.NUC	401 :	CCCCCCCCGGGACCCGCCAACAGAACGACTTGGAGCTGATAACAT
	O30-2.NUC	400 :
40	O30-4.NUC	401 :
	O30-3.NUC	451 :	CATGTTCTCCAATGTGTCGGTCGCGCACGACGCATCAGGAAACGGGTG

45

50

55

	O30-2.NUC	450 :C.....C.....
5	O30-4.NUC	451 :C.....
	O30-3.NUC	501 : TACTATCTCACCGTGACCCCACCACCCCCCTAGCGGGCTGCGTGGGA
	O30-2.NUC	500 :C.....T.....
	O30-4.NUC	501 :C.....T.....
10	O30-3.NUC	551 : GACAGCTAGACACACTCCAGTCAACTCCTGGCTAGGCAACATCATCATGT
	O30-2.NUC	550 :
	O30-4.NUC	551 :
15	O30-3.NUC	601 : ACCGCACCACCTTATGGCAAGGATGATTCTGATGACCCACTTCTCTCC
	O30-2.NUC	600 : .T.....
	O30-4.NUC	601 :
20	O30-3.NUC	651 : ATCCTTCTAGCCCAGGAGCAACTGAAAAAGCCTAGATTGTCAGATCTA
	O30-2.NUC	650 :
	O30-4.NUC	651 :
25	O30-3.NUC	701 : CGGGGCCACTTACTCCATTGAGCCACTTGACCTACCTCAGATCATTCAAC
	O30-2.NUC	700 : T.....
	O30-4.NUC	701 :
30	O30-3.NUC	751 : GACTCCACGGTCTTAGCGCATTTCACTCCATAGTTACTCTCAGGTGAG
	O30-2.NUC	750 :T.....
	O30-4.NUC	751 :T.....
35	O30-3.NUC	801 : ATCAATAGGGTGGCTTCATGCCTCAGGAAACTGGGTACCGCCCTTGCG
	O30-2.NUC	800 :
	O30-4.NUC	801 :
40	O30-3.NUC	851 : AGTCTGGAGACATGGGCCAGAAGCGTCCGCGTAAGCTACTGTCCCAGG
	O30-2.NUC	850 :

45

50

55

	O30-4.NUC	851 :
	O30-3.NUC	901 : GGGGGAGGGCCGCCACCTGTGGCAAATACCTCTTCAACTGGGCAGTAAAG
5	O30-2.NUC	900 :
	O30-4.NUC	901 :
	O30-3.NUC	951 : ACCAAGCTCAAACCTCACTCCAATCCCAGAACGTCAGCTGGACTTGTC
10	O30-2.NUC	950 :C.....G.....
	O30-4.NUC	951 :G.....
	O30-3.NUC	1001 : CGGCTGGTTCGTTGCTGGTTACAGCGGGGAGACATATATCACAGCCTGT
15	O30-2.NUC	1000 :
	O30-4.NUC	1001 :
	O30-3.NUC	1051 : CTCGTGCCCGACCCCGCTGGTTATGTGGTGCCTACTCCTACTTCCGTA
20	O30-2.NUC	1050 :T.....
	O30-4.NUC	1051 :
	O30-3.NUC	1101 : GGGGTAGGCATCTACCTGCTCCCCAACCGATGAGCGGGGAGCTAACACT
25	O30-2.NUC	1100 :
	O30-4.NUC	1101 :
	O30-3.NUC	1151 : CCAGGCCAATAGGCCATCCCC
30	O30-2.NUC	1150 :
	O30-4.NUC	1151 :

BASE SEQUENCE OF EACH CLONE IN N18 REGION

35	N18-4.NUC	1 : TGGGGATCCCGTATGATAACCGCTGCTTGACTCAACGGTCACTGAGAAT
	(SEQ ID NO: 92)	
	N18-2.NUC	1 :A.....C
40	(SEQ ID NO: 93)	
	N18-3.NUC	1 :

45

50

55

(SEQ ID NO: 94)

H18-1.NUC 1 :A.....G.

5 (SEQ ID NO: 95)

H18-2.NUC 1 :A.....G.

(SEQ ID NO: 96)

10 H18-3.NUC 1 :A.....C.....G.

(SEQ ID NO: 97)

N18-4.NUC 51 : GACATCCGTACTGAGGAGTCAATTATCAATGTTGTGACTTGGACCCGA

15 N18-2.NUC 51 :T.....C.....T.....

N18-3.NUC 51 :

H18-1.NUC 51 : ..T.....GT.....C..C.....C.....

20 H18-2.NUC 51 : ..T.....GT.....C..C.....C.....

H18-3.NUC 51 : ..T.....GT.....C..C.....C.....

N18-4.NUC 101 : GGCCAGACAGGCCATAAGGTCGCTCACAGAGCGGCTTATATCGGGGGCC

25 N18-2.NUC 101 :

N18-3.NUC 101 :

H18-1.NUC 101 :

30 H18-2.NUC 101 :

H18-3.NUC 101 : ..T.....

N18-4.NUC 151 : CCTTGACCAATTCAAAAGGGCAAAACTGC GGCTATGCCGGTGCCCGGCC

35 N18-2.NUC 151 :

N18-3.NUC 151 :G.....T.....

H18-1.NUC 151 : ..C.....T.....G.....T.....T.

40 H18-2.NUC 151 : ..C.....T.....G.....T.....T.....T.

H18-3.NUC 151 : ..C.....T.....G.....T.....T.....T.

45

50

55

	N18-4.NUC	201 :	AGCGGCGTGTGACGACTAGCTGCCGTAAATACCCTCACATGTTACTTGAA
	N18-2.NUC	201 :
5	N18-3.NUC	201 :T.....
	H18-1.NUC	201 :C.....T.....T.....
	H18-2.NUC	201 :C.....T.....
10	H18-3.NUC	201 :C.....T.....
	N18-4.NUC	251 :	GGCCTCTGCAGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACGATGCTCG
	N18-2.NUC	251 :G.....
15	N18-3.NUC	251 :
	H18-1.NUC	251 :A.....A.....
	H18-2.NUC	251 :A.....A.....
20	H18-3.NUC	251 :A.....A.....
	N18-4.NUC	301 :	TGTGCGGAGACGACCTTGTGTTATCTGTGAAAGCGCGGGAACCCAGGAG
	N18-2.NUC	301 :G.....
25	N18-3.NUC	301 :
	H18-1.NUC	301 :G.....C.....G.....
	H18-2.NUC	301 :G.....C.....
30	H18-3.NUC	301 :G.....C.....
	N18-4.NUC	351 :	GACGCGGCAAACCTACGAGTCTCACGGAGGCTATGACCAGGAATTCCGC
	N18-2.NUC	351 :G.....
35	N18-3.NUC	351 :
	H18-1.NUC	351 :G.....
	H18-2.NUC	351 :G.....
40	H18-3.NUC	351 :G.....
	N18-4.NUC	401 :	C
45			
		N18-2.NUC	401 : .
		N18-3.NUC	401 : .
		H18-1.NUC	401 : .
50		H18-2.NUC	401 : .
		H18-3.NUC	401 : .

55 Bas sequences of clones in each of six regions are summarized in SEQ ID NO 64 to 69. Base sequences of SEQ ID NO 64 to 69, 76 - 100 show the base sequences of + - strand of DNA fragments which were derived from HCV gene and inserted into each plasmid used for the transformation. These clones are double stranded DNA. Plasmids used for the sequencing of clones were designated by adding a

prefix "pUC" to the name of each clone, for example, plasmid used for sequencing the clone N22-1 was designated as plasmid pUCN22-1. Each plasmid contained one DNA molecule.

These base sequences represents those of clones obtained by cloning the cDNA synthesized from RNA isolated from serum of patient(s) suffering from HC. Therefore, these sequences are specific for clones originated from serum of HCV-infected patients but can not be found or obtained from serum of healthy subjects. Thus, cDNA prepared from RNA (if there are any) obtained from a healthy subject under more strict conditions, for instance, by increasing (3 or 4 folds) the reaction cycles of PCR in Example 21 [2], by repeating them 60 - 100 times, did not show any homology in base sequence with those shown in SEQ ID NO 64 - 69, and 76 - 100. Consequently, base sequences of clones shown in SEQ ID NO 64 - 69, and 76 - 100 are specific for those obtained from serum of HC patient.

The above table indicates that there must be more than one virus in a patient.

Example 23

15 Preparation of Clone 1530U

[1] Preparation of Clones 1728, 2217, and 2918

Clones N17-3 and O28-1 were ligated using overlapping region by PCR. One μ l (about 0.5 to 1 μ g/ μ l) of each DNA fragment from clones N17-3 and O28-1 (311 and 740 bp, respectively) was added into a reaction mixture containing 10 μ l of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 μ l of 2.5 mM 4 dNTPs, 5 μ l each of 20 pmol/ μ l synthetic primers MS118 and MS161, and 76.5 μ l of water. After an intimate mixing, the mixture was heated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, to the mixture was added 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo), mixed and overlaid with mineral oil. The sample was then subjected to PCR. PCR was conducted by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 37 °C for 1 min; and at 72 °C for 2 min in DNA Thermal Cycler (Parkin Elmer Cetus). It was followed by an incubation at 97 °C for 2 min. The mixture was immediately cooled to 0 °C, kept at the same temperature for 2 min, mixed with 0.5 μ l of Taq DNA polymerase (7 U/ μ l, AmpliTaq™ Takara Shuzo), and overlaid with mineral oil. The sample was then treated in the same manner as the above by repeating 25 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 55 °C for 1 min; and at 72 °C for 2 min. After the final treatment at 72 °C for 7 min, the resultant reaction solution was treated with phenol/chloroform then precipitated with ethanol. The two DNA fragments were ligated and amplified by PCR. The ligated DNA sample was fractionated on agarose gel electrophoresis and a gel containing about 1000 bp fragment was excised from the gel (Molecular Cloning (1982) Cold Spring Harbor). The resultant DNA fragment was then modified as described in Example 22 and ligated into Smal site of multi-cloning sites of pUC19, cloned and screened as described in Example 22 to obtain plasmid pUC1728. The resultant clone derived from serum of HC patient was designated as clone 1728 and whose base sequence is given in SEQ ID NO 8.

In the same manner as the above, plasmid pUC2217 was obtained from clones N22-1 and N17-3, which plasmid contains at Smal site a DNA fragment derived from serum of HC patient in the following order from 5' to 3' site: EcoRI restriction site from pUC19, DNA from clone N22-1, DNA from clone N17-3, and HindIII restriction site. Base and amino acid sequences of clone 2217 are given in SEQ ID NO 70.

In the same manner as the above, clone 2918 was obtained from clones N29-1 and N18-4 whose base and amino acid sequences are given in SEQ ID NO 72.

[2] Preparation of Clone 1718

There is a 43 bp sequence common to clones 1728 and 2918. These fragments of 1004 and 857 bp were ligated by PCR substantial in accordance with the procedures as those described in the above [1] except that the elongation step in PCR reaction using Taq polymerase was conducted at 72 °C for 5 min. The resultant plasmid pUC1718 contained a DNA fragment having a base sequence derived from HCV gene at Smal site in which EcoRI site of pUC19 is located to the 5' sit of clone N17-3. (N17 region is located to 5' site of N18 region on HCV gene). Base and amino acid sequences of clone 1718 is given in SEQ ID NO 73.

[3] Preparation of Clone 2218

Overlapping clones 2217 and 2218 were ligated by taking advantage of unique restriction site which exists in the overlapping regions of the both clones. Upon digestion with restriction enzym Xba₁, pUC2217 was cleaved at two sites, i.e., in a sequence from clone N17-3 and the other in a sequence from pUC19, and a small fragment of less than about 40 bp and a large fragment containing most of the sequences from vector and clone 2217 were separated on agarose gel electrophoresis and the larger fragment, pUC2217/Xba₁, was extracted. Plasmid pUC1718 was also cleaved at two sites within a sequence from clone N17-3 and one from pUC19, and a larger DNA fragment 1718/Xba₁ of about 1545 bp containing most of the sequences from vector and clone 1718 was separated on agarose gel electrophoresis and extracted. The ligation of clones 2217 and 1718 was accomplished on the basis of an assumption that plasmids pUC2217 and pUC1718 contain each DNA fragment in the same orientation. Thus, 10 ng of pUC2217/Xba₁ and 50 ng of 1718/Xba₁ was ligated in the presence of T4DNA ligase and the ligation mixture was incubated with competent E.coli JM109 cells and cloned in the same manner as Example 22. Transformants containing plasmid pUC2218 which contains clone 17-3 religated at Xba₁ site. The plasmid pUC2218 contains at its Sma₁ site, Eco_{RI} site and the following regions without overlapping: clones N22-1, N17-3, O28-1, N29-1, N18-4. Base and amino acid sequences of the resultant clone 2218 is given in SEQ ID NO 74.

[4] Ligation of N15 Region and O30 Region Corresponding to 3' Terminal Region of HCV Gene

Clone O30-3 is shown in SEQ ID NO 98. Plasmid pUCO30 contains a DNA fragment having a sequence corresponding to 3' terminal region of HCV gene at Sma₁ site of pUC19 in the order of, from 5' to 3', Eco_{RI} site and clone O30-3. Plasmid pUCN15 contains a DNA fragment of HCV gene, clone N15, forwardly at Sma₁ site of pUC19 in the order of, from 5' to 3', Eco_{RI} site and clone N15.

Plasmid pUCO30 was cleaved at a cloning site, Sac₁, of pUC19 and blunt ended with T4 DNA polymerase conventionally, which was followed by the cleavage at another cloning site, Hind_{III}, of pUC19 to obtain a DNA fragment O30 (SacT4/Hind) derived from HCV gene. Plasmid pUCN15 was digested with Xba₁, blunt ended, and digested with Hind_{III} to obtain a larger DNA fragment pUCN15 (XbaT4/Hind) which contains a sequence from clone N15-1 and all the region of Hind_{III} fragment of pUC19. About 80 ng of DNA fragment O30 (SacT4/Hind) and about 20 ng of DNA fragment pUCN15 (XbaT4/Hind) were ligated in the presence of T4DNA ligase in 20 μ l of reaction mixture. The ligation mixture was incubated with COMPETENT HIGH JM109 (Toyobo) according to the protocol provided by the manufacture and transformants containing desired plasmid pUC15-30 were isolated. Taking advantage of the fact that said plasmid pUC15-30 has only one site which can be cleaved by restriction enzymes Bgl_{II} and Hind_{III}, it was subjected to PCR using a primer MS174 having a Bgl_{II} site in sequence derived from clone O30-3.

PCR was conducted using, as a template, 10 ng of pUC1530 and primers MS174 and MS175. PCR fragment was then digested with Bgl_{II} and Hind_{III} and the resultant fragment ligated to a Bgl_{II}-Hind_{III} fragment-containing the vector fragment of pUCO30 to obtain plasmid pUC15-30U having polyU attached to the 3' terminus of clone 30-3.

[5] Ligation of N15 to O30 Regions

There is an Apal site within a region common to N15 and N22 regions. There also is an Apal site within a region common to N18 and O30 regions. A DNA fragment isolated from pUC2218 with Apal was inserted into Apal site of pUC15-30 appropriately to obtain plasmid pUC1530U. Thus, plasmid pUC2218 was digested with Apal and 30 ng of desired DNA fragment, pUC2218/Apal, was isolated by agarose gel electrophoresis conventionally. Plasmid pUC15-30 was digested with Apal completely and desired DNA fragment was isolated and dephosphorylated. Ligation was conducted using 30 ng of pUC2218/Apal and 20 ng of dephosphorylated DNA fragment in a final volume of 10 μ l. All the ligation mixture was used to transform COMPETENT HIGH JM109 (Toyobo). From transformants, desired plasmid pUC1530U which contains at the cloning site, Sma₁, a clone 1530U having a sequence from regions N15 to O30 without overlapping was prepared. Base and amino acid sequences of clone 1530 were determined in the same manner as that used in Example 22 and shown in SEQ ID NO 75.

The amino acid sequence of the ligated region comprising N15 to O30 regions has a high homology with a part of non-structural protein NS4 and NS5 of Flavivirus, a related strain of HCV. It was also confirmed that said region is homologous to a sequence encoding a part of NS4 region and all of the NS5 region by comparison with a known sequence of entire HCV gene disclosed by aforementioned Chiron, Shimotohno, or Takamizawa. As a conclusion, clones herein disclosed and whose sequence are shown in Seq Ls correspond to a part of NS4 and all of NS5. As the next step, polypeptides encoded by said clone

was evaluated as to the ability to react immunologically with antiserum of HC patients.

Example 24

5 Modification of DNA for the Expression of HCV Polypeptide Encoded by Clone 1530U

The expression of all or a part of regions of clone 1530U which encodes HCV polypeptide can be accomplished using any of methods which will be hereinafter described.

10 [1] Modification of DNA for the Expression of a part of HCV Polypeptide Encoded by Clone 1530U in E.coli

This method is used to express a desired polypeptide free from additional amino acid sequence.

Clone 1530U appears to encode an ORF derived from HCV gene (hereinafter, referred to as NS5N) from No.1246 (C) to 1692 (C) of base sequence of SEQ ID NO 75, which can be expressed by inserting an ATG initiation codon at 5' site of said gene in frame. When a part of amino acid sequence of NS5N is desired to be expressed, ATG initiation codon and termination codon were inserted to 5' and 3' site of a gene encoding said amino acid sequence such that the frame of these codons are in conformity with that of the gene. The insertion of an ATG initiation codon at the upstream from 5' terminus of said gene may be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N' terminus (amino terminus) of an amino acid sequence of SEQ ID NO 75. This may happen when a sequence of pUC19 is inserted between ATG codon and DNA encoding HCV polypeptide at the time of insertion of ATG codon. The modification of DNA was carried out by PCR using the following synthetic DNAs as primer.

5' primer:

MSNS5-1: 5' GCAAGCTTATGCAGCGTGGGTACAAGGGGGTT 3' (SEQ ID NO 183)

25 3' primer:

MSNS5-2: 5' GCGAATTTCAGATCTTCATCAGAGCTGTGACCCAACCGTATATTGGTT 3' (SEQ ID NO 184)

The synthetic DNA was adjusted to 20 pmol/ml before use.

PCR was carried out according to Saiki's method in a total volume of 100 μ l containing 100 ng of plasmid pUC2217 (or pUCN22-1 which contains the same region), and 2 μ l each of the above 3' and 5' primers. The reaction mixture was heated at 95 °C for 5 min and quenched at 0 °C. One minute later, to the mixture was added 0.5 μ l of Taq DNA polymerase (7 U/ml, AmpliTaq™ Takara Shuzo), mixed thoroughly and overlaid with mineral oil. The sample was reacted by repeating 25 cycles of treatments which comprises: at 95 °C for 1 minute; at 55 °C for 1 min; and at 72 °C for 1 min in DNA Thermal Cycler (Parkin Elmer Cetus). The resultant reaction solution was extracted with phenol/chloroform and precipitated with ethanol conventionally. The amplified DNA samples were digested with HindIII and EcoRI and fractionated on acrylamide gel electrophoresis and the desired DNA fragment was extracted. The resultant DNA fragment was then ligated into HindIII and EcoRI sites of a cloning vector pUC19, cloned and screened to obtain plasmid pUCNS5N, which was then sequenced. The clone NS5N has a modified base sequence of that from No.1246 (C) to 1692 (C) of SEQ ID NO 75, wherein, at the 5' site of said sequence, the following 40 DNA fragment:

5' GCAAGCTTATG 3'

45 3' CGTTCGAATAAC 5' (SEQ ID NO 155)

which comprises a HindIII restriction site followed by an initiation codon ATG was added, and, at the 3' site of said sequence, the following DNA fragment:

50

5' TGATGAAAGATCTGAATTCCG 3'

55 3' ACTACTTCTAGACTTAAGCG 5' (SEQ ID NO 156)

which comprises two termination codons, BglII and EcoRI sites from 5' to 3' was added.

[2] Modification of DNA for the Expression of HCV Polypeptide Encoded by MKCNS5 Region in Insect Cells

MKCNS5 region is an ORF derived from HCV gene encoding an amino acid sequence from No. 415 to No. 1411 of SEQ ID NO 75. For the expression of polypeptide, an initiation codon ATG is inserted at 5' site of said gene in frame so that the expression of the gene might be properly effected in insect cells. The insertion of an ATG initiation codon at the upstream from 5' terminus of said gene may be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N' terminus (amino terminus) of all or a part of the amino acid sequence encoded by HCV gene. When an expression vector containing an initiation codon for insect cells is used, a DNA fragment from the clone is ligated to the vector such that the frame of said DNA is in conformity with that of the initiation codon on said vector. It also can be accompanied by an addition of a foreign polypeptide which is not encoded by HCV gene to the N' terminus (amino terminus) of all or a part of the amino acid sequence encoded by HCV gene. Polypeptides encoded by MKCNS5 was expressed in insect cells as a single precursor polypeptide subject to that said polypeptide comprises, at least, the amino acid sequence from No. 415 to 1411 of SEQ ID NO 75, which precursor was then processed by, for example, glycosylation and accumulated intracellularly. The modification of DNA of clone MKCNS5 region was carried out by PCR using the following synthetic DNA as primers.

5' primers:

MKCNS5-1: 5' GCGCTAGCATGGGGTACAAGGGGGTTGGCGGG 3' (SEQ ID NO 185)

3' primer:

20 MKCNS5-2: 5' GCGCTAGCTCATCGGTTGGGAGCAGGTAGAT 3' (SEQ ID NO 186)

These primers were designed to introduce NheI site at both ends of said gene in order to insert said gene into NheI site of transfer vector pBlueBac (Invitrogen). Therefore, the use of these primers are not critical and others can be used which are designed for introducing said gene into any other transfer vectors for insect cells. The above two synthetic DNAs were adjusted to 20 pmol/ml before use.

25 The PCR was carried out using the same reaction solution and worked up in the same manner as described in the above [1] except that primers MKCNS5-1 and MKCNS5-2 and, as a template plasmid, 20 ng of plasmid pUC1530U were used. PCR was accomplished by repeating 10 times of reaction cycles consisting of: 1 min at 95 °C; 1 min at 50 °C and 5 min at 72 °C ; and then 20 times of reaction cycles consisting of: 1 min at 95 °C; 1 min at 65 °C; 5 min at 72 °C to yield a desired 3013 bp DNA fragment.

30 The DNA fragment was digested with NheI, fractionated on acrylamide gel electrophoresis and a DNA fragment of desired length was extracted. The resultant DNA fragment was then ligated into NheI site of a transfer vector pBlueBac (Invitrogen), cloned and screened for a clone which contains a single DNA fragment inserted at NheI site to obtain plasmid pBlueMKCNS5.

According to the teaching shown in the protocol given by Invitrogen, the expression unit of said plasmid 35 contains DNA fragment derived from HCV gene oriented forward and ligated to the NheI cloning site downstream from a polyhedrin promoter.

Example 2540 Expression of HCV Polypeptides Encoded by Clones NS5N, MKCNS4bNS5 in E.coli

Each clone encodes a part of polypeptide encoded by cDNA originated from serum of HC patient. The polypeptide encoded by each clone was expressed in E.coli, as it is, by subcloning said clone into an expression vector pCZ44 (Japanese Patent Publication (KOKAI) No. 124387/1989).

45 A DNA fragment having a sequence of clone NS5N obtained in Example 24 was digested thoroughly with restriction enzymes HindIII and BglIII, extracted with phenol/chloroform, precipitated with ethanol, separated on acrylamide gel electrophoresis. From the gel was extracted a DNA fragment having cohesive HindIII- and BglIII-restricted ends. The expression vector pCZ44 was digested with HindIII and BglIII. The larger fragment containing a region functional for the expression of DNA was separated, treated in the same manner, ligated to the HindIII-BglIII fragment obtained from a clone and cloned conventionally. The resultant plasmid was designated as plasmid pCZNS5N after the clone.

50 Alternatively, expression vectors were constructed using an expression vector pGEX-2T (Pharmacia) designed to express a fused protein substantial in accordance with the protocol taught by the manufacturer (Pharmacia). The expression vector pGEX-2T was digested with BamHI. To the linearized vector was ligated a HindIII linker to obtain a DNA fragment having EcoRI and HindIII restriction sites at its 3'- and 5'-termini. Each clone was digested with HindIII and EcoRI to obtain DNA fragments encoding desired HCV polypeptides. The two fragments were then ligated at their HindIII and EcoRI sites such that the frame of the codon is in conformity with the amino acid of the clone.

For example, the following region corresponding to HCV polypeptide (hereinafter, referred to as clone MKCNS4bNS5) having a 863 amino acid sequence from No. 306 to 1168 of SEQ ID NO 75 was expressed in E.coli. A DNA fragment encodes MKCNS4bNS5 is named as clone MKCNS4bNS5.

The above region appears to be a HCAg which can immunologically react with antiserum from HC patients in high efficiency. This region can be expressed using pCZ44 for the construction of expression vector. However, it also can be expressed as a fused polypeptide with GST.

Plasmid pUC2218 (2 ng) was digested thoroughly with restriction enzymes HindIII, PvuII and SspI and separated on acrylamide gel electrophoresis. From the gel was extracted about 200 ng of DNA fragment containing a region from clone 2218, which fragment was then blunt-ended. The DNA fragment 2218 (Hin/Pvu/T4) was inserted into HindIII site of pGEXH10 which has a modified sequence of pGEX-2T, wherein the sequence between BamHI and EcoRI sites of pGEX-2T is changed as follows:

5' GGATCCCCCAAGCTTGGGGAAATTC 3'

BamHI HindIII EcoRI (SEQ ID NO 187)

The expression vector pGEXH10 (1 ng) was digested with HindIII completely and blunt-ended. DNA fragment from pGEXH10 (20 ng) was ligated to 50 ng of DNA fragment 2218 (Hin/Pvu/T4), transformed, and cloned conventionally. The resultant plasmid pGEX2218 encodes a fused polypeptide comprising GST linked to the N22 region of DNA fragment 2218 (Hin/Pvu/T4).

E.coli JM109 strain transformed with plasmid pCZNS5N was grown in L-Broth at 37 °C overnight (Molecular Cloning, Cold Spring Harbor, 1982). The cultured broth was diluted 50-folds by inoculating it into a freshly prepared L-Broth and the cultivation continued with shaking at 30 °C for 2 hr. At this time, IPTG was added to the culture to a final concentration of 2 mM in order to induce the expression of DNA encoding HCV-originated polypeptide by single-clone-derived transformants (E.coli JM 109 cells transformed solely by said plasmid). Deduced amino acid sequence of cDNA derived from clone NS5N corresponds to that of No. 1246 to 1692 of SEQ ID NO 75.

In the same manner as the above, plasmid pGEX2218 can be used to express a fused protein between polypeptide MKCNS4bNS5 and GST. The plasmid, as instructed by Pharmacia, contains a sequence encoding a region specifically cleaved by thrombin at C-terminal region of GST, followed by a sequence of clone 2218 (it also contains a short sequence derived from pUC19). The fused protein can be expressed in the same manner used for the expression of HCV polypeptide encoded by plasmid pCZNS5. Thus, E.coli transformants transformed with plasmid pGEX2218 were grown in the presence of IPTG.

Example 26

Expression of MKCNS5 Region in Insect Cells

The expression of HCV-originated protein encoded by plasmid pBlueMKCNS5 prepared in Example 24 [2] was conducted substantial in accordance with a known expression manual for baculovirus (MAXBAC™ BACULOVIRUS EXPRESSION SYSTEM MANUAL VERSION 1.4, hereinafter, referred to as Maxbac, Invitrogen).

Plasmid pBlueMKCNS5 prepared in Example 24 [2] by inserting DNA fragment containing HCV gene at the NheI site of a transfer vector pBlueBac (Maxbac, pp.37), was recovered from E.coli host cells transformed thereby, and purified according to the method of Maniatis et al (Molecular Cloning, Cold Spring Harbor Laboratory, pp.86 - 96 (1982)). Thus, a large amount of HCV gene-containing transfer plasmid DNA was obtained. Sf9 cells were cotransfected with 2 µg of a plasmid containing a DNA fragment from HCV gene and 1 µg of AcNPV viral DNA (Maxbac, pp.27). Sf9 cells were grown in TMN-FH medium (Invitrogen) containing 10% FCS (fetal calf serum) in a Petri dish (6 cm diameter) until a cell density reached to about 2 x 10⁶/plate. The TMN-F medium was removed and a 0.75 ml Grace medium (Gibco) containing 10% FCS was added th reto. To th DNA mixture described in the abov was added 0.75 ml of transfection buffer (attached to the kit) was thoroughly mixed by vortex and gradually added dropwise onto the Grace medium.

After the culture being allowed to stand for 4 hr at 27 °C, Grace medium was replaced with 3 ml of TMN-F medium containing 10% FCS and the dish incubated at 27 °C for 6 days. Three days from the incubation, there observed a few multinucleate cells and on sixth day, almost all the cells were multinuclear. The supernatant was taken into a centrifuging tube and centrifuged at 1,000 rpm, 10 min to obtain the

supernatant as a cotransfected viral solution.

The cotransfected viral solution contains about 10^8 viruses/ml and 0.5% of which were recombinant viruses. The isolation of recombinant virus was carried out by a plaque isolation method described below.

Thus, cells were adsorbed onto a Petri dishes (6 cm diameter) by seeding 1.5×10^6 cells on medium 5 and removing the medium completely. To the dish was added 100 μl of a diluted viral solution (10^{-4} and 10^{-5} folds), separately and incubated at room temperature for 1 hr while slanting the dish every 15 min to spread the virus extensively. X-gal medium containing agarose was prepared by adding 5-bromo-4-chloro-3-indolyl- β -D-galactoside to a final concentration of 150 $\mu\text{g}/\text{l}$ to a warm medium which had been prepared by autoclaving 2.5% baculovirus agarose (Invitrogen) at 105 °C for 10 min, mixing with TMN-FH medium 10 containing 10% FCS preheated at 46 °C at the mixing ratio of 1 : 3, and keeping the temperature at 46 °C.

After the completion of infection, virus solution was aspirated thoroughly from the dish and 4 ml of the warm X-gal medium containing agarose (previously prepared) was gently added to every dish not to peel off cells. The dish kept open by slightly sliding a lid until the agarose solidified and dried, and thereafter the dish covered, turned upside down, and incubated at 27 °C for 6 days. The plaques were observed under a 15 phase difference microscope to find blue plaques which do not form multinucleate cells. Agarose containing blue recombinant plaques were removed with an aspirating pipet and suspended into 1 ml of TMN-FH medium by pipetting many times. The above process which comprises: infection, 6-day incubation, and isolation of virus containing transfer plasmid DNA is called the "plaque method". The plaque method was repeated using 100 μl of viral suspension. After repeating said process three times, there obtained a 20 recombinant virus having a gene encoding HCV glycoprotein free from contamination with that of wild-type strain.

A viral solution of the primary recombinant virus was prepared by aspirating plaques with a Pasteur pipet, and mixing thoroughly with 1 ml of TMN-FH medium. Because the primary viral solution was low in 25 virus density for infection, it required further treatments for concentration. Thus, 100 μl of viral solution was adsorbed onto Sf9 cells grown in a petri dish (6 cm in diameter) to a semi-confluent, and 4 ml of TMN-FH medium was added thereto and incubated three days. The culture supernatant was recovered to yield a recombinant viral solution for infection.

For the production of HCV structural protein, a suspension of Sf9 cells in TMN-FH medium containing 30 10% FCS (5×10^6 cells/10 ml medium) was added into a Petri dish (9 cm, in diameter) and kept 1 hr for adsorption. After the removal of medium, 250 μl of recombinant viral solution was added to the dish and spread extensively. To the dish was added 10 ml TMN-FH medium containing 10% FCS and incubated at 27 °C for 4 days. The cells expressing recombinant glycoprotein of HCV were harvested by scraping up and suspended into 1,000 ml of phosphate buffered saline.

Thus, HCV-derived glycoprotein was expressed in Sf9 cells transfected with said virus.

35

Example 27

Identification of Expression Products as HCAg

40 Each expression product obtained in Examples 25 and 26 was identified as HCAg because it reacted immunologically with antisera obtained from HC patients. Identification was conducted by Western blot technique.

E. coli cells transformed with expression plasmid pCZNS5N or pGEX2218 were grown in the presence of IPTG for 3 hr or overnight in the same manner as described in Example 25.

45 Recombinant strains were harvested by centrifuging 1,000 μl of the cultured broth at 6,500 rpm, 10 min. The pellet was dissolved into a sample solution (50 mM Tris-HCl, pH 6.8 containing 2% SDS, 5% mercaptoethanol, 10% glycerin, and 0.005% bromophenol blue) for SDS-polyacrylamide gel electrophoresis to a final volume of 0.2 ml. Sf9 cells infected with viruses which had been treated more than 3 times by plaque method were collected by scraping up and suspended into 1,000 ml of PBS and 100 μl of the 50 suspension was centrifuged at 6,500 rpm, 10 min to pellet the cells. The pellet was dissolved into a sample solution for SDS-polyacrylamide gel electrophoresis to a final volume of 0.2 ml.

The sample solutions were then boiled at 100 °C for 10 min. Ten μl of the boiled solution was loaded onto 0.1% SDS-15% polyacrylamide g l (70 x 85 x 1 mm) together with a marker protein LMW Kit E (low-molecular weight marker protein, Pharmacia). Electrophoresis was carried out at a constant current of 30 mA for 45 min in Tris buffer (25 mM Tris, pH 8.3, 192 mM glycine, 0.1% SDS) as electrode buffer. Thereafter, DNA was transferred electrophoretically to a nitrocellulose filter by superposing the gel onto a filter BA-83 (S & S), impressing a constant current of 120 mA for about 20 min between gel (cathode) and the filter (anode) as conventionally.

The transcribed filter was cut to remove a part containing a marker protein (referred to as marker filter) and that containing the sample (referred to as sample filter). The former was stained with 0.1% (w/v) amideblack 10B and the latter immersed into 0.01 M PBS (pH 7.4) containing 5% (w/v) bovine serum albumin (BSA). Serum from a HC patient was diluted 50 times with 0.01 M PBS (pH 7.4) containing 5% (w/v) BSA. To the sample filter was added 10 µl of diluted serum and the filter allowed to stand for 2 hr at room temperature. Thereafter, the filter was washed with PBS containing 0.1% (W/V) Tween 20 for 20 min (x3).

The sample filter was then reacted with 10 ml of horseradish peroxidase conjugated anti human IgG (Gappel) at 37 °C for 1 hr and washed with PBS containing 0.1% (w/v) Tween 20 for 20 min (x3). The filter was then immersed into peroxidase-color-producing solution (60 mg 4-chloro-1-naphthol, 20 ml methanol, 80 ml PBS, and 20 µl aqueous hydrogen peroxide). The colored filter was washed with distilled water and compared with the marker filter, demonstrating that colored protein expressed by transformants transformed with plasmid pCZNS5N or pGEX2218 had a reasonable molecular weight as an expression product of inserted HCV gene and was identified as HCAg. The expression product from transformants transformed with pGEX2218 was a fused protein consisting of HCV originated polypeptide and GST and thrombin cleaving site wherein the latter two attached at the N-terminus of the former.

Example 28

20 Preparation of Clone T7N1-25

[1] Preparation of Clone 1925

Clones N19MX24A-1 (prepared in Example 11[1]) and MX25-1 were ligated using overlapping region by PCR. One µl (about 0.5 to 1 µg/µl) of each DNA fragment from clones N19MX24A-1 and MX25-1 (977 and 849 bp, respectively) was added into a reaction mixture containing 10 µl of 10 x PCR buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl, 15 mM MgCl₂, 1% gelatin), 8 µl of 2.5 mM dNTPs, 5 µl each of 20 pmol/µl synthetic primers MS122 and MS152, and 76.5 µl of water. After an intimate mixing, the mixture was heated at 95 °C for 5 min, then immediately cooled to 0 °C. One minute later, to the mixture was added 0.5 µl of Taq DNA polymerase (7 U/µl, AmpliTaq™ Takara Shuzo), mixed and overlaid with mineral oil. The sample was then subjected to PCR. PCR was conducted by repeating 10 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 37 °C for 1 min; and at 72 °C for 2 min in DNA Thermal Cycler (Parkin Elmer Cetus). It was followed by an incubation at 97 °C for 2 min. The mixture was immediately cooled to 0 °C, kept at the same temperature for 2 min, mixed with 0.5 µl of Taq DNA polymerase (7 U/µl, AmpliTaq™ Takara Shuzo), and overlaid with mineral oil. The sample was then treated in the same manner as the above by repeating 15 times of reaction cycle, which comprises the following treatments: at 95 °C for 1 min; at 55 °C for 1 min; and at 72 °C for 2 min. After the final treatment at 72 °C for 7 min, the resultant reaction solution was treated with phenol/chloroform then precipitated with ethanol. The two DNA fragments were ligated and amplified by PCR. The ligated DNA sample was fractionated on agarose gel electrophoresis and a gel containing about 1000 bp fragment was excised from the gel (Molecular Cloning (1982) Cold Spring Harbor). The resultant DNA fragment was then modified as described in Example 3 and ligated into SmaI site of multi-cloning sites of pUC19, cloned and screened as described in Example 3 to obtain plasmid pUC1925. The resultant clone derived from serum of HC patient was designated as clone 1925.

45 [2] Preparation of Clone T7N119

Plasmid pUCN1-1 contains cDNA clone N1-1 at SmaI site of pUC19 from 5' to 3', HindIII site of pUC19 and HCV gene. The plasmid pUCN1-1 was digested with HindIII and NcoI completely and the larger fragment pUCN1HN containing the vector function was isolated. Ten ng of said DNA fragment was ligated to the following synthetic DNAs:

MS168: AGCTTACTAGTTAACGACTCACTATAGGG (31base pairs, SEQ ID NO: 188)
 MS169: CTGGCACCCCTATAGTGAGTCGTATTAACTAGTA (33base pairs, SEQ ID NO: 189)
 MS170: TGCCAGCCCCCTGATGGGGCGACACTCCACCATAGATCACTCC (44base pairs, SEQ ID NO: 190)
 MS171: TCACAGGGGAGTGATCTATGGTGGAGTGTGCGCCCCCATCAGGGGG(45base pairs, SEQ ID NO: 191)
 MS172: CCTGTGAGGAACACTGTCTCACGCAGAAAGCGTCTAGC(40base pairs, SEQ ID NO: 192)

MS173: CATGGCTAGACGCTTCTGCGTGAAGACAGTAGTTCC(37base pairs, SEQ ID NO: 193)

The above DNA fragments are shown from 5' to 3' termini.

DNA fragments except MS168 and MS173 were kinased at 5' terminus. A 100 pmol of each of 5'-kinased MS169, MS170, MS171 and MS172, and 20 pmol of each of MS168 and MS173 were ligated in the presence of T4 DNA ligase, and the reaction mixture treated with phenol treatment and ethanol precipitation, conventionally. A quarter of the precipitated DNA sample was ligated to 10 ng of pUCN1HN to obtain plasmid pUCT7N1 which comprises from 5', HindIII site, SphI site, promoter sequence derived from T7RNA polymerase, 5' non-translational region of HCV gene, DNA fragment of a gene encoding the N-terminal region of HCV core protein, at the 5' site of clone N1-1. The resultant plasmid pUCT7N1 contains clone T7N1 between HindIII and SphI sites. Clone T7N1N3N10 was prepared in the same manner as that described in Example 4 [2] except that plasmid pUCT7N1 was used instead of pUCN1-1 having clone N1-1.

Clones T7N1N3N10 and N27N19-1 prepared in Example 11 [2] were ligated by taking advantage of unique restriction site which exists in the overlapping regions of the both clones. Upon digestion with restriction enzyme BamHI, T7N1N3N10 and N27N19-1 were cleaved at 3' site of No. 1332 (G) and No. 3 (G), respectively. The ligation was accomplished on the basis of an assumption that plasmids pUCN1N3N10 and pUCN27N19-1 contain each DNA fragment in the same orientation (on the HCV gene, HindIII site of pUC19 located at 5' site). Thus, plasmid pUCN119 was prepared by digesting pUCN27N19-1 with EcoRI and BamHI to isolate a DNA fragment containing the 5' region of clone N27N19-1 (the fragment comprises clone N27N19-1 attached at the 3' terminus by EcoRI-SphI fragment of plasmid pUC19), ligating said fragment to the EcoRI-BamHI fragment containing the vector function of plasmid pUCN1N3N10, cloning and screening. Plasmid pUCN119 contains the desired clone T7N119 comprising, from 5' to 3', HindIII site, SphI site, promoter sequence derived from T7RNA polymerase, a part of 5' non-translational region of HCV gene, clones N1-1, N3-1, N10-1, N27-3, N19-1 without overlapping.

25 [3] Preparation of Clone T7N1-25

Clones T7N119 and 1925 prepared in the above [1] were ligated by taking advantage of unique restriction site which exists in the overlapping regions of the both clones. Upon digestion with restriction enzyme PvuII, clone T7N119 was cleaved at 3' site of No. 288 (T) of base sequence of clone N19-1 in N19 region which is shown by SEQ ID NO 16, and clone 1925 was cleaved at 3' of No. 288 (T). The ligation of T7N119 and 1925 clones was accomplished on the basis of an assumption that plasmids pUCT7N119 and pUC1925 contain each DNA fragment in the same orientation. Thus, plasmid pUCTN119 was prepared by digesting pUC1925 with PvuII and EcoRI to isolate a DNA fragment encoding HCV originated gene (said DNA fragment contains at 3' of said cDNA a EcoRI-SphI fragment of plasmid pUC19), exchanging the PvuII-EcoRI fragment containing 3' region of N19 region of plasmid pUCT7N119 with the fragment obtained from plasmid pUCTN1-25, cloning, and screening.

Plasmid pUCT7N1-25 contains the desired clone T7N1-25 comprising clones T7N119 and 1925 ligated at PvuII site without overlapping.

40 Example 29

Preparation of Clone T7N1-30U

[1] Preparation of Clone 1530UNot

The clone 1530U prepared in Example 23[5] contains HindIII site adjacent to 3' site of cDNA of HCV. Plasmid pUC1530U was digested completely with HindIII, blunt ended with T4DNA polymerase conventionally. Ten ng of resultant DNA fragment was ligated to an excess amount of EcoRI-NotI-BamHI adapter (\times 100 molar, Toyobo) in the presence of T4 DNA ligase, conventionally. After the phenol treatment and ethanol precipitation, the fragment was digested with NotI, ligated, cloned and screened to yield plasmid pUC1530UNot.

[2] Preparation of Clone T7N1-30U

55 Clones T7N1-25 prepared in Example 28, MX25N15-1 prepared in Example 17 [4], and 1530UNot obtained in the present Example were ligated by taking advantage of unique restriction site which exists in the overlapping regions of the clones. PUCT7N1-25 was digested with SphI and PstI and about 1 ng of a DNA fragment T7N1-325SP containing the majority of clone T7N1-25 was extracted from gel. Plasmid

pUCMX25N15-1 was digested with PstI and EcoT221 and about 1 ng of a DNA fragment MX25N15-1PE containing the majority of clone MX25N15-1 was extracted from gel. Plasmid pUC1530UNot was digested with EcoT221 and NotI and about 1 ng of a DNA fragment 1530UEN containing the majority of clone 1530UNot was isolated from gel.

- 5 About 200 ng of each of the above fragments T7N1-25SP, MX25N15-1PE, 1530UEN, and 1 ng of SpecI-NotI fragment of λZapII (Stratagene) were ligated according to the protocol attached to the kit. It was followed by packaging with GIGAPACKII PACKING EXTRACTS, GOLD (Stratagene). All the procedures including ligation, titer check, amplification of λDNA, isolation and packaging were conducted according to the teaching of protocol attached thereto. The screening of recombinant phage was carried out for the 10 inserted DNA fragment by isolating 20 white plaques, subcloning into plasmid pBBLUESCRIPT SK (-). Among 2 clones of 20 clones subcloned into plasmid pBBLUESCRIPT SK (-) contained a DNA fragment having three sequences of HCV gene between SpecI and NotI site of said plasmid λZapII (from 5' SpecI site to 3': clone T7N1-25SP, MX25N15-1PE and 1530UEN). The resultant plasmid was designated as pT7NI-30U.
- 15 The plasmid pT7NI-30U contains a clone T7N1-30U comprising three DNA fragments originated from HCV ligated without overlapping SpecI and NotI sites. Base and amino acid sequence of polypeptide encoded by said clone are shown in SEQ ID NO 101.

Example 30

Large-Scale-Expression of Polypeptides CORE and C + N23

[1] Preparation of clone CN23

- 25 A region of clone N23-1 to be expressed was obtained by PCR using as a template, pUCN23-1 having clone N23-1 prepared in Example 16. The following synthetic DNAs were used as primers.

5' primer:

MS165: 5' GCAAGCTTATGCTGCTGCCGGGCCATCT3' (SEQ ID NO: 194)

3' primer:

- 30 MS166: 5' GCGAATTTCAGATCTTCATCATGTGTTGCAGTCGATCAC 3' (SEQ ID NO: 195)

The synthetic DNA was adjusted to 20 pmol/ml before use.

PCR was carried out in the same manner as described in the above according to Saiki's method in a total volume of 100 μl containing 100 ng of plasmid pUCN23-1, as a template, and 2 μl each of 3' and 5' primers. The reaction mixture was heated at 95 °C for 5 min and quenched at 0 °C. One minute later, to the 35 mixture was added 0.5 μl of Taq DNA polymerase (7 U/ml, AmpliTaq™ Takara Shuzo), mixed thoroughly and overlaid with mineral oil. The sample was reacted by repeating 8 cycles of treatments which comprises: at 95 °C for 1 minute; at 55 °C for 1 min; and at 72 °C for 1 min in DNA Thermal Cycler (Parkin Elmer Cetus). It was followed by 17 times of reaction cycles comprising, at 95 °C for 1 minute; at 65 °C for 1 min; and at 72 °C for 1 min. The resultant reaction solution was extracted with phenol/chloroform, and 40 precipitated with ethanol conventionally. The amplified DNA samples were digested with HindIII and EcoRI, and fractionated on acrylamide gel electrophoresis and extracted.

The DNA fragment was then ligated into HindIII and EcoRI sites of cloning vector pUC19, cloned 45 screened to obtain plasmid pUCN23A. The base sequence of clone N23A shows that it comprises a DNA fragment shown by a base sequence from Nos. 1 to 915 of SEQ ID No 50 having additional DNA fragments attached to the both 5'- and 3'-termini. That is, at its 5'-terminus, the following DNA fragment comprises a HindIII restriction site followed by an initiation codon ATG was attached.

5' GCAAGCTTATG 3'

50 3' CGTTCGAATAC 5' (SEQ ID NO 155)

And at its 3'-terminus, the following DNA fragment comprises two termination codons, BglII and EcoRI sites from 5' to 3' was attached.

5' TGATGAAGATCTGAATTCGC 3'

3' ACTACTTCTAGACTTAAGCG 5' (SEQ ID NO 156)

5

Plasmid pCZCORE obtained in Example 6 [1] was digested with SacII and blunt ended with T4DNA polymerase conventionally, which was followed by the digestion with BgIII and subjected to acrylamide gel electrophoresis. From the gel, a DNA fragment pCZCORE/SB containing a vector part of vector pCZ and the N-terminal region of core protein of HCV was extracted.

In the same manner, plasmid pUCN23A was digested with SmaI and BgIII completely and subjected to acrylamide gel electrophoresis. From the gel, a DNA fragment N23A/SB containing the sequence of clone N23-1 was extracted, which fragment contains, from 5' terminus, a base sequence from No.107 (G) to No. 915 (A) of SEQ ID NO 50 and two stop codons and a BgIII site.

Ten ng of a DNA fragment pCZCORE/SB and 100 ng of N23A/SB were ligated conventionally to obtain plasmid pCZCN23, which contains clone CN23 of SEQ ID NO 102 between HindIII and BgIII sites.

[2] Modification of expression vector

The improvement of the efficiency of expression was accomplished by making the expression unit in expression vector multiple. Thus, plasmids pCZCORE and pCZCN23 were digested thoroughly with restriction enzymes BamHI and BgIII, and the resultant DNA fragments CORE/BB and CN23/BB encoding a polypeptide derived from HCV was recovered.

The DNA fragment CORE/BB (100 ng) was ligated by T4DNA ligase at 12 °C for 30 minutes according to a conventional method. The resultant material was worked up with phenol treatment and ethanol precipitation, digested with restriction enzymes BamHI and BgIII, digested thoroughly with BgIII, and ligated to plasmid pCZCORE (10 ng) previously dephosphorylated with alkali phosphatase by a conventional method to obtain plasmid pCZCORE tandem 2, 3, 4, 8, 16, in which 2, 3, 4, 6, 12 expression units of polypeptide CORE between BamHI and BgIII sites of plasmid pCZCORE are ligated forwardly in tandem. The same procedure was conducted with the DNA fragment CN23/BB and plasmid pCACN23 to obtain plasmid pCZCN23 tandem 2, 3, 4, 6.

[3] Direct Expression of polypeptides CORE and CN23 in Large Scale

Expression of polypeptide CORE and CN23 in *E. coli* was conducted using each of expression vector obtained in the above [2] in the same method in Example 6 [1].

For this purpose, conditions such as the timing for induction, species or strains of host cells, number of tandem and the temperature of the culture in the system transformed with pCZCORE were studied.

For example, hosts derived from K12 strain such as JM109, DH5, KS476 and hosts derived from B strain were studied. The degree of expression varies depending on the host. The host derived from B strain and KS476 gave an excellent expression, and the expression amount per culture medium was about 8 to 10 times larger than that obtained using DH5, as host cells. The quantities also varied depending on the time for induction. Thus, 0.5 ml of overnight culture containing transformants (OD 600 = about 1.5) was inoculated into 10 ml bactopeptone medium (Difco; 20 g/l bactopeptone, 0.2% v/v glycerin, 0.1 M MgSO₄, 10 g/l NaCl, 160 µl/l of 0.1% thiamin chloride, 100 mg/l ampicillin) in 10 ml L-shaped tube and cultured at 30°C. IPTG was added either of the time when the conductivity (OD 600) reached to about 0.5, 0.8, 1.2, 2.0 and 3.0 for induction. The cultured broth which was induced when the OD 600 reached to about 0.5 gave the best expression and the amounts of the expression product was highest. The expression was not directly proportional to the number of tandem. For example, when cells transformed with expression plasmid containing in tandem three units of an expression unit CORE/BB, the expression efficiency was low, whereas, it was drastically increased when the plasmid contains 4 units in tandem and kept increase until the number of units becomes 8. However, significant improvement was no more observed and the expression amount was almost the same between cultures containing host cells transformed with tandem 8 and 16. The above studies provided the condition for large-scale-expression of polypeptide CORE as follows. A host cell derived from B strain or KS476 was transformed with pCZCORE tandem 8 and cultured 30°C overnight, inducing the expression when the density reached to about 0.5 (OD 600). Among the plasmid pCZCN23 tandem 2, 3, 4, 6 prepared for the expression of polypeptide CN23, tandem 6 was used and the expression was carried out under the same condition as that used for pCZCORE tandem.

SEQ ID NO:1

SEQUENCE LENGTH: 483 base pairs

SEQUENCE TYPE: nucleic acid

5 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

10 MOLECULE TYPE: cDNA to genomic RNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

15 CLONE: N1-1

CTCCACCATA GATCACTCCC	CTGTGAGGAA CTACTGTCTT	CACGCAGAAA GCGTCTAGCC	60
ATGGCGTTAG TATGAGTGTC	GTGCAGCCTC CAGGACCCCC	CCTCCCGGGA GAGCCATAGT	120
20 GGTCTGCAGGA ACCGGTGAGT	ACACCGGAAT TGCCAGGACG	ACCGGGTCCT TTCTTGGATC	180
AACCCGCTCA ATGCCCTGGAG	ATTGGGGCGT GCCCCCGCGA	GACTGCTAGC CGAGTAGTGT	240
TGGGTCGCGA AAGGCCCTGT	GGTACTGCCT GATAGGGTGC	TTGCGAGTGC CCCGGGAGGT	300
CTCGTAGACC GTGCATC ATG	AGC ACA AAT CCA AAA CCC	CAA AGA AAA ACC	350
Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr			
1 5 10			
25 AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG	GGC GGT		398
Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly			
15 20 25			
30 GGT CAG ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC	CCC AGG		446
Gly Gln Ile Val Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg			
30 35 40			
35 TTG GGT GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG T			483
Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg			

SEQ ID NO:2

40 SEQUENCE LENGTH: 187 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

45 ANTI-SENSE: No

MOLECULE TYPE: cDNA to genomic RNA

ORIGINAL SOURCE

50

55

ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N2-1

5	AGGTCTCGTA GACCGTGCAT C ATG AGC ACA AAT CCA AAA CCC CAA AGA AAA	51
	Met Ser Thr Asn Pro Lys Pro Gln Arg Lys	
	1 5 10	
10	ACC AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC	99
	Thr Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly	
	15 20 25	
15	GGT GGT CAG ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC	147
	Gly Gly Gln Ile Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro	
	30 35 40	
20	AGG TTG GGT GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG T	187
	Arg Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg	
	45 50 55	

SEQ ID NO:3

SEQUENCE LENGTH: 531 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: cDNA to genomic RNA

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N3-1

25	AGGTCTCGTA GACCGTGCAT C ATG AGC ACA AAT CCA AAA CCC CAA AGA AAA ACC	54
	Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr	
	1 5 10	
30	AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT	102
	Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly	
	15 20 25	
35	GGT CAG ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG	150
	Gly Gln Ile Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg	

50

55

	30	35	40	
5	TTG GGT GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG TCG CAA CCT CGT			198
	Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg			
	45	50	55	
	GGA AGG CGA CAA CCT ATC CCC AAG GCT CGC CAA CCC GAG GGC AGG GCC			246
	Gly Arg Arg Gln Pro Ile Pro Lys Ala Arg Gln Pro Glu Gly Arg Ala			
10	60	65	70	75
	TGG GCT CAG CCC GGG TAC CCT CCC CTC TAT GGC AAT GAG GGC TTG			294
	Trp Ala Gln Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu			
	80	85	90	
15	GGG TGG GCA GGA TGG CTC CTG TCA CCC CGC GGC TCC CGG CCT AGT TGG			342
	Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp			
	95	100	105	
	GGC CCC ACG GAC CCC CGG CGT AGG TCG CGT AAT TTG GGT AAG GTC ATC			390
	Gly Pro Thr Asp Pro Arg Arg Ser Arg Asn Leu Gly Lys Val Ile			
20	110	115	120	
	GAT ACC CTC ACA TGC GGC TTC GCC GAT CTC ATG GGT ACA TTC CGC TCG			438
	Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu			
	125	130	135	
25	GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG GCT CTA GCG CAT GGC GTC			486
	Val Gly Ala Pro Leu Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val			
	140	145	150	155
30	CGG GTT CTG GAG GAC GGC GTG AAC TAC GCA ACA GGG AAC TTG CCC			531
	Arg Val Leu Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro			
	160	165	170	

SEQ ID NO:4

35 SEQUENCE LENGTH: 755 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 40 MOLECULE TYPE: cDNA to genomic RNA
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 45 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N10-1

	C GTG AAC TAT GCA ACA GGG AAT CTG CCT GGT TGC TCC TTT TCT ATC TTC	49
	Val Asn Tyr Ala Tyr Gly Asn Leu Pro Gly Cys Ser Phe Ser Ile Phe	
5	1 5 10 15	
	CTT TTG GCT TTG CTG TCC TGT TTG ACC ATC CCA GCT TCC GCC TAC CAA	97
	Leu Leu Ala Leu Leu Ser Cys Leu Thr Ile Pro Ala Ser Ala Tyr Gln	
	20 25 30	
10	GTG CGC AAC GCG TCC GGG GTG TAC CAT GTC ACG AAC GAC TGC TCC AAC	145
	Val Arg Asn Ala Ser Gly Val Tyr His Val Thr Asn Asp Cys Ser Asn	
	35 40 45	
	TCA AGT ATT GTG TAT GAG GCG GCG GAC GTG ATT ATG CAC ACC CCC GGG	193
	Ser Ser Ile Val Thr Glu Ala Ala Asp Val Ile Met His Thr Pro Gly	
15	50 55 60	
	TGC GTG CCC TGC GTC CGG GAG AAC AAT TCC TCC CGC TGC TGG GTA GCG	241
	Cys Val Pro Cys Val Arg Glu Asn Asn Ser Ser Arg Cys Trp Val Ala	
	65 70 75 80	
20	CTC ACT CCC ACG CTT GCG GCC AGG AAC AGC AGC ATC CCC ACT ACG ACA	289
	Leu Thr Pro Thr Leu Ala Ala Arg Asn Ser Ser Ile Pro Thr Thr Thr	
	85 90 95	
25	ATA CGG CGT CAT GTC GAC TTG CTC GTT GGG GCA GCT GTC CTC TGT TCC	337
	Ile Arg Arg His Val Asp Leu Leu Val Gly Ala Ala Ala Leu Cys Ser	
	100 105 110	
	GCT ATG TAT GTG GGG GAT TTT TGC GGA TCT GTT TTC CTC GTC TCC CAG	385
	Ala Met Tyr Val Gly Asp Phe Cys Gly Ser Val Phe Leu Val Ser Gln	
30	115 120 125	
	CTG TTC ACT TTC TCA CCT CGC CGG TAT GAG ACG GTG CAA GAC TGC AAT	433
	Leu Phe Thr Phe Ser Pro Arg Arg Tyr Glu Thr Val Gln Asp Cys Asn	
	130 135 140	
35	TGC TCA ATC TAT CCC GGC CAT GTA TCA GGC CAT CGC ATG GCT TGG GAT	481
	Cys Ser Ile Tyr Pro Gly His Val Ser Gly His Arg Met Ala Trp Asp	
	145 150 155 160	
	ATG ATA ATG AAT TGG TCA CCT ACA ACA GCC CTA GTG GTA TCG CAG CTA	529
40	Met Ile Met Asn Trp Ser Pro Thr Thr Ala Leu Val Val Ser Gln Leu	
	165 170 175	
	CTC CGG ATC CCA CAA GCC GTC GTG GAT ATG GTG GCG GGG GCC CAC TGG	577
	Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp	
45	180 185 190	
	GGA GTC CTG GCG GGC CTT GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT	625

Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala
 195 200 205
 AAG GTC TTG GTG ATG CTG CTC TTC GCC GGT GTT GAC GGG GGG ACC 673
 5 Lys Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly Thr
 210 215 220
 CAC GTG ACA GGG GGA AAG GTA GCC TAC ACC ACC CAG AGC TTT ACA TCC 721
 His Val Thr Gly Gly Lys Val Ala Tyr Thr Thr Gln Ser Phe Thr Ser
 10 225 230 235 240
 TTC TTT TCA CGA GGG CCG TCT CAG AGA ATC CAG C
 Phe Phe Ser Arg Gly Pro Ser Gln Arg Ile Gln
 245 250

15 SEQ ID NO:5
 SEQUENCE LENGTH: 1258 base pairs
 SEQUENCE TYPE: nucleic acid
 20 STRANDEDNESS: double
 TOPOLOGY: linear
 MOLECULE TYPE: cDNA to genomic RNA
 ANTI-SENSE: No
 25 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N3N10

30 AGGTCTCGTA GACCGTGCAT C ATG AGC ACA AAT CCA AAA CCC CAA AGA AAA ACC 54
 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr
 1 5 10
 AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT 102
 35 Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly
 15 20 25
 GGT CAG ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG 150
 Gly Gln Ile Val Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg
 40 30 35 40
 TTG GGT GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG TCG CAA CCT CGT 198
 Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Ser Glu Pro Arg
 45 50 55
 45 GGA AGG CGA CAA CCT ATC CCC AAG GCT CGC CAA CCC GAG GGC AGG GCC 246

	Gly Arg Arg Gln Pro Ile Pro Lys Ala Arg Gln Pro Glu Gly Arg Ala		
60	65	70	75
5	TGG GCT CAG CCC GGG TAC CCT TGG CCC CTC TAT GGC AAT GAG GGC TTG Trp Ala Gln Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu		294
	80	85	90
10	GGG TGG GCA GGA TGG CTC CTG TCA CCC CGC GGC TCC CGG CCT AGT TGG Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp		342
	95	100	105
15	GGC CCC ACG GAC CCC CGG CGT AGG TCG CGT AAT TTG GGT AAG GTC ATC Gly Pro Thr Asp Pro Arg Arg Ser Arg Asn Leu Gly Lys Val Ile		390
	110	115	120
20	GAT ACC CTC ACA TGC GGC TTC GCC GAT CTC ATG GGT ACA TTC CGC TCG Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu		438
	125	130	135
25	GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG GCT CTA GCG CAT GGC GTC Val Gly Ala Pro Leu Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val		486
	140	145	150
30	CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA ACA GGG AAC CTG CCT GGT Arg Val Leu Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly		534
	160	165	170
35	TGC TCC TTT TCT ATC TTC CTT TTG GCT TTG CTG TCC TGT TTG ACC ATC Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Ile		582
	175	180	185
40	CCA GCT TCC GCC TAC CAA GTG CGC AAC GCG TCC GGG GTG TAC CAT GTC Pro Ala Ser Ala Tyr Gln Val Arg Asn Ala Ser Gly Val Tyr His Val		630
	190	195	200
45	ACG AAC GAC TGC TCC AAC TCA AGT ATT GTG TAT GAG GCG GCG GAC GTG Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Val		678
	205	210	215
50	ATT ATG CAC ACC CCC GGG TGC GTG CCC TGC GTC CGG GAG AAC AAT TCC Ile Met His Tyr Pro Gly Cys Val Pro Cys Val Arg Glu Asn Asn Ser		726
	220	225	230
	240	245	250
	TCC CGC TGC TGG GTA GCG CTC ACT CCC ACG CTT GCG GCC AGG AAC AGC Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala Arg Asn Ser		774
	AGC ATC CCC ACT ACG ACA ATA CGG CGT CAT GTC GAC TTG CTC GTT GGG Ser Ile Pro Thr Thr Ile Arg Arg His Val Asp Leu Leu Val Gly		822

	255	260	265	
5	GCA GCT GCT CTC TGT TCC GCT ATG TAT GTG GGG GAT TTT TGC GGA TCT Ala Ala Ala Leu Cys Ser Ala Met Tyr Val Gly Asp Phe Cys Gly Ser			870
	270	275	280	
10	GTT TTC CTC GTC TCC CAG CTG TTC ACT TTC TCA CCT CGC CGG TAT GAG Val Phe Leu Val Ser Gln Leu Phe Thr Phe Ser Pro Arg Arg Tyr Glu			918
	285	290	295	
15	ACG GTG CAA GAC TGC AAT TGC TCA ATC TAT CCC GGC CAT GTA TCA GGC Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Val Ser Gly			966
	300	305	310	315
20	CAT CGC ATG GCT TGG GAT ATG ATA ATG AAT TGG TCA CCT ACA ACA GCC His Arg Met Ala Trp Asp Met Ile Met Asn Trp Ser Pro Thr Thr Ala			1014
	320	325	330	
25	CTA GTG GTA TCG CAG CTA CTC CGG ATC CCA CAA GCC GTC GTG GAT ATG Leu Val Val Ser Gln Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met			1062
	335	340	345	
30	GTG GCG GGG GCC CAC TGG GGA GTC CTG GCG GGC CTT GCC TAC TAT TCC Val Ala Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser			1110
	350	355	360	
35	ATG GTG GGG AAC TGG GCT AAG GTC TTG GTT GTG ATG CTG CTC TTC GCC Met Val Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala			1158
	365	370	375	
40	GGT GTT GAC GGG GGG ACC CAC GTG ACA GGG GGA AAG GTA GCC TAC ACC Gly Val Asp Gly Gly Thr His Val Thr Gly Gly Lys Val Ala Tyr Thr			1206
	380	385	390	395
45	ACC CAG AGC TTT ACA TCC TTC TTT TCA CGA GGG CCG TCT CAG AGA ATC Thr Gln Ser Phe Thr Ser Phe Phe Ser Arg Gly Pro Ser Gln Arg Ile			1254
	400	405	410	
	CAGC			1258
	Gln			
50	SEQ ID NO:6 SEQUENCE LENGTH: 1554 base pairs SEQUENCE TYPE: nucleic acid STRANDEDNESS: double TOPOLOGY: linear MOLECULE TYPE: cDNA to genomic RNA			

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

5 IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N1N3N10

10	CTCCACCATA GATCACTCCC CTGTGAGGAA CTACTGTCTT CACGCAGAAA GCGCTAGCC	60
	ATGGCGTTAG TATGAGTGTC GTGCAGCCTC CAGGACCCCC CCTCCCGGGA GAGCCATAGT	120
	GGTCTGCGGA ACCGGTGAGT ACACCGGAAT TGCCAGGACG ACCGGGTCTT TTCTTGGATC	180
	AACCCGCTCA ATGCCTGGAG ATTTGGCGT GCCCCCGCGA GACTGCTAGC CGAGTAGTGT	240
15	TGGGTCGCGA AAGGCCTTGT GGTACTGCCT GATAGGGTGC TTGCGAGTGC CCCGGGAGGT	300
	CTCGTAGACC GTGCATC ATG AGC ACA AAT CCA AAA CCC CAA AGA AAA ACC	350
	Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr	
	1 5 10	
20	AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT	398
	Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly	
	15 20 25	
	GGT CAG ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG	446
	Gly Gln Ile Val Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg	
25	30 35 40	
	TTG GTT GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG TCG CAA CCT CGT	494
	Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg	
	45 50 55	
30	GGA AGG CGA CAA CCT ATC CCC AAG GCT CGC CAA CCC GAG GGC AGG GCC	542
	Gly Arg Arg Gln Pro Ile Pro Lys Ala Arg Gln Pro Glu Gly Arg Ala	
	60 65 70 75	
35	TGG GCT CAG CCC GGG TAC CCT TGG CCC CTC TAT GGC AAT GAG GGC TTG	590
	Trp Ala Gln Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu	
	80 85 90	
	GGG TGG GCA GGA TGG CTC CTG TCA CCC CGC GGC TCC CGG CCT AGT TGG	638
	Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp	
40	95 100 105	
	GGC CCC ACG GAC CCC CGG CGT AGG TCG CGT AAT TTG GGT AAG GTC ATC	686
	Gly Pro Thr Asp Pro Arg Arg Ser Arg Asn Leu Gly Lys Val Ile	
	110 115 120	
45	GAT ACC CTC ACA TGC GGC TTC GCC GAT CTC ATG GGT ACA TTC CGC TCG	734
	Asp Thr Leu Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu	

	125	130	135		
5	GTC GGC GCC CCC CTA GGG GGC GCT GCC AGG GCT CTA GCG CAT GGC GTC			782	
	Val Gly Ala Pro Leu Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val				
10	140	145	150	155	
	CGG GTT CTG GAG GAC GGC GTG AAC TAT GCA ACA GGG AAT CTG CCT GGT			830	
	Arg Val Leu Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly				
15	160	165	170		
	TGC TCC TTT TCT ATC TTC CTT TTG GCT TTG CTG TCC TGT TTG ACC ATC			878	
	Cys Ser Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Ile				
20	175	180	185		
	CCA GCT TCC GCC TAC CAA GTG CGC AAC GCG TCC GGG GTG TAC CAT GTC			926	
	Pro Ala Ser Ala Tyr Gln Val Arg Asn Ala Ser Gly Val Tyr His Val				
25	190	195	200		
	ACG AAC GAC TGC TCC AAC TCA AGT ATT GTG TAT GAG GCG GCG GAC GTG			974	
	Thr Asn Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Val				
30	205	210	215		
	ATT ATG CAC ACC CCC GGG TGC GTG CCC TGC GTC CGG GAG AAC AAT TCC			1022	
	Ile Met His Thr Pro Gly Cys Val Pro Cys Val Arg Glu Asn Asn Ser				
35	220	225	230	235	
	TCC CGC TGC TGG GTA GCG CTC ACT CCC ACG CTT GCG GCC AGG AAC AGC			1070	
	Ser Arg Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala Arg Asn Ser				
40	240	245	250		
	AGC ATC CCC ACT ACG ACA ATA CGG CGT CAT GTC GAC TTG CTC GTT GGG			1118	
	Ser Ile Pro Thr Thr Ile Arg Arg His Val Asp Leu Leu Val Gly				
45	255	260	265		
	GCA GCT GCT CTC TGT TCC GCT ATG TAT GTG GGG GAT TTT TGC GGA TCT			1166	
	Ala Ala Ala Leu Cys Ser Ala Met Tyr Val Gly Asp Phe Cys Gly Ser				
50	270	275	280		
	GTT TTC CTC GTC TCC CAG CTG TTC ACT TTC TCA CCT CGC CGG TAT GAG			1214	
	Val Phe Leu Val Ser Gln Leu Phe Thr Phe Ser Pro Arg Arg Tyr Glu				
55	285	290	295		
	ACG GTG CAA GAC TGC AAT TGC TCA ATC TAT CCC GGC CAT GTC TCA GGC			1262	
	Thr Val Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Val Ser Gly				
60	300	305	310	315	
	CAT CGC ATG GCT TGG GAT ATG ATA ATG AAT TGG TCA CCT ACA ACA GCC			1310	
	His Arg Met Ala Trp Asp Met Ile Met Asn Trp Ser Pro Thr Thr Ala				
65	320	325	330		

CTA GTG GTA TCG CAG CTA CTC CGG ATC CCA CAA GCC GTC GTG GAT ATG 1358
 Leu Val Val Ser Gln Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met
 335 340 345
 5 GTG GCG GGG GCC CAC TGG GGA GTC CTG GCG GGC CTT GCC TAC TAT TCC 1406
 Val Ala Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser
 350 355 360
 10 ATG GTG GGG AAC TGG GCT AAG GTC TTG GTT GTG ATG CTG CTC TTC GCC 1454
 Met Val Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala
 365 370 375
 15 GGT GTT GAC GGG GGG ACC CAC GTG ACA GGG GGA AAG GTA GCC TAC ACC 1502
 Gly Val Asp Gly Gly Thr His Val Thr Gly Gly Lys Val Ala Tyr Thr
 380 385 390 395
 20 ACC CAG AGC TTT ACA TCC TTC TTT TCA CGA GGG CCG TCT CAG AGA ATC 1550
 Thr Gln Ser Phe Thr Ser Phe Phe Ser Arg Gly Pro Ser Gln Arg Ile
 400 405 410
 25 CAG C 1554
 Gln

25 SEQ ID NO:7
 SEQUENCE LENGTH: 370 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 30 TOPOLOGY: linear
 MOLECULE TYPE: cDNA to genomic RNA
 ANTI-SENSE: No
 ORIGINAL SOURCE
 35 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: HN3

40 GCAAGCTT ATG AGC ACA AAT CCA AAA CCC CAA AGA AAA ACC AAA CGT 47
 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg
 1 5 10
 AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG 95
 45 Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln
 15 20 25
 ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG TTG GGT 143

	Ile Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly		
30	35	40	45
GTG CGC GCG ACT AGG AAG ACT TCC GAG CCG CAA CCT CGT GGA AGG			191
5 Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Pro Gln Pro Arg Gly Arg			
50	55	60	
CGA CAA CCT ATC CCC AAG GCT CGC CAA CCC GAG GGT AGG GCC TGG GCT			239
10 Arg Gln Pro Ile Pro Lys Ala Arg Gln Pro Glu Gly Arg Ala Trp Ala			
65	70	75	
CAG CCC GGG TAC CCT TGG CCC CTC TAT GGC AAT GAG GGC TTG GGG TGG			287
Gln Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp			
80	85	90	
15 GCA GGA TGG CTC CTG TCA CCC CGC GGC TCC CGG CCT AGT TGG GGC CCC			335
Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro			
95	100	105	
20 ACG GAC CCC CGG CGT AGG TGAAGATCTG ATTTCGC			370
Thr Asp Pro Arg Arg Arg			
110	115		

25 SEQ ID NO:8
SEQUENCE LENGTH: 1264 base pairs
SEQUENCE TYPE: nucleic acid
STRANDEDNESS: double
30 TOPOLOGY: linear
MOLECULE TYPE: cDNA to genomic RNA
ANTI-SENSE: No
ORIGINAL SOURCE
35 ORGANISM: Hepatitis C virus
IMMEDIATE EXPERIMENTAL SOURCE
CLONE: HN3N10AB

40	GCAAGCTT ATG AGC ACA AAT CCA AAA CCC CAA AGA AAA ACC AAA CGT	47
	Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg	
	1 5 10	
45	AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT CAG	95
	Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln	
	15 20 25	
	ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG TTG GGT	143

50

55

	Ile Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly			
30	35	40	45	
5	GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG TCG CAA CCT CGT GGA AGG		191	
	Val Arg Ala Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg			
	50	55	60	
10	CGA CAA CCT ATC CCC AAG GCT CGC CAA CCC GAG GGC AGG GCC TGG GCT		239	
	Arg Gln Pro Ile Pro Lys Ala Arg Gln Pro Glu Gly Arg Ala Trp Ala			
	65	70	75	
15	CAG CCC GGG TAC CCT TGG CCC CTC TAT GGC AAT GAG GGC TTG GGG TGG		287	
	Gln Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp			
	80	85	90	
20	GCA GGA TGG CTC CTG TCA CCC CGC GGC TCC CGG CCT AGT TGG GGC CCC		335	
	Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro			
	95	100	105	
25	ACG GAC CCC CGG CGT AGG TCG CGT AAT TTG GGT AAG GTC ATC GAT ACC		383	
	Thr Asp Pro Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr			
	110	115	120	125
30	CTC ACA TGC GGC TTC GCC GAT CTC ATG GGT ACA TTC CGC TCG GTC GGC		431	
	Leu Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly			
	130	135	140	
35	GCC CCC CTA GGG GGC GCT GCC AGG GCT CTA GCG CAT GGC GTC CGG GTT		479	
	Ala Pro Leu Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val			
	145	150	155	
40	CTG GAG GAC GGC GTG AAC TAT GCA ACA GGG AAC CTG GGT GGT TGC TCC		527	
	Leu Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser			
	160	165	170	
45	TTT TCT ATC TTC CTT TTG GCT TTG CTG TCC TGT TTG ACC ATC CCA GCT		575	
	Phe Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Ile Pro Ala			
	175	180	185	
50	TCC GCC TAC CAA GTG CGC AAC GCG TCC GGG GTG TAC CAT GTC ACG AAC		623	
	Ser Ala Tyr Gln Val Arg Asn Ala Ser Gly Val Tyr His Val Thr Asn			
	190	195	200	205
55	GAC TGC TCC AAC TCA AGT ATT GTG TAT GAG GCG GCG GAC GTG ATT ATG		671	
	Asp Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Val Ile Met			
	210	215	220	
60	CAC ACC CCC GGG TGC GTG CCC TGC GTC CGG GAG AAC AAT TCC TCC CGC		719	
	His Thr Pro Gly Cys Val Pro Cys Val Arg Glu Asn Asn Ser Ser Arg			

	225	230	235	
5	TGC TGG GTA GCG CTC ACT CCC ACG CTT GCG GCC AGG AAC AGC AGC ATC Cys Trp Val Ala Leu Thr Pro Thr Leu Ala Ala Arg Asn Ser Ser Ile			767
	240	245	250	
10	CCC ACT ACG ACA ATA CGG CGT CAT GTC GAC TTG CTC GTT GGG GCA GCT Pro Thr Thr Thr Ile Arg Arg His Val Asp Leu Leu Val Gly Ala Ala			815
	255	260	265	
15	GCT CTC TGT TCC GCT ATG TAT GTG GGG GAT TTT TGC GGA TCT GTT TTC Ala Leu Cys Ser Ala Met Tyr Val Gly Asp Phe Cys Gly Ser Val Phe			963
	270	275	280	285
20	CTC GTC TCC CAG CTG TTC ACT TTC TCA CCT CGC CGG TAT GAG ACG GTG Leu Val Ser Gln Leu Phe Thr Phe Ser Pro Arg Arg Tyr Glu Thr Val			911
	290	295	300	
25	CAA GAC TGC AAT TGC TCA ATC TAT CCC GGC CAT GTA TCA GGC CAT CGC Gln Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Val Ser Gly His Arg			959
	305	310	315	
30	ATG GCT TGG GAT ATG ATA ATG AAT TGG TCA CCT ACA ACA GCC CTA GTG Met Ala Trp Asp Met Ile Met Asn Trp Ser Pro Thr Thr Ala Leu Val			1007
	320	325	330	
35	GTA TCG CAG CTA CTC CGG ATA CCA CAA GCC GTC GTG GAT ATG GTG GCG Val Ser Gln Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala			1015
	335	340	345	
40	GGG GCC CAC TGG GGA GTC CTG GCG GGC CTT GCC TAC TAT TCC ATG GTG Gly Ala His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val			1103
	350	355	360	365
45	GGG AAC TGG GCT AAG GTC TTG GTG ATG CTG CTC TTC GCC GGT GTT Gly Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala Gly Val			1151
	370	375	380	
50	GAC GGG GGG ACC CAC GTG ACA GGG GGA AAG GTA GCC TAC ACC ACC CAG Asp Gly Gly Thr His Val Thr Gly Gly Lys Val Ala Tyr Thr Thr Gln			1199
	385	390	395	
55	AGC TTT ACA TCC TTC TTT TCA CGA GGG CCG TCT CAG AGA ATC Ser Phe Thr Ser Phe Phe Ser Arg Gly Pro Ser Gln Arg Ile			1247
	400	405	410	
60	TGAAGATCTG AATT CGC			1264

SEQ ID NO:9

SEQUENCE LENGTH: 483 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

5 TOPOLOGY: linear

ANTI-SENSE: No

MOLECULE TYPE: cDNA to genomic RNA

ORIGINAL SOURCE

10 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N1-2

15	CTCCACCATA GATCACTCCC CTGTGAGGAA CTACTGTCTT CACGCAGAAA GCGTCTAGCC ATGGCGTTAG TATGAGTGTC GTGCAGCCTC CAGGCCCCCC CCTCCCGGGA GAGCCATAGT GGTCTGCGGA ACCGGTGAGT ACACCGGAAT TGCCAGGACG ACCGGGTCTT TTCTTGGATC AACCCGCTCA ATGCCCTGGAG ATTTGGGCGT GCCCCCGCGA GACTGCTAGC CGAGTAGTGT	60 120 180 240
20	TGGGTCGCGA AAGGCCTTGT GGTACTGCCT GATAGGGTGC TTGCGAGTGC CCCGGGAGGT CTCGTAGACC GTGCATC ATG AGC ACA AAT CCT AAA CCC CAA AGA CAA ACC	300 350
	Met Ser Thr Asn Pro Lys Pro Gln Arg Gln Thr	
	1 5 10	
25	AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly	398
	15 20 25	
30	GGT CAG ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG Gly Gln Ile Val Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg	446
	30 35 40	
	TTG GGT GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG T	483
	Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg	
35	45 50	

SEQ ID NO:10

SEQUENCE LENGTH: 483 base pairs

40 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

45 MOLECULE TYPE: cDNA to genomic RNA

ORIGINAL SOURCE

50

55

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: S1-1

5 CTCCACCATA GATCACTCCC CTGTGAGGAA CTACTGTCTT CACGCAGAAA GCGTCTAGCC 60
 ATGGCGTTAG TATGAGTGTC GTGCAGCCTC CAGGACCCCC CCTCCCGGGA GAGCCATAGT 120
 10 GGTCTGCGGA ACCGGTGAGT ACACCGGAAT TGCCAGGACG ACCGGGTCTT TTCTTGGATT 180
 AACCCGCTCA ATGCCTGGAG ATTTGGCGT GCCCCCGCGA GACCGCTAGC CGAGTAGTGT 240
 TGGGTCGCGA AAGGCCCTGT GGTACTGCCT GATAGGGTGC TTGCGAGTGC CCCGGGAGGT 300
 CTCGTAGACC GTGCACC ATG AGC ACG AAT CCT AAA CCT CAA AGA AAA ACC 350
 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr
 15 1 5 10
 AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGT GGT 398
 Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly
 15 20 25
 20 GGT CAG ATC GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG 446
 Gly Gln Ile Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg
 30 35 40
 25 TTG GGT GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG T 483
 Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg
 45 50

30 SEQ ID NO:11

SEQUENCE LENGTH: 483 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

35 TOPOLOGY: linear

ANTI-SENSE: No

MOLECULE TYPE: cDNA to genomic RNA

ORIGINAL SOURCE

40 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: S1-2

45 CTCCACCATA GATCACTCCC CTGTGAGGAA CTACTGTCTT CACGCAGAAA GCGTCTAGCC 60
 ATGGCGTTAG TATGAGTGTC GTGCAGCCTC CAGGACCCCC CCTCCCGGGA GAGCCATAGT 120
 GGTCTGCGGA ACCGGTGAGT ACACCGGAAT TGCCAGGACG ACCGGGTCTT TTCTTGGATT 180

50

55

5	AACCCGCTCA ATGCCTGGAG ATTTGGCGT GCCCCCAGA GACCGCTAGC CGAGTAGTGT TGGGTCGCGA AAGGCCTTGT GGTACTGCCT GATAGGGTGC TTGCGAGTGC CCCGGGAGGT CTCGTAGACC GTGCACC ATG AGC ACG AAT CCT AAA CAA AGA AAA ACC	240 300 350
	Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr	
	1 5 10	
10	AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGT GGT Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly 15 20 25	398
	Gly Gln Ile Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg 30 35 40	446
15	TTG GGT GTG CGC GCG ACT AGG AAG ACT TCC GAG CGG T Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg 45 50	483
20	SEQ ID NO:12	
	SEQUENCE LENGTH: 483 base pairs	
	SEQUENCE TYPE: nucleic acid	
	STRANDEDNESS: double	
25	TOPOLOGY: linear	
	ANTI-SENSE: No	
	MOLECULE TYPE: cDNA to genomic RNA	
	ORIGINAL SOURCE	
- 30	ORGANISM: Hepatitis C virus	
	IMMEDIATE EXPERIMENTAL SOURCE	
	CLONE: S1-3	
35	CTCCACCATA GATCACTCCC CTGTGAGGAA CTACTGTCTT CACGGAGAAA GCGTCTAGCC ATGGCGTTAG TATGAGTGTC GTGCAGCCTC CAGGACCCCC CCTCCGGGA GAGCCATAGT GGTCTGCGGA ACCGGTGAGT ACACCGGAAT TGCCAGGACG ACCGGGTCCCT TTCTTGATT AACCCGCTCA ATGCCTGGAG ATTTGGCGT GCCCCCAGA GACCGCTAGC CGAGTAGTGT 40 45 50	60 120 180 240 300 350
	Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr	
	1 5 10	
45	AAA CGT AAC ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGT GGT Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly	398

ACC GGG TTC CTT GCC GCG CTG TTC TAC ACC CAC AGC TTC AAC GCG TCC GG 339
 Thr Gly Phe Leu Ala Ala Leu Phe Tyr Thr His Ser Ph Asn Ala Ser
 100 105 110

5

SEQ ID NO:14

SEQUENCE LENGTH: 339 base pairs

SEQUENCE TYPE: nucleic acid

10

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

15

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N27-2

20

C CGG ATC CCA CAA GCC GTG GTG GAT ATG GTG GCG GGG GCC CAC TGG GGA 49
 Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly
 5 10 15

25

GTC CTG GCG GGC CTT GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG 97
 Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys
 20 25 30

30

GTC TTG GTT GTG ATG CTG CTT TTC GCC GGT GTT GAC GGG GGG ACC CAC 145
 Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly Gly Thr His
 35 40 45

35

GTG ACA GGG GGG AAG GTA GCC TAC ACC ACC CAG AGC TTC ACA TCC TTC 193
 Val Thr Gly Gly Lys Val Ala Tyr Thr Thr Gln Ser Phe Thr Ser Phe
 50 55 60

40

TTT TCA CGA GGG CCG TCT CAG AGG ATC CAA CTT GTA AAC ACT AAC GGC 241
 Phe Ser Arg Gly Pro Ser Gln Arg Ile Gln Leu Val Asn Thr Asn Gly
 65 70 75 80

45

AGC TGG CAC ATC AAT AGG ACT GCC CTG AAT TGC AAT GAC TCC CTT AAC 289
 Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Asn
 85 90 95

50

ACC GGG TTC CTT GCC GCG CTG TTC TAC ACC CAC AGC TTC AAC GCG TCC GG 339
 Thr Gly Phe Leu Ala Ala Leu Phe Tyr Thr His Ser Phe Asn Ala Ser
 100 105 110

55

SEQ ID NO:15

SEQUENCE LENGTH: 339 base pairs

SEQUENCE TYPE: nucleic acid

5 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

10 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N27-3

15	C CGG ATC CCA CAA GCC GTG GTG GAT ATG GTG GCA GGG GCC CAC TGG GGA 49	
	Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly	
	5 10 15	
20	GTC CTG GCG GGC CTT GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG 97	
	Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys	
	20 25 30	
25	GTC TTG GTT GTG ATG CTG CTC TTC GCC GGT GTT GAC GGG GGG ACC CAC 145	
	Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly Gly Thr His	
	35 40 45	
30	GTG ACA GGG GGG AAG GTA GCC TAC ACC ACC CAG GGC TTT ACA CCC TTC 193	
	Val Thr Gly Gly Lys Val Ala Tyr Thr Thr Gln Gly Phe Thr Pro Phe	
	50 55 60	
35	TTT TCA CGA GGG CCG TCT CAG AAA ATC CAA CTT GTA AAC ACT AAC GGC 241	
	Phe Ser Arg Gly Pro Ser Gln Lys Ile Gln Leu Val Asn Thr Asn Gly	
	65 70 75 80	
40	AGC TGG CAC ATC AAT AGG ACT GCC CTC AAT TGC AAT GAC TCC CTT AAC 289	
	Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Asn	
	85 90 95	
45	ACC GGG TTC CTT GCC GCG CTG TTC TAC ACC CAC AGC TTC AAC GCG TCC GG 339	
	Thr Gly Phe Leu Ala Ala Leu Phe Tyr Thr His Ser Phe Asn Ala Ser	
	100 105 110	

SEQ ID NO:16

SEQUENCE LENGTH: 393 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N19-1

10	GAG	GCC	GTG	AAC	TGC	GAT	GAC	TCC	CTT	AAC	ACC	GGG	TTC	CTT	GCC	GCG	48
	Glu	Ala	Val	Asn	Cys	Asp	Asp	Ser	Leu	Asn	Thr	Gly	Phe	Leu	Ala	Ala	
	1		5					10							15		
15	CTG	TTC	TAC	ACG	CAC	AGG	TTC	AAC	GCG	TCC	GGA	TGT	CCG	GAG	CGT	ATG	96
	Leu	Phe	Tyr	Thr	His	Arg	Phe	Asn	Ala	Ser	Gly	Cys	Pro	Glu	Arg	Met	
	20		25												30		
20	GCC	GGT	TGC	CGC	CCC	ATT	GAC	GAG	TTC	GCT	CAG	GGG	TGG	GGT	CCC	ATC	144
	Ala	Gly	Cys	Arg	Pro	Ile	Asp	Glu	Phe	Ala	Gln	Gly	Trp	Gly	Pro	Ile	
	35		40												45		
25	ACT	CAT	GTT	GTG	CCT	AAC	ATC	TCG	GAC	CAG	AGG	CCC	TAT	TGC	TGG	CAC	192
	Thr	His	Val	Val	Pro	Asn	Ile	Ser	Asp	Gln	Arg	Pro	Tyr	Cys	Trp	His	
	50		55												60		
30	TAC	GCG	CCT	CGA	CCG	TGT	GGT	ATC	GTA	CCC	GCG	TCG	CAG	GTG	TGT	GGT	240
	Tyr	Ala	Pro	Arg	Pro	Cys	Gly	Ile	Val	Pro	Ala	Ser	Gln	Val	Cys	Gly	
	65		70												80		
35	CCG	GTG	TAT	TGC	TTC	ACC	CCA	AGC	CCT	GTT	GTG	GTG	GGG	ACG	ACC	GAT	288
	Pro	Val	Tyr	Cys	Phe	Thr	Pro	Ser	Pro	Val	Val	Val	Gly	Thr	Thr	Asp	
	85		90												95		
40	CGT	TTC	GGC	GCC	CCC	ACG	TAC	AAC	TGG	GGA	AAC	AAT	GAG	ACG	GAT	GTG	336
	Arg	Phe	Gly	Ala	Pro	Thr	Tyr	Asn	Trp	Gly	Asn	Asn	Glu	Thr	Asp	Val	
	100		105												110		
45	CTA	CTC	CTC	AAC	AAC	ACA	CGG	CCG	CAG	GGC	AAC	TGG	TTC	GGT	TGT	384	
	Leu	Leu	Leu	Asn	Asn	Thr	Arg	Pro	Pro	Gln	Gly	Asn	Trp	Phe	Gly	Cys	
	115		120												125		
50	ACC	TGG	ATG													393	
	Thr	Trp	Met														
	130																

SEQ ID NO:17

SEQUENCE LENGTH: 393 base pairs

SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 5 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 10 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N19-2

	GAG	GCC	GTC	AAC	TGC	GAT	GAC	TCC	CTT	AAC	ACC	GGG	TTC	CTT	GCC	GCG	48
	Glu	Ala	Val	Asn	Cys	Asp	Asp	Ser	Leu	Asn	Thr	Gly	Phe	Leu	Ala	Ala	
15	1	5						10			15						
	CTG	TTC	TAC	ACG	CAC	AGG	TTC	AAC	GCG	TCC	GGA	TGT	CCG	GAG	CGT	ATG	96
	Leu	Phe	Tyr	Thr	His	Arg	Phe	Asn	Ala	Ser	Gly	Cys	Pro	Glu	Arg	Met	
	20	25										30					
20	GCC	AGT	TGC	CGC	CCC	ATT	GAC	GAG	TTC	GCT	CAG	GGG	TGG	GGT	CCC	ATC	144
	Ala	Ser	Cys	Arg	Pro	Ile	Asp	Glu	Phe	Ala	Gln	Gly	Trp	Gly	Pro	Ile	
	35	40									45						
	ACT	CAT	GTT	GTG	CCT	AAC	ATC	TCG	GAC	CAG	AGG	CCC	TAT	TGC	TGG	CAC	192
25	Thr	His	Val	Val	Pro	Asn	Ile	Ser	Asp	Gln	Arg	Pro	Tyr	Cys	Trp	His	
	50	55								60							
	TAC	GCG	CCT	CGA	CCG	TGT	GGT	ATC	GTA	CCC	GCG	TCG	CAG	GTG	TGT	GGT	240
	Tyr	Ala	Pro	Arg	Pro	Cys	Gly	Ile	Val	Pro	Ala	Ser	Gln	Val	Cys	Gly	
30	65	70								75			80				
	CCG	GTG	TAT	TGC	TTC	ACC	CCA	AGC	CCT	GTT	GTG	GTG	GGG	ACG	ACC	GAT	288
	Pro	Val	Tyr	Cys	Phe	Thr	Pro	Ser	Pro	Val	Val	Val	Gly	Thr	Asp		
	85	90								95							
35	CGT	TTC	GGC	GCC	CCC	ACG	TAT	AAC	TGG	GGG	AAC	AAT	GAG	ACG	GAT	GTG	336
	Arg	Phe	Gly	Ala	Pro	Thr	Tyr	Asn	Trp	Gly	Asn	Asn	Glu	Thr	Asp	Val	
	100	105								110							
40	CTA	CTC	CTC	AAC	AAC	ACA	CGG	CCG	CAA	GGC	AAC	TGG	TTC	GGT	TGT	384	
	Leu	Leu	Leu	Asn	Asn	Thr	Arg	Pro	Pro	Gln	Gly	Asn	Trp	Phe	Gly	Cys	
	115	120								125							
	ACC	TGG	ATG														
	Thr	Trp	Met														
45	130																

SEQ ID NO:18
 SEQUENCE LENGTH: 393 base pairs
 5 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 10 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N19-3

15	GAG GCC GTG AAC TGC GAT GAC TCC CTT AAC ACC GGG TTC CTT GCC GCG	48
	Glu Ala Val Asn Cys Asp Asp Ser Leu Asn Thr Gly Phe Leu Ala Ala	
	1 5 10 15	
20	CTG TTC TAC ACG CAC AGG TTC AAC GCG TCC GGA TGT CCG GAG CGT ATG	96
	Leu Phe Tyr Thr His Arg Phe Asn Ala Ser Gly Cys Pro Glu Arg Met	
	20 25 30	
25	GCC AGT TGC CGC CCC ATT GAT GAG TTC GCT CAG GGG TGG GGT CCC ATC	144
	Ala Ser Cys Arg Pro Ile Asp Glu Phe Ala Gln Gly Trp Gly Pro Ile	
	35 40 45	
30	ACT CAT GTG CCT AAC ATC TCG GAC CAG AGG CCC TAT TGC TGG CAC	192
	Thr His Val Val Pro Asn Ile Ser Asp Gln Arg Pro Tyr Cys Trp His	
	50 55 60	
35	TAC GCG CCT CGA CCG TGT GGT ATC GTA CCC GCG TGG CAG GTG TGT GGT	240
	Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala Trp Gln Val Cys Gly	
	65 70 75 80	
40	CCG GTG TAT TGC TTC ACC CCA AGC CCT GTT GTG GTG GGG ACG ACC GAT	288
	Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp	
	85 90 95	
45	CGT TTC GGC GCC CCC ACG TAT AAC TGG GGG AAC AAT GAG ACG GAT GTG	336
	Arg Phe Gly Ala Pro Thr Tyr Asn Trp Gly Asn Asn Glu Thr Asp Val	
	100 105 110	
50	CTA CTC CTC AAC AAC ACA CGG CCG CCG CAA GGC AAC TGG TTC GGT TGT	384
	Leu Leu Leu Asn Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys	
	115 120 125	
55	ACC TGG ATG	393
	Thr Trp Met	

130

SEQ ID NO:19

5 SEQUENCE LENGTH: 393 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 10 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 15 CLONE: H19-2

GAG	GCC	GTG	AAC	TGC	GAT	GAC	TCC	CTC	CAG	ACT	GGG	TTC	CTT	GCC	GCG	48
Glu	Ala	Val	Asn	Cys	Asp	Asp	Ser	Leu	Gln	Thr	Gly	Phe	Leu	Ala	Ala	
20	1	5					10							15		
CTG	TTC	TAC	AGG	CAC	AGG	TTC	AAC	GCA	TCC	GGG	TGC	CCA	GAA	CGC	ATG	96
Leu	Phe	Tyr	Arg	His	Arg	Phe	Asn	Ala	Ser	Gly	Cys	Pro	Glu	Arg	Met	
25	20	25					30									
GCC	AGC	TGC	CGC	CCC	ATT	AGC	GAG	TTC	GCT	CAG	GGG	TGG	GGT	CCT	ATC	144
Ala	Ser	Cys	Arg	Pro	Ile	Ser	Glu	Phe	Ala	Gln	Gly	Trp	Gly	Pro	Ile	
30	35	40					45									
ACT	CAT	GTT	GTG	CCT	GAC	GTG	TCG	GAC	CAG	AGG	CCT	TAT	TGC	TGG	CAC	192
Thr	His	Val	Val	Pro	Asp	Val	Ser	Asp	Gln	Arg	Pro	Tyr	Cys	Trp	His	
35	50	55					60									
TAC	GCG	CCT	CGA	CCG	TGC	GGT	ATC	GTA	CCC	GCG	TCG	CAG	GTG	TGT	GGT	240
Tyr	Ala	Pro	Arg	Pro	Cys	Gly	Ile	Val	Pro	Ala	Ser	Gln	Val	Cys	Gly	
40	65	70					75							80		
CCA	GTG	TAT	TGC	TTC	ACC	CCA	AGC	CCT	GTC	GTG	GTG	GGG	ACG	ACC	GAT	288
Pro	Val	Tyr	Cys	Phe	Thr	Pro	Ser	Pro	Val	Val	Val	Gly	Thr	Asp		
45	85	90					95									
CGT	TCT	GGC	GCC	CCC	ACG	TAC	ACC	TGG	GGG	GCG	AAT	GAG	ACG	GAC	GTG	336
Arg	Ser	Gly	Ala	Pro	Thr	Tyr	Thr	Trp	Gly	Ala	Asn	Glu	Thr	Asp	Val	
50	100	105					110									
CTA	CTC	CTT	AAC	AAC	ACG	CGT	CCG	CCA	CAG	GGC	AAC	TGG	TTC	GGT	TGT	384
Leu	Leu	Leu	Asn	Asn	Thr	Arg	Pro	Pro	Gln	Gly	Asn	Trp	Phe	Gly	Cys	
55	115	120					125									

50

55

ACC TGG ATG

393

Thr Trp Met

130

5

SEQ ID NO:20

SEQUENCE LENGTH: 393 base pairs

SEQUENCE TYPE: nucleic acid

10

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

15

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: H19-4

20	GAG GCC GTG AAC TGC GAT GAC TCC CTC CAG ACT GGG TTC CTT GCC GCG	48
	Glu Ala Val Asn Cys Asp Asp Ser Leu Gln Thr Gly Phe Leu Ala Ala	
1	5	10
15		15
20	CTG TTC TAC AGG CAC AGG TTC AAC GCA TCC GGG TGC CCA GAA CGC ATG	96
	Leu Phe Tyr Arg His Arg Phe Asn Ala Ser Gly Cys Pro Glu Arg Met	
25	20	25
		30
30	GCC AGC TGT CGC CCC ATT AGC GAG TTC GCT CAG GGG TGG GGC CCT ATC	144
	Ala Ser Cys Arg Pro Ile Ser Glu Phe Ala Gln Gly Trp Gly Pro Ile	
35	35	40
		45
40	ACT CAT GTT GTG CCT GAC GTG TCG GAC CAG AGG CCT TAT TGC TGG CAC	192
	Thr His Val Val Pro Asp Val Ser Asp Gln Arg Pro Tyr Cys Trp His	
45	50	55
		60
50	TAC GCG CCT CGA CCG TGC GGT ATC GTA CCC GCG TCG CAG GTG TGT GGT	240
	Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly	
55	65	70
		75
60		80
65	CCA GTG TAT TGC TTC ACC CCA AGC CCT GTC GTG GTG GGG ACG ACC GAT	288
	Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp	
70	85	90
		95
75	CGC TCT GGC GCC CCC ACG TAC ACC TGG GGG GCG AAT GAG ACG GAC GTG	336
	Arg Ser Gly Ala Pro Thr Tyr Thr Trp Gly Ala Asn Glu Thr Asp Val	
80	100	105
		110
85	CTA CTC CTT AAC AAC ACG CGT CCG CCA CAG GGC AAC TGG TTC GGT TGT	384

50

55

Leu Leu Leu Asn Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys
 115 120 125
 ACC TGG ATG 393
 Thr Trp Met
 130

SEQ ID NO:21
SEQUENCE LENGTH: 393 base pairs
SEQUENCE TYPE: nucleic acid
STRANDEDNESS: double
TOPOLOGY: linear
ANTI-SENSE: No
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus
IMMEDIATE EXPERIMENTAL SOURCE
CLONE: H19-10

	GAG	GCC	GTG	AAC	TGC	GAT	GAC	TCC	CTC	CAG	ACT	GGG	TTC	CTT	GCC	GCG	48
	Glu	Ala	Val	Asn	Cys	Asp	Asp	Ser	Leu	Gln	Thr	Gly	Phe	Leu	Ala	Ala	
25	1	5								10					15		
	CTG	TTC	TAC	AGG	CAC	AGG	TTC	AAC	GCA	TCC	GGG	TGC	CCA	GAA	CGC	ATG	96
	Leu	Phe	Tyr	Arg	His	Arg	Phe	Asn	Ala	Ser	Gly	Cys	Pro	Glu	Arg	Met	
	20									25					30		
30	GCC	AGC	TGC	CGC	CCC	ATT	AGC	GAG	TTC	GCT	CAG	GGG	TGG	GGC	CCT	ATC	144
	Ala	Ser	Cys	Arg	Pro	Ile	Ser	Glu	Phe	Ala	Gln	Gly	Trp	Gly	Pro	Ile	
	35									40					45		
	ACT	CAT	GTT	GTG	CCT	GAC	GTG	TCG	GAC	CAG	AGG	CCT	TAT	TGC	TGG	CAC	192
35	Thr	His	Val	Val	Pro	Asp	Val	Ser	Asp	Gln	Arg	Pro	Tyr	Cys	Trp	His	
	50									55					60		
	TAC	GCA	CCT	CGA	CCG	TGC	GGT	GTC	GTA	CCC	GCG	TCG	CAG	GTG	TGT	GGT	240
	Tyr	Ala	Pro	Arg	Pro	Cys	Gly	Val	Val	Pro	Ala	Ser	Gln	Val	Cys	Gly	
40	65									70			75		80		
	CCA	GTG	TAT	TGC	TTC	ACC	CCA	AGC	CCT	GTC	GTG	GTG	GGG	ACG	ACC	GAT	288
	Pro	Val	Tyr	Cys	Phe	Thr	Pro	Ser	Pro	Val	Val	Gly	Thr	Thr	Asp		
	85									90					95		
45	CGC	TCT	GGC	GCC	CCC	ACG	TAC	ACC	TGG	GGG	GCG	AAT	GAG	ACG	GAC	GTG	336
	Arg	Ser	Gly	Ala	Pro	Thr	Tyr	Thr	Trp	Gly	Ala	Asn	Glu	Thr	Asp	Val	

	100	105	110	
5	CTA CTC CTT AAC AAC ACG CGT CCG CCA CAG GGC AAC TGG TTC GGT TGT			384
	Leu Leu Leu Asn Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys			
	115	120	125	
	ACC TGG ATG			393
	Thr Trp Met			
	130			
10				

SEQ ID NO:22
SEQUENCE LENGTH: 393 base pairs
SEQUENCE TYPE: nucleic acid
15 STRANDEDNESS: double
TOPOLOGY: linear
ANTI-SENSE: No
ORIGINAL SOURCE
20 ORGANISM: Hepatitis C virus
IMMEDIATE EXPERIMENTAL SOURCE
CLONE: Y19-4

25	GAG GCC GTG AAC TGC GAT GAC TCC CTC CAG ACT GGG TTC CTT GCC GCG	48
	Glu Ala Val Asn Cys Asp Asp Ser Leu Gln Thr Gly Phe Leu Ala Ala	
	1 5 10 15	
30	CTG TTC TAC AGG CAC AGG TTC AAC GCA TCC GGG TGC CCA GAA CGC ATG	96
	Leu Phe Tyr Arg His Arg Phe Asn Ala Ser Gly Cys Pro Glu Arg Met	
	20 25 30	
35	GCC AGC TGT CGC CCC ATT AGC GAG TTC GCT CAG GGG TGG GGC CCT ATC	144
	Ala Ser Cys Arg Pro Ile Ser Glu Phe Ala Gln Gly Trp Gly Pro Ile	
	35 40 45	
40	ACT CAT GTT GTG CCT GAC GTG TCG GAC CAG AGG CCT TAT TGC TGG CAC	192
	Thr His Val Val Pro Asp Val Ser Asp Gln Arg Pro Tyr Cys Trp His	
	50 55 60	
45	TAC GCG CCT CGA CCG TGC GGT ATC GTA CCC GCG TCG CAG GTG TGT GGT	240
	Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly	
	65 70 75 80	
	CCA GTG TAT TGC TTC ACC CCA AGC CCT GTC GTG GTG GGG ACG ACC GAT	288
	Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Gly Thr Thr Asp	
	85 90 95	

	CGC TCT GGC GCC CCC ACG TAC ACC TGG GGG GCG AAT GAG ACG GAC GTG	336
	Arg Ser Gly Ala Pro Thr Tyr Thr Trp Gly Ala Asn Glu Thr Asp Val	
5	100 105 110	
	CTA CTC CTT AAC AAC ACG CGT CCG CCA CAG GGC AAC TGG TTC GGT TGT	384
	Leu Leu Leu Asn Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys	
	115 120 125	
10	ACC TGG ATG	393
	Thr Trp Met	
	130	

SEQ ID NO:23

15 SEQUENCE LENGTH: 393 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 20 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 25 CLONE: Y19-6

	GAG GCC GTG AAC TGC GAT GAC TCC CTC CAG ACT GGG TTC CTT GCC ACG	48
	Glu Ala Val Asn Cys Asp Asp Ser Leu Gln Thr Gly Phe Leu Ala Thr	
30	1 5 10 15	
	CTG TTC TAC AGG CAC AGG TTC AAC GCA TCC GGG TGC CCA GAA CGC ATG	96
	Leu Phe Tyr Arg His Arg Phe Asn Ala Ser Gly Cys Pro Glu Arg Met	
	20 25 30	
35	GCC AGC TGT CGC CCC ATT AGC GAG TTC GCT CAG GGG TGG GAC CCT ATC	144
	Ala Ser Cys Arg Pro Ile Ser Glu Phe Ala Gln Gly Trp Asp Pro Ile	
	35 40 45	
40	ACT CAT GTT GTG CCT GAC GTG TCG GAC CAG AGG CCT TAT TGC TGG CAC	192
	Thr His Val Val Pro Asp Val Ser Asp Gln Arg Pro Tyr Cys Trp His	
	50 55 60	
45	TAC GCG CCT CGA CCG TGC GGT ATC GTA CCC GCG TCG CAG GTG TGT GGT	240
	Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly	
	65 70 75 80	
	CCA GTG TAT TGC TTC ACC CCA AGC CCT GTC GTG GTG GGG ACG ACC GAT	288

	Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp		
	85	90	95
5	CGC TCT GGC GCC CCC ACG TAC ACC TGG GGG GCG AAT GAG ACG GAC GTG		336
	Arg Ser Gly Ala Pro Thr Tyr Thr Trp Gly Ala Asn Glu Thr Asp Val		
	100	105	110
10	CTA CTC CTT AAC AAC ACG CGT CCG CCA CAG GGC AAC TGG TTC GGT TGT		384
	Leu Leu Leu Asn Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys		
	115	120	125
15	ACC TGG ATG		393
	Thr Trp Met		
	130		

SEQ ID NO:24

SEQUENCE LENGTH: 393 base pairs

SEQUENCE TYPE: nucleic acid

20 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

25 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: Y19-7

30	GAG GCC GTG AAC TGC GAT GAC TCC CTC CAG ACT GGG TTC CTT GCC GCG		48
	Glu Ala Val Asn Cys Asp Asp Ser Leu Gln Thr Gly Phe Leu Ala Ala		
	1 5 10 15		
35	CTG TTC TAC AGG CAT AGG TTC GAC GCA TCC GGG TGC CCA GAA CGC ATG		96
	Leu Phe Tyr Arg His Arg Phe Asp Ala Ser Gly Cys Pro Glu Arg Met		
	20 25 30		
40	GCC AGC TGT CGC CCC ATT AGC GAG TTC GCT CAG GGG TGG GGC CCT ATC		144
	Ala Ser Cys Arg Pro Ile Ser Glu Phe Ala Gln Gly Trp Gly Pro Ile		
	35 40 45		
45	ACT CAT GTT GTG CCT GAC GTG TCG GAC CAG AGG CCT TAT TGC TGG CAC		192
	Thr His Val Val Pro Asp Val Ser Asp Gln Arg Pro Tyr Cys Trp His		
	50 55 60		
	TAC GCG CCT CGA CCG TGC GGT ATC GTA CCC GCG TCG CAG GTG TGT GGT		240
	Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly		

50

55

65	70	75	80	
				288
5	CCA GTG TAT TGC TTC ACC CCA AGC CCT GTC GTG GTG GGG ACG ACC GAT			
	Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Gly Thr Thr Asp			
	85	90	95	
	CGC TCT GGC GCC CCC ACG TAC ACC TGG GGG GCG AAT GAG ACG GAC GTG			336
	Arg Ser Gly Ala Pro Thr Tyr Thr Trp Gly Ala Asn Glu Thr Asp Val			
10	100	105	110	
	CTA CTC CTT AAC AAC ACG CGT CCG CCA CAG GGC AAC TGG TTC GGT TGT			384
	Leu Leu Leu Asn Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys			
	115	120	125	
15	ACC TGG ATG			393
	Thr Trp Met			
	130			

SEQ ID NO:25

SEQUENCE LENGTH: 629 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: MX24-4

30	AAC ACA CGG CCG CCG CAG GGG AAC TGG TTT GGC TGT ACA TGG ATG AAT	48
	Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys Thr Trp Met Asn	
35	1 5 10 15	
	GGC ACT GGG TTC ACA AAG ACG TGC GGG GGC CCC CCG TGC AAC ATC GGG	96
	Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly	
40	20 25 30	
	GGG GTC GGC AAC AAT ACC TTG ACT TGC CCC ACG GAC TGC TTC CGG AAG	144
	Gly Val Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys	
45	35 40 45	
	CAC CCC GAG GCC ACT TAC ACA AAA TGT GGT TCG GGG CCT TGG TTG ACG	192
	His Pro Glu Ala Thr Tyr Thr Lys Cys Gly Ser Gly Pro Trp Leu Thr	
	50 55 60	

	CCT AGG TGC CTA GTT CAT TAC CCA TAC AGG CTC TGG CAC TAT CCC TGC	240
	Pro Arg Cys Leu Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys	
5	65 70 75 80	
	ACT GTC AAC TTT ACC ATC TTC AAG GTT AGG ATG TAT GTG GGG GGC GTG	288
	Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val	
	85 90 95	
10	GAA CAC AGG CTT GAA GCT GCA TGC AAT TGG ACC CGA GGA GAG CGT TGT	336
	Glu His Arg Leu Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys	
	100 105 110	
15	GAC TTG GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG CTA TTG CTG TCC	384
	Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Ser	
	115 120 125	
	ACA ACA GAG TGG CAG GTA CTG CCC TGT TCC TTC ACC ACC CTG CCG GCT	432
	Thr Thr Glu Trp Gln Val Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala	
	130 135 140	
20	CTG TCC ACT GGT TTG ATT CAT CTC CAT CAG AAC ATC GTG GAC GTG CAA	480
	Leu Ser Thr Gly Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln	
	145 150 155 160	
25	TAT CTG TAC GGC ATA GGG TCG GCG GTT GTC TCC TTC GCA ATC AAA TGG	528
	Tyr Leu Tyr Gly Ile Gly Ser Ala Val Val Ser Phe Ala Ile Lys Trp	
	165 170 175	
	GAA TAT ATT CTG TTG CTT TTC CTC CTC CTG GCG GAC GCG CGC GTC TGT	576
	Glu Tyr Ile Leu Leu Leu Phe Leu Leu Ala Asp Ala Arg Val Cys	
30	180 185 190	
	GCC TGC TTG TGG ATG ATG CTG CTG ATA GCC CAC GCC GAC GCC ACC TTA	624
	Ala Cys Leu Trp Met Met Leu Leu Ile Ala His Ala Asp Ala Thr Leu	
	195 200 205	
35	GAG AA	629
	Glu	

SEQ ID NO:26

40 SEQUENCE LENGTH: 629 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 45 ANTI-SENSE: No
 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: MX24-5

5	AAC ACA CGG CCG CCG CAG GGG AAC TGG TTT GGC TGT ACA TGG ATG AAT	48
	Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys Thr Trp Met Asn	
10	1 5 10 15	
	GGC ACT GGG TTC ACA AAG ACG TGC GGG GGC CCC CCG TGC AAC ATC GGG	96
	Gly Thr Gly Phe Thr Lys Thr Cys Gly Pro Pro Cys Asn Ile Gly	
	20 25 30	
15	GGG GTC GGC AAC AAT ACC TTG ACT TGC CCC ACG GAC TGC TTC CGG AAG	144
	Gly Val Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys	
	35 40 45	
20	CAC CCC GAG GCC ACT TAC ACA AAA TGT GGT TCG GGG CCT TGG TTG ACG	192
	His Pro Glu Ala Thr Tyr Thr Lys Cys Gly Ser Gly Pro Trp Leu Thr	
	50 55 60	
	CCT AGG TGC CTA GTT CAT TAC CCA TAC AGG CTC TGG CAC TAT CCC TGC	240
	Pro Arg Cys Leu Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys	
25	65 70 75 80	
	ACT GTC AAC TTT ACC ATC TTC AAG GTT AGG ATG TAT GTG GGG GGC GTG	288
	Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val	
	85 90 95	
30	GAA CAC AGG CTT GAA GCT GCA TGC AAT TGG ACC CGA GGA GAG CGT TGT	336
	Glu His Arg Leu Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys	
	100 105 110	
	GAC TTG GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG CTA TTG CTG TCT	384
	Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser	
35	115 120 125	
	ACA ACA GAG TGG CAG GTA CTG CCC TGT TCC TTC ACC ACC CTG CCG GCT	432
	Thr Thr Glu Trp Gln Val Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala	
	130 135 140	
40	CTG TCC ACT GGT TTG ATT CAT CTC CAT CAG AAC ATC GTG GAC GTG CAA	480
	Leu Ser Thr Gly Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln	
	145 150 155 160	
45	TAT TTG TAC GGC ATA GGG TCG GCG GTT GTC TCC TTC GCA ATC AAA TGG	528
	Tyr Leu Tyr Gly Ile Gly Ser Ala Val Val Ser Phe Ala Ile Lys Trp	
	165 170 175	

	GAA TAT ATT CTG TTG CTT TTC CTT CTC CTG GCG GAC GCG CGC GTC TGT	576
	Glu Tyr Ile Leu Leu Leu Phe Leu Leu Leu Ala Asp Ala Arg Val Cys	
5	180 185 190	
	GCC TGC TTG TGG ATG ATG CTG CTG ATA GCC CAC GCC GAC GCC ACC TTA	624
	Ala Cys Leu Trp Met Met Leu Leu Ile Ala His Ala Asp Ala Thr Leu	
	195 200 205	
10	GAG AA	629
	Glu	

SEQ ID NO:27

SEQUENCE LENGTH: 629 base pairs

15 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

20 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: MX24-13

25	AAC ACA CGG CCG CCG CAG GGG AAC TGG TTT GGC TGT ACA TGG ATG AAT	48
	Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys Thr Trp Met Asn	
	1 5 10 15	
30	GGC ACT GGG TTC ACA AAG ACG TGC GGG GGC CCC CCG TGC AAC ATC GGG	96
	Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly	
	20 25 30	
35	GGG GTC GGC AAC AAT ACC TTG ACT TGC CCC ACG GAC TGC TTC CGG AAG	144
	Gly Val Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys	
	35 40 45	
40	CAC CCC GAG GCC ACT TAC ACA AAA TGT GGT TCG GGG CCT TGG CTG ACG	192
	His Pro Glu Ala Thr Tyr Thr Lys Cys Gly Ser Gly Pro Trp Leu Thr	
	50 55 60	
	CCT AGG TGC CTA GTT CAT TAC CCA TAC AGG CTC TGG CAC TAT CCC TGC	240
	Pro Arg Cys Leu Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys	
	65 70 75 80	
45	ACT GTC AAC TTT ACC ATC TTC AAG GTT AGG ATG TAT GTG GGG GGC GTG	288
	Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Val	

50

55

	85	90	95	
	GAA CAC AGG CTT GAA GCT GCA TGC AAT TGG ACC CGC GGA GAG CGT TGT			336
5	Glu His Arg Leu Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys			
	100	105	110	
	GAC TTG GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG CTA TTG CTG TCT			384
	Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Ser			
10	115	120	125	
	ACA ACA GAG TGG CAG GTA CTG CCC TGT TCC TTC ACC ACC CTG CCG GCT			432
	Thr Thr Glu Trp Gln Val Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala			
	130	135	140	
15	CTG TCC ACT GGT TTG ATT CAT CTC CAT CAG AAC ATC GTG GAC GTG CAA			480
	Leu Ser Thr Gly Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln			
	145	150	155	160
	TAT CTG TAC GGC ATA GGG TCG GCG GTT GTC TCC TTC GCA ATC AAA TGG			528
	Tyr Leu Tyr Gly Ile Gly Ser Ala Val Val Ser Phe Ala Ile Lys Trp			
20	165	170	175	
	GAA TAT ATT CTG TTG CTT TTC CTT CTC CTG GCG GAC GCA CGC GTC TGT			576
	Glu Tyr Ile Leu Leu Leu Phe Leu Leu Ala Asp Ala Arg Val Cys			
	180	185	190	
25	GCC TGC TTG TGG ATG ATG CTG CTG ATA GCC CAC GCC GAC GCC ACC TTA			624
	Ala Cys Leu Trp Met Met Leu Leu Ile Ala His Ala Asp Ala Thr Leu			
	195	200	205	
	GAG AA			629
30	Glu			

SEQ ID NO:28

SEQUENCE LENGTH: 652 base pairs

35 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

40 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N27N19-1

45

C CGG ATC CCA CAA GCC GTG GTG GAT ATG GTG GCA GGG GCC CAC TGG GGA 49

50

55

	Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly			
1	5	10	15	
5	GTC CTG GCG GGC CTT GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG	97		
	Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys			
	20	25	30	
10	GTC TTG GTT GTG ATG CTG CTC TTC GCC GGT GTT GAC GGG GGG ACC CAC	145		
	Val Leu Val Val Met Leu Leu P(e Ala GLy VAL Asp Gly Gly THr His			
	35	40	45	
15	GTG ACA GGG GGG AAG GTA GCC TAC ACC ACC CAG GGC TTT ACA CCC TTC	193		
	Val Thr Gly Gly Lys Val Ala Tyr Thr Thr Gln Gly Phe Thr Pro Phe			
	50	55	60	
20	TTT TCA CGA GGG CCG TCT CAG AAA ATC CAA CTT GTA AAC ACT AAC GGC	241		
	Phe Ser Arg Gly Pro Ser Gln Lys Ile Gln Leu Val Asn Thr Asn Gly			
	65	70	75	80
25	AGC TGG CAC ATC AAT AGG ACT GCC CTC AAT TGC AAT GAC TCC CTT AAC	289		
	Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Asn			
	85	90	95	
30	ACC GGG TTC CTT GCC GCG CTG TTC TAC ACC CAC AGC TTC AAC GCG TCC	337		
	Thr Gly Phe Leu Ala Ala Leu Phe Tyr Thr His Ser Phe Asn Ala Ser			
	100	105	110	
35	GGA TGT CCG GAG CGT ATG GCC GGT TGC CGC CCC ATT GAC GAG TTC GCT	385		
	Gly Cys Pro Glu Arg Met Ala Gly Cys Arg Pro Ile Asp Glu Phe Ala			
	115	120	125	
40	CAG GGG TGG GGT CCC ATC ACT CAT GTT GTG CCT AAC ATC TCG GAC CAG	433		
	Gln Gly Trp Gly Pro Ile Thr His Val Val Pro Asn Ile Ser Asp Gln			
	130	135	140	
45	AGG CCC TAT TGC TGG CAC TAC GCG CCT CGA CCG TGT GGT ATC GTA CCC	481		
	Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro			
	145	150	155	160
50	GCG TCG CAG GTG TGT GGT CCG GTG TAT TGC TTC ACC CCA AGC CCT GTT	529		
	Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val			
	165	170	175	
55	GTG GTG GGG ACG ACC GAT CGT TTC GGC GCC CCC ACG TAC AAC TGG GGA	577		
	Val Val Gly Thr Thr Asp Arg Phe Gly Ala Pro Thr Tyr Asn Trp Gly			
	180	185	190	
60	AAC AAT GAG ACG GAT GTG CTA CTC CTC AAC AAC ACA CGG CCG CCG CAG	625		
	Asn Asn Glu Thr Asp Val Leu Leu Asn Asn Thr Arg Pro Pro Gln			

195	200	205	
GGC AAC TGG TTC GGT TGT ACC TGG ATG			
Gly Asn Trp Phe Gly Cys Thr Trp Met			652
5			
210	215		

SEQ ID NO:29

SEQUENCE LENGTH: 977 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N19MX24A-1

1	5	10	15	48
GAG GCC GTG AAC TGC GAT GAC TCC CTT AAC ACC GGG TTC CTT GCC GCG				
Glu Ala Val Asn Cys Asp Asp Ser Leu Asn Thr Gly Phe Leu Ala Ala				
20	25	30	35	96
CTG TTC TAC ACG CAC AGG TTC AAC GCG TCC GGA TGT CCG GAG CGT ATG				
Leu Phe Tyr Thr His Arg Phe Asn Ala Ser Gly Cys Pro Glu Arg Met				
30	35	40	45	144
GCC GGT TGC CGC CCC ATT GAC GAG TTC GCT CAG GGG TGG GGT CCC ATC				
Ala Gly Cys Arg Pro Ile Asp Glu Phe Ala Gln Gly Trp Gly Pro Ile				
40	45	50	55	192
ACT CAT GTT GTG CCT AAC ATC TCG GAC CAG AGG CCC TAT TGC TGG CAC				
Thr His Val Val Pro Asn Ile Ser Asp Gln Arg Pro Tyr Cys Trp His				
50	55	60	65	240
TAC GCG CCT CGA CCG TGT GGT ATC GTA CCC GCG TCG CAG GTG TGT GGT				
Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro Ala Ser Gln Val Cys Gly				
65	70	75	80	288
CCG GTG TAT TGC TTC ACC CCA AGC CCT GTT GTG GTG GGG ACG ACC GAT				
Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val Val Gly Thr Thr Asp				
85	90	95		
CGT TTC GGC GCC CCC ACG TAC AAC TGG GGA AAC AAT GAG ACG GAT GTG				336
Arg Phe Gly Ala Pro Thr Tyr Asn Trp Gly Asn Asn Glu Thr Asp Val				
100	105	110		

	CTA CTC CTC AAC AAC ACA CGG CCG CAG GGC AAC TGG TTC GGT TGT	384
5	Leu Leu Leu Asn Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys	
	115 120 125	
	ACC TGG ATG AAT GGC ACT GGG TTC ACA AAG ACG TGC GGG GGC CCC CCG	432
	Thr Trp Met Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro	
10	130 135 140	
	TGC AAC ATC GGG GGG GTC GGC AAC AAT ACC TTG ACT TGC CCC ACG GAC	480
	Cys Asn Ile Gly Gly Val Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp	
15	145 150 155 160	
	TGC TTC CGG AAG CAC CCC GAG GCC ACT TAC ACA AAA TGT GGT TCG GGG	528
	Cys Phe Arg Lys His Pro Glu Ala Thr Tyr Thr Lys Cys Gly Ser Gly	
20	165 170 175	
	CCT TGG TTG ACG CCT AGG TGC CTA GTT CAT TAC CCA TAC AGG CTC TGG	576
	Pro Trp Leu Thr Pro Arg Cys Leu Val His Tyr Pro Tyr Arg Leu Trp	
25	180 185 190	
	CAC TAT CCC TGC ACT GTC AAC TTT ACC ATC TTC AAG GTT AGG ATG TAT	624
	His Tyr Pro Cys Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr	
30	195 200 205	
25	GTG GGG GGC GTG GAA CAC AGG CTT GAA GCT GCA TGC AAT TGG ACC CGA	672
	Val Gly Val Glu His Arg Leu Glu Ala Ala Cys Asn Trp Thr Arg	
35	210 215 220	
	GGA GAG CGT TGT GAC TTG GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG	720
	Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro	
40	225 230 235 240	
	CTA TTG CTG TCC ACA ACA GAG TGG CAG GTA CTG CCC TGT TCC TTC ACC	768
	Leu Leu Leu Ser Thr Thr Glu Trp Gln Val Leu Pro Cys Ser Phe Thr	
45	245 250 255	
	ACC CTG CCG GCT CTG TCC ACT GGT TTG ATT CAT CTC CAT CAG AAC ATC	816
	Thr Leu Pro Ala Leu Ser Thr Gly Leu Ile His Leu His Gln Asn Ile	
50	260 265 270	
	GTG GAC GTG CAA TAT CTG TAC GGC ATA GGG TCG GCG GTT GTC TCC TTC	864
	Val Asp Val Gln Tyr Leu Tyr Gly Ile Gly Ser Ala Val Val Ser Phe	
55	275 280 285	
	GCA ATC AAA TGG GAA TAT ATT CTG TTG CTT TTC CTC CTC CTG GCG GAC	912
	Ala Ile Lys Trp Glu Tyr Ile Leu Leu Leu Phe Leu Leu Ala Asp	
60	290 295 300	
	GCG CGC GTC TGT GCC TGC TTG TGG ATG ATG CTG CTG ATA GCC CAC GCC	960

Ala Arg Val Cys Ala Cys Leu Trp Met Met Leu Leu Ile Ala His Ala
 305 310 315 320
 5 GAC GCC ACC TTA GAG AA 977
 Asp Ala Thr Leu Glu
 325

10 SEQ ID NO:30
 SEQUENCE LENGTH: 977 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 15 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 20 CLONE: N19MX24B-1

	GAG	GCC	GTG	AAC	TGC	GAT	GAC	TCC	CTT	AAC	ACC	GGG	TTC	CTT	GCC	GCG	48
25	Glu	Ala	Val	Asn	Cys	Asp	Asp	Ser	Leu	Asn	Thr	Gly	Phe	Leu	Ala	Ala	
	1		5					10			15						
	CTG	TTC	TAC	ACG	CAC	AGG	TTC	AAC	GCG	TCC	GGA	TGT	CCG	GAG	CGT	ATG	96
	Leu	Phe	Tyr	Thr	His	Arg	Phe	Asn	Ala	Ser	Gly	Cys	Pro	Glu	Arg	Met	
30		20		25		30											
	GCC	GGT	TGC	CGC	CCC	ATT	GAC	GAG	TTC	GCT	CAG	GGG	TGG	GGT	CCC	ATC	144
	Ala	Gly	Cys	Arg	Pro	Ile	Asp	Glu	Phe	Ala	Gln	Gly	Trp	Gly	Pro	Ile	
		35		40		45											
35	ACT	CAT	GTT	GTG	CCT	AAC	ATC	TCG	GAC	CAG	AGG	CCC	TAT	TGC	TGG	CAC	192
	Thr	His	Val	Val	Pro	Asn	Ile	Ser	Asp	Gln	Arg	Pro	Tyr	Cys	Trp	His	
		50		55		60											
	TAC	GCG	CCT	CGA	CCG	TGT	GGT	ATC	GTA	CCC	GCG	TCG	CAG	GTG	TGT	GGT	240
40	Tyr	Ala	Pro	Arg	Pro	Cys	Gly	Ile	Val	Pro	Ala	Ser	Gln	Val	Cys	Gly	
		65		70		75											
	CCG	GTG	TAT	TGC	TTC	ACC	CCA	AGC	CCT	GTT	GTG	GTG	GGG	ACG	ACC	GAT	288
	Pro	Val	Tyr	Cys	Phe	Thr	Pro	Ser	Pro	Val	Val	Gly	Thr	Thr	Asp		
45			85		90		95										
	CGT	TTC	GGC	GCC	CCC	ACG	TAC	AAC	TGG	GGA	AAC	AAT	GAG	ACG	GAT	GTG	336
	Arg	Phe	Gly	Ala	Pro	Thr	Tyr	Asn	Trp	Gly	Asn	Asn	Glu	Thr	Asp	Val	

50

55

	100	105	110	
5	CTA CTC CTC AAC AAC ACA CGG CCG CCG CAG GGG AAC TGG TTT GGC TGT			384
	Leu Leu Leu Asn Asn Thr Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys			
	115	120	125	
	ACA TGG ATG AAT GGC ACT GGG TTC ACA AAG ACG TGC GGG GGC CCC CCG			432
	Thr Trp Met Asn Gly Thr Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro			
10	130	135	140	
	TGC AAC ATC GGG GGG GTC GGC AAC AAT ACC TTG ACT TGC CCC ACG GAC			480
	Cys Asn Ile Gly Gly Val Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp			
	145	150	155	160
15	TGC TTC CGG AAG CAC CCC GAG GCC ACT TAC ACA AAA TGT GGT TCG GGG			528
	Cys Phe Arg Lys His Pro Glu Ala Thr Tyr Thr Lys Cys Gly Ser Gly			
	165	170	175	
	CCT TGG TTG ACG CCT AGG TGC CTA GTT CAT TAC CCA TAC AGG CTC TGG			576
20	Pro Trp Leu Thr Pro Arg Cys Leu Val His Tyr Pro Tyr Arg Leu Trp			
	180	185	190	
	CAC TAT CCC TGC ACT GTC AAC TTT ACC ATC TTC AAG GTT AGG ATG TAT			624
	His Tyr Pro Cys Thr Val Asn Phe Thr Ile Phe Lys Val Arg Met Tyr			
25	195	200	205	
	G TG GGG GGC GTG GAA CAC AGG CTT GAA GCT GCA TGC AAT TGG ACC CGA			672
	Val Gly Val Glu His Arg Leu Glu Ala Ala Cys Asn Trp Thr Arg			
	210	215	220	
30	GGA GAG CGT TGT GAC TTG GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG			720
	Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro			
	225	230	235	240
35	CTA TTG CTG TCC ACA ACA GAG TGG CAG GTA CTG CCC TGT TCC TTC ACC			768
	Leu Leu Leu Ser Thr Thr Glu Trp Gln Val Leu Pro Cys Ser Phe Thr			
	245	250	255	
	ACC CTG CCG GCT CTG TCC ACT GGT TTG ATT CAT CTC CAT CAG AAC ATC			816
40	Thr Leu Pro Ala Leu Ser Thr Gly Leu Ile His Leu His Gln Asn Ile			
	260	265	270	
	GTG GAC GTG CAA TAT CTG TAC GGC ATA GGG TCG GCG GTT GTC TCC TTC			864
	Val Asp Val Gln Tyr Leu Tyr Gly Ile Gly Ser Ala Val Val Ser Phe			
45	275	280	285	
	GCA ATC AAA TGG GAA TAT ATT CTG TTG CTT TTC CTC CTC CTG GCG GAC			
	Ala Ile Lys Trp Glu Tyr Ile Leu Leu Leu Phe Leu Leu Ala Asp			
	290	295	300	

GCG CGC GTC TGT GCC TGC TTG TGG ATG ATG CTG CTG ATA GCC CAC GCC 960
 Ala Arg Val Cys Ala Cys Leu Trp Met Met Leu Leu Ile Ala His Ala
 305 310 315 320
 5 GAC GCC ACC TTA GAG AA 977

Asp Ala Thr Leu Glu
 10 325

SEQ ID NO:31
 SEQUENCE LENGTH: 1236 base pairs
 SEQUENCE TYPE: nucleic acid
 15 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 20 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N27MX24A-1

25	C CGG ATC CCA CAA GCC GTG GTG GAT ATG GTG GCA GGG GCC CAC TGG GGA 49	
	Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly	
	1 5 10 15	
30	GTC CTG GCG GGC CTT GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG 97	
	Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys	
	20 25 30	
35	GTC TTG GTT GTG ATG CTG CTC TTC GCC GGT GTT GAC GGG GGG ACC CAC 145	
	Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly Gly Thr His	
	35 40 45	
40	GTG ACA GGG GGG AAG GTA GCC TAC ACC ACC CAG GGC TTT ACA CCC TTC 193	
	Val Thr Gly Gly Lys Val Ala Tyr Thr Thr Gln Gly Phe Thr Pro Phe	
	50 55 60	
45	TTT TCA CGA GGG CCG TCT CAG AAA ATC CAA CTT GTA AAC ACT AAC GGC 241	
	Phe Ser Arg Gly Pro Ser Gln Lys Ile Gln Leu Val Asn Thr Asn Gly	
	65 70 75 80	
50	AGC TGG CAC ATC AAT AGG ACT GCC CTC AAT TGC AAT GAC TCC CTT AAC 289	
	Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Asn	
	85 90 95	

50

55

	ACC GGG TTC CTT GCC GCG CTG TTC TAC ACC CAC AGC TTC AAC GCG TCC	337
	Thr Gly Phe Leu Ala Ala Leu Phe Tyr Thr His Ser Phe Asn Ala Ser	
5	100 105 110	
	GGA TGT CCG GAG CGT ATG GCC GGT TGC CGC CCC ATT GAC GAG TTC GCT	385
	Gly Cys Pro Glu Arg Met Ala Gly Cys Arg Pro Ile Asp Glu Phe Ala	
	115 120 125	
10	CAG GGG TGG GGT CCC ATC ACT CAT GTT GTG CCT AAC ATC TCG GAC CAG	433
	Gln Gly Trp Gly Pro Ile Thr His Val Val Pro Asn Ile Ser Asp Gln	
	130 135 140	
15	AGG CCC TAT TGC TGG CAC TAC GCG CCT CGA CCG TGT GGT ATC GTA CCC	481
	Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro	
	145 150 155 160	
	GCG TCG CAG GTG TGT GGT CCG GTG TAT TGC TTC ACC CCA AGC CCT GTT	529
	Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val	
20	165 170 175	
	GTG GTG GGG ACG ACC GAT CGT TTC GGC GCC CCC ACG TAC AAC TGG GGA	577
	Val Val Gly Thr Thr Asp Arg Phe Gly Ala Pro Thr Tyr Asn Trp Gly	
	180 185 190	
25	AAC AAT GAG ACG GAT GTG CTA CTC CTC AAC AAC ACA CGG CCG CCG CAG	625
	Asn Asn Glu Thr Asp Val Leu Leu Asn Asn Thr Arg Pro Pro Gln	
	195 200 205	
30	GGC AAC TGG TTC GGT TGT ACC TGG ATG AAT GGC ACT GGG TTC ACA AAG	673
	Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe Thr Lys	
	210 215 220	
35	ACG TGC GGG GGC CCC CCG TGC AAC ATC GGG GGG GTC GGC AAC AAT ACC	721
	Thr Cys Gly Pro Pro Cys Asn Ile Gly Gly Val Gly Asn Asn Thr	
	225 230 235 240	
	TTG ACT TGC CCC ACG GAC TGC TTC CGG AAG CAC CCC GAG GCC ACT TAC	769
	Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala Thr Tyr	
	245 250 255	
40	ACA AAA TGT GGT TCG GGG CCT TGG TTG ACG CCT AGG TGC CTA GTT CAT	817
	Thr Lys Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Leu Val His	
	260 265 270	
45	TAC CCA TAC AGG CTC TGG CAC TAT CCC TGC ACT GTC AAC TTT ACC ATC	865
	Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe Thr Ile	
	275 280 285	
	TTC AAG GTT AGG ATG TAT GTG GGG GGC GTG GAA CAC AGG CTT GAA GCT	913

Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His Arg Leu Glu Ala
 290 295 300
 5 GCA TGC AAT TGG ACC CGA GGA GAG CGT TGT GAC TTG GAG GAC AGG GAT 961
 Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp
 305 310 315 320
 AGA TCA GAG CTT AGC CCG CTA TTG CTG TCC ACA ACA GAG TGG CAG GTA 1009
 10 Arg Ser Glu Leu Ser Pro Leu Leu Leu Ser Thr Thr Glu Trp Gln Val
 325 330 335
 CTG CCC TGT TCC TTC ACC ACC CTG CCG GCT CTG TCC ACT GGT TTG ATT 1057
 Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly Leu Ile
 340 345 350
 15 CAT CTC CAT CAG AAC ATC GTG GAC GTG CAA TAT CTG TAC GGC ATA GGG 1105
 His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gly Ile Gly
 355 360 365
 20 TCG GCG GTT GTC TCC TTC GCA ATC AAA TGG GAA TAT ATT CTG TTG CTT 1153
 Ser Ala Val Val Ser Phe Ala Ile Lys Trp Glu Tyr Ile Leu Leu Leu
 370 375 380
 25 TTC CTC CTC CTG GCG GAC GCG CGC GTC TGT GCC TGC TTG TGG ATG ATG 1201
 Phe Leu Leu Leu Ala Asp Ala Arg Val Cys Ala Cys Leu Trp Met Met
 385 390 395 400
 CTG CTG ATA GCC CAC GAC GCC ACC TTA GAG AA 1236
 Leu Leu Ile Ala His Ala Asp Ala Thr Leu Glu
 405 410
 30

SEQ ID NO:32

SEQUENCE LENGTH: 1236 base pairs

SEQUENCE TYPE: nucleic acid

35 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

40 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N27MX24B-1

45 C CGG ATC CCA CAA GCC GTG GTG GAT ATG GTG GCA GGG GCC CAC TGG GGA 49
 Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly Ala His Trp Gly

50

55

	1	5	10	15	
5	GTC CTG GCG GGC CTT GCC TAC TAT TCC ATG GTG GGG AAC TGG GCT AAG				97
	Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly Asn Trp Ala Lys				
	20	25	30		
	GTC TTG GTT GTG ATG CTG CTC TTC GCC GGT GTT GAC GGG GGG ACC CAC				145
	Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp Gly Gly Thr His				
10	35	40	45		
	GTC ACA GGG GGG AAG GTA GCC TAC ACC ACC CAG GGC TTT ACA CCC TTC				193
	Val Thr Gly Gly Lys Val Ala Tyr Thr Thr Gln Gly Phe Thr Pro Phe				
	50	55	60		
15	TTT TCA CGA GGG CCG TCT CAG AAA ATC CAA CTT GTA AAC ACT AAC GGC				241
	Phe Ser Arg Gly Pro Ser Gln Lys Ile Gln Leu Val Asn Thr Asn Gly				
	65	70	75	80	
	AGC TGG CAC ATC AAT AGG ACT GCC CTC AAT TGC AAT GAC TCC CTT AAC				289
20	Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn Asp Ser Leu Asn				
	85	90	95		
	ACC GGG TTC CTT GCC GCG CTG TTC TAC ACC CAC AGC TTC AAC GCG TCC				337
	Thr Gly Phe Leu Ala Ala Leu Phe Tyr Thr His Ser Phe Asn Ala Ser				
25	100	105	110		
	GGA TGT CCG GAG CGT ATG GCC GGT TGC CGC CCC ATT GAC GAG TTC GCT				385
	Gly Cys Pro Glu Arg Met Ala Gly Cys Arg Pro Ile Asp Glu Phe Ala				
	115	120	125		
30	CAG GGG TGG GGT CCC ATC ACT CAT GTT GTG CCT AAC ATC TCG GAC CAG				433
	Gln Gly Trp Gly Pro Ile Thr His Val Val Pro Asn Ile Ser Asp Gln				
	130	135	140		
	AGG CCC TAT TGC TGG CAC TAC GCG CCT CGA CCG TGT GGT ATC GTA CCC				481
	Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys Gly Ile Val Pro				
35	145	150	155	160	
	GCG TCG CAG GTG TGT GGT CCG GTG TAT TGC TTC ACC CCA AGC CCT GTT				529
	Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val				
	165	170	175		
40	GTG GTG GGG ACG ACC GAT CGT TTC GGC GCC CCC ACG TAC AAC TGG GGA				577
	Val Val Gly Thr Thr Asp Arg Phe Gly Ala Pro Thr Tyr Asn Trp Gly				
	180	185	190		
	AAC AAT GAG ACG GAT GTG CTA CTC CTC AAC AAC ACA CGG CCG CCG CAG				625
45	Asn Asn Glu Thr Asp Val Leu Leu Asn Asn Thr Arg Pro Pro Gln				
	195	200	205		

	GGG AAC TGG TTT GGC TGT ACA TGG ATG AAT GGC ACT GGG TTC ACA AAG	673		
	Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr Gly Phe Thr Lys			
5	210	215	220	
	ACG TGC GGG GGC CCC CCG TGC AAC ATC GGG GGG GTC GGC AAC AAT ACC	721		
	Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Val Gly Asn Asn Thr			
	225	230	235	240
10	TTG ACT TGC CCC ACG GAC TGC TTC CGG AAG CAC CCC GAG GCC ACT TAC	769		
	Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro Glu Ala Thr Tyr			
	245	250	255	
	ACA AAA TGT GGT TCG GGG CCT TGG TTG ACG CCT AGG TGC CTA GTT CAT	817		
	Thr Lys Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg Cys Leu Val His			
15	260	265	270	
	TAC CCA TAC AGG CTC TGG CAC TAT CCC TGC ACT GTC AAC TTT ACC ATC	865		
	Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val Asn Phe Thr Ile			
	275	280	285	
20	TTC AAG GTT AGG ATG TAT GTG GGG GGC GTG GAA CAC AGG CTT GAA GCT	913		
	Phe Lys Val Arg Met Tyr Val Gly Val Glu His Arg Leu Glu Ala			
	290	295	300	
	GCA TGC AAT TGG ACC CGA GGA GAG CGT TGT GAC TTG GAG GAC AGG GAT	961		
25	Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu Glu Asp Arg Asp			
	305	310	315	320
	AGA TCA GAG CTT AGC CCG CTA TTG CTG TCC ACA ACA GAG TGG CAG GTA	1009		
	Arg Ser Glu Leu Ser Pro Leu Leu Ser Thr Thr Glu Trp Gln Val			
30	325	330	335	
	CTG CCC TGT TCC TTC ACC ACC CTG CCG GCT CTG TCC ACT GGT TTG ATT	1057		
	Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser Thr Gly Leu Ile			
	340	345	350	
35	CAT CTC CAT CAG AAC ATC GTG GAC GTG CAA TAT CTG TAC GGC ATA GGG	1105		
	His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu Tyr Gly Ile Gly			
	355	360	365	
	TCG GCG GTT GTC TCC TTC GCA ATC AAA TGG GAA TAT ATT CTG TTG CTT	1153		
40	Ser Ala Val Val Ser Phe Ala Ile Lys Trp Glu Tyr Ile Leu Leu			
	370	375	380	
	TTC CTC CTC CTG GCG GAC GCG CGC GTC TGT GCC TGC TTG TGG ATG ATG	1201		
	Phe Leu Leu Leu Ala Asp Ala Arg Val Cys Ala Cys Leu Trp Met Met			
45	385	390	395	400
	CTG CTG ATA GCC CAC GCC GAC GCC ACC TTA GAG AA	1236		

Leu Leu Ile Ala His Ala Asp Ala Thr Leu Glu
405 410

5 SEQ ID NO:33
SEQUENCE LENGTH: 849 base pairs
SEQUENCE TYPE: nucleic acid
STRANDEDNESS: double
10 TOPOLOGY: linear
ANTI-SENSE: No
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus
15 IMMEDIATE EXPERIMENTAL SOURCE
CLONE: MX25

	TGT	GCC	TGG	TTG	TGG	ATG	ATG	CTG	CTG	ATA	GCC	CAA	GCT	GAG	GCC	GCC	48
20	Cys	Ala	Trp	Leu	Trp	Met	Met	Leu	Leu	Ile	Ala	Gln	Ala	Glu	Ala	Ala	
	1			5				10							15		
	TTG	GAG	AAC	CTG	GTG	GTC	CTC	AAT	GCA	GCA	TCC	ATG	GCS	GGA	GCG	CAT	96
25	Leu	Glu	Asn	Leu	Val	Val	Leu	Asn	Ala	Ala	Ser	Met	Ala	Gly	Ala	His	
	20			25				30							30		
	GGC	ATC	CTC	TCT	TTC	CTT	GTG	TTC	TTC	TGT	GCC	GCC	TGG	TAC	ATC	AAA	144
30	Gly	Ile	Leu	Ser	Phe	Leu	Val	Phe	Phe	Cys	Ala	Ala	Trp	Tyr	Ile	Lys	
	35			40				45									
	GGC	AGG	CTG	GTC	CCY	GGG	GCG	RCA	TAY	GCT	YTC	TAT	GGC	GTA	TGG	CCG	192
35	Gly	Arg	Leu	Val	Pro	Gly	Ala	Xaa	Tyr	Ala	Xab	Tyr	Gly	Val	Trp	Pro	
	50			55				60									
	CTG	CTC	CTG	CTC	TTG	MTG	GCG	CTA	CCS	SCA	CGG	GCG	TAC	GCC	ATG	GAC	240
40	Leu	Leu	Leu	Leu	Xac	Ala	Leu	Pro	Xad	Arg	Ala	Tyr	Ala	Met	Asp		
	65			70				75							80		
	CGG	GAS	ATG	GCT	GCA	TCG	TGC	GGA	GGC	GCG	GTT	TTT	GTA	GGT	CTG	GTA	288
45	Arg	Xae	Met	Ala	Ala	Ser	Cys	Gly	Gly	Ala	Val	Phe	Val	Gly	Leu	Val	
	85			90				95									
	CTC	YTG	ACC	TTG	TCA	CCA	TAC	TAC	AAA	GTG	TTC	CTC	GCT	ARG	CTC	ATA	336
50	Leu	Leu	Thr	Leu	Ser	Pro	Tyr	Tyr	Lys	Val	Phe	Leu	Ala	Xaf	Leu	Ile	
	100			105				110									
	TGG	TGG	TTR	CAA	TAT	CTC	ATC	ACC	AGR	GCC	GAG	GCG	CAC	YTG	CAA	GTG	384
55	Trp	Trp	Leu	Gln	Tyr	Leu	Ile	Thr	Arg	Ala	Glu	Ala	His	Leu	Gln	Val	

	115	120	125	
	TGG ATY CCC CCY CTY AAC GTY CGG GGR GGC CGC GAY GCC ATC ATC CTY			432
5	Trp Ile Pro Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu			
	130	135	140	
	CTC ACR TGT GCG GTC CAY CCR GAG CTR ATY TTT GAC ATC ACC AAR CTY			480
	Leu Tre Cys Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu			
10	145	150	155	160
	YTG CTC GCC ATA CTC GGT CCG CTC ATG GTR CTC CAG GCT GSC MTA ACY			528
	Leu Leu Ala Ile Leu Gly Pro Leu Met Val Leu Gln Ala Xag Xah Thr			
	165	170	175	
15	MRA RTG CCG TAC TTY GTR CGY GCT CAA GGG CTC ATY CGT RYG TGC ATG			576
	Xai Xaj Pro Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Xak Cys Met			
	180	185	190	
	TTR GTG CGG AAA GYC GCY GGR GGT CAT TAT GTY CAR ATG GCY YTY RTG			624
	Leu Val Arg Lys Xal Ala Gly Gly His Tyr Val Gln Met Ala Xam Xan			
20	195	200	205	
	AAG CTG GCY GCR CTG ACA GGT ACG TAC RTT TAT GWC CAT CTT RCY CCA			672
	Lys Leu Ala Ala Leu Thr Gly Thr Tyr Xao Tyr Xap His Leu Xaq Pro			
	210	215	220	
25	CTG CAG SAY TGG GCC CAY GCG GGC CTA CGR GAC CTT GCG GTR GCR GTW			720
	Leu Gln Xar Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val			
	225	230	235	240
	GAG CCC GTT GYC TTC TCT GAY ATG GAG ACY AAG ATC ATC ACC TGG GGG			768
30	Glu Pro Val Xas Phe Ser Asp Met Glu Tre Lys Ile Ile Thr Trp Gly			
	245	250	255	
	GCA GAC ACY GCG GCG TGT GGG GAC ATC ATT TTG GGC CTA CCW GTC TCC			816
	Ala Asp Thr Ala Ala Cys Gly Asp Ile Ile Leu Gly Leu Pro Val Ser			
35	260	265	270	
	GCC CGG AGG GGC AAC GAG ATA CTC CTC GGA CCG			849
	Ala Arg Arg Gly Asn Glu Ile Leu Leu Gly Pro			
	275	280		
40	Y : C or T R : A or G M : A or C K : G or T			
	S : G or C W : A or T H : A or C or T B : G or T or C			
	Xaa : Ala or Thr	Xab : Phe or Leu	Xac : Met or Leu	
	Xad : Ala or Pro	Xae : Glu or Asp	Xaf : Lys or Arg	
45	Xag : Gly or Ala	Xah : Leu or Ile	Xai : Gln or Arg	
	Xaj : Met or Val	Xak : Met or Ala	Xal : Ala or Val	

Xam : Leu or Phe
 Xap : Asp or Val
 Xas : Ala or Val

Xan : Met or Val
 Xaq : Thr or Ala

Xao : Val or Ile
 Xar : Asp or His

5

SEQ ID NO:34

SEQUENCE LENGTH: 524 base pairs

SEQUENCE TYPE: nucleic acid

10

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

15

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: O26

20	ATC ACG TGG GGG GCA GAG ACG GCG GCG TGT GGG GAC ATC ATC TCG GGT	48
	Ile Thr Trp Gly Ala Glu Thr Ala Ala Cys Gly Asp Ile Ile Ser Gly	
	1 5 10 15	
25	CTA CCC GTT TCC GCC CGA AGG GGG ARG GAG CTG CTT TTG GGR CCG GCC	96
	Leu Pro Val Ser Ala Arg Arg Gly Xaa Glu Leu Leu Leu Gly Pro Ala	
	20 25 30	
30	GAT AGT TTT GAC GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC	144
	Asp Ser Phe Asp Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala	
	35 40 45	
35	TAC TCC CAG CAR ACG CGG GGC CTG CTT GGT TGC ATC ATC ACY AGC CTT	192
	Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Tre Ser Leu	
	50 55 60	
40	55 GGC CGG GAT AAR AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT	240
	Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser	
	65 70 75 80	
45	ACC GCA ACA CAA TCT TTC CTG GCG ACC TGY RTC AAC GGC GTK TGC TGG	288
	Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Xab Asn Gly Val Cys Trp	
	85 90 95	
	ACT GTT TTC CAC GGY GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC	336
	Thr Val Phe His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly	
	100 105 110	
	CCA ATC ACC CAA ATG TAC ACC AAT GTR GAT CAG GAC CTC GTC GGY TGG	384

50

55

Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp
 115 120 125
 5 TCG GCG CCC CCC SGG GCG CGT TCC TTG ACA CCW TGC ACC TGC GGC AGC 432
 Ser Ala Pro Pro Xac Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser
 130 135 140
 TCG GAC CTT TAT TTG GTC ACG AGR CAT GCT GAT GTC ATT CCG GTG CAC 480
 10 Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val Ile Pro Val His
 145 150 155 160
 CGG CGG GGC GAC AGC AGG GGG AGC CTC CTC TCC CCC GGG CCC AT 524
 Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro Gly Pro
 165 170
 15 Y : C or T R : A or G M : A or C K : G or T
 S : G or C W : A or T H : A or C or T B : G or T or C
 Xaa : Arg or Lys Xab : Val or Ile Xac : Gly or Arg

20 SEQ ID NO:35

SEQUENCE LENGTH: 921 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

25 TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

30 IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N23

CTG CTG TCG CCC GGG CCC ATC TCY TAC YTG AAG GGY TCC TCG GGT GGT 48
 35 Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly
 1 5 10 15
 CCG CTG CYT TGC CCC TCG GGC CRT GTT GTG GGC ATC TTC CGG GCT GCY 96
 Pro Leu Xaa Cys Pro Ser Gly Xab Val Val Gly Ile Phe Arg Ala Ala
 20 25 30
 40 GTG TGC ACC CGG GGG GTT GCG AAG GCG GTR GAC TTT GTG CCC GTT GAG 144
 Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu
 35 40 45
 45 TCT ATG GAA ACC ACY ATG CGG TCT CCG GTC TTC RCG GAT AAC TCA ACC 192
 Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Xac Asp Asn Ser Thr

50

55

	50	55	60	
	CCC CCG GCC GTA CCG CAG WCA TTC CAA GTG GCC CAC CTA CAC GCT CCC			240
5	Pro Pro Ala Val Pro Gln Xad Phe Gln Val Ala His Leu His Ala Pro			
	65	70	75	80
	ACT GGC AGC GGC AAA AGC ACC ARG GTG CCG GCT GCG TAT GCG GCC CAA			288
	Thr Gly Ser Gly Lys Ser Thr Xae Val Pro Ala Ala Tyr Ala Ala Gln			
	85	90	95	
10	GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT GCC ACT TTG GGC			336
	Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly			
	100	105	110	
15	TTT GGG GCG TAY ATG TCC AAG GCA CAT GGT GTT GAC CCT AAC ATC AGA			384
	Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile Arg			
	115	120	125	
20	ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC RTC ACG TAC TCC ACC			432
	Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Xaf Thr Tyr Ser Thr			
	130	135	140	
	TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG GGT GCC TAT GAC			480
	Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp			
	145	150	155	160
25	ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG ACT TCC ATC TTG			528
	Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Ser Ile Leu			
	165	170	175	
30	GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA GCG CGC CTT			576
	Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu			
	180	185	190	
	GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC GTG CCG CAT			624
	Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His			
35	195	200	205	
	CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG ATC CCC TTC			672
	Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe			
	210	215	220	
40	TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG AGG CAT CTC			720
	Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly Arg His Leu			
	225	230	235	240
	AYT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT GCG AAG CTG			768
45	Xag Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu			
	245	250	255	

	TCG GCC CTC GGA GTC AAY GCT GTA GCA TAY TAC CGG GGT CTT GAT GTG	816	
	Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val		
5	260	265	270
	TCC RTC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA ACW GAC GCT	864	
	Ser Xah Ile Pro Thr Ser Gly Asp Val Val Val Ala Thr Asp Ala		
	275	280	285
10	CTA ATG ACG GGC TAT ACC GGT GAC TTT GAC TCR GTG ATC GAC TGY AAC	912	
	Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn		
	290	295	300
	ACA TGT GTC	921	
	Thr Cys Val		
15	305		
	Y : C or T R : A or G M : A or C K : G or T		
	S : G or C W : A or T H : A or C or T B : G or T or		
	C		
20	Xaa : Leu or Pro	Xab : His or Arg	Xac : Thr or
	Ala		
	Xad : Ser or Thr	Xae : Lys or Arg	Xaf : Ile or
	Val		
25	Xag : Thr or Ile	Xah : Val or Ile	

SEQ ID NO:36

SEQUENCE LENGTH: 623 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N16

40	GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC ACA TGT GTC	48
	Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val	
	1 5 10 15	
45	ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC ATY GAG ACG	96
	Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr	

	20	25	30	
5	ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg	144		
	35	40	45	
	ACT GGT AGG GGC AGR GGG GGC ATA TAC AGG TTT GTA ACT CCA GGG GAA Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu	192		
10	50	55	60	
	CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA TGT TAT GAC Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp	240		
	65	70	75	80
15	GCG GGC TGT GCT TGG TAC GAG CTC ACG YCC GCC GAG ACC TCG GTT AGG Ala Gly Cys Ala Trp Tyr Glu Leu Thr Xaa Ala Glu Thr Ser Val Arg	288		
	85	90	95	
	TTG CGG GCT TAC CTA AAY ACA CCT GGG CTG CCC GTC TGC CAG GAC CAT Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His	336		
20	100	105	110	
	CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC ATA GAT GCC Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala	384		
	115	120	125	
25	CAC TTC TTG TCC CAG ACY AAA CAG GCA GGA GAC AAC TTC CCC TAC CTG His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu	432		
	130	135	140	
	GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT CCA CCT CCA Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro Pro	480		
30	145	150	155	160
	TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG AAG CCT ACG CTA Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu	528		
	165	170	175	
35	CAC GGG CCA ACG CCC CTG TTG YAT AGG TTA GGA GCC GTT CAG AAC RAG His Gly Pro Thr Pro Leu Leu Xab Arg Leu Gly Ala Val Gln Asn Xac	576		
	180	185	190	
40	GTT RCC CTY ACA CAC CCY ATA ACC AAG TAC ATC ATG ACA TGC ATG TC Val Xad Leu Thr His Pro Ile Thr Lys Tyr Ile Met Thr Cys Met	623		
	195	200	205	
45	Y : C or T R : A or G M : A or C K : G or T S : G or C W : A or T H : A or C or T B : G or T or C Xaa : Pro or Ser Xab : Tyr or His Xac : Glu or Lys			

Xad : Thr or Ala

SEQ ID NO:37

5 SEQUENCE LENGTH: 623 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 10 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 15 CLONE: U16-4

	GGC TAT ACC GGC GAC TTC GAC TCG GTG ATC GAC TGT AAT ACA TGT GTC	48
	Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val	
20	1 5 10 15	
	ATC CAG ACA GTC GAC TTC AGC TTG GAC CCC ACC TTC ACC ATC GAG ACG	96
	Ile Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr	
	20 25 30	
25	ACT ACC GTG CCC CAA GAC GCG GTG TCA CGC TCG CAA CGG CGA GGC AGG	144
	Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg	
	35 40 45	
	ACT GGC AGG GGC AGG CAA GGC ATT TAC AGG TTT GTG ACT CCA GGA GAA	192
30	Thr Gly Arg Gly Arg Gln Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu	
	50 55 60	
	CGG CCC TCG GGC ATG TTC GAT TCC TCG GTC CTG TGC GAG TGC TAT GAC	240
	Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp	
35	65 70 75 80	
	GCG GGC TGT GCT TGG TAC GAG CTC CCG CCC GCC GAG ACC ACG GTC AGG	288
	Ala Gly Cys Ala Trp Tyr Glu Leu Pro Pro Ala Glu Thr Thr Val Arg	
	85 90 95	
40	TTG CGG GCT TAC CTG AAC ACC CCA GGG CTG CCC GTC TGC CAG GAC CAT	336
	Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His	
	100 105 110	
	CTG GAG TTC TGG GAG AGC GTC TTC ACA GGC CTC ACC CAC ATA GAT GCC	384
45	Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala	
	115 120 125	

50

55

	CAC TTC TTG TCC CAG ACC AAG CAA GCA GGA GAC AAT CTC CCT TAC CTG	432
	His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Leu Pro Tyr Leu	
5	130 135 140	
	GTA GCG TAC CAA GCA ACA GTG TGC GCT AGA GCT CAG GCT CCA CCT CCA	480
	Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Gln Ala Pro Pro Pro	
	145 150 155 160	
10	TCA TGG GAT CAA ATG TGG AAG TGT CTC ATA CGG CTA AAA CCT ACA CTA	528
	Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu	
	165 170 175	
	CGC GGG CCA ACG CCC CTG CTG TAT AGG CTG GGA GCC GTC CAA AAT GAG	576
	Arg Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu	
15	180 185 190	
	GTC AAC CTC ACG CAC CCC GTA ACC AAA TAC ATC ATG ACA TGC ATG TC	623
	Val Asn Leu Thr His Pro Val Thr Lys Tyr Ile Met Thr Cys Met	
20	195 200 205	

SEQ ID NO:38

SEQUENCE LENGTH: 618 base pairs

SEQUENCE TYPE: nucleic acid

25 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

30 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N13-1

35	GCGGATCC GGC CTC ACC CAC ATA GAT GCC CAC TTC CTG TCC CAG ACC AAA	50
	Gly Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys	
	1 5 10	
	CAG GCA GGA GAC AAC TTC CCC TAC CTG GTA GCA TAC CAG GCT ACA GTG	98
40	Gln Ala Gly Asp Asn Phe Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val	
	15 20 25 30	
	TGC GCC AGG GCC AAG GCT CCA CCT CCA TCG TGG GAT CAG ATG TGG AAG	146
	Cys Ala Arg Ala Lys Ala Pro Pro Ser Trp Asp Gln Met Trp Lys	
45	35 40 45	
	TGT CTC ATA CGG CTG AAG CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG	194

50

55

	Cys Leu Ile Arg Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu			
	50	55	60	
5	TAT AGG TTA GGA GCC GTT CAG AAC GAG GTT ACC CTC ACA CAC CCC ATA	242		
	Tyr Arg Leu Gly Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile			
	65	70	75	
	ACC AAG TTC ATC ATG GCA TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT	290		
	Thr Lys Phe Ile Met Ala Cys Met Ser Ala Asp Leu Glu Val Val Thr			
10	80	85	90	
	AGC ACT TGG GTG CTG GTA GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC	338		
	Ser Thr Trp Val Leu Val Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr			
	95	100	105	110
15	TGC CTG ACA ACG GGC AGC GTG GTC ATT GTG GGC AGG ATC GTC TTG TCC	386		
	Cys Leu Thr Thr Gly Ser Val Val Ile Val Gly Arg Ile Val Leu Ser			
	115	120	125	
20	GGG AGG CCG GTT GTT ATT CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC	434		
	Gly Arg Pro Val Val Ile Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe			
	130	135	140	
	GAT GAA ATG GAA GAG TGC GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA	482		
	Asp Glu Met Glu Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly			
25	145	150	155	
	ATG CAG CTC GCC GAG CAA TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA	530		
	Met Gln Leu Ala Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln			
	160	165	170	
30	ACA GCC ACC AAG CAA GCG GAG GCT GCT CCC GTG GTG GAG TCC AAG	578		
	Thr Ala Thr Lys Gln Ala Glu Ala Ala Ala Pro Val Val Glu Ser Lys			
	175	180	185	190
	TGG CGA GCC CTT GAG ACC TTC TGG GCG AAG CA GGATCCGC	618		
35	Trp Arg Ala Leu Glu Thr Phe Trp Ala Lys			
	195	200		

SEQ ID NO:39

SEQUENCE LENGTH: 969 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N15-1

5 GC GG GAT CCT CCA CCT CCA TCG TGG GAT CAA ATG TGG AAG TGT CTC ATA CGG 51
 Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg
 1 5 10
 10 CTG AAG CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA 99
 Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly
 15 20 25 30
 15 GCC GTT CAG AAC GAG GTT ACC CTC ACA CAC CCC ATA ACC AAG TTC ATC 147
 Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile
 35 40 45
 ATG GCA TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACT TGG GTG 195
 Met Ala Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val
 20 50 55 60
 CTG GTA GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG 243
 Leu Val Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr
 65 70 75
 25 GGC AGC GTG GTC ATT GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC 291
 Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala
 80 85 90
 GTT ATT CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA 339
 30 Val Ile Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu
 95 100 105 110
 GAG TGC GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC 387
 Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala
 35 115 120 125
 GAG CAA TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG 435
 Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys
 130 135 140
 40 CAA GCG GAG GCT GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT 483
 Gln Ala Glu Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu
 145 150 155
 GAG ACC TTC TGG GCG AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG 531
 45 Glu Thr Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln
 160 165 170

TAC TTA GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA	579
Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser	
175 180 185 190	
5 CTG ATG GCA TTC ACA GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT	627
Leu Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr	
195 200 205	
10 ACC CTC CTG TTT AAC ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC	675
Thr Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala	
210 215 220	
15 CCC CCC AGT GCC GCT TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG	723
Pro Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala	
225 230 235	
20 GCT GTT GGC AGC ATA GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG	771
Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala	
240 245 250	
25 GGT TAT GGA GCA GGG GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG	819
Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met	
255 260 265 270	
AGC GGT GAC ATG CCC TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC	867
Ser Gly Asp Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala	
275 280 285	
30 ATC CTC TCT CCT GGT GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA	915
Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile	
290 295 300	
35 CTG CGT CGG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC	963
Leu Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn	
305 310 315	
CGG CTG C AGCC	974
35 Arg Leu	
320	

40 SEQ ID NO:40

SEQUENCE LENGTH: 1280 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

45 ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: MX25026

	TGT GCC TGG TTG TGG ATG ATG CTG CTG ATA GCC CAA GCT GAG GCC GCC	48
	Cys Ala Trp Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala	
10	1 5 10 15	
	TTG GAG AAC CTG GTG GTC CTC AAT GCA GCA TCC ATG GCS GGA GCG CAT	96
	Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ser Met Ala Gly Ala His	
	20 25 30	
15	GGC ATC CTC TCT TTC CTT GTG TTC TTC TGT GCC GCC TGG TAC ATC AAA	144
	Gly Ile Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys	
	35 40 45	
20	GGC AGG CTG GTC CCY GGG GCG RGA TAY GCT YTC TAT GGC GTA TGG CCG	192
	Gly Arg Leu Val Pro Gly Ala Xaa Tyr Ala Xab Tyr Gly Val Trp Pro	
	50 55 60	
	CTG CTC CTG CTC TTG MTG GCG CTA CCS SCA CGG GCG TAC GCC ATG GAC	240
	Leu Leu Leu Leu Xac Ala Leu Pro Xad Arg Ala Tyr Ala Met Asp	
25	65 70 75 80	
	CGG GAS ATG GCT GCA TCG TGC GGA GGC GCG GTT TTT GTA GGT CTG GTA	288
	Arg Xae Met Ala Ala Ser Cys Gly Gly Ala Val Phe Val Gly Leu Val	
	85 90 95	
30	CTC YTG ACC TTG TCA CCA TAC TAC AAA GTG TTC CTC GCT ARG CTC ATA	336
	Leu Leu Thr Leu Ser Pro Tyr Tyr Lys Val Phe Leu Ala Xaf Leu Ile	
	100 105 110	
	TGG TGG TTR CAA TAT CTC ATC ACC AGR GCC GAG GCG CAC YTG CAA GTG	384
35	Trp Trp Leu Gln Tyr Leu Ile Thr Arg Ala Glu Ala His Leu Gln Val	
	115 120 125	
	TGG ATY CCC CCY CTY AAC GTY CGG GGR GGC CGC GAY GCC ATC ATC CTY	432
	Trp Ile Pro Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu	
40	130 135 140	
	CTC ACR TGT GCG GTC CAY CCR GAG CTR ATY TTT GAC ATC ACC AAR CTY	480
	Leu Thr Cys Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu	
	145 150 155 160	
45	YTG CTC GCC ATA CTC GGT CCG CTC ATG GTR CTC CAG GCT GSC MTA ACY	528
	Leu Leu Ala Ile Leu Gly Pro Leu Met Val Leu Gln Ala Xag Xah Thr	

	165	170	175	
5	MRA RTG CCG TAC TTY GTR CGY GCT CAA GGG CTC ATY CGT RYG TGC ATG			576
	Xai Xaj Pro Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Xak Cys Met			
	180	185	190	
	TTR GTG CGG AAA GYC GCY GGR GGT CAT TAT GTY CAR ATG GCY YTY RTG			624
	Leu Val Arg Lys Xal Ala Gly Gly His Tyr Val Gln Met Ala Xam Xan			
10	195	200	205	
	AAG CTG GCY GCR CTG ACA GGT ACG TAC RTT TAT GWC CAT CTT RCY CCA			672
	Lys Leu Ala Ala Leu Thr Gly Thr Tyr Xao Tyr Xap His Leu Xaq Pro			
	210	215	220	
15	CTG CAG SAY TGG GCC CAY GCG GGC CTA CGR GAC CTT GCG GTR GCR GTW			720
	Leu Gln Xar Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val			
	225	230	235	240
	GAG CCC GTT GYC TTC TCT GAY ATG GAG ACY AAG ATC ATC ACS TGG GGG			768
20	Glu Pro Val Xas Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly			
	245	250	255	
	GCA GAS ACB GCG GCG TGT GGG GAC ATC ATY TYG GGY CTA CCH GTY TCC			816
	Ala Xat Thr Ala Ala Cys Gly Asp Ile Ile Xau Gly Leu Pro Val Ser			
25	260	265	270	
	GCC CGR AGG GGY ARS GAG MTR CTY YTS GGR CCG GCC GAT AGT TTT GAC			864
	Ala Arg Arg Gly Xav Glu Xaw Leu Xax Gly Pro Ala Asp Ser Phe Asp			
	275	280	285	
30	GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC TAC TCC CAG CAR			912
	Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala Tyr Ser Gln Gln			
	290	295	300	
	ACG CGG GGC CTG CTT GGT TGC ATC ATC ACY AGC CTT ACG GGC CGG GAT			960
	Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp			
35	305	310	315	320
	AAR AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT ACC GCA ACA CAA			1008
	Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln			
	325	330	335	
40	TCT TTC CTG GCG ACC TGY RTC AAC GGC GTK TGC TGG ACT GTT TTC CAC			1056
	Ser Phe Leu Ala Thr Cys Xay Asn Gly Val Cys Trp Thr Val Phe His			
	340	345	350	
	GGY GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC CCA ATC ACC CAA			1104
45	Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln			
	355	360	365	

	ATG TAC ACC AAT GTR GAT CAG GAC CTC GTC GGY TGG TCG GCG CCC CCC	1152
	Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Ser Ala Pro Pro	
5	370 375 380	
	SGG GCG CGT TCC TTG ACA CCW TGC ACC TGC GGC AGC TCG GAC CTT TAT	1200
	Xaz Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr	
	385 390 395 400	
10	TTG GTC ACG AGR CAT GCT GAT GTC ATT CCG GTG CAC CGG CGG GGC GAC	1248
	Leu Val Thr Arg His Ala Asp Val Ile Pro Val His Arg Arg Gly Asp	
	405 410 415	
	AGC AGG GGG AGC CTC CTC TCC CCC GGG CCC AT	1280
	Ser Arg Gly Ser Leu Leu Ser Pro Gly Pro	
15	420 425	
	Y : C or T R : A or G M : A or C K : G or T	
	S : G or C W : A or T H : A or C or T B : G or T or C	
	Xaa : Ala or Thr Xab : Phe or Leu Xac : Met or Leu	
20	Xad : Ala or Pro Xae : Glu or Asp Xaf : Lys or Arg	
	Xag : Gly or Ala Xah : Leu or Ile Xai : Gln or Arg	
	Xaj : Met or Val Xak : Met or Ala Xal : Ala or Val	
	Xam : Leu or Phe Xan : Met or Val Xao : Val or Ile	
25	Xap : Asp or Val Xaq : Thr or Ala Xar : Asp or His	
	Xas : Ala or Val Xat : Asp or Glu Xau : Leu or Ser	
	Xav : Asn or Arg or Lys Xaw : Ile or Leu Xax : Leu or Phe	
	Xay : Ile or Val Xaz : Gly or Arg	

30

SEQ ID NO:41

SEQUENCE LENGTH: 1431 base pairs

SEQUENCE TYPE: nucleic acid

35

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

40

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N16N15

45

GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC ACA TGT GTC	48
Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val	

50

55

EP 0 518 313 A2

	1	5	10	15	
	ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC ATY GAG ACG				96
5	Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr				
	20	25	30		
	ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG				144
	Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg				
10	35	40	45		
	ACT GGT AGG GGC AGR GGG GGC ATA TAC AGG TTT GTA ACT CCA GGG GAA				192
	Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu				
	50	55	60		
15	CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA TGT TAT GAC				240
	Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp				
	65	70	75	80	
	GCG GGC TGT GCT TGG TAC GAG CTC ACG YCC GCC GAG ACC TCG GTT AGG				288
	Ala Gly Cys Ala Trp Tyr Glu Leu Thr Xaa Ala Glu Thr Ser Val Arg				
20	85	90	95		
	TTG CGG GCT TAC CTA AAY ACA CCT GGG CTG CCC GTC TGC CAG GAC CAT				336
	Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His				
	100	105	110		
25	CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC ATA GAT GCC				384
	Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala				
	115	120	125		
30	CAC TTC TTG TCC CAG ACY AAA CAG GCA GGA GAC AAC TTC CCC TAC CTG				432
	His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu				
	130	135	140		
	GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT CCA CCT CCA				480
	Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro Pro				
35	145	150	155	160	
	TCG TGG GAT CAR ATG TGG AAG TGT CTC ATA CGG CTG AAG CCT ACG CTA				528
	Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu				
	165	170	175		
40	CAC GGG CCA ACG CCC CTG TTG YAT AGG TTA GGA GCC GTT CAG AAC RAG				576
	His Gly Pro Thr Pro Leu Leu Xab Arg Leu Gly Ala Val Gln Asn Xac				
	180	185	190		
	GTT RCC CTY ACA CAC CCY ATA ACC AAG TWC ATC ATG RCA TGC ATG TCG				624
45	Val Xad Leu Thr His Pro Ile Thr Lys Xae Ile Met Xaf Cys Met Ser				
	195	200	205		

	GCT GAC CTA GAG GTC GTC ACT AGC ACT TGG GTG CTG GTA GGC GGG GTC	672
	Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly Val	
5	210 215 220	
	CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG GGC AGC GTG GTC ATT	720
	Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val Ile	
	225 230 235 240	
10	GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC GTT ATT CCC GAC AGG	768
	Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val Ile Pro Asp Arg	
	245 250 255	
	GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA GAG TGC GCC TCG CAC	816
	Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser His	
15	260 265 270	
	CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC GAG CAA TTC AAG CAG	864
	Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys Gln	
	275 280 285	
20	AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG CAA GCG GAG GCT GCT	912
	Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala Ala	
	290 295 300	
	GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT GAG ACC TTC TGG GCG	960
25	Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp Ala	
	305 310 315 320	
	AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG TAC TTA GCA GGC TTG	1008
	Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly Leu	
30	325 330 335	
	TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA CTG ATG GCA TTC ACA	1056
	Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe Thr	
	340 345 350	
35	GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT ACC CTC CTG TTT AAC	1104
	Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr Thr Leu Leu Phe Asn	
	355 360 365	
	ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC CCC CCC AGT GCC GCT	1152
40	Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala Ala	
	370 375 380	
	TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG GCT GTT GGC AGC ATA	1200
	Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser Ile	
45	385 390 395 400	
	GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG GGT TAT GGA GCA GGG	1248

Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly
 405 410 415
 GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG AGC GGT GAC ATG CCC 1296
 5 Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Asp Met Pro
 420 425 430
 TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC ATC CTC TCT CCT GGT 1344
 10 Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly
 435 440 445
 GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA CTG CGT CGG CAT GTG 1392
 Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His Val
 450 455 460
 15 GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG 1431
 Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu
 465 470 475
 Y : C or T R : A or G M : A or C K : G or T
 20 S : G or C W : A or T H : A or C or T B : G or T or C
 Xaa : Pro or Ser Xab : Tyr or His Xac : Glu or Lys
 Xad : Thr or Ala Xae : Tyr or Phe Xaf : Thr or Ala

25 SEQ ID NO:42
 SEQUENCE LENGTH: 2304 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 30 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 35 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N23N15

CTG CTG TCG CCC GGG CCC ATC TCY TAC YTG AAG GGY TCC TCG GGT GGT 48
 40 Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly
 1 5 10 15
 CCG CTG CYT TGC CCC TCG GGC CRT GTT GTG GGC ATC TTC CGG GCT GCY 96
 Pro Leu Xaa Cys Pro Ser Gly Xab Val Val Gly Ile Phe Arg Ala Ala
 45 20 25 30
 GTG TGC ACC CGG GGG GTT GCG AAG GCG GTR GAC TTT GTG CCC GTT GAG 144

EP 0 518 313 A2

	Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu			
	35	40	45	
5	TCT ATG GAA ACC ACY ATG CGG TCT CCG GTC TTC RCG GAT AAC TCA ACC		192	
	Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Xac Asp Asn Ser Thr			
	50	55	60	
	CCC CCG GCC GTA CCG CAG WCA TTC CAA GTG GCC CAC CTA CAC GCT CCC		240	
10	Pro Pro Ala Val Pro Gln Xad Phe Gln Val Ala His Leu His Ala Pro			
	65	70	75	80
	ACT GGC AGC GGC AAA AGC ACC ARG GTG CCG GCT GCG TAT GCG GCC CAA		288	
	Thr Gly Ser Gly Lys Ser Thr Xae Val Pro Ala Ala Tyr Ala Ala Gln			
	85	90	95	
15	GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT GCC ACT TTG GGC		336	
	Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly			
	100	105	110	
20	TTT GGG GCG TAY ATG TCC AAG GCA CAT GGT GTT GAC CCT AAC ATC AGA		384	
	Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile Arg			
	115	120	125	
	ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC RTC ACG TAC TCC ACC		432	
	Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Xaf Thr Tyr Ser Thr			
25	130	135	140	
	TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG GGT GCC TAT GAC		480	
	Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp			
	145	150	155	160
30	ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG ACT TCC ATC TTG		528	
	Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Ser Ile Leu			
	165	170	175	
	GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA GCG CGC CTT		576	
35	Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu			
	180	185	190	
	GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC GTG CCG CAT		624	
	Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His			
40	195	200	205	
	CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG ATC CCC TTC		672	
	Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe			
	210	215	220	
45	TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG AGG CAT CTC		720	
	Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly Arg His Leu			

	225	230	235	240	
	AYT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT GCG AAG CTG				768
5	Xag Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu				
	245	250	255		
	TCG GCC CTC GGA GTC AAY GCT GTA GCA TAY TAC CGG GGT CTT GAT GTG				816
	Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val				
10	260	265	270		
	TCC RTC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA ACW GAC GCT				864
	Ser Xah Ile Pro Thr Ser Gly Asp Val Val Val Ala Thr Asp Ala				
15	275	280	285		
	CTA ATG ACG GGC TAT ACC GGY GAC TTY GAC TCR GTG ATC GAC TGY AAC				912
	Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn				
	290	295	300		
	ACA TGT GTC ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC				960
	Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr				
20	305	310	315	320	
	ATY GAG ACG ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG				1008
	Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg				
	325	330	335		
25	CGA GGC AGG ACT GGT AGG GGC AGR GGG GGC ATA TAC AGG TTT GTA ACT				1056
	Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr				
	340	345	350		
	CCA GGG GAA CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA				1104
30	Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu				
	355	360	365		
	TGT TAT GAC GCG GGC TGT GCT TGG TAC GAG CTC ACG YCC GCC GAG ACC				1152
	Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Xai Ala Glu Thr				
35	370	375	380		
	TCG GTT AGG TTG CGG GCT TAC CTA AAY ACA CCT GGG CTG CCC GTC TGC				1200
	Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys				
	385	390	395	400	
40	CAG GAC CAT CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC				1248
	Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His				
	405	410	415		
	ATA GAT GCC CAC TTC TTG TCC CAG ACY AAA CAG GCA GGA GAC AAC TTC				1296
45	Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe				
	420	425	430		

	CCC TAC CTG GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT	1344
	Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala	
5	435 440 445	
	CCA CCT CCA TCG TGG GAT CAR ATG TGG AAG TGT CTC ATA CGG CTG AAG	1392
	Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys	
	450 455 460	
10	CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG YAT AGG TTA GGA GCC GTT	1440
	Pro Thr Leu His Gly Pro Thr Pro Leu Leu Xaj Arg Leu Gly Ala Val	
	465 470 475 480	
	CAG AAC RAG GTT RCC CTY ACA CAC CCY ATA ACC AAG TWC ATC ATG RCA	1488
	Gln Asn Xak Val Xal Leu Thr His Pro Ile Thr Lys Xam Ile Met Xan	
15	485 490 495	
	TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACT TGG GTG CTG GTA	1536
	Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val	
	500 505 510	
20	GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG GGC AGC	1584
	Gly Gly Val Leu Ala Ala Leu Ala Tyr Cys Leu Thr Thr Gly Ser	
	515 520 525	
	GTG GTC ATT GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC GTT ATT	1632
25	Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val Ile	
	530 535 540	
	CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA GAG TGC	1680
	Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys	
30	545 550 555 560	
	GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC GAG CAA	1728
	Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln	
	565 570 575	
35	TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG CAA GCG	1776
	Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala	
	580 585 590	
	GAG GCT GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT GAG ACC	1824
40	Glu Ala Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr	
	595 600 605	
	TTC TGG GCG AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG TAC TTA	1872
	Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu	
45	610 615 620	
	GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA CTG ATG	1920

EP 0 518 313 A2

	Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met			
625	630	635	640	
	GCA TTC ACA GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT ACC CTC	1968		
5	Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr Thr Leu			
	645	650	655	
	CTG TTT AAC ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC CCC CCC	2016		
	Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro			
10	660	665	670	
	AGT GCC GCT TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG GCT GTT	2064		
	Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val			
	675	680	685	
15	GGC AGC ATA GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG GGT TAT	2112		
	Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr			
	690	695	700	
20	GGA GCA GGG GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG AGC GGT	2160		
	Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly			
	705	710	715	720
	GAC ATG CCC TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC ATC CTC	2208		
	Asp Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu			
25	725	730	735	
	TCT CCT GGT GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA CTG CGT	2256		
	Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg			
	740	745	750	
30	CGG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG	2304		
	Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu			
	755	760	765	
	Y : C or T R : A or G M : A or C K : G or T			
35	S : G or C W : A or T H : A or C or T B : G or T or C			
	Xaa : Leu or Pro Xab : His or Arg Xac : Thr or Ala			
	Xad : Ser or Thr Xae : Lys or Arg Xaf : Ile or Val			
	Xag : Thr or Ile Xah : Val or Ile Xai : Pro or Ser			
40	Xaj : Tyr or His Xak : Gln or Lys Xal : Thr or Ala			
	Xam : Tyr or Phe Xan : Thr or Ala			

SEQ ID NO:43

SEQUENCE LENGTH: 3564 base pairs

45 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

5 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: MX25N15

10

	TGT GCC TGG TTG TGG ATG ATG CTG CTG ATA GCC CAA GCT GAG GCC GCC	48
	Cys Ala Trp Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala	
	1 5 10 15	
15	TTG GAG AAC CTG GTG GTC CTC AAT GCA GCA TCC ATG GCS GGA GCG CAT	96
	Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ser Met Ala Gly Ala His	
	20 25 30	
20	GGC ATC CTC TCT TTC CTT GTG TTC TTC TGT GCC GCC TGG TAC ATC AAA	144
	Gly Ile Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys	
	35 40 45	
	GGC AGG CTG GTC CCY GGG GCG RCA TAY GCT YTC TAT GGC GTA TGG CCG	192
	Gly Arg Leu Val Pro Gly Ala Xaa Tyr Ala Xab Tyr Gly Val Trp Pro	
25	50 55 60	
	CTG CTC CTG CTC TTG MTG GCG CTA CCS SCA CGG GCG TAC GCC ATG GAC	240
	Leu Leu Leu Leu Xac Ala Leu Pro Xad Arg Ala Tyr Ala Met Asp	
	65 70 75 80	
30	CGG GAS ATG GCT GCA TCG TGC GGA GGC GCG GTT TTT GTA GGT CTG GTA	288
	Arg Xae Met Ala Ala Ser Cys Gly Gly Ala Val Phe Val Gly Leu Val	
	85 90 95	
35	CTC YTG ACC TTG TCA CCA TAC TAC AAA GTG TTC CTC GCT ARG CTC ATA	336
	Leu Leu Thr Leu Ser Pro Tyr Tyr Lys Val Phe Leu Ala Xaf Leu Ile	
	100 105 110	
	TGG TGG TTR CAA TAT CTC ATC ACC AGR GCC GAG GCG CAC YTG CAA GTG	384
	Trp Trp Leu Gln Tyr Leu Ile Thr Arg Ala Glu Ala His Leu Gln Val	
40	115 120 125	
	TGG ATY CCC CCY CTY AAC GTY CGG GGR GGC CGC GAY GCC ATC ATC CTY	432
	Trp Ile Pro Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu	
	130 135 140	
45	CTC ACR TGT GCG GTC CAY CCR GAG CTR ATY TTT GAC ATC ACC AAR CTY	480
	Leu Thr Cys Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu	

50

55

	145	150	155	160	
	YTG CTC GCC ATA CTC GGT CCG CTC ATG GTR CTC CAG GCT GSC MTA ACY				528
5	Leu Leu Ala Ile Leu Gly Pro Leu Met Val Leu Gln Ala Xaq Xah Thr				
	165	170	175		
	MRA RTG CCG TAC TTY GTR CGY GCT CAA GGG CTC ATY CGT RYG TGC ATG				576
	Xai Xaj Pro Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Xak Cys Met				
10	180	185	190		
	TTR GTG CGG AAA GYC GCY GGR GGT CAT TAT GTY CAR ATG GCY YTY RTG				624
	Leu Val Arg Lys Xal Ala Gly Gly His Tyr Val Gln Met Ala Xam Xan				
	195	200	205		
15	AAG CTG GCY GCR CTG ACA GGT ACG TAC RTT TAT GWC CAT CTT RCY CCA				672
	Lys Leu Ala Ala Leu Thr Gly Thr Tyr Xao Tyr Xap His Leu Xaq Pro				
	210	215	220		
	CTG CAG SAY TGG GCC CAY GCG GGC CTA CGR GAC CTT GCG GTR GCR GTW				720
	Leu Gln Xar Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val				
20	225	230	235	240	
	GAG CCC GTT GYC TTC TCT GAY ATG GAG ACY AAG ATC ATC ACS TGG GGG				768
	Glu Pro Val Xas Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly				
	245	250	255		
25	GCA GAS ACB GCG GCG TGT GGG GAC ATC ATY TYG GGY CTA CCH GTY TCC				816
	Ala Xat Thr Ala Ala Cys Gly Asp Ile Ile Xau Gly Leu Pro Val Ser				
	260	265	270		
30	GCC CGR AGG GGS ARS GAG MTR CTY YTS GGR CCG GCC GAT AGT TTT GAC				864
	Ala Arg Arg Gly Xav Glu Xaw Leu Xax Gly Pro Ala Asp Ser Phe Asp				
	275	280	285		
	GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC TAC TCC CAG CAR				912
	Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala Tyr Ser Gln Gln				
35	290	295	300		
	ACG CGG GGC CTG CTT GGT TGC ATC ATC ACY AGC CTT ACG GGC CGG GAT				960
	Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp				
	305	310	315	320	
40	AAR AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT ACC GCA ACA CAA				1008
	Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln				
	325	330	335		
	TCT TTC CTG GCG ACC TGY RTC AAC GGC GTK TGC TGG ACT GTT TTC CAC				1056
45	Ser Phe Leu Ala Thr Cys Xay Asn Gly Val Cys Trp Thr Val Phe His				
	340	345	350		

GGY GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC CCA ATC ACC CAA 1104
 Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln
 5 355 360 365
 ATG TAC ACC AAT GTR GAT CAG GAC CTC GTC GGY TGG TCG GCG CCC CCC 1152
 Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Ser Ala Pro Pro
 10 370 375 380
 SGG GCG CGT TCC TTG ACA CCW TGC ACC TGC GGC AGC TCG GAC CTT TAT 1200
 Xaz Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr
 15 385 390 395 400
 TTG GTC ACG AGR CAT GCT GAT GTC ATT CCG GTG CAC CGG CGG GGC GAC 1248
 Leu Val Thr Arg His Ala Asp Val Ile Pro Val His Arg Arg Gly Asp
 20 405 410 415
 AGC AGG GGG AGC CTS CTS TCS CCC GGG CCC ATC TCY TAC YTG AAG GGY 1296
 Ser Arg Gly Ser Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly
 25 420 425 430
 TCC TCG GGT GGT CCG CTG CYT TGC CCC TCG GGC CRT GTT GTG GGC ATC 1344
 Ser Ser Gly Gly Pro Leu Xba Cys Pro Ser Gly Xbb Val Val Gly Ile
 30 435 440 445
 TTC CGG GCT GCY GTG TGC ACC CGG GGG GTT GCG AAG GCG GTR GAC TTT 1392
 Phe Arg Ala Ala Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe
 35 450 455 460
 GTG CCC GTT GAG TCT ATG GAA ACC ACY ATG CGG TCT CCG GTC TTC RCG 1440
 Val Pro Val Glu Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Xbc
 40 465 470 475 480
 GAT AAC TCA ACC CCC CCG GCC GTA CCG CAG WCA TTC CAA GTG GCC CAC 1488
 Asp Asn Ser Thr Pro Pro Ala Val Pro Gln Xbd Phe Gln Val Ala His
 45 485 490 495
 CTA CAC GCT CCC ACT GGC AGC GGC AAA AGC ACC ARG GTG CCG GCT GCG 1536
 Leu His Ala Pro Thr Gly Ser Gly Lys Ser Thr Xbe Val Pro Ala Ala
 50 500 505 510
 TAT GCG GCC CAA GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT 1584
 Tyr Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala
 55 515 520 525
 GCC ACT TTG GGC TTT GGG GCG TAY ATG TCC AAG GCA CAT GGT GTT GAC 1632
 Ala Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp
 60 530 535 540
 CCT AAC ATC AGA ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC RTC 1680

	Pro Asn Ile Arg Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Xbf	
545	550	555
	560	
5	ACG TAC TCC ACC TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG	1728
	Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly	
	565	570
	575	
	GGT GCC TAT GAC ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG	1776
10	Gly Ala Tyr Asp Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser	
	580	585
	590	
	ACT TCC ATC TTG GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT	1824
	Thr Ser Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala	
	595	600
	605	
15	GGA GCG CGC CTT GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC	1872
	Gly Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val	
	610	615
	620	
20	ACC GTG CCG CAT CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA	1920
	Thr Val Pro His Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly	
	625	630
	635	640
	GAG ATC CCC TTC TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG	1968
	Glu Ile Pro Phe Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly	
25	645	650
	655	
	GGG AGG CAT CTC AYT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC	2016
	Gly Arg His Leu Xbg Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu	
	660	665
	670	
30	GCT GCG AAG CTG TCG GCC CTC GGA GTC AAY GCT GTA GCA TAY TAC CGG	2064
	Ala Ala Lys Leu Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg	
	675	680
	685	
	GGT CTT GAT GTG TCC RTC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG	2112
35	Gly Leu Asp Val Ser Xbh Ile Pro Thr Ser Gly Asp Val Val Val Val	
	690	695
	700	
	GCA ACW GAC GCT CTA ATG ACG GGC TAT ACC GGY GAC TTY GAC TCA GTG	2160
	Ala Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val	
40	705	710
	715	720
	ATC GAC TGC AAC ACA TGT GTC ACC CAA ACA GTC GAT TTC AGC TTG GAC	2208
	Ile Asp Cys Asn Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp	
	725	730
	735	
45	CCT ACT TTC ACC ATY GAG ACG ACG ACC GTA CCC CAA GAT GCG GTG TCG	2256
	Pro Thr Phe Thr Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser	

	740	745	750	
5	CGC TCG CAG CGG CGA GGC AGG ACT GGT AGG GGC AGR GGG GGC ATA TAC	2304		
	Arg Ser Gln Arg Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr			
	755	760	765	
	AGG TTT GTA ACT CCA GGG GAA CGG CCC TCA GGC ATG TTC GAT TCT TCG	2352		
	Arg Phe Val Thr Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser			
10	770	775	780	
	GTC CTG TGT GAA TGT TAT GAC GCG GGC TGT GCT TGG TAC GAG CTC ACG	2400		
	Val Leu Cys Glu Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr			
	785	790	795	800
15	YCC GCC GAG ACC TCG GTT AGG TTG CGG GCT TAC CTA AAY ACA CCT GGG	2448		
	Xbi Ala Glu Thr Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly			
	805	810	815	
	CTG CCC GTC TGC CAG GAC CAT CTG GAG TTC TGG GAG AGC GTC TTC ACC	2496		
20	Leu Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr			
	820	825	830	
	GGC CTC ACC CAC ATA GAT GCC CAC TTC TTG TCC CAG ACY AAA CAG GCA	2544		
	Gly Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala			
25	835	840	845	
	GGA GAC AAC TTC CCC TAC CTG GTA GCA TAC CAG GCT ACA GTG TGC GCC	2592		
	Gly Asp Asn Phe Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala			
	850	855	860	
30	AGG GCC AAG GCT CCA CCT CCA TCG TGG GAT CAR ATG TGG AAG TGT CTC	2640		
	Arg Ala Lys Ala Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu			
	865	870	875	880
	ATA CGG CTG AAG CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG YAT AGG	2688		
	Ile Arg Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Xbj Arg			
35	885	890	895	
	TTA GGA GCC GTT CAG AAC RAG GTT RCC CTY ACA CAC CCY ATA ACC AAG	2736		
	Leu Gly Ala Val Gln Asn Xbk Val Xbl Leu Thr His Pro Ile Thr Lys			
	900	905	910	
40	TWC ATC ATG RCA TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACT	2784		
	Xbm Ile Met Xbn Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr			
	915	920	925	
	TGG GTG CTG GTA GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC TGC CTG	2832		
45	Trp Val Leu Val Gly Gly Val Leu Ala Ala Leu Ala Tyr Cys Leu			
	930	935	940	

	ACA ACG GGC AGC GTG GTC ATT GTG GGC AGG ATC ATC TTG TCC GGG AGG	2880
	Thr Thr Gly S r Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg	
5	945 950 955 960	
	CCG GCC GTT ATT CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC GAT GAA	2928
	Pro Ala Val Ile Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu	
	965 970 975	
10	ATG GAA GAG TGC GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA ATG CAG	2976
	Met Glu Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln	
	980 985 990	
	CTC GCC GAG CAA TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA ACA GCC	3024
	Leu Ala Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala	
15	995 1000 1005	
	ACC AAG CAA GCG GAG GCT GCT CCC GTG GTG GAG TCC AAG TGG CGA	3072
	Thr Lys Gln Ala Glu Ala Ala Pro Val Val Glu Ser Lys Trp Arg	
	1010 1015 1020	
20	GCC CTT GAG ACC TTC TGG GCG AAG CAC ATG TGG AAT TTC ATC AGC GGG	3120
	Ala Leu Glu Thr Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly	
	1025 1030 1035 1040	
	ATA CAG TAC TTA GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCA ATA	3168
25	Ile Gln Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile	
	1045 1050 1055	
	GCA TCA CTG ATG GCA TTC ACA GGC TCT ATC ACC AGC CCG CTC ACC ACC	3216
	Ala Ser Leu Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr	
30	1060 1065 1070	
	CAA TAT ACC CTC CTG TTT AAC ATC TTG GGG GGA TGG GTG GCC GCC CAA	3264
	Gln Tyr Thr Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln	
	1075 1080 1085	
35	CTC GCC CCC CCC AGT GCC GCT TCA GCC TTC GTG GGC GCC GGT ATA GCT	3312
	Leu Ala Pro Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala	
	1090 1095 1100	
	GCC GCG GCT GTT GGC AGC ATA GGC CTC GGG AAG GTG CTT GTG GAC ATT	3360
40	Gly Ala Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile	
	1105 1110 1115 1120	
	CTG GCG GGT TAT GGA GCA GGG GTG GCA GGC GCG CTC GTG GCC TTT AAG	3408
	Leu Ala Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys	
45	1125 1130 1135	
	GTC ATG AGC GGT GAC ATG CCC TCC ACC GAG GAC CTG GTC AAC TTA CTC	3456

	Val Met Ser Gly Asp Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu		
	1140	1145	1150
5	CCC GCC ATC CTC TCT CCT GGT GCC CTG GTC GTC GGG GTC GTG TGC GCA	3504	
	Pro Ala Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala		
	1155	1160	1165
	GCA ATA CTG CGT CGG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG	3552	
10	Ala Ile Leu Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp		
	1170	1175	1180
	ATG AAC CGG CTG		3564
	Met Asn Arg Leu		
15	1185		
	Y : C or T R : A or G M : A or C K : G or T		
	S : G or C W : A or T H : A or C or T B : G or T or C		
	Xaa : Ala or Thr Xab : Phe or Leu Xac : Met or Leu		
20	Xad : Ala or Pro Xae : Glu or Asp Xaf : Lys or Arg		
	Xag : Gly or Ala Xah : Leu or Ile Xai : Gln or Arg		
	Xaj : Met or Val Xak : Met or Ala Xal : Ala or Val		
	Xam : Leu or Phe Xan : Met or Val Xao : Val or Ile		
25	Xap : Asp or Val Xaq : Thr or Ala Xar : Asp or His		
	Xas : Ala or Val Xat : Asp or Glu Xau : Leu or Ser		
	Xav : Asn or Arg or Lys Xaw : Ile or Leu Xax : Leu or Phe		
	Xay : Ile or Val Xaz : Gly or Arg Xba : Leu or Pro		
30	Xbb : His or Arg Xbc : Thr or Ala Xbd : Ser or Thr		
	Xbe : Lys or Arg Xbf : Ile or Val Xbg : Thr or Ile		
	Xbh : Val or Ile Xbi : Pro or Ser Xbj : Tyr or His		
	Xbk : Glu or Lys Xbl : Thr or Ala Xbm : Tyr or Phe		
35	Xbn : Thr or Ala		

SEQ ID NO:44

SEQUENCE LENGTH: 849 base pairs

SEQUENCE TYPE: nucleic acid

40 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

45 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: MX25-1

5	TGT GCC TGG TTG TGG ATG ATG CTG CTG ATA GCC CAA GCT GAG GCC GCC	48
	Cys Ala Trp Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala	
	1 5 10 15	
10	TTG GAG AAC CTG GTG GTC CTC AAT GCA GCA TCC ATG GCG GGA GCG CAT	96
	Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ser Met Ala Gly Ala His	
	20 25 30	
	GGC ATC CTC TCT TTC CTT GTG TTC TAC TGT GCC GCC TGG TAC ATC AAA	144
	Gly Ile Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys	
15	35 40 45	
	GGC AGG CTG GTC CCT GGG GCG GCA TAC GCT TTC TAT GGC GTA TGG CCG	192
	Gly Arg Leu Val Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro	
	50 55 60	
20	CTG CTC CTG CTC TTG ATG GCG CTA CCC GCA CGG GCG TAC GCC ATG GAC	240
	Leu Leu Leu Leu Met Ala Leu Pro Ala Arg Ala Tyr Ala Met Asp	
	65 70 75 80	
	CGG GAG ATG GCT GCA TCG TGC GGA GGC GCG GTT TTT GTA GGT CTG GTA	288
25	Arg Glu Met Ala Ala Ser Cys Gly Gly Ala Val Phe Val Gly Leu Val	
	85 90 95	
	CTC TTG ACC TTG TCA CCA TAC TAC AAA GTG TTC CTC GCT AAG CTC ATA	336
	Leu Leu Thr Leu Ser Pro Tyr Tyr Lys Val Phe Leu Ala Lys Leu Ile	
	100 105 110	
30	TGG TGG TTG CAA TAT CTC ATC ACC AGG GCC GAG GCG CAC TTG CAA GTG	384
	Trp Trp Leu Gln Tyr Leu Ile Thr Arg Ala Glu Ala His Leu Gln Val	
	115 120 125	
35	TGG ATC CCC CCC CTC AAC GTT CGG GGG GGC CGC GAT GCC ATC ATC CTT	432
	Trp Ile Pro Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu	
	130 135 140	
	CTC ACA TGT GCG GTC CAC CCG GAG CTG ATC TTT GAC ATC ACC AAG CTC	480
	Leu Thr Cys Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu	
40	145 150 155 160	
	TTG CTC GCC ATA CTC GGT CCG CTC ATG GTA CTC CAG GCT GGC CTA ACC	528
	Leu Leu Ala Ile Leu Gly Pro Leu Met Val Leu Gln Ala Gly Leu Thr	
	165 170 175	
45	CAA ATG CCG TAC TTT GTG CGT GCT CAA GGG CTC ATT CGT ATG TGC ATG	576
	Gln Met Pro Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Met Cys Met	

	180	185	190	
5	TTG GTG CGG AAA GCC GCT GGG GGT CAT TAT GTC CAG ATG GCT CTC ATG Leu Val Arg Lys Ala Ala Gly Gly His Tyr Val Gln Met Ala Leu Met			624
	195	200	205	
10	AAG CTG GCT GCA CTG ACA GGT ACG TAC GTT TAT GAC CAT CTT ACT CCA Lys Leu Ala Ala Leu Thr Gly Thr Tyr Val Tyr Asp His Leu Thr Pro			672
	210	215	220	
15	CTG CAG GAC TGG GCC CAC GCG GGC CTA CGA GAC CTT GCG GTA GCA GTT Leu Gln Asp Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val			720
	225	230	235	240
20	GAG CCC GTT GCC TTC TCT GAT ATG GAG ACT AAG ATC ATC ACC TGG GGG Glu Pro Val Ala Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly			768
	245	250	255	
25	GCA GAC ACT GCG GCG TGT GGG GAC ATC ATT TTG GGC CTA CCT GTC TCC Ala Asp Thr Ala Ala Cys Gly Asp Ile Ile Leu Gly Leu Pro Val Ser			816
	260	265	270	
	GCC CGG AGG GGC AAC GAG ATA CTC CTC GGA CCG Ala Arg Arg Gly Asn Glu Ile Leu Leu Gly Pro			849
	275	280		

SEQ ID NO:45

SEQUENCE LENGTH: 849 base pairs

SEQUENCE TYPE: nucleic acid

30 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

35 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: MX25-2

40	TGT GCC TGG TTG TGG ATG ATG CTG CTG ATA GCC CAA GCT GAG GCC GCC Cys Ala Trp Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala		48	
	1	5	10	15
45	TTG GAG AAC CTG GTG GTC CTC AAT GCA GCA TCC ATG GCG GGA GCG CAT Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ser Met Ala Gly Ala His			96
	20	25	30	

	GGC ATC CTC TCT TTC CTT GTG TTC TTC TGT GCC GCC TGG TAC ATC AAA	144
	Gly Ile Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys	
5	35 40 45	
	GGC AGG CTG GTC CCT GGG GCG ACA TAC GCT CTC TAT GGC GTA TGG CCG	192
	Gly Arg Leu Val Pro Gly Ala Thr Tyr Ala Leu Tyr Gly Val Trp Pro	
	50 55 60	
10	CTG CTC CTG CTC TTG ATG GCG CTA CCG CCA CGG GCG TAC GCC ATG GAC	240
	Leu Leu Leu Leu Met Ala Leu Pro Pro Arg Ala Tyr Ala Met Asp	
	65 70 75 80	
	CGG GAC ATG GCT GCA TCG TGC GGA GGC GCG GTT TTT GTA GGT CTG GTA	288
	Arg Asp Met Ala Ala Ser Cys Gly Gly Ala Val Phe Val Gly Leu Val	
15	85 90 95	
	CTC TTG ACC TTG TCA CCA TAC TAC AAA GTG TTC CTC GCT AGG CTC ATA	336
	Leu Leu Thr Leu Ser Pro Tyr Tyr Lys Val Phe Leu Ala Arg Leu Ile	
	100 105 110	
20	TGG TGG TTA CAA TAT CTC ATC ACC AGA GCC GAG GCG CAC CTG CAA GTG	384
	Trp Trp Leu Gln Tyr Leu Ile Thr Arg Ala Glu Ala His Leu Gln Val	
	115 120 125	
	TGG ATT CCC CCT CTC AAC GTC CGG GGA GGC CGC GAC GCC ATC ATC CTC	432
25	Trp Ile Pro Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu	
	130 135 140	
	CTC ACG TGT GCG GTC CAT CCA GAG CTA ATT TTT GAC ATC ACC AAA CTT	480
	Leu Thr Cys Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu	
30	145 150 155 160	
	CTG CTC GCC ATA CTC GGT CCG CTC ATG GTG CTC CAG GCT GCC ATA ACT	528
	Leu Leu Ala Ile Leu Gly Pro Leu Met Val Leu Gln Ala Ala Ile Thr	
	165 170 175	
35	AGA GTG CCG TAC TTC GTA CGC GCT CAA GGG CTC ATC CGT GCG TGC ATG	576
	Arg Val Pro Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Ala Cys Met	
	180 185 190	
	TTA GTG CGG AAA GCC GCC GGA GGT CAT TAT GTT CAA ATG GCC TTT GTG	624
40	Leu Val Arg Lys Ala Ala Gly Gly His Tyr Val Gln Met Ala Phe Val	
	195 200 205	
	AAG CTG GCC GCG CTG ACA GGT ACG TAC ATT TAT GAC CAT CTT GCC CCA	672
	Lys Leu Ala Ala Leu Thr Gly Thr Tyr Ile Tyr Asp His Leu Ala Pro	
45	210 215 220	
	CTG CAG CAT TGG GCC CAT GCG GGC CTA CGG GAC CTT GCG GTG GCG GTA	720

	Leu Gln His Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val		
225	230	235	240
5	GAG CCC GTT GTC TTC TCT GAC ATG GAG ACC AAG ATC ATC ACC TGG GGG		768
	Glu Pro Val Val Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly		
	245	250	255
10	GCA GAC ACC GCG GCG TGT GGG GAC ATC ATT TTG GGC CTA CCA GTC TCC		816
	Ala Asp Thr Ala Ala Cys Gly Asp Ile Ile Leu Gly Leu Pro Val Ser		
	260	265	270
	GCC CGG AGG GGC AAC GAG ATA CTC CTC GGA CCG		849
	Ala Arg Arg Gly Asn Glu Ile Leu Leu Gly Pro		
	275	280	

15

SEQ ID NO:46

SEQUENCE LENGTH: 849 base pairs

SEQUENCE TYPE: nucleic acid

20 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

25 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: MX25-3

30	TGT GCC TGG TTG TGG ATG ATG CTG CTG ATA GCC CAA GCT GAG GCC GCC	48
	Cys Ala Trp Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala	
	1 5 10 15	
35	TTG GAG AAC CTG GTG GTC CTC AAT GCA GCA TCC ATG GCC GGA GCG CAT	96
	Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ser Met Ala Gly Ala His	
	20 25 30	
40	GGC ATC CTC TCT TTC CTT GTG TTC TTC TGT GCC GCC TGG TAC ATC AAA	144
	Gly Ile Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys	
	35 40 45	
45	GGC AGG CTG GTC CCC GGG GCG GCA TAT GCT TTC TAT GGC GTA TGG CCG	192
	Gly Arg Leu Val Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro	
	50 55 60	
	CTG CTC CTG CTC TTG CTG GCG CTA CCC GCA CGG GCG TAC GCC ATG GAC	240
	Leu Leu Leu Leu Leu Ala Leu Pro Ala Arg Ala Tyr Ala Met Asp	

50

55

EP 0 518 313 A2

	65	70	75	80	
	CGG GAG ATG GCT GCA TCG TGC GGA GGC GCG GTT TTT	GTA GGT CTG GTA			288
5	Arg Glu Met Ala Ala Ser Cys Gly Gly Ala Val Phe Val Gly Leu Val				
	85	90	95		
	CTC CTG ACC TTG TCA CCA TAC TAC AAA GTG TTC CTC GCT AAG CTC ATA				336
	Leu Leu Thr Leu Ser Pro Tyr Tyr Lys Val Phe Leu Ala Lys Leu Ile				
10	100	105	110		
	TGG TGG TTG CAA TAT CTC ATC ACC AGG GCC GAG GCG CAC TTG CAA GTG				384
	Trp Trp Leu Gln Tyr Leu Ile Thr Arg Ala Glu Ala His Leu Gln Val				
15	115	120	125		
	TGG ATC CCC CCC CTT AAC GTT CGG GGG GGC CGC GAT GCC ATC ATC CTT				432
	Trp Ile Pro Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu				
20	130	135	140		
	CTC ACA TGT GCG GTC CAC CCG GAG CTG ATC TTT GAC ATC ACC AAG CTC				480
	Leu Thr Cys Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu				
25	145	150	155	160	
	TTG CTC GCC ATA CTC GGT CCG CTC ATG GTA CTC CAG GCT GGC CTA ACC				528
	Leu Leu Ala Ile Leu Gly Pro Leu Met Val Leu Gln Ala Gly Leu Thr				
30	165	170	175		
	CAA ATG CCG TAC TTT GTG CGT GCT CAA GGG CTC ATT CGT ATG TGC ATG				576
	Gln Met Pro Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Met Cys Met				
35	180	185	190		
	TTG GTG CGG AAA GTC GCT GGG GGT CAT TAT GTC CAG ATG GCT CTC ATG				624
	Leu Val Arg Lys Val Ala Gly Gly His Tyr Val Gln Met Ala Leu Met				
40	195	200	205		
	AAG CTG GCT GCA CTG ACA GGT ACG TAC GTT TAT GTC CAT CTT ACT CCA				672
	Lys Leu Ala Ala Leu Thr Gly Thr Tyr Val Tyr Val His Leu Thr Pro				
45	210	215	220		
	CTG CAG GAC TGG GCC CAC GCG GGC CTA CGA GAC CTT GCG GTA GCA GTT				720
	Leu Gln Asp Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val				
50	225	230	235	240	
	GAG CCC GTT GTC TTC TCT GAT ATG GAG ACT AAG ATC ATC ACC TGG GGG				768
	Glu Pro Val Val Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly				
	245	250	255		
	GCA GAC ACC GCG GCG TGT GGG GAC ATC ATT TTG GGC CTA CCT GTC TCC				816
	Ala Asp Thr Ala Ala Cys Gly Asp Ile Ile Leu Gly Leu Pro Val Ser				
	260	265	270		

GCC CGG AGG GGC AAC GAG ATA CTC CTC GGA CCG
 Ala Arg Arg Gly Asn Glu Ile Leu Leu Gly Pro
 275 280

849

5

SEQ ID NO:47

SEQUENCE LENGTH: 524 base pairs

SEQUENCE TYPE: nucleic acid

10

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

15

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: 026-1

20	ATC ACG TGG GGG GCA GAG ACG GCG GCG TGT GGG GAC ATC ATC TCG GGT	48
	Ile Thr Trp Gly Ala Glu Thr Ala Ala Cys Gly Asp Ile Ile Ser Gly	
	1 5 10 15	
25	CTA CCC GTT TCC GCC CGA AGG GGG AGG GAG CTG CTT TTG GGG CCG GCC	96
	Leu Pro Val Ser Ala Arg Arg Gly Arg Glu Leu Leu Leu Gly Pro Ala	
	20 25 30	
30	GAT AGT TTT GAC GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC	144
	Asp Ser Phe Asp Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala	
	35 40 45	
35	TAC TCC CAG CAG ACG CGG GGC CTG CTT GGT TGC ATC ATC ACT AGC CTT	192
	Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu	
	50 55 60	
40	55 60	
45	ACG GGC CGG GAT AAG AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT	240
	Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser	
	65 70 75 80	
50	ACC GCA ACA CAA TCT TTC CTG GCG ACC TGT GTC AAC GGC GTG TGC TGG	288
	Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp	
	85 90 95	
55	ACT GTT TTC CAC GGC GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC	336
	Thr Val Phe His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly	
	100 105 110	
60	CCA ATC ACC CAA ATG TAC ACC AAT GTA GAT CAG GAC CTC GTC GGC TGG	384

50

55

	Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp			
	115	120	125	
5	TCG GCG CCC CCC CGG GCG CGT TCC TTG ACA CCT TGC ACC TGC GGC AGC		432	
	Ser Ala Pro Pro Arg Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser			
	130	135	140	
10	TCG GAC CTT TAT TTG GTC ACG AGG CAT GCT GAT GTC ATT CCG GTG CAC		480	
	Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val Ile Pro Val His			
	145	150	155	160
15	CGG CGG GGC GAC AGC AGG GGG AGC CTC CTC TCC CCC GGG CCC AT		524	
	Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro Gly Pro			
	165	170		

SEQ ID NO:48

SEQUENCE LENGTH: 514 base pairs

SEQUENCE TYPE: nucleic acid

20 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

25 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: O26-2

30	ATC ACG TGG GGG GCA GAG ACG GCG GCG TGT GGG GAC ATC ATC TCG GGT		48	
	Ile Thr Trp Gly Ala Glu Thr Ala Ala Cys Gly Asp Ile Ile Ser Gly			
	1	5	10	15
35	CTA CCC GTT TCC GCC CGA AGG GGG AGG GAG CTG CTT TTG GGA CCG GCC		96	
	Leu Pro Val Ser Ala Arg Arg Gly Arg Glu Leu Leu Leu Gly Pro Ala			
	20	25	30	
40	GAT AGT TTT GAC GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC		144	
	Asp Ser Phe Asp Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala			
	35	40	45	
45	TAC TCC CAG CAG ACG CGG GGC CTG CTT GGT TGC ATC ATC ACC AGC CTT		192	
	Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu			
	50	55	60	
	ACG GGC CGG GAT AAG AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT		240	
	Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser			

50

55

	65	70	75	80	
	ACC GCA ACA CAA TCT TTC CTG GCG ACC TGC ATC AAC GGC GTT TGC TGG				288
5	Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Ile Asn Gly Val Cys Trp				
	85	90	95		
	ACT GTT TTC CAC GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC				336
	Thr Val Phe His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly				
10	100	105	110		
	CCA ATC ACC CAA ATG TAC ACC AAT GTA GAT CAG GAC CTC GTC GGC TGG				384
	Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp				
	115	120	125		
15	TCG GCG CCC CCC GGG GCG CGT TCC TTG ACA CCT TGC ACC TGC GGC AGC				432
	Ser Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser				
	130	135	140		
	TCG GAC CTT TAT TTG GTC ACG AGG CAT GCT GAT GTC ATT CCG GTG CAC				480
20	Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val Ile Pro Val His				
	145	150	155	160	
	CGG CGG GGC GAC AGC AGG GGG AGC CTC CTC TCC C				514
	Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser				
25	165	170			

SEQ ID NO:49

SEQUENCE LENGTH: 523 base pairs

SEQUENCE TYPE: nucleic acid

30 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

35 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: O26-3

40	ATC ACG TGG GGG GCA GAG ACG GCG GCG TGT GGG GAC ATC ATC TCG GGT		48	
	Ile Thr Trp Gly Ala Glu Thr Ala Ala Cys Gly Asp Ile Ile Ser Gly			
	1	5	10	15
	CTA CCC GTT TCC GCC CGA AGG GGG AAG GAG CTG CTT TTG GGA CCG GCC		96	
45	Leu Pro Val Ser Ala Arg Arg Gly Lys Glu Leu Leu Leu Gly Pro Ala			
	20	25	30	

	GAT AGT TTT GAC GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC	144
	Asp Ser Phe Asp Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala	
5	35 40 45	
	TAC TCC CAG CAA ACG CGG GGC CTG CTT GGT TGC ATC ATC ACT AGC CTT	192
	Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu	
	50 55 60	
10	ACG GGC CGG GAT AAA AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT	240
	Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser	
	65 70 75 80	
	ACC GCA ACA CAA TCT TTC CTG GCG ACC TGT GTC AAC GGC GTG TGC TGG	288
	Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp	
15	85 90 95	
	ACT GTT TTC CAC GGT GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC	336
	Thr Val Phe His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly	
	100 105 110	
20	CCA ATC ACC CAA ATG TAC ACC AAT GTG GAT CAG GAC CTC GTC GGT TGG	384
	Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp	
	115 120 125	
25	TCG GCG CCC CCC GGG GCG CGT TCC TTG ACA CCA TGC ACC TGC GGC AGC	432
	Ser Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser	
	130 135 140	
	TCG GAC CTT TAT TTG GTC ACG AGA CAT GCT GAT GTC ATT CCG GTG CAC	480
	Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val Ile Pro Val His	
30	145 150 155 160	
	CGG CGG GGC GAC AGC AGG GGG AGC CTC CTC TCC CCC GGG CCC A	523
	Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro Gly Pro	
	165 170	

35 SEQ ID NO:50

SEQUENCE LENGTH: 921 base pairs

SEQUENCE TYPE: nucleic acid

40 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

45 IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N23-1

	CTG CTG TCG CCC GGG CCC ATC TCT TAC TTG AAG GGT TCC TCG GGT GGT	48
5	Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly	
	1 5 10 15	
	CCG CTG CCT TGC CCC TCG GGC CGT GTT GTG GGC ATC TTC CGG GCT GCC	96
10	Pro Leu Pro Cys Pro Ser Gly Arg Val Val Gly Ile Phe Arg Ala Ala	
	20 25 30	
	GTG TGC ACC CGG GGG GTT GCG AAG GCG GTG GAC TTT GTG CCC GTT GAG	144
	Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu	
	35 40 45	
15	TCT ATG GAA ACC ACC ATG CGG TCT CCG GTC TTC ACG GAT AAC TCA ACC	192
	Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Thr	
	50 55 60	
20	CCC CCG GCC GTA CCG CAG ACA TTC CAA GTG GCC CAC CTA CAC GCT CCC	240
	Pro Pro Ala Val Pro Gln Thr Phe Gln Val Ala His Leu His Ala Pro	
	65 70 75 80	
	ACT GGC AGC GGC AAA AGC ACC AGG GTG CCG GCT GCG TAT GCG GCC CAA	288
	Thr Gly Ser Gly Lys Ser Thr Arg Val Pro Ala Ala Tyr Ala Ala Gln	
25	85 90 95	
	GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT GCC ACT TTG GGC	336
	Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly	
	100 105 110	
30	TTT GGG GCG TAC ATG TCC AAG GCA CAT GGT GTT GAC CCT AAC ATC AGA	384
	Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile Arg	
	115 120 125	
35	ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC ATC ACG TAC TCC ACC	432
	Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Ile Thr Tyr Ser Thr	
	130 135 140	
	TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG GGT GCC TAT GAC	480
	Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp	
40	145 150 155 160	
	ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG ACT TCC ATC TTG	528
	Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Ser Ile Leu	
	165 170 175	
45	GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA GCG CGC CTT	576
	Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu	

	180	185	190	
	GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC GTG CCG CAT			624
5	Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His			
	195	200	205	
	CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG ATC CCC TTC			672
	Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe			
10	210	215	220	
	TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG AGG CAT CTC			720
	Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly Arg His Leu			
15	225	230	235	240
	ATT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT GCG AAG CTG			768
	Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu			
	245	250	255	
	TCG GCC CTC GGA GTC AAC GCT GTA GCA TAT TAC CGG GGT CTT GAT GTG			816
	Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val			
20	260	265	270	
	TCC ATC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA ACA GAC GCT			864
	Ser Ile Ile Pro Thr Ser Gly Asp Val Val Val Ala Thr Asp Ala			
25	275	280	285	
	CTA ATG ACG GGC TAT ACC GGT GAC TTT GAC TCG GTG ATC GAC TGC AAC			912
	Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn			
	290	295	300	
	ACA TGT GTC			921
30	Thr Cys Val			
	305			

SEQ ID NO:51

35 SEQUENCE LENGTH: 921 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 40 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 45 CLONE: N23-2

	CTG CTG TCG CCC GGG CCC ATC TCC TAC CTG AAG GGT TCC TCG GGT GGT	48
	Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly	
5	1 5 10 15	
	CCG CTG CTT TGC CCC TCG GGC CAT GTT GTG GGC ATC TTC CGG GCT GCT	96
	Pro Leu Leu Cys Pro Ser Gly His Val Val Gly Ile Phe Arg Ala Ala	
	20 25 30	
10	G TG TGC ACC CGG GGG GTT GCG AAG GCG GTA GAC TTT GTG CCC GTT GAG	144
	Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu	
	35 40 45	
15	TCT ATG GAA ACC ACT ATG CGG TCT CCG GTC TTC ACG GAT AAC TCA ACC	192
	Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Thr	
	50 55 60	
	CCC CCG GCC GTA CCG CAG TCA TTC CAA GTG GCC CAC CTA CAC GCT CCC	240
	Pro Pro Ala Val Pro Gln Ser Phe Gln Val Ala His Leu His Ala Pro	
20	65 70 75 80	
	ACT GGC AGC GGC AAA AGC ACC AAG GTG CCG GCT GCG TAT GCG GCC CAA	288
	Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln	
	85 90 95	
25	GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT GCC ACT TTG GGC	336
	Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly	
	100 105 110	
	TTT GGG GCG TAT ATG TCC AAG GCA CAT GGT GTT GAC CCT AAC ATC AGA	384
	Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile Arg	
30	115 120 125	
	ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC ATC ACG TAC TCC ACC	432
	Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Ile Thr Tyr Ser Thr	
	130 135 140	
35	TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG GGT GCC TAT GAC	480
	Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Ala Tyr Asp	
	145 150 155 160	
	ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG ACT TCC ATC TTG	528
40	Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Ser Ile Leu	
	165 170 175	
	GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA GCG CGC CTT	576
	Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu	
45	180 185 190	
	GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC GTG CCG CAT	624

	Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His			
5	195	200	205	
	CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG ATC CCC TTC		672	
	Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe			
	210	215	220	
10	TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG AGG CAT CTC		720	
	Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly Arg His Leu			
	225	230	235	240
15	ACT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT GCG AAG CTG		768	
	Thr Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu			
	245	250	255	
20	TCG GCC CTC GGA GTC AAC GCT GTA GCA TAC TAC CGG GGT CTT GAT GTG		816	
	Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val			
	260	265	270	
25	TCC GTC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA ACT GAC GCT		864	
	Ser Val Ile Pro Thr Ser Gly Asp Val Val Val Ala Thr Asp Ala			
	275	280	285	
	CTA ATG ACG GGC TAT ACC GGT GAC TTT GAC TCA GTG ATC GAC TGC AAC		912	
	Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn			
	290	295	300	
30	ACA TGT GTC		921	
	Thr Cys Val			
	305			
35	SEQ ID NO:52			
	SEQUENCE LENGTH: 921 base pairs			
	SEQUENCE TYPE: nucleic acid			
40	STRANDEDNESS: double			
	TOPOLOGY: linear			
	ANTI-SENSE: No			
	ORIGINAL SOURCE			
45	ORGANISM: Hepatitis C virus			
	IMMEDIATE EXPERIMENTAL SOURCE			
	CLONE: N23-3			
	CTG CTG TCG CCC GGG CCC ATC TCT TAC TTG AAG GGC TCC TCG GGT GGT		48	
	Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly			

	1	5	10	15	
	CCG CTG CTT TGC CCC TCG GGC CAT GTT GTG GGC ATC TTC CGG GCT GCC				96
5	Pro	Leu	Leu	Cys	Pro Ser Gly His Val Val Gly Ile Phe Arg Ala Ala
	20		25		30
	GTG TGC ACC CGG GGG GTT GCG AAG GCG GTG GAC TTT GTG CCC GTT GAG				144
	Val	Cys	Thr	Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu	
10		35	40	45	
	TCT ATG GAA ACC ACC ATG CGG TCT CCG GTC TTC GCG GAT AAC TCA ACC				192
	Ser	Met	Glu	Thr Thr Met Arg Ser Pro Val Phe Ala Asp Asn Ser Thr	
15		50	55	60	
	CCC CCG GCC GTA CCG CAG ACA TTC CAA GTG GCC CAC CTA CAC GCT CCC				240
	Pro	Pro	Ala	Val Pro Gln Thr Phe Gln Val Ala His Leu His Ala Pro	
20		65	70	75	80
	ACT GGC AGC GGC AAA AGC ACC AGG GTG CCG GCT GCG TAT GCG GCC CAA				288
	Thr	Gly	Ser	Gly Lys Ser Thr Arg Val Pro Ala Ala Tyr Ala Ala Gln	
25		85	90	95	
	GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT GCC ACT TTG GGC				336
	Gly	Tyr	Lys	Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly	
30		100	105	110	
	TTT GGG GCG TAC ATG TCC AAG GCA CAT GGT GTT GAC CCT AAC ATC AGA				384
	Phe	Gly	Ala	Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile Arg	
35		115	120	125	
	ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC GTC ACG TAC TCC ACC				432
	Thr	Gly	Val	Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr	
40		130	135	140	
	TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG GGT GCC TAT GAC				480
	Tyr	Gly	Lys	Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp	
45		145	150	155	160
	ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG ACT TCC ATC TTG				528
	Ile	Ile	Ile	Cys Asp Glu Cys His Ser Thr Asp Ser Thr Ser Ile Leu	
		165	170	175	
	GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA GCG CGC CTT				576
	Gly	Ile	Gly	Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu	
		180	185	190	
	GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC GTG CCG CAT				624
	Val	Val	Leu	Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His	
		195	200	205	

	CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG ATC CCC TTC	672
	Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe	
	210 215 220	
5	TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG AGG CAT CTC	720
	Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly Arg His Leu	
	225 230 235 240	
10	ATT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT GCG AAG CTG	768
	Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu	
	245 250 255	
	TCG GCC CTC GGA GTC AAT GCT GTA GCA TAT TAC CGG GGT CTT GAT GTG	816
	Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val	
15	260 265 270	
	TCC ATC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA ACA GAC GCT	864
	Ser Ile Ile Pro Thr Ser Gly Asp Val Val Val Val Ala Thr Asp Ala	
	275 280 285	
20	CTA ATG ACG GGC TAT ACC GGT GAC TTT GAC TCG GTG ATC GAC TGT AAC	912
	Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn	
	290 295 300	
	ACA TGT GTC	921
25	Thr Cys Val	
	305	

SEQ ID NO:53

30	SEQUENCE LENGTH: 623 base pairs
	SEQUENCE TYPE: nucleic acid
	STRANDEDNESS: double
	TOPOLOGY: linear
35	ANTI-SENSE: No
	ORIGINAL SOURCE
	ORGANISM: Hepatitis C virus
	IMMEDIATE EXPERIMENTAL SOURCE
40	CLONE: N16-1

	GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC ACA TGT GTC	48
	Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val	
	1 5 10 15	
45	ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC ATC GAG ACG	96

	Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr			
	20	25	30	
5	ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG		144	
	Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg			
	35	40	45	
	ACT GGT AGG GGC AGG GGG GGC ATA TAC AGG TTT GTA ACT CCA GGG GAA		192	
	Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu			
10	50	55	60	
	CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA TGT TAT GAC		240	
	Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp			
	65	70	75	80
15	GCG GGC TGT GCT TGG TAC GAG CTC ACG CCC GCC GAG ACC TCG GTT AGG		288	
	Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg			
	85	90	95	
20	TTG CGG GCT TAC CTA AAT ACA CCT GGG CTG CCC GTC TGC CAG GAC CAT		336	
	Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His			
	100	105	110	
	CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC ATA GAT GCC		384	
	Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala			
25	115	120	125	
	CAC TTC TTG TCC CAG ACC AAA CAG GCA GGA GAC AAC TTC CCC TAC CTG		432	
	His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu			
	130	135	140	
30	GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT CCA CCT CCA		480	
	Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro Pro			
	145	150	155	160
	TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG AAG CCT ACG CTA		528	
	Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu			
35	165	170	175	
	CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA GCC GTT CAG AAC GAG		576	
	His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu			
	180	185	190	
40	GTT ACC CTT ACA CAC CCC ATA ACC AAG TAC ATC ATG ACA TGC ATG TC		623	
	Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Thr Cys Met			
	195	200	205	

45 SEQ ID NO:54

SEQUENCE LENGTH: 623 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

5 TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

10 IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N16-2

	GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC ACA TGT GTC	48
15	Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val	
	1 5 10 15	
	ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC ATC GAG ACG	96
	Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr	
20	20 25 30	
	ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG	144
	Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg	
	35 40 45	
25	ACT GGT AGG GGC AGG GGG GGC ATA TAC AGG TTT GTA ACT CCA GGG GAA	192
	Thr Gly Arg Gly Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu	
	50 55 60	
	CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA TGT TAT GAC	240
30	Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp	
	65 70 75 80	
	GCG GGC TGT GCT TGG TAC GAG CTC ACG CCC GCC GAG ACC TCG GTT AGG	288
	Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg	
	85 90 95	
35	TTG CGG GCT TAC CTA AAT ACA CCT GGG CTG CCC GTC TGC CAG GAC CAT	336
	Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His	
	100 105 110	
40	CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC ATA GAT GCC	384
	Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala	
	115 120 125	
	CAC TTC TTG TCC CAG ACC AAA CAG GCA GGA GAC AAC TTC CCC TAC CTG	432
	His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu	
45	130 135 140	

	GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT CCA CCT CCA	480	
	Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro Pro		
145	150	155	
5	TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG AAG CCT ACG CTA	528	
	Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu		
	165	170	175
10	CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA GCC GTT CAG AAC GAG	576	
	His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu		
	180	185	190
15	GTT ACC CTC ACA CAC CCT ATA ACC AAG TAC ATC ATG ACA TGC ATG TC	623	
	Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Thr Cys Met		
	195	200	205

SEQ ID NO:55

SEQUENCE LENGTH: 623 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N16-3

30	GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC ACA TGT GTC	48		
	Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val			
	1	5	10	15
35	ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC ATT GAG ACG	96		
	Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr			
	20	25	30	
40	ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG	144		
	Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg			
	35	40	45	
45	ACT GGT AGG GGC AGA GGG GGC ATA TAC AGG TTT GTA ACT CCA GGG GAA	192		
	Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu			
	50	55	60	
	CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA TGT TAT GAC	240		

	Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp			
65	65	70	75	80
5	GCG GGC TGT GCT TGG TAC GAG CTC ACG TCC GCC GAG ACC TCG GTT AGG			288
	Ala Gly Cys Ala Trp Tyr Glu Leu Thr Ser Ala Glu Thr Ser Val Arg			
	85	90	95	
10	TTG CGG GCT TAC CTA AAC ACA CCT GGG CTG CCC GTC TGC CAG GAC CAT			336
	Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His			
	100	105	110	
15	CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC ATA GAT GCC			384
	Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala			
	115	120	125	
20	CAC TTC TTG TCC CAG ACT AAA CAG GCA GGA GAC AAC TTC CCC TAC CTG			432
	His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu			
	130	135	140	
25	GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT CCA CCT CCA			480
	Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro Pro			
	145	150	155	160
30	TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG AAG CCT ACG CTA			528
	Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu			
	165	170	175	
35	CAC GGG CCA ACG CCC CTG TTG CAT AGG TTA GGA GCC GTT CAG AAC AAG			576
	His Gly Pro Thr Pro Leu Leu His Arg Leu Gly Ala Val Gln Asn Lys			
	180	185	190	
40	GTT GCC CTC ACA CAC CCC ATA ACC AAG TAC ATC ATG ACA TGC ATG TC			623
	Val Ala Leu Thr His Pro Ile Thr Lys Tyr Ile Met Thr Cys Met			
	195	200	205	

SEQ ID NO:56

SEQUENCE LENGTH: 1280 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: MX25O26A-1

TGT	GCC	TGG	TTG	TGG	ATG	ATG	CTG	CTG	ATA	GCC	CAA	GCT	GAG	GCC	GCC	48	
Cys	Ala	Trp	Leu	Trp	Met	Met	Leu	Leu	Ile	Ala	Gln	Ala	Glu	Ala	Ala		
1	5	10	15														
5	TTG	GAG	AAC	CTG	GTG	GTC	CTC	AAT	GCA	GCA	TCC	ATG	GCG	GGA	GCG	CAT	96
	Leu	Glu	Asn	Leu	Val	Val	Leu	Asn	Ala	Ala	Ser	Met	Ala	Gly	Ala	His	
	20	25	30														
10	GGC	ATC	CTC	TCT	TTC	CTT	GTG	TTC	TTC	TGT	GCC	GCC	TGG	TAC	ATC	AAA	144
	Gly	Ile	Leu	Ser	Phe	Leu	Val	Phe	Phe	Cys	Ala	Ala	Trp	Tyr	Ile	Lys	
	35	40	45														
15	GGC	AGG	CTG	GTC	CCT	GGG	GCG	GCA	TAC	GCT	TTC	TAT	GGC	GTA	TGG	CCG	192
	Gly	Arg	Leu	Val	Pro	Gly	Ala	Ala	Tyr	Ala	Phe	Tyr	Gly	Val	Trp	Pro	
	50	55	60														
20	CTG	CTC	CTG	CTC	TTG	ATG	GCG	CTA	CCC	GCA	CGG	GCG	TAC	GCC	ATG	GAC	240
	Leu	Leu	Leu	Leu	Leu	Met	Ala	Leu	Pro	Ala	Arg	Ala	Tyr	Ala	Met	Asp	
	65	70	75	80													
25	CGG	GAG	ATG	GCT	GCA	TCG	TGC	GGG	GGC	GCG	GGT	TTT	GTA	GGT	CTG	GTA	288
	Arg	Glu	Met	Ala	Ala	Ser	Cys	Gly	Gly	Ala	Val	Phe	Val	Gly	Leu	Val	
	85	90	95														
30	CTC	TTG	ACC	TTG	TCA	CCA	TAC	TAC	AAA	GTG	TTC	CTC	GCT	AAG	CTC	ATA	336
	Leu	Leu	Thr	Leu	Ser	Pro	Tyr	Tyr	Lys	Val	Phe	Leu	Ala	Lys	Leu	Ile	
	100	105	110														
35	TGG	TGG	TTG	CAA	TAT	CTC	ATC	ACC	AGG	GCC	GAG	GCG	CAC	TTG	CAA	GTG	384
	Trp	Trp	Leu	Gln	Tyr	Leu	Ile	Thr	Arg	Ala	Glu	Ala	His	Leu	Gln	Val	
	115	120	125														
40	TGG	ATC	CCC	CCC	CTC	AAC	GTT	CGG	GGG	GGC	CGC	GAT	GCC	ATC	ATC	CTT	432
	Trp	Ile	Pro	Pro	Leu	Asn	Val	Arg	Gly	Gly	Arg	Asp	Ala	Ile	Ile	Leu	
	130	135	140														
45	CTC	ACA	TGT	GCG	GTC	CAC	CCG	GAG	CTG	ATC	TTT	GAC	ATC	ACC	AAG	CTC	480
	Leu	Thr	Cys	Ala	Val	His	Pro	Glu	Leu	Ile	Phe	Asp	Ile	Thr	Lys	Leu	
	145	150	155	160													
50	TTG	CTC	GCC	ATA	CTC	GGT	CCG	CTC	ATG	GTA	CTC	CAG	GCT	GGC	CTA	ACC	528
	Leu	Leu	Ala	Ile	Leu	Gly	Pro	Leu	Met	Val	Leu	Gln	Ala	Gly	Leu	Thr	
	165	170	175														
	CAA	ATG	CCG	TAC	TTT	GTG	CGT	GCT	CAA	GGG	CTC	ATT	CGT	ATG	TGC	ATG	576
	Gln	Met	Pro	Tyr	Phe	Val	Arg	Ala	Gln	Gly	Leu	Ile	Arg	Met	Cys	Met	
	180	185	190														
	TTG	GTG	CGG	AAA	GCC	GCT	GGG	GGT	CAT	TAT	GTC	CAG	ATG	GCT	CTC	ATG	624

EP 0 518 313 A2

	Leu Val Arg Lys Ala Ala Gly Gly His Tyr Val Gln Met Ala Leu Met			
195	200	205		
5	AAG CTG GCT GCA CTG ACA GGT ACG TAC GTT TAT GAC CAT CTT ACT CCA	672		
	Lys Leu Ala Ala Leu Thr Gly Thr Tyr Val Tyr Asp His Leu Thr Pro			
210	215	220		
	CTG CAG GAC TGG GCC CAC GCG GGC CTA CGA GAC CTT GCG GTA GCA GTT	720		
	Leu Gln Asp Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val			
10	225	230	235	240
	GAG CCC GTT GCC TTC TCT GAT ATG GAG ACT AAG ATC ATC ACC TGG GGG	768		
	Glu Pro Val Ala Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly			
	245	250	255	
15	GCA GAC ACT GCG GCG TGT GGG GAC ATC ATT TTG GGC CTA CCT GTC TCC	816		
	Ala Asp Thr Ala Ala Cys Gly Asp Ile Ile Leu Gly Leu Pro Val Ser			
	260	265	270	
20	GCC CGG AGG GGC AAC GAG ATA CTC CTC GGA CCG GCC GAT AGT TTT GAC	864		
	Ala Arg Arg Gly Asn Glu Ile Leu Leu Gly Pro Ala Asp Ser Phe Asp			
	275	280	285	
	GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC TAC TCC CAG CAG	912		
	Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala Tyr Ser Gln Gln			
25	290	295	300	
	ACG CGG GGC CTG CTT GGT TGC ATC ATC ACT AGC CTT ACG GGC CGG GAT	960		
	Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp			
	305	310	315	320
30	AAG AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT ACC GCA ACA CAA	1008		
	Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln			
	325	330	335	
	TCT TTC CTG GCG ACC TGT GTC AAC GGC GTG TGC TGG ACT GTT TTC CAC	1056		
	Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp Thr Val Phe His			
35	340	345	350	
	GGC GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC CCA ATC ACC CAA	1104		
	Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln			
	355	360	365	
40	ATG TAC ACC AAT GTA GAT CAG GAC CTC GTC GGC TGG TCG GCG CCC CCC	1152		
	Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Ser Ala Pro Pro			
	370	375	380	
	CGG GCG CGT TCC TTG ACA CCT TGC ACC TGC GGC AGC TCG GAC CTT TAT	1200		
45	Arg Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr			

385	390	395	400	
TTG GTC ACG AGG CAT GCT GAT GTC ATT CCG GTG CAC CGG CGG GGC GAC				1248
Leu Val Thr Arg His Ala Asp Val Ile Pro Val His Arg Arg Gly Asp				
5	405	410	415	
AGC AGG GGG AGC CTC CTC TCC CCC GGG CCC AT				1280
Ser Arg Gly Ser Leu Leu Ser Pro Gly Pro				
10	420	425		

SEQ ID NO:57
 SEQUENCE LENGTH: 1280 base pairs
 SEQUENCE TYPE: nucleic acid
 15 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 20 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: MX25026B-1

25	TGT GCC TGG TTG TGG ATG ATG CTG CTG ATA GCC CAA GCT GAG GCC GCC	48			
Cys Ala Trp Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala					
1	5	10	15		
TTG GAG AAC CTG GTG GTC CTC AAT GCA GCA TCC ATG GCG GGA GCG CAT				96	
Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ser Met Ala Gly Ala His					
30	20	25	30		
GGC ATC CTC TCT TTC CTT GTG TTC TTC TGT GCC GCC TGG TAC ATC AAA					144
Gly Ile Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys					
35	35	40	45		
GGC AGG CTG GTC CCT GGG GCG GCA TAC GCT TTC TAT GGC GTA TGG CCG					192
Gly Arg Leu Val Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro					
40	50	55	60		
CTG CTC CTG CTC TTG ATG GCG CTA CCC GCA CGG GCG TAC GCC ATG GAC					240
Leu Leu Leu Leu Met Ala Leu Pro Ala Arg Ala Tyr Ala Met Asp					
45	65	70	75	80	
CGG GAG ATG GCT GCA TCG TGC GGA GGC GCG GTT TTT GTA GGT CTG GTA					288
Arg Glu Met Ala Ala Ser Cys Gly Gly Ala Val Phe Val Gly Leu Val					
50	85	90	95		

	CTC TTG ACC TTG TCA CCA TAC TAC AAA GTG TTC CTC GCT AAG CTC ATA	336
	Leu Leu Thr Leu Ser Pro Tyr Tyr Lys Val Phe Leu Ala Lys Leu Ile	
	100 105 110	
5	TGG TGG TTG CAA TAT CTC ATC ACC AGG GCC GAG GCG CAC TTG CAA GTG	384
	Trp Trp Leu Gln Tyr Leu Ile Thr Arg Ala Glu Ala His Leu Gln Val	
	115 120 125	
	TGG ATC CCC CCC CTC AAC GTT CGG GGG GGC CGC GAT GCC ATC ATC CTT	432
10	Trp Ile Pro Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu	
	130 135 140	
	CTC ACA TGT GCG GTC CAC CCG GAG CTG ATC TTT GAC ATC ACC AAG CTC	480
	Leu Thr Cys Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu	
15	145 150 155 160	
	TTG CTC GCC ATA CTC GGT CCG CTC ATG GTA CTC CAG GCT GGC CTA ACC	528
	Leu Leu Ala Ile Leu Gly Pro Leu Met Val Leu Gln Ala Gly Leu Thr	
	165 170 175	
20	CAA ATG CCG TAC TTT GTG CGT GCT CAA GGG CTC ATT CGT ATG TGC ATG	576
	Gln Met Pro Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Met Cys Met	
	180 185 190	
	TTG GTG CGG AAA GCC GCT GGG GGT CAT TAT GTC CAG ATG GCT CTC ATG	624
25	Leu Val Arg Lys Ala Ala Gly Gly His Tyr Val Gln Met Ala Leu Met	
	195 200 205	
	AAG CTG GCT GCA CTG ACA GGT ACG TAC GTT TAT GAC CAT CTT ACT CCA	672
	Lys Leu Ala Ala Leu Thr Gly Thr Tyr Val Tyr Asp His Leu Thr Pro	
	210 215 220	
30	CTG CAG GAC TGG GCC CAC GCG GGC CTA CGA GAC CTT GCG GTA GCA GTT	720
	Leu Gln Asp Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val	
	225 230 235 240	
35	GAG CCC GTT GCC TTC TCT GAT ATG GAG ACT AAG ATC ATC ACG TGG GGG	768
	Glu Pro Val Ala Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly	
	245 250 255	
	GCA GAG ACG GCG GCG TGT GGG GAC ATC ATC TCG GGT CTA CCC GTT TCC	816
	Ala Glu Thr Ala Ala Cys Gly Asp Ile Ile Ser Gly Leu Pro Val Ser	
40	260 265 270	
	GCC CGA AGG GGG AGG GAG CTG CTT TTG GGG CCG GCC GAT AGT TTT GAC	864
	Ala Arg Arg Gly Arg Glu Leu Leu Leu Gly Pro Ala Asp Ser Phe Asp	
	275 280 285	
45	GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC TAC TCC CAG CAG	912

Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala Tyr Ser Gln Gln
 290 295 300
 ACG CGG GGC CTG CTT GGT TGC ATC ATC ACT AGC CTT ACG GGC CGG GAT 960
 5 Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp
 305 310 315 320
 AAG AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT ACC GCA ACA CAA 1008
 Lys Asn Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln
 10 325 330 335
 TCT TTC CTG GCG ACC TGT GTC AAC GGC GTG TGC TGG ACT GTT TTC CAC 1056
 Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp Thr Val Phe His
 340 345 350
 15 GGC GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC CCA ATC ACC CAA 1104
 Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln
 355 360 365
 ATG TAC ACC AAT GTA GAT CAG GAC CTC GTC GGC TGG TCG GCG CCC CCC 1152
 20 Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Ser Ala Pro Pro
 370 375 380
 CGG GCG CGT TCC TTG ACA CCT TGC ACC TGC GGC AGC TCG GAC CTT TAT 1200
 Arg Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr
 25 385 390 395 400
 TTG GTC ACG AGG CAT GCT GAT GTC ATT CCG GTG CAC CGG CGG GGC GAC 1248
 Leu Val Thr Arg His Ala Asp Val Ile Pro Val His Arg Arg Gly Asp
 405 410 415
 30 AGC AGG GGG AGC CTC CTC TCC CCC GGG CCC AT 1280
 Ser Arg Gly Ser Leu Leu Ser Pro Gly Pro
 420 425

35 SEQ ID NO:58
 SEQUENCE LENGTH: 1431 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 40 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 45 CLONE: N16N15A-1

	GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC ACA TGT GTC	48
	Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val	
5	1 5 10 15	
	ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC ATC GAG ACG	96
	Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr	
	20 25 30	
10	ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG	144
	Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg	
	35 40 45	
	ACT GGT AGG GGC AGG GGG GGC ATA TAC AGG TTT GTA ACT CCA GGG GAA	192
	Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu	
15	50 55 60	
	CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA TGT TAT GAC	240
	Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp	
	65 70 75 80	
20	GCG GGC TGT GCT TGG TAC GAG CTC ACG CCC GCC GAG ACC TCG GTT AGG	288
	Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg	
	85 90 95	
25	TTG CGG GCT CTA AAT ACA CCT GGG CTG CCC GTC TGC CAG GAC CAT	336
	Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His	
	100 105 110	
	CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC ATA GAT GCC	384
	Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala	
30	115 120 125	
	CAC TTC TTG TCC CAG ACC AAA CAG GCA GGA GAC AAC TTC CCC TAC CTG	432
	His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu	
	130 135 140	
35	GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT CCA CCT CCA	480
	Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro Pro	
	145 150 155 160	
	TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG AAG CCT ACG CTA	528
40	Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu	
	165 170 175	
	CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA GCC GTT CAG AAC GAG	576
	His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu	
	180 185 190	
45	GTT ACC CTT ACA CAC CCC ATA ACC AAG TAC ATC ATG ACA TGC ATG TCG	624

	Val Thr Leu Thr His Pro Ile Thr Lys Tyr Ile Met Thr Cys Met Ser		
	195	200	205
5	GCT GAC CTA GAG GTC GTC ACT AGC ACT TGG GTG CTG GTA GGC GGG GTC		672
	Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly Val		
	210	215	220
	CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG GGC AGC GTG GTC ATT		720
	Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val Ile		
10	225	230	235
	GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC GTT ATT CCC GAC AGG		768
	Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val Ile Pro Asp Arg		
	245	250	255
15	GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA GAG TGC GCC TCG CAC		816
	Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser His		
	260	265	270
20	CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC GAG CAA TTC AAG CAG		864
	Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys Gln		
	275	280	285
	AAG GCG CTC GGT TTG CTG CAA ACA GCA ACC AAG CAA GCG GAG GCT GCT		912
	Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala Ala		
25	290	295	300
	GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT GAG ACC TTC TGG GCG		960
	Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp Ala		
	305	310	315
30	AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG TAC TTA GCA GGC TTG		1008
	Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly Leu		
	325	330	335
35	TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA CTG ATG GCA TTC ACA		1056
	Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe Thr		
	340	345	350
	GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT ACC CTC CTG TTT AAC		1104
	Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr Thr Leu Leu Phe Asn		
40	355	360	365
	ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC CCC CCC AGT GCC GCT		1152
	Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala Ala		
	370	375	380
45	TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG GCT GTT GGC AGC ATA		1200
	Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser Ile		

385	390	395	400	
GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG GGT TAT GGA GCA GGG				1248
Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly				
5	405	410	415	
GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG AGC GGT GAC ATG CCC				1296
Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Asp Met Pro				
10	420	425	430	
TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC ATC CTC TCT CCT GGT				1344
Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly				
15	435	440	445	
GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA CTG CGT CGG CAT GTG				1392
Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His Val				
20	450	455	460	
GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG				1431
Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu				
25	465	470	475	

SEQ ID NO:59

SEQUENCE LENGTH: 1431 base pairs

25 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

30 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N16N15B-1

35	GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC ACA TGT GTC	48		
Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val				
1	5	10	15	
40	ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC ATC GAG ACG	96		
Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr				
20	25	30		
ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG				144
Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg				
45	35	40	45	

50

55

	ACT GGT AGG GGC AGG GGG GGC ATA TAC AGG TTT GTA ACT CCA GGG GAA	192
	Thr Gly Arg Gly Arg Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu	
	50 55 60	
5	CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA TGT TAT GAC	240
	Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp	
	65 70 75 80	
	GCG GGC TGT GCT TGG TAC GAG CTC ACG CCC GCC GAG ACC TCG GTT AGG	288
10	Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg	
	85 90 95	
	TTG CGG GCT TAC CTA AAT ACA CCT GGG CTG CCC GTC TGC CAG GAC CAT	336
	Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His	
15	100 105 110	
	CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC ATA GAT GCC	384
	Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala	
	115 120 125	
20	CAC TTC TTG TCC CAG ACC AAA CAG GCA GGA GAC AAC TTC CCC TAC CTG	432
	His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu	
	130 135 140	
	GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT CCA CCT CCA	480
25	Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro Pro	
	145 150 155 160	
	TCG TGG GAT CAA ATG TGG AAG TGT CTC ATA CGG CTG AAG CCT ACG CTA	528
	Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu	
	165 170 175	
30	CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA GCC GTT CAG AAC GAG	576
	His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu	
	180 185 190	
	GTT ACC CTC ACA CAC CCC ATA ACC AAG TTC ATC ATG GCA TGC ATG TCG	624
35	Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile Met Ala Cys Met Ser	
	195 200 205	
	GCT GAC CTA GAG GTC ACT AGC ACT TGG GTG CTG GTA GGC GGG GTC	672
	Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Gly Val	
40	210 215 220	
	CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG GGC AGC GTG GTC ATT	720
	Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val Ile	
	225 230 235 240	
45	GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC GTT ATT CCC GAC AGG	768

	Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val Ile Pro Asp Arg		
	245	250	255
5	GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA GAG TGC GCC TCG CAC		816
	Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser His		
	260	265	270
10	CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC GAG CAA TTC AAG CAG		864
	Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys Gln		
	275	280	285
15	AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG CAA GCG GAG GCT GCT		912
	Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala Ala		
	290	295	300
20	GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT GAG ACC TTC TGG GCG		960
	Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp Ala		
	305	310	315
25	AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG TAC TTA GCA GGC TTG		1008
	Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly Leu		
	325	330	335
30	TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA CTG ATG GCA TTC ACA		1056
	Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe Thr		
	340	345	350
35	GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT ACC CTC CTG TTT AAC		1104
	Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr Thr Leu Leu Phe Asn		
	355	360	365
40	ATC TTG GGG GGA TGG GTG GCC CAA CTC GCC CCC CCC AGT GCC GCT		1152
	Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala Ala		
	370	375	380
45	TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG GCT GTT GGC AGC ATA		1200
	Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser Ile		
	385	390	395
50	GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG GGT TAT GGA GCA GGG		1248
	Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly		
	405	410	415
55	GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG AGC GGT GAC ATG CCC		1296
	Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Asp Met Pro		
	420	425	430
60	TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC ATC CTC TCT CCT GGT		1344
	Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly		

435	440	445	
GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA CTG CGT CGG CAT GTG			1392
Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His Val			
5 450	455	460	
GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG			1431
Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu			
465	470	475	

10

SEQ ID NO:60

SEQUENCE LENGTH: 1431 base pairs

SEQUENCE TYPE: nucleic acid

15

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

20

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N16N15-1

25

GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC ACA TGT GTC	48
Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Thr Cys Val	
1 5 10 15	

ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC ATC GAG ACG	96
Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Glu Thr	
20 25 30	

ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG CGA GGC AGG	144
Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly Arg	
35 40 45	

35

ACT GGT AGG GGC AGG GGG GGC ATA TAC AGG TTT GTA ACT CCA GGG GAA	192
Thr Gly Arg Gly Gly Ile Tyr Arg Phe Val Thr Pro Gly Glu	
50 55 60	

40

CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA TGT TAT GAC	240
Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu Cys Tyr Asp	
65 70 75 80	

GCG GGC TGT GCT TGG TAC GAG CTC ACG CCC GCC GAG ACC TCG GTT AGG	288
Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr Ser Val Arg	
85 90 95	

45

50

55

	TTG CCG GCT TAC CTA AAT ACA CCT GGG CTG CCC GTC TGC CAG GAC CAT	336
	Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys Gln Asp His	
	100 105 110	
5	CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC ATA GAT GCC	384
	Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His Ile Asp Ala	
	115 120 125	
10	CAC TTC TTG TCC CAG ACC AAA CAG GCA GGA GAC AAC TTC CCC TAC CTG	432
	His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe Pro Tyr Leu	
	130 135 140	
	GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT CCA CCT CCA	480
	Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro Pro	
15	145 150 155 160	
	TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG AAG CCT ACG CTA	528
	Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys Pro Thr Leu	
	165 170 175	
20	CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA GCC GTT CAG AAC GAG	576
	His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val Gln Asn Glu	
	180 185 190	
25	GTT ACC CTC ACA CAC CCC ATA ACC AAG TTC ATC ATG GCA TGC ATG TCG	624
	Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile Met Ala Cys Met Ser	
	195 200 205	
30	GCT GAC CTA GAG GTC ACT AGC ACT TGG GTG CTG GTA GGC GGG GTC	672
	Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val Gly Val	
	210 215 220	
35	CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG GGC AGC GTG GTC ATT	720
	Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser Val Val Ile	
	225 230 235 240	
40	GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC GTT ATT CCC GAC AGG	768
	Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val Ile Pro Asp Arg	
	245 250 255	
45	GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA GAG TGC GCC TCG CAC	816
	Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys Ala Ser His	
	260 265 270	
	CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC GAG CAA TTC AAG CAG	864
	Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln Phe Lys Gln	
	275 280 285	
50	AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG CAA GCG GAG GCT GCT	912

Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala Glu Ala Ala
 290 295 300
 GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT GAG ACC TTC TGG GCG 960
 5 Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr Phe Trp Ala
 305 310 315 320
 AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG TAC TTA GCA GGC TTG 1008
 Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly Leu
 10 325 330 335
 TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA CTG ATG GCA TTC ACA 1056
 Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met Ala Phe Thr
 340 345 350
 15 GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT ACC CTC CTG TTT AAC 1104
 Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr Thr Leu Leu Phe Asn
 355 360 365
 ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC CCC CCC AGT GCC GCT 1152
 20 Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro Ser Ala Ala
 370 375 380
 TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG GCT GTT GGC AGC ATA 1200
 Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser Ile
 25 385 390 395 400
 GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG GGT TAT GGA GCA GGG 1248
 Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly
 405 410 415
 30 GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG AGC GGT GAC ATG CCC 1296
 Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly Asp Met Pro
 420 425 430
 TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC ATC CTC TCT CCT GGT 1344
 Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly
 35 435 440 445
 GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA CTG CGT CGG CAT GTG 1392
 Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg Arg His Val
 450 455 460
 40 GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG 1431
 Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu
 465 470 475

45 SEQ ID NO:61

SEQUENCE LENGTH: 2304 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 5 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 10 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N23N15A-1

	CTG CTG TCG CCC GGG CCC ATC TCT TAC TTG AAG GGT TCC TCG GGT GGT	48
15	Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly	
	1 5 10 15	
	CCG CTG CCT TGC CCC TCG GGC CGT GTT GTG GGC ATC TTC CGG GCT GCC	96
	Pro Leu Pro Cys Pro Ser Gly Arg Val Val Gly Ile Phe Arg Ala Ala	
20	20 25 30	
	GTG TGC ACC CGG GGG GTT GCG AAG GCG GTG GAC TTT GTG CCC GTT GAG	144
	Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu	
	35 40 45	
25	TCT ATG GAA ACC ACC ATG CGG TCT CCG GTC TTC ACG GAT AAC TCA ACC	192
	Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Thr	
	50 55 60	
30	CCC CCG GCC GTA CCG CAG ACA TTC CAA GTG GCC CAC CTA CAC GCT CCC	240
	Pro Pro Ala Val Pro Gln Thr Phe Gln Val Ala His Leu His Ala Pro	
	65 70 75 80	
	ACT GGC AGC GGC AAA AGC ACC AGG GTG CCG GCT GCG TAT GCG GCC CAA	288
	Thr Gly Ser Gly Lys Ser Thr Arg Val Pro Ala Ala Tyr Ala Ala Gln	
35	85 90 95	
	GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT GCC ACT TTG GGC	336
	Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly	
	100 105 110	
40	TTT GGG GCG TAC ATG TCC AAG GCA CAT GGT GTT GAC CCT AAC ATC AGA	384
	Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile Arg	
	115 120 125	
	ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC ATC ACG TAC TCC ACC	432
45	Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Ile Thr Tyr Ser Thr	
	130 135 140	

	TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG GGT GCC TAT GAC	480	
	Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp		
145	150	155	
	160		
5	ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG ACT TCC ATC TTG	528	
	Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Ser Ile Leu		
	165	170	175
	GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA GCG CGC CTT	576	
10	Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu		
	180	185	190
	GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC GTG CCG CAT	624	
	Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His		
15	195	200	205
	CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG ATC CCC TTC	672	
	Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe		
	210	215	220
20	TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG AGG CAT CTC	720	
	Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly Arg His Leu		
	225	230	235
	240		
	ATT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT GCG AAG CTG	768	
25	Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu		
	245	250	255
	TCG GCC CTC GGA GTC AAC GCT GTA GCA TAT TAC CGG GGT CTT GAT GTG	816	
	Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val		
	260	265	270
30	TCC ATC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA ACA GAC GCT	864	
	Ser Ile Ile Pro Thr Ser Gly Asp Val Val Val Val Ala Thr Asp Ala		
	275	280	285
35	CTA ATG ACG GGC TAT ACC GGT GAC TTT GAC TCG GTG ATC GAC TGC AAC	912	
	Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn		
	290	295	300
	ACA TGT GTC ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC	960	
	Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr		
40	305	310	315
	320		
	ATC GAG ACG ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG	1008	
	Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg		
	325	330	335
45	CGA GGC AGG ACT GGT AGG GGC AGG GGG GGC ATA TAC AGG TTT GTA ACT	1056	

	Arg Gly Arg Thr Gly Arg Gly Gly Ile Tyr Arg Phe Val Thr		
	340	345	350
5	CCA GGG GAA CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA		1104
	Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu		
	355	360	365
	TGT TAT GAC GCG GGC TGT GCT TGG TAC GAG CTC ACG CCC GCC GAG ACC		1152
	Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr		
10	370	375	380
	TCG GTT AGG TTG CGG GCT TAC CTA AAT ACA CCT GGG CTG CCC GTC TGC		1200
	Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys		
	385	390	395
15	CAG GAC CAT CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC		1248
	Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His		
	405	410	415
	ATA GAT GCC CAC TTC TTG TCC CAG ACC AAA CAG GCA GGA GAC AAC TTC		1296
20	Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe		
	420	425	430
	CCC TAC CTG GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT		1344
	Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala		
25	435	440	445
	CCA CCT CCA TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG AAG		1392
	Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys		
	450	455	460
30	CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA GCC GTT		1440
	Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val		
	465	470	475
	480		
	CAG AAC GAG GTT ACC CTC ACA CAC CCC ATA ACC AAG TTC ATC ATG GCA		1488
	Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile Met Ala		
35	485	490	495
	TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACT TGG GTG CTG GTA		1536
	Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val		
	500	505	510
40	GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG GGC AGC		1584
	Gly Gly Val Leu Ala Ala Leu Ala Tyr Cys Leu Thr Thr Gly Ser		
	515	520	525
	GTG GTC ATT GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC GTT ATT		1632
45	Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val Ile		

	530	535	540	
	CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA GAG TGC			1680
	Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys			
5	545	550	555	560
	GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC GAG CAA			1728
	Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln			
	565	570	575	
10	TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG CAA GCG			1776
	Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala			
	580	585	590	
	GAG GCT GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT GAG ACC			1824
15	Glu Ala Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr			
	595	600	605	
	TTC TGG GCG AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG TAC TTA			1872
	Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu			
20	610	615	620	
	GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA CTG ATG			1920
	Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met			
	625	630	635	640
25	GCA TTC ACA GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT ACC CTC			1968
	Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr Thr Leu			
	645	650	655	
	CTG TTT AAC ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC CCC CCC			2016
	Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro			
30	660	665	670	
	AGT GCC GCT TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG GCT GTT			2064
	Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val			
	675	680	685	
35	GGC AGC ATA GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG GGT TAT			2112
	Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr			
	690	695	700	
	GGA GCA GGG GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG AGC GGT			2160
40	Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser Gly			
	705	710	715	720
	GAC ATG CCC TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC ATC CTC			2208
	Asp Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu			
45	725	730	735	

TCT CCT GGT GCC CTG GTC GTC GGG GTC GTG TGC GCA ATA CTG CGT 2256
 Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg
 740 745 750

5 CGG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG 2304
 Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu
 755 760 765

10 SEQ ID NO:62

SEQUENCE LENGTH: 2304 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

15 TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

20 IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N23N15B-1

	CTG CTG TCG CCC GGG CCC ATC TCT TAC TTG AAG GGT TCC TCG GGT GGT	48
25	Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly Gly	
	1 5 10 15	
	CCG CTG CCT TGC CCC TCG GGC CGT GTT GTG GGC ATC TTC CGG GCT GCC	96
	Pro Leu Pro Cys Pro Ser Gly Arg Val Val Gly Ile Phe Arg Ala Ala	
30	20 25 30	
	GTG TGC ACC CGG GGG GTT GCG AAG GCG GTG GAC TTT GTG CCC GTT GAG	144
	Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu	
	35 40 45	
35	TCT ATG GAA ACC ACC ATG CGG TCT CCG GTC TTC AGT GAT AAC TCA ACC	192
	Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Thr	
	50 55 60	
	CCC CCG GCC GTA CCG CAG ACA TTC CAA GTG GCC CAC CTA CAC GCT CCC	240
	Pro Pro Ala Val Pro Gln Thr Phe Gln Val Ala His Leu His Ala Pro	
40	65 70 75 80	
	ACT GGC AGC GGC AAA AGC ACC AGG GTG CCG GCT GCG TAT GCG GCC CAA	288
	Thr Gly Ser Gly Lys Ser Thr Arg Val Pro Ala Ala Tyr Ala Ala Gln	
	85 90 95	
45	GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT GCC ACT TTG GGC	336

	Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly		
	100	105	110
5	TTT GGG GCG TAC ATG TCC AAG GCA CAT GGT GTT GAC CCT AAC ATC AGA		384
	Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile Arg		
	115	120	125
10	ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC ATC ACG TAC TCC ACC		432
	Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Ile Thr Tyr Ser Thr		
	130	135	140
15	TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG GGT GCC TAT GAC		480
	Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp		
	145	150	155
20	ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG ACT TCC ATC TTG		528
	Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Ser Ile Leu		
	165	170	175
25	GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA GCG CGC CTT		576
	Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu		
	180	185	190
30	GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC GTG CCG CAT		624
	Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His		
	195	200	205
35	CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG ATC CCC TTC		672
	Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe		
	210	215	220
40	TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG AGG CAT CTC		720
	Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly Arg His Leu		
	225	230	235
45	ATT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT GCG AAG CTG		768
	Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu		
	245	250	255
50	TCG GCC CTC GGA GTC AAC GCT GTA GCA TAT TAC CGG GGT CTT GAT GTG		816
	Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val		
	260	265	270
55	TCC ATC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA ACA GAC GCT		864
	Ser Ile Ile Pro Thr Ser Gly Asp Val Val Val Ala Thr Asp Ala		
	275	280	285
60	CTA ATG ACG GGC TAT ACC GGC GAC TTC GAC TCA GTG ATC GAC TGC AAC		912
	Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn		

	290	295	300	
	ACA TGT GTC ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC ACC			960
	Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe Thr			
5	305	310	315	320
	ATC GAG ACG ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG CGG			1008
	Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg			
	325	330	335	
10	CGA GGC AGG ACT GGT AGG GGC AGG GGG GGC ATA TAC AGG TTT GTA ACT			1056
	Arg Gly Arg Thr Gly Arg Gly Gly Ile Tyr Arg Phe Val Thr			
	340	345	350	
	CCA GGG GAA CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT GAA			1104
15	Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys Glu			
	355	360	365	
	TGT TAT GAC GCG GGC TGT GCT TGG TAC GAG CTC ACG CCC GCC GAG ACC			1152
	Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu Thr			
20	370	375	380	
	TCG GTT AGG TTG CGG GCT TAC CTA AAT ACA CCT GGG CTG CCC GTC TGC			1200
	Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val Cys			
	385	390	395	400
25	CAG GAC CAT CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC CAC			1248
	Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr His			
	405	410	415	
	ATA GAT GCC CAC TTC TTG TCC CAG ACC AAA CAG GCA GGA GAC AAC TTC			1296
	Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn Phe			
30	420	425	430	
	CCC TAC CTG GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG GCT			1344
	Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala			
	435	440	445	
35	CCA CCT CCA TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG AAG			1392
	Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu Lys			
	450	455	460	
	CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA GCC GTT			1440
40	Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala Val			
	465	470	475	480
	CAG AAC GAG GTT ACC CTC ACA CAC CCC ATA ACC AAG TTC ATC ATG GCA			1488
	Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile Met Ala			
45	485	490	495	

TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACT TGG GTG CTG GTA 1536
 Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu Val
 500 505 510
 5 GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG GGC AGC 1584
 Gly Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr Gly Ser
 515 520 525
 GTG GTC ATT GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC GTT ATT 1632
 10 Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val Ile
 530 535 540
 CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA GAG TGC 1680
 Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu Cys
 15 545 550 555 560
 GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC GAG CAA 1728
 Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu Gln
 565 570 575
 20 TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG CAA GCG 1776
 Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln Ala
 580 585 590
 GAG GCT GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT GAG ACC 1824
 25 Glu Ala Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu Thr
 595 600 605
 TTC TGG GCG AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG TAC TTA 1872
 Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu
 610 615 620
 30 GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA CTG ATG 1920
 Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu Met
 625 630 635 640
 35 GCA TTC ACA GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT ACC CTC 1968
 Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr Thr Leu
 645 650 655
 CTG TTT AAC ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC CCC CCC 2016
 40 Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro Pro
 660 665 670
 AGT GCC GCT TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG GCT GTT 2064
 Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val
 675 680 685
 45 GGC AGC ATA GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG GGT TAT 2112

Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr
 690 695 700
 GGA GCA GGG GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG AGC GGT 2160
 5 Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val M t Ser Gly
 705 710 715 720
 GAC ATG CCC TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC ATC CTC 2208
 Asp Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu
 10 725 730 735
 TCT CCT GGT GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA CTG CGT 2256
 Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu Arg
 15 740 745 750
 CGG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG 2304
 Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu
 755 760 765

20 SEQ ID NO:63
 SEQUENCE LENGTH: 3564 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 25 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 30 CLONE: MX25N15-1

TGT GCC TGG TTG TGG ATG ATG CTG CTG ATA GCC CAA GCT GAG GCC GCC 48
 Cys Ala Trp Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala
 35 1 5 10 15
 TTG GAG AAC CTG GTG GTC CTC AAT GCA GCA TCC ATG GCG GGA GCG CAT 96
 Leu Glu Asn Leu Val Val Leu Asn Ala Ala Ser Met Ala Gly Ala His
 20 25 30
 40 GGC ATC CTC TCT TTC CTT GTG TTC TTC TGT GCC GCC TGG TAC ATC AAA 144
 Gly Ile Leu Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys
 35 40 45
 45 GGC AGG CTG GTC CCT GGG GCG GCA TAC GCT TTC TAT GGC GTA TGG CCG 192
 Gly Arg Leu Val Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro

	50	55	60	
	CTG CTC CTG CTC TTG ATG GCG CTA CCC GCA CGG GCG TAC GCC ATG GAC			240
5	Leu Leu Leu Leu Leu Met Ala Leu Pro Ala Arg Ala Tyr Ala Met Asp			
	65	70	75	80
	CGG GAG ATG GCT GCA TCG TGC GGA GGC GCG GTT TTT GTA GGT CTG GTA			288
	Arg Glu Met Ala Ala Ser Cys Gly Gly Ala Val Phe Val Gly Leu Val			
	85	90	95	
10	CTC TTG ACC TTG TCA CCA TAC TAC AAA GTG TTC CTC GCT AAG CTC ATA			336
	Leu Leu Thr Leu Ser Pro Tyr Tyr Lys Val Phe Leu Ala Lys Leu Ile			
	100	105	110	
	TGG TGG TTG CAA TAT CTC ATC ACC AGG GCC GAG GCG CAC TTG CAA GTG			384
15	Trp Trp Leu Gln Tyr Leu Ile Thr Arg Ala Glu Ala His Leu Gln Val			
	115	120	125	
	TGG ATC CCC CCC CTC AAC GTT CGG GGG GGC CGC GAT GCC ATC ATC CTT			432
	Trp Ile Pro Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu			
20	130	135	140	
	CTC ACA TGT GCG GTC CAC CCG GAG CTG ATC TTT GAC ATC ACC AAG CTC			480
	Leu Thr Cys Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu			
	145	150	155	160
25	TTG CTC GCC ATA CTC GGT CCG CTC ATG GTA CTC CAG GCT GGC CTA ACC			528
	Leu Leu Ala Ile Leu Gly Pro Leu Met Val Leu Gln Ala Gly Leu Thr			
	165	170	175	
	CAA ATG CCG TAC TTT GTG CGT GCT CAA GGG CTC ATT CGT ATG TGC ATG			576
30	Gln Met Pro Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Met Cys Met			
	180	185	190	
	TTG GTG CGG AAA GCC GCT GGG GGT CAT TAT GTC CAG ATG GCT CTC ATG			624
	Leu Val Arg Lys Ala Ala Gly Gly His Tyr Val Gln Met Ala Leu Met			
	195	200	205	
35	AAG CTG GCT GCA CTG ACA GGT ACG TAC GTT TAT GAC CAT CTT ACT CCA			672
	Lys Leu Ala Ala Leu Thr Gly Thr Tyr Val Tyr Asp His Leu Thr Pro			
	210	215	220	
	CTG CAG GAC TGG GCC CAC GCG GGC CTA CGA GAC CTT GCG GTA GCA GTT			720
40	Leu Gln Asp Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val			
	225	230	235	240
	GAG CCC GTT GCC TTC TCT GAT ATG GAG ACT AAG ATC ATC ACC TGG GGG			768
	Glu Pro Val Ala Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly			
45	245	250	255	

	GCA GAC ACT GCG GCG TGT GGG GAC ATC ATT TTG GGC CTA CCT GTC TCC	816
	Ala Asp Thr Ala Ala Cys Gly Asp Ile Ile Leu Gly Leu Pro Val Ser	
	260 265 270	
5	GCC CGG AGG GGC AAC GAG ATA CTC CTC GGA CCG GCC GAT AGT TTT GAC	864
	Ala Arg Arg Gly Asn Glu Ile Leu Leu Gly Pro Ala Asp Ser Phe Asp	
	275 280 285	
10	GGG CAG GGG TGG CGA CTC CTT GCG CCT ATC ACG GCC TAC TCC CAG CAG	912
	Gly Gln Gly Trp Arg Leu Leu Ala Pro Ile Thr Ala Tyr Ser Gln Gln	
	290 295 300	
15	ACG CGG GGC CTG CTT GGT TGC ATC ATC ACT AGC CTT ACG GGC CGG GAT	960
	Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp	
	305 310 315 320	
20	AAG AAC CAG GTC GAG GGG GAG GTT CAA GTG GTC TCT ACC GCA ACA CAA	1008
	Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln	
	325 330 335	
25	TCT TTC CTG GCG ACC TGT GTC AAC GGC GTG TGC TGG ACT GTT TTC CAC	1056
	Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp Thr Val Phe His	
	340 345 350	
30	GGC GCC GGC TCG AAG ACC TTA GCC GGC CCA AAA GGC CCA ATC ACC CAA	1104
	Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln	
	355 360 365	
35	ATG TAC ACC AAT GTA GAT CAG GAC CTC GTC GGC TGG TCG GCG CCC CCC	1152
	Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Ser Ala Pro Pro	
	370 375 380	
40	CGG GCG CGT TCC TTG ACA CCT TGC ACC TGC GGC AGC TCG GAC CTT TAT	1200
	Arg Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr	
	385 390 395 400	
45	TTG GTC ACG AGG CAT GCT GAT GTC ATT CCG GTG CAC CGG CGG GGC GAC	1248
	Leu Val Thr Arg His Ala Asp Val Ile Pro Val His Arg Arg Gly Asp	
	405 410 415	
50	AGC AGG GGG AGC CTC CTC TCC CCC GGG CCC ATC TCT TAC TTG AAG GGT	1296
	Ser Arg Gly Ser Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly	
	420 425 430	
55	TCC TCG GGT GGT CCG CTG CCT TGC CCC TCG GGC CGT GTT GTG GGC ATC	1344
	Ser Ser Gly Gly Pro Leu Pro Cys Pro Ser Gly Arg Val Val Gly Ile	
	435 440 445	
60	TTC CGG GCT GCC GTG TGC ACC CGG GGG GTT GCG AAG GCG GTG GAC TTT	1392

Phe Arg Ala Ala Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe
 450 455 460
 GTG CCC GTT GAG TCT ATG GAA ACC ACC ATG CGG TCT CCG GTC TTC ACG 1440
 5 Val Pro Val Glu Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr
 465 470 475 480
 GAT AAC TCA ACC CCC CCG GCC GTA CCG CAG ACA TTC CAA GTG GCC CAC 1488
 Asp Asn Ser Thr Pro Pro Ala Val Pro Gln Thr Phe Gln Val Ala His
 10 485 490 495
 CTA CAC GCT CCC ACT GGC AGC GGC AAA AGC ACC AGG GTG CCG GCT GCG 1536
 Leu His Ala Pro Thr Gly Ser Gly Lys Ser Thr Arg Val Pro Ala Ala
 500 505 510
 15 TAT GCG GCC CAA GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT 1584
 Tyr Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala
 515 520 525
 GCC ACT TTG GGC TTT GGG GCG TAC ATG TCC AAG GCA CAT GGT GTT GAC 1632
 20 Ala Thr Leu Gly Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp
 530 535 540
 CCT AAC ATC AGA ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC ATC 1680
 Pro Asn Ile Arg Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Ile
 25 545 550 555 560
 ACG TAC TCC ACC TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG 1728
 Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly
 565 570 575
 30 GGT GCC TAT GAC ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG 1776
 Gly Ala Tyr Asp Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser
 580 585 590
 ACT TCC ATC TTG GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT 1824
 Thr Ser Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala
 35 595 600 605
 GGA GCG CGC CTT GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC 1872
 Gly Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val
 610 615 620
 40 ACC GTG CCG CAT CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA 1920
 Thr Val Pro His Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly
 625 630 635 640
 45 GAG ATC CCC TTC TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG 1968
 Glu Ile Pro Phe Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly

	645	650	655	
5	GGG AGG CAT CTC ATT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC			2016
	Gly Arg His Leu Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu			
	660	665	670	
	GCT GCG AAG CTG TCG GCC CTC GGA GTC AAC GCT GTA GCA TAT TAC CGG			2064
	Ala Ala Lys Leu Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg			
	675	680	685	
10	GGT CTT GAT GTG TCC ATC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG			2112
	Gly Leu Asp Val Ser Ile Ile Pro Thr Ser Gly Asp Val Val Val			
	690	695	700	
15	GCA ACA GAC GCT CTA ATG ACG GGC TAT ACC GGT GAC TTT GAC TCG GTG			2160
	Ala Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val			
	705	710	715	720
	ATC GAC TGC AAC ACA TGT GTC ACC CAA ACA GTC GAT TTC AGC TTG GAC			2208
	Ile Asp Cys Asn Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp			
20	725	730	735	
	CCT ACT TTC ACC ATC GAG ACG ACG ACC GTA CCC CAA GAT GCG GTG TCG			2256
	Pro Thr Phe Thr Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser			
	740	745	750	
25	CGC TCG CAG CGG CGA GGC AGG ACT GGT AGG GGC AGG GGG GGC ATA TAC			2304
	Arg Ser Gln Arg Arg Gly Arg Thr Gly Arg Gly Arg Gly Ile Tyr			
	755	760	765	
	AGG TTT GTA ACT CCA GGG GAA CGG CCC TCA GGC ATG TTC GAT TCT TCG			2352
	Arg Phe Val Thr Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser			
30	770	775	780	
	GTC CTG TGT GAA TGT TAT GAC GCG GGC TGT GCT TGG TAC GAG CTC ACG			2400
	Val Leu Cys Glu Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr			
	785	790	795	800
35	CCC GCC GAG ACC TCG GTT AGG TTG CGG GCT TAC CTA AAT ACA CCT GGG			2448
	Pro Ala Glu Thr Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly			
	805	810	815	
40	CTG CCC GTC TGC CAG GAC CAT CTG GAG TTC TGG GAG AGC GTC TTC ACC			2496
	Leu Pro Val Cys Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr			
	820	825	830	
	GGC CTC ACC CAC ATA GAT GCC CAC TTC TTG TCC CAG ACC AAA CAG GCA			2544
	Gly Leu Thr His Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala			
45	835	840	845	

	GGA GAC AAC TTC CCC TAC CTG GTA GCA TAC CAG GCT ACA GTG TGC GCC	2592		
	Gly Asp Asn Phe Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala			
5	850	855	860	
	AGG GCC AAG GCT CCA CCT CCA TCG TGG GAT CAG ATG TGG AAG TGT CTC	2640		
	Arg Ala Lys Ala Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu			
	865	870	875	880
10	ATA CGG CTG AAG CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG TAT AGG	2688		
	Ile Arg Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg			
	885	890	895	
	TTA GGA GCC GTT CAG AAC GAG GTT ACC CTC ACA CAC CCC ATA ACC AAG	2736		
	Leu Gly Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys			
15	900	905	910	
	TTC ATC ATG GCA TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACT	2784		
	Phe Ile Met Ala Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr			
	915	920	925	
20	TGG GTG CTG GTA GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC TGC CTG	2832		
	Trp Val Leu Val Gly Val Leu Ala Ala Leu Ala Tyr Cys Leu			
	930	935	940	
	ACA ACG GGC AGC GTG GTC ATT GTG GGC AGG ATC ATC TTG TCC GGG AGG	2880		
25	Thr Thr Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg			
	945	950	955	960
	CCG GCC GTT ATT CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC GAT GAA	2928		
	Pro Ala Val Ile Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu			
30	965	970	975	
	ATG GAA GAG TGC GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA ATG CAG	2976		
	Met Glu Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln			
	980	985	990	
35	CTC GCC GAG CAA TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA ACA GCC	3024		
	Leu Ala Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala			
	995	1000	1005	
	ACC AAG CAA GCG GAG GCT GCT CCC GTG GTG GAG TCC AAG TGG CGA	3072		
40	Thr Lys Gln Ala Glu Ala Ala Pro Val Val Glu Ser Lys Trp Arg			
	1010	1015	1020	
	GCC CTT GAG ACC TTC TGG GCG AAG CAC ATG TGG AAT TTC ATC AGC GGG	3120		
	Ala Leu Glu Thr Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly			
45	1025	1030	1035	1040
	ATA CAG TAC TTA GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCA ATA	3168		

Ile Gln Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile
 1045 1050 1055
 GCA TCA CTG ATG GCA TTC ACA GCC TCT ATC ACC AGC CCG CTC ACC ACC 3216
 5 Ala Ser Leu Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr
 1060 1065 1070
 CAA TAT ACC CTC CTG TTT AAC ATC TTG GGG GGA TGG GTG GCC GCC CAA 3264
 Gln Tyr Thr Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln
 10 1075 1080 1085
 CTC GCC CCC CCC AGT GCC GCT TCA GCC TTC GTG GGC GCC GGT ATA GCT 3312
 Leu Ala Pro Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala
 1090 1095 1100
 15 GGC GCG GCT GTT GGC AGC ATA GGC CTC GGG AAG GTG CTT GTG GAC ATT 3360
 Gly Ala Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile
 1105 1110 1115 1120
 CTG GCG GGT TAT GGA GCA GGG GTG GCA GGC GCG CTC GTG GCC TTT AAG 3408
 20 Leu Ala Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys
 1125 1130 1135
 GTC ATG AGC GGT GAC ATG CCC TCC ACC GAG GAC CTG GTC AAC TTA CTC 3456
 Val Met Ser Gly Asp Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu
 25 1140 1145 1150
 CCC GCC ATC CTC TCT CCT GGT GCC CTG GTC GTC GGG GTC GTG TGC GCA 3504
 Pro Ala Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala
 1155 1160 1165
 30 GCA ATA CTG CGT CGG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG 3552
 Ala Ile Leu Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp
 1170 1175 1180
 ATG AAC CGG CTG 3564
 Met Asn Arg Leu
 35 1185

SEQ ID NO:64

SEQUENCE LENGTH: 818 base pairs

40 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

45 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N22-1, N22-3, H22-8, H22-9

5	GG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG	47
	His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu	
	1 5 10 15	
10	ATA GCG TTY GCY TCG CGG GGY AAC CAY GTC TCC CCC ACG CAY TAT GTG	95
	Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val	
	20 25 30	
15	CCT GAR AGC GAC GCC GCR GCG CGY GTC ACC CAG ATC CTC TCC ARC CTY	143
	Pro Glu Ser Asp Ala Ala Arg Val Thr Gln Ile Leu Ser Xaa Leu	
	35 40 45	
20	ACC ATC ACT CAG YTG YTG AAG AGG CTY CAC CAG TGG ATT RAT GAK GAC	191
	Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asx Xac Asp	
	50 55 60	
25	TGC TCC ACG CCA TGY TCY GGY TCG TGG CTC AGG GAT GTT TGG GAC TGG	239
	Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp	
	65 70 75	
30	ATA TGC ACG GTR TTG RST GAY TKC AAG ACC TGG CTC CAG TCC AAG CTC	287
	Ile Cys Thr Val Leu Xad Asp Xae Lys Thr Trp Leu Gln Ser Lys Leu	
	80 85 90 95	
35	CTG CCG CGG YTA CCG GGR GTC CCT TTY YTY TCA TGC CAR CGT GGG TAC	335
	Leu Pro Arg Leu Pro Gly Val Pro Phe Xaf Ser Cys Gln Arg Gly Tyr	
	100 105 110	
40	AAG GGR GTY TGG CGG GGA GAY GGC ATC ATG YAD ACC ACC TGC CCA TGY	383
	Lys Gly Val Trp Arg Gly Asp Gly Ile Met Xag Thr Thr Cys Pro Cys	
	115 120 125	
45	GGA GCA CAA ATC RCC GGA CAT GTC AAA AAY GGT TCY ATG AGG ATC RYT	431
	Gly Ala Gln Ile Xah Gly His Val Lys Asn Gly Ser Met Arg Ile Xai	
	130 135 140	
50	GGS CYY AGA ACC TGT AGC AAC ACG TGG CRC GGA ACR TTY CCC ATC AAC	479
	Gly Xaj Arg Thr Cys Ser Asn Thr Trp Xak Gly Thr Phe Pro Ile Asn	
	145 150 155	
55	GCG TAC ACC ACA GGC CCC TGC ACA CCC TCY CCR GCG CCR AAC TAY TCY	527
	Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser	
	160 165 170 175	

	ARG GCG TTR TGG CGG GTR GCY RYT GAG GAG TAT GTG GAG GTC ACG CGG	575
	Xal Ala Leu Trp Arg Val Ala Xam Glu Glu Tyr Val Glu Val Thr Arg	
	180 185 190	
5	GTG GGG GAY TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC KTR AAA	623
	Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Xan Lys	
	195 200 205	
10	TGC CCA TGC CAG GTY CCG GCC CCC GAA TTY TTC ACR GAR TTG GAT GGG	671
	Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp Gly	
	210 215 220	
15	GTR CGG CTR CRC AGR TAC GCT CCG GCG TGC AAA CCT CTC CTR CGG GAT	719
	Val Arg Leu Xak Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp	
	225 230 235	
20	GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TWY MCG GTT GGG TCR CAG	767
	Glu Val Thr Phe Gln Val Gly Leu Asn Gln Xao Xap Val Gly Ser Gln	
	240 245 250 255	
25	CTM CCA TGY GAG CCC GAA CCG GAT GTA RYR GTG GTC ACC TCC ATG CTC	815
	Leu Pro Cys Glu Pro Glu Pro Asp Val Xaq Val Val Thr Ser Met Leu	
	260 265 270	
	ACC	818
	Thr	

	Y : C or T	R : A or G	M : A or C	K : G or T
	S : G or C	W : A or T	D : G or T or A	
30	Xaa : Asn or Ser	Asx : Asn or Asp		Xac : Glu or Asp
	Xad : Ala or Ser	Xae : Cys or Phe		Xaf : Phe or Leu
	Xag : Tyr or Gln or His	Xah : Thr or Ala		Xai : Val or Thr
	Xaj : Pro or Leu	Xak : His or Arg		Xal : Arg or Lys
35	Xam : Ile or Ala	Xan : Val or Leu		Xao : Tyr or Phe
	Xap : Thr or Pro	Xaq : Thr or Met or Ala		

SEQ ID NO:65
 40 SEQUENCE LENGTH: 311 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 45 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N17-1, N17-2, N17-3, H17-1, H17-3

5

TGT GAG CCC GAA CCG GAT GTA ACA GTG STC ACY TCC ATG CTC ACC GAC	48
Cys Glu Pro Glu Pro Asp Val Thr Val Xaa Thr Ser Met Leu Thr Asp	
1 5 10 15	
CCC TCC CAC ATY ACA GCA GAG RCG GCT RRG CGT AGG CTG RCC AGA GGG	96
Pro Ser His Ile Thr Ala Glu Xab Ala Xac Arg Arg Leu Xab Arg Gly	
20 25 30	
TCT CCY CCT YCY TYG RCC AGY TCT TCA GCT AGY CAG TTG TCT GCG CYH	144
Ser Pro Pro Xad Xae Xab Ser Ser Ala Ser Gln Leu Ser Ala Xaf	
35 40 45	
TCY YYG MAG GCR ACA TGY ACT ACC CAT CAD GRC KCC CCR GAC RCT GAC	192
Ser Xae Xag Ala Thr Cys Thr Thr His Xah Xai Xaj Pro Asp Xab Asp	
50 55 60	
CTC ATC GAG GCC AAC CTC CTR TGG CGG CAG GAG ATG GGM GGR AAC ATC	240
Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile	
65 70 75 80	
ACC CGY GTG GAG TYA GAG ARC AAG RTA GTR ATT CTR GAC TCT TYY GAM	288
Thr Arg Val Glu Xae Glu Xak Lys Xal Val Ile Leu Asp Ser Xam Xan	
85 90 95	
CCG CTT CGA GCG GAG GAG GAT G A	311
Pro Leu Arg Ala Glu Glu Asp	
100	

Y : C or T R : A or G M : A or C K : G or T

S : G or C H : A or T or C D : G or T or A

Xaa : Val or Leu Xab : Ala or Thr

Xac : Arg or Lys or Gly Xad : Pro or Ser Xae : Ser or Leu

Xaf : Pro or Leu Xag : Gln or Lys Xah : Gln or His

Xai : Gly or Asp Xaj : Ala or Ser Xak : Asn or Ser

Xal : Ile or Val Xam : Phe or Ser Xan : Glu or Asp

35

40

SEQ ID NO:66

SEQUENCE LENGTH: 740 base pairs

45

SEQUENCE TYPE: nucleic acid

50

55

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

5 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: 028-1, 028-2, 028-4

10	GTG GTA GTC CTG GAC TCG TTG GAS CCG CTT CRA GCG RAG GAA GRT GAG	48
	Val Val Val Leu Asp Ser Leu Xaa Pro Leu Xab Ala Xac Glu Xad Glu	
	1 5 10 15	
15	AGG GAA GTG TCC GTT GCG GCG GAG ATC CTG CGR AAG ACC ARG AAA TTC	96
	Arg Glu Val Ser Val Ala Ala Glu Ile Leu Arg Lys Thr Xae Lys Phe	
	20 25 30	
20	CCC GCA GCG ATG CCC GTA TGG GCA CGC CCG GAC TAC AAC CCA CCA TTA	144
	Pro Ala Ala Met Pro Val Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu	
	35 40 45	
	CTA GAG TCT TGG AAG AAC CCG GAC TAC GTC CCT CCR GTG GTA CAC GGG	192
	Leu Glu Ser Trp Lys Asn Pro Asp Tyr Val Pro Pro Val Val His Gly	
	50 55 60	
25	TGC CCA TTG CCG CCT AYC AAG GCC CCT CCA ATA CCA CCT CCA CGR AGA	240
	Cys Pro Leu Pro Pro Xaf Lys Ala Pro Pro Ile Pro Pro Pro Arg Arg	
	65 70 75 80	
30	AAG AGR ACG GTT GYC CTG ACA GAA TCC WCC GTG TCC TCT GCC TTG GCG	288
	Lys Arg Thr Val Xag Leu Thr Glu Ser Xah Val Ser Ser Ala Leu Ala	
	85 90 95	
	GAG CTT GCT ACA AAG ACC TTT GGC AGT TCC GGA TCG TCG GCC GTC GAC	336
35	Glu Leu Ala Thr Lys Thr Phe Gly Ser Ser Gly Ser Ser Ala Val Asp	
	100 105 110	
	AGC GGC ACG GCG ACY GGC CCT CCT GAC CAG GCC TCC GCC GAA GGA GAT	384
	Ser Gly Thr Ala Thr Gly Pro Pro Asp Gln Ala Ser Ala Glu Gly Asp	
	115 120 125	
40	GCA GGA TCC GAC GCT GAG TCG TAC TCC TCC ATG CCC CCC CTT GAG GGA	432
	Ala Gly Ser Asp Ala Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly	
	130 135 140	
45	GAG CCG GGG GAC CCY GAT CTC AGC GAC GGG TCT TGG TCT ACY GTA AGC	480
	Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr Val Ser	

50

55

	145	150	155	160
	GAG GAG GCC RGC GAG GAC GTC GTC TGC TGC TCG ATG TCC TAC ACA TGG			528
	Glu Glu Ala Xai Glu Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp			
5		165	170	175
	ACA GGC GCC TTA ATT ACA CCA TGC RCC GCG GAG GAG AGC AAG CTG CCC			576
	Thr Gly Ala Leu Ile Thr Pro Cys Xaj Ala Glu Glu Ser Lys Leu Pro			
	180	185	190	
10	ATT AAT GCG CTG AGC AAC YCT TTG CTG CGY CAC CAC AAC ATG GTC TAT			624
	Ile Asn Ala Leu Ser Asn Xak Leu Leu Arg His His Asn Met Val Tyr			
	195	200	205	
	GCC ACA ACA TCC CGC AGC GCA AGC CAG CGG CAG AAA AAG GTC ACA TTT			672
15	Ala Thr Thr Ser Arg Ser Ala Ser Gln Arg Gln Lys Lys Val Thr Phe			
	210	215	220	
	GAC AGA CTG CAA GTC CTG GAT GAC CAC TAC CGG GAC GTG CTC AAG GAC			720
	Asp Arg Leu Gln Val Leu Asp Asp His Tyr Arg Asp Val Leu Lys Asp			
20	225	230	235	240
	ATG AAG GCC AAG GCG TCC AC			740
	Met Lys Ala Lys Ala Ser			
	245			
25	Y : C or T R : A or G S : G or C W : A or T			
	Xaa : Glu or Asp	Xab : Gln or Arg	Xac : Lys or Glu	
	Xad : Gly or Asp	Xae : Arg or Lys	Xaf : Thr or Ile	
	Xag : Val or Ala	Xah : Ser or Thr	Xai : Ser or Gly	
	Xaj : Ala or Thr	Xak : Pro or Ser		
30				

SEQ ID NO:67

SEQUENCE LENGTH: 515 base pairs

SEQUENCE TYPE: nucleic acid

35 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

40 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N29-1, N29-2, N29-3

45 AC TAC CGG GAC GTG CTG AAG GAG ATG AAG GCG AAG GCG TCC ACA GTT 47

50

55

	Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val		
1	5	10	15
5	AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGY AAG CTG ACG CCC CCA	95	
	Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro		
	20	25	30
	CAC TCG GCC AGA TCT AAR TTT GGC TAC GGG GCA AAG GAC GTC CGG AGC	143	
10	His Ser Ala Arg Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Ser		
	35	40	45
	CTG TCC AGC AAG GCC GTT AAC CAC ATC CGC TCC GTG TGG ARG GAC TTG	191	
	Leu Ser Ser Lys Ala Val Asn His Ile Arg Ser Val Trp Xaa Asp Leu		
	50	55	60
15	CTG GAA GAC ACT GAR ACA CCA ATT GAC ACC ACC ATC ATG GCA AAA AAT	239	
	Leu Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn		
	65	70	75
20	GAG GTT TTC TGT GTT CAA CCA GAG AAA GGA GGC CGC AAG CCA GCT CGC	287	
	Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg		
	80	85	90
	CTT ATC GTA TTC CCA GAC TTG GGG GTT CGT GTG TGC GAG AAA ATG GCC	335	
	Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala		
25	100	105	110
	CTC TAC GAC GTG GTC TCC ACT CTT CCT CAG GCC GTG ATG GGC TCC TCA	383	
	Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val Met Gly Ser Ser		
	115	120	125
30	TAC GGA TTC CAG TAC TCC CCT GGA CAG CGG GTC GAG TTC CTG GTG AAT	431	
	Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn		
	130	135	140
	GCC TGG AAG TCA AAG AAG AGY CCT ATG GGC TTT KCA TAT GAC ACC CGC	479	
35	Ala Trp Lys Ser Lys Ser Pro Met Gly Phe Xab Tyr Asp Thr Arg		
	145	150	155
	TGT TTT GAC TCA ACG GTC ACC GAG AAC GAC ATC CGT	515	
	Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg		
40	160	165	170
	Y : C or T R : A or G K : G or T		
	Xaa : Lys or Glu Xab : Ala or Ser		

SEQ ID NO:68

SEQUENCE LENGTH: 401 base pairs

SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 5 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 10 CLONE: N18-2, N18-3, N18-4, H18-1, H18-2, H18-3

TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACR GTC ACY GAG	47
Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	
1 5 10 15	
ARY GAY ATC CGT RYT GAG GAG TCA ATY TAY CAA TGY TGT GAC TTG GHC	95
Xaa Asp Ile Arg Xab Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Xac	
20 25 30	
CCC GAG GCC AGA CAG GCY ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC	143
Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile	
35 40 45	
GGG GGC CCC YTG ACY AAT TCA AAR GGG CAR AAC TGC GGY TAT CGC CGG	191
Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg	
50 55 60	
TGC CGC GYC AGC GGC GTG CTG ACG ACY AGC TGC GGT AAT ACY CTY ACA	239
Cys Arg Xad Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr	
65 70 75	
TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCR AAG CTC CRG GAC	287
Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Xae Asp	
80 85 90 95	
TGC ACR ATG CTC GTG TGC GGR GAC GAC CTT GTC GTY ATC TGT GAR AGC	335
Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser	
100 105 110	
GCG GGR ACC CAG GAG GAC GCG GCR ARC CTA CGA GTC TTC ACG GAG GCT	383
Ala Gly Thr Gln Glu Asp Ala Ala Xaa Leu Arg Val Phe Thr Glu Ala	
115 120 125	
ATG ACC AGG AAT TCC GCC	401
Met Thr Arg Asn Ser Ala	
130	
45 Y : C or T R : A or G H : A or T or C	

Xaa : Asn or Ser Xab : Thr or Ile or Val
 Xac : Asp or Val or Ala Xad : Ala or Val Xae : Gln or Arg

SEQ ID NO:69

5 SEQUENCE LENGTH: 1171 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

10 ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

15 CLONE: O30

TG	GGG	ATC	CCG	TAT	GAT	ACC	CGC	TGC	TTT	GAC	TCA	ACR	GTC	ACT	GAG	47
Gly	Ile	Pro	Tyr	Asp	Thr	Arg	Cys	Phe	Asp	Ser	Thr	Val	Thr	Glu		
20	1	5			10									15		
AAT	GAC	ATC	CGT	GTY	GAG	GAG	TCA	ATT	TAC	CAA	TGT	TGT	GAC	TTG	GCC	95
Asn	Asp	Ile	Arg	Val	Glu	Glu	Ser	Ile	Tyr	Gln	Cys	Cys	Asp	Leu	Ala	
25		20			25									30		
CCC	GAG	GCC	AGA	CAG	GCC	ATA	AGG	TCR	CTC	ACA	GAG	CGG	CTT	TAC	ATC	143
Pro	Glu	Ala	Arg	Gln	Ala	Ile	Arg	Ser	Leu	Thr	Glu	Arg	Leu	Tyr	Ile	
30		35			40									45		
GGG	GGC	CCC	CTG	ACT	AAT	TCA	AAR	GGG	CAG	AAC	TGC	GGY	TAT	CGC	CGG	191
Gly	Gly	Pro	Leu	Thr	Asn	Ser	Lys	Gly	Gln	Asn	Cys	Gly	Tyr	Arg	Arg	
35		50			55									60		
TGC	CGC	GYC	AGC	GGC	GTG	CTG	ACG	ACT	AGC	TGC	GGY	AAT	ACC	CTC	ACA	239
Cys	Arg	Xaa	Ser	Gly	Val	Leu	Thr	Thr	Ser	Cys	Gly	Asn	Thr	Leu	Thr	
40		65			70									75		
TGT	TAC	TTG	AAG	GCC	TCT	GCA	GCC	TGT	CGA	GCT	GCA	AAG	CTC	CAG	GAC	287
Cys	Tyr	Leu	Lys	Ala	Ser	Ala	Ala	Cys	Arg	Ala	Ala	Lys	Leu	Gln	Asp	
45		80			85									90	95	
TGC	ACG	ATG	CTT	GTG	TGC	GGA	GAC	GAC	CTT	GTC	GTT	ATC	TGT	GAW	AGC	335
Cys	Thr	Met	Leu	Val	Cys	Gly	Asp	Asp	Leu	Val	Val	Ile	Cys	Xab	Ser	
50			100			105								110		
GCG	GGA	ACT	CAG	GAG	GAC	GCG	GCG	AGC	CTA	CGA	GTC	TTC	ACG	GAG	GCT	383
Ala	Gly	Thr	Gln	Glu	Asp	Ala	Ala	Ser	Leu	Arg	Val	Phe	Thr	Glu	Ala	
			115			120								125		

50

55

ATG ACT AGG TAC TCT GCC CCC CCC GGG GAC CCG CCC CAA CCA GAA TAC 431
 Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr
 130 135 140
 5 GAC TTG GAG CTG ATA ACA TCA TGY TCC TCC AAY GTG TCG GTC GCG CAC 479
 Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser Asn Val Ser Val Ala His
 145 150 155
 GAC GCA TCA GGC AAA CGG GTG TAC TAY CTC ACC CGT GAC CCC MCC ACC 527
 10 Asp Ala Ser Gly Lys Arg Val Tyr Tyr Leu Thr Arg Asp Pro Xac Thr
 160 165 170 175
 CCC CTW GCG CGG GCT GCG TGG GAG ACA GCT AGA CAC ACT CCA GTC AAC 575
 Pro Leu Ala Arg Ala Ala Trp Glu Thr Ala Arg His Thr Pro Val Asn
 180 185 190
 15 TCC TGG CTA GGC AAC ATC ATC ATG TAY GCG CCC ACC TTA TGG GCA AGG 623
 Ser Trp Leu Gly Asn Ile Ile Met Tyr Ala Pro Thr Leu Trp Ala Arg
 195 200 205
 20 ATG ATT CTG ATG ACC CAC TTC TTC TCC ATC CTT CTA GCC CAG GAG CAA 671
 Met Ile Leu Met Thr His Phe Phe Ser Ile Leu Leu Ala Gln Glu Gln
 210 215 220
 25 CTT GAA AAA GCC CTA GAT TGT CAG ATC TAY GGG GCC ACT TAC TCC ATT 719
 Leu Glu Lys Ala Leu Asp Cys Gln Ile Tyr Gly Ala Thr Tyr Ser Ile
 225 230 235
 GAG CCA CTT GAC CTA CCT CAG ATC ATT CAA CGA CTC CAY GGT CTT AGC 767
 Glu Pro Leu Asp Leu Pro Gln Ile Ile Gln Arg Leu His Gly Leu Ser
 240 245 250 255
 30 GCA TTT TCA CTC CAT AGT TAC TCT CCA GGT GAG ATC AAT AGG GTG GCT 815
 Ala Phe Ser Leu His Ser Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala
 260 265 270
 35 TCA TGC CTC AGG AAA CTT GGG GTA CCG CCC TTG CGA GTC TGG AGA CAT 863
 Ser Cys Leu Arg Lys Leu Gly Val Pro Pro Leu Arg Val Trp Arg His
 275 280 285
 CGG GCC AGA AGC GTC CGC GCT AAG CTA CTG TCC CAG GGG GGG AGG GCC 911
 Arg Ala Arg Ser Val Arg Ala Lys Leu Leu Ser Gln Gly Gly Arg Ala
 290 295 300
 40 GCC ACC TGT GGC AAA TAC CTC TTC AAC TGG GCA GTA AAG ACC AAG CTC 959
 Ala Thr Cys Gly Lys Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu
 305 310 315
 45 AAA CYC ACT CCA ATC CCR GAA GCG TCC CAG CTG GAC TTG TCC GGC TGG 1007

Lys Xad Thr Pro Ile Pro Glu Ala Ser Gln Leu Asp Leu Ser Gly Trp
 320 325 330 335
 TTC GTT GCT GGT TAC AGC GGG GGA GAC ATA TAT CAC AGC CTG TCT CGT 1055
 5 Phe Val Ala Gly Tyr Ser Gly Gly Asp Ile Tyr His Ser Leu Ser Arg
 340 345 350
 GCC CGA CCC CGC TGG TTY ATG TGG TGC CTA CTC CTA CTT TCC GTA GGG 1103
 Ala Arg Pro Arg Trp Phe Met Trp Cys Leu Leu Leu Ser Val Gly
 10 355 360 365
 GTA GGC ATC TAC CTG CTC CCC AAC CGA TGA GCG GGG AGC TAA ACA CTC 1151
 Val Gly Ile Tyr Leu Leu Pro Asn Arg StopAla Gly Ser StopThr Leu
 370 375 380
 15 CAG GCC AAT AGG CCA TCC C C 1171
 Gln Ala Asn Arg Pro Ser
 385
 Y : C or T R : A or G M : A or C W : A or T
 20 Xaa : Val or Ala Xab : Asp or Glu Xac : Thr or Pro
 Xad : Leu or Pro

SEQ ID NO:70
 25 SEQUENCE LENGTH: 1084 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 30 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: 2217
 35

GG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG	47
His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu	
1 5 10 15	
40 ATA GCG TTT GCT TCG CGG GGC AAC CAT GTC TCC CCC ACG CAC TAT GTG	95
Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val	
20 25 30	
45 CCT GAA AGC GAC GCC GCA GCG CGC GTC ACC CAG ATC CTC TCC AAC CTT	143
Pro Glu Ser Asp Ala Ala Arg Val Thr Gln Ile Leu Ser Asn Leu	

	35	40	45	
5	ACC ATC ACT CAG CTG TTG AAG AGG CTT CAC CAG TGG ATT AAT GAG GAC			191
	Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp			
	50	55	60	
	TGC TCC ACG CCA TGC TCC GGC TCG TGG CTC AGG GAT GTT TGG GAC TGG			239
	Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp			
	65	70	75	
10	ATA TGC ACG GTA TTG GCT GAT TTC AAG ACC TGG CTC CAG TCC AAG CTC			287
	Ile Cys Thr Val Leu Ala Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu			
	80	85	90	95
15	CTG CCG CGG TTA CCG GGG GTC CCT TTT TTC TCA TGC CAG CGT GGG TAC			335
	Leu Pro Arg Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr			
	100	105	110	
	AAG GGG GTT TGG CGG GGA GAT GGC ATC ATG TAT ACC ACC TGC CCA TGT			383
	Lys Gly Val Trp Arg Gly Asp Gly Ile Met Tyr Thr Thr Cys Pro Cys			
20	115	120	125	
	GGA GCA CAA ATC ACC GGA CAT GTC AAA AAC GGT TCT ATG AGG ATC GTT			431
	Gly Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val			
	130	135	140	
25	GGG CCT AGA ACC TGT AGC AAC ACG TGG CAC GGA ACA TTT CCC ATC AAC			479
	Gly Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn			
	145	150	155	
	GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCG GCG CCA AAC TAT TCC			527
30	Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser			
	160	165	170	175
	AGG GCG TTG TGG CGG GTG GCC ATT GAG GAG TAT GTG GAG GTC ACG CGG			575
	Arg Ala Leu Trp Arg Val Ala Ile Glu Glu Tyr Val Glu Val Thr Arg			
	180	185	190	
35	GTG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC GTG AAA			623
	Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys			
	195	200	205	
40	TGC CCA TGC CAG GTT CCG GCC CCC GAA TTC TTC ACA GAA TTG GAT GGG			671
	Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp Gly			
	210	215	220	
	GTG CGG CTG CAC AGG TAC GCT CCG GCG TGC AAA CCT CTC CTG CGG GAT			719
	Val Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp			
45	225	230	235	

GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TAT ACG GTT GGG TCA CAG 767
 Glu Val Thr Phe Gln Val Gly Leu Asn Gln Tyr Thr Val Gly Ser Gln
 240 245 250 255
 5 CTC CCA TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC 815
 Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu
 260 265 270
 ACC GAC CCC TCC CAC ATT ACA GCA GAG GCG GCT AGG CGT AGG CTG ACC 863
 10 Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg Leu Thr
 275 280 285
 AGA GGG TCT CCC CCT TCC TCG ACC AGT TCT TCA GCT AGT CAG TTG TCT 911
 Arg Gly Ser Pro Pro Ser Ser Thr Ser Ser Ala Ser Gln Leu Ser
 15 290 295 300
 GCG CTT TCT TCG CAG GCA ACA TGC ACT ACC CAT CAG GGC GCC CCA GAC 959
 Ala Leu Ser Ser Gln Ala Thr Cys Thr Thr His Gln Gly Ala Pro Asp
 305 310 315
 20 ACT GAC CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC GGA 1007
 Thr Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly
 320 325 330 335
 AAC ATC ACC CGC GTG GAG TCA GAG AAC AAG ATA GTA ATT CTA GAC TCT 1055
 25 Asn Ile Thr Arg Val Glu Ser Glu Asn Lys Ile Val Ile Leu Asp Ser
 340 345 350
 TTT GAA CCG CTT CGA GCG GAG GAG GAT GA 1084
 Phe Glu Pro Leu Arg Ala Glu Glu Asp
 355 360
 30

SEQ ID NO:71

SEQUENCE LENGTH: 1004 base pairs

SEQUENCE TYPE: nucleic acid

35 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

40 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: 1728

45 TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC ACC GAC 48

50

55

Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu Thr Asp
 1 5 10 15
 CCC TCC CAC ATT ACA GCA GAG GCG GCT AGG CGT AGG CTG ACC AGA GGG 96
 5 Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg Leu Thr Arg Gly
 20 25 30
 TCT CCC CCT TCC TCG ACC AGT TCT TCA GCT AGT CAG TTG TCT GCG CTT 144
 Ser Pro Pro Ser Ser Thr Ser Ala Ser Gln Leu Ser Ala Leu
 10 35 40 45
 TCT TCG CAG GCA ACA TGC ACT ACC CAT CAG GGC GCC CCA GAC ACT GAC 192
 Ser Ser Gln Ala Thr Cys Thr His Gln Gly Ala Pro Asp Thr Asp
 50 55 60
 15 CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC GGA AAC ATC 240
 Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile
 65 70 75 80
 ACC CGC GTG GAG TCA GAG AAC AAG ATA GTA ATT CTA GAC TCT TTT GAA 288
 20 Thr Arg Val Glu Ser Glu Asn Lys Ile Val Ile Leu Asp Ser Phe Glu
 85 90 95
 CCG CTT CGA GCG GAG GAG GAT GAG AGG GAA GTG TCC GTT GCG GCG GAG 336
 Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu
 25 100 105 110
 ATC CTG CGG AAG ACC AGG AAA TTC CCC GCA GCG ATG CCC GTA TGG GCA 384
 Ile Leu Arg Lys Thr Arg Lys Phe Pro Ala Ala Met Pro Val Trp Ala
 115 120 125
 CGC CCG GAC TAC AAC CCA CCA TTA CTA GAG TCT TGG AAG AAC CCG GAC 432
 30 Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asn Pro Asp
 130 135 140
 TAC GTC CCT CCA GTG GTA CAC GGG TGC CCA TTG CCG CCT ACC AAG GCC 480
 Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Thr Lys Ala
 35 145 150 155 160
 CCT CCA ATA CCA CCT CCA CGA AGA AAG AGA ACG GTT GTC CTG ACA GAA 528
 Pro Pro Ile Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu
 165 170 175
 40 TCC TCC GTG TCC TCT GCC TTG GCG GAG CTT GCT ACA AAG ACC TTT GGC 576
 Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly
 180 185 190
 45 AGT TCC GGA TCG TCG GCC GTC GAC AGC GGC ACG GCG ACC GGC CCT CCT 624
 Ser Ser Gly Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Gly Pro Pro

	195	200	205	
	GAC CAG GCC TCC GCC GAA GGA GAT GCA GGA TCC GAC GCT GAG TCG TAC			672
5	Asp Gln Ala Ser Ala Glu Gly Asp Ala Gly Ser Asp Ala Glu Ser Tyr			
	210	215	220	
	TCC TCC ATG CCC CCC CTT GAG GGA GAG CCG GGG GAC CCC GAT CTC AGC			720
	Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser			
10	225	230	235	240
	GAC GGG TCT TGG TCT ACC GTA AGC GAG GAG GCC AGC GAG GAC GTC GTC			768
	Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val			
	245	250	255	
15	TGC TGC TCG ATG TCC TAC ACA TGG ACA GGC GCC TTA ATT ACA CCA TGC			816
	Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys			
	260	265	270	
	GCC GCG GAG GAG AGC AAG CTG CCC ATT AAT GCG CTG AGC AAC CCT TTG			864
	Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Pro Leu			
20	275	280	285	
	CTG CGC CAC CAC AAC ATG GTC TAT GCC ACA ACA TCC CGC AGC GCA AGC			912
	Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Ser			
	290	295	300	
25	CAG CGG CAG AAA AAG GTC ACA TTT GAC AGA CTG CAA GTC CTG GAT GAC			960
	Gln Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp			
	305	310	315	320
	CAC TAC CGG GAC GTG CTC AAG GAC ATG AAG GCC AAG GCG TCC AC			1004
30	His Tyr Arg Asp Val Leu Lys Asp Met Lys Ala Lys Ala Ser			
	325	330		

SEQ ID NO:72

SEQUENCE LENGTH: 857 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: 2918

50

55

	AC TAC CGG GAC GTG CTG AAG GAC ATG AAG GCC AAG GCG TCC ACA GTT	47
	Tyr Arg Asp Val Leu Lys Asp Met Lys Ala Lys Ala Ser Thr Val	
	1 5 10 15	
5	AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGC AAG CTG ACG CCC CCA	95
	Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro	
	20 25 30	
10	CAC TCG GCC AGA TCT AAA TTT GAC TAC GGG GCA AAG GAC GTC CAG AGC	143
	His Ser Ala Arg Ser Lys Phe Asp Tyr Gly Ala Lys Asp Val Gln Ser	
	35 40 45	
15	CTG TCC AGC AAG GCC GTT AAC CAC ATC CAC TCC GTG TGG AAG GAC TTG	191
	Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu	
	50 55 60	
20	CCG GAA GAC ACT GAG ACA CCA ATC GAC ACC ACC ATC ATG GCA AAA AAT	239
	Pro Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn	
	65 70 75	
25	GAG GTT TTT TGT GTT CAA CCA GAG AAA GGA GGC CGC AAG CCA GCT CGC	287
	Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg	
	80 85 90 95	
30	CTT ATC GTA TTC CCA GAC TTG GGG GTT CGT GTG TGC GAG AAA ATG GCC	335
	Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala	
	100 105 110	
35	CTC TAC GAC GTG GTC TCC ACT CTT CCT CAG GCC GTG ATG GGC TCC TCA	383
	Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val Met Gly Ser Ser	
	115 120 125	
40	TAC AGA TTT CAG TGC TCC CCT GGA CAG CGG GTC GAG TTC CTG GTG AAT	431
	Tyr Arg Phe Gln Cys Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn	
	130 135 140	
45	GCC TGG AAG TCA AAG AAG AGC CCT ATG GGC TTT GCA TAT GAC ACC CGC	479
	Ala Trp Lys Ser Lys Ser Pro Met Gly Phe Ala Tyr Asp Thr Arg	
	145 150 155	
50	TGT TTT GAC TCA ACG GTC ACC GAG AAC GAC ATC CGT ACT GAG GAG TCA	527
	Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Thr Glu Glu Ser	
	160 165 170 175	
55	ATT TAT CAA TGT TGT GAC TTG GAC CCC GAG GCC AGA CAG GCC ATA AGG	575
	Ile Tyr Gln Cys Cys Asp Leu Asp Pro Glu Ala Arg Gln Ala Ile Arg	
	180 185 190	
60	TCG CTC ACA GAG CGG CTT TAT ATC GGG GGC CCC TTG ACC AAT TCA AAA	623

Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys
 195 200 205
 GGG CAA AAC TGC GGC TAT CGC CGG TGC CGC GCC AGC GGC GTG CTG ACG 671
 5 Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr
 210 215 220
 ACT AGC TGC GGT AAT ACC CTC ACA TGT TAC TTG AAG GCC TCT GCA GCC 719
 Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala
 10 225 230 235
 TGT CGA GCT GCG AAG CTC CAG GAC TGC ACG ATG CTC GTG TGC GGA GAC 767
 Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Cys Gly Asp
 15 240 245 250 255
 GAC CTT GTC GTT ATC TGT GAA AGC GCG GGA ACC CAG GAG GAC GCG GCA 815
 Asp Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala
 20 260 265 270
 AAC CTA CGA GTC TTC ACG GAG GCT ATG ACC AGG AAT TCC GCC 857
 Asn Leu Arg Val Phe Thr Glu Ala Met Thr Arg Asn Ser Ala
 25 275 280 285

SEQ ID NO:73

25 SEQUENCE LENGTH: 1818 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 30 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: 1718

35 TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC ACC GAC 48
 Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu Thr Asp
 1 5 10 15
 40 CCC TCC CAC ATT ACA GCA GAG GCG GCT AGG CGT AGG CTG ACC AGA GGG 96
 Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg Leu Thr Arg Gly
 20 25 30
 TCT CCC CCT TCC TCG ACC AGT TCT TCA GCT AGT CAG TTG TCT GCG CTT 144
 45 Ser Pro Pro Ser Ser Thr Ser Ser Ala Ser Gln Leu Ser Ala Leu

	35	40	45	
	TCT TCG CAG GCA ACA TGC ACT ACC CAT CAG GGC GCC CCA GAC ACT GAC			192
	Ser Ser Gln Ala Thr Cys Thr Thr His Gln Gly Ala Pro Asp Thr Asp			
5	50	55	60	
	CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC GGA AAC ATC			240
	Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile			
	65	70	75	80
10	ACC CGC GTG GAG TCA GAG AAC AAG ATA GTA ATT CTA GAC TCT TTT GAA			288
	Thr Arg Val Glu Ser Glu Asn Lys Ile Val Ile Leu Asp Ser Phe Glu			
	85	90	95	
	CCG CTT CGA GCG GAG GAG GAT GAG AGG GAA GTG TCC GTT GCG GCG GAG			336
15	Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu			
	100	105	110	
	ATC CTG CGG AAG ACC AGG AAA TTC CCC GCA GCG ATG CCC GTA TGG GCA			384
	Ile Leu Arg Lys Thr Arg Lys Phe Pro Ala Ala Met Pro Val Trp Ala			
20	115	120	125	
	CGC CCG GAC TAC AAC CCA CCA TTA CTA GAG TCT TGG AAG AAC CCG GAC			432
	Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asn Pro Asp			
	130	135	140	
25	TAC GTC CCT CCA GTG GTA CAC GGG TGC CCA TTG CCG CCT ACC AAG GCC			480
	Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Thr Lys Ala			
	145	150	155	160
	CCT CCA ATA CCA CCT CCA CGA AGA AAG AGA ACG GTT GTC CTG ACA GAA			528
30	Pro Pro Ile Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu			
	165	170	175	
	TCC TCC GTG TCC TCT GCC TTG GCG GAG CTT GCT ACA AAG ACC TTT GGC			576
	Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly			
	180	185	190	
35	AGT TCC GGA TCG TCG GCC GTC GAC AGC GGC ACG GCG ACC GGC CCT CCT			624
	Ser Ser Gly Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Gly Pro Pro			
	195	200	205	
40	GAC CAG GCC TCC GCC GAA GGA GAT GCA GGA TCC GAC GCT GAG TCG TAC			672
	Asp Gln Ala Ser Ala Glu Gly Asp Ala Gly Ser Asp Ala Glu Ser Tyr			
	210	215	220	
	TCC TCC ATG CCC CCC CTT GAG GGA GAG CCG GGG GAC CCC GAT CTC AGC			720
	Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser			
45	225	230	235	240

GAC GGG TCT TGG TCT ACC GTA AGC GAG GAG GCC AGC GAG GAC GTC GTC 768
 Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val
 245 250 255
 5 TGC TGC TCG ATG TCC TAC ACA TGG ACA GGC GCC TTA ATT ACA CCA TGC 816
 Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys
 260 265 270
 GCC GCG GAG GAG AGC AAG CTG CCC ATT AAT GCG CTG AGC AAC CCT TTG 864
 10 Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn Pro Leu
 275 280 285
 CTG CGC CAC CAC AAC ATG GTC TAT GCC ACA ACA TCC CGC AGC GCA AGC 912
 Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser Ala Ser
 290 295 300
 15 CAG CGG CAG AAA AAG GTC ACA TTT GAC AGA CTG CAA GTC CTG GAT GAC 960
 Gln Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu Asp Asp
 305 310 315 320
 20 CAC TAC CGG GAC GTG CTS AAG GAC ATG AAG GCC AAG GCG TCC ACA GTT 1008
 His Tyr Arg Asp Val Xaa Lys Asp Met Lys Ala Lys Ala Ser Thr Val
 325 330 335
 AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGC AAG CTG ACG CCC CCA 1056
 25 Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro
 340 345 350
 CAC TCG GCC AGA TCT AAA TTT GAC TAC GGG GCA AAG GAC GTC CAG AGC 1104
 His Ser Ala Arg Ser Lys Phe Asp Tyr Gly Ala Lys Asp Val Gln Ser
 355 360 365
 30 CTG TCC AGC AAG GCC GTT AAC CAC ATC CAC TCC GTG TGG AAG GAC TTG 1152
 Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys Asp Leu
 370 375 380
 CCG GAA GAC ACT GAG ACA CCA ATC GAC ACC ACC ATC ATG GCA AAA AAT 1200
 35 Pro Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn
 385 390 395 400
 GAG GTT TTT TGT GTT CAA CCA GAG AAA GGA GGC CGC AAG CCA GCT CGC 1248
 Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg
 405 410 415
 40 CTT ATC GTA TTC CCA GAC TTG GGG GTT CGT GTG TGC GAG AAA ATG GCC 1296
 Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala
 420 425 430
 45 CTC TAC GAC GTG GTC TCC ACT CTT CCT CAG GCC GTG ATG GGC TCC TCA 1344

Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val Met Gly Ser Ser
 435 440 445
 TAC AGA TTT CAG TGC TCC CCT GGA CAG CGG GTC GAG TTC CTG GTG AAT 1392
 5 Tyr Arg Phe Gln Cys Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn
 450 455 460
 GCC TGG AAG TCA AAG AAG AGC CCT ATG GGC TTT GCA TAT GAC ACC CGC 1440
 Ala Trp Lys Ser Lys Ser Pro Met Gly Phe Ala Tyr Asp Thr Arg
 10 465 470 475 480
 TGT TTT GAC TCA ACG GTC ACC GAG AAC GAC ATC CGT ACT GAG GAG TCA 1488
 Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Thr Glu Glu Ser
 485 490 495
 15 ATT TAT CAA TGT TGT GAC TTG GAC CCC GAG GCC AGA CAG GCC ATA AGG 1536
 Ile Tyr Gln Cys Cys Asp Leu Asp Pro Glu Ala Arg Gln Ala Ile Arg
 500 505 510
 TCG CTC ACA GAG CGG CTT TAT ATC GGG GGC CCC TTG ACC AAT TCA AAA 1584
 20 Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn Ser Lys
 515 520 525
 GGG CAA AAC TGC GGC TAT CGC CGG TGC CGC GCC AGC GGC GTG CTG ACG 1632
 Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val Leu Thr
 25 530 535 540
 ACT AGC TGC GGT AAT ACC CTC ACA TGT TAC TTG AAG GCC TCT GCA GCC 1680
 Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser Ala Ala
 545 550 555 560
 TGT CGA GCT GCG AAG CTC CAG GAC TGC ACG ATG CTC GTG TGC GGA GAC 1728
 30 Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Cys Gly Asp
 565 570 575
 GAC CTT GTC GTT ATC TGT GAA AGC GCG GGA ACC CAG GAG GAC GCG GCA 1776
 Asp Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp Ala Ala
 35 580 585 590
 AAC CTA CGA GTC TTC ACG GAG GCT ATG ACC AGG AAT TCC GCC 1818
 Asn Leu Arg Val Phe Thr Glu Ala Met Thr Arg Asn Ser Ala
 40 595 600 605

SEQ ID NO:74

SEQUENCE LENGTH: 2591 base pairs

SEQUENCE TYPE: nucleic acid

45 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

5 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: 2218

10	GG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG	47
	His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu	
	1 5 10 15	
15	ATA GCG TTT GCT TCG CGG GGC AAC CAT GTC TCC CCC ACG CAC TAT GTG	95
	Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val	
	20 25 30	
20	CCT GAA AGC GAC GCC GCA GCG CGC GTC ACC CAG ATC CTC TCC AAC CTT	143
	Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Asn Leu	
	35 40 45	
	ACC ATC ACT CAG CTG TTG AAG AGG CTT CAC CAG TGG ATT AAT GAG GAC	191
	Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp	
	50 55 60	
25	TGC TCC ACG CCA TGC TCC GGC TCG TGG CTC AGG GAT GTT TGG GAC TGG	239
	Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp	
	65 70 75	
30	ATA TGC ACG GTA TTG GCT GAT TTC AAG ACC TGG CTC CAG TCC AAG CTC	287
	Ile Cys Thr Val Leu Ala Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu	
	80 85 90 95	
	CTG CCG CGG TTA CCG GGG GTC CCT TTT TTC TCA TGC CAG CGT GGG TAC	335
	Leu Pro Arg Leu Pro Gly Val Pro Phe Ser Cys Gln Arg Gly Tyr	
	100 105 110	
35	AAG GGG GTT TGG CGG GGA GAT GGC ATC ATG TAT ACC ACC TGC CCA TGT	383
	Lys Gly Val Trp Arg Gly Asp Gly Ile Met Tyr Thr Thr Cys Pro Cys	
	115 120 125	
40	GGA GCA CAA ATC ACC GGA CAT GTC AAA AAC GGT TCT ATG AGG ATC GTT	431
	Gly Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val	
	130 135 140	
45	GGG CCT AGA ACC TGT AGC AAC ACG TGG CAC GGA ACA TTT CCC ATC AAC	479
	Gly Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn	
	145 150 155	

GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCG GCG CCA AAC TAT TCC 527
 Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser
 160 165 170 175
 5 AGG GCG TTG TGG CGG GTG GCC ATT GAG GAG TAT GTG GAG GTC ACG CGG 575
 Arg Ala Leu Trp Arg Val Ala Ile Glu Glu Tyr Val Glu Val Thr Arg
 180 185 190
 GTG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC GTG AAA 623
 10 Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys
 195 200 205
 TGC CCA TGC CAG GTT CCG GCC CCC GAA TTC TTC ACA GAA TTG GAT GGG 671
 Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp Gly
 15 210 215 220
 GTG CGG CTG CAC AGG TAC GCT CCG GCG TGC AAA CCT CTC CTG CGG GAT 719
 Val Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp
 225 230 235
 20 GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TAT ACG GTT GGG TCA CAG 767
 Glu Val Thr Phe Gln Val Gly Leu Asn Gln Tyr Thr Val Gly Ser Gln
 240 245 250 255
 CTC CCA TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC 815
 25 Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu
 260 265 270
 ACC GAC CCC TCC CAC ATT ACA GCA GAG GCG GCT AGG CGT AGG CTG ACC 863
 Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg Leu Thr
 275 280 285
 30 AGA GGG TCT CCC CCT TCC TCG ACC AGT TCT TCA GCT AGT CAG TTG TCT 911
 Arg Gly Ser Pro Pro Ser Ser Thr Ser Ser Ser Ala Ser Gln Leu Ser
 290 295 300
 35 GCG CTT TCT TCG CAG GCA ACA TGC ACT ACC CAT CAG GGC GCC CCA GAC 959
 Ala Leu Ser Ser Gln Ala Thr Cys Thr Thr His Gln Gly Ala Pro Asp
 305 310 315
 ACT GAC CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC GGA 1007
 Thr Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly
 40 320 325 330 335
 AAC ATC ACC CGC GTG GAG TCA GAG AAC AAG ATA GTA ATT CTA GAC TCT 1055
 Asn Ile Thr Arg Val Glu Ser Glu Asn Lys Ile Val Ile Leu Asp Ser
 340 345 350
 45 TTT GAA CCG CTT CGA GCG GAG GAG GAT GAG AGG GAA GTG TCC GTT GCG 1103

Phe Glu Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val Ala
 355 360 365
 GCG GAG ATC CTG CGG AAG ACC AGG AAA TTC CCC GCA GCG ATG CCC GTA 1151
 Ala Glu Ile Leu Arg Lys Thr Arg Lys Phe Pro Ala Ala Met Pro Val
 370 375 380
 TGG GCA CGC CCG GAC TAC AAC CCA CCA TTA CTA GAG TCT TGG AAG AAC 1199
 Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asn
 385 390 395
 CCG GAC TAC GTC CCT CCA GTG GTA CAC GGG TGC CCA TTG CCG CCT ACC 1247
 Pro Asp Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Thr
 400 405 410 415
 AAG GCC CCT CCA ATA CCA CCT CCA CGA AGA AAG AGA ACG GTT GTC CTG 1295
 Lys Ala Pro Pro Ile Pro Pro Arg Arg Lys Arg Thr Val Val Leu
 420 425 430
 ACA GAA TCC TCC GTG TCC TCT GCC TTG GCG GAG CTT GCT ACA AAG ACC 1343
 Thr Glu Ser Ser Val Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr
 435 440 445
 TTT GGC AGT TCC GGA TCG TCG GCC GTC GAC AGC GGC ACG GCG ACC GGC 1391
 Phe Gly Ser Ser Gly Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Gly
 450 455 460
 CCT CCT GAC CAG GCC TCC GCC GAA GGA GAT GCA GGA TCC GAC GCT GAG 1439
 Pro Pro Asp Gln Ala Ser Ala Glu Gly Asp Ala Gly Ser Asp Ala Glu
 465 470 475
 TCG TAC TCC TCC ATG CCC CCC CTT GAG GGA GAG CCG GGG GAC CCC GAT 1487
 Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp
 480 485 490 495
 CTC AGC GAC GGG TCT TGG TCT ACC GTA AGC GAG GAG GCC AGC GAG GAC 1535
 Leu Ser Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp
 500 505 510
 GTC GTC TGC TGC TCG ATG TCC TAC ACA TGG ACA GGC GCC TTA ATT ACA 1583
 Val Val Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr
 515 520 525
 CCA TGC GCC GCG GAG GAG AGC AAG CTG CCC ATT AAT GCG CTG AGC AAC 1631
 Pro Cys Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser Asn
 530 535 540
 CCT TTG CTG CGC CAC CAC AAC ATG GTC TAT GCC ACA ACA TCC CGC AGC 1679
 Pro Leu Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg Ser

	545	550	555	
	GCA AGC CAG CGG CAG AAA AAG GTC ACA TTT GAC AGA CTG CAA GTC CTG	1727		
	Ala Ser Gln Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val Leu			
5	560	565	570	575
	GAT GAC CAC TAC CGG GAC GTG CTS AAG GAC ATG AAG GCC AAG GCG TCC	1775		
	Asp Asp His Tyr Arg Asp Val Xaa Lys Asp Met Lys Ala Lys Ala Ser			
	580	585	590	
10	ACA GTT AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGC AAG CTG ACG	1823		
	Thr Val Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr			
	595	600	605	
	CCC CCA CAC TCG GCC AGA TCT AAA TTT GAC TAC GGG GCA AAG GAC GTC	1871		
15	Pro Pro His Ser Ala Arg Ser Lys Phe Asp Tyr Gly Ala Lys Asp Val			
	610	615	620	
	CAG AGC CTG TCC AGC AAG GCC GTT AAC CAC ATC CAC TCC GTG TGG AAG	1919		
	Gln Ser Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val Trp Lys			
20	625	630	635	
	GAC TTG CCG GAA GAC ACT GAG ACA CCA ATC GAC ACC ACC ATC ATG GCA	1967		
	Asp Leu Pro Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala			
	640	645	650	655
25	AAA AAT GAG GTT TTT TGT GTT CAA CCA GAG AAA GGA GGC CGC AAG CCA	2015		
	Lys Asn Glu Val Phe Cys Val Gln Pro Glu Lys Gly Arg Lys Pro			
	660	665	670	
	GCT CGC CTT ATC GTA TTC CCA GAC TTG GGG GTT CGT GTG TGC GAG AAA	2063		
	Ala Arg Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys			
30	675	680	685	
	ATG GCC CTC TAC GAC GTG GTC TCC ACT CTT CCT CAG GCC GTG ATG GGC	2111		
	Met Ala Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val Met Gly			
	690	695	700	
35	TCC TCA TAC AGA TTT CAG TGC TCC CCT GGA CAG CGG GTC GAG TTC CTG	2159		
	Ser Ser Tyr Arg Phe Gln Cys Ser Pro Gly Gln Arg Val Glu Phe Leu			
	705	710	715	
	GTG AAT GCC TGG AAG TCA AAG AAG AGC CCT ATG GGC TTT GCA TAT GAC	2207		
40	Val Asn Ala Trp Lys Ser Lys Lys Ser Pro Met Gly Phe Ala Tyr Asp			
	720	725	730	735
	ACC CGC TGT TTT GAC TCA ACG GTC ACC GAG AAC GAC ATC CGT ACT GAG	2255		
	Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg Thr Glu			
45	740	745	750	

GAG TCA ATT TAT CAA TGT TGT GAC TTG GAC CCC GAG GCC AGA CAG GCC 2303
 Glu Ser Ile Tyr Gln Cys Cys Asp Leu Asp Pro Glu Ala Arg Gln Ala
 755 760 765
 5 ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC GGG GGC CCC TTG ACC AAT 2351
 Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu Thr Asn
 770 775 780
 10 TCA AAA GGG CAA AAC TGC GGC TAT CGC CGG TGC CGC GCC AGC GGC GTG 2399
 Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly Val
 785 790 795
 15 CTG ACG ACT AGC TGC GGT AAT ACC CTC ACA TGT TAC TTG AAG GCC TCT 2447
 Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys Ala Ser
 800 805 810 815
 20 GCA GCC TGT CGA GCT GCG AAG CTC CAG GAC TGC ACG ATG CTC GTG TGC 2495
 Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu Val Cys
 820 825 830
 25 GGA GAC GAC CTT GTC GTT ATC TGT GAA AGC GCG GGA ACC CAG GAG GAC 2543
 Gly Asp Asp Leu Val Val Ile Cys Glu Ser Ala Gly Thr Gln Glu Asp
 835 840 845
 30 GCG GCA AAC CTA CGA GTC TTC ACG GAG GCT ATG ACC AGG AAT TCC GCC 2591
 Ala Ala Asn Leu Arg Val Phe Thr Glu Ala Met Thr Arg Asn Ser Ala
 850 855 860

30 SEQ ID NO:75
 SEQUENCE LENGTH: 4296 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 35 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 40 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: 1530U

45 GCGGATCCT CCA CCT CCA TCG TGG GAT CAA ATG TGG AAG TGT CTC ATA CGG 51
 Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg
 1 5 10
 CTG AAG CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA 99

Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly
 15 20 25 30
 GCC GTT CAG AAC GAG GTT ACC CTC ACA CAC CCC ATA ACC AAG TTC ATC 147
 5 Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile
 35 40 45
 ATG GCA TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACT TGG GTG 195
 Met Ala Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val
 10 50 55 60
 CTG GTA GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG 243
 Leu Val Gly Gly Val Leu Ala Ala Leu Ala Tyr Cys Leu Thr Thr
 15 65 70 75
 GGC AGC GTG GTC ATT GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC 291
 Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala
 80 85 90
 GTT ATT CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA 339
 20 Val Ile Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu
 95 100 105 110
 GAG TGC GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC 387
 Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala
 25 115 120 125
 GAG CAA TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG 435
 Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys
 130 135 140
 CAA GCG GAG GCT GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT 483
 30 Gln Ala Glu Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu
 145 150 155
 GAG ACC TTC TGG GCG AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG 531
 Glu Thr Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln
 35 160 165 170
 TAC TTA GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA 579
 Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser
 175 180 185 190
 40 CTG ATG GCA TTC ACA GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT 627
 Leu Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr
 195 200 205
 ACC CTC CTG TTT AAC ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC 675
 45 Thr Leu Leu Phe Asn Ile Leu Gly Trp Val Ala Ala Gln Leu Ala

	210	215	220
	CCC CCC AGT GCC GCT TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG	723	
5	Pro Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala		
	225	230	235
	GCT GTT GGC AGC ATA GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG	771	
	Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala		
10	240	245	250
	GGT TAT GGA GCA GGG GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG	819	
	Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met		
15	255	260	265
	AGC GGT GAC ATG CCC TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC	867	
	Ser Gly Asp Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala		
	275	280	285
	ATC CTC CCT CCT GGT GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA	915	
	Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile		
20	290	295	300
	CTG CGT CGG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC	963	
	Leu Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn		
	305	310	315
25	CGG CTG ATA GCG TTT GCT TCG CGG GGC AAC CAT GTC TCC CCC ACG CAC	1011	
	Arg Leu Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His		
	320	325	330
	TAT GTG CCT GAA AGC GAC GCC GCA GCG CGC GTC ACC CAG ATC CTC TCC	1059	
30	Tyr Val Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser		
	335	340	345
	AAC CTT ACC ATC ACT CAG CTG TTG AAG AGG CTT CAC CAG TGG ATT AAT	1107	
	Asn Leu Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn		
	355	360	365
35	GAG GAC TGC TCC ACG CCA TGC TCC GGC TCG TGG CTC AGG GAT GTT TGG	1155	
	Glu Asp Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp		
	370	375	380
40	GAC TGG ATA TGC ACG GTA TTG GCT GAT TTC AAG ACC TGG CTC CAG TCC	1203	
	Asp Trp Ile Cys Thr Val Leu Ala Asp Phe Lys Thr Trp Leu Gln Ser		
	385	390	395
	AAG CTC CTG CCG CGG TTA CCG GGG GTC CCT TTT TTC TCA TGC CAG CGT	1251	
	Lys Leu Leu Pro Arg Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg		
45	400	405	410

GGG TAC AAG GGG GTT TGG CGG GGA GAT GGC ATC ATG TAT ACC ACC TGC 1299
 Gly Tyr Lys Gly Val Trp Arg Gly Asp Gly Ile Met Tyr Thr Thr Cys
 415 420 425 430
 5 CCA TGT GGA GCA CAA ATC ACC GGA CAT GTC AAA AAC GGT TCT ATG AGG 1347
 Pro Cys Gly Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg
 435 440 445
 ATC GTT GGG CCT AGA ACC TGT AGC AAC ACG TGG CAC GGA ACA TTT CCC 1395
 10 Ile Val Gly Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro
 450 455 460
 ATC AAC GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCG GCG CCA AAC 1443
 Ile Asn Ala Tyr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn
 15 465 470 475
 TAT TCC AGG GCG TTG TGG CGG GTG GCC ATT GAG GAG TAT GTG GAG GTC 1491
 Tyr Ser Arg Ala Leu Trp Arg Val Ala Ile Glu Glu Tyr Val Glu Val
 480 485 490
 20 ACG CGG GTG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC 1539
 Thr Arg Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn
 495 500 505 510
 GTG AAA TGC CCA TGC CAG GTT CCG GCC CCC GAA TTC TTC ACA GAA TTG 1587
 25 Val Lys Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu
 515 520 525
 GAT GGG GTG CGG CTG CAC AGG TAC GCT CCG GCG TGC AAA CCT CTC CTG 1635
 Asp Gly Val Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu
 530 535 540
 30 CGG GAT GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TAT ACG GTT GGG 1683
 Arg Asp Glu Val Thr Phe Gln Val Gly Leu Asn Gln Tyr Thr Val Gly
 545 550 555
 TCA CAG CTC CCA TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC 1731
 35 Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser
 560 565 570
 ATG CTC ACC GAC CCC TCC CAC ATT ACA GCA GAG GCG GCT AGG CGT AGG 1779
 Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg
 40 575 580 585 590
 CTG ACC AGA GGG TCT CCC CCT TCC TCG ACC AGT TCT TCA GCT AGT CAG 1827
 Leu Thr Arg Gly Ser Pro Pro Ser Ser Thr Ser Ser Ser Ala Ser Gln
 595 600 605
 45 TTG TCT GCG CTT TCT TCG CAG GCA ACA TGC ACT ACC CAT CAG GGC GCC 1875

Leu Ser Ala Leu Ser Ser Gln Ala Thr Cys Thr Thr His Gln Gly Ala
 610 615 620
 CCA GAC ACT GAC CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG 1923
 5 Pro Asp Thr Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met
 625 630 635
 GGC GGA AAC ATC ACC CGC GTG GAG TCA GAG AAC AAG ATA GTA ATT CTA 1971
 Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys Ile Val Ile Leu
 10 640 645 650
 GAC TCT TTT GAA CCG CTT CGA GCG GAG GAT GAG AGG GAA GTG TCC 2019
 Asp Ser Phe Glu Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser
 655 660 665 670
 15 GTT GCG GCG GAG ATC CTG CGG AAG ACC AGG AAA TTC CCC GCA GCG ATG 2067
 Val Ala Ala Glu Ile Leu Arg Lys Thr Arg Lys Phe Pro Ala Ala Met
 675 680 685
 CCC GTA TGG GCA CGC CCG GAC TAC AAC CCA CCA TTA CTA GAG TCT TGG 2115
 20 Pro Val Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp
 690 695 700
 AAG AAC CCG GAC TAC GTC CCT CCA GTG GTA CAC GGG TGC CCA TTG CCG 2163
 Lys Asn Pro Asp Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro
 25 705 710 715
 CCT ACC AAG GCC CCT CCA ATA CCA CCT CCA CGA AGA AAG AGA ACG GTT 2211
 Pro Thr Lys Ala Pro Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val
 720 725 730
 30 GTC CTG ACA GAA TCC TCC GTG TCC TCT GCC TTG GCG GAG CTT GCT ACA 2259
 Val Leu Thr Glu Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr
 735 740 745 750
 AAG ACC TTT GGC AGT TCC GGA TCG TCG GCC GTC GAC AGC GGC ACG GCG 2307
 Lys Thr Phe Gly Ser Ser Gly Ser Ser Ala Val Asp Ser Gly Thr Ala
 35 755 760 765
 ACC GGC CCT CCT GAC CAG GCC TCC GCC GAA GGA GAT GCA GGA TCC GAC 2355
 Thr Gly Pro Pro Asp Gln Ala Ser Ala Glu Gly Asp Ala Gly Ser Asp
 770 775 780
 40 GCT GAG TCG TAC TCC TCC ATG CCC CCC CTT GAG GGA GAG CCG GGG GAC 2403
 Ala Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp
 785 790 795
 CCC GAT CTC AGC GAC GGG TCT TGG TCT ACC GTA AGC GAG GAG GCC AGC 2451
 45 Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser

	800	805	810
	GAG GAC GTC GTC TGC TCG ATG TCC TAC ACA TGG ACA GGC GCC TTA	2499	
5	Glu Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu		
	815	820	825
	ATT ACA CCA TGC GCC GCG GAG GAG AGC AAC CTG CCC ATT AAT GCG CTG	2547	
	Ile Thr Pro Cys Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu		
	835	840	845
10	AGC AAC CCT TTG CTG CGC CAC AAC ATG GTC TAT GCC ACA ACA TCC	2595	
	Ser Asn Pro Leu Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser		
	850	855	860
15	CGC AGC GCA AGC CAG CGG CAG AAA AAG GTC ACA TTT GAC AGA CTG CAA	2643	
	Arg Ser Ala Ser Gln Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln		
	865	870	875
	GTC CTG GAT GAC CAC TAC CGG GAC GTG CTG AAG GAC ATG AAG GCC AAG	2691	
	Val Leu Asp Asp His Tyr Arg Asp Val Leu Lys Asp Met Lys Ala Lys		
20	880	885	890
	GCG TCC ACA GTT AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGC AAG	2739	
	Ala Ser Thr Val Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys		
	895	900	905
25	CTG ACG CCC CCA CAC TCG GCC AGA TCT AAA TTT GAC TAC GGG GCA AAG	2787	
	Leu Thr Pro Pro His Ser Ala Arg Ser Lys Phe Asp Tyr Gly Ala Lys		
	915	920	925
	GAC GTC CAG AGC CTG TCC AGC AAG GCC GTT AAC CAC ATC CAC TCC GTG	2835	
30	Asp Val Gln Ser Leu Ser Ser Lys Ala Val Asn His Ile His Ser Val		
	930	935	940
	TGG AAG GAC TTG CCG GAA GAC ACT GAG ACA CCA ATC GAC ACC ACC ATC	2883	
	Trp Lys Asp Leu Pro Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile		
	945	950	955
35	ATG GCA AAA AAT GAG GTT TTT TGT GTT CAA CCA GAG AAA GGA GGC CGC	2931	
	Met Ala Lys Asn Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg		
	960	965	970
40	AAG CCA GCT CGC CTT ATC GTA TTC CCA GAC TTG GGG GTT CGT GTG TGC	2979	
	Lys Pro Ala Arg Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys		
	975	980	985
	GAG AAA ATG GCC CTC TAC GAC GTG GTC TCC ACT CTT CCT CAG GCC GTG	3027	
45	Glu Lys Met Ala Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val		
	995	1000	1005

ATG GGC TCC TCA TAC AGA TTT CAG TGC TCC CCT GGA CAG CGG GTC GAG 3075
 Met Gly Ser Ser Tyr Arg Phe Gln Cys Ser Pro Gly Gln Arg Val Glu
 1010 1015 1020
 5 TTC CTG GTG AAT GCC TGG AAG TCA AAG AAG AGC CCT ATG GGC TTT GCA 3123
 Phe Leu Val Asn Ala Trp Lys Ser Lys Ser Pro Met Gly Phe Ala
 1025 1030 1035
 TAT GAC ACC CGC TGT TTT GAC TCA ACG GTC ACC GAG AAC GAC ATC CGT 3171
 10 Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg
 1040 1045 1050
 ACT GAG GAG TCA ATT TAT CAA TGT TGT GAC TTG GAC CCC GAG GCC AGA 3219
 Thr Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Asp Pro Glu Ala Arg
 15 1055 1060 1065 1070
 CAG GCC ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC GGG GGC CCC CTG 3267
 Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile Gly Gly Pro Leu
 1075 1080 1085
 20 ACT AAT TCA AAG GGG CAG AAC TGC GGT TAT CGC CGG TGC CGC GTC AGC 3315
 Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg Cys Arg Val Ser
 1090 1095 1100
 GGC GTG CTG ACG ACT AGC TGC GGT AAT ACC CTC ACA TGT TAC TTG AAG 3363
 25 Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr Cys Tyr Leu Lys
 1105 1110 1115
 GCC TCT GCA GCC TGT CGA GCT GCA AAG CTC CAG GAC TGC ACG ATG CTT 3411
 Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp Cys Thr Met Leu
 1120 1125 1130
 30 1135 1140 1145 1150
 GTG TGC GGA GAC GAC CTT GTC GTT ATC TGT GAT AGC GCG GGA ACT CAG 3459
 Val Cys Gly Asp Asp Leu Val Val Ile Cys Asp Ser Ala Gly Thr Gln
 35 GAG GAC GCG GCG AGC CTA CGA GTC TTC ACG GAG GCT ATG ACT AGG TAC 3507
 Glu Asp Ala Ala Ser Leu Arg Val Phe Thr Glu Ala Met Thr Arg Tyr
 1155 1160 1165
 TCT GCC CCC CCC GGG GAC CCG CCC CAA CCA GAA TAC GAC TTG GAG CTG 3555
 Ser Ala Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr Asp Leu Glu Leu
 40 1170 1175 1180
 ATA ACA TCA TGT TCC TCC AAT GTG TCG GTC GCG CAC GAC GCA TCA GGC 3603
 Ile Thr Ser Cys Ser Ser Asn Val Ser Val Ala His Asp Ala Ser Gly
 1185 1190 1195
 45 AAA CGG GTG TAC TAT CTC ACC CGT GAC CCC ACC ACC CCC CTA GCG CGG 3651

Lys Arg Val Tyr Tyr Leu Thr Arg Asp Pro Thr Thr Pro Leu Ala Arg
 1200 1205 1210
 GCT GCG TGG GAG ACA GCT AGA CAC ACT CCA GTC AAC TCC TGG CTA GGC 3699
 5 Ala Ala Trp Glu Thr Ala Arg His Thr Pro Val Asn Ser Trp Leu Gly
 1215 1220 1225 1230
 AAC ATC ATC ATG TAC GCG CCC ACC TTA TGG GCA AGG ATG ATT CTG ATG 3747
 Asn Ile Ile Met Tyr Ala Pro Thr Leu Trp Ala Arg Met Ile Leu Met
 10 1235 1240 1245
 ACC CAC TTC TTC TCC ATC CTT CTA GCC CAG GAG CAA CTT GAA AAA GCC 3795
 Thr His Phe Phe Ser Ile Leu Ala Gln Glu Gln Leu Glu Lys Ala
 1250 1255 1260
 15 CTA GAT TGT CAG ATC TAC GGG GCC ACT TAC TCC ATT GAG CCA CTT GAC 3843
 Leu Asp Cys Gln Ile Tyr Gly Ala Thr Tyr Ser Ile Glu Pro Leu Asp
 1265 1270 1275
 CTA CCT CAG ATC ATT CAA CGA CTC CAC GGT CTT AGC GCA TTT TCA CTC 3891
 20 Leu Pro Gln Ile Ile Gln Arg Leu His Gly Leu Ser Ala Phe Ser Leu
 1280 1285 1290
 CAT AGT TAC TCT CCA GGT GAG ATC AAT AGG GTG GCT TCA TGC CTC AGG 3939
 His Ser Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala Ser Cys Leu Arg
 25 1295 1300 1305 1310
 AAA CTT GGG GTA CCG CCC TTG CGA GTC TGG AGA CAT CGG GCC AGA AGC 3987
 Lys Leu Gly Val Pro Pro Leu Arg Val Trp Arg His Arg Ala Arg Ser
 1315 1320 1325
 30 GTC CGC GCT AAG CTA CTG TCC CAG GGG GGG AGG GCC ACC TGT GGC 4035
 Val Arg Ala Lys Leu Leu Ser Gln Gly Arg Ala Ala Thr Cys Gly
 1330 1335 1340
 AAA TAC CTC TTC AAC TGG GCA GTA AAG ACC AAG CTC AAA CTC ACT CCA 4083
 35 Lys Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro
 1345 1350 1355
 ATC CCA GAA GCG TCC CAG CTG GAC TTG TCC GGC TGG TTC GTT GCT GGT 4131
 Ile Pro Glu Ala Ser Gln Leu Asp Leu Ser Gly Trp Phe Val Ala Gly
 1360 1365 1370
 40 TAC AGC GGG GGA GAC ATA TAT CAC AGC CTG TCT CGT GCC CGA CCC CGC 4179
 Tyr Ser Gly Gly Asp Ile Tyr His Ser Leu Ser Arg Ala Arg Pro Arg
 1375 1380 1385 1390
 45 TGG TTC ATG TGG TGC CTA CTC CTA CTT TCC GTA GGG GTA GGC ATC TAC 4227
 Trp Phe Met Trp Cys Leu Leu Leu Ser Val Gly Val Gly Ile Tyr

1395	1400	1405	
CTG CTC CCC AAC CGA TGA GCGGG GAGCTAAACA CTCCAGGCCA ATAGGCCATC			4280
Leu Leu Pro Asn Arg Stop			
5 1410			
CCCCCTTTTT TTTTTT		4296	

SEQ ID NO:76
 10 SEQUENCE LENGTH: 818 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 15 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 20 CLONE: N22-1

GG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG	47
His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu	
1 5 10 15	
25 ATA GCG TTT GCT TCG CGG GGC AAC CAT GTC TCC CCC ACG CAC TAT GTG	95
Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val	
20 25 30	
30 CCT GAA AGC GAC GCC GCA GCG CGC GTC ACC CAG ATC CTC TCC AAC CTT	143
Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Asn Leu	
35 40 45	
35 ACC ATC ACT CAG CTG TTG AAG AGG CTT CAC CAG TGG ATT AAT GAG GAC	191
Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp	
50 55 60	
40 TGC TCC ACG CCA TGC TCC GGC TCG TGG CTC AGG GAT GTT TGG GAC TGG	239
Cys Ser Thr Pro Cys Ser Trp Leu Arg Asp Val Trp Asp Trp	
65 70 75	
45 ATA TGC ACG GTA TTG GCT GAT TGC AAG ACC TGG CTC CAG TCC AAG CTC	287
Ile Cys Thr Val Leu Ala Asp Cys Lys Thr Trp Leu Gln Ser Lys Leu	
80 85 90 95	
50 CTG CCG CGG TTA CCG GGG GTC CCT TTT TTC TCA TGC CAG CGT GGG TAC	335
Leu Pro Arg Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr	

EP 0 518 313 A2

	100	105	110		
5	AAG GGG GTT TGG CGG GGA GAT GGC ATC ATG TAT ACC ACC TGC CCA TGT			383	
	Lys Gly Val Trp Arg Gly Asp Gly Ile Met Tyr Thr Thr Cys Pro Cys				
	115	120	125		
10	GGA GCA CAA ATC ACC GGA CAT GTC AAA AAC GGT TCT ATG AGG ATC GTT			431	
	Gly Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val				
	130	135	140		
15	GGG CCT AGA ACC TGT AGC AAC ACG TGG CAC GGA ACA TTT CCC ATC AAC			479	
	Gly Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn				
	145	150	155		
20	GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCG GCG CCA AAC TAT TCC			527	
	Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser				
	160	165	170	175	
25	AGG GCG TTG TGG CGG GTG GCC ATT GAG GAG TAT GTG GAG GTC ACG CGG			575	
	Arg Ala Leu Trp Arg Val Ala Ile Glu Glu Tyr Val Glu Val Thr Arg				
	180	185	190		
30	G TG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC GTG AAA			623	
	Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys				
	195	200	205		
35	TGC CCA TGC CAG GTT CCG GCC CCC GAA TTC TTC ACA GAA TTG GAT GGG			671	
	Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp Gly				
	210	215	220		
40	GTG CGG CTG CAC AGG TAC GCT CCG GCG TGC AAA CCT CTC CTG CGG GAT			719	
	Val Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp				
	225	230	235		
45	GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TAT ACG GTT GGG TCA CAG			767	
	Glu Val Thr Phe Gln Val Gly Leu Asn Gln Tyr Thr Val Gly Ser Gln				
	240	245	250	255	
50	CTC CCA TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC			815	
	Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu				
	260	265	270		
55	ACC			818	
	Thr				

SEQ ID NO:77

SEQUENCE LENGTH: 818 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

5 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N22-3

10	GG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG	47
	His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu	
	1 5 10 15	
15	ATA GCG TTT GCT TCG CGG GGC AAC CAT GTC TCC CCC ACG CAC TAT GTG	95
	Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val	
	20 25 30	
20	CCT GAA AGC GAC GCC GCA GCG CGC GTC ACC CAG ATC CTC TCC AAC CTT	143
	Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Asn Leu	
	35 40 45	
	ACC ATC ACT CAG TTG TTG AAG AGG CTC CAC CAG TGG ATT AAT GAG GAC	191
	Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp	
25	50 55 60	
	TGC TCC ACG CCA TGC TCC GGC TCG TGG CTC AGG GAT GTT TGG GAC TGG	239
	Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp	
	65 70 75	
30	ATA TGC ACG GTA TTG GCT GAT TTC AAG ACC TGG CTC CAG TCC AAG CTC	287
	Ile Cys Thr Val Leu Ala Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu	
	80 85 90 95	
35	CTG CCG CGG TTA CCG GGG GTC CCT TTC TCA TGC CAG CGT GGG TAC	335
	Leu Pro Arg Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly Tyr	
	100 105 110	
	AAG GGG GTT TGG CGG GGA GAC GGC ATC ATG TAT ACC ACC TGC CCA TGT	383
	Lys Gly Val Trp Arg Gly Asp Gly Ile Met Tyr Thr Thr Cys Pro Cys	
	115 120 125	
40	GGA GCA CAA ATC ACC GGA CAT GTC AAA AAC GGT TCT ATG AGG ATC GTT	431
	Gly Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Val	
	130 135 140	
45	GGG CTT AGA ACC TGT AGC AAC ACG TGG CAC GGA ACA TTC CCC ATC AAC	479
	Gly Leu Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn	

	145	150	155	
	GCG TAC ACC ACA GCA GGC CCC TGC ACA CCC TCT CCA GCG CCG AAC TAC TCC			527
5	Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser			
	160	165	170	175
	AGG GCG TTA TGG CGG GTA GCC GCT GAG GAG TAT GTG GAG GTC ACG CGG			575
	Arg Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg			
	180	185	190	
10	G TG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC GTA AAA			623
	Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys			
	195	200	205	
15	TGC CCA TGC CAG GTT CCG GCC CCC GAA TTC TTC ACA GAA TTG GAT GGG			671
	Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp Gly			
	210	215	220	
	GTG CGG CTG CGC AGG TAC GCT CCG GCG TGC AAA CCT CTC CTG CGG GAT			719
	Val Arg Leu Arg Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp			
20	225	230	235	
	GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TAT ACG GTT GGG TCA CAG			767
	Glu Val Thr Phe Gln Val Gly Leu Asn Gln Tyr Thr Val Gly Ser Gln			
	240	245	250	255
25	CTC CCA TGT GAG CCC GAA CCG GAT GTA ACG GTG GTC ACC TCC ATG CTC			815
	Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu			
	260	265	270	
	ACC			818
30	Thr			

SEQ ID NO:78

SEQUENCE LENGTH: 818 base pairs

SEQUENCE TYPE: nucleic acid

35 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

40 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: H22-3

45 GG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG 47

	His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu			
	1	5	10	15
5	ATA GCG TTC GCT TCG CGG GGT AAC CAC GTC TCC CCC ACG CAT TAT GTG			95
	Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val			
	20	25	30	
10	CCT GAG AGC GAC GCC GCA GCG CGT GTC ACC CAG ATC CTC TCC AGC CTT			143
	Pro Glu Ser Asp Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu			
	35	40	45	
15	ACC ATC ACT CAG CTG CTG AAG AGG CTC CAC CAG TGG ATT GAT GAG GAC			191
	Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asp Glu Asp			
	50	55	60	
20	TGC TCC ACG CCA TGT TCT GGT TCG TGG CTC AGG GAT GTT TGG GAC TGG			239
	Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp			
	65	70	75	
25	ATA TGC ACG GTG TTG AGT GAC TTC AAG ACC TGG CTC CAG TCC AAG CTC			287
	Ile Cys Thr Val Leu Ser Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu			
	80	85	90	95
30	CTG CCG CGG CTA CCG GGA GTC CCT TTC CTC TCA TGC CAA CGT GGG TAC			335
	Leu Pro Arg Leu Pro Gly Val Pro Phe Leu Ser Cys Gln Arg Gly Tyr			
	100	105	110	
35	AAG GGA GTC TGG CGG GGA GAT GGC ATC ATG CAG ACC ACC TGC CCA TGC			383
	Lys Gly Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys			
	115	120	125	
40	GGA GCA CAA ATC GCC GGA CAT GTC AAA AAT GGT TCT ATG AGG ATC ACT			431
	Gly Ala Gln Ile Ala Gly His Val Lys Asn Gly Ser Met Arg Ile Thr			
	130	135	140	
45	GGC CCC AGA ACC TGT AGC AAC ACG TGG CAC GGA ACG TTC CCC ATC AAC			479
	Gly Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn			
	145	150	155	
50	GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCA GCG CCG AAC TAC TCC			527
	Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser			
	160	165	170	175
55	AGG GCG TTA TGG CGG GTA GCT GCT GAG GAG TAT GTG GAG GTC ACG CGG			575
	Arg Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg			
	180	185	190	
60	GTG GGG GAC TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC TTG AAA			623
	Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Leu Lys			

	195	200	205	
5	TGC CCA TGC CAG GTC CCG GCC CCC GAA TTC TTC ACG GAG TTG GAT GGG Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp Gly			671
	210	215	220	
	GTA CGG CTA CAC AGG TAC GCT CCG GCG TGC AAA CCT CTC CTA CGG GAT Val Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp			719
	225	230	235	
10	GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TTC CCG GTT GGG TCG CAG Glu Val Thr Phe Gln Val Gly Leu Asn Gln Phe Pro Val Gly Ser Gln			767
	240	245	250	255
	CTC CCA TGC GAG CCC GAA CCG GAT GTA ATA GTG GTC ACC TCC ATG CTC Leu Pro Cys Glu Pro Asp Val Met Val Val Thr Ser Met Leu			815
15	260	265	270	
	ACC			818
	Thr			

20 SEQ ID NO:79
 SEQUENCE LENGTH: 818 base pairs
 SEQUENCE TYPE: nucleic acid
 25 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 30 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: H22-8

35	GG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu	1	5	10	15	47
	ATA GCG TTC GCC TCG CGG GGT AAC CAC GTC TCC CCC ACG CAT TAT GTG Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val	20	25	30		95
40	CCT GAG AGC GAC GCC GCG CGC CGT GTC ACC CAG ATC CTC TCC AGC CTC Pro Glu Ser Asp Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu	35	40	45		143
45	ACC ATC ACT CAG CTG CTG AAG AGG CTC CAC CAG TGG ATT AAT GAG GAC					191

	Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp			
	50	55	60	
5	TGC TCC ACG CCA TGT TCT GGT TCG TGG CTC AGG GAT GTT TGG GAC TGG		239	
	Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp			
	65	70	75	
10	ATA TGC ACG GTG TTG AGT GAC TTC AAG ACC TGG CTC CAG TCC AAG CTC		287	
	Ile Cys Thr Val Leu Ser Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu			
	80	85	90	95
15	CTG CCG CGG CTA CCG GGA GTC CCT TTC TCA TGC CAA CGT GGG TAC		335	
	Leu Pro Arg Leu Pro Gly Val Pro Phe Leu Ser Cys Gln Arg Gly Tyr			
	100	105	110	
20	AAG GGA GTC TGG CGG GGA GAT GGC ATC ATG CAA ACC ACC TGC CCA TGC		383	
	Lys Gly Val Trp Arg Gly Asp Gly Ile Met Gln Thr Thr Cys Pro Cys			
	115	120	125	
25	GGA GCA CAA ATC GCC GGA CAT GTC AAA AAT GGT TCC ATG AGG ATC ACT		431	
	Gly Ala Gln Ile Ala Gly His Val Lys Asn Gly Ser Met Arg Ile Thr			
	130	135	140	
30	GGC CCC AGA ACC TGT AGC AAC ACG TGG CAC GGA ACG TTC CCC ATC AAC		479	
	Gly Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn			
	145	150	155	
35	GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCA GCG CCG AAC TAT TCT		527	
	Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser			
	160	165	170	175
40	AGG GCG TTG TGG CGG GTA GCT GCT GAG GAG TAT GTG GAG GTC ACG CGG		575	
	Arg Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg			
	180	185	190	
45	GTG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC TTG AAA		623	
	Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Leu Lys			
	195	200	205	
50	TGC CCA TGC CAG GTC CCG GCC CCC GAA TTC TTC ACG GAG TTG GAT GGG		671	
	Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp Gly			
	210	215	220	
55	GTA CGG CTA CAC AGA TAC GCT CCG GCG TGC AAA CCT CTC CTA CGG GAT		719	
	Val Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp			
	225	230	235	
60	GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TTC CCG GTT GGG TCG CAG		767	
	Glu Val Thr Phe Gln Val Gly Leu Asn Gln Phe Pro Val Gly Ser Gln			

EP 0 518 313 A2

240	245	250	255	
CTC CCA TGC GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC				815
Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu				
5	260	265	270	
ACC				818
Thr				

10 SEQ ID NO:80

SEQUENCE LENGTH: 818 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

15 TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

20 IMMEDIATE EXPERIMENTAL SOURCE

CLONE: H22-9

25	GG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG CTG	47
	His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu	
	1 5 10 15	
30	ATA GCG TTC GCT TCG CGG GGT AAC CAC GTC TCC CCC ACG CAT TAT GTG	95
	Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val	
	20 25 30	
35	CCT GAG AGC GAC GCC GCA GCG CGT GTC ACC CAG ATC CTC TCC AGC CTT	143
	Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Ser Leu	
	35 40 45	
40	ACC ATC ACT CAG CTG TTG AAG AGG CTC CAC CAG TGG ATT AAT GAT GAC	191
	Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Asp Asp	
	50 55 60	
45	TGC TCC ACG CCA TGT TCT GGT TCG TGG CTC AGG GAT GTT TGG GAC TGG	239
	Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp	
	65 70 75	
50	ATA TGC ACG GTG TTG AGT GAC TTC AAG ACC TGG CTC CAG TCC AAG CTC	287
	Ile Cys Thr Val Leu Ser Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu	
	80 85 90 95	
55	CTG CCG CGG CTA CCG GGA GTC CCT TTC CTC TCA TGC CAA CGT GGG TAC	335

	Leu Pro Arg Leu Pro Gly Val Pro Phe Leu Ser Cys Gln Arg Gly Tyr		
	100	105	110
5	AAG GGA GTC TGG CGG GGA GAT GGC ATC ATG CAT ACC ACC TGC CCA TGC	383	
	Lys Gly Val Trp Arg Gly Asp Gly Ile Met His Thr Thr Cys Pro Cys		
	115	120	125
10	GGA GCA CAA ATC GCC GGA CAT GTC AAA AAT GGT TCC ATG AGG ATC ACT	431	
	Gly Ala Gln Ile Ala Gly His Val Lys Asn Gly Ser Met Arg Ile Thr		
	130	135	140
15	GGC CCC AGA ACC TGT AGC AAC ACG TGG CGC GGA ACG TTC CCC ATC AAC	479	
	Gly Pro Arg Thr Cys Ser Asn Thr Trp Arg Gly Thr Phe Pro Ile Asn		
	145	150	155
20	GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCA GCG CCG AAC TAT TCT	527	
	Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser		
	160	165	170
25	AAG GCG TTG TGG CGG GTA GCT GCT GAG GAG TAT GTG GAG GTC ACG CGG	575	
	Lys Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg		
	180	185	190
30	GTG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC TTG AAA	623	
	Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Leu Lys		
	195	200	205
35	TGC CCA TGC CAG GTC CCG GCC CCC GAA TTT TTC ACG GAG TTG GAT GGG	671	
	Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp Gly		
	210	215	220
40	GTA CGG CTA CAC AGG TAC GCT CCG GCG TGC AAA CCT CTC CTA CGG GAT	719	
	Val Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp		
	225	230	235
45	GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TTC CCG GTT GGG TCG CAG	767	
	Glu Val Thr Phe Gln Val Gly Leu Asn Gln Phe Pro Val Gly Ser Gln		
	240	245	250
50	CTA CCA TGC GAG CCC GAA CCG GAT GTA GCA GTG GTC ACC TCC ATG CTC	815	
	Leu Pro Cys Glu Pro Glu Pro Asp Val Ala Val Val Thr Ser Met Leu		
	260	265	270
	ACC		818
	Thr		

SEQ ID NO:81

SEQUENCE LENGTH: 311 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

5 ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

10 CLONE: N17-3

TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC ACC GAC	48
Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu Thr Asp	
1 5 10 15	
CCC TCC CAC ATT ACA GCA GAG GCG GCT AGG CGT AGG CTG ACC AGA GGG	96
Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg Leu Thr Arg Gly	
20 25 30	
TCT CCC CCT TCC TCG ACC AGT TCT TCA GCT AGT CAG TTG TCT GCG CTT	144
Ser Pro Pro Ser Ser Thr Ser Ser Ala Ser Gln Leu Ser Ala Leu	
35 40 45	
TCT TCG CAG GCA ACA TGC ACT ACC CAT CAG GGC GCC CCA GAC ACT GAC	192
Ser Ser Gln Ala Thr Cys Thr Thr His Gln Gly Ala Pro Asp Thr Asp	
50 55 60	
CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC GGA AAC ATC	240
Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile	
65 70 75 80	
ACC CGC GTG GAG TCA GAG AAC AAG ATA GTA ATT CTA GAC TCT TTT GAA	288
Thr Arg Val Glu Ser Glu Asn Lys Ile Val Ile Leu Asp Ser Phe Glu	
85 90 95	
CCG CTT CGA GCG GAG GAG GAT G A	311
35 Pro Leu Arg Ala Glu Glu Asp	
100	

40 SEQ ID NO:82

SEQUENCE LENGTH: 311 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

45 ANTI-SENSE: No

50

55

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

5 CLONE: N17-1

TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC ACC GAC	48
Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu Thr Asp	
10 1 5 10 15	
CCC TCC CAC ATC ACA GCA GAG GCG GCT AGG CGT AGG CTG GCC AGA GGG	96
Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg Leu Ala Arg Gly	
15 20 25 30	
TCT CCT CCT TCT TCG GCC ACC TCT TCA GCT AGC CAG TTG TCT GCG CCA	144
Ser Pro Pro Ser Ser Ala Ser Ser Ala Ser Gln Leu Ser Ala Pro	
20 35 40 45	
TCT TTG AAG GCG ACA TGT ACT ACC CAT CAA GAC TCC CCA GAC GCT GAC	192
Ser Leu Lys Ala Thr Cys Thr Thr His Gln Asp Ser Pro Asp Ala Asp	
25 50 55 60	
CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC GGG AAC ATC	240
Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile	
65 70 75 80	
ACC CGC GTG GAG TCA GAG AAC AAG ATA GTG ATT CTA GAC TCT TCT GAA	288
Thr Arg Val Glu Ser Glu Asn Lys Ile Val Ile Leu Asp Ser Ser Glu	
85 90 95	
30 CCG CTT CGA GCG GAG GAG GAT G A	311
Pro Leu Arg Ala Glu Glu Asp	
100	

35 SEQ ID NO:83

SEQUENCE LENGTH: 311 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

40 ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

45 CLONE: N17-2

50

55

TCT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG CTC ACC GAC	48
Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu Thr Asp	
1 5 10 15	
5 CCC TCC CAC ATC ACA GCA GAG GCG GCT AGG CGT AGG CTG GCC AGA GGG	96
Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg Leu Thr Arg Gly	
20 25 30	
10 TCT CCT CCT TCT TTG GCC AGC TCT TCA GCT AGT CAG TTG TCT GCG CCA	144
Ser Pro Pro Ser Leu Ala Ser Ser Ala Ser Gln Leu Ser Ala Pro	
35 40 45	
15 TCT TTG AAG GCG ACA TGC ACT ACC CAT CAT GAC TCC CCA GAC GCT GAC	192
Ser Leu Lys Ala Thr Cys Thr Thr His His Asp Ser Pro Asp Ala Asp	
50 55 60	
20 CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC GGG AAC ATC	240
Ile Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile	
65 70 75 80	
25 ACC CGC GTG GAG TTA GAG AAC AAG ATA GTA ATT CTA GAC TCT TTT GAA	288
Thr Arg Val Glu Leu Asn Lys Ile Val Ile Leu Asp Ser Phe Glu	
85 90 95	
30 CCG CTT CGA GCG GAG GAG GAT G A	311
Pro Leu Arg Ala Glu Glu Asp	
25 100	

SEQ ID NO:84

SEQUENCE LENGTH: 311 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: H17-1

TCT GAG CCC GAA CCG GAT GTA ACA GTG CTC ACT TCC ATG CTC ACC GAC	48
Cys Glu Pro Glu Pro Asp Val Thr Val Leu Thr Ser Met Leu Thr Asp	
1 5 10 15	
45 CCC TCC CAC ATT ACA GCA GAG ACG GCT AAG CGT AGG CTG GCC AGA GGG	96

EP 0 518 313 A2

	Pro Ser His Ile Thr Ala Glu Thr Ala Lys Arg Arg Leu Ala Arg Gly			
	20	25	30	
5	TCT CCC CCT CCC TTG GCC AGC TCT TCA GCT AGT CAG TTG TCT GCG CCC		144	
	Ser Pro Pro Pro Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro			
	35	40	45	
10	TCC CTG AAG GCG ACA TGC ACT ACC CAT CAT GAC TCC CCG GAC GCT GAC		192	
	Ser Leu Lys Ala Thr Cys Thr Thr His His Asp Ser Pro Asp Ala Asp			
	50	55	60	
15	CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGA GGG AAC ATC		240	
	Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile			
	65	70	75	80
	ACC CGT GTG GAG TCA GAG AAC AAG GTA GTA ATT CTG GAC TCT TTC GAC		288	
	Thr Arg Val Glu Ser Glu Asn Lys Val Val Ile Leu Asp Ser Phe Asp			
	85	90	95	
20	CCG CTT CGA GCG GAG GAG GAT G A		311	
	Pro Leu Arg Ala Glu Glu Asp			
	100			

25 SEQ ID NO:85
SEQUENCE LENGTH: 311 base pairs
SEQUENCE TYPE: nucleic acid
STRANDEDNESS: double
30 TOPOLOGY: linear
ANTI-SENSE: No
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus
IMMEDIATE EXPERIMENTAL SOURCE
35 CLONE: H17-3

40	TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACT TCC ATG CTC ACC GAC Cys Glu Pro Glu Pro Asp Val Thr Val Val Thr Ser Met Leu Thr Asp 1 5 10 15	48
45	CCC TCC CAC ATT ACA GCA GAG GCG GCT GGG CGT AGG CTG GCC AGA GGG Pro Ser His Ile Thr Ala Glu Ala Ala Gly Arg Arg Leu Ala Arg Gly 20 25 30	96
	TCT CCC CCT TCC TTG GCC AGC TCT TCA GCT AGT CAG TTG TCT GCG CCC Ser Pro Pro Ser Leu Ala Ser Ser Ala Ser Gln Leu Ser Ala Pro	144

50

	35	40	45	
	TCT CTG AAG GCG ACA TGC ACT ACC CAT CAT GAC TCC CCG GAC GCT GAC			192
	Ser Leu Lys Ala Thr Cys Thr Thr His His Asp Ser Pro Asp Ala Asp			
5	50	55	60	
	CTC ATC GAG GCC AAC CTC CTA TGG CGG CAG GAG ATG GGA GGG AAC ATC			240
	Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly Gly Asn Ile			
	65	70	75	80
10	ACC CGC GTG GAG TCA GAG AGC AAG GTA GTA ATT CTG GAC TCT TTC GAC			288
	Thr Arg Val Glu Ser Glu Ser Lys Val Val Ile Leu Asp Ser Phe Asp			
	85	90	95	
	CCG CTT CGA GCG GAG GAG GAT G A			311
15	Pro Leu Arg Ala Glu Glu Asp			
	100			

SEQ ID NO:86

SEQUENCE LENGTH: 740 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: 028-1

	GTG GTA GTC CTG GAC TCG TTG GAG CCG CTT CAA GCG AAG GAA GGT GAG			48
	Val Val Val Leu Asp Ser Leu Glu Pro Leu Gln Ala Lys Glu Gly Glu			
	1	5	10	15
35	AGG GAA GTG TCC GTT GCG GCG GAG ATC CTG CGG AAG ACC AGG AAA TTC			96
	Arg Glu Val Ser Val Ala Ala Glu Ile Leu Arg Lys Thr Arg Lys Phe			
	20	25	30	
	CCC GCA GCG ATG CCC GTA TGG GCA CGC CCG GAC TAC AAC CCA CCA TTA			144
40	Pro Ala Ala Met Pro Val Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu			
	35	40	45	
	CTA GAG TCT TGG AAG AAC CCG GAC TAC GTC CCT CCA GTG GTA CAC GGG			192
	Leu Glu Ser Trp Lys Asn Pro Asp Tyr Val Pro Pro Val Val His Gly			
45	50	55	60	

50

55

	TGC CCA TTG CCG CCT ACC AAG GCC CCT CCA ATA CCA CCT CCA CGA AGA	240
	Cys Pro Leu Pro Pro Thr Lys Ala Pro Pro Pro Ile Pro Pro Pro Arg Arg	
5	65 70 75 80	
	AAG AGA ACG GTT GTC CTG ACA GAA TCC TCC GTG TCC TCT GCC TTG GCG	288
	Lys Arg Thr Val Val Leu Thr Glu Ser Ser Val Ser Ser Ala Leu Ala	
	85 90 95	
10	GAG CTT GCT ACA AAG ACC TTT GGC AGT TCC GGA TCG TCG GCC GTC GAC	336
	Glu Leu Ala Thr Lys Thr Phe Gly Ser Ser Gly Ser Ser Ala Val Asp	
	100 105 110	
	AGC GGC ACG GCG ACC GGC CCT CCT GAC CAG GCC TCC GCC GAA GGA GAT	384
	Ser Gly Thr Ala Thr Gly Pro Pro Asp Gln Ala Ser Ala Glu Gly Asp	
15	115 120 125	
	GCA GGA TCC GAC GCT GAG TCG TAC TCC TCC ATG CCC CCC CTT GAG GGA	432
	Ala Gly Ser Asp Ala Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly	
	130 135 140	
20	GAG CCG GGG GAC CCC GAT CTC AGC GAC GGG TCT TGG TCT ACC ACC GTA AGC	480
	Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr Val Ser	
	145 150 155 160	
	GAG GAG GCC AGC GAG GAC GTC GTC TGC TGC TCG ATG TCC TAC ACA TGG	528
25	Glu Glu Ala Ser Glu Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp	
	165 170 175	
	ACA GGC GCC TTA ATT ACA CCA TGC GCC GCG GAG GAG AGC AAG CTG CCC	576
	Thr Gly Ala Leu Ile Thr Pro Cys Ala Ala Glu Glu Ser Lys Leu Pro	
30	180 185 190	
	ATT AAT GCG CTG AGC AAC CCT TTG CTG CGC CAC CAC AAC ATG GTC TAT	624
	Ile Asn Ala Leu Ser Asn Pro Leu Leu Arg His His Asn Met Val Tyr	
	195 200 205	
35	GCC ACA ACA TCC CGC AGC GCA AGC CAG CGG CAG AAA AAG GTC ACA TTT	672
	Ala Thr Thr Ser Arg Ser Ala Ser Gln Arg Gln Lys Lys Val Thr Phe	
	210 215 220	
	GAC AGA CTG CAA GTC CTG GAT GAC CAC TAC CGG GAC GTG CTC AAG GAC	720
40	Asp Arg Leu Gln Val Leu Asp Asp His Tyr Arg Asp Val Leu Lys Asp	
	225 230 235 240	
	ATG AAG GCC AAG GCG TCC AC	
	Met Lys Ala Lys Ala Ser	
45	245	

SEQ ID NO:87
 SEQUENCE LENGTH: 740 base pairs
 SEQUENCE TYPE: nucleic acid
 5 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 10 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: O28-2

15	GTG GTA GTC CTG GAC TCG TTG GAC CCG CTT CGA GCG GAG GAA GAT GAG	48
	Val Val Val Leu Asp Ser Leu Asp Pro Leu Arg Ala Glu Glu Asp Glu	
	1 5 10 15	
20	AGG GAA GTG TCC GTT GCG GCG GAG ATC CTG CGA AAG ACC AAG AAA TTC	96
	Arg Glu Val Ser Val Ala Ala Glu Ile Leu Arg Lys Thr Lys Lys Phe	
	20 25 30	
25	CCC GCA GCG ATG CCC GTA TGG GCA CGC CCG GAC TAC AAC CCA CCA TTA	144
	Pro Ala Ala Met Pro Val Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu	
	35 40 45	
30	CTA GAG TCT TGG AAG AAC CCG GAC TAC GTC CCT CCG GTG GTA CAC GGG	192
	Leu Glu Ser Trp Lys Asn Pro Asp Tyr Val Pro Pro Val Val His Gly	
	50 55 60	
35	TGC CCA TTG CCG CCT ACC AAG GCC CCT CCA ATA CCA CCT CCA CGG AGA	240
	Cys Pro Leu Pro Pro Thr Lys Ala Pro Pro Ile Pro Pro Pro Arg Arg	
	65 70 75 80	
40	AAG AGG ACG GTT GCC CTG ACA GAA TCC ACC GTG TCC TCT GCC TTG GCG	288
	Lys Arg Thr Val Ala Leu Thr Glu Ser Thr Val Ser Ser Ala Leu Ala	
	85 90 95	
45	GAG CTT GCT ACA AAG ACC TTT GGC AGT TCC GGA TCG TCG GCC GTC GAC	336
	Glu Leu Ala Thr Lys Thr Phe Gly Ser Ser Gly Ser Ser Ala Val Asp	
	100 105 110	
50	AGC GGC ACG GCG ACT GGC CCT CCT GAC CAG GCC TCC GCC GAA GGA GAT	384
	Ser Gly Thr Ala Thr Gly Pro Pro Asp Gln Ala Ser Ala Glu Gly Asp	
	115 120 125	
55	GCA GGA TCC GAC GCT GAG TCG TAC TCC TCC ATG CCC CCC CTT GAG GGA	432
	Ala Gly Ser Asp Ala Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly	

	130	135	140	
	GAG CCG GGG GAC CCT GAT CTC AGC GAC GGG TCT TGG TCT ACT GTA AGC			480
5	Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr Val Ser			
	145	150	155	160
	GAG GAG GCC GGC GAG GAC GTC GTC TGC TCG ATG TCC TAC ACA TGG			528
	Glu Glu Ala Gly Glu Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp			
	165	170	175	
10	ACA GGC GCC TTA ATT ACA CCA TGC GCC GCG GAG GAG AGC AAG CTG CCC			576
	Thr Gly Ala Leu Ile Thr Pro Cys Ala Ala Glu Glu Ser Lys Leu Pro			
	180	185	190	
	ATT AAT GCG CTG AGC AAC TCT TTG CTG CGC CAC CAC AAC ATG GTC TAT			624
15	Ile Asn Ala Leu Ser Asn Ser Leu Leu Arg His His Asn Met Val Tyr			
	195	200	205	
	GCC ACA ACA TCC CGC AGC GCA AGC CAG CGG CAG AAA AAG GTC ACA TTT			672
	Ala Thr Thr Ser Arg Ser Ala Ser Gln Arg Gln Lys Lys Val Thr Phe			
20	210	215	220	
	GAC AGA CTG CAA GTC CTG GAT GAC CAC TAC CGG GAC GTG CTC AAG GAC			720
	Asp Arg Leu Gln Val Leu Asp Asp His Tyr Arg Asp Val Leu Lys Asp			
	225	230	235	240
25	ATG AAG GCC AAG GCG TCC AC			740
	Met Lys Ala Lys Ala Ser			
	245			

30 SEQ ID NO:88
 SEQUENCE LENGTH: 740 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 35 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 40 CLONE: 028-4

	GTG GTA GTC CTG GAC TCG TTG GAC CCG CTT CGA GCG GAG GAA GAT GAG			48
	Val Val Val Leu Asp Ser Leu Asp Pro Leu Arg Ala Glu Glu Asp Glu			
45	1	5	10	15

	AGG GAA GTG TCC GTT GCG GCG GAG ATC CTG CGA AAG ACC AAG AAA TTC	96
	Arg Glu Val Ser Val Ala Ala Glu Ile Leu Arg Lys Thr Lys Lys Phe	
	20 25 30	
5	CCC GCA GCG ATG CCC GTA TGG GCA CGC CCG GAC TAC AAC CCA CCA TTA	144
	Pro Ala Ala Met Pro Val Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu	
	35 40 45	
	CTA GAG TCT TGG AAG AAC CCG GAC TAC GTC CCT CCG GTG GTA CAC GGG	192
10	Leu Glu Ser Trp Lys Asn Pro Asp Tyr Val Pro Pro Val Val His Gly	
	50 55 60	
	TGC CCA TTG CCG CCT ATC AAG GCC CCT CCA ATA CCA CCT CCA CGG AGA	240
	Cys Pro Leu Pro Pro Ile Lys Ala Pro Pro Ile Pro Pro Pro Arg Arg	
15	65 70 75 80	
	AAG AGG ACG GTT GTC CTG ACA GAA TCC ACC GTG TCC TCT GCC TTG GCG	288
	Lys Arg Thr Val Val Leu Thr Glu Ser Thr Val Ser Ser Ala Leu Ala	
	85 90 95	
20	GAG CTT GCT ACA AAG ACC TTT GGC AGT TCC GGA TCG TCG GCC GTC GAC	336
	Glu Leu Ala Thr Lys Thr Phe Gly Ser Ser Gly Ser Ser Ala Val Asp	
	100 105 110	
	AGC GGC ACG GCG ACC GGC CCT CCT GAC CAG GCC TCC GCC GAA GGA GAT	384
25	Ser Gly Thr Ala Thr Gly Pro Pro Asp Gln Ala Ser Ala Glu Gly Asp	
	115 120 125	
	GCA GGA TCC GAC GCT GAG TCG TAC TCC TCC ATG CCC CCC CTT GAG GGA	432
	Ala Gly Ser Asp Ala Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly	
	130 135 140	
30	GAG CCG GGG GAC CCT GAT CTC AGC GAC GGG TCT TGG TCT ACT GTA AGC	480
	Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr Val Ser	
	145 150 155 160	
	GAG GAG GCC GGC GAG GAC GTC GTC TGC TCG ATG TCC TAC ACA TGG	528
35	Glu Glu Ala Gly Glu Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp	
	165 170 175	
	ACA GGC GCC TTA ATT ACA CCA TGC ACC GCG GAG GAG AGC AAG CTG CCC	576
	Thr Gly Ala Leu Ile Thr Pro Cys Thr Ala Glu Glu Ser Lys Leu Pro	
40	180 185 190	
	ATT AAT GCG CTG AGC AAC TCT TTG CTG CGT CAC CAC AAC ATG GTC TAT	624
	Ile Asn Ala Leu Ser Asn Ser Leu Leu Arg His His Asn Met Val Tyr	
	195 200 205	
45	GCC ACA ACA TCC CGC AGC GCA AGC CAG CGG CAG AAA AAG GTC ACA TTT	672

Ala Thr Thr Ser Arg Ser Ala Ser Gln Arg Gln Lys Lys Val Thr Phe
 210 215 220
 GAC AGA CTG CAA GTC CTG GAT GAC CAC TAC CGG GAC GTG CTC AAG GAC 720
 5 Asp Arg Leu Gln Val Leu Asp Asp His Tyr Arg Asp Val Leu Lys Asp
 225 230 235 240
 ATG AAG GCC AAG GCG TCC AC
 Met Lys Ala Lys Ala Ser
 10 245
 SEQ ID NO:89
 SEQUENCE LENGTH: 515 base pairs
 15 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 20 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: N29-1

25 AC TAC CGG GAC GTG CTG AAG GAG ATG AAG GCG AAG GCG TCC ACA GTT 47
 Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val
 1 5 10 15
 30 AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGC AAG CTG ACG CCC CCA 95
 Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro
 20 25 30
 CAC TCG GCC AGA TCT AAA TTT GGC TAC GGG GCA AAG GAC GTC CGG AGC 143
 His Ser Ala Arg Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Ser
 35 35 40 45
 CTG TCC AGC AAG GCC GTT AAC CAC ATC CGC TCC GTG TGG AAG GAC TTG 191
 Leu Ser Ser Lys Ala Val Asn His Ile Arg Ser Val Trp Lys Asp Leu
 50 55 60
 40 CTG GAA GAC ACT GAG ACA CCA ATT GAC ACC ACC ATC ATG GCA AAA AAT 239
 Leu Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn
 65 70 75
 45 GAG GTT TTC TGT GTT CAA CCA GAG AAA GGA GGC CGC AAG CCA GCT CGC 287
 Glu Val Phe Cys Val Gln Pro Glu Lys Gly Arg Lys Pro Ala Arg

80	85	90	95	
CTT ATC GTA TTC CCA GAC TTG GGG GTT CGT GTG TGC GAG AAA ATG GCC				335
Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala				
5 100	105	110		
CTC TAC GAC GTG GTC TCC ACT CTT CCT CAG GCC GTG ATG GGC TCC TCA				383
Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val Met Gly Ser Ser				
115	120	125		
TAC GGA TTC CAG TAC TCC CCT GGA CAG CGG GTC GAG TTC CTG GTG AAT				431
Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn				
130	135	140		
GCC TGG AAG TCA AAG AAG AGC CCT ATG GGC TTT GCA TAT GAC ACC CGC				479
Ala Trp Lys Ser Lys Ser Pro Met Gly Phe Ala Tyr Asp Thr Arg				
145	150	155		
TGT TTT GAC TCA ACG GTC ACC GAG AAC GAC ATC CGT				515
Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg				
20 160	165	170		

SEQ ID NO:90

SEQUENCE LENGTH: 515 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N29-2

35	AC TAC CGG GAC GTG CTG AAG GAG ATG AAG GCG AAG GCG TCC ACA GTT		47	
Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val				
1	5	10	15	
AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGT AAG CTG ACG CCC CCA				95
Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro				
40 20	25	30		
CAC TCG GCC AGA TCT AAA TTT GGC TAC GGG GCA AAG GAC GTC CGG AGC				143
His Ser Ala Arg Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Ser				
45 35	40	45		

	CTG TCC AGC AAG GCC GTT AAC CAC ATC CGC TCC GTG TGG AAG GAC TTG	191		
	Leu Ser Ser Lys Ala Val Asn His Ile Arg Ser Val Trp Lys Asp Leu			
	50	55	60	
5	CTG GAA GAC ACT GAG ACA CCA ATT GAC ACC ATC ATG GCA AAA AAT	239		
	Leu Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn			
	65	70	75	
	GAG GTT TTC TGT GTT CAA CCA GAG AAA GGA GGC CGC AAG CCA GCT CGC	287		
10	Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg			
	80	85	90	95
	CTT ATC GTA TTC CCA GAC TTG GGG GTT CGT GTG TGC GAG AAA ATG GCC	335		
	Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala			
15	100	105	110	
	CTC TAC GAC GTG GTC TCC ACT CTT CCT CAG GCC GTG ATG GGC TCC TCA	383		
	Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val Met Gly Ser Ser			
	115	120	125	
20	TAC GGA TTC CAG TAC TCC CCT GGA CAG CGG GTC GAG TTC CTG GTG AAT	431		
	Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn			
	130	135	140	
	GCC TGG AAG TCA AAG AAG AGT CCT ATG GGC TTT GCA TAT GAC ACC CGC	479		
25	Ala Trp Lys Ser Lys Ser Pro Met Gly Phe Ala Tyr Asp Thr Arg			
	145	150	155	
	TGT TTT GAC TCA ACG GTC ACC GAG AAC GAC ATC CGT	515		
	Cys Phe Asp Ser Thr Val Thr Glu Asn Asp Ile Arg			
30	160	165	170	

SEQ ID NO:91

SEQUENCE LENGTH: 503 base pairs

SEQUENCE TYPE: nucleic acid

35 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

40 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N29-3

45 AC TAC CGG GAC GTG CTG AAG GAG ATG AAG GCG AAG GCG TCC ACA GTT 47

	Tyr Arg Asp Val Leu Lys Glu Met Lys Ala Lys Ala Ser Thr Val			
1	5	10	15	
5	AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGT AAG CTG ACG CCC CCA	95		
	Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu Thr Pro Pro			
	20	25	30	
	CAC TCG GCC AGA TCT AAG TTT GGC TAC GGG GCA AAG GAC GTC CGG AGC	143		
	His Ser Ala Arg Ser Lys Phe Gly Tyr Gly Ala Lys Asp Val Arg Ser			
10	35	40	45	
	CTG TCC AGC AAG GCC GTT AAC CAC ATC CGC TCC GTG TGG AGG GAC TTG	191		
	Leu Ser Ser Lys Ala Val Asn His Ile Arg Ser Val Trp Glu Asp Leu			
	50	55	60	
15	CTG GAA GAC ACT GAA ACA CCA ATT GAC ACC ACC ATC ATG GCA AAA AAT	239		
	Leu Glu Asp Thr Glu Thr Pro Ile Asp Thr Thr Ile Met Ala Lys Asn			
	65	70	75	
20	GAG GTT TTC TGT GTT CAA CCA GAG AAA GGA GGC CGC AAG CCA GCT CGC	287		
	Glu Val Phe Cys Val Gln Pro Glu Lys Gly Gly Arg Lys Pro Ala Arg			
	80	85	90	95
	CTT ATC GTA TTC CCA GAC TTG GGG GTT CGT GTG TGC GAG AAA ATG GCC	335		
	Leu Ile Val Phe Pro Asp Leu Gly Val Arg Val Cys Glu Lys Met Ala			
25	100	105	110	
	CTC TAC GAC GTG GTC TCC ACT CTT CCT CAG GCC GTG ATG GGC TCC TCA	383		
	Leu Tyr Asp Val Val Ser Thr Leu Pro Gln Ala Val Met Gly Ser Ser			
	115	120	125	
30	TAC GGA TTC CAG TAC TCC CCT GGA CAG CGG GTC GAG TTC CTG GTG AAT	431		
	Tyr Gly Phe Gln Tyr Ser Pro Gly Gln Arg Val Glu Phe Leu Val Asn			
	130	135	140	
	GCC TGG AAG TCA AAG AAG AGT CCT ATG GGC TTT TCA TAT GAC ACC CGC	479		
	Ala Trp Lys Ser Lys Ser Pro Met Gly Phe Ser Tyr Asp Thr Arg			
35	145	150	155	
	TGT TTT GAC TCA ACG GTC ACC GAG	503		
	Cys Phe Asp Ser Thr Val Thr Glu			
40	160	165		

SEQ ID NO:92

SEQUENCE LENGTH: 401 base pairs

SEQUENCE TYPE: nucleic acid

45 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

5 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N18-4

10	TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACG GTC ACT GAG	47
	Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	
	1 5 10 15	
15	AAT GAC ATC CGT ACT GAG GAG TCA ATT TAT CAA TGT TGT GAC TTG GAC	95
	Asn Asp Ile Arg Thr Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Asp	
	20 25 30	
20	CCC GAG GCC AGA CAG GCC ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC	143
	Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile	
	35 40 45	
25	GGG GGC CCC TTG ACC AAT TCA AAA GGG CAA AAC TGC GGC TAT CGC CGG	191
	Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg	
	50 55 60	
30	TGC CGC GCC AGC GGC GTG CTG ACG ACT AGC TGC GGT AAT ACC CTC ACA	239
	Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr	
	65 70 75	
35	TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCG AAG CTC CAG GAC	287
	Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp	
	80 85 90 95	
40	TGC ACG ATG CTC GTG TGC GGA GAC GAC CTT GTC GTT ATC TGT GAA AGC	335
	Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser	
	100 105 110	
45	GCG GGA ACC CAG GAG GAC GCG GCA AAC CTA CGA GTC TTC ACG GAG GCT	383
	Ala Gly Thr Gln Glu Asp Ala Ala Asn Leu Arg Val Phe Thr Glu Ala	
	115 120 125	
	ATG ACC AGG AAT TCC GCC	401
	Met Thr Arg Asn Ser Ala	
	130	

SEQ ID NO:93

45 SEQUENCE LENGTH: 401 base pairs

50

55

SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 5 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 10 CLONE: N18-2

	TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACA GTC ACT GAG	47
	Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	
15	1 5 10 15	
	AAC GAC ATC CGT ATT GAG GAG TCA ATT TAT CAA TGC TGT GAC TTG GTC	95
	Asn Asp Ile Arg Ile Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Val	
	20 25 30	
20	CCC GAG GCC AGA CAG GCC ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC	143
	Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile	
	35 40 45	
	GGG GGC CCC TTG ACC AAT TCA AAA GGG CAA AAC TGC GGC TAT CGC CGG	191
25	Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg	
	50 55 60	
	TGC CGC GCC AGC GGC GTG CTG ACG ACT AGC TGC GGT AAT ACC CTC ACA	239
	Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr	
30	65 70 75	
	TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCG AAG CTC CGG GAC	287
	Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Arg Asp	
	80 85 90 95	
35	TGC ACG ATG CTC GTG TGC GGA GAC GAC CTT GTC GTT ATC TGT GAA AGC	335
	Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser	
	100 105 110	
	GCG GGG ACC CAG GAG GAC GCG GCA AGC CTA CGA GTC TTC ACG GAG GCT	383
40	Ala Gly Thr Gln Glu Asp Ala Ala Ser Leu Arg Val Phe Thr Glu Ala	
	115 120 125	
	ATG ACC AGG AAT TCC GCC	401
	Met Thr Arg Asn Ser Ala	
45	130	

SEQ ID NO:94

SEQUENCE LENGTH: 401 base pairs

SEQUENCE TYPE: nucleic acid

5 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

10 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: N18-3

15	TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACG GTC ACT GAG	47
	Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	
	1 5 10 15	
20	AAT GAC ATC CGT ACT GAG GAG TCA ATT TAT CAA TGT TGT GAC TTG GAC	95
	Asn Asp Ile Arg Thr Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Asp	
	20 25 30	
25	CCC GAG GCC AGA CAG GCC ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC	143
	Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile	
	35 40 45	
30	GGG GGC CCC TTG ACC AAT TCA AAA GGG CAG AAC TGC GGT TAT CGC CGG	191
	Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg	
	50 55 60	
35	TGC CGC GCC AGC GGC GTG CTG ACG ACT AGC TGC GGT AAT ACC CTT ACA	239
	Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr	
	65 70 75	
40	TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCG AAG CTC CAG GAC	287
	Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp	
	80 85 90 95	
45	TGC ACG ATG CTC GTG TGC GGA GAC GAC CTT GTC GTT ATC TGT GAA AGC	335
	Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser	
	100 105 110	
	GCG GGA ACC CAG GAG GAC GCG GCA AAC CTA CGA GTC TTC ACG GAG GCT	383
	Ala Gly Thr Gln Glu Asp Ala Ala Asn Leu Arg Val Phe Thr Glu Ala	
	115 120 125	
	ATG ACC AGG AAT TCC GCC	401
50	Met Thr Arg Asn Ser Ala	

130

SEQ ID NO:95

SEQUENCE LENGTH: 401 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXIT

16

TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACA GTC ACT GAG		47
Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu		
1 5 10 15		
AGT GAT ATC CGT GTT GAG GAG TCA ATC TAC CAA TGT TGT GAC TTG GCC		95
Ser Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Ala		
20 25 30		
CCC GAG GCC AGA CAG GCC ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC		143
Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile		
35 40 45		
GGG GGC CCC CTG ACT AAT TCA AAA GGG CAG AAC TGC GGT TAT CGC CGG		191
Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg		
50 55 60		
TGC CGC GTC AGC GGC GTG CTG ACG ACC AGC TGC GGT AAT ACT CTT ACA		239
Cys Arg Val Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr		
65 70 75		
TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCA AAG CTC CAG GAC		287
Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp		
80 85 90 95		
TGC ACA ATG CTC GTG TGC GGG GAC GAC CTT GTC GTC ATC TGT GAG AGC		335
Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser		
100 105 110		
GCG GGA ACC CAG GAG GAC GCG GCG AAC CTA CGA GTC TTC ACG GAG GCT		383
Ala Gly Thr Gln Glu Asp Ala Ala Asn Leu Arg Val Phe Thr Glu Ala		
115 120 125		

50

55

ATG ACC AGG AAT TCC GCC
 Met Thr Arg Asn Ser Ala
 130

401

5 SEQ ID NO:96
 SEQUENCE LENGTH: 401 base pairs
 SEQUENCE TYPE: nucleic acid
 10 STRANDEDNESS: double
 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 15 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 CLONE: H18-2

20	TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACA GTC ACT GAG	47
	Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	
	1 5 10 15	
25	AGT GAT ATC CGT GTT GAG GAG TCA ATC TAC CAA TGT TGT GAC TTG GCC	95
	Ser Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Ala	
	20 25 30	
30	CCC GAG GCC AGA CAG GCC ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC	143
	Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile	
	35 40 45	
35	GGG GGC CCC CTG ACT AAT TCA AAG GGG CAG AAC TGC GGT TAT CGC CGG	191
	Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg	
	50 55 60	
40	TGC CGC GTC AGC GGC GTG CTG ACG ACC AGC TGC GGT AAT ACC CTT ACA	239
	Cys Arg Val Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr	
	65 70 75	
45	TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCA AAG CTC CAG GAC	287
	Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp	
	80 85 90 95	
50	TGC ACA ATG CTC GTG TGC GGG GAC GAC CTT GTC GTC ATC TGT GAA AGC	335
	Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser	
	100 105 110	
55	GCG GGA ACC CAG GAG GAC GCG GCG AAC CTA CGA GTC TTC ACG GAG GCT	383

50

55

Ala Gly Thr Gln Glu Asp Ala Ala Asn Leu Arg Val Phe Thr Glu Ala
 115 120 125
 ATG ACC AGG AAT TCC GCC 401
 Met Thr Arg Asn Ser Ala
 5 130

SEQ ID NO:97

10 SEQUENCE LENGTH: 401 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

15 ANTI-SENSE: No

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

20 CLONE: H18-3

TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACA GTC ACC GAG	47
Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	
1 5 10 15	
25 AGT GAT ATC CGT GTT GAG GAG TCA ATC TAC CAA TGT TGT GAC TTG GCC	95
Ser Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Ala	
20 25 30	
30 CCC GAG GCC AGA CAG GCT ATA AGG TCG CTC ACA GAG CGG CTT TAT ATC	143
Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile	
35 40 45	
35 GGG GGC CCC CTG ACT AAT TCA AAA GGG CAG AAC TGC GGT TAT CGC CGG	191
Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg	
50 55 60	
35 TGC CGC GTC AGC GGC GTG CTG ACG ACC AGC TGC GGT AAT ACC CTT ACA	239
Cys Arg Val Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr	
65 70 75	
40 TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCA AAG CTC CAG GAC	287
Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp	
80 85 90 95	
45 TGC ACA ATG CTC GTG TGC GGG GAC GAC CTT GTC GTC ATC TGT GAA AGC	335
Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser	

50

55

EP 0 518 313 A2

	100	105	110	
	GCG GGA ACC CAG GAG GAC GCG GCG AAC CTA CGA GTC TTC ACG GAG GCT			383
	Ala Gly Thr Gln Glu Asp Ala Ala Asn Leu Arg Val Phe Thr Glu Ala			
5	115	120	125	
	ATG ACC AGG AAT TCC GCC			401
	Met Thr Arg Asn Ser Ala			
	130			

10 SEQ ID NO:98
SEQUENCE LENGTH: 1171 base pairs
SEQUENCE TYPE: nucleic acid
15 STRANDEDNESS: double
TOPOLOGY: linear
ANTI-SENSE: No
ORIGINAL SOURCE
20 ORGANISM: Hepatitis C virus
IMMEDIATE EXPERIMENTAL SOURCE
CLONE: O30-3

25	TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACG GTC ACT GAG	47
	Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	
	1 5 10 15	
	AAT GAC ATC CGT GTC GAG GAG TCA ATT TAC CAA TGT TGT GAC TTG GCC	95
	Asn Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Ala	
30	20 25 30	
	CCC GAG GCC AGA CAG GCC ATA AGG TCA CTC ACA GAG CGG CTT TAC ATC	143
	Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile	
	35 40 45	
35	GGG GGC CCC CTG ACT AAT TCA AAG GGG CAG AAC TGC GGT TAT CGC CGG	191
	Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg	
	50 55 60	
40	TGC CGC GTC AGC GGC GTG CTG ACG ACT AGC TGC GGT AAT ACC CTC ACA	239
	Cys Arg Val Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr	
	65 70 75	
	TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCA AAG CTC CAG GAC	287
	Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp	
45	80 85 90 95	

50

55

	TGC ACG ATG CTT GTG TGC GGA GAC GAC CTT GTC GTT ATC TGT GAT AGC	335
	Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Asp Ser	
	100 105 110	
5	GCG GGA ACT CAG GAG GAC GCG GCG AGC CTA CGA GTC TTC ACG GAG GCT	383
	Ala Gly Thr Gln Glu Asp Ala Ala Ser Leu Arg Val Phe Thr Glu Ala	
	115 120 125	
	ATG ACT AGG TAC TCT GCC CCC CCC GGG GAC CCG CCC CAA CCA GAA TAC	431
10	Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr	
	130 135 140	
	GAC TTG GAG CTG ATA ACA TCA TGT TCC TCC AAT GTG TCG GTC GCG CAC	479
	Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser Asn Val Ser Val Ala His	
15	145 150 155	
	GAC GCA TCA GGC AAA CGG GTG TAC TAT CTC ACC CGT GAC CCC ACC ACC	527
	Asp Ala Ser Gly Lys Arg Val Tyr Tyr Leu Thr Arg Asp Pro Thr Thr	
	160 165 170 175	
20	CCC CTA GCG CGG GCT GCG TGG GAG ACA GCT AGA CAC ACT CCA GTC AAC	575
	Pro Leu Ala Arg Ala Ala Trp Glu Thr Ala Arg His Thr Pro Val Asn	
	180 185 190	
	TCC TGG CTA GGC AAC ATC ATC ATG TAC GCG CCC ACC TTA TGG GCA AGG	623
25	Ser Trp Leu Gly Asn Ile Ile Met Tyr Ala Pro Thr Leu Trp Ala Arg	
	195 200 205	
	ATG ATT CTG ATG ACC CAC TTC TTC TCC ATC CTT CTA GCC CAG GAG CAA	671
	Met Ile Leu Met Thr His Phe Phe Ser Ile Leu Leu Ala Gln Glu Gln	
30	210 215 220	
	CTT GAA AAA GCC CTA GAT TGT CAG ATC TAC GGG GCC ACT TAC TCC ATT	719
	Leu Glu Lys Ala Leu Asp Cys Gln Ile Tyr Gly Ala Thr Tyr Ser Ile	
	225 230 235	
35	GAG CCA CTT GAC CTA CCT CAG ATC ATT CAA CGA CTC CAC GGT CTT AGC	767
	Glu Pro Leu Asp Leu Pro Gln Ile Ile Gln Arg Leu His Gly Leu Ser	
	240 245 250 255	
	GCA TTT TCA CTC CAT AGT TAC TCT CCA GGT GAG ATC AAT AGG GTG GCT	815
	Ala Phe Ser Leu His Ser Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala	
40	260 265 270	
	TCA TGC CTC AGG AAA CTT GGG GTA CCG CCC TTG CGA GTC TGG AGA CAT	863
	Ser Cys Leu Arg Lys Leu Gly Val Pro Pro Leu Arg Val Trp Arg His	
	275 280 285	
45	CGG GCC AGA AGC GTC CGC GCT AAG CTA CTG TCC CAG GGG GGG AGG GCC	911

Arg Ala Arg Ser Val Arg Ala Lys Leu Leu Ser Gln Gly Gly Arg Ala
 290 295 300
 GCC ACC TGT GGC AAA TAC CTC TTC AAC TGG GCA GTA AAG ACC AAG CTC 959
 5 Ala Thr Cys Gly Lys Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu
 305 310 315
 AAA CTC ACT CCA ATC CCA GAA GCG TCC CAG CTG GAC TTG TCC GGC TGG 1007
 Lys Leu Thr Pro Ile Pro Glu Ala Ser Gln Leu Asp Leu Ser Gly Trp
 10 320 325 330 335
 TTC GTT GCT GGT TAC AGC GGG GGA GAC ATA TAT CAC AGC CTG TCT CGT 1055
 Phe Val Ala Gly Tyr Ser Gly Gly Asp Ile Tyr His Ser Leu Ser Arg
 340 345 350
 15 GCC CGA CCC CGC TGG TTC ATG TGG TGC CTA CTC CTA CTT TCC GTA GGG 1103
 Ala Arg Pro Arg Trp Phe Met Trp Cys Leu Leu Leu Ser Val Gly
 355 360 365
 GTA GGC ATC TAC CTG CTC CCC AAC CGA TGA GCG GGG AGC TAA ACA CTC 1151
 20 Val Gly Ile Tyr Leu Leu Pro Asn Arg Stop Ala Gly Ser Stop Thr Leu
 370 375 380
 CAG GCC AAT AGG CCA TCC C C 1171
 Gln Ala Asn Arg Pro Ser
 25 385

SEQ ID NO:99

SEQUENCE LENGTH: 1170 base pairs

SEQUENCE TYPE: nucleic acid

30 STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

ORIGINAL SOURCE

35 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: O30-2

40 G GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACG GTC ACT GAG 46
 Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu
 1 5 10 15
 AAT GAC ATC CGT GTT GAG GAG TCA ATT TAC CAA TGT TGT GAC TTG GCC 94
 45 Asn Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Ala

EP 0 518 313 A2

	20	25	30	
5	CCC GAG GCC AGA CAG GCC ATA AGG TCG CTC ACA GAG CGG CTT TAC ATC			142
	Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile			
	35	40	45	
	GGG GGC CCC CTG ACT AAT TCA AAA GGG CAG AAC TGC GGC TAT CGC CGG			190
	Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg			
	50	55	60	
10	TGC CGC GTC AGC GGC GTG CTG ACG ACT AGC TGC GGC AAT ACC CTC ACA			238
	Cys Arg Val Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr			
	65	70	75	
	TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCA AAG CTC CAG GAC			286
15	Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp			
	80	85	90	95
	TGC ACG ATG CTT GTG TGC GGA GAC GAC CTT GTC GTT ATC TGT GAA AGC			334
	Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser			
20	100	105	110	
	GCG GGA ACT CAG GAG GAC GCG GCG AGC CTA CGA GTC TTC ACG GAG GCT			382
	Ala Gly Thr Gln Glu Asp Ala Ala Ser Leu Arg Val Phe Thr Glu Ala			
	115	120	125	
25	ATG ACT AGG TAC TCT GCC CCC CCC GGG GAC CCG CCC CAA CCA GAA TAC			430
	Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr			
	130	135	140	
	GAC TTG GAG CTG ATA ACA TCA TGC TCC TCC AAC GTG TCG GTC GCG CAC			478
	Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser Asn Val Ser Val Ala His			
30	145	150	155	
	GAC GCA TCA GGC AAA CGG GTG TAC TAC CTC ACC CGT GAC CCC ACC ACC			526
	Asp Ala Ser Gly Lys Arg Val Tyr Tyr Leu Thr Arg Asp Pro Thr Thr			
	160	165	170	175
35	CCC CTT GCG CGG GCT GCG TGG GAG ACA GCT AGA CAC ACT CCA GTC AAC			574
	Pro Leu Ala Arg Ala Ala Trp Glu Thr Ala Arg His Thr Pro Val Asn			
	180	185	190	
40	TCC TGG CTA GGC AAC ATC ATC ATG TAT GCG CCC ACC TTA TGG GCA AGG			622
	Ser Trp Leu Gly Asn Ile Ile Met Tyr Ala Pro Thr Leu Trp Ala Arg			
	195	200	205	
	ATG ATT CTG ATG ACC CAC TTC TTC ATC CTT CTA GCC CAG GAG CAA			670
	Met Ile Leu Met Thr His Phe Phe Ser Ile Leu Leu Ala Gln Glu Gln			
45	210	215	220	

CTT GAA AAA GCC CTA GAT TGT CAG ATC TAT GGG GCC ACT TAC TCC ATT 718
 Leu Glu Lys Ala Leu Asp Cys Gln Ile Tyr Gly Ala Thr Tyr Ser Ile
 225 230 235
 5 GAG CCA CTT GAC CTA CCT CAG ATC ATT CAA CGA CTC CAT GGT CTT AGC 766
 Glu Pro Leu Asp Leu Pro Gln Ile Ile Gln Arg Leu His Gly Leu Ser
 240 245 250 255
 GCA TTT TCA CTC CAT AGT TAC TCT CCA GGT GAG ATC AAT AGG GTG GCT 814
 10 Ala Phe Ser Leu His Ser Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala
 260 265 270
 TCA TGC CTC AGG AAA CTT GGG GTA CCG CCC TTG CGA GTC TGG AGA CAT 862
 Ser Cys Leu Arg Lys Leu Gly Val Pro Pro Leu Arg Val Trp Arg His
 15 275 280 285
 CGG GCC AGA AGC GTC CGC GCT AAG CTA CTG TCC CAG GGG GGG AGG GCC 910
 Arg Ala Arg Ser Val Arg Ala Lys Leu Leu Ser Gln Gly Gly Arg Ala
 290 295 300
 20 GCC ACC TGT GGC AAA TAC CTC TTC AAC TGG GCA GTA AAG ACC AAG CTC 958
 Ala Thr Cys Gly Lys Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu
 305 310 315
 AAA CCC ACT CCA ATC CCG GAA GCG TCC CAG CTG GAC TTG TCC GGC TGG 1006
 25 Lys Pro Thr Pro Ile Pro Glu Ala Ser Gln Leu Asp Leu Ser Gly Trp
 320 325 330 335-
 TTC GTT GCT GGT TAC AGC GGG GGA GAC ATA TAT CAC AGC CTG TCT CGT 1054
 Phe Val Ala Gly Tyr Ser Gly Gly Asp Ile Tyr His Ser Leu Ser Arg
 30 340 345 350
 GCC CGA CCC CGC TGG TTT ATG TGG TGC CTA CTC CTA CTT TCC GTA GGG 1102
 Ala Arg Pro Arg Trp Phe Met Trp Cys Leu Leu Leu Ser Val Gly
 355 360 365
 35 GTA GGC ATC TAC CTG CTC CCC AAC CGA TGA GCG GGG AGC TAA ACA CTC 1150
 Val Gly Ile Tyr Leu Leu Pro Asn Arg StopAla Gly Ser StopThr Leu
 370 375 380
 CAG GCC AAT AGG CCA TCC C C 1170
 40 Gln Ala Asn Arg Pro Ser
 385

SEQ ID NO:100

SEQUENCE LENGTH: 1171 base pairs

45 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

5 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: O30-4

10	TG GGG ATC CCG TAT GAT ACC CGC TGC TTT GAC TCA ACA GTC ACT GAG	47
	Gly Ile Pro Tyr Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu	
	1 5 10 15	
15	AAT GAC ATC CGT GTT GAG GAG TCA ATT TAC CAA TGT TGT GAC TTG GCC	95
	Asn Asp Ile Arg Val Glu Glu Ser Ile Tyr Gln Cys Cys Asp Leu Ala	
	20 25 30	
20	CCC GAG GCC AGA CAG GCC ATA AGG TCG CTC ACA GAG CGG CTT TAC ATC	143
	Pro Glu Ala Arg Gln Ala Ile Arg Ser Leu Thr Glu Arg Leu Tyr Ile	
	35 40 45	
25	GGG GGC CCC CTG ACT AAT TCA AAG GGG CAG AAC TGC GGT TAT CGC CGG	191
	Gly Gly Pro Leu Thr Asn Ser Lys Gly Gln Asn Cys Gly Tyr Arg Arg	
	50 55 60	
30	TGC CGC GCC AGC GGC GTG CTG ACG ACT AGC TGC GGT AAT ACC CTC ACA	239
	Cys Arg Ala Ser Gly Val Leu Thr Thr Ser Cys Gly Asn Thr Leu Thr	
	65 70 75	
35	TGT TAC TTG AAG GCC TCT GCA GCC TGT CGA GCT GCA AAG CTC CAG GAC	287
	Cys Tyr Leu Lys Ala Ser Ala Ala Cys Arg Ala Ala Lys Leu Gln Asp	
	80 85 90 95	
40	TGC ACG ATG CTT GTG TGC GGA GAC GAC CTT GTC GTT ATC TGT GAA AGC	335
	Cys Thr Met Leu Val Cys Gly Asp Asp Leu Val Val Ile Cys Glu Ser	
	100 105 110	
45	GCG GGA ACT CAG GAG GAC GCG GCG AGC CTA CGA GTC TTC ACG GAG GCT	383
	Ala Gly Thr Gln Glu Asp Ala Ala Ser Leu Arg Val Phe Thr Glu Ala	
	115 120 125	
50	ATG ACT AGG TAC TCT GCC CCC CCC GGG GAC GAC CCG CCC CAA CCA GAA TAC	431
	Met Thr Arg Tyr Ser Ala Pro Pro Gly Asp Pro Pro Gln Pro Glu Tyr	
	130 135 140	
55	GAC TTG GAG CTG ATA ACA TCA TGC TCC TCC AAT GTG TCG GTC GCG CAC	479
	Asp Leu Glu Leu Ile Thr Ser Cys Ser Ser Asn Val Ser Val Ala His	

	145	150	155	
	GAC GCA TCA GGC AAA CGG GTG TAC TAT CTC ACC CGT GAC CCC CCC ACC			527
5	Asp Ala Ser Gly Lys Arg Val Tyr Tyr Leu Thr Arg Asp Pro Pro Thr			
	160	165	170	175
	CCC CTT GCG CGG GCT GCG TGG GAG ACA GCT AGA CAC ACT CCA GTC AAC			575
	Pro Leu Ala Arg Ala Ala Trp Glu Thr Ala Arg His Thr Pro Val Asn			
10	180	185	190	
	TCC TGG CTA GGC AAC ATC ATC ATG TAC GCG CCC ACC TTA TGG GCA AGG			623
	Ser Trp Leu Gly Asn Ile Ile Met Tyr Ala Pro Thr Leu Trp Ala Arg			
15	195	200	205	
	ATG ATT CTG ATG ACC CAC TTC TTC TCC ATC CTT CTA GCC CAG GAG CAA			671
	Met Ile Leu Met Thr His Phe Phe Ser Ile Leu Leu Ala Gln Glu Gln			
20	210	215	220	
	CTT GAA AAA GCC CTA GAT TGT CAG ATC TAC GGG GCC ACT TAC TCC ATT			719
	Leu Glu Lys Ala Leu Asp Cys Gln Ile Tyr Gly Ala Thr Tyr Ser Ile			
25	225	230	235	
	GAG CCA CTT GAC CTA CCT CAG ATC ATT CAA CGA CTC CAT GGT CTT AGC			767
	Glu Pro Leu Asp Leu Pro Gln Ile Ile Gln Arg Leu His Gly Leu Ser			
30	240	245	250	255
	GCA TTT TCA CTC CAT AGT TAC TCT CCA GGT GAG ATC AAT AGG GTG GCT			815
	Ala Phe Ser Leu His Ser Tyr Ser Pro Gly Glu Ile Asn Arg Val Ala			
35	260	265	270	
	TCA TGC CTC AGG AAA CTT GGG GTA CCG CCC TTG CGA GTC TGG AGA CAT			863
	Ser Cys Leu Arg Lys Leu Gly Val Pro Pro Leu Arg Val Trp Arg His			
40	275	280	285	
	CGG GCC AGA AGC GTC CGC GCT AAG CTA CTG TCC CAG GGG GGG AGG GCC			911
	Arg Ala Arg Ser Val Arg Ala Lys Leu Leu Ser Gln Gly Gly Arg Ala			
45	290	295	300	
	GCC ACC TGT GGC AAA TAC CTC TTC AAC TGG GCA GTA AAG ACC AAG CTC			959
	Ala Thr Cys Gly Lys Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu			
50	305	310	315	
	AAA CTC ACT CCA ATC CCG GAA GCG TCC CAG CTG GAC TTG TCC GGC TGG			1007
	Lys Leu Thr Pro Ile Pro Glu Ala Ser Gln Leu Asp Leu Ser Gly Trp			
55	320	325	330	335
	TTC GTT GCT GGT TAC AGC GGG GGA GAC ATA TAT CAC AGC CTG TCT CGT			1055
	Phe Val Ala Gly Tyr Ser Gly Gly Asp Ile Tyr His Ser Leu Ser Arg			
	340	345	350	

EP 0 518 313 A2

SEQ ID NO:101

15 SEQUENCE LENGTH: 7911 base pairs
SEQUENCE TYPE: nucleic acid
STRANDEDNESS: double
TOPOLOGY: linear
20 ANTI-SENSE: No
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus
IMMEDIATE EXPERIMENTAL SOURCE
CLONE: T7N1-30
25

	ACTAGTTAAT ACGACTCACT ATAGGGGCC AGCCCCCTGA TGGGGGCGAC ACTCCACCAT	60
30	AGATCACTCC CCTGTGAGGA ACTACTGTCT TCACGCAGAA AGCGTCTAGC CATGGCGTTA	120
	GTATGAGTGT CGTGCAGCCT CCAGGACCCC CCCTCCCGGG AGAGCCATAG TGGTCTGCGG	180
	AACCGGTGAG TACACCGGAA TTGCCAGGAC GACCGGGTCC TTTCTGGAT CAACCCGCTC	240
	AATGCCCTGGA GATTTGGGCG TGCCCCCGCG AGACTGCTAG CCGAGTAGTG TTGGGTCGCG	300
	AAAGGCCTTG TGGTACTGCC TGATAGGGTG CTTGCGAGTG CCCCGGGAGG TCTCGTAGAC	360
35	CGTGCATC ATG AGC ACA AAT CCA AAA CCC CAA AGA AAA ATC AAA CGT AAC	410
	Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Ile Lys Arg Asn	
	1 5 10	
	ACC AAC CGC CGC CCA CAG GAC GTT AAG TTC CCG GGC GGT GGT CAG ATC	458
	Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile	
40	15 20 25 30	
	GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG TTG GGT GTG	506
	Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val	
	35 40 45	
45	CGC GCG ACT AGG AAG ACT TCC GAG CGG CCG CAA CCT CGT GGA AGG CGA	554

50

55

	Arg Ala Thr Arg Lys Thr Ser Glu Arg Pro Gln Pro Arg Gly Arg Arg			
	50	55	60	
5	CAA CCT ATC CCC AAG GCT CGC CAA CCC GAG GGT AGG GCC TGG GCT CAG		602	
	Gln Pro Ile Pro Lys Ala Arg Gln Pro Glu Gly Arg Ala Trp Ala Gln			
	65	70	75	
10	CCC GGG TAC CCT TGG CCC CTC TAT GGC AAT GAG GGC TTG GGG TGG GCA		650	
	Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp Ala			
	80	85	90	
15	GGA TGG CTC CTG TCA CCC CGC GGC TCC CGG CCT AGT TGG GGC CCC ACG		698	
	Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr			
	95	100	105	110
20	GAC CCC CGG CGT AGG TCG CGT AAT TTG GGT AAG GTC ATC GAT ACC CTC		746	
	Asp Pro Arg Arg Ser Arg Asn Leu Gly Lys Val Ile Asp Thr Leu			
	115	120	125	
25	ACA TGC GGC TTC GCC GAC CTC ATG GGG TAC ATT CCG CTC GTC GGC GCC		794	
	Thr Cys Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Leu Val Gly Ala			
	130	135	140	
30	CCC CTA GGG GGC GCT GCC AGG GCT CTA GCG CAT GGC GTC CGG GTT CTG		842	
	Pro Leu Gly Gly Ala Ala Arg Ala Leu Ala His Gly Val Arg Val Leu			
	145	150	155	
35	GAG GAC GGC GTG AAC TAT GCA ACA GGG AAT CTG CCT GGT TGC TCC TTT		890	
	Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Cys Ser Phe			
	160	165	170	
40	TCT ATC TTC CTT TTG GCT TTG CTG TCC TGT TTG ACC ATC CCA GCT TCC		938	
	Ser Ile Phe Leu Leu Ala Leu Leu Ser Cys Leu Thr Ile Pro Ala Ser			
	175	180	185	190
45	GCC TAC CAA GTG CGC AAC GCG TCC GGG GTG TAC CAT GTC ACG AAC GAC		986	
	Ala Tyr Gln Val Arg Asn Ala Ser Gly Val Tyr His Val Thr Asn Asp			
	195	200	205	
	TGC TCC AAC TCA AGT ATT GTG TAT GAG GCG GCG GAC GTG ATT ATG CAC		1034	
	Cys Ser Asn Ser Ser Ile Val Tyr Glu Ala Ala Asp Val Ile Met His			
	210	215	220	
	ACC CCC GGG TGC GTG CCC TGC GTC CGG GAG AAC AAT TCC TCC CGC TGC		1082	
	Thr Pro Gly Cys Val Pro Cys Val Arg Glu Asn Asn Ser Ser Arg Cys			
	225	230	235	
	TGG GTA GCG CTC ACT CCC ACG CTT GCG GCC AGG AAC AGC AGC ATC CCC		1130	
	Trp Val Ala Leu Thr Pro Thr Leu Ala Ala Arg Asn Ser Ser Ile Pro			

EP 0 518 313 A2

	240	245	250	
	ACT ACG ACA ATA CGG CGT CAT GTC GAC TTG CTC GTT GGG GCA GCT GCT			1178
5	Thr Thr Thr Ile Arg Arg His Val Asp Leu Leu Val Gly Ala Ala Ala			
	255	260	265	270
	CTC TGT TCC GCT ATG TAT GTG GGG GAT TTT TGC GGA TCT GTT TTC CTC			1226
	Leu Cys Ser Ala Met Tyr Val Gly Asp Phe Cys Gly Ser Val Phe Leu			
	275	280	285	
10	GTC TCC CAG CTG TTC ACT TTC TCA CCT CGC CGG TAT GAG ACG GTG CAA			1274
	Val Ser Gln Leu Phe Thr Phe Ser Pro Arg Arg Tyr Glu Thr Val Gln			
	290	295	300	
15	GAC TGC AAT TGC TCA ATC TAT CCC GGC CAT GTA TCA GGC CAT CGC ATG			1322
	Asp Cys Asn Cys Ser Ile Tyr Pro Gly His Val Ser Gly His Arg Met			
	305	310	315	
	GCT TGG GAT ATG ATA ATG AAT TGG TCA CCT ACA ACA GCC CTA GTG GTA			1370
	Ala Trp Asp Met Ile Met Asn Trp Ser Pro Thr Thr Ala Leu Val Val			
20	320	325	330	
	TCG CAG CTA CTC CGG ATC CCA CAA GCC GTG GTG GAT ATG GTG GCA GGG			1418
	Ser Gln Leu Leu Arg Ile Pro Gln Ala Val Val Asp Met Val Ala Gly			
	335	340	345	350
25	GCC CAC TGG GGA GTC CTG GCG GGC CTT GCC TAC TAT TCC ATG GTG GGG			1466
	Ala His Trp Gly Val Leu Ala Gly Leu Ala Tyr Tyr Ser Met Val Gly			
	355	360	365	
	AAC TGG GCT AAG GTC TTG GTT GTG ATG CTG CTC TTC GCC GGT GTT GAC			1514
30	Asn Trp Ala Lys Val Leu Val Val Met Leu Leu Phe Ala Gly Val Asp			
	370	375	380	
	GGG GGG ACC CAC GTG ACA GGG GGG AAG GTA GCC TAC ACC ACC CAG GGC			1562
	Gly Gly Thr His Val Thr Gly Gly Lys Val Ala Tyr Thr Thr Gln Gly			
35	385	390	395	
	TTT ACA TCC TTC TTT TCA CGA GGG CCG TCT CAG AAA ATC CAA CTT GTA			1610
	Phe Thr Ser Phe Phe Ser Arg Gly Pro Ser Gln Lys Ile Gln Leu Val			
	400	405	410	
40	AAC ACT AAC GGC AGC TGG CAC ATC AAT AGG ACT GCC CTC AAT TGC AAT			1658
	Asn Thr Asn Gly Ser Trp His Ile Asn Arg Thr Ala Leu Asn Cys Asn			
	415	420	425	430
	GAC TCC CTT AAC ACC GGG TTC CTT GCC GCG CTG TTC TAC ACC CAC AGC			1706
	Asp Ser Leu Asn Thr Gly Phe Leu Ala Ala Leu Phe Tyr Thr His Ser			
45	435	440	445	

EP 0 518 313 A2

	TTC AAC GCG TCC GGA TGT CCG GAG CGT ATG GCC GGT TGC CGC CCC ATT	1754
	Phe Asn Ala Ser Gly Cys Pro Glu Arg Met Ala Gly Cys Arg Pro Ile	
	450 455 460	
5	GAC GAG TTC GCT CAG GGG TGG GGT CCC ATC ACT CAT GTT GTG CCT AAC	1802
	Asp Glu Phe Ala Gln Gly Trp Gly Pro Ile Thr His Val Val Pro Asn	
	465 470 475	
	ATC TCG GAC CAG AGG CCC TAT TGC TGG CAC TAC GCG CCT CGA CCG TGT	1850
10	Ile Ser Asp Gln Arg Pro Tyr Cys Trp His Tyr Ala Pro Arg Pro Cys	
	480 485 490	
	GGT ATC GTA CCC GCG TCG CAG GTG TGT GGT CCG GTG TAT TGC TTC ACC	1898
	Gly Ile Val Pro Ala Ser Gln Val Cys Gly Pro Val Tyr Cys Phe Thr	
15	495 500 505 510	
	CCA AGC CCT GTT GTG GTG GGG ACG ACC GAT CGT TTC GGC GCC CCC ACG	1946
	Pro Ser Pro Val Val Val Gly Thr Thr Asp Arg Phe Gly Ala Pro Thr	
	515 520 525	
20	TAC AAC TGG GGA AAC AAT GAG ACG GAT GTG CTA CTC CTC AAC AAC ACA	1994
	Tyr Asn Trp Gly Asn Asn Glu Thr Asp Val Leu Leu Leu Asn Asn Thr	
	530 535 540	
	CGG CCG CCG CAG GGC AAC TGG TTC GGT ACC TGG ATG AAT GGC ACT	2042
25	Arg Pro Pro Gln Gly Asn Trp Phe Gly Cys Thr Trp Met Asn Gly Thr	
	545 550 555	
	GGG TTC ACA AAG ACG TGC GGG GGC CCC CCG TGC AAC ATC GGG GGG GTC	2090
	Gly Phe Thr Lys Thr Cys Gly Gly Pro Pro Cys Asn Ile Gly Gly Val	
	560 565 570	
30	GGC AAC AAT ACC TTG ACT TGC CCC ACG GAC TGC TTC CGG AAG CAC CCC	2138
	Gly Asn Asn Thr Leu Thr Cys Pro Thr Asp Cys Phe Arg Lys His Pro	
	575 580 585 590	
	GAG GCC ACT TAC ACA AAA TGT GGT TCG GGG CCT TGG TTG ACA CCT AGG	2186
35	Glu Ala Thr Tyr Thr Lys Cys Gly Ser Gly Pro Trp Leu Thr Pro Arg	
	595 600 605	
	TGC CTA GTT CAT TAC CCA TAC AGG CTC TGG CAC TAT CCC TGC ACT GTC	2234
	Cys Leu Val His Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val	
40	610 615 620	
	AAC TTT ACC ATC TTC AAG GTT AGG ATG TAT GTG GGG GGC GTG GAA CAC	2282
	Asn Phe Thr Ile Phe Lys Val Arg Met Tyr Val Gly Gly Val Glu His	
	625 630 635	
45	AGG CTT GAA GCT GCA TGC AAT TGG ACC CGA GGA GAG CGT TGT GAC TTG	2330

	Arg Leu Glu Ala Ala Cys Asn Trp Thr Arg Gly Glu Arg Cys Asp Leu		
	640	645	650
5	GAG GAC AGG GAT AGA TCA GAG CTT AGC CCG CTA TTG CTG TCC ACA ACA	2378	
	Glu Asp Arg Asp Arg Ser Glu Leu Ser Pro Leu Leu Ser Thr Thr		
	655	660	665
	GAG TGG CAG GTA CTG CCC TGT TCC TTC ACC ACC CTG CCG GCT CTG TCC	2426	
	Glu Trp Gln Val Leu Pro Cys Ser Phe Thr Thr Leu Pro Ala Leu Ser		
10	675	680	685
	ACT GGT TTG ATT CAT CTC CAT CAG AAC ATC GTG GAC GTG CAA TAT CTG	2474	
	Thr Gly Leu Ile His Leu His Gln Asn Ile Val Asp Val Gln Tyr Leu		
	690	695	700
15	TAC GGC ATA GGG TCG GCG GTT GTC TCC TTC GCA ATC AAA TGG GAA TAT	2522	
	Tyr Gly Ile Gly Ser Ala Val Val Ser Phe Ala Ile Lys Trp Glu Tyr		
	705	710	715
	ATT CTG TTG CTT TTC CTC CCC CTG GCG GAC GCG CGC GTC TGT GCC TGG	2570	
20	Ile Leu Leu Leu Phe Leu Pro Leu Ala Asp Ala Arg Val Cys Ala Trp		
	720	725	730
	TTG TGG ATG ATG CTG CTG ATA GCC CAA GCT GAG GCC GCC TTG GAG AAC	2618	
	Leu Trp Met Met Leu Leu Ile Ala Gln Ala Glu Ala Ala Leu Glu Asn		
25	735	740	745
	CTG GTG GTC CTC AAT GCA GCA TCC ATG GCG GGA GCG CAT GGC ATC CTC	2666	
	Leu Val Val Leu Asn Ala Ala Ser Met Ala Gly Ala His Gly Ile Leu		
	755	760	765
30	TCT TTC CTT GTG TTC TTC TGT GCC GCC TGG TAC ATC AAA GGC AGG CTG	2714	
	Ser Phe Leu Val Phe Phe Cys Ala Ala Trp Tyr Ile Lys Gly Arg Leu		
	770	775	780
	GTC CCT GGG GCG GCA TAC GCT TTC TAT GGC GTA TGG CCG CTG CTC CTG	2762	
	Val Pro Gly Ala Ala Tyr Ala Phe Tyr Gly Val Trp Pro Leu Leu Leu		
35	785	790	795
	CTC TTG ATG GCG CTA CCC GCA CGG GCG TAC GCC ATG GAC CGG GAG ATG	2810	
	Leu Leu Met Ala Leu Pro Ala Arg Ala Tyr Ala Met Asp Arg Glu Met		
	800	805	810
40	GCT GCA TCG TGC GGA GGC GCG GTT TTT GTA GGT CTG GTA CTC TTG ACC	2858	
	Ala Ala Ser Cys Gly Gly Ala Val Phe Val Gly Leu Val Leu Leu Thr		
	815	820	825
	TTG TCA CCA TAC TAC AAA GTG TTC CTC GCT AAG CTC ATA TGG TGG TTG	2906	
45	Leu Ser Pro Tyr Tyr Lys Val Phe Leu Ala Lys Leu Ile Trp Trp Leu		

EP 0 518 313 A2

	835	840	845
	CAA TAT CTC ATC ACC AGG GCC GAG GCG CAC TTG CAA GTG TGG ATC CCC	2954	
5	Gln Tyr Leu Ile Thr Arg Ala Glu Ala His Leu Gln Val Trp Ile Pro		
	850	855	860
	CCC CTC AAC GTT CGG GGG GGC CGC GAT GCC ATC ATC CTT CTC ACA TGT	3002	
	Pro Leu Asn Val Arg Gly Gly Arg Asp Ala Ile Ile Leu Leu Thr Cys		
10	865	870	875
	GCG GTC CAC CCG GAG CTG ATC TTT GAC ATC ACC AAG CTC TTG CTC GCC	3050	
	Ala Val His Pro Glu Leu Ile Phe Asp Ile Thr Lys Leu Leu Leu Ala		
	880	885	890
15	ATA CTC GGT CCG CTC ATG GTA CTC CAG GCT GGC CTA ACC CAA ATG CCG	3098	
	Ile Leu Gly Pro Leu Met Val Leu Gln Ala Gly Leu Thr Gln Met Pro		
	895	900	905
	TAC TTT GTG CGT GCT CAA GGG CTC ATT CGT ATG TGC ATG TTG GTG CGG	3146	
	Tyr Phe Val Arg Ala Gln Gly Leu Ile Arg Met Cys Met Leu Val Arg		
20	915	920	925
	AAA GCC GCT GGG GGT CAT TAT GTC CAG ATG GCT CTC ATG AAG CTG GCT	3194	
	Lys Ala Ala Gly Gly His Tyr Val Gln Met Ala Leu Met Lys Leu Ala		
	930	935	940
25	GCA CTG ACA GGT ACG TAC GTT TAT GAC CAT CTT ACT CCA CTG CAG GAC	3242	
	Ala Leu Thr Gly Thr Tyr Val Tyr Asp His Leu Thr Pro Leu Gln Asp		
	945	950	955
	TGG GCC CAC GCG GGC CTA CGA GAC CTT GCG GTA GCA GTT GAG CCC GTT	3290	
30	Trp Ala His Ala Gly Leu Arg Asp Leu Ala Val Ala Val Glu Pro Val		
	960	965	970
	GTC TTC TCT GAT ATG GAG ACT AAG ATC ATC ACG TGG GGG GCA GAG ACG	3338	
	Val Phe Ser Asp Met Glu Thr Lys Ile Ile Thr Trp Gly Ala Glu Thr		
35	975	980	985
	GCG GCG TGT GGG GAC ATC ATC TCG AGT CTA CCC GTT TCC GCC CGA AGG	3386	
	Ala Ala Cys Gly Asp Ile Ile Ser Ser Leu Pro Val Ser Ala Arg Arg		
	995	1000	1005
40	GGG AGG GAG CTG CTT TTG GGA CCG GCC GAT AGT TTT GAC GGG CAG GGG	3434	
	Gly Arg Glu Leu Leu Gly Pro Ala Asp Ser Phe Asp Gly Gln Gly		
	1010	1015	1020
	TGG CGA CTC CTT GCG CCT ATC ACG GCC TAC TCC CAG CAG ACG CGG GGC	3482	
45	Trp Arg Leu Leu Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly		
	1025	1030	1035

CTG CTT GGT TGC ATC ATC ACC AGC CTT ACG GGC CGG GAT AAG AAC CAG 3530
 Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln
 1040 1045 1050
 5 GTC GAG GGG GAG GTT CAA GTG GTC TCT ACC GCA ACA CAA TCT TTC CTG 3578
 Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu
 1055 1060 1065 1070
 GCG ACC TGC ATC AAC GGC GTT TGC TGG ACT GTT TTC CAC GGC GCC GGC 3626
 10 Ala Thr Cys Ile Asn Gly Val Cys Trp Thr Val Phe His Gly Ala Gly
 1075 1080 1085
 TCG AAG ACC TTA GCC GGC CCA AAA GGC CCA ATC ACC CAA ATG TAC ACC 3674
 Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr
 1090 1095 1100
 15 AAT GTA GAT CAG GAC CTC GTC GGC TGG TCG GCG CCC CCC GGG GCG CGT 3722
 Asn Val Asp Gln Asp Leu Val Gly Trp Ser Ala Pro Pro Gly Ala Arg
 1105 1110 1115
 TCC TTG ACA CCT TGC ACC TGC GGC AGC TCG GAC CTT TAT TTG GTC ACG 3770
 20 Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr
 1120 1125 1130
 AGG CAT GCT GAT GTC ATT CCG GTG CAC CGG CGG GGC GAC AGC AGG GGG 3818
 Arg His Ala Asp Val Ile Pro Val His Arg Arg Gly Asp Ser Arg Gly
 25 1135 1140 1145 1150
 AGC CTC CTC TCC CCC GGG CCC ATC TCT TAC TTG AAG GGT TCC TCG GGT 3866
 Ser Leu Leu Ser Pro Gly Pro Ile Ser Tyr Leu Lys Gly Ser Ser Gly
 1155 1160 1165
 30 GGT CCG CTG CCT TGC CCC TCG GGC CGT GTT GTG GGC ATC TTC CGG GCT 3914
 Gly Pro Leu Pro Cys Pro Ser Gly Arg Val Val Gly Ile Phe Arg Ala
 1170 1175 1180
 GCC GTG TGC ACC CGG GGG GTT GCG AAG GCG GTG GAC TTT GTG CCC GTT 3962
 35 Ala Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val
 1185 1190 1195
 GAG TCT ATG GAA ACC ACC ATG CGG TCT CCG GTC TTC ACG GAT AAC TCA 4010
 Glu Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser
 40 1200 1205 1210
 ACC CCC CCG GCC GTA CCG CAG ACA TTC CAA GTG GCC CAC CTA CAC GCT 4058
 Thr Pro Pro Ala Val Pro Gln Thr Phe Gln Val Ala His Leu His Ala
 1215 1220 1225 1230
 45 CCC ACT GGC AGC GGC AAA AGC ACC AGG GTG CCG GCT GCG TAT GCG GCC 4106

Pro Thr Gly Ser Gly Lys Ser Thr Arg Val Pro Ala Ala Tyr Ala Ala
 1235 1240 1245
 CAA GGG TAC AAG GTA CTC GTC CTG AAC CCG TCC GTT GCT GCC ACT TTG 4154
 5 Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu
 1250 1255 1260
 GGC TTT GGG GCG TAC ATG TCC AAG GCA CAT GGT GTT GAC CCT AAC ATC 4202
 Gly Phe Gly Ala Tyr Met Ser Lys Ala His Gly Val Asp Pro Asn Ile
 10 1265 1270 1275
 AGA ACT GGG GTG AGG ACC ATC ACC ACG GGC GCT CCC ATC ACG TAC TCC 4250
 Arg Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Ile Thr Tyr Ser
 1280 1285 1290
 15 ACC TAC GGT AAG TTC CTC GCC GAC GGT GGC TGT TCT GGG GGT GCC TAT 4298
 Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr
 1295 1300 1305 1310
 GAC ATC ATA ATA TGT GAT GAG TGT CAT TCA ACT GAC TCG ACT TCC ATC 4346
 20 Asp Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Ser Ile
 1315 1320 1325
 TTG GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA GCG CGC 4394
 Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg
 25 1330 1335 1340
 CTT GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC GTG CCG 4442
 Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro
 1345 1350 1355
 30 CAT CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG ATC CCC 4490
 His Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro
 1360 1365 1370
 TTC TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG AGG CAT 4538
 Phe Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly Arg His
 35 1375 1380 1385 1390
 CTC ATT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT GCG AAG 4586
 Leu Ile Phe Cys His Ser Lys Lys Cys Asp Glu Leu Ala Ala Lys
 1395 1400 1405
 40 CTG TCG GCC CTC GGA GTC AAC GCT GTA GCA TAT TAC CGG GGT CTT GAT 4634
 Leu Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp
 1410 1415 1420
 GTG TCC ATC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA ACA GAC 4682
 45 Val Ser Ile Ile Pro Thr Ser Gly Asp Val Val Val Ala Thr Asp

EP 0 518 313 A2

	1425	1430	1435	
	GCT CTA ATG ACA GCA TAT ACC GGT GAC TTT GAC TCG GTG ATC GAC TGC			4730
	Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys			
5	1440	1445	1450	
	AAC ACA TGT GTC ACC CAA ACA GTC GAT TTC AGC TTG GAC CCT ACT TTC			4778
	Asn Thr Cys Val Thr Gln Thr Val Asp Phe Ser Leu Asp Pro Thr Phe			
10	1455	1460	1465	1470
	ACC ATC GAG ACG ACG ACC GTA CCC CAA GAT GCG GTG TCG CGC TCG CAG			4826
	Thr Ile Glu Thr Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln			
15	1475	1480	1485	
	CGG CGA GGC AGG ACT GGT AGG GGC AGG GGG GGC ATA TAC AGG TTT GTA			4874
	Arg Arg Gly Arg Thr Gly Arg Gly Gly Ile Tyr Arg Phe Val			
20	1490	1495	1500	
	ACT CCA GGG GAA CGG CCC TCA GGC ATG TTC GAT TCT TCG GTC CTG TGT			4922
	Thr Pro Gly Glu Arg Pro Ser Gly Met Phe Asp Ser Ser Val Leu Cys			
25	1505	1510	1515	
	GAA TGT TAT GAC GCG GGC TGT GCT TGG TAC GAG CTC ACG CCC GCC GAG			4970
	Glu Cys Tyr Asp Ala Gly Cys Ala Trp Tyr Glu Leu Thr Pro Ala Glu			
30	1520	1525	1530	
	ACC TCG GTT AGG TTG CGG GCT TAC CTA AAT ACA CCT GGG CTG CCC GTC			5018
	Thr Ser Val Arg Leu Arg Ala Tyr Leu Asn Thr Pro Gly Leu Pro Val			
35	1535	1540	1545	1550
	TGC CAG GAC CAT CTG GAG TTC TGG GAG AGC GTC TTC ACC GGC CTC ACC			5066
	Cys Gln Asp His Leu Glu Phe Trp Glu Ser Val Phe Thr Gly Leu Thr			
40	1555	1560	1565	
	CAC ATA GAT GCC CAC TTC TTG TCC CAG ACC AAA CAG GCA GGA GAC AAC			5114
	His Ile Asp Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Asp Asn			
45	1570	1575	1580	
	TTC CCC TAC CTG GTA GCA TAC CAG GCT ACA GTG TGC GCC AGG GCC AAG			5162
	Phe Pro Tyr Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys			
50	1585	1590	1595	
	GCT CCA CCT CCA TCG TGG GAT CAG ATG TGG AAG TGT CTC ATA CGG CTG			5210
	Ala Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg Leu			
	1600	1605	1610	
	AAG CCT ACG CTA CAC GGG CCA ACG CCC CTG TTG TAT AGG TTA GGA GCC			5258
	Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ala			
	1615	1620	1625	1630

	GTT CAG AAC GAG GTT ACC CTC ACA CAC CCC ATA ACC AAG TTC ATC ATG	5306
	Val Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile Met	
5	1635 1640 1645	
	GCA TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACT TGG GTG CTG	5354
	Ala Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val Leu	
	1650 1655 1660	
10	GTA GGC GGG GTC CTC GCG GCT CTG GCC GCG TAC TGC CTG ACA ACG GGC	5402
	Val Gly Gly Val Leu Ala Ala Leu Ala Tyr Cys Leu Thr Thr Gly	
	1665 1670 1675	
	AGC GTG GTC ATT GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCC GTT	5450
	Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala Val	
15	1680 1685 1690	
	ATT CCC GAC AGG GAA GTT CTC TAC CAA GAG TTC GAT GAA ATG GAA GAG	5498
	Ile Pro Asp Arg Glu Val Leu Tyr Gln Glu Phe Asp Glu Met Glu Glu	
	1695 1700 1705 1710	
20	TGC GCC TCG CAC CTC CCT TAC ATC GAA CAA GGA ATG CAG CTC GCC GAG	5546
	Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala Glu	
	1715 1720 1725	
	CAA TTC AAG CAG AAG GCG CTC GGT TTG CTG CAA ACA GCC ACC AAG CAA	5594
	Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys Gln	
25	1730 1735 1740	
	GCG GAG GCT GCT CCC GTG GTG GAG TCC AAG TGG CGA GCC CTT GAG	5642
	Ala Glu Ala Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu Glu	
	1745 1750 1755	
30	ACC TTC TGG GCG AAG CAC ATG TGG AAT TTT ATC AGC GGG ATA CAG TAC	5690
	Thr Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr	
	1760 1765 1770	
	TTA GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCA ATA GCA TCA CTG	5738
35	Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser Leu	
	1775 1780 1785 1790	
	ATG GCA TTC ACA GCC TCT ATC ACC AGC CCG CTC ACC ACC CAA TAT ACC	5786
	Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln Tyr Thr	
40	1795 1800 1805	
	CTC CTG TTT AAC ATC TTG GGG GGA TGG GTG GCC GCC CAA CTC GCC CCC	5834
	Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala Pro	
	1810 1815 1820	
45	CCC AGT GCC GCT TCA GCC TTC GTG GGC GCC GGT ATA GCT GGC GCG GCT	5882

	Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala		
	1825	1830	1835
5	GTT GGC AGC ATA GGC CTC GGG AAG GTG CTT GTG GAC ATT CTG GCG GGT		5930
	Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly		
	1840	1845	1850
	TAT GGA GCA GGG GTG GCA GGC GCG CTC GTG GCC TTT AAG GTC ATG AGC		5978
	Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met Ser		
10	1855	1860	1865
	GGT GAC ATG CCC TCC ACC GAG GAC CTG GTC AAC TTA CTC CCC GCC ATC		6026
	Gly Asp Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile		
	1875	1880	1885
15	CTC TCT CCT GGT GCC CTG GTC GTC GGG GTC GTG TGC GCA GCA ATA CTG		6074
	Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile Leu		
	1890	1895	1900
	CGT CGG CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC CGG		6122
20	Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg		
	1905	1910	1915
	CTG ATA GCG TTT GCT TCG CGG GGC AAC CAT GTC TCC CCC ACG CAC TAT		6170
	Leu Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr		
25	1920	1925	1930
	GTG CCT GAA AGC GAC GCC GCA GCG CGC GTC ACC CAG ATC CTC TCC AAC		6218
	Val Pro Glu Ser Asp Ala Ala Ala Arg Val Thr Gln Ile Leu Ser Asn		
	1935	1940	1945
30	CTT ACC ATC ACT CAG CTG TTG AAG AGG CTT CAC CAG TGG ATT AAT GAG		6266
	Leu Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu		
	1955	1960	1965
	GAC TGC TCC ACG CCA TGC TCC GGC TCG TGG CTC AGG GAT GTT TGG GAC		6314
35	Asp Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp		
	1970	1975	1980
	TGG ATA TGC ACG GTA TTG GCT GAT TTC AAG ACC TGG CTC CAG TCC AAG		6362
	Trp Ile Cys Thr Val Leu Ala Asp Phe Lys Thr Trp Leu Gln Ser Lys		
	1985	1990	1995
40	CTC CTG CCG CGG TTA CCG GGG GTC CCT TTT TTC TCA TGC CAG CGT GGG		6410
	Leu Leu Pro Arg Leu Pro Gly Val Pro Phe Phe Ser Cys Gln Arg Gly		
	2000	2005	2010
45	TAC AAG GGG GTT TGG CGG GGA GAT GGC ATC ATG TAT ACC ACC TGC CCA		6458
	Tyr Lys Gly Val Trp Arg Gly Asp Gly Ile Met Tyr Thr Thr Cys Pro		

	2015	2020	2025	2030	
5	TGT GGA GCA CAA ATC ACC GGA CAT GTC AAA AAC GGT TCT ATG AGG ATC				6506
	Cys Gly Ala Gln Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile				
	2035	2040	2045		
	GTT GGG CCT AGA ACC TGT AGC AAC ACG TGG CAC GGA ACA TTT CCC ATC				6554
	Val Gly Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile				
10	2050	2055	2060		
	AAC GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCG GCG CCA AAC TAT				6602
	Asn Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr				
	2065	2070	2075		
15	TCC AGG GCG TTG TGG CGG GTG GCC GCT GAG GAG TAT GTG GAG GTC ACG				6650
	Ser Arg Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr				
	2080	2085	2090		
	CGG GTG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC GTG				6698
	Arg Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val				
20	2095	2100	2105	2110	
	AAA TGC CCA TGC CAG GTT CCG GCC CCC GAA TTC TTC ACA GAA TTG GAT				6746
	Lys Cys Pro Cys Gln Val Pro Ala Pro Glu Phe Phe Thr Glu Leu Asp				
	2115	2120	2125		
25	GGG GTG CGG CTG CAC AGG TAC GCT CCG GCG TGC AAA CCT CTC CTG CGG				6794
	Gly Val Arg Leu His Arg Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg				
	2130	2135	2140		
	GAT GAG GTC ACA TTC CAG GTC GGG CTC AAC CAA TAT ACG GTT GGG TCA				6842
30	Asp Glu Val Thr Phe Gln Val Gly Leu Asn Gln Tyr Thr Val Gly Ser				
	2145	2150	2155		
	CAG CTC CCA TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC ACC TCC ATG				6890
	Gln Leu Pro Cys Glu Pro Asp Val Thr Val Val Thr Ser Met				
35	2160	2165	2170		
	CTC ACC GAC CCC TCC CAC ATT ACA GCA GAG GCG GCT AGG CGT AGG CTG				6938
	Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Arg Arg Arg Leu				
	2175	2180	2185	2190	
40	GCC AGA GGG TCT CCC CCT TCC TTG GCC AGT TCT TCA GCT AGT CAG TTG				6986
	Ala Arg Gly Ser Pro Pro Ser Leu Ala Ser Ser Ser Ala Ser Gln Leu				
	2195	2200	2205		
	TCT GCG CTT TCT TTG TAG GCG ACA TGC ACT ACC CAT CAT GGC GCC CCA				7034
45	Ser Ala Leu Ser Leu StopAla Thr Cys Thr Thr His His Gly Ala Pro				
	2210	2215	2220		

	GAC ACT GAC CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG ATG GGC	7082
	Asp Thr Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu Met Gly	
	2225 2230 2235	
5	GGA AAC ATC ACC CGC GTG GAG TCA GAG AAC AAG ATA GTA ATT CTA GAC	7130
	Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys Ile Val Ile Leu Asp	
	2240 2245 2250	
	TCT TTT GAA CCG CTT CGA GCG GAG GAG GAT GAG AGG GAA GTG TCC GTT	7178
10	Ser Phe Glu Pro Leu Arg Ala Glu Glu Asp Glu Arg Glu Val Ser Val	
	2255 2260 2265 2270	
	GCG GCG GAG ATC CTG CGG AAG ACC AGG AAA TTC CCC GCA GCG ATG CCC	7226
	Ala Ala Glu Ile Leu Arg Lys Thr Arg Lys Phe Pro Ala Ala Met Pro	
15	2275 2280 2285	
	GTA TGG GCA CGC CCG GAC TAC AAC CCA CCA TTA CTA GAG TCT TGG AAG	7274
	Val Trp Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys	
	2290 2295 2300	
20	AAC CCG GAC TAC GTC CCT CCA GTG GTA CAC GGG TGC CCA TTG CCG CCT	7322
	Asn Pro Asp Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro	
	2305 2310 2315	
	ACC AAG GCC CCT CCA ATA CCA CCT CCA CGG AGA AAG AGA ACG GTT GTC	7370
25	Thr Lys Ala Pro Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val	
	2320 2325 2330	
	CTG ACA GAA TCC ACC GTG TCC TCT GCC TTG GCG GAG CTT GCT ACA AAG	7418
	Leu Thr Glu Ser Thr Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys	
30	2335 2340 2345 2350	
	ACC TTT GGC AGT TCC GGA TCG TCG GCC GTC GAC AGC GGC ACG GCG ACC	7466
	Thr Phe Gly Ser Ser Gly Ser Ser Ala Val Asp Ser Gly Thr Ala Thr	
	2355 2360 2365	
35	GGC CCT CCT GAC CAG GCC TCC GCC GAA GGA GAT GCA GGA TCC GAC GCT	7514
	Gly Pro Pro Asp Gln Ala Ser Ala Glu Gly Asp Ala Gly Ser Asp Ala	
	2370 2375 2380	
	GAG TCG TAC TCC TCC ATG CCC CCC CTT GAG GGA GAG CCG GGG GAC CCC	7562
	Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro	
40	2385 2390 2395	
	GAT CTC AAC GAC GGG TCT TGG TCT ACC GTA AGC GAG GAG GCC AGC GAG	7610
	Asp Leu Asn Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu	
	2400 2405 2410	
45	GAC GTC GTC TGC TCG ATG TCC TAC ACA TGG ACA GGC GCC TTA ATT	7658

Asp Val Val Cys Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile
 2415 2420 2425 2430
 ACA CCA TGC GCC GCG GAG GAG AGC AAG CTG CCC ATT AAT GCG CTG AGC 7706
 5 Thr Pro Cys Ala Ala Glu Glu Ser Lys Leu Pro Ile Asn Ala Leu Ser
 2435 2440 2445
 AAC CCT TTG CTG CGC CAC CAC AAC ATG GTC TAT GCC ACA ACA TCC CGC 7754
 Asn Pro Leu Leu Arg His His Asn Met Val Tyr Ala Thr Thr Ser Arg
 10 2450 2455 2460
 AGC GCA AGC CAG CGG CAG AAA AAG GTC ACA TTT GAC AGA CTG CAA GTC 7802
 Ser Ala Ser Gln Arg Gln Lys Lys Val Thr Phe Asp Arg Leu Gln Val
 2465 2470 2475
 15 CTG GAT GAC CAC TAC CGG GAC GTG CTG AAG GAC ATG AAG GCC AAG GCG 7850
 Leu Asp Asp His Tyr Arg Asp Val Leu Lys Asp Met Lys Ala Lys Ala
 2480 2485 2490
 TCC ACA GTT AAG GCT AAA CTT CTA TCT GTA GAG GAA GCC TGC AAG CTG 7898
 20 Ser Thr Val Lys Ala Lys Leu Leu Ser Val Glu Glu Ala Cys Lys Leu
 2495 2500 2505 2510
 ACG CCC CCA CAC T 7911

25 SEQ ID NO:102
 SEQUENCE LENGTH: 1123 base pairs
 SEQUENCE TYPE: nucleic acid
 STRANDEDNESS: double
 30 TOPOLOGY: linear
 ANTI-SENSE: No
 ORIGINAL SOURCE
 ORGANISM: Hepatitis C virus
 IMMEDIATE EXPERIMENTAL SOURCE
 35 CLONE: CN23

AAGCTT ATG AGC ACA AAT CCA AAA CCC CAA AGA AAA ACC AAA CGT AAC 48
 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn
 40 1 5 10
 ACC AAC CGC CGC CCA CAG GAC GTC AAG TTC CCG GGC GGT GGT CAG ATC 96
 Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gln Ile
 45 15 20 25 30
 GTT GGT GGA GTT TAC CTG TTG CCG CGC AGG GGC CCC AGG TTG GGT GTG 144

	Val	Gly	Gly	Val	Tyr	Leu	Leu	Pro	Arg	Arg	Gly	Pro	Arg	Leu	Gly	Val	
	35							40						45			
5	CGC	GCG	ACT	AGG	AAG	ACT	TCC	GAG	CGG	TCG	CAA	CCT	CGT	GGA	AGG	CGA	192
	Arg	Ala	Thr	Arg	Lys	Thr	Ser	Glu	Arg	Ser	Gln	Pro	Arg	Gly	Arg	Arg	
	50							55						60			
10	CAA	CCT	ATC	CCC	AAG	GCT	CGC	CAA	CCC	GAG	GGC	AGG	GCC	TGG	GCT	CAG	240
	Gln	Pro	Ile	Pro	Lys	Ala	Arg	Gln	Pro	Glu	Gly	Arg	Ala	Trp	Ala	Gln	
	65							70						75			
15	CCC	GGG	TAC	CCT	TGG	CCC	CTC	TAT	GGC	AAT	GAG	GGC	TTG	GGG	TGG	GCA	288
	Pro	Gly	Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	Glu	Gly	Leu	Gly	Trp	Ala	
	80							85						90			
20	GGA	TGG	CTC	CTG	TCA	CCC	CGG	GGG	GTT	GCG	AAG	GCG	GTG	GAC	TTT	GTG	336
	Gly	Trp	Leu	Leu	Ser	Pro	Arg	Gly	Val	Ala	Lys	Ala	Val	Asp	Phe	Val	
	95							100						105			110
25	CCC	GTT	GAG	TCT	ATG	GAA	ACC	ACC	ATG	CGG	TCT	CCG	GTC	TTC	ACG	GAT	384
	Pro	Val	Glu	Ser	Met	Glu	Thr	Thr	Met	Arg	Ser	Pro	Val	Phe	Thr	Asp	
	115							120						125			
30	AAC	TCA	ACC	CCC	CCG	GCC	GTA	CCG	CAG	ACA	TTC	CAA	GTG	GCC	CAC	CTA	432
	Asn	Ser	Thr	Pro	Pro	Ala	Val	Pro	Gln	Thr	Phe	Gln	Val	Ala	His	Leu	
	130							135						140			
35	CAC	GCT	CCC	ACT	GGC	AGC	GGC	AAA	AGC	ACC	AGG	GTG	CCG	GCT	GCG	TAT	480
	His	Ala	Pro	Thr	Gly	Ser	Gly	Lys	Ser	Thr	Arg	Val	Pro	Ala	Ala	Tyr	
	145							150						155			
40	GCG	GCC	CAA	GGG	TAC	AAG	GTA	CTC	GTC	CTG	AAC	CCG	TCC	GTT	GCT	GCC	528
	Ala	Ala	Gln	Gly	Tyr	Lys	Val	Leu	Val	Leu	Asn	Pro	Ser	Val	Ala	Ala	
	160							165						170			
45	ACT	TTG	GGC	TTT	GGG	GCG	TAC	ATG	TCC	AAG	GCA	CAT	GGT	GTT	GAC	CCT	576
	Thr	Leu	Gly	Phe	Gly	Ala	Tyr	Met	Ser	Lys	Ala	His	Gly	Val	Asp	Pro	
	175							180						185			190
50	AAC	ATC	AGA	ACT	GGG	GTG	AGG	ACC	ATC	ACC	ACG	GGC	GCT	CCC	ATC	ACG	624
	Asn	Ile	Arg	Thr	Gly	Val	Arg	Thr	Ile	Thr	Thr	Gly	Ala	Pro	Ile	Thr	
	195							200						205			
55	TAC	TCC	ACC	TAC	GGT	AAG	TTC	CTC	GCC	GAC	GGT	GGC	TGT	TCT	GGG	GGT	672
	Tyr	Ser	Thr	Tyr	Gly	Lys	Phe	Leu	Ala	Asp	Gly	Gly	Cys	Ser	Gly	Gly	
	210							215						220			
60	GCC	TAT	GAC	ATC	ATA	ATA	TGT	GAT	GAG	TGT	CAT	TCA	ACT	GAC	TCG	ACT	720
	Ala	Tyr	Asp	Ile	Ile	Ile	Cys	Asp	Glu	Cys	His	Ser	Thr	Asp	Ser	Thr	

	225	230	235	
	TCC ATC TTG GGC ATT GGT ACA GTC CTG GAC CAA GCG GAG ACG GCT GGA			768
5	Ser Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly			
	240	245	250	
	GCG CGC CTT GTC GTG CTC GCC ACC GCT ACG CCT CCG GGA TCG GTC ACC			816
	Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr			
10	255	260	265	270
	G TG CCG CAT CCT AAT ATT GAG GAG GTG GCC TTG TCC AAC ACT GGA GAG			864
	Val Pro His Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu			
	275	280	285	
15	ATC CCC TTC TAT GGC AAG GCC ATC CCC CTC GAG GCC ATC AAG GGG GGG			912
	Ile Pro Phe Tyr Gly Lys Ala Ile Pro Leu Glu Ala Ile Lys Gly Gly			
	290	295	300	
20	AGG CAT CTC ATT TTC TGC CAT TCC AAG AAG AAA TGT GAC GAG CTC GCT			960
	Arg His Leu Ile Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala			
	305	310	315	
	GCG AAG CTG TCG GCC CTC GGA GTC AAC GCT GTA GCA TAT TAC CGG GGT			1008
	Ala Lys Leu Ser Ala Leu Gly Val Asn Ala Val Ala Tyr Tyr Arg Gly			
	320	325	330	
25	CTT GAT GTG TCC ATC ATA CCG ACA AGC GGG GAC GTC GTT GTC GTG GCA			1056
	Leu Asp Val Ser Ile Ile Pro Thr Ser Gly Asp Val Val Val Val Ala			
	335	340	345	350
	ACA GAC GCT CTA ATG ACG GGC TAT ACC GGT GAC TTT GAC TCG GTG ATC			1104
30	Thr Asp Ala Leu Met Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile			
	355	360	365	
	GAC TGC AAC ACA TGA TAA AGATCT			1128
	Asp Cys Asn Thr StopStop			
35	370			

SEQ ID NO:103

SEQUENCE LENGTH: 974 base pairs

40 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

45 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: 015-1

GCGGATCCT CCA CCT CCA TCG TGG GAC CAA ATG TGG AAG TGT CTC ATA CGG 51

5

Pro	Pro	Pro	Ser	Trp	Asp	Gln	Met	Trp	Lys	Cys	Leu	Ile	Arg
1	5												

10

CTG AAA CCT ACG CTA CAC GGG CCA ACA CCC CTG TTG TAT AGG TTA GGA 99

Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly

15 20 25 30

GCC GTT CAA AAC GAG GTC ACC CTC ACA CAC CCC ATA ACC AAA TTC ATC 147
Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile

15

35 40 45

ATG GCA TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACC TGG GTG 195
Met Ala Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val

50 55 60

20

CTG GTA GGC GGG GTC CTC GCA GCT CTG GCC GCG TAC TGC CTG ACA ACG 243
Leu Val Gly Val Leu Ala Ala Leu Ala Tyr Cys Leu Thr Thr

65 70 75

GGC AGC GTG GTC ATC GTG GGC AGG ATC ATC TTG TCC GGG AGG CCG GCT 291
Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala

25

80 85 90

ATC ATT CCC GAC AGG GAA GTT CTC TAC CGT GAG TTC GAT GAA ATG GAG 339
Ile Ile Pro Asp Arg Glu Val Leu Tyr Arg Glu Phe Asp Glu Met Glu

30

95 100 105 110

GAG TGC GCC TCA CAC CTC CCC TAC ATC GAA CAG GGA ATG CAG CTC GCC 387
Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala

115 120 125

35

GAG CAG TTC AAG CAG AAG GCG CTC GGT TTG CAA ACA GCT ACC CAG 435
Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Gln

130 135 140

CAA GCG GAG GCT GCT CCC GTG GTG GAG TCC AAA TGG CGA GCC CTA 483
Gln Ala Glu Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu

40

145 150 155

GAG GCC TTC TGG GCA AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG 531
Glu Ala Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln

160 165 170

45

TAC TTG GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCG ATA GCA TCA 579

50

55

Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser
 175 180 185 190
 CTG ATG GCA TTC ACA GCC TCT ATC ACC AGC CCT CTC ACC ACC CAA CAT 627
 5 Leu Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln His
 195 200 205
 ACC CTC CTG TTT AAC ATC TTG GGG GGA TGG GTA GCC GCC CAA CTC GCC 675
 Thr Leu Leu Phe Asn Ile Leu Gly Gly Trp Val Ala Ala Gln Leu Ala
 10 210 215 220
 CCT CCC AGC GCT GCT TCA GCT TTT GTG GGC GCC GGC ATA GCT GGC GCG 723
 Pro Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala
 15 225 230 235
 GCT GTT GGC AGC ATA GGC CTT GGG AAG GTG CTT GTG GAC ATC CTG GCG 771
 Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala
 20 240 245 250
 GGT TAT GGA GCA GGG GTG GCA GGC CTC GTG GCC TTT AAG GTC ATG 819
 Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met
 25 255 260 265 270
 AGT GGC GAG ATG CCC TCC ACC GAG GAC TTG GTC AAC CTA CTC CCT GCC 867
 Ser Gly Glu Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala
 275 280 285
 25 ATC CTC TCT CCT GGC GCC CTG GTC GTC GGA GTG TGC GCA GCA ATA 915
 Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile
 290 295 300
 30 CTG CGT CGA CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC 963
 Leu Arg Arg His Val Gly Pro Gly Glu Ala Val Gln Trp Met Asn
 305 310 315
 CGG CTG C AGCC 974
 Arg Leu
 35 320

SEQ ID NO:104

SEQUENCE LENGTH: 974 base pairs

40 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

ANTI-SENSE: No

45 ORGANISM: Hepatitis C virus

IMMEDIATE EXPERIMENTAL SOURCE

CLONE: 015-2

5 GCGGATCCT CCA CCT CCA TCG TGG GAC CAA ATG TGG AAG TGT CTC ATA CGG 51
 Pro Pro Pro Ser Trp Asp Gln Met Trp Lys Cys Leu Ile Arg
 10 1 5 10
 10 CTA AAA CCT ACG CTA CAC GGG CCA ACA CCC CTG TTG TAT AGG TTA GGA 99
 Leu Lys Pro Thr Leu His Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly
 15 15 20 25 30
 15 GCC GTT CAA AAC GAG GTC ACC CTC ACA CAC CCC ATA ACC AAG TTC ATC 147
 Ala Val Gln Asn Glu Val Thr Leu Thr His Pro Ile Thr Lys Phe Ile
 20 20 35 40 45
 20 ATG GCA TGC ATG TCG GCT GAC CTA GAG GTC GTC ACT AGC ACC TGG GTG 195
 Met Ala Cys Met Ser Ala Asp Leu Glu Val Val Thr Ser Thr Trp Val
 25 25 50 55 60
 25 CTG GTA GGC GGG GTC CTC GCA GCT CTG GCC GCG TAC TGC CTG ACA ACG 243
 Leu Val Gly Val Leu Ala Ala Leu Ala Ala Tyr Cys Leu Thr Thr
 30 30 65 70 75
 30 GGC AGC GTG GTC ATC GTG GGC AGA ATC ATC TTG TCC GGG AGG CCG GCT 291
 Gly Ser Val Val Ile Val Gly Arg Ile Ile Leu Ser Gly Arg Pro Ala
 35 35 80 85 90
 35 ATC ATT CCC GAC AGG GAG GTT CTC TAC CGG GAG TTC GAT GAA ATG GAG 339
 Ile Ile Pro Asp Arg Glu Val Leu Tyr Arg Glu Phe Asp Glu Met Glu
 40 40 95 100 105 110
 40 GAG TGC GCC TCA CAC CTC CCC TAC ATC GAA CAG GGA ATG CAG CTC GCC 387
 Glu Cys Ala Ser His Leu Pro Tyr Ile Glu Gln Gly Met Gln Leu Ala
 45 45 115 120 125
 45 GAG CAA TTC AAG CAG AAG GCG CTC GGT TTG TTG CAA ACA GCT ACC AAG 435
 Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Thr Lys
 50 50 130 135 140
 50 CAA GCG GAG GCT GCT CCC GTG GTG GAG TCC AAA TGG CGA GCC CTT 483
 Gln Ala Glu Ala Ala Ala Pro Val Val Glu Ser Lys Trp Arg Ala Leu
 55 55 145 150 155
 55 GAG ACC TTC TGG GCA AAG CAC ATG TGG AAT TTC ATC AGC GGG ATA CAG 531
 Glu Thr Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln
 60 60 160 165 170

TAC TTG GCA GGC TTG TCC ACT CTG CCT GGA AAC CCC GCG ATA GCA TCA 579
 Tyr Leu Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Ile Ala Ser
 175 180 185 190
 5 CTG ATG GCA TTC ACA GCC TCT ATC ACC AGC CCT CTC ACC ACC CAA CAT 627
 Leu Met Ala Phe Thr Ala Ser Ile Thr Ser Pro Leu Thr Thr Gln His
 195 200 205
 10 ACC CTC CTG TTT AAC ATC TTT GGG GGA TGG GTG GCC GCC CAA CTC GCC 675
 Thr Leu Leu Phe Asn Ile Phe Gly Gly Trp Val Ala Ala Gln Leu Ala
 210 215 220
 CCT CCC AGC GCT GCT TCA GCT TTT GTG GGC GCC GGC ATA GCT GGC GCG 723
 Pro Pro Ser Ala Ala Ser Ala Phe Val Gly Ala Gly Ile Ala Gly Ala
 15 225 230 235
 GCT GTT GGC AGC ATA GGC CTT GGG AAG GTG CTT GTG GAC ATC CTG GCG 771
 Ala Val Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala
 240 245 250
 20 GGT TAT GGA GCA GGG GTG GCA GGC GCA CTC GTG GCC TTT AAG GTC ATG 819
 Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Ala Phe Lys Val Met
 255 260 265 270
 AGT GGC GAG ATG CCC TCC ACC GAG GAC TTG GTC AAC TTA CTC CCT GCC 867
 Ser Gly Glu Met Pro Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala
 275 280 285
 25 ATC CTC TCT CCT GGC GCC CTG GTC GTC GGA GTC GTG TGC GCA GCA ATA 915
 Ile Leu Ser Pro Gly Ala Leu Val Val Gly Val Val Cys Ala Ala Ile
 290 295 300
 30 CTG CGT CGA CAT GTG GGC CCA GGG GAG GGG GCT GTG CAG TGG ATG AAC 963
 Leu Arg Arg His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn
 305 310 315
 35 CGG CTG C AGCC 974
 Arg Leu
 320

40 SEQ ID NO: 105
 SEQUENCE LENGTH: 19 base pairs
 SEQUENCE TYPE: nucleic acid
 TOPOLOGY: linear
 45 MOLECULE TYPE: cDNA
 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

CTCCACCATAGATCACTCC 19

5

SEQ ID NO: 106

SEQUENCE LENGTH: 18 base pairs

SEQUENCE TYPE: nucleic acid

10

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

15

AGGTCTAGTAGACCGTG 18

SEQ ID NO: 107

20

SEQUENCE LENGTH: 18 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

25

ORGANISM: Hepatitis C virus

AGGAAGACTTCCGAGCGG 18

30

SEQ ID NO: 108

SEQUENCE LENGTH: 19 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

35

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

40

CGTGAACTATGCAACAGGG 19

SEQ ID NO: 109

45

SEQUENCE LENGTH: 18 base pairs

SEQUENCE TYPE: nucleic acid

50

55

5
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

10 ACCGCTCGGAAGTCTTCC 18

15 SEQ ID NO: 110
SEQUENCE LENGTH: 18 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
20 ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

25 GGGCAAGTTCCCTGTTGC 18

30 SEQ ID NO: 111
SEQUENCE LENGTH: 18 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
35 ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

40 GCTGGATTCTCTGAGACG 18

45 SEQ ID NO: 112
SEQUENCE LENGTH: 23 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
50 ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

55 GAGGCCGTGAACTGCGATGA 23

SEQ ID NO: 113
SEQUENCE LENGTH: 23 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

TTCTCTAACGGTGGCNTCNGCNTG 23
N: inosine

SEQ ID NO: 114
SEQUENCE LENGTH: 21 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

CCGGACGCAGTTGAANCTNGNGT 21
N: inosine

SEQ ID NO: 115
SEQUENCE LENGTH: 23 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

CATCCAGGTACAACCGAACCA 23

SEQ ID NO: 116
SEQUENCE LENGTH: 24 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA

5 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

10 AACACACGGCCGCCNCANGNAA 24

N: inosine

15 SEQ ID NO: 117

SEQUENCE LENGTH: 19 base pairs

20 SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

25 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

CCGGATCCCACAAGCCGTNGTNGA 19

30 N: inosine

35 SEQ ID NO: 118

SEQUENCE LENGTH: 20 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

50 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

40 GACATGCATGTCATGATGTA 20

45 SEQ ID NO: 119

SEQUENCE LENGTH: 26 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

55 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

55 GGCTGCAGCCGGTTCATCCACTGCAC 26

SEQ ID NO: 120
SEQUENCE LENGTH: 26 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

GCGGATCCTGCTTCGCCAGAAGGTC 26

SEQ ID NO: 121
SEQUENCE LENGTH: 22 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

GACACATGTGTTGCAGTCGATC 22

SEQ ID NO: 122
SEQUENCE LENGTH: 24 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

CGGTCCNAGNAGTATCTCNTTNCC 24

N: inosine

SEQ ID NO: 123
SEQUENCE LENGTH: 35 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

5 ATGGGCCGGGNGANAGNAGNCTCCCCCTNCTNTC 35

N: inosine

10 SEQ ID NO: 124

SEQUENCE LENGTH: 20 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

15 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

20 GGCTATAACCGGCGACTTCGA 20

25 SEQ ID NO: 125

SEQUENCE LENGTH: 27 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

30 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

35 GCGGATCCGGCCTCACCCACATAGATG 27

40 SEQ ID NO: 126

SEQUENCE LENGTH: 23 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

45 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

50 GCGGATCCTCCACCTCCATCGTG 23

SEQ ID NO: 127

55 SEQUENCE LENGTH: 20 base pairs

SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
5 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

10 CTGCTGTCGCCNGNCCAT 20
N: inosine

15 SEQ ID NO: 128
SEQUENCE LENGTH: 23 base pairs
SEQUENCE TYPE: nucleic acid
20 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

25 ATCACGTGGGNGCAGANACNGC 23
N: inosine

30 SEQ ID NO: 129
SEQUENCE LENGTH: 21 base pairs
35 SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
40 ORGANISM: Hepatitis C virus

45 TGTGCCTGNTTNTGGATGATG 21
N: inosine

50 SEQ ID NO: 130
SEQUENCE LENGTH: 21 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
55 MOLECULE TYPE: cDNA
ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

5 GGTGAGCATGGAGGTGACCA 21

SEQ ID NO: 131

SEQUENCE LENGTH: 21 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

15 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

20 TCATCCTCCTCCGCTCGAAGC 21

SEQ ID NO: 132

SEQUENCE LENGTH: 23 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

30 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

35 GTGGACGCCTTNGCCTTCATNTC 23

N: inosine

40 SEQ ID NO: 133

SEQUENCE LENGTH: 21 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

45 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

50 ACGGATGTCNTTCTCNGTNAC 21

N: inosine

55 SEQ ID NO: 134

SEQUENCE LENGTH: 30 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

10

GGCGGAATTCTGGTCATAGCCTCCGTGAA 30

15

SEQ ID NO: 135
SEQUENCE LENGTH: 21 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

25

GGGNATGCCATTGGCCTG 21
N: inosine

30

SEQ ID NO: 136
SEQUENCE LENGTH: 21 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

40

GGCATGTGGGCCAGGGGAGG 21

45

SEQ ID NO: 137
SEQUENCE LENGTH: 20 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

50

55

TGTGAGCCCGAACCGGATGT 20

5 SEQ ID NO: 138
SEQUENCE LENGTH: 23 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
10 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

15 GTGGTANTCCTGGACTCNTTNGA 23
N: inosine

20 SEQ ID NO: 139
SEQUENCE LENGTH: 22 base pairs
SEQUENCE TYPE: nucleic acid
25 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
30 ORGANISM: Hepatitis C virus

35 ACTACCGNGACGTGCTNAANGA 22
N: inosine

40 SEQ ID NO: 140
SEQUENCE LENGTH: 30 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
45 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

50 TGGGGATCCCGTATGATAACCGCTGCTTTG 30

55 SEQ ID NO: 141
SEQUENCE LENGTH: 24 base pairs
SEQUENCE TYPE: nucleic acid

5
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

10 ATTGTCAGATCTACGGGGCCACTT 24

15 SEQ ID NO: 142
SEQUENCE LENGTH: 43 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
20 ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

25 GCAAGCTTAAAAAAAAAAAAAGGGGGATGCCATTGGCCTGGGA 43

30 SEQ ID NO: 143
SEQUENCE LENGTH: 17 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
35 ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

40 GTAAAACGACGCCAGT 17

45 SEQ ID NO: 144
SEQUENCE LENGTH: 17 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
50 ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

55 CAGGAAACAGCTATGAC 17

SEQ ID NO: 145
SEQUENCE LENGTH: 35 base pairs
SEQUENCE TYPE: nucleic acid
5 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
10 ORGANISM: Hepatitis C virus

GCAAGCTTATGAGCACAAATCCAAAACCCCAAAGA 35

15 SEQ ID NO: 146
SEQUENCE LENGTH: 38 base pairs
SEQUENCE TYPE: nucleic acid
20 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
25 ORGANISM: Hepatitis C virus

GCGAATTTCAGATCTTCACCTACGCCGGGGTCCGTGGG 38

30 SEQ ID NO: 147
SEQUENCE LENGTH: 39 base pairs
SEQUENCE TYPE: nucleic acid
35 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
40 ORGANISM: Hepatitis C virus

GCGAATTTCAGATCTTCAGATTCTCTGAGACGGCCCTCGT 39

45 SEQ ID NO: 148
SEQUENCE LENGTH: 17 base pairs
SEQUENCE TYPE: nucleic acid
50 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
55 ORGANISM: Hepatitis C virus

GCTACTCCGGATACCAC 17

5 SEQ ID NO: 149
SEQUENCE LENGTH: 35 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
10 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus
15

20 GCGTCGACGCTAGCATGAGCACAAATCCAAAACCC 35
SEQ ID NO: 150
SEQUENCE LENGTH: 35 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
25 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus
30

35 GCGTCGACGCTAGCAGGTCTCGTAGACCGTGCATC 35
SEQ ID NO: 151
SEQUENCE LENGTH: 40 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
40 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus
45

50 GCGAATTCGCTAGCTCAGGATTCTCTGAGACGGCCCTCGA 40
SEQ ID NO: 152
SEQUENCE LENGTH: 35 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
55 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

5 GCAAGCTTATGCGGATCCCACAAGCCGTGGTGGAT 35

SEQ ID NO: 153

SEQUENCE LENGTH: 24 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

20 CGGATCCCACAAGCCGTGGTGGAT 24

SEQ ID NO: 154

SEQUENCE LENGTH: 43 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

35 GCGAATTTCAGATTTCATCACTCTAAGGTGGCGTCGGCGTGGG 43

SEQ ID NO: 155

SEQUENCE LENGTH: 11 base pairs

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

50

GCAAGCTTATG 11

55 SEQ ID NO: 156

SEQUENCE LENGTH: 20 base pairs
SEQUENCE TYPE: nucleic acid
STRANDEDNESS: double
5 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
10 ORGANISM: Hepatitis C virus

TGATGAAGATCTGAATT CGC 20

15 SEQ ID NO: 157
SEQUENCE LENGTH: 34 base pairs
SEQUENCE TYPE: nucleic acid
20 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
25 ORGANISM: Hepatitis C virus

GCAAGCTTATGTTCAACGCGTCCGGATGTCCGGA 34

30 SEQ ID NO: 158
SEQUENCE LENGTH: 23 base pairs
SEQUENCE TYPE: nucleic acid
35 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
40 ORGANISM: Hepatitis C virus

TTCAACGCGTCCGGATGTCCGGA 23

45 SEQ ID NO: 159
SEQUENCE LENGTH: 43 base pairs
SEQUENCE TYPE: nucleic acid
50 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
55 ORGANISM: Hepatitis C virus

GCGAATTTCAGATCTTCATCAACAACCGAACCGAGTTGCCCTGCGC 43

5 SEQ ID NO: 160
SEQUENCE LENGTH: 34 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
10 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

15 GCAAGCTTATGATCGGGGGGTGGCAACAATAC 34

20 SEQ ID NO: 161
SEQUENCE LENGTH: 23 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
25 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

30 ATCGGGGGGTGGCAACAATAC 23

35 SEQ ID NO: 162
SEQUENCE LENGTH: 43 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
40 MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

45 GCGAATTTCAGATCTTCATCAAAGCTCTGATCTATCCCTGTCCT 43

50 SEQ ID NO: 163
SEQUENCE LENGTH: 41 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
55 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

5

GCGTCGACGCTAGCATGCGATCCCACAAGCCGTGGTGGAT 41

10

SEQ ID NO: 164

SEQUENCE LENGTH: 40 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

15

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

20

GCGTCGACGCTAGCATGTTAACGCGTCCGGATGTCCGGA 40

25

SEQ ID NO: 165

SEQUENCE LENGTH: 40 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

30

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

35

GCGTCGACGCTAGCATGATGGGGGGTCGGCAACAATAC 40

40

SEQ ID NO: 166

SEQUENCE LENGTH: 40 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

45

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

50

GCGAATTGCGTAGCTCACTCTAAGGTGGCGTCGGCGTGGG 40

55

SEQ ID NO: 167

SEQUENCE LENGTH: 40 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

5 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

10 GCGAATTCTGCTAGCTAACAAACCGAACCGAGTTGCCCTGCG 40

SEQ ID NO: 168

15 SEQUENCE LENGTH: 40 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

20 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

25 GCGAATTCTGCTAGCTAAAGCTCTGATCTATCCCTGTCCT 40

SEQ ID NO: 169

30 SEQUENCE LENGTH: 32 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

35 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

40 GCAAGCTTATGTGGTTGGATGATGCTGCTG 32

SEQ ID NO: :170

45 SEQUENCE LENGTH: 21 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

50 MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

55 TGGTTGTGGATGATGCTGCTG 21

SEQ ID NO: 171
SEQUENCE LENGTH: 44 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

GCGAATTCA¹⁵GATCTTCATCACCTCCGGGCGGAGACNGGNAGNCC 44
N: inosine

SEQ ID NO: 172
SEQUENCE LENGTH: 31 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

GCAAGCTTATGGGCAACGAGNTNCTNCTNGG 31
N: inosine

SEQ ID NO: 173
SEQUENCE LENGTH: 20 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

GGCAACGAGNTNCTNCTNGG 20
N: inosine

SEQ ID NO: 174
SEQUENCE LENGTH: 41 base pairs
SEQUENCE TYPE: nucleic acid
TOPOLOGY: linear

MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

5

GCGAATTCAAGATCTTCATCACTTCAGCCGTATGAGACACTT 41

10 SEQ ID NO: 175

SEQUENCE LENGTH: 31 base pairs

SEQUENCE TYPE: nucleic acid

15 TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

20 ORGANISM: Hepatitis C virus

GCAAGCTTATGCTGTCGCCCGGGCCCATCTC 31

25 SEQ ID NO: 176

SEQUENCE LENGTH: 20 base pairs

SEQUENCE TYPE: nucleic acid

30 TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

35 ORGANISM: Hepatitis C virus

CTGTCGCCCGGGCCCATCTC 20

40 SEQ ID NO: 177

SEQUENCE LENGTH: 41 base pairs

SEQUENCE TYPE: nucleic acid

45 TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

50 ORGANISM: Hepatitis C virus

GCGAATTCAAGATCTTCATCAACATGTGTTGCAGTCGATCAC 41

55 SEQ ID NO: 178

SEQUENCE LENGTH: 32 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

10

GCAAGCTTATGGGCTATACCGGNGACTTNGAC 32

N: inosine

15

SEQ ID NO: 179

SEQUENCE LENGTH: 21 base pairs

SEQUENCE TYPE: nucleic acid

20

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

25

ORGANISM: Hepatitis C virus

GGCTATAACCGGNGACTTNGAC 21

30

N: inosine

SEQ ID NO: 180

SEQUENCE LENGTH: 35 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

40

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

45

GCGAATTTCAGATCTTCAGTGCTTCGCCAGAAGGT 35

SEQ ID NO: 181

SEQUENCE LENGTH: 29 base pairs

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

55

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

5 GCGCTAGCATGTGGTTGTGGATGATGCTG 29

SEQ ID NO: 182

SEQUENCE LENGTH: 38 base pairs

10 SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

15 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

20 GCGAATT CGCTAGCTCACAGCCGGTT CATCCACTGCAC 38

SEQ ID NO: 183

SEQUENCE LENGTH: 32 base pairs

25 SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

30 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

35 GCAAGCTTATGCAGCGTGGGTACAAGGGGGTT 32

SEQ ID NO: 184

SEQUENCE LENGTH: 47 base pairs

40 SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

45 ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

50 GCGAATT CAGATCTTCATCAGAGCTGTGACCCAACCGTATATTGGTT 47

SEQ ID NO: 185

SEQUENCE LENGTH: 33 base pairs

55 SEQUENCE TYPE: nucleic acid

5
TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

10 GCGCTAGCATGGGGTACAAGGGGTTGGCGGG 33

15 SEQ ID NO: 186
SEQUENCE LENGTH: 32 base pairs
SEQUENCE TYPE: nucleic acid
20 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

25 GCGCTAGCTCATCGGTTGGGAGCAGGTAGAT 32

30 SEQ ID NO: 187
SEQUENCE LENGTH: 26 base pairs
SEQUENCE TYPE: nucleic acid
35 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

40 GGATCCCCCAAGCTTGGGGAATT 26

45 SEQ ID NO:188
SEQUENCE LENGTH: 31 base pairs
SEQUENCE TYPE: nucleic acid
50 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
ORGANISM: Hepatitis C virus

55 AGCTTACTAGTTAATACGACTCACTATAGGG 31

SEQ ID NO:189
SEQUENCE LENGTH: 33 base pairs
SEQUENCE TYPE: nucleic acid
5 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
10 ORGANISM: Hepatitis C virus

CTGGCACCCCTATAGTGAGTCGTATTAACCTAGTA 33

15 SEQ ID NO:190
SEQUENCE LENGTH: 44 base pairs
SEQUENCE TYPE: nucleic acid
20 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
25 ORGANISM: Hepatitis C virus

TGCCAGCCCCCTGATGGGGCGACACTCCACCATAGATCACTCC 44

30 SEQ ID NO:191
SEQUENCE LENGTH: 45 base pairs
SEQUENCE TYPE: nucleic acid
35 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
40 ORGANISM: Hepatitis C virus

TCACAGGGGAGTGATCTATGGTGGAGTGTGCCCCCCATCAGGGGG 45

45 SEQ ID NO:192
SEQUENCE LENGTH: 40 base pairs
SEQUENCE TYPE: nucleic acid
50 TOPOLOGY: linear
MOLECULE TYPE: cDNA
ORIGINAL SOURCE
55 ORGANISM: Hepatitis C virus

5 CCTGTGAGGAACACTGTCTCACGCAGAAAGCGTCTAGC 40

10

SEQ ID NO:193

SEQUENCE LENGTH: 37 base pairs

15

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

20

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

25 CATGGCTAGACGCTTCCTGCGTGAAGACAGTAGTTCC 37

30

SEQ ID NO:194

SEQUENCE LENGTH: 33 base pairs

35

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

40

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

45 GCAAGCTTATGCTGCTGTCGCCGGGCCATCT 33

50

SEQ ID NO:195

SEQUENCE LENGTH: 38 base pairs

55

SEQUENCE TYPE: nucleic acid

TOPOLOGY: linear

MOLECULE TYPE: cDNA

45

ORIGINAL SOURCE

ORGANISM: Hepatitis C virus

55 GCGAATTCAAGATCTTCATCATGTGTTGCAGTCGATCAC 38

50

Claims

- 55 1. An isolated gene encoding a polypeptide originated from h patitis C virus, wherein said polypeptide has an amino acid sequence of SEQ ID NO 101.
2. An isolated gene encoding a polypeptide originat d from hepatitis C virus, wherein said polypeptide

has an amino acid sequence of SEQ ID NO 102.

3. An isolated DNA originated from hepatitis C virus, wherein said DNA has a base sequence of SEQ ID NO 101.
5
4. An isolated DNA originated from hepatitis C virus, wherein said DNA has a base sequence of SEQ ID NO 102.
10
5. A polypeptide which comprises 115 amino acids from No. 1 to No. 115 of amino acid sequence of SEQ ID NO 3 or 7.
15
6. An isolated DNA which encodes a polypeptide of Claim 127.
20
7. A polypeptide of 10 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 31 or 32 , wherein said polypeptide comprises at least 6 amino acids from No. 182 to No. 187 of amino acid sequence of SEQ ID NO 31 or 32.
25
8. A polypeptide of 10 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 31 or 32 , wherein said polypeptide comprises at least 8 amino acids from Nos. 202 to 209 of amino acid sequence of SEQ ID NO 31 or 32.
30
9. A polypeptide which comprises 106 amino acids from No. 109 to No. 214 of amino acid sequence of SEQ ID NO 31 or 32.
35
10. A polypeptide which comprises 92 amino acids from No. 233 to No. 324 of amino acid sequence of SEQ ID NO 31 or 32.
40
11. A polypeptide of 10 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 31 or 32 , wherein said polypeptide comprises at least 5 amino acids from No. 252 to No. 256 of amino acid sequence of SEQ ID NO 31 or 32.
45
12. A polypeptide of 10 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 31 or 32 , wherein said polypeptide comprises at least 7 amino acids from No. 273 to No. 279 of amino acid sequence of SEQ ID NO 31 or 32.
50
13. A polypeptide of 10 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 31 or 32 , wherein said polypeptide comprises at least 7 amino acids from No. 136 to No. 142 of amino acid sequence of SEQ ID NO 31 or 32.
55
14. A polypeptide of 17 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 31 or 32 , wherein said polypeptide comprises at least 17 amino acids from No. 53 to No. 69 of amino acid sequence of SEQ ID NO 31 or 32.
60
15. A polypeptide which comprises all or 266 amino acids from No. 461 to No. 726 of amino acid sequence of SEQ ID NO 43.
65
16. A polypeptide which comprises all or 42 amino acids from No. 963 to No. 1004 of amino acid sequence of SEQ ID NO 43.
70
17. A polypeptide which comprises all or 45 amino acids from No. 283 to No. 327 of amino acid sequence of SEQ ID NO 43.
75
18. A polypeptide which comprises all or 74 amino acids from No. 477 to No. 550 of amino acid sequence of SEQ ID NO 43.
80
19. A polypeptide which comprises 61 amino acids from No. 215 to No. 275 of amino acid sequence of SEQ ID NO 43.
85

20. A polypeptide which comprises all or 74 amino acids from No. 413 to No. 486 of amino acid sequence of SEQ ID NO 75.
21. A polypeptide which comprises all or 997 amino acids from No. 415 to No. 1411 of amino acid sequence of SEQ ID NO 75.
- 5 22. A polypeptide which comprises all or 19 amino acids from No. 247 to No. 265 of amino acid sequence of SEQ ID NO 75.
- 10 23. A polypeptide which comprises all or 74 amino acids from No. 655 to No. 728 of amino acid sequence of SEQ ID NO 75.
- 15 24. A polypeptide which comprises all or 54 amino acids from No. 763 to No. 816 of amino acid sequence of SEQ ID NO 75.
- 20 25. A polypeptide shown by at least 20 amino acid residues from No. 324 to No. 343 of amino acid sequence of SEQ ID NO 75, wherein said polypeptide comprises at least 8 amino acids.
- 25 26. A polypeptide which comprises all or 98 amino acids from No. 858 to No. 955 of amino acid sequence of SEQ ID NO 75.
- 30 27. A polypeptide of 14 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 75 , wherein said polypeptide comprises at least 14 amino acids from No. 356 to No. 369 of amino acid sequence of SEQ ID NO 75.
- 35 28. A polypeptide which comprises all or 92 amino acids from No. 1009 to No. 1100 of amino acid sequence of SEQ ID NO 75.
- 30 29. A polypeptide which comprises all or 66 amino acids from No. 1160 to No. 1225 of amino acid sequence of SEQ ID NO 75.
- 35 30. A polypeptide of 18 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 75 , wherein said polypeptide comprises at least 18 amino acids from No. 584 to No. 601 of amino acid sequence of SEQ ID NO 75.
- 40 31. A polypeptide which comprises 42 amino acids from No. 615 to No. 656 of amino acid sequence of SEQ ID NO 75.
32. A polypeptide of 11 to 25 amino acid residues derived from amino acid sequence of SEQ ID NO 75 , wherein said polypeptide comprises at least 11 amino acids from No. 326 to No. 337 of amino acid sequence of SEQ ID NO 75.
- 45 33. A single-stranded DNA fragment or an antisense DNA fragment thereof which contains at least 15 nucleotides selected from 317 nucleotides from No. 1 to No. 317 of SEQ ID NO 1, 9, 11 or 12.
34. The DNA fragment of Claim 221 comprising 16 to 30 base pairs.
35. The DNA fragment of Claim 221 comprising 17 to 23 base pairs.
- 50 36. The use of a DNA and/or a polypeptide as claimed in any of the preceding claims for the preparation of a vaccine against hepatitis C virus.
37. The use of a DNA and/or a polypeptide as claimed in many of the preceding claims for the serodiagnosis of hepatitis C related diseases.
- 55 38. The use of a DNA as claimed in any of the preceding claims for a in vitro and/or in vivo screening system for a substance capable of specifically suppressing or controlling a proteolytic processing of a precursor protein of hepatitis C virus.