MATH 487 Fall 2013 Homework #3

Due Oct. 22, Tue in class

- Textbook, Section 3.6, p.102: 4, 5(a-b).
- Consider the sequence of functions (f_n) in $C^0(\mathbb{R}_+,\mathbb{R})$ with the sup-norm, where $\mathbb{R}_+:=[0,\infty)$:

$$f_n(x) = \frac{\sin(nx)}{2+nx}, \quad x \in \mathbb{R}_+, \quad n \in \mathbb{N}.$$

Solve the following problems:

- Find the limit function f_* on \mathbb{R}_+ ;
- Show that (f_n) converges to f_* uniformly on the interval $[a, \infty)$ for any a > 0 but not uniformly on \mathbb{R}_+ ;
- Use the definition of Cauchy sequences to show that (f_n) is Cauchy on the interval $[a, \infty)$ with a > 0.
- Consider the operator

$$T(f)(t) = \sin(2\pi t) + \lambda \int_{-1}^{1} \frac{f(s)}{1 + (t - s)^2} ds$$

on the function space $C^0([-1,1],\mathbb{R})$ with the sup-norm.

- Show if $f \in C^0([-1,1], \mathbb{R})$, then $T(f) \in C^0([-1,1], \mathbb{R})$;
- Show that if $|\lambda| < \frac{2}{\pi}$, then T(f) is a contractive mapping;
- Show that if $|\lambda| > \frac{2}{\pi}$, then T(f) is *not* contractive. (*Hint*: consider constant functions on [-1,1].)

(*Hint*: You may use $\int \frac{1}{1+x^2} dx = \arctan(x) + C$.)