CSU33081 Sample Exam Paper 2020

Instructions

- There are 10 Multiple Choice Questions. Answer **ALL** questions.
- This is a 'Books-Open' exam. Use of the text(s) and notes is permitted.
- Use of non-programmable calculators is permitted.
- You may not use MATLAB or similar software for this examination.
- You must upload your typeset solutions along with the filled out Multiple Choice Questionnaire and the declaration that this is your own work to Blackboard.
- To fill out the questionnaire place the letter (A, B, C or D) denoting the correct answer after 'Answer' at the end of the question.
- ALL documents submitted should be as .pdfs
- You will only receive marks for a question if your answer is accompanied with a bona-fide solution as above.

Q1.

What is the displayed result when the following MATLAB script file is executed?

x=[6:8;-1:1;567];

y=x(:,3);

size(y')

Choose your answer from the following:

- A. 11
- B. 31
- C. 13
- D. 33

Answer: C

Q2.

Consider the following MATLAB program:

$$X=(5<7)&((1>4) | (8^=0))$$

What is the value of X?

Choose your answer from the following:

- A. 0
- B. False
- C. True
- D. 1

Answer:

Q3.

How would we represent the summation of the following two polynomials in MATLAB?

$$2x^2 + 2x - 6$$

and

$$x^3 + 2x - 4$$

Choose your answer from the following:

Answer:

C

Q4.

Calculate the Truncation Error, $f(x) - P_2(x)$ at x = 2.5, in approximating the function $f(x) = 3 - 17x^3$.

For the approximation use the Taylor Series polynomial approximation of degree two, $P_2(x)$, expanded about the point $x_0=2.0$.

Choose your answer from the following:

D. -7.994173

Answer: None of these : -2.125

Q5.

Use Newton's Method to find a root of the equation

 $f(x)=x^6-x-1$ accurate to within an error of $\epsilon=x_n-x_{n-1}=0.001$, where x_n is the value of x at the n^{th} iteration. Use a starting point of $x_0=1.5$.

Choose your answer from the following:

- A. 1.134778
- B. 0.616384
- C. 1.505056
- D. 1.160489

Answer: A

Q6.

Find the lower triangular matrix [L] in the [L][U] decomposition of the matrix given here:

$$\begin{pmatrix} 25 & 5 & 4 \\ 10 & 8 & 16 \\ 8 & 12 & 22 \end{pmatrix}$$

Choose your answer from the following:

A.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0.4000 & 1 & 0 \\ 0.3200 & 1.7333 & 1 \end{pmatrix}$$

B.
$$\begin{pmatrix} 25 & 5 & 4 \\ 0 & 6 & 14.400 \\ 0 & 0 & -4.2400 \end{pmatrix}$$

C.
$$\begin{pmatrix} 1 & 0 & 0 \\ 10 & 1 & 0 \\ 8 & 12 & 0 \end{pmatrix}$$

$$\mathsf{D.} \begin{pmatrix} 1 & 0 & 0 \\ 0.4000 & 1 & 0 \\ 0.3200 & 1.5000 & 1 \end{pmatrix}$$

Answer: A

Q.7

Using $x_1 = 1$, $x_2 = 3$, $x_3 = 5$ as an initial guess at the solution, determine the values of x_1 , x_2 and x_3 that result from three iterations of the Gauss-Seidel method applied to this matrix equation:

$$\begin{pmatrix} 12 & 7 & 3 \\ 1 & 5 & 1 \\ 2 & 7 & -11 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \\ 6 \end{pmatrix}$$

Choose your answer from the following:

A.
$$x_1 = -2.833$$
, $x_2 = -1.4333$, $x_3 = -1.9727$

B.
$$x_1 = 1.4959$$
, $x_2 = -0.90464$, $x_3 = -0.84914$

C.
$$x_1 = 0.90666$$
, $x_2 = -1.0115$, $x_3 = -1.0243$

D.
$$x_1 = 1.2148$$
, $x_2 = -0.72060$, $x_3 = -0.82451$

Answer: C

Q8.

There is a functional relationship between the density ho of air and altitude h above sea-level.

h (km)	0.32	0.64	1.28	1.60
$ ho$ (kg/ m^3)	1.15	1.10	1.05	0.95

The functional relationship has the form $\rho=k_1e^{-k_2h}$. k_2 is found to be $k_2=0.1315$. Also, the density of air at the top of the atmosphere is $1/1000^{th}$ the density of air at sea-level.

The altitude in kilometres to the top of the atmosphere is best approximated by:

Choose your answer from the following:

- A. 46.2
- B. 46.6
- C. 49.7
- D. 52.5

Answer: D

Q9.

For the function $f(x) = \sqrt{x}$ and the points

 $x_0 = 2$, $x_1 = 3$, $x_2 = 7$ evaluate the quadratic Newton's interpolating polynomial at x = 2.5

Choose your answer from the following:

- A. -0.063133
- B. -0.036335
- C. -0.098334
- D. -0.017882

Answer:

none ans=1.5774

Q10.

The value of $\int_{0.2}^{2.2} e^x dx$ using a two-segment (interval) Simpson's 1/3 rule is best approximated by:

Choose your answer from the following:

- A. -7.8063
- B. 7.8423
- C. 8.4433
- D. 10.246

Answer:

В