# MATHF-105 : Probabilités Résumé

# R. Petit

# Année académique 2015 - 2016

# Contents

| 1 | Rap       |                                                          |
|---|-----------|----------------------------------------------------------|
|   | 1.1       | Rappel sur les séries                                    |
|   |           | 1.1.1 Exemple sur les séries                             |
|   |           | 1.1.2 Conclusion de la suite géométrique                 |
|   | 1.2       | Rappels d'analyse                                        |
| 2 | Espa      | aces de probabilités                                     |
|   | $2.1^{-}$ | Définition                                               |
|   |           | 2.1.1 Loi uniforme sur un ensemble fini (ou dénombrable) |
|   |           | 2.1.2 Loi uniforme sur un ensemble infini (intervalle)   |
|   | 2.2       | Modèles                                                  |
|   |           | 2.2.1 Modèles discrets                                   |
|   |           | 2.2.2 Modèles continus (à densité)                       |
|   |           | 2.2.3 Divergence sur la fonction Gamma d'Euler           |
|   |           | 2.2.4 Retour aux modèles stochastiques                   |
|   | 2.3       | Notion de variables aléatoires                           |
|   |           | 2.3.1 Cas discret                                        |
|   |           | 2.3.2 Cas absolument continu                             |
|   | 2.4       | Théorème de de Moivre-Laplace                            |
|   | 2.5       | Convergence en loi                                       |
| 3 | Esne      | érance 12                                                |
| 0 | 3.1       | Pari de pascal                                           |
|   | 3.2       | Espérance et variables aléatoires                        |
|   | 3.3       | Définition de l'espérance                                |
|   | 0.0       | 3.3.1 Cas positif                                        |
|   |           | 3.3.2 Cas général                                        |
|   | 3.4       | Exemples d'espérance                                     |
|   | 3.5       | Espérance de fonctions de variables aléatoires           |
|   | 3.6       | Variance                                                 |
|   | 5.0       | 3.6.1 Définitions                                        |
|   | 3.7       | Moments de variables aléatoires                          |
|   | 5.7       | 3.7.1 Cas discret                                        |
|   |           | 3.7.2 Cas absolument continu                             |
|   | 3.8       | Fonctions génératrices                                   |
|   | 5.0       | Toricuons generatives                                    |

# 1 Rappels

## 1.1 Rappel sur les séries

Les fonctions logarithmique et exponentielle ont un développement de Taylor exact. Pour la fonction logarithmique, on a, pour  $x \in (-1,1)$ :

$$\log(1-x) = -\sum_{k\geqslant 1} \frac{x^k}{k}.$$

Si on pose  $S_n := \sum_{k=1}^n u_k$ , on a  $(S_n)_{n \in \mathbb{N}}$ , la suite des sommes partielles, et  $n \mapsto S_n$ , une application croissante si  $(u_n)$  est une suite positive. Il y a donc deux situations distinctes possibles :

- $(S_n)$  est une suite bornée  $(\exists M \in \mathbb{R} \text{ t. q. } \forall n \in \mathbb{N} : S_n \leqslant M)$  et donc converge vers  $S \in \mathbb{R}$ ;
- $(S_n)$  n'est pas bornée  $(\forall M \in \mathbb{R} : \exists n \in \mathbb{N} \text{ t. q. } S_n > M)$  et donc diverge vers  $+\infty$ .

#### 1.1.1 Exemple sur les séries

Prenons  $u_n := x^n$ , avec x > 0.

- Si x = 1, on a  $n \to +\infty \Rightarrow S_n \to +\infty$ ;
- si  $x \neq 1$ , on a  $(1-x)S_n = x x^{n+1}$ , et donc :

$$S_n := x \frac{1 - x^n}{1 - x}.$$

- Si x < 1, alors  $x^n \to 0$  pour  $n \to +\infty$ , et donc  $S_n \to \frac{x}{1-x}$ ;
- si x > 1, alors  $x^n \to +\infty$  pour  $n \to +\infty$ , et donc  $S_n \to +\infty$ .

### 1.1.2 Conclusion de la suite géométrique

On voit alors:

$$\sum_{n\geqslant 1} x^n = \begin{cases} \frac{x}{1-x} & \text{ si } x \in [0,1) \\ +\infty & \text{ sinon} \end{cases}.$$

Si la suite commence à l'indice 0, on a :

$$\sum_{n \ge 0} x^n = 1 + \sum_{n \ge 1} x^n = \begin{cases} 1 + \frac{x}{1 - x} = \frac{1}{1 - x} & \text{si } x \in [0, 1) \\ +\infty & \text{sinon} \end{cases}.$$

### 1.2 Rappels d'analyse

**Définition 1.1.** Une fonction  $f: X \to Y$  est dite mesurable si :

$$\forall A \subset \mathcal{B}(Y) : \{\omega \in \Omega \text{ t. q. } X(\omega) \in A\} \in \mathcal{F},$$

où  $\mathcal{B}(Y)$  représente la tribu des boréliens (voir définition 2.9).

**Théorème 1.2.** Dans  $\mathbb{R}$ , toute série absolument convergente est convergente.

**Théorème 1.3.** Dans  $\mathbb{R}$ , toute intégrale impropre absolument convergente est convergente.

# 2 Espaces de probabilités

#### 2.1 Définition

**Définition 2.1.** L'ensemble  $\Omega$  est l'**espace des chances**, l'ensemble des résultats possibles d'un phénomène aléatoire.

Remarque.

- Ω peut être fini (dénombrable) ou infini ;
- $\Omega = \{0,1\}^{\mathbb{N}}$  est l'ensemble des suites à valeur dans  $\{0,1\}$ ;
- $\Omega$  peut être un espace dit *fonctionnel* quand le résultat d'une expérience est une fonction.

**Définition 2.2.** Un événement E est un ensemble de réalisations possibles à une expérience tel que  $E \subseteq \Omega$ .

*Remarque.* L'ensemble  $\mathcal{P}(\Omega)$  n'est pas toujours dénombrable. Et donc l'ensemble  $\mathcal{P}(\Omega)$  est-il le bon ensemble pour décrire les événements ?

- $Si|\Omega| \in \mathbb{N}$  : oui ;
- $\operatorname{si}|\Omega| \notin \mathbb{N}$ : non.

**Définition 2.3.**  $\mathcal{F}$  est la **classe des événements**. On mesure la *probabilité d'occurrence* d'un événement  $A \in \mathcal{F}$ . On introduit une fonction d'ensemble  $\mathbb{P}$  où :

$$\mathbb{P}: \mathcal{F} \to [0,1]: A \mapsto \mathbb{P}(A).$$

On impose:

- (i)  $\mathbb{P}(\emptyset) = 0$ ;
- (ii)  $\mathbb{P}(\Omega) = 1$ ;
- (iii)  $\forall A, B \in \mathcal{F} : A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ .

**Proposition 2.4.** *Soient*  $A_1, ..., A_n \in \mathcal{F}$ . *On a*:

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n (-1)^{i-1} \sum_{1\leqslant k_1 < \dots < k_i \leqslant n} \mathbb{P}\left(\bigcap_{\gamma=1}^i A_{k_\gamma}\right).$$

### 2.1.1 Loi uniforme sur un ensemble fini (ou dénombrable)

**Définition 2.5.** Soient  $m < n \in \mathbb{N}$ . On définit l'**intervalle entier** [m, n] par :

$$\llbracket m, n \rrbracket : \{ x \in \mathbb{N} \text{ t. q. } m \leqslant x \leqslant n \}.$$

**Définition 2.6.** Soit  $\Omega = [1, n]$ . Soit  $A \subseteq \Omega$ . La loi uniforme est donnée par :

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{|A|}{n}.$$

*Remarque.* Il arrive que |A| soit difficile à déterminer et qu'il faille aller chercher du côté de l'analyse combinatoire.

#### 2.1.2 Loi uniforme sur un ensemble infini (intervalle)

**Définition 2.7.** Soit  $\Omega = [0,1]$  et soit  $A = [a,b] \subseteq \Omega$ . La loi uniforme est donnée par :

$$\mathbb{P}(A) = (b - a).$$

*Remarque.* La définition de loi uniforme sur un intervalle fait intervenir la notion de mesure et donc de mesurabilité. Or il existe des parties de  $\Omega$  sur lesquelles la mesure n'a pas de sens. En général,  $\mathcal{P}(\Omega)$  est *trop grand*, et il faut donc remplacer l'utilisation de l'ensemble des parties par la notion de tribu.

**Définition 2.8.** Soit  $\Omega$  un ensemble de chances et  $\mathcal{F} \subseteq \mathcal{P}(\Omega)$  une famille de parties de  $\Omega$ . On dit que  $\mathcal{F}$  est une tribu s'il respecte les trois propriétés suivantes :

- ∅ ∈ 𝒯;
- $\forall A: A \in \mathcal{F} \Rightarrow A^{\complement} \in \mathcal{F}$ ;
- $\forall A_1, \dots, A_n, \dots : A_1, \dots, A_n, \dots \in \mathcal{F} \Rightarrow \bigcup_{k \ge 1} A_k \in \mathcal{F}.$

Une autre appellation pour une tribu est une  $\sigma$ -algèbre.

Remarque.

- On remarque que  $\mathcal{P}(\Omega)$  est une tribu, mais une tribu trop grande pour être intéressante ;
- Soit  $A \in \mathcal{P}(\Omega)$ . Alors  $T := \{\emptyset, A, A^{\complement}, \mathcal{P}(\Omega)\}$  est une tribu. T est la plus petite tribu contenant A, et on l'appelle la **tribu engendrée par** A, que l'on note  $\sigma(A)$ .

**Définition 2.9.** Soit I une partie de  $\mathcal{P}(\Omega)$ . On appelle la *tribu engendrée par* I la plus petite tribu contenant I et on la note  $\sigma(I)$ .

En prenant I := { intervalles ouverts de [0, 1]}, on obtient  $\sigma(I)$  que l'on appelle **tribu des boréliens**. <sup>1</sup>

**Définition 2.10.** Soit  $\Omega$  un ensemble de chances et  $\mathcal{F} \subset \mathcal{P}(\Omega)$  une tribu sur  $\Omega$ . Une probabilité sur  $(\Omega, \mathcal{F}, \mathbb{P})$  est une fonction  $\mathbb{P}$  définie par :

$$\mathbb{P}: \mathfrak{F} \to [0,1]: A \mapsto \mathbb{P}(A)$$

où ℙ satisfait :

- (i)  $\mathbb{P}(\emptyset) = 0$ ;
- (ii)  $\forall A \in \mathcal{F} : \mathbb{P}(aA) + \mathbb{P}(A^{\complement}) = 1$ :
- (iii)  $\forall A_1, \dots, A_n, \dots$  disjoints deux à deux, on a :

$$\mathbb{P}\left(\bigcup_{k\geqslant 1}A_k\right)=\sum_{k\geqslant 1}\mathbb{P}(A_k).$$

**Définition 2.11.** On appelle  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace de probabilités.

Remarque. Probabiliser un expérience revient à déterminer :

- Ω, l'espace des chances ;
- F, la classe des événements ;
- $\mathbb{P}$ , la fonction d'ensembles sur  $\mathcal{F}$ .

<sup>&</sup>lt;sup>1</sup>Le nom de *borélien* vient du mathématicien français Émile Borel suite à ses travaux sur la théorie de la mesure.

#### 2.2 Modèles

#### 2.2.1 Modèles discrets

*Remarque.* On prend  $\Omega$  un ensemble fini ou dénombrable. On prend également  $\mathcal{F} = \mathcal{P}(\Omega)$ .

Si  $\Omega$  est fini, on parle de tirages, et si  $\Omega$  est infini dénombrable, on parle de populations.

On pose:

$$\mathbb{P}: \{k\} \mapsto \mathfrak{p}_k \in [0,1],$$

où:

$$\sum_{k \in \Omega} p_k = 1$$

et pour  $A = \{k_1, \dots, k_n\} \in \mathcal{F}$ :

$$\mathbb{P}(A) = \sum_{\gamma=1}^{n} p_{k_{\gamma}}.$$

**Définition 2.12** (Modèle de Bernoulli). On prend  $\Omega = \{0, 1\}$  où :

$$\begin{cases} p_0 &= 1-p \\ p_1 &= p \end{cases}.$$

*Remarque.* Il est évident que  $p + (1 - p) = 1 = P(\Omega)$ .

**Définition 2.13** (Modèle binomial). On prend  $\Omega = [0, N]$  (et donc  $\mathcal{F} = \mathcal{P}(\Omega)$ ) et  $\mathfrak{p} \in [0, 1]$ . Le modèle binomial est défini par  $\mathfrak{p}_k = \binom{\mathfrak{n}}{k} \mathfrak{p}^k (1 - \mathfrak{p})^{N-k}$  pour tout  $k \in [0, N]$ .

*Remarque.* On remarque que  $\sum_{k\geqslant 1} p_k = 1$  car les  $p_k$  représentent les termes du binôme de Newton  $(p+(1-p))^N = 1^N = 1$ .

**Définition 2.14** (Modèle géométrique). On prend  $\Omega=\mathbb{N}$ ,  $\mathfrak{F}=\mathfrak{F}(\Omega)\simeq\mathbb{R}$ , et  $\mathfrak{p}\in(0,1)$ . Le modèle géométrique est défini par  $\mathfrak{p}_k=(1-\mathfrak{p})^{k-1}\mathfrak{p}$  pour tout  $k\in\mathbb{N}$ .

Remarque. On remarque que:

$$\sum_{k\geqslant 1} p_k = \sum_{k\geqslant 1} p(1-p)^{k-1} = p \sum_{k\geqslant 0} (1-p)^k = p \frac{1}{1-(1-p)} = \frac{p}{p} = 1,$$

où on utilise la formule de la somme des termes d'une suite géométrique  $\mathfrak u$  définie par  $\mathfrak u_n=\mathfrak u_{n-1}q$  pour  $n\geqslant 1$  (avec 0< q< 1) qui donne :

$$\sum_{k=0}^{N}u_{k}=u_{0}\frac{1-q^{N+1}}{1-q}\text{,}$$

et pour la série, il suffit de passer à la limite :

$$\lim_{N\to +\infty}\sum_{k=0}^N u_k = \lim_{N\to +\infty} u_0 \frac{1-q^{N+1}}{1-q} = u_0 \frac{1}{1-q}.$$

**Définition 2.15** (Modèle de Poisson). On prend  $\Omega = \mathbb{N}$ ,  $\mathcal{F} = \mathcal{P}(\Omega)$ , et un paramètre  $\lambda \in \mathbb{R}_0^+$ . Le modèle poissonien est défini par  $p_k = \exp(-\lambda)\frac{\lambda^k}{k!}$  pour tout  $k \in \mathbb{N}$ .

*Remarque.* On remarque que  $\mathbb{P}(\Omega) = 1$  en utilisant la formule de Taylor de l'exponentielle :

$$\exp(x) = \sum_{k \geqslant 0} \frac{x^k}{k!}.$$

On a effectivement:

$$\mathbb{P}(\Omega) = \sum_{k\geqslant 0} \mathbb{P}(\{k\}) = \sum_{k\geqslant 0} p_k = \sum_{k\geqslant 0} exp(-\lambda) \frac{\lambda^k}{k!} = exp(-\lambda) \, exp(\lambda) = 1.$$

#### 2.2.2 Modèles continus (à densité)

*Remarque.* On prend  $\Omega$  un intervalle (fini ou infini<sup>2</sup>) sur  $\mathbb{R}$ , et  $\mathcal{F} = \mathcal{B}(I)$ , la tribu des boréliens sur  $I^3$ .

**Définition 2.16.** Soit  $f: I \to \mathbb{R}^+$  une fonction intégrable telle que  $\int_{\mathbb{R}} f(x) \, dx = 1$ . Soit  $A \in \mathcal{F}$ , on pose  $\mathbb{P}(A) = \int_A f(x) \, dx$ . f est appelée fonction de densité de modèle stochastique.

**Définition 2.17** (Loi uniforme continue). On prend  $I = [\mathfrak{a},\mathfrak{b}]$  avec  $\mathfrak{a} < \mathfrak{b} \mathfrak{G} \mathbb{R}$ . Le modèle uniforme est défini par f constante :

$$f(x) = \begin{cases} 0 & \text{si } x \notin [a, b] \\ \frac{1}{b-a} & \text{si } x \in [a, b] \end{cases}.$$

*Remarque.* On remarque effectivement  $\int_{\mathbb{R}} f(x) dx = 1$ :

$$\int_{\mathbb{R}} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_{a}^{b} f(x) \, dx + \int_{b}^{+\infty} f(x) \, dx = 0 + \frac{1}{b-a} \int_{a}^{b} dx + 0 = 1.$$

**Définition 2.18** (Modèle exponentiel). <sup>4</sup> On prend  $I = \mathbb{R}^+$  et  $\lambda > 0$ . Le modèle exponentiel est défini par :

$$f(x) = \begin{cases} \lambda \exp(-\lambda x) & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}.$$

Remarque. On peut calculer l'intégrale impropre comme suit :

$$\int_{\mathbb{R}} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx = 0 + \lim_{M \to +\infty} \int_{0}^{M} f(x) dx$$
$$= \lim_{M \to +\infty} \left[ -\exp(-\lambda x) \right]_{0}^{M} = \lim_{M \to +\infty} \left( 1 - \exp(-\lambda M) \right) = 1.$$

**Définition 2.19** (Modèle gaussien). <sup>5</sup> On prend  $I = \mathbb{R}$ , et  $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_0^+$ . Le modèle gaussien est défini par :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

<sup>&</sup>lt;sup>2</sup>On parle d'intervalle fini pour [a, b], avec a < b ∈  $\mathbb{R}$  et d'intervalle semi-infini pour  $(-\infty, b]$  ou  $[a, +\infty)$  et d'intervalle infini pour  $(-\infty, +\infty) = \mathbb{R}$ .

<sup>&</sup>lt;sup>3</sup>Ou encore la tribu engendrée par les intervalles de I.

<sup>&</sup>lt;sup>4</sup>Également appelé *modèle des files d'attente*.

<sup>&</sup>lt;sup>5</sup>Également appelé modèle des erreurs ou encore modèle normal.

*Remarque.* Pour que  $\mathbb{P}$  soit une probabilité, il faut que f soit définie positive. Or f est une exponentielle multipliée par un coefficient positif. Il faut également  $\int_{\mathbb{R}} f(x) dx = 1$ , ce qui peut se vérifier par :

$$\int_{\mathbb{R}} f(x) dx,$$

en posant  $y := x - \mu$ , et donc dy = dx:

$$\int_{\mathbb{R}} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{y^2}{2\sigma^2}\right) = \frac{1}{\sigma \sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{y^2}{2\sigma^2}\right).$$

En posant  $z := \frac{y}{\sigma}$  (et donc  $dz = \frac{dx}{\sigma}$ ), on obtient :

$$\int_{\mathbb{R}} f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{z^2}{2}\right) dz.$$

Une primitive de  $\exp\left(-\frac{z^2}{2}\right)$  est :

$$\int_{-\infty}^{z} \exp\left(-\frac{x^{2}}{2}\right) \frac{dx}{\sqrt{2\pi}} = \operatorname{Erf}(z).$$

On écrit alors:

$$\begin{split} \mathbb{P}(\Omega)^2 &= \left( \int_{\mathbb{R}} \exp\left(-\frac{x^2}{2}\right) \frac{dx}{\sqrt{2\pi}} \right) \left( \int_{\mathbb{R}} \exp\left(-\frac{y^2}{2}\right) \frac{dy}{\sqrt{2\pi}} \right) \\ &= \iint_{\mathbb{R}^2} \exp\left(-\frac{x^2 + y^2}{2}\right) \frac{dx \, dy}{2\pi}. \end{split}$$

En passant en coordonnées polaires, on obtient :

$$\mathbb{P}(\Omega)^2 = \int_{-\pi}^{+\pi} \int_{\mathbb{R}} \exp\left(-\frac{r^2}{2}\right) \frac{r \, dr \, d\theta}{2\pi} = \int_{-\pi}^{+\pi} \frac{d\theta}{2\pi} \int_{\mathbb{R}} r \exp\left(-\frac{r^2}{2}\right) dr = \left[-\exp\left(-\frac{r^2}{2}\right)\right]_0^{+\infty} = 1.$$

On en déduit alors  $\mathbb{P}(\Omega) = 1$  également.  $\mathbb{P}$  est donc bien une probabilité.

**Définition 2.20.** On a défini une probabilité sur  $(R^+, (R^+))$  via la fonction  $f(r) = r \exp\left(-\frac{r^2}{2}\right)$ . On l'appelle la *probabilité de Rayleigh*.

#### 2.2.3 Divergence sur la fonction Gamma d'Euler

Définition 2.21 (Fonction Gamma d'Euler). La fonction Gamma d'Euler est définie comme suit :

$$\Gamma: \mathbb{R}_0^+ \to \mathbb{R}: x \mapsto \int_0^{+\infty} \exp(-x) x^{t-1} \, dx.$$

*Remarque.* On note  $\gamma \coloneqq -\Gamma'(1) > 0$  la constante d'Euler-Mascheroni. La question  $\gamma \stackrel{?}{\in} \mathbb{Q}$  est toujours ouverte.

**Proposition 2.22.**  $\forall t > 0 : \Gamma(t+1) = t\Gamma(t)$ .

*Démonstration*. Soit t > 0. Par l'intégration par parties, on a :

$$\Gamma(t+1) = \int_0^{+\infty} \exp(-x) x^t dx = \left[ -x^t \exp(-x) \right]_0^{+\infty} + t \int_0^{+\infty} \exp(-x) x^{t-1} dx = t \Gamma(t).$$

Remarque. Par la proposition 2.22, on peut définir la factorielle de tout nombre naturel par :

$$\forall n \in \mathbb{N}^* : n! = \Gamma(n+1)$$

**Proposition 2.23** (Formule des compléments). *Soit*  $t \in (0, 1)$ . *Alors* :

$$\Gamma(t)\Gamma(1-t) = \frac{\pi}{\sin(\pi t)}.$$

#### 2.2.4 Retour aux modèles stochastiques

**Définition 2.24** (Modèle Gamma). <sup>6</sup> On prend  $\Omega = \mathbb{R}^+$ . Le modèle Gamma est défini par :

$$f_t(x) = \frac{x^t - exp(-x)}{\Gamma(t)}.$$

#### 2.3 Notion de variables aléatoires

#### 2.3.1 Cas discret

**Définition 2.25.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace de probabilité. Une variable aléatoire discrète<sup>7</sup> est une application  $X : \Omega \to E$  où E est un ensemble fini ou infini dénombrable. On demande à cette application d'être mesurable.

Remarque.

- Bien souvent, on a  $E = \Omega$ , et  $X(\omega) = \omega$ . Dans ce cas, on *identifie* l'espace des chances avec l'espace d'arrivée. La probabilité  $\mathbb{P}$  s'appelle alors la **loi** de la variable aléatoire X.
- Il arrive parfois que l'espace de probabilités soit plus gros que l'espace d'état.

**Définition 2.26.** Plus formellement, la **loi** d'une v.a.d. X est l'ensemble :

$$\{\mathbb{P}(X = x) \text{ t. q. } x \in E\}.$$

**Définition 2.27.** Pour toute valeur  $k \in E$  que peut prendre la variable aléatoire X, on note  $\mathbb{P}(X = k)$  la probabilité que la variable X prenne la valeur k. C'est équivalent à  $\mathbb{P}(X(\omega) = k)$  pour  $\omega \in \Omega$ .

**Définition 2.28.** Lorsqu'une v.a.d. X suit une certaine loi  $\mathcal{L}$ , on note  $X \sim \mathcal{L}$ .

Par exemple, une variable Y suivant une poisson de paramètre  $\lambda$  se note Y  $\sim \mathcal{P}(\lambda)$ .

 $<sup>^6</sup>$ Le modèle  $\Gamma$  est une généralisation du modèle exponentiel (définition 2.18).

<sup>&</sup>lt;sup>7</sup>Souvent écrite v.a.d. ou V.A.-D.

#### 2.3.2 Cas absolument continu

**Définition 2.29.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace de probabilité. Une variable aléatoire absolument continue<sup>8</sup> est une application  $X : \Omega \to \mathbb{R}$  mesurable au sens où :

$$\forall A \in \mathcal{B}(\mathbb{R}) : \{\omega \in \Omega \text{ t. q. } X(\omega) \in A\} \in \mathcal{F},$$

et absolument continue au sens où:

$$\exists f_X : \mathbb{R} \to \mathbb{R}^+$$

mesurable et telle que :

$$\int_{\mathbb{R}} f_X(x) \, \mathrm{d}x = 1,$$

avec:

$$\mathbb{P}(X \in A) = \int_{A} f_X(x) \, dx. \tag{1}$$

**Définition 2.30.** On appelle  $f_X$  la **densité** de X.

Remarque. La loi de X est donnée par (1).

**Définition 2.31.** On note  $F_X(t) = \mathbb{P}(X \le t)$ , ou encore  $F_X(t) = \int_{-\infty}^t f(x) dx$  (en prenant  $A = (-\infty, t]$ ).

*Remarque.* La fonction  $t \mapsto F_X(t)$  est continue et est (presque) partout dérivable avec :

$$\frac{\partial F_X}{\partial t}(t) = f_X(t) \geqslant 0.$$

Donc  $F_X$  est croissante avec :

$$\lim_{t \to -\infty} F_X(t) = 0,$$

et:

$$\lim_{t \to +\infty} F_X(t) = 1.$$

*Remarque.* On peut associer une fonction de répartition  $F_X$  à toute variable aléatoire X, même si X est une v.a.d. Dans ce cas, on construit  $F_X$  constante par morceaux (et présente donc des points de discontinuité).

**Définition 2.32.** Si  $F_X$  est continue, on dit que X est continue.

Remarque. Donc si X est continue, alors  $\mathbb{P}(X=x) = F_X(x) - \lim_{y \to x} F_X(y) = 0$ . Ce résultat peut également être observé en utilisant le fait que  $\mathbb{P}(X=x) = \int_x^x f(x) \, dx$ , et une intégration sur un point est nulle. Remarque. Il existe des fonction continues nulle part dérivables. On peut donc avoir  $F_X(t)$  continue mais pas sous la forme suivante :

$$F_X(t) = \int_{-\infty}^t f(x) \, dx,\tag{2}$$

pour une fonction f<sub>X</sub> donnée.

**Définition 2.33.** On dit qu'une variable fonction  $f : \mathbb{R} \to \mathbb{R}$  est **absolument continue** si elle admet une représentation intégrale de type (2).

**Définition 2.34.** Soit E un ensemble. La fonction  $1_E$  est appelée **fonction indicatrice** est est définie telle que :

$$\forall x : 1_{\mathsf{E}}(x) = \begin{cases} 1 & \text{si } x \in \mathsf{E} \\ 0 & \text{sinon} \end{cases}.$$

<sup>&</sup>lt;sup>8</sup>Souvent écrite v.a.c. ou V.A.-C.

#### **Exemples**

1. Si  $X_1 \sim U_{[\mathfrak{a},\mathfrak{b}]}$  est une v.a.c. uniforme sur  $[\mathfrak{a},\mathfrak{b}]$ , alors :

$$F_{X_1}(t) = \begin{cases} 0 & \text{si } t \leqslant a \\ t - a & \text{si } a < t < b . \\ 1 & \text{si } t > b \end{cases}$$

2. Si  $X_2 \sim Exp(\lambda)$  est une v.a.c. exponentielle de paramètre  $\lambda$ , alors :

$$F_{X_2}(t) = \int_{-\infty}^t \lambda \exp(-\lambda t) \mathbf{1}_{(0,+\infty)}(t) = -\exp(-\lambda t) \mathbf{1}_{(0,+\infty)}(t).$$

3. Si  $x_3 \sim \mathcal{N}(\mu, \sigma^2)$  est une v.a.c. normale de moyenne  $\mu$  est de variance  $\sigma^2$ , alors :

$$F_{X_3}(t) = \int_{-\infty}^t f(x) \, dx = \text{Erf}\left(\frac{t-\mu}{\sigma}\right).$$

4. Si  $X_4 \sim \mathcal{C}$  est une v.a.c. de Cauchy de densité donnée par :

$$f_{X_4}(x) = \frac{1}{\pi(1+x^2)},$$

alors:

$$F_{X_4}(t) = \frac{1}{2} + \frac{1}{\pi} arctan(t).$$

## 2.4 Théorème de de Moivre-Laplace

Soient  $p \in (0,1)$  et  $n \ge 1$ . On pose  $X_{n,p} \sim \mathcal{B}(n,p)$ .

Soit  $Y_{n,p}$  défini par :

$$Y_{n,p} := \frac{X_{n,p} - np}{\sqrt{np(1-p)}}.$$

On remarque que  $Y_{n,p}$  est une binomiale renormalisée.

**Théorème 2.35** (Théorème de de Moivre-Laplace).  $Si t \in \mathbb{R}$ , alors:

$$\mathbb{P}(Y_{n,p}\leqslant t)\overset{n\to +\infty}{\to} F_{\mathcal{N}(0,1)}(t).$$

*Remarque.* La signification de ce théorème est qu'une binomiale renormalisée se comporte comme une gaussienne  $\mathcal{N}(0,1)$  lorsque  $n \to +\infty$ .

Proposition 2.36 (Formule de Stirling).

$$n! \stackrel{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

# 2.5 Convergence en loi

Définition 2.37.

• Soit Z une v.a.c. Soit  $\{Z_n, n\geqslant 1\}$  une suite de v.a. quelconques. On dit que  $Z_n$  converge en loi vers Z si :

$$\forall x: F_{Z_n}(x) = \mathbb{P}(Z_n \leqslant x) \overset{n \to +\infty}{\to} F_Z(x).$$

On note cela:

$$Z_n \overset{\mathfrak{D}}{\to} Z.$$

• Soient Z une v.a.d. et une  $\{Z_n, n\geqslant 1\}$  une suite de variables aléatoires discrètes. On dit que  $Z_n$  covnerge en loi vers Z si :

$$\forall x \in E: \mathbb{P}(Z_n = x) \overset{n \to +\infty}{\to} \mathbb{P}(Z = x).$$

On note cela:

$$Z_n \stackrel{\mathcal{D}}{\rightarrow} Z$$
.

Remarque. Un exemple typique de convergence en loi de variables discrètes est :

$$\mathcal{B}\left(n,\frac{\lambda}{n}\right) \stackrel{\mathcal{D}}{\rightarrow} \mathcal{P}(\lambda).$$

# 3 Espérance

### 3.1 Pari de pascal

Le terme *espérance* vient de Blaise Pascal et de son traitement de la question « Faut-il croire en Dieu ? ». On pose la variable X qui décrit le résultat de l'existence de Dieu définie comme suit :

$$X = \begin{cases} 0 & \text{si Dieu n'existe pas} \\ +\infty & \text{sinon} \end{cases}.$$

On a alors  $\mathbb{P}(X=0)=\mathfrak{p}$  et  $\mathbb{P}(X=+\infty)=1-\mathfrak{p}$ . Prenons  $\mathfrak{p}<1$  (car si  $\mathfrak{p}=1$ , on suppose que Dieu n'existe pas). Alors  $\bar{X}$ , la valeur moyenne de X est donnée par :

$$\bar{\mathbf{X}} = \mathbf{p} \cdot \mathbf{0} + (\mathbf{1} - \mathbf{p}) \cdot + \infty.$$

Blaise Pascal a appelé cette valeur **espérance** et l'a noté  $\mathbb{E}(X)$ .

## 3.2 Espérance et variables aléatoires

*Remarque.* Il existe plusieurs méthodes pour décrire le comportement d'une variable aléatoire. On s'intéresse ici aux **indicateurs de position**. Il existe d'autres types d'indicateurs dont les **indicateurs de répartition** qui seront vus plus loin.

**Définition 3.1.** On considère X une variable aléatoire sur un espace de probabilité  $(\Omega, \mathcal{F}, \mathbb{P})$ .

#### 1. Méthode de la médiane :

On évalue le nombre  $\widetilde{x}$  tel que  $\mathbb{P}(X \leqslant \widetilde{x}) = \mathbb{P}(X \geqslant \widetilde{x}) = \frac{1}{2}$ .

Lorsque X est continue, la médiane existe toujours. Si X est discrète, la médiane n'existe pas obligatoirement et n'est pas forcément unique.

#### 2. Méthode de l'espérance :

On évalue une moyenne pondérée des valeurs que peut prendre X par leur probabilité.

#### 3.3 Définition de l'espérance

#### 3.3.1 Cas positif

**Définition 3.2** (Cas discret). Soit X une v.a.d. à valeurs positives. On note  $p_k := \mathbb{P}(X = x_k)$ . On pose :

$$\mathbb{E}(X) = \sum_{k \ge 0} p_k x_k.$$

*Remarque.* Dans ce cas, l'espérance fait toujours sens et existe toujours mais peut valoir  $+\infty$ .

**Définition 3.3** (Cas absolument continu). Soit X une v.a.c. définie positive de densité  $f_X$  et de répartition  $F_X$ . On note :

$$\left\{ \begin{aligned} F_X(t) &= \mathbb{P}(X \leqslant t) \\ f_X(t) &= \frac{\eth}{\eth t} F_X(t) \end{aligned} \right..$$

On définit alors:

$$\mathbb{E}(X) = \int_0^{+\infty} x f(x) \, dx.$$

Remarque.

- L'intégrale démarre en 0 car la variable aléatoire X est définie positive ;
- à nouveau, l'espérance existe toujours mais peut valoir  $+\infty$ .

#### 3.3.2 Cas général

**Définition 3.4** (Cas discret). Soit X une v.a.d. à valeurs dans  $E = \{x_0, \dots, x_n\} \subset \mathbb{R}$  fini ou infini dénombrable (typiquement  $E = \mathbb{Z}$ ). On pose  $\mathfrak{p}_n \coloneqq \mathbb{P}(X = x_n)$ . On considère la série à termes positifs :

$$\sum_{x_n \in E} |x_n| \, p_n.$$

Si la série vaut  $+\infty$ , on dit que X n' est pas intégrable et on ne peut pas définir son espérance.

Si la série est finie, alors le théorème 1.2 entraine que la série :

$$\sum_{x_n \in E} x_n p_n$$

converge également.

On définit alors:

$$\mathbb{E}(X) = \sum_{x_n \in E} x_n p_n. \tag{3}$$

**Définition 3.5** (Cas absolument continu (à densité)). Soit X une v.a.c. de densité  $f_X$  sur  $\mathbb R$  telle que  $\forall A \in \mathcal B(\mathbb R)$ :

$$\mathbb{P}(X \in A) = \int_A f(x) \, dx.$$

On considère:

$$I = \int_{-\infty}^{+\infty} |x| f(x) dx. \tag{4}$$

Si  $I = +\infty$ , on dit que N *n'est pas intégrable* et on ne peut pas définir son espérance.

Si E  $< +\infty$ , le théorème 1.3 entraine que l'intégrale :

$$\int_{-\infty}^{+\infty} x f_X(x) dx$$

converge également.

On définit alors:

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f(x) \, dx. \tag{5}$$

### 3.4 Exemples d'espérance

*Exemple* 1. (exemple de 3.2.) Soit  $X \sim \mathcal{B}(n, p)$  une binomiale. Par définition, on évalue :

$$\begin{split} \mathbb{E}(X) &= \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} k = \sum_{k=1}^n \binom{n}{k} p^k (1-p)^{n-k} k = np \sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k} \\ &= np \sum_{\gamma=0}^{n-1} \binom{n-1}{\gamma} p^{\gamma} (1-p)^{n-1-\gamma} = np (p+(1-p))^{n-1} = np. \end{split}$$

*Exemple* 2. (exemple de 3.2.) Soit  $X \sim \mathcal{P}(\lambda)$  une poisson de paramètre  $\lambda$ . On évalue :

$$\begin{split} \mathbb{E}(X) &= \sum_{k \geqslant 0} \mathbb{P}(X = k) k = \sum_{k \geqslant 0} \exp(-\lambda) \frac{\lambda^k}{k!} k = \exp(-\lambda) \sum_{k \geqslant 1} \frac{\lambda^k}{k!} k \\ &= \exp(-\lambda) \lambda \sum_{k \geqslant 1} \frac{\lambda^{k-1}}{(k-1)!} = \lambda \exp(-\lambda) \sum_{\gamma \geqslant 0} \frac{\lambda^{\gamma}}{\gamma!} = \lambda \exp(-\lambda) \exp(\lambda) = \lambda. \end{split}$$

*Exemple* 3. (exemple de 3.2.) Soit  $X \sim B$ âle. La loi de X est donnée par  $\mathbb{P}(X = k) = \frac{6}{(\pi k)^2}$  pour tout  $k \geqslant 1$ . On évalue :

$$\mathbb{E}(X) = \sum_{k \ge 1} \mathbb{P}(X = k) k \sum_{k \ge 1} \frac{6}{\pi^2} \sum_{k \ge 1} \frac{1}{k^2} k = \frac{6}{\pi^2} \sum_{k \ge 1} \frac{1}{k} = +\infty.^9$$

*Exemple* 4. (exemple de 3.3.) Soit  $X \sim \text{Exp}(\lambda)$  une exponentielle négative <sup>10</sup>. On sait :

$$f_X(t) = \lambda \exp(-\lambda t),$$

et donc on calcule:

$$\mathbb{E}(X) = \int_0^{+\infty} x f_X(x) \, dx = \int_0^{+\infty} x \lambda \exp(-\lambda x) \, dx.$$

On pose  $y := \lambda x$  (et donc  $dy = \lambda dx$ ), et on obtient :

$$E(X) = \frac{1}{\lambda} \int_0^{+\infty} y \exp(-y) \, dy = \frac{1}{\lambda}.$$

*Exemple* 5. (exemple de 3.3.) Soit  $X \sim U_{(a,b)}$  une uniforme sur (a,b) où  $0 \le a < b \in \mathbb{R}$ . On sait :

$$f_X(t) = \frac{1}{b-a} 1_{(a,b)}(t),$$

et donc, on calcule:

$$\mathbb{E}(X) = \int_0^{+\infty} x f_X(x) \, dx = \int_a^b \frac{x}{b-a} = \left[ \frac{x^2}{2(b-a)} \right]_a^b = \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}.$$

*Exemple* 6. (exemple de 3.3.) Soit  $X \sim \frac{1}{2}\mathcal{C}$  une demi-Cauchy. On sait (pour  $t \in [0, +\infty)$ ):

$$f_X(t) = \frac{2}{\pi(1+t^2)},$$

<sup>&</sup>lt;sup>9</sup>La série  $\sum_{k\geqslant 1}\frac{1}{k}=+\infty$  se démontre en utilisant le fait que  $\sum_{i=2^{\alpha}}^{2^{\alpha}+1}\frac{1}{i}\ngeq\frac{1}{2}\forall\alpha\in\mathbb{N}$  et donc en faisant tendre  $\alpha\to+\infty$ , on obtient  $+\infty$ .

<sup>&</sup>lt;sup>10</sup>la notion d'exponentielle *négative* vient du fait que le paramètre de la fonction exponentielle est négatif, mais la fonction exponentielle est définie positive.

et donc, on calcule:

$$\mathbb{E}(X) = \int_0^{+\infty} x f_X(x) \, dx = \int_0^{+\infty} \frac{2x}{(1+x^2)} \frac{dx}{\pi} = \frac{1}{\pi} \left[ \log(1+x^2) \right]_0^{+\infty} = +\infty$$

*Exemple 7.* (exemple de 3.5.) Soit  $X \sim \mathcal{C}$  une Cauchy. On sait :

$$f_X(t) = \frac{1}{\pi(1+t^2)},$$

et donc, on calcule:

$$\int_{-\infty}^{+\infty} x f_X(x) \, dx = 2 \int_{0}^{+\infty} |x| \, f_X(x) \, dx = 2\infty = +\infty.$$

**Proposition 3.6** (Critère de d'Alembert). *Soit* f *une fonction définie positive sur*  $[1, +\infty)$ . *On suppose*  $f(x) \sim \frac{c}{x^{\alpha}}$  *quand*  $x \to +\infty$  *avec*  $\alpha, c \in \mathbb{R}$ .

 $Si \ \alpha < 1$ , alors:

$$\int_{1}^{+\infty} f(x) \, \mathrm{d}x < +\infty,$$

*et si*  $\alpha \geqslant 1$ , *alors* :

$$\int_{1}^{+\infty} f(x) \, \mathrm{d}x = +\infty.$$

*Remarque.* Dans les cas des Cauchy, on a a=1 et  $c=\frac{1}{\pi}$ . Donc, par d'Alembert, on sait que l'intégrale est infinie. On n'a pas besoin de primitive explicite.

*Remarque.* Pour les variables aléatoires continues n'ayant pas d'espérance, on peut s'intéresser à la médiane  $m \in \mathbb{R}$  telle que :

$$\int_{-\infty}^{m} f(x) dx = \int_{m}^{+\infty} f(x) dx = \frac{1}{2}.$$

Si f s'annule en certaines x, il se peut que m ne soit pas unique.

Une variable  $X \sim \mathcal{C}$  Cauchy est paire, et donc m = 0.

# 3.5 Espérance de fonctions de variables aléatoires

**Définition 3.7.** Soit X une v.a.c. réelle et  $g : \mathbb{R} \to \mathbb{R}$  une fonction mesurable. La quantité Y = g(X) est une variable aléatoire car c'est une application :  $Y : \Omega \to \mathbb{R} : \omega \mapsto (g \circ X)(\omega)$ .

**Théorème 3.8** (Principe de transfert). *Soient X une v.a. et Y* := g(X). *On suppose*  $\mathbb{E}(|Y|) < +\infty^{11}$ , *alors :* 

$$\mathbb{E}(Y) = \begin{cases} \sum_{x_n \in E} g(x_n) \mathbb{P}(X = x_n) & \text{si X est discrète} \\ \int_{\mathbb{R}} g(x) f_X(x) \, dx & \text{si X est absolument continue} \end{cases}$$
 (6)

*Remarque.* Ce théorème signifie que pour déterminer l'espérance de g(X), on intègre g(x) le long de la loi de X.

<sup>&</sup>lt;sup>11</sup>Ainsi,  $\mathbb{E}(Y)$  a un sens.

*Exemple* 8 (Calcul du moment d'ordre 2). On prend  $g : \mathbb{R} \to \mathbb{R} : x \mapsto x^2$ .

<u>Cas discret</u>: soit X à valeurs dans  $E := \{x_0, x_1, \ldots\}$ . On prend Y := g(X). Alors, l'espérance est donnée par :

$$\mathbb{E}(Y) = \mathbb{E}(g(Y)) = \sum_{x_n \in F} (x_n)^2 \mathbb{P}(X = x_n).$$

Si  $X \sim \mathcal{P}(\lambda)$  est une poisson de paramètre  $\lambda$ , on a  $E = \mathbb{N}$ . Dès lors, on considère  $x_n = n$ . L'espérance est alors :

$$\begin{split} \mathbb{E}(Y) &= \mathbb{E}(X^2) = \sum_{n \geqslant 0} n^2 \mathbb{P}(X = n) = \sum_{n \geqslant 1} n^2 \exp(-\lambda) \frac{\lambda^n}{n!} = \exp(-\lambda) \sum_{n \geqslant 1} n \frac{\lambda^n}{(n+1)!} \\ &= \exp(-\lambda) \sum_{n \geqslant 1} \left( (n-1)+1 \right) \frac{\lambda^n}{(n-1)!} = \exp(-\lambda) \left[ \lambda \sum_{n \geqslant 1} \frac{\lambda^{n-1}}{(n-1)!} + \sum_{n \geqslant 1} (n-1) \frac{\lambda^n}{(n-1)!} \right] \\ &= \lambda + \exp(-\lambda) \sum_{n \geqslant 2} \frac{\lambda^n}{(n-2)!} = \lambda + \lambda^2 \exp(-\lambda) \sum_{n \geqslant 2} \frac{\lambda^{n-2}}{(n-2)!} \\ &= \lambda + \lambda^2. \end{split}$$

<u>Cas absolument continu</u>: soit X à valeurs dans  $\mathbb{R}$  de densité  $f_X$ . On prend  $Y \coloneqq g(X)$ . Alors, l'espérance est donnée par :

$$\mathbb{E}(Y) = \mathbb{E}(g(X)) = \int_{\mathbb{R}} x^2 f_X(x) \, dx.$$

Si  $X \sim \text{Exp}(\lambda)$  est une exponentielle négative de paramètre  $\lambda$ , on a (en posant  $y := \lambda x$  et donc  $dy = \lambda dx$ ):

$$\mathbb{E}(Y) = \mathbb{E}(X^2) = \int_{\mathbb{R}} x^2 \lambda \exp(-\lambda x) \, dx = \frac{1}{\lambda^2} \int_{\mathbb{R}} y^2 \exp(-y) \, dy = \frac{\Gamma(3)}{\lambda^2} = \frac{2!}{\lambda^2} = \frac{2}{\lambda^2}.$$

**Définition 3.9.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace de probabilités. On note :

$$\mathcal{L}_1(\Omega, \mathcal{F}, \mathbb{P}) := \{ X \text{ v.a. t. q. } \mathbb{E}(|X|) < +\infty \}. \tag{7}$$

**Théorème 3.10** (Propriété fondamentale de l'espérance). L'espace  $\mathcal{L}_1(\Omega, \mathcal{F}, \mathbb{P})$  est un espace vectoriel réel de dimension infinie. Donc :

$$\forall X, Y \in \mathcal{L}_1 (\Omega, \mathcal{F}, \mathbb{P}), \lambda, \mu \in \mathbb{R} : \lambda X + \mu Y \in \mathcal{L}_1 (\Omega, \mathcal{F}, \mathbb{P}).$$

*De plus,*  $\mathbb{E}(\lambda X + \mu Y) = \lambda \mathbb{E}(X) + \mu \mathbb{E}(Y)$ .

Remarque. On dit alors que l'espérance est un opérateur linéaire.

**Théorème 3.11.** Si  $X \ge 0$  est une v.a. définie positive, alors son espérance est positive.

#### 3.6 Variance

#### 3.6.1 Définitions

**Définition 3.12.** Soit  $X \in \mathcal{L}_1(\Omega, \mathcal{F}, \mathbb{P})$ . On pose  $Y := (X - \mathbb{E}(X))^2$ . Par définition, Y est positive, et donc on peut définir son espérance. On pose :

$$Var(X) := \mathbb{E}(Y). \tag{8}$$

*Remarque.* Il est possible que  $Var(X) = \mathbb{E}(Y) = +\infty$ . Dans ce cas, on dit que X est de variance infinie. *Remarque.* La variance est un indicateur de répartition par rapport à la moyenne. Dans le cas où la variance est infinie, on regarde les quantités  $\mathbb{P}(|X - \mathbb{E}(X)| \ge x)$  pour x > 0 par analogie à la médiane.

**Proposition 3.13.** *Soit* X *une v.a. de variance*  $Var(X) < +\infty$ *. Alors :* 

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2. \tag{9}$$

Démonstration. On observe que :

$$Var(X) = \mathbb{E}\left[(X - \mathbb{E}(X))^2\right] = \mathbb{E}\left[X^2 + \mathbb{E}(X)^2 - 2X\mathbb{E}(X)\right] = \mathbb{E}(X^2) + \mathbb{E}(X)^2 - 2\mathbb{E}(X)\mathbb{E}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

*Remarque.* La variance est une valeur positive. Donc on a  $\mathbb{E}(X^2) - \mathbb{E}(X)^2 \geqslant 0$ , et donc  $\mathbb{E}(X^2) \geqslant \mathbb{E}(X)^2$ .

**Proposition 3.14.** La proposition 3.13 peut se retrouver à l'aide de l'inégalité de Cauchy-Schwartz.

*Démonstration*. Dans le cas discret, on pose  $y_n := x_n \sqrt{\mathbb{P}(X = x_n)}$ , et  $z_n := \sqrt{\mathbb{P}(X = x_n)}$ . L'inégalité de Cauchy-Schwartz implique :

$$\left| \sum_{n=1}^{N} y_n z_n \right| \leqslant \sqrt{\left( \sum_{n=1}^{N} y_n^2 \right) \left( \sum_{n=1}^{N} z_n^2 \right)}.$$

Les valeurs étant positives, on peut passer au carré. En faisant tendre  $N \to +\infty$ , on obtient :

$$\left(\sum_{n\geqslant 1}y_nz_n\right)^2\leqslant \left(\sum_{n\geqslant 1}y_n^2\right)\left(\sum_{n\geqslant 1}z_n^2\right).$$

On sait que :

$$\begin{cases} &\sum_{n\geqslant 1}z_n^2=\sum_{n\geqslant 1}\mathbb{P}(X=x_n)=1,\\ &\sum_{n\geqslant 1}y_n^2=\sum_{n\geqslant 1}(x_n)^2\mathbb{P}(X=x_n)=\mathbb{E}(X^2),\\ &\sum_{n\geqslant 1}y_nz_n=\sum_{n\geqslant 1}y_nz_n=\sum_{n\geqslant 1}x_n\mathbb{P}(X=x_n)=\mathbb{E}(X). \end{cases}$$

On a bien:

$$\mathbb{E}(X)^2 \leqslant \mathbb{E}(X^2)$$
,

qui est l'inégalité (9).

<u>Dans le cas absolument continu</u>, on a X une v.a. de densité  $f_X$  sur  $\mathbb{R}$ . On pose  $g(x) = \sqrt{f_X(x)}$  et  $h(x) = x\sqrt{f_X(x)}$ . L'inégalité de Cauchy-Scwhartz implique :

$$\left| \int_{\mathbb{R}} h(x) g(x) \, dx \right| \leqslant \sqrt{\left( \int_{\mathbb{R}} h(x)^2 \, dx \right) \left( \int_{\mathbb{R}} g(x)^2 \, dx \right)}.$$

À nouveau, en mettant au carré, on obtient :

$$\begin{split} \left(\int_{\mathbb{R}} x f_X(x) \, dx\right)^2 &\leqslant \left(\int_{\mathbb{R}} \left(x \sqrt{f_X(x)}\right)^2 dx\right) \left(\int_{\mathbb{R}} \left(\sqrt{f_X(x)}\right) dx\right) \\ &= \left(\int_{\mathbb{R}} x^2 f_X(x) \, dx\right) \left(\int_{\mathbb{R}} f_X(x) \, dx\right). \end{split}$$

On sait que:

$$\begin{cases} \left(\int_{\mathbb{R}} x f_X(x) dx\right)^2 = \mathbb{E}(X)^2 \\ \int_{\mathbb{R}} x^2 f_X(x) dx = \mathbb{E}(X^2) \\ \int_{\mathbb{R}} f_X(x) dx = 1. \end{cases}$$

On a bien:

$$\mathbb{E}(X)^2 \leqslant \mathbb{E}(X)^2$$
,

qui est l'inégalité (9).

**Définition 3.15.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace de probabilités. On pose :

$$\mathcal{L}_2(\Omega, \mathcal{F}, \mathbb{P}) := \{ V \text{ v.a. t. q. } \mathbb{E}(X^2) < +\infty \}.$$

**Théorème 3.16.** L'espace  $\mathcal{L}_2(\Omega, \mathcal{F}, \mathbb{P})$  est un espace vectoriel réel de dimension infinie. Donc :

$$\forall X,Y\in\mathcal{L}_{2}\left(\Omega,\mathfrak{F},\mathbb{P}\right),\lambda,\mu\in\mathbb{R}:\lambda X+\mu Y\in\mathcal{L}_{2}\left(\Omega,\mathfrak{F},\mathbb{P}\right).$$

*Remarque.* L'application  $X \mapsto \mathbb{E}(X^2)$  est une forme quadratique et donc n'est pas linéaire.

**Théorème 3.17.** L'espace  $\mathcal{L}_2(\Omega, \mathcal{F}, \mathbb{P})$  est inclus dans l'espace  $\mathcal{L}_1(\Omega, \mathcal{F}, \mathbb{P})$ . Donc si  $\mathbb{E}(X^2) < +\infty$ , alors  $\mathbb{E}(|X|) < +\infty$ 

**Théorème 3.18** (Inégalité de Cauchy-Schwartz sur les espaces  $\mathcal{L}_i$ ). *Soient*  $X,Y\in\mathcal{L}_2\left(\Omega,\mathfrak{F},\mathbb{P}\right)$ . *Alors* :

$$|\mathbb{E}(XY)| \le \mathbb{E}(XY|) \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}.$$
 (10)

#### 3.7 Moments de variables aléatoires

#### 3.7.1 Cas discret

**Définition 3.19.** Soit  $E = x_{ii \in \mathbb{N}}$  un espace d'état fini ou infini dénombrable. Si X est une variable aléatoire à valeurs dans E, alors sa loi est donnée par  $\{p_i = \mathbb{P}(X = x_i)\}_{i \in \mathbb{N}}$ . Les moments de X sont les valeurs moyennes de F(X) où  $F: E \to \mathbb{R}$  est une fonction donnée.

**Définition 3.20.** On considère la suite de terme général  $|F(x_i)| p_i$ .

(i) Si  $\sum_{i \in \mathbb{N}} |F(x_i)| p_i$  converge, alors le F-moment de X existe et vaut :

$$\mathbb{E}(F(X)) = \sum_{i \in \mathbb{N}} F(x_i) \mathbb{P}(X = x_i);$$

(ii) si  $\sum_{i \in \mathbb{N}} |F(x_i)| p_i$  diverge, alors le F-moment de X n'a pas de sens et donc n'est pas défini.

#### 3.7.2 Cas absolument continu

**Définition 3.21.** Soient  $E = \mathbb{R}$  et  $f_X : \mathbb{R} \to \mathbb{R}^+$  mesurable telle que  $\int_{\mathbb{R}} f_X(x) \, dx$ .  $f_X$  est appelée *densité de probabilité sur*  $\mathbb{R}$ . La variable aléatoire X associée est telle que :

$$\forall A \in \mathcal{B}(\mathbb{R}) : \mathbb{P}(X \in A) = \int_{A} f_{X}(x) \, dx = \int_{\mathbb{R}} f_{X}(x) 1_{A}(x) \, dx.$$

*Remarque.* Soit  $A \in \mathcal{B}(\mathbb{R})$ . Si  $\int_A dx =: Leb(A) = 0$ , alors  $\mathbb{P}(X \in A) = 0$ .

**Définition 3.22.** Soit  $F : \mathbb{R} \to \mathbb{R}$  mesurable.

(i) Si  $\int_{\mathbb{R}} |F(x)| f_X(x) dx$  converge, alors le F-moment de X existe et vaut :

$$\mathbb{E}(F(X)) = \int_{\mathbb{R}} F(x) f_X(fx) dx;$$

(ii) si  $\int_{\mathbb{R}} \left| F(x) \right| f_X(x) \, dx$  diverge, alors le F-moment de X n'a pas de sens et donc n'est pas défini.

*Remarque.* Le calcul *effectif* de  $\mathbb{E}(F(X))$  est une intégrale impropre qui peut s'avérer compliquée.

### 3.8 Fonctions génératrices