Analysis Principles

- Operational Principles
 - Information Domain must be represented and understood
 - Functions must be defined
 - Behavior (stimulated by external events)
 must be represented
 - Models must be partitioned in layered fashion
 - Process must move from Essential Information to Implementation Detail

Analysis Principles

- Guiding Principles
 - Understand the Problem before you begin to create the analysis model
 - Develop Prototypes that enable a user to understand how human-machine interaction will occur
 - Record Origin and Reason for every requirement
 - Use multiple views of requirements
 - Prioritize requirements
 - Work to eliminate ambiguity

The Information Domain

- Data Processing
 - -Software is built to process Data
- Event Processing
 - -Software also processes Events
 - -Control
- Views
 - -info content and relationships
 - info flow
 - -info structure

The Information Domain

- Information Content
 - -Attributes
 - Relationships
- Information flow
 - -Input
 - -Storage
 - -Output
 - -Transformations

The Information Domain

- Information Structure
 - Data structure refers to design and implementation of information structure
 - How is Information related to other information
 - Is all information in one or many structures?
 - How do structures relate?

Modeling

- Functional
- Behavioral

Model Roles

- Important Roles
 - Aids Analyst to Understand
 - -Information
 - -Function
 - -Behavior
 - Focal Point for Review
 - -Completeness
 - -Consistency
 - –Accuracy
 - Foundation for Design

Partitioning

- Partition
 - Divide problems that are too large and complex into parts that can be understood as a whole
- Hierarchical Representation
 - Move vertically
 - –expose increasing details
 - Move horizontally
 - -decompose the problem

Essential and Implementation Views

- Essential View
 - presents functions without regard to implementation details
- Implementation View
 - presents the "real world" of processing functions and information structures

Software Prototyping

- Prototyping
 - Constructed for customer and developer assessment
 - Used to help derive requirements when other methods may fail

Selecting the Prototyping Approach

- Closed-Ended
 - Throwaway prototyping
 - Serve as a rough demonstration of requirements
 - Software is engineered using a different paradigm
- Open-Ended
 - Evolutionary prototyping
 - Continue into design and construction

Selecting the Prototyping Approach

- Questions to Ask
 - Is the application domain understood by customer and developer?
 - Does problem lend itself to modeling?
 - Is customer certain of basic system requirements?
 - Are requirements established and stable?
 - Are any requirements ambiguous?
 - Are requirements contradictory?

Prototyping Methods and Tools

- Rapid Prototyping
 - Fourth Generation Techniques
 - Reusable Software Components
 - Formal Specification and Prototyping Environments

Representation

- Representation format and content should be relevant to problem
- Information contained within specification should be nested
- Diagrams should be restricted in number and consistent
- Representations should be revisable

The Software Requirements Specification

- Outline
 - Introduction
 - Information Description
 - Functional Description
 - Behavioral Description
 - Validation and Criteria
 - Bibliography
 - Appendix

Specification Review

- Review is first conducted at a macroscopic level
 - ensure that the specification is complete, consistent, and accurate
- Then focus at detailed level
 - uncover hidden problems
- Signed off by both customer and developer
 - change will not be eliminated
 - extension of scope
 - -increase cost
 - protract schedule