

On Scheduling of Fuzzing Test

Hongbo Zhang ANU

Superadvisors: Steve Blackburn, Tony Hosking, Shane Magrath

Feb 13 2017 Sydney

Overview

- Problem
- Model
- Result
- Discussion

Model

Bernoulli Model

Crash Model

Bernoulli Model

- Infinite is impossible
- Probability to find a new unique crash should be decrease.

Crash Model

Limited Crashes Model

- λ is decay parameter
- n is unique crashes triggered by a seed potentially
- p is much smaller than 1.
- All of them are unknown as a priori.

Result: Limited Crashes Model

$$n = 5$$

Result: Limited Crashes Model

$$n \rightarrow \infty$$
 $n = 5$

- Exploration vs. Exploitation
- A critical number n*

Result: Decay factor

- n >> n*
- Crashes are expected to be found earlier for smaller λ , hence favor more exploration

Result: α-UCB1

To see "explore vs. exploit" more clearly

UCB1 : Mean + Variance

Exploit Explore

 α -UCB1: α ×Mean + Variance

Result: α-UCB1

$$n \rightarrow \infty$$

$$n = 5$$

Discussion

- Exploration vs. Exploitation
- Accurate crash modeling is essential in designing a scheduling policy.
- Mortal multi-arm bandits
- Bug model

THANKS

Appendix

• n*

$$\frac{a}{\lambda_0} \times \frac{\gamma^{n+1} - 1}{\gamma^{n+1} - \gamma^n} \approx m = t \times c \times w$$