Willkommen in der guten Stube :D

Aufgabe

Man zeige für alle $n \in \mathbb{N}$ die Gültigkeit der Abschätzung:

$$\sqrt[n]{n} \le 2 - \frac{1}{n}$$
.

Hilfsabschätzung

Als Hilfsmittel verwenden wir die Ungleichung zwischen dem geometrischen und arithmetischen Mittel:

Hilfsabschätzung

Als Hilfsmittel verwenden wir die Ungleichung zwischen dem geometrischen und arithmetischen Mittel:

Hilfsabschätzung

Für alle $x_1, \ldots, x_m > 0$, $m \in \mathbb{N}$, gilt die Abschätzung:

$$\sqrt[m]{x_1 \cdot \ldots \cdot x_m} \leq \frac{x_1 + \ldots + x_m}{m}.$$

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl.

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Wir schreiben $n = n \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-1)\text{-mal}}$ und schätzen mit der Ungleichung zwischen dem geometrischen und arithmetischen Mittel ab:

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Wir schreiben $n = n \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-1)\text{-mal}}$ und

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Wir schreiben $n = n \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-1)\text{-mal}}$ und

$$\sqrt[n]{n} = \sqrt[n]{n \cdot 1 \cdot \ldots \cdot 1}$$

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Wir schreiben $n = n \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-1)\text{-mal}}$ und

$$\sqrt[n]{n} = \sqrt[n]{n \cdot 1 \cdot \ldots \cdot 1}$$

$$\leq \frac{n+1+\ldots+1}{n}$$

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Wir schreiben $n = n \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-1)\text{-mal}}$ und

$$\sqrt[n]{n} = \sqrt[n]{n \cdot 1 \cdot \ldots \cdot 1}$$

$$\leq \frac{n+1+\ldots+1}{n}$$

$$= \frac{n+n-1}{n}$$

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Wir schreiben $n = n \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-1)\text{-mal}}$ und

$$\sqrt[n]{n} = \sqrt[n]{n \cdot 1 \cdot \ldots \cdot 1}$$

$$\leq \frac{n+1+\ldots+1}{n}$$

$$= \frac{n+n-1}{n}$$

$$= \frac{2n-1}{n}$$

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Wir schreiben $n = n \cdot \underbrace{1 \cdot \ldots \cdot 1}_{(n-1)-\text{mal}}$ und

$$\sqrt[n]{n} = \sqrt[n]{n \cdot 1 \cdot \dots \cdot 1}$$

$$\leq \frac{n+1+\dots+1}{n}$$

$$= \frac{n+n-1}{n}$$

$$= \frac{2n-1}{n}$$

$$= 2 - \frac{1}{n}.$$

Wir setzen
$$w_n := \sqrt[n]{n}$$
.

Wir setzen $w_n := \sqrt[n]{n}$. Aus der eben gezeigten Abschätzung folgt, für alle $n \in \mathbb{N}$, für die Folge $(w_n)_{n \in \mathbb{N}}$ die Abschätzung:

Wir setzen $w_n := \sqrt[n]{n}$. Aus der eben gezeigten Abschätzung folgt, für alle $n \in \mathbb{N}$, für die Folge $(w_n)_{n \in \mathbb{N}}$ die Abschätzung:

$$w_n \le 2 - \frac{1}{n}$$

Wir setzen $w_n := \sqrt[n]{n}$. Aus der eben gezeigten Abschätzung folgt, für alle $n \in \mathbb{N}$, für die Folge $(w_n)_{n \in \mathbb{N}}$ die Abschätzung:

$$w_n \le 2 - \frac{1}{n} < 2.$$

Weiter gilt für den Grenzwert der Folge $(w_n)_{n\in\mathbb{N}}$:

Weiter gilt für den Grenzwert der Folge $(w_n)_{n\in\mathbb{N}}$:

$$\lim_{n\to\infty}\sqrt[n]{n}$$

Weiter gilt für den Grenzwert der Folge $(w_n)_{n \in \mathbb{N}}$:

$$\lim_{n\to\infty} \sqrt[n]{n} \le \lim_{n\to\infty} \left(2 - \frac{1}{n}\right)$$

Weiter gilt für den Grenzwert der Folge $(w_n)_{n \in \mathbb{N}}$:

$$\lim_{n\to\infty}\sqrt[n]{n}\leq\lim_{n\to\infty}\left(2-\frac{1}{n}\right)=2.$$

Weiter gilt für den Grenzwert der Folge $(w_n)_{n \in \mathbb{N}}$:

$$\lim_{n\to\infty}\sqrt[n]{n}\leq\lim_{n\to\infty}\left(2-\frac{1}{n}\right)=2.$$

Tatsächlich gilt:

$$\lim_{n\to\infty}\sqrt[n]{n}=1.$$