First Day's Talk

Computer Organization & Architecture

Course info

- Course Title "Computer Organization and Architecture"
 - Subj Code CE 420
 - Pre Requisites: Digital Logic Design (CS211)
 - Credits 3+1
 - Class timings
 - Mon at 0745
 - Wed at 1105
 - Lab Timings (Lab Engr: Fazalullah)
 - Tues

COA by Asst Prof Athar Mohsin, MCS-NUST

Few Essential topics

- To be covered before formally starting the COA
 - MSI-Sequential Circuits
 - Registers
 - · Shift registers
 - counters
 - Memory unit

COA by Asst Prof Athar Mohsin, MCS-NUST

Course Contents- Linda Null

- Introduction to Computer Architecture

 Evolution of Computers

 Types of Computers

 - Hardware
 - Firmware and Software
 - Future trends
- Programming model of 8086 family
 - Addressing Modes.
- The Main Components of a Computer and functions
 - The Computer Level Hierarchy
 - The von Neumann & non-von Neumann Model
- Data types
 - Fixed point representation
 - Floating-Point Representation
 - Codes for Data Recording and Transmission
 - Error Detection and Correction
 - binary codes

COA by Asst Prof Athar Mohsin, MCS-NUST

Course Contents - D.V. Hall

- The 80X86 Microprocessor
 - Inside The 8088/8086 Microprocessor
 - Registers
 - · Data / Address and Control Bus
 - Pin Configuration
 - Minimum Mode vs. Maximum Mode
 - Software model of the 8086/8088 microprocessor.
 - Segmentation of The 8088/8086 Address Space
 - Bus Activity Timings

COA by Asst Prof Athar Mohsin, MCS-NUST

5

Course Contents- Linda Null

- Instruction Set Architectures
 - Instruction Codes Instruction Formats
 - Design Decisions for Instruction Sets
 - Little versus Big Endian
 - Internal Storage in the CPU: Stacks versus Registers
 - · Number of Operands and Instruction Length
 - · Expanding Opcodes
 - Computer Register
 - Register Transfer Language
 - · Bus and Memory Transfer
 - Arithmetic Logic Unit
 - Addressing
 - Instruction-Level Pipelining

COA by Asst Prof Athar Mohsin, MCS-NUST

Contents of the course-Linda Null

- Memory Type
 - Internal Memory
 - External Memory
 - Organization and design of Memory
 - Cache Memory
 - Virtual Memory
- Interrupt
- Input/Output and Storage Systems
 - I/O Architectures
 - Magnetic Disk Technology
 - RAID
 - Ports and designing

COA by Asst Prof Athar Mohsin, MCS-NUST

Text and Ref book

- The Essentials of Computer Organization and Architecture
 - By Linda Null (Soft & Hard copy in lib)
- Microprocessor interfacing by D.V. Hall
 - 3rd edition for microprocessor and Assy language only
- Ref book
 - Computer Organization and Architecture
 - 6th or 7th edition "William Stallings"

COA by Asst Prof Athar Mohsin, MCS-NUST

Important Information

- Examinations & Grading:
 - -Sessional 50%
 - Quizzes: (5-6) graded 10%
 - Assignments: (5-6) 10%
 - Mid term 30%
 - -Final Exam 50 %

COA by Asst Prof Athar Mohsin, MCS-NUST

COA by Asst Prof Athar Mohsin, MCS-NUST

Chapter 1: Introduction

Chapter 2: Data Representation

Microprocessor Interfacing
D.V Hall

Chapter 4: MAFILE, a
Memory, I.O., Interrupts

Chapter 5: A closer
Look at ISAs

Chapter 7:

Input/Output

Chapter 6:

Memory

Accomplishment

One	Se	me	ste	ŗ
(42	2 H	oui	rs)	

Chapter	Lecture Hours	Expected Level
1	3	Mastery
2	6	Mastery
-3	6	Mastery
4	6	Mastery
5	3	Familiarity
6	5	Mastery
7	2	Mastery

corresponding levels of accomplishment for each chapter

COA by Asst Prof Athar Mohsin, MCS-NUST

11

The Computer Level Hierarchy

- Each abstract layer performs a specific task.
- Instead of viewing the machine as one giant computer, we can view it as a collection of virtual machines.
 - •each level implemented on top of the next lower level, and each communicating with the machine above and below in the hierarchy via a specific set of rules
 - This helps to <u>close the semantic gap that exists between</u> the digital logic level and the high-level language programming level and helps us manage the complexity of the system.
- •Each level serves as an abstract layer; its implementation is of no concern to the upper layers, and it hides the details of lower layers from upper layers

• circuit

COA by Asst Prof Athar Mohsin, MCS-NUST

Architecture & Organization

- Architecture?
 - Those attributes visible to the programmer
 - Instruction set, number of bits used for data representation, I/O mechanisms, addressing techniques.
 - e.g. Is there a multiply instruction?
- Organization?
 - How features are implemented
 - · Control signals, interfaces, memory technology.
 - e.g. Is there a hardware multiply unit or is it done by repeated addition?

COA by Asst Prof Athar Mohsin, MCS-NUST

13

Architecture & Organization

- All Intel x86 family share the same basic architecture
 - 8086, 8088, 80286, 80386, 80486, Pentium
- The IBM System/370 family share the same basic architecture
 - Initial announcement in 1964 included Models 30, 40, 50, 60, 62, and
 70
 - Advantage?
 - · This gives code compatibility
 - At least backwards
 - The particular functions a microprocessor performs are dictated by software (Assembly Language).
- Organization differs between different versions

COA by Asst Prof Athar Mohsin, MCS-NUST

Structure & Function

- A computer is a complex system contains millions of electronic components
 - The components are arranged in a hierarchal way as a set of interrelated subsystems
- The designer need to deal with a particular level of the system at any one time, and concerned with structure and function at each level
 - Structure
 - the way in which components relate to each other
 - Function
 - the operation of individual components as part of the structure

COA by Asst Prof Athar Mohsin, MCS-NUST

15

Function

- The basic functions of all computer are:
 - Data processing
 - Data storage
 - Data movement
 - Control Mechanism

COA by Asst Prof Athar Mohsin, MCS-NUST

Function

- The computer must be able to process data, that may be in any forms and range
- The computer must also store data
 - Data storage may be short term or for a longer period
- Computer must be able to move data between in and outside the computer
 - When data are received from or delivered to a device that is directly connected to the computer, the process is known as "input output" (I/O)
 - When data is moved over longer distances to or from a remote device, the process is known as "data communication"
- There must be control of these three functions that is done through instructions

COA by Asst Prof Athar Mohsin, MCS-NUST

17

Structure

- The computer interacts in some fashion with its external environment
 - All the linkages to external environment are classified as peripheral devices or communication lines
- There are four structural components of the computer itself
 - Central Processing Unit (CPU):
 - controls the operation of the computer and performs the date processing task
 - Main Memory:
 - Store data
 - I/O:
 - Moves data between the computer and its external environment
 - System Interconnection:
 - some mechanism that provides for communication among CPU, main memory and I/O

COA by Asst Prof Athar Mohsin, MCS-NUST

