Analyses & results

GCFR vs SWAFR manuscript

Ruan van Mazijk 2019-08-29

1. Comparing environmental heterogeneity

Table 1: Slopes of CLES against . . .

Variable	Slope	P	
Elevation	-0.029	0.135	
MAP	-0.224	0.028	*
PDQ	-0.055	0.260	
$Surface_T$	-0.062	0.207	
NDVI	0.059	0.134	
CEC	-0.054	0.361	
Clay	0.104	0.143	
Soil_C	-0.065	0.270	
pН	-0.013	0.729	
PC1	-0.076	0.059	

2. Comparing species richness

Table 2: ...

P_U	CLES_value
0.0002828	0.5882409
0.0454020	0.5875460
0.0067394	0.7318339
0.0000000	0.7400046
0.0001875	0.8114187
	0.0002828 0.0454020 0.0067394 0.0000000

3. Environmental heterogeneity as an explanation of species richness

3.1. Univariate models

Table 3: Summarised results of the best fitting separate simple linear regressions of $\log_{10}[S_{\text{QDS}}]$ against environmental heterogeneity.

Model type	Heterogeneity predictor	Slope		SWAFR effect	
$\overline{\text{Main effect + region}}$	NDVI	+	***	-	**
	Soil C	+	**	_	*
Main effect only	Elevation	+	***		
	MAP	+	***		
	PDQ	+	***		
	Surface T	+	***		
	PC1	+	***		
Region only	CEC	-		_	***

Model type	Heterogeneity predictor	Slope	SWAFR effect	
	Clay	+	-	***
	$\mathrm{pH}^{\overset{\circ}{}}$	=	-	***

Table 4: Summarised results of the best fitting separate simple linear regressions of $\log_{10}[S_{\text{HDS}}]$ against environmental heterogeneity.

Model type	Heterogeneity predictor	Slope	
Main effect only	Elevation	+	*
v	MAP	+	***
	PDQ	+	***
	Surface T	+	*
	NDVI	+	***
	CEC	-	
	Clay	+	**
	Soil C	+	*
	рН	+	
	PC1	+	***

Table 5: Summarised results of the best fitting separate simple linear regressions of $\log_{10}[S_{\rm DS}]$ against environmental heterogeneity.

Model type	Heterogeneity predictor	Slope		SWAFR effect	
Main effect only	Elevation	+	**		
v	MAP	+	***		
	PDQ	+	***		
	Clay	+	***		
	Soil C	+	*		
	PC1	+	***		
Region only	Surface T	+		-	*
	NDVI	+		-	
	CEC	-		-	**
	рН	+		-	*

3.2. Multivariate models

Figure 1: The common language effect size (CLES) of (a–i) various forms of environmental heterogeneity (\log_{10} -transformed) and (j) the major axis thereof (PC1) in the GCFR and SWAFR. The CLES here is treated as the effect of GCFR relative to SWAFR values. Filled points represent comparisons where the GCFR and SWAFR significantly differed in heterogeneity (P ≠× 0.05, Mann-Whitney U-tests), while unfilled points represent those that were not significant (P > 0.05). Following simple linear regressions of CLES against scale, negative relationships (depicted by lines) were found for MAP (slope = -0.224, P = 0.028) and PC1 (slope = -0.076, P = 0.059). Abbreviations are as in Table 1.

Figure 2: Distributions of (a) QDS- and (b) HDS-scale vascular plant species richness in the GCFR and SWAFR. (c) Scatter plot of mean QDS-scale richness ($\overline{S}_{\text{QDS}}$) and turnover (T_{QDS} ; Equation 1) with contour lines denoting the S_{HDS} that arises as their sum. (d) The distribution of the turnover partition of S_{HDS} (T_{QDS} ; in c) expressed as a proportion (T_{QDS}).

Figure 3: ...

Figure 4: ...