

INDIANA DEPARTMENT OF HIGHWAYS

JOINT HIGHWAY RESEARCH PROJECT JHRP-83-7

ENGINEERING SOILS MAP OF DUBOIS COUNTY, INDIANA

Chen-Tair Huang

PURDUE UNIVERSITY

Digitized by the Internet Archive in 2011 with funding from LYRASIS members and Sloan Foundation; Indiana Department of Transportation
http://www.archive.org/details/engineeringsoils00huan

Final Report

ENGINEERING SOILS MAP OF DUBOIS COUNTY, INDIANA

H. L. Michael, Director TO:

July 6, 1983

Joint Highway Research Project

Project: C-36-51B

FROM: R. D. Miles

File: 1-5-2-70

Attached is the Final Report on the "Engineering Soils Map of Dubois County, Indiana." The map and report have been prepared by Mr. Chen-Tair Huang, Graduate Assistant on our staff under the direction of Professor Robert D. Miles.

This is the 69th county map which has been completed by using aerial photography and available information. The map and report should be very useful in planning and developing engineering facilities in Dubois County.

The Report is presented to the Board as a final report showing completion of the Dubois County engineering soils mapping project.

Sincerely,

Robert D. Miles

Robert D. Miles

RDM:rw

cc:	A. G. Altschaeffl	W. H. Goetz	C. F. Scholer
	J. M. Bell	G. K. Hallock	R. M. Shanteau
	W. F. Chen	J. F. McLaughlin	K. C. Sìnha
	W. L. Dolch	R. D. Miles	C. A. Venable
	R. L. Eskew	P. L. Owens	L. E. Wood
	J. D. Fricker	B. K. Partridge	E. J. Yoder
	G. D. Gibson	G. T. Satterly	S. R. Yoder

Final Report

ENGINEERING SOILS MAP OF DUBOIS COUNTY, INDIANA

bу

Chen-Tair Huang Graduate Assistant

Joint Highway Research Project

Project No.: C-36-51B

File No.: 1-5-2-70

Prepared as Part of an Investigation

Conducted by

Joint Highway Research Project Engineering Experiment Station Purdue University

In Cooperation with

Indiana Department of Highways

Purdue University West Lafayette, Indiana July 6, 1983

ACKNOWLEDGMENTS

The author wishes to thank Dr. D. W. Levandowski and Dr. T. R. West, Department of Geosciences, Purdue University for their assistance on this project. Special thanks is due Professor Robert D. Miles for guidance on the soil mapping and for review of the report. The author also wishes to thank the members of the Board of the Joint Highway Research Project for their support of the county soil mapping project.

All airphotos used in connection with the preparation of this report were obtained by the Indiana Department of Highways and the United States Department of Agriculture.

Introduction

The engineering soils map of Dubois County, Indiana which accompanies this report was done primarily by airphoto interpretation. The aerial photographs, having an approximate scale of 1:20,000, were taken in December 1937 for the United States

Department of Agriculture and were purchased from the agency.

Aerial photographic interpertation of the land forms and engineering soils of this county was accomplished in accordance with accepted principles of observation of inference (1). A field trip was made to the area for the purposes of resolving ambiguous details and correlating aerial photographic patterns with soil texture. The final land form and parent material boundaries were graphically reduced to produce the engineering map (1 inch = 1 mile). Standard symbols developed by the staff of the Airphoto Interpretation Laboratory, School of Civil Engineering, Purdue University, were employed to delineate land forms, parent materials and soil textures. Parent material symbols were grouped according to land form and origin, and texture symbols were superimposed to indicate the relative compositions of the parent materials. The text of this report largely represents an effort to overcome the limitation imposed by adherence to a standard symbolism and map presentation.

The map also includes a set of soil profiles which indicate the general soil profiles in the various land form parent

material areas. The soil profiles were complied from the agricultured literature and from the boring data of roadway soil survey along I64, SR 231, SR 162 and SR 164, (Appendix B). These data were supplied by the Indiana Department of Highways.

Liberal reference was made to the "Formation Distribution and Engineering Characteristic of Soils." (2)

Description of the Area

General

Dubois County is in the southwestern part of Indiana (Figure 1). It has a total area of 277,120 acres (433 square miles). The county extends about 21 miles (35 km) from north to south and about 21 miles (35 km) from west to east. It is the second county north of the Kentucky-Indiana State line, and the third county east of the Illinois-Indiana State line. Jasper, the county seat, is near the center of the county. The population of the county is 34,238 according to the 1980 census data with a total rural population of 16,357. The population of Jasper is 9,097, Huntington 5,376 and Ferdinand 2,192, and the urban population increased 12.2 percent in the 1970-1980 period.

Drainage Features

Drainage features of Dubois County are shown in Figure 2, "Drainage Map-Dubois County," Indiana, prepared by the Joint Highway Research Project, Purdue University, 1953 (3).

Dubois County lies within three drainage basins of the state (4). The northern part of the county is in the East Fork subdi-

FIGURE I LOCATION MAP OF DUBOIS COUNTY

FIGURE 2

DUBOIS COUNTY

INDIANA

1937 AAA AERIAL PHOTOGRAPHS

JOINT HIGHWAY RESEARCH PROJECT

PURDUE UNIVERSITY

1953

SCALE OF MILES

vision of the White River basin. The remaining of the county is in the Patoka River drainage basin.

Surface drainage is well developed in the uplands of most of Interstream areas in the northwestern part are relathe county. tively flat subsurface preglacial valleys exist in the northwestern part (5). The course of Patoka River seems to have been affected by glaciation. The Patoka River is a sluggish stream flowing through an aggraded valley. Its course has distinct angular bends in the western part of the county, indicating some rock control in that section. The White River valley acted as a glacial sluiceway. Drainage patterns are relatively fine textured in all upland areas except in the vicinity of Ireland. Short, Hurley, and Lick Fork Creeks appear to be influenced by the strike of the bedrock because of their rather definite northerly courses. Most streams in the northern part draining into the East Fork White River are small. Mill Creek and Birch Creek flow in a northerly direction to White River. Watershed divides exist in the northwestern, southeastern, and southwestern parts. The course of Flat Creek appears to have been affected by glaciation because of its deflections, it flows southeasterly in the county and joins Patoka River. Bottom lands of East Fork White River are identified by long curving intermittent drainageways. Streams crossing the Crawford upland are rectangular; they show the effect of rock control.

There are no glacial lakes in the county. Ponds of various origins are scattered throughout the area. Artificial lakes have

been constructed. Ditches have been constructed to improve drainage conditions, especially in the low-lying areas and nearly flat areas. A stream gaging station is located on Patoka River at Jasper (6).

Climate

Dubois County has a continental climate characterized by moderate winters and hot, dry summers. Summers are hot in valleys and slightly cooler in the hills. Some winters have short periods of subzero weather. Rains are fairly heavy and well distributed throughout the year. Snow falls nearly every winter, but the snow cover usually lasts only a few days. Table 1 gives data on temperature and precipitation for the survey area, as recorded at Paoli, Indiana, for the period 1951 to 1974. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring.

In winter the average temperature is 32 degrees F. and the average daily minimum temperature is 21 degrees. The lowest temperature on record, -27 degrees occurred at Paoli on January 28, 1963. In summer the average temperature is 73 degrees, and the average daily maximum temperature is 86 degrees. The highest recorded temperature which occurred on July 15, 1954, is 107 degrees.

Of the total annual precipitation, 24 inches, (61 cm) or 55 percent, usually falls in April through September. In two years out of ten, the rainfall in April through September is less than

TABLE 1.--TEMPERATURE AND PRECIPITATION [Recorded in the period 1971 to 1974 at Paoli, Indiana]

		snowfall	II	5.3	4.0	3.8	.2	0.	o.	0.	0.	0.	0.	1.5	2.6	17.4	
ion	Average	days with 0.10 inch or more		7	7	6	6	∞	∞	7	2	5	5	7	7	84	
Percipitation	0	More than	In	4.80	4.61	6.38	5.93	9.04	5.92	5.95	4.49	4.02	3.74	4.91	4.85	99.65	
Pe	2 years in 1 will have	Less than	듸	2.00	1.52	2.50	2.65	2.70	2.39	2.77	1.72	1.45	1.06	2.11	1.84	38.98	
		Average	ll II	3.55	3.23	79.7	4.38	4.47	4.34	4.45	3.25	2.87	2.55	3.65	3.50	44.88	
ure	2 years in 10 will have	Minimum temperature lower than	F1 0	-14	-10	7	20	28	70	45	43	33	20	∞	9-	-16	
	2 yea 10 will	Maximum temperature higher than	r o	69	71	81	98	92	97	86	86	95	88	80	70	101	
Temperature	Average		о [1 4	29.7	32.7	40.9	53.8	62.7	71.2	74.7	73.2	67.0	55.0	42.8	33.4	53.1	
	Average daily minimum		。 日	19.0	21.2	29.2	41.0	9.67	58.7	62.3	59.7	53.0	40.2	30.7	23.1	9.07)
	Average daily maximum		o H	40.3	44.1	52.6	66.4	75.7	83.6	87.0	86.5	9.08	6.69	54.7	43.7	65.4	5
Month			Januarv	February	March	April	Mav	June	Julv	August	September	October	November	December	V 60 V	Iear	

TABLE 2.--FREEZE DATES IN SPRING AND FALL [Recorded in the period 1951 to 1974 at Paoli, Indiana]

	1			
	Temperature			
Probability	24° F or lower	24° F or lower	24° F or lower	
Last freezing temperature in Spring:				
1 year in 10 later than	April 17	May 7	May 17	
2 years in 10 later than	April 13	April 30	May 11	
5 years in 10 later than	April 6	April 18	April 30	
First freezing temperature in fall:				
l year in 10 earlier than	October 17	October 4	September 26	
2 years in 10 earlier than	October 21	October 8	September 30	
5 years in 10 earlier than	October 29	October 17	October 7	

21 inches (53 cm). The heaviest one-day rainfall during the period of record was 5.73 inches (14.55 cm) at Paoli on July 21, 1973. Thunderstorms occur on about 45 days each year, and most are in summer.

Average seasonal snowfall is 17 inches (43 cm). The greatest depth of snow at any one time during the period of record was 12 inches (30 cm). On the average three days have at least one inch (2.54 cm) of snow on the ground, but the number of such days varies greatly from year to year.

The average relative humidity in midafternoon is about 60 percent. Humidity is higher at night, and the average at dawn is about 80 percent. The percentage of possible sunshine is 75 in summer and 45 in winter. The prevailing wind is from the south-southwest. Average wind speed is highest, 10 miles (17 km) per hour, in March.

Climatic data for this section were specially prepared for the Soil Conservation Service by the National Climatic Center, Asheville, North Carolina (7).

Physiography

Dubois County covers parts of two physiographic divisions which dominate southwestern Indiana-the Crawford Upland and the Wabash Lowland (Figure 3). The Crawford Upland covers the eastern part of the county. In respect to its physiographic situation in the United State most of the county is in the Interior Low Plateau Province; only a small area in the northwest

Figure 3 Map of Indiana showing physiographic units and glacial boundaries. Modified from Indiana Geol. Survey Rept. Prog. 7, fig. 1.

corner is in the Till Plain section of the Central Lowland Pro-

The Crawford Upland is the remnant of a peneplain where stream dissection had reached a mature or postmature stage, and little or none of the original peneplain remains. The Wabash Lowland is characterized by shallow aggraded valleys with unusually wide bottoms. The valley of Patoka River, the only stream crossing the county, is an example of this difference between the Crawford Upland and the Wabash Lowland. Where the river traverses the Crawford Upland, the valley is approximately 250 feet (76 m) deep and less than one-half mile wide; but where the river enters the Wabash Lowland, the valley is only about 50 feet (15 m) deep, and within a short distance the strip of alluvium is a mile wide.

Topography

The topographic expression of the county is that of a stream-dissected upland (Figure 4). For the most part, it is rolling. Knolls of prominence occur in the northeastern part. Maximum local relief is about 260 feet (79 m) (4). With the exception of the northwest corner, most of the county is in the unglaciated portion of the state and not subject to the smoothing affect of glaciation.

The Crawford Upland is characterized by considerable diversity of relief, and it includes high hills, low hills, steep slopes, moderate slopes, ridges that do not maintain an even

FIGURE 4 TOPOGRAPHY MAP OF DUBOIS COUNTY

altitude, and flat-bottomed valley floors and ridge tops. Stream dissection is extensive. This is especially true in the northern and southern parts, where local differences in elevation in many places exceed 200 feet (61 m). Throughout this division the ridges are narrow, sharp and have very steep slopes. In the vicinity of Schnellville, as the main streams lie at some distance, the base level of the local drainageways is at a higher altitude, the ridges are wider and more rounded, and the slopes are more moderate.

As the western limits of the Crawford Upland are approached, the average elevation of the ridges gradually decreases from 700 to about 500 feet (213 to 152 m) which is the level of the Wabash Lowland. The northern part of this lowland is approximately 30 feet (9 m) lower than the southern part. Blocking of streams by the Illinoian ice sheet resulted in the development of two types of relief in the Wabash Lowland. Prior to the intrusion of the glacier the drainage waters flowed northwestward, but when these were obstructed, a lake was formed in the northern part of the county, which became filled with silt and other sediments from the stream and the melting glacier, forming a plain. The plain is comparatively smooth, with steep banks to the rather shallow valleys. The rest of the Wabash Lowland within this county is more completely dissected, and the slopes are more gradual than on the flatter land to the north. The ridges are broader and more rounded, in many places sloping gently to the stream valleys which are about 50 feet (15 m) deep. The central and

southwestern parts of the county are completely dissected but, because the grade level of the stream is lower and erosion has been in progress a long time, the slopes are less steep than those in the eastern part (8).

Geology

Surface and near surface geologic ages represented in the county are the Quarternary period and the bedrock formations (9). Quaternary materials are both Pleistocene and recent in age. Figure 5 shows a generalized bedrock geology map of Dubois County (10). The bedrock formations of Dubois County consists of strata of Mississipian and Pennsylvanian age. Some of the Chester formations of Mississippian age outcrop on the eastern edge of the county but they occupy only a narrow belt. A few inliers of Chester rocks occur within the area of the Pennsylvanian outcrop farther westward, are exposed in areas of low hill topography. The Pottsville Series of the Pennsylvanian underlie most of Dubois County. The overlying Allegheny Series are found in a belt about four miles (6.8 km) in width along the western margin of the county. The Allegheny Series occupy about 80 square The Pennsylvanian strata consists of coals, shales, sandstones, and clays. Table 3 shows the generalized geologic section for Dubois County.

Figure 6 gives a columnar section showing bedrock units for the county (10). The surface expression of the bedrock units is younger strata in the western part and older strata exposed in the eastern part of the county.

EXPLANATION

SCALE 1:250,000

FIGURE 5 BEDROCK GEOLOGY MAP OF DUBOIS COUNTY

TIN UN		⊥IN I	S (FEET)	.0GY		ROCK UNIT*	
PERIOD	ЕРОСН	MAP UNIT	THICKNESS (FEET)	LITHOLOGY	SIGNIFICANT MEMBER	FORMATION	GROUP
Z					`Danville Coal (VII)	Dugger Fm.	
1 N	HENLAN	₽.	300 to 400		`Springfield Coal (V)	Petersburg Fm.	Carbondale
۸ ۷	ALLEG				`Survant Coal (IV)	Linton Fm.	
S Y L					Seelyville Coal (III)	Staunton Fm.	
Z	z	ф.			Buffaloville Coal	Brazil Fm.	
PEN	POTTSVILLIA	H.	250 to 500			Mansfield Fm.	Raccoon Creek
						Kınkaid Ls.	
MISSISSIPPIPAN		· м М _в	250 to 300	3.11		Menard Fm.	
SSISS	ERIAN					Glen Dean Ls.	
X	EST	Мв	120 to			Hardinsburg Fm Golconda Ls.	Stephensport
	υ Η	-	190			Big Clifty Fm. Beech Creek Ls.	}

FIG. 6 COLUMNAR SECTION SHOWING BEDROCK UNITS DUBOIS COUNTY

Table 3.	Generalized	Geologic	Section	for	Dubois	County
Quaternary:						

Recent, (chiefly alluvium) 05	0 ft.
Pleistocene (glacial drift, lacustrine deposits) 05	0 ft.
Pennsylvanian	5 ft.
Allegheny (shales, coals, sandstones, limestones,	
clays)	5 ft.
Pottsville (shales, coals, sandstones, clays) 40	00 ft.
Mississippian	
Chester	0 ft.
Valmeyer (not exposed)	

Land Form and Engineering Soil Areas

The engineering soils in Dubois County are derived both from the unconsolidated material and from the weathering of sandstone, limestone and shale bedrock (Figure 5). The unconsolidated materials include both fluvial deposits, lacustrine deposits, and eolian deposits (Figure 7).

With the exception of the very northwestern corner, Dubois
County is located within the driftless area of southern Indiana.

An area in the northwestern part of the county was at one time a glacial lake bed; thus, a fairly level topography exists today.

A few hills of preglacial origin rise above the general level, though most of the area is mantled with alluvial and glacial-fluvial deposits. In general, the topography of Dubois County is very dissected, especially in the eastern portion, where the

FIGURE UNCONSOLIDATED SOIL MAP OF DUBOIS COUNTY

hills forming the low plateaus rise 75 to 200 feet (23 to 61 m) above the valleys. This same condition prevails in the southwestern part of the county, though the hills of the plateaus have more gentle slopes related to bedrock weathering.

Plateaus of highhills, narrow winding ridges and steep bluffs with rock exposures in the eastern and southern portions of the county, and with level plains and low rolling plateaus in the western part of the county characterize the landforms of the county.

Fluvial Deposited Materials

The fluvial drift in Pike county include: alluvial plain, terrace, valley train and lacustrine plain.

l. Alluvial Plain

The great bulk of the fluvial drifts of the alluvial plain are sandy silts, silts and clay that are deposited upon the flood plains of the many stream valleys within the county. The two largest alluvial plain areas (bounded by sawteeth on the map) are along the East Fork White River and Patoka River. The tributaries to these streams, such as Huntley Creek, Indian Creek, Flat Creek, Hall Creek and Care Creek, also are bordered by narrow alluvial plains. Annual flooding is anticipated within the areas.

Parent material, at a depth of 10 in. to 60 in. (25-152 cm), is usually stratified silty loam, loam, fine sandy loam (A-4 soils) or silty clay loam (A-6 soils). This thickness of the

surface layer varies from 6 in. to 10 in. (15-25 cm) and is silt loam (A-4 soils or A-6 soils). The subsoil, at a depth of 7 in. to 51 in. (18-130 cm) is loam or silty loam (A-4 soils or A-6 soils).

Boring site No. 24 is located in this region. It is taken in the Lick Fork Creek area at an altitude of 515.6 ft (157.2 m) above sea level. A 3.5 ft (1.1 m) silty clay loam (A-4 (4)) soil lies under a 0.5 ft (15 cm) layer of top soil. Then a 5.5 ft (1.7 m) silty clay (A-6 (13)) soil which contains 10% sand. 57% silt and 33% clay, is followed by a 7.5 ft (2.3 m) silty clay loam (A-4 (8)) soil, then by silty clay (A-6 (10)) and sandstone fragments. Flooding is the major problem in this area.

2. Terrace and Valley Train

Along the East Fork White River and Patoka River there are a few terraces and valley train deposits. Infiltration basins are a common feature of these coarse-textured terrace deposits. The terrace surface and the lower flood plain is subjected to flood erosion and deposition. Some surface drainage or erosion occurs in the high terrace and the surface is undulating. The lower terraces are more smooth and level in topography with little or no surface drainage channels on their surfaces.

The texture of the terrace varies greatly from place to place. The soil profile consists of a sandy loam to silty clay loam topsoil underlain by a silty clay loam to clay then a gravelly to a sandy clay subsoil. Stratified sands and gravel are encountered at depth.

3. Lacustrine Plains

The soils developed from lacustrine deposits occupy the flat plain in the northwestern part of Dubois County. The topography of the lacustrine plain is a nearly lever plain broken only by widely spaced drainage channels. One of the pecularities of this section is the occurrance of isolated hill remnants of the former uplands, which are underlain by bedrock at a comparatively shallow depth. These island hills as they are called, occur as rounded knolls rising about 30 feet (9.1 m) above the surrounding plain. Areas of such character occur in sec. 36, TlN, R6W and in sec. 11, TlS, R2W. (7). The soil is developed partly from the thin loess cover and partly from the sheet wash materials.

The thickness of the top soils varies from 11 in. to 15 in. (28-38 cm) and is silty loam, silty clay loam (A-4 or A-6 soils) or silty clay (A-7 soils). The subsoil at depth of about 11 in. to 39 in. (28-99 cm) is silty clay or silty clay loam (A-7 soils). Stratified silty clay loam and clay (A-6 or A-7 soils) is found as underlying soils.

Most engineering problems associated with the lacustrine deposits are the result of the behavior of contained water. The lacustrine material, in most places, is water saturated. Typically, the more premeable materials are scattered through the lake deposits as thin horizontal layers and lenses and they provide the only effective avenues for water movement. Because of

the poorly drained situation in some areas, frost heave, settlement and weak supporting power of the soils are the major problems in this deposit.

Eolian Drift

There are extensive eolian (wind) deposits in Dubois County, (Figure 8, Appendix A). Except for the alluvial plains, the entire county is covered by windblown silt or loess deposits of varying depth. The eolian deposits are subdivided into two groups, sand deposits and loess deposits.

1. Windblown Sand Deposits

Windblown sand deposits are very limited in Dubois County.

They are scattered along the East Fork White River bluffs and occur as dunes.

The materials of the sand dune are predomiantly fine, uniform, windblown sand some including a considerable amount of silt
and some clay particles mixed with the sand especially in the
surface layer.

On the aerial photographs the surface of the sand area appears to have a very coarse texture when compared with that of loess. Surface drainage is generally absent in the sand dune deposit. As the water infiltrates the sand it tends to form slight infiltration areas producing a somewhat darker area on the airphoto pattern. These darker areas create a speckled appearance which contrasts with the more uniform gray tone or mohair appearance of the loess (11).

LOESS THICKNESS MAP OF DUBOIS COUNTY FIGURE 8

The soil profile of sand dune deposits consist of a loamy fine sand (A-2 soils), fine sand (A-3 soils) or sandy loam (A-4 soils) topsoil, overlying a sandy clay loam to sandy loam (A-4 soils) subsoil.

Little or no problems other than stabilization and compaction are expected in this area. However, if deep cuts are required the characteristics of the underlying materials should be taken into account.

2. Windblown Silt Deposits

The silt deposits were blown by northwest winds from the river valley and lacustrine plains and were deposited during the Wisconsin glacial period and recent times. As a result of its method of deposition the loess tends to modify and smooth out the existing topography. Its stream-lining or wind swept appearance is an important feature in the identification of loess.

(a) Moderately Deep Loess Covered Till Plains

The northwestern corner of Dubois County is occupied mainly by the Alford soil. The parent material is leached loess more than five feet (1.5 m) thick. The soil profile of loessial deposits consists of silt loam (A-4) topsoil and silty clay loam (A-6) subsoil. The material below the loess is glacial till. The till is found on higher elevation between the White River bottoms and the Patoka Lake plain. The till is shallow and is underlain by bedrock.

The engineering problems in this area are primarily the control of moisture during construction and compaction of the silty material. The subgrade is weak under adverse moisture or due to frost action in winter. Pumping and erosion are potential problems in this region.

(b) Discontinuous Loess Over Weathered Bedrock

Ahout three fifth of Dubois County is classified as discontinuous loess covered weathered bedrock area. The surface slope varies from 2% to 60%. Many gullies are developed in this region and the topography is extremely rugged and blocky.

The soil profile varies greatly depending on its topographic position, erosional situation, and rock types. Soils in the gently sloping areas are developed partly from thin loess and bedrock whereas in the steep slope areas or gully lands the loess and even the residual soil is removed and bedrock is exposed.

The topsoil is very stony silt loam (A-2, A-4 or A-6 soils) or shaly loam (A-2 or A-4 soils). The subsoils range from silt loam (A-4 or A-6 soils) to shaly silt loam (A-1, A-2, A-4 or A-6 soils) with fragipan (A-4 or A-6 soils). The underlying material is sandy clay loam (A-6 soils), loam (A-2 soils), silty laom (A-2 or A-4 soils) or siltstone, sandstone, and shale.

Highway cuts along I64 (12) from boring site No. 31 to 35 show sandstone shale rock exposure. At site No. 33 the profiles shows 1.0 ft (30 cm) of topsoil followed by 1.5 ft (46 cm) of silty clay loam (A-6 (8) soils) which is composed of 20% sand,

55% silt and 25% clay. Further down in the profile a sandy loam (A-2-6) soil is encountered before the weathered shale is reached along SR 491 (13) from boring site No. 16 to 19, bedrock is encountered from 3.5 ft to 8 ft (107-243 cm.). At site No. 16 the first 2 ft (61 cm) is silty loam (A-4) soil. The next 4.5 ft (1.4 m) is classified as silty clay loam (A-6 (9)). It is composed of 10% sand, 72% silt and 18% clay. The brown hard weathered sandstone is reached below the silty clay loam.

The engineering problems associated with this region are associated with the cuts and fills. Different types and characteristics of residual soils or bedrock are encountered within short distances both horizontally and vertically.

Miscellaneous

Quarries

There are very few quarries in Dubois County. One is located southwest of Huntingburg, section 9, T3S, R5W, as reported by the soil survey of Dubois County (7).

Strip Mining

A very small strip mine area extending, from Pike County was found on the southwest county boundary in the 1937 airphotos.

Organic Deposits

There are no mappable organic deposits identified by the airphoto interpretation method in this county.

The Party of the P
CONTRACTOR OF STREET,
THE RESIDENCE AND PROPERTY.
Contract of the last of the la
THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN
The same of the sa

BIBLIOGRAPHY

- 1. Frost, R. E., et.al., "Manual on the Airphoto Interpretation of Soils and Rocks for Engineering Purposes", Joint Highway Research Project, Purdue University, Lafayette, Indiana, March 1953.
- 2. Belcher, D. J., Gregg, L. E. and Woods, K. B., "The Formation, Distribution and Engineering Charateristics of Soils," Bulletin No. 87, Engineering Experiment Station, Purdue University, Lafayette, Indiana, 1943.
- 3. Yeh, P. T., "<u>Drainage Map of Dubois County</u>," Joint Highway Research Project, Purdue University, West Lafayette, Indiana, 1953.
- 4. "Handbook of Indiana Geology," Indiana Department of Conservation, Indianapolis, Indiana, 1922.
- 5. Leverett, F., "The Illinois Glacial Lobe," United States Geological Survey Monograph XXXVIII, Washington, D. C., 1899.
- 6. Perry, J. I., et.al., "Indiana's Water Resources," Bulletin
 No. 1, Indiana Flood Control and Water Resources Commission,
 Indianapolis, Indiana, June, 1951.
- 7. Wingard, R. C., Jr., "Soil Survey of Dubois County, Indiana," Soil Conservation Service, United States Department of Agriculture Soil Conservation Service and Forest Service in cooperation with Purdue University Agriculture Experiment Station, February 1980.

- 8. Simmons, C. S., et.al., "Soil Survey of Dubois County, Indiana," United States Department of Agriculture in cooperation with the Purdue University Agricultural Experience Station, Government Printing Office, Washington, D. C., 1930.
- 9. Logan, W. H., "The <u>Sub-Surface Strata of Indiana</u>," Publication No. 108, Indiana Department of Conservation, Ft. Wayne Printing Co., Ft. Wayne, Indiana, 1931.
- 10. Henry, H. G., et.al., Geologic Map of the Vincennes Quadrangle, Indiana Department of Natural Resources, Indianapolis, Indiana 1970.
- 11. Moultrop, K., "Airphoto Boundary Delineation of Loess and

 Loess-Like Soil in Southwestern India," An MSCE Thesis, Pur
 due University, Lafayette, Indiana, January 1953.
- 12. "Soil Profile Survey I-Project 64-2 (4) 57 P.E., I-64-2 (19) 57 Grading, J-64-2 (20) 57 paving. Dubois County, Indiana" prepared for Engineer Associates, INC. Evansville, Indiana, by H. W. Lochner, Inc. Chicago, Illinois, November 1961.
- 13. "Soil Profile Survey S-project No. 108 (4) P.E., Dubois and Crawford Counties, Indiana" The H. C. Nutting Company, Cincinnati, Ohio, October 1974.
- "Soil Profile Survey S-project No. 491 (7) P.E., (11) R/W,(12) Constr., Dubois County, Indiana" Floyd E. BurroughsAssociates, Indianapolis, Indiana, November 1961.

- 15. Simmons, V. M., Esarey, R., "Dubois County, Indiana," Supplement to publication 108, "Sub-Surface Strata of Indiana", Division of Geology, Department of Conservation, State of Indiana, February 1938.
- 16. Fehrenbacher, J. B., "Loess Distribution and Composition in Portions of the Lower Wabash and Ohio River Basins," a Ph.D. Thesis, Purdue University, Lafayette, Indiana, June 1964.

Appendix A. Loess Thickness Measurements of Dubois County (Fehrenbacher, 1964)

No.	Township	Range	Section	Thickness (in)	Underlying Material
1	1N	3W	26, NE160, NW40	35	SS Residuum
2	1 N	3W	29, SW40	48	SS & Sh Residuum
3	1N	4W	13, SE160, SW40	50	SS Residuum
4	1N	4W	30, SW40	50	SS & Sh Residuum
5	1N	5W	26, SW40, NW40	60	Drift Soil
6	1N	5W	30, NE160, SW40	70	Sandy Loam
7	1S	3W	14, SW160, NW40	45	SS Residuum
8	15	5W	17, SW160, SE40	45	Silty Loam and Sandy Clay Loam
9	2S	3W	11, SW160, NW40	40	SS Residuum
10	2S	4W	4, NE160, SW40	35	SS Residuum
11	2S	4W	18, NE40	40	SS Residuum
12	3S	3W	1, SE40	40	SS Residuum
13	3S	4W	4, SW40, NW10	36	SS Residuum
14	3S	5W	9, NE160, SE40	46	SS Residuum
15	3S	6W	12, NW160, SW10	45	SS Residuum

SS: Sandstone

Sh: Shale

APPENDIX B

SOIL TEST DATA

The soil test data tabulated below was obtained from consultant's reports prepared for the Indiana State Highway Commission. The location of the site is shown on the attached engineering soils map.

			- 31 -		
S.L.	41	17	14 21 NP 22 18 22	21 18 23 22 20 20 19 21	19 20 19 21
P.I.	6	12 15 4	5 16 NP 8 25 12	10 NP 13 10 10 22 7	18 6 9 13
P.L.	38	16 16 19	17 25 NP 20 20 21	20 NP 25 20 19 17 18	22 16 17 22
L.L.	44	28 31 23	22 41 NP 28 45	30 38 30 29 25 35	40 22 26 35
Clay	21	27 27 27 21	23 34 10 14 44 18	18 6 26 17 13 34 16 18	41 12 20 18
Percent S11t	14	58 31 40	37 49 19 53 37 66	69 44 57 63 63 35 72	38 26 55 72
Sand	65	15 42 39	40 17 71 33 19 16	13 50 17 20 21 31 50	21 62 25 10
Gravel	0 0	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0000
AASHTO Classifi- cation	Sandy Cl. L. & org. matr.	Silty Cl. L. Silty Cl. L. Clay Loam Clay Loam	Clay Loam Clay Sandy Loam Silty Loam Clay Silty L. with	Silty Loam Sandy Loam Silty Cl. L. Silty Loam Silty Loam Clay Sandy Loam Silty Cl. with	tr. or org. mar Clay Sandy Loam Silty Cl. L. Silty Loam
Texture	A-5(2)	A-6(9) A-6(9) A-6(8) A-4(7)	A-4(7) A-7-6(10) A-2-4(0) A-4(8) A-7-6(15) A-6(9)	A-4(8) A-6(9) A-6(9) A-4(8) A-4(8) A-6(13) A-6(13) A-6(9)	A-6(11) A-4(1) A-4(8) A-6(9)
Depth (ft.)	6.5-8.0	1.0- 6.0 2.0- 4.0 6.0- 8.0 10-12	1.5- 3.0 7.5- 9.0 5.0- 6.0 5.0- 6.5 2.5- 4.0	0.5- 1.5 7.0- 8.0 2.5- 4.0 1.0- 3.0 0.5- 1.5 5.0- 6.0 1.0- 2.5 5.0- 6.0	1.0- 2.0 1.0- 2.0 5.0- 6.0 1.0- 7.0
Offset (ft.)	15 Rt	5 Rt 5 Rt 5 Rt 5 Rt	5 Rt 18 Lt CL 10 Rt 12 Lt CL	CL CL CL CL CL CL 15 Lt 15 Lt	12 Lt 12 Lt 12 Rt 12 Rt
Station	194+00	198+00 198+00 198+00 198+00	198+00 221+00 242+00 46+75 72+00 85+49	107+70 107+70 126+00 130+50 181+25 181+25 201+00	238+00 245+00 252+00 282+50
Site	1	2a 2b 2c	7 6 5 5 4 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8a 8b 9 10 11a 11b 12a 12a	13 14 15

1	- 32 -	1
S.L.	18 18 17 17 16 17 17 18 18 18 18 18 23 23 23 23 23 23 23 23 24 20 22 23	23
P.I.	12 13 13 17 17 10 10 11 11 12 11 12 11 11	16
P.L.	15 16 16 17 18 18 18 17 17 17 17 20 20 22 22 23 23 23	25
L.L.	27 29 43 34 35 35 30 30 32 32 32 33 34 46 46 46 48 32 33 34 35 36 48 37 37 48 37 37 37 37 37 37 37 37 37 37 37 37 37	41
Clay	21 23 32 31 32 33 43 41 12 43 41 41 41 41 41 41 41 41 41 41 41 41 41	42
Percent Silt	26 37 62 63 63 38 38 38 20 64 64 64 64 64 64 63 57 57 58 53 55	52
Sand	53 40 6 6 6 118 119 120 13 14 15 16 17 17 17 18 19 10 10 10 10 10 10 10 10 10 10	9
Gravel	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00
AASHTO Classifi- cation	Sandy Cl. L. Clay Loam Silty Clay Silty Clay Sandy Gravel with clay seam Clay Loam Clay Loam Sandy Loam Sandy Loam Silty Cl. L. Silty Clay Silty Clay Silty Cl. L. Silty Clay Silty Cl. L. Silty Cl. L. Sandy Loam Silty Cl. L. Silty Cl. L. Sandy Loam Silty Cl. L. Sandy Loam Silty Cl. L. Sandy Loam Silty Cl. L. Clay Sandy Loam Silty Cl. L. Clay Silty Cl. L. Clay Silty Cl. L. Clay Silty Cl. L. Clay	Silty Clay
Texture	A-6(4) A-6(7) A-7-6(13) A-6(11) A-2-6(0) A-4(3) A-4(0) A-2-4(0) A-2-4(0) A-4(8) A-4(8) A-6(10) A-7-6(10)	A-6(8) A-7-6(11)
Depth (ft.)	5.0- 6.0 8.0- 9.0 1.0- 2.0 1.0- 4.0 5.0- 7.0 2.0- 12 5.0- 7.0 7.0- 8.5 12.0-13.5 12.0-13.5 12.0-13.5 12.0-13.5 12.0-13.5 12.0-13.5 12.0-13.5 12.0-13.5 12.0-13.5 13.0-15.0 12.0-14.0 12.0-13.5 0.5- 5.0 10.5-11.0	0.5 - 4.5 $0.5 - 2.0$
Offset (ft.)		
Station	300+00 300+00 310+50 320+00 588+00 601+00 601+00 606+50 606+50 606+50 615+00 615+00 615+00 127+00 127+00 127+00 127+00 127+00 127+00 127+00 1312+50	1314+00 1350+00
Site	17a 17b 18 19 20 20 22b 22c 23 24a 24a 24b 25 25 27 26 27 33 33	34 35

Cl. means Clay, L. means Loam

- 33 - APPENDIX C

Well-Logs of Dubois County (Simmons, V. M. 1938)

Ferdinand Township

AUFFART, Cecilia #1, 225' from N line, 225' from E line, NE \$ 5\footnote{1} \text{sec. 25, T3S, R5\footnote{N}. Completed Dec. 26, 193\footnote{4}, by the Ohio Oil Co. DRY HOLE. Plugged 1-3-35.

S	10	Broken sand	490	Sand, hard	734
Surface	12				
Sand rock	18	Lime	498	Lime, hard	741
Shale	50	Shale	501	Shale; red rock	748
Shale:lime shells	58	Sand (water)	552	Sand	763
Shale, muddy	102	Shale	560	Shale	765
COAL	104	Lime	593	Sand	772
Sandy shale	205	Sand	593	Shale	776
Sand; little water	225	Sandy shale	612	Red rock; shale	790
Broken sand	5,110	Red rock	616	Lime, hard	795
Shale	230	Red rock; shale	6 25	Shale; red rock	805
Lime shells	284	Muddy shale	ნ37	Sandy shale	823
Shale	355	Lime	653	Limo .	845
Sandy lime	375	Shale	656	Shale	847
Sandy shale	395	Limo	666	Lime	870
Shale	398	Shale	585	Shale, green	872
Sandy shale	433	Sand; hole full		Line	920
Lime shells	437	water at 6931	712	Broken lime; and	070
Shale	480	Sandy shale	726	green shale	930
			,	Hard lime	943
		CASING RECOR	מ		
10"	1501	8 1 " 3981		5/8" 7381	
	-,-	77"	L A	.,_	
			ale photo de		

Jefferson Township

BOCKMAN, Hugh #2, 500' from S line, 500' from E line, SW2 SW2, soc. 15, T3S, R3W. Completed April 12, 1937, by A. B. Bement. DRY HOLE. Plugged 4-14-37.

Blue lime	125	Shale	350	Sulphur water	759
Lime shells	175	Shalo	370	Dark lime	386
Water 185		Sandy shale	380	Shale & lime	903
Water 195		Big lime	_[1405	Lime, dark	942
Limo	225.	Muddy slate	424	Shale	997
Sandy shalo;		Jackson sand	436	Gray lime	1004
show CAS	235	Lime shalls	462	Coarse lime	1023
Red rock	245	Red rock; shale	470	Brown lime	1048
Shalc breaks	250	Sandy lime	478	show OIL 1058	l
Red rock	260	Sandy Lime	502	Light sand	1068
Shale rock	275	Lime	509	Dark lime; changi	ing
Hard lime	304	Show oil	518	light about er	rery
Shale	315	Sandy lime	618	5 feet.	1198
Big water	320	Lime, hard	729	•	•
Sandy shale	325	Lime, light	759		

CASING RECORD 64" --- 770'

Harbison Township

ECK, John #1, 200' from E line, 200' from W line, NW2 NW2, sec. 5, TlN, R4W. Completed Sept. 14, 1934, by F. L. Damron, et al.

Soil	4	Sand, water	295	Slate	488
Sands tone	30	Slate	298	Red rock	500
Blue mud	30 40	Sand, hard	528	Slate	520
Blue slate	43	Slate	329	Blue sand, broken	540
COAL	45	Brown lime	349	Slate	540 546
Slate, mud	65	Slate	356	Lime, brown; little	
COAL	67	Jett sand	362	GAS 550-5551	564
Slate	70	Blue sand, broken	370	Slato	575
Sand	82	Slate	387	Bothel sand;	
Blue mud	105	Little lime	409	little water	583
White slate	-115	Slate	422	Slate	587
Black slate	120	Broken sand	428	Blue sand, broken	593
Broken	150	Red rock	432	Slate	598
Slate	190	Sand, hard	438	Brown lime	613
Broken sand	205	Water at 440		Slate, white	618
Slate	230	GAS 455-460'		Lime, white	628
Broken sand	240	White sand	474	Slate, white	631
Slate, muddy	272	Lime, brown	484	Brown lime; GAS-63	
		CASING PECOR	ת		

CASING RECORD

84" -- 333'

6 5/8" -- 4771

Harbison Township

ECK, John #2, 200' from S line, 200' from E line, SW2 SW2, soc. 32, T1S, R4W. Completed October 26, 1935, by W.W. Damron. DRY HOLE. Plugged 10-28-35.

Soil	4	Sandy slate	265	Coarse sand, hard	473
Sand	18	Sand	272	Lime, Barlow; SIM	
Blue mud	25 、	Broken sand; slate	290	at 474°	483
Sand: little COAL	50	Broken sand	295	Slate; red rock	506
Blue mud; fire clay	v 63	Water sand; more		Sand, broken	510
COAL; little wate:	r 70	water	324	Slate	512
Slate	72	Slate	327	Red rock	520
Sand	82	Brown lime; SLM	_	Sand	528
COAL	85	at 31401	342	Muddy slate	538
Blue mud	9 5	Lime, hard	3µ8	Broken sand	545
Slate; sand shells		Slate	360	Muddy slate	554
water	112	Sandy slate	362	Lime shell	555
Black mud; shale		Sandy lime	370	Blue slate	559
or slate	120	Red rock	372	Lime, hard	570
Sand	130	Slate, soft, muddy	3935	Blue slate	577
Sand; little water	155	Lime, gray	394	Sand	590
Sandy slate	170	Lime	408	Slate	601
Blue slate	180	Slate	411	Slate	602
Slato ·	205	Lime	413	Lime, brown	617
Sand; little water	210	Slate	428	White slate	619
Slate	215	Red rock	435	Break	623
Slate; broken sand	260	Sand; water	462	White lime	633

Slate break 637 Brown lime, hard 645 White sandy lime 657	Little water 650! Brown rotten lime 665 White sandy lime;	more water Total depth	667 667
	CASING RECORD		
10" - 19'	6 5/8" 3441	5 3/16" 601'	

Harbison Township

FRITCH, Albert #1, 200 from N line, 200 from E line, SE NW sec. 32, TlN, R4W. Completed August 4, 1934, by F. L. Damron, et al. DRY HOLE. Plugged 8-7-34.

Soil	12	\$1ate	270	some GAS	513
Sandstone	15	Sand	592	Slate	515
Mud	19	Slate	362	Lime	525
COAL	20	Brown lime	374	Slate	528
Mud	25	Sl ate	377	Sand, Barlow;	
White mud	5 0	Jett send	396	water	538
Sand	60	Fed rock	399	Slate	580
Blue mud	67	Slate	405	Broken sand, blue	600
Sand, hard	71	Red rock	409	Lime	612
Slate	. 76	Slate	432	Slate	615
Sand	· 83	Little lime	1410	Sand; water	625
Slate	9 0	Break	իկ2	Blue broken sand	644
Sand	105	Little lime	1,49	Lime, brown	653
Slate	125	Slate	451 -	Slate	665
COAL; water	127	Lime	453	Lime, white	675
Slate	132	Slate	463	Slate, white	678
Sand	148	Red rock	468	Lime, brown	704
Slate	135	Slate	473	Break, blue lick w	• •
Sand	210	White sand; water		Lime, hard	744
	- -		****		4

CASING RECORD

10" -- 12' 65/6" -- 612'

Harbison Township

Hautsch, Geo. F. #1, 200' from N line, 200' from W line, NW NEZ SEZ sec. 6, T1S, R4W. Completed Oct. 11, 1934, by F. L. Damron, et al. DRY HOLE. Plugged 10-12-34.

Soil	7	Sand, white; water	325	Sand; hole full w	514
Sandstone	63	Sand, hard	363	Lime, brown	524
Blue mud	76	Lime	365	Slate; red rock	- 535
Broken sand	115	Sandy lime	372	Blue sand	542
Slate, muddy	135	Lime	394	Slate	558
Broken sand	170	Slate	405	Broken sand	563
Sand	185	Red rock	415	Slate	569
Blue slate, muddy	205	Slate, muddy	432	Lime	573
Slate	237	Little lime; sandy	11118	Slate	598
Broken sand	258	Slate, muddy	462	Line	611
Slate	268	Red rock	477	Slate	615

Shale Blue sand, broken; little water	620 640	Brown Slate Lime,		654 660 670		Brown lime White sand; full of water	6 8 3 690
	8 1 11	c. 365!	ASING	RECORD 6 5/8"	****	515 ¹	

Madison Township

HOPF. Anton #1, 1400' from S line, 1200' from E line, NEZ SEZ, sec. 7, T1S, R5W. Drilled in January, 1932, by the Jasper Oil & Gas Company. Elevation 450'. DRY HOLE. Plugged 3-12-32.

•					
Surface	3	Shale, dark	340	Lime	683
Muck water	50	Lime, broken	350	Red rock	705
COAL	52	Sand	360	Shale, dark	740
Shale	57	Slate	363	Lime	750
Lime	6 <u>2</u>	Lime	390	Shale, dark	760
Sand, broken	75	Shale	435	Lime	782
Sand, light; water	85	Sand	505	Shale	812
Shale	88	Shale	520	Lime, brown	858
Lime	9_{j} t	Lime, gray, little	540	Lime, gray, hard;	
Sand	103	Shale, dark	562	show OIL 863!	862
COAL	104	Lime, sandy	576	Lime, gray, soft	873
Shale	122	Red rock	580	Lime, gray; wate:	r 910
Sand	137	Shale	590	Lime, gray	915
Shale, light	147	Lime, gray, Big	ó23	Lime, light	1000
Sand, light	225	Shale, light	633	Lime, brown	1060
Fhale	260	Red rock	638	Lime, light	1100
Sand, light; 3 blr	's.	Shale	660		•
water	30 6	Sand, top Oakland			
Lime	309	City	676		
		CACTHO DECORE			
1211 - 5921	10"	CASING RECORD		6 5/8"	E201
12/3" 59/2"	10	(?) $\delta^{\frac{1}{2}}$	·" 252	0 9/0"	5201

水水水水水水水 水水水水水水水

Harbison Township

HUFFMAN, Henry #1, 500' from S line, 660' from W line, SE4 SW4, sec. 31, TIH, R4W. Completed November, 1934, by W. W. Damron. DRY HOLE. Plugged 11-8-34.

Soil	5	Blue slate, muddy	274	Slate	451
Sandstone	¥ó	Sand	312	Jackson sand	465
Blue mud	47	Water sand	330	White sand	475
COAL; water	49	Slato	332	Hard sand	480
Sand	62	Blue sand	340	Broken sand	1190
Blue mud	75	Slate	351	Slate .	492
Slate	90	Lime	378	Lime	506
Sand	105	Slato	380	Slate, red rock	513
Slate	138	Blue broken sand	400	Sand	520
Broken sand	170	Red rock, slate	410	Slate	551
White sand; water	187	Lime .	432	Lime	556

Slate	586	Slate	63 2	Brown lime	677
Hard lime	602	White lime	655	Blue lick break	685
Slate	612	Brown lime	660	Lime	691
Lime	628	Break in lime	663		

Marion Township

HUMBERT, Anthony & Elizabeth #1, 300' from N line, 300' from W line, SW2 SW2, sec. 25, TIS, R4W. Completed by F. L. Damron, et al, January 10, 1935.

,Soil	5	Sand, white	327	Slate	545
Sands tone	55	(Water 2851)		Lime	550
Slate	71	Slate	330	Slate	571
COAL	72	Brown lime	362	Brown lime	599
Slate	110	Slate	394	Slate	602
Sand	120	Lime	423	Lime, white	620
Broken sand	145	Slate, red rock	433	Slate	621
Broken samd	165	Sand, Jackson	480	Brown lime	647
Sand	1 92	(Water 4381)		Break in lime	651
Slate	210	Lime, Barlow	492	Lime	665
Sand	215	Slate, red rock	497	Break; show from	
Slate, muddy	220	Sand; water 505!	518	670-675	675
Sand	238	Slate, muddy	535	Lime	682a
Slate	5/10	Sand	540		_

CASING RECORD 6 5/8" -- 452

中央市外市市公安 医中央中央小学

Marion Township

HUMBERT, Anthony #2, 50° from S line, 300° from E line, SW_4^1 SW_2^1 , sec. 25, T1S, R4W. Completed Feb. 23, 1935, by W. W. Damron, et al. DRY HOLE. Plugged 2-30-35.

Soil	10	Water sand	342	Slate	615
Sandstone	64	Lime	377	Lime, white	630
Sinte	66	Slate & red rock	405	Break	632
White sand; some		Lime	436	Lime	661
water	76	Slate & red rock	447	Break	665
Slate	118	Sand	492	Lime, brown	682
Broken sand	137	Lime	504	Break in lime;	
Slate	144	Red rock; slate	510	OIL show 687'	69 2
Hard sand shell	148	Sand, Barlow	530	Lime	704
Broken sand	211	Slate	543	Break	707
Slate	S 48	Sand	551	Lime :	716
Sand	257	Slate	565	Break; water	
Slate	261	Lime	569	715-721	721
Sand, broken	2 9 5	Slate	587	Limo, brown	736
(Water 3001)		Mississippi lime	612	Broken sandy sha	le 750

CASING RECORD

6 5/8" -- 532'

Cass Township

HEMMER, Eli B. No. 1. 330' from S line, 530' from W line, SE NW , section 18, T3S, R5W. Completed Mar. 20, 1939, by Fred Phillips. Elevation 518'. DRY HOLE. Plugged 4-13-39.

			•		
Yellow clay	20	Gray sandy shale	456	Gray shale	804
Gray shale	45	Dark shale	460	Red rock	803
Blue shale	55	Dark sandy shale	470	Gray shale	835
Dark shale	83	Dark shale	477	Blue sand	845
Gray sandy shale	. 9 5	Gray broken sand	495	Hard lime	852
Sandy shale	105	Gray shale	504	Gray shale	857
Grav sand	112	Lime shells	515	Blue sand	861
Broken sand	116	Gray shale	520	Red rock	875
Gray shale	130	Lime shells, hard	531	Sand	884
Broken sand	155	Gray shale	536	Shale	887
Dark shale	190	Gray sandy shale	547	Blue sand	892
Gray shale	195	Lime	550	Shale	897
Broken sand; water		Gray sandy shale	560	Hard lime	899
at 197!	203	Light shale	56 5	Blue shale	915
Gray sand; more		Hard sand	568	Sand	925
water at 210!	210	Shale	585 .	Gray sandy shale	
Water sand	233	Dark shale	600	S.L.M. 9391	939
Dark shale	235	Gray sandy shale	620	Hard lime	952
Sand; S.L.M.2581	277	Hard gray sand	625	Shale	960
Shale	280	Light sandy shale	640	Sand	970
Blue shale; bail-		Dark sandy shale	(55	Dark shale	978
ing water	286	Sand	665	Sand	985
Sand; little wate	r	Gray shale	€85	Lime	1000
at 2901-3001	300	Hard gray lime	695	White shale	1007
Shale & sand		Hard brown lime	7C8	Hard lime; hole	
shells	308	Blue shale	71.4	caving at	
Gray sand; hole fu	11	COAL .	716	1011'-1019'	1028
water at 318!	318	Blue shale	723	Brown sandy limo	;
Water sand	340	Broken sand	736	S.L.M.	1037
Broken sand	345	Red rock	745	Lime	1041
Blue shale	355	Gray shale	760	Gray sandy lime;	
Hard gray sand	360	Hard lime shells	763	water	1050
Dark shale	3 7 8	Gray shale	765		
Black slate	380	Hard brown lime	770	·	
Gray sandy shale	415	Gray shale	772		
Broken sand	431	Hard gray lime	800		

CASING RECORD

13" -- 175' 10" -- 346' 8" -- 945' 6 5/8" -- 1033'

Shale	795	Lime, sandy	902	Shalo	990
Lime, white	811	Shalo	910	Limo	1017
Shale	818	Rod rock	913	Shale	1021
Rod rock	822	Shale	925	Lime, sandy	1023
Shale, light	800	Limc	930	Lime	1070
Limo	872	Sand	948		
Shalo	890	Limo	962		
		CASING	RECORD		
	•	10"	177'	•	
		涂水涂水涂涂	** ***		

Madison Township

MUTCHMAN, John, #1, SE corner of Sub Conf. sec. 36, T1s, R6. Completed Aug. 14, 1930, by Mecca Oil Co. DRY HOLE. Plugged Aug. 14-30.

Soil	6	Lime, light	432	Slate	610
Quicksand	86	Slate, blue	440	Lime, gray	612
Lime, hard	94	Rod rock	450	- Slate, groen	618
Slato	105	Slato	470	Red rock	619
Lime, light	115	Limc, light	495	Slate, light	658
Slato, blue	140	Slate	500	Lime, brown	669
Sand, light, water	185	Lime, light	505	Slate, light	692
Slate, blue	225	Slate, "	535	Limo, brown	705
Limo, light	255	Sand, "	550	Slate, green	710
Slate, white	335	Slato, "	555	Limo	7 55
Sand, light	370	" gray	560	Sand, brown	760
Slate, blue	380	Lime, brown	565	Sand, white, water	782
Slate, sandy	400	Slate, blue	570	Lime, gray	802
Mud, blue	410	Sand, white	59 5	• •	

CASING PLCORD

10" -150' 8\frac{1}{4}" - 658'

Patoka Township
MUTCHMAN, Walter, #1, 150° from N. line, 200° from E. line, SE4 Nord. sec.
36, T2S, R50. Completed Sept. 9, 1937, by A.D.Shaffer. Elev. 468°. DRY HOLE.

Soil	15	Limo	362	Holo full w. 135-165
Sand	2 5	Sand	413	Show of GAS 372-390
Limo	30	Shalo	417	"ater 498-500
Shalo	66	Limo	451	Sulphur . 760-765
COAL	68	Shalo	486	" "ator 830-835
Shalo	151	Lime	498	" " 890-915
COAL	157	Sand	500	Small show
Shale	230	Shale & lim	.0	of OIL 1065 -1985
Limo	250	sh	clls 700	
Shale	319	Lime Total	D. 1202	
Sand	323			
		CASIMO	RECORD	

81" -- 488' 61" -- 1056'

Harbison Township

NEUKAN, David, Jr., #1, 1053' from N. line, 990' from E. line, $NE_4^{\frac{1}{4}} SE_4^{\frac{1}{4}}$. sec. 25, TlN, R4W. Completed July 5, 1932, by the Ohio Oil Company. Elevation 491'. DRY HOLE. Plugged 7-8-32.

Top soil	30	Shale, gray	245	Shale, gray, sandy	1386
White sand	80	Red rock	253	Sand, copper	
Lime, white	110	Shale, blue	270	color	1405
Shale, gray	120	Sand, white;		Shale, sandy	1412
kod rock	130	small show GAS	285	Lime, blue	1416
Shale, gray	145	Lime, white	293	Shale, gray	1490
Lime, white	148	Slate, gray	320	Lime, gray	1493
Shale, blue	150	Line, brown	330	Cinnamon shale	1619
Lime, blue	165	Shale, gray	339	Corniferous brow	n
Shale, blue	170	Sand, gray; show		lime; water 1644	
Red rock	175	of GAS	356	to 1649!	1730
Sand, white; water	225	Lime, show OIL at	;		
Lime, brown	240	847-870-9301	1321		

CASING RECORD $12\frac{1}{2}$ " -- 29'; 10" -- 266'; $8\frac{1}{4}$ " -- 1386'.

Harbison Township

MEUKAN, David Jr., #1, 400° from N. line, 300° from E. line, $NV_{\odot}^{\frac{1}{2}}$ SE $\frac{1}{4}$. sec. 25, TlN, R4W. Completed Aug. 21, 1935, by Claude E. Noble. Initial production 1,000,000 cu. ft. GAS.

Clay, yellow	12	Slate	150	GAS	277
Sand, gray, water	25	Lime, gray, little	163	Sand, gray, hard	294
n n	55	Slate	183	Shale	320
Slate, light	60	Sand, gray	229	Lime, brown	3 31
Sand, "	110	Lime, "	244	Slate	345
Lime, gray	116	Sand, gray, hard	250	Sand, gray, dry	353
Sand, "	125	Rod rock	254	Slate	354
Red rock	127	Slate	270	Sand, gray: GAS	359
Sand	132	Sand, gray, soft;			

Marion Township

SCHROERING, Joe, #1, 300' from S. line, 650' from E. line, SE_{\pm}^{1} SE_{\pm}^{1} . sec. 26, T5N, R4'. Completed June 12, 1935, by F. L. Damron et al. Plugged 6-25-35.

Soil	10	COAL	82	Sand, broken	175
Sandstone	65	Slate	120	Sand	204
Slate	81	Sand	130	slate	222

Sand	225	Barlow lime	484	Lino	582
Slate, muddy	230	Slate, green,		Slate	584
Sand	245	red rook	490	Break	586
Sand, broken, slate	260	Barlow sand; water	512	Lime, brown	610
Sand; water at		Slate, sandy:		Slate	614
265'	278	red rock	520	Lime, white	630
Broak	280	Sand, bluish;	•	Slate	631
Sand	337	little GAS	528	Lime, brown	660
Slate	340	Slate	534	Break.	662
Lime, brown	372	Lime, brown, hard	544	Lime	675
Slate	404	Break	546	Break	681
Lime	433	Lime	5 50	Limo	691
Sand; Jackson:		Slate	5 60		
water	466	Slate, soft &			
Sand, broken	474	muddy	56 8		

CASING RECORD 6 5/8" -- 475'

Harbison Township

SENDE/WICK, F. #1, 200' from S. line, 200' from W. line, SW! NWE. sec. 33, TlN, R4W. Completed Aug. 28, 1934, by F. L. Damron et al. DRY HOLE. Plugged 8-28-34.

Soil	10	Slate	274	Little GAS	410
Mud, sandy	20	Red rock	284	Slate	438
Mud, blue	33	Slate	295	Lime	443
co L. water	35	Lime	310	Slate	455
Mud, blue	57	Slate	313	Lime, hard	474
Sand	7 3	Lime '	317	Slate	487
Slate	7 8	Slate	325	Sand; Hole full	
Sand	83	Red rock	335	water	492
Slate, muddy	105	Sand; little GAS	3 37	Sand, Bethel	5 10
Slate	135	Sand; Jackson;		Lime, whito	525
Sand	143	Hole full wat	er360	Slate	530
Slate, gray	170	Sand	380	Lime, whate	547
Slate, black	194	Lime, Barlow	389	Lime, brown	56 7
Sand, water	225	Barlow sand	391	Break in lime;	
Lime, gray	239	Slate	395	water	570
Slate	247	Red rock	405	Sand; Blue Lick	
sand	25 9	Barlow Sand,		water	5 7 5

ENGINEERING SOILS MAP DUBOIS COUNTY

INDIANA

PREPAREO FROM 1940 AAA AERIAL PHOTOGRAPHS

JOINT HIGHWAY RESEARCH PROJECT

PURDUE UNIVERSITY

1983

SANDSTONE

SHALE