IPESUP 2023/2024

Colle 21 MPSI/MP2I Jeudi 04 avril 2024

Planche 1

- 1. Théorème de Heine
- 2. Calculer l'intégrale $\int_{1}^{e^{\pi}} \sin(\ln(t))dt$.
- 3. Soit a et b deux réels tels que 0 < a < b. Pour tout n dans \mathbb{N}^* , on note $I_n = \int_a^b \cos(nt^2) dt$. Étudier l'éventuelle limite de la suite $(I_n)_{n \in \mathbb{N}^*}$.

Planche 2

- 1. Linéarité de l'intégrale
- 2. Calculer l'intégrale $\int_0^1 t^2 \sqrt{1-t} dt$.
- 3. Pour tout réel x strictement positif, on note $f(x) = \int_1^x e^{-x^2t^2} \frac{dt}{t}$. Étudier f et rechercher en particulier ses extrema éventuels.

Planche 3

- 1. Théorème des sommes de Riemann
- 2. Calculer l'intégrale $\int_0^{\pi/2} \cos^3(t) dt$.
- 3. Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$. Montrer que

$$\int_{0}^{2\pi} \left| P(e^{it}) \right|^{2} dt = 2\pi \sum_{k=0}^{n} |a_{k}|^{2}$$

Bonus

Montrer que $\forall n \ge 2$, $\lim_{A \to +\infty} \int_0^A \frac{dx}{1+x^n} = \frac{\pi}{n \sin(\frac{\pi}{n})}$.