確率解析メモ

百合川

2018年4月25日

- 連続関数の空間の位相

 $[0,\infty)$ 上の \mathbb{R}^d 値連続関数 の全体を $C[0,\infty)^d$ と表す. $C[0,\infty)^d$ は

$$d(w_1, w_2) := \sum_{k=1}^{\infty} 2^{-k} \left\{ \sup_{t \le k} |w_1(t) - w_2(t)| \land 1 \right\}, \quad (w_1, w_2 \in C[0, \infty)^d)$$

により定める距離で完備可分距離空間となる.以下、 $C[0,\infty)^d$ にはdにより広義一様収束位相を導入する.

- 連続関数の空間の Borel 集合族 -

 $n = 1, 2, \dots, B \in \mathfrak{B}((\mathbb{R}^d)^n), 0 \le t_1 < \dots < t_n \bowtie \mathfrak{L} \emptyset$

$$C = \left\{ w \in C[0, \infty)^d ; \quad (w(t_1), \cdots, w(t_n)) \in B \right\}$$

と表される $C[0,\infty)^d$ の部分集合 C の全体を $\mathscr C$ とおく. このとき、 $\mathfrak B(C[0,\infty)^d)=\sigma[\mathscr C]$ が成り立つ.

証明. $w_0 \in C[0,\infty)^d$ とする. 任意に $w \in C[0,\infty)^d$ を取れば、w の連続性により $d(w_0,w)$ の各項について

$$\sup_{t \le n} |w_0(t) - w(t)| = \sup_{r \in [0, n] \cap \mathbb{Q}} |w_0(r) - w(r)| \quad (n = 1, 2, \dots)$$

と表現できる. いま, 任意に実数 $\alpha \in \mathbb{R}$ を取れば

$$\left\{w\in C[0,\infty)^d\; ; \quad \sup_{r\in[0,n]\cap\mathbb{Q}}|w_0(r)-w(r)|\leq\alpha\right\}=\bigcap_{r\in[0,n]\cap\mathbb{Q}}\left\{w\in C[0,\infty)^d\; ; \quad |w_0(r)-w(r)|\leq\alpha\right\}$$

が成立し、右辺の各集合は $\mathscr C$ に属するから 左辺 $\in \sigma[\mathscr C]$ となる. 従って

$$\psi_n: C[0,\infty)^d\ni w\longmapsto \sup_{r\in[0,n]\cap\mathbb{Q}}|w_0(r)-w(r)|\in\mathbb{R}, \quad (n=1,2,\cdots)$$

で定める ψ_n は可測 $\sigma[\mathscr{C}]/\mathfrak{B}(\mathbb{R})$ である. $x \mapsto x \wedge 1$ の連続性より $\psi_n \wedge 1$ も $\sigma[\mathscr{C}]/\mathfrak{B}(\mathbb{R})$ -可測性を持ち,

$$d(w_0, w) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\psi_n(w) \wedge 1 \right)$$

により $C[0,\infty)^d \ni w \mapsto d(w_0,w) \in \mathbb{R}$ の $\sigma[\mathscr{C}]/\mathfrak{B}(\mathbb{R})$ -可測性が出るから、任意の $\epsilon > 0$ に対する球について

$$\left\{\,w\in C[0,\infty)^d\,\,;\,\quad d(w_0,w)<\epsilon\,\right\}\in\sigma\left[\mathcal{C}\right]$$

が成り立つ、 $C[0,\infty)^d$ は第二可算公理を満たし、可算基底は上式の形の球で構成されるから、 $\mathfrak{D}(C[0,\infty)^d) \subset \sigma[\mathscr{C}]$ が従い $\mathfrak{B}(C[0,\infty)^d) \subset \sigma[\mathscr{C}]$ を得る、次に逆の包含関係を示す、いま、任意に $n \in \mathbb{Z}_+$ と $t_1 < \cdots < t_n$ を選んで

$$\phi: C[0,\infty)^d \ni w \longmapsto (w(t_1),\cdots,w(t_n)) \in (\mathbb{R}^d)^n$$

により定める写像は連続である。実際、 w_0 での連続性を考えると、任意の $\epsilon > 0$ に対して $t_n \leq N$ を満たす $N \in \mathbb{N}$ を取れば、 $d(w_0,w) < \epsilon/(n2^N)$ ならば $\sum_{i=1}^n |w_0(t_i) - w(t_i)| < \epsilon$ が成り立つ。よって ϕ は w_0 で連続であり (各点連続)

$$\mathfrak{B}((\mathbb{R}^d)^n) \subset \left\{ A \in \mathfrak{B}((\mathbb{R}^d)^n) \ ; \quad \phi^{-1}(A) \in \mathfrak{B}(C[0,\infty)^d) \right\}$$

が出る. 任意の $C \in \mathcal{C}$ は, $n \in \mathbb{N}$ と時点 $t_1 < \cdots < t_n$ によって決まる写像 ϕ によって $C = \phi^{-1}(B)$ ($\exists B \in \mathfrak{B}((\mathbb{R}^d)^n)$) と表現できるから, $\mathcal{C} \subset \mathfrak{B}(C[0,\infty)^d)$ が成り立ち $\sigma[\mathcal{C}] \subset \mathfrak{B}(C[0,\infty)^d)$ が得られる.

次の事柄は後の定理の証明で使うからここで証明しておく.

定理 0.0.1 ($\mathscr C$ は乗法族である). $\mathscr C$ は交演算について閉じている.

証明. 任意に $A_1, A_2 \in \mathcal{C}$ を取れば、 A_1, A_2 それぞれに対し $n_1, n_2 \in \mathbb{N}$ 、 $C_1 \in \mathfrak{B}((\mathbb{R}^d)^{n_1})$ 、 $C_2 \in \mathfrak{B}((\mathbb{R}^d)^{n_2})$ 、 $t_1 < \cdots < t_{n_1}$ それから $s_1 < \cdots < s_n$ 、が決まっていて、

$$A_1 = \left\{ w \in C[0, \infty)^d \mid (w(t_1), \cdots, w(t_{n_1})) \in C_1 \right\}$$

$$A_2 = \left\{ w \in C[0, \infty)^d \mid (w(s_1), \cdots, w(s_{n_2})) \in C_2 \right\}$$

と表されている. A_1, A_2 の時点に重複があるかないかで場合分けして示す.

時点に重複がない場合 集合を次のように同値な表記に直す:

$$A_{1} = \left\{ w \in C[0, \infty)^{d} \mid (w(t_{1}), \cdots, w(t_{n_{1}}), w(s_{1}), \cdots, w(s_{n_{2}})) \in C_{1} \times (\mathbb{R}^{d})^{n_{2}} \right\}$$

$$A_{2} = \left\{ w \in C[0, \infty)^{d} \mid (w(t_{1}), \cdots, w(t_{n_{1}}), w(s_{1}), \cdots, w(s_{n_{2}})) \in (\mathbb{R}^{d})^{n_{1}} \times C_{2} \right\}$$

表現を変えれば乗法を考えやすくなり, 上の場合は

$$A_1 \cap A_2 = \left\{ w \in C[0, \infty)^d \mid (w(t_1), \cdots, w(t_{n_1}), w(s_1), \cdots, w(s_{n_2})) \in C_1 \times C_2 \right\}$$

と表現できる. t_1, \dots, s_{n_2} の並びが気になるなら、この時点の並びを昇順に変換する $(dn_1+dn_2) \times (dn_1+dn_2)$ 行列 J_1 を用いて $(J_1$ は連続, 線型, 全単射),

$$A_1 \cap A_2 = \left\{ w \in C[0, \infty)^d \mid J_1 w \in J_1(C_1 \times C_2) \right\}$$
$$(w = {}^T(w(t_1), \cdots, w(t_{n_1}), w(s_1), \cdots, w(s_{n_2})))$$

とすれば、 $J(C_1 \times C_2) \in \mathfrak{B}((\mathbb{R}^d)^{n_1+n_2})$ であるから、 $A_1 \cap A_2 \in \mathscr{C}$ であることが明確になる.

時点に重複がある場合 $(r_{k_1},\cdots,r_{k_l})\subset (t_1,\cdots,t_{n_1})$ が重複時点であるとき, A_1,A_2 の同値な表記は次のようにすればよい:

$$A_1 = \left\{ w \in C[0,\infty)^d \mid (w(t_1),.,w(r_{k_1}),.,w(r_{k_l}),.,w(t_{n_1}),(s_1,\cdots,s_{n_2}) \cap s_{n_1},\cdots,r_{k_l} \right\}$$

$$A_2 = \left\{ w \in C[0,\infty)^d \mid (w(s_1),.,w(r_{k_1}),.,w(r_{k_1}),.,w(s_{n_2}),(t_1,\cdots,t_{n_1}) \cap s_{n_1},\cdots,r_{k_l} \right\}$$

$$C_1 \times (\mathbb{R}^d)^{n_2-l} \left\}$$

 A_2 について,条件中の時点の並びを変換し A_1 の条件の順番に合わせる行列 J_2 (連続, 線型, 全単射) を用いて $A_2 = \left\{ w \in C[0,\infty)^d \mid (w(t_1),.,w(r_{k_1}),.,w(r_{k_l}),.,w(t_{n_1}),(s_1,\cdots,s_{n_2}) \cap r_{k_1},\cdots,r_{k_l} \right\}$

と書き直せば, $A_1\cap A_2$ は前段の様に表現可能であり,前段と同様に最後に時点を昇順に変換する行列を用いることで $A_1\cap A_2\in \mathscr{C}$ となることが明確に判る.

- 連続関数の空間に値を取る確率変数 —

 $\omega \in \Omega$ に \mathbb{R}^d 値連続確率過程 X のパスを対応させる写像

$$X_{\bullet}: \Omega \ni \omega \longmapsto (t \longmapsto X_t(\omega)), \quad (t \ge 0)$$

は可測 $\mathcal{F}/\mathfrak{B}(C[0,\infty)^d)$ である.

証明. 任意に $C\in\mathcal{C}$ を取れば $C=\left\{w\in C[0,\infty)^d\; ;\;\; (w(t_1),\cdots,w(t_n))\in B\right\},\; (B\in\mathfrak{B}((\mathbb{R}^d)^n))$ と表されるから

$$\{\omega \in \Omega ; X_{\bullet}(\omega) \in C \} = \{\omega \in \Omega ; (X_{t_1}(\omega), \cdots, X_{t_n}(\omega)) \in B \}$$

が成り立つ。右辺は \mathcal{F} に属するから

$$\mathcal{C} \subset \left\{ C \in \sigma[\mathcal{C}] \ ; \ (X_{\bullet})^{-1}(C) \in \mathcal{F} \right\}$$

が従い,右辺は σ 加法族であるから X_{\bullet} の $\mathcal{F}/\sigma[\mathscr{C}]$ -可測性,つまり $\mathcal{F}/\mathfrak{B}(C[0,\infty)^d)$ -可測性が出る.