#### ADA08 - 9am Thu 29 Sep 2022

Parameter Uncertainties Confidence Intervals and Regions

Fitting a Linear Trend
Orthogonal vs Correlated Parameters

### **Summary of the ADA Roadmap:**

Algebra of Random Variables

Minimising BoF =  $\chi^2$ 

Alternative (Robust) BoFs

Maximum Likelihood (ML) BoF=-2InL

Bayesian Inference (MAP) BoF=-2ln(L P)

#### Max Likelihood and Bayesian Inference



## Monte-Carlo Error Propagation

1. Create mock datasets.

**1a**. "Jiggle" the data points (using Gaussian random numbers).

\* Requires good error bars.

$$X_i \pm \sigma_i$$

1b. (and/or) "Bootstrap" samples:

Pick *N* data points at random, with replacement (some points omitted, some repeated).

- \* Requires more data than parameters (N > M).
- \* Works with no error bars available.
- 2. Fit the model to each mock dataset.

$$\langle X_i \rangle = a t_i + b$$

**3**. Observe how the best-fit parameter values "dance".



- **4.** Accumulate histograms approximating the parameter probability distributions.
- **5**. Compute mean, median, variance, MAD, etc. of the parameters, or **any function of the parameters**.

## Confidence interval on a single parameter

(1-parameter, k-sigma confidence interval)

The **1-\sigma confidence interval** on  $\alpha$  includes 68% of the area under the likelihood function:

$$L(\alpha) = P(X \mid \alpha) \propto \frac{e^{-\chi^2/2}}{\prod_{i} \sigma_i}$$

or posterior probability distribution, for non-uniform prior  $P(\alpha)$ :

$$P(\alpha \mid X) \propto L(\alpha) P(\alpha)$$

For a k- $\sigma$  (1-parameter ) confidence interval, use  $\Delta \chi^2 = k^2$ ,

$$\Delta \chi^2 = 1$$
 for  $1-\sigma$ , 68% probability  $\Delta \chi^2 = 4$  for  $2-\sigma$ , 95.4% probability  $\Delta \chi^2 = 9$  for  $3-\sigma$ , 99.73% probability



#### Generalise:

$$\chi^2 = -2 \ln(L(\alpha) P(\alpha))$$

### 2-parameter 1-sigma Confidence Region



If Y is a "nuisance parameter", use the **1-parameter 1-sigma confidence** interval in X, tangent to the  $\Delta \chi^2 = 1$  contour in (X, Y).

This interval encloses 68% probability.

If both X and Y are of interest, use the **2-parameter 1-sigma confidence** region, the  $\Delta \chi^2 = 2.30$  contour in (X, Y). This contour encloses 68% probability.

Use -2  $ln(L(\alpha)P(\alpha))$  instead of  $\chi^2$ , if needed.

Note: Contour enclosing 68% probability must be wider than the 1-parameter confidence interval.

Why?

$$L(\alpha) = P(X \mid \alpha) \propto \frac{e^{-\chi^2/2}}{\prod_{i} \sigma_i}$$

#### *M*-parameter k- $\sigma$ Confidence Regions

#### $\Delta \chi^2$ thresholds for *M*-parameter k- $\sigma$ Confidence Regions

|            | Prob   | M = 1 | 2    | 3    | 4    |
|------------|--------|-------|------|------|------|
| $1-\sigma$ | 68%    | 1     | 2.30 | 3.53 | 4.72 |
| $2-\sigma$ | 95.4%  | 4     | 6.17 | 8.02 | 9.70 |
| $3-\sigma$ | 99.73% | 9     | 11.8 | 14.2 | 16.3 |



The *M*-parameter confidence region is enclosed by the  $\Delta \chi^2$  surface including the desired probability.

All **nuisance parameters must be re-fitted** (or integrated over) for each set of fixed values for the *M* parameters in the sub-space of interest.

(a.k.a. "marginalise over the nuisance parameters".)

The  $\Delta \chi^2$  in the *M*-parameter sub-space has a  $\chi^2_M$  distribution, with *M* degrees of freedom.

#### **Example:** Estimate both $\mu$ and $\sigma$

$$L(\mu, \sigma) = P(X \mid \mu, \sigma) = \frac{e^{-\chi^2/2}}{\left(2\pi\right)^{N/2} \sigma^N}$$

$$-2\ln L = \sum_{i=1}^{N} \left(\frac{X_i - \mu}{\sigma}\right)^2 + 2N \ln \sigma + \text{const}$$

$$0 = \frac{\partial}{\partial \mu} \left[ -2 \ln L \right] = -2 \sum_{i=1}^{N} \frac{X_i - \mu}{\sigma^2}$$

$$0 = \frac{\partial}{\partial \sigma} \left[ -2 \ln L \right] = -2 \sum_{i=1}^{N} \frac{\left( X_i - \mu \right)^2}{\sigma^3} + \frac{2N}{\sigma}$$

$$\mu_{\text{ML}} = \frac{1}{N} \sum_{i} X_{i} \qquad \sigma_{\text{ML}}^{2} = \frac{1}{N} \sum_{i} \left( X_{i} - \mu_{\text{ML}} \right)^{2}$$

Posterior ∝ Likelihood × Prior

$$P(\mu, \sigma \mid X) \propto L(\mu, \sigma) P(\mu, \sigma)$$



2-parameter  $1,2,3-\sigma$  confidence regions:

$$L(\mu,\sigma) = P(X|\mu,\sigma)$$



Note: ML gives biased estimate for  $\sigma$ .

#### **Example:** Estimate both $\mu$ and $\sigma$











$$L(\mu,\sigma) = P(X|\mu,\sigma)$$



$$L(\mu,\sigma) = P(X|\mu,\sigma)$$



Contours: 1,2,3-sigma 2-parameter confidence regions for  $\mu$  and  $\sigma$ .

Dashed curves: maximum-likelihood estimates for  $\mu_{ML}$  and  $\sigma_{ML}$ .

True values:  $\mu = 0$  and  $\sigma = 1$ .

Fit a line to N=1 data point

Fit y = a x + b to N=1 data point:

Blue lines :  $\chi^2 = 0$ 

Red lines :  $\chi^2 = 1$ 

 $\chi^2$  contours in the (a,b) plane:

Solution is **degenerate**, since *M=2* parameters are constrained by only *N=1* data point.

Bayes: prior P(a,b) needed to determine a unique solution.



#### Fit a line to N = 2 data points

- Fit y = a x + b to N = 2 data points:
  - red lines give  $\chi^2 = 2$
  - blue line gives  $\chi^2 = 0$
- Note that a, b are not independent.



#### **Correlated Parameters**

- Parameters a and b are correlated : (
- To find the optimal (a, b) we must:
  - minimize  $\chi^2$  with respect to a at a sequence of fixed b values
  - then minimise the resulting  $\chi^2$  values with respect to b.
- If a and b were independent, then all slices through the χ² surface at each fixed b would have same shape and minimum.
- Similarly for a.
- We could then optimize a and b independently, saving a lot of calculation
- How to make a and b independent of each other?



# Orthogonal Parameters for fitting a line to N = 2 data points

• Fit 
$$y = a(x - \hat{x}) + b$$

- Different parameters for same model.
- Note: a, b are now independent!





### Orthogonal slope and intercept



Analysis using the algebra of random variables:

$$\hat{b} = \hat{y} = \frac{y_1 + y_2}{2}$$
  $\hat{a} = \frac{y_2 - y_1}{(x_2 - x_1)}$ 

$$\hat{a} = \frac{y_2 - y_1}{(x_2 - x_1)}$$

$$\sigma^2(\hat{b}) = \frac{2\sigma^2}{4}$$

$$\sigma^{2}(\hat{a}) = \frac{2 \sigma^{2}}{(x_{2} - x_{1})^{2}}$$

$$\sigma(\hat{b}) = \frac{\sigma}{\sqrt{2}}$$

$$\sigma^{2}(\hat{b}) = \frac{2\sigma^{2}}{4}$$

$$\sigma^{2}(\hat{a}) = \frac{2\sigma^{2}}{(x_{2} - x_{1})^{2}}$$

$$\sigma(\hat{b}) = \frac{\sigma}{\sqrt{2}}$$

$$\sigma(\hat{a}) = \sqrt{2}\frac{\sigma}{(x_{2} - x_{1})^{2}}$$



Corresponds to  $\Delta \chi^2 = 1$ .





#### **Orthogonal vs Correlated Parameters**

#### **Correlated Parameters** ⊗



For each a, a different b minimises  $\chi^2$ . For each b, a different a minimises  $\chi^2$ .

#### Orthogonal Parameters ©



For any a, the same b minimises  $\chi^2$ . For any b, the same a minimises  $\chi^2$ .

## Fit a line to N data points

- If we use y = a x + bthen a, b are correlated.
- Make a, b orthogonal:

$$y = a(x - \hat{x}) + b$$



Intercept: Set a = 0 and optimise b:

optimal average:

$$\hat{b} = \hat{y} = \frac{\sum y_i / \sigma_i^2}{\sum 1 / \sigma_i^2}, \quad \text{Var}[\hat{b}] = \frac{1}{\sum 1 / \sigma_i^2}$$

$$\operatorname{Var}[\hat{b}] = \frac{1}{\sum 1/\sigma_i^2}$$

• Slope: Set b = 0 and optimise a:

**optimal scaling** of pattern:  $P_i = x_i - \hat{x}$ 

$$\hat{a} = \frac{\sum y_i (x_i - \hat{x}) / \sigma_i^2}{\sum (x_i - \hat{x})^2 / \sigma_i^2}, \quad \text{Var}[\hat{a}] = \frac{1}{\sum (x_i - \hat{x})^2 / \sigma_i^2}$$

### **Choose Orthogonal Parameters**

- Good practice (when possible).
- Results for any one parameter don't depend on values of other parameters.
- Example: fit a gaussian profile.
   2 fit parameters:
  - Width, w
  - Area or peak value. Which is best?



Peak value depends on width – bad

$$f(x) = \mathbf{P}e^{-\frac{1}{2}\left(\frac{x-x_0}{w}\right)^2}$$

$$g(x) = \frac{\mathbf{A}}{w\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-x_0}{w}\right)^2}$$

Area is (more nearly) independent of width – good

### **Fini -- ADA 08**