PART III - Conditioning and Stability

Lecture 12 - Conditioning and Condition Numbers

OBJECTIVE:

We now turn to a systematic discussion of two fundamental issues in numerical analysis: conditioning and stability.

Conditioning pertains to the sensitivity of a mathematical problem.

Stability pertains to the sensitivity of an *algorithm* used to solve a mathematical problem on a computer.

♦ CONDITIONING OF A PROBLEM

In a very abstract sense, solving a problem is like evaluating a function

$$y = f(x)$$
.

Here, x represents the input to the problem (the data), f represents the "problem" itself, and y represents its solution.

We are interested in studying the effect on y when a given x is perturbed slightly.

If small changes in x lead to small changes in y, we say the problem is well-conditioned.

If small changes in x lead to large changes in y, we say the problem is *ill-conditioned*.

Of course what constitutes "large" or "small" may depend on the problem

→ it only makes sense to solve well-conditioned problems.

Because floating-point arithmetic used by computers introduces relative errors (see Lecture 13) not absolute errors, we define conditioning in terms of a *relative* condition number.

◇ RELATIVE CONDITION NUMBER

Let δx denote a small perturbation of x, and

$$\delta f = f(x + \delta x) - f(x)$$

be the corresponding perturbation in f. Then, the *relative condition number* $\kappa=\kappa(x)$ is defined to be

$$\kappa(x) = \lim_{\delta \to 0} \max_{\|\delta x\| \le \delta} \left(\frac{\|\delta f\|}{\|f(x)\|} \middle/ \frac{\|\delta x\|}{\|x\|} \right)$$

Or, if you just assume δx and δf are infinitesimal

$$\kappa(x) = \max_{\delta x} \left(\frac{\|\delta f\|}{\|f(x)\|} \middle/ \frac{\|\delta x\|}{\|x\|} \right)$$

 \rightarrow maximum value of the ratio "relative change in f" to "relative change in x".

If f has a derivative, we can write

$$\frac{\delta f}{\delta x} = \mathbf{J}(x)$$

where J is known as the *Jacobian* of f at x. It is the matrix of first partial derivatives of f.

e.g., suppose

$$f(x_1, x_2, x_3) = \begin{pmatrix} x_1 x_2 + \sin(x_3) + x_1^2 \\ 7 + e^{x_2} \end{pmatrix}$$

then,

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \end{bmatrix}$$
$$= \begin{bmatrix} x_2 + 2x_1 & x_1 & \cos(x_3) \\ 0 & e^{x_2} & 0 \end{bmatrix}$$

i.e., the (i,j) entry of \mathbf{J} is $\frac{\partial f_i}{\partial x_j}$.

Note 1. $\delta f \approx \mathbf{J}(x)\delta x$ with $\delta f = \mathbf{J}(x)\delta x$ in the limit $\|\delta x\| \to 0$.

In terms of J,

$$\kappa = \frac{\|\mathbf{J}(x)\|}{\|f(x)\|/\|x\|}$$

Note 2. There is also a concept of absolute condition number, but this is usually less useful then the relative condition number because roundoff errors on computers are relative errors (not absolute errors); see Lecture 13.

We say a problem is well-conditioned if κ is small (e.g., $\approx 1, 10, 10^2$), and ill-conditioned if it is large (e.g., $\approx 10^6, 10^{14}$).

Note 3. What constitutes "large" depends on the precision you are working in!

A general rule of thumb is that if $\kappa = 10^p$, then you cannot really trust the last p digits of your answer.

So, in single precision, where $\epsilon_{\rm machine} \approx 10^{-8}$, $\kappa = 10^6$ is pretty ill-conditioned because you will only be able to trust the first 2 digits of your answer (this may be sufficient for some applications!).

But, in double precision, where $\epsilon_{\rm machine} \approx 10^{-16}$, $\kappa = 10^6$ is not such a big deal.

Example 12.1 DIVISION BY 2

Consider the (trivial) problem of dividing a number by 2. This can be described by the function

$$f: x \to \frac{x}{2}$$

So,

$$\mathbf{J} = \left[\frac{\partial f}{\partial x}\right] = \frac{1}{2}$$

and

$$\kappa = \frac{\|\mathbf{J}\|}{\|f(x)\|/\|x\|} = \frac{\frac{1}{2}}{\frac{1}{2}|x|/|x|} = 1$$

→ a well-conditioned problem!

Example 12.2 SUBTRACTION

Consider the problem of subtracting two numbers. This can be described by the function

$$f(x):(x_1,x_2)\to x_1-x_2$$

For simplicity, let $\|\cdot\| = \|\cdot\|_{\infty}$. Then,

$$\mathbf{J} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix}$$

So,

$$\|\mathbf{J}\|_{\infty} = 2$$

and

$$\kappa = \frac{\|\mathbf{J}\|}{\|f(x)\|/\|x\|} = \frac{2}{|x_1 - x_2|/\max\{|x_1|, |x_2|\}}$$

So we see κ is large if $|x_1 - x_2|$ is small, i.e., $x_1 \approx x_2$. This leads us to the well-known result that subtraction of nearly equal quantities leads to large (cancellation) errors in the result.

Example 12.3 FINDING EIGENVALUES OF A NONSYMMETRIC MATRIX

This problem is often ill-conditioned e.g.,

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1000 \\ 0 & 1 \end{array} \right]$$

and

$$\tilde{\mathbf{A}} = \left[\begin{array}{cc} 1 & 1000 \\ 0.001 & 1 \end{array} \right]$$

The eigenvalues of $\bf A$ are $\{1,1\}$, whereas those of $\tilde{\bf A}$ are $\{0,2\}$. (verify!)

 \rightarrow a large change in the output (eigenvalues) for a small change ($\sim 10^{-3}$) of the input (${\bf A} \rightarrow \tilde{{\bf A}}$).

Note 4. On the other hand if A is symmetric (or more generally, if it is normal¹) then finding its eigenvalues is a well-conditioned problem.

It can be shown that if λ and $\lambda + \delta\lambda$ are the eigenvalues of $\bf A$ and $\bf A + \delta \bf A$ respectively, then

$$|\delta\lambda| \leq \|\delta\mathbf{A}\|_2$$

 $^{{}^{1}\}mathbf{A}$ is normal if $\mathbf{A}\mathbf{A}^{T} - \mathbf{A}^{T}\mathbf{A} = 0$.

 \rightarrow using the 2-norm, we can take

$$\|\mathbf{J}\| = \max \left\| \frac{\delta f}{\delta x} \right\| = \max \left\| \frac{\delta \lambda}{\delta \mathbf{A}} \right\| = 1$$

thus

$$\kappa = \frac{1}{\|\lambda\|/\|\mathbf{A}\|_2} = \|\mathbf{A}\|_2/|\lambda|$$

We'll come back to this in Lecture 26.

♦ CONDITION OF MATRIX-VECTOR MULTIPLICATION

Consider the problem of computing $\mathbf{A}\mathbf{x}$ for fixed \mathbf{A} and input \mathbf{x}

i.e., we wish to determine the conditioning of matrix-vector multiplication for perturbations in \mathbf{x} but not \mathbf{A} .

In this case, J = A (verify!)

So, by definition,

$$\kappa = \frac{\|\mathbf{A}\|}{\|\mathbf{A}\mathbf{x}\|/\|\mathbf{x}\|}$$

If A is square and invertible, we can use

$$\mathbf{x} = \mathbf{A}^{-1} \mathbf{A} \mathbf{x}$$

to write

$$\|\mathbf{x}\| = \|\mathbf{A}^{-1}\mathbf{A}\mathbf{x}\|$$

 $\leq \|\mathbf{A}^{-1}\|\|\mathbf{A}\mathbf{x}\|$

or

$$\frac{\|\mathbf{x}\|}{\|\mathbf{A}\mathbf{x}\|} \le \|\mathbf{A}^{-1}\|$$

to write

$$\kappa \le \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

It can be shown that we can take

$$\kappa = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

and also more generally for non-square or non-invertible matrices,

$$\kappa = \|\mathbf{A}\| \|\mathbf{A}^{\dagger}\|$$

The problem we have just analyzed is given A and x, what is the condition number of forming b = Ax?

Note 5. There is a corresponding inverse problem: given $\bf A$ and $\bf b$, what is the condition number of solving for $\bf x$? i.e., $\bf x = A^{-1}b$

 \rightarrow we can see that formally this is the same problem as before, except with $\bf A$ replaced by ${\bf A}^{-1}$.

This leads to the following result:

Theorem 1. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be nonsingular and consider $\mathbf{A}\mathbf{x} = \mathbf{b}$. The problem of computing \mathbf{b} given \mathbf{x} has condition number

$$\kappa = \|\mathbf{A}\| \frac{\|\mathbf{x}\|}{\|\mathbf{b}\|} \le \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

with respect to perturbations in x.

The problem of computing ${\bf x}$ given ${\bf b}$ has the condition number

$$\kappa = \|\mathbf{A}^{-1}\| \frac{\|\mathbf{b}\|}{\|\mathbf{x}\|} \le \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

with respect to perturbations in b.

♦ CONDITION NUMBER OF A MATRIX

In both cases, the inequalities in Theorem 12.1 can be made into equalities. So we define the *condition* number of \mathbf{A} (relative to the norm $\|\cdot\|$) as

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$$

 \rightarrow In this case the condition number applies to the matrix, *not the problem*.

As usual, if $\kappa(\mathbf{A})$ is small, \mathbf{A} is said to be well-conditioned; if $\kappa(\mathbf{A})$ is large, \mathbf{A} is said to be ill-conditioned.

Note 6. In the 2-norm, $\|\mathbf{A}\| = \sigma_1$ and $\|\mathbf{A}^{-1}\| = \frac{1}{\sigma_m}$ Thus,

$$\kappa(\mathbf{A}) = \frac{\sigma_1}{\sigma_m}$$

 \rightarrow This is how the 2-norm condition numbers of matrices are computed in practice.

The ratio $\frac{\sigma_1}{\sigma_m}$ can be interpreted as the eccentricity of the hyperellipse that is the image of the unit hypersphere in \mathbb{R}^m (recall Lecture 4).

For rectangular $\mathbf{A} \in \mathbb{R}^{m \times n}$, $m \ge n$, with full rank,

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{\dagger}\|$$

Since ${\bf A}^{\dagger}$ was motivated by least-squares problem, the 2-norm condition number often makes sense in which case

$$\kappa(\mathbf{A}) = \frac{\sigma_1}{\sigma_n}$$

♦ CONDITION NUMBER OF A SYSTEM OF EQUATIONS

In Theorem 12.1, we fixed A and perturbed x or $b \rightarrow what about if we perturb <math>A$?

Fix b and consider the problem

$$f: \mathbf{A} \to \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

where A is perturbed by δA . Then, x is perturbed by δx , where

$$(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}$$

Using Ax = b, we have to leading order

$$(\delta \mathbf{A})\mathbf{x} + \mathbf{A}(\delta \mathbf{x}) = 0$$

So,

$$\delta \mathbf{x} = -\mathbf{A}^{-1}(\delta \mathbf{A})\mathbf{x}$$

and

$$\|\delta \mathbf{x}\| \le \|\mathbf{A}^{-1}\| \|\delta \mathbf{A}\| \|\mathbf{x}\|$$

So,

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} / \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} \le \|\mathbf{A}^{-1}\| \|\mathbf{A}\| = \kappa(\mathbf{A})$$

Again, it can be shown that equality in the above expression can be attained. This leads us to the following result:

Theorem 2. Fix \mathbf{b} and consider the problem of computing $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ for square, nonsingular \mathbf{A} . Then the condition number of this problem with respect to perturbations in \mathbf{A} is

$$\kappa = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| = \kappa(\mathbf{A})$$

Theorems 12.1 and 12.2 are of fundamental importance in numerical linear algebra

 \rightarrow they determine how many digits of accuracy you can expect in ${\bf x}$ when solving ${\bf A}{\bf x}={\bf b}$.