SEMAINE DU 11/12 AU 15/12

1 Cours

Nombres réels

Approximations d'un réel Ensembles de nombres : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$. Partie entière. Approximations décimales. Densité dans \mathbb{R} . Caractérisation séquentielle de la densité. \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Relation d'ordre sur $\mathbb R$ Majorant, minorant, maximum, minimum, borne supérieure, borne inférieure d'une partie de $\mathbb R$. Théorème de la borne supérieure. Caractérisation séquentielle de la borne inférieure et de la borne supérieure. Droite réelle achevée $\overline{\mathbb R}$. Borne supérieure et inférieure dans $\overline{\mathbb R}$. Applications à valeurs dans $\mathbb R$: majorant, minorant, maximum, minimum, borne supérieure, borne inférieure.

Intervalles de \mathbb{R} Définition : une partie I de \mathbb{R} est un intervalle si $\forall (x, y, t) \in I^2 \times \mathbb{R}, x \leq t \leq y \implies t \in I$. Les intervalles de \mathbb{R} sont les parties de la forme $[a, b], [a, b], [a, b], [a, b], [a, +\infty[, a, +$

Relations binaires

Généralités Réflexivité, symétrie, antisymétrie, transitivité. Exemples.

Relation d'ordre Définition. Ordre total, partiel. Majorant/minorant, maximum/minimum, borne supérieure/inférieure. Unicité du maximum/minimum, de la borne supérieure/inférieure sous réserve d'existence. Un maximum/minimum est une borne supérieure/inférieure.

Relation d'équivalence Définition. Classes d'équivalence. Les classes d'équivalence forment une partition.

2 Méthodes à maîtriser

- ightharpoonup Déterminer le maximum/minimum M d'une partie A:
 - ♦ M est un majorant/minorant de A;
 - $\diamond M \in \mathcal{A}$.
- ightharpoonup Déterminer la borne supérieure/inférieure M d'une partie \mathcal{A} :
 - \diamond M est un majorant/minorant de \mathcal{A} ;
 - ♦ puis au choix :
 - tout majorant/minorant de A est minoré/majoré par M;
 - il existe une suite d'éléments de A convergeant vers M (si A est une partie de \mathbb{R} muni de la relation d'ordre usuelle) ;
 - pour tout $\epsilon > 0$, il existe $\alpha \in \mathcal{A}$ tel que $\alpha > M \epsilon/\alpha < M + \epsilon$ (si \mathcal{A} est une partie de \mathbb{R} muni de la relation d'ordre usuelle).
- ► Caractérisation de la partie entière :

$$n = \lfloor x \rfloor \iff x-1 < n \leqslant x \iff n \leqslant x < n+1$$

▶ Montrer qu'une relation binaire est une relation d'équivalence ou une relation d'ordre.

3 Questions de cours

- ▶ Montrer que \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .
- \blacktriangleright Soit $\mathcal R$ une relation d'équivalence sur un ensemble $\mathsf E$. Rappeler la définition d'une classe d'équivalence. Montrer que deux classes d'équivalence sont soit disjointes soit confondues.
- ► Soit E un ensemble. On définit une relation binaire \sim sur E^E de la manière suivante : pour tout couple $(f,g) \in (E^E)^2$, $f \sim g$ si et seulement si il existe une bijection $\phi : E \to E$ telle que $f = \phi^{-1} \circ g \circ \phi$. Montrer que \sim est une relation d'équivalence.

lacktriangle Soit f : $\mathbb{R} \to \mathbb{R}$ une application. Déterminer le sens de variation des applications

$$g\colon \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \inf_{y\geqslant x} f(y) \end{array} \right. \qquad \qquad h\colon \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sup_{y\geqslant x} f(y) \end{array} \right.$$

lacktriangle Soient A et B deux ensembles et f : A imes B \to $\mathbb R$ une application bornée. Montrer que

$$\sup_{x \in A} \left(\inf_{y \in B} f(x, y) \right) \leqslant \inf_{y \in B} \left(\sup_{x \in A} f(x, y) \right)$$