Also published as:

US5074260 (A1)

JP2286815 (A)

GB2231088 (A)

VALVE DRIVING DEVICE AND VALVE DRIVING METHOD FOR INTERNAL **COMBUSTION ENGINE**

Patent number:

DE4013633

Publication date:

1990-10-31

Inventor:

YAGI SHIZUO (JP); ISHIBASHI YOUICHI (JP); SONO

HIROSHI (JP)

Applicant: Classification: HONDA MOTOR CO LTD (JP)

- international:

F01L1/04; F01L1/34

- european:

F01L1/344; F01L13/00D10 Application number: DE19904013633 19900427

Priority number(s): JP19890108946 19890427

Abstract not available for DE4013633 Abstract of corresponding document: US5074260

A valve train for a four-cycle, double overhead camshaft type internal combustion engine includes apparatus for movably supporting the camshafts that mount the cams which operate the intake and exhaust valves respectively so that the camshafts and cams are displaceable with respect to the rocker arms through which the operation of the cams is imparted to the valves. A control system is described that enables the camshaft supporting apparatus to be selectively displaced in response to engine operating conditions, such as rotational speed, so that valve timing and valve lift for the respective valves can be independently varied to produce optimal engine operating characteristics over a wide range of engine operating conditions. A method of operating engine valves in accordance with utilization of the described control system is also disclosed.

Data supplied from the esp@cenet database - Worldwide

(a) Int. Cl.5: F01 L 1/34 F01 L 1/04

DEUTSCHES PATENTAMT ② Aktenzeichen:

P 40 13 633.7-13

Anmeldetag:

27. 4.90

Offenlegungstag:

31, 10, 90

Veröffentlichungstag

der Patenterteilung: 10. 9.92

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

3 Unionspriorität: 2 3 3 27.04.89 JP 108946/89 `

Patentinhaber:

Honda Giken Kogyo K.K., Tokio/Tokyo, JP

(74) Vertreter:

Weickmann, H., Dipl.-Ing.; Fincke, K., Dipl.-Phys. Dr.; Weickmann, F., Dipl.-Ing.; Huber, B., Dipl.-Chem.; Liska, H., Dipl.-Ing. Dr.-Ing.; Prechtel, J., Dipl.-Phys. Dr.rer.nat., Pat.-Anwälte, 8000 München

② Erfinder:

Yagi, Shizuo; Ishibashi, Youichi; Sono, Hiroshi, Wako, Saitama, JP

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

44-23 442 JP

(S) Ventilantriebsvorrichtung für eine Brennkraftmaschine

Beschreibung

Die Erfindung betrifft eine Ventilantriebsvorrichtung für eine 4-Takt-Brennkraftmaschine.

Es ist bekannt, daß die Ventileinstellung und der Ventilhub eines Einlaß- und eines Auslaßventils in einer 4-Takt-Brennkraftmaschine großen Einfluß auf die Funktion der Brennkraftmaschine haben.

Jedoch ändern sich eine zu fordernde optimale Ventillung) und ein zu fordernder optimaler Ventilhub bei einer Änderung der Drehzahl der Brennkraftmaschine. Wählt man für einen gewissen Drehzahlbereich eine optimale Ventileinstellung und einen optimalen Ventilhub, so tritt daher das Problem auf, daß in dem anderen 15 Drehzahlbereich eine genügende Funktion nicht erreicht werden kann.

Zur Lösung dieses Problems wurde ein Ventilantrieb vorgeschlagen (Japan. Gebrauchsmuster Veröffentlichungs-Nr. 44-23 442), der imstande ist, die Ventilein- 20 stellung und den Ventilhub des Einlaß- und des Auslaßventils in Abhängigkeit einer Drehzahländerung der Brennkraftmaschine einzustellen.

Der vorstehend genannte Ventilantrieb umfaßt eine Nockenwelle mit einem Nocken, der einen Schwenkhe- 25 bel berührt, ein Zahnrad für die Nockenwelle, das mit einem Antriebszahnrad kämmt, und einen Nockenwellen-Halterungshebel, dessen eines Ende schwenkbar an einer Drehachse des Antriebszahnrads gehaltert ist und an dessen anderen Ende die Nockenwelle drehbar ge- 30 haltert ist. Der Nockenwellen-Halterungshebel wird um die Drehachse des Antriebszahnrads in Abhängigkeit von einer Drehzahländerung der Brennkraftmaschine geschwenkt.

Nockenwellen-Halterungshebel ge- 35 Wenn der schwenkt wird, so wird gemäß dem vorstehend genannten Ventilantrieb der Nocken der Nockenwelle entlang einer Gleitsläche des Schwenkhebels auf einen Drehpunkt des Schwenkhebels zu oder von ihm weg bewegt, so daß die Hebelwirkung (= Schwenkwinkel) des 40 Schwenkhebels geändert wird, um dadurch den Ventilhub des Einlaß- und des Auslaßventils zu vergrößern oder zu vermindern. Gleichzeitig wird das mit dem Antriebszahnrad in Eingriff stehende Zahnrad für die Nokkenwelle durch das Schwenken des Nockenwellen-Hal- 45 terungshebels gedreht, so daß eine Phase des sich zusammen mit der Nockenwelle drehenden Nockens geändert wird, um dadurch die Ventileinstellung des Auslaß- und des Einlaßventils zu ändern.

Jedoch ist der vorstehend genannte, gemäß dem 50 Stand der Technik ausgeführte Ventilantrieb an einer Brennkraftmaschine mit einzelner, oben liegender Nockenwelle angeordnet. Somit werden das Einlaßund das Auslaßventil durch eine einzige Nockenwelle angetrieben, können die Ventileinstellung und der 55 Ventilhub des Einlaß- und des Auslaßventils nicht individuell eingestellt werden und ist es schwer, die Eigenschaften des Ventilantriebs ausreichend auszuprägen.

Demgebenüber ist es Aufgabe der Erfindung, eine 60 Ventilantriebsvorrichtung für eine Brennkraftmaschine mit doppelter, oben liegender Nockenwelle anzugeben, mittels der die Ventileinstellung und der Ventilhub des Einlaß- und des Auslaßventils individuell eingestellt werden können.

Erfindungsgemäß wird diese Aufgabe durch eine Ventilantriebsvorrichtung mit den im Anspruch 1 angegebenen Merkmalen gelöst.

In den Unteransprüchen sind vorteilhafte Weiterbildungen des Gegenstands des Anspruchs 1 angegeben.

Erfindungsgemäß werden die an den Nockenwellen befestigten Zahnräder in Eingriff mit dem Antriebss zahnrad gedreht, wenn die beiden Nockenwellen-Halterungshebel in Verbindung mit einer Drehzahländerung der Brennkraftmaschine geschwenkt werden. Entsprechend wird der Phasenwinkel jedes Nocken geändert, um dadurch die Ventileinstellungen des Einsteuerzeiteinstellung (im Folgenden kurz: Ventileinstel- 10 laß- und des Auslaßventils zu ändern. Gleichzeitig wird ein Berührungspunkt zwischen jedem Schwenkhebel und jedem Nocken durch Schwenken der Nokkenwellen-Halterungshebel geändert. Entsprechend wird die Hebelwirkung jedes Schwenkhebels geändert, um dadurch die Ventilhübe des Einlaß- und des Auslaßventils zu ändern.

Bei einer Erhöhung der Drehzahl der Brennkraftmaschine wird erfindungsgemäß die Ventileinstellung des Auslaßventils im Vergleich zu der bei niedrigen Drehzahlen vorgeschoben, wodurch ein abgestimmter Rotationsbereich bzw. Drehzahlbereich infolge des Effekts einer Abgaspulsation bzw. Abgasschwingung erweitert wird, und die Ventileinstellung des Einlaßventils im Vergleich zu der bei niedrigen Drehzahlen verzögert, wodurch ein abgestimmter Drehzahlbereich infolge des Effekts einer Ansaugträgheit erweitert wird. Wenn der Zeitraum der Ventilüberschneidung in der Umgebung des oberen Totpunkts im Vergleich zu der bei niedrigen Drehzahlen verkleinert wird, kann dementsprechend eine Reduzierung des Drehmoments bei mittleren Drehzahlen, bei welchen ein Auspuffsystem in einen unabgestimmten Drehzahlbereich fällt, beseitigt werden. Weiter kann der Ausstoß bzw. die abgegebene Leistung bei hohen Drehzahlen erhöht werden, wenn die Ventilhübe des Einlaß- und des Auslaßventils vergrößert werden.

Mit Bezug auf die Zeichnungen werden im Folgenden einige bevorzugte Ausführungsformen der vorliegenden Erfindung beschrieben. Es zeigt

Fig. 1 eine geschnittene Seitenansicht einer Ventilantriebsvorrichtung gemäß der ersten bevorzugten Ausführungsform;

Fig. 2 einen Querschnitt entlang der Linie II-II in Fig. 1;

Fig. 3 einen Querschnitt entlang der Linie III-III in

Fig. 4 ein Ventilsteuerdiagramm für die Ventileinstellung und den Ventilhub gemäß der ersten bevorzugten Ausführungsform:

Fig. 5 eine Prinzipdarstellung der Änderung der Ventileinstellung und des Ventilhubs gemäß der ersten bevorzugten Ausführungsform;

Fig. 6 ein Diagramm für die Ansaugluft-Volumeneffizienz gemäß der ersten bevorzugten Ausführungsform;

Fig. 7 eine Ansicht ähnlich Fig. 3 einer zweiten bevorzugten Ausführungsform der Erfindung:

Fig. 8 eine Ansicht ähnlich Fig. 2 einer dritten bevorzugten Ausführungsform der Erfindung:

Fig. 9A - F schematische Erläuterungen von Varianten der Auslegung der Schwenkhebel; und

Fig. 10 ein Ventilsteuerdiagramm der Varianten gemäß Fig. 9A – F.

Die Fig. 1-3 zeigen eine erste bevorzugte Ausführungsform der vorliegenden Erfindung. Das Bezugszeichen V bezeichnet allgemein die Ventilantriebsvorrichtung, die an einer Brennkraftmaschine mit doppelter, oben liegender Nockenwelle angeordnet ist. Die Ventilantriebsvorrichtung V ist in einer Ventil-Betriebskam-

mer befestigt, die von einer einstückig mit einem Zylinderkopf Hausgebildeten Abdeckung C festgelegt wird. Der Zylinderkopf H ist mit einer oberen Fläche eines Zylinderblocks S verbunden, in welchem ein Kolben P angeordnet ist.

Eine Schiebewelle 2 ist in ihrer Mitte mit einer Mutter 3 an einem Abdeckglied 1 befestigt, das eine an der einen Seite des Zylinderkopfs H ausgebildete Öffnung schließt. Ein Vorsprung 4 ist mit einem Schraubbolzen 5 befestigt, daß er koaxial zur Schiebewelle 2 angeordnet ist. Ein Paar von Nockenwellen-Halterungshebeln 6a, 6b mit in Seitenansicht umgedrehter U-Form sind an ihrem unteren Ende schwenkbar an der Schiebewelle 2 und dem Vorsprung 4 gehaltert. Ein Paar von Nocken- 15 wellen 8a, 8b sind an den oberen Teilen der Nockenwellen-Halterungshebel 6a bzw. 6b schwenkbar gehaltert. Die Nockenwelle 8a ist einstückig mit zwei Nocken 7a ausgebildet und die Nockenwelle 8b ist einstückig mit zwei Nocken 7b ausgebildet. Ein Paar von Zahnrädern 20 9a, 9b für die Nockenwellen 8a bzw. 8b sind an den einen Endstücken der Nockenwellen 8a bzw. 8b befestigt und im Eingriff mit einem Antriebszahnrad 11, das von einem Kugellager 10 drehbar an dem Vorsprung 4 gehaltert ist. Zwei Schwenkhebel 13a mit jeweiligen Gleitflä- 25 chen 12a, die die jeweiligen Nocken 7a berühren, sind schwenkbar an einer an der Abdeckung C befestigten Schwenkachse 14a gehaltert. Ähnlich sind zwei Schwenkhebel 13b mit jeweiligen Gleitflächen 12b, die die jeweiligen Nocken 7b berühren, schwenkbar an ei- 30 ner an der Abdeckung C befestigten Schwenkachse 14b gehaltert. Die Gleitslächen 12a, 12b sind als um einen Mittelpunkt des das Antriebszahnrad 11 halternden Vorsprungs 4 bogenförmige Flächen ausgebildet. Zwei Einlaßventile 16a sind vorgesehen, um mit ihren oberen 35 Enden untere Flächen der Schwenkhebel 13a in einer Weise zu berühren, daß sie normalerweise von zwei Federn 15a in Ventilschlußrichtung vorgespannt werden. Ähnlich sind zwei Auslaßventile 16b vorgesehen. um mit ihren oberen Enden untere Flächen der 40 Schwenkhebel 13b in einer Weise zu berühren, daß sie normalerweise von zwei Federn 15b in Ventilschlußrichtung vorgespannt werden.

Wenn das Antriebszahnrad 11 formschlüssig mit der Drehung einer Kurbelwelle der Brennkraftmaschine ge- 45 dreht wird, wird mit dieser Anordnung die Drehung des Antriebszahnrads 11 durch das Zahnrad 9a, die Nockenwelle 8a, die beiden Nocken 7a und die beiden Schwenkhebel 13a auf die beiden Einlaßventile 16a übertragen. auch durch das Zahnrad 9b, die Nockenwelle 8b, die beiden Nocken 7b und die beiden Schwenkhebel 13b auf

die beiden Auslaßventile 16b übertragen.

Um die Schiebewelle 2 herum ist ein Paar unabhängi-Halterungshebel-Antriebsmechanismen Schwenken der Nockenwellen-Halterungshebel 6a, 6b vorgesehen, um eine Ventileinstellung und einen Ventilhub des Einlaßventils 16a und des Auslaßventils 16b einzustellen.

Der Halterungshebel-Antriebsmechanismus für die Einlaßventile 16a ist mit einem ringförmigen Kolben 17a versehen, der axial verschiebbar zwischen einer äu-Beren Umfangsfläche der Schiebewelle 2 und einer inneren Umfangsfläche des unteren Endes des Nocken-Umfangsfläche des Kolbens 17a ist mit einer äußeren Umfangsfläche der Schiebewelle 2 über einen geraden Schiebekeil 18a in Eingriff, während eine äußere Um-

fangsfläche des Kolbens 17a mit einer inneren Umfangsfläche des unteren Endes des Nockenwellen-Halterungshebels 6a über einen schraubenförmigen Schiebekeil 19a in Eingriff steht. Eine Kopffläche des Kolbens 5 17a ist durch eine Feder 20a gegen eine Ölkammer 21a vorgespannt. Die Ölkammer 21a ist durch einen in der Schiebewelle 2 ausgebildeten Öldurchgang 22a, einen Nippel 23a und ein von einem Elektromagneten 24a angetriebenen, elektromagnetischen Dreiweg-Ventil sean der anderen Seite des Zylinderkopfs H in einer Weise 10 lektiv entweder mit einer Pumpe 26 oder einem Vorratsbehälter 27 verbunden.

Dementsprechend wird, wenn die Betriebsstellung des elektromagnetischen Dreiweg-Ventils 25a so gewählt ist, daß Drucköl von der Pumpe 26 durch den Nippel 23a und den Öldurchgang 22a der Ölkammer 21a zugeführt wird, der Kolben 17a gegen die Vorspannkraft der Feder 20a in Fig. 1 gesehen nach rechts bewegt, wobei er durch den geraden Schiebekeil 18a geführt wird. Gleichzeitig wird der Nockenwellen-Halterungshebel 6a, der über den schraubenförmigen Schiebekeil 19a mit der äußeren Umfangsfläche des Kolbens 17a in Eingriff steht, nach außen (in Richtung des Pfeils A in Fig. 2) geschwenkt. Im Gegensatz dazu wird, wenn die Betriebsstellung des elektromagnetischen Dreiweg-Ventils 25a umgekehrt ausgewählt ist, um die Ölkammer 21a mit dem Vorratsbehälter 27 zu verbinden, der Kolben 17a durch die Vorspannkraft der Feder 20a in Fig. 1 gesehen nach links bewegt. Als Folge wird der Nockenwellen-Halterungshebel 6a nach innen (in Richtung des Pfeils A' in Fig. 2) geschwenkt.

In ähnlicher Weise ist der Halterungshebel-Antriebsmechanismus für das Auslaßventil 16b aus einem Kolben 17b, einem geraden Schiebekeil 18b, einem schraubenförmigen Schiebekeil 19b, einer Feder 20b und einer Ölkammer 21b aufgebaut. Wenn ein Drucköl von einer Pumpe 26 durch ein von einem Elektromagneten 24b angetriebenes, elektromagnetisches Dreiweg-Ventil 25b, einen Nippel 23b und einen Öldurchgang 22b der Ölkammer 21b zugeführt wird, wird der Nockenwellen-Halterungshebel 6b nach außen (in Richtung des Pfeils B in Fig. 2) geschwenkt, während, wenn das Drucköl in den Vorratsbehälter 27 zurückläuft, der Nockenwellen-Halterungshebel 6b nach innen (in Richtung des Pfeils B' in Fig. 2) geschwenkt wird.

In den Fig. 2 und 3 befindet sich der Nockenwellen-Halterungshebel 6a in einer Stellung bei hohen Drehzahlen und der Nockenwellen-Halterungshebel 6b in einer Stellung bei niedrigen Drehzahlen.

Die Funktionsweise der ersten bevorzugten Ausfüh-Gleichzeitig wird die Drehung des Antriebszahnrads 11 50 rungsform der vorliegenden, wie oben konstruierten Erfindung wird im Folgenden beschrieben werden.

Wenn die Brennkraftmaschine betrieben wird, wird die Kurbelwelle gedreht, um das Antriebszahnrad 11 zu drehen. Die Drehung des Antriebszahnrads 11 wird über die Zahnräder 9a, 9b auf die Nockenwellen 8a bzw. 8b übertragen, wodurch die Nockenwellen 8a und 8b mit der halben Drehzahl der Kurbelwelle gedreht werden. Dementsprechend werden die Schwenkhebel 13a bzw. 13b, die die mit den Nockenwellen 8a bzw. 8b einstückigen Nocken 7a bzw. 7b berühren, durch die Drehung der Nocken 7a bzw. 7b um die Schwenkachsen 14a bzw. 14b geschwenkt. Als Folge werden die Einlaßventile 16a und die Auslaßventile 16b durch die unteren Flächen der Schwenkhebel 13a bzw. 13b niedergedrückt wellen-Halterungshebels 6a angeordnet ist. Eine innere 65 und alle zwei Umdrehungen der Kurbelwelle einmal

Wird die Brennkraftmaschine bei niedrigen Drehzahlen betrieben, bleiben beide Kolben 17a, 17b der jeweili-

gen Haiterungshebel-Antriebsmechanismen durch die Vorspannkräfte der Federn 20a bzw. 20b zurückgezogen. Dementsprechend werden beide Nockenwellen-Halterungshebel 6a, 6b in der inneren Schwenkposition (die in Fig. 2 durch die Pfeile A' und B' angezeigten Richtungen) gehalten. D.h. beide Nockenwellen-Halterungshebel 6a, 6b bleiben eng beieinander.

In Fig. 4 zeigt die durchgezogene Linie eine Ventilsteuerzeiteinstellung und einen Ventilhub bei niedrigen Drehzahlen. Wie aus Fig. 4 ersichtlich, sind die Ventilsteuerzeiten der Auslaßventile 16b in einer Weise eingestellt, daß die Auslaßventile 16b bei Positionen kurz vor dem unteren Totpunkt UT geöffnet und bei Positionen kurz nach dem oberen Totpunkt OT geschlossen werden. Auf der anderen Seite sind die Ventilsteuerzeiten 15 der Einlaßventile 16a in einer Weise bestimmt, daß die Einlaßventile 16a bei Positionen kurz vor dem oberen Totpunkt geöffnet und bei Positionen kurz nach dem unteren Totpunkt geschlossen werden. Ein charakteristischer Verlauf der Ventilsteuerzeiteinstellungen der 20 Auslaßventile 16b und der Einlaßventile 16a ist in Bezug auf den oberen Totpunkt symmetrisch. Ein Zeitraum der Ventilüberschneidung, während dem sowohl die Einlaßventile 16a als auch die Auslaßventile 16b in der Umgebung des oberen Totpunkts geöffnet 25 sind, ist als relativ groß eingestellt. Weiter sind die Ventilhübe der Einlaßventile 16a und der Auslaßventile 16b beide auf einen relativ kleinen Wert von etwa 5 mm eingestellt.

Wenn die Drehzahl der Brennkraftmaschine von der 30 oben genannten Bedingung aus erhöht wird, werden die Elektromagneten 24a, 24b erregt, um die elektromagnetischen Dreiweg-Ventile 25a, 25b zu öffnen, um dadurch das Drucköl von der Pumpe 26 den Ölkammern 21a, 21b beider Halterungshebel-Antriebsmechanismen zuzu- 35 $\eta = QP_1/QP_0$ führen. Als Folge werden beide Nockenwellen-Halterungshebel 6a, 6b nach außen geschwenkt, um in einer zweckmäßigen, der erhöhten Drehzahl entsprechenden Stellung anzuhalten, wodurch die Ventileinstellung und

der Ventilhub geändert werden.

Das Prinzip der Änderung der Ventileinstellung und des Ventilhubs infolge des Schwenkvorgangs der Nokkenwellen-Halterungshebel 6a, 6b wird im Folgenden am Beispiel der Auslaßventile 16b beschrieben werden.

Mit Bezug auf Fig. 5 wird das Antriebszahnrad 11 in Richtung des Pfeils p und das mit dem Antriebszahnrad 11 kämmende Zahnrad 9b in Richtung des Pfeils q in Drehung gesetzt. Der Nocken 7b der Nockenwelle 8b, die sich zusammen mit dem Zahnrad 9b dreht, steht mit der Gleitfläche 12b des Schwenkhebels 13b in Berührung. Das Bezugszeichen O bezeichnet den Mittelpunkt des Antriebszahnrads 11; R1 den Radius eines Teilkreises des Antriebszahnrads 11; M den Mittelpunkt des Zahnrads 9b; R2 den Radius eines Teilkreises des Zahnrads 9b; R₃ den Radius des Grundkreises des Nockens 55 7b; R den Krümmungsradius der Gleitsläche 12b des Schwenkhebels 13b ($R = R_1 + R_2 - R_3$); Q den Drehmittelpunkt des Schwenkhebels 13b und S den Abstand zwischen dem Mittelpunkt O des Antriebszahnrads 11 und des Drehmittelpunkts Q des Schwenkhebels 13b.

Unter der in Fig. 5 gezeigten Bedingung niedriger Drehzahlen ist der Grundkreis des Nockens 7b mit der Gleitfläche 12b des Schwenkhebels 13b an einem Punkt Po in Berührung. Wird die Drehzahl der Brennkraftmaschine von dieser Bedingung aus erhöht, so wird der Nockenwellen-Halterungshebel 6b nach außen (in Richtung des Pfeils B in Fig. 5) geschwenkt. Als Folge wird der Punkt Po zu einem Punkt P1 verschoben, wo der

Grundkreis des Nockens 7b die Gleitsläche 12b des Schwenkhebels 13b berührt. Da das Antriebszahnrad 11 und das Zahnrad 9b vorher in Richtung der Pfeile p bzw. q in Drehung versetzt worden waren, wird das Zahnrad 9b an der äußeren Umfangsfläche des Antriebszahnrads 11 so abgerollt, daß es sich in Richtung des Pfeils q dreht. Dementsprechend wird eine Phase des Zahnrads 9b vorgeschoben. Es bezeichnet Y die Änderung der Phase des Zahnrads 9b bzw. O1 den Schwenkwinkel des Nokkenwellen-Halterungshebels 6b. so gilt die folgende Gleichung:

$$\Psi \cdot R_2 = \Theta_1 \cdot R_1$$

Dementsprechend ergibt sich die Änderung Y der Phase wie folgt:

$$\Psi = (R_1/R_2) \cdot \Theta_1$$

Somit wird die Phase des Zahnrads 9b, d.h. der Nokken 7b, um Y vorgeschoben und die Ventilsteuerzeiteinstellung jedes Auslaßventils 16b wird daher vorgeschoben.

Weiter wird, da der Berührungspunkt zwischen dem Grundkreis des Nockens 7b und der Gleitfläche 12b des Schwenkhebels 13b durch Schwenken des Nockenwellen-Halterungshebels 6b nach außen (in Richtung des Pfeils B) vom Punkt Po zum Punkt P1 verschoben wird, ein Hebelarm QPo des Schwenkhebels 13b auf QP1 vermindert. Als Folge wird der Schwenkwinkel des Schwenkhebels 13b vergrößert, um dadurch den Ventilhub jedes Auslaßventils 16b zu erhöhen. D.h. ein Verhältnis η der Hebelarme ist wie folgt gegeben:

35
$$\eta = QP_1/QP_0$$

Wendet man den Kosinussatz auf das Dreieck QOPo und ein Dreieck QOP1 an, so kann man die obige Gleichung wie folgt ausdrücken:

$$\eta = \sqrt{\frac{S^2 + R^2 - 2 SR \cos{(\theta_0 - \theta_1)}}{S^2 + R^2 - 2 SR \cos{\theta_0}}}$$

Entsprechend dieser Gleichung nimmt das Verhältnis η der Hebelarme bei einer Zunahme des Winkels Θ1 (d.h. einer Zunahme des Schwenkwinkels des Nockenwellen-Halterungshebels 6b) ab.

Gleichzeitig mit der Änderung der Ventileinstellung und des Ventilhubs des Auslaßventils 16b durch das Schwenken des Nockenwellen-Halterungshebels 6b nach außen, wird der Nockenwellen-Halterungshebel 6a ebenfalls angetrieben, nach außen zu schwenken, mit dem Ergebnis, daß die Ventileinstellung des Einlaßventils 16a in zum Fall des Auslaßventils 16b umgekehrter Weise verzögert wird und der Ventilhub des Einlaßventils 16a in gleicher Weise wie im Fall des Auslaßventils 16b vergrößert wird.

Wie in Fig. 4 durch die gestrichelte Linie dargestellt 60 ist, wird die Ventilsteuerzeiteinstellung des Auslaßventils 16b bei hohen Drehzahlen der Brennkraftmaschine im Vergleich zu niedrigen Drehzahlen vorgeschoben, so daß ein abgestimmter Drehzahlbereich aufgrund des Effekts einer Abgaspulsation bzw. Abgasschwingung ausgedehnt werden kann. Gleichzeitig wird die Ventilsteuerzeiteinstellung des Einlaßventils 16a bei hohen Drehzahlen der Brennkraftmaschine im Vergleich zu niedrigen Drehzahlen verzögert, so daß ein abgestimmter

Drehzahlbereich aufgrund des Effekts der Ansaugträgheit ausgedehnt werden kann. Weiter wird der Zeitbereich der Ventilüberschneidung in der Umgebung des oberen Totpunkts OT bei hohen Drehzahlen der Brennkraftmaschine im Vergleich zu niedrigen Drehzahlen verringert, wodurch eine Reduzierung des Drehmoments bei mittleren Drehzahlen, wo das Auspuffsystem in einen unabgestimmten Drehzahlbereich fällt, vermieden wird. Weiter werden die Ventilhübe sowohl der Einlaßventile 16a als auch der Auslaßventile 16b bei 10 hohen Drehzahlen auf etwa 7 mm erhöht, wodurch der Ausstoß bzw. die abgegebene Leistung bei hohen Drehzahlen gesteigert wird.

Wie in Fig. 6 gezeigt, ergibt sich in einer Brennkraftmaschine mit Ventileinstellung für hohe Drehzahlen gemäß dem Stand der Technik das Problem, daß die Volumeneffizienz nv der Ansaugluft im niederen Drehzahlbereich, wie durch die gestrichelte Linie X gezeigt, vermindert wird. Auf der anderen Seite ergibt sich in einer Brennkraftmaschine mit Ventileinstellung für niedere Drehzahlen mit einem hoch eingestellten Zeitraum der Ventilüberschneidung gemäß dem Stand der Technik das Problem, daß die Volumeneffizienz nv im mittleren Drehzahlbereich, wie von der gestrichelten Linie Y gezeigt, vermindert wird. Im Gegensatz dazu wird die Verminderung der Volumeneffizienz nv gemäß der vorliegenden Erfindung im mittleren Drehzahlbereich, wie von der durchgezogenen Linie Z gezeigt, kompensiert,

wodurch man eine flache Drehzahlcharakteristik erhält. Fig. 7 zeigt eine zweite bevorzugte Ausführungsform 30 der vorliegenden Erfindung, die dadurch gekennzeichnet ist, daß die Drehpunkte 14a,14b der Schwenkhebel 13a,13b koaxial an dem Zwischenglied zwischen den Nockenwellen 8a, 8b angeordnet sind. Weiter ist die Bewegungsrichtung der Nockenwellen 8a, 8b umge- 35 kehrt zu der in der ersten bevorzugten Ausführungsform eingestellt. D.h. im niederen Drehzahlbereich der Brennkraftmaschine sind die Nockenwellen 8a bzw. 8b nach außen getrieben, so daß die Berührungspunkte zwischen den Nocken 7a bzw. 7b und den Schwenkhe- 40 beln 13a bzw. 13b von den Drehpunkten 14a bzw. 14b weg verschoben werden. Im Gegensatz dazu sind die Nockenwellen 8a bzw. 8b im hohen Drehzahlbereich der Brennkraftmaschine nach innen getrieben, so daß die Berührungspunkte zwischen den Nocken 7a bzw. 7b 45 und den Schwenkhebeln 13a bzw. 13b auf die Drehpunkte 14a bzw. 14b zu verschoben werden.

Mit dieser Anordnung können Ventilsteuerdiagramme der Ventileinstellung und des Ventilhubs ähnlich zu den in Fig. 4 gezeigten erreicht werden, wodurch ein großer Ausstoß in einem weiten Drehzahlbereich verwirklicht werden kann.

Fig. 8 zeigt eine dritte bevorzugte Ausführungsform der vorliegenden Erfindung, die durch die Struktur des Halterungshebel-Antriebsmechanismus gekennzeich- 55 net ist.

Der Halterungshebel-Antriebsmechanismus in der dritten bevorzugten Ausführungsform ist mit einem Paar hydraulischer Zylinder 28a, 28b versehen. Ein Paar Rollen 30a bzw. 30b sind an den freien Enden von Kolbenstangen 29a bzw. 29b, die sich von den hydraulischen Zylindern 28a bzw. 28b weg erstrecken, vorgesehen. Die Rollen 30a bzw. 30b sind mit den unteren Flächen der Nockenwellen-Halterungshebel 6a bzw. 6b in Berührung. Auf der anderen Seite ist ein weiterer hydraulischer Zylinder 31 an seinem einen Ende an einem schwenkbaren Schaft 32 über den Nockenwellen-Halterungshebeln 6a und 6b gehaltert. Ein Paar Rollen 34a.

34b sind am freien Ende einer Kolbenstange 33 vorgesehen, die sich von dem hydraulischen Zylinder 31 weg erstreckt. Die Rollen 34a bzw. 34b sind mit den oberen Flächen der Nockenwellen-Halterungshebel 6a bzw. 6b in Berührung. Dementsprechend können die Nockenwellen-Halterungshebel 6a und 6b in einer Richtung unabhängig voneinander geschwenkt werden, indem man die drei hydraulischen Zylinder 28a, 28b und 31 selektiv mit der Pumpe und dem Vorratsbehälter verbindet.

Dementsprechend können die Ventileinstellung und der Ventilhub der Einlaßventile 16a und der Auslaßventile 16b gemäß dieser bevorzugten Ausführungsform genauer eingestellt werden, wodurch die Funktion weiter verbessert wird.

Für einen Großteil eines Betriebsgeräuschs der Brennkraftmaschine ist ein Auspuffgeräusch verantwortlich, das von dem Druck einer positiven Druckwelle in einer Auspuffleitung verursacht wird. Diese Druckwelle wird durch das Ausströmen des Auspuffgases unmittelbar nach Öffnung der Auslaßventile erzeugt. Der Druck der positiven Druckwelle kann durch eine Verminderung der Ventilöffnungsgeschwindigkeit der Auslaßventile vermindert werden, da hierdurch ein langsames Ausströmen bewirkt wird. Dementsprechend kann das Auspuffgeräusch in dieser bevorzugten Ausführungsform durch eine Verminderung des Ventilhubs der Auslaßventile in einem normalen Betriebsbereich der Brennkraftmaschine vermindert werden.

Beispielsweise können zahlreiche verschiedene Ventilsteuerdiagramme erreicht werden, indem man die Richtung der Schwenkhebel 13a, 13b und die Position der Drehpunkte 14a, 14b auswählt. In Fig. 9A, die der ersten vorstehend genannten bevorzugten Ausführungsform entspricht, sind die nach innen gerichteten Schwenkhebel 13a bzw. 13b schwenkbar an den außerhalb der Nockenwellen-Halterungshebel 6a bzw. 6b angebrachten Drehpunkten 14a bzw. 14b gehaltert.

Entsprechend dieser Anordnung kann ein Ventilsteuerdiagramm gemäß den Diagrammen (3) oder (2) in Fig. 10 erreicht werden, indem man den Nockenwellen-Halterungshebel 6a in Richtung der Pfeile A oder A' in Fig. 9A schwenkt. Im Gegensatz dazu kann ein Ventilsteuerdiagramm gemäß den Diagrammen (4) oder (1) in Fig. 10 erreicht werden, indem man den Nockenwellen-Halterungshebel 6b in Richtung der Pfeile B oder B' in Fig. 9A schwenkt. Die oben genannten Ventilsteuerdiagramme können, wie in Fig. 9B gezeigt, geändert werden, indem man die Drehrichtung des Antriebszahnrads 11 und die Drehrichtung der Zahnräder 9a. 9b umkehrt.

Gemäß Fig. 9D, die der zweiten oben genannten bevorzugten Ausführungsform entspricht, sind die nach außen gerichteten Schwenkhebel 13a bzw. 13b schwenkbar an zwischen den Nockenwellen-Halterungshebeln 6a bzw. 6b angeordneten Drehpunkten 14a bzw. 14b gehaltert. Auch diese Anordnung kann die Ventilsteuerdiagramme gemäß den in Fig. 10 gezeigten Diagrammen (1) und (4) vorsehen. Das Ventilsteuerdiagramm von Fig. 9D kann, wie in Fig. 9C gezeigt, geändert werden, indem man die Drehrichtung des Antriebszahnrads 11 und die Drehrichtung der Zahnräder 9a und 9b umkehrt.

Die Anordnung der Schwenkhebel 13a und 13b kann weiterhin gemäß den Fig. 9E und 9F abgeändert werden. Durch geeignete Kombination dieser Varianten kann nach Bedarf ein beliebiges der vier Varianten von Ventilsteuerdiagrammen gemäß den in Fig. 10 gezeigten Diagrammen (1) bis (4) ausgewählt werden.

Weiterhin können die Halterungshebel-Antriebsme-

chanismen zum Schwenken der Nockenwellen-Halterungshebel 6a und 6b, obgleich sie in den oben genannten bevorzugten Ausführungsformen hydraulisch angetrieben sind, auch elektrisch angetrieben werden. Beispielsweise können exzentrische Nocken vorgesehen sein, die die Nockenwellen-Halterungshebel 6a und 6b berühren, und sie können von Schrittmotoren zu jedem vorbestimmten Winkel gedreht werden.

Weiterhin kann, obwohl die Gleitflächen 12a und 12b der Schwenkhebel 13a und 13b in den oben genannten 10 bevorzugten Ausführungsformen als mit dem Antriebs--zahnrad 11 konzentrische, gekrümmte Flächen ausgebildet sind, der Mittelpunkt der Krümmung der Gleitslächen 12a und 12b vom Mittelpunkt des Antriebszahnrad 11 weg verschoben werden, wodurch das Ventilspiel bei 15 niedrigen und hohen Drehzahlen geändert wird.

Wenn man beispielsweise die Gleitflächen 12a und 12b der Schwenkhebel 13a und 13b auf der von den Drehpunkten entfernten Seite leicht erhöht, kann das Ventilspiel bei niedrigen Drehzahlen und somit das Ge- 20 räusch vermindert werden.

Zusätzlich ist die Zahl der Einlaßventile 16a bzw. die Zahl der Auslaßventile 16b nicht auf zwei beschränkt. Beispielsweise können ein einziges Einlaßventil und ein einziges Auslaßventil vorgesehen werden. Alternativ 25 kann entweder ein einziges Einlaßventil oder ein einziges Auslaßventil vorgesehen sein. Weiter kann die Kraftübertragung von der Kurbelwelle auf das Antriebszahnrad 11 entweder von einem Zahnrad oder einer Kette bewirkt werden.

Gemäß der Ventilantriebsvorrichtung der vorliegenden Erfindung können die Einstellung der Ventilsteuerzeiteinstellung durch eine Änderung des Phasenwinkels jedes Nocken und die Einstellung des Ventilhubs durch eine Änderung der Hebelwirkung (= Schwenkwinkel) 35 jedes Schwenkhebels sowohl für das Einlaßventil als auch für das Auslaßventil individuell bewirkt werden. Dementsprechend kann ein gutes Ventilsteuerdiagramm in einem weiten Bereich von einem niedrigen bis zu einem hohen Drehzahlbereich erhalten werden.

In dem Fall, daß die Schwenkhebel zum Antrieb des Einlaßventils und des Auslaßventils symmetrisch um eine Mittellinie des Zylinders angeordnet sind und die beiden Nockenwellen-Halterungshebel bezüglich der Mittellinie des Zylinders symmetrisch geschwenkt werden, können die Ventileinstellungen und die Ventilhübe von beiden Ventilen in Verbindung zueinander eingestellt werden, wodurch man eine gute Charakteristik erhält.

Erfindungsgemäß wird bei einer Erhöhung der Dreh- 50 zahl der Brennkraftmaschine die Ventileinstellung des Auslaßventils im Vergleich zu niedrigen Drehzahlen vorgeschoben, wodurch der abgestimmte Drehzahlbereich aufgrund des Effekts einer Abgasschwingung erweitert wird, und die Ventileinstellung des Einlaßventils 55 wird im Vergleich zu niedrigen Drehzahlen verzögert, wodurch der abgestimmte Drehzahlbereich aufgrund des Effekts einer Ansaugträgheit erweitert wird.

Dementsprechend kann, wenn der Zeitbereich der Ventilüberschneidung in der Umgebung des oberen 60 Totpunkts im Vergleich zu niedrigen Drehzahlen vermindert wird, eine Verminderung des Drehmoments bei mittleren Drehzahlen, bei denen das System in einen unabgestimmten Drehzahlbereich fällt, vermieden werden. Weiter kann der Ausstoß bzw. die abgegebene Lei- 65 stung bei hohen Drehzahlen erhöht werden, da die Ventilhübe des Einlaßventils und des Auslaßventils vergrö-Bert werden.

Patentansprüche

- 1. Ventilantriebsvorrichtung (V) für eine Brennkraftmaschine mit:

 - einem Zylinderkopf (H),
 einem Antriebszahnrad bzw. Leerlaufzahn-
 - einem ersten (9a) und einem zweiten (9b) Zahnrad, die gemeinsam mit dem Antriebszahnrad (11) kämmen,
 - einer ersten (8a) und einer zweiten (8b) Nockenwelle, die über dem Zylinderkopf (H) vorgesehen sind und von dem ersten bzw. dem zweiten Zahnrad (9a, 9b) angetrieben werden,
 - wenigstens einem ersten (7a) und wenigstens einem zweiten (7b) Nocken, die an der ersten bzw. zweiten Nockenwelle (8a bzw. 8b) vorgesehen sind,
 - wenigstens einem ersten (13a) und einem zweiten (13b) Schwenkhebel, die jeweils den ersten bzw. den zweiten Nocken (7a, 7b) berühren und um Drehpunkte (14a, 14b) geschwenkt werden,
 - einem Einlaßventil (16a), das den ersten Schwenkhebel (13a) berührt und dadurch angetrieben wird,
 - einem Auslaßventil (16b), das den zweiten Schwenkhebel (13b) berührt und dadurch angetrieben wird.
 - einem ersten und einem zweiten Nockenwellen-Halterungshebel (6a, 6b), die an ihren jeweiligen Endabschnitten schwenkbar an einer Welle koaxial zum Antriebszahnrad (11) angeordnet sind, wobei an den jeweiligen anderen Endabschnitten des ersten und zweiten Nockenwellen-Halterungshebels (6a, 6b) die erste und die zweite Nockenwelle (8a, 8b) gehaltert sind, und
 - einem Antriebsmechanismus für die Halterungshebel (6a, 6b), um den ersten und zweiten Nockenwellen-Halterungshebel (6a, 6b) in Anhängigkeit der Drehzahländerung der Brennkraftmaschine zu schwenken, wobei ein Phasenwinkel jedes Nockens (7a, 7b) und eine Hebelwirkung jedes Schwenkhebels (13a, 13b) durch Schwenken der ersten und zweiten Nokkenwellen-Halterungshebel (6a, 6b) geändert werden, um eine Ventilsteuerzeiteinstellung und einen Ventilhub des Einlaßventils (16a) und des Auslaßventils (16b) individuell zu än-
- 2. Ventilantriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, der erste und der zweite Schwenkhebel (13a, 13b) zum Antrieb des Einlaßventils (16a) und des Auslaßventils (16b) in bezug auf die Mittellinie eines Zylinders der Brennkraftmaschine symmetrisch angeordnet sind, und daß der erste und der zweite Nockenwellen-Halterungshebel (6a, 6b) in bezug auf die Mittellinie des Zylinders symmetrisch geschwenkt werden.
- 3. Ventilantriebsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Antriebsmechanismus für die Nockenwellen-Halterungshebel (6a, 6b) derart ausgebildet ist, daß bei einer Erhöhung der Drehzahl der Brennkraftmaschine
 - eine Ventilsteuerzeiteinstellung des Auslaßventils (16b) vorgeschoben wird.
 - eine Ventilsteuerzeiteinstellung des Einlaß-

ventils (16a) verzögert wird und

Ventilhübe des Auslaßventils (16b) und des
Einlaßventils (16a) vergrößert werden.

Hierzu 7 Seite(n) Zeichnungen

)

Nummer: int. Cl.5:

DE 40 13 633 C2 F 01 L 1/34

)

Nummer: Int. Cl.⁵:

DE 40 13 633 C2 F01 L 1/34

Veröffentlichungstag: 10. September 1992

208 137/235

į

Nummer: Int. Cl.5:

DE 40 13 633 C2 F01 L 1/34

Fig.4

)

Nummer: Int. Cl.5:

DE 40 13 633 C2 F01 L 1/34

}

Nummer: Int. Cl.⁵;

DE 40 13 633 C2 F 01 L 1/34

Nummer: Int. Cl.5:

DE 40 13 633 C2 F01 L 1/34

Veröffentlichungstag: 10. September 1992

Fig.9A

}

Fig.9D

Fig.9B

,

Nummer: Int. Cl.⁵: DE 40 13 633 C2 F 01 L 1/34

Veröffentlichungstag: 10. September 1992

Fig.10

