Fundamental Theories and Applications of Neural Networks

Lecture 3: Multi-layer perceptron

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-1

Review of single layer neural network

- There are J inputs and K outputs.
- The last input is fixed to -1 so that the corresponding weight is the threshold.
- For a given input vector y
 - The *effective input* of the *k-th* neuron is *net*.
 - The actual output of the k-th neuron is o_k
 - The desired output of the k-th neuron is d_k
 - The *error* to be minimized is E

Produced by Qiangfu Zhao (Sine 1997), All rights reserved $\ensuremath{\mathbb{G}}$

Lecture 3-3

Contents of this lecture

- Review of single layer neural networks.
- Formulation of the delta learning rule of single layer neural networks.
- BP: an extended delta-learning rule for multilayer neural networks.

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-2

Reformulation of the delta learning rule

• According to the gradient descent algorithm, the weight from the *j-th* input to the *k-th* neuron should be updated by

$$w_{kj}^{new} = w_{kj}^{old} - \eta \frac{\partial E}{\partial w_{kj}} \Big|_{w_{kj} = w_{kj}^{old}}$$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Gradient of the error function

$$\boldsymbol{E} = \frac{1}{2} \sum_{k=1}^{K} (\boldsymbol{d}_k - \boldsymbol{o}_k)^2$$

Note that E is implicitely a function of net_k , using the chain rule, we can get the partial direvative of E to w_{ki} as follows:

$$\frac{\partial E}{\partial w_{kj}} = \frac{\partial E}{\partial (net_k)} \frac{\partial (net_k)}{\partial w_{kj}}$$

where

$$\frac{\partial (net_k)}{\partial w_{kj}} = \frac{\partial (\sum_{j=1}^{J} w_{kj} y_j)}{\partial w_{kj}} = y_j$$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-5

Equation for updating the weights

Thus, the weight can be updated by

$$w_{kj}^{new} = w_{kj}^{old} + \eta(d_k - o_k)f'(net_k)y_j$$

If we use the unipolar sigmoid function with $\lambda = 1$,

$$f'(net_k) = o_k(1 - o_k)$$

If we use the bip olar sigmoid function with $\lambda = 1$,

$$f'(net_k) = (1 - o_k^2)/2$$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-7

Definition of the error signal

If we define the error signal produced by the k - th neuron as follows:

$$\delta_{o_k} = -\frac{\partial E}{\partial (net_k)}$$

we have

$$w_{kj}^{new} = w_{kj}^{old} + \eta \delta_{o_k} y_j$$

where

$$\delta_{o_k} = -\frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial (net_k)} = (d_k - o_k) f'(net_k)$$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-6

Remarks

- For off-line learning
 - The error should be defined as the total error of the network for all training examples.
 - The training examples are used repeatedly until the error becomes small enough.
- The weights of all neurons are updated all together in a synchronous mode.

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Program of delta learning rule for single layer neural network

```
Initialization();
while (Error>desired_error) {
    for (Error=0,p=0; p<n_sample; p++) {
        FindOutput(p);
        for (k=0;k<K;k++) {
            Error+=0.5*pow(d[k][p]-o[k],2.0);
        }
        for (k=0;k<K;k++) {
            delta=(d[k][p]-o[k])*(1-o[k]*o[k])/2;
            for (j=0;j<J;j++) {
                w[k][j]+=eta*delta*y[p][j];
            }
        }
    }
}
Produced by Qiangfu Zhao (Sine 1997), All rights reserved © Lecture 3-9</pre>
```

Multilayer feedforward neural network

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-11

Results for AND/OR gates

```
Error in the 321-th learning cycle=0.010297
Error in the 322-th learning cycle=0.010263
Error in the 323-th learning cycle=0.010230
Error in the 324-th learning cycle=0.010197
Error in the 325-th learning cycle=0.010165
Error in the 326-th learning cycle=0.010132
Error in the 327-th learning cycle=0.010100
Error in the 327-th learning cycle=0.010068
Error in the 329-th learning cycle=0.010036
Error in the 330-th learning cycle=0.010004
Error in the 331-th learning cycle=0.010004
Error in the 331-th learning cycle=0.009973

W[0]:3.520518 3.521593 -3.519444
W[1]:3.520259 3.519185 3.521334
```

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-10

Multilayer feedforward neural network

- The network in the last slide is a three layer perceptron, also called three layer feed forward neural network.
- There are
 - I inputs,
 - J hidden neurons, and
 - K output neurons.

- The last input of each hidden neuron or each output neuron is -1.
- The input can be output of another layer of neurons.
- The output can be input of another layer.

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Definition of notations

- z_i : The *i-th* input
- y_i : The output of the *j-th* hidden neuron
- o_k : The output of the *k-th* output neuron
- v_{ji} : The weight from the *i-th* input to the *j-th* hidden neuron
- w_{kj} : The weight from the *j-th* hidden neuron to the *k-th* output neuron

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-13

Rule for updating the hidden neurons

First, we have

$$v_{ji}^{new} = v_{ji}^{old} - \eta \frac{\partial E}{\partial v_{ij}}$$

Using the chain rule, we can get

$$\frac{\partial E}{\partial v_{ji}} = \frac{\partial E}{\partial (net_j)} \frac{\partial (net_j)}{\partial v_{ji}}$$

Error signal produced by the j-th hidden neuron

$$\delta_{y_j} = -\frac{\partial E}{\partial (net_j)}$$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-15

Rule for updating the output neurons

- Weight update for the output neurons can be performed exactly in the same way as for single layer perceptron.
 - For any input, find the output of the hidden neurons, and then the output of the output neurons.
 - The weights of each output neuron can be updated by using the delta learning rule.

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-14

Update the weights of hidden neurons

Note also that
$$\frac{\partial (net_j)}{\partial v_{ii}} = z_i$$
, we have

$$v_{ji}^{new} = v_{ji}^{old} + \eta \delta_{y_i} z_i$$

Using the chain rule, we can find the error signal δ_{y_j} as follows:

$$\delta_{y_j} = -\frac{\partial(E)}{\partial y_i} \frac{\partial y_j}{\partial net_i} = f'(net_j) \sum_{k=1}^K \delta_{o_k} w_{kj}$$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Update the weights of hidden neurons

Thus, the weights of the hidden neurons can be updated by

$$v_{ji}^{new} = v_{ji}^{old} + \eta \delta_{y_i} z_i$$

If we use the unipolar sigmoid function with $\lambda = 1$,

$$f'(net_j) = y_j(1 - y_j)$$

If we use the bipolar sigmoid function with $\lambda = 1$,

$$f'(net_j) = (1 - y_j^2)/2$$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-17

Summary of the BP algorithm

- Step 1: Initialize the weights.
- Step 2: Reset the total error.
- Step 3: Get a training example z from the training set, calculate the outputs of the hidden neurons and those of the output neurons, and update the total error.
- Step 4: Calculate the error signals as follows:

$$\delta_{o_k} = (d_k - o_k)(1 - o_k^2)/2$$

$$\delta_{\mathbf{y}_j} = \left(\sum_{k=1}^K \delta_{o_k} w_{kj}\right) (1 - \mathbf{y}_j^2)/2$$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-19

Comments

- The learning algorithm is usually called the **back propagation** (BP) algorithm because the error signal of the hidden neurons are back propagated from the output layer to the hidden layer(s).
- In some context, the algorithm is also called the extended delta-learning rule.

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-18

Summary of the BP algorithm (cont.)

• Step 5: Update the weights as follows:

$$\begin{aligned} & \boldsymbol{w}_{kj}^{new} = \boldsymbol{w}_{kj}^{old} + \boldsymbol{\eta} \boldsymbol{\delta}_{ok} \, \boldsymbol{y}_{j} & \text{for } \boldsymbol{k} = 1, 2, \cdots, \boldsymbol{K}; \, j = 1, 2, \cdots, \boldsymbol{J} \\ & \boldsymbol{v}_{ji}^{new} = \boldsymbol{v}_{ji}^{old} + \boldsymbol{\eta} \boldsymbol{\delta}_{\boldsymbol{y}_{j}} \boldsymbol{z}_{i} & \text{for } \boldsymbol{j} = 1, 2, \cdots, \boldsymbol{J}; \, i = 1, 2, \cdots, \boldsymbol{I} \end{aligned}$$

- Step 6: See if all training examples have been used. If NOT, return to Step 3.
- Step 7: See if the total error is smaller than the desired value. If NOT, return to Step 2; otherwise, terminate.

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

A simple example: Solving the XOR problem

- The function to be approximated is a 2-variable binary function.
- This problem, although simple, cannot be solved by ANY single layer neural network.

\mathbf{y}_1	y ₂	0
0	0	0
0	1	1
1	0	1
1	1	0

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-21

The network structure

- XOR can be solved using a three layer neural network.
- It contains three inputs, with the last one being fixed to -1, two hidden neurons, and one output neuron.
- The problem is to find the correct weights for all neurons, so that for any given input, the correct output can be provided.

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-22

Lecture 3-24

Results of BP

.....

Error[1073]=0.001008 Error[1074]=0.001003 Error[1075]=0.000998

The connection weights in the output layer: $-0.839925 \ 0.782646 \ -0.602153$

The connection weights in the hidden layer: 0.638360 -0.509153 -0.316935 0.319389 -0.472554 0.068378

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-23

Physical meaning of the result $L_1:0.64x_1-0.51x_2=-0.32$ $L_2:0.32x_1-0.47x_2=0.06$ $L_3:-0.84y_1+0.78y_2=-0.6$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

To improve the BP algorithm

- The learning constant can be variable
 - If the error is reduced greatly by the current update, the learning rate can be increased.
 - If the error is not reduced, the learning rate can be decreased.
- Momentum method
 - The increment of the weight can be modified by the updating history.

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-25

How many hidden Layers to use?

- For high approximation order (>11), two hidden layers should be used instead of one hidden layer. For linear and quadratic approximation, only one hidden layer is needed.
- Here, a function f approximates another function g with order N if and only if their Taylor polynomials are the same up to the order N. The function to be approximated by the MLP should be sufficiently smooth.
- The numbers given here are relatively conservative because the MLP must approximate ANY function well (to solve a practical problem, we may consider one function or a special set of functions only).

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-27

How many hidden neurons to use?

According to "Multilayer Perceptrons: Approximation order and Necessary Number of Hidden Units" (written by Stephan Trenn, IEEE TNN, Vol. 19, No. 5, 2008, pp. 836-844), for an MLP with one hidden layer, n₀ inputs, and smooth activation function, it achieves approximation order N for all functions only if the number of hidden units is larger than

 $\frac{\binom{N+n_0}{n_0}}{\binom{n_0+2}{n_0+2}}$

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©

Lecture 3-26

Team Project II

- · Make a computer program for the BP algorithm.
- Test your program using the 4-bit parity check problem.
- The number of inputs is 5 (4 plus one dummy input) and the number of output is 1 ([0,1] or [-1,1]).
- The desired output is 1 if the number of ones in the inputs is even; otherwise, the output is 0 or -1.
- Check the performance of the network by changing the number of hidden neurons from 4 to 10, with step-size 2.
- Provide a summary of your results in your report (txt-file).

Produced by Qiangfu Zhao (Sine 1997), All rights reserved ©