libshirani - Jonathan Taylor

Exercises ISLR – Ch.3

Marcelo Previato Simoes Nº 2367070 25/08/2025

 \mathcal{T}

Exercise 5) Regression without intercept

$$\hat{y} = \hat{\beta}x$$
 replacing by $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$

$$\Rightarrow \hat{y} = \frac{x \sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} = \frac{\sum_{i=1}^{n} x_i x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

$$\Rightarrow \hat{y} = \sum_{i=1}^{n} a_i y_i \text{ in which } a_i = \frac{x \cdot x_i}{\sum_{i=1}^{n} x_i^2}$$

Exercise 6) Regression line through the means

Applying
$$\hat{y}_i = \widehat{\beta_0} + \widehat{\beta_1} x_i$$
 to the point \bar{x} :

$$\Rightarrow \hat{y} = \widehat{\beta_0} + \widehat{\beta_1} \bar{x}$$
 replacing by $\widehat{\beta_0} = \bar{y} - \widehat{\beta_1} \bar{x}$

 $\Rightarrow \hat{y} = \bar{y}$, therefore (\bar{x}, \bar{y}) belongs to the regression line

Exercise 15a) Simple Regression (Boston)

Dependent Variable: crim (per capita crime rate per town)

All variables with coefficients statistically significant at 95%, except for Charles River proximity (chas)

Coefficient SIGNIFICANT (95%)	Coefficient NOT significant
zn	chas
Ind	
nox	
rm	
age	
dis	
rad	
tax	
ptratio	
black	
lstat	
medv	

Exercise 15a) Simple Regression (Boston)

Example: variable Nox

Significant, but it explains only 17.72% of the variance

Simples regression: crim ~ nox

Exercise 15b) Multiple Regression

Dependent Variable: crim (per capita crime rate per town)

Only 5 variables remain significant: zn, dis, rad, black, medv

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	17.033228	7.234903	2.354	0.018949	*
zn	0.044855	0.018734	2.394	0.017025	×
indus	-0.063855	0.083407	-0.766	0.444294	
chas	-0.749134	1.180147	-0.635	0.525867	
nox	-10.313535	5.275536	-1.955	0.051152	
rm	0.430131	0.612830	0.702	0.483089	
200	0.001452	0 017925	0.081	0.035/188	
dis	-0.987176	0.281817	-3,503	0.000502	***
rad	0.588209	0.088049	6.680	6.46e-11	***
tax	-0.003/80	0.005156	-0./33	0.463/93	
ptratio	-0.271081	0.186450	-1.454	0.146611	
black	-0.007538	0.003673	-2.052	0.040702	×
Istat	0.126211	0.075725	1.667	0.096208	
medv	-0.198887	0.060516	-3.287	0.001087	* *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.439 on 492 degrees of freedom Multiple R-squared: 0.454, Adjusted R-squared: 0.4396 F-statistic: 31.47 on 13 and 492 DF, p-value: < 2.2e-16

Exercise 15c) Coefficients comparison

Relevant change in coefficients: 7 out of 13 variables changed had their coefficient sign changed

predictor	un1_coet	mult1_coet
zn. zn	-0.07393498	0.044855215
indus.indus	0.50977633	-0.063854824
chas.chas	-1.89277655	-0.749133611
nox.nox	31.24853120	-10.313534912
rm.rm	-2.68405122	0.430130506
age.age	0.10778623	0.001451643
dis.dis	-1.55090168	-0.987175726
rad.rad	0.61791093	0.588208591
tax.tax	0.02974225	-0.003780016
ptratio.ptratio	1.15198279	-0.271080558
black.black	-0.03627964	-0.007537505
lstat.lstat	0.54880478	0.126211376
med∨.med∨	-0.36315992	-0.198886821

Exercise 15d) Non-linear association

Dependent Variable: crim + up to cubic association
Only 5 variables seem to have non-linear association

Non-linear Association Coefficient SIGNIFICANT (95%)	Non-linear Association Coefficient NOT significant
ind	chas
nox	zn
age	rm
dis	rad
medv	tax
	ptratio
	black
	lstat

Exercise 15d) Non-linear association

Example: variable Nox up to cubic term

Significant, and now it explains 29.7% of the variance

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 233.09 33.64 6.928 1.31e-11 ***

nox -1279.37 170.40 -7.508 2.76e-13 ***

I(nox^2) 2248.54 279.90 8.033 6.81e-15 ***

I(nox^3) -1245.70 149.28 -8.345 6.96e-16 ***
```

Cubic regression: $crim \sim nox + nox^2 + nox^3$

Residual standard error: 7 234 on 502 degrees of freedom Multiple R-squared: 0.297, Adjusted R-squared: 0.2928 F-statistic: 70.69 on 3 and 502 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

nox