Optimal transport

VI Divergences between Probability Measures

Seongho, Joo

Seoul National University

Motivating problem: density fitting

• In statistics, imaging, or machine learning, one of the most fundamental problems is to compare a probability distribution $\nu \in \mathcal{P}(r^d)$ arising from measurements to a model, namely a parameterized family of distributions $\{\mu_\theta, \theta \in \Theta\}$ where typically $\Theta \subset \mathbb{R}^p$. A suitable parameter can be obtained by minimizing

$$\min_{\theta \in \Theta} F(\theta) := D(\mu_{\theta}, \nu)$$

where $D:\mathcal{P}(\mathbb{R}^d)\times\mathcal{P}(\mathbb{R}^d)\to [0,+\infty]$ is a divergence.

Example. One can choose $D(\mu,\nu)=W_p^p(\mu,\nu)$. When ν is an empirical measure and with p=2, this is called *Minimum Kantorovich estimator*. A drawback of this discrepancy is that it is computationally expensive, compared to other discrepancies that we will see in this lecture.

Example. (Maximum Likelihood) Let $x_1, \ldots x_n \in \mathbb{R}^d$ be independent samples from ν . When ν_θ has a density ρ_θ with respect to a reference measure ρ (e.g. the Lebesgue measure), the MLE is obtained by solving

$$\min -\frac{1}{n}\log(\rho_{\theta}(x_i)).$$

This corresponds to using an empirical counterpart of the Kullback-Leibler loss.

Cont.

The MLE is a statistically optimal estimation procedure in certain cases, but fails:

- \blacksquare when there is no natural reference measure σ ;
- \blacksquare when the density ρ_{θ} is difficult to compute;
- lacktriangledown the resulting objective F is too complicated to minimize;

Generative models

ullet A typical set-up where all these problems appear is for so-called generative models, where the parametric measure is written as a push-forward of a fixed reference measure $\zeta\in \mathcal{P}(Z)$

$$\mu_{\theta} = (h_{\theta})\zeta$$
 where $h_{\theta}: Z \to \mathbb{R}^d$.

This leads to the objective function $F(\theta) = D((h_{\theta})_{\#}\zeta, \nu)$.

• The typical approach to tackle such problems numerically, is the gradient descent algorithm. In practice, the algorithm behaves better when the divergence is "geometrically faithful" (such as W_2^2). Let us give a formula for the gradient under strong regularity assumptions (which could be relaxed). Here $E: \mu \mapsto D(\mu, \nu)$.

Cont.

Proposition 1 (Chain rule for generative models)

Assume that $E:\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}$ is such that for all $\mu\in\mathcal{P}_2(\mathbb{R}^d)$, there exists a function $E'(\mu)\in C^1(\mathbf{r}^d)$ with $\nabla E'(\mu)$ is Lipschiz, and such that for all $\nu\in\mathcal{P}_2(\mathbf{r}^d)$,

$$E(\nu) - E(\mu) = \int_{r^d} E'(\mu) \, d(\nu - \mu) + o(W_2(\mu, \nu)).$$

Assume moreover that $h: r^p \to L^2(\zeta; r^d)$ is (Fréchet) differentiable, with partial derivatives at θ denoted by $\partial_i h_\theta \in L^2(\zeta; \mathbb{R}^d)$, Then $F: \theta \mapsto E((h_\theta)_\# \zeta)$ is is (Fréchet) differentiable with gradient, for $i=1,\ldots,p$,

$$[\nabla F(\theta)]_i = \int_Z \nabla E'((h_\theta)_\# \zeta)(h_\theta(z))^\top \partial_i h_\theta(z) \,\mathrm{d}\zeta(z).$$

Example. If $W: r^d \times r^d \to r$ is symmetric and diffrentiable with a Lipchitz gradient, then $E(\mu) := \int W(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y)$ satisfies the assumptions the proposition with $E'(\mu)(x) = \int W(x,y) \, \mathrm{d}\mu(y)$.

• Maybe the most classical way to compare two probability measures are the total variation norm and the Kullback-Leibler divergence. They belong to the family of Csiszár divergences – also known as f-divergences – which consist in comparing the relative densities to 1.

Definition 1 (*f*-divergence)

Let $f: \mathbf{r} \to \mathbf{r} \cup \{+\infty\}$ be a convex funciton. For any $\mu, \nu \in \mathcal{P}(X)$, let $\mu = \frac{\mathrm{d}\mu}{\mathrm{d}\nu}\nu + \mu^\perp$ be the Lebesgue decomposition of μ with respect to ν . The divergence is defined by

$$D_f(\mu,\nu) := \int_X f\left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\,\mathrm{d}\nu\right) + f_\infty'(1)\cdot\mu^\perp(X).$$

where $f'_{\infty}(x) = \lim_{t \to \infty} f(tx)/t \in \mathbb{R} \cup \{\infty\}$ is the asymptotic speed of growth of f in the direction x.

If $f'_{\infty}(1) = \infty$ then f is superlinear.

Proposition 2

Let f be convex such that $\min f = 0$ and $\arg \min f = \{1\}$. Then $D_f(\mu, \nu) \geq 0$ with equality if and only if $\mu = \nu$.

Example. (Relative entropy). This is the f-divergence associated to the function

$$f(s) = \begin{cases} s\log(s) - s + 1 & \text{if } s > 0 \\ 1 & \text{if } s = 0 \\ +\infty & \text{if } s < 0 \end{cases}$$

which is convex, lsc, with unique minimum f(1)=0. If $\mu<<\nu$ then

$$D_f(\mu, \nu) = \int_X \left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu} \log(\frac{\mathrm{d}\mu}{\mathrm{d}\nu} - \frac{\mathrm{d}\mu}{\mathrm{d}\nu} + 1 \right) \, \mathrm{d}\nu = \int_X \log\left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\right) = \mathsf{KL}(\mu, \nu)$$

and $D_f(\mu, \nu) = +\infty$ otherwise since $f'_{\infty}(1) = +\infty$.

Example. (Total variation). This is the Csiszár divergences associated to

$$f(s) = \begin{cases} |s-1| & \text{if } s \ge 0\\ +\infty & \text{otherwise} \end{cases}$$

We have $f_{\infty}'(1) = 1$ thus

$$D_f(\mu,\nu) = \int_X \left(\left| \frac{\mathrm{d}\mu}{\mathrm{d}\nu} - 1 \right| \mathrm{d}\nu + \mathrm{d}\mu^\perp \right) \stackrel{(\dagger)}{=} \int_X \mathrm{d}|\mu - \nu| = |\mu - \nu|(X)$$

where (†) comes from the fact that

$$(\mu - \nu)_{+} = \max\{0, d\mu/d\nu - 1\}\nu + \mu^{\perp}, \quad (\mu - \nu)_{-} = \max\{0, 1 - d\mu/d\nu\}\nu$$

• In the context of generative models, a drawback of f-divergences is that they are not weakly continuous: for instance $D_f(\delta_x,\delta_y)=f_\infty'(1)\cdot \mathbf{1}_{x=y}$ is not continuous at x=y. We have however weak lower semi-continuity.

Example. (Total variation). This is the Csiszár divergences associated to

$$f(s) = \begin{cases} |s-1| & \text{if } s \ge 0 \\ +\infty & \text{otherwise} \end{cases}$$

We have $f_{\infty}'(1) = 1$ thus

$$D_f(\mu,\nu) = \int_X \left(\left| \frac{\mathrm{d}\mu}{\mathrm{d}\nu} - 1 \right| \mathrm{d}\nu + \mathrm{d}\mu^\perp \right) \stackrel{(\dagger)}{=} \int_X \mathrm{d}|\mu - \nu| = |\mu - \nu|(X)$$

where (†) comes from the fact that

$$(\mu - \nu)_{+} = \max\{0, d\mu/d\nu - 1\}\nu + \mu^{\perp}, \quad (\mu - \nu)_{-} = \max\{0, 1 - d\mu/d\nu\}\nu$$

• In the context of generative models, a drawback of f-divergences is that they are not weakly continuous: for instance $D_f(\delta_x,\delta_y)=f_\infty'(1)\cdot \mathbf{1}_{x=y}$ is not continuous at x=y. We have however weak lower semi-continuity.

Proposition 3

If $f: \mathbf{r} \to \mathbf{r} \cup \{+\infty\}$ is convex, lsc, and not indentically $+\infty$, then $D_f(\mu, \nu)$ is jointly convex and weakly lower-semicontinous and one has

$$D_f(\mu, \nu) = \sup_{\varphi, \psi \in C(X)} \int \varphi \, \mathrm{d}\mu + \int \psi \, \mathrm{d}\nu \quad s.t. \quad \varphi(x) + f^*(\psi(x)) \le 0, \ \forall x \in X$$

where $f^*: s \mapsto \sup_{u \in \mathbf{r}} u \cdot s - f(u)$ is the convex conjugate of f.

General case

 \bullet For a symmetric set B of measurable functions from $X\to {\bf r}$ and a $\alpha\in \mathcal{M}(X)$ a signed measure, let

$$\|\alpha\|_B := \sup_{f \in B} \int_X f(x) \, \mathrm{d}\alpha(x) \tag{2.1}$$

The divergence associated to such dual norms, obtained with $\alpha=\mu-\nu$, for $\mu,\nu\in\mathcal{P}(X)$

$$D_B(\mu, \nu) := \|\mu - \nu\|_B = \sup_{f \in B} \int f(x) d(\mu(x) - \nu(x))$$

are often called "integral probability metrics" (or also "maximum mean discrepancy").

Proposition 4

If B is symmetric, bounded in sup-norm contains 0, then $\|\cdot\|_B$ is a semi-norm on $\mathcal{M}(X)$.

Example. (Total variation) It is recovered with $B = \big\{ f \in C(X) \, | \, \|f\|_{\infty} \le 1 \big\}.$

Example. (Wasserstein-1) It is the integral probability metric induced by the set of 1-Lipschitz function $B = \{f \in C(X) \,|\, \mathrm{Lip}(f) \leq 1\}.$

Genreal case

Example. (Flat norm and the Dudley metric) If the set B is bounded in $\|\cdot\|_{\infty}$, then $\|\cdot\|_{B}$ is a norm on the whole space $\mathcal{M}(X)$ of signed measures. This is note the case of $\|\cdot\|_{W_{1}}$, which is only finite for α such that $\int_{X} \mathrm{d}\alpha = 0$. This can be alleviated by imposing a bound on the value of the potential f, in order to define for instance the flat norm.

$$B = \left\{ f \, | \, \mathsf{Lip}(f) \leq 1 \text{ and } \left\| f \right\|_{\infty} \leq 1 \right\}$$

It is similar to the Dudley metric, which uses

$$B = \left\{ f \, | \, \mathsf{Lip}(f) + \|f\|_{\infty} \leq 1 \right\}$$

The following proposition shows that to metrize the weak convergence, the set ${\cal B}$ should not too be large nor too small.

Genreal case

Example. (Flat norm and the Dudley metric) If the set B is bounded in $\|\cdot\|_{\infty}$, then $\|\cdot\|_B$ is a norm on the whole space $\mathcal{M}(X)$ of signed measures. This is note the case of $\|\cdot\|_{W_1}$, which is only finite for α such that $\int_X \,\mathrm{d}\alpha = 0$. This can be alleviated by imposing a bound on the value of the potential f, in order to define for instance the flat norm.

$$B = \left\{ f \, | \, \mathsf{Lip}(f) \leq 1 \text{ and } \left\| f \right\|_{\infty} \leq 1 \right\}$$

It is similar to the *Dudley* metric, which uses

$$B = \left\{ f \, | \, \mathsf{Lip}(f) + \|f\|_{\infty} \le 1 \right\}$$

The following proposition shows that to metrize the weak convergence, the set ${\cal B}$ should not too be large nor too small.

Proposition 5

Let $(\alpha_k)_k$ be a bounded (for total variation $\|\cdot\|_{TV}$) sequence in $\mathcal{M}(X)$.

- If $C(X) \subset \overline{\operatorname{span}(B)}^{\|\cdot\|_{\infty}}$ (i.e. if the span of B is dense in the set of continuous functions endowed with the sup-norm), then $\|\alpha_k \alpha\|_B \to 0$ implies $\alpha_k \rightharpoonup \alpha$.
- If $B \subset C(X)$ is compact (i.e. if it is closed, uniformly continuous and bounded) then $\alpha_k \rightharpoonup \alpha$ implies $\|\alpha_k \alpha\|_B \to 0$.

We now describe an important class of integral probability metrics.

Definition 2 (Positive definite kernel)

A symmteric function $k: X \times X \to \mathbf{r}$ is said to be positive definite (p.d.) if for any $n \geq 1$, for any family $x_1, \ldots, x_n \in X$ the matrix $(k(x_i, x_j))_{i,j}$ is positive semi-definite, i.e. for all $r \in \mathbf{r}^n$,

$$\sum_{i,j=1}^{n} r_i r_j k(x_i, x_j) \ge 0 \tag{2.2}$$

The kernel is said to be conditionally positive definite if Eq. 2.2 holds for all zero mean vector r, i.e. such that $\sum_i r_i = 0$.

We now describe an important class of integral probability metrics.

Definition 2 (Positive definite kernel)

A symmteric function $k: X \times X \to \mathbf{r}$ is said to be positive definite (p.d.) if for any $n \geq 1$, for any family $x_1, \ldots, x_n \in X$ the matrix $(k(x_i, x_j))_{i,j}$ is positive semi-definite, i.e. for all $r \in \mathbf{r}^n$,

$$\sum_{i,j=1}^{n} r_i r_j k(x_i, x_j) \ge 0 \tag{2.2}$$

The kernel is said to be conditionally positive definite if Eq. 2.2 holds for all zero mean vector r, i.e. such that $\sum_i r_i = 0$.

Definition 3 (MMD)

Given a continuous and positive semi-definite kernel $k: X \times X \to r$, we define for $\alpha \in \mathcal{M}(X)$ (finite signed Borel measure)

$$\|\alpha\|_k^2 = \int \int_X k(x, y) \, \mathrm{d}\alpha(x) \, \mathrm{d}\alpha(y)$$

The squared MMD between $\mu, \nu \in \mathcal{P}(X)$ is then

$$\|\mu - \nu\|_k^2 = \int \int k \, \mathrm{d}\mu \otimes \mu + \int \int k \, \mathrm{d}\nu \otimes \nu - 2 \int \int k \, \mathrm{d}\mu \otimes \nu.$$

The definition as a squared quantity makes snes thanks to the following result.

Proposition 6

If $k \in C(X^2)$ is conditionally p.d., $\int \int k \, \mathrm{d} \alpha \geq 0$ if $\int \, \mathrm{d} \alpha = 0$.

Proof. Let $\alpha_n \in \mathcal{M}(X)$ be measures with finite support and zero mass such that $\alpha_n \rightharpoonup \alpha$. Since $\alpha_n \otimes \alpha_n \rightharpoonup \alpha \otimes \alpha$, we have $0 \leq \int \int k \, \mathrm{d}\alpha_n \otimes \alpha_n \to \int \int k \, \mathrm{d}\alpha \otimes \alpha$. We show a link with dual norms via the following results.

The definition as a squared quantity makes snes thanks to the following result.

Proposition 6

If $k \in C(X^2)$ is conditionally p.d., $\int \int k \, d\alpha \ge 0$ if $\int d\alpha = 0$.

Proof. Let $\alpha_n \in \mathcal{M}(X)$ be measures with finite support and zero mass such that $\alpha_n \rightharpoonup \alpha$. Since $\alpha_n \otimes \alpha_n \rightharpoonup \alpha \otimes \alpha$, we have $0 \leq \int \int k \, \mathrm{d}\alpha_n \otimes \alpha_n \to \int \int k \, \mathrm{d}\alpha \otimes \alpha$. We show a link with dual norms via the following results.

Theorem 1 (Aronzsajn)

k is a p.d. kernel on the set X if and only if there exists Hilbert space $\mathcal H$ and a mapping $\Phi: X \to \mathcal H$ such that $k(x,x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal H}$.

As a consequence the MMD consist in embedding $\mathcal{M}(X)$ into a Hilbert space \mathcal{H} via the kernel mean embedding $\mu \mapsto \int \Phi \,\mathrm{d}\mu$, since $\|\mu - \nu\|_k = \|\Phi \,\mathrm{d}\mu - \Phi \,\mathrm{d}\nu\| - \mathcal{H}$. We also have

$$\|\alpha\|_k = \sup_{\|h\|_{\mathcal{H}} \le 1} \left\langle h, \int \Phi \, \mathrm{d}\alpha \right\rangle = \sup_{f \in B} \int f \, \mathrm{d}\alpha$$

where $B = \{x \mapsto \langle h, \Phi(X) \rangle \mid \|h\|_{\mathcal{H}} \leq 1\}$ so it is an integral probability metric.

- It can be shown that if k is universal (i.e. the first condition of Prop 5 holds), continuous and conditionally positive definite then $\|\cdot\|_k$ metrizes weak convergence in $\mathcal{P}(X)$. Examples of such kernels on \mathbf{r}^d are:
 - \blacksquare the Gaussian kernel $k(x,y)=e^{-\frac{\|y-x\|}{2\sigma^2}}$ with $\sigma>0$;
 - the distance kernel $k(x,y) = \mathrm{dist}(x,y)$ (its MMD is called the "Energy distance");
- In the special case of discrete measure $\mu=\sum_{i=1}^m a_i\delta_{x_i}$ and $\nu=\sum_{j=1}^n b_j\delta_{y_j}$ then we have

$$\|\mu - \nu\|_k^2 = \sum_{i,i'} a_i a_{i'} k(x_i, x_{i'}) + \sum_{j,j'} b_j b_{j'} k(y_j, y_{j'}) - 2 \sum_{i,j} \sum_{i,j} a_i b_j k(x_i, y_j)$$

This requires $\mathcal{O}((m+n)^2)$ operations to compute.

Sinkhorm divergences

Reminders on entropy regularized OT

- ullet Recall that W_p^p are often good choices of divergence, but are computationally expansive. Next, we build divergences from entropy regularized optimal transport.
- With $c \in C(X^2)$, the definition of entropy regularized optimal transport is

$$T_{c,\lambda}(\mu,\nu) := \min_{\gamma \in \Pi(\mu,\nu)} \int c(x,y) \, \mathrm{d}\gamma(x,y) + \gamma \mathsf{KL}(\gamma;\mu \otimes \nu)$$

We recall the following facts from Lecture 3:

Reminders on entropy regularized OT

- ullet Recall that W_p^p are often good choices of divergence, but are computationally expansive. Next, we build divergences from entropy regularized optimal transport.
- With $c \in C(X^2)$, the definition of entropy regularized optimal transport is

$$T_{c,\lambda}(\mu,\nu) := \min_{\gamma \in \Pi(\mu,\nu)} \int c(x,y) \, \mathrm{d}\gamma(x,y) + \gamma \mathsf{KL}(\gamma;\mu \otimes \nu)$$

We recall the following facts from Lecture 3:

■ (Duality)

$$\begin{split} T_{c,\lambda} &= \sup_{\varphi,\psi \in C(X)} \int \varphi(x) \, \mathrm{d}\mu(x) + \int \psi(y) \, \mathrm{d}\nu(y) \\ &+ \lambda \left(1 - \int \int e^{(\varphi(x) + \psi(y) - c(x,y))/\lambda} \, \mathrm{d}\mu(x) \, \mathrm{d}\nu(y) \right) \end{split}$$

 \blacksquare (Optimality conditions) There exists maximizes $(\varphi_\lambda,\psi_\lambda)$ and a unique minimizer γ_λ linked by the optimlaity condition

$$d\gamma_{\lambda}(x,y) = e^{(\varphi_{\lambda}(x) + \psi_{\lambda}(y) - c(x,y))/\lambda} d\mu(x) d\nu(y)$$

It follows in particular that

$$T_{c,\lambda}(\mu,\nu) = \int \varphi_{\lambda} d\mu + \int \psi_{\lambda} d\nu$$

Is $T_{c,\lambda}$ a suitable divergence?

Proposition 7 (Interpolation properties)

For $\mu, \nu \in \mathcal{P}(X)$ and $c \in C(X \times X)$, it holds

$$T_{c,\lambda}(\mu,\nu) \to \begin{cases} T_c(\mu,\nu) := T_{c,0}(\mu,\nu) & \text{ as } \lambda \to 0 \\ \int c(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\nu(y) & \text{ as } \lambda \to \infty \end{cases}$$

Moreover, denoting γ_{λ} the unique minimizer for $T_{c,\lambda}$, it holds $\gamma_{\lambda} \to \mu \otimes \nu$ as $\lambda \to \infty$.

One could imagine replacing Wasserstein by its entropy regularized version, but the previous result shows that when λ is large, $T_{c,\lambda}$ behaves like an inner product rather than like a divergence. In particular, even for standard costs $c=\mathrm{dist}(x,y)^p$, $\mu\mapsto T_c^\lambda(\mu,\nu)$ is in general not minimized at $\mu=\nu$.

Is $T_{c,\lambda}$ a suitable divergence?

Proposition 7 (Interpolation properties)

For $\mu, \nu \in \mathcal{P}(X)$ and $c \in C(X \times X)$, it holds

$$T_{c,\lambda}(\mu,\nu) \to \begin{cases} T_c(\mu,\nu) := T_{c,0}(\mu,\nu) & \text{ as } \lambda \to 0 \\ \int c(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\nu(y) & \text{ as } \lambda \to \infty \end{cases}$$

Moreover, denoting γ_{λ} the unique minimizer for $T_{c,\lambda}$, it holds $\gamma_{\lambda} \to \mu \otimes \nu$ as $\lambda \to \infty$.

One could imagine replacing Wasserstein by its entropy regularized version, but the previous result shows that when λ is large, $T_{c,\lambda}$ behaves like an inner product rather than like a divergence. In particular, even for standard costs $c=\operatorname{dist}(x,y)^p$, $\mu\mapsto T_c^\lambda(\mu,\nu)$ is in general not minimized at $\mu=\nu$.

Corollary 1

Let $\nu \in \mathcal{P}(X)$ be such that $\arg\min_{y \in X} \int c(x,y) \,\mathrm{d}\nu(y)$ is a signleton, denoted x^* and let $\mu_{\lambda} \in \arg\min_{\mu \in \mathcal{P}(X)} T_{c,\lambda}(\mu,\nu)$. Then as $\lambda \to \infty$, one has $\mu_{\lambda} \rightharpoonup \delta_{x^*}$.

For instance, when $c(x,y)=\frac{1}{2}\|y-x\|_2^2$, then μ_λ converges to a Dirac mass located at the mean $\int x\,\mathrm{d}\nu(x)$ of ν .

Debiased quantity: the Sinkhorn divergence

Thinking of $-T_{c,\lambda}$ as an inner product suggest to define

$$S_{c,\lambda}(\mu,\nu) := T_{c,\lambda}(\mu,\nu) - \frac{1}{2}T_{c,\lambda}(\mu,\mu) - \frac{1}{2}T_{c,\lambda}(\nu,\nu)$$

From a computational aspect, the debiasing terms add an essentially negligible cost because the Sinkhorn iterations for those problems are well-conditioned. We can already see that these correction terms allow to correct the asymptotic behavior when λ is large.

Debiased quantity: the Sinkhorn divergence

Thinking of $-T_{c,\lambda}$ as an inner product suggest to define

$$S_{c,\lambda}(\mu,\nu) := T_{c,\lambda}(\mu,\nu) - \frac{1}{2}T_{c,\lambda}(\mu,\mu) - \frac{1}{2}T_{c,\lambda}(\nu,\nu)$$

From a computational aspect, the debiasing terms add an essentially negligible cost because the Sinkhorn iterations for those problems are well-conditioned. We can already see that these correction terms allow to correct the asymptotic behavior when λ is large.

Proposition 8 (Interpolation properties)

For $\mu, \nu \in \mathcal{P}(X)$ and $c \in C(X \times X)$ it holds

$$S_{c,\lambda}(\mu,\nu) \longrightarrow egin{cases} T_{c,\lambda} & ext{as } \lambda o 0 \\ rac{1}{2} \left\| \mu -
u
ight\|_{-c}^2 & ext{as } \lambda o \infty \end{cases}$$

where $\|\cdot\|_{-c}$ is the MMD associated to the kernel -c.

Remark. One can show that under the regularity assumptions over μ and ν and for the cost $c(x,y) = \|x-y\|_2^2$ on \mathbf{r}^d that $|S_{c,\lambda} - T_c| = \mathcal{O}(\lambda^2)$. Finally, under assumptions on the cost, we can show that $\mu \mapsto S_{c,\lambda}(\mu,\nu)$ is minimized at ν .

Debiased quantity: the Sinkhorn divergence

Proposition 9 (Positive semi-definiteness)

If $k(x,y)=e^{-c(x,y)/\lambda}$ is a positive semi-definite kernel, then $S_{c,\lambda}(\mu,\nu)\geq 0$ with equality if $\mu=\nu$.