Foundation Algebra for Physical Sciences & Engineering

CELEN036

Practice Problems SET-6

Topic: Complex numbers

Type 1: Real and imaginary parts of complex numbers

1. Solve the following equations for x and y, where $x, y \in \mathbb{R}$:

(i) x + iy = (3+i)(2-3i)

(ii) x + iy = 3

(iii) x + iy = 2i

(iv) 2+3i = (x+iy)(1-i)

2. Find the real and imaginary parts of w defined by $w = \frac{1+z}{1-z}$, where z = x+iy for some $x, y \in \mathbb{R}$.

Type 2: Expressing complex numbers in the form a + ib

3. If $z_1=4-i$ and $z_2=3+2i$, express the following in the form a+ib, where $a,b\in\mathbb{R}$:

(i) $z_1 + z_2$ (ii) $z_1 - z_2$ (iii) $z_1 \cdot z_2$ (iv) $\frac{z_1}{z_2}$

4. Express the following complex numbers in the form a + bi, where $a, b \in \mathbb{R}$:

(i) (5+6i)+(7+3i) (ii) (2-3i)-(5+2i) (iii) (3+2i)(2-i)

5. Write in the form a + bi, where $a, b \in \mathbb{R}$:

(i) $\frac{2+3i}{1+i}$ (ii) $\frac{-4+3i}{-2-i}$ (iii) $\frac{4i}{2-i}$

6. Simplify $(1+i)^6 - (1-i)^3$.

7. Simplify the following complex numbers:

(i) $\frac{(2+i)(3-2i)}{1+i}$ (ii) $\frac{(1-i)^3}{(2+i)^2}$ (iii) $\frac{1}{3+i} - \frac{1}{3-i}$

Type 3: Solving equations

8. Solve for $z \in \mathbb{C}$ in the following equations.

(i)
$$z(2+i) = 3-2i$$
 (ii) $(z+i)(1-i) = 2+3i$ (iii) $\frac{1}{z} + \frac{1}{2-i} = \frac{3}{1+i}$

9. Solve the following polynomial equations for $z \in \mathbb{C}$:

(i)
$$z^2 + 6z + 10 = 0$$

(ii)
$$4z^2 + 25 = 0$$

(iii) If
$$z = 2 + 3i$$
, rove that $z^3 - 5z^2 + 17z - 13 = 0$

$$(iv) \quad \text{If } z=-2 \text{ , prove that } z^3+6z^2+13z+10=0$$

Type 4: Argand diagram

10. Plot the following complex numbers on the Argand diagram:

(i)
$$3-4i$$
 (ii) $2+5i$ (iii) $-4+2i$ (iv) $1-6i$

11. For the given complex numbers z_1 and z_2 , plot z_1+z_2 and z_1-z_2 on the Argand diagram:

(i)
$$z_1 = 3 + 4i$$
, $z_2 = 2 - 3i$ (ii) $z_1 = 4 - 3i$, $z_2 = 1 + 2i$

Type 5: Modulus and argument

12. Given $z_1 = 3 - 2i$, $z_2 = 1 + 4i$, and $z_3 = 4 + 5i$, find the following values:

$$(i) \quad \left| \frac{z_1 z_3}{z_2} \right| \qquad (ii) \quad \left| \frac{z_1 z_2 + z_3}{z_3} \right|$$

13. Find the modulus and the principal value of the argument θ ($-\pi < \theta \le \pi$) of the following complex numbers:

(i)
$$z_1 = 1 + i$$
 (ii) $z_2 = 1 + \sqrt{3}i$ (iii) $z_3 = -1 + \sqrt{3}i$

Type 6: Polar form of complex numbers

14. Express the following complex numbers in the polar form $r(\cos\theta + i\sin\theta)$ $(-\pi < \theta \le \pi)$:

$$(i)$$
 $\sqrt{3}+i$

(ii)
$$1-\sqrt{3}$$

(i)
$$\sqrt{3} + i$$
 (ii) $1 - \sqrt{3}i$ (iii) $\sqrt{3} + \sqrt{3}i$

$$(iv) -1 + \sqrt{3}i$$
 $(v) -\sqrt{3}-i$

$$(v) -\sqrt{3} -$$

15. Find the polar form of the following complex numbers:

(i)
$$z_1 = 2 + 2i$$
 (ii) $z_2 = 2 - 2i$ (iii) $z_3 = i$

$$(ii) \quad z_2 = 2 - 2i$$

$$(iii)$$
 $z_3 = i$

Hence find the modulus r and principal argument $(\theta \in (-\pi,\pi])$ of the complex numbers:

$$(iv)$$
 $z_1 \cdot z_2$ (v) z_1^2 (vi) $z_1 \cdot z_3$

$$(v)$$
 z_1^2

$$(vi)$$
 $z_1 \cdot z_5$

Answers

 $(i) \quad x=9, \ y=-7 \qquad (ii) \quad x=3, \ y=0 \qquad (iii) \quad x=0, \ y=2 \qquad (iv) \quad x=-0.5, \ y=2.5$ 1

2
$$Re(w) = \frac{1 - x^2 - y^2}{x^2 + y^2 - 2x + 1}$$
 $Im(w) = \frac{2y}{x^2 + y^2 - 2x + 1}$

3 (i)
$$7+i$$

$$(ii)$$
 $1-3i$

$$(iii)$$
 $14 + 5i$

(i)
$$7+i$$
 (ii) $1-3i$ (iii) $14+5i$ (iv) $\frac{10}{13}-\frac{11}{13}i$

4 (i)
$$12+9i$$
 (ii) $-3-5i$ (iii) $8+i$

5 (i)
$$\frac{5}{2} + \frac{1}{2}i$$
 (ii) $1 - 2i$ (iii) $-\frac{4}{5} + \frac{8}{5}i$

$$(ii)$$
 $1-2i$

(*iii*)
$$-\frac{4}{5} + \frac{8}{5}i$$

6
$$2-6i$$

7 (i)
$$\frac{7}{2} - \frac{9}{2}i$$
 (ii) $-\frac{14}{25} + \frac{2}{25}i$ (iii) $-\frac{1}{5}i$

$$8 \qquad (i) \quad \frac{4}{5} - \frac{7}{5}i \qquad (ii) \quad -\frac{1}{2} + \frac{3}{2}i \qquad (iii) \quad \frac{11}{31} - \frac{17}{41}i$$

9 (i)
$$-3 \pm i$$
 (ii) $\pm \frac{5}{2}i$ (iii) $2 \pm 3i$, 1 (iv) $-2 \pm i$, -2

12 (i)
$$\sqrt{\frac{533}{17}}$$
 (ii) $15\sqrt{\frac{2}{41}}$

13 (i)
$$|z_1| = \sqrt{2}$$
, $\arg(z_1) = \frac{\pi}{4}$ (ii) $|z_2| = 2$, $\arg(z_2) = \frac{\pi}{3}$ (iii) $|z_3| = 2$, $\arg(z_3) = \frac{2\pi}{3}$

14 (i)
$$2\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right]$$
 (ii) $2\left[\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right]$ (iii) $\sqrt{6}\left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right]$

$$(iv) \quad 2\left[\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right] \qquad (v) \quad 2\left[\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right]$$

$$\mathbf{15} \qquad (i) \qquad 2\sqrt{2} \left[\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right] \qquad (ii) \quad 2\sqrt{2} \left[\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right] \qquad (iii) \quad \cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right] = \mathbf{15}$$

$$(iv) \quad r = 8, \quad \theta = 0$$

$$(v)$$
 $r=8, \quad \theta=\frac{\pi}{2}$

(v)
$$r = 8$$
, $\theta = \frac{\pi}{2}$ (vi) $r = 2\sqrt{2}$, $\theta = \frac{3\pi}{4}$