CSC309H1S

Programming on the Web

Winter 2023

Lecture 1: Introduction to the Web

Instructor: Kuei (Jack) Sun

Department of Computer Science University of Toronto

Lecture 1

Course Instructor

- Kuei (Jack) Sun
- Contact Information
 - Use Piazza
 - https://piazza.com/utoronto.ca/winter2023/csc309
 - Sign up to the course to get access
 - By E-mail
 - Personal: <u>sunk@cs.toronto.edu</u>
 - Course Related: <u>csc309-2023-01@cs.toronto.edu</u>
 - Request for lecture-related office hour and special consideration
 - By Calendly
 - https://calendly.com/csc309-2023s
 - Request for project/assignment related office hours and project grading

Course Information

- Course Website on Quercus
 - https://q.utoronto.ca/courses/293527
 - Syllabus
 - Lecture slides/videos/exercises
 - Assignment handouts
 - Project handout
 - Grade posting
- Piazza
 - Course announcement, course discussion
 - Assignment discussion
 - Lab TAs will read and answer relevant posts periodically

CSC309 Lecture 1

Don't Copy!

- Academic Integrity: Plagiarism and cheating
 - Very serious academic offences
 - All potential cases will be investigated fully
 - All assignments and exercises are to be completed individually
 - Do not submit code for grading that is not your own.
 - If you re-use any code, document the source
 - E.g., hash function from CSC209 A3 starter code, Fall 2019
 - Do not look at others' code, and do not share your code
 - Do not search for solutions on the web, or use Al-assisted tools, e.g., GitHub Copilot
 - Ask (and answer) questions on Piazza, but don't add details about your solution
- Exception: term project
 - You may use open-source packages, but they must be clearly referenced

Uof

Join or Lead an RSG

- Meet weekly with up to 8 classmates online
- Review and discuss course material
- Prepare for tests and exams
- Get student advice from upper year mentors

Last year, over 3000 students joined a Recognized Study Group (RSG) where they met friends and reached their study goals.

Plan for success this term by joining your RSG today.

Join an RSG today: uoft.me/recognizedstudygroups

SIDNEY SMITH COMMONS

@ sidneys mith commons

CSC309 Lecture 1

What we will cover

- How web works
 - Client-server model, Internet, HTTP, browsers
- Static web pages
 - HTML and CSS
- Dynamic website
 - Backend framework, i.e., Django (Python)
- Interactive pages
 - Frontend framework, i.e., React (JavaScript)
- System Administration
 - Deployment (website in production environment)

Term Project

- Group project with up to 3 team members
- Restify
 - Simplified version of Airbnb
 - See project description for detail
- Split into 3 phases
 - 1. Static Design
 - 2. Backend API implementation with Django
 - 3. Frontend implementation with React
- For each milestone, book a grading session with a TA before deadline
- Form a group **ASAP** on MarkUs to start planning

Disclaimer

- A lot of material is covered over 12 weeks
- Lectures and tests are focused on knowledge and concepts
 - With some simple coding exercises
- Project requires self-motivated learning
 - Lecture itself is not sufficient to teach every detail of web programming
 - Consult reference manuals
 - Search for answers online
 - Do the assignments for practice
 - Go to mentoring sessions

End User Perspective

- 1. User enters a web address inside a browser
- 2. Browser send a request to the server
- 3. Server processes the request and responds with a web page

https://medium.com/@lokeshchinni123

World Wide Web

- Also just called "the Web"
- A collection of information and services that can be accessed on local devices through the Internet.
- Internet
 - An interconnected network of computers
 - Can communicate with each other through standardized protocols
- TCP/IP
 - Protocols that provide reliable end-to-end communication between two applications on different computers
- HTTP
 - Protocol for delivery of contents from the Web.

TCP/IP

- IP (Internet Protocol)
 - Identifies computers on the network by assigning a unique IP address
 - E.g., 192.168.7.41
 - Knows how to route data from to the destination computer
- TCP (Transmission Control Protocol)
 - Allows multiple virtual connections to share a single physical IP address
 - Each connection is identified by a unique port number
 - E.g., port 80
 - Deals with unreliable nature of data transmission over network

How computers talk to each other?

Domains

- IP addresses are hard to remember
- It is possible to move websites elsewhere
- Some websites may be hosted on multiple physical machines
 - Content delivery network (CDN)
- We want an easier way to remember addresses
 - Also want an easy way to remap websites to different IP addresses

Domain Name

- Maps an easy-to-remember name to IP address(es)
- www.google.com → 142.251.41.78
- Clients must resolve the domain before making a connection

Content Delivery Network

Domain Name System

- A collection of mappings from domain names to their IP addresses
 - Analogy: Phone book
- Problem: how do we find the DNS server?

- Manually assigned by system administrator
 - E.g., 8.8.8.8 (Google's Public DNS)
- Automatically configured when computer connects to Internet
 - Computer sends a broadcast message to everyone on the local network
 - The DHCP server is responsible for assigning an IP address to the computer
 - It would also respond with the IP address of a DNS server

Hypertext Transfer Protocol

- A protocol for distributing and accessing hypertext documents
 - Hypertext is text displayed on electronic devices, e.g., monitor
- Built on top of TCP/IP
- Human readable protocol
- HTTP servers typically listen on port 80
- HTTPS (HTTP Secure)
 - Messages are encrypted for security purposes
 - Protects against eavesdropping and tampering
 - Used by 81.3% of all public websites

CSC309 Lecture 1

Stateless Protocol

- HTTP is a stateless protocol
- HTTP servers do not remember previous interaction with their clients

17

Statefulness

- A stateful service reacts differently to the same input
- Server must track the states all open connections
- Example: money transfer
 - 1. Enter account password
 - 2. Enter amount and recipient
 - 3. Confirm transfer
- Online banking service requires knowing that step 1 was successful
 - A stateful server remembers this on the server-side (the bank)
 - A stateless server gives the client a cookie to be passed back later
 - The client *reminds* the server of the previous step

Statefulness

Stateful service

- Requires server to keep information about a session (interaction with client)
- More complicated to design and implement
- Server crash or power outage would result in loss of session states
- Difficult to scale (work smoothly with increased number of users)

Stateless service

- Does not require server to remember session states
- Simple to design and implement
- Server outage does not result in loss of session states
- Easier to scale and optimize
 - E.g., by caching responses

HTTP Message

- Components of an HTTP Request
 - Method: describes what you want to do
 - Path: specifies which resource you want to access
 - Header: describes various settings and client environment
 - Body: additional data to be sent to server
- Components of an HTTP Response
 - Response code: describes the outcome of the request
 - Header: describes various settings and server environment
 - Body: data from the server (usually the hypertext of the web page)

CSC309 Lecture 1

HTTP Message

Requests

Responses

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

HTTP Methods

- POST
 - Create a new resource
- GET (most used)
 - Read information about a resource
- PUT
 - Replace a resource
- PATCH
 - Modify a resource
- DELETE
 - Delete a resource

Response Code

- Success: 200 299
 - 200 OK, 201 Created
- Redirection: 300 399
 - Instructs user to check out a different web address
 - 301 Moved Permanently
- Client error: 400 499
 - 404 Not Found, 400 Bad Request, 403 Permission Denied
- Server error: 500 599
 - 500 Internal Server Error, 502 Bad Gateway

Uniform Resource Locator

- A string to reference a web resource and how to retrieve it
- Format of a hyperlink for navigating through hypertext documents
- Example:
 - https://www.utoronto.ca/current-students

- URL encoding
 - Some characters are not safe in documents where URLs may be used
 - Escaped using *percent encoding*: e.g., space is converted to %20

Web Browser

- A client-side application that takes an URL and retrieves a web page
 - Using the HTTP/HTTPS protocol over TCP/IP
- Web pages are typically written in HTML
 - Hypertext Markup Language
- A web browser renders the hypertext to display formatted contet
- Popular modern browsers

Modern Web Architecture

Contains many components, each used for different purposes

https://medium.com/storyblocks-engineering/web-architecture-101-a3224e126947

Summary

- Web server listens on a specific port
 - Client(s) connect to IP address and port number
- DNS translates domain names to IP addresses.
 - Users can refer to websites by domain name rather than IP address
- HTTP protocol
 - Stateless
 - Client sends a request and server replies with a response
- HTTP response body is usually in HTML format
 - Browsers understand this format and renders accordingly

