

TODAY'S AGENDA

- (1) Causal diagrams: DAGs
- 2 Controlling, adjusting
- The Four Elemental Confounds

Last week

We want to know if X causes Y using data

Some correlations are causal; many aren't

How can we tell?

Experiments

Experiments are the "gold standard" for research

We randomly assign X, so we know differences in Y are unlikely to be driven by other factors

Rats and hyperglycemia

Can this new drug lower blood-sugar levels?

```
A tibble: 100 \times 3
  rat drug blood_sugar
<int> <fct> <I<dbl>>
                  -2.97
    1 drug
               -0.823
    2 placebo
    3 placebo
                    1.26
    4 placebo
                   -1.22
    5 drug
                   -2.53
    6 drug
                   -1.94
                   -0.934
    7 drug
    8 drug
                   -1.83
    9 placebo
                    0.785
   10 drug
                   -1.91
```

```
rat_experiment$drug
           placebo placebo placebo drug
                                                drug
                                                        drug
                                         drug
                                                               placebo
                          placebo placebo drug
           placebo drug
                                                placebo placebo drug
[19] placebo drug
                  placebo placebo placebo drug
                                                placebo placebo drug
[28] placebo drug
                  drug
                                         placebo drug
                          placebo drug
                                                               drug
[37] drug
                                         placebo placebo drug
           placebo drug
                                 drug
                                                               placebo
                          drug
[46] drug
           drug
                drug
                                 placebo placebo drug
                                                               drug
                          drug
           placebo placebo drug
[55] drug
                                 placebo drug
                                                placebo drug
                                                               placebo
[64] placebo drug
                  drug
                                 drug
                                         drug
                                                placebo drug
                                                               drug
                          drug
[73] placebo placebo drug
                                 drug
                                                placebo drug
                          drug
                                         drug
                                                               drug
[82] placebo drug
                  placebo placebo drug
                                                placebo placebo placebo
                                         drug
[91] drug drug
                  placebo placebo placebo drug
                                                               placebo
100] placebo
evels: placebo drug
```

```
lm(blood_sugar ~ drug, data = rat_experiment)
```

```
term estimate <a href="mailto:ker"><a href="mailto:
```

People and media exposure

Is biased TV news making the American public more extreme?

```
liberal
            media
  person
            <fct> <I<dbl>>
  <chr>
1 Guisel
            0ther
2 Nieta
            MSNBC
3 Laquetha
            MSNBC
4 Jyrese
            0ther
5 Lafiamma
            0ther
6 Ahmirah
            0ther
7 Eissa
            MSNBC
8 Shrenik
            MSNBC
 Rossalind Other
l0 Kaliyah
            MSNBC
```

```
lm(liberal ~ media, data = media_bias)
                      estimate s
         term
         <chr>
                          <dbl>
         intercept
                           4.02
         mediaMSNBC
                           2.03
How is this different from rats?
```

Causal models

We need a model to get at causality

A model is our idea of the data-generating process

The model tells us how to find a causal effect (if possible)

DAGs

Directed acyclical graphs

Directed = arrows

Acyclical = no loops

Graphs = nodes and edges

Income (I), Liberal (L), Age (A), Media Exposure (M), Parents (P)

-> = "flow" of causality

step

"flow" can also be multi-

"Missing" arrows also important!

Your Turn

Give me an outcome that matters

We'll build a DAG

DAGs

DAGs encode everything we know about some **process**

We can see all of our **assumptions** and how they fit together

For example: the effect of Parents on Liberal happens directly and indirectly (thru Media)

Identification

We can also use DAGs to isolate the effect of one variable on another (e.g., Media —> Liberal)

This process is called "identification"

We say we want to "identify the effect of X on Y"

Does marriage cause divorce?

Spurious association

The DAG

Marriage is a function of Age

Divorce is a function of marriage and age

Two causal paths for A:

$$A -> M -> D$$
 $A -> D$

Does marriage cause divorce? The problem

The problem

In fact, maybe there's no M —> D

The problem

This DAG produces correlation between M and D!

The solution

We want to **identify**, or know, what part (if any) of M —> D is **not** a result of A

We want to **block** flow from A to D and M

Controlling

This is also known as controlling or adjusting

This means looking at the relationship between M and D controlling for A

What is "controlling"?

More on this next week, but basically:

Look at part of correlation between M and D that isn't explained by A

Look at relationship between M and D in states with similar A levels

Make an *apples-to-apples* comparison that mimics **experiments**

An analogy

We want to shut off flow of A to learn about $M \rightarrow D$

Do we need to close L?

No! Because no path from L to **both** M and D

Why not close everything?

Drug use -> Cardiac arrest

This looks complicated;
Why don't we just block everything?

Cardiac Arrest Cholesterol Drugs Unhealthy Lifestyle

"Closing off" the wrong thing can **also** confound our results!

Ye Olde Causal Alchemy

The Four Elemental Confounds

The Fork The Pipe $X \longrightarrow Z \longrightarrow Y$ $X \leftarrow Z \longrightarrow Y$ The Collider The Descendant $X \longrightarrow Z \longrightarrow Y$

The Fork

Does School Suspension Work?

Other examples of forks?

Dealing with forks

The (other) pipe

$$X \longrightarrow Z \longrightarrow Y$$

X causes Z causes Y

Z mediates the effect of X on Y

What happens if we block Z?

We remove the effect of X on Y

Leave Z alone

z

Making plants grow

What's the effect of our fertilizer on plant growth?

Conditioning on Fungus cuts off effect of Fertilizer

Terror example

What's the effect of being exposed to terrorism on support for harsh anti-terror policies?

Two causal flows:

$$T -> A -> S$$
 $T -> S$

Conditioning on Anxiety controls away the *indirect effect*

The Wage Gap

Salary

Women make X amount less than men

But *controlling* for career choice, wage gap —> 0

What if DAG looks like this?

Dealing with pipes

Avoid controlling for Z!

Why is this even a problem?

Bad statistics: we are so afraid of *forks* we simply control for everything

"But wait, did you control for..." Sometimes we are unaware we are doing it

Need DAGs!

Harvard discrimination case

Professor Arcidiacono omitted intended career, staff interview indicator, and parental occupation from his model. [Oct. 25 Tr. 145:21-148:12]. The Court prefers a model that includes these variables because they play a role in the admissions process. [Oct. 26 Tr. 8:25-9:21, 10:17–11:6; Oct. 31 Tr. 9:3–7]. Further, these variables correlate with race and therefore create a significant potential for omitted variable bias if excluded. [Oct. 31 Tr. 10:16–18, 11:15– 12:21, 21:19-22:14; DX677; DX681; DD10 at 54]. Professor Arcidiacono excluded these variables primarily because of data issues, including unexplained year-to-year fluctuations in the distribution of parental occupation and intended career categorizations. [Oct. 25 Tr. 145:21-148:12; DD10 at 50-52, 56]. As examples, numerous parents who were categorized as having low-skill jobs for the class of 2014 would likely have been categorized as being self-employed for the class of 2015, and there is a substantial decrease in the number of parents categorized as unemployed among applicants to the class of 2017 versus the class of 2018. [Oct. 25 Tr. 146:4-147:9; DD10 at 51-52]. Although the data for parental education and intended career are not as consistent year-to-year as would be ideal, including the variables is preferable because their exclusion results in omitted variable bias that exaggerates the effect of race that is implied by the models. [Oct. 30 Tr. 146:18-147:6; DX695; DD10 at 35]. Professor Card's model deals

The Descendant

Boring version of a pipe

Even if you control for Z, if you control for A and A is caused by Z you are in trouble

Need to be careful

Recap

DAGs are causal models of a process we are interested in

DAGs tell us what to **control** (and what to avoid!) in order to get at X —> Y

Fork = control for ZPipe = (mostly) don't control for Z

Thursday = colliders