

Thermodynamik III

3 – Gasarbeitsprozesse Gasturbinenprozesse HS 2021

Prof. Reza S. Abhari

Dr. Ndaona Chokani

Overview

Vorlesung		Übung/Beispiel	
Datum	Thema	Datum	Thema
09.11	Prozess des Energieaustausches	09.11	Geschwindigkeitsdreiecke
16.11	Dampfkraftprozesse	16.11	Rankine Zyklus
23.11	Gasarbeitsprozesse - Verbrennungsmotoren	23.11	Diesel / Otto Zyklus
30.11	Gasarbeitsprozesse - Gasturbinenprozesse	30.11	Brayton Zyklus
07.12	Gasarbeitsprozesse - Kombinierten Zyklen	07.12	Kombinierter Zyklus
14.12	Kältemaschinen und Wärmepumpen	14.12	Kältemaschine/Wärmepumpe
21.12	Kältemaschinen Oxyfuel, Carbon Capture and Storage	21.12	Wärmepumpe

4.2 Gasturbinenprozesse (Joule-Brayton)

Gas Turbines Used for Power Generation: GE GT 24/26

4.2.1 Offene Gasturbinenanlage

- Brennstoff wird in der Brennkammer mit der verdichteten und vorgewärmten Luft verbrannt
- Höchste Temperatur T₃ wird durch die Werkstofffestigkeit bestimmt, d.h. Verbrennung wird mit grossem Luftüberschuss (mager) geführt

 Annahmen: ideales Gas mit konstantem c_p, Vernachlässigung der Druckverluste im Erhitzer und Kühler

Nutzarbeit w_N des Prozesses ist die Differenz zwischen der Turbinenarbeit w_{34} und der zum Antrieb des Verdichters erforderlichen Arbeit w_{12}

$$w_N = \eta_m \left[w_{34} - w_{12} \right]$$

- η_m berücksichtigt mechanische Verluste
- Einführung des Druckverhältnisses λ :

$$\lambda = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}}$$

Annahme: Turbine und Verdichter arbeiten adiabat:

$$w_N = \eta_m [(h_3 - h_4) - (h_2 - h_1)] = \eta_m [\eta_{sT} (h_3 - h_{4s}) - \frac{h_{2s} - h_1}{\eta_{sV}}]$$

 η_{sT} = isentroper Wirkungsgrad der Turbine

$$\eta_{sT} = \frac{h_3 - h_4}{h_3 - h_{4s}} = \frac{reale\ Arbeit}{ideale\ Arbeit} \le 1$$

 η_{sV} = isentroper Wirkungsgrad des Verdichters

$$\eta_{sV} = \frac{h_{2s} - h_1}{h_2 - h_1} = \frac{ideale \ Arbeit}{reale \ Arbeit} \le 1$$

$$h_{3} - h_{4s} = c_{p}(T_{3} - T_{4s}) = c_{p}T_{3}\left(1 - \frac{1}{\lambda}\right)$$

$$h_{2s} - h_{1} = c_{p}(T_{2s} - T_{1}) = c_{p}T_{1}(\lambda - 1) \qquad \lambda = \left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma - 1}{\gamma}}$$

$$w_{N} = c_{p}T_{1}\eta_{m}\left[\eta_{sT}\frac{T_{3}}{T_{1}}\left(1 - \frac{1}{\lambda}\right) - \frac{\lambda - 1}{n}\right]$$

- Mit wachsendem Druckverhältnis p_2/p_1 , d.h. mit wachsendem λ , wird die Turbinenarbeit und die davon abzuziehende Verdichterarbeit grösser
- Mittels $dw_N/d\lambda = 0$ folgt das optimale Druckverhältnis:

$$\lambda_{opt} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}} = \sqrt{\eta_{sT} \eta_{sV} (T_3 / T_1)}$$

4.2.2 Verbesserung von Gasprozessen

Rekuperation: Luftvorwärmung

- Die Wärme des Abgases wird genutzt, um die Verbrennungsluft vorzuheizen
- Für einen idealen Rekuperator gilt: T_{2r} = T₄

$$\begin{split} \eta_{therm} &= \frac{c_{p34}(T_3 - T_4) - c_{p12}(T_2 - T_1)}{c_{p34}(T_3 - T_4)} \\ &= 1 - \frac{c_{p12}}{c_{p34}} \frac{T_2 - T_1}{T_3 - T_4} & ideal \\ &= 1 - \frac{c_{p12}}{c_{p34}} \frac{(\lambda - 1)}{t \eta_c \eta_t \left[1 - \frac{1}{\lambda} (1 - \varepsilon)^{\frac{1 - \gamma}{\gamma}} \right]} & verlustbehaftet \end{split}$$

- wobei
$$\lambda = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}$$
, $t = \frac{T_3}{T_1}$ $\epsilon = \text{Druckverlust in Brennkammer}$

- Nur für kleine Werte von λ sinnvoll

4.2.3 Nacherhitzung und Zwischenkühlung

Beispiele aus der Industrie: GT24, GT26 von GE

- Mehrstufige Luftverdichtung mit Zwischenkühlung
- Expansion in Hochdruck (HD) und Niederdruck (ND) Turbine
 mit Zwischenerhitzung

- Nacherhitzung erhöht die von der Turbine abgegebene Leistung
- Zwischenkühlung reduziert Verdichterleistung

Fig. 2-1 A comparison between the working cycle of a turbo-jet engine and a piston engine.

Fig. 2-2 The working cycle on a pressure-volume diagram.

Internals of an Aircraft Engine

4.2.4 Joule-Brayton Cycle

- Besteht aus:
 - a) Inlet
 - b) Compressor
 - c) Combustor
 - d) Turbine
 - e) Exhaust

– Massenströme:

$$\dot{m} = Luftmassenstrom$$

 $\dot{m}_f = Brennstoffmassenstrom$

Impulserhaltung in x-Richtung ergibt Schubkraft (thrust):

$$F = (\dot{m} + \dot{m}_f) \cdot u_e - \dot{m} \cdot u_0$$

- Einführung des Brennstoff-Luft-Verhältnisses f: $f = \frac{m_f}{\dot{m}}$ Normalerweise 0.01 < f < 0.03
- Schallgeschwindigkeit: $a_0 = \sqrt{\gamma R T_0}$

$$\therefore \frac{F}{\dot{m} \cdot a_0} = (1+f) \frac{u_e}{a_0} - \frac{u_0}{a_0}$$

Zusammen mit der Definition der Machzahl M=u/a ergibt sich die spezifische Schubkraft

$$\frac{F}{\dot{m} \cdot a_0} = (1+f)M_e \sqrt{\frac{T_e}{T_0}} - M_0$$

- Da f << 1 folgt:

$$\frac{F}{\dot{m} \cdot a_0} \cong M_e \sqrt{\frac{T_e}{T_0}} - M_0$$

- Wobei:
 - M_0 = Flug-Machzahl (ca. 0.85)
 - M_e = Austritts-Machzahl (ca. 1)
 - $T_0 = Umgebungstemperatur$
 - T_e = Austrittstemperatur
- Heisses Austrittgas bei hoher Geschwindigkeit erzeugt Schub

- Gasturbinen werden hauptsächlich für zwei Anwendungen gebraucht:
 - Flugzeug-Triebwerke
 - Energie- und Wärmeerzeugung
- 1) Flugzeug-Triebwerke
- Wandelt chemische Energie in kinetische Energie um
- Druck- und Temperaturverlauf durch das Triebwerk

2) Energie- und Wärmeerzeugung

- Annahme: idealer Prozess, kinetische Terme vernachlässigt
- HPT treibt den Kompressor an
- LPT treibt den Generator an

High Pressure Turbine HPT

Arbeit HPT = Arbeit für den Kompressor

$$h_3 - h_{3i} = h_2 - h_1$$

$$h_{3i} = h_3 - h_2 + h_1$$

Arbeit f
ür den Generator = Arbeit LPT

$$\frac{W}{\dot{m}} = h_{3i} - h_4$$

$$\frac{W}{\dot{m}} = h_3 - h_2 + h_1 - h_4 = (h_3 - h_4) - (h_2 - h_1)$$

Expansionsarbeit Kompressionsarbeit

- Für c_p = konstant gilt: $h=c_pT$

"Aeroderivative" Triebwerke zur Stromgewinnung

- Flugzeugtriebwerke sind für ein geringes Gewicht und schnelle Lastwechsel ausgelegt
- Das Design von Flugzeugtriebwerken hat Vorteile für die
 Stromgewinnung. Das führte zu den "Aeroderivative" Triebwerken
- Anwendungen
 - auf See
 - Stromgewinnung auf See
 - Notstromversorgung
 - Krankenhäuser
 - Flughäfen
 - Industrieanwendungen wie Zementherstellung und in Minen
 - Pipelines und Raffinerien
 - Stromversorgungsunternehmen

GE Aeroderivative

GE LM2500

Power: 33MW

• Efficiency: 39%

• Turbine Speed: 3'600 rpm (angepasst an 60 Hz Netzfrequenz und 2 Pol Generator)

• Pressure ratio: 23

• TAT: 524°C

Fuels: LNG or Marine Gas Oil (MGO)

Rolls Royce Aeroderivative

Rolls-Royce RB211

• Power: 32MW; efficiency: 39%

Turbine Speed: 4'850 rpm

Pressure ratio: 23

• Fuels: Natural gas, oil or duel operaton

Siemens Gas Turbine on Basis of Aeroderivates

Siemens SGT-750

Power: 37MW

• Efficiency: 39.5%

Turbine Speed: 6'100 rpm

Pressure ratio: 23.8

• TAT: 459°C

• Fuels: Natural gas, oil

Treibstoffflexibilität von Gasturbinen

Eine Gasturbine mit Treibstoffflexilibität kann verschiedene gasförmige und flüssige Treibstoffe verschiedener Zusammensetzung und Heizwerte verbrennen

- Dualer Treibstoffbetrieb: Betrieb mit Erdgas und Schweröl
- Der Betriebsbereich der Gasturbine kann für verschiedene Heizwerte angepasst werden
- Weitere Treibstoffe : Röhol, "Syngas"

4.3 Ericsson Zyklus

- Steigerungen im Wirkungsgrad werden erreicht durch:
 - Zwischenkühlung
 - Zwischenüberhitzung
 - Regeneration
- Normalerweise werden nicht mehr als 2 bis 3 Stufen für Zwischenkühlung und Überhitzung verwendet
- Annahme: unendliche Anzahl von Stufen

- Idealer regenerativer Gasturbinen-Prozess
- Zwischenkühlung immer auf T_C, Überhitzung auf T_H
- 100% Regeneration, d.h. abgegebene Wärme 4-1 wird für Erhitzung 2-3 verwendet. Gesamte externe Wärmezufuhr erfolgt in den Zwischenüberhitzern, Wärmeabfuhr in den Zwischenkühlern

- Wärme Zu- und Abfuhr erfolgt dann bei T_H und T_C
- Wirkungsgrad:

$$\eta_{\text{max}} = 1 - \frac{T_C}{T_H}$$

Gleicher Wirkungsgrad wie Carnot-Prozess

4.4 Stirling Zyklus

- Besteht aus
 - Isotherme Kompression bei T_C
 - Isochore Wärmezufuhr
 - Isotherme Expansion bei T_H
 - Isochore Wärmeabfuhr
- Gleicher Wirkungsgrad wie Carnot- und Ericsson Zyklus

- Wärme wird dem Arbeitsgas von aussen zugeführt: external combustion engine
- Beispiel eines Stirling-Motors:
 - kleiner Kolben: Arbeitskolben
 - grosser Kolben: Verdrängerkolben

