Electrical Engineering HSLU, Semester 2

Matteo Frongillo

Last update: February 18, 2025

Contents

Ι	•••	
1		
	1.1	Current strength or current "I"
	1.2	Current density "J"
	1.3	Temperature dependence of the resistance
	1.4	Object properties
	1.5	Reciprocal quantities
		1.5.1 Specific resistance
		1.5.2 Conductance
		1.5.3 Specific conductivity

Part I

• • •

1 ...

1.1 Current strength or current "I"

$$I[A] = \frac{\text{el. charge}}{t}$$

1.2 Current density "J"

The current density indicates how large the current per cross-sectional area (F) is:

$$J\ [\frac{A}{mm^2}] = \frac{I}{F}$$

1.3 Temperature dependence of the resistance

Depending on the material, the resistance can increase, remain the same or decrease with temperature. In ET+L we calculate using the linear approach.

$$R(\vartheta) = R_{20}(1 + \alpha(\vartheta - 20^{\circ}C)) = R_{20}(1 + \alpha\Delta T)$$

1.4 Object properties

The resistance indicates the voltage required for a current. In addition to the material, the cross-sectional area and also the length are decisive factors.

$$R = \frac{U}{I}$$

1.5 Reciprocal quantities

1.5.1 Specific resistance

To describe material properties, the resistance per length and cross-sectional area is specified (precondition: homogeneous conductor, direct current):

$$\rho \; [\frac{\Omega \cdot mm^2}{m}] = R \cdot \frac{A}{l}$$

1.5.2 Conductance

1.5.3 Specific conductivity