

等 自 出 文 等

● 赛道: CAIR工程竞技赛道

● 赛项:智能侦察赛项

○ 团队成员:程浩伦、程杨、潘燕、刘语茜

项目背景

当今世界局部冲突不断,新式武器投入实战,现代战争逐渐智能化

推进中国式现代化

军事武器装备现代化

习总书记强调:强国必须强军,军强才能国安!

项目概述 设计方案

测试分析

结论总结

硬件、软件环境

任务A: 定位与导航

雷达和建图

自主导航

肹	名目	扣分	说明
1	机器人轮子碰撞场地	1分次	(压线或撞板)
2	触碰到反坦克推或圆柱	2分次	反坦克能和圆柱各最多加10分
3	触破地雷	3分次	每个区域最多抽12分

- 实物地图: 按规则搭建实物地图
- 系统安装: 安装和配置虚拟机
- 模型参数: 调试各机器人参数
- 雷达配置: 确定雷达频率和记录
- · Rviz 订阅: 话题订阅与功能添加
- 建图优化: 减少地图外围像素点
- 代价地图: 确定合适的代价参数
- 避障算法: ACML定位和DWA算法
- 导航优化: 优化导航效果和时间

识别环境配置

训练集标注

模型训练

序号	名目	得分	说明
1	机器人顺利完成 1 Ⅱ Ⅲ Ⅳ四个区域	48	每个区 12 分, 共 48 分;
2	正确识别 A 区中敌军、友军、人质	8	反馈图片中正确识别得 8 分;
3	正确识别 B 区中敌军、友军、人质	8	反馈图片中正确识别得 8 分:
4	正确识别 C 区中敌军、友军、人质	8	反馈图片中正确识别得 8 分:
5	正确识别 D 区中敌军、友军、人质	8	反馈图片中正确识别得 8 分。
6	完成打靶点 1, 2, 3, 4 的打靶	20	每处打靶为5分,共20分

任务B: 视觉识别

· conda搭建: conda虚拟环境搭建

• 依赖库安装:安装并适配依赖库

· 图片标注: 精灵助手标注图片

· 转换格式: VOC转化为yolo格式

• 多次训练: 分多组多次进行训练

• 模型验证:验证模型提高准确率

(4)进入雷区三次、判定为机器人任务失败、将机器人放置管区重新启动、其中压线视为进入雷区、长期压线视为在雷区 理留、每3秒视为一次进入雷区;

(5)在四处打靶点位完成打靶任务;

(6)完整通过全部区域并且机器人回到营地之后,记录完成时间。

项目概述 设计方案

测试分析

结论总结

焊接调试

- 焊点不能出现堆锡现象,不能出现焊接毛刺
- 电路板通电后,无异常发热等现象
- 在对应的测试点可以检测到对应的信号 输出

任务C: 焊接调试与报告撰写

报告撰写

- 深入剖析国赛"智能侦察"项目规则,精 准把握任务关键点和技术难点
- 明确报告需全面展示团队对赛题的理解 与实现思路
- · 明确报告需全面展示团队对赛题的理解 与实现思路

2、作品要求

- 格式模仿 报告应结构定理、包括封首、目录。正文、参考文献等部分、格式符合企业分析、相关系统
- 内脊克整 对国务内容的分析全国深入。准确把握性务关键点和技术准点: 实现 但路透新可巧、详细编译算法设计、化规逻辑、软件契构等关键技术组节
- B宫泰达:语言表达准确通道,逻辑严谨、经清晰阐述项目技术组节和实现过程
- **家现情况** 如实反映读目完成度,包括已完成和未完成的任务及应历分析。

- 保奈男名

- 内容相关性。积频波密图线项目实证、通过屏幕景制、算法运行波示。代码、 模构等方式套阅属示算法、代码、按符的功能和任务完成情况。
- 。 義實与声音欺嚣,而密清晰,声音清楚、确保评委能准规理解视解内容
- 輔助規制 可添加文字说明。标注等、增强对视频内容的理解。

D. PPT WHO

- 内容简洁性。PPT 内容简洁明了,重点突出、避免过多文字填铝、使用图查、F 片等辅助元素表达。
- **建制建度性**: PPT 内容建筑运贯、聚轨清原地展示项目的背景。目标,实现过程。 成果和创新点英采储内容、与项目分析与定型和各种定理模型被影响等所定。
- 模型效果: PT 设计集积、色彩摄配协调、字体选择合成、整体模型效果良好 数工证券或者和股票

项目概述 设计方案

关键问题

问题一

复杂动态环境下的自主 导航与精准定位

问题二

实现精准兵人识别

导航

自主定位导航

问题三

多任务协同调度与 系统实时性

问题四

技术文档和PPT

文档

技术报告PPT

设计方案

测试分析

结论总结

团队成员

项目概述

智能侦察

依托ROS系统架构

自主导航与定位

需突破城市建筑群遮挡、

动态障碍物干扰等问题,

实现厘米级定位与全局

路径规划

环境感知与识别

✓ 针对战场多要素,需融合多传感器数据,构建实时环境语义地图,支撑威胁规避与目标判别。

机器人控制与优化

✓ 基于麦克纳姆轮系运动模型,需平衡速度(最高0.6m/s)与精度(直角越障 15mm)

项目概述 设计方案

测试分析

结论总结

智能侦察

关键技术一: 自主导航

遇到的问题

▶ 地图模型:

- ▶ 模型粗糙且地图边缘存在突出的像素点
- ▶ 导航稳定性:
- ▶ 拐角处存在丢失导航目标点位的情况
- ▶ 避障可靠性:
- ▶ 障碍物尺寸和避障距离容易误判

解决方案

创新性解决方案

> 地图优化

- 优化扫描策略,避免重复扫描,提升雷达扫描的速度与精度
- > 导航细化
- ▶ 细化和增设目标点位,修正机器人的导航轨迹
- > 避障改进
- 改进代价地图参数和环境配置,更改膨胀半径, 贴合实际避障效果

项目概述

设计方案

测试分析

结论总结

关键技术二:视觉识别

遇到的问题

> 环境配置:

- ➤ 依赖库安装失败, yolo8.0.x与 pytorch2.7.x版本不兼容
- ▶ 模型推理:
- 推理速度较慢,准确度较低
- ▶ 数据管理:
- ▶ 测试结果集丢失

解决方案

创新性解决方案

> 环境适配

- ➤ 升级yolo库版本为8.3.x, 改变源码中nn.py内的 参数使其适配pytorch2.7.x版本
- > 模型优化
- ➤ 优化模型结构,由原本使用的yolov8m.pt改变为 更轻量高效的yolov8s.pt,调整训练轮数并多次 训练模型,提高准确度
- > 数据保存
- > 测试结果及时备份并分类,分析结果误差

项目概述

设计方案

测试分析

结论总结

测试分析

视觉识别及定点导航

数据集准备与标注

多次测试结果数据

模型训练与优化

最终实现准确率

SLAM建图

- 场地扫描
- 地图生成
- 地图保存

目标点定位

- 确定目标点
- 获取坐标信息
- 保存坐标集

自主导航

- 路线规划
- 实时定位与控制
- 障碍物避让与恢复

项目概述

设计方案

测试分析

结论总结

创新点一

使用文件导入数据: 方 便统一管理目标点位,引 入了'!'作为停止标志, '#'作为跳过点位的标志。

创新点二

可视化管理点位:操作人员能够将所有导航目标坐标点位直接写入导航文件。极大地简化了信息录入流程,为后续随时提取和保存所有的导航目标坐标点位提供了极大的便利。

创新点三

使用特定按键中断导航: 设置按键"q"作为终止导 航的快捷键。在初步规划导 航路线时,一旦发现问题或 需要修正目标坐标点位,操 作人员可以按下此键,及时 停止导航。

创新点四

Speed: 1.8ms preprocess, 29.8ms inference, Speed: 1.5ms preprocess, 8.6ms inference,

轻量化目标识别架构:基于YOLOv8的模型剪枝与量化压缩方法,结合自定义战场数据集训练,在保证平均精度mAP50:99.5%的同时,推理延迟降低了0.3ms,满足实时性需求。

应用前景

军事领域

准确地识别敌我双方人员以及关键战略目标,为指挥官提供实时、精准的战场态势信息,助力制定科学合理的作战计划。

机器人可以迅速进入灾区,利用其强大的环境感知和自主导航能力,指引救援人员精准定位被困人员位置,规划安全高效的救援路径

工业场景

工业场所通常设备众多、存在高温等危险环境,人工巡检面临较大风险和挑战。机器人可以按照预设的巡检路线,对设备进行定期、全面的检查。

前景广阔

还可应用到智能家居、仓储物流、地 质勘探、教学研究、地质检探

程浩伦

负责项目统筹、识别

- 擅长YOLOv8技术
- 担任学生会部长
- 曾获中国机器人及人工 智能大赛江苏省三等奖

刘语茜

负责撰写报告、制作Pl

- 擅长word报告撰写
- 曾获江苏省计算机设计
- 曾获中国机器人及人工 智能大赛江苏省三等奖

潘燕

负责导航技术

- 擅长ROS机器人开发
- 熟悉Python等编程语
- 曾获中国机器人及人工 智能大赛江苏省三等奖

程杨

负责导航技术

- 擅长ROS机器人开发
- 熟悉Python等编程语言
- 精通单片机、焊接技术
- 担任国家级大创项目负 责人

项目概述

2025 睿抗机器人开发者大赛 (RAICOM2025)

南京晚庄学院 程智杨新队