Комплексные числа

Алгебраическая форма комплексного числа

- Алгебраической формой комплексного числа z называется выражение z = a + ib, где:
- ▶ а и b действительные числа;
- ▶ i мнимая единица, которая определяется соотношением:
- $i^2 = -1$
- ▶ а действительная часть комплексного числа (Re z);
- ▶ b мнимая часть комплексного числа (Im z)

Алгебраическая форма комплексного числа

- Комплексно-сопряжённые числа:
- ightharpoonup z = a + ib; $\bar{z} = a ib$
- Равенство комплексных чисел
- комплексные числа равны, если равны их мнимые и действительные части:
- $z_1 = a_1 + b_1 i; z_2 = a_{21} + b_2 i$
- $ightharpoonup z_1 = z_2$ если $a_1 = a_2$ и $b_1 = b_2$
- Равенство комплексного числа нулю
- ightharpoonup z = a + bi = 0, если a=b=0

Геометрическое представление комплексного числа

r – модуль комплексного числа.

$$r=|z|=\sqrt{a^2+b^2}$$

ф – аргумент комплексного числа.

$$\varphi = Arg \ z = rctg \frac{b}{a}$$

Тригонометрическая форма комплексного числа

$$Z = r(\cos \varphi + \sin \varphi i)$$

Для комплексно-сопряжённых чисел:
$$|z|=|\bar{z}|$$

$$Arg\;z=-Arg\bar{z}$$

Тригонометрическая форма комплексного числа

$$Arg~Z = egin{cases} arctg~rac{b}{a}$$
, z в квадрантах $1,4$ $\pi + arctg~rac{b}{a}$, z в квадранте 2 $-\pi + arctg~rac{b}{a}$, z в квадранте 3

Показательная форма комплексного числа

- Формула Эйлера

Показательная форма комплексного числа:

$$ightharpoonup z = re^{\varphi i}$$

Тригонометрическая форма комплексного числа

Пример

▶ Представить комплексное число $z = -4\sqrt{3} - 4i$ в тригонометрической и показательной формах.

Элементы высшей математики

Справочный материал

ЗНАЧЕНІ	IO RN		ЫХ ТР ФУНКЦ	44	IOME	ГРИЧЕ	СКИХ
a	-1 -	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$ $-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$	1
arcsin a	$-\frac{\pi}{2}$	THE REAL PROPERTY.	$\frac{\pi}{4} - \frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$ $\frac{\pi}{3}$	$\frac{\pi}{2}$
arccos a	π	$\frac{5\pi}{6}$ $\frac{3\pi}{4}$		$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$ $\frac{\pi}{6}$	0
a	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$
arctg a	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
arcctg a	$\frac{5\pi}{6}$	<u>3π</u>	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$

the result could be with the parties for many formal property. They

Справочный материал

Справочный материал

сумма и разность углов

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta
\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta
\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta
\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta
\tan(\alpha - \beta) = \frac{\tan\alpha \cdot \tan\beta}{1 + \tan\alpha \cdot \tan\beta}
\cot(\alpha - \beta) = \frac{\tan\alpha \cdot \tan\beta}{\cot\alpha \cdot \tan\beta}
\cot(\alpha - \beta) = \frac{\cot\alpha \cdot \cot\beta}{\cot\alpha \cdot \cot\beta}
\cot(\alpha - \beta) = \frac{\cot\alpha \cdot \cot\beta}{\cot\alpha \cdot \cot\beta}
\cot(\alpha - \beta) = \frac{\cot\alpha \cdot \cot\beta}{\cot\alpha \cdot \cot\beta}$$

Сумма и разность

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$$

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$$

Произведение

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

▶ Частное

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$$

Пример

Выполнить сложение, вычитание, умножение и деление для следующих комплексных чисел:

▶
$$z_1 = -9 - 7i$$

Решение квадратных уравнений над комплексной плоскостью

Пример

Решить уравнения над комплексной плоскостью:

$$6x^2+7=0$$

$$3x^2 + 3x + 1 = 0$$

Произведение и частое комплексных чисел в тригонометрической форме

- $ightharpoonup z_1 = r_1(cos\varphi_1 + sin\varphi_1 i)$
- $ightharpoonup z_2 = r_2(cos\varphi_2 + sin\varphi_2 i)$
- $z_1 z_2 = r_1 r_2 (cos(\varphi_1 + \varphi_2) + sin(\varphi_1 + \varphi_2)i)$

Произведение и частое комплексных чисел в тригонометрической форме

- Пример
- Найти произведение и частое комплексных чисел в тригонометрической форме:
- $z_1 = -4 + 4i; \ z_2 = 9\sqrt{3} 9i$

Возведение комплексного числа в степень

- Формула Муавра:
- $ightharpoonup z = r (cos \varphi + sin \varphi i)$
- $ightharpoonup z^n = r^n(cos(n\varphi) + sin(n\varphi)i)$

Возведение комплексного числа в степень

- Пример
- Выполнить возведение в 3-ю степень комплексного числа^
- ightharpoonup Z = -5 -5i

Извлечение корня из комплексного числа

- Формула Муавра
- $ightharpoonup z = r (cos \varphi + sin \varphi i)$
- $\sqrt[n]{z} = \sqrt[n]{z} \left(cos\left(\frac{\varphi+2\pi k}{n}\right) + sin\left(\frac{\varphi+2\pi k}{n}\right) i \right), k = 0, 1, 2 \dots, n-1$
- ▶ Комплексное число имеет ровно п корней степени п.

Извлечение корня из комплексного числа

- Пример
- Найти все значения корня пятой степени из комплексного числа $z = 4 4\sqrt{3}$