Augmented Reality for Bone Visualization in Orthopedic Surgery

Davis Rempe (University of Nebraska) and Josiah Smith (Georgia Tech) Advisor: Dr. Brian Chen

Problem: Orthopedic Surgery is Blind

- No capable real-time imaging
 - High resolution MRI
 - Real-time ultrasound
- Cannot see these data during surgery
 - We try to solve this
- Image alignment

Project Goal

 Visualize 3D bone models in correct location through augmented reality (AR)

Outline

- Background
- Tools
- Methods Implementation/Algorithms
- Demonstration
- Future Work

Mobile AR

- Microsoft HoloLens
 - Expensive
 - Just released
- Google Cardboard
 - Created for virtual reality (VR)
 - Inexpensive
 - Good for proof of concept
 - More powerful AR devices can handle it if phone can

Google Cardboard

- Android
- Many apps use AR, few render in stereo for headmounted display
 - CMoar RPG
 - Vuforia Library
- Free Google API for Cardboard
 - No one has used it for AR

Cardboard

Possible with Software Libraries

- Marker Tracking
 - OpenCV
 - Aruco
- Graphics/Rendering
 - Google VR SDK (GVR)
 - OpenGL ES
- Bone model visualization easy with these capabilities
- New goal: Cardboard AR library

Tracking Markers

- What is tracking marker?
 - Unique pattern
 - High contrast
- Aruco library
 - Individual ID's
 - Well-tested tracking
 - Variable marker size

Robust Tracking

- Single marker limits tracking
- Multi-marker tracking
 - Board of markers
 - More accurate, but still limits angle
- Marker Cube
 - All angles, more accurate
 - Average detected cube faces

Rigid Body Detection

- Generalize cube detection to any rigid body
- Unknown markers and positions
- Two phases:
 - Formation
 - Strong correlation considered rigid
 - Tracking
 - Any visible marker provides position/pose

Getting the Camera Image

- Capture image with Android SDK
- Two "Surfaces":
 - Texture for stereo rendering
 - Image to process
- Initially requested at same rate
 - Processing too slow
- Now request at different rates

Determining Processing Resolution

- Ran tests to determine performance
 - Samsung Galaxy S6 (Android 6.0.1), 35 mm markers with 5 mm padding

Stereo Rendering

- Single 3D scene
 - o Rendered twice (left and right)
- Phone camera view plane
- 3D objects in front of plane
- Problems:
 - Parallax
 - Focus
- Move and scale causes collision

Framebuffers

- Render separately
- Combine to create texture

Stereo Cardboard Display

Software Product

- Open-source library
 - https://github.com/davrempe/cardboardAR-lib
- Many applications
 - Surgery, education, gaming, etc.
- Prototype of bone model visualization
 - Marker cube
 - Renders axes and ultrasound bone model
- Demo

Future Work

- Current implementation:
 - Jittery/inaccurate tracking
 - Performance testing (max angle of detection)
 - Overheating
- Improvements:
 - Rigid-body detection only minimum viable
 - Optimize marker detection
 - Tracking based on previous frame
 - Lacks computer vision capabilities
 - Occlusion detection, markerless object detection, etc.

Questions