Maximizing the Spread of Influence through a Social Network

Authors: David Kempe, Jon Kleinberg, Éva Tardos KDD 2003

Adapted from author's slide at:

Social Network and Spread of Influence

- Social network plays a fundamental role as a medium for the spread of INFLUENCE among its members
 - Opinions, ideas, information, innovation...

Problem Setting

Given

- a limited budget B for initial advertising (e.g. give away free samples of product)
- estimates for influence between individuals

Goal

trigger a large cascade of influence (e.g. further adoptions of a product)

Question

- Which set of individuals should B target at?
- Application besides product marketing
 - spread an innovation
 - detect stories in blogs

What we need

- Form models of influence in social networks.
- Obtain data about particular network (to estimate inter-personal influence).
- Devise algorithm to maximize spread of influence.

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Models of Influence

- First mathematical models
 - □ [Schelling '70/'78, Granovetter '78]
- Large body of subsequent work:
 - [Rogers '95, Valente '95, Wasserman/Faust '94]
- Two basic classes of diffusion models: threshold and cascade
- General operational view:
 - A social network is represented as a directed graph, with each person (customer) as a node
 - Nodes start either active or inactive
 - An active node may trigger activation of neighboring nodes
 - Monotonicity assumption: active nodes never deactivate

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Linear Threshold Model

- A node v has random threshold $\theta_v \sim U[0,1]$
- A node v is influenced by each neighbor w according to a weight b_{vw} such that

$$\sum_{w \text{ neighbor of } v} b_{v,w} \le 1$$

• A node v becomes active when at least (weighted) θ_v fraction of its neighbors are active

$$\sum_{w \text{ active neighbor of } v} b_{v,w} \ge \theta_v$$

Example

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Independent Cascade Model

- When node *v* becomes active, it has a single chance of activating each currently inactive neighbor *w*.
- The activation attempt succeeds with probability p_{vw} .

Example

Stop!

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Influence Maximization Problem

- Influence of node set S: f(S)
 - expected number of active nodes at the end, if set S is the initial active set

Problem:

- □ Given a parameter k (budget), find a k-node set S to maximize f(S)
- Constrained optimization problem with f(S) as the objective function

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

f(S): properties (to be demonstrated)

- Non-negative (obviously)
- Monotone: $f(S+v) \ge f(S)$
- Submodular:
 - □ Let *N* be a finite set
 - A set function $f: 2^N \mapsto \Re{is}$ submodular *iff*

$$\forall S \subset T \subset N, \forall v \in N \setminus T,$$

$$f(S+v) - f(S) \ge f(T+v) - f(T)$$

(diminishing returns)

Bad News

- For a submodular function *f*, if *f* only takes nonnegative value, and is monotone, finding a *k*-element set *S* for which *f*(*S*) is maximized is an NP-hard optimization problem[GFN77, NWF78].
- It is NP-hard to determine the optimum for influence maximization for both independent cascade model and linear threshold model.

Good News

- We can use Greedy Algorithm!
 - Start with an empty set S
 - □ For k iterations:

Add node v to S that maximizes f(S + v) - f(S).

- How good (bad) it is?
 - □ Theorem: The greedy algorithm is a (1 1/e) approximation.
 - □ The resulting set S activates at least (1-1/e) > 63% of the number of nodes that any size-k set S could activate.

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Key 1: Prove submodularity

$$\forall S \subset T \subset N, \forall v \in N \setminus T,$$

$$f(S+v) - f(S) \ge f(T+v) - f(T)$$

Submodularity for Independent Cascade

 Coins for edges are flipped during activation attempts.

Submodularity for Independent Cascade

- Coins for edges are flipped during activation attempts.
- Can pre-flip all coins and reveal results immediately.

- Active nodes in the end are reachable via green paths from initially targeted nodes.
- Study reachability in green graphs

Submodularity, Fixed Graph

- Fix "green graph" G. g(S) are nodes reachable from S in G.
- Submodularity: $g(T + v) g(T) \subseteq g(S + v) g(S)$ when $S \subseteq T$.

- g(S+v) g(S): nodes reachable from S+v, but not from S.
- From the picture: $g(T+v) g(T) \subseteq g(S+v) g(S)$ when $S \subseteq T$ (indeed!).

Submodularity of the Function

Fact: A non-negative linear combination of submodular functions is submodular

$$f(S) = \sum_{G} \text{Prob}(G \text{ is green graph}) \cdot g_{G}(S)$$

- = $g_G(S)$: nodes reachable from S in G.
- Each $g_G(S)$: is submodular (previous slide).
- Probabilities are non-negative.

Submodularity for Linear Threshold

- Use similar "green graph" idea.
- Once a graph is fixed, "reachability" argument is identical.
- How do we fix a green graph now?
- Each node picks at most one incoming edge, with probabilities proportional to edge weights.
- Equivalent to linear threshold model (trickier proof).

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Key 2: Evaluating f(S)

Evaluating f(S)

- How to evaluate f(S)?
- Still an open question of how to compute efficiently
- But: very good estimates by simulation
 - \Box repeating the diffusion process often enough (polynomial in n; $1/\epsilon$)
 - □ Achieve $(1 \pm \varepsilon)$ -approximation to f(S).
- Generalization of Nemhauser/Wolsey proof shows: Greedy algorithm is now a $(1-1/e-\varepsilon')$ -approximation.

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Experiment Data

- A collaboration graph obtained from coauthorships in papers of the arXiv high-energy physics theory section
- co-authorship networks arguably capture many of the key features of social networks more generally
- Resulting graph: 10748 nodes, 53000 distinct edges

Experiment Settings

- Linear Threshold Model: multiplicity of edges as weights
 - □ weight(v→ω) = C_{vw}/dv , weight(ω→v) = C_{wv}/dw
- Independent Cascade Model:
 - □ Case 1: uniform probabilities *p* on each edge
 - \square Case 2: edge from v to ω has probability $1/d\omega$ of activating ω .
- Simulate the process 10000 times for each targeted set, re-choosing thresholds or edge outcomes pseudorandomly from [0, 1] every time
- Compare with other 3 common heuristics
 - (in)degree centrality, distance centrality, random nodes.

- Models of influence
 - Linear Threshold
 - Independent Cascade
- Influence maximization problem
 - Algorithm
 - Proof of performance bound
 - Compute objective function
- Experiments
 - Data and setting
 - Results

Results: linear threshold model

Independent Cascade Model – Case 1

Independent Cascade Model – Case 2

Reminder: linear threshold model

