- 1. Vérifier que 31 est une solution de 10x 11 = 8x + 51.
- 2. Vérifier que 7 est une solution de $\frac{3}{4}x + \frac{2}{5} = \frac{3}{2}x \frac{97}{20}$.
- 3. Vérifier que $\sqrt{2}$ est une solution de $\sqrt{2}x \sqrt{6} = -\sqrt{3}x + 2$.
- 1. D'une part :

$$10 \times 31 - 11 = 310 - 11$$

= 299

$$8 \times 31 + 51 = 248 + 51$$

= 299

Donc 31 est bien solution de l'équation 10x - 11 = 8x + 51.

2. D'une part :

$$\frac{3}{4} \times 7 + \frac{2}{5} = \frac{21}{4} + \frac{2}{5}$$

$$= \frac{21 \times 5}{4 \times 5} + \frac{2 \times 4}{5 \times 4}$$

$$= \frac{105}{20} + \frac{8}{20}$$

$$= \frac{113}{20}$$

$$\frac{3}{2} \times 7 - \frac{97}{20} = \frac{21}{2} - \frac{97}{20}$$

$$= \frac{21 \times 10}{2 \times 10} - \frac{97}{20}$$

$$= \frac{210}{20} - \frac{97}{20}$$

$$= \frac{113}{20}$$

Donc 7 est bien solution de l'équation $\frac{3}{4}x + \frac{2}{5} = \frac{3}{2}x - \frac{97}{20}$.

3. D'une part :

$$\sqrt{2} \times \sqrt{2} - \sqrt{6} = \left(\sqrt{2}\right)^2 - \sqrt{6}$$
$$= 2 - \sqrt{6}$$

$$-\sqrt{3} \times \sqrt{2} + 2 = -\sqrt{2 \times 3} + 2$$

= $2 - \sqrt{6}$

Donc $\sqrt{2}$ est bien solution de l'équation $\sqrt{2}x - \sqrt{6} = -\sqrt{3}x + 2$.

Exercice 2

Résoudre les équations suivantes :

$$1. 34x - 5 = 23x + 50$$

4.
$$\frac{3}{4}x + 1 = \frac{7}{10}x - \frac{2}{7}$$

2.
$$3x + 1 = 3x - 7$$

5.
$$\sqrt{2}x - 2 = \pi x + \sqrt{5}$$

3.
$$2,4x-3=-5,7x+8$$

6.
$$2x - 3(4x - 5) = 17$$

1.
$$34x - 5 = 23x + 50$$
 \iff $34x - 5 - 23x + 5 = 23x + 50 - 23x + 5$ \iff $11x = 55$ \iff $\frac{11x}{11} = \frac{55}{11}$ \iff $x = 5$

$$\mathcal{S}_1 = \{5\}$$

2.
$$3x + 1 = 3x - 7$$
 \iff $3x + 1 - 3x = 3x - 7 - 3x$ \iff $1 = -7$

Cette égalité est toujours fausse.

 $\mathcal{S}_2 = \varnothing$ Cette équation n'a pas de solution.

3.
$$2, 4x - 3 = -5, 7x + 8$$
 \iff $2, 4x - 3 + 5, 7x + 3 = -5, 7x + 8 + 5, 7x + 3$ \iff $8, 1x = 11$ \iff $\frac{8, 1x}{8, 1} = \frac{11}{8, 1}$ \iff $x = \frac{110}{81}$

$$S_3 = \left\{ \frac{110}{81} \right\}$$

4.
$$\frac{3}{4}x + 1 = \frac{7}{10}x - \frac{2}{7}$$
 \iff $\frac{3}{4}x + 1 - \frac{7}{10}x - 1 = \frac{7}{10}x - \frac{2}{7} - \frac{7}{10}x - 1$
 \Leftrightarrow $\frac{3 \times 5}{4 \times 5}x - \frac{7 \times 2}{10 \times 2}x = -\frac{2}{7} - 1$
 \Leftrightarrow $\frac{15}{20}x - \frac{14}{20}x = -\frac{2}{7} - \frac{7}{7}$
 \Leftrightarrow $\frac{1}{20}x = -\frac{9}{7}$
 \Leftrightarrow $\frac{20}{20}x = -\frac{9 \times 20}{7}$
 \Leftrightarrow $x = -\frac{180}{7}$

$$S_4 = \left\{ -\frac{180}{7} \right\}$$

5.
$$\sqrt{2}x - 2 = \pi x + \sqrt{5}$$
 \iff $\sqrt{2}x - 2 - \pi x + 2 = \pi x + \sqrt{5} - \pi x + 2$
 \iff $\sqrt{2}x - \pi x = \sqrt{5} + 2$
 \iff $(\sqrt{2} - \pi) x = 2 + \sqrt{5}$
 \iff $\frac{(\sqrt{2} - \pi) x}{\sqrt{2} - \pi} = \frac{2 + \sqrt{5}}{\sqrt{2} - \pi}$
 \iff $x = \frac{2 + \sqrt{5}}{\sqrt{2} - \pi}$

$$\mathcal{S}_5 = \left\{ \frac{2 + \sqrt{5}}{\sqrt{2} - \pi} \right\}$$

6.
$$2x - 3(4x - 5) = 17$$
 \iff $2x - 3 \times 4x - 3 \times (-5) = 17$ \iff $2x - 12x + 15 = 17$ \iff $-10x + 15 - 15 = 17 - 15$ \iff $-10x = 2$

$$\iff \frac{-10x}{-10} = \frac{2}{-10}$$

$$\iff x = -0, 2$$

$$S_6 = \{-0, 2\}$$

Résoudre les équations suivantes :

1.
$$(3x-5)(4x+8)=0$$

4.
$$(2x-1)(3x+2) + (2x-1)(7-x) = 0$$

1.
$$(3x-5)(4x+8) = 0$$

2. $x^2 + 3x - 5 = x^2 - 7x - 4$
3. $(x-5)^2 = (x+4)^2$

5.
$$(4x-1)(x-7)-(x-7)^2=0$$

3.
$$(x-5)^2 = (x+4)^2$$

1.
$$(3x-5)(4x+8)=0$$
 \iff $3x-5=0$ ou $4x+8=0$ \iff $3x=5$ ou $4x=-8$ \iff $\frac{3x}{3}=\frac{5}{3}$ ou $\frac{4x}{4}=-\frac{8}{4}$ \iff $x=\frac{5}{3}$ ou $x=-2$

$$\mathcal{S}_1 = \left\{ -2 \; ; \frac{5}{3} \right\}$$

2.
$$x^2 + 3x - 5 = x^2 - 7x - 4$$
 \iff $x^2 + 3x - 5 - x^2 = x^2 - 7x - 4 - x^2$ \iff $3x - 5 = -7x - 4$ On obtient une équation du premier degré. \iff $3x + 7x = -4 + 5$

$$\iff 10x = 1$$

$$\iff \frac{10x}{10} = \frac{1}{10}$$

$$\iff x = 0, 1$$

$$\mathcal{S}_2 = \{0, 1\}$$

3. Méthode 1: En développant

$$(x-5)^2 = (x+4)^2 \qquad \Longleftrightarrow \qquad x^2 - 2 \times x \times 5 + 5^2 = x^2 + 2 \times x \times 4 + 4^2$$
 On développe les identités remarquables.
$$\Leftrightarrow \qquad x^2 - 10x + 25 - x^2 = x^2 + 8x + 16 - x^2$$

$$\Leftrightarrow \qquad -10x + 25 = 8x + 16$$

$$\Leftrightarrow \qquad -10x - 8x = 16 - 25$$

$$\Leftrightarrow \qquad -18x = -9$$

$$\Leftrightarrow \qquad \frac{-18x}{-18} = \frac{-9}{-18}$$

$$\Leftrightarrow \qquad x = \frac{1}{2}$$

$$S_3 = \left\{ \frac{1}{2} \right\}$$

Méthode 2 : En factorisant

$$(x-5)^2 = (x+4)^2 \qquad \Longleftrightarrow \qquad (x-5)^2 - (x+4)^2 = 0$$
 On reconnait une identité remarquable de la forme $a^2 - b^2$.
$$\iff \qquad ((x-5) + (x+4)) \left((x-5) - (x+4)\right) = 0$$
 On factorise en $(a+b)(a-b)$.
$$\iff \qquad (x-5+x+4)(x-5-x-4) = 0$$

$$\iff \qquad (2x-1)\times(-9) = 0$$

$$\iff \qquad \frac{(2x-1)\times(-9)}{-9} = \frac{0}{-9}$$

$$\iff \qquad 2x-1=0$$

$$\iff \qquad 2x=1$$

$$\iff \qquad \frac{2x}{2} = \frac{1}{2}$$

$$\iff \qquad x = \frac{1}{2}$$

$$S_3 = \left\{\frac{1}{2}\right\}$$

4.
$$(2x-1)(3x+2) + (2x-1)(7-x) = 0$$
 \iff $(2x-1)[(3x+2) + (7-x)] = 0$ \Leftrightarrow $(2x-1)[3x+2+7-x] = 0$ \Leftrightarrow $(2x-1)(2x+9) = 0$ \Leftrightarrow $(2x-1)(2x+9) = 0$ \Leftrightarrow $2x-1=0$ ou $2x+9=0$ \Leftrightarrow $2x=1$ ou $2x=-9$ \Leftrightarrow $x=\frac{1}{2}$ ou $x=-\frac{9}{2}$ $\mathcal{S}_4 = \left\{-\frac{9}{2}; \frac{1}{2}\right\}$

5.
$$(4x-1)(x-7) - (x-7)^2 = 0$$
 \iff $(4x-1)(x-7) - (x-7)(x-7) = 0$ \Leftrightarrow $(x-7)[(4x-1) - (x-7)] = 0$ \Leftrightarrow $(x-7)[4x-1-x+7] = 0$ \Leftrightarrow $(x-7)(3x+6) = 0$ \Leftrightarrow $x-7=0$ ou $3x+6=0$ \Leftrightarrow $x=7$ ou $3x=-6$ \Leftrightarrow $x=7$ ou $x=-2$

$$S_5 = \{-2; 7\}$$

Exercice 4

Résoudre les inéquations suivantes et faire un schéma de l'ensemble des solutions.

1.
$$2x - 5 < 7x - 35$$

2.
$$3x + 1 > -8x - 7$$

3.
$$-1, 2x - 8, 1 > 3, 2x + 5, 7$$

4.
$$1, 4x - 3 \ge -5, 7x - 18$$

$$5. \ \frac{2}{5}x + 1 \leqslant \frac{7}{10}x + \frac{2}{3}$$

$$6. \ \frac{3}{2}x + \frac{2}{3} > -\frac{1}{4}x + \frac{1}{5}$$

Donner le tableau de signes des expressions suivantes :

1.
$$3x + 2$$

2.
$$-4x - 9$$

3.
$$\frac{3}{5}x - \frac{2}{7}$$

4.
$$\sqrt{3}x - 3$$

5.
$$(2x-1)(-3x+2)$$

6.
$$\frac{5x-2}{-7x-8}$$

$$3x + 2 = 0 \quad \iff \quad 3x = -2$$
$$\iff \quad x = -\frac{2}{3}$$

$$-4x - 9 = 0 \quad \iff \quad -4x = 9$$
$$\iff \quad x = -\frac{9}{4}$$

x	$-\infty$		$-\frac{2}{3}$		$+\infty$
signe de $3x + 2$		_	0	+	

x	$-\infty$	$\frac{9}{4}$	$+\infty$
signe de $-4x - 9$	+	0	_

3. Calcul de la racine :

$$\frac{3}{5}x - \frac{2}{7} = 0 \quad \iff \quad \frac{3}{5}x = \frac{2}{7}$$

$$\iff \quad \frac{5}{3} \times \frac{3}{5}x = \frac{5}{3} \times \frac{2}{7}$$

$$\iff \quad x = \frac{10}{21}$$

x	$-\infty$	$\frac{10}{21}$		$+\infty$
signe de $\frac{3}{5}x - \frac{2}{7}$	_	- 0	+	

4. Calcul de la racine :

$$\sqrt{3}x - 3 = 0 \qquad \Longleftrightarrow \qquad \sqrt{3}x = 3$$

$$\iff \qquad x = \frac{3}{\sqrt{3}}$$

$$\iff \qquad x = \sqrt{3}$$

x	$-\infty$	$\sqrt{3}$	$+\infty$
signe de $\sqrt{3}x - 3$	_	- 0	+

5. Calcul des racines :

$$2x - 1 = 0 \quad \iff \quad 2x = 1$$
$$\iff \quad x = \frac{1}{2}$$

$$-3x + 2 = 0 \quad \iff \quad -3x = -2$$
$$\iff \quad x = \frac{2}{3}$$

x	$-\infty$		$\frac{1}{2}$		$\frac{2}{3}$		$+\infty$
signe de $2x-1$		_	0	+		+	
signe de $-3x + 2$		+		+	0	_	
signe de $(2x-1)(-3x+2)$		_	0	+	0	_	

6. Calcul des racines :

$$5x - 2 = 0 \quad \iff \quad 5x = 2$$
$$\iff \quad x = \frac{2}{5}$$

$$-7x - 8 = 0 \iff -7x = 8$$

$$\iff x = -\frac{8}{7}$$

x	$-\infty$		$-\frac{8}{7}$		$\frac{2}{5}$		$+\infty$
signe de $5x-2$		_		_	0	+	
signe de $-7x - 8$		+	0	_		_	
signe de $\frac{5x-2}{-7x-8}$		_		+	0	_	

Exercice 6

Sans justifier, lire les équations des droites (d_1) à (d_5) du graphique suivant :

$$\cdot (d_1): y = \frac{1}{10}x$$

•
$$(d_3): y = \frac{3}{4}x - 6$$

$$\cdot (d_5): y = -4x + 7$$

•
$$(d_2): y = -\frac{1}{4}x + 2$$
 • $(d_4): y = 3x - 5$

$$(d_4): y = 3x - 5$$

Déterminer les équations réduites des droites (SR) et (DU) du graphique précédent.

Déterminer et tracer sur le graphique précédent l'équation réduite de la droite passant par $B\left(300\;;\;-95\right)$ et $T\left(-111\;;\;42\right)$.

• On a S(7; 8) et R(9; 6). La droite (SR) a une équation réduite de la forme y = mx + p avec m et p deux réels à déterminer.

$$m = \frac{y_R - y_S}{x_R - x_S}$$
$$= \frac{6 - 8}{9 - 7}$$
$$= -1$$

D'où
$$(SR): y = -x + p$$

Déteminons p :

Les coordonnées de S vérifient l'équation y=-x+p.

$$y_S = -x_S + p \iff 8 = -7 + p$$

 $\iff p = 15$

CONCLUSION : La droite (SR) a pour équation réduite y=-x+15.

• On a D(-4; 3) et U(10; -3). La droite (DU) a une équation réduite de la forme y = mx + p avec m et p deux réels à déterminer.

7

$$m = \frac{y_U - y_D}{x_U - x_D}$$
$$= \frac{-3 - 3}{10 + 4}$$
$$= -\frac{6}{14}$$
$$= -\frac{3}{7}$$

$$\mathrm{D'où}\;(DU):y=-\frac{3}{7}x+p$$

Déteminons p:

Les coordonnées de D vérifient l'équation $y=-\frac{3}{7}x+p$.

$$y_D = -\frac{3}{7}x_D + p \quad \iff \quad 3 = -\frac{3}{7} \times (-4) + p$$

$$\iff \quad \frac{21}{7} = \frac{12}{7} + p$$

$$\iff \quad p = \frac{9}{7}$$

CONCLUSION : La droite (DU) a pour équation réduite $y=-\frac{3}{7}x+\frac{9}{7}$.

• On a B(300; -95) et T(-111; 42). La droite (BT) a une équation réduite de la forme y = mx + p avec m et p deux réels à déterminer.

$$m = \frac{y_T - y_B}{x_T - x_B}$$

$$= \frac{42 + 95}{-111 - 300}$$

$$= -\frac{137}{411}$$

$$= -\frac{1}{3}$$

D'où
$$(BT): y = -\frac{1}{3}x + p$$
 Déteminons p :

Les coordonnées de B vérifient l'équation $y = -\frac{1}{3}x + p$.

$$y_B = -\frac{1}{3}x_B + p \qquad \Longleftrightarrow \qquad -95 = -\frac{1}{3} \times 300 + p$$

$$\iff \qquad -95 = -100 + p$$

$$\iff \qquad p = 5$$

CONCLUSION : La droite (BT) a pour équation réduite $y = -\frac{1}{3}x + 5$.

Exercice 8

- 1. Le couple (4;-2) est-il solution du système $\begin{cases} 2x+y=6\\ y=x-6 \end{cases}$?
- 2. Le couple (2;1) est -il solution du système $\begin{cases} 2x + 3y = 8 \\ 3x 2y = -1 \end{cases}$?
- **1.** Pour x = 4 et y = -2:

$$2x + y = 2 \times 4 - 2$$
 $x - 6 = 4 - 6$
= 6 $= -2$

Le couple (4; -2) est solution des deux équations. Il est donc solution du système.

2. Pour x = 2 et y = 1:

$$2x + 3y = 2 \times 2 + 3 \times 1$$
$$-7$$

Le couple (2;1) n'est pas solution de la première équation. Il n'est donc pas solution du système.

8

Résoudre graphiquement les systèmes suivants :

1.
$$\begin{cases} y = 2x + 1 \\ y = -3x + 6 \end{cases}$$

$$3. \begin{cases} y = x - 3 \\ 2x + y = 3 \end{cases}$$

$$2. \begin{cases} y = 5x + 6 \\ x = -2 \end{cases}$$

4.
$$\begin{cases} x - 2y = -7 \\ 2x - y = -5 \end{cases}$$

1. On trace les droites (d_1) et (d_2) d'équations **3.** $2x + y = 3 \iff y = -2x + 3$ respectives y = 2x + 1 et y = -3x + 6.

On trace les droites (d_5) et (d_6) d'équations respectives y = x - 3 et y = -2x + 3.

 (d_1) et (d_2) sont sécantes en A(1; 3) donc

$$S_1 = \{(1;3)\}$$

2. On trace les droites (d_3) et (d_4) d'équations respectives y = 5x + 6 et x = -2.

 (d_5) et (d_6) sont sécantes en C(2; -1) donc

$$S_3 = \{(2; -1)\}$$

4. x - 2y = -7 \iff -2y = -x - 7 \iff $y = \frac{1}{2}x + \frac{7}{2}$ 2x - y = -5 \iff y = 2x + 5

$$2x - y = -5 \quad \iff \quad y = 2x + 5$$

On trace les droites (d_7) et (d_8) d'équations respectives $y=\frac{1}{2}x+\frac{7}{2}$ et y=2x+5.

 (d_3) et (d_4) sont sécantes en B(-2; -4) donc

$$S_2 = \{(-2; -4)\}$$

 (d_7) et (d_8) sont sécantes en D(-1; 3) donc

$$S_4 = \{(-1;3)\}$$

Résoudre chacun des systèmes par substitution. 1. $\left\{ \begin{array}{l} x+3y=8 \\ 2x-5y=-17 \end{array} \right.$

1.
$$\begin{cases} x + 3y = 8 \\ 2x - 5y = -17 \end{cases}$$

3.
$$\begin{cases} 4x - 3y = -13 \\ 4x - y = 1 \end{cases}$$

2.
$$\begin{cases} 2x + y = 4 \\ 5x + 3y = 9 \end{cases}$$

4.
$$\begin{cases} 8x + 3y = -4 \\ x + 5y = 1 \end{cases}$$

1. Soit (x; y) un couple de réels.

$$\begin{cases} x + 3y = 8 \\ 2x - 5y = -17 \end{cases} \iff \begin{cases} x = 8 - 3y \\ 2x - 5y = -17 \end{cases}$$

$$\iff \begin{cases} x = 8 - 3y \\ 2(8 - 3y) - 5y = -17 \end{cases}$$

$$\iff \begin{cases} x = 8 - 3y \\ 16 - 6y - 5y = -17 \end{cases}$$

$$\iff \begin{cases} x = 8 - 3y \\ -11y = -33 \end{cases}$$

$$\iff \begin{cases} x = 8 - 3y \\ y = 3 \end{cases}$$

$$\iff \begin{cases} x = 8 - 3 \times 3 \\ y = 3 \end{cases}$$

$$\iff \begin{cases} x = 8 - 3 \times 3 \\ y = 3 \end{cases}$$

$$\iff \begin{cases} x = 8 - 3 \times 3 \\ y = 3 \end{cases}$$

$$\iff \begin{cases} x = -1 \\ y = 3 \end{cases}$$

$$S_1 = \{(-1;3)\}$$

2. Soit (x; y) un couple de réels.

$$\begin{cases} 2x + y = 4 \\ 5x + 3y = 9 \end{cases} \iff \begin{cases} y = 4 - 2x \\ 5x + 3(4 - 2x) = 9 \end{cases}$$

$$\iff \begin{cases} y = 4 - 2x \\ 5x + 12 - 6x = 9 \end{cases}$$

$$\iff \begin{cases} y = 4 - 2x \\ -x = -3 \end{cases}$$

$$\iff \begin{cases} y = 4 - 2 \times 3 \\ x = 3 \end{cases}$$

$$\iff \begin{cases} y = -2 \\ -x = -3 \end{cases}$$

10

$$S_2 = \{(3; -2)\}$$

$$\begin{cases} 4x - 3y = -13 \\ 4x - y = 1 \end{cases} \iff \begin{cases} 4x - 3y = -13 \\ 4x - 1 = y \end{cases}$$

$$\iff \begin{cases} 4x - 3(4x - 1) = -13 \\ y = 4x - 1 \end{cases}$$

$$\iff \begin{cases} 4x - 12x + 3 = -13 \\ y = 4x - 1 \end{cases}$$

$$\iff \begin{cases} -8x = -16 \\ y = 4x - 1 \end{cases}$$

$$\iff \begin{cases} x = 2 \\ y = 4 \times 2 - 1 \end{cases}$$

$$\iff \begin{cases} x = 2 \\ y = 7 \end{cases}$$

$$S_3 = \{(2;7)\}$$

$$\begin{cases} 8x + 3y = -4 \\ x + 5y = 1 \end{cases} \iff \begin{cases} 8x + 3y = -4 \\ x = 1 - 5y \end{cases}$$

$$\iff \begin{cases} 8(1 - 5y) + 3y = -4 \\ x = 1 - 5y \end{cases}$$

$$\iff \begin{cases} 8 - 40y + 3y = -4 \\ x = 1 - 5y \end{cases}$$

$$\iff \begin{cases} -37y = -12 \\ x = 1 - 5y \end{cases}$$

$$\iff \begin{cases} y = \frac{12}{37} \\ x = 1 - 5 \times \frac{12}{37} \end{cases}$$

$$\iff \begin{cases} y = \frac{12}{37} \\ x = \frac{37}{37} - \frac{60}{37} \end{cases}$$

$$\iff \begin{cases} y = \frac{12}{37} \\ x = -\frac{23}{37} \end{cases}$$

$$\mathcal{S}_4 = \left\{ \left(-\frac{23}{37} ; \frac{12}{37} \right) \right\}$$

Résoudre chacun des systèmes par combinaisons linéaires.

1.
$$\begin{cases} 2x + 3y = 5 \\ 5x - 3y = -19 \end{cases}$$
2.
$$\begin{cases} 3x + 4y = -6 \\ 5x + y = -10 \end{cases}$$
3.
$$\begin{cases} 4x - 6y = 3 \\ 5x + 7y = 1 \end{cases}$$
4.
$$\begin{cases} x + 3y = 4 \\ 8x - 4y = 5 \end{cases}$$

1. Soit (x; y) un couple de réels.

$$\begin{cases} 2x + 3y = 5 \\ 5x - 3y = -19 \end{cases} \iff \begin{cases} 2x + 5x + 3y - 3y = 5 - 19 \\ 5x - 3y = -19 \end{cases}$$

$$\iff \begin{cases} 7x = -14 \\ 5x - 3y = -19 \end{cases}$$

$$\iff \begin{cases} x = -2 \\ 5 \times (-2) - 3y = -19 \end{cases}$$

$$\iff \begin{cases} x = -2 \\ -10 - 3y = -19 \end{cases}$$

$$\iff \begin{cases} x = -2 \\ -3y = -9 \end{cases}$$

$$\iff \begin{cases} x = -2 \\ y = 3 \end{cases}$$

$$S_1 = \{(-2;3)\}$$

$$\begin{cases} 3x + 4y = -6 \\ 5x + y = -10 \end{cases} \iff \begin{cases} 3x + 4y = -6 \\ -4 \times (5x + y) = -10 \times (-4) \end{cases}$$

$$\iff \begin{cases} 3x + 4y = -6 \\ -20x - 4y = 40 \end{cases}$$

$$\iff \begin{cases} 3x + 4y = -6 \\ 3x - 20x + 4y - 4y = -6 + 40 \end{cases}$$

$$\iff \begin{cases} 3x + 4y = -6 \\ -17x = 34 \end{cases}$$

$$\iff \begin{cases} 3x + 4y = -6 \\ x = -2 \end{cases}$$

$$\iff \begin{cases} 3x + 4y = -6 \\ x = -2 \end{cases}$$

$$\iff \begin{cases} 3x - 20x + 4y - 4y = -6 + 40 \end{cases}$$

$$\iff \begin{cases} 3x - 20x + 4y = -6 \\ x = -2 \end{cases}$$

$$\iff \begin{cases} 3x - 20x + 4y = -6 \\ x = -2 \end{cases}$$

$$\iff \begin{cases} 3x - 20x + 4y = -6 \\ x = -2 \end{cases}$$

$$\iff \begin{cases} 3x - 20x + 4y = -6 \\ x = -2 \end{cases}$$

$$\iff \begin{cases} 4y = 0 \\ x = -2 \end{cases}$$

$$\iff \begin{cases} y = 0 \\ x = -2 \end{cases}$$

$$S_2 = \{(-2;0)\}$$

3. Soit (x; y) un couple de réels.

$$\begin{cases} 4x - 6y = 3 \\ 5x + 7y = 1 \end{cases} \iff \begin{cases} 5 \times (4x - 6y) = 3 \times 5 \\ -4 \times (5x + 7y) = 1 \times (-4) \end{cases}$$

$$\iff \begin{cases} 20x - 30y = 15 \\ -20x - 28y = -4 \end{cases}$$

$$\iff \begin{cases} 20x - 30y = 15 \\ 20x - 20x - 30y - 28y = 15 - 4 \end{cases}$$

$$\iff \begin{cases} 20x - 30y = 15 \\ -58y = 11 \end{cases}$$

$$\iff \begin{cases} 20x - 30y = 15 \\ y = -\frac{11}{58} \end{cases}$$

$$\iff \begin{cases} 20x - 30 \times \left(-\frac{11}{58}\right) = 15 \\ y = -\frac{11}{58} \end{cases}$$

$$\iff \begin{cases} 20x = -\frac{330}{58} + \frac{15 \times 58}{58} \\ y = -\frac{11}{58} \end{cases}$$

$$\iff \begin{cases} 20x = -\frac{330}{58} + \frac{870}{58} \\ y = -\frac{11}{58} \end{cases}$$

$$\iff \begin{cases} x = \frac{540}{58} \times \frac{1}{20} \\ y = -\frac{11}{58} \end{cases}$$

$$\iff \begin{cases} x = \frac{27}{58} \\ y = -\frac{11}{58} \end{cases}$$

$$\iff \begin{cases} x = \frac{27}{58} \\ y = -\frac{11}{58} \end{cases}$$

$$\iff \begin{cases} x = \frac{27}{58} \\ y = -\frac{11}{58} \end{cases}$$

$$\mathcal{S}_3 = \left\{ \left(\frac{27}{58} ; -\frac{11}{58} \right) \right\}$$

$$\begin{cases} x + 3y = 4 \\ 8x - 4y = 5 \end{cases} \iff \begin{cases} -8 \times (x + 3y) = -8 \times 4 \\ 8x - 4y = 5 \end{cases}$$

$$\iff \begin{cases}
-8x - 24y = -32 \\
8x - 4y = 5
\end{cases}$$

$$\iff \begin{cases}
-8x + 8x - 24y - 4y = -32 + 5 \\
8x - 4y = 5
\end{cases}$$

$$\iff \begin{cases}
-28y = -27 \\
8x - 4y = 5
\end{cases}$$

$$\iff \begin{cases}
y = \frac{27}{28} \\
8x - 4 \times \frac{27}{28} = 5
\end{cases}$$

$$\iff \begin{cases}
y = \frac{27}{28} \\
8x - \frac{108}{28} = 5
\end{cases}$$

$$\iff \begin{cases}
y = \frac{27}{28} \\
8x = \frac{5 \times 28}{8} + \frac{108}{28}
\end{cases}$$

$$\iff \begin{cases}
y = \frac{27}{28} \\
8x = \frac{248}{28}
\end{cases}$$

$$\iff \begin{cases}
y = \frac{27}{28} \\
x = \frac{248}{28} \times \frac{1}{8}
\end{cases}$$

$$\iff \begin{cases}
y = \frac{27}{28} \\
x = \frac{248}{28} \times \frac{1}{8}
\end{cases}$$

$$\iff \begin{cases}
y = \frac{27}{28} \\
x = \frac{31}{28}
\end{cases}$$

$$\mathcal{S}_4 = \left\{ \left(\frac{31}{28} ; \frac{27}{28} \right) \right\}$$

Résoudre par le calcul les systèmes suivants avec la méthode de votre choix.

$$1. \begin{cases} y = 2 \\ x - y = 3 \end{cases}$$

$$3. \begin{cases} x + 4y = 2 \\ 3x - 2y = 1 \end{cases}$$

$$2. \begin{cases} -2x + 2y = -6 \\ x + 2y = 6 \end{cases}$$

4.
$$\begin{cases} 3x + 9y = 20 \\ -2x - 6y + 7 = 0 \end{cases}$$

1. Résolution par substitution : Soit (x; y) un couple de réels.

$$\begin{cases} y=2 \\ x-y=3 \end{cases} \iff \begin{cases} y=2 \\ x-2=3 \end{cases}$$

$$\iff \begin{cases} y = 2 \\ x = 5 \end{cases}$$

$$S_1 = \{(5;2)\}$$

2. Résolution par combinaison linéaire : Soit (x; y) un couple de réels.

$$\begin{cases}
-2x + 2y = -6 \\
x + 2y = 6
\end{cases} \iff \begin{cases}
-2x + 2y = -6 \\
2 \times (x + 2y) = 2 \times 6
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
2x + 4y = 12
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
-2x + 2x + 2y + 4y = -6 + 12
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
6y = 6
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
6y = 6
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
y = 1
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
y = 1
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
y = 1
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
y = 1
\end{cases}$$

$$\iff \begin{cases}
-2x + 2y = -6 \\
y = 1
\end{cases}$$

$$\iff \begin{cases}
x = 4 \\
y = 1
\end{cases}$$

$$S_2 = \{(4;1)\}$$

3. Résolution par substitution : Soit (x; y) un couple de réels.

$$\begin{cases} x + 4y = 2 \\ 3x - 2y = 1 \end{cases} \iff \begin{cases} x = 2 - 4y \\ 3(2 - 4y) - 2y = 1 \end{cases}$$

$$\iff \begin{cases} x = 2 - 4y \\ 6 - 12y - 2y = 1 \end{cases}$$

$$\iff \begin{cases} x = 2 - 4y \\ 6 - 14y = 1 \end{cases}$$

$$\iff \begin{cases} x = 2 - 4y \\ -14y = -5 \end{cases}$$

$$\iff \begin{cases} x = 2 - 4y \\ -14y = -5 \end{cases}$$

$$\iff \begin{cases} x = 2 - 4y \\ y = \frac{5}{14} \end{cases}$$

$$\iff \begin{cases} x = 2 - 4 \times \frac{5}{14} \\ y = \frac{5}{14} \end{cases}$$

$$\iff \begin{cases} x = \frac{28}{14} - \frac{20}{14} \\ y = \frac{5}{14} \end{cases}$$

$$\iff \begin{cases} x = \frac{8}{14} \\ y = \frac{5}{14} \end{cases}$$

$$\iff \begin{cases} x = \frac{4}{7} \\ y = \frac{5}{14} \end{cases}$$

$$\mathcal{S}_3 = \left\{ \left(\frac{4}{7} ; \frac{5}{14} \right) \right\}$$

4. Résolution par combinaisons linéaires :

Soit (x; y) un couple de réels.

$$\begin{cases} 3x + 9y = 20 \\ -2x - 6y + 7 = 0 \end{cases} \iff \begin{cases} 2 \times (3x + 9y) = 2 \times 20 \\ 3 \times (-2x - 6y + 7) = 3 \times 0 \end{cases}$$

$$\iff \begin{cases} 6x + 18y = 40 \\ -6x - 18y + 21 = 0 \end{cases}$$

$$\iff \begin{cases} 6x + 18y = 40 \\ 6x - 6x + 18y - 18y + 21 = 40 \end{cases}$$

$$\iff \begin{cases} 6x + 18y = 40 \\ 21 = 40 \end{cases} \text{ Cette \'equation n'a pas de solution.}$$

$$S_4 = \emptyset$$

Exercice 13

1. Dans un parc zoologique, la visite coûte 30 € pour les adultes et 18 € pour les enfants. A la fin de la journée, on sait que 630 personnes ont visité le zoo et que la recette du jour est 14 220 €

Parmi les personnes qui ont visité le zoo ce jour-là, quel est le nombre d'enfants?

- 2. Pour l'achat d'un livre et d'un stylo, la dépense est de 35 €. Après une réduction de 20%, sur le prix du livre et de 30% sur le prix du stylo, la dépense n'est que de 26 €. Calculer le prix d'un livre et celui d'un stylo avant la réduction.
- Jean et Paul désirent acheter en commun un lecteur de CD qui coûte 200 €.
 Les économies de Paul représentent les ⁴/₅ de celles de Jean et, s'ils réunissent leurs économies, il leur manque 27,20 € pour pouvoir effectuer leur achat.
 Calculer le montant des économies de chacun des deux garçons.
- 4. Trois amis pêcheurs achètent des poches d'hameçons et des bouchons. Les poches sont toutes au même prix, les bouchons aussi.
 Le premier prend 3 poches et 2 bouchons. Le second, 2 poches et 4 bouchons. Le troisième,

4 poches et 1 bouchon. Le premier a dépensé 4,60 €, le second 6 €.

Combien a dépensé le troisième?