

CRICOS PROVIDER 00123M

COMP SCI 1400 AI Technologies — Image Classification

Dr. Kamal Mammadov

adelaide.edu.au seek LIGHT

Outline

- What & Why
- Deep Neural Network
 - Convolution
 - Activation
 - Max-pooling
 - Full connection

What is image classification?

Image classification is a task to predict the label of a given image from predefined classes or categories:

$$\hat{y} = f(I)$$
, *I* is the input image.

Predefined classes: dog, table, bird, bike, cat, apple, ...

Image:

Prediction \hat{y} :

Ground truth y:

The same and same and

bird bird

dog dog

ImageNet Large Scale Visual Recognition Challenge

1000 classes, 1.2M training images, 50K validation images, 100K test images Predict 5 classes, each associated with a bounding box

https://www.image-net.org/challenges/LSVRC/

Why learn image classification?

It has wide applications.

Security
Stranger?

Pest Identification

What are the challenges in image classification?

Intense illumination variation

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

What are the challenges?

Background clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

What are the challenges?

Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by ionsson is licensed under CC-BY 2.0

What are the challenges?

Pose / Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Deep Neural Network

The winner of ILSVRC 2014: VGGNet

in terms of localization error

Localization Error	Classification Error
25.3%	7.4%

VGGNet architecture

Image Representation

Convolution

Element-wise multiplication

0	0	75		-1	-2	-1
0	75	80	*	0	0	С
0	75	80		1	2	1

$$155 = 0 \times (-1) + 0 \times (-2) + 75 \times (-1) + 0 \times 0 + 75 \times 0 + 80 \times 0 +$$

Convolution

Element-wise multiplication

0	0	75		-1	-2	-1
0	75	80	*	0	0	0
0	75	80		1	2	1

$$155 = 0 \times (-1) + 0 \times (-2) + 75 \times (-1) + 0 \times 0 + 75 \times 0 + 80 \times 0 + 0 \times 1 + 75 \times 2 + 80 \times 1$$

Output size:

1+floor((input_size-kernel_size)/stride)

$$floor(3.8) = 3$$

Change the kernel size and stride to get different output size

Convolution

What if we want to keep the output size the same as the input?

Convolution

• What can convolution learn?

Input image

What can convolution learn?

Conv1 Conv2 Conv3 Conv4 Conv5

What is "ReLU"?

Activation function

ReLU: Rectified Linear activation Unit

$$ReLU(x) = \max(0, x)$$

Activation function introduces non-linear mapping, enhancing the capacity to learn complex data patterns and relationships

Max pooling

Max pooling

Two hype-parameters: size, stride

Output size: 1+floor((input_size-kernel_size+2xpadding_size)/stride)

size: 2x2 stride: 2

	Inp	out				
7	ന	5	2		Out	put
80	7	1	6	maxpool	8	6
4	9	3	9		9	9
0	8	4	5			

Why do we use max pooling?

- Downscaling input, reduce computation later layers
- Introduce invariance to shift, rotation and scale

Fully connected layer

Fully connected layer

 $o_1 = \sigma(w_{1,1}x_1 + w_{1,2}x_2 + \dots + w_{1,N}x_N + b_1)$

 $\sigma(\cdot)$ is an activation function, eg, ReLU

Fully connected layer (FC) in VGG

Build your own neural network

How to make the model predict expected values?

Cross-entropy loss: $-\log(p_i)$ i denotes the GT class

$$-\log(0.775) = 0.255$$

$$-\log(0.001) = 6.908$$

Use Stochastic Gradient Descent to minimize loss

Deep Neural Network

ResNet

Winner of ILSVRC 2015

The 1st time outperforms humans

Issue of plain connection: gradients vanish as network becomes deeper

Effectiveness

Thin curves denote training error, and bold curves denote validation error.

Effectiveness

method	top-1 err.	top-5 err.	-	
VGG [40] (ILSVRC'14)	-	8.43 [†]	-	
GoogLeNet [43] (ILSVRC'14)	-	7.89		
VGG [40] (v5)	24.4	7.1	method	top-5 err. (test)
PReLU-net [12]	21.59	5.71	VGG [40] (ILSVRC'14)	7.32
BN-inception [16]	21.99	5.81	GoogLeNet [43] (ILSVRC'14)	6.66
ResNet-34 B	21.84	5.71	VGG [40] (v5)	6.8
ResNet-34 C	21.53	5.60	PReLU-net [12]	4.94
ResNet-50	20.74	5.25	BN-inception [16]	4.82
ResNet-101	19.87	4.60	ResNet (ILSVRC'15)	3.57
ResNet-152	19.38	4.49		

Single Model

Ensemble

Deep Neural Network

Vision Transformer (ViT)

Performance

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k

Pros and Cons

Pros	Cons
Learn global features of images	Have a large number of parameters
Not as sensitive to data augmentation as CNNs	Not as efficient as CNNs at processing images
Can be used for a variety of image classification tasks	Not as interpretable as CNNs