Intro & Course Outline

Introduction to Python Programming for Economics & Finance

Richard Foltyn

University of Glasgow

May 21, 2023

Contents

- 1 Introduction to Python
 - Why Python?
 - Examples of Python in economics
 - Python vs. other languages
 - Python ecosystem
- 2 Course outline
- 3 Course material & additional resources

Why Python? ... and why not?

Why Python?

- Free and open source
- Easy to learn, yet powerful and flexible syntax
- General-purpose language that can be used to solve many different problems
- Huge ecosystem of libraries and tools
- By now the most popular language overall
 - Most popular in machine learning
 - One of the two most popular in data science (together with R)
- May not be the fastest, but offers easy way to accelerate things (Cython, Numba, JAX, ML libraries)

What can you do with Python?

Everything. The question is whether you should be using Python!

Why not Python?

- You already know another language that solves your problem reasonably well
- You want to use an estimator/algorithm that is implemented somewhere else (Stata, R), but not in Python

Examples of Python in economics

Solving dynamic programming problems with Python + Numba

- Olsson (2023): Solves Aiyagari model + extensive margin labour supply choice for single and couple households [accepted at AEJ:Macro]
- Foltyn (2020): Household finance model with portfolio choice and learning from experience

Econometrics (custom estimators with Python + Numba)

■ Foltyn and Olsson (2023): Implements MLE that keeps track of latent health states [R&R Quant. Econ.]

Dynamic economic models solved with Python + ML

- Maliar, Maliar, and Winant (2021): Solve dynamic problems with TensorFlow;
 example code here [JME, 2021]
- Duarte (2018): Continuous-time finance models with TensorFlow [R&R Review of Financial Studies]
- Duarte et al. (2021): Solve HH portfolio choice problem with 22 states using JAX

Comparing to other languages (1)

Matlab

- Proprietary, quite expensive
- Shipped as complete software package from one vendor (plus optional toolboxes)
- Industry standard, widely used
- Substantially less powerful syntax
- Pure Matlab is somewhat faster than pure Python, but Python is easier to accelerate

R language

- Free, open source
- Focus on statistics, less on general-purpose computing
- Large ecosystem of packages focus on statistics, econometric modelling, machine learning

Comparing to other languages (2)

Julia

- Free, open source
- Focused on numerical computations, less on general-purpose computing
- Substantially faster than Python, but Python can be accelerated to similar speed (using Numba)
- Smaller ecosystem, still under rapid development

Stata

- Proprietary, quite expensive
- Focused on econometrics, in particular econometrics using large micro data sets
- Syntax was designed to run built-in commands, very inflexible for anything else
- If what you need is implemented, great! If not, it's very tedious to do it yourself (Mata is not great either).

Python software stack

How things fit together

Python software stack (covered in this course)

Core libraries for quantitative work

- Python language, runtime and standard libraries ("Python")
- NumPy: implements *n*-dimensional arrays, linear algebra routines, random number generators
- SciPy: Optimisation routines, sparse matrices, integration, interpolation, linear algebra, statistics
- Matplotlib: High-level plotting routines for visualisation
- Pandas: Containers to handle heterogeneous data & routines for data analysis
- scikit-learn: routines used for machine learning (Ridge regression, Lasso, elastic net, etc.)

Python software stack (**not** covered in this course)

Econometrics & Machine learning

- statsmodels: routines for estimating many (linear) models
- TensorFlow: ML library maintained by Google with Python API
- JAX: Low-level API for automatic differentiation and accelerated linear algebra used to build ML models, developed by Google
- PyTorch: Python interface to ML libraries originally developed by Facebook

Frameworks to speed things up

- Numba: compiles Python code to machine code using LLVM
- Cython: converts pseudo-Python to C code (advanced, don't use this)

Jupyter notebooks

This course is mostly based on Jupyter notebooks, not "regular" Python scripts.

Jupyter notebooks

- File extension: .ipynb
- Interactive, dynamic notebooks
- Run in web server, displayed in web browser
- Good for exploratory work
- Easy to share work with others, in particular if they are not data analysts or programmers
- Can be exported to other formats, e.g., PDFs, ŁYĘX

Python scripts

- File extension: .py
- Interactive only in debugger
- Usually run locally in Python interpreter
- For "serious" programming
- For libraries, reusable code
- Not useful to share with others who don't know Python

Monday, 22 May 2023

Lectures 1 & 2, 9:00–12:15 (15 min break), Room 305AB

Unit 1: Language and NumPy basics [PDF]

- 1 Basic syntax
- 2 Built-in data types
- 3 NumPy arrays
- 4 Optional exercises with provided solutions (asynchronous)

Unit 2: Control flow and list comprehensions [PDF]

- 1 Conditional execution
- 2 Loops
- 3 List comprehensions
- 4 Optional exercises with provided solutions (asynchronous)

Unit 3: Reusing code - Functions, modules and packages [PDF]

- 1 Functions
- 2 Modules and packages
- 3 Optional exercises with provided solutions (asynchronous)
- **Lab 1**, 13:30–15:00, Room 305AB
 - Lab exercise for units 1–3

Wednesday, 24 May 2023

■ **Lectures 3 & 4**, 9:00–12:15 (15 min break), Room 305AB

Unit 4: **Plotting** [PDF]

- 1 Line and scatter plots, categorical data
- 2 Labels and annotations
- 3 Multiple plots
- 4 Optional exercises with provided solutions (asynchronous)

Unit 5: Advanced NumPy [PDF]

- 1 Creating and reshaping arrays
- 2 Advanced indexing
- 3 Numerical operations
- 4 Optional exercises with provided solutions (asynchronous)
- **Lab 2**, 13:30–15:00, Room 305AB
 - Lab exercise for units 4–5

Friday, 26 May 2023

Lectures 5 & 6, 9:00–12:15 (15 min break), Room 305AB

Unit 6: Handling data with pandas [PDF]

- 1 Creating and viewing DataFrames
- 2 Indexing
- 3 Aggregation and reduction operations
- Working with time series data
- 5 Visualisation
- 6 Optional exercises with provided solutions (asynchronous)

Unit 7: Data input and output [PDF]

- I/O with NumPy
- 2 I/O with pandas
- 3 Retrieving macroeconomic / financial data from the web
- **Lab 3**, 13:30–15:00, Room 305AB
 - Lab exercise for units 6–7

Thursday, 1 June 2023

Lectures 7 & 8, 9:00–12:15 (15 min break), Room 305AB

Unit 8: Random number generation and statistics [PDF]

- 1 NumPy's RNG routines
- 2 Statistics functions in SciPy
- 3 Optional exercises with provided solutions (asynchronous)

Unit 9: Introduction to unsupervised learning [PDF]

- 1 Principal component analysis (PCA)
- 2 Introduction to scikit-learn

Unit 10: Introduction to supervised learning [PDF]

- 1 Linear regression models
- 2 Ridge regression
- 3 Lasso
- 4 Hyperparameter tuning
- **Lab** 4, 13:30–15:00, Room 305AB
 - Lab exercise for units 8–10

Friday, 2 June 2023

Lectures 9 & 10, 9:00–12:15 (15 min break), Room 305AB

Unit 11: Solving models for macroeconomics and household finance [TBA]

- Setting up consumption/savings household problems
- 2 Solving deterministic problems with VFI
- 3 Solving stochastic problems with VFI
- **Lab 5**, 13:30–15:00, Room 305AB
 - Lab exercise for unit 11

Course material & additional resources

Course material

- All code can be downloaded from GitHub repository https://github.com/richardfoltyn/python-intro-PGR
- Interactive notebooks can be launched directly in the browser (see setup guide)

Additional resources

- Scipy Lecture Notes (http://scipy-lectures.org/index.html)
 Online lecture notes for quantitative work with Python
- Numpy quick start tutorial (https://numpy.org/doc/stable/user/quickstart.html)
- Numpy tutorial for Matlab users (https://numpy.org/doc/stable/user/numpy-for-matlab-users.html)
- QuantEcon lectures: mostly Python but also Julia (https://quantecon.org/lectures/)
- QuantEcon library for Python (https://quantecon.org/quantecon-py/)
 Collection of routines and tools for economics
- QuantEcon repository for contributed code solving economic problems in Python (https://notes.quantecon.org/)
- Dive Into Python 3 (https://diveintopython3.net/)
 Freely available online book on general Python programming (no focus on scientific computing)
- scikit-learn user guide (https://scikit-learn.org/stable/user_guide.html)

References

- Duarte, Victor. 2018. Machine learning for continuous-time finance. Technical report. Tech. rep., Gies College of Business.
- Duarte, Victor, Julia Fonseca, Aaron S Goodman, and Jonathan A Parker. 2021. Simple Allocation Rules and Optimal Portfolio Choice Over the Lifecycle. Working Paper, Working Paper Series 29559. National Bureau of Economic Research
- Foltyn, Richard. 2020. Experience-based Learning, Stock Market Participation and Portfolio Choice. **Available at SSRN** 3543442.
- Foltyn, Richard, and Jonna Olsson. 2023. **Subjective Life Expectancies, Time Preference Heterogeneity, and Wealth Inequality.** Technical report.
- Maliar, Lilia, Serguei Maliar, and Pablo Winant. 2021. Deep learning for solving dynamic economic models. **Journal of Monetary Economics** 122:76–101.
- Olsson, Jonna. 2023. Singles, couples, and their labor supply: long-run trends and short-run fluctuations. **American Economic Journal: Macroeconomics.**