新型分布式数据库中的关键算法与模型探究 ——以 TiKV 与 TiDB 为例

陈典 陈佳阳 陈梓钿 邓倍铭

日期: June 30, 2022

1 前言

新型分布式数据库(在本报告中具体指云原生时代的新型数据库产品架构)目前正处于蓬勃发展阶段。以近几年提出的 NewSQL 为例,这类架构需具备对海量数据的存储管理能力,在许多业务场景下还要保持传统数据库的 SQL 模型和事务特性。

在本报告中,我们对新型分布式数据库中的四种关键算法/模型做了初步探究,包括:分布式共识算法 Raft (第2节)、分布式事务模型 Percolator (第3节)、Volcano 查询优化模型 (第4节)、F1 异步模式变更算法 (第5节),它们都被学术界和工业界广泛认可。其中,前两部分属于偏底层的分布式机制,后两部分属于偏上层的关系型数据模型。

为了更好地了解上述算法和模型在实际工程中的应用,我们选择了 modb 排行榜¹ 中近两年蝉联首位的分布式关系型数据库 TiDB 作为分析案例。TiDB 也属于 NewSQL 范畴,其底层依赖于分布式键值型数据库 TiKV,二者均为开源项目,且已在国内金融、电商领域取得广泛应用,具有较强的代表性。在每一节的结尾,我们将讨论特定算法或模型在 TiKV 或 TiDB 中的一些实现、优化细节。

2 Raft: 分布式共识算法

2.1 Raft 与一致性

分布式存储系统通常通过维护多个副本来进行容错,提高系统的可用性。要实现此目标,就必须要解决分布式存储系统的最核心问题:维护多个副本的一致性。一致性(consensus)是构建具有容错性(fault-tolerant)的分布式系统的基础。在一个具有一致性的集群里面,同一时刻所有的结点对存储在其中的某个值都有相同的结果,即对其共享的存储保持一致。集群还应该具有自动恢复的性质,当少数结点失效的时候不影响集群的正常工作;当大多数结点失效的时候,则会停止服务,避免返回错误的结果。

Raft 是斯坦福大学的 Diego Ongaro、John Ousterhout 以易理解为目标设计的一致性算法,于 2013 年提出 [6], Diego Ongaro 后来在其博士学位论文中做出了进一步优化 [5]。

¹https://www.modb.pro/dbRank

2.2 Raft 的基础设计

2.2.1 复制状态机

一致性协议通常基于复制状态机(Replicated State Machine),即所有结点都从同一个状态出发,都经过同样的一些指令,最后到达同一个状态。复制状态机用于解决分布式系统中的各种容错问题,例如具有单个 Leader 的大规模系统(GFS、HDFS等)通常使用单独的复制状态机来进行 Leader 的选举和存储重新选举需要的配置信息。如图 1 所示,复制状态机要能容忍很多错误场景。

图 1: Raft 复制状态机的架构

复制状态机的典型实现是基于复制日志,其中包含三个组件:

- 状态机 (State Machine): 状态机会从日志里面取出所有的命令, 然后顺序执行一遍, 从而对外提供具有一致性保证的数据。
- 日志 (Log): 保存了所有修改指令的日志项。
- 一致性模块 (Consensus Module): 用于保证写入日志的一致性, 这也是 Raft 算法核心内容。

状态机可以理解为一个确定的应用程序,即相同的输入必然产生相同的输出。每个节点上存储了一个包含一系列指令的日志,复制状态机按序执行这些指令,由于每一个日志在相同位置上的指令是相同的,所以每个状态机具有一致的执行序列。至于如何实现日志完全一致的复制,则是一致性模块的职责,也就是我们下面要介绍的 Raft 算法。

2.2.2 Raft 节点状态

Raft 算法中的节点状态十分关键,可以说是后续一系列机制的基石,在任何时候有三种可能的取值,其转换逻辑如图 2 所示:

- Leader: 处于该状态的节点负责处理客户端的请求,同时还需要协调日志的复制。在任意时刻,最多允许存在 1 个 Leader, 其他节点都是 Follower。集群在选举期间可能短暂处于没有 Leader 的场景。
- *Follower*: 处于该状态的节点是被动的,不主动提出请求,只是响应 *Leader* 和 *Candidate* 的请求(节点之间的通信通过 RPC 进行)。

• Candidate: 从 Follower 转变为 Leader 的过渡状态。因为 Follower 是一个完全被动的状态, 所以当重新选举时, 需要将自己提升为 Candidate, 再发起选举。

图 2: Raft 节点状态的转换

由图 2 可知, 所有的节点都是从 Follower 开始, 如果经过一段时间后收不到来自 Leader 的信号, 那么就认定 Leader 已经崩溃了, 需要进行新一轮的选举, 将状态变更为 Candidate。Candidate 有可能接收多数节点的投票, 被选举为 Leader, 也有可能因选举失败或超时回退为 Follower。最后, 如果 Leader 发现自己的任期(在 2.2.3中介绍)不是最新的, 则会主动变更为 Follower。

2.2.3 Term

任期(Term)是 Raft 节点的另一个关键属性。在分布式系统中,由于节点的物理时间戳都不统一,因此需要一个逻辑时间戳来表明事件发生的先后顺序,Term 正是起到了逻辑时间戳的作用。如图 3 所示,Raft 的运行过程可以被抽象划分为一系列任意长度的 Term。

图 3: 关于 Term 的过程抽象

每个 Term 开始于选举,这一阶段每个 Candidate 都试图成为 Leader,如果选举成功,它就在该 Term 的有效期内履行处理客户端请求、协调日志备份的职责。Term 在 Raft 中始终保持单调递增,一个节点的 Term 越大,那么它所拥有的日志就越准确。

每个节点都会维护自己当前的任期(Current Term),并且持久化存储。当 Leader 宕机后再恢复,会利用 Current Term 判断自己是否已经过时,若是,就会回退为 Follower。节点的 Term 通常会在节点之间通信时改变:如果某个节点发现 Current Term 小于其它节点,那么这个节点必须更新该值,与集群其他节点保持一致;如果 Candidate 或者 Leader 发现自己的 Term 不是最新的,它就必须降级为 Follower;如果某个节点收到一个过时的请求(拥有较小的 Term),它会拒绝该请求。

2.3 一致性机制的实现

Raft 的一致性机制是基于日志由 Leader 到 Follower 的单向传递。也就是说 Leader 相当于一个总控节点,负责接受客户端的请求,并且把这一过程产生的日志发送给各个 Follower 进行复制。单向的特性保证了只有 Leader 能决定何时提交一个日志。通过这一机制,Raft 将一致性难题分解为三个相对独立的子问题:

- 日志复制: 当 Leader 选举出来之后,需要把后续产生的日志复制到每个 Follower 节点上,需要保证所有日志项是有序且正确的。
- 安全性: 当 *Leader* 把一个日志项复制到绝大多数的 *Follower* 后,需要提交 (Commit) 这个日志项,并执行 (Apply) 其包含的指令。这里的安全性是指所有的节点按照相同的顺序执行相同的日志项。

简单来说,一次 Raft 流程有如下操作:

- 1. Leader 收到客户端发送的请求;
- 2. Leader 将该请求中的指令和数据追加到自己的日志中;
- 3. Leader 将对应的日志项发送给集群中的 Follower;
- 4. Leader 等待 Follower 的结果,如果大多数节点提交了这些日志项,则告知上层应用可以进行相应操作(Apply);
- 5. Leader 将结果返回给客户端,继续处理下一次请求。

2.4 TiKV 对 Raft 流程的优化

2.4.1 异步 Apply

当一日志项被大部分节点追加到本地的存储层后,就认为这个日志项被提交了,提交后的日志项不会被修改或删除,此时数据的一致性已经得到了保证。基于这一认识,TiKV将日志的提交与执行过程分开,用另一个线程去异步地执行日志,从而减少后续请求的阻塞时间。在这种情况下,Raft 流程改为:

- 1. Leader 接受一个客户端发送的请求;
- 2. Leader 将该请求中的指令和数据追加到自己的日志中并发送给 Follower;
- 3. Leader 继续接受其他客户端的请求, 持续进行步骤 2;
- 4. Leader 发现日志项已经被提交,在另一个线程中 Apply;
- 5. Leader 异步 Apply 之后,返回结果给对应的客户端。

异步 Apply 的改进令 TiKV 得以完全并行处理日志的复制和执行。虽然对于一个特定的客户端来说,一次请求仍然要走完完整的 Raft 流程,但在并发场景下,整个系统的吞吐量得到了大幅提高。

2.4.2 批处理与管道通信

- 批处理 (*Batch*): 对于 Raft 来说, *Leader* 可以一次收集多个请求, 然后按批发送给 *Follower*。 当然, 这里需要一个预先设置的参数来限制批处理的数据量上限。
- 管道(Pipeline):在 Raft 的初始设计中,Leader 会维护一个 NextIndex 的变量来表示下一个给 Follower 发送的日志位置,通常情况下,只要 Leader 跟 Follower 建立起了连接,我们都会认为网络是稳定互通的。所以 TiKV 做出了如下优化:当 Leader 给 Follower 发送了一批日志项之后,它可以直接更新 NextIndex,并且立刻发送后面的日志项,不需要等待 Follower 的返回。如果网络出现了错误,或者 Follower 返回一些错误,Leader 才需要调整 NextIndex 然后重新发送。

3 Percolator:分布式事务模型

3.1 背景介绍

Percolator 是 Google 在 2010 年发表的论文《Large-scale Incremental Processing Using Distributed Transactions and Notifications》[7] 中提出的一种分布式事务解决方案,在超大规模的数据集,且数据变化多、小范围增量更新的情况下(即 OLTP 场景)满足业务对一致性的要求。Percolator 支持 ACID 语义,并实现了快照隔离(Snapshot Isolation)的事务隔离级别,可以将其看作是一种通用的分布式事务解决方案。在实现上,Percolator 是基于 Google 更早之前提出的 BigTable [1] ,其本质上是一个二阶段提交协议,利用 BigTable 的行事务机制协助处理分布式事务。

3.2 架构组成

在 Percolator 分布式事务解决方案中,主要包含三个组件,分别是 Client、Timestamp Oracle 和 BigTable,下面将展开介绍这三个组件。

3.2.1 Client

在两阶段提交算法中有两种角色,即协调者和参与者,在 Percolator 中,Client 充当协调者的角色,负责发起和提交事务。换言之,Client 是整个 Percolator 协议的控制中心,是两阶段提交的协调者。

3.3 Timestamp Oracle

Timestamp Oracle 是一个全局的授时服务,用于向服务中的其他组件提供全局唯一且递增的时间戳。在 Percolator 中,系统需要依赖于 Timestamp Oracle 提供的全局唯一且递增的时间戳来实现快照隔离级别(即根据数据的时间戳来确保事务的可重复读)。在事务的发起和提交阶段,Client 也需要从 Timestamp Oracle 中获取一个时间戳,用于保证顺利协调不同事务。

Percolator 基于 Timestamp Oracle 实现的快照隔离机制具体如下:

Column	Use		
c:lock	An uncommitted transaction is writing this cell; contains the location of primary lock.		
c:write	Committed data present; stores the BigTable timestamp of the data.		
c:data	Stores the data itself.		
c:notify	Hint: observers may need to run.		
c:ack_O	ck_O Observer "O" has run; stores start timestamp of successful last run.		

表 1: Percolator 元数据的列名及其含义

- 事务中所有的读操作都会读到一个一致性快照(Consistent Snapshot)的数据,保证了可重复读(Repeated Read);
- 两个并发事务同时对同一个单元(Cell)写入时,只会有一个事务能够提交成功;
- 当一个事务提交时,如果发现本事务更新的一些数据,被其他具有更大的起始时间戳(*start_ts*)的事务修改了,则执行回滚(失败),否则提交(成功);
- 快照隔离存在写倾斜(Write Skew)问题,即两个事务读的数据集有重叠,但是写入的数据集没有重叠,此时虽然两个事务都可以成功提交,但是相互都没有看见对方写入的新数据,不符合可序列化(Serializable)的隔离级别。但是快照隔离相对可序列化有更好的读性能(读操作不需要加锁),在现实中应用更广泛。

3.3.1 BigTable

BigTable 同样是 Google 研发的分布式数据,用于解决海量数据存储的问题,相关论文发表在了 2006 年的 OSDI 大会上 [1]。BigTable 从数据模型上可以理解为一个多维度的有序字典,其中 Key 由三元组 {row, column, timestamp} 组成,Value 则是任意的字节序列。BigTable 提供了单行的跨多列的事务能力,Percolator 利用这个特性来保证对同一行的多个列的操作是具有原子性的。以 BigTable 为基础,Percolator 将元数据存储在特殊的列中,具体如表1所示。

3.4 事务处理

分布式事务处理主要分为写入逻辑和读取逻辑。

3.4.1 写入逻辑

Percolator 采用两阶段提交算法来提交事务,写入逻辑被分为 Prewrite 阶段和 Commit 阶段。

Prewrite 阶段 主要流程如下:

- 1. 事务 T_1 开始,从全局时间授权模块 Timestamp Oracle 获取 $start_ts$,在所有需要写操作的 行中选一个作为 primary,其他的均为 secondary;
- 将 primary 行写人 c:lock 列(上锁), 写之前会检查是否有冲突;
- 3. primary 上锁成功后,写入 c:data 列更新新版本的数据,并以起始时间戳为版本号;

- 4. primary 上锁流程结束后, 开始 secondary 行的 Prewrite 流程, 流程与 primary 行上锁流程相似, 但是锁类型不一样, 且锁的内容会多出对 primary 行的指向(lock_type=>secondary_lock, primary_key=>primary_key);
- 5. Prewrite 流程任何一步发生错误,都会回滚,删除新加的 c:lock 列和新加的 c:data 列。

Commit 阶段 主要流程如下:

- 1. Commit 阶段开始时,事务 T_1 从 Timestamp Oracle 中获取 commit 时间戳(要求大于其起始时间戳);
- 2. 提交 primary 行,写入对应的 c:write 列数据 {*key, commit_ts, start_ts*},表明 *start_ts* 对应的数据已提交;
- 3. 删除 primary 行的 c:clock 列 (释放锁);
- 4. 如果 primary 行提交失败,整个事务进行回滚,删除新加的 c:lock 列和新加的 c:data 列;
- 5. 如果 primary 行提交成功,则可异步提交其余的 secondary 行。

3.4.2 读取逻辑

- 1. 事务 *T*₁ 获取 *start_ts*;
- 2. 检查当前我们要读取的数据是否存在一个时间戳在 [0, start_ts] 范围内的锁:
 - 如果存在一个时间戳在 $[0, start_ts]$ 范围的锁,那么意味着当前的数据被一个更早启动的事务 T_2 锁定了,但是此时 T_2 还没有提交。因为当前无法判断这个锁定数据的事务是否会被提交,所以当前的读请求不能被满足,只能等待锁被释放之后,再尝试读取数据;
 - 如果没有锁,或者锁的时间戳大于 *start_ts*,那么读请求可以被满足;
- 3. 从 c:write 列中获取在 [0, *start_ts*] 范围内的最大 *commit_ts* 的记录, 然后依此获取到对应的 *start_ts*;
- 4. 根据上一步获取的 start_ts,从 c:data 列获取对应的记录。

3.5 Percolator 在 TiKV 中的实现

TiKV 底层的存储引擎使用的是 RocksDB。RocksDB 提供了原子性的批量写操作,可以实现如上所述 Percolator 对行事务的要求。在 RocksDB 中,数组的组织方式是基于列族 (CF) 的,一个 RocksDB 实例可以有多个 CF,每个 CF 是一个隔离的 key 命名空间,并且拥有独立的 LSM-tree 存储结构。同一个 RocksDB 实例中的多个 CF 通过共享一个预写日志(Write-Ahead Log)来保证多个 CF 写操作的原子性。

在 TiKV 中,一个 RocksDB 实例有三个 CF: CF_DEFAULT、CF_LOCK、CF_WRITE,分别对应着 Percolator 的 c:data、c:lock、c:write。要对每个 key 存储多个版本的数据,只需简单地将 key 和 timestamp 结合成一个 internal key 存储在 RocksDB 中即可。

在 TiKV 中, CF_WRITE 中有 4 中不同类型的数据:

1. Put: 将 CF_DEFAULT 中的一条对应的数据写入到 CF_WRITE 中;

- 2. Delete:表示写入操作是一个 Delete 操作;
- 3. Rollback: 当回滚一个事务的时候,在 CF_WRITE 中插入一条 Rollback 的记录;
- 4. Lock

3.6 Percolator 在 TiKV 中的优化

3.6.1 Parallel Prewrite

在 TiKV 中,一个事务不会以 one-by-one 的形式进行 Prewrite。当存在多个 TiKV 节点时,系统会在多个节点上并行地执行 Prewrite。在 TiKV 的实现中,当提交一个事务时,事务中涉及的 Key 会根据分区(Region)情况被分成多个 batch,每个 batch 在 Prewrite 阶段会并行地执行,不需要关注 primary 是否第一个 Prewrite 成功。

如果事务在 Prewrite 阶段发生冲突,则会被回滚。在执行回滚时, TiKV 是在 CF_WRITE 中插入一条 Rollback 记录,而不是如 Percolator 论文中描述的那样删除对应的锁记录。这条 Rollback 记录表示对应的事务已经回滚了,如果后续收到它的其他 Prewrite 请求(这种情况可能在网络异常的时候出现),则直接拒绝;如果让这些延迟的 Prewrite 请求成功,正确性还是可以保证,但是这个 key 会被持续锁定直到过期。

3.6.2 Short Value in Write Column

当访问一个 value 时,系统需要先从 CF_WRITE 中找到 key 对应的最新版本(即 *start_ts*),然后从 CF_DEFAULT 中找到具体的记录。如果 value 比较小的话(称为 short value),在 RocksDB 上执行两次查询的开销相对来说有点大。针对这一问题,TiKV 做了一个优化:如果 value 比较小,在 Prewrite 阶段,系统不会将 value 放到 CF_DEFAULT 中,而是将其放在 CF_LOCK 中;在 commit 阶段,这个 value 会从 CF_LOCK 移动到 CF_WRITE 中。因此,在访问这个 short value 时,只需访问 CF_WRITE 就可以了,减少了一次 RocksDB 查询,从而减小开销。

3.6.3 Point Read Without Timestamp

对于每个事务,系统需要先分配一个 *start_ts*,然后保证事务只能看到在 *start_ts* 之前提交的数据。如果一个事务只读取一个 key 的数据,则并不需要为其分配一个 *start_ts*,只需要读取这个 key 的最新数据即可。

3.6.4 Calculated Commit Timestamp

为了保证实现快照隔离级别,系统需要让 commit_ts 足够大,不会出现一个事务在一次有效 读操作之前被提交,否则将无法保证可重复读操作。

3.7 小结

优点 Percolator 的优点主要有以下两方面:

1. 事务管理建立在存储系统之上,整体系统架构清晰,系统扩展性好,实现简单;

2. 在事务冲突较少的场景下, 读写性能良好。

不足 Percolator 的不足主要有以下两方面:

- 1. 在事务冲突较多的场景下,性能较差,因为出现了冲突之后需要不断重试,开销很大;
- 2. 在采用多版本并发控制 (MVCC) 算法的情况下也会出现读等待的情况, 当存在读写冲突时, 对读性能有较大影响。

4 Volcano / Cascades: SQL 查询优化模型

4.1 **SQL** 优化过程

在 TiDB 中, SQL 优化的过程可以分为逻辑优化和物理优化两个部分。

- 逻辑优化: 主要是基于规则的优化(Rule-Based Optimization, RBO),依次遍历内部定义 实现的优化规则,不断地调整 SQL 的逻辑执行计划,对查询做逻辑上的等价变化。可以视 为将一棵逻辑算子树(Logical Plan Tree)进行逻辑等价的变化,最后的结果是一棵更优的 逻辑算子树。
- 物理优化:是将一棵逻辑算子树转换成一棵物理算子树 (Physical Plan Tree),会为逻辑查询计划中的算子选择某个具体的实现。这一优化过程需要依靠统计信息以决定哪一种方式代价最低,是基于代价的优化 (Cost-Based Optimization, CBO),可以视为在逻辑优化的基础上,为优化过后的算子树中的算子选择更优的具体实现。

4.2 Volcano 框架

Volcano 是一个包含了优化框架和执行框架的项目,其目标是构建具有完全扩展性的优化器生成器 [4]。Volcano 并非具体的优化器实现,而是提供了一个实现、构建优化器的框架,同时也是 Cascades 优化器的前身。

Volcano Optimizer Generator 本身的定位是一个优化器的"生成器", 其核心贡献是提供了一个搜索引擎。作者提供了一个数据库查询优化器的基本框架, 而数据库实现者要为自己的数据模型实现相应的接口, 之后便可以生成一个查询优化器。

Volcano Optimizer Generator 在优化器方向提出了一些方法:

- 1. 使用 "Logical Algebra" 来表示各种关系代数算子, 而使用 "Physical Algebra" 来表示各种关系代数算子的实现算法。Logical Algebra 之间使用 Transformation 来完成变换, 而 Logical Algebra 到 Physical Algebra 之间的转换使用基于代价(CBO)的选择。
- 2. 使用"Rule"来表示各种变化。例如 Logical Algebra 之间的变化使用 Transformation Rule;而 Logical Algebra 到 Physical Algebra 之间的转换使用 Implementation Rule。
- 3. 使用"Property"来表示各个算子、表达式的结果。Logical Propery 主要包括算子的模式、统计信息等; Physical Property 表示算子所产生的数的物理属性,比如按照某个键排序、按照某个键分布在集群中等。
- 4. 优化器搜索过程采用自顶向下的记忆化搜索提高效率。

图 4: Memo 数据结构

4.3 Cascades 优化器

Cascades 优化器是 Volcano 的后续作品,这一优化器在后者的基础上做了进一步的优化,主要提出了 Memo、Rule、Pattern、Searching Algorithm 等重要概念 [3]。

Memo Cascades 优化器的搜索空间是一个由关系代数算子树所组成的森林, Memo 为保存这个森林的数据结构,可以高效地保存搜索状态(图 4)。 Memo 的 Group 设计可以避免存储冗余的算子,每个 Group 中会存在多个逻辑等价的 Expression。

Rule 在 Volcano 优化器中,Rule 被分为了 Transformation Rule 和 Implementation Rule (4.2)。 Transformation Rule 用来在 Memo 中添加逻辑等价的 Group Expression,其具有原子性,只作用于算子树的一个局部小片段,每个 Transformation Rule 都有自己的匹配条件,Cascades 通过不停应用可以匹配上的 Transformation Rule 来扩展搜索的空间,寻找可能的最优解。Implementation Rule 是为 Group Expression 选择物理算子。Cascades 没有显式对两者做区分。

Pattern 用于描述 Group Expression 的局部特征。每个 Rule 都有自己的 Pattern,只有满足了相应 Pattern 的 Group Expression 才能够应用该 Rule,如图 5 所示。

Searching Algorithm 优化规则和搜索过程是 Cascades 的核心, 也是优化器的工作重心。在传统的优化器实现中,往往是面向过程地应用优化规则,对算子树进行变换。这种方式往往难以扩展,需要考虑规则之间的应用顺序。而 Cascades 在处理这一问题时,将搜索过程与具体的规则解耦,用面向对象的方式对优化规则进行建模,规则的编写不需要关心搜索过程。具体地,Cascades 为Rule 的应用顺序做了很细致的设计,每个 Rule 都有 promise 和 condition 两个方法,其中 promise 用来表示 Rule 在当前搜索过程中的重要性,而 condition 直接通过返回一个布尔值决定一个 Rule 是否可以在当前过程中被应用。当一个 Rule 被成功应用之后,会计算下一步有可能会被应用的 Rule 的集合。另外,Cascades 使用 Branch-And-Bound 方法对搜索空间进行剪枝,在搜索的过程中为算子设置其代价上限,如果搜索中超过了预设的上限,将对这个搜索分支预先进行剪枝。

图 5: 一个 Selection → Projection 的 Pattern

4.4 TiDB 中 Cascades Planner 的搜索过程

- 1. 预处理阶段:对原始的逻辑算子树做"一定更优"的逻辑变换,例如列裁剪、最大最小消除、投影消除、谓词下推等。
- 2. 逻辑搜索阶段: 对输入的逻辑算子树做逻辑上的等价变换。但不同的是,此处先将 Logical Plan Tree 转换成 Group Tree, 通过在 Group Tree 应用预定义的转换规则来实现逻辑上的等价变化。
- 3. 物理实现阶段:将逻辑计划转化成代价最小的物理计划, Cascades Planner 会为一个 Group Tree (一组逻辑等价的 Logical Plan Tree)选择物理计划。

5 Google F1:异步模式变更算法

5.1 F1 特性与基础设计

F1 是 Google 研发的分布式关系型数据库管理系统 [9], 在保证一致性、高可用性的基础上, 提供一种新型的关系型数据模式演化(schema evolution)协议。模式演化是指在不丢失数据的情况下改变数据库定义的能力,已经被业界研究了近三十年。Google 提出 F1 的动机是为了让其广告系统具备更好的可扩展性,该系统的存储层最初是基于分片的 MySQL 构建的,难以应付日益增长的业务数据和相对频繁的模式变更需求。

5.1.1 特性及约束

F1 的模式演化协议以如下所述的系统特性为基础 [8]:

- 1. 大规模的分布式。一个 F1 实例由数百个独立的服务器组成,运行在分布在全球许多数据中心的共享机器集群上。
- 2. 关系型模式。每个 F1 服务器都有一个描述表、列、索引和约束的关系型模式的副本,对模式的任何修改都需要分布式机制来更新所有服务器。

图 6: F1 模式变更基础设计

- 3. 共享数据存储。所有数据中心的 F1 服务器都可以访问下层的键值存储系统(这里是 Spanner)中的所有数据,服务器之间不存在数据分区。
- 4. 无状态服务器。F1 服务器必须能够容忍机器故障、抢占、网络资源的不可用,因此被设计成无状态的——客户端可以连接到任何 F1 服务器,同一事务的不同语句也可以由不同的 F1 服务器执行。
- 5. 无全局成员。由于 F1 服务器的无状态特性, F1 不需要实现全局成员关系协议。没有可靠的机制来确定当前运行的是哪个服务器,无法(同时也不需要)实现显式的全局同步。

此外, F1 的模式演化协议还受到如下的业务需求约束:

- 1. 完全的数据可用性。F1 是 Google 业务基础设施的关键部分,数据的不可用会直接影响经济效益,因此,对模式的修改(例如,锁定一个列以建立新索引)不能使数据库的任一部分脱机。
- 2. 最小化对性能的影响。上面提到, F1 的主要任务是支持 Google 的广告系统。由于该系统 在多个团队和项目之间共享,模式更改非常频繁,如果每次更改都需要以明显的性能降级 为代价,势必会削弱整个系统的可用性。
- 3. 异步的模式变更。F1 中不存在全局成员关系,因此无法对所有服务器进行同步的模式更改,不同的 F1 服务器会在不同的时间过渡到新模式。换言之,同一时间的不同 F1 服务器可能应用着不同的模式,如图 6 所示。

5.1.2 存储引擎与行表示

前面提到, F1 服务器需要的状态都放置在下层的键值存储系统中, Google 实际上选择 Spanner 作为这个存储系统的实现, 这是一个 Google 在更早的时期提出的可扩展、多版本、全局同步复制的数据库, 能提供外部一致的读写操作 [2]。Spanner 的外部一致性保证主要是源于 TrueTime API, 直接暴露分布式系统中时钟的不确定性。得益于良好的抽象设计, 在 F1 的视角中, Spanner 就是一个提供外部一致性的键值存储引擎, 无需考虑额外的实现细节。F1 对关系型数据到键值数据的映射方式如图 7 所示, 这一过程在实现中又被称为编码。

Example						
$first_name^*$	$last_name^*$	age	phone_number			
John	Doe	24	555-123-4567			
Jane	Doe	35	555-456-7890			

	(a)	Relational	representation.
-	(a)	Relational	representation.

key	value
Example.John.Doe.exists	
Example.John.Doe.age	24
Example.John.Doe.phone number	555-123-4567
$Example. ext{Jane. Doe. } exists$	
$Example. {\it Jane. Doe.} \ age$	35
$Example. {\tt Jane. Doe.} phone_number$	555-456-7890

(b) Key-value representation.

图 7: F1 行表示方式

5.1.3 并发控制

F1 使用一种基于时间戳的乐观并发控制机制,类似于本文第 3 节介绍的 Percolator (同样构建在分布式键值存储之上)。在 F1 的模式中,每个表中的每一列都与一个乐观锁关联,这个乐观锁控制着不同事务对该行数据的并发访问。

当客户端在一次事务中读取列值时,会从覆盖这些列的锁中获取最后修改的时间戳;在后续提交时,会将这些时间戳交给服务器进行验证,以确保它们没有更改。如果验证成功,与这些列相关联的所有锁的时间戳将被更新为当前时间戳。这一策略保证了事务的原子性。

由于用户可以向表添加新锁并将其与该表中的任意列关联,因此 F1 必须考虑锁机制对模式变更的影响。

5.2 异步模式变更的难点与对策

5.2.1 异步模式变更的过程

如 5.1.1 所述, F1 实例中的所有服务器共享一组位于键值存储中的键值对。为了将这些键值对解码为行,每个 F1 服务器需要在其内存中维护一个特定版本的模式实例,并使用该模式将关系操作符转换为键值存储所支持的操作。换言之,模式决定了 F1 服务器如何将下层的键值数据解释为业务端需要的关系型数据。

模式本身也会被编码为特殊的键值对,对所有的 F1 服务器均可见。当使用新版本的模式替换旧版本的模式时,模式变更就启动了,F1 开始将新模式传播到实例中的所有服务器。由于其大规模的分布式特性,在这些服务器之间进行同步是无法实现的,不同的服务器可能在不同的时间转换到新模式。只有当实例中的所有 F1 服务器都加载了新模式时,模式更改才算完成。

5.2.2 异步模式变更的难点

由于所有 F1 服务器共享底层存储,因此,不正确地执行异步模式更改可能会破坏数据库。例如,如果新版本的模式中为表 T_i 添加了一个新的索引 $I_{i,k}$,仍然在旧模式上运行的服务器在对 T_i 中的数据进行写操作时,无法同时对 $I_{i,k}$ 进行维护。最终,任何执行索引 $I_{i,k}$ 读取的查询都将返回错误的结果。

这种错误的根本原因是对模式的变更过于突然。旧模式上的服务器不知道索引,而新模式上的服务器在所有操作中使用它,两种行为的差异破坏了数据的一致性。尽管这里以添加索引为例,但是系统中所有基本的模式更改操作都会出现类似的问题,这正是异步模式变更的难点

所在。

5.2.3 异步模式变更的安全执行方案

为了解决上述问题, Google 的工程师设计了一个通过中间状态来执行模式更改的协议。在该协议中,模式的元素(表、列、索引等)可以被标记为若干种中间状态,从而限制对它们的操作。这种方式将单个危险的模式更改分解为一系列安全的模式更改,最终确保数据的一致性。

具体而言,F1 为模式的元素规定了两种非中间状态:1)公有(public),此时表、列或索引存在,且可以接受任意的读写操作;2)不存在(absent),此时表、列或索引已被移除,不接受任何操作。同时,为了在模式变更期间限制对元素的某一特定操作,F1 又为模式的元素规定了两种中间状态:1)只删(delete-only),此时表、列或索引关联的键值对只能被删除,不允许插入新的键值对,也不能被读取;2)只写(write-only),此时表、列或索引关联的键值对可以接受任何写操作,但也不能被读取。

这里我们以添加一个必需(required)元素为例,介绍这四种状态在模式变更过程中的应用。元素的初状态为 *absent*,末状态为 *public*,通过 5.2.2 的分析可知,直接进行这两种状态的转换会破坏数据的一致性,需要借助中间状态来安全过渡。四种状态的转换次序如下:

$$absent \rightarrow delete \ only \rightarrow write \ only \rightarrow public$$

文献 [8] 对上述任意两个相邻状态的转换安全性进行了形式化的推导,证明了:规定 F1 实例中的服务器最多只能有两个不同状态,这一转换次序能保证模式变更前后数据的一致性。

此外,针对宕机、网络连接丢失的情况,F1设计了模式租约(schema lease)机制。每个F1服务器需要在规定的租期(例如几分钟)结束后从底层存储中重新读取模式来更新租期,这一行为称为续签。续签失败的服务器将自动终止,稍后在其他正常运行的节点上重新启动。

5.3 F1 在 TiDB 中的实现

TiDB 与 F1 有很多相似之处:应用于大规模的分布式、关系型数据模式、无状态、依赖于底层的共享键值存储(正如前文所述,TiDB 构建于 TiKV 之上)……于是在 TiDB 中引入 F1 的机制是一件很自然的事,只不过 TiDB 设计了自己的抽象层次,如图 8 所示。

各组件的职责分别为:

- 1. load schema: 在租约过期时加载最新的模式, 若加载失败将关闭相应的 TiDB 服务器。
- 2. *start job*:在接收到 DDL(即模式变更)请求后,创建一个作业并分配一个唯一的 ID,将 其存储在 TiKV 中。
- 3. worker: 定期检查是否有模式变更的作业等待处理,如果存在未处理的作业且是本节点创建的,则将其取出并异步执行处理。

以删除一个列为例,我们能在 TiDB 的源码中看到 5.2.3 所述各个状态的过渡处理,如图 9 所示。

图 8: TiDB 的模式变更处理流程

```
func onDropColumn(t *meta.Meta, job *model.Job) (ver int64, _ error) {
    tblInfo, colInfo, err := checkDropColumn(t, job)
   if err \neq nil : ver, errors.Trace(err) \mathcal{I}
   originalState = colInfo.State
   /.../
switch colInfo.State {
    case model.StatePublic:
        adjustColumnInfoInDropColumn(tblInfo, colInfo.Offset)
        job.SchemaState = model.StateWriteOnly
        colInfo.State = model.StateWriteOnly
        \textit{ver, err = updateVersionAndTableInfoWithCheck(t, job, tblInfo, originalState} \neq \textit{colInfo.State})
   case model.StateWriteOnly:...
    case model.StateDeleteOnly:...
    case model.StateDeleteReorganization:
        tblInfo.Columns = tblInfo.Columns[:len(tblInfo.Columns)-1]
        colInfo.State = model.StateNone
        ver, err = updateVersionAndTableInfo(t, job, tblInfo, originalState \neq colInfo.State) if err \neq nil : ver, errors.Trace(err) \mathcal I
        // Finish this job.
if job.IsRollingback() {...} else {
            job.FinishTableJob(model.JobStateDone, model.StateNone, ver, tblInfo)
    return ver, errors.Trace(err)
```

图 9: TiDB 的模式变更源码片段

6 结语

本报告围绕分布式数据库技术这一主题,按照自下向上的系统架构顺序,针对共识、事务、 SQL 优化、模式变更四类难点探究了相应的解决方案,也介绍了实际工程中相关的一些实现细节。通过此次报告,我们对分布式数据库(这一在计算机科学领域极具综合性、挑战性的方向)的理论基础和前沿工程实践有了更系统性的认识。

参考文献

- [1] Fay Chang et al. "Bigtable: A Distributed Storage System for Structured Data". In: 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI). 2006, pp. 205–218.
- [2] James C. Corbett et al. "Spanner: Google's Globally Distributed Database". In: *ACM Trans. Comput. Syst.* (Aug. 2013). DOI: 10.1145/2491245. URL: https://doi.org/10.1145/2491245.
- [3] Goetz Graefe. "The cascades framework for query optimization". In: IEEE Data Eng. Bull. 18.3 (1995), pp. 19–29.
- [4] Goetz Graefe and William J McKenna. "The volcano optimizer generator: Extensibility and efficient search". In: *Proceedings of IEEE 9th international conference on data engineering*. IEEE. 1993, pp. 209–218.
- [5] Diego Ongaro. "Consensus: Bridging Theory and Practice". PhD thesis. Stanford, CA, USA, 2014. ISBN: 9798662514218.
- [6] Diego Ongaro and John Ousterhout. "In search of an understandable consensus algorithm". In: 2014 USENIX Annual Technical Conference (Usenix ATC 14). 2014, pp. 305–319.
- [7] Daniel Peng and Frank Dabek. "Large-scale Incremental Processing Using Distributed Transactions and Notifications". In: 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 10). Vancouver, BC: USENIX Association, Oct. 2010. URL: https://www.usenix.org/conference/osdi10/large-scale-incremental-processing-using-distributed-transactions-and.
- [8] Ian Rae et al. "Online, Asynchronous Schema Change in F1". In: Proc. VLDB Endow. 6.11 (Aug. 2013), pp. 1045–1056.
 ISSN: 2150-8097. DOI: 10.14778/2536222.2536230. URL: https://doi.org/10.14778/2536222.2536230.
- [9] Jeff Shute et al. "F1: A distributed SQL database that scales". In: *Proceedings of the VLDB Endowment* 6 (Aug. 2013), pp. 1068–1079. DOI: 10.14778/2536222.2536232.