

Constraint Satisfaction Problems (CSPs)

Russell and Norvig Chapter 6

CSP example: map coloring

Given a map of Australia, color it using three colors such that no neighboring territories have the same color.

September 28, 2015

2015

CSP example: map coloring

 Solutions are assignments satisfying all constraints, e.g.: {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

September 28, 2015

Constraint satisfaction problems

- A CSP is composed of:

 - A set of constraints C₁,C₂, ...,C_m
 - Each constraint C_1 limits the values that a subset of variables can take, e.g., $V_1 \neq V_2$

In our example:

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D_i={red,green,blue}
- Constraints: adjacent regions must have different colors.
 - E.g., WA ≠ NT (if the language allows this) or
 - (WA,NT) in {(red,green),(red,blue),(green,red),(green,blue),(blue,red), (blue,green)}

September 28, 2015

1

Constraint satisfaction problems

- A state is defined by an assignment of values to some or all variables.
- Consistent (or legal) assignment: assignment that does not violate the constraints.
- Complete assignment: every variable is mentioned.
- Goal: a complete, consistent assignment

{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

9/28/15

Varieties of CSPs

- Discrete variables
 - □ Finite domains of size $d \Rightarrow O(d^n)$ complete assignments.
 - The satisfiability problem: a Boolean CSP □ (AvBvC)^(~BvCvD)^(~AvBv~D)..
 - Infinite domains (integers, strings, etc.)
 - e.g., job scheduling where variables are start/end times for each job.
 - Need a constraint language, e.g., StartJob₁ +5 ≤ StartJob₂.
- Continuous variables
 - e.g., start/end times for Hubble Telescope observations.
 - Linear constraints solvable in poly time by linear programming methods (dealt with in the field of operations research).

September 28, 2015

Constraint satisfaction problems

- Simple example of a factored representation: splits each state into a fixed set of variables, each of which has a value
- CSP benefits
 - Standard representation language
 - Generic goal and successor functions
 - Useful general-purpose algorithms with more power than standard search algorithms, including generic heuristics
- Applications:
 - Time table problems (exam/teaching schedules)
 - Assignment problems (who teaches what)

September 28, 2015

Varieties of constraints

- Unary constraints involve a single variable.
 - e.q., SA ≠ green
- Binary constraints involve pairs of variables.
 - e.a.. SA ≠ WA
- Global constraints involve an arbitrary number of variables.
- Preference (soft constraints), e.g., red is better than green; often representable by a cost for each variable assignment; not considered here.

Constraint graph

- Binary CSP: each constraint relates two variables
- Constraint graph: nodes are variables, edges are constraints

September 28, 2015

Example: cryptharithmetic puzzles

Hypergraph

Variables: $F, T, U, W, R, O, C_{10}, C_{100}, C_{1000}$ Domains: {0,1,2,3,4,5,6,7,8,9}

Constraints:

alldiff(F,T,U,W,R,O) $O + O = R + 10 * C_{10}$

September 28, 2015

CSP as a standard search problem

- Incremental formulation
- Initial State: the empty assignment {}.
- Successor function: Assign value to unassigned variable provided that there is not conflict.
- Goal test: the current assignment is complete.
- Same formulation for all CSPs !!!
- Solution is found at depth n (n variables).
 - What search method would you choose?

September 28, 2015

Constraint propagation

- Is a type of inference
 - Enforce local consistency
 - Propagate the implications of each constraint

Arc consistency

■ X → Y is arc-consistent iff for every value x of X there is some allowed y

- Constraint: $Y=X^2$ or $((X,Y), \{(0,0), (1,1), (2,4), (3,9)\}$
 - $X \rightarrow Y$ reduce X's domain to $\{0,1,2,3\}$
 - □ Y \rightarrow X reduce Y's domain to {0,1,4,9}

September 28, 2015

13

Arc Consistency Algorithm

function AC-3(csp) returns false if an inconsistency is found and true otherwise inputs: csp, a binary csp with components {X, D, C}

local variables: queue, a queue of arcs initially the arcs in csp

while queue is not empty do

 $(X_i, X_i) \leftarrow \mathsf{REMOVE}\text{-}\mathsf{FIRST}(queue)$

if REVISE(csp, X_i, X_i) then

if size of D=0 then return false

for each X_k in X_j . NEIGHBORS – $\{X_j\}$ do

add (X_i, X_i) to queue

return true

function REVISE(csp, X_i, X_j) **returns** true iff we revise the domain of X_i

 $\textit{revised} \leftarrow \textit{false}$

for each x in D_i do

if no value y in D_i allows (x,y) to satisfy the constraints between X_i and X_j

then delete x from D_i

revised ← true

return revised

September 28, 2015

Arc consistency limitations

 $X \rightarrow Y$ is arc-consistent iff

for every value x of X there is some allowed y

- Yet SA → WA is consistent under all of the following:
 - {(red, green), (red, blue), (green, red), (green, blue), (blue, red)}
- So it doesn't help

September 28, 2015

Path Consistency

- Looks at triples of variables
 - □ The set $\{X_i, X_j\}$ is path-consistent with respect to X_m if for every assignment consistent with the constraints of X_i , X_j , there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_j\}$

9/28/15

K-consistency

- Stronger forms of propagation can be defined using the notion of k-consistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
- Not practical!

September 28, 2015

Backtracking search

- Observation: the order of assignment doesn't matter ⇒ can consider assignment of a single variable at a time. Results in dⁿ leaves.
- Backtracking search: DFS for CSPs with singlevariable assignments (backtracks when a variable has no value that can be assigned)
- The basic uninformed algorithm for CSP

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

Local search for CSP

- Local search methods use a "complete" state representation, i.e., all variables assigned.
- To apply to CSPs
 - Allow states with unsatisfied constraints
 - operators reassign variable values
- Select a variable: random conflicted variable
- Select a value: min-conflicts heuristic
 - Value that violates the fewest constraints
 - Hill-climbing like algorithm with the objective function being the number of violated constraints
- Works surprisingly well in problem like n-Queens

September 28, 2015

46

Problem structure

- How can the problem structure help to find a solution quickly?
- Subproblem identification is important:
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constraint graph.
- Improves performance

September 28, 2015

5 48

Problem structure

- Suppose each problem has *c* variables out of a total of *n*.
- Worst case solution cost is $O(n/c d^c)$ instead of $O(d^n)$
- Suppose *n*=80, *c*=20, *d*=2
 - □ 2⁸⁰ = 4 billion years at 1 million nodes/sec.
 - □ 4 * 2²⁰= .4 second at 1 million nodes/sec

September 28, 2015

49

Tree-structured CSPs

- Perform a topological sort of the variables
- Theorem: if the constraint graph has no loops then CSP can be solved in O(nd²) time
- Compare with general CSP, where worst case is $O(d^n)$

September 28, 2015

50

Tree-structured CSPs

Any tree-structured CSP can be solved in time linear in the number of variables.

Function TREE-CSP-SOLVER(csp) returns a solution or failure

inputs: csp, a CSP with components X, D, C

 $n \leftarrow$ number of variables in X

assignment ← an empty assignment

 $root \leftarrow any variable in X$

 $X \leftarrow \mathsf{TOPOLOGICALSORT}(X, root)$

for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(X_i),X_i)

if it cannot be made consistent then return failure

for i = 1 to n do

 $assignment[X_i] \leftarrow any consistent value from D_i$

if there is no consistent value then return failure

return assignment

September 28, 2015

Nearly tree-structured CSPs

- Can more general constraint graphs be reduced to trees?
- Two approaches:
 - Remove certain nodes
 - Collapse certain nodes

September 28, 2015

5

Nearly tree-structured CSPs

- Idea: assign values to some variables so that the remaining variables form a tree.
- Assign {SA=x} ← cycle cutset
 - Remove any values from the other variables that are inconsistent.
 - □ The selected value for SA could be the wrong: have to try all of them

September 28, 2015

53

Nearly tree-structured CSPs

- This approach is effective if cycle cutset is small.
- Finding the smallest cycle cutset is NP-hard
 - Approximation algorithms exist
- This approach is called *cutset conditioning*.