SWR POWER METER F8KGL

Implémentation

V 0.7

F0EOS-F4BJH-11/05/20-Vauréal Amitié Radio

Table des matières

1-INTRODUCTION	4
1.1-Spécifications	
1.2-Schéma bloc	
1.3-Technologie PCB	6
1.4-Connecteurs	
1.5-Interrupteur, sélectionneur de bande, reset/validation calibration	
2-Coupleur directif	8
2.1-Coupleur en ligne imprimée	8
2.2-Coupleur en câble coaxial semi-rigide	8
3-Détecteur HF	9
3.1-Composants	9
3.2-Schéma de principe	9
4-AOP	10
4.1-Composant	10
4.1.1-Potentiomètre digital	10
4.1.2-AOP faible bruit	10
4.2-Schéma de principe	11
4.2.1-AD5175	12
4.2.2-LT1818	12
5-ADC	13
5.1-Composant	13
5.2-Schéma de principe	13
6-MCU	15
6.1-Composant	15
6.2-Schéma de principe	15
7-LCD	17
8-Régulateur d'alimentation	18
9-Outils Logiciels	19
9.1-GPUTILS	19
9.2-GPSIM	19
9.3-GIT	20
10-IMPLEMENTATION LOGICIELLES	21
10.1-Généralités	21
10.2-Arborescence de développement	22
10.3-Mode « test »	
10.4-Implémentation SW	24
10.4.1-/prj	
10.4.1.1-Makefile	
10.4.1.2-Main.asm	27
10.4.2/sw/inc	30
10.4.2.1-lcd.inc	
10.4.2.2-eep.inc	
10.4.3-/sw/lcd	
10.4.3.1-driver.asm :	
10.4.3.2-aff.asm :	
10.4.4-/sw/calc	

10.4.4.1-calc.asm	36
10.5.5-/sw/readadc	37
10.5.5.1-adc.asm	37
10.5.5.1-adc_pic.asm	38
10.5.5.2-adc_maxim.asm	39
10.4.6-/sw/eep/	39
10.4.6.1-driver.asm	
10.4.7-/sw/flh/	39
10.4.7.1-driver.asm	39
10.4.8-/sw/data/	40
10.4.8.1-swversion.asm	40
10.4.8.2-adc_theoric_caltable.asm	40
10.4.8.2-lcdmsg.asm	41
10.5-Plan mémoire	42

1-INTRODUCTION

L'objectif du présent document est de présenter les choix et solutions retenues pour la réalisation du SWR POWER METER F8KGL, en conformité avec les spécifications retenues (SWR_POWER_METER_F8KGL_specification_V0.7.odt).

1.1-Spécifications

Pour rappel, le SWR POWER METER F8KGL doit répondre aux spécifications suivantes :

	min	typ	max	Unité
Paramètres radio				
Fréquence de fonctionnement	0		500	MHz
Puissance admissible	1		500	W
Impédance		50		Ω
Pertes en ligne insérées sous 50Ω			1	dB
Alimentation				
Alimentation externe	12	13,8	15	V
Alimentation pack pile	4,5		5,5	V
Autonomie sur pack pile ⁽¹⁾	24			h
Consommation (alimentation externe ou pack pile)			100	mA
Mesures		•	•	
Précision de la mesure	±10			%
ROS	1,1		∞	
Mécanique		•	•	
Dimensions	155x80x100 mm			
Poids			1	kg
Connecteurs	N ou PL			

⁽¹⁾Avec un pack pile d'une capacité d'au moins 2500mAh

1.2-Schéma bloc

Le SWR POWER METER F8KGL est composé de 3 blocs :

- un bloc « ligne de couplage », dont la fonction est séparer le signal transmis du signal réfléchi.
- un bloc « calculateur », dont la fonction est de mesurer la puissance tranmise et réfléchi, et de calculer le ROS
- un bloc « afficheur », dont la fonction est d'afficher le résultat de la mesure, et le résultat du calcul
- un bloc « alimentation », dont la fonction est de réguler la tension d'alimentation

Le bloc « ligne de couplage » est composé d'un module :

• un coupleur directif, dont la fonction est de séparer le signal transmis et le signal réfléchi du signal se propageant sur la ligne de transmission TRX-Antenne. Il donne sur ses 2 sorties, une fraction des signaux transmis et réfléchis.

Le bloc « calculateur » est composé de 4 modules :

- un module « détecteur HF », dont la fonction est de redresser le signal. Il donne en sortie une tension dont la valeur est reliée à la puissance du signal d'entrée.
- Un module « AOP », dont la fonction est d'amplifier le signal. Il donne en sortie une tension dont la valeur est la valeur de tension d'entrée augmenté de son gain. Le gain de ce module est piloté par le MCU.
- Un module « ADC », dont la fonction est de convertir le signal en une valeur numérique sur 12 bits/
- Un module « MCU », dont la fonction est d'exécuter un programme informatique.

Le bloc « Afficheur » est composé d'un module :

 LCD 2 lignes/16 caractères, ou un LCD 4 lignes/16 caractères. Le choix est laissé à l'utilisateur.

Le bloc « Alimentation » est composé de tbd modules : tbd

Pour l'implémentation matérielle, le présent document présente chaque module de la manière suivante :

- justification des composants choisis
- schéma de principe

Pour l'implémentation logicielle, le présent document présente les outils logiciels, et documente les interface logicielles du firmware du PIC (test, calibration et opérationnel). Le détail de l'implémentation se trouve commenté dans le code source.

1.3-Technologie PCB

Tous les composants sont en CMS. Les composants passifs sont au format 1206 ou éventuellement 0805.

Le circuit imprimé sera en epoxy FR4, d'épaisseur 1,6mm, double face. La face du dessous sera exclusivement réservée au plan de masse.

Propriété	Valeur
Constante diélectrique	4,70 max, 4,35 à 500 MHz, 4,34 à 1 GHz
Facteur de pertes	0,02 à 1 MHz, 0,01 à 1 GHz
Rigidité diélectrique	20 kV/mm
Résistivité de surface (min)	2×10^5
Résistivité volumique (min)	8×107 MΩ·cm
Épaisseur typique	1,25 à 2,54 mm
Rigidité	17 GPa
Coefficient de dilatation thermique	11 ppm/K (dans la direction des fibres)
Coefficient de dilatation thermique	15 ppm/K (dans la direction perpendiculaire aux fibres)
Conductivité thermique	0,3 W·m ⁻¹ ·K ⁻¹ (dans la direction des fibres)
Capacité calorifique	800 J·kg ⁻¹ ·K ⁻¹
Densité	de 1,80 à 1,90 kg·L ⁻¹ <u>1</u>

(Source Wikipedia)

1.4-Connecteurs

LCD	HE10
Programmateur MCU	HE10
Signal transmis et signal réfléchi	SMA à souder sur PCB (à préciser)
Alim	tbd
tbd	
tbd	
tbd	
tbd	

1.5-Interrupteur, sélectionneur de bande, reset/validation calibration

Interrupteur M/A pour le pack	tbd
-------------------------------	-----

pile	
Sélectionneur de bande	tbd
Calibration	tbd

2-Coupleur directif

Le choix du coupleur directif est laissé au choix de l'utilisateur.

Le coupleur directif peut donc être implémenté de plusieurs façons différentes :

- Ligne imprimée
- Coupleur en cable coaxial semi-rigide RG405
- Coupleur professionnel du commerce
- Coupleur avec tore

La connectique HF est de type fiche « N », car elle présente les meilleurs qualités et performances radio.

Dans ce document, seuls la solution de coupleur « en ligne imprimée » et « en câble coaxial semirigide » est présenté.

2.1-Coupleur en ligne imprimée tdb

2.2-Coupleur en câble coaxial semi-rigide tbd

3-Détecteur HF

3.1-Composants

Le détecteur HF est le classique détecteur HF à diode. Une étude de ce détecteur a permis de montrer que la tension de sortie et la puissance d'entrée était reliée par $P(dBm) = \frac{1}{a} \log(V_{out} - b)$

La mesure de la BAT54XV2 a montré un gain légèrement plus élevé de 50MHz à 430MHz, raison pour laquelle cette diode a été choisie.

3.2-Schéma de principe

Les mesures ont été effectuée avec C=47nF/céramique/boîtier 1206.

4-AOP

4.1-Composant

4.1.1-Potentiomètre digital

Le potentiomètre digital retenu est le AD5175, car il offre les spécifications suivantes :

- résistance nominale : 10kΩ
- résolution : 1024
- mémoire : 50 valeurs de résistances possible
- valeur de résistance contrôlé par bus I2C

Figure 4. MSOP Pin Configuration

4.1.2-AOP faible bruit

Le choix s'est porté sur l'AOP LT1818, présentant les spécifications suivantes :

- alimentation asymétrique +5V
- $6nV/\sqrt{Hz}$ de niveau de bruit à l'entrée
- consommation = 9mA

4.2-Schéma de principe

La procédure de calibration du SWR POWER METER F8KGL consiste à régler le gain de la chaîne d'amplification.

En phase de calibration, le SWR POWER METER F8KGL affiche une puissance mesurée non calibrée. L'OM est alors invité à calibrer son appareil de mesure avec un TRX de puissance connue sur les entrées FWD et REF. L'appui successif sur le bouton poussoir « Calibration » corrige l'affichage pour atteindre la puissance désirée.

Cette correction est effectuée par le réglage du gain de la chaîne d'amplification. Ce réglage est contrôlé par le MCU. Le potentiomètre digital est le composant permettant le réglage du gain dans un montage non inverseur.

Sur la version V0.7 du SWR POWER METER F8KGL, une résistance de test de $5,1k\Omega$ est prévue en remplacement éventuel du potentiomètre digital.

Sur la version V1.0, et suivantes, cette résistances est supprimée,

4.2.1-AD5175

Pin	Fonction	Connection
Vdd(1)	Alimentation +	A découpler avec 100nF et 10μF
A(2)	Extrémité du potentiomètre	Voir schéma de principe
W(3)	Curseur du potentiomètre	Voir schéma de principe
Vss(4)	Alimentation -	
EXT_CAP(5)	Condensateur externe	Placer 1µF entre EXT_CAP et la masse
GND(6)	Masse	
RESET(7)	Reset	Directe à Vdd
SDA(8)	Bus I2C	Données du bus I2C
SCL(9)	Bus I2C	Horloge du bus I2C
ADDDR(10)	Adresse device	Pour l'AD5175 connecté au LT1818 de Vfwd, la pin ADDR sera tiré à la masse. L'adresse I2C du device est alors (0101111) ₂ =0x2F Pour l'AD5175 connecté au LT1818 de Vref, la pin ADDR sera tiré à VDD. L'adresse I2C du device est alors (0101100) ₂ =0x2C

4.2.2-LT1818

Pin	Fonction	Connection
OUT(1)	sortie	Voir schéma de principe
V-(2)	Alimentation -	masse
+IN(3)	Entrée non inverseur	Voir schéma de principe
-IN(4)	Entrée inverseur	Voir schéma de principe
V+(5)	Alimentation +	A découpler avec 100nF et 10μF

5-ADC

5.1-Composant

L'ADC est le LTC2305, car il offre les spécifications suivantes :

• résolution : 12 bits

• temps de conversion : 1,3µs

• bus I2C

2 canaux analogiques

5.2-Schéma de principe

La période d'échantillonnage n'a pas de contraintes forte pour le « SWR Power Meter F8KGL » car les puissances crêtes varient peu à l'échelle du temps du PIC (4MHz). Le logiciel s'attachera à faire du polling sur les valeurs retournées par les ADC, aussi vite que possible. Les valeurs d'ADC seront récupérées sur un bus I2C (SDA,SCL)

Pin	Fonction	Connection
GND(1)	Alimentation -	A découpler avec 100nF et 10μF
SDA(2)	Extrémité du potentiomètre	Données du bus I2C
SCL(3)	Curseur du potentiomètre	Horloge du bus I2C
GND(4)	Alimentation -	masse
CH0(5)	Entrée analogique	Voir schéma de principe
CH1(6)	Entrée analogique	Voir schéma de principe
VREF(7)	tbd	tbd
REFCOMP(8)	tbd	tbd
GND(9)	Alimentation -	masse
VDD(10)	Alimentation +	A découpler avec 100nF et 10μF
AD1(11)	Adresse device	On imposera AD1=GND.
AD0(12)	Adresse device	On imposera AD0=GND.

6-MCU

6.1-Composant

Le MCU est un microcontrôleur PIC 18F1320. Son choix a été guidé par les principales caractéristiques suivantes :

Taille de la flash	8K (@0x0)	
Taille de l'EEPROM	256 octets (@0xf00000)	
Taille de la RAM	256 octets (@0x80) – seuls 127 octets sont exploités	
ADC	10 bits	
Nb de canaux ADC	7	
Oscillateur interne	31 kHz, 125 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz	
Alimentation	Comprise entre 4,2V et 5,5V	
GPIO	2x8 GPIO disponibles (multiplexés avec les entrées analogiques)	

6.2-Schéma de principe

Pin	Fonction	Connection
MCLR/VPP/RA5	tbd	tbd
OSC1/CLK1/RA7	tbd	tbd
OSC0/CLK0/RA6	tbd	tbd
RA0	tbd	tbd
RA1	tbd	tbd
RA2	Bus I2C	Données du bus I2C (SDA). Placer une pullup de $10k\Omega$
RA3	Bus I2C	Horloge du bus I2C (SCL). Placer une pullup de $10k\Omega$
RA4	tbd	tbd
RA5	tbd	tbd
RA6	tbd	tbd
RA7	tbd	tbd
RB0	tbd	tbd
RB1	tbd	tbd
RB2	tbd	tbd
RB3	tbd	tbd
RB4	tbd	tbd
RB5	tbd	tbd
RB6	tbd	tbd
RB7	tbd	tbd
VSS	Alimentation -	masse
VDD	Alimentation +	A découpler avec 100nF et 10μF

7-LCD

tbd

8-Régulateur d'alimentation

tbd

9-Outils Logiciels

9.1-GPUTILS

Sous linux, la suite « GPUTILS », permet la compilation d'un projet développé en assembleur pour PIC.

GPUTILS est une collection d'outil pour les microcontroleurs PIC. Elle inclut :

- Gpasm: compilateur assembleur
- Gplib : compilateur assembleur permettant la génération d'une librairie
- Gplink : éditeur de lien symboliquez

Installation:

- 1. Désinstaller la version courante de la distribution
- 2. Télécharger la version 1.5.0-1 en suivant ce lien : https://sourceforge.net/projects/gputils/files/gputils/1.5.0/gputils-1.5.0-1.tar.gz/download
- 3. Installation

```
$ tar –xvzf gputils-1.5.0-1.tar.gz
$ cd gputils-1.5.0-1.tar.gz
$ ./configure
$make
$sudo make install
```

9.2-GPSIM

Sous linux, la suite « gpsim » permet la simulation d'un code compilé par GPUTILS

Installation:

- 1. Désinstaller la version courante de la distribution
- 2. \$\\$sudo apt-get remove gpsim
- 3. Télécharger la version 0.30.0 en suivant ce lien : https://sourceforge.net/projects/gpsim/files/gpsim/0.31.0/
- 4. Installation

```
$tar -xvzf gpsim-0.31.0.tar.gz
$cd gpsim-0.31.0/
$./configure
$make
$sudo make install
```

Utilisation:

- 1. \$ gpsim –s nom_du_fichier.cod
- 2. Aller dans File->Open et choisir le fichier .stc

3. Par défaut, la fréquence est fixée à 20MHz. Il faut fixer la fréquence de travail à 4MHz :

**gpsim> frequency 4000000

**gpsim> frequency
Clock frequency: 4 MHz.

9.3-GI7

10-IMPLEMENTATION LOGICIELLES

10.1-Généralités

Le logiciel est développé sous Linux (Debian 8).

3 firmwares seront généres :

-Firmware de test, correspondant au mode de fonctionnement « test » du « SWR Power Meter F8KGL. Ce firmware est généré en position le flag de compilation TEST.

Nom: « swr_power_meter_f8kgl-Vn.m.TEST.hex »

Il permet le debug et le prototypage du projet.

Il sert également à la calibration du point de fonctionnement à 1W (§1.4)

-Firmware de calibration, correspondant à la fonctionnalité du mode « calibration » seule du « SWR Power Meter F8KGL ». Ce firmware est généré en position le flag de compilation CALIBRATION.

Nom: « swr_power_meter_f8kgl-Vn.m.CALIBRATION.hex »

-Firmware opérationnel, correspondant au mode de fonctionnement opérationnel du « SWR Power Meter F8KGL » telle que décrite dans le §3.

Nom: « swr_power_meter_f8kgl-Vn.m.hex »

n : correspond à une version majeure du « SWR Power Meter F8KGL ». m : correspond à une version mineure du « SWR Power Meter F8KGL ».

Version	Documentation	Etat logiciel	Etat matériel
V0.5		Mode test implémenté et validé en simulation	PIC implémenté
V0.6		N/A	MAX11100 et MAX624 implémenté
V0.7		Mode calibration implémenté et validé en simulation	LTC2305, AD5175, LT1818 implémenté
V1.0 et dérivée V1.m		Mode test et calibration validé sur cible matérielle Mode opérationnel implémenté et validé en simulation	
V2.0 et dérivée V2.m		Mode opérationnel validé sur cible matériel	

Pour le logiciel:

- l'état « implémenté » signifie que le code source est développé
- l'état « validé » signifie que le firmware a passé la campagne de test (en simulation ou sur cible matériel selon le cas)

Pour le matériel :

- l'état « implémenté » signifie que le schéma et le PCB est développé
- l'état « validé » signifie que le firmware a passé la campagne de test (de manière unitaire le cas échéant, ou avec la version de logiciel associé à l'état du matériel)

Version	Limitation connues
V0.5	Résolution de l'ADC du PIC insuffisante pour garantir une précision de 10 %
V0.6	Driver MAX11100 non implémenté dans le firmware

La version V0.7 est une version de prototype pour le logiciel et le matériel La version V1.0 est la version de production pour le matériel. La version V2.0 est la version de production pour le matériel.

10.2-Arborescence de développement

	opponion	
bin		
prj		
doc		
src	hw	sim
		doc
	SW	calc
		data
		eep

flh
inc
lcd
readadc

swr_power_meter/bin	Contient l'ensemble des binaires produits :
_i _	 *.a : librairie associée à un composant sw
	• *.cod : simulation
	 *.hex : binaire à flasher dans le PIC
	*.map : mapping mémoire
	 *.cof : fichier objet résultat de la compilation
	• *.lst:?
swr_power_meter/prj	Contient le Makefile du projet, et le point d'entrée sw
	(main.asm)
swr_power_meter/doc	Documentation du projet
swr_power_meter/src	Contient les sources du projet
swr_power_meter/src/hw	Contient les sources HW du projet (schéma, PCB)
swr_power_meter/src/hw/sim	Contient le fichier netlist pour gpsim
swr_power_meter/src/hw/doc	Contient les doc HW des composants
swr_power_meter/sw/lcd	Composant LCD
	Driver.asm : driver bas niveau du LCD
	 Aff.asm : routines haut niveau d'affichage des messages
	Makefile : make de la librairie LCD
swr_power_meter/sw/readadc	Composant ADC
swr_power_meter/sw/calc	Composant CALC
swr_power_meter/sw/eep	Composant EEP:
	Driver.asm : driver bas niveau
swr_power_meter/sw/flh	Composant d'accès à la flash du PIC :
	Driver.asm : driver bas niveau
swr_power_meter/sw/data	Composant data : contient les données : table de calibration,
	version logicielle, constantes
swr_power_meter/sw/inc	Include

10.3-Mode « test »

Le mode « test » est un mode de fonctionnement de validation du « SWR POWER METER F8KGL ».

Il implémente la fonctionnalité de lecture des ADC.

Le mode test affiche le message suivant :

F	W	D	u	u	u	u	h	-	v	v	v	v	m	V
R	E	F	X	X	X	X	h	-	y	y	y	y	m	V

« FWD » : chaîne de caractère fixe, indiquant que la ligne 1 du LCD est dédié au port FWD

uuuu : correspond à la valeur de l'ADC du port FWD en hexadécimal

vvvv : correspond à la tension calculée à partir de la valeur de l'ADC par le PIC sur le port FWD en mV

« REF » : chaîne de caractère fixe, indiquant que la ligne 1 du LCD est dédié au port REF

xxxx : correspond à la valeur de l'ADC du port REF en hexadécimal

yyyy : correspond à la tension calculée à partir de la valeur de l'ADC par le PIC $\,$ sur le port REF en $\,$ mV

« h » : caracère symbolisant l'unité de la mesure de l'ADC (hexadécimal)

« mV » : chaîne de caractère indiquant l'unité de la mesure de la tension (mV)

La conversion « valeur hexadécimal de l'ADC » vers « tension calculée de l'ADC en mV » se fera à l'aide d'une table de calibration, placée en mémoire flash. Elle portera le nom de « table de calibration théorique de l'ADC ».

ADC(hexa) sur 10 bits	Tension en mV	Valeur de la tension en mV stockée flash
0x0000	0	0x0000
0x0001	5	0x0005
0x0002	10	0x000A
0x3FD	4985	0x1379
0x3FE	4990	0x137E
0x3FF	4995	0x1383

10.4-Implémentation SW

10.4.1-/prj

10.4.1.1-Makefile

Variables	Nom du projet : swr-power-meter_f8kgl-
	Processeur: 18F1320 (à exporter)
	Version : Vn.m (à exporter)
	Nom du firmware de test : <nom du="" projet=""><version>.TEST.hex</version></nom>
	Nom du firmware de calibration : <nom du="" projet=""><version>.CALIBRATION.hex</version></nom>
	Nom du firmware opérationnel: <nom du="" projet=""><version>.hex</version></nom>
	Sous linux : Répertoire pour le linker : /usr/share/gptuils/lkr (à exporter)
	Sous Windows: Répertoire pour le linker: ./ (à exporter)
	Script du PIC pour le linker : <répertoire le="" linker="" pour=""><processeur>.lkr (à</processeur></répertoire>

	exporter) Répertoire des Include : -I/src/sw/inc
Outils	AS : gpasm (assembleur) LD : gplink (linker)
Flags	Flags pour le linker :map -c -s (génère un fichier .map, génère un fichier objet, spécifier le fichier script pour le linker) Flags pour l'assembleur : -c (génère un fichier objet) -D <version :="" <i="" calibration="" de="" du="" firmware="" flag="" génération="" l'assembleur="" la="" par="" pour="" test="" »="">CALIBRATION Si ADC_PIC=Yes, alors le flag de choix de l'ADC HW vaut HW_ADC_PIC. Sinon, il est indéfini</version>
Composants	Composants : lcd, eep, readadc, calc, flh
Fichiers sources	Fichiers sources communs à tous les firmware : main.asm,/src/sw/data/swversion.asm Fichiers sources du firmware de test :/src/sw/data/adc_theoric_cal.asm
Objets	objets communs en mode test : [pour chacun des fichiers sources communs à tous les firmwares : <nom .asm="" du="" fichier="" l'extension="" sans="" source="">.TEST.o] objets du firmware de test [pour chacun des fichiers sources du firmware de test : <nom .asm="" du="" fichier="" l'extension="" sans="" source="">.o], objets de tests : les objets communs en mode test, les objets du firmware de test</nom></nom>
Librairies	librairies de test : [pour chacun des composants : libtest <nom composant="" du="">.a] librairies de calibration : [pour chacun des composants : libcalib<nom composant="" du="">.a Librairies opérationnelles : [pour chacun des composants : <nom chaque="" composant="" de="">.a]</nom></nom></nom>
Règles de compilation	All: -applique les règles du firmware de test, calibration et opérationnel -rule_operationnel -appliquer les règles du firmware opérationnel rule_calibration: -appliquer les règles du firmware de calibration rule_test: -appliquer les règles du firmware de test Règle du firmware opérationnelles: -appliquer les règles des objets opérationnels, les règles de la librairie opérationnelles

-effacer

-effacer

Règle du firmware de test :

-appliquer les règles des objets de test, les règles de la librairie de test

-linker avec les flags du linker, avec le script du linker, les objets de test, les librairies de test, vers le firmware de test en ../bin/<Nom du firmware de test>

-effacer les fichier objets de tests, les librairies de test

-effacer tous les fichiers *.lst

règle de la librairie opérationnelle

-faire le make, avec le flag -C, avec le flag du choix de l'ADC HW, de la librairie opérationnelle de ../src/sw/<Nom du composant associé à la librairie>

règle de la librairie de test :

-faire le make, avec le flag -C, avec le flag du choix de l'ADC HW, de la librairie de test de ../src/sw/<Nom du composant associé à la librairie>

Règle d'un objet de test commun issu des sources communes à tous les firmware assembler avec les flags de l'assembleur, le flag du firmware de test, pour le processeur, avec le répertoire des Includes, le fichier source commun à tous les firmware associé à l'objet, en un objet commun à tous les firmware en mode test

Règle d'un objet du firmware opérationnel

assembler avec les flags de l'assembleur, pour le processeur, avec le répertoire des Includes, le fichier source spécifique au mode de test, en un objet du firmware opérationnel

Règle d'un objet du firmware de test

assembler avec les flags de l'assembleur, le flag du firmware de test, pour le processeur, avec le répertoire des Includes, le fichier source spécifique au mode de test, en un objet du firmware de test

Règle de clean : efface tous les fichiers de ../bin

\$ cd prj

//Génération du firmware en mode TEST

\$ make rule test

//Génération du firmware en mode CALIBRATION

\$ make rule_calibration

//Génération de tous les firmwares

\$ make all

10.4.1.2-Main.asm

Fonctions	Fonction principale, point d'entrée du logiciel
Nom	Init
Paramètres entrée	
Paramètres sorties	
	CONFIG: OSC = INTIO2; Internal Osc with FOSC/4 -RA6 and RA7 = I/O FSCM = OFF; Fail-Safe Clock Monitor disabled IESO = OFF; Internal External Switch Over mode disabled PWRT = OFF; Power up timer disabled BOR = OFF; Brown out reset disabled WDT = OFF; Watch dog timer off MCLRE = OFF; MCLRE off (pin available for input) LVP = OFF; Low voltage programming disabled DEBUG = OFF; Background debugger off CONFIG Initialisation PIC OSCCON = 4MHz #Si FLAG=PIC_ADC TRISA = RA0, RA1 input TRISB = PortB Outputs #SINON #FIN INTCON2 = disable all interrupts INTCON3 = disable all interrupts IPR1, IPR2 = clear, no priority is used PIE1, PIE2 = Individualy disable interrupts RCON = Disable priority levels EECON1 = clear EEPROM control register WDTCON = stop watchdog CCP1CON = Capture/Compare/PWM of
	Initialisation LCD Afficher la massage de boet (f. lad. offbeet)
	 Afficher le message de boot (f_lcd_affboot) Tempo de 5s temporisation de 2,5s (f_tempo_boot) temporisation de 2,5s (f_tempo_boot) Effacer le LCD (f_lcd_clear) Positionner le curseur du LCD sur la ligne 1 (f_lcd_setposcursor)
	 #Le code ci-dessous est assemblé uniquement dans le firmware de test afficher le message du mode test (lcd_aff_fwd_and_ref) Dans une boucle infinie

•	lire les registres ADCfwd et ADCref (f_adc_readAN0,
	f adc readAN1)

- afficher la mesure des ADC en mode test (lcd_affadc)
- Convertir la mesure des ADC en mV (calc_adcmV)
- Affichage de la mesure en tension des ADC en mode test (lcd_affadcmV)

#FIN

#Le code ci-dessous n'est pas assemblé dans le firmware de test #Le code ci-dessous n'est pas assemblé dans le firmware de calibration

- *Tester la phase (calibration ou mesure)*
- Si le boîtier est en phase « calibration »

#FIN

- afficher le message de calibration (lcd_affcalib)
- Dans une boucle infinie

•

#Le code ci-dessous n'est pas assemblé pour le firmware de calibration

- Sinon
 - Dans une boucle infinie:
 - •

 - -

#FIN

Fonctions	Temporisation de 2,5 secondes
Nom	f_tempo_boot
Paramètres entrée	
Paramètres sorties	
Traitements	Appeler 10 fois un délai de 250ms

pour l'adc

On imposera AD0=AD1=GND. L'adresse du device est alors (0001000)₂=0x08

Pour l'AD5175 connecté au LT1818 de Vfwd, L'adresse I2C du device est alors (0101111)₂=0x2F Pour l'AD5175 connecté au LT1818 de Vref, L'adresse I2C du device est alors (0101100)₂=0x2C

Command	Con	nman	d[DB1	13:DB10]				D	ata[D	B9:DE	[0]				
Number	C3	C2	C1	Co	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Operation
0	0	0	0	0	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	NOP: do nothing.
1	0	0	0	1	D9	D8	D7	D6	D5	D4	D3	D2	D1	D	Write contents of serial register data to RDAC.
2	0	0	1	0	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Read contents of RDAC wiper register.
3	0	0	1	1	Х	Х	Χ	Х	Х	Χ	Χ	Х	Х	Χ	Store wiper setting: store RDAC setting to 50-TP.
4	0	1	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Software reset: refresh RDAC with the last 50-TP memory stored value.
5 ²	0	1	0	1	Х	Х	Х	Х	D5	D4	D3	D2	D1	D0	Read contents of 50-TP from the SDO output in the next frame.
6	0	1	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Read address of the last 50-TP programmed memory location.
7 ³	0	1	1	1	Х	Х	Х	Х	Х	Х	Х	Х	D1	D0	Write contents of the serial register data to the control register.
8	1	0	0	0	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Read contents of the control register.
9	1	0	0	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	D0	Software shutdown. D0 = 0; normal mode. D0 = 1; shutdown mode.

10.4.2/sw/inc

10.4.2.1-lcd.inc

Contient les define du LCD.

10.4.2.2-eep.inc

Contient le plan mémoire de l'EEPROM

EEPROM_START	SW_VERSION_EEP_ADDR	Version du logiciel
EEPROM_START + 5	OFFSET_CAL_TABLE	Offset de calibration

10.4.3-/sw/lcd

10.4.3.1-driver.asm :

Fonction	Routines de temporisation et pulse
Nom	
Paramètres entrée	
Paramètres sorties	
Traitements	http://digitaldiy.io/articles/mcu-programming/assembly/55-assembly-example/114-mpasm-tutorial-liquid-crystal-display-lcd#.Wi5383mDO9I

Fonction	Envoi d'une commande au LCD
Nom	_f_lcd_sendcmd
Paramètres entrée	W(1 byte) : contient la commande
Paramètres sorties	
Traitements	

Fonction	Positionner le curseur du LCD
Nom	f_lcd_setposcursor
Paramètres entrée	W(1 byte) : contient la position du curseur 0-15 : 1 ^{ère} ligne 16-31 : 2 ^{ème} ligne
Paramètres sorties	
Traitements	 Si le curseur doit être positionné sur la première ligne : W = W + 0x80 Si le curseur doit être positionné sur la deuxième ligne : W = W + 0xC0 Envoi de la commande au LCD (lcd_sendcmd)

Fonction	Efface le LCD
Nom	f_lcd_clear
Paramètres entrée	
Paramètres sorties	
Traitement	 W=0x01 Envoi de la commande au LCD (lcd_sendcmd)

Fonction	Positionne le curseur sur la 2 ^{ème} ligne
Nom	f_lcd_setposL2
Paramètres entrée	

Paramètres sorties	
Traitements	 W=0xC0 Envoi de la commande au LCD (lcd_sendcmd)

Fonction	Conversion hexa-ASCII
Nom	f_lcd_convtoascii
Paramètres entrée	W (1 quartet) : contient le quartet de poids faible à convertir
Paramètres sorties	W (1 byte) : contient l'octet converti
Traitements	W=W + 0x30

Fonction	Conversion hexa-BCD
Nom	f_lcd_convtobcd
Paramètres entrée	v_hexa_to_conv (2 bytes) : 2 octets à convertir en BCD
Paramètres sorties	v_bcd (2 bytes) : 2 octets convertis en BCD
Traitements	http://www.microchip.com/forums/m322713.aspx

Fonction	Initialisation du LCD
Nom	f_lcd_init
Paramètres entrée	
Paramètres sorties	
Traitements	 Configurer le LCD en mode 4 bits effacer le RAM du LCD allumer le curseur allumer le LCD effacer le LCD

Fonction	Affichage d'un caractère
Nom	f_lcd_affchar
Paramètres entrée	W(1 byte) : contient le caractère à afficher à la position courante du curseur
Paramètres sorties	
Traitements	

10.4.3.2-aff.asm:

Fonction	Affichage du message de boot
Nom	f_lcd_affboot

Paramètres entrée	-c_bootmsgL1 : zone mémoire (15 bytes) contenant le message de boot ligne 1 -c_bootmsgL2 : zone mémoire (5 bytes) contenant le message de boot ligne 2 -c_data_swversion : zone EEPROM (5bytes) contenant la version courante du logicielle
Paramètres sorties	S W R - P O W E R m e t e r F 8 K G L V 0 . 5
Traitements	 v_charpos = 0x00 Afficher le message de boot ligne 1 Tant que W≠0

Fonction	Affichage du message du mode test #Le code ci-dessous est assemblé uniquement dans le firmware de test
Nom	f_lcd_aff_fwd_and_ref
Paramètres entrée	-c_testmsgL1 : zone mémoire (7bytes) contenant le message de calibration L1 -c_testmsgL2 : zone mémoire (7bytes) contenant le message de calibration L2
Paramètres sorties	F WD
	R E F

Traitements	1. $v_{charpos} = 0x00$
	2. Afficher le message de calibration ligne 1
	Tant que W≠0
	Récupérer 1 caractère du message de calibration ligne 1
	(c_testmsgL1) dans W
	 Afficher 1 caractère sur le LCD (f_lcd_affchar)
	 Incrementer v_charpos
	3. Positionner le curseur sur la ligne 2 :
	o W=0x10
	 Positionner le curseur du LCD (f_lcd_setposcursor)
	4. $v_{charpos} = 0x00$
	5. Afficher le message de calibration ligne 2
	Tant que W≠0
	 Récupérer 1 caractère du message de calibration ligne 2
	(c_testmsgL2)
	 Afficher 1 caractère sur le LCD (f_lcd_affchar)
	 Incrementer v_charpos
	-

Fonction	Affichage d'1 octet en hexa sur le LCD
Nom	f_lcd_affhexa
Paramètres entrée	W : contient l'octet en hexa à afficher
Paramètres sorties	
Traitements	 v_tmp = W swapper les quartets de v_tmp, et mettre le résultat dans W Appliquer un masque sur les bits de poids fort sur W Convertir le quartet de poids faible en ASCII (f_lcd_convtoascii) Afficher 1 caractère sur le LCD (f_lcd_affchar) W=v_temp&0F Convertir le quartet de poids faible en ASCII (f_lcd_convtoascii) Afficher 1 caractère sur le LCD (f_lcd_affchar)

Fonction	Affichage de la mesure des ADC en mode test #Le code ci-dessous est assemblé uniquement dans le firmware de test
Nom	f_lcd_affadc
Paramètres entrée	v_adcfwd (2bytes) : résultat de l'ADC AN0 sur 10 bits v_adcref (2bytes) : résultat de l'ADC AN1 sur 10 bits
Paramètres sorties	
Traitements	1.positionner le curseur sur la ligne 1, 5ème case 2.W=v_adcfwd 3.Afficher un octet en hexa (f_lcd_affhexa) 4.W =v_adcfwd +1

5.Afficher un octet en hexa (f_lcd_affhexa)
6. W='h'
7.Afficher 1 caractère sur le LCD (f_lcd_affchar)
8. W='-'
9.Afficher 1 caractère sur le LCD (f_lcd_affchar)
10.positionner le curseur sur la ligne 2, 5ème case
11.W=v_adcref
12.Afficher un octet en hexa (f_lcd_affhexa)
13.W =v_adcref +1
14.Afficher un octet en hexa (f_lcd_affhexa)
15. W='h'
16.Afficher 1 caractère sur le LCD (f_lcd_affchar)
17. W='-'
18.Afficher 1 caractère sur le LCD (f_lcd_affchar)

Fonction	Affichage de la mesure en tension des ADC en mode test #Le code ci-dessous est assemblé uniquement dans le firmware de test
Nom	f_lcd_affadcmV
Paramètres entrée	v_adcfwd_mV (2bytes) : résultat de l'ADC en mV compris entre [0;5000] v_adcref_mV (2bytes) : résultat de l'ADC en mV compris entre [0;5000]
Paramètres sorties	v v v v m V y y y y m V
Traitements	1.positionner le curseur sur la ligne 1, 11ème case 2.v_hexa_to_conv = v_adcfwd_mV 3.v_hexa_to_conv +1 = v_adcfwd_mV +1 4. Conversion hexa-BCD (f_lcd_convtobcd); 5. W = v_bcd 6. Affichage d'un octet en hexa (_f_lcd_affhexa) 7. W = v_bcd+1 8. Affichage d'un octet en hexa (_f_lcd_affhexa) 9. W = v_bcd+2 10. Affichage d'un octet en hexa (_f_lcd_affhexa) 11. Afficher "mV" 12.positionner le curseur sur la ligne 2, 11ème case 13.v_hexa_to_conv = v_adcref_mV 14.v_hexa_to_conv +1 = v_adcref_mV +1 15. Conversion hexa-BCD (f_lcd_convtobcd); 16. W = v_bcd 17. Affichage d'un octet en hexa (_f_lcd_affhexa) 18. W = v_bcd+1 19. Affichage d'un octet en hexa (_f_lcd_affhexa) 20. W = v_bcd+2 21. Afficher "mV"

Fonction	Affichage du message de calibration	
----------	-------------------------------------	--

	#le code ci-dessous n'est pas assemblé dans le firmware de test
Nom	f_lcd_affcalib
Paramètres entrée	
Paramètres sorties	
Traitements	

Fonction	Affichage de la puissance du port FWD
Nom	f_lcd_affpfwd
Paramètres entrée	v_pfwd
Paramètres sorties	
Traitements	

Fonction	Affichage de la puissance du port REF
Nom	f_lcd_affpref
Paramètres entrée	v_pref
Paramètres sorties	
Traitements	

Fonction	Affichage du SWR
Nom	f_lcd_affpref
Paramètres entrée	v_p_ref
Paramètres sorties	
Traitements	

10.4.4-/sw/calc

10.4.4.1-calc.asm

Fonction	Convertir la mesure des ADC en mV #Le code ci-dessous est assemblé uniquement dans le firmware de test
Nom	f_calc_adcmV
Paramètres entrée	v_adcfwd (2bytes) : résultat de l'ADC AN0 sur 10 bits v_adcref (2bytes) : résultat de l'ADC AN1 sur 10 bits
Paramètres sorties	v_adcfwd_mV (2bytes) : résultat de l'ADC en mV en hexa v_adcref_mV (2bytes) : résultat de l'ADC en mV en hexa
Traitements	1. v_flh_offset_addr = v_adcfwd v_flh_offset_addr + 1 = v_adcfwd + 1

2. v_flh_offset_addr = 2*v_flh_offset_addr et propager la retenue
3. Lecture d'un octet en flash (f_flh_readword)
$4.v_adcfwd_mV = v_flh_read$
$5.v_adcfwd_mV +1 = v_flh_read+1$
6. v_flh_offset_addr = v_adcref
v_flh_offset_addr + 1= v_adcref + 1
7. v_flh_offset_addr = 2*v_flh_offset_addr et propager la retenue
8. Lecture d'un octet en flash (f_flh_readword)
9.v_adcref_mV = v_flh_read
$10.v_adcref_mV + 1 = v_flh_read + 1$

Fonction	
Nom	

Paramètres entrée	P_FWDP_REF
Paramètres sorties	• SWR
• Traitements	$\bullet SWR = \frac{ADCfwd + ADCref}{ADCfwd - ADCref}$

10.5.5-/sw/readadcMettre le flag ADC_PIC dans le makefile

10.5.5.1-adc.asm

Fonction	Initialisation des ADC
Nom	f_adc_init
Paramètres entrée	v_conf_adc_hw
Paramètres sorties	
Traitements	# Si flag ADC_PIC appeler f_adc_pic_init #SINON appeler f_adc_maxim_init

Fonction	Initialisation de l'ADC FWD
Nom	f_adc_read_fwd
Paramètres entrée	

Paramètres sorties	
	# Si flag ADC_PIC appeler f_adc_pic_readAN0 #SINON appeler f_adc_maxim_read_fwd

Fonction	Initialisation de l'ADC REF
Nom	f_adc_read_ref
Paramètres entrée	
Paramètres sorties	
Traitements	# Si flag ADC_PIC appeler f_adc_pic_readAN1 #SINON appeler f_adc_maxim_read_ref

10.5.5.1-adc_pic.asm

Fonction	Initialisation des ADC
Nom	f_adc_pic_init
Paramètres entrée	
Paramètres sorties	
Traitements	 ADCON0[VCFG]: VREF+=VDD, VREF-=VSS ADCON1: ;RA0-RA1 analog channel ADCON2: ADFM = right justified – ACQT=16Tad – ADCS = Fosc/16

Fonction	Lire le résultat de la conversion A/N AN0
Nom	f_adc_pic_readAN0
Paramètres entrée	
Paramètres sorties	-v_adcfwd (2bytes) : résultat de l'ADC sur 10 bits
Traitements	1. Selectionner le canal à échantilloner (AN0) ADCON0(CHS2) = b'0' ADCON0(CHS1) = b'0' ADCON0(CHS0) =b'0' 2. Mise en service du convertisseur ADCON(ADON) = b'1' 3. Tempo de 20us 4.Lancer la phase de conversion ADCON0(G0)=b'1' 5. Tant ADCON0(G0)≠b'0' 6.v_adcfwd = ADRESH

	$v_adcfwd(+1) = ADRESL$
--	-------------------------

Fonction	Lire le résultat de la conversion A/N AN1
Nom	f_adc_readAN1
Paramètres entrée	
Paramètres sorties	-v_adcref (2bytes) : résultat de l'ADC sur 10 bits
Traitements	1. Selectionner le canal à échantilloner (AN1) ADCON0(CHS2) = b'0' ADCON0(CHS1) = b'0' ADCON0(CHS0) =b'1' 2. Mise en service du convertisseur ADCON(ADON) = b'1' 3. Tempo de 20us 4.Lancer la phase de conversion ADCON0(G0)=b'1' 5. Tant ADCON0(G0)≠b'0' 6.v_adcref = ADRESH v_adcref(+1) = ADRESL

10.5.5.2-adc_maxim.asm

Driver MAX11100 ET MAX4624

10.4.6-/sw/eep/

10.4.6.1-driver.asm

Fonction	Lecture d'un octet en EEPROM
Nom	f_eep_readbyte
Paramètres entrée	-W : contient l'offset à partir deEEPROM_START de l'adresse à lire en EEPROM
Paramètres sorties	-W : contient l'octet lu en EEPROM
Traitements	 EADDR = W EECON1(EEPGD) = b'0' EECON1(RD) = b'1' W ← EEDATA

10.4.7-/sw/flh/

10.4.7.1-driver.asm

Fonction	Lecture d'un octet en flash
Nom	f_flh_readword

Paramètres entrée	v_flh_offset_addr (2 bytes) : contient l'offset du mot à lire en flash à partir du début de la table
Paramètres sorties	v_flh_read (2 bytes) : contient le mot de 16 bits lu
Traitements	 Mettre le poids faible de l'offset dans W Ajouter à W l'adresse absolue de la tahle Propager la retenue dans le poids fort de l'offset Placer l'adresse de poids faible dans TBLPTRL Placer l'adresse de poids fort dans TBLPTRH Mettre 0x00 dans TBLPTRU Vérifier le non dépassement de la table, sinon renvoyer la valeur max de la table Lire la table, et incrémenter le pointeur Transférer le contenu dans v_flh_read+1 Transférer le contenu dans v_flh_read Transférer le contenu dans v_flh_read

10.4.8-/sw/data/

10.4.8.1-swversion.asm

Fonction	Message de version courante du logiciel
Nom	N/A
Paramètres entrée	N/A
Paramètres sorties	N/A
Traitements	Zone mémoire (5 bytes) dédiée au stockage de la version du logiciel « Vn.m »,0x00 Cette zone de mémoire est placée au début de l'EEPROM (0x2100). Cette zone mémoire doit se terminer par l'octet 0x00. Cette zone mémoire est remplie au moment de l'assemblage.

10.4.8.2-adc_theoric_caltable.asm

Fonctions	Table de calibration théorique de l'ADC
Nom	c_data_adc_theoric_caltable
Paramètres entrée	

Paramètres sorties			
Traitements	Zone de mémoire dédiée au stockage de la calibration du détecteur HF. Zone en flash à l'adresse défini dans le makefile #Le code ci-dessous est assemblé uniquement dans le firmware de test #cette table est la conversion brute d'une valeur hexa en mV (§3.1)		
	0x0000	0x0000	
	0x0001	0x0005	
	0x3FE	0x137E	
	0x3FF	0x1383	

10.4.8.2-lcdmsg.asm

Fonctions	Message de boot ligne 1 du LCD	
Nom	c_bootmsgL1	
Paramètres entrée	v_charpos : position du caractère à retourner	
Paramètres sorties	W (1 byte) : contient le caractère ou 0x00 si pas de caractère	
Traitements	Zone mémoire dédiée au stockage du message de boot (ligne 1 du LCD) contenant la chaîne suivante : « SWR-POWER meter »	
	 Additionner le pointeur de programme avec v_charpos Retourner le caractère contenu en mémoire à cette position dans W Fin de chaîne = retourner 0x00 dans W 	

Fonctions	Message de boot ligne 2 du LCD	
Nom	c_bootmsgL2	
Paramètres entrée	v_charpos : position du caractère à retourner	
Paramètres sorties	W (1 byte) : contient le caractère ou 0x00 si pas de caractère	
Traitements	Zone mémoire dédiée au stockage du message de boot (ligne 2 du LCD) contenant la chaîne suivante : « F8KGL »	
	 Additionner le pointeur de programme avec v_charpos Retourner le caractère contenu en mémoire à cette position dans W Fin de chaîne = retourner 0x00 dans W 	

Fonctions	Message du mode test L1 du LCD #Le code ci-dessous est assemblé uniquement dans le firmware de test		
Nom	c_testmsgL1		
Paramètres entrée	v_charpos : position du caractère à retourner		
Paramètres sorties	W (1 byte) : contient le caractère ou 0x00 si pas de caractère		
Traitements	Zone mémoire dédiée au stockage du message du mode test (ligne 1 du Lo contenant la chaîne suivante : « FWD » avec un espace à la fin		
	 Additionner le pointeur de programme avec v_charpos Retourner le caractère contenu en mémoire à cette position dans W Fin de chaîne = retourner 0x00 dans W 		

Fonctions	Message du mode test L2 du LCD #Le code ci-dessous est assemblé uniquement dans le firmware de test
Nom	c_testmsgL2
Paramètres entrée	v_charpos : position du caractère à retourner
Paramètres sorties	W (1 byte) : contient le caractère ou 0x00 si pas de caractère
Traitements	Zone mémoire dédiée au stockage du message de boot (ligne 2 du LCD) contenant la chaîne suivante : « REF » avec un espace à la fin Additionner le pointeur de programme avec v_charpos Retourner le caractère contenu en mémoire à cette position dans W Fin de chaîne = retourner 0x00 dans W

10.5-Plan mémoire

section	Adresse de début – adresse de fin	Taille (octets)	Plan mémoire
.code	0x0000-0x1FFF	8K	0x0000-0x13FF : programme + table de calibration
.s_eep	0xf00000-0xF000FF	256	0x2100-0x2103 : version 0x2104-0xAAAA : offset calibration
.data	0x80-0xFF (bank 0)	127	0x80-0xFF : variables