Nome: Luís Felipe de Melo Costa Silva

Número USP: 9297961

Lista de Exercícios 11 - AGA0215

17. V

Parte I

- 1. V 5. F 9. V 13. V
- 2. V 6. F 10. V 14. V 18. F
- 3. F 7. F 11. F 15. F 19. F
- 4. F 8. F 12. F 16. F 20. F

Parte II

- 1. Hubble 13. São confundidas com estrelas
- 2. Maiores 14. Radiação Synchrotron
- 3. Menos 15. Um disco de acresção
- 4. Elípticas 16. Homogeneidade
- 5. Teorema do Viral 17. Isotropia
- 6. Rádio/Infravermelho, Raios-X 18. $\frac{1}{5}$
- 7. Não-estelar 19. Gravidade
- 8. Magnitude Absoluta 20. Energia escura
- 9. Distância 21. 20% a 30%
- 10. Elípticas Anãs 22. Perpétua
- 11. Aglomerado de Virgem 23. Com Blueshift, Com Redshift
- 12. Perpendiculares 24. $14 \cdot 10^9$ anos

Parte III

1. O alargamento é dado por $A = 2 \cdot \Delta \lambda$ com $\Delta \lambda = \frac{Vrot}{c} \cdot \lambda$, portanto:

$$A = 2 \cdot \lambda \cdot \frac{Vrot}{c} \\ A = 2 \cdot 656, 3 \cdot \frac{350}{3 \cdot 10^5} \\ A = 1,531 \text{ nm}$$

2. Com Z=5, temos que a distância (R_{atual}) é $7950 \cdot 10^6$ pc $=7,95 \cdot 10^9$ pc. Pela fórmula da cosmologia relativística, temos que $R = \frac{R_{atual}}{6}$. Com isso, $R = 1,325 \cdot 10^9$ pc. Usando $m - M = 5 \cdot log D - 5$, temos que:

$$22 - M = 5 \cdot log(1, 32 \cdot 10^{9}) - 5$$
$$22 - M = 40, 60$$
$$M = -40, 60 + 22 = -18, 60$$

- **3.** A lei de Hubble é dada por $v = H_0 \cdot d$, onde v é a velocidade de recessão e d é a distância. Portanto, $d = \frac{v}{H_0}$. Com isso:
 - Para $H_0 = 60km/s/Mpc$: $d = \frac{4000}{60} = 66,67 \text{ Mpc}$
 - Para $H_0 = 70km/s/Mpc$: $d = \frac{4000}{70} = 57,14 \text{ Mpc}$

• Para
$$H_0 = 80 km/s/Mpc$$
: $d = \frac{4000}{80} = 50 \text{ Mpc}$

- **4.** O tempo de Hubble é dado por $t_0 = \frac{1}{H_0}$. No entanto, H_0 está relacionado com Mpc. Por isso, teremos que dividi-lo por $3.1 \cdot 10^{19}$, que é 1 Mpc em km.
 - Para $H_0 = 60hkm/s/Mpc$: Para $H_0 = 80hkm/s/Mpc$:
- **5.** Nesse modelo, distância e tempo de relacionam assim: $R \propto t^{\frac{2}{3}}$, logo $t \propto R^{\frac{3}{2}}$. Portanto, para $t = 9 \cdot 10^9$ anos, a distância é $4,326 \cdot 10^6 \cdot A$, onde A é uma constante. Dobrando a distância, ela será $2 \cdot 4,326 \cdot 10^6 \cdot A = 8,652 \cdot 10^6 \cdot A$. Nessa condição, o tempo será $t \approx 25 \cdot 10^9$ anos.

6. Temos a fórmula

$$E = \frac{mv^2}{2} - \frac{GMm}{r}$$

como ponto de partida. Sabemos, pela lei de Hubble, que $v = H_0 \cdot r$, então:

$$E = \frac{mH_0^2r^2}{2} - \frac{GMm}{r}$$

Assumindo a massa de uma região esférica como $M = \frac{4\pi r^3}{3} \cdot \rho_0$, teremos:

$$E = \frac{mH_0^2r^2}{2} - \frac{4\pi Gmr^2\rho_0}{3}$$

Com ρ_c definida como $\rho_c = \frac{3H_0^2}{8\pi G}$, então $H_0^2 = \frac{8\pi G\rho_c}{3}$. Logo:

$$E = \frac{4\pi G m r^2 \rho_c}{3} - \frac{4\pi G m r^2 \rho_0}{3} = \frac{4\pi G m r^2}{3} \rho_c - \rho_0$$

Então, se $\rho_c > \rho_0$, E > 0 e $\rho_c < \rho_0$, E < 0