BST-430 FINAL PROJECT PRESENTATION (OPTION 1) 2018 FALL

Mengran Li, Zhirou Zhou

Instructor: Zhengwu Zhang

CONTENTS

- Introduction
- Merge all data into one data frame
- Plots
- Study the relationship
 - Hypothesis test
 - LDA & KNN
 - Linear regression & Random forest
- Discussion and Conclusion

Introduction I

relationship between brain connectivity and different kinds of traits of human

- human brain connectomes: collection of white matter fiber tracts connecting different regions of the brain
- functional connectomes and structural connectomes
- Human Connectome Project (HCP)

 explore whether and how human brain connectivity can predict the traits of human (cognition, emotion and so on)

Introduction II

Result: merge all data into one data frame

Result: plots

Index	Name	Category	Туре	Correlation
49	2-minute Walk Endurance Test: Age-Adjusted Scale Score	Motor	Continuous	Positive
58	Frequency of any alcohol use in past 12 months	Substance Use	Ordinal	Negative
172	Height	Health and Family History	Continuous	Positive

Result: hypothesis test

- Test the mean difference of first 3 PC scores between the two groups
- 3-way ANOVA
- Assumptions:
 - Errors are normally distributed (Henze-Zirkler's MVN test, Q-Q plots)
 - Dependent variable and independent variables exhibit equal level of variance (Bartlett Test of Homogeneity of Variances)
 - Outliers removed

Result: hypothesis test - Frequency of any alcohol use in past 12 months

Test	HZ <dbl></dbl>	p value	MVN
<fctr></fctr>		<dbl></dbl>	<fctr></fctr>
Henze-Zirkler	0.968079	0.1268342	YES

Result: hypothesis test - Frequency of any alcohol use in past 12 months

Result: hypothesis test - Frequency of any alcohol use in past 12 months

```
Df Sum Sq Mean Sq F value
                                      Pr(>F)
U1
U2
                3.16
                       3.164 26.563 4.41e-07 ***
                       0.250 2.099
                0.25
                                      0.1483
U3
                0.08
                       0.076 0.635
                                     0.4261
                0.01
                       0.011
                                     0.7594
U1:U2
                              0.094
U1:U3
                0.13
                       0.130
                             1.092
                                     0.2967
U2:U3
            1 0.01
                      0.006
                              0.047
                                     0.8293
                                      0.0315 *
U1:U2:U3
            1 0.56
                       0.556
                              4.665
Residuals
                       0.119
           328 39.07
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Analysis of Variance Table
Model 1: group ~ U1 * U2 * U3
Model 2: group \sim U1 + U2 + U3 + U1:U2 + U1:U3 + U2:U3
 Res.Df
          RSS Df Sum of Sq F Pr(>F)
    328 39.067
    329 39.623 -1 -0.55564 4.6651 0.03151 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

There is significant difference between the mean of first 3 PC scores between the two groups

Result: Datasets - Frequency of any alcohol use in past 12 months

Dataset	Trait Score Contained	Dimension
whole dataset	1, 2, 3, 4, 5, 6	1011*31
sub dataset1	1, 2, 5, 6	718*31
sub dataset2	1, 6	341*31

Result: LDA - Frequency of any alcohol use in past 12 months

	Pre	dicted	l Group	
Actual Group	1	6		
1	3	5		
6	3	57		
[1] 0.882352	9			= Classification accu

Result: KNN - Frequency of any alcohol use in past 12 months

Predicted Group			
tual Group 1 2 3 4 5 6			Pr
1 1 0 0 0 3 4 2 3 1 1 4 7 13		Actual Group	1
3 2 2 5 1 8 15		1	0
4 3 2 4 2 16 7		2	0
5 2 7 4 2 21 17		5	0
6 0 5 1 2 15 22 [1] 0.2574257	Classification accuracy	[1] 0.426573	
[1] 2.159483	RMSE (root-mean-square error)	[1] 2.090605)

Dataset	Trait Score Contained	Model Classif	fication accuracy	RMSE
whole dataset	1, 2, 3, 4, 5, 6	KNN	25.74%	2.157
sub dataset1	1, 2, 5, 6	KNN	42.65%	2.091
sub dataset2	1, 6	LDA	88.24%	-

Result: plots

Index	Name	Category	Type Correlation
2	Fluid Intelligence (Total Skipped Items)	Cognition	Continuous Negative
5	Oral Reading Recognition Test (Age-Adjust Scale Score)	Cognition	Continuous Positive
52	Grip Strength Test (Age-Adjust Scale Score)	Motor	Continuous Positive

Result: hypothesis test - Height

Test	HZ	p value	MVN
<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<fctr></fctr>
Henze-Zirkler	0.8876629	0.2008879	YES

Result: hypothesis test - Height

Result: hypothesis test - Height

```
Df Sum Sq Mean Sq F value Pr(>F)
U1
             1 12.430 12.430 86.908 < 2e-16 ***
U2
U3
             1 6.281 6.281 43.918 3.37e-10 ***
             1 0.454 0.454 3.173 0.076462 .
U1:U2
             1 0.118 0.118 0.826 0.364559
U1:U3
             1 0.408 0.408 2.852 0.092894 .
U2:U3
             1 0.872 0.872 6.097 0.014413 *
U1:U2:U3
             1 1.976 1.976 13.818 0.000264 ***
           192 27.461 0.143
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Analysis of Variance Table
Model 1: group ~ U1 * U2 * U3
Model 2: group \sim U1 + U2 + U3 + U1:U2 + U1:U3 + U2:U3
  Res.Df RSS Df Sum of Sq F Pr(>F)
1 192 27.461
  193 29.437 -1 -1.9763 13.818 0.0002642 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

There is significant difference between the mean of first 3 PC scores between the two groups

Result: hypothesis test - Grip Strength Test

Test	HZ	p value	MVN	
<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<fctr></fctr>	
Henze-Zirkler	0.8222594	0.3375921	YES	

Bartlett test of homogeneity of variances
data: U1 + U2 + U3 by group Bartlett's K-squared = 1.0292, df = 1, p-value = 0.3103
data: interaction(U1, U2) by group Bartlett's K-squared = 0.092498, df = 1, p-value = 0.761
data: interaction(U1, U2) by group Bartlett's K-squared = 0.092498, df = 1, p-value = 0.761
data: interaction(U2, U3) by group Bartlett's K-squared = 0.088031, df = 1, p-value = 0.7667

Result: hypothesis test - Grip Strength Test

Result: hypothesis test - Grip Strength Test

```
Df Sum Sq Mean Sq F value Pr(>F)
U1
            1 10.27 10.271 60.019 5.29e-13 ***
U2
            1 1.30
                    1.304 7.618 0.00634 **
            1 4.10 4.100 23.956 2.08e-06 ***
U3
U1:U2
            1 0.11 0.113
                             0.657 0.41849
            1 1.01
U1:U3
                    1.005 5.875 0.01628 *
         1 0.00 0.000
                             0.001 0.97792
U2:U3
U1:U2:U3 1 0.35
                    0.348
                             2.036 0.15525
Residuals
          192 32.86 0.171
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Variance Table
Model 1: group \sim U1 + U2 + U3 + U1:U3
Model 2: group \sim U1 + U2 + U3
  Res.Df RSS Df Sum of Sq F Pr(>F)
    195 33.316
    196 34.325 -1 -1.0095 5.9087 0.01597 *
```

There is significant difference between the mean of first 3 PC scores between the two groups

Result: Linear Regression - Height

By using the whole data

PC-scores	Adjusted R-squared	p-value	RMSE	RMSE/ (Mean of Traits from Test Data)
3	23.37%	< 2.2e-16	11.72	0.0508
10	28.70%	< 2.2e-16	11.06	0.0494

PC-scores	Adjusted R-squared	p-value	RMSE	RMSE/ (Mean of Traits from Test Data)
3	32.99%	3.69e-14	26.46	0.0776
10	39.09%	3.85e-14	24.72	0.0750

Result: Linear Regression - Height

By using the whole data

Result: Random Forest Regression - Height

By using the whole data

PC-scores	% Var explained	Mean of squared residuals
3	16.54	13.22
10	25.37	11.82

PC-scores	% Var explained	Mean of squared residuals
3	26.45	35.12
10	34.94	31.06

Result: Linear Regression - Grip Strength Test

By using the whole data

PC-scores	Adjusted R-squared	p-value	RMSE	RMSE/ (Mean of Traits from Test Data)
3	17.83%	< 2.2e-16	353.3	0.1836
10	25.72%	< 2.2e-16	324.6	0.1759

PC-scores	Adjusted R-squared	p-value	RMSE	RMSE/ (Mean of Traits from Test Data)
3	32.39%	7.37e-14	833.8	0.2943
10	41.87%	1.48e-15	664.6	0.2627

Result: Linear Regression - Grip Strength Test

By using the whole data

Result: Random Forest Regression - Grip Strength Test

By using the whole data

PC-scores	% Var explained	Mean of squared residuals
3	12.58	354.5
10	22.51	314.2

PC-scores	% Var explained	Mean of squared residuals
3	24.62	785.1
10	34.78	679.2

Conclusion

- The RMSE of predicting the sub-dataset1 (trait score = 1, 2, 5, 6) is relatively higher than predicting the whole dataset
- Although the R-squire of the model from the small sample is greater, its RMSE gets larger at the same time. We still prefer the model with smaller RMSE.
- The human brain connectivity can partially predict the traits of human (substance use, motor and health and family history)

Q&A