Spiegazioni

Alessio Esposito

October 30, 2022

Numeri complessi

l'insieme dei numeri complessi è così definito:

$$\mathbb{C} := \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \}$$

Da notare come la coppia (a,b) identifica univocamente la matrice $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, perciò se definiamo i=(0,1) e 1=(1,0) possiamo concludere che qualsiasi numero reale a può essere nella forma (a,0).

Per quanto scritto sopra, possiamo definire $\mathbb C$ come segue:

$$\mathbb{C} := \{(a, b) : a, b \in \mathbb{R}\}\$$

Questa definizione porta al seguente lemma:

Lemma

L'applicazione $\varsigma: \mathbb{R}^2 \to \mathbb{C}$ è un isomorfismo

Proof. La dimostrazione è banale basta considerare la definizione di \mathbb{R}^2 .

Bisogna precisare però il fatto che \mathbb{C} è isomorfo a \mathbb{R}^2 solo se li si considera come spazi vettoriali, infatti per costruire un isomorfismo tra algebre bisogna definire una nuova struttura come segue:

Definition 1. Il prodotto tra vettori è dato dall'operatore binario:

$$\xi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

tale che ad ogni coppia ((a,b),(c,d)) associa il vettore (ac-bd,bc+ad).

Consideriamo il numero complesso $z \in \mathbb{C}$ con z = (a, b), con l'operazione appena definita possiamo perciò costruirlo come segue:

$$a + ib = (a, 0) + (0, 1)(b, 0) = (a, 0) + (0, b) = (a, b)$$

Dotando perciò lo spazio vettoriale di questo prodotto si ottiene la capacità di dividere uno scalare per un vettore di \mathbb{R}^2 .

Infatti:

$$\frac{\alpha}{(\beta,\gamma)} = \alpha(\delta,\varepsilon) = (\alpha,0)(\delta,\varepsilon) = (\alpha\delta,\alpha\varepsilon)$$

Dove $\alpha, \beta, \gamma \in \mathbb{R}^2$ e $(\delta, \varepsilon) = (\beta, \gamma)^{-1}$. Tale inverso esiste perchè definendo così il prodotto abbiamo reso \mathbb{R}^2 un campo. la definizione di derivata torna ad avere senso.