

Barycentric Combinations Based Subdivision Surfaces

L. Morlet, M. Neveu, S. Lanquetin, et C. Gentil LE2I - University of Burgundy, Dijon Wednesday, 30 May 2018

- 1 Introduction
- 2 Catmull-Clark scheme
- Other subdivision schemes
- **4** Conclusion

SUBDIVISION SURFACES

Definitions

- A subdivision scheme is a set of rules which transforms a mesh to a finer one
- The control mesh is the first and the coarsest one
- A subdivision surface is obtained by applying few times and iteratively a subdivision scheme on the control mesh

Lucas MORLET 30 May 2018 2 / 19

LIMIT SURFACE

- Introduction
- 2 Catmull-Clark scheme
- Other subdivision schemes
- **4** Conclusion

HOW TO CONSTRUCT PATCHES FROM A MESH

A patch is set of vertices connected by edges which is necessary and sufficient to compute a piece of the limit surface

pas plus d'une irrégularité par patch!!

Lucas MORLET 30 May 2018 5 / 19

EQUIVALENCE BETWEEN PARAMETRIC AND BARYCENTRIC SPACES

- Every T_i associates the unit square to itself
- Every $P_i = T_i^{\infty}$ associates the unit square to one of its corner

Barycentric space

- Every M_i associates a patch to one of its subpatches
- Every $B_i \approx M_i^{\infty}$ associates a patch to a point of limit surface

Lucas MORLET 30 May 2018 6 / 19

REGULAR CONTROLLED ITERATED FUNCTION SYSTEM AUTOMATON

Lucas MORLET 30 May 2018 7 / 19

Lucas MORLET 30 May 2018 8 / 19

OVERVIEW

Lucas MORLET 30 May 2018 9 / 19

EXTRAORDINARY CASE

• Every T_i associates the unit square to itself

Barycentric space

• Every \hat{M}_i associates a patch to one of its subpatches

Lucas MORLET 30 May 2018 10 / 19

EXTRAORDINARY AUTOMATON

Lucas MORLET 30 May 2018 11 / 19

OTHER SUBDIVISION SCHEMES

- Introduction
- 2 Catmull-Clark scheme
- **3** Other subdivision schemes
- 4 Conclusion

OTHER SUBDIVISION SCHEMES

DOO-SABIN SCHEME

OTHER SUBDIVISION SCHEMES

SIMPLEST (MID-EDGE) SCHEME

Lucas MORLET 30 May 2018 14 / 19

LOOP SCHEME

Lucas MORLET 30 May 2018 15 / 19

- Introduction
- 2 Catmull-Clark scheme
- Other subdivision schemes
- 4 Conclusion

CONCLUSION

CONCLUSION, LIMITS, AND FUTURE WORKS

Conclusion

Our method:

- splits parametric, barycentric, and modeling spaces which are usually blend in the subdivision rules
- · can handle every uniform subdivision scheme

Lucas MORLET 30 May 2018 18 / 19

MAIN REFERENCES

- 1988, Barnsley: Fractals everywhere
- 1993, Halstead : Efficient, Fair Interpolation using Catmull-Clark Surfaces
- 1998, Stam: Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values

Thanks for your attention

lucas.morlet@u-bourgogne.fr

Lucas MORLET 30 May 2018 19 / 19