Logical Clocks

dDistSys

11/05/2015 Johan K. Jensen

Happened-before relationship

Happened-before relationship

- If a and b are two events in the same process, and a comes before b, then $a \rightarrow b$.
- If a is the sending of a message, and b is the receipt of that message, then $a \rightarrow b$.
- If $a \rightarrow b$ and $b \rightarrow c$, then $a \rightarrow c$.

$$A \to^{p} B$$

$$C \to^{q} D$$

$$\operatorname{snd}_{p}(m) \to^{M} \operatorname{rev}_{q}(m)$$

$$A \to^{p} \operatorname{snd}_{p}(m) \to^{M} \operatorname{rev}_{q}(m) \to^{q} D$$

$$A \to D$$

Attach a timestamp C(e) to each event e

- If $A \to^p B$ then C(A) < C(B)
- If A corresponds to sending a message m, and B to the receipt of that message, then also C(A) < C(B).

Process P_i maintains a counter C_i and adjusts this counter:

- C_i is incremented for any two successive events within P_i
- Each snd(m) by process P_i , receives a timestamp $ts(m) = C_i$
- When recv(m) in process P_j , then $C_j = max(C_j, ts(m))$

So if $A \to B$ then C(A) < C(B)but **not**: if C(A) < C(B) then $A \to B$.

Extension of Logical clocks where each process has a unique vector of times for each process:

$$VC(A) = [q, p]$$

Sending message: $VC(m) = VC_p$

Receive message: $VC_q = max(VC_q, VC(m))$

Comparing Vector clocks

- $VC(A) \leq VC(B)$ if
 - $\forall i, VC_A[i] \leq VC_B[i]$
- VC(A) < VC(B) if
 - $VC(A) \leq VC(B)$ and $VC(A) \neq VC(B)$
 - $\blacksquare \exists i, VC_A[i] < VC_B[i]$

Properties of Vector clocks

If $A \to B$, then VC(A) < VC(B) (as Lamport clocks).

But also: if VC(A) < VC(B) then $A \rightarrow B$.

This is shown by:

If $\neg (A \rightarrow B)$ then $\neg (VC(A) < VC(B))$

If
$$\neg (A \rightarrow B)$$
 then $\neg (VC(A) < VC(B))$

- ullet A occurs at p and B at q
- VC(A)[p] = k
- There cannot be a sequence of events

$$A = E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow ... \rightarrow E_n = B$$
 (otherwise $A \rightarrow B$)

- VC(B)[p] < k
- Consequently $\neg (VC(A) < VC(B))$