ARCHITETTURA DEGLI ELABORATORI

A.A. 2020-2021

Università di Napoli Federico II Corso di Laurea in Informatica

Docenti

Proff. Luigi Sauro gruppo 1 (A-G)

Silvia Rossi gruppo 2 (H-Z)

ALGEBRA DI BOOLE E RETI COMBINATORIE

Bubble Pushing

Backward:

- Body changes
- Adds bubbles to inputs

Forward:

- Body changes
- Adds bubble to output

Bubble pushing

- Usando logiche multilivello e porte NAND/NOR a volte rende difficile capire quale funzione booleana un circuito realizza a causa delle molte negazioni annidate
- Per avere una espressione un po' più leggibile si possono applicare le leggi di De Morgan
- Il bubble pushing è una tecnica che applica sistematicamente le leggi di De Morgan e la legge della doppia negazione per eliminare le negazioni annidate
- Partendo dall'output Y si applicano a ritroso le leggi di De Morgan in modo che l'input e l'output di ogni nodo siano entrambi positivi o negati

Bubble pushing

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

wires connect at a T junction wires connect at a dot

wires crossing without a dot do not connect

Circuito a priorità

- I circuiti a priorità vengono utilizzati per assegnare una risorsa condivisa secondo un ordine di priorità fra chi ne fa richiesta
- A esempio posso avere 4 possibili richiedenti con priorità 3>2>1>0
- Gli input A₀ ,..., A₃ rappresentano le richieste della risorsa
- Gli output Y₀,..., Y₃ rappresentano a chi assegnata la risorsa, di volta in volta uno solo di essi sarà uguale a 1

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_{1}	A_{o}	Y_3	Y ₂	Y ₁	Y_0
0 0	0	0	0				
0	0	0	1				
0	0	1	0				
0 0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	1 0 1 0				
0	1	1	1				
1	0	0	0				
1 1	0	0	1				
1	0	1	1 0 1 0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	1 0 1				
1	1	1	1				

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input

A_3	A_2	A_{1}	A_{o}	Y ₃	Y_2	Y ₁	Y _o 0 1 0 0 0 0 0 0 0 0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01010101010101	000000011111111	0 0 0 0 1 1 1 1 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	0

Priority Circuit Hardware

A_3	A_2	A_1	A_{o}	Y ₃	Y_2	Y_1	Y_o
0		0	0	0	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	0 0	0 0 1 0 0 1 0 0 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0 1	0	0	0 0 1 1 0 0 0 0 0 0 0	1
0	0 0 1 1 1 1 0	1	0	00000011111111	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0 0 0 1	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0000111100000000	0	01000000000000000
1	1	1	1	1	0	0	0

Don't cares

<i>A</i> ₃	A_2	A_1	A_0	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1 1 1 1 1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

A_3	A_2	A_1	A_0	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	Y_0
0	0	0	0	0 0 0 0 0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	X	0	0	1	0
0	1	X	X	0	1	0	0
1	X	X	X	1	0	0	0
	Λ			•			

don't cares

Vantaggi delle SOP/POS

 La logica a 2 livelli della forma SOP presenta dei vantaggi, ad esempio, nei tempi di propagazione

Limiti delle forme SOP/POS

- Tuttavia alcune funzioni booleane, poste in forma SOP, sono estremamente poco succinte e quindi richiedono un numero considerevole di porte
- Presa la tabella di verità di funzione booleana di n variabili:
 - Se il numero di 1 nella colonna di output è piccolo allora la forma SOP è succinta
 - Se il numero di 0 nella colonna di output è piccolo allora la forma POS è succinta
 - Se il numero di 0 e 1 è più o meno lo stesso? Problema: avrò circa 2ⁿ⁻¹ mintermini/maxtermini

Limiti delle forme SOP/POS

- Considerimo ad esempio uno XOR a più variabili
- Y=1 sse il numero di input uguali a 1 è dispari
- XOR3 in forma SOP

$$Y = \overline{A} \, \overline{B} C + \overline{A} B \, \overline{C} + A \overline{B} \, \overline{C} + A B C$$

XOR8 richiede 128
 AND8 e un OR128

Logiche multilivello

- Per ridurre il numero di porte logiche a volte è necessario ricorrere ad una logica multilivello
- Ad esempio è facile verificare che $A \oplus B \oplus C = (A \oplus B) \oplus C$

Analogamente per XOR8:

Valore Illegale: X

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

- Warnings:
 - Contention usually indicates a bug.
 - X is used for "don't care" and contention look at the context to tell them apart.

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - Gli stati di alta impedenza vengono utilizzati per disconnettere una parte di un circuito dal resto. Per questo si utilizzano i tristate buffer

E A — Y

Tristate Buffer

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Ē	Α	Y
0	0	0
0	1	1
1	0	Z
1	1	Z

Bus condiviso

- I tristate buffers sono usati in bus che connettono diversi chip
- Nell'esempio processore, scheda video e controller ethernet devono poter comunicare con la memoria centrale.
- Tuttavia, per evitare stati illegali, solo un componente alla volta può «immettere» segnali sul bus
- Gli altri componenti quindi devono essere temporaneamente disconnessi tramite un tristate buffer

Esercizi

■ Esercizi 2.13 - 2.15 - 2.16 - 2.17 - 2.25 - 2.26 - 2.27

Mappe di Karnaugh

- Le mappe di Karnaugh sono un metodo per semplificare espressioni booleane in forma SOP
- In realtà non introducono tecniche di semplificazione nuove, sono semplicemente un espediente grafico che consente di rilevare più facilmente implicati che possono essere semplificati
- Quindi alla base delle mappe di Karnaugh c'è il solito principio:

$$PA + P\overline{A} = P$$

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically

•
$$PA + P\overline{A} = P$$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y AB							
c	00	01	11	10			
0	1	0	0	0			
1	1	0	0	0			

Y C	B 00	01	11	10
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{A}\overline{B}$$

3-Input K-Map

Truth Table

_A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

