

目录

ONE 前情回顾与后续预告

数据模型与算法模型

精通数据科学。

精通数据科学

精通数据科学

一个直观的例子

从直观上理解SVM

糖通数源和灌溉

THREE 从几何直观到数学表达

最优化问题

前情回顾与后续预告

数据模型与算法模型

前情回顾与后续预告

回归与分类

目录

精通数混构资 ONE 前情回顾与后续预告

数据模型与算法模型

精通数据科学

TWO 一个直观的例子

从直观上理解SVM

糖通数源和资

THREE 从几何直观到数学表达

精通数据科学。

精通数据科学

什么是SVM?

支持向量学习机的目标: margin达到最大, 且分离直线平分margin

SVM是一个解决分类问题的模 型,被不少人誉为"万能分类器"

向量内积回顾

终点坐标-起点坐标

$$\mathbf{a} = (a_1, a_2)$$

$$\mathbf{b} = (b_1, b_2)$$

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$$

$$\mathbf{a} \cdot \mathbf{b} = \parallel \mathbf{b} \parallel \parallel \mathbf{a} \parallel \cos \alpha$$

$$\mathbf{a} \cdot \mathbf{b} = \parallel \mathbf{b} \parallel \parallel \mathbf{l} \parallel$$

$$a \cdot b = (k + l) \cdot b = k \cdot b + l \cdot b = ||b|| ||l||$$

用数学理解直观

对于向量beta,定义如下的线性函数

$$f(\mathbf{x}) = \beta \cdot (\mathbf{x} - \beta)$$

- f(x) = 0表示垂直于beta的直线
- · f(x)的绝对值与点x到上述直线的距离成正比

这个结论可以推广到任意线性函数以及高维空间

SVM与逻辑回归

逻辑回归的预测逻辑

通常Alpha等于0.5

$$\hat{y}_{i} = \begin{cases} 1, & \frac{1}{1 + e^{-X_{i}\beta}} > \alpha \\ 0, & else \end{cases}$$

精通数据科学

从绝对证明的秘证不改管的

g(X) 越大,y=7 的概率越大

$$g(\mathbf{X}) > 0$$
 预测结果为 $y = 1$

$$g(\mathbf{X}) = \mathbf{X}\beta$$

 $g(\mathbf{X}) < 0$ 预测结果为y=0

g(X)越小,y=0的概率越大

目录

精通数据科学 がNE 前情回顾与后续预告

数据模型与算法模型

精通数据科学

精通数据科学

TVVO 一个直观的例子。 从直观上理解SVM

糖通数源和灌溉

THREE 从几何直观到数学表达

精通数据科学。

最优化问题

从几何直观到数学表达

SVM的数学表达

将SVM的原则翻译成数学

 $\max 2||\boldsymbol{l}||$

任一X属于类别 1, $\beta \cdot X + b \ge ||l|||\beta||$ 任一X属于类别 0, $\beta \cdot X + b \le -||l|||\beta||$

$$\hat{\underline{z}} w = \frac{\beta}{\|\mathbf{l}\| \|\boldsymbol{\beta}\|}$$

$$\max \frac{2}{\|w\|}$$

任一X属于类别 1, $w \cdot X + c \ge 1$ 任一X属于类别 0, $w \cdot X + c \le -1$

从几何直观到数学表达

带限制条件的最优化问题

$$\max \frac{2}{\|w\|}$$

任一X属于类别 1, $w \cdot X + c \ge 1$ 任一X属于类别 0, $w \cdot X + c \le -1$

对于类别1, 令 y = 1; 对于类别0, 令 y = -1

最优化问题
$$\min \frac{1}{2} \|w\|^2$$
 限制条件 $y_i(w\cdot X_i+c) \geq 1$

SVM预测公式:

$$\hat{y}_i = sign(\hat{w} \cdot \mathbf{X}_i + \hat{c})$$

精通数据科学。 从验验证到的秘证不改资

THANKSOUS

務通数据科学 从给您回归和深度管

村通教师和强。

精通数据科学。 从绝路的多处深度管

精通数据科学

精通数派科学 从给你回的秘况