IP Networking Introduction

Contents - IP Networking - Introduction

- Evolution of the Internet
- Internet Standardization
- Internetworking Basics

Evolution of the Internet - Origin: Arpanet

- 1960: first studies on packet switching technology
- December 1969: start of the Arpanet in the USA
 - initiative and funding by (D)ARPA (= (Defense) Advance Research Projects Agency; responsible for funding of research projects of the US military and academic institutions)
 - goal: survivable, fully decentralized, self-organizing network of peer nodes
 - initially only 4 nodes (IMPs = Interface Message Processor): UCLA, UCSB,
 SRI and Utah
- Integration of wireless links (based on ALOHA) and satellite links
- 1973: first international links
- 1979: now 100 nodes

Evolution of the Internet - Development of the Arpanet

Evolution of the Internet - Further Development

- 1980-1983: development of the TCP and IP protocols
 - application: data communication between Unix hosts
- 1984: introduction of the Domain Name System (DNS)
- 1986: Arpanet is split into MILnet and NSFnet (NSF = National Science Foundation)
- 1989: now 100000 network nodes
- 1989: first Web proposal (from Tim Berners-Lee, Robert Cailliau)
- 1991: gopher (first information service)
- 1992: MBONE (Multicast Backbone for audio/video distribution)
- 1993: NCSA Mosaic Browser (first major web browser)
- 1994: the Internet becomes knowns to the general public; multiple Internet Service Providers (ISPs)
- 1995: the NSFnet backbone is handed over to commercial operators
- since 1995: research on Next Generation Internet (e.g. setup of research networks like Internet2, Canarie (1993) etc.)

Evolution of the Internet - Example: Backbone of a big ISP

Standardization - Overview of the relevant Boards

Standardization - Responsibilities of the Boards

- Internet Society, ISOC
 - responsible for Internet strategies, head of IAB and IESG
- Internet Architecture Board, IAB
 - responsible for the architecture, planning and strategic guidelines for the development and the management of the Internet
 - consists of 20 elected experts and scientists from academia and industry
- Internet Engineering Task Force, IETF (central committee)
 - responsible for the technology and protocol development
- Internet Engineering Steering Group, IESG
 - responsible for technical management of the IETF activities and the Internet standardization process
- Internet Corporation for Assigned Names and Numbers, ICANN
 - responsible for all centrally managed parameters of the Internet (assigns domain names and addresses, coordinates protocol parameters and port numbers, coordinates the stable operation of the root server system)
- Internet Network Information Center, InterNic
 - responsible for the management of the Internet domain name data base and the corresponding registration process

Standardization - IRTF Research Groups

- Active IRTF Research Groups
 - Anti-Spam
 - Authentication Authorization Accounting (AAA) Architecture
 - Crypto Forum
 - Delay-tolerant Networking
 - End-to-End
 - Group Security
 - Internet Measurements
 - IP Mobility Optimizations
 - Network Management
 - Peer-to-Peer
 - Routing
 - Services Management

Standardization - IETF Areas and Working Groups

- Applications Area (22)
 - e.g. EDI, FTP, Fax, LDAP, Web
- General Area (5)
- Internet Area (21)
 - e.g. DNS, DHCP, IPnG, IP over x, Mobility
- Operations and Management Area (24)
 - e.g. AAA, SNMP, several MIBs, Policy, MBONE
- Routing Area (14)
- Security Area (21)
- Sub-IP Area (1)
 - IP over x (x = optical, MPLS, VPN) Traffic Engineering
- Transport Area (27)
 - DiffServ, Telephony, SIP, Media Gateways, NAT, SigTran

Standardization - Principles of the IETF Working Groups

Basic principles

- limited to narrow, focused topic (instead of big, overlapping topic areas)
- preference of a limited, moderate amount of options

Charter

- foundation of groups with focused topic
- publishes goals and milestones
- creates a mailing list and designates the corresponding group leader
- "Rough Consensus (and running Code)"
 - no formal election
 - disputes solved by discussion and demo implementations
 - discussions via mailing list and at scheduled meetings
- Decisions via E-Mail
 - usually no final decisions during meetings

Standardization - IETF Internet Documents

- Internet drafts
 - documents in progress
 - status-free if not archived, removed after 6 months
 - announced and published by the IETF secretary
- RFCs (Request for Comment), since 1969
 - archived document series of the IAB
 - announced, edited and published by the RFC editor
 - different categories (not all RFCs belong to the "Standards Track"!)
- RFC categories
 - Standards Track -
 - Proposed Standard
 - Draft Standard
 - Standard
 - Informational
 - Experimental
 - Historic

- Proposed Standard
 - full specification
 - proven functionality
 - exists for minimum 6 months, maximum 2 years
- Draft Standard
 - multiple, independent, interoperable implementations
 - limited field experience
 - exists minimum 4 months, maximum 2 years
- Standard
 - proven stability in the field
 - may exist infinitely or may be deprecated ("Historic")

Standardization - Guidelines for IETF Standards

- Openness
 - vendor-independent
 - patents are not desired, see also RFC2026
- Open access
 - via Internet (see: http://www.ietf.org/rfc.html)
 - no fees (contrary to ITU, ISO, ANSI, IEEE)
- Multi-platform format
 - only ASCII Text
- Readability and clearness
 - beneficial if there is a working implementation available ("running code") at the time of the standard development
- Clearly defined requirement levels:

MUST/REQUIRED absolutely required

MUST NOT / SHALL NOT permitted

SHOULD / RECOMMENDED required for full implementation

SHOULD NOT / NOT RECOMMENDED only if necessary

MAY / OPTIONAL optional

Standardization - Useful Links

IETF home page http://www.ietf.org/

RFCs http://www.ietf.org/rfc.html

Novices' guide http://www.ietf.org/tao.html

IESG home page http://www.ietf.org/IESG.html

Working groups http://www.ietf.org/html.charters/wg-dir.html

Monthly status reports of the IETF http://www.ietf.org/IMR/

Further information http://www.ietf.org/intro.html

Internetworking - Motivation

- Why is the layer 3 (network layer = routing layer) or the IP protocol necessary for the Internet?
- Characteristics of a pure layer 2 network (e.g. bridged/switched Ethernet LAN):
 - each station has a unique address (e.g. Ethernet MAC address)
 - each bridge knows the addresses of all stations
 - all stations are reachable via broadcast
- Main problem of pure layer 2 networks:
 - bad scalability for big networks
- Requirement: hierarchy (layer 2 / layer 3) to reduce the overhead of routing in big networks
 - route calculation
 - storage of addresses (in the node's routing tables)
- Solution: separation of bigger networks into multiple layer 2 networks (bridged/switched) that are interconnected by routers (layer 3 coupling)

Internetworking - Basic Scenario

- Stations (End Systems)
 - have a layer 3 address (per network interface)
 - have knowledge of a router (in their network) for forwarding packets to other networks
 - communicate within their network via their layer 2 addresses (e.g. Ethernet MAC addresses)
- Routers (Intermediate Systems)
 - forward packets using the layer 3 destination address: determine the "next hop" from their routing table

Internetworking - Characteristics

- Connection-less packet switching
 - every packet is forwarded individually
- No guaranteed Quality of Service ("best effort")
 - packet losses are possible
 - packet order is not guaranteed
- Packets with variable length
 - optimized for data traffic
 - possible packet fragmentation to adapt the packet length to different maximum frame lengths of the respective layer 2 network

Routing

- the forwarding in the nodes is performed per hop (Hop-by-Hop Routing); no knowledge of the whole route necessary
- the routers only use the destination information for the routing decision; the originator does not influence the route
- routing target is the destination network address (not the host address)

Internetworking - Internet Protocols (TCP/IP Protocol Suite)

Internetworking - Typical Protocol Implementation

Internetworking - "Hourglass Model"

