Tutorial 07, Michaelmas Term

Research Methods for Political Science (PO3600)

Stefan Müller

28 November 2017

Trinity College Dublin http://muellerstefan.net/research-methods

Session Outline

- 1. Calculate correlations by hand
- 2. Correlations in SPSS
- 3. Research proposal/paper

Covered so far

- 1. Mean, standard deviation, standard error
- 2. Confidence intervals
- 3. t-test (one-sample and two-samples)
- 4. SPSS: Plots, cross-tables, merging datasets, create new variable, summary statistics, methods from above

Correlation

- Before you start, always create a scatterplot!
- Correlation and covariation used to measure the association between two interval-ratio variables.

Correlation

Source: https://www.autodeskresearch.com/publications/samestats Tutorial 07, Michaelmas Term (Stefan Müller)

One step back: variance and covariance

variance =
$$\frac{\sum (x_i - \bar{x})^2}{N-1} = \frac{\sum (x_i - \bar{x})(x_i - \bar{x})}{N-1}$$

covariance = $\frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{N-1}$

Interpreting covariance:

- cov(x, y) = 0: variables not related
- cov(x, y) > 0: variables vary in the same direction
- cov(x, y) < 0: variables vary in the opposite direction

Problem of covariation? It depends on the scales.

Correlation

Solution? Divide the covariation by the standard deviations of \boldsymbol{x} and \boldsymbol{y} .

$$correlation = \frac{covariance}{standard \ deviation_x \times standard \ deviation_y}$$

Example: Calculate correlation by hand

x y12 34 55 7

Steps:

- 1. Calculate mean of each variable
- 2. Calculate standard deviations of x and y: $\sigma = \sqrt{\frac{\sum (x-\bar{x})^2}{n-1}}$
- 3. Calculate covariance: $covariance = \frac{\sum (x_i \bar{x})(y_i \bar{y})}{N-1}$
- 4. Divide covariance by sum of standard deviations

Example: Calculate correlation

- 1. Calculate mean of each variable: $\bar{x} = 3$, $\bar{y} = 4$
- 2. Calculate standard deviations: $\sigma_x = 1.83$ and $\sigma_y = 2.58$
- 3. Calculate covariance: $covariance = ((1-3) \times (1-4) + (2-3) \times (3-4) + (4-3) \times (5-4) + (5-3) \times (7-4))/(4-1) = 4.66$
- 4. Divide covariance by sum of standard deviations: $4.66/(1.83 \times 2.58)$

Correlation (r) = 0.99

Example: Reproduce analysis in SPSS

- 1. Insert dataset into SPSS
- 2. Create scatterplot of x and y
- 3. Estimate correlation

```
x y12 34 55 7
```

Example: Plot relationship

Example: SPSS output

Correlations

		x	у
х	Pearson Correlation	1	.990 [*]
	Sig. (2-tailed)		.010
	N	4	4
у	Pearson Correlation	.990*	1
	Sig. (2-tailed)	.010	
	N	4	4

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Example: Significance of correlation

$$t_r = \frac{r\sqrt{N-2}}{\sqrt{1-r^2}}$$

$$t_r = \frac{0.98\sqrt{4-2}}{\sqrt{1-0.98^2}}$$

$$t_r = 6.96$$

Conclusion: correlation is statistically significant

Research Proposal

Team up and discuss (some of) the following aspects:

- 1. Research question + relevance
- 2. Theoretical argument + hypothesis
- 3. Type of data + operationalisation of variables
- 4. Ways of analysing your data

Research Proposal

Discuss with your neighbour:

- 1. What is the puzzle you address?
- 2. Why is the question relevant?
- 3. What are your key dependent and independent variables?
- 4. What data will you use?