

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA CIÊNCIAS DA COMPUTAÇÃO

Gabriel Medeiros Lopes Carneiro

Problemas de Empacotamento: um comparativo entre métodos de solução

Florianópolis, SC 2022

Gabriel Medeiros Lopes Carneiro

Problemas de Empacotamento

Trabalho de conclusão de curso submetido ao curso de Ciências da Computação da Universidade Federal de Santa Catarina para a obtenção do título de Bacharel em Ciências da Computação.

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Informática e Estatística Ciências da Computação

Orientador: Prof. Dr. Pedro Belin Castellucci Coorientador: Prof. Dr. Rafael de Santiago

Resumo

Escreva o resumo aqui.

Sumário

1	Intro	dução	4
	1.1	Motivação	4
	1.2	Justificativas	4
	1.3	Objetivos	4
		1.3.1 Objetivo Geral	4
		1.3.2 Objetivos Específicos	4
2	Con	eitos Básicos	5
	2.1	Pesquisa Operacional	5
	2.2	Modelos de Otimização	5
	2.3	Definições	5
	2.4	Γipos de Modelo	6
		2.4.1 Modelo Linear x Não-linear	6
		2.4.2 Modelo Contínuo x Discreto	6
		2.4.3 Modelo Determinístico x Estocástico	6
		2.4.4 Tipos de Programação	6
	2.5	Métodos Exatos x Heurísticas	7
3	Pro	ema de Empacotamento	8
	3.1	Definição	8
	3.2		9
	3.3	Variantes	9
R	forô	riae 1	r

1 Introdução

- 1.1 Motivação
- 1.2 Justificativas
- 1.3 Objetivos
- 1.3.1 Objetivo Geral
- 1.3.2 Objetivos Específicos

2 Conceitos Básicos

Antes de estudar o problema, são necessários alguns conceitos básicos e definição formal de termos importantes para a área de otimização.

2.1 Pesquisa Operacional

Pesquisa Operacional pode ser entendida como o estudo e a aplicação de métodos científicos para tomada de decisões em problemas complexos[ARENALES et al., 2007, p.IX]. Ela permite modelar, analisar e solucionar tais problemas de modo, geralmente, satisfatório.

2.2 Modelos de Otimização

Modelos são aproximações de realidade, representam o problema de maneira simples e objetiva, usando restrições. Eles são o que baseiam a Pesquisa Operacional. De forma geral, um modelo de otimização quer minimizar ou maximizar uma função f(x) com x obedecendo algumas restrições. Pode-se então representar o modelo do seguinte modo:

$$\min f(x), x \in \mathcal{X}.$$

Onde

- x: variável de decisão, $x = x_1, x_2, \dots, x_n$.
- \mathcal{X} : conjunto factível ou domínio, possui todas as soluções possíveis para o problema.
- f(x): função objetivo, a qual determinará o critério de escolha da solução.

2.3 Definições

A seguir serão dadas as definições de quatro expressões que aparecem com frequência no estudo de problemas de otimização.

Uma solução x' é **factível** somente se satisfaz todas as restrições dados ao problema, ou seja, $x' \in \mathcal{X}$. Existem casos onde o problema não tem solução, possivelmente por muitas restrições terem sido aplicadas. Isso é chamado **problema infactível** e $\mathcal{X} = \emptyset$. Se para toda solução for possível encontrar outra melhor o problema é dito **ilimitado**.

Uma solução x' é **ótima** somente se for **factível** e possuir resultado melhor que as demais soluções, isto é, $f(x') \leq f(x), \forall x \in \mathcal{X}$ (caso seja um problema de maximização é

necessário substituir " \leq " por " \geq "). Importante observar que existe somente solução ótima se o problema não for infactível nem ilimitado.

2.4 Tipos de Modelo

É importante saber diferenciar os modelos devido ao método de resolução que varia para cada um deles.

2.4.1 Modelo Linear x Não-linear

Modelos lineares possuem como função objetivo uma função linear e todas as restrições também são lineares. Exemplos:

- \bullet f(x) = ax + b.
- $f(x_1, x_2) = x_1 + x_2 5$.

Já os não-lineares não obedecem essa regra, podendo ter suas variáveis se multiplicando ou funções trigonométricas e logarítmicas. Exemplos:

- $f(x_1, x_2) = x_1^2 + x_2^2$.
- $f(x_1, x_2) = \tan(x_1 + x_2)$.

2.4.2 Modelo Contínuo x Discreto

Um modelo é contínuo quando sua região factível é contínua, ou seja, dado um ponto dessa região todos os seus vizinhos também serão uma solução. Modelos discretos não possuem seu domínio contínuo.

2.4.3 Modelo Determinístico x Estocástico

Em modelos determinísticos seus dados são conhecidos, enquanto os estocásticos possuem uma incerteza quanto aos dados.

2.4.4 Tipos de Programação

Com base nas categorias de modelo é possível também dividir métodos de programação (planejamento) para sua solução.

- Linear: modelo linear contínuo determinístico.
- Inteira: modelo linear discreto determinístico.

- Estocástica: modelo linear contínuo estocástico.
- Não-linear: modelo não-linear contínuo determinístico.

2.5 Métodos Exatos x Heurísticas

Métodos exatos sempre vão garantir a solução ótima para o problema, porém encontrar tal solução pode requerer grande tempo e/ou muitos recursos computacionais. Já heurísticas buscam por soluções factíveis e são geralmente usadas em problemas de grande porte.

3 Problema de Empacotamento

O problema de empacotamento, é um problema de otimização de difícil resolução. Seu objetivo é simples, colocar peças em um espaço N-dimensional. Tanto as peças quanto o espaço, podem ser de formato regular (convexo) ou não (côncavo). Pensando no caso 2D, triângulos, retângulos, círculos e outros polígonos convexos são considerados regulares, enquanto estrelas e outros polígonos côncavos são irregulares.

Outra forma de definir se uma peça é regular ou não, é o número de parâmetros necessários para representá-la. Se forem preciso três ou mais é irregular, caso contrário, regular[BARTMEYER; OLIVEIRA; TOLEDO, 2021]. A Figura 1 mostra alguns exemplos de ambos tipos de peças.

O foco deste trabalho será em problemas de empacotamento 2D de peças e objetos retangulares ortogonais, sem qualquer variante.

Figura 1 – A figura da direita mostra paças regular e irregulares. A esquerda possui as mesmas peças porém com seus contornos convexos. Fonte:[BARTMEYER; OLIVEIRA; TOLEDO, 2021]

3.1 Definição

De acordo com [IORI et al., 2021b], dado uma caixa retangular $\mathcal{B} = (W, H)$ de comprimento $W \in \mathbb{Z}_+$ e altura $H \in \mathbb{Z}_+$ e um conjunto \mathcal{I} de itens também retangulares, onde cada item $i \in \mathcal{I}$ com comprimento $w_i \in \mathbb{Z}_+, w_i \leq W$ e altura $h_i \in \mathbb{Z}_+, h_i \leq H$. Um empacotamento $\mathcal{I}' \subseteq \mathcal{I}$ em \mathcal{B} pode ser descrito como uma função $\mathcal{F} : \mathcal{I}' \to \mathbb{Z}_+^2$ que mapeie cada item $i \in \mathcal{I}'$ para um par de coordenadas $\mathcal{F}(i) = (x_i, y_i)$, de forma

$$x_i \in \{0, \dots, W - w_i\}, y_i \in \{0, \dots, H - h_i\} (i \in \mathcal{I}')$$
 (3.1)

$$[x_i, x_i + w_i) \cap [x_j, x_j + w_j] = \emptyset$$
 ou $[y_i, y_i + h_i) \cap [y_j, y_j + h_j] = \emptyset(i, j \in \mathcal{I}', i \neq j)$. (3.2)

Nessa forma de representação a caixa está posicionada no plano cartesiano, com seu canto inferior esquerdo na origem. Já as coordenadas $\mathcal{F}(i) = (x_i, y_i)$ representam a

posição em que o canto inferior esquerdo da peça será alocado. A Restrição 3.1 garante que cada item deve estar inteiramente dentro da caixa, enquanto a Restrição 3.2 impede sobreposição entre peças. Ambas restrições indicam uma orientação fixa, ou seja, peças não podem ser rotacionadas.

3.2 Classificação

Por existirem diferentes objetivos na solução de um problema de empacotamento foram criadas algumas classificações. Algumas delas (as principais) são mostradas em [IORI et al., 2021a].

O objetivo do **Empacotamento 2D em Faixa** é encontrar um empacotamento de altura mínima para um dado conjunto de itens em uma caixa com comprimento fixo.

No Empacotamento 2D da Mochila deve-se encontrar $\mathcal{I} \subseteq \mathcal{I}'$ que maximize o valor de \mathcal{B} . Geralmente o valor é dado pela área de caixa ocupada pelos itens, dessa forma, outra interpretação do problema seria minimizar a area desperdiçada (vazia).

Já o **Empacotamento 2D em Caixas** envolve encontrar uma solução que minimize o número de caixas necessárias para empacotar todos os itens. As caixas podem possuir diferentes tamanhos, mas a maioria dos problemas lida com as mesmas dimensões.

Por fim, no **Empacotamento 2D Ortogonal** busca-se uma solução, caso exista, para empacotar **todos** os itens na caixa.

3.3 Variantes

Referências

ARENALES, M. et al. *Pesquisa Operacional.* [S.l.]: Elsevier, 2007. Citado na seção 2.1.

BARTMEYER, P. M.; OLIVEIRA, L. T.; TOLEDO, F. M. B. Aprendizado por reforço aplicado ao problema de empacotamento de peças irregulares em faixas. 2021. Citado nas seções 3 e 1.

IORI, M. et al. Exact solution techniques for two-dimensional cutting and packing. European Journal of Operational Research, v. 289, n. 2, p. 399–415, 2021. ISSN 0377-2217. Disponível em: https://www.sciencedirect.com/science/article/pii/S0377221720306111.

Citado na seção 3.2.

IORI, M. et al. 2dpacklib: a two-dimensional cutting and packing library. 2021. Citado na seção 3.1.