東工大院試

un cinglé

2024年7月22日

概要

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/innsi.htmlを見よ.

目次

1		午前	2
	1.1		
	1.2		
	1.3	2014 年度 .	 5
	1.4		
	1.5	2016 年度 .	 9
	1.6		
	1.7	2018 年度 .	 13
	1.8	2019 年度 .	 15
	1.9	2020年度 .	 16
	1.10		
	1.11	2022 年度 .	 19
	1.12		
	1.13	2024 年度 .	 22
_		- ///	
2		午後	22
	2.1	2023 年度 .	 22
	2.2	2024 年度 .	 22

1 午前

1.1 2012 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H24innsi.pdf

を見よ.

[1]

簡単すぎるため省略.

[2]

(1) a>0 を任意に固定する (今は a=1 でよい). $n\in\mathbb{N}_0$ に対して x_n を, [an,a(n+1)] における f の最小化元とする. すなわち

$$an \le x_n \le a(n+1)$$
 and $f(x_n) = \min_{[an,a(n+1)]} f$

となる $(x_n)_{n\in\mathbb{N}_0}$ を取る. 今

$$\sum_{n=0}^{\infty} \int_{an}^{a(n+1)} f(x) dx = \int_{0}^{\infty} f(x) dx < \infty$$

なので, とくに

$$f(x_n) \le \frac{1}{a} \int_{an}^{a(n+1)} f(x) dx \to 0 \quad (as \ n \to \infty)$$

であるから $f(x_n) \to 0 \ (n \to \infty)$ となる. $x_n \to \infty \ (n \to \infty)$ であることはよい.

- $f(x) = x/(1 + x^6 \sin^2 x)$ は(*) を満たすが有界ですらない.
- (3) $\varepsilon>0$ を任意に取る. f は一様連続であるから, $\delta>0$ があり,任意の $x,y\in[0,\infty)$ に対して次が成り立つ:

$$|x - y| \le \delta \Longrightarrow |f(x) - f(y)| < \varepsilon/2$$

ここで,(1) の解答において $a=\delta$ としたときの $\{x_n\}_{n\in\mathbb{N}_0}$ を取る. $f(x_n)\to 0$ $(n\to\infty)$ であるから,十分大きな $N\in\mathbb{N}$ があり,任意の $n\geq N$ に対して $f(x_n)<\varepsilon/2$ となる.したがって,任意の $x\geq N\delta$ に対して $n=\lfloor x/\delta\rfloor$ を x/δ の整数部分とすると

$$f(x) \le f(x_n) + |f(x) - f(x_n)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

を得る $(x \in [\delta n, \delta(n+1)]$ より $|x-x_n| \le \delta$ に注意せよ).

[3]

(1) \emptyset , $X \in \mathcal{O}$ であることはよい.

 $A,B \in \mathcal{O}$ だとする. もし $A \subset \mathbb{N}$ または $B \subset \mathbb{N}$ ならば $A \cap B \subset \mathbb{N}$ より $A \cap B \in \mathcal{O}$ である. 一方, もし X - A と X - B が \mathbb{N} の有限部分集合ならば, $X - (A \cap B) = (X - A) \cup (X - B)$ もそうである. よって $A \cap B \in \mathcal{O}$. 以上よりいずれの場合も $A \cap B \in \mathcal{O}$ は成り立つ.

 $\{A_{\lambda}\}_{\lambda\in\Lambda}$ を $\mathcal O$ の元の族とする。もし任意の $\lambda\in\Lambda$ に対して $A_{\lambda}\subset\mathbb N$ ならば, $\bigcup_{\lambda\in\Lambda}A_{\lambda}\subset\mathbb N$ より $\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\mathcal O$ である。一方,ある $\lambda_0\in\Lambda$ について $X-A_{\lambda_0}$ が $\mathbb N$ の有限部分集合ならば, $X-\bigcup_{\lambda\in\Lambda}A_{\lambda}\subset X-A_{\lambda_0}$ もそうである。よってこの場合も $\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\mathcal O$ が示された.

(2) $x,y \in X$ を相異なる元とする.このとき最初から x < y と仮定してもよい.もし 0 = x < y ならば $A = X - \{y\},\ B = \{y\}$ が x と y を分離する開集合たちである.もし 0 < x < y ならば $A = \{x\},\ B = \{y\}$ でよい.

次に $C,D\subset X$ は閉集合で $C\cap D=\emptyset$ だとする.このとき, $C\subset\{0\}$ であるか,C は $\mathbb N$ の有限部分集合である.D についても同様である.もし $C\subset\{0\}$ ならば, $D\subset\mathbb N$ かつ D は有限集合だとしてよい.このときは $A=X-D,\ B=D$ が C,D を分離する.一方,もし $C,D\subset\mathbb N$ らが有限部分集合ならば, $A=C,\ B=D$ とおけばよい.

- (3) 答えははい. $\{A_{\lambda}\}_{\lambda\in\Lambda}$ を X の開被覆だとせよ. このとき $\lambda_0\in\Lambda$ で $0\in A_{\lambda_0}$ となるものが存在する. ここで $X-A_{\lambda_0}$ は $\mathbb N$ の有限部分集合であることに注意する. 各 $x\in X-A_{\lambda_0}$ に対して $\lambda_x\in\Lambda$ があり $x\in A_{\lambda_x}$ となるので,これら $\{A_{\lambda_x}\}_{x\in\{0\}\cup(X-A_{\lambda_0})}$ が有限部分開被覆を与える.
- (4) 丁寧な誘導をありがとう。 $f\colon X\to Y$ を f(0)=0, f(n)=1/n $(n\in\mathbb{N})$ により定める。f は連続であることを示すが,それには \mathbb{R} の開区間 I=(a,b) について $f^{-1}(I\cap Y)\in\mathcal{O}$ であることを示せばよい。もし 0< a< b ならば $f^{-1}(I\cap Y)=\{n\in\mathbb{N}\mid 1/b< n<1/a\}\in\mathcal{O}$ である.一方, $a\leq 0< b$ ならば $f^{-1}(I\cap Y)=\{0\}\cup\{n\in\mathbb{N}\mid n>1/b\}\in\mathcal{O}$ となる.

f はコンパクト空間から Hausdorff 空間への連続全単射であるから同相である.

1.2 2013 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H25innsi.pdfを見よ.

[1]

答えは $\pi^2/8a$. 極座標に変換する. つまり

 $x = r \sin \theta \cos \varphi, \quad y = r \sin \theta \cos \varphi, \quad z = r \cos \theta; \quad (r, \theta, \varphi) \in [0, \infty) \times [0, \pi/2] \times [0, \pi/2]$

とおく. すると

$$\iiint_{D} \frac{dx dy dz}{(a^{2} + x^{2} + y^{2} + z^{2})^{2}} = \int_{0}^{\infty} dr \int_{0}^{\pi/2} d\theta \int_{0}^{\pi/2} d\varphi \frac{r^{2} \sin \theta}{(a^{2} + r^{2})^{2}}$$

$$= \frac{\pi}{2} \int_{0}^{\infty} \frac{r^{2}}{(a^{2} + r^{2})^{2}} dr$$

$$= \frac{\pi}{2} \int_{0}^{\pi/2} \frac{a^{2} \tan^{2} x}{a^{4} (1 + \tan^{2} x)^{2}} \frac{a}{\cos^{2} x} dx \qquad (\text{put } r = a \tan x)$$

$$= \frac{\pi}{2a} \int_{0}^{\pi/2} \sin^{2} x dx$$

$$= \frac{\pi}{2a} \left[\frac{x}{2} - \frac{\sin 2x}{4} \right]_{0}^{\pi/2}$$

$$= \frac{\pi^{2}}{8a}$$

と計算される.

[2]

(1)

$$\min_{I} f \le \mu_1 := \frac{1}{2a} \int_{-a}^{a} f(x) \, dx \le \max_{I} f$$

であるから、中間値の定理より $f(b) = \mu_1$ となる $b \in I$ が存在する.

(2)

$$\min_{I} f = \left(\frac{3}{2a^3} \min_{I} f\right) \int_{-a}^{a} x^2 \, dx \le \mu_2 \coloneqq \frac{3}{2a^3} \int_{-a}^{a} x^2 f(x) \, dx \le \left(\frac{3}{2a^3} \max_{I} f\right) \int_{-a}^{a} x^2 \, dx = \max_{I} f$$
 であるから、以下同文.

$$\mu_3 := \frac{3}{2a^3} \int_{-a}^a x f(x) \, dx$$

$$= \frac{3(f(a) - f(-a))}{4a} - \frac{3}{4a^3} \int_{-a}^a x^2 f'(x) \, dx$$

$$= \frac{3}{4a} \int_{-a}^a f'(x) \, dx - \frac{3}{4a^3} \int_{-a}^a x^2 f'(x) \, dx$$

$$= \frac{3}{4a^3} \int_{-a}^a (a^2 - x^2) f'(x) \, dx$$

であり、したがって

$$\min_{I} f' = \left(\min_{I} f'\right) \frac{3}{4a^3} \int_{-a}^{a} (a^2 - x^2) \, dx \le \mu_3 \le \left(\max_{I} f'\right) \frac{3}{4a^3} \int_{-a}^{a} (a^2 - x^2) \, dx = \max_{I} f'$$

であるから,以下同文.

[3]

- (1) $(\varphi(\mathbf{0}), \varphi(\mathbf{0})) = (\mathbf{0}, \mathbf{0}) = 0$ より $\varphi(\mathbf{0}) = \mathbf{0}$ を得る.
- (2) $x, y \in \mathbb{R}^n$, $a, b \in \mathbb{R}$ とする. このとき $\varphi(ax + by) = a\varphi(x) + b\varphi(y)$ を示せばよいが、内積の双線形性を用いて分解し、さらにわちゃわちゃすると

$$(\varphi(a\boldsymbol{x} + b\boldsymbol{y}) - a\varphi(\boldsymbol{x}) - b\varphi(\boldsymbol{y}), \varphi(a\boldsymbol{x} + b\boldsymbol{y}) - a\varphi(\boldsymbol{x}) - b\varphi(\boldsymbol{y}))$$

$$= (\varphi(a\boldsymbol{x} + b\boldsymbol{y}), \varphi(a\boldsymbol{x} + b\boldsymbol{y})) - a(\varphi(a\boldsymbol{x} + b\boldsymbol{y}), \varphi(\boldsymbol{x})) - b(\varphi(a\boldsymbol{x} + b\boldsymbol{y}), \varphi(\boldsymbol{y}))$$

$$- a(\varphi(\boldsymbol{x}), \varphi(a\boldsymbol{x} + b\boldsymbol{y})) + a^{2}(\varphi(\boldsymbol{x}), \varphi(\boldsymbol{x})) + ab(\varphi(\boldsymbol{x}), \varphi(\boldsymbol{y}))$$

$$- b(\varphi(\boldsymbol{y}), \varphi(a\boldsymbol{x} + b\boldsymbol{y})) + ab(\varphi(\boldsymbol{y}), \varphi(\boldsymbol{x})) + b^{2}(\varphi(\boldsymbol{y}), \varphi(\boldsymbol{y}))$$

$$= (a\boldsymbol{x} + b\boldsymbol{y}, a\boldsymbol{x} + b\boldsymbol{y}) - a(a\boldsymbol{x} + b\boldsymbol{y}, \boldsymbol{x}) - b(a\boldsymbol{x} + b\boldsymbol{y}, \boldsymbol{y})$$

$$- a(\boldsymbol{x}, a\boldsymbol{x} + b\boldsymbol{y}) + a^{2}(\boldsymbol{x}, \boldsymbol{x}) + ab(\boldsymbol{x}, \boldsymbol{y})$$

$$- b(\boldsymbol{y}, a\boldsymbol{x} + b\boldsymbol{y}) + ab(\boldsymbol{y}, \boldsymbol{x}) + b^{2}(\boldsymbol{y}, \boldsymbol{y})$$

$$= 0$$

となることから従う.

(3) e_1, \ldots, e_n を \mathbb{R}^n の標準基底とする. $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ は線形写像だから行列 $A = \begin{bmatrix} \varphi(e_1) & \cdots & \varphi(e_n) \end{bmatrix}$ により $\varphi(x) = Ax$ と表される. 仮定より $\varphi(e_1), \ldots, \varphi(e_n)$ は \mathbb{R}^n の正規直交系を与えており,したがって A は直交行列である.

[4]

- (1) 略.
- (2) 行列 $\begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} \end{bmatrix}$ を基本変形してなんやかんややると $X+Y;\ X\cap Y$ の基底としてそれぞれ $\mathbf{a},\mathbf{b},\mathbf{c};\ \mathbf{a}-\mathbf{b}$ が取れることがわかる.

[5]

- (1)(X,d)は、n=1のとき不連結、 $n \ge 2$ のとき連結.
- (2) (X,d) の有界閉集合 $B = \{ p \in X \mid |p| \le 1 \}$ はコンパクトではない. 実際,

$$B_n = \{ p \in X \mid 1/n < |p| \}$$

で定まる A の開被覆 $\left\{B_n\right\}_{n\in\mathbb{N}}$ は、有限部分被覆を持たない.

(3) はい. X は完備距離空間 $\mathbb{R} \times S^{n-1}$ に同相である. ここで S^{n-1} は \mathbb{R}^n 内の単位 (n-1)-球面. 実際に

$$X \ni \boldsymbol{p} \mapsto (\log |p|, p/|p|) \in \mathbb{R} \times S^{n-1}$$

が同相写像である.

■余談 ある完備距離空間と同相となるような位相空間をポーランド空間という。例えば、ポーランド空間の G_{δ} 集合はポーランド空間であることが知られている。とくに無理数全体の集合に $\mathbb R$ の相対位相を入れるとポーランド空間になる。

1.3 2014 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H26innsi.pdfを見よ.

[1]

答えは π/12. 円柱座標

$$x = r\cos\theta$$
, $y = r\sin\theta$, $\zeta = z$; $(r, \theta, \zeta) \in [0, \infty) \times [0, \pi/2] \times [0, \infty)$

を用いよ.

[2]

(1) 答えは
$$p \le 3$$
 で、 $p < 3$ のとき $f(x) = 0$; $p = 3$ のとき $f(x) = \begin{cases} 0 & \text{(if } x = 0) \\ x^{-2} & \text{(if } 0 < x \le 1) \end{cases}$ である.

(2) 答えは p < 1. p = 3 のときは明らかに f_n は一様収束しない (連続関数の一様収束極限が連続であることを思い出せばよい). そこで p < 3 だとしよう.

$$f'_n(x) = \frac{n^p(1 - 2n^3x^3)}{(1 + n^3x^3)^2}$$

であり、増減を考えると $f_n(x)$ は $x=2^{-1/3}n^{-1}$ で最大値をとることがわかる. よって

$$\sup_{[0,1]} |f_n| = f_n(2^{-1/3}n^{-1}) = \frac{2^{2/3} \cdot n^{p-1}}{3}$$

である. よって f_n が一様に f=0 に収束するのは p<1 のときに限る.

(3) 答えは $p \le 2$. 変数変換 y = nx により

$$\int_0^1 f_n(x) \, dx = n^{p-2} \int_0^n \frac{y}{1+y^3} \, dy$$

だが,

$$I_n := \int_0^n \frac{y}{1+y^3} \, dy \le \int_0^1 y \, dy + \int_1^n \frac{1}{y^2} \, dy \le \frac{3}{2} - \frac{1}{n} \le \frac{3}{2} < \infty$$

は収束するので $n^{p-2}I_n$ は $p \le 2$ のときに限って収束する.

[3]

(1) 例えば

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- $(2) (a+d)^2$.
- (3) 16.

[4]

(1) F はスケール不変である. つまり F(kx)=F(x) ($\forall k\in\mathbb{R}\setminus\{0\},\ x\in\mathbb{R}^3\setminus\{\mathbf{0}\}$). とくに F(x)=F(x/|x|).

- (2) F の連続性より,F の S^2 への制限は最大値・最小値を持つが,(1) よりこれらは $\mathbb{R}^3\setminus\{\mathbf{0}\}$ 全域における F の最大値・最小値を与える.
- (3) 仮定より a と b は一次独立. よって $\det P = \det \begin{bmatrix} a & b & a \times b \end{bmatrix} = |a \times b|^2 \neq 0$ なので P は正則である. さて、a,b が A の固有ベクトルであることを示そう. a,b はそれぞれ、拘束条件 $|x|^2 = 1$ のもとでの

$$\langle A\boldsymbol{x}, \boldsymbol{x} \rangle = \sum_{i,j} a_{ij} x_i x_j$$

の最大化・最小化元である。 ここで $A=(a_{ij})_{i,j},\ \boldsymbol{x}={}^t(x_1,x_2,x_3)$ とおいた。Lagrange の未定乗数法より, $\boldsymbol{x}=\boldsymbol{a},\boldsymbol{b}$ に対して

$$\sum_{j} a_{ij} x_j - 2\lambda x_i = 0 \quad \text{(for } i = 1, 2, 3\text{)}$$

が成り立つ.ここで λ は未定定数を表す.これは a,b が A の固有ベクトルであることを示している.最後に c が A の固有ベクトルであることを示す.A は対称行列であり,a は A の固有ベクトルなので固有値を λ として

$$\langle A\boldsymbol{c}, \boldsymbol{a} \rangle = \langle \boldsymbol{c}, A\boldsymbol{a} \rangle = \lambda \langle \boldsymbol{c}, \boldsymbol{a} \rangle = 0$$

が成り立つ. 同様に $\langle Ac,b\rangle=0$ が成り立つので、Ac は a,b に直交するベクトルである. よって Ac は $a\times b=c$ の定数倍になるしかない.

以上より a,b,c が A の固有ベクトルからなる \mathbb{R}^3 の基底をなすことが示された.

[5]

- (1) はい. $a,b \in \mathbb{R},\ a \neq b$ とする.最初から a < b としてよい.このとき [a,b) と [b,b+1) は a と b を分離する開集合である.
- (2) いいえ. $U:=(-\infty,0)=\bigcup_{n\geq 0}[-n,0)\in\mathcal{O}$ および $V:=[0,\infty)=\bigcup_{n\geq 0}[0,n)\in\mathcal{O}$ は空でなく, $U\cup V=\mathbb{R},\ U\cap V=\emptyset$.
 - (3) いいえ. $[0,1] = \bigcup_{n \in \mathbb{N}} [0,1-1/2n) \cup [1,2)$ は有限部分被覆を持たない.

1.4 2015 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H27innsi.pdfを見よ.

[1]

(1) 答えは $\alpha < -1$. 極座標に変換すると

$$2\pi \int_0^\infty (1+r^2)^\alpha r \, dr$$

の収束・発散を見ればよい.

(2) $M=\sup_n |a_n|<\infty$ とおく、 $\varepsilon>0$ とせよ、 $\lim_n a_n=a$ より、十分大きい $N\in\mathbb{N}$ があり、任意の n>N に対して $|a-a_n|<\varepsilon$ が成り立つ、よって n>N ならば

$$\left| a - \frac{a_1 + \dots + a_n}{n} \right| \le \frac{|a - a_1| + \dots + |a - a_n|}{n} \le \frac{N(|a| + M)}{n} + \frac{(n - N)\varepsilon}{n}$$

よって

$$\lim\sup_{n}\left|a-\frac{a_1+\cdots+a_n}{n}\right| \leq \lim\sup_{n}\left(\frac{N(|a|+M)}{n}+\frac{(n-N)\varepsilon}{n}\right) = \varepsilon$$

となる. $\varepsilon > 0$ は任意なので $\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = a$ を得る.

[2]

(1) 1>0 に対して M>0 があり、任意の $|x|\geq M$ に対して $|f(x)|\leq 1$ となる.よって

$$\sup_{\mathbb{R}} |f| \le 1 + \sup_{[-M,M]} |f| < \infty$$

である.

(2) $\varepsilon>0$ とせよ.仮定より,M>0 があり,任意の $|x|\geq M$ に対して $|f(x)|\leq \varepsilon/3$ となる.f は有界閉区間 [-M,M] 上一様連続であるから, $0<\delta<1$ があり,任意の $x,y\in [-M,M]$ に対して

$$|x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon/3$$

が成り立つ. $x, y \in \mathbb{R}$ が $|x - y| \le \delta$ を満たすと仮定しよう.

- $x, y \in [-M, M]$ ならば $|f(x) f(y)| \le \varepsilon/2$ である.
- $x,y \notin [-M,M]$ $\text{tbid} |f(x)-f(y)| \leq |f(x)|+|f(y)| \leq \varepsilon \text{ tbd}$.
- x > M かつ $y \in [-M, M]$ ならば, $|y M| \le |x y| \le \delta$ より $|f(x) f(y)| \le |f(x)| + |f(M)| + |f(M) f(y)| \le \varepsilon$ である.同様に $|x| \ge M$ もしくは $|y| \ge M$ の場合が示せる.
- (3) $M = \sup_{\mathbb{R}} |f|$ とおく. z = ny と変数変換して

$$f_n(x) = \int_{-\infty}^{\infty} f(x + z/n)g(z) dz$$

となる.

$$|f(x) - f_n(x)| \le \int_{-\infty}^{\infty} |f(x) - f(x + z/n)|g(z) dz$$

である. さて, $\varepsilon > 0$ とせよ. f は一様連続なので, $\delta > 0$ があり, 任意の $x, y \in \mathbb{R}$ に対して

$$|x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon$$

となる. よって $x \in \mathbb{R}$ に対して

$$|f(x) - f_n(x)| \le \int_{|z| \le n\delta} |f(x) - f(x + z/n)| g(z) \, dz + \int_{|z| \ge n\delta} |f(x) - f(x + z/n)| g(z) \, dz$$

$$\le \varepsilon \int_{\mathbb{R}} g(z) \, dz + 2M \int_{|z| \ge n\delta} g(z) \, dz$$

$$\le \varepsilon + \int_{|z| \ge n\delta} g(z) \, dz$$

だが、今 $\int_{|z|>n\delta} g\,dz \to \infty \ (n\to\infty)$ より

$$\limsup_{n} \sup_{x \in \mathbb{R}} |f(x) - f_n(x)| \le \varepsilon$$

となる. $\varepsilon>0$ は任意なので $\sup_{x\in\mathbb{R}}|f(x)-f_n(x)|\to 0\ (n\to\infty)$ を得る.

[3]

固有多項式は $(\lambda - a - b)^2(\lambda - a + b)(\lambda + a - b)$. 固有値 λ に対する固有空間を V_{λ} と書くことにすると,

$$V_{2a} = \left\langle \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\rangle, \quad V_{0} = \left\langle \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix} \right\rangle \quad (\text{if } a = b)$$

$$V_{a+b} = \left\langle \begin{bmatrix} 1\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\rangle, \quad V_{a-b} = \left\langle \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix} \right\rangle, \quad V_{-a+b} \left\langle \begin{bmatrix} 0\\1\\-1\\0 \end{bmatrix} \right\rangle \quad (\text{if } a \neq b)$$

最小多項式は

$$(\lambda - 2a)\lambda$$
 (if $a = b$); $(\lambda - a - b)(\lambda - a + b)(\lambda + a - b)$ (if $a \neq b$)

[4]

 $(1) \ker(E_n-A) \subset \operatorname{Im}(A)$ より従う. (2) 等号成立は $\ker(E_n-A) \supset \operatorname{Im}(A)$ つまり $A-A^2=(E_n-A)A=0$ と同値.

[5]

(1) \emptyset , $\mathbb{R}^2 \in \mathcal{O}$ はよい. U_{λ} , U, $V \subset \mathbb{R}^2$ を \mathbb{R} の開集合とせよ ($\lambda \in \Lambda$). このとき

$$(U \times \mathbb{R}) \cap (V \times \mathbb{R}) = (U \cap V) \times \mathbb{R}, \quad \bigcup_{\lambda \in \Lambda} (U_{\lambda} \times \mathbb{R}) = \left(\bigcup_{\lambda \in \Lambda} U_{\lambda}\right) \times \mathbb{R} \in \mathcal{O}$$

である.

- (2) いいえ. (0,0), $(0,1) \in \mathbb{R}^2$ は開集合で分離できない.
- (4) $\operatorname{cl}(I \times I) = J \times \mathbb{R}$, $\operatorname{cl}(I \times J) = J \times \mathbb{R}$, $\operatorname{cl}(J \times I) = J \times \mathbb{R}$, $\operatorname{cl}(J \times J) = J \times \mathbb{R}$

1.5 2016 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H28innsi.pdfを見よ.

[1]

- (1), (2) 略.
- (3) $X = (x_{ij}) \in M_n(\mathbb{C})$ に対して

$$D_A(X) = 0 \iff x_{11} = x_{33}, \ x_{12} = x_{32}, \ x_{13} = x_{31}, \ x_{21} = x_{23}$$

であることがわかる. よって $\dim \ker(D_A) = 5$, 次元定理より $\dim \operatorname{Im}(D_A) = 4$.

[2]

(1) $\Phi_n(\lambda) = A - \lambda$ を A の固有多項式とすると,

$$\Phi_1(\lambda) = 1 - \lambda, \ \Phi_2(\lambda) = \lambda^2 - 2\lambda \quad ; \quad \Phi_n(\lambda) = (1 - \lambda)\Phi_{n-1}(\lambda) - \Phi_{n-2}(\lambda) \quad (n \ge 3).$$

を得る. よって

$$\det A = \Phi_n(0) = \begin{cases} 1 & \text{(if } n \equiv 0, 1 \mod 6), \\ -1 & \text{(if } n \equiv 3, 4 \mod 6), \\ 0 & \text{(if } n \equiv 2, 5 \mod 6). \end{cases}$$

(2) direct calculation より固有空間は

$$\left\langle {}^{t}(1,0,-1,0,\ldots,0,(-1)^{(n-1)/2})\right\rangle$$
.

[3]

- (1) 略.
- (2) $(-\infty,0)$ はコンパクトでないが $(-\infty,0]$ はコンパクトである. $(-\infty,0)$ の開被覆 $\{(-\infty,-1/n)\mid n\in\mathbb{N}\}$ は有限部分被覆を持たない. $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を $(-\infty,0]$ の \mathcal{O} -開被覆とせよ. $U_{\lambda}=(-\infty,a_{\lambda})$ とおく $(U_{\lambda}=\emptyset$ ならば $a_{\lambda}=-\infty$, $U_{\lambda}=\mathbb{R}$ ならば $a_{\lambda}=\infty$ と解釈せよ). $0\in\bigcup_{\lambda\in\Lambda}U_{\lambda}$ であるから,ある $\lambda_{0}\in\Lambda$ に対して $0\in U_{\lambda_{0}}$ である. $\{U_{\lambda_{0}}\}$ が有限部分被覆.
- (3) 答えははい. $(0,1) \cup (2,3) \subset U \cup V; \ U,V \in \mathcal{O}; \ U \cap V \cap ((0,1) \cup (2,3)) = \emptyset$ とせよ. このとき $U \subset V$ または $U \supset V$ が成り立つので, $U \cap ((0,1) \cup (2,3)) = \emptyset$ または $V \cap ((0,1) \cup (2,3)) = \emptyset$ である. よって $(0,1) \cup (2,3)$ は連結.
- (4) $f:(\mathbb{R},\mathcal{O})\to(\mathbb{R},\mathcal{O})$ を連続写像とする. $x,x'\in\mathbb{R}$ で $x\leq x',\ f(x)>f(x')$ を満たすものがあったと仮定しよう. f の連続性より

$$f^{-1}((-\infty, f(x))) = (-\infty, a), \quad a \in \mathbb{R} \cup \{\pm \infty\}$$

となる a がある. f(x') < f(x) より x' < a である. 一方明らかに $x \ge a$ である. よって x' < x となり矛盾.

[4]

- (1) 答えは p+q>0. $x\neq 0$ に対して $f_{p,q}(x)=|x|^{p+q}|\sin x/x|^q$ であり、 $\sin x/x\to 1$ $(x\to 0)$ に注意するとわかる.
 - (2) 答えは p + q > 1. $x \neq 0$ に対して

$$\frac{f_{p,q}(x) - f_{p,q}(0)}{x} = \frac{x}{|x|} |x|^{p+q-1} \left| \frac{\sin x}{x} \right|^{q}$$

が $x \to 0$ で有限確定値に収束する条件を考えればわかる.

(3) 答えはp+q>-1. 極座標に変換すると

$$\iint_D f_{p,q}(\sqrt{x^2 + y^2}) \, dx dy = \frac{\pi}{2} \int_0^1 r^{p+q+1} \left| \frac{\sin r}{r} \right|^q dr$$

で同様. [0,1] で $0 < \exists m \leq |\sin r/r| \leq 1$ に注意せよ.

[5]

(1) まず f,g は連続関数の一様収束極限として連続である. $\varepsilon>0$ とせよ. 次を満たす $\delta>0$ がある:任意の $x\in\mathbb{R}$ に対して

$$|a - x| \le \delta \Longrightarrow |f(a) - f(x)| \le \varepsilon$$

 $a_n \to a \ (n \to \infty)$ より, $N \in \mathbb{N}$ があり任意の $n \ge N$ について $|a - a_n| \le \delta$ かつ $\sup_{x \in \mathbb{R}} |f(x) - f_n(x)| \le \varepsilon$, よって

$$|f(a) - f_n(a_n)| \le |f(a) - f(a_n)| + |f(a_n) - f_n(a_n)| \le 2\varepsilon.$$

(2) $\varepsilon>0$ とせよ. $f\circ g$ は [0,1] で一様連続であるから、次を満たす $\delta>0$ がある:任意の $x,y\in [0,1], \ |x-y|\le \delta$ に対して $|f(g(x))-f(g(y))|\le \varepsilon$. g_n が g に一様収束することから、ある $N\in\mathbb{N}$ について、任意の $n\ge N$ に対して $\sup_{x\in [0,1]}|g(x)-g_n(x)|\le \delta$ 、よって

$$\sup_{x \in [0,1]} |f(g(x)) - f(g_n(x))| \le \varepsilon$$

となる.

(3) $\varepsilon>0$ とせよ. (2) と,f は f_n に一様収束することから, $N\in\mathbb{N}$ があり,任意の $n\geq N$ に対して $\sup_{x\in[0,1]}|f(g(x))-f(g_n(x))|\leq \varepsilon$ かつ $\sup_{x\in[0,1]}|f(x)-f_n(x)|\leq \varepsilon$. よって

$$\sup_{x \in [0,1]} |f(g(x)) - f_n(g_n(x))| \le \sup_{x \in [0,1]} |f(g(x)) - f(g_n(x))| + \sup_{x \in [0,1]} |f(g_n(x)) - f_n(g_n(x))| \le 2\varepsilon.$$

1.6 2017 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H29innsi.pdfを見よ.

[1]

- (1) 略.
- (2) 結果だけ書く:

$$P^{-1}AP = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}, \text{ where } P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

(3) $C_V(A) = \{X \in V \mid XA = AX\} = W$ と書く. $C_V(P^{-1}AP) = P^{-1}WP \cong W$ だが, $P^{-1}AP$ は相異なる固有値を持つ対角行列であるから, $C_V(P^{-1}AP)$ は対角行列全体. したがって $\dim W = 3$. 線形写像

 $\mathbb{R}[t] \to W$, $f(t) \mapsto f(X)$ を考察する. kernel は A の最小多項式 (t-1)(t-2)(t-3) で生成されるイデアルである. 準同型定理より

$$\mathbb{R}^3 \cong \mathbb{R}[t]/((t-1)(t-2)(t-3)) \cong \mathbb{R}[A] \subset W$$

である. $\dim W = 3$ だったので $W = \mathbb{R}[A]$ を得る.

[2]

 ${
m Im}(A^n)\subset {
m Im}(A^{n+1})$ が示されれば、逆の包含は明らかなので結論が従う。部分空間の列

$$\operatorname{Im}(A^{n+1}) \subset \operatorname{Im}(A^n) \subset \cdots \subset \operatorname{Im}(A^2) \subset \operatorname{Im}(A) \subset \operatorname{Im}(A^0) = \mathbb{C}^n$$

を考えると、 $\dim \mathbb{C}^n = n$ より、ある $k \in \{0,1,\ldots,n\}$ で $\operatorname{Im}(A^{k+1}) = \operatorname{Im}(A^k)$ となる. よって

$$\operatorname{Im}(A^{n+1}) = \operatorname{Im}(A^{n-k} \cdot A^{k+1}) = \operatorname{Im}(A^{n-k} \cdot A^{k}) = \operatorname{Im}(A^{n})$$

を得る.

[3]

(1)
$$\mathcal{O} = \{ U \subset \mathbb{R} \mid \forall x \in U \ \exists U(a, r) \in \mathcal{B} \text{ s.t. } x \in U(a, r) \subset U \}$$

が \mathbb{R} の位相であることが示されれば、 \mathcal{B} がその開基であることは明らかである。省略.

- (2) 「 $x \in U \in \mathcal{O}$ ならば $-x \in U$ 」であることに注意する. すると $1, -1 \in \mathbb{R}$ は \mathcal{O} の開集合で分離できない.
- (3) \mathcal{O} は通常の Euclid 位相 $\mathcal{O}_{\mathbb{R}}$ よりも弱い位相であることから従う.
- (4) [0,1] は $\mathcal{O}_{\mathbb{R}}$ の位相でコンパクトであるから, \mathcal{O} でもコンパクトである. $-1 \in \mathbb{R} \setminus [0,1]$ だが $1 \notin \mathbb{R} \setminus [0,1]$ である.よって $\mathbb{R} \setminus [0,1]$ は開集合ではない.

[4]

非負値単調非増加数列 $\{a_n\}_n$ について,

$$\sum_n a_n$$
 が収束する $\iff \sum_n 2^n a_{2^n}$ が収束する

であることに注意する.よって $\sum_{n\geq 2}1/(n^p\log n)$ が収束することは $\sum_n 2^n\cdot 1/(2^{np}n)=\sum_n n^{-1}2^{(1-p)n}$ が収束することと同値であり,これは $\sum_n 2^n\cdot 2^{-n}2^{(1-p)2^n}=\sum_n 2^{(1-p)2^n}$ が収束することと同値でこれは p>1 と同値.

(2) 仮定より,十分大きな $N\in\mathbb{N}$ があり,任意の $n,m\geq N$ に対して $\sup_{x\in\mathbb{R}}|f_m(x)-f_n(x)|\leq 1$ となる.各 f_n は多項式であるから, $n\geq N$ に対して, f_n の次数は n によらない定数であり, $d\geq 1$ について, f_n $(n\geq N)$ の d 次の係数は n によらない. f_n がある f に一様収束するということから定数項はある実数に収束し,したがって f は多項式となる.

[5]

 $(1) \varepsilon > 0$ とする. 仮定より, $\delta_1 > 0$ があり

$$|f(x) - f(y)| \le \varepsilon \quad (x, y \in [1 - \delta_1, 1))$$

となる. f は有界閉区間 $[0,1-\delta_1/2]$ で一様連続であるから、ある $\delta_2>0$ に対して

$$|f(x) - f(y)| \le \varepsilon$$
 $(x, y \in [0, 1 - \delta_1/2], |x - y| \le \delta_2)$

となる. さて, $x,y \in [0,1),\ 0 \le y-x \le \min\left\{\delta_1/2,\delta_2\right\}$ とする. もし $x \in [0,1-\delta_1]$ ならば $y \in [0,1-\delta_1/2]$ であるから $|x-y| \le \delta_2$ とあわせて $|f(x)-f(y)| \le \varepsilon$ である. $x \in [1-\delta_1,1)$ ならば $y \in [1-\delta_1,1)$ でもあるから $|f(x)-f(y)| \le \varepsilon$ である.

- $(2) \limsup_{x \to 1-0} f(x) > t > s > \liminf_{x \to 1-0} f(x)$ となる s,t を取る。すると、任意の $x \in [0,1)$ に対して、 $y,z \in (x,1)$ があり、f(y) < s < t < f(z) となる。よって f(z) f(y) > t s > 0。これは f が一様連続ではないことを示している。
- (3) 仮定より $(1-t)^{\alpha}f'(t)$ は [0,1] 上の連続関数に一意に拡張され、とくに有界である。 $M=\sup_{t\in[0,1)}(1-t)^{\alpha}|f'(t)|<\infty$ とおく、 $x,y\in[0,1)$ に対して

$$|f(x)-f(y)| = \left| \int_x^y (1-t)^{-\alpha} (1-t)^{\alpha} f'(t) \, dt \right| \leq M \left| \int_x^y (1-t)^{-\alpha} \, dt \right| = \frac{M}{1-\alpha} \left| (1-x)^{1-\alpha} - (1-y)^{1-\alpha} \right|$$
 より一様連続性が従う.

1.7 2018 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H30innsi.pdfを見よ.

[1]

(1) 略. (2) $T(x^3) = 3x^3 + 3x^2y$, $T(x^2y) = x^3 + 3x^2y + 2xy^2$, $T(xy^2) = 2xy^2 + 3xy^2 + y^3$, $T(y^3) = 3xy^2 + 3y^3$ より T の行列表示は

$$A = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 3 & 3 & 2 & 0 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

である. 固有多項式を頑張って計算すると

$$\det(\lambda - T) = \lambda(\lambda - 2)(\lambda - 4)(\lambda - 6)$$

であり、各 $\lambda \in \{0,2,4,6\}$ に対応する固有空間 V_{λ} は

$$V_0 = \langle (x-y)^3 \rangle, \quad V_2 = \langle (x+y)(x-y)^2 \rangle, \quad V_4 = \langle (x+y)^2(x-y) \rangle, \quad V_6 = \langle (x+y)^3 \rangle$$

よって $V = V_0 \oplus V_2 \oplus V_4 \oplus V_6$ の基底が得られた.

[2]

(1) ker f の補空間 W_0 を取る. つまり $V=\ker f\oplus W_0$ である. W_0 は r 次元で $f|_{W_0}$ は単射 $(W_0\cap\ker f=0$ である).

(2) W_0 の基底 w_1, \ldots, w_r を取る.与えられた $x \in \mathbb{R}^n$ を x = v + w $(v \in \ker f, w \in W_0)$ と分解せよ.このとき $W' = \langle v + w_1, \ldots, v + w_r \rangle$ とおくと $v \in W'$,よって $x \in W_0 + W'$ である. $W' \in S$ であることも簡単にわかる.

[3]

(1) 略. (2) (0,0) と (1,0) が開集合で分離できない。 (3) 易しい。 (4) $\mathcal O$ から定まる位相の閉集合系は $\{C\subset X\mid (0,0)\in C\}\cup \mathcal P(\{(1,0),(-1,0),(0,1),(0,-1)\})$

であることに注意する. $Q \subset X$ が可算ならば $Q \cup \{(0,0)\}$ は Q を含む閉集合であるから $\overline{Q} \subset Q \cup \{(0,0)\}$. X は非可算集合なので $\overline{Q} = X$ とはなり得ない.

[4]

 $(1) \varepsilon > 0$ とせよ. 仮定より K > 0 があり,

$$|\alpha - f(x)| < \varepsilon \quad (\forall x \ge K)$$

となる.またこのことから f は有界なので $M \coloneqq \sup_{[0,\infty)} |f|$ とおく $(\varepsilon = 1$ としたときの K を K_1 としたとき, f は有界閉区間 $[0,K_1]$ で連続なので, $\sup_{[0,\infty)} |f| \le \sup_{[0,K_1]} |f| + 1 + |\alpha| < \infty$).

$$|\alpha - g(t)| \le \left| \frac{1}{t} \int_0^t (\alpha - g(t)) \, dx \right| \le \frac{1}{t} \left\{ \int_0^K |\alpha - f(x)| \, dx + \int_K^t |\alpha - f(x)| \, dx \right\} \le \frac{(|\alpha| + M)K}{t} + \frac{\varepsilon(t - K)}{t} + \frac{\varepsilon(t -$$

そこで $t \to \infty$ とすれば

$$\limsup_{t \to \infty} |\alpha - g(t)| \le \varepsilon$$

 ε は任意なので $\limsup_{t\to\infty} |\alpha-g(t)|=0$ を得る.

[5]

(x+y)/2 まわりの Taylor 展開を考える.

$$f(x) = f\left(\frac{x+y}{2}\right) + \frac{x-y}{2}f\left(\frac{x+y}{2}\right) + \frac{(x-y)^2}{8}f''\left(\frac{x+y}{2}\right) + \int_{\frac{x+y}{2}}^x dt \int_{\frac{x+y}{2}}^t ds \left(f''(s) - f''\left(\frac{x+y}{2}\right)\right),$$

$$f(y) = f\left(\frac{x+y}{2}\right) + \frac{y-x}{2}f\left(\frac{x+y}{2}\right) + \frac{(y-x)^2}{8}f''\left(\frac{x+y}{2}\right) + \int_{\frac{x+y}{2}}^{y} dt \int_{\frac{x+y}{2}}^{t} ds \left(f''(s) - f''\left(\frac{x+y}{2}\right)\right)$$

である. 辺々足して

$$f(x) - 2f\left(\frac{x+y}{2}\right) + f(y) = \frac{(x-y)^2}{4}f''\left(\frac{x+y}{2}\right) + \left(\int_{\frac{x+y}{2}}^x dt \int_{\frac{x+y}{2}}^t ds + \int_{\frac{x+y}{2}}^y dt \int_{\frac{x+y}{2}}^t ds\right) \left(f''(s) - f''\left(\frac{x+y}{2}\right)\right)$$

を得る。両辺を $(x-y)^2/4$ で割って $x,y\to a$ とすれば結論が得られる。具体的には次のようにする:任意の $\varepsilon>0$ に対して $\delta>0$ があり, $|s-a|\le \delta$ に対して $|f''(x)-f''(s)|<\varepsilon$ となる。そこで $a-\delta< x< a< y< a+\delta$ ならば,

$$\left| \int_{\frac{x+y}{2}}^{x} dt \int_{\frac{x+y}{2}}^{t} ds \left(f''(s) - f''\left(\frac{x+y}{2}\right) \right) \right| \le 2\varepsilon \cdot \int_{\frac{x+y}{2}}^{x} dt \int_{\frac{x+y}{2}}^{t} ds = \frac{(x-y)^2 \varepsilon}{2}$$

など.

1.8 2019 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/H31innsi.pdfを見よ.

[1]

 $(1) A^{12} = (A^3)^4 = O \ \text{\reftag}.$

(2) A の最小多項式,固有多項式をそれぞれ $\varphi(X)$, $\Phi(X)$ とおく.(1) より $\varphi \mid X^{12}$ であるから $\varphi = X^k$ の形である. $\Phi \mid \varphi^4$ であるから $\Phi = X^4$ となる.Cayley-Hamilton の定理より $\varphi \mid \Phi = X^4$.これは $A^4 = O$ であることを示している.

(3)

$$O = A^{6} = (A^{3})^{2} = \begin{bmatrix} 0 & a & d & f \\ & 0 & b & e \\ & & 0 & c \\ & & & 0 \end{bmatrix}^{2} = \begin{bmatrix} 0 & 0 & ab & ae + cd \\ & 0 & 0 & bc \\ & & 0 & 0 \\ & & & 0 \end{bmatrix}$$

より ab = 0 である.

[2]

[3]

- (1) (0,0), $(0,1) \in \mathbb{R}^2$ は \mathcal{O}' の開集合で分離できない.
- (2) $A \subset \mathbb{R}^2$, $(0,0) \notin A \cap \mathcal{E} \otimes \operatorname{Int}_{\mathcal{O}'}(A) = \emptyset$.
- (3) $A \subset \mathbb{R}^2$, $(0,0) \in A$ のとき $Cl_{\mathcal{O}'}(A) = \mathbb{R}^2$.
- (4) (\mathbb{R}^2 , \mathcal{O}') は連結である. $X=U\cup V,\ U,V\in \mathcal{O}',',\ U\cap V=\emptyset$ とする. 一般性を失わず $(0,0)\in U$ としてよい. すると $(0,0)\notin V$ より $V=\emptyset$ である.
- (5) $f: (\mathbb{R}^2, \mathcal{O}') \to (\mathbb{R}^2, \mathcal{O}')$ を同相写像とする. $f(0,0) \neq (0,0)$ だと仮定しよう. $\varepsilon > 0$ で $f(0,0) \notin B_{\varepsilon} = \{p \in \mathbb{R}^2 \mid |p| < \varepsilon\}$ となるものを取る. f は連続で $B_{\varepsilon} \in \mathcal{O}'$ より $f^{-1}(B_{\varepsilon}) \in \mathcal{O}'$ であり、かつ $(0,0) \notin f^{-1}(B_{\varepsilon})$ であるから $f^{-1}(B_{\varepsilon}) = \emptyset$ となる. これは f が全単射であることに反する.

[4]

- (1) $F: D \to \widetilde{D}, \ F(u,v) = (x(u,v),\ y(u,v))$ は $F \circ F^{-1} = \operatorname{id}_{\widetilde{D}}, \ F^{-1} \circ F = \operatorname{id}_{D}$ を満たすので、chain rule より Jacobi 行列 JF について $(JF)(JF^{-1}) = I$ が成り立つ、行列式を取って結論を得る.
 - (2) $\widetilde{E} = [1,2] \times [-2,2]$ とし $F: E \to \widetilde{E}$ を $F(x,y) = (u(x,y),v(x,y)) = (xy,y-x^2)$ で定める.

$$\frac{\partial(u,v)}{\partial(x,y)} = \det \begin{bmatrix} y & x \\ -2x & 1 \end{bmatrix} = y + 2x^2 \neq 0 \quad \text{in } E$$

である. F は全単射かつ C^1 級で F^{-1} も C^1 級 (逆関数定理より). よって

$$\iint_{E} \left(\frac{1}{x} + \frac{2x}{y}\right) dx dy = \int_{1}^{2} du \int_{-2}^{2} dv \left(\frac{1}{x} + \frac{2x}{y}\right) \frac{\partial(x, y)}{\partial(u, v)}$$
$$= \int_{1}^{2} du \int_{-2}^{2} \left(\frac{1}{x} + \frac{2x}{y}\right) \frac{\partial(x, y)}{\partial(u, v)}$$
$$= \int_{1}^{2} du \int_{-2}^{2} dv \frac{1}{u}$$
$$= 4 \log 2$$

[5]

(1) 帰納的に $0 \le f_n(x) \le 2$, $(n \in \mathbb{N}, x \in I)$ がわかる. よって

$$f_{n+1}(x) - f_n(x) = \sqrt{f_n(x) + 2} - f_n(x)$$

$$= \frac{f_n(x) + 2 - (f_n(x))^2}{\sqrt{f_n(x) + 2} + f_n(x)}$$

$$\ge \frac{1}{4}(f_n(x) + 1)(2 - f_n(x))$$

$$\ge 0$$

である.

(2)

$$2 - f_{n+1}(x) = 2 - \sqrt{f_n(x) + 2}$$
$$= \frac{2 - f_n(x)}{2 + \sqrt{f_n(x) + 2}}$$
$$\leq \frac{1}{2}(2 - f_n(x))$$

である. よって

$$0 \le 2 - f_n(x) \le \left(\frac{1}{2}\right)^{n-1} (2 - f_1(x)) \le \left(\frac{1}{2}\right)^{n-1} \cdot 2 \to 0 \ (n \to \infty)$$

(3) f は定数関数 2 に [0,1] 上一様収束する. よって 2.

1.9 2020 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/2020innsi.pdfを見よ.

[1] はい.

$$\left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{N} \sum_{k=1}^{N} f(x_{k}) \right| = \left| \sum_{k=1}^{N} \int_{x_{k-1}}^{x_{k}} f(x) \, dx - \sum_{k=1}^{N} \int_{x_{k-1}}^{x_{k}} f(x_{k}) \, dx \right|$$

$$\leq \sum_{k=1}^{N} \int_{x_{k-1}}^{x_{k}} |f(x) - f(x_{k})| \, dx$$

$$\leq \sum_{k=1}^{N} \int_{x_{k-1}}^{x_{k}} dx \left| \int_{0}^{1} \frac{d}{dt} f(tx + (1-t)x_{k}) \, dt \right|$$

$$\leq \sum_{k=1}^{N} \int_{x_{k-1}}^{x_{k}} dx \int_{0}^{1} dt \, |x - x_{k}| |f'(tx + (1-t)x_{k})|$$

$$\leq \sum_{k=1}^{N} \int_{x_{k-1}}^{x_{k}} dx \, K \frac{b-a}{N}$$

$$= N \cdot \frac{b-a}{N} \cdot K \frac{b-a}{N} = \frac{K(b-a)^{2}}{N}$$

追記: f は C^1 級ではないので議論を修正しなければならないが、平均値の定理を使えばなんとでもなる.

[2]

 $n, m \in \mathbb{N}, m < n$ に対して

$$\left| \frac{a_n}{n} - \alpha \right| = \left| \frac{1}{n} \left(a_m + \sum_{k=m}^{n-1} (a_{k+1} - a_k) \right) - \alpha \right|$$

$$= \left| \frac{a_m - m\alpha}{n} + \frac{1}{n} \sum_{k=m}^{n-1} (a_{k+1} - a_k - \alpha) \right|$$

$$\leq \frac{|a_m| + m|\alpha|}{n} + \frac{1}{n} \sum_{k=m}^{n-1} |a_{k+1} - a_k - \alpha|$$

$$\leq \frac{|a_m| + m|\alpha|}{n} + \frac{n - m}{n} \sup_{k > m} |a_{k+1} - a_k - \alpha|$$

となる. $\limsup_{n\to\infty}$ をとって

$$\limsup_{n \to \infty} \left| \frac{a_n}{n} - \alpha \right| \le \sup_{k > m} |a_{k+1} - a_k - \alpha|$$

である. $m \to \infty$ として結論を得る.

(2) 答えは $\beta/2$. $n, m \in \mathbb{N}, m < n$ に対して

$$\left| \frac{a_n}{n^2} - \frac{\beta}{2} \right| = \left| \frac{\beta}{2} \left(\left(1 - \frac{m}{n} \right) \left(1 + \frac{m-1}{n} \right) - 1 \right) + \frac{1}{n^2} \sum_{k=m}^{n-1} (a_{k+1} - a_k - k\beta) \right|$$

$$\leq \frac{|\beta|}{2} \left| \left(1 - \frac{m}{n} \right) \left(1 + \frac{m-1}{n} \right) - 1 \right| + \frac{1}{n} \sum_{k=m}^{n-1} \left| \frac{a_{k+1} - a_k}{k} - \beta \right|$$

あとは同様.

[3]

(1) 答えは $\{(0,0)\}$. $Y \subset X$ を、 $\{(0,0)\} \subsetneq Y$ となるものとする。もし $Y = \{(0,0),\ (0,1)\}$ ならば、Y の 開集合 $U = \{(0,0)\},\ V = \{(0,1)\}$ が Y を分割する。もし $Y \neq \{(0,0),\ (0,1)\}$ の場合, $p = (1/n_0,y_0) \in Y,\ n_0 \in \mathbb{N},\ 0 \leq y_0 \leq 1$ を取る。

$$U = \{(1/n_0, y) \mid 0 \le y \le 1\}, \quad V = Y \setminus U$$

がYを分割するYの開集合である.

(2) ない.

[4]

(a) ならば (b) は明らか. (b) を仮定する. f が同型でも零写像でもないと仮定する. すると, $0 \neq x \in V$, $\alpha \in V^*$ があり,

$$f(x) = 0, \quad f^*(\alpha) \neq 0$$

となる. ただし V^* は V の双対空間であり, $f^* \in \operatorname{End}(V^*)$ は

$$f^*(\beta) = \beta * f \quad (\beta \in V^*)$$

で定まる. $g \in \text{End}(V)$ を次で定める:

$$g(v) = \alpha(v)x$$

このとき

$$f(g(v)) = \alpha(v)f(x) = 0, \quad g(f(v)) = \alpha(f(v))x = f^*(\alpha)(v)x \quad (v \in V)$$

だが、(b) の仮定より任意の $v \in V$ に対して $f^*(\alpha)(v)x = 0$ したがって $f^*(\alpha) = 0$ となる. よって矛盾.

[5]

追記予定.

1.10 2021 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/2021innsi.pdfを見よ.

[1]

(1)
$$D = D_1 \ lt$$

$$D(e^x) = e^x$$
, $D(xe^x) = e^x + xe^x$, $e^{2x} = 2e^{2x}$

を満たすので、 $D, D_n = D^n$ の行列表示は

$$D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \quad D_n = \begin{bmatrix} 1 & n & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{bmatrix} \quad (n \ge 0)$$

である. $\{D_i\}_{0\leq i\leq 2}$ が一次独立であることを示そう: $a_i\in\mathbb{R},\ a_0D_0+a_1D_1+a_2D_2=0$ は

$$a_0 + a_1 + a_2 = a_1 + 2a_2 = a_0 + 2a_1 + 4a_2 = 0$$

と同値でこれは $a_0 = a_1 = a_2 = 0$ と同値.

(2) $n \ge 3$ に対して

$$D_n = (2^n - 2n)D_0 + (-2^{n+1} + 3n + 2)D_1 + (2^n - n - 1)D_2$$

であるから $\{D_i\}_{0 \le i \le 2}$ が span $\{D_n \mid n \ge 0\}$ の基底を与える.

(3) 普通に

$$f(x) = \left(\frac{1}{2} - \frac{n}{4}\right)e^x + \frac{1}{2}xe^x + \frac{1}{1+2^n}e^{2x}$$

[2]

 $(1)\ A_n = \{n,n+1,n+2,\ldots\}. \ (2)\ \mathrm{閉集合の族}\ \{A_\lambda\}_{\lambda\in\Lambda}\ \mathrm{が}\ (*)\ \mathrm{を満たすことは},\ \mathrm{開集合た5}\ U_\lambda = X\setminus A_\lambda \\ \mathrm{が}\ \lceil\emptyset\neq F\subset\Lambda\ \mathrm{が有限ならば}\ \bigcup_{\lambda\in F}U_\lambda\neq X.\ \ \mathrm{か}\ \bigcup_{\lambda\in\Lambda}U_\lambda=X.\ \ \mathrm{」}\ \mathrm{このことから明らか}.\ \ (3)\ X\ \mathrm{を all}\ \mathrm{20}\ \mathrm$

[3]

(1)
$$(a,b) = (2,0)$$
. (2) $(a,b) = (4,0)$. (3) $(a,b) = (3,0)$.

1.11 2022 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/2022innsi.pdfを見よ.

[1]

固有多項式は

$$(\lambda-1)^2(\lambda+1)(\lambda^2+\lambda+1)$$

である.

固有値は 1, -1, $(-1+\sqrt{-3})/2 =: \omega_{\pm}$ である. 各固有空間 V_{λ} は

$$V_1 = \langle v_1 + v_3 + v_5, v_2 + v_4 \rangle, \quad V_{-1} = \langle v_2 - v_4 \rangle, \quad V_{\omega_+} = \langle v_1 + \omega_{\pm} \omega v_3 + \omega_{\mp} v_5 \rangle$$

という基底を持つ. よって f_{σ} の最小多項式は

$$(\lambda - 1)(\lambda + 1)(\lambda^2 + \lambda + 1)$$

と求まる.

[2]

 $\ker f$ の V における補空間 W を取る. つまり $V=\ker f\oplus W$ かつ $\ker f\cap W=0$. そこで $g=\mathrm{id}_{\ker f}\oplus f|_W,\ h=0_{\ker f}\oplus\mathrm{id}_W$ とおけばよい.

[3]

(1) いいえ. (2) はい. (3) はい (多分. なぜ?). (4) いいえ.

[4]

- (1) $f_n|_{[0,1]}$ は [0,1] 上の一様有界かつ同程度一様連続な関数列である.よって Ascoli-Arzelà の定理より f_n は [0,1] 上一様収束する部分列を持つが,f は周期 1 を持つので $\mathbb R$ 上一様収束する.
 - (2) 同様に Ascoli-Arzelà の定理より.

[5]

- (1) π/t .
- (2) 答えは 0. $x \in [a,b]$ に対して $tf(x)/(t^2+x^2) \to 0$ $(t\to 0)$ であり

$$\left| \frac{t}{t^2 + x^2} f(x) \right| \le \|f\|_{L^{\infty}([a,b])} \frac{1}{x^2} \in L^1([a,b]) \quad (0 < t < 1)$$

である $(0 \notin [a,b]$ に注意せよ.). dominated convergence より問題の積分は 0 に収束する.

(3)
$$\widetilde{f} = \begin{cases} f & (\text{on } [a,b]) \\ 0 & (\text{outside } [a,b]) \end{cases}$$
 とおく、十分小さな $\delta > 0$ に対して

$$\begin{split} \left| \pi f(0) - \int_a^b \frac{t f(x)}{t^2 + x^2} \, dx \right| &= \left| \int_{-\infty}^\infty \frac{t (\widetilde{f}(0) - \widetilde{f}(x))}{t^2 + x^2} \, dx \right| \\ &\leq \int_{-\delta}^\delta \frac{t}{t^2 + x^2} |f(0) - f(x)| \, dx + \int_{\mathbb{R} \backslash (-\delta, \delta)} \frac{t}{t^2 + x^2} \left| \widetilde{f}(0) - \widetilde{f}(x) \right| \, dx \\ &\leq \pi \sup_{x \in (-\delta, \delta)} |f(0) - f(x)| + 2 \|f\|_{L^\infty([a, b])} \left(\pi - 2 \arctan \frac{\delta}{t} \right) \end{split}$$

となる. $\limsup_{t\to+0}$ をとって

$$\lim_{t \to +0} \sup \left| \pi f(0) - \int_a^b \frac{t f(x)}{t^2 + x^2} \, dx \right| \le \pi \sup_{x \in (-\delta, \delta)} |f(0) - f(x)|$$

を得る. $\delta \to 0$ として結論を得る.

1.12 2023 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/2023innsi.pdfを見よ.

[1]

(1) $W \in \mathcal{S}$ とせよ. このとき任意の $n \in \mathbb{N}$ に対して $W = \varphi^n(W) \subset \varphi(V)$ なので $W \subset W_0$ を得る.

(2) $V \supset \varphi(V) \supset \varphi^2(V) \supset \cdots$ という部分空間の系列を考える. V は有限次元なので,ある $N \in \mathbb{N}$ に対して $\varphi^N(V) = \varphi^{N+1}(V)$ となる.このとき $\varphi^n = \varphi^{n+1}(V)$ $(n \geq N)$ となるので $W_0 = \varphi^N(V)$ である.よって $\varphi(W_0) = \varphi^{N+1}(V) = W_0$ であり, $\varphi|_{W_0} \colon W_0 \to W_0$ は全射なので(有限次元性より)同型.

(3)
$$K = \mathbb{R}, \ V = \mathbb{R}^{\oplus \mathbb{N}}, \ \varphi((a_1, a_2, \ldots)) = (a_2, a_3, \ldots).$$

[2]

[3]

(1) いいえ. (2) はい. (3) の答えは

$$\overline{B} = \left\{ (x,y) \in \mathbb{R}^2 \mid (x \leq 1/\sqrt{2} \text{ かつ } y \leq 1/\sqrt{2}) \text{ または } (x \geq -1/\sqrt{2} \text{ かつ } y \geq -1/\sqrt{2}) \right\}$$

(4) 謎.

[4]

(1) 1 < a < 2 のとき、 $(|\sin x| \le |x|$ に注意して)

$$\int_0^\infty \left| \frac{\sin x}{x^{\alpha}} \right| dx \le \int_0^1 x^{1-\alpha} dx + \int_1^\infty x^{-\alpha} dx \le \frac{1}{2-\alpha} + \frac{1}{1-\alpha} < \infty$$

より従う.

(2) $0 < a \le 1$ のとき、1 < M, N に対して部分積分より

$$\left| \int_{M}^{N} \frac{\sin x}{x^{\alpha}} dx \right| = \left| \frac{\cos M}{M^{\alpha}} - \frac{\cos N}{N^{\alpha}} - \alpha \int_{M}^{N} x^{-\alpha - 1} \cos x dx \right|$$

$$\leq \frac{2}{M^{\alpha}} + \frac{2}{N^{\alpha}}$$

$$\to 0 \quad (M, N \to \infty)$$

なので $\int_0^1 (\sin x)/x^\alpha \, dx$ は収束する. $\int_0^1 (\sin x)/x^\alpha \, dx$ は (1) と同様に絶対収束する.

(3)

$$\int_{1}^{\infty} \left| \frac{\sin x}{x^{\alpha}} \right| dx = \sum_{k=1}^{\infty} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x^{\alpha}} dx \ge \sum_{k=1}^{\infty} \frac{1}{(k\pi)^{\alpha}} \int_{k\pi}^{(k+1)\pi} |\sin x| dx = \sum_{k=1}^{\infty} \frac{2}{(k\pi)^{\alpha}} = \infty$$

[5]

(1) $n \ge 2$ に対して $1/(nk)^{nk} \le 1/2^n$ である.

(2) $I_{n,k} = \int_0^1 x^k (\log x)^n dx$ とおく. 部分積分より

$$I_{n,k} = \int_0^1 \left(\frac{x^{k+1}}{k+1}\right)' (\log x)^n = -\int_0^1 \frac{x^{k+1}}{k+1} \cdot n(\log x)^{n-1} \frac{1}{x} dx = -\frac{n}{k+1} I_{n-1,k}$$

よって

$$I_{n,n} = (-1)^n \frac{n!}{(n+1)^n} I_{0,n} = (-1)^n \frac{n!}{(n+1)^{n+1}}$$

である.

(3)

$$\int_0^1 x^x \, dx = \int_0^1 e^{x \log x} \, dx$$

$$= \int_0^1 \sum_{n \ge 0} \frac{(x \log x)^n}{n!}$$

$$= \sum_{n \ge 0} \frac{1}{n!} \int_0^1 (x \log x)^n \, dx$$

$$= \sum_{n \ge 0} \frac{(-1)^n}{(n+1)^{n+1}}$$

$$= S(1) - 2S(2)$$

1.13 2024 年度

問題は

https://www.math.titech.ac.jp/top/~jimu/Graduate/old-exam/2024innsi.pdfを見よ.

2 午後

主に解析系の問題を解いていく.

- 2.1 2023 年度
- 2.2 2024 年度

[5]

(1) Z を f の c 内部の零点全体の集合とする。積分路の変形により

$$\frac{1}{2\pi i} \int_c \frac{f'}{f} dz = \frac{1}{2\pi i} \sum_{z_0 \in Z} \int_{\partial B_{\rho}(z_0)} \frac{f'}{f} dz$$

である. ただし ρ は十分小さな正の数. $z_0 \in Z$ に対して, f の零点 z_0 の位数を m とする: $f(z) = (z-z_0)\varphi(z)$ であり, φ は D で正則, $\varphi(z_0) \neq 0$ と書ける.

$$f'(z) = m(z - z_0)^{m-1}\varphi(z) + (z - z_0)^m\varphi'(z)$$

であるから

$$\frac{f'(z)}{f(z)} = \frac{m}{z - z_0} + \frac{\varphi'(z)}{\varphi(z)}$$

である. いま $\varphi(z_0) \neq 0$ より φ'/φ は $B_{\varrho}(z_0)$ で正則だから,

$$\frac{1}{2\pi i} \int_{\partial B_{\rho}(z_0)} \frac{f'}{f} \, dz = m$$

である.

(2) 開球 $B_R = B_R(z_0) \subset\subset D$ に対して、f が D 内で正則であることを示す。c を B_R 内の閉曲線に対して

$$\int_{\mathcal{L}} f_n \, dz = 0$$

が成り立つ (Cauchy の定理). f_n は $c \perp f$ に一様収束するので

$$\int_{c} f \, dz = 0$$

となる. Morera の定理より f が正則であることが従う. Cauchy の積分の公式より

$$f'_n(z) = \frac{1}{2\pi i} \int_{\partial B_R} \frac{f_n(\zeta)}{(\zeta - z)^2} d\zeta, \quad f'(z) = \frac{1}{2\pi i} \int_{\partial B_R} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta, \quad (z \in B_R)$$

である. よって任意の $0 < \rho < R$ に対して

$$\sup_{z \in B_{\rho}} |f'(z) - f'_n(z)| \le \left| \frac{1}{2\pi i} \int_{B_R} \frac{f(\zeta) - f_n(\zeta)}{(\zeta - z)^2} dz \right| \le \frac{2\pi R}{2\pi (R - \rho)^2} \sup_{\zeta \in B_R} |f(\zeta) - f_n(\zeta)| \to 0 \quad (n \to \infty)$$

を得る. よって f'_n は f に D 内で広義一様収束する.

(3) 背理法で示す。f が定数ではなく,かつ単射でもないとする: $f(z_1)=f(z_2),\ z_1\neq z_2\in D$. このとき $g_n(z)=f_n(z)-f_n(z_1)$ とおくと g_n は $g(z)=f(z)-f(z_1)$ に D 上広義一様収束する。また g_n は $\widetilde{D}=D\setminus\{z_1\}$ 上 nonzero である。よって $B=B_{\rho}(z_2)\subset\subset\widetilde{D}$ に対して

$$\frac{1}{2\pi i} \int_{\partial B} \frac{g_n'}{g_n} dz = 0 \quad (n \ge 1)$$

だが、 $g(z_2) = 0$ より

$$\frac{1}{2\pi i} \int_{\partial B} \frac{g'}{g} \, dz \ge 1$$

である. g'_n/g_n は $\partial B \perp g'/g$ に一様収束するのでこれは矛盾である.

[6]

(1) 正しい. $\|(f-f_n)1_{\mathbb{R}\setminus E_n}\|_1\to 0$ より,ある部分列 f_{n_k} が存在して

$$(f - f_{n_k})1_{\mathbb{R}\setminus E_{n_k}} \to 0$$
 (a.e. in \mathbb{R})

となる.

$$E := \liminf_{k \to \infty} E_{n_k} = \bigcup_{k > 1} \bigcap_{l > k} E_{n_l}$$

とおくと $\mu(E)=0$ である. $x\notin E$ ならば、ある $k\geq 1$ があり、任意の $l\geq k$ に対して $x\notin E_{n_l}$ となる. よって

$$|f(x) - f_{n_k}(x)| \le |f(x)| |1 - 1_{\mathbb{R} \setminus E_{n_k}}| + |f(x) - f_{n_k}(x)| 1_{\mathbb{R} \setminus E_{n_k}} \to 0 \quad (k \to \infty)$$

となる.

(2) 正しい. Hölder の不等式より

$$||f - f_n||_1 \le ||(f - f_n)1_{\mathbb{R}\setminus E_n}||_1 + ||f_n(1_{\mathbb{R}\setminus E_n} - 1)||_1 \le ||(f - f_n)1_{\mathbb{R}\setminus E_n}||_1 + ||f_n||_2 \mu(E_n)^{1/2} \to 0$$

[7]

 $f \in C(D), x \in D$ に対して

$$|T_n f_k(x)| \le \int_D |x - y|^{-1} \Psi_n(x - y) |f(y)| \, dy$$

$$\le ||f|| \int_{\{y \in D \mid |x - y| \ge 1/n\}} n \cdot 1 \, dy$$

$$\le \pi n ||f||$$

よって $\|T_n f\| \le \pi n \|f\|$ を得る. よって T_n は C(D) から C(D) への有界線形作用素であり、とくに C(D) の (一様) 有界列 $\{f_k\}_k$ 、 $M=\sup_k \|f_k\| < \infty$ に対して $\{T_n f_k\}_k$ は一様有界である. さらに $x,z\in D$ に対して

$$\begin{split} |T_n f_k(x) - T_n f_k(z)| &\leq \int_D |\Phi_n(x,y) - \Phi_n(z,y)| \big| f_k ernel \forall \sharp(y) \big| \, dy \\ &\leq 2\pi M \sup_{y \in D} |\Phi_n(x,y) - \Phi_n(z,y)| \end{split}$$

だが、 $\Phi_n: D \times D \to \mathbb{R}$ はコンパクト集合上連続より一様連続であることに注意すると、

$$\limsup_{\delta \to +0} \sup_{x,z \in D, |x-z| < \delta} |T_n f_k(x) - T_n f_k(z)| \le 2\pi M \limsup_{\delta \to +0} \sup_{x,y,z \in D, |x-z| < \delta} |\Phi_n(x,y) - \Phi(z,y)| = 0$$

を得る.よって $\{T_nf_k\}_k$ は D 上の一様有界かつ同程度一様連続関数列であるから一様収束する部分列を持つ.したがって T_n はコンパクト作用素である.

(2) $f \in C(D)$, $x \in D$ に対して

$$|Tf(x) - T_n f(x)| \le \int_D |x - y|^{-1} (1 - \Psi_n(x - y)) |f(y)| \, dy$$

$$\le ||f|| \int_{\{y \in D \mid |x - y| \le 2/n\}} |x - y|^{-1} \, dy$$

$$\le \frac{4\pi}{n} ||f||$$

であるから,

$$||T - T_n||_{\mathcal{L}(C(D))} = \sup_{f \in C(D), ||f|| \le 1} \sup_{x \in D} |Tf(x) - T_n f(x)| \le \frac{4\pi}{n} \to 0 \quad (n \to 0)$$

よってコンパクト作用素のノルム収束極限としてTはコンパクト作用素である.

[8]

(1) 部分積分により、 $u \in C^2([-1,1])$ と $h \in X_0$ に対して

$$\int_{-1}^{1} u(h'' + h' + h) \, dx = \int_{-1}^{1} (u'' - u' + u) h \, dx$$

である. よって次を示せばよい: $h \in C([-1,1])$ が

$$\int_{-1}^{1} fh \, dx = 0 \quad (\forall h \in X_0)$$

を満たすならば $f \equiv 0$ である.

$$\eta(x) = \begin{cases} \exp\left(-\frac{1}{1-x^2}\right) & (|x| < 1) \\ 0 & (|x| \ge 1) \end{cases}, \quad \eta_n(x) = n\eta(nx) \quad (n \ge 1)$$

とおくと $\eta_n\in C_c^\infty(B_{1/n}),\ \eta\geq 0,\ \int\eta_n=1$ である. $x_0\in (-1,1)$ を固定する. $h(x)=\eta_n(x-x_0)$ は, $h\in C_c^\infty(B_{1/n}(x_0))$ より,n が十分大きければ X_0 の元である. よって

$$|f(x_0)| = \left| f(x_0) - \int_{B_{1/n}(x_0)} fh \, dx \right|$$

$$= \int_{B_{1/n}(x_0)} |f(x_0) - f(x)| \eta_n(x - x_0) \, dx$$

$$\leq \sup_{x \in B_{1/n}(x_0)} |f(x_0) - f(x)|$$

$$\to 0 \quad (n \to \infty)$$

であるから $f(x_0) = 0$ $(x_0 \in (-1,1))$ が示された.

(2)
$$u(x) = \frac{2a}{\sqrt{3}}e^{x/2}\sin\frac{\sqrt{3}}{2}x$$
.

$$(3) \ u(x) = \begin{cases} \frac{2}{\sqrt{3}} e^{x/2} \sin \frac{\sqrt{3}}{2} x & (x \ge 0) \\ 0 & (x \le 0) \end{cases}$$
 が答え、以下見つけ方: $u = 0 \ (x \le 0)$ の形で探す、部分積分より、

 $h \in X_0$ に対して

$$\int_{-1}^{1} u(h'' + h' + h) \, dx = \int_{0}^{1} u(h'' + h' + h) \, dx = -u(0)h(0) + u'(0)h(0) - u(0)h'(0) + \int_{0}^{1} (u'' - u' + u)h \, dx$$

となる. よって問題の条件を満たすuは,

$$u(0) = 0, \ u'(0) = 1, \quad u'' - u' + u = 0 \ (x \ge 0)$$

を満たすものでよい.