Module Introduction

Module Introduction

5002CEM — Theory of Computation

Dr Kamal Bentahar

School of Computing, Electronics and Mathematics Coventry University

Admi

Teaching and Learning Assessment

OVERVIEW 5002CEM?

Admin

The team

Teaching and Learning Assessment

> Overview 5002CEM2

ILOs Mindmap

Mindmap Books

Ian Dunwell

Kamal Bentahar — Module Leader

Paul Lunn

Xingang WANG

Teaching and Learning

Module	
Introduction	

Lecture	12×2 hours	12%
Laboratory	12×3 hours	18%
Self guided	145 hours	70%
Total	200 hours	100%

- **Pen and paper**. Supporting tools: JFLAP, Programming (Python).
- Lectures: Tuesdays 11am—1pm, in ECG-24.
- Tutorials/exercises: Check your timetable.
 - 2-hour lab: for you to work on the exercises.
 - 1-hour lab: present model solutions.
- Formative tests.

Admin
The team
Teaching and
Learning
Assessment
Overview
5002CEM?
ILOs
Mindmap

Component	Type	Credits	Learning Outcomes
Cw	Applied Core	10	1, 2
Ex	Applied Core	10	1, 3, 4

Assessment

Pass requirements:

■ Coursework > 40%

(Mid-term In-Class 1-hour online test.)

and Exam > 40%

(2 hours in December)

Resits: Next opportunity (Semester) — Capped at 40%.

Understand the **theoretical foundations** of Computer Science, and from this an appreciation of the **limitations of computation** and the important questions that remain open to this day.

The module covers:

- Formal specification of languages.
- The main models of computation
- What these models tell us about issues of computability and complexity

It's fun. cool, intellectually challenging, insightful. . . .

... it is! :-)

- What is an "algorithm"? How "hard" is a problem? Can we "compute/solve" anything? If not then what are the limits.
- 2 For example:
 - \blacksquare a*b*, aⁿbⁿ, aⁱb^jc^k

 - L recognized by a given automaton
- Deterministic/Non-Deterministic Automoata (DFA/NFA)
 - Push Down Automata (PDA)
 - Turing Machines (TM).
- Complexity classes: P, NP, NP-complete, NP-hard, etc.
 - Algorithms to solve or heuristics to try...

On completion of this module the student should be able to:

- Demonstrate the ability to use formal notation to specify patterns and languages.
- Specify and be able to simulate various types of automata.
- Demonstrate the ability to explain the connection between algorithms, models of computation, and language classes.
- Classify the computability and complexity of problems.

Module Introduction

Admin

ne team

Learning Assessment

002CEM? Os

Mindmap Books

Indicative Content

- Mathematical background (Review): Sets, functions, relations, propositional logic, and predicate calculus.
- Formal Languages: Regular languages and expressions; Context-free grammars. Applications to solve practical problems.
- Models of Computation: Finite State Automata (Deterministic and Non-deterministic); Push-down Automata; Turing machines. The relationships between models and classes of languages. The limits of models (Pumping Lemma). Practically use via a simulation package such as JFLAP.
- Computability: The Church-Turing Thesis, Reduction, Undecidability, and Unrecognisability.
- Complexity: Review of O-notation. The P versus NP question, NP-completeness, Polynomial time verification, Polynomial time reduction. Search problems and NP-hardness. Overview of further complexity classes (e.g. PSPACE, EXPTIME).

Books

Module Introduction

Essential Reading

Sipser, M. (2013). Introduction to the theory of computation (3rd international ed.). Cengage Learning.

Recommended Reading

- Garey, S. and Johnson, D. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman
- Dean, N. (1996) The Essence of Discrete Mathematics. Prentice Hall

Mindman

Books

How to learn!

Module Introduction

Admin

Teaching and Learning Assessment

ODECEMS

How to learn!

Module Introduction

Admin

The team
Teaching and
Learning
Assessment

verview

How to learn!

Module Introduction

Admin

Teaching and Learning
Assessment

Overview