POWERED BY Dialog

3-Hydrocarbyloxy or hydrocarbylthio-pyrazole derivs. - useful as selective herbicides and desiccants

Patent Assignee: BASF AG

Inventors: PLATH P; ROHR W; WUERZER B

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
DE 2829289	A	19800124				198005	В
PT 69685	A	19800115				198005	
EP 7990	A	19800220				198009	
JP 55009062	A	19800122				198009	
BR 7903853	A	19800304	•			198012	
ZA 7903305	Α	19800521				198035	
CS 7904675	A	19800915				198101	
DD 144708	A	19801105				198107	
EP 7990	В	19810325				198114	
DE 2960212	G·	19810416				198132	
US 4298749	A	19811103				198147	
US 4316040	A	19820216				198209	
CA 1133911	Α	19821019				198248	
HU 24065	T	19821228				198304	
IL 57605	A	19830731				198336	
SU 1189326	A	19851030				198620	

Priority Applications (Number Kind Date): DE 2829289 A (19780704) **Cited Patents:** JP 50130760; JP 50130761; <u>US 3303200</u>; <u>US 3822283</u>; No-Citns.

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
EP 7990	A	G			
Designate	ed States	(Regional):	AT BE	CH DE FR G	B IT LU NL SE
EP 7990	В	G			
Designate	ed States	(Regional):	AT BE	CH DE FR G	B IT LU NL SE

Abstract:

DE 2829289 A

Pyrazole derivs. of formula (I) and their isomers and salts are new.

In (I), R1 is H, CN, aliphatic hydrocarbyl (opt. substd. by >=1 halo, OH, acyloxy, alkoxy, alkylthio, alkoxycarbonyl, mono- or di-alkylaminocarbonyl), acetoacetyl, alkylaminosulphonyl, alkyl- or

•			•	
				C)
	•			

aryl-sulphonyl, CXR5, CX.YR10 or CXNR6R11; R2 is YR7; R3 is halo, CN, NO2, CXR8, CX.CH2R8, CX.YR8 or CX.NR12R9; R4 is H, alkyl, halo, alkoxy, alkylthio, CN, haloalkyl, alkoxycarbonyl or phenyl opt. substd. by alkyl or halo; X and Y are each O or S; R5,R10 and R11 are each alkyl, aralkyl or aryl, opt. substd. by >=1 halo, CN, NO2, alkyl, alkoxy, alkylthio, haloalkyl, alkoxycarbonyl or alkoxycarbonylamino; R6 is H or as R5; R7 is aliphatic, cycloaliphatic or araliphatic hydrocarbyl, heterocyclyl or aryl, opt. substd. by >=1 alkyl, halo, halo-alkyl, cycloalkyl, aryloxy, alkoxy, alkylthio, NO2, CN, alkoxycarbonyl, mono- or di-alkylaminocarbonyl, acyloxy, acylamino, O- or S-alkylcarbonyl, aryl or heterocyclyl. R8 is aliphatic, cycloaliphatic or araliphatic hydrocarbyl, aryl or heterocyclyl, opt. substd. by halo, CN, haloalkyl, alkoxy or alkylthio; R9 and R12 is H or CH3.

(I) are pre- or post-emergence herbicides useful e.g. for selective weed control in sugar cane crops or orchards. Some are also useful as desiccants e.g. to facilitate harvesting of potatoes or cotton. They are usually applied at 0.1-15kg/hectare, opt. together with other herbicides.

Derwent World Patents Index © 2001 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 2489637

Int. Cl. ²:

C 07 D 231/20

(9) BUNDESREPUBLIK DEUTSCHLAND

© Offenlegungsschrift 28 29 289

Aktenzeichen:

P 28 29 289.9

Anmeldetag:

4. 7.78

Offenlegungstag:

24. 1.80

3 Unionspriorität:

20 33 31

Bezeichnung:

Pyrazolätherderivate

Manual Anmelder:

6

(51)

BASF AG, 6700 Ludwigshafen

@ Erfinder:

Plath, Peter, Dipl.-Chem. Dr., 6700 Ludwigshafen; Rohr, Wolfgang, Dipl.-Chem. Dr., 6800 Mannheim; Wuerzer, Bruno, Dipl.-Landw. Dr., 6703 Limburgerhof; Becker, Rainer, Dipl.-Chem. Dr., 6702 Bad Dürkheim

Patentansprüche

13

Pyrazolätherderivat der Formel

5

10

in welcher R¹ Wasserstoff, Cyan oder einen aliphatischen Kohlenwasserstoffrest bedeutet, der gegebenenfalls ein- oder mehrfach durch Halogen, Hydroxy, Acyloxy, Alkoxy, Alkylthio, Alkoxycarbonyl, Alkylaminocarbonyl oder Dialkylaminocarbonyl substituiert ist, R¹ ferner Acetoacetyl, Alkylaminosulfonyl, Alkylsulfonyl, Arylsulfonyl oder -C-R⁵ bedeutet,

X

20

15

wobei X Sauerstoff oder Schwefel und R⁵ Alkyl, Arylalkyl oder Aryl, das gegebenenfalls ein- oder mehrfach durch Halogen, Cyan, Nitro, Alkyl, Alkoxy, Alkylthio, Halogenalkyl, Alkoxycarbonyl und Alkoxycarbonylamino substituiert ist, bedeutet, R¹ ferner -C-Y-R¹⁰ be-

25

X.

deutet, wobei X und Y unabhängig voneinander Sauerstoff oder Schwefel bedeuten und R^{10} die gleichen Bedeutungen wie R^5 hat,

30

Schwefel bedeutet und R¹¹ die gleichen Bedeutungen wie _115/78 Sws/Br 03.07.1978

909884/0028

- ${\tt R}^5$ hat und ${\tt R}^6$ Wasserstoff bedeutet oder die gleichen Bedeutungen wie ${\tt R}^5$ hat,
- R² die Gruppe Y-R⁷ bedeutet, wobei Y Sauerstoff oder
 Schwefel bedeutet und R⁷ einen aliphatischen, cycloaliphatischen oder araliphatischen Kohlenwasserstoffrest
 oder einen heterocyclischen Rest oder einen Arylrest
 bedeutet, wobei diese Reste gegebenenfalls ein- oder
 mehrfach durch Alkyl, Halogen, Halogenalkyl, Cycloalkyl, Aryloxy, Alkoxy, Alkylthio, Nitro, Cyan, O-Alkylcarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl,
 Acyloxy, Acylamino, Alkoxycarbonyl, S-Alkylcarbonyl,
 Aryl oder einen Heterocyclus substituiert sind,
- R³ Halogen, Cyan, Nitro oder die Reste -C-R⁸, -C-CH₂R⁸,

 -C-Y-R⁸ oder -C-N

 R⁹ bedeutet, wobei X und Y unabX
- hängig voneinander Sauerstoff oder Schwefel bedeuten und R⁸ einen aliphatischen, cycloaliphatischen oder araliphatischen Kohlenwasserstoffrest oder einen Arylrest oder heterocyclischen Rest bedeutet, wobei diese Reste gegebenenfalls durch Halogen, Cyan, Halogenalkyl, Alkoxy oder Alkylthio substituiert sind und R⁹ und R¹² unabhängig voneinander Wasserstoff oder Methyl bedeuten und
- R⁴ Wasserstoff, Alkyl, Halogen, Alkoxy, Alkylthio, Cyan, Halogenalkyl, Alkoxycarbonyl oder gegebenenfalls durch Alkyl oder Halogen substituiertes Phenyl bedeutet und die Salze der Pyrazolätherderivate.
- 2. Herbizides Mittel, enthaltend ein Pyrazolätherderivat gemäß Anspruch 1 oder d ssen Salz.

0.2. 0050/033258

7. Pyrazolätherderivat ausgewählt aus der Gruppe bestehend aus den Verbindungen

3-(2-Methyl-propyloxy)-4-methoxycarbonyl-5-methylpyra-zol, 3-Phenyloxy-4-methoxycarbonyl-5-methylpyrazol, 3-(2,2-Dimethylpropyloxy)-4-methoxycarbonyl-5-methyl-pyrazol, 3-(3-Methoxyphenyloxy)-4-methoxycarbonyl-5-methylpyrazol, 3-Cyclopentylmethyloxy)-4-methoxycarbonyl-5-methylpyrazol, 1-Acetyl-3-cyclopentylmethyloxyl-4-methoxycarbonyl-5-methylpyrazol, 3-(2-Methylphenyl-oxy)-4-methoxycarbonyl-5-methylpyrazol.

15

20

25

BASF Aktiengesellschaft

0. Z. 0050/033258

Pyrazolätherderivate

Die vorliegende Erfindung betrifft wertvolle neue substituierte Pyrazolätherderivate und deren Salze mit herbizider Wirkung sowie Herbizide, die diese Verbindungen als Wirkstoff enthalten, und Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses mit diesen Verbindungen.

Es ist bekannt, substituierte Pyrazole oder Pyrazoliumsalze, z.B. das 1,2-Dimethyl-3,5-diphenylpyrazolium-methylsulfat, als Herbizide zu verwenden (DE-OS 2 513 750, DE-OS 2 260 485). Ferner wird das bekannte 3-Isopropyl-2,1,3-benzothidiazin-4-on-2,2-dioxid (DE-PS 1 542 836) in der Praxis in großen Mengen als Herbizid verwendet.

15

25

10

Es wurde nun gefunden, daß Pyrazolätherderivate der Formel

in welcher R¹ Wasserstoff, Cyan oder einen aliphatischen Kohlenwasserstoffrest bedeutet, der gegebenenfalls einoder mehrfach durch Halogen, Hydroxy, Acyloxy, Alkoxy,
Alkylthio, Alkoxycarbonyl, Alkylaminocarbonyl oder Dialkylaminocarbonyl substituiert ist, R¹ ferner Acetoac tyl,

909884/0028

O.Z. 0050/033258

Alkylaminosulfonyl, Alkylsulfonyl, Arylsulfonyl oder -C-R⁵ bedeutet,

X

wobei X Sauerstoff oder Schwefel und R⁵ Alkyl, Arylalkyl oder Aryl, das gegebenenfalls ein- oder mehrfach durch Halogen, Cyan, Nitro, Alkyl, Alkoxy, Alkylthio, Halogenalkyl, Alkoxycarbonyl und Alkoxycarbonylamino substituiert ist, bedeutet, R1 ferner -C-Y-R10 bedeutet, wobei X und Y unab-10

hängig voneinander Sauerstoff oder Schwefel bedeuten und R¹⁰ die gleichen Bedeutungen wie R⁵ hat,

bedeutet, wobei X Sauerstoff oder

Schwefel bedeutet und R¹¹ die gleichen Bedeutungen wie R⁵ hat und R6- Wasserstoff bedeutet oder die gleichen Bedeutungen wie R⁵ hat,

20

R² die Gruppe Y-R⁷ bedeutet, wobei Y Sauerstoff oder Schwefel bedeutet und R7 einen aliphatischen, cycloaliphatischen oder araliphatischen Kohlenwasserstoffrest oder einen heterocyclischen Rest oder einen Arylrest bedeutet, wobei diese Reste gegebenenfalls ein- oder mehrfach durch Alkyl, Halogen, Halogenalkyl, Cycloalkyl, Aryloxy, Alkoxy, Alkylthio, Nitro, Cyan, Alkylaminocarbonyl, Dialkylaminocarbonyl, Acyloxy, Acylamino, O-Alkylcarbonyl, S-Alkylcarbonyl, Aryl oder einen Heterocyclus substituiert sind,

30

25

R³ Halogen, Cyan, Nitro oder die Reste -C-R⁸,-C-CH₂R⁸,-C-Y-R⁸ oder -C-N bedeutet, wobei X und Y unabhängig voneinander Sauerstoff oder Schwefel bedeuten und R⁸ einen aliphatischen, cycloaliphatischen oder araliphatischen Kohlenwasserstoffrest oder einen Arylrest oder heterocyclischen
Rest bedeutet, wobei diese Reste gegebenenfalls durch
Halogen, Cyan, Halogenalkyl, Alkoxy oder Alkylthio substituiert sind und R⁹ und R¹² unabhängig voneinander Wasserstoff oder Methyl bedeuten und

R⁴ Wasserstoff, Alkyl, Halogen, Alkoxy, Alkylthio, Cyan, Halogenalkyl, Alkoxycarbonyl oder gegebenenfalls durch Alkyl oder Halogen substituiertes Phenyl bedeutet und die Salze der Pyrazolätherderivate eine gute herbizide und gegenüber Kulturpflanzen selektive herbizide Wirkung zeigen.

- Salze sind die Salze mit anorganischen oder organischen Säuren, z.B. Salzsäure, Orthophosphorsäure, Schwefelsäure, Ameisensäure, Trichloressigsäure, Methansulfonsäure, p-Toluolsulfonsäure oder Dodecylbenzolsulfonsäure.
- 20 Die neuen Pyrazolätherderivate liegen meist als Isomere vor.

$$R^{4} \xrightarrow{R^{3}} R^{2}$$

$$R^{4} \xrightarrow{R^{3}} R^{2}$$

$$R^{4} \xrightarrow{R^{3}} R^{2}$$

$$R^{4} \xrightarrow{R^{3}} R^{2}$$

25

10

Das Isomerenverhältnis wird im wesentlichen durch die verschiedenen Substituenten bestimmt.

- Solange nicht besonders erwähnt wird, daß lediglich eines der beiden Isomeren vorliegt, soll im folgenden unter einer bestimmten Formel oder Bezeichnung stets das Isomerengemisch verstanden werden.
- In der allgemeinen Formel bedeutet R¹ beispi lsweise Wasserstoff, Cyan, geradkettiges oder verzw igtes Alkyl

mit 1 bis 6 Kohlenstoffatomen, das gegebenenfalls ein- oder mehrfach durch Fluor, Chlor oder Brom oder durch Hydroxy, Acyloxy mit 2 bis 4 Kohlenstoffatomen im Acylteil, Alkoxy oder Alkylthio mit 1 bis 4 Kohlenstoffatomen im Alkylteil, oder durch Alkoxycarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl mit 1 bis 3 Kohlenstoffatomen im Alkylteil substituiert ist.

R¹ bedeutet außerdem beispielsweise Acylreste wie Acetoacetyl, Methansulfonyl, p-Toluolsulfonyl, Methylaminosulfonyl oder die Acylreste -C-R⁵, -C-Y-R¹⁰

und -C-N R¹¹, wobei X und Y unabhängig voneinander Sauer-

stoff oder Schwefel bedeuten und R⁵, R¹⁰ oder R¹¹ beispiels-weise geradkettiges oder verzweigtes Alkyl mit 1 bis 16 Kohlenstoffatomen, das gegebenenfalls durch Halogen, Cyan, Alkoxy und Alkylthio mit 1 bis 4 Kohlenstoffatomen, substituiert ist, bedeutet.

R⁵, R¹⁰ oder R¹¹ bedeutet außerdem beispielsweise geradkettiges oder verzweigtes Alkenyl mit 2 bis 6 Kohlenstoffatomen, das gegebenenfalls durch Chlor substituiert ist, oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen oder gegebenenfalls ein- oder mehrfach durch Fluor, Chlor, Brom, Alkyl, Alkoxy und Halogenalkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Arylalkyl mit 1 bis 3 Kohlenstoffatomen im Alkylteil und 6 bis 10 Kohlenstoffatomen im Arylteil.

Schließlich kann R⁵, R¹⁰ oder R¹¹ beispielsweise Aryl mit 6 bis 10 Kohlenstoffatomen bedeuten, das g gebenenfalls ein- oder mehrfach durch Fluor, Chlor, Brom, Alkyl, Alkoxy,

Alkylthio und Halogenalkyl mit 1 bis 4 Kohlenstoffatomen oder durch Alkoxycarbonyl und Alkoxycarbonylamino (= -NH-CO₂-Alk) mit 1 bis 3 Kohlenstoffatomen im Alkylteil oder durch Nitro und Cyan substituiert sein kann.

R⁶ bedeutet beispielsweise Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit 1 bis 3 Kohlenstoffatomen.

R² bedeutet die Gruppe -Y-R⁷, wobei Y Sauerstoff oder 10 Schwefel bedeutet und R⁷ beispielsweise geradkettiges oder verzweigtes Alkyl mit 1 bis 18 Kohlenstoffatomen bedeutet, das gegebenenfalls ein- oder mehrfach durch Fluor, Chlor oder Brom, Cyan, Nitro, Cycloalkyl, Alkoxy oder Alkylthio mit 1 bis 4 Kohlenstoffatomen, oder durch gegebenenfalls 15 mit Fluor, Chlor, Methoxy, Methyl oder Trifluormethyl substituiertes Aryloxy mit 6 bis 10 Kohlenstoffatomen im Arylteil, oder durch Alkoxycarbonyl, Alkylaminocarbonyl oder Dialkylaminocarbonyl mit 1 bis 4 Kohlenstoffatomen im Alkylteil, oder durch Acyloxy mit 2 bis 4 C-Atomen im 20 Acylteil, oder durch gesättigte und ungesättigte heterocyclische Fünfringverbindungen oder Sechsringverbindungen mit bis zu drei Heteroatomen, die gleich oder verschieden sein können, substituiert ist.

- Bevorzugte Fünfringheterocyclen sind Pyrazol, Imidazol, Furan, Thiophen, Tetrahydrofuran, Isoxazol, 1,3-Dioxolan, 1,2,4-Triazol und 1,3,4-Thiadiazol; bevorzugte Sechsringheterocyclen sind Piperidin, Pyridin und Tetrahydropyran.
- R⁷ bedeutet außerdem geradkettiges oder verzweigtes Alkenyl mit 3 bis 18 Kohlenstoffatomen, das gegebenenfalls einoder mehrfach durch Chlor substituiert ist, oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, das gegebenenfalls ein- oder mehrfach durch Alkyl, Alkoxy und Halogenalkyl mit 1 bis 4
 Kohlenstoffatomen oder durch Fluor, Chlor und Brom substi-

tuiert ist.

R7 bedeutet ferner beispielsweise gegebenenfalls ein- oder mehrfach durch Alkyl, Alkylthio, Alkoxy, Halogenalkyl und Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen oder durch Fluor, Chlor und Brom substituiertes Arylalkyl mit 1 bis 3 Kohlenstoffatomen im Alkylteil und 6 bis 10 Kohlenstoffatomen im Arylteil, oder R7 bedeutet gegebenenfalls einoder mehrfach durch Fluor, Chlor, Brom, Cyan, Trifluormethyl, Nitro, Alkyl, Alkoxy, Alkylthio, Alkoxycarbonyl, 10 Alkylamino- oder Dialkylaminocarbonyl - jeweils mit 1 bis 4 Kohlenstoffatomen - substituiertes Aryl mit 6 bis 10 Kohlenstoffatomen, ferner Aryl mit 6 bis 10 Kohlenstoffatomen, das durch Phenyl oder Phenoxy substituiert ist, das gegebenenfalls durch Fluor oder Chlor substituiert ist, oder R7 bedeutet Phenyl, das durch niedere (C1 bis C4) Alkylester von (Thio)-glykolsäure oder (Thio)-milchsäure über eine (Thio)-atherbindung substituiert ist.

Ferner bedeutet R⁷ beispielsweise heterocyclische 5- oder 6-Ringe, wie 3-Tetrahydrofurfuryl, 4-Piperidyl oder 2-(1,3,4)-Thiadiazol.

 ${
m R}^3$ bedeutet beispielsweise Halogen, insbesondere Chlor oder Brom, außerdem Cyan, Nitro oder bevorzugt die Reste ${
m -C-R}^8$,

$$-C-CH_2-R^8$$
, $-C-Y-R^8$ und $-C-N \xrightarrow{R^9}$ wobei X und Y Sauer-X

stoff oder Schwefel, R⁹ oder R¹² Wasserstoff oder Methyl,
R⁸ geradkettiges oder verzweigtes, gegebenenfalls einoder mehrfach durch Fluor, Chlor, Cyan, Methoxy oder Trifluormethyl substituiertes Alkyl mit 1 bis 6 Kohlenstoffatomen bedeutet, außerdem bedeutet R⁸ beispielsweise Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, oder gegebenenfalls

Ein- oder mehrfach durch Fluor, Chlor, Brom, Trifluormethyl, Cyan, Methoxy oder Methylthio substituiertes Phenyl oder Benzyl.

Wenn R^3 beispielsweise den Rest $-C-CH_2-R^8$ bedeutet, kann R^8 auch

heterocyclische Fünf- oder Sechsringe bedeuten, die gesättigt oder aromatisch sein können, beispielsweise Tetrahydrofuran, Pyrazol, Imidazol, 1,2,4-Triazol oder Piperidin.

R bedeutet beispielsweise Wasserstoff, geradkettiges oder verzweigtes Alkyl mit 1 bis 6 Kohlenstoffatomen, Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Chlor, Brom, Cyan, Alkoxy oder Alkylthio mit 1 bis 3 Kohlenstoffatomen, Trifluormethyl, Alkoxycarbonyl mit 1 bis 3 Kohlenstoffatomen sowie gegebenenfalls ein-oder mehrfach durch Methyl, Fluor und Chlor substituiertes Phenyl.

Nachfolgend wird die Herstellung der neuen Pyrazolätherderivate näher beschrieben.

Die Herstellung kann entsprechend literaturbekannten Verfahren, z.B. Ark. Kemi 4, 297 - 323 (1952), Ark. Kemi 8, 523 - 544 (1955), Chem. Ber. 92, 2593 (1959) vorgenommen werden.

Die Umsetzung läßt sich für den Fall, daß R^1 = Wasserstoff, R^2 = Methoxy, R^3 = Athoxycarbonyl und R^4 = Methyl bedeutet, durch das Formelschema (2) beschreiben:

$$_{n}^{S}$$
 $_{n}^{CH_{3}-O-C-NH-NH_{2}} + _{CH_{3}-CO-CHCl-CO_{2}C_{2}H_{5}}^{C_{2}H_{5}}$
(A) (B)

7.25

0.Z. 0050/033258

5

Das als Hydrochlorid anfallende Pyrazolätherderivat wird nach bekannten Methoden neutralisiert und durch Extraktion oder Umkristallisation vom elementaren Schwefel abgetrennt. Das als Zwischenprodukt benötigte Thiokohlensäure-alkylesterhydrazid (A) läßt sich nach bekannten Methoden herstellen, z.B. Acta chem. Scand. 23, 1916 - 1934 (1969).

Ebenso ist die Herstellung von 2-Chlor-1,3-dicarbonylverbindungen wie (B) bekannt, z.B. durch Umsetzung der ß-Dicarbonylverbindung mit Sulfurylchlorid.

Die nachstehenden Beispiele dienen zur Erläuterung des Herstellungsverfahrens:

20

25

30

35

909884/0028

Beispiel 1

L

3-(3,3,5-Trimethylcyclohexyloxy)-5-methyl-4-methoxycarbonyl-pyrazol

- 128 g 3,3,5-Trimethylcyclohexanol werden bei 100°C zu einer Suspension von 18 g Natriumhydrid (80 % Gewichtsprozent in Paraffinöl) gegeben. Anschließend wird bis zur Beendigung der Wasserstoffentwicklung zum Sieden erhitzt. Nach dem Abkühlen tropft man 46 g Schwefelkohlenstoff zu und läßt 1 Stunde bei Raumtemperatur (20°C) nachrühren. Danach gibt 10 man 250 ml Wasser zu, rührt kräftig durch und trennt die wäßrige Lösung ab. Die erhaltene wäßrige Xanthogenatlösung wird in einem Rührkolben mit 70 g Natriumchloracetat versetzt. Nach 12 Stunden Rühren bei Raumtemperatur läßt man 60 g Hydrazinhydrat unter Rühren zulaufen und 4 Stunden bei 15 Raumtemperatur nachrühren. Das sich abscheidende öl wird mit Methylenchlorid extrahiert und über Natriumsulfat getrocknet.
- Nach Abdampfen des Lösungsmittels verbleibt ein Öl (120 g mit n_D^{25} = 1,5100), dessen Zusammensetzung $C_{10}^H_{20}^{N_2OS}$ durch Verbrennungsanalyse und NMR-Spektroskopie bewiesen wird.
- Zu einer Lösung des so erhaltenen Thiocarbazinsäure-0-(3, 3,5-trimethylcyclohexyl)-esters in 250 ml Acetonitril gibt man bei Raumtemperatur unter Rühren 84 g 2-Chloracetessigsäuremethylester. Nach 12 Stunden Rühren bei Raumtemperatur wird das ausgefallene Feststoffgemisch durch Absaugen abgetrennt und mit Aceton gewaschen. Anschließend wird das Feststoffgemisch in 200 ml wäßrige Ammoniaklösung (12 % Gewichtsprozent) eingerührt und danach zweimal mit je 150 ml Methylenchlorid extrahiert. Nach Trocknung der Methylenchloridlösung über Natriumsulfat wird das Lösungsmittel verdampft. Der verbleibende Feststoff hat nach Umkristallisation aus Tolucl/n-Hexan (2:1) den Schmelz-

punkt 167 - 168°C und besitzt nach Verbrennungsanalyse und NMR-Spektroskopie die Zusammensetzung CH3

5

10

15

Beispiel 2

3-Benzylthio-5-methyl-4-methoxycarbonyl-pyrazol

Zu einer Lösung von 55 g Dithiocarbazinsäure-S-benzylester in 250 ml Tetrahydrofuran gibt man bei Raumtemperatur 47 g 2-Chloracetessigsäuremethylester. Nach 16 Stunden Rühren bei Raumtemperatur saugt man vom ausgefallenen Feststoffgemisch ab, wäscht mit Diäthyläther nach und rührt den Rückstand dann in 200 ml 12-proz. Ammoniaklösung ein. Das Produkt wird durch Extraktion mit Methylenchlorid vom Schwefel abgetrennt. Nach Trocknung über Natriumsulfat wird 20 das Methylenchlorid abdestilliert und der verbleibende Feststoff aus Essigester umkristallisiert. Fp. 109 -110°C.

Beispiel 3 25

Acetat von 3-(2',3'-Dimethylphenoxy)-5-methyl-4-methoxycarbonyl-pyrazol

Man gibt 15 g 3-(2',3'-Dimethylphenoxy)-5-methyl-4-methoxycarbonyl-pyrazol zu 25 g Acetanhydrid und erhitzt das Reaktionsgemisch 5 Minuten zum Sieden. Nach dem Abkühlen wird mit 150 ml Wasser versetzt und 30 Minuten kräftig gerührt. Nach Absaugen und Trocknen erhält man in nahezu quantitativer Ausbeute einen weißen Feststoff mit Fp. 111°C.

Beispiel 4

1,4-Bis(methoxycarbonyl)-3-(2',3'-dimethylphenoxy)-5-methylpyrazol

5 Man stellt eine Mischung aus 5,6 g Triäthylamin und 13 g
3-(2',3'-Dimethylphenoxy)-5-methyl-4-methoxycarbonyl-pyrazol und 100 ml Tetrahydrofuran her und tropft unter Rühren
und Kühlung 4,9 g Chlorkohlensäuremethylester zu. Nach
16-stündigem Rühren wird vom ausgefallenen Hydrochlorid
abgesaugt. Das Filtrat wird eingeengt und der verbleibende
Rückstand anschließend aus Essigester umkristallisiert. Fp.
115°C.

In entsprechender Weise wurden die folgenden Substanzen erhalten:

20

25

30

5		Nr.	R ¹	R ²	. _R 3	R [‡]	Pp.(°C)
		5	Wasserstoff	-0-CH ₃	-co ₂ cH ₃	CH ₃	······································
	•	· 6	Wasserstoff	-0-C ₂ H ₅	ti j	"	
		7	Wasserstoff	-0-c ₃ H ₇ -i	tr	tf .	
		8	Wasserstoff	-0-C4H9-n	19.	tt	
10		9	Wasserstoff	-0-C4H9-sek.	n .	स	65 - 67
	•	10	Wasserstoff	-O-C ₄ H ₉ -iso	π.	u	86
		11	Wasserstoff	-O-C4Hg-tert	#	'n	
:		12	Acetyl .	-0-C4H9-sek.	п	IT	83
		13-	Chloracetyl	-O-ChH ₉ -sek.	4	19	
15	•	14	Dichloracetyl	11	n.	n	•
	•	15	Acetyl .	-0-c ₃ H ₇ -i	. 17	n .	58 - 59
		16	Propionyl	11	n	Ħ	
	·	17	Methoxyacetyl	17	u	n	
		18	Hydroxymethy1	11	17	n	•
<i>:</i> .		19	Acetoxyacety1	-0-C ₄ H ₉ -iso	n	n .	
20	•	20	Acetoacetyl	Ħ	n	tt	•
		21	Methoxycarbonyl ·	19	n	. #	
	:	22	Isopropoxycarbony	1 "	ช	11	
	٠	23	Phenoxycarbonyl	Ħ	n.	. B	104 - 105
•		24	-CH ₂ -CONHCH ₃	ជ	n	17	
25		25	-сн ² -со ² сн ²	-o-c _h H ₉ -iso	-co ₂ cH ₃	CH ₃	•
-,-		- 26:	-so ₂ -cH ₃	Ħ	ti	Ħ	
	·	27	-so ₂ -(C)-CH ₃	te	H .	77	•
٠		28	so ₂ -NH-CH ₃	#		10	
		29	-co-s-c ₃ H ₇ -i	n cò	11	at.	
		30	-cs-N(CH3)2	-0—(H)		Ħ	
30		31	CS-NH-(O)	#	n	11	
		- 32	-co-nhch ₃	Ħ		11	
		33	-co-NH-(O)	77	π	17	
٠.			_`cı				
		34	-co-cH ₂ -(O)	, n	n	n	
35		35	-co-cH ₂ o-C1	π	n	n	
	· L		cí	•			

·		4	_2	_R 3	R ⁴	Fp.(°C)
	Wr.	R ¹	R ²	R*		19.0
	36	-CX	π	a	Ħ	
	37	-co-o-(O)	n	a	π	
5		NHCOSCH	3			
_	38	Benzoyl	Ħ	Tr .	Ħ	
	39	2',4'-Dichlorbenz	oyl"	π	Ħ	
	40	Wasserstoff	π	#	Þ	123
	11	Acetyl	#	11	đ	
	42	Phenoxycarbonyl	•	Ħ	și	104 - 106
10	43	3'-Chlorphenoxy- carbonyl	п .	tt	Ħ	
	44	Wasserstoff	-s-c ₃ H ₇ -i	π	11	117 - 119
	45	Phenoxycarbonyl	π	11	n	86 – 89
	46	3'-Chlorphenoxy- carbonyl	Ħ	**	tt	
	47	Wasserstoff	-0-C ₃ H ₇ -i	-co ₂ c ₃ H ₇ -i		amorph
15	48	Wasserstoff	-o-cH CH2OCH3	-co ₂ cH ₃	CH3	$01, n_D^{30} = 1,4800$
	ц	n	Cyclopentyl- methyl-oxy	7	π	84
	50	ft.	2-Pentyloxy	17	. 0	$01, n_D^{23} = 1,4950$
	51	Acetyl	Cyclopentyl- methyl-oxy	n		75 - 76
20	52	Wasserstoff	-о-сн-сн ₂ -с ₃ н ₇ -	-i "	17	81
	53	Ħ	-0-CH(C2H5)2	Ħ	er .	80 - 82
	54	#	-0-CH_C2H5	ti		Öl,n _D ²⁶ = 1,4982
	55	tt	-0-CH(n-C3H7)2	n	11	61
	56	n	-o-ch(c3H7-i)2	4	Ħ	82-
25	57	11 -	-0 -(H)	n	**	126 - 127
			•	_	Ħ	
	58	Acetyl	n	n	 18	
	59	Phenoxycarbonyl	19	EL		
30	60	-3'-Chlorphenoxy carbonyl	~ " ~_ ^{CE} 3	17	77	
	61	Wasserstoff	-O —H	Ħ	Ħ	161
	62	Acetyl	, ,	n	α	85
	63	n	-0-CH ₂ -C ₃ H ₇ -1	7	17	72
35	64	Wasserstoff	-0 — H	11	Ħ	Fp. < 30°C amorph
JU			CH30			•

909884/0028

	Nr.	, g1	R ²	R ³	R ⁴	Fp. (°C)
	65	Acetyl	-0-H	-co ₂ cH ₃	CH ₃	Öl,n _D ²³ = 1,5113
5	66	Wasserstoff	-O-CH ₂ -C ₄ H ₉ -tert.		17	66 – 68
•	67	Acetyl	-O-CH ₂ -C ₄ H ₉ -tert.		9	98 - 99
	68 .	Phenoxy- carbonyl	-O-CH ₂ -C ₄ H ₉ -tert		n	128 - 129
	69	Wasserstoff	-0-CH ₂ -CH-C ₂ H ₅ CH ₃	n	11	46
10	70	tt	-0-CH ₂ -CH(C ₂ H ₅) ₂	# .	tt	47 - 48
	71	н	-0-CH ₂ -CH-CH ₂ C ₃ H ₃	,- <u>i</u> #	at	n _D ²⁵ = 1,5469
	72	n .	-o-cH ⁵ (o)	n	n	
15	73	п	-0-сн -(С)	7	п	
	74	11 .	сн ³ -о-сн-сн ⁵ —О	n -	π	n _D ²⁷ = 1,5459
	75	D	-o- ⟨ Ō⟩	17	n	109 - 110
	76	Acetyl	n	11	n	68 - 70
20	77	Phenoxy- carbonyl	tt	19	tr	
	78	Wasserstoff	2'-Methyl-phenoxy	, 11	11	123
	7 9	Acetyl	n	n	er	91
	80	Phenoxycarbon	yl "	Ti	n	
	81	Wasserstoff	2*,3*-Dimethyl- phenoxy	17	tf	150 .
25	82	Wasserstoff	2',4'-Dimethyl- phenoxy	-co ₂ cH ₃	CH3	161 - 163
	83	Acetyl	n	a	Ħ	. 81 - 82
	84	Wasserstoff	2',5'-Dimethyl- phenoxy		π	100 - 102
	85	Acetyl	π	Ø	n	109 - 110
30	86	Wasserstoff	3'-Methyl-4'-chl phenoxy	.or- "	19	148
	87	ri .	2'-Methy1-4'-ch1 phenoxy	.or→ ⁿ	12	146 - 147
	88	n	4'-Methylphenoxy	. 17	n	137 - 139
	89	77	4'-Chlorphenoxy	17	ū	106
	90	D	3*-Methoxyphenox	y "	u	109
٠.	91	Acetyl	ri .	ti	tr	70 - 71
35	92	Wasserstoff	3'-Isopropyl-Phe	noxy"	n	72

	Nr.	R ¹	R ²	R ³	R ⁴	Pp. (°C)
	93	Wasserstoff	3'-Cyanophenoxy	-co2cH2	CH3	
	94	Ħ	3'-Nitrophenoxy		"	
•	95	п	4'-Pluorphenoxy	п	n	
5	96	я	3'-Methoxycarbony phenoxy	71- "	. 6	
	.97		-0-(O)-0-(O)-c1	π	Ħ	
	98		-0-O-OCH2-CO2CH	3 "	n	
10	99	п	-0-(O)-0-CH-CO ₂ CH	3 "	at .	
	100	Ħ	-0-CH2-CO2CH3.	17	n	
	101	19	-о-сн-со ₂ с ₂ н ₅ сн ₃	Ħ	. 4	
	102	Wasserstoff	Cyclopentyloxy	-cо ₂ сн ₃	-cH ₃	
15	103	n	Cyclopentylthic	ti	4	92
	104	n	Cyclooctyloxy	rt	He.	
	105		Cyclooctylthio	13	11	
	106	a	Cyclohexylthio	. п	t#	
	107		-0-(CH ₂)2-OCH3	#	Ħ	•
	108	ts	-0-(CH ₂)2-CN	n		
20	109	п	-0-(CH ₂) ₂ -0-c-cF	¹ 3 "	n	
•	110	π	-0-(CH ₂) ₂ -S-CH ₃	11	a	
	111	п	-0-(CH ₂) ₂ -N	•	a	
25	112	Ħ	-0-(CH ₂) ₂ -N	đ	er .	
	113	п	-0-CH-CH ² -N		17	
	114	п	-0-CH-(CH ₂) ₂ -N	7 N	•	
20			CH ₃			
30	115	TT .	-0-CH2	n	a	
	116	U	-s-cH ₂ -	17	19	
	117	17	-0	q	a	
05	118	tī	-0-_0 -0-_N-CH ₃ -s -_s^N-OCH ₃	n	π	
35 _	119	D	-s -s -s -och 3	n	17	

		Hr.	R ¹	R ²	R ³	R ⁴	Fp. (°C)
. • •	:	120	Wasserstoi	rr -0-(0)	-co ₂ ch ₃	-cH ₃	
5 ·		121	·	-s-ch ₂ -©	. #	a	109 - 110
· · · ·		122	"	-s-ch-ch3	es ·	13	53
· ·		123	11	-s-cH ₂ -c ₃ H ₇ -1	n n	n	•
	٠.	124	a ·	-s-(cH ₂) ₂ -c ₃ H	l ₇ -i ."	π	
10		125	n	-s-ch-c ₃ H ₇ -n		tt	54
	• •			. сн ₃	•		
		126	19	-S-C7H ₁₅ -n	n	19	58 - 60
	•	127	п .	-s-c ₈ H ₁₇ -n	n .	n	54 - 55
		128	n	-s-cH ₂ -cH -{C). "	n	100 - 101
15		129	a	-S-(CH ₂) ₂ -CH-(CH ₂)	3 ^{-C} 3 ^H 7 ^{-I "}	h	n _D ²⁶ = 1,5195
· · ·				CH ₃			
	• •	130	n	-S-CH ₂ -CO ₂ Et	- 17	17 -	•
:	_	131		-S-CH-CO2CH3 CH3		a .	
20	•	132		Thiophenyl	D _.	π	
				2'-Methylphenyl	thio "	11	
•		133		3'-Methylphenyl-		**	
				2'-Methoxypheny		n ·	
•		139 130		-0-CH(OCH3)		CH ₃	
25		13	. · 7	сн ₃ -0-сн-с _н н ₉ -	tert. "	11	
			•	ĊH ₃			٠.
		13	8 #	-och ₂ -c ₃ H ₇ -	i -co2 ^C 2 ^H 5	-CH ₃	
		13		-0CH2-C3H7-			-
-		14		#	-co2cH2c		
		14		. 17	-co2-c2H		
30		14			-co-o-{	o •	
		134			-co-sc ₂		•
		11	14 #		-co-cH ₃	. "	
		11	45 . "	-0-(H)			
35		11	46 "	-о-сн ₂ с ₄ н ₉ .	-tert. "	Ħ	•

	Nr.	a ¹	R ²	R ³	R ⁴	Fp.	(°C)
	147	Acetyl	-O-CH ₂ C _U H ₉ -tert.	-co-cH ₃	-CH ₃		
E	148	Wasserstoff		-co-och ₂ cF ₃	n		
5	149	t9	0-С _Ц Н ₉ -iso	-co2cH2-(O	}-Cl Methy	1	
	150	n	#	-co-o-c ₂ H ₄ -			
	151	π	#	-co-ch ² -n	.N.		
10	152	m	t#	-соинсн	n		
	153	11	II II	-con(cH ³) ⁵	π		
	154	17	n	Br	n		
	155	n	19	CN	п		
	156	H	-o-c _t H ₉ -iso	-co-cF ₃	Methyl	L	
	157	et .	Ħ	-co ² cH ²	с ₂ н ₅	٠	
15	158	Ħ	tr	Ħ	-C3H7-i		•
	159	er .	17	н .	- ⊙		
	160	11	tr	π	-CaHg-ter	rt.	
	161	Ħ	rt .	. n	Wassersto	off	
••	162	Acetyl		D.			
20	163	Phenoxycarbony	1 "	17	17		
	164	Wasserstoff .	• #	Ħ	Methoxy		
	165	π	11	19	Chlor		•
	166	19	**	• п .	-CF ₃		
	167	19	π .	n	-co ₂ cH ₃		
25	168	Acetyl	-0-CH ₂ -CH-C ₂ H ₅ CH ₃	-co ² CH ²	-cH ³		46
	169	π	-0-CH-CH ₂ -O	n		n ²⁵ =	1,5412
	170	π	-0-CH(CSH2)5	0	Ħ		41
	171	Wasserstoff	-s-(CH ₂)2-OCH3	tī	Ħ	70 -	• 73
30	172	Acetyl	Thiobenzyl	-co2CH3	-CH3		92
50	173	Phenoxycarbony	1 "	Ħ	ti	105	- 107
	174	Acetyl	-S-C7H15-n	Ħ	π	55 -	- 57
	175	n	-S-C8H ₁₇ -n	17	n	-	- 40
	176		-0-CH2-CH-CH2-C3H	17-i "	11	n _D 26	= 1,4875
			CH ₃				
35			•				

	•	Nr.	R ¹	R ²	R ³	R [‡]	Pp. (°C)
		177	Acetyl	-s-cH ₂ -cH-O	-со ² ся ³	-cH ₃	67 - 68
5		178	Wasserstoff	-0-C ₃ H ₇ i	-co2c2H2	n	79 - 80
		179	Phenoxycar- bonyl	-s-cH ₂ -c ₃ H ₇ -i	-co ² cH ³	17	95 - 96
		180	Wasserstoff	о-сн ₂ -сн-сн ₂ -с ₃	H ₇ -i "	π	n _D ²⁶ = 1,4912
		181	Acetyl	Thiophenyl	CO2CH3	B	
10		182	TÎ	-S-C4H9-sek.	co2cH3	tt	
		183	11	0-CH ² -(O)	CO2CH3	17	
•		184	п	п .	-co ₂ -(0)	tr	
		185	Wasserstoff	19		Ħ	
		186	Phenoxycarbon	ıyl "	CO2CH3	17	
15	. •	187	TÎ .	Thiophenyl	77	er er	
	-	188	a	-0-CH2-CH(C2H5)	.n 2	IJ	87 - 88
		189		-0-c ₃ H ₇ -i	- π	#	75 - 77
		190	ត	-0-CH-CH ₂ -O	. 11	17	74 - 75
20		191	: •	-S-CH ₂ -CH	tr		90 - 91
		192	Wasserstoff	-0-CH ₂ -CH-C ₃ H ₇ -i	n.	п	
	· .	193	Acetyl	17 -	π	Ħ	
25		194	Phenoxycarbon	.yl -s-(сн ₂) ₂ -сн-(сн ₂ сн ₃	2 ³ -c ₃ H ₇ -1	tf	n _D ³⁰ = 1,5318
	•	195	Methoxycarbon	_	ti	n	87 - 88
30		196	C1-O-CO-	(H) →(D)	-cо ₂ сн ₃	-cH ³	106 - 108
		197	Br	o "	tr	tt	61 - 63
	•	198	CH ₃ 0 -0-co-	. 17	ti	ti	
	•	199	HC≡C-CH ₂ -0-C	:00-C ₄ H ₉ -iso	t)	17	•
35		200	n-C ₃ H ₇ -O-CO-	ט פ	t7	n	
	i						

909884/0028

5						
	Nr.	a ¹	R ²	R ³	R ⁴	Fp. (^O C)
	201	n-C ₄ H ₉ -O-CO	0-C4Hg-iso	-co ₂ cH ₃	-CH ³	
	202	CH30-(CH2)2-0-CO	- "	Ħ	н	
	503	C1-(CH ₂) ₂ -0-C0-	स	11	tt	
10	204	CH3-S-CO-	Ħ	n	tt	
		n-C3H7-S-CO-	ET .	tt	Œ	
		tert.C4H9-0-C0-	n	Ħ	π	
		tert. C4H9-S-CO-	n	Ħ	iī	
	208	Ph-0-C-	11	n	Ħ	
		s				
15	209	CH ₃ —O-cs-	ar .	п	я .	
	_210	Ph-S-CO-	#	er	- ts	
	211	Br	п	π	12	
20	212	c1 —O—o-co-	-O-C _{\$} H ₉ -iso	-со ² сн ³	-сн ₃	
	213	0-co	Ħ	и	. 8	
	214		박	9	a	
25		cî				

Die erfindungsgemäßen Wirkstoffe werden beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentige wäßrige, ölige oder sonstige Suspensionen oder Dispersionen, Emulsionen, öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten und Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieseöl, ferner Kohlenteeröle usw., sowie Öle pflanzlichen oder tierischen Ursprungs, zum Beispiel Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, zum Beispiel Methanol, Kthanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron usw., stark polare Lösungsmittel, wie z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser usw. in Betracht.

Wäßrige Anwendungsformen können auch Emulsionskonzentrate, Pasten oder netzbaren Pulvern (Spritzpulvern), Öldispersionen durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier-oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

20

10

15

20

25

35

Als oberflächenaktive Stoffe kommen in Betracht:

Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäuren, Phenolsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Alkali- und Erdalkalisalze der Dibutylnaphthalinsulfonsäure, Lauryläthersulfat, Fettalkoholsulfate, fettsaure Alkali- und Erdalkalisalze, Salze sulfatierter Hexadecanole, Heptadecanole, Octadecanole, Salz von sulfatiertem Fettalkoholglykoläther, Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyäthylen-octylphenoläther, äthoxyliertes Isooktylphenol-, Octylphenol-, Nonylphenol, Alkylphenolpolyglykoläther, Tributylphenylpolyglykoläther, Alkalarylpolyätheralkohole, Isotridecylalkohol, Fettalkoholäthylenoxid-Kondensate, äthoxyliertes Rizinusöl, Polyoxyäthylenalkyläther, äthoxyliertes Polyoxypropylen, Laurylalkoholpolyglykolätheracetal, Sorbitester, Lignin, Sulfitablaugen und Methylcellulose.

Pulver, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste
Trägerstoffe hergestellt werden. Feste Trägerstoffe sind
z.B. Mineralerden wie Silicagel, Kieselsäuren, Kieselgele,
Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kreide,
Talkum, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calciumund Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe,
Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat,
Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie
Getreidemehle, Baumrinden-, Holz- und Nußschalenmehl,
Çellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 Gewichtsprozent.

5 Beispiel 5

Man vermischt 90 Gewichtsteile der Verbindung mit 10 Gewichtsteilen N-Methyl- ∞ -pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.

Beispiel 6

10

20 Gewichtsteile der Verbindung 2 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Äthylenoxid an 1 Mol Ölsäure-N-monoäthanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Äthylenoxid an 1 Mol Ricinus-öl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gewichtsprozent des Wirkstoffs enthält.

Beispiel 7

20 Gewichtsteile der Verbindung 3 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Athylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Athylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gewichtsprozent des Wirkstoffs enthält.

· 35

Beispiel 8

20 Gewichtsteile der Verbindung 1 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanol, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Äthylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gewichtsprozent des Wirkstoffs enthält.

Beispiel 9

10

20 Gewichtsteile des Wirkstoffs 2 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin- -sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in
20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe,
die 0,1 Gewichtsprozent des Wirkstoffs enthält.

Beispiel 10

3 Gewichtsteile der Verbindung 3 werden mit 97 Gewichtsteilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gewichtsprozent des Wirkstoffs enthält.

30 Beispiel 11

30 Gewichtsteile der Verbindung 4 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält

auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

Beispiel 12

5

40 Gewichtsteile des Wirkstoffs 1 werden mit 10 Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensats, 2 Teilen Kieselgel und 48 Teilen Wasser innig vermischt. Man erhält eine stabile wäßrige Dispersion. Durch Verdünnen mit 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,04 Gewichtsprozent Wirkstoff enthält.

Beispiel 13

15

20 Teile des Wirkstoffs 2 werden mit 2 Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Teilen Fettalkohol-polygly-koläther, 2 Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formaldehyd-Kondensats und 68 Teilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die neuen Verbindungen zeigen herbizide Wirkungen und eignen sich zur Beseitigung und Unterdrückung von unerwünschtem

25 Pflanzenwuchs auf Kulturflächen oder unbebautem Land. Dabei ist es selbstverständlich, daß einzelne Wirkstoffe unterschiedliche Wirkungsintensitäten aufweisen oder in ihrer Wirkung gegenüber unerwünschten Pflanzen oder Kulturpflanzen differieren. Ihr Einfluß auf unerwünschte Pflanzen wird in den nachstehenden Tabellen erläutert, welche Ergebnisse aus Gewächshausversuchen darstellen.

Als Kulturgefäße dienten Plastikblumentöpfe mit 300 cm³ Inhalt, die mit lehmigem Sand mit etwa 1,5 % Humus gefüllt wurden. Die Samen dr Testpflanzen entsprechend Tab 11e 1

wurden nach Arten getrennt flach eingesät. Unmittelbar danach erfolgte bei Vorauflaufbehandlung das Aufbringen der Wirkstoffe auf die Erdoberfläche. Sie wurden hierbei in Wasser als Verteilungsmittel suspendiert oder emulgiert und mittels fein verteilender Düsen auf die Erde gespritzt.

Nach dem Aufbringen der Mittel wurden die Töpfe leicht beregnet, um Keimung und Wachstum der Pflanzen anzuregen und gleichzeitig die Wirkstoffe zu aktivieren. Danach deckte man die Gefäße mit durchsichtigen Plastikhauben ab, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkte ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde, und verhinderte das Verdampfen leicht flüchtiger Wirkstoffe.

15

10

Zum Zwecke der Nachauflaufbehandlung zog man die Pflanzen je nach Wuchsform in den Versuchsgefäßen erst bis zu einer Höhe von 3 bis 10 cm an und behandelte sie danach. Eine Abdeckung unterblieb. Die Aufstellung der Versuchstöpfe erfolgt im Gewächshaus, wobei für wärmeliebende Arten wärmere Bereiche des Gewächshauses (25 bis 40°C) und für solche gemäßigter Klimate 15 bis 30°C bevorzugt wurden. Die Versuchsperiode erstreckte sich über 4 bis 6 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die 25 einzelnen Wirkstoffe wurde ausgewertet. Die folgenden Tabellen enthalten die Prüfsubstanzen, die jeweiligen Dosierungen in kg/ha Aktivsubstanz und die Testpflanzenarten. Bewertet wird nach einer Skala von 0 bis 100. Dabei bedeutet O keine Schädigung oder normaler Auflauf und 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Sproßteile.

Ergebnis

15

30

Die neuen Pyrazol(thio)-ätherderivate entfalten interessante herbizide Eigenschaften bei Vor- und Nachauflaufanwendung. Sie umfassen hierbei sowohl breitblättrige wie grasartige unerwünschte Pflanzen und sparen dabei gewisse Kulturpflanzen selektiv und schonend aus, obwohl diese mit den Wirkstoffen in direkte Berührung kommen. Der Schwerpunkt der Anwendung liegt in der Nachauflaufbehandlung der unerwünsch-10 ten Pflanzen, gleichgültig ob auf den behandelten Flächen Kulturpflanzen wachsen oder nicht.

Sind gegenüber den Wirkstoffen weniger tolerante Kulturpflanzen vorhanden, so können auch Ausbringungstechniken angewandt werden, bei welchem die Mittel mit Hilfe der Spritzgeräte so gespritztwerden, daß die Blätter empfindlicher Kulturpflanzen nach Möglichkeit nicht getroffen werden, während sie auf die darunterliegende Bodenfläche oder dort wachsende unerwünschte Pflanzen gelangen (post 20 directed, lay-by).

Das breite Spektrum bekämpfbarer Arten aus den verschiedensten botanischen Familien macht die Mittel zudem brauchbar zur Beseitigung unerwünschten Kraut- und Graswuchses in 25 verholzten Baum-und Strauchkulturen sowie Zuckerrohr.

Weiterhin bietet sich die Anwendung auf kulturfreien Flächen wie Industrie- und Gleisanlagen, Park- und Lagerplätzen, Wegen, Grabenrändern und Kahlschlägen an. Es ist hierbei mehr eine Frage der Dosierung, ob der Pflanzenwuchs völlig eliminiert oder lediglich in seinem Wachstum unterdrückt und zurückgehalten wird, ohne die Pflanzen abzutöten.

Unter den geprüften Substanzen befinden sich auch solche, 35 welche sich als Austrocknungsmittel für grüne Blätter und Stengel eignen (Desiccants). Solche Mittel dienen beispiels weise zur Abtötung von Kartoffelkraut vor der maschinellen Kartoffelernte, zur Bekämpfung von Unkrautwuchs in reifen Getreidefeldern vor der Ernte, zur Beschleunigung der Abtrocknung von Sojabohnen vor dem Mähdrusch und zur Beseitigung von grünen Pflanzenteilen in pflückreifen Baumwollkulturen vor der Ernte.

In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Mittel oder diese enthaltende Mischungen außer bei den in den Tabellen aufgeführten Nutzpflanzen noch in einer weiteren großen Zahl von Kulturpflanzen zur Beseitigung unerwünschten Pflanzenwuchses eingesetzt werden. Die Aufwandmengen können dabei von 0,1 bis 15 kg/ha und mehr je nach dem Bekämpfungsobjekt schwanken.

Im einzelnen seien folgende Nutzpflanzen genannt:

20

25

30

	Botanischer Name	Deutscher Name	Englischer Same
5	Allium cepa	Küchenzwiebel	onions
•	Ananas comosus	Ananas	pineapple
:	Arachis hypogaea	Erdnuß	peanuts (groundnuts)
	Asparagus officinalis	Spargel	asparagus
	Avens sativa	Hafer	oats
•	Beta rulgaris spp. altissima	Zuckerribe	sugarbeets
	Beta vulgaris spp. rapa	Futterrübe	fooder beets
	Beta vulgaria spp. esculenta	Rote Rübe	table beets, red beets
	Brassica napus var. napus	Raps	rape
10	Brassica napus var. napobrassica	Kohlrübe	
	Brassica napus var. rapa	Weiße Rübe	turnips
	Brassica rapa var. silvestris	Rubsen	•
٠.	Camellia sinensis	Teestrauch	tea plants
	Carthamus tinetorius	Saflor - Parberdistel	safflower
		Zitrone	lemon
	Citrus limon	Pampelmuse	grapefruits
•	Citrus maxima	Mandarine	6
	Citrus raticulata	•	orange trees
15	Citrus sinensis	Apfelsine, Orange	-
15	Coffea arabica (Coffea canephora, Coffea liberica)	Kaffee	coffee plants
	Cucumis aslo	Melone	melons
	Cucumis sativus	Gurke	cacamper
	Cynodon dactylon	Bermudágras	Bermudagrass in turfs and lawns
• •	Daucus carota	Möhre	CAFFOTS'
	Elasis guineensis	Ölpalma .	oil palms
• :	Fragaria vesca	Erdbeere	strawberries
20	Olycine max	Sojabohne	soybeans
20	Gossypium hirsutum (Gossypium arboreum Gossypium herbaceum Gossypium vitifolium)	Baumvolle	cotton
•		Sonnenblume	sunflowers
•	Helianthus annuus	Topinambur	-
	Helianthus tuberosus	Parakautschukbaum	rubber plants
	Hevea brasiliensis		barley
05	Hordeum vulgare	Gerste	hop
25	Humilus lupulus	Hopfen	sweet potato
	Ipomoea batatas	Süäkartöffeln	lettuce
	Lactuca sativa	Kopfsalat	lentils
	Loculinaris	Linse	
•	Linum usitatissimum	Faserlein	flax
•	Lycopersicon lycopersicum	Tomate	tomato
	Malus spp.	Apfel	apple trees
	Manihot esculenta	Maniok	CESSEVE
	Medicago sativa	Luzerne	alfalfa (lucerne)
30	Mentha piperita	Prefferminze	peppermint
	Musa spp.	Chat- und Hehlbanane	, banana plants
	Nicotiana tabacum (N. rustica)	Tabak	coacco .
	Olea europaea	51baum	olive trees

Botanischer Name	Deutscher Name	Englischer Hame
Oryza sativa	Reis	rice
Panicum miliaceum	Rispenhirse	
Phaseolus lunatus	Mondbohne	limabeans
Phaseolus mungo	Urdbohne :	mungbeans
Phaseolus vulgaris	Buschbohnen	snapbeans, green beans, dry bear
Pennisetum glaucum	Perl- oder Rohrkolbenhirse	
Petroselinum crispum spp. tuberosum	Wurzelpetersilie	parsley
Pices abies	Rotfichte	fire
Pinus spp.	Kiefer	pine trees
Pisum sativum	Gartenerbse	English peas
Prunus avium	Şüğkirsche	cherry trees
Prunus domestica	Pflaume	plum trees
Prunus persica	Pfirsich	-peach trees
Pyrus communis	Birne	pear trees
Ribes sylvestre	Rote Johannisbeere	red currants
Pibes uva-crispa	Stachelbeere	
Ricinus communis	Rizinus	
Saccharum officinarum	Zuckerrohr	sugar cane
Secale cereale	Roggen	77e
Sesamum indicum	Sesame	Sesant
Solanum tuberosum	Kartoffel	Irish potatoes
Sorghum bicolor (s. vulgare)	Mohrenhirse	sorghum
Sorghum dochna	Zuckerhirse	•
Spinacia oleracea	Spinat	spinach
Theobroma cacao	Kakaobaum	cacao plants
Trifolium pratense	Rotklee '	red clover
Triticum aestivum	Weizen	Wheat
Vaccinium corymbosum	Kulturheidelbeere	blueberry
Vaccinium vitis-idaea	Preißelboere .	cranberry
Vicia faba	Pferdebohnen	tick beans
Vigna sinensis (v. unguiculata)	Kuhbohne	cow peas
Vitis vinifera	Weinrebe	grapes
Zea mays	Mais	Indian corn, sweet corn, maize

Zur weiteren Verbreiterung des Wirkungsspektrums der neuen Wirkstoffe, zur Erzielung synergistischer Effekte oder zum Verbessern der Dauerwirkung im Boden, lassen sich zahlreiche andere Herbizide oder wachstumsregulierende Verbindungen als Mischungs- und Kombinationspartner heranziehen. Je nach Einsatzgebiet und Bekämpfungsvorhaben bieten sich nachstehende Substanzen oder ähnliche Derivate als Mischungspartner an:

- 33 -

10		R-N	N=
		0	} — R ²
15	R .	R ¹	R ²
٠.	<u>-</u>	NH ₂	Cl.
		NH ₂	Br
20	<u></u> >-	осн	OCH ₃
•	H —	осн ₃	och ₃
25	H —	NH ₂	Cl
		NHCH ₃	Cl
•	CF ₃		•
30	H—	^{NH} 2 .	Br
•		NH.CH ₃	Cl
35	OCF ₂ CHF ₂		

BASF Aktiengesellschaft

0. Z. 0050/033258

5

R

H 10 H

H

H

CH2OCH3 15 CH2OCH3

 R^{1}

 ${\tt R}^2$

H (Salze) CH₃

Cl

F

 \mathbf{F} H

20

(Salze)

25

30

35

Cl CH₃ -CH-C-NH-C₂H₅ H

35

BASF Aktienges Uschaft

- 36 -

0.Z. 0050/033258

H

5

H

^C2^H5

H

15

H

CH₃

20

H

CH₃

CH₃

25

H

CH₃

30

R ic₃H₇ ic₃H₇ ${\tt R}^{\bf 1}$

 R^2

ic₃H₇

CH2-CC1=CC12

ic₃H₇

CH2-CC1=CHC1

n.C3H7 35

n.C₃H₇

^C2^H5

0. Z. 0050/033258

Y O 5 R^1 R X Y CH₃ Cl Cl Na Cl Cl Cl Na 10 H CH₃ CH₃ Cl H CH₃ 15 H CH₃ Na H CH₃ Na 25

35

BASF Aktiengesellschaft

- 38 -

2829289 o.z. 0050/033258

R C1-(-)-

 R^1

H

R²

 $^{\mathrm{C}}_{2}^{\mathrm{H}}_{5}$

5

CH -CH-C=CH

CH₂C1

10 CH₃ CC₂H₅

сн₁3 -сн-сн₂-осн₃

CH₂C1

15 C₂H₅

-сн₂осн₃

CH2C1

20 C₂H₅

-CH₂-C-OC₂H₅

CH₂C1

25

ic₃H₇

CH₂C1

CH₃

-CH₂-CH₂-OCH₃

Cl₂Cl

с₂н₅

L

с₂н₅

-CH-O-(\)

35

0.2. 0050/033258

	-	1 ×	" 2		7
		N N N			
5 .		· R	R		
	R	R ¹	X	R ²	R ³
	H	^C 2 ^H 5	scH ₃	H	^C 2 ^H 5
10	Н	ic ₃ H ₇	SCH ₃	H	^C 2 ^H 5
	H	ic ₃ H ₇	Cl	H	^C 2 ^H 5
	Н	ic ₃ H ₇	Cl	H	$-\!$
	Н	с ₂ н ₅	Cl	H	с ₂ н ₅
15					CH ₃
	H	с ₂ н ₅ ·	Cl	H	-C-CN
					CH ₃
20	H	ic ₃ H ₇	och ₃	H	ic ₃ H ₇
		-	x		
		ис-	O-R .		
25			Ý		
25			_		
	X	Y	R		-
	Br	Br	H (S	alze)	
30	I	I	H	11	
	B r	Br	-C-(CH ₂)6 ^{-CH} 3	
	•		0		

BASF Aktiengesellschaft

- 41 -

0. Z. 0050/033258 ·

7 .

- 42 -

0.2. 0050/033258

	r R	R ¹	R ²	R ³
5	S	CH ₃	CH ₃	H
J	C1	. Н	CH ₃	CH ₃
10	F ₃ C	H	CH ₃	CH ₃
15	c1-{}_	H .	CH ₃	CH ₃ -CH-C≡CH
	Br-	H	CH ₃	OCH ₃
20	H ₃ C-\(\sqrt{\sq}}}}}}}}}}}} \end{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	. Н	CH ₃	CH ₃
	D-{}	H	СН ₃	CH ₃
25	c1-{	H	CH ₃	OCH ₃
	c1-{}	H	CH ₃	CH ₃
30	H	H	CH ₃	CH ₃
	C1-_	H	CH ₃	och ₃
	ćı			

35

O.Z. 0050/033258

 R^1

 R^2

_R3.

H

CH3

H

10

CH₃

CH₃

H

CH₃

CH₃

H

H

^C2^H5

F2CHCF2O

H

CH₃

CH₃

25

$$R^{1} = \sum_{R}^{R^{2}} NO_{2}$$

- 44 -

0. Z. 0050/033258

		•				
r	R	R ¹	R ²		R ³	7
	r Cl	CF ₃	Н		COOH Sal	ze
	Cl	C1	H		H	
•	Cl	Cl	H		-c-och3	
5	OI.	•			0	
	Н	CF ₃	Cl		oc ₂ H ₅	
10		CH ₃				
10		OCH ₂ -(_)				
		CH ₃				
	" -c —	10-1				
15	H ₅ -C ₂	H				
•	• ,	0		•		
		$R \longrightarrow N-R^1$				
00		$N - R^2$				
20		R ¹		R ²		
	R	ĸ				
	tertC4H9	NH ₂		scH ₃		
25		NH ₂		CH ₃		
	<u> </u>	2				
		NH ₂		scH ₃		
	H	2				
30				-		
		H N N	CH3			
		O N N_ CH ₃	—_CH ₃			
		33				

35

- 45 -

O.Z. 0050/033258

R² N-R³

5

R Н 10 Н Н R¹ R²

CH₃ Br

CH₅ Cl

CH₅ Cl

CH₃
-CH-C₂H₅
iC₃H₇
tert.-C₄H₉

15

20

$$X \longrightarrow \bigcup_{i=1}^{N} \bigcup_{i=1}^{N}$$

25 X

CF₃

Y

R

H F

CH₂

30

35

CH₃-SO CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃
CH₃

5

10

15

 R^1

$$R^2$$

сн₃ -

H Salze, Ester, Amide

20

Ţ

H

25

35

R

$$R^1$$

30 C1-(________

Н

Salze, Ester, Amide

C1-CH.

H

.

20	R	R ¹	R ²	R ³	Ŗ ⁴
	H	Cl	NH ₂	C1	H Salze, Ester, Amide
• •	Cl	Cl	H	Cl	Na
25	Cl	H ·	Cl	och ₃	H Salze, Ester, Amide
. •	Cl	Cl	H	Cl	H.(CH ₃)2NH

Salze, Ester, Amide

C1-(-)-5 C1

H

 R^1

CH₃

H

H

H

C1-C1

10

C1-CH₃

20 C1

Н

H

.

Н

25

CH₃

Salze, Ester

30

$$\begin{bmatrix} H_5^{C_2} & 0 & C_2^{H_5} \\ H_5^{C_2} & C_2^{H_5} \end{bmatrix} + 2 C_1$$

$$\begin{bmatrix} H_5^{C_2} & 0 & C_2^{H_5} \\ H_5^{C_2} & C_2^{H_5} \end{bmatrix} + 2$$

35

2 C1

2 Br

$$\begin{bmatrix} CH_3 & CH_3 \\ 0 & 0 \\ N-C-CH_2-N & N-CH_2-C-N \\ CH_3 & CH_3 \end{bmatrix}$$

15

R 20 COOCH₃

 R^1 соосн₃

 R^2 Cl

$$R = CN$$
 $R = CSNH_2$

- 50 -

5

Salze, Ester, Amide

10

15

 $R^{\textstyle 1.}$

 R^2

OH · 20

CH₃

Na

CH₃ CHZ

CH₃

Na

ONa

CH₃ CH₃

OH

Na

25

Salze

30

(Salze, Ester)

NH₄SCN

3E

- 52 -

O.Z. 0050/033258

OSCH₃
CH₃

5

10 H₉C₄ S N N N OH

15

20

25

30

o.z. 0050/033258 ·

$$\begin{bmatrix} \text{C1-CH}_2\text{-CH}_2\text{-N-CH}_3 \\ \text{CH}_3 \end{bmatrix} + \text{.C1}^-$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{C1-} \\ \begin{array}{c} \text{-0-CH-CO-C-CH}_{3} \\ \\ \text{CH}_{3} \end{array}$$

0.2. 0050/033258

Außerdem ist es nützlich, die neuen Wirkstoffe allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralstofflösungen, welche zur Behebung von Ernährungs- oder Spurenelementmängeln eingesetzt werden.

Außerdem ist es unter gewissen Umständen vorteilhaft, die Mittel einzeln oder in den genannten Kombinationen gemeinsam mit festen oder flüssigen handelsüblichen Mineraldüngern gemischt auszubringen.

15

20

25

30

Tabelle 1 - Liste der Pflanzennamen

	Botanischer Hame	Abkürz. in Tab.	Deutscher Name	Englischer Hame
	Abutilon theophrasti	Abut. theo.	chinesischer Hanf	velvet leaf
	Amaranthus retroflexus	Amar. ret.	zurückgekrümmter Fuchsschwanz	rearoot pigweed
10	Arachys hypogaea	Arachys hyp.	Erdnus	peanuts (groundnuts)
	Avena fatua	Avena fatua	Flughafer	wild oats
	Centaurea cyanus	Centaurea cyanus	Kornblume	cornflower
•	Chenopodium album	Chenopodium album	weißer Gänsefuß	lambsquarters
	. Chrysanthemum segetum	Chrys. seg.	Saatwucherblume	corn marigold '
	Echinochloa crus galli Echin. c. E.		Hühnerhirse	barnyardgrass
	Eleusine indica	Eleus. ind.		goosegrass
15	Euphorbia geniculata	Euph. genic.	südamerikanische Volfsmilchart	Southamerican member of the spurge family
	Ipomoea spp. Lolium multiflorum	Ipomoea spp. Lolium mult.	Prunkwindearten italienisches Raygrass	morningglory annual raygrass
	Sesbania exaltata	Sesbania exaltata	Turibaum	hemp sesbania (coffeeweed)
	Sinapis alba	Sinapis alba	weißer Senf	white mustard
•	Sorghum bicolor	Sorghum bicolor	Hohrenhirse (Kulturhirse)	sorghum
	Stellaria media	Stellaria media	Vogelsternmiere	chickweed
	Triticum aestivum	Triticum sestivum	Weizen	wheat
20	Zea mays	Hais		Incian corn
	Lamium amplexicaule	Lamium amplex.	stengelumfassende Taubnessel	nenbit

25

2829289 o.z. 0050/033258

10 15 20	Selektive Bekämpfung von Avena fatua und anderen Unkräutern in Weizen bei Nachauflaufanwendung im Gewächshaus.	kg/ha Testpflanzen und % Schädigung Triticum Avena Chenopodium Stellaria aestivum fatua album media	0,5 0 80 98 95 1,0 - 100 98 100 2,0 0 100 - 100	0,5 0 80 98 100 1,0 - 85 98 100 2,0 0 100 - 100	0,5 0 50 98 100 1,0 - 95 98 100 2,0 0 95 - 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	g, 100 = Pflanzen abgestorben
30	t	•				Dekannt	Schädigung,
35	r Tabelle 2	Wirkstoff Nr.	90	6 0 9 8 8 4 /	21 21		0 = keine

10	en in Erdnüssen bei	% Schädigung Eleu. Euph. Ipomoea ind. genic. spp.	98 100 92 100 100 92 - 100 100	80 100 100 95 100 100 - 100 100	- 72 72 - 100	100 98 75 100 100 75 - 100 100	100 100 90 100 100 92 - 100 100	auf der nächsten Seite
15	n Pflanzen	und chin. · g.	100 100 100 .	100 100 100	92 100 100	100 100 100	90 100 100	ng
	, unerwünschten aus.	Testpflanzen . Chrys. E seg. c	100 100 100	1 1 1	1 1 1	100 100	100 100 100	Fortsetzu
20	on unerw hshaus.	Te Abut. theo.	100 100	100 100		100	100 100 -	
25	Bekämpfung von une ung im Gewächshaus	Amar.	666 666	900 1000 1000	. 181	100 100 100	100 100 100	
	lektive Bekär ufanwendung	Arachys hyp.		000	000	10 0	ကကဝ	
30	Selekti laufanw	kg/ha	0,00 0,00	0 10 0 0	0 H 0 0 0	0 10 0 0	0,1 0,0	
35	fabelle 3 -	Wirkstoff- Nr.	40	09884	ħ9	91	††	

0.2. 0050/033258

35	r Fortsetzung	Wirkstoff- Nr.	12	09884	요 / 0 0 2 8	10	63	-
		ĺ	1 1 1 1			U FA LV	OHU	
30	von Tab	kg/ha	0 4 0 0 0 0 0	, 20°5	2 2 2 0 0	20°0	0,7 2,0 2,0	
	Tabelle 3	Arachys hyp.	ו גאנא		0 0 0	01/0	rv rv 6	
25		Amar. ret.	100 100 100	100	100 100 100	100 100 100 100	100 100 100	
20		Te Abut. theo.	100 100 -	98 100	65 100	100	100	: : : :
		Testpflanzen • Chrys. E • seg. c	100 100 100		100 100 100	100 100 100	100 100 100	Fortsetzun
15		und chin.	99 100 100	100 100 100 100	99 100 100	100 100 100	100 100 100	1 60
		% Schädigung Eleu. Euph ind. geni	100		85	98	100	auf der r
10	igung Euph. genic.	100 100 100	1 1 1	98	100	100	nächsten	
5	,	Іротоеа зрр.	100 100 100	100 100 100 100	92	100	866	Sei
	r	Sesbania exaltata	1000	100	100	100	100	100
	r	inia ata	000					1

o.z.0050/033258

Fortsetzung von Tabelle 3

10	Wirkstoff- Nr.	kg/ha	Arachys hyp.		Test; Abut. theo.	Chrys.	n und % Echin. c.g.	Eleu.	igung Euph. genic.	ipomoea spp.	Sesbania exaltata
· ·	CI CH ²	1,0 2,0	00	10 20	-	:	20	:	20 20	0	0
15	0 CH ₃ bekannt (DE-OS 2 513 750	1,0 2,0	0 ⁻	70 100	100 100	100 100	0 2		 53 37	45 55	80 98
O Ô	bekannt H (E-?S 1 542 836)	. ·	•		•				•		

0 = keine Schädigung, 100 = Pflanzen abgestorben

25

30

35

	-								
5	bei	Sinapis alba	100 100	100 100	98 100	0.0 12.73	66 66	99 99	1 1 1 1 1 1 1 1 1
	um und Mais	Schädigung podium Sesbania bum exaltata	97 97 100	100 100	80 100	90 100	80 100	100 100	nächsten Seite
10	. Kultursorghum	und % Schädi Chenopodium album	95 100 100	100 100	98 98	98 98	98 98	98 98	tzung auf der r
15	ı Pflanzen in	Testpflanzen Centaurea cyanus	ວາ ວາ ວາ ກັນໝໍໝໍ	98 98	98	75 80	65 100	100 100	Fortsetz
20	unerwünschten dung	Zea mays	12 17	7 7 7 8 7 8	10	20	15	200	
25	von unerwi inwendung	Sorghum bicolor	001	15 20	10	00	10 15	00	
30	Beseitigung von uner Nachauflaufanwendung	kg/ha	0,25 0,5 1,0	0,5	0,5	0,5	0,5	0,5	
35	Tabelle 4 -	Wirkstoff- Nr.	7	††	52	49	51	78	-

35	30	25	20	15	10		5	
Fortsetzung	g von Tabelle							•
Wirkstoff- Nr.	kg/ha	Sorghum	Zea mays	Testpflanzen Centaurea cyanus	und % Schädi Chenopodium album	Schädigung odium Sesbania um exaltata	Sinapis alba	
42	0,5 1,0	15 15	25 25	98 98	98	100	. 66	_
9000	0,5 1,0	00	10	60	98 98	100	ı 8	
keine	Schädigung,	100 = Pflanzen	1	abgestorben		-		

		•									
hshaus	Schädigung Sinapis alba	100	100	100	100	96	100	100	100	100	nachsten Seite
	und ium t.		. 100	100	100	i I I I I I I I I	100	. 100			auf der
orauflaufverfa	Testp Echin. c.g.	100	70	70		•	70	100	70	100	Fortsetzung
ij	kg/ha	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	
Tabelle 5 - A	Wirkstoff- Nr.	15	††	6	12	48	50	53	56	52	
	5 - Anwendung	- Anwendung im Vorauflaufverfahren im Gewäc restpflänzen und % Echin. Lolium c.g. mult.	- Anwendung im Vorauflaufverfahren im Gewäcker Kg/ha Testpflanzen und Kechin. Lolium c.g. mult.	- Anwendung im Vorauflaufverfahren im Gewäcker Fresching Frestpflanzen und Kerhangen u	- Anwendung im Vorauflaufverfahren im Gewäcker kg/ha Echin. Testpflanzen und % Lolium c.g. mult. 3,0 100	- Anwendung im Vorauflaufverfahren im Gewäc kg/ha	- Anwendung im Vorauflaufverfahren im Gewäcken kg/ha Echin. Testpflanzen und % 5.0 100 100 3.0 70 100 3.0 100 3.0 100 3.0	- Anwendung im Vorauflaufverfahren im Gewäcken kg/ha Echin. Lolium c.g. mult. 3,0 100 100 3,0 70 100 3,0	- Anwendung im Vorauflaufverfahren im Gewäckenkg/ha Testpflanzen und Kechin. 3,0 100 100 3,0 70 100 3,0 100 3,0 100 3,0 70 100 3,0 70 100	- Anwendung im Vorauflaufverfahren im Gewäcken kg/ha Echin. Lolium c.g. mult. 3,0 100 - 3,0 70 100 3,0 - 100 3,0 100 3,0 70 100 3,0 70 100 3,0 70 100	- Anwendung im Vorauflaufverfahren im Gewäcekg/ha Echin, Testpflanzen und geren. 3,0 100 - 100 3,0 70 100 3,0 - 100 3,0 70 100 3,0 70 100 3,0 100 - 3,0 100

	80	100	sten Seite
• • • • • • • • • • • • • • • • • • •	80	100	if den nächsten

		នួ		-	1	1	!		!	-	ļ
10		% Schädigung Sinapis alba	100	100	100	100	100	100	06	06	100
15		Testpflanzen und Lolium mult.	100	100	100		100			80	100
20		Echin.	100	 	1 · 3		100	100	96	100	100
25	von Tabelle 5	kg/ha	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0
30	ortsetzung vo	irkstoff- Nr.	10	63		47	75	76	78	79	40

-				
-1	r	-	•	
	۰	۰		
в	,	-		

							, <u>म</u>
10		Schädigung Sinapis alba	100	100	100	100	zw. Pflanzen
15	•	Testpflanzen und % S Lolium mult.	100	. 80	95	ı	Samen nicht gekeimt bzw. vollkommen abgestorben
20		Testpi Echin. c.g.	100			100	11
25	n Tabelle 5	ka/ha	3,0	3,0	3,0	3,0	= Pflanzen ohne Wirkung, 100
30	Fortsetzung von	Wirkstoff- Nr.	57	ę †	65	f6	0 = Pflanzen

909884/0028

	.											٦
5	im Gewächshaus	Stellaria media	80	80	80	70		80	06	70	70	Seite
10	achauflaufanwendung	% Schädigung Sinapis alba	80	80		70	80	80	70		80	der nächsten S
15	bei N	Testpflanzen und Ioea Lamium p. amplex.	95	95	98	80	95	95	95	80	98	Fortsetzung auf d
20	ter Pflanzen	Testp Ipomoea spp.	95	95	95	95	95	80	96	95	06	Forts
25	unerwünschter	Echin.	95	95	90	95	96	80	80	96	96	
30	Bekämpfung	kg/ha	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
35	Tabelle 6 -	Wirkstoff- Nr.	99	69	67	71	70	124	123	7 th	121	

5		Stellaria	00		100	100	
10		Schädigung Sinapis alba	98			98	
15		lanzen und % Lamium amplex.	100	100	100	100	abgestorben
20		Testpflanzen Ipomoea Lam: SPP• amp		95	100	98	völlig
25	9	Echin. c.g.	70	75	100	90	100 = Pflanzen
30	von Tabelle	kg/ha	1,0	1,0	1,0	1,0	Schädigung, 10
35	Fortsetzung	Wirkstoff- Nr.	87	83	54	89	0 = keine Sc

Sws

			•		्र भी भी हैं। न भी	
				· A		
	a la ga Mega t製。	and the last of the same of th	1. "我知识情况的基础的数据的概念。"	Manager of the second of the s	· · · · · · · · · · · · · · · · · · ·	
		÷.				
			en e			
	'* .					
				39.		
						•
The state of the s						
. 18 4. 25. 27.						_. • . • •
						<i>"</i>
	. "	• • • • • • • • • • • • • • • • • • •				er 1970 - John Johnson 1970 - John Starten 1970 - Starten