Progress & Plans for the 2nd Aeroelastic Prediction Workshop (AePW-2)

Presented by Bob Bartels

On behalf of the **AePW-2 Organizing Committee**

Jennifer Heeg, Pawel Chwalowski NASA Langley Research Center

Daniella Raveh

Technion – Israel Institute of Technology

Adam Jirasek, Mats Dalenbring Swedish Defense Research Agency, FOI

Alessandro Scotti

Pilatus

Aerospace Flutter and Dynamics Council meeting,

April 16-17, 2015 NASA Ames Research Center, Moffett Field, CA

Plans & Analyses are progressing towards AePW-2

We invite you to participate

- Kickoff Meeting: SciTech 2015
- Workshop: SciTech 2016
- Computational Results Submitted by Nov 15, 2015
- Computational Team
 Telecons: 1st Thursday of
 every calendar month,
 11 a.m. U.S. Eastern Time

Aeroelastic computational benchmarking

Technical Challenge:

Assess state-of-the-art methods & tools for the prediction and assessment of aeroelastic phenomena

Fundamental hindrances to this challenge

- No comprehensive aeroelastic benchmarking validation standard exists
- No sustained, successful effort to coordinate validation efforts

Approach

- Perform comparative computational studies on selected test cases
- Identify errors & uncertainties in computational aeroelastic methods
- Identify gaps in existing aeroelastic databases
- Establish best practices

AePW building block approach to validation

Utilizing the classical building blocks of aeroelasticity

- Fluid dynamics
- Structural dynamics
- Fluid/structure coupling

AePW-1: Focused on Unsteady fluid dynamics

AePW-2: Extend focus to coupled aeroelastic simulations

Benchmark Supercritical Wing (BSCW)

You are invited to participate in AePW-2

Extend focus to coupled aeroelastic simulations

	Case 1	Case 2	Optional Case 3		
			А	В	С
Mach	0.7	0.74	0.85	.85	.85
Angle of attack	3	0	5	5	5
Dynamic Data Type	Forced oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	Attached flow solution.	Unknown flow state.	Separated flow effects.	Separated flow effects.	 Separated flow effects on aeroelastic solution.
	 Oscillating Turn Table (OTT) exp data. 	 Pitch and Plunge Apparatus (PAPA) exp data. 	 Oscillating Turn Table (OTT) experimental data. 	Oscillating Turn Table (OTT) experimental data.	 No experimental data for comparison.

Experimental data from 2 wind tunnel tests are being used for comparison data

TDT Test 470: Pitch And Plunge Apparatus (PAPA)

TDT Test 548: Oscillating TurnTable (OTT)

AePW-2 Analyses/Commitments to date (3/30/201)

Analysis Team	Code	POCs	Email contact
Technion - IIT	EZNSS	Daniella Raveh	daniella@technion.ac.il
FOI	EDGE	Adam Jirasek, Mats Dalenbring	adam.jirasek@gmail.com
NASA	SU2	Dave Schuster	David.m.Schuster@nasa.gov
NASA	FUN3D	Pawel Chwalowski, Jennifer Heeg	Pawel.Chwalowski@nasa.gov, Jennifer.heeg@nasa.gov
Brno University of Technology, Institute of Aerospace Engineering Czech Republic	EDGE	Jan Navratil	navratil@fme.vutbr.cz
NLR	EZNSS?	Bimo Pranata	bimo.prananta@nlr.nl
NASA	FUN3D / 2D	Steve Massey	s.j.massey@nasa.gov
NLR	NASTRAN	Bimo Pranata	bimo.prananta@nlr.nl
Indian Institute of Science	FLUENT	kartik venkatraman	kartik@aero.iisc.ernet.in
Istanbul Technical University	SU2	Melike Nikbay	'nikbay@itu.edu.tr
ATA Engineering	LowPsiChem	Eric Blades	eric.blades@ata-e.com
Embraer S.A.	CFD++,ZTRAN , NASTRAN *	Guilherme Ribeiro Begnini	guilherme.benini@embraer.com.br
Politechnico di Milano	Various codes	Sergio Ricci	sergio.ricci@polimi.it
AFRL	FUN3D	Rick Graves	Rick.Graves@us.af.mil
Mississippi State		Manav Bhatia	Bhatia@ae.msstate.edu
Your organization here	Your prefered method here	Your name goes here	you@youremailaddrss

Example Results

AePW-2 Case#2

Animation of Flutter

FUN3D URANS with SA turbulence model coupled with modal structural solver

Mach 0.74, AoA=0°, $q = 168.8 \text{ lb}_f/\text{ft}^2$

Animation of the BSCW computational results using FUN3D near experimental flutter dynamic pressure

Leading and Trailing Edge Vertical Displacement;
Rotation Angle

Surface Cp and Mach contours at 60% wing span

Snapshots of pressure distributions at $\sim \frac{1}{2}$ second into the analysis

AePW-2 Case#2,
Mach 0.74, AoA=0°, q = 168.8 lb_r/ft²,
FUN3D URANS with SA turbulence model coupled with modal structural solver

Snapshots of pressure distributions at ~ 5 seconds into the analysis

AePW-2 Case#2, Mach 0.74, AoA=0°, $q = 168.8 \text{ lb}_{t}/\text{ft}^{2}$, FUN3D URANS with SA turbulence model coupled with modal structural solver

Website: nescacademy.nasa.gov/workshops/AePW2/public/

Thank you

We invite you to participate

- Kickoff Meeting: SciTech 2015
- Workshop: SciTech 2016
- Computational Results Submitted by Nov 15, 2015
- Computational Team Telecons: 1st
 Thursday of every calendar month 11
 a.m. U.S. Eastern Time

U.S. dial in #: 844-467-4685; passcode 5398949869;

webex at https://nasa/webex.com/nasa

Webex meeting number changes each month. Sign up at web site to be added to the email list for monthly webex info

Back up slides

Why should our organization participate? What do we get out of participating?

- Evaluation of your own methodologies and/or abilities to apply computational tools
- Experience of others brought to bear on examining your results in a critical thinking environment
- Inclusion of your results in determining best practices, uncertainty levels in predictions
- Identification of
 - Areas where your tools meet your required level of predictive and analytical capabilities
 - Benefits to be gained by added analytical complexity
 - Areas where you want to further refine your capabilities
- Detailed supporting information for
 - Advocacy within your organization
 - Advocacy to your customers
- Leveraging the work of others

How does validation of aeroelastic tools differ from validation of aerodynamic tools?

- Obvious (?) differences:
 - Coupling with structural dynamics
 - Unsteady effects matter
- More subtle differences:
 - Distribution of the pressures matters (integrated quantities such as lift and pitching moment tell you little regarding aeroelastic stability)
 - Phasings of the pressures relative to the displacements matter

What are you trying to do?

- Assess the goodness of computational tools for predicting aeroelastic response, including flutter
- Understand why our tools don't always produce successful predictions
 - Which aspects of the physics are we falling short of predicting correctly?
 - What about our methods causes us to fall short of successful predictions?
- Establish uncertainty bounds for computational results
- Establish best practices for using tools
- Explicitly illustrate the specific needs for validation experimentation- i.e. why what we have isn't good enough

Aeroelastic Computational Benchmarking

Technical Challenge:

Assess state-of-the-art methods & tools for the prediction and assessment of aeroelastic phenomena

Fundamental hindrances to this challenge

- No comprehensive aeroelastic benchmarking validation standard exists
- No sustained, successful effort to coordinate validation efforts

Approach

- Perform comparative computational studies on selected test cases
- Identify errors & uncertainties in computational aeroelastic methods
- Identify gaps in existing aeroelastic databases

BSCW Test Configurations

Transition Strip: 7.5% chord

Pitch Axis:

Forced Oscillation,

(OTT Test):

Pitching motion about 30% chord

Flutter, (PAPA Test):

Pitching motion about 50% chord

60% span station: 40 In-Situ Unsteady Pressure Transducers:

- 22 upper surface
- 17 lower surface
- 1 leading edge

Airfoil section is SC(2)-0414

Cross-section at 60% span, showing the layout of the unsteady pressures.

<u>Unsteady Pressure</u> Measurements:

- 1 chord fully-populated at 60% span for both tests
- Outboard chord at 95% span populated for the PAPA test only (not for forced oscillation cases)

AePW-1 Results: BSCW, Mach 0.85, Re 4.5M, α = 5° Upper surface at 60% span

Experimental data Bounds, ± 2 std

Colored lines with open symbols:

- Each analysis team shown by a separate color
- Each grid size shown by a different symbol

