REGULACIJA ELEKTROENERGETSKOG SUSTAVA

- auditorne vježbe -

Stabilnost kuta

IZVOĐAČI: Doc.dr.sc. Igor Kuzle Darjan Bošnjak Hrvoje Pandžić

Općenito o prijelaznoj stabilnosti

Tijekom velikih poremećaja (npr. kratki spoj), mijenja se ukupna impedancija dijela mreže. Time se, prema jednadžbi (1), mijenja i električna snaga generatora, kao i granica stabilnosti.

$$P_e = \frac{E'V_s}{x'_{dE}} \sin \delta \tag{1}$$

Veličina \mathbf{x}_{dF}' je pritom ukupna prijelazna impedancija između generatora i krute mreže.

Korištenjem simetričnih komponenti, moguće je za bilo koju vrstu kvara odrediti nadomjesnu impedanciju Δx_F koja je spojena između mjesta kvara i zemlje. Iznos te impedancije ovisi o vrsti kvara, a vrijednosti su navedene u tablici:

Vrsta kvara	3p	2p sa zemljom	2p	1p
$\Delta x_{_F}$	0	$\frac{X_i X_0}{X_i + X_0}$	<i>X</i> ₂	$X_2 + X_0$

Konačni cilj je svesti mrežu na oblik prikazan na slici 1-c, a to se postiže transformacijama trokutzvijezda.

Slika 1 Primjer ekvivalentne mreže za vrijeme kvara

Impedancija x'_{dF} za mrežu na slici dobije transformacijom zvijezde u trokut i iznosi:

$$X'_{dF} = X'_{d} + X_{T} + X_{L} + X_{S} + \frac{\left(X'_{d} + X_{T}\right)\left(X_{L} + X_{S}\right)}{\Delta X_{E}}$$

Zadatak 1

Izračunati kritični kut i kritično vrijeme isključenja kvara, za slučaj trofaznog kratkog spoja s nultom impedancijom luka na vodu V_2 , neposredno iza sabirnica višeg napona generatorskog blok transformatora (slika 4-50). U normalnom stanju, prije kvara, generator daje u krutu mrežu snagu $P_{\infty}=0,9$ p.u. pri naponu $U_{\infty}=1,00$ p.u. i faktoru snage $\cos\varphi_{\infty}=1,00$. Bazne vrijednosti za proračun relativnih jedinica su $S_B=S_{nG}$ i $U_B=U_{\infty}$. Dio mreže zadan je slikom

$$X'_d = 0.349 \text{ p.u.}$$

 $mD^2 = 7000 \text{ tm}^2$
 $n_n = 125 \text{ okr/min}$

$$X_T = 0.1114 \text{ p.u.}$$
 $X_{\nu 1} = 0.0124 \text{ p.u.}$ $S_{nT} = 50 \text{ MVA}$ $X_{\nu 2} = 0.0124 \text{ p.u.}$ $S_{nG} = 50 \text{ MVA}$ $\cos \varphi_{\infty} = 1$ $X = X'_d + X_T + X_{\nu}/2 = 0.4666 \text{ p.u.}$

$$U_{\infty} = 1,00 \text{ p.u.}$$

 $P_{\infty} = 0,90 \text{ p.u.}$

Proračun početnih uvjeta

Inducirana EMS iza prijelazne impedancije iznosi:

$$\underline{E'} = \underline{U}_{\infty} + jX\underline{I} = \underline{U}_{\infty} + jX\frac{P_{\infty}}{\underline{U}_{\infty}} = 1,00 + j0,4666\frac{0,9 + j0}{1,00} = (1 + j0,41994) \text{ p.u.} = 1,0846 \angle 22,78^{\circ} \text{ p.u.}$$

$$\delta_{0} = 22,78^{\circ} = 0,397 \text{ rad}$$

Maksimalna snaga prema tome iznosi:

$$P_{\text{max}} = \frac{E'U}{X} = \frac{1,0846 \cdot 1}{0,4666} = 2,3245 \text{ p.u.}$$

Izrazi za karakteristike snaga-kut

Prije kvara:

$$P = 2,3245 \cdot \sin \delta$$

Za vrijeme kvara:

$$P_k = 0 = r_1 \cdot P_{\text{max}} \sin \delta \quad \Longrightarrow \qquad r_1 = 0$$

Nakon isključenja kvara ($X_{EKV} = 0.349 + 0.1114 + 0.0124 = 0.4728$)

$$P_{\text{max}} = \frac{E' \cdot U}{X_{EKV}} = \frac{1,0846 \cdot 1}{0,4728} = 2,2940$$
 \Rightarrow $P_i = 2,2940 \sin \delta$ \Rightarrow $r_2 = \frac{2,2940}{2,3245}$

Granični dozvoljeni radni kut stroja je

$$\delta_{\rm GR} = 180^{\circ} - \arcsin \frac{P_{\rm m}}{r_{\rm 2}P_{\rm max}} = 180^{\circ} - \arcsin \frac{0.9}{0.9869 \cdot 2.3245} = 180^{\circ} - 23.1^{\circ} = 156.9^{\circ} = 2.738 \text{ rad}$$

Kritični kut isključenja kvara

$$\cos \delta_{i_{kr}} = \frac{P_m}{r_2 \cdot P_{\text{max}}} (\delta_{gr} - \delta_0) + \cos \delta_{gr} = \frac{0.9}{2,294} \cdot (2,7384 - 0,3975) + \cos 156,9^\circ = -0,0014$$
$$\delta_{kr} = 90,08^\circ = 1,5722 \text{ rad}$$

Kritično vrijeme isključenja kvara

$$T = 2H = \frac{mD^2\omega_m^2}{4S_n} = \frac{mD^2 \cdot (2\pi \frac{n}{60})^2}{4S_n} = 2,7414 \cdot \frac{mD^2 \cdot n^2}{S_n} \cdot 10^{-3} = 6 \text{ s}$$

Kada imamo konstantu tromosti, moguće je odrediti i kritično vrijeme isključenja kvara:

$$t_{i_{kr}} = \sqrt{\frac{2 \cdot T \cdot (\delta_{i_{kr}} - \delta_0)}{\omega_s \cdot P_m}} = \sqrt{\frac{2 \cdot 6 \cdot (1,5722 - 0,3975)}{314 \cdot 0,9}} = 0,221 \text{ s}$$

Zadatak 2

Naći izraz za karakteristiku snaga-kut sustava u normalnom pogonu (prije kvara) i početni kut δ_{10} , ako se u jaku mrežu isporučuje snaga $P_{\infty}=0.9~{\rm p.u.}$, pri faktoru snage $\cos\phi_{\infty}=1~{\rm Ako}$ se na početku voda (neposredno iza sabirnica visokog napona blok-transformatora) dogodi jednofazni kratki spoj, naći izraz za karakteristiku snaga-kut poslije pojave kvara i početni kut opterećenja δ_{20} Primjenom metode jednakih površina utvrditi da li sustav poslije pojave kvara ostaje stabilan. Dio mreže zadan je slikom.

Proračun stanja prije kvara:

$$X^{ekv} = X_G + X_T + X_v = 0,349 + 0,1114 + 0,0124 = 0,4728 \text{ p.u.}$$

$$X_i^{ekv} = X^{ekv}$$

Indukcijska EMS prije kvara iznosi:

$$\underline{E'} = \underline{U}_{\infty} + jX^{ekv} \cdot \frac{P}{U_{\infty}} = 1,0 + j0,4728 \cdot \frac{0,9}{1,0} = (1 + j0,4255) = 1,0868 \angle 23,05^{\circ} \text{ p.u.}$$

Krivulja kut snaga dana je izrazom:

$$P = \frac{E' \cdot U_{\infty}}{X^{ekv}} \cdot \sin \delta = \frac{1,0868 \cdot 1,0}{0,4728} \cdot \sin \delta = 2,2986 \cdot \sin \delta$$

Početni kut opterećenja u normalnom režimu je:

$$\delta_{10} = \arcsin \frac{P \cdot X^{ekv}}{E' \cdot U_{\infty}} = \arcsin \frac{0.9}{2,2986} = 23.05^{\circ} = 0,4023 \text{ rad.}$$

Stanje mreže za vrijeme kvara

Slika prikazuje ekvivalentnu shemu sustava za vrijeme kvara

U nadomjesnoj shemi sustava za vrijeme kvara određuje se otočno priključena impedancija kvara $\underline{Z}_k = j(X_i + X_0)$, koja se sastoji od serijski povezanih ekvivalentnih impedancija sustava inverznog i nultog sustava (gledano s mjesta kvara), čije su vrijednosti:

$$X_{i} = \frac{X_{iv} \cdot (X_{iG} + X_{iT})}{X_{iv} + X_{iG} + X_{iT}} = \frac{0,0124 \cdot 0,4604}{0,0124 + 0.4604} = 0,01207 \text{ p.u.}$$

$$X_{0} = \frac{X_{0T} \cdot X_{0v}}{X_{0T} + X_{0v}} = \frac{0,1114 \cdot 0,0372}{0,1114 + 0,0372} = 0,0279 \text{ p.u.}$$

Impedancija kvara prema tome iznosi:

$$\underline{Z}_k = j(X_i + X_0) = j(0.01207 + 0.0279) = j0.0400 \text{ p.u.}$$

Proračun prijenosne impedancije za sustav sa slike provodi se transformacijom zvijezde u trokut. Impedancije zvijezde su:

$$\underline{Z}_{12} = j(X_G + X_T) = j0,4604 \text{ p.u.}$$

 $\underline{Z}_{23} = jX_v = j0,0124 \text{ p.u.}$
 $\underline{Z}_k \approx j0,0400 \text{ p.u.}$

Konačno odgovarajuća impedancija u trokutu iznosi:

$$\underline{Z}_{1'3}^{\Delta} = j \left(0,4604 + 0,0124 + \frac{0,4604 \cdot 0,0124}{0,0400} \right) = j0,6155 \text{ p.u.}$$

Krivulja snaga-kut za vrijeme kvara dana je izrazom:

$$P = \frac{1,0868 \cdot 1,0}{0,6155} \cdot \sin \delta = 1,7657 \cdot \sin \delta$$

Početni kut opterećenja na krivulji njihanja za vrijeme kvara je ($P_{\scriptscriptstyle m}=0.9~{
m p.u.}$):

$$\delta_{20} = \arcsin \frac{0.9}{1,7657} = 30,64^{\circ} = 0,5349 \text{ rad.}$$

Granični kut stabilnosti onda iznosi:

$$\delta_{qr} = 180^{\circ} - \delta_{20} = 180^{\circ} - 30,64^{\circ} = 149,36^{\circ} = 2,6068 \text{ rad}$$

Karakteristične krivulje snaga-kut prije i poslije kvara prikazane su na slici:

Provjera stabilnosti metodom jednakih površina:

$$A_{1} = \int_{\delta_{10}=0,5349}^{\delta_{20}=0,5349} (0,9-1,7657\cdot\sin\delta)d\delta = 0,9\cdot(05349-0,4023) + 1,7657\cdot(0,8557-0,9202) = 0,0136$$

$$A_{2} = \int_{\delta_{20}=0.5349}^{\delta_{gr}=2,6068} (1,7657\cdot\sin\delta-0,9)d\delta = 1,7657\cdot(0,8604+0,8603) - 0,9\cdot(2,6068-0,5349) = 1,1735.$$

Kako je $A_2 >> A_1$ sustav ostaje stabilan i poslije pojave kvara!

Zadatak 3

Naći maksimalne prijenosne snage za HE Varaždin s obzirom na granice prijelazne stabilnosti, za pogonsko stanje prema slici 4-55, u sljedećim slučajevima:

- a) Normalno stanje (prije kvara);
- b) Trofazni kratki spoj na sredini jednog od dva paralelna voda;
- c) Dvofazni kratki spoj u istoj točki kao i b;
- d) Jednofazni kratki spoj u istoj točki kao i b;
- e) Dvofazni kratki spoj sa zemljom u istoj točki kao i b;
- f) Stanje poslije isključenja voda u kvaru.

U rekapitulaciji proračuna vrednovati slučajeve a-f, po kriteriju maksimalne prijenosne snage. Jednopolna shema i osnovni parametri sustava zadani su shemom

$$E' = 1.1 \text{ p.u.}$$
 $X_{dT} = X_{iT} = 0,1114 \text{ p.u.}$ $X_{dv1} = X_{dv2} = 0.0124 \text{ p.u.}$ $X'_{d} = 0.349 \text{ p.u.}$ $X_{0T} = 0.75 X_{dT} = 0.0835 \text{ p.u.}$ $X_{iv1} = X_{iv2} = 0.0124 \text{ p.u.}$ $X_{dT} = X_{iT} = X'_{d}$ $U_{\infty} = 1,00 \text{ p.u.}$ $X_{0v1} = X_{0v2} = 0.0372 \text{ p.u.}$

Slika 1 Jednopolna shema i osnovni parametri sustava

Za proračun maksimalne snage, za različite kvarove u mreži, nužno je proračunati odgovarajuće prijenosne impedancije.

Proračun impedancije Z_{13}

1) Normalno stanje

Prijenosna impedancija za normalno stanje nalazi se uvidom u jednopolnu shemu sustava sa slike i iznosi:

$$\underline{Z}_{13} = jX_{dG} + jX_{dT} + j\frac{1}{2}X_{dV} = j\left(0.349 + 0.1114 + \frac{0.0124}{2}\right) = j0.4666 \text{ p.u.}$$

2) Trofazni kratki spoj

Za proračun prijenosne impedancije pri trofaznom kratkom spoju na sredini jednog od dva paralelna voda, koristi se nadomjesna shema impedancija direktnog sustava prikazana slikom. Nakon transformacije zvijezde 1-2-3-K u trokut 1-3-K, za vrijednost impedancije dobiva se:

$$\underline{Z}_{d13} = \frac{\underline{Z}_{dS} \frac{\underline{Z}_{dV}}{2} + \underline{Z}_{dS}^{2} + \underline{Z}_{dS} \underline{Z}_{dV}}{\underline{Z}_{dV}} = \underline{Z}_{dS} + \underline{Z}_{dV} + 2\underline{Z}_{dS} = j(0.349 + 0.1114) + j0.0124 + j2 \cdot 0.4604 = j1.3936 \text{ p.u.}$$

Slika 2 Ekvivalentna mreža direktnog sustava

3) Dvofazni kratki spoj

Impedancija kvara, koja se serijski spaja s nadomjesnom impedancijom direktnog sustava (gledano sa mjesta kvara) je nadomjesna impedancija inverznog sustava. Shema sustava prikazana je slikom:

Slika 3 Ekvivalenta mreža za proračun prijenosne impedancije pri dvofaznom kratkom spoju

Kod proračuna nadomjesne impedancije **inverznog** sustava vrijedi:

$$\underline{Z}_{i}^{1} = \frac{\underline{Z}_{iS} \cdot \underline{Z}_{iv}}{\underline{Z}_{iS} + \underline{Z}_{iv}} = j \frac{0.4604 \cdot 0.0124}{0.4604 + 0.0124} = j0.01207 \text{ p.u.}$$

$$\underline{Z}_{i}^{ekv} = \frac{\left(\underline{Z}_{i}^{1} + \frac{\underline{Z}_{iv}}{2}\right) \cdot \underline{Z}_{iv}}{\underline{Z}_{i}^{1} + \frac{\underline{Z}_{iv}}{2} + \frac{\underline{Z}_{iv}}{2}} = j \frac{\left(0.01207 + 0.0062\right) \cdot 0.0062}{0.01207 + 0.0124} = j0.00463 \text{ p.u.}$$

$$\underline{T}_{iS} = j0.4604 \text{ p.u.}$$

$$\underline{Z}_{iS} = j0.4604 \text{ p.u.}$$

$$\underline{Z}_{iV} = j0.0062 \text{ p.u.}$$

$$\underline{Z}_{iV} = j0.0062 \text{ p.u.}$$

Slika 4 Ekvivalentna shema mreže inverznih impedancija sustava

Za proračun prijenosnih impedancija u nadomjesnoj shemi sa slike 3, potrebno je prvo provesti transformaciju trokuta 2'3'K' u zvijezdu 0'-2'-3'-K', a potom provesti nadomještanje serijskih i paralelnih grana prema slijedećoj slici:

Slika 5 Ekvivalentna mreža sa slike 3 poslije transformacije trokuta 2'-3'-K' u zvijezdu 0'-2'-3'-K'

Prijenosna impedancija pri dvofaznom kratkom spoju dobije se nakon transformacije zvijezde 0'-1'-3'-K' u trokut 1'3'K'', odakle je:

$$\underline{Z}_{1'3'}^{\Delta} = j0.4635 + j0.0031 + j\frac{0.4635 \cdot 0.0031}{0.00618} = j0.6991 \text{ p.u.}$$

4) Jednofazni kratki spoj

Impedancija kvara u ovom slučaju je zbroj $\underline{Z_i}^{ekv}$ + $\underline{Z_0}^{ekv}$, koja se na mjestu kvara (sabirnice K) veže serijski sa nadomjesnom mrežom direktnog sustava, prema slici 6 (na kojoj se koristi prethodna nadomjesna

mreža direktnih impedancija sa slike 5 i vrijednost nadomjesne impedancije inverznog sustava sa slike 4). Prethodno treba izračunati nadomjesnu impedanciju nultog sustava (gledano s mjesta kvara) prema slici 7.

Slika 6 Ekvivalentna mreža za proračun prijenosne impedancije pri jednostrukom zemljospoju u sustavu

Slika 7 Ekvivalentna shema mreže nultih impedancija

Poslije transformacije trokuta 2_0 - 3_0 - K_0 u zvijezdu 0_0 - 2_0 - 3_0 - K_0 dobije se nadomjesna shema nultih impedancija na slici 8.

Slika 8 Ekvivalentna shema nultih impedancija, poslije transformacije trokuta 2₀-3₀-K₀ sa slike 7 u zvijezdu 0₀-2₀-3₀-K₀

Nadomjesna nulta impedancija sustava sa slike 8 iznosi:

$$\underline{Z}_0^{ekv} = j \frac{(0.0835 + 0.0093) \cdot 0.0093}{0.0835 + 0.0093 + 0.0093} + 0.00465 = j0.0131 \text{ p.u.}$$

Prijenosna impedancija za slučaj jednostrukog zemljospoja dobije se sa slike 7 poslije transformacije zvijezde $0'-1'-3'-K_0$ u trokut, odakle je:

$$\underline{Z}_{1'3'}^{\Delta} = j0.4635 + j0.0031 + j\frac{0.4635 \cdot 0.0031}{0.00618 + 0.0131} = j0.5411 \text{ p.u.}$$

5) Dvofazni kratki spoj sa zemljom

Impedancija kvara u ovom slučaju dobije se kao nadomjesna impedancija paralelnih impedancija \underline{Z}_{i}^{ekv} i \underline{Z}_{0}^{ekv} , kako je to prikazano na slici 9 gdje su iskorištene ranije izračunate vrijednosti direktnih impedancija sa slike 5 i nadomjesne vrijednosti inverzne i nulte impedancije sa slika 4 i 8).

Slika 9 Ekvivalentna mreža za proračun prijenosne impedancije pri dvostrukom zemljospoju u sustavu

Prema slici 9, vrijedi:

$$\underline{Z}_{i0}^{ekv} = j \frac{0.00463 \cdot 0.0131}{0.00463 + 0.0131} = j0.0342 \text{ p.u.}$$

Impedancija u slučaju dvostrukog zemljospoja iznosi:

$$\underline{Z}_{1'3'}^{\Delta} = j0.4635 + j0.0031 + j\frac{0.4635 \cdot 0.0031}{0.00155 + 0.0342} = j0.5068 \text{ p.u.}$$

6) Stanje poslije isključenja voda u kvaru

Prijenosna impedancija u ovom slučaju iznosi (slika 2):

$$\underline{Z}_{13} = j\underline{Z}_{dG} + j\underline{Z}_{dT} + j\underline{Z}_{dV} = j(0.349 + 0.1114 + 0.0124) = j0.4728 \text{ p.u.}$$

Proračun maksimalnih prijenosnih snaga

Stanje	Prijenosna impedancija	maks. prijenosna snaga
Normalno	j0.4666 p.u	2.3575 p.u.
Trofazni KS na sredini jednog voda	j1.3936 p.u.	0.7893 p.u.
Dvofazni KS na sredini jednog voda	j0.6991 p.u.	1.5735 p.u.
jednofazni KS	j0.5411 p.u.	2.0329 p.u.
Dvofazni KS sa zemljom	j0.5068 p.u.	2.1705 p.u.
Poslije isključenja voda u kvaru	j0.4728 p.u.	2.3265 p.u.

Ako se po kriteriju prijenosne snage napravi redoslijed promatranih slučajeva, krivulje snaga-kut izgledati će kao na slici 10:

Slika 10 Krivulje snaga-kut za promatrane slučajeve