# HIDK 4()5():

#### In the news

A face-scanning algorithm increasingly decides whether you deserve the job

The Washington Post Democracy Dies in Darkness

#### Ed Tech Tools Research **Group Starts Work**





After One City Experiments With Toddlers Wearing Recorders and Sees the Number of Words They Hear Grow 50%, 5 More Mayors Will Pilot Innovative 'Word Gap' Program

#### **France Kicks Data** Scientists Out of Its Courts



### Events

| Title                                          | Date - Time     | Location                 |
|------------------------------------------------|-----------------|--------------------------|
| Academic Learning or Occupational Skills?      | 10/30 - 5:30    | 179 GDH                  |
| Race After Technology                          | 10/30 - 6:00pm  | Online                   |
| Robotics to Retrain & Restore Human  Movements | 11/1 - 12:00pm  | NWB Rm 1406              |
| AWS Machine Learning Day                       | 11/6 - 12:00pm  | Online                   |
| The Color of Surveillance                      | 11/7            | Georgetown<br>University |
| All Tech is Human: NYC                         | 11/9            | ThoughtWorks             |
| Xavier Ochoa: Multimodal Analytics             | 11/12 - 12:00pm | NYU                      |
| Science Communication Workshop                 | 11/20 - 9:30am  | Low Library              |
| Citizens and Technology Summit                 | 11/25           | Ford Foundation          |

#### Plans

 10/31: Assignment 4 Assigned  11/21 Assignment 7 Assigned

• 11/5: Assignment 3 Due

- 11/26 Assignment 6 Due
- 11/7: Assignment 5 Assigned
- 12/3 Assignment 7 Due

11/12: Assignment 4 Due

12/5: Assignment 8 Assigned

 11/14: Assignment 6 Assigned • 12/13: Assignment 8 Due

• 11/19 Assignment 5 Due

• 12/17: Assignment 8 Watch/ Rate

### http://bit.ly/HUDK4050CAL









### Domain Structure Discovery

 Identifying the structure of knowledge in a(n) (educational) domain



Quantified epistemology



सांख्य ~500BCE



Plato ~300BCE



孟轲~200BCE

### Domain Structure Discovery



### Bibliometrics

(scientometrics, librametry, statistical bibliography)

- Citation patterns
- Raw number (impact score), Erdős Number
- Co-word analysis
- Network representation



Bibliographic Coupling

(Eigenvectors again!)



Alfonzo, Sakraida, Hastings-Tolsma (2014)



Alfonzo, Sakraida, Hastings-Tolsma (2014)

### Latent Variable

Latent variables are variables that are not directly observed but are rather inferred from other variables that are observed and directly measured.

(What isn't a latent variable?)

### Skills



Fischer & Yan, 1980

(There is also the whole world of construct validity)



Anderson, 1982

Prolonged learning (memory) about a family of events

Mostly defined by experts/definitionally true

## Knowledge Components

A description of a mental structure or process that a learner uses, alone or in combination with other knowledge components, to accomplish steps in a task or a problem (Koedinger & Nathan, 2004)



### Q-Matrices

# History

- Interested in student misconceptions
- Devised the "Rule Space Method"
- RSM converts item
   response patterns into
   probabilities of mastering
   particular "skills" or concepts



Kikumi Tatsuoka

#### Q-Matrix

|            | q1 | q2 | q3 | q4 | q5 | q6 | q7 | q8 | q9 | q10 | q11 |  |
|------------|----|----|----|----|----|----|----|----|----|-----|-----|--|
| <b>c1</b>  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 0   | 0   |  |
| c2         | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0   | 0   |  |
| сЗ         | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1   | 1   |  |
| <b>c</b> 4 | 0  | 1  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0   | 0   |  |
| <b>c</b> 5 | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 1   | 0   |  |

Concepts are defined by experts. Very time consuming & domain specific

### Q-Matrix

|      | q1 | q2 | q3 | q4 | <b>q</b> 5 | q6 |
|------|----|----|----|----|------------|----|
| con1 | 1  | 0  | 0  | 0  | 0          | 1  |
| con2 | 1  | 1  | 0  | 1  | 0          | 0  |
| con3 | 1  | 1  | 1  | 0  | 0          | 0  |

(Tatsuoka, 1983;1996)

Probability a student is correct given mastery of a given concept

### Q-Matrix

|      | q1  | q2   | q3  | q4   | q5  | q6   |
|------|-----|------|-----|------|-----|------|
| con1 | 1   | 0.01 | 0.6 | 0    | 0.7 | 1    |
| con2 | 0.8 | 0.7  | 0.8 | 0.76 | 0.5 | 0.42 |
| con3 | 0.5 | 0.6  | 1   | 0.55 | 0.5 | 0.67 |

(Brewer, 1996)

### Activity: Build Q-M

- Get into groups of 4
- Agree on a topic
- Agree on 3 concepts within that topic
- Devise 6 questions that relate to the concepts
- Map the concepts to those questions

### Activity: Build Q-M

- Now, find another group and have them answer your questions
- Note which ones they get correct/incorrect
- Do the scores map onto your concepts?

#### Problem

Correspondence between expert-derived Q-matrices and student responses is not 100%

(Hubal, 1992)

Question: Can we use the Q-matrix method to derive valid "student mental states" (constructs? knowledge states? skill definitions?)



Can this problem be solved? Yes

### Divergence by Domain



Tutoring Systems
Automation
Identifying KS

Large scale assessments
Identifying cognitive states
for use by instructors

#### One Solution

- Create idealized patterns
- Compare the observed pattern to the idealized
- Use difference between them as an indicator of "model fit"

### Idealized Pattern

|            | q1 | q2 | q3 | q4 | q5 | q6 |
|------------|----|----|----|----|----|----|
| <b>c1</b>  | 1  | 0  | 0  | 0  | 0  | 1  |
| <b>c2</b>  | 1  | 1  | 0  | 1  | 0  | 0  |
| <b>c</b> 3 | 1  | 1  | 1  | 0  | 0  | 0  |

$$L_1 = d(p,IDR) = \sum_{q} |p(q) - IDR(q)|$$

$$L_1 = 1$$

Student Answer: 101110

| Concept State | Ideal Response Vector |
|---------------|-----------------------|
| 000           | 000010                |
| 001           | 001010                |
| 010           | 000110                |
| 011           | 011 10                |
| 100           | 000011                |
| 101)          | 001011                |
| 110           | 000111                |
| 111           | 111111                |

# Hill Climbing Algorithm



- If we stop too early might only capture a local maxima
- This is a "heuristic" algorithm when problem is not algebraically solvable or would take too long
- · State description contains all the information needed to find a solution