Package 'bt2m'

January 12, 2023

```
Type Package
Title A iteratively bifurcated clustering strategy for single-cell sequencing data
Description A iteratively bifurcated clustering strategy for single-cell sequencing data.
License GPL-3 + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Depends R (>= 3.6)
Imports stats,
     utils,
     Seurat,
     dplyr,
     clustree,
     ggplot2,
     ComplexHeatmap,
     RColorBrewer,
     circlize,
     fastcluster,
     parallelDist,
     HiClimR,
     clusterProfiler,
     org.Hs.eg.db,
     org.Mm.eg.db,
     Hmisc,
     stringr,
     cowplot,
     plyr
Suggests testthat
URL https://github.com/leezx/bt2m
BugReports https://github.com/leezx/bt2m/issues
R topics documented:
```

2 add.missing.genes

	AddMarkerExpressionPct Bt2mBifucation.graph	3
	Bt2mBifucation.hclust	4
	Bt2mBifucation.kmeans	4
	Bt2mColors	5
	Bt2mEnrichGO	5
	clusterProfilerORA	6
	DataframeToVector	6
	DEG.cluster.list	7
	DrawBarplotGO	7
	DrawBt2mClusterTree	8
	DrawGOchain	8
	DrawMarkerChainDotplot	9
	DrawMarkerChainHeatmap	9
	FindBifurcationResolution	10
	gene.anno.GRCh38.v3	11
	gene.anno.mm10.v3	11
	GetClusterChain	12
	GetInitialBifurcation	12
	GetTestData	13
	HGNC.gene.pairs	13
	IdentifyBinaryMarkers	13
	JASPAR.motif.rmDup	14
	lr.pair.all.uniq.hs	14
	lr.pair.all.uniq.mm	15
		15
	OrderCluster	16
	PrepareExpressionMatrix	16
	RemoveDuplicatedGO	17
	RemoveDuplicatedMarker	17
	RenameBt2m	
	RunBt2m	
	subsetSeuratObj	19
	subset_cells	19
	WriteBt2mIntoSeurat	
Index		21
add.m	nissing.genes Add mising genes to the gene expression matrix (for multiple datasets integraiton)	3

Description

Add mising genes to the gene expression matrix (for multiple datasets integraiton)

```
add.missing.genes(epxrM, all.genes)
```

Arguments

epxrM expression matrix in data.frame, matrix or dgCMatrix format

all.genes full list of genes

Value

A gene expression matrix in dgCMatrix format

 ${\tt AddMarkerExpressionPct}$

filter uniquely expressed markers by expression percentage

Description

filter uniquely expressed markers by expression percentage

Usage

```
AddMarkerExpressionPct(
   seuratObj,
   bt2m.cellMeta,
   bt2m.marker.chain,
   assay = "RNA",
   slot = "data"
)
```

Arguments

```
seuratObj A Seurat object
bt2m.cellMeta bt2m.cellMeta dataframe from bt2m
bt2m.marker.chain
bt2m.marker.chain dataframe contains all the markers
assay Assay used for prediction
```

slot used for prediction

Value

slot

A new dataframe with two additional columns: cluster_pct (expression percentage in the cluster) and bcg_pct (expression percentage in the background cells)

4 Bt2mBifucation.hclust

Bt2mBifucation.graph Bifurcation based on graph-based clustering

Description

Bifurcation based on graph-based clustering

Usage

```
Bt2mBifucation.graph(seuratObj, resolution.sets = 50)
```

Arguments

```
seuratObj A Seurat object resolution.sets
```

The number of resolution for searching

Value

A bifurcated Seurat object (see active.ident).

Bt2mBifucation.hclust Bifurcation based on hierarchical clustering

Description

Bifurcation based on hierarchical clustering

Usage

```
Bt2mBifucation.hclust(seuratObj, method = "euclidean")
```

Arguments

seuratObj A Seurat object

method The distance measurement method "euclidean or correlation"

Value

A bifurcated Seurat object (see active.ident).

Bt2mBifucation.kmeans 5

Bt2mBifucation.kmeans Bifurcation based on K-means clustering

Description

Bifurcation based on K-means clustering

Usage

```
Bt2mBifucation.kmeans(seuratObj, method = "euclidean")
```

Arguments

seurat0bj A Seurat object

method The distance measurement method "euclidean or correlation"

Value

A bifurcated Seurat object (see active.ident).

 ${\it Bt2mColors}$

Colors for bt2m

Description

Colors for bt2m

Usage

Bt2mColors()

Value

A color vector

6 clusterProfilerORA

Bt2mEnrichG0

Perform GO annotation of bt2m.marker.chain dataframe

Description

Perform GO annotation of bt2m.marker.chain dataframe

Usage

```
Bt2mEnrichGO(
  bt2m.marker.chain,
  organism = "hs",
  pvalueCutoff = 0.05,
  min_count = 3
)
```

Arguments

bt2m.marker.chain

terbi.marker.chain dataframe contains all the markers

organism "hs" for Homo sapiens, or "mm" for Mus musculus

pvalueCutoff cut off P-value for GO annotations

min_count Minimal count of genes for GO annotations

Value

GO annotation dataframe labeled with cluster

clusterProfilerORA

GO KEGG ORA analysis by clusterProfiler

Description

GO KEGG ORA analysis by clusterProfiler

Usage

```
clusterProfilerORA(geneList = markerList, organism = "hs")
```

Arguments

geneList a gene list

organism "hs" for Homo sapiens, or "mm" for Mus musculus

Value

a list with GO and KEGG annotation result (clusterProfiler format)

DataframeToVector 7

DataframeToVector

transform dataframe to vector

Description

transform dataframe to vector

Usage

```
DataframeToVector(df)
```

Arguments

df

A dataframe from Seuratobj[["attr"]]

Value

A vector with names

DEG.cluster.list

A general function to identify DEGs between case and control

Description

A general function to identify DEGs between case and control

```
DEG.cluster.list(
   seuratObj,
   cluster.list,
   ident.1 = "Vcl cKO",
   ident.2 = "Control",
   assay = "RNA"
)
```

8 DrawBt2mClusterTree

DrawBarplotG0

Draw barplot for GO annotation

Description

Draw barplot for GO annotation

Usage

```
DrawBarplotGO(barplot_df, cluster.chain)
```

Arguments

```
barplot_df A GO annotation dataframe from clusterProfiler cluster.chain cluster.chain from bt2m
```

Value

A ggplot barplot

DrawBt2mClusterTree

Draw cluster tree/chain by clustree

Description

Draw cluster tree/chain by clustree

Usage

```
DrawBt2mClusterTree(
   seuratObj,
   bt2m.cellMeta,
   node_text_size = 7,
   node_size = 8
)
```

Arguments

```
seuratObj A Seurat object
bt2m.cellMeta bt2m.cellMeta from bt2m
node_text_size see node_text_size in clustree function
node_size see node_size in clustree function
```

Value

clustree object

DrawGOchain 9

DrawGOchain	Get GO chain corres	sponding to	a cluster chain
-------------	---------------------	-------------	-----------------

Description

Get GO chain corresponding to a cluster chain

Usage

```
DrawGOchain(bt2m.GO.anno, cluster.chain, top_n = 3)
```

Arguments

bt2m.GO.anno A GO annotation dataframe from clusterProfiler

cluster.chain cluster.chain from bt2m

top_n top n GO terms for barplot (sort by P-value)

Value

A ggplot barplot showed GO chain

DrawMarkerChainDotplot

Draw cluster tree/chain by clustree

Description

Draw cluster tree/chain by clustree

Usage

```
DrawMarkerChainDotplot(
   seuratObj,
   bt2m.marker.chain,
   rmDup = T,
   top_n = 3,
   rel_heights = c(0.5, 9, 1.5),
   rel_widths = c(1, 4)
)
```

Arguments

rmDup

seuratObj A Seurat object

 ${\tt bt2m.marker.chain}$

bt2m.marker.chain from bt2m remove duplicated genes or not

top_n top n genes for dotplot (sort by P-value)

rel_heights relative heights for plot_grid(), the first and last control the height of top and

bottom margin, the middle one controls the height of tree

rel_widths relative widths for plot_grid(), the first one controls the widths of tree, the second

one controls the widths of dotplot

Value

A plot_grid integrated tree and dotplot

DrawMarkerChainHeatmap

Draw heatmap by ComplexHeatmap

Description

Draw heatmap by ComplexHeatmap

Usage

```
DrawMarkerChainHeatmap(
   seuratObj,
   bt2m.cellMeta,
   bt2m.marker.chain,
   compare_anno = "",
   known_markers = c()
)
```

Arguments

```
seurat0bj A Seurat object
bt2m.cellMeta bt2m.cellMeta from bt2m
bt2m.marker.chain
bt2m.marker.chain from bt2m

compare_anno select a annotation in seurat object for comparision (e.g. previous annotation)
known_markers the genes to include in the heatmap (like known markers)
```

Value

ComplexHeatmap object

FindBifurcationResolution

Find the best resolution for bifurcation in graph-based clustering

Description

Find the best resolution for bifurcation in graph-based clustering

```
FindBifurcationResolution(seuratObj, resolution.sets = 50)
```

gene.anno.GRCh38.v3

Arguments

```
seuratObj A Seurat object resolution.sets
```

The number of resolution for searching

Value

The best resolution which can bifurcate all cells

gene.anno.GRCh38.v3 Gene annotation for human genome

Description

All human genes and annotation

Usage

```
gene.anno.GRCh38.v3
```

Format

A vector

Source

 $\verb|https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest|$

gene.anno.mm10.v3

Gene annotation for mouse genome

Description

All mouse genes and annotation

Usage

```
gene.anno.mm10.v3
```

Format

A vector

Source

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest

12 GetInitialBifurcation

GetClusterChain

Find the cluster chain of any given cluster

Description

Find the cluster chain of any given cluster

Usage

```
GetClusterChain(bt2m.cellMeta, bt2m.bifucation, target.cluster)
```

Arguments

```
\begin{array}{ccc} bt2m.cellMeta & bt2m.cellMeta\ from\ bt2m \\ bt2m.bifucation & bt2m.bifucation\ from\ bt2m \\ target.cluster & target\ cluster \end{array}
```

Value

A vector, names are cluster name, element shows the states of clusters

GetInitialBifurcation Find initial bifurcation event of any two clusters in bt2m.cellMeta

Description

Find initial bifurcation event of any two clusters in bt2m.cellMeta

Usage

```
GetInitialBifurcation(
   seuratObj,
   bt2m.cellMeta,
   cluster_1,
   cluster_2,
   balance_cells = T
)
```

Arguments

```
seuratObj A Seurat object
bt2m.cellMeta bt2m.cellMeta from bt2m
cluster_1 cluster 1
cluster_2 cluster 2
balance_cells output balanced cell number (T or F)
```

Value

A list. subset_seuratObj is the subset cells in cluster 1 and cluster 2 diff_marker_1 is the marker of cluster 1, diff_marker_2 is the marker of cluster 2

GetTestData 13

 ${\tt GetTestData}$

Download raw single-cell matrix for testing

Description

Download raw single-cell matrix for testing

Usage

```
GetTestData()
```

Value

dowloaded single-cell dataset

HGNC.gene.pairs

Mouse transcription factors

Description

A vector of genes used in marker annotation

Usage

```
HGNC.gene.pairs
```

Format

A vector

Source

```
http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/download
```

Description

Identify binary markers

```
IdentifyBinaryMarkers(
  seuratObj,
  p_value = 0.01,
  min_avg_logFC = 0.1,
  min_correlation = 0.3
)
```

14 lr.pair.all.uniq.hs

Arguments

seurat0bj A Seurat object

p_value The number of resolution for searchingmin_avg_logFC Minimal threshold for logFC to pick markers

min_correlation

Minimal threshold for correlation to pick markers

Value

A list. b1 is the positive marker of cluster 0, b2 is the positive marker of cluster 1.

JASPAR.motif.rmDup

Human ligand and receptor

Description

A list of genes used in marker annotation

Usage

```
JASPAR.motif.rmDup
```

Format

A list of two vectors

human.ligand ligand genes in humanhuman.receptor receptor genes in human

Source

```
http://www.cellchat.org/
```

lr.pair.all.uniq.hs

Mouse ligand and receptor

Description

A list of genes used in marker annotation

Usage

```
lr.pair.all.uniq.hs
```

Format

A list of two vectors

mouse.ligand ligand genes in mouse
mouse.receptor receptor genes in mouse

lr.pair.all.uniq.mm

Source

```
http://www.cellchat.org/
```

lr.pair.all.uniq.mm

Mouse ligand and receptor

Description

A list of genes used in marker annotation

Usage

```
lr.pair.all.uniq.mm
```

Format

A list of two vectors

mouse.ligand ligand genes in mousemouse.receptor receptor genes in mouse

Source

```
http://www.cellchat.org/
```

MGI.gene.pairs

Human transcription factors

Description

A vector of genes used in marker annotation

Usage

```
MGI.gene.pairs
```

Format

A vector

Source

```
http://bioinfo.life.hust.edu.cn/HumanTFDB/#!/download
```

OrderCluster

order the clusters according to similarity inside the bt2m result

Description

order the clusters according to similarity inside the bt2m result

Usage

```
OrderCluster(seuratObj, bt2m.result)
```

Arguments

seurat0bj A Seurat object

bt2m.result A result file from RunBt2m() function

Value

A re-ordered list. cellMeta contains the final bifurcation for each level marker_chain contains all the significant markers for each cluster bifucation contains the bifurcation details (parent, child1, child2)

PrepareExpressionMatrix

Prepare expression matrix for heatmap visualization, estimate the overall expression of marker modules

Description

Prepare expression matrix for heatmap visualization, estimate the overall expression of marker modules

Usage

```
PrepareExpressionMatrix(
   seuratObj,
   bt2m.marker.chain,
   assay = "RNA",
   slot = "scale.data",
   known_markers = c()
)
```

Arguments

seuratObj A Seurat object

bt2m.marker.chain

bt2m.marker.chain from bt2m

assay Assay used for prediction slot used for prediction

known_markers the genes to include in the heatmap (like known markers)

RemoveDuplicatedGO 17

Value

A expression matrix contain the average expression of marker modules and known markers

RemoveDuplicatedG0

remove duplicated GO terms based on overlaps of genes

Description

remove duplicated GO terms based on overlaps of genes

Usage

```
RemoveDuplicatedGO(tmp.GO.df, max.overlap = 0.6)
```

Arguments

tmp.GO.df

GO annotation dataframe from clusterProfiler package

max.overlap

Maximum overlapped percentage of genes

Value

GO annotation dataframe without duplications

RemoveDuplicatedMarker

Remove duplicated markers (just for plotting)

Description

Remove duplicated markers (just for plotting)

Usage

```
RemoveDuplicatedMarker(bt2m.marker.chain, method = "correlation")
```

Arguments

```
bt2m.marker.chain
```

bt2m.marker.chain from bt2m

 ${\tt method}$

select a method to sort markers

Value

bt2m.marker.chain without duplicated genes

18 RunBt2m

RenameBt2m

rename the clusters inside the bt2m result

Description

rename the clusters inside the bt2m result

Usage

```
RenameBt2m(bt2m.result)
```

Arguments

bt2m.result A result file from RunBt2m() function

Value

A renamed list. cellMeta contains the final bifurcation for each level marker_chain contains all the significant markers for each cluster bifucation contains the bifurcation details (parent, child1, child2)

RunBt2m

The main function to perform iteratively bifurcation clustering

Description

The main function to perform iteratively bifurcation clustering

Usage

```
RunBt2m(
   seuratObj,
   method = "graph",
   min.marker.num = 100,
   max.level.num = 20,
   min.cell.count = 50,
   resolution.sets = 30,
   verbose = T
)
```

Arguments

verbose

seuratObj A Seurat object

method The method to perform bifurcation clustering "graph (default), hclust or kmeans"

min.marker.num Minimal number of markers to confirm a bifurcation

max.level.num Maximum number of level for bifurcation

min.cell.count Minimal number of cells to perform bifurcation (must bigger than PC number: 50)

resolution.sets

The number of resolution for searching

Print detail processing messages

subsetSeuratObj 19

Value

A list. cellMeta contains the preliminary bifurcation for each level marker_chain contains all the significant markers for each cluster bifucation contains the bifurcation details (parent, child1, child2)

subsetSeuratObj

Subset seurat object by cell names

Description

Subset seurat object by cell names

Usage

```
subsetSeuratObj(seuratObj, tmp.cells)
```

Arguments

seuratObj A Seurat object

tmp.cells cells for subseting

Value

A subset of seurat object

subset_cells

a subset function for seurat obj, originial cannot work sometimes

Description

a subset function for seurat obj, originial cannot work sometimes

```
subset_cells(seuratObj, condition)
```

20 WriteBt2mIntoSeurat

WriteBt2mIntoSeurat Write bt2m result to Seurat object

Description

Write bt2m result to Seurat object

Usage

WriteBt2mIntoSeurat(seuratObj, bt2m.result)

Arguments

seuratObj A Seurat object bt2m.result bt2m.result

Value

A Seurat object contains bt2m.result. bt2m will be stored in assay data region of Seurat object ("seuratObj@assaysbt2m")

Index

* datasets	IdentifyBinaryMarkers, 13		
gene.anno.GRCh38.v3,11 gene.anno.mm10.v3,11	JASPAR.motif.rmDup, 14		
HGNC.gene.pairs, 13 JASPAR.motif.rmDup, 14 lr.pair.all.uniq.hs, 14	<pre>lr.pair.all.uniq.hs, 14 lr.pair.all.uniq.mm, 15</pre>		
<pre>lr.pair.all.uniq.mm, 15 MGI.gene.pairs, 15</pre>	MGI.gene.pairs, 15		
* data	OrderCluster, 16		
gene.anno.GRCh38.v3,11 gene.anno.mm10.v3,11 HGNC.gene.pairs,13	PrepareExpressionMatrix, 16		
JASPAR.motif.rmDup, 14 lr.pair.all.uniq.hs, 14 lr.pair.all.uniq.mm, 15 MGI.gene.pairs, 15	RemoveDuplicatedGO, 17 RemoveDuplicatedMarker, 17 RenameBt2m, 18 RunBt2m, 18		
<pre>add.missing.genes, 2 AddMarkerExpressionPct, 3</pre>	<pre>subset_cells, 19 subsetSeuratObj, 19</pre>		
Bt2mBifucation.graph, 3 Bt2mBifucation.hclust, 4 Bt2mBifucation.kmeans, 4 Bt2mColors, 5 Bt2mEnrichGO, 5	WriteBt2mIntoSeurat, 20		
clusterProfilerORA, 6			
DataframeToVector, 6 DEG.cluster.list, 7 DrawBarplotGO, 7 DrawBt2mClusterTree, 8 DrawGOchain, 8 DrawMarkerChainDotplot, 9 DrawMarkerChainHeatmap, 9			
${\it FindBifurcationResolution}, 10$			
gene.anno.GRCh38.v3, 11 gene.anno.mm10.v3, 11 GetClusterChain, 12 GetInitialBifurcation, 12 GetTestData, 13			
HGNC.gene.pairs, 13			