electroussafi.ueuo.com 1/4

Bascule JK

Exercice 1

1. Pour la bascule **a**, l'entrée d'horloge est active sur le front descendant (petit cercle sur l'entrée d'horloge) et pour la bascule **b**, l'entrée d'horloge est active sur quel front montant (il n'y a pas de petit cercle sur l'entrée d'horloge)

2. On a basculement ($J=K=1 \Rightarrow Q_{n+1}=\overline{Q_n}$) à chaque front descendant de l'entrée d'horloge de chaque bascule.

- 3. Soit T_H la période de H et T_Q la période de Q: $T_Q = 2T_H$ la fréquence de Q: $f_Q = 1 / T_Q$ et la fréquence de H: $f_H = 1 / T_H$. $f_Q = 1 / T_Q = 1 / 2T_H$
- **4.** Pour Q_0 , on a basculement ($J=K=1 \Rightarrow Q_{n+1}=\overline{Q_n}$) à chaque front descendant de H. pour Q_1 , on a basculement à chaque front descendant de Q_0 .

5. $T_{Q1} = 2T_{Q0} = 4T_H \Rightarrow 1 / T_{Q1} = 1 / 2T_{Q0} = 1 / 4T_H$ $f_{Q1} = f_H / 4$

<u>electroussafi.ueuo.com</u> 2/4

Exercice 2

Front descendant de H n°	Q
Etat initial	0
1	1
2	1
3	1
4	1
5	ر1_

Exercice 3

electroussafi.ueuo.com 3/4

1. Pour Q_1 , on a basculement $(J_1 = K_1 = 1 \Rightarrow Q_{n+1} = \overline{Q_n})$ à chaque front montant de H. Pour $Q_2 = 0$ $(J_2 = 1$ et $K_2 = 0 \Rightarrow Q_{n+1} = 1)$, Q_2 passe à 1 au front descendant de H (inverseur à l'entrée d'horloge).

Pour $Q_2 = 1$ ($J_2 = K_2 = 1$) on a basculement au front descendant de H.

On obtient, alors, le chronogramme suivant :

2. La période de Q_1 est $T_1 = 2 \times T_H \Rightarrow 1/f_1 = 2 \times 1/f_H \Rightarrow f_1 = f_H/2$.

De même, la période de Q_2 est $T_2=2$ x $T_H \Rightarrow 1/f_2=2$ x $1/f_H \Rightarrow f_2=f_H/2$.

Donc: $T_1 = T_2 = T = 2 \times T_H$

et

 $\mathbf{f}_1 = \mathbf{f}_2 = \mathbf{f} = \mathbf{f}_{H}/2$

3. Le déphasage entre Q_1 et Q_2 est :

 $t = T_{\rm H}/2 = T/4$

Exercice 4

1. Les deux bascules ont la même horloge. Les états des sorties Q_1 et Q_2 dépendent respectivement de (J_1, K_1) et (J_2, K_2) avant l'arrivée du front montant de l' horloge.

electroussafi.ueuo.com 4/4

Impulsion (H)	\mathbf{Q}_2	\mathbf{Q}_1	$J_2 = Q_1$	K_2	$J_1 = \overline{Q_2}$	\mathbf{K}_1
	0	0	0	\bigcap	1	
1	04	14	1	1	1	1
2	1	0	0 🔇	<u>,</u> 1	0	1
3	0	0	0	1	1	1
4	0	1 ,	O i	1	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	1

2.

alections soft

alections saft