Cognome:	Nome:	# Matricola:	Riga:	Col:

Algoritmi e Strutture Dati - 28/01/13

Esercizio 1 – Punti ≥ 6

Supponendo che il caso base sia O(1) si calcoli l'andamento asintotico delle seguenti equazioni di ricorrenza:

- 1. $A(n) = 4A(n/2) + n^2 \log n$.
- 2. $B(n) = 4B(n/2) + n^2$.
- 3. C(n) = nC(n-1).

Esercizio 2 – Punti ≥ 6

Scrivere un algoritmo efficiente che, dato in input un albero binario T, restituisce **true** se e solo se T rappresenta un albero binario completo

Esercizio 3 – Punti ≥ 9

Si consideri un grafo non orientato G = (V, E) in cui a ciascun nodo $v \in V$ è associato un peso reale w(v) (che può essere positivo o negativo). Un cammino $\langle v_1, v_2, \dots, v_k \rangle$ si dice monotono se $w(v1) < w(v2) < \dots < w(vk)$. In altre parole in un cammino monotono i pesi dei nodi attraversati devono essere in ordine strettamente crescente.

- 1. Dimostrare che se $\langle v_1, v_2, \dots, v_k \rangle$ è un cammino monotono, allora è aciclico
- 2. Descrivere un algoritmo efficiente che, dato in input un grafo non orientato G=(V,E) con nodi pesati, e due nodi $s,d\in V$, restituisce **true** se e solo se esiste un cammino monotono che inizia dalla sorgente s e termina nella destinazione d. L'algoritmo deve anche stampare i nodi che compongono tale cammino (i nodi possono essere stampati nell'ordine v_1, v_2, \ldots, v_k oppure nell'ordine inverso $v_k, v_{k-1}, \ldots v_1$)
- 3. Determinare il costo computazionale dell'algoritmo descritto al punto 2, motivando la risposta

Esercizio 4 – Punti ≥ 12

Siano dati un intero positivo T ed un insieme di interi positivi $A = \{a_1, \dots, a_k\}$. Progettare un algoritmo di Programmazione Dinamica che ritorni il valore **true** se esiste o meno un sottoinsieme $B \subseteq A$ tale che $T = \sum_{b \in B} b$, il valore **false** nel caso contrario.