Introduction to Electrodynamics by David J. Griffiths Notes

Chris Doble

December 2023

Contents

1	Vector Algebra			1
	1.6	The T	heory of Vector Fields	1
		1.6.1	The Helmholtz Theorem	1
		1.6.2	Potentials	1
2	2 Electrostatics			2
	2.1	The E	lectric Field	2
		2.1.2	Coulomb's Law	2
		2.1.3	The Electric Field	2
		2.1.4	Continuous Charge Distributions	2
	2.2	Diverg	gence and Curl of Electrostatic Fields	2
		2.2.1	Field Lines, Flux, and Gauss's Law	2
		2.2.4	The Curl of E	3

1 Vector Algebra

1.6 The Theory of Vector Fields

1.6.1 The Helmholtz Theorem

• The **Helmholtz theorem** states that a vector field \mathbf{F} is uniquely determined if you're given its divergence $\nabla \cdot \mathbf{F}$, curl $\nabla \times \mathbf{F}$, and sufficient boundary conditions.

1.6.2 Potentials

• If the curl of a vector field vanishes everywhere, then it can be expressed as the gradient of a **scalar potential**

$$\nabla \times \mathbf{F} = \mathbf{0} \Leftrightarrow \mathbf{F} = -\nabla V.$$

• If the divergence of a vector field vanishes everywhere, then it can be expressed as the curl of a **vector potential**

$$\nabla \cdot \mathbf{F} = 0 \Leftrightarrow \mathbf{F} = \nabla \times \mathbf{A}.$$

2 Electrostatics

2.1 The Electric Field

2.1.2 Coulomb's Law

• Couloumb's law gives the force between two point charges q and Q

$$\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{qQ}{\imath} \hat{\mathbf{z}}$$

where

$$\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 / (\mathrm{N \, m}^2)$$

is the **permittivity of free space** and $\boldsymbol{\imath}$ is the separation vector between the two charges.

2.1.3 The Electric Field

- The **electric field E** is a vector field that varies from point to point and gives the force per unit charge that would be exerted on a test charge if placed at a particular point.
- For a collection of n source charges q_i at displacements $\boldsymbol{\imath}_i$ from a test charge, the electric field is

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{\nu_i^2} \hat{\boldsymbol{\lambda}}.$$

2.1.4 Continuous Charge Distributions

• Couloumb's law for a continuous charge distribution is

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \frac{1}{2} \hat{\boldsymbol{\lambda}} \, dq.$$

2.2 Divergence and Curl of Electrostatic Fields

2.2.1 Field Lines, Flux, and Gauss's Law

• Gauss's law states that the electric field flux through a closed surface is proportional to the amount of charge within that surface

$$\oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}}$$

or

$$\nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho.$$

2.2.4 The Curl of E

 \bullet The curl of an electric field is 0

 $\nabla \times \mathbf{E} = \mathbf{0}.$