

Chapter 2: Intro to Relational Model

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Data Models

- A collection of tools/constructs for describing
 - Data
 - Data relationships
 - Data constraints

- Relational model
- Object-based data models (Object-oriented and Object-relational)
- Other older models:
 - Network model
 - Hierarchical model

Basic Unit of the Relational Model

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	Α
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	Α
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	Α
EE-181	1	Spring	2009	Taylor	3128	С
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	Α

dept_na	ате	bı	iilding	l	budget
Biolog	у	W	atson		90000
Comp		Ta	ylor	1	00000
Elec. E	ng.	Taylor			85000
Financ	e	Pa	ainter	1	20000
Histor	y	Pa	ainter		50000
Music	~		ackard		80000
Physics		W	atson		70000
	course	id	prereq_i	d	

	course_ia	prere	4_1 a
	BIO-301	BIO-	101
	BIO-399	BIO-	101
	CS-190	CS-1	01
	CS-315	CS-1	01
	CS-319	CS-1	01
	CS-347	CS-1	01
	EE-181	PHY-	-101
(course_id	sec_id	seme

year

Fall

Spring

Spring

Spring

Summer

Summer

	CS-190 CS-315 CS-319 CS-347	CS-1(CS-1(CS-1(01 01 01
	EE-181	PHY-	
ID	course_id	sec_id	semester
10101	CS-101	1	Fall
10101	CS-315	1	Spring
10101	CS-347	1	Fall
12121	FIN-201	1	Spring
15151	MU-199	1	Spring

PHY-101

HIS-351

CS-101

CS-319

BIO-101

BIO-301

Table/Relation

- In general, a **row** in a table represents a relationship among a set of values.
- In the relational model the term **relation** is used to refer to **a table**, while the term **tuple** is used to refer to **a row**.
- Similarly, the term attribute refers to a column of a table.
- The term **relation instance** is used to refer to a specific instance of a relation, i.e., containing a specific set of rows.

Attribute Types

- The set of permitted values for each attribute is called the domain of the attribute.
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value null is a member of every domain
- The null value causes complications in the definition of many operations

Relation Schema and Instance

- The term relation schema is consists of attribute set and their domains
- whereas the **relation instance** corresponds to the values which the variable takes.
- A relation schema syntax: $\mathbf{R} = (\mathbf{A}_1 : \mathbf{D1}, \mathbf{A}_2 : \mathbf{D2}, \dots, \mathbf{A}_n : \mathbf{Dn})$ Example:

instructor = (ID int, name String, dept_name String, salary float)

A database consists of multiple relations

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: *instructor* relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Keys

Candidate key

Primary Key

Super key (Non minimal Key)

Foreign Key

Candidate and Primary Key

- The attributes ID and name together can distinguish instructor tuples, their combination, {ID, name} does not form a candidate key, since the attribute {ID} alone is a candidate key.
- One of the candidate keys is selected to be the primary key.
 - which one?
- Any two individual tuples in the relation are prohibited from having the same value on the key attributes at the same time.
- The primary key should be chosen such that its attribute values are never, or very rarely changed and it should not have null value.
- It is customary to list the primary key attributes of a relation schema before the other attributes.
- Primary key attributes are also underlined

Foreign Key

- A relation, say r1, may include among its attributes the primary key of another relation, say r2. This attribute is called a **foreign key** from r1, referencing r2.
- Referencing relation r1
- Referenced relation r2
- For example, the attribute *dept_name* in *instructor* is a foreign key from *instructor*, referencing *department*.
- (c_id, sec_id, sem, year) together becomes the foreign key for teaches relation because it is the primary key in section relation.

Example of a Database (with a Conceptual Data Model)

- Mini-world for the example:
 - Part of a UNIVERSITY environment.
- Some mini-world <u>entities</u>:
 - STUDENTs
 - COURSEs
 - SECTIONs (of COURSEs)
 - (academic) DEPARTMENTs
 - INSTRUCTORs

Example of a Database (with a Conceptual Data Model)

- Some mini-world relationships:
 - SECTIONs are of specific COURSEs
 - STUDENTs take SECTIONs
 - COURSEs have prerequisite COURSEs
 - INSTRUCTORs teach SECTIONs
 - COURSEs are offered by DEPARTMENTs
 - STUDENTs major in DEPARTMENTs
- Note: The above entities and relationships are typically expressed in a conceptual data model, such as the ENTITY-RELATIONSHIP data model (see Chapters 3, 4)

Example of a simple database

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Figure 1.2A database that stores student and course information.

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Schema Diagram for University Database

Schema

- classroom(<u>building</u>, room_number, capacity)
- department(<u>dept_name</u>, building, budget)
- course(<u>course_id</u>, title, dept_name, credits)
- instructor(<u>ID</u>, name, dept_name, salary)
- section(<u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>, building, room_number, time_slot_id)
- teaches(<u>ID</u>, <u>course_id</u>, <u>sec_id</u>, <u>semester</u>, <u>year</u>)
- student(SID, name, dept_name, tot_cred)
- takes(SID, course_id, sec_id, semester, year, grade)
- advisor(sID, iID)
- Time_slot(<u>time_slot_id</u>, day, start_time, end_time)
- prereq(course_id, prereq_id)

Relational Query Languages

- A query language is a language in which a user requests information from the database.
- **Procedural:** The user instructs the system to perform a sequence of operations on the database to compute the desired result.

Relational Operations

- The result of a query is a new relation that is a subset of the original relation
- Example, if we select tuples from the *instructor* relation satisfying the predicate "*salary* is greater than \$85000"

ID	name	dept_name	salary
12121	Wu	Finance	90000
22222	Einstein	Physics	95000
33456	Gold	Physics	87000
83821	Brandt	Comp. Sci.	92000

Selection of tuples

Relation r

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- Select tuples with A=Band D > 5
 - \bullet σ A=B and D > 5 (r)

A	В	C	D
α	α	1	7
β	β	23	10

Selection of Columns (Attributes)

Relation *r*:

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

- Select A and C
 - Projection
 - П _{A, C} (r)

A	C	A	C
α	1	α	1
α	1	β	1
β	1	β	2
ß	2		

Joining two relations – Cartesian Product

Relations *r, s*:

 $r \times s$:

A	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Union of two relations

Relations *r*, *s*:

D
2
3

 $r \cup s$:

A	В
α	1
α	2
β	1
β	3

Set difference of two relations

Relations *r*, *s*:

A	B
α	2
β	3

r - s:

A	В
α	1
β	1

Set Intersection of two relations

Relation *r*, *s*:

 $r \cap s$

Joining two relations – Natural Join-Example

- The natural join operation on two relations matches tuples whose values are the same on all attribute names that are common to both relations.
- Relations r, s:

- Natural Join
 - $r \bowtie s$

\boldsymbol{A}	В	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
M 20		v	

В	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	3
	s	

\boldsymbol{A}	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

Figure in-2.1

Symbol (Name)	Example of Use
σ (Selection)	σ salary>=85000 (instructor)
(Selection)	Return rows of the input relation that satisfy the predicate.
[] (Projection)	П _{ID, salary} (instructor)
(Projection)	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.
M	instructor ⋈ department
(Natural Join)	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.
×	instructor imes department
(Cartesian Product)	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)
U (Union)	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$
(Cinon)	Output the union of tuples from the two input relations.

End of Chapter 2

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

course_id	prereg_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

ID	name	dept_name	salary
12121	Wu	Finance	90000
22222	Einstein	Physics	95000
33456	Gold	Physics	87000
83821	Brandt	Comp. Sci.	92000

ID	salary
10101	65000
12121	90000
15151	40000
22222	95000
32343	60000
33456	87000
45565	75000
58583	62000
76543	80000
76766	72000
83821	92000
98345	80000

ID	name	salary	dept_name	building	budget
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
12121	Wu	90000	Finance	Painter	120000
15151	Mozart	40000	Music	Packard	80000
22222	Einstein	95000	Physics	Watson	70000
32343	El Said	60000	History	Painter	50000
33456	Gold	87000	Physics	Watson	70000
45565	Katz	75000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
76543	Singh	80000	Finance	Painter	120000
76766	Crick	72000	Biology	Watson	90000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000

ID	salary
12121	90000
22222	95000
33456	87000
83821	92000