

Facultad de Matemática y Computación

Arquitectura de Computadoras

Problemas de lenguaje ensamblador y máquina de estado algorítmica

Ariadna Velázquez Rey C211 Lía S. López Rosales C212

2do año de Ciencia de la Computación

Los diagramas de flujo hacen referencia a los circuitos entregados. Mientras que los códigos de Python mostrados pertenecen al código ensamblador.

Problema 25

Realizar la varianza de un array. Para la realización de este ejercicio fue necesario hacer dos cálculos sobre el array dado, la media y luego la varianza

ASM MEDIA

ASM VARIANZA


```
# Función para calcular la media de una lista
         def calcular_media(lista):
2
             suma = sum(lista)
3
             n = len(lista)
             media = suma / n
             return media
6
         # Función para calcular la varianza de una lista
         def calcular_varianza(lista):
9
             media = calcular_media(lista)
10
             suma_cuadrados = sum((x - media) ** 2 for x in lista)
11
             n = len(lista)
12
             varianza = suma_cuadrados / (n - 1)
13
             return varianza
15
         # Lista de números
16
         array = [4, 3, 5, 6]
17
         n = len(array)
19
         # Calcular la media
20
         media = calcular_media(array)
21
22
         # Calcular la varianza
23
         varianza = calcular_varianza(array)
24
25
         # Imprimir la varianza
26
         print(f"La varianza es: {varianza}")
27
```

Problema 85

Dados los puntos A, B y C, determine si el triángulo formado por ellos es rectángulo.


```
# Coordenadas de los puntos A, B y C
        A = (0, 0)
        B = (0, 1)
3
        C = (1, 0)
        # Función para calcular el producto escalar de dos vectores
        def producto_escalar(vector1, vector2):
             x1, y1 = vector1
            x2, y2 = vector2
             return x1 * x2 + y1 * y2
10
11
        # Calcular los vectores AB, BC y CA
12
        AB = (B[0] - A[0], B[1] - A[1])
13
        BC = (C[0] - B[0], C[1] - B[1])
14
        CA = (A[0] - C[0], A[1] - C[1])
16
        # Calcular los productos escalares entre los vectores
17
        producto_AB_BC = producto_escalar(AB, BC)
```

```
producto_AB_CA = producto_escalar(AB, CA)
producto_BC_CA = producto_escalar(BC, CA)

# Verificar si el triángulo es rectángulo
if producto_AB_BC == 0 or producto_AB_CA == 0 or producto_BC_CA == 0:
print("T") # Triángulo es rectángulo
else:
print("F") # Triángulo no es rectángulo

# Verificar si el triángulo
#
```

Problema 88

Dadas 2 rectas en el plano $\langle R_1, R_2 \rangle$ y $\langle P_1, P_2 \rangle$ decir si son paralelas.


```
# Coordenadas de los puntos R1, R2, P1 y P2
        R1 = (0, 3)
2
        R2 = (2, 7)
3
        P1 = (0, 1)
        P2 = (1, 0)
5
6
         # Función para calcular la pendiente de una recta
         def calcular_pendiente(punto1, punto2):
             x1, y1 = punto1
9
             x2, y2 = punto2
10
             if x2 - x1 == 0:
11
                 return float('inf') # Pendiente infinita (recta vertical)
12
             else:
13
                 pendiente = (y2 - y1) / (x2 - x1)
                 return pendiente
15
16
         # Calcular las pendientes de las rectas R1-R2 y P1-P2
17
        pendiente_R1_R2 = calcular_pendiente(R1, R2)
18
         pendiente_P1_P2 = calcular_pendiente(P1, P2)
19
20
         # Verificar si las rectas son paralelas
21
         if pendiente_R1_R2 == pendiente_P1_P2:
22
             print("T") # Las rectas son paralelas
23
         else:
24
             print("F") # Las rectas no son paralelas
25
```

Problema 90

Dado un cubo con lados de longitud l, hallar el volumen del mismo.

ASM CUBO


```
# Valor de l
1 = 2

# Calcular l^3
resultado = 1
resultado *= 1
resultado *= 1

# Imprimir el resultado
print(resultado)
```