构建模型

$$\begin{cases} F_1 = min \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} T_k \cdot Q_{ij} \\ F_2 = min \left[\sum_{k=1}^{n} \sum_{l=1}^{n} C_{kl} d_{kl} + \sum_{i=1}^{m} \sum_{j=1}^{m} w_{ij} d_{ij} T_{ij} \right] \\ F_3 = min 10 log_{10} \sum_{q=1}^{m} 10^{0.1t_q} \end{cases}$$

约束条件为式

$$\begin{cases} b_1^x + \frac{l_i}{2} - x_i \leq 0 \\ x_i + \frac{l_i}{2} - b_2^x \leq 0 \\ b_1^y + \frac{l_j}{2} - y_i \leq 0 \\ y_i + \frac{l_j}{2} - b_2^y \leq 0 \\ |x_i - x_j| - \frac{L_i + L_j}{2} \geq \Delta x_{ij} \\ |y_i - y_j| - \frac{w_i + w_j}{2} \geq \Delta y_{ij} \\ \sqrt{\left(x_i - x_k\right)^2 - \left(y_i - y_k\right)^2} \leq R \end{cases}$$

一、目标函数

1.1 目标函数 1: 吊装时间

①吊钩的垂直起升时间

$$T_{v} = \frac{|S_{z}^{i} - D_{z}^{j}|}{V_{h}}$$

$$\tag{1}$$

式中, Si-第i个供应点预制构件堆场的高度(m)列表;

 D_z^j 一第 j 个需求点的高度(m),列表;

 V_h 一塔吊吊钩起升速度(m/min),0.55m/min;

②变幅小车径向移动时间

$$T_r = \frac{|L (D^j, C^k) - L (S^i, C^k)|}{v_r}$$
(2)

式中,L(D^j , C^k)—第 j 个材料需求点和第 k 个塔吊的距离(m),式 5 求得; L(S^i , C^k) —第 i 个材料供应点预制构件堆场和第 k 个塔吊的距离(m),式 6 求得;

V_r一塔吊小车牵引速度(m/min), 44m/min;

③塔吊回转时间

$$T_{w} = \frac{1}{V_{w}} arccos \left\{ \frac{L(S^{i}, D^{j})^{2} - L(D^{j}, C^{k})^{2} - L(S^{i}, C^{k})^{2}}{2 \cdot L(D^{j}, C^{k}) \cdot L(S^{i}, C^{k})} \right\}$$

$$[0 \leq arccos\theta \leq \pi]$$

式中,L(Si,Di)一需求点和供应点间的距离(m)式4求得;

 $L(D^{j}, C^{k})$ 一需求点和塔吊间的距离(m),式 5 求得;

 $L(S^i, C^k)$ 一供应点预制构件堆场和塔吊间的距离(m),列表;

V_w一塔吊回转速度(r/min),取 0.6r/min;

计算供应点、需求点和塔式起重机之间的距离采用采用欧几里得方程,具体公式如下式。 需求点和供应点间的距离计算公式为:

$$L(S^{i}, D^{j}) = \sqrt{(D_{x}^{j} - S_{x}^{i})^{2} + (D_{y}^{j} - S_{y}^{i})^{2}}$$
(4)

(3)

需求点和塔吊间的距离计算公式为:

$$L (D^{j}, C^{k}) = \sqrt{(D_{x} - C_{x})^{2} + (D_{y} - C_{y})^{2}}$$
(5)

供应点和塔吊间的距离计算公式为:

$$L(S^{i}, C^{k}) = \sqrt{(S_{x} - C_{x})^{2} + (S_{y} - C_{y})^{2}}$$
(6)

式中, $S(S_x^i, S_y^i)$ —S 材料供应点,即第 i 个预制构件堆场的坐标,i=1,...I,I=2;

 $D(D_{v}^{j},D_{v}^{j})$ 一D 材料需求点,即第 j 个材料所在的坐标,j=1,2...J,J=4;

 $C(C_x^k, C_y^k)$ 一C 塔式起重机,即第 k 个塔吊坐标,k=1,...K,K=2;

而塔吊水平运动时间 Th 由径向运动时间和切向运动时间组成,可由式合成计算

$$T_k^h = \max (T_w, T_r) + \propto \min (T_w, T_r)$$

式中, T_k^h 一第 k 台塔吊水平运动时间,k=1, 2;

因此总吊装时间 T_k表示为

$$T_k = mac~(T_k^h,~T_v)~+\beta min~(T_k^h,~T_v)$$

式中, \propto 、 β 一吊钩运动在空间上的协调程度,这取决于操作者的熟练程度,可以取到 (0,1) 之间的数, \propto =0.25, β =1;

目标函数 F1表达式为

$$F_1 = \min \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} T_k \cdot Q_{ij}$$

Q_{ij} 一运输量(次),列表;

1#标准层需求点 D 信息

构件	坐标(D _x , D _y)	高度 (D _z)	重量(t)
左侧预制楼梯 D1	(87, 67)	11.6	3.84
右侧预制楼梯 D2	(102, 67)	11.6	3.84
预制叠合板需求点 D3	(83.75, 57)	11.6	39.02
预制叠合板需求点 D4	(102.25, 57)	11.6	39.02

1#供应点预制构件堆场 S 信息

名称	坐标	高度
叠合板供应点 S1	(80, 98)	0.5
楼梯供应点 S2	(96, 98)	1

标准层供需运输量 Q(次)

	叠合板供应点 S1	楼梯供应点 S2
需求点 D1		2
需求点 D2		2
需求点 D3	48	
需求点 D4	48	

2#标准层需求点 D 信息

构件	坐标(D _x , D _y)	高度 (D _z)	重量(t)
左侧预制楼梯 D1	(49.8, 37)	12.9	3.84
右侧预制楼梯 D2	(64.7, 37)	12.9	3.84
预制叠合板需求点 D3	(46.75, 25)	12.9	39.02
预制叠合板需求点 D4	(65.25, 25)	12.9	39.02

2#供应点预制构件堆场 S 信息

名称	坐标	高度
叠合板供应点 S3	(7, 31)	0.5
楼梯供应点 S4	(30, 48)	1

2#标准层供需运输量 Q(次)

	叠合板供应点 S1	楼梯供应点 S2
需求点 D1		2
需求点 D2		2
需求点 D3	48	
需求点 D4	48	

1.2 目标函数 2: 成本

$$F_2 = \min[\sum_{p=1}^{n} \sum_{l=1}^{m} C_{pq} d_{pq}]$$

式中,p、q—临时设施,

p=1, 2, 3, 4, 5, 6, 7, 8, 9, 10;

q=1, 2, 3, 4, 5, 6, 7, 8, 9, 10;

 C_{pq} 一设施 p 和设施 q 单位距离产生的流动费用,根据物流强度表(后图所示),赋值 A=243, E=81, I=27, O=9, U=3;

d_{pq}一设施 p 和设施 q 的距离;

物流强度表

注释: E 表示 <u>1#建筑物和预制叠合板堆放区关系是 E</u>, U 表示办公室和钢筋加工区物流关系是 U, 两设施间基本没有物流关系,可以增大两者之间的距离。

表 3-3 物流相关表

单位网格设置为 5m×5m。

临时设施信息

		11. 4 24% 5 11.1.5	
编号	设施名称	设施属性	设施尺寸 (I×w)
F1	预制叠合板堆放区	生产区非固定设施	20×12
	S1		
F2	预制楼梯堆放区 S2	生产区非固定设施	20×12
F3	预制叠合板堆放区	生产区非固定设施	20×12
	S3		
F4	预制楼梯堆放区 S4	生产区非固定设施	20×12
F5	钢筋加工堆放棚	生产区非固定设施	24×12
F6	木工一体板加工棚	生产区非固定设施	12×12
F7	材料仓库	生产区非固定设施	25×12

F8	建筑垃圾堆放区	生产区非固定设施	6×5
F9	办公室	办公区非固定设施	39.6×5.6
F10	工人宿舍	生活区非固定设施	39.6×5.6

F11	1#建筑	生产区固定设施	37×18.45	(90, 55)
F12	2#建筑	生产区固定设施	37×18.45	(55, 25)
F13	1#塔吊	生产区固定设施	3×3	(120, 60)
F14	2#塔吊	生产区固定设施	3×3	(30, 30)
F15	道路 1	辅助生产区固定设	140×8	(85, 80)
		施		
F16	道路 2	辅助生产区固定设	80×8	(155, 40)
		施		
F17	道路 3	辅助生产区固定设	155×8	(80, 5)
		施		
F18	道路 4	辅助生产区固定设	100×8	(20, 55)
		施		

1.3 目标函数 3: 噪音

设施p和设施q的距离采用式计算。

$$d_{pq} = \sqrt{ (x_p - x_q)^2 + \sqrt{ (y_p - y_q)^2 }}$$

p=5, 6;

q=5, 6;

噪声污染计算公式如下:

$$t_q = 10log_{10} \sum\nolimits_{e=1}^{v} 10^{0.1L_e}$$

式中,t_a一临时设施q对应的工种的工人所接收到的噪音污染水平;

e—设施 p 相应噪音发射源, e=1, 2...v;

Le一设施 p 施工噪声源产生的声压级,可由下式推导;

如果相应工作类型的工人和噪音源位于同一设施(p=q)时,则 Le 的计算公式如下

$$L_{\alpha}$$
 $LA_{\alpha\alpha}$

式中, LA_{eq}一设备本身产生的声压级,后表直接给出;

如果相应工作类型的工人和噪音源不位于同一设施($p\neq q$)时,则 L_e 的计算公式如

$$L_{e=}LA_{eq}-Y$$

$$Y = 5.548 ln (d_{pq}) - 1.042, d_{pq} \ge 5$$

因此,
$$L_{e=}$$
 $\begin{cases} LA_{eq} \\ LA_{eq} - Y \end{cases}$

由于距离等各种消声因素的影响,使得产生噪声污染的设施 p 传至接受噪音的设施 q 时, LA_{eq} 不可避免减小,所以最终 q 接收的噪音声压级 $L_e < LA_{eq}$ 。

因此,为了减小噪声污染对场地内工人的影响,降低目标函数 F1 的数学表达式如下式 3-5。

$$F_3 = min10log_{10} \sum_{q=1}^{m} 10^{0.1t_q}$$

编号	噪声源 e	声压级[dB (A)]	设施	工作类型
S1	钢筋切断机	90	F5	钢筋工人
S2	钢筋调直机	86.5	F5	钢筋工人
S3	钢筋弯曲机	77.7	F5	钢筋工人
S4	台锯	95	F6	木匠

二、约束条件

根据简化初始施工平面布置图,结合现场实际情况,划分其他临时设施可用场地的坐标范围如下:

$$\begin{cases} 0 \! < \! x \! < \! 12 \\ 15 \! < \! y \! < \! 100 \end{cases} \begin{cases} 20 \! < \! x \! < \! 36.5 \\ 0 \! < \! x \! < \! 73.5 \end{cases} \begin{cases} 20 \! < \! x \! < \! 157 \\ 0 \! < \! x \! < \! 120 \end{cases} \begin{cases} 73.5 \! < \! x \! < \! 120 \\ 0 \! < \! x \! < \! 105 \end{cases} \begin{cases} 73.5 \! < \! x \! < \! 120 \\ 0 \! < \! x \! < \! 105 \end{cases}$$

2.1 约束条件 1: 现场边界约束条件

$$\begin{aligned} \frac{l_{i}}{2} - x_{i} &\leq 0 \\ x_{i} + \frac{l_{i}}{2} - 130 &\leq 0 \\ \frac{w_{i}}{2} - y_{i} &\leq 0 \\ y_{i} + \frac{w_{i}}{2} - 105 &\leq 0 \end{aligned}$$

式中,(x_i , y_i)一临时设施 i 的形心坐标为,i 设施 x 方向长度为 l_i , y 方向长度为 w_i 。 i=1, 2, 3, 4, 5, 6, 7, 8, 9, 10:

2.1 约束条件 2: 设施重叠约束

$$0.5 \ (l_i + l_j) \ + \Delta x_{ij} - |x_i - x_j| \le 0$$

$$0.5 (w_i + w_j) + \Delta y_{ij} - |y_i - y_j| \le 0$$

i=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18;

i=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18;

Δx_{ii} , Δy_{ii}均为3

式中, i 设施 x 方向长度为 l_i , y 方向长度为 w_i 。 j 设施 x 方向长度为 l_i , y 方向长度为 w_i 。

2.3 约束条件 3: 塔吊覆盖约束

两台塔吊(F13 和 F14)的起重范围为 56m。叠合板堆场 F1、楼梯堆场 F2 的范围为 F12, 而叠合板堆场 F1、楼梯堆场 F2 的范围为 F13, 因此, 塔吊的约束表示如下。

塔吊1(F12):

$$\sqrt{(x_i - x_{k1})^2 - (y_i - y_{k1})^2} - 56 \le 0$$

i=1, 2;

塔吊 2(F13):

$$\sqrt{(x_i - x_{k2})^2 - (y_i - y_{k2})^2} - 56 \le 0$$

i=3, 4;

钢筋加工堆放棚(F5)、木工一体板加工棚(F6)必须位于两台塔吊的可达范围之内

$$\left\{ \sqrt{\left(x_{i}-x_{k1}\right)^{2}-\left(y_{i}-y_{k1}\right)^{2}}-56, \sqrt{\left(x_{i}-x_{k2}\right)^{2}-\left(y_{i}-y_{k2}\right)^{2}}-56 \right\} \leq 0$$

i=5, 6;