converting with expression with postfix expression.

poster expression will be -

at the end of array wifix

step 20 from left to right away wife one by one

to the stack. Left parenthesis "(" than add it

postfix. If symbol is operand then add it to array

bteps: 1) If symbol is operator then pop the operators which have same precedence or higher precedence than the operator which occurred 3 stack. Add the popped operator to array postfix Add the scarned symbol operator with

step6: pop all the operators from stick until

steps: Do the same process until # comes in scanning If symbol is '#' then pop all the symbols from stack and add them to array postox except to Ramove left parentheris (from stack.

(H/S) * AX3-(DX2+8) KY . (3/H)

Snihally # will be added in slack and at the end of in the expression will be

A# (B+ CAD) - EAF + (6/H) #

20		2	81	4	16	15	14	w.	12	11	10	_0	60	7	6	5	4	w	2		5+45
· H	+	,	I	1	9	1	*	T	>	CI	1)	D	>	C	+	8	0	*	A	109 mps
	# - #	* *	十 - * / /	1)*一年	#-#(#-#(#-*	#-/	#->	# -	- #	# *	/十/*#	/ + / * #	+)*#	# * (+)*#	#*(**	#	Operator in Stack
ABCDA + # EFAGH/# -	ABCDN+ X EFAGH/	H9V13 x + V G79H	200	ABCD X+ X EF AG	ABCD 1 + X EF 16	ABCDY +XEFY	ABCDN +X EFN	ABCDN +XEF	48CD1+4E	ABCDN+*E	4BCD 1+ *	46 CD/1+	ABCD	ABC	ABC	AB	AB	A	A	A	ack postfix expression

to now the postix expression is

expression so now the postfix expression and evaluate it sufficiently to will be added at the expression will be The steps involved to evaluate postby expression will be step 1: Evaluation of Postfix expression : 59 cp 3: Step4: Step 5: Do the same process until # corner in scann steps: Pop the element of stack which will be value of evaluation of postfix withmute expression. 4、5、4、2、八、十、米、2、2、八、月、ラ、人水、一、井 Ex symbol is operator then pop last wo element of stack and evaluate it as [top-1] operator [top] and push it to stack postfix. of symbol is operand then push it to slack from left to right. Add the unique expended # at the end of what

16	7	14	22	12	=	10.	-0	00	E	6	UI.	4	S	10	-	SHO
#	1	*	/	S	٩	>	2	2	*	+	>	٢	4	4	4	Symbol
	72	84 12	84, 4, 3	. 84, 4, 9, 3		84, 4	84,2,2	84,2	. 84	4,21	4,5,16	4,5,4,2	4,5,4	4, 5	4	Operator in stack

so, after evaluation of the postfix expression its

and evaluate it

4 * (5 + 4 12) - 212 * (9/3)

= 4 * (5 + 16) - 4 * 3

= 4 * 21 - 12

	= 4, 5, (4, \(\delta\), +, \(\delta\), \(\	4,5,4,2,0,+,*,2,2,0	
- (8/2 × 3) 2) 2 - (8/2 × 3) - (8/2 × 3)	2),(9/3), +, - 2 * 9/3),- 2 * 9/3),- 2 * 9/3),- 2 * 9/3),- 2 * 9/3),- 2 * 9/3),- 2 * 9/3),- 4 * 9/3),- 2 * 9/3),- 4 * 9/3),- 2 * 9/3,- 2 * 9/3	9.3) / × / -	

	10	4 3		7 2	13 11 6	4 10	w h	- 5	01 - # 22 - 25 24 - 25 25 - 25 26 - 25
	# 1	cu ',	+1 +	* 4	100	> 1	000	1 2 m	6 -4 6 7 Moorie
Natural		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	43		2 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 4 2 4	62	0 CU	Operator in Stack.	bester outre should refer to

= +A - * (B\$C) *D / (E+F) * (K+L) * I = +A - { (B\$C) * D } (E+F) / (K+L) * I = +A - { (B\$C) * D } / (E+F) / (K+L) * I Transform the following into infix expression. (1) + * + -7,3,2,1,3 (2) + * - * \$BCD/+EF*+KLI (3) AB-C+LPR-+\$ ① + * + - 7,3;2,1,3 \$(A-B)+c} \(+ (P-R) + \$ = (4+2)*1+3 A+ (B\$0) *D- (E+F)/(X+L) *I +A- * \$ BCD / + EF * + KL] = (7-3+2)+1+3 = + * + (7-3), 2, 1, 3 = + * (7-3) + 2 + 1, 3 $= + {(7-3) + 2} * 1, 3$ A-B+C\$ L+P-R AB-C TLPR-+\$