MANE 6960-01 Fluid Mechanics Fall Semester 2019 HW #5

Due: December 5, 2019

- 1. Consider the Rayleigh problem, where the plate is moved with the velocity $V_x(y=0;t)=t^n$, where the exponent n is a parameter. By looking for similarity solutions show that the velocity may be written as $V_x(y;t)=t^{\epsilon}g(yt^{\beta})$. What are the values of β and ϵ ? Write the ordinary differential equation that g must satisfy with the corresponding boundary conditions. Solve this equation for n=1/2. Comment on how the diffusion length scales with time?
- 2. Use the 4th order Runge-Kutta numerical integration scheme to solve the boundary layer eq $2\frac{d^3f}{d\eta^3} + f\frac{d^2f}{d\eta^2} = 0 \text{ with the boundary conditions } f(0) = \frac{df}{d\eta}(0) = 0, \frac{df}{d\eta}(\eta \to \infty) = 1. \text{ Using}$

iterations until all conditions are satisfied, determine $\frac{d^2f}{d\eta^2}(0)$ and plot the functions $f, \frac{df}{d\eta}, \frac{d^2f}{d\eta^2}$.

For numerical computations apply the far-field condition at $\eta = 10$. You can use the Matlab procedure ODE45.

3. Use the 4th order Runge-Kutta numerical integration scheme to numerically solve the Falkner-

Skan equation $\frac{d^3 f}{d\eta^5} + f \frac{d^2 f}{d\eta^2} - \frac{2m}{m+1} \left[\left(\frac{df}{d\eta} \right)^2 - 1 \right] = 0 \text{ with boundary conditions}$

 $f(0) = \frac{df}{d\eta}(0) = 0, \frac{df}{d\eta}(\infty) = 1$ (for a boundary layer with a far-field axial velocity $U(x) = U_1 x^m$)

when (i) m=1, (ii) m=0, and (iii) m=-0.0904. For each m, using iterations until all conditions are satisfied, determine $\frac{d^2f}{d\eta^2}(0)$ and plot the functions $f, \frac{df}{d\eta}, \frac{d^2f}{d\eta^2}$. For numerical

computations apply the far-field condition at $\eta = 10$. You can use the Matlab procedure ODE45.

- **4.** Consider the steady, incompressible, viscous and axisymmetric Burgers vortex that is given in a cylindrical coordinate system. For this flow the radial velocity is: $V_r = -ar$ where a is a constant.
 - (a) From the continuity eq in axisymmetric cylindrical coordinates, determine the axial velocity V_z .
 - (b) Then use the azimuthal momentum eq in axisymmetric cylindrical coordinates to determine the azimuthal velocity $V_{\theta}(\mathbf{r})$. Assume the centerline condition $V_{\theta}(0)=0$ and the far-field relation $V_{\theta}(r>>1)=\Gamma/(2\pi r)$ where Γ is a constant. Hint: assume $2\pi r V_{\theta}/\Gamma=f(\eta)$ where r

 $\eta = \frac{r}{\sqrt{v/2a}}$ and derive a differential eq for f. Use the example of a decaying vortex in time to

analytically solve $f(\eta)$ and determine $V_{\theta}(r)$.

(c) Apply the 4th order Runge-Kutta numerical integration scheme to numerically solve the differential eq for f with f(0)=0 and $f(\eta >> 1)=1$. Using iterations until all conditions are satisfied, determine $\frac{df}{d\eta}(0)$ and plot the functions $f(\frac{df}{d\eta})$. For numerical computations apply the far-field condition at $\eta = 10$. You can use the Matlab procedure ODE45.