Low-cost, portable sequencing enables experimental environmental DNA monitoring.

Monitoring plant biodiversity in aquatic eDNA with low-cost Nanopore Flongle sequencing

¹ Department of Biology, Stonehill College ² Sackler Institute for Comparative Genomics, American Museum of Natural History

Premise of the study

Cellular and cell-free DNA obtained from environmental samples of soil, water, and air can detect local biodiversity. Environmental DNA (eDNA) sequencing typically relies on standard molecular techniques and resources. Here we present a fully portable workflow designed to work with limited infrastructure for the collection, isolation, extraction, sequencing, and analysis of aquatic eDNA for the monitoring of plant biodiversity.

Methods

We extracted aquatic eDNA from an open pond and a seasonal wetland. Samples were amplified targeting 350bp to 890bp segments from *psbA3*, *rbcLa*, *ITS2*, *18S*, *trnL* genomic regions. Amplified DNA was barcoded, pooled up to twelve reactions per run, and sequenced on the Oxford Nanopore MinION sequencer using the low-throughput Flongle flowcells. Amplicon sequences were classified using

Kraken2 and BLAST followed by a lowest common ancestor algorithm using the NCBI taxonomy. Figure 1

The full protocol is available dx.doi.org/10.17504/protocols.io.bc4wiyxe

Figure 1: General Methodological Workflow

O.2

O.2

O.4

O.5

NMDS1

Grp © Control NMDS1

Swamp

Grp © Control NMDS1

Swamp

Figure 3: Ordination plots

Results

Sequence analysis reveals highly local differences in plant diversity including both aquatic and terrestrial plant taxa Figure 2 and Figure 3.

The workflow built around this platform provides end-toend amplicon-based sequencing that can be used to detect nearby plant diversity. The Oxford Nanopore MinION sequencer and the low throughput Flongle flowcell provides a sequencing platform that combines portability, low cost, and ease of use that are essential features for field applications of amplicon metabarcoding.

Resources

- Code Repository
- NCBI BioProject: PRJNA488629

