Models for unbounded count data

Bert van der Veen

Department of Mathematical Sciences, NTNU

Outline

- Models for count data
- Residual diagnostics in GLMs
- Other useful models

Questions about yesterday?

The binomial GLM

Response data: r the number of successes in N trials

 $\begin{picture}(20,20) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){1$

 $\textbf{Parameters} \colon \text{probability of success } p_i \text{ in trial } i$

 ${f Goal}$: estimate pi_i for each observation

Binomial GLM use

- When a linear regression is not appropriate :)
- For binary data or counts of successes/failures

Common examples

- OME signal identification
- cancer rates
- Predicting species' distributions
- Number of germinated plant seeds
- Prevalence of disease in a population
- Probability of observing a behavior
- ► Proportion of orchids ••

Binomial link functions (2)

Typical count cases

- Number of caught fish
- Number of deaths due to lung cancer or other diseases
- Seizure counts
- Times a behavior is expressed
- Number of pidgeons in a city
- Number of Bigfoot reports
- Number of wrongful convictions
- Number of stars in the night sky

The Poisson GLM

Response data: k_i the count

 $\begin{picture}(20,20) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){1$

 $\textbf{Parameters} : \ \mathsf{mean} \ \lambda$

Goal: estimate λ_i for each observation

$$\mathcal{L}(y_i; \Theta) = \exp\{y_i \log(\lambda_i) - \lambda_i - \log(y_i!)\}$$

The Poisson paramater λ is the mean of the counting process

Is Poisson regression in the EF?

$$\mathcal{L}(y_i; \Theta) = \exp\left\{\frac{y_i \log(\lambda) + \log(\lambda)}{1} + \log(y_i!)\right\}$$
(2)

All GLMs can be formulated as:

$$\mathcal{L}(y_i; \Theta) = \exp\left\{\frac{y_i \eta_i - b(\eta_i)}{a(\phi)} + c(y_i, \phi)\right\} \tag{3}$$

The Poisson distribution visually

Log-link function

So log is the canonical link. This looks like:

square root-link function

An alternative is the square root-link function $\lambda_i = (\alpha + x_i \beta)^2$

Poisson assumptions

- An event can occur $0...\infty$ times
- Events are independent
- Events cannot occur simultaneously
- Variance equals the mean
- The rate of events is constant

The rate of events

Counts are usually collected over time or space:

- The amount of fish we catch in an hour
- The number of deaths on a population of 10.000
- The number of seizures a patient has during the night
- The number of times a behavior is expressed during a treatment
- Number of pidgeons in a city the size of Los Angeles
- The number of bigfoot reports collected in a small forest, yesterday, by 3 people
- Number of wrongful convictions in Germany last year
- Number of starts in the night sky

The Poisson distribution: rates

Alternatively we can write:

$$\mathcal{L}(y_i;\Theta) = \exp\{y_i \log(rt) - rt - \log(y_i!)\} \tag{4}$$

so, $\lambda = rt$

- ightharpoonup r is the rate at which counts occur, per time period t
- \blacktriangleright we can instead write $\lambda = t \exp(\eta) = \exp\{\eta + \log(t)\}$
- $\triangleright \log(t)$ is called an **offset**

- On average we catch 1 fish in 20 minutes $\lambda = 1 = \exp\{-2.99 + \log(20)\}$
- \blacktriangleright If we go fishing for an hour we catch $\exp(-2.99)*60=3$ fish
- ▶ If we go fishing for one minute we catch $\exp(-2.99) = \frac{1}{20}$ fish
- Here, $r = \exp(-2.99)$ and t is the time we want to spend fishing
- We can also find the amount of time we need to spend to catch 5 fish
 - $ho \exp\{-2.99 + \log(t)\} = 5$, so $t = \frac{5}{\exp(-2.99)} = 100$ minutes

Log-linear regression is a class of models that uses the log-link function:

$$\log\{\mathbb{E}(y_i|x_i)\} = \eta_i = \alpha + x_i\beta$$

$$\mathbb{E}(y_i|x_i) = \lambda_i = \exp(\alpha + x_i\beta)$$
(5)

Log-linear regression is commonly used to analyse count data

Log-linear regression is a "multiplicative" model

$$\lambda_i = \exp(\alpha + x_i \beta)$$

$$= \exp(\alpha) \exp(x_i \beta)$$
(6)

Log-linear regression is a "multiplicative" model

$$\lambda_i = \exp(\alpha + x_i \beta)$$

$$= \exp(\alpha) \exp(x_i \beta)$$
(6)

A unit increase in x_i scales λ_i by $\exp(\beta)$

So, when $\exp(\beta)=\frac{1}{2}$, $\exp(\alpha)$ halves for every unit of x_i So, when $\exp(\beta)=2$, $\exp(\alpha)$ doubles for every unit of x_i

Log-linear regression is a "multiplicative" model

$$\lambda_i = \exp(\alpha + x_i \beta)$$

$$= \exp(\alpha) \exp(x_i \beta)$$
(6)

A unit increase in x_i scales λ_i by $\exp(\beta)$

So, when $\exp(\beta)=\frac{1}{2}$, $\exp(\alpha)$ halves for every unit of x_i So, when $\exp(\beta)=2$, $\exp(\alpha)$ doubles for every unit of x_i

Of course, this is more involved with multiple predictors

Example of a multiplicative process

Say that we have the model:

$$\log(\lambda) = \alpha + x_i \beta \tag{7}$$

- ightharpoonup with $\alpha=-2.99$ and $\beta=\log(2)\approx0.693$
- $\triangleright x_i$ is either 0 or 1: either I was fishing or you were
- $\exp(-2.99) = 0.05$ the average number of fish I caught in the time I spent fishing
- $\exp(-2.99 + \log 2) = \exp(-2.99) * 2 = 0.1$ the average number of fish you caught
- So, you caught twice as many fish! I am not very good at fishing

Example: campus crime

Count of violent crimes for an academic year

Figure 2: campussecuritytoday.com

Figure 1: freepik.com

Campus crime: the data

Data via Legler and Roback (2021)

- 81 observations
- Number of violent crimes, Total number of crimes, Number of property crimes
- Student enrollment
- Type (University or College)
- Region of the country

num_viol	total_crime	num_prop	Enrollment	type	region
30	296	266	5590	U	SE
0	10	10	540	C	SE
23	1256	1233	35747	U	W
1	211	210	28176	С	W
1	117	116	10568	U	SW
0	29	29	3127	U	SW
7	291	284	20675	U	W

How could these data be analysed with a binomial regression?

num_viol	total_crime	num_prop	Enrollment	type	region
30 0	296 10	266 10	5590 540	U C	SE SE
23	1256	1233	35747	Ū	W
1	211 117	210 116	28176 10568	C U	W SW
0	29	29	3127	U	SW
7	291	284	20675	Ŭ	W

What is the relationship between violent crimes and school variables?

Campus crime: fit the model

What issue can we identify for this model?

What is the relationship between violent crimes per 1000 enrolled and school variables?

0

Campus crime: fit the model

```
##
               No.offset Offset
## (Intercept)
                    0.34 - 8.509
                    0.49 0.099
## regionMW
## regionNE
                    0.52 0.781
## regionSE
                    0.87 0.877
                    0.25 0.503
## regionSW
                    0.74 0.273
## regionW
                    1.24 0.340
## typeU
```

Summary

```
model1000 <- glm(num_viol ~ region + type
              + offset(log(Enrollment/1000)),
             family = "poisson", data = campus)
```

```
\exp(\alpha_2) * 1000 = \exp(\alpha_3) \exp(\alpha_2) = \exp(\alpha_3)/1000
\exp(\alpha_2) = \exp{\{\alpha_3 - \log(1000)\}}
```

Campus crime: per 1000 enrolled

##	No.offset	Offset	Per	thousand
## (Intercept)	0.34	-8.509		-1.602
## regionMW	0.49	0.099		0.099
## regionNE	0.52	0.781		0.781
## regionSE	0.87	0.877		0.877
## regionSW	0.25	0.503		0.503
## regionW	0.74	0.273		0.273
## typeU	1.24	0.340		0.340

Do we have a good model?

More on this after the break

- Overdispersion or underdispersion
- Zero-inflation

Summary

Overdispersion

Our assumption: $\lambda = \text{var}(\mathbf{y})$

Reality: $\lambda \ge \text{var}(\mathbf{y})$

- Mean = variance
- If there is more variation, this assumption fails
- Consequences: Cls underestimate, biased parameter estimates, inflation in model selection

For our example: many females have few satellites, but some females have very many.

Underdispersion

Our assumption: $\lambda = \text{var}(\mathbf{y})$

Reality: $\lambda \leq \text{var}(\mathbf{y})$

Considerably less common than overdispersion.

Detecting overdispersion

- Residual diagnostics
- $ightharpoonup D(\mathbf{y}; \hat{\boldsymbol{\mu}})/(n-k)$: should be close to 1
- performance::check_overdispersion (relies on asymptotics)
- Simulation (later today)

Dealing with dispersion: options

- Correct for it (calculate dispersion)
- Fit a different model
 - Negative binomial (overdispersion, MASS package)
 - Conway-Maxwell Poisson (over- and underdispersion.)
 - Generalized Poisson(over- and underdispersion)
 - Quasi-likelihood models
 - Mixed models (not covered here)

Quasi-likelihood models

Introduced by Wedderburn (1974)

- No "real" likelihood is specified for the data
- Means no AIC, but deviance exists
- Largely defined by its variance function

For Poisson responses: does not correct the parameter estimates

$$\mathcal{L}(y_i; \Theta) = \frac{\Gamma(y_i + \phi)}{\Gamma(\phi) y_i!} \left(\frac{\phi}{\mu_i + \phi}\right)^{\phi} \left(\frac{\mu_i}{\mu_i + \phi}\right)^{y_i} \tag{8}$$

- ightharpoonup var $(\mathbf{y}) = \boldsymbol{\mu} + \frac{\boldsymbol{\mu}^2}{\sigma}$
- For large ϕ Poisson!
- Requires more data/information due to extra parameter

Is negative-binomial regression in the EF?

$$\begin{split} \mathcal{L}(y_i;\Theta) &= \exp[\frac{y_i \log\{\frac{\mu_i}{\mu_i + \phi_i}\} - \phi \log\{\frac{\mu_i + \phi}{\phi}\}}{1} + \\ & \log\{\Gamma(y_i + \phi)\} - \log\{\Gamma(\phi)\} - \log(y_i!)] \end{split} \tag{9}$$

All GLMs can be formulated as:

$$\mathcal{L}(y_i; \Theta) = \exp\left\{\frac{y_i \eta_i - b(\eta_i)}{a(\phi)} + c(y_i, \phi)\right\} \tag{10}$$

Example: hurricanes

Deaths due to hurricanes

Hurricanes: the data

Data from Jung et al. (2914)

- 94 observations
- Year, name, Binary name categorization (male, female),
 Masulinity-Femininity score, strength of the hurricane, prior air pressure
- Excluded two outliers

Year	Name	MasFem	MinPressure_before	Gender_MF	Category	alldeaths	NDAM	Elapsed_Yrs
1950	Easy	6.777778	958	Female	3	2	1590	63
1950	King	1.388889	955	Male	3	4	5350	63
1952	Able	3.833333	985	Male	1	3	150	61
1953	Barbara	9.833333	987	Female	1	1	58	60
1953	Florence	8.333333	985	Female	1	0	15	60
1954 1954	Carol Edna	8.111111 8.555556	960 954	Female Female	3 3	60 20	19321 3230	59 59

Are female hurricanes more deadline than male hurricanes?

Hurricanes: fit the model

Hurricanes: interpreting parameters

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 55.000 1.2000 46.0 0.0e+00
## Gender_MFFemale 0.270 0.0570 4.8 1.7e-06
## MinPressure_before -0.055 0.0013 -43.0 0.0e+00
```

How do we interpret the intercept?

Hurricanes: interpreting parameters

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.100 0.0550 38.0 0.0e+00
## Gender_MFFemale 0.270 0.0570 4.8 1.7e-06
## MinPressure_beforeC -0.055 0.0013 -43.0 0.0e+00
```

Average prior air pressure: 964.49 knots

How do we interpret the intercept? And its standard error?

Prior air pressure centered

Hurricanes: interpreting parameters on the **response scale**

- lacksquare (Intercept) = Male-named hurricanes, prior air pressure pprox 965
- ightharpoonup Female-named hurricanes: $\exp(0.27)=1.3$, so 30% more deadly

Hurricanes: visual interpretation

Hurricanes: checking overdispersion

performance::check_overdispersion(modelp1)

```
## # Overdispersion test
##
## dispersion ratio = 18.974
## Pearson's Chi-Squared = 1650.771
## p-value = < 0.001</pre>
```

Overdispersion detected.

Hurricanes: Negative-binomial

```
modelnb <- MASS::glm.nb(alldeaths ~ Gender_MF + MinPressure_before)
and compare the models:</pre>
```

```
AIC(modelp1, modelnb)
```

```
## df AIC
## modelp1 3 1639.9581
## modelnb 4 612.1051
```

Hurricanes crabs: comparing estimates

```
## (Intercept) Poisson estimate NB estimate Poisson SE NB SE ## (Intercept) 2.100 2.200 0.0550 0.2000 ## Gender_MFFemale 0.270 0.047 0.0570 0.2500 ## MinPressure_beforeC -0.055 -0.056 0.0013 0.0061
```

- SEs have increased
- Coefficients have changed
- Female and male-named hurricanes are equally deadly
- Effect of pressure has remained

Count distributions

- Poisson
- Negative binomial (two types, with dispersion)
- Conway-Maxwell Poisson (with dispersion)
- Generalized Poisson (with dispersion)
- Skellam distribution (difference of counts)
- Binomial distribution (counts with a maximum)
- Truncated distributions (e.g., without zeros)
- Quasi-likelihood models

Summary

- Counts are analysed with log-linear models
- The collection effort of counts needs to be considered (offset)
- When the Poisson assumption is violated, we change to another count distribution