

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K	A2	(11) International Publication Number: WO 99/60986		
AUIK	~~	(43) International Publication Date: 2 December 1999 (02.12.99)		
(21) International Application Number: PCT/US	99/117	(CA). RASPER, Dita, M. [CA/CA]; Apartment #7, 16203 Pierrefonds Boulevard, Pierrefonds, Québec H9H 4S8 (CA).		
(22) International Filing Date: 27 May 1999 (27.05.9	(74) Agent: COPPOLA, Joseph, A.; Merck & Co., Inc., P.O. Box 2000, Rahway, NJ 07065-0907 (US).		
(30) Priority Data:		au su		
09/085,199 27 May 1998 (27.05.98)	,	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,		
(71) Applicants (for all designated States except US): 1				
SITY OF BRITISH COLUMBIA [CA/CA]; Univ				
dustry Liaison Office, IRC Building - Room 3				
Health Sciences Mall, Vancouver, British Colum 1Z3 (CA), MERCK FROSST CANADA & CO.				
PO/CP 1005, Pointe Claire-Dorval, Québec H9R 4				
1000, 1000, 1000		RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,		
(72) Inventors; and		ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI		
(75) Inventors/Applicants (for US only): KALCHMAN,				
[CA/CA]; #1403-900 Yonge Street, Toronto, Onta				
3P5 (CA), HAYDEN, Michael, R. [US/CA], 4				
Seventh, Vancouver, British Columbia V6R IV				
HACKAM, Abigail [CA/CA]; 1420 West 11th Vancouver, British Columbia V6H 1L2 (CA). C		***		
Vikramjit [CA/CA]; Suite 210, 2475 Blenheim St				
couver, British Columbia V6K 4N7 (CA). NICH				
Donald, W. [CA/CA]; 18-750 Milton Street,				
Québec H2X 1W4 (CA). VALLAINCOURT,				
[CA/CA]; 18022 Amalfi Street, Québec, Québec	119K 1	N7		

(54) Title: APOPTOSIS MODULATORS THAT INTERACT WITH THE HUNTINGTON'S DISEASE GENE

(57) Abstract

A family of proteins, including a specific human protein designated as HIP1, has been identified that interact differently with the gene product of a normal (16 CAG repeat) and an expanded (>44 CAG repeat) HD gene. Expression of the HIP1 protein was found to be enriched in the brain. Analysis of the sequence of the HIP1 protein indicated that it includes a death effector domain (DED), suggesting an apoptotic function. Thus, it appears that a normal function of Huntingtin may be to bind HIP1 and related apoptosis modulators, reducing its effectiveness in stimulating cell death. Since expanded huntingtin performs this function less well, there is an increase in HIP1-modulated cell death in individuals with an expanded repeat in the HD gene. This understanding of the likely role of huntingtin and HIP1 or related proteins (collectively "HIP-apoptosis modulating proteins") in the pathology of Huntington's disease offers several possibilities for therapy. First, because the function of huntingtin apparently depends at least in part on the ability to interact with HIP-apoptosis modulating proteins, added expression (e.g., via gene therapy) of normal (non-expanded) huntingtin or of the HIP-binding region of huntingtin should provide a therapeutic benefit. Other DED-interacting peptides could also be used to mask and reduce the interaction of HIP-apoptosis modulating proteins with the death signaling complex. Alternatively, a mutant form of HIP-protein from which the DED has been deleted might be introduced, for example using gene therapy techniques. Because HIP-apoptosis modulating proteins have been shown to self-associate, a protein with a deleted DED may compete with endogenous HIP-protein in the formation of these associations, thereby reducing the amount of apoptotically-active HIP-protein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armonia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal .
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belares	IS	iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbubwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Karakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	L	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanaka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

APOPTOSIS MODULATORS THAT INTERACT WITH THE HUNTINGTON'S DISEASE GENE

BACKGROUND OF THE INVENTION

5

10

15

20

25

This application relates to a family of apoptosis modulators that interact with the **Huntington**'s Disease gene product, and to methods and compositions relating thereto.

"Interacting proteins" are proteins which associate *in vivo* to form specific complexes. Non-covalent bonds, including hydrogen bonds, hydrophobic interactions and other molecular associations form between the proteins when two protein surfaces are matched or have affinity for each other. This affinity or match is required for the recognition of the two proteins, and the formation of an interaction. Protein-protein interactions are involved in the assembly of enzyme subunits; in antigen-antibody reactions; in forming the supramolecular structures of ribosomes, filaments, and viruses; in transport; and in the interaction of receptors on a cell with growth factors and hormones.

Huntington's disease is an adult onset disorder characterized by selective neuronal loss in discrete regions of the brain and spinal chord that lead to progressive movement disorder, personality change and intellectual decline. From onset, which generally occurs around age 40, the disease progresses with worsening symptoms, ending in death approximately 18 years after onset.

The biochemical cause of Huntington's disease is unclear. While the biochemical cause of Huntington's disease has remained elusive, a mutation in a gene within chromosome 4p16.3 subband has been identified and linked to the disease. This gene, referred to as the Huntington's Disease or HD gene, contains two repeat regions, a CAG repeat region and a CCG repeat region. Testing of Huntington's disease patients has shown that the CAG region is highly polymorphic, and that the number of CAG repeat units in the CAG repeat region is a very reliable indicator of having inherited the gene for Huntington's disease. Thus, in control individuals and in most individuals suffering from neuropsychiatric disorders other than Huntington's disease, the number of CAG repeats is between 9 and 35, while in individuals suffering from Huntington's disease the number of CAG repeats is expanded and is 36 or greater.

10

15

20

25

30

To date, no differences have been observed at either the total RNA, mRNA or protein levels between normal and HD-affected individuals. Thus, the function of the HD protein and its role in the pathogenesis of Huntington's Disease remain to be elucidated.

SUMMARY OF THE INVENTION

We have now identified a protein designated as HIP1, that interact differently with the gene product of a normal (16 CAG repeat) and an expanded (>44 CAG repeat) HD gene. The HIP1 protein originally isolated from a yeast two-hybrid screen is encoded by a 1.2 kb cDNA (Seq. ID. No. 1), devoid of stop codons, that is expressed as a 400 amino acid polypeptide (Seq. ID. No. 2). Subsequent study has elucidated additional sequence for HIP1 such that a 1090 amino acid protein is now known. (Seq. ID No. 5). Expression of the HIP1 protein was found to be enriched in the brain.

Analysis of the sequence of the HIP1 protein indicated that it includes a death effector domain (DED), suggesting an apoptotic function. Thus, it appears that a normal function of huntingtin may be to bind HIP1 and related apoptosis modulators, reducing its effectiveness in stimulating cell death. Since expanded huntingtin performs this function less well, there is an increase in HIP1-modulated cell death in individuals with an expanded repeat in the HD gene. Furthermore, additional members of the same family of proteins have been identified which also contain a DED. Thus, the present invention provides a new class of apoptotic modulators which are referred to as HIP-apoptosis modulating proteins.

This understanding of the likely role of huntingtin and HIP1 or related proteins in the pathology of Huntington's Disease offers several possibilities for therapy. First, because the function of huntingtin apparently depends at least in part on the ability to interact with HIP-apoptosis modulating proteins, added expression (e.g., via gene therapy) of normal (non-expanded) huntingtin or of the HIP-binding region of huntingtin should provide a therapeutic benefit. Other DED-interacting peptides could also be used to mask and reduce the interaction of HIP-apoptosis modulating proteins with the death signaling complex.

Alternatively, a mutant form of HIP-protein from which the DED has been deleted might be introduced, for example using gene therapy techniques. Because HIP-apoptosis modulating proteins have been shown to self-associate, a protein with a deleted DED may compete with

10

15

20

25

30

endogenous HIP-protein in the formation of these associations, thereby reducing the amount of apoptotically-active HIP-protein.

BRIEF DESCRIPTION OF THE DRAWING

- Fig. 1 graphically depicts the amount of interaction between HIP1 and Huntingtin proteins with varying lengths of polyglutamine repeat;
 - Fig. 2 compares the nucleic acid sequences of human and murine HIP1 and HIP1a;
 - Fig. 3 compares the amino acid sequences of human and murine HIP1 and HIP1a:
- Fig. 4 shows the sequences of various death effector domains in comparison to the DED of human and murine HIP1 and HIP1a;
 - Fig. 5 shows the genomic organization of human HIP1;
 - Fig. 6 compares the sequences of human HIP1 with ZK370.3 protein of C. elegans;
- Fig. 7 shows mouse EST's with homology to human HIP1 cDNA used to screen a mouse brain library;
 - Fig. 8 shows the affect of HIP1 on susceptibility of cells to stress; and
- Figs. 9A 9C show the toxicity of HIP1 in the presence of huntingtin with different lengths of polyglutamine repeats.

DETAILED DESCRIPTION OF THE INVENTION

This application relates to a new family of proteins function as modulators of apoptosis. At least some of these proteins, notably the human protein designated HIP1, interact with the gene product of the Huntington's disease gene. Other proteins within the family possess at least 40% and preferably more than 50% nucleotide identity with HIP1 and include a death effector domain (DED). Such proteins are referred to in the specification and claims hereof as "HIP-apoptosis modulating proteins."

The first HIP-apoptosis modulating protein identified was designated as HIP1. HIP1 was identified using the yeast two-hybrid system described in US Patent No. 5,283,173 which is incorporated herein by reference. Briefly, this system utilizes two chimeric genes or plasmids expressible in a yeast host. The yeast host is selected to contain a detectable marker gene having a binding site for the DNA binding domain of a transcriptional activator. The

first chimeric gene or plasmid encodes a DNA-binding domain which recognizes the binding site of the selectable marker gene and a test protein or protein fragment. The second chimeric gene or plasmid encodes for a second test protein and a transcriptional activation domain. The two chimeric genes or plasmids are introduced into the host cell and expressed, and the cells are cultivated. Expression of the detectable marker gene only occurs when the gene product of the first chimeric gene or plasmid binds to the DNA binding domain of the detectable marker gene, and a transcriptional activation domain is brought into sufficient proximity to the DNA-binding domain, an occurrence which is facilitated by protein-protein interactions between the first and second test proteins. By selecting for cells expressing the detectable marker gene, those cells which contain chimeric genes or plasmids for interacting proteins can be identified, and the gene can be recovered and identified.

5

10

15

20

25

30

In testing for Huntington Interacting Proteins, several different plasmids were prepared containing portions of the human HD gene. The first four, identified as 16pGBT9, 44pGBT9, 80pGBT9 and 128pGBT9, were GAL4 DNA binding domain-HD in-frame fusions containing nucleotides 314 to 1955 (amino acids 1-540) of the published HD cDNA sequences cloned into the vector pGBT9 (Clontech). These plasmids contain a CAG repeat region of 16, 44, 80 and 128 glutamine-encoding repeats, respectively. A clone (DMK BamHIpGBT9) was made by fusing a cDNA encoding the first 544 amino acids of the myotonic dystrophy gene (a gift from R. Korneluk) in-frame with the GAL4-DNA BD of pGBT9 and was used as a negative control.

These plasmids have been used to identify and characterize HIP1, as well as two additional HD-interacting proteins, HIP2 and HIP3, which have not yet been tested for function as apoptosis modulators. These plasmids can be further used for the identification of additional interacting proteins which do act as apoptosis modulators, and for tests to refine the region on the protein in which the interaction occurs. Thus, one aspect of the invention is these four plasmids, and the use of these plasmids in identifying HD-interacting proteins. Furthermore, it will be appreciated that the GAL4 DNA-binding and activating domains are not the only domains which can be used in the yeast two-hybrid assay. Thus, in a broader sense, the invention encompasses any chimeric genes or plasmids containing nucleotides 314 to 1955 of the HD gene together with an activating or DNA-binding domain suitable for use

10

15

20

25

30

in the yeast one, two- or three-hybrid assay for proteins critical in either binding to the HD protein or responsible for regulated expression of the HD gene.

After introducing the plasmids into Y190 yeast host cells, transforming the host cells with an adult human brain MatchmakerTM (Clontech) cDNA library coupled with a GALA activating domain, and selecting for the expression of two detectable marker genes to identify clones containing genes for interacting proteins, the activating domain plasmids were recovered and analyzed. As a result of this analysis, three different cDNA fragments were identified as encoding for HD-interacting proteins and designated as HIP1, HIP2 and HIP3. The nucleic acid sequence of HIP1, as originally recovered in the yeast two-hybrid assay, is given in Seq. ID. No 1. The polypeptide which it encodes is given by Scq. ID No. 2. Further investigation of the HIP1 cDNA resulted in the characterization of a longer region of cDNA totaling 4795 bases and a corresponding protein, the sequences of which are given by Seq ID Nos. 3 and 4, respectively. A further portion of the HIP1 protein was characterized, extending the length to the complete protein sequence of 1090 amino acids (Seq. ID No. 5)

The cDNA molecules encoding HIP-apoptosis modulating proteins, particularly those encoding portions of HIP1, can be expiored using oligonucleotide probes for example for amplification and sequencing. In addition, oligonucleotide probes complementary to the cDNA can be used as diagnostic probes to localize and quantify the presence of HIP1 DNA. Probes of this type with a one or two base mismatch can also be used in site-directed mutagenesis to introduce variations into the HIP1 sequence which may increase or decrease the apoptotic activity. Preferred targets for such mutations would be the death effector domains. Thus, a further aspect of the present invention is an oligonucleotide probe, preferably having a length of from 15-40 bases which specifically and selectively hybridizes with the cDNA given by Seq. ID No. 1 or 3 or a sequence complementary thereto. As used herein, the phrase "specifically and selectively hybridizes with" the cDNA refers to primers which will hybridize with the cDNA under stringent hybridization conditions.

Probes of this type can also be used for diagnostic purposes to characterize risk of Huntington's Disease like symptoms arising in individuals where the symptoms are present in the family history but are not associated with an expansion of the CAG repeat. Such symptoms may arise from a mutation in HIP1 or other HIP-apoptosis modulating protein

10

15

20

25

which alters the interaction of this protein with huntingtin, thereby increasing the apoptotic activity of the protein even in the presence of a normal (non-expanded) huntingtin molecule. An appropriate probe for this purpose would one which hybridizes with or adjacent to the huntingtin binding region of the HIP-apoptosis modulating protein. In HIP1, this lies within amino acids 129-514.

DNA sequencing of the HIP1 cDNA initially isolated from the yeast two-hybrid screen (Seq. ID No. 1) revealed a 1.2 kb cDNA that shows no significant degree of nucleic acid identity with any stretch of DNA using the blastn program at ncbi (blast@ncbi.n1m.nih.gov). When the larger HIP1 cDNA sequence (SEO ID NO. 3) was translated into a polypeptide, the HIP1 cDNA coding (nucleotides 328-3069) is observed to be devoid of stop codons, and to produce a 914 amino acid polypeptide. A polypeptide identity search revealed an identity match over the entire length of the protein (46% conservation) with that of a hypothetical protein from C. elegans (ZK370.3 protein; C. elegans cosmid ZK370). This C. elegans protein shares identity with the mouse talin gene. which encodes a 217 kDa protein implicated with maintaining integrity of the cytoskeleton. It also shares identity with the SLA2/MOP2/ END4 gene from Saccharomyces cerevisiae. which is known to code for an essential cytoskeletal associated gene required for the accumulation and or maintenance of plasma membrane H+- ATPase on the cell surface. When pairwise comparisons are performed between HIP1 and the C. elegans ZK370.3 protein (Genpept accession number celzk370.3), it shows 26% complete identity and an overall 46% level of conservation. Comparative analysis between HIP1 and SLA2/MOP2/ END4 (EMBL accession number Z22811) demonstrate similar conservation (20% identity, 40% conservation).

Further exploration revealed several important facts about HIP1 that implicate it in a significantly in the pathogenesis of Huntington's Disease. First, as shown in Fig. 1, it was found that the native interaction between HD protein and HIP1 is influenced by the number of CAG repeats. Second, it was found that expression of the HIP1 protein is enriched in the brain. The highest amounts of expression are in the cortex, with lower levels being seen in the cerebellum, caudate and putamen.

It has also been observed that huntingtin proteins with expanded polyglutamine tracts can aggregate into large, irregularly shaped deposits in HD brains, transgenic mice and in vitro cell culture. We have shown that in HEK (human embryonic kidney) 293T cells, the aggregation of full-length and smaller huntingtin fragments occurs after the cells have been exposed to a period of apoptotic stress. Martindale, et al., Nature Genetics 18: 150-154 (1998). In order to assess the consequence of HIP1 expression in cultured cells, we used huntingtin aggregation as one marker of viability. What we found was that cells cotransfected with huntingtin (128 CAG repeats) and HIP1 contained aggregates comparable to those observed following application of apoptotic stress with sub-lethal doses of tamoxifen in 14% of the cells, and that these cells were the ones in which both genes had been introduced as reflected by a double marker experiment. Transfection of a gene encoding a fusion protein of 128 repeat huntingtin and the DED domain from HIP1 ligated in the sense orientation resulted in aggregate formation in 30 to 50% of the cells.

5

10

15

20

25

30

The implications of the apoptotic activity of HIP1 are two-fold. First, the fact that this activity is apparently differentially modulated by interaction with huntingtin having normal and expanded repeats implicates HIP1 in the apoptotic neuronal death which is observed in Huntington's disease and makes HIP1 a logical target for therapy. A second implication of the apoptotic activity of HIP1 is the potential for use of HIP1 as a therapeutic agent to introduce apoptosis in cancer cells.

Therapeutic targeting of HIP1 or other HIP-apoptosis modulating proteins might take any of several forms, but will in general be a treatment involving administration of a composition that reduces the apoptotic activity of the HIP-apoptosis modulating protein. As used in the specification and claims hereof, the term "administration" includes direct administration of a composition active to reduce apoptotic activity as well as indirect administration which might include administration of pro-drugs or nucleic acids that encode the desired therapeutic composition.

One class of composition which can be used in the therapeutic methods of the invention are those compositions which interfere with the activity of HIP-apoptosis modulating proteins by binding to the proteins and mask and reduce the interaction of HIP-apoptosis modulating proteins with the death signaling complex. Within this class of

10

15

20

25

30

compositions are normal (non-expanded) huntingtin, administered, for example, via increased expression of exogenous HD genes; the HIP-binding region of huntingtin, administered via gene therapy techniques; and other DED-interacting peptides. Other DED-interacting peptides which might be used in a therapeutic method of this type include FADD (Beldin et al., *Cell* 85: 803-815 (1996)) and caspase 8 (Muzio et al., *Cell* 85: 817-827 (1996).

An alternative form of therapy involves the use of a mutant form of HIP1 or other HIP-apoptosis modulating protein from which the DED has been deleted. DED-containing proteins, including HIP1 are self-associating, and this self-association has been shown to be important for activity. (Muzio et al., *Cell* 85: 817-827 (1996). Thus, a protein with a deleted DED may compete with endogenous HIP-protein in the formation of these associations, thereby reducing the amount of apoptotically-active HIP-protein.

In addition to HIP1, we have identified a further human protein, HIP1a, from a human frontal cortex cDNA library. HIP1a is a family member of HIP1, and thus a HIP-apoptosis modulator in accordance with the invention. A partial sequence of HIP1a (the 5' portion of HIP1a remains to be characterized) is given by SEQ ID Nos. 6 and 7. The isolated and characterized portion of HIP1a shows 53% nucleotide identity and 58% amino acid conservation with HIP1 (Table 1, Figs. 2 and 3).

We have also isolated 2 mouse proteins mHIP1 and mHIP1a (SEQ. ID Nos. 8-11) which appear to be the murine homologues of human HIP1 and HIP1a. As in the case of human HIP1a, the 5' portion of mHIP1 remains to be isolated. At present, mHIP1 shows 85% nucleotide identity and 90% amino acid conservation with huHIP1 (Table 1, Figs. 2 and 3). mHIP1a shows 60% nucleotide identity and 61% amino acid conservation with huHIP1 (Table 1, Figs. 2 and 3). mHIP1a shows stronger homology to huHIP1a; it shows 87% nucleotide identity and 91% amino acid conservation with huHIP1a (Table 1, Figs. 2 and 3). Taken together these findings indicate that mHIP1 is the murine homologue of huHIP1 whereas mHIP1a is most likely the murine homologue of huHIP1a. As mentioned previously, HIP1 shows sequence similarity to Sla2p in S. cerevisiae and the hypothetical protein ZK370.3 in C. elegans. Similarly, huHIP1a, mHIP1, and mHIP1a show sequence similar to Sla2p and ZK370.3 (Table 2). The carboxy-terminal regions of huHIP1a, mHIP1, and mHIP1a all show considerable homology to the mammalian membrane

10

15

20

25

30

cytoskeletal-associated protein, talin. This suggests that these 3 proteins may also play a role in the regulation of membrane events through interactions with the underlying cytoskeleton.

HIP1 contains a death effector domain (DED), a domain which is also present in a number of proteins involved in the apoptotic pathway (Fig. 4). This suggests that HIP1 may act as a modulator of the apoptosis pathway. The DED in huHIP1 is present between amino acid positions 287 and 368. Similarly, HIP1a, mHIP1, and mHIP1a also contain a DED. In huHIP1a the DED is present at amino acids 1-78 of the recovered fragment. In mHIP1 and mHIP1a, the DED are present at amino acids 128-210 and 388-470, respectively. The DED present in huHIP1a, mHIP1 and mHIP1a all show significant percentage amino acid conservation to the DED present in huHIP1 (Table 3).

Increasing expression of normal (non-expanded) huntingtin or the HIP-apoptotic modulator-binding portion thereof, a modified HIP-apoptotic modulator in which the DED has been deleted or of a DED-interacting protein or peptide can be accomplished using gene therapy approaches. In general, this will involve introduction of DNA encoding the appropriate protein or peptide in an expressable vector into the brain cells. Expression of HIP-apoptosis modulating proteins may also be useful in treatment of cancer in which case application to other cell types would be desired, and cells expressing HIP-apoptosis modulating proteins may be used for screening of therapeutic compounds. Thus, in a more general sense, expression vectors are defined herein as DNA sequences that are required for the transcription of cloned copies of genes and the translation of their mRNAs in an appropriate cell type. Specifically designed vectors allow the shuttling of DNA between hosts such as bacteria-yeast or bacteria-animal cells. An appropriately constructed expression vector may contain: an origin of replication for autonomous replication in host cells. selectable markers, a limited number of useful restriction enzyme sites, a potential for high copy number, and active promoters. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and initiate RNA synthesis. A strong promoter is one which causes mRNAs to be initiated at high frequency. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses.

A variety of mammalian expression vectors may be used to express recombinant

10

15

20

25

HIP-apoptosis modulating proteins or fragments thereof in mammalian cells. Commercially available mammalian expression vectors which may be suitable for recombinant HIPapoptosis modulating protein expression, include but are not limited to, pMC1neo (Stratagene), pXT1 (Stratagene), pSG5 (Stratagene), EBO-pSV2-neo (ATCC 37593) pBPV-1(8-2) (ATCC 37110), pdBPV-MMTneo(342-12) (ATCC 37224), pRSVgpt (ATCC 37199), pRSVneo (ATCC 37198), pSV2-dhfr (ATCC 37146), pUCTag (ATCC 37460), and IZD35 (ATCC 37565). Other vectors which have been shown to be suitable expression systems in mammalian cells include the herpes simplex viral based vectors: pHSV1 (Geller et al. Proc. Natl. Acad. Sci 87:8950-8954 (1990)); recombinant retroviral vectors; MFG (Jaffee et al. Cancer Res. 53:2221-2226 (1993)); Moloney-based retroviral vectors: LN, LNSX, LNCX, LXSN (Miller and Rosman Biotechniques 7:980-989 (1989)); vaccinia viral vector: MVA (Sutter and Moss Proc. Natl. Acad. Sci. 89:10847-10851 (1992)); recombinant adenovirus vectors: pJM17 (Ali et al Gene Therapy 1:367-384 (1994)), (Berkner K. L. Biotechniques 6:616-624 1988); second generation adenovirus vector: DE1/DE4 adenoviral vectors (Wang and Finer Nature Medicine 2:714-716 (1996)); and Adeno-associated viral vectors: AAV/Neo (Muro-Cacho et al. J. Immunotherapy 11:231-237 (1992)).

The expression vector may be introduced into host cells via any one of a number of techniques including but not limited to transformation, transfection, infection, protoplast fusion, and electroporation. The expression vector-containing cells are clonally propagated and individually analyzed to determine whether they produce the desired protein. Delivery of retroviral vectors to brain and nervous system tissue has been described in US Patents Nos. 4,866,042, 5,082,670 and 5,529,774, which are incorporated herein by references. These patents disclose the use of cerebral grafts or implants as one mechanism for introducing vectors bearing therapeutic gene sequences into the brain, as well as an approach in which the vectors are transmitted across the blood brain barrier.

To further illustrate the methods of making the materials which are the subject of this invention, and the testing which has established their utility, the following non-limiting experimental procedures are provided.

EXAMPLE 1

IDENTIFICATION OF INTERACTING PROTEINS

GAL4-HD cDNA constructs

An HD cDNA construct (44pGBT9), with 44 CAG repeats was generated encompassing amino acids 1 - 540 of the published HD cDNA. This cDNA fragment was fused in frame to the GAL4 DNA-binding domain (BD) of the yeast two-hybrid vector pGBT9 (Clontech). Other HD cDNA constructs, 16pGBT9, 80pGBT9 and 128pGBT9 were constructed, identical to 44pGBT9 but included only 16, 80 or 128 CAG repeats, respectively.

10

5

Another clone (DMKDBamHIpGBT9) containing the first 544 amino acids of the myotonic dystrophy gene (a gift from R. Korneluk) was fused in-frame with the GAL4-DNA BD of pGBT9 and was used as a negative control. Plasmids expressing the GAL4-BDRAD7 (D. Gietz, unpublished) and SIR3 were used as a positive control for the β-galactosidase filter assay.

15

The clones IT15-23Q, IT15-44Q and HAP1 were generous gifts from Dr. C. Ross. These clones represent a previously isolated huntingtin interacting protein that has a higher affinity for the expanded form of the HD protein.

Yeast strains, transformations and β-galactosidase assays

20

The yeast strain Y190 (MATa leu2-3,112, ura3-52, trp1-901, his3-Δ200, ade2-101, gal4Δgal80Δ, URA3::GAL-lacZ, LYS2::GAL-HIS3,cyc') was used for all transformations and assays. Yeast transformations were performed using a modified lithium acetate transformation protocol and grown at 30 C using appropriate synthetic complete (SC) dropout media.

25

The β-galactosidase chromogenic filter assays were performed by transferring the yeast colonies onto Whatman filters. The yeast cells were lysed by submerging the filters in liquid nitrogen for 15-20 seconds. Filters were allowed to dry at room temperature for at least five minutes and placed onto filter paper presoaked in Z-buffer (100 mM sodium phosphate (pH7.0) 10 mM KCl, 1 mM MgSO₄) supplemented with 50 mM

2-mercaptoethanol and 0.07 mg/ml 5-bromo-4-chloro-3-indolyl β -D-galactoside (X-gal). Filters were placed at 37 C for up to 8 hours.

Yeast two-hybrid screening for huntingtin interacting protein (HIP)

cDNAs from an human adult brain MatchmakerTM cDNA library (Clontech) was transformed into the yeast strain Y190 already harboring the 44pGBT9 construct. The transformants were plated onto one hundred 150 mm x 15 mm circular culture dishes containing SC media deficient in Trp, Leu and His. The herbicide 3-amino-triazole (3-AT) (25mM) was utilized to limit the number of false His+ positives (31). The yeast transformants were placed at 30 C for 5 days and β-galactosidase filter assays were performed on all colonies found after this time, as described above, to identify β-galactosidase+ clones. Primary His+/β-galactosidase+ clones were then orderly patched onto a grid on SC -Trp/-Leu/-His (25 mM 3AT) plates and assayed again for His+ growth and the ability to turn blue with a filter assay. Secondary positives were identified for further analysis. Proteins encoded by positive cDNAs were designated as HIPs (Huntingtin Interactive Proteins). Approximately 4.0 x 10⁷ Trp/Leu auxotrophic transformants were screened and of 14 clones isolated 12 represented the same cDNA (HIP1), and the other 2 cDNAs, HIP2 and HIP3 were each represented only once.

The HIP cDNA plasmids were isolated by growing the His+/β-galactosidase+ colony in SC-Leu media overnight, lysing the cells with acid-washed glass beads and electroporating the bacterial strain, KC8 (leuB auxotrophic) with the yeast lysate. The KC8 ampicillin resistant colonies were replica plated onto M9 (-Leu) plates. The plasmid DNA from M9+ colonies was transformed into DH5-a for further manipulation.

25

30

5

10

15

20

EXAMPLE 2

CONFIRMATION OF INTERACTIONS

The HIP1-GAL4-AD cDNA activated both the lac-Z and His reporter genes in the yeast strain Y190 only when co-transformed with the GAL4-BD-HD construct, but not the negative controls (Fig. 1) of the vector alone or a random fusion protein of the myotonin kinase gene. In order to assess the influence of the polyglutamine tract on the interaction

10

15

20

25

30

between HIP1 and HD, semi-quantitative β-galactosidase assays were performed.

GAL4-BD-HD fusion proteins with 16, 44, 80 and 128 glutamine repeats were assayed for their strength of interaction with the GAL4-AD-HIP1 fusion protein.

Liquid β -galactosidase assays were performed by inoculating a single yeast colony into appropriate synthetic complete (SC) dropout media and grown to OD600 0.6-1.5. Five millilitres of overnight culture was pelleted and washed once with 1 ml of Z-Buffer, then resuspended in 100 ml Z-Buffer supplemented with 38 mM 2-mercaptoethanol, and 0.05% SDS. Acid washed glass beads (~100 ml) were added to each sample and vortexed for four minutes, by repeatedly alternating a 30 seconds vortex, with 30 seconds on ice. Each sample was pelleted and 10 ml of lysate was added to 500 ml of lysis buffer. The samples were incubated in a 30 C waterbath for 30 seconds and then 100 ml of a 4 mg/ml o-nitrophenyl b-D galactopyranoside (ONPG) solution was added to each tube. The reaction was allowed to continue for 20 minutes at 30 C and stopped by the addition of 500 ml of 1 M Na₂CO₃ and placing the samples on ice. Subsequently, OD420 was taken in order to calculate the β -galactosidase activity with the equation 1000 x OD420/(t x V x OD600) where t is the elapsed time (minutes) and V is the amount of lysate used.

The specificity of the HIP1-HD interaction can be observed using the chromogenic filter assay. Only yeast cells harboring HIP1 and HD activate both the HIS and lacZ reporter genes in the Y190 yeast host. The cells that contain the HIP1 with HD constructs with 80 or 128 CAG repeats turn blue approximately 45 minutes after the cells with the smaller sized repeats (16 or 44).

No difference in the β -galactosidase activity was observed between the 16 and 44 repeats or between the 80 and 128 repeats. However, a significant difference (p<0.05) in activity is seen between the smaller repeats (16 and 44) and the larger repeats (80 and 128). (Figure 1)

EXAMPLE 3

DNA SEQUENCING, cDNA ISOLATION AND 5' RACE

Oligonucleotide primers were synthesized on an ABI PCR-mate oligo-synthesizer.

DNA sequencing was performed using an ABI 373 fluorescent automated DNA sequencer.

The HIP cDNAs were confirmed to be in-frame with the GAL4-AD by sequencing across the AD-HIP1 cloning junction using an AD oligonucleotide (5'GAA GAT ACC CCA CCA AAC3'). (Seq. ID No. 12)

- 14 -

WO 99/60986

5

10

15

20

25

Subsequently, primer walking was used to determine the remaining sequences. A human frontal cortex >4.0 kb cDNA library (a gift from S. Montal) was screened to isolate the full length HIP1 gene. Fifty nanograms of a 558 base pair Eco RI fragment from the original HIP1 cDNA was radioactively labeled with [α^{12} P]-dCTP using nick-translation and the probe allowed to hybridized to filters containing >105 pfu/ml of the cDNA library overnight at 65°C in Church buffer (see Northern blot protocol). The filters were washed at 65°C for 10 minutes with 1 X SSPE, 15 minutes at 65°C with 1 X SSPE and 0.1% SDS, then for thirty minutes and fifteen minutes with 1 X SSPE and 0.1% SDS. The filters were exposed to X-ray film (Kodak, XAR5) overnight at -70°C. Primary positives were isolated and replated and subsequent secondary positives were hybridized and washed as for the primary screen. The resulting positive phage were converted into plasmid DNA by conventional methods (Stratagene) and the cDNA isolated and sequenced.

In order to obtain the most 5' sequence of the HIP1 gene, a Rapid Amplification of cDNA Ends (RACE) protocol was performed according to the manufacturers recommendations (BRL). First strand cDNA was synthesized using the oligo HIP1-242R (5' GCT TGA CAG TGT AGT CAT AAA GGT GGC TGC AGT CC 3'). (Seq. ID No. 13) After dCTP tailing the cDNA with terminal deoxy transferase, two rounds of 35 cycles (94°C 1 minute; 53°C 1 minute; 72°C 2 minutes) of PCR using HIP1-R2 (5' GGA CAT GTC CAG GGA GTT GAA TAC 3') (Seq. ID No. 14) and an anchor primer (5' (CUA)4 GGC CAC GCG TCG ACT AGT ACG GGI IGG GII GGG IIG3') (BRL ,Seq. ID No. 15)) were performed. The subsequent 650 base pair PCR product was cloned using the TA cloning system (Invitrogen) and sequenced using T3 and T7 primers. Sequences ID Nos. 1 and 3 show the sequence of the HIP1 cDNAs obtained.

EXAMPLE 4

DNA AND AMINO ACID ANALYSES

Overlapping DNA sequence was assembled using the program MacVector and sent via email or Netscape to the BLAST server at NIH (http://www.ncbi.nlm.nih.gov) to search for sequence similarities with known DNA (blastn) or protein (tblastn) sequences. Amino acid alignments were performed with the program Clustalw.

EXAMPLE 5

FISH DETECTION SYSTEM AND IMAGE ANALYSIS

The HIP1 cDNA isolated from the two-hybrid screen was mapped by fluorescent in situ hybridization (FISH) to normal human lymphocyte chromosomes counterstained with propidium iodide and DAPI. Biotinylated probe was detected with avidin-fluorescein isothiocyanate (FITC). Images of metaphase preparations were captured by a thermoelectrically cooled charge coupled camera (Photometrics). Separate images of DAPI banded chromosomes and FITC targeted chromosomes were obtained. Hybridization signals were acquired and merged using image analysis software and pseudo colored blue (DAPI) and yellow (FITC) as described and overlaid electronically. This study showed that HIP1 maps to a single genomic locus at 7q11.2.

20

25

30

5

10

15

EXAMPLE 6

NORTHERN BLOT ANALYSIS

RNA was isolated using the single step method of homogenization in guanidinium isothiocyante and fractionated on a 1.0% agarose gel containing 0.6 M formaldehyde. The RNA was transferred to a hybond N -membrane (Amersham) and crosslinked with ultraviolet radiation.

Hybridization of the Northern blot with b-actin as an internal control probe provided confirmation that the RNA was intact and had transferred. The 1.2 kb HIP1 cDNA was labeled using nick translation and incorporation of α^{32} P-dCTP. Hybridization of the original 1.2 kb HIP1 cDNA was carried out in Church buffer (0.5 M sodium phosphate buffer, pH 7.2, 2.7% sodium dodecyl sulphate, 1 mM EDTA) at 55 C overnight. Following

hybridization, Northern blots were washed once for 10 minutes in 2.0 X SSPE, 0.1% SDS at room temperature and twice for 10 minutes in 0.15 X SSPE, 0.1% SDS. Autoradiography was carried our from one to three days using Hyperfilm (Amersham) film at -70 C.

Analysis of the levels of RNA levels of HIP1 by Northern blot data revealed that the 10 kilo base HIP1 message is present in all tissue assessed. However, the levels of RNA are not uniform, with brain having highest levels of expression and peripheral tissues having less message. No apparent differences in RNA expression was noted between control samples and HD affected individuals.

10

15

20

25

5

EXAMPLE 7

TISSUE LOCALIZATION OF HIP1

Tissue localization of HIP1 was studied using a variety of techniques as described below. Subcellular distribution of HIP-1 protein in adult human and mouse brain Biochemical fractionation studies revealed the HIP1 protein was found to be a membrane-associated protein. No immunoreactivity was seen by Western blotting in cytosolic fractions, using the anti-HIP1-pep1 polyclonal antibody. HIP1 immunoreactivity was observed in all membrane fractions including nuclei (P1), mitochondria and synaptosomes (P2), microsomes and plasma membranes (P3). The P3 fraction contained the most HIP1 compared to other membrane fractions. HIP1 could be removed from membranes by high salt (0.5M NaCl) buffers indicating it is not an integral membrane protein, however, since low salt (0.1-0.25M NaCl) was only able to partially remove HIP1 from membranes, its membrane association is relatively strong. The extraction of P3 membranes with the non-ionic detergent, Triton X-100 revealed HIP1 to be a Triton X-100 insoluble protein. This characteristic is shared by many cytoskeletal and cytoskeletal-associated membrane proteins including actin, which was used as a control in this study. The biochemical characteristics of HIP1 described were found to be identical in mouse and human brain and was the same for both forms of the protein (both bands of the HIP1 doublet). HIP1 co-localized with huntingtin in the P2 and P3 membrane fractions, including the high-salt membrane extractions, as well as in the Triton X-100 insoluble residue. The subcellular distribution of HIP1 was unaffected by the

expression of polyglutamine-expanded huntingtin in transgenic mice and HD patient brain samples.

The localization of HIP1 protein was further investigated by immunohistochemistry in normal adult mouse brain tissue. Immunoreactivity was seen in a patchy, reticular pattern in the cytoplasm, appeared excluded from the nucleus and stained most intensely in a discontinuous pattern at the membrane. These results are consistent with the association of HIP1 with the cytoskeletal matrix and further indicate an enrichment of HIP1 at plasma membranes. Immunoreactivity occurred in all regions of the brain, including cortex, striatum, cerebellum and brainstem, but appeared most strongly in neurons and especially in cortical neurons. As described previously, huntingtin immunoreactivity was seen exclusively and uniformly in the cytosol.

The in situ hybridization studies showed HIP1 mRNA to be ubiquitously and generally expressed throughout the brain. This data is consistent with the immunohistochemical results and was identical to the distribution pattern of huntingtin mRNA in transgenic mouse brains expressing full-length human huntingtin.

Protein Preparation And Western Blotting For Expression Studies

5

10

15

20

25

30

Frozen human tissues were homogenized using a Polytron in a buffer containing 0.25M sucrose, 20mM Tris-HCl (pH 7.5), 10mM EGTA, 2mM EDTA supplemented with 10ug/ml of leupeptin, soybean trypsin inhibitor and 1mM PMSF, then centrifuged at 4,000rpm for 10' at 4 C to remove cellular debris. 100-150ug/lane of protein was separated on 8% SDS-PAGE mini-gels and then transferred to PVDF membranes. Huntingtin and HIP1 were electroblotted overnight in Towbin's transfer buffer (25 mM Tris-HCl, 0.192M glycine, pH8.3, 10% methanol) at 30V onto PVDF membranes (Immobilon-P, Millipore) as described (Towbin et al, *Proc. Nat'l Acad. Sci.(USA)* 76: 4350-4354 (1979)). Membranes were blocked for 1 hour at room temperature in 5% skim milk/ TBS (10mM Tris-HCl, 0.15M NaCl, pH7.5). Antibodies against huntingtin (pAb BKP1, 1:500), actin (mAb A-4700, Sigma, 1:500) or HIP1 (pAb HIP-pep1, 1:200) were added to blocking solution for 1 hour at room temperature. After 3 x 10 minutes washes in TBS-T (0.05% Tween-20/TBS), secondary Ab (horseradish peroxidase conjugated IgG, Biorad) was applied in blocking solution for 1 hour

- 18 -

at room temperature. Membranes were washed and then incubated in chemiluminescent ECL solution and visualized using Hyperfilm-ECL film (Amersham).

Generation of Antibodies

5

10

15

20

25

30

The generation of huntingtin specific antibodies GHM1 and BKP1 is described elsewhere (Kalchman, et al., *J. Biol. Chem.* 271: 19385-19394 (1996)). The HIP1 peptide (VLEKDDLMDMDASQQN, a.a. 76-91 of Seq. ID No. 2) was synthesized with Cys on the N-terminus for the coupling, and coupled to Keyhole limpet hemocyanin (KLH) (Pierce) with succinimidyl 4-(N-maleimidomethyl) cyclohexame-1-carboxylate (Pierce). Female New Zealand White rabbits were injected with HIP1 peptide-KLH and Freund's adjuvant. Antibodies against the HIP1 peptide were purified from rabbit sera using affinity column with low pH elution. Affinity column was made by incubation of HIP1 peptide with activated thio-Sepharose (Pharmacia).

Western blotting of various peripheral and brain tissues were consistent with the RNA data. The HIP1 protein levels observed was not equivalent in all tissues. The protein expression is predominant in brain tissue, with highest amounts seen in the cortex and lower levels seen in the cerebellum and caudate and putamen.

More regio-specific analysis of HIP1 expression in the brain revealed no differential expression pattern in affected individuals when compared to normal controls, with highest levels of expression seen in both controls and HD patients in the cortical regions.

EXAMPLE 8

CO-IMMUNOPRECIPITATION OF HIP1 WITH HUNTINGTIN

Confirmation of the HD-HIP1 interaction was performed using coimmunoprepitation as follows. Control human brain (frontal cortex) lysate was prepared in the same manner as for subcellular localization study. Prior to immunoprecipitation, tissue lysate was centrifuged at 5000 rpm for 2 minutes at 4 C, then the supernatant was pre-cleared by the incubated with excess amount of Protein A-Sepharose for 30 minutes at 4 °C, and centrifuged at the same condition. Fifty microlitres of supernatant (500 mg protein) was incubated with or without antibodies (10 ug of anti-huntingtin GHM1 (Kalchman, et al. 1996) or anti-synaptobrevin antibody) in the total 500 ul of incubation buffer (20mM Tris-Cl

(pH7.5), 40mM NaCl, 1mM MgCl₂) for 1 hour at 4°C. Twenty microlitres of Protein A-Sepharose (1:1 suspension, for GHM1 and no antibody control) or Protein G-Sepharose (for anti-synaptobrevin antibody; Pharmacia) was added and incubated for 1 hour at 4°C. The beads were washed with washing buffer (incubation buffer containing 0.5 % Triton X-100) three times. The samples on the beads were separated using SDS-PAGE (7.5% acrylamide) and transferred to PVDF membrane (Immobilon-P, Millipore). The membrane was cut at about 150 kDa after transfer for Western blotting (as described above). The upper piece was probed with anti-huntingtin BKP1 (1/1000) and lower piece with anti-HIP1 antibody (1/300).

10

5

The results showed that when an anti-HIP1 polyclonal antibody was immunoreacted against a blot containing the GHM1 immunoprecipitates from the brain lysate a doublet was observed at approximately 100 kDa. When GHM1 was immunoreacted against the same immunoprecipitate the 350 kDa HD protein was also seen. The specificity of the HD-HIP1 interaction is seen as no immunoreactive bands seen are as a result of the proteins adsorbing to the Protein-A-Sepharose (Lysate + No Antibody) or when a random, non related antibody (Lysate + anti-Synaptobrevin) is used as the immunoprecipitating antibody.

EXAMPLE 9

Subcellular fractionation of brain tissue

20

15

Cortical tissue (20-100 mg/ml) was homogenized, on ice, in a 2 ml pyrex-teflon IKA-RW15 homogenizer (Tekmar Company) in a buffer containing 0.303M sucrose, 20mM Tris-HCl pH 6.9, 1mM MgCl₂, 0.5mM EDTA, 1mM PMSF, 1mM leupeptin, soybean trypsin inhibitor and 1mM benzamidine (Wood et al., *Human Molec. Genet.* 5: 481-487 (1996)).

25

Crude membrane vesicles were isolated by two cycles of a three-step differential centrifugation protocol in a Beckman TLA 120.2 rotor at 4 C based on the methods of Wood et al (1996). The first step precipitated cellular debris and nuclei from tissue homogenates for 5 minutes at 1300 x g (P1). The 1300 x g supernatant was subsequently centrifuged for 20 minutes at 14 000 x g to isolate synaptosomes and mitochondria (P2). Finally, microsomal

WO 99/60986 PCT/US99/11743

and plasma membrane vesicles were collected by a 35 minute centrifugation at 142 000 x g (P3). The remaining supernatant was defined as the cytosolic fraction.

High salt extraction of membranes

5

10

15

20

25

30

Aliquots of P3 membranes were twice suspended at 2mg/ ml in 0.5M NaCl, 10mM Tris-HCl, 2mM MgCl₂, pH7.2, containing protease inhibitors (see above). The same buffer without NaCl was used as a control. The membrane suspensions were incubated on ice for 30 minutes and then centrifuged at 142 000 x g for 30 minutes.

Extraction of cytoskeletal and cytoskeletal-associated proteins.

To extract cytoskeletal proteins, crude membrane vesicles from the P3 fraction membrane were suspended in a volume of Triton X-100 extraction buffer to give a protein: detergent ratio of 5:1. The composition of the Triton X-100 extraction buffer was based on the methods of Arai et al., *J. Neuroscience* 38: 348-357 (1994) and contained 2% Triton X-100, 10mM Tris-HCl, 2mM MgCl₂, 1mM leupeptin, soybean trypsin inhibitor, PMSF and benzamidine. Membrane pellets were suspended by hand with a round-bottom teflon pestle, and placed on ice for 40 minutes. Insoluble cytoskeletal matrices were precipitated for 35 minutes at 142 000 x g in a Beckman TLA 120.2 rotor. The supernatant was defined as non-cytoskeletal-associated membrane or membrane--associated protein and was removed. The remaining pellet was extracted with Triton X-100 a second time using the same conditions. We defined the final pellet as cytoskeletal and cytoskeletal-associated protein.

Solubilization of protein and analysis by SDS-PAGE and Western Blotting

Membrane and cytoskeletal protein was solubilized in a minimum volume of 1% SDS, 3M urea, 0.1mM dithiothreitol in TBS buffer and sonicated. Protein concentration was determined using the BioRad DC Protein assay and samples were diluted at least 1 X with 5 X sample buffer (250mM Tris-HCl pH 6.8, 10% SDS, 25% glycerol, 0.02% bromophenol blue and 7% 2-mercaptoethanol) and were loaded on 7.5% SDS-PAGE gels (Bio-Rad Mini-PROTEIN II Cell system) without boiling. Western blotting was performed as described above.

10

15

20

25

30

Immunohistochemistry

Brain tissue was obtained from a normal C57BL/6 adult (6 months old) male mouse sacrificed with chloroform then perfusion-fixed with 4% v/v paraformaldehyde/0.01 M phosphate buffer (4% PFA). The brain tissues were removed, immersion fixed in 4% PFA for 1 day, washed in 0.01M phosphate buffered saline, pH 7.2 (PBS) for 2 days, and then equilibrated in 25% w/v sucrose PBS for 1 week. The samples were then snap-frozen in Tissue Tek molds by isopentane cooled in liquid nitrogen. After warming to -20 C, frozen blocks derived from frontal cortex, caudate/putamen, cerebellum and brainstem were cut into 14 mm sections for immunohistochemistry. Following washing in PBS, the tissue sections were blocked using 2.5% v/v normal goat serum for 1 hour at room temperature. Primary antibodies diluted with PBS were applied to sections overnight at 4 C. Optimal dilutions for the polyclonal antibodies BKP1 and HIP1 were 1:50. Using washes of 3 x 5 minutes in PBS at room temperature, sections were sequentially incubated with biotinylated secondary antibody and then an avidin-biotin complex reagent (Vecta Stain ABC Kit, Vector) for 60 minutes each at room temperature. Color was developed using 3-3'-diaminobenzidine tetrahydrocholoride and ammonium nickel sulfate.

For controls, sections were treated as described above except that HIP1 antibody aliquots were preabsorbed with an excess of HIP1 peptide as well as a peptide unrelated to HIP1 prior to incubation with the tissue sections.

In situ hybridization

In situ hybridization was performed as previously described with some modification (Suzuki et al, *BBRC* 219: 708-713 (1996)). The RNA probes were prepared using the plasmid gt149 (Lin, B., et al., *Human Molec. Genet.* 2: 1541-1545 (1994)) or a 558 subclone of HIP1. The anti-sense and sense single-stranded RNA probes were synthesized using T3 and T7 RNA polymerases and the In Vitro Transcription Kit (Clontech) with the addition of [a³⁵S]-CTP (Amersham) to the reaction mixture. Sense RNA probes were used as negative controls. For HIP1 studies normal C57BL/6 mice were used. Huntingtin probes were tested on two different transgenic mouse strains expressing full-length huntingtin, cDNA HD10366 (44CAG) C57BL/6 mice and YAC HD10366(18CAG) FVB/N mice. Frozen brain sections

- 22 -

(10um thick) were placed onto silane-coated slides under RNase-free conditions. The hybridization solution contained 40% w/v formamide, 0.02M Tris-HCl (pH 8.0), 0.005M EDTA, 0.3 M NaCl, 0.01M sodium phosphate (pH 7.0), 1x Denhardt's solution, 10% w/v dextran sulfate (pH 7.0), 0.2% w/v sarcosyl, yeast tRNA (500mg/ml) and salmon sperm DNA (200mg/ml). The radiolabelled RNA probe was added to the hybridization solution to give 1 x 106 cpm/200 ul/ section. Sections were covered with hybridization solution and incubated on formamide paper at 65 C for 18 hours. After hybridization, the slides were washed for 30 minutes sequentially with 2x SSC, 1x SSC and high stringency wash solution (50% formamide, 2x SSC and 0.1M dithiothreitol) at 65 C, followed by treatment with RNAse A (1mg/ml) at 37 C for 30 minutes, then washed again and air-dried. The slides were first exposed on autoradiographic film (b-max, Amersham, UK) for 48 hours and developed for 4 minutes in Kodak D-19 followed by a 5 minute fixation in Fuji-fix. For longer exposures, the slides were dipped in autoradiographic emulsion (50% w/v in distilled water, NR-2, Konica, Japan), air-dried and exposed for 20 days at 4 C then developed as described. Sections were counterstained with methyl green or Giemsa solutions.

5

10

15

20

25

30

EXAMPLE 10

We determined a more precise location of the HIP1 gene on chromosome 7 in the context of a physical and genetic map of chromosome 7, and determined its genomic organization. HIP1 maps by FISH and RH mapping to chromosome band 7q11.23, which contains the chromosomal region commonly deleted in Williams-Beuren syndrome (WS). We used several methods to refine the mapping of HIP1 in this region. PCR screening of a chromosome 7-YAC-library (Scherer et al., mammalian Genome 3: 179-181 (1992)) with primers from the 3' UTR of HIP1 resulted in the identification of only a single positive YAC clone (HSC7E512). This YAC clone had previously been shown to map near the Williams syndrome commonly deleted region (Osborne et al., Genomics 45: 402-406 (1997)). The HIP1 cDNA was then used to screen a chromosome 7 specific cosmid library from the Lawrence Livermore National Laboratory (LL07NC01), and the RPCI genomic P1 derived artificial chromosome (PAC) library (Pieter de Jong, Rosswell Park, Buffalo, NY). Several PAC and cosmid clones that were already part of pre-assembled contigs in the Williams

syndrome region at 7q11.23 were identified (Fig 5). Restriction enzyme digestion, blot hybridization experiments and PCR screening confirmed that the clones contained the HIP1 gene.

5

10

15

20

25

30

We determined the exon-intron boundaries and intron sizes of HIP1. Primers were designed based on the sequence of the HIP1 transcript and used to sequence directly from the cosmid, PAC clone and long PCR products from PAC or genomic DNA. Whenever a PCR fragment generated was longer than predicted from the cDNA sequence, it was assumed to contain an intron. The size of the introns was determined by sequencing the intron directly or by PCR amplification of the introns from both genomic DNA and the cosmid or PAC clone from the region. Three sets of overlapping cosmids and a PAC clone that contain the entire coding sequence of HIP1 were characterized (Fig 5). Cosmid 181G10 and 250F2 were digested with EcoRI and cloned into the plasmid bluescript. Further sequences were generated from these plasmid subclones. Intron-exon boundary sequences were then identified by comparing HIP1 genomic and transcript sequence. The gene is contained within 75 kb and comprises 29 exons and 28 introns. The intron-exon boundary sequences are shown in Table 4, along with the exon and intron sizes. A graphic summary of these data is also shown in Fig. 5. Exons 1 to 28 contained the coding regions. The last and largest exon of the HIP1 gene was found to contain approximately 7 kb. Most of the intron-exon junctions followed the canonical GT-AG rule. An AT was found at the 3' splice site of exon 1 and an AC at the 5' splice site of exon 2. Sequence data from all the exon-intron borders of the coding region and 3'-UTR is set forth in Seq. ID Nos. 16-44. (These sequence have been deposited with GenBank as Accession Nos. AF052261 to AF052288).

Sequence analysis of previously published 5' untranslated region (GenBank accession U79734) revealed the possibility that the open reading frame extends upstream of the ATG in the exon 4 to a 5' ATG in exon 1. Although we failed to obtain any additional 5' sequences despite repeated 5' RACE analyses, an additional ATG, 284 bp upstream of the previously published exon 1 is in the same reading frame and has the surrounding sequence of TGCCATGTT which is similar to the AGCCATGGG, the consensus Kozak sequence (Kozak, M. Nucl. Acids Res. 15: 8125-8148 (1987)). If translated from this ATG, the protein would be highly homologous to the N-terminal portion of ZK370.3 and yeast Sla2 protein

10

15

20

25

30

(Fig. 6). The translated protein in the region of exons 1 to 3 shows an identity of >40% and similarity of >60% to the N-terminal part of ZK370.3. This suggests that the exons 1 to 3 are probably translated.

In western blot studies, HIP1 is identified as a 120 kd protein (11, 23), while the putative translation of the previously published cDNA gives a protein product of estimated molecular weight of approximately 100 kd. If HIP1 gene were translated from the ATG 284 bp upstream of the exon 1, the expected product would have an estimated molecular weight of 122 kd. RNA PCR studies with primers downstream of this ATG and primers in exon 7 amplify expected products of 576 and 600 bp. Taken together these data support the contention that exon 1 extends further 5' and that HIP1 gene is translated from the ATG in exon 1. Sequence analyses showed no TATA, CAAT box or any GC rich promoter sequence upstream of exon 1 ATG. The promoter prediction programs provided by the server http://dot.imgen.bcm.tmc.edu: 9331/seq.search/gene.search.html did not predict any promoter upstream of the ATG at position -284, (position 0 corresponds to the first nucleotide of published cDNA, GenBank accession U79734). This suggests that HIP1 may have additional exons.

Finally, we evaluated HIP1 gene as a candidate gene for Huntington disease in families without CAG expansion. In a large study of 1022 patients with a clinical diagnosis of HD, no CAG repeat expansion was found in 12 patients who might represent phenocopies of HD. In at least three families, linkage studies have excluded the HD locus at 4p.

Mutation in an interacting protein could result in a similar phenotype as illustrated by the discovery of mutations in dystrophin associated proteins in muscular dystrophies. A mutation in HIP1 may result in altered interaction of huntingtin and HIP1 and lead to cellular toxicity as a result of more HIP1 being free in the cytosol. Thus mutations in huntingtin interacting proteins genes may cause a phenotype suggestive of HD. We studied two of the larger families diagnosed with HD without CAG expansion in HD gene, with the highly informative marker D71816 which maps centromeric and very close to HIP1 gene. The clinical findings in both the families were compatible with a diagnosis of HD, although there were atypical features. In family 1733, HIP1 locus appears to be excluded, as there are two recombinants with the marker. Individuals II-5 and II-7 who do not share the haplotype with

the affected individuals are now 41 and 39 years old and have normal neurological examinations.

In the family 1602, a lod score of 1.92 is obtained with the marker D7S1816 at θ_{max} =0. Sequencing of all the coding exons did not reveal any mutation in any exon sequence. The promoter sequence has not been examined. Subsequently a whole genome scan revealed a higher lod scores for markers on chromosome 20p.

EXAMPLE 11

A mouse brain lambda ZAPII cDNA library (Stratagene # 93609) was screened with various mouse ESTs which showed homology to the human HIP1 cDNA sequence (see Fig. 7). The ESTs were initially isolated from the non-redundant Database of GenBank EST Division by performing a BLASTN using a fragment of the human HIP1 cDNA as the query. We obtained 4 different ESTs which showed homology to HIP1: 1) aa110840 (clone 520282) which is 399bp and shows 58% identity, at the nucleotide level, to position 1880 to 2259 of the HIP1 cDNA. 2) w82687 (clone 404331) which is 420bp and shows 66% identity, at the nucleotide level, to position 2750 to 2915 of the HIP1 cDNA. 3) aa138903 (clone 586510) which is 509bp and shows 88% identity, at the nucleotide level, to position 2763 to 2832 of the HIP1 cDNA. 4) aa388714 (569088) which is 404bp and shows 88% identity, at the nucleotide level, to position 2475 to 2692 of the HIP1 cDNA.

mHIP1:

5

10

15

20

25

30

Fifty nanograms of a 362bp KpnI & PvuII fragment of clone 569088 (containing EST aa388714) was radioactively labeled with [32-P]-dCTP using random-priming. The probe was allowed to hybridize to filters containing > 2x 10⁵ pfu/ml of the mouse brain lambda ZAPII cDNA library (Stratagene # 93609) overnight at 65°C in Church buffer (0.5M sodium phosphate buffer (pH 7.2), 2.7% SDS, 1mM EDTA). The filters were washed at room temperature for 15 minutes with 2XSSPE, 0.1% SDS, then at 65°C for 20 minutes with 1XSSPE, 0.1%SDS and finally twice at 65°C with 0.5 XSSPE, 0.1%SDS. The filters were exposed to X-ray film (Kodak, XAR5) overnight at -70 C. Primary positives were isolated, replated and subsequent secondary positives were hybridized and washed as for the primary

screen. The resulting positive phage was converted into plasmid DNA by conventional methods (Stratagene) and the cDNA termed 4n-n1, was isolated and sequenced 551bp and 541bp from the T7 and T3 end, respectively. 4n-n1 is 2.2kb in length and the T7 end showed 72% identity, at the nucleotide level, to position 1486 to 1715 of the HIP1 cDNA. The 2.2kb insert from 4n-n1 was excised using EcoR1. Fifty nanograms of the 2.2kb insert was used to produced a radioactive probe and used to screen the mouse brain lambda ZAPII cDNA library (Stratagene # 93609) in the same manner as above. The resulting positive phage was converted into plasmid DNA by conventional methods (Stratagene) and the cDNA termed mHIP1a, was isolated and completely sequenced. mHIP1 is 2.3kb in length and showed 85% identity, at the nucleotide level, to position 726 to 3072 of the HIP1 cDNA.

mHIP1a:

5

10

15

20

Fifty nanograms of a 1.3kb EcoRI & Ncol fragment of clone 404331 (containing EST w82687) was radioactively labeled with [32-P]-dCTP using random--priming. The probe was allowed to hybridize to filters containing > 2x 10⁵ pfu/ml of the mouse brain lambda ZAPII cDNA library (Stratagene # 93609) overnight at 65°C in Church buffer (see above). The filters were washed at room temperature for 15 minutes with 2XSSPE, 0.1% SDS, then at 65°C for 20 minutes with 1XSSPE, 0.1%SDS and finally twice at 65°C with 0.2XSSPE, 0.1%SDS. The filters were exposed to X-ray film (Kodak, XAR5) overnight at -70°C. Primary positives were isolated, replated and subsequent secondary positives were hybridized and washed as for the primary screen. The resulting positive phage was converted into plasmid DNA by conventional methods (Stratagene) and the cDNA termed mHIP1a, was isolated and completely sequenced. mHIP1a is 3.96 kb in length and shows 60% identity, at the nucleotide level, to position 12 to 2703 of the HIP1 cDNA.

25

EXAMPLE 12

HIPla:

The entire mHIP1a cDNA sequence was used to screen the non-redundant Database of GenBank EST Division. We identified a human EST, T08283, which showed homology to

mHIP1a. T08383 (clone HIBBB80) is 391bp and shows 87% identity, at the nucleotide level, to position 2904 to 3113 of the mHIP1a cDNA.

Fifty nanograms of a 1.6kb HindIIII & Not1I fragment of clone 404331 (containing EST T08283) was radioactively labeled with [32-P]-dCTP using random-priming. The probe was allowed to hybridize to filters containing > 2x 105 pfu/ml of a human frontal cortex lambda cDNA library overnight at 65 C in Church buffer (see above). The filters were washed at 65 C for 10 minutes with 1XSSPE, 0.1% SDS, and then for 30 minutes and 15 minutes with 0.1XSSPE, 0.1%SDS. The filters were exposed to X-ray film (Kodak, XAR5) overnight at -70 C. Primary positives were isolated, replated and subsequent secondary positives were hybridized and washed as for the primary screen. The resulting positive phage was converted into plasmid DNA by conventional methods (Stratagene) and the cDNA termed HIP1a, was isolated and completely sequenced. HIP1a is 3.2 kb in length and shows 53% identity, at the nucleotide level, to position 876 to 3058 of the HIP1 cDNA.

15

20

25

5

10

EXAMPLE 13

Following the identification of a 1.2 kb partial human HIP-1 cDNA by yeast two-hybrid interaction studies, a 3.9 kb HIP-1 fragment was isolated from a cDNA library, ligated to a 5' RACE product then subcloned into the mammalian expression vector pCI-neo (Promega). This construct, CMV-HIP-1, expresses HIP-1 from the CMV promoter and was used in the cell expression studies described below. Mouse HIP-1a (mHIP-1a) was also subcloned into a CMV driven expression vector for cell culture expression studies.

EXAMPLE 14

Huntingtin proteins with expanded polyglutamine tracts can aggregate into large, irregularly shaped deposits in HD brains, transgenic mice and in vitro cell culture. We have shown that in HEK (human embryonic kidney) 293T cells the aggregation of full-length and larger huntingtin fragments occurs after the cells have been exposed to a period of apoptotic stress. In order to assess the consequence of HIP-1 expression in cultured cells, we used huntingtin aggregation as one marker of viability.

10

15

20

25

30

Human embryonic kidney cells (HEK 293T) were grown on glass coverslips in Dulbecco's modified Eagle medium (DMEM, Gibco, NY) with 10% fetal bovine serum and antibiotics, in 5% CO2 at 37°C. The cells were transfected at 30% confluency with the calcium phosphate protocol by mixing Qiagen-prepared DNA (Qiagen, CA) with 2.5 M CaCl₂, then incubating at room temperature for 10 min. 2X HEPES buffer (240 mM NaCl₂, 3.0 mM Na₂HPO₄, 100 mM HEPES, pH 7.05) was added to the DNA/calcium mixture. incubated at 37°C for 60 sec, then added to the cells. After 12-18 h, the media was removed. the cells were washed and fresh media was added. At 36 h post-transfection, the cells were exposed to an apoptotic stress by treatment with 35 uM tamoxifen (Sigma) for 1 hour, or left untreated, then processed for immunofluorescence. The cells were washed with PBS, fixed in 4% paraformaldehyde/PBS solution for 20 minutes at room temperature then permeabilized in 0.5% Triton X-100/PBS for 5 min. Following three PBS washes, the cells were incubated with anti-huntingtin antibody MAB2166 (Chemicon) (1:2500 dilution) and anti-HIP-1 antibody HIP-1fp (1:100 dilution) in 0.4% BSA/PBS for 1 h at room temperature in a humidified container. The primary antibody was removed, the cells were washed and secondary antibodies conjugated to Texas red or FITC were added at a 1:600-1:800 dilution for 30 min at room temperature. The cells were then washed again, and the coverslips were mounted onto slides with DAPI (4',6'-diamindino-2 phenylindole, Sigma) as a nuclear counter-stain. Immunofluorescence was viewed using a Zeiss (Axioscope) microscope, digitally captured with a CCD camera (Princeton Instrument Inc.) and the images were colourized and overlapped using the Eclipse (Empix Imaging Inc.) software program. Appropriate control experiments were performed to determine the specificity of the antibodies, including secondary antibody only and mock transfected cells.

The huntingtin fragment HD1955 was used in the aggregation studies. This fragment represents the N-terminal 548 amino acids of huntingtin, and corresponds approximately to the polyglutamine-containing fragment produced by caspase 3 cleavage of huntingtin.

Transfection of HD1955 with 15 polyglutamines (HD1955-15) results in a diffuse cytoplasmic distribution of the expressed protein. Transfection of HD1955 with 128 polyglutamines (HD1955-128) also results in diffuse cytoplasmic expression. However, exposure of cells transfected with HD1955-128 to tamoxifen results in a marked

10

15

20

25

redistribution of huntingtin. In 29% of cells expressing HD1955-128, the huntingtin protein appears as dense aggregates that are localized in the perinuclear area of the cell. In contrast, less than 1% of HD1955-128 expressing cells contain aggregates in the absence of tamoxifen, and 0% of HD1955-15 cells form aggregates in the presence or absence of tamoxifen treatment.

Co-transfection of HIP-1 and HD1955 was used to test the influence of HIP-1 on huntingtin aggregation. As a control, b-galactosidase was co-transfected with HD1955. In the control transfections, 1-2% of cells expressing HD1955-128 formed aggregates in the absence of tamoxifen, similar to HD1955-128 expressed alone. However, when HD1955-128 was co-expressed with HIP-1, an average of 14% of huntingtin-expressing cells contained aggregates with no tamoxifen treatment. Double-labeling demonstrated that the majority of the cells containing aggregates also expressed HIP-1, directly implicating HIP-1 in the increase in aggregation. Therefore, these results indicate that HIP-1 provides sufficient stress on the huntingtin-expressing cells to form aggregates, to the extent that tamoxifen is no longer necessary.

EXAMPLE 15

We next designed a series of experiments to identify a region of HIP-1 sufficient for inducing aggregate formation of HD1955-128. As described above, HIP-1 contains a domain with high homology to the death effector domains (DED) present in many apoptosis-related proteins. The DED domain of HIP-1 was ligated in-frame to HD1955-128, 3' from the caspase-3 cleavage site. Transfection of the resulting fusion protein with the DED ligated in the sense orientation (HD1955-128-DEDsense) resulted in a large number (30-50%) of cells containing aggregates, without tamoxifen incubation. In contrast, expression of a huntingtin-DED fusion protein with DED in the antisense orientation (HD1955-128-DEDantisense) did not have more aggregates than the HD1955-128 no tamoxifen control. Therefore, the DED domain of HIP-1 is sufficient to stress the cells, causing aggregate formation.

10

15

20

25

30

EXAMPLE 16

To directly assess the effect of HIP-1 expression on cell viability, mitochondrial function tests were performed on 293T cells transfected with HIP-1. The assessment of mitochondrial function, using the MTT assay (Carmichael et al., *Cancer Res.* 47: 936-942 (1987); Vistica et al., *Cancer Res.* 51: 2515-2520 (1991)), is a standard method to measure cell viability. The MTT assay quantitates the formation of a coloured substrate (formazan), with the mitochondria of viable cells forming more substrate than non-viable cells. Since decreased mitochondrial activity is an early consequence of many cellular toxins, the MTT assay provides an early indicator of cell damage.

For cell viability assays, HEK 293T cells were seeded at a density of 5 x 10⁴ cells into 96-well plates and transfected with 0.1 ug or 0.08 ug HIP-1 or 0.1 ug of the control construct lacZ using the calcium phosphate method described above. At 24-36 hours post-transfection tamoxifen-treated cells were incubated for 2 hours in a 1:10 dilution of WST-1 reagent (Boehringer Mannheim) and release of formazan from mitochondria was quantified at 450 nm using an ELISA plate reader (Dynatech Laboratories) (Carmichael et al., 1987; Mosmann, *J. Immunol. Meth* 65: 55-63 (1983)). One way ANOVA and Newman-Keuls test were used for statistical analysis. The transfection efficiency, measured by β-galactosidase staining and immunofluoresence, was approximately 50%.

We have previously demonstrated that expression of mutant huntingtin results in increased susceptibility to an apoptotic stress induced by sub-lethal doses of tamoxifen in transfected 293T cells (Martindale et al., 1998). A similar assay was used to test the consequence of HIP-1 expression. With 0.1 ug transfected HIP-1 DNA, after 24 hr expression, HIP-1 resulted in increased cell death in response to tamoxifen, compared with the tamoxifen-treated β-galactosidase control (p<0.01, n=4). Reducing the amount of transfected HIP-1 DNA to 0.08 ug also resulted in increased cell death compared with control (p<0.01, n=4), indicating the high potency of HIP-1 (Fig. 8). Furthermore, increased cell death in cells transfected with HIP-1 was observed in the absence of apoptotic stress at 48 hrs post-transfection, but was so severe that is could not be accurately quantitated. Thus, an earlier time point (24 hr) had to be used for better reproducibility, using an apoptotic stress to unmask the phenotype.

In order to model a pathogenic interaction of HIP-1 and huntingtin in the HEK 293 mammalian cell system, HIP-1 was transfected into cell lines stably expressing huntingtin. Two cell lines were chosen for the initial studies, one line expressed the truncated HD1955 construct with 15 glutamines, and the second expressed the HD1955 with 128 repeats. Western blotting indicated that the cell lines expressed huntingtin at similar levels. To assess whether HIP-1 is toxic in the presence of mutant huntingtin, 0.1 ug HIP-1 DNA was transfected into the HD1955-128 cell line. Transfection of HIP-1 into the HD1955-15 cell line was used as the wild-type huntingtin control, and transfection of LacZ into both cell lines was the control for transfection-related toxicity (Figs 9A and 9B). MTT toxicity assays showed that HIP-1 in the presence of mutant huntingtin (HD1955-128) was significantly more toxic than HIP-1 with wild-type huntingtin (HD1955-15), p<0.001, n=4 (Fig. 9C). This toxicity was observed at 24 hr and 36 hr post-transfection. No tamoxifen was needed to unmask the phenotype, suggesting that the combined cell stress of HIP-1 with truncated huntingtin was sufficient to reduce cell viability over control.

CLAIMS

1	1.	A polypeptide comprising the sequence given by Seq. 1D. No. 5.
1	2.	A cDNA molecule comprising the sequence given by Seq. ID No. 6.
1	3.	A polypeptide comprising the sequence given by Seq. ID No. 7.
1	4.	A method for ameliorating the effects of Huntington's disease in a
2	patient expressing	a HIP-apoptosis modulating protein, comprising the step of administering
3	the patient a therap	eutic composition which reduces the activity of the HIP-apoptosis
4	modulating protein	
1	5.	A method according to claim 4, wherein the composition comprises a
2	material which bind	is to HIP-apoptosis modulating protein.
1	6.	The method according to claim 4, wherein the composition comprises
2	an expression vector	or encoding huntingtin having a normal number of repeats.
1	7.	An expression vector for expression of a gene in a mammalian host
2	comprising a region	n encoding an HD-interacting polypeptide.
		6
1	8.	The expression vector according to claim 7, wherein the HD-
2	interacting polypen	tide is an HIP-apoptosis modulating protein.
_		
1	9.	The expression vector according to claim 8, wherein the HIP-apoptosis
2		has a sequence which includes the amino acid sequences given by SEQ
3		
3	ID Nos. 2, 4, 5 or 7	

ı	10.	The expression vector of claim 7, wherein the HD-interacting				
2	polypeptide interacts differently with expanded Huntingtin than with Huntingtin having a					
3	CAG repeat region containing 15 to 35 repeats.					
1	11.	The expression vector according to claims of claims 7-10, further				
2	comprising a region encoding Huntingtin having a polyglutamine tract of 35 or fewer.					
1	12.	A method for inducing apoptotic death in cells, comprising the step of				
2	introducing into the cells an expression vector encoding at least the death effector domain of					
3	a HIP-apoptosis modulating protein whereby the death effector domain is expressed by the					
4	cells.					
1	13.	The method of claim 12, wherein the expression vector encodes the				
2	amino acid sequence given by Seq. ID. No. 2.					
1	14.	The method of claim 12, wherein the expression vector encodes the				
2	amino acid sequence given by Seq. ID. No. 4.					
1	15.	A method for screening a composition for the ability to inhibit				
2	apoptosis induced by	an HIP-apoptosis modulating protein, comprising simultaneously				
3	exposing a population of cells to the composition and an HIP-apoptosis modulating protein					
4	and measuring the ex	tent of cell death.				

1 / 12

T. 8. 1

 Fy_2 HIP1 Clones: Nucleotide Alignment

جُنُع HIP1 Clones: Protein Alignment

Fg4

>Usurpin A SAEVIHQVEEALDTDEKKMLLFLCRDVAIDVVPPNVROLLDILRERGKLSVCDLAELLYRVHRFDLLKRILK

>Usurpin B
YRVLMAHIGEDLDKSDVSSLIFLMKDYMGRGKISKHKSFLDLVVELHKLNLVAPDQLDLLEKCLKNIHRIDLKTKIQK

>Casp-8 A FSRNLYDIGELQDSEDLASLKELSLDYIPQRKOEPIKDALMIFQRLOEKRMLEESNLSFLKELLFRINRLDLLITYLN

>Casp-8 B YRVMLYQISEEVSREELRSFKFLLQHEISKCKLDDDMNLLDIFIEMEKRVILGEGKLDILKRVCAQINKSLLKIND

>Casp-10 A FRHKLLTIDSNLGVQDVENLKFLCIGLVPNKKLEKSSSASDVFEHLLAHDLLSEEDPFFLAELLYIIRQKKLLQHLNC

>Casp-10 B FRNLLYELSEGIDSENLKDMIFLLKDSLPKTEMTSLSFLAFLEKQGKIDEDNLTCLEDLCKTVVPKLLRNIEK

>FADO FLVLHSVSSSLSSSELTELKFLCLGRVGKRKLERVQSGLDLFSMLLEQNDLEFGHTELLRELLASLRRHDLLRRVDD

>MC159 A SLPFLRHLLEELDSHEDSLLLFLGHDAAPGCTTVTQALCSLSQQRKLTLAALVEMLYVLQRMDLLKSRFG

>MC159 B
YHKLMYCYGEELDSSELRALRLFACNLNPSLSTALSESSRPVELVLALENVGLVSPSSVSVLADMLRTLRRLDLCQQLVE

>E8 FRCLMALVNDFLSDKEVEEHYFLCAPRLESHLEPGSKKSFLRLASLLEDLELLGGDKLTFLRHLLTTIGRADLVKNLQV

>KS offk13A
TYEVLCEVARKLGTDDREVVLFLLNVFLPQPTLAQLIGALRALKSEGRLTFPLLAECLPRAGRRDLLKDLLH

>KS orikl3B
YQLTVLHYDGELCARDIRSLIFLSKDTIGSRSTPQTFLHNYYCMENLDLLGPTDVDALMSMLRSLSRVDLQRQVQT

>HIP1
SELEADLAEQOHLRQOAADDCEFLRAELDELRRQREDTEKAQRSLSEIERKAQANEQRYSKLKEKYSELVQNHADLLRKN
AE

 $\verb| >HIPla| \\ \texttt{GELEEQRKQKQKALVDNEQLRHELAQLRAAQLERERSQGLREEAERKASATEARYNKLKEKHSELVIIVHAELLRKNAD}| \\$

>mHIPla NGLEAELEEQRKQKQKALVDNEQLRHELAQLKALQLEGARNQGLREEAERKASATEARYSKLKEKHSELINTHAELLRKN AD

>mHIP1 SELEAELNEQOHLGRQAMDDCEFLRTELDELKRQREDTEKAQRSLTEIERKAQANEQRYSKLKEKYSELVQNHADLLRKN AE

\$ 61 H

90	180	269 151	355	44 346	530	617	702 569	792	882
SORLIHETELSEPEE HOHRAQAREVEV	RT W B DSLRYZNELSDIASRM RTYRYVNRPTQLSQP	V. R S. VENSLDHISRSVBUTA VYEKDDNSLRHMBLIP	il lp pnyl g Ipolpenppytlras Iptleshapnylogs	L K E ERLYRBISGLKAGUE	B R K K Y BQ-RYSKLKBKYSE- EE-RYNKYKGVTEK.	OVLQGSLETSFQSEA EGGAAAVD2MATQLV	A NOLSEPPLIS	CK A CECYGRETLAYLASL CKCYLAARKVRF	LEVNE IL VKLEVNERILGCCTS IRLEVNESILANCOA
AGGGERGGLWEGLSH	· HXLLNDEP V VFBXLLNDEPNYLK LVHXLLNDGHRKVPR	M L Emedylecelnlegt Delidgeballvigde	SSNIQTEE L. IL LP PWEL S FYRSSNIQTEERIQ IPOLPBNPPHILRAS YEESSNIQTEKYLVS IPILPSHAPHOQOS	D ASQUEVNEDENDELX SSQPAPREEQI	A . E ERKA A AQRSLSEIBRKAQAN ARVKHAELKATAA	B LBSLKQELATSGREL BAGRALTKA	E Q A VGSRKAABQVIQDAL TQMFDHCEDALQNAT	A CLRAPPBPADSLTBA AYTASIBSYEGUNDQ	IR RA G RIBBMLSKSRAGDTG BIRAIQRRARESSDG
GRLQGTDHP4GWGRL	L VL WGCE LPLSSNAVLOWKFCE IQLRKHPTLOWKFCE	K D. H F T M L L V. RASIDASRVSTA EAGREDVANFPQLTV EMFDYLCCLALAGO VENGUSAVSTA TL-EGOLDAMFENTI DALDQMDALVLQDR VYENGUSLAMSILP	ER RF F K ENDREMSQ?TKLKDL ERSRFRTIFERTKKF	D I L KRUNDASÇQMIFEDNKY DDIFGSSPSSDPPNF NSQNGWNODENDBLI ERLYBBISGLKAQLE DGTSLMGHEGEL INLAEASPQQ:-ASP SSQPOPREEQI VHISBAVBDIRKRAKE	R T ABLDELRRQRBDIBK NELALREASKTQIDD	H L XQ. IVCNBADLIKKN ARVIKQVSIARQAQV DLERRKKBLEDSLER ISDQGQRRTGEQLEV LBSLKQELATSQREL QVLQGSLETSFQSEN PRSBBVLALIKL GDIQEQLEASFISKF DKORZ[TALKR KVERAQR	R EL D H E Q A DINIARSARES LINGAALERBEISAL RKELQDTGLKLASTE ESHCQLAKDQRIMLL VGSRRARBQVIQDAL NGLEEPPLIS. KADIRVERIKRIIDEURESHANQLVQSSAEBTHKIR LAELEVAKES-GVGI TQMFDHCEDALQUAT SITYPP	HL CACSADHALGITYISI SSCIEQLEKSWSGYL ACPRDISGLLHSITL LAKUTSDAIANGATT CLRAPPRPADSLFBA CKGYGRETLAYLASLHLAQSAMM! LVNLLSHER-LDBFL ATKDAYF AGHLLSITLGAŁASA AYTASIRSYEGVHOG CKKYLAAAKVAF	L D EERGSLEANDSTAMR MCLSKIKAIG <u>BELL</u> P R <u>OLDINQEELGDLYD XEGDATSAATAR RIBBYLSYSRAGDTG VKLEVNERILGCCTS</u> SDDSALSRADYHII, RQDIQTINSCHISEP LQIDIDKOVYGHELB QEGRRADDAIRRANG BIRAIGRRARBSSDG IRLEVNESILANGQA
QPAGSWERCPPLPPA (E KK FW V EHEKGAQTFWSVVNR EKEKSSGI FWHTVGR	P PG L D QL PRPPGNLCMSDRQLD PVVPGKLDLNDSQLK	ESCLPADTLOGEES	D N D IDVDASÇQNLFDNKFDQTSLNGHEGEL	L QHLRQQAADDCBFLR XR3ADENR3EAQRLR	D DLBREKKBLEDSLER DKDREITALNR	Q RKELQDTQLKLASTB -QLVQSSAEBTHKIR	L A CL ACPEDISGLEHSITE PL ATEDIVF	DI RGLDIKQEELGDLVD LQTDIDKDVVCNELE
STAHAROHOPLPODA	VAVIERARITIGE VPLYPERARITIVET	Y KLL .H K YLKLERTKOMBYHTKN YCKLEHDRUTFHNRY	S YDZ OK "BKL BS CSHLYDYTVELLFKL BS TSKFYDYLVKMIFKU ES	S ASSPDSEPVLRKODU GSE	lkghvsbleadlaeq Ybnrllqmggefdaa	kq. Arvtkqvsharqaqv Gdigeqleaseeskp	H E LVSGAAHRBEELSAL BLRESHAN-	I B E SSCIEQLEKSWSOYL LYNILSHER-LDEPL	LP NCLSKIKAIGB <u>ell</u> p RQDIQTLNSLHISLP
MILOGGSBURRDQOL GTAINRQHCPLPQDA QPAGSHERCPPLPPA GRLQGIDHPHGWSRL AGGGERGJARGISH SQZLJHLILISIPLL	Q KAI E . K KHARI I.GT E KE FW V L VL WGCH . BKILEDGEP V RT W BY W SVETWEINTAINTG PAYEERMARTCILGT BHEKGAGTFMSVVMR IPLSSNAVLCMKFCH VFBKILEDGEDWULK DSIRYRMHISDMSHH. PAQUEAVQKAITYGMS VPIKKRBARTIIVGT HGRESGIPWHTVGR IQLRKHFTL,FMKFCH LYDKILEDGEHKVPR RIYRYWRFTDGLSGP	WHL GTG YRLL HR P PG L D QL MOHLS EGYCQLCSI YLKLIRTIONBYBTEN PRPPGNLQMSDRQLD WKHLNTSGYOPCIES YCCLHORVTFRNKY PVVPGKLDLNDSQLK	GQC PLI .ILD S YOT VK .BKL BS . D L G ER RF F K AGCELL-RILLOUTID CSHLYDYTVILLEKE ESCLPADTLQG ERDRANGQFIKLED GQGCHLSPLIAILD TSKRYDYLVKKIFKL ESQVPPDALLG ERSKRYTIFERIKKF	L P B S L L I K B ASPESEPVLERDDU IONDASQNIFEDNYY DDIFGSSESSDPRNY NSQNGVNYOENDBLI ERUYRBISGIKAQIE DLESYRTPHAYLUSE GSEDGISLMGHEGEL INIAEASPQQASP SSQPDPREEQI VMISSAVVBDIKRRYK	B R T A E ERICA A B R K E Y MKITSE QRVULO LKGHVSELEADLEAQQAADDCEFLR ABDELRAQRADTEK AQRSLSEIBKKKAQAN BQ-RVSKLKBKYSE. RLIQBARSRIEQ YBHRLLQHQGEFDHA YRBADENBEELQRLK NELALEDNSATQTDD ARKRAELKATAA EE-RFNEGEGYTEK			HL CAGSADHGLSTVTSI HLAQSAMMI	LP DI KM AI A IK RA G LEVAK IL bigl kensleradstang nclskikalg <u>eeld</u> r <u>oldikqeelgodyd ken</u> alstanistata Rissylskagdto vkikankelloccis 2k370.3 sodsalsradskall rodigitaschisip kotolokovychele qemraddairravg bīraigraarssod irlevasilaakoga
1 h[p1 2 zk370.3	1 hipi 2 zk310.3	1 hipi 2 zk370.3	1 hip1 2 zk370.3	1 bip1 2 zk370.3	1 hip1 2 zk370.3	1 hipi 2 =k370.3	1 hipi 2 £k370.3	1 bip1 2 zk370.3	1 hipi 2 zk370.3

719 (CONT.)

STA 358 STA 358 STA 817	L. LZIK 1.056 LAA 505	
AD TV CROK F B L V BILAS ADLVVQCROK F KELMYCSHBILAS ADGVVTGKOK F KHLIVANQBILAS	D28 L K EX SQV L ELE L ER IL. ND78SHTL TQIERQESQVRVT RIENBIQQERQILOR LD78YLSL HAAKKEPRESQVRAL BIEQSINQBRAKLA.	
KPY N HIBGLIS A KAVG A V V EPYARKSRHIBGLIS ABKAVGHGATVHYDA EPYKRUHÇHTEGLIS AAKAVGVARRYLVES	TA VVA G . D28 L TAGVVASTISGKSGI BETDKMD78SMTL TAGVVANVQCTIL NDSGSLD7SYLSL	TEKE 1090
DI I L. AS L Q EIV BP KPT H HISGLIS A KAVG A V V AD VV GRGK P B L V BILASTA I bip) LMANIQULIVASKOL GRENTSGRGTASPK EFVAKSRATSGLIS ASKAVGHGATYHYDA ADLVTGGRGXF KELMTGSHBIAASTA Z EKITO. I LASVIKQLYIASREL GTKIVAAGKAGGGFA EFKREHIGMTGGLIS ANKAVGVAARYLYGS ADGVYTGGIF KFLIFAAGELABDA	QL . S VEADROSS L L A VNQ TA VVA Q . D28 L K EX SQV L FIR L ER IL. 1 hipl quyaaskardsp neaqloqasrovmqa tagvvastisgasqi betdnhdfsshte tqirrqeeqsqvave berneqequiae ? 25370.3 QLFVSSPVRADESS KIDRLSVAANAAVTAYTAATAGTIL HDBGSLDFSYLSL HAAKKEERESQVAVE BERGSENALAA	LAK EY A . 1 hipl Lakkerselladvisch pegifaspptigevy teke 1059 2 58797 1 teknomen an in name need in the control of the contro
1 hip) 2 zkJ70.3	1 h(p) 2 x370.3	1 hipi

mthlp1.pzm:Graph-2 - Tuo Apr 28 11:30:41 1983

Hip I increase the susceptibility to cell Stress:

HIP1 TOXICITY

Fig 8

HIP1 transfected into HD1955-15 stable cell line 36 hr post-tansfection

presence of

Hy. is taxic in the

Transfected constructs Fy 94

Hy-1 is topic in the presence

HiP1 transfected into HD1955-128 stable cell line 36 hr post-tansfection

Fy 98

Polyglutamine-dependence of HIP-1 toxicity

Transfected constructs/cell lines

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
- (i) APPLICANT: Kalchman, Michael

Hayden. Michael R.

Hackam, Abigail

Chopra, Vikramjit Singh

Nicholson, Donald W.

Vallaincourt, John P.

Rasper, Dita M.

- (ii) TTILE OF INVENTION: Apoptosis Modulators That Interact with the
- Huntington's Disease Gene
- (iii) NUMBER OF SEQUENCES: 44
- (iv) CORRESPONDENCE ADDRESS:
- (A) ADDRESSEE: Oppedahl & Larson
- (B) STREET: PO Box 5270
- (C) CITY: Frisco
- (D) STATE: CO
- (E) COUNTRY: USA
- (F) ZIP: 80443-5270
- (v) COMPUTER READABLE FORM:
- (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.44 Kb storage
- (B) COMPUTER: IBM Compatible
- (C) OPERATING SYSTEM: MS DOS 5.0
- (D) SOFTWARE: WordPerfect
- (vi) CURRENT APPLICATION DATA:
- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
- (A) NAME: Larson, Marina T.
- (B) REGISTRATION NUMBER: 32038
- (C) REFERENCE/DOCKET NUMBER: UBC.P-013US2
- (ix) TELECOMMUNICATION INFORMATION:
- (A) TELEPHONE: (970) 668-2050
- (B) TELEFAX: (970) 668-2052
- (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1164
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no

(vi) ORIGINAL SOURCE:

(A) ORGANISM: human

(ix) FEATURE: cDNA for Huntingtin-interacting protein

(xi)SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAGCTGACA CCCTGCAAGG CCACCGGGAC CGCTTCATGG AGCAGTTTAC AAAGTTGAAA GATCTGTTCT ACCGCTCCAG CAACCTGCAG TACTTCAAGC 100 GGGTCATTCA GATCCCCCAG CTGCCTGAGA ACCCACCCAA CTTCCTGCGA 150 GCCTCAGCCC TGTCAGAACA TATCAGCCCT GTGGTGGTGA TCCCTGCAGA 200 GCCTCATCC CCCGACAGCG AGCCAGTCCT AGAGAAGGAT GACCTCATGG 250 ACATGGATGC CTCTCAGCAG AATTTATTTG ACAACAAGTT TGATGACNTC 300 TTTGGCAGTT CATCCAGCAG TGATCCCTTC AATTTCAACA GTCAAAATGG 350 TGTGAACAAG GATGAGAAGG ACCACTTAAT TGAGCGACTA TACAGAGAGA 400 TCAGTGGATT GAAGGCACAG CTAGAAAACA TGAAGACTGA GAGCCAGCGG 450 GTTGTGCTGC AGCTGAAGGG CCACGTCAGC GAGCTGGAAG CAGATCTGGC 500 CGAGCAGCAG CACCTGCGGC AGCAGGCGGC CGACGACTGT GAATTCCTGC 550 GGGCAGAACT GGACGAGCTC AGGNGGCAGC GGGAGGACAC CGAGAAGGCT 600 CAGCGGAGCC TGTCTGAGAT AGAAAGGAAA GCTCAAGCCA ATGAACAGCG 650 ATATAGCAAG CTAAAGGAGA AGTACAGCGA GCTGGTTCAG AACCACGCTG 700 ACCTGCTGCG GAAGAATGCA GAGGTGACCA AACAGGTGTC CATGGCCAGA 750 CAAGCCCAGG TAGATTTGGA ACGAGAGAAA AAAGAGCTGG AGGATTCGTT 800 GGAGCGCATC AGTGACCAGG GCCAGCGGAA GACTCAAGAA CAGCTGGAAG 850 TTCTAGAGAG CTTGAAGCAG GAACTTGGCA CAAGCCAACG GGAGCTTCAG 900 GTTCTGCAAG GCAGCCTGGA AACTTCTGCC CAGTCAGAAG CAAACTGGGC 950 AGCCGAGTTC GCCGAGCTAG AGAAGGAGCG GGACAGCCTG GTGAGTGGCG 1000 CAGCTCATAG GGAGGAGGAA TTATCTGCTC TTCGGAAAGA ACTGCAGGAC 1050 ACTCAGCTCA AACTGGCCAG CACAGAGGAA TCTATGTGCC AGCTTGCCAA 1100 AGACCAACGA AAAATGCTTC TGGTGGGGTC CAGGAAGGCT GCGGAGCAGG 1150 TGATACAAGA CGCG 1164

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 386
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Thr Ala Asp Thr Leu Gln Gly His Arg Asp Arg Phe Met Glu Gln 1 5 10 15

Phe Thr Lys Leu Lys Asp Leu Phe Tyr Arg Ser Ser Asn Leu Gln
20 25 30

Tyr Phe Lys Arg Val Ile Gln Ile Pro Gln Leu Pro Glu Asn Pro

												<u>.</u>
WO 99/6098	6										PCT/	US99/11743
		290					295					300
-1 -1 -0			1	_			_					
Gln Gly Ser	Leu		ľhr	Ser	Ala	GIn		Glu	Ala	Asn	Trp	
		305					310					315
Ala Glu Phe		Cl., 1		C1,,	Tuc	C1	7~~	n an	Cox	T 011	1707	C
Ala Giu File	, AIG	320	ueu	GIU	цуъ	GIU	325	ASD	ser	ьeu	vaı	330
		320					323					330
Gly Ala Ala	His	Arg (Glu	Glu	Glu	Leu	Ser	Ala	Leu	Ara	Lvs	Glu
- 4		335		-			340			3	-1-	345
												• - •
Leu Gln Asp	Thr	Gln I	Leu	Lys	Leu	Ala	Ser	Thr	G1u	Glu	Ser	Met
		350					355					360
Cys Gln Lev	ı Ala		Asp	Gln	Arg	Lys		Leu	Leu	Val	Gly	
		365					370					375
N T N1-		03	~ 7 -	TT_ 1	- 1 -	G 1						
Arg Lys Ala	Ala	380	žΙΠ	vaı	ite	GIN	385					
		300					303	200				
(2) INFORMAT	ION F	OR SEC	ЭD	NO:3								
(i) SEQUENCE			-									
(A) LENGTH:				100.								
(B) TYPE: nucl		đ										
(C) STRANDE												
(D) TOPOLOG		_										
(ii)MOLECULE			١.									
(iii) HYPOTHE		.: no										
(iv) ANTI-SEN		OF.										
(vi) ORIGINAL												
(A) ORGANIS												
(ix) FEATURE:			_	•		٠.	tein					
(xi)SEQUENCE	EDESC	RIPTIC)N: S	SEQ II	D NO:	3:						
CAGTGTACGG	מיס מיס	ኮር እ ጠ እ <i>የ</i>	n x z	cccc	20000		20007	mma	camar	וא מוז א וו	. n. m	F 0
CGCAAATTGA								_	_			50 100
GCCATTATAA												150
TTGCACCCAC												200
CGCCTGCTTC												250
TGTTCCACAA												300
GTGAGATACA												350
GAGCGAGGGG	TATG	GCCAG	С ТО	TGC	GCAT	CTA	ACCTO	AAA	CTGC	TAAG	AA	400
CCAAGATGGA												450
ATGAGTGACC												500
TTTCCAGTTA												550
TCTTCCAAAC												600
ACGGCAGCAG												650
CTGCAGCCAC												700
CCTGCCTCCC	AGCT	GACAC	CJ	GCA	AGGCC	ACC	GGGA	ACCG	CTTC	ATGC	AG	750

WO 99/6098	10			rcı	/0377/11/
CAGTTTACAA	AGTTGAAAGA	TCTGTTCTAC	CGCTCCAGCA	ACCTGCAGTA	800
CTTCAAGCGG	CTCATTCAGA	TCCCCCAGCT	GCCTGAGAAC	CCACCCAACT	850
TCCTGCGAGC	CTCAGCCCTG	TCAGAACATA	TCAGCCCTGT	GGTGGTGATC	900
CCTGCAGAGG	CCTCATCCCC	CGACAGCGAG	CCAGTCCTAG	AGAAGGATGA	950
		CTCAGCAGAA			1000
		TTCAGCAGTG		TTTCAACAGT	1050
		TGAGAAGGAC			1100
		AGGCACAGCT			1150
*		CTGAAGGGCC		-	1200
		CCTGCGGCAG		ACGACTGTGA	1250
		ACGAGCTCAG	-		1300
		TCTGAGATAG		TCAAGCCAAT	1350
		AAAGGAGAAG		TGGTTCAGAA	1400
		AGAATGCAGA			1450
		GATTTGGAAC			1500
		TGACCAGGGC			1550
		TGAAGCAGGA			1600
		AGCCTGGAAA			1650
		CGAGCTAGAG		ACAGCCTGGT	1700
		AGGAGGAATT			1750
		CTGGCCAGCA		TATGTGCCAG	1800
		AATGCTTCTG			1850
		CCCTGAACCA			1900
TCAGCTGCGC		GATCACCTCC		CACATCCATT	1950
		GGAGAAAAGC			2000
		TTCTCCATTC		CTGGCCCACT	2050
		CATGGTGCCA			2100
		GACCGAGGCC		ATGGCAGGGA	2150
		CCCTGGAGGA		CTTGAGAATG	2200
		AACTGCCTGA			2250
		ACTGGACATC		AGCTGGGGGA	2300
		CGGCCACTTC			2350
		CTCAGCAAAT		AGACACAGGA	2400
		AAGGATCCTT			2450
		TCGTGGCCTC		CAGAGAGAGA	2500
		ACAGCATCCC		TTATGCCAAG	2550
		ACTTATCTCA		CTGTGGGCTG	2600
		ATGCAGCTGA			2650
		GTGTGTTCTC		TGCTAGCACA	2700
		CAAGGTGAAA		ACAGCCCCAA	2750
		CCTCTCGGGG			2800
		TCCGGCAAAT			2850
		GACGCTGACA			2900
		TAGAGCTAGA			2950
		CGGAAAAAGC		TGCTGGTGTT	3000
		AACAGAGGCA			3050
		AGAGCCAAAC		TATGTCAGTG	3100
	TTACCTATCT		ATTTCCCCAG		3150
	GTCCCAGGGG		ACTGCCATTA		3200
		CAAAGATCCC			3250
GTTTGGACCC	ATGGTCATCT	CTGTTCTTTT	CCCGCCTCCC	TAGTTAGCAT	3300

CCAGGCTGGC	CAGTGCTGCC	CATGAGCAAG	CCTAGGTACG	AAGAGGGGTG	3350
GTGGGGGGCA	GGGCCACTCA	ACAGAGAGGA	CCAACATCCA	GTCCTGCTGA	3400
CTATTTGACC	CCCACAACAA	TGGGTATCCT	TAATAGAGGA	GCTGCTTGTT	3450
GTTTGTTGAC	AGCTTGGAAA	GGGAAGATCT	TATGCCTTTT	CTTTTCTGTT	3500
TTCTTCTCAG	TCTTTTCAGT	TTCATCATTT	GCACAAACTT	GTGAGCATCA	3550
GAGGGCTGAT	GGATTCCAAA	CCAGGACACT	ACCCTGAGAT	CTGCACAGTC	3600
AGAAGGACGG	CAGGAGTGTC	CTGGCTGTGA	ATGCCAAAGC	CATTCTCCCC	3650
CTCTTTGGGC	AGTGCCATGG	ATTTCCACTG	${\tt CTTCTTATGG}$	TGGTTGGTTG	3700
GGTTTTTTGG	${\bf TTTTGTTTTT}$	TTTTTTTAAG	TTTCACTCAC	ATAGCCAACT	3750
CTCCCAAAGG	GCACACCCCT	GGGGCTGAGT	CTCCAGGGCC	CCCCAACTGT	3800
GGTAGCTCCA	GCGATGGTGC	TGCCCAGGCC	TCTCGGTGCT	CCATCTCCGC	3850
CTCCACACTG	ACCAAGTGCT	GGCCCACCCA	GTCCATGCTC	CAGGGTCAGG	3900
CGGAGCTGCT	GAGTGACAGC	TTTCCTCAAA	AAGCAGAAGG	AGAGTGAGTG	3950
CCTTTCCCTC	CTAAAGCTGA	ATCCCGGCGG	AAAGCCTCTG	TCCGCCTTTA	4000
CAAGGGAGAA	GACAACAGAA	AGAGGGACAA	GAGGGTTCAC	ACAGCCCAGT	4050
TCCCGTGACG	AGGCTCAAAA	ACTTGATCAC	ATGCTTGAAT	GGAGCTGGTG	4100
AGATCAACAA	CACTACTTCC	CTGCCGGAAT	GAACTGTCCG	TGAATGGTCT	4150
CTGTCAAGCG	GGCCGTCTCC	CTTGGCCCAG	AGACGGAGTG	TGGGAGTGAT	4200
TCCCAACTCC	TTTCTGCAGA	CGTCTGCCTT	GGCATCCTCT	TGAATAGGAA	4250
GATCGTTCCA	CTTTCTACGC	AATTGACAAA	CCCGGAAGAT	CAGATGCAAT	4300
TGCTCCCATC	AGGGAAGAAC	CCTATACTTG	GTTTGCTACC	CTTAGTATTT	4350
ATTACTAACC	TCCCTTAAGC	AGCAACAGCC	TACAAAGAGA	TGCTTGGAGC	4400
AATCAGAACT	TCAGGTGTGA	CTCTAGCAAA	GCTCATCTTT	CTGCCCGGCT	4450
ACATCAGCCT	TCAAGAATCA	GAAGAAAGCC	AAGGTGCTGG	ACTGTTACTG	4500
ACTTGGATCC	CAAAGCAAGG	AGATCATTTG	GAGCTCTTGG	GTCAGAGAAA	4550
ATGAGAAAGG	ACAGAGCCAG	CGGCTCCAAC	TCCTTTCAGC	CACATGCCCC	4600
AGGCTCTCGC	TGCCCTGTGG	ACAGGATGAG	GACAGAGGGC	ACATGAACAG	4650
CTTGCCAGGG	ATGGGCAGCC	CAACAGCACT	TTTCCTCTTC	TAGATGGACC	4700
CCAGCATTTA	AGTGACCTTC	TGATCTTGGG	AAAACAGCGT	CTTCCTTCTT	4750
TATCTATAGC	AACTCATTGG	TGGTAGCCAT	CAAGCACTTC	GGAATT	4796

- (2) INFORMATION FOR SEQ ID NO: 4:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 924
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ser Arg Met Trp Gly His Leu Ser Glu Gly Tyr Gly Gln Leu 1 5 10 15

Cys Ser Ile Tyr Leu Lys Leu Leu Arg Thr Lys Met Glu Tyr His 20 25 30

Thr	Lys	Asn	Pro	Arg 35	Phe	Pro	Gly	Asn	Leu 40	Gln	Met	Ser	Asp	Arg 45
Gln	Leu	Asp	Glu	Ala 50	Gly	Glu	Ser	Asp	Val 55	Asn	Asn	Phe	Phe	Gln 60
Leu	Thr	V al	Glu	Met 65	Phe	Asp	Tyr	Leu	Glu 70	Cys	Glu	Leu	Asn	Leu 75
Phe	Gln	Thr	Val	Phe 80	Asn	Ser	Leu	Asp	Met 85	Ser	Arg	Ser	Val	Ser 90
Va1	Thr	Ala	Ala	Gly 95	Gln	Cys	Arg	Leu	Ala 100	Pro	Leu	Ile	Gln	Val 105
Ile	Leu	Asp	Cys	Ser 110	His	Leu	Tyr	Asp	Tyr 115	Thr	Val	Lys	Leu	Leu 120
Phe	Lys	Leu	His	Ser 125	Cys	Leu	Pro	Ala	Asp 130	Thr	Leu	Gln	Gly	His 135
Arg	Asp	Arg	Phe	Met 140	Glu	Gln	Phe	Thr	Lys 145	Leu	Lys	Asp	Leu	Phe 150
Tyr	Arg	Ser	Ser	Asn 155	Leu	Gln	Tyr	Phe	Lys 160	Arg	Leu	Ile	Gln	Ile 165
Pro	Gln	Leu	Pro	Glu 170	Asn	Pro	Pro	Asn	Phe 175	Leu	Arg	Ala	Ser	Ala 180
Leu	Ser	Glu	His	Ile 185	Ser	Pro	Val	Val	Val 190	Ile	Pro	Ala	Glu	Ala 195
Ser	Ser	Pro	Asp	Ser 200	Glu	Pro	Val	Leu	Glu 205	Lys	Asp	Asp	Leu	M et 210
Asp	Met	Asp	Ala	Ser 215	Gln	Gln	Asn	Leu	Phe 220	Asp	Asn	Lys	Phe	Asp 225
Asp	Ile	Phe	Gly	Ser 230	Ser	Phe	Ser	Ser	Asp 235	Pro	Phe	Asn	Phe	Asn 240
Ser	Gln	Asn	Gly	Val 245	Asn	Lys	Asp	Glu	Lys 250	Asp	His	Leu	Ile	Glu 255
Arg	Leu	Tyr	Arg	Glu 260	Ile	Ser	Gly	Leu	Lys 265	Ala	Gln	Leu	Glu	Asn 270
Met	Lys	Thr	Glu	Ser 275	Gln	Arg	Val	Val	Leu 280	Gln	Leu	Lys	Gly	His 285

WO 99/60986 PCT/US99/11743
al Ser Glu Leu Glu Ala Asp Leu Ala Glu Gln Gln His Leu Arg

Val S	Ser	Glu	Leu	Glu 290	Ala	Asp	Leu	Ala	Glu 295	Gln	Gln	His	Leu	Arg 300
Gln G	∃ln	Ala	Ala	Asp 305	Asp	Cys	Glu	Phe	Leu 310	Arg	Ala	Glu	Leu	Asp 315
Glu I	Leu	Arg	Arg	Gln 320	Arg	Glu	Asp	Thr	Glu 325	Lys	Ala	Gln	Arg	Ser 330
Leu S	Ser	Glu	Ile	Glu 335	Arg	Lys	Ala	Gln	Ala 340	Asn	Glu	Gln	Arg	Tyr 345
Ser I	∟ys	Leu	Lys	Glu 350	Lys	Tyr	Ser	Glu	Leu 355	Val	Gln	Asn	His	Ala 360
Asp I	Leu	Leu	Arg	Lys 365	Asn	Ala	Glu	Val	Thr 370	Lys	Gln	Val	Ser	Met 375
Ala A	Arg	Gln	Ala	Gln 380	Val	Asp	Leu	Glu	Arg 385	Glu	Lys	Lys	Glu	Leu 390
Glu A	Asp	Ser	Leu	Glu 395	Arg	Ile	Ser	Asp	Gln 400	Gly	Gln	Arg	Lys	Thr 405
Gln (Glu	Gln	Leu	Glu 410	Val	Leu	Glu	Ser	Leu 415	Lys	Gln	Glu	Leu	Gly 420
Thr S	Ser	Gln	Arg	Glu 425	Leu	Gln	Val	Leu	Gln 430	Gly	Ser	Leu	Glu	Thr 435
Ser A	Ala	Gln	Ser	Glu 440	Ala	Asn	Trp	Ala	Ala 445	Glu	Phe	Ala	Glu	Leu 450
Glu I	Lys	Glu	Arg	Asp 455	Ser	Leu	Val	Ser	Gly 460	Ala	Ala	His	Arg	Glu 465
Glu (Glu	Leu	Ser	Ala 470	Leu	Arg	Lys	Glu	Leu 475	Gln	Asp	Thr	Gln	Leu 480
Lys I	Ĺeu	Ala	Ser	Thr 485	Glu	Glu	Ser	Met	Cys 490	Gln	Leu	Ala	Lys	Asp 495
Gln A	Arg	Lys	Met	Leu 500	Leu	Val	Gly	Ser	Arg 505	Lys	Ala	Ala	Glu	Gln 510
Val 1	Ile	Gln	Asp	Ala 515	Leu	Asn	Gln	Leu	Glu 520	Glu	Pro	Pro	Leu	I le 525
Ser (Cys	Ala	Gly	Ser 530	Ala	Asp	His	Leu	Leu 535	Ser	Thr	Val	Thr	Ser 540

PCT/US99/11743 WO 99/60986 Ile Ser Ser Cys Ile Glu Gln Leu Glu Lys Ser Trp Ser Gln Tyr 545 550 555 Leu Ala Cys Pro Glu Asp Ile Ser Gly Leu Leu His Ser Ile Thr 560 565 Leu Leu Ala His Leu Thr Ser Asp Ala Ile Ala His Gly Ala Thr 575 Thr Cys Leu Arg Ala Pro Pro Glu Pro Ala Asp Ser Leu Thr Glu 590 595 Ala Cys Lys Gln Tyr Gly Arg Glu Thr Leu Ala Tyr Leu Ala Ser 605 610 615 Leu Glu Glu Glu Gly Ser Leu Glu Asn Ala Asp Ser Thr Ala Met 620 625 Arg Asn Cys Leu Ser Lys Ile Lys Ala Ile Gly Glu Glu Leu Leu Pro Arg Gly Leu Asp Ile Lys Gln Glu Glu Leu Gly Asp Leu Val Asp Lys Glu Met Ala Ala Thr Ser Ala Ala Ile Glu Thr Cys Thr 665 670 675 Ala Arg Ile Glu Glu Met Leu Ser Lys Ser Arg Ala Gly Asp Thr 680 Gly Val Lys Leu Glu Val Asn Glu Arg Ile Leu Arg Cys Cys Thr 700 Ser Leu Met Gln Ala Ile Gln Val Leu Ile Val Ala Ser Lys Asp Leu Gln Arg Glu Ile Val Glu Ser Gly Arg Gly Thr Ala Ser Pro 725 730 735 Lys Glu Phe Tyr Ala Lys Asn Ser Arg Trp Thr Glu Gly Leu Ile Ser Ala Ser Lys Ala Val Gly Trp Gly Ala Thr Val Met Val Asp 770 Ala Ala Asp Leu Val Val Gln Gly Arg Gly Lys Phe Glu Glu Leu Met Val Cys Ser His Glu Ile Ala Ala Ser Thr Ala Gln Leu Val 795 800 805

Ala	Ala	Ser	Lys	Val 810	Lys	Ala	Asp	Lys	Asp 815	Ser	Pro	Asn	Leu	Ala 820
Gln	Leu	Gln	Gln	Ala 825	Ser	Arg	Gly	Val	Asn 830	Gln	Ala	Thr	Ala	Gly 835
Val	Val	Ala	Ser	Thr 840	Ile	Ser	Gly	Lys	Ser 845	Gln	Ile	Glu	Glu	Thr 850
Asp	Asn	Met	Asp	Phe 855	Ser	Ser	Met	Thr	Leu 860	Thr	Gln	Ile	Lys	Arg 865
Gln	Glu	Met	Asp	Ser 870	Gln	Val	Arg	Val	Leu 875	Glu	Leu	Glu	Asn	Glu 880
Leu	Gln	Lys	Glu	Arg 885	Gln	Lys	Leu	Gly	Glu 890	Leu	Arg	Lys	Lys	His 895
Tyr	Glu	Leu	Ala	Gly 900	Val	Ala	Glu	Gly	Trp 905	Glu	Glu	Gly	Thr	Glu 910
Ala	Ser	Pro	Pro	Thr 915	Leu	Gln	Glu	Val	Val 920	Thr	Glu	Lys	Glu 924	

- (2) INFORMATION FOR SEQ ID NO: 5
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1090
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (III) IIII OII LEICAL. IIO
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Leu Leu Cys Gln Gly Ser Glu Trp Arg Arg Asp Gln Gln Leu 5 10 15

Gly Thr Ala Asn Ala Arg Gln Trp Cys Pro Leu Pro Gln Asp Ala 20 25 30

Gln Pro Ala Gly Ser Trp Glu Arg Cys Pro Pro Leu Pro Pro Ala 35 40 45

Gly Arg Leu Gln Gly Thr Asp His Pro Trp Gly Trp Gly Arg Leu
50 55 60

Ala	Gly	Gly	Gly	Glu 65	Arg	Gly	Gly	Leu	Trp 70	Glu	Gly	Leu	Ser	His 75
Ser	Gln	Arg	Leu	Ile 80	His	Leu	Ile	Leu	Leu 85	Ser	Leu	Pro	Leu	Leu 90
Val	Phe	Gln	Thr	Val 95	Ser	Ile	Asn	Lys	Ala 100	Ile	Asn	Thr	Gln	Glu 105
Val	Ala	Val	Lys	Glu 110	Lys	His	Ala	Arg	Thr 115	Cys	Ile	Leu	Gly	Thr 120
His	His	Glu	Lys	Gly 125	Ala	Gln	Thr	Phe	Trp 130	Ser	Va1	Val	Asn	Arg 135
Leu	Pro	Leu	Ser	Ser 140	Asn	Ala	Val	Leu	Cys 145	Trp	Lys	Phe	Суз	His 150
Val	Phe	His	Lys	Leu 155	Leu	Arg	Asp	Gly	His 160	Pro	Asn	Val	Leu	Lys 165
Asp	Ser	Leu	Arg	Tyr 170	Arg	Asn	Glu	Leu	Ser 175	Asp	Met	Ser	Arg	Met 180
Trp	Gly	His	Leu	Ser 185	Glu	Gly	Tyr	Gly	Gln 190	Leu	Cys	Ser	Ile	Tyr 195
Leu	Lys	Leu	Leu	Arg 200	Thr	Lys	Met	Glu	Туr 205	His	Thr	Lys	Asn	Pro 210
Arg	Phe	Pro	Gly	Asn 215	Leu	Gln	Met	Ser	Asp 220	Arg	Gln	Leu	Asp	Glu 225
Ala	Gly	Glu	Ser	Asp 230	Val	Asn	Asn	Phe	Phe 235	Gln	Leu	Thr	Val	Glu 240
Met	Phe	Asp	Tyr	Leu 245	Glu	Cys	Glu	Leu	Asn 250	Leu	Phe	Gln	Thr	Val 255
Phe	Asn	Ser	Leu	Asp 260	Met	Ser	Arg	Ser	Val 265	Ser	Val	Thr	Ala	Ala 270
Gly	Gln	Cys	Arg	Leu 275	Ala	Pro	Leu	Ile	Gln 288	Val	Ile	Leu	Asp	Cys 285
Ser	His	Leu	Tyr	Asp 290	Tyr	Thr	Val	Lys	Leu 295	Leu	Phe	Lys	Leu	His 300
Ser	Cys	Leu	Pro	Ala 305	Asp	Thr	Leu	Gln	Gly 310	His	Arg	Asp	Arg	Phe 315

Met	Glu	Gln	Phe	Thr 320	Lys	Leu	Lys	Asp	Leu 325	Phe	Tyr	Arg	Ser	Ser 330
Asn	Leu	Gln	Tyr	Phe 335	Lys	Arg	Leu	Ile	Gln 340	Ile	Pro	Gln	Leu	Pro 345
Glu	Asn	Pro	Pro	Asn 350	Phe	Leu	Arg	Ala	Ser 355	Ala	Leu	Ser	Glu	His 360
Ile	Ser	Pro	Val	Val 365	Val	Ile	Pro	Ala	Glu 370	Ala	Ser	Ser	Pro	Asp 375
Ser	Glu	Pro	Val	Leu 380	Glu	Lys	Asp	Asp	Leu 385	Met	Asp	Met	Asp	Ala 390
Ser	Gln	Gln	Asn	Leu 395	Phe	Asp	Asn	Lys	Phe 400	Asp	Asp	Ile	Phe	Gly 405
Ser	Ser	Phe	Ser	Ser 410	Asp	Pro	Phe	Asn	Phe 415	Asn	Ser	Gln	Asn	Gly 420
Val	Asn	Lys	Asp	Glu 425	Lys	Asp	His	Leu	Ile 430	Glu	Arg	Leu	Tyr	Arg 435
Glu	Ile	Ser	Gly	Leu 440	Lys	Ala	Gln	Leu	Glu 445	Asn	Met	Lys	Thr	Glu 450
Ser	Gln	Arg	Val	Val 455	Leu	Gln	Leu	Lys	Gly 460	His	Val	Ser	Glu	Leu 465
Glu	Ala	Asp	Leu	Ala 470	Glu	Gln	Gln	His	Leu 4 75	Arg	Gln	Gln	Ala	Ala 480
Asp	Asp	Cys	Glu	Phe 485	Leu	Arg	Ala	Glu	Leu 490	Asp	Glu	Leu	Arg	Arg 495
Gln	Arg	Glu	Asp	Thr 500	Glu	Lys	Ala	Gln	Arg 505	Ser	Leu	Ser	Glu	Ile 510
Glu	Arg	Lys	Ala	Gln 515	Ala	Asn	Glu	Gln	Arg 520	Tyr	Ser	Lys	Leu	Lys 525
Glu	Lys	Tyr	Ser	Glu 530	Leu	Val	Gln	Asn	His 535	Ala	Asp	Leu	Leu	Arg 540
Lys	Asn	Ala	Glu	Val 545	Thr	Lys	Gln	Val	Ser 550	Met	Ala	Arg	Gln	Ala 555
Gln	Val	Asp	Leu	Glu 560	Arg	Glu	Lys	Lys	G1u 565	Leu	Glu	Asp	Ser	Leu 570

PCT/US99/11743 WO 99/60986 Glu Arg Ile Ser Asp Gln Gly Gln Arg Lys Thr Gln Glu Gln Leu Glu Val Leu Glu Ser Leu Lys Gln Glu Leu Ala Thr Ser Gln Arg Glu Leu Gln Val Leu Gln Gly Ser Leu Glu Thr Ser Ala Gln Ser Glu Ala Asn Trp Ala Ala Glu Phe Ala Glu Leu Glu Lys Glu Arg Asp Ser Leu Val Ser Gly Ala Ala His Arg Glu Glu Glu Leu Ser Ala Leu Arg Lys Glu Leu Gln Asp Thr Gln Leu Lys Leu Ala Ser Thr Glu Glu Ser Met Cys Gln Leu Ala Lys Asp Gln Arg Lys Met Leu Leu Val Gly Ser Arg Lys Ala Ala Glu Gln Val Ile Gln Asp Ala Leu Asn Gln Leu Glu Glu Pro Pro Leu Ile Ser Cys Ala Gly Ser Ala Asp His Leu Leu Ser Thr Val Thr Ser Ile Ser Ser Cys Ile Glu Gln Leu Glu Lys Ser Trp Ser Gln Tyr Leu Ala Cys Pro Glu Asp Ile Ser Gly Leu Leu His Ser Ile Thr Leu Leu Ala His Leu Thr Ser Asp Ala Ile Ala His Gly Ala Thr Thr Cys Leu Arg Ala Pro Pro Glu Pro Ala Asp Ser Leu Thr Glu Ala Cys Lys Gln Tyr Gly Arg Glu Thr Leu Ala Tyr Leu Ala Ser Leu Glu Glu Glu Gly Ser Leu Glu Asn Ala Asp Ser Thr Ala Met Arg Asn Cys Leu Ser Lys Ile Lys Ala Ile Gly Glu Glu Leu Leu Pro Arg Gly Leu

Asp	Ile	Lys	Gln	Glu 830	Glu	Leu	Gly	Asp	Leu 835	Val	Asp	Lys	Glu	Met 840
Ala	Ala	Thr	Ser	Ala 845	Ala	Ile	Glu	Thr	Ala 850	Thr	Ala	Arg	Ile	Glu 855
Glu	Met	Leu	Ser	Lys 860	Ser	Arg	Ala	Gly	Asp 865	Thr	Gly	Val	Lys	Leu 870
G lu	Val	Asn	Glu	Arg 875	Ile	Leu	Gly	Cys	Cys 888	Thr	Ser	Leu	Met	Gln 885
Ala	Ile	Gln	Val	Leu 890	Ile	Val	Ala	Ser	Lys 895	Asp	Leu	Gln	Arg	Glu 900
Ile	Val	Glu	Ser	Gly 905	Arg	Gly	Thr	Ala	Ser 910	Pro	Lys	Glu	Phe	Tyr 915
Ala	Lys	Asn	Ser	Arg 920	Trp	Thr	Glu	Gly	Leu 925	Ile	Ser	Ala	Ser	Lys 930
Ala	Val	Gly	Trp	Gly 935	Ala	Thr	Val	Met	Val 940	Asp	Ala	Ala	Asp	Leu 9 4 5
Val	Val	Gln	Gly	Arg 950	Gly	Lys	Phe	Glu	Glu 955	Leu	Met	Val	Cys	Ser 960
His	Glu	Ile	Ala	Ala 965	Ser	Thr	Ala	Gln	Leu 970	Val	Ala	Ala	Ser	Lys 975
Val	Lys	Ala	Asp	Lys 980	Asp	Ser	Pro	Asn	Leu 985	Ala	Gln	Leu	Gln	Gln 990
Ala	Ser	Arg	Gly	Val 995	Asn	Gln	Ala		Ala 1000	Gly	Val	Val	Ala 1	Ser 1005
Thr	Ile	Ser	_	Lys 1010	Ser	Gln	Ile		Glu 1015	Thr	Asp	Asn	Met 1	Asp 1020
Phe	Ser	Ser		Thr L025	Leu	Thr	Gln		Lys 1030	Arg	Gln	Glu	Met 1	Asp L035
Ser	Gln	Val	-	Val 10 4 0	Leu	Glu	Leu		Asn 10 4 5	Glu	Leu	Gln	Lys 1	G1u 1050
Arg	Gln	Lys		Gly 1055	Glu	Leu	Arg	_	Lys 1060	His	Tyr	Glu	Leu 1	Ala 1065
Gly	Val	Ala		Gly 1070	Trp	Glu	Glu	_	Thr 1075	Glu	Ala	Ser	Pro	Pro L080

Thr Leu Gln Glu Val Val Thr Glu Lys Glu 1085 1090

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3301

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii)MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: no

(iv) ANTI-SENSE: no

(vi) ORIGINAL SOURCE:

(A) ORGANISM: human

(ix) FEATURE: cDNA for Huntingtin-interacting protein

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CGGTGAGCTG	GAGGAGCAGC	GGAAGCAGAA	GCAGAAGGCC	${\tt CTGGTGGATA}$	50
ATGAGCAGCT	CCGCCACGAG	CTGGCCCAGC	TGAGGGCTGC	CCAGCTGGAG	100
CGCGAGCGGA	GCCAGGGCCT	GCGTGAGGAG	GCTGAGAGGA	AGGCCAGTGC	150
CACGGAGGCG	CGCTACAACA	AGCTGAAGGA	AAAGCACAGT	GAGCTCGTCC	200
ATGTGCACGC	GGAGCTGCTC	AGAAAGAACG	CGGACACAGC	CAAGCAGCTG	250
ACGGTGACGC	AGCAAAGCCA	${\tt GGAGGAGGTG}$	GCGCGGGTGA	AGGAGCAGCT	300
GGCCTTCCAG	GTGGAGCAGG	TGAAGCGGGA	GTCGGAGTTG	AAGCTAGAGG	350
AGAAGAGCGA	CCAGCAGGAG	AAGCTCAAGA	${\tt GGGAGCTGGA}$	GGCCAAGGCC	400
GGAGAGCTGG	CCCGCGCGCA	${\tt GGAGGCCCTG}$	AGCCACACAG	AGCAGAGCAA	450
GTCGGAGCTG	AGCTCACGGC	TGGACACACT	GAGTGCGGAG	AAGGATGCTC	500
TGAGTGGAGC	TGTGCGGCAG	CGGGAGGCAG	ACCTGCTGGC	GGCGCAGAGC	550
CTGGTGCGCG	AGACAGAGGC	GGCGCTGAGC	CGGGAGCAGC	AGCGCAGCTC	600
CCAGGAGCAG	GGCGAGTTGC	AGGGCCGGCT	GGCAGAGAGG	GAGTCTCAGG	650
AGCAGGGGCT	GCGGCAGAGG	CTGCTGGACG	AGCAGTTCGC	AGTGTTGCGG	700
GGCGCTGCTG	CCGAGGCCGC	GGGCATCCTG	CAGGATGCCG	TGAGCAAGCT	750
GGACGACCCC	CTGCACCTGC	GCTGTACCAG	CTCCCCAGAC	TACCTGGTGA	800
GCAGGGCCCA	GGAGGCCTTG	GATGCCGTGA	GCACCCTGGA	GGAGGGCCAC	850
GCCCAGTACC	TGACCTCCTT	GGCAGACGCC	TCCGCCCTGG	TGGCAGCTCT	900
GACCCGCTTC	TCCCACCTGG	CTGCGGATAC	CATCATCAAT	GGCGGTGCCA	950
CCTCGCACCT	GGCTCCCACC	GACCCTGCCG	ACCGCCTCAT	AGACACCTGC	1000
AGGGAGTGCG	GGGCCCGGGC	TCTGGAGCTC	ATGGGGCAGC	TGCAGGACCA	1050
GCAGGCTCTG	CGGCACATGC	AGGCCAGCCT	GGTGCGGACA	CCCCTGCAGG	1100
GCATCCTTCA	GCTGGGCCAA	GAACTGAAAC	CCAAGAGCCT	AGATGTGCGG	1150
CAGGAGGAGC	TGGGGGCCGT	GGTCGACAAG	GAGATGGCGG	CCACATCCGC	1200
AGCCATTGAA	GATGCTGTGC	GGAGGATTGA	GGACATGATG	AACCAGGCAC	1250
GCCACGCCAG	CTCGGGGGTG	AAGCTGGAGG	TGAACGAGAG	GATCCTCAAC	1300
TCCTGCACAG	ACCTGATGAA	GGCTATCCGG	CTCCTGGTGA	CGACATCCAC	1350
TAGCCTGCAG	AAGGAGATCG	TGGAGAGCGG	CAGGGGGGCA	GCCACGCAGC	1400
AGGAATTTTA	CGCCAAGAAC	TCGCGCTGGA	CCGAAGGCCT	CATCTCGGCC	1450
TCCAAGGCTG	TGGGCTGGGG	AGCCACACAG	CTGGTGGAGG	CAGCTGACAA	1500
GGTGGTGCTT	CACACGGGCA	AGTATGAGGA	GCTCATCGTC	TGCTCCCACG	1550
AGATCGCAGC	CAGCACGGCC	CAGCTGGTGG	CGGCCTCCAA	GGTGAAGGCC	1600

```
AACAAGCACA GCCCCCACCT GAGCCGCCTG CAGGAATGTT CTCGCACAGT 1650
CAATGAGAGG GCTGCCAATG TGGTGGCCTC CACCAAGTCA GGCCAGGAGC 1700
AGATTGAGGA CAGAGACACC ATGGATTTCT CCGGCCTGTC CCTCATCAAG 1750
CTGAAGAAGC AGGAGATGGA GACGCAGGTG CGTGTCCTGG AGCTGGAGAA 1800
GACGCTGGAG GCTGAACGCA TGCGGCTGGG GGAGTTGCGG AAGCAACACT 1850
ACGTGCTGGC TGGGGCATCA GGCAGCCCTG GAGAGGAGGT GGCCATCCGG 1900
CCCAGCACTG CCCCCGAAG TGTAACCACC AAGAAACCAC CCCTGGCCCA 1950
GAAGCCCAGC GTGGCCCCCA GACAGGACCA CCAGCTTGAC AAAAAGGATG 2000
GCATCTACCC AGCTCAACTC GTGAACTACT AGGCCCCCCA GGGGTCCAGC 2050
AGGGTGGCTG GTGACAGGCC TGGGCCTCTG CAACTGCCCT GACAGGACCG 2100
AGAGGCCTTG CCCCTCCACC TGGTGCCCAA GCCTCCCGCC CCACCGTCTG 2150
GATCAATGTC CTCAAGGCCC CTGGCCCTTA CTGAGCCTGC AGGGTCCTGG 2200
GCCATGTGGG TGGTGCTTCT GGATGTGAGT CTCTTATTTA TCTGCAGAAG 2250
GAACTTTGGG GTGCAGCCAG GACCCGGTAG GCCTGAGCCT CAACTCTTCA 2300
GAAAATAGTG TTTTTAATAT TCCTCTTCAG AAAATAGTGT TTTTAATATT 2350
CCGAGCTAGA GCTCTTCTTC CTACGTTTGT AGTCAGCACA CTGGGAAACC 2400
GGGCCAGCGT GGGGCTCCCT GCCTTCTGGA CTCCTGAAGG TCGTGGATGG 2450
ATGGAAGGCA CACAGCCCGT GCCGGCTGAT GGGACGAGGG TCAGGCATCC 2500
TGTCTGTGGC CTTCTGGGGC ACCGATTCTA CCAGGCCCTC CAGCTGCGTG 2550
GTCTCCGCAG ACCAGGCTCT GTGTGGGCTA GAGGAATGTC GCCCATTACC 2600
TCCTCAGGCC CTGGCCCTCG GGCCTCCGTG ATGGGAGCCC CCCAGGAGGG 2700
GTCAGATGCT GGAAGGGCC GCTTTCTGGG GAGTGAGGTG AGACATAGCG 2750
GCCCAGGCGC TGCCTTCACT CCTGGAGTTT CCATTTCCAG CTGGAATCTG 2800
CAGCCACCC CATTTCCTGT TTTCCATTCC CCCGTTCTGG CCGCGCCCCA 2850
CTGCCCACCT GAAGGGGTGG TTTCCAGCCC TCCGGAGAGT GGGCTTGGCC 2900
CTAGGCCCTC CAGCTCAGCC AGAAAAAGCC CAGAAACCCA GGTGCTGGAC 2950
CAGGGCCCTC AGGGAGGGAC CCTGCGGCTA GAGTGGGCTA GGCCCTGGCT 3000
TTGCCCGTCA GATTTGAACG AATGTGTGTC CCTTGAGCCC AAGGAGAGCG 3050
GCAGGAGGGG TGGGACCAGG CTGGGAGGAC AGAGCCAGCA GCTGCCATGC 3100
CCTCCTGCTC CCCCCACCCC AGCCCTAGCC CTTTAGCCTT TCACCCTGTG 3150
CTCTGGAAAG GCTACCAAAT ACTGGCCAAG GTCAGGAGGA GCAAAAATGA 3200
GCCAGCACCA GCGCCTTGGC TTTGTGTTAG CATTTCCTCC TGAAGTGTTC 3250
TGTTGGCAAT AAAATGCACT TTGACTGTTA AAAAAAAAA AAAAAAAAA 3300
                                                       3301
```

- (2) INFORMATION FOR SEQ ID NO: 7
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 676
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (ix) FEATURE: Huntingtin-interacting protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
- Gly Glu Leu Glu Glu Gln Arg Lys Gln Lys Gln Lys Ala Leu Val 5 10 15

PCT/US99/11743 WO 99/60986 Asp Asn Glu Gln Leu Arg His Glu Leu Ala Gln Leu Arg Ala Ala Gln Leu Glu Arg Glu Arg Ser Gln Gly Leu Arg Glu Glu Ala Glu Arq Lys Ala Ser Ala Thr Glu Ala Arg Tyr Asn Lys Leu Lys Glu Lys His Ser Glu Leu Val His Val His Ala Glu Leu Leu Arg Lys Asn Ala Asp Thr Ala Lys Gln Leu Thr Val Thr Gln Gln Ser Gln Glu Glu Val Ala Arg Val Lys Glu Gln Leu Ala Phe Gln Val Glu Gln Val Lys Arg Glu Ser Glu Leu Lys Leu Glu Glu Lys Ser Asp Gln Gln Glu Lys Leu Lys Arg Glu Leu Glu Ala Lys Ala Gly Glu Leu Ala Arg Ala Gln Glu Ala Leu Ser His Thr Glu Gln Ser Lys Ser Glu Leu Ser Ser Arg Leu Asp Thr Leu Ser Ala Glu Lys Asp Ala Leu Ser Gly Ala Val Arg Gln Arg Glu Ala Asp Leu Leu Ala Ala Gln Ser Leu Val Arg Glu Thr Glu Ala Ala Leu Ser Arg Glu Gln Gln Arg Ser Ser Gln Glu Gln Gly Glu Leu Gln Gly Arg Leu Ala Glu Arg Glu Ser Gln Glu Gln Gly Leu Arg Gln Arg Leu Leu Asp Glu Gln Phe Ala Val Leu Arg Gly Ala Ala Ala Glu Ala Ala Gly Ile Leu Gln Asp Ala Val Ser Lys Leu Asp Asp Pro Leu His

Leu Arg Cys Thr Ser Ser Pro Asp Tyr Leu Val Ser Arg Ala Gln

Glu	Ala	Leu	Asp	Ala 275	Val	Ser	Thr	Leu	Glu 288	Glu	Gly	His	Ala	G1n 285
Tyr	Leu	Thr	Ser	Leu 290	Ala	Asp	Ala	Ser	Ala 295	Leu	Val	Ala	Ala	Leu 300
Thr	Arg	Phe	Ser	His 305	Leu	Ala	Ala	Asp	Thr 310	Ile	Ile	Asn	Gly	Gly 315
Ala	Thr	Ser	His	Leu 320	Ala	Pro	Thr	Asp	Pro 325	Ala	Asp	Arg	Leu	11e 330
Asp	Thr	Cys	Arg	Glu 335	Cys	Gly	Ala	Arg	Ala 3 4 0	Leu	Glu	Leu	Met	Gly 345
Gln	Leu	Gln	Asp	Gln 350	Gln	Ala	Leu	Arg	His 355	Met	Gln	Ala	Ser	Leu 360
V al	Arg	Thr	Pro	Leu 365	Gln	Gly	Ile	Leu	Gln 370	Leu	Gly	Gln	Glu	Leu 375
Lys	Pro	Lys	Ser	Leu 380	Asp	Val	Arg	Gln	Glu 385	Glu	Leu	Gly	Ala	Val 390
Val	Asp	Lys	Glu	Met 395	Ala	Ala	Thr	Ser	Ala 400	Ala	Ile	Glu	Asp	Ala 405
Val	Arg	Arg	Ile	Glu 410	Asp	Met	Met	Asn	Gln 415	Ala	Arg	His	Ala	Ser 420
Ser	Gly	Val	Lys	Leu 42 5	Glu	Val	Asn	Glu	Arg 430	Ile	Leu	Asn	Ser	Cys 435
Thr	Asp	Leu	Met	Lys 440	Ala	Ile	Arg	Leu	Leu 445	Val	Thr	Thr	Ser	Thr 450
Ser	Leu	Gln	Lys	Glu 455	Ile	Val	Glu	Ser	Gly 460	Arg	Gly	Ala	Ala	Thr 465
Gln	Gln	Glu	Phe	Tyr 470	Ala	Lys	Asn	Ser	Arg 475	Trp	Thr	Glu	Gly	Leu 480
Ile	Ser	Ala	Ser	Lys 485	Ala	Val	Gly	Trp	Gly 490	Ala	Thr	Gln	Leu	Val 495
Glu	Ala	Ala	Asp	Lys 500	Val	Val	Leu	His	Thr 505	Gly	Lys	Tyr	Glu	Glu 510
Leu	Ile	Val	Cys	Ser 515	His	Glu	Ile	Ala	Ala 520	Ser	Thr	Ala	Gln	Leu 525

PCT/US99/11743 WO 99/60986 Val Ala Ala Ser Lys Val Lys Ala Asn Lys His Ser Pro His Leu 530 535 Ser Arg Leu Gln Glu Cys Ser Arg Thr Val Asn Glu Arg Ala Ala 545 550 Asn Val Val Ala Ser Thr Lys Ser Gly Gln Glu Gln Ile Glu Asp 560 565 Arg Asp Thr Met Asp Phe Ser Gly Leu Ser Leu Ile Lys Leu Lys 575 588 Lys Gln Glu Met Glu Thr Gln Val Arg Val Leu Glu Leu Glu Lys 590 595 600 Thr Leu Glu Ala Glu Arg Met Arg Leu Gly Glu Leu Arg Lys Gln 605 His Tyr Val Leu Ala Gly Ala Ser Gly Ser Pro Gly Glu Glu Val 625 Ala Ile Arg Pro Ser Thr Ala Pro Arg Ser Val Thr Thr Lys Lys 635 640 Pro Pro Leu Ala Gln Lys Pro Ser Val Ala Pro Arg Gln Asp His 650 655 660 Gln Leu Asp Lys Lys Asp Gly Ile Tyr Pro Ala Gln Leu Val Asn 665 670 675 Tyr (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2338 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii)MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: mouse (ix) FEATURE: cDNA for Huntingtin-interacting protein - mHIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 8: GGCACGAGGG CTCATTCAGA TCCCCCAGCT GCCCGAGAAT CCACCCAACTT 50 CCTACGAGCC TCGGCCCTGT CAGAGCACAT CAGTCCTGTG GTGGTGATCCC 100 GGCAGAGGTG TCATCCCCAG ACAGTGAGCC TGTCCTGGAG AAGGATGACCT 150

CATGGACATG GACGCCTCCC AGCAGACTTT GTTTGACAAC AAGTTTGATGA 200

WO 99/6098	6			PCT	/US99/117
CGTCTTTGGC	AGCTCATTGA	GCAGCGACCC	TTTCAATTTC	AACAATCAAA	A 250
TGGCGTGAAC	AAGGACGAGA	AGGACCACTT	GATTGAACGC	CTGTACAGAGA	A 300
GATCAGTGGA	CTGACAGGGC	AGCTGGACAA	CATGAAGATT	GAGAGCCAGCC	350
GGCCATGCTG	CAGCTGAAGG	GTCGAGTGAG	TGAGCTGGAG	GCAGAGCTAG	400
AGAGCAGCAG	CACTTGGGCC	GGCAGGCTAT	GGATGACTGC	GAGTTCCTGCC	3 450
CACTGAGCTG	GATGAACTGA	AGAGGCAGCG	AGAGGACACG	GAGAAGGCACA	A 500
GCGCAGCCTG	ACTGAGATAG	AAAGAAAGGC	CCAGGCTAAT	GAACAGAGGT	A 550
TAGCAAGTTA	AAAGAGAAGT	ACAGTGAACT	GGTGCAGAAC	CATGCTGACCT	r 600
GCTGCGGAAG	AACGCAGAGG	TGACCAAACA	GGTGTCCGTG	GCCCGGCAAG	650
CCAGGTGGAT	TTGGAAAGAG	AGAAAAAAGA	${\tt GCTAGCAGAT}$	TCCTTTGCAC	700
GTGTAAGTGA	CCAGGCCCAG	CGGAAGACTC	AAGAGCAACA	${\tt GGATGTTCTA}$	750
GAGAACCTGA	AGCATGAACT	GGCCACCAGC	AGACAGGAGC	${\tt TGCAGGTCCT}$	800
CCACAGCAAC	CTGGAAACCT	CTGCCCAGTC	AGAAGCGAAA	TGGCTGACAC	850
AGATCGCCGA	GTTGGAGAAG	GAACAAGGCA	GCTTGGCGAC	${\tt TGTTGCAGCT}$	900
CAGAGAGAGG	AAGAGTTATC	AGCCCTCCGA	GACCAGCTGG	AAAGCACCCA	950
GATCAAGCTG	GCTGGGGCCC	AGGAATCCAT	GTGCCAGCAG	GTGAAGGACC	1000
AGAGGAAAAC	CCTCTTGGCA	GGGATCAGGA	AGGCTGCGGA	GCGTGAGATA	1050
CAGGAGGCGC	TGAGCCAGCT	TGAGGAACCC	ACCCTCATCA	GCTGTGCAGG	1100
ATCCACAGAT	CACCTTCTCT	CCAAAGTCAG	CTCCGTTTCC	AGCTGCCTCG	1150
AGCAACTGGA		AGCCAGTATC	TGGCCTGCCC		1200
AGTGAGCTTC			GCCCACTTGA		1250
			GGCCCCACCG		1300
			GCAGAGAAAC		1350
CTGTCCTCCC			GAGAATGCTG		1400
CCTTAGGAAT			CCTTGGCGAG		1450
CCAGGGGCCT		CAGGAAGAGC	TGGGTGACCT		1500
GAGATGGCAG			GCTGCCACCA		1550
GGAAATTCTC	AGTAAGTCCC		CACGGGAGTC		1600
TGAATGAGAG			GCCTGATGCA		1650
GTGCTCGTTG		GGACCTCCAG		TGGAGAGTGG	1700
		AAGAATTTTA		TCTCGGTGGA	1750
	GATATCCGCC	TCCAAAGCTG	TTGGTTGGGG		1800
	CTGCTGATCT		GGCAAAGGGA		1850
GCTGATGGTG		AGATTGCTGC	CAGTACTGCC		1900
		AACAAGGGCA		GACCCAGCTG	2000
CAGCAGGCCT			ACAGCCGCTG	TGGTGGCCTC	2050
	GGCAAATCTC		AACAGACAGT		2100
CAAGCATGAC			AGGAGATGGA		2150
	·		AAGGAGCGTC		2200
		ACGAGCTGGA		GAGGGCTGGG	2250
AGGAAGGGAC	AGAAGCATCA	CCGTCTACTG	TCCAAGAAGC	AATACCGGAC	2300

(2) INFORMATION FOR SEQ ID NO: 9:

AAAGAGTAGA GCCAAGCCGA CACCCCACAC ATCAGAAA

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 676
- (B) TYPE: protein
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: protein

2338

	(iii) HYPOTHETICAL: no													
• •	(vi) ORIGINAL SOURCE: (A) ORGANISM: mouse													
			1: moi Huntir			•i	-atain							
			DESC					. n.						
			Leu						Len	Pro	Glu.	λcn	Dro	Dro
HIG	Arg	GIY	ьеu	5	GIII	116	FIU	GIII	10	FIO	GIU	ASII	PIO	15
Asn	Phe	Leu	Arg	Ala 20	Ser	Ala	Leu	Ser	Glu 25	His	Ile	Ser	Pro	Val 30
Val	Val	Ile	Pro	Ala 35	Glu	Val	Ser	Ser	Pro 40	Asp	Ser	Glu	Pro	Val 45
Leu	Glu	Lys	Asp	Asp 50	Leu	Met	Asp	Met	Asp 55	Ala	Ser	Gln	Gln	Thr 60
Leu	Phe	Asp	Asn	Lys 65	Phe	Asp	Asp	Val	Phe 70	Gly	Ser	Ser	Leu	Ser 75
Ser	Asp	Pro	Phe	Asn 80	Phe	Asn	Asn	Gln	Asn 85	Gly	Va1	Asn	Lys	Asp 90
Glu	Lys	Asp	His	Leu 95	Ile	Glu	Arg	Leu	Tyr 100	Arg	Glu	Ile	Ser	Gly 105
Leu	Thr	Gly	Gln	Leu 110	Asp	Asn	Met	Lys	11e 115	Glu	Ser	Gln	Arg	Ala 120
Met	Leu	Gln	Leu	Lys 125	Gly	Arg	Val	Ser	Glu 130	Leu	Glu	Ala	Glu	Leu 135
Ala	Glu	Gln	Gln	His 140	Leu	Gly	Arg	Gln	Ala 145	Met	Asp	Asp	Cys	Glu 150
Phe	Leu	Arg	Thr	Glu 155	Leu	Asp	Glu	Leu	Lys 160	Arg	Gln	Arg	Glu	Asp 165
Thr	Glu	Lys	Ala	Gln 170	Arg	Ser	Leu	Thr	Glu 175	Ile	Glu	Arg	Lys	Ala 180
Gln	Ala	Asn	Glu	Gln 185	Arg	Туr	Ser	Lys	Leu 190	Lys	Glu	Lys	Tyr	Ser 195
Glu	Leu	Val	Gln	Asn 200	His	Ala	Asp	Leu	Leu 205	Arg	Lys	Asn	Ala	Glu 210
Val	Thr	Lys	Gln	Val 215	Ser	Val	Ala	Arg	Gln 220	Ala	Gln	Val	Asp	Leu 225
Glu	Arg	Glu	Lys	Lys	Glu	Leu	Ala	Asp	Ser	Phe	Ala	Arg	Val	Ser

v	NO 99/	60986											PCT/I	US99/11743
				230					235					240
Asp	Gln	Ala	Gln	Arg 245	Lys	Thr	Gln	Glu	Gln 250	Gln	Asp	Val	Leu	Glu 255
Asn	Leu	Lys	His	Glu 260	Leu	Ala	Thr	Ser	Arg 265	Gln	Glu	Leu	Gln	Val 270
Leu	His	Ser	Asn	Leu 275	Glu	Thr	Ser	Ala	Gln 288	Ser	Glu	Ala	Lys	Trp 285
Leu	Thr	Gln	Ile	Ala 290	Glu	Leu	Glu	Lys	Glu 295	Gln	Gly	Ser	Leu	Ala 300
Thr	Val	Ala	Ala	Gln 305	Arg	Glu	Glu	Glu	Leu 310	Ser	Ala	Leu	Arg	Asp 315
Gln	Leu	Glu	Ser	Thr 320	Gln	Ile	Lys	Leu	Ala 325	Gly	Ala	Gln	Glu	Ser 330
Met	Cys	Gln	Gln	Val 335	Lys	Asp	Gln	Arg	Lys 340	Thr	Leu	Leu	Ala	Gly 345
Ile	Arg	Lys	Ala	Ala 350	Glu	Arg	Glu	Ile	Gln 355	Glu	Ala	Leu	Ser	Gln 360
Leu	Glu	Glu	Pro	Thr 365	Leu	Ile	Ser	Cys	Ala 370	Gly	Ser	Thr	Asp	His 375
Leu	Leu	Ser	Lys	Val 380	Ser	Ser	Val	Ser	Ser 385	Cys	Leu	Glu	Gln	Leu 390
Glu	Lys	Asn	Gly	Ser 395	Gln	Tyr	Leu	Ala	Cys 400	Pro	Glu	Asp	Ile	Ser 405
Glu	Leu	Leu	His	Ser 4 10	Ile	Thr	Leu	Leu	Ala 415	His	Leu	Thr	Gly	Asp 420
Thr	Val	Ile	Gln	Gly 4 25	Ser	Ala	Thr	Ser	Leu 430	Arg	Ala	Pro	Pro	Glu 435
Pro	Ala	Asp	Ser	Leu 440	Thr	Glu	Ala	Cys	Arg 445	Gln	Tyr	Gly	Arg	Glu 450
Thr	Leu	Ala	Tyr	Leu 455	Ser	Ser	Leu	Glu	Glu 460	Glu	Gly	Thr	Val	Glu 465
Asn	Ala	Asp	Val	Thr 470	Ala	Leu	Arg	Asn	Cys 475	Leu	Ser	Arg	Val	Lys 480

| No. | No.

Lys Ser Arg Ala Gly Asp Thr Gly Val Lys Leu Glu Val Asn Glu 530 535 540

Arg Ile Leu Gly Ser Cys Thr Ser Leu Met Gln Ala Ile Lys Val 545 550 555

Leu Val Val Ala Ser Lys Asp Leu Gln Lys Glu Ile Val Glu Ser 560 565 570

Gly Arg Gly Ser Ala Ser Pro Lys Glu Phe Tyr Ala Lys Asn Ser 575 588 585

Arg Trp Thr Glu Gly Leu Ile Ser Ala Ser Lys Ala Val Gly Trp 590 595 600

Gly Ala Thr Ile Met Val Asp Ala Ala Asp Leu Val Val Gln Gly
605 610 615

Lys Gly Lys Phe Glu Glu Leu Met Val Cys Ser Arg Glu Ile Ala 620 625 630

Ala Ser Thr Ala Gln Leu Val Ala Ala Ser Lys Val Lys Ala Asn 635 640 645

Lys Gly Ser Leu Asn Leu Thr Gln Leu Gln Gln Ala Ser Arg Gly 650 655 660

Val Asn Gln Ala Thr Ala Ala Val Val Ala Ser Thr Ile Ser Gly
665 670 675

Lys Ser Gln Ile Glu Glu Thr Asp Ser Met Asp Phe Ser Ser Met 680 685 690

Thr Leu Thr Gln Ile Lys Arg Gln Glu Met Asp Ser Gln Val Arg 695 700 705

Val Leu Glu Leu Glu Asn Asp Leu Gln Lys Glu Arg Gln Lys Leu 710 715 720

Gly Glu Leu Arg Lys Lys His Tyr Glu Leu Glu Gly Val Ala Glu
725 730 735

Gly Trp Glu Glu Gly Thr Glu Ala Ser Pro Ser Thr Val Gln Glu
740 745 750

Ala Ile Pro Asp Lys Glu 755

- (2) INFORMATION FOR SEQ ID NO:10:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 3964
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: mouse
- (ix) FEATURE: cDNA for Huntingtin-interacting protein mHIP1a
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 10:

GGCACGAGGC GGCGCGGC CTCCGTGTGC CTAGGCTTGA GGCGGGCGGT 50 GACGCCTCAT TCGCGCGGAG CCGGGCCGGG ACACGGTCGG CGGCAGCATG 100 AACAGCATCA AGAATGTGCC GGCGCGGGTG CTGAGCCGCA GGCCGGGCCA 150 CAGCCTAGAG GCCGAGCGCG AGCAGTTCGA CAAGACGCAG GCCATCAGTA 200 TCAGCAAAGC CATCAACAGC CAGGAGGCCC CAGTGAAGGA GAAGCATGCC 250 CGGCGTATCA TCCTGGGCAC GCATCATGAG AAGGGAGCCT TCACCTTCTG 300 GTCCTATGCC ATCGGCCTGC CGCTGTCCAG CAGCTCCATC CTCAGCTGGA 350 AGTTCTGTCA CGTCCTTCAC AAGGTCCTCC GGGACGGACA CCCCAACGTC CTGCATGACT ATCAGCGGTA CCGGAGCAAC ATACGTGAGA TCGGTGACTT 450 GTGGGGCCAC CTTCGTGACC AGTATGGACA CCTGGTGAAT ATCTATACCA 500 AACTGTTGCT GACTAAGATC TCCTTCCACC TTAAGCACCC CCAGTTTCCT 550 GCAGGCCTGG AGGTAACAGA TGAGGTGTTG GAGAAGGCGG CGGGAACTGA 600 TGTCAACAAC ATTTTTCAGC TTACCGTGGA GATGTTTGAC TACATGGACT 650 GTGAACTGAA GCTTTCTGAG TCAGTTTTCC GGCAGCTCAA CACGGCCATC 700 GCAGTGTCCC AGATGTCTTC TGGCCAGTGT CGCCTAGCGC CGCTCATCCA 750 GGTCATTCAG GACTGCAGCC ACCTGTACCA CTACACAGTG AAGCTCATGT 800 TTAAGCTGCA CTCCTGTCTC CCGGCAGACA CCCTGCAAGG CCACAGGGAT 850 CGGTTCCACG AGCAGTTCCA CAGCCTCAAA AACTTCTTCC GCCGGGCTTC 900 AGACATGCTG TACTTCAAGA GGCTCATCCA GATCCCGCGG CTGCCTGAGG 950 GACCCCCAA TTTCCTGCGG GCTTCAGCCC TGGCTGAGCA CATCAAGCCG 1000 GTGGTGGTGA TTCCCGAGGA GGCCCCAGAG GAAGAGGAGC CTGAGAACCT 1050 AATTGAAATC AGCAGTGCGC CCCCTGCTGG GGAGCCAGTG GTGGTGGCTG 1100 ACCTCTTTGA TCAGACCTTT GGACCCCCCA ATGGCTCCAT GAAGGATGAC 1150 AGGGACCTCC AAATCGAGAA CTTGAAGAGA GAGGTGGAGA CCCTCCGTGC 1200 TGAGCTGGAG AAGATTAAGA TGGAGGCACA GCGGTACATC TCCCAGCTGA 1250 AGGGCCAGGT GAATGGCCTG GAGGCAGAGC TGGAGGAGCA GCGCAAGCAG 1300 AAGCAGAAGG CCCTGGTGGA CAACGAGCAG CTGCGCCACG AGCTGGCCCA 1350 GCTCAAGGCC CTGCAGCTGG AGGGCGCCCG CAACCAGGGC CTTCGAGAGG 1400 AAGCAGAGAG GAAGGCCAGT GCCACGGAGG CACGCTACAG CAAGCTGAAG 1450 GAGAAACACA GCGAACTCAT TAACACGCAC GCCGAGCTGC TCAGGAAGAA 1500

**	0 ///00/0	•				
CGCA	GACACG	GCCAAGCAGC	${\tt TGACAGTGAC}$	ACAGCAGAGC	CAGGAGGAGG	1550
TGGC.	ACGGGT	AAAGGAACAG	CTGGCCTTCC	AGATGGAGCA	AGCGAAGCGT	1600
GAGT	CTGAGA	TGAAGATGGA	AGAGCAGAGC	GACCAGTTGG	AGAAGCTCAA	1650
GAGG	GAGCTG	GCGGCCAGGG	CAGGAGAGCT	GGCCCGTGCG	CAGGAGGCCC	1700
TGAG	CCGCAC	AGAACAGAGT	GGGTCAGAGC	TGAGCTCACG	GCTGGACACA	1750
CTGA.	ACGCGG	AGAAGGAAGC	CCTGAGTGGA	GTCGTTCGGC	AGCGTGAGGC	1800
AGAG	CTGCTG	GCCGCTCAGA	GCCTGGTGCG	GGAGAAGGAG	GAGGCGCTTA	1850
GCCA	AGAGCA	GCAGCGGAGC	TCCCAGGAGA	AGGGCGAGCT	ACGGGGGCAG	1900
CTGG	CAGAAA	AGGAGTCTCA	GGAGCAGGGG	CTTCGGCAGA	AGCTGCTGGA	1950
TGAG	CAGTTG	GCGGTGTTGC	GAAGTGCAGC	CGCCGAGGCA	GAGGCCATCC	2000
TACA	GGATGC	AGTGAGCAAG	CTGGACGACC	CCCTGCACCT	CCGCTGCACC	2050
AGCT	CCCCAG	ACTACTTGGT	GAGCCGGGCT	CAGGCAGCCC	TGGACAGCGT	2100
GAGC	GGCCTG	GAGCAGGGCC	ACACCCAGTA	CCTGGCTTCC	TCCGAAGATG	2150
CTTC	TGCCCT	GGTGGCAGCG	CTGACCCGCT	TCTCCCATTT	GGCTGCGGAC	2200
		ATGGTGCCGC		CTGGCCCCCA		2250
CGAC	CGCCTG	ATGGACACAT	GCAGGGAGTG	TGGAGCCCGG	GCTCTGGAGC	2300
		GCTGCAAGAC	CAGACAGTGC	TACGGAGGGC	TCAGCCCAGC	2350
	TGCGGG		GGGCATTCTG	CAGTTGGGCC	AGGACTTGAA	2400
	AAGAGC		GGCAAGAGGA		ATGGTGGACA	2450
	GATGGC	GGCCACCTCG		AGGACGCTGT	GCGGAGGATC	2500
			CCGCCACGAG		TGAAACTGGA	2550
		AGGATCCTCA		AGACCTGATG	AAGGCTATCC	2600
		GATGACCTCC	ACCAGCCTGC	AGAAGGAAAT	TGTGGAGAGC	2650
		CAGCAACGCA		TATGCCAAGA	ATTCACGGTG	2700
	GAAGGC	CTCATCTCAG	CCTCTAAGGC	AGTGGGCTGG	GGAGCCACAC	2750
		GTCAGCTGAC		TTCACATGGG		2800
	TCATCG	TCTGCTCCCA		GCCAGCACGG		2850
			CCAACAAGAA		TTGAGCCGCC	2900
	GGAATG	TTCCCGCACT		GGGCTGCCAA		2950
			GCAGATTGAG			3000
	GGCCTG		AGTTGAAGAA			3050
			AAGACACTAG			3100
			CTATGTACTG			3150
			GACCCAGCCC			3200
			CAGAAACCCA			3250
					TGTGAACTAC	3300
		A GGTGTTCAG			CTGGGCTTCA	3350
	GCTGTC					3400
	AGGGGC		G GACAGTTCAT			3450
	AGTAGG!		A GCAGCTGGGA			3500
	TGCAGC		G ATAGTCTGA			3550
	TAAGTT		A CTGGGAAAA			3600
	GTCTCT					3650
	CCTGCT					3700
	GAGCAG			A CCTGGGGGC		3750
	CCATGC		A GGAGACCAG			3800
	CGTGGC					3850
	GCCACC		A CAGTTTTCC			3900
			A TGAGTAGAT			3950
	TTCCTC			- 101.000010		3964
0001						3704

(i) SE (A) I (B) I (D) I (ii) M (iii) H (vi) C (A) ((ix) F	2) INFORMATION FOR SEQ ID NO: 11: (a) SEQUENCE CHARACTERISTICS: (b) TYPE: protein (c) TOPOLOGY: linear (di) MOLECULE TYPE: protein (dii) HYPOTHETICAL: no (dii) ORIGINAL SOURCE: (a) ORGANISM: mouse (ex) FEATURE: Huntingtin-interacting protein -mHIP1a (exi) SEQUENCE DESCRIPTION: SEQ ID NO:11:													
	-					_			Arg 10	Val	Leu	Ser	Arg	Arg 15
Pro	Gly	His	Ser	Leu 20	Glu	Ala	Glu	Arg	Glu 25	Gln	Phe	Asp	Lys	Thr 30
Gln	Ala	Ile	Ser	11e 35	Ser	Lys	Ala	Ile	Asn 40	Ser	Gln	Glu	Ala	Pro 45
Val	Lys	Glu	Lys	His 50	Ala	Arg	Arg	Ile	Ile 55	Leu	Gly	Thr	His	His 60
Glu	Lys	Gly	Ala	Phe 65	Thr	Phe	Trp	Ser	Tyr 70	Ala	Ile	Gly	Leu	Pro 75
Leu	Ser	Ser	Ser	Ser 80	Ile	Leu	Ser	Trp	Lys 85	Phe	Cys	His	Val	Leu 90
His	Lys	Val	Leu	Arg 95	Asp	Gly	His	Pro	Asn 100	Val	Leu	His	Asp	Tyr 105
Gln	Arg	Tyr	Arg	Ser 110	Asn	Ile	Arg	Glu	Ile 115	Gly	Asp	Leu	Trp	Gly 120
His	Leu	Arg	Asp	Gln 125	Tyr	Gly	His	Leu	Val 130	Asn	Ile	Tyr	Thr	Lys 135
Leu	Leu	Leu	Thr	Lys 140	Ile	Ser	Phe	His	Leu 145	Lys	His	Pro	Gln	Phe 150
Pro	Ala	Gly	Leu	Glu 155	Val	Thr	Asp	Glu	Val 160	Leu	Glu	Lys	Ala	Ala 165
Gly	Thr	Asp	Val	Asn 170	Asn	Ile	Phe	Gln	Leu 175	Thr	Val	Glu	Met	Phe 180

Asp Tyr Met Asp Cys Glu Leu Lys Leu Ser Glu Ser Val Phe Arg

,	NO 99	6 0 986											PCT/U	JS99/11743
				185					190					195
Gln	Leu	Asn	Thr	Ala 200	Ile	Ala	Val	Ser	Gln 205	Met	Ser	Ser	Gly	Gln 210
Cys	Arg	Leu	Ala	Pro 215	Leu	Ile	Gln	Val	Ile 220	Gln	Asp	Cys	Ser	His 225
Leu	Tyr	His	Tyr	Thr 230	Val	Lys	Leu	Met	Phe 235	Lys	Leu	His	Ser	Cys 240
Leu	Pro	Ala	Asp	Thr 245	Leu	Gln	Gly	His	Arg 250	Asp	Arg	Phe	His	Glu 255
Gln	Phe	His	Ser	Leu 260	Lys	Asn	Phe	Phe	Arg 265	Arg	Ala	Ser	Asp	Met 270
Leu	Tyr	Phe	Lys	Arg 275	Leu	Ile	Gln	Ile	Pro 288	Arg	Leu	Pro	Glu	Gly 285
Pro	Pro	Asn	Phe	Leu 290	Arg	Ala	Ser	Ala	Leu 295	Ala	Glu	His	Ile	Lys 300
Pro	Val	Val	Val	Ile 305	Pro	Glu	Glu	Ala	Pro 310	Glu	Glu	Glu	Glu	Pro 315
Glu	Asn	Leu	Ile	Glu 320	Ile	Ser	Ser	Ala	Pro 325	Pro	Ala	Gly	Glu	Pro 330
Val	Val	Val	Ala	Asp 335	Leu	Phe	Asp	Gln	Thr 340	Phe	Gly	Pro	Pro	Asn 345
Gly	Ser	Met	Lys	Asp 350	Asp	Arg	Asp	Leu	Gln 355	Ile	Glu	Asn	Leu	Lys 360
Arg	Glu	Val	Glu	Thr 365	Leu	Arg	Ala	Glu	Leu 370	Glu	Lys	Ile	Lys	Met 375
Glu	Ala	Gln	Arg	Туг 380	Ile	Ser	Gln	Leu	Lys 385	Gly	G1n	Val	Asn	Gly 390
Leu	Glu	Ala	Glu	Leu 395	Glu	Glu	Gln	Arg	Lys 400	Gln	Lys	Gln	Lys	Ala 405
Leu	Val	Asp	Asn	Glu 410	Gln	Leu	Arg	His	Glu 415	Leu	Ala	Gln	Leu	Lys 420
Ala	Leu	Gln	Leu	Glu 42 5	Gly	Ala	Arg	Asn	Gln 430	Gly	Leu	Arg	Glu	Glu 4 35
Ala	Glu	Arg	Lys	Ala	Ser	Ala	Thr	Glu	Ala	Arg	Tyr	Ser	Lys	Leu

,	WO 99	60986											PCT/I	US99/11743
				440					445					450
Lys	Glu	Lys	His	Ser 455	Glu	Leu	Ile	Asn	Thr 460	His	Ala	Glu	Leu	Leu 465
Arg	Lys	Asn	Ala	Asp 470	Thr	Ala	Lys	Gln	Leu 4 75	Thr	Val	Thr	Gln	Gln 480
Ser	Gln	Glu	Glu	Val 485	Ala	Arg	Val	Lys	Glu 490	Gln	Leu	Ala	Phe	Gln 4 95
Met	Glu	Gln	Ala	Lys 500	Arg	Glu	Ser	Glu	Met 505	Lys	Met	Glu	Glu	Gln 510
Ser	Asp	Gln	Leu	Glu 515	Lys	Leu	Lys	Arg	Glu 520	Leu	Ala	Ala	Arg	Ala 525
Gly	Glu	Leu	Ala	Arg 530	Ala	Gln	Glu	Ala	Leu 535	Ser	Arg	Thr	Glu	Gln 540
Ser	Gly	Ser	Glu	Leu 5 4 5	Ser	Ser	Arg	Leu	Asp 550	Thr	Leu	Asn	Ala	Glu 555
Lys	Glu	Ala	Leu	Ser 560	Gly	Val	Val	Arg	Gln 565	Arg	Glu	Ala	Glu	Leu 570
Leu	Ala	Ala	Gln	Ser 575	Leu	Val	Arg	Glu	Lys 588	Glu	Glu	Ala	Leu	Ser 585
Gln	Glu	Gln	Gln	Arg 590	Ser	Ser	Gln	Glu	Lys 595	Gly	Glu	Leu	Arg	Gly 600
Gln	Leu	Ala	Glu	Lys 605	Glu	Ser	Gln	Glu	Gln 610	Gly	Leu	Arg	Gln	Lys 615
Leu	Leu	Asp	Glu	Gln 620	Leu	Ala	Val	Leu	Arg 625	Ser	Ala	Ala	Ala	Glu 630
Ala	Glu	Ala	Ile	Leu 635	Gln	Asp	Ala	Val	Ser 640	Lys	Leu	Asp	Asp	Pro 645
Leu	His	Leu	Arg	Cys 650	Thr	Ser	Ser	Pro	Asp 655	Tyr	Leu	Val	Ser	Arg 660
Ala	Gln	Ala	Ala	Leu 665	Asp	Ser	Val	Ser	Gly 670	Leu	Glu	Gln	Gly	His 675
Thr	Gln	Tyr	Leu	Ala 680	Ser	Ser	Glu	Asp	Ala 685	Ser	Ala	Leu	Val	Ala 690
Ala	Leu	Thr	Arg	Phe	Ser	His	Leu	Ala	Ala	Asp	Thr	Ile	Val	Asn

WO 99/60986				PCT/US99/11743
	695		700	705
Gly Ala Ala Th	r Ser His 710	Leu Ala Pr	ro Thr Asp Pro A 715	Ala Asp Arg 720
Leu Met Asp Th	r Cys Arg 725	Glu Cys Gl	ly Ala Arg Ala I 730	Leu Glu Leu 735
Val Gly Gln Le	u Gln Asp 740	Gln Thr Va	al Leu Arg Arg <i>F</i> 7 4 5	Ala Gln Pro 750
Ser Leu Met Ar	g Ala Pro 755	Leu Gln Gl	ly Ile Leu Gln I 760	Leu Gly Gln 765
Asp Leu Lys Pr	o Lys Ser 770	Leu Asp Va	al Arg Gln Glu (775	Glu Leu Gly 780
Ala Met Val As	p Lys Glu 785	Met Ala Al	la Thr Ser Ala <i>F</i> 790	Ala Ile Glu 795
Asp Ala Val Ar	g Arg Ile 800	Glu Asp Me	et Met Ser Gln A 805	Ala Arg His 810
Glu Ser Ser Gl	y Val Lys 815	Leu Glu Va	al Asn Glu Arg 1 820	Ile Leu Asn 825
Ser Cys Thr As	p Leu Met 830	Lys Ala Il	le Arg Leu Leu V 835	Val Met Thr 840
Ser Thr Ser Le	u Gln Lys 845	Glu Ile Va	al Glu Ser Gly A 850	Arg Gly Ala 855
Ala Thr Gln Gl	n Glu Phe 860	Tyr Ala Ly	ys Asn Ser Arg 1 865	Trp Thr Glu 870
Gly Leu Ile Se	r Ala Ser 875	Lys Ala Va	al Gly Trp Gly F 888	Ala Thr Gln 885
Leu Val Glu Se	r Ala Asp 890	Lys Val Va	al Leu His Met 0 895	Gly Lys Tyr 900
Glu Glu Leu Il	e Val Cys 905	Ser His G	lu Ile Ala Ala S 910	Ser Thr Ala 915
Gln Leu Val Al	a Ala Ser 920	Lys Val Ly	ys Ala Asn Lys <i>F</i> 925	Asn Ser Pro 930
His Leu Ser Ar	g Leu Gln 935	Glu Cys Se	er Arg Thr Val A	Asn Glu Arg 945
Ala Ala Asn Va	l Val Ala	Ser Thr Ly	ys Ser Gly Gln (Glu Gln Ile

WO 99/60986				1	PCT/US99/11743			
	950		955		960			
Glu Asp Arg Asp	Thr Met A	sp Phe S	Ser Gly Leu 970	Ser Leu	Ile Lys 975			
Leu Lys Lys Gln	Glu Met G 980	Slu Thr (Gln Val Arg 985	Val Leu	Glu Leu 990			
Glu Lys Thr Leu	Glu Ala G 995	Glu Arg V	Val Arg Leu 1100	Gly Glu	Leu Arg 1105			
Lys Gln His Tyr	Val Leu A 1110	ala Gly (Gly Met Gly 1115	Thr Pro	Ser Glu 1120			
Glu Glu Pro Ser	Arg Pro S 1125	Ger Pro A	Ala Pro Arg 1130	Ser Gly	Ala Thr 1135			
Lys Lys Pro Pro	Leu Ala G 1140	3ln Lys I	Pro Ser Ile 1145	Ala Pro	Arg Thr 1150			
Asp Asn Gln Leu	Asp Lys I 1155	ys Asp (Gly Val Tyr 1160	Pro Ala	Gln Leu 1165			
Val Asn Tyr								
(2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii)MOLECULE TYPE: other DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 12: GAAGATACCC CACCAAAC 18								
(i) SEQUENCE CHA	(2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS:							
(A) LENGTH: 35 (B) TYPE: nucleic ac	id							
(C) STRANDEDNES								
(D) TOPOLOGY: linear								

(ii)MOLECULE TYPE: other DNA (iii) HYPOTHETICAL: no

- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GCTTGACAGT GTAGTCATAA AGGTGGCTGC AGTCC 35

- (2) INFORMATION FOR SEQ ID NO:14:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 24
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 14: GGACATGTCC AGGGAGTTGA ATAC 24
- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 41
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 15:

CUACUACUAC UACUAGGCCA CGCGTCGACT AGTACGGGII GGGIIGGGII G 41

- (2) INFORMATION FOR SEQ ID NO:16:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 516
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human

DUO GOVGORG	CT/US99/11743
	.1/0399/11/43
(x) FEATURE: exon 1 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
TCTCTGGAAG GTTTGGAGGG GAGAGAGGGG CAGCTGGATG CTCTTGGGCC ACGGTCGCCC	60
CTGATCTCTG CGCCTCTTCC TCCTGCTCCG GGAGAAATAA TGTTTCCCTG GGGGATGAAA	120
GCATCTCTTT GTGCGGGCTT TAATTGCCAT GTTGTTGTGC CAAGGGAGTG AGTGGCGGGG GGACCAGCAG CTGGGCACAG CCAATGCCAG GCAGTGGTGC CCACTCCCTC AGGACGCCCA	180 240
GCCAGCTGGC TCCTGGGAGC GCTGCCCACC TCTGCCCCCA GCTGGGCGCC TGCAAGGAAC	300
CGACCACCCG TGGGGCTGGG GGAGGTTGGC TGGAGGAGGA GAAAGGGGCG GGCTCTGGGA	360
GGGTCTCAGC CACTCTCAGA GGCTTATTCA TCTCATCCTC CTTTCCCTCC CCCTTCTTGT	420
TTTTCAGACT GTCAGCATCA ATAAGGCCAT TAATACGCAG GAAGTGGCTG TAAAGGAAAA	480
ACACGCCAGA AATATCCTTT GGATGTTGCT TGGAAG	516
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 193	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 2 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
TGTTTTCCAT AACCCCCCT CACCGTGCAT ACTGGGCACC CACCATGAGA AAGGGGCACA GACCTTCTGG TCTGTTGTCA ACCGCCTGCC TCTGTCTAGC AACCCAGTGC TCTGCTGGAA	60
GACCTICIGG TOTATIGICA ACCGCCTGCC TOTATICIAGE AACCCAGIGC TOTACIGGAA GITCTGCCAT GIGTTCCACA AACTCCTCCG AGAIGGACAC CCGAACGIGA GITCCTGGGG	120 180
CTATGGGTG GCA	193
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 104	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	

(2) INFORMATION FOR SEQ ID NO:20:

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 18:

ACATGAGCAG GATGTGGGTG AGTTTGGAGA TGTACTCAGG AGCC

(i) SEQUENCE CHARACTERISTICS:

(x) FEATURE: exon 3 of HIP1

60

104

GTGTTCTTTT GCCCCTGCAG GTCCTGAAGG ACTCTCTGAG ATACAGAAAT GAATTGAGTG

(A) LENGTH: 327	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 4 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 20: AATTCCTGGC TGCAGATCTC TTGACTGTTA TGTTCTTGTT GTTGACTCTG TTTCCCCTCC	60
TCTTCCTAAA AGGGCCACCT GAGCGAGGGG TATGGCCAGC TGTGCAGCAT CTACCTGAAA	120
CTGCTAAGAA CCAAGATGGA GTACCACACC AAAGTGAGTC TCTGCGGACA GTTCTGCCGC	
CACCGCCGCC TCCCCTGCTC CATCCCTTCA GCCCCTCCCT GGGCTCATTT GTCAGCTCTT	240
TCAGGTAATA GACAGCCCAG GCTTCTGAGG AAGTGTGCAC ATCATGTACC CAAGCTGTGA	300
GAGAGGAAAG CCACCGCCAG GCCCACG	327
(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 331	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 5 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
GGGCTCAAGC AATCCTCCCA CCTCGGCCTC CCAAGTAGCT GGGACCACAG GCGTGTGCCA	60
CCACGCCCGG CTGAGAGAGG GCTCTTCATG TCTTCTGCCC TGACTCCCTT CCTCTGCCTC	120
CCTTCCAGAA TCCCAGGTTC CCAGGCAACC TGCAGATGAG TGACCGCCAG CTGGACGAGG	180
CTGGAGAAAG TGACGTGAAC AACTTGTAAG TGGCTCCTGC CCTGAGCCCA GGGAGGGAGA	
AAGCTTTTGT GAATGCTGAC ACTTCTCATA AGGGTCATGG AGGGCCTGAT GGGGGGAGGC	300
CGTGGCTGGG ATGGGGACCA AAGCCCCTGG G	331
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 470	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
• •	
(iv) ANTI-SENSE: no	

VO 99/6 0986	PCT/US99/11743

110 //100/00	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 6 of HIP1	

(xi)SEOUENCE DESCRIPTION: SEO ID NO: 22:

()						
ACTGTCGCTG	TCACTGTTGA	CTTCACCAGG	CTGCATGGCC	ATAATACCCA	CAAGGCTAAG	60
ACTTGGAGCT	GGAGTTGTGT	GTGTGTTTGC	GCATGCACAT	GAGCATTGGA	GACTGGAGTA	120
GCGTAGAGCG	TGGGGGAGGG	GACAGGTAAC	AGACCGGCCT	${\tt CAGGCTGTGG}$	AGTGTAAGCT	180
CTCTTTCCTC	TTGGGTCCAG	TTTCCAGTTA	ACAGTGGAGA	TGTTTGACTA	CCTGGAGTGT	240
GAACTCAACC	TCTTCCAAAC	AGGTGAGTCT	$\mathtt{CTTCCCTCCC}$	GTCTAACCCA	GGCTCTCATG	300
GGAACTACCT	AATTCCTAGT	CCTCCTCTCC	CTGCAAAGTG	TGCAGCACAA	GGGGTAGGAA	360
AATGGAGACA	TTCACACCCC	ATCTCTGGTC	TCTCCAACCC	TCGTGCAGGG	AGGGACTGAA	420
CCTCTTCAGT	ATTTTTCTTT	TTAAGAGACA	AGGTCTCGGC	CGGGTGCAGT		470

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 565
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 7 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 23:

TCTTCACCTG	TTTAATGGGG	ATACGTTTAC	${\tt CTATCTCATG}$	GGAGTGTTGT	GAAGGTTAAA	60
TGAATTAGAT	GAGGTAAAGC	ACGCACAGAA	TCGGTCCTTG	GTGTATGTTG	GACCCCTGCC	120
TCTGCCCCTC	TGAAGAGGCT	GCCTGTAATC	CCCTGGCTCT	ACCACCTTTC	TCCCTCACTT	180
TTATTTCCTA	GTATTCAACT	CCCTGGACAT	GTCCCGCTCT	GTGTCCGTGA	CGGCAGCAGG	240
GCAGTGCCGC	CTCGCCCCGC	TGATCCAGGT	CATCTTGGAC	TGCAGCCACC	TTTATGACTA	300
CACTGTCAAG	CTTCTCTTCA	AACTCCACTC	CTGTGAGTAC	CGCGGGCCAG	ATCTTCTTAC	360
ATGAGATTCA	GGCCAGAGGG	AGGATCCCAG	CCTGAGGATG	TCCCCAGAGA	AACGCAGTCC	420
TTCTCAGTGC	CTTTGGCTGT	CTGCTTCTGT	TCCAAAAGGC	CCCGGAGCTT	CTGACCATTG	480
TGAGGATAAA	AGAGCAGGGC	CCAGGCTTTG	GTGACCCCAG	TAAAGCCCCT	GGCTTGCCAC	540
TCTTGCGTCC	AGTGTTACAG	GATCT				565

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 233
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 8 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 24;	
GGGACAGCTC TAGGCCAGTC GTGGCCCCTG GCAGTGCTGG CCACATGCCC CAGGGTAGCT	60
GGGCCCCTCC CCCTCGAGAG CCCCGCTGTG GCTTCCCTGC CCTCTGGTCC CCCTCCCCTC	120
TCACACTCTT TCCAATTTCT TCCAGGCCTC CCAGCTGACA CCCTGCAAGG CCACCGGGAC	180
CCCTTCATGG AGCAGTTTAC AAAGTAAGTG GTTCAAGTAA CAGGAATGGA GGT	233
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 578	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exons 9 and 10 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
TGAATCCCAG CACCATGGAG TTTATCTCCT TGACAGCCTG TGCCTTTGGG CTGGGGAGGG	60
GGCAGGAAAG CCAGGTGGCT GCTCTGTCCC CTACATGGGG CTGATGAAGA CACCCAGCAC	120
CCCTCAGGTC CTTCTCCACC CCTAGGTTGA AAGATCTGTT CTACCGCTCC AGCAACCTGC	180
AGTACTTCAA GCGGCTCATT CAGATCCCCC AGCTGCCTGA GGTAAGCATG CCCAACCACA	240
CACCCTCGGC ACTGCAGAGG CCCCAGGTAC TCTCTTAAGG GCCGGCGGGG CCTGGCAAGC	300
AAGCACTATT TGAGGATGTG TCTCCGTCTT CAGAACCCAC CCAACTTCCT GCGAGCCTCA	360
GCCCTGTCAG AACATATCAG CCCTGTGGTG GTGATCCCTG CAGAGGCCTC ATCCCCCGAC	420 480
AGCGAGCCAG TCCTAGAGAA GGATGACCTC ATGGACATGG ATGCCTCTCA GCAGGTGAGG ACCACTTGGG AGAGAAACTT GGCCTTTCCT CTCACCTGCA AGTACAGGGG AGAGGCTGGG	540
GGAGACCCTG GCCAAAGCCC ATTGACTCTA ACCAGGTT	578
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 390	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 11 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
AAAAAAATTT AAAAAATTAA ACAGGTCTGA ACCGTTTAAT TCGAGAAAGG GGGCATTCTC	60
CCATATCACT CAACTGACCC ACACACAGAA TTCTCTGGCT CTCTGACTTA TTCTCACTCC	120
TTITTGGTCA ACCACAGAAT TTATTTGACA ACAAGTTTGA TGACATCTTT GGCAGTTCAT	180
TCAGCAGTGA TCCCTTCAAT TTCAACAGTC AAAATGGTGT GAACAAGGAT GAGAACTGAG	240
TCCAAGCTGG GTTCAAGCAG ATGGTTCAGG AGCTAAGTTA AGCCATGGTC TGCCTCAAAA	300
CACTAACCAA AGAGGAATTC TTAATGATAC TGGGGCTTCT TAGATACAGA ACATCTTGAA	360
GGGTTGGGGG CAATGGCTTA TGCCTGTAAT	390

(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 547	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
• ,	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 12 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
AAAATCAATA ACCATGGATT TATGAGTATT AGATTAGTAT CTGGTAACAT TTAGAGTATA	60
	120
	180
	240
	360
	420
	480
TGTTGGCAGG CACCTGTAAT CCCAGCTACT CGGGAAGCTG AGGCATGAGA ATTGCTTGAA	540
CTTGGGA	547
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii)MOLECULE TYPE: genomic DNA	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii)MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii)MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 13 of HIP1	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human	600
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 13 of HIP1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	600
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 13 of HIP1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: CCCCCAGCCA CTCTAAAGAG GACCACAATT CCCCGGCCAT CATCCCCTGT TATTGTTGTT GATTGAGGGG CTCCTAATGA CCAGATGGTC CAACCCTCCT GGGACGTGGA GAGTTGACTT AGGGGAATCA GGTATTTACT TGGAAGCATG GTAGGACCCG CTTCTCCGGC CCATGCCCGT	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 13 of HIP1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: CCCCCAGCCA CTCTAAAGAG GACCACAATT CCCCGGCCAT CATCCCCTGT TATTGTTGTT GATTGAGGGG CTCCTAATGA CCAGATGGTC CAACCCTTCT GGGACGTGGA GAGTTGACTT AGGGGAATCA GGTATTTACT TGGAAGCATG GTAGGACCCG CTTCTCCGGC CCATGCCCGT GACCCGTGGC AGTGGGCGGT TGGCCTCATG ACCGGAGTCC CCCCCACAGAG CCAGCGGGTT	120 180 240
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 13 of HIP1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: CCCCCAGCCA CTCTAAAGAG GACCACAATT CCCCGGCCAT CATCCCCTGT TATTGTTGTT GATTGAGGGG CTCCTAATGA CCAGATGGTC CAACCCTTCCT GGGACGTGGA GAGTTGACTT AGGGGAATCA GGTATTTACT TGGAAGCATG GTAGGACCCG CTTCTCCCGGC GACCCTGGC AGTGGGCGGT TGGCCTCATG ACCGGAGTCC CCCCCACAGAG CCATGCCCGT GACCCCTGGC AGTGGGCCCA CGTCAGCGAG CTGGAAGCAC CCCCCCACAGAG CCAGCGGGGTT GTGCTCCAGC TGAAGGGCCA CGTCAGCGAG CTGGAAGCAC CCCCCCAGCAG	120 180 240 300
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 13 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 28: CCCCCAGCCA CTCTAAAGAG GACCACAATT CCCCGGCCAT CATCCCCTGT TATTGTTGTT GATTGAGGGG CTCCTAATGA CCAGATGGTC CAACCCTCCT GGGACGTGGA GAGTTGACTT AGGGGAATCA GGTATTTACT TGGAAGCATG GTAGGACCCG CTTCTCCGGC CCATCCCCGT GACCCGTGGC AGTGGGGGGT TGGCCTCATG ACCGGAGTCC CCCCCACAGAG CCAGCGGGTT GTGCTCCAGC TGAAGGGCCA CGTCAGGAG CTGGAAGCAG ATCTGGCCGA GCAGCGGGCC CTGCCGCAGC AGGCCGCCA CGACTGTGAA TTCCTGCGG CAGACTCAGG	120 180 240 300 360
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 13 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 28: CCCCCAGCCA CTCTAAAGAG GACCACAATT CCCCGGCCAT CATCCCCTGT TATTGTTGTT GATTGAGGGG CTCCTAATGA CCAGATGGTC CAACCCTCCT GGGACGTGGA GAGTTGACTT AGGGGAATCA GGTATTTACT TGGAAGCATG GTAGGACCCG CTTCTCCGGC CCATCCCCGT GACCCGTGGC ACTGGGGGGT TGGCCTCATG ACCGGAGTCC CCCCCACAGAG CCAGCGGGTT GTGCTCCAGC TGAAGGGCCA CGTCAGGAG CTGGAAGCAG ATCTGGCCGA GCAGCAGCAC CTGCGGCAGC AGGCGCGA CGACTGTGAA TTCCTGCGGG CAGAACTGGA CGAGCTCAGG AGGCACCGGG AGGACCCGA GGAGGCTCAG CGGAGCCTGT CTGAGATAGA AAGTGAGCGG AGGCACCGGG AGGACCCGA GGAGGCTCAG CGGAGCCTGT CTGAGATAGA AAGTGAGCGG	120 180 240 300 360 420
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 436 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 13 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 28: CCCCCAGCCA CTCTAAAGAG GACCACAATT CCCCGGCCAT CATCCCCTGT TATTGTTGTT GATTGAGGGG CTCCTAATGA CCAGATGGTC CAACCCTCCT GGGACGTGGA GAGTTGACTT AGGGGAATCA GGTATTTACT TGGAAGCATG GTAGGACCCG CTTCTCCGGC CCATCCCCGT GACCCGTGGC ACTGGGGGGT TGGCCTCATG ACCGGAGTCC CCCCCACAGAG CCAGCGGGTT GTGCTCCAGC TGAAGGGCCA CGTCAGGAG CTGGAAGCAG ATCTGGCCGA GCAGCAGCAC CTGCGGCAGC AGGCGCGA CGACTGTGAA TTCCTGCGGG CAGAACTGGA CGAGCTCAGG AGGCACCGGG AGGACCCGA GGAGGCTCAG CGGAGCCTGT CTGAGATAGA AAGTGAGCGG AGGCACCGGG AGGACCCGA GGAGGCTCAG CGGAGCCTGT CTGAGATAGA AAGTGAGCGG	120 180 240 300 360

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 469	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 14 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
GACTTGAGCC CAAGGAGGTC AAGGCTGCAG TGAACAGTGA TTGTGCCACT GCACCCCAGC	60
CTGGCTGACA GAGCAAGACT GTCTCAAAAC AAAACAAGGA GGACCTTCTA GGGACCCTGG CTCATTGCAA GGAAGGCAAG GGTCCCTGCT AGGTTAGACT CCTCACCTTG GTCCTTTACA	120 180
ATACAGGGAA AGCTCAAGCC AATGAACAGC GATATAGCAA GCTAAAGGAG AAGTACAGCG	240
AGCTGGTTCA GAACCACGCT GACCTGCTGC GGAAGGTAAG ACCCTCAGCC CCTGTCACCA	300
TCCTGCAGGC CCTGCACCTC TAGGGAGAGA GCGGCTCAGG CCTGTGGCTT CCCCGGGGCC	360
AGCAACCCCT ACATTGATCT CTAAGGCATT GCCGTCATCT CGGGAACCAC ACCTTTTCAG	420
GCTTCCTTGC CTCTGTGTCT TGGGCTGTGT CCTGGGTGCC AATCCCATG	469
(2) INFORMATION FOR SEQ ID NO:30:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 359	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
` '	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 15 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
GGGTAGGAAA GTGATTCCTG TGTCTGACTC TAGGGCACGC ACAGCCTGAG TATGATTGTC	60 120
CTAGAAGGAG GATGTCCTCT AAGCCTGGGA TCTCCTGGTT CAAGACACTG TTCTTCTTTT GCAGAATGCA GAGGTGACCA AACAGGTGTC CATGGCCAGA CAAGCCCAGG TAGATTTGGA	180
ACGAGAGAAA AAAGAGCTGG AGGATTCGTT GGAGCCGCATC AGTGACCAGG GCCAGCGGAA	240
GGTGAGTGGG ACGAGGAGCA CTCGGGAAAT GAGGGAGGGG GCTGTTGAGT TGGTGGCGGG	300
GGCTTTGTGG CCTTCTGCTC CATGGGCAGT TCTGTGGGTC GGTTGGCATC ACACAGCAG	359
(2) INFORMATION FOR SEQ ID NO:31:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 209	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	

(iii) HYPOTHETICAL: no

(iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 16 of HIP1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31: GTTGATCGCT TGGACGTTT TTACATTTTT ATATTCTTTG TCACTGTCAC CCAGATCAGA GTCCCTCTGT TTTTCTTCTC TTTCAGACTC AAGAACAGCT GGAAGTTCTA GAGAGCTTGA AGCAGGAACT TGCACAAGC CAACGGGAGC TTCAGGTTCT GCAAGGCAGC CTGGAAACTT CTGCCCAGGT AAATACCTCC TTTTTTTTTT	60 120 180 209
Cloccondi manacette	207
(2) INFORMATION FOR SEQ ID NO:32: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 485 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 17 of HIP1 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32: cccccactgc aatcagtgt tecceggag ggaatcagag acctitecag tecttgeac ecgetgeing ettigacete teggaageta aacctitecag tecttgeace ecgetgeing ettigacete teggaageta ggaatcagag acctitecag tecttgeace ecgetgeing ettigacete teggaageta eccettecage agencagetagetagetagetagetagetagetagetagetaget	60 120 180 240 300 360 420 480
CATGA	485
(2) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 468 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii)MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (vi) ORIGINAL SOURCE: (A) ORGANISM: human (x) FEATURE: exon 18 of HIP1 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
TTACTGGCTT GGACCTCATT GGCCATGACT TGAGCTAAGA TGCTAAGAGC CCCAGCCAGG	60
TCATCCTGCT CAGGTTCATT ATGGAGTCTA GGGCAGACTC TCACCTCCCT GGACCATTTT	120

WO 99/60986 PCT/US99/11743

TAGAATCTAT GTGCCAGCTT GCCAAAGACC AACGAAAAAT GCTTCTGGTG GGGTCCAGGA 180

AGGCTGCGGA GCAGGTGATA CAAGACGCCC TGAACCAGCT TGAAGAACCT CCTCTCATCA 240
GCTGCGCTGG GTCTGCAGGT ACACTTGCAA TTGCCCAGCT GGCAGGGGCC AGGTCCTTAC 300
AGCCTGAGAC TCTGTTGATG TTGAATCTCA TGTGAGACTT AGCTCAGGGG CTCTCAGCCC 360
AGCAGCATGT CAGCATTACC TTAGGGGCGC CCAGGCCCCA TCCTAGATCA GTTACATGTG 420
GAAACTCTGT GCATTAGTGC CTATACACTA GTATTTTAGT ATTTTCTT 468

- (2) INFORMATION FOR SEQ ID NO:34:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 393
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 19 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 34:

CACTAGTAAG	CTCCTCCATT	CAGTGCTTAA	TTAACGAGGA	TGAAGCCAGC	TATGAGAACT	60
TGCTCTGACC	TTGCCCTGTG	TTCCCTCTCA	CAGATCACCT	CCTCTCCACG	GTCACATCCA	120
TTTCCAGCTG	CATCGAGCAA	CTGGAGAAAA	GCTGGAGCCA	GTATCTGGCC	TGCCCAGAAG	180
GTAAGAATGG	CCAAGGACAG	TCTCTGTCGG	CTAGTGATGG	CCAGACAGGG	TTCAGAAGCA	240
CCTGAATGCG	GGGATAGTGA	CAGGTCCCTC	TGCATCAAGA	AAGGCATGTA	GGCAACTCAT	300
ACAAGAAAGG	CATGTAGGCA	ACTCATAAAA	CGGGAGGAGA	GGGTATGAAA	GTGTCACCAT	360
CAACCAGACC	TGAGAAACTT	CTCTTTCCAA	TCC			393

- (2) INFORMATION FOR SEQ ID NO:35:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 421
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (vi) ORIGINAL SOURCE:
- (A) ORGANISM: human
- (x) FEATURE: exon 20 of HIP1

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 35:

GGCCTGCCCA	GAAGGTAAGA	ATGGCCAAGG	ACAGTCTCTG	TCGGCTAGTG	ATGGCCAGAC	60
AGGGTTCAGA	AGCACCTGAA	TGCGGGGATA	GTGACAGGTC	CCTCTGCATC	AAGAAAGGCA	120
TGTAGGCAAC	TCATACAAGA	AAGGCATGTA	GGCAACTCAT	AAAACGGGAG	GAGAGGGTAT	180
GAAAGTGTCA	CCATCAACCA	GACCTGAGAA	ACTTCTCTTT	CCAATCCTGG	CAGACATCAG	240
TGGACTTCTC	CATTCCATAA	CCCTGCTGGC	CCACTTGACC	AGCGACGCCA	TTGCTCATGG	300
TGCCACCACC	TGCCTCAGAG	CCCCACCTGA	GCCTGCCGAC	TGTGAGTACT	GGGGCATGAG	360
GGGCTGTTCA	TGGACCAGGG	GAGCAGGGGG	CCTTTAAAAG	TCTCTGTTGG	GCCGGGCGCA	420
G						421

43

WO 99/60986	PCT/US99/117
(2) INFORMATION FOR SEQ ID NO:36:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 498	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 21 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
AGGCCGAGGC AGGAGAATCG CTTGAACTCA GGAGGCGGAG TTTGCAGTGA GCCGAGA	
CGCCACTGCA CTCCAGCCTG GGCAACAAGA GCGAGACTCC ATCTCAAAAA AAAAGTG	
ATTGCCTTGT ATCTCCAGCA CTGACCGAGG CCTGTAAGCA GTATGGCAGG GAAACCC CCTACCTGC CTCCCTGGAG GAAGAGGGAA GCCTTGAGAA TGCCGACAGC ACAGCCA	
GGAACTGCCT GAGCAAGATC AAGGCCATCG GCGAGGTACT TGGAGTAGTA TCATTGA	
GCATTGTTAT TCTTCTGGGT GTGCGTGCTG GTGAATGGCC AGGGAATCGG TGATGTT	
AGCTAGTTCT TTCTGCACTT AGAACTTGAT TCTAGAAAGA GATTGTTAAA ATTGGAA	
CTGGCCGGGT GCAGTGATTT ATGCGTGTAA TCCCAGCACT TTGGGAGGCC GAGTCAG	
GATCACTTGA GGCTAGAC	498
(2) INFORMATION FOR SEQ ID NO:37:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 427	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 22 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
CCCTGTGGCT TGCAGAAGGT GTTTGCTGGG TGGCCTCCTG CCTTGCCATC TTGTAAC	
TACAGATGC AGAGGAGAA AGACAGGAGG CCCCAAGGTC AGTTCAGCCT TTGTGAT TTCACAGGAG CTCCTGCCCA GGGGACTGGA CATCAAGCAG GAGGAGCTGG GGGACCT	
GGACAAGGAG ATGCCGCCA CTTCAGCTGC TATTGAAACT GCCACGGCCA GAATAGA	
AGGAGGTTCC TGCAGGATCT CCTGAAACGA TGCCTTTGCA GCTGCCCTTC TGCAACA	
CTCATTAAAC ATGTCACAGT CGTTCATTAA GGCCATGGCA ACCCCCTAAG ACAGAAA	
GAATTTGCCA GGCACAGTGG CTCATGCCTG TAACCCCAGC ACCTTGGGAG GATCACT	rtga 420

- (2) INFORMATION FOR SEQ ID NO:38:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 367

GTCCAGG

427

0.99/60986 PCT/US99/11743

MO 33/60386	C1/0393/11/
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
. ,	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 23 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
CCCCCTGAAT AGGTTAGAGT CTGGATTCTT TTCTGACTCT CTCAAGAATG TGGGCAGGGGCTTTGGGGACT TCCAGATTCA GGTTTCCCAG CTACCACACG ATGTTGGACT GAAAGTATAG	
TAAGACATTA GTGGATCCTT AATATTCAAG GCACATTTAG AAACCATGCT TCTTTTTCAG	
AGGAGATGCT CAGCAAATCC CGAGCAGGAG ACACAGGAGT CAAATTGGAG GTGAATGAA	
GGTCGGTCTG AGCGGCATGG TGGGACCTAG GGGAGCAGGA TCTGTCTTCC TGACATTGG	
CTATACTTTG CATACTTATT AGGGAATTAG AGGAGAGCAG TAGCAGCCAC GGGGAAGGG	
TGAGTTG	367
(2) INFORMATION FOR SEQ ID NO:39:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 502	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 24 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
CCCCGCAGAA TGTTCCAGCA ACCTCAGCAC CCTTCTTACC TCCCTTTCCC ATTCCAAGC	т 60 т 120
TGCCTTTGGC TAGGAGTGGG GAAGAGAACC GTCGTGTTCA TTGATCTTGG ATCTTGATC CAGTGTATCC TCGACTTGTT TGTTTGGCAG GATCCTTGGT TGCTGTACCA GCCTCATGC.	
AGCTATTCAG GTGCTCATCG TGGCCTCTAA GGACCTCCAG AGAGAGATTG TGGAGAGCG	
CAGGGTGAGC GTGGGTGTGG GCCCTGGGCA GGAAGAGGAG GCATCGGTGA CAGACTCCC	
CTCCAACGGA CTCTGTGATG CTGCCGTCTT ACTCTGTGTG TCCACCTGAG TACAGAGCA	
CCACTCCTGT AGATATCAGC AGAGGCCCTG GGGAGAAGTC AGAGCTCCAG GACCTCCCC	
GAGGGTGGCC AGGCATGTGT CCCAACTCCA GCTCCCTTCG CACAGGCAGA CATTGTTGG	A 480 502
ACTTGCTGTG GGAGCCCTTT TT	302
(2) INFORMATION FOR SEQ ID NO:40:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 437	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
, ,	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	

WO 99/60986	PCT/US99/117
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 25 of HIP1	
(xi)SEOUENCE DESCRIPTION: SEO ID NO: 40:	
TTTTGGTCTC TGAATCTTCT TCTTTTTTGT AAAATGGGAA TACTAATGCT TATGTCTCAG	60
AGTTACTATG AGGATGATTT GGGATAATAT ATGTATAAAA GCACCTGCCA TATAGTACAT	
GCTCAATAAA AGGTGGCTAT TACTATTTTT TATTTCCCTA GGGTACAGCA TCCCCTAAAC	
AGTTTTATGC CAAGAACTCT CGATGGACAG AAGGACTTAT CTCAGCCTCC AAGGCTGTGC	
GCTGGGGAGC CACTGTCATG GTGTAAGTAT CTATTGGTAC CAAGGGTCCT CCCATGACCC	
CTCTTCCATT GATCCACTCC AAACAATAGC TAAGGAGGGA AAAAAAAATC TGTCCCTTAG AAATAAACTA TTGATCAGGA AGTCAATAGG ACCGAGTTTA CAAGGGAGCC TGGCTCTCCC	
AGGGGACACA GGGCAGG	437
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 351	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 26 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
GGGAGCCTGG CTCTCCCAGG GGACACAGGG CAGGCAGCCT CCCCTCCCTG TTTAGCCAAC	g 60
GGCGATGGGG TGGTCTGGAG GTGGGATTGT GGAGGAGTTG CAGCTCATTT GCCCGTAAC	
TAGTCCCTCT TGTCGTTTTC CATCAGGGAT GCAGCTGATC TGGTGGTACA AGGCAGAGG	
AAATTTGAGG AGCTAATGGT GTGTTCTCAT GAAATTGCTG CTAGCACAGC CCAGCTTGTC	
GCTGCATCCA AGGTAGGACC TGGCTGGACC TCCTAGGACG CTGGAAGGCC TGGTTAGAGG GTACTAGGCT AGGTTAAAGA GTACTTGGCT GCGTTAGGCA GTACTTGGCT G	A 300 351
GTACTAGGCT AGGITAAAGA GTACTIGGCI GCGTTAGGCA GTACTIGGCI G	331
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 418	
(B) TYPE: nucleic acid	
· ·	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii)MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(x) FEATURE: exon 27 of HIP1	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
CTTTTTATAT GATAGATATG TCAGGAGCTG ACTATAGTCA GCAGATTTTG AGAAGCTGA	
TGGTGATTGC CGTTTGGCCC ACATATGTTT GCTAAGAACC ATCAGAGCAA TTATCTGAT	
CAGTCCTTGT TGCTCTAGGT GTTGTATGAA CCTAAATCTG CTTTGTCCTG GTAGGTGAA	A 180

WO 99/60986	PCT/US99	/11743
GCTGATAAGG ACAGCCCCAA CCTAGCCCAG CTGCAGCAGG CCTCTCGGGG	AGTGAACCAG	2 4 0
GCCACTGCCG GCGTTGTGGC CTCAACCATT TCCGGCAAAT CACAGATCGA		300
AGCCTTTCCA AAGGGACCCT TTTCTTACCC ACCCTGTTGA GCTCTTCTCT		360
CTGTGATCCC AACCAAATCC CACAGGACTG TGTCTAAATT CTTTCATATT	TTTCATCT	418
(2) INTEGRALATION FOR SEC ID NO.42		
(2) INFORMATION FOR SEQ ID NO:43:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 279		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: double		
(D) TOPOLOGY: linear		
(ii)MOLECULE TYPE: genomic DNA		
(iii) HYPOTHETICAL: no		
(iv) ANTI-SENSE: no		
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: human		
(x) FEATURE: exon 28 of HIP1		
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 43:		
TTTCCACAGA GCATTGGCAT TGGCTGCCTC TCAGGTGCCA GTCAGCCAGG	GTAGAATTTG	60
ATGAGACCTT CTTGTTTCCA TCCTTGCAGA CAACATGGAC TTCTCAAGCA	TGACGCTGAC	120
ACAGATCAAA CGCCAAGAGA TGGATTCTCA GGTTAGGGTG CTAGAGCTAG GCAGAAGGAG CGTCAAAAAC TGGGAGAGCT TCGGAAAAAG CACTACGAGC	TTCCTCCTCT	180 2 4 0
TGCTGAGGGC TGGGAAGAAG GTAAGCTGAC TCAAAGGAT		279
(2) INFORMATION FOR SEQ ID NO:44:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 3715		
(B) TYPE: nucleic acid		
(C) STRANDEDNESS: double		
(D) TOPOLOGY: linear		
(ii)MOLECULE TYPE: genomic DNA		
(iii) HYPOTHETICAL: no		
(iv) ANTI-SENSE: no		
(vi) ORIGINAL SOURCE:		
(A) ORGANISM: human		
(x) FEATURE: exon 29 and partial cds of HIP1		
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 44:		
AACATAAATT ATCATTGTCT TTTAGGAACA GAGGCATCTC CACCTACACT	GCAAGAAGTG	60
GTAACCGAAA AAGAATAGAG CCAAACCAAC ACCCCATATG TCAGTGTAAA	TCCTTGTTAC	120
CTATCTCGTG TGTGTTATTT CCCCAGCCAC AGGCCAAATC CTTGGAGTCC		180
CACACCACTG CCATTACCCA GTGCCGAGGA CATGCATGAC ACTTCCCAAA ATAGCGACAC CCTTTCTGTT TGGACCCATG GTCATCTCTG TTCTTTTCCC		240 300
TTAGCATCCA GGCTGGCCAG TGCTGCCCAT GAGCAAGCCT AGGTACGAAG		360
GGGGCAGGG CCACTCAACA GAGAGGACCA ACATCCAGTC CTGCTGACTA		420
ACAACAATGG GTATCCTTAA TAGAGGAGCT GCTTGTTGTT TGTTGACAGC		480
AAGATCTTAT GCCTTTTCTT TTCTGTTTTC TTCTCAGTCT TTTCAGTTTC		540
CAAACTTGTG AGCATCAGAG GGCTGATGGA TTCCAAACCA GGACACTACC		600
CACAGTCAGA AGGACGCAG GAGTGTCCTG GCTGTGAATG CCAAAGCCAT		660 720
TTTGGGCAGT GCCATGGATT TCCACTGCTT CTTATGGTGG TTGGTTGGGT TGTTTTTTT TTTTAAGTTT CACTCACATA GCCAACTCTC CCAAAGGGCA		780
GCTGAGTCTC CAGGGCCCCC CAACTGTGGT AGCTCCAGCG ATGGTGCTGC		840

CGGTGCTCCA TCTCC	GCCTC CACACTGAC	C AAGTGCTGGC	CCACCCAGTC	CATGCTCCAG	900
GGTCAGGCGG AGCTG	CTGAG TGACAGCTT	T CCTCAAAAAG	CAGAAGGAGA	GTGAGTGCCT	960
TTCCCTCCTA AAGCT	GAATC CCGGCGGAA	A GCCTCTGTCC	GCCTTTACAA	GGGAGAAGAC	1020
AACAGAAAGA GGGAC	AAGAG GGTTCACAC	A GCCCAGTTCC	CGTGACGAGG	CTCAAAAACT	1080
TGATCACATG CTTGA	ATGGA GCTGGTGAG	A TCAACAACAC	TACTTCCCTG	CCGGAATGAA	1140
CTGTCCGTGA ATGGT					1200
GAGTGATTCC CAACT					1260
CGTTCCACTT TCTAC					1320
GAAGAACCCT ATACT					1380
AACAGCCTAC AAAGA					1440
CATCTTTCTG CCCGG					1500
GTTACTGACT TGGAT					1560
AGAAAGGACA GAGCC					1620
CCTGTGGACA GGATG					1680
CAGCACTTTT CCTCT					1740
ACAGCGTCTT CCTTC					1800
GGATCTGCTC CAACA					1860
TTGATCACTG TGAAC					1920
GTGCATTTTC TAAGT					1980
CAGACGTGTG ACCTC					2040
AATGTTGAAT GCTGC					2100
CGTGGCTTCC CTGTC					2160
AACATTTCCA AAAGT					2220
CCCAATTACC AAGGG					2280
AGGCTGAGGT GGTAG					2340
GAAACCCCCA TCTCT					2400
AATCCCAGCT ACTCA					2460
GCAGTGAGCT GAGAT					2520
TCAAAAAAAA AAAAA					2580
ATTCTCTCCC CAGCC		-			2640
AGACGGGATG ATTGC					2700
TCATCTCTAC TAAAA					2760
TCAGCTAGTT GGGGA					2820
TCAGCCAGTT GGGGA					2880
AAAAAAAAGA TTCTG					2940
TTCCCACTGC ACTCC					3000
AAAATTATCT GAATG					3060
CGACTTAGCC TGAGT					3120
GTGTCACATG AGGAA					3180
AGAATGGCTA CCCCA					3240
TGAAGATGAA GAGCT					3300
CTAAAAATGA ACCTG					3360
GGGTGAGCGT AAATG					3420
ACAAGAAGTT AAAAA					3480
CTCTAGAGAA AAGAT					3540
					3600
GTTTAATCCC AGCAC					3660
GACTAGCCTG GCCAA					3715
CATGGTGGCA GGCGC	CCTATA ATCCCAGCI	A CIGGGAGGC	I GAGGCAGGA	GMATC	2112