

AU OPTRONICS CORPORATION

Product Specification

23.0" Wide-UXGA Color TFT-LCD Module

Model Name: M230UW01 V.1

Approved by	Prepared by

DDBU Marketing Division / AU Optronics corporation

Checked & Approved by

23.0" Wide-UXGA Color TFT-LCD Module Model Name: M230UW01 V.1

(u) Preliminary Specifications
() Final Specifications

Note: This Specification is subject to change without notice.

Contents

1.0 Handling Precautions	5
2.0 General Description	6
2.1 Display Characteristics	6
2.2 Optical Characteristics	7
3.0 Functional Block Diagram	10
4.0 Absolute Maximum Ratings	11
4.1 TFT LCD Module	11
4.2 Backlight Unit	11
4.3 Absolute Ratings of Environment (TETANTIVE)	11
5.0 Electrical characteristics	12
5.1 TFT LCD Module	12
5.1.1 Power Specification	12
5.1.2 Signal Electrical Characteristics	13
5.2 Inverter Electrical Characteristics	14
6.0 Signal Characteristic	15
6.1 Pixel Format Image	15
6.2 The input data format	15
6.3 Signal Description	16
6.4 Interface Timing	17
6.4.1 Timing Characteristics	17
6.4.2 Timing diagram	18
6.5 Power ON/OFF Sequence	19
7.0 Connector & Pin Assignment	20
7.1 TFT LCD Module	20
7.2 Backlight Unit	20
8.0 Reliability	21
9.0 Safety	21
9.1 Sharp Edge Requirements	21
9.2 Materials	21
9.2.1 Toxicity	21
9.2.2 Flammability	21
9.3 Capacitors	21
10.0 Other requirement	22
10.1 National Test Lab Requirement	
10.2 Label	22
13.0 Mechanical Characteristics	23

Record of Revision

Version and Date	Page	Old description	New Description	Remark
0.1 2004/12/27	All	First Edition for Customer	All	

1.0 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL reflector edge. Instead, press at the far ends of the CCFL reflector edge softly. Otherwise the TFT module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT module.
- 11) After installation of the TFT module into an enclosure (Desktop monitor Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT module from outside. Otherwise the TFT module may be damaged.

2.0 General Description

This specification applies to the 23.0 inch Color TFT-LCD Module M230UW01.

The display supports the WUXGA (1920(H) x 1200(V)) screen format and 16.7M colors (RGB 8-bits data).

All input signals are 2 Channel LVDS interface compatible.

This module contains an inverter card for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 $\,^{\circ}\!\!\mathbb{C}\,$ condition:

ITEMS	Unit	SPECIFICATION	ONS				
Screen Diagonal	[mm]	584.15 (23")					
Active Area	[mm]	495.36 (H) x 3	09.6 (V)				
Pixels H x V		1920(x3) x 120	00				
Pixel Pitch	[mm]	0.258 (per one triad) x 0.258					
Pixel Arrangement		R.G.B. Vertica	l Stripe				
Display Mode		Normally Black					
White Luminance (Center)	[cd/m ²]	250 cd/m ² @ \	$I_{BR} = 2.8 \text{V} \text{ (Typ)}$	o)			
Contrast Ratio		800 : 1 (Typ)					
Optical Response Time (Gray to Gray)	[msec]	8 ms (Typ, average)					
Nominal Input Voltage VDD	[Volt]	+12.0 V					
Power Consumption (VDD line + Inverter card)	[Watt]	60.0W (Typ.) (inverter V _{BR} =2.8V, all white pattern)					
Weight	[Grams]	3000 (Max)					
			Min.	Тур.	Max.		
Physical Size	[mm]	Horizatal(H)	522.4	523.4	523.9		
i flysical olze	[,,,,,,	Vertical(V)	335.1	335.6	336.1		
		Depth(D)	40.5	41.0	41.5		
Electrical Interface		2 Channel LVE)S				
Support Color		16.7M colors (RGB 8-bit data	a)			
Surface Treatment		Anti-glare type	e, Hard Coatin	ng (2H)			
Temperature Range							
Operating	[°C]	0 to +50					
Storage (Shipping)	[°C]	-20 to +60					

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C and after lighting the B/L 30~40 minutes:

Item	Unit	Conditions	Min.	Тур.	Max.	Note
	[degree]	Horizontal (Right)	75	85	-	
Viewing Angle	[degree]	CR = 10 (Left)	75	85	-	
Viewing Angle	[degree]	Vertical (Up)	75	85	-	
	[uegree]	CR = 10 (Down)	75	85	-	
Contrast ratio		Normal Direction	400	800	-	
Response Time	[msec]	Gray to Gray (average)	-	8	12	Note 1
		Red x	0.610	0.640	0.670	
		Red y	0.300	0.330	0.360	
Color / Chromaticity		Green x	0.250	0.280	0.310	
Coordinates (CIE)		Green y	0.575	0.605	0.635	
		Blue x	0.115	0.145	0.175	
		Blue y	0.045	0.075	0.105	
		White x	0.283	0.313	0.343	
Color Coordinates (CIE) White		White y	0.299	0.329	0.359	
White Luminance (central point) (at inverter V _{BR} =2.8V)	[cd/m ²]		200	250	-	
Luminance Uniformity	[%]		75	80	-	Note 2
Crosstalk (in 60Hz)	[%]				1.5	Note 3
Flicker	dB				-20	Note 4

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter

(PR 880, BM-5A, BM 7, CS-1000, & EZContrast*)

Aperture
Test Point

1 $^{\circ}$ with 100cm VD or 2 $^{\circ}$ with 50cm viewing distance

Center (VESA point 9)

Environment < 1 lux

^{*&#}x27; EZ Contrast is different measurement tool with very close viewing distance.

Note 1: The Definition of Response time

Algorithm:

| Level A - Level B | ≥16 then the average of Gray-to-Gray response time is 8ms(Typ). At frame rate= 60 Hz condition.

 $Tr_R(On/Off rising time; from "Black" to "White") + <math>Tr_F(On/Off falling time; from "White" to "Black")$ = 15 + 5= 20ms(Typ).

Note 2: Brightness uniformity of these 9 points is defined as below

Uniformity = $\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}}$

Note 3: Crosstalk is defined as below:

 IL_A-L_A , I/L_A x 100%= 1.5% max., L_A and L_B are brightness at location A and B

I L_B - $L_{B'}$ I / L_B x 100%= 1.5% max., $L_{A'}$ and $L_{B'}$ are brightness at location A' and B'

Note 4: Test Paterm: Subchecker Pattern

Method: Record dBV & DC value with (WESTAR)TRD-100

Flicker (dB) =
$$20 \log \frac{AC \text{ Level(at } 30 \text{ Hz)}}{DC \text{ Level}}$$

3.0 Functional Block Diagram

The following diagram shows the functional block of the 23.0 inches Color TFT-LCD Module:

I/F PCB Interface:

JAE or compatible FI-X30SSL-HF (On board Strong type)

Mating Type:

FI-X30HL-T (Locked Type)

FI-X30S-H (Unlocked Type)

Backlight Interface

JST S14B-PH-SM3 or equivalent

Mating Type:

JST PHR-14 or equivalent

4.0 Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

4.1 TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	VIN	+10.8	+13.2	[Volt]	Note 1,2

4.2 Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
CCFL Current	ICFL	1.5	6	[mA] rms	Note 1,2

4.3 Absolute Ratings of Environment (TETANTIVE)

Item	Symbol	Min	Max	Unit	Conditions
Operating	TOP	0	50	[°C]	
Operating Humidity	HOP	5	95	[%RH]	Note 2
Storage Temperature	TST	- 20	60	[°C]	Note 3
Storage Humidity	HST	5	39	[%RH]	

Note 1: With in Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality perfermance, please refer to AUO IIS(Incoming Inspection Standard).

Relative Humidity %

5.0 Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VDD	Logic/LCD Drive Voltage	11.4	12	12.6	[Volt]	± 5%
IDD	VDD current	-	720	940	[mA]	Vin=12V , All White Pattern, +30%, at 60Hz
Irush	LCD Inrush Current	-	-	7.5	[A]	Note
PDD	VDD Power	-	8.65	11.3	[Watt]	Vin=12V , All White Pattern, +30%, at 60Hz
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	240	[mV] p-p	

Note: Measurement conditions:

Vin rising time

5.1.2 Signal Electrical Characteristics Input signals shall be low or Hi-Z state when Vin is off It is recommended to refer the specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Each signal characteristics are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VTH	Differential Input High		-	+ 100	[mV]	VICM = 1.2V
	Threshold					Note
VTL	Differential Input Low	- 100			[//m]	VICM = 1.2V
VIL	Threshold	- 100	-	-	[mV]	Note
VID	Input Differential Voltage	100		600	[mV]	Note
VICM	Differential Input Common	.10	.1.2	.15	r\ /1	VTH/VTL = ±200mV
VICM	Mode Voltage	+1.0	+1.2	+1.5	[V]	Note

Note: LVDS Signal Waveform

5.2 Inverter Electrical Characteristics

Inverter	Symbol	Condition		Values	Unit	Notes	
			Min.	Тур.	Max.		
Inverter:							
Input Voltage	V_{DDB}		22.0	24.0	26.0	V	1
Input Current	I _{DDB}	V _{BR} =2.8V	1.8	2.1	2.4	Α	2
Input Power	P _B	V _{BR} =2.8V	45.0	50.4	56.0	Watt	2
Brightness Adjust	V_{BR}		0	2.8	3.3	V	3
B/L on/off control	V _{ON/OFF}	Lamp ON =	4.0	-	5.0	V	
2,2 61,7611 6611.1161	* ON/OFF	Lamp OFF =	0	-	0.8	V	
Input inrush current	I _{INRUSH}	V _{DDB} =24V ,	-	-	3.5	А	4
		V _{RR} =3.3V					
Lamp:							
Life time		V _{BR} =2.8V	50,000	-	-	Hrs	5

Notes:

- 1. The input voltage ripple is limited below 400mVp-p.
- 2. The specified current and power consumption are under the typical supply input voltage, 24V.
- 3. ICFL = 5mA when V_{BR} =2.8V, and ICFL= 5.5mA when V_{BR} =3.3V.
- 4. Test condition: V_{DDB} rising time is 10ms. The test schematic as follow. Calculate the inverter input inrush current within V_{DDB} rising time.

- 5. The life is determined as the time at which luminace of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at 25±2C
- 6. Electrical charecteristics are determined after the unit has been 'ON' and stable for approximately 30min at 25±2C.

6.0 Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

6.2 The input data format

Note: R/G/B data 7:MSB, R/G/B data 0:LSB

O = "First Pixel Data" E = "Second Pixel Data"

6.3 Signal Description

The module using one LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

PIN	SIGNAL NAME	DESCRIPTION
1	RxOIN0-	Negative LVDS differential data input (Odd data)
2	RxOIN0+	Positive LVDS differential data input (Odd data)
3	RxOIN1-	Negative LVDS differential data input (Odd data)
4	RxOIN1+	Positive LVDS differential data input (Odd data)
5	RxOIN2-	Negative LVDS differential data input (Odd data)
6	RxOIN2+	Positive LVDS differential data input (Odd data)
7	VSS	Power Ground
8	RxOCLK-	Negative LVDS differential clock input (Odd clock)
9	RxOCLK+	Positive LVDS differential clock input (Odd clock)
10	RxOIN3-	Negative LVDS differential data input (Odd data)
11	RxOIN3+	Positive LVDS differential data input (Odd data)
12	RxEIN0-	Negative LVDS differential data input (Even clock)
13	RxEIN0+	Positive LVDS differential data input (Even data)
14	VSS	Power Ground
15	RxEIN1-	Positive LVDS differential data input (Even data)
16	RxEIN1+	Negative LVDS differential data input (Even data)
17	VSS	Power Ground
18	RxEIN2-	Negative LVDS differential data input (Even data)
19	RxEIN2+	Positive LVDS differential data input (Even data)
20	RxECLK-	Negative LVDS differential clock input (Even clock)
21	RxECLK+	Positive LVDS differential clock input (Even clock)
22	RxEIN3-	Negative LVDS differential data input (Even data)
23	RxEIN3+	Positive LVDS differential data input (Even data)
24	VSS	Power Ground
25	NC	No Connection
26	NC	No Connection
27	NC	No Connection
28	VDD	+12.0 V power supply
29	VDD	+12.0 V power supply
30	VDD	+12.0 V power supply

Note 1: All GND (ground) pins should be connected together and to VSS which should also be connected to the LCD's metal frame.

Note 2: All VDD (power input) pins should be connected together.

Note 3: Input signals of odd and even clock shall be the same timing

Note 4: The drawing of connector.

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings described here is not actual input timing of LCD module but output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

Signal	Item	Symbol	Min	Тур	Max	Unit
Vertical	Period	Tv	1211	1250	2048	Th
Section	Active	Tdisp(v)	1200	1200	1200	Th
Section	Blanking	Tbp(v)+Tfp(v)+PWvs	11	50	-	Th
Horizontal	Period	Th	1040	1300	2048	Tclk
Section	Active	Tdisp(h)	960	960	960	Tclk
Section	Blanking	Tbp(h)+Tfp(h)+PWhs	80	340	-	Tclk
Clock	Period	Tclk	11.76	-	-	ns
Clock	Frequency	Freq	-	-	85	MHz
Frame Rate	Frequency	F	55	60	61	Hz

Note: DE mode only.

6.4.2 Timing diagram

6.5 Power ON/OFF Sequence

Vin power and B/L on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when Vin is off.

Symbol		Unit		
Syllibol	Min	Тур	Max	Offic
T1	0.5	-	10	[ms]
T2	0.5	40	50	[ms]
Т3	300	-	-	[ms]
T4	300	-	-	[ms]
T5	0.5	16	50	[ms]
T6	0.5	-	50	[ms]
T7	1000	-	-	[ms]

7.0 Connector & Pin Assignment

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	Interface Connector / Interface card		
Manufacturer	JAE or compatible		
Type Part Number	FI-X30SSL-HF (On board Strong type)		
Mating Housing Part Number	FI-X30HL-T (Locked Type) FI-X30S-H (Unlocked Type)		

7.2 Backlight Unit

-Inverter connector: JST S14B-PH-SM3 or equivalent

-Mating connector: JST PHR-14 or equivalent

Pin No.	Symbol	Description
1	V_{DDB}	
2	V_{DDB}	
3	V_{DDB}	Power supply +24.0V
4	V_{DDB}	
5	V_{DDB}	
6	GND	
7	GND	
8	GND	Power Ground
9	GND	
10	GND	
11	Open	No Connection
12	V _{ON/OFF}	Backlight On/Off signal
13	V_{BR}	Brightness adjustable voltage
14	Open	No Connection

8.0 Reliability

Reliability item and test condition

No	Test Item	Test Condition	Note
1	Temperature Humidity Bias (THB)	50°C, 80%, 300hours	
2	High Temperature Operation (HTO)	50°C, 300hours	
3	Low Temperature Operation (LTO)	0°C , 300hours	
4	High Temperature Storage (HTS)	60°C , 300hours	
5	Low Temperature Storage (LTS)	-20°C , 300hours	
6	Thermal Shock Test (TST)	-20°C/30min, 50°C/30min, 100 cycles	
7	On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
8	Shock Test (Non-Operating)	50G, 11ms, Half-sine wave (<u>+</u> X, <u>+</u> Y, <u>+</u> Z)	
9	Vibration Test (Non-Operating)	1G(10~200~10 Hz P-P),	
9		30 Minutes each Axis(X, Y, Z)	
	ESD (ElectroStatic Discharge)	1. Contact Discharge: ± 8KV, 150pF(330Ω) 1sec,	
10		8 points, 25 times/ point.	
		2. Air Discharge: ± 15KV, 150pF(330Ω) 1sec,	
		8 points, 25 times/ point.	
11	Altitude Test	Operation:10,000 ft	
	Autude 1690	Non-Operation:30,000 ft	
12	Drop Test	The drop height is 60cm	

9.0 Safety

9.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

9.2 Materials

9.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO Toxicologist.

9.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

9.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

10.0 Other requirement

10.1 National Test Lab Requirement

The display module will satisfy all requirements for compliance to

UL 1950, First Edition CSA C22.2 No.950-M89

EEC 950 EN 60 950 U.S.A. Information Technology Equipment
Canada, Information Technology Equipment
International, Information Technology Equipment
International, Information Processing Equipment

(European Norm for IEC950)

10.2 Label

The label is on the panel as shown below:

13.0 Mechanical Characteristics

Ver0.1

23

