Announcements

Exam scores will be uploaded to Blackboard Learn:

Machine-graded scores will appear this week.

Hand-graded scores will appear next week.

Last Time

- Review definitions of electric potential
- Potential at one point
- Potential inside a conductor
- Potential inside an insulator
- (Energy stored in a field)

Today

- Energy stored in a field
- Sources of Magnetic Field
- Magnetic Field due to Moving Charges
- Cross Products: Right-hand Rule
- Cross Products: Mathematically

Dielectric Constant

Inside an insulator:
$$\vec{E}_{\rm net} = \frac{\vec{E}_{\rm applied}}{K}$$

Dielectric constant for various insulators:

vacuum	1 (by definition)
air	1.0006
typical plastic	5
NaCl	6.1
water	80
strontium titanate	310

What did the
Dielectric Constant
say to the Electric
Field?

"Die, Electric Field, Die!"

Energy stored in a field

- Rather than potential energy, we can talk about the energy of the EM field
- This is useful because radiation (e.g. light) carries energy, and we may want to know how much
- Instead of a change in potential energy, we can say that rearranging charges changes the field energy

iClicker question

Field energy density

$$E \approx \frac{Q/A}{\epsilon_o}$$
 $W = (Q^2/2A\epsilon_o) \Delta s$

- We could write
- $\Delta K + \Delta U = W$, since $\Delta K = 0$, $\Delta U = W$
- Or, instead of potential energy, we can think of it as field energy
- $\Delta K + \Delta U_{field} = W$, $\Delta K = 0$, $\Delta U_{field} = W$
- This means $\Delta U_{\text{field}} = Q^2/2A\epsilon^{\circ}\Delta s = \frac{1}{2}\epsilon_0 E^2A\Delta s = \frac{1}{2}\epsilon_0 E^2\Delta V$

Energy density

• So
$$\frac{\Delta U}{\Delta V} = \frac{1}{2} \in_0 E^2$$

Volume, not potential

Key Ideas in Chapter 18: Magnetic Field

- Moving charged particles make a magnetic field, which is different from an electric field.
- The needle of a magnetic compass aligns with the direction of the net magnetic field at its location.

- Electron current is a number of electrons per second entering a section of a conductor.
- Conventional current (Coulombs/second) is opposite in direction to the electron current, and is assumed to be due to positively charged particles.
- The superposition principle can be applied to calculate the expected magnetic field from current-carrying wires in various configurations.
 - A current-carrying loop is a magnetic dipole.
 - A bar magnet is also a magnetic dipole.
 - Even a single atom can be a magnetic dipole!

What happens when...

Compass is isolated?

Magnet is near a compass?

Current-carrying wire is near compass?

What happens when...

Compass is isolated?

Points to Earth's (magnetic) North Pole

Magnet is near a compass?

Needle deflects

Current-carrying wire is near compass?

Needle deflects!

Compass Needle and Magnetic Field

Key Idea: Needle of a compass aligns with the Net Magnetic Field (no matter what the source).

Fun Facts: Earth's Magnetic Field

- $|B_{Earth}| \sim 20 \text{ microTesIa} = 2 \times 10^{-5} \text{ T}$
- Tilted by 11.3 degrees from Rotational Axis
- "Sign reversals" throughout Earth's history
- Not due to liquid core! Rocks would look solid.
- Rocks slowly "creep" due to defects, cracks...

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magearth.html

http://www.ngdc.noaa.gov/geomag/WMM/data/WMM2010/WMM2010_F_MERC.pdf

Compass Near a Wire

- Depends on amount of current in wire
- No current → no Magnetic field (B) from wire
- B-field of wire is perpendicular to the wire

What happens when wire is below vs. above compass?

B-field switches direction!

Current and Magnetic Field

Why does the wire act like a magnet?

?

Key Idea: Moving charges create a Magnetic Field

Biot-Savart Law

Key Idea: Moving charges create a Magnetic Field

$$\vec{B} = \left(\frac{\mu_o}{2\pi}\right) \frac{q\vec{v} \times \vec{r}}{|r|^2}$$

BIOT-SAVART LAW point charge

$$q$$
 = charge

$$\vec{v}$$
 = velocity of charge

$$\vec{r}$$
 = observation point (charge at origin)

Right-Hand Rule

$$ec{B} = \left(rac{\mu_o}{2\pi}
ight)rac{qec{v} imesec{r}}{|r|^2} \quad {}_{
m BIOT ext{-SAVART LAW point charge}}$$

Result of Cross Product $\vec{v} \times \vec{r}$ is Perpendicular to both $\, \vec{v} \,$ and $\, \vec{r} \,$

Right-Hand Rule:

Alternatives to the Right-Hand Rule

BOOK RULE:

OPEN THE FRONT COVER ALONG
THE FIRST VECTOR AND THE
BACK COVER ALONG THE SECOND.
THE RESULT VECTOR IS ALONG
THE SPINE, OUT THE TOP.

HANDGUN RULE:

POINT THE GRIP ALONG THE FIRST
VECTOR AND ROTATE IT SO THE
SECOND VECTOR IS ON THE SAPETY
LATCH SIDE. FIRE. THE RESULT VECTOR
15 TOWARD THE BULLET HOLES.

iClicker

$$\vec{B} = \left(\frac{\mu_o}{2\pi}\right) \frac{q\vec{v} \times \vec{r}}{|r|^2} \qquad \begin{array}{l} \text{BIOT-SAVART LAW} \\ \text{point charge} \end{array}$$

Cross Product: Here's the Math

Cross Product: Here's the Math

Cross Product: Here's the Math

The resulting vector has magnitude:

$$|\vec{A} \times \vec{B}| = |A||B|sin\theta$$

Today

- Energy stored in a field
- Sources of Magnetic Field
- Magnetic Field due to Moving Charges
- Cross Products: Right-hand Rule
- Cross Products: Mathematically