Digitale Bildverarbeitung

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Dr. rer. nat. Johannes Riesterer

Integral

Sei $A\subseteq\mathbb{R}\times\mathbb{R}$ eine (meßbare) Teilmenge und $f:\mathbb{A}\to\mathbb{R}$ eine (meßbare, integrierbare) Funktion. Dann können wir das Integral definieren durch

$$\int_{A} f \ d(x,y) := \int_{A_{x}} \left(\int_{A_{y}} f(x,y) \ dx \right) dy$$

mit den Scheibenmengen $A_y:=\{x\in\mathbb{R}\mid (x,y)\in A\}$ und $A_x=\{y\in\mathbb{R}\mid A=\bigcup_y A_y\}$

Integral

Induktiv definieren wir dann für eine Funktion $f:\mathbb{A}\subset\mathbb{R}^n\to\mathbb{R}$ das Integral durch

$$\int_A f(x) \ dx := \int_{A_1} \cdots \int_{A_n} f(x_1, \dots, x_n) \ dx_1 \cdots \ dx_n$$

Volumen

Für $A \subseteq \mathbb{R}^n$ definieren wir das Volumen durch

$$\mu(A) := \int_A 1 \ dx$$

Beispiel

$$A := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$
 (Kreisscheibe). $A_x = \{y \in \mathbb{R} \mid -1 \le y \le 1\}$ $A_y = \{x \in \mathbb{R} \mid -\sqrt{1-y^2} \le x \le \sqrt{1-y^2}\}$

Beispiel

$$\mu(A) = \int_{A} 1 \ d(x, y) := \int_{-1}^{1} \left(\int_{-\sqrt{1 - y^{2}}}^{\sqrt{1 - y^{2}}} 1 \ dx \right) dy$$

$$= 2 \int_{-1}^{1} \sqrt{1 - y^{2}} \ dy$$

$$(substitution \ y = sin(u)) = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(u)^{2} \ du = 2 \cdot \frac{\pi}{2} = \pi$$

Punktoperationen

Histogramm

Für ein diskretes Bild $U:\Omega\to R$ beziehungsweise für ein kontinuierliches Bild $u:\Omega\to R$ definieren wir das Histogramm

$$H_U(k) := \#\{i \in \Omega | U_i = k\}$$

$$H_u(E) := \mu(\{x \in \Omega | u(x) \in E\}), E \subset R$$

Verteilungsfunktion

Ebenso definieren wir die Verteilungsfunktion

$$G_U(s) := \#\{i \in \Omega | u_i \le s\}$$

$$G_U(s) := \mu(\{x \in \Omega | u(x) \le s\})$$

Bemerkung

Für
$$R = [0, 1]$$
 ist $H_{\mu}([0, 1]) = \mu(\Omega)$

Punktoperationen

Histogrammausgleich

Ein Bild mit viel Kontrast hat Grauwerte im gesamten Bereich R=[0,1]. Man ist daher daran interessiert, Abbildungen des Bildes zu finden, so dass das Histogramm des abgebildeten Bildes möglichst gleichmässig verteilt ist.

Einfacher Histogrammausgleich

die Abbildung

$$\phi: [0,1] \to [0,1]$$
$$\phi(s) = \frac{s - inf(u)}{sup(u) - inf(u)}$$

spreizt das Histogramm des Bildes auf den gesamten Bereich [0,1] und erhöht daher insgesamt den Kontrast.

Punktoperationen

Histogrammausgleich

Wir suchen eine monotone Abbildung $\psi:[0,1] \to [0,1]$ mit

$$H_{\psi \circ u}([a,b]) = (b-a)\mu(\Omega) \ \Leftrightarrow G_{\psi \circ u}(s) = s\mu(\Omega)$$

Histogrammausgleich

Nehmen wir an, dass ψ invertierter ist, ergibt sich

$$s\mu(\Omega) = \mu(\lbrace x \in \Omega | \psi(u(x)) \leq s \rbrace)$$

= $\mu(\lbrace x \in \Omega | u(x) \leq \psi^{-1}(s) \rbrace)$
= $G_u(\psi^{-1}(s))$

und damit $\psi^{-1}(s) = G_u^{-1}(s\mu(\Omega))$ und also $\psi(s) = \frac{G_u(s)}{\mu(\Omega)}$.

Faltung

$$(f*g)(x) := \int_{\mathbb{R}^n} f(y-x) \cdot g(y) \ dy \tag{1}$$

Beispiel 1

Link: Box

Beispiel 2

Link: Gauß

Diskrete Faltung

Diskrete Faltung

Für zwei diskrete Funktionen $U:[1,\ldots,N]\to R$ und $H:[1,\ldots,N]\to R$ mit stückweisen konstanten Interpolation $u(x):=\sum_{l=1}^N U_l\phi_j^0(x)$ und $h(x):=\sum_{m=1}^N H_m\phi_m^0(x)$ ergibt die Faltung

$$(h*u)(k) = \int u(y)h(k-y) dy$$

$$= \int \sum_{l=1}^{N} U_l \phi^0(y-l) \sum_{m=1}^{N} H_m \phi^0(k-y-m)$$

$$= \sum_{l=1}^{N} \sum_{m=1}^{N} U_l H_m \int \phi^0(y-l) \phi^0(k-y-m) dy$$

Diskrete Faltung

Diskrete Faltung

Da für das Integral

$$\int \phi^0(y-l)\phi^0(k-y-m) \ dy = \begin{cases} 1 \text{ falls } m=k-l \\ 0 \text{ sonst} \end{cases}$$

gilt, folgt die Darstellung

$$(u*h)(k) = \sum_{l} U_{l}H_{k-l}$$