TFT-LCD Display + Camera

Design of a TFT Controller & Camera Controller For FPGA

Avalon Master/Slave device

rene.beuchat@epfl.ch rene.beuchat@hesge.ch

Goals

- The goal is to understand how to design a master unit for a System on FPGA
- 2 masters units have to be designed:
 - > a LCD controller
 - > a camera controller
- A system with a NIOSII on FPGA has to be build
- A software to control the display and the camera acquisition

Camera (TRDB-D5M) & LCD (LT24)

With DE0-nano

Video Controllers in FPGA, General architecture

LCD (LT24) specifications

- In this example, the LT24 module from terasic is used (www.terasic.com), characteristics:
 - >240 (H) x 320 (V) RGB 5-6-5 bits/color
 - ➤ Touch Panel, resistive technology
 - ➤ Small LCD extension on 40 pins connector
 - ➤ Simple access to the module as a programmable interface
 - ➤ Main controller ILI9341 (Ilitek)

LT24 for DE0-nano & DE1-SOC

- Interface signals:
 - >LCD_ON
 - >Reset_n
 - >CS_n
 - ➤RS (reg. Sel. C/nD)
 - >Wr_n
 - ≻Rd_n
 - **>**D[15..0]

2x20 pins connection

FPGA - LT24 ILI9441 connection

- 65'536 colors 5-6-5 RGB
- 8080-system I, 16 bits interface
- Ref: §7.6.5 ILITEK ILI9341
- http://www.newhavendisplay.com/app_notes/ILI9341.pdf

LT24: Bus interface

CSx: CS_n Chip Select

D/Cx: D/Cn Data / Command_n

WRx: WR_n Write Access

RDx: RD_n Read Access

LT24 Timing Diagram Connection, Write Command/Data

LT24 Timing Diagram Connection, Read Command/Data

LT24 Timing Access

- The interface used is the old fashion 8080system 16 bits wide.
- The transfers are asynchronous (no clock related) between the FPGA and the module
- The data are sent line by line by burst of 240 pixels continuously

LCD data transfers format, 16 bits data mode

For each line of LCD:

5 bits Blue, **6** bits Green, **5** bits Red, **////[3:0]**: "**9901**" Redister 3Ah: "xxxxx101" MDTI1_01: "00" 239R4 D14 0R3 1R3 237R3 238R3 239R3 2R2 239R2 D13 0R2 1R2 237R2 238R2 0R1 1R1 239R1 D12 2R1 237R1 238R1 D11 0R0 1R0 238R0 239R0 2R0 237R0 239G5 D10 0G5 1G5 2G5 237G5 238G5 D9 0G4 1G4 2G4 237G4 238G4 239G4 D8 0G3 1G3 2G3 237G3 238G3 239G3 . . . D7 C7 0G2 1G2 237G2 238G2 239G2 2G2 . . . D₆ C₆ 0G1 1G1 2G1 237G1 238G1 239G1 ... D₅ 237G0 C5 0G0 1G0 2G0 238G0 239G0 . . . D4 C4 C3 D3D2 C₁ D1 D₀ C₀

LCD Controller in FPGA

- To control the LCD, a Controller is necessary
- For FPGA4U and in a system based on a NIOSII processor on Avalon Bus a specific interface is to be designed.
- It needs to be an:
 - ➤ Avalon slave to program it
 - Avalon Master to take display information in memory

LCD Controller in FPGA, General architecture

Avalon Slave, registers

- To configure the LCD controller, a number of registers needs to be defined and implemented.
- They need to be programmed by the processor at startup.
- They have default values.
- A command register start the controller and control the power converter and LCD enable.

Reset Initialization §15.1 p.228

	After	After	After
	Powered ON	Hardware Reset	Software Reset
Frame Memory	Random	Repair data	No Change
Sleep	ln	ln	In
Display Mode	Normal	Normal	Normal
Display	Off	Off	Off
ldle	Off	Off	Off
Column Start Address	0000 h	0000 h	0000 h
Column End Address	00EF h	00EF h	If MADCTL's B5=0:00EF h If MADCTL's B5=1:013F h
Page Start Address	0000 h	0000 h	0000 h
Page End Address	013F h	013F h	If MADCTL's B5 = 0:013F h If MADCTL's B5=1:00EF h
Gamma Setting	GC0	GC0	GC0
Partial Area Start	0000 h	0000 h	0000 h
Partial Area End	013F h	013F h	013F h
Memory Data Access Control	00 h	00 h	No Change
RDDPM	08 h	08 h	08 h
RDDMADCTL	00 h	00 h	No Change
RDDCOLMOD	06 h	06 h	06 h
RDDIM	00 h	00 h	00 h
RDDSM	00 h	00 h	00 h
RDDSDR	00 h	00 h	00 h
TE Output Line	Off	Off	Off
TE Line Mode	Mode 1 (Note 3)	Mode 1 (Note 3)	Mode 1 (Note 3)

Detailed timing diagram

LCD Controller architecture

LCD Control architecture

- The LCD Controller can be separate in 4 main blocks:
 - >Avalon Slave to access registers
 - >Avalon Master to read memory
 - ➤A FIFO to receive data from Avalon Master and provide them to LCD control part The FIFO guaranties a continuous flow from memory the LCD, as memory is shared by multiples masters
 - ➤ A LCD Control to sequence the LCD signals and send RGB data

LCD Controller: Avalon Slave - Registers

- The Avalon slave interface is used to:
 - receive and send registers contents from/to a Master Processor (ie: the NIOSII)
 - Send an IRQ at end of frame if enabled, this allows the processor to provide a new buffer address at start of display frame
 - ➤ Dispatch the registers content to the modules:
 - ➤ Buffer information to master interface
 - ➤ Display parameters to LCD Control

LCD Controller: Avalon Master

- The Avalon Master interface is used to:
 - Receive the Buffer information from Avalon slave part as :
 - Start address of the buffer
 - Length of buffer to read
 - Synchronize the start of reading with LCD VSync from LCD Ctrl
 - 3. Read display data from memory through Avalon read accesses
 - 4. Send the Read data to a synchronization FIFO

Avalon burst Read As a Master Unit

Address and BurstCount available for the first cycle only Read signal only for the first cycle
The number of burstcount **ReadDataValid** needs to be generated The master could start a new transfer in 2

Interface Camera, FIFO

- A FIFO (First In First Out) Memory allows the synchronization between a data producer and a data reader with asynchronous transfers rate.
- Available and configurable with QuartusII MegaWizard

FIFO

- The Output FIFO_Almost_Empty allows to know if they are still xx free positions in the FIFO and FIFO_Almost_Full allows to know if they are already xx filled positions in the FIFO
- xx programmable when FIFO is generated with MegaWizard
- Thus it is possible to know that at least Burst Mode Size data are available for read access master transfers to write in FIFO
- The size off the FIFO and ..._Almost_... are defined at generation time of the FIFO through MegaWizard

Some ILI9341 Commands

Regulative Command Set													
Command Function	D/CX	RDX	WRX	D17-8	D7	D6	D5	D4	D3	D2	D1	DO	Hex
No Operation	0	1	1	XX	0	0	0	0	0	0	0	0	00h
Software Reset	0	1	1	XX	0	0	0	0	0	0	0	1	01h
	0	1	1	XX	0	0	0	0	0	1	0	0	04h
	1	1	1	XX	х	X	X	X	×	X	X	×	XX
Read Display Identification	1	1	1	XX		•	•	ID1 [7:0]		•		XX
Information	1	1	1	XX				ID2 [7:0]				XX
	1	1	1	XX				ID3 [7:0]				XX
	0	1	1	XX	0	0	0	0	1	0	0	1	09h
	1	1	1	XX	X	X	X	X	×	X	X	×	XX
B. A.Birata Gran	1	1	1	XX	D [31:25]							X	00
Read Display Status	1	1	1	XX	X		D [22:20]		D [19	9:16]		61
	1	1	1	XX	X	X	X	X	X		D [10:8]		00
	1	1	1	XX		D [7:5]		X	X	X	X	X	00
	0	1	1	XX	0	0	0	0	1	0	1	0	0Ah
Read Display Power Mode	1	1	1	XX	X	X	X	X	×	X	X	×	XX
	1	1	1	XX			D [7	:2]			0	0	08
	0	1	1	XX	0	0	0	0	1	0	1	1	0Bh
Read Display MADCTL	1	1	1	XX	X	X	X	X	×	X	X	X	XX
	1	1	1	XX			D [7	:2]			0	0	00
	0	1	1	XX	0	0	0	0	1	1	0	0	0Ch
Read Display Pixel Format	1	1	1	XX	X	X	X	X	X	X	X	X	XX
	1	1	1	XX	RIM DPI [2:0]				X	ı	DBI [2:0]		06
	0	1	1	XX	0	0	0	0	1	1	0	1	0Dh
Read Display Image Format	1	1	1	XX	X	X	X	X	X	X	X	X	XX
	1	1	1	XX	X	X	X	X	X		D [2:0]		00
	0	1	1	XX	0	0	0	0	1	1	1	0	0Eh
Read Display Signal Mode	1	1	1	XX	X	X	X	X	X	X	X	X	XX
	1	1	1	XX		D [7:2]					0	0	00
Read Display Self-Diagnostic	0	1	1	XX	0	0	0	0	1	1	1	1	0Fh
Result	1	1	1	XX	X	X	X	X	X	X	X	X	XX
riodat	1	1	1	XX	D [7	:6]	X	X	X	X	X	X XX 0 00 0 0Ch X XX 0] 06 1 0Dh X XX 0] 00 0 0Eh X XX 0 00 1 0Fh	
Enter Sleep Mode	0	1	1	XX	0	0	0	1	0	0	0	0	
Sleep OUT	0	1	1	XX	0	0	0	1	0	0	0		_
Partial Mode ON	0	1	1	XX	0	0	0	1	0	0	1	0	
Normal Display Mode ON	0	1	1	XX	0	0	0	1	0	0	1		13h
Display Inversion OFF	0	1	1	XX	0	0	1	0	0	0	0		
Display Inversion ON	0	1	1	XX	0	0	1	0	0	0	0	1	21h
Gamma Set	0	1	1	XX	0	0	1	0	0	1	1	0	26h
	1	1	1	XX				GC [01
Display OFF	0	1	1	XX	0	0	1	0	1	0	0	0	28h
Display ON	0	1	1	XX	0	0	1	0	1	0	0	1	29h
	0	1	1	XX	0	0	1	0	1	0	1	0	2Ah
	1	1	1	XX				SC [1					XX
Column Address Set	1	1	1	XX				SC [7					XX
	1	1	1	XX				EC [1					XX
	1	1	1	XX				EC [7					XX
	0	1	1	XX	0	0	1	0	1	0	1	1	2Bh
	1	1	1	XX				SP [1					XX
Page Address Set	1	1	1	XX				SP [7					XX
	1	1	1	XX				EP [1					XX
	1	1	1	XX				EP [7	7:0]				XX

Memory Write	0	1	1	XX	0	0	1	0	1	1	0	0	2Ch	
memery range	1	1	1					[17:0]					XX	
	0	1	1	XX	0	0	1	0	1	1	0	1	2Dh	
	1	1	1	XX		-	+			00 [5:0]			XX	
	1	1	1	XX		1				nn [5:0]			XX	
	1	1	1	XX		1				31 [5:0]			XX	
Color SET	1	1	1	XX						00 [5:0]			XX	
	1	1	1	XX		1				nn [5:0]			XX	
	1	1	1	XX						64 [5:0]			XX	
	1	1	1	XX		1			В	00 [5:0]			XX	
	1	1	1	XX	Bnn [5:0]									
	1	1	1	XX					В	31 [5:0]			XX	
	0	1	1	XX	0	0	1	0	1	1	1	0	2Eh	
Memory Read	1	1	1	XX	X	X	X	X	X	X	X	X	XX	
	1	1	1		D [17:0]									
	0	1	1	XX	0	0	1	1	0	0	0	0	30h	
	1	1	1	XX				SI	R [15:8]				00	
Partial Area	1	1	1	XX	SR [7:0]									
	1	1	1	XX	ER [15:8]									
	1	1	1	XX				E	R [7:0]				3F	
	0	1	1	XX	0	0	1	1	0	0	1	1	33h	
	1	1	1	XX	TFA [15:8]									
	1	1	1	XX				TF	A [7:0]				00	
Vertical Scrolling Definition	1	1	1	XX				VS	A [15:8]				01	
	1	1	1	XX					SA [7:0]				40	
	1	1	1	XX					A [15:8]				00	
	1	1	†	xx	BFA [7:0]								00	
Tearing Effect Line OFF	0	1	1	XX	0	0	1	1	0	1	0	0	34h	
	0	1	†	XX	0	0	1	1	0	1	0	1	35h	
Tearing Effect Line ON	1	1	+	xx	x	×	×	×	×	×	X	М	00	
	0	1	†	XX	0	0	1	1	0	1	1	0	36h	
Memory Access Control	1	1	†	XX	MY	MX	MV	ML	BGR	МН	X	X	00	
	0	1	+	XX	0	0	1	1	0	1	1	1	37h	
Vertical Scrolling Start Address	1	1	+	XX					P [15:8]				00	
Volume Corolling Chart Address	1	1	+	XX					SP [7:0]				00	
Idle Mode OFF	0	1	+	XX	0	0	1	1	1	0	0	0	38h	
Idle Mode ON	0	1	+	XX	0	0	1	1	1	0	0	1	39h	
Idle Wode OIV	0	1	+	XX	0	0	1	1	1	0	1	0	3Ah	
Pixel Format Set	1	1	1	XX	×	_	DPI [2:0		×		DBI [2:0		66	
	0	1	1	XX	ô	0	1	1	1	1	0	0	3Ch	
Write Memory Continue	1	1	+	^^	U	U) [17:0]	_ '		0	U	XX	
	0	1	-	~~	_	0			-	4	-	_	3Eh	
Bood Mamory Continue	1	1	1	XX	0	0	1 X	1 X	1 X	1 X	1	0	$\overline{}$	
Read Memory Continue	1			XX	X	×) [17:0]			X	X	XX	
		1	1	207		_				_			_	
Out Tour County	0	1	1	XX	0	1	0	0	0	1	0	0	44h	
Set Tear Scanline	1	1	1	XX	X	X	X	X	X	X	X	STS [8]	00	
	1	1	1	XX			_		rs [7:0]	_		_	00	
	0	1	1	XX	0	1	0	0	0	1	0	1	45h	
Get Scanline	1	1	1	XX	X	X	X	X	X	X	X	X	XX	
	1	1	1	XX	X	X	X	X	X	X	GTS	S [9:8]	00	
	1	1	1	XX					TS [7:0]		T -		00	
Write Display Brightness	0	1	1	XX	0	1	0	1	0	0	0	1	51h	
	1	1	1	XX	<u> </u>			DE	3V [7:0]				00	

	0	1	1	xx	0	1	0	1	0	0	1	0	52h
Read Display Brightness	1	1	1	XX	х	X	X	х	Х	Х	X	X	XX
	1	1	1	XX		•	•	DBV	[7:0]	•			00
Write CTDI Disaless	0	1	1	XX	0	1	0	1	0	0	1	1	53h
Write CTRL Display	1	1	1	XX	X	×	BCTRL	X	DD	BL	X	X	00
	0	1	1	XX	0	1	0	1	0	1	0	0	54h
Read CTRL Display	1	1	1	XX	X	X	X	X	X	X	X	X	XX
	1	1	1	XX	X	X	BCTRL	X	DD	BL	X	X	00
Write Content Adaptive	0	1	1	XX	0	1	0	1	0	1	0	1	55h
Brightness Control	1	1	1	XX	X	X	X	X	X	X	0	1:0]	00
	0	1	1	XX	0	1	0	1	0	1	1	0	56h
Read Content Adaptive Brightness Control	1	1	1	XX	X	X	X	X	X	X	X	X	XX
Brightness Control	1	1	1	XX	X	X	X	X	X	X	C[1:0]	00
Write CABC Minimum	0	1	1	XX	0	1	0	1	1	1	1	0	5Eh
Brightness	1	1	1	XX	CMB [7:0]								00
	0	1	1	XX	0	1	0	1	0	1	1	1	5Fh
Read CABC Minimum Brightness	1	1	1	XX	X	×	X	X	X	X	X	X	XX
Brightness	1	1	1	XX				СМЕ	[7:0]				00
	0	1	1	XX	1	1	0	1	1	0	1	0	DAh
Read ID1	1	1	1	XX	X	X	X	X	X	X	X	X	XX
	1	1	1	XX			Modu	ıle's Maı	nufactur	e [7:0]			XX
	0	1	1	XX	1	1	0	1	1	0	1	1	DBh
Read ID2	1	1	1	XX	X	×	X	X	X	X	X	X	XX
	1	1	1	XX			LCD Mo	dule / Di	river Ver	sion [7:0)]		XX
	0	1	1	XX	1	1	0	1	1	1	0	0	DCh
Read ID3	1	1	1	XX	X	X	Х	Х	Х	Х	X	X	XX
	1	1	1	XX			LCD I	Module /	Driver I	D [7:0]			XX

Command Function	D/CX	BDX	WRX	D17-8	D7	D6	D5	D4	D3	D2	D1	DO	He
RGB Interface	0	1	1	XX	1	0	1	1	0	0	0	0	BO
Signal Control	1	1	1	XX	ByPass_MODE	RCM	[1:0]	×	VSPL	HSPL	DPL	EPL	40
Frame Control	0	1	1	XX	1	0	1	1	0	0	0	1	B1
	1	1	1	XX	×	X	×	X	X X DIVA		[1:0]	1:0] 00	
(In Normal Mode)	1	1	1	XX	X	X	×		R	TNA [4:0	0]		18
Frame Control (In Idle Mode)	0	1	1	XX	1	0	1	1	0	0	1	0	B2
	1	1	1	XX	×	X	×	X	X	X	DIVB	3 [1:0]	00
	1	1	1	XX	×	X	X		R	TNB [4:0	0]		11
Frame Control	0	1	1	XX	1	0	1	1	0	0	1	1	В3
	1	1	1	XX	X	X	X	X	X	X	DIVO	[1:0]	0
(In Partial Mode)	1	1	1	XX	X	X	X		R	TNC [4:0	0]		11
Diamless Insuranian Control	0	1	1	XX	1	0	1	1	0	1	0	0	B4
Display Inversion Control	1	1	1	XX	X	X	X	×	X	NLA	NLB	NLC	02
	0	1	1	XX	1	0	1	1	0	1	0	1	B5
	1	1	1	XX	0				VFP [6:	0]			0
Blanking Porch Control	1	1	1	XX	0				VBP [6:	:0]			0
	1	1	1	XX	0	0	0			HFP [4:0]		0,
	1	1	†	XX	0	0 0 HBP [4:0]					14		

	0	1	1	XX	1	0	1	1	0	1	1	0	B6h
	1	1	1	XX	X	X	Х	X	PTC	à [1:0]	PT	[1:0]	0A
Display Function Control	1	1	1	XX	REV	GS	SS	SM		18	SC [3:0]		82
	1	1	1	XX	X	X				NL [5:0]			27
	1	1	1	XX	X	X			P	CDIV [5:0	0]		XX
Fata Mada Sat	0	1	1	XX	1	0	1	1	0	1	1	1	B7h
Entry Mode Set	1	1	1	XX	X	X	Х	X	0	GON	DTE	GAS	07
	0	1	1	XX	1	0	1	1	1	0	0	0	B8h
Backlight Control 1	1	1	1	XX	X	X	Х	X	X	X	X	X	XX
	1	1	1	XX	X	X	Х	X		TH	_UI [3:0]		04
	0	1	1	XX	1	0	1	1	1	0	0	1	B9h
Backlight Control 2	1	1	1	XX	X	X	X	X	X	X	X	X	XX
	1	1	1	XX		TH_MV	[3:0]			TH	ST [3:0]		В8
	0	1	1	XX	1	0	1	1	1	0	1	0	BAh
Backlight Control 3	1	1	1	XX	X	X	Х	X	X	X	X	X	XX
	1	1	1	XX	X	X	Х	X		DTI	I_UI [3:0]		04
	0	1	1	XX	1	0	1	1	1	0	1	1	BBh
Backlight Control 4	1	1	1	XX	X	X	Х	X	X	X	X	X	XX
	1	1	1	XX		DTH_M\	MV [3:0] DTH_ST [3:0]						C9
	0	1	1	XX	1	0	1	1	1	1	0	0	BCh
Backlight Control 5	1	1	1	XX	X	X	X	X	X	X	X	X	XX
	1	1	1	XX		DIM2 [3:0]		X		DIM1 [2:	:0]	44
Backlight Control 7	0	1	1	XX	1	0	1	1	1	1	1	0	BEh
Backlight Control 7	1	1	1	XX				PWM	_DIV [7	7:0]			0F
Backlight Control 8	0	1	1	XX	1	0	1	1	1	1	1	1	BFh
Backlight Control 6	1	1	1	XX	X	X	Х	X	X	LEDONR	LEDONPOL	LEDPWMOPL	00
Power Control 1	0	1	1	XX	1	1	0	0	0	0	0	0	C ₀ h
Power Control 1	1	1	1	XX	X	X	VRH [5:0]						26
Power Control 2	0	1	1	XX	1	1	0	0	0	0	0	1	C1h
Power Control 2	1	1	1	XX	X	X	Х	X	X		BT [2:	0]	00
	0	1	1	XX	1	1	0	0	0	1	0	1	C5h
VCOM Control 1	1	1	1	XX	X				VMH	[6:0]			31
	1	1	1	XX	X				VML	[6:0]			3C
VCOM Control 2	0	1	1	XX	1	1	0	0	0	1	1	1	C7h
VOOIVI COITIOI 2	1	1	1	XX	nVM				VMF	[6:0]			C0
	0	1	1	XX	1	1	0	1	0	0	0	0	D0h
NV Memory Write	1	1	1	XX	X	X	X	X	X		GM_ADR	[2:0]	00
	1	1	1	XX				PGM_	DATA [7:0]			XX
	0	1	1	XX	1	1	0	1	0	0	0	1	D1h
NV Memory Protection Key	1	1	1	XX				KEY	[23:16	6]			55
NV Memory Protection Rey	1	1	1	XX				KE	Y [15:8	1			AA
	1	1	1	XX				KE	Y [7:0]				66
	0	1	1	XX	1	1	0	1	0	0	1	0	D2h
NV Mamony Status Dood	1	1	1	XX	X	X	Х	X	X	X	X	X	XX
NV Memory Status Read	1	1	1	XX	X	ID2	_CNT	[2:0]	X	I	D1_CNT [[2:0]	XX
	1	1	1	XX	BUSY	VMF	_CNT	[2:0]	X	ı	D3_CNT	[2:0]	XX

														-
	0	1	1	XX	1	1	0	1	0	0	1	1	D3h	
	1	†	1	XX	X	X	X	X	X	X	X	X	XX	
Read ID4	1	1	1	XX	0	0	0	0	0	0	0	0	00	
	1	1	1	XX	1	0	0	1	0	0	1	1	93	
	1	1	1	XX	0	1	0	0	0	0	0	1	41	
	0	1	1	XX	1	1	1	0	0	0	0	0	E0h	
	1	1	1	xx	X	X	X	X		VP	0 [3:0]		08	
	1	1	1	XX	X	X			VP1 [5	:0]			0E	
	1	1	1	XX	X	X X VP2 [5:0]								
	1	1	1	XX	X	X X X X VP4 [3:0]								
	1	1	1	XX	X	X	X		V	P6 [4	:0]		03	
	1	1	1	XX	X	X	X	X		VP1	13 [3:0]		09	
Positive Gamma	1	1	1	XX	X			VI	P20 [6:0]				47	
Correction	1 1 ↑ XX VP36 [3:0] VP27 [3:0]											86		
	1	1	1	XX	X			VI	P43 [6:0]				2B	
	1	1	1	XX	X	X	X	X		VPS	50 [3:0]		0B	
	1	1	1	XX	X	X	X		VF	957 [4	4:0]		04	
	1	1	1	XX	X	X	X	X		VPS	59 [3:0]		00	
	1	1	1	XX	X	X			VP61 [5	5:0]			00	
	1	1	1	XX	X	X VP62 [5:0]								
	1	1	1	XX	X	X	X	X		VP	63 [3:0]		00	
	0	1	1	XX	1	1	1	0	0	0	0	1	E1h	
	1	1	1	XX	X	X	X	X		VN	0 [3:0]		08	
	1	1	1	XX	X	X			VN1 [5	:0]			1A	
	1	1	1	XX	X	X			VN2 [5	:0]			20	
		1	1	XX	X	X	X	X		VN	4 [3:0]		07	
	1	1	1	XX	X	X	X		VI	N6 [4	:0]		0E	
	1	1	1	XX	X	X	X	X			13 [3:0]		05	
Negative Gamma	1	1	1	XX	X			VI	N20 [6:0]				3A	
Correction	1	1	1	XX		VN36	[3:0]			VN2	27 [3:0]		8A	1
	1	1	1	XX	X			VI	N43 [6:0]				40	
	1	1	1	XX	X	X	X	X		VNS	50 [3:0]		04	
	1	1	1	XX	Х	Х	X		VN	157 [4			18	1
	1	1	1	XX	Х	Х	X	X		VNS	59 [3:0]		0F	1
	1	1	1	XX	Х	Х			VN61 [5				3F	1
	1	1	1	XX	X	Х			VN62 [5				3F	1
	1	1	1	xx	Х	Х	X	X			63 [3:0]		0F	1
Digital Gamma Control 1	0	1	1	xx	1	1	1	0	0	0	1	0	E2h	1
1 st Parameter	1	1	1	XX		RCA0	[3:0]			BC	A0 [3:0]		XX	1
:	1	1	1	XX		RCAx	[3:0]			BC	Ax [3:0]		XX	1
16 th Parameter	1	1	1	xx		RCA15					15 [3:0]		XX	1
Digital Gamma Control 2	0	1	1	XX	1	1	1	0	0	0	1	1	E3h	1
1 st Parameter	1	1	1	XX		RFA0					A0 [3:0]		XX	1
:	1	1	1	XX	RFAx [3:0] BFAx [3:0]								XX	1
64th Parameter	1	1	†	XX		RFA63					63 [3:0]		XX	1-
	0	1	1	XX	1	1	1	1	0	1	1	0	F6h	1
	1	1	1	XX	MY_EOR	MX_EOR	MV_EOR	×	BGR_EOR	x	×	WEMODE	01	1
Interface Control	1	1	+	XX	X	X	EPF [X	X		T [1:0]	00	1
	1	1	+	XX	X	X	ENDIAN	X	DM [1:		RM	RIM	00	1
		•		m	^		ENDIAN	_^	DIVI [1.	~]				ı

Initialization for the LT24 through IL9341 (1)

```
void LCD_Init()
          alt_u16 data1,data2;
          alt u16 data3,data4;
          Set_LCD_RST;
          Delay_Ms(1);
          CIr_LCD_RST;
          Delay_Ms(10);
                           // Delay 10ms // This delay time is necessary
          Set_LCD_RST;
          Delay_Ms(120);
                           // Delay 120 ms
//
          Clr_LCD_CS;
          LCD_WR_REG(0x0011); //Exit Sleep
          LCD_WR_REG(0x00CF);
                                             // Power Control B
                           LCD_WR_DATA(0x0000);
                                                              // Always 0x00
                           LCD_WR_DATA(0x0081);
                           LCD_WR_DATA(0X00c0);
          LCD_WR_REG(0x00ED);
                                             // Power on sequence control
                            LCD_WR_DATA(0x0064); // Soft Start Keep 1 frame
                            LCD_WR_DATA(0x0003); //
                            LCD_WR_DATA(0X0012);
                           LCD_WR_DATA(0X0081);
          LCD_WR_REG(0x00E8); // Driver timing control A
                           LCD_WR_DATA(0x0085);
                           LCD_WR_DATA(0x0001);
                            LCD_WR_DATA(0x00798);
```

Initialization for the LT24 through IL9341 (2)

```
LCD_WR_REG(0x00CB); // Power control A
                LCD_WR_DATA(0x0039);
                LCD_WR_DATA(0x002C);
                LCD WR DATA(0x0000);
                LCD_WR_DATA(0x0034);
                LCD_WR_DATA(0x0002);
LCD_WR_REG(0x00F7); // Pump ratio control
                LCD_WR_DATA(0x0020);
LCD_WR_REG(0x00EA); // Driver timing control B
                LCD_WR_DATA(0x0000);
                LCD_WR_DATA(0x0000);
LCD_WR_REG(0x00B1); // Frame Control (In Normal Mode)
                LCD WR DATA(0x0000);
                LCD_WR_DATA(0x001b);
LCD_WR_REG(0x00B6); // Display Function Control
                LCD_WR_DATA(0x000A);
                LCD_WR_DATA(0x00A2);
LCD_WR_REG(0x00C0); //Power control 1
                LCD_WR_DATA(0x0005); //VRH[5:0]
LCD_WR_REG(0x00C1); //Power control 2
                LCD_WR_DATA(0x0011); //SAP[2:0];BT[3:0]
LCD_WR_REG(0x00C5); //VCM control 1
                LCD WR DATA(0x0045);
                                         //3F
                LCD_WR_DATA(0x0045);
                                         //3C
```

Initialization for the LT24 through IL9341 (3)

```
LCD_WR_REG(0x00C7); //VCM control 2
                LCD_WR_DATA(0X00a2);
LCD_WR_REG(0x0036); // Memory Access Control
                LCD_WR_DATA(0x0008);// BGR order
LCD_WR_REG(0x00F2); // Enable 3G
                LCD_WR_DATA(0x0000); // 3Gamma Function Disable
LCD_WR_REG(0x0026); // Gamma Set
                LCD_WR_DATA(0x0001); // Gamma curve selected
LCD_WR_REG(0x00E0); // Positive Gamma Correction, Set Gamma
                LCD_WR_DATA(0x000F);
                LCD_WR_DATA(0x0026);
                LCD_WR_DATA(0x0024);
                LCD_WR_DATA(0x000b);
                LCD_WR_DATA(0x000E);
                LCD_WR_DATA(0x0008);
                LCD_WR_DATA(0x004b);
                LCD_WR_DATA(0X00a8);
                LCD_WR_DATA(0x003b);
                LCD_WR_DATA(0x000a);
                LCD_WR_DATA(0x0014);
                LCD_WR_DATA(0x0006);
                LCD_WR_DATA(0x0010);
                LCD_WR_DATA(0x0009);
                LCD_WR_DATA(0x0000);
```

Initialization for the LT24 through IL9341 (4)

```
LCD_WR_REG(0X00E1); //Negative Gamma Correction, Set Gamma
                LCD_WR_DATA(0x0000);
                LCD_WR_DATA(0x001c);
                LCD_WR_DATA(0x0020);
                LCD_WR_DATA(0x0004);
                LCD_WR_DATA(0x0010);
                LCD_WR_DATA(0x0008);
               LCD_WR_DATA(0x0034);
                LCD_WR_DATA(0x0047);
                LCD_WR_DATA(0x0044);
                LCD_WR_DATA(0x0005);
                LCD_WR_DATA(0x000b);
                LCD_WR_DATA(0x0009);
                LCD_WR_DATA(0x002f);
                LCD_WR_DATA(0x0036);
                LCD_WR_DATA(0x000f);
LCD_WR_REG(0x002A); // Column Address Set
                LCD_WR_DATA(0x0000);
                LCD_WR_DATA(0x0000);
                LCD_WR_DATA(0x0000);
                LCD_WR_DATA(0x00ef);
LCD_WR_REG(0x002B); // Page Address Set
               LCD_WR_DATA(0x0000);
                LCD_WR_DATA(0x0000);
               LCD_WR_DATA(0x0001);
               LCD_WR_DATA(0x003f);
LCD_WR_REG(0x003A); // COLMOD: Pixel Format Set
               LCD_WR_DATA(0x0055);
```

Initialization for the LT24 through IL9341 (5)

```
    LCD_WR_REG(0x00f6); // Interface Control
    LCD_WR_DATA(0x0001);
    LCD_WR_DATA(0x0030);
    LCD_WR_DATA(0x00000);
    LCD_WR_REG(0x0029); //display on
    LCD_WR_REG(0x002c); // 0x2C
```

Camera interface Ex: TRDB-D5M (Terasic)

From: TRDB-D5M_Hardware Specification

Camera Pixels organisation (TRDB-D5M)

Camera basic Timing (TRDB-D5M)

- A 5Mpixels camera with 12 bits RGB
- 2592 x 1944 active rows from a
- 2752 x 2004 matrix
- Bayer colors Green1 Red / Blue Green2

Camera basic Timing (TRDB-D5M)

Camera basic Timing (TRDB-D5M), Clock details

^t CP	XCLKIN to PIXCLK propagation delay	Nominal voltages	11.5	17.7	19.1	ns
^f PIXCLK	PIXCLK frequency	Default	6	_	96	MHz
^t PD	PIXCLK to data valid	Default	0.6	1.2	2.2	ns
^t PFH	PIXCLK to FV HIGH	Default	2.8	3.6	4.6	ns
^t PLH	PIXCLK to LV HIGH	Default	2.2	3.2	4.2	ns
^t PFL	PIXCLK to FV LOW	Default	2.4	3.4	4.2	ns
^t PLL	PIXCLK to LV LOW	Default	2.6	3.4	4.2	ns
CLOAD	Output load capacitance		_	<10	_	pF
CIN	Input pin capacitance		_	2.5	_	pF

Camera basic Timing (TRDB-D5M)

Parameter	Name	Equation	Default Timing at EXTCLK = 96 MHz
fps	Frame Rate	1/tFRAME	15
^t FRAME	Frame Time	(H + max(∨B, ∨BMIN)) × tROW	66ms
^t ROW	Row Time	2 × tPIXCLK x max(((W/2) + max(HB, HBMIN)), (41 + 208 x (Row_Bin+1) + 99))	33.5µs
W	Output Image Width	2 × ceil((Column_Size + 1) / (2 × (Column_Skip + 1)))	2592 PIXCLK
Н	Output Image Height	2 × ceil((Row_Size + 1) / (2 × (Row_Skip + 1)))	1944 rows
SW	Shutter Width	max(1, (2*16 × Shutter_Width_Upper) + Shutter_Width_Lower)	1943 rows
НВ	Horizontal Blanking	Horizontal_Blank + 1	1 PIXCLK
VB	Vertical Blanking	Vertical_Blank + 1	26 rows
HBMIN	Minimum Horizontal Blanking	208 × (Row_Bin + 1) + 64 + (WDC/2)	312 PIXCLK
VBMIN	Minimum Vertical Blanking	max(8, SW - H) + 1	9 rows
^t PIXCLK	Pixclk Period	1/fPIXCLK	10.42ns

Camera Standard Resolution (TRDB-D5M)

Resolution	Frame Rate	Sub- sampling Mode	Column _Size (R0x04)	Row_Size (R0x03)	Shutter_ Width_ Lower (R0x09)	Row_Bin (R0x22 [5:4])	Row_Skip (R0x22 [2:0])	Column _Bin (R0x23 [5:4])	Column _Skip (R0x23 [2:0])
2592 x 1944 (Full Resolution)	15.15	N/A	2591	1943	<1943	0	0	0	0
2,048 x 1,536 QXGA	23	N/A	2047	1535	<1535	0	0	0	0
1,600 x 1,200 UXGA	35.2	N/A	1599	1199	<1199	0	0	0	0
4 200 4 024	48	N/A	1279	1023	<1023	0	0	0	0
1,280 x 1,024 SXGA	48	skipping	2559	2047		0	1	0	1
SAGA	40.1	binning	2559	2047		1	1	1	1
1 024 × 760	73.4	N/A	1023	767	<767	0	0	0	0
1,024 x 768 XGA	73.4	skipping	2047	1535		0	1	0	1
AGA	59.7	binning	2047	1535		1	1	1	1
000 × 600	107.7	N/A	799	599	<599	0	0	0	0
800 x 600 SVGA	107.7	skipping	1599	1199		0	1	0	1
SVGA	85.2	binning	1599	1199		1	1	1	1
640 × 400	150	N/A	639	479	<479	0	0	0	0
640 x 480	150	skipping	2559	1919		0	3	0	3
VGA	77.4	binning	2559	1919		3	3	3	3

FPGA architecture

Camera Controller architecture

Camera Interface, signals on Avalon Master

- As a master, burst access allows the transfer of uninterruptable data flow
- The BurstCount is provided by the master unit and the number of announced data has to be provided

Camera Interface, signals

Camera interface :

Mclk
 HSync
 VSync
 Cam_HSync
 Cam_VSync
 Cam_data[7..0]
 Cam_data[7..0]
 Cam Reset n

Slave interface → interface programmation

> Clk Clk

Address AS_Address[2..0]

CSelect AS_Cs_nWrite AS_Write_n

DataWrite[31..0]
AS Datawr[31..0]

Read AS Read n

DataRead[31..0] AS_Datard[31..0]

InterruptRequest AS_IRQ_n

Master interface → Data transfers to memory :

> Clk Clk

Address [31..0] AM_Address[31..0]

ByteEnable_n[3..0] AM_ByteEnable_n[3..0]

BurstCount AM_BurstCount[2..0]

Write AM_Write_n

DataWrite[31..0] AM_Datawr[31..0]

WaitRequest AM_WaitRequest

Camera Interface, slave access: internal registers

Addr ess	Register	Rz value	Size	Description
00h	CamAddr	0h	32	Destination Address
04h	CamLength	128*101	24	Buffer size in bytes
08h	CamComm	00h	8	Command
0Ch	CamStatus	00h	8	Status
10h	CamStart	0	8	Acquisition enabled
14h	CamStop	0	8	Stop acquisition
18h	CamSnapshot	0	8	Snapshot, activate VSync

Camera Registers (TRDB-D5M)

- 256 internal registers available through i2c
- ~40 used
- Clock programming
- Frame programming

I²c (TRDB-D5M)

- I2c transfers
- Addresses:
 - >0xBA: write '1011 1010'
 - >0xBB: read '1011 1011'
- 400 kHz
- Register Address on 8 bits

Camera to work (TRDB-D5M), External Clk mode

- Activate Reset_n
- Power On
- Desactivate Reset_n
- External Clock provided
 - XClkIn: 6 .. 96 MHz Clock to be provided
 - >fPixClk = fXClkIn if Divide_Pixel_Clock =0
 - FPixClk = fXClkIn/(2 x Divide_Pixel_Clock)

Camera to work (TRDB-D5M), PLL mode

- PLL pixel clk generation
- fXClkIn: 6MHz .. 27MHz
- Power PLL
- Set M, N, P1

 fPIXCLK = (fXCLKIN × M)/(N × P1)

The PLL control registers must be programmed while the sensor is in the software Standby state. The effect of programming the PLL divisors while the sensor is in the streaming state is UNDEFINED.

Camera to work (TRDB-D5M), PLL mode

- PLL pixel clk generation
- fXClkln: 6MHz .. 27MHz
- Power PLL
- Set M, N, P1
 fpixclk = (fxclkin × M)/(N × P1)
- 2 MHz < fXClkIn/N < 13.5 MHz
- 180 MHz < (fXClkIn * M) / N < 360 MHz
- M: 16..255
- Use_PLL (Reg0x10[1] = 1) from XClkIn to PLL mode

Camera to work (TRDB-D5M), Skipping

Skipping of line/column

Camera to work (TRDB-D5M), Binning

Binning of line/column

Figure 3.7: Pixel Readout (Column Bin 2X)

Figure 3.8: Pixel Readout (Column Bin 2X, Row Bin 2X)

DE0-nano / Camera Module pinning

Camera Interface, signals

• Car	mera interface :		Dir, FPGA view
>	Pixel_Clk	PixClk	In (from Camera to FPGA)
>	LineValid	Cam_Lval	In
>	FrameValid	Cam_Fval	In
>	CamData[110]	Cam_data[110]	In
>	CamReset_n	Cam_Reset_n	Out
>	Strobe		In
>	Trigger		Out
>	XCLKIN		Out
01			
	ve interface → interface prog		
	_	Clk	In
>	Address	AS_Address[20]	In
>	CSelect	AS_Cs_n	In
	Write	AS_Write_n	In
>	DataWrite[310]	AS_DataWr[310]	In
>	Read	AS_Read_n	In
>	DataRead[310]	AS_DataRd[310]	Out
>	InterruptRequest	AS_IRQ_n	Out
• Ma	ster interface → Data transfe	rs to memory:	
	Clk	Clk	In
	_		
>	Address [310]	AM_Address[310]	Out
>	ByteEnable_n[30]	AM_ByteEnable_n[30]	Out
>	BurstCount	AM_BurstCount[20]	Out
>	Write	AM_Write_n	Out
>	DataWrite[310]	AM_DataWr[310]	Out
>	WaitRequest	_AM_WaitRequest	In

Camera Interface, signals on Avalon Master

- As a master, burst access allows the transfer of uninterruptable data flow
- The BurstCount is provided by the master unit and the number of announced data has to be provided

Another LCD: TX-07 Another Protocol

TX07- Interface with TFT-LCD

- This kind of LCD is controlled by a parallel data flow: RGB digital intensity
- It's synchronized at Frame level with Vertical Synchronization : VSync
- It's synchronized at Line level with Horizontal Synchronization : HSync
- It's synchronized by a Clock at pixel level:
 DotClk

TX07 TFT_LCD

Interface with TFT-LCD

- Some Voltage need to be generated for the LCD:
 - > VGH/VGL @+/- 15V for internals +13V/-5V
 - **≻Vcc** @ 3V
 - **≻VDH @ 5V**
 - >VCOM @ ~2.2V
- A DotClk @ 5 ~12 MHz

TX07 Synchronization

TX07 Synchronization

	SYMBOL	MIN.	TYP.	MAX.	UNIT
Back porch for Horizontal	HBP		12	-	Clock
Front porch for Horizontal	HFP	15 .	18 Note(1)	21	Clock
Back porch for Vertical	VBP	-	8 Note(3)	=	HSYNC
Front porch for Vertical	VFP	17	(20) Note(2)	22	HSYNC

Note(1): (DOTCLK total) - ((Valid data period for Horizontal) + (HBP))

(2): (HSYNC total) - ((Active Area period) + VBP)

Extension for FPGA4U

- An extension board for FPGA4U allows connection of 2 different LCD from Hitachi:
 - >TX06
 - http://www.hitachi-displays-eu.com/doc/TX06D57VM0AAA.pdf
 - **≻TX07**
 - http://www.hitachi-displays-eu.com/doc/TX07D09VM1CAB.pdf
- And a VGA interface with a DAC
 - http://focus.ti.com/lit/ds/symlink/ths8133b.pdf

ExtLCD for FPGA4U

Avalon Slave, registers

- FBufAdd, Address of the frame buffer to display
- FBLgt, Length of the frame buffer (in pixels number, 240 x 320 by default)
- DisplayCom, Command (Enable display, IRQ at end of Frame, Power Control)
- DisplayStat, Status (Run, EOF (End Of frame))
- HBP (Horizontal Back Porch) (default: 12)
- HFP (Horizontal Front Porch): (default: 18)
- VBP (Vertical Back Porch): (default: 8)
- VFP (Vertical Front Porch): (default: 20)
- HData (Horizontal Data): (default: 240)
- VData (Vertical Data): (default: 320)
- •

Avalon Slave, registers mapping

Add. (Offset)	Name	Reset Val.	Function	Size
0x0	FBAdd	0	Address of the frame buffer to display	32
0x1	FBLgt	240 x 320	Length of the frame buffer in pixels	32
0x2	DisplayCom	0	Command (Start, Stop, IRQ, Power)	8
0x3	DisplayStat	0	Status (Run, EOF (End Of frame))	8
0x4	НВР	12	Horizontal Back Porch (Nb DotClk)	16
0x5	HFP	18	Horizontal Front Porch (Nb DotClk)	16
0x6	VBP	8	Vertical Back Porch (Nb Lines)	16
0x7	VFP	20	Vertical Front Porch (Nb Lines)	16
0x8	HData	240	Horizontal Data (Nb DotClk)	16
0x9	VData	320	Vertical Data (Nb Lines)	16
0xA	HSync	2	Horizontal Sync Length (Nb DotClk)	16
0xB	VSync	7	Vertical Sync Length (Nb Lines)	16
0xC			68	

Power control

- 3 signals allows control of Power on the LCD module. They have to be controlled by the module as 3 Ports bits.
- The DisplayCom register controls them
- StepUp_ON :
 - ➤ Allows internal +5V generation, necessary for VGA and LCD on 45 pins connector
- LED_ON :
 - Allows LED back light ON
- LCD_ON :
 - ➤ Needed for LCD TX07 to work

LCD Controller: LCD Control

- The LCD Control part send the synchronization signals to the LCD:
 - ➤ VSync
 - > HSync
 - ➤ DotClk
 - > RGB (3x6 bits/pixel)
- Read the pixels data from FIFO
- Receive information from Avalon slave part through registers interface
- It contains counters for signals and timing generation
- It's based on a state machine to control them

LCD Controller: FIFO

- Writing of data from the Master interface and reading from LCD control have to be perfectly synchronized
- Read access from SDRAM memory can not be guaranties at pixel level timing
- We have to guaranty that the global data flow is possible and with which delay!
- A FIFO is an excellent way to allow synchronization between 2 asynchronous units

LCD Controller: FIFO

Rules:

- > The Avalon master try to fulfill the FIFO when it can
- > The LCD control unit read it when it needs.
- To be efficient, the Avalon master try to make consecutive reads, thus the SDRAM controller can do burst transfers.
- The FIFO needs to provide an information to the Avalon master module when it has a minimum of empty positions as a multiple of the burst transfers (4, 8, 16, ...).
- The FIFO send information to the LCD Control module when it has at least 1 available pixel data.

Global questions

- Format of the bitmap in memory
- Color organization
- Pixel resolution

Memory ←→ **Display relation**

Memory organization

- Visible area
- Shadow area, not displayed
- →Steps between lines

- Added parameters in registers definition
- Transmitted to the DMA unit for addresses calculations

Memory ←→ **Display relation**

Pixel organization, some choices

- 1 pixel organization:
 - ➤ 18 bits/pixel at LCD
 - ➤ Ex. **32** bits /pixel at memory
 - ➤ RGB or BGR?

Pixel organization, some choices

- 1 pixel organization:
 - ➤ 18 bits/pixel at LCD
 - ➤ Ex. 16 bits /pixel at memory, 2 pixels / 32 bits
 - ➤ RGB or BGR?
 - >5-6-5 bits / doublet: RGB, 2 bits lost

➤ 5-5-5 bits / doublet: RGB, 3 bits lost

Pixel organization

- Many choices
- Need to be done!
- More bits/pixel 18 on 32 bits→
 - > more memory for a frame
 - more bandwidth necessary
 - > more colors available 2¹⁸: 262144
 - Memory space free for other function
- Less bits/pixel (16)
 - ➤ Lost in color resolution 15 bits → 32'768
 - > 16 bits 65'536, more on Green generally