Lecture 11: Finish Alexpoly + obstr. from Donaldson's Hun
- Sorry for cancelling class
- plan for nest of semester:
Today: finish some son obstructions owed from before
Next week: hos special hapies - exotic IR4s - eigh dinns e.g. Zigc>S'.
Last lecture: - Open problems lother directions
- Question session
One last invariant of knots:
Def : KES3 with Serfert surface For genns g,
f with symplectic basis " of ai, biji = 1
ie ai hbj = {Pt i=j ai haj = bi hbj = Ø Vitj
Arf(k) = (-1) · (1) = 1 [sometimes sue regen real!" of a symp basis]
Arf(K):= \(\frac{9}{2}\) lk(ai,ai) lk(bi,bit) mod 2 \(\frac{7}{2}\).
E.g. $loh(J)$ Arf $(wh(J)) = (-1) \cdot (0) = 0 \forall J$
Fact: $\Delta_{\kappa}(t) = 1 \Rightarrow \kappa \text{ alg. slice} \Rightarrow \text{Arf}(\kappa) = 0$
Indeed, $Avf(K)=0 \iff \Delta K(-1)=\pm 1 \mod \theta$
Arf $(K)=1 \iff \Delta_K(-1)\equiv \pm 3 \mod 8$
More generally, Arf defined for quadratic forms cener fields of char 2. [forms, applying to "quadratic nefinement" of the Senfer pairing
Goal: $\Delta_{K}(t) = 1 \implies K TOP stice [Converse not me!]$
Recall from previous lecture [lecture 7, May 16]
compact. "Equivarient intersection 7: H2 (W; METIN)) XH2(W, METIN) oriented & sell in terrection manager."
oriented & sey-intersection numbers" M: H2 (W; 76 frw)) -> 7/[17/M]/graf

```
via therewicz: H2 (M; 7L[π1M]) = π2 (M).
        O-surgery characterisation of sliceness.
KS3 TOP slive iff MK:=S3(K)= DW4 for W compact, on ented
8. +. (i) 76 = H1 (MK) → H1 (W) is an isom.
   (ii) TIN is normally gen- by MK (meridian) ⊆ MK.
   (111) HaW = 0
Sphere embedding tum [Freedman - Quinn '90]
f,g:S^2 \longrightarrow W^4 8.t. \mu(f)=0, \lambda(f,g)=1, ghas minial bundle.
TIN = abelian or finite
Then f is ho motopic to a loc. flat emb. f
    29 is homotopic to an immersion q s.t. f ng = pt.
[ I more general theorems]
Proof sketch Loonger idea of surgerythy approach to building will
Goal: Build WS.F. DW=MK, W=S1.
Step 1: Build V4s.t. dV= Mk s.t. Vspin
                                              i.e. w, (V) = 0 = w, (V)
                                              equer. tangent bundk
mirial oner 2-skelet
             D^2 \times D^2
             DD2XD2
                         F:= Serfertsonface, genus q
                         F1:= Serfert surfaceF, intrior pushed in nadially
        ve O-framing
                         F := F TU Dxo
  X0(K)
Note: 2XO(K)
Define V:= (Xo(K) \ vê) U (Ha xs1)
                                  genusg handlebody
fact: Arf(K)=0 => V spin
Compute: T1(V) ≥ 7L«MK ⊆MK».
        H1(MK; 7/2[7/2])=0 ⇒ equivariant int form on V is
```

runsingular

i-e. After poly = 1

Consider $(\pi_2(V), \lambda, \mu) \in L_4(\Pi[\Pi])$
the L-group of "non-singular quadrate forms",
i.e. I sesquilinear, Hermitian, unsing bitinear form p quadratic form.
Considered modulo hyperbolic forms ie of the form A[0]
fact: L4 (M[M]) well-undersbod
=876, generated by Es form "[see part 2]
fact: I closed, TOP 4-mfld E with (The E, DEME) = E& form.
Step 2: Construct V':= V # ±n E S.F. (TZV', AV', My) = O & L4(7/1/4)
Step 3: Construct V':= V#±nE S.t. (TZV', AV', MV')=OE L4(TLT) Step 3: Construct W using surgery.
(T2V', NVI, MVI) =0 € Ly(TL[TL]) => int form is (01)
In the vicest case: $\exists f,g:S^2 \rightarrow V'S.F. \lambda(f,g)=1$
V'spin => f, g minial normal bundle,
$\mu(f) = 0 = \mu(j)$
Sphere embedding $t_{1m} \Rightarrow \exists \bar{f}, \bar{g} \text{ s.t. } \bar{f} : s^2 \longrightarrow V'$ $\bar{f} \land \bar{g} = pt.$
Let $W := V' \setminus (f \times D^2) \cup (D^3 \times S^1)$
Check: $\overline{i}_{2}W = 0$, $\overline{i}_{1}W = 7L$, and $MK \longrightarrow S$
Corollary: Loh (RHT) is TOP slice.

	5+1(K)= 0W S.	t. W congaet, e :) = DE		
s.t. Econ	rpact, oriente	2d, & E∪- Z ₂ (k	() [e	ς₹(κ) Σψω
has nonst	andard pos.	definite inters	ection form	~ .
	E -V) QEUV # r	√+1) ×	
T-y			sm. elice.	
The precise	defails of the fo			
(_v		[following Aki		
	☐ Z2 (Wh(RHT	$S_{\frac{1}{2}}^{3}(RHT)$	#~ RHT)	
(+1)	$S_{1/2}^{3}(RHT)$	RHT #~R	HT > RH	7
	- 31, (KIII)		10 - cr.ch	auge
		Si (K) > Si	(K) YK	
(41)		Sin (K) > Sin	uology sphe	ne .
(+1)	$\int_{-\infty}^{3} S_{1}^{3}(RHT) =$	Si (K) > Si	uology sphe	ne .
(41)	$\int_{-\infty}^{3} S_{1}^{3}(RHT) =$	Si (K) > Si	uology sphe	Me .
(+1) Eg- plund	$\int_{-\infty}^{3} S_{1}^{3}(RHT) =$	Poincavé luon	wology sphe	ne .