CONTRASTES DE HIPÓTESIS PARAMÉTRICOS

H_0	Estadística Utilizada	Distribución en el Muestreo	\mathbf{H}_1	Región Crítica
$\mu \ge \mu_0$ $\mu \le \mu_0$ $\mu = \mu_0$	$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$ $\sigma^2 \text{ conocida}$	N(0,1)	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$z < -z_{\alpha}$ $z > z_{\alpha}$ $z < -z_{\alpha/2}$ y $z > z_{\alpha/2}$
$\mu \ge \mu_0$ $\mu \le \mu_0$ $\mu = \mu_0$	$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$ $\sigma^2 \text{ desconocida}$	t_{v} $v = (n-1)$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$t < -t_{\alpha}$ $t > t_{\alpha}$ $t < -t_{\alpha/2} y t > t_{\alpha/2}$
$\mu_{1} - \mu_{2} \ge d_{0}$ $\mu_{1} - \mu_{2} \le d_{0}$ $\mu_{1} - \mu_{2} = d_{0}$	$z = \frac{(\overline{x_1} - \overline{x_2}) - d_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sigma_1^2, \sigma_2^2 \text{ conocidas}$ muestras indep.(n ₁ ,n ₂)	N(0,1)	μ_1 - μ_2 < d_0 μ_1 - μ_2 > d_0 μ_1 - μ_2 ≠ d_0	$z < -z_{\alpha}$ $z > z_{\alpha}$ $z < -z_{\alpha/2} y z > z_{\alpha/2}$

$\mu_{1}-\mu_{2} \ge d_{0}$ $\mu_{1}-\mu_{2} \le d_{0}$ $\mu_{1}-\mu_{2} = d_{0}$	$t = \frac{(x_1 - x_2) - d_0}{S_p \sqrt{\frac{I}{n_1} + \frac{I}{n_2}}}$ $\sigma_1^2, \sigma_2^2 \text{ desconocidas}$ $\sigma_1^2 = \sigma_2^2$ $\text{muestras indep.}(n_1, n_2)$	t_{v} $v = (n_{1}+n_{2}-2)$ $S_{p}^{2} = \frac{(n_{1}-1) S_{1}^{2} + (n_{2}-1) S_{2}^{2}}{n_{1}+n_{2}-2}$	μ_{1} - μ_{2} < d_{0} μ_{1} - μ_{2} > d_{0} μ_{1} - μ_{2} \neq d_{0}	$t < -t_{\alpha}$ $t > t_{\alpha}$ $t < -t_{\alpha/2} y t > t_{\alpha/2}$
$\mu_{1} - \mu_{2} \ge d_{0}$ $\mu_{1} - \mu_{2} \le d_{0}$ $\mu_{1} - \mu_{2} = d_{0}$	$t = \frac{(\overline{x_1} - \overline{x_2}) - d_0}{\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}}$ $\sigma_1^2, \sigma_2^2 \text{ desconocidas}$ $\sigma_1^2 \neq \sigma_2^2$ muestras indep.(n ₁ ,n ₂)	$v = \frac{\left(\frac{S_{1}^{2} + S_{2}^{2}}{n_{1}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\frac{n_{2} - 1}{n_{2} - 1}}$ Aprox. de Welch	$ \mu_{1}-\mu_{2} < d_{0} $ $ \mu_{1}-\mu_{2} > d_{0} $ $ \mu_{1}-\mu_{2} \neq d_{0} $	$t < -t_{\alpha}$ $t > t_{\alpha}$ $t < -t_{\alpha/2} y t > t_{\alpha/2}$
$\mu_{1} - \mu_{2} \ge d_{0}$ $\mu_{1} - \mu_{2} \le d_{0}$ $\mu_{1} - \mu_{2} = d_{0}$	$t = \frac{\overline{d} - d_0}{\frac{S_d}{\sqrt{n}}}$ $\sigma_1^2, \sigma_2^2 \text{ desconocidas datos emparejados (n)}$ $d_i = x_i - y_i$	t_{v} $v = (n-1)$	μ_{1} - μ_{2} $<$ d_{0} μ_{1} - μ_{2} $>$ d_{0} μ_{1} - μ_{2} \neq d_{0}	$t < -t_{\alpha}$ $t > t_{\alpha}$ $t < -t_{\alpha/2}$ y $t > t_{\alpha/2}$

$\sigma^2 \ge \sigma_0^2$		2	$\sigma^2 < \sigma_0^2$	$x^2 < \chi^2_{(1-\alpha)}$
$\sigma^2 \leq \sigma_0^2$	$X^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2_{\rm v}$	$\sigma^2 > \sigma_0^2$	$x^2 > \chi^2_{\alpha}$
$\sigma^2 = \sigma_0^2$		v = (n-1)	$\sigma^2 \neq \sigma_0^2$	$x^2 < \chi^2_{(1-\alpha/2)}$ y $x^2 > \chi^2_{\alpha/2}$
$\sigma_1^2 \ge \sigma_2^2$	$F = \frac{S_1^2}{S_2^2}$	-	$\sigma_1^2 < \sigma_2^2$	$f < F_{(1-\alpha)}$
	S_2^2 muestras independientes	$F_{v1,v2}$ $v_1 = (n_1 - 1)$	$\sigma_1^2 > \sigma_2^2$	$f > F_{\alpha}$
$\sigma_1^2 = \sigma_2^2$		$v_1 = (n_1 - 1)$ $v_2 = (n_2 - 1)$	$\sigma_1^2 \neq \sigma_2^2$	$f < F_{(1-\alpha/2)}$ y $f > F_{\alpha/2}$
$p \ge p_0$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(I - \hat{p})}{n}}}$		$p < p_0$	$z < -z_{\alpha}$
$p \le p_0$	$ \begin{array}{c c} & n \\ & \text{para n} \ge 30 \end{array} $	N(0,1)	$p > p_0$	$z > z_{\alpha}$
$p = p_0$			$p \neq p_0$	$z < -z_{\alpha/2}$ y $z > z_{\alpha/2}$
$p_1 - p_2 \ge d_0$	$z = \frac{(\hat{p}_1 - \hat{p}_2) - d_0}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n}}}$	21(0.1)	$p_1-p_2 < d_0$	$z < -z_{\alpha}$
	n_1 n_2 muestras independientes	N(0,1)	$p_1-p_2>d_0$	$z > z_{\alpha}$
$p_1-p_2=d_0$	-		$p_1-p_2 \neq d_0$	$z < -z_{\alpha/2}$ y $z > z_{\alpha/2}$