NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U.S. space program, to encourage their commercial application. Copies are available to the public at 15 cents each from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Honeycomb Seal Backing Ring Increases Turbopump Disk Life

The problem:

In a certain fluid fuel turbopump application, the first stage turbine disk of the curvic drive configuration has experienced cracking due to shaft and wheel vibration.

The solution:

Installation of a thin (0.030-inch) relatively rigid metal backing ring to the stationary homeycomb seal.

The backing ring, being thermally compatible with the turbopump environment, and providing closer operating clearance between the turbine blade tip seal lands and the stationary honeycomb seal face, imposes a useful combination of aerodynamic and friction damping.

Notes:

1. First-stage disk cracking has been eliminated, by this modification, for the operating life of the fuel turbopump.

(continued overleaf)

2. Inquiries concerning this innovation may be directed to:

Technology Utilization Officer Marshall Space Flight Center Huntsville, Alabama 35812 Reference: B67-10607

Patent status:

No patent action is contemplated by NASA.

Source: W. S. Brooks and E. W. Larson of North American Aviation, Inc. under contract to Marshall Space Flight Center (MFS-13303)

Category 05