1. Table 1: Lattice parameters of Fe, CsCl, NaCl, diamond, and Si

Name	a (Å)	b (Å)	c (Å)	Alpha	Beta	Gamma	Crystal
Fe	2.8664	2.8664	2.8664	90.000 0	90.000 0	90.000 0	8 8
CsCl	4.1230	4.1230	4.1230	90.000 0	90.000 0	90.000 0	
NaCl	5.6200	5.6200	5.6200	90.000 0	90.000 0	90.000 0	
Diamond	3.5560	3.5560	3.5560	90.000 0	90.000 0	90.000 0	
Si	5.4300	5.4300	5.4300	90.000 0	90.000 0	90.000 0	

2. C6H6 molecule (Benzene)

a. Code (Python)

```
#Generate Benzene.xyz file
import math
from math import cos
from math import sin
theta = range(0, 360, 60)
r CC = 1.39000
r_H = r_CC + 1.09000
print("12")
print("Benzene")
for x in theta:
   C_x = r_CC * cos(math.radians(x))
   C_y = r_CC * sin(math.radians(x))
    C z = 0.00000
   H_x = r_H * cos(math.radians(x))
   H_y = r_H * sin(math.radians(x))
    H_z = 0.00000
   C = [C_x, C_y, C_z]
    H = [H_x, H_y, H_z]
    print("C", str((C[0])), str(C[1]), str(C[2]))
    print("H", str(H[0]), str(H[1]), str(H[2]))
```

b. .xyz file

12

Benzene

C 1.39 0.0 0.0

H 2.48 0.0 0.0

C 0.6950000000000001 1.2037753112603695 0.0

H 1.240000000000000 2.1477430013854075 0.0

C -0.694999999999999 1.2037753112603697 0.0

H -1.23999999999999 2.147743001385408 0.0

C -1.39 1.702259050814821e-16 0.0

H -2.48 3.037124061885436e-16 0.0

C -0.6950000000000000 -1.2037753112603695 0.0

H -1.240000000000001 -2.1477430013854075 0.0

C 0.6950000000000001 -1.2037753112603695 0.0

H 1.240000000000000 -2.1477430013854075 0.0

c. .vasp file

Benzene

1.0

6.1999998093 0.0000000000

0.0000000000

0.0000000000 6.1999998093

0.0000000000

0.0000000000 0.0000000000

6.1999998093

C H

6 6

Cartesian

4.490000014	3.099999905	3.099999905
3.794999960	4.303775142	3.099999905
2.404999850	4.303775142	3.099999905
1.709999795	3.099999905	3.099999905
2.404999850	1.896224667	3.099999905
3.794999960	1.896224667	3.099999905
5.579999681	3.099999905	3.099999905
4.339999793	5.247742801	3.099999905
1.860000017	5.247742801	3.099999905
0.619999944	3.099999905	3.099999905
1.860000017	0.952257008	3.099999905
4.339999793	0.952257008	3.099999905

d. Visualized molecule structure

