2017-09-19

- Solving a linear system Ax = b with **Gaussian elimination** involves **forward elimination** and **back substitution**.
- By definition, pivots *cannot* be zero.
- Under what circumstances could the process break down?
 - Something must go wrong in the singular case.
 - Something might go wrong in the nonsingular case.
 - We do not know whether a zero will appear until we try, by actually going through the elimination process.
- The cost of elimination:
 - One operation: one division/multiplication-subtraction.
 - Forward elimination on LHS: $\sum_{k=1}^{n} k^2 k = \frac{n^3 n}{3}$
 - Forward elimination on RHS: $(n-1) + (n-2) + ... + 1 = \frac{n^2 n}{2}$
 - Back substitution: $n + (n-1) + ... + 1 = \frac{n^2 + n}{2}$
 - Total operations: $\frac{n^3-n}{3} + \frac{n^2-n}{2} + \frac{n^2+n}{2} \sim O(n^3)$
 - There now exists a method that requires only $O(n^{\log_2 7})$ multiplications!
- Matrix notation:
 - Ax = b: A (coefficients), x (unknowns), and b (RHS).
 - $A \in \mathbb{R}^{m \times n}$: $m \times n$ is called the **dimension (size)** of A.
- Matrix arithmetics:
 - Addition: Suppose $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$. $A + B = (a_{ij} + b_{ij})_{m \times n}$.
 - Multiplication: Suppose $A=(a_{ij})_{m\times n}$, $B=(b_{ij})_{n\times p}$. $AB=(c_{ij})_{m\times p}$, where $c_{ij}=\sum_{k=1}^n a_{ik}b_{kj}$.
 - Scalar multiplication: Suppose $A = (a_{ij})_{m \times n}$. $\alpha A = (\alpha a_{ij})_{m \times n}$
- Elementary matrix (elimination matrix):
 - The elementary matrix E_{ij} subtracts l times row j from row i. This E_{ij} includes -l in row i, column j.
 - Gaussian elimination is essentially a series of E(Ax) = Eb.
- Different ways to look at matrix multiplication:
 - Each entry of AB is the product of a row and a column: $(AB)_{ij} = (\text{row } i \text{ of } A) \text{ times } (\text{column } j \text{ of } B)$.
 - Each column of AB is the product of a matrix and a column: column j of AB = A times (column j of B).
 - Each row of AB is the product of a row and a matrix: row i of AB = (row i of A) times B.

- ullet Matrix multiplication is associative, distributive, but *not* commutative.
- $\bullet\,$ The product of lower triangular matrices is lower triangular.