SSD1607

Product Preview

Active Matrix EPD 200 x 300 Display Driver with Controller

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.

Appendix: IC Revision history of SSD1607 Specification

Revision	Change Items	Effective Date
0.10	Product Preview Release	06-Sep-12
0.20	Revised Command Table	12-Sep-12

 SSD1607
 Rev 0.20
 P 2/59
 Sep 2012
 Solomon Systech

CONTENTS

1	GENERAL DESCRIPTION	6
2	FEATURES	6
3	ORDERING INFORMATION	7
4	BLOCK DIAGRAM	7
	DIE PAD FLOOR PLAN	
	PIN DESCRIPTION	
	FUNCTIONAL BLOCK DESCRIPTION	
7.		
,.	7.1.1 MCU Interface selection	
	7.1.2 MCU 6800-series Parallel Interface	
	7.1.3 MCU 8080-series Parallel Interface	
	7.1.4 MCU Serial Peripheral Interface (4-wire SPI)	
7	7.1.5 MCU Serial Peripheral Interface (3-wire SPI)	
7. 7.		
7.		
7.		24
7.		25
7.		
7.		
7.		
	7.9.1 Temperature Searching Mechanism	
	.10 EXTERNAL TEMPERATURE SENSOR I2C SINGLE MASTER INTERFACE	
7. 8	11 CASCADE MODE COMMAND TABLE	
9	COMMAND DESCRIPTION	41
9.	.1 Driver Output Control (01h)	41
9.		
9.		
9.	· ,	
9.	· /	
9.	.6 SET RAM ADDRESS COUNTER (4EH-4FH)	45
10	TYPICAL OPERATING SEQUENCE	46
10	0.1 Normal Display	46
	0.2 VCOM OTP Program	
	0.3 WS OTP PROGRAM	
11	ABSOLUTE MAXIMUM RATING	
12	ELECTRICAL CHARACTERISTICS	
13	AC CHARACTERISTICS	
	3.1 OSCILLATOR FREQUENCY	
	3.2 INTERFACE TIMING	
	13.2.1 MCU 8000-Series Parallel Interface	
	13.2.2 MCU 8080-Series Parallel Interface	54

	13.2.3	Serial Peripheral Interface	33
14	APP	PLICATION CIRCUIT	56

SSD1607 Rev 0.20 P 4/59 Sep 2012 **Solomon Systech**

TABLES

TABLE 3-1 : URDERING INFORMATION	
TABLE 5-1: SSD1607Z BUMP DIE PAD COORDINATES	9
Table 6-1: MCU interface selection	
TABLE 7-1: MCU INTERFACE SELECTION BY BS0 AND BS1	
TABLE 7-2: MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE	16
Table 7-3: Control pins of 6800 interface	
Table 7-4: Control pins of 8080 interface (Form 1)	18
Table 7-5: Control pins of 8080 interface (Form 2)	
Table 7-6: Control pins of 4-wire Serial Peripheral interface	
TABLE 7-7: CONTROL PINS OF 3-WIRE SERIAL PERIPHERAL INTERFACE	21
Table 7-8: RAM address map	
TABLE 8-1: COMMAND TABLE	
TABLE 11-1: MAXIMUM RATINGS	
Table 12-1: DC Characteristics	
Table 12-2: Regulators Characteristics	
TABLE 13-1: OSCILLATOR FREQUENCY	52
Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics	53
Table 13-3: MCU 8080-Series Parallel Interface Timing Characteristics	
TABLE 13-4: SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS	55
TABLE 14-1: REFERENCE COMPONENT VALUE	58
FIGURES	
FIGURE 4-1: SSD1607 BLOCK DIAGRAM	7
FIGURE 5-1 - SSD1607Z DIE FLOOR PLAN (BUMP FACE UP)	8
FIGURE 7-1: DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	17
FIGURE 7-2: EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE	
FIGURE 7-3: EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE	
FIGURE 7-4: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ	
FIGURE 7-5: WRITE PROCEDURE IN 4-WIRE SERIAL PERIPHERAL INTERFACE MODE	
FIGURE 7-6: WRITE PROCEDURE IN 3-WIRE SERIAL PERIPHERAL INTERFACE MODE	
FIGURE 7-7: INPUT AND OUTPUT VOLTAGE RELATION CHART	
FIGURE 7-8: VPIXEL DEFINITION	
FIGURE 7-9: THE RELATION OF VPIXEL WAVEFORM WITH GATE AND SOURCE	
FIGURE 7-10 : PROGRAMMABLE SOURCE AND GATE WAVEFORM ILLUSTRATION	
FIGURE 7-11: VS[N-XY] AND TP[N] MAPPING IN LUT	
FIGURE 7-12 : OTP CONTENT AND ADDRESS MAPPING	
FIGURE 7-13: WAVEFORM SETTING AND TEMPERATURE RANGE # MAPPING	
FIGURE 9-1: OUTPUT PIN ASSIGNMENT ON DIFFERENT SCAN MODE SETTING	
FIGURE 9-2: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING	
FIGURE 13-1: MCU 6800-SERIES PARALLEL INTERFACE CHARACTERISTICS	
FIGURE 13-2: 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 1)	
FIGURE 13-3: 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 2)	
FIGURE 13-4: SERIAL PERIPHERAL INTERFACE CHARACTERISTICS	
FIGURE 14-1 DOOSTER CONNECTION DIAGRAM	
FIGURE 14-2: TYPICAL APPLICATION DIAGRAM WITH SPI INTERFACE	

 SSD1607
 Rev 0.20
 P 5/59
 Sep 2012
 Solomon Systech

1 GENERAL DESCRIPTION

The SSD1607 is a CMOS active matrix bistable display driver with controller. It consists of 200 source outputs, 300 gate outputs, 1 VCOM and 1 VBD for border that can support a maximum display resolution 200x300 for single chip application. In addition, the SSD1607 has a cascade mode that can support higher display resolution.

The SSD1607 embeds booster, regulators and oscillator. Data/Commands are sent from general MCU through the hardware selectable 6800-/8080-series compatible Parallel Interface or Serial Peripheral Interface.

2 FEATURES

- Design for dot matrix type active matrix EPD display
- Resolution: 200 source outputs; 300 gate outputs; 1 VCOM; 1VBD for border
- Power supply
 - VCI: 2.4 to 3.7VVDDIO: Connect to VCI
 - VDD: 1.8V, regulate from VCI supply
- Gate driving output voltage:
 - 2 levels output (VGH, VGL)
 - ➤ Max 42Vp-p
 - > VGH: 15V to 22V;
 - ➤ VGL: -20V to -15V
 - Voltage adjustment in steps of 500mV.
- Source / VBD driving output voltage:
 - > 3 levels output (VSH, VSS, VSL)
 - > VSH: 10V to 17V
 - VSL: -10V to -17V
 - Voltage adjustment in steps of 500mV
- VCOM output voltage
 - -4V to 0.2V in 20mV resolution
 - > 8 bits Non-volatile memory (OTP) for VCOM adjustment
- Source and gate scan direction control
- Low current deep sleep mode
- On chip display RAM with double display buffer [200x300 / 8 * 2 = 15000Byte]
- Waveform settings can be programmed and stored in On-chip OTP
- Programmable output waveform allowing flexibility for different applications / environments.
- Built in VCOM sensing
- On-chip oscillator.
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage.
- Cascade mode to support higher display resolution.
- I2C Single Master Interface to read external temperature sensor reading
- 8-bits Parallel (6800 & 8080), Serial peripheral interface available
- Available in COG package

SSD1607 | Rev 0.20 | P 6/59 | Sep 2012 | **Solomon Systech**

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	Package Form
SSD1607Z	Gold bump die

4 BLOCK DIAGRAM

Figure 4-1: SSD1607 Block Diagram

SSD1607 | Rev 0.20 | P 7/59 | Sep 2012 | **Solomon Systech**

5 DIE PAD FLOOR PLAN

Figure 5-1 - SSD1607Z Die Floor Plan (Bump face up)

SSD1607 | Rev 0.20 | P 8/59 | Sep 2012 | **Solomon Systech**

Table 5-1: SSD1607Z Bump Die Pad Coordinates

1	Pin #	Pin Name	X	Y	Pin #	Pin Name	Х	Y	Pin #	Pin Name	Х	Y	Pin #	Pin Name	Х	Y
3											_					
4											_					
S. VOCNE 1940 680 680 VSSSS 13140 680 780 780 680 780 780 680 780																
STATES 1988 1988 1988 1988 1988 1989																
8	6	VCOM	-5880		86		-1080			TPB	3720		246	G64	5372	
19 V.COM 1700 1610 690 V.SSSSS 1900 680 1807 V.SSS V.		VCOM	-5820	-680	87	VSSGS	-1020	-680	167	VGH	3780	-680	247	G66		681.5
10																
11 PREVIOL 1550 680 91 VISSES 1750 680 171 VISE 4002 680 681 6																
12 PREVICE 4640 4650 92 YESGO 7-20 6660 172 YORH 4690 4600 553 679 5228 881.3 14 PREVICE 4500 4600 94 YESGO 4600 6600 779 YORH 4200 4600 254 6800 5000 5000 15 PREVICE 5340 8600 95 YOSGO 4600 6775 YORH 4200 4600 255 6600 5000 5000 16 PREVICE 5260 6400 96 YOSGO 4600 6775 YORH 4200 4600 255 6600 5000 5000 17 YOSGO 4700 4700 4700 4600 4700 4600 4600 18 PREVICE 5260 6400 96 YOSGO 4800 4700 4600 4600 4600 4600 19 PREVICE 5100 6400 970 YOSGO 4900 4700 4600 4600 4600 4600 19 PREVICE 5100 6400 6400 100 YESGO 4900 6400 4700 4600 6400 4600 4600 19 PREVICE 4500 6400 100 YESGO 4900 6400 4700 4600 6400 4600 4600 10 YESGO 4500 6400 100 YESGO 4800 4800 4800 4800 4800 4800 10 PREVICE 4500 6400 100 YESGO 4500 6400 4800 4800 6400 4800 4800 10 PREVICE 4500 6400 100 YESGO 4500 6400 4800 6400 4800 6400 10 YESGO 4500 4800 4800 4800 6400 4800 6400 10 YESGO 4800 4800 4800 4800 4800 4800 4800 10 YESGO 4800 4800 4800 4800 4800 4800 4800 10 YESGO 4800 4800 4800 4800 4800 4800 4800 10 YESGO 4800 4800 4800 4800 4800 4800 4800 10 YESGO 4800 4800 4800 4800 4800 4800 4800 10 YESGO 4800 4800 4800 4800 4800 4800 4800 10 YESGO 4800 4800 4800 4800 4800 10 YESGO														1		
14 PREVENT 1-540 1-540 94 VISSA 1-540 680 17-2 VIST 2-200 680 530 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 501 501.5 50											_					
15 PRIVICE 15340 680 99	13	PREVGL	-5460	-680	93	VSSA	-660	-680	173	VGH	4140	-680	253	G78	5225	681.5
16		PREVGL						_								
PRIVALE											_					
18											_					_
19 PREVELT. 1940 1980 199 VISSED -200 680 179 VIII. 4500 680 260 692 593 581.5																
					99						_					
22 PREVOIL -4920 -680 103 VUSB -60 -680 183 VUSB 5476 -680 680 5015 581.	20	PREVGL	-5040	-680	100	VSSBG	-240	-680	180	VGL	4560	-680	260	G92	5078	561.5
22 PREVICE -4860 -680																
24											_					-
25																
27								-			_					
289																
29											_					
33																
31																
132																
33								-								
35											_			+		
36	34	VSL	-4200	-680	114	VCI	600	-680	194	GDR	5400	-680	274	G120	4784	561.5
33								_								
38											_					
PREVIGH -3840 -680 119							_	-			_					
41 PREVGH -3780 -680																
A22 PREVIGH -3720 -680 122 VDDIO 1080 -680 202 VCOM 5880 -680 282 G136 4616 561.5 44	40	PREVGH	-3840	-680	120	TPE	960	-680	200	VCOM	5760	-680	280	G132	4658	561.5
A3	41	PREVGH	-3780	-680	121	TIN	1020	-680	201	VCOM	5820	-680	281	G134	4637	681.5
44																
46																
46																
A8											_					
PREVGH	47	PREVGH	-3420	-680	127	D6	1380	-680	207	NC	6180	-680	287	G146	4511	681.5
Second PREVIGH -3240 -680 130 D3 1560 -680 210 NC 6128 561.5 290 G152 4448 561.5 51 VSS -3180 -680 132 D1 1680 -680 212 NC 6086 561.5 291 G154 4427 681.5 525 VSH -3120 -680 132 D1 1680 -680 212 NC 6086 561.5 292 G156 4466 561.5 525 VSH -3240 -680 133 D0 1740 -680 212 NC 6086 561.5 292 G156 4466 561.5 520 G152 4448 561.5 561.5 570 VSH -3240 -680 135 CS# 1860 -680 -680 135 CS# 1860 -680 136 VDDIO 1920 -680 136 VDDIO 1920 -680 137 R/W# 1980 -680 138 VSS 2040 -680 138 VSS 2040 -680 138 VSS 2040 -680 139 D/C# 2100 -680 139 D/C# 2100 -680 139 D/C# 2100 -680 139 D/C# 2100 -680 140 VDDIO 2160 -680 140 VDDIO 2160 -680 140 VDDIO 2160 -680 144 VSS 2280 -680 144 VSS 2460 -680 144 VSS 2460 -680 145 VSS 2280 -680 145 VSS 2280 -680 146 VDDIO 2500 -680 147 VDD -1980 -680 150 VDDIO 2760 -680 227 G26 G24 5792 561.5 308 G184 4112 561.5 570 VDD -1620 -680 154 VDDIO 3200 -680 224 G28 S750 561.5 310 G192 4028 561.5 570 VDD -1620 -680 155 EXTVDD 3000 -680 234 G44 5524 561.5 314 G200 3944 561.5 570 VDD -1620 -680 155 EXTVDD 3000 -680 236 G44 5584 561.5 318 G208 386 561.5 319 G200 3894 561.5 31		PREVGH	-3360	-680		D5	1440	-680	208	NC	6170	561.5	288	G148	4490	
Signature Sign											_					
S2							_				_					
Signature Sign										-						
State											_					
The color of the	54	VSH	-3000	-680	134	VSS	1800	-680	214	G0	6044	561.5	294	G160	4364	561.5
57 VSH -2820 -680 137 R/W# 1980 -680 217 G6 5981 681.5 297 G166 4301 681.5 58 VSH -2760 -680 138 VSS 2040 -680 219 G10 5939 681.5 299 G166 4280 561.5 59 VSH -2640 -680 140 VDDIO 2160 -680 219 G10 5939 681.5 299 G166 4280 561.5 61 VSH -2580 -680 141 E 2220 -680 221 G14 5897 681.5 300 G172 4238 561.5 62 VSS -2520 -680 142 VSS 2280 -680 222 G16 5876 561.5 300 G172 4238 561.5 63 VPP -2400 -680 144 BUSY 2400 -680 222 <t></t>								_								
58 VSH -2760 -680 138 VSS 2040 -680 218 G8 596 561.5 298 G168 4280 561.5 59 VSH -2760 -680 140 VDDIO 2160 -680 219 G10 593 681.5 299 G170 4259 681.5 61 VSH -2640 -680 141 E 2220 -680 145 5918 561.5 300 G172 4238 561.5 62 VSS -2520 -680 142 VSS 2280 -680 222 G16 5876 561.5 300 G174 4217 681.5 64 VPP -2400 -680 144 BUSY 2400 -680 224 G20 5813 581.5 303 G178 4175 681.5 66 VPP -2230 -680 146 VDDIO 2520 -680 225 G225 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></td<>											_					
Second S																
Column C																
62 VSS -2520 -680 142 VSS 2280 -680 222 G16 5876 561.5 302 G176 4196 561.5 63 VPP -2460 -680 143 RES# 2340 -680 223 G18 5855 681.5 303 G178 4175 681.5 64 VPP -2400 -680 144 BUSY 2400 -680 224 G20 5834 561.5 303 G178 4175 681.5 66 VPP -2240 -680 146 VDDIO 2520 -680 226 G24 5792 561.5 305 G184 4112 561.5 67 VPP -2220 -680 147 CLS 2580 -680 227 G26 5771 681.5 306 G184 4112 561.5 68 VPP -2100 -680 149 BS2 2700 -680 228											_					
63 VPP -2460 -680 143 RES# 2340 -680 223 G18 5855 681.5 303 G178 4175 681.5 64 VPP -2400 -680 144 BUSY 2400 -680 224 G20 5834 561.5 304 G180 4154 561.5 66 VPP -2240 -680 146 VDDIO 2520 -680 225 G22 5813 681.5 303 G184 4112 561.5 66 VPP -2220 -680 147 CLS 2580 -680 227 G26 5771 681.5 305 G184 4112 561.5 68 VPP -2160 -680 148 VSS 2640 -680 227 G26 5771 681.5 306 G184 4112 561.5 70 VPP -2040 -680 150 VDDIO 2760 -680 229				-							_			+		
64 VPP -2400 -680 144 BUSY 2400 -680 224 G20 5834 561.5 304 G180 4154 561.5 65 VPP -2340 -680 145 CL 2460 -680 225 G22 5813 681.5 305 G182 4133 681.5 66 VPP -2220 -680 146 VDDIO 2520 -680 226 G24 5792 561.5 306 G184 4112 561.5 68 VPP -2160 -680 148 VSS 2640 -680 228 G28 5750 561.5 306 G184 4112 561.5 69 VPP -2100 -680 150 VDDIO 2760 -680 229 G30 5729 681.5 309 G190 4049 681.5 71 VDD -1980 -680 153 BS0 2940 -680 231											_					
65 VPP -2340 -680 145 CL 2460 -680 225 G22 5813 681.5 305 G182 4133 681.5 66 VPP -2280 -680 146 VDDIO 2520 -680 226 G24 5792 561.5 306 G184 4112 561.5 68 5792 561.5 307 G186 4091 681.5 68 VPP -2100 -680 148 VSS 2640 -680 227 G26 5771 681.5 307 G186 4091 681.5 68 VPP -2100 -680 149 BS2 2700 -680 229 G30 5729 681.5 307 G186 4091 681.5 70 VPP -2040 -680 150 VDDIO 2760 -680 230 5729 681.5 309 G190 4049 681.5 71 VDD -1920 -680 153																
66 VPP -2280 -680 146 VDDIO 2520 -680 226 G24 5792 561.5 306 G184 4112 561.5 67 VPP -2220 -680 147 CLS 2580 -680 227 G26 5771 681.5 307 G186 4091 681.5 68 VPP -2100 -680 148 VSS 2640 -680 228 G28 5750 561.5 308 G184 400 561.5 70 VPP -2100 -680 150 VDDIO 2760 -680 229 G30 572 681.5 309 G190 4049 681.5 71 VDD -1980 -680 151 BS1 2820 -680 231 G34 5687 681.5 310 G192 4028 561.5 72 VDD -1800 -680 153 BS0 2940 -680 233 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>				-				_			_					
68 VPP -2160 -680 148 VSS 2640 -680 228 G28 5750 561.5 308 G188 4070 561.5 69 VPP -2100 -680 149 BS2 2700 -680 229 G30 5729 681.5 309 G190 4049 681.5 70 VPP -2040 -680 150 VDDIO 2760 -680 230 5729 681.5 310 G192 4028 561.5 71 VDD -1980 -680 151 BS1 2820 -680 232 G36 5667 561.5 310 G192 4028 561.5 72 VDD -1860 -680 153 BS0 2940 -680 232 G36 5665 561.5 311 G194 4007 681.5 73 VDD -1800 -680 154 VDDIO 3000 -680 233 G38											_					
69 VPP -2100 -680 149 BS2 2700 -680 229 G30 5729 681.5 309 G190 4049 681.5 70 VPP -2040 -680 150 VDDIO 2760 -680 230 G32 5708 561.5 310 G192 4028 561.5 71 VDD -1920 -680 151 BS1 2820 -680 231 G34 5687 681.5 311 G194 4007 681.5 73 VDD -1860 -680 153 BS0 2940 -680 233 G38 5645 681.5 312 G196 3986 561.5 74 VDD -1800 -680 154 VDDIO 3000 -680 234 G40 5624 561.5 314 G200 3944 561.5 75 VDD -1680 -680 155 EXTVDD 3060 -680 235									_		_					
70 VPP -2040 -680 150 VDDIO 2760 -680 230 G32 5708 561.5 310 G192 4028 561.5 71 VDD -1920 -680 151 BS1 2820 -680 231 G34 5687 681.5 311 G194 4007 681.5 72 VDD -1920 -680 153 BS0 2940 -680 232 G36 5665 561.5 312 G194 4007 681.5 74 VDD -1800 -680 154 VDDIO 3000 -680 233 G38 5645 681.5 312 G196 3965 561.5 75 VDD -1800 -680 155 EXTVDD 3060 -680 234 G40 5624 561.5 314 G200 3944 561.5 76 VDD -1620 -680 156 VSS 3120 -680 235				-							_					
71 VDD -1980 -680 151 BS1 2820 -680 231 G84 5687 681.5 311 G194 4007 681.5 72 VDD -1920 -680 152 VSS 2880 -680 232 G36 5666 561.5 312 G196 3986 561.5 73 VDD -1800 -680 153 BSO 2940 -680 233 G38 5645 681.5 313 G198 3965 561.5 74 VDD -1800 -680 154 VDDIO 3000 -680 234 G40 5624 561.5 314 G200 3944 561.5 76 VDD -1740 -680 156 VSS 3120 -680 235 G42 5603 681.5 314 G200 3944 561.5 77 VDD -1680 -680 157 M/S# 3180 -680 237 <														1		
72 VDD -1920 -680 152 VSS 2880 -680 232 G36 5666 561.5 312 G196 3986 561.5 73 VDD -1800 -680 153 BSO 2940 -680 233 G38 5645 681.5 313 G198 3965 681.5 74 VDD -1800 -680 154 VDDIO 3000 -680 234 G40 5624 561.5 314 G200 3944 561.5 76 VDD -1680 -680 156 VSS 3120 -680 235 G42 561.5 314 G200 3944 561.5 77 VDD -1680 -680 157 M/S# 3180 -680 237 G46 5551 681.5 316 G204 3902 561.5 78 VDD -1560 -680 158 VDDIO 3240 -680 239 G50				-			_	-			_			+		
73 VDD -1860 -680 153 BSO 2940 -680 233 G38 5645 681.5 313 G198 3965 681.5 74 VDD -1800 -680 154 VDDIO 3000 -680 234 G40 5624 561.5 314 G200 3944 561.5 76 VDD -1680 -680 155 EXTVDD 3060 -680 235 G42 5603 681.5 315 G202 3923 681.5 76 VDD -1680 -680 156 VSS 3120 -680 235 G42 5603 681.5 315 G202 3923 561.5 77 VDD -1620 -680 157 M/s# 3180 -680 237 G46 5561 681.5 317 G206 3881 681.5 78 VDD -1560 -680 158 VDDIO 3240 -680 239											_					
75 VDD -1740 -680 155 EXTVDD 3060 -680 235 G42 5603 681.5 315 G202 3923 681.5 76 VDD -1680 -680 156 VSS 3120 -680 236 G44 5582 561.5 316 G204 3902 561.5 77 VDD -1620 -680 157 M/S# 3180 -680 237 G46 5561 681.5 317 G206 3881 681.5 78 VDD -1560 -680 158 VDDIO 3240 -680 238 G48 5540 561.5 318 G202 3923 681.5 78 VDD -1560 -680 158 VDDIO 3240 -680 238 G48 5540 561.5 318 G208 3880 561.5 79 VSS -1500 -680 159 TSDA 3300 -680 239																
76 VDD -1680 -680 156 VSS 3120 -680 236 G44 5582 561.5 316 G204 3902 561.5 77 VDD -1620 -680 157 M/S# 3180 -680 237 G46 5561 681.5 317 G206 3881 681.5 78 VDD -1560 -680 158 VDDIO 3240 -680 238 G48 5540 561.5 318 G208 3801 681.5 79 VSS -1500 -680 159 TSDA 3300 -680 239 G50 5519 681.5 319 G210 3839 681.5																
77 VDD -1620 -680 157 M/S# 3180 -680 237 G46 5561 681.5 317 G206 3881 681.5 78 VDD -1560 -680 158 VDDIO 3240 -680 238 G48 5540 561.5 318 G208 380 561.5 79 VSS -1500 -680 159 TSDA 3300 -680 239 G50 5519 681.5 319 G210 3839 681.5											_					
78 VDD -1560 -680 158 VDDIO 3240 -680 238 G48 5540 561.5 318 G208 3860 561.5 79 VSS -1500 -680 159 TSDA 3300 -680 239 G50 5519 681.5 319 G210 3839 681.5									_							
79 VSS -1500 -680 159 TSDA 3300 -680 239 G50 5519 681.5 319 G210 3839 681.5							_	-			-			+		
											_					
	80		-1440	-	160		_	-	240		_	561.5	320	+	3818	561.5

 SSD1607
 Rev 0.20
 P 9/59
 Sep 2012
 Solomon Systech

Pin #	Din Nama	T v T	Y	Pin #	Din Nome	l v	v	Din #	Din Name	Ιv	v	Din #	Din Nome	v	v
321	Pin Name G214	X 3797	681.5	401	Pin Name S23	X 1771	Y 681.5	Pin #	Pin Name S103	11	681.5	Pin #	Pin Name S183	-1749	Y 681.5
322	G214		561.5	402	S24	1749	561.5	482	S103	-11	561.5	562	S184	-1771	561.5
323	G218		681.5	403	S25	1727	681.5	483	S105	-33	681.5	563	S185	-1793	681.5
324	G220		561.5	404	S26	1705	561.5	484	S106	-55	561.5	564	S186	-1815	561.5
325	G222	_	681.5	405	S27	1683	681.5	485	S107	-77	681.5	565	S187	-1837	681.5
326	G224		561.5	406	S28	1661	561.5	486	S108	-99	561.5	566	S188	-1859	561.5
327	G226	_	681.5	407	S29	1639	681.5	487	S109	-121	681.5	567	S189	-1881	681.5
328	G228		561.5	408	S30	1617	561.5	488	S110	-143	561.5	568	S190	-1903	561.5
329	G230		681.5	409	S31	1595	681.5	489	S111	-165	681.5	569	S191	-1925	681.5
330	G232		561.5	410	S32	1573	561.5	490	S112	-187	561.5	570	S192	-1947	561.5
331	G234		681.5	411	S33	1551	681.5	491	S113	-209	681.5	571	S193	-1969	681.5
332	G236	3566	561.5	412	S34	1529	561.5	492	S114	-231	561.5	572	S194	-1991	561.5
333	G238	3545	681.5	413	S35	1507	681.5	493	S115	-253	681.5	573	S195	-2013	681.5
334	G240	3524	561.5	414	S36	1485	561.5	494	S116	-275	561.5	574	S196	-2035	561.5
335	G242	3503	681.5	415	S37	1463	681.5	495	S117	-297	681.5	575	S197	-2057	681.5
336	G244	3482	561.5	416	S38	1441	561.5	496	S118	-319	561.5	576	S198	-2079	561.5
337	G246	3461	681.5	417	S39	1419	681.5	497	S119	-341	681.5	577	S199	-2101	681.5
338	G248	3440	561.5	418	S40	1397	561.5	498	S120	-363	561.5	578	VBD	-2123	561.5
339	G250		681.5	419	S41	1375	681.5	499	S121	-385	681.5	579	NC	-2145	681.5
340	G252	3398	561.5	420	S42	1353	561.5	500	S122	-407	561.5	580	NC	-2167	561.5
341	G254		681.5	421	S43	1331	681.5	501	S123	-429	681.5	581	NC	-2673	681.5
342	G256		561.5	422	S44	1309	561.5	502	S124	-451	561.5	582	NC	-2695	561.5
343	G258		681.5	423	S45	1287	681.5	503	S125	-473	681.5	583	NC	-2717	681.5
344	G260		561.5	424	S46	1265	561.5	504	S126	-495	561.5	584	NC	-2739	561.5
345	G262		681.5	425	S47	1243	681.5	505	S127	-517	681.5	585	NC	-2761	681.5
346	G264		561.5 681.5	426	S48	1221	561.5	506	S128	-539	561.5	586	NC NC	-2783	561.5
347 348	G266 G268		561.5	427	S49 S50	1199	561.5	507 508	S129 S130	-561 -583	681.5 561.5	587 588	NC NC	-2805 -2827	681.5 561.5
348	G268 G270		681.5	428	S50 S51	1155	681.5	508	S130 S131	-605	681.5	588	NC NC	-2827	681.5
350	G270 G272		561.5	430	S52	1133	561.5	510	S131 S132	-627	561.5	590	NC NC	-2871	561.5
351	G274		681.5	431	S53	1111	681.5	511	S133	-649	681.5	591	NC	-2893	681.5
352	G276	3146	561.5	432	S54	1089	561.5	512	S134	-671	561.5	592	G299	-2915	561.5
353	G278		681.5	433	S55	1067	681.5	513	S135	-693	681.5	593	G297	-2936	681.5
354	G280	3104	561.5	434	S56	1045	561.5	514	S136	-715	561.5	594	G295	-2957	561.5
355	G282	3083	681.5	435	S57	1023	681.5	515	S137	-737	681.5	595	G293	-2978	681.5
356	G284	3062	561.5	436	S58	1001	561.5	516	S138	-759	561.5	596	G291	-2999	561.5
357	G286	3041	681.5	437	S59	979	681.5	517	S139	-781	681.5	597	G289	-3020	681.5
358	G288		561.5	438	S60	957	561.5	518	S140	-803	561.5	598	G287	-3041	561.5
359	G290	_	681.5	439	S61	935	681.5	519	S141	-825	681.5	599	G285	-3062	681.5
360	G292		561.5	440	S62	913	561.5	520	S142	-847	561.5	600	G283	-3083	561.5
361	G294		681.5	441	S63	891	681.5	521	S143	-869	681.5	601	G281	-3104	681.5
362 363	G296 G298		561.5 681.5	442	S64 S65	869 847	561.5	522 523	S144 S145	-891 -913	561.5 681.5	602	G279 G277	-3125 -3146	561.5
364	NC		561.5	444	S66	825	561.5	523	S145 S146	-913	561.5	604	G277	-3140	561.5
365	NC		681.5	445	S67	803	681.5	525	S147	-957	681.5	605	G273	-3188	681.5
366	NC		561.5	446	S68	781	561.5	526	S148	-979	561.5	606	G271	-3209	561.5
367	NC	_	681.5	447	S69	759	681.5	527	S149	-1001	681.5	607	G269	-3230	681.5
368	NC		561.5	448	S70	737	561.5	528	S150	-1023	561.5	608	G267	-3251	561.5
369	NC	2783	681.5	449	S71	715	681.5	529	S151	-1045	681.5	609	G265	-3272	681.5
370	NC	2761	561.5	450	S72	693	561.5	530	S152	-1067	561.5	610	G263	-3293	561.5
371	NC	2739	681.5	451	S73	671	681.5	531	S153	-1089	681.5	611	G261	-3314	681.5
372	NC		561.5	452	S74	649	561.5	532	S154	-1111	561.5	612	G259	-3335	561.5
373	NC		681.5	453	S75	627	681.5	533	S155	-1133	681.5	613	G257	-3356	681.5
374	NC		561.5	454	S76	605	561.5	534	S156	-1155	561.5	614	G255	-3377	561.5
375	NC		681.5	455	S77	583	681.5	535	S157	-1177	681.5	615	G253	-3398	_
376	NC		561.5	456	S78	561	561.5	536	S158	-1199	561.5	616	G251	-3419	561.5
377	VBD		681.5	457	S79	539	681.5	537	S159	-1221	681.5	617	G249	-3440	681.5
378 379	S0 S1		561.5 681.5	458 459	S80 S81	517 495	561.5 681.5	538 539	S160 S161	-1243 -1265	561.5 681.5	618	G247 G245	-3461 -3482	561.5
380	S1 S2	-	561.5	460	S81 S82	495	561.5	540	S161 S162	-1265	561.5	620	G245 G243	-3482	561.5
380	S2 S3		681.5	461	S83	451	681.5	541	S162 S163	-1309	681.5	621	G243 G241	-3503	
382	S4		561.5	462	S84	429	561.5	542	S164	-1331	561.5	622	G239	-3545	561.5
383	S5		681.5	463	S85	407	681.5	543	S165	-1353	681.5	623	G237	-3566	681.5
384	S6	2145	561.5	464	S86	385	561.5	544	S166	-1375	561.5	624	G235	-3587	561.5
385	S7	2123	681.5	465	S87	363	681.5	545	S167	-1397	681.5	625	G233	-3608	681.5
386	S8		561.5	466	S88	341	561.5	546	S168	-1419	561.5	626	G231	-3629	561.5
387	S9	_	681.5	467	S89	319	681.5	547	S169	-1441	681.5	627	G229	-3650	681.5
388	S10		561.5	468	S90	297	561.5	548	S170	-1463	561.5	628	G227	-3671	561.5
389	S11		681.5	469	S91	275	681.5	549	S171	-1485	681.5	629	G225	-3692	681.5
390	S12		561.5	470	S92	253	561.5	550	S172	-1507	561.5	630	G223	-3713	561.5
391 392	S13 S14		681.5 561.5	471	S93 S94	231	681.5 561.5	551 552	S173 S174	-1529 -1551	681.5 561.5	631	G221 G219	-3734 -3755	681.5 561.5
392	S14 S15		681.5	472	S94 S95	187	681.5	552	S174 S175	-1551	681.5	633	G219 G217	-3755	681.5
393	S15		561.5	474	S95 S96	165	561.5	554	S175 S176	-1573	561.5	634	G217	-3776	561.5
395	S17		681.5	475	S97	143	681.5	555	S177	-1617	681.5	635	G213	-3818	681.5
396	S18		561.5	476	S98	121	561.5	556	S178	-1639	561.5	636	G213	-3839	561.5
397	S19	_	681.5	477	S99	99	681.5	557	S179	-1661	681.5	637	G209	-3860	681.5
398	S20		561.5	478	S100	77	561.5	558	S180	-1683	561.5	638	G207	-3881	561.5
399	S21	1815	681.5	479	S101	55	681.5	559	S181	-1705	681.5	639	G205	-3902	681.5
400	S22	1793	561.5	480	S102	33	561.5	560	S182	-1727	561.5	640	G203	-3923	561.5

 SSD1607
 Rev 0.20
 P 10/59
 Sep 2012
 Solomon Systech

Pin #	Pin Name	х	v	Pin #	Pin Name	х	v
641	G201	-3944	681.5	721	G41	-5624	681.5
642	G199	-3965	561.5	722	G39	-5645	561.5
643	G197	-3986	681.5	723	G37	-5666	681.5
644	G195	-4007	561.5	724	G35	-5687	561.5
645	G193	-4028	681.5	725	G33	-5708	681.5
646	G191	-4049	561.5	726	G31	-5729	561.5
647	G189	-4070	681.5	727	G29	-5750	681.5
648	G187	-4091	561.5	728	G27	-5771	561.5
649	G185	-4112	681.5	729	G25	-5792	681.5
650	G183	-4133	561.5	730	G23	-5813	561.5
651	G181	-4154	681.5	731	G21	-5834	681.5
652	G179	-4175	561.5	732	G19	-5855	561.5
653	G177	-4196	681.5	733	G17	-5876	681.5
654	G175	-4217	561.5	734	G15	-5897	561.5
655	G173	-4238	681.5	735	G13	-5918	681.5
656	G171	-4259	561.5	736	G11	-5939	561.5
657	G169	-4280	681.5	737	G9	-5960	681.5
658 659	G167 G165	-4301 -4322	561.5 681.5	738 739	G7 G5	-5981 -6002	561.5 681.5
660	G163	-4322	561.5	740	G3	-6023	561.5
661	G161	-4364 -4385		741	G1 NC	-6044	
662	G159		561.5			-6065	
663 664	G157 G155	-4406 -4427	681.5 561.5	743	NC NC	-6086 -6107	681.5 561.5
665	G155 G153	-4427	681.5	744	NC NC	-6128	681.5
666	G153 G151	-4448	561.5	745	NC NC	-6149	561.5
667	G149	-4490	681.5	747	NC NC	-6170	681.5
668	G147	-4511	561.5	717	NC	0170	001.5
669	G145	-4532	681.5	—			
670	G143	-4553	561.5				
671	G141	-4574	681.5				
672	G139	-4595	561.5				
673	G137	-4616	681.5				
674	G135	-4637	561.5				
675	G133	-4658	681.5				
676	G131	-4679	561.5				
677	G129	-4700	681.5				
678	G127	-4721	561.5				
679	G125	-4742	681.5				
680	G123	-4763	561.5				
681	G121	-4784	681.5				
682	G119	-4805	561.5				
683	G117	-4826	681.5				
684	G115	-4847	561.5				
685	G113	-4868	681.5				
686	G111	-4889	561.5	-			
687	G109	-4910	681.5	-			
688	G107	-4931	561.5				
689	G105	-4952	681.5 561.5	-			
690 691	G103	-4973		l —		 	
691	G101 G99	-4994 -5015	681.5 561.5	—	-	-	
693	G99 G97	-5015	681.5	—	 	-	
694	G97	-5036	561.5	l 		-	
695	G93	-5078	681.5	—			
696	G91	-5099	561.5				l
697	G89	-5120	681.5	—			l -
698	G87	-5141	561.5				
699	G85	-5162	681.5				
700	G83	-5183	561.5				İ
701	G81	-5204	681.5				
702	G79	-5225	561.5				
703	G77	-5246	681.5				
704	G75	-5267	561.5				
705	G73	-5288	681.5				
706	G71	-5309	561.5				
707	G69	-5330	681.5				
708	G67	-5351	561.5				ļ
709	G65	-5372	681.5				
710	G63	-5393	561.5	L			
711	G61	-5414	681.5	l ——			
712	G59	-5435	561.5	—	-		
713	G57	-5456	681.5	-	l		!
714	G55 G53	-5477	561.5	-	 		-
715	G53	-5498 -5519	681.5 561.5	—		-	
716	G51 G49	-5519	681.5	—	 	-	
71.8	G49	-5561	561.5	—			l
719	G47	-5582	681.5	l 			-
112	. 0.40				•		

	in um		
Die h	eight	300	
Bump	height	12	
Bump	size	X	Y
Pad	1-207	40	50
Pad	208-747	18	75
Alignme	ent mark	X	Y
	'+ shape	-6382	642
	+' shape	6382	642

 SSD1607
 Rev 0.20
 P 11/59
 Sep 2012
 Solomon Systech

6 PIN DESCRIPTION

 $\textbf{Key:} \quad \text{I = Input, O = Output, IO = Bi-directional (input/output), P = Power pin, C = Capacitor Pin NC = Not Connected, Pull L = connect to <math>V_{SS}$, Pull H = connect to V_{DDIO}

Pin name	Туре	Connect to	Function	Description	When not in use
Input powe	er			I	ı
VCI		Power Supply	Power Supply	Power Supply for the chip	-
VCIA	Р	Power Supply	Power Supply	Power input for the chip, Connected with VCI	-
VCIBG	Р	Power Supply	Power Supply	Power input for the chip (Reference), Connected with VCI	-
VDDIO	Р	Power Supply	Power for interface logic pins	Power Supply for the Interface It should be connected with VCI	-
VDD	Р	Capacitor	Regulator output	Core logic power pin VDD can be regulated internally from VCI. - For the single chip application, a capacitor should be connected between VDD and VSS under all circumstances. - For the cascade mode application, a capacitor should be connected between VDD and VSS in the master chip under all circumstances. For the slave chip, the capacitor is not necessary as VDD will be supplied from the cascade master chip externally.	
EXTVDD		VDDIO/VSS	Regulator bypass	 This pin is VDD regulator bypass pin. For the single chip application, EXTVDD should be connected to VSS. For the cascade mode application, EXTVDD of the master chip should be connected to VSS while EXTVDD of the slave chip should be connected to VDDIO. 	-
VSS	P	VSS	GND	Ground (Digital)	
VSSA	Р	VSS	GND	Ground (Digital) Ground (Analog) It should be connected with VSS.	- -
VSSBG	Р	VSS	GND	Ground (Reference) Connected with VSS	-
VSSGS	Р	VSS	GND	Ground (Output) Connected with VSS	-
VPP	Р	Power Supply	OTP power	Power Supply for OTP Programming	Open
Digital I/O		<u> </u>	•		
D [7:0]	I/O	MPU	Data Bus	These pins are bi-directional data bus connecting to the MCU data bus. SPI mode: D0: SCLK D1: SDIN	D[2] : OPEN D[7:3]: VDDIO or VSS
CS#	I	MPU	Logic Control	This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW in parallel interface.	VDDIO or VSS

SSD1607 | Rev 0.20 | P 12/59 | Sep 2012 | **Solomon Systech**

Pin name	Туре	Connect to	Function	•	When not in use
R/W# (WR#)	l	MPU		This pin is read / write control input pin connecting to the MCU interface. When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin R/W (WR#) can be connected to either VDDIO or VSS.	VDDIO or VSS
D/C#	I	MPU		This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data at D [7:0] will be interpreted as data. When the pin is pulled LOW, the data at D [7:0] will be interpreted as command.	VDDIO or VSS
E (RD#)	I	MPU		This pin is MCU interface input. When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin E (RD#) should be connected to either VDDIO or VSS	VDDIO or VSS
RES#	I	MPU	System Reset	This pin is reset signal input. Active Low.	-
BUSY	0	MPU	Device Busy Signal	This pin is Busy state output pin When Busy is High, the operation of the chip should not be interrupted, command should not be sent. For example., The chip would put Busy pin High when - Outputting display waveform; or - Programming with OTP - Communicating with digital temperature sensor In the cascade mode, the BUSY pin of the slave chip should be left open.	Open
CLS	I	VDDIO/VSS	Clock Mode Selection	 This pin is internal clock enable pin. For the single chip application, the CLS pin should be connected to VDDIO. For the cascade mode application, the CLS pin of the master chip should be connected to VDDIO. The CLS pin of the slave chip should be connected to VSS to disable the internal clock as its CL pin should be connected to the CL pin of the master chip. 	-
M/S#	I	VDDIO/VSS	Cascade Mode Selection	 This pin is Master and Slave selection pin. For the single chip application, the M/S# pin should be connected to VDDIO. In the cascade mode: For Master Chip, the M/S# pin should be connected to VDDIO. For Slave Chip, the M/S# pin should be connected to VSS. The oscillator and the booster & regulator circuits of the slave chip will be disabled. The corresponding pins including CL, VDD, VDDIO, PREVGH, PREVGL, VSH, VSL, VGH, VGL and VCOM must be connected to the master chip. 	

 SSD1607
 Rev 0.20
 P 13/59
 Sep 2012
 Solomon Systech

Pin name	Туре	Connect to	Function	Description	When not in use
CL	I/O	NC	Clock signal	This is the clock signal pin. When CLS is connected to VDDIO, the internal clock is enable. The clock signal will be detected at CL. Leave the CL pin open when internal clock is enable and used. When CLS is connected to VSS, the internal clock is disable. An external clock is fed in the CL pin. In the cascade mode, the CL pin of the slave chip should be connected to the CL pin of the master chip.	
BS [2:0]	I	VDDIO/VSS	MCU Interface Mode Selection	connected to the CL pin of the master chip. These pins are for selecting different bus interface. BS2 should be connected to VSS. Table 6-1 : MCU interface selection BS1 BS0 MPU Interface L L 4-lines serial peripheral interface (SPI) L H 8-bit 8080 parallel interface H L 3-lines serial peripheral interface (SPI) - 9 bits SPI H H 8-bit 6800 parallel interface	-
TSDA	I/O	Temperature sensor SDA	Digital	This pin is I ² C Interface to digital temperature sensor Data pin External pull up resistor is required when connecting to I ² C slave	Open
TSCL	0	Temperature sensor SCL	Digital	This pin is I ² C Interface to digital temperature sensor Clock pin External pull up resistor is required when connecting to I ² C slave	Open
Analog Pin	•				•
GDR	0	POWER MOSFET Driver Control	PREVGH & PREVGL Generation	This pin is N-Channel MOSFET Gate Drive Control. In the cascade mode, the GDR pin of the slave chip should be left open.	-
RESE		Booster Control Input		This pin is the Current Sense Input for the Control Loop In the cascade mode, the RESE pin of the slave chip should be left open.	-
FB	ı	NC	1	Keep open.	Open
PREVGH	С	Stabilizing capacitor		This pin is the Power Supply pin for VGH and VSH. A stabilizing capacitor should be connected between PREVGH and VSS.	-
PREVGL	С	Stabilizing capacitor		This pin is the Power Supply pin for VCOM, VGL and VSL. A stabilizing capacitor should be connected between PREVGL and VSS.	-
VGH	С	Stabilizing capacitor	VGH, VGL Generation	Positive Gate driving voltage. A stabilizing capacitor should be connected between VGH and VSS.	-
VGL	С	Stabilizing capacitor	VGL Generation	This pin is Negative Gate driving voltage. A stabilizing capacitor should be connected between VGL and VSS.	-

SSD1607 Rev 0.20 P 14/59 Sep 2012 **Solomon Systech**

Pin name	Туре	Connect to	Function	Description	When not in use			
VSH	С	Stabilizing capacitor	VSH, VSL Generation					
VSL	С	Stabilizing capacitor		This pin is Negative Source driving voltage. A stabilizing capacitor should be connected between VSL and VSS.	-			
VCOM	С	Panel/ Stabilizing capacitor	VCOM	This pin is VCOM driving voltage A stabilizing capacitor should be connected between VCOM and VSS.				
Panel Dri	ving							
S [199:0]	0	Panel Source driving Source output pin signal		Source output pin	Open			
G [299:0]	0	Panel	Gate driving signal					
VBD	0	Panel	Border driving signal	Border output pin	Open			
Others								
NC	NC	NC	Not Connected	Keep open. Don't connect with other NC pins	Open			
TPA	NC	NC	Reserved for Testing	Keep open. Don't connect to NC pin or other test pins including TPA, TPB, TPC, TPD and TPE.	Open			
TPB	NC	NC	Reserved for Testing	Keep open. Don't connect to NC pin or other test pins including TPA, TPB, TPC, TPD and TPE.	Open			
TPC	NC	NC	Reserved for Testing	Keep open. Don't connect to NC pin or other test pins including TPA, TPB, TPC, TPD and TPE.	Open			
TPD	NC	NC	Reserved for Testing					
TIN		NC	Reserved for Testing	Connect to TPE pin.				
TPE	0	NC	Reserved for Testing	Connect to TIN pin.				

 SSD1607
 Rev 0.20
 P 15/59
 Sep 2012
 Solomon Systech

7 FUNCTIONAL BLOCK DESCRIPTION

The device can drive an active matrix TFT EPD panel. It composes of 200 source outputs, 300 gate outputs, 1 VBD and 1 VCOM. It contains flexible built-in waveforms to drive the EPD panel.

7.1 MCU Interface

7.1.1 MCU Interface selection

The SSD1607 can support 6800-series/8080-series parallel interface and 3-wire/4-wire serial peripheral Interface. In the SSD1607, the MCU interface is pin selectable by BS0 and BS1 pins shown in Table 7-1

BS1 BS0 MPU Interface

L L 4-lines serial peripheral interface (SPI)

L H 8-bit 8080 parallel interface

H L 3-lines serial peripheral interface (SPI) – 9 bits SPI

H H 8-bit 6800 parallel interface

Table 7-1: MCU interface selection by BS0 and BS1

The MCU interface consists of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 7-2.

Pin Name Data/Command Interface **Control Signal** Bus R/W# E D7 D6 D5 D4 **D3** D2 D1 D0 CS# D/C# RES# (RD#) (WR#) Interface NC SDin **SCLK** CS# D/C# RES# SPI4 L RD# WR# D/C# RES# CS# 8-bit 8080 D [7:0] SPI3 NC **SDin SCLK** L CS# L RFS# 8-bit 6800 R/W# D/C# RES# D [7:0] Ε CS#

Table 7-2: MCU interface assignment under different bus interface mode

Note

- (1) L is connected to V_{SS}
- (2) H is connected to V_{DDIO}

7.1.2 MCU 6800-series Parallel Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#. A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.

Table 7-3: Control pins of 6800 interface

Function	E	R/W#	CS#	D/C#
Write command	↓	L	L	L
Read status	↓	Н	L	L
Write data	↓	L	L	Н
Read data	↓	Н	L	Н

Note: ↓ stands for falling edge of signal

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-1.

SSD1607 | Rev 0.20 | P 16/59 | Sep 2012 | **Solomon Systech**

Figure 7-1: Data read back procedure - insertion of dummy read

7.1.3 MCU 8080-series Parallel Interface

The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.

A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.

Figure 7-2: Example of Write procedure in 8080 parallel interface mode

SSD1607 | Rev 0.20 | P 17/59 | Sep 2012 | **Solomon Systech**

Figure 7-3: Example of Read procedure in 8080 parallel interface mode

Table 7-4: Control pins of 8080 interface (Form 1)

Function	RD#	WR#	CS#	D/C#
Write command	Н	↑	L	7
Read status	↑	Н	L	L
Write data	Н	↑	L	Н
Read data	\uparrow	Н	L	H

Note

- (1) ↑ stands for rising edge of signal
- (2) Refer to Figure 13-2 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics

Alternatively, RD# and WR# can be keep stable while CS# serves as the data/command latch signal.

Table 7-5: Control pins of 8080 interface (Form 2)

Function	RD#	WR#	CS#	D/C#
Write command	Ι	L	↑	L
Read status	L	Н	↑	L
Write data	Ι	L	↑	Н
Read data	L	Н	↑	Н

Note

- (1) ↑ stands for rising edge of signal
- (2) Refer to Figure 13-3 for Form 2 8080-Series MPU Parallel Interface Timing Characteristics

SSD1607 | Rev 0.20 | P 18/59 | Sep 2012 | **Solomon Systech**

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 7-4.

Figure 7-4: Display data read back procedure - insertion of dummy read

SSD1607 | Rev 0.20 | P 19/59 | Sep 2012 | **Solomon Systech**

7.1.4 MCU Serial Peripheral Interface (4-wire SPI)

The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# can be connected to an external ground.

Table 7-6: Control pins of 4-wire Serial Peripheral interface

Function	E(RD#)	R/W#(WR#)	CS#	D/C#	SCLK
Write command	Tie LOW	Tie LOW	L	L	↑
Write data	Tie LOW	Tie LOW	L	Н	↑

Note: ↑ stands for rising edge of signal

SDIN is shifted into an 8-bit shift register in the order of D7, D6, ... D0. The data byte in the shift register is written to the Graphic Display Data RAM (RAM) or command register in the same clock. Under serial mode, only write operations are allowed.

Figure 7-5: Write procedure in 4-wire Serial Peripheral Interface mode

SSD1607 | Rev 0.20 | P 20/59 | Sep 2012 | **Solomon Systech**

7.1.5 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#.

In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, R/W# (WR#)#, E and D/C# can be connected to an external ground.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed.

Table 7-7: Control pins of 3-wire Serial Peripheral interface

Function	E(RD#)	R/W#(WR#)	CS#	D/C#	SCLK
Write command	Tie LOW	Tie LOW	L	Tie LOW	1
Write data	Tie LOW	Tie LOW	L	Tie LOW	↑

Note: ↑ stands for rising edge of signal

Figure 7-6: Write procedure in 3-wire Serial Peripheral Interface mode

SSD1607 | Rev 0.20 | P 21/59 | Sep 2012 | **Solomon Systech**

7.2 **RAM**

The On chip display RAM is holding the image data. 1 set of RAM is built for historical data and the other set is built for the current image data. The size of each RAM is 200x300 bits.

Table 7-8 shows the RAM map under the following condition:

• Command "Data Entry Mode" R11h is set to:

Address Counter update in X direction	AM=0
X: Increment	ID[1:0] =11
Y: Increment	

Command "Driver Output Control" R01h is set to

300 Mux	MUX = 12BFh
Select G0 as 1 st gate	GD = 0
Left and Right gate Interlaced	SM = 0
Scan From G0 to G299	TB = 0

• Command "Gate Start Position" R0Fh is set to:

Set the Start Position of Gate = G0	SCN=0

• Data byte sequence: DB0, DB1, DB2 ... DB7499

Table 7-8: RAM address map

		S0	S1	S2	S3	S4	S5	S6	S7			S192	S193	S194	S195	S196	S197	S198	S199
					0	Dh					18h								
G0	00h	DB0 [7]	DB0 [6]	DB0 [5]	DB0 [4]	DB0 [3]	DB0 [2]	DB0 [1]	DB0 [0]			DB24 [7]	DB24 [6]	DB24 [5]	DB24 [4]	DB24 [3]	DB24 [2]	DB24 [1]	DB24 [0]
G1	01h	DB25 [7]	DB25 [6]	DB25 [5]	DB25 [4]	DB25 [3]	DB25 [2]	DB25 [1]	DB25 [0]			DB49 [7]	DB49 [6]	DB49 [5]	DB49 [4]	DB49 [3]	DB49 [2]	DB49 [1]	DB49 [0]
											ì								
										¥:	Î								
										ŀ	1		:			:			
G298	12Ah	DB7450 [7]	DB7450 [6]	DB7450 [5]	DB7450 [4]	DB7450 [3]	DB7450 [2]	DB7450 [1]	DB7450 [0]			DB7474 [7]	DB7474 [6]	DB7474 [5]	DB7474 [4]	DB7474 [3]	DB7474 [2]	DB7474 [1]	DB7474 [0]
G299	12Bh	DB7475 [7]	DB7475 [6]	DB7475 [5]	DB7475 [4]	DB7475 [3]	DB7475 [2]	DB7475 [1]	DB7475 [0]			DB7499 [7]	DB7999 [6]	DB7999 [5]	DB7999 [4]	DB7999 [3]	DB7999 [2]	DB7999 [1]	DB7999 [0]
ହ	Y-A				-			-	-		-						-		

Y-ADDF GATE

7.3 Oscillator

The on-chip oscillator is included for the use on waveform timing and Booster operations. In order to enable the internal oscillator, the CLS pin must be connected to VDDIO.

SSD1607 | Rev 0.20 | P 22/59 | Sep 2012 | **Solomon Systech**

7.4 Booster & Regulator

A voltage generation system is included in the SSD1607. It provides all necessary driving voltages required for an AMEPD panel including VGH, VGL, VSH, VSL and VCOM. Figure 7-7 shows the relation of the voltages. External application circuit is needed to make the on-chip booster & regulator circuit work properly.

Figure 7-7: Input and output voltage relation chart

Max voltage difference between VGH and VGL is 42V.

SSD1607 | Rev 0.20 | P 23/59 | Sep 2012 | **Solomon Systech**

7.5 Panel Driving Waveform

The Vpixel is defined as Figure 7-8, and its relations with GATE, SOURCE are shown in Figure 7-9.

Figure 7-8 : Vpixel Definition

Figure 7-9: The Relation of Vpixel Waveform with Gate and Source

SSD1607 | Rev 0.20 | P 24/59 | Sep 2012 | **Solomon Systech**

7.6 VCOM Sensing

This functional block provides the scheme to select the optimal VCOM DC level and programmed the setting into OTP.

7.7 Gate and Programmable Source waveform

Figure 7-10: Programmable Source and Gate waveform illustration

- There are totally 20 phases for programmable Source waveform of different phase length.
- The phase period defined as TP [n] * T_{FRAME}, where TP [n] range from 0 to 15.
- TP [n] = 0 indicates phase skipped
- Source Voltage Level: VS [n-XY] is constant in each phase
- VS [n-XY] indicates the voltage in phase n for transition from GS X to GS Y
 - > 00 − VSS
 - ➤ 01 VSH
 - > 10 VSL
 - ➤ 11 NA
- VS [n-XY] and TP[n] are stored in waveform lookup table register [LUT].

SSD1607 | Rev 0.20 | P 25/59 | Sep 2012 | **Solomon Systech**

7.8 Waveform Look Up Table (LUT)

LUT contains 256 bits, which defines the display driving waveform settings. They are arranged in format shown in Figure 7-11.

Figure 7-11: VS[n-XY] and TP[n] mapping in LUT

in Decimal	D7	D6	D5	D4	D3	D2	D1	D0	
0	VS[0			D-10]	VS[0		VS[0-00]		
1		I-11]		1-10]		1-01]	VS[1-00]		
2	VS[2			2-10]	VS[2		VS[2-00]		
3		B-11]		3-10]	VS[3			3-00]	
4		⊦ -11]		4-10]	VS[4			1-00]	
5	VS[5	5-11]	VS[5-10]	VS[5	5-01]	VS[5-00]	
6	VS[6	6-11]	VS[6	6-10]	VS[6	6-01]	VS[6	6-00]	
7	VS[7	7-11]	VS[7	7-10]	VS[7	7-01]	VS[7-00]		
16	VS[1	6-11]	VS[1	6-10]	VS[1	6-01]	VS[16-00]		
17	VS[1	7-11]	VS[17-10]		VS[17-01]		VS[1	7-00]	
18	VS[1	8-11]	VS[1	8-10]	VS[18-01]		VS[18-00]		
19	VS[1	9-11]	VS[1	9-10]	VS[19-01]		VS[1	9-00]	
20		TP	[1]		TP[0]				
21		TP	[3]			TF	P[2]		
29		TP	[19]		TP[18]				
30					VSH/VSL				
31									

7.9 OTP

The OTP is the non-volatile memory and is used to store the information of OTP Selection Option, VCOM value, 7 sets of WAVEFORM SETTING (WS) [256bits x 7] and 6 sets of TEMPERATURE RANGE (TR) [24bits x 6].

The OTP is the non-volatile memory and stored the information of:

- OTP Selection Option
- VCOM value
- Source value
- 7 set of WAVEFORM SETTING (WS) [256bits x 7]
- 6set of TEMPERATURE RANGE (TR) [24bits x 6]

For Programming the WS and TR, Write RAM is required, and the configurations should be

Command: Data Entry mode	C11, D03	Set Address automatic increment setting = X increment and Y increment Set Address counter update in X direction
Command: X RAM address start /end	C44, D00, D18	Set RAM Address for S0 to S199
Command: Y RAM address start /end	C45, D00, D13F	Set RAM Address for G0 to G299
Command: RAM X address counter	C4E, D00	Set RAM X AC as 0
Command: RAM Y address counter	C4F, D000	Set RAM Y AC as 0

SSD1607 | Rev 0.20 | P 26/59 | Sep 2012 | **Solomon Systech**

The mapping table of OTP is shown in below figure,

Figure 7-12: OTP Content and Address Mapping

Default	SPARE	WRITI	E RAM	D.7								
OTP	OTP	ADDI	RESS	D7	D6	D5	D4	D3	D2	D1	D0	
ADDRESS	ADDRESS	Χ	Υ									
0	256	0	0	VS[0-11]	VS[0	VS[0-10]		VS[0-01]		VS[0-00]	
1	257	1	0		1-11]		1-10]		1-01]		VS[1-00]	
2	258	2	0		2-11]		2-10]	VS[2-01] VS[2-00]				
3	259	3	0	VS[3-11]	VS[3	3-10]	VS[VS[3-01] VS[3-00]			
4	260	4	0	VS[4	4-11]	VS[4	1-10]	VS[4	4-01]	VS[4-00]	
- 10	074											
18	274	18	0		8-11]		8-10]		8-01]		8-00]	
19	275	19	0	VS[1	9-11]	VS[1	9-10]	VS[1	9-01]		9-00]	
20	276	20	0			[1]				P[0]		
21	277	21	0			P[3]				P[2]		
29	285	4	1			 [19]				··· [18]		
30	286	5	1			nmy				I/VSL		
31	287	6	1		Dui	ııııy	DUI	ИМY	701	I/ VOL		
32	288	7	1				DOI	711111				
		-	'	1			WS	S[1]				
63	319	13	2									
							•	••				
192	448	17	7									
							WS	S[6]				
223	479	23	8									
224	480	24	8				TEMP[L][11:0]				
225	481	0	9									
226	482	1	9				TEMP[1					
227	483	2	9				TEMP[2	2L][11:0]				
228	484	3	9				TEL 1510	1 1754 4 67				
229	485	4	9				TEMP[2	-HJ[11:0]				
				-								
236	492	11	9				TEMDIA	SI 1[11·0]				
237	492	12	9			TEMP[5L][11:0]						
238	494	13	9	1			TEMP[5	-H][11:0]				
239	495	14	9					6L][11:0]				
240	496	15	9									
241	497	16	9	1			TEMP[6	-H][11:0]				

Remark:

- WS [m] means the waveform setting of temperature set m, the configuration are same as the
 definition in LUT. The corresponding low temperature range of WS[m] defined as TEMP [m-L] and
 high range defined as TEMP [m-H]
- Load WS [m] from OTP for LUT if Temp [m-L] < Temperature Register <= Temp [m-H]

SSD1607 | Rev 0.20 | P 27/59 | Sep 2012 | **Solomon Systech**

7.9.1 Temperature Searching Mechanism

Legend:

WS#	Waveform Setting no. #
TR#	Temperature Range no. #
LUT	720 bit register storing the waveform setting (volatile)
Temperature register	12bit Register storing reading from temperature sensor (volatile)
OTP	A non-volatile storing 7 sets of waveform setting and 6 set of temperature range
WS_sel_address	an address pointer indicating the selected WS#

Figure 7-13 : Waveform Setting and Temperature Range # mapping

OTP (non-volatile)

WS0	
WS1	TR1
WS2	TR2
WS3	TR3
WS4	TR4
WS5	TR5
WS6	TR6

IC im	C implementation requirement											
1	Default selection is WS0											
2	Compare temperature register from TR1 to TR6, in sequence. The last match will be recorded											
	i.e. If the temperature register fall in both TR3 and TR5. WS5 will be selected											
3	If none of the range TR1 to TR6 is match, WS0 will be selected.											
User	application											
1	The default waveform should be programmed as WS0											
2	There is no restriction on the sequence of TR1, TR2 TR6.											

SSD1607 Rev 0.20 P 28/59 Sep 2012 **Solomon Systech**

7.10 External Temperature Sensor I2C Single Master Interface

The chip provides two I/O lines [TSDA and TSCL] for connecting digital temperature sensor for temperature reading sensing.

TSDA will treat as SDA line and TSCL will treat as SCL line. They are required connecting with external pull-up resistor.

1. If the Temperature value MSByte bit D11 = 0, then

The temperature is positive and value (DegC) = + (Temperature value) / 16

2. If the Temperature value MSByte bit D11 = 1, then

The temperature is negative and value (DegC) = ~ (2's complement of Temperature value) / 16

The temperature is negative	<u> </u>	inplomont of Fompola	tare varae, i
12-bit binary (2's complement)	Hexadecimal Value	Decimal Value	Value [DegC]
0111 1111 0000	7F0	2032	127
0111 1110 1110	7EE	2030	126.875
0111 1110 0010	7E2	2018	126.125
0111 1101 0000	7D0	2000	125
0001 1001 0000	190	400	25
0000 0000 0010	002	2	0.125
0000 0000 0000	000	0	0
1111 1111 1110	FFE	-2	-0.125
1110 0111 0000	E70	-400	-25
1100 1001 0010	C92	-878	-54.875
1100 1001 0000	C90	-880	-55

7.11 Cascade Mode

The SSD1607 has a cascade mode that can cascade 2 chips to achieve the display resolution up to 400 (sources) x 300 (gates). The pin M/S# is used to configure the chip. When M/S# is connected to VDDIO, the chip is configured as a master chip. When M/S# is connected to VSS, the chip is configured as a slave chip.

When the chip is configured as a master chip, it will be the same as a single chip application, ie, all circuit blocks will be worked as usual. When the chip is configured as a slave chip, its oscillator and booster & regulator circuit will be disabled. The oscillator clock and all booster voltages will be come from the master chip. Therefore, the corresponding pins including CL, VDD, PREVGH, PREVGL, VSH, VSL, VGH, VGL and VCOM must be connected to the master chip.

SSD1607 | Rev 0.20 | P 29/59 | Sep 2012 | **Solomon Systech**

8 COMMAND TABLE

Table 8-1: Command Table

(D/C#=0, R/W#(WR#) = 0, E(RD#=1) unless specific setting is stated)

Com	man	d Tab	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
1	0	-	0	0	0	0	0	A ₂	A ₁	A ₀	Status Read	Read Driver status on • A2: BUSY flag • A1,A0: Chip ID (01 as default)
	<u> </u>				I					I	l	
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	
0	1		A ₇	A ₆	A ₅	A ₄	A_3	A ₂	A ₁	A ₀		A[8:0]: MUX setting as A[8:0] + 1
0	1		0	0	0	0	0	0	0	A ₈		POR = 12Bh + 1 MUX
0	1		0	0	0	0	0	B ₂	B ₁	Bo	161	B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, gate output sequence is G0,G1, G2, G3, GD=1, G1 is the 1st gate output channel, gate output sequence is G1, G0, G3, G2, B[1]: SM Change scanning order of gate driver. SM=0 [POR], G0, G1, G2, G3G299 (left and right gate interlaced) SM=1, G0, G2, G4G178, G1, G3,G299 B[0]: TB TB = 0 [POR], scan from G0 to G299 TB = 1, scan from G299 to G0.
0	0	02	0	0	0	0	0	0	1	0	Reserve	

SSD1607 | Rev 0.20 | P 30/59 | Sep 2012 | **Solomon Systech**

Com	man	d Tab	ole									
R/W#			D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage Control	Set Gate related driving voltage A[7:4]: VGH, 15 to 22V in 0.5V step A[3:0]: VGL, -15 to -20V in 0.5V step VGL default at -20V
												VGH VGL
0	1		A ₇	A ₆	A ₅	A ₄	A_3	A_2	A ₁	A ₀		0000 15 -15
				Ü			Ü	-				0001 15.5 -15.5
												0010 16 -16
												0010 16.5 -16.5
												0100 17 -17
												0100 17 -17
												0110 18 -18
												0111 18.5 -18.5
												1000 19 -19
												1000 19 -19
												1001 19.5 -19.5
												1010 20 [POR]
												1011 20.5 NA
												1100 21 NA
												1101 21.5 NA
												22
									4			1110 [POR] NA
												1111 NA NA
0	0	04	0	0	0	0	0	1	0	0	Source Driving	Set Source output voltage magnitude
0	1		0	0	0	0	A ₃	A ₂	A ₁	Ao	voltage Control	A[3:0]: VSH/VSL 10V to 17V in 0.5V step VSH/VSL
0		05	0	0	0	0	0	1	0	1	Pacanya	Source setting can be loaded from WS-BYTE31, D[3:0]
0	0	05	0	0	0	0	0	1	0	1	Reserve	
0	0	06	0	0	0	0	0	1	1	0	Reserve	

SSD1607 Rev 0.20 P 31/59 Sep 2012 **Solomon Systech**

Com	command Table /W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descri	ption	
0	0	07	0	0	0	0	0	1	1	1	Display Control	Display	/ contro	ol setting
0	1		0	0	A_5	A_4	0	0	0	0				
						•						A[5]	A[4]	Description
												1	1	All Gate output voltage
												0	1	level as VGH
												0	J	All Gate output voltage level as VGL
												1	0	Selected gate output as
												'		VGL, non-selected gate
														output as VGH
												0	0	Selected gate output as
														VGH, non-selected gate
														output as VGL
	_											L		[POR]
0	0	80	0	0	0	0	1	0	0	0	Reserve			
0	0	09	0	0	0	0	1	0	0	1	Reserve			
0	0	0A	0	0	0	0	1	0	1	0	Reserve			
0	0	0B	0	0	0	0	1	0	1	1	Gate and Source non			
											overlap period		perioc	
0	1		0	0	0	0	A_3	A_2	A_1	A_0	Control			edge to source output
												change		ge to Gate rising edge
												Court	orian	ge to cate haing eage
												Delay I	Duratio	n in terms of Oscillator
												clock [1/F _{osc}]	
										Δ		A [3:0)]	Delay Duration
												0000		NA NA
												0010		4
														-
												0101		10 [POR]
														-
												1110		28
												1111		NA

SSD1607 Rev 0.20 P 32/59 Sep 2012 **Solomon Systech**

Com	Command Table R/W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start Control	Booster Enable with Phase 1, Phase 2 and Phase 3 for soft start current setting.		
0	1		1	A_6	A_5	A_4	A_3	A_2	A_1	A_0		ACTION A Coff start author for Discout		
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		A[7:0] -> Soft start setting for Phase1 = 87h [POR]		
												B[7:0] -> Soft start setting for Phase2 = 86h [POR] C[7:0] -> Soft start setting for Phase3 = 85h [POR]		
												Bit Description of each byte:		
												Bit[6:5] Duration of Phase		
												00 10ms		
												01 20ms		
												10 30ms		
												11 40ms		
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		Bit[4:3] Driving Strength Selection		
												00 1		
												01 2		
												10 3		
									\neg			11 4		
									4					
									K			Bit[2:0] Min Off Time Setting of GDR [us]		
												000 0.27		
												001 0.34		
												010 0.4		
												011 0.54		
												100 0.8		
												101 1.54		
												110 3.34		
												111 6.58		
0	0	0D	0	0	0	0	1	1	0	1	Reserve			
0	0	0E	0	0	0	0	1	1	1	0	Reserve			
0	0	0F	0	0	0	0	1	1	1	1	Gate scan start	Set the scanning start position of the		
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A ₁	A_0	position	gate driver. The valid range is from 0 to		
0	1		0	0	0	0	0	0	0	A ₈		299.		
												When TB=0: SCN [8:0] = A[8:0] A[8:0] = 000h [POR]		
												When TB=1: SCN [8:0] = 299 - A[8:0] A[8:0] = 000h [POR]		

 SSD1607
 Rev 0.20
 P 33/59
 Sep 2012
 Solomon Systech

Com	man	d Tak	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control
0	1		0	0	0	0	0	0	0	A ₀		A[0]: Description 0 Normal Mode [POR] 1 Enter Deep Sleep Mode
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A ₁	Ao	setting	A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SWRESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode Note: RAM are unaffected by this command.
0	0	13	0	0	0	1	0	0	1	1	Reserve	
0	0	14	0	0	0	1	0	1	0	0	Reserve	
0	0	15	0	0	0	1	0	1	0	1	Reserve	
0	0	16	0	0	0	1	0	1	1	0	Reserve	
0	0	17	0	0	0	1	0	1	1	1	Reserve	
0	0	18	0	0	0	1	1	0	0	0	Reserve	
0	0	19	0	0	0	1	1	0	0	1	Reserve	
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A_7	A_6	A_5	A_4	A_3	A_2	A ₁	A_0	Control (Write to temperature register)	A[7:0] – MSByte 01111111[POR]
0	1		B ₇	B ₆	B ₅	B ₄	0	0	0	0	temperature register)	B[7:0] – LSByte 11110000[POR]
0	0	1B	0	0	0	1	1	1	0	1	Temperature Sensor	Read from temperature register.
1	1		X_7	X ₆	X ₅	X_4	X ₃	X_2	X ₁	X ₀	Control (Read from temperature register)	X[7:0] – MSByte Y[7:4] – LSByte
1	1		Y_7	Y ₆	Y ₅	Y ₄	0	0	0	0	toporataro register)	1,, 200,00

 SSD1607
 Rev 0.20
 P 34/59
 Sep 2012
 Solomon Systech

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to temperature sensor
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A ₁	A_0	Control (Write Command to	A[7:6] – Select no of byte to be sent
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	temperature sensor)	00 – Address + pointer
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		01 – Address + pointer + 1 st parameter 10 – Address + pointer + 1 st parameter + 2 nd pointer 11 – Address
												A[5:0] – Pointer Setting B[7:0] – 1 st parameter C[7:0] – 2 nd parameter The command required CLKEN=1.
0	0	1D	0	0	0	1	1	1	0	1	Temperature Sensor Control (Load temperature register with temperature sensor reading)	Load temperature register with temperature sensor reading BUSY=H for whole loading period The command required CLKEN=1.
0	0	1E	0	0	0	1	1	1	1	0	Reserve	
0	0	1F	0	0	0	1	1	1	1	1	Reserve	
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h User should not interrupt this operation
												to avoid corruption of panel images.
0	0 1	21	0 A ₇	0 0	1 0	0 A ₄	0 A ₃	0 A ₂	0 A ₁	1 A ₀	Display Update Control 1	Option for Display Update Bypass Option used for Pattern Display, which is used for display the RAM content into the Display OLD RAM Bypass option A [7] A[7] = 1: Enable bypass A[7] = 0: Disable bypass [POR] A[4] value will be used as for bypass. A[4] = 0 [POR] A[1:0] Initial Update Option - Source Control A[1:0] GSC GSD 00 GS0 GS0 01 [POR] GS0 GS1 10 GS1 GS0 11 GS1 GS1

SSD1607 Rev 0.20 P 35/59 Sep 2012 **Solomon Systech**

Com	Command Table R/W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	22	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence C Enable the stage for Master		
			·	ŭ	ŭ	·	ŭ	-	·			Enable Clock Signal,	Parameter (in Hex)	
												Then Enable CP Then Load Temperature value Then Load LUT Then INIITIAL DISPLAY Then PATTERN DISPLAY Then Disable CP Then Disable OSC	FF [POR]	
												Enable Clock Signal, Then Enable CP Then Load Temperature value Then Load LUT Then PATTERN DISPLAY Then Disable CP Then Disable OSC	F7	
												To Enable Clock Signal (CLKEN=1) To Enable Clock Signal,	80	
												then Enable CP (CLKEN=1, CPEN=1) To INITIAL DISPLAY + PATTEN	C0	
												DISPLAY	0C	
												To INITIAL DISPLAY To DISPLAY PATTEN	08 04	
											461	To Disable CP, then Disable Clock Signal (CLKEN=1, CPEN=1)	03	
									₹.			To Disable Clock Signal (CLKEN=1)	01	
												Remark: CLKEN=1: If CLS=VDDIO then Enable If CLS=VSS then Enable Ex Clock CLKEN=0: If CLS=VDDIO then Disable AND INTERNAL CLOCK Signal:	e OSC	
0	0	23	0	0	1	0	0	0	1	1	Reserve			
0	0	24	0	0	1	0	0	1	0	0	Write RAM	After this command, data er be written into the RAM unti command is written. Addres will advance accordingly.	I another	
0	0	25	0	0	1	0	0	1	0	1	Read RAM	After this command, data re MCU bus will fetch data fror until another command is w Address pointers will advan accordingly.	n RAM, ritten.	
0	0	26	0	0	1	0	0	1	1	0	Reserve			
0	0	27	0	0	1	0	0	1	1	1	Reserve			

 SSD1607
 Rev 0.20
 P 36/59
 Sep 2012
 Solomon Systech

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	0	0	0	A ₃	A ₂	A ₁	A ₀		sensing mode and reading acquired. VCOM sense duration = Setting + 1 Seconds 0x09(10Seconds) [POR]
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
0	0	2B	0	0	1	0	1	0	1	1	Reserve	
0	0	2C	0	0	1	0	1	0	1	1	Write VCOM register	Write VCOM register from MCU
0	1		A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0		interface
0	0	2D	0	0	1	0	1	1	0	1	Read OTP Registers	Read register reading to MCU
1	1		A_7	A_6	A_5	A_4	A_3	A_2	A ₁	A_0		A [7:0] Spare OTP Option B [7:0] VCOM Register
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		B [7.0] VOON Tregister
0	0	2E	0	0	1	0	1	1	1	0	Reserve	
0	0	2F	0	0	1	0	1	1	1	1	Reserve	
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command.
0	0	31	0	0	1	1	0	0	0	1	Reserve	
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU [240 bits], (excluding the VSH/VSL and Dummy bit)
0 0 0 0 0	1 1 1					Ll [30 b	JT ytes]					
0 1 1 1 1 1	0 1 1 1 1	33 0 0 1 1 0 0						0	1	1	Read LUT register	Read from LUT register [240 bits] (excluding the VSH/VSL and Dummy bit)
1	1	[30 bytes]										

SSD1607 Rev 0.20 P 37/59 Sep 2012 **Solomon Systech**

Com	ommand Table													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descriptio	n	
0	0	34	0	0	1	1	0	1	0	0	Reserve			
0	0	35	0	0	1	1	0	1	0	1	Reserve			
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h]		
0	0	37	0	0	1	1	0	1	1	1	OTP selection Control	Write the OTP Selection:		
													spare VCOM OTP VCOM_Status spare WS OTP WS_Status eserved OTP bit. User can s as Version Control.	
0	1		A ₇	A_6	A_5	A_4	A_3	A ₂	A_1	A_0				
0	0	38	0	0	1	1	1	0	0	0	Reserve			
0	0	39	0	0	1	1	1	0	0	1	Reserve			
0	0	3A	0	0	1	1	1	0	1	0	Set dummy line period	Set number	r of dummy line period	
0	1		0	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	100	in term of T A[6:0] = 16		
0	0	3B	0	0	1	1	1	0	1	1	Set Gate line width		ne width (TGate)	
0	1		0	0	0	0	A_3	A ₂	A ₁	A_0		A[3:0] Line	width in us	
												A[3:0]	TGate	
												0000	30	
												0001	34	
												0010	38	
				\								0011	40	
												0100	44	
												0101	46	
												0110	52	
												0111	56	
												1000	62 [POR]	
												1001	68	
												1010	78	
												1011	88	
												1100	104	
												1101	125	
												1110	156	
												1111	208	
													efault value will give 50Hz uency under 22 dummy line g.	

SSD1607 Rev 0.20 P 38/59 Sep 2012 **Solomon Systech**

Command Table												
R/W#	1		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform	Select border waveform for VBD
0	1		A ₇	A ₆	A ₅	A ₄	0	0	A ₁	A ₀	Control	A [7] Follow Source at Initial Update Display A [7]=0: [POR] A [7]=1: Follow Source at Initial Update Display for VBD, A [6:0] setting are being overridden at Initial Display STAGE.
												A [6] Select GS Transition/ Fix Level for VBD A [6]=0: Select GS Transition A[3:0] for VBD A [6]=1: Select FIX level Setting A[5:4] for VBD [POR]
												A [5:4] Fix Level Setting for VBD A[5:4] VBD level 00 VSS 01 VSH 10 VSL 11[POR] HiZ
												A [1:0] GS transition setting for VBD (Select waveform like data A[3:2] to data A[1:0]) A[1:0] GSA GSB 00 GS0 GS0 01 [POR] GS0 GS1 10 GS1 GS0 11 GS1 GS1
0	0	3D	0	0	1	1	1	1	0	1	Reserve	
0	0	3E	0	0	1	1	1	1	1	0	Reserve	
0	0	3F	0	0	1	1	1	1	1	1	Reserve	
0	0	40	0	1	0	0	0	0	0	0	Reserve	
0	0	41	0	1	0	0	0	0	0	1	Reserve	
0	0	42	0	1	0	0	0	0	1	0	Reserve	
0	0	43	0	1	0	0	0	0	1	1	Reserve	
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	
0	1		0	0	0	A_4	A_3	A_2	A_1	A_0	Start / End position	window address in the X direction by an address unit
0	1		0	0	0	B ₄	B ₃	B ₂	B ₁	B ₀		A[4:0]: XSA[4:0], XStart, POR = 00h B[4:0]: XEA[4:0], XEnd, POR = 18h
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the
0	1		A ₇	A_6	A ₅	A ₄	A_3	A ₂	A ₁	A ₀	Start / End position	window address in the Y direction by an
0	1		0	0	0	0	0	0	0	A ₈		address unit A[8:0]: YSA[8:0], YStart, POR = 000h
0	1		B ₇	B ₆	B ₅	B ₄	B_3	B ₂	B ₁	B ₀		B[8:0]: YEA[8:0], YEnd, POR = 12Bh
0	1		0	0	0	0	0	0	0	B ₈		
0	0	46	0	1	0	0	0	1	1	0	Reserve	
0	0	47	0	1	0	0	0	1	1	1	Reserve	

SSD1607 Rev 0.20 P 39/59 Sep 2012 **Solomon Systech**

Com	Command Table R/W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	48	0	1	0	0	1	0	0	0	Reserve			
0	0	49	0	1	0	0	1	0	0	1	Reserve			
0	0	4A	0	1	0	0	1	0	1	0	Reserve			
0	0	4B	0	1	0	0	1	0	1	1	Reserve			
0	0	4C	0	1	0	0	1	1	0	0	Reserve			
0	0	4D	0	1	0	0	1	1	0		Reserve			
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X		
0	1		0	0	0	A ₄	A_3	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[4:0]: XAD[4:0], POR is 00h		
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y		
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A ₁	A_0	counter	address in the address counter (AC)		
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: YAD8:0], POR is 000h		
0	1	FF	1	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.		
											den			

SSD1607 | Rev 0.20 | P 40/59 | Sep 2012 | **Solomon Systech**

9 Command DESCRIPTION

9.1 Driver Output Control (01h)

This double byte command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
PC	OR .	0	0	1	0	1	0	1	1
W	1								MUX8
PC)R								1
W	1						GD	SM	TB
POR							0	0	0

MUX[8:0]: Specify number of lines for the driver: MUX[8:0] + 1. Multiplex ratio (MUX ratio) from 16 MUX to 300MUX.

GD: Selects the 1st output Gate

This bit is made to match the GATE layout connection on the panel. It defines the first scanning line.

SM: Change scanning order of gate driver.

When SM is set to 0, left and right interlaced is performed.

When SM is set to 1, no splitting odd / even of the GATE signal is performed,

Output pin assignment sequence is shown as below (for 300 MUX ratio):

	SM=0	SM=0	SM=1	SM=1
Driver	GD=0	GD=1	GD=0	GD=1
G0	ROW0	ROW1	ROW0	ROW150
G1	ROW1	ROW0	ROW150	ROW0
G2	ROW2	ROW3	ROW1	ROW151
G3	ROW3	ROW2	ROW151	ROW1
	:	:	:	:
G148	ROW148	ROW149	ROW74	ROW224
G149	ROW149	ROW148	ROW224	ROW74
G150	ROW150	ROW151	ROW75	ROW225
G151	ROW151	ROW150	ROW225	ROW75
:	:	:	:	:
G296	ROW296	ROW297	ROW148	ROW298
G297	ROW297	ROW296	ROW298	ROW148
G298	ROW298	ROW299	ROW149	ROW299
G299	ROW299	ROW298	ROW299	ROW149

See "Scan Mode Setting" on next page.

TB: Change scanning direction of gate driver.

This bit defines the scanning direction of the gate for flexible layout of signals in module either from up to down (TB = 0) or from bottom to up (TB = 1).

SSD1607 | Rev 0.20 | P 41/59 | Sep 2012 | **Solomon Systech**

Figure 9-1: Output pin assignment on different Scan Mode Setting

SSD1607 | Rev 0.20 | P 42/59 | Sep 2012 | **Solomon Systech**

9.2 Gate Scan Start Position (0Fh)

R/	W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
٧	٧	1	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
	PC)R	0	0	0	0	0	0	0	0
٧	V	1	0	0	0	0	0	0	0	SCN8
	POR		0	0	0	0	0	0	0	0

This command is to set Gate Start Position for determining the starting gate of display RAM by selecting a value from 0 to 299. Figure 9-2 shows an example using this command of this command when MUX ratio= 300 and MUX ratio= 150 "ROW" means the graphic display data RAM row.

Figure 9-2: Example of Set Display Start Line with no Remapping

	MUX ratio (01h) = 12Bh	MUX ratio (01h) = 095h	MUX ratio (01h) = 095h
GATE Pin	Gate Start Position (0Fh)	Gate Start Position (0Fh)	Gate Start Position (0Fh)
	= 000h	= 000h	= 046h ` ´
G0	ROW0	ROW0	-
G1	ROW1	ROW1	-
G2	ROW2	ROW2	-
G3	ROW3	ROW3	-
:	:		
:	:		
G73	:		-
G74	:		-
G75	:		ROW75
G76	:		ROW76
:			:
:			<u>:</u>
G148	ROW148	ROW148	:
G149	ROW149	ROW149	:
G150	ROW150	-	:
G151	ROW151	-	:
:		:	:
		:	:
G223	:	:	ROW223
G224	·	:	ROW224
G225	:	:	-
G226	:	:	-
	:	:	:
:	:	:	:
G296	ROW296	-	-
G297	ROW297	-	-
G298	ROW298	-	-
G299	ROW299	-	-
Display Example	SOLOMON		SOLOMON

SSD1607 | Rev 0.20 | P 43/59 | Sep 2012 | **Solomon Systech**

9.3 Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	ID0
PC)R	0	0	0	0	0	0	0	0

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

The pixel sequence is defined by the ID [0],

SSD1607 | Rev 0.20 | P 44/59 | Sep 2012 | **Solomon Systech**

9.4 Set RAM X - Address Start / End Position (44h)

R/	w	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
٧	٧	1				XSA4	XSA3	XSA2	XSA1	XSA0
	PC	R	0	0	0	0	0	0	0	0
٧	٧	1				XEA4	XEA3	XEA2	XEA1	XEA0
	PC)R	0	0	0	1	1	1	1	1

XSA[4:0]/XEA[4:0]: Specify the start/end positions of the window address in the X direction by 8 times address unit. Data is written to the RAM within the area determined by the addresses specified by XSA [4:0] and XEA [4:0]. These addresses must be set before the RAM write.

It allows on XEA [4:0] \leq XSA [4:0]. The settings follow the condition on 00h \leq XSA [4:0], XEA [4:0] \leq 18h. The windows is followed by the control setting of Data Entry Setting (R11h)

9.5 Set RAM Y - Address Start / End Position (45h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	YSA7	YSA6	YSA5	YSA4	YSA3	YSA2	YSA1	YSA0
POR	0	0	0	0	0	0	0	0	
W	1	0	0	0	0	0	0	0	YSA8
PC)R	0	0	0	0	0	0	0	0
W	1	YEA7	YEA6	YEA5	YEA4	YEA3	YEA2	YEA1	YEA0
PC)R	1	1	0	1	0	0	1	1
W	1	0	0	0	0	0	0	0	YEA8
POR		1	1	0	1	0	0	1	1

YSA[8:0]/YEA[8:0]: Specify the start/end positions of the window address in the Y direction by an address unit. Data is written to the RAM within the area determined by the addresses specified by YSA [8:0] and YEA [8:0]. These addresses must be set before the RAM write.

It allows YEA [8:0] \leq YSA [8:0]. The settings follow the condition on 00h \leq YSA [8:0], YEA [8:0] \leq 1BFh. The windows is followed by the control setting of Data Entry Setting (R11h)

9.6 Set RAM Address Counter (4Eh-4Fh)

Reg#	R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
4Eh	W	1				XAD4	XAD3	XAD2	XAD1	XAD0
4En	PC)R	0	0	0	0	0	0	0	0
4Fh	W	1	YAD7	YAD6	YAD5	YAD4	YAD3	YAD2	YAD1	YAD0
4611	POR		0	0	0	0	0	0	0	0
4Fh	W	W 1								YAD8
4611	POR									0

XAD[4:0]: Make initial settings for the RAM X address in the address counter (AC). **YAD[8:0]:** Make initial settings for the RAM Y address in the address counter (AC).

After RAM data is written, the address counter is automatically updated according to the settings with AM, ID bits and setting for a new RAM address is not required in the address counter. Therefore, data is written consecutively without setting an address. The address counter is not automatically updated when data is read out from the RAM. RAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses which is controlled by the Data Entry Setting (R11h) {AM, ID[1:0]}; RAM Address XStart / XEnd Position (R44h) and RAM Address Ystart / Yend Position (R45h). Otherwise undesirable image will be displayed on the Panel.

SSD1607 | Rev 0.20 | P 45/59 | Sep 2012 | **Solomon Systech**

10 Typical Operating Sequence

10.1 Normal Display

Sequence		Command	Action Description	Remark
	by User		Devices on (VCI overally):	
			Power on (VCI supply); HW Reset	
	User			
	IC		After HW reset, the IC will have Registers load with POR value Ready for command input VCOM register loaded with OTP value	
			IC enter idle mode	
3		-	Send initial code to driver including setting of	
	User	C 01	Command: Panel configuration (MUX, Source gate scanning direction)	
	User	C 03	Command: VGH, VGL voltage	
	User	C 04	Command: VSH / VSL voltage	
	User	C 3A	Command: Set dummy line pulse period	
	User	C 3B	Command: Set Gate line width	
	User	C 3C	Command: Select Border waveform	
4		-	Data operations	
	User	C 11	Command: Data Entry mode	
	User	C 44	Command: X RAM address start /end	
	User	C 45	Command: Y RAM address start /end	
	User	C 4E	Command: RAM X address counter	
	User	C 4F	Command: RAM Y address counter	
	User	C 24	Command: write display data to RAM	
			Ram Content for Display	
5	User	C 22	Command: Display Update Control 2	
	User	C 20	Command: Master Acitivation	
	IC	-	Booster and regulators turn on	
	IC	-	Load temperature register with sensor reading	
	IC	-	Load LUT register with corresponding waveform setting stored in OTP)	
	IC	-	Send output waveform according initial update option	
	IC	-	Send output waveform according to data	
	IC	-	Booster and Regulators turn off	
	IC	-	Back to idle mode	
6	User	_	IC power off;	

OTP Selection bit:
Set on R37h, and read from R2Dh, A[7:6] used for VCOM and A[5:4] used for OTP

	The road nomination, April 10 dood for a contraint April 10 dood for contraint April 1
A[7:6] / [5:4]	Description
00	It indicates fresh device, OTP read and program would be made on Default OTP set
	User required setting and programming the bits into 01.
01	It indicates default OTP programmed device, OTP read would be made on Default OTP set.
	User require setting and programming the bits into 11
11	It indicates SPARE OTP programmed device, only OTP read would be made on SPARE
	OTP set.
	User should stop the OTP programming if 11 is found at OTP checking stage

Rev 0.20 SSD1607 P 46/59 Sep 2012 Solomon Systech

10.2 VCOM OTP Program

1 User - Power on (VCI and VPP supply) 2 User - HW Reset 3 User C 2D Check whether the IC status and determine whether "default" or "spare" OTP should be used 4 User If the IC had been OTP twice (both default and spare had been used up). The operation should stop	Sequence	Action by	Command	Action Description	Remark
3 User C 2D Check whether the IC status and determine whether "default" or "spare" OTP should be used If the IC had been OTP twice (both default and spare had been used up). The operation should stop 5 User C 37 Proceed OTP sequence. Command: Indicate which OTP location to be use (default or spare) User C 22 Command: CLKEN=1 User C 36 Program OTP selection register User - Wait until BUSY = L User - Wait until BUSY = L User - Power OFF (VPP supply) 7 - Send initial code to driver including setting of (or leave scanning direction) User C 31 Command: VSH / VSL voltage User C 32 Command: VSH / VSL voltage User C 34 Command: VSH / VSL voltage User C 35 Command: Set dummy line pulse period User C 36 Command: Booster on and High voltage ready User C 37 Command: Enter VCOM sensing mode IC VCOM pin in sensing mode IC VCOM pin in sensing mode IC Mait for 10s IC Mait for 10s IC Mait for 10s IC Mait until BUSY = L Wait until BUSY = L Command: CCMO MOTP program User - Wait until BUSY = L User - Wait until BUSY = L User - Wait until BUSY = L Command: CLKEN=0 User - Wait until BUSY = L	1		_	Power on (VCI and VPP supply)	
"Idefault" or "spare" OTP should be used If the IC had been OTP twice (both default and spare had been used up). The operation should stop OTP selection register	2	User	-		
Suser			C 2D		
Solution Solution	4	User		If the IC had been OTP twice (both default and spare	
User	5	User	C 37	Command: Indicate which OTP location to be use	OTP selection register
Ser			D 80		
User - Power OFF (VPP supply) 7 - Send initial code to driver including setting of (or leave VCOM sensing as POR) 8 - Send initial code to driver including setting of (or leave VCOM sensing as POR) User C 01 Command: Panel configuration (MUX, Source gate scanning direction) User C 03 Command: VGH, VGL voltage User C 04 Command: VSH / VSL voltage User C 32 Command: Set dummy line pulse period User C 32 VCOM sense required full set of LUT for operation, USER required writing LUT in register 32h LUT parameter User C 22 Command: Booster on and High voltage ready D 40 C 20 User - Wait until BUSY = L 8 User C 28 Command: Enter VCOM sensing mode IC - VCOM pin in sensing mode IC - Wait for 10s IC - Wait for 10s IC - MI Gate scanning continuously IC - Detect VCOM voltage and store in register IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User - Wait until BUSY = L			-		
User - Power OFF (VPP supply) 7 - Send initial code to driver including setting of (or leave as POR) User C 01 Command: Panel configuration (MUX, Source gate scanning direction) User C 03 Command: VGH, VGL voltage User C 04 Command: VSH / VSL voltage User C 3A Command: Set dummy line pulse period User C 32 VCOM sense required full set of LUT for operation, USER required writing LUT in register 32h LUT parameter User C 28 Command: Booster on and High voltage ready C 20 User - Wait until BUSY = L 8 User C 28 Command: Enter VCOM sensing mode IC - VCOM pin in sensing mode IC - All Source cell have VSS output All Gate scanning continuously IC - Wait for 10s According to R29h IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User C 22 Command: Booster and High voltage disable User - Wait until BUSY = L 9 User - Wait until BUSY = L	6	User	C 36		
User C 01 Command: Panel configuration (MUX, Source gate setting during application) User C 03 Command: VGH, VGL voltage User C 04 Command: Set dummy line pulse period User C 3A Command: Set dummy line pulse period User C 32 VCOM sense required full set of LUT for operation, USER required writing LUT in register 32h LUT parameter User C 22 Command: Booster on and High voltage ready D 40 C 20 User - Wait until BUSY = L 8 User C 28 Command: Enter VCOM sensing mode IC - VCOM pin in sensing mode IC - VCOM pin in sensing mode IC - Wait for 10s According to R29h IC - Detect VCOM voltage and store in register IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User - Wait until BUSY = L 9 User - Wait until BUSY = L		User	-	Wait until BUSY = L	
User C 01 Command: Panel configuration (MUX, Source gate setting during application)		User	-	Power OFF (VPP supply)	
Scanning direction Scanning direction	7		-	as POR)	should have same
User C 04 Command: VSH / VSL voltage User C 3A Command: Set dummy line pulse period User C 32 VCOM sense required full set of LUT for operation, USER required writing LUT in register 32h - LUT parameter User C 22 Command: Booster on and High voltage ready C 20 Wait until BUSY = L 8 User C 28 Command: Enter VCOM sensing mode IC - Wait for 10s IC - All Source cell have VSS output All Gate scanning continuously IC - Wait for 10s IC - Detect VCOM voltage and store in register IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User C 22 Command: Booster and High voltage disable User - Wait until BUSY = L 11 User C 22 Command: CLKEN=0 User - Wait until BUSY = L		User	C 01		
User C 3A Command: Set dummy line pulse period User C 32 VCOM sense required full set of LUT for operation, USER required writing LUT in register 32h LUT parameter User C 22 Command: Booster on and High voltage ready C 20 Command: Booster on and High voltage ready C 20 Command: Enter VCOM sensing mode IC - Wait until BUSY = L SUSER C 28 Command: Enter VCOM sensing mode IC - All Source cell have VSS output All Gate scanning continuously IC - Wait for 10s IC - Wait for 10s IC - All Gate Stop Scanning. IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User C 22 Command: Booster and High voltage disable D 02 C 20 User - Wait until BUSY = L User - Power On (VPP supply) 10 User C 2A Command: VCOM OTP program User - Wait until BUSY = L 11 User - Wait until BUSY = L 12 Command: CLKEN=0 User - Wait until BUSY = L		User	C 03	Command: VGH, VGL voltage	
User C 32 VCOM sense required full set of LUT for operation, USER required writing LUT in register 32h - LUT parameter User C 22 Command: Booster on and High voltage ready D 40 C 20 User - Wait until BUSY = L 8 User C 28 Command: Enter VCOM sensing mode IC - VCOM pin in sensing mode IC - All Source cell have VSS output All Gate scanning continuously IC - Wait for 10s IC - Wait for 10s IC - Detect VCOM voltage and store in register IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User C 22 Command: Booster and High voltage disable User - Wait until BUSY = L User - Power On (VPP supply) 10 User C 2A Command: VCOM OTP program User - Wait until BUSY = L 11 User C 22 Command: CLKEN=0 User - Wait until BUSY = L		User	C 04	Command: VSH / VSL voltage	
USER required writing LUT in register 32h - LUT parameter User C 22		User	C 3A	Command: Set dummy line pulse period	
User C 22 D 40 C 20 User - Wait until BUSY = L 8 User C 28 Command: Enter VCOM sensing mode IC - VCOM pin in sensing mode IC - All Source cell have VSS output All Gate scanning continuously IC - Wait for 10s IC - Detect VCOM voltage and store in register IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User C 22 D 02 C 20 User - Wait until BUSY = L User - Power On (VPP supply) 10 User C 24 Command: VCOM OTP program User - Wait until BUSY = L 11 User C 22 C Command: CLKEN=0 User - Wait until BUSY = L 12 User - Wait until BUSY = L Wait until BUSY = L User - Wait until BUSY = L User - Wait until BUSY = L Wait until BUSY = L User - Wait until BUSY = L		User	C 32		
D 40 C 20			-	LUT parameter	
B User C 28 Command: Enter VCOM sensing mode IC		User	D 40	Command: Booster on and High voltage ready	
IC - VCOM pin in sensing mode IC - All Source cell have VSS output All Gate scanning continuously IC - Wait for 10s According to R29h IC - Detect VCOM voltage and store in register IC - All Gate Stop Scanning. User - Wait until BUSY = L User - Wait until BUSY = L User - Wait until BUSY = L User - Power On (VPP supply) 10 User - Wait until BUSY = L User - Wait until BUSY = L User - Wait until BUSY = L User - C 2A Command: VCOM OTP program User - Wait until BUSY = L 11 User C 22 Command: CLKEN=0 User - Wait until BUSY = L Wait until BUSY = L User - Wait until BUSY = L User - Wait until BUSY = L User - Wait until BUSY = L		User		Wait until BUSY = L	
C	8	User	C 28	Command: Enter VCOM sensing mode	
IC		IC	-	VCOM pin in sensing mode	
IC - Wait for 10s According to R29h IC - Detect VCOM voltage and store in register IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User - Wait until BUSY = L User - Wait until BUSY = L User - Power On (VPP supply) 10 User - Wait until BUSY = L 11 User - Wait until BUSY = L 11 User - Wait until BUSY = L 11 User - Wait until BUSY = L 12 Command: VCOM OTP program User - Wait until BUSY = L 13 User - Wait until BUSY = L User - Wait until BUSY = L User - Wait until BUSY = L		IC	-	All Source cell have VSS output	
IC - Detect VCOM voltage and store in register IC - All Gate Stop Scanning. User - Wait until BUSY = L 9 User C 22 Command: Booster and High voltage disable User - Wait until BUSY = L User - Power On (VPP supply) 10 User C 2A Command: VCOM OTP program User - Wait until BUSY = L 11 User C 22 Command: CLKEN=0 D 01 C 20 User - Wait until BUSY = L				All Gate scanning continuously	
IC		IC	-	Wait for 10s	According to R29h
IC		IC	_	Detect VCOM voltage and store in register	
User - Wait until BUSY = L 9 User			-	<u> </u>	
9 User			-	·	
User - Wait until BUSY = L	9		D 02		
User Power On (VPP supply)		User	-	Wait until BUSY = L	
10 User			-		
User - Wait until BUSY = L	10		C 2A	` '''	
11 User			-		
User - Wait until BUSY = L	11		D 01		
		User	-	Wait until BUSY = L	
			_		

 SSD1607
 Rev 0.20
 P 47/59
 Sep 2012
 Solomon Systech

10.3 WS OTP Program

Sequence	Action by	Command	Action Description	Remark
1	User	-	Power on (VCI supply)	
2	User	-	Power on (VPP supply)	
3	User	-	HW Reset	
4	User	C 2D	Check whether the IC status and determine whether "default" or "spare" OTP should be used	
5	User		If the IC had been OTP twice (both default and spare had been used up). The operation should stop	
6	User	C 37	Proceed OTP sequence. Command: Indicate which OTP location to be use (default or spare)	OTP selection register
	User	C 22 D 80 C 20	Command: CLKEN=1	
	User	-	Wait BUSY = L	
7	User	C 36	Program OTP selection register	
	User	-	Wait BUSY = L	
8	User	C 24	Write corresponding data into RAM	
			Following specific format	
			Write into RAM	
			Full LUT (11 entries + Temperature range) must be written at the same time	
	User	C 4E D 00 C 4F D 00	Command: Initial Ram address counter	
9	User	C 30	Waveform Setting OTP programming	
	IC	-	BUSY pin pull H	
	IC		Check the OTP Selection	
	IC		IC control OTP programming time, and transfer data to selected OTP	
	IC	-	BUSY pin pull L	
	User	-	Wait BUSY = L	_
10	User	C 22 D 01 C 20	Command: CLKEN=0	
	User	-	Wait BUSY = L	
11	User	-	IC power off	

SSD1607 Rev 0.20 P 48/59 Sep 2012 **Solomon Systech**

11 ABSOLUTE MAXIMUM RATING

Table 11-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
V _{CI}	Logic supply voltage	-0.5 to +4.0	V
V _{IN}	Logic Input voltage	-0.5 to V _{DDIO} +0.5	V
V_{OUT}	Logic Output voltage	-0.5 to V _{DDIO} +0.5	V
T _{OPR}	Operation temperature range	-40 to +85	°C
T_{STG}	Storage temperature range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. This device is not radiation protected.

12 ELECTRICAL CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T_{OPR} =25°C.

Table 12-1: DC Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
V _{CI}	VCI operation voltage		VCI	2.4	3.0	3.7	V
V_{DD}	VDD operation voltage		VDD	1.7	1.8	1.9	V
V _{COM}	VCOM output voltage		VCOM	-4.0		-0.2	V
V_{GATE}	Gate output voltage		G0-299	-20		+22	V
$V_{GATE(p-p)}$	Gate output peak to peak		G0-299			42	V
	voltage						
V_{SH}	Positive Source output voltage		S0-199	+10		+17	V
V _{SL}	Negative Source output		S0-199		-VSH		V
V SL	voltage		30-199		-۷311		v
V _{IH}	High level input voltage		D[7:0], CS#,	$0.8V_{DDIO}$			V
V_{IL}	Low level input voltage		R/W#, D/C#, E,	BBIO		$0.2V_{DDIO}$	V
			RES#, CLS,			5510	
			M/S#, CL,				
			BS[2:0], TSDA, TSCL				
V _{OH}	High level output voltage	IOH = -100uA	D[7:0], BUSY,	$0.9V_{DDIO}$			V
V _{OL}	Low level output voltage	IOL = 100uA	CL, TSDA,	0.01000		$0.1V_{\rm DDIO}$	
· OL	-on love calpar reliage		TSCL			OTT TODIO	
V_{PP}	OTP Program voltage		VPP		7.5		V
Idslp_VCI	Deep Sleep mode current	VCI=3.7V	V _{CI}		2	5	uA
		DC/DC OFF					
		No clock					
		No output load					
		Ram data not retain					
Islp_VCI	Sleep mode current	VCI=3.7V	VCI		35	50	uA
		DC/DC OFF					
		No clock					
		No output load					
		Ram data retain	\ (Q)				
lopr_VCI	Operating current	VCI=3.0V	VCI		2000		uA
		DC/DC on					
		VGH=22V					
		VGL=-20V					
		VSH=15V VSL=-15V					
		VCOM = -2V					
		No waveform transitions.					
		No loading.					
		No RAM read/write					
		No OTP read /write					
		Osc on					
		Bandgap on					
		Danagap on	l	j .		I .	

SSD1607 | Rev 0.20 | P 50/59 | Sep 2012 | **Solomon Systech**

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
V_{GH}	Operating Mode	VCI=3.0V	VGH	21	22	23	V
	Output Voltage	DC/DC on					
V_{SH}		VGH=22V	VSH	14.5	15	15.5	V
▼ 5⊓		VGL=-20V		1 1.0	'0	10.0	
		VSH=15V	1/001/				
V_{COM}		VSL=-15V	VCOM	-2.5	-2	-1.5	V
		VCOM = -2V					
V_{SL}		No waveform transitions.	VSL	-15.5	-15	-14.5	V
		No loading.					
V_{GL}		Osc on	VGL	-21	-20	-19	V
* GL		Bandgap on					

Table 12-2: Regulators Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
IVGH	VGH current	VGH = 22V	VGH			400	uA
IVGL	VGL current	VGL = -20V	VGL			600	uA
IVSH	VSH current	VSH = +15V	VSH			4000	uA
IVSL	VSL current	VSL = -15V	VSL			4000	uA
IVCOM	VCOM current	VCOM = -2V	VCOM			100	uA

SSD1607 Rev 0.20 P 51/59 Sep 2012 **Solomon Systech**

13 AC CHARACTERISTICS

13.1 Oscillator frequency

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T_{OPR}=25°C.

Table 13-1: Oscillator Frequency

Symbol	Parameter		Applicable pin	Min.	Тур.	Max.	Unit
Fosc	Internal Oscillator frequency	VCI=2.4 to 3.7V	CL	0.95	1	1.05	MHz

SSD1607 | Rev 0.20 | P 52/59 | Sep 2012 | **Solomon Systech**

13.2 Interface Timing

13.2.1 MCU 6800-Series Parallel Interface

Table 13-2: 6800-Series MCU Parallel Interface Timing Characteristics

 $(V_{DDIO} - V_{SS} = 2.4V \text{ to } 3.7V, T_{OPR} = 25^{\circ}C, C_{L} = 20pF)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	_	_	ns
t _{AS}	Address Setup Time	0	_	_	ns
t _{AH}	Address Hold Time	0	_	_	ns
t _{DSW}	Write Data Setup Time	40	_	_	ns
t_{DHW}	Write Data Hold Time	7	-	_	ns
t _{DHR}	Read Data Hold Time	20	-	_	ns
t _{OH}	Output Disable Time	-		70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read)	120			ns
IVVCSL	Chip Select Low Pulse Width (write)	60		_	113
PW_{CSH}	Chip Select High Pulse Width (read)	60			ns
I VVCSH	Chip Select High Pulse Width (write)	60		_	113
t_{R}	Rise Time [20% ~ 80%]	-	-	15	ns
t_{F}	Fall Time [20% ~ 80%]	-	-	15	ns

Figure 13-1: MCU 6800-series parallel interface characteristics

SSD1607 Rev 0.20 P 53/59 Sep 2012 **Solomon Systech**

13.2.2 MCU 8080-Series Parallel Interface

Table 13-3: MCU 8080-Series Parallel Interface Timing Characteristics

 $(V_{DDIO} - V_{SS} = 2.4V \text{ to } 3.7V, T_{OPR} = 25^{\circ}C, C_{L}=20pF)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	1	ns
t _{AS}	Address Setup Time	10	-	1	ns
t_{AH}	Address Hold Time	0	-	ı	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	7	-	ı	ns
t_{DHR}	Read Data Hold Time	20	-	ı	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
t _{PWLR}	Read Low Time	120	-	ı	ns
t _{PWLW}	Write Low Time	60	-	-	ns
t _{PWHR}	Read High Time	60	-	-	ns
t _{PWHW}	Write High Time	60	-	-	ns
t _R	Rise Time [20% ~ 80%]	-	-	15	ns
t _F	Fall Time [20% ~ 80%]	-	-	15	ns
t _{CS}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	•	ns
t _{CSF}	Chip select hold time	20	-	1	ns

Figure 13-2: 8080-series parallel interface characteristics (Form 1)

Figure 13-3: 8080-series parallel interface characteristics (Form 2)

SSD1607 | Rev 0.20 | P 54/59 | Sep 2012 | **Solomon Systech**

13.2.3 Serial Peripheral Interface

Table 13-4 : Serial Peripheral Interface Timing Characteristics

 $(V_{DDIO} - V_{SS} = 2.4V \text{ to } 3.7V, T_{OPR} = 25^{\circ}C, C_{L}=20pF)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	-	-	ns
t _{AS}	Address Setup Time	150	-	-	ns
t _{AH}	Address Hold Time	150	-	-	ns
t _{CSS}	Chip Select Setup Time	120	-	-	ns
t _{CSH}	Chip Select Hold Time	60	-	-	ns
t _{DSW}	Write Data Setup Time	50	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
t _{CLKL}	Clock Low Time	100	-	-	ns
t _{CLKH}	Clock High Time	100	-	-	ns
t_R	Rise Time [20% ~ 80%]	-	-	15	ns
t _F	Fall Time [20% ~ 80%]	-		15	ns

Figure 13-4 : Serial peripheral interface characteristics

SSD1607 Rev 0.20 P 55/59 Sep 2012 **Solomon Systech**

14 APPLICATION CIRCUIT

Figure 14-1 : Booster Connection Diagram

SSD1607 | Rev 0.20 | P 56/59 | Sep 2012 | **Solomon Systech**

Figure 14-2: Typical application diagram with SPI interface

 SSD1607
 Rev 0.20
 P 57/59
 Sep 2012
 Solomon Systech

Table 14-1 : Reference Component Value

Part Name	Value	Max Volt. Rating	Pins Connected	MAX COG ITO
		[ln V]		resistance [in Ohm]
C0	1uF	6	VCI, VDDIO,	5
			VSS	
C1	1uF	6	VDD, VSS	30
C2	1uF	50	PREVGH	5
C3	4.7uF	50	L1 and D2/D3	NA
C4	1uF	50	PREVGL	5
C5	1uF	25	VGH	10
C6	1uF	25	VSH	5
C7	1uF	25	VGL	10
C8	1uF	25	VSL	5
C9	1uF	6	VCOM	5
C10	10uF	6	VCI [Booster]	NA
C11	4.7uF	50	PREVGL	NA
			[Booster]	
C12	1uF	50	PREVGH	NA
			[Booster]	
C71	1uF	6	VCI [LM75A]	NA
L1	10uH			
Q1	NMOS [Vishay: Si1304BDL]		GDR, RESE	5
D1	Diode [OnSemi: MBR0530]		PREVGH	NA
D2	Diode [OnSemi: MBR0530]			NA
D3	Diode [OnSemi: MBR0530]		PREVGL, VSS	NA
R1	0.47 Ohm		RESE	5
R11	2.2kOhm			NA
R12	2.2kOhm			NA
U3	LM75A			NA

SSD1607 | Rev 0.20 | P 58/59 | Sep 2012 | **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2002/95/EC of the European Parliament and of the council of 27 January 2004 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

SSD1607 | Rev 0.20 | P 59/59 | Sep 2012 | **Solomon Systech**