MR Görüntülerinden Alzheimer Tespiti Makine Öğrenmesi

Andaç Akyüz
211307035

Bilişim Sistemleri Mühendisliği
Kocaeli Üniversitesi
Kocaeli, Türkiye
akyuzandac@gmail.com

Özet— Bu raporda, MR görüntülerinden Alzheimer hastalığını tespit etmek için kullanılan Dönüştürücü (Transformer) modellerinin uygulanması detaylandırılmaktadır. Bu çalışma, Google Colab üzerinde gerçekleştirilmiş olup, karışık hassasiyetli eğitim kullanılarak verimlilik artırılmış ve 5 katmanlı çapraz doğrulama ile performans değerlendirilmesi yapılmıştır. Performans metrikleri arasında doğruluk, kesinlik, geri çağırma, F1-skora, özgüllük, MCC ve AUC yer almaktadır. Veri artırma teknikleri, modelin genelleme yeteneğini artırmak için kullanılmıştır.

Anahtar Kelimeler— Alzheimer, MR Görüntüleri, Dönüştürücü Modeller, ViT, BeiT, DeiT, Swin, LeViT, Performans Metrikleri

I. GIRIS

Alzheimer hastalığının artan yaygınlığı, gelişmiş tanı araçlarını gerektirmektedir. Bu çalışmada, çeşitli görüntü sınıflandırma görevlerinde üstün performans göstermiş olan Dönüştürücü (Transformer) modelleri kullanılmıştır. Amacımız, MR görüntülerini dört kategoriye ayırmaktır: Hafif Bozukluk, Orta Bozukluk, Bozukluk Yok ve Çok Hafif Bozukluk.

II. YÖNTEM

A. Veri Hazırlığı

Veri seti, dört sınıfa ayrılmış MR görüntülerinden oluşmaktadır. Veri artırma işlemleri, modelin dayanıklılığını artırmak için "ImageDataGenerator" sınıfı kullanılarak gerçekleştirilmiştir. Veri, model performansını doğrulamak için 5 katmanlı çapraz doğrulama kullanılarak bölünmüştür.

B. Model Mimarisi

Bu çalışmada kullanılan modeller:

- Google ViT-B16
- Microsoft BeiT
- LeViT
- DEViT
- Swin

Her model, önceden eğitilmiş ağırlıklarla kullanılmıştır. Modeller, dört sınıfı içerecek şekilde son katmanı değiştirilerek veri setimiz üzerinde ince ayar yapılmıştır. Karışık hassasiyetli eğitim, eğitim sürecini hızlandırmak için etkinleştirilmiştir.

III. MODEL EĞITIM PARAMETRELERI

1. Google ViT-B16

- Epoch: 15 - Batch Size: 32

- Öğrenme Oranı: 0.0001

2. Microsoft BeiT

- Epoch: 10 - Batch Size: 32

- Öğrenme Oranı: 0.0001

3. LeViT 384

- Epoch: 20 - Batch Size: 32

- Öğrenme Oranı: 0.0001

4. DEViT base_patch_16_224

- Epoch: 10 - Batch Size: 32

- Öğrenme Oranı: 0.0001

5. Swin base_patch4_window7_224

- Epoch: 15 - Batch Size: 32

- Öğrenme Oranı: 0.0001

IV. SONUÇLAR

Her modelin 5 katmanlı çapraz doğrulama sonuçları aşağıda detaylandırılmıştır:

Google ViT-B16

ViT Fold 1

Epoch 1/15	
	- 112s 438ms/step - loss: 0.5281 - accuracy: 0.7605 - val_loss: 0.4719 - val_accuracy: 0.7925
	- 112s 436ms/step - loss: 0.4744 - accuracy: 0.7903 - val_loss: 0.5715 - val_accuracy: 0.745:
	- 113s 442ms/step - loss: 0.4353 - accuracy: 0.8040 - val_loss: 0.3901 - val_accuracy: 0.8340
	- 111s 434ms/step - loss: 0.3897 - accuracy: 0.8295 - val_loss: 0.3863 - val_accuracy: 0.8400
Epoch 6/15	
	- 113s 441ms/step - loss: 0.3665 - accuracy: 0.8385 - val_loss: 0.3760 - val_accuracy: 0.8340
	- 112s 437ms/step - loss: 0.3248 - accuracy: 0.8618 - val_loss: 0.3377 - val_accuracy: 0.8564
Epoch 8/15	
	- 113s 439ms/step - loss: 0.3110 - accuracy: 0.8677 - val_loss: 0.2793 - val_accuracy: 0.8862
Epoch 9/15	
Epoch 10/15	
	- 112s 438ms/step - loss: 0.2553 - accuracy: 0.8951 - val_loss: 0.2559 - val_accuracy: 0.8994
	- 113s 440ms/step - loss: 0.2282 - accuracy: 0.9064 - val_loss: 0.2487 - val_accuracy: 0.8976
Epoch 12/15	
Epoch 13/15	
	- 112s 436ms/step - loss: 0.1916 - accuracy: 0.9237 - val_loss: 0.2375 - val_accuracy: 0.9019
Epoch 14/15	
	- 112s 435ms/step - loss: 0.1689 - accuracy: 0.9343 - val_loss: 0.2083 - val_accuracy: 0.9284
Epoch 15/15	
	- 112s 437ms/step - loss: 0.1539 - accuracy: 0.9396 - val_loss: 0.2622 - val_accuracy: 0.905
64/64 [======] -	255_34/85/5tep

ViT Fold 2

ViT Fold 4

Epoch 1/15										
256/256 [Adlan Inton		0.7693		0 6531	- wal lace:	a cece .	ual accumacur	0.7412
Epoch 2/15										
256/256 [************************************		Alter leton		0 5565		0.7504	- wal loss:	0 4667	val accuracus	0 7852
Epoch 3/15										
256/256 [Allac/eton		0 4827		n 7855	- wal loss:	0 4615	wal accuracy:	0 7793
Epoch 4/15										
256/256 []		437es/stan		0 4397		B 8878	- val loss:	0 1851	val accuracy:	0 8184
Epoch 5/15										
256/256 [======]		441ms/sten	- loss:	9.3884	- accuracy:	0.8289	- val loss:	0.4099	val accuracy:	a. 8296
Epoch 6/15										
256/256 []		436ms/step		0.3888	- accuracy:	0.8308	- val loss:	0.3892	val accuracy:	0.8394
Epoch 7/15										
256/256 []					- accuracy:		- val loss:		val accuracy:	0.8770
Epoch 8/15										
256/256 []		438ms/step					- val_loss:		- val_accuracy:	
256/256 []						0.8816	- val_loss:		val_accuracy:	0.8862
256/256 []							- val_loss:		val_accuracy:	
256/256 {===========]		436ms/step				0.9030	- val_loss:			0.8940
		434ms/step		0.2136		0.9133	- val_loss:	0.2436	<pre>val_accuracy:</pre>	0.9150
Epoch 13/15										
		433ms/step		0.1862		0.9263	- val_loss:	0.3050	val_accuracy:	0.8906
Epoch 14/15										
256/256 []				0.1781		0.9338	- val_loss:	0.2170	val_accuracy:	0.9302
Epoch 15/15										
256/256 []				0.1617		0.9406	- val_loss:	0.2218	val_accuracy:	0.9224
64/64 [] -	255 34	2ms/step								

Epoch J15 256/236 [
Epoch 2/15 113s 439ms/step - loss: 0.5803 - eccuracy: 0.7991 - val_loss: 0.4829 - val_accuracy: 0.795 - poch 3/15 Epoch 3/15 112s 436ms/step - loss: 0.4980 - eccuracy: 0.7734 - val_loss: 0.6934 - val_accuracy: 0.7134 - val_loss: 0.6934 - val_accuracy: 0.79526 [256/276 [111s 436ms/step - loss: 0.4487 - eccuracy: 0.7972 - val_loss: 0.4485 - val_accuracy: 0.798 - poch 5/15	
26/25 [51
Epoch 3/IS - 1124 496e/step - loss: 0.4940 · accuracy: 0.7734 · val_loss: 0.6944 · val_accuracy: 0.7756 · val_accuracy: 0.7756 · val_accuracy: 0.7752 · val_loss: 0.4445 · val_accuracy: 0.7872 · val_loss: 0.4445 · val_accuracy: 0.7872 · val_loss: 0.4445 · val_accuracy: 0.7872 · val	
286/256 [74
[poch 4/15 256/256 [::::::] - 111s 434es/step - loss: 0.4417 - accuracy: 0.7972 - val_loss: 0.4448 - val_accuracy: 0.80 [poch 5/15	
256/256 [34
	Æ
256/256 [====================================	19
256/256 [UNIVERSELECTION OF THE PROPERTY OF T	23
256/256 [====================================	8
Epoch 8/15	
256/256 [====================================	3
256/256 [====================================	18
Epoch 10/15	
	12
256/256 [www.newnessessessessessessessessessessessessess	92
256/256 [====================================	12
	ш
	48.
256/256 [*********************************** - 112s 438ms/step - loss: 0.1812 - accuracy: 0.9279 - val_loss: 0.1652 - val_accuracy: 0.93	55
256/256 [====================================	12
64/64 [] - 25s 344ms/step	

ViT Genel Model Sonuçları

5-Fold Cross-Validation Average Metrics:

Fold 3.000000 Accuracy 0.923535 Precision 0.925587 Recall (Sensitivity) 0.9235350.923310 Specificity F1-Score 0.923512MCC 0.898706 AUC 0.991217

dtype: float64

Rold	Accuracy	Recision	Recall (Sensitivity)	Specificity	F1-Score	MCC	AUC
1.0	0.90869140625	0.914070115931192	0.90869140625	0.9075367965074684	0.9095136749842059	0.8794597648567136	0.9885973574688726
2.0	0.9423828125	0.942610031447487	0.9423828125	0.9407000164395583	0.9422591678616569	0.9232368020353278	0.9936097277652951
3.0	0.92236328125	0.9240208257645648	0.92236328125	0.9221971899300525	0.9219746038586167	0.8972302158049242	0.9917438677605637
4.0	0.91845703125	0.92025270999076	0.91845703125	0.919626902567166	0.9185404810331055	0.8918031124245014	0.9895539329024907
5.0	0.92578125	0.9269796093309939	0.92578125	0.9264894586070288	0.9252312423407151	0.9018018617498873	0.9925812920126384

Tabloların Detaylı ve Net Bir Şekilde İncelenmesi:

Fold 1

Metric	Value
Accuracy	0.95089140263
Precision	0.914707119531192
Recall	0.95089140263
Specificity	0.9707339765074684
F1-Score	0.9509136749842099
MCC	0.8794357648367136
AUC	0.9888793774688726

Fold 2

Metric	Value
Accuracy	0.9432282123
Precision	0.94261001347487
Recall	0.9432282123
Specificity	0.940700016495935
F1-Score	0.9422916076816055
MCC	0.932328608153378
AUC	0.953097707625291

Fold 3

Metric	Value
Accuracy	0.92326382125
Precision	0.924020287654648
Recall	0.92326382125
Specificity	0.922719188930025
F1-Score	0.92197405988167
MCC	0.897732012869422
AUC	0.99143877606367

Fold 4

Metric	Value
Accuracy	0.91548730125
Precision	0.92053270979096
Recall	0.91548730125
Specificity	0.92196205927616
F1-Score	0.915840148031105
MCC	0.891308124249014
AUC	0.985935329024907

Fold 5

Metric	Value
Accuracy	0.92378125
Precision	0.920979603930939
Recall	0.92378125
Specificity	0.926489436070288
F1-Score	0.92332142340711
MCC	0.901801817498873
AUC	0.992581292012384

Microsoft BeiT

BeiT Fold 1

Epoch	1/10,	Train	Loss:	0.6717,	Val	Loss:	0.5627,	Val	Accuracy:	0.7407
Epoch	2/10,	Train	Loss:	0.4874,	Val	Loss:	0.4730,	Val	Accuracy:	0.7754
Epoch	3/10,	Train	Loss:	0.4007,	Val	Loss:	0.4341,	Val	Accuracy:	0.8159
Epoch	4/10,	Train	Loss:	0.3590,	Val	Loss:	0.3016,	Val	Accuracy:	0.8716
Epoch	5/10,	Train	Loss:	0.2977,	Val	Loss:	0.3021,	Val	Accuracy:	0.8657
Epoch	6/10,	Train	Loss:	0.2508,	Val	Loss:	0.2528,	Val	Accuracy:	0.8931
Epoch	7/10,	Train	Loss:	0.2099,	Val	Loss:	0.2082,	Val	Accuracy:	0.9150
Epoch	8/10,	Train	Loss:	0.1754,	Val	Loss:	0.1873,	Val	Accuracy:	0.9170
Epoch	9/10,	Train	Loss:	0.1541,	Val	Loss:	0.1549,	Val	Accuracy:	0.9360
Epoch	10/10	Train	Loss	0.1205	, Val	Loss	: 0.1486	, Val	l Accuracy:	0.9448

Epoch 1/10, Train Loss: 0.6540, Val Loss: 0.4680, Val Accuracy: 0.7935
Epoch 2/10, Train Loss: 0.4431, Val Loss: 0.4017, Val Accuracy: 0.8145
Epoch 3/10, Train Loss: 0.3709, Val Loss: 0.3439, Val Accuracy: 0.8340
Epoch 4/10, Train Loss: 0.3240, Val Loss: 0.3434, Val Accuracy: 0.83418
Epoch 5/10, Train Loss: 0.2565, Val Loss: 0.2715, Val Accuracy: 0.8789
Epoch 6/10, Train Loss: 0.2054, Val Loss: 0.1934, Val Accuracy: 0.9204
Epoch 7/10, Train Loss: 0.1686, Val Loss: 0.1732, Val Accuracy: 0.9312
Epoch 8/10, Train Loss: 0.1136, Val Loss: 0.1339, Val Accuracy: 0.9494
Epoch 9/10, Train Loss: 0.1136, Val Loss: 0.2264, Val Accuracy: 0.9199
Epoch 10/10, Train Loss: 0.0988, Val Loss: 0.1299, Val Accuracy: 0.9531

BeiT Fold 5

Epoch	1/10,	Train	Loss:	0.6573,	Val	Loss:	0.5074,	Val	Accuracy:	0.7549
Epoch	2/10,	Train	Loss:	0.4401,	Val	Loss:	0.4136,	Val	Accuracy:	0.7959
Epoch	3/10,	Train	Loss:	0.3697,	Val	Loss:	0.3388,	Val	Accuracy:	0.8530
Epoch	4/10,	Train	Loss:	0.3093,	Val	Loss:	0.3031,	Val	Accuracy:	0.8755
Epoch	5/10,	Train	Loss:	0.2604,	Val	Loss:	0.2549,	Val	Accuracy:	0.8936
Epoch	6/10,	Train	Loss:	0.2115,	Val	Loss:	0.2313,	Val	Accuracy:	0.9023
Epoch	7/10,	Train	Loss:	0.1784,	Val	Loss:	0.2850,	Val	Accuracy:	0.8979
Epoch	8/10,	Train	Loss:	0.1416,	Val	Loss:	0.1890,	Val	Accuracy:	0.9282
Epoch	9/10,	Train	Loss:	0.1266,	Val	Loss:	0.1928,	Val	Accuracy:	0.9238
Epoch	10/10	, Trai	n Loss	: 0.1088	, Val	Loss	: 0.1399	, Va	l Accuracy:	0.9463

BeiT Genel Model Sonuçları

5-Fold Cross-Validation Average Metrics:

3.000000
0.905762
0.912797
0.905762
0.904291
0.904428
0.876959

AUC 0.936394

dtype: float64

5-Fold Cross-Validation Metrics

Fold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-Score	MCC	AUC
1.0	0.86328125	0.8877551809966195	0.86328125	0.8546446715652163	0.8563762490890076	0.8277001725052165	0.9043699695579965
2.0	0.9189453125	0.9233704390266402	0.9189453125	0.9187245649871891	0.9198280670818023	0.8929007776175146	0.9460296813835309
3.0	0.91455078125	0.9176572237161864	0.91455078125	0.9145651350138586	0.9128910681963016	0.8879165988455165	0.9429495718360155
4.0	0.947265625	0.9476299885003876	0.947265625	0.9480161578142077	0.9473823019533052	0.9297032632559575	0.965182916893617
20	0.884765625	0.8875708791769135	0.884765625	0.8855039524837774	0.8856599366847909	0.846573257090991	0.9234360997471923

Tabloların Detaylı ve Net Bir Şekilde İncelenmesi:

Fold 1

Metric	Value
Accuracy	0.9448421875
Precision	0.94857306880307
Recall	0.9448421875
Specificity	0.942160601203459
F1-Score	0.944896747805859
MCC	0.875739534724215
AUC	0.961851226708138

Fold 2

Metric	Value
Accuracy	0.935125
Precision	0.9576011268252341
Recall	0.935125
Specificity	0.953469058073064
F1-Score	0.935701714100284
MCC	0.938719010231785
AUC	0.969151105798268

Fold 3

Metric	Value
Accuracy	0.935546875
Precision	0.938002733064748
Recall	0.935546875
Specificity	0.935534456147233
F1-Score	0.936028972052253
MCC	0.914478928013252
AUC	0.956097180612542

Fold 4

Metric	Value
Accuracy	0.9458984375
Precision	0.943911249577125
Recall	0.9458984375
Specificity	0.941236405494228
F1-Score	0.9439123873912812
MCC	0.923159001246043
AUC	0.950683045078787

Fold 5

Metric	Value
Accuracy	0.9462890625
Precision	0.9467119743020672
Recall	0.9462890625
Specificity	0.9472202389457377
F1-Score	0.9463721833024769
MCC	0.928467597882028
AUC	0.9464327480097336

LeViT

LeViT Fold 1

Epoch 1/20, Train Loss: 1.1114, Val Loss: 0.7183, Val Accuracy: 0.7104
Epoch 2/20, Train Loss: 0.9068, Val Loss: 0.5657, Val Accuracy: 0.7920
Epoch 3/20, Train Loss: 0.8142, Val Loss: 0.4843, Val Accuracy: 0.8267
Epoch 4/20, Train Loss: 0.7777, Val Loss: 0.4439, Val Accuracy: 0.8350
Epoch 5/20, Train Loss: 0.7287, Val Loss: 0.4169, Val Accuracy: 0.8457
Epoch 6/20, Train Loss: 0.7006, Val Loss: 0.3485, Val Accuracy: 0.8711
Epoch 7/20, Train Loss: 0.6656, Val Loss: 0.2838, Val Accuracy: 0.9043
Epoch 8/20, Train Loss: 0.6173, Val Loss: 0.2793, Val Accuracy: 0.8906
Epoch 9/20, Train Loss: 0.6010, Val Loss: 0.2190, Val Accuracy: 0.9224
Epoch 10/20, Train Loss: 0.5814, Val Loss: 0.1686, Val Accuracy: 0.9492
Epoch 11/20, Train Loss: 0.5251, Val Loss: 0.1550, Val Accuracy: 0.9497
Epoch 12/20, Train Loss: 0.5269, Val Loss: 0.1281, Val Accuracy: 0.9580
Epoch 13/20, Train Loss: 0.5190, Val Loss: 0.1081, Val Accuracy: 0.9658
Epoch 14/20, Train Loss: 0.4992, Val Loss: 0.0969, Val Accuracy: 0.9683
Epoch 15/20, Train Loss: 0.5072, Val Loss: 0.0877, Val Accuracy: 0.9741
Epoch 16/20, Train Loss: 0.4892, Val Loss: 0.0882, Val Accuracy: 0.9746
Epoch 17/20, Train Loss: 0.4684, Val Loss: 0.1067, Val Accuracy: 0.9614
Epoch 18/20, Train Loss: 0.4834, Val Loss: 0.0909, Val Accuracy: 0.9697
Epoch 19/20, Train Loss: 0.4766, Val Loss: 0.0562, Val Accuracy: 0.9824
Epoch 20/20, Train Loss: 0.4627, Val Loss: 0.0499, Val Accuracy: 0.9854

LeViT Fold 3

Epoch	1/20,	Train	Loss:	1.1409,	Val	Loss:	2.3517,	Val	Accuracy:	0.6963
Epoch	2/20,	Train	Loss:	0.9123,	Val	Loss:	0.5948,	Val	Accuracy:	0.7769
Epoch	3/20,	Train	Loss:	0.8430,	Val	Loss:	0.5341,	Val	Accuracy:	0.8022
Epoch	4/20,	Train	Loss:	0.7856,	Val	Loss:	0.4555,	Val	Accuracy:	0.8296
Epoch	5/20,	Train	Loss:	0.7575,	Val	Loss:	0.4434,	Val	Accuracy:	0.8257
Epoch	6/20,	Train	Loss:	0.7241,	Val	Loss:	0.4320,	Val	Accuracy:	0.8394
Epoch	7/20,	Train	Loss:	0.6991,	Val	Loss:	0.3600,	Val	Accuracy:	0.8599
Epoch	8/20,	Train	Loss:	0.6735,	Val	Loss:	0.3417,	Val	Accuracy:	0.8721
Epoch	9/20,	Train	Loss:	0.6377,	Val	Loss:	0.2575,	Val	Accuracy:	0.9072
Epoch	10/20,	Trair	Loss	0.5926	, Val	L Loss:	0.2309	, Va]	Accuracy:	0.9126
Epoch	11/20,	Trair	Loss:	0.5811	, Val	L Loss:	0.1730	, Val	Accuracy:	0.9526
Epoch	12/20,	Trair	Loss:	0.5458	, Val	l Loss:	0.1608	, Val	Accuracy:	0.9395
Epoch	13/20,	Trair	l Loss:	0.5286	, Val	l Loss:	0.1382	, Val	Accuracy:	0.9556
Epoch	14/20,	Trair	Loss:	0.5155	, Val	l Loss:	0.1190	, Val	Accuracy:	0.9653
Epoch	15/20,	Trair	Loss:	0.4962	, Val	l Loss:	0.1144	, Val	Accuracy:	0.9614
Epoch	16/20,	Trair	Loss:	0.4791	, Val	l Loss:	0.1002	, Val	Accuracy:	0.9634
Epoch	17/20,	Trair	Loss:	0.4887	, Val	l Loss:	0.0878	, Val	Accuracy:	0.9731
Epoch	18/20,	Trair	Loss:	0.4735	, Val	l Loss:	0.1140	, Val	Accuracy:	0.9624
Epoch	19/20,	Trair	Loss	0.4683	, Val	Loss:	0.1641	, Va	Accuracy:	0.9614
Epoch	20/20,	, Trair	ı Loss:	0.4808	, Val	l Loss:	0.0696	, Val	Accuracy:	0.9810

10.0

Epochs

12.5

15.0

17.5

20.0

Fold 5 - Loss vs Epoch

Train Loss

Validation Loss

Epoch 2 adımında anlık bir sapma meydana gelmekte.

7.5

5-Fold Cross-Validation Average Metrics:					
Fold	3.000000				
Accuracy	0.980664				
Precision	0.980729				
Recall (Sensitivity)	0.980664				
Specificity	0.980596				
F1-Score	0.980640				
MCC	0.974243				
AUC	0.987076				

dtype: float64

2.5

5.0

500

5-Fold Cross-Validation Metrics

Fold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-Score	MCC	AJC
10	0.9853515625	0.9855040921484852	0.9853515625	0.9854477552283063	0.9853639271384732	0.9805012203247712	0.9903113135636845
2.0	0.97509765625	0.9750836112435917	0.97509765625	0.974261236978634	0.9750472961567892	0.9867950827923253	0.9829974085808805
3.0	0.98095703125	0.9811367914276649	0.98095703125	0.9810160937037661	0.9809419475710107	0.9740078820898660	0.9873080019114834
4.0	0.98291015625	0.9829175554186018	0.98291015625	0.9829884802347855	0.9828884530027914	0.977213908833263	0.9880309250911092
3.0	0.97900390625	0.9790019351622739	0.97900390625	0.9792669102859962	0.9789001074338939	0.972027071989322	0.9861258526053679

Fold 1

Metric	Value
Accuracy	0.9589331625
Precision	0.9853040521484852
Recall	0.9589331625
Specificity	0.9854477352288064
F1-Score	0.9583639713847372
MCC	0.986013022347712
AUC	0.9930113153636845

Fold 2

Metric	Value
Accuracy	0.9730570625
Precision	0.9730836112435917
Recall	0.9730570625
Specificity	0.974216239678634
F1-Score	0.9730742015617893
MCC	0.967905072932253
AUC	0.982974085808805

Fold 3

Metric	Value				
Accuracy	0.9505703125				
Precision	0.9811369741276649				
Recall	0.9505703125				
Specificity	0.981016095707661				
F1-Score	0.95019457170107				
MCC	0.974467882898666				
AUC	0.98730011914834				

Fold 4

Metric	Value
Accuracy	0.9289110625
Precision	0.9289175531486018
Recall	0.9289110625
Specificity	0.928988840234785
F1-Score	0.928846546527914
MCC	0.971729888328363
AUC	0.985805265911092

Fold 5

Metric	Value
Accuracy	0.97300390625
Precision	0.973001395122774
Recall	0.97300390625
Specificity	0.9732696102859062
F1-Score	0.9730061743389399
MCC	0.97202761189322
AUC	0.982611258203679

DEViT Fold 1

0.4

False Positive Rate

0.6

1.0

DEViT Fold 4

Epoch 9/10, Train Loss: 0.1131, Val Loss: 0.1299, Epoch 10/10, Train Loss: 0.1104, Val Loss: 0.1511

Epoch 1/10, Train Loss: 0.6381, Val Loss: 0.4718, Val Accuracy: 0.8027
Epoch 2/10, Train Loss: 0.4203, Val Loss: 0.3926, Val Accuracy: 0.8262
Epoch 3/10, Train Loss: 0.3601, Val Loss: 0.3369, Val Accuracy: 0.8657
Epoch 4/10, Train Loss: 0.2950, Val Loss: 0.3071, Val Accuracy: 0.8765
Epoch 5/10, Train Loss: 0.2438, Val Loss: 0.2609, Val Accuracy: 0.8945
Epoch 6/10, Train Loss: 0.1937, Val Loss: 0.1929, Val Accuracy: 0.9258
Epoch 7/10, Train Loss: 0.1676, Val Loss: 0.2245, Val Accuracy: 0.9111

DEViT Fold 5

Epoch 1/10, Train Loss: 0.6573, Val Loss: 0.5974, Val Accuracy: 0.7549
Epoch 2/10, Train Loss: 0.4401, Val Loss: 0.4136, Val Accuracy: 0.7959
Epoch 3/10, Train Loss: 0.3697, Val Loss: 0.3388, Val Accuracy: 0.8530
Epoch 4/10, Train Loss: 0.3093, Val Loss: 0.3381, Val Accuracy: 0.8755
Epoch 5/10, Train Loss: 0.2604, Val Loss: 0.2549, Val Accuracy: 0.8936
Epoch 6/10, Train Loss: 0.2115, Val Loss: 0.2313, Val Accuracy: 0.9023
Epoch 7/10, Train Loss: 0.1784, Val Loss: 0.2850, Val Accuracy: 0.9879
Epoch 8/10, Train Loss: 0.1416, Val Loss: 0.1890, Val Accuracy: 0.9282
Epoch 9/10, Train Loss: 0.1266, Val Loss: 0.1928, Val Accuracy: 0.9282
Epoch 10/10, Train Loss: 0.1888, Val Loss: 0.1399, Val Accuracy: 0.9268

DEViT Genel Model Sonuçları

5-Fold Cross-Validation Average Metrics:

Fold	3.000000
Accuracy	0.944336
Precision	0.947216
Recall (Sensitivity)	0.944336
Specificity	0.943977
F1-Score	0.944673
MCC	0.926480
AUC	0.962692

dtype: float64

5-Fold Cross-Validation Metrics

Fold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-Score	MCC	AUC.
10	0.94482421875	0.94857658688507	0.94482421875	0.942160061203459	0.944896747805859	0.9275399524724215	0.9618512626780138
2.0	0.953125	0.9576611286252341	0.953125	0.953649065087564	0.9536721571408284	0.9387190610213785	0.9691611550582648
3.0	0.935546875	0.9380027338064748	0.935546875	0.9355344854627323	0.9360298397262523	0.9144789286381232	0.9569691718615242
4.0	0.94189453125	0.9451194221775125	0.94189453125	0.9413146354942928	0.9423918728192182	0.9231950012426403	0.9608564306587787
5.0	0.9462890625	0.9467197749020672	0.9462890625	0.9472263289495757	0.9463723383624769	0.9284679758780328	0.9646237840097536

Tabloların Detaylı ve Net Bir Şekilde İncelenmesi:

Fold 1

25.4	
Metric	Value
Accuracy	0.9448421875
Precision	0.94857306880307
Recall	0.9448421875
Specificity	0.942160601203459
F1-Score	0.944896747805859
MCC	0.875739534724215
AUC	0.961851226708138

Fold 2

Metric	Value
Accuracy	0.935125
Precision	0.9576011268252341
Recall	0.935125
Specificity	0.953469058073064
F1-Score	0.935701714100284
MCC	0.938719010231785
AUC	0.969151105798268

Fold 3

Metric	Value
Accuracy	0.935546875
Precision	0.938002733064748
Recall	0.935546875
Specificity	0.935534456147233
F1-Score	0.936028972052253
MCC	0.914478928013252
AUC	0.956097180612542

Fold 4

Metric	Value
Accuracy	0.9458984375
Precision	0.943911249577125
Recall	0.9458984375
Specificity	0.941236405494228
F1-Score	0.9439123873912812
MCC	0.923159001246043
AUC	0.950683045078787

Fold 5

Metric	Value
Accuracy	0.9462890625
Precision	0.9467119743020672
Recall	0.9462890625
Specificity	0.9472202389457377
F1-Score	0.9463721833024769
MCC	0.928467597882028
AUC	0.9464327480097336

Swin

Swin Fold 1

Epoch	1/15,	Train	Loss:	1.2520,	Val	Loss:	0.8180,	Val	Accuracy:	0.6060
Epoch	2/15,	Train	Loss:	0.9246,	Val	Loss:	0.6409,	Val	Accuracy:	0.7324
Epoch	3/15,	Train	Loss:	0.8528,	Val	Loss:	0.5536,	Val	Accuracy:	0.7153
Epoch	4/15,	Train	Loss:	0.8265,	Val	Loss:	0.4564,	Val	Accuracy:	0.8057
Epoch	5/15,	Train	Loss:	0.7752,	Val	Loss:	0.4526,	Val	Accuracy:	0.7866
Epoch	6/15,	Train	Loss:	0.7562,	Val	Loss:	0.3888,	Val	Accuracy:	0.8276
Epoch	7/15,	Train	Loss:	0.7201,	Val	Loss:	0.4437,	Val	Accuracy:	0.8193
Epoch	8/15,	Train	Loss:	0.7563,	Val	Loss:	0.4342,	Val	Accuracy:	0.8086
Epoch	9/15,	Train	Loss:	0.7191,	Val	Loss:	0.3996,	Val	Accuracy:	0.8354
Epoch	10/15	, Train	Loss:	0.6881	, Val	Loss	: 0.3077	, Val	l Accuracy	: 0.8765
Epoch	11/15	, Train	Loss:	0.7062	, Val	Loss	0.4075	, Val	l Accuracy	: 0.8276
Epoch	12/15	, Train	Loss:	0.6589	, Val	Loss	0.3144	, Val	l Accuracy	: 0.8862
Epoch	13/15	, Trair	Loss	0.6632	, Val	Loss	0.3482	, Val	l Accuracy	: 0.8389
Epoch	14/15	, Train	Loss:	0.6596	, Val	Loss	0.3268	, Val	l Accuracy	: 0.8584
Epoch	15/15	, Trair	Loss	0.6432	, Val	Loss	: 0.2729	, Val	l Accuracy	0.8999

Swin Genel Model Sonuçları

5-Fold Cross-Validation Average Metrics:

Fold 3.000000 0.882227 Accuracy 0.894903 Precision Recall (Sensitivity) 0.882227 Specificity 0.881645 F1-Score 0.882476 **MCC** 0.847257 **AUC** 0.921164

dtype: float64

5-Fold Cross-Validation Metrics

[Fold	Accuracy	Precision	Recall (Sensitivity)	Specificity	F1-Score	MCC	AUC
Γ	1.0	0.89990234375	0.9072462381417512	0.89990234375	0.8963021120917033	0.9003491662138531	0.8685015454100756	0.9314108105644228
[2.0	0.875	0.9100823967350913	0.875	0.8769039094781368	0.8768905352759663	0.8451147405115826	0.9180690174767991
Γ	3.0	0.8701171875	0.8683298129765482	0.8701171875	0.870703530554189	0.8682847877323565	0.827333001399029	0.9136171895743934
[4.0	0.88427734375	0.9000945198713763	0.88427734375	0.8825600796449374	0.8852873155356905	0.8503364427440018	0.9216969047677306
[2.0	0.8818359375	0.8887000953418750	0.8818359375	0.8817555370370664	0.8815672179003874	0.8449982095250513	0.921017853050114

Tabloların Detaylı ve Net Bir Şekilde İncelenmesi:

FOLD 1

Metric	Value
Accuracy	0.89390234375
Precision	0.897042368147512
Recall (Sensitivity)	0.89390234375
Specificity	0.8936021120917033
F1-Score	0.903043612138531
MCC	0.858104541030756
AUC	0.9341486105644228

FOLD 2

Metric	Value
Accuracy	0.875
Precision	0.910823623570913
Recall (Sensitivity)	0.875
Specificity	0.8763095934781038
F1-Score	0.8760953253759604
MCC	0.845114741051826
AUC	0.919080174676991

FOLD 3

Metric	Value
Accuracy	0.870171875
Precision	0.888329125793482
Recall (Sensitivity)	0.870171875
Specificity	0.870703350354189
F1-Score	0.88248787232365
MCC	0.827334031939029
AUC	0.913167879473394

FOLD 4

Metric	Value
Accuracy	0.88427734375
Precision	0.9000549918713763
Recall (Sensitivity)	0.88427734375
Specificity	0.8852500754494373
F1-Score	0.8852837513535095
MCC	0.8303542647440018
AUC	0.921069597407706

FOLD 5

Metric	Value
Accuracy	0.8818359375
Precision	0.888706093418756
Recall (Sensitivity)	0.8818359375
Specificity	0.8811735370370664
F1-Score	0.881521773003874
MCC	0.8448992097520313

IV. TRANSFORMATÖR MODELLERİ HAKKINDA BİLGİLER

1) Google ViT (Vision Transformer)

Geliştirici: Google Research

• Yayınlanma Tarihi: Ekim 2020

• Detaylar:

- ViT, görüntüleri, doğal dil işleme (NLP) görevlerinde yaygın olarak kullanılan transformatörler gibi işlemeyi amaçlayan ilk büyük modeldir.
- Görüntüleri, belirli boyutlarda küçük parçalara (patch) böler ve bu parçaları bir dizi olarak işler.
- Büyük ölçekli veri kümeleri üzerinde önceden eğitildiğinde, ViT modelleri, CNN tabanlı modellerden daha iyi performans gösterebilir.
- Makale: "An Image is Worth 16x16
 Words: Transformers for Image
 Recognition at Scale"

- 2) Microsoft BeiT (BERT Pre-Training of Image Transformers)
 - Geliştirici: Microsoft Research
 - Yayınlanma Tarihi: Mart 2021
 - Detaylar:
 - BeiT, BERT'in metinler için yaptığı gibi, görüntüler için önceden eğitim kullanır.
 - Görüntü parçalarını maskeleyip yeniden yapılandırarak transformatörleri eğitir.
 - o Bu yöntem, önceden eğitimli modellerin genel performansını artırır.
 - Makale: "BEiT: BERT Pre-Training of Image Transformers"
 - 3) DeiT (Data-efficient Image Transformers)
 - Geliştirici: Facebook AI Research (FAIR)
 - Yayınlanma Tarihi: Aralık 2020
 - Detaylar:
 - DeiT, daha az veri kullanarak transformatör modellerini verimli bir şekilde eğitmeyi amaçlar.
 - Veri verimliliği, veri artırım teknikleri ve bilgi aktarımı yöntemleri ile sağlanır.
 - Bu model, çok büyük veri setlerine ihtiyaç duymadan yüksek performans sağlar.
 - Makale: "Training data-efficient image transformers & distillation through attention"

4) LeViT

- Geliştirici: Facebook AI Research (FAIR)
- Yayınlanma Tarihi: Temmuz 2021
- Detaylar:
 - LeViT, düşük gecikme ve yüksek verimlilik ile çalışmak üzere optimize edilmiştir.
 - Hibrit bir modeldir; transformatör ve konvolüsyonel katmanları birleştirir.

- Özellikle mobil cihazlarda ve gerçek zamanlı uygulamalarda kullanılmak üzere tasarlanmıştır.
- Makale: "LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference"
- 5) Swin Transformer
- Geliştirici: Microsoft Research Asia
- Yayınlanma Tarihi: Mart 2021
- Detaylar:
 - Swin Transformer, ölçeklenebilir bir yapıya sahiptir ve farklı çözünürlüklerdeki görüntülerde iyi performans gösterir.
 - Yerel ve küresel özellikleri verimli bir şekilde yakalayarak, nesne algılama ve segmentasyon gibi görevlerde üstün performans sağlar.
 - Esnek ve hiyerarşik bir yapı kullanarak görüntü boyutuna göre kendini uyarlayabilir.
 - Makale: "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows"

V. KULLANILAN VERI SETI

https://www.kaggle.com/datasets/lukechugh/best-alzheimermri-dataset-99-accuracy

VI. SONUÇ

Bu çalışma, Dönüştürücü (Transformer) modellerinin tıbbi görüntü sınıflandırma görevlerinde, özellikle Alzheimer hastalığının tespitinde etkinliğini göstermektedir. Gelecekteki çalışmalar, daha derin model mimarilerini ve alternatif veri artırma tekniklerini araştırarak performansı daha da artırabilir.

VII. İLGILI DERLEME KODLARI

Google Colab Linki: https://colab.research.google.com/drive/1oKb48oyTCJRf15 cnUR0sxCnh2iSYeiCX?usp=sharing

VIII. KAYNAKÇA

- [1] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929.
- [2] Bao, H., Dong, L., Piao, S., & Wei, F. (2021). BEiT: BERT Pre-Training of Image Transformers. arXiv preprint arXiv:2106.08254.
- [3] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. (2020). Training data-efficient image transformers & distillation through attention. arXiv preprint arXiv:2012.12877.
- [4] Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., Douze, M., & Jégou, H. (2021). LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference. arXiv preprint arXiv:2104.01136.
- [5] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. arXiv preprint arXiv:2103.14030.
- [6] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.
- [7] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25, 1097-1105.
- [8] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252.