## Rechtfertigung der Staatstätigkeit, Hausaufgabe 3

## HENRY HAUSTEIN

## Aufgabe 1

- (a) Die Straße würde 20 Mio. Euro kosten, aber einen Nutzen von  $2 \cdot 14$  Mio. Euro bringen. Aus gesamtwirtschaftlicher Sicht lohnt es sich also die Straße zu bauen.
- (b) Auszahlungsmatrix, der Zeilenspieler wird zuerst genannt:

|                              |             | ${f Bedorf}$ |             |
|------------------------------|-------------|--------------|-------------|
|                              |             | bauen        | nicht bauen |
| $\left  	ext{Adorf} \right $ | bauen       | (4,4)        | (-6,14)     |
|                              | nicht bauen | (14,-6)      | (0,0)       |

nicht bauen ist also eine dominante Strategie, das Nash-Gleichgewicht ist daher (nicht bauen, nicht bauen).

(c) Auszahlungsmatrix, der Zeilenspieler wird zuerst genannt:

|                                      |             | $\operatorname{Bedorf}$ |             |
|--------------------------------------|-------------|-------------------------|-------------|
|                                      |             | bauen                   | nicht bauen |
| $\left  \operatorname{dorf} \right $ | bauen       | (20,1)                  | (10,11)     |
| $\mathbf{Ad}$                        | nicht bauen | (30,-9)                 | (0,0)       |

Falls Bedorf baut, baut Adorf nicht und falls Bedorf nicht baut, baut Adorf.
Falls Adorf baut, baut Bedorf nicht und falls Adorf nicht baut, baut Bedorf nicht.
Für Bedorf ist *nicht bauen* eine dominante Strategie; das Nash-Gleichgewicht ist (bauen, nicht bauen)

## Aufgabe 3

(a) Die Grenzkosten betragen 30. Unter Wohlfahrtsgesichtspunkten liefert  $\sum GZB = GK$  die optimale Lösung, also

$$\sum_{} GZB = GK$$

$$(40 - 2G) + (20 - G) = 30$$

$$60 - 3G = 30$$

$$G_{opt} = 10$$

(b) Für Haushalt 1 gilt:

$$GZB_1 = \alpha \cdot GK$$

$$40 - 2G = \frac{1}{2} \cdot 30$$

$$G_1 = 12.5$$

Für Haushalt 2 gilt:

$$GZB_2 = (1 - \alpha) \cdot GK$$
$$20 - G = \left(1 - \frac{1}{2}\right) \cdot 30$$
$$G_2 = 5$$

Die Haushalte fragen verschiedene Mengen nach, aber es kann nur eine Menge bereitgestellt werden.



(c) Wir müssen  $\alpha^*$  so wählen, dass

$$GZB_1(G_{opt}) = \alpha^* \cdot GK$$
$$40 - 2 \cdot 10 = \alpha^* \cdot 30$$
$$20 = \alpha^* \cdot 30$$
$$\alpha^* = \frac{2}{3}$$

Der andere Haushalt muss dann  $1-\alpha$  der Grenzkosten tragen, für ihn sind das  $\frac{1}{3}$  der Grenzkosten.

