- 1. A memory has **2048 cells** with **16 bits** stored for each cell.
 - a. **How many bits** can the memory hold?
 - b. **How big** does the **memory address** have to be?
- 2. Show how the **decimal number "1000"** would be stored as a **16-bit binary number at memory address 24**. Assume that the memory holds 8 bits in each cell and uses Little Endian byte ordering:

As a 16-bit binary number:

Stored in memory:

Addess 23							Addess 24						Addess 25										

- 3. (a) **Fill in the parity bits** for the codeword at right so that each row and column has an even parity sum.
 - (b) What is the Hamming Distance of this codeword?
 - (c) What is the maximum number of error bits that this code could **correct**?

Column Parity Bits

4. **Create a valid Hamming codeword** for the 9 data bits shown in question 1. Assume that the 9 data bits are arranged as follows:

5. **Which bit is bad** in the following Hamming Codeword?

0	1	1	1	0	0	0

6. **What is the average access time** for a system with a 3-level cache that has the following characteristics::

Level	Access Time	Hit Rate				
1	0.25ns	75%				
2	3ns	95%				
3	40ns	100%				

7. Draw the **algebraic** and **logic diagramming symbols** for the following types of Boolean operations:

Boolean Operator	Algebraic Symbol	Logic Diagramming Symbol
AND		
OR		
NAND		
NOT		
XOR		

8. **Draw a truth table** to show the result of the following expression for all possible input combinations of A, B and C:

9. **Complete** the following Boolean **identities**:

$$A \cdot 0 =$$
 $A \cdot 1 =$ $A \cdot \overline{A} =$ $A + 0 =$ $A + 1 =$ $A + \overline{A} =$

10. Write a Boolean expression in 'Sum of Products" form for three inputs, A, B and C. The expression must produce a TRUE output whenever the A and B inputs are different from each other and the C input is also TRUE. You don't need to simplify the expression.

11. **Draw a Boolean logic circuit** for your 'Product of Sums' expression for the above question.