```
In [1]: |import yfinance as yf
In [2]: | import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline
        from __future__ import annotations
        import datetime
In [3]: | stock data = yf.Ticker("TEJASNET.NS")
        stock data = stock data.history(period = '1y')[['Open']]
        MINDT = stock data.reset index(drop = True)
In [4]: x = MINDT.index
        y= MINDT.Open
        model = np.polyfit(x,y,3)
        predict = np.poly1d(model)
        x pol reg = range(50,300)
        y pol reg = predict(x pol reg)
```

Out[4]: [<matplotlib.lines.Line2D at 0x7ff2b91759a0>]

plt.plot(x_pol_reg, y_pol_reg, c='r')

plt.plot(x,y)

import yfinance as yf import pandas as pd tesla = yf.Ticker('TSLA') tesla = tesla.history(period="max") tesla = tesla[['Open']] nio = yf.Ticker('NIO') nio = nio.history(period="max") nio = nio[['Open']] stonks = tesla.merge(nio, how = 'outer', left_index = True, right_index = True) stonks.columns = ['TSLA', 'NIO'] stonks

tesla = yf.Ticker('TSLA')

MY COLLUMMNS FOR STUDY

tesla = yf.Ticker('TSLA') tesla=tesla.history(period="max") tesla = tesla[['Open','Close','Volume']]

tesla

CHOOSING STOCK LIST

HALF DONE LIST

basic checks

```
In [38]: len(stock_names), len(stock_list)
Out[38]: (28, 50)
```

DEFINE A COLLECTION AND CLEANING

In [43]: stock dict = {i:j for i,j in zip(stock names, stock list)}

```
In [39]: def collect_clean(lists: list[str]) :
    res=[]
    for stock in lists:
        idx=stock.find(".")
        if idx == -1:
            res.append(stock)
        else:
            res.append(stock[:idx])
    return res

In [40]: temp_list = collect_clean(stock_list[len(stock_names):])

In [41]: stock_names = stock_names+temp_list

In [42]: len(stock_names), len(stock_list)

Out[42]: (50, 50)
```

```
In [44]: stock_dict
```

```
Out[44]: {'TESLA': 'TSLA',
           'NIO': 'NIO',
           'CLEAN ENERGE ETF': 'IQQH.F',
           'BIT_COIN': 'BTC-USD',
           'BIT_IND': 'BTC-INR',
           'ETH USD': 'ETH-USD',
           'LTC_USD': 'LTC-USD',
           'AMAZON': 'AMZN',
           'TWITTER': 'TWTR',
           'FACEBOOK': 'FB',
           'SQUARE': 'SQ',
           'PAYPAL': 'PYPL',
           'BERKSHR': 'BRK-A',
           'S&P500': 'CSPX.AS',
           'GOLD': 'GC=F',
           'SILV': 'SI=F'
           'CRUDE': 'CL=F',
           'UARMOR': 'UA',
           'GARTNER': 'IT',
           'USD_N_RS': 'INR=X',
           'EUROINR': 'EURINR=X',
           'NIFTY_IT': '^CNXIT',
           'HAPPYMIND': 'HAPPSTMNDS.NS',
           'MPHASIS': 'MPHASIS.NS',
           'WIPRO': 'WIPRO.NS',
           'MINDTREE': 'MINDTREE.NS',
           'INFY': 'INFY.NS',
           'COFORGE': 'COFORGE.NS',
           'HCLTECH': 'HCLTECH.NS',
           'TCS': 'TCS.NS',
           'TECHM': 'TECHM.NS',
           'ASHOKLEY': 'ASHOKLEY.NS',
           'BOSCHLTD': 'BOSCHLTD.NS',
           'MARUTI': 'MARUTI.NS',
           'TATAMOTORS': 'TATAMOTORS.NS',
           'ESCORTS': 'ESCORTS.NS',
           'BAJAJ-AUTO': 'BAJAJ-AUTO.NS',
           'EXIDEIND': 'EXIDEIND.NS',
           'AMARAJABAT': 'AMARAJABAT.NS',
           'BALKRISIND': 'BALKRISIND.NS',
           'MRF': 'MRF.NS',
           'NATIONALUM': 'NATIONALUM.NS',
           'NMDC': 'NMDC.NS',
           'COALINDIA': 'COALINDIA.NS',
           'VEDL': 'VEDL.NS',
           'TATASTEEL': 'TATASTEEL.NS',
           'JINDALSTEL': 'JINDALSTEL.NS',
           'JSWSTEEL': 'JSWSTEEL.NS',
           'SAIL': 'SAIL.NS'}
```

stock dict.items()

append to a new DataFrame

```
In [ ]: master df = pd.DataFrame()
         for key,val in stock dict.items():
             df = yf.Ticker(val)
             df=df.history(period="max")
             df.dropna(inplace=True)
             #df = df[['Open','Close','Volume']]
             #master df[key+' Open'] = df['Open']
             master_df[key+'_Close'] = df['Close']
             #master_df[key+'_Volume'] = df['Volume']
             #print(f"{key} is done")
In [55]: base = datetime.date.today()
         date list = [base - datetime.timedelta(days=x) for x in range(1)]
         date list.sort()
         stocks master df = pd.DataFrame(index= date list)
         for i in stock list:
             i = yf.Ticker(i)
             i = i.history(period='max')
             i= i[['Close']]
             stocks_master_df = stocks_master_df.merge(i, how = 'outer', left_index = Tru€
         stocks master df.columns = stock list
         quality check
In [57]: stocks_master_df = stocks_master_df[~stocks_master_df.index.duplicated()]
In [79]: | stocks_master_df[stocks_master_df.index.duplicated()]
Out[79]:
                                             LTC-
                             BTC-
                                  BTC-
                                        ETH-
            TSLA NIO IQQH.F
                                                  AMZN TWTR FB ... MRF.NS NATIONALUM.NS
                                    INR
                                       USD
                                             USD
         0 rows × 50 columns
```

Remove Nan values for generated during weekend

```
In [59]: stocks_master_df = stocks_master_df[stocks_master_df['TSLA'].notna()]
```

```
In [80]: #stocks_master_df.describe()
stocks_master_df.tail()
```

Out[80]:

TWTR	FB	 MRF.NS	NATIONALUM.NS	NMDC.NS	COALINDIA.NS	VEDL.NS	TATASTEEL.N
1.868752	0.971003	 0.811423	1.000000	0.848574	0.243568	0.955280	0.9907
1.838730	0.972521	 0.805916	0.970371	0.837333	0.247101	0.963443	0.9771
1.833071	0.967178	 0.815658	0.829015	0.811544	0.231614	0.947117	0.9643
1.812166	0.965828	 0.802291	0.774077	0.771538	0.225908	0.930081	0.9346
1.808708	0.962537	 0.788898	0.824077	0.794021	0.235417	1.000000	0.9750

Normalization and standardization

```
In [50]: from sklearn.preprocessing import MaxAbsScaler
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.preprocessing import StandardScaler
    from sklearn.preprocessing import RobustScaler
```

Method #1: Min max scaler

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2a7246a90>

Method #2: MaxAbs Scalar

```
In [24]: abs_scaler = MaxAbsScaler()
pd.DataFrame(abs_scaler.fit_transform(stocks_master_df[['HAPPSTMNDS.NS','MPHASIS'
'TCS.NS','TECHM.NS']])).tail(2000).plot()
```

Out[24]: <matplotlib.axes. subplots.AxesSubplot at 0x7ff2a718fe80>

Method #3: Z-score Method(standardization)

The number of Stddev that a given point is from the mean. It can be usefull but not for this data as it is not normally distributed

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2a71594f0>

Method #4 Robust Scaler

Not many outliers so not that useful in this data set

```
In [28]: rob_scaler = RobustScaler()
         pd.DataFrame(rob_scaler.fit_transform(stocks_master_df[['HAPPSTMNDS.NS','MPHASIS
         'TCS.NS', 'TECHM.NS']])).tail(2000).plot()
```

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2a7110550>

Going with min- max normalization

```
In [64]: scaler = MinMaxScaler()
         stocks_master_df = pd.DataFrame(scaler.fit_transform(stocks_master_df), columns=
```

In [65]: stocks_master_df

Out[65]:

	TSLA	NIO	IQQH.F	BTC- USD	BTC-INR	ETH- USD	LTC- USD	AMZN	TWTR	
0	0.001839	NaN	0.314475	NaN	NaN	NaN	NaN	0.000000	NaN	
1	0.001825	NaN	0.308456	NaN	NaN	NaN	NaN	0.000179	NaN	
2	0.001400	NaN	0.290400	NaN	NaN	NaN	NaN	0.000649	NaN	
3	0.000773	NaN	0.306952	NaN	NaN	NaN	NaN	0.000146	NaN	
4	0.000070	NaN	0.325008	NaN	NaN	NaN	NaN	0.000400	NaN	
	•••	•••	•••			•••	•••	•••		
2795	0.808553	0.719766	0.626693	0.642578	0.603347	0.678194	0.378168	0.901894	0.868752	0
2796	0.790904	0.691157	0.628047	0.673323	0.637736	0.693455	0.389770	0.893323	0.838730	0
2797	0.807564	0.713427	NaN	0.729365	0.699921	0.759889	0.439515	0.892475	0.833071	0
2798	0.803280	0.697334	NaN	0.717042	0.686409	0.753612	0.436708	0.886626	0.812166	0
2799	0.800814	0.693270	NaN	0.717178	0.683084	0.759023	0.451262	0.878740	0.808708	0
2800 r	2800 rows × 50 columns									

Correlation

There are 4 basic correlation methods

- 1. CoVariance (for normally distributed data)
- 2. Pearsons's -> Thats similar for normal distributions as the std correlation coefficient
- 3. Searman's
- 4. Kendall

In [66]: stocks_master_df.tail(1000)

Out[66]:

	TSLA	NIO	IQQH.F	BTC- USD	BTC-INR	ETH- USD	LTC- USD	AMZN	TWTR	
1800	0.073995	NaN	0.123383	0.061941	NaN	0.075415	0.121122	0.236913	0.041182	0
1801	0.076590	NaN	0.122630	0.062746	NaN	0.076071	0.138455	0.234457	0.046369	0
1802	0.076627	NaN	0.123383	0.065638	NaN	0.078012	0.130315	0.232925	0.045269	0
1803	0.075517	NaN	0.121125	0.066221	NaN	0.079525	0.132949	0.230940	0.041496	0
1804	0.074974	NaN	0.118869	0.066396	NaN	0.083323	0.162662	0.231150	0.043383	0
2795	0.808553	0.719766	0.626693	0.642578	0.603347	0.678194	0.378168	0.901894	0.868752	0
2796	0.790904	0.691157	0.628047	0.673323	0.637736	0.693455	0.389770	0.893323	0.838730	0
2797	0.807564	0.713427	NaN	0.729365	0.699921	0.759889	0.439515	0.892475	0.833071	0
2798	0.803280	0.697334	NaN	0.717042	0.686409	0.753612	0.436708	0.886626	0.812166	0
2799	0.800814	0.693270	NaN	0.717178	0.683084	0.759023	0.451262	0.878740	0.808708	0

1000 rows × 50 columns

In [67]: stocks_master_df.tail(1000).corr(method = 'pearson')

Out[67]:

	TSLA	NIO	IQQH.F	BTC-USD	BTC-INR	ETH-USD	LTC-USD	Α
TSLA	1.000000	0.960292	0.970995	0.866233	0.843085	0.753243	0.443870	0.88
NIO	0.960292	1.000000	0.950726	0.815069	0.780773	0.756872	0.654887	0.83
IQQH.F	0.970995	0.950726	1.000000	0.820607	0.777331	0.660425	0.381090	0.87
BTC-USD	0.866233	0.815069	0.820607	1.000000	0.999795	0.890069	0.711133	0.69
BTC-INR	0.843085	0.780773	0.777331	0.999795	1.000000	0.900090	0.947173	0.64
ETH-USD	0.753243	0.756872	0.660425	0.890069	0.900090	1.000000	0.776998	0.58
LTC-USD	0.443870	0.654887	0.381090	0.711133	0.947173	0.776998	1.000000	0.23
AMZN	0.884403	0.837973	0.871739	0.696727	0.644339	0.581590	0.230788	1.00
TWTR	0.821358	0.835368	0.812659	0.828291	0.884999	0.718923	0.448674	0.80
FB	0.886076	0.805714	0.857952	0.776130	0.713039	0.752516	0.406330	0.89
SQ	0.966986	0.954258	0.943407	0.853626	0.849859	0.741603	0.403357	0.92
PYPL	0.953743	0.904064	0.935237	0.836344	0.827146	0.734020	0.382639	0.94
BRK-A	0.742256	0.715434	0.712247	0.811265	0.796521	0.829611	0.535120	0.66
CSPX.AS	0.839677	0.782858	0.859275	0.774853	0.814482	0.666674	0.303783	0.89
GC=F	0.793064	0.642233	0.814633	0.571841	0.331839	0.449387	0.142716	0.88
SI=F	0.917486	0.847644	0.898029	0.772794	0.699176	0.699682	0.405119	0.85
CL=F	-0.003035	0.234395	-0.046494	0.224775	0.602948	0.370875	0.421871	-0.13
UA	-0.065860	0.033697	-0.041871	0.151925	0.588508	0.180404	0.201947	-0.15
IT	0.620519	0.598451	0.588760	0.697596	0.709942	0.765616	0.422578	0.56
INR=X	0.516447	0.344975	0.530354	0.332975	-0.009642	0.164785	-0.220845	0.75
EURINR=X	0.851571	0.819089	0.801222	0.657448	0.630670	0.569037	0.215460	0.90
^CNXIT	0.915964	0.922915	0.909821	0.842241	0.855457	0.764927	0.397070	0.87
HAPPSTMNDS.NS	0.194337	0.055464	-0.189313	0.343274	0.353749	0.696746	0.299718	0.68
MPHASIS.NS	0.855207	0.859777	0.813259	0.802642	0.801895	0.801642	0.408965	0.81
WIPRO.NS	0.864932	0.856516	0.837503	0.838399	0.830965	0.839403	0.478942	0.76
MINDTREE.NS	0.878835	0.857996	0.826407	0.832477	0.831843	0.835722	0.443749	0.84
INFY.NS	0.925018	0.918086	0.917882	0.837929	0.848256	0.749405	0.368745	0.90
COFORGE.NS	0.860341	0.821432	0.842394	0.771464	0.735137	0.748683	0.321144	0.86
HCLTECH.NS	0.959041	0.935953	0.953944	0.852907	0.845829	0.742558	0.396617	0.90
TCS.NS	0.878271	0.924185	0.899311	0.786111	0.867922	0.656071	0.285000	0.90
TECHM.NS	0.801405	0.841035	0.818927	0.744721	0.792064	0.670448	0.328032	0.77
ASHOKLEY.NS	0.275695	0.711069	0.186290	0.412764	0.835672	0.556979	0.574301	-0.02
BOSCHLTD.NS	-0.389227	-0.082333	-0.454968	-0.247765	0.448562	-0.070883	0.117974	-0.62
MARUTI.NS	-0.067982	0.473712	-0.122178	-0.011141	0.382121	0.141103	0.352135	-0.29

	TSLA	NIO	IQQH.F	BTC-USD	BTC-INR	ETH-USD	LTC-USD	Α
TATAMOTORS.NS	0.092031	0.697420	-0.010804	0.281200	0.876129	0.455661	0.584371	-0.26
ESCORTS.NS	0.872791	0.871841	0.825773	0.682095	0.641266	0.611219	0.371200	0.82
BAJAJ-AUTO.NS	0.847726	0.836243	0.823947	0.838619	0.812959	0.827947	0.544007	0.67
EXIDEIND.NS	-0.309443	-0.038269	-0.358542	-0.187203	0.569907	-0.075353	0.059326	-0.42
AMARAJABAT.NS	0.550608	0.770453	0.536011	0.490708	0.585582	0.427731	0.445479	0.30
BALKRISIND.NS	0.866417	0.872368	0.789712	0.774939	0.742017	0.831217	0.488382	0.79
MRF.NS	0.655975	0.859689	0.594643	0.701292	0.847128	0.704135	0.572766	0.40
NATIONALUM.NS	0.173271	0.466016	0.038941	0.371997	0.735709	0.611478	0.516312	-0.08
NMDC.NS	0.584730	0.624614	0.502925	0.726652	0.735821	0.882740	0.648746	0.40
COALINDIA.NS	-0.653951	-0.462892	-0.687399	-0.431558	-0.000226	-0.239929	0.075555	-0.77
VEDL.NS	0.206779	0.572195	0.073903	0.424306	0.836592	0.646475	0.640952	-0.10
TATASTEEL.NS	0.593598	0.703338	0.479346	0.701631	0.787103	0.877882	0.624802	0.37
JINDALSTEL.NS	0.751237	0.831851	0.651409	0.817481	0.888002	0.915848	0.709131	0.58
TATASTEEL.NS	0.593598	0.703338	0.479346	0.701631	0.787103	0.877882	0.624802	0.37
JSWSTEEL.NS	0.709600	0.727826	0.616578	0.773142	0.806816	0.893917	0.551337	0.59
SAIL.NS	0.405932	0.636537	0.267678	0.574485	0.787788	0.809028	0.678931	0.18

50 rows × 50 columns

Mathematicians recomends spearmans for stock analysis

In [68]: stocks_master_df.tail(1000).corr(method = 'spearman')

Out[68]:

: FWTR	FB	 MRF.NS	NATIONALUM.NS	NMDC.NS	COALINDIA.NS	VEDL.NS	TATASTEEL.N
28003	0.690620	 0.521364	-0.053200	0.268836	-0.691254	0.019674	0.27303
40500	0.631973	 0.655231	0.381977	0.410093	-0.401693	0.456400	0.66279
12451	0.849018	 0.216246	-0.320727	0.196192	-0.790541	-0.256240	-0.00415
36606	0.810589	 0.448274	0.015182	0.465022	-0.495672	0.103093	0.31615
95263	0.874221	 0.723526	0.620849	0.633212	-0.161832	0.660090	0.77642
54350	0.580280	 0.713127	0.494937	0.636185	-0.052979	0.591554	0.71508
11946	0.376512	 0.554113	0.537936	0.720114	0.220668	0.624447	0.69553
41831	0.796328	 0.200038	-0.297325	0.094467	-0.720070	-0.274755	-0.00205
00000	0.732767	 0.361282	-0.050222	0.208877	-0.435339	-0.000586	0.19599
32767	1.000000	 0.368230	-0.143640	0.333020	-0.643134	-0.066519	0.1647§
57666	0.704427	 0.280424	-0.152856	0.175011	-0.600882	-0.135055	0.14854
83580	0.834096	 0.171040	-0.312970	0.139349	-0.757480	-0.271043	-0.00620
35548	0.567462	 0.416226	0.155205	0.541232	-0.246729	0.188059	0.4114€
58039	0.844301	 0.237934	-0.276916	0.220472	-0.722500	-0.248813	0.01819
57884	0.791646	 0.136190	-0.410995	0.093481	-0.846944	-0.321222	-0.11480
69300	0.815511	 0.430010	-0.033908	0.377217	-0.635553	0.059779	0.22839
63554	-0.023747	 0.458451	0.723539	0.576745	0.613667	0.698948	0.61737
24287	-0.087350	 0.066592	0.354846	0.269979	0.417301	0.312972	0.27081
10405	0.468465	 0.306539	0.231370	0.522561	-0.093405	0.226890	0.40304
29772	0.497553	 -0.013603	-0.485651	-0.255699	-0.795699	-0.509842	-0.29965
02220	0.549293	 0.413234	-0.116900	0.057767	-0.586756	-0.084793	0.14746
21387	0.710821	 0.244240	-0.118371	0.258429	-0.537069	-0.097637	0.16548
84901	0.726972	 0.388310	0.924357	0.870938	0.716891	0.918871	0.91014
27226	0.605357	 0.421293	0.095090	0.233894	-0.343184	0.097124	0.31197
98580	0.579885	 0.161487	0.036679	0.351044	-0.431462	0.077319	0.30488
55861	0.679515	 0.449659	0.001543	0.222561	-0.456158	0.009248	0.26232
26740	0.773234	 0.204317	-0.241406	0.174721	-0.691068	-0.208765	0.03817
66927	0.798899	 0.255609	-0.255543	0.192200	-0.714176	-0.229798	0.02404
56301	0.784576	 0.264300	-0.209130	0.247256	-0.645303	-0.168671	0.09504
06668	0.795817	 0.215670	-0.234600	0.211941	-0.656362	-0.202294	0.05844
48606	0.583497	 0.312167	-0.013389	0.326077	-0.410046	0.001033	0.24620
63415	0.039687	 0.784085	0.845264	0.706608	0.488465	0.867659	0.87708
81121	-0.619800	 0.146248	0.729186	0.302227	0.833080	0.690731	0.51611
57678	-0.153858	 0.601675	0.630361	0.465838	0.573919	0.656536	0.62464

ΓWTR	FB	 MRF.NS	NATIONALUM.NS	NMDC.NS	COALINDIA.NS	VEDL.NS	TATASTEEL.N
18118	-0.079453	 0.598238	0.882376	0.726696	0.555908	0.921162	0.87870
48024	0.658321	 0.668521	0.104151	0.297309	-0.424545	0.167485	0.3988€
83591	0.744125	 0.470054	0.163428	0.570911	-0.414862	0.237424	0.44835
90650	-0.536666	 0.271739	0.615584	0.227565	0.807158	0.564569	0.46278
63950	0.276393	 0.789471	0.441324	0.573650	0.068531	0.486991	0.66243
37684	0.669681	 0.738745	0.225604	0.438834	-0.367349	0.258523	0.49530
61282	0.368230	 1.000000	0.565253	0.635405	0.043310	0.600490	0.71962
50222	-0.143640	 0.565253	1.000000	0.682407	0.587727	0.961360	0.85906
08877	0.333020	 0.635405	0.682407	1.000000	0.215354	0.737200	0.82193
35339	-0.643134	 0.043310	0.587727	0.215354	1.000000	0.544641	0.32791
00586	-0.066519	 0.600490	0.961360	0.737200	0.544641	1.000000	0.90362
95996	0.164792	 0.719624	0.859068	0.821937	0.327912	0.903620	1.00000
08209	0.487527	 0.792460	0.539543	0.677973	0.039895	0.598806	0.77544
95996	0.164792	 0.719624	0.859068	0.821937	0.327912	0.903620	1.00000
73793	0.349597	 0.685997	0.519491	0.552986	0.075050	0.532234	0.71259
40106	0.071827	 0.704106	0.907944	0.766153	0.492817	0.928555	0.93242

Out[69]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2a6e8b040>

correlation plotting on seaborn

```
In [70]: import seaborn as sns
In [81]: plt.figure(figsize=(20,20))
    sns.heatmap(stocks_master_df.corr(),cmap='coolwarm')
```


Plotting higger correlations

```
In [82]: corr_matrix = stocks_master_df.corr(method='pearson').abs()
    upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.boolcorr_cols = [column for column in upper.columns if any(upper[column] > 0.95)]
```

```
In [83]: plt.figure(figsize=(20,20))
sns.heatmap(stocks_master_df[corr_cols].corr(),cmap='coolwarm')
```

Out[83]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2a70afa00>


```
In [77]: corr_matrix = stocks_master_df.corr(method='spearman').abs()
    upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.boolcorr_cols = [column for column in upper.columns if any(upper[column] > 0.95)]
```

```
In [78]: plt.figure(figsize=(20,20))
    sns.heatmap(stocks_master_df[corr_cols].corr(),cmap='coolwarm')
```

Out[78]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2a5cf6820>

In [84]: stocks_master_df.tail()

Out[84]:

TWTR	FB	 MRF.NS	NATIONALUM.NS	NMDC.NS	COALINDIA.NS	VEDL.NS	TATASTEEL.N
1.868752	0.971003	 0.811423	1.000000	0.848574	0.243568	0.955280	0.9907
1.838730	0.972521	 0.805916	0.970371	0.837333	0.247101	0.963443	0.9771
).833071	0.967178	 0.815658	0.829015	0.811544	0.231614	0.947117	0.9643
1.812166	0.965828	 0.802291	0.774077	0.771538	0.225908	0.930081	0.9346
1.808708	0.962537	 0.788898	0.824077	0.794021	0.235417	1.000000	0.9750

	•	•
In []:		
In []:		
In []:		