РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ 10 июня 2016 г.

$$\mathbf{1A_1.} \ \, (\mathit{Muxaŭlob} \ \, HO.A.) \ \, \xi = \frac{mgH}{k_BT} = \frac{4 \cdot 10^{-20} \cdot 9,8 \cdot 0,1}{1,38 \cdot 10^{-23} \cdot 284} \approx 10, \ \, n(z) = Ae^{-mgz/k_BT}, \ \, n_0H = \int\limits_0^H n(z)dz = \frac{k_BTA}{mg} \left(1 - e^{-\xi}\right), \\ n_1 = \frac{n_0mgH}{k_BT\left(1 - e^{-\xi}\right)}e^{-mgh/k_BT} = n_0\xi \frac{e^{-\xi/2}}{1 - e^{-\xi}} \approx n_0\xi e^{-\xi/2} \approx 10^8 \cdot 10 \cdot 6,7 \cdot 10^{-3} = \boxed{6,7 \cdot 10^6 \ \mathrm{cm}^{-3}.}$$

2A₁. (Kopomkos
$$\Pi$$
. Φ .) $A = 2T_0S_0$, $Q_+ = Q_{12} + Q_{34} + Q_{53} = 9T_0S_0$, $\eta = 2/9 \approx 0.22$.

- **3A**₁. (Попов П.В.) Уравнение Ван-дер-Ваальса и внутренняя энергия, выраженные через плотность: $P = RT \frac{\rho}{\mu} a \frac{\rho^2}{\mu^2}, \ \Delta U = C_V \Delta T \frac{a}{\mu} \Delta \rho, \ (C_V = \frac{5}{2}R). \ \text{Сохранение энтальпии:} \ \Delta H = \Delta U + \Delta \left(\frac{P\mu}{\rho}\right) = \\ = (C_V + R)\Delta T 2\frac{a}{\mu}\Delta \rho = 0, \ \text{откуда} \ \Delta T = \frac{4a\Delta\rho}{7\mu R} = -\frac{4\cdot0.14\cdot24}{7\cdot32\cdot10^{-3}\cdot8,31} \approx \boxed{-7.2 \text{ K.}}$
- 4А₁. (Нозик А.А., Попов П.В.) Средняя энергия вылетающих молекул $\bar{\varepsilon}_{\text{выл}} = 2k_{\text{B}}T + \frac{i-3}{2}k_{\text{B}}T = 3k_{\text{B}}T$ (см. зад. 7.24), поэтому $\frac{dU}{dt} = 3k_{\text{B}}T\frac{dN}{dt}$; энергия частиц в сосуде $U = N\frac{5}{2}k_{\text{B}}T$; отсюда $\frac{5}{2}d(NT) = 3TdN \rightarrow -\frac{1}{2}TdN + \frac{5}{2}NdT = 0 \rightarrow \frac{T^5}{N} = \text{const}, N_1/N_0 = (T_1/T_0)^5 = \boxed{1/32}$.
- 5A₁. (Шеронов A.A.) Из уравнение Клапейрона–Клаузиуса найдём начальную температуру воды $\Delta T \approx \frac{\Delta PT_0}{\lambda} \left(\frac{1}{\rho_{\rm B}} \frac{1}{\rho_{\rm A}}\right) = -0.37$ К. При уменьшении давления до атмосферного температура вырастет от $t_1 = -0.37\,^{\circ}{\rm C}$ до $t_2 = 0\,^{\circ}{\rm C}$, при этом часть воды Δm замёрзнет. Величину Δm найдём из условия адиабатичности: $\Delta S \approx m c_{\rm B} \frac{\Delta T}{T} \frac{\Delta m \lambda}{T} = 0 \to \Delta m \approx \frac{m c_{\rm B} \Delta T}{\lambda} \approx 4.6$ г (см. также задачу 11.34). Пусть $V_0 = m \rho_{\rm B} = 10^3$ см³ объём m = 1 кг жидкой воды при нормальных условиях. Изменение объёма системы из-за уменьшения сжатия воды $\Delta V_1 = -V_0 \frac{\Delta P}{K_{\rm B}} \approx 2.5$ см³ (отличием адиабатической и изотермической сжимаемостей можно пренебречь, поскольку $C_P/C_V \approx 1$). Изменение объёма из-за замерзания: $\Delta V_2 = \Delta m (\frac{1}{\rho_{\rm B}} \frac{1}{\rho_{\rm B}}) = 0.4\,{\rm cm}^3$. Суммарное увеличение объёма $\Delta V = \Delta V_1 + \Delta V_2 = 2.9\,{\rm cm}^3$.
- **6A**₁. (*Крымский К.М.*, *Попов П.В.*) В стационаре разность числа частиц, пересекающих элементарный слой толщиной dx, равна числу атомов, распавшихся в нём за время dt: $dN = dj \cdot dt \cdot S = dn_{\text{расп}} \cdot S \cdot dx$ $\rightarrow \frac{dj}{dx} = \frac{dn_{\text{pacn}}}{dt}$, где согласно закону радиоактивного распада $\frac{dn_{\text{pacn}}}{dt} = -\frac{\ln 2}{T}n \equiv -An$. Таким образом $\frac{dj}{dx} = -An \rightarrow D\frac{d^2n}{dx^2} An = 0 \rightarrow n = n_0 e^{-\sqrt{\frac{\ln 2}{DT}}\,x}$, отсюда $D = \frac{h^2 \ln 2}{T \ln^2 \beta} \approx \boxed{0,02 \text{ cm}^2/\text{c}}$.
- 1А2. (Попов П.В.) $n=n_0\exp\left(-\frac{m^\star gz}{k_{\rm B}T}\right)$, где с учётом силы Архимеда $m^\star=\frac{4}{3}\pi r^3(\rho_1-\rho_{\rm B})\ (m^\star<0$, на дне пробирки концентрация минимальна). Отсюда $m^\star=\frac{k_{\rm B}T}{gh}\ln\frac{n_{\rm min}}{n_{\rm max}}\approx -7,1\cdot 10^{-18}\ {\rm r},\ r=\left(\frac{3\ln 2\,k_{\rm B}T}{4\pi gh(\rho_{\rm B}-\rho_1)}\right)^{1/3}\approx \approx \left(\frac{3\cdot 7,1\cdot 10^{-18}}{4\cdot 3,14\cdot 0,1}\right)^{1/3}\ {\rm cm}\approx 26\ {\rm hm}.$
- **2A**₂. (Kopomkos $\Pi.\Phi.$) $A = \pi T_0 S_0$, $Q_+ = Q_{12} + Q_{34} + Q_{53} = (6 + \frac{\pi}{2}) T_0 S_0$, $\eta = \frac{2\pi}{12 + \pi} \approx \boxed{0.41}$.
- $3A_2$. (Попов П.В.) Поправка к давлению $\frac{a}{v_0^2}\approx 1,3$ атм $\ll P_0$; начальная температура $T_0\approx P_0\frac{v_0-b}{R}\approx 237$ К. Изменение энтальпии: $0=\Delta H=\Delta U+\Delta(PV)=C_V\Delta T+\frac{a}{v_0}+RT-P_0v_0=(C_V+R)\Delta T+\frac{a}{v_0}+RT_0-P_0v_0\approx (C_V+R)\Delta T-bP_0$, откуда $\Delta T\approx \frac{bP_0}{C_V+R}\approx 23$ К (или более точно $\Delta T=\frac{P_0v_0-RT_0-\frac{a}{v_0}}{C_V+R}=\frac{b(P_0+\frac{a}{v_0^2})-2\frac{a}{v_0}}{C_V+R}=21,2$ К.)

$$\begin{aligned} \mathbf{1B_1.} & \text{ (Muxaŭsob } \text{ O.A.) } v_p = \sqrt{2k_{\mathrm{B}}T/m}, \ \xi = v/v_p, \ N_0 = \frac{P_0 V}{k_{\mathrm{B}}T_0} = \frac{10^5 \cdot 10^{-6}}{1,38 \cdot 10^{-23} \cdot 273} \approx 2,65 \cdot 10^{19}, \\ N = N_0 \int\limits_0^{\alpha v_p} \left(\frac{m}{2\pi k_{\mathrm{B}}T}\right)^{3/2} e^{-\frac{m v^2}{2k_{\mathrm{B}}T}} 4\pi v^2 dv = \frac{4N_0}{\sqrt{\pi}} \int\limits_0^{\alpha} \xi^2 e^{-\xi^2} d\xi \approx \frac{4N_0}{\sqrt{\pi}} \int\limits_0^{\alpha} \xi^2 d\xi = \frac{4\alpha^3 N_0}{3\sqrt{\pi}} \approx 7,5 \cdot 10^{-7} N_0 \approx \boxed{2 \cdot 10^{13}}. \end{aligned}$$

2Б₁. (*Юрьев Ю.В.*) Тепло на политропе $Q_3 = C(T_1 - T_2)$ ($Q_3 > 0$, теплоёмкость политропы отрицательна C < 0). Уравнение политропы: $CdT = TdS \to S = S_1 + C \ln \frac{T}{T_1}$. Тепло на изотерме $Q_1 = T_1(S_2 - S_1) = CT_1 \ln \frac{T_2}{T_1} < 0$. КПД цикла: $\eta = 1 + \frac{Q_1}{Q_3} = 1 - \frac{T_1 \ln \frac{T_2}{T_1}}{T_2 - T_1} \approx \boxed{0,23.}$

- **3Б**₁. (Попов П.В.) Критическая точка в модели В-д-В: $V_0=V_{\rm K}=3b,~a=\frac{27}{8}RT_{\rm K}b=\frac{9}{8}RT_{\rm K}V_{\rm K}$; при свободном расширении сохраняется внутренняя энергия $\Delta U=C_V\Delta T-a\Delta\left(\frac{1}{V}\right)=0,~T_1=T_0-\frac{4}{5}\frac{a}{C_VV_0}=T_0-\frac{36}{40}\frac{T_{\rm K}}{3,6}=\boxed{380~\rm K.}$
- 4Б₁. (Нозик А.А.) Средняя энергия вылетающих молекул $\bar{\varepsilon}_{\text{выл}}=2k_{\text{B}}T, \frac{dU}{dt}=2k_{\text{B}}T\frac{dN}{dt};$ энергия частиц в сосуде $U=N\frac{3}{2}k_{\text{B}}T;$ отсюда $\frac{3}{2}d(NT)=2TdN\to -\frac{1}{2}TdN+\frac{3}{2}NdT=0\to \frac{T^3}{n}=\text{const},$ и $T_1=T_0(n_1/n_0)^{1/3}=\boxed{T_0/\sqrt[3]{2}=0.79T_0.}$
- $5\mathbf{B}_1$. (Шеронов A.A.) Конечная температура $\Delta T \approx \frac{\Delta PT_0}{\lambda} \left(\frac{1}{\rho_{\mathrm{B}}} \frac{1}{\rho_{\mathrm{n}}} \right) = -0.74$ К. Условие адиабатичности $\Delta S \approx m c_{\mathrm{n}} \frac{\Delta T}{T} \frac{\Delta m \lambda}{T} = 0 \to \Delta m \approx \frac{m c_{\mathrm{n}} \Delta T}{\lambda} \approx 4.7$ г (см. 11.34). Объём льда при нормальных условиях $V_0 = m \rho_{\mathrm{n}} = 916$ см³. Уменьшение объёма из-за сжатия льда $\Delta V_1 = -V_0 \beta_{\mathrm{n}} \Delta P \approx -1.07$ см³. Уменьшение объёма из-за таяния льда: $\Delta V_2 = \Delta m \left(-\frac{1}{\rho_{\mathrm{n}}} + \frac{1}{\rho_{\mathrm{B}}} \right) = -0.43$ см³. Сжатием воды можно пренебречь ввиду малости Δm . Суммарно $\Delta V = \Delta V_1 + \Delta V_2 \approx \boxed{-1.5$ см³. Работа $A = -\int P dV \approx -\frac{P_1 + P_2}{2} \Delta V \approx \boxed{7.6}$ Дж.
- $\mathbf{6B_1}.$ (Крымский К.М., Попов П.В.) Аналогично 6A $n=n_0e^{-\sqrt{\frac{A}{D}}\,x},\ j_0=-D\left(\frac{dn}{dx}\right)_{x=0}=n_0\sqrt{AD},$ $n=\frac{j_0}{\sqrt{AD}}e^{-\sqrt{\frac{A}{D}}\,h}pprox 317\ \text{частиц/м}^3.$

$$\mathbf{1B_2.} \ \, (\textit{Ποπο s} \ \textit{Π.B.}) \ \, \frac{mv_0^2}{k_{\rm B}T} \approx 1{,}28 \cdot 10^{-5} \ll 1, \, \alpha = \int\limits_0^{v_0} 4\pi v^2 \left(\frac{m}{2\pi k_{\rm B}T}\right)^{3/2} e^{-\frac{mv^2}{2k_{\rm B}T}} dv \approx \frac{4\pi}{3} \left(\frac{mv_0^2}{2\pi k_{\rm B}T}\right)^{3/2} \approx \boxed{1{,}22 \cdot 10^{-8}}.$$

- .2**Б**₂. (Юрьев Ю.В.) $CdT = TdS \rightarrow S = S_0 + C \ln \frac{T}{T_0}, \ Q_1 = C(T_1 T_0) = -1,0$ кДж, $Q_3 = T_0(S_0 S_1) = -CT_0 \ln \frac{T_1}{T_0} \approx 0,69$ кДж, $A = -(Q_1 + Q_2) \approx \boxed{0,31}$ кДж.
- ${f 3B_2}$. (Попов П.В.) $b=rac{\mu}{3
 ho_{ ext{\tiny K}}}=$ $\boxed{26\ ext{cm}^3/ ext{моль}},\ \Delta U=C_V\Delta T-arac{\Delta
 ho}{\mu}=0,\ a=rac{3}{2}\mu Rrac{\Delta T}{\Delta
 ho}=\boxed{0.16\ \Pi ext{a}\cdot ext{m}^6/ ext{моль}^2}.$

Инструкция для проверяющих

За каждую задачу выставляется целое число баллов согласно стоимости задачи (x) и следующим критериям:

ториим		
x	+	Задача решена верно: приведено <i>обоснованное</i> решение и даны ответы на все вопросы задачи. Возможно наличие арифметических ошибок, не влияющих на ход решения и не приводящих к ошибке в порядке или знаке величины.
x-1	±	Ход решения задачи в целом верен и получены ответы на все вопросы задачи, но решение содержит ошибки, не касающиеся физического содержания: арифметические ошибки, влияющие на порядок или знак величины; ошибки в размерности; вычислительные ошибки в выкладках; отсутствуют необходимые промежуточные доказательства и т. п.
x-2	Ŧ	Задача не решена, решена лишь частично, или содержит грубые вычислительные ошибки, влияющие на ход решения, но все необходимые для решения физические законы сформулированы и корректно применены к задаче.
0		Задача не решена: основные физические законы применены с грубыми ошибками, перечислены не полностью или использованы законы, не имеющие отношения к задаче / подход к решению принципиально неверен / решение задачи не соответствует условию / попытки решить задачу не было.

Итоговая оценка за письменную работу ставится из суммы баллов Σ согласно формуле Оценка = $\left\lceil \frac{\Sigma}{2} \right\rceil$ с округлением в большую сторону (но не более 10 и не менее 1).

Если есть подозрения, что задача (или вся работа) списана, рядом с оценкой за задачу (работу) ставится знак вопроса.

Тексты задач и решений могут отличаться от представленных авторами. Все замечания направлять редактору-составителю контрольной работы Попову П.В. (popov.pv@mipt.ru).

Обсуждение замечаний, критериев проверки и результатов — на форуме кафедры board.physics.mipt.ru. Итоговое обсуждение — 14 июня в 8:30 в Гл. физ. ауд. (электричка с Савеловского вокзала в 7-50). Явка всех участвующих в экзамене обязательна.

ФИО	13	23	$1A_1$	$2A_1$	$3A_1$	$4A_1$	$5A_1$	Σ	Оценка
группа									

Оценка = $[\Sigma/2]$.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

10 июня 2016 г.

Вариант \mathbf{A}_1

- **1A**₁. (3) В вертикально расположенной пробирке высотой H=10 см, заполненной воздухом при темперауре $t=11\,^{\circ}\mathrm{C}$, равномерно распределены наночастицы пыли массой $m=4\cdot 10^{-17}$ г каждая. Их начальная концентрация составляет $n_0=10^8$ см⁻³. Найти концентрацию частиц n_1 в центре пробирки (на высоте h=H/2) после установления равновесия.
- ${f 2A_1}$. (3) Тепловая машина работает по обратимому циклу 1–2–3–4–5–3–1, состоящему в координатах T-S из двух равнобедренных треугольников (см. рис.). Найти КПД цикла. Уравнение состояния рабочего тела неизвестно.

- **3A**₁. (3) Найти изменение температуры ΔT кислорода в процессе Джоуля—Томсона, если начальная плотность газа равна $\rho_0=25~{\rm kr/m^3}$, конечная $\rho_1=1~{\rm kr/m^3}$. Использовать модель Ван-дер-Ваальса с параметрами $a=0.14~{\rm Дж\cdot m^3\cdot monb^{-2}},\,b\approx 0$ и постоянной теплоёмкостью C_V . Начальная температура близка к комнатной.
- **4A**₁. (4) Теплоизолированный сосуд, заполненный двухатомным газом, находится в космосе. В сосуде имеется отверстие, размеры которого много меньше длины свободного пробега, через которое газ медленно вытекает. Найти, во сколько раз изменится число частиц в сосуде N_1/N_0 к моменту, когда температура в нём уменьшится вдвое, $T_1 = T_0/2$.
- **5A**₁. (4) Вода в количестве m=1 кг и небольшой кусочек льда находятся в теплоизолированной оболочке под давлением $P_1=51$ атм. Давление медленно уменьшают до $P_2=1$ атм. Найти изменение объёма системы ΔV . Плотности воды и льда при атмосферном давлении равны соответственно $\rho_{\rm B}=1,0$ г/см³ и $\rho_{\rm \pi}=0,916$ г/см³; изотермический модуль всестороннего сжатия воды $K_{\rm B}=2,0\cdot 10^4$ атм. Удельная теплота плавления льда $\lambda=335$ Дж/г, удельная теплоёмкость воды $c_{\rm B}=4,18$ Дж/г. Отличием C_P/C_V от единицы можно пренебречь.
- $6A_1$. (4) Для защиты от радиоактивного инертного газа радона—220, выделяемого торий-содержащими отходами, их засыпают песком. Благодаря высокой радиоактивности, радон в процессе диффузии через песок в значительной степени распадается. Считая диффузию одномерной, определить коэффициент диффузии D радона в песке, если известно, что в стационарном состоянии на расстоянии h=20 см от радиоактивного источника регистрируется в $\beta=10^7$ раз меньше актов распада в секунду, чем на границе источника. Период полураспада радона—220 равен T=55,6 с.

ФИО	13	23	$1\mathbf{A}_2$	$2A_2$	$3A_2$	$4A_2$	$5A_2$	Σ	Оценка
группа									

Оценка = $\lceil \Sigma/2 \rceil$.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

10 июня 2016 г.

Вариант A_2

- **1A**₂. (3) Водная суспензия содержит небольшое количество мелких капелек масла при температуре $t=17\,^{\circ}$ С. Плотность масла $\rho_1=0.9\,\,\mathrm{г/cm^3}$. При каком радиусе капель r отношение их минимальной и максимальной концентраций в пробирке высотой $h=4\,\mathrm{cm}$ будет в равновесии составлять $n_{\min}/n_{\max}=0.5$?
- ${f 2A_2}$. (3) Тепловая машина работает по обратимому циклу 1–2–3–4–5–3–1, состоящему в координатах T–S из двух полуэллипсов (см. рис.). Найти КПД цикла. Уравнение состояния рабочего тела не известно. Cnpaeкa: площадь эллипса с полуосями a и b равна $\Pi=\pi ab$.

- **3A**₂. (3) Гелий под давлением $P_0=200$ атм подвергается дросселированию в область низкого давления $P_1\ll P_0$. Начальный молярный объём газа равен $v_0=160~{\rm cm}^3/{\rm моль}$. Определить изменение температуры гелия ΔT , используя модель Ван-дер-Ваальса с параметрами $b=24~{\rm cm}^3/{\rm моль}$ и $a=3,4\cdot 10^{-3}~{\rm \Pi a\cdot (m^3/{\rm моль})^2}$. Указания: в конечном состоянии газ считать идеальным; при расчётах можно воспользоваться тем, что $a/v_0^2\ll P_0$.
- **4A**₂. (4) Теплоизолированный сосуд, заполненный двухатомным газом, находится в космосе. В сосуде имеется отверстие, размеры которого много меньше длины свободного пробега, через которое газ медленно вытекает. Найти, во сколько раз изменится число частиц в сосуде N_1/N_0 к моменту, когда температура в нём уменьшится вдвое, $T_1 = T_0/2$.
- $5\mathbf{A}_2$. (4) Вода в количестве m=1 кг и небольшой кусочек льда находятся в теплоизолированной оболочке под давлением $P_1=51$ атм. Давление медленно уменьшают до $P_2=1$ атм. Найти изменение объёма системы ΔV . Плотности воды и льда при атмосферном давлении равны соответственно $\rho_{\rm B}=1.0~{\rm r/cm}^3$ и $\rho_{\rm \pi}=0.916~{\rm r/cm}^3$; изотермический модуль всестороннего сжатия воды $K_{\rm B}=2.0\cdot 10^4~{\rm atm}$. Удельная теплота плавления льда $\lambda=335~{\rm Дж/r}$, удельная теплоёмкость воды $c_{\rm B}=4.18~{\rm Дж/r}$. Отличием C_P/C_V от единицы можно пренебречь.
- $6A_2$. (4) Для защиты от радиоактивного инертного газа радона—220, выделяемого торий-содержащими отходами, их засыпают песком. Благодаря высокой радиоактивности, радон в процессе диффузии через песок в значительной степени распадается. Считая диффузию одномерной, определить коэффициент диффузии D радона в песке, если известно, что в стационарном состоянии на расстоянии h=20 см от радиоактивного источника регистрируется в $\beta=10^7$ раз меньше актов распада в секунду, чем на границе источника. Период полураспада радона—220 равен T=55,6 с.

ФИО	13	23	$1B_1$	$2\mathbf{B}_1$	$3\mathbf{B}_1$	$4B_1$	$5\mathbf{B}_1$	Σ	Оценка
группа									

Оценка = $[\Sigma/2]$.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

10 июня 2016 г.

Вариант \mathbf{B}_1

- **1Б**₁. (3) Определить число молекул N в кубическом сантиметре азота при нормальных условиях, имеющих модуль скорости v, меньший чем $v < \alpha v_p$, где v_p наиболее вероятная скорость, $\alpha = 0.01$.
- **2Б**₁. (3) Неидеальный газ с неизвестным уравнением состояния служит рабочим телом в обратимом цикле, состоящем из 1) изотермического сжатия при температуре $T_1 = 300 \; \mathrm{K}, \; 2)$ адиабатического нагрева до температуры $T_2 = 500 \; \mathrm{K}, \; 3)$ политропического охлаждения. Найти КПД цикла η .
- 3Б₁. (3) Моль углекислого газа, сжатый исходно до критической плотности $\rho_0 = \rho_{\rm K}$ при температуре $T_0 = \frac{3}{2}T_{\rm K}$ ($T_{\rm K} = 304~{\rm K}$ критическая температура), свободно расширяется в теплоизолированном сосуде объёма V_1 , так что объём газа увеличивается в $V_1/V_0 = 5$ раз. Используя модель Ван-дер-Ваальса, найти конечную температуру газа T_1 . Теплоёмкость $C_V \approx 3,6R$ считать постоянной.
- **4Б**₁. (4) В теплоизолированном сосуде, помещённом в вакуумную камеру, находится идеальный одноатомный газ с начальной температурой T_0 . В сосуде имеется отверстие, размеры которого много меньше длины свободного пробега, через которое газ медленно вытекает. Найти температуру T_1 газа в сосуде к моменту, когда концентрация газа в нём уменьшится вдвое, $n_1 = n_0/2$.
- 5Б₁. (4) Лёд в количестве m=1 кг находится в адиабатической оболочке при нормальных условиях. Внешнее давление медленно увеличивают до $P_2=100$ атм. Найти изменение объёма системы ΔV и работу A, которую необоходимо для этого совершить. Плотности воды и льда при нормальных условиях равны соответственно $\rho_{\rm B}=1,0$ г/см³ и $\rho_{\rm A}=0,916$ г/см³; изотермическая сжимаемость льда $\beta_{\rm A}=1,18\cdot 10^{-10}$ Па $^{-1}$. Удельная теплота плавления льда $\lambda=335$ Дж/г, удельная теплоёмкость льда $c_{\rm A}=2,11$ Дж/г. Отличием C_P/C_V от единицы можно пренебречь.
- 6Б₁. (4) Для защиты от радиоактивного инертного газа радона—220, выделяемого торийсодержащими отходами, их засыпают песком. Благодаря высокой радиоактивности радона, в процессе диффузии через песок он в значительной степени распадается. Приняв плотность потока частиц со стороны источника равной $j_0 = 10^5 \, \frac{\text{частиц}}{\text{см}^2 \cdot \text{c}}$, найти установившуюся концентрацию радона n на расстоянии h = 30 см от источника. Коэффициент диффузии газа в песке равен $D = 0.02 \, \text{см}^2/\text{c}$, диффузию считать одномерной. Вероятность распада атома радона—220 за время dt равна $dp = A \, dt$, где $A = 12.5 \cdot 10^{-3} \, \text{c}^{-1}$.

14

ФИО	13	23	$1\mathbf{B}_2$	$2\mathbf{B}_2$	$3\mathbf{B}_2$	$4\mathbf{B}_2$	$5\mathbf{B}_2$	Σ	Оценка
группа									

Оценка = $[\Sigma/2]$.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

10 июня 2016 г.

Вариант \mathbf{B}_2

- **1Б**₂. (3) Определить долю молекул атмосферного кислорода при температуре $t=27\,^{\circ}\mathrm{C}$, имеющих модуль скорости, меньший чем $v_0=1\,\mathrm{m/c}$.
- **2Б**₂. (3) Вещество с неизвестным уравнением состояния, исходно находящееся при температуре $T_0=100~{\rm K}$, было последовательно подвергнуто нагреву в политропическом процессе с теплоемкостью $C=-10~{\rm Дж/K}$ до температуры $T_1=200~{\rm K}$, адиабатическому охлаждению до температуры T_0 и изотермическому расширению до исходного состояния. Найти работу A, совершенную над телом за цикл.
- 3Б₂. (3) Аргон ($\mu=40$ г/моль), находящийся исходно в состоянии с плотностью $\rho_0=0,1\rho_{\rm K}$, где $\rho_{\rm K}=0,5$ г/см³ критическая плотность, свободно расширился в закрытом теплоизолированном сосуде фиксированного объёма, в результате чего плотность газа упала до $\rho_1=\rho_0/2$, а температура изменилась на $\Delta T=-8$ К. Используя модель Ван-дер-Ваальса, найти константы a и b.
- 4Б₂. (4) В теплоизолированном сосуде, помещённом в вакуумную камеру, находится идеальный одноатомный газ с начальной температурой T_0 . В сосуде имеется отверстие, размеры которого много меньше длины свободного пробега, через которое газ медленно вытекает. Найти температуру T_1 газа в сосуде к моменту, когда концентрация газа в нём уменьшится вдвое, $n_1 = n_0/2$.
- 5Б₂. (4) Лёд в количестве m=1 кг находится в адиабатической оболочке при нормальных условиях. Внешнее давление медленно увеличивают до $P_2=100$ атм. Найти изменение объёма системы ΔV и работу A, которую необоходимо для этого совершить. Плотности воды и льда при нормальных условиях равны соответственно $\rho_{\rm B}=1,0$ г/см³ и $\rho_{\rm A}=0,916$ г/см³; изотермическая сжимаемость льда $\beta_{\rm A}=1,18\cdot 10^{-10}$ Па $^{-1}$. Удельная теплота плавления льда $\lambda=335$ Дж/г, удельная теплоёмкость льда $c_{\rm A}=2,11$ Дж/г. Отличием C_P/C_V от единицы можно пренебречь.
- **6Б**₂. (4) Для защиты от радиоактивного инертного газа радона—220, выделяемого торий-содержащими отходами, их засыпают песком. Благодаря высокой радиоактивности радона, в процессе диффузии через песок он в значительной степени распадается. Приняв плотность потока частиц со стороны источника равной $j_0 = 10^5 \, \frac{\text{частиц}}{\text{см}^2 \cdot \text{c}}$, найти установившуюся концентрацию радона n на расстоянии h = 30 см от источника. Коэффициент диффузии газа в песке равен $D = 0.02 \, \text{см}^2/\text{c}$, диффузию считать одномерной. Вероятность распада атома радона—220 за время dt равна $dp = A \, dt$, где $A = 12.5 \cdot 10^{-3} \, \text{c}^{-1}$.