

Full wwPDB Integrative Structure Validation Report

June 08, 2020 -- 01:53 PM

The following software were used in the production of this report:

Molprobity: Version 4.4
Integrative Modeling Validation Package: Version 1.0

PDB ID	PDBDEV_00000004
Molecule Name	Structure of K63-linked Diubiquitin
Title	Characterizing Protein Dynamics with Integrative Use of Bulk and Single-Molecule Techniques
Authors	Liu Z;Gong Z;Cao Y;Ding YH;Dong MQ;Lu YB;Zhang WP;Tang C

Ensemble information

This entry consists of 0 distinct ensemble.

Summary

This entry consists of 3 unique models, with 2 subunits in each model. A total of 5 datasets or restraints was used to build this entry. Each model is represented by 0 rigid bodies and 2 flexible or non-rigid units.

Entry composition

There are 3 unique types of models in this entry. These models are titled None/Model 1, None/Model 2, None/Model 3 respectively.

Model ID	Subunit number	Subunit ID	Subunit name	Chain ID	Total residues
1	1	1	Ubiquitin	А	76
1	2	1	Ubiquitin	В	76
2	1	1	Ubiquitin	А	76
2	2	1	Ubiquitin	В	76
3	1	1	Ubiquitin	А	76
3	2	1	Ubiquitin	В	76

Datasets used for modeling

There are 5 unique datasets used to build the models in this entry.

ID	Dataset type	Database name	Data access code
1	SAS data	SASBDB	SASDCG7
2	Experimental model	PDB	1UBQ
3	Experimental model	PDB	2N2K
4	CX-MS data	Not listed	None
5	Single molecule FRET data	Not listed	None

Representation

This entry has only one representation and includes 0 rigid bodies and 2 flexible units.

Chain ID	Rigid bodies	Non-rigid segments
А	-	1-76.
В	-	1-76.

Methodology and software

Step	Protocol	Method	Method	Number of computed models	Multi state	Multi scale
number	ID	name	type		modeling	modeling
1	1	None	None	None	True	None

Software packages used for modeling were either not reported or not used.

Data quality

Scattering profile

SAS data used in this integrative model was obtained from 1 deposited SASBDB entry (entries).

<u>Scattering profile for SASDCG7:</u> data from solutions of biological macromolecules are presented as both log I(q) vs q and log I(q) vs log (q) based on SAS validation task force (SASvtf) recommendations. I(q) is the intensity (in arbitrary units) and q is the modulus of the scattering vector.

Key experimental estimates

Molecular weight (MW) estimates from experiments and analysis true molecular weight can be compared to the Porod estimate from scattering profiles.

SASDB ID	Sequence MW	Experimental MW	Porod MW
SASDCG7	17.130 kDa	13.000 kDa	13.000 kDa

<u>Volume estimates from experiments and analysis</u>: estimated volume can be compared to Porod volume obtained from scattering profiles.

SASDB ID	Estimated volume	Estimated volume method	Porod volume
SASDCG7	None	None	22.00 nm³

Flexibility analysis

<u>Flexibility analysis for SASDCG7</u>: In a Porod-Debye plot, a clear plateau is observed for globular (partial or fully folded) domains, whereas, fully unfolded domains are devoid of any discernable plateau. For details, refer to Figure 5 in Rambo and Tainer, 2011. In a Kratky plot, a parabolic shape is observed for globular (partial or fully folded) domains and a hyperbolic shape is observed for fully unfolded domains.

Pair-distance distribution analysis

 $\underline{P(r)}$ analysis: p(r) represents the distribution of distances between all pairs of atoms within the particle weighted by the respective electron densities. p(r) is the Fourier transform of p(r) (and vice versa). Rg can be estimated from integrating the p(r) function. Agreement between the p(r) and Guinier-determined Rg (table below) is a good measure of the self-consistency of the SAS profile. Rg is a measure for the overall size of a macromolecule; e.g. a protein with a smaller Rg is more compact than a protein with a larger Rg, provided both have the same molecular weight (MW). The point where p(r) is decaying to zero is called Dmax and represents the maximum size of the particle.

SASDB ID	Software used	Dmax	Dmax error	Rg	Rg error
SASDCG7	ATSAS GNOM	7.00 nm	N/A	2.100 nm	0.010 nm

P(r) for SASDCG7: The value of P(r) should be zero beyond r=Dmax.

Guinier analysis

<u>Guinier analysis:</u> agreement between the p(r) and Guinier-determined Rg (table below) is a good measure of the self-consistency of the SAS profile. Molecular weight estimates can also be compared to Porod and sample molecular weights for consistency.

SASDB ID	Rg	Rg error	MW	MW error
SASDCG7	2.0 nm	0.150 nm	N/A	N/A

<u>Guinier analysis for SASDCG7:</u> the linearity of the Guinier plot is a sensitive indicator of the quality of the experimental SAS data; a linear Guinier plot is a necessary but not sufficient demonstration that a solution contains monodisperse particles of the samesize. Deviations from linearity usually point to strong interference effects, polydispersity of the samples or improper background subtraction. Residual value plot and coefficient of determination (R²) are measures to assess linear fit to the data. A perfect fit has an R² value of 1. Residual values should be equally and randomly spaced around the horizontal axis.

Model quality Standard geometry

There are 3774 bond outliers in this entry.

Bond type	Observed distance (Å)	Ideal distance (Å)	Number of outliers
NH1HH12	0.999	0.86	23
NZHZ2	1.039	0.89	38
NZHZ1	1.038	0.89	41
NEHE	1.008	0.86	23
NH2	1.04	0.89	5
CE1HE1	1.078	0.93	23
CD1HD1	1.079	0.93	17
CZHZ	1.078	0.93	11
CD2HD2	1.078	0.93	23
CE2HE2	1.078	0.93	17
NZHZ3	1.038	0.89	38
NH3	1.038	0.89	5
NH2HH22	0.999	0.86	23
NH1	1.039	0.89	5
NH2HH21	0.985	0.86	23
NH1HH11	0.977	0.86	23
ND2HD22	0.979	0.86	11
NE2HE22	0.979	0.86	35
CDHD2	1.077	0.97	83
OG1HG1	0.959	0.84	41
NH	0.978	0.86	431
NE2HE21	0.958	0.86	35
OGHG	0.959	0.84	17

Bond type	Observed distance (Å)	Ideal distance (Å)	Number of outliers
ND1HD1	0.979	0.86	5
ND2HD21	0.956	0.86	11
ОННН	0.958	0.84	5
NE2HE2	0.978	0.86	5
CBHB2	1.073	0.97	311
CAHA	1.076	0.97	419
СВНВ	1.079	0.97	107
CBHB3	1.069	0.97	311
CGHG3	1.076	0.97	161
CGHG2	1.074	0.97	161
CGHG	1.077	0.97	53
CAHA2	1.076	0.97	35
CAHA3	1.076	0.97	35
CG1HG13	1.078	0.97	65
CEHE2	1.077	0.97	47
CDHD3	1.057	0.97	83
CD1HD13	1.078	0.97	95
CG1HG12	1.077	0.97	65
CEHE3	1.078	0.97	47
CG2HG23	1.078	0.97	107
CD2HD21	1.077	0.97	53
CD1HD12	1.077	0.97	95
CD2HD22	1.079	0.97	53

Bond type	Observed distance (Å)	Ideal distance (Å)	Number of outliers
CG2HG21	1.077	0.97	107
CG2HG22	1.078	0.97	107
CD1HD11	1.078	0.97	95
CD2HD23	1.078	0.97	53
CEHE1	1.081	0.97	5
CG1HG11	1.079	0.97	23
CBHB1	1.079	0.97	11

There are 0 angle outliers in this entry.

Too-close contacts

The following all-atom clashscore is based on a MolProbity analysis. All-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The table below contains clashscores for all the models in this entry.

Model ID	Clash score	Number of clashes
Model 1	4.07	10
Model 2	0.00	0
Model 3	0.00	0

All 10 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Torsion angles: Protein backbone

In the following table, Ramachandran outliers are listed. The Analysed column shows the number of residues for which the backbone conformation was analysed.

Model ID	Analyzed	Favored	Allowed	Outliers
1	148	144	3	1
2	148	146	1	1
3	148	145	2	1

Detailed list of outliers are tabulated below.

Model ID	Chain and res ID	Residue type
1	B:73	LEU
2	B:73	LEU
3	B:75	GLY

Torsion angles: Protein sidechains

In the following table, sidechain outliers are listed. The Analysed column shows the number of residues for which the sidechain conformation was analysed.

Model ID	Analyzed	Favored	Allowed	Outliers
1	136	116	12	8
2	136	116	12	8
3	136	114	13	9

Detailed list of outliers are tabulated below.

Model ID	Chain and res ID	Residue type
1	A:13	ILE
1	A:15	LEU
1	A:39	ASP
1	A:71	LEU
1	B:13	ILE
1	B:15	LEU
1	B:39	ASP
1	B:71	LEU
2	A:13	ILE
2	A:15	LEU
2	A:39	ASP
2	A:71	LEU

Model ID	Chain and res ID	Residue type
2	B:13	ILE
2	B:15	LEU
2	B:39	ASP
2	B:71	LEU
3	A:13	ILE
3	A:15	LEU
3	A:39	ASP
3	A:71	LEU
3	A:74	ARG
3	B:13	ILE
3	B:15	LEU
3	B:39	ASP
3	B:71	LEU

Fit of model to data used for modeling Fit of model(s) to SAS data

χ² goodness of fit analysis

Model(s) and/or fit for this entry has not been deposited.

Fit of model to data not used for modeling

Uncertainty of data and model