SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 MST

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO Year: 2 FT

Page 1 of 4

No.	SOLUTION
1a	$z = \ln(x+y) - 2x\cos y$
	$z_{y}(x,y) = \frac{1}{x+y} \cdot 1 - 2x(-\sin y) = \frac{1}{x+y} + 2x\sin y$
	$z_y(2,1) = \frac{1}{2+1} + 2(2)\sin(1) \approx 3.70$
1b	$\frac{dV}{dt} = 0.5 \text{m}^3/\text{s}, \frac{dr}{dt} = 0.03 \text{m/s}, V = \frac{1}{3} \pi r^2 h$
	$\frac{\partial V}{\partial r} = \frac{1}{3}\pi (2r)h = \frac{2}{3}\pi rh, \frac{\partial V}{\partial h} = \frac{1}{3}\pi r^2$
	$\frac{dV}{dt} = \frac{\partial V}{\partial r}\frac{dr}{dt} + \frac{\partial V}{\partial h}\frac{dh}{dt}$
	$0.5 = \frac{2}{3}\pi rh(0.3) + \frac{1}{3}\pi r^2 \frac{dh}{dt}$
	Given $r=3$ and $h=2$
	$0.5 = \frac{2}{3}\pi(3)(2)(0.03) + \frac{1}{3}\pi(3^2)\frac{dh}{dt} \implies 0.5 = 0.12\pi + 3\pi\frac{dh}{dt}$
	$\frac{dh}{dt} = \frac{0.5 - 0.12\pi}{3\pi} = 0.013 \text{m/s}$
2a	$\int \frac{1}{4x-3} dx = \frac{1}{4} \ln 4x-3 + C$
(i)	$\int 4x-3$ 4
2a (ii)	$\int 6(3x+1)^4 dx = 6\int (3x+1)^4 dx = \frac{6}{3} \left[\frac{(3x+1)^5}{5} \right] + C = \frac{2}{5} (3x+1)^5 + C$
2a	$\int 2\sin 6x \sin 2x dx = \int \left[\cos 4x - \cos 8x\right] dx = \frac{\sin 4x}{4} - \frac{\sin 8x}{8} + C$
(iii)	7 0
2b	$y^2 = (3t+2)^2 = 9t^2 + 12t + 4$
	$y_{ms} = \int_0^1 (9t^2 + 12t + 4) dt = \left[3t^3 + 6t^2 + 4t\right]_0^1 = 13$
	$y_{rms} = \sqrt{13} \approx 3.61$

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 MST

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO Year: 2 FT

Page 2 of 4

No.	SOLUTION
3a	Let $u = x^3$
	$\frac{du}{dx} = 3x^2 \to du = 3x^2 dx \to \frac{1}{3} du = x^2 dx$
	$\int x^2 e^{x^3} dx = \frac{1}{3} \int e^u du = \frac{1}{3} e^u + C = \frac{1}{3} e^{x^3} + C$
3b	Let $u = 1 + \ln x \rightarrow \ln x = u - 1$
	$\frac{du}{dx} = \frac{1}{x} \to du = \frac{1}{x}dx$
	When $x = 1$, $u = 1$; $x = e$, $u = 2$
	$\int_{1}^{e} \frac{\ln x}{x (1 + \ln x)^{2}} dx = \int_{1}^{e} \frac{\ln x}{(1 + \ln x)^{2}} \frac{1}{x} dx = \int_{1}^{2} \frac{u - 1}{u^{2}} du = \int_{1}^{2} \left(\frac{1}{u} - \frac{1}{u^{2}}\right) du$
	$= \left(\ln u + \frac{1}{u}\right)_1^2 = \ln 2 - \ln 1 + \frac{1}{2} - 1 = 0.19$
4a	Use 'cover-up" method:
	$A = \frac{2x}{x-2}\Big _{x=-5} = \frac{10}{7}$ $B = \frac{2x}{x+5}\Big _{x=2} = \frac{4}{7}$
	$\therefore \frac{2x}{(x+5)(x-2)} = \frac{10/7}{x+5} + \frac{4/7}{x-2}$
	$\int \frac{2x}{(x+5)(x-2)} dx = \int \left(\frac{10/7}{x+5} + \frac{4/7}{x-2}\right) dx$
	$= \frac{10}{7} \ln x+5 + \frac{4}{7} \ln x-2 + C$
4b	$x^{2} + 2x + 5 = (x+1)^{2} - (1)^{2} + 5 = (x+1)^{2} + 4$
	$\int \frac{3}{x^2 + 2x + 5} dx = \int \frac{3}{(x+1)^2 + 4} dx = 3 \int \frac{1}{(x+1)^2 + (2)^2} dx = \frac{3}{2} \tan^{-1} \left(\frac{x+1}{2}\right) + C$

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 MST

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO Year: 2 FT

Page 3 of 4

No.	SOLUTION
5a	u dv
	$2x \qquad \qquad + \qquad \sin x$
	$2 \qquad -\cos x$
	$-\sin x$
	$\therefore \int 2x \sin x dx = -2x \cos x + 2 \sin x + C$
5b	u dv
	$\ln x$ x^{-4}
	$\frac{1}{x}$ $\frac{1}{3}$
	$\therefore \int \frac{\ln x}{x^4} dx = -\frac{1}{3} x^{-3} \ln x + \int \frac{1}{x} \cdot \frac{1}{3} x^{-3} dx = -\frac{1}{3x^3} \ln x - \frac{1}{9x^3} + C$
6	$h = \frac{\pi - 0}{6} = \frac{\pi}{6}$
	$\begin{array}{c} 6 & 6 \\ \text{Let } y = \sqrt{\cos(x) + 2} \end{array}$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	y 1.732 1.6929 1.5811 1.4142 1.2247 1.0649 1
	$\int_0^{\pi} \sqrt{\cos x + 2} dx \approx \frac{1}{3} \left(\frac{\pi}{6}\right) \times [1.7321 + 1 + 4(1.6929 + 1.4142 + 1.0649) + 2(1.5811 + 1.2247)]$
	≈ 4.3767 ≈ 4.38

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 MST

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DCEP/DME/DMRO

Year: 2 FT Page 4 of 4

No.	SOLUTION
7(a)	
7(b)	Since $f(t)$ is an odd function, $a_0 = 0$, $a_n = 0$.
	$T = 4 \implies \omega_0 = \frac{2\pi}{T} = \frac{\pi}{2}$
	$b_n = \frac{4}{4} \int_0^2 (t-2) \sin \frac{n\pi t}{2} dt = \left[-\frac{2(t-2)}{n\pi} \cos \frac{n\pi t}{2} + \frac{4}{n^2 \pi^2} \sin \frac{n\pi t}{2} \right]_0^2$
	$=\underbrace{(0+0)}_{\text{when }t=2} - \underbrace{\left(\frac{4}{n\pi} + 0\right)}_{\text{when }t=0} = -\frac{4}{n\pi}$
	$\therefore b_1 = -\frac{4}{\pi}, b_2 = -\frac{2}{\pi}, b_3 = -\frac{4}{3\pi}$
	$\therefore f(t) = -\frac{4}{\pi} \sin \frac{\pi t}{2} - \frac{2}{\pi} \sin \pi t - \frac{4}{3\pi} \sin \frac{3\pi t}{2} + \dots$
7(c)	$g(t) = \frac{3t}{2} - 6 = 3\left(\frac{t}{2} - 2\right) = 3f\left(\frac{t}{2}\right)$
	$=-\frac{12}{\pi}\sin\frac{\pi t}{4}-\frac{6}{\pi}\sin\frac{\pi t}{2}-\frac{4}{\pi}\sin\frac{3\pi t}{4}+\dots$