

Skierowanie dróg

Limit czasu: 3 s Limit pamięci: 256 MB

W pewnym państwie jest n miast i m dróg, do tej pory dwukierunkowych. Dzięki postępowi technologicznemu pojazdy stały się szybsze i większe niż kiedyś. Doprowadziło to niestety do problemu – drogi stały się zbyt wąskie, by dwa pojazdy wyminęły się, jadąc w przeciwnych kierunkach. Podjęto zatem decyzję, by skierować każdą drogę, czyli uczynić wszystkie drogi jednokierunkowymi.

Z sobie tylko znanych powodów, rząd państwa przygotował listę p uporządkowanych par miast (x_i, y_i) . Konieczne jest, by dla każdej takiej pary dało się dostać z miasta x_i do miasta y_i (skierowanie dróg, spełniające ten warunek, nazwijmy poprawnym). Rząd nie stawia oczywiście warunków niemożliwych do spełnienia – możesz założyć, że istnieje co najmniej jedno poprawne skierowanie dróg.

Mówimy, że droga (a_i, b_i) może być skierowana w prawo, jeśli istnieje poprawne skierowanie dróg, w którym i-ta droga jest skierowana z a_i do b_i . Podobnie powiemy, że droga może być skierowana w lewo, gdy w pewnym poprawnym skierowaniu dróg jest ona skierowana z b_i do a_i . Dla każdej z m dróg musisz stwierdzić, czy może być skierowana w lewo, prawo, czy może w obu kierunkach.

Wypisz słowo o długości m, którego i-ty znak to:

- R jeśli i-ta droga może być skierowana tylko w prawo,
- L jeśli i-ta droga może być skierowana tylko w lewo,
- B jeśli *i*-ta droga może być skierowana w prawo oraz może być skierowana w lewo.

Wejście

Pierwszy wiersz wejścia zawiera liczbę miast n oraz liczbę dróg m. i-ty z kolejnych m wierszy zawiera dwie liczby a_i i b_i , opisujące dwukierunkową drogą między miastami a_i oraz b_i .

Dwa miasta mogą być połączone więcej niż jedną drogą. Droga może łączyć miasto z samym sobą.

Kolejny wiersz zawiera liczbę par miast p. i-ty z kolejnych p wierszy zawiera dwie liczby x_i i y_i , oznaczające że każde poprawne skierowanie musi pozwalać na dostanie się z miasta x_i do miasta y_i .

Możesz założyć, że istnieje co najmniej jedno poprawne skierowanie dróg.

Ograniczenia

- $1 \le n, m, p \le 100\,000$
- $1 < a_i, b_i, x_i, y_i < n$

Podzadanie 1 (30 punktów)

- $n, m \le 1000$
- p < 100

Podzadanie 2 (30 punktów)

• $p \le 100$

Podzadanie 3 (40 punktów)

• brak dodatkowych ograniczeń

Wyjście

Wypisz słowo o długości m, jak opisano powyżej.

Przykład

Wejście	Wyjście
5 6	BBRBBL
1 2	
1 2	
4 3	
2 3	
1 3	
5 1	
2	
4 5	
1 3	

Komentarz

Pokażmy, że piąta droga "1 3" może być skierowana w lewo i może być skierowana w prawo (czyli piąta literka wyjścia to 'B'). Możesz sprawdzić, że dwa poprawne skierowania dróg to LLRLRL oraz RLRRLL. W pierwszym z nich piąta droga jest skierowana w prawo (oznaczone literką 'R'), a w drugim skierowaniu ta droga jest skierowana w lewo ('L').