Mathematisches Seminar Prof. Dr. Jan Kallsen Dr. Giso Jahncke

Sheet 11

Risk Management

Exercises for participants of the programme Quantitative Finance

C-Exercise 19

(a) Write a scilab-function

tau = Kendall(x),

which estimates and returns *Kendall's tau* $\rho_{\tau}(X_1, X_2)$ for iid samples of a random vector $X = (X_1, X_2)$.

(b) Write a scilab-function

rho = Spearman(x),

which estimates and returns *Spearman's rho* $\rho_S(X_1, X_2)$ for iid samples of a random vector $X = (X_1, X_2)$.

- (c) Assume that the log returns of DAX and S&P 500 time series on the olat-website are iid samples from a random vector (X_1, X_2) . Estimate the correlation coefficients $\rho(X_1, X_2)$, Kendall's tau $\rho_{\tau}(X_1, X_2)$ and Spearman's rho $\rho_S(X_1, X_2)$. Plot the common daily log returns.
- (d) Estimate the mean μ and the covariance matrix Σ of (X_1, X_2) with appropriate estimators $\widehat{\mu}$ and $\widehat{\Sigma}$. Simulate N = 6278 iid samples of a $N(\widehat{\mu}, \widehat{\Sigma})$ distribution. Plot these samples and estimate *Kendall's tau* and *Spearman's rho*.

T-Exercise 20

Proof Lemma 4.8. from the lecture.

Submit until: Thursday, 01.02.2018, 08:30 (before the lecture)