Machine learning

Presented by

Prof. Pushkar Sathe

Machine learning (ML)

- Subset of Artificial Intelligence (AI)
- Works in a similar way to human learning
- Ability of system to independently find solution
- Ability to automatically learn and improve from experience
- No explicit instructions used
- Builds a mathematical model based on sample data (training data)

ML applications

- Virtual Personal Assistants e.g. Alexa
- Face recognition on Facebook
- Video recommendation of YouTube
- Google translator
- Spam detection on Gmail
- Medical field : diagnosis and prognosis
- Sentiment analysis

ML algorithm types

- Supervised learning
- Unsupervised learning
- Reinforcement learning

Supervised learning algorithms

- Simple linear regression
- Multiple linear regression
- Logistic regression
- Support Vector Machine
- Decision tree
- Random forest
- Naïve Bayes

Simple linear regression

- Statistical method used for regression
- Study of relationship between independent and dependent variables
- Involves one dependent variable and one independent variable
- Both the variables are continuous in nature
- Model is 'best fitting line'

Example

Best fit line

- y = m.x + c
- Line belonging to optimum values of 'm' and 'c' is best fit line
- Least square approach is used
- Error = (predicted value actual value) of dependent variable
- Sum of squares of errors of all data points should be minimum

Error

Multiple linear regression

- Involves several independent variables and single dependent variable
- Equation describing the relationship is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

where, for i = n observations:

 $y_i = dependent variable$

 $x_i = \text{expanatory variables}$

 $\beta_0 = \text{y-intercept (constant term)}$

 $\beta_p =$ slope coefficients for each explanatory variable

Support Vector Machine (SVM)

- Discriminative classifier works on separation of hyper-planes
- Very effective even when data is high dimensional

Working of SVM

- Forms hyper plane between data points
- Margin is a distance between nearest data point and hyper plane
- Hyper plane giving highest margin should be selected
- Forming hyper plane is difficult in case of non linear or inseparable problem
- Use of Kernels: Transformation to higher dimensions

Example: SVM

Example: Kernels in SVM

Types of kernels

Kernel type is selected based on distribution of data points

- Linear
- Polynomial
- Radial Basis Function (RBF)

Decision tree

- Can be used for classification as well as regression
- Algorithm involves representation of data as a tree
- Drawn upside down with its root at top
- At every node one branch is selected based on feature value
- Algorithm is used especially in decision making

Example

Age	Competition	Type	Profit
Old	Yes	s/w	Down
Old	No	s/w	Down
Old	No	H/W	Down
Mild	Yes	s/w	Down
Mild	Yes	H/W	Down
Mild	No	H/W	Up
Mild	No	s/w	Up
New	Yes	s/w	Up
New	No	H/W	Up
New	No	s/w	Up

Formulae

```
Here P = No. of downs = 5

N = No. of ups = 5

T.4. = -\frac{5}{10} log_2(\frac{5}{10}) - \frac{5}{10} log_2(\frac{5}{10})

= 1.

(If there are 2 no.s & both are same like in this case \frac{5}{10} & \frac{5}{10} , then \frac{5}{10} & \frac{5}{10} .
```

T. S. J. C.			
To final Gotto	PY 4 Gain 5	attrib	ites
i) Age		Down	Tup ()
- T	old		
P		0	
$E(A) = \frac{3+6}{5+}$	o T(3,0)	+ 2+2 5+5	7 (2,2)
+ 0+	3 I (0,3)		0.017
And the second of the second of		T	
$I(3,0) = -\frac{3}{3+c}$, log (3 + w)) - 0	log (=0- 3+0)
AND PARIS C-	the state of	4 6 6	
(whenever on	tot 2 nos	, one v	umber is zen
A =(2,2) =	1 (** 6=+6	ne-sa	re same)
$E(A) = \frac{3}{10}$			
= 0.	4		
: Gain = I	· 4 E(A)	= 1-	0.4 = 0.6

```
0-8753
= I+4 - E(A) = 1 - 0.8753
```

Tite		down	up			
	5/-2		35			
	w/w	2	2			
Since nos are same ie 343 and 242						
Z I (3,3) =1	& T. (2)	2) =	I			
$E(A) = \frac{3+3}{5+5}$	$(1) + \frac{2+2}{5+5}$	(1) =	0.6+0.4 =1			
:- Goin = I.G	- E(A) =	(-) =	0			

Random forest

- Concept is based on wisdom of crowds
- Consists of large number of individual decision trees
- Trees should have low correlation among each other
- Each tree gives out a class prediction
- The class with most votes becomes model's prediction

Thank you