Courbes planes - Résumé de cours

I - Courbes paramétrées

1 - Définition

Une <u>courbe plane paramétrée</u> c'est une application γ d'un intervalle [a,b] de \mathbb{R} à valeur dans \mathbb{R}^2 . On peut la concevoir comme l'équation horaire d'un mobile dans le plan.

On peut aussi noter
$$M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 l'image de t par γ .

Si
$$(O, \vec{i}, \vec{j})$$
 est un repère orthonormé du plan, $\overrightarrow{OM}(t) = x(t)\vec{i} + y(t)\vec{j}$

Support

L'image de γ (ensemble des points \mathbb{R}^2 qui sont images par γ d'un point de [a,b]) est appelé le support de cette courbe paramétrée. On dit aussi (improprement dans ce contexte) que c'est une courbe.

Paramétrages équivalents

La courbe
$$M_1(t) = \begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix}$$
 $t \in [a,b]$ et la courbe $M_2(\tau) = \begin{pmatrix} x_2(\tau) \\ y_2(\tau) \end{pmatrix}$ $\tau \in [\alpha,\beta]$

sont équivalentes (ou "les paramétrages sont équivalents" s'il existe une bijection $\varphi : [\alpha, \beta] \to [a, b]$ telle que pour tout $\tau \in [\alpha, \beta]$ on ait $M_2(\tau) = M_1(\varphi(\tau))$.

Dans ce cas, les supports sont les mêmes (mais cette condition n'est pas suffisante)

2 - symétries

$si \rightarrow et \downarrow$	$x(t_2) = x(t_1)$	$x(t_2) = -x(t_1)$
$y(t_2) = y(t_1)$	alors $M(t_2)$ et $M(t_1)$ sont	alors $M(t_2)$ et $M(t_1)$ sont
$y(t_2) = -y(t_1)$	alors $M(t_2)$ et $M(t_1)$ sont	alors $M(t_2)$ et $M(t_1)$ sont
$si \rightarrow et \downarrow$	$x(t_2) = y(t_1)$	$x(t_2) = -y(t_1)$
$y(t_2) = x(t_1)$	alors $M(t_2)$ et $M(t_1)$ sont	alors $M(t_2)$ et $M(t_1)$ sont
$y(t_2) = -x(t_1)$	alors $M(t_2)$ et $M(t_1)$ sont	alors $M(t_2)$ et $M(t_1)$ sont

3 - Vecteur vitesse - Tangente

a/ Vecteur vitesse

Soit γ $[a,b] \to \mathbb{R}^2$ une courbe paramétrée <u>de classe C^1 </u> et $M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ l'image de t par γ .

On note
$$\frac{dM}{dt}$$
 ou $\frac{dM}{dt}(t)$ le vecteur $\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$ également noté $\begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{pmatrix}$.

On l'appelle le vecteur vitesse (au point t). On écrit aussi $\frac{dM}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j}$

b/ Définition :

On dit que la droite Δ est tangente en $M(t_0)$ à la courbe γ si $M(t_0) \in \Delta$ et si la direction de Δ est la limite des direction des "cordes" $(M(t_0)M(t_1))$ quand $t_1 \to t_0$

c/ Propriété:

Si
$$\frac{dM}{dt}(t_0) \neq 0$$
, la courbe γ possède une tangente au point $M(t_0)$

et cette tangente a le vecteur vitesse $\frac{dM}{dt}(t_0)$ comme vecteur directeur.

Si $\forall t \in [a,b] / \frac{dM}{dt}(t) \neq 0$, on dit que la courbe est régulière. En tout point elle a une tangente.

4 - Étude globale

Exemple
$$\begin{cases} x(t) = 4\sin t - 3\sin 3t \\ y(t) = 4\cos t - 3\cos 2t \end{cases} \quad (t \in \mathbb{R})$$

	* *	
Période	$x(t+2\pi) = \dots$	$x(t+\pi)=$
	$y(t+2\pi) = \dots$	$y(t+\pi)=$
	$M(t+2\pi)=\dots$	$M(t+\pi) = \dots$
Symátrias		

Symetries	$x(-t) = \dots$ $y(-t) = \dots$	$x\left(\frac{\pi}{2}-t\right)=\dots$
		$y\left(\frac{\pi}{2}-t\right)=\dots$
		$M\left(\frac{\pi}{2}-t\right)=\dots$

Tableau de variations

t	0	de variatio	0.38		1.23		$\pi/2$		2.76		π
x	0	-	-1.24	**	5.34		7	•	-1.24		0
x ·	-5	-	0	+	9	+	0	-	0	+	5
У	1	*	1.55	*	3.67	*	3	-	-5.88		-7
<i>y</i> '	0	+	2.66	+	0	-	-4	-	-5.64	-	0
$\frac{dM}{dt}$	—		†		-		\		+		→

5 - Étude locale (courbe de classe C1)

Limite des cordes

Si $\frac{y(t)-y(t_0)}{x(t)-x(t_0)}$ a une limite finie quand $t \to t_0$, la courbe a une tangente au point $M(t_0)$

et la limite est la pente de cette tangente

Si
$$\frac{y(t)-y(t_0)}{x(t)-x(t_0)}$$
 tend vers $+\infty$ ou $-\infty$ quand $t \to t_0$, , la courbe a une tangente verticale en $M(t_0)$

Limite des tangentes

Si $\frac{y'(t)}{x'(t)}$ a une limite finie quand $t \to t_0$, la courbe a une tangente au point $M(t_0)$

et la limite est la pente de cette tangente

Si
$$\frac{y'(t)}{x'(t)}$$
 tend vers $+\infty$ ou $-\infty$ quand $t \to t_0$, , la courbe a une tangente verticale en $M(t_0)$

Utilisation des développements limités

Exemple
$$\begin{cases} x(t) = \tan t \\ y(t) = \sin t \end{cases}$$
 étude en $t = 0$. DL: $M(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + t^2 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + t^3 \begin{pmatrix} 1/3 \\ -1/6 \end{pmatrix} + t^3 \varepsilon(t)$

Point singulier (ou point d'arrêt) (ou point stationnaire) : Cas où $\frac{dM}{dt} = 0$

exemple : Cycloïde $\begin{cases} x(t) = t + \sin t \\ y(t) = 1 + \cos t \end{cases}$. Point singulier en $t = \pi$

$$\lim_{t \to \pi} \frac{y(t) - y(\pi)}{x(t) - x(\pi)} = \lim_{t \to \pi} \frac{1 + \cos t}{t + \sin t - \pi} = \lim_{u \to 0} \frac{1 - \cos u}{u - \sin u} = \pm \infty \quad \text{et} \quad \lim_{t \to \pi} \frac{y'(t)}{x'(t)} = \lim_{t \to \pi} \frac{-\sin t}{1 + \cos t} = \lim_{u \to 0} \frac{\sin u}{1 - \cos u} = \pm \infty$$

6 - Branches infinies. Quand $t \longrightarrow t_0$...

1. Direction asymptotique

- $+ \quad \text{verticale si } \frac{y(t)}{x(t)} \xrightarrow{t \longrightarrow t_0} \pm \infty$
- oblique dans la direction de la droite $y = a \times si \frac{y(t)}{x(t)} \xrightarrow{t \longrightarrow t_0} a$

2. Asymptote

- ϕ verticale si $y(t) \xrightarrow[t \to t_0]{} \pm \infty$ et x(t) a une limite finie
- + horizontale si $x(t) \xrightarrow{t \longrightarrow t_0} \pm \infty$ et y(t) a une limite finie
- $\Rightarrow \text{ oblique : } y = a \ x + b \ \text{ si } \frac{y(t)}{x(t)} \xrightarrow{t \longrightarrow t_0} a \ \text{ et } y(t) a \ x(t) \xrightarrow{t \longrightarrow t_0} b$

3. branche parabolique

- $\Rightarrow \text{ de direction horizontale si } x(t) \xrightarrow[t \to t_0]{} t \to \infty, \ y(t) \xrightarrow[t \to t_0]{} t \to \infty \text{ et } \frac{y(t)}{x(t)} \xrightarrow[t \to t_0]{} 0,$
- ϕ oblique: si $\frac{y(t)}{x(t)} \xrightarrow{t \longrightarrow t_0} a$ et $y(t) a \ x(t) \xrightarrow{t \longrightarrow t_0} +\infty$ ou $-\infty$

II - Courbes polaires

Soit *I* un intervalle de \mathbb{R} . Pour tout réel $\theta \in I$, on pose $\vec{r} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$

La courbe polaire définie par la fonction $\rho(\theta)$ est la courbe paramétrée qui, à θ , associe

$$M(\theta) = \rho(\theta) \vec{r} = \begin{pmatrix} \rho(\theta)\cos\theta\\ \rho(\theta)\sin\theta \end{pmatrix}$$

On note \vec{n} le vecteur $\frac{d\vec{r}}{d\theta} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$.

On remarque que $\frac{d\vec{n}}{d\theta} = -\vec{r}$ et que , pour tout θ , (O, \vec{r}, \vec{n}) est un repère orthonormé direct (repère tournant)

Le vecteur vitesse est alors $\frac{dM}{d\theta} = \rho'(\theta)\vec{r} + \rho(\theta)\vec{n}$

Interprétation:

Quand θ varie, le point $M = \rho \vec{r}$ subit un double déplacement :

- \triangleright rotation autour de O parce que le vecteur \vec{r} varie (tourne régulièment dans le sens trigonométrique)
- \triangleright déplacement le long de l'axe défini par \vec{r} parce que ρ varie.

Le vecteur vitesse $\frac{dM}{d\theta} = \rho' \vec{r} + \rho \vec{n}$ a donc 2 composantes

 \triangleright l'une radiale $\rho'\vec{r}$

(s'il n'y avait que celle-là - si θ était constant - le mouvement serait rectiligne)

 \triangleright l'autre normale $\rho \vec{n}$

(s'il n'y avait que celle-là - si ρ était constant - le mouvement serait circulaire)

Symétries des courbes polaires

$$M(\theta) = \rho(\theta) \overrightarrow{r(\theta)}$$
 avec $\overrightarrow{r(\theta)} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$

$\overline{r(-\theta)}$ est	$r(\frac{\pi}{2}-\theta)$ est
$\overline{r(\pi-\theta)}$ est	$r\left(\frac{\pi}{2} + \theta\right)$ est
$\overline{r(\pi+\theta)}$ est	$r(\theta + \theta_0)$ est

$\operatorname{si} \rho(-\theta) = \rho(\theta)$
alors $M(-\theta)$
$\operatorname{si} \rho(\pi - \theta) = \rho(\theta)$
alors $M(\pi - \theta)$
$\operatorname{si} \rho(\pi + \theta) = \rho(\theta)$
alors $M(\pi + \theta)$
$\operatorname{si} \rho \left(\frac{\pi}{2} - \theta \right) = \rho(\theta)$
alors $M\left(\frac{\pi}{2} - \theta\right)$
$\operatorname{si} \rho \left(\frac{\pi}{2} - \theta \right) = \rho(\theta)$
alors $M\left(\frac{\pi}{2}-\theta\right)$

$$si \rho(-\theta) = -\rho(\theta)
alors M(-\theta)...$$

$$si \rho(\pi - \theta) = -\rho(\theta)
alors M(\pi - \theta)...$$

$$si \rho(\pi + \theta) = -\rho(\theta)
alors M(\pi + \theta)...$$

$$si \rho\left(\frac{\pi}{2} - \theta\right) = -\rho(\theta)
alors M\left(\frac{\pi}{2} - \theta\right)...$$

$$si \rho\left(\frac{\pi}{2} - \theta\right) = -\rho(\theta)
alors M\left(\frac{\pi}{2} - \theta\right)...$$

Exemple $\rho(\theta) = \cos(\theta)\cos(2\theta) = 2\cos^3(\theta) - \cos(\theta)$

Période - Symétries

Valeurs de θ où $\rho(\theta)$ s'annule : la courbe passe par l'origine

si $\rho'(\theta) \neq 0$ la tangente est radiale (colinéaire à $\overline{r(\theta)}$)

Valeurs de θ où $\rho'(\theta)$ s'annule : si $\rho(\theta) \neq 0$ la tangente est normale (orthogonale à $\overline{r(\theta)}$) Variations de $\rho(\theta)$.

Si $\rho(\theta) \geqslant 0$ et $\rho(\theta)$ croit, le point M s'éloigne de l'origine.

Si $\rho(\theta) \leq 0$ et $\rho(\theta)$ croit, le point M se rapproche de l'origine.

Équation polaire d'une droite ne passant pas par O: $ax + by + c = 0 \rightarrow \rho = \frac{-c}{a\cos\theta + b\sin\theta}$

Équation polaire d'un cercle passant par O :

Cercle de centre (0,r) $\rho = 2r \cos \theta$

Cercle de centre (r,0) $\rho = 2r \sin \theta$

Cercle de centre $(r\cos\theta_0, r\sin\theta_0)$ $\rho = 2r\cos(\theta - \theta_0)$