Teorema di monotonia per le successioni

Alessio Serraino

March 1, 2016

Definizione: (successione limitata)

Sia $\{a_n\}$ una successione. Se $\exists M \in \mathbb{R} : \forall n \mid a_n \mid \leq M$ allora diremo che la successione è limitata. Ciò significa che tutta la successione è "compresa" tutta fra i due valori +M e -M. Si noti che non si richiede che M sia il minimo possibile, si richiede solo che sia più grande di tutti i valori della successione.

Se vale $\exists M \in \mathbb{R} \colon \forall n \ a_n \leq M$, allora diremo che la successione è limitata superiormente, ed M è un maggiornante di $\{a_n\}$. Se una successione ha un maggiorante allora ne ha infiniti (come per il caso precedente, non si chiede che M sia il più piccolo possibile).

Se vale $\exists m \in \mathbb{R} : \forall n \ a_n \geq m$, allora diremo che la successione è limitata inferiormente, ed m è un minorante di $\{a_n\}$.

Se una successione è limitata allora è limitata sia superiormente che inferiormente, vale anche l'opposto, ovvero una successione limitata sia superiormente che inferiormente è limitata.

Una successione non limitata superiormente (o inferiormente) si dirà illimitata superiormente (o inferiormente).

Definizione: (successione monotona)

Sia $\{a_n\}$ una successione. Se $\forall n \ a_{n+1} \geq a_n$ diremo che la successione è monotona crescente, se vale $\forall n \ a_{n+1} \leq a_n$ allora diremo che la successione è monotona decrescente. Nel caso in cui valgano le disuguaglianze strette si parletà di successioni monotone strettamente crescenti o monotone strettamente decrescenti.

Per una successione crescente, ovviamente, ogni termine è maggiore o uguale di ogni termine precedente (ed in particolare di quello immediatamente precedente), analogamente per una successione decrescente ogni termine è minore o uguale di tutti i precedenti.

Se $\{a_n\}$ è una successione crescente allora è inferiormente limitata. Infatti $\forall n \ a_n \geq a_0$. Se $\{a_n\}$ è superiormente limitata è limitata. Allo stesso modo se $\{a_n\}$ è una successione decrescente allora è superiormente limitata, in quanto $\forall n \ a_n \leq a_0$, e come nel caso precedente se $\{a_n\}$ è inferiormente limitata allora è limitata.

Non è sempre vero che successioni monotone siano limitate, è possibile costruire successioni crescenti superiormente illimitate, o successioni decrescenti inferiormente illimitate, così come non è vero che successioni superiormente, o inferiormente, limitate siano monotone.

<u>Teorema:</u> (di monotonia) Una successione $\{a_n\}$ monotona limitata ammette limite finito, in particolare, se $\{a_n\}$ è crescente $\lim_{n\to +\infty} \sup\{a_n\}$, se $\{a_n\}$ è decrescente $\lim_{n\to +\infty} \inf\{a_n\}$.

Dimostrazione: (Nel caso particolare in cui $\{a_n\}$ è crescente. La dimostrazione nel caso $\{a_n\}$ decresente è analoga)

Sia $\Lambda = \sup\{a_n\}$. $\Lambda \in \mathbb{R}$ perchè ogni insieme non vuoto superiormente limitato ammette limite superiore in \mathbb{R} . La limitatezza della successione $\{a_n\}$ implica che l'insieme dei suoi valori sia superioremente limitato.

Poichè Λ è il minimo dei maggioranti $\Lambda-\varepsilon$ non è un maggiorante. Quindi esiste un elemento a_{n_0} tale che:

$$\Lambda - \varepsilon < a_{n_0} \le \Lambda \tag{1}$$

Ma $\{a_n\}$ è monotona crescente, quindi

 $\forall n \geq n_0 \ a_n \geq a_{n0} > \Lambda - \varepsilon$, ossia la (1) è vera definitivamente.

Quindi per la definizione di limite $\lim_{x\to +\infty} a_n = \Lambda$, che è quanto volevamo dimostrare.

Corollario: Sia $\{a_n\}$ una successione monotona crescente.

Allora $\exists \lim_{n \to +\infty} a_n = \sup \{a_n\}.$

Dimostrazione:

Considero due casi: $\{a_n\}$ è limitata, ma in questo caso per il teorema di monotonia abbiamo già dimostrato che il limite cercato esiste e vale sup $\{a_n\}$.

 $\{a_n\}$ è illimitata, e poichè è crescente per ipotesi può essere illimitata solo superiormente. Allora per definizione di successione illimitata

$$\forall M \in \mathbb{R} \ \exists n_0 \colon a_{n_0} > M \tag{2}$$

Ma per la monotonia di $\{a_n\}$ si ha che $\forall n \geq n_0 \ a_n \geq a_{n_0} > M$, ovvero la (2) è vera definitivamente.

Quindi per la definizione di limite infinito $\lim_{n\to+\infty}a_n=+\infty=\sup\{a_n\}$, che è quanto volevamo dimostrare.