

Le robot se déplace selon zi. Le point C est le centre de gravité du robot.

Not_G: contre de gravité de la vou gauche. Not_D: contre de gravité rome divoite.

Torseur cirématique du robot par rapport au sol:

$$\vec{V}_{robot/sol}$$
 $(G) = \begin{cases} \vec{\mathcal{Q}}_{robot/sol} \\ \vec{V}_{robot/sol} \end{cases}$

20 let que 3 = worter

\(\text{\text{\$\infty}} w_{\text{obs}} \naid \text{ par be vitasse anyulaire des motaurs mais du ro bot.} \)

de viterse du vobot à son centre de gravité ainsi que se viter angulaire sont des données connuer (calculi grâce à l'odométrie). Désormais, on change de point pour obtenir la vitesse que doit avoir chacune des deux roues.

Moteur roue ganche :

En projebant
$$\vec{z}_{1}$$
: $v_{\text{Rot-gauche}} = v_{\text{robot}} - D w_{\text{robot}}$ (1)

Moteur/roue droite:

Analoguement

On en dédeut:

$$(2)-(1)$$
 $w_{\text{robot}} = \frac{v_{\text{not_droit}} - v_{\text{not_gauche}}}{2D}$

De plus, supposons un roulement sans glisse ment.

