Programación dinámica + FFT

Sea ${\mathcal A}$ un algoritmo. Asociamos a ${\mathcal A}$ una función de tiempo de ejecución

$$tiempo_{\mathcal{A}}: \Sigma^* \to \mathbb{N}$$

tal que:

tiempo $_{\mathcal{A}}(w)\coloneqq \text{ número de pasos realizados por } \mathcal{A} \text{ con entrada } w\in \Sigma^*$

Definición:

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$ una función. Se define el **conjunto** $\mathcal{O}(f)$ tal que:

$$\mathcal{O}(f) = \{ g \colon \mathbb{N} \to \mathbb{R}_0^+ \mid \exists c \in \mathbb{R}^+ . \exists n_0 \in \mathbb{N}. \ \forall n \ge n_0. \ g(n) \le c \cdot f(n) \}$$

Decimos entonces que $g \in \mathcal{O}(f)$.

• También usamos la notación g es $\mathcal{O}(f)$, lo cual es formalizado como $g \in \mathcal{O}(f)$.

Definición:

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$ una función. Se definen los **conjuntos** $\Omega(f)$ y $\Theta(f)$ tal que:

$$\begin{array}{lll} \Omega(f) & = & \{ \ g \colon \mathbb{N} \to \mathbb{R}_0^+ \mid \exists c \in \mathbb{R}^+. \exists n_0 \in \mathbb{N}. \ \forall n \geq n_0. \ c \cdot f(n) \leq g(n) \ \} \\ \Theta(f) & = & \mathcal{O}(f) \cap \Omega(f) \end{array}$$

Búsqueda binaria:

```
BúsquedaBinaria(a,\ L,\ i,\ j) if i>j then return no else if i=j then if L[i]=a then return i else return no else p:=\lfloor\frac{i+j}{2}\rfloor if L[p]< a then return BúsquedaBinaria(a,\ L,\ p+1,\ j) else if L[p]> a then return BúsquedaBinaria(a,\ L,\ i,\ p-1) else return p
```

Llamada inicial al algoritmo: **BúsquedaBinaria**(a, L, 1, n)

Si contamos solo las comparaciones, entonces la complejidad del algoritmo se define como:

$$T(n) = \begin{cases} c & n = 1 \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + d & n > 1 \end{cases}$$

donde $c \in \mathbb{N}$ y $d \in \mathbb{N}$ son constantes tales que $c \ge 1$ y $d \ge 1$. Esta es una ejecución de recurrencia.

Solucionando la ecuación:

Técnica básicaL sustitución de variables.

Para la ecuación anterior usamos la sustitución $n = 2^k$.

- Suponemos que *n* es potencia de 2.
- Utilizaremos inducción.

$$T(2^{k}) = \begin{cases} c & k = 0 \\ T(2^{k-1}) + d & k > 0 \end{cases}$$

Expandimos:

$$T(2^{k}) = T(2^{k-1}) + d$$

$$= (T(2^{k-2}) + d) + d$$

$$= T(2^{k-2}) + 2d$$

$$= (T(2^{k-3}) + d)2d$$

$$= T(2^{k-3}) + 3d$$

Decimos que la expresión general para $k - i \ge 0$:

$$T(2^k) = T(2^{k-i}) + i \cdot d$$

Considerando i = k obtenemos:

$$T(2^k) = T(1) + k \cdot d$$

Dado que $k = \log_2(n)$ (por cambio de variable), obtenemos que:

$$T(n) = c + d \cdot \log_2(n)$$

para n potencia de 2.

Queremos demostrar que $T(n) \in \mathcal{O}(\log_2(n))$

• Vale decir, tenemos que demostrar que existen $e \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $T(n) \le e \cdot \log_2(n)$ para todo $n \ge n_0$.

Inducción constructiva:

Dado que T(1) = c y $\log_2(1) = 0$ no es posible encontrar un valor para e tal que $T(1) \le e \cdot \log_2(1)$.

Dado que T(2) = c + d, si consideramos e = (c + d) tenemos que $T(2) \le e \cdot \log_2(2)$.

• Definimos entonces e = (c + d) y $n_0 = 2$.

Tenemos que demostrar lo siguiente:

$$\forall n \geq 2$$
. $T(n) \leq e \cdot \log_2(n)$

Para esto, utilizaremos inducción fuerte.

- n = 2 es el punto de partida y el primer caso base.
- n=3 también es un caso base ya que T(3)=T(1)+d y para T(1) no se cumple la propiedad.
- Para $n \ge 4$ tenemos que $T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + d$ y $\left\lfloor \frac{n}{2} \right\rfloor \ge 2$, por lo que resolvemos este caso de manera inductiva.
 - Suponemos que la propiedad se cumple para todo $k \in \{2, ..., n-1\}$.

Casos base:

- $\bullet \quad T(2) = c + d = e \cdot \log_2(2)$
- $T(3) = c + d < e \cdot \log_2(3)$

Caso inductivo:

Suponemos que $n \ge 4$ y para todo $k \in \{2, ..., n-1\}$ se tiene que $T(k) \le e \cdot \log_2(k)$.

Usando la definición de T(n) y la hipótesis de inducción concluimos que:

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + d$$

$$\leq e \cdot \log_2\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + d$$

$$\leq e \cdot \log_2\left(\frac{n}{2}\right) + d$$

$$= e \cdot \log_2(n) - e \cdot \log_2(2) + d$$

$$= e \cdot \log_2(n) - (c + d) + d$$

$$= e \cdot \log_2(n) - c$$

$$< e \cdot \log_2(n)$$

El Teorema Maestro

Muchas de las ecuaciones de recurrencia que vamos a usar en este curso son de la forma:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\left\lfloor \frac{n}{b} \right\rfloor) + f(n) & n \ge 1 \end{cases}$$

El **Teorema Maestro** nos dirá cual es el **orden** de T(n) dependiendo de ciertas condiciones sobre $a, b \ y \ f(n)$.

Antes...

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$ una función y $a, b \in \mathbb{R}$ constantes tales que $a \ge 1$ y b > 1.

Definición:

La función f es (a,b)-regular si existen constantes $c\in\mathbb{R}^+$ y $n_0\in\mathbb{N}$ tales que c<1 y

$$\forall n \ge n_0. \ a \cdot f\left(\left\lfloor \frac{n}{b} \right\rfloor\right) \le c \cdot f(n)$$

Ejercicio:

Demuestre que la función $log_2(n)$ no es (1,2)-regular.

Solución:

Por contradiccón, supongamos que $\log_2(n)$ es (1,2)-regular. Entonces existen constantes $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que c < 1 y

$$\forall n \ge n_0 \cdot \log_2 \left\lfloor \frac{n}{2} \right\rfloor \le c \cdot \log_2(n)$$

En particular, podemos concluir que para todo $k \ge n_0$:

$$\log_2\left\lfloor\frac{2\cdot k}{2}\right\rfloor \le c\cdot \log_2(2\cdot k)$$

Vale decir:

$$\log_2(k) \le c \cdot (\log_2(k) + 1)$$

Dado que 0 < c < 1:

$$\log_2(k) \le \frac{c}{1 - c}$$

Lo cual nos lleva a una contradicción.

Teorema Maestro:

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$ una función, $a, b, c \in \mathbb{R}_0^+$ constantes tales que $a \ge 1$ y b > 1, y T(n) una función definida por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\left\lfloor \frac{n}{b} \right\rfloor) + f(n) & n \ge 1 \end{cases}$$

Se tiene que:

- 1. Si $f(n) \in \mathcal{O}(n^{\log_b(a)-\varepsilon})$ para $\varepsilon > 0$, entonces $T(n) \in \Theta(n^{\log_b(a)})$.
- 2. Si $f(n) \in \Theta(n^{\log_b(a)})$, entonces $T(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$.
- 3. Si $f(n) \in \Omega(n^{\log_b(a)+\varepsilon})$ para $\varepsilon > 0$ y f es (a,b)-regular, entonces $T(n) \in \Theta(f(n))$.

Ejemplo:

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & n = 0 \\ 3 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + c \cdot n & n \ge 1 \end{cases}$$

Dado que $\log_2(3) > 1.5$, tenemos que $\log_2(3) - 0.5 > 1$ Deducimos que $c \cdot n \in \mathcal{O}\left(n^{\log_2(3) - 0.5}\right)$, por lo que usando el Teorema Maestro concluimos que $T(n) \in \Theta\left(n^{\log_2(3)}\right)$.

El Teorema Maestro sigue siendo válido pero con
$$T\left(\left\lfloor \frac{n}{b} \right\rfloor\right) + f(n)$$
 reemplazado por $T\left(\left\lfloor \frac{n}{b} \right\rfloor\right) + f(n)$

Sea $\mathcal{A}: \Sigma^* \to \Sigma^*$ un algoritmo:

Definición

Decimos que \mathcal{A} en el **peor caso** es $\mathcal{O}(f(n))$ si:

$$t_{\mathcal{A}}(n)\in\mathcal{O}\big(f(n)\big)$$

Recordar que $t_{\mathcal{A}}(n)$ es el mayor número de pasos realizados por \mathcal{A} sobre las entradas $w \in \Sigma^*$ de largo n.

Dividir para conquistar

Algoritmo genérico:

$$\begin{aligned} \textbf{DividirParaConquistar}(w) \\ & \textbf{if } |w| \leq k \textbf{ then return InstanciasPequeñas}(w) \\ & \textbf{else} \\ & \textbf{Dividir } w \textbf{ en } w_1, \ \dots, \ w_\ell \\ & \textbf{for } i := 1 \textbf{ to } \ell \textbf{ do} \\ & S_i := \textbf{DividirParaConquistar}(w_i) \\ & \textbf{return Combinar}(S_1, \ \dots, \ S_\ell) \end{aligned}$$

Algoritmo de multiplicación de Karatsuba

Sean $a, b \in \mathbb{Z}$ con n dígitos cada uno, donde $n = 2^k$ para algún $k \in \mathbb{N}$. Se puede representar a y b de la siguiente forma:

$$a = a_1 \cdot 10^{\frac{n}{2}} + a_2$$
$$b = b_1 \cdot 10^{\frac{n}{2}} + b_2$$

Tenemos entonces que:

$$a \cdot b = a_1 \cdot b_1 \cdot 10^n + (a_1 \cdot b_2 + a_2 \cdot b_1) \cdot 10^{\frac{n}{2}} + a_2 \cdot b_2$$

Para calcular $a \cdot b$ debemos calcular las siguiente multiplicaciones:

- 1. $a_1 \cdot b_1$
- 2. $a_1 \cdot b_2$
- 3. $a_2 \cdot b_1$
- 4. $a_2 \cdot b_2$

Podemos calcular $a \cdot b$ realizando las siguiente multiplicaciones:

- 1. $c_1 = a_1 \cdot b_1$
- 2. $c_2 = a_2 \cdot b_2$ 3. $c_3 = (a_1 + a_2) \cdot (b_1 + b_2)$

Tenemos entonces que:

$$a \cdot b = c_1 \cdot 10^n + (c_3 - (c_1 + c_2)) \cdot 10^{\frac{n}{2}} + c_2$$

Esta expresión se conoce como el algorimto de Karatsuba.

Tiempo de ejecución del algoritmo de Karatsuba:

$$T(n) = \begin{cases} 1 & n = 1 \\ 3 \cdot T\left(\frac{n}{2}\right) + e \cdot n & n > 1 \end{cases}$$

Supuesto:

- n es una potencia de 2 y $(a_1 + a_2)$ y $(b_1 + b_2)$ tienen $\frac{n}{2}$ dígitos cada uno. ¿Qué representa la constante e?
 - Calcular $(a_1 + a_2)$, $(b_1 + b_2)$, $(c_1 + c_2)$ y $(c_3 (c_1 + c_2))$.
 - Construir $a \cdot b$ a partir de c_1 , c_2 y $\left(c_3 (c_1 + c_2)\right)$, lo cual puede tomar tiempo lineal en el pero caso.

Utilizando el Teorema Maestro obtenemos que T(n) es $\Theta(n^{\log_2(3)})$, pero este resultado es válido bajo los supestos realizados anteriormente.

Caso general:

Representamos las entradas a y b de la siguiente forma:

$$a = a_1 \cdot 10^{\left|\frac{n}{2}\right|} + a_2$$
$$b = b_1 \cdot 10^{\left|\frac{n}{2}\right|} + b_2$$

La siguiente ecuación de recurrencia para T(n) captura la cantidad de operaciones relaizadas por el algoritmo (para constantes e_1, e_2):

$$T(n) = \begin{cases} e_1 & n \le 3 \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lceil \frac{n}{2} \right\rceil + 1\right) + e_2 \cdot n & n > 3 \end{cases}$$

Programación dinámica: Grafos

Sea G = (V, E), un par de nodos $v_i, v_f \in V$, y un número l, queremos desarrollar un algoritmo que cuente el número de caminos desde v_i a v_f en G cuyo largo es igual a l.

Suponemos que $V = \{1, ..., n\}, 1 \le l \le n$ y represenatmos G a través de su matiz de adyacencia M tal que:

Si $(i, j) \in E$, entonces M[i, j] = 1, en caso contrario M[i, j] = 0.

Ejemplo:

Queremos calcular el número de caminos de largo l desde un nodo v_i , a un nodo v_f en un grafo G (representado por una matriz de adyacencia M)

Para evitar hacer llamadas recursivas repetidas, y así disminuir el número de llamadas recursivas, definimos una **secuencia de matrices** $H_1, ..., H_l$ tales que:

La secuencia H_1,\ldots,H_k s puede definir recursivamente de la siguiente forma:

- 1. $H_1 = M$.
- 2. $H_{k+1} = M \cdot H_k$ para $k \in \{1, ..., l-1\}$.

Luego, la cantidad de caminos de largo l desde v_i a v_f será $H_l[v_i, v_f]$.

$$\begin{aligned} &\mathsf{ContarTodosCaminos}(M[1\dots n][1\dots n],\ \ell) \\ &\mathsf{if}\ \ell = 1\ \mathsf{then}\ \mathsf{return}\ M \\ &\mathsf{else} \end{aligned}$$

$$H := \text{ContarTodosCaminos}(M, \ell - 1)$$

return $M \cdot H$

ContarTodosCaminos
$$(M[1 \dots n][1 \dots n], \ell)$$
 if $\ell = 1$ then return M else ContarTodosCaminos $(M[1 \dots n][1 \dots n], v_i, v_f, \ell)$
$$H := \text{ContarTodosCaminos}(M, \ell)$$
 return $H[v_i, v_f]$

Programación dinámica: Palabras

Midiendo la distancia entre dos palabras.

Vamos a utilizar la distancia de Levenshtein para medir cuán similares son dos palabras.

Dadas dos palabras $w_1, w_2 \in \Sigma^*$, utilizamos la notación $\operatorname{ed}(w_1, w_2)$ para la edit distance entre w_1 y w_2 .

Tres operadores sobre palabras:

Para $i \in \{1, ..., n\}$ y $b \in \Sigma$ tenemos que:

- 1. eliminar(w, i) = $a_1 \cdots a_{i-1} \cdot a_{i+1} \cdots a_n$.
- 2. $agregar(w, i, b) = a_1 \cdots a_i \cdot b \cdot a_{i+1} \cdots a_n$.
- 3. cambiar $(w, i, b) = a_1 \cdots a_{i-1} \cdot b \cdot a_{i+1} \cdots a_n$.

Dadas palabras $w_1, w_2 \in \Sigma^*$, definimos $\operatorname{ed}(w_1, w_2)$ como el menor número de operaciones eliminar, agregar y cambiar que aplicadas desde w_1 generan w_2 . Para cualcular esta distancia utilizamos **programación dinámica**.

Definimos el **infijo** (substring) de w entre las posiciones i y j como:

$$w[i,j] = \begin{cases} w[i] \cdots w[j] & 1 \le i \le j \le n \\ \varepsilon & \text{en caso contrario} \end{cases}$$

Fije dos strings $w_1, w_2 \in \Sigma^*$ tales que $|w_1| = m$ y $|w_2| = n$.

Dados $i \in \{0, ..., m\}$ y $j \in \{0, ..., n\}$, definimos:

$$ed(i, j) = ed(w_1[1, i], w_2[1, j])$$

Observe que $ed(w_1, w_2) = ed(m, n)$

Además, definimos el valor $\mathrm{dif}(i,j)$ como 0 si $w_1[i]=w_2[j]$, y como 1 en caso contrario.

Definición recursiva de la distancia de Levenshtein

Del principio de optimalidad para sub=secuencias obtenemos la siguiente **definición recursiva** para la función ed:

$$\operatorname{ed}(i,j) = \begin{cases} \max\{i,j\} & i = 0 \text{ o } j = 0 \\ \{1 + \operatorname{ed}(i-1,j), \\ \min & 1 + \operatorname{ed}(i,j-1), \\ \operatorname{dif}(i,j) + \operatorname{ed}(i-1,j-1) \} \end{cases}$$

Tenemos entonces una forma de calcular la función ed que se basa en resolver subproblemas más pequeños.

• Estos sub-problemas están traslapados y se tiene un número polinomial de ellos, podemos aplicar entonces programación dinámica.

```
\begin{aligned} &\textbf{EditDistance}(w_1,\ i,\ w_2,\ j) \\ &\textbf{if}\ i = 0\ \textbf{then}\ \textbf{return}\ j \\ &\textbf{else}\ \textbf{if}\ j = 0\ \textbf{then}\ \textbf{return}\ i \\ &\textbf{else} \\ &r := \textbf{EditDistance}(w_1,\ i-1,\ w_2,\ j) \\ &s := \textbf{EditDistance}(w_1,\ i,\ w_2,\ j-1) \\ &t := \textbf{EditDistance}(w_1,\ i-1,\ w_2,\ j-1) \\ &\textbf{if}\ w_1[i] = w_2[j]\ \textbf{then}\ d := 0 \\ &\textbf{else}\ d := 1 \\ &\textbf{return}\ \min\{1+r,1+s,d+t\} \end{aligned}
```

¿Es esta una buena implementación de EditDistance?

R: No porque tenemos muchas llamadas recursivas repetidas, es mejor evaluar esta función utilizando un **enfoque bottom-up**.

Evaluación bottom-up:

Para determinar los valores de la función ed construimos una tabla siguiendo un orden lexicográfico para los pares (i, j):

$$(i_1, j_1) < (i_2, j_2)$$
 si y solo si $i_1 < i_2$ o $(i_1 = i_2 \text{ y } j_1 < j_2)$

Por ejemplo, para determinar el valor de ed(casa, asado) construimos la siguiente tabla:

		a	s	a	d	0			a	s	a	d	0
	0	1	2	3	4	5		0	1	2	3	4	5
С	1	1	2	3	4	5	С	1	1	2	3	4	5
a	2	1	2	2	3	4	a	2	1	2	2	3	4
s	3	2	1	2	3	4	s	3	2	1	2	3	4
a	4	3	2	1	2	3	a	4	3	2	1	2	3

Estas operaciones son la siguientes:

- 1. eliminar(casa, 1) = asa
- 2. agregar(asa, 3, d) = asad
- 3. agregar(asad, 4,0) = asado

Corolario:

Utilizando programación dinámica es poible construir un algoritmo para calcular $ed(w_1, w_2)$ que en el peor caso es $\Theta(|w_1| \cdot |w_2|)$.

Algoritmos codiciosos

Almacenamiento de Datos:

Sea Σ un alfabeto. Dada una palabra $w \in \Sigma^*$ suponga que queremos **almacenar** w **utilizando los símbolos 0 y 1**.

Definimos entonces una función $\tau: \Sigma \to \{0,1\}^*$ que asigna a cada símbolo en $a \in \Sigma$ una palabra en $\tau(a) \in \{0,1\}^*$ con $\tau(a) \neq \varepsilon$.

- Vamos a almacenar w reemplazando cada símbolo $a \in \Sigma$ que aparece en w por $\tau(a)$.
- Llamamos a τ una Σ -codificación.

La extensión $\hat{\tau}$ de una Σ -codificación τ a todas las palabras $w \in \Sigma^*$ se define como:

$$\hat{\tau}(w) = \begin{cases} \varepsilon & w = \varepsilon \\ \tau(a_1) \cdots \tau(a_n) & w = a_1 \cdots a_n \text{ con } n \ge 1 \end{cases}$$

Vamos a almacenar w como $\hat{\tau}(w)$.

- Si la Σ -codificación τ esta fija (como en ASCII) entonces no es necesario almacenarla.
- Si τ no está fija, entocnes debemos almacenarla junto con $\hat{\tau}(w)$
 - \circ En general |w| es mucho más grande que $|\Sigma|$, por lo que el costo de almacenar τ es despreciable.

La función $\hat{\tau}$ debe especificar una traducción no ambigua:

$$\forall w_1, w_2 \in \Sigma^*. w_1 \neq w_2 \Rightarrow \hat{\tau}(w_1) \neq \hat{\tau}(w_2)$$

De esta forma podemos reconstruir el texto original dada su traducción Vale decir, $\hat{\tau}$ debe ser una función inyectiva.

Codificaciones de largo fijo

Es claro que para lograr una traducción no ambigua necesitamos que $\tau(a) \neq \tau(b)$ para cada $a, b \in \Sigma$ tal que $a \neq b$.

Para obtener la misma propiedad para $\hat{\tau}$ podemos imponer la siguiente condición:

$$\forall a, b \in \Sigma. |\tau(a)| = |\tau(b)|$$

Si se cumple esta condición entonces diremos que τ es una Σ -codificación de largo fijo.

Por otro lado, decimos que τ es una Σ -codificación de largo variable si

$$a, b \in \Sigma$$
. $|\tau(a)| \neq |\tau(b)|$

¿Por qué nos conviene utilizar codificaciones de largo variable?

R: Podemos obtener representaciones más cortas para la palabra que queremos almacenar.

Ejemplo:

Suponga que w = aabaacaab

• Para $\tau_1(a) = 00$, $\tau_1(b) = 01$ y $\tau_1(c) = 10$ tenemos que:

$$\hat{\tau}(w) = 000001000010000001$$

• Para $\tau_2(a) = 0$, $\tau_2(b) = 10$ y $\tau_2(c) = 11$ tenemos que:

$$\hat{\tau}(w) = 001000110010$$

Por lo tanto $|\hat{\tau}_2(w)| = 12 < 18 = |\hat{\tau}_1(w)|$.

Lema:

Si existen $w_1, w_2 \in \Sigma^*$ tales que $w_1 \neq w_2$ y $\hat{\tau}(w_1) = \hat{\tau}(w_2)$ entonces existen $a, b \in \Sigma$ tales que $a \neq b$ y $\tau(a)$ es un prefijo de $\tau(b)$.

<u>Demostración</u>

Suponga que $w_1 \neq w_2$, $\hat{\tau}(w_1) = \hat{\tau}(w_2)$ y

$$w_1 = a_1 \dots a_m \qquad m \ge 1$$

 $w_2 = a_1 \dots a_n \qquad n \ge 1$

Además, sin pérdida de generalidad suponga que $m \le n$.

Si w_1 es **prefijo propio** de w_2 entonces $\hat{\tau}(w_1)$ es prefijo propio de $\hat{\tau}(w_2)$

• Puesto que $\tau(a) \neq \varepsilon$ para cada $a \in \Sigma$.

Dado que $\hat{\tau}(w_1) = \hat{\tau}(w_2)$, tenemos entonces que w_1 no es prefijo propio de w_2 .

Ahora, sea
$$k = \min_{1 \le i \le m} a_i \ne b_i$$

k está bien definido puesto que $w_1 \neq w_2$ y w_1 no es prefijo propio de w_2 .

Dado que
$$\hat{\tau}(a_1 \dots a_{k-1}) = \hat{\tau}(b_1 \dots b_{k-1})$$
 y $\hat{\tau}(w_1) = \hat{\tau}(w_2)$, concluimos que $\hat{\tau}(a_k \dots a_m) = \hat{\tau}(b_k \dots b_n)$.

Ignacio Méndez Pérez IIC2283 - 2022 - 2

Tenemos entonces que $\tau(a_k) \cdots \tau(a_m) = \tau(b_k) \cdots \tau(b_n)$, de lo cual se deduce que $\tau(a_k)$ es un prefijo de $\tau(b_k)$, o $\tau(b_k)$ es un prefijo de $\tau(a_k)$.

Lo cual concluye la demostración puesto que $a_k \neq b_k$.

Decimos que una Σ-codificación τ es **libre de prefijos** si para cada $a, b \in \Sigma$ tales que $a \neq b$, se tiene que $\tau(a)$ no es prefijo de $\tau(b)$.

<u>Ejemplo</u>:

Para $\Sigma = \{a, b, c\}$ y $\tau(a) = 0$, $\tau(b) = 10$, $\tau(c) = 11$, se tiene que τ es libre de prefijos.

Corolario:

Si τ es una codificación libre de prefijos, entonces $\hat{\tau}$ es una **función inyectiva**.

Frecuencias relativas de los símbolos

Palabra a almacenar: $w \in \Sigma^*$

Para $a \in \Sigma$ definimos $\operatorname{fr}_w(a)$ como la frecuencia relativa de a en w, vale decir, el número de apariciones de a en w dividido por el largo de w.

• Por ejemplo, si w = aabaabaac, entonces $\operatorname{fr}_w(a) = \frac{2}{3}\operatorname{y}\operatorname{fr}_w(c) = \frac{1}{9}$.

Para una Σ -codificación τ definimos el largo promedio para w como:

$$\mathrm{lp}_w(\tau) = \sum_{a \in \Sigma} \mathrm{fr}_w(a) \cdot |\tau(a)|$$

Tenemos que $|\hat{\tau}(w)| = lp_w(\tau) \cdot |w|$

• Por lo tanto queremos una Σ -codificación τ que minimice $lp_w(\tau)$.

Problema de optimización a resolver

Dado $w \in \Sigma^*$, encontrar una Σ-codificación τ libre de prefijos que minimice el valor $lp_w(\tau)$.

La función objetivo del algoritmo codicioso es entonces $lp_w(x)$.

• Queremos minimizar el valor de esta función.

La función $lp_w(x)$ se define a partir de la función $fr_w(y)$.

 No se necesita más información sobre w. En particular, no se necesita saber cuál es el símbolo de w en una posición específica.

Podemos entonces trabajar con funciones de frecuencias relativas en lugar de palabras.

• La entrada del problema no va a ser w sino que fr_w.

Decimos que $f: \Sigma \to (0,1)$ es una función de frecuencias relativas para Σ si se cumple que:

$$\sum_{a \in \Sigma} f(a) = 1$$

Dada una función f de frecuencias relaticas para Σ y una Σ -codificación τ , el largo promedio de τ para f se define como:

$$\operatorname{lp}_f(\tau) = \sum_{a \in \Sigma} f(a) \cdot |\tau(a)|$$

La entrada del problema es entonces una función f de frecuencias relativas para Σ , y la función objetivo a minimizar es $\operatorname{lp}_f(x)$.

Codiciaciones como árboles

Si una Σ -codificación τ es libre de prefijos, entonces el árbol que la representa satisface las siguientes propiedades.

- Cada hoja tiene como etiqueta un elemento de Σ, y estos son los únicos nodos con etiquetas.
- Cada símbolo de Σ es usado exactamente una vez como etiqueta.
- Cada arco tiene etiqueta 0 ó 1.
- Si una hoja tiene etiqueta e y las etiquetas de los arcos del camino desde la raíz hasta esta hoja forman una palabra w ∈ {0,1}*, entonces τ(e) = w.

Calculando el mínimo de $lp_f(x)$

- Función objetivo a minimizar: $lp_f(x)$.
- Función selección: elige los dos símbolos de Σ con menor frecuencia relativa, los coloca como hermanos en el árbol binario que representa la Σ -codificación óptima, y continua la construcción con el resto de los símbolos de Σ .

El algoritmo de Huffman

En el siguiente algoritmo representamos a las funciones como conjuntos de pares ordenados, y suponemos que f es una función de frecuencias relativas que al menos tiene dos elementos en el dominio.

```
CalcularCodificaciónHuffman(f)

Sea \Sigma el dominio de la función f

if \Sigma = \{a,b\} then return \{(a,0),(b,1)\}

else

Sean a,b \in \Sigma tales que a \neq b, f(a) \leq f(b) y

f(b) \leq f(e) para todo e \in (\Sigma \setminus \{a,b\})

Sea c un símbolo que no aparece en \Sigma

g := (f \setminus \{(a,f(a)),(b,f(b))\}) \cup \{(c,f(a)+f(b))\}

\tau^* := CalcularCodificaciónHuffman(g)

w := \tau^*(c)

\tau := (\tau^* \setminus \{(c,w)\}) \cup \{(a,w0),(b,w1)\}

return \tau
```

Teorema

Si f es una codificación de frecuencias relativas, Σ es el dominio de f y τ =CalcularCodificaciónHuffman(f), entonces τ es una Σ -codificación libre de prefijos que minimiza la función $\operatorname{lp}_f(x)$.

Demostración:

Vamos a realizar la demostración por inducción en $|\Sigma|$.

Si $|\Sigma| = 2$, entonces la propiedad se cumple trivialmente

Suponga que la propiedad se cumple para un valor $n \ge 2$, y suponga que $|\Sigma| = n + 1$.

Sean a, b, c, g, τ^* y τ definidos como en el código de la llamda **CalcularCodificaciónHuffman**(f), y sea Γ el dominio de g.

Como $|\Gamma| = n$ y $\tau^* = \text{CalcularCodificaciónHuffman}(g)$, por hipótesis de inducción tenemos que τ^* es una Γ -codificación libre de prefijos que minimiza la función $\lg_a(x)$.

Dada la definición de τ es simple verificar las siguiente propiedades:

- τ es una codificación libre de prefijos.
- Para cad $e \in (\Sigma \setminus \{a, b\})$ se tiene que $\tau(e) = \tau^*(e)$.
- $|\tau(a)| = |\tau(b)| = |\tau^*(c)| + 1$.

Por contradicción suponga que τ no minimiza el valor de la función $lp_f(x)$,

• Vale decir, existe una Σ =codificación τ' libre de prefijos tal que τ' minimiza la función $\operatorname{lp}_f(x)$ y $\operatorname{lp}_f(\tau') < \operatorname{lp}_f(\tau)$.

Por la definición de a, b y los ejercicios anteriores podemos suponer que existe $w \in \{0,1\}^*$ tal que $\tau'(a) = w0$ y $\tau'(b) = w1$.

• Nótese que $w \neq \varepsilon$ puesto que $|\Sigma| \ge 3$.

A partir de τ' defina la siguiente Γ -codificación τ'' :

$$\tau^{\prime\prime} = \left(\tau^{\prime} \setminus \left\{ \left(a, \tau^{\prime}(a)\right), \left(b, \tau^{\prime}(b)\right) \right\} \right) \cup \left\{ (c, w) \right\}$$

Tenemos que τ'' es una Γ -codificación libre de prefijos.

La relación entre $\mathrm{lp}_{q}(au^{*})$ y $\mathrm{lp}_{f}(au)$

$$\begin{split} & \operatorname{lp}_g(\tau^*) = \sum_{e \in \Gamma} g(e) \cdot |\tau^*(e)| \\ & = \left(\sum_{e \in (\Gamma \setminus \{e\})} g(e) \cdot |\tau^*(e)|\right) + g(c) \cdot |\tau^*(c)| \\ & = \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau(e)|\right) + \left(f(a) + f(b)\right) \cdot |\tau^*(c)| \\ & = \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau(e)|\right) + f(a) \cdot |\tau^*(c)| + f(b) \cdot |\tau^*(c)| \\ & = \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau(e)|\right) + f(a) \cdot (|\tau(a)| - 1) + f(b) \cdot (|\tau(b)| - 1) \\ & = \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau(e)|\right) + (f(a) \cdot |\tau(a)|) + (f(b) \cdot |\tau(b)|) - f(a) - f(b) \\ & = \left(\sum_{e \in \Sigma} f(e) \cdot |\tau(e)|\right) - \left(f(a) + f(b)\right) \\ & = \operatorname{lp}_f(\tau) - \left(f(a) + f(b)\right) \end{split}$$

La relación entre $\operatorname{lp}_g(au'')$ y $\operatorname{lp}_f(au')$

$$\begin{split} & \operatorname{lp}_{g}(\tau'') = \sum_{e \in \Gamma} g(e) \cdot |\tau''(e)| \\ & = \left(\sum_{e \in (\Gamma \setminus \{c\})} g(e) \cdot |\tau''(e)|\right) + g(c) \cdot |\tau''(c)| \\ & = \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau'(e)|\right) + \left(f(a) + f(b)\right) \cdot |\tau''(c)| \\ & = \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau'(e)|\right) + f(a) \cdot |\tau''(c)| + f(b) \cdot |\tau''(c)| \\ & = \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau'(e)|\right) + f(a) \cdot (|\tau'(a)| - 1) + f(b) \cdot (|\tau'(b)| - 1) \\ & = \left(\sum_{e \in (\Sigma \setminus \{a,b\})} f(e) \cdot |\tau'(e)|\right) + (f(a) \cdot |\tau'(a)|) + (f(b) \cdot |\tau'(b)|) - f(a) - f(b) \\ & = \left(\sum_{e \in \Sigma} f(e) \cdot |\tau'(e)|\right) - \left(f(a) + f(b)\right) \\ & = \operatorname{lp}_{f}(\tau') - \left(f(a) + f(b)\right) \end{split}$$

Tenemos entonces que

$$\begin{aligned} \operatorname{lp}_{g}(\tau'') &= \operatorname{lp}_{f}(\tau') - (f(a) + f(b)) \\ &< \operatorname{lp}_{f}(\tau) - (f(a) + f(b)) \\ &= \operatorname{lp}_{g}(\tau^{*}) \end{aligned}$$

Concluimos entonces que τ^* no minimiza la función $\lg_g(x)$, lo cual contradice la hipótsis de inducción.

La siguiente función calcula la codificación de Huffman teniendo como entrada una palabra w:

```
\begin{aligned}  & \textbf{CalcularCodificaciónHuffman}(w) \\ & \textbf{if } w = \varepsilon \textbf{ then return } \emptyset \\ & \textbf{else} \\ & \Sigma := \text{conjunto de símbolos mencionados en } w \\ & \textbf{if } \Sigma = \{a\} \textbf{ then return } \{(a,0)\} \\ & \textbf{else return CalcularCodificaciónHuffman}(\text{fr}_w) \end{aligned}
```

¿Cuál es la complejidad de CalcularCodificaciónHuffman(f)?

R: $\mathcal{O}(n \cdot \log n)$ (considerando que $|f| \in \Theta(|\Sigma|)$.

Transformada rápida de Fourier

Representación de un polinomio

Sea p(x) un polinomio no nulo de coeficientes racionales.

La representación canónica de p(x) es:

$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$

donde $n \ge 1$, $a_{n-1} \ne 0$ y el grado de p(x) es n-1.

- Utilizamos el grado n-1 para dar énfasis a que estos polinomios poseen n coeficientes.
- Si bien trabajaremos con polinomios de coeficientes racionales, vamos a evaluarlos usando números reales y complejos.

Representamos p(x) a través de una **tupla** $(a_0, ..., a_{n-1})$ de largo n.

• También podemos representar p(x) como una tupla $(a_0, ..., a_{n-1}, 0, ..., 0)$ de largo m > n donde cada término x^i tiene coeficiente 0 si $i \ge n$.

Suma de polinomios:

La suma de dos polinomios (a_0,\dots,a_{n-1}) y (b_0,\dots,b_{n-1}) es un polinomio (c_0,\dots,c_{n-1}) tal que:

$$c_i = a_i + b_i \qquad \forall i \in \{0, \dots, n_1\}$$

Consideramos a la **suma y multiplicación de números en** $\mathbb C$ como las operaciones básicas a contar.

¿Cuál es la **complejidad** de este algoritmo? **R**: O(n)

Multiplicación de polinomios:

La multiplicación de dos polinomios (a_0,\ldots,a_{n-1}) y (b_0,\ldots,b_{n-1}) es un polinomio (c_0,\ldots,c_{n-1}) tal que:

$$c_i = \sum_{k,l \in \{0,\dots,n-1\}: k+l=i} a_k \cdot b_l \qquad \forall i \in \{0,\dots,2n-2\}$$

¿Cuál es la **complejidad** de realizar esta operación? \mathbf{R} : $\mathcal{O}(n^2)$

Una representación alternativa de un polinomio

Un polinomio p(x) de grado n-1 se puede representar de manera única a través de **un conjunto de** n pares de puntos-valores (así como una parábola puede representarse con 3 puntos en \mathbb{R}^2):

$$p(x) \mapsto \{(v_0, p(v_0)), (v_1, p(v_1)), \dots, (v_{n-1}, p(v_{n-1}))\},\$$

suponiendo que $v_i \neq v_i$ para todo $i \neq j$.

Un polinomio p(x) de grado n-1 también se puede representar de manera única a través de un conjunto de n pares de puntos-valores com m>n elementos:

$$p(x) \mapsto \{(v_0, p(v_0)), \dots, (v_{n-1}, p(v_{n-1})), (v_n, p(v_n)), \dots, (v_{m-1}, p(v_{m-1}))\},$$

suponiendo que $v_i \neq v_i$ para todo $i \neq j$.

¿Por qué es útil la represntación basada en puntos-valores?

Sean p(x) y q(x) dos polinomios de grado n-1 representados por:

$$\begin{aligned} p(x) &\mapsto \left\{ \left(v_0, p(v_0) \right), \dots, \left(v_{n-1}, p(v_{n-1}) \right) \right\} \\ q(x) &\mapsto \left\{ \left(v_0, q(v_0) \right), \dots, \left(v_{n-1}, q(v_{n-1}) \right) \right\} \end{aligned}$$

¿Cuál es la representación de r(x) = p(x) + q(x)?

$$\mathbf{R}: r(x) \mapsto \{(v_0, p(v_0) + q(v_0)), \dots, (v_{n-1}, p(v_{n-1}) + q(v_{n-1}))\}$$

¿Cómo lo hacemos para $s(x) = p(x) \cdot q(x)$?

Suponga que se agrega n puntos a las representaciones de p(x) y q(x):

$$\left\{ \left(v_0, p(v_0) \right), \dots, \left(v_{n-1}, p(v_{n-1}) \right), \left(v_n, p(v_n) \right), \dots, \left(v_{2n-1}, p(v_{2n-1}) \right) \right\} \\ \left\{ \left(v_0, q(v_0) \right), \dots, \left(v_{n-1}, q(v_{n-1}) \right), \left(v_n, q(v_n) \right), \dots, \left(v_{2n-1}, q(v_{2n-1}) \right) \right\}$$

El polinomio $s(x) = p(x) \cdot q(x)$ es representado por:

$$\{(v_0, p(v_0) \cdot q(v_0)), \dots, (v_{2n-1}, p(v_{2n-1}) \cdot q(v_{2n-1}))\}$$

Podemos sumar y multiplicar polinomios en tiempo $\mathcal{O}(n)$ si están representados por partes de puntos-valores (y por los mismos puntos).

De la representación puntos-valores a la canónica

Sea p(x) un polinomio de grado n-1 dado por una representación punto-valores:

$$\{(v_0, p(v_0)), \dots, (v_{n-1}, p(v_{n-1})), (v_n, p(v_n)), \dots, (v_{m-1}, p(v_{m-1}))\}$$

donde $m \ge n$.

Podemos pasar a la representación canónica de p(x) utilizando la **fórmula de Lagrange**:

$$p(x) = \sum_{i=0}^{m-1} p(v_i) \cdot \left(\prod_{j \in \{0, \dots, m-1\}: j \neq i} \frac{x - v_j}{v_i - v_j} \right)$$

La solución: la transformada rápida de Fourier

La transformada rápida de Fourier nos va a permitir entonces calcular la multiplicación de dos polinomios de grado n-1 en tiempo $\mathcal{O}(n \cdot \log_2(n))$.

• La idea clave es cómo elegir los puntos v_0, \dots, v_{2n-1} cuando se calcula la representación como punto-valores de un polinomio de grado n-1.

Los **números complejos** y las **raíces de la unidad** juegan un papel fundamental en la definición de la transformada rápida de Fourier.

Teorema

Para todo número real x:

$$e^{ix} = \cos(x) + i \cdot \sin(x)$$

Podemos representar entonces a $e^{i\theta}$ como un vectos $(\cos(\theta),\sin(\theta))$ en el plano complejo.

• $e^{i\theta}$ en un vector unitario: $||e^{i\theta}|| = \cos^2(\theta) + \sin^2(\theta) = 1$.

Dado $n \ge 1$, queremos encontrar las n raíces del polinomio $p(x) = x^n - 1$.

- Sabemos que este polinomio tiene *n* raíces en los números complejos.
- Llamamos a estos elementos las *n*-raíces de la unidad.

El componente básico para definir las n-raíces de la unidad:

$$\omega_n = e^{\frac{2\pi i}{n}}$$

Las n-raíces de la unidad son ω_n^0 , $\ \omega_n^1$, $\ \omega_n^2$, ... , $\ \omega_n^{n-1}$.

Si $k \in \{0, ..., n-1\}$ tenemos que:

$$(\omega_n^k)^n = \left(\left(e^{\frac{2\pi i}{n}}\right)^k\right)^n$$

$$= \left(\left(e^{\frac{2\pi i}{n}}\right)^n\right)^k$$

$$= \left(e^{2\pi i}\right)^k$$

$$= (\cos(2\pi) + i \cdot \sin(2\pi))^k$$

$$= 1^k$$

$$= 1$$

Además, si $0 \le k \le l \le n-1$, entonces:

$$\begin{split} \omega_n^k &= \omega_n^l \quad \Rightarrow \quad \left(e^{\frac{2\pi i}{n}}\right)^k = \left(e^{\frac{2\pi i}{n}}\right)^l \\ &\Rightarrow \quad \left(e^{\frac{2\pi i}{n}}\right)^{l-k} = 1 \\ &\Rightarrow \quad \left(e^{\frac{2\pi (l-k)i}{n}}\right) = 1 \\ &\Rightarrow \quad \cos\left(\frac{2\pi (l-k)}{n}\right) + i \cdot \sin\left(\frac{2\pi (l-k)}{n}\right) = 1 \\ &\Rightarrow \quad \cos\left(\frac{2\pi (l-k)}{n}\right) = 1 \\ &\Rightarrow \quad \frac{l-k}{n} = 0 \\ &\Rightarrow \quad l=k \end{split} \qquad \qquad \begin{array}{c} \text{Puesto que:} \\ 0 \leq \frac{l-k}{n} \leq \frac{n-1}{n} \end{array}$$

Por lo tanto, ω_n^0 , ... , ω_n^{n-1} son elementos distintos.

Ejemplo:

¿Cuáles son las raíces del polinomio $x^4 - 1$?

• Considerando $\omega_4=e^{\frac{2\pi i}{4}}=e^{\frac{\pi}{2}i}$, tenemos que las 4-raíces de la unidad son:

$$\omega_{4}^{0} = 1$$

$$\omega_{4}^{1} = e^{\frac{\pi}{2}i} = \cos\left(\frac{\pi}{2}\right) + i \cdot \sin\left(\frac{\pi}{2}\right) = i$$

$$\omega_{4}^{2} = \left(e^{\frac{\pi}{2}i}\right)^{2} = e^{\pi i} = \cos(\pi) + i \cdot \sin(\pi) = -1$$

$$\omega_{4}^{3} = \left(e^{\frac{\pi}{2}i}\right)^{3} = e^{\frac{3\pi}{2}i} = \cos\left(\frac{3\pi}{2}\right) + i \cdot \sin\left(\frac{3\pi}{2}\right) = -i$$

La transformada discreta de Fourier

Definición

Sea $n \ge 2$ y un polinomio $p(x) = \sum_{k=0}^{n-1} a_k x^k$.

La transformada discreta de Fourier (DFT) de p(x) se define como:

$$[p(\omega_n^0),p(\omega_n^1),\dots,p(\omega_n^{n-1})]$$

¿Cómo podemos calcular DFT de manera eficiente?

Calcular DFT

Recordemos que vamos a representar p(x) a través del vector $\bar{a}=(a_0,...,a_{n-1})$.

El problema a resolver es calcular de manera eficiente la DFT de p(x), la cual denotamos como **DFT** (\bar{a}) .

• Definimos $y_k = p(\omega_n^k)$ para cada $k \in \{0, \dots, n-1\}$, de manera tal que queremos calcular $\mathbf{DFT}(\overline{a})$.

Calcular DFT de manera eficiente

Suponemos que $n=2^t$ para $t\in\mathbb{N}$, calculamos **DFT** (\bar{a}) realizando los siguientes pasos:

- 1. Calcular **DFT**(\bar{a}_0) y **DFT**(\bar{a}_1) para dos vectores \bar{a}_0 y \bar{a}_1 de largo $\frac{n}{2}$.
- 2. Combinar **DFT** (\bar{a}_0) y **DFT** (\bar{a}_1) para obtener **DFT** (\bar{a}) .

Es fundamental que el paso 2 sea realizado en tiempo $\mathcal{O}(n)$.

Tenemos que:

$$p(x) = \sum_{k=0}^{n-1} a_k x^k$$

$$= \sum_{k=0}^{\frac{n}{2}-1} a_{2k} x^{2k} + \sum_{k=0}^{\frac{n}{2}-1} a_{2k+1} x^{2k+1}$$

$$= \sum_{k=0}^{\frac{n}{2}-1} a_{2k} x^{2k} + x \cdot \sum_{k=0}^{\frac{n}{2}-1} a_{2k+1} x^{2k}$$

Definimos los polinomios:

$$q(z) = \sum_{k=0}^{\frac{n}{2}-1} a_{2k} z^k$$

$$r(z) = \sum_{k=0}^{\frac{n}{2}-1} a_{2k+1} z^k$$

Tenemos que:

$$p(x) = q(x^2) + x \cdot r(x^2)$$

Para calcular $[p(\omega_n^0),p(\omega_n^1),\dots,p(\omega_n^{n-1})]$, tenemos entonces que calcular:

$$[q((\omega_n^0)^2), q((\omega_n^1)^2), \dots, q((\omega_n^{n-1})^2)]$$

$$[r((\omega_n^0)^2), r((\omega_n^1)^2), \dots, r((\omega_n^{n-1})^2)]$$

Pero si $k \in \{0, \dots, \frac{n}{2} - 1\}$, entonces tenemos que:

$$\left(\omega_n^{\frac{n}{2}+k}\right)^2 = \omega_n^{n+2k}$$

$$= \omega_n^n \cdot \omega_n^{2k}$$

$$= \left(e^{\frac{2\pi i}{n}}\right)^n \cdot (\omega_n^k)^2$$

$$= e^{2\pi i} \cdot (\omega_n^k)^2$$

$$= 1 \cdot (\omega_n^k)^2$$

$$= (\omega_n^k)^2$$

 $\text{ë Si } \omega_n^0, \omega_n^1, \dots, \omega_n^{n-1} \text{ son las raíces de la unidad, quiénes son } (\omega_n^0)^2, (\omega_n^1)^2, \dots, \left(\omega_n^{\frac{n}{2}-1}\right)^2 ?$

Lema

Si $n \ge 2$ es par, entonces $(\omega_n^0)^2$, $(\omega_n^1)^2$, ..., $\left(\omega_n^{\frac{n}{2}-1}\right)^2$ son las $\frac{n}{2}$ -raíces de la unidad (vale decir, son las raíces del polinomio $x^{\frac{n}{2}}-1$).

Demostración

Primero tenemos que demostrar la regla de simplificación $\omega_{m \cdot l}^{k \cdot l} = \omega_m^k$ para l > 0:

$$\omega_{m\cdot l}^{k\cdot l} = \left(e^{\frac{2\pi i}{m\cdot l}}\right)^{k\cdot l} = \left(e^{\frac{2\pi i\cdot l}{m\cdot l}}\right)^k = \left(e^{\frac{2\pi i}{m}}\right)^k = \omega_m^k$$

Dado que $k \in \{0, \dots, \frac{n}{2} - 1\}$, se tiene que:

$$(\omega_n^k) = \omega_n^{k \cdot 2} = \omega_{\frac{n}{2} \cdot 2}^{k \cdot 2} = \omega_{\frac{n}{2}}^k$$
 (por la regla de simplificación)

Por lo tanto, $(\omega_n^0)^2$, $(\omega_n^1)^2$, ..., $(\omega_n^{\frac{n}{2}-1})^2$ son las $\frac{n}{2}$ – raíces de la unidad.

• Puesto que
$$(\omega_n^0)^2$$
, $(\omega_n^1)^2$, ..., $(\omega_n^{\frac{n}{2}-1})^2 = \omega_{\frac{n}{2}}^0, \omega_{\frac{n}{2}}^1, \ldots, \omega_{\frac{n}{2}}^{\frac{n}{2}-1}$.

Ignacio Méndez Pérez IIC2283 - 2022 - 2

Recuerde que $\bar{a}=(a_0,\ldots,a_{n-1})$, y defina:

$$\bar{a}_0 = (a_0, a_2, ..., a_{n-2})$$

 $\bar{a}_1 = (a_1, a_3, ..., a_{n-1})$

De los resultados anteriores concluimos que para calcular $\mathbf{DFT}(\bar{a})$, primero tenemos que calcular $\mathbf{DFT}(\bar{a})_0$ y $\mathbf{DFT}(\bar{a}_1)$.

¿Cómo se construye $\mathbf{DFT}(\bar{a})$ a partir de $\mathbf{DFT}(\bar{a}_0)$ y $\mathbf{DFT}(\bar{a}_1)$?

Sea:

$$\mathbf{DFT}(\bar{a}_0) = \left[u_0, u_1, \dots, u_{\frac{n}{2}-1}\right]$$

$$\mathbf{DFT}(\bar{a}_1) = \left[v_0, v_1, \dots, v_{\frac{n}{2}-1}\right]$$

Para $k \in \left\{0, \dots, \frac{n}{2} - 1\right\}$ tenemos que:

$$y_k = p(\omega_n^k)$$

$$= q((\omega_n^k)^2) + \omega_n^k \cdot r((\omega_n^k)^2)$$

$$= q(\omega_n^k) + \omega_n^k \cdot r(\omega_n^k)$$

$$= u_k + \omega_n^k \cdot v_k$$

Adenás, para $k \in \{0, ..., \frac{n}{2} - 1\}$ tenemos que:

$$y_{\frac{n}{2}+k} = p\left(\omega_n^{\frac{n}{2}+k}\right)$$

$$= q\left(\left(\omega_n^{\frac{n}{2}+k}\right)^2\right) + \omega_n^{\frac{n}{2}+k} \cdot r\left(\left(\omega_n^{\frac{n}{2}+k}\right)^2\right)$$

$$= q(\omega_n^{n+2k}) + \omega_n^{\frac{n}{2}+k} \cdot r(\omega_n^{n+2k})$$

$$= q(\omega_n^{n} \cdot \omega_n^{2k}) + \left(e^{\frac{2\pi i}{n}}\right)^{\frac{n}{2}} \cdot \omega_n^k \cdot r(\omega_n^{n} \cdot \omega_n^{2k})$$

$$= q(1 \cdot \omega_n^{2k}) + e^{\pi i} \cdot \omega_n^k \cdot r(1 \cdot \omega_n^{2k})$$

$$= q(\omega_n^{2k}) - \omega_n^k \cdot r(\omega_n^{2k})$$

$$= q\left(\omega_n^{k}\right) - \omega_n^k \cdot r\left(\omega_n^{k}\right)$$

$$= u_k - \omega_n^k \cdot v_k$$

Resumiendo, para $k \in \left\{0, \dots, \frac{n}{2} - 1\right\}$ tenemos que:

$$\begin{array}{rcl} y_k & = & u_k + \omega_n^k \cdot v_k \\ y_{\frac{n}{2} + k} & = & u_k - \omega_n^k \cdot v_k \end{array}$$

Para tener un algoritmo recursivo para calcular **DFT** sólo nos falta el **caso base**.

• Consideramos n = 2 y un polinomio $p(x) = a_0 + a_1 x$.

Tenemos que:

$$p(\omega_2^0) = a_0 + a_1 \cdot \omega_2^0 = a_0 + a_1$$

$$p(\omega_2^1) = a_0 + a_1 \cdot \omega_2^1 = a_0 - a_1$$

Un algoritmo recursivo eficiente para DFT

- La entrada del algoritmo es un polinomio $p(x) = \sum_{k=0}^{n-1} a_k x^k$.
 - Este polinomio es representado por el vector $\bar{a} = (a_0, ..., a_{n-1})$.
- Supongamos además que $n \ge 2$ y n es una potencia de 2.
- El algoritmo se llama la transformada rápida de Fourier (FFT).
 - o Fue propuesto por Cooley & Tukey (1965).

```
\begin{aligned} \textbf{FFT}(a_0, \dots, a_{n-1}) \\ \textbf{if } n &= 2 \textbf{ then} \\ y_0 &= a_0 + a_1 \\ y_1 &= a_0 - a_1 \\ \textbf{return } [y_0, y_1] \\ \textbf{else} \\ & [u_0, \dots, u_{\frac{n}{2}-1}] := \textbf{FFT}(a_0, \dots, a_{n-2}) \\ & [v_0, \dots, v_{\frac{n}{2}-1}] := \textbf{FFT}(a_1, \dots, a_{n-1}) \\ & \omega_n := e^{\frac{2\pi i}{n}} \\ & \alpha := 1 \\ & \textbf{for } k := 0 \textbf{ to } \frac{n}{2} - 1 \textbf{ do} \\ & y_k := u_k + \alpha \cdot v_k \\ & y_{\frac{n}{2}+k} := u_k - \alpha \cdot v_k \\ & \alpha := \alpha \cdot \omega_n \\ & \textbf{return } [y_0, \dots, y_{n-1}] \end{aligned}
```