PYTHON - NÍVEL INICIANTE

POWERED BY MULHERES EM DADOS

PROJETO SATISFAÇÃO DO CONSUMIDOR

AULA 04 - AVALIAÇÃO E MELHORIAS NO MODELO DE MACHINE LEARNING 06 DE JULHO DE 2022

CRONOGRAMA

JUNHO-JULHO 2022

	DOM	SEG	TER	QUA	QUI	SEX	SAB
1	2	13	14	15	16	17	18
				Entendimento			
1	9	20	21	22	23	24	25
				Análise Exploratoria			
2	26	27	28	29 Criação de modelo	30	1	2
3	3	4	5	6 Avaliação	7	8	9
				Availação			

Entendimento, carregamento e préprocessamento dos dados

Entendimento do negócio e configurar o colab para pre-processar os dados

Análise exploratória de dados (EDA)

Analisaremos os dados resultando nos principais insights sobre o negócio

Feature Engineering e criação de modelo de ML

Criaremos o nosso modelo de machine learning a partir das variáveis que mais fazem sentido para o negócio

Avaliação e melhorias no modelo de ML

Entenderemos melhor sobre como avaliar e melhorar a performance do nosso modelo de machine learning

AULA 04 - AVALIAÇÃO E MELHORIAS NO MODELO DE MACHINE LEARNING

SUMÁRIO

- 1. Matriz de Confusão e Métricas de Classificação
- 2. Balanceamento dos Dados
- 3. Escalonamento dos Dados
 - 3.1. Tipos de escalonamento dos dados
- 4. Overfitting (sobreajuste) e Underfitting (sub-ajuste)
- 5. Referências
- 6. Para saber mais

MATRIZ DE CONFUSÃO

MÉTRICAS DE CLASSIFICAÇÃO

CLASSE PREDITIVA

	positive	negative		
positive	True Positive	False Negative		
negative	False Positive	True N egative		

Usa-se a matriz como representação visual. As métricas de classificação, ao lado, são as funções desta matriz e que verificam as taxas de acertos e erros das predições.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = rac{TP}{TP + FN}$$

$$F1 ext{-}score = rac{2 imes ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

$$Accuracy = \frac{Number\ of\ Correct\ predictions}{Total\ number\ of\ predictions\ made}$$

MÉTRICAS DE CLASSIFICAÇÃO

Precision: número de resultados positivos dividido pelo número de resultados positivos preditos

Recall: número de resultados positivos dividido pelo número de amostras que realmente eram positivas

A precisão é necessária para reduzir o número de falsos positivos e o recall é necessário para reduzir o número de falsos negativos.

BALANCEAMENTO DOS DADOS

- **Alta discrepância** entre quantidade de dados de duas classes <u>Exemplo</u>: em detecção de fraude, a fraude é rara, então teremos muito mais valores apontando como 'não fraude'
- **SMOTE Synthetic Minority Over-sampling Technique**: gera novas amostras artificialmente da classe minoritária utilizando o algoritmo KNN. Dessa forma, conseguimos balancear os tamanhos das amostras para treinamento

ESCALONAMENTO DOS DADOS

- Se o modelo possui diferentes ordens de grandeza Exemplo: idades entre 0-100 e salários de 0-milhares
- Alguns modelos podem não funcionar com propriedades com diferentes escalas
- Pode resultar em algumas propriedades tendo mais peso que outras

TIPOS DE ESCALONAMENTO DOS DADOS

- **StandardScaler** segue a distribuição normal. Portanto, transforma os dados em média = 0 e variância unitária
- MinMaxScaler escala todas as variáveis no intervalo [0,1] ou [-1, 1], se tiver valores negativos

OVERFITTING (SOBREAJUSTE) E UNDERFITTING (SUBAJUSTE)

EXEMPLO NUMÉRICO (REGRESSÃO)

EXEMPLO
CATEGÓRICO
(CLASSIFICAÇÃO)

OVERFITTING (SOBREAJUSTE) E UNDERFITTING (SUB-AJUSTE)

O sobreajuste acontece quando apenas uma parte da amostra está disponível no treinamento, levando à sobregeneralização do todo. Com isso, ele aprende muito bem sobre os dados já coletados, mas não é eficaz em prever novos resultados.

Já o sub-ajuste ocorre quando há um erro de representação [também conhecido como **viés** (**bias**, em inglês)], em que tem-se os dados para o treinamento, porém o modelo não é adequado/tem baixo ajuste para avaliá-los.

COELHO, Caíque. <u>Um guia completo para o pré-processamento de</u> dados em machine learning

GRUS, JOEL. Aprendizado de Máquina. In.: **Data Science do Zero: noções fundamentais com Python**. 2ª edição. Rio de Janeiro: Alta Books, 2021.

PARA SABER MAIS:

(CLIQUE NOS LINKS)

<u>Entendendo de vez a diferença entre normalização e padronização dos dados</u> @ Canal Ciência dos Dados

Trilha de Estudos para Cientista de Dados @ GitHub das Mulheres em Dados

- Obrigada por estar conosco neste projeto. Até o próximo!
- Não esqueça de responder o feedback <u>aqui</u>

Equipe Python:

Andressa Apio, Crislane Maria, Érika Santos e Joice Oliveira