

# VISIÓN ARTIFICIAL

JOHN W. BRANCH

PROF. TITULAR

DEPARTAMENTO DE CIENCIAS DE COMPUTACIÓN Y DE LA DECISIÓN

DIRECTOR DEL GRUPO GIDIA

ALBERTO M. CEBALLOS / JAIRO A. RODRÍGUEZ
ASISTENTE DE DOCENCIA MONITOR

Nota: Este material se ha adaptado con base en el material del profesor Carlos Mera Banguero, PhD. (Instituto Tecnológico Metropolitano)





# EN LA CLASE DE HOY ...

PRE-PROCESAMIENTO DE IMÁGENES

- Ruido
- Operaciones por vecindarios
  - Onvolución
  - Filtrado espacial



# ETAPAS DE UN SISTEMA DE VISIÓN ARTIFICIAL



#### **EL PREPROCESAMIENTO**

El objetivo del Preprocesamiento es mejorar la calidad y/o la apariencia de la imagen original para su análisis e interpretación.



#### **EL PREPROCESAMIENTO**

Alteración píxel a píxel de la imagen (Operaciones Puntuales)



Operaciones basadas en múltiples puntos u Operaciones de Vecindad





#### EL RUIDO EN LAS IMÁGENES

- El ruido digital es algún tipo de información no deseada que contamina una imagen y/o degrada su calidad.
- Existen diferentes Tipos de Ruido cuyas características probabilísticas permiten clasificarlos en dos:
  - El Ruido Local Determinístico
    - Presenta una forma y apariencia constante para cada sistema en particular
    - Se manifiesta como una distribución constante y determinada dentro de la imagen
  - El Ruido Aleatorio que es producido por fuentes imprevistas y su distribución es aleatoria y cambiante con el tiempo
- El ruido se puede producir tanto en el proceso de adquisición de la imagen (por error en los sensores), así cómo por la transmisión (debido a interferencias en el canal de transmisión).

### **EL RUIDO EN LAS IMÁGENES**

El Ruido Gaussiano (o normal): Modela el ruido producido por los circuitos electrónicos o ruido de los sensores por falta de iluminación y/o altas temperaturas.



### **EL RUIDO EN LAS IMÁGENES**

El Ruido Gaussiano (o normal):



### EL RUIDO EN LAS IMÁGENES

El Ruido Uniforme toma valores en un determinado intervalo de forma equiprobable. Se da en un menor número de situaciones reales.





#### EL RUIDO EN LAS IMÁGENES

El Ruido Impulsivo (o Sal y Pimienta) se produce normalmente en la cuantificación que se realiza en el proceso de digitalización y es muy común en la transmisión.



incluyen un



ará una

#### EL RUIDO EN LAS IMÁGENES

¿Cómo se puede suprimir el Ruido en las imágenes?

Las técnicas de supresión del ruido están estrechamente relacionadas con los algoritmos de suavizado y perfilado.

Aunque todas las técnicas suprimen el ruido satisfactoriamente, se prefieren los filtros espaciales ya que en general, tienen un mejor rendimiento con un menor costo en memoria y en tiempo de ejecución.

OJO: no existe un único FILTRO Lineal o NO Lineal que sea óptimo para todas las imágenes.





### Convolución

La Convolución es la operación elemental usada para aplicar las operaciones de vecindad.



### Convolución

Matemáticamente ...

$$I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$$



K determina el número de vecinos que se tienen en cuenta y H es el kernel (o máscara de convolución)

### CONVOLUCIÓN

$$I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$$

| 90 | 67  | 68  | 75  | 78  |
|----|-----|-----|-----|-----|
| 92 | 87  | 73  | 78  | 82  |
| 63 | 102 | 89  | 76  | 98  |
| 45 | 83  | 109 | 80  | 130 |
| 39 | 69  | 92  | 115 | 154 |



$$I'(2, 1) = (67*0) + (68*1) + (75*0) + (87*2) + (73*1) + (78*-2) + (102*0) + (89*-1) + (76*0)$$
  
= ???

### Convolución

$$I'(x, y) = \sum_{k=1}^{k} \sum_{k=1}^{k} I(x+u, y+v) \cdot H(u, v)$$

| 90 | 67  | 68  | 75  | 78  |
|----|-----|-----|-----|-----|
| 92 | 87  | 73  | 78  | 82  |
| 63 | 102 | 89  | 76  | 98  |
| 45 | 83  | 109 | 80  | 130 |
| 39 | 69  | 92  | 115 | 154 |

Imagen de Entrada (I)

|                  | 1 | 2 | 1 |
|------------------|---|---|---|
| $\frac{1}{15}$ × | 2 | 3 | 2 |
|                  | 1 | 2 | 1 |

Kernel de Convolución (H)



Imagen de Salida (l')

$$I'(1,1) = \sum_{u=-1}^{1} \sum_{v=-1}^{1} I(1+u,1+v) \cdot H(u,v) = \frac{\left[ (90\times1) + (67\times2) + (68\times1) + (92\times2) + (87\times3) + (73\times2) + (63\times1) + (102\times2) + (89\times1) \right]}{15}$$

### Convolución

$$I'(x, y) = \sum_{k=1}^{k} \sum_{k=1}^{k} I(x+u, y+v) \cdot H(u, v)$$

| 90 | 67  | 68  | 75  | 78  |
|----|-----|-----|-----|-----|
| 92 | 87  | 73  | 78  | 82  |
| 63 | 102 | 89  | 76  | 98  |
| 45 | 83  | 109 | 80  | 130 |
| 39 | 69  | 92  | 115 | 154 |

Imagen de Entrada (I)

|                  | 1 | 2 | 1 |
|------------------|---|---|---|
| $\frac{1}{15}$ × | 2 | 3 | 2 |
|                  | 1 | 2 | 1 |

Kernel de Convolución (H)



Imagen de Salida (l')

$$I'(1,2) = \sum_{u=-1}^{1} \sum_{v=-1}^{1} I(1+u,2+v) \cdot H(u,v) = \frac{\left[ (67\times1) + (68\times2) + (75\times1) + (87\times2) + (73\times3) + (78\times2) + (102\times1) + (89\times2) + (76\times1) \right]}{15}$$

$$= 79$$

### CONVOLUCIÓN - EJERCICIO

$$I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$$

| 128 | 125 | 124 | 45  | 48  |
|-----|-----|-----|-----|-----|
| 125 | 124 | 45  | 48  | 123 |
| 124 | 45  | 48  | 123 | 120 |
| 45  | 48  | 123 | 121 | 118 |
| 48  | 123 | 120 | 115 | 114 |

**Imagen de Entrada** 

| 1  | 2  | 1  |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -2 | -1 |

Mascara de Convolución



**Imagen de Salida** 

### CONVOLUCIÓN – TRATAMIENTO DE BORDES

- Un problema que se debe considerar cuando se realiza la convolución de una imagen es ...
- ¿Qué pasa con los bordes de la imagen?

| ? | ý  | Ş   |     |    |
|---|----|-----|-----|----|
| ? | 90 | 67  | 68  | 75 |
| ? | 92 | 87  | 73  | 78 |
|   | 63 | 102 | 89  | 76 |
|   | 45 | 83  | 109 | 80 |



### CONVOLUCIÓN – TRATAMIENTO DE BORDES

Solución: se tratan los borde la imagen con valor cero (zero-padding). No es conveniente si los bordes de la imagen son importantes.

| 0 | 0  | 0   |     |    |
|---|----|-----|-----|----|
| 0 | 90 | 67  | 68  | 75 |
| 0 | 92 | 87  | 73  | 78 |
|   | 63 | 102 | 89  | 76 |
|   | 45 | 83  | 109 | 80 |





### CONVOLUCIÓN – TRATAMIENTO DE BORDES

**Solución:** duplicar (extend) los bordes de la imagen tantos píxeles como vecinos se consideren en la máscara de convolución.

| 90 | 90 | 67  | 68  | 75 |
|----|----|-----|-----|----|
| 90 | 90 | 67  | 68  | 75 |
| 92 | 92 | 87  | 73  | 78 |
| 63 | 63 | 102 | 89  | 76 |
| 45 | 45 | 83  | 109 | 80 |





### CONVOLUCIÓN – TRATAMIENTO DE BORDES

Solución: envolver la imagen (wrap), es decir, considerar como píxel contiguo al del borde izquierdo, el píxel del borde derecho y viceversa, así como con los del borde superior e inferior.

| 80 | 45 | 83  | 68  | 80 | 45 |
|----|----|-----|-----|----|----|
| 75 | 90 | 67  | 68  | 75 | 90 |
| 78 | 92 | 87  | 73  | 78 | 92 |
| 76 | 63 | 102 | 89  | 76 | 63 |
| 80 | 45 | 83  | 109 | 80 | 45 |
|    |    |     | 68  | 75 | 90 |





#### CONVOLUCIÓN — TRATAMIENTO DE BORDES

Solución: se puede empezar la convolución en la primera posición donde la ventana no sobresalga de la imagen (crop). En este caso, la imagen resultante será más pequeña que la original.

| 90 | 67  | 68  | 75 |
|----|-----|-----|----|
| 92 | 87  | 73  | 78 |
| 63 | 102 | 89  | 76 |
| 45 | 83  | 109 | 80 |



#### CONVOLUCIÓN - PROPIEDADES

Propiedad Conmutatividad de la Convolución:

$$I * H = H * I$$

- Esta propiedad indica que podemos pensar en la imagen como un kernel y en el kernel como la imagen y obtener el mismo resultado. En otras palabras, se puede dejar la imagen fija y deslizar el kernel o dejar el kernel fijo y deslizar la imagen.
- Propiedad Asociativa de la Convolución:

$$(I * H_1) * H_2 = I * (H_1 * H_2)$$

@ Esto significa que podemos aplicar  $H_1$  a I seguido de  $H_2$ , o podemos convolucionar los kernels  $H_2$  \*  $H_1$  y luego aplicar la convolución resultante a I

#### CONVOLUCIÓN - PROPIEDADES

Propiedad de Linealidad de la Convolución:

$$(a \cdot I) * H = a \cdot (I * H)$$

$$(I_1 + I_2) * H = (I_1 * H) + (I_2 * H)$$

Esta propiedad permite que podemos multiplicar la imagen por una constante antes o después de convolución, y también que podemos sumar dos imágenes antes o después de la convolución y obtener los mismos resultados.



#### FILTRADO ESPACIAL

- El Filtrado Espacial se emplea para resaltar o atenuar los detalles espaciales de una imagen. Existen diferentes tipos de filtros espaciales y existen diferentes clasificaciones para los mismos:
- Filtros Lineales (filtros basados en máscaras de convolución):
  - Filtros de Suavizado o Paso Bajo que permite el paso de frecuencias bajas
  - Filtros de Realzado o Paso Alto que permite el paso de frecuencias altas
  - Filtros Paso Banda que permite el paso de un rango intermedio de frecuencias
- Filtros NO Lineales (Filtros estadísticos)



#### FILTRADO ESPACIAL - SUAVIZADO

- Los Filtros de Suavizado (o Paso Bajo) se usan para suavizar los detalles de la imagen, reducir el ruido y atenuar otros detalles irrelevantes de la imagen.
- El filtro de suavizado más simple, intuitivo y fácil de implementar es el Filtro de la Media. Este filtro permite reducir las variaciones de intensidad entre píxeles vecinos, calculando el promedio de los mismos.
- ¿Cómo funciona? Se visita cada píxel de la imagen y se reemplaza por el promedio de los píxeles vecinos.

Ejemplo de máscara de convolución de 3x3 para el filtro de la media



### FILTRADO ESPACIAL - SUAVIZADO

El Filtro Media (o Promedio) promedia los valores de intensidad de los píxeles en el vecindario.





#### FILTRADO ESPACIAL - SUAVIZADO

- El Filtro de la Media tiene algunas desventajas, entre ellas:
- Dado que la media, como medida estadística, es sensible a los valores extremos, este filtro tiene a ser muy sensible a los cambios de intensidad en la vecindad.
- ② Como se promedian los valores de intensidad de píxeles vecinos, existe la posibilidad de que se generen valores de grises que originalmente no se encontraban en la imagen.
- El efecto de suavizado (o difuminado) se acentúa más conforme crece el tamaño de la mascara de convolución.

FILTRADO ESPACIAL - SUAVIZADO









Original

 $7 \times 7$ 

 $15 \times 15$ 

 $41 \times 41$ 

### FILTRADO ESPACIAL - SUAVIZADO



Imagen de entrada



Media de 5x5



Media de 11x11



### FILTRADO ESPACIAL - SUAVIZADO

Existen otras máscaras para el Filtro de la Media que son "ponderadas", es decir, le dan más importancia a ciertos píxeles:





En algunos casos puede resultar útil aplicar este filtro de forma direccional:

| 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|

| 1 |
|---|
| 1 |
| 1 |

| 0 | 0 | 1 |
|---|---|---|
| 0 | 1 | 0 |
| 1 | 0 | 0 |

### FILTRADO ESPACIAL - SUAVIZADO

Ejemplo de aplicación del Filtro de la Media en una sola dirección:



Media horiz. 31p



Media vert. 31p

### FILTRADO ESPACIAL - SUAVIZADO

Otro de suavizado es el Filtro Gaussiano el cual se usa para suavizar imágenes y eliminar ruido. Es similar al filtro de media pero se usa una máscara diferente que se crea con base en una función gaussiana.

$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

 $\bigcirc$  Por ejemplo, una máscara de 5x5 con una  $\sigma$  = 1.0 es:

| $\frac{1}{273} \times$ | 1 | 4  | 7  | 4  | 1 |
|------------------------|---|----|----|----|---|
|                        | 4 | 16 | 26 | 16 | 4 |
|                        | 7 | 26 | 41 | 26 | 7 |
|                        | 4 | 16 | 26 | 16 | 4 |
|                        | 1 | 4  | 7  | 4  | 1 |

### FILTRADO ESPACIAL - SUAVIZADO

Al utilizarse una campana de Gauss el suavizado toma la forma de la campana. La varianza determina la amplitud de campana ... mayor varianza, mayor amplitud y viceversa.



| 0 | 0 | 1 | 1 | 1 | 0 | 0 |
|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 |

Esta no es una mascara Gausiana, y solo busca ilustrar su forma

### FILTRADO ESPACIAL - SUAVIZADO

- Algunas de las propiedades del Filtro Gaussiano son:
- Su simetría rotacional lo que permite que el filtro tenga el mismo efecto en todas las direcciones
- El peso de los píxeles vecinos decrece con la distancia al centro, por lo que cuanto más alejado está un píxel, menos significativo es
- Preserva las bajas frecuencias y tiende a eliminar las altas (por ser un paso bajo)
- 2 El grado de filtrado es controlado por  $\sigma$ , tal que a mayor  $\sigma$  mayor suavizado
- El filtro Gaussiano, en general, da mejores resultados que un simple promedio o media y se argumenta que la vista humana hace un filtrado de este tipo.

#### FILTRADO ESPACIAL - SUAVIZADO

Una de las ventajas del Filtro Gaussiano es que no produce los resultados "rectangulares" que suelen obtenerse con el Filtro de la Media cuando las máscaras son grandes:





Suavizado usando un Filtro Promedio



Suavizado usando un Filtro Gaussiano

### FILTRADO ESPACIAL - SUAVIZADO





(a) The Lenna image; (b) (c) (d) filtered images using mean filtering with mask size 3, 7, 11; (e) (f) (g) filtered images using Gaussian filtering with different variances at 1, 5, 9.

### FILTRADO ESPACIAL — SUAVIZADO



Media de 11x11



Media de 21x21



Gaussiana 21x21



Gaussiana 41x41

### FILTRADO ESPACIAL - SUAVIZADO

Un ejemplo práctico (para efectos) del uso del Filtro Gaussiano:





### FILTRADO ESPACIAL - SUAVIZADO

Creación del efecto de niebla usando un Filtro Gaussiano:

**A**. Imagen original









Suma: 0,3**A**+0,7**B** 

### FILTRADO ESPACIAL - SUAVIZADO

El Filtro Gaussiano también es usado para dar resaltar ciertos objetos en la escena:





# **PREGUNTAS**



