

Towards Distributed Adaptive Computing

Chengchen Hu

Xilinx Labs July 24, 2020

Trends in DCs

* Data Age 2025: The Evolution of Data to Life-Critical. An IDC White Paper, Sponsored by Seagate

Concept of Distributed Adaptive Computing

Adaptable NIC:

a new type of SmartNIC as host network device

Adaptable Switch:

Programmability in intermediate network nodes

Adaptable NIC

	Description	Features
Type 1	Basic Connectivity NIC	Basic offloads, simple virtualization
Type 2	SmartNIC for Network Acceleration	Crypto, <u>vSwitch</u> , custom tunneling
Type 3	SmartNIC for Network + Compute + Storage Acceleration	 Machine Learning, video transcoding Database Analytics, smart storage
Adaptable NIC	SmartNIC as standalone managed network node	Domain Specific Programmable Engines offloaded

Why it is adaptable: HW+SW Abstraction

Hardware function

Software function

PPM: Programmable Passive Measurement Engine

PAM: Programmable Active Measurement Engine PCC: Programmable Congestion control Engine

> Customized Algorithm in Software

PTM: Programmable Traffic Management Engine

Adaptable NIC prototype

Interface

TCP Stack

Benchmark
Toolkit

XCC

Customized algorithms

User Space

Benchmark
Toolkit

GUI

- NIC Hardware
- Network measurement: PPM(passive), PAM(active)
- Network Congestion Control: PCC
- Network Traffic Shaping: PTM

> NIC Software at host server

- Network Congestion Control: XCC
- Network Monitoring: Monitoring System, GUI
- Network Benchmark Generation Toolkit

Story of Transport Congestion Control

- Congestion Control on HW
 - TCP variants on HW (Chelsio).
 - Socket API (TCP offload engine).
 - RMDA(iWARP).
 - RoCE using DCQCN (Microsoft).
 - HPCC (Alibaba),FPGA based.
- Congestion Control keeps evolving
 - Environment changes
 - Application requirement changes

- Programable CC on FPGA
 - TONIC (Princeton & MIT), NSDI 2020
 - Limited programmability provided

"needed to modify the data delivery algorithm to avoid livelocks in their network but had to rely on the NIC vendor to make that change."

Mapping CC to Adaptable NIC

Use Case: Public Cloud

- Tenants Share Machine in Public Cloud
- Each tenant can customize CC policy for service optimization, with the support of PCC in Adaptable NIC
- Cloud operator define scheduling/policing/shaping in hypervisor supported by PTM in Adaptable NIC
- > QoS guarantee on both ingress and egress

Management in Adaptable NIC

- Less CPU, more income
- Fine-grained bandwidth control and guarantee

Use Case: Bare Metal Cloud

IP Address	Port	Alarm
192.168.1.12	22	True
192.168.1.17	1433	True
192.168.1.18	80	True

Flow ID	Heavy-changer
2	True

IP Address	Port Scanner
192.168.1.8	False
192.168.1.5	True

Measurements

- Usage Statistics
- Anomaly Detection
- Heavy jitter
- Active Probes

.

Adaptable Switch

- Push adaptivity to switch for new opportunities.
 - In-network compute, e.g. distributed ML
 - In-network storage, e.g., cached streaming video

- Step 1: Two-chip approach
 - Combined software stacks
 - 'Flow-through' processing architecture
 - Switch chip and Xilinx chip on mother board

- Step 2: Integrated chip
 - Integrated software stack
 - 'Lookaside' processing architecture
 - Integrated switching and processing

Architecture of Adaptable Switch

Use case: Programmable Networking

- Event Driven processing
 - NDP trigger congestion control logic by tracking buffer occupancy
- Stateful processing
 - Firewall
- Algorithmic capacity
 - Measurement Statistical calculation

Fig. 3. A General Model of Parallel processing Pipeline in PL.

Use case: In-Networking computing

- Kafka is a data streaming platform to manage/process data from multiple input streams
- ▶ How to enable a Kafka cluster in an Adaptable Switch
 - Add disks to Adaptable Switch attached to FPGA/MPSoC
 - FPGA/MPSoC enables brokers and zookeeper in the Kafka cluster
 - Filters out date to be kept in Kafka and offload to ACAP/FPGA/MPSoC for data

Summary

- Distributed Adaptive Computing is flexible to enable user specific functions
 - Requirements vary user-by-user
 - Adaptable NIC/Switch provide new programming ways to deploy application accelerations
- User cases show value for cloud data center
 - Free server CPU for more users/tenants to increase revenue
 - Increase scalability (e.g., remove gateway for Bare Metal cloud)
 - Innovate with new functions, proprietary protocols and customized processing.

Thank You

