An Ultra-Broadband Power Amplifier Design

Chung-Ho Chai

Advisor: Prof. Yu-Jiu Wang

Department of Electronics Engineering National Chiao-Tung University Hsin-Chu, Taiwan

Outline

- Motivation and Architecture
- Amplifier Design and Transistor's Modeling
- Passive Circuit Design and Analysis
- Simulation and Measurement Results
- Debugging Discussion

Motivation- Concurrent Dual-band, Dual-mode TRX Rainfall Detection

Rainfall Distribution (CT)

Block Diagram of Power Amplifier

- Output Network
 - Impedance Transformation
 - Power Combining
 - Harmonic Control
 - (1) Filtering: Only 1st harmonic tone passed to the 50Ω load.
 - (2) To shape **transistor's output** I/V waveform provides necessarily impedance at different harmonics for e.g. class F, class J.

Cascode Topology

- Thick Gate Oxide Device
 - higher breakdown voltage
 - lower process speed

- Common Gate Amplifier
 - improve twice PA's max. output voltage swing
 - Vgs is limited by M1

CG PA Size Choosing, Bias Conditions

- PA Design Flow:
- 1. M1's breakdown $V_{DS}=1.2V$, $V_{GS,GD}=1.5V$ $V_{G2}=V_{D1} \, (\text{max}) + V_{\text{th}2} = 1.5 + 0.6 = 2.1V$ M2's breakdown $V_{DS}=2.7V$, $V_{GS,GD}=4.5V$ $V_{\text{DD}}=V_{\text{D1}}(\text{DC})+V_{knee_2}+V_{\text{DS2}}(\text{swing})=1+0.5+1=2.5V$

- 2. With limited V_{D1} headroom and V_{DS2} (max), M2's size corresponds to target output power.
 - − M2 Size \propto current magnitude \propto output power $\propto \frac{1}{R_{load}}$
 - the same Vknee with different sizes
- Drain efficiency depends on input waveform

CS Driver Size Choosing, Bias Conditions

- $Z_{load} = 1/G_{m2}$ paralleled with parasitic caps on inter-node
- $V_{\rm D1_{max}}$ =1.5V based on breakdown criteria
- $I_{1\text{max}} = I_{2\text{max}} \times \frac{\sqrt{\left(G_{\text{m2}}^2 + (\omega_o C_p)^2\right)}}{G_{\text{m2}}}$, C_p is parasitic cap. at D1 node

- $V_{G1_{min}} = V_{D1_{max}} V_{DG}$ (breakdown)
- $V_{G1_{max}} = V_{GS1}$ (breakdown)
- $V_{G1}(bias)=(V_{G1}_{max} + V_{G1}_{min})/2 = 0.8V$
- M1 size: when gate voltage swing "touch" the triode region

Oscillation Conditions

Barkhausen Criterion: loop gain |βH(ω)|≥1 and

$$\angle \beta H(\omega) = 180^{\circ}$$

$$\beta H(\omega) = \frac{(sC_{ds} + \frac{1}{r_o})(sL + R_L)(1 - s\frac{C_{ds}}{G_M})}{(1 + \frac{s}{\omega_{P1}})(1 + \frac{s}{\omega_{P2}})(1 + \frac{s}{\omega_{P3}})}$$

$$\omega_{P1}, \omega_{P2}, \omega_{P3} \text{ equals to } \frac{1}{R_L C_{out}}, \frac{1}{R_{in} C_{in}}, \frac{R_L}{L}$$

Oscillation Conditions:

If
$$\omega_{P1} >> \omega_{Z2}$$
 and $|\beta H(\omega)| > 1$ b.t. ω_{z2} to ω_{p1}

Simplified Chip Block Diagram

PA Specifications

 P_{SAT}: MAX power whole PA could deliver = PA's maximum drain power * efficiency of output network

PAE=
$$\frac{P_{out}-P_{in}}{P_{DC}} = \frac{Eff_{output}G_{PA}G_{driver}P_{in}-P_{in}}{P_{DC}P_{A}+P_{DC}G_{driver}} \cong \frac{Eff_{output}*G_{PA}}{\frac{G_{PA}}{\eta_{pa}}+\frac{1}{\eta_{driver}}} \cong \frac{eff_{output}*G_{PA}}{\frac{G_{PA}}{\eta_{pa}}+\frac{1}{\eta_{driver}}} \cong \frac{eff_{output}*G_{PA}}{\frac{G_{PA}}{\eta_{driver}}} \cong \frac{eff_{output}*G_{PA}}{\frac{G_{PA}}{\eta_{$$

PA Power Gain(dB)

Power Transistor Design

- Determine how to connect multi-finger transistors in parallel
 - layout placement and metal's reliability to DC/AC current
 - reduce parasitic R,C related to output power/bandwidth performances
- Modeling, optimization

Single Transistor Layout Structure Design for Common Gate

Parallel Combining of multi-finger Transistors

PA - Common Gate Amplifier

•
$$\beta=\frac{1}{Z_{C_{DS}}}=j\omega C_{DS}$$
 , $H_{close}=\frac{H_{open}}{1+H_{open}\beta}$ (Transimpedance Gain)

• Rg: decrease the equivalent Gm when freq. increase

$$V_{GS} = \frac{Z_{Cgs}}{R_g + Z_{Cgs}} V_S = \frac{1}{j\omega R_g C_{gs} + 1} V_S$$

Rg: Insert <u>Gate to Body</u> bypass using MOS Cap. between two multi-finger transistors (the same finger # with transistors beside)

Rgnew=Rg//Zbypass

Rd₹

Cgs

Rs

Modeling of Layout Parasitic

effective resistance

(e.g.) If
$$I_1 = I_2 = ... = I_n = I$$
, and $R_1 = R_2 = ... = R_N = R$
$$I^2 \times R + (2I)^2 \times R + ... + (NI)^2 \times R = (NI)^2 \times R_{eff}, R_{eff} = \frac{(N+1) \times (2N+1)}{6N} R \cong \frac{1}{3} NR \text{ (if N is large)}$$

to model parasitic Caps. by interpolation of PEX results

Common Gate Power Transistor Optimization

- (1) fix total W, minimize $R_X(w,nr)$
- (2) metal reliability criteria with min. Cds, $nr \le \alpha^*(160/w)$

(e.g.) Total Width=3000 w=3.3µm, nr=90, M=10

Single Transistor Layout Structure Design for Common Source

Broadband Optimum Load & Passive Output Network

•
$$\frac{Q_{load}}{\omega_{O}} = \frac{1}{R_{load}C_{out}} \propto 3dB \text{ Bandwidth}$$
 \Rightarrow $0.86Hz - 24GHz$

 $C \cong -(C_{DG} + C_{DB} + C_{DS})$

(1)
$$\tau_{\text{network}} = R_L C_L \ge R_{\text{opt}} C_{\text{out}} = 2 \frac{V_{\text{swing}}}{V_{\text{in}}} \times \frac{C_{\text{out}}}{G_{\text{m}}}$$

$$V_{\text{swing}} \leq \frac{1}{2} \tau_{\text{network}} \times \frac{G_{\text{m}}}{C_{\text{out}}} \times V_{\text{in}}$$

- (2) impedance transformation ratio
- (3) network's passive efficiency

To Define Two-Port Band-pass LC-Ladder Network

- Bode-Fano limit: $\int_0^\infty \ln \frac{1}{|\Gamma(j\omega)|} d\omega \le \pi (\frac{1}{R_{opt}C_{out}})$
- Passive Ladder: $|S_{21}(s)|^2 = H(\omega^2) = \frac{1-C}{1+C \cdot \frac{A_N s^{2N} + A_{N-1} s^{2(N-1)} + \cdots + A_1 s^2 + A_0}{s^{2M}}} = \frac{1-C}{1+C \cdot F}$
- Chebyshev Filter : find $F \in [-1,1]$ with $\omega \in [\omega_L, \omega_H]$
- Relations among ripple, N to BW, impedance transformation ratio

Darlington's Insertion-loss Method

General Procedures:

- 1. Find out $|S_{21}(s)|^2$ as a function of ω^2 .
- 2. Determine $|S_{11}(s)|^2 = 1 |S_{21}(s)|^2$.
- 3. Determine all possible S_{11} from $|S_{11}|^2$.
- 4. Determine $Z_{11} = \frac{1 + S_{11}}{1 S_{11}}$ from each S_{11} .
- 5. Determine all possible realizations of Z_{11} and choose the best one.

(e.g.)
$$Z_{11}=sL+Z'_{11}?Z'_{11}$$
 is reduced-order, and has no pole at $\omega=\infty$. $Z_{11}=\frac{1}{sC}+Z'_{11}?Z'_{11}$ is reduced-order, and has no pole at $\omega=0$.

Node Parasitic Cap. Compensation

Norton's Transformation

$$K = \frac{Z_p}{Z_p + Z_s}$$

Limitation of Broadband Load Tracking

• |S11|² + |S21|² + power loss(ratio) =1, when loss is large, load tracking failed.

- How to define wideband flat Z_{out} Synthesis?
- How to formulate passive efficiency, impedance transform ratio and bandwidth?

Output Network

- Impedance transformation ratio $\eta_{diff} = 4\eta_{com}$
- Insert transformer to network

- $\frac{k_m^2 L_p}{(1-k_m^2)L_p}$ is positively correlated with network's bandwidth
 - → network BW↑ required transformer's km↑
- Transformer's passive efficiency

Pre-Driver & Inter-Stage Network

Pre-driver stage operates in Class-A mode to improve gain and linearity.

- cascode amplifier with
$$\left(\frac{W}{L}\right)_{nch} = \frac{250 \ \mu m}{0.06 \mu m}$$
 and $\left(\frac{W}{L}\right)_{nch25} = \frac{530 \ \mu m}{0.28 \mu m}$

- Ratio of driver's max. input voltage and pre-driver's max output voltage
- → impedance transformation ratio of interstage network

Full-Chip Schematics & Layout

Chip Micrographs

Chip Area:	1614×675 um ²
DC Power Consumption:	2.5V×960 mA

Full Pre-Simulation (red line) vs. Measurement (blue line)

Full Post-Simulation (red line) vs. Measurement (blue line)

Output Network

Output Network – Transformer modeling errors

Output Network

Interstage Network

- L1=55pH, which is sensitive to parasitic TLine1
- C1=3.98pF, which has visible parasitic L effect, but not model in network synthesis Model
- CS PA driver input feed lines, parasitic TLine2, change the frequency response of network

Fit Transistor parasitic RC by PEX results

Input Network

- To affect input matching accuracy (XFM model error)
- Tiny effects to S21

Power Transistor Model Accuracy

- De-embed measurement S-parameter with output network EM results
 - Transfer [S] to [T]
 - $-[T]_{\text{de-embed}} = [T]_{\text{chip}} * [T]^{-1}_{\text{network}}$
 - Transfer [T]_{de-embed} back to [S]
- To model "skin effect" of R
- To model L from EM

My Suggestion to This Work's Future

- Target smaller power& use nch to replace nch25
- Thank you.

Appendix

Ultra-Broadband Considerations

- In-Band Harmonics Problem in Ultra-Broadband Scales
 - At relative low frequency, 2nd and 3rd harmonic tones would be in-band.
 It CANNOT be filtered!!!

- Broadband push-pull output network cancels 2nd harmonic
- Broadband poly-phase combining network cancels both 2nd and 3rd harmonics

Gate Oxide Breakdown

- Catastrophic damage caused by excessive voltage across gate oxide
- Probabilistic: lifetime decreases with voltage and device area
- Determined by oxide thickness and quality

1.0V Core Device (W/L=1.4mm/60nm)	V _{GD} max=1.5V
2.5V I/O Device (W/L=3 mm/280nm)	V _{GD} max=4.5V

Must keep max V_{GD} , V_{GS} within limit for gate oxide breakdown.

V_{DS} Breakdown Mechanism

Hot Carrier Injection Effect

gradual device performance degradation over a period of time

- necessary to have high drain-source voltage, V_{DS}, and substantial drain current at the same time
- Max V_{DS} of 1.0V 65nm NMOS: 1.18V Max V_{DS} of 2.5V I/O NMOS: 2.70V

Punch-Through (V_{DS})
 65nm NMOS=3.0V

Precise Model of Gate Resistor Network

Rg network:

Differential Mode:

symmetric line of layout is A.C ground

Common Mode:

symmetric line of layout is open

$$Rg=4(R_g//R_g'), \quad R_g'=\frac{R_g}{3}$$

$$Z_g(diff)=R_g//\frac{R_g}{3}//Z_{bypass}+R_{poly}$$

$$Z_g(com)=R_g//Z_{bypass}+R_{poly}$$

Oscillation Conditions in details

• Feedforward: $s_z = +\frac{G_M}{C_{DS}}$, f_z is larger than 100GHz in 0.28 μ m I/O device.

Positive Feedback:

 β_1 , β_2 : series-shunt feedback

 β_3 : shunt-shunt feedback

Insert Local Bypass Caps:

Zp_{new}=Zp//Z_{bypass}

- kill β_1 , β_2 feedback mechanism

P.S. β_2' : series-series feedback, inductive coupling b.t. $Z_L \& Z_p$

Effective Negative Port Resistance

- If $z_1 = \frac{1}{j\omega C_{DS}}$, $z_2 = R + j\omega L$, we get $j\omega L // \frac{1}{G_m} (1 \omega^2 C_{DS} L)$ at high frequency if **R** is small.
 - a) narrow band short-stub matching
 - b) XFM common-mode inductor

Example:

" $|S_{11}|^2 \rightarrow S_{11}$ " Enumerations

•
$$|S_{11}|^2 = S_{11}(s)S_{11}(-s) = \frac{\prod_m (r_{z,m}^2 - s^2) \prod_n (r_{z,n}^2 + s^2)^2 \prod_o (s + r_{z,o} + jx_o)(s + r_{z,o} - jx_{z,o})(s - r_{z,o} + jx_{z,o})(s - r_{z,o} - jx_{z,o})}{\prod_i (r_{p,i}^2 - s^2) \prod_j (r_{p,j}^2 + s^2)^2 \prod_k (s + r_{p,k} + jx_{p,k})(s + r_{p,k} - jx_{p,k})(s - r_{p,k} + jx_{p,k})(s - r_{p,k} - jx_{p,k})}$$

- Roots of numerators can be either Right-Half-Plane(RHP) or Left-Half-Plane (LHP).
- Roots of denominators can only be Left-Half-Plane (LHP) for stability in time-domain.
- Algorithms: find all roots, and go through all of them and enumerate recursively based on RHP & LHP, and calculate $S_{1,1}$ of each root enumeration.

Efforts to Improve Transformer's Model

LAYOUT: more tuning degree of freedom to fit model

MODEL: parasitic estimation improvement (R,C)

Output Network - Imbalanced Problem

Transformer unbalanced problems

$$i_{S1} = i_{S2} + i_{gnd2}$$
$$i_{p1} \neq i_{p2}$$

Ref: "Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS", Qun Jane Gu, ZhiweiXu, and Mau-Chung Frank Chang

Output Network - Imbalanced Problem

If we put center-tap bypass and effective PA "Cout" to GND

Class J - Class AB Using a Capacitive Harmonic Termination

- Fundamental Impedance: loadline impedance R_L
 Second harmonic: X_{out}/2
- Trade-off: Larger Peak Voltage at Output Node

