Interfacing Python with Fortran

Bob Dowling
University Computing Service

http://www-uxsup.csx.cam.ac.uk/courses/PythonFortran/

1

Outline of course

Python vs. Fortran

Fortran subroutine → Python function

Fortran 77

Numerical Python module

Efficiency

UCS

2

We start by comparing Python and Fortran, seeing them as complements rather than opposites. Then we get to work converting a Fortran subroutine into a module callable from Python.

We will work mainly in Fortran 95 but will review how to make it work with Fortran 77.

There will be a brief discussion of the underlying Numerical Python module and finally we will address a few more efficiency improvements we can make.

Python is a general purpose scripting language. It's excellent for gluing components of a task together and for high-level programming. It's dynamic nature (variables don't need to be declared up front; Python just makes sure they have what it needs as they go along) makes it very easy to use for quick programs. But it is an interpreted scripting language; it cannot compete with languages compiled down to machine code for speed. Fortran is such a language. It compiles to machine code and the design of the language means it can be optimized very well. It is designed for numerical work (**For**mula **Tran**slation) and, despite the ongoing criticisms from the computing language snobs, has shown its worth by surviving and adapting over the past *fifty* years since its creation in 1957 (the first Fortran compiler). It is not, however, a general purpose programming language.

But there is no reason why we cannot get the best of both worlds. Python and Fortran should not be thought of as in opposition but as complements for one another.

In this course we will write our high-level program in Python and call Fortran subroutines for the numerically intensive elements.

Set up the environment

- > cd
- > tar -xf /ux/Lessons/pyfort/lesson.tgz
- > cd pyfort
- > ls -l

•••

UCS

5

We will start by setting up a directory in our home directories ready for this course.

We are following the usual font conventions where

represents the system prompt,represents the Python prompt,

command bold face represents what you type, and

response plain text represents the computer's response.

If you are following these notes in the class do this:

- > cd
- > tar -xzf /ux/Lessons/pyfort/lesson.tgz
- > cd pyfort

If you are following them off-line then you can download the lesson file from the web at

http://www-uxsup.csx.cam.ac.uk/courses/pyfort/lesson.tgz to a file lesson.tgz in your home directory and unpack that instead.

Running example: ∇^2 on a grid

$$b_{j,k} = (a_{j-1,k} + a_{j+1,k} + a_{j,k-1} + a_{j,k+1} \cdot 4a_{j,k})/2$$

$$b[j][k] = 0.5*(a[j-1][k] + a[j+1][k] + a[j][k-1] + a[j][k+1] - 4.0*a[j][k])$$

$$b(j,k) = 0.5*(a(j-1,k) + a(j+1,k) + a(j,k-1) + a(j,k+1) - 4.0*a(j,k))$$

$$ucs$$

As our running example of a numerical routine we will take an easy case so that we don't distract ourselves with numerical detail. We will calculate the discrete " ∇^2 " on a rectangular grid. The time taken to do this scales linearly with the total size of the array being processed.

We could do this with pure Python. We might imagine (and soon we will see) one Python script (program.py, say) containing the high level logic of a program and a second one (thing.py, say) containing a module of the various numerical routines. The Python interpreter would run through program.py, calling routines out of thing.py as needed.

Splitting the numerical functions out to a separate file is not contrived; it makes perfect sense as you may want to use these routines in other Python programs.

Our aim will be to replace the Python module with a set of Fortran files so that the numerical routines can be written in Fortran and called from Python as if it was just another module. In practice it won't be quite as simple as our ideal shown in the slide, but it won't be too bad. (The example shows a Fortran 95 program. We can use Fortran 77 or Fortran 95 but in this course we will work in a contemporary Fortran.)

Of course Fortran is a compiled language, so Python can't interpret directly from the source code. Instead we take the Fortran file and compile it using a special program called f2py which creates a dynamic library ("shared object") file which contains native machine code (which gives it the Fortran speed) but whose functions have the interfaces of a Python module (which lets us call it from Python).

We're going to be throwing about arrays of numerical data in this course, so we will start by reminding ourselves how Python normally handles arrays of data. Suppose we have a two dimensional grid of data points. Mathematically we would represent the data as a_{jk} where j marks the row and k the column. In compliance with the Python numbering convention we start counting at 0.

Python has lists. So our array is treated in Python as a list of rows. Each of those rows is a list of the values in that row. This makes it easy to refer to a row of data at a time, but harder to refer to a column.

Fortran has contiguous blocks of memory to store arrays. The Fortran compiler works out where in that block any particular reference is. References to rows and columns etc. are converted into start positions, end positions and "strides" – the number of elements in memory to skip each time. Fortran can refer to rows and columns with equal ease, therefore. Note the order in which the array data is laid out in memory. The first index varies fastest (i.e. every item).

C stores arrays in a way very similar to Python's list of lists. Each list is laid down in memory one after the other. A row is identified as an offset into this block of elements. There is no way to refer to a column. In this it has exactly the same limitations as Python.

Note that the order of elements in a C array is different from the Fortran order. In C the first index varies slowest.

```
Python trick for creating arrays
>>> data = [ x**2 for x in range(0, 5) ]
>>> data
[0, 1, 4, 9, 16]

>>> data = [ 0 for x in range(0, 5) ]
>>> data
[0, 0, 0, 0, 0]
ucs
```

Given that we are going to be working with arrays we should see a simple Python trick for creating arrays simply. Python has a neat syntax for creating lists of values by twisting the usual for loop inside a list.

It was designed to evaluate functions for values in lists:

```
>>> [ x**2 for x in range(0,10) ]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> [ 'm%sss' % x for x in ['a', 'e', 'i', 'o', 'u'] ]
['mass', 'mess', 'miss', 'moss', 'muss']
but there is no reason why it can't be used with constant values to initialise a list of zeroes, say:
```


That list can be regarded as one row so we can repeat the trick to create a list of those lists:

So let's get started with a pure Python example. In the directory ~/pyfort/pure-python is a simple program that spits out some results which don't interest us. What matters is that it has the two-way split of a program file and a module file.

Pure Python code

```
#!/usr/bin/python
import thing

m = 1000
n = 2000

data = [[...
    for j in range(0,n) ]
    for i in range(0,m) ]

fuzzed = thing.del2(data, m, n)
...

program.py/
```

UCS

The code involved is not that complex for our simple example. The module defines the function that calculates ∇^2 and the program calls it.

```
Pure Python example

> time python program.py
0.0
6.37510625
25.50010625
...
408.000106245
516.375106253

real 0m11.137s
user 0m10.965s
sys 0m0.112s

UCS
```

We can run the command and also time it.

When we come to work on the mixed Python/Fortran example, we will compare the results we get with those generated here. We will also compare the time taken.

For those of you who have not seen the "time" command before, it yields three measures of how long a command took to run.

"Real time" is the elapsed, clock on the wall time taken. This includes the time when your command wasn't running because the computer was running somebody else's program. It's just the difference between end and start times.

"User time" is the measure of how much system time went into running your code.

"System time" is the amount of system time that was taken up by the core operating system (the kernel) on behalf of your code.

```
Mixed language example — 1

> cd ~/pyfort/f95-python

> ls -l Main program

-rw-r--r-- ... program.py
-rw-r--r-- ... thing.f95

Module
```

Now let's look at an example of mixing Python and Fortran files. The directory ~/pyfort/f95-python contains two files. The program.py file is exactly the same as the file in the pure-python directory. But instead of a thing.py Python file there is a thing.f95 Fortran source code file.

Write the module in Fortran 95

```
subroutine del2(stuff, fuzz, m, n)
implicit none

integer, intent(in) :: m
integer, intent(in) :: n
double precision, intent(in), dimension(m,n) :: stuff
double precision, intent(out), dimension(m,n) :: fuzz
...
end subroutine del2
thing.f95
```

UCS

19

The thing.f95 file contains a subroutine with the same name as the function in the thing.py file we saw before, del2(). It does not have exactly the same arguments as the Python function and is a subroutine rather than a function.

Note that we have specified the properties of the four arguments as tightly as we can in their declarations. In particular, we have specified which parameters are to be read from and which to be written into. This will matter when we come to represent this Fortran subroutine as a Python function.

Also note that we do not create the fuzz array. In the Fortran we assume that it has already been created and is being passed into the subroutine.

```
Mixed language example — 2

> f2py -c --fcompiler=gnu95
-m thing thing.f95
...

The new command

> ls -l
-rw-r--r-- ... program.py
-rw-r--r-- ... thing.f95
-rwxr-xr-x ... thing.so Python module
```

The first thing we must do is to compile the Fortran source code to machine code. We do not use the Fortran compiler directly. Instead we use a program called "f2py". It requires a stack of options to do what we want it to do and we will examine those very soon. For the time being we will issue the command shown in the slide and see that it creates one additional file, thing. so. In machine code library terms this is a "shared object", also known as a "dynamic library". It is a block of machine code defining some functions that multiple programs can use.

It does not, however, simply contain the Fortran subroutine del2() so that it could be called from another Fortran program. Instead, it contains a number of functions which correspond to those needed by a Python program. This file is a machine code representation of a Python module called "thing" which can be imported into a Python program.

```
Mixed language example — 3
                           Exactly the
> time python program.py
                           same program
0.0
6.37510625
                           Same output
25.50010625
        0m7.804s
real
        0m6.856s
user
                  7 seconds
        0m0.280s
SYS
                                      21
UCS
```

So now we can run our program again but this time we use a machine code module rather than a Python module.

It gives exactly the same results and is faster. (To be honest, these timing tests are way too short to give seriously meaningful data, but they are sufficient to make the point.)

A closer look at the f2py command

f2py

- c compile

--fcompiler='gnu95' select Fortran compiler

-m thing name of Python module

thing.f95 Fortran source file(s)

UCS

22

f2py is the name of the program, meaning "Fortran to Python".

It is capable of more than just creation of the module so we explicitly tell it to compile with the "-c" option.

The exact options and settings required depend on the Fortran compiler being used. The option "--fcompiler" allows us to specify exactly which compiler and set of options to use. This does mean that f2py can only be used with compilers it supports but the list is long. See the appendix at the end of the notes for a full list (as of version 2.4422 of f2py). Alternatively, the command "f2py -c --help-fcompiler" will list all the compiler keys.

The "-m" option specifies the name of the module being created. It does not need to match the name of the Fortran source code file.

Finally we list the Fortran source code files we need to compile. In this case there is only one but it is possible to quote multiple Fortran files on the command line.

```
A closer look at the module

>>> import thing

>>> print thing.__doc__
This module 'thing' is auto-generated with f2py.
Functions:

fuzz = del2 (stuff, m=shape(array,0), n=shape(array,1))

.

UCS
```

Now let's look at the module itself. We will launch Python interactively and import the module by hand.

The module's __doc__ string contains the interface definitions for the functions within the module, in our case just del2(). There are many things to observe in this definition and we will address them now.

A closer look at the module >>> print thing.__doc_ This module 'thing' is auto-generated with f2py. Name of Functions: function fuzz = del2 (stuff, m=shape(stuff,0), n=shape(stuff,1)) intent(out) argument dimension arguments becomes a get default values return value 24 ucs

The first thing we notice is that we have a module function with the same name as the Fortran subroutine. Big deal.

More interestingly, we note that while the subroutine had a parameter fuzz which was declared with intent(out) the Python function has that parameter as its return value. If multiple parameters had been declared with intent(out) then a tuple of them would have been the function's return value.

Better still, the two dimension parameters now have (the correct) default values established.

We will see the "shape()" function a bit later but in a nut-shell, the shape of an array along its 0^{th} axis is the number of rows it has and its shape along its 1^{st} axis is its number of columns.

```
>><mark>> print thing.</mark>del2. doc
                               Description of
del2 - Function signature:
                               what goes in
  fuzz = del2(stuff,[m,n])
                               and out
Required arguments:
  stuff : input rank-2 array('d')
          with bounds (m,n)
Optional arguments:
  m := shape(stuff,0) input int
  n := shape(stuff,1) input int
Return objects:
  fuzz : rank-2 array('d')
         with bounds (m.n)
                                         25
 UCS
```

As well as getting a summary of the functions in the module from the module's __doc__ strings, we can get detail from the function's. The "signature" is a posh way to describe everything about the function that you need to know from the outside, while telling you nothing about what it actually does on the inside. So the signature describes what all the arguments to the function are and what type they have to be. It also describes the types of the output without describing what they will contain. We will go through the signature created for our new del2() function one chunk at a time.

```
required
 output
                    optional
del2 - Function signature:
  fuzz = del2(stuff,[m,n])
Required arguments:
  stuff : input rank-2 array('d')
          with bounds (m,n)
Optional arguments:
  m := shape(stuff,0) input int
  n := shape(stuff,1) input int
Return objects:
  fuzz : rank-2 array('d')
         with bounds (m,n)
                                       26
 UCS
```

The first line is a slightly marked up example of how the function is used from Python.

We see that the function produces a single output and takes one mandatory input. The square brackets indicate optional arguments. We still don't know what the arguments (or returned value) are yet and that's what comes next.

The arguments are given names for consistency throughout the signature definition. These name are taken from our function definition but of course there's no constraint on what names you choose to use.

```
input
                            double
argument
                     two
          only
                            precision
name
                     axes
del2 - Function signature:
  fuzz = del2(stuff,[m,n])
Required arguments:
 stuff : input rank-2 array('d')
          with bounds (m,n)
Optional arguments:
                                dimensions
  m := shape(stuff,0) input int
  n := shape(stuff,1) input int
Return objects:
  fuzz : rank-2 array('d')
         with bounds (m,n)
                                       27
 UCS
```

We start with the required argument.

It is described as being an "input" argument. This isn't as self-evident as it appears. Of course it's an input argument, but it's an input-only argument. The function will not modify any part of the object being passed in.

It is described as a "rank-2 array" which means it has two axes or dimensions (rows and columns, say). In conjunction with its input-only status this tells us that no element of the array will be modified.

Next we see what it is an array of. (Real numbers, integers, complex numbers,...) The doc strings says it is an array of 'd'. This is code for "double precision". The set of data types will be detailed more closely in a later slide, but for now we note that this is an array of double precision numbers.

Finally, we get to see the sizes of the two axes. There are m rows and n columns. Of course, we don't know what m and n are yet; they're optional arguments. However, this identifies the two letters that will be used elsewhere to describe sizes of arrays in this signature.

```
shape function:
                                 values will
      size along an axis
                                 not be
                                 changed
del2 - Function signature:
  fuzz = del2(stuff,[m,n])
                                   integers
Required arguments:
  stuff : input rank-2 array(
                                d_{i}
          with bounds (m/n)
Optional arguments:
  m := shape(stuff,0) input int
  n := shape(stuff,1)
                       input
                              int
Return objects:
  fuzz : rank-2 array('d')
         with bounds (m,n)
                                        28
 UCS
```

Next we see the optional arguments. Here again we are told that the values are input-only and that they are integers. But most importantly we see what their default values are. We will see the shape() function later, but for now we just need to know that shape(stuff,0) is the size of the array along "axis 0", that is the number of rows. Similarly shape(stuff, 1) is the size along "axis 1", the number of columns.

Given that these "default" values are the only ones we will ever use, we might ask ourselves why the arguments exist at all. We will see how to eliminate them, forcing the use of the shape() values, in a few slides' time.

```
double
argument
          two
name in
          axes
                    precision
Fortran unction signature:
  fuzz = del2(stuff,[m,n])
Required arguments:
  stuff : input rank-2 array('d')
          with bounds (m,n)
Optional arguments:
  m := shape(stuff,0) input int
  n := shape(stuff,1) input int
Return objects:
  fuzz : rank-2 array('d')
         with bounds (m,n)
                                       29
 UCS
                   dimensions
```

Finally we see the information about the returned value(s) of the function. Here we see the same definition of the type and shape of the array as we saw for the input array. This time, of course, it is not described as an "input" parameter. Note that by specifying the bounds (m,n) the signature text indicates that the output array is the same size as the input.

Now let's look at what's happening a little more closely.

We'll create an array of values to have something to throw at the function. Note that this is just a standard Python list of lists.

We can create the output array by calling the del2() function out of the thing module but if we print it out we see that it presents itself rather differently compared to the input array. Whatever it was we got from the del2() function, it wasn't a simple list of lists.

Note also that we are exploiting the default values set up for us by the module. We could have run

>>> output = thing.del2(input, 4, 3)
with the same result.

So what do we get out of the function? It's not another Pythonic list of lists.

You will recall that Python has a built-in type() function which returns the type of an object. We can examine the type of the input and output to confirm that they are, indeed, different.

```
>>> type(input)
<type 'list'>
>>> type(output)
<type 'numpy.ndarray'>
```

The numpy module (which we haven't imported explicitly yet but will soon) is the **Num**erical **Py**thon module. Among other things it provides a type of object for storing n-dimensional arrays. It is one of these objects that we have been returned.

But we were able to treat it as if it was just a standard Python "list of lists" array. The numpy.ndarray is one of those Python objects designed to behave like a list if you treat it like a list. That's why it worked transparently.

We will return to look at NumPy itself in a few slides' time.

```
>>> output[1,1] The "Fortran way"
2.0
>>> output[1][1] The "Python way"
2.0
>>> len(output)
4
>>> len(output[0])
3

"Treat it like a list and it behaves like a list."

UCS
```

This object can be addressed in the traditional Fortran style of a set of indices separated by commas. But while this new type of object is not a normal Python array, we *are* able to treat it as if it was just a standard Python "list of lists" array. The numpy ndarray is one of those Python objects designed to behave like a list if you treat it like a list. That's why it worked transparently.

Now we will look at cleaning up the interface between Fortran and Python. We currently have some optional arguments whose values, if used, must match those of the array. Why should we have them at all?

Next we will examine how to change the automatically provided function signatures given to us by f2py.

We will also be able to use this technique to get Fortran 77 programs to work for us.

At the moment we simply convert directly from the Fortran 95 file to the compiled Python module.

What we are going to do is to take a more circuitous route, getting to see and modify a file which only appears internally when we go direct. This is called the "signature file" and determines the interfaces of the functions in the module created.

We will start by not changing the signature at all, to make sure that we can recreate what we already have.

Initially we take our f2py command and pass it options to tell it to build a signature file (-h thing.pyf) rather than to compile a module (-c). Because we aren't compiling anything we don't need to tell it our compiler (--fcompiler=...). Apart from that the command is the same as usual:

> f2py -h thing.pyf -m thing thing.f95

We get a file called "thing.pyf" created. This is the signature file.

We do not need to understand the syntax of the signature file in any depth. We can follow our noses and achieve enough. We will focus on the lines corresponding to the arguments of the subroutine.

The signature file in its entirety should look something like this. Note that it uses an exclamation mark, "!", to introduce comments.

```
python module thing ! in
    interface ! in :thing
    subroutine del2(array,fuzz,m,n) ! in :thing:thing.f95
        double precision dimension(m,n), intent(in) :: array
        double precision dimension(m,n), intent(out),
depend(m,n) :: fuzz
        integer optional, intent(in),
check(shape(array,0)==m), depend(array) :: m=shape(array,0)
        integer optional, intent(in),
check(shape(array,1)==n), depend(array) :: n=shape(array,1)
        end subroutine del2
   end interface
end python module thing
```


Now we will complete the compilation process, using the signature file. Of course, this won't gain us anything because we haven't changed that file. > f2py -c --fcompiler=gnu95 -m thing thing.pyf thing.f95

This produces a shared object Python module which is essentially identical to the one we got from going direct. (They're not byte-for-byte identical but their functions are the same.)

```
>>> f2py -c --fcompiler=gnu95 -m thing thing.pyf thing.f95

The only change to what we did before
```

The command is identical to our previous all-in-one compilation command except that the source code files are preceded by the (potentially edited) signature file.

```
>>> import thing
>>> print thing.del2.__doc__
del2 - Function signature:
   fuzz = del2(array,[m,n])
...
Optional
arguments
```

We can check the function signatures to see they are totally unchanged.

So let's look at the signature file. We do not need to know its entire syntax, just a couple of simple tricks.

We will concentrate on the lines that relate to the two optional arguments, m and n and, in particular, the "intent()" statement. This is derived directly from the Fortran source. In a Python signature file, however, we can add intentions that are not legal Fortran. We adjust the text "intent(in)" to "intent(in,hide)". This is not legal Fortran — there is no hide option — but is legal in a Python signature file.

```
python module thing ! in
    interface ! in :thing
    subroutine del2(array,fuzz,m,n) ! in :thing:thing.f95
        double precision dimension(m,n), intent(in) :: array
        double precision dimension(m,n), intent(out),

depend(m,n) :: fuzz
        integer optional, intent(in,hide),

check(shape(array,0)==m), depend(array) :: m=shape(array,0)
        integer optional, intent(in,hide),

check(shape(array,1)==n), depend(array) :: n=shape(array,1)
        end subroutine del2
    end interface
end python module thing
```


Now we will rebuild the Python module using our modified signature file.

```
The new del2() function

>>> import thing

>>> print thing.del2.__doc__
del2 - Function signature:
  fuzz = del2(stuff)

...

No optional arguments
```

And now we see a new function signature from the Python module with no mention of the optional arguments and a far more "Pythonic" style of interface.

Is it worth doing?

If you are creating a "quickie" Python interface for just your own quick use then almost certainly not.

If you are creating a module for use and re-use, possibly by other people who know less about the Fortran than you do, then almost certainly it is worth it.

A Fortran 77 interlude

> cd ...

> f2py -c -m thing thing.f

UCS

45

There is one other reason for introducing signature files. They are one route towards integrating Fortran 77 to Python.

If you aren't interested in Fortran 77 you can stop listening for a bit. First we change directory to ...

Once there we build a Python module just as we have in the past.

A Fortran 77 interlude

```
SUBROUTINE DEL2(STUFF, FUZZ, M, N)
IMPLICIT NONE

del2 - Function signature: Wrong!
  del2(stuff, fuzz, [m, n])
Required arguments:
  stuff : input rank-2 array('d')
  with bounds (m, n)
  fuzz : input rank-2 array('d')
  with bounds (m, n)
```

We observe that the function is not what we want. The Python function has been created with what was out return value as a function argument. We need to know how to adjust this.

Instead of moving directly from the Fortran 77 source to the Python module we will create the signature file first. Once we have it we will edit it to specify that the Fortran argument is intended for outgoing values only. Then we use the edited signature file to generate the final module.

```
del2 - Function signature:
   fuzz = del2(stuff)
Required arguments:
   stuff : input rank-2 array('d')
   with bounds (m,n)
Return objects:
   fuzz : rank-2 array('d')
   with bounds (m,n)
Correct! 48
```

And now we find that the function has the signature we wanted. If we had wanted to we could have added intent(in, hide) for m and n too.

The NumPy module

Part of the Scientific Python suite of modules.

Provides the fundamental n-dimensional arrays

(And some other stuff...)

http://www.scipy.org/NumPy/

http://www.scipy.org/Topical Software/

UCS

49

And now back to NumPy.

On-line documentation about the module itself can be found at http://www.scipy.org/NumPy/ but the documentation on the f2py tool is somewhat lacking at present.

It lies at the core of a set of modules known as "Scientific Python". There are far more modules in that set than we can cover in one afternoon, and you should visit their web site for current information. A subject-oriented guide to the set of modules can be found at

http://www.scipy.org/Topical_Software and should be your starting place.

In this afternoon's course we will focus on the aspects of numpy relevant to f2py.

Let's work out how we got from the list of lists we started with for our array and ended up with the NumPy array our function gave us back.

When we fed our list of lists to our function the module created by f2py automatically converted it to a NumPy array. People who require peak performance should notice that that's an operation that will be run every time we feed in a pure Python list of lists, as part of a loop say. If we create a NumPy array in Python (we'll see how to later) and pass it in there's no conversion, obviously.

Recall that we wrote the procedure in Fortran as a subroutine, not a function. It gets passed the array to fill in. Again there is scope for inefficiency if it has to do this time and time again for something which could be the same object.

So how does it work?

NumPy arrays are genuine Python objects that store their data internally in one of the layouts as C or Fortran uses. (We'll see how to select which in a moment.) When used from Python the whole object is addressed. When used from C or Fortran the memory address of just that inner data-bearing core is passed to the system.

So when we fed our list of lists to our function the module created by f2py automatically converted it to a NumPy array. This has Fortran-addressable data within it alongside the extra data that Python uses.

Because we wrote the procedure in Fortran as a subroutine, not a function, it gets passed the already-existing array to fill in. That array is created by the f2py wrappings as another NumPy array and the address of the Fortranstyle data layout is passed to the Fortran we wrote.

When the output object is passed back to the Python the Python system picks up the "wrapping" Python object.

We do need to know how to create NumPy arrays within Python; we can't just rely on our f2py-created modules to do magic.

Suppose we were using a Fortran subroutine that manipulated a data array in place. We have to be able to pass it in in the right form already.

NumPy n-dimensional arrays

>>> import numpy

$$>>> x = [[1.0,2.0,3.0], [4.0,5.0,6.0]]$$

>>> **X**

[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]

UCS

53

So let's look at the NumPy module itself.

We'll start by importing the num,py module. Note that the module name is all lower case.

For our data we will use a fairly trivial 2×3 array represented in Python style as a list of two lists of three elements.

Now we create a NumPy array.

The numpy module has a function array() which creates a numpy.ndarray object from a Python list. Note that the function is called just "array()" and not "ndarray()". (In object-oriented speak this is a factory function, not a constructor.)

```
Good habit

Fortran style memory layout

>>> y = numpy.array(x, order='Fortran')

>>> y

array([[ 1., 2., 3.],
        [ 4., 5., 6.]])

>>> type(y)

<type 'numpy.ndarray'>

ucs
```

Internally data can be ordered either in C order or in Fortran order. While the arrays automatically created by f2py's modules are all in Fortran order that is not the default for numpy.array(). It is a good habit to get into to always add the optional argument order='Fortran' to override this default.

```
>>> y = numpy.array(x, order='Fortran')
>>> y.flags

C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
UCS
```

Each NumPy array comes with some flags expressing various of its properties. For the time being we are only interested in two of them.

C_CONTIGUOUS says whether or the data is internally laid out in the C order suitable for passing to a C function.

F_CONTIGUOUS says whether or the data is internally laid out in the Fortran order suitable for passing to a Fortran subroutine or function.

```
Default
>>> z = numpy.array(x)
>>> z = numpy.array(x, order='C')
>>> z.flags

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
UCS
```

If we explicitly say that C ordering is to be used the two contiguity flags are switched round. Note that this is the *default*. Specifying the order is a good habit to get into. There is no way to specify a different default.

```
NumPy n-dimensional arrays

>>> z = numpy.ndarray((2,3), order='Fortran')

Single argument Tuple of dimensions

array([[0.00e+00, 3.12e-37, 2.33e-30], [5.39e-37, 1.17e+79, 0.00e+00]])

Random Type matches Python "float"

UCS
```

There is a constructor for NumPy arrays called numpy.ndarray(). It's first argument is a tuple of dimensions. Recall that a "single" is best written "(2,)". It can also be passed the ordering argument.

Note that in true Fortran or C style (and unlike Python) it does not initialise its data so you get random muck in your object.

We will take the excuse of this tuple to look at the dimensions of a NumPy array.

In the two-dimensional case the first number is the number of rows and the second the number of columns. Because we have to be able to generalise to an arbitrary number of dimensions NumPy avoids these two words and instead calls them "axis 0" and "axis 1" of the array. Axis 0 corresponds to the first index (remember that Python counts from zero!). Axis 1 corresponds to the second.

If you want your data initialised then the "fill()" method might be useful. This is passed one value of the same base type as the array and sets every element to that value.

But how do I specify that I want an array of floating point numbers (the default) as opposed to integers or complex numbers (also available)? There is another optional argument, dtype ("data type"), which specifies the type. This can take a number of values but we'll restrict our attention to the most useful.

dtype='float' gets Fortran double precision floating point numbers.

dtype='int' gets integers.

dtype='complex' gets double precision complex numbers.

NumPy n-dimensional arrays >>> a.dtype dtype('float64') >>> b.dtype dtype('int64') >>> c.dtype dtype('complex128')

We can ask for the data back again with the dtype attribute. This lets us see the detailed type information corresponding to the simple aliases we used to create the arrays.

Python	NumPy	gfortran
	int8	integer(kind=1)
	int16	integer(kind=2)
	int32	integer(kind=4)
int	int64	integer(kind=8)
UCS		65

If you really want to see the grubby details here they are for integers...

ucs		66
complex	complex128	complex(kind=8)
	complex64	complex(kind=4)
		"double precision"
float	float64	real(kind=8)
	float32	real(kind=4)
Python	NumPy	gfortran

...and for floating point numbers.

Many NumPy module functions >>> import numpy >>> print numpy.__doc__ ... >>> print numpy.core.__doc__ ...

The NumPy module has *a lot* of functionality. Without touching the Fortran integration it could easily consume a course itself.

Finally, we will consider a small efficiency improvement that we can make. Our greatest gain, of course, is that the core numerical routine is written in Fortran and compiled to machine code rather than being written in Python and interpreted.

The input Python list of lists gets automatically converted to a NumPy array. This takes time. Similarly the output NumPy array has to be created to be passed to the Fortran subroutine.

These are just one-off conversions and creations. However, they can mount up in any looping environment where the f2py-created module function is used repeatedly.

First, we can eliminate the conversion of a Python list of lists to a NumPy array if we can reuse the same array in each iteration of the loop. We still have to set its values each loop but we are spared the actual creation of the object.

```
convert it to a
NumPy array
NumPy array
```

We can create a Python list of lists outside the loop and convert it to a NumPy array outside the loop. Any changes to the values we want to make inside the loop have to be made to the NumPy array. So this is a rather silly way to create a NumPy array.

```
input = numpy.ndarray(
    shape=(m,n),
    dtype='d',
    order='Fortran'
)

...
input[i,j] = ...
...

Define its content
```

Better is to create the NumPy array directly and then set its values. Recall that the numpy.array() function converts Python lists into NumPy arrays. The numpy.ndarry() function creates NumPy arrays directly. (In object-oriented speak it's a "factory method".)

Similarly, if we can provide the embedded Fortran subroutine with the same NumPy array each time and just have the Fortran subroutine overwrite its previous values we are saved the effort of creating it each time too.

So as well as creating the input NumPy array, we create the output one too. Note how we can make sure it matches the input array exactly.

So is it worth it?

Here are some timing tests for a $3,000 \times 2,000$ grid, each performed a hundred times. The absolute values are meaningless but the ratios are revealing.

Again, the major saving is in converting the core subroutine from Python to Fortran. We do get further savings from not recreating objects unnecessarily, in both the pure Python and mixed Python/Fortran worlds. But converting from Python to Fortran gains us a factor of 10 speed improvement. Converting to efficient Fortran gains us a factor of 20. Not bad for an afternoon's work.

f2py supported compilers

The complete set of Fortran compilers known to your instance of f2py can be ascertained with the command "f2py -c --help-fcompiler".

The complete set for version 2.4422 of f2py is given here. Compilers are identified by key with the options "f2py -c --fcompiler=key ...".

Key Description of compiler

absoft Absoft Corporation Fortran Compiler

compaq Compaq Fortran Compiler g95 G95 Fortran Compiler (g95)

gnu95 GNU Fortran 95 compiler (gfortran, the successor to g95)

gnu GNU Fortran 77 compiler (g77)

hpux HP Fortran 90 Compiler ibm IBM XL Fortran Compiler

intel Intel Fortran Compiler for 32-bit apps

intele
 intelem
 intelem
 intelev
 intel Fortran Compiler for EM64T-based applications
 intelev
 intel Visual Fortran Compiler for Itanium applications
 intel Visual Fortran Compiler for 32-bit applications

lahey Lahey/Fujitsu Fortran 95 Compiler

mips MIPSpro Fortran Compiler
nag NAGWare Fortran 95 Compiler
pg Portland Group Fortran Compiler
sun Sun or Forte Fortran 95 Compiler

vast Pacific-Sierra Research Fortran 90 Compiler