Pointed Sets

The Clowder Project Authors

May 3, 2024

0098 This chapter contains some foundational material on pointed sets.

Contents

1	Poir	ited Sets	2
	1.1	Foundations	2
	1.2	Morphisms of Pointed Sets	3
	1.3	The Category of Pointed Sets	4
	1.4	Elementary Properties of Pointed Sets	5
2	Limits of Pointed Sets		8
	2.1	The Terminal Pointed Set	8
	2.2	Products of Families of Pointed Sets	9
	2.3	Products	10
	2.4	Pullbacks	13
	2.5	Equalisers	19
3	Coli	mits of Pointed Sets	22
	3.1	The Initial Pointed Set	22
	3.2	Coproducts of Families of Pointed Sets	22
	3.3	Coproducts	25
	3.4	Pushouts	29
	3.5	Coequalisers	35
4	Con	structions With Pointed Sets	38
	4.1	Free Pointed Sets	38
Α	Oth	er Chapters	43

9099 1 Pointed Sets

009A 1.1 Foundations

009B

DEFINITION 1.1.1 ► POINTED SETS

A **pointed set**¹ is equivalently:

- · An \mathbb{E}_0 -monoid in (N $_{\bullet}$ (Sets), pt).
- · A pointed object in (Sets, pt).

009C

REMARK 1.1.2 ► UNWINDING DEFINITION 1.1.1

In detail, a **pointed set** is a pair (X, x_0) consisting of:

- · The Underlying Set. A set X, called the **underlying set of** (X, x_0) .
- · The Basepoint. A morphism

$$[x_0]: \mathsf{pt} \to X$$

in Sets, determining an element $x_0 \in X$, called the **basepoint of** X.

009D

EXAMPLE 1.1.3 ► THE ZERO SPHERE

The 0-sphere¹ is the pointed set $(S^0, 0)^2$ consisting of:

· The Underlying Set. The set S^0 defined by

$$S^0 \stackrel{\text{def}}{=} \{0, 1\}.$$

• The Basepoint. The element 0 of S^0 .

¹Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, pointed sets are viewed as \mathbb{F}_1 -modules.

¹ Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, the 0-sphere is viewed as the **underlying pointed set of the field with one element**.

² Further Notation: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, S^0 is also denoted $(\mathbb{F}_1, 0)$.

009E

EXAMPLE 1.1.4 ► THE TRIVIAL POINTED SET

The **trivial pointed set** is the pointed set (pt, \star) consisting of:

- The Underlying Set. The punctual set pt $\stackrel{\text{def}}{=} \{ \star \}$.
- · The Basepoint. The element ★ of pt.

009F

EXAMPLE 1.1.5 ► THE UNDERLYING POINTED SET OF A SEMIMODULE

The **underlying pointed set** of a semimodule (M, α_M) is the pointed set $(M, 0_M)$.

009G

EXAMPLE 1.1.6 ► THE UNDERLYING POINTED SET OF A MODULE

The **underlying pointed set** of a module (M, α_M) is the pointed set $(M, 0_M)$.

009H 1.2 Morphisms of Pointed Sets

009J

DEFINITION 1.2.1 ► MORPHISMS OF POINTED SETS

A morphism of pointed sets^{1,2} is equivalently:

- · A morphism of \mathbb{E}_0 -monoids in $(N_{\bullet}(Sets), pt)$.
- · A morphism of pointed objects in (Sets, pt).

009K

REMARK 1.2.2 ► Unwinding Definition 1.2.1

In detail, a **morphism of pointed sets** $f \colon (X, x_0) \to (Y, y_0)$ is a morphism of sets $f \colon X \to Y$ such that the diagram

¹Further Terminology: Also called a **pointed function**.

² Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, morphisms of pointed sets are also called **morphism of** \mathbb{F}_1 -**modules**.

commutes, i.e. such that

$$f(x_0)=y_0.$$

009L 1.3 The Category of Pointed Sets

009M DEFINITION 1.3.1 ► THE CATEGORY OF POINTED SETS

The category of pointed sets is the category Sets* defined equivalently as

- · The homotopy category of the ∞ -category $\mathsf{Mon}_{\mathbb{E}_0}(\mathsf{N}_{\bullet}(\mathsf{Sets}),\mathsf{pt})$ of ??,??;
- · The category Sets* of ??, ??.

009N REMARK 1.3.2 ► UNWINDING DEFINITION 1.3.1

In detail, the category of pointed sets is the category Sets* where

- · Objects. The objects of Sets* are pointed sets;
- · Morphisms. The morphisms of Sets* are morphisms of pointed sets;
- · *Identities.* For each $(X, x_0) \in Obj(Sets_*)$, the unit map

$$\mathbb{1}_{(X,x_0)}^{\mathsf{Sets}_*} \colon \mathsf{pt} \to \mathsf{Sets}_*((X,x_0),(X,x_0))$$

of Sets_{*} at (X, x_0) is defined by¹

$$id_{(X,x_0)}^{Sets_*} \stackrel{\text{def}}{=} id_X;$$

· Composition. For each $(X,x_0),(Y,y_0),(Z,z_0)\in {\sf Obj}({\sf Sets}_*)$, the composition map

$$\circ_{(X,x_0),(Y,y_0),(Z,z_0)}^{\mathsf{Sets}_*} \colon \mathsf{Sets}_*((Y,y_0),(Z,z_0)) \times \mathsf{Sets}_*((X,x_0),(Y,y_0)) \to \mathsf{Sets}_*((X,x_0),(Z,z_0))$$

of Sets_{*} at $((X, x_0), (Y, y_0), (Z, z_0))$ is defined by²

$$g \circ^{\mathsf{Sets}_*}_{(X,x_0),(Y,y_0),(Z,z_0)} f \stackrel{\mathsf{def}}{=} g \circ f.$$

¹Note that id_X is indeed a morphism of pointed sets, as we have $id_X(x_0) = x_0$.

² Note that the composition of two morphisms of pointed sets is indeed a morphism of pointed sets, as we have

$$g(f(x_0)) = g(y_0)$$
$$= z_0,$$

or

009P

009R

009S

009T

009U

009V

009W

009X 009Y

009Z

00A0

in terms of diagrams.

1.4 Elementary Properties of Pointed Sets

0090 PROPOSITION 1.4.1 ➤ ELEMENTARY PROPERTIES OF POINTED SETS

Let (X, x_0) be a pointed set.

1. *Completeness*. The category Sets* of pointed sets and morphisms between them is complete, having in particular:

(a) Products, described as in Definition 2.3.1;

- (b) Pullbacks, described as in Definition 2.4.1;
- (c) Equalisers, described as in Definition 2.5.1.

2. Cocompleteness. The category Sets* of pointed sets and morphisms between them is cocomplete, having in particular:

- (a) Coproducts, described as in Definition 3.3.1;
- (b) Pushouts, described as in Definition 3.4.1;
- (c) Coequalisers, described as in Definition 3.5.1.
- 3. Failure To Be Cartesian Closed. The category Sets* is not Cartesian closed.
- 4. Morphisms From the Monoidal Unit. We have a bijection of sets²

$$\mathsf{Sets}_*(S^0, X) \cong X,$$

natural in $(X, x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$, internalising also to an isomorphism of pointed sets

$$\mathsf{Sets}_*\big(S^0,X\big)\cong (X,x_0),$$

again natural in $(X, x_0) \in Obj(Sets_*)$.

5. Relation to Partial Functions. We have an equivalence of categories³

between the category of pointed sets and pointed functions between them and the category of sets and partial functions between them, where:

(a) From Pointed Sets to Sets With Partial Functions. The equivalence

$$\xi \colon \mathsf{Sets}_* \xrightarrow{\cong} \mathsf{Sets}^{\mathsf{part}}$$

sends:

- i. A pointed set (X, x_0) to X.
- ii. A pointed function

$$f: (X, x_0) \rightarrow (Y, y_0)$$

to the partial function

$$\xi_f \colon X \to Y$$

defined on $f^{-1}(Y\setminus y_0)$ and given by

$$\xi_f(x) \stackrel{\text{def}}{=} f(x)$$

for each $x \in f^{-1}(Y \setminus y_0)$.

(b) From Sets With Partial Functions to Pointed Sets. The equivalence

$$\xi^{-1} \colon \mathsf{Sets}^{\mathsf{part.}} \overset{\cong}{\to} \mathsf{Sets}_*$$

sends:

i. A set X is to the pointed set (X, \star) with \star an element that is not in X.

00A1

ii. A partial function

$$f: X \to Y$$

defined on $U \subset X$ to the pointed function

$$\xi_f^{-1} \colon (X, x_0) \to (Y, y_0)$$

defined by

$$\xi_f(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in U, \\ y_0 & \text{otherwise.} \end{cases}$$

for each $x \in X$.

²In other words, the forgetful functor

defined on objects by sending a pointed set to its underlying set is corepresentable by S^0 .

3 Warning: This is not an isomorphism of categories, only an equivalence.

PROOF 1.4.2 ► PROOF OF PROPOSITION 1.4.1

Item 1: Completeness

This follows from (the proofs) of Definitions 2.3.1, 2.4.1 and 2.5.1 and ??, ??.

Item 2: Cocompleteness

This follows from (the proofs) of Definitions 3.3.1, 3.4.1 and 3.5.1 and ??, ??.

Item 3: Failure To Be Cartesian Closed

See [MSE 2855868].

Item 4: Morphisms From the Monoidal Unit

Since a morphism from S^0 to a pointed set (X, x_0) sends $0 \in S^0$ to x_0 and then can send $1 \in S^0$ to any element of X, we obtain a bijection between pointed maps $S^0 \to X$ and the elements of X.

The isomorphism then

$$\mathsf{Sets}_*(S^0,X)\cong (X,x_0)$$

¹The category Sets_{*} does admit monoidal closed structures however; see Tensor Products of Pointed Sets.

follows by noting that $\Delta_{x_0}\colon S^0\to X$, the basepoint of $\mathbf{Sets}_*\big(S^0,X\big)$, corresponds to the pointed map $S^0\to X$ picking the element x_0 of X, and thus we see that the bijection between pointed maps $S^0\to X$ and elements of X is compatible with basepoints, lifting to an isomorphism of pointed sets.

Item 5: Relation to Partial Functions

See [MSE 884460].

T

00A2 2 Limits of Pointed Sets

00A3 2.1 The Terminal Pointed Set

00A4 DEFINITION 2.1.1 ► THE TERMINAL POINTED SET

The **terminal pointed set** is the pair $\Big((\mathsf{pt}, \star), \{!_X\}_{(X,x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)}\Big)$ consisting of:

- The Limit. The pointed set (pt, \star) .
- · The Cone. The collection of morphisms of pointed sets

$$\{!_X \colon (X,x_0) \to (\mathsf{pt}, \bigstar)\}_{(X,x_0) \in \mathsf{Obj}(\mathsf{Sets})}$$

defined by

$$!_X(x) \stackrel{\text{def}}{=} \star$$

for each $x \in X$ and each $(X, x_0) \in \mathsf{Obj}(\mathsf{Sets})$.

PROOF 2.1.2 ▶ PROOF OF DEFINITION 2.1.1

We claim that (pt, \star) is the terminal object of Sets $_*$. Indeed, suppose we have a diagram of the form

$$(X, x_0)$$
 (pt, \star)

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (X, x_0) \to (\mathsf{pt}, \star)$$

making the diagram

$$(X, x_0) \xrightarrow{-\frac{\phi}{\exists !}} (\mathsf{pt}, \star)$$

commute, namely $!_X$.

00A5 2.2 Products of Families of Pointed Sets

Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

00A6 DEFINITION 2.2.1 ► THE PRODUCT OF A FAMILY OF POINTED SETS

The **product of** $\{(X_i, x_0^i)\}_{i \in I}$ is the pair $((\prod_{i \in I} X_i, (x_0^i)_{i \in I}), \{\operatorname{pr}_i\}_{i \in I})$ consisting of:

- · The Limit. The pointed set $(\prod_{i \in I} X_i, (x_0^i)_{i \in I})$.
- · The Cone. The collection

$$\left\{ \operatorname{pr}_i \colon \left(\prod_{i \in I} X_i, \left(x_0^i \right)_{i \in I} \right) \to \left(X_i, x_0^i \right) \right\}_{i \in I}$$

of maps given by

$$\operatorname{pr}_i\left(\left(x_j\right)_{j\in I}\right)\stackrel{\text{def}}{=} x_i$$

for each $(x_j)_{i \in I} \in \prod_{i \in I} X_i$ and each $i \in I$.

PROOF 2.2.2 ▶ PROOF OF DEFINITION 2.2.1

We claim that $\left(\prod_{i\in I}X_i,\left(x_0^i\right)_{i\in I}\right)$ is the categorical product of $\left\{\left(X_i,x_0^i\right)\right\}_{i\in I}$ in Sets_{*}. Indeed, suppose we have, for each $i\in I$, a diagram of the form

$$(P,*)$$

$$(\prod_{i\in I} X_i, (x_0^i)_{i\in I}) \xrightarrow{p_i} (X_i, x_0^i)$$

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (P, *) \to \left(\prod_{i \in I} X_i, \left(x_0^i \right)_{i \in I} \right)$$

2.3 Products 10

making the diagram

$$(P, *)$$

$$\phi \downarrow \exists !$$

$$(\prod_{i \in I} X_i, (x_0^i)_{i \in I}) \xrightarrow{\mathsf{pr}_i} (X_i, x_0^i)$$

commute, being uniquely determined by the condition $\operatorname{pr}_i \circ \phi = p_i$ for each $i \in I$ via

$$\phi(x) = (p_i(x))_{i \in I}$$

for each $x \in P$. Note that this is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_i(*))_{i \in I}$$
$$= (x_0^i)_{i \in I},$$

where we have used that p_i is a morphism of pointed sets for each $i \in I$.

PROPOSITION 2.2.3 ➤ PROPERTIES OF PRODUCTS OF FAMILIES OF POINTED SETS

Let $\left\{\left(X_i, x_0^i\right)\right\}_{i \in I}$ be a family of pointed sets.

1. Functoriality. The assignment $\left\{\left(X_i,x_0^i\right)\right\}_{i\in I}\mapsto \left(\prod_{i\in I}X_i,\left(x_0^i\right)_{i\in I}\right)$ defines a functor

$$\prod_{i \in I} : \mathsf{Fun}(I_{\mathsf{disc}}, \mathsf{Sets}_*) \to \mathsf{Sets}_*.$$

PROOF 2.2.4 ► PROOF OF PROPOSITION 2.2.3

Item 1: Functoriality

This follows from ??, ?? of ??.

00A9 2.3 Products

00A8

Let (X, x_0) and (Y, y_0) be pointed sets.

2.3 Products 11

00AA

DEFINITION 2.3.1 ► PRODUCTS OF POINTED SETS

The **product of** (X, x_0) **and** (Y, y_0) is the pair consisting of:

- · The Limit. The pointed set $(X \times Y, (x_0, y_0))$.
- · The Cone. The morphisms of pointed sets

$$\operatorname{pr}_1 \colon (X \times Y, (x_0, y_0)) \to (X, x_0),$$

 $\operatorname{pr}_2 \colon (X \times Y, (x_0, y_0)) \to (Y, y_0)$

defined by

$$\operatorname{pr}_{1}(x, y) \stackrel{\text{def}}{=} x,$$

 $\operatorname{pr}_{2}(x, y) \stackrel{\text{def}}{=} y$

for each $(x, y) \in X \times Y$.

PROOF 2.3.2 ► PROOF OF DEFINITION 2.3.1

We claim that $(X \times Y, (x_0, y_0))$ is the categorical product of (X, x_0) and (Y, y_0) in Sets_{*}. Indeed, suppose we have a diagram of the form

$$(X, x_0) \xleftarrow{p_1} (X \times Y, (x_0, y_0)) \xrightarrow{p_2} (Y, y_0)$$

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (P, *) \to (X \times Y, (x_0, y_0))$$

making the diagram

2.3 Products 12

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1$$
,

$$\operatorname{pr}_2 \circ \phi = p_2$$

via

00AD

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$. Note that this is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_1(*), p_2(*))$$

= $(x_0, y_0),$

where we have used that p_1 and p_2 are morphisms of pointed sets.

00AB PROPOSITION 2.3.3 ➤ PROPERTIES OF PRODUCTS OF POINTED SETS

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

00AC 1. Functoriality. The assignments

$$(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto (X \times Y, (x_0, y_0))$$

define functors

$$X \times -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$
 $- \times Y : \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \times -_2 : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*,$

defined in the same way as the functors of Constructions With Sets, Item 1 of Proposition 1.3.3.

2. Associativity. We have an isomorphism of pointed sets

$$((X \times Y) \times Z, ((x_0, y_0), z_0)) \cong (X \times (Y \times Z), (x_0, (y_0, z_0)))$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in Obj(Sets_*).$

00AE

3. Unitality. We have isomorphisms of pointed sets

$$(\mathsf{pt}, \star) \times (X, x_0) \cong (X, x_0),$$

 $(X, x_0) \times (\mathsf{pt}, \star) \cong (X, x_0),$

natural in $(X, x_0) \in Obj(Sets_*)$.

00AF

4. Commutativity. We have an isomorphism of pointed sets

$$(X \times Y, (x_0, y_0)) \cong (Y \times X, (y_0, x_0)),$$

natural in $(X, x_0), (Y, y_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$.

00AG

5. Symmetric Monoidality. The triple $(Sets_*, \times, (pt, \star))$ is a symmetric monoidal category.

PROOF 2.3.4 ► PROOF OF PROPOSITION 2.3.3

Item 1: Functoriality

This is a special case of functoriality of limits, ??, ?? of ??.

Item 2: Associativity

This follows from Constructions With Sets, Item 3 of Proposition 1.3.3.

Item 3: Unitality

This follows from Constructions With Sets, Item 4 of Proposition 1.3.3.

Item 4: Commutativity

This follows from Constructions With Sets, Item 5 of Proposition 1.3.3.

Item 5: Symmetric Monoidality

This follows from Constructions With Sets, Item 12 of Proposition 1.3.3.

00AH 2.4 Pullbacks

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (X, x_0) \to (Z, z_0)$ and $g: (Y, y_0) \to (Z, z_0)$ be morphisms of pointed sets.

00AJ DEFINITION 2.4.1 ► PULLBACKS OF POINTED SETS

The **pullback of** (X, x_0) **and** (Y, y_0) **over** (Z, z_0) **along** (f, g) is the pair consisting of:

- The Limit. The pointed set $(X \times_Z Y, (x_0, y_0))$.
- · The Cone. The morphisms of pointed sets

$$\operatorname{pr}_1 \colon (X \times_Z Y, (x_0, y_0)) \to (X, x_0),$$

 $\operatorname{pr}_2 \colon (X \times_Z Y, (x_0, y_0)) \to (Y, y_0)$

defined by

$$\operatorname{pr}_{1}(x, y) \stackrel{\text{def}}{=} x,$$

 $\operatorname{pr}_{2}(x, y) \stackrel{\text{def}}{=} y$

for each $(x, y) \in X \times_Z Y$.

PROOF 2.4.2 ▶ PROOF OF DEFINITION 2.4.1

We claim that $X \times_Z Y$ is the categorical pullback of (X, x_0) and (Y, y_0) over (Z, z_0) with respect to (f, g) in Sets $_*$. First we need to check that the relevant pullback diagram commutes, i.e. that we have

$$f \circ \operatorname{pr}_1 = g \circ \operatorname{pr}_2, \qquad (X \times_Z Y, (x_0, y_0)) \xrightarrow{\operatorname{pr}_2} (Y, y_0) \\ \downarrow^g \\ (X, x_0) \xrightarrow{f} (Z, z_0).$$

Indeed, given $(x, y) \in X \times_Z Y$, we have

$$\begin{split} [f \circ \mathsf{pr}_1](x,y) &= f(\mathsf{pr}_1(x,y)) \\ &= f(x) \\ &= g(y) \\ &= g(\mathsf{pr}_2(x,y)) \\ &= [g \circ \mathsf{pr}_2](x,y), \end{split}$$

where f(x) = g(y) since $(x, y) \in X \times_Z Y$. Next, we prove that $X \times_Z Y$ satisfies the universal property of the pullback. Suppose we have a diagram of the form

in Sets_{*}. Then there exists a unique morphism of pointed sets

$$\phi: (P, *) \rightarrow (X \times_Z Y, (x_0, y_0))$$

making the diagram

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$

 $\operatorname{pr}_2 \circ \phi = p_2$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$, where we note that $(p_1(x), p_2(x)) \in X \times Y$ indeed lies in $X \times_Z Y$ by the condition

$$f\circ p_1=g\circ p_2,$$

which gives

$$f(p_1(x)) = g(p_2(x))$$

16

for each $x \in P$, so that $(p_1(x), p_2(x)) \in X \times_Z Y$. Lastly, we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_1(*), p_2(*))$$

= $(x_0, y_0),$

where we have used that p_1 and p_2 are morphisms of pointed sets.

00AK

PROPOSITION 2.4.3 ► PROPERTIES OF PULLBACKS OF POINTED SETS

Let (X, x_0) , (Y, y_0) , (Z, z_0) , and (A, a_0) be pointed sets.

00AL

1. Functoriality. The assignment $(X,Y,Z,f,g)\mapsto X\times_{f,Z,g}Y$ defines a functor

$$-_1 \times_{-_3} -_1 : \operatorname{\mathsf{Fun}}(\mathcal{P}, \operatorname{\mathsf{Sets}}_*) \to \operatorname{\mathsf{Sets}}_*,$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-_1 \times_{-_3} -_1$ is given by sending a morphism

in $\operatorname{Fun}(\mathcal{P},\operatorname{\mathsf{Sets}}_*)$ to the morphism of pointed sets

$$\xi \colon (X \times_Z Y, (x_0, y_0)) \xrightarrow{\exists !} \left(X' \times_{Z'} Y', \left(x_0', y_0' \right) \right)$$

given by

$$\xi(x,y) \stackrel{\text{def}}{=} (\phi(x), \psi(y))$$

for each $(x,y) \in X \times_Z Y$, which is the unique morphism of pointed sets making the diagram

17

commute.

00AM

2. Associativity. Given a diagram

in Sets*, we have isomorphisms of pointed sets

$$(X \times_W Y) \times_V Z \cong (X \times_W Y) \times_Y (Y \times_V Z) \cong X \times_W (Y \times_V Z),$$

where these pullbacks are built as in the diagrams

00AN

3. Unitality. We have isomorphisms of pointed sets

$$A = \underbrace{\qquad} A \qquad \qquad A \xrightarrow{f} X$$

$$f \downarrow \qquad \downarrow f \qquad X \times_X A \cong A, \qquad \parallel \qquad \parallel \qquad \parallel$$

$$X = \underbrace{\qquad} X \qquad \qquad X \xrightarrow{f} X.$$

00AP

4. Commutativity. We have an isomorphism of pointed sets

00A0

5. Interaction With Products. We have an isomorphism of pointed sets

$$X \times_{\mathsf{pt}} Y \cong X \times Y, \qquad \qquad \begin{matrix} X \times Y \longrightarrow Y \\ & \downarrow \\ & \downarrow \\ X \xrightarrow{!_{X}} \mathsf{pt}. \end{matrix}$$

00AR

6. Symmetric Monoidality. The triple (Sets**, \times_X , X) is a symmetric monoidal category.

PROOF 2.4.4 ▶ PROOF OF PROPOSITION 2.4.3

Item 1: Functoriality

This is a special case of functoriality of co/limits, ??, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pullback diagram.

Item 2: Associativity

This follows from Constructions With Sets, Item 2 of Proposition 1.4.5.

2.5 Equalisers 19

Item 3: Unitality

This follows from Constructions With Sets, Item 3 of Proposition 1.4.5.

Item 4: Commutativity

This follows from Constructions With Sets, Item 4 of Proposition 1.4.5.

Item 5: Interaction With Products

This follows from Constructions With Sets, Item 6 of Proposition 1.4.5.

Item 6: Symmetric Monoidality

This follows from Constructions With Sets, Item 7 of Proposition 1.4.5.

00AS 2.5 Equalisers

Let $f, g: (X, x_0) \Rightarrow (Y, y_0)$ be morphisms of pointed sets.

00AT DEFINITION 2.5.1 ➤ EQUALISERS OF POINTED SETS

The **equaliser of** (f, g) is the pair consisting of:

- The Limit. The pointed set $(Eq(f, g), x_0)$.
- · The Cone. The morphism of pointed sets

$$\operatorname{eq}(f,q) \colon (\operatorname{Eq}(f,q),x_0) \hookrightarrow (X,x_0)$$

given by the canonical inclusion eq $(f,g) \hookrightarrow \text{Eq}(f,g) \hookrightarrow X$.

PROOF 2.5.2 ▶ PROOF OF DEFINITION 2.5.1

We claim that $(Eq(f,g),x_0)$ is the categorical equaliser of f and g in Sets_{*}. First we need to check that the relevant equaliser diagram commutes, i.e. that we have

$$f \circ eq(f,g) = g \circ eq(f,g),$$

which indeed holds by the definition of the set ${\rm Eq}(f,g)$. Next, we prove that ${\rm Eq}(f,g)$ satisfies the universal property of the equaliser. Suppose we have a dia-

2.5 Equalisers 20

gram of the form

$$(\mathsf{Eq}(f,g),x_0) \xrightarrow{\mathsf{eq}(f,g)} (X,x_0) \xrightarrow{f} (Y,y_0)$$

$$(E,*)$$

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (E, *) \to (\mathsf{Eq}(f, g), x_0)$$

making the diagram

$$(\mathsf{Eq}(f,g),x_0) \xrightarrow{\mathsf{eq}(f,g)} (X,x_0) \xrightarrow{f} (Y,y_0)$$

$$\downarrow \downarrow \downarrow \downarrow e$$

$$(E,*)$$

commute, being uniquely determined by the condition

$$eq(f, q) \circ \phi = e$$

via

$$\phi(x) = e(x)$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in $\operatorname{Eq}(f,g)$ by the condition

$$f \circ e = g \circ e$$
,

which gives

$$f(e(x)) = q(e(x))$$

for each $x \in E$, so that $e(x) \in \text{Eq}(f,g)$. Lastly, we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(*) = e(*)$$
$$= x_0,$$

where we have used that e is a morphism of pointed sets.

2.5 Equalisers

00AU

PROPOSITION 2.5.3 ► PROPERTIES OF EQUALISERS OF POINTED SETS

Let (X, x_0) and (Y, y_0) be pointed sets and let $f, g, h: (X, x_0) \to (Y, y_0)$ be morphisms of pointed sets.

21

00AV

1. Associativity. We have isomorphisms of pointed sets

$$\underbrace{\operatorname{Eq}(f \circ \operatorname{eq}(g,h), g \circ \operatorname{eq}(g,h))}_{=\operatorname{Eq}(f \circ \operatorname{eq}(g,h), h \circ \operatorname{eq}(g,h))} \cong \operatorname{Eq}(f,g,h) \cong \underbrace{\operatorname{Eq}(f \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g))}_{=\operatorname{Eq}(g \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g))}$$

where Eq(f, q, h) is the limit of the diagram

$$(X, x_0) \xrightarrow{f} (Y, y_0)$$

in Sets*, being explicitly given by

$$Eq(f, q, h) \cong \{a \in A \mid f(a) = q(a) = h(a)\}.$$

00AW

2. Unitality. We have an isomorphism of pointed sets

$$\operatorname{Eq}(f, f) \cong X$$
.

00AX

3. Commutativity. We have an isomorphism of pointed sets

$$\operatorname{Eq}(f, q) \cong \operatorname{Eq}(q, f)$$
.

PROOF 2.5.4 ► PROOF OF PROPOSITION 2.5.3

Item 1: Associativity

This follows from Constructions With Sets, Item 1 of Proposition 1.5.3.

Item 2: Unitality

This follows from Constructions With Sets, Item 2 of Proposition 1.5.3.

Item 3: Commutativity

This follows from Constructions With Sets, Item 3 of Proposition 1.5.3.

OOAY 3 Colimits of Pointed Sets

00AZ 3.1 The Initial Pointed Set

00B0 DEFINITION 3.1.1 ➤ THE INITIAL POINTED SET

The **initial pointed set** is the pair $\Big((\mathsf{pt}, \star), \{\iota_X\}_{(X, x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)}\Big)$ consisting of:

- · The Limit. The pointed set (pt, \star) .
- · The Cone. The collection of morphisms of pointed sets

$$\{\iota_X \colon (\mathsf{pt}, \star) \to (X, x_0)\}_{(X, x_0) \in \mathsf{Obj}(\mathsf{Sets})}$$

defined by

$$\iota_X(\star) \stackrel{\text{def}}{=} x_0.$$

PROOF 3.1.2 ► PROOF OF DEFINITION 3.1.1

We claim that (pt, \star) is the initial object of $Sets_*$. Indeed, suppose we have a diagram of the form

$$(pt, \star)$$
 (X, x_0)

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (\mathsf{pt}, \star) \to (X, x_0)$$

making the diagram

$$(\mathsf{pt}, \star) \xrightarrow{-\frac{\phi}{\exists !}} (X, x_0)$$

commute, namely ι_X .

00B1 3.2 Coproducts of Families of Pointed Sets

Let $\left\{\left(X_i, x_0^i\right)\right\}_{i \in I}$ be a family of pointed sets.

00B2 DEFINITION 3.2.1 ➤ COPRODUCTS OF FAMILIES OF POINTED SETS

The **coproduct of the family** $\{(X_i, x_0^i)\}_{i \in I}$, also called their **wedge sum**, is the pair consisting of:

- · *The Colimit.* The pointed set $(\bigvee_{i \in I} X_i, p_0)$ consisting of:
 - The Underlying Set. The set $\bigvee_{i \in I} X_i$ defined by

$$\bigvee_{i \in I} X_i \stackrel{\text{def}}{=} \left(\prod_{i \in I} X_i \right) / \sim,$$

where \sim is the equivalence relation on $\coprod_{i \in I} X_i$ given by declaring

$$(i, x_0^i) \sim (j, x_0^j)$$

for each $i, j \in I$.

– The Basepoint. The element p_0 of $\bigvee_{i \in I} X_i$ defined by

$$p_0 \stackrel{\text{def}}{=} \left[\left(i, x_0^i \right) \right]$$
$$= \left[\left(j, x_0^j \right) \right]$$

for any $i, j \in I$.

· The Cocone. The collection

$$\left\{\operatorname{inj}_i\colon \left(X_i,x_0^i\right)\to \left(\bigvee_{i\in I}X_i,p_0\right)\right\}_{i\in I}$$

of morphism of pointed sets given by

$$\operatorname{inj}_{i}(x) \stackrel{\text{def}}{=} (i, x)$$

for each $x \in X_i$ and each $i \in I$.

PROOF 3.2.2 ▶ PROOF OF DEFINITION 3.2.1

We claim that $(\bigvee_{i \in I} X_i, p_0)$ is the categorical coproduct of $\{(X_i, x_0^i)\}_{i \in I}$ in Sets_{*}. Indeed, suppose we have, for each $i \in I$, a diagram of the form

$$(X_i, x_0^i) \xrightarrow[\inf_i]{(C, *)} \left(\bigvee_{i \in I} X_i, p_0\right)$$

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi: \left(\bigvee_{i\in I} X_i, p_0\right) \to (C, *)$$

making the diagram

$$(X_i, x_0^i) \xrightarrow[\text{inj}_i]{(C, *)} \begin{pmatrix} (C, *) \\ \phi & \exists ! \\ (X_i, p_0) \end{pmatrix}$$

commute, being uniquely determined by the condition $\phi \circ \operatorname{inj}_i = \iota_i$ for each $i \in I$ via

$$\phi([(i,x)]) = \iota_i(x)$$

for each $[(i,x)] \in \bigvee_{i \in I} X_i$, where we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \iota_i([(i, x_0^i)])$$
= *,

as ι_i is a morphism of pointed sets.

3.3 Coproducts

25

00B3

PROPOSITION 3.2.3 ► PROPERTIES OF COPRODUCTS OF FAMILIES OF POINTED SETS

Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

00B4

1. Functoriality. The assignment $\{(X_i,x_0^i)\}_{i\in I}\mapsto (\bigvee_{i\in I}X_i,p_0)$ defines a functor

$$\bigvee_{i \in I} : \mathsf{Fun}(I_{\mathsf{disc}}, \mathsf{Sets}_*) \to \mathsf{Sets}_*.$$

PROOF 3.2.4 ► PROOF OF PROPOSITION 3.2.3

Item 1: Functoriality

This follows from ??, ?? of ??.

00B5 3.3 Coproducts

Let (X, x_0) and (Y, y_0) be pointed sets.

00B6

DEFINITION 3.3.1 ► COPRODUCTS OF POINTED SETS

The **coproduct of** (X, x_0) **and** (Y, y_0) , also called their **wedge sum**, is the pair consisting of:

- · The Colimit. The pointed set $(X \vee Y, p_0)$ consisting of:
 - The Underlying Set. The set $X \vee Y$ defined by

where \sim is the equivalence relation on $X \coprod Y$ obtained by declaring $(0, x_0) \sim (1, y_0)$.

- The Basepoint. The element p_0 of $X \vee Y$ defined by

$$p_0 \stackrel{\text{def}}{=} [(0, x_0)]$$

= $[(1, y_0)].$

3.3 Coproducts 26

· The Cocone. The morphisms of pointed sets

$$\operatorname{inj}_1 \colon (X, x_0) \to (X \vee Y, p_0),$$

 $\operatorname{inj}_2 \colon (Y, y_0) \to (X \vee Y, p_0),$

given by

$$\operatorname{inj}_1(x) \stackrel{\text{def}}{=} [(0, x)],$$

 $\operatorname{inj}_2(y) \stackrel{\text{def}}{=} [(1, y)],$

for each $x \in X$ and each $y \in Y$.

PROOF 3.3.2 ► PROOF OF DEFINITION 3.3.1

We claim that $(X \vee Y, p_0)$ is the categorical coproduct of (X, x_0) and (Y, y_0) in Sets_{*}. Indeed, suppose we have a diagram of the form

$$(X, x_0) \xrightarrow[\operatorname{inj}_X]{(C, *)} \longleftarrow_{i_Y} (X \vee Y, p_0) \longleftarrow_{i_{1}} (Y, y_0)$$

in Sets. Then there exists a unique morphism of pointed sets

$$\phi \colon (X \vee Y, p_0) \to (C, *)$$

making the diagram

$$(X, x_0) \xrightarrow[\operatorname{inj}_X]{(C, *)} (C, *)$$

$$\downarrow^{l_Y} \downarrow^{l_Y} \downarrow^{l_Y$$

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_X = \iota_X,$$

 $\phi \circ \operatorname{inj}_Y = \iota_Y$

via

$$\phi(z) = \begin{cases} \iota_X(x) & \text{if } z = [(0, x)] \text{ with } x \in X, \\ \iota_Y(y) & \text{if } z = [(1, y)] \text{ with } y \in Y \end{cases}$$

for each $z \in X \vee Y$, where we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \iota_X([(0, x_0)])$$

= $\iota_Y([(1, y_0)])$
= *,

as ι_X and ι_Y are morphisms of pointed sets.

00B7

PROPOSITION 3.3.3 ► PROPERTIES OF WEDGE SUMS OF POINTED SETS

Let (X, x_0) and (Y, y_0) be pointed sets.

00B8

1. Functoriality. The assignments

$$(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto (X \vee Y, p_0)$$

define functors

$$X \lor -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$
 $- \lor Y : \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \lor -_2 : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*.$

00B9

2. Associativity. We have an isomorphism of pointed sets

$$(X \vee Y) \vee Z \cong X \vee (Y \vee Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \mathsf{Sets}_*$.

00BA

3. Unitality. We have isomorphisms of pointed sets

$$(pt, *) \lor (X, x_0) \cong (X, x_0),$$

 $(X, x_0) \lor (pt, *) \cong (X, x_0),$

natural in $(X, x_0) \in \mathsf{Sets}_*$.

00BB

4. Commutativity. We have an isomorphism of pointed sets

$$X \vee Y \cong Y \vee X$$
,

natural in $(X, x_0), (Y, y_0) \in \mathsf{Sets}_*$.

00BC

5. *Symmetric Monoidality*. The triple (Sets_{*}, ∨, pt) is a symmetric monoidal category.

00BD

6. The Fold Map. We have a natural transformation

called the fold map, whose component

$$\nabla_X \colon X \vee X \to X$$

at X is given by

$$\nabla_X(p) \stackrel{\text{def}}{=} \begin{cases} x & \text{if } p = [(0, x)], \\ x & \text{if } p = [(1, x)] \end{cases}$$

for each $p \in X \vee X$.

PROOF 3.3.4 ▶ PROOF OF PROPOSITION 3.3.3

Item 1: Functoriality

This follows from ??, ?? of ??.

Item 2: Associativity

Clear.

Item 3: Unitality

Clear.

Item 4: Commutativity

Clear.

Item 5: Symmetric Monoidality

Omitted.

Item 6: The Fold Map

Naturality for the transformation ∇ is the statement that, given a morphism of pointed sets $f:(X,x_0)\to (Y,y_0)$, we have

$$\nabla_{Y} \circ (f \vee f) = f \circ \nabla_{X}, \quad X \xrightarrow{\nabla_{X}} X$$

$$V_{Y} \circ (f \vee f) = f \circ \nabla_{X}, \quad f \vee f \downarrow \qquad \downarrow f$$

$$Y \vee Y \xrightarrow{\nabla_{Y}} Y.$$

Indeed, we have

$$[\nabla_Y \circ (f \vee f)]([(i,x)]) = \nabla_Y([(i,f(x))])$$

$$= f(x)$$

$$= f(\nabla_X([(i,x)]))$$

$$= [f \circ \nabla_X]([(i,x)])$$

for each $[(i, x)] \in X \vee X$, and thus ∇ is indeed a natural transformation.

00BE 3.4 Pushouts

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (Z, z_0) \to (X, x_0)$ and $g: (Z, z_0) \to (Y, y_0)$ be morphisms of pointed sets.

00BF DEFINITION 3.4.1 ➤ PUSHOUTS OF POINTED SETS

The **pushout of** (X, x_0) **and** (Y, y_0) **over** (Z, z_0) **along** (f, g) is the pair consisting of:

· The Colimit. The pointed set $(X \coprod_{f,Z,g} Y, p_0)$, where:

– The set $X\coprod_{f,Z,g}Y$ is the pushout (of unpointed sets) of X and Y over Z with respect to f and g;

- We have
$$p_0 = [x_0] = [y_0]$$
.

· The Cocone. The morphisms of pointed sets

$$\operatorname{inj}_1 \colon (X, x_0) \to (X \coprod_Z Y, p_0),$$

 $\operatorname{inj}_2 \colon (Y, y_0) \to (X \coprod_Z Y, p_0)$

given by

$$\begin{aligned} &\inf_{1}(x) \stackrel{\text{def}}{=} [(0, x)] \\ &\inf_{2}(y) \stackrel{\text{def}}{=} [(1, y)] \end{aligned}$$

for each $x \in X$ and each $y \in Y$.

PROOF 3.4.2 ► PROOF OF DEFINITION 3.4.1

Firstly, we note that indeed $[x_0] = [y_0]$, as we have

$$x_0 = f(z_0),$$

$$y_0 = q(z_0)$$

since f and g are morphisms of pointed sets, with the relation \sim on $X \coprod_Z Y$ then identifying $x_0 = f(z_0) \sim g(z_0) = y_0$.

We now claim that $(X\coprod_Z Y,p_0)$ is the categorical pushout of (X,x_0) and (Y,y_0) over (Z,z_0) with respect to (f,g) in Sets $_*$. First we need to check that the relevant pushout diagram commutes, i.e. that we have

Indeed, given $z \in Z$, we have

$$\begin{split} [\inf_1 \circ f](z) &= \inf_1 (f(z)) \\ &= [(0, f(z))] \\ &= [(1, g(z))] \\ &= \inf_2 (g(z)) \\ &= [\inf_2 \circ g](z), \end{split}$$

where [(0, f(z))] = [(1, g(z))] by the definition of the relation \sim on $X \coprod Y$ (the coproduct of unpointed sets of X and Y). Next, we prove that $X \coprod_Z Y$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (X \coprod_Z Y, p_0) \to (P, *)$$

making the diagram

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_1 = \iota_1,$$

 $\phi \circ \operatorname{inj}_2 = \iota_2$

via

$$\phi(p) = \begin{cases} \iota_1(x) & \text{if } x = [(0, x)], \\ \iota_2(y) & \text{if } x = [(1, y)] \end{cases}$$

for each $p \in X \coprod_Z Y$, where the well-definedness of ϕ is proven in the same way as in the proof of Constructions With Sets, Definition 2.4.1. Finally, we show that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \phi([(0, x_0)])$$

= $\iota_1(x_0)$
= *,

or alternatively

$$\phi(p_0) = \phi([(1, y_0)])$$

= $\iota_2(y_0)$
= *,

where we use that ι_1 (resp. ι_2) is a morphism of pointed sets.

00BG

PROPOSITION 3.4.3 ► PROPERTIES OF PUSHOUTS OF POINTED SETS

Let (X, x_0) , (Y, y_0) , (Z, z_0) , and (A, a_0) be pointed sets.

00BH

1. Functoriality. The assignment $(X,Y,Z,f,g)\mapsto X\coprod_{f,Z,g}Y$ defines a functor

$$-_1 \coprod_{-_3} -_1 : \mathsf{Fun}(\mathcal{P},\mathsf{Sets}) \to \mathsf{Sets}_*,$$

where ${\cal P}$ is the category that looks like this:

In particular, the action on morphisms of $-_1\coprod_{-_3}-_1$ is given by sending a morphism

in $Fun(\mathcal{P}, \mathsf{Sets}_*)$ to the morphism of pointed sets

$$\xi \colon (X \coprod_Z Y, p_0) \xrightarrow{\exists !} (X' \coprod_{Z'} Y', p'_0)$$

given by

$$\xi(p) \stackrel{\text{def}}{=} \begin{cases} \phi(x) & \text{if } p = [(0, x)], \\ \psi(y) & \text{if } p = [(1, y)] \end{cases}$$

for each $p \in X \coprod_Z Y$, which is the unique morphism of pointed sets making the diagram

commute.

00BJ

2. Associativity. Given a diagram

in Sets, we have isomorphisms of pointed sets

$$(X \coprod_W Y) \coprod_V Z \cong (X \coprod_W Y) \coprod_Y (Y \coprod_V Z) \cong X \coprod_W (Y \coprod_V Z),$$

where these pullbacks are built as in the diagrams

00BK

3. Unitality. We have isomorphisms of sets

$$X \coprod_X A \cong A,$$

 $A \coprod_X X \cong A,$

$$\begin{array}{ccc}
A & \stackrel{f}{\longleftarrow} X \\
\parallel & & \parallel \\
X & \stackrel{f}{\longleftarrow} X.
\end{array}$$

00BL

4. Commutativity. We have an isomorphism of sets

$$X \coprod_{Z} Y \longleftarrow Y$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow g$$

$$X \longleftarrow \qquad \qquad \downarrow \qquad \qquad \downarrow g$$

$$X \longleftarrow \qquad \qquad \downarrow g$$

$$X \coprod_Z Y \cong Y \coprod_Z X$$

3.5 Coequalisers 35

00BM

5. Interaction With Coproducts. We have

$$X \coprod_{\mathsf{pt}} Y \cong X \vee Y,$$

$$X \bigvee_{\mathsf{r}} Y \longleftarrow_{\mathsf{r}} Y$$

$$X \longleftarrow_{\mathsf{r}} y_{0}$$

$$X \longleftarrow_{\mathsf{r}} \mathsf{pt}.$$

00BN

6. Symmetric Monoidality. The triple (Sets_{*}, \coprod_X , (X, x_0)) is a symmetric monoidal category.

00BP 3.5 Coequalisers

Let $f, g: (X, x_0) \Rightarrow (Y, y_0)$ be morphisms of pointed sets.

00BQ

DEFINITION 3.5.1 ► COEQUALISERS OF POINTED SETS

The **coequaliser of** (f, q) is the pointed set $(CoEq(f, q), [y_0])$.

PROOF 3.5.2 ► PROOF OF DEFINITION 3.5.1

We claim that $(CoEq(f,g),[y_0])$ is the categorical coequaliser of f and g in Sets $_*$. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

$$coeq(f,g) \circ f = coeq(f,g) \circ g.$$

Indeed, we have

$$[\operatorname{coeq}(f,g) \circ f](x) \stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](f(x))$$

$$\stackrel{\text{def}}{=} [f(x)]$$

$$= [g(x)]$$

$$\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](g(x))$$

$$\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g) \circ g](x)$$

for each $x \in X$. Next, we prove that $\operatorname{CoEq}(f,g)$ satisfies the universal property of the coequaliser. Suppose we have a diagram of the form

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{\operatorname{coeq}(f,g)} (\operatorname{CoEq}(f,g), [y_0])$$

$$(C, *)$$

in Sets. Then, since c(f(a))=c(g(a)) for each $a\in A$, it follows from Equivalence Relations and Apartness Relations, Items 4 and 5 of Proposition 5.2.3 that there exists a unique map $\phi\colon \mathsf{CoEq}(f,g) \stackrel{\exists!}{\longrightarrow} C$ making the diagram

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{\operatorname{coeq}(f,g)} (\operatorname{CoEq}(f,g), [y_0])$$

$$\downarrow c \qquad \qquad \downarrow \phi \mid \exists ! \qquad \qquad \downarrow (C, *)$$

commute, where we note that ϕ is indeed a morphism of pointed sets since

$$\phi([y_0]) = [\phi \circ \operatorname{coeq}(f, g)]([y_0])$$

$$= c([y_0])$$

$$= *.$$

where we have used that c is a morphism of pointed sets.

00BR

PROPOSITION 3.5.3 ► PROPERTIES OF COEQUALISERS OF POINTED SETS

Let (X, x_0) and (Y, y_0) be pointed sets and let $f, g, h: (X, x_0) \to (Y, y_0)$ be morphisms of pointed sets.

00BS

1. Associativity. We have isomorphisms of pointed sets

$$\underbrace{\mathsf{CoEq}(\mathsf{coeq}(f,g) \circ f, \mathsf{coeq}(f,g) \circ h)}_{=\mathsf{CoEq}(\mathsf{coeq}(f,g) \circ g, \mathsf{coeq}(f,g) \circ h)} \cong \mathsf{CoEq}(f,g,h) \cong \underbrace{\mathsf{CoEq}(\mathsf{coeq}(g,h) \circ f, \mathsf{coeq}(g,h) \circ g, \mathsf{coeq}(g,h) \circ h)}_{=\mathsf{CoEq}(\mathsf{coeq}(g,h) \circ f, \mathsf{coeq}(g,h) \circ h)}$$

where CoEq(f, g, h) is the colimit of the diagram

$$(X, x_0) \xrightarrow{f} (Y, y_0)$$

in Sets*.

00BT

2. Unitality. We have an isomorphism of pointed sets

$$CoEq(f, f) \cong B$$
.

00BU

3. Commutativity. We have an isomorphism of pointed sets

$$CoEq(f,g) \cong CoEq(g,f)$$
.

PROOF 3.5.4 ► PROOF OF PROPOSITION 3.5.3

Item 1: Associativity

This follows from Constructions With Sets, Item 1 of Proposition 2.5.6.

Item 2: Unitality

This follows from Constructions With Sets, Item 2 of Proposition 2.5.6.

Item 3: Commutativity

This follows from Constructions With Sets, Item 3 of Proposition 2.5.6.

00BV 4 Constructions With Pointed Sets

00BW 4.1 Free Pointed Sets

Let *X* be a set.

00BX

DEFINITION 4.1.1 ► FREE POINTED SETS

The **free pointed set on** X is the pointed set X^+ consisting of:

• The Underlying Set. The set X^+ defined by 1

$$X^+ \stackrel{\text{def}}{=} X \coprod \text{pt}$$
 $\stackrel{\text{def}}{=} X \coprod \{ \star \}.$

• The Basepoint. The element \star of X^+ .

00BY

PROPOSITION 4.1.2 ► PROPERTIES OF FREE POINTED SETS

Let X be a set.

00BZ

1. Functoriality. The assignment $X \mapsto X^+$ defines a functor

$$(-)^+$$
: Sets \rightarrow Sets_{*},

where

· Action on Objects. For each $X \in \mathsf{Obj}(\mathsf{Sets})$, we have

$$\left[(-)^+ \right] (X) \stackrel{\text{def}}{=} X^+,$$

where X^+ is the pointed set of Definition 4.1.1;

¹ Further Notation: We sometimes write \star_X for the basepoint of X^+ for clarity when there are multiple free pointed sets involved in the current discussion.

· Action on Morphisms. For each morphism $f: X \to Y$ of Sets, the image

$$f^+\colon X^+\to Y^+$$

of f by $(-)^+$ is the map of pointed sets defined by

$$f^+(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in X, \\ \star_Y & \text{if } x = \star_X. \end{cases}$$

2. Adjointness. We have an adjunction

$$((-)^+ \dashv \overline{\bowtie}): \operatorname{Sets}_{\underbrace{\stackrel{(-)^+}{\not \bowtie}}} \operatorname{Sets}_*,$$

witnessed by a bijection of sets

$$\mathsf{Sets}_*((X^+, \star_X), (Y, y_0)) \cong \mathsf{Sets}(X, Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$.

3. Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)^+,(-)^{+,\coprod},(-)^{+,\coprod}_{\mathbb{1}}\right)\colon(\mathsf{Sets},\coprod,\emptyset)\to(\mathsf{Sets}_*,\vee,\mathsf{pt}),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\coprod}: X^{+} \vee Y^{+} \xrightarrow{\cong} (X \coprod Y)^{+},$$
$$(-)_{1}^{+,\coprod}: \operatorname{pt} \xrightarrow{\cong} \emptyset^{+},$$

natural in $X, Y \in Obj(Sets)$.

4. Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item1 has a symmetric strong monoidal structure

$$((-)^+, (-)^{+,\times}, (-)^{+,\times}_1) \colon (\mathsf{Sets}, \mathsf{x}, \mathsf{pt}) \to (\mathsf{Sets}_*, \wedge, S^0),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\times} \colon X^+ \wedge Y^+ \xrightarrow{\cong} (X \times Y)^+,$$
$$(-)_{1}^{+,\times} \colon S^0 \xrightarrow{\cong} \mathsf{pt}^+,$$

natural in $X, Y \in Obj(Sets)$.

00C0

00C1

00C2

PROOF 4.1.3 ► PROOF OF PROPOSITION 4.1.2

Item 1: Functoriality

Clear.

Item 2: Adjointness

We claim there's an adjunction $(-)^+$ ¬ $\bar{\Sigma}$, witnessed by a bijection of sets

$$\mathsf{Sets}_*((X^+, \star_X), (Y, y_0)) \cong \mathsf{Sets}(X, Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$.

· Map I. We define a map

$$\Phi_{X,Y} \colon \mathsf{Sets}_*((X^+, \star_X), (Y, y_0)) \to \mathsf{Sets}(X, Y)$$

by sending a pointed function

$$\xi \colon (X^+, \star_X) \to (Y, y_0)$$

to the function

$$\xi^{\dagger} \colon X \to Y$$

given by

$$\xi^{\dagger}(x) \stackrel{\text{def}}{=} \xi(x)$$

for each $x \in X$.

· Map II. We define a map

$$\Psi_{X,Y} \colon \mathsf{Sets}(X,Y) \to \mathsf{Sets}_*((X^+, \star_X), (Y, y_0))$$

given by sending a function $\xi \colon X \to Y$ to the pointed function

$$\xi^{\dagger} \colon \left(X^{+}, \star_{X} \right) \to \left(Y, y_{0} \right)$$

defined by

$$\xi^{\dagger}(x) \stackrel{\text{def}}{=} \begin{cases} \xi(x) & \text{if } x \in X, \\ y_0 & \text{if } x = \star_X \end{cases}$$

for each $x \in X^+$.

4.1 Free Pointed Sets 41

· Invertibility I. We claim that

$$\Psi_{X,Y} \circ \Phi_{X,Y} = \mathsf{id}_{\mathsf{Sets}_*((X^+, \star_X), (Y, y_0))},$$

which is clear.

· Invertibility II. We claim that

$$\Phi_{X,Y} \circ \Psi_{X,Y} = \mathsf{id}_{\mathsf{Sets}(X,Y)},$$

which is clear.

· Naturality for Φ , Part I. We need to show that, given a pointed function $g\colon (Y,y_0)\to (Y',y_0')$, the diagram

$$\mathsf{Sets}_*((X^+, \bigstar_X), (Y, y_0)) \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X, Y)$$

$$\downarrow^{g_*} \qquad \qquad \downarrow^{g_*}$$

$$\mathsf{Sets}_*((X^+, \bigstar_X), (Y', y_0')), \xrightarrow{\Phi_{X,Y'}} \mathsf{Sets}(X, Y')$$

commutes. Indeed, given a pointed function

$$\xi^{\dagger} \colon (X^+, \star_X) \to (Y, y_0)$$

we have

$$\begin{split} \big[\Phi_{X,Y'} \circ g_* \big] (\xi) &= \Phi_{X,Y'} (g_*(\xi)) \\ &= \Phi_{X,Y'} (g \circ \xi) \\ &= g \circ \xi \\ &= g \circ \Phi_{X,Y'} (\xi) \\ &= g_* \big(\Phi_{X,Y'} (\xi) \big) \\ &= \big[g_* \circ \Phi_{X,Y'} \big] (\xi). \end{split}$$

· Naturality for Φ , Part II. We need to show that, given a pointed function

4.1 Free Pointed Sets

$$f: (X, x_0) \rightarrow (X', x_0')$$
, the diagram

$$\begin{split} \mathsf{Sets}_* \Big(\Big(X^{',+}, \bigstar_X \Big), (Y, y_0) \Big) & \xrightarrow{\Phi_{X',Y}} \mathsf{Sets}(X', Y) \\ f^* \Big\downarrow & & \downarrow f^* \\ \mathsf{Sets}_* ((X^+, \bigstar_X), (Y, y_0)) & \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X, Y) \end{split}$$

commutes. Indeed, given a function

$$\xi \colon X' \to Y$$
,

we have

$$\begin{aligned} \left[\Phi_{X,Y} \circ f^*\right](\xi) &= \Phi_{X,Y}(f^*(\xi)) \\ &= \Phi_{X,Y}(\xi \circ f) \\ &= \xi \circ f \\ &= \Phi_{X',Y}(\xi) \circ f \\ &= f^*\left(\Phi_{X',Y}(\xi)\right) \\ &= f^*\left(\Phi_{X',Y}(\xi)\right) \\ &= \left[f^* \circ \Phi_{X',Y}\right](\xi). \end{aligned}$$

• Naturality for Ψ . Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Categories, Item 2 of Proposition 8.6.2 that Ψ is also natural in each argument.

Item 3: Symmetric Strong Monoidality With Respect to Wedge Sums

The isomorphism

$$\phi\colon X^+\vee Y^+\xrightarrow{\cong} (X\coprod Y)^+$$

is given by

$$\phi(z) = \begin{cases} x & \text{if } z = [(0, x)] \text{ with } x \in X, \\ y & \text{if } z = [(1, y)] \text{ with } y \in Y, \\ \star_{X \coprod Y} & \text{if } z = [(0, \star_X)], \\ \star_{X \coprod Y} & \text{if } z = [(1, \star_Y)] \end{cases}$$

for each $z \in X^+ \vee Y^+$, with inverse

$$\phi^{-1} \colon (X \coprod Y)^+ \xrightarrow{\cong} X^+ \lor Y^+$$

given by

$$\phi^{-1}(z) \stackrel{\text{def}}{=} \begin{cases} [(0, x)] & \text{if } z = [(0, x)], \\ [(0, y)] & \text{if } z = [(1, y)], \\ p_0 & \text{if } z = \star_{x \text{II} Y} \end{cases}$$

for each $z \in (X \coprod Y)^+$.

Meanwhile, the isomorphism pt $\cong \emptyset^+$ is given by sending \star_X to \star_{\emptyset} .

That these isomorphisms satisfy the coherence conditions making the functor $(-)^+$ symmetric strong monoidal can be directly checked element by element.

Item 4: Symmetric Strong Monoidality With Respect to Smash Products

The isomorphism

$$\phi: X^+ \wedge Y^+ \xrightarrow{\cong} (X \times Y)^+$$

is given by

$$\phi(x \land y) = \begin{cases} (x, y) & \text{if } x \neq \star_X \text{ and } y \neq \star_Y \\ \star_{X \times Y} & \text{otherwise} \end{cases}$$

for each $x \wedge y \in X^+ \wedge Y^+$, with inverse

$$\phi^{-1} \colon (X \times Y)^+ \xrightarrow{\cong} X^+ \wedge Y^+$$

given by

$$\phi^{-1}(z) \stackrel{\text{def}}{=} \begin{cases} x \wedge y & \text{if } z = (x, y) \text{ with } (x, y) \in X \times Y, \\ \star_X \wedge \star_Y & \text{if } z = \star_{X \times Y}, \end{cases}$$

for each $z \in (X \coprod Y)^+$.

Meanwhile, the isomorphism $S^0 \cong \operatorname{pt}^+$ is given by sending \star to $1 \in S^0 = \{0, 1\}$ and $\star_{\operatorname{pt}}$ to $0 \in S^0$.

That these isomorphisms satisfy the coherence conditions making the functor $(-)^+$ symmetric strong monoidal can be directly checked element by element.

Appendices A Other Chapters

References 44

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

- 5. Relations
- 6. Constructions With Relations

7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

References

[MSE 2855868] Qiaochu Yuan. Is the category of pointed sets Cartesian closed? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2855868 (cit. on p. 7).

[MSE 884460] Martin Brandenburg. Why are the category of pointed sets and the category of sets and partial functions "essentially the same"? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/884460 (cit. on p. 8).