CMSC 330: Organization of Programming Languages

Regular Expressions, Part 3

Some Definitions

- An alphabet is a finite set of symbols
 - usually denoted ∑
- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - |s| is the length of string s
 - |Hello| = 5, $|\varepsilon| = 0$
- Concatenation is indicated by juxtaposition
 - if s_1 = super and s_2 = hero, then s_1s_2 = superhero
 - sometimes also written s₁·s₂
 - for any string s, we have $s\epsilon = \epsilon s = s$

A Few Questions about Regular Expressions

- What does a regular expression represent?
 - just a set of strings
- What are the basic components of r.e.'s?
 - e.g., we saw that e+ is the same as ee*
- How are r.e.'s implemented?
 - we'll see how to turn a r.e. into a program
- Can r.e.'s represent all possible languages?
 - the answer turns out to be no!
 - the languages representable by regular expressions are called, appropriately, the regular languages

CMSC 330 2

Languages

- A language is a set of strings over an alphabet
- Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
 - Give an example element of this language
 - Are all strings over the alphabet in the language?
 - Is there a Ruby regular expression for this language?
 - Is the Ruby regular expression over the same alphabet?
- Example: The set of all strings over Σ

CMSC 330 3 CMSC 330 4

Languages (cont'd)

- Example: The set of all valid Ruby programs
 - Is there a Ruby regular expression for this language?
- Example: The set of strings of length 0 over the alphabet Σ = {a, b, c}
 - {s | s is composed of zero or more symbols of the alphabet, and |s| = 0} = {ε} ≠ ∅

CMSC 330 5

Operations on Languages (cont'd)

Define Lⁿ inductively as

$$-L^{0} = \{\epsilon\}$$

- $L^{n} = LL^{n-1}$ for $n > 0$

In other words,

$$-L^{1} = LL^{0} = L\{\epsilon\} = L$$

 $-L^{2} = LL^{1} = LL$
 $-L^{3} = LL^{2} = LLL$

– ...

Operations on Languages

- Let Σ be an alphabet and let L, L₁, L₂ be languages over Σ
- Concatenation L₁L₂ is defined as

-
$$L_1L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$$

- example: $L_1 = \{hi, bye\}, L_2 = \{1, 2\}$
• $L_1L_2 = \{hi1, hi2, bye1, bye2\}$

Union is defined as

```
- L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \}

- example: L_1 = \{ hi, bye \}, L_2 = \{ 1, 2 \}

• L_1 \cup L_2 = \{ hi, bye, 1, 2 \}
```

CMSC 330

Examples of Lⁿ

- Let L = {a, b, cd}
- Then

$$-L^0 = \{\varepsilon\}$$

$$-L^{1} = \{a, b, cd\}$$

 $-L^2 = \{aa, ab, acd, ba, bb, bcd, cda, cdb, cdcd\}$

CMSC 330 7 CMSC 330 8

Operations on Languages (cont'd)

· Kleene closure is defined as

$$- L^* = U_{i \in [0..\infty]} L^i$$

- In other words...
 - L* is the language (set of all strings) formed by concatenating together zero or more strings from L
- Example: for $L = \{a, b\}$

$$L^* = \{\epsilon, a, b, aa, ab, bb, ba, aaa, ...\}$$

CMSC 330

9

Definition of Regular Expressions

• Given an alphabet Σ , the *regular expressions* over Σ are defined as

regular expression	denotes language
Ø	Ø
3	{ε}
each element $\sigma \in \Sigma$	{σ}

- ...

CMSC 330

Definition of Regular Expressions, con't.

 Let A and B be regular expressions over Σ, denoting languages L_A and L_B, respectively

regular expression	denotes language
AB	L_AL_B
(A B)	L _A UL _B
A*	L _A *

- There are no other regular expressions for Σ
- We use ()'s as needed for grouping

Precedence

- Order in which operators are applied
 - In arithmetic
 - Multiplication × > addition +
 - $2 \times 3 + 4 = (2 \times 3) + 4 = 10$
 - In regular expressions
 - Kleene closure * > concatenation > union |
 - ab|c = (a b) | c = {"ab", "c"}
 - ab* = a (b*) = {"a", "ab", "abb"...}
 - a|b* = a | (b*) = {"a", "", "b", "bb", "bbb"...}
 - Can change order using parentheses ()
 - E.g., a(b|c), (ab)*, (a|b)*

CMSC 330 11 CMSC 330 12

The Language Denoted by an r.e.

• For a regular expression e, we will write [[e]] to mean the language denoted by e

```
- [[a]] = \{a\}
- [[(a|b)]] = \{a, b\}
```

 If s ∈ [[re]], we say that re accepts, describes, or recognizes s.

CMSC 330 13

Which strings does a*b*c* recognize?

Example 1

- All strings over $\Sigma = \{a, b, c\}$ such that all the a's are first, the b's are next, and the c's last
 - example: aaabbbbccc but not abcb
- Regular expression: a*b*c*
 - this is a valid regular expression for Σ because...
 - -a is a regular expression ([[a]] = {a})
 - $-a^*$ is a regular expression ([[a^*]] = { ϵ , a, aa, ...})
 - similarly for b* and c*
 - so a*b*c* is a regular expression

CMSC 330 14

Example 2

- All strings over $\Sigma = \{a, b, c\}$
- Regular expression: (a|b|c)*
- Are there other regular expressions that describe the same language?

```
- (c|b|a)*
```

- $-(a^*|b^*|c^*)^*$
- (a*b*c*)*
- $-((a|b|c)^*|abc)$
- etc.

CMSC 330 1

Example 3

- All whole numbers containing the substring 330
- Regular expression: (0|1|...|9)*330(0|1|...|9)*
- What if we want to rule out numbers with leading 0's?
- ((1|...|9)(0|1|...|9)*330(0|1|...|9)* | 330(0|1|...|9)*)
- Any other solutions?
- What about all whole numbers not containing the substring 330?
 - We can write an r.e. for this, but it may not be obvious yet how

CMSC 330 17

What Strings are in (10|0)*(10|1)*?

```
00101000 110111101
first part in [[(10|0)*]]
second part in [[(10|1)*]]
notice that 0010 also in [[(10|0)*]]
But the remainder of the string is not in [[(10|1)*]]
0010101
yes
101
yes
011001
no
```

Example 4

- What language does (10|0)*(10|1)* denote?
 - $-(10|0)^*$
 - 0 may appear anywhere
 - 1 must always be followed by 0
 - so adjacent 1's aren't possible
 - $-(10|1)^*$
 - 1 may appear anywhere
 - 0 must always be preceded by 1
 - so adjacent 0's aren't possible
 - put together, all strings of 0's and 1's where every pair of adjacent 0's precedes any pair of adjacent 1's

CMSC 330 18

Example 5

- What language does this regular expression recognize?
 - $-((1|\epsilon)(0|1|...|9) | (2(0|1|2|3))) : (0|1|...|5)(0|1|...|9)$
- All valid times written in 24-hour format
 - -10:17
 - -23:59
 - -0:45
 - -8:30

CMSC 330

Two More Examples

- (000|00|1)*
 - any string of 0's and 1's with no single 0's
- (00|0000)*
 - strings with an even number of 0's
 - notice that some strings can be accepted more than one way
 - 000000 = 00.00.00 = 00.0000 = 0000.00

CMSC 330

21

Ruby Regular Expressions

- Almost all of the features we've seen for Ruby r.e.'s can be reduced to this formal definition
 - /Ruby/ concatenation of single-character r.e.'s
 - /(Ruby|Regular)/ union
 - /(Ruby)*/ Kleene closure
 - /(Ruby)+/ same as (Ruby)(Ruby)*
 - -/(Ruby)?/-same as $(\varepsilon|(Ruby))$ (// is ε)
 - -/[a-z]/- same as (a|b|c|...|z)
 - / [^0-9]/ − same as (a|b|c|...) for a,b,c,... ∈ Σ {0..9}

Regular Languages

- The languages that can be described using regular expressions are the regular languages or regular sets
- Not all languages are regular
 - examples (without proof):
 - the set of palindromes over Σ
 - $\{a^nb^n \mid n > 0\}$ $\{a^n = \text{sequence of n a's}\}$
- Almost all programming languages are not regular
 - but aspects of them sometimes are (e.g., identifiers)
 - regular expressions are commonly used in parsing tools

CMSC 330 22

CMSC 330