Lecture 15 Sampling Distribution And The Central Limit Theorem

BIO210 Biostatistics

Xi Chen

Spring, 2024

School of Life Sciences
Southern University of Science and Technology

Use Sample Statistics To Estimate Population Parameters

The scenario: we draw a sample of size n from the population. We observe the sample mean is \bar{x} and the sample variance is s^2 . We want to answer the following type of questions:

- If the population mean were μ_0 :
 - what would be the probability of observing a sample of size n with a mean of \bar{x} ?
 - what would be the probability of observing a sample of size n with a mean falling into [a,b]?
- If the population variance were σ_0^2 :
 - what would be the probability of observing a sample of size n with a variance of s^2 ?
 - what would be the probability of observing a sample of size n with a variance of [a,b]?

Intuition of Sampling Distribution

Intuition of Sampling Distribution

100 plates (samples)

Intuition of Sampling Distribution

Sampling Distribution of The Sample Mean

Sampling distribution of the sample mean

i.i.d. Random Variables

 $X_1, X_2, ..., X_n$ are independent and identically distributed (i.i.d.) random variables.

$$egin{aligned} oldsymbol{X}_1 &\sim \mathcal{D}(\mu, \sigma^2) \ oldsymbol{X}_2 &\sim \mathcal{D}(\mu, \sigma^2) \ oldsymbol{X}_3 &\sim \mathcal{D}(\mu, \sigma^2) \ &dots \ oldsymbol{X}_{n-1} &\sim \mathcal{D}(\mu, \sigma^2) \end{aligned}$$

$$ar{m{X}} \sim ?(?,?)$$

 $X_n \sim \mathcal{D}(\mu, \sigma^2)$

The Central Limit Theorem

By Pierre Simon de Laplace in 1810.

Theorem

The sampling distribution of the sample mean of n independent and identically distributed (i.i.d.) random variables is approximately normal, even if original variables themselves are not normally distributed, provided that n is large enough.

$$ar{m{X}} \stackrel{.}{\sim} \mathcal{N}(\mu_{ar{m{X}}}, \sigma_{ar{m{X}}}^2), \text{ where } \mu_{ar{m{X}}} = \mu, \sigma_{ar{m{X}}}^2 = rac{\sigma^2}{n}$$

$$\sigma_{ar{X}} = \frac{\sigma}{\sqrt{n}}$$
: standard error.

The Central Limit Theorem

$$n = 2$$

$$n = 5$$

$$n = 15$$

$$n = 30$$

Three Distributions

Practice: Pou5f1 Expression

Based on the previous research, the expression of Pou5f1 in all ES cells follow a normal distribution with $\mu=3$ and $\sigma^2=4^2$.

Estimation

Use info. from the sample to do a point estimation

Population parameter μ, σ^2

Sample statistics \bar{x}, s^2

Estimator

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Estimate

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

11/12

Unbiased Estimator

We say the following estimators are unbiased estimators:

$$ar{X} = rac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = rac{1}{n-1} \sum_{i=1}^{n} (X_i - ar{X})^2$

Because:

$$\mathbb{E}\left[\bar{\boldsymbol{X}}\right] = \mu$$
$$\mathbb{E}\left[\boldsymbol{S}^2\right] = \sigma^2$$