Experiment 5: Programmable ALU

Digital Systems and Microcontrollers | Monsoon 2024

1 Objective

To design an Arithmetic and Logic Unit (ALU) capable of performing 8 Arithmetic/Logic functions on 1-bit operands, as listed in Fig. 1.

F ₂ F ₁ F ₀	ALU Function	Y ₁	Yo
000	0 (Zero)	17.0	0
001	A OR B	-	A + B
010	A AND B		A • B
011	A EXOR B	-	A⊕B
100	A PLUS B	Carry	Sum
101	A MINUS B	Borrow	Difference
110	A PLUS B PLUS C	Carry	Sum
111	A MINUS B MINUS C	Borrow	Difference

Figure 1: ALU Function Table

Note that the first 4 functions are Logic functions generate 1-bit output Y_0 , while the last four are Arithmetic functions generate 2-bit output Y_1Y_0 .

2 Experiment

- 1. The final ALU output bits Y_0 and Y_1 will be generated by the two 8-input multiplexers referred to as MUX_0 and MUX_1 respectively. The required data, select and output enable inputs of MUX_0 and MUX_1 are shown in Fig. 2.
- 2. Note that MUX_0 is always enabled, while MUX_1 is enabled only when $F_2 = 1$, i.e. for Arithmetic functions only. This is because Y_1 is required only to provide the CARRY/BORROW output for Arithmetic functions.
- 3. Verify theoretically that MUX_0 and MUX_1 do generate the outputs Y_0 and Y_1 as required by Fig. 1.
- 4. Given a circuit with two 8:1 MUX, design the ALU according to the circuit diag. given in fig. 2.

Figure 2: ALU Function Table

- 5. Give F_0 , F_1 , F_2 ,A,B, and C as input from an arduino.
- 6. Apply all the combinations of the Function select inputs $F_2F_1F_0$ one by one and tabulate the observed outputs Y_0 and Y_1 for as many combinations of the data inputs A, B, C as possible. Verify that the tabulated results conform to the ALU functions given in Fig. 1.

3 Given Circuit

A circuit with two 8:1 MUX is provided to you. Tinkercad link of the circuit is here. Click on the 'Copy and Tinker' button and start using the circuit.

Figure 3: Two 8:1 MUX circuit

Fig. 4 below is the lowest breadboard of the MUX. This is the breadboard where you will be providing the select lines and the inputs to the MUX.

- 1. $a_1 \dots a_8$ in the breadboard correspond to $I_0 \dots I_7$ of the MUX.
- 2. $f_1 ... f_3$ in the breadboard correspond to $S_0 ... S_2$ of the MUX.
- 3. a_{12} correspond to the enable(EN) for the MUX.
- 4. The led correspond to the output of the MUX.
- 5. Remember to provide power supply form the Arduino to the MUX.

Figure 4: Two 8:1 MUX circuit