Devoir surveillé n° 05 - Remarques

Barème.

- Calculs : chaque question sur 2 points, total sur 28 points, ramené sur 5 points.
- Exercice de TD et problèmes : chaque question sur 4 points, total sur 96 points (v1) et 92 points (v2), ramené sur 15 points.

Statistiques descriptives.

	Calculs	Problème v1	Problème v2	Note finale
Note maximale	24	46	58	18
Note minimale	9	14	5	5
Moyenne	≈ 16	$\approx 30,29$	$\approx 28,57$	$\approx 10,5$
Écart-type	$\approx 3,57$	$\approx 9,81$	$\approx 12,88$	$\approx 3,29$

Exercice vu en TD.

La question 1) a été très bien traitée. Dans la 2), le sens indirect a donné lieu a des démos alambiquées alors que c'était immédiat. Dans le sens direct, une erreur a été souvent commise : montrer que « $\forall x \in H, y \in K, x \in K$ ou $y \in H$ » ne suffit pas à montrer « ($\forall x \in H, x \in K$) ou ($\forall y \in K, x \in H$).

Un résultat de croissances comparées.

Une limite de suite est une constante, donc il ne peut pas y avoir de n dans la limite! Idem pour une limite de fonction, qui ne peut pas dépendre de x.

J'ai encore rencontré beaucoup de récurrences de la forme : (H_k) : « $\forall k \in \mathbb{N}, \ldots$ » : c'est 0 directement à la question.

- **1.** C'était tout simplement la définition de limite, avec un petite subtilité : on voulait p_n dans \mathbb{N} .
- **2.** f(x+1) ne peut pas être utilisé comme majorant : ce n'est pas une constante! Il fallait absolument citer le mot magique : **SEGMENT!** Sans ça, pas de point.
- **5.** On voulait une inégalité stricte (même si ça ne servait à rien pour la suite, le sujet était comme ça ...).
- **6.** Un paquet d'arnaques et d'imprécisions : ici $x \ge p_n + K_n$, et pour utiliser la question précédente, il fallait une variable $y \ge p_n$, et c'est y + k qui intervenait dans l'inégalité. Il fallait donc introduire x, poser $y = x K_n$, vérifier que $y \ge p_n$, et appliquer les résultats précédents. Introduire d'abord y et ensuite x est une faute de logique.

- 7. Impossible d'utiliser le théorème des gendarmes! Au milieu on a une fonction dépendant de x, aux bornes on a des suites dépendant de n.
- **9.** $f(1+\frac{1}{x}) \to f(1)$ doit être justifié par le fait que f est continue en 1 (vu et revu lourdement en cours 10^{42} fois ...).

Étude d'une suite définie par récurrence.

1 Une suite s'écrit (u_n) avec des **parenthèses**!!!!

- 1. Étude de suite récurrente on ne peut plus classique et élémentaire. Les arguments sont donnés n'importe comment, dans le désordre, partiellement ... Rappel :
 - 1) p est stable par f donc tous les termes de (u_n) sont positifs.
 - 2) f est croissante sur \mathbb{R}_+ donc (u_n) est monotone.
 - 3) $u_1 > u_0$ donc (u_n) est croissante.
 - 4) D'après le théorème de la limite monotone, (u_n) a une limite.
 - 5) On cherche les points fixes de f (remarque : ce n'est que le 5ème point, il est anormal de commencer par ça), 0 est le seul point fixe.
 - 6) Comme pour tout n, $0 < u_0 < u_n$, (u_n) ne peut pas tendre vers 0, donc elle n'a pas de limite finie, donc comme elle a quand même une limite, cette limite est $+\infty$.

Toute autre démonstration a de grandes chances d'être fausse, mis à part qu'ici on pouvait montrer que (u_n) était croissante plus directement car $u_{n+1} - u_n = u_n^2 \ge 0$, et aller ainsi plus vite pour les 3 premiers points.

On rappelle enfin qu'une suite qui ne converge pas ne tend pas forcément vers $+\infty$: elle peut aussi ne pas avoir de limite du tout!

- **2.c** $v_{n+1} v_n \to 0$ ne prouve pas que (v_n) converge! On a fait une question là-dessus dans le vrai / faux de la feuille de TD sur les suites (ex : $(\ln(n+1))$ ou (\sqrt{n})).
- **4.c** Il fallait montrer que $\alpha^{2^n} + 1 \leq u_n < \alpha^{2^n} + 1$ avec une inégalité stricte dans la partie de droite! Et il fallait aussi montrer que $u_n \in \mathbb{N}$.

Le théorème de Šarkovskii.

- **2.a** Beaucoup ont posé $K = \{x\}$, ont expliqué qu'il existait $y \in J$ tel que x = f(y) ... et ont conclu! Donc ma question est : il est où L???? Il suffisait de poser $L = \{y\}$, mais encore fallait-il le faire!
- **2.b** Hallucinant : les 3/4 des élèves ont utilisé un raisonnement fumeux et le TVI juste pour montrer que si $\alpha \in f(J)$ il a un antécédent dans J.
- 2.c L'arnaque de base : on utilise le théorème de la borne inférieure et on en conclut qu'il y a un min. Ce n'est pas le théorème du minimum, ce n'est pourtant pas dur de se souvenir du résultat quand un théorème s'appelle théorème de la borne inférieure! Cetains ont vu qu'il y avait un petit quelque chose à dire et ont pondu une escroquerie du genre c'est une borne inférieure, mais bon, là, forcément, c'est un minimum. Et tout « l'argument » tenait dans ce « forcément ».