Hierarchical clustering

Hongning Wang CS@UVa

Today's lecture

- Hierarchical clustering algorithm
 - Bottom-up: agglomerative
 - Distance between clusters
 - Complexity analysis

Hierarchical clustering

 Build a tree-based hierarchical taxonomy from a set of instances

Dendrogram – a useful tool to summarize

CS@UVa

Agglomerative hierarchical clustering

Pairwise distance metric between instances

ā	Captain America	Superman	Spiderman	Ironnan	Supergirl	Invisible Woman	Elektra
Captain America	0	1	2	2	3	3	4
Superman		0	2	2	3	3	4
Spiderman			0	2	3	3	4
				0	3	4	4
Ironman					0	2	3
Superg						0	2
misible Woman Elektra							0

Agglomerative hierarchical clustering

- 1. Every instance is in its own cluster when initialized
- 2. Repeat until one cluster left Enumerate all the possibilities!
 - 1. Find the best pair of clusters to merge and break the tie arbitrarily

Distance measure between clusters

Single link

 Cluster distance = distance of two closest members between the clusters

$$-d(c_i,c_j) = \min_{x_n \in c_i, x_m \in c_j} d(x_n,x_m)$$
 Tend to generate scattered clusters

Distance measure between clusters

Complete link

 Cluster distance = distance of two farthest members between the clusters

$$-d(c_i, c_j) = \max_{x_n \in c_i, x_m \in c_j} d(x_n, x_m)$$
 Tend to generate tight clusters

Distance measure between clusters

- Average link
 - Cluster distance = average distance of all pairs of members between the clusters

CS 6501: Text Mining

Agglomerative hierarchical clustering

- Every instance is in its own cluster when initialized
- 2. Repeat until one cluster left
 - 1. Find the best pair of clusters to merge and break the tie arbitrarily

å			<u>L</u>	3	1	lands.	Email Control
Capata America	0	1	2	2	3	3	4
No.		0	2	2	3	3	4
E 1			0	2	3	3	4
				0	3	4	4
					0	2	3
Sarra 🗳						0	2
							0

Complexity analysis

- In step one, compute similarity between all pairs of n individual instances $O(n^2)$
- In the following n-2 steps
 - It could be $O(n^2 \log n)$ or even $O(n^3)$ (naïve implementation)

In k-means, we have O(knl), a much faster algorithm

Comparisons

- Hierarchical clustering
 - Efficiency: $O(n^3)$, slow
- Assumptions
 - No assumption
 - Only need distance metric
- Output
 - Dendrogram, a tree

- k-means clustering
 - Efficiency: O(knl), fast
- Assumptions
 - Strong assumption centroid, latent cluster membership
 - Need to specify k
- Output
 - k clusters

How to get final clusters?

- If k is specified, find a cut that generates k clusters
 - Since every time we only merge 2 clusters, such cut must exist
- If k is not specified, use the same strategy as in k-means
 - Cross validation with internal or external validation

What you should know

- Agglomerative hierarchical clustering
 - Three types of linkage function
 - Single link, complete link and average link
 - Comparison with k-means

Today's reading

- Introduction to Information Retrieval
 - Chapter 17: Hierarchical clustering
 - 17.1 Hierarchical agglomerative clustering
 - 17.2 Single-link and complete-link clustering
 - 17.3 Group-average agglomerative clustering
 - 17.5 Optimality of HAC