Лабораторна робота

з дисципліни «Алгоритмізація та програмування» № 7

Тема: Програмне опрацювання двовимірних масивів

Мета роботи: Вивчити засоби мови C++ для оголошення та ініціалізації статичних двовимірних масивів, звернення до їх елементів, введення масивів з клавіатури, генерування випадкових значень елементів та виведення їх на екран.

Теоретичні відомості

Macus — це скінчена іменована область пам'яті, в якій зберігається група однотипних величин.

Основними відмінностями масива від звичайних змінних є:

- спільне ім 'я для всіх значень;
- доступ до певного значення за його індексом;
- можливість опрацювання значень у циклі.

Кожен індекс масива повинен записуватися в окремих квадратних дужках []. Для зручного зберігання даних часто недостатнью однієї вимірності масиву, тоді використовують багатовимірні масиви. Кількість індексів у масивах необмежена, тому можна створювати масиви різної вимірності.

Розглянемо особливості двовимірних масивів. Елементи двовимірного масиву (матриці, таблиці) мають два індекси: перший – номер рядка, а другий – номер стовпчика.

Оголошення двовимірного масива має такий вигляд:

```
<тип даних> <ім'я масива> [<к-ть рядків>] [<к-ть стовпчиків>];
```

Кількість елементів масива дорівнює добутку кількості елементів масива за кожним індексом.

Для доступу до елементів двовимірного масива використовують одну з таких форм доступу:

індексну:

```
<iм'я_масива>[<індекс_рядка>] [<індекс_стовпчика>]
```

адресну (вказівникову) – переважно використовується у функціях:

```
*(<im'я_масива> + <iндекс_рядка> * <кількість_стовпчиків> + <iндекс стовпчика>)
```

Ініціалізація двовимірного масиву можлива двома способами

1) матриця розглядається як *вектор векторів*, і значення елементів кожного вектора записуємо у фігурних дужках {}; при цьому кількість елементів для першої

(лівої) розмірності можна не вказувати:

```
int m[][2] = { {1,1},{0,2},{1,0} };
afo
int m[3][2] = { {1,1},{0,2},{1,0} };
```

2) матрицю трактуємо як *одновимірний масив* (утворений із рядків матриці, записаних послідовно один за одним); вказуємо загальний перелік елементів у тому порядку, в якому вони розміщені в пам'яті:

```
int m[3][2] = \{ 1,1,0,2,1,0 \};
```

Введення двовимірних масивів

Введення-виведення значень елементів масива можна виконувати лише поелементно. Для цього потрібно організувати цикли, в яких значення індексів елементів будуть змінюватися послідовно.

• Введення елементів масива з клавіатури:

• Введення масива за допомогою генератора випадкових чисел:

Виведення двовимірних масивів

• Виведення елементів масива, розділених символом табуляції, по рядках

```
for (int i = 0; i < n; i++)
{
    for (int j = 0; j < m; j++)
    {
       cout << "a[" << i << "," << j << "]=" << matrix[i][j] << "\t";
    }
    cout << endl;
}</pre>
```

```
Microsoft Visual Studio Debug Console
                                                              П
                                                                    X
a[0,0]=17
                a[0,1]=6
                                 a[0,2]=11
                                                   a[0,3]=19
a[1,0]=6
                a[1,1]=9
                                 a[1,2]=19
                                                   a[1,3]=12
a[2,0]=19
                a[2,1]=7
                                 a[2,2]=15
                                                   a[2,3]=7
D:\my work\test ap\x64\Debug\test ap.exe (process 16844) exited w
ith code 0.
Press any key to close this window . . .
```

• Виведення елементів масива по рядках за допомогою встановлення ширини

```
Select Microsoft Visual Studio Debug Console

a[0][0]=12 a[0][1]= 8 a[0][2]= 8 a[0][3]=10 a[1][0]=18 a[1][1]=15 a[1][2]= 9 a[1][3]= 6 a[2][0]=20 a[2][1]= 8 a[2][2]= 7 a[2][3]=13
```

Передавання масивів у функцію

Якщо масив передається у функцію, то передається адреса його першого елемента. Тому масив завжди передається за адресою, а не за значенням. При цьому інформація про кількість елементів масиву — втрачається, і тому кількість елементів за кожним виміром потрібно передавати за допомогою окремих параметрів:

```
int sum(const int* a, const int rowCount, const int colCount) { ... }
Moжна передавати масив, вказуючи кількість рядків і стовбців одразу
int sumArr(const int arr[4][5]);
```

Однак, такий спосіб ϵ непрактичний.

Завдання 1

- 1. Написати програму для виконання певних дій над статичним двовимірним масивом. Алгоритм формування початкового масиву реалізувати двома способами: <u>за допомогою введення даних з клавіатури та випадкової генерації чисел</u>. Кожний спосіб реалізувати окремою функцією.
- 2. Вивести на екран елементи початкового масиву. Якщо є кілька початкових масивів, то вивести усі. Якщо масив був змінений, то вивести модифікований масив.
- 3. Введення даних, виведення даних і виконання певних дій над масивом потрібно реалізувати в окремих функціях. У головній програмі потрібно виконувати лише їхній виклик. Введення-виведення даних супроводжувати відповідними повідомленнями.
- 4. Використання глобальних змінних у підпрограмах не допускається. Інформація у підпрограми повинна передаватися лише за допомогою параметрів.
- 5. Побудувати блок-схему алгоритму програми та функції, що виконує вказані дії над масивом.

Варіант 1

Обчислити суму кожних двох сусідніх елементів заданого рядка масиву

Варіант 2

Обчислити найбільший серед від'ємних елементів заданого рядка масиву

Варіант 3

Обчислити кількість непарних елементів масиву, кратних 3

Варіант 4

Обчислити найменший елемент масиву і відняти його від усіх елементів масиву.

Варіант 5

Обчислити суму елементів заданого рядка масиву, які більші за введене число

Варіант 6

Обчислити найменший непарний елемент масиву.

Варіант 7

Обчислити добуток додатних елементів заданого стовпчика масиву.

Варіант 8

Обчислити суму додатних парних елементів масиву

Варіант 9

Замінити всі від'ємні елементи масиву нулями

Варіант 10

Визначити кількість нульових елементів масиву.

Варіант 11

Обчислити середнє арифметичне додатних елементів масиву

Варіант 12

Обчислити суму елементів заданого рядка масиву, розміщених через один елемент, починаючи з першого

Варіант 13

Обчислити кількість невід'ємних елементів масиву

Варіант 14

Замінити найменший елемент головної діагоналі масиву нулем

Варіант 15

Зменшити всі елементи масиву, більші за число К, на 10.

Варіант 16

Обчислити суму елементів парних рядків масиву

Варіант 17

Замінити найбільший елемент заданого стовпчика масиву нулем

Варіант 18

Обчислити найбільший елемент масиву і додати його до усіх елементів масиву.

Варіант 19

Замінити всі додатні елементи заданого рядка масиву одиницями

Варіант 20

Поміняти місцями найменший елемент масиву з його останнім елементом.

Завдання 2

- 1. Написати програму для виконання певних дій над статичним двовимірним масивом. Введення даних, виведення даних і виконання певних дій над масивом потрібно реалізувати в окремих функціях. У головній програмі потрібно виконувати лише їхній виклик. Введення-виведення даних супроводжувати відповідними повідомленнями. Якщо масив був змінений, то вивести модифікований масив.
- 2. Використання глобальних змінних у підпрограмах не допускається. Інформація у підпрограми повинна передаватися лише за допомогою параметрів.
- 3. Побудувати блок-схему алгоритму програми та функції, що виконує вказані дії над масивом.

Варіант 1

Визначити, чи квадратна матриця цілих чисел симетрична відносно головної діагоналі.

Варіант 2

Знайти суму елементів квадратної матриці дійсних чисел, які знаходяться нижче бічної діагоналі.

Варіант 3

Знайти максимальний елемент квадратної матриці дійсних чисел серед елементів, які знаходяться нижче бічної діагоналі.

Варіант 4

Визначити, чи квадратна матриця цілих чисел симетрична відносно бічної діагоналі.

Варіант 5

Знайти максимальні елементи в кожному стовпчику прямокутної матриці дійсних чисел і записати їх в окремий одновимірний масив.

Варіант 6

Знайти максимальні елементи в кожному рядку прямокутної матриці дійсних чисел і записати їх в окремий одновимірний масив.

Варіант 7

Поміняти місцями мінімальний та максимальний елементи (вважати, що такі елементи єдині) прямокутної матриці дійсних чисел.

Варіант 8

Знайти мінімальний елемент квадратної матриці дійсних чисел серед елементів, які знаходяться нижче головної діагоналі.

Варіант 9

Поміняти місцями два рядки прямокутної матриці дійсних чисел з найбільшою і найменшою сумою елементів.

Варіант 10

Знайти мінімальні елементи в кожному рядку прямокутної матриці дійсних чисел і записати їх в окремий одновимірний масив.

Варіант 11

Вилучити з прямокутної матриці цілих чисел рядок і стовпчик, на перетині яких знаходиться максимальний елемент.

Варіант 12

Визначити кількості повторень значень елементів прямокутної матриці цілих чисел.

Варіант 13

Визначити кількість різних елементів прямокутної матриці цілих чисел (елементи, що повторюються рахуються один раз).

Варіант 14

Вилучити з прямокутної матриці дійсних чисел рядок з мінімальним значенням добутку усіх його елементів.

Варіант 15

Відсортувати кожний стовпчик прямокутної матриці дійсних чисел за спаданням значень елементів.

Варіант 16

Відсортувати кожний рядок прямокутної матриці дійсних чисел за зростанням значень елементів.

Варіант 17

Вилучити з прямокутної матриці дійсних чисел стовпчик з найбільшою сумою елементів

Варіант 18

Елементи квадратної матриці цілих чисел, які не належать відрізку [a,b] записати в окремий вектор. Межі інтервалу ввести з клавіатури

Варіант 19

Визначити, чи квадратна матриця цілих чисел ϵ магічним квадратом, для якого суми елементів кожного рядка і стовпчика ϵ однаковими.

Варіант 20

Вилучити з прямокутної матриці дійсних чисел рядок з мінімальним значенням суми усіх його елементів.