Cvičenie č. 8

Magnetická levitácia

Cieľom zadania je analýza dynamických vlastností modelu magnetickej levitácie pri zmene parametrov PID regulátora.

Model magnetickej levitácie ukazuje problematiku riadenia spojenú s nelineárnymi nestabilnými systémami. Skladá sa z cievky a levitujúcej guľôčky v magnetickom poli. Poloha guličky v magnetickom poli je snímaná pomocou lineárneho indukčného snímača pripojeného do A/D prevodníka. Cievka ovládajúca veľkosť magnetického poľa je pripojená cez výkonový zosilňovač do D/A prevodníka. Základnou skúmanou úlohou na tomto modeli je **regulácia polohy guľôčky v magnetickom poli cievky**. Ide teda o nestabilný nelineárny systém s jedným vstupom a jedným výstupom.

Na reguláciu systému je použitý PID regulátor.

Špecifikácia systému magnetickej levitácie:

- Model magnetickej levitácie:
 - Akčný člen: cievka so zosilňovačom.
 - Snímač polohy: lineárny indukčný snímač.
 - Ochrana proti prehriatiu cievky.
- Zdroj napájania modelu.
- Vstupno/výstupná karta pre meranie a reguláciu.

Obr. 1. Model magnetickej levitácie CE152

Úlohy:

- 1. Naštudujte matematický model uvažovaného systému.
- 2. Analyzujte zmeny odozvy výstupnej veličiny pri zmene nastavení PID regulátora s prenosovou funkciou v tvare:

$$G_R(s) = P + \frac{I}{s} + D \frac{Ns}{s+N}$$

- a. Vplyv P- zložky regulátora. P zložku je potrebné 2 krát zmeniť v rozsahu (+/- 20%).
- b. Vplyv I- zložky regulátora. I zložku je potrebné 2 krát zmeniť v rozsahu (+/- 20%)
- c. Vplyv D- zložky regulátora. D zložku je potrebné 2 krát zmeniť v rozsahu (+/- 20%)

Východzie hodnoty parametrov regulátora sú: P=1, I=4, D=0.016, N=250.

Parameter N ponechajte pri všetkých experimentoch na pôvodnej hodnote.

- 3. Urobte písomné zhrnutie a diskusiu dosiahnutých výsledkov.
- 4. Vypracovaný dokument pre laboratórne cvičenie uložte vo formáte pdf pod názvom cv8_Priezvisko1_Priezvisko2 do miesta odovzdania v AIS.

Riešenie:

Matematicko-fyzikálny opis systému

Z hľadiska opisu modelu systému môžeme systém rozdeliť na nasledovné podsystémy:

- cievka s guľôčkou
- zosilňovač prúdu
- snímač polohy
- A/D a D/A prevodníky

Obr. 2. Bloková schéma systému

Cievka s guličkou

Matematický model tohto podsystému vyjadríme v tvare pohybovej rovnice, ktorá vyjadruje vzťah medzi zmenou pohybu uvažovaného hmotného bodu a pôsobiacimi silami.

Vychádzame z **druhého Newtonovho zákona (zákona sily)**: Ak na teleso pôsobí sila/sily, teleso sa pohybuje zrýchlením a, ktoré je priamo úmerné pôsobiacej sile/silám a nepriamo úmerné hmotnosti telesa m (**pohybová rovnica**):

$$\sum F_i = ma = m\frac{d^2x}{dt^2}$$

kde x je dráha (výchylka) telesa.

Obr. 3. Magnetická levitácia

Na guľôčku pôsobia sily:

Gravitačná sila : $F_g = mg$ (pôsobí proti pohybu guľôčky)

Elektromagnetická sila: $F_m = \frac{I^2 k_c}{(x-x_0)^2}$ (pôsobí v smere pohybu guľôčky)

Trecia (tlmiaca) sila: $F_{tlm}=-cv=-crac{dx}{dt}$ (pôsobí proti pohybu guľôčky)

Po dosadení do pohybovej rovnice dostaneme vzťah medzi prúdom / v cievke a polohou guľôčky x:

$$m\frac{d^2x}{dt^2} = F_m - F_g + F_{tlm} = \frac{I^2k_c}{(x - x_0)^2} - mg + c\frac{dx}{dt}$$

Tab. 1. Popis veličín modelu

Tab. 1. Fopis venem modela				
Veličina	Popis	Jednotka		
m	hmotnosť guľôčky	[kg]		
x	poloha guľôčky	[m]		
С	koeficient trenia guľôčky	[Nm ⁻¹ s ⁻¹]		
I	prúd v cievke	[A]		
k _c	konštanta cievky			
X ₀	ofset polohy guľôčky	[m]		

Zosilňovač prúdu

Zosilňovač prúdu je možné opísať prenosovou funkciou prvého rádu:

$$I(s) = \frac{k_i}{T_a s + 1} U(s)$$

Tab. 2. Popis veličín zosilňovača prúdu

Veličina	Popis	Jednotka
k i	zosilnenie	[AV ⁻¹]
Ta	časová konštanta	[s]
U	vstupné napätie	[V]

Snímač polohy

Lineárny indukčný snímač polohy je možné aproximovať lineárnou funkciou:

$$y = k_x x - y_0$$

Tab. 3. Popis veličín snímača polohy

Veličina	Popis	Jednotka
k _x	zosilnenie snímača polohy	[Vm ⁻¹]
У	výstupné napätie modelu	[V]
y0	ofset snímača polohy	[m]

A/D a D/A prevodníky

Prevodníky popisujú vplyv vstupno – výstupnej karty a softvéru použitého na získavanie dát z reálneho modelu. Je možné ich popísať lineárnymi funkciami:

A/D prevodník $y_{pu} = k_{AD}y - y_{pu0}$

D/A prevodník $U = k_{DA}U_{pu} - U_0$

kde *pu* – per unit je systém pomerných jednotiek

Tab. 4. Popis veličín prevodníkov

Veličina	Popis	Jednotka
Ypu	výstup A/D prevodníka	[pu]
k _{AD}	zosilnenie A/D prevodníka	[pu V ⁻¹]
y pu0	ofset A/D prevodníka	[pu]
U _{pu}	vstup D/A prevodníka	[pu]
k _{DA}	zosilnenie D/A prevodníka	[V pu ⁻¹]
Uo	ofset D/A prevodníka	[V]

Regulácia systému

Pre nameranie odozvy výstupnej veličiny v uzavretom regulačnom obvode použite schému *magLevSP2.slx* zobrazenú na obr. 4.

Obr. 4. Schéma pre model magnetickej levitácie

Parametre regulátora je možné meniť po rozkliknutí bloku PID. Samotný regulátor pracuje s periódou vzorkovania 0.1ms. Merané veličiny sú vzorkované každých 1ms a po skončení experimentu sa uložia do workspace.

Získané dáta z experimentu si nezabudnite uložiť prípadne stiahnuť/poslať pre ich ďalšie spracovanie a následnú prípravu dokumentu.

Vhodné je uložiť si celý workspace zavolaním:

```
save("menosuboru.mat")
```

Výsledky experimentu potom vykresľujeme nasledovne:

```
figure
hold on
plot(out.y.Time,out.y.Data)
plot(out.r.Time,out.r.Data)
xlabel('t[s]');
ylabel('y,r [pu]');
legend('y(t)','r(t)');
```

Pričom získame graf podobný ako na obr. 5.

Obr. 5. Príklad výsledného grafu po experimente

Podľa pokynov v bode 4 vytvorte dokument s názvom cv8_Priezvisko1_Priezvisko2, do ktorého uveďte:

- grafy s výsledkami jednotlivých experimentov spolu s nastavenými hodnotami parametrov regulátora,
- zhodnotenie dosiahnutých výsledkov na základe experimentov rozhodnite, pri ktorom nastavení parametrov PID regulátora ste dosiahli najlepšie regulačné vlastnosti pre daný systém a svoje rozhodnutie zdôvodnite.