Homework 7

ALECK ZHAO

March 30, 2017

1. Let R be a ring, and let σ be an automorphism of R. Show that $\{a \in R \mid \sigma(a) = a\}$ is a subring of R, and a subfield if R is a field.

Proof. Call the subset S. Any automorphism must fix 1, so $1 \in S$. Now if $a, b \in S$, we have

$$\sigma(a+b) = \sigma(a) + \sigma(b) = a+b$$

$$\sigma(ab) = \sigma(a)\sigma(b) = ab$$

so $a + b, ab \in S$, so S is indeed a subring. Now, if R is a field, then for all nonzero $a \in R$,

$$1 = \sigma(1) = \sigma\left(a \cdot \frac{1}{a}\right) = \sigma(a)\sigma\left(\frac{1}{a}\right)$$

Now, if $a \in S$, then $\sigma(a) = a$, so

$$\sigma\left(\frac{1}{a}\right) = \frac{1}{\sigma(a)} = \frac{1}{a}$$

so $\frac{1}{a} \in S$ as well, and thus S is a field.

2. Let F be a finite field with p^n elements for p a prime. Show that each element $a \in F$ has a pth root in F, i.e. there exists $b \in F$ such that $b^p = a$. Is b unique? By contrast, for K := F(x) the fraction field of the polynomial ring F[x], show that x has no pth root in K.

Section 6.4: Finite Fields

- 8. Find $[\mathbb{F}_{p^n} : \mathbb{F}_{p^m}]$ where $m \mid n$.
- 18. (a) Show that a monic irreducible polynomial $f \in F[x]$ has no repeated root in any splitting field over F if and only if $f \ncong 0$ in F[x].
 - (b) If char F = 0, show that no irreducible polynomial has a repeated root in any splitting field over F.
- 19. If char F = p, show that a monic irreducible polynomial $f \in F[x]$ has a repeated root in some splitting field if and only if $f = g(x^p)$ for some $g \in F[x]$. (Hint: Ex 18)
- 21. Let p be a prime and write $f = x^p x 1$. Show that the splitting field of f over \mathbb{F}_p is $\mathbb{F}_p(u)$, where u is any root of f. (Hint: Compute $f(u+a), a \in \mathbb{F}_p$) tin
- 22. (a) Let f be a monic irreducible polynomial of degree n in $\mathbb{F}_p[x]$. Show that f divides $x^{p^n} x$ in $\mathbb{F}_p[x]$. (Hint: First work over $\mathbb{F}_p(u)$, f(u) = 0. Use the uniqueness in Theorem 4 § 4.1.)
 - (b) Show that the degree of each monic irreducible divisor f of $x^{p^n} x$ is a divisor of n. (Hint: Theorem 5)
 - (c) Factor $x^8 x$ into irreducibles in $\mathbb{F}_2[x]$.

Section 4.5: Symmetric Polynomials

- 14. Given $\sigma \in S_n$, define $\theta_{\sigma} : R[x_1, \dots, x_n] \to R[x_1, \dots, x_n]$ by $\theta_{\sigma}[f(x_1, \dots, x_n)] = f(x_{\sigma_1}, \dots, x_{\sigma_n})$.
 - (a) Show that θ_{σ} is a ring automorphism of $R[x_1, \dots, x_n]$.

Proof. First we show this is a ring homomorphism. Clearly $\theta_{\sigma}(1) = 1$. Now, for $f, g \in R[x_1, \dots, x_n]$,

$$\theta_{\sigma} [f(x_1, \dots, x_n) + g(x_1, \dots, x_n)] = \theta_{\sigma} [(f+g)(x_1, \dots, x_n)]$$

$$= (f+g)(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= f(x_{\sigma 1}, \dots, x_{\sigma n}) + g(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= \theta_{\sigma} (f) + \theta_{\sigma} (g)$$

$$\theta_{\sigma} [f(x_1, \dots, x_n) \cdot g(x_1, \dots, x_n)] = \theta_{\sigma} [(fg)(x_1, \dots, x_n)]$$

$$= (fg)(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= f(x_{\sigma 1}, \dots, x_{\sigma n}) \cdot g(x_{\sigma 1}, \dots, x_{\sigma n})$$

$$= \theta_{\sigma} (f) \cdot \theta_{\sigma} (g)$$

Now if

$$\theta_{\sigma}(f) = f(x_{\sigma 1}, \cdots, x_{\sigma n}) = g(x_{\sigma 1}, \cdots, x_{\sigma n}) = \theta_{\sigma}(g)$$

then consider σ^{-1} and its associated $\theta_{\sigma^{-1}}$. Then applying $\theta_{\sigma^{-1}}$ to both of these polynomials,

$$\theta_{\sigma^{-1}}[f(x_{\sigma 1}, \dots, x_{\sigma n})] = f(x_{\sigma^{-1}\sigma 1}, \dots, x_{\sigma^{-1}\sigma n}) = f(x_{1}, \dots, x_{n})$$

=\theta_{\sigma^{-1}}[g(x_{\sigma 1}, \dots, x_{\sigma n})] = g(x_{\sigma^{-1}\sigma 1}, \dots, x_{\sigma^{-1}\sigma n}) = g(x_{1}, \dots, x_{n})

so θ_{σ} is injective. Now, for any $f(x_1, \dots, x_n)$, we have

$$\theta_{\sigma}\left[f(x_{\sigma^{-1}1},\cdots,x_{\sigma^{-1}n})\right] = f(x_1,\cdots,x_n)$$

so θ_{σ} is surjective. Thus, θ_{σ} is a bijective ring homomorphism from $R[x_1, \dots, x_n]$ to itself, so it is a ring automorphism.

(b) Show that $\sigma \mapsto \theta_{\sigma}$ is a group homomorphism $S_n \to \text{aut } R[X_1, \cdots, x_n]$, which is injective.

Proof. Let $\sigma, \tau \in S_n$. Then consider $\theta_{\sigma\tau}$. For some $f(x_1, \dots, x_n) \in R[x_1, \dots, x_n]$, we have

$$\theta_{\sigma\tau} [f(x_1, \dots, x_n)] = f(x_{\sigma\tau 1}, \dots, x_{\sigma\tau n})$$

$$= \theta_{\sigma} [f(x_{\tau 1}, \dots, x_{\tau n})]$$

$$= \theta_{\sigma} (\theta_{\tau} [f(x_1, \dots, x_n)])$$

$$= (\theta_{\sigma} \circ \theta_{\tau}) [f(x_1, \dots, x_n)]$$

so $(\sigma\tau) \mapsto \theta_{\sigma\tau} = \theta_{\sigma} \circ \theta_{\tau}$ and this is indeed a group homomorphism. Suppose $\theta_{\sigma} = \theta_{\tau}$ for some $\sigma, \tau \in S_n$.

i++i

(c) If $G \subseteq \text{aut } R[x_1, \dots, x_n]$ is a subgroup, show that $S_G = \{ f \mid \theta(f) = f, \forall \theta \in G \}$ is a subring of $R[x_1, \dots, x_n]$.