Introduction to Pytorch Rasmus F. Ørsøe 18-08-2021

CSU 2021

Overview

1) Pros and Cons of Pytorch

2) Tensors, devices and gradients

3) Keras and PyTorch Code Comparison

Pros

• Speed!

By model

Pros and Cons

Pros

- Speed
- (nearly) Complete Control
 - Dynamic computational graphs
 - Data parallelism

Cons

Much to take in

import torch

$$V = [1., 2., 3.]$$

```
import torch

V = [1. , 2. , 3.]

V = torch.tensor(V)

device = torch.device("cuda:0")

V.to(device)
```

import torch

device = torch.device("cuda:0")
V.to(device)

Result =
$$5 + V + V**2$$

Results.cpu()

import torch

```
a = torch.tensor([2.], requires_grad=True)
```

b = torch.tensor([6.], requires_grad=True)

$$Q = 3*a**3 - b**2$$

Q.backward()

import torch

b = torch.tensor([6.], requires_grad=True)

Q = 3*a**3 - b**2

Q.backward()

 $rac{\partial Q}{\partial a}=9a^2$ = 36

 $\frac{\partial Q}{\partial x} = -$

30

$$rac{\partial Q}{\partial a}=9a^2$$
 = 36

$$rac{\partial Q}{\partial b}=-2b$$
 =-12

Time for notebooks!