```
In [281... %time import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.stats import zscore
```

CPU times: user 4 μs , sys: 0 ns, total: 4 μs

Wall time: 8.11 μs

Data Cleaning

In [282... df = pd.read_csv("../data/merged_data_cleaned.csv")
 df.head()

Out[282		Unnamed: 0	Species	Owner	Country.of.Origin	Farm.Name	Lot.Number	Mi
	0	0	Arabica	metad plc	Ethiopia	metad plc	NaN	meta p
	1	1	Arabica	metad plc	Ethiopia	metad plc	NaN	meta p
	2	2	Arabica	grounds for health admin	Guatemala	san marcos barrancas "san cristobal cuch	NaN	Na
	3	3	Arabica	yidnekachew dabessa	Ethiopia	yidnekachew dabessa coffee plantation	NaN	wolens
	4	4	Arabica	metad plc	Ethiopia	metad plc	NaN	meta p

5 rows × 44 columns

We have a lot of columns with data that are irrelevant for our analysis. We'll drop them to reduce dimensionality of the dataset

```
In [283... df = df.drop(["Unnamed: 0", "Farm.Name", "Lot.Number", "Mill", "ICO.Numbe
In [284... df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1339 entries, 0 to 1338
        Data columns (total 21 columns):
             Column
                                  Non-Null Count Dtype
            ----
        - - -
                                  -----
         0
                                  1339 non-null
             Species
                                                  object
         1
            Country.of.Origin
                                  1338 non-null object
                                  1113 non-null object
             Variety
         3
            Processing.Method
                                  1169 non-null object
         4
            Aroma
                                  1339 non-null float64
         5
            Flavor
                                  1339 non-null float64
            Aftertaste
                                  1339 non-null float64
         6
         7
            Acidity
                                  1339 non-null
                                                  float64
         8
            Body
                                  1339 non-null float64
         9
             Balance
                                  1339 non-null float64
         10 Uniformity
                                  1339 non-null
                                                 float64
         11 Clean.Cup
                                  1339 non-null
                                                  float64
         12 Sweetness
                                  1339 non-null float64
         13 Cupper.Points
                                  1339 non-null float64
                                                  float64
         14 Total.Cup.Points
                                  1339 non-null
         15 Moisture
                                  1339 non-null
                                                  float64
         16 Category.One.Defects 1339 non-null
                                                  int64
         17 Quakers
                                  1338 non-null
                                                  float64
         18 Color
                                  1069 non-null
                                                  object
         19 Category.Two.Defects 1339 non-null
                                                  int64
         20 altitude mean meters 1109 non-null
                                                  float64
        dtypes: float64(14), int64(2), object(5)
        memory usage: 219.8+ KB
In [285... | df.isna().sum()
                                   0
Out[285... Species
         Country.of.Origin
                                   1
                                 226
         Variety
         Processing.Method
                                 170
         Aroma
                                   0
         Flavor
                                   0
         Aftertaste
                                   0
                                   0
         Acidity
         Body
                                   0
         Balance
                                   0
         Uniformity
                                   0
         Clean.Cup
                                   0
                                   0
         Sweetness
         Cupper.Points
                                   0
                                   0
         Total.Cup.Points
                                   0
         Moisture
```

We replace rows with a lot of missing nominal data with the mode of the column, to retain the variance of the rest of the row data

0

0

270

230

Category.One.Defects

Category.Two.Defects

altitude_mean_meters

Quakers

dtype: int64

Color

```
In [286... df = df.fillna({'Variety': df['Variety'].mode()[0]})
df = df.fillna({'Processing.Method': df['Processing.Method'].mode()[0]})
```

```
df = df.fillna({'Color': df['Color'].mode()[0]})
```

We drop the rows with a single row missing nominal data. Especially "Country of Origin", since we can not just put in a mode value, since it might create significant wrong data

```
In [287... | df = df.dropna(how='any')
In [288... | df.isna().sum()
Out[288... Species
                                     0
          Country.of.Origin
                                     0
          Variety
                                     0
          Processing.Method
                                     0
                                     0
          Aroma
          Flavor
                                     0
          Aftertaste
                                     0
          Acidity
                                     0
          Body
                                     0
          Balance
                                     0
          Uniformity
                                     0
          Clean.Cup
                                     0
          Sweetness
                                     0
          Cupper.Points
                                     0
          Total.Cup.Points
                                     0
          Moisture
                                     0
          Category.One.Defects
                                     0
          Quakers
                                     0
          Color
                                     0
          Category.Two.Defects
                                     0
          altitude_mean_meters
                                     0
          dtype: int64
          No more missing values!
```

Outliers

In [289... df.describe()

Out[289...

	Aroma	Flavor	Aftertaste	Acidity	Body	Balance
count	1108.000000	1108.00000	1108.000000	1108.000000	1108.000000	1108.000000
mean	7.570569	7.52056	7.394269	7.528953	7.506670	7.505542
std	0.383837	0.40059	0.405867	0.386075	0.366717	0.419311
min	0.000000	0.00000	0.000000	0.000000	0.000000	0.000000
25%	7.420000	7.33000	7.250000	7.330000	7.330000	7.330000
50%	7.580000	7.58000	7.420000	7.500000	7.500000	7.500000
75%	7.750000	7.75000	7.580000	7.750000	7.670000	7.750000
max	8.750000	8.83000	8.670000	8.750000	8.580000	8.750000

We have some columns with very high standard deviations

```
In [290... fig = plt.figure()
```


The column contains significant outliers. Since its only a couple of rows, we'll drop them

```
In [291... # We'll remove the outlying rows based on z-score
    df = df[np.abs(zscore(df['altitude_mean_meters'])) < 1]
In [292... df</pre>
```

Out[292		Species	Country.of.Origin	Variety	Processing.Method	Aroma	Flavor	Aftertasto
	0	Arabica	Ethiopia	Caturra	Washed / Wet	8.67	8.83	8.67
	1	Arabica	Ethiopia	Other	Washed / Wet	8.75	8.67	8.50
	2	Arabica	Guatemala	Bourbon	Washed / Wet	8.42	8.50	8.42
	3	Arabica	Ethiopia	Caturra	Natural / Dry	8.17	8.58	8.42
	4	Arabica	Ethiopia	Other	Washed / Wet	8.25	8.50	8.2!
	•••			•••			•••	••
	1331	Robusta	India	Caturra	Washed / Wet	7.67	7.67	7.50
	1332	Robusta	India	Caturra	Natural / Dry	7.58	7.42	7.42
	1333	Robusta	United States	Arusha	Natural / Dry	7.92	7.50	7.42
	1335	Robusta	Ecuador	Caturra	Washed / Wet	7.50	7.67	7.7!
	1336	Robusta	United States	Caturra	Natural / Dry	7.33	7.33	7.17

1104 rows × 21 columns

Out[293... <Axes: >

In [294... df.plot.box(rot=90)

Out[294... <Axes: >

Even after removing the worst outliers, the mean altitude still distributes over large values. We'll exclude it in the plot to dentify other problematic features

```
In [295... df[df.columns.difference(['altitude_mean_meters'])].plot.box(rot=90)
Out[295... <Axes: >
```


It seems a lot of the features contain unnatural zero-values. We'll replace the zero values, with the median of the feature

```
In [296... df['Acidity'] = df['Acidity'].replace(0, df['Acidity'].median())
    df['Aftertaste'] = df['Aftertaste'].replace(0, df['Aftertaste'].median())
    df['Aroma'] = df['Aroma'].replace(0, df['Aroma'].median())
    df['Balance'] = df['Balance'].replace(0, df['Balance'].median())
    df['Body'] = df['Body'].replace(0, df['Body'].median())
    df['Clean.Cup'] = df['Clean.Cup'].replace(0, df['Clean.Cup'].median())
    df['Cupper.Points'] = df['Cupper.Points'].replace(0, df['Flavor'].median())
    df['Moisture'] = df['Moisture'].replace(0, df['Moisture'].median())
    df['Sweetness'] = df['Sweetness'].replace(0, df['Sweetness'].median())
    df['Uniformity'] = df['Uniformity'].replace(0, df['Uniformity'].median())
```

Except the Total cup points. We'll drop the row since it is our target value, and an unnatural zero might mess with correlations

```
In [297... df = df[df['Total.Cup.Points'] != 0]
In [298... df[df.columns.difference(['altitude_mean_meters'])].plot.box(rot=90)
Out[298... <Axes: >
```


In [299	<pre>df.describe()</pre>								
Out[299		Aroma	Flavor	Aftertaste	Acidity	Body	Balanc		
	count	1103.000000	1103.000000	1103.000000	1103.000000	1103.000000	1103.000000		
	mean	7.578368	7.527824	7.401496	7.535739	7.513654	7.51266		
	std	0.309181	0.331268	0.340065	0.313192	0.289467	0.35402		
	min	5.080000	6.170000	6.170000	5.250000	5.170000	5.250000		
	25%	7.420000	7.330000	7.250000	7.330000	7.330000	7.330000		
	50%	7.580000	7.580000	7.420000	7.500000	7.500000	7.50000		
	75%	7.750000	7.750000	7.580000	7.750000	7.670000	7.750000		
	max	8.750000	8.830000	8.670000	8.750000	8.580000	8.750000		
In [300	df.to	_csv('cleane	d_dataset_n	_zeros.csv'	, index=Fals	se)			

The datset is now ready for analysis!