MRF101AN 136-174 MHz COMPACT REFERENCE CIRCUIT

ORDERABLE PART NUMBER: MRF101AN-VHF

Introduction

- The NXP MRF<u>101</u>AN is a 1.8-250 MHz, 100 W CW RF power LDMOS transistor housed in a TO-220 overmolded plastic package. Its unmatched input and output allows wide frequency range utilization.
 - Further details about the device, including its data sheet, are available on www.nxp.com/MRF101AN.
- The following pages describe the 136-174 MHz compact reference circuit (evaluation board).
 Its typical application is VHF radio transmitters.
 - Other reference circuits can be found on www.nxp.com/MRF101CIRCUITS.
- The reference circuit can be ordered through NXP's distribution partners and etailers using part number MRF101AN-VHF.

Circuit Overview – 1.8 cm \times 5.0 cm (0.71" \times 1.96")

Circuit Overview $-1.8 \text{ cm} \times 5.0 \text{ cm} (0.71" \times 1.96")$

Aluminum baseplate: 1.8 cm \times 6.7 cm (0.71" \times 2.64")

Typical CW Performance

Typical Performance: $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 100 \text{ mA}$, $P_{in} = 0.79 \text{ W}$ (29 dBm), CW

Frequency (MHz)	P _{out} (W)	G _{ps} (dB)	η _D (%)
135	117	21.7	80.0
155	104	21.2	76.5
175	107	21.3	75.4

Quick Start

- 1. Mount the reference circuit onto a heatsink capable of dissipating more than 40 W in order to provide enough thermal dissipation (the baseplate included in this reference circuit is not sufficient to serve as a standalone heatsink).
- Connect the ground.
- Terminate the RF output with a 50 ohm load capable of handling more than 115 W.
- 4. Connect the RF input to a 50 ohm source with the RF off.
- 5. Connect the gate voltage, set to 0 V.
- 6. Connect the drain voltage (V_{DD}) and raise it slowly to 50 V. Current should be 0 A.
- Raise the gate voltage slowly until the drain current reaches the desired level (drain quiescent current I_{DQ} = 100 mA typically).
 The gate voltage should be around 2.5 V.
- Raise the RF input slowly to 0.79 W (29 dBm).
- Check the RF output power (typically 104 W mid-band), the drain current (around 3 A for this power level) and the temperature of the board.

MRF101AN Compact PCB

Same PCB for all MRF101AN Compact Reference Circuits

Component Placement Reference

Note: Component number C10 is not used.

Bill of Materials

Part	Description	Part Number	Manufacturer
B1	Short RF Bead	2743019447	Fair-Rite
C1	39 pF Chip Capacitor	GQM2195C2E390GB12D	Murata
C2, C5, C6, C7, C8, C12	510 pF Chip Capacitor	GRM2165C2A511JA01D	Murata
C3	68 pF Chip Capacitor	GQM2195C2E680GB12D	Murata
C4	27 pF Chip Capacitor	GQM2195C2E270GB12D	Murata
C9	10 pF Chip Capacitor	GQM2195C2E100FB12D	Murata
C11	1 μF Chip Capacitor	GJ821BR71H105KA12L	Murata
C13	10 nF Chip Capacitor	GRM21BR72A103KA01B	Murata
C14	1 μF Chip Capacitor	C3216X7R2A105K160AA	TDK
L1	22 nH Chip Inductor	0805WL220JT	ATC
L2	12 nH Chip Inductor	0805WL120JT	ATC
L3, L4, L6	68 nH Air Core Inductor	1812SMS-68NJLC	Coilcraft
L5	12 nH, 3 Turn Inductor	GA3094-ALC	Coilcraft
Q1	RF Power LDMOS Transistor	MRF101AN	NXP
R1	75 Ω, 1/4 W Chip Resistor	SG73P2ATTD75R0F	KOA Speer
PCB	FR4 0.09", ε _r = 4.8, 2 oz. Copper	D113958	MTL

Assembly Details

Transistor bolted to aluminum baseplate using thermal grease.

PCB bolted dry to aluminum baseplate.

Note: Component number C10 is not used.

The PCB is screwed to the baseplate with #2-56 screws.

The MRF101AN is screwed to the baseplate with a #4-40 hex screw, a flat washer, a lock washer and thermal grease beneath the transistor.

Impedances

f MHz	Z _{source} Ω	Z _{load} Ω
135	6.8 + j10.2	9.5 + j5.2
145	6.2 + j10.2	9.9 + j5.9
155	5.3 + j10.8	10.2 + j6.2
165	4.4 + j11.9	10.0 + j5.9
175	3.9 + j13.4	8.8 + j5.0

 Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

Revision History

 The following table summarizes revisions to the content of the MRF101AN 136-174 MHz Reference Circuit zip file:

Revision	Date	Description
0	May 2019	Initial Release
1	September 2019	Added license statement, general updates to align copy to current standard.

Revision History

• The following table summarizes revisions to the content of the MRF101AN 136-174 MHz Reference Circuit zip file.

Revision	Date	Description
0	June 2019	Initial release
1	July 2019	Added improved board image, revision history
2	September 2019	Added license statement, general updates to align copy to current standard

SECURE CONNECTIONS FOR A SMARTER WORLD