# Model Documentation of the Lorentz Attractor

#### 1 Nomenclature

#### 1.1 Nomenclature for Model Equations

- x is proportional to convection motions
- y is proportional to temperature difference between ascending and descending currents
- z is proportional to distortion of vertical temperature profile from linearity
- $\sigma$  Prandtl Number
- r quotient of Raileigh Number and a critical value (see [?])
- b parameter

### 2 Model Equations

State Vector and Input Vector:

$$\underline{\underline{x}} = (x_1 \ x_2 \ x_3)^T = (x \ y \ z)^T$$
$$u = \emptyset$$

Model Equations:

$$\dot{x} = -\sigma x + \sigma y \tag{1a}$$

$$\dot{y} = -xz + rx - y \tag{1b}$$

$$\dot{z} = xy - bz \tag{1c}$$

Parameters:  $\sigma$ , r, bOutputs:  $\langle not \ defined \rangle$ 

#### 2.1 Exemplary parameter values

| Parameter Name  | Symbol   | Value | Range       |
|-----------------|----------|-------|-------------|
| Raileight coeff | r        | 28    | (24.74, 99) |
| Parameter       | b        | 2.667 | -           |
| Prandtl Number  | $\sigma$ | 10    | -           |

## 3 Derivation and Explanation

The Lorenz Attractor is derived from the dynamic of convection currents. It is based on a model of convection currents formulated by Lord Rayleigh.

# 4 Simulation



Figure 1: Simulation of the Lorenz System.

## References

[1] Lorenz, E. N.: Deterministic Nonperiodic Flow, p. 135, Journal of Atmospheric Sciences 1963.