15.093: Optimization Methods

1 Outline

SLIDE 1

- The Lagrangean dual
- The strength of the Lagrangean dual
- Solution of the Lagrangean dual

2 The Lagrangean dual

SLIDE 2

• Consider

$$Z_{\mathrm{IP}} = \min \quad c'x$$
s.t. $Ax \geq b$
 $Dx \geq d$
 $x \text{ integer}$

- $X = \{x \text{ integer } | Dx \ge d\}$
- \bullet Optimizing over X can be done efficiently

2.1 Formulation

SLIDE 3

• Consider

$$Z(\lambda) = \min_{\text{s.t.}} c'x + \lambda'(b - Ax)$$
_{s.t.} $x \in X$ (D)

- For fixed λ , problem can be solved efficiently
- $Z(\lambda) = \min_{i=1,\dots,m} \left(c' x^i + \lambda' (b A x^i) \right)$
- $Z(\lambda)$ is concave and piecewise linear

2.2 Weak Duality

SLIDE 4

- If problem (D) has an optimal solution and if $\lambda \geq 0$, then $Z(\lambda) \leq Z_{\text{IP}}$
 - **Proof:** x^* an optimal solution to (D).
 - Then $b Ax^* \leq 0$ and, therefore,

$$c'x^* + \lambda'(b - Ax^*) < c'x^* = Z_{\text{IP}}$$

• Since $x^* \in X$, $Z(\lambda) \le c'x^* + \lambda'(b - Ax^*)$, and thus, $Z(\lambda) \le Z_{\text{IP}}$

2.3 Key problem

• Consider the Lagrangean dual:

$$Z_{\mathrm{D}} = \max_{\mathrm{s.t.}} Z(\boldsymbol{\lambda})$$
s.t. $\boldsymbol{\lambda} \geq \mathbf{0}$

- $Z_{\rm D} \leq Z_{\rm IP}$
- We need to maximize a piecewise linear concave function

SLIDE 6

SLIDE 5

3 Strength of LD

3.1 Main Theorem

SLIDE 7

 $X = \{x \text{ integer } | Dx \ge d\}$. Note that $\mathrm{CH}(X)$ is a polyhedron. Then

$$\begin{split} Z_{\mathrm{D}} &= \min \quad \boldsymbol{c}' \boldsymbol{x} \\ &\text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \\ &\boldsymbol{x} \in \mathrm{CH}(X) \end{split}$$

3.2 Example

SLIDE 8

Relax $x_1 - x_2 \ge -1$, X involves the remaining constraints

$$X = \{(1,0), (2,0), (1,1), (2,1), (0,2),$$
$$(1,2), (2,2), (1,3), (2,3)\}.$$

For $p \geq 0$, we have

$$Z(p) = \min_{(x_1, x_2) \in X} (3x_1 - x_2 + p(-1 - x_1 + x_2))$$

$$Z(p) = \begin{cases} -2 + p, & 0 \le p \le 5/3, \\ 3 - 2p, & 5/3 \le p \le 3, \\ 6 - 3p, & p \ge 3. \end{cases}$$

 $p^* = 5/3$, and $Z_D = Z(5/3) = -1/3$

SLIDE 9

SLIDE 10

•
$$x_D = (1/3, 4/3), Z_D = -1/3$$

•
$$x_{LP} = (1/5, 6/5), Z_{LP} = -9/5$$

•
$$x_{IP} = (1, 2), Z_{IP} = 1$$

•
$$Z_{\rm LP} < Z_{\rm D} < Z_{\rm IP}$$

SLIDE 13

- In general, $Z_{\rm LP} \le Z_{\rm D} \le Z_{\rm IP}$
- For $c'x = 3x_1 x_2$, we have $Z_{LP} < Z_D < Z_{IP}$.
- For $c'x = -x_1 + x_2$, we have $Z_{LP} < Z_D = Z_{IP}$.
- For $c'x = -x_1 x_2$, we have $Z_{LP} = Z_D = Z_{IP}$.
- It is also possible: $Z_{LP} = Z_D < Z_{IP}$ but not on this example.

3.3 LP and LD

SLIDE 14

• $Z_{\mathrm{IP}} = Z_{\mathrm{D}}$ for all cost vectors $oldsymbol{c}$, if and only if

$$\mathrm{CH}\Big(X\cap\big\{\boldsymbol{x}\mid\boldsymbol{A}\boldsymbol{x}\geq\boldsymbol{b}\big\}\Big)=\mathrm{CH}(X)\cap\big\{\boldsymbol{x}\mid\boldsymbol{A}\boldsymbol{x}\geq\boldsymbol{b}\big\}$$

• We have $Z_{\rm LP}=Z_{\rm D}$ for all cost vectors \boldsymbol{c} , if

$$\mathrm{CH}(X) = \big\{ \boldsymbol{x} \mid \boldsymbol{D}\boldsymbol{x} \geq \boldsymbol{d} \big\}$$

• If $\{x \mid Dx \geq d\}$, has integer extreme points, then $CH(X) = \{x \mid Dx \geq d\}$, and therefore $Z_D = Z_{LP}$

4 Solution of LD

SLIDE 15

• $Z(\lambda) = \min_{i=1,\dots,m} \ \left(c'x^i + \lambda'(b - Ax^i)\right)$, i.e.,

$$Z(\lambda) = \min_{i=1,\dots,m} (h_i + f'_i \lambda).$$

• Motivation: classical steepest ascent method for maximizing $Z(\lambda)$

$$\boldsymbol{\lambda}^{t+1} = \boldsymbol{\lambda}^t + \theta_t \nabla Z(\boldsymbol{\lambda}^t), \quad t = 1, 2, \dots$$

• Problem: $Z(\lambda)$ is not differentiable

4.1 Subgradients

SLIDE 16

• A function $f: \mathbb{R}^n \mapsto \mathbb{R}$ is concave if and only if for any $x^* \in \mathbb{R}^n$, there exists a vector $s \in \mathbb{R}^n$ such that

$$f(\boldsymbol{x}) \le f(\boldsymbol{x}^*) + s'(\boldsymbol{x} - \boldsymbol{x}^*),$$

for all $x \in \Re^n$.

 \bullet Let f be a concave function. A vector \boldsymbol{s} such that

$$f(\boldsymbol{x}) < f(\boldsymbol{x}^*) + s'(\boldsymbol{x} - \boldsymbol{x}^*),$$

for all $x \in \mathbb{R}^n$, is called a subgradient of f at x^* .

SLIDE 17

SLIDE 18

4.2 Subgradient Algorithm

SLIDE 19

- 1. Choose a starting point λ^1 ; let t = 1.
- 2. Given λ^t , choose a subgradient s^t of the function $Z(\cdot)$ at λ^t . If $s^t = 0$, then λ^t is optimal and the algorithm terminates. Else, continue.

t	p^t	s^t	$Z(p^t)$
1	5.00	-3	-9.00
2	2.60	-3	-1.80
3	0.68	1	-1.32
4	1.19	1	-0.81
5	1.60	1	-0.40
6	1.92	-2	-0.84
7	1.40	1	-0.60
8	1.61	1	-0.39
9	1.78	-2	-0.56
10	1.51	1	-0.49

- 3. Let $\lambda^{t+1} = \lambda^t + \theta_t s^t$, where θ_t is a positive stepsize parameter. Increment t and go to Step 2.
- **3a** If $\lambda \geq 0$, $p_j^{t+1} = \max \{ p_j^t + \theta_t s_j^t, 0 \}$, $\forall j$.

4.2.1 Step sizes

SLIDE 20

• $Z(p^t)$ converges to the unconstrained maximum of $Z(\cdot)$, for any stepsize sequence θ_t such that

$$\sum_{t=1}^{\infty} \theta_t = \infty, \quad \text{and} \quad \lim_{t \to \infty} \theta_t = 0.$$

- Examples $\theta_t = 1/t$
- $\bullet \ \theta_t = \theta_0 \alpha^t, \qquad t = 1, 2, \dots,$
- $\theta_t = \frac{\hat{Z}_{\mathrm{D}} Z(\boldsymbol{p}^t)}{||\boldsymbol{s}^t||^2} \alpha^t$, where α satisfies $0 < \alpha < 1$, and \hat{Z}_{D} is an estimate of the optimal value Z_{D} .

4.3 Example

SLIDE 21

Recall $p^* = 5/3 = 1.66$ and $Z_{\rm D} = -1/3 = -0.33$. Apply subgradient optimization:

15.093J / 6.255J Optimization Methods Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.