СТАТИСТИЧЕСКАЯ ФИЗИКА Лекция 12 Кинетическое уравнение Больцмана.

Образовский Е. Г.

7 декабря 2022 г.

План лекции:

• Кинетическое уравнение Больцмана.

- Кинетическое уравнение Больцмана.
- Н-теорема

- Кинетическое уравнение Больцмана.
- Н-теорема
- Уравнения гидродинамики

- Кинетическое уравнение Больцмана.
- Н-теорема
- Уравнения гидродинамики
- Приложение: динамический вывод Боголюбова

Кинетика описывает процессы, происходящие в неравновесных системах. В основном мы ограничимся кинетикой классических систем.

Многие неравновесные свойства определяются одночастичной функцией распределения $f(\mathbf{r},\mathbf{p},t)$ в фазовом пространстве (\mathbf{r}, \mathbf{p}) . Как правило используется нормировка

$$\int f(\mathbf{r}, \mathbf{p}, t) d^3 p = n(\mathbf{r}, t), \tag{1}$$

где $n(\mathbf{r},t)$ — плотность числа частиц.

Если можно пренебречь столкновениями, то отдельная частица представляет собой замкнутую систему, для которой выполняется теорема Лиувилля

$$\frac{df(\mathbf{r},\mathbf{p},t)}{dt}=0,$$
 (2)

то есть функция распределения остается постоянной вдоль фазовой траектории. Расписывая полную производную по времени, получим

$$\frac{\partial f(\mathbf{r}, \mathbf{p}, t)}{\partial t} + \mathbf{v} \cdot \frac{\partial f(\mathbf{r}, \mathbf{p}, t)}{\partial \mathbf{r}} + \mathbf{F} \cdot \frac{\partial f(\mathbf{r}, \mathbf{p}, t)}{\partial \mathbf{p}} = 0, \quad (3)$$

где ${\bf F} = -\partial U({\bf r})/\partial {\bf r}$ — сила, создаваемая внешним полем U. Это бесстолкновительное уравнение Больцмана.

При необходимости учитывать столкновения, уравнение Больцмана имеет вид:

$$\frac{\partial f(\mathbf{r}, \mathbf{p}, t)}{\partial t} + \mathbf{v} \cdot \frac{\partial f(\mathbf{r}, \mathbf{p}, t)}{\partial \mathbf{r}} + \mathbf{F} \cdot \frac{\partial f(\mathbf{r}, \mathbf{p}, t)}{\partial \mathbf{p}} = \mathcal{I}[f]. \tag{4}$$

Правая часть называется интегралом столкновений и является функционалом от функций распределения (вообще говоря многочастичных). Если предположить отсутствие корреляций между частицами, то для разреженного газа интеграл столкновений можно представить в виде

$$\mathcal{I}[f] = -\int \int \int w(\mathbf{p}, \mathbf{p}_1; \mathbf{p}', \mathbf{p}'_1) f(\mathbf{p}) f(\mathbf{p}_1) d\mathbf{p}_1 d\mathbf{p}' d\mathbf{p}'_1 +$$

$$+ \int \int \int w(\mathbf{p}', \mathbf{p}'_1; \mathbf{p}_1, \mathbf{p}) f(\mathbf{p}') f(\mathbf{p}'_1) d\mathbf{p}_1 d\mathbf{p}' d\mathbf{p}'_1.$$
 (5)

Здесь $w(\mathbf{p}, \mathbf{p}_1; \mathbf{p}', \mathbf{p}_1')$ — вероятность рассеяния в единицу времени частицы с импульсом \mathbf{p} на частице с импульсом \mathbf{p}_1 , в результате чего их импульсы становятся равными \mathbf{p}' и \mathbf{p}_1' . Первый член описывает уменьшение величины $f(\mathbf{p})$ — "уход". Во втором члене величина $w(\mathbf{p}', \mathbf{p}_1'; \mathbf{p}_1, \mathbf{p})$ — вероятность рассеяния в единицу времени, в результате которого появляются частицы с импульсом \mathbf{p} — " приход".

Принимаем далее, что происходят только упругие столкновения. Входящие в интеграл столкновений вероятности могут быть выражены через сечение рассеяния:

$$w(\mathbf{p}, \mathbf{p}_1 \to \mathbf{p}', \mathbf{p}'_1) \propto$$

$$\propto \left(\frac{d\sigma}{d\Omega}\right) v_{\mathsf{OTH}} \, \delta(\mathbf{p} + \mathbf{p}_1 - \mathbf{p}' - \mathbf{p}'_1) \, \delta(\varepsilon(\mathbf{p}) + \varepsilon(\mathbf{p}_1) - \varepsilon(\mathbf{p}') - \varepsilon(\mathbf{p}'_1))$$
(6)

Здесь $v_{\text{OTH}} = |\mathbf{p}_1 - \mathbf{p}|/m$ — относительная скорость частиц. Интегрирование δ -функций превращает интегрирование по $d^3p'd^3p'_1$ в интегрирование по углам, определяющим направление рассеянных частиц, телесный угол отвечает направлению \mathbf{v}_{OTH} . (В таком виде уравнение и было написано Больцманом.) Однако нам удобнее сохранить симметричную форму записи. Заметим, что столкновения частиц представлены в кинетическом уравнении только сечением, сам же процесс столкновения может описываться квантовой механикой.

Для равновесной функции распределения f_0 интеграл столкновений должен обратиться в ноль. Отсюда можно найти вид равновесной функции распределения. В однородном случае $f_0 = f(p^2) = f(\epsilon)$. Из условия

$$f(\epsilon)f(\epsilon_1) = f(\epsilon_2)f(\epsilon_3),$$
 (7)

полагая $\epsilon_2=0$ и дифференцируя по ϵ_1 , получим

$$f(\epsilon)\frac{\partial f(\epsilon_1)}{\partial \epsilon_1} = f(0)\frac{\partial f(\epsilon + \epsilon_1)}{\partial \epsilon_1} = f(0)\frac{\partial f(\epsilon + \epsilon_1)}{\partial \epsilon}, \quad (8)$$

Устремляя $\epsilon_1 o 0$, имеем

$$\frac{\partial f(\epsilon)}{\partial \epsilon} = \frac{1}{f(0)} \frac{\partial f(\epsilon_1)}{\partial \epsilon_1} \Big|_{\epsilon_1 \to 0} f(\epsilon) \equiv -\alpha f(\epsilon), \tag{9}$$

где

$$-\alpha = \frac{1}{f(0)} \frac{\partial f(\epsilon_1)}{\partial \epsilon_1} \Big|_{\epsilon_1 \to 0}.$$
 (10)

Отсюда получаем вид равновесной функции распределения

$$f(\epsilon) \sim e^{-\alpha \epsilon}$$
. (11)

Н-теорема Больцмана

Движение газа, удовлетворяющее кинетическому уравнению, приводит к возрастанию энтропии. Это утверждение традиционно называют H-теоремой Больцмана. 1 Teopema.

Энтропия газа

$$S = \int f(\mathbf{r}, \mathbf{p}, t) \ln \frac{e}{f(\mathbf{r}, \mathbf{p}, t)} d^3r d^3p$$
 (12)

не убывает со временем.

¹ Он рассматривал функцию $H = \int f(\mathbf{r}, \mathbf{p}, t) \ln f(\mathbf{r}, \mathbf{p}, t) d^3r d^3p$, которая отличается от энтропии знаком и на константу

Формула для энтропии больцмановского газа получается так. Разобъем уровни энергии на близкие группы, число уровней в группе i обозначим G_i , число частиц, попавших в эту группу - N_i . Для больцмановского газа $N_i \ll G_i$. Число способов реализации такого распределения есть

$$\Gamma_i = \frac{G_i!}{N_i!(G_i - N_i)!} \approx \frac{G_i^{N_i}}{N_i!} \approx \left(\frac{G_i e}{N_i}\right)^{N_i}.$$
 (13)

Энтропия

$$S = \prod_{i} \ln \Gamma_{i} = \sum_{i} N_{i} \ln \left(\frac{G_{i} e}{N_{i}} \right) = \sum_{p} f(p) \ln \left(\frac{e}{f(p)} \right), \quad (14)$$

где $f(p) pprox N_i/G_i$, считая в i-ой группе импульс p постоянным.

Доказательство

Составим производную функции S:

$$\frac{dS}{dt} = -\int \frac{\partial f}{\partial t} \ln f \ d^3r d^3p \tag{15}$$

и подставим

$$\frac{\partial f}{\partial t} = \mathcal{I} - \mathbf{v} \frac{\partial f}{\partial \mathbf{r}} - \mathbf{F} \frac{\partial f}{\partial \mathbf{p}}$$
 (16)

из кинетического уравнения.

Учтем при этом, что $\int \mathbf{v} \frac{\partial f}{\partial \mathbf{r}} d^3 r = 0$ т. к. он сводится к интегралу по бесконечно удаленной поверхности в координатном пространстве, где функция распределения обращается в нуль. Аналогично $\int \mathbf{F} \frac{\partial f}{\partial \mathbf{p}} d^3 p = 0$, т. к. он сводится к интегралу по бесконечно удаленной поверхности в пространстве импульсов, где функция распределения обращается в нуль; $\int \mathcal{I}(\mathbf{r},\mathbf{p},t)d^3p=0$ (смысл последнего равенства в том, что число частиц при столкновении сохраняется).

$$\frac{dS}{dt} = -\int \mathcal{I} \ln f \ d^3 r d^3 p. \tag{17}$$

$$\frac{dS}{dt} = \int d^3r d^3p d^3p_1 d^3p' d^3p'_1 \cdot w(\mathbf{p}, \mathbf{p}_1 \to \mathbf{p}', \mathbf{p}'_1) (ff_1 - f'f'_1) \ln f$$
(18)

Заметим, что если поменять конечные и начальные частицы ролями, то должны получить ту же вероятность 2 :

$$w(\mathbf{p}, \mathbf{p}_1 \to \mathbf{p}', \mathbf{p}'_1) = w(\mathbf{p}', \mathbf{p}'_1 \to \mathbf{p}, \mathbf{p}_1).$$
 (19)

Заметим также, что вероятность не изменится, если поменять частицы местами: $\mathbf{p} \rightleftarrows \mathbf{p}_1$, $\mathbf{p}' \rightleftarrows \mathbf{p}'_1$. Это означает просто перемену обозначений частиц. Если же сделать такую замену переменных в интеграле, то изменение подынтегральной функции сведется к замене под знаком логарифма $\ln f \to \ln f_1$.

² Сечение, входящее в выражение w, при заданной величине относительной скорости зависит только от угла рассеяния — угла между векторами $\mathbf{p} - \mathbf{p_1}$ и $\mathbf{p'} - \mathbf{p'_1}$

После замены (в исходном интеграле) $\mathbf{p}
ightleftharpoons \mathbf{p}', \, \mathbf{p_1}
ightleftharpoons \mathbf{p}'_1$ нужно будет поставить под знак логарифма f' вместо f и изменить знак подынтегрального выражения.

Наконец, замена (в исходном интеграле) $\mathbf{p} \rightleftarrows \mathbf{p}_1', \, \mathbf{p}_1 \rightleftarrows \mathbf{p}'$ приведет к замене f под знаком логарифма на f_1' и изменению знака подынтегрального выражения.

Таким образом, подынтегральное выражение можно представить четырьмя различными способами. Сложив и разделив на четыре, получим

$$\frac{dS}{dt} = \frac{1}{4} \int w \ln \frac{ff_1}{f'f_1'} (ff_1 - f'f_1') d^3r d^3p d^3p_1 d^3p' d^3p_1' \geqslant 0, \quad (20)$$

так как $(x-y)\ln(x/y) \geqslant 0$.

Итак, $\frac{dS}{dt} \geqslant 0$. Для распределения Максвелла $\mathit{ff}_1 - \mathit{f}'\mathit{f}_1' = 0$. Теорема доказана.

Таким образом, уравнение Больцмана описывает необратимые процессы. Между тем, оно было получено из уравнений механики, обратимых по времени. Конечно, причина появления необратимости в использовании понятия вероятности рассеяния, подразумевающей молекулярный хаос.

Уравнения гидродинамики

Из кинетического уравнения можно получить уравнения гидродинамики, описывающие движение газа более грубо, без явного учета отличия скоростей молекул газа в каждой точке пространства от некоторой средней скорости.

Проинтегрируем обе части кинетического уравнения

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{r}} + \mathbf{F} \frac{\partial f}{\partial \mathbf{p}} = \mathcal{I}, \tag{21}$$

по d^3p . Учтем при этом, что $\int \mathbf{F} \frac{\partial f}{\partial \mathbf{p}} d^3p = 0$, т. к. он сводится к интегралу по бесконечно удаленной поверхности в пространстве импульсов, где функция распределения обращается в нуль; $\int \mathcal{I}(\mathbf{r},\mathbf{p},t)d^3p = 0$ (смысл последнего равенства в том, что число частиц при столкновении сохраняется).

В итоге получаем

$$\frac{\partial n}{\partial t} + \frac{\partial \mathbf{j}}{\partial \mathbf{r}} = 0, \tag{22}$$

а после умножения на массу частицы —

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \rho \mathbf{V} = 0, \tag{23}$$

уравнение непрерывности.

Если умножить обе части кинетического уравнения на компоненту импульса p_{α} , проинтегрировать по d^3p и учесть, что $\int \mathbf{p} \mathcal{I}(\mathbf{r},\mathbf{p},t) d^3p = 0$, 3 то получим уравнение

$$\frac{\partial}{\partial t}\rho V_{\alpha} + \frac{\partial \Pi_{\alpha\beta}}{\partial x_{\beta}} = 0. \tag{24}$$

³ Чтобы доказать это, надо проделать такие же замены переменных, какие были проделаны при доказательстве H - теоремы и учесть, что при каждом столкновении сохраняется суммарный импульс сталкивающихся частица

Здесь

$$\Pi_{\alpha\beta} = \int p_{\alpha} v_{\beta} f d^3 p \tag{25}$$

— тензор плотности потока импульса. Пусть средняя скорость газа равна нулю. Представим себе находящуюся в газе единичную площадку, перпендикулярную оси x_{β} . Тогда величину $\Pi_{\alpha\beta}$ можно понимать как α -ую компоненту силы, с которой газ, находящийся с одной стороны этой площадки, действует на нее. Если распределение по скоростям изотропно, то $\Pi_{\alpha\beta}=P\delta_{\alpha\beta}$, где P — давление газа. Если же средняя скорость ${f V}$ отлична от нуля, ${f v}={f V}+{f v}'$, но изменяется в пространстве очень плавно, то в системе отсчета, движущейся со скоростью \mathbf{V} , распределение по скоростям \mathbf{v}' можно считать равновесным, в частности, изотропным.

Тогда $\Pi_{\alpha\beta}=P\delta_{\alpha\beta}+\rho V_{\alpha}V_{\beta}$, и уравнение (24) сводится к уравнению Эйлера:

$$\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \frac{\partial}{\partial \mathbf{r}}) \mathbf{V} = -\frac{1}{\rho} \operatorname{grad} P.$$
 (26)

Если характерное расстояние L, на котором средняя скорость заметно изменяется, не очень велико по сравнению с длиной свободного пробега I, то распределение по скоростям \mathbf{v}' оказывается анизотропным (т.к. в избранную нами точку попадают частицы из других точек, где средняя скорость иная). В случае, когда все-таки $L\gg I$, в тензор потока импульса добавляются вклады, пропорциональные $\frac{\partial V_{\alpha}}{\partial x_{\beta}}$ и $\frac{\partial V_{\beta}}{\partial x_{\alpha}}$, определяющие вязкость газа. С учетом этих вкладов из уравнения (24) можно получить уравнение Навье — Стокса.

Если же $L \sim I$, то переход к уравнениям гидродинамики невозможен. Например, для изучения строения фронта сильной ударной волны необходимо использовать не уравнения газовой динамики, а кинетическое уравнение.

В процессах, происходящих в плазме, обычно существенны электромагнитные волны, с длиной волны меньшей длины свободного пробега. Поэтому для большинства задач теории плазмы удобно использовать кинетическое уравнение, а гидродинамическое приближение — не достаточно.

Из-за сложности устройства интеграла столкновений часто используют грубое приближение вида

$$\mathcal{I}[f] = -\frac{f - f_0}{\tau},\tag{27}$$

называемое au-приближение. Учтено, что интеграл столкновений обращается в ноль для равновесной функции распределения t_0 . Величина au имеет смысл времени свобоного пробега частиц в среде.

Приложение: Динамический вывод Боголюбова

Для разреженного газа малый параметр $(d/\bar{r})^3 \ll 1$, d – радиус действия атомных сил, \bar{r} – расстояние между атомами. N-частичная функция распределения $f^{(N)}(t, \Gamma_1, ..., \Gamma_N)$ с нормировкой

$$\int f^{(N)}(t,\Gamma_1,...,\Gamma_N)d\Gamma_1...d\Gamma_N = 1, \quad d\Gamma_a = d^3r_ad^3p_a.$$
 (28)

Одночастичная функция распределения

$$f^{(1)} = \int f^{(N)}(t, \Gamma_1, ..., \Gamma_N) d\Gamma_2 ... d\Gamma_N.$$
 (29)

Теорема Лиувилля

$$\frac{df^{(N)}}{dt} = \frac{\partial f^{(N)}}{\partial t} + \sum_{a=1}^{N} \left[\dot{\mathbf{r}}_{a} \frac{\partial f^{(N)}}{\partial \mathbf{r}_{a}} + \dot{\mathbf{p}}_{a} \frac{\partial f^{(N)}}{\partial \mathbf{p}_{a}} \right] = 0 \qquad (30)$$

с гамильтонианом парного взаимодействия

$$H = \sum_{a=1}^{N} \frac{\rho_a^2}{2m} + \sum_{a=1}^{N} \sum_{b < a} U(|\mathbf{r}_a - \mathbf{r}_b|)$$
 (31)

принимает вид

$$\frac{df^{(N)}}{dt} = \frac{\partial f^{(N)}}{\partial t} + \sum_{a=1}^{N} \left[\mathbf{v}_{a} \frac{\partial f^{(N)}}{\partial \mathbf{r}_{a}} - \frac{\partial f^{(N)}}{\partial \mathbf{p}_{a}} \sum_{b < a} \frac{\partial U(|\mathbf{r}_{a} - \mathbf{r}_{b}|)}{\partial \mathbf{r}_{a}} \right] = 0.$$
(32)

Проинтегрируем по $d\Gamma_2...d\Gamma_N$. Получим

$$\frac{\partial f^{(1)}(t,\Gamma_1)}{\partial t} + \mathbf{v}_1 \frac{\partial f^{(1)}(t,\Gamma_1)}{\partial \mathbf{r}_1} = N \int \frac{\partial f^{(2)}(t,\Gamma_1,\Gamma_2)}{\partial \mathbf{p}_1} \frac{\partial U(|\mathbf{r}_1 - \mathbf{r}_2|)}{\partial \mathbf{r}_1} d\Gamma_2.$$
(33)

Интегралы, которые не содержат дифференцирование по ${f r}_1, {f p}_1$ сводятся к поверхностным и зануляются. Двухчастичная функция

$$f^{(2)}(t,\Gamma_1,\Gamma_2) = \int f^{(N)} d\Gamma_3...d\Gamma_N$$
 (34)

Проинтегрируем по $d\Gamma_3...d\Gamma_N$. Имеем

$$\frac{\partial f^{(2)}}{\partial t} + \mathbf{v}_{1} \frac{\partial f^{(2)}}{\partial \mathbf{r}_{1}} + \mathbf{v}_{2} \frac{\partial f^{(2)}}{\partial \mathbf{r}_{2}} - \frac{\partial U(|\mathbf{r}_{1} - \mathbf{r}_{2}|)}{\partial \mathbf{r}_{1}} \frac{\partial f^{(2)}}{\partial \mathbf{p}_{1}} - \frac{\partial U(|\mathbf{r}_{1} - \mathbf{r}_{2}|)}{\partial \mathbf{r}_{2}} \frac{\partial f^{(2)}}{\partial \mathbf{p}_{2}} =$$

$$= N \int \frac{\partial f^{(3)}}{\partial \mathbf{p}_{1}} \frac{\partial U(|\mathbf{r}_{1} - \mathbf{r}_{3}|)}{\partial \mathbf{r}_{1}} + \frac{\partial f^{(3)}}{\partial \mathbf{p}_{2}} \frac{\partial U(|\mathbf{r}_{2} - \mathbf{r}_{3}|)}{\partial \mathbf{r}_{2}} d\Gamma_{3}. \tag{35}$$

Получается цепочка зацепляющихся уравнений.

Оценка правой части

$$N \int \frac{\partial f^{(3)}}{\partial \mathbf{p}_1} \frac{\partial U(|\mathbf{r}_1 - \mathbf{r}_3|)}{\partial \mathbf{r}_1} d\Gamma_3 \sim \frac{\partial f^{(2)}}{\partial \mathbf{p}_1} \frac{\partial U}{\partial \mathbf{r}} \frac{d^3}{\bar{r}^3}$$
(36)

и правой частью можно пренебречь. Тогда

$$\frac{df^{(2)}}{dt} = 0. (37)$$

Принцип ослабления корреляций

$$f^{(2)}(t,\Gamma_1,\Gamma_2) = f^{(1)}(t,\Gamma_1)f^{(1)}(t,\Gamma_2). \tag{38}$$

Тогда для $f = Nf^{(1)}$ имеем

$$\frac{\partial f(t,\Gamma_1)}{\partial t} + \mathbf{v}_1 \frac{\partial f(t,\Gamma_1)}{\partial \mathbf{r}_1} = \int \frac{\partial U(|\mathbf{r}_1 - \mathbf{r}_2|)}{\partial \mathbf{r}_1} \frac{\partial}{\partial \mathbf{p}_1} \left[f(\Gamma_1) f(\Gamma_2) \right] d\Gamma_2. \tag{39}$$

Из

$$\mathbf{v}_{1} \frac{\partial f^{(2)}}{\partial \mathbf{r}_{1}} + \mathbf{v}_{2} \frac{\partial f^{(2)}}{\partial \mathbf{r}_{2}} - \frac{\partial U(|\mathbf{r}_{1} - \mathbf{r}_{2}|)}{\partial \mathbf{r}_{1}} \frac{\partial f^{(2)}}{\partial \mathbf{p}_{1}} - \frac{\partial U(|\mathbf{r}_{1} - \mathbf{r}_{2}|)}{\partial \mathbf{r}_{2}} \frac{\partial f^{(2)}}{\partial \mathbf{p}_{2}} = 0$$
(40)

получим

$$\frac{\partial U(|\mathbf{r}_1 - \mathbf{r}_2|)}{\partial \mathbf{r}_1} \frac{\partial}{\partial \mathbf{p}_1} [f(\Gamma_1) f(\Gamma_2)] = (\mathbf{v}_1 - \mathbf{v}_2) \frac{\partial}{\partial \mathbf{r}} [f(\Gamma_1) f(\Gamma_2)] \quad (41)$$

Член с производной по \mathbf{p}_2 обращается в ноль при интегрировании по частям.

Интеграл столкновений принимает вид

$$\mathcal{I} = \int \mathbf{v}_{rel} \frac{\partial (f(\Gamma_1)f(\Gamma_2))}{\partial \mathbf{r}} d^3 p_2 d^3 r, \tag{42}$$

где $\mathbf{v}_{rel} = \mathbf{v}_1 - \mathbf{v}_2$, $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$. Цилиндрическая система координат с осью z вдоль \mathbf{v}_{rel} .

$$\mathcal{I} = \int v_{rel} \rho d\rho d\phi d^3 p_2 f(\Gamma_1) f(\Gamma_2) \Big|_{z=-\infty}^{z=+\infty}$$
(43)

При $z \to -\infty$ величины $f(\Gamma_1) \to f(\mathbf{p}), \ f(\Gamma_2) \to f(\mathbf{p}_1);$ при $z \to +\infty$ величины $f(\Gamma_1) \to f(\mathbf{p}'), \ f(\Gamma_2) \to f(\mathbf{p}'_1).$ В итоге

$$\mathcal{I} = \int v_{rel} d\sigma (f' f_1' - f f_1) d^3 p_2 \tag{44}$$