GÉOMÉTRIE ALGÉBRIQUE. – La jacobienne généralisée d'une courbe relative; construction et propriété universelle de factorisation. Note (*) de Carlos E. Contou-Carrère, prèsentée par Henri Cartan.

Soit $\hat{X} \xrightarrow{f} S$ une courbe propre sur une base S. Si $T \hookrightarrow \hat{X}$ est un diviseur relatif tel que $X = \hat{X} - T$ soit lisse sur S, on donne la construction d'un S-schéma en groupes « pro-lisse » J_{∞} et d'un morphisme $X \xrightarrow{\phi} J_{\infty}$ tel que pour tout morphisme $X \xrightarrow{\psi} G$ dans un S-schéma en groupes lisse et commutatif il existe un et un seul S-homomorphisme $\overline{\psi}: J_{\infty} \to G$ avec $\overline{\psi} \circ \phi = \psi$. [i. e. $Hom_{S-gr}(J_{\infty}, G) \cong G(X)$].

Let $\hat{X} \xrightarrow{f} S$ be a relative proper curve over S. And $T \subseteq \hat{X}$ a relative divisor such that $X = \hat{X} - T$ be smooth over S. The construction of an S-group-scheme J_{∞} and a morphism $X \xrightarrow{\phi} J_{\infty}$ is given, the couple (J_{∞}, ϕ) verifies the following universal property: any S-morphism $X \xrightarrow{\psi} G$, G a smooth S-group scheme, factors uniquely as $\overline{\psi} \circ \phi = \psi$, $\overline{\psi} : J_{\infty} \to G$ a group homomorphism.

- 0. Notations et hypothèses. (a) Soit $\hat{X} \to S$ un S-schéma plat de présentation finie à fibres géométriques intègres de dimension 1, localement projectif sur S, donc propre. Soit T un sous-schéma fermé de \hat{X} , plat sur S, tel que $\mathscr{I}_{T|\hat{X}}$ (idéal de définition de T dans \hat{X}) soit inversible et tel que $X = \hat{X} T$ soit lisse (lorsque $T \to S$ est surjectif, \hat{X} est projectif sur S).
- (b) Bien que l'on entende prouver le théorème pour un S-schéma en groupes lisse commutatif les dévissages nécessaires amènent à considérer des S-faisceaux en groupes f. p. p. f. plus généraux.

Soit G un S-faisceau f. p. p. f. en groupes commutatifs (cf. [6], vol. 1), localement de présentation finie (l. p. f.) (cf. [4]), séparé, formellement lisse (f. l.) (cf. [6], vol. II) et à fibres représentables. On suppose aussi que chaque fois que l'on a deux immersions $S_0 \subseteq S_1$, $S_0 \subseteq S_2$ d'ordre 1 (i. e. les idéaux de définition respectifs étant de carré nul) dans $Sch \mid_S$, si i_2 admet une section $S_2 \to S_0$ on a

$$(0.1) G(S_1 \coprod_{S_0} S_2) \simeq G(S_1) \times_{G(S_0)} G(S_2).$$

1. Construction du système projectif de S-groupes $\{J_n^*\}_{n\geq 0}$ et énoncé du théorème. — Soit $T^{(n)}$ le n-ième voisinage infinitésimal de T dans \hat{X} , i. e. $T^{(n)} = V(\mathscr{I}_{T|\hat{X}}^{(n+1)})$. Le S-schéma $T^{(n)}$ étant plat et de présentation finie, la somme amalgamée $\hat{X}^{(n)} = \hat{X} \coprod_{T^{(n)}} S$ existe dans $Sch|_S$ et commute aux changements de base (cf. [1]). On note $f^{(n)}: \hat{X}^{(n)} \to S$ le morphisme naturel donnée par (f, id_S) et $\epsilon^{(n)}: S \to \hat{X}^{(n)}$ la S-section naturelle. On a une suite de morphismes de S-schémas

$$\hat{\mathbf{X}} \to \hat{\mathbf{X}}^{(1)} \to \dots \hat{\mathbf{X}}^{(n)} \to \hat{\mathbf{X}}^{(n+1)} \to \dots;$$

soit:

(1.2)
$$J_{n} = \underline{\operatorname{Pic}}_{\hat{X}^{(n)}|S} = R^{1} f_{*}^{(n)}(G_{m_{\hat{X}}(n)}),$$

le S-foncteur de Picard relatif de $\hat{X}^{(n)}$ sur S (cf. [5]). On a la suite exacte

$$(1.3) 0 \to p_*^{(n)}(G_{m_{\Gamma}(n)}) \Big| \operatorname{Im} G_{m_{\mathbb{S}}} \to \underline{\operatorname{Pic}}_{\hat{X}^{(n)}|\mathbb{S}} \to \underline{\operatorname{Pic}}_{\hat{X}|\mathbb{S}} \to 0,$$

ce qui entraîne en vertu de [5] que J_n est un S-schéma en groupes lisses. La suite (1.1) donne lieu à un système projectif de S-groupes $\{J_n\}_{n\geq 0}(J_n \leftarrow J_m$ est induit par $\hat{X}^{(n)} \to \ldots \to \hat{X}^{(m)}$ si $n\leq m$) dont les morphismes de transition sont des morphismes affines, donc la limite projective $J_\infty^* = \lim_{n \to \infty} J_n^*$ existe dans $\operatorname{Sch}|_S$. Pour $\infty \geq n \geq 0$ on a une suite exacte $0 \to J_n^0 \to J_n^* \stackrel{\varepsilon}\to \mathbb{Z}_S \to 0$ obtenue à partir de l'augmentation de $\operatorname{Pic}_{\hat{X}^{(n)}|S}$ (cf. [5]). On pose $J_n^m = \varepsilon^{-1}(m)$ si $m \in \mathbb{Z}$. Une section α de X au-dessus de $S' \in \operatorname{Sch}|S$ est définie par un diviseur relatif qui détermine une section de J_n^* (sur S'). On a donc un S-morphisme $X \stackrel{\varphi_n}\to J_n^1$ et un système projectif $\{\varphi_n\}_{n\geq 0}$ de S-morphismes; on pose $\varphi = \varprojlim_n \varphi_n$.

Théorème (1.4). — Soit X comme dans 0, et G un S-schéma en groupes commutatif et lisse. L'homomorphisme de groupes $\operatorname{Hom}_{S-gr}(J_{\infty},G) \to G(X)$ induit par composition avec $X \stackrel{\varphi}{\to} J_{\infty}$ est un isomorphisme. [Propriété de factorisation universelle (p.d.f.u) du couple (J_{∞}, φ) .]

On ramène la preuve de (1.4) au cas S affine et noethérien (cf. [4]).

2. Esquisse de preuve de (1.4) si S est réduit.

Notation (2.1). — Soit $S = \operatorname{Spec} A$, A noethérien. Si N est un A-module de type fini, soit W(N) le S-foncteur en groupes $X \to \Gamma(X, N_{(X)}^{\sim})$.

Cas I. – G est un S-faisceau f. p. p. f. en groupes, l. p. f., f. l. et séparé.

Soient $X \xrightarrow{\psi} G$ un S-morphisme et $\prod_{i=1}^{N} X \xrightarrow{\sigma_N} J_n^N$ (n fixé) le morphisme $\sigma_N(x_1, \ldots, x_X) = \sum_{i=1}^{N} \varphi_n(x_i)$. La théorie sur un corps de base (cf. [7]) montre qu'il existe : (a) un ouvert dense $U \subset S$ et une factorisation $\psi_U = \overline{\psi}_{nU} \circ \varphi_{nU}$, de ψ sur U; (b) un entier N(n) > 0 et un ouvert $V \subset \prod_{i=1}^{N(n)} X$ tel que $\sigma_{N(n)} \mid V$ soit fidèlement plat. On conclut l'existence et l'unicité d'un prolongement de ψ_{nV} par descente f. p. p. f. à partir de $\sigma_{N(n)} \mid V : V \to J_n^{N(n)}$ (G est séparé).

Remarque (2.2). — Soient L et L' deux faisceaux de Zariski en groupes commutatifs sur Sch $|_S$ qui coïncident sur la sous-catégorie (pleine) des S-schémas plats notée \mathscr{C}_S , et une extension E d'un S-schéma en groupes plat G par L. Il existe une extension E' de G par L' telle que : (a) E' est scindable si et seulement si E' est scindable; (b) les torseurs définis par E et E' sur \mathscr{C}_G coïncident.

Cas II. - G est une extension d'un S-groupe G' comme dans le cas I par W(N).

Le théorème de structure des A-modules noethériens (cf. [8]), (1.7), des généralités sur les prolongements d'homomorphismes (cf. [6], vol. I) et un argument comme celui du cas infinitésimal [cf. preuve de (3.2)] ramènent la preuve au cas où $N = A \mid P$, P étant un idéal premier de A. On se ramène au cas I par le changement de base Spec $A \mid P \subseteq Spec A$.

3. Preuve de (1.4) pour S affine et noethérien.

Hypothèse (3.1). — Un S-groupe vérifie l'hypothèse (3.1) s'il est extension d'un S-schéma en groupes lisses par un S-foncteur W(N).

Soit I un idéal quasi-cohérent de \mathcal{O}_S de carré nul; on pose $V(I) = S_0$ et $X_0 = X \underset{S}{\times} S_0$, $(J_n)_0 = J_n \underset{S}{\cdot} S_0$, etc.

Pour achever la preuve de (1.4) par récurrence sur l'ordre du radical de \mathcal{O}_S il suffit de prouver :

Proposition (3.2). — Si pour tout S_0 -groupe G_0 vérifiant (3.1)

$$\text{Hom}_{S_0-gr}((J_{\infty})_0, G_0) \to G_0(X_0)$$

est un isomorphisme, alors $\operatorname{Hom}_{S-gr}(J_{\infty}, G) \to G(X)$ est un isomorphisme pour tout S-groupe G vérifiant (3.1).

Soit $\psi \in G(X)$; par hypothèse de (3.2) on a un diagramme commutatif (pour tout $m \ge n$):

La flèche en pointillé dénote le prolongement de $(\psi_n)_0$ à construire.

Remarque (3.4). — Soit $L_I^G(T_0) = \operatorname{Ker}(G(\operatorname{Spec}(\mathcal{O}_{T_0} \oplus \mathcal{O}_{T_0} \otimes I)) \to G(T_0))$; on vérifie qu'il existe un \mathcal{O}_{S_0} -module N de type fini tel que la restriction de L_I^G à la sous-catégorie de S_0 -schémas plats coïncide avec W(N).

Soient G un S-faisceau en groupes de Zariski, f. l., l. p. f. qui vérifie (0.1), T un S-schéma et $T_0 \stackrel{\gamma_0}{\to} G$ un S-morphisme. Sous ces hypothèses il existe un L_I^G -torseur zariskien \mathcal{F}_{T_0} sur T_0 dont les propriétés sont résumées dans le :

Lemme (3.5). — (a) On a $\Gamma(T_0, \mathcal{F}_{T_0}) \simeq$ ensemble des S-morphismes $T \xrightarrow{\gamma} G$ tels que le composé $T_0 \subseteq T \xrightarrow{\gamma}$ soit égal à γ_0 .

- (b) Si $T \stackrel{\alpha}{\to} T'$ est un S-morphisme et si $T_0 \stackrel{\gamma_0}{\to} G$ se factorise en $\gamma_0 = \gamma_0' \circ \alpha_0$ on a $\mathcal{T}_{T_0} \simeq \alpha_0^* (\mathcal{T}_{T_0'})$.
- (c) Soient T un S-schéma en groupes et $T_0 \stackrel{\gamma_0}{\to} G$ un S-homomorphisme. Alors \mathcal{F}_{T_0} est muni d'une structure de S_0 -groupe qui est une extension (Zariski) de T_0 par L_I^G dont les scindages correspondent aux S-homomorphismes $T \stackrel{\gamma}{\to} G$ qui prolongent γ_0 (cf. [2]).

Preuve de (3.2) Comme $\mathscr{T}_{X_0} \simeq (\varphi_n)_0^* (\mathscr{T}_{(J_n)_0})$ par (3.5), (b) et au morphisme $X \stackrel{\psi}{\to} G$ correspond une section $\psi' : X_0 \to \mathscr{T}_{X_0}$, il existe une slèche

$$\psi^{\prime\prime}: X_0 \to \mathscr{T}_{(J_n^{\bullet})_0} \quad \text{avec} \quad (\varphi_n)_0 = \pi_n \circ \psi^{\prime\prime} (\mathscr{T}_{(J_n^{\bullet})_0} \xrightarrow{\pi_n} (J_n^{\bullet})_0).$$

En vertu des remarques (2.2) et (3.4) et de l'hypothèse de (3.2) il existe un entier $m \ge n$ et un S_0 -homomorphisme $(J_m)_0 \xrightarrow{\overline{\psi}_m''} \mathcal{F}_{(J_n')_0}$ tel que $\psi'' = \overline{\psi}_m'' \circ (\varphi_m)_0$. On a donc un diagramme commutatif:

On conclut que $\mathcal{F}_{(J_m)_0}$ est une extension scindée de $(J_m)_0$ ce qui entraîne l'existence d'un S-homomorphisme $\overline{\psi}_m$ qui prolonge $(\overline{\psi}_m)_0$ et factorise ψ .

C.Q.F.D.

- (*) Remise le 18 juin 1979, acceptée le 2 juillet 1979.
- [1] C. CONTOU-CARRÈRE, Sur l'existence de certaines sommes amalgamées (à paraître).
- [2] C. CONTOU-CARRÈRE, Prolongements infinitésimaux d'homomorphismes (à paraître).
- [3] A. GROTHENDIECK, E.G.A. IV, deuxième partie, publications I.H.E.S., 24.
- [4] A. GROTHENDIECK, E.G.A. IV, troisième partie, publications I.H.E.S., 28.
- [5] A. GROTHENDIECK, Fondements de la géométrie algébrique (Extraits du Sém. Bourbaki, Exposés n° V et VI).
- [6] A. GROTHENDIECK et M. DEMAZURE, Schémas en groupes, I et II.
- [7] J.-P. Serre, Groupes algébriques et corps de classes.
- [8] N. BOURBAKI, Algèbre commutative, chap. 3 et 4, p. 136.

Université des Sciences et Techniques du Languedoc, Institut de Mathématiques, place Eugène-Bataillon, 34060 Montpellier Cedex.