Numerical Scheme for Generalised Serre Green Naghdi Equations

Jordan Pitt, Stephen Roberts and Christopher Zoppou Australian National University

August 19, 2020

Outline

- Motivation
- Equations
- Scheme
- Validation

Motivation - Water Waves

We require accurate models of water waves to understand natural hazards in particular

- Tsunamis
- Storm Surges

Motivation

(a) Sulawesi Tsunami (Indonesia, 2018).

(b) Hurricane Florence (U.S.A, 2018)

Motivation - Water Waves

We require accurate models of water waves to understand natural hazards in particular

- Tsunamis
- Storm Surges

Current models built on models where wave speed independent of frequency (Shallow Water Wave Equations).

Motivation - Water Waves

We require accurate models of water waves to understand natural hazards in particular

- Tsunamis
- Storm Surges

Current models built on models where wave speed independent of frequency (Shallow Water Wave Equations).

What's the effect of wave frequency effects on these natural hazards?

Dispersion Relationship of Water Waves (Linear Theory)

Dispersion Relationship of Water Waves (Linear Theory)

Dispersion Relationship of Water Waves (Linear Theory)

$$\omega^2 = gk \tanh(kH)$$

Gives the angular frequency (ω) as a function of gravitational acceleration (g), wave number (k) and mean background water depth (H).

Phase speed (c)

$$c^2 = \frac{\omega^2}{k^2} = \frac{g}{k} \tanh(kH)$$

Taylor Expansion of Phase Speed in k

$$c^{2} = \frac{g}{k} \tanh(kH) = gH - \frac{g}{3}H^{3}k^{2} + \frac{2}{15}gH^{5}k^{4} + \mathcal{O}(k^{5})$$

Taylor Expansion of Phase Speed in k

$$c^{2} = \frac{g}{k} \tanh(kH) = gH - \frac{g}{3}H^{3}k^{2} + \frac{2}{15}gH^{5}k^{4} + \mathcal{O}(k^{5})$$

Resulting non-linear equations

- Non-dispersive Shallow Water Wave Equations
- Serre Equations
- Improved Dispersion Serre Equations

Set Up

Equations for conservation of mass and momentum written in terms of the water depth h(x,t), the depth average horizontal velocity u(x,t) and acceleration due to gravity g.

Figure: Relevant Quantities.

Generalised Dispersive Equations

$$\begin{split} &\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0\\ &\frac{\partial (hu)}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2}gh^2 + \frac{h^3}{2}\beta_1 \Phi - \frac{gh^2}{2}\beta_2 \Psi \right) = 0 \end{split}$$

where

$$\Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial x \partial t} - u \frac{\partial^2 u}{\partial x^2}$$

$$\Psi = h \frac{\partial^2 h}{\partial x^2} + \frac{1}{2} \frac{\partial h}{\partial x} \frac{\partial h}{\partial x}$$

Dispersion Relation of Linearised Equations

$$c_{\text{model}}^{2} = gH \frac{\beta_{2}H^{2}k^{2} + 2}{\beta_{1}H^{2}k^{2} + 2}$$

$$= gH - \frac{1}{2}gH^{3}(\beta_{1} - \beta_{2})k^{2} + \frac{1}{4}\beta_{1}H^{5}k^{4}(\beta_{1} - \beta_{2}) + \mathcal{O}(k^{5})$$

Want

$$c^{2} = \frac{g}{k} \tanh(kH) = gH - \frac{g}{3}H^{3}k^{2} + \frac{2}{15}gH^{5}k^{4} + \mathcal{O}(k^{5})$$

Dispersion Regions

Model - Conclusion

- We now have one set of equations we can solve that includes
 - Non-dispersive wave models
 - \triangleright k^2 accurate dispersive wave models
 - ► k⁴ accurate dispersive wave models

We can thus implement one numerical scheme and investigate the impact of different β values to investigate effect of dispersion on natural hazards.

Equations

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0$$

$$\frac{\partial (hu)}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2}gh^2 + \frac{h^3}{2}\beta_1 \Phi - \frac{gh^2}{2}\beta_2 \Psi \right) = 0$$

where

$$\Phi = \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial x \partial t} - u \frac{\partial^2 u}{\partial x^2}$$

$$\Psi = h \frac{\partial^2 h}{\partial x^2} + \frac{1}{2} \frac{\partial h}{\partial x} \frac{\partial h}{\partial x}$$

Reformulation

$$\begin{split} &\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0\\ &\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}\beta_1 h^3 \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - \frac{1}{2}\beta_2 gh^2 \left[h \frac{\partial^2 h}{\partial x^2} + \frac{1}{2} \frac{\partial h}{\partial x} \frac{\partial h}{\partial x} \right] \right) = 0. \end{split}$$

where

$$G = uh - \frac{1}{2}\beta_1 \frac{\partial}{\partial x} \left(h^3 \frac{\partial u}{\partial x} \right).$$

Central Idea - Starting with h and G

Solve

$$G = uh - \frac{1}{2}\beta_1 \frac{\partial}{\partial x} \left(h^3 \frac{\partial u}{\partial x} \right).$$

to obtain u.

Central Idea - Starting with h and G

Solve

$$G = uh - \frac{1}{2}\beta_1 \frac{\partial}{\partial x} \left(h^3 \frac{\partial u}{\partial x} \right).$$

to obtain u.

Then solve

$$\begin{split} &\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0\\ &\frac{\partial G}{\partial t} + \frac{\partial}{\partial x} \left(uG + \frac{gh^2}{2} - \frac{2}{3}\beta_1 h^3 \frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - \frac{1}{2}\beta_2 gh^2 \left[h \frac{\partial^2 h}{\partial x^2} + \frac{1}{2} \frac{\partial h}{\partial x} \frac{\partial h}{\partial x} \right] \right) = 0. \end{split}$$

with a finite volume method to update h and G to next time.

First Example - Extension of Previous Methods for Serre

- ► Solve *u* given *h* and *G*, using a second-order finite difference approximation.
- ▶ Update *h* and *G* using a second-order finite volume approximation.

Why Finite Volume?

The central reason is robustness.

- Equations possess weak solutions with discontinuities
 - Shallow Water Wave Equations (Shocks Jump Discontinuity)
 - Certain Parameter Combinations (Weak Discontinuities -Continuous with discontinuous derivative)
- Reproduction of those underlying conservation properties.

We were able to produce the first well validated method this way.

Validation

Analytic solutions only known for some β values.

Thanks!