EVENT DRIVEN STREAMING ANALYTICS

Demonstration on Architecture of IoT Lei Xu 2016.09

I.DEMO SCENARIO

Devices generate transactions after payment

Coordinates & Payment Info

Taxi/Devices

Transaction being sent to IoT Platform for Analytics

Offline Analytics

- 10 Most Frequent Routes by week day
- 10 Most Profitable Areas by week day
- Most Profitable Hours at the 10 Most Profitable Areas by week day

Thousands of Browsers Hundreds of BI Clients

Apps & Services

Rule Engine & Process Mgmt.

Complex Event Processing

Business & Data MicroServices

IoT Platform Components

IoT Gateway

Device Management

Authentication & Authorization

Gateways & Interfaces

Data Management

Multi-Channel Data Integration

Structured & Unstructured Data

Analytics & Machine Learning

Cloud Infrastructure

Cloud Native Platform

Scalability & High Availability

Security & Governance

Visualize Data

Reporting, BI & User Apps

History Data & Real-time Data

Multiple Devices & Platforms

2.REQUEST DRIVEN FLOW

Sending Raw Events

Traditional Request Driven Flow

Receiving &
Storing Raw Events

Event-driven Flow

Request-driven Flow

Time-based Flow

Time Based
Enrichment &
Filtering

Storing Enriched Data

Time Based Batch
Aggregation

Storing
Aggregated Data

Polling Requests for Latest Data

BI Visualization

Analytics

DRAWBACKS & CHALLENGES

- Polling + Request/Response Style => Overhead
- Time Based Batch Process => High Latency
- Architecture Monolith or SOA will work well with HA?
- · How to scale & how to maintain system performance with lots of user requests?
- · How to scale & how to maintain system performance with huge amount of data?
- Portable for both Cloud and On-Premise environments?

REQUEST DRIVEN & EVENT DRIVEN

	Request Driven	Event Driven	
How is an action being taken?	As a response to a specific request	Triggered by the fact of a specific situation	
When is an action being taken?	When the request is being processed	Determined by the context of the situation	
What happens when the event/request occurs?	A response is produced	The event can be ignored, increment the state, trigger an internal derive event, or trigger a solution	

http://epthinking.blogspot.jp/2012/12/more-on-request-driven-vs-event-driven.html

3.EVENT DRIVEN FLOW

Sending Raw Events

Receiving Raw Events

Enrichment & Filtering

Publishing/
Subscribing
Enriched Events

Real-time
Aggregation/
Analytics

Publishing/
Subscribing
Aggregated Events

Events Visualization

Online Analytics

Expectations

- Event Driven
- Low Latency
- Scalability
- High Availability
- Portability
- Light Weight

Sending Raw Events

Machine Learning Loopback to Streaming

Receiving Raw Events

Enrichment & Filtering

Publishing/
Subscribing
Enriched Events

Real-time
Aggregation/
Analytics

Publishing/
Subscribing
Aggregated Events

Events Visualization

Storing Data for Analytics

Event-driven Flow

Request-driven Flow

Analytics & Machine Learning

BI Visualization

4.EVENT DRIVEN ARCHITECTURE

Spring Cloud Stream/Data Flow as Event Driven Architecture

Apps & Services – Online Analytics

Reverse Geocoding

mongoDB

Apps & Services – Online & Offline Analytics

Apps & Services – Machine Learning Loopback to Streaming

5.ONLINE ANALYTICS LOCAL DEPLOYMENT

6. PRODUCTION LEVEL DEPLOYMENT

Data MicroServices

Containerized Applications

Business MicroServices

MVW App

Spring Cloud Stream Apps

Front-end Services

Broker by RabbitMQ

WebSocket by RabbitMQ

Spring Cloud Data Flow

Back-end Services

Geode

RabbitMQ

MongoDB

HAWQ

Spring Cloud Stream Low Latency

Event Driven

- Messaging by RabbitMQ Real-time by GemFire
- Scalability Apps Scale-Out by Containers Governance by Data Flow Services Scale-out
- High Availability Platform HA by Cloud Native Platform or PaaS
- Portability Apps & Services portable to other Cloud Native Platforms
- Light Weight Loosely Coupled MicroServices

etc.

7.DEPLOYMENT & RUNTIME SCREENSHOTS

Apps

This section lists all the available applications and provides the control to register/unregister them (if applicable).

Streams

Create a stream using text based input or the visual editor.

spring (

This section lists all the stream definitions and provides the ability to deploy/undeploy or destroy streams.

Definitions Create Stream						
			Quick filter			
Name	Definition	Status 😗		Actions		
gem2stomp_top_district	gemfire-source-rabbitcache-event-expression=newValueregion- name=RegDropoffDistrictTop stomp-sink-rabbitwithsockjs=true topic=topdropoffport=9410	deployed	■ Undeploy	► Deploy	X Destroy	
gem2stomp_top_route	gemfire-source-rabbitcache-event-expression=newValueregion- name=RegRouteTopTen stomp-sink-rabbitwithsockjs=true topic=toprouteport=9400	deployed	■ Undeploy	► Deploy	X Destroy	
http2gem	:http2multi-stomp.geocoding-processor-rabbit > gemfire-sink-rabbit json=truekey-expression=payload.getField('uuid')region- name=RegRaw	deployed	■ Undeploy	► Deploy	X Destroy	
http2multi-stomp	http-source-rabbitport=9000 geocoding-processor-rabbit database=geojsoncollection=blocks multi-topic-stomp-sink-rabbit withsockjs=truetopic-path=/dropoffDistrictCodeport=9210	deployed	■ Undeploy	► Deploy	X Destroy	

This section shows the Spring Cloud Data Flow cluster view with the list of all running apps.

Runtime Apps			
	Quick filter	Quick filter	
App Id	State	# of Instances	
gem2stomp_top_district.gemfire-source-rabbit	deployed	1	
gem2stomp_top_district.stomp-sink-rabbit	deployed	1	
gem2stomp_top_route.gemfire-source-rabbit	deployed	1	
gem2stomp_top_route.stomp-sink-rabbit	deployed	1	
http2gem.gemfire-sink-rabbit	deployed	1	
http2multi-stomp.geocoding-processor-rabbit	deployed	1	
http2multi-stomp.http-source-rabbit	deployed	1	
http2multi-stomp.multi-topic-stomp-sink-rabbit	deployed	1	

Dropoff-district Count

Real-time Taxi Dropoff Events

東京23区 リアルタイム・タクシー降車イベント

10 most frequent routes

10 most frequent routes

8. LOCAL DEPLOYMENT DEMO VIDEO