GLS UNIVERSITY

Faculty of Computer Applications & Information Technology

Number System

Integrated IMSCIT

Data Representation

- Computers are electronic devices powered by electricity which have only two states: on and off.
- The two digits, 0 and 1 can easily represent these two states.
- In the coding, when numbers, letters or words are represented by a specific group of symbols, it is said that the number, letter or word is being encoded.
- The group of symbols is called as a **CODE**.
- Mainly there are three types of code.
 - 1) Binary Codes
 - 2) ASCII
 - 3) Unicode

Binary Codes

- The digital data is represented, stored and transmitted as group of binary bits called BINARY CODE.
- The binary code is represented by the number as well as alphanumeric letter.
- Advantages of Binary Code Suitable for the computer applications.
 - Suitable for the digital communications.
 - Makes the analysis and designing of digital circuits if we use the binary codes.
 - Since only 0 & 1 are being used, implementation becomes easy.

Binary Coded Decimal (BCD) Code

- In this code each decimal digit is represented by a 4-bit binary number.
- BCD is a way to express each of the decimal digits with a binary code.
- In the BCD, with four bits we can represent sixteen numbers (0000 to 1111).
- But in BCD code only first ten of these are used (0000 to 1001).

• The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD

Decimal	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Binary Coded Decimal (BCD) Code

Decimal Codes	BCD Digits
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Example

Q) Find the BCD for the decimal value 1237.

Ans :- 1 => 0001

2 => 0010

3 => 0011

7 => 0111

Final Ans: - 0001001000110111

Binary Coded Decimal (BCD) Code

Advantages of BCD Codes:

- It is very similar to decimal system.
- We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of BCD Codes:

- The addition and subtraction of BCD have different rules.
- The BCD arithmetic is little more complicated.
- BCD needs more number of bits than binary to represent the decimal number.
- So BCD is less efficient than binary.

ASCII

- American Standard Code for Information Interchange
- It is a 7 bit code.
- It is used for transmitting and processing data amongst different
- computers.
- Later, IBM developed new version of ASCII, known as ASCII-8.
- It consist of 256 symbols.
- The concept is same as EBCDIC only the difference is in the combinations assigned to represent the various alphabets, numeric and special characters.

Code	Description
0 to 31	Control Characters
48 to 57	0-9
65 to 90	A-Z
97 to 122	a-z
128 to 255	Extended ASCII code

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0	*	32	20	40	[space]	64	40	100	@	96	60	140	`
1	1	1		33	21	41	!	65	41	101	Α	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	c
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47	1	71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	i
10	A	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54	,	76	4C	114	L	108	6C	154	1
13	D	15		45	2D	55	-	77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	1	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	p
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	s
20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	W
24	18	30		56	38	70	8	88	58	130	X	120	78	170	x
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	3A	72	:	90	5A	132	Z	122	7A	172	z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	١	124	7C	174	1
29	1D	35		61	3D	75	=	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	_	127	7F	177	

Unicode

- It is a 16 bit universal character coding standard for the representation of text which includes numbers, text and symbols.
- The Unicode consortium based in California developed the new unicode standard.
- It uses 32 bit to represent a symbol in the data.
- It is capable of representing approximately 1 million characters.
- It can uniquely represent any character or symbol present in any language like Chinese, Japanese, etc.
- In addition to the letters; mathematical and scientific symbols are also separated in Unicode codes.
- The main advantage of Unicode is that it is compatible with ASCII.
- The first 256 characters are same as ASCII

Number System

- 1. Binary
- 2. Decimal
- 3. Octal
- 4. Hexa-decimal

Number System

- A number system is defined as a set of values to represent 'quantity'.
- For example, a number of students in a class, no. Of assignments, no. of marks obtained, etc.
- The number system is divided into two categories:
 - Non-positional number system
 - Positional number system

Non-Positional Number System

- In olden days people use this type of number system for simple calculations like additions and subtractions.
- The non-positional number system consists of different symbols that are used to represent numbers.
- Roman number system is an example of the non-positional number system i.e. I=1, V=5, X=10,L=50.
- Every system varies by country and it depends on symbols and values set by the people of that country.
- For example, the Egyptians use Hieroglyphics, and the Greeks use a numeral system.

Non – Positional Number System

- When we type some letters or words, the computer translates them in numbers as computers can understand only numbers.
- A computer can understand the positional number system where there are only a few symbols called digits.
- These symbols represent different values depending on the position they occupy in the number.
- The value of each digit in a number can be determined using 1)The digit
 - 2)The position of the digit in the number
 - 3)The base of the number system (where the base is defined as the total number of digits available in the number system)

Positional Number System

- This type of number system are:
 - Decimal number system
 - Binary number system
 - Octal number system
 - Hexadecimal number system

- The total number of digits present in any number system is called its Base or Radix.
- Every number is represented by a base (or radix) x, which represents x digits.
- The base is written after the number as subscript such as $512_{(10)}$. It is a Decimal number as its base is 10.

Types of Number Systems

Number System	Base	Set of Digits	Example	Largest Digit
Decimal	10	(0,1,2,3,4,5,6,7,8,9)	⁽¹³⁾ 10	9
Binary	2	(0,1)	(1001) ₂	1
Octal	8	(0,1,2,3,4,5,6,7)	(47) ₈	7
Hexadecimal	16	(0,1,2,3,4,5,6,7,A,B,C,D, E,F)	^(27B) 16	F(15)

Positional Number System

- To determine the quantity that the number represents, the number is multiplied by an integer power of x depending on the position it is located and then finds the sum of the weighted digits.
- Example:
- Consider a decimal number 512.45₍₁₀₎
 - which can be represented in equivalent value as:

• $5x10^2 + 1x10^1 + 2x10^0 + 4x10^{-1} + 5x10^{-2}$

Decimal Number System

- The number system that we use in our day-to-day life is the decimal number system.
- Decimal number system has base 10 as it uses 10 digits from 0 to 9.
- In decimal number system, the successive positions to the left of the decimal point represent units, tens, hundreds, thousands, and so on.
- Each position represents a specific power of the base (10).
- For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position.
- Its value can be written as: 1234

```
= (1 \times 1000) + (2 \times 100) + (3 \times 10) + (4 \times 1)
```

- = 1000 + 200 + 30 + 4
- = 1234

Short of Decimal Number System

- \gg Base = 10
- \times It includes (0,1,2,3,4,5,6,7,8,9)
- \times Operations:
 - □ 1. Addition (+)
 - 2. Substraction (-)
 - 3. Multiplication (*)
 - 4. Division (/)

Short of Decimal Number System

- It can be used for both integer and floating point values.
- The (.) is used to represent floating point values.
- The value of each number represented in a decimal system can be determined by:
 - 1) Multiply the power value associated with each digit in a given number with the digit itself.
 - 2) Add all these values toget the final result.
 - The value that comes before the decimal point, is called integer value and after the decimal point, is called fraction value.

Short of Decimal Number System

Example: 1234.56

It can be computed as:

=
$$(1 * 10^3 + 2 * 10^2 + 3 * 10^1 + 4 * 10^0 + 5 * 10^{-1} + 6 * 10^{-2})$$

$$= 1000 + 200 + 30 + 4 + 0.5 + 0.06$$

= 1234.56

Binary Number System

- Characteristics of the binary number system are as follows —
- Uses two digits, 0 and 1
- Also called as base 2 number system
- Each position in a binary number represents a 0 power of the base (2).
- Example 20
- Last position in a binary number represents a x power of the base (2).
- Example 2x where x represents the last position 1.
- Example
- Binary Number: 10101₂

Binary Number System

- Binary number system is used to define a number in binary system.
- Binary system is used to represent a number in terms of two numbers only, 0 and 1.
- The binary number system is used commonly by computer languages like Java, C++.
- As the computer only understands binary language that is 0 or 1, all inputs given to a computer are decoded by it into series of 0's or 1's to process it further. In this lesson we will learn how to convert a decimal number to its binary number and the conversion of binary number to decimal number.
- "Bi" in Binary means "two". Hence, this draws back the line to the representation of a number in terms of 0 and 1 only. It is possible to express decimal numbers in terms of a binary number system easily. Decimal numbers and binary numbers have different notations. A decimal number is represented with a base of 10 while a binary number is represented with a base of 2.

2. Binary System

Following are some terminologies used in binary system.

- 1) Bit (binary digit) = 0 & 1
- 2) Nibble = 4 bits
- 3) Byte = 8bits
- 4) Word= 16 bits / 2 bytes
- 5) 1KB(Kilobyte) = 1024 bytes
- 6) 1MB(Megabyte) = 1024 KB
- 7) 1 GB(Gigabyte) = 1024 MB
- 8) 1TB(Terabyte) = 1024 GB
- 9) 1PB(Petabyte) = 1024 TB

Representing Binary Number System

Example: 10110.110

It can be computed as:

=
$$(1 * 2^4 + 0 * 2^3 + 1 * 2^2 + 1 * 2^1 + 0 * 2^0 + 1 * 2^{-1} + 1 * 2^{-2} + 0 * 2^{-3})$$

$$= 16 + 4 + 2 + 0.5 + 0.25$$

$$= 22.75$$

Representing

Decimal in

binary

Decimal Number	4-bit binary number
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110

Octal Number System

- Uses eight digits 0,1,2,3,4,5,6,7
- Also called as base 8 number system
- Each position in an octal number represents a 0 power of the base (8).
- Example 80
- Last position in an octal number represents a x power of the base
 (8).
- Example 8x where x represents the last position 1
- Example
- Octal Number: 125708

Octal System Example

Example: 234.56

==> It can be computed as:

$$= (2 * 8^2 + 3 * 8^1 + 4 * 8^0 + 5 * 8^{-1} + 6 * 8^{-2})$$

$$= 128 + 24 + 4 + 0.625 + 0.094$$

= 156.719

So, The octal value 234.56 represents the decimal value 156.719

Representing binary and decimal in octal

Decimal Number	Binary Number	Octal Number
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

Hexadecimal Number System

• Letters represent the numbers starting from 10.

$$A = 10$$
. $B = 11$, $C = 12$, $D = 13$, $E = 14$, $F = 15$

- Also called as base 16 number system
- Each position in a hexadecimal number represents a 0 power of the base (16). Example, 160
- Last position in a hexadecimal number represents a x power of the base (16).
- Example 16x where x represents the last position 1
- Example
- Hexadecimal Number: 19FDE16
- Characteristics of hexadecimal number system are as follows:
 - Uses 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - 6 letters A, B, C, D, E, F

Decimal to Hexadecimal Conversion

You have learned how to convert hexadecimal numbers to decimal numbers. Now let us find out how we can convert a decimal number into a hexadecimal number system. Follow the below steps:

 $16 | 15 \quad 2 \rightarrow 2$

Firstly	divide	the	number	by	16
---------	--------	-----	--------	----	----

Take the quotient and divide again by 16

The remainder left will produce the hex value

Repeats the steps until the quotient has become 0

Example: Convert (242)10 into hexadecimal.

Solution: Divide 242 by 16 and repeat the steps, till the quotient is left as 0.

Therefore, (242)10 = (F2)16

4. Hexadecimal System

Example: 5A7.2C

It can be computed as :

$$= (5 * 16^{2} + 10 * 16^{1} + 7 * 16^{0} + 2 * 16^{-1} + 12 * 16^{-2})$$

$$= 1280 + 160 + 7 + 0.125 + 0.047$$

- = 1447.172
- The hexadecimal number 5A7.2C represents the decimal value 1447.172

Representing decimal, binary and octal in hexadecimal

Binary Number	Octal Number	Hexadecimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	10	8
1001	11	9
	0000 0001 0010 0011 0100 0111 0110 0111	0000 0 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7 1000 10