P425/2 APPLIED MATHEMATICS PAPER 2 JULY/AUGUST 2024 3 HOURS

ASSHU BUSHENYI DISTRICT MOCK EXAMINATIONS 2024 UGANDA ADVANCED CERTIFICATE OF EDUCATION APPLIED MATHEMATICS PAPER 2 3 HOURS

INSTRUCTIONS TO CANDIDATES

- Attempt all the eight questions in section A and only five questions from section B.
- Any additional question answered(s) answered will not be marked.
- All necessary working must be shown clearly.
- Any graphical number should fully be attempted on a graph paper.
- Silent non-programmable scientific calculator and mathematical tables with a list of formulae may be used.
- In numerical work take acceleration due to gravity(g) to be 9.8ms⁻².

de Minter

SECTION A: (40 MARKS)

Answer all the questions in this section.

- 1. A particle P is observed to execute S.H.M with amplitude 2m and period 2 seconds. If P is initially moving at maximum speed, determine the;
 - (a) Distance moved by the particle until its half the maximum speed.
 - (b) Time taken by the particle to travel the distance in (i) above.

(5marks)

2. The table below is an extract from tables of X⁰ and SinX⁰

X_0	0.00	0.20	0.40	0.60	0.80
SinX ⁰	0.1736	0.1771	0.1805	0.1840	0.1891

Use linear interpolation or extrapolation method to estimate.

- (a) $Sin (10.27^0)$,
- (b) Sin⁻¹ (0.1899).

(5marks)

- 3. Independent events A and B are such that $(P(A \cup B) = \frac{3}{5})$ and $P(A) = \frac{2}{5}$. Find;
 - (a) P(B)
 - (b) $P(A \cap \overline{B})$

(5marks)

4. A uniform ladder AB of length 4m and mass 10kg rests with ends A on a rough horizontal ground and B on smooth vertical wall. If B is 2m above the ground and the co-efficient of friction between the ground and ladder is 0.27, find the maximum horizontal force that can be applied at A before motion occurs.

(5marks)

- 5. Given that x=12.7654 and y=13.80. State the maximum possible errors in x and y, determine the maximum value and minimum value and hence the absolute error in the expression $\frac{(x+y)}{xy}$. (5marks)
- 6. The table below shows the marks awarded to students A, B, C, D, E and F by two judges I and II during a certain competition.

Students	Α	В	C	D	E	F
Judge I	40	58	84	58	63	77
Judge II	58	71	83	65	71	53

Calculate the rank correlation co-efficient and give a comment at 5% level of significance.

(5marks)

- 7. A particle starts from rest moving with a constant acceleration of 3ms^{-2} for 12 seconds, for the next 48s the acceleration is $\frac{1}{6} \text{ms}^{-2}$ and for the last 10s it decelerates uniformly to rest, by drawing the velocity-time graph. Find the,
 - (a) Velocities at different points,
 - (b) Total distance travelled.

(5marks)

- 8. A biased coin is tossed six times. The coin is such that the ratio of that tail to the head is 2:1. Find the probability of getting:
 - (a) At least 4 heads
 - (b) Between 3 and 5 tails.

(5marks)

SECTION B (60 MARKS) Answer any five questions from this section. All questions carry equal marks

- 9. A lorry of mass 2,000kg travels around a circle of radius 500m at 48kmhr⁻¹. The distance between the wheels is 2m and the centre of gravity of the lorry is 2.5m above the ground level, determine the;
 - (a) Horizontal and vertical pressure, if the wheels are at the same level.
 - (b) Height at which the outer tyre should be raised to avoid pressure on the wheels.

(12marks)

- 10. (a) Derive the simplest iterative formulae based on newton Raphson method for the equation $10(1-\cos x)=2-3x$ and show that it's given by: $x_{n+1} = \frac{10 x_n \sin x_n + 10\cos x_n 8}{10 \sin x_n + 3}$: x=0,1,2,...
 - (b) Construct a flow chart that:
 - (i) Reads initial approximation (x_0) .
 - (ii) Computes and limits the error to a number corrected to 3 decimal places.
 - (iii) Prints the root (x_{n+1}) and number of iterations (n).
 - (c) Using $x_0 = 0.55$ and the flow chart in (b) above perform a dry run for the flow chart above.

(12marks)

- 11. (a) Box P contains 3 white and 4 blue beads while box Q contains 5 white and 3 blue beads. A bead is drawn at random from P and put into Q and then a bead is taken from Q and put into P. find the probability that the bead drawn from P is white. (5marks)
 - (b) Bag X contains 4 red and 3 blue pens, while bag Y contains 3 red and 2 blue pens. A bag is selected at random and two pens are drawn from it without replacement. Find the probability of picking:
 - (i) Pens of different colours.

(4marks)

(ii) Bag Y given that the pens drawn are of the same colour.

(3marks)

- 12. (a) Find the centre of gravity of a semicircular lamina of radius (r) from the base which is the diameter and show that it's given by $\frac{4r}{3\pi}$.
- (b) A semi-circular lamina of radius (r = OA) and base (OB) is cut from a large semi-circular lamina of radius (2r= OB), with diameter base (OC), determine the centre of gravity of the remainder from base (OC).

 (12 marks)

13. The table below shows the distribution of the height of students in a certain school.

Height(cm)	Frequency		
120-<130	7		
130-<135	. 8	the c	
135-<145	36		
145-<155	39		
155-<170	17		
170-<175	3		
175-<190	5		

- (a) Calculate the;
 - (i) mean
 - (ii) Standard deviation
- (b) Draw a cumulative frequency curve and use it to estimate the
 - (i) Median
 - (ii) Number less than height 150cm.

(12marks)