Model checking

Dr. Jarad Niemi

Iowa State University

February 16, 2016

Outline

We assume $p(y|\theta)$ and $p(\theta)$, so it would be prudent to determine if these assumptions are reasonable.

- (Prior) sensitivity analysis
- Posterior predictive checks
 - Graphical checks
 - Posterior predictive pvalues

Prior sensitivity analysis

Since a prior specifies our prior belief, we may want to check to determine whether our conclusions would change if we held different prior beliefs. Suppose a particular scientific question can be boiled down to

$$Y_i \stackrel{ind}{\sim} Ber(\theta)$$

and that there is wide disagreement about the value for θ such that the following might reasonably characterize different individual beliefs before the experiment is run:

- Skeptic: $\theta \sim Be(1, 100)$
- Agnostic: $\theta \sim Be(1,1)$
- Believer: $\theta \sim Be(100, 1)$

An experiment is run and the posterior under these different priors are compared.

Posteriors

Hierarchical variance prior

Recall the normal hierarchical model

$$y_i \stackrel{ind}{\sim} N(\theta_i, s_i^2), \quad \theta_i \stackrel{ind}{\sim} N(\mu, \tau^2)$$

which results in the posterior distribution for au of

$$p(au|y) \propto p(au) V_{\mu}^{1/2} \prod_{i=1}^{\mathrm{I}} (s_i^2 + au^2)^{-1/2} \exp\left(-rac{(y_i - \hat{\mu})^2}{2(s_i^2 + au^2)}
ight)$$

As an attempt to be non-informative, consider an $IG(\epsilon,\epsilon)$ prior for τ^2 . As an alternative, consider $\tau \sim Unif(0,C)$ or $\tau \sim Ca^+(0,C)$ where C is problem specific, but is chosen to be relatively large for the particular problem.

The 8-schools example has the following data:

	1	2	3	4	5	6	7	8
У	28	8	-3	7	-1	1	18	12
S	15	10	16	11	9	11	10	18

Posterior for 8-schools example

Reproduction of Gelman 2006:

Summary

For a default prior on a variance (σ^2) or standard deviation (σ) , use

- 1. Easy to remember.
 - Half-Cauchy on the standard deviation $(\sigma \sim \textit{Ca}^+(0,\textit{C}))$.
- 2. Harder to remember
 - Data-level variance
 - Use default prior $(p(\sigma^2) \propto 1/\sigma^2)$
 - Hierarchical standard deviation
 - Use uniform prior (Unif(0, C)) if there are enough reps (5 or more) of that parameter.
 - Use half-Cauchy prior $(Ca^+(0, C))$ otherwise.

When assigning the values for C

- For a uniform prior (Unif(0, C)) make sure C is large enough to capture any reasonable value for the standard deviation.
- For a half-Cauchy prior $(Ca^+(0, C))$ err on the side of making C too small since the heavy tails will let the data tell you if the standard deviation needs to be larger whereas a value of C that is too large will put too much weight toward large values of the standard deviation and make the prior more informative.

Posterior predictive checks

Let y^{rep} be a replication of y, then

$$p(y^{rep}|y) = \int p(y^{rep}|\theta, y)p(\theta|y)d\theta = \int p(y^{rep}|\theta)p(\theta|y)d\theta.$$

where y is the observed data and θ are the model parameters.

To simulate a full replication:

- 1. Simulate $\theta^{(j)} \sim p(\theta|y)$ and
- 2. Simulate $y^{rep,j} \sim p(y|\theta^{(j)})$.

To assess model adequacy:

- Compare plots of replicated data to the observed data.
- Calculate posterior predictive pvalues.

Airline accident data

Let

- y_i be the number of fatal accidents in year i
- x_i be the number of 100 million miles flown in year i

Consider the model

$$Y_i \stackrel{ind}{\sim} Po(x_i\lambda) \qquad p(\lambda) \propto 1/\sqrt{\lambda}.$$

	year	fatal_accidents	passenger_deaths	death_rate	miles_flown
1	1976	24	734	0	3863
2	1977	25	516	0	4300
3	1978	31	754	0	5027
4	1979	31	877	0	5481
5	1980	22	814	0	5814
6	1981	21	362	0	6033
7	1982	26	764	0	5877
8	1983	20	809	0	6223
9	1984	16	223	0	7433
10	1985	22	1066	0	7107

Posterior replications of the data

Under Jeffreys prior, the posterior is

$$\lambda | y \sim \textit{Ga}(0.5 + n\overline{y}, n\overline{x}).$$

So to obtain a replication of the data, do the following

- 1. $\lambda^{(j)} \sim Ga(0.5 + n\overline{y}, n\overline{x})$ and
- 2. $y_i^{rep,j} \stackrel{ind}{\sim} Po(x_i \lambda^{(j)})$ for $i = 1, \dots, n$.

How might this model not accurately represent the data?

Let

- y_i be the number of fatal accidents in year i
- x_i be the number of 100 million miles flown in year i

Consider the model

$$Y_i \stackrel{ind}{\sim} Po(x_i\lambda) \qquad p(\lambda) \propto 1/\sqrt{\lambda}.$$

	year	fatal_accidents	passenger_deaths	death_rate	miles_flown	.n
1	1976	24	734	0	3863	9
2	1977	25	516	0	4300	9
3	1978	31	754	0	5027	9
4	1979	31	877	0	5481	9
5	1980	22	814	0	5814	9
6	1981	21	362	0	6033	9
7	1982	26	764	0	5877	9
8	1983	20	809	0	6223	9
9	1984	16	223	0	7433	9
10	1985	22	1066	0	7107	9

year

Jarad Niemi (Iowa State)

Posterior predictive pvalues

To quantify the discrepancy between observed and replicated data:

- 1. Define a test statistic $T(y, \theta)$.
- 2. Define the posterior predictive pvalue

$$p_B = P(T(y^{rep}, \theta) \ge T(y, \theta)|y)$$

where y^{rep} and θ are random. Typically this pvalue is calculated via simulation, i.e.

$$\begin{array}{ll} p_{B} &= E_{y^{rep},\theta}[\mathrm{I}(T(y^{rep},\theta) \geq T(y,\theta))|y] \\ &= \int \int \mathrm{I}(T(y^{rep},\theta) \geq T(y,\theta))p(y^{rep}|\theta)p(\theta|y)dy^{rep}d\theta \\ &\approx \frac{1}{J}\sum_{j=1}^{J}\mathrm{I}(T(y^{rep,j},\theta^{(j)}) \geq T(y,\theta^{(j)})) \end{array}$$

where $\theta^{(j)} \sim p(\theta|y)$ and $y^{rep,j} \sim p(y|\theta^{(j)})$.

Small or large pvalues are (possible) cause for concern.

Posterior predictive pvalue for slope

Let

$$Y_i^{obs} = \beta_0^{obs} + \beta_1^{obs} i$$

where

- Y_i^{obs} is the observed number of fatal accidents in year i and
- β_1^{obs} be the test statistic.

Now, generate replicate data y^{rep} and fit

$$Y_i^{rep} = \beta_0^{rep} + \beta_1^{rep} i$$
.

Now compare β_1^{obs} to the distribution of β_1^{rep} .

```
mean(rep$beta1>observed_slope)
[1] 1
ggplot(rep, aes(x=beta1)) + geom_histogram(binwidth=0.1) + geom_vline(xintercept=observed_slope, color="red")
```


Consider a linear model for the λ_i

Consider the model

$$Y_i \stackrel{ind}{\sim} Po(x_i \lambda_i)$$

 $\log(\lambda_i) = \beta_0 + \beta_1 i$

where

- Y_i is the number of fatal accidents in year i
- x_i is the number of 100 million miles flown in year i
- λ_i is the accident rate in year i

Here the λ_i are a deterministic function of year, but (possibly) different each year.

Stan linear model for accident rate

```
model = "
data {
 int<lower=0> n:
  int<lower=0> y[n];
  vector<lower=0>[n] x;
transformed data {
  vector[n] log_x;
  log_x <- log(x); # both x and logx need to be vectors
parameters {
  real beta[2];
transformed parameters {
  vector[n] log_lambda;
  for (i in 1:n) log_lambda[i] <- beta[1] + beta[2]*i;</pre>
model {
  y ~ poisson_log(log_x + log_lambda); # _log indicates mean on log scale
m = stan model(model code = model)
r = sampling(m, list(n=nrow(d), y=d$fatal_accidents, x=d$miles_flown))
```

```
Inference for Stan model: f31f3c3a893499595102498fe706a368.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

```
mean se mean
                                   2.5%
                                           25%
                                                  50%
                                                         75%
                                                             97.5% n eff Rhat
beta[1]
               -4.90
                        0.00 0.13
                                  -5.15
                                         -4.99
                                                -4.90
                                                       -4.80
                                                              -4.65
                                                                      881
beta[2]
                                         -0.12
                                                              -0.06
                                                                      873
               -0.11
                        0.00 0.02
                                  -0.15
                                                -0.11
                                                       -0.09
                                                                             1
log lambda[1]
               -5.00
                        0.00.0.11
                                  -5.22
                                        -5.08 -5.00
                                                       -4.92
                                                              -4.79
                                                                      923
                                                                             1
log lambda[2]
               -5.11
                        0.00 0.09
                                  -5.29
                                        -5.17 -5.11
                                                       -5.04
                                                              -4 93
                                                                     1011
                                                                             1
log_lambda[3]
               -5.21
                        0.00 0.08
                                  -5.37
                                        -5.27 -5.21 -5.16
                                                             -5.06
                                                                     1208
                                                                             1
log_lambda[4]
               -5.32
                        0.00 0.07 -5.45
                                        -5.36 -5.32 -5.27
                                                             -5.18
                                                                     1699
                        0.00 0.06 -5.55 -5.47 -5.42 -5.38
log_lambda[5]
               -5.42
                                                             -5.30
                                                                     2645
log_lambda[6]
               -5.53
                        0.00 0.07 -5.67 -5.57 -5.53 -5.48
                                                             -5.40
                                                                     2984
log_lambda[7]
               -5.63
                        0.00 0.08 -5.79 -5.68 -5.63 -5.58
                                                             -5.48
                                                                     2419
log_lambda[8]
               -5.74
                        0.00 0.09 -5.92 -5.80 -5.74 -5.68
                                                             -5.56
                                                                     1840
                                                                             1
log_lambda[9]
               -5.84
                        0.00 0.11 -6.06 -5.92 -5.84 -5.77 -5.63
                                                                     1500
log_lambda[10]
              -5.95
                        0.00 0.13 -6.20 -6.04 -5.95 -5.86 -5.70
                                                                     1315
lp__
              516.88
                        0.03 0.94 514.33 516.50 517.16 517.56 517.83
                                                                     1265
                                                                             1
```

Samples were drawn using NUTS(diag_e) at Mon Feb 15 08:36:45 2016. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Posterior predictive pvalue: slope

```
# Posterior predictive pualue: slope
mean(rep_slopes>observed_slope)
[1] 0.49425
```

