

RATIONAL REAL HOMOMORPHISM

Why

Do the rational numbers correspond (in the sense *Homomorphisms*) to elements of the reals.

Main Result

Indeed, roughly speaking the rationals correspond to elements of the reals which are bounded above by that rational. Denote by $\tilde{\mathbf{R}}$ the set $\{q \in \mathbf{R} \mid \exists s \in \mathbf{Q}, q = \{t \in \mathbf{Q} \mid t < s\}\}.$

Proposition 1. The fields $(\tilde{R}, +_{R} | \tilde{R}, \cdot_{R} | \tilde{R})$ and $(Q, +_{Q}, \cdot_{Q})$ are homomorphic.¹

Proof. The function is
$$f: \mathbf{Q} \to \mathbf{R}$$
 with $f(q) = \{(r \in \mathbf{Q} \mid r < q\}$

¹Indeed, more is true and will be included in future editions. There is an *order perserving* field homomorphism.

