第五章习题

林陈冉

2016年12月27日

5.2

当 $1 \le p < \infty$, $p \ne 2$, 令 $A, B \in \Omega$, $A \cap B = \emptyset$, |A| = |B| = 1 , $f = \chi_A$, $g = \chi_B$. 则 $\|f + g/2\|_p = \|f - g/2\|_p = \left(\int_{A \cup B} (\frac{1}{2})^p dx\right)^{1/p} = 2^{\frac{2}{p}-2}$, $\|f\|_p = \|g\|_p = 1$, 即

$$\|\frac{f+g}{2}\|_p + \|\frac{f-g}{2}\|_p = 2^{\frac{2}{p}-1} \neq 1 = \frac{1}{2}(\|f\|_p + \|g\|_p)$$

当 $p=\infty$, $\|f+g/2\|_{\infty}=\|f-g/2\|_{\infty}=\frac{1}{4}$, $\|f\|_p=\|g\|_p=1$, $\|f\|_{\infty}=\|g\|_{\infty}=1$, 即

$$\|\frac{f+g}{2}\|_{\infty} + \|\frac{f-g}{2}\|_{\infty} = \frac{1}{2} \neq 1 = \frac{1}{2}(\|f\|_{\infty} + \|g\|_{\infty})$$

综上, 当 $p \neq 2$, L^p 不是Hilbert的.

5.4

$$\begin{split} |v-f|^2 - |u-f|^2 - |v-u|^2 \\ = &(v-f,v-f) - (u-f,u-f) - (u-v,u-v) \\ = &(v-f,v) - (v-f,f) - (u-f,u) + (u-f,f) - (u-v,u) + (u-v,v) \\ = &(v,v) - (f,v) - (v,f) + (f,f) - (u,u) + (f,u) \\ &+ (u,f) - (f,f) - (u,u) + (v,u) + (u,v) - (v,v) \\ = &- 2(u,u) - 2(f,v) + 2(f,u) + 2(u,v) \\ = &2 \Big((f,u-v) - (u,u-v) \Big) \\ = &2 (f-u,v-u) \end{split}$$

由 $u = P_K f$, 则 $(f - u, v - u) \ge 0$, 那么

$$|v - f|^2 - |u - f|^2 - |v - u|^2 > 0 \Leftrightarrow |v - u|^2 < |v - f|^2 |u - f|^2$$

从上面的式子可知 $|v-u|^2 \le |v-f|^2 - |u-f|^2 \le |v-f|$,显然有 $|v-u| \le |v-f|$.几何解释为钝角三角形最大角的余弦公式.

5.14 $\forall u, v \in H, t \in (0,1)$

$$\begin{split} tF(u) + (1-t)F(v) - F(tu + (1-t)v) \\ = ta(u,u) + (1-t)a(v,v) - a(tu + (1-t)v, tu + (1-t)v) \\ = ta(u,u) + (1-t)a(v,v) - t^2a(u,u) - (1-t)^2a(v,v) \\ - t(1-t)a(u,v) - t(1-t)a(v,u) \\ = t(1-t)\left(a(u,u) + a(v,v) - a(u,v) - a(v,u)\right) \\ = t(1-t)a(u-v,u-v) \ge 0 \end{split}$$

则 $F(tu + (1-t)v) \le tF(u) + (1-t)F(v)$, F 是凸函数.

给定 $\forall v \in H$,定义映射 $T_v: H \to \mathbb{R}$, $\langle T_v, u \rangle = a(u, v)$,显然 $T_v \in H^*$,由里斯表示定理, $\exists h_v \in H$, $\langle T_v, u \rangle = (u, h_v) = a(u, v)$,这相当于给出一个映射 $\mathcal{A}(v) = h_v$. $\forall v_1, v_2 \in H$, $v_1 \neq v_2$,

$$(u, h_{v_1} + h_{v_2}) = (u, h_{v_1}) + (u, h_{v_2}) = a(u, v_1) + a(u, v_2) = a(u, v_1 + v_2) = (u, h_{v_1 + v_2})$$

 $\forall \alpha \in \mathbb{R}$.

$$(u, h_{\alpha v}) = a(u, \alpha v) = \alpha a(u, v) = \alpha(u, h_v)$$

上面两个式子说明 $A \in H^*$. 则 $a(u,v) = (u,Av) = (A^*u,v)$

$$F(u+v) - F(v) = a(v,v) + (A^*u,v) + (Au,v)$$

则当 $v \to 0$,可得 $F'(u) = A^*u + Au$.

5.22

(1) 首先考虑 C=H. $\forall u,v\in H$, $|T(u+tv)-Tu|\leq |tv|\leq |t||v|$, 当 $t\to 0$, $|T(u+tv)-Tu|\to 0$, 即 T 连续, $T(u+tv)\to Tu$. $\forall u,v\in H$

$$((u - Tu) - (v - Tv), u - v)$$

$$= (u - v, u - v) - (Tu - Tv, u - v)$$

$$\ge |u - v| - |Tu - Tv|^{\frac{1}{2}}|u - v|^{\frac{1}{2}}$$
>0

则 $((u_n - Tu_n) - (u + tv - T(u + tv)), u_n - u + tv) \ge 0$. 由 $u_n - Tu_n \to f$, $u_n \to u$, 可得当 $n \to \infty$, $(f - (u + tv - T(u + tv)), tv) \ge 0$.

当 t > 0 , $(f - (u + tv - T(u + tv)), v) \ge 0$; 当 t < 0 , $(f - (u + tv - T(u + tv)), v) \le 0$. 故 (f - (u + tv - T(u + tv)), v) = 0 . 当 $t \to 0$, (f - (u - Tu), v) = 0 , $\forall v \in H$, 故 f = u - Tu .

当 $C \subset H$,考虑映射 $\bar{T} = T \circ P_c$, $\bar{T} : H \to H$,易证 \bar{T} 连续,且也是压缩映射,完全类似上面的证明,可得 f = u - Tu .

(2) 定义 $T_n:C\to C$, $T_nu=(1-\frac{1}{n})Tu-\frac{a}{n}$, 其中 $a\in C$ 固定. $\forall u,v\in C$

$$T_n u - T_n v = (1 - \frac{1}{n})|Tu - Tv| < |u - v|$$

故 T_n 是压缩算子, $\exists u_n^* \in C \subset mB_H$, s.t. $T_n u_n^* = u_n^*$, 其中 $m = \sup_{u \in C} |u|$. 由 H 自反, 可知 mB_H 是弱紧的, 则 $\{u_n^*\}$ 中有弱收敛子列 $u_{n_k}^* \rightharpoonup u^*$.

$$u_n^* - Tu_n^* = \frac{1}{n}|Tu_n^* - a| \le \frac{1}{n}(|Tu_n^*| + |a|) \le \frac{2m}{n}$$

故当 $n\to\infty$, $|u_n^*-Tu_n^*|\to 0$. 由第一小题结论可知, $u^*-Tu^*=0$, 即 T 有不动点.