'Method' Analysis

Written by: 류채은 Chaeeun Ryu (superbunny38 at gmail dot com)

<Understanding the technologies and math terms used in the paper>

Bringing Old Photos Back to Life Paper

Supplementary Material

Terminology

- latent space: refers to an *abstract multi-dimensional space* containing feature values that we cannot interpret directly, but which encodes a meaningful internal representation of externally observed events.
- LSGAN: Least Squares Generative Adversarial Networks <u>VAE(Variational AutoEncoder)</u>
- VGG:

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/9b2d47a3-cc 6a-40d6-834c-a061d473320b/VGG.pdf

Problems:

1. Generalization issue

Old photos contain far more complex degradation that is hard to be modeled realistically and there always exists a **domain gap between synthetic and real photos**. As such, the network usually cannot generalize well to real photos by purely learning from synthetic data.

2. Mixed degradation issue

<u>The defects</u> of old photos are a compound of multiple degradations, thus essentially requiring different strategies for restoration.

Unstructured defects

- film noise, blurriness and color fading, etc.
- can be restored with spatially homogeneous filters by making use of surrounding pixels within the local patch
- Structured defects
 - scratches and blotches
 - should be inpainted by considering the global context to ensure the structural consistency

Method #1: Restoration via latent space translation

usage of VAE <u>VAE (Variational Autoencoder)</u>

Illustration of translation method with three domains

- image translation problem
- translate images across three domains
 - 1. *R* : the real photo domain
 - 2. X: the synthetic domain; where images suffer from artificial degradation
 - 3. Y: ground truth domain; where comprises images without degradation and corresponding to X
- Images: $r \in R$, $x \in X$, $y \in Y$
 - o x and y are paired by data synthesizing, i.e., x is degraded from y

Process

Step #1. we propose to map R, X, Y to corresponding latent spaces via

- E_R : $R \rightarrow Z_R$
- $E_X: X \to Z_X$
- E_Y : $Y \rightarrow Z_Y$

 $Z_R \approx Z_X$: we align latent spaces of synthetic images and real old photos into the shared domain by enforcing some constraints because both are corrupted; sharing similar appearances. This aligned latent space encodes features for all the corrupted images, either synthetic or real ones.

 T_Z = $Z_X \to Z_Y$: we learn the translation from the latent space of corrupted images, Z_X , to the latent space of ground truth, Z_Y

 Z_Y can be further reversed to Y through generator G_Y : $Z_{Y} o Y$.

Final restoration formula of latent space translation:

$$r_{R o Y}=G_Y{}^{\circ}T_Z{}^{\circ}E_R(r)$$

Architecture of restoration network

I. Domain alignment in the VAE latent space (I.)

- Assumption: R and X are encoded into the same latent space.
- Concept: Utilize variational autoencoder (VAE) to encode images with compact representation, whose domain gap is further examined by an adversarial discriminator.
 GAN(Generative Adversarial Network)
- Process:
 - 1st stage:
 - VAE_1 :

- Old photos $\{r\}$ & synthetic images $\{x\}$, encoder $E_{R,X}$ and generator $G_{R,X}$
- Premise: images from both corrupted domains(x,r) can be mapped to a shared latent space.
- their domain gap(x,r) is closed by jointly training an adversarial discriminator
- optimization:
 - \circ **O**bjective with r

$$\mathcal{L}_{VAE_{1}}(r) = KL(E_{\mathcal{R},\mathcal{X}}(z_{r}|r)||\mathcal{N}(0,I))$$

$$+ \alpha \mathbb{E}_{z_{r} \sim E_{\mathcal{R},\mathcal{X}}(z_{r}|r)} \left[\|G_{\mathcal{R},\mathcal{X}}(r_{\mathcal{R} \to \mathcal{R}}|z_{r}) - r\|_{1} \right]$$

$$+ \mathcal{L}_{VAE_{1},GAN}(r)$$

 \circ \bigvee differentiates Z_R,Z_X , loss:

$$\mathcal{L}_{\text{VAE}_{1},\text{GAN}}^{\text{latent}}(r,x) = \mathbb{E}_{x \sim \mathcal{X}}[D_{\mathcal{R},\mathcal{X}}(E_{\mathcal{R},\mathcal{X}}(x))^{2}] + \mathbb{E}_{r \sim \mathcal{R}}[(1 - D_{\mathcal{R},\mathcal{X}}(E_{\mathcal{R},\mathcal{X}}(r)))^{2}].$$

 \circ votal objective function for VAE_1 :

$$\min_{E_{\mathcal{R},\mathcal{X}},G_{\mathcal{R},\mathcal{X}}} \max_{D_{\mathcal{R},\mathcal{X}}} \mathcal{L}_{VAE_1}(r) + \mathcal{L}_{VAE_1}(x) + \mathcal{L}_{VAE_1,GAN}^{latent}(r,x).$$

- VAE_2 :
 - ullet ground true images $\{y\}$, the encoder-generator pair $\{E_Y,\,G_Y\}$
 - trained for clean images

- o 2nd stage:
 - With VAEs, images are transformed to compact latent space

II. Restoration through latent mapping (II.)

- learn the mapping that restores the corrupted images to clean ones in the latent space
- leverage the synthetic image pairs x, y and propose to learn the image restoration by mapping their latent space (the mapping network M)
- · 3 Benefits:
 - 1. As R and X are aligned into the same latent space, the mapping from Z_X to Z_Y will also generalize well to restoring the images in R
 - 2. the mapping in a compact low-dimensional latent space(code in VAE) is in principle much easier to learn than in the high-dimensional image space
 - 3. The generator G_Y can always get an absolutely clean image without degradation given the latent code z_Y mapped from Z_X , whereas degradations will likely remain if we learn the translation in pixel level

Process:

- 1. Get $r_{R \to Y}, x_{X \to Y}$ and $y_{Y \to Y}$ be the final translation out-puts for r,x and y, respectively.
- 2. solely train the parameters of the latent mapping network T and fix the two VAEs
 - ullet Loss function L_T (imposed at both the latent space and the end of generator G_Y)

$$\mathcal{L}_{\mathcal{T}}(x,y) = \lambda_1 \mathcal{L}_{\mathcal{T},\ell_1} + \mathcal{L}_{\mathcal{T},GAN} + \lambda_2 \mathcal{L}_{FM}$$

 L_T consists of three terms:

a. the latent space loss

(penalizes the l_1 distance of the corresponding latent codes)

$$\mathcal{L}_{\mathcal{T},\ell_1} = \mathbb{E} \| \mathcal{T}(z_x) - z_y) \|_1$$

b. the adversarial loss

GAN(Generative Adversarial Networks)

(still in the form of LSGAN, to encourage the ultimate translated synthetic image $x_{X \to Y}$ to look real)

$$\mathcal{L}_{\mathcal{T}, GAN}$$

c. feature matching loss

(to stabilize the GAN training)

• specifically matches the multi-level activations of the adversarial network D_M , and that of the pretrained VGG network (also known as perceptual loss) where $\phi^i_{D_T}(\phi^i_{VGG})$ denotes the i^{th} layer feature map of the discriminator (VGG network), and $n^i_{D_T}(n^i_{VGG})$ indicates the number of activations in that layer.

$$\mathcal{L}_{FM} = \mathbb{E}\left[\sum_{i} \frac{1}{n_{D_{\mathcal{T}}}^{i}} \|\phi_{D_{\mathcal{T}}}^{i}(x_{\mathcal{X} \to \mathcal{Y}}) - \phi_{D_{\mathcal{T}}}^{i}(y_{\mathcal{Y} \to \mathcal{Y}})\|_{1} + \sum_{i} \frac{1}{n_{VGG}^{i}} \|\phi_{VGG}^{i}(x_{\mathcal{X} \to \mathcal{Y}}) - \phi_{VGG}^{i}(y_{\mathcal{Y} \to \mathcal{Y}})\|_{1}\right],$$

Method #2: Multiple degradation restoration

- background:
 - The latent restoration(method #1) using the residual blocks, as described earlier, only concentrates on local features due to the limited receptive field of each layer
 - the restoration of structured defects requires plausible inpainting, which has to consider long-range dependencies so as to ensure global structural consistency

Concept:

- enhance the latent restoration network by incorporating a global branch, which composes of a nonlocal block that considers global context and several residual blocks in the following.
 - nonlocal block: explicitly utilizes the mask input so that the pixels in the corrupted region will not be adopted for completing those area
 - partial nonlocal block

• painting as partial nonlocal block. Formally, let $F \in RC \times HW$ be the intermediate feature map in M(C, H and W are number of channels, height and width respectively), and $m \in \{0,1\}^{HW}$ represents the binary mask downscaled to the same size, where 1 represents the defect regions to be inpainted and 0 represents the intact regions. The affinity(s) between i^{th} location and j^{th} location in F, denoted by $s_{i,j} \in R^{HW \times HW}$, is calculated by the correlation of F_i and F_j modulated by the mask $(1-m_j)$