Solutions to Stochastic Differential Equations by Øksendal

Kai-Jyun Wang*

Contents

2 Some Mathematical Preliminaries

2

^{*}National Taiwan University, Department of Economics.

2. Some Mathematical Preliminaries

Exercise 2.1

Suppose that $X: \Omega \to \mathbb{R}$ is a function which takes only countably many values $a_1, a_2, \ldots \in \mathbb{R}$.

(a) Show that X is a random variable if and only if

$$X^{-1}(a_i) \in \mathcal{F} \text{ for all } i \in \mathbb{N}.$$

(b) Suppose that X is a random variable. Show that

$$E[|X|] = \sum_{i=1}^{\infty} |a_i| P(X = a_i).$$

(c) If X is a random variable and $E[|X|] < \infty$, show that

$$E[X] = \sum_{i=1}^{\infty} a_i P(X = a_i).$$

(d) If X is a random variable and $f: \mathbb{R} \to \mathbb{R}$ is measurable and bounded, show that

$$E[f(X)] = \sum_{i=1}^{\infty} f(a_i)P(X = a_i).$$

Solution.

For (a), suppose first that X is a random variable. Since $\{a_i\}$ are Borel sets, $X^{-1}(a_i) \in \mathcal{F}$ for all $i \in \mathbb{N}$. Conversely, assume that $X^{-1}(a_i) \in \mathcal{F}$ for all a_i . Since the range of X is $\{a_i\}_{i \in \mathbb{N}}$, for any Borel set $B \subset \mathbb{R}$, $X^{-1}(B) = \bigcup_{a_i \in B} X^{-1}(a_i) \in \mathcal{F}$, by the definition of σ -algebra. Thus, X is a random variable.

For (b), since X takes only countably many values, so does |X| with $\{|a_i|\}_{i\in\mathbb{N}}$. By the definition of expectation, we have

$$E[|X|] = \sum_{i=1}^{\infty} |a_i| P(X = a_i)$$

in the extended sense.

For (c), since $E[|X|] < \infty$ and X is a random variable, the series converges absolutely and is well-defined. Hence

$$E[X] = \sum_{i=1}^{\infty} a_i P(X = a_i).$$

For (d), since f is measurable, $f^{-1}(B)$ is Borel and $X^{-1}f^{-1}(B)$ is measurable. f(X) takes

only countably many values, $f(a_1), f(a_2), \ldots$ The definition of expectation gives us

$$E[f(X)] = \sum_{i=1}^{\infty} f(a_i) P(f(X) = f(a_i)) = \sum_{i=1}^{\infty} f(a_i) P(X = a_i).$$

Exercise 2.2

 $X:\Omega\to\mathbb{R}$ is a random variable. The distribution function F of X is defined as

$$F(x) = P(X \le x).$$

- (a) Prove that F has the following properties:
 - (i) $0 \le F \le 1$, $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.
 - (ii) F is non-decreasing.
 - (iii) F is right-continuous.
- (b) $g: \mathbb{R} \to \mathbb{R}$ is measurable such that $E[|g(X)|] < \infty$. Show that

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)dF(x).$$

(c) Let $p(x) \ge 0$ be measurable on \mathbb{R} be the density of X, i.e.,

$$F(x) = \int_{-\infty}^{x} p(t)dt.$$

Find density of B_t^2 .

Solution.

For (a), since P is a probability measure, $0 \le P(S) \le 1$ for any $S \in \mathcal{F}$. In particular, $0 \le P(X \le x) \le 1$ for all $x \in \mathbb{R}$. Also, we can take $x_n \setminus -\infty$ and $|X \le x_n| \setminus \emptyset$ as $n \to \infty$. Hence

$$\lim_{x \to -\infty} F(x) = \lim_{n \to \infty} P(X \le x_n) = P(\emptyset) = 0.$$

Similarly, we can take $x_n \nearrow \infty$ and $|X \le x_n| \nearrow \Omega$ as $n \to \infty$. Hence

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} P(X \le x_n) = P(\Omega) = 1.$$

(i) is proved. For (ii), F is non-decreasing because if $x_1 < x_2$, then

$$F(x_1) = P(X \le x_1) \le P(X \le x_2) = F(x_2).$$

For (iii), let h > 0.

$$F(x+h) - F(x) = P(X \le x+h) - P(X \le x) = P(x < X \le x+h).$$

For any y > x, there exists h > 0 such that y > x + h. Thus $(x, x + h] \setminus \emptyset$ as $h \to 0$. Hence

$$F(x+h) - F(x) = P(x < X \le x+h) \rightarrow P(\emptyset) = 0$$

as $h \to 0$. Therefore, F is right-continuous.

For (b), by definition of expectation, the left-hand side is

$$E\left[g(X)\right] = \int_{\mathbb{R}} g(x) d\mu_X(x),$$

where $\mu_X(B) = P(X^{-1}(B))$ for any Borel set $B \subset \mathbb{R}$.