CS 225: Switching Theory

S. Tripathy IIT Patna

Previous Class

• Introduction to the course

Digital Design

This Class

Number Systems and Codes

What is Number System?

- Number System?
 - Study of digital systems deals with discrete information
 - Numerical quantities are discrete information
 - Discrete information are represented by a finite set of symbols
- Symbols other than numeral like letters/characters are also included

Digital Number System

Positional Non-positional

- Can you find any number system with nonpositional?
- What is the role of base?

Digital Number System

- Positional: Each position has a weight
 - Weight is unique for a particular number system
 - Ex: 346₁₀ ≠ 463₁₀ ≠ 346₈
 - (changing the position changes the value)
- Decimal number system (base=10)

Digital Number System

Binary Positional System (base=2)

- Ex: $(101.11)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$
- so on for octal and hexa-decimal

Representation of Integers

Base					
2	4	8	10	12	16
0000	0	0	0	0	0
0001	1	1	1	1	1
0010	2	2	2	2	2
0011	3	3	3	3	3
0100	10	4	4	4	4
0101	11	5	5	5	5
0110	12	6	6	6	6
0111	13	7	7	7	7

Base					
2	4	8	10	12	16
1000	20	10	8	8	8
1001	21	11	9	9	9
1010	22	12	10	α	Α
1011	23	13	11	ß	В
1100	30	14	12	10	С
1101	31	15	13	11	D
1110	32	16	14	12	E
1111	33	17	15	13	F

Conversion of Bases

- Methods:
 - Polynomial
 - Iterative (Repeated division)
 - Special type
- Polynomial conversion

Binary to Decimal:

- D = $\sum 2^{i} C_{i}$, C_{i} is (coefficient) digit at ith position
 - 11011₂ =?₁₀
 - $101.011_2 = ?_{10}$

Ans.: 5.375

Conversion of Bases

```
CONVERT Base 8 to base 10  (432.2)_8 = (?)_{10} \qquad 4 \cdot 8^2 + 3 \cdot 8^1 + 2 \cdot 8^0 + 2 \cdot 8^{-1} = (282.25)_{10}  Base 2 to base 10  (1101.01)_2 = (?)_{10} \qquad 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = (13.25)_{10}
```

Polynomial conversion

Decimal to Binary:

• 780₁₀ = ?₂

Complete

 $0111 \times 1100100 + 1000 \times 1010 = 1010111100 + 1010000 = 1100001100$

Iterative method (Repeated division)

$$egin{align} (N)_{b1} &= a_{q-1}b_2^{q-1} + a_{q-2}b_2^{q-2} + \cdots + a_1b_2^1 + a_0b_2^0 \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \cdots + a_1}_{Q_0} + rac{a_0}{b_2} \ &rac{(N)_{b1}}{b_2} = \underbrace{(N)_{b1}}_{Q_0} + \frac{N}{b_0} + \frac{N}{$$

 $\left(rac{Q_0}{b_2}
ight)_{b_1} = \underbrace{a_{q-1}b_2^{q-3} + a_{q-2}b_2^{q-4} + \cdots}_{} + rac{a_1}{b_2}$

Algorithm: (Decimal to binary)

- 1. Start
- 2. Divide N by 2

- 3. if Q ≠ 0 Repeat step 2 with N=Q
- 4. Collect R as binary number being first R as LSB.
- 5. End

Ex.:
$$37_{10} = ?_2$$

Conversion of Bases (Contd.)

Example: Convert (548)₁₀ to base 8

Q _i	r _i
68 8 1	4=a ₀ 4=a ₁ 0=a ₂ 1=a ₃

Thus, $(548)_{10} = (1044)_8$

Example: Convert (345)₁₀ to base 6

Thus, $(345)_{10} = (1333)_6$

Converting Fractional Numbers

Fractional number:

$$(N)_{b1} \rightarrow a_{-1}b_2^{-1} + a_{-2}b_2^{-2} + + a_{-p}b_2^{-p}$$

 $b_2 \cdot (N)_{b1} \rightarrow a_{-1} + a_{-2}b_2^{-1} + + a_{-p}b_2^{-p+1}$

Example: Convert
$$(0.3125)_{10}$$
 to base 8
 $0.3125 * 8 = 2.5000$ hence $a_{-1} = 2$
 $0.5000 * 8 = 4.0000$ hence $a_{-2} = 4$
Thus, $(0.3125)_{10} = (0.24)_{8}$

Decimal to Binary

Example: Convert (432.354)₁₀ to binary

$\begin{array}{c cccc} Q_i & r_i \\ \hline 216 & 0=a_0 \\ 108 & 0=a_1 \\ 54 & 0=a_2 \\ 27 & 0=a_3 \\ 13 & 1=a_4 \\ 6 & 1=a_5 \\ 3 & 0=a_6 \\ 1 & 1=a_7 \\ 1=a_8 \\ \hline \end{array}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q _i	r _i
	108 54 27 13 6	$0=a_1$ $0=a_2$ $0=a_3$ $1=a_4$ $1=a_5$ $0=a_6$ $1=a_7$

```
0.354 \cdot 2 = 0.708 hence a_{-1} = 0

0.708 \cdot 2 = 1.416 hence a_{-2} = 1

0.416 \cdot 2 = 0.832 hence a_{-3} = 0

a_{-7} = 1 etc.
```

Thus, $(432.354)_{10} = (110110000.0101101...)_2$

Octal/Binary Conversion

Example: Convert (123.4)₈ to binary

$$(123.4)_8 = (?)_2 (001 010 011.100)_2$$

Example: Convert (1010110.0101)₂ to octal

$$(1010110.0101)_2 = (001\ 010\ 110.010\ 100)_2 = (126.24)_8$$

Thanks