Time-Varying Identification of Structural Vector Autoregressions

Annika Camehl Erasmus University Rotterdam Tomasz Woźniak University of Melbourne

contributions

- ▶ time-varying identification via a data-driven search
- ▶ identification via heteroskedasticity within regimes
- data support TVI of US monetary policy shock

context of the SVAR literature

- ► time-invariant identification Sims (1980), ...
- ► time-vatying parameters (but not TVI)
 Primiceri (2005), Sims, Zha (2006), ...
- ▶ identification through hetroskedasticity Rigobon (2003), Lewis (2021), Bertshe, Braun (2022), Lütkepohl, Shang, Uzeda, Woźniak (2024), ...
- exclusion restrictions are supported by data
 Lütkepohl, Lanne, Maciejowska (2010), Lütkepohl, Woźniak (2020), ...
- ▶ not verified TVI with fixed regimes
 Kimura and Nakajima (2016), Bacchiocchi, Castelnuovo, Fanelli (2017),
 Arias, Rubio-Ramirez, Shin, Waggoner (2024), Pagliari (2024)

structural VAR

reduced form:
$$\mathbf{y}_t = \mathbf{A}\mathbf{x}_t + \boldsymbol{\varepsilon}_t$$

structural form:
$$\mathbf{B}(s_t, \boldsymbol{\kappa}(s_t))\boldsymbol{\varepsilon}_t = \mathbf{u}_t$$

structural shocks:
$$\mathbf{u}_t \sim \mathcal{N}_N \left(\mathbf{0}_N, \operatorname{diag} \left(\boldsymbol{\sigma}_t^2 \right) \right)$$

Markov process:
$$s_t \sim Markov_M(\mathbf{P}, \boldsymbol{\pi}_0)$$

time-varying identification

$$\Pr\left[\boldsymbol{\kappa}(s_t) \mid \text{data}\right]$$

structural equation

structural form:
$$\mathbf{B}(s_t, \boldsymbol{\kappa}(s_t))\boldsymbol{\varepsilon}_t = \mathbf{u}_t$$

TVI indicator:
$$\kappa(s_t) = (\kappa_1(s_t), \dots, \kappa_N(s_t))$$

TVI in
$$n^{\text{th}}$$
 equation: $\kappa_n(s_t) = k_n \in \{1, ..., K_n\}$

exclusion restrictions

$$n^{\text{th}}$$
 equation: $[\mathbf{B}(m, k_n)]_{n} = \mathbf{b}_{n.m.k_n} \mathbf{V}_{n.m.k_n}$

$$\begin{bmatrix} b_{n.1} & b_{n.2} & 0 \end{bmatrix} = \begin{bmatrix} b_{n.1} & b_{n.2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

hierarchical prior distribution

structural:
$$\mathbf{b}'_{n.m.k_n} \mid \gamma_B, k_n \sim \mathcal{N}_{r_{n.m.k_n}} \left(\mathbf{0}_{r_{n.m.k_n}}, \gamma_{B.n} \mathbf{I}_{r_{n.m.k_n}} \right)$$

TVI indicator:
$$\kappa_n(m) \sim \mathcal{M}ultinomial\left(K_n^{-1} \mathbf{1}_{K_n}\right)$$

time-varying identification

$$\Pr\left[\boldsymbol{\kappa}(s_t) \mid \text{data}\right]$$

inference on TVI components

Given S posterior draws $\left\{\kappa_n(m)^{(s)}\right\}_{s=1}^S$ compute the posterior probability of regime-specific TVI component by:

$$\widehat{\Pr}\left[\kappa_n(m) = k_n \mid \mathbf{Y}_T\right] = S^{-1} \sum_{i=1}^{3} \mathcal{I}(\kappa_n(m)^{(s)} = k_n)$$
 (1)

identification through heteroskedasticity

stochastic volatility

structural shocks:
$$\mathbf{u}_t \sim \mathcal{N}_N \left(\mathbf{0}_N, \operatorname{diag} \left(\boldsymbol{\sigma}_t^2 \right) \right)$$

variances:
$$\sigma_{n.t}^2 = \exp \{\omega_n(s_t)h_{n.t}\}$$

log-volatilities:
$$h_{n.t} = \rho_n h_{n.t-1} + v_{n.t}$$

shocks:
$$v_{n.t} \sim \mathcal{N}(0, 1)$$

homoskedasticity condition

Lütkepohl, Shang, Uzeda, Woźniak (2024)

$$\omega_n(s_t=m)=0$$

of US monetary policy shocks

tvi of monetary policy shock

monetary policy reaction function

	Уt	π_t	R_t	TS_t	m_t	<i>sp</i> _t
benchmark	*	*	*	0	0	0
with TS	*	*	*	*	0	0
with m	*	*	*	0	*	0
only m	0	0	*	0	*	0

▶ data sample from January 1959 to June 2023

empirical evidence

forecasting performance

► The benchmark model with two regimes and TVI is optimal for point and density forecasting

TVI posterior probabilities

- Posterior probability of TVI: 0.87
- ▶ robustness w.r.t. TVI setup, prior distributions, alternative measurements

identified via heteroskedasticity

benchmark model

result robustness

- mp shock identified via heteroskedasticity
- ▶ similarly term spread shock

regime probabilities

estimated probabilities of the second regime

- high-probability periods correspond to major events
- regime of higher volatility and quantitative easying

regime probabilities

robustness of the second regime probabilities

regime interpretation

regime-specific sample moments

	Regime 1			Regime 2			
	mean	sd	$cov(\cdot, R_t)$	mean	sd	$cov(\cdot, R_t)$	
R_t	5.64	3.62		2.54	2.73		
TS_t	0.84	1.69	-3.79	1.43	1.34	-2.15	
m_t	6.33	3.86	1.43	7.38	8.63	-2.03	

regime interpretation

monetary policy reaction function estimates

Regime 1:
$$0.01y_t - \mathbf{0.07}\pi_t + \mathbf{3.64}R_t + \mathbf{4.09}TS_t = \cdots + \hat{u}_t^{mps}$$

Regime 2:
$$-0.03y_t - 0.02\pi_t + 14.00R_t - 0.45m_t = \cdots + \hat{u}_t^{mps}$$

regime interpretations

impulse responses to the mp shock

github.com/donotdespa

@tomaszwwozniak

@tomaszwozniak.bsky.socia

@tomaszwozniak@fosstodon.org