Calos Lira

52-722-323-7595 | carloscerlira@gmail.com | linkedin.com/in/carloscerlira | github.com/carloscerlira carloscerlira.herokuapp.com

EDUCATION

Universidad Nacional Autónoma de México

Expected graduation date august 2022

BS Data Science

Mexico City, Mexico

TECHNICAL SKILLS

Python: Numpy, SciPy, Pandas, Scikit Learn, Keras, PyTorch, Beautiful Soup

Databases: SQL (Postgres) C++: CUDA, OpenFrameworks

Web Development: Heroku, Flask, Bootstrap

Work Flow: GitHub, Overleaf, Google Colab, VS Code

Experience

Intern June-July 2016

Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM

State of Mexico, Mexico

- Nanoparticle classification from electron microscope images.
- Nanoparticle sample creation for electron microscope.

Projects

Covid-19 Tracker | Heroku, Flask, HighCharts, pyGitHub, Pandas

- Web app that provides daily updates about COVID-19 for over 150 countries.
- Several charts available for each country.
- Custom API, data merged from different sources with automatic daily updates by server.

Boat detection using satellite images | PyTorch, Scikit Learn, Pandas, Kaggle

- Convolutional Neural Network image classification using LeNet-5 architecture.
- More than 40,000 images from San Francisco Bay Area.
- Model with 97% precision on validation data.

Magnetic Pendulum simulation. Paralelization using CUDA | CUDA. C++ Threads

A magnetic pendulum is a chaotic system, one way to describe such a system involves solving a differential equation for every point in a $n \times n$ grid.

- Problem paralelization using two methods: Nvidia's API CUDA (GPU) and C++ threads (CPU).
- Reduced time complexity from $O(n^2)$ in CPU to O(1) in GPU.

Schrödinger equation numerical solution. The double slit experiment $\mid C++, OpenFrameworks$

The double slit experiment challenges our intuition about how particles behave at a subatomic level.

For this project I decided to use Schrödinger equation to simulate such experiment in a $n \times n$ grid.

- Implementation of RK4 Algorithm to solve 2D Schrödinger equation.
- Reduced time complexity from $O(n^6)$ using naive approach to $O(n^3)$.
- Program generated interference pattern similar to experimental one.

Academic Achivements

Contestant

June 2016

August 2016

XXVI Mexico National Contest of Physics Experiments

Mexico City, Mexico

State of Mexico, Mexico

XXVII State of Mexico Physics Olympiad

Languages

First Place

English C1 - TOEFL iBT 99/120

Spanish Native