SBML Model Report

Model name: "Nakakuki2010_CellFateDecision_Core"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Lukas Endler¹ and Lutz Brusch² at May 24th 2010 at 11:49 a.m. and last time modified at June third 2014 at three o' clock in the afternoon. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	10
events	0	constraints	0
reactions	9	function definitions	0
global parameters	8	unit definitions	3
rules	1	initial assignments	0

Model Notes

This model describes the activation of immediate early genes such as cFos after EGF or heregulin (HRG) stimulation of the MAPK pathway. Phosphorylated cFos is a key transcription factor triggering downstream cascades of cell fate determination. The model can explain how the

¹EMBL-EBI, lukas@ebi.ac.uk

²Dresden University of Technology, lutz.brusch@tu-dresden.de

switch-like response of p-cFos emerges from the spatiotemporal dynamics. The model comprises lumped reaction kinetics of the signal transduction pathway, the transcriptional and the posttranslational feedback and feedforward loops. The parameter set implemented here corresponds to that used for generating Figs. 4 B,C,D (red curves for 10nM HRG) of the below article in Cell (2010). Moreover, we found that the same model described well the dynamics in different cell types (MCF-7 and PC-12), of different ligands (EGF and HRG) and at different doses (0.1nM, 1nM, 10nM) for a unique set of parameter values (as implemented here and reported in Table SD4_1 of the article) except for four parameters characterising the input, cytoplasmic ppERK. These four parameters K1, K2, tau1 and tau2 are used in the two equations involving species x1 and x2. These two equations define a phenomenological input module to describe the ligand-, dose- and cell type-dependent dynamics of ppERKc which are not modelled in mechanistic detail here. The four parameter values can be adjusted to model a specific ligand, dose and cell type. 8 parameter sets for different experiments are given in Table SD4_2 of the article. This SBML file, however, carries just one such parameter set. We have chosen that of MCF-7 cells stimulated by 10nM of HRG. To reproduce all simulations from the article, please replace the parameter values for K1, K2, tau1, tau2 as needed.

Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics.

Takashi Nakakuki(1), Marc R. Birtwistle(2,3,4), Yuko Saeki(1,5), Noriko Yumoto(1,5), Kaori Ide(1), Takeshi Nagashima(1,5), Lutz Brusch(6), Babatunde A. Ogunnaike(3), Mariko Hatakeyama(1,5), and Boris N. Kholodenko(2,4); Cell In Press, online 20 May 2010, doi:10.1016/j.cell.2010.03.054

- (1) RIKEN Advanced Science Institute, Computational Systems Biology Research Group, Advanced Computational Sciences Department, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- (2) Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- (3) University of Delaware, Department of Chemical Engineering, 150 Academy St., Newark, DE 19716, USA
- (4) Thomas Jefferson University, Department of Pathology, Anatomy, and Cell Biology, 1020 Locust Street, Philadelphia, PA 19107, USA
- (5) RIKEN Research Center for Allergy and Immunology, Laboratory for Cellular Systems Modeling, 1-7-22 Tsurumi-ku, Yokohama, 230-0045, Japan
- (6) Dresden University of Technology, Center for Information Services and High Performance Computing, 01062 Dresden, Germany

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Definition ml

2.2 Unit time

Definition 60 s

2.3 Unit substance

Definition mmol

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	compartment	0000290	3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one ml.

Name compartment

SBO:0000290 physical compartment

4 Species

This model contains ten species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x1	x1	compartment	$\text{mmol}\cdot\text{ml}^{-1}$		
x2	x2	compartment	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		
ppERKn	ppERK(nucleus)	compartment	$\text{mmol}\cdot\text{ml}^{-1}$		\Box
DUSP	DUSP	compartment	$mmol \cdot ml^{-1}$		\Box
pRSKn	pRSKn	compartment	$\text{mmol}\cdot\text{ml}^{-1}$		\Box
cF0Sp	cFOS preRNA	compartment	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		
cF0S	cFOS	compartment	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		
pcFOS	pc-FOS	compartment	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		\Box
cFOSm	cFOSmRNA	compartment	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		
ppERKc	ppERK(cytosol)	compartment	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		

5 Parameters

This model contains eight global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k7	k7	0.50	
k11	k11	0.11	$\overline{\mathbf{Z}}$
k13	k13	0.06	$\overline{\mathbf{Z}}$
L	L	1.00	$ \overline{\checkmark} $
K1	K 1	1.09	
tau1	tau1	3.07	
K2	K	2.89	\square
tau2	tau	472.00	

6 Rule

This is an overview of one rule.

6.1 Rule ppERKc

Rule ppERKc is an assignment rule for species ppERKc:

$$ppERKc = [x1] - [x2] \tag{1}$$

Derived unit $mmol \cdot ml^{-1}$

7 Reactions

This model contains nine reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	reaction_1	1 PhIM 1	$\emptyset \longrightarrow x1$	
2	${\tt reaction_2}$	1 PhIM 2	$\emptyset \longrightarrow x2$	
3	$reaction_3$	2a ppERKn	$\emptyset \xrightarrow{\text{ppERKc, DUSP}} \text{ppERKn}$	
4	${\tt reaction_4}$	2b DUSP	$\emptyset \xrightarrow{ppERKn} DUSP$	
5	reaction_5	3 pRSKn	$\emptyset \xrightarrow{ppERKn} pRSKn$	
6	reaction_6	4 cFOSp	$\emptyset \xrightarrow{\text{ppERKn, pRSKn}} \text{cFOSp}$	
7	${\tt reaction_7}$	5 cFOSm	$\emptyset \xrightarrow{cFOSp} cFOSm$	
8	reaction_8	6 cFOS	$\emptyset \xrightarrow{\text{cFOSm, ppERKc, pcFOS}} \text{cFOS}$	
9	reaction_9	7 pcFOS	$\emptyset \xrightarrow{cFOS, ppERKc} pcFOS$	

7.1 Reaction reaction_1

This is an irreversible reaction of no reactant forming one product.

Name 1 PhIM 1

Reaction equation

$$\emptyset \longrightarrow x1$$
 (2)

Product

Table 6: Properties of each product.

Id	Name	SBO
x1	x1	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{[x1]}{\text{tau1}} + \frac{\text{K1} \cdot \text{L}}{\text{tau1}}\right)$$
 (3)

7.2 Reaction reaction_2

This is an irreversible reaction of no reactant forming one product.

Name 1 PhIM 2

Reaction equation

$$\emptyset \longrightarrow x2$$
 (4)

Product

Table 7: Properties of each product.

Id	Name	SBO
x2	x2	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}\left(\text{compartment}\right) \cdot \left(\frac{[\text{x2}]}{\text{tau2}} + \frac{\text{K2} \cdot \text{L}}{\text{tau2}}\right)$$
 (5)

7.3 Reaction reaction_3

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name 2a ppERKn

Reaction equation

$$\emptyset \xrightarrow{ppERKc, DUSP} ppERKn$$
 (6)

Modifiers

Table 8: Properties of each modifier.

Id	Name	SBO
ppERKc DUSP	ppERK(cytosol) DUSP	

Product

Table 9: Properties of each product.

	• •	
Id	Name	SBO
ppERKn	ppERK(nucleus)	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k1} \cdot [\text{ppERKc}] - \text{k2} \cdot [\text{ppERKn}] - \text{k3} \cdot [\text{DUSP}] \cdot [\text{ppERKn}]\right)$$
 (7)

Table 10: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	15.0	lacksquare
k2	k2	50.0	\square
k3	k3	14.0	\checkmark

7.4 Reaction reaction_4

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name 2b DUSP

Reaction equation

$$\emptyset \xrightarrow{\text{ppERKn}} \text{DUSP} \tag{8}$$

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
ppERKn	ppERK(nucleus)	

Product

Table 12: Properties of each product.

Id	Name	SBO
DUSP	DUSP	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{compartment}\right) \cdot \mathbf{k} \cdot [\text{ppERKn}] \tag{9}$$

Table 13: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k	k	1.0	\square

7.5 Reaction reaction_5

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name 3 pRSKn

Reaction equation

$$\emptyset \xrightarrow{ppERKn} pRSKn \tag{10}$$

Modifier

Table 14: Properties of each modifier.

Id	Name	SBO
ppERKn	ppERK(nucleus)	

Product

Table 15: Properties of each product.

Id	Name	SBO
pRSKn	pRSKn	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol} (\text{compartment}) \cdot (\text{k4} \cdot [\text{ppERKn}] - \text{k5} \cdot [\text{pRSKn}])$$
 (11)

Table 16: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k4	k4	0.10	\checkmark
k5	k5	0.15	

7.6 Reaction reaction_6

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name 4 cFOSp

Reaction equation

$$\emptyset \xrightarrow{ppERKn, pRSKn} cFOSp$$
 (12)

Modifiers

Table 17: Properties of each modifier.

Id	Name	SBO
ppERKn pRSKn	ppERK(nucleus) pRSKn	

Product

Table 18: Properties of each product.

Id	Name	SBO
cFOSp	cFOS preRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = vol\left(compartment\right) \cdot \left(\frac{\left([ppERKn] \cdot [pRSKn]\right)^n}{k6^n + \left([ppERKn] \cdot [pRSKn]\right)^n} - k7 \cdot [cFOSp]\right) \tag{13}$$

Table 19: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k6	k6	0.13	
n	n	1.10	\square

7.7 Reaction reaction_7

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name 5 cFOSm

Reaction equation

$$\emptyset \xrightarrow{cFOSp} cFOSm \tag{14}$$

Modifier

Table 20: Properties of each modifier.

Id	Name	SBO
cF0Sp	cFOS preRNA	

Product

Table 21: Properties of each product.

Id	Name	SBO
cFOSm	cFOSmRNA	_

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k7} \cdot [\text{cFOSp}] - \text{k8} \cdot [\text{cFOSm}]\right)$$
 (15)

Table 22: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k8	k8	0.08	Ø

7.8 Reaction reaction_8

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name 6 cFOS

Reaction equation

$$\emptyset \xrightarrow{cFOSm, ppERKc, pcFOS} cFOS$$
 (16)

Modifiers

Table 23: Properties of each modifier.

	- · P	
Id	Name	SBO
cFOSm ppERKc pcFOS	cFOSmRNA ppERK(cytosol) pc-FOS	

Product

Table 24: Properties of each product.

Id	Name	SBO
cF0S	cFOS	

Kinetic Law

Derived unit contains undeclared units

Table 25: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k10	k10	0.3	
k9	k9	0.3	\checkmark

7.9 Reaction reaction_9

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name 7 pcFOS

Reaction equation

$$\emptyset \xrightarrow{\text{cFOS, ppERKc}} \text{pcFOS}$$
 (18)

Modifiers

Table 26: Properties of each modifier.

Id	Name	SBO
cF0S	cFOS	
ppERKc	ppERK(cytosol)	

Product

Table 27: Properties of each product.

Id	Name	SBO
pcFOS	pc-FOS	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol} (\text{compartment}) \cdot (\text{k}11 \cdot [\text{cFOS}] \cdot [\text{ppERKc}] - \text{k}12 \cdot [\text{pcFOS}] - \text{k}13 \cdot [\text{pcFOS}])$$
 (19)

Table 28: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k12	k12	0.001	Ø

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species x1

Name x1

SBO:0000236 physical entity representation

Initial concentration 0 mmol⋅ml⁻¹

This species takes part in one reaction (as a product in reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}\mathbf{1} = |v_1| \tag{20}$$

8.2 Species x2

Name x2

SBO:0000236 physical entity representation

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in one reaction (as a product in reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}x2 = v_2 \tag{21}$$

8.3 Species ppERKn

Name ppERK(nucleus)

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in four reactions (as a product in reaction_3 and as a modifier in reaction_4, reaction_5, reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ppERKn} = v_3 \tag{22}$$

8.4 Species DUSP

Name DUSP

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in two reactions (as a product in reaction_4 and as a modifier in reaction_3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DUSP} = v_4 \tag{23}$$

8.5 Species pRSKn

Name pRSKn

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in two reactions (as a product in reaction_5 and as a modifier in reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{pRSKn} = |v_5| \tag{24}$$

8.6 Species cFOSp

Name cFOS preRNA

SBO:0000250 ribonucleic acid

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in two reactions (as a product in reaction_6 and as a modifier in reaction_7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cFOSp} = v_6 \tag{25}$$

8.7 Species cFOS

Name cFOS

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ } \text{mmol} \cdot \text{ml}^{-1}$

This species takes part in two reactions (as a product in reaction_8 and as a modifier in reaction_9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cFOS} = |v_8| \tag{26}$$

8.8 Species pcFOS

Name pc-FOS

SBO:0000252 polypeptide chain

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in two reactions (as a product in reaction_9 and as a modifier in reaction_8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{pcFOS} = v_9 \tag{27}$$

8.9 Species cFOSm

Name cFOSmRNA

SBO:0000250 ribonucleic acid

Initial concentration $0 \text{ mmol} \cdot \text{ml}^{-1}$

This species takes part in two reactions (as a product in reaction_7 and as a modifier in reaction_8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cFOSm} = v_7 \tag{28}$$

8.10 Species ppERKc

Name ppERK(cytosol)

SBO:0000252 polypeptide chain

Involved in rule ppERKc

This species takes part in three reactions (as a modifier in reaction_3, reaction_8, reaction_9). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

A Glossary of Systems Biology Ontology Terms

- **SBO:0000236 physical entity representation:** Representation of an entity that may participate in an interaction, a process or relationship of significance.
- **SBO:0000250 ribonucleic acid:** Macromolecule formed by a repetition of ribonucleosides linked by phosphodiester bonds. CHEBI:3369
- **SBO:0000252** polypeptide chain: Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SMLZATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany