Savannah River F-Area Seepage Basins Geochemical system description

Sergio A. Bea

Table 1. Aqueous complexes proposed for the ASCEM-F-Area [Dong et al., 2012].

	· -	
Reaction	$\log_{10} K (25^{\circ} C)$	Ref.
$OH^- \leftrightarrow H_2O - H^+$	14	(1)
$AIOH^{2+} \leftrightarrow Al^{3+} + H_2O - H^+$	5	(1)
$Al(OH)_2^+ \leftrightarrow Al^{3+} + 2H_2O - 2H^+$	10.1	(1)
$Al(OH)_3(aq) \leftrightarrow Al^{3+} + 3H_2O - 3H^+$	16.9	(1)
$Al(OH)_4^- \leftrightarrow Al^{3+} + 4H_2O - 4H^+$	22.7	(1)
$CaOH^+ \leftrightarrow Ca^{2+} + H_2O - H^+$	12.78	(1)
$CaHCO_3^+ \leftrightarrow HCO_3^- + Ca^{2+}$	-1.106	(1)
$CaCO_3(aq) \leftrightarrow HCO_3^- + Ca^{2+} - H^+$	7.105	(1)
$CO_3^{2-} \leftrightarrow HCO_3^ H^+$	10.329	(1)
$CO_2(aq) \leftrightarrow HCO_3^2 - H_2O + H^+$	-6.352	(1)
$NaCO_3^- \leftrightarrow Na^+ + HCO_3^ H^+$	10.579	(1)
$NaHCO_3(aq) \leftrightarrow Na^+ + HCO_3^-$	-0.1541	(1)
$NaOH(aq) \leftrightarrow Na^+ + H_2O - H^+$	14.18	(1)
$MgCO_3(aq) \leftrightarrow HCO_3^- + Mg^{2+} - H^+$	7.349	(1)
$Mg(OH)^+ \leftrightarrow Mg^{+2} + H_2O - H^+$	11.44	(1)
$MgHCO_3^+ \leftrightarrow Mg^{+2} + HCO_3^-$	-1.07	(1)
$(UO_2)_2(OH)_2^{2+} \leftrightarrow 2UO_2^{2+} + 2H_2O - 2H^+$	5.62	(1)
$(UO_2)_2CO_3(OH)_3^- \leftrightarrow HCO_3^ 4H^+ + 2UO_2^{2+} + 3H_2O$	11.184	(1)
$(UO_2)_2OH^{3+} \leftrightarrow 2UO_2^{2+} + H_2O - H^+$	2.7	(1)
$(UO_2)_3(CO_3)_6^{6-} \leftrightarrow 6HCO_3^ 6H^+ + 3UO_2^{2+}$	7.973	(1)
$(UO_2)_3(OH)_4^{2+} \leftrightarrow 3UO_2^{2+} + 4H_2O - 4H^+$	11.9	(1)
$UO_2(OH)_4^{2-} \leftrightarrow UO_2^{2+} + 4H_2O - 4H^+$	32.4	(1)
T		(1)
$(UO_2)_3(OH)_5^+ \leftrightarrow 3UO_2^{2+} + 5H_2O - 5H^+$	15.55	

$(UO_2)_3(OH)_7^- \leftrightarrow 3UO_2^{2+} + 7H_2O - 7H^+$	32.2	(1)
$(UO_2)_3O(OH)_2(HCO_3)^+ \leftrightarrow HCO_3^ 4H^+ + 3UO_2^{2+} + 3H_2O$	9.68	(1)
$(UO_2)_4(OH)_7^+ \leftrightarrow 4UO_2^{2+} + 7H_2O - 7H^+$	21.9	(1)
$UO_2NO_3^+ \leftrightarrow UO_2^{2+} + NO_3^-$	-0.3	(1)
$UO_2(OH)^+ \leftrightarrow UO_2^{2+} + H_2O$	5.25	(1)
$UO_2(OH)_2(aq) \leftrightarrow UO_2^{2+} + 2H_2O - 2H^+$	12.15	(1)
$UO_2(OH)_3^- \leftrightarrow UO_2^{2+} + 3H_2O - 3H^+$	20.25	(1)
$UO_2CO_3(aq) \leftrightarrow UO_2^{2+} + HCO_3^ H^+$	0.389	(1)
$UO_2(CO_3)_2^{2-} \leftrightarrow UO_2^{2+} + 2HCO_3^ 2H^+$	4.048	(1)
$UO_2(CO_3)_3^{4-} \leftrightarrow UO_2^{2+} + 3HCO_3^ 3H^+$	9.141	(1)
$CaUO_2(CO_3)_3^{2-} \leftrightarrow Ca^{+2} + UO_2^{2+} + 3HCO_3^{-} - 3H^+$	3.806	(1)
$Ca_2UO_2(CO_3)_3(aq) \leftrightarrow 2Ca^{+2} + UO_2^{2+} + 3HCO_3^{-} - 3H^{+}$	0.286	(1)
$MgUO_2(CO_3)_3^{2-} \leftrightarrow Mg^{+2} + UO_2^{2+} + 3HCO_3^{-} - 3H^{+}$	5.186	(1)
$UO_2SiO(OH)_3^+ \leftrightarrow SiO_2(aq) + UO_2^{2+} + 2H_2O - H^+$	2.481	(1)

⁽¹⁾Dong et al. [2012].

Table 2. Surface complexation and cation-exchange reactions proposed for the ASCEM-F-Area.

Reaction	log ₁₀ K (25° C)	Ref.
(1)On Kaolinite		
$(> k - OH)_2 UO_2^+ \leftrightarrow 2 > k - OH^{-0.5} + UO_2^{2+}$	-5.3	(5)
$(> k - OH)_2 UO_2 CO_3^- \leftrightarrow 2 > k - OH^{-0.5} + UO_2^{2+} + HCO_3^ H^+$	-6.2	(5)
$> k - OH_2^{+0.5} \leftrightarrow > k - OH^{-0.5} + H^+$	-4.9	(5)
$> k - OHNa^{+0.5} \leftrightarrow > k - OH^{-0.5} + Na^{+}$	2.1	(5)
$> k - OH_2NO_3^{-0.5} \leftrightarrow > k - OH^{-0.5} + H^+ + NO_3^-$	-4.9	(5)
(3),(8)On Kaolinite		
$k_2UO_2 \leftrightarrow 2k^- + UO_2^{2+}$	-7.1	(5)
$kNa \leftrightarrow k^- + Na^+$	-2.9	(5)
$kH \leftrightarrow k^- + H^+$	-4.5	(5)
$k_2Ca \leftrightarrow 2k^- + Ca^{2+}$	-6.8	(5)
$k_3Al \leftrightarrow 3k^- + Al^{3+}$	-8	(5)
(3)On Goethite		
$(> \text{Fe} - \text{OH})_2 \text{UO}_2^+ \leftrightarrow 2 > \text{Fe} - \text{OH}^{-0.5} + \text{UO}_2^{2+}$	-14.11	(5)
$(> Fe - OH)_2 UO_2 CO_3^- \leftrightarrow 2 > Fe - OH^{-0.5} + UO_2^{2+} + HCO_3^ H^+$	-4.35	(5)
$> \text{Fe} - \text{OH}_2^{+0.5} \leftrightarrow > \text{Fe} - \text{OH}^{-0.5} + \text{H}^+$	-9.18	(5)
$(> \text{Fe} - \text{OH})_2 \text{CO}_2^- \leftrightarrow 2 > \text{Fe} - \text{OH}^{-0.5} + \text{HCO}_3^ 2\text{H}_2\text{O} + \text{H}^+$	-12.23	(5)
$> \text{Fe} - \text{OCO}_2 \text{Na}^{-0.5} \leftrightarrow > \text{Fe} - \text{OH}^{-0.5} + \text{HCO}_3^ \text{H}_2 \text{O}$	-3.28	(5)
(4)On Quartz		
$> qz - OH_2^+ \leftrightarrow > qz - OH + H^+$	1.1	(6)
$> qz - O^- \leftrightarrow > qz - OH - H^+$	8.1	(6)
$> qz - ONa \leftrightarrow > qz - OH - H^+ + Na^+$	6.8	(7)

⁽¹⁾ Diffuse-Layer, Gouy-Chapman, edge site density 2.3 [sites nm⁻²] [Heidmann et al., 2005; Dong et al., 2012]. Activity of the surface complexes are evaluated as molar fractions in the action mass law.

⁽²⁾Cation-exchange, Gaines-Thomas convention, exchange site density 0.28 [sites nm⁻²] [Heidmann et al., 2005; Dong et al., 2012].

⁽³⁾ Diffuse-Layer, Gouy-Chapman, edge site density 3 [sites nm⁻²] [Sherman et al., 2008; Dong et al., 2012]. Activity of the surface complexes are evaluated as molar fractions in the action mass law.

⁽⁴⁾Diffuse-Layer, Gouy-Chapman, site density 10 [sites nm⁻²] [Landry et al., 2009].

⁽⁵⁾Dong et al. [2012].

⁽⁶⁾Sverjensky and Sahai [1996].

⁽⁷⁾Landry et al. [2009].

⁽⁸⁾Similar sorption behavior for U(VI) was obtained using a surface complexation model (SCM) without electrostatic correction and the activity of the surface complexes evaluated as molar fractions (in a similar way as was proposed by Heidmann et al., 2005).

Table 3. Mineral dissolution/precipitation reactions proposed for the ASCEM-F-Area.

	Reaction	log ₁₀ K (25° C)	Ref.
Primary minerals	$Quartz \leftrightarrow SiO_2(aq)$	-3.7501	(1)
	Kaolinite $\leftrightarrow 2Al^{+3} + 2SiO_2(aq) + 5H_2O - 6H^+$	7.57	(2)
	Goethite \leftrightarrow Fe ⁺³ + 2H ₂ O – 3H ⁺	0.1758	
Secondary minerals	Schoepite $\leftrightarrow UO_2^{+2} + 3H_2O - 2H^+$	4.8443	(1)
	Gibbsite \leftrightarrow Al ⁺³ + 3H ₂ O – 3H ⁺	7.738	(3)
	Jurbanite \leftrightarrow Al ⁺³ +SO ₄ ⁻² +6H ₂ O -H ⁺	-3.8	(4)
	Basaluminite $\leftrightarrow 4\text{Al}^{+3} + \text{SO}_4^{-2} + 15\text{H}_2\text{O} - 10\text{H}^+$	22.251	(4)
	$Opal \leftrightarrow SiO_2(aq)$	-3.005	(5)

⁽¹⁾USDOE [2007]. (2)Yang and Steefel [2008]. (3)Pokrovskii and Helgeson [1995]. (4)Nordstrom [1982]. (5)Sonnenthal and Spycher [2000].

Table 4. Kinetic parameters proposed for the ASCEM-F-Area.

(1)Mechanism	Neutral	Ac	id	Bas	e		
Mineral	kn _i	ka _i	p	kbi	q	η	θ
(2),(5)Quartz	10 ^{-13.345}	-	-	-	-	1	1
(3)Kaolinite (diss.)	$10^{-12.967}$	10 ^{-11.098}	0.777	$10^{-16.839}$	-0.472	1	0.5
(3)Kaolinite (prec.)	$10^{-14.126}$	$10^{-12.256}$	0.777	$10^{-17.996}$	-0.472	1	0.5
(2)Goethite	$10^{-7.94}$	-	-	-	-	1	1
Schoepite	<u> </u>						
(2)Gibbsite	$10^{-11.5}$	$10^{-7.65}$	0.992	$10^{-16.65}$	-0.784	1	1
⁽⁴⁾ Jurbanite	10^{-8}	-	-	-	-	1	1
(4)Basaluminite	10^{-8}	-	-	-	-	1	1
⁽⁴⁾ Opal (diss.)	$10^{-12.135}$	-	-	-	-	1	1
(4)Opal (prec.)	10 ^{-9.135}	-	-	_	-	1	1

Table 5. Initial mineral volumetric fraction proposed for the ASCEM-F-Area.

Mineral	wt%	vol. frac.	surface area	density
Willieral	[-]	[-]	$[m^2 g^{-1}]$	[g cm ⁻³]
Quartz	⁽¹⁾ 87	0.88	0.14	2.648
Kaolinite	$^{(1)}10.48$	0.11	$^{(1)}20.71$	2.594
Goethite	⁽¹⁾ 2.524	0.016	⁽¹⁾ 16.22	4.268
Schoepite	0	0	equilibrium	4.874
Gibbsite	0	0	120	2.44
Basaluminite	0	0	1	2.119
Opal	0	0	200	2.072
Jurbanite	0	0	1	1.789

⁽¹⁾Dong et al. [2012].

Table 6. Chemical composition for the background and seepage solution proposed for the ASCEM-F-Area.

Component	Solution 1	(1)Solution 2	Solution 3	Units
рН	5.4	2.05	5.4	[-]
Na	2.78×10^{-4}	6.82×10^{-5}	2.78×10^{-4}	[mol kgw ⁻¹]
Cl	9.98×10^{-3}	3.39×10^{-5}	9.98×10^{-3}	[mol kgw ⁻¹]
⁽³⁾ TIC	1.23×10^{-5}	1.09×10^{-5}	1.23×10^{-5}	[mol kgw ⁻¹]
Al	3.09×10^{-8}	10^{-8}	3.09×10^{-8}	[mol kgw ⁻¹]
Fe(III)	2.92×10^{-16}	2.75×10^{-6}	2.92×10^{-16}	[mol kgw ⁻¹]
K	3.32×10^{-5}	1.72×10^{-6}	3.32×10^{-5}	[mol kgw ⁻¹]
Ca	10^{-5}	10^{-5}	10^{-5}	[mol kgw ⁻¹]
Mg	5.35×10^{-3}	2.47×10^{-6}	5.35×10^{-3}	[mol kgw ⁻¹]
U(VI)	$^{(2)}1.25x10^{-10}$	3.01×10^{-5}	$^{(2)}1.25x10^{-10}$	[mol kgw ⁻¹]
Nitrates	10^{-3}	10^{-2}	10^{-3}	[mol kgw ⁻¹]
SO_4	2.25×10^{-5}	4.8×10^{-5}	2.25×10^{-5}	[mol kgw ⁻¹]
$SiO_2(aq)$	1.77×10^{-4}	1.18×10^{-4}	1.77×10^{-4}	[mol kgw ⁻¹]
³ H	10^{-15}	2.17×10^{-9}	10^{-15}	[mol kgw ⁻¹]
Ionic	1.64×10^{-2}	1.02×10^{-2}	1.64×10^{-2}	[mol kgw ⁻¹]
strength				[IIIOI Kgw]
$P_{CO2(g)}$	$10^{-3.5}$	$10^{-3.5}$	$10^{-3.5}$	[atm]
Mineral saturat	ion indices			
SI_{quartz}	0	-0.17	0	[-]
$SI_{kaolinite}$	0	-18.42	0	[-]
$SI_{goethite}$	0	0	0	[-]
SI _{schoepite}	-4.5	-5.46	-4.5	[-]
$SI_{basaluminite}$	-7.63	-35.89	-7.63	[-]
$SI_{gibbsite}$	-0.17	-9	-0.17	[-]
$SI_{jurbanite}$	-4.29	-6.05	-4.29	[-]
SI _{opal}	-0.74	-0.92	-0.74	[-]

⁽¹⁾ Based on Killian et al. [1987].
(2) Calculated for an U(VI) in the solid sediment of about 0.1 [µg g⁻¹].
(3) Total Inorganic Carbon.

REFERENCES

- Dong, W.; Tokunaga, T.; Davis, J. & Wan, J. (2012). Uranium (VI) Adsorption and Surface Complexation Modeling under Acidic Conditions: Background Sediments from the F-Area Savannah River Site. Environmental Science & Technology (in press).
- Heidmann, I.; Christl, I.; Leu, L. & Kretzschmar, R. (2005). Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling. Journal of Colloid and Interface Science, 282, 270-282.
- Killian, T.; Kolb, N.; Corbo, P. & Marine, I. (1987). F-Area Seepage Basins E.I. du Pont de Nemours & Co. Savannah River Laboratory, Aiken, SC 29808. Technical Report DPST-85-704.
- Landry, C.; Koretsky, C.; Lund, T.; Schaller, M. & Das, S. (2009). Surface complexation modeling of Co(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. Geochimica et Cosmochimica Acta, 73, 3723-3737.
- Nordstrom, D. (1982). The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al₂O₃-SO₃-H₂O at 298 K. Geochimica et Cosmochimica Acta, 1982, 46, 681-692.
- Palandri, J. & Kharaka, Y. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey. Open file report 2004-1068.
- Pokrovskii, V. A. & Helgeson, H. C. (1995). Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: The system Al2O3-H2O-NaCl. American Journal of Science, Kline Geology Laboratory, 1995, 295, 1255-1342.
- Sherman, D. M.; Peacock, C. L. & Hubbard, C. G. (2008). Surface complexation of U(VI) on goethite (α-FeOOH). Geochimica et Cosmochimica Acta, 2008, 72, 298-310.
- Sonnenthal, E. & Spycher, N. (2000). Drift-scale coupled processes model, Analysis and model report (AMR) N0120/U0110, Yucca Mountain Nuclear Waste Disposal Project. Lawrence Berkeley National Laboratory, Berkeley, California.
- Sverjensky, D. A. & Sahai, N. (1996). Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water. Geochimica et Cosmochimica Acta, 60, 3773-379.
- Tester, J. W.; Worley, W. G.; Robinson, B. A.; Grigsby, C. O. & Feerer, J. L. (1994). Correlating quartz dissolution kinetics in pure water from 25°C-c to 625°C. Geochimica et Cosmochimica Acta, 1994, 58, 2407-2420.
- Yang, L. & Steefel, C. I. (2008). Kaolinite dissolution and precipitation kinetics at 22oC and pH 4. Geochimica et Cosmochimica Acta, 2008, 72, 99-116.
- USDOE (2007). In-drift precipitates/salts model. Argonne National Laboratory Report EBS-MD-000045 REV 03. Chicago, U. In-drift precipitates/salts model.