Linear Algebra Midterm 1 Review Questions

- **1.** If possible, find the inverse to the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and use it to solve the linear system $A\mathbf{x} = \mathbf{b}$ for a fixed vector $\mathbf{b} \in \mathbb{R}^3$.
- **2.** Write the linear transformation defined by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x \\ x \\ y \end{bmatrix}$ as $T(\mathbf{x}) = A\mathbf{x}$ for some A. Can you describe what this linear transformation does to vectors? Does this linear transformation have an inverse?
- **3.** Is $\begin{bmatrix} 1 \\ -1 \\ 3 \\ 2 \end{bmatrix}$ a linear combination of the vectors $\begin{bmatrix} 1 \\ 4 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ -1 \\ -2 \end{bmatrix}$?
- **4.** Are the vectors $\begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ linearly independent? Do these vectors span \mathbb{R}^3 ? Why or why not?
- **5.** Let $A=\begin{bmatrix}1&0\\0&1\\1&0\end{bmatrix}$. Describe what the function $f(\mathbf{x})=A\mathbf{x}$ does to vectors $\mathbf{x}\in\mathbb{R}^2$, drawing pictures when possible.
- **6.** Give an example of a matrix A for which A^{-1} does not exist but $A\mathbf{x} = \mathbf{0}$ has a unique solution.
- **7.** Find all solutions to the system $\begin{cases} x+y-2z=1,\\ x+y-z=0,\\ y-2z=3. \end{cases}$
- 8. True or False:
- **_____ a.** Let A be an $m \times n$ matrix. If $A\mathbf{x} = \mathbf{0}$ has a unique solution, then A^{-1} exists.
- **_____ b.** A set of linearly dependent vectors can span \mathbb{R}^n .
- **9.** Give an example of a linear system of equations that have a solution set that can be written as the span of two linearly independent vectors.
- **10.** Find a formula for $\begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}^{-1}$ provided a, d, and f are nonzero.

11. Let A be a matrix which is not square. Explain why A^{-1} does not exist.

12. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & -1 & -1 \\ 0 & 0 & 3 & 3 \end{bmatrix}$$
. Write the solutions to $A\mathbf{x} = \mathbf{0}$ as a span of vectors in \mathbb{R}^4 .

13. Find all solutions to the system $\begin{cases} x+y-2z=1,\\ x-2z=-1,\\ 3y-2z=1. \end{cases}$