Protokoll Bildung und Zerfall

Fuchs, Gutmann, Kosbab, Kowal, Steindorf, Fälker, Richter 22. Januar 2023

Inhaltsverzeichnis

1	Kurzbeschreibung des Versuches	1
2	Funktionsweise eines Szintillators	1
3	Nullwertmessungen	2
4	Messwerte	3
5	Graphische Darstellung	4
6	Bestimmung der Halbwertszeiten	5
7	Berechnen der Neutronenflussdichte am Bestrahlungsort	6

1 Kurzbeschreibung des Versuches

- Zu Beginn des Versuchs wird ohne Probe fünf mal der Nulleffekt gemessen und aus den erhaltenen Werten der Durchschnittswert gebildet.
- Ein Aluminium-Präparat, ein Kupfer-Präparat sowie ein unbekanntes Präparat werden für jeweils 10 Minuten im geöffneten Experimentierkanal bestrahlt.
- Nach erfolgter Neutronen-Aktivierung werden die Proben aus dem Reaktorkanal entnommen und in den Szintillator montiert.
- Anschließend wird über eine Zeitdauer von 10 Minuten alle 30 Sekunden die Zahl der Impulse für je sechs Sekunden gemessen.

2 Funktionsweise eines Szintillators

- 1. Im Szintillationskristall des Szintillators werden beim Auftreffen von Strahlung Lichtblitze (Szintillationen) erzeugt.
- 2. Die Lichtblitze werden in einem Sekundärelektronenverstärker durch den fotoelektrischen Effekt in Fotoelektronen umgewandelt und durch Stoßionisation verstärkt.

3. Die enstehenden Spannungsimpulse werden in einem nachfolgenden Verstärker weiter verstärkt und anschließend im Impulszähler gezählt.

Folgende Werte wurden am Strahlungsmessgerät eingestellt:

Parameter	Wert
Pegel	$\int 5.7 V$
Hochspannung	-1140 V
Verstärkung	22 dB
Messzeit	6s
Kanalbreite	DIS

3 Nullwertmessungen

Messung		
1	522	408
2	522	488
3	545	415
4	526	396
5	575	492
Ø	$N_0 = 538$	439,8

Tabelle 1: Untergrundstrahlung bei laufendem Reaktor mit und ohne Menschen als Abschirmmaterial

4 Messwerte

Zeit	Al [# Impulse]		Cu [# Impulse]		\mathbf{X} [# Impulse]	
[min]	N_i	$N_i - N_0$	N_i	$N_i - N_0$	N_i N_i	$N_i - N_0$
0	27845*	27307*	24197*	23659*	12051*	11513*
0,5	24505	23967	24063	23525	11971	11433
1,0	21163	20625	22350	21812	11134	10596
1,5	18339	17801	20668	20130	10651	10113
2,0	15840	15302	19868	19330	10252	10113
2,5	13718	13180	18376	17838	9285	8747
3,0	11656	11118	17582	17044	8809	8271
3,5	10279	9741	16477	15939	8314	7776
4,0	8744	8206	15461	14923	8117	7579
4,5	7612	7074	14629	14097	7423	6885
5,0	6536	5998	13838	13300	7081	6543
5,5	5961	5423	12893	12355	6791	6253
6,0	5102	4564	12004	11466	6380	5842
6,5	4426	3888	11673	11135	6026	5488
7,0	3948	3410	11196	10658	5638	5100
7,5	3381	2843	10355	9817	5410	4872
8,0	3060	2522	10077	9539	5180	4642
8,5	2691	2153	9477	8939	4852	4314
9,0	2300	1762	9009	8471	4645	4107
10,0	1930	1392	8152	7614	4096	3558

 $^{^{\}ast}$ durch exponentielle Extrapolation berechnet

Tabelle 2: Anzahl der Impulse für verschiedene Materialien zu verschiedenen Zeitpunkten

5 Graphische Darstellung

Abbildung 1: Messwerte mit linearer Achse

Abbildung 2: Messwerte mit logarithmischer Achse

6 Bestimmung der Halbwertszeiten

Anhand der Abklingkurven kann man nun die Halbwertszeiten ablesen.

Da der Verlauf der Aktivitätswerte durch den radioaktiven Zerfall einer Exponentialfunktion folgt, kann diese mittels exponentieller Regression näherungsweise bestimmt und anschließend die Halbwertszeit errechnet werden. Die aus den gemessenen Aktivitätswerten resultierenden Exponentialfunktionen sind folgende:

$$y_{\text{Al}} = e^{10.2344 - 0.3021 \cdot x}$$

 $y_{\text{Cu}} = e^{10.0940 - 0.1182 \cdot x}$
 $y_{\text{X}} = e^{9.3969 - 0.1210 \cdot x}$

Nach der Bestimmung der Umkehrfunktionen lassen sich die Halbwertszeiten wie folgt berechnen:

$$T_{1/2} = y^{-1} \left(\frac{y(100)}{2} \right) - 100$$

Die damit berechneten Halbwertszeiten lauten:

 $T_{1/2; \, Al}: 2.29 \, \mathrm{min}$ $T_{1/2; \, Cu}: 5.86 \, \mathrm{min}$ $T_{1/2; \, X}: 5.72 \, \mathrm{min}$

Die Linie der Zerfallskurve der unbekannten Probe in der logarithmischen Darstellung verläuft nahezu parallel zur Zerfallskurve der Kupferprobe. Damit lässt sich vermuten, dass es sich bei der unbekannten Probe ebenfalls um ein Kupfergemisch handelt, in welchem das Isotop ⁶⁶Cu wiederum die niedrigste Halbwertszeit, und damit, für die gemessene Zeitspanne, den größten Einfluss besitzt.

Das durchschnittliche Verhältnis der Impulsrate der unbekannten Probe zur Impulsrate der Kupferprobe beträgt ca. 0.49. Daraus lässt sich schließen, dass der Kupferanteil im unbekannten Gemische ungefähr bei der Häflte liegt.

Zur weiteren Bestimmung der unbekannten Probe wäre eine Impulsmessung über einen längeren Zeitraum hinweg notwendig, um Halbwertszeiten anderer Gemischbestandteile auswerten zu können. Auf Grundlage einer visuellen Beurteilung sowie eines Hinweises seitens des Versuchsleiters, wird hinter der unbekannten Probe die Kupfer-Zink-Legierung Messing vermutet, welches wie gefordert zu ca. 50% aus Kupfer besteht, sowie mit Zink einen zweiten Gemischbestandteil hoher Halbewertszeit besitzt.

7 Berechnen der Neutronenflussdichte am Bestrahlungsort

Nach Versuchsanleitung ergibt sich zur Berechnung der Neutronenflussdichte am Bestrahlungsort folgende Gleichung:

$$\Phi = \frac{(\mathbf{Z}(t_b) - n_0) \cdot \mathbf{AG}}{C \cdot V \cdot \rho \cdot P \cdot N_L \cdot \sigma \cdot \left[1 - \exp(-\ln(2)/T_{1/2} \cdot t_b)\right]}$$

 $Z(t_b)$: (extrapolierte Zählrate für $t=0=t_b$)

 n_0 : Nulleffekt

AG: Atomgewicht des Probenmaterials

 ${\cal C}$: Proportionalitätsfaktor für Fehlerquellen (für Kupfer bestimmt: 0,01)

 ${\cal V}$: Volumen der bestrahlten Materialprobe

 ρ : Dichte des bestrahlten Materials

 ${\cal P}$: Anteil des betrachteten Isotops am Gemisch (für Kupfer: 0.309)

 N_L : Loschmidtsche Zahl

 σ : mikroskopischer Wirkungsquerschnitt

 $T_{1/2}$: expermientell ermittelte Halbertszeit

 t_b : Dauer der Aktivierung im Reaktor

Damit lässt sich für Aluminium eine Neutronenflussdichte berechnen mit:

$$\begin{split} \Phi_{\text{Al-28}} &= \frac{\left(4640.79\,\frac{1}{\text{s}} - 89.66\,\frac{1}{\text{s}}\right) \cdot 27\,\frac{\text{g}}{\text{mol}}}{0.01 \cdot 0.71\,\text{cm}^3 \cdot 2.2\,\frac{\text{g}}{\text{cm}^3} \cdot 6.025 * 10^{23}\,\frac{1}{\text{mol}} \cdot 0.215 * 10^{-24}\,\text{cm}^2 \cdot \left[1 - \exp\left(-\frac{\ln(2)}{2.29\,\text{min}} \cdot 10\,\text{min}\right)\right]} \\ &= 6.412 \cdot 10^7\,\frac{\text{n}}{\text{cm}^2 \cdot \text{s}} \end{split}$$

sowie für Kupfer mit:

$$\begin{split} \Phi_{\text{Cu-66}} &= \frac{\left(4032.9\,\frac{1}{\text{s}} - 89.66\,\frac{1}{\text{s}}\right) \cdot 65\,\frac{\text{g}}{\text{mol}}}{0.01 \cdot 0.71\,\text{cm}^3 \cdot 8.92\,\frac{\text{g}}{\text{cm}^3} \cdot 0.309 \cdot 6.025 * 10^{23}\,\frac{1}{\text{mol}} \cdot 2.1 * 10^{-24}\,\text{cm}^2 \cdot \left[1 - \exp\left(-\frac{\ln(2)}{5.86\,\text{min}} \cdot 10\,\text{min}\right)\right]}{1.499 \cdot 10^7\,\frac{\text{m}}{\text{cm}^2 \cdot \text{s}}} \end{split}$$

Die berechneten Werte liegen damit wie erwartet in der für Nullleistungsreaktoren gegebenen Größenordnung von $10^7 \frac{n}{\text{cm}^2 \cdot \text{s}}$.