Problem - 1

Problem statement:

Given n points in 2-dimensional plane, find the number of pairs of points (p_1,p_2) such that slope of line between points p_1 and p_2 is 1.

Note: pair of points (p_1,p_2) and (p_2,p_1) is same.

Input: The first line contains integer n – the number of 2-D points. Following n lines contains two space seperated integers x_i and y_i .

Output:

A single integer denoting the required result.

Constraints:

$$1 \le n \le 500,000$$

- $10^9 \le x_i, y_i \le 10^9$

Use Template Code: https://pastebin.com/Lj7BTyJT

	Sample Input		Sample Output
5		4	
11			
2 2			
3 3			
3 9			
5 11			

Explanation:

The pairs of points which gives slope 1 are:

- (1,1) and (2,2)
- (1,1) and (3,3)
- (2,2) and (3,3)
- (3,9) and (5,11)