

(1) Publication number: 0 578 616 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 93810474.2

(51) Int. CI.5: C12N 15/52, C12N 9/00

(22) Date of filing: 05.07.93

30 Priority: 09.07.92 AT 1403/92 08.03.93 AT 437/93 29.04.93 CH 1310/93 04.05.93 CH 1375/93

(43) Date of publication of application: 12.01.94 Bulletin 94/02

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

(71) Applicant : SANDOZ LTD. Lichtstrasse 35 CH-4002 Basel (CH)

(84) BE CH DK ES FR GB GR IE IT LI LU NL PT SE

(71) Applicant: SANDOZ-PATENT-GMBH **Humboldtstrasse 3**

(84) DE

(71) Applicant: SANDOZ-ERFINDUNGEN Verwaltungsgesellschaft m.b.H. **Brunner Strasse 59** A-1230 Wien (AT)

(84) AT

72 Inventor : Leitner, Ernst Daxerfeld 5 A-6250 Kundl (AT)

Inventor: Schneider, Elisabeth Canisiusweg 125 Top 34

A-6064 Rum (AT)

Inventor: Schoergendorfer, Kurt

A-6322 Unterlangkampfen Nr. 437 (AT) Inventor: Weber, Gerhard A-6322 Unterlangkampfen Nr. 437 (AT)

D-79539 Lörrach (DE)

(54) Cylosporin synthetase.

The nucleotide sequence which codes for cyclosporin synthetase and similar enzymes and recombinant vectors containing the sequence. The vectors are used in methods for the production of cyclosporin and cyclosporin derivatives.

578 616 A2

This invention relates to nucleotide sequences which code for enzymes possessing cyclosporin synthetase-like activity and to methods for the production of cyclosporin and cyclosporin derivatives using these sequences.

The fungus *Tolypocladium niveum* (previously known as *Tolypocladium inflatum* GAMS) produces cyclosporins, a group of neutral cyclic peptides composed of eleven amino acids. Other fungi have been found which may form cyclosporins (Dreyfuss, 1986; Nakajima *et al.*, 1989) but *Tolypocladium niveum* is the most important organism for the production of cyclosporins by fermentation. Cyclosporins exhibit remarkable biological effects: for example cyclosporin A, the main metabolite, is a potent immunosuppressant (Borel *et al.*, 1976). An enzyme has been identified which catalyses the entire peptide biosynthesis of cyclosporin and is therefore called cyclosporin synthetase (Zocher *et al.*, 1986, Billich and Zocher 1987). The biosynthesis proceeds non-ribosomally by a thiotemplate process, as has also been described for other peptide synthetases (Kleinkauf and von Döhren 1990). Each amino acid is first activated in the form of an adenylate, then bound in the form of a thioester and linked with the following amino acid to the peptide. In the case of cyclosporin A, seven of the amino acids, bound as thioesters, are methylated before they are linked to the preceding amino acid in a peptide bond. This methylation function is an integral constituent of the enzyme polypeptide (Lawen and Zocher 1990). Including the cyclisation reaction, cyclosporin synthetase performs at least 40 reactions.

Cyclosporin A contains three non-proteinogenic amino acids: D-alanine in position 8, α -amino butyric acid in position 2 and, in position 1, the unusual amino acid (4R)-4-[(E)-2- butenyl]-4-methyl-L-threonine (Bmt or C9 amino acid). All three amino acids must be each prepared by a biosynthetic pathway which is independent of the primary biosynthetic pathway. Cyclosporin synthetase does not possess an alanine-racemase function (Kleinkauf and von Döhren 1990) and thus, D-alanine cannot be produced by cyclosporin synthetase by epimerisation of enzyme-bound L-alanine, as is the case for other peptide antibiotics whose biosynthesis mechanism is known.

Although attempts have been made to isolate and characterize cyclosporin synthetase in terms of its amino acid sequence, because of the complexity and size of the enzyme this has not to date been possible. Hence it has not been possible to characterize the DNA coding for cyclosporin synthetase.

This invention provides a nucleotide sequence which codes for an enzyme possessing cyclosporin synthetase-like activity. In the present specification, an enzyme possessing cyclosporin synthetase-like activity is an enzyme which catalyses the peptide biosynthesis of cyclosporins and structurally related peptides and derivatives.

Preferably, the nucleotide sequence codes for cyclosporin synthetase or an enzyme which is at least 70% (for example, at least 80, 90 or 95%) homologous to it and which possesses cyclosporin synthetase-like activity.

Preferably, the nucleotide sequence codes for an enzyme which possesses cyclosporin synthetase-like activity and in which at least one amino acid recognition unit is different from that of cyclosporin synthetase.

Preferably, the nucleotide sequence comprises the sequence represented in Seq Id 1 or a sequence which hybridises to it under conditions of reduced stringency or, more preferably stringent coinditions. Stringent conditions include hybridisation at 42° C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, and 0.1% SDS and washing three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. Reduced stringency conditions include a washing temperature of 60°C. Even more preferably the nucleotide sequence codes for an enzyme having the amino acid sequence set out in Seq Id 2. The nucleotide sequence may have a restriction map as represented in figure 1.

In another aspect, the invention provides a recombinant vector containing a nucleotide sequence as defined above. The vector may include the endogenous promotor for cyclosporin synthetase or may include some other suitable promotor. A suitable promotor region is illustrated in Seq Id 7. The recombinant vector may be in the form of a plasmid, a cosmid, a P1-vector or a YAC-vector. The invention also extends to host cells carrying the vector. Preferably the host cell is a Tolypocladium niveum cell.

The invention also provides a process for the production of cyclosporin or a cyclosporin derivative, comprising cultivating a host cell as defined above and causing the host cell to produce the cyclosporin or cyclosporin derivative.

The invention also provides a method for the production of a cyclosporin derivative, comprising altering the DNA sequence coding for cyclosporin synthetase so that the enzyme causes the production of the cyclosporin derivative, placing the altered DNA sequence in a vector, transforming a host cell with the vector, and causing the host cell to produce the cyclosporin derivative. Preferably the DNA sequence coding for cyclosporin synthetase is altered by changing the fragments that code for amino acid recognition units. Alterations may be made using standard techniques such as those based on PCR procedures. Point deletions, mutations and insertions, as well as larger alterations are possible.

This specification describes the isolation and characterisation of the gene for cyclosporin synthetase from

10

15

20

25

30

35

Tolypocladium niveum and the use of the gene in genetically engineering cells, including Tolypocladium niveum cells. While a protocol for the isolation of cyclosporin synthetase from Tolypocladium niveum was published in 1990 (Lawen and Zocher 1990), it is however not suitable for extracting large quantities of homogeneous enzyme in a short period of time. Also, in the publication, the synthetase was attributed an M_r of approximately 650,000 Dalton. It may, however, justifiably be assumed from sedimentation analyses with fluorescence-labelled protein (Lawen et al., 1992) and by extrapolation from the protein size of comparable enzymes that cyclosporin synthetase has an M_r of approximately 1,500 kDa. The enzyme occurs as a single polypeptide chain and cannot be decomposed into subunits by either denaturing or reducing agents (Lawen and Zocher 1990).

The enormous size of the enzyme means that a strategy for amino acid sequencing which differs from the customarily used route must be used. Substantially more homogeneous material is required than is generally used to perform fragmentation tests. It is for this reason that a protocol was developed for cyclosporin synthetase which may, in principle, also be applied to analogous enzymes from other microorganisms and, in the practical example of the purification of the enzyme from *Tolypocladium niveum* (example 1), gave rise to a substantial improvement in terms of yield and the amount of time required.

Purification may initially proceed according to customary processes. Cell disruption may be performed, for example, with a high pressure homogeniser or a glass bead mill; the cells being present in moist or lyophilised state. If the cells are moist, pressure disruption is conveniently performed, for example with a Maunton Gaulin apparatus. Lyophilised cells are conveniently broken up by grinding in a mortar under liquid nitrogen.

The crude extract so obtained is clarified by centrifugation. The nucleic acids are removed by precipitating them from the extract using customary reagents for this purpose; polyethyleneimine or protamine sulphate are, for example, used. The nucleic acid precipitation also removes fine suspended particles, which can disturb subsequent purification stages. Then the proteins may be precipitated out of the clarified crude extract to provide the enzyme in a more concentrated form. The protein precipitation is customarily performed with ammonium sulphate. For cyclosporin synthetase, saturation to 50% is sufficient to achieve almost complete precipitation. After this step, the enzyme is in an enriched and highly concentrated state.

· · •

In principle, all chromatographic methods are suitable for further purification of the enzyme, such as ion-exchange chromatography and gel permeation chromatography. With very large proteins, gel permeation chromatography is particularly suitable as a very selective purification step. If the correct molecular sieve is chosen, an approximately 90% homogeneous protein preparation may be obtained in a single step. Analysis of purity is performed in SDS polyacrylamide gels (preferably gradient gels 4-15%).

The purification process used produces stable, at least 90% homogeneous, active enzyme preparations, as is necessary for characterisation of enzyme kinetics or protein chemistry. In Example 1, the protocol described in detail for *Tolypocladium niveum*, in comparison with the published method, reduces the time required from 4 days to 10 hours and increases the yield by approximately a factor of 4.

With a protein of this exceptional size, the requirement for amino acid sequences to identify the gene or gene product correctly is naturally greater than for an average-sized protein. Apart from the possibility of N-terminal blocking, it is also not possible to prepare a protein of this size in such a way that it is suitable for N-terminal sequencing. For these reasons, it is necessary to obtain a sufficient number of internal amino acid sequences.

However, when a protein of this size is fragmented, so many fragments are produced (theoretically approximately 700, assuming one cleavage every 20 amino acids) that the standard method of completely fragmenting the protein and purifying the fragments by high-pressure reversed-phase chromatography (HP-RPC) is not practicable. For this reason, fragmentation is performed under conditions which are sub-optimal for the relevant endoproteinases to give substantially larger fragments.

Cyclosporin synthetase is cleaved by adjusting the pH value. In particular, cleavage into large fragments of up to 200 kDa is achieved by adjusting the pH value to approximately 7.5 in a HEPES buffer with the addition of EDTA and DTT. The fragments obtained in this manner may be isolated and enriched as is conventional, for example by using chromatography and electrophoresis, such as the combination of anion exchange chromatography on MonoQ with HP-RPC or the combination of MonoQ with SDS-polyacrylamide gel electrophoresis/electroblot.

The sub-optimal conditions are principally obtained by altering the buffer conditions, and possibly also altering the cleavage temperature (see Example 3 as a possible variant). The nonetheless numerous fragments must each be isolated or enriched by 2 purification steps, it being in principle possible to use any chromatographic and electrophoretic separation techniques. In the case of cyclosporin synthetase fragments from *Tolypocladium niveum*, the combinations of anion exchange chromatography on MonoQ with HP-RPC (Examples 4 and 5) and MonoQ with SDS-polyacrylamide gel electrophoresis/electroblot (Examples 4 and 6) prove particularly advantageous.

The non-ribosomal biosynthetic pathway implies that the sequence of the cyclic peptide is determined by

15

20

25

30

35

40

45

the corresponding arrangement of the amino acid activating domains. Each of these domains must perform analogous reactions, namely the activation of the amino acid by adenylation and binding in the form of a thioester. Hence it may be expected that recurrent, preserved moieties will be found in the protein sequence.

In fact, in previously analysed peptide synthetases, preserved regions within the sequences have been discovered, the number of which coincides with the number of amino acids to be activated: three for ACV synthetase (activates aminoadipic acid, cysteine and valine; Smith et al., 1990, MacCabe et al., 1991, Gutierrez et al., 1991); one each for gramicidine synthetase I (Kraetzschmar et al., 1989) and tyrocidine synthetase I (Weckermann et al., 1988); and four preserved regions in gramicidine synthetase 2, which activates the amino acids proline, valine, ornithine and leucine (Turgay et al., 1992).

Maximally accurate identification and characterisation of such preserved regions of cyclosporin synthetase at both the enzymatic and genetic levels constitutes the basis for well-directed genetic engineering in terms of altering enzyme specificity for the *in vivo* production of cyclosporin variants. It is therefore useful to identify proteolytic fragments of cyclosporin synthetase which may be correlated with a partial function of the synthetase. The following correlations were made:

- (1) a protein fragment with a methyl transferase function (the method on which this work is based is, in principle, applicable to all methyl transferases and is published in Yu et al., 1983; a first application to cyclosporin synthetase is published in Lawen and Zocher 1990); see Example 7;
- (2) a protein fragment capable of activating L-alanine (Example 8).

The method used in Example 8 exploits the fact that when proteins are subjected to limited proteolytic cleavage, *inter alia* intact domains are cleaved which, due to their correct spatial folding, are still capable of exercising their enzyme function to a limited extent. Theoretically, therefore, each amino acid activating domain may be identified with this method. The optimal conditions (for proteolytic cleavage and its timing in relation to amino acid activation) must, however, be determined by testing in each individual case. Moreover, unambiguous identification of a domain may be achieved only if the amino acid it activates occurs only once in the product.

The gene is isolated by DNA hybridisation with oligonucleotides specific to cyclosporin synthetase (Example 10). Whether a specific DNA fragment actually belongs to the cyclosporin synthetase gene is established by Northern hybridisation, since a non-transcribed neighbouring fragment does not hybridise with the corresponding RNA (Example 15). The DNA sequence of the cloned DNA of the cyclosporin synthetase gene is determined and compared with the amino acid partial fragments of cyclosporin synthetase (Examples 13 and 14).

Hence it is possible to transform *Tolypocladium niveum* with the complete gene for cyclosporin synthetase. Among the transformants, strains may be found which contain several copies of this gene or copies with altered regulation. Those strains are selected which, in fermentation tests, display increased cyclosporin formation or can form the same quantity of cyclosporin over a shorter fermentation period.

It is also possible to select the transformed strains by the activity of the cyclosporin synthetase, independently of whether cyclosporin is formed in greater quantities or faster. The isolated cyclosporin synthetase gene can act as an analytical aid in order to determine whether a specific strain of *Tolypocladium niveum* has a high concentration of the mRNA or not (Example 15). Such strains may then be subjected to conventional mutagenesis and strain selection. Even if the initial strain used for transformation is not limited in its cyclosporin synthetase activity, a strain is provided in this way which potentially allows greater cyclosporin formation. The combination of classical genetics (mutation and strain selection) with molecular genetics (transformation with isolated genes) allows the isolation of improved strains which could not be achieved by either of the two methods alone: not by classical genetics because a double mutation is extremely rare in a single selection stage; not by molecular genetics because in some circumstances an unknown factor has a limiting effect.

A further use of the isolated gene is gene-specific mutagenesis. Instead of producing mutations in the entire genome - and therefore also altering many uninvolved genes - the isolated gene alone is mutated using suitable methods (Sambroock et al., 1989) and then transformed to *Tolypocladium niveum* (Example 17). Among the transformants, the proportion of mutants in the cyclosporin synthetase gene is higher than with mutagenesis of the fungus. Mutants, which form specific cyclosporins in greater or reduced quantities, may more frequently be found than with conventional mutagenesis.

By internal sequence comparisons of the derived amino acid sequences (Example 14c) and the correlation of specific partial sequences (Example 8 and Example 9 or Example 14ab), domains of the cyclosporin synthetase for the activation of the individual amino acids may be localised (as performed above for non-ribosomal peptide synthetases). By this means, well-directed mutagenesis of cyclosporin synthetase gene may be performed, by interchanging the gene region of individual domains, by deliberately removing a corresponding region or the cyclosporin synthetase gene may also be extended by individual domains. After transformation of such mutated genes into *Tolypocladium niveum*, new cyclosporin variants may become accessible. The cloned

10

15

20

25

30

35

45

50

gene may be used to produce strains of *Tolypocladium niveum* which no longer have an active cyclosporin synthetase gene. Such strains may be used for the production of D-alanine or Bmt by fermentation or act as recipient strains for *in vitro* modified cyclosporin synthetase genes. To this end, an inactive version produced *in vitro* is constructed for the transformation (Example 18).

When screening for microorganisms which can synthesise cyclosporins, it is necessary that the active metabolites under test conditions are also actually formed in sufficient quantity. Such substances may moreover have slightly changed characteristics and may for this reason alone be overlooked. Example 16 describes the use of the isolated cyclosporin synthetase gene to find microorganisms which contain the cyclosporin synthetase gene in their genome. These genes do not have to be active for this purpose. On the basis of these hybridisations, the corresponding genes may be isolated in a manner analogous to Examples 10, 11 and 12 and transformed into *Tolypocladium niveum*. A strain may be used to this end which no longer contains any active cyclosporin synthetase. This interspecific recombination cannot be achieved with other methods. As described in the preceding paragraph, such strains may be subjected to a screening programme. In this case, genetic variability is based on the introduced gene which hybridises with the cyclosporin synthetase gene.

The control sequences of the cyclosporin synthetase gene may also be used for the construction of plasmids. An example of a control sequence is that which occurs in synp4 (Example 12). The promoter may be fused with a readily detectable reporter gene, such as for example the β -glucuronidase gene (Tada *et al.*, 1991). Strains of *Tolypocladium niveum* which are transformed with these plasmids permit, not only the selection of regulatory mutants, but moreover make it possible to measure and optimise promoter activity independently of other functions.

The following examples and figures illustrate the invention without, however, limiting it.

Figure 1: Restriction map of cyclosporin synthetase gene from *Tolypocladium niveum* cloned in λSYN3. The position of some restriction cleavage points is shown in relation to a scale (2.0, 4.0, 6.0, etc. kb). Among these, several partial fragments subcloned in plasmids are represented as rectangles (S5, E3, S3, etc.). If the corresponding rectangle is filled in, this means that the corresponding DNA fragment reacts with a high molecular weight RNA in Northern hybridisation (S5, E3, S3, E1, E2). Rectangles with lengthwise lines indicate that no bands were obtained in Northern hybridisation (E4, S2). Empty rectangles indicate that the DNA was not used as a probe (S4). The following two tables give the positions of the fragments (S5, H2, etc) and enzyme restriction sites shown in figure 1 (in bp):

Start	End	Fragment Name
1	2500	S5
1300	3300	H2
2000	5400	E3
2500	5300	S 3
4700	11750	нз
5300	8400	S4
5400	7000	E1
7000	9200	E2
9200	12100	E4
10250	13850	S2

Enzyme R stricti n sites :								
Sall	1,	HindIII	1300,	EcoRI	2000,			
Sall	2500,	HindIII	3300,	Hindill	3800,			
HindIII	4700,	Sall	5300,	EcoRI	5400,			
EcoRI	7000,	Sall	8400,	EcoRI	9200,			
Sall	10250,	HindIII	11750,	EcoRI	12100,			
Sall	13850.							

Figure 2: Restriction map of plasmid pSIM10. The construction and structure of the plasmid is described in Example 18. The positions are stated in bp. Nucleotides 4749-6865 are DNA from *Tolypocladium niveum* containing the promoter of the cyclophilin gene. Nucleotides 1-1761 contain the hygromycin phosphotransferase gene from plasmid pCSN44 (Staben *et al.*, 1989). Nucleotides 1761-4714 are from plasmid pGEM7Zf (Promega Inc.).

Figure 3: Restriction map of plasmid pSIM11. Construction of the plasmid is described in Example 18. Nucleotides 4924 to 8553 are the 3.6 kb <u>Xho</u>I restriction fragment from the cyclosporin synthetase gene. Nucleotides 8548-10489 and 1-4929 are plasmid pSIM10 (figure 2).

Figure 4: Restriction map of plasmid pSIM12. Construction of the plasmid is described in Example 18. Nucleotides 4924 to 5727 are the 0.8 kb <u>Xho</u>l restriction fragment from the cyclosporin synthetase gene. Nucleotides 5722-7663 and 1-4929 are plasmid pSIM10 (figure 2).

Figure 5: Restriction map of cyclosporin synthetase gene from *Tolypocladium niveum* cloned in syncosl3. The position of some restriction cleavage points is shown. The position of the part cloned in λ syn3 is marked with the crosshatched bar.

All the restriction maps shown in figures 1, 2, 3, 4 and 5 are only approximate reproductions of restriction cleavage points in DNA molecules. The distances as drawn are proportional to the actual distances, but the actual distances may be different. Not all restriction cleavage point are shown, it is possible for further cleavage points to be present.

Example 1: Isolation of active cyclosporin synthetase in electrophoretically homogeneous form:

The starting material used for the protein purification is *Tolypocladium niveum*, strain 7939/45 (Lawen *et al.*, 1989). All steps are performed at a temperature between 0° and 4°C. 10 g of lyophilised mycelium is finely ground in a mortar with addition of liquid nitrogen and then suspended in buffer A (buffer A: 0.2 M HEPES pH 7.8, 0.3 M KCl, 4 mM EDTA, 40 (v/v)% glycerol, 10 mM DTT). The suspension is carefully stirred over ice for 1 hour and then centrifuged for 10 min at 10,000 g to remove cell debris.

The supernatant is collected and nucleic acids are precipitated with polyethyleneimine (final concentration 0.1%). The precipitate is removed by centrifugation for 10 min at 10,000 g.

The supernatant is again collected and proteins are precipitated using a solution of ammonium sulphate (saturated) in buffer B (0.1 M HEPES pH 7.8, 4 mM EDTA, 15 (v/v)% glycerol, 4 mM DTT) at room temperature. The solution is added dropwise to the supernatant up to a final concentration of 50% of saturation. The mixture is left to stand for a further 30 minutes to reach equilibrium. The precipitated proteins are collected by centrifugation for 30 minutes at 30,000 g. The pellet obtained is resolubilised to 10 ml in buffer B.

The resolubilised pellet is then subjected to molecular sieve chromatography. The molecular sieve is a HW65-F Fractogel obtained from Merck; the column dimensions are 2.6 cm x 93 cm, and the volume is 494 ml. The column is operated under fast performance liquid chromatography (FPLC) conditions. The flow rate is 2 ml/min, continuous under buffer B. The cyclosporin synthetase elutes under these conditions at an elution volume of 260 to 310 ml. Processing 10 g of lyophilised mycelium produces 50 mg of cyclosporin synthetase in electrophoretically homogeneous form within 10 hours.

Example 2: D t ction of enzymatic activity of cyclosporin synthetase :

80 μ l of an enzyme sample in buffer B are incubat d, in a total volume of 130 μ l, with 3.5 mM ATP, 8 mM MgCl₂, 10 mM DTT, 10 μ M C9 acid, 690 μ M of any other constituent amino acid and 100 μ M S-adenosyl-methionin + 2 μ Ci of adenosyl-methionine-S-[methyl-3H] (75 Ci/mm I) for 1 hour at 22°C. Extraction and de-

55

5

10

15

20

25

30

35

tection of the cyclosporin A formed are performed as described in Billich and Zocher 1987.

Example 3: Endoproteinase cleavages:

The following endoproteinases (Boehringer Mannheim, sequencing grade) are used: trypsin from bovine pancreas (cleaves after arginine and lysine); LysC from Lysobacter enzyrnogenes (cleaves after lysine); GluC = V8 from Staphylococcus aureus (cleaves after glutamic acid and aspartic acid).

The cleavages are not performed under the conditions recommended by the manufacturer; but rather under 'sub-optimal' conditions. The cyclosporin synthetase is incubated in its storage buffer (0.1 M HEPES pH 7.5, 4 mM EDTA, 4 mM DTT, 15 (w/v)% glycerol) with protease in a ratio of 100 μ g : 1 μ g for 2 to 3 hours at 25°C. In this way, fragments of a size up to approximately 200 kDa are produced.

Example 4: MonoQ purification of fragments:

Purification is performed using a commercially available MonoQ column (HR 5/5) obtained from PHAR-MACIA, at 4°C. The protease digested protein sample is diluted (1:5) in buffer 1 (20 mM HEPES pH 7.5, 2 mM EDTA, 2 mM DTT, 5 w/v% glycerol) and applied to the column. The gradient elution of fragments is carried out in 20 ml of 0% to 100% buffer 2 (buffer 1 + 500 mM NaCl).

20 Example 5: HP-RPC purification of MonoQ fractions:

Purification is performed using a commercially available Nucleosil 300A-C4- 5μ column of dimensions 85 x 4.5 mm. The MonoQ fraction sample is diluted (1:5) in buffer 1 (5% acetonitrile, 0.1% TFA) and applied at a flow rate of 1 ml/min and room temperature. Gradient elution is carried out in 85 minutes from 0% to 100% buffer 2 (90% acetonitrile, 0.1% TFA).

Example 6: SDS-PAGE/Blot purification of MonoQ fractions:

SDS-PAGE is performed according to Lämmli (1970). Thioglycolic acid (2 mM) is added to the electrophoresis buffer in order to prevent the N termini being blocked by residual radicals from the polymerisation reaction. The MonoQ fractions are used after denaturation with SDS for the electrophoresis. For sequencing, the proteins are blotted out of the gel onto glass fibre membranes ("Glassybond" from Biometra) using the semidry method.

35 Example 7: Protein fragment with methyl transferase activity: identification and purification

The active centre of methyl transferases may be crosslinked with its substrate S-adenosyl-methionine by UV irradiation. This may be exploited by providing a radioactive substrate and so achieving radioactive labelling of the enzyme (Yu et al., 1983). This method, which is also known as "photoaffinity labelling", has been used on cyclosporin synthetase (Lawen and Zocher 1990) and it is possible to show that several labelled protein fragments are produced upon subsequent protease digestion. A labelled fragment is enriched by a combination of the methods described in Examples 4 and 6 and so made accessible to sequencing (see Example 9: aa4). This fragment has a size of approximately 47,000 Dalton.

45 Example 8: Amino acid activating protein fragments: identification and purification

Protein fragments that have the capacity to activate an amino acid are identified by loading the synthetase with radioactively labelled amino acid in the simultaneous presence of an endoproteinase. Approximately 500 μg of purified cyclosporin synthetase are incubated with 25 mM of ATP, 30 mM MgCl $_2$ and 5 μCi of ^{14}C -L-alanine and are simultaneously treated with, for example, endoproteinase LysC. The reaction is arrested after 3 hours by precipitation of the proteins with TCA. The fragments are resolubilised in a sample buffer for SDS-PAGE, omitting reducing agents. Half of the batch is subjected to SDS-PAGE and the labelled protein fragment is detected by autoradiography of the gel after amplification in "amplify solution" (from NEN) and drying. A fragment with a M_r of approximately 140,000 Dalton is identified and enriched by a combination of the methods described in Examples 4 and 6. The amino acid sequence is given in Example 9: aa13.

50

15

25

Example 9: Amino acid partial sequences of cyclosporin synthetase:

The following partial sequences are obtained from cyclosporin synthetase obtained from Example 6. aal: amino acids 1916 to 1942 of Seq Id 2 with amino acid 1921 being S and 1942 being I aa2: amino acids 2906 to 2925 of Seq Id 2 amino acids 12240 to 12261 of Seq Id 2 with amino acid 12254 being E. aa3: amino acids 6535 to 6550 of Seq Id 2 aa4: amino acids 12654 to 12671 of Seq Id 2 aa5: aa6: amino acids 1099 to 1117 of Seq Id 2 with amino acids 1116 and 1117 being V and L 10 aa8: amino acids 1984 to 1996 of Seq Id 2 with amino acid 1991 undeterminable. aa9: amino acids 13718 to 13738 of Seq Id 2 with amino acid 13731 undeterminable. amino acids 9611 to 9622 of Seq Id 2 aa10: aa12: amino acids 11475 to 11484 of Seq Id 2 aa13: amino acids 13601 to 13620 of Seq Id 2 15 aa14: amino acids 9549 to 9568 of Seq Id 2 with amino acid 9565 undeterminable. aa15: amino acids 9504 to 9521 of Seq Id 2 aa16: amino acids 13569 to 13586 of Seq Id 2 with amino acid 13568 being G aa17: amino acids 1020 to 1034 of Seq Id 2 aa19: amino acids 9070 to 9084 of Seq Id 2 with amino acids 9082 and 9083 undeterminable aa20: 20 amino acids 6532 to 6546 of Seq Id 2 with amino acid 6545 undeterminable

Example 10: Isolation of λ -clones which hybridise with an oligonucleotide specific to cyclosporin synthetase

a) Construction of a genomic λ-gene library from Tolypocladium niveum.

DNA is isolated from the mycelium of a culture of *Tolypocladium niveum* grown in medium 1 [50 g/l of maltose, 10 g/l of casein peptone (digested with trypsin, Fluka), 5 g/l of KH₂PO₄ and 2.5 g/l of KCl; the pH value is adjusted to 5.6 with phosphoric acid]. 4 ml of a spore suspension of *Tolypocladium niveum* strain ATCC 34921 with 4 x 10⁸ spores per ml are added to 200 ml of medium 1 in a 1 l conical flask and are shaken for 72 hours at 25°C and 250 rpm. The mycelium is filtered off with a Būchner funnel, washed with 10 mM of tris-Cl pH 8.0, 1 mM EDTA and ground to a fine powder under liquid nitrogen. Nuclei are isolated from 40 g of moist mycelial mass and are then lysed; the DNA is punified by CsCl-EtBr centrifugation. This method is described in Jofuku and Goldberg (1988). 4.3 mg of DNA are obtained, which, in a 0.5% agarose gel, produces a band exhibiting lower mobility than λ-DNA.

40 μg of the DNA are incubated with 1.4 units of the restriction enzyme Sau3A in 10 mM of tris-Cl pH 7.5, 10 mM MgCl₂, 1 mM of DTE, 50 mM of NaCl for 60 minutes at 37°C and then 10 minutes at 65°C. The extent of cleavage is verified on an agarose gel: part of the DNA is between 10 and 20 kb in size. The DNA is then applied to two NaCl gradients, which are produced by freezing and slowly thawing at 4°C two Beckman SW28.1 ultracentrifuge microtubes with 20% NaCl in TE (10 mM tris-Cl, pH 8.0, 1 mM EDTA). The microtubes are centrifuged for 16 hours at 14,000 rpm in Beckman L8M ultracentrifuge in rotor SW28.1. The contents of the microtubes are fractionated. Fractions with DNA larger than 10 kb are combined and dialysed against TE. After concentration of the DNA to 500 μg/ml, the DNA is combined with λ EMBL3-DNA (Promega Inc.), previously cleaved with EcoRl and BamHl. 1.5 μg of the DNA and 1 μg of λ EMBL3-DNA (cleaved with EcoRl and BamHl) are ligated for 16 hours at 16°C in 5 μl of 30 mM tris-Cl pH 7.5, 10 mM of MgCl₂, 10 mM of DTE, and 2.5 mM ATP after the addition of 0.5 U of T4-DNA ligase (DNA concentration 500 μg/ml). The ligation mixture is packaged *invitro* with the assistance of protein extracts ("packaging mixes", Amersham). The λ -lysates produced are titrated with E. coli KW251 (Promega Inc.). Approximately 4.5 x 105 pfu are obtained.

b) Isolation of λ-clones

50

55

25

30

35

40,000 recombinant phages from the *Tolypocladium niveum* gene library are cast with *E. coli* strain KW251 onto 90 mm TB plates (TB contains 10 g/l of bacto tryptone and 5 g/l of NaCl and 0.7% of agarose, the pH is adjusted to 7.5 with NaOH). Two blots onto nitrocellulose (Stratagene) are made from each plate (Maniatis *et al.*, 1982). From the amino acid sequence of the cyclosporin synthetase fragment aa9 (Example 9), an oligonucleotide mixture (96 different oligonucleotides, each 20 nucleotides in length) with the sequences

5' GCA TCA ATA TTA AAT TGA TC 3' G G G C G T

may be produced on the basis of the genetic code. 1.5 µg of this oligonucleotide mixture are incubated in 25µl of 50 mM tris-Cl pH 9.5, 10 mM MgCl₂, 5 mM DTE, 5% glycerol with 150 μCi γ-ATP (³²P) and 20 U of polynudeotide kinase (Boehringer) for 30 minutes at 37°C. Over 80% of the radioactivity is incorporated. Hybridisation is performed at 37°C in 400 ml 6 x SSPE (Maniatis et al., 1982), 5 x Denhardt's solution (Maniatis et al., 1982), 0.1% SDS, 100 μg/ml denatured herring sperm DNA (Maniatis et al., 1982), 0.1 mM ATP, 1.4 x 106 cpm/ml ³²Plabelled oligonucleotide mixture for 16 hours. The filters are washed three times for 5 minutes and twice for 30 minutes in 6 x SSC (Maniatis et al., 1982) at 4°C. The filters are then washed for 10 minutes at 37°C in a TMAC (tetramethylammonium chloride) washing solution which is prepared according to Wood et al., 1985. Finally, the filters are washed for 30 minutes at 57°C in the TMAC washing solution, dried and exposed for 10 days with a Kodak Xomatik AR X-ray film. Regions of the agarose layer corresponding to positive signals on the X-ray film are punched out and resuspended in SM buffer (5.8 g/l NaCl, 2 g/l MgSO₄ x 7 H₂O and 50 mM tris-Cl pH 7.5). A suitable dilution is again cast with KW251 onto a TB plate. The plaques are again transferred onto nitrocellulose. The DNA is isolated from plaques producing a positive hybridisation signal in the second $hybrid is at ion. \ The \ purified \ DNA from \ these \ phages \ is \ used for \ Southern \ hybrid is at ions \ and \ restriction \ analyses.$ Figure 1 shows the restriction map of the *Tolypocladium niveum* proportion of such a λ -clone (= λ SYN3). Subcloning is performed in various plasmid vectors (for example pUC18, Pharmacia).

To isolate λ -clones containing the neighbouring DNA fragments ("chromosome walking"), the plaque hybridisation method described above is repeated a number of times; the marginal restriction fragments being used in each case as \$^{32}P-labelled probes. In order to clone the DNA adjoining the region shown schematically in figure 1 (λ SYN3), fragment S5 is used (figure 1). Hybridisation is then performed at 42°C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 µg/ml denatured herring sperm DNA, and 100 µM ATP. Before hybridisation, the 32 P-labelled DNA is heated to 100°C for 5 minutes and cooled in ice. After 16 to 20 hours, the filters are washed: three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. The dried filters are autoradiographed. Those areas of the agarose corresponding to positive signals are further processed as described above.

Example 11: Isolation of cosmid clones containing parts of the cyclosporin synthetase gene

a) Construction of a genomic cosmid gene library from Tolypocladium niveum

Protoplasts are produced as described in Example 17. Approximately 10^9 protoplasts are carefully lysed in 2 ml of TE (10 mM tris-HCl, 1 mM EDTA, pH 8.0). 0.1 mg/ml of RNase A are added and incubation is continued for 20 minutes at 37°C. After the addition of 0.5% SDS and 0.1 mg/ml of proteinase K, incubation is continued for a further 40 minutes at 55°C. The batch is very carefully extracted twice with each of TE-saturated phenol, phenol/chloroform (1:1) and chloroform/isoamyl alcohol (24:1) (Maniatis *et al.*, 1982). The aqueous, slightly viscous supernatant is combined with one tenth its volume of 3 M sodium acetate (pH 5.2) and covered with a layer of 2.5 times its volume of absolute ethanol at -20°C and the DNA, found as fine threads at the phase interface, wound up using glass rods. The DNA is dissolved in 3 ml of TE for at least 20 hours. Depending on the quality of the protoplasts, approximately 500 µg/ml of DNA are obtained. Analysis with field inversion gel elecrophoresis (FIGE) (0.8% agarose, 0.5 x TBE (Maniatis *et al.*, 1982), 6 V/cm, forwards pulse 0.2 to 3 sec, pulse ratio 3.0, running time 5 hours) gives a size greater than 150 kb. Two batches of 135 µg of DNA are cleaved with 7.5 and 15 units respectively of restriction enzyme Ndell (from Boehringer Mannheim) for 1 hour at 37°C in 1 ml of buffer (tris-acetate 33 mM, magnesium acetate 10 mM, potassium acetate 66 mM, DTT 0.5 mM, pH 7.9). Aliquots of the cleaved DNA are tested with FIGE and give a maximum size for the fragments obtained of approximately 45 and 30 kb respectively.

Using a gradient mixer, linear NaCl density gradients from 30% to 5% in 3 mM EDTA pH 8.0 are produced in ultracentrifuge microtubes and the DNA fragments applied. After centrifugation for 5 hours at 37,000 rpm and 25°C (Beckman L7-65 ultracentrifuge, rotor SW 41), the gradient is harvested in 500 μ l fractions. Fractions with DNA greater than 30 kb and less than 50 kb are dialysed three times for two hours against TE (tris-HCl 10 mM, EDTA 1 mM, pH 8.0), precipitated with ethanol and each dissolved in 50 μ l TE.

sCos1 (from Stratagene) is used as the cloning vector. The vector arms cleaved with <u>BamHI</u> and <u>Xbal</u> are produced and modified as stated by Evans et al., (1989). 1µg of the cleaved vector are ligated with approxi-

5

25

30

35

45

50

mately 500 ng of the DNA fragments in 20 μ l of ligation mix (tris-HCl 66 mM, MgCl₂5 mM, DTE 1 mM, ATP 1 mM, pH 7.5) with 16 units of T4-DNA ligase (from Boehringer) for 16 hours at 12°C. 4 μ l portions of the batch are packaged into lambda phage heads with packaging extracts (Gigapak, from Stratagene). *E. coli* SRB (from Stratagene) is used as the host strain for the infection and the bacteriophage lambda-competent cells are produced following the method of Sambroock *et al.*, (1989). After infection, the batches are plated in aliquots onto LB medium (Maniatis *et al.*, 1982) with 75 μ g/ml of ampicillin. Recombinant clones are discernible as colonies after 20 hours at 37°C. In total, approximately 50,000 colonies are obtained, which are then suspended in 0.9% NaCl/20% glycerol and stored at -70°C. Analysis of 40 randomly selected clones by isolation and restriction of the cosmids obtained shows that all the clones contain recombinant cosmids; the average insert size is 36 kb.

b) Isolation of cosmid clones

10

15

25

30

45

50

55

The cosmid gene library is plated at a density of approximately 2500 colonies per 85 mm plate on LB medium with 75 μ g/ml of ampicillin (Maniatis *et al.*, 1982). Transfer of each onto two nylon membranes (Duralon UV, Stratagene) is performed as described in Sambroock *et al.*, (1989). The 1.6 kb HindIII fragment from λ syn3 (see figure 1) is labelled with alpha-³²P-dATP using "Random Primin g" (from Stratagene) and is used as a hybridisation probe. Prehybridisation is performed for 6 hours, hybridisation for 18 hours at 42°C in 5 x SSC, 40% formamide, 5 x Denhardt's (Maniatis *et al.*, 1982), 0.1% SDS, 25 mM NaH₂PO₄, pH 6.5, and 250 μ g/ml of herring sperm DNA. The filters are washed twice for 10 minutes in 2 x SSC/0.1% SDS at room temperature and twice for 40 minutes in 1 x SSC/0.1% SDS at 60°C. The membranes are exposed for 14 hours on X-ray film (Kodak Xomatic AR). Colonies having positive signals are purified, the corresponding cosmid-DNA isolated from the colonies and characterised by various restriction analyses and hybridisations with the labelled λ syn3 probes, and the vector-DNA sCos1. Figure 5 shows the restriction map of the cloned regions of such a cosmid, syncosl3; the *Tolypocladium niveum* DNA contained in it amounts to approximately 35 kb and also includes the region of λ syn3.

Example 12: Isolation of a P1 clone with the complete gene for cyclosporin synthetase

Protoplasts are produced from *Tolypocladium niveum* as described in Example 17 and suspended at a density of 10^9 /ml in TPS. 1 ml portions of this suspension are mixed with 1 ml of 1.6% melted agarose (Incert from FMC) held at 40°C and cast into small 1.5 mm thick blocks using a casting stand (BioRad). After solidifying, the blocks are transferred into lysis buffer (0.45 M EDTA pH 8.0, 1% N-lauroyl sarcosin, 1 mg/ml proteinase K) and incubated for 16 hours at 55°C . The blocks are washed for thrice for 2 hours in 0.5 M EDTA pH 8.0 while being slowly rocked and are then stored at 4°C . Before being cleaved, the blocks are cut into small strips, transferred into Eppendorf microtubes and washed for four times for 2 hours and once for 16 hours in TE. The blocks are preincubated in four parallel batches at 4°C , each in 300 μ l BamHI buffer (from NEB), supplemented with $100~\mu\text{g/ml}$ of bovine serum albumin (from NEB) and $80~\mu\text{M}$ S-adenosylmethionine, for 3 hours on ice. Then, 2 units of BamHI (from NEB) and 16, 20, 24 or 28 units of BamHI methylase (from NEB) are added to each batch and incubation is continued for a further 90 minutes on ice and then for 1 hour at 37°C . The reactions are arrested by the addition of 20 mM of EDTA and 0.5~mg/ml of proteinase K and incubated at 37°C for 30 minutes.

The blocks are applied to a 1% agarose gel (Seaplaque GTG from FMC) and the DNA fragments separated by pulsed field gel electrophoresis ((Chef DR II from BioRad), 0.5 x TBE (Maniatis et al., 1982), switch interval of 8-16 sec, 150 V, 16 h, 12°C).

The region of DNA fragments between 70 and 100 kb is cut out of the gel and the agarose hydrolysed with β -agarase (from NEB). The DNA solution obtained in this manner is very carefully extracted once with tris-saturated phenol and once with chloroform/isoamyl alcohol (24+1) and then concentrated to a final volume of approximately 100 μ l by extraction with 1-butanol.

pNS528tet14-Ad10-SacIIB (from DuPont-NEN) is used as the cloning vector. The vector arms are prepared as stated in Pierce *et al.*, (1992). Approximately 250 ng of the cleaved vector are ligated with approximately 500 ng of the DNA fraction for 16 hours at 16°C (performed as in Example 11, total volume 15 μ l). After heating the ligation to 70°C for 10 minutes, 4 μ l aliquots are cleaved with pacase (from DuPont-NEN) and packaged into bacteriophage P1 envelopes by addition of the "head/tail" extract, as described in Pierce and Sternberg (1991). After infection of E. *coli* NS3529, the preparation is plated onto LB medium (Maniatis *et al.*, 1982) with 25 μ g/ml kanamycin and 5% saccharose. Recombinant clones become visible after incubation of the plates at 37°C for 20 h.

In total, approximately 2000 colonies are obtained, which are stored as a pool in 0.9% NaCl/20% glycerol

at -70°C as "P1 library".

10

20

35

The gene library (10 x 500 colonies) is screened as described in Example 11 (cosmid clones). *Inter alia*, a positive clone is obtained which contains all the fragments of the cosmid clone syncosl3, together with additionally a further approximately 30 kb of the cyclosporin synthetase gene in the 5' direction. Hybridisation with oligonucleotide mixtures derived from suitable amino acid sequences (see Example 9 and Example 10) shows that all the tested sequences are present on this P1 clone (synp4). In this way, it is ensured that the complete gene for cyclosporin synthetase is contained on this clone synp4.

Example 13: DNA partial sequence of the cyclosporin synthetase gene from *Tolypocladium niveum* ATCC34921

- a) The DNA cloned as described in Examples 11 and 12 is sequenced and is illustrated as Seq Id 1.
- b) A polypeptide with the amino acid sequence illustrated as Seq Id 2 is be derived from this DNA.

15 Example 14: Comparison of the amino acid sequences derived from the DNA with the cyclosporin synthetase amino acid partial sequences

The DNA of Seq Id 1 is translated on the basis of the genetic code into an amino acid sequence (i.e. position 1 of the protein sequence corresponds to position 885 of the DNA sequence) and is compared with the amino acid sequences given in Example 9:

AA-Partial sequence 3: in Seq Id 2, position 12254 is T. Otherwise all amino acids correspond.

AA-Partial sequence 4: all amino acids correspond.

AA-Partial sequence 5: all amino acids correspond.

AA-Partial sequence 9: in Seq Id 2, position 13730 is W. Otherwise all amino acids correspond. (Position 13 of the AA partial sequence aa9 could not be determined.)

AA-Partial sequence 10: all amino acids correspond.

AA-Partial sequence 12: all amino acids correspond.

AA-Partial sequence 13: all amino acids correspond.

AA-Partial sequence 14: in Seq Id 2, position 9565 is C. Otherwise all amino acids correspond.

AA-Partial sequence 15: all amino acids correspond.

AA-Partial sequence 16: Position 1 of the AA partial sequence aa16 does not correspond to the AA sequence of Seq Id 2. Otherwise all amino acids correspond.

AA-Partial sequence 19: in Seq Id 2, positions 9082 and 9083 are R and Y. Otherwise all amino acids correspond.

AA-Partial sequence 20: in Seq Id 2, position 6545 is W. Otherwise all amino acids correspond.

Further, internal comparison of the amino acids 13804-14063 of Seq Id 2 with amino acids 12304-12563 of Seq Id 2 shows that 178 out of 259 amino acids are identical (68.7%). A further 28 amino acid residues (10.8%) are functionally similar. In total, 11 partial regions similar to each other may be identified in this manner.

40 Example 15: Isolation of RNA from mycelium of Tolypocladium niveumand Northern hybridisation

A 1 I conical flask with 100 ml of medium 4 (Dreyfuss et al., 1976) is inoculated with a spore suspension of Tolypocladium niveum ATCC34921 (1 x 107 spores/ml) and shaken for 96 hours at 250 rpm and 25°C. Il conical flasks with 100 ml of medium 5 (Dreyfuss et al., 1976) are inoculated with 10 ml of this preculture and shaken for 7 days at 25°C and 250 rpm. The cyclosporin A concentration is determined (Dreyfuss et al., 1976) to be 100 μg/ml. 8 g of moist mycelial mass is filtered, washed with TE (10 mM tris-Cl pH 7.5, 1 mM EDTA) and ground to a fine powder in a mortar under liquid nitrogen. RNA is then isolated according to the method described by Cathala et al., (1983). 4 mg of RNA are obtained, which are stored at -70°C. 10 µg of the RNA are separated on a denaturing 1.2% agarose gel containing 0.6 M formaldehyde. The electrophoresis buffer is 0.2 M MOPS, 50 mM sodium acetate, 10 mM EDTA, pH 7.0. The RNA is dissolved in a buffer mixed together from 0.72 ml formamide, 0.16 ml of 10 x concentrated electrophoresis buffer, 0,26 ml formaldehyde, 0.18 ml water and 0.10 ml glycerol. The samples are heated to 100°C for 2 minutes and separated at 115 V, 100 mA over 2 hours. The gel is shaken three times for 20 minutes in 10 x SSC, blotted onto Hybond N-Filter and fixed by UV treatment. Hybridisation is performed at 42°C in 6 x SSPE, 50% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 $\mu g/ml$ denatured herring sperm DNA, and 100 μM ATP. The ^{32}P -labelled DNA (fragments of the cloned DNAs described in Examples 9 to 12) are heated to 100°C for 5 minutes and cooled in ice before hybridisation. After 16 to 20 hours, the filters are washed: three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 0.2 x SSC, 0.1% SDS at 65°C. The dried filters are autoradiographed. If the fragment

used as the probe is a fragment of the cyclosporin synthetase gene, a band may be detected on the X-ray film after 24 to 72 hours of autoradiography at -70°C. The band exhibits distinctly less mobility than the largest of the comparison RNA used (9500 b; RNA-ladder, BRL). Figure 1 summarises the results of such hybridisations: in relation to the restriction map of a λ -clone, the isolation of which is described in Example 10, the positions of individual restriction fragments are given which were used as probes in Northern hybridisations. The filled-in rectangles indicate that the bands described above may be detected (E2, E3, E1, S3, S5), while the rectangles with the transverse lines stand for those fragments which do not hybridise with such a band (E4, S2). (Fragment S4 was not used as a probe).

Example 16: Identification of homologous synthetase genes

100 ml of medium 1 (Dreyfuss *et al.*, 1976) are inoculated with 1 x 10 8 fungal spores and shaken for 72 hours at 25 $^\circ$ C and 250 rpm. The mycelium is filtered out, washed with TE and lyophilised. 100 mg of lyophilised mycelium are added to 700 μ l of lysis buffer (200 mM tris-Cl pH 8.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) and 100 mg of aluminium oxide powder (Sigma A2039) in an Eppendorf homogeniser and are homogenised. 500 μ l of phenol-chloroform are then added and vigorously mixed in. After 15 minutes centrifugation, the extraction is repeated. A volume of 3M sodium acetate pH 5.2 corresponding to 0.1 time the volume of the supernatant are added to the supernant and then a volume of i-propanol corresponding to 0.6 time the volume of the supernatant is thoroughly mixed in. After 5 minutes of centrifugation, the pellet is washed with 70% ethanol, briefly dried and dissolved in 100 μ l of TE with 100 μ g/ml of RNase and incubated for 15 minutes at 37°C. The phenol-chloroform extraction and ethanol precipitation are then repeated. The precipitated DNA is collected.

 $5\,\mu$ portions of the DNA are cleaved with *Xho*I, separated on an agarose gel and blotted onto a nylon filter. This filters are hybridised with ³²P-labelled λ SYN3 DNA as a probe. Hybridisation is performed under standard conditions, as described in Example 10 ("chromosome walking"). The hybridisations may, however, also be performed under less stringent conditions.

The following hybridising bands are obtained with DNA from *Tolypocladium niveum* (all data are estimates due to mobility in the gel): 3.6 kb, 3.4 kb, 3.2 kb, 3.0 kb, 2.3 kb, 1.9 kb and 0.7 kb. DNA from *Fusarium solani* ATCC 46829 also displays bands at 3.6 kb, 3.4 kb, 1.9 kb and 0.7 kb together with a further band at approximately 2.1 kb. DNA from *Neocosmospora vasinfecta* ATCC 24402 also displays the bands at 3.6 kb, 3.4 kb, 1.9 kb and 0.7 kb, together with two further bands at 2.9 kb and 1.8 kb. DNA from *Tolypocladium geodes, Acremonium sp. S42160/F, Paecilomyces sp. S84-21622/F, Verticillium sp. 85-22022/F* (Dreyfuss, 1986) each display several hybridising bands in the range 0.7 kb to 7 kb.

On the basis of the DNA sequence Seq Id 1, the following oligonucleotide pairs are be synthesised:

Nucleotides 35073-35092 of Seq Id 1

Nucleotides 37848-37829 of Seq Id 1 (complementary strand)

or also

10

15

20

25

30

35

40

45

50

55

Nucleotides 40309-40328 of Seq Id 1

Nucleotides 42018-41999 of Seq Id 1(complementary strand)

If 50 ng of the *Tolypocladium geodes* CBS723.70 DNA is amplified with the first of the two oligonucleotide pairs described above (Sambroock *et al.*, 1989): 30 cycles: 1 min 30 sec 94°C; 2 min 30 sec 50°C; 6 minutes 72°C, a 350 bp DNA is produced. If a part of this DNA is sequenced, the sequence given as Seq Id 3 is obtained. This DNA sequence is 75.1% homologous to the corresponding DNA sequence of Seq Id 1.

Also, if 50 ng of the *Neocosmospora vasinfecta* ATCC 24402 DNA is amplified with the second of the two oligonucleotide pairs described above (Sambroock *et al.*, 1989): 30 cycles: 1 minutes 30 sec 94°C; 2 minutes 30 sec 50°C; 6 minutes 72°C, a 1713 bp DNA is produced. If this DNA is sequenced, the sequence given as Seq Id 4 is obtained. This DNA sequence is 96.3% homologous to the corresponding DNA sequence of Seq Id 1.

Example 17: Protoplastisation and transformation of Tolypocladium niveum

a) Method 1:

200 ml of medium 1 (maltose (monohydrate) 50 g/l, casein peptone, digested with trypsin (Fluka 70169) 10 g/l, KH₂PO₄ 5 g/l, KCl 2.5 g/l pH 5.6) in a conical flask are inoculated with 10⁹ spores of *Tolypocladium niveum* and are incubated at 27°C, 250 rpm for approximately 70 hours. 200 μl of (0.1%) β-mercaptoethanol are added and incubation continued for a further 16 hours. The mycelium is harvested by centrifugation (Beckman J2-21 centrifuge, rotor JA14, 8000 rpm, 20°C, 5 minutes), washed in 40 ml of TPS (NaCl 0.6 M, KH₂PO₄/NaH₂PO₄

66 mM pH 6.2) and the pellet volume measured by centrifugation in calibrated microtubes at 2000 g (in Beckman GPR centrifuge, GH3.7 rotor, 3000 rpm, 5 minutes). The mycelium is suspended in TPS (3 ml of TPS are used for each 1 ml of pellet volume) and the same volume of protoplastisation solution is added (Novozym 234 10 mg/ml from Novo Industri, batch PPM-2415), cytohelicase 5 mg/ml (from IBF), Zymolyase 20T 1 mg/ml (from Seikagaku Kogyo, batch no. 120491). The suspension is incubated at 27°C at 80 rpm for approximately 60 minutes. The protoplasts are filtered through a milk filter, centrifuged out (700 g, 10 minutes) and taken up in a total of 4 ml of TPS. Each 1 ml of this suspension is layered on to 4 ml of 35% saccharose solution and is centrifuged at 600 g, 20°C for 20 minutes. The protoplast bands at the phase interface are drawn off, each diluted to 10 ml with TPS, centrifuged out, carefully resuspended in 200 µl portions of TPS and the suspensions are combined. For each 1 ml of pellet volume of starting mycelium (see above), approximately 2 x 108 protoplasts are obtained.

The protoplast suspension is centrifuged out (700 g, 10 minutes) and suspended in 1 M sorbitol, 50 mM CaCl $_2$ at a density of 1 x 10 8 . 90 μ l portions of this suspension are combined with 10 μ l of the vector DNA to be transformed, which contains the <u>amd</u>S gene from *Aspergillus nidulans*, for example plasmid p3SR2 (Hynes et al., 1983), (1-10 μ g dissolved in tris-HCl 10 mM, EDTA 1 mM, pH 8.0) and 25 μ l of PEG 6000-Lsg are added (25% PEG 6000, 50 mM CaCl $_2$, 10 mM tris-HCl, pH 7.5, freshly prepared from the stock solutions: 60% PEG 6000 (from BDH), 250 mM tris-HCl pH 7.5, 250 mM CaCl $_2$). The transformation batch is placed on ice for 20 minutes and then a further 500 μ l of the mixed PEG 6000 solution are added and carefully mixed in. After 5 minutes at room temperature, 1 ml of 0.9 M NaCl, 50 mM CaCl $_2$ is added, the entire batch added to 7 ml of melted soft agar TMMAAC+N, held at 45°C, and cast onto preheated TMMAAC+N plates. Medium TMMAAC+N contains 6 g/l glucose, 3 g/l KH $_2$ PO $_4$, 0.5 g/l KCl, 0.4 g/l MgSO $_4$ x 7 H $_2$ O, 0.2 g/l CaCl $_2$ x 2 H $_2$ O, 8 mM acrylamide, 2.1 g/l CsCl, 1 ml/l trace element solution, and 0.6 M NaCl. 15 g/l of Agar-Agar (Merck) are used for plates and 7 g/l for soft agar. The trace element solution contains 1 mg/ml of FeSO $_4$ x 7 H $_2$ O, 9 mg/ml of ZnSO $_4$ x 7 H $_2$ O, 0.4 mg/ml of CuSO $_4$ x 5 H $_2$ O, 0.1 mg/ml of MnSO $_4$ x H $_2$ O, 0.1 mg/ml of H $_3$ BO $_3$ and 0.1 mg/ml of Na $_2$ MoO $_4$ x H $_2$ O. Transformants are capable of using acrylamide as a source of nitrogen in the medium and may therefore be identified after approximately 3 weeks at 25°C as colonies against weak background growth.

b) Method 2:

25

30

35

Two portions each of 4.0 ml of the Tolypocladium niveum spores (ATCC 34921; 5 x 108/ml) are introduced into a 1 I conical flask with 200 ml of medium 1 (50 g/l maltose (monohydrate), 10 g/l casein peptone, digested with trypsin, FLUKA 70169, 5 g/l KH₂PO₄, 2.5 g/l KCl, pH 5.6) and are shaken at 25°C at 250 rpm for 65 hours. The mycelium is filtered out over a sterile sintered porcelain filter with GMX nylon gauze and washed with TE (10 mM tris-Cl pH 7.5, 1 mM EDTA) and resuspended in 40 ml of YG (5 g/l yeast extract, 20 g/l dextrose). Centrifugation is carried out at 900 g and 20°C for 5 minutes. The pellet is resuspended in YG (approximately 1 ml pellet in 5 ml) and 5 ml of protoplastisation solution are added to 5 ml of suspension. The protoplastisation solution is produced from a solution containing 1.1 M KCl and 0.1 M citric acid. The pH is adjusted to 5.8 with KOH. Driselase (Sigma D9515) is added (15 mg/ml; storage at -20°C); the suspension remains in the ice for 15 minutes and the starch carrier is removed by centrifugation for 5 minutes at 2000 rpm. Novozym (4 mg/ml) and bovine serum albumin (Sigma A7096, 20 mg/ml) are added. The solution is filtered through Millipore SLGV025LS and remains in the ice until used. The preparation is shaken at 37°C for 2.5 hours at 250 rpm. The preparation is filtered through a milk filter. The protoplasts are centrifuged out (700 g; 20°C; 5 minutes) and carefully resuspended in STC (1.2 M sorbitol, 50 mM CaCl₂, 10 mM tris-HCl pH 7.5). 5 ml of 35% saccharose solution are carefully covered with a layer of the suspension and centrifuged (600 g; 20°C; 20 minutes). The bands are drawn off and diluted to approximately 5 ml with STC. 2 x 108 protoplasts are obtained from 200 ml of culture.

50 μ l of the protoplast suspension (1 x 108/ml) are introduced into a sterile Eppendorf tube and 5 μ g of plasmid DNA in TE and 12.5 μ l of PEG solution (20% PEG 4000, 50 mM CaCl₂, 10 mM tris-HCl pH 7.5) are added. This solution is mixed from separately autoclaved stock solutions: 1 M CaCl₂, 1 M tris-HCl pH 7.5, 60% PEG 4000 (Riedel de Häen). Once the mixture has stood for 20 minutes in ice, 0.5 ml of PEG solution are added and carefully mixed in. After 5 minutes at room temperature, 1 ml of 0.9 M NaCl, 50 mM CaCl₂ are carefully mixed in. The suspension is added to 10 ml of TM88 sorbitol soft agar (20 g/l malt extract, 4 g/l yeast extract, 10 g/l bacto agar, 218 g/l sorbitol, pH 5.7) (45°C) and cast onto TM88 sorbitol plates (10 ml TM88 sorbitol agar: 20 g/l malt extract, 4 g/l yeast extract, 30 g/l bacto agar, 218 g/l sorbitol, pH 5.7). After 15 to 20 hours at 25°C, 10 ml of TM88 sorbitol agar with 600 μ g/ml of hygromycin (45°C) are poured over. Hygromycin resistant transformants may be detected after 7 days at 25°C.

Example 18: Construction of vectors pSIM10, PSIM11 and pSIM12 and transformation with these plasmids

a) Isolation of cyclophilin gene from Tolypocladium niveum

As described in Example 10, the *Tolypocladium niveum* gene library is screened with a radioactively labelled DNA probe. Hybridisation is performed at 42°C in 6 x SSPE, 30% formamide, 5 x Denhardt's solution, 0.1% SDS, 100 μ g/ml denatured herring sperm DNA, and 100 μ M ATP. ³²P-labelled DNA (fragments of the DNA of the cyclophilin gene from *Neurospora crassa*, Tropschug *et al.*, 1988) are heated to 100°C for 5 minutes and cooled in ice before hybridisation. After 16 to 20 hours, the filters are washed three times for 10 minutes in 2 x SSC, 0.1% SDS and twice for 30 minutes in 1 x SSC, 0.1% SDS at 45°C. The dried filters are autoradiographed. The purified DNA from λ -phages is subcloned in plasmids and characterised by restriction mapping, Southern hybridisation and DNA sequencing. The cDNA sequence of Seq Id 5 is obtained. The sequence is homologous to the cyclophilin gene of *N. crassa*. The start codon ATG is at positions 12-14 and the stop codon TAA is at positions 552-554.

b) Construction of vector pSIM10 and transformation with this plasmid

On the basis of the Seq Id 5, a first oligonucleotide is synthesised which is largely complementary to Seq Id 5 (positions 2 to 29); however, the ATG region (12 to 14) is altered in such a way that a *Cla*I cleavage point (ATCGAT) is produced. A second oligonucleotide contains a sequence of the plasmid pUC18 and a recognition sequence for *Bam*HI and is given as Seq Id 6.

A plasmid containing a 2.7 kb *EcoRI-Hind*III fragment from Example 18a cloned into pUC18 is linearised with *Hind*III. 1 ng of the plasmid DNA is amplified with the oligonucleotides described above (Sambroock *et al.*, 1989): 30 cycles: 1 minutes 30 sec 94°C; 2 minutes 30 sec 50°C; 6 minutes 72°C. A 2.1 kb DNA is produced. After chloroform extraction, this DNA is purified by ultrafiltration (Ultrafree MC 100 000; Millipore) and cleaved in the appropriate buffer with the enzymes *Clal* and *BamHI*. 50 ng of this DNA are ligated with 50 ng of *BamHI* and *Clal* cleaved DNA of the plasmid pGEM7Zf (Promega). The newly produced plasmid is cleaved with *Clal* and *Xbal* and ligated with a *Clal-Xbal* restriction fragment 1.76 kb in size from the plasmid pCSN44 (Staben *et al.*, 1989). A restriction map of this plasmid (pSIM10) is reproduced in figure 3.

The 2157 bp BamHI-Clal restriction fragment of the plasmid (4714-6865 in figure 3), which contains the cyclophilin gene promoter, has the DNA sequence of Seq Id 7.

The plasmid pSIM10 may be used for the transformation of *Tolypocladium niveum*, as described in Example 17. DNA from the transformants is cleaved with *BamHI* and, after electrophoresis, blotted on a nylon membrane. The 1.8 kb *Bg/III* fragment from pSIM10 (figure 3) is used as a radioactive probe. In this way, those of the transformants in which the plasmid pSIM10 has been incorporated once or a plurality of times into the genome may be identified.

The Xhol cleavage point in plasmid pSIM10 (4924) allows the construction of plasmids which contain defined parts of the cyclosporin synthetase gene with which a deliberate inactivation of the cyclosporin synthetase gene is possible:

pSIM11 contains a 3.6 kb *Xho*I restriction fragment (42285-45909 of Seq Id 1). If the plasmid linearised with <u>Eco</u>RV is used for the transformation, approximately 30% of transformants obtained no longer form cyclosporin. It is shown with Southern hybridisations with DNA from such transformants that an 8.4 kb *XbaI* fragment is no longer detectable, but instead two new restriction fragments with 10.6 kb and 8.2 kb are detected.

pSIM12 contains a 0.8 kb Xhol restriction fragment (39663-40461 of Seq Id 1). If the plasmid linearised with <u>Sall</u> is used for the transformation, approximately 30% of transformants obtained no longer form cyclosporin. It is shown with Southern hybridisations with DNA from such transformants than an 8.4 kb Xbal fragment is no longer detectable, but instead two new restriction fragments with 10.4 kb and 5.6 kb are detected.

Example 19: Cotransformation with synp4

pSIM10 (Example 18) is used as transformation vector. Together with this vector, equimolar quantities of synp4 (Example 12) are also used in the same transformation batch. These cotransformations are performed according to the method described in Example 17 and *Tolypocladium niveum* ATCC 34921 is used as the starting strain.

Genomic DNA from hygromycin resistant transformants is isolated according to a rapid method. To this end, mycelium is taken from an area of approximately 1 cm² of the corresponding colony and transferred into Eppendorf homogenisers. 1 ml lysis buffer (50 mM EDTA, 0.2% SDS) and 100 mg aluminium oxide (grade A5, from Sigma) are added and thoroughly homogenised for approximately 5 minutes. After centrifugation (5 min-

14

50

55

5

15

20

25

utes, 11,000 rpm) the supernatant is extracted once with each of tris-saturated phenol, phenol/chloroform (1:1) and chloroform/isoamyl alcohol (24:1) and the DNA precipitated with isopropanol using the standard procedure (Sambroock *et al.*, 1989).

The DNA is completely restricted with the restriction enzyme *Sall*, separated with gel electrophoresis and investigated in Southern hybridisations. The 0.8% agarose gel is transferred by vacuum blotting (Vacublot, from Pharmacia) onto a nylon membrane (Duralon-UV from Stratagene) and fixed with UV.

As probe for the hybridisations, the small *Spel* restriction fragment from the bacteriophage P1 vector pNS-528tetl4-Ad10-SacIIB (from DuPont-NEN) is prepared by gel electrophoresis and Geneclean II Kit (from BIO101) and radioactively labelled with alpha ³²P dATP by "random primer" synthesis (from Stratagene).

Prehybridisation is performed for approximately 8 to 16 hours at 42°C in 6 x SSC, 50% formamide, 5 x Denhardt's (Maniatis $et\,al.$, 1982), 0.1% SDS, 0.25 mg/ml denatured herring sperm DNA, and 25 mM NaH₂PO₄ pH 6.5 in a volume of 10 ml per 100 cm² of membrane. After addition of the labelled probe, incubation is continued for a further 16 to 20 hours at 42°C. The blot is washed twice for 10 minutes with 2 x SSC/0.1% SDS at 25°C and twice for 30 minutes with 0.5 x SSC/0.1% SDS at 60°C. After autoradiography for approximately 48 to 96 hours at -70°C with Kodak intensifying film onto X-ray film (Xomatic AR, from Kodak), bands become visible on the X-ray film.

Some of the investigated DNAs display hybridisation signals which are attributable to the integration of synp4. The number of signals, which should correlate with the number of integrated synp4 molecules, varies between 1 and 3.

A transformant strain verified in this manner is investigated for cyclosporin Aformation by test fermentation in a shaking flask as described by Dreyfuss *et al.* (1976). Whilst approximately 100 μ g/ml of cyclosporin A is formed in parallel tests of the untransformed starting strain *Tolypocladium niveum* ATCC 34921, approximately 150 μ g/ml of cyclosporin A is detected in tests with the strain in which additional copies of the cyclosporin synthetase gene are present due to the integration of synp4.

Abbreviations used:

10

20

25

ACV aminoadipyl-cysteinyl-valine amdS acetamidase gene **ATCC** American Type Culture Collection 30 ATP adenosine triphosphate base pairs bp Centraalbureau voor Schimmelcultures **CBS** DTE dithioerythritol 35 DTT dithiothreitol ethylenediaminetetraacetic acid **EDTA HEPES** N-2-hydroxyethyl-piperazine-N-2-propanesulphonic acid **MOPS** 3-morpholinepropanesulphonic acid **PEG** polyethylene glycol pfu plaque forming units 40 sodium dodecyl sulphate SDS SDS-PAGE SDS-polyacrylamide gel electrophoresis SSC 150 mM NaCl, 15 mM sodium citrate, pH 7.0 **SSPE** 180 mM NaCl, 10 mM sodium phosphate, 1 mM EDTA, pH 7.7 45 TE 10 mM tris-Cl pH 7.5, 1 mM EDTA **TFA** trifluoroacetic acid tris(hydroxymethyl)aminomethane tris

yeast artificial chromosome

Moreover, the customary abbreviations for the restriction endonucleases are used (Sau3A, HindIII, EcoRI, HindIII, ClaI etc.; Maniatis et al., 1982). The nucleotide abbreviations A, T, C, G are used for DNA sequences and the amino acid abbreviations (Arg, Asn, Asp, Cys etc.; or R, N, D, C etc.) for polypeptides (Sambroock et al., 1989).

Literature list:

YAC

55

A. Billich and R. Zocher (1987) Enzymatic Synthesis of Cyclosporin A J. Biol. Chem. 262, 36, 17258-17259 J. F. Borel, C. Feurer and H. U. Gubler (1976) Biological effects of cyclosporin A: a new antilymphotic agent Agents Actions 6: 468

- M. Dreyfuss, E. Hārri, H. Hofmann, H. Kobel, W. Pache and H. Tscherter (1976) Cyclosporin A and C European J. Appl. Microbiology 3 (1976), S. 125-133.
- M. M. Dreyfuss (1986) Neue Erkentnisse aus einem pharmakologischen Pilz-Screening, Sydowia 39 (1986), S. 22-36.
- K. D. Jofuku and R. B. Goldberg, Analysis of plant gene structure, in: Plant molecular biology: a practical approach (C. H. Shaw, Hrsg.), 1. Aufl., IRL press, Oxford 1988, S. 37-66.
- H. Kleinkauf and H. v. Döhren (1990) Nonribosomal biosynthesis of peptide antibiotics *Eur. J. Biochem.* **192**, 1-15
- J. Kraetzschmar, M. Krause and M. A. Marahiel (1989) Gramicidin S Biosynthesis Operon Containing the Structural Genes grsA and grsB has an Open Reading Frame Encoding a Protein Homologous to Fatty Acid Thioesterases J. Bacteriol. 171, 5422-5429
- U. K. Laemmli (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 227, 680 685
- A. Lawen, R. Traber, D. Geyl, R. Zocher and H. Kleinkauf (1989) Cell-Free Biosynthesis of New Cyclosporins J. Antibiotics 42, 8, 1283-1289
- A. Lawen, J. Dittmann, B. Schmidt, D. Riesner and H. Kleinkauf (1992) Enzymatic biosynthesis of cyclosporin A and analogues *Biochimie* 74, 511-516
- A. Lawen and R. Zocher (1990) Cyclosporin Synthetase. The Most Complex Peptide Synthesizing Multienzyme Polypeptide So Far Described *J. Biol. Chem.* **265**, 19, 11355-11360
- A. P. McCabe, H. v. Liempt, H. Palissa, M. B. R. Riach, E. Pfeifer, H. v. Döhren and J. R. Kinghorn (1991) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. Molecular characterization of the acvA gene encoding the first enzyme of the penicillin biosynthetic pathway *J. Biol. Chem.* **266**, 12646
- T. Maniatis, E.F. Fritsch and J. Sambroock, *Molecular cloning: a laboratory manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor 1982/1.
- H. Nakajima, T. Hamasaki, k. Tanaka, Y. Kimura, S. Udagawa and Y. Horie (1989) Production of Cyclosporin by fungi belonging to the genus Neocosmospora, *Agric. Biol. Chem.* **53** (1989) Nr. 8, S. 2291-2292.
- J. C. Pierce and N. Sternberg (1991), Using the bacteriophage P1 system to clone high molecular weight (HMW) genomic DNA, *Methods Enzymol*. in press
- J. C. Pierce, B. Sauer and N. Sternberg (1992), A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: Improved cloning efficacy. *Proc. Natl. Acad. Sci. USA* 89 2056 2060.
- J. Sambroock, E.F.Fritsch and T. Maniatis, *Molecular Cloning: a laboratory manual* Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989/2
- D. J. Smith, A. J. Earl and G. Turner (1990) The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421.073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases *EMBO J.* **9**, 2743-2750
- C. Staben, B. Jensen, M. Singer, J. Pollock, M. Schechtman, J. Kinsey and E. Selker (1989) Use of a bacterial Hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation, *Fungal Genetics Newsletter* **36** (1989), S. 79.
- S. Tada, K. Gomi, K. Kitamoto, K. Takahashi, G. Tamura und S. Hara (1991) Construction of a Fusion Gene Comprising the Taka-Amylase- A Promoter and the Escherichia-Coli beta-Glucuronidase Gene and Analysis of Its Expression in Aspergillus-Oryzae, *Mol Gen Genet* 229 (1991) Nr. 2, S. 301-306.
- M. Tropschug, D.W. Nicholson, F. Hartl, H. Köhler, N. Pfanner, E. Wachter and W. Neupert (1988) Cyclosporin A-binding Protein (Cyclophilin) of Neurospora crassa. One gene codes for both the cytosolic and mitochondrial forms. *Journal of Biological Chemistry* **263** (1988) Nr. 28, S. 14433- 14440.
- K. Turgay, M. Krause, and M. A. Marahiel (1992) 4 Homologous Domains in the Primary Structure of GrsB Are Related to Domains in a Superfamily of Adenylate-Forming Enzymes *Molecular Microbiol.* **6**, 4, 529-546
- R. Weckermann, R. Fuerbass and M. A. Marahiel (1988) Complete nucleotide sequence of the tycA gene encoding the tyrocidine synthetase 1 from Bacillus brevis *Nucleic Acids Res.* **16**, 11841
- P. H. Yu (1983) Specific Photoactivated Covalent Binding of S-Adenosyl-Methionine to Phenylethanolamine-N-Methyl Transferase *Biochim. Biophys. Acta* 742, 517
- R. Zocher, T. Nihira, E. Paul, N. Madry, H. Peeters, H. Kleinkauf and U. Keller (1986). Biosynthesis of Cyclosporin A: Partial Purification and Properties of a Multifunctional Enzyme from Tolypocladium inflatum. *Biochemistry* **25**, 550-553

55

5

10

15

20

25

30

35

45

5	SEQUENCE LISTING	
-	(1) GENERAL INFORMATION:	
10	(i) AFPLICANT: (A) NAME: Sandoz Ltd (B) STREET: Lichtstrasse 35 (C) CITY: Basel (E) COUNTRY: Switzerland (F) POSTAL CODE (ZIP): CH-4002 (G) TELEPHONE: 41-61-324 4395 (H) TELEFAX: 41-61-322 7532	
15	(A) NAME: Sandoz-Patent-GmbH (B) STREET: Humboldstr. 3 (C) CITY: Loerrach (E) COUNTRY: Germany (F) POSTAL CODE (ZIP): D-7850	
20	 (A) NAME: Sandoz-Erfindungen Verwaltungsgesellschaft mbH (B) STREET: Brunnerstr 59 (C) CITY: Vienna (E) COUNTRY: Austria (F) POSTAL CODE (ZIP): A-1235 	
25	(ii) TITLE OF INVENTION: Cyclosporin Synthetase	
	(iii) NUMBER OF SEQUENCES: 7	
30	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)	
	(2) INFORMATION FOR SEQ ID NO: 1:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 46899 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
45	(vi) ORIGINAL SOURCE:(A) ORGANISM: Tolypocladium niveum(B) STRAIN: ATCC 34921	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GAATTCAGTA TCGGGCAAAT CTTCATGGTG ATGTGAATCT AGCGAGATGA ATGCAGGAGA	60
50	ATCGGCTGGG ATGGCCTCCA GATATACACC CTTCTAGCAT CACAAATCCC GCCGATGTAC	120
	AAGCCCCACG ACGAACGTTC TTATTGGCTT AACCGCTACT AGTATTTTTA TATAGTAGTT	180
	TATATGCGTA GGTACTCTCT TCTGTTAATG TCAGAGGATC TATTGCGATG GGCAGGCTGC	240

17

	AGCAATGCCT	CGATCTTGAT	GGAGGGATAG	TIGTTTGCTG	ATGAGTATAG	GTACTTATTC	300
5	TATTAGTAAC	TCTATGCTTG	TTTTAAGGTA	CCGATACTCG	TACGTCGATC	GTGGGGGGTG	360
	TAAGCCACGT	GGTCCACAGT	CTGACGAAGT	TTCGAACCCT	TCAGGGATTA	TTAACAAGGT	420
	AATACGGAGT	AAAGGAGTAG	TATCATAGCT	TGGAATATGT	GGAAACCCCG	AGGAGGCAAT	480
10	CCCCTTGGCT	GTCAGATTAC	CTTACAAGTC	TCCATCTACT	GACCACGAAC	TGAACTCAGT	540
	TCCTTCAGTC	GCTTACTATT	TACTGGAACA	TCTCCTCGAA	TTTGGAAAAA	GAAAAAAGCA	600
	CCAACAAAAA	CTCAGGAGAT	CCACTCTTTA	TOGGACACAA	ATAGCTACTT	GCTTTCTGTG	660
15	CCGTGCAACG	ATACTGTCGG	AAAGCTCGAC	CTACGAGCCA	CTTACACCTG	TGGTAGCAGC	720
,5	ACAAAGCCGG	ACTCGCCACA	ACTCAGCAAC	TAGCCATTCG	AAATCGCAAA	CTACAGCAGC	780
	TACACGAACT	TCATGAGATG	GATTGTACAT	ACTGACTACA	CTAGGTTTAC	TAACAGATAG	840
	ACAACCATTG	CCAGATTATA	GAGCCTTTTG	CTTTCTTGGT	CAACATGGGC	GCCATCGGGC	900
20	AAGACATGGC	ATATGATCGC	CTTGCCAACC	CGTCTCGGGC	GAGTTCCATC	TCTTCGAACC	960
	GATACTCCGA	ACCTGTCGAG	CAATCCTTTG	CCCAGGGCAG	ACTGTGGTTC	CTGCACCAGC	1020
	TGAAGCTCGG	TGCGAGCTGG	GACATTACGC	CGGCCGCGAT	CCGACTTCGG	GGCCATCTCG	1080
25	ACATCGATGC	GCTGAACGCT	GCCTCGCGCG	CTCTGACGCA	GCGCCACGAG	ACGCTCCGAA	1140
	CGACGTTCAA	GGAGCAGGAT	GGCGTGGGCG	TACAGGTTGT	GCACGCCTCG	GGCCTCGAAA	1200
	GAGGGTTGAG	GATTGTTGAT	GCCTCGAGCC	GCGATTTGGC	CCAGCTCCTG	GCAGAGGAAC	1260
30	AAACCATGAA	GTTCGACCTA	GAGTCTGAGC	CAGCTTGGAG	AGTTGCATTG	TTGAAGGTGG	1320
	CCGAGGATCA	CCATATTCTT	TCCATTGTTG	TACACCATAT	CATCTCAGAC	AGCCGGTCTC	1380
	TCGACATTAT	TCAGCAGGAG	CTTGGAGAAC	TCTACACGGC	CGCCTCGCAG	GGGAAATCGA	1440
	TTTCGGCTTG	TCCCTTGGGT	CCAATTCCCA	TTCAATACCG	TGACTTGACG	ACTTGGCAGA	1500
35	ACCAGGACGA	GCAGGTCGCT	GAGCAGGAAA	GGCAGCTCGG	ATACTGGATC	GAGCAGCTCG	1560
	ATAACAACAC	ACCGGCCGAG	CTCCTCACAG	AGCTTCCCCG	GCCAGCTATC	CCATCTGGCG	1620
	AAACTGGCAA	GATCTCCTTC	CAGATCGATG	GATCGGTACA	CAAAGAACTC	CTGGCCTTCT	1680
40	GCCGCTCCCA	GCAAGTAACC	GCCTACGCCG	TGCTGCTGGC	AGCGTTTCGC	GTGGCGCACT	1740
	TTCGCCTCAC	TGGAGCCGAG	GATGCAACCA	TCGGAGCGCC	CGTTGCCAAC	CGCGACCGGC	1800
	CGGAGCTGGA	GAACATGGTG	GCTCCCTTGG	CCACTCTGCA	GTGCATGCGA	GTCGTGCTCG	1860
45	ACGAGGACGA	CACCTTCGAG	TCGGTGCTGC	GGCAGATCAT	GTCCGTCATG	ACAGAGGCAC	1920
	ATGCCAACCG	CGACGTCCCC	TTTGAGCGCA	TCGTGTCTGC	GTTGCTGCCC	GGGTCGACAG	1980
	ACACATCACG	ACACCCGCTT	GTGCAGCTCA	TGTTTGCTTT	GCATCCCGCG	CAGGATACGG	2040
50	GCCGAGCCCG	GTGGGGGTTC	CTCGAGGCTG	AGACTCTGCA	GAGTGCGGCC	CCGACACGAT	2100
30	TCGACATGGA	GATGCACCTG	TTTGAGGGAG	ACGACCGGTT	CGATGCAAAC	GTGCTGTTCT	2160
	CCACGGGCCT	TTTCGACGCA	GAGGCCATCC	GCAGCGTGGT	TTCTATCTTT	CGGGAAGTCC	2220
	TGCGCCGTGG	CATCTCGGAG	CCTGCGGTGC	ATGTGAAGAC	GATGCCGCTC	ACCGATGGGC	2280

18

5	TCGCCGCGAT	CCGGGACATG	GGCTTGCTGG	ATATCGGGAC	CACCGACTAC	CCCGCGAGG	2340
J	CGAGCGTGGT	TGATATGTTC	CAAGAGCAGG	TGGCCTTGAA	TCCAAGCGCC	ACCGCCGTGG	2400
	CCGATGCTTC	GTCCAGATTG	AGCTACTCTG	AGTTGGATCA	CAAGTCAGAT	CAGCTGGCCG	2460
	CGTGGCTGCG	CAGACGGCAG	CTCAAGCCCG	AGACCTTGAT	TGGCGTGTTG	TCTCCTCCGT	2520
10	CTTGCGAGAC	CATGGTTTCC	TTCCTCGGTA	TCCTCAAGGC	TCATCTGGCT	TATCTGCCTC	2580
	TCGATATCAA	CGTTCCCTTG	GCACGCATCG	AATCAATCCT	TTCGGCCGTG	GACGGGCACA	2640
	AGCTCGTCCT	GCTTGGGAGC	AACGTGCCCC	AACCCAAGGT	GGATGTACCC	GATGTTGAGT	2700
15	TGCTGCGGAT	CAGCGATGCC	CTGAACGGGT	CTCAGGTGAA	TGGGCTTGCA	GGGAAACAGG	2760
	CGACTGCAAA	GCCCTCGGCG	ACGGACCTGG	CCTACGTCAT	CTTCACCTCG	GGATCGACTG	2820
	GCAAGCCGAA	GGGTGTCATG	ATCGAGCATC	GGGGCATCGT	ACGCCTCGTG	AAAGGAACAA	2880
20	ACATTATTTC	GCCCGCCCAG	GCAGCAGTGC	CGACAGCTCA	CCTGGCCAAC	ATCGCTTTCG	2940
	ACCTCTCAAC	ATGGGAGATC	TATACCCCTA	TCCTTAATGG	CGGCACTCTT	GTCTGTATCG	3000
	AACACTCTGT	CACGCTAGAT	AGCAAGGCAC	TAGAAGCTGT	ATTCACCAAG	GAGGGCATTC	3060
25	GTGTGGCCTT	CCTTGCTCCT	GCTCTGATCA	AGCAGTGTCT	CGCCGACAGA	CCGGCGATCT	3120
	TTGCGGGCCT	GGATAGCCTG	TACGCTATTG	GCGATCGCTT	CGACCGACGT	GACGCCCTCC	3180
	ATGCAAAGTC	CTTGGTGAAG	CATGGCGTTT	ATAATGCCTA	TGGTCCAACC	GAGAATTCCG	3240
	TCGTCAGTAC	CATCTACAGC	GTCTCCGAGG	CTTCACCGTT	TGTCACGGGG	GTGCCCGTTG	3300
30	GCCGGGCCAT	CAGCAACTCG	GGCGCCTATG	TAATGGATCA	GGATCAGCAA	TTGGTCTCTC	3360
	CCGGGGTGAT	GGGGGAGCTT	GTGGTTTCTG	GAGATGGCCT	AGCTCGAGGA	TATACCGATT	3420
	CGGCTCTGGA	TAAGAACCGA	TTTGTCGTGG	TGCAGATTGA	CGGCGAGTCA	ATCCGGGGCT	3480
35	ATCGTACGGG	AGACCGGGCC	CGATACAGCC	TCAAGGGTGG	CCAGATTGAG	TTCTTTGGCC	3540
	GCATGGATCA	GCAGGTCAAG	ATCCGTGGCC	ATCGTATCGA	GCCAGCCGAG	GTAGAGCACG	3600
	CTTTACTCAA	CAGCGACCAA	GTACGCGATG	CAGCAGTGGT	TATCCGGAGA	CAGGAGGAGG	3660
40	AAGAGCCTGC	GATGATTGCC	TTCGTTACGA	CGCAGGGTAC	GCTCCCTGAT	CACCTCGTCA	3720
	ACATCAACGG	CAACGGCCAC	GTTCCCGACG	GCAACGGCAG	CAAGAACGAC	CAATTCGCCG	3780
	TTCACGTCGA	GAGCGAACTG	CGCCGGCGCT	TGCAGATGTT	GCTGCCCTCC	TACATGATGC	3840
	CGGCCCGCAT	CGTGGTGCTT	GACCATCTCC	CTCTCAACCC	CAACGGCAAA	GTCGACCGGA	3900
45	AGGCGCTGGG	TCAGTCGGCC	AAGACTGTGC	AGAAGAGCAA	GCTGGTCTCA	CAGCGCGTCG	3960
	CCCCACGCAA	TGAGATCGAG	GCCGTGCTTT	GCGAGGAGTA	CAGGAGTGTG	CTTGGTGTCG	4020
	AGGTTGGCAT	CACCGATAAC	TTCTTCGACC	TGGGTGGTCA	TTCCTTGACG	GCCATGAAGC	4080
50	TCGCGGCACG	GATCAGCCAG	AGGCTCGACA	TTCAAGCATC	CGTAGCAACT	GTCTTTGAGC	4140
	AGCCGATGCT	CGCTGACCTC	GCCGCCACGA	TCCAGCGCGG	CTCGACTCTG	TATAGCGTCA	4200
	TCCCTACGAC	AGAATACACG	GGACCGGTGG	AGCAATCATT	TGCCCAAGGC	CGTCTGTGGT	4260

	TCCTTCTCCT	CCDCDDDDCC	CCCCCCTCAT		C1.TCCTC1.C0		
						GTACGACTAC	4320
5	GAGGCCACCT	CGACGTGGAT	GCGCTGGGAA	CGGCCCTGCT	CGCCCTGGAG	AAACGGCACG	4380
	AGACTCTTCG	GACAACCTTT	GAGGAACGGG	ACGGGGTTGG	CATGCAGGTA	GTCCACAGCA	4440
	GCCTCATGGG	GGAGCTGCGG	CTGATTGATA	TATCAGAGAA	ATCTGGCACT	GCCGCGCATG	4500
10	AGGCACTGAT	GAAGGAGCAG	TCAACCCGCT	TCGACCTGAC	TCGCGAGCCA	GGTTGGAGAG	4560
	TGGCGCTGCT	GAAGTTGGCA	GACCACCACA	TCTTCTCGAT	CGTCATGCAC	CACATTGTAT	4620
	CGGATGGATG	GTCTCTCGAC	CTCCTACGAC	ACGAGCTGGG	CCAACTCTAC	TCGGCAGCTC	4680
	TGCGCGGCCA	GGACCCATTG	TCGCGCCTTG	AGCCACTCCC	GATCCAATAC	CGCGACTTTG	4740
15	CGGTCTGGCA	GAAGCAAGAC	AGCCAGCAGA	AAGCAGCGCA	CCAGAGGCAA	TTGGAGTACT	4800
	GGACCAAGCA	GCTTGCAGAC	AGCACGCCTG	CAGAGCTCTT	GACAGACTTC	CCGCGGCCCT	4860
	CGATTCTATC	CGGAAAGGCT	GGAAAGGTCC	CCGTTGCCAT	CGAGGGGTCT	CTATACGACA	4920
20	CGCTTCAAGT	CTTCAGCCGC	ACCCATCAAG	TCACGTCGTT	TGCTGTCCTA	CTCGCAGCCT	4980
	TCCGTGCAGC	ACATTTCCGG	CTTACGGGAT	CTGATAATGC	GACTATTGGT	GTCCCCAGCG	5040
	CGAACCGGAA	TCGACCTGAG	CTTGAGAACG	TGATCGGCTT	CTTCGTGAAC	ACACAATGTA	5100
25	TACGTATCAC	GATCGATGAA	AACGATAACT	TTGAATCGTT	GGTCCGGCAG	GTCCGGTCGA	5160
	CGACTACAGC	CGCACAGGAC	AATCAGGATG	TCCCGTTCGA	ACAGGTCGTT	TCCAGCCTCA	5220
	TGCCGAGCAG	CTCGAGAGAT	GCATCCCGGA	ACCCTCTGGT	GCAGCTCATG	TTTGCACTGC	5280
30	ACGGCCAGCA	GGATCTGTTC	AAGATCCAAC	TGGAAGGGAC	CGAAGAGGAG	GTGATCCCAA	5340
30	CAGAAGAAGT	GACGAGGTTC	GACATCGAGT	TCCATCTCTA	CCAAGGCGCC	AGCAAGCTGA	5400
	GCGGTGATAT	CATATTCGCT	GCCGACTTAT	TCGAAGCCGA	AACTATTCGT	GGCGTCGTCA	5460
	GCGTCTTTCA	GGAGGTTCTG	AGGCGCGGAT	TGCAACAGCC	GCAGACCCCG	ATCATGACAA	5520
35	TGCCACTCAC	CGACGGCATT	CCAGAGTTGG	AGAGGATGGG	CTTGTTGCAC	ATGGTCAAGA	5580
	CCGACTACCC	CCGCAACATG	TCTGTGGTAG	ACGTATTCCA	ACAACAAGTT	CGTCTCAGCG	5640
	CCGAGGCTAC	AGCTGTTATC	GACTCATCTT	CGCGGATGAG	TTACGCCGAA	CTGGACCAGA	5700
40	GGTCCGATCA	GGTGGCAGCG	TGGCTTCGCC	AGCGACAACT	GCCAGCCGAA	ACCTTTGTGG	5760
	CAGTGCTCGC	ACCACGCTCG	TGCGAGGCCG	TCATTGCTCT	CTTCGGCATC	TTGAAGGCTG	5820
	GTCATGCCTA	CCTACCGCTC	GACGTCAATG	TGCCAGCAGC	GCGTCTTCGC	GCCATCTTGG	5880
45	CCGAGGTGAA	GGGCGAGAAG	CTGGTTCTCC	TAGGAGCAGG	TGAGCCATCA	CCGGAAGGCC	5940
	AGTCGCCAGA	GGTCTCGATC	GTGAGGATTG	CCGATGCCAC	GAGCCCTGCT	GGCCATGCCA	€000
	GCTTGCGTGA	TGGCAAGTCC	AAGCCAACCG	CAGGCAGCCT	CGCCTATGTC	ATCTTCACTT	6060
	CCGGATCCAC	TGGTAAACCC	AAGGGTGTGA	TGATCGAGCA	CCGCGGAGTC	TTGCGCCTTG	6120
50	TGAAGCAGAC	CAACATTCTA	TCCAGTCTAC	CGCCGGCGCA	GACCTTCCGA	ATGGCTCACA	6180
	TGTCCAACCT	TGCGTTCGAT	GCATCGATAT	GGGAGGTCTT	CACGGCCCTT	CTCAACGGAG	6240
	GCTCTCTTGT	ATGCATTGAC	AGGTTTACCA	TCTTGGATGC	TCAAGCGTTG	GAGGCACTAT	6300
55							

5	TCCTCAGGGA	GCACATCAAT	ATTGCACTGT	TCCCACCCGC	CCTGTTGAAG	CAATGCCTCA	6360
	CGGATGCAGC	TGCTACCATC	AAGTCTCTTG	ACCTCCTATA	CGTAGGAGGA	GACCGGTTAG	6420
	ACACAGCGGA	CGCAGCTCTG	GCCAAAGCTC	TGGTCAAGTC	AGAGGTCTAC	AATGCCTACG	6480
	GCCCAACGGA	AAATACGGTC	ATGAGCACTT	TATACTCGAT	TGCTGACACA	GAACGATTTG	6540
10	TTAATGGTGT	GCCAATTGGA	AGAGCCGTTA	GCAACTCTGG	GGTCTACGTG	ATGGACCAGA	6600
	ATCAGCAGCT	TGTGCCGTTG	GGCGTGATGG	GAGAGCTGGT	AGTCACTGGA	GATGGTTTGG	6660
	CTCGTGGCTA	CACCAACCCG	GCTCTTGATT	CCGACCGGTT	CGTGGATGTC	ATTGCTCGAG	6720
15	GCCAACTTCT	CAGGGCCTAT	CGCACAGGCG	ACCGAGCTCG	TTACCGGCCC	AAGGATGGCC	6780
	AGGTTGAGTT	CTTTGGTCGG	ATGGATCACC	AGGTCAAGGT	CCGAGGGCAC	CGCATCGAGC	6840
	TCGCCGAAGT	AGAACACGCT	TTGTTAAGCA	GTGCCGGTGT	GCACGATGCC	GTTGTCGTTT	6900
20	CAAACTCGCA	GGAAGACAAT	CAGGGAGTCG	AGATGGTGGC	CTTCATCACC	GCCCAAGACA	6960
	ACGAGACTCT	CCAGGAAGCA	CAGTCGAGCA	ACCAAGTCCA	GGAATGGGAG	AGCCATTTCG	7020
	AGACCACGGC	CTACGCGGAC	ATCACGGCCA	TTGATCAAAA	CACGCTCGGC	CGAGACTTTA	7080
	CATCCTGGAC	CTCTATGTAC	GATGGAACGC	TTATTGACAA	GAGGGAGATG	CAGGAATGGC	7140
25	TCGACGATAC	TATGCGCACT	TTCCTTGACG	GTCAAGCAGC	TGGCCACGTG	CTTGAAATCG	7200
	GTACCGGCAC	CGGTATGGTT	CTATTCAATC	TCGGTCAAGC	TGGGCTGAAG	AGCTACATTG	7260
	GACTGGAACC	TTCCCAATCC	GCGGTTCAAT	TCGTCAACAA	GGCAGCCCAA	ACGTTCCCAG	7320
30	GGCTTGAGGG	AAAGGCCCAA	GTACATGTCG	GCACGGCGAT	GGATACGGGC	CGGCTCAGCG	7380
	CTTTGAGCCC	GGATCTGATC	GTCATCAACT	CCGTGGCCCA	GTATTTCCCG	AGCCGAGAAT	7440
	ACCTCGCCGA	GGTGGTTGAG	GCCCTGGTCC	GGATTCCAGG	CGTTCGCCGT	ATCTTCTTCG	7500
35	GAGACATGAG	AACCTATGCC	ACCCACAAAG	ACTTCCTTGT	TGCACGGGCG	GTCCACACAA	7560
55	ACGGGAGCAA	GGTGACGAGA	TCTAAAGTGC	AACAGGAGGT	GGCCCGGTTA	GAGGAACTGG	7620
	AGGAGGAATT	GCTTGTCGAC	CCTGCCTTCT	TCACAAGTCT	CAAGGAATCT	CTATCGGAAG	7680
	AAATAGAGCA	TGTTGAGATC	CTGCCGAAGA	ACATGAAGGT	GAACAACGAG	CTCAGCTCAT	7740
40	ACCGGTACGG	CGCGGTTCTG	CACATCCGTA	ACCACAACCA	GAATCAAAGC	AGGTCGATTC	7800
	ACAAGATCAA	TGCAGAGTCC	TGGATCGACT	TCGCCTCAAG	CCAGATGGAT	AGACAGGGTC	7860
	TTGCTAGGCT	GTTGAAAGAG	AACAAAGATG	CCGAAAGTAT	CGCTGTGTTC	AACATCCCTT	7920
45	ACAGCAAGAC	TATCGTGGAA	CGGCACATCG	CCAAGTCTTT	GGCCGATGAC	CACGACGGCG	7980
	ATGATACACA	TAGCTCAATC	GATGGAGTCG	CCTGGATCTC	AGCCGCGCGC	GAGAAGGCGA	8040
	GCCAGTGTCC	ATCTCTTGAT	GTGCATGACC	TCGTGCAGTT	GGCCGAGGAC	GCTGGGTTCC	8100
50	GCGTCGAGGT	CAGCTGGGCC	CGCCAAAGGT	CCCAGAACGG	CGCTCTCGAT	GTTTTCTTCC	8160
JU	ATCACTTCCA	GCCTACCGAG	AACGAAAGCC	GCGCGCTCGT	CGATTTCCCC	ACCGACTACA	8220
	AGGGCCAACA	AGCCAGAAGC	CTGACGAACC	GGCCCCTGCA	GCGGGTTGAG	AGCCGTCGAA	8280

	TCGAAGCACA	GGTCCGAGAG	CAGCTCCAAG	TATTGCTCCC	GGCATACATG	ATCCCAGCCC	8340
5	GGATTGTGGT	TCTCCAGAAC	ATGCCGCTGA	ACACGAGCGG	CAAGGTAGAT	CGCAAGGAGC	8400
	TCACCCTTCG	AGCCAAGGTC	ACCGCCGCAC	GTACGCCGAG	CTCCGAACTC	GTGGCTCCTC	8460
	GTGATTCTAT	TGAAGCCATC	ATCTGCAAGG	AATTCAAGGA	TGTTCTCGGC	GTCGAAGTGG	8520
10	GTATTACAGA	CAACTTCTTT	AATGTCGGAG	GACACTCTCT	TTTGGCCACG	AAGCTCGCAG	8580
	CACGCCTGAG	CCGACAACTC	AATGCCCAGA	TCGCAGTCAA	AGACATCTTC	GACCGGCCAG	8640
	TTATCGCCGA	TCTGGCAGCC	ACAATCCAGC	AGGATACCAC	GGAGCACAAC	CCTATCCTAC	8700
15	CGACTTCTTA	TACGGGTCCA	GTCGAACAAT	CGTTCGCCCA	AGGCCGACTC	TGGTTCCTCG	8760
	ATCAACTGAA	TGTCGGCGCC	ACATGGTATC	TCATGCCCTT	CGCAGTCCGG	CTGCGAGGGC	8820
	CTTTGGTTGT	TTCTGCTCTC	GCTGCCGCTC	TTCTGGCCCT	AGAGGAGCGC	CACGAGACAC	8880
20	TGCGAACAAC	CTTTATCGAA	CAGGAAGGCA	TCGGCATGCA	GGTCATCCAT	CCGTTTGCCC	8940
20	CTAAGGAACT	GAGGGTGATC	GATGTCTCGG	GCGAGGAAGA	GAGCACTATC	CAGAAGATAC	9000
	TGGAAAAGGA	ACAGACAACA	CCCTTCAATC	TCGCTTCCGA	GCCCGGTTTC	AGACTAGCAT	9060
	TACTGAAGAC	AGGAGAGGAC	GAACACATTC	TCTCGACAGT	AATGCACCAT	GCAATCTCTG	9120
25	ATGGCTGGTC	TGTCGATATC	TTCCAACAAG	AAATCGGCCA	ATTCTACTCG	GCAATCCTCC	9180
	GCGGACACGA	TCCTTTGGCC	CAGATCGCAC	CGCTCTCGAT	CCAGTATCGC	GATTTCGCGA	9240
	CTTGGCAGAG	GCAGATATTC	CAAGTCGCAG	AGCACCGGCG	GCAGCTTGCA	TACTGGACTA	9300
30	AACAGCTTGC	CGATAATAAA	CCAGCCGAGC	TGCTGACCGA	TTTCAAGCGA	CCGCCTATGC	9360
	TCTCCGGCCG	CGCGGGCGAG	ATCCCGGTGG	TCGTCGACGG	CTTGATCTAT	GAGAAGCTTC	9420
	AGGACTTCTG	TCGAATCCGC	CAGGTGACCG	CCTTTACCGT	GTTGCTGGCT	GCTTTCCGCG	9480
35	CAGCGCACTA	TCGTATGACC	GGGACTGAGG	ATGCGACGAT	TGGAACACCT	ATCGCGAACC	9540
	GTAACCGGCC	GGAGCTTGAG	GGCTTGATCG	GCTTCTTCGT	CAACACACAG	TGCATGCGTA	9600
	TCACCGTCGA	TGTAGAGGAT	TCGTTCGAAA	CGTTGGTTCA	CCAGGTTCGA	GAAACGACGC	9660
	TGGCTGCACA	TGCCAACCAG	GATGTTCCTT	TCGAACAGAT	TGTCTCAAAC	ATCTTGCCCG	9720
40	GATCGAGCGA	CACTTCTCGG	AATCCGCTGG	TACAGCTCAT	GTTTGCTCTA	CATTCGCAGC	9780
	AGAACCTTGG	CAAGGTCCGC	CTCGAGGGTA	TCGAGGAGGA	GATCATCTCC	ATTGCTGAGA	9840
	CCACGAGATT	TGATATCGAG	TTCCATCTGT	ACCAAGAGGC	TGAGAGGCTG	AACGGTAGTA	9900
45	TCGTCTATGC	AGCTGATCTC	TTCGTGCCCG	AGACTATACA	GAGCGTCATC	ACCATCTTCC	9960
	AAGGCATCCT	ACAGAAAGGC	CTCGGCGAGC	CGGATATGCC	CGTCGCCTCT	ATGGCGCTTG	10020
	ATGGTGGGCT	GGAGTCCCTC	CGAAGCACAG	GACTGCTGCA	CCCTCAACAA	ACTGATTATC	10080
50	CGTGCGATGC	TTCAGTGGTG	CAGATCTTCA	AACAGCAGGT	GGCAGTCAAC	CCGGATGTCA	10140
	TCGCGGTGAG	AGATGAATCA	ACACGGCTGA	GCTATGCCGA	CTTGGATCGG	AAGTCGGATC	10200
	AAGTGGCTTG	CTGGCTATCT	CGGCGAGGTA	TCGCTCCTGA	GACGTTCGTG	GCGATCCTGG	10260
55	CACCACGCTC	GTGCGAGACA	ATCGTGGCCA	TCCTCGGTGT	GTTGAAGGCC	AACCTTGCAT	10320

	ATCTGCCTCT	TGATGTCAAT	GTTCCTGCGT	CCCGGCTCGA	GGCCATCCTT	TCGGAGGTGT	10380
5	CGGGATCGAT	GTTGGTCCTT	GTGGGCGCAG	AGACCCCGAT	TCCGGAGGGG	ATGGCTGAAG	10440
	CGGAGACGAT	CCGGATCACG	GAGATTCTCG	CCGACGCAAA	GACCGACGAC	ATCAACGGGC	10500
	TGGCCGCGAG	TCAGCCCACT	GCAGCAAGCC	TTGCGTATGT	GATCTTTACG	TCTGGATCGA	10560
10	CTGGTCGACC	AAAGGGCGTC	ATGGTCGAGC	ATCGCGGAAT	CGTTCGTCTT	ACAAAGCAGA	10620
	CCAACATCAC	ATCCAAGCTG	CCAGAGTCTT	TCCACATGGC	CCACATATCG	AATCTTGCCT	10680
	TCGATGCCTC	CGTGTGGGAA	GTGTTCACGA	CGCTTCTCAA	TGGAGGCACG	TTGGTGTGTA	10740
15	TCGACTATTT	CACTCTCTTG	GAGAGCACAG	CGCTCGAGAA	GGTCTTCTTC	GACCAACGCG	10800
	TCAATGTTGC	TCTGCTCCCT	CCAGCCTTGC	TGAAACAGTG	CCTTGACAAC	TCACCCGCTC	10860
	TGGTCAAAAC	TCTCAGCGTT	CTCTATATTG	GTGGTGATAG	GCTAGATGCT	TCTGATGCTG	10920
20	CCAAAGCAAG	GGGGCTCGTC	CAGACGCAAG	CTTTCAATGC	GTACGGCCCA	ACGGAAAACA	10980
	CAGTCATGAG	CACAATCTAT	CCCATTGCCG	AAGACCCCTT	CATCAATGGT	GTGCCCATCG	11040
	GTCATGCTGT	CAGTAACTCG	GGAGCTTTTG	TCATGGACCA	GAATCAGCAA	ATCACCCCC	11100
	CTGGTGCAAT	GGGAGAACTC	ATCGTGACTG	GAGACGGTCT	TGCTCGAGGC	TACACTACTT	11160
25	CCTCTCTCAA	CACTGGTCGA	TTTATCAACG	TTGATATCGA	TGGCGAGCAA	GTCAGGGCAT	11220
	ACCGCACAGG	AGATCGAGTG	CGCTACCGAC	CAAAAGACCT	CCAGATCGAA	TTCTTCGGCC	11280
	GTATCGATCA	CCAGGTCAAG	ATCCGCGGCC	ACCGCATCGA	ACCAGCTGAG	GTCGAGTATG	11340
30	CTCTTCTAAG	CCACGACCTG	GTCACTGATG	CGGCAGTCGT	CACCCACTCT	CAAGAAAATC	11400
	AAGACCTGGA	GATGGTTGGA	TTCGTGGCCG	CCCGAGTCGC	TGATGTTAGA	GAGGATGAGT	11460
	CCAGCAACCA	GGTCCAAGAA	TGGCAGACTC	ACTTCGACAG	CATCGCATAC	GCAGATATCA	11520
35	CCACAATCGA	TCAGCAAAGC	CTTGGACGGG	ACTTCATGTC	ATGGACCTCC	ATGTACGATG	11580
	GCAGCCTGAT	CAAGAAGAGC	CAGATGCAGG	AGTGGCTCGA	TGACACCATG	CGGTCACTCC	11640
	TGGATTCCCA	GCCCCTGGT	CACGTACTCG	AAGTTGGTAC	AGGGACTGGC	ATGGTTCTGT	11700
	TCAACCTCGG	CAGAGAAGGG	GGTCTGCAAA	GCTACGTTGG	CCTAGAGCCA	TCGCCATCCG	11760
40	CAACCGCGTT	TGTCAACAAG	GCCGCCAAGT	CATTCCCTGG	GCTTGAGGAT	AGGATCCGGG	11820
	TTGAAGTTGG	AACAGCAACT	GATATCGACC	GGCTTGGAGA	CGATCTGCAC	GCAGGTCTTG	11880
	TCGTCGTCAA	CTCGGTCGCT	CAATACTTCC	CGAGTCAAGA	CTATCTCGCC	CAGTTGGTCA	11940
45	GAGATCTTAC	CAAGGTCCCT	GGCGTGGAGC	GTATCTTCTT	TGGTGATATG	AGGTCGCACG	12000
	CCATCAACAG	GGATTTCCTT	GTCGCTCGCG	CAGTTCATGC	ACTGGGCGAT	AAGGCAACAA	12060
	AGGCCGAGAT	TCAACGGGAG	GTTGTTCGAA	TGGAAGAGTC	TGAAGACGAA	CTGCTCGTTG	12120
50	ATCCGGCCTT	TTTCACCTCC	CTGACGACGC	AAGTAGAGAA	TATCAAGCAC	GTGGAGATTC	12180
	TCCCCAAGAG	AATGCGAGCC	ACGAACGAGC	TGAGCTCGTA	TCGGTATGCT	GCTGTTCTGC	12240
	ACGTCAATGA	TCTGGCGAAA	CCGGCACACA	AAGTCAGTCC	TGGCGCCTGG	GTTGATTTTG	12300

	CCGCGACGA	A GATGGATCGC	GATGCCCTGA	A TCCGTCTGCT	CAGGGGCAC	AAAATTTCCG	12360
5	ACCACATTG	AATCGCCAAT	ATTCCCAACA	GCAAGACAAT	CGTCGAGCG	ACCATCTGCG	12420
	AATCGGTTT!	CGACCTTGGC	GGAGACGCCA	AAGACTCGAA	CGACAGAGTO	CTCATGGCTTT	12480
	CGGCTGCTCC	ATCGAATGCC	GTGAAAGTGG	CTTCCCTCTC	CGCGATCGAT	CTCGTTGATA	12540
10	TIGCACAAGA	GGCAGGCTTC	CGGGTCGAGA	TCAGCTGCGC	GCGGCAGTGG	TCTCAGAATG	12600
	GCGCGTTGG	CGCCGTATTC	CACCACCTTG	GCCCATCACC	ACAGTCGTCT	CATGTGTTGA	12660
	TTGACTTCTT	GACCGACCAC	CAAGGTCGAC	CAGAAGAAGC	CCTGACGAAC	CACCCGCTGC	12720
15	ACCGAGCACA	GTCTCGACGC	GTCGAGAGGC	AGATCCGCGA	GAGACTCCAG	ACTCTCCTGC	12780
75	CGGCCTACAT	GATCCCGGCC	CAGATCATGG	TTCTTGACAA	GCTACCTCTC	AACGCGAATG	12840
	GAAAGGTCGA	CCGGAAGCAG	TTGACGCAAC	GGGCCCAGAC	GGTACCCAAG	GCCAAGCAAG	12900
	TGTCTGCTCC	TGTGGCCCCG	CGCACAGAGA	TCGAAAGGGT	GCTCTGCCAG	GAGTTCTCCG	12960
20	ACGTCCTAGG	GGTTGATATC	GGGATAATGG	AAAACTTCTT	CGATCTCGGT	GGCCACTCGC	13020
	TCATGGCAAC	AAAGCTAGCC	GCACGCATCA	GCCGCCGACT	AGAGACTCAC	GTCTCCGTCA	13080
	AGGAGATCTT	TGACCATCCG	CGAGTCTGCG	ATCTTGTTCT	CATAGTACAG	CAGGGATCAG	13140
25	CGCCTCATGA	CCCCATCGTT	TCGACCAAAT	ACACCGGGCC	AGTGCCTCAG	TCGTTTGCCC	13200
	AGGGTCGTCT	TTGGTTCCTC	GACCAGCTCA	ACTTTGGCGC	AACATGGTAT	CTCATGCCCC	13260
	TTGCCGTCCG	TCTTCGCGGT	GCCATGAACG	TTCATGCTCT	TACCGCGGCC	TTGTTGGCCC	13320
30	TCGAGAGGCG	TCACGAGCTC	CTCCGCACCA	CGTTCTACGA	ACAAAACGGC	GTCGGTATGC	13380
30	AAAAGGTCAA	TCCAGTTGTC	ACCGAGACCC	TGAGGATCAT	TGATCTCTCC	AACGGCGACG	13440
	GCGACTATCT	CCCGACATTG	AAGAAGGAGC	AAACTGCTCC	GTTCCACCTG	GAAACCGAGC	13500
	CCGGATGGCG	CGTGGCTCTA	CTGCGCCTCG	GGCCAGGCGA	CTACATCTTA	TCTGTCGTCA	13560
35	TGCATCACAT	CATTTCCGAC	GGCTGGTCTG	TGGATGTTCT	CTTCCAAGAG	CTGGGCCAGT	13620
	TCTATTCCAC	GGCTGTCAAA	GGCCACGATC	CCCTATCGCA	GACCACACCC	CTCCCGATCC	13680
	ATTATCGCGA	TTTTGCTCTG	TGGCAGAAGA	AGCCAACCCA	AGAAAGCGAA	CACGAGCGTC	13740
40	AGCTGCAATA	CTGGGTCGAG	CAACTTGTAG	ATAGTGCCCC	GGCCGAGCTA	CTCACGGATC	13800
		TTCGATCCTC					13860
	CACTATACAA	GAACTTGGAG	GAATTCTGCC	GGGTCCATCG	CGTTACCTCC	TTCGTGGTAC	13920
45	TGCTTGCGGC	CCTACGCGCA	GCCCATTATC	GCCTCACAGG	TTCCGAAGAC	GCAACTATAG	13980
45	GGACACCAAT	CGCCAATCGT	AACCGACCTG	AACTTGAGCA	GATAATCGGC	TTCTTCGTCA	14040
	ATACGCAATG	TATACGCATT	ACCGTCAACG	AGGACGAGAC	CTTTGAGTCA	CTAGTGCAGC	14100
		AACGGCGACA					14160
50		TTTGCCCGGT					14220
	TTGCGGTGCA	TTCGCAGAAG	AACCTCGGTG	AGCTGAAGCT	GGAAAACGCT	CACAGCGAGG	14280
	TTGTTCCCAC	GGAGATCACG	ACCCGGTTCG	ATTTGGAATT	CCACCTGTTC	CAGCAAGATG	14340

•	ACAAGCTTG	GGGCTCCAT	C CTCTATTCA	A CCGATCTCT	r cgaagcagt	TCGGTCCAAA	14400
5	GICTTCTTTC	AGTATTCCA	GAAATTCTG	C GCCGGGGTT	GAACGGTCC	G GACGTGCCCA	14460
	TCAGCACCCT	ACCACTTCA	G GATGGAATC	G TCGACCTAC	A AAGACAGGG	CTGTTGGATG	14520
	TCCAGAAGAC	GGAATATCC	CGTGATTCC	CTGTGGTTG	A TGTGTTCCAT	GAGCAGGTCT	14580
10	CGATCAACCC	CGATTCCAT	GCACTGATA	ATGGCTCGG	A GAAGCTCAGO	TACGCCCAGC	14640
	TCGACAGGGA	ATCTGACAGO	GTCGCTCGC	GGCTCCGTC	CCGTTCTTTC	AGCTCCGACA	14700
	CGTTAATCGC	GGTGTTGGC	CCACGGTCT	GCGAGACGA	CATCGCGTTC	CTCGGAATCC	14760
15	TCAAGGCAAA	CCTTGCGTAC	CTACCTCTG	ATGTCAAGG	TCCTGCTGCC	CGCATTGATG	14820
	CCATTGTATC	GTCGCTACCC	GGGAACAAG	TCATCCTGCT	GGGCGCAAAC	GTTACGCCGC	14880
	CCAAGCTTCA	GGAAGCGGCC	ATCGATTTC	TGCCCATCCG	TGATACCTTC	ACTACACTCA	14940
	CTGACGGCAC	ACTTCAAGAT	GGGCCTACCA	TCGAGCGACC	CTCTGCGCAA	AGCCTAGCGT	15000
20	ACGCCATGTT	CACGTCTGGT	TCTACCGGAC	GACCGAAGGG	TGTTATGGTC	CAGCACCGCA	15060
	ACATCGTCCG	CTTGGTGAAG	AACAGTAACG	TCGTCGCTAA	GCAGCCCGCA	GCAGCTCGCA	15120
25	TAGCACATAT	ATCCAATTTG	GCGTTTGACG	CCTCGTCTTG	GGAGATCTAT	GCCCGCTGC	15180
	TCAACGGCGG	CGCAATTGTG	TGTGCCGACT	ACTTCACAAC	GATTGATCCA	CAGGCTCTTC	15240
	AAGAAACCTT	CCAGGAACAC	GAGATCCGCG	GTGCTATGCT	GCCGCCCTCG	CTCCTCAAGC	15300
	AGTGCCTGGT	TCAGGCCCCA	GACATGATCA	GCAGGCTTGA	CATCTTATTT	GCTGCTGGTG	15360
30	ATCGCTTCAG	TAGCGTGGAT	GCTCTCCAGG	CCCAACGTCT	CGTTGGCTCG	GGCGTCTTCA	15420
	ATGCGTATGG	CCCTACGGAG	AATACGATTC	TGAGCACTAT	CTATAACGTT	GCTGAAAACG	15480
	ACTCCTTCGT	TAACGGCGTT	CCCATAGGCA	GTGCTGTGAG	CAACTCCGGA	GCCTACATCA	15540
05	TGGATAAGAA	CCAGCAGCTC	GTGCCAGCTG	GAGTTATGGG	AGAACTGGTT	GTTACTGGTG	15600
35	ACGGTCTCGC	CCGCGGCTAT	ATGGATCCAA	AGCTAGATGC	AGACCGCTTT	ATCCAACTGA	15660
	CAGTCAACGG	CAGCGAGCAA	GTCAGGGCAT	ATCGCACCGG	CGACCGTGTG	CGATACCGAC	15720
	CAAAGGACTT	CCAGATCGAG	TTCTTCGGTC	GTATGGACCA	GCAAATCAAG	ATCCGCGGCC	15780
40	ACCGTATCGA	GCCGGCCGAG	GTAGAGCAGG	CCTTCCTGAA	TGATGGCTTC	GTCGAGGACG	15840
	TTGCTATCGT	TATTCGGACC	CCAGAGAACC	AAGAGCCTGA	GATGGTCGCC	TTTGTTACTG	15900
	CTAAGGGCGA						15960
45	CGCATTTCGA	GGGTGGTGCG	TACGCCAACA	TCGAGGAGAT	CGAAAGCGAG	GCGCTTGGTT	16020
	ACGACTTTAT	GGGCTGGACG	TCTATGTACG	ATGGCACTGA	GATCGACAAG	GACGAGATGA	16080
	GAGAGTGGCT	GAATGACACG	ATGCGCTCTC	TCCTCGATGG	AAAGCCGGCT	GGTCGAGTTC	16140
50	TTGAGGTCGG	TACCGGTACC	GGTATGATCA	TGTTTAACCT	TGGCAGGTCA	CAAGGGCTCG	16200
	AAAGGTATAT	TGGCCTCGAA	CCTGCACCGT	CGGCAGCCGA	GTTCGTCAAC	AACGCTGCAA	16260
	AGTCATTCCC (GGGTCTCGCG	GGCAGGGCCG	AAGTTCACGT	CGGCACCGCC	GCAGATGTCG	16320

	GTACCCTGCA A						16380
5	CAACGCCAGA (16440
	GCATATACCT (CGGCGATATG	CGGTCCTGGG	CCATGAACAG	GGACITTGCT	GCCGCTCGCG	16500
	CCGCCTATTC A	ACTGGCCGAT .	AATGCCAGCA	AAGACCGCGT	GAGACAGAAG	ATGATGGAAT	16560
10	TGGAGGAGAA (GGAGGAAGAA	TTACTCGTTG	ACCCGGCCTT	CTTCACTGCC	TTGGCGAGCC	16620
	AGCTGCAAGA	CAGGATCCAA	CACGTGGAGA	TCCTACCCAA	GCGAATGAAG	GCTACAAATG	16680
	AGCTAAGCTC	GTACCGATAT	GCCGCCGTGC	TGCACATCTC	CGACGAGCCC	CTTCCTATCT	16740
15	ACAAGATTGA	TCCCGAAGCT	TGGATCAACT	TTGAGGGGTC	TCGATTGACC	CGAGAGGCGC	16800
15	TTGCACAAGT	ACTCAAGGAG	AATGAGAACG	CCGAGAGTGT	GGCCATCAGC	AACATTCCTT	16860
	ATAGCAAGAC	CGTTGTAGAA	CGTCACATTG	TGCGGTCGCT	TGACCAGGAA	GACGCCAATG	16920
	CCCCTGAGGA	ATCGATGGAT	GGCAGCGACT	GGATCTCGGC	CGTGCGCACA	AGAGCTCAGC	16980
20	AGTGCCACAC	TCTCTCCGCA	AGTGACCTGT	TCGACATTGC	AGAAGATGCT	GGGTTCCGTG	17040
	TTGAGGTCAG	CTGGGCCCGT	CAACATTCGC	AGCACGGTGC	CCTGGATGCC	GTGTTCCACC	17100
	ACCTGAAGCC	CGCTACGGAG	GACAGTCGCG	TTTTGATCAA	GTTCCCTACA	GATCACCAAG	17160
25	GCCGGCGCT	CAAGAGCTTG	ACGAATCAAC	CGCTCCTGCC	AGCCCAGAGT	CGCCGAGCCG	17220
	AGCTCTTGAT	CCGCGAGGGG	CTGCAAACCC	TGCTGCCTCC	CTACATGATC	CCCTCGCAAA	17280
	TCACGCTTAT	CGACCGGATG	CCACTCAATG	CTAACGGCAA	AGTCGACCGG	AGAGAACTCG	17340
30	CCCGTCGGGC	CAAAATCACA	CAGAAGAGCA	AGCCGGTTGA	GGACATCGTT	CCCCCTCGGA	17400
30	ACAGCGTCGA	GGCTACGGTC	TGCAAGGGCT	TCACTGACGT	GCTGGGCGTT	GAAGTTGGGA	17460
	TAACAGACAA	TTTCTTCAAT	CTGGGCGGTC	ATTCACTGAT	GGCAACGAAG	TTGGCGGCGC	17520
	GTCTAGGCCG	TCAACTCAAT	ACACGTATCT	CGGTGAGAGA	CGTCTTCGAT	CAACCAGTCG	17580
35	TTGCTGATCT	CGCCGCTGTG	ATCCAACGCA	ACTCGGCACC	TCACGAGCCG	ATCAAGCCAG	17640
	CAGACTACAC	AGGGCCCGTT	CCCCAGTCAT	TCGCACAGGG	CCGCCTTTGG	TTCCTCGATC	17700
	AACTTAATGT	CGGGGCGACG	TGGTATCTTA	TGCCCCTTGG	TATCCGCCTT	CACGGATCTC	17760
40	TCCGGGTTGA	TGCCCTCGCT	ACCGCGATAT	CAGCCCTGGA	GCAACGTCAC	GAGCCTCTCC	17820
	GTACGACATT	CCACGAGGAA	GATGGCGTCG	GTGTTCAAGT	CGTGCAAGAC	CACCGGCCCA	17880
	AGGATCTGAG	AATCATCGAC	CTGTCCACTC	AGCCAAAGGA	CGCCTATCTT	GCCGTGTTGA	17940.
45	AGCATGAGCA	GACCACGCTC	TTCGACCTCC	CAACCGAGCC	CGGTTGGCGC	GTCGCTCTGA	18000
	TCAGGCTTGG	AGAAGAAGAG	CATATACTT	CCATTGTTAT	GCACCATATO	ATATCTGACG	18060
	GCTGGTCAGT	AGAGGTTCTG	TTTGATGAG	A TGCACCGGTT	CTACTCGAG	GCGCTTAGGC	18120
	AACAGGATCC	TATGGAGCAA	ATCTTGCCT	TACCGATCCA	GTACCGCGA	TTTGCAGCAT	18180
50	GGCAAAAGAC	TGAAGAGCAG	GTTGCCGAG	C ATCAGCGGCA	GTTGGACTAC	TGGACGGAGC	18240
	ACCTTGCCGA	CAGTACCCCT	GCGGAGCTG	TAACTGACCT	CCCTCGACC	T TCTATCTTGT	18300
	ccgcccccc	CAATGAGCTA	CCCCTTACC	A TCGAGGGGCG	TCTTCATGA	T AAATTGCGCG	18360

_				TCGTCATTCT			18420
5				CCACGCTTGG			18480
	ACCGACCGGA	ACTTGAGAAC	ATGATCGGCT	TCTTTGTTAA	CACGCAGTGT	ATGCGTATTG	18540
	CTATTGAGGA	GAATGATAAC	TTCGAGTCCC	TCGTCCGCCG	AGTACGATCG	ACTGCAACAT	18600
10	CCGCTTTCGC	GAACCAAGAC	GTTCCATTTG	AATCCATTGT	CTCGTCTCTT	CTGCCTGGAT	18660
	CCAGGGACGC	CTCGCGCAAT	CCATTAGTGC	AGGTCATTCT	GGCTGTTCAC	TCTCAGCAGG	18720
	ATTTGGGTAA	ACTCACCTTA	GAAGGCCTCA	GAGATGAAGC	TGTTGACTCG	GCTATCTCAA	18780
15	CCCGCTTCGA	TGTGGAGTTT	CATCTTTTCG	AGCACGCAGA	CAGGCTCAGC	GGTAGCGTGC	18840
	TTTACGCAAA	GGAACTGTTC	AAGCTGCGCA	CGATCGAATC	AGTGGTCTCC	GTTTTCCTGG	18900
	AGACTCTGCG	GCGGGCTCTC	GACCAGCCAC	TGACTCCTCT	CGCTGTCTTG	CCGCTGACTG	18960
20	ATGGAGTCGG	GGAGATCGCA	AGCAAGGGGC	TCCTTGATGT	GCCCAGGACA	GACTATCCAC	19020
20	GAGATGCAAA	TATCGTTGAG	GTCTTCCAAC	AGCACGTTCG	CGCTACCCCG	GACGCCATCG	19080
	CCGTCAAGGA	CGCTACTTCC	ATACTGACGT	ATGCTCAGCT	AGATCAGCAG	TCTGATCGAC	19140
	TTGCTATCTG	GTTGAGTCGC	CGGCACATGA	TGCCCGAAAC	GCTGGTGGGT	GTCCTTGCGC	19200
25	CGCGGTCATG	CGAGACCATT	ATCGCAATGT	TTGGCATTAT	GAAGGCCAAC	CTCGCCTACT	19260
	TGCCTTTGGA	TATAAACTCG	CCTGCTGCTC	GACTCCGCAG	CATTCTCTCA	GCCGTAGATG	19320
	GGAACAAGCT	TGTTTTGCTC	GGCAGTGGTG	TCACAGCCCC	CGAGCAAGAG	AACCCCGAGG	19380
30	TGGAAGCTGT	TGGTATTCAA	GAGATCTTGG	CCGGCACTGG	ACTGGACAAG	ACACAAGGCA	19440
	GCAACGCCCG	ACCCTCGGCA	ACGAGCCTTG	CTTATGTTAT	CTTCACCTCT	GGTTCAACCG	19500
	GCAAGCCCAA	GGGCGTCATG	GTCGAACATC	GTAGCGTTAC	GAGATTGGCA	AAGCCCAGCA	19560
35	ACGTTATCTC	CAAGCTACCA	CAAGGAGCCA	GGGTGGCGCA	CCTCGCCAAC	ATTGCCTTCG	19620
	ATGCCTCGAT	CTGGGAAATT	GCCACAACTC	TTCTGAATGG	AGCCACGCTT	GTTTGTCTCG	19680
	ACTATCACAC	CGTTCTCGAC	TGCAGGACTC	TCAAAGAAGT	CTTCGAAAGG	GAAAGCATTA	19740
	CGGTTGTCAC	ACTGATGCCT	GCGCTCCTCA	AGCAGTGCGT	GGCCGAAATA	CCCGAGACCC	19800
40	TCGCACACCT	CGACCTCCTG	TACACCGGTG	GAGATCGAGT	GGGTGGTCAC	GATGCTATGC	19860
	GGGCTCGCTC	GCTAGTCAAG	ATCGGCATGI	TCAGCGGTTA	CGGCCCTACG	GAGAACACCG	19920
	TCATCAGCAC	CATCTACGAA	GTTGATGCAG	G ACGAGATGTT	TGTGAATGGT	GTGCCTATCG	19980
45	GCAAGACTGT	AAGCAACTCT	GGGGCATATO	TTATGGACAG	GAATCAGCAG	CTGGTGCCTA	20040
	GTGGCGTGGT	AGGTGAGCTT	GTGGTCACTC	GCGATGGCCT	TGCTCGCGG	TACACTGATC	20100
	CATCCCTAAA	CAAGAACCGC	TTCATTTACA	A TCACTGTCAA	TGGAGAGAG	ATCAGGGCAT	20160
50	ATCGGACTGG	CGATCGGGTG	AGGTACCGG	CTCATGATCT	GCAGATTGA	A TTCTTTGGCC	20220
	GCATGGACCA	GCAGGTCAAG	ATCCGTGGC	ATCGAATCGA	GCCGGGAGAC	GTGGAGAGCG	20280
	CATTGCTCAG	TCACAACTCG	GTACAAGAC	CCGCGGTCGT	CATTTGCGCC	G CCAGCAGATC	20340

	AAGACTCAGG CGCGGAAATG GTGGCATTCG TTGCCGCCCG GAATACCGAA GACGAAGACA	20400
5		20460
		20520
		20580
10		20640
		20700
		20760
		20820
15		20880
		20940
	ACATGAGAAC CAACGCCATC AACAGAGACT TCGTCGCAAG CCGAGCATTG CACACCCTCG	21000
20		21060
	GCGAGAAGGC AAACAAGCGC CTGGTCCGCC AGATGATCTA TGAGCTCGAA GCCAACGAAG	21120
	AGGAACTTCT GACGGACCCT GCATTCTTTA CATCTTTGCG TACGCGCTTG GGTGAGAAGA	21180
	TCAAGCACGT CGAAATTCTC CCCAAGACCA TGAAGGCTAC CAACGAGCTC AGCAAGTACC	21240
25	GATATGCCGC AGTACTACAT GTGCGTGGCT CGAGAGAACA ATCAACTATA CACCAAGTCT	21300
	CTCCCAACGC CTGGATAGAC TTTGCGGCAG ACGGTCTCGA CCGGCAGACC CTCATCAACT	21360
	TGCTGAAGGA GCACAAGGAT GCCGGGACCG TCGCTATCGG TAATATCCCG TACAGCAAGA	21420
30	CCATTGTTGA GCGGTTTGTC AACAAGTCAC TGAGCGAGGA TGATATGGAG GAAGGCCAGA	21420
	ACTCACTGGA CGGATCAGCT TGGGTTGCAG CCGTCCGGAT GGCCGCTCAA AGCTGCCCAT	
	CACTCGATGC AATGGATGTC AAGGAGATTG CTCAGGAGGC GGGATACCAG GTCGAAGTCA	21540
. -	GTTGGGCGCG TCAATGGTCC CAGAATGGTG CGCTCGATGC CATCTTCCAT CACTTCGAAC	21600
35	CGCCCAAGGA GGGTGCTCGC ACACTTATTG AGTTCCCGAC GGATTACGAA GGCCGGAATG	21660
	TGAACACCTT AACGAACCGT CCCCTGAACA GCATTCAAAG CCGCCGTCTT GGGACGCAGA	21720
	TCCGCGAGAA GCTGCAGACC CTCCTGCCGC CTTACATGAT CCCATCGCGC ATCATGGTCC	21780
40	TTGATCAGAT GCCTGTCAAC AACAACGGCA AGATTGACCG CAAGGAGCTT GTGCGGAGAG	21840
	CTATCGTGGC CCCGAAGCCA AGGTCAGCGG CTACTCGGGT AGCCCCCCGC AATGAGATCG	21900
	AGGCTATTCT GAGAGACGAA TTCGAGGACG TGCTCGGAAC AGAAGTCAGC GTGCTGGATA	21960
45	ACTTCTTTGA TCTCGGCGGG CACTCACTTA TGGCCACGAA GCTCGCCGCC CGCGTTAGCC	22020
₩	GCCGCCTTGA TGCCCATATT TCCATCAAAG ATGTCTTTGA TCAGCCGGTG CTGGCGGATC	22080
	TTGCGGCGTC CATCCAGAGA GAATCGGCTC CTCATGAACC GATTCCGCAA AGGCCTTACA	22140
	CCGGGCCGGC TGAACAGTCA TTTGCCCAAG GTCGCCTATG GTTCCTTGAC CAGCTTAACC	22200
50	TTGGCGCGAC CTGGTACCTG ATGCCTTTAG CCATCCGTAT CCGTGGCCAG TTGAGGGTAG	22260
	CTGCGTTGTC TGCCGCACTC TTCGCCTTG3 AGAGACGACA TGAGACCTTG AGAACCACCT	22320
	TTGAAGAAAG CGACGGCGTT GGCGTGCAAA TTGTTGGAGA GGCTCGCAAC TCAGACCTTC	22380

5	GGGTTCATGA	CGTTTCTACC	GGAGACGACG	GGGAGTACCT	TGAGGTACTC	AGGAGGGAAC	22440
	AGACTGTGCC	CTTCGACCTC	TCGTCAGAGC	CTGGCTGGAG	GGTTTGCCTG	GTCAAAACGG	22500
	GCGAAGAGGA	TCATGTACTA	TCCATCGTCA	TGCACCATAT	TATTTACGAC	GGCTGGTCCG	22560
	TGGACATTCT	CCGCGGAGAG	TTGGGTCAAT	TCTATTCCGC	TGCCCTACGC	GGCCAGGACC	22620
40	CCTTGCTGCA	CGCCAACCCC	CTTCCTATTC	AATACCGGGA	TTTCGCAGCG	TGGCAAAGGG	22680
10	AGGCAAAACA	GGTCGAAGAG	CATCAACGTC	AACTTGGGTA	CTGGTCGAAA	CAGCTCGTTG	22740
	ACAGCACTCC	AGCTGAGCTC	TTGACGGATC	TGCCTCGCCC	GTCTATCTTG	TCCGGTCGTG	22800
	CCGGGTCGGT	GGATGTCACG	ATCGAAGGCT	CTGTTTACGG	AGCCCTTCAG	TCATTCTGCC	22860
15	GCACGCGTTC	GGTAACCACA	TTCGTTGTGC	TTCTGACTGT	GTTCCGGATT	GCGCATTTCC	22920
	GTCTCACTGC	CGTCGATGAC	GCGACTATCG	GCACGCCTAT	CGCAAACCGT	AACCGTCCTG	22980
	AGCTGGAGAC	GTTGGTTGGC	TGCTTTGTAA	ACACGCAATG	TATGCGTATC	AGCATAGCCG	23040
20	ACGACGATAA	CTTTGAAGGT	CTTGTGCGAC	AGGTGCGTAA	TGTTGCAACG	GCAGCTTACG	23100
	CGAACCAAGA	TGTTCCTTTC	GAACGAATCG	TGTCCGCCCT	AGTTCCAGGG	TCGAGAAACA	23160
	CATCCCGCAA	CCCCTGGTT	CAGCTCATGT	TTGCTGTCCA	GTCCGTGGAA	GATTATGACC	23220
25	AGGTCCGACT	CGAGGGCTTG	GAGAGTGTCA	TGATGCCTGG	AGAAGCCTCC	ACACGCTTTG	23280
	ATATGGAATT	CCACCTCGTC	CCCGGCGATC	AGAAGCTTAC	GGGCAGCGTT	CTTTACTCCT	23340
	CAGACCTTTT	TGAGCAAGGC	ACTATCCAGA	ACTTCGTCGA	CATCTTCCAA	GAATGTCTTC	23400
	GCTCCGTCCT	GGACCAGCCA	TTGACCCCGA	TCTCCGTTCT	TCCCTTCAGC	AACGCCATTT	23460
30	CAAACCTCGA	GAGCTTGGAT	CTCCTGGAGA	TGCCGACCTC	AGACTACCCC	CGCGATCGGA	23520
	CAGTCGTTGA	TCTCTTCCGA	GAGCAAGCGG	CAATCTGCCC	CGACAGCATC	GCCGTCAAAG	23580
	ACTCATCGTC	GCAACTGACA	TATGCTCAAC	TGGATGAGCA	ATCCGACCGT	GTTGCCGCCT	23640
35	GGCTGCACGA	GCGCCACATG	CCGGCGGAGT	CTTTGGTCGG	TGTACTGTCG	CCACGGTCGT	23700
	GCGAGACTAT	CATCGCGTAC	TTTGGCATCA	TGAAGGCAAA	CCTGGCTTAC	CTGCCGTTGG	23760
	ATGTTTATGC	GCCAGATGCC	CGTCTGGCGG	CTATCCTGGA	TACAGTCGAA	GGCGAAAGAC	23820
40	TGCTTCTGTT	GGGCGCAGGT	GTCCCTCAGC	CCGGCATCCA	GATCCCTCGC	CTGTCAACAG	23880
	CATACATCGC	GGAAGCACTG	AGCCATGCCA	CGACCGTCGA	TGTCACTTCC	ATCCCACAGC	23940
	CCTCGGCCAC	CAGCCTTGCG	TACGTCATTT	TCACTTCGGG	ATCTACTGGC	AAGCCCAAGG	24000
45	GTGTCATGAT	CGAGCATCGC	GGCATCGTGC	GCCTGGTTAG	AGATACCAAC	GTCAACGTGT	24060
40	TCCCGGAATC	GGGATCAGCT	TTGCCTGTCT	CTCACTTCTC	CAACCTCGCC	TGGGATGCGG	24120
	CGACTTGGGA	GATCTACACT	GCCGTGCTCA	ATGGAGGGAC	CGTTGTGTGC	ATTGACCGAG	24180
	ACACCATGCT	GGACATAGCC	GCGTTGAACT	CAACATTCCG	GAAGGAGAAC	GTTCGGGCTG	24240
50	CCTTCTTCAC	CCCTGCCTTC	CTGAAGCAAT	GCCTTGCCGA	GACGCCAGAG	CTGGTCGCCA	24300
	ACCTAGAGAT	CCTTCACACG	GCAGGCGATC	GTCTCGATCC	TGGAGATGCC	AACCTGGCTG	24360

	GAAAGACAGC CAAGGGTGGT ATCTTCAACG TCCTGGGTCA CACAGAGAAC ACTGCCTATA	24420
5	GTACCTTCTA CCCTGTGGTT GGTGAGGAGA CGTTCGTCAA TGGTGTCCCC GTCGGTCGCG	24480
	GCATCAGCAA CTCCCATGCA TATATCATCG ACCGACACCA GAAGCTCGTA CCCGCAGGTG	24540
	TCATGGGAGA GCTTATTCTC ACTGGCGACG GTGTTGCGCG AGGTTACACC GACTCTGCGC	24600
10	TGAACAAGGA TCGATTCGTT TACATCGATA TCAACGGCAA AAGCACATGG TCGTACCGCA	24660
	CAGGCGATAA GGCACGTTAT CGACCAAGGG ACGGCCAGCT GGAATTCTTT GGCCGCATGG	24720
	ACCAAATGGT CAAGATCCGT GGTGTTCGAA TCGAACCCGG CGAAGTTGAG CTCACCCTGC	24780
15	TCGACCATAA GTCCGTCCTG GCCGCGACTG TGGTGGTCAG AAGACCACCC AATGGCGACC	24840
15	CGGAGATGAT TGCCTTCATC ACCATCGACG CTGAAGACGA CGTGCAAACT CACAAGGCCA	24900
	TTTACAAGCA CCTCCAGGGT ATCTTGCCCG CGTACATGAT TCCCTCACAC CTTGTCATCC	24960
	TTGACCAGAT GCCGGTCACC GACAACGGTA AGGTCGATCG CAAGGATCTC GCACTCAGAG	25020
20	CGCAGACAGT ACAGAAACGC AGGTCTACCG CTGCAAGGGT ACCACCTCGT GACGAGGTGG	25080
	AGGCTGTTCT TTGCGAAGAG TACAGCAACT TACTTGAAGT TGAGGTTGGC ATTACCGACG	25140
	GATTCTTCGA CCTGGGTGGA CATTCGCTCC TCGCCACCAA GCTTGCGGCC CGCCTAAGCC	25200
25	GACAACTCAA CACTCGCGTG TCTGTCAAGG ACGTCTTTGA CCAGCCAATA CTCGCTGACC	25260
	TCGCTGATAT CATCCGCCGC GGTTCCCATC GCCACGATCC GATTCCTGCC ACTCCATACA	25320
	CGGGCCCTGT CGAACAGTCG TTCGCTCAGG GCCGCCTGTG GTTCTTGGAA CAACTGAACC	25380
30	TAGGTGCCAG CTGGTACTTG ATGCCCTTCG CGATCCGGAT GCGTGGGCCC CTCCAGACAA	25440
	AGGCGCTGGC TGTCGCACTG AACGCCTTGG TGCACCGGCA CGAGGCGTTG CGGACGACTT	25500
	TCGAGGACCA CGATGGGGTT GGTGTTCAGG TCATTCAACC AAAGTCAAGC CAAGACCTGC	25560
	GGATCATCGA CCTATCAGAC GCTGTAGATG ATACTGCCTA TCTCGCCGCG CTCAAGAGGG	25620
35	AACAGACAAC AGCCTTCGAC CTGACCTCTG AACCAGGGTG GAGAGTGTCA CTCTTACGCC	25680
	TAGGTGACGA TGATTACATC CTTTCTATCG TTATGCACCA CATTATCTCT GATGGCTGGA	25740
	CTGTTGATGT GCTACGACAA GAACTCGGCC AGTTCTATTC AGCTGCGATC AGGGGTCAGG	25800
40	AGCCTTTATC GCAGGCCAAG TCCCTCCCTA TTCAATACCG CGACTTTGCT GTTTGGCAGA	25860
	GGCAGGAGAA CCAGATCAAG GAGCAAGCGA AGCAGCTCAA GTATTGGTCA CAGCAGCTCG	25920
	CAGATAGCAC CCCCTGCGAG TTCCTAACGG ACCTCCCTCG GCCCTCTATC CTGTCTGGTG	25980
45	AAGCTGACGC CGTTCCTATG GTGATTGATG GCACGGTGTA TCAGCTCCTT ACTGATTTCT	26040
	GCCGGACGCA CCAAGTCACA TCGTTCTCAG TCCTGCTCGC AGCCTTCCGC ACTGCCCACT	26100
	ACCGCCTTAC CGGGACACTC GACGCGACGG TIGGCACACC AATCGCTAAC CGGAACCGGC	26160
50	CAGAGTTGGA AGGTCTGATC GGTTTCTTCG TTAACACGCA GTGTATGAGG ATGGCAATCA	26220
•••	GTGAGACTGA AACCTTTGAG TCACTAGTCC AGCAGGTTCG CTTGACTACG ACAGAAGCCT	26280
	TTGCGAACCA AGATGTGCCG TTTGAGCAGA TTGTGTCAAC CCTTCTTCCT GGGTCACGAG	26340
	ATACGTCAAG GAACCCGCTT GTGCAGGTCA TGTTTGCCCT GCAATCACAG CAAGACCTCG	26400
55		

	GAAGAATCCA	GCTGGAAGGT	ATGACGGACG	AAGCTCTGGA	AACGCCGCTG	TCGACGAGAC	26460
5	TCGACCTTGA	GGTTCACCTC	TTCCAGGAGG	TTGGAAAGCT	GAGCGGCAGC	CTCTTGTACT	26520
	CCACGGACCT	CTTCGAGGTC	GAGACGATTC	GTGGAATCGT	TGATGTGTTC	CTGGAGATCT	26580
	TGCGCCGCGG	CCTTGAGCAA	CCCAAGCAGC	GACTGATGGC	CATGCCAATT	ACCGATGGCA	26640
10	TCACAAAGCT	ACGCGACCAG	GGTCTCCTAA	CAGTGGCGAA	ACCAGCCTAC	CCTCGCGAAT	26700
	CGAGTGTCAT	AGATCTGTTC	AGACAGCAGG	TTGCCGCCGC	ACCGGATGCC	ATCGCTGTGT	26760
	GGGATTCCTC	CTCAACATTG	ACCTATGCCG	ACCTCGATGG	GCAATCGAAC	AAGCTCGCCC	26820
15	ACTGGCTGTG	CCAGCGCAAT	ATGGCCCCAG	AGACCTTGGT	AGCTGTATTC	GCGCCACGCT	26880
	CATGCCTCAC	CATCGTCGCA	TTCCTCGGTG	TTTTGAAGGC	TAATCTGGCC	TACCTGCCCT	26940
	TGGATGTCAA	TGCGCCTGCT	GCTCGTATCG	AGGCTATCCT	GTCAGCAGTA	CCAGGCCACA	27000
••	AGCTGGTCCT	GGTGCAGGCT	CATGGGCCCG	AGCTTGGCCT	GACGATGGCT	GATACTGAAC	27060
20	TGGTGCAGAT	CGACGAGGCA	CTTGCATCCA	GTTCATCCGG	TGACCATGAG	CAGATCCATG	27120
	CGTCCGGCCC	TACTGCCACA	AGTCTTGCCT	ACGTGATGTT	TACGTCAGGG	TCTACTGGGA	27180
	AACCAAAGGG	TGTCATGATC	GACCACCGCA	GCATCATTCG	ACTTGTCAAG	AACAGCGATG	27240
25	TTGTTGCCAC	TCTGCCTACG	CCAGTCCGGA	TGGCGAATGT	ATCAAACCTT	GCCTTCGACA	27300
	TCTCGGTGCA	AGAAATCTAC	ACGGCGCTCC	TAAACGGTGG	CACTCTGGTC	TGCTTGGACT	27360
	ATCTGACGCT	ATTGGACAGC	AAAATTCTTT	ATAACGTTTT	TGTGGAAGCA	CAGGTCAACG	27420
30	CCGCCATGTT	CACGCCGGTT	CTCCTCAAGC	AATGTCTTGG	AAACATGCCC	GCCATCATCA	27480
	GTCGCCTGAG	TGTTCTCTTT	AACGTTGGTG	ACAGGCTGGA	TGCCCACGAT	GCTGTGGCTG	27540
	CATCAGGCCT	GATCCAAGAC	GCCGTATACA	ACGCCTACGG	TCCCACGGAG	AACGGCATGC	27600
35	AGAGTACGAT	GTACAAGGTC	GACGTCAATG	AGCCTTTCGT	CAACGGCGTC	CCGATCGGTC	27660
	GATCCATCAC	CAACTCTGGG	GCTTACGTCA	TGGACGGCAA	TCAACAGCTC	GTATCTCCTG	27720
	GTGTGATGGG	AGAAATTGTC	GTTACCGGTG	ATGGTCTTGC	CCGTGGCTAT	ACAGACTCAG	27780
40	CCCTAGACGA	GGACCGGTTT	GTTCACGTCA	CGATCGATGG	TGAGGAAAAT	ATCAAGGCAT	27840
40	ACCGAACCGG	TGATCGAGTC	CGCTACCGGC	CCAAGGACTT	TGAGATTGAA	TTCTTCGGCC	27900
	GTATGGATCA	ACAGGTGAAG	ATTCGTGGTC	ACCGCATTGA	GCCAGCAGAA	GTGGAACATG	27960
	CACTGCTCGG	CCACGACTTG	GTTCACGATG	CAGCTGTCGT	GCTTCGAAAG	CCAGCAAATC	28020
45	AAGAACCAGA	GATGATTGCT	TTCATCACCA	GCCAGGAAGA	CGAGACTATC	GAGCAGCATG	28080
	AGTCAAACAA	GCAGGTCCAA	GGCTGGGGAG	AGCATTTCGA	CGTAAGCAGG	TATGCTGATA	28140
	TCAAGGATCT	CGACACTTCT	ACCTTTGGTC	ACGACTTTTT	GGGATGGACA	TCTATGTATG	28200
50	ACGGAGTTGA	CATTCCTGTC	AACGAGATGA	AAGAGTGGCT	TGATGAAACT	ACGGCCTCCC	28260
	TCCTAGACAA	CCGCCCACCT	GGTCATATCC	TCGAGATCGG	AGCCGGAACT	GGCATGATTC	28320
	TATCTAACCT	GGGCAAAGTC	GACGGCCTAC	AGAAGTATGT	CGGTCTTGAC	CCGGCTCCCT	28380

	CAGCCGCAAT	CTTTGTCAAC	GAAGCCGTCA	AGTCTCTGCC	AAGTCTAGCC	GGTAAGGCCC	28440
5	GGGTACTTGT	TGGAACTGCC	CTGGATATCG	GTTCTCTGGA	CAAGAATGAG	ATCCAACCTG	28500
	AGCTTGTGGT	TATCAACTCC	GTGGCCCAGT	ACTTCCCCAC	ATCAGAGTAC	TTGATCAAGG	28560
	TGGTCAAAGC	TGTTGTGGAA	GTGCCCAGCG	TCAAGCGTGT	TTTCTTTGGC	GATATCAGAT	28620
10	CCCAGGCCCT	TAACAGGGAC	TTCCTTGCAG	CTCGTGCCGT	TCGTGCGTTG	GGTGACAATG	28680
10	CTAGCAAAGA	GCAGATCCGG	GAAAAGATCG	CAGAGCTCGA	AGAGAGCGAA	GAAGAACTTC	28740
	TCGTGGACCC	AGCCTTCTTC	GTGAGCTTGA	GAAGCCAGCT	GCCCAACATC	AAGCACGTTG	28800
	AGGTCCTGCC	CAAGCTGATG	AAGGCCACCA	ACGAGCTGAG	CTCGTACAGA	TATGCTGCGG	28860
15	TTCTACACAT	CAGCCACAAC	GAAGAGGAGC	AGCTGCTCAT	ACAGGATATC	GATCCCACAG	28920
	CATGGGTTGA	CTTTGCAGCA	ACGCAAAAGG	ACTCTCAAGG	TCTGAGAAAC	CTTCTACAAC	28980
	AAGGACGAGA	TGATGTGATG	ATCGCGGTCG	GGAACATCCC	GTACAGCAAG	ACCATAGTGG	29040
20	AGCGACACAT	TATGAACTCT	CTTGACCAAG	ATCACGTCAA	CTCACTCGAC	GGGACATCCT	29100
	GGATCTCAGA	TGCTCGATCA	GCCGCTGCAA	TCTGCACTTC	GTTCGACGCA	CCCGCCCTCA	29160
	CGCAGTTGGC	CAAGGAGGAG	GGATTCCGGG	TAGAGTTGAG	CTGGGCGCGA	CAGAGATCTC	29220
25	AAAACGGCGC	CCTCGATGCC	GTTTTCCACC	GTCTTGCAAC	CGATGCAAAT	TGCGAGCGCA	29280
	GTCGTGTCCT	GGTACACTTC	CCTACCGACC	ATCAAGGTCG	ACAACTTCGA	ACCCTGACGA	29340
	ACCGGCCACT	CCAGCGAGCT	CAGAGCCGCC	GTATCGAGTC	ACAAGTCTTC	GAGGCACTGC	29400
	AGACAGCACT	GCCGGCCTAC	ATGATCCCAT	CGCGCATTAT	CGTGCTCCCG	CAGATGCCGA	29460
30	CCAACGCCAA	CGGCAAAGTG	GACAGGAAAC	AGCTCGCTCG	CCGCGCGCAG	GTTGTGGCCA	29520
	AGAGAAAGGC	AGTGTCAGCG	CGCGTTGCGC	CTCGTAATGA	CACCGAGATA	GTTCTTTGCG	29580
	AGGAATACGC	AGATATCCTA	GGAACTGAAG	TTGGCATCAC	GGACAACTTC	TTCGACATGG	29640
35	GCGGGCATTC	ACTCATGGCT	ACGAAGCTCG	CAGCCCGACT	AAGCCGGCGA	CTAGATACCC	29700
	GGGTTACGGT	CAAGGAGGTG	TTCGATAAAC	CCGTCCTGGC	TGACCTCGCT	GCTTCGATCG	29760
	AACAGGGCTC	GACACCTCAT	CTGCCTATTG	CCTCATCGGT	GTATTCCGGA	CCGGTGGAGC	29820
40	AGTCGTACGC	CCAAGGTCGC	TIGTGGTTCT	TGGATCAGTT	CAACCTCAAC	GCGACGTGGT	29880
	ATCACATGTC	GCTGGCGATG	AGGCTGCTCG	GGCCGCTCAA	CATGGACGCG	CTGGACGTGG	29940
	CCTTACGGGC	GCTGGAGCAG	CGACACGAGA	CGCTTCGCAC	AACCTTTGAG	GCTCAAAAGG	30000
45	ACATCGGCGT	CCAGGTCGTT	CATGAGGCCG	GAATGAAGAG	GCTCAAGGTC	CTTGACCTAT	30060
**	CAGACAAGAA	CGAGAAGGAG	CACATGGCCG	TGCTAGAGAA	TGAACAGATG	AGACCGTTCA	30120
	CTCTTGCTTC	AGAGCCAGGC	TGGAAGGGTC	ATCTTGCTCG	CCTTGGCCCC	ACGGAGTATA	30180
	TCCTCTCCCT	CGTCATGCAT	CACATGTTCT	CAGACGGCTG	GTCCGTTGAT	ATCCTGAGAC	30240
50	AGGAGCTCGG	TCAATTCTAC	TCAGCCGCTT	TACGTGGCAG	GGATCCGTTA	TCTCAGGTCA	30300
	AGCCCCTCCC	AATACAATAT	CGTGACTTTG	CGGCTTGGCA	GAAGGAAGCT	GCCCAAGTTG	30360
	CCGAGCATGA	GAGGCAGCTC	GCGTACTGGG	AGAACCAGTT	AGCTGACAGT	ACTCCCGGTG	30420

32

5	AGCTTCTGAC	CGACTTTCCC	CGCCCACAGT	TCCTGAGTGG	GAAGGCTGGT	GTCATCCCGG	30480
	TCACCATTGA	GGGGCCGGTC	TACGAGAAGC	TTCTGAAGTI	CTCCAAGGAG	CGCCAGGTAA	30540
	CTCTGTTCTC	GGTGCTATTA	ACAGCGTTCC	GGGCCACACA	CTTTCGTCTC	ACTGGTGCAG	30600
	AGGATGCTAC	GATCGGTACC	CCAATTGCAA	ATCGCAACCG	GCCAGAACTC	GAGCATATCA	30660
10	TTGGATTCTT	CGTCAACACC	CAATGCATGC	GTCTTCTCCT	CGATACCGGC	AGCACATTCG	30720
	AATCCCTAGT	CCAGCATGTT	CGGTCCGTGG	CTACAGATGO	CTATTCCAAT	CAGGATATTC	30780
	CCTTCGAACG	GATCGTCTCG	GCACTTCTCC	CTGGCTCGAG	AGATGCCTCA	CGAAGCCCAC	30840
15	TAATCCAGCT	TATGTTTGCC	TTGCACTCAC	AGCCAGATCT	CGGGAACATT	ACTCTCGAAG	30900
	GACTCGAGCA	TGAGCGCCTG	CCAACAAGCG	TCGCAACACG	TTTCGACATG	GAGTTCCACC	30960
	TGTTCCAAGA	GCCTAACAAG	CTGAGTGGTT	CAATACTCTT	TGCCGATGAG	CTCTTCCAGC	31020
	CTGAAACAAT	CAACAGCGTC	GTGACTGTGT	TCCAGGAGAT	ACTCCGACGC	GGCCTCGACC	31080
20	AACCCCAAGT	CTCCATTTCT	ACTATGCCCC	TGACTGATGG	GTTGATTGAT	CTCGAGAAAC	31140
	TGGGCTTGCT	GGAAATCGAG	AGCAGCAACT	TCCCTCGCGA	CTACTCGGTT	GTCGACGTCT	31200
	TCCGACAGCA	GGTGGCTGCC	AATCCAAATG	CGCCCGCTGT	CGTGGATTCG	GAGACATCCA	31260
25	TGAGCTACAC	CTCGCTAGAT	CAGAAGTCTG	AGCAGATTGC	TGCCTGGTTA	CACGCTCAAG	31320
	GCCTCCGCCC	TGAGTCATTG	ATCTGCGTGA	TGGCGCCACG	ATCTTTCGAA	ACGATCGTCT	31380
	CCTTATTCGG	TATCTTGAAG	GCTGGCTACG	CCTACCTGCC	TCTGGATGTG	AATTCCCCTG	31440
30	CAGCTCGAAT	CCAACCGATC	CTATCCGAGG	TTGAAGGAAA	AAGACTGGTA	CTGCTAGGAT	31500
	CAGGGATAGA	CATGCCTCAA	AGCGACCGAA	TGGATGTTGA	AACCGCTCGA	ATTCAGGACA	31560
	TCCTAACGAA	CACAAAGGTC	GAGAGATCTG	ATCCCATGAG	CAGGCCATCG	GCAACTAGCC	31620
	TTGCCTATGT	CATCTTCACC	TCCGGGTCAA	CTGGCCGTCC	CAAGGGCGTG	ATGATCGAGC	31680
35	ATCGCAATAT	TCTGCGCCTT	GTCAAGCAGT	CTAATGTTAC	GTCTCAGCTG	CCGCAGGATC	31740
	TGCGCATGGC	ACATATCTCC	AACCTAGCCT	TTGACGCGTC	CATCTGGGAG	ATATTCACGG	31800
	CAATTTTGAA	TGGCGGCGCC	CTTATTTGCA	TTGATTACTT	CACTTTGCTG	GATAGTCAAG	31860
40	CCCTCCGGAC	GACATTCGAA	AAAGCCAGGG	TCAATGCTAC	CCTATTCGCG	CCGGCCTTGC	31920
	TCAAAGAATG	CCTCAATCAC	GCGCCGACCT	TGTTTGAGGA	TCTCAAAGTG	CTCTATATCG	31980
	GTGGCGACCG	ACTCGATGCC	ACCGACGCGG	CCAAAATACA	AGCCCTTGTG	AAGGCACGG	32040
45	TCTACAACGC	GTACGGGCCG	ACAGAGAACA	CAGTCATGAG	CACGATCTAC	AGGCTCACAG	32100
	ATGGAGAGTC	TTATGCTAAC	GGTGTGCCAA	TCGGCAATGC	TGTGAGCAGC	TCTGGCGCTT	32160
	ATATCATGGA	CCAAAAGCAG	CGCCTCGTTC	CTCCCGGTGT	TATGGGAGAG	CTCGTTGTGA	32220
	GCGGCGATGG	CCTCGCCCGT	GGCTACACCA	ACTCGACCCT	CAATGCTGAT	CGTTTCGTTG	32280
50	ATATTGTCAT	CAACGATCAA	AAAGCCCGCG	CATACCGGAC	CGGAGATCGC	ACTCGTTACC	32340
	GGCCCAAGGA	TGGTAGCATC	GAGTTCTTCG	GCCGTATGGA	TCAGCAAGTT	AAAATCCGTG	32400

	GTCATCGAGT	TGAGCCGGCC	GAGGTCGAGC	AAGCCATGCT	CGGCAATAAG	GCTATCCATG	32460
5	ATGCAGCAGT	TGTTGTTCAG	GCGGTGGATG	GCCAGGAAAC	GGAGATGATC	GGCTTTGTTT	32520
	CCATGGCCAG	CGACAGATTC	AGCGAAGGGG	AGGAGGAGAT	CACCAACCAA	GTCCAGGAGT	32580
	GGGAAGACCA	CTTCGAAAGC	ACCGCCTACG	CTGGCATTGA	GGCCATCGAC	CAGGCTACCC	32640
10	TGGGACGCGA	TTTCACTTCA	TGGACCTCGA	TGTACAACGG	CAACTTGATT	GACAAAGCCG	32700
	AAATGGAGGA	GTGGCTTGAC	GATACAATGC	AATCCCTCCT	TGATAAGGAG	GATGCCAGGC	32760
	CGTGTGCTGA	GATCGGAACA	GGTACCGGCA	TGGTTCTATT	CAATTTGCCC	AAGAACGATG	32820
15	GCCTTGAGAG	CTATGTCGGT	ATAGAGCCTT	CACGGTCTGC	AGCCTTGTTC	GTCGACAAAG	32880
	CAGCCCAAGA	TTTCCCAGGT	CTGCAAGGAA	AGACGCAAAT	CCTTGTCGGC	ACAGCCGAGG	32940
	ACATCAAGCT	GGTCAAGGAC	TTCCACCCTG	ACGTGGTTGT	CATTAACTCG	GTAGCCCAAT	33000
	ATTTCCCGAG	CCGGAGCTAC	CTTGTACAGA	TAGCGAGCGA	ACTGATTCAC	ATGACCAGCG	33060
20	TCAAGACGAT	CTTCTTTGGA	GATATGCGAT	CCTGGGCCAC	CAACAGGGAT	TTCCTCGTGT	33120
	CCCGAGCTCT	TTACACGCTA	GGTGACAAGG	CTACAAAGGA	TCAGATTCGC	CAGGAGGTTG	33180
	CCCGACTTGA	GGAGAATGAA	GACGAGTTGC	TTGTTGACCC	AGCATTCTTC	ACCTCTTTGA	33240
25	CCAGCCAATG	GCCCGGCAAG	GTCAAGCATG	TTGAGATCTT	GCCGAAGCGG	ATGAGGACGA	33300
	GCAATGAACT	AAGCTCGTAC	CGATATGCTG	CGGTGCTACA	CATCTGCAGG	GATGGGGAGG	33360
	GTAGGAACAG	ATATGGCAGG	CGTGTCCACT	CAGTGGAAGA	GAACGCCTGG	ATCGACTTCG	33420
30	CGTCGTCTGG	CATGGATCGT	CACGCCCTCG	TTCAGATGCT	CGATGAACGT	AGAGACGCCA	33480
	AGACTGTCGC	CATCGGCAAC	ATCCCTCACA	GCAACACGAT	CAACGAGCGA	CACTTTACGA	33540
	CATCCCTGGA	TACTGAGGGA	GAAGGCATTG	CCCAAGATTC	ACTGGATGGA	TCCGCCTGGC	33600
35	AATCGGCTAC	GAAGGCAATG	GCCGCGCGCT	GTCCTTGCCT	TTCCGTCACC	GAACTGGTCG	33660
	AGATCGGCCA	AGCGGCAGGA	TTCAGGGTCG	AGGTCAGCTG	GGCTCGTCAA	CGATCCCAAC	33720
	ATGGTGCACT	GGACGTCGTC	TTCCATCATC	TTGAAGATGA	CAGAGTAGGC	CGCGTCTTGA	33780
	TCAACTTCCC	CACAGACTTC	GAGCGTCTAC	CCCCTAGCAC	CGGCCTGACC	AGTCGGCCGC	33840
40	TGCAGCGCAT	CCAGAACCGT	CGGTTCGAGT	CGCAGATCCG	CGAACAGCTG	CAAACACTGC	33900
	TGCCACCTTA	TATGGTTCCA	TCACGGATCG	TCGTGTTGGA	GCGGATGCCT	CTCAACGCAA	33960
	ACAGCAAAGT	CGACCGTAAA	GAATTGGCAA	GGAAGGCGAG	GACCCTACAA	ACCATCAAGC	34020
45	CTTCTGCAAC	GCGCGTGGCT	CCTCGCAACG	ATATTGAAGC	CGTCTTGTGC	GACGAGTTCC	34080
	AGGCAGTTCT	TGGTGTTACA	GTCGGAGTCA	TGGATAACTT	TTTCGAGTTG	GGCGGACACT	34140
	CCCTGATGGC	TACGAAACTG	GCCGCCCGTC	TCAGTCGCCG	CCTCGACACC	CGCGTCTCTG	34200
50	TGAAGGATAT	CTTCAACCAA	CCAATCCTTC	AAGATCTCGC	GGACGTGGTC	CAGACTGGCT	34260
	CCGCTCCTCA	TGAAGCTATT	CCCTCCACGC	CCTACTCTGG	TCCCGTGGAG	CAATCCTTCT	34320
	CTCAGGGCCG	TCTATGGTTC	TTGGATCAGC	TGAATCTCAA	TGCATCGTGG	TACCACATGC	34380
55	CATTAGCGAG	TCGCTTGCGA	GGCCCGCTTC	GGATCGAGGC	GCTGCAGTCA	GCCCTGGCTA	34440

						GGTGTTCCCG	34500
5	TTCAGATTGT	ACGCGCTGCG	CGCAACAAGC	AGCTGAGGAT	CATCGACGTG	TCGGGCACCG	34560
	AGGATGCGTA	TCTCGCAGCA	TTGAAGCAAG	AGCAAGACGC	CGCATTCGAT	CTGACTGCTG	34620
	AGCCAGGCTG	GCGAGTAGCA	CTGTTGCGCT	TGGGACCGGA	TGATCATGTC	CTGTCTATCG	34680
10	TCATGCACCA	CATCATATCT	GACGGATGGT	CGGTTGATAT	CCTGCGACAA	GAACTCGGGC	34740
	AGCTCTACTC	GAATGCCTCA	TCGCAGCCCG	CTCCTCTTCC	GATTCAATAC	CGAGATTTCG	34800
	CCATCTGGCA	GAAGCAGGAT	AGTCAGATCG	CTGAGCACCA	AAAGCAGCTG	AACTACTGGA	34860
15	AGAGACAACT	GGTCAACAGC	AAGCCGGCTG	AGCTCCTGGC	GGACTTCACT	CGTCCGAAGG	34920
	CGTTATCTGG	CGATGCTGAT	GTCATACCGA	TAGAGATTGA	TGACCAGGTA	TATCAGAACC	34980
	TCCGCTCGTT	TTGTCGCGCT	CGGCATGTCA	CCAGCTTTGT	TGCACTCTTA	GCAGCTTTCC	35040
20	GGGCTGCTCA	CTACCGCCTA	ACTGGGGCCG	AAGATGCAAC	TATCGGCTCT	CCAATCGCCA	35100
20	ACAGAAATCG	ACCTGAGCTT	GAAGGCCTCA	TTGGATGCTT	TGTTAACACC	CAGTGTCTCC	35160
	GAATTCCTGT	TAAGAGCGAG	GACACATTTG	ACACGTTGGT	TAAACAGGCA	CGAGAAACGG	35220
	CGACCGAGGC	CCAGGACAAC	CAAGATGTCC	CGTTCGAGAG	GATCGTTTCT	TCCATGGTTG	35280
25	CTAGCTCGCG	AGATACCTCG	CGAAATCCAC	TCGTTCAGGT	CATGTTTGCT	GTGCACTCTC	35340
	AGCACGACCT	TGGTAACATT	CGTCTCGAAG	GTGTTGAGGG	GAAGCCCGTT	TCGATGGCAG	35400
	CGTCCACACG	CTTTGACGCG	GAAATGCACC	TATTTGAGGA	CCAAGGGATG	CTCGGCGGCA	35460
30	ACGTCGTCTT	TTCGAAGGAT	CTGTTCGAAT	CCGAGACGAT	CCGCAGTGTT	GTGGCCGTGT	35520
	TCCAGGAGAC	CCTGAGGCGT	GGCCTAGCCA	ATCCTCACGC	AAATCTCGCA	ACACTTCCTC	35580
	TTACCGATGG	ATTGCCCAGT	CTTCGAAGCC	TGTGTCTTCA	AGTCAATCAG	CCTGACTACC	35640
35	CCCGAGATGC	CTCCGTGATC	GACGTTTTCA	GAGAGCAGGT	AGCATCGATA	CCCAAGTCTA	35700
	TCGCCGTTAT	CGATGCTTCT	TCACAGCTCA	CCTACACCGA	GCTCGACGAG	AGATCTAGCC	35760
	AGCTCGCCAC	GTGGCTACGC	CGACAAGTCA	CAGTCCCTGA	GGAGCTGGTC	GGCGTCCTCG	35820
10	CTCCACGGTC	CTGTGAGACA	ATCATCGCTT	TCCTCGGCAT	CATCAAAGCG	AATCTCGCCT	35880
40	ATCTGCCACT	TGACGTCAAC	GCACCCGCTG	GTCGGATCGA	GACAATCCTG	TCATCTCTAC	35940
	CAGGAAACAG	GCTTATTTTA	CTTGGATCAG	ATACGCAGGC	GGTCAAGCTT	CACGCAAACA	36000
	GCGTTCGATT	CACCCGGATC	AGCGACGCCC	TCGTCGAGAG	CGGCAGTCCC	CCTACCGAAG	36060
45	AACTTTCCAC	ACGGCCGACT	GCACAAAGCC	TTGCCTATGT	CATGTTCACA	TCAGGCTCAA	36120
	CTGGCGTCCC	GAAGGGTGTC	ATGGTAGAGC	ACCGGGGTAT	CACACGTCTC	GTGAAAAACA	36180
	GCAACGTGGT	CGCAAAGCAA	CCGGCAGCAG	CTGCTATCGC	TCATCTTTCG	AACATTGCTT	36240
50	TCGACGCCTC	TTCCTGGGAG	ATATACGCTC	CTCTCCTTAA	CGGCGGTACA	GTCGTCTGCA	36300
	TTGATTACTA	CACCACGATC	GATATCAAAG	CCCTCGAGGC	GGTATTCAAA	CAGCACCACA	36360
	TCCGCGGAGC	AATGCTTCCA	CCAGCACTTC	TCAAACAGTG	TCTGGTCTCT	GCCCCTACTA	36420

	TGATCAGCTC	TCTGGAGATA	CTTTTCGCCG	CCGGCGATCG	GTTGAGCAGC	CAAGATGCCA	36480
5	TCCTGGCGCG	ACGTGCCGTT	GGTTCGGGCG	TTTACAACGC	TTACGGCCCT	ACTGAGAACA	36540
	CGGTCCTGAG	TACGATACAC	AACATCGGCG	AGAATGAGGC	ATTTTCGAAT	GGCGTTCCCA	36600
	TTGGAAACGC	TGTCAGTAAC	TCCGGTGCCT	TTGTCATGGA	TCAAAATCAG	CAGCTGGTCT	36660
10	CCGCCGGTGT	GATCGGAGAG	CTTGTTGTGA	CCGGAGATGG	CCTTGCCCGC	GGATACACAG	36720
,0	ATTCTAAGCT	TAGGGTGGAT	CGATTCATCT	ATATTACCCT	TGACGGGAAC	CGGGTCAGAG	36780
	CTTACCGCAC	GGGCGACCGT	GTCAGGCACC	GGCCTAAGGA	TGGGCAAATT	GAGTTCTTCG	36840
	GGCGAATGGA	TCAGCAGATC	AAGATCCGTG	GTCATCGCAT	CGAGCCAGCA	GAGGTGGAGC	36900
15	AGGCTCTCGC	CCGTGACCCG	GCCATCAGCG	ATTCGGCTGT	TATCACTCAG	CTCACGGATG	36960
	AAGAGGAGCC	GGAACTGGTG	GCTTTCTTCT	CATTGAAGGG	GAATGCCAAC	GGCACCAACG	37020
	GTGTCAACGG	TGTGAGCGAT	CAAGAGAAGA	TCGACGGCGA	TGAGCAACAT	GCTCTGCTGA	37080
20	TGGAGAACAA	GATCCGTCAC	AACCTACAGG	CGCTGCTGCC	CACTTACATG	ATCCCCTCGC	37140
	GGATCATCCA	TGTCGATCAG	CTGCCGGTCA	ATGCCAACGG	TAAGATTGAC	CGCAATGAGC	37200
	TGGCTGTTCG	AGCCCAGGCA	ACGCCAAGGA	CCAGTTCAGT	GTCAACCTAC	GTGGCCCCTC	37260
25	GCAACGATAT	CGAAACCATC	ATCTGTAAGG	AATTCGCAGA	TATCCTCAGC	GTTCGAGTCG	37320
	GAATCACAGA	CAACTTCTTC	GACCTGGGTG	GACACTCACT	TATAGCCACC	AAGCTAGCCG	37380
	CCCGCCTTAG	CCGTCGACTA	GATACTCGCG	TGTCTGTTAG	GGACGTCTTT	GACACTCCCG	37440
30	TGGTAGGCCA	ATTGGCGGCT	TCTATCCAGC	AAGGCTCGAC	CCCTCATGAA	GCTATTCCGG	37500
	CGTTATCACA	CTCGGGACCT	GTGCAACAGT	CCTTTGCTCA	AGGCCGTCTT	TGGTTCCTGG	37560
	ACCGTTTCAA	TCTCAACGCT	GCCTGGTACA	TCATGCCATT	CGGCGTTCGT	CTTCGCGGAC	37620
	CTCTCCGAGT	CGATGCACTT	CAGACTGCAT	TGAGGGCTCT	CGAAGAACGG	CACGAGTTGC	37680
35	TACGCACCAC	GTTCGAAGAA	CAGGATGGCG	TTGGTATGCA	AATCGTTCAC	TCGCCCCGAA	37740
	TGAGGGACAT	CTGCGTCGTA	GACATCTCTG	GCGCCAATGA	GGATCTTGCG	AAGCTGAAGG	37800
	AGGAGCAGCA	AGCTCCTTTC	AATCTCTCTA	CTGAAGTCGC	TTGGAGGGTA	GCACTCTTCA	37860
40	AGGCTGGAGA	GAACCACCAC	ATCCTCTCTA	TCGTCATGCA	TCACATAATT	TCAGATGGCT	37920
	GGTCAGTTGA	CATCTTCCAG	CAGGAGCTTG	CCCAATTCTA	CTCGGTAGCT	GTACGAGGGC	37980
	ATGACCCCCT	TTCCCAGGTC	AAACCGCTCC	CCATTCACTA	CCGCGATTTT	GCTGTCTGGC	38040
45	AGAGACAAGA	TAAGCAAGTT	GCCGTTCACG	AAAGCCAACT	TCAGTACTGG	ATAGAGCAGC	38100
	TCGCGGATAG	CACGCCAGCC	GAGATCCTAT	CTGATTTTAA	CCGACCGGAG	GTCTTGTCCG	38160
	GCGAAGCTGG	TACAGTTCCC	ATCGTGATCG	AGGACGAGGT	TTATGAGAAG	CTCTCCCTCT	38220
50	TCTGCCGCAA	TCATCAGGTC	ACCAGCTTCG	TCGTCCTTCT	GGCIGCTTTC	CGCGTCGCAC	38280
	ATTATCGCCT	AACTGGGGCA	GAGGATGCGA	CTATCGGTAC	ACCAATTGCG	AACCGCAACC	38340
	GCCCCGAACT	TGAGGACTTG	ATCGGTTTCT	TTGTCAATAC	ACAATGCATG	AGAATCGCGC	38400
55	TCGAAGAACA	CGATAATTTC	CTATCAGTAG	TGCGAAGAGT	TCGCTCAACA	GCGGCAAGCG	38460
55							

_	CCTTCGAAAA	CCAGGATGTG	CCATTCGAGC	GCCTTGTATC	TGCACTTCTG	CCCGGCTCTA	38520
5	GAGATGCCTC	CCGGAATCCC	CTCGTTCAAC	TCATGTTTGT	CGTCCACTCC	CAGCGAAATC	38580
	TCGGTAAACT	GCAACTGGAG	GGCTTGGAAG	GCGAACCAAC	CCCGTACACC	GCGACGACCC	38640
	GCTTCGATGT	TGAGTTCCAC	CTCTTCGAAC	AAGACAAAGG	CCTCGCCGGA	AATGTTGTCT	38700
10	TCGCAGCAGA	CTTGTTCGAG	GCTGCCACTA	TCCGCAGCGT	TGTTGAAGTC	TTCCACGAGA	38760
	TCCTCCGTCG	TGGTCTCGAC	CAGCCAGATA	TCGCAATTTC	CACCATGCCA	CTTGTCGATG	38820
	GCCTGGCGGC	GCTCAACAGC	CGTAACTTAC	CCGCAGTTGA	AGACATCGAA	CCTGACTTCG	38880
15	CCACCGAGGC	CTCGGTGGTT	GATGTCTTCC	AGACACAAGT	GGTCGCTAAC	CCAGATGCCC	38940
	TGGCTGTGAC	CGACACATCC	ACAAAGCTTA	CATATGCGGA	GCTGGATCAA	CAATCCGATC	39000
	ATGTCGCGGC	TTGGCTGTCC	AAACAGAAGC	TACCAGCAGA	GAGCATCGTC	GTTGTTCTTG	39060
20	CGCCACGATC	CTCTGAGACT	ATCGTAGCAT	GCATTGGCAT	CCTCAAAGCG	AACCTCGCAT	39120
20	ATCTCCCCAT	GGATTCCAAC	GTCCCCGAAG	CCCGTCGCCA	AGCAATTCTT	TCGGAGATTC	39180
	CAGGGGAGAA	GTTCGTTTTG	CTTGGAGCAG	GAGTGCCTAT	TCCTGACAAC	AAGACAGCTG	39240
	ATGTCAGGAT	GGTCTTCATC	AGCGATATCG	TCGCCAGCAA	GACAGACAAG	TCCTACTCAC	39300
25	CCGGCACTCG	GCCATCTGCA	TCAAGCCTTG	CCTATGTTAT	CTTCACATCA	GGCTCGACAG	39360
	GTCGGCCAAA	GGGTGTCATG	GTCGAGCATC	GGGGTGTTAT	TTCTTTGGTG	AAGCAGAACG	39420
	CTTCAAGAAT	ACCACAAAGT	CTGCGGATGG	CACATGTTTC	CAATCTCGCA	TTCGATGCTT	39480
30	CCGTGTGGGA	GATATTCACC	ACGCTGCTCA	ATGGAGGAAC	GCTTTTCTGT	ATCAGCTACT	39540
	TTACTGTCTT	GGACAGCAAA	GCACTITCTG	CCGCTTTCTC	CGATCATCGC	ATTAACATCA	39600
	CCCTGCTCCC	ACCGGCCTTG	CTCAAGCAAT	GTCTTGCAGA	CGCGCCATCT	GTCCTGAGCT	39660
35	CCCTCGAGTC	TCTGTACATT	GGAGGCGACC	GCCTTGATGG	AGCTGATGCA	ACCAAGGTGA	39720
	AGGACCTCGT	CAAAGGCAAG	GCCTACAATG	CCTACGGTCC	CACCGAGAAT	TCCGTCATGA	39780
	GCACGATCTA	TACCATCGAA	CACGAGACTT	TTGCGAATGG	CGTTCCCATC	GGCACATCTT	39840
40	TAGGCCCCAA	GTCCAAGGCC	TACATTATGG	ACCAGGATCA	GCAGCTCGTA	CCAGCAGGCG	39900
~	TGATGGGAGA	GCTTGTCGTT	GCTGGCGATG	GTCTCGCACG	AGGGTATACC	GATCCATCAC	39960
	TGAACACGGG	CCGGTTCATC	CACATCACGA	TCGATGGCAA	ACAAGTTCAG	GCATACCGGA	40020
	CCGGCGATCG	AGTCAGATAC	CGACCTAGGG	ACTACCAAAT	CGAGTTCTTT	GGCCGTTTAG	40080
45	ATCAGCAGAT	CAAGATTCGC	GGTCATCGCA	TCGAGCCAGC	TGAAGTGGAG	CAGGCTCTTC	40140
	TCAGCGACTC	ATCGATCAAC	GATGCCGTTG	TTGTGTCGGC	ACAAAACAAG	GAGGGACTCG	40200
	AAATGGTTGG	TTACATCACG	ACCCAGGCTG	CACAATCCGT	CGACAAGGAG	GAAGCCAGCA	40260
50	ACAAGGTGCA	GGAGTGGGAG	GCTCATTTCG	ACTCAACTGC	ATATGCCAAC	ATCGGGGGTA	40320
	TTGATCGCGA	TGCCCTCGGA	CAGGACTTCT	TATCCTGGAC	ATCTATGTAC	GACGGCTCAT	40380
	TGATTCCCCG	TGAAGAGATG	CAGGAATGGC	TCAACGACAC	TATGCGCTCA	CTCCTCGACA	40440

	ACCAACCACC	CGGAAAAGTG	CTCGAGATCG	GAACTGGTAC	CGGTATGGTG	CTGTTCAATC	40500
5	TCGGCAAGGT	TGAGGGACTA	CAGAGCTATG	CCGGTCTTGA	GCCCTCGCGC	TCCGTCACCG	40560
	CCTGGGTTAA	CAAGGCAATC	GAAACTTTCC	CAAGCCTGGC	AGGAAGCGCC	CGAGTCCACG	40620
	TTGGAACCGC	CGAGGATATC	AGCTCCATTG	ATGGACTTCG	TTCCGATCTC	GTTGTGATCA	40680
10	ACTCAGTCGC	CCAATACTTC	CCAAGTCGAG	AATATCTCGC	TGAGCTGACG	GCCAACTTGA	40740
10	TTCGACTGCC	CGGCGTTAAG	CGTATTTTCT	TCGGTGACAT	GAGAACGTAT	GCTACCAATA	40300
	AGGACTTCTT	GGTGGCACGA	GCAGTCCATA	CCCTAGGGTC	CAATGCATCG	AAGGCCATGG	40960
	TTCGACAACA	AGTGGCCAAG	CTTGAAGATG	ACGAGGAAGA	GTTGCTTGTT	GACCCTGCCT	40920
15	TCTTCACCAG	CCTGAGCGAC	CAGTTCCCTG	ACGAAATCAA	GCATGTCGAA	ATTCTGCCAA	40980
	AGAGGATGGC	CGCGACCAAC	GAACTCAGCT	CTTACAGATA	TGCTGCTGTC	ATTCATGTGG	41040
	GAGGCCACCA	GATGCCGAAT	GGGGAGGATG	AGGATAAGCA	AIGGGCTGTC	AAGGATATCA	41100
20	ATCCGAAGGC	CTGGGTGGAC	TTTGCTGGCA	CGAGGATGGA	CCGTCAGGCT	CTCTTGCAGC	41160
	TCCTTCAGGA	CCGCCAACGT	GGCGATGACG	TTGTTGCCGT	CAGTAACATC	CCATACAGCA	41220
	AGACCATCAT	GGAGCGCCAT	CTGTCTCAGT	CACTTGATGA	TGACGAGGAC	GGCACTTCAG	41280
25	CGGTAGACGG	AACGGCCTGG	ATATCGCGTA	CGCAATCACG	GGCGAAGGAA	TGCCCTGCTC	41340
	TCTCAGTGGC	CGACCTGATT	GAGATTGGTA	AGGGGATCGG	CTTCGAAGTT	GAGGCCAGCT	41400
	GGGCTCGACA	ACACTCCCAG	CGCGGCGGAC	TCGATGCTGT	TTTCCACCGA	TTCGAACCAC	41460
30	CAAGACACTC	AGGTCATGTC	ATGTTCAGGT	TCCCGACTGA	ACACAAGGGC	CGGTCTTCGA	41520
50	GCAGTCTCAC	GAATCGCCCG	CTACACCTGC	TTCAGAGCCG	CCGACTGGAG	GCAAAGGTCC	41580
	GCGAGCGGCT	GCAATCACTG	CTTCCACCGT	ACATGATTCC	GTCTCGGATC	ACGTTGCTCG	41640
	ATCAGATGCC	TCTCACGTCC	AACGGCAAGG	TGGATCGCAA	GAAGCTTGCT	CGACAAGCCC	41700
35	GGGTCATCCC	AAGAAGTGCG	GCAAGCACGT	TGGACTTTGT	GGCGCCACGC	ACGGAAATCG	41760
	AAGTCGTCCT	CTGCGAAGAA	TTTACCGATC	TACTAGGCGT	CAAGGTTGGC	ATCACAGACA	41820
	ACTTCTTCGA	GTTGGGCGGC	CATTCGCTGC	TGGCCACGAA	ACTGAGCGCA	CGTCTAAGTC	41880
40	GCAGACTGGA	CGCCGGTATC	ACTGTGAAGC	AGGTCTTTGA	CCAGCCAGTA	CTTGCTGATC	41940
	TTGCTGCTTC	TATTCTTCAA	GGCTCGTCTC	GTCACAGGTC	TATCCCGTCT	TTACCCTACG	42000
	AAGGACCCGT	GGAGCAGTCC	TTTGCCCAGG	GCCCCTGTG	GTTCCTCGAC	CAGTTCAACA	42060
45	TCGATGCCTT	GTGGTACCTT	ATTCCATTTG	CACTCCGCAT	GCGCGGGCCG	CTGCAAGTTG	42120
	ACGCCCTCGC	TGCTGCCCTG	GTGGCACTTG	AAGAGCGTCA	TGAATCTCTG	CGCACAACGT	42180
	TTGAGGAACG	AGACGGAGTC	GGCATCCAAG	TGGTGCAACC	CCTCCGCACG	ACCAAGGATA	42240
50	TCCGGATCAT	CGACGTGTCA	GGCATGCGAG	ACGACGACGC	CTACCTCGAG	CCATTGCAGA	42300
00	AAGAACAGCA	GACTCCTTTC	GACCTTGCTT	CAGAGCCTGG	CTGGAGGGTA	GCACTGCTGA	42360
	AGCTTGGAAA	GGATGACCAC	ATCCTCTCTA	TTGTCATGCA	CCACATCATC	TCTGACGGGT	42420
	GGTCTACTGA	AGTCTTGCAA	AGGGAACTCG	GTCAATTCTA	CTTGGCAGCG	AAATCCGGGA	42480
55							

	AAGCCCCCT	T ATCGCAGGT	T GCCCCGCTT	C CTATTCAGT	A TCGCGATTT	T GCTGTTTGGC	42540
5	AGAGACAAG	A GGAACAGGT	C GCTGAGAGT	C AAAGGCAGC	T CGACTACTG	G AAGAAGCAGC	42600
	TTGCGGACA	G TAGCCCGGC	T GAGCTCTTG	G CTGACTACA	C CAGGCCGAA	C GTACTGTCTG	42660
	GAGAGGCAG	G CAGCGTGTC	T TTCGTGATC	A ACGATTCGG	T TTACAAGAG	C CTCGTCTCCT	42720
10	TCTGCCGGT	C TCGCCAAGT	A ACCACCTTT	A CGACTTTAC	r ggcagcgtt	r CGCGCCGCTC	42780
	ACTATCGAA	T GACCGGGTC.	A GACGACGCA	A CTATTGGCA	C GCCAATTGC	C AATCGCAACA	42840
	GGCCTGAGC:	r tgaaaactt	G ATCGGCTGC	r TCGTCAATA	CCAGTGCAT	G CGTATCACTA	42900
15	TCGGCGACGA	A TGAGACGTT	T GAATCACTG	TACAACAGG	r acggtctaco	CACCGCGACAG	42960
10	CCTTCGAGA	A TCAAGACGT	r CCGTTTGAAC	GAATCGTTTC	CACCCTCAG	GCCGGGTCCA	43020
	GGGATACGT	CCGAAACCC	C CTAGTACAGO	TTCTCTTTGC	GGTTCATTC	CAACAAGGCC	43080
	TGGGCAGGAT	CCAGCTCGAG	GGTGTCGTC	ATGAGCCGG1	TCTGTCGAC	GTTTCGACTC	43140
20	GGTTCGATCT	CGAATTCCAC	GCCTTCCAAC	AGGCCGACCG	GCTCAATGG	AGTGTCATGT	43200
	TTGCCACGGA	CCTGTTCCAC	G CCCGAGACCA	TCCAAGGTTT	CGTTGCGGT1	GTCGAAGAGG	43260
	TTCTACAGCG	TGGCCTGGAG	CAGCCGCAGA	GTCCCATCGC	AACCATGCCG	CTGGCCGAAG	43320
25	GCATCGCTCA	GCTCCGAGAT	GCCGGCGCGC	TGCAGATGCC	AAAGTCTGAT	TACCCTCGCA	43380
	ACGCGTCCCT	CGTCGATGTC	TTCCAGCAGC	AGGCTATGGC	CAGCCCGTCA	ACTGTCGCCG	43440
	TCACTGACTC	GACCTCCAAG	CTGACGTATG	CCGAGCTGGA	TCGACTCTCC	GATCAAGCTG	43500
30	CTTCCTATCT	GCGTCGGCAG	CAACTCCCGG	CGGAGACAAT	GGTGGCCGTT	CTCGCACCGC	43560
00	GCTCTTGTGA	GACCATCATC	GCGTTCCTAG	CTATTCTCAA	AGCAAATCTT	GCCTACATGC	43620
	CTCTCGACGT	CAACACGCCA	TCTGCTCGCA	TGGAAGCCAT	CATATCGTCC	GTCCCAGGGC	43680
	GTAGGCTCAT	CTTGGTTGGC	TCGGGCGTCC	GCCATGCTGA	TATCAACGTA	CCGAACGCAA	43740
35	AGACGATGCT	GATCAGCGAC	ACGGTTACCG	GGACTGATGC	TATTGGCACT	CCCGAACCTC	43800
	TGGTTGTCCG	ACCCAGTGCT	ACAAGTCTCG	CATATGTCAT	CTTCACTTCA	GGGTCAACGG	43860
	GCAAGCCAAA	GGGTGTCATG	GTGGAGCACC	GTGCTATCAT	GCGCCTTGTG	AAGGACAGTA	43920
40	ACGTCGTGAC	TCACATGCCA	CCAGCGACAC	GGATGGCCCA	CGTCACGAAT	ATCGCATTCG	43980
	ACGTTTCACT	GTTCGAGATG	TGCGCAACGC	TCCTCAACGG	CGGAACTCTA	GTCTGCATTG	44040
	ACTACCTGAC	CCTTCTTGAC	AGCACCATGC	TCCGGGAGAC	GTTTGAGCGT	GAGCAGGTTC	44100
45	GCGCAGCCAT	CTTCCCGCCA	GCACTCCTGC	GACAGTGCTT	GGTCAACATG	CCCGATGCGA	44160
	TCGGCATGTT	AGAGGCTGTT	TACGTTGCCG	GTGATCGCTT	CCACTCCCGC	GACGCCCGCG	44220
	CAACCCAGGC	ACTGGCCGGG	CCTCGTGTGT	ACAACGCGTA	TGGCCCAACT	GAGAACGCAA	44280
	TCCTTAGCAC	GATATATAAC	ATCGATAAGC	ACGATCCGTA	TGTGAACGGT	GTTCCTATCG	44340
50	GTAGCGCTGT	CAGCAATTCA	GGGGCCTATG	TCATGGATCG	GAACCAGCAG	CTTCTCCCTC	44400
	CCGGTGTGAT	GGGAGAGCTG	GTTGTTACAG	GAGAGGGTGT	AGCTCGCGGC	TATACCGACG	44460

	CAAGTCTCGA	TACGGACCGC	TTCGTCACCG	TCACGATCGA	TGGCCAGCGC	CAGAGGGCGT	44520
5	ACCGCACGGG	TGACCGGGTG	CGATATCGAC	CAAAGGGATT	CCAGATAGAG	TTCTTCGGCC	44580
	GCCTGGACCA	GCAGGCCAAG	ATTCGCGGCC	ACCGTGTTGA	ACTGGGCGAG	GTCGAACATG	44640
	CTCTGCTCAG	CGAGAATTCA	GTCACGGATG	CGGCTGTCGT	ACTCCGCACC	ATGGAAGAGG	44700
10	AGGACCCGCA	ACTGGTTGCC	TTTGTGACTA	CTGATCACGA	ATATCGCTCG	GGTTCGAGCA	44760
	ACGAAGAGGA	GGATCCGTAC	GCCACACAGG	CAGCAGGCGA	TATGCGCAAG	CGACTCCGGT	44820
	CGCTTCTGCC	ATACTACATG	GTCCCGTCCC	GGGTCACAAT	ACTCAGGCAA	ATGCCTCTCA	44880
15	ACGCCAACGG	CAAGGTGGAC	CGAAAAGACC	TCGCTCGGCG	GGCCCAGATG	ACTCCGACAG	44940
,,,	CAAGCAGCTC	GGGCCCCGTG	CATGTGGCTC	CTCGCAACGA	GACTGAGGCA	GCAATTTGCG	45000
	ACGAGTTCGA	GACTATACTC	GGAGTCAAGG	TGGGAATCAC	AGACAACTTC	TTCGAACTAG	45060
	GCGGGCACTC	ACTCCTGGCC	ACCAAACTCG	CTGCTCGGCT	CAGCCGCCGG	ATGGGCCTTC	45120
20	GCATATCCGT	CAAGGATCTG	TTTGACGATC	CTGTTCCTGT	TTCTCTCGCC	GGCAAGCTGG	45180
	AACAACAGCA	GGGGTTCTCG	GGAGAAGATG	AAAGCTCGAC	AGTTGGTATT	GTCCCCTTCC	45240
	AACTCCTCCC	CGCGGAAATG	TCGAGAGAGA	TCATCCAGCG	CGATGTTGTA	CCTCAGATTG	45300
25	AGAACGGTCA	CAGCACACCC	CTGGACATGT	ATCCAGCCAC	GCAGACGCAG	ATCTTCTTCC	45360
	TGCACGACAA	AGCGACGGGC	CACCCAGCCA	CGCCGCCACT	GTTCTCCTTG	GACTTCCCCG	45420
	AGACCGCCGA	CTGCCGTCGT	CTGGCAAGCG	CCTGCGCCGC	TCTCGTCCAG	CACTTTGACA	45480
30	TATTCAGAAC	CGTGTTCGTG	TCAAGAGGCG	GCCGCTTCTA	CCAAGTTGTT	CTTGCTCATC	45540
	TCGATGTACC	TGTCGAGGTC	ATCGAGACCG	AGCAAGAGTT	GGATGAGGTT	GCTCTCGCGC	45600
	TGCATGAAGC	AGACAAGCAG	CAGCCCCTAC	GTCTGGGACG	TGCGATGCTG	CGGATCGCCA	45660
	TCCTCAAGAG	ACCGGGAGCC	AAGATGCGAC	TTGTTCTCCG	AATGTCTCAT	TCCCTGTACG	45720
35	ACGGCTTGAG	TCTTGAACAC	ATCGTCAACG	CTCTACATGC	CTTGTACAGT	GATAAGCACC	45780
	TTGCGCAAGC	ACCCAAGTTT	GGTCTCTACA	TGCATCACAT	GGCTAGCCGA	CGTGCAGAGG	45840
	GCTACAATTT	CTGGCGATCT	ATTCTTCAGG	GCTCTTCAAT	GACATCCCTG	AAGCGCTCTG	45900
40	TCGGCGCCCT	CGAGGCCATG	ACGCCGTCTC	CCGGTACATG	GCAGACGTCA	AAGTCCATCA	45960
	GGATCCCTCC	TGCGGCACTC	AAGAACGGCA	TTACGCAGGC	GACCCTCTTC	ACCGCCGCCG	46020
	TCTCTCTCTI	GCTCGCCAAG	CATACCAAGT	CGACAGACGT	CGTCTTCGGC	CGCGTCGTAT	46080
45						ATCAACGAGG	46140
	TGCCTGTGCC	G CGTTCGGATC	GACGAGGGC	ACGACATGGG	TGGTCTGCTG	CGCGCCATTC	46200
	AAGACCAGTA	CACCAGCAGO	TTCCGGCAC	G AGACCTTGGG	CTTGCAAGAA	GTGAAGGAGA	46260
	ACTGCACGG	A CTGGACTGAT	GCGACCAAG	G AGTTCAGTTG	CTGCATTGCC	TTCCAGAACC	46320
50	TCAACCTGCA	A TCCTGAGGCC	GAGATTGAA	G GGCAGCAGAI	TCGCCTGGAG	GGTTTGCCAG	46380
						GGCACGAATG	46440
	GCACGAATGO	CACGAATGG	GCGAACGGC	A CGAATGGCAC	GAATGGCACG	AATGGTACCC	46500

40

	ATGCCAAC	CGG 7	CATC	ATGO	T AC	CAAC	CGGTG	TC	ATGO	CCG	CGAT	AGC	AAC (GTGGT	TTTC#	AG.	46560
5	CCGCTGGC	GA 1	CAAC	crcc	T GI	CACT	CGATO	TGG	ACAI	TGT	TGGG	SATTO	CG (GAGCO	CCGAC	CG	46620
	GCAGCGTC	CAA C	SATTO	GCAT	T GO	STGC	SAGCO	GGC	CAGAT	CCT	TGGA	GAGA	AG (GTCGT	rGGGC	CA	46680
	GCATGCTC	CAA 1	GAAC	TTTG	C GA	GACC	CATGO	TCG	CTTI	GAG	CAGA	ACAI	'AG (CAGCI	TTTC	CC	46740
10	AGGGAGAT	TG G	STTGG	ATGO	A CA	AGAI	TCTC	TTC	TAAT	ATG	GAGG	TTG	CA 2	rgage	CAAC	CA	46800
	GGAGGACI	AC I	GACT	тттс	A TO	STTTT	TTGG	GGI	TTTI	TGG	GGTI	TTCI	TT I	TCCI	TTCA	ΥT	46860
	CTTTACTT	GA 1	GCGC	GATO	T CI	GCTI	TCCT	CTA	GAAT	TC							46899
15	(2) INFO	RMAI	CION	FOR	SEQ	ID N	10: 2	:									
	(i)	(A (B (C	L) LE	NGTH PE: RAND	: 15 amin EDNE	281 o ac SS:	sing	o ac	ids								
20	(ii)	MOL	ECUL	Е ТҮ	PE:	prot	ein										
	(iii)	HYP	OTHE	TICA	L: N	0											
	(iii)	ANT	I-SE	NSE:	NO												
25	(vi)	(A		GANI	SM:	Toly	pocl 4921		m ni	veum	L						
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: 5	EQ I	D NO	: 2:							
30	Met 1	Gly	Ala	Ile	Gly 5	Gln	Asp	Met	Ala	Tyr 10	Asp	Arg	Leu	Ala	Asn 15	Pro	
	Ser	Arg	Ala	Ser 20	Ser	Ile	Ser	Ser	Asn 25	Arg	Tyr	Ser	Glu	Pro 30	Val	Glu	
35			35	•				40					45	Leu	-		
		50					55					60		Arg			
40	65					70					75			Thr		80	
					85					90				Val	95		
45				100					105					Ile 110			
			115					120					125	Gln			
50		130					135					140		Leu		_	
	145					150					155			His		160	
	Ser	Asp	Ser	Arg	Ser	Leu	Asp	Ile	Ile	Gln	Gln	Glu	Leu	Gly	Glu	Leu	

					16	5				. 17	0				17	5
5	Ту	r Th	r Al	a Al 18	a Se O	r Gl	n Gl	y Ly	s Se 18	r Il 5	e Se	r Al	а Су	s Pr 19		u Gl
	Pr	o Il	e Pr 19	o Il 5	e Gl	n Ty	r Ar	g As 20	p Le 0	u Th	r Th	r Tr	p G1 20		n Gl	n Asp
10	G1	u Gl 21	n Va O	l Ala	a Gl	u Gl	n Gl: 21	u Ar	g G1:	n Le	u Gl	у Ту 22		p Il	e Gl	u Glr
,,	Le:	u As 5	p As	n Ası	n Th	230	o Ala	a Gl	u Le	u Le	u Th: 23	r Gl	u Le	u Pr	o Ar	g Pro 240
	Ala	a Il	e Pr	o Sei	Gly 245	y Glu 5	ı Thi	r Gly	y Ly:	s Ile 25	e Sei	r Ph	e Gl	n Ile	e Ası 25	o Gly 5
15				200	,				265	5				27)	l Thr
	Ala	а Ту:	r Ala 275	a Val	L Lei	ı Lei	ı Ala	280	Phe	e Arq	y Val	Ala	285		e Arç	J Leu
20		230	,				295)				300)			J Asp
	505	,				310	,				315	•				Cys 320
25					323					330	l				335	
				240					345					350		Pro
30			333					360					365			Ser
		370					3/5					380				Asp
35	505					390					395					Ser 400
	Ala	Ala	Pro	Thr	Arg 405	Phe	qeA	Met	Glu	Met 410	His	Leu	Phe	Glu	Gly 415	Asp
40	•		Phe	420					425					430		
			Ile 435					440					445			
45	Gly	Ile 450	Ser	Glu	Pro	Ala	Val 455	His	Val	Lys	Thr	Met 460	Pro	Leu	Thr	Asp
			Ala			4/0					475					480
50	Asp	Tyr	Pro	Arg	Glu 485	Ala	Ser	Val	Val	Asp 490	Met	Phe	Gln	Glu	Gln 495	Val
			Asn	500					202					510		
55	Ser	Tyr	Ser 515	Glu	Leu	Asp	His	Lys 520	Ser	Asp	Gln	Leu	Ala 525	Ala	Trp	Leu

	Arg	Arg 530		Gln	Leu	Lys	Pro 535		Thr	Leu	Ile	Gly 540		Leu	Ser	Pro
5	Pro 545		Cys	Glu	Thr	Met 550		Ser	Phe	Leu	Gly 555		Leu	Lys	Ala	His 560
	Leu	Ala	Tyr	Leu	Pro 565		Asp	Ile	Asn	Val 570		Leu	Ala	Arg	Ile 575	Glu
10	Ser	Ile	Leu	Ser 580		Val	Asp	Gly	His 585		Leu	Val	Leu	Leu 590		Ser
	Asn	Val	Pro 595		Pro	Lys	Val	Asp 600		Pro	Asp	Val	Glu 605		Leu	Arg
15	Ile	Ser 610		Ala	Leu	Asn	Gly 615		Gln	Val	Asn	Gly 620		Ala	Gly	Lys
	Gln 625		Thr	Ala	Lys	Pro 630	Ser	Ala	Thr	Asp	Leu 635	Ala	Tyr	Val	Ile	Phe 640
20	Thr	Ser	Gly	Ser	Thr 645	Gly	Lys	Pro	Lys	Gly 650		Met	Ile	Glu	His 655	Arg
	Gly	Ile	Val	Arg 660	Leu	Val	Lys	Gly	Thr 665	Asn	Ile	Ile	Ser	Pro 670	Ala	Gln
25	Ala	Ala	Val 675	Pro	Thr	Ala	His	Leu 680	Ala	Asn	Ile	Ala	Phe 685		Leu	Ser
	Thr	Trp 690	Glu	Ile	Tyr	Thr	Pro 695	Ile	Leu	Asn	Gly	Gly 700	Thr	Leu	Val	Cys
30	11e 705	Glu	His	Ser	Val	Thr 710	Leu	Asp	Ser	Lys	Ala 715	Leu	Glu	Ala	Val	Phe 720
	Thr	Lys	Glu	Gly	Ile 725	Arg	Val	Ala	Phe	Leu 730	Ala	Pro	Ala	Leu	11e 735	Lys
35	Gln	Cys	Leu	Ala 740	Asp	Arg	Pro	Ala	Ile 745	Phe	Ala	Gly	Leu	Asp 750	Ser	Leu
	Tyr	Ala	Ile 755	Gly	Asp	Arg	Phe	Asp 760	Arg	Arg	Asp	Ala	Leu 765	His	Ala	Lys
40	Ser	Leu 770	Val	Lys	His	Gly	Val 775	Tyr	Asn	Ala	Tyr	Gly 780	Pro	Thr	Glu	Asn
	Ser 785	Val	Val	Ser	Thr	Ile 790	Tyr	Ser	Val	Ser	Glu 795	Ala	Ser	Pro	Phe	Val 800
45	Thr	Gly	Val	Pro	Val 805	Gly	Arg	Ala	Ile	Ser 810	Asn	Ser	Gly	Ala	Tyr 815	Val
	Met	Asp	Gln	Asp 820	Gln	Gln	Leu	Val	Ser 825	Pro	Gly	Val	Met	Gly 830	Glu	Leu
50	Val	Val	Ser 835	Gly	Asp	Gly	Leu	Ala 840	Arg	Gly	Tyr	Thr	Asp 845	Ser	Ala	Leu
	Asp	Lys 850	Asn	Arg	Phe	Val	Val 855	Val	Gln	Ile	Asp	Gly 860	Glu	Ser	Ile	Arg
55	Gly 865	Tyr	Arg	Thr	Gly	Asp 870	Arg	Ala	Arg	Tyr	Ser 875	Leu	Lys	Gly	Gly	Gln 880

	Ile	Glu	ı Phe	e Ph€	e Gly 885	Arç	y Met	. Ası	o Gla	n Gl:	n Val	L Lys	s Ile	e Arç	61 ₉	y His
5	Arg	Ile	e Glu	900	Ala	Glu	val	. Glu	90:	s Ala 5	a Leu	ı Lev	ı Asr	Ser 910		o Gln
	Val	Arg	915	Ala	Ala	Val	. Val	11e	e Arg	g Aro	g Glr	Glu	Glu 925		Glu	ı Pro
10	Ala	Met 930	Ile	Ala	Phe	Val	Thr 935	Thr	Glr	ı Gly	/ Thr	Leu 940		Asp	His	Leu
,0	Val 945	Asn	Ile	: Asn	Gly	Asn 950	Gly	His	Va]	Pro	955		Asn	Gly	Ser	Lys 960
45	Asn	Asp	Gln	Phe	Ala 965	Val	His	Val	Glu	Ser 970	Glu	Leu	Arg	Arg	Arg 975	Leu
15	Gln	Met	Leu	Leu 980	Pro	Ser	Tyr	Met	Met 985	Pro	Ala	Arg	Ile	Val 990	Val	Leu
	Asp	His	Leu 995	Pro	Leu	Asn	Pro	Asn 100	Gly 0	Lys	Val	Asp	Arg 100		Ala	Leu
20	Gly	Gln 101	Ser 0	Ala	Lys	Thr	Val 101	Gln 5	Lys	Ser	Lys	Leu 102		Ser	Gln	Arg
	Val 1025	Ala	Pro	Arg	Asn	Glu 103	Ile O	Glu	Ala	Val	Leu 103		Glu	Glu	Туг	Arg 1040
25	Ser	Val	Leu	Gly	Val 1045	Glu 5	Val	Gly	Ile	Thr 105		Asn	Phe	Phe	Asp 105	
	Gly	Gly	His	Ser 1060	Leu)	Thr	Ala	Met	Lys 106	Leu 5	Ala	Ala	Arg	Ile 1070		Gln
30	Arg	Leu	Asp 1075	Ile 5	Gln	Ala	Ser	Val 108	Ala O	Thr	Val	Phe	Glu 1085	Gln 5	Pro	Met
	Leu	Ala 1090	Asp)	Leu	Ala	Ala	Thr 1095	Ile	Gln	Arg	Gly	Ser 1100	Thr	Leu	Tyr	Ser
35	Val 1105	Ile	Pro	Thr	Thr	Glu 1110	Tyr	Thr	Gly	Pro	Val 1115	Glu 5	Gln	Ser	Phe	Ala 1120
	Gln	Gly	Arg	Leu	Trp 1125	Phe	Leu	Glu	Gln	Leu 1130	Asn)	Thr	Gly	Ala	Ser 113	
40	Tyr	Asn	Val	Met 1140	Leu	Thr	Val	Arg	Leu 1145	Arg	Gly	His	Leu	Asp 1150	Val	Asp
	Ala	Leu	Gly 1155	Thr	Ala	Leu	Leu	Ala 1160	Leu)	Glu	Lys	Arg	His 1165	Glu	Thr	Leu
45	Arg	Thr 1170	Thr	Phe	Glu	Glu	Arg 1175	Asp	Gly	Val	Gly	Met 1180	Gln	Val	Val	His
	Ser 1185	Ser	Leu	Met	Gly	Glu 1190	Leu .	Arg	Leu	Ile	Asp 1195	Ile	Ser	Glu	Lys	Ser 1200
50	Gly '	Thr .	Ala	Ala	His 1205	Glu .	Ala	Leu	Met	Lys 1210	Glu	Gln	Ser		Arg 1215	
	Asp 1	Leu '	Thr .	Arg (Glu 1	Pro (Gly '	Trp	Arg 1225	Val	Ala	Leu	Leu	Lys : 1230	Leu	Ala
55	Asp i	dis 1	His	Ile 1	Phe :	Ser :	Ile '	Val 1	Met	His	His	Ile	Val	Ser i	Asp	Gly

	1235	124	0	1245
	Trp Ser Leu Asp 1250	Leu Leu Arg His 1255	Glu Leu Gly Gln 1260	
5	Ala Leu Arg Gly 1265	Gln Asp Pro Leu 1270	Ser Arg Leu Glu 1275	Pro Leu Pro Ile 1280
	Gln Tyr Arg Asp	Phe Ala Val Trp 1285	Gln Lys Gln Asp 1290	Ser Gln Gln Lys 1295
10	Ala Ala His Gln 1300	Arg Gln Leu Glu	Tyr Trp Thr Lys	Gln Leu Ala Asp 1310
	Ser Thr Pro Ala	Glu Leu Leu Thr		Pro Ser Ile Leu 1325
15	Ser Gly Lys Ala 1330	Gly Lys Val Pro 1335	Val Ala Ile Glu 1340	
	Asp Thr Leu Gln 1345	Val Phe Ser Arg 1350	Thr His Gln Val	Thr Ser Phe Ala 1360
20	Val Leu Leu Ala	Ala Phe Arg Ala 1365	Ala His Phe Arg 1370	Leu Thr Gly Ser 1375
	Asp Asn Ala Thr 1380	Ile Gly Val Pro	Ser Ala Asn Arg 1385	Asn Arg Pro Glu 1390
25	Leu Glu Asn Val 1395	Ile Gly Phe Phe		Cys Ile Arg Ile 1405
	Thr Ile Asp Glu 1410	Asn Asp Asn Phe 1415	Glu Ser Leu Val 1420	
30	Ser Thr Thr Thr 1425	Ala Ala Gln Asp 1430	Asn Gln Asp Val 1435	Pro Phe Glu Gln 1440
	Val Val Ser Ser	Leu Met Pro Ser 1445	Ser Ser Arg Asp 1450	Ala Ser Arg Asn 1455
35	Pro Leu Val Gln 1460	Leu Met Phe Ala	Leu His Gly Gln 1465	Gln Asp Leu Phe 1470
	Lys Ile Gln Leu 1475	Glu Gly Thr Glu 1480		Pro Thr Glu Glu 1485
40		Asp Ile Glu Phe 1495		
	Leu Ser Gly Asp 1505	Ile Ile Phe Ala 1510	Ala Asp Leu Phe 1515	Glu Ala Glu Thr 1520
45	Ile Arg Gly Val	Val Ser Val Phe 1525	Gln Glu Val Leu 1530	Arg Arg Gly Leu 1535
	Gln Gln Pro Gln 1540	Thr Pro Ile Met	Thr Met Pro Leu 1545	Thr Asp Gly Ile 1550
50	Pro Glu Leu Glu 1555	Arg Met Gly Leu 1560		Lys Thr Asp Tyr 1565
	Pro Arg Asn Met 1570	Ser Val Val Asp 1575	Val Phe Gln Gln 1580	
55	Ser Ala Glu Ala 1585	Thr Ala Val Ile 1590	Asp Ser Ser Ser 1595	Arg Met Ser Tyr 1600

	Ala	Glu	Leu	Asp	Gln 160		Ser	Asp	Gln	Val 161		Ala	Trp	Leu	Arg 161	
5	Arg	Gln	Leu	Pro 162		Glu	Thr	Phe	Val 162		Val	Leu	Ala	Pro 163		Ser
	Суз	Glu	Ala 163	Val 5	Ile	Ala	Leu	Phe 164		Ile	Leu	Lys	Ala 164		His	Ala
10	Tyr	Leu 1650		Leu	Asp	Val	Asn 1655		Pro	Ala	Ala	Arg		Arg	Ala	Ile
	Leu 1665		Glu	Val	Lys	Gly 1670		Lys	Leu	Val	Leu 167		Gly	Ala	Gly	Glu 1680
15	Pro	Ser	Pro	Glu	Gly 1685		Ser	Pro	Glu	Val 1690		Ile	Val	Arg	Ile 169	_
	Asp	Ala	Thr	Ser 1700		Ala	Gly	His	Ala 1705		Leu	Arg	Asp	Gly 171		Ser
20	Lys	Pro	Thr 1715	Ala 5	Gly	Ser	Leu	Ala 1720		Val	Ile	Phe	Thr 1725		Gly	Ser
	Thr	Gly 1730		Pro	Lys	Gly	Val 1735		Ile	Glu	His	Arg 1740		Val	Leu	Arg
25	Leu 1745		Lys	Gln	Thr	Asn 1750		Leu	Ser	Ser	Leu 1755		Pro	Ala	Gln	Thr 1760
	Phe	Arg	Met	Ala	His 1765		Ser	Asn	Leu	Ala 1770		Asp	Ala	Ser	Ile 1775	. •
30	Glu	Val	Phe	Thr 1780		Leu	Leu	Asn	Gly 1785		Ser	Leu	Val	Cys 1790		Asp
	Arg	Phe	Thr 1795	Ile	Leu	Asp	Ala	Gln 1800		Leu	Glu	Ala	Leu 1805		Leu	Arg
35	Glu	His 1810		Asn	Ile	Ala	Leu 1815		Pro	Pro	Ala	Leu 1820		Lys	Gln	Суз
	Leu 1825	Thr	Asp	Ala	Ala	Ala 1830		Ile	Lys	Ser	Leu 1835		Leu	Leu	Tyr	Val 1840
40	Gly	Gly	Asp	Arg	Leu 1845		Thr	Ala	Asp	Ala 1850		Leu	Ala	Lys	Ala 1855	
	Val	Lys	Ser	Glu 1860	Val	Tyr	Asn	Ala	Tyr 1865		Pro	Thr		Asn 1870		Val
45	Met	Ser	Thr 1875	Leu	Tyr	Ser	Ile	Ala 1880		Thr	Glu	Arg	Phe 1885		Asn	Gly
	Val	Pro 1890	Ile	Gly	Arg	Ala	Val 1895		Asn	Ser	Gly	Val 1900		Val	Met	Asp
50	Gln 1905	Asn	Gln	Gln	Leu	Val 1910		Leu	Gly	Val	Met 1915		Glu	Leu	Val	Val 1920
	Thr	Gly	Asp	Gly	Leu 1925		Arg	Gly		Thr 1930		Pro	Ala	Leu	Asp 1935	
55	Asp	Arg	Phe	Val 1940	Asp	Val	Ile		Arg 1945		Gln	Leu	Leu	Arg 1950		Tyr

	Arg	Thr	Gly 195		Arg	Ala	Arg	Tyr 196		Pro	Lys	Asp	Gly 196		Val	Glu
5	Phe	Phe 197	-	Arg	Met	Asp	His 197		Val	Lys	Val	Arg 198		His	Arg	Ile
	Glu 198		Ala	Glu	Val	Glu 1990		Ala	Leu	Leu	Ser 199		Ala	Gly	Val	His 2000
10	Asp	Ala	Val	Val	Val 200		Asn	Ser	Gln	Glu 201		Asn	Gln	Gly	Val 201	
	Met	Val	Ala	Phe 2020		Thr	Ala	Gln	Asp 202		Glu	Thr	Leu	Gln 203		Ala
15	Gln	Ser	Ser 2035		Gln	Val	Gln	Glu 204	Trp 0	Glu	Ser	His	Phe 204	-	Thr	Thr
	Ala	Tyr 2050		Asp	Ile	Thr	Ala 205		Asp	Gln	Asn	Thr 206		Gly	Arg	Asp
20	Phe 2065		Ser	Trp	Thr	Ser 2070		Tyr	Asp	Gly	Thr 2075		Ile	Asp	Lys	Arg 2080
	Glu	Met	Gln	Glu	Trp 2085		Asp	Asp	Thr	Met 209		Thr	Phe	Leu	Asp 2095	
25	Gln	Ala	Ala	Gly 2100		Val	Leu	Glu	Ile 2105	_	Thr	Gly	Thr	Gly 211		Val
	Leu	Phe	Asn 2115		Gly	Gln	Ala	Gly 2120	Leu D	Lys	Ser	Tyr	Ile 2125		Leu	Glu
3 <i>0</i>	Pro	Ser 2130		Ser	Ala	Val	Gln 213		Val	Asn	Lys	Ala 2140		Gln	Thr	Phe
	Pro 2145		Leu	Glu	Gly	Lys 2150		Gln	Val	His	Val 2155		Thr	Ala	Met	Asp 2160
35	Thr	Gly	Arg	Leu	Ser 2165		Leu	Ser	Pro	Asp 217(Ile	Val	Ile	Asn 2175	
	Val	Ala	Gln	Tyr 2180		Pro	Ser	Arg	Glu 2185		Leu	Ala	Glu	Val 2190		Glu
40	Ala	Leu	Val 2195		Ile	Pro	Gly	Val 2200	Arg)	Arg	Ile	Phe	Phe 2205		Asp	Met
	Arg	Thr 2210		Ala	Thr	His	Lys 2215		Phe	Leu	Val	Ala 2220		Ala	Val	His
45	Thr 2225		Gly	Ser	Lys	Val 2230		Arg	Ser	Lys	Val 2235		Gln	Glu	Val	Ala 2240
	Arg	Leu	Glu	Glu	Leu 2245		Glu	Glu	Leu	Leu 2250		Asp	Pro	Ala	Phe 2255	
50	Thr	Ser		Lys 2260		Ser	Leu	Ser	Glu 2265		Ile	Glu	His	Val 2270		Ile
	Leu		Lys 2275		Met	Lys	Val	Asn 2280	Asn	Glu	Leu	Ser	Ser 2285		Arg	Tyr
55		Ala 2290		Leu	His		Arg 2295		His	Asn	Gln	Asn 2300		Ser	Arg	Ser
	Ile	His	Lys	Ile	Asn	Ala	Glu	Ser	Trp	Ile	Asp	Phe	Ala	Ser	Ser	Gln

	2305	2310	2315	2320
	Met Asp Arg Gln Gl 23	ly Leu Ala Arg Leu 1 325	Leu Lys Glu Asn Lys 2330	Asp Ala
5		•	Tyr Ser Lys Thr Ile	2335 Val Glu
			Asp His Asp Gly Asp	
10	His Ser Ser Ile As 2370		2365 Ile Ser Ala Ala Arg	Glu Lys
	Ala Ser Gln Cys Pro	-	2380 His Asp Leu Val Gln 2395	
15	Glu Asp Ala Gly Pho 240	e Arg Val Glu Val S	Ser Trp Ala Arg Gln	
		_	His His Phe Gln Pro	2415 Thr Glu
20	Asn Glu Ser Arg Ala 2435		Pro Thr Asp Tyr Lys (2445	Gly Gln
	Gln Ala Arg Ser Leu 2450	Thr Asn Arg Pro Lo	eu Gln Arg Val Glu 9 2460	Ser Arg
25	Arg Ile Glu Ala Glr 2465	n Val Arg Glu Gln Le 2470	eu Gln Val Leu Leu F 2475	Pro Ala 2480
	Tyr Met Ile Pro Ala 248	a Arg Ile Val Val Le 35 24	eu Gln Asn Met Pro I	
30	Thr Ser Gly Lys Val 2500	. Asp Arg Lys Glu Le 2505	eu Thr Leu Arg Ala I 2510	
	Thr Ala Ala Arg Thr 2515	Pro Ser Ser Glu Le 2520	eu Val Ala Pro Arg A 2525	sp Ser
35	Ile Glu Ala Ile Ile 2530	Cys Lys Glu Phe Ly 2535	ys Asp Val Leu Gly V 2540	al Glu
	Val Gly Ile Thr Asp 2545	Asn Phe Phe Asn Va 2550	al Gly Gly His Ser L 2555	eu Leu 2560
40	Ala Thr Lys Leu Ala 256	Ala Arg Leu Ser Ar 5 25	rg Gln Leu Asn Ala G 570 2	
	Ala Val Lys Asp Ile 2580	Phe Asp Arg Pro Va 2585	al Ile Ala Asp Leu A 2590	la Ala
45	Thr Ile Gln Gln Asp 2595	Thr Thr Glu His As 2600	on Pro Ile Leu Pro Ti 2605	hr Ser
	Tyr Thr Gly Pro Val 2610	Glu Gln Ser Phe Al. 2615	a Gln Gly Arg Leu Tr 2620	rp Phe
50	Leu Asp Gln Leu Asn 2625	Val Gly Ala Thr Trp 2630	P Tyr Leu Met Pro Pr 2635	ne Ala 2640
	Val Arg Leu Arg Gly 2645	Pro Leu Val Val Ser 265		la Leu 555
55	Leu Ala Leu Glu Glu 2660	Arg His Glu Thr Let 2665	u Arg Thr Thr Phe Il 2670	e Glu

	Gln	Glu	Gly 2675		Gly	Met	Gln	Val 2680		His	Pro	Phe	Ala 2685		Lys	Glu
5	Leu	Arg 2690		Ile	Asp	Val	Ser 2695	Gly 5	Glu	Glu	Glu	Ser 2700		Ile	Gln	Lys
	Ile 2705		Glu	Lys	Glu	Gln 2710		Thr	Pro	Phe	Asn 2715		Ala	Ser	Glu	Pro 2720
10	Gly	Phe	Arg	Leu	Ala 2725		Leu	Lys	Thr	Gly 2730		Asp	Glu	His	Ile 2735	
	Ser	Thr	Val	Met 2740		His	Ala	Ile	Ser 2745		Gly	Trp	Ser	Val 2750	Asp)	Ile
15	Phe	Gln	Gln 2755		Ile	Gly	Gln	Phe 2760		Ser	Ala	Ile	Leu 2765		Gly	His
	Asp	Pro 277(Ala	Gln	Ile	Ala 2775	Pro	Leu	Ser	Ile	Gln 2780		Arg	Asp	Phe
20	Ala 2785		Trp	Gln	Arg	Gln 2790		Phe	Gln	Val	Ala 2795		His	Arg	Arg	Gln 2800
	Leu	Ala	Tyr	Trp	Thr 2805		Gln	Leu	Ala	Asp 2810		Lys	Pro	Ala	Glu 2815	
25	Leu	Thr	Asp	Phe 2820		Arg	Pro	Pro	Met 2825		Ser	Gly	Arg	Ala 2830		Glu
	Ile	Pro	Val 2835		Val	Asp	Gly	Leu 2840		Tyr	Glu	Lys	Leu 2845		Asp	Phe
30	Cys	Arg 2850		Arg	Gln	Val	Thr 2855	Ala	Phe	Thr	Val	Leu 2860		Ala	Ala	Phe
	Arg 2865		Ala	His	Tyr	Arg 2870		Thr	Gly	Thr	Glu 2875		Ala	Thr	Ile	Gly 2880
35	Thr	Pro	Ile	Ala	Asn 2885		Asn	Arg	Pro	Glu 2890		Glu	Gly	Leu	Ile 2895	
	Phe	Phe	Val	Asn 2900		Gln	Cys	Met	Arg 2905		Thr	Val	Asp	Val 2910		Asp
40	Ser	Phe	Glu 2915		Leu	Val	His	Gln 2920		Arg	Glu	Thr	Thr 2925		Ala	Ala
	His	Ala 2930		Gln	Asp	Val	Pro 2935	Phe	Glu	Gln	Ile	Val 2940		Asn	Ile	Leu
45	Pro 2945	_	Ser	Ser		Thr 2950		Arg	Asn		Leu 2955		Gln	Leu	Met	Phe 2960
	Ala	Leu	His	Ser	Gln 2965		Asn	Leu	Gly	Lys 2970		Arg	Leu	Glu	Gly 2975	
50	Glu	Glu	Glu	Ile 2980		Ser	Ile	Ala	Glu 2985		Thr	Arg	Phe	Asp 2990		Glu
	Phe	His	Leu 2995		Gln	Glu	Ala	Glu 3000		Leu	Asn	Gly	Ser 3005		Val	Tyr
55	Ala	Ala 3010		Leu	Phe	Val	Pro 3015	Glu	Thr	Ile	Gln	Ser 3020		Ile	Thr	Ile

	Phe 302	Gln 5	Gly	Ile	Leu	Gln 3030		Gly	Leu	Gly	Glu 303		Asp	Met	Pro	Val 3040
5	Ala	Ser	Met	Ala	Leu 3045		Gly	Gly	Leu	Glu 3050		Leu	Arg	Ser	Thr 3055	
	Leu	Leu	His	Pro 3060		Gln	Thr	Asp	Tyr 3065		Cys	Asp	Ala	Ser 307		Val
10	Gln	Ile	Phe 3075		Gln	Gln	Val	Ala 3080		Asn	Pro	Asp	Val 3085		Ala	Val
	Arg	Asp 3090		Ser	Thr	Arg	Leu 3095		Tyr	Ala	Asp	Leu 310		Arg	Lys	Ser
15	Asp 310	Gln 5	Val	Ala	Cys	Trp 3110		Ser	Arg	Arg	Gly 3115		Ala	Pro	Glu	Thr 3120
	Phe	Val	Ala	Ile	Leu 3125		Pro	Arg	Ser	Cys 313(Thr	Ile	Val	Ala 3135	
20	Leu	Gly	Val	Leu 3140		Ala	Asn	Leu	Ala 3145		Leu	Pro	Leu	Asp 3150		Asn
	Val	Pro	Ala 3155		Arg	Leu	Glu	Ala 3160		Leu	Ser	Glu	Val 3169		Gly	Ser
25	Met	Leu 3170		Leu	Val	Gly	Ala 3175		Thr	Pro	Ile	Pro 3180		Gly	Met	Ala
	Glu 318	Ala 5	Glu	Thr	Ile	Arg 3190		Thr	Glu	Ile	Leu 3195		Asp	Ala	Lys	Thr 3200
30	Asp	Asp	Ile	Asn	Gly 3205		Ala	Ala	Ser	Gln 321		Thr	Ala	Ala	Ser 3215	
	Ala	Tyr	Val	Ile 3220		Thr	Ser	Gly	Ser 3225		Gly	Arg	Pro	Lys 3230		Val
35	Met	Val	Glu 3235		Arg	Gly	Ile	Val 3240		Leu	Thr	Lys	Gln 3245		Asn	Ile
	Thr	Ser 3250		Leu	Pro	Glu	Ser 3255		His	Met	Ala	His 3260		Ser	Asn	Leu
40	Ala 326	Phe 5	Asp	Ala	Ser	Val 3270		Glu	Val	Phe	Thr 3275		Leu	Leu	Asn	Gly 3280
	Gly	Thr	Leu	Val	Cys 3285	Ile	Asp	Tyr	Phe	Thr 3290	Leu)	Leu	Glu	Ser	Thr 3295	Ala
45	Leu	Glu	Lys	Val 3300		Phe	Asp	Gln	Arg 3305		Asn	Val	Ala	Leu 3310		Pro
40	Pro	Ala	Leu 3315		Lys	Gln	Cys	Leu 3320		Asn	Ser	Pro	Ala 3325		Val	Lys
50	Thr	Leu 3330		Val	Leu	Tyr	Ile 3335		Gly	Asp	Arg	Leu 3340		Ala	Ser	Asp
50	Ala 3345	Ala 5	Lys	Ala	Arg	Gly 3350		Val	Gln	Thr	Gln 3355		Phe	Asn	Ala	Tyr 3360
	Gly	Pro	Thr	Glu	Asn 3365		Val	Met	Ser	Thr 3370		Tyr	Pro	Ile	Ala 3375	
55	Asp	Pro	Phe	Ile	Asn	Gly	Val	Pro	Ile	Gly	His	Ala	Val	Ser	Asn	Ser

				338	0				338	5				339	Ó	
	Gly	Ala	Phe 339		Met	Asp	Gln	Asn 340		Gln	Ile	Thr	Pro 340		Gly	Ala
5	Met	Gly 341		Leu	Ile	Val	Thr 341		Asp	Gly	Leu	Ala 342		Gly	Tyr	Thr
	Thr 342	Ser 5	Ser	Leu	Asn	Thr 343	Gly 0	Arg	Phe	Ile	Asn 343		Asp	Ile	Asp	Gly 3440
10	Glu	Gln	Val	Arg	Ala 344		Arg	Thr	Gly	Asp 345		Val	Arg	Tyr	Arg 345	Pro 5
	Lys	Asp	Leu	Gln 346		Glu	Phe	Phe	Gly 346		Ile	Asp	His	Gln 347		Lys
15	Ile	Arg	Gly 347		Arg	Ile	Glu	Pro 3480		Glu	Val	Glu	Tyr 348		Leu	Leu
	Ser	His 349		Leu	Val	Thr	Asp 349		Ala	Val	Val	Thr 350		Ser	Gln	Glu
20	Asn 350	Gln 5	Asp	Leu	Glu	Met 351	Val 0	Gly	Phe	Val	Ala 351		Arg	Val	Ala	Asp 3520
	Val	Arg	Glu	Asp	Glu 3525		Ser	Asn	Gln	Val 3530		Glu	Trp	Gln	Thr 353	
25	Phe	Asp	Ser	Ile 3540		Tyr	Ala	Asp	11e 3545		Thr	Ile	Asp	Gln 355		Ser
	Leu	Gly	Arg 3555		Phe	Met	Ser	Trp 3560		Ser	Met	Tyr	Asp 356		Ser	Leu
30	Ile	Lys 357	Lys 0	Ser	Gln	Met	Gln 3575		Trp	Leu	Asp	Asp 3580		Met	Arg	Ser
	Leu 3585	Leu 5	Asp	Ser	Gln	Pro 3590		Gly	His	Val	Leu 3595		Val	Gly	Thr	Gly 3600
35	Thr	Gly	Met	Val	Leu 3605	Phe	Asn	Leu	Gly	Arg 3610		Gly	Gly	Leu	Gln 3615	
	Tyr	Val	Gly	Leu 3620		Pro	Ser	Pro	Ser 3625		Thr	Ala	Phe	Val 3630		Lys
40	Ala	Ala	Lys 3635	Ser	Phe	Pro	Gly	Leu 3640		Asp	Arg	Ile	Arg 3645		Glu	Val
	Gly	Thr 3650	Ala	Thr	Asp	Ile	Asp 3655		Leu	Gly	Asp	Asp 3660		His	Ala	Gly
45	Leu 3665	Val	Val	Val	Asn	Ser 3670	Val	Ala	Gln	Tyr	Phe 3675	Pro	Ser	Gln	Asp	Tyr 3680
	Leu	Ala	Gln	Leu	Val 3685	Arg	Asp	Leu	Thr	Lys 3690		Pro	Gly	Val	Glu 3695	
50	Ile	Phe	Phe	Gly 3700	Asp	Met	Arg		His 3705		Ile	Asn	Arg	Asp 3710		Leu
	Val	Ala	Arg 3715	Ala	Val	His		Leu 3720	Gly	Asp	Lys		Thr 3725		Ala	Glu
55	Ile	Gln 3730	Arg	Glu	Val	Val	Arg : 3735	Met (Glu	Glu		Glu 3740		Glu	Leu	Leu

	Val Asp 3745	Pro Ala		Phe 3750		Ser	Leu	Thr	Thr 3755		Val	Glu	Asn	Ile 3760
5	Lys His	Val Glu	1le 3765		Pro	Lys	Arg	Met 3770		Ala	Thr	Asn	Glu 3775	
	Ser Ser	Tyr Arc		Ala	Ala	Val	Leu 3785		Val	Asn	Asp	Leu 3790		Lys
10	Pro Ala	His Ly: 3795	val:	Ser	Pro	Gly 3800		Trp	Val	Asp	Phe 3805		Ala	Thr
	Lys Met 381		g Asp .	Ala	Leu 3815		Arg	Leu	Leu	Arg 3820		Thr	Lys	Ile
15	Ser Asp 3825	His Ile		Ile 3830		Asn	Ile	Pro	Asn 3835		Lys	Thr	Ile	Val 3840
	Glu Arg	Thr Ile	Cys 3845		Ser	Val	Tyr	Asp 3850		Gly	Gly	Asp	Ala 3855	
20	Asp Ser	Asn Asn 386		Val	Ser	Trp	Leu 3865		Ala	Ala	Arg	Ser 3870		Ala -
	Val Lys	Val Ala 3875	Ser :	Leu	Ser	Ala 3880		Asp	Leu	Val	Asp 3885		Ala	Gln
25	Glu Ala 389	-	arg '	Val	Glu 3895		Ser	Суз	Ala	Arg 3900		Trp	Ser	Gln
	Asn Gly 3905	Ala Leu		Ala 3910		Phe	His	His	Leu 3915		Pro	Ser	Pro	Gln 3920
30	Ser Ser	His Val	Leu 3925		Asp	Phe	Leu	Thr 3930		His	Gln	Gly	Arg 3935	
	Glu Glu	Ala Let 394		Asn	His	Pro	Leu 3945		Arg	Ala	Gln	Ser 3950		Arg
35	Val Glu	Arg Glr 3955	lle	Arg	Glu	Arg 3960		Gln	Thr	Leu	Leu 3965		Ala	Tyr
	Met Ile 397		Gln	Ile	Met 3975		Leu	Asp	Lys	Leu 3980		Leu	Asn	Ala
40	Asn Gly 3985	Lys Val		Arg 3990		Gln	Leu	Thr	Gln 3995		Ala	Gln	Thr	Val 4000
	Pro Lys	Ala Lys	Gln '								_	Thr	Glu 4015	_
45	Glu Arg	Val Let 402		Gln	Glu	Phe	Ser 4025		Val	Leu	Gly	Val 4030		Ile
	Gly Ile	Met Glu 4035	Asn l	Phe	Phe	Asp 4040		Gly	Gly	His	Ser 4045		Met	Ala
50	Thr Lys		Ala A	Arg	Ile 4055		Arg	Arg	Leu	Glu 4060		His	Val	Ser
	Val Lys 4065	Glu Ile		Asp 4070		Pro	Arg	Val	Cys 4075	_	Leu	Val	Leu	Ile 4080
55	Val Gln	Gln Gly	Ser 2 4085	Ala	Pro	His	Asp	Pro. 4090		Val	Ser	Thr	Lys 4095	

	Thr	Gly	Pro	Val 410	-	Gln	Ser	Phe	Ala 410		Gly	Arg	Leu	Trp 411	_	Leu
5	Asp	Gln	Leu 411	Asn 5	Phe	Gly	Ala	Thr 412		Tyr	Leu	Met	Pro 412		Ala	Val
	Arg	Leu 413		Gly	Ala	Met	Asn 413	_	His	Ala	Leu	Thr 414	_	Ala	Leu	Leu
10	Ala 414		Glu	Arg	Arg	His 415		Leu	Leu	Arg	Thr 415		Phe	Tyr	Glu	Gln 4160
	Asn	Gly	Val	Gly	Met 416		Lys	Val	Asn	Pro 417		Val	Thr	Glu	Thr 417	
15	Arg	Ile	Ile	Asp 418		Ser	Asn	Gly	Asp 418		Asp	Tyr	Leu	Pro 419		Leu
	Lys	Lys	Glu 419	Gln 5	Thr	Ala	Pro	Phe 420		Leu	Glu	Thr	Glu 420		Gly	Trp
20	Arg	Val 421		Leu	Leu	Arg	Leu 4215		Pro	Gly	Asp	Tyr 422		Leu	Ser	Val
	Val 422		His	His	Ile	Ile 4230		Asp	Gly	Trp	Ser 423		Asp	Val	Leu	Phe 4240
25	Gln	Glu	Leu	Gly	Gln 4245		Tyr	Ser	Thr	Ala 4250		Lys	Gly	His	Asp 425	
	Leu	Ser	Gln	Thr 4260		Pro	Leu	Pro	Ile 4265		Tyr	Arg	Asp	Phe 4270		Leu
<i>30</i>	Trp	Gln	Lys 4275	Lys	Pro	Thr	Gln	Glu 4280		Glu	His	Glu	Arg 4285		Leu	Gln
30	Tyr	Trp 4290		Glu	Gln	Leu	Val 4295		Ser	Ala	Pro	Ala 4300		Leu	Leu	Thr
. 35	Asp 4305		Pro	Arg	Pro	Ser 4310		Leu	Ser	Gly	Gln 4319		Gly	Glu	Met	Ser 4320
33	Val	Thr	Ile	Glu	Gly 4325		Leu	Tyr	Lys	Asn 4330		Glu	Glu	Phe	Cys 4335	
40	Val	His	Arg	Val 4340		Ser	Phe	Val	Val 4345		Leu	Ala	Ala	Leu 435(_	Ala
40			4355					4360)				4365	5		
45		4370)	Arg			4375	,				4380)			
45	4385	•		Gln		4390					4395	•				4400
				Val	4405					4410)				4415)
50	His	Gln	Asp	Val 4420		Phe	Glu	Lys	Ile 4425		Ser	Thr	Leu	Leu 4430		Gly
			4435					4440					4445			
55	His	Ser	Gln	Lys	Asn	Leu	Gly	Glu	Leu	Lys	Leu	Glu	Asn	Ala	His	Ser

		445	0				445	55				446	0			
5	Glu 446	Val 5	Val	Pro	Thr	Glu 447	ı Ile	e Thr	Thr	Arg	Phe 447		Leu	Glu	Phe	His 4480
	Leu	Phe	Gln	Gln	Asp 448	Asp 5	Lys	Leu	Glu	Gly 449		Ile	Leu	Tyr	Ser 449	Thr 5
10	Asp	Leu	Phe	Glu 450	Ala O	Val	Ser	. Val	Gln 450		Leu	Leu	Ser	Val 451		Gln
	Glu	Ile	Leu 4515	Arg	Arg	Gly	Leu	Asn 452	Gly 0	Pro	Asp	Val	Pro 452		Ser	Thr
15	Leu	Pro 4530	Leu O	Gln	Asp	Gly	Ile 453		Asp	Leu	Gln	Arg 454		Gly	Leu	Leu
	Asp 4545	Val	Gln	Lys	Thr	Glu 455	Tyr 0	Pro	Arg	Asp	Ser 455	Ser 5	Val	Val	Asp	Val 4560
20	Phe	His	Glu	Gln	Val 456	Ser 5	Ile	Asn	Pro	Asp 457	Ser 0	Ile	Ala	Leu	Ile 457	
	Gly	Ser	Glu	Lys 458	Leu)	Ser	Tyr	Ala	Gln 458	Leu 5	Asp	Arg	Glu	Ser 459		Arg
25	Val	Ala	Arg 4595	Trp	Leu	Arg	His	Arg 460		Phe	Ser	Ser	Asp 4605		Leu	Ile
25	Ala	Val 4610	Leu)	Ala	Pro	Arg	Ser 461	Cys 5	Glu	Thr	Ile	Ile 4620		Phe	Leu	Gly
	Ile 4625	Leu	Lys	Ala	Asn	Leu 4630	Ala)	Tyr	Leu	Pro	Leu 4635	Asp	Val	Lys	Ala	Pro 4640
30	Ala	Ala	Arg	Ile	Asp 4645	Ala	Ile	Val	Ser	Ser 4650		Pro	Gly	Asn	Lys 4655	
	Ile	Leu	Leu	Gly 4660	Ala	Asn	Val	Thr	Pro 4665		Lys	Leu	Gln	Glu 4670		Ala
35	Ile	Asp	Phe 4675	Val	Pro	Ile	Arg	Asp 4680	Thr	Phe	Thr	Thr	Leu 4685		Asp	Gly
	Thr	Leu 4690	Gln	Asp	Gly	Pro	Thr 4695	Ile	Glu	Arg	Pro	Ser 4700	Ala	Gln	Ser	Leu
40	Ala 4705	Tyr	Ala	Met	Phe	Thr 4710	Ser	Gly	Ser	Thr	Gly 4715		Pro	Lys	Gly	Val 4720
	Met '	Val	Gln :	His	Arg 4725	Asn	Ile	Val	Arg	Leu 4730		Lys	Asn	Ser	Asn 4735	
45	Val 2	Ala	Lys (Gln 4740	Pro	Ala	Ala	Ala	Arg 4745		Ala	His	Ile	Ser 4750		Leu
	Ala 1	Phe .	Asp 2 4755	Ala	Ser	Ser	Trp	Glu 4760	Ile	Tyr	Ala		Leu 4765		Asn	Gly
50	Gly A	Ala 4770	Ile '	Val (Cys	Ala	Asp 4775	Tyr	Phe	Thr	Thr	Ile 4780	Asp	Pro	Gln	Ala
	Leu (4785	Gln (Glu :	Thr 1	Phe	Gln 4790	Glu	His	Glu		Arg (4795	Gly .	Ala :	Met		Pro 4800
55	Pro S	Ser 1	Leu I	Leu :	Lys 4805	Gln	Cys	Leu		Gln 4810		Pro 2	Asp :		Ile 4815	Ser

		Ile Leu Phe 4820	Ala Ala Gly 482		Ser Ser Val Asp 4830
5	Ala Leu Gln A 4835		Leu Val Gly 4840	Ser Gly Val	Phe Asn Ala Tyr 4845
	Gly Pro Thr (Glu Asn Thr	lle Leu Ser 4855	Thr Ile Tyr 4860	Asn Val Ala Glu)
10	Asn Asp Ser I 4865	Phe Val Asn 487		Ile Gly Ser 4875	Ala Val Ser Asn 4880
	Ser Gly Ala	Tyr Ile Met 4885	Asp Lys Asn	Gln Gln Leu 4890	Val Pro Ala Gly 4895
15	-	Glu Leu Val 4900	. Val Thr Gly 490		Ala Arg Gly Tyr 4910
	Met Asp Pro 1 4915		Ala Asp Arg 4920	Phe Ile Gln	Leu Thr Val Asn 4925
20	Gly Ser Glu (4930	Gln Val Arg	Ala Tyr Arg 4935	Thr Gly Asp	Arg Val Arg Tyr)
	Arg Pro Lys A	Asp Phe Gln 495		Phe Gly Arg 4955	Met Asp Gln Gln 4960
25	Ile Lys Ile A	Arg Gly His 4965	Arg Ile Glu	Pro Ala Glu 4970	Val Glu Gln Ala 4975
		Asp Gly Phe 4980	Val Glu Asp 498		Val Ile Arg Thr 4990
30	Pro Glu Asn (4995		Glu Met Val 5000	Ala Phe Val	Thr Ala Lys Gly 5005
	Asp Asn Ser A	Ala Arg Glu	Glu Glu Ala 5015	Thr Thr Gln 5020	Ile Glu Gly Trp
35	Glu Ala His E 5025	Phe Glu Gly 503		Ala Asn Ile 5035	Glu Glu Ile Glu 5040
	Ser Glu Ala I	Leu Gly Tyr 5045	Asp Phe Met	Gly Trp Thr 5050	Ser Met Tyr Asp 5055
40	-	Ile Asp Lys 5060	Asp Glu Met 506		Leu Asn Asp Thr 5070
	Met Arg Ser I 5075	Leu Leu Asp	Gly Lys Pro 5080	Ala Gly Arg	Val Leu Glu Val 5085
45	Gly Thr Gly T 5090	Thr Gly Met	Ile Met Phe 5095	Asn Leu Gly 5100	Arg Ser Gln Gly
	Leu Glu Arg 7 5105	Tyr Ile Gly 511	_	Ala Pro Ser 5115	Ala Ala Glu Phe 5120
50	Val Asn Asn A	Ala Ala Lys 5125	Ser Phe Pro	Gly Leu Ala 5130	Gly Arg Ala Glu 5135
		Gly Thr Ala 5140	Ala Asp Val 5145	_	Gln Gly Leu Thr 5150
55	Ser Asp Met A	Ala Val Ile	Asn Ser Val 5160	Ala Gln Tyr	Phe Pro Thr Pro 5165

		yr Lei 170	ı Ala	Glu	Thr	Ile 5175		Ser	Leu	Val	Gln 5180		Pro	Gly	Met
5	Lys A 5185	arg Ile	Yyr	Leu	Gly 5190		Met	Arg	Ser	Trp 5195		Met	Asn	Arg	Asp 5200
	Phe A	ala Ala	a Ala	Arg 520		Ala	Tyr	Ser	Leu 5210		Asp	Asn	Ala	Ser 5215	
10	Asp A	rg Val	Arg 522	_	Lys	Met	Met	Glu 5225		Glu	Glu	Lys	Glu 5230		Glu
	Leu L	eu Va. 52:		Pro	Ala	Phe	Phe 5240		Ala	Leu	Ala	Ser 5245		Leu	Gln
15		rg Ile 250	e Gln	His	Val	Glu 5255	Ile	Leu	Pro	Lys	Arg 5260	Met)	Lys	Ala	Thr
	Asn G 5265	lu Lei	ser	Ser	Tyr 5270		Tyr	Ala	Ala	Val 5275		His	Ile	Ser	Asp 5280
20	Glu P	ro Le	Pro	Ile 5285		Lys	Ile	Asp	Pro 5290		Ala	Trp	Ile	Asn 5295	
	Glu G	Sly Ser	5300		Thr	Arg	Glu	Ala 5305		Ala	Gln	Val	Leu 5310	_	Glu
25	Asn G	lu Ası 53		Glu	Ser	Val	Ala 5320		Ser	Asn	Ile	Pro 5325	_	Ser	Lys
		al Val 330	Glu	Arg	His	Ile 5335		Arg	Ser	Leu	Asp 5340		Glu	Asp	Ala
30	Asn A 5345	la Pro	Glu	Glu	Ser 5350		Asp	Gly	Ser	Asp 5355		Ile	Ser	Ala	Val 5360
	Arg T	hr Aro	, Ala	Gln 5365		Cys	His	Thr	Leu 5370		Ala	Ser	Asp	Leu 5375	
35	Asp I	le Ala	Glu 5380		Ala	Gly	Phe	Arg 5385		Glu	Val	Ser	Trp 5390		Arg
	Gln H	is Ser 539		His	Gly	Ala	Leu 5400	-	Ala	Val	Phe	His 5405		Leu	Lys
40		la Thi 410	Glu	Asp	Ser	Arg 5415		Leu	Ile	Lys	Phe 5420		Thr	Asp	His
40	Gln G 5425	ly Arq	Pro	Leu	Lys 5430		Leu	Thr	Asn	Gln 5435		Leu	Leu	Pro	Ala 5440
	Gln S	er Aro	Arg	Ala 5445		Leu	Leu	Ile	Arg 5450		Gly	Leu	Gln	Thr 5455	
45	Leu P	ro Pro	Tyr 546		Ile	Pro	Ser	Gln 5465		Thr	Leu	Ile	Asp 5470	-	Met
	Pro L	eu Asr 547		Asn	Gly	Lys	Val 5480	-	Arg	Arg	Glu	Leu 5485		Arg	Arg
50 .		ys Ile 490	Thr	Gln	Lys	Ser 5495		Pro	Val	Glu	Asp 5500		Val	Pro	Pro
	Arg A 5505	sn Ser	Val	Glu	Ala 5510		Val	Cys	Lys	Gly 5515		Thr	Asp	Val	Leu 5520
55	Gly V	al Glu	Val	Gly	Ile	Thr	Asp	Asn	Phe	Phe	Asn	Leu	Gly	Gly	His

		55	25		5530		5535
	Ser Leu	Met Ala Th 5540	r Lys Leu	ı Ala Ala 554		Gly Arg Gln 5550	
5	Thr Arg	Ile Ser Va 5555	L Arg Asp	Val Phe 5560	Asp Gln	Pro Val Val 5565	Ala Asp
	Leu Ala 557		e Gln Arc			His Glu Pro 5580	Ile Lys
10	Pro Ala 5585	Asp Tyr Th	5590	Val Pro	Gln Ser 1 5595	Phe Ala Gln	Gly Arg 5600
	Leu Trp	Phe Leu As		ı Asn Val	Gly Ala ' 5610	Thr Trp Tyr	Leu Met 5615
15	Pro Leu	Gly Ile Ar	g Leu His	Gly Ser 562		Val Asp Ala 563	
	Thr Ala	Ile Ser Al	a Leu Glu	Gln Arg 5640	His Glu	Pro Leu Arg 5645	Thr Thr
20	Phe His 565		Gly Val		Gln Val	Val Gln Asp 5660	His Arg
	Pro Lys 5665	Asp Leu Ar	7 Ile Ile 5670	e Asp Leu	Ser Thr 6 5675	Gln Pro Lys	Asp Ala 5680
25	Tyr Leu	Ala Val Le 56		s Glu Gln	Thr Thr 3	Leu Phe Asp	Leu Ala 5695
	Thr Glu	Pro Gly Tr 5700	Arg Val	L Ala Leu 570		Leu Gly Glu 571	
30	His Ile	Leu Ser Il	e Val Met	His His 5720	Ile Ile	Ser Asp Gly 5725	Trp Ser
	Val Glu 573		e Asp Glu 573			Tyr Ser Ser 5740	Ala Leu
35	Arg Gln 5745	Gln Asp Pr	Met Glu 5750	Gln Ile	Leu Pro : 5755	Leu Pro Ile	Gln Tyr 5760
	Arg Asp	Phe Ala Al		Lys Thr	Glu Glu 6 5770	Gln Val Ala	Glu His 5775
40	Gln Arg	Gln Leu As 5780	yr Tr	Thr Glu 578	-	Ala Asp Ser 579	^
	Ala Glu	Leu Leu Th 5795	r Asp Leu	Pro Arg 5800	Pro Ser	Ile Leu Ser 5805	Gly Arg
45	Ala Asn 581		Leu Th: 581			Leu His Asp 5820	Lys Leu
	Arg Ala 5825	Phe Cys Ar	y Val His 5830	Gln Ala	Thr Pro 1 5835	Phe Val Ile	Leu Leu 5840
50	Ala Ala	Leu Arg Al		Tyr Arg	Leu Thr 6	Gly Ala Glu	Asp Ala 5855
	Thr Leu	Gly Thr Pr 5860	o Ile Ala	a Asn Arg 586		Pro Glu Leu 587	
55	Met Ile	Gly Phe Ph 5875	e Val Asr	Thr Gln 5880	Cys Met	Arg Ile Ala 5885	Ile Glu

	Glu	1 Asn 589	Asp	Asn	Phe	Glu	Ser 589		Val	Arg	Arg	Val 590		Ser	Thr	Ala
5	Thr 590	Ser	Ala	Phe	Ala	Asn 591	Gln O	Asp	Val	Pro	Phe 591		Ser	Ile	Val	Ser 5920
	Ser	Leu	Leu	Pro	Gly 592		Arg	Asp	Ala	Ser 593		Asn	Pro	Leu	Val 593	
10	Val	Ile	Leu	Ala 594	Val 0	His	Ser	Gln	Gln 594		Leu	Gly	Lys	Leu 595		Leu
	Glu	Gly	Leu 595	Arg 5	Asp	Glu	Ala	Val 596	Asp 0	Ser	Ala	Ile	Ser 596		Arg	Phe
15	Asp	Val 597	Glu 0	Phe	His	Leu	Phe 597	Glu 5	His	Ala	Asp	Arg 598		Ser	Gly	Ser
	Val 598	Leu 5	Tyr	Ala	Lys	Glu 599	Leu 0	Phe	Lys	Leu	Arg 599		Ile	Glu	Ser	Val 6000
20	Val	Ser	Val	Phe	Leu 6005	Glu 5	Thr	Leu	Arg	Arg 6010		Leu	Asp	Gln	Pro 601	
	Thr	Pro	Leu	Ala 6020	Val	Leu	Pro	Leu	Thr 6025		Gly	Val	Gly	Glu 6030		Ala
25	Ser	Lys	Gly 6035	Leu	Leu	Asp	Val	Pro 6040	Arg)	Thr	Asp	Tyr	Pro 604		Asp	Ala
	Asn	Ile 605	Val 0	Glu	Val	Phe	Gln 605	Gln 5	His	Val	Arg	Ala 6060		Pro	Asp	Ala
30	Ile 606	Ala 5	Val	Lys	Asp	Ala 6070	Thr)	Ser	Ile	Leu	Thr 6075		Ala	Gln	Leu	Asp 6080
	Gln	Gln	Ser	Asp	Arg 6085	Leu	Ala	Ile	Trp	Leu 6090		Arg	Arg	His	Met 6095	
35	Pro	Glu	Thr	Leu 6100	Val	Gly	Val	Leu	Ala 6105		Arg	Ser	Cys	Glu 6110		Ile
	Ile	Ala	Met 6115	Phe	Gly	Ile	Met	Lys 6120		Asn	Leu	Ala	Tyr 6125		Pro	Leu
40	Asp	Ile 6130	Asn)	Ser	Pro	Ala	Ala 6135	Arg	Leu	Arg	Ser	Ile 6140		Ser	Ala	Val
	Asp 6145	Gly	Asn	Lys	Leu	Val 6150	Leu	Leu	Gly	Ser	Gly 6155		Thr	Ala	Pro	Glu 6160
45			Asn		6165					6170					6175	
	Gly	Thr	Gly	Leu 6180	Asp	Lys	Thr	Gln	Gly 6185	Ser	Asn	Ala	Arg	Pro 6190	Ser	Ala
50	Thr	Ser	Leu 6195	Ala	Tyr	Val	Ile	Phe 6200	Thr	Ser	Gly		Thr 6205		Lys	Pro
	Lys	Gly 6210	Val:	Met	Val :	Glu	His 6215	Arg	Ser	Val	Thr	Arg 6220	Leu	Ala	Lys	Pro
55	Ser 6225	Asn	Val	Ile :	Ser :	Lys 6230	Leu	Pro (Gln (Gly .	Ala 6235	Arg	Val	Ala :		Leu 6240

	Ala	Asn	Ile	e Ala	Phe 624		Ala	Ser	Ile	625		Ile	Ala	Thr	Thr 625	Leu 5
5	Leu	Asn	Gly	7 Ala 626		Leu	val	Cys	Leu 626		Tyr	His	Thr	Val 627		Asp
	Cys	Arg	Thr 627		Lys	Glu	. Val	Phe 628		Arg	Glu	Ser	Ile 628		Val	Val
10	Thr	Leu 629	Met 0	Pro	Ala	Leu	Leu 629		Gln	Cys	Val	Ala 630		Ile	Pro	Glu
	Thr 630	Leu 5	Ala	His	Leu	Asp 631		Leu	Tyr	Thr	Gly 631		Asp	Arg	Val	Gly 6320
15	Gly	His	Asp	Ala	Met 632	Arg 5	Ala	Arg	Ser	Leu 633		Lys	Ile	Gly	Met 633	
	Ser	Gly	Tyr	Gly 634	Pro 0	Thr	Glu	Asn	Thr 634		Ile	Ser	Thr	Ile 635		Glu
20	Val	qzA	Ala 635		Glu	Met	Phe	Val 636		Gly	Val	Pro	Ile 636		Lys	Thr
	Val	Ser 637	Asn 0	Ser	Gly	Ala	Tyr 637		Met	Asp	Arg	Asn 638		Gln	Leu	Val
25	Pro 6385	Ser 5	Gly	Val	Val	Gly 639		Leu	Val	Val	Thr 639		Asp	Gly	Leu	Ala 6400
	Arg	Gly	Tyr	Thr	Asp 640		Ser	Leu	Asn	Lys 641		Arg	Phe	Ile	Tyr 641	
30	Thr	Val	Asn	Gly 642	Glu O	Ser	Ile	Arg	Ala 642		Arg	Thr	Gly	Asp 6430		Val
	Arg	Tyr	Arg 643	Pro 5	His	Asp	Leu	Gln 644		Glu	Phe	Phe	Gly 644		Met	Asp
35	Gln	Gln 6450		Lys	Ile	Arg	Gly 6455		Arg	Ile	Glu	Pro 6460		Glu	Val	Glu
	6465	5			Ser	6470	0				6475	5				6480
40					Asp 6485	i				6490)				6495	5
				6500					6505	5				6510		
45			6515	5	Gly			6520)				6525	5	_	
		6530)		Ile		6535	•				6540				
50	6545				Tyr	6550)				6555	•				6560
					Asp 6565					6570					6575	
55				6580					6585					6590		
	Leu .	мта	ьys	Cys	Pro	Gly	Leu	Gln	Gly	Tyr	Val	Gly	Phe	Glu :	Pro	Ser

		6595				660	0				660	5		
5	Lys Ser 661	Ala Al	a Gln	Phe	Val 661		Asp	Ala	Ala	Gln 662		Phe	Pro	Ala
	Leu Lys 6625	a Asp Gl	y Arg	Ser 663		Val	His	Val	Gly 663		Ala	Thr	Asp	Ile 6640
10	Asn Lys	ala Gl	9 Pro 664		Gln	Pro	Arg	Leu 665		Val	Ile	Asn	Ser 665	
	Ala Glr	Tyr Ph 66		Thr	Pro	Glu	Tyr 666		Phe	Arg	Val	Val 667		Ala
	Leu Val	Gln Il	e Pro	Ser	Val	Glu 668		Ile	Val	Phe	Gly 668		Met	Arg
15	Thr Asn 669	Ala Il 00	e Asn	Arg	Asp 6695		Val	Ala	Ser	Arg 670		Leu	His	Thr
	Leu Gly 6705	Glu Ly	s Ala	Asn 671(Arg	Leu	Val	Arg 671		Met	Ile	Tyr	Glu 6720
20	Leu Glu	Ala As	6725		Glu	Leu	Leu	Thr 6730		Pro	Ala	Phe	Phe 673	
	Ser Leu	Arg Th		Leu	Gly	Glu	Lys 6745		Lys	His	Val	Glu 6750		Leu
25	Pro Lys	Thr Met 6755	Lys	Ala	Thr	Asn 6760		Leu	Ser	Lys	Tyr 676		Tyr	Ala
	Ala Val 677	Leu Hi:	3 Val	Arg	Gly 6775		Arg	Glu	Gln	Ser 6780		Ile	His	Gln
30	Val Ser 6785	Pro Asi	n Ala	Trp 6790		Asp	Phe	Ala	Ala 6795		Gly	Leu	Asp	Arg 6800
	Gln Thr	Leu Ile	Asn 6805		Leu	Lys	Glu	His 6810		Asp	Ala	Gly	Thr 6815	
35	Ala Ile	Gly Ass 682		Pro	Tyr	Ser	Lys 6825		Ile	Val	Glu	Arg 6830		Val
	Asn Lys	Ser Let 6835	Ser	Glu	Asp	Asp 6840		Glu	Glu	Gly	Gln 6845		Ser	Leu
40	Asp Gly 685	Ser Ala O	Trp	Val	Ala 6855		Val	Arg	Met	Ala 6860		Gln	Ser	Cys
	Pro Ser 6865	Leu Asp	Ala	Met 6870		Val	Lys	Glu	Ile 6875		Gln	Glu	Ala	Gly 6880
45	Tyr Gln	Val Glu	Val 6885	Ser	Trp	Ala	Arg	Gln 6890		Ser	Gln	Asn	Gly 6895	
	Leu Asp	Ala Ile 690	Phe 0	His	His	Phe	Glu 6905		Pro	Lys	Glu	Gly 6910		Arg
50	Thr Leu	Ile Glu 6915	Phe	Pro	Thr	Asp 6920	Tyr	Glu	Gly	Arg	Asn 6925		Asn	Thr
	Leu Thr 693	Asn Arg O	Pro	Leu	Asn 6935	Ser	Ile	Glr	Ser	Arg 6940	Arg	Leu	Gly	Thr
55	Gln Ile 6945	Arg Glu	Lys	Leu 6950	Gln	Thr	Leu	Leu	Pro 6955		Tyr	Met	Ile	Pro 6960

	Ser	Arg	Ile	Met	Val 696		Asp	Gln	Met	Pro 697		Asn	Asn	Asn	Gly 697	-
5	Ile	Asp	Arg	Lys 698		Leu	Val	Arg	Arg 698		Ile	Val	Ala	Pro 699		Pro
	Arg	Ser	Ala 699	Ala 5	Thr	Arg	Val	Ala 700	Pro 0	Arg	Asn	Glu	Ile 700		Ala	Ile
10	Leu	Arg 701		Glu	Phe	Glu	Asp 701		Leu	Gly	Thr	Glu 702		Ser	Val	Leu
	Asp 702		Phe	Phe	Asp	Leu 703		Gly	His	Ser	Leu 703		Ala	Thr	Lys	Leu 7040
15	Ala	Ala	Arg	Val	Ser 704	Arg 5	Arg	Leu	Asp	Ala 705		Ile	Ser	Ile	Lys 705	
	Val	Phe	Asp	Gln 706		Val	Leu	Ala	Asp 7065		Ala	Ala	Ser	Ile 707		Arg
20	Glu	Ser	Ala 707	Pro 5	His	Glu	Pro	Ile 708	Pro	Gln	Arg	Pro	Tyr 708		Gly	Pro
	Ala	Glu 7090	Gln)	Ser	Phe	Ala	Gln 709		Arg	Leu	Trp	Phe 710		Asp	Gln	Leu
25	Asn 7105		Gly	Ala	Thr	Trp 7110		Leu	Met	Pro	Leu 7115		Ile	Arg	Ile	Arg 7120
	Gly	Gln	Leu	Arg	Val 7125		Ala	Leu	Ser	Ala 7130		Leu	Phe	Ala	Leu 7135	
<i>30</i>	Arg	Arg	His	Glu 714(Leu	Arg	Thr	Thr 7145		Glu	Glu	Ser	Asp 7150		Val
	Gly	Val	Gln 7155		Val	Gly	Glu	Ala 7160	Arg	Asn	Ser	Asp	Leu 7165		Val	His
35	Asp	Val 7170	Ser	Thr	Gly	Asp	Asp 7175	Gly	Glu	Tyr	Leu	Glu 7180		Leu	Arg	Arg
	Glu 7185	Gln	Thr	Val	Pro	Phe 7190		Leu	Ser	Ser	Glu 7195		Gly	Trp	Arg	Val 7200
40	Cys	Leu	Val	Lys	Thr 7205	Gly	Glu	Glu	Asp	His 7210	Val	Leu	Ser	Ile	Val 7215	
	His	His	Ile	Ile 7220	Tyr	Asp	Gly	Trp	Ser 7225	Val	Asp	Ile	Leu	Arg 7230	_	Glu
45	Leu	Gly	Gln 7235	Phe	Tyr	Ser	Ala	Ala 7240	Leu	Arg	Gly	Gln	Asp 7245		Leu	Leu
	His	Ala 7250	Asn	Pro	Leu	Pro	Ile 7255	Gln	Tyr	Arg	Asp	Phe 7260	Ala	Ala	Trp	Gln
50	Arg 7265	Glu	Ala	Lys	Gln	Val 7270	Glu	Glu	His		Arg 7275	Gln	Leu	Gly		Trp 7280
-	Ser	Lys	Gln	Leu	Val 7285	Asp	Ser	Thr	Pro .	Ala 7290		Leu	Leu	Thr	Asp 7295	Leu
55	Pro .	Arg	Pro	Ser 7300	Ile	Leu	Ser		Arg . 7305	Ala	Gly	Ser	Val	Asp 7310		Thr

	11	e Gi	lu G1 73	y Se 15	r Vai	l Ty	r Gly	y Ala 732	a Leu 20	ı Glı	n Ser	Phe	Cys 732		Th:	Arg
5	Se	r Va 73	1 Th	r Th	r Phe	e Val	l Vai 730	l Lei 35	ı Lev	Thi	val	Phe 734		g Ile	e Ala	His
	Ph 73	e Ar 45	g Le	u Th	r Ala	735	L Asp 50	o Asp	o Ala	Thr	735	Gly	Thi	Pro	Ile	Ala 7360
10	As	n Ar	g As	n Ar	736	Glu 55	ı Leu	ı Gli	ı Thr	1 Leu 737	val	Gly	Cys	Phe	Val 737	
	Th	r Gl	n Cy	s Me1	t Arg	, Ile	Ser	: Ile	738	Asp 5	Asp	Asp	Asn	Phe 739		Gly
15	Le	νa Va	1 Ar	g Glr 95	n Val	. Arg	n Asn	740	Ala	Thr	Ala	Ala	Tyr 740		Asn	Gln
	Asp	7 Va	1 Pro	o Phe	e Glu	Arg	741	Val	. Ser	Ala	Leu	Val 742		Gly	Ser	Arg
20	Asr 742	1 Th	r Se	r Arg	, Asn	Pro 743	Leu 0	Val	Gln	Leu	Met 743		Ala	Val	Gln	Ser 7440
	Va]	. G1	u Asp	р Туг	744	Gln 5	Val	Arg	Leu	Glu 745		Leu	Glu	Ser	Val 745	
25	Met	Pr	o Gly	7 Glu 746	Ala 0	Ser	Thr	Arg	Phe 746	Asp 5	Met	Glu	Phe	His 747		Val
	Pro	Gl;	y Asp 747	o Gln 75	Lys	Leu	Thr	Gly 748	Ser 0	Val	Leu	Tyr	Ser 748		Asp	Leu
30	Phe	Gl: 74:	u Glr 90	Gly	Thr	Ile	Gln 749	Asn 5	Phe	Val	Asp	Ile 750		Gln	Glu	Суз
	Leu 750	Arq 5	g Ser	: Val	Leu	Asp 751	Gln O	Pro	Leu	Thr	Pro 751		Ser	Val	Leu	Pro 7520
35	Phe	Se	r Asn	Ala	Ile 752	Ser 5	Asn	Leu	Glu	Ser 7530	Leu)	Asp	Leu	Leu	Glu 7535	
				754	0				Arg 7545	5				7550)	
40			755	5				7560					7565	5		
		151	U				7575	•	Asp			7580	1			
4 5	150	3				/590	,		Pro		7595	•				7600
					/605	•			Ile	7610)				7615	
50				/620	,				Leu 7625	1				7630)	
	Arg	Leu	Ala 763	Ala 5	Ile	Leu	Asp	Thr 7640	Val	Glu	Gly	Glu	Arg 7645	Leu	Leu	Leu
55	Leu	Gly 765	Ala O	Gly	Val	Pro	Gln 7655	Pro	Gly	Ile	Gln	Ile 7660	Pro	Arg	Leu	Ser
	Thr	Ala	Tyr	Ile	Ala	Glu	Ala	Leu	Ser	His	Δla	ጥ ኮ ፦	Th-	57-1	N 0 -	11-1

	7665	5				767	0				767	5				7680
5	Thr	Ser	Ile	Pro	Gln 7689		Ser	Ala	Thr	Ser 769		Ala	Tyr	Val	11e 769	
ŭ	Thr	Ser	Gly	Ser 7700		Gly	Lys	Pro	Lys 770		Val	Met	Ile	Glu 7710		Arg
10	Gly	Ile	Val 771	Arg	Leu	Val	Arg	Asp 772		Asn	Val	Asn	Val 772		Pro	Glu
10	Ser	Gly 7730		Ala	Leu	Pro	Val 773		His	Phe	Ser	Asn 7740		Ala	Trp	Asp
45	Ala 7745		Thr	Trp	Glu	Ile 7750		Thr	Ala	Val	Leu 775		Gly	Gly	Thr	Val 7760
15	Val	Cys	Ile	Asp	Arg 7765		Thr	Met	Leu	Asp 777(Ala	Ala	Leu	Asn 7775	
	Thr	Phe	Arg	Lys 7780		Asn	Val	Arg	Ala 7785		Phe	Phe	Thr	Pro 7790		Phe
20	Leu	Lys	Gln 7795	Cys	Leu	Ala	Glu	Thr 7800		Glu	Leu	Val	Ala 7805		Leu	Glu
	Ile	Leu 7810		Thr	Ala	Gly	Asp 7815		Leu	Asp	Pro	Gly 7820		Ala	Asn	Leu
25	Ala 7825		Lys	Thr	Ala	Lys 7830		Gly	Ile	Phe	Asn 7835		Leu	Gly	His	Thr 7840
	Glu	Asn	Thr	Ala	Tyr 7845		Thr	Phe	Tyr	Pro 7850		Val	Gly	Glu	Glu 7855	
30	Phe	Val	Asn	Gly 7860		Pro	Val	Gly	Arg 7865		Ile	Ser	Asn	Ser 7870		Ala
	Tyr	Ile	Ile 7875	Asp	Arg	His	Gln	Lys 7880		Val	Pro	Ala	Gly 7885		Met	Gly
35	Glu	Leu 7890		Leu	Thr	Gly	Asp 7895		Val	Ala	Arg	Gly 7900		Thr	Asp	Ser
	Ala 7905		Asn	Lys		Arg 7910		Val	Tyr	Ile	Asp 7915		Asn	Gly	Lys	Ser 7920
40	Thr	Trp	Ser		Arg 7925		Gly	Asp	Lys	Ala 7930		Tyr	Arg	Pro	Arg 7935	
	Gly	Gln	Leu	Glu 7940		Phe	Gly	Arg	Met 7945		Gln	Met	Val	Lys 7950		Arg
45	Gly	Val	Arg 7955	Ile	Glu	Pro	Gly	Glu 7960		Glu	Leu		Leu 7965		Asp	His
	Lys	Ser 7970	Val	Leu .	Ala .		Thr 7975		Val	Val		Arg 7980	Pro	Pro	Asn	Gly
50	Asp 1 7985	Pro (Glu	Met		Ala 7990		Ile	Thr		Asp 7995	Ala	Glu	Asp		Val 8000
	Gln '	Thr	His		Ala 8005	Ile	Tyr	Lys		Leu 8010	Gln	Gly	Ile		Pro 8015	Ala
55	Tyr !	Met		Pro : 8020	Ser 1	His	Leu		Ile 8025		Asp	Gln		Pro '	Val	Thr

	Asp) Ası	n Gly 80	y Lys 35	: Val	Asp	Arg	Lys 804	Asp 0	Leu	Ala	Leu	Arg 804		Gln	Thr
5	Val	Glr 805	n Lys	s Arg	Arg	Ser	Thr 805	Ala	Ala	Arg	Val	Pro 806		Arg	Asp	Glu
	Val 806	. Glu 55	ı Ala	a Val	Leu	Cys 807		Glu	Tyr	Ser	Asn 807		Leu	Glu	Val	Glu 8080
10	Val	Gly	, Ile	e Thr	Asp 808	Gly 5	Phe	Phe	Asp	Leu 809		Gly	His	Ser	Leu 809	
	Ala	Thr	Lys	810	Ala O	Ala	Arg	Leu	Ser 810		Gln	Leu	Asn	Thr 811		Val
15	Ser	Val	Lys 811	Asp .5	Val	Phe	Asp	Gln 812		Ile	Leu	Ala	Asp 812		Ala	Asp
	Ile	Ile 813	Arg	Arg	Gly	Ser	His 813		His	Asp	Pro	Ile 814		Ala	Thr	Pro
20	Tyr 814	Thr 5	Gly	Pro	Val	Glu 815	Gln 0	Ser	Phe	Ala	Gln 815		Arg	Leu	Trp	Phe 8160
	Leu	Glu	Gln	Leu	Asn 816		Gly	Ala	Ser	Trp 817		Leu	Met	Pro	Phe 8175	
25	Ile	Arg	Met	Arg 818	Gly 0	Pro	Leu	Gln	Thr 818		Ala	Leu	Ala	Val 8190		Leu
	Asn	Ala	Leu 819	Val 5	His	Arg	His	Glu 820	Ala O	Leu	Arg	Thr	Thr 820		Glu	Asp
30	His	Asp 821	Gly 0	Val	Gly	Val	Gln 821	Val 5	Ile	Gln	Pro	Lys 8220		Ser	Gln	Asp
	Leu 822	Arg 5	Ile	Ile	Asp	Leu 823		Asp	Ala	Val	Asp 8235		Thr	Ala	Tyr	Leu 8240
35	Ala	Ala	Leu	Lys	Arg 8245	Glu S	Gln	Thr	Thr	Ala 8250		сsА	Leu	Thr	Ser 8255	
	Pro	Gly	Trp	Arg 8260	Val	Ser	Leu	Leu	Arg 8265	Leu	Gly	Asp	Asp	Asp 8270		Ile
40	Leu	Ser	Ile 827	Val 5	Met	His	His	Ile 8280	Ile	Ser	Asp	Gly	Trp 8285		Val	Asp
	Val	Leu 829	Arg O	Gln	Glu	Leu	Gly 8295	Gln	Phe	Tyr	Ser	Ala 8300		Ile	Arg	Gly
45	Gln 8305	Glu	Pro	Leu	Ser	Gln 8310	Ala)	Lys	Ser	Leu	Pro 8315		Gln	Tyr	Arg	Asp 8320
	Phe	Ala	Val	Trp	Gln 8325	Arg	Gln	Glu	Asn	Gln 8330		Lys	Glu	Gln	Ala 8335	
50	Gln	Leu	Lys	Tyr 8340	Trp	Ser	Gln	Gln	Leu 8345	Ala	Asp	Ser	Thr	Pro 8350		Glu
	Phe	Leu	Thr 8355	Asp	Leu	Pro	Arg	Pro 8360	Ser	Ile	Leu		Gly 8365		Ala	Asp
55	Ala	Val 8370	Pro	Met	Val	Ile	Asp 8375	Gly	Thr	Val		Glr. 8380		Leu	Thr .	Asp

	Phe Cys 8385	Arg Thr His	Gln Val 8390	Thr Ser	Phe Ser Val	l Leu Leu	Ala Ala 8400
5	Phe Arg	Thr Ala His	Tyr Arg	Leu Thr	Gly Thr Let 8410	ı Asp Ala	Thr Val 8415
	Gly Thr	Pro Ile Ala 8420	Asn Arg	Asn Arg 842	Pro Glu Let 5	Glu Gly 8430	
10	Gly Phe	Phe Val Asn 8435	Thr Gln	Cys Met 8440	Arg Met Ala	lle Ser 8445	Glu Thr
	Glu Thr 8450		Leu Val 8455		Val Arg Let 846		Thr Glu
15	Ala Phe 8465	Ala Asn Gln	Asp Val 8470	Pro Phe	Glu Gln Ile 8475	· Val Ser	Thr Leu 8480
	Leu Pro	Gly Ser Arg 848		Ser Arg	Asn Pro Lei 8490		Val Met 8495
20	Phe Ala	Leu Gln Ser 8500	Gln Gln	Asp Leu 850	Gly Arg Ile 5	Gln Leu 8510	
	Met Thr	Asp Glu Ala 8515	Leu Glu	Thr Pro 8520	Leu Ser Thr	Arg Leu . 8525	Asp Leu
25	Glu Val 8530	His Leu Phe	Gln Glu 8535		Lys Leu Ser 854		Leu Leu
	Tyr Ser (8545	Thr Asp Leu	Phe Glu 8550	Val Glu	Thr Ile Arg 8555	Gly Ile	Val Asp 8560
30	Val Phe	Leu Glu Ile 856		Arg Gly	Leu Glu Gln 8570		Gln Arg 8575
	Leu Met 1	Ala Met Pro 8580	Ile Thr	Asp Gly 858	Ile Thr Lys 5	Leu Arg 2 8590	Asp Gln
35		Leu Thr Val 8595	Ala Lys	Pro Ala 8600	Tyr Pro Arg	Glu Ser 8	Ser Val
	Ile Asp 1 8610	Leu Phe Arg	Gln Gln 8615		Ala Ala Pro 862		Ile Ala
40	Val Trp # 8625	Asp Ser Ser	Ser Thr 8630	Leu Thr	Tyr Ala Asp 8635	Leu Asp (Gly Gln 8640
	Ser Asn I	Lys Leu Ala 864!	His Trp	Leu Cys	Gln Arg Asn 8650	Met Ala E	Pro Glu 3655
45	Thr Leu V	Val Ala Val 8660	Phe Ala	Pro Arg 8665	Ser Cys Leu 5	Thr Ile V	/al Ala
	Phe Leu 6	Gly Val Leu 8675		Asn Leu 8680	Ala Tyr Leu	Pro Leu A 8685	Asp Val
50	Asn Ala P 8690	ro Ala Ala	Arg Ile 8		Ile Leu Ser 870		ro Gly
	His Lys L 8705	eu Val Leu	Val Gln 2 8710	Ala His	Gly Pro Glu 8715	Leu Gly L	eu Thr 8720
55	Met Ala A	asp Thr Glu 8725	Leu Val (Gln Ile	Asp Glu Ala 8730		er Ser 1735
-	Ser Ser G	Sly Asp His	Glu Gln	Ile His	Ala Ser Gly	Pro Thr A	la Thr

		8740	874	5	8750
	Ser Leu Ala 875		Phe Thr Ser 8760	Gly Ser Thr G	ly Lys Pro Lys 765
5	Gly Val Met 8770	Ile Asp His	Arg Ser Ile 8775	Ile Arg Leu Va 8780	al Lys Asn Ser
	Asp Val Val 8785	Ala Thr Leu 879		Val Arg Met Al 8795	a Asn Val Ser 8800
10	Asn Leu Ala	Phe Asp Ile 8805	Ser Val Gln	Glu Ile Tyr Th 8810	nr Ala Leu Leu 8815
	Asn Gly Gly	Thr Leu Val 8820	Cys Leu Asp 882	Tyr Leu Thr Le	eu Leu Asp Ser 8830
15	Lys Ile Leu 883		Phe Val Glu 8840	Ala Gln Val As	sn Ala Ala Met 845
	Phe Thr Pro	Val Leu Leu	Lys Gln Cys 8855	Leu Gly Asn Me 8860	et Pro Ala Ile
20	Ile Ser Arg 8865	Leu Ser Val 887		Val Gly Asp Ar 8875	g Leu Asp Ala 8880
	His Asp Ala	Val Ala Ala 8885	Ser Gly Leu	Ile Gln Asp Al 8890	a Val Tyr Asn 8895
25	Ala Tyr Gly	Pro Thr Glu 8900	Asn Gly Met 8905	Gln Ser Thr Me	t Tyr Lys Val 8910
	Asp Val Asn 891		Val Asn Gly 8920	Val Pro Ile Gl	y Arg Ser Ile 25
30	Thr Asn Ser 8930	Gly Ala Tyr	Val Met Asp 8935	Gly Asn Gln Gl 8940	n Leu Val Ser
	Pro Gly Val 8945	Met Gly Glu 895		Thr Gly Asp Gl 8955	y Leu Ala Arg 8960
35	Gly Tyr Thr	Asp Ser Ala 8965	Leu Asp Glu	Asp Arg Phe Va	l His Val Thr 8975
	Ile Asp Gly	Glu Glu Asn 8980	Ile Lys Ala 8985	Tyr Arg Thr Gl	y Asp Arg Val 8990
40	Arg Tyr Arg 899		Phe Glu Ile 9000	Glu Phe Phe Gl 90	y Arg Met Asp 05
	Gln Gln Val 9010	Lys Ile Arg	Gly His Arg 9015	Ile Glu Pro Al 9020	a Glu Val Glu
45	His Ala Leu 9025	Leu Gly His 903		His Asp Ala Al 9035	a Val Val Leu 9040
	Arg Lys Pro	Ala Asn Gln 9045	Glu Pro Glu	Met Ile Ala Ph 9050	e Ile Thr Ser 9055
50	Gln Glu Asp	Glu Thr Ile	Glu Gln His 9065	Glu Ser Asn Ly	s Gln Val Gln 9070
	Gly Trp Gly 907		Asp Val Ser 9080	Arg Tyr Ala As 90	
55	Leu Asp Thr 9090	Ser Thr Phe	Gly His Asp 9095	Phe Leu Gly Tr 9100	p Thr Ser Met

	Tyr 9105		Gly	Val	Asp	Ile 9110		Val	Asn	Glu	Met 9115	Lys	Glu	Trp	Leu	Asp 9120
5	Glu	Thr	Thr	Ala	Ser 9125		Leu	Asp	Asn	Arg 9130	Pro	Pro	Gly	His	Ile 9135	Leu
	Glu	Ile	Gly	Ala 9140		Thr	Gly	Met	Ile 9145	Leu	Ser	Asn	Leu	Gly 9150	Lys	Val
10	Asp	Gly	Leu 9155		Lys	Tyr	Val	Gly 9160		Asp	Pro	Ala	Pro 9165	Ser	Ala	Ala
	Ile	Phe 9170		Asn	Glu	Ala	Val 9175	Lys	Ser	Leu	Pro	Ser 9180	Leu)	Ala	Gly	Lys
15	Ala 9185		Val	Leu	Val	Gly 9190		Ala	Leu	Asp	Ile 9195	Gly	Ser	Leu	Asp	Lys 9200
	Asn	Glu	Ile	Gln	Pro 9205		Leu	Val	Val	Ile 9210	Asn)	Ser	Val	Ala	Gln 9215	Tyr
20	Phe	Pro	Thr	Ser 9220		Tyr	Leu	Ile	Lys 9225	Val	Val	Lys	Ala	Val 9230	Val	Glu
	Val	Pro	Ser 9235		Lys	Arg	Val	Phe 9240		Gly	Asp	Ile	Arg 9245	Ser	Gln	Ala
25	Leu	Asn 9250		Asp	Phe	Leu	Ala 9255		Arg	Ala	Val	Arg 9260	Ala	Leu	Gly	Asp
	Asn 9265		Ser	Lys	Glu	Gln 9270		Arg	Glu	Lys	Ile 9275	Ala	Glu	Leu	Glu	Glu 9280
30	Ser	Glu	Glu	Glu	Leu 9285		Val	Asp	Pro	Ala 9290		Phe	Val	Ser	Leu 9295	Arg
	Ser	Gln	Leu	Pro 9300		Ile	Lys	His	Val 9305		Val	Leu	Pro	Lys 931(Leu)	Met
35	Lys	Ala	Thr 9315		Glu	Leu	Ser	Ser 9320		Arg	Tyr	Ala	Ala 932		Leu	His
	Ile	Ser 9330		Asn	Glu	Glu	Glu 9335		Leu	Leu	Ile	Gln 934	Asp)	Ile	Asp	Pro
40	Thr 9345		Trp	Val	Asp	Phe 9350		Ala	Thr	Gln	Lys 935		Ser	Gln	Gly	Leu 9360
	Arg	Asn	Leu	Leu	Gln 9365		Gly	Arg	Asp	Asp 9370	Val	Met	Ile	Ala	Val 9375	Gly
45	Asn	Ile	Pro	Tyr 9380		Lys	Thr	Ile	Val 9385		Arg	His	Ile	Met 9390	Asn)	Ser
	Leu	Asp	Gln 9395		His	Val	Asn	Ser 940	Leu)	Asp	Gly	Thr	Ser 940	Trp	Ile	Ser
50	Asp	Ala 9410		Ser	Ala	Ala	Ala 9415		Cys	Thr	Ser	Phe 942	Asp)	Ala	Pro	Ala
	Leu 9425		Gln	Leu	Ala	Lys 9430		Glu	Gly	Phe	Arg 943		Glu	Leu	Ser	Trp 9440
55	Ala	Arg	Gln	Arg	Ser 9445		Asn	Gly	Ala	Leu 945		Ala	Val	Phe	His 9455	Arg

	Leu	Ala	Th	94	p Ala 60	Asn	Суз	Glu	946		Arg	Va]	Leu	val 947		Phe
5	Pro	Thr	947	о Ні: 75	s Glr	Gly	Arg	Gln 948	Leu 0	Arg	Thr	Leu	Th:		Arg	Pro
	Leu	Gln 949	Arg	, Ala	a Gln	Ser	Arg 949	Arg 5	Ile	Glu	Ser	Gln 950		. Ph∈	e Glu	Ala
10	Leu 950	Gln 5	Thr	Ala	1 Leu	Pro 951	Ala O	Tyr	Met	Ile	Pro 951	Ser 5	Arg	, Ile	lle	Val 9520
	Leu	Pro	Gln	Met	952	Thr 5	Asn	Ala	Asn	Gly 953		Val	Asp	Arg	Lys 953	
15	Leu	Alā	Arg	954	Ala 10	Gln	Val	Val	Ala 954		Arg	Lys	Ala	Val 955		Ala
	Arg	Val	Ala 955	Pro 5	Arg	Asn	Asp	Thr 956	Glu 0	Ile	Val	Leu	Cys 956		Glu	Tyr
20	Ala	Asp 957	Ile O	Leu	Gly	Thr	Glu 957	Val 5	Gly	Ile	Thr	Asp 958		Phe	Phe	Asp
	Met 9585	Gly	Gly	His	Ser	Leu 9590	Met)	Ala	Thr	Lys	Leu 9595		Ala	Arg	Leu	Ser 9600
25	Arg	Arg	Leu	Asp	Thr 960	Arg 5	Val	Thr	Val	Lys 961	Glu O	Val	Phe	Asp	Lys 961	
	Val	Leu	Ala	Asp 962	Leu 0	Ala	Ala	Ser	11e 962	Glu 5	Gln	Gly	Ser	Thr 963		His
30	Leu	Pro	11e 963	Ala 5	Ser	Ser	Val	Tyr 9640	Ser	Gly	Pro	Val	Glu 964		Ser	Tyr
	Ala	Gln 9650	Gly)	Arg	Leu	Trp	Phe 9655	Leu	Asp	Gln	Phe	Asn 9660	Leu)	Asn	Ala	Thr
35	Trp 9665	Tyr	His	Met	Ser	Leu 9670	Ala	Met	Arg	Leu	Leu 9675		Pro	Leu	Asn	Met 9680
	Asp	Ala	Leu	Asp	Val 9685	Ala	Leu	Arg	Ala	Leu 9690		Gln	Årg	His	Glu 9695	
40				9701					9705	•				9710)	
	His		9/13	•				9720)				9725	5		
45		9/30	ľ				9/35)				9740				
45	Phe 9745	Thr	Leu	Ala	Ser	Glu 9750	Pro	Gly	Trp	Lys	Gly 9755	His	Leu	Ala	Arg	Leu 9760
	Gly 1	Pro	Thr	Glu	Tyr 9765	Ile	Leu	Ser	Leu	Val 9770	Met i	His	His	Met	Phe 9775	
50	Asp (Gly	Trp	Ser 9780	Val	Asp	Ile	Leu	Arg 9785	Gln	Glu :	Leu	Gly	Gln 9790		Tyr
	Ser 1	Ala	Ala 9795	Leu	Arg	Gly /	Arg	Asp 9800	Pro	Leu	Ser (Gln	Val 9805	Lys	Pro	Leu
55	Pro I	[le	Gln	Tyr	Arg .	Asp 3	Phe .	Ala .	Ala	Trp (Gln 1	Lvs	Glu	Ala	Ala	Gla

	981	0		9815			9820			
	Val Ala 9825	Glu His	Glu Arg 983		Leu Ala	Tyr Tr 98	o Glu A 35	sn Gln	Leu	Ala 9840
5	Asp Ser	Thr Pro	Gly Glu 9845	Leu I	Leu Thr	Asp Ph 9850	e Pro A	rg Pro	Gln 985	Phe 5
	Leu Ser	Gly Lys 986		Val I	Ile Pro		r Ile G	lu Gly 987	Pro 0	Val
10	Tyr Glu	Lys Leu 9875	Leu Lys		Ser Lys 9880	Glu Ar	g Gln V	al Thr 885	Leu	Phe
	Ser Val	Leu Leu 0	Thr Ala	Phe <i>P</i> 9895	Arg Ala	Thr Hi	s Phe A	rg Leu	Thr	Gly
15	Ala Glu 9905	Asp Ala	Thr Ile		Thr Pro	Ile Al 99		rg Asn	Arg	Pro 9920
	Glu Leu	Glu His	Ile Ile 9925	Gly F	Phe Phe	Val As 9930	n Thr G	iln Cys	Met 9935	Arg
20	Leu Leu	Leu Asp 994		Ser T	Thr Phe		r Leu V	al Gln 995	His O	Val
	Arg Ser	Val Ala 9955	Thr Asp		Tyr Ser 9960	Asn Gl		le Pro 965	Phe	Glu
25	Arg Ile 997	Val Ser O	Ala Leu	Leu F 9975	Pro Gly	Ser Ar	g Asp A 9980	la Ser	Arg	Ser
	Pro Leu 9985	Ile Gln	Leu Met 999		Ala Leu	His Se		ro Asp	Leu	Gly 10000
30	Asn Ile	Thr Leu	Glu Gly 10005	Leu G	Glu His	Glu Ar 10010	g Leu P	ro Thr	Ser 1001	
	Ala Thr	Arg Phe		Glu P	Phe His		e Gln G	lu Pro 100		Lys
35	Leu Ser	Gly Ser 10035	Ile Leu		Ala Asp 10040	Glu Le		ln Pro	Glu	Thr
	Ile Asn 100	Ser Val 50	Val Thr	Val P 10055		Glu Il	e Leu A 10060		Gly	Leu
40	Asp Gln 10065	Pro Gln	Val Ser 100					hr Asp		Leu 10080
	Ile Asp	Leu Glu	Lys Leu 10085	Gly	Leu Leu	Glu Il 10090	e Glu S	er Ser	Asn 1009	
45	Pro Arg	Asp Tyr 101		Val A	Asp Val		g Gln G	ln Val 101		Ala
	Asn Pro	Asn Ala 10115	Pro Ala		Val Asp 10120	Ser Gl		er Met 0125	Ser	Tyr
50	Thr Ser	Leu Asp 30	Gln Lys	Ser 0		Ile Al	a Ala T 10140		His	Ala
	Gln Gly 10145	Leu Arg	Pro Glu 101	_	Leu Ile	-	l Met A 155	la Pro	Arg	Ser 10160
55	Phe Glu	Thr Ile	Val Ser 10165	Leu P	Phe Gly	Ile Le	ı Lys A	la Gly	Tyr 1017	

	Tyr	Lev	Pro	Leu 101	Asp	Val	Asr	s Ser	Pro 101		Ala	Arg	Ile	Gln 101		Ile
5	Leu	Ser	Glu 101	ı Val .95	. Glu	Gly	Lys	Arg 102	Leu 200	Val	Leu	Leu	Gly 102		Gly	Ile
	Asp	Met 102	Pro	Gln	Ser	Asp	Arg 102		Asp	Val	Glu	Thr 102		Arg	Ile	Gln
10	Asp 102	Ile 25	: Leu	Thr	Asn	Thr 102	Lys 30	. Val	Glu	Arg	Ser 102		Pro	Met	Ser	Arg 10240
	Pro	Ser	Ala	Thr	Ser 102	Leu 45	Ala	Tyr	Val	Ile 102		Thr	Ser	Gly	Ser 102	
15	Gly	Arg	Pro	Lys 102	Gly 60	Val	Met	Ile	Glu 102		Arg	Asn	Ile	Leu 102		Leu
	Val	Lys	Gln 102	Ser	Asn	Val	Thr	Ser 102		Leu	Pro	Gln	Asp 102		Arg	Met
20	Ala	His 102	Ile 90	Ser	Asn	Leu	Ala 102	Phe 95	Asp	Ala	Ser	Ile 103		Glu	Ile	Phe
	Thr 103	Ala 05	Ile	Leu	Asn	Gly 103		Ala	Leu	Ile	Cys 103		Asp	Tyr	Phe	Thr 10320
25	Leu	Leu	Asp	Ser	Gln 1032	Ala 25	Leu	Arg	Thr	Thr 103		Glu	Lys	Ala	Arg 103	
	Asn	Ala	Thr	Leu 103	Phe 40	Ala	Pro	Ala	Leu 103	Leu 45	Lys	Glu	Cys	Leu 103		His
30	Ala	Pro	Thr 103	Leu 55	Phe	Glu	Asp	Leu 103	Lys 60	Val	Leu	Tyr	Ile 103		Gly	Asp
	Arg	Leu 103	Asp 70	Ala	Thr	Asp	Ala 103	Ala 75	Lys	Ile	Gln	Ala 1038		Val	Lys	Gly
35	Thr 1038	Val 35	Tyr	Asn	Ala	Tyr 1039	Gly 90	Pro	Thr	Glu	Asn 1039		Val	Met	Ser	Thr 10400
	Ile	Tyr	Arg	Leu	Thr 1040	Asp 5	Gly	Glu	Ser	Tyr 1041		Asn	Gly	Val	Pro 1041	
40	Gly	Asn	Ala	Val 1042	Ser 20	Ser	Ser	Gly	Ala 1042	Tyr 25	Ile	Met	Asp	Gln 1043		Gln
	Arg	Leu	Val 1043		Pro	Gly	Val	Met 1044		Glu	Leu	Val	Val 1044	Ser 15	Gly	Asp
45 .	Gly	Leu 1045	Ala 50	Arg	Gly	Tyr	Thr 1045	Asn 55	Ser	Thr	Leu	Asn 1046		Asp	Arg	Phe
	Val 1046	Asp 5	Ile	Val	Ile	Asn 1047	Asp 0	Gln	Lys	Ala	Arg 1047		Tyr	Arg	Thr	Gly 10480
50	Asp	Arg	Thr	Arg	Tyr 1048	Arg 5	Pro	Lys	Asp	Gly 1049		Ile	Glu	Phe	Phe 1049	
	Arg	Met	Asp	Gln 1050	Gln 00	Val	Lys	Ile	Arg 1050	Gly 5	His	Arg	Val	Glu 1051		Ala
55	Glu	Val	Glu 1051	Gln .5	Ala .	Met	Leu	Gly 1052	Asn 0	Lys	Ala	Ile	His 1052		Ala	Ala

	Va	1 Va 10	1 Va 530	l Glr	a Ala	a Vai	1 Ası 10	61 535	y Gl	n Gl	u Th		u Me 540	t Il	e Gl	y Phe
5	Va 10	1 Se 545	r Me	t Ala	a Se	r Ası	p Arg 550	g Pho	e Se	r Gl	u Gl; 10	y Gl	u Gl	u Gl	u Ile	Thr 10560
	Ası	n Gl	n Va	l Glr	105	1 Trp	Glu	ı Ası	p Hi		e Gl: 570	u Se	r Th	r Ala		r Ala 575
10	Gly	y Il	e Gl	105	Il∈ 80	e Asp	Glr	n Ala	a Th:	r Lei 585	u Gly	y Ar	g Ası		≘ Thi 590	Ser
	Tr	Th:	r Ser 105	r Met 595	Tyr	Asr	ı Gly	Asr 106	n Lei 600	ı Ile	e Asp) Lys		a Glu 605	ı Met	: Glu
15	Glu	Tri 10	p Leu 610	ı Asp	Asp	Thr	106	Glr 15	n Sei	Let	ı Let	100		s Glu	ı Asp	Ala
	Arg 106	Pro 25	Cys	8 Ala	Glu	Ile 106	e Gly 30	Thi	Gly	Th:	Gly 106	Met 535	. Val	l Leu	Phe	Asn 10640
20	Leu	Pro	Lys	asn Asn	Asp 106	Gly 45	Leu	Glu	Ser	106	Val	. Gly	, Ile	e Glu	Pro 106	
	Arg	Ser	Ala	Ala 106	Leu 60	Phe	Val	Asp	106	Ala 65	Ala	Glr	Asp	Phe 106		Gly
25	Leu	Glr	Gly 106	Lys 75	Thr	Gln	Ile	Leu 106	Val	Gly	Thr	Ala	Glu 106		Ile	Lys
25	Leu	Val 106	Lys 90	Asp	Phe	His	Pro 106	Asp 95	Val	Val	. Val	Ile 107		Ser	Val	Ala
30	Gln 107	Tyr 05	Phe	Pro	Ser	Arg 107	Ser 10	Tyr	Leu	Val	Gln 107		Ala	Ser	Glu	Leu 10720
30	Ile	His	Met	Thr	Ser 107	Val 25	Lys	Thr	Ile	Phe 107	Phe 30	Gly	Asp	Met	Arg 107	
0.5	Trp	Ala	Thr	Asn 1074	Arg 10	Asp	Phe	Leu	Val 107	Ser 45	Arg	Ala	Leu	Tyr 107		Leu
35	Gly	Asp	Lys 107	Ala 55	Thr	Lys	Asp	Gln 107	Ile 60	Arg	Gln	Glu	Val 107		Arg	Leu
		10/	70	Glu			1077	75				107	80			
40	1070	, ,		Gln		10/5	3 0				1079	95				10800
				Arg	1080	15				1081	10				1081	.5
45				Ile 1082	U				1082	25				1083	30	
			1083					1084	10				1084	15		
50		1003	0	Arg			1082	5				1086	0			
	1000	J		Val .		1087	U				1087	5				10880
55	Glu	Arg	His	Phe '	Thr	Thr .	Ser	Leu	Asp	Thr	Glu	Gly	Glu	Glv	Ile	Ala

		1	0885		10890		10895
	Gln Asp		sp Gly Se		Gln Ser Ala		
5	Ala Ala	10900 Arg Cys P 10915	ro Cys Le	1090 Ser Val 10920	Jo Thr Glu Leu	109: Val Glu 10925	
	Gln Ala 109	Ala Gly P		l Glu Val 935	Ser Trp Ala	Arg Gln	Arg Ser
10	Gln His 10945	Gly Ala L	eu Asp Val 10950	l Val Phe	His His Leu 10955	Glu Asp	Asp Arg 10960
	Val Gly		eu Ile Asr 1965	n Phe Pro	Thr Asp Phe 10970	Glu Arg	Leu Pro 10975
15	Pro Ser	Thr Gly L 10980	eu Thr Ser	Arg Pro	Leu Gln Arg 35	Ile Gln 1099	
	Arg Phe	Glu Ser G 10995	ln Ile Arg	g Glu Gln 11000	Leu Gln Thr	Leu Leu 11005	Pro Pro
20	Tyr Met 110	Val Pro So 10	er Arg Ile 110		Leu Glu Arg 110		Leu Asn
	Ala Asn 11025	Ser Lys V	al Asp Arg 11030	J Lys Glu	Leu Ala Arg 11035	Lys Ala	Arg Thr 11040
25	Leu Gln	Thr Ile Ly	s Pro Ser .045	Ala Thr	Arg Val Ala 11050	Pro Arg	Asn Asp 11055
	Ile Glu	Ala Val Le 11060	eu Cys Asp	Glu Phe 1106	Gln Ala Val 5	Leu Gly 1107	
30	Val Gly	Val Met As 11075	sp Asn Phe	Phe Glu 11080	Leu Gly Gly	His Ser 11085	Leu Met
	Ala Thr 110	Lys Leu Al 90	a Ala Arg. 110	Leu Ser 95	Arg Arg Leu 111		Arg Val
35	Ser Val 11105	Lys Asp I	e Phe Asn 11110	Gln Pro	Ile Leu Gln 11115	Asp Leu	Ala Asp 11120
	Val Val	Gln Thr Gl	y Ser Ala 125		Glu Ala Ile 11130	Pro Ser	Thr Pro 11135
40	Tyr Ser	Gly Pro Va 11140	l Glu Gln	Ser Phe 1114	Ser Gln Gly 5	Arg Leu 1115	
	Leu Asp	Gln Leu As 11155	n Leu Asn	Ala Ser 11160	Trp Tyr His	Met Pro 11165	Leu Ala
45	Ser Arg	Leu Arg Gl	y Pro Leu 111	Arg Ile 75	Glu Ala Leu 1118		Ala Leu
	Ala Thr 11185	Ile Glu Al	a Arg His 11190	Glu Ser	Leu Arg Thr 11195	Thr Phe	Glu Glu 11200
50	Gln Asp	Gly Val Pr	o Val Gln 205	Ile Val	Arg Ala Ala 11210		Lys Gln 11215
	Leu Arg	Ile Ile As 11220	p Val Ser	Gly Thr (Glu Asp Ala 5	Tyr Leu 1123	
55	Leu Lys	Gln Glu Gl 11235	n Asp Ala	Ala Phe 2 11240	Asp Leu Thr	Ala Glu i 11245	Pro Gly

	Trp	Arg 1125		Ala	Leu	Leu	Arg 1125		Gly	Pro	Asp	Asp 1126	His 50	Val	Leu	Ser
5	Ile 1126		Met	His	His	Ile 1127		Ser	Asp	Gly	Trp 1127		Val	Asp	Ile	Leu 11280
	Arg	Gln	Glu	Leu	Gly 1128	Gln 35	Leu	Tyr	Ser	Asn 1129		Ser	Ser	Gln	Pro 1129	Ala 95
10	Pro	Leu	Pro	Ile 1130		Tyr	Arg	Asp	Phe 1130		Ile	Trp	Gln	Lys 1131		Asp
	Ser	Gln	Ile 1131		Glu	His	Gln	Lys 1132		Leu	Asn	Tyr	Trp 1132		Arg	Gln
15	Leu	Val 1133		Ser	Lys	Pro	Ala 1133		Leu	Leu	Ala	Asp 1134		Thr	Arg	Pro
	Lys 1134		Leu	Ser	Gly	Asp 1135		Asp	Val	Ile	Pro 1135		Glu	Ile	Asp	Asp 11360
20	Gln	Val	Tyr	Gln	Asn 1136	Leu 55	Arg	Ser	Phe	Cys 1137	Arg 0	Ala	Arg	His	Val 1137	Thr 5
	Ser	Phe	Val	Ala 1138		Leu	Ala	Ala	Phe 1138		Ala	Ala	His	Tyr 1139		Leu
25	Thr	Gly	Ala 1139		Asp	Ala	Thr	Ile 1140		Ser	Pro	Ile	Ala 1140		Arg	Asn
	Arg	Pro 1141		Leu	Glu	Gly	Leu 1141	Ile 5	Gly	Cys	Phe	Val 1142		Thr	Gln	Cys
30	Leu 1142		Ile	Pro	Val	Lys 1143		Glu	Asp	Thr	Phe 1143		Thr	Leu	Val	Lys 11440
	Gln	Ala	Arg	Glu	Thr 1144	Ala 5	Thr	Glu	Ala	Gln 1145	_	Asn	Gln	Asp	Val 1145	
35	Phe	Glu	Arg	Ile 1146		Ser	Ser	Met	Val 1146		Ser	Ser	Arg	Asp 1147		Ser
	Arg	Asn	Pro 1147		Val	Gln	Val	Met 1148		Ala	Val	His	Ser 1148		His	Asp
40	Leu	Gly 1149		Ile	Arg	Leu	Glu 1149		Val	Glu	Gly	Lys 1150		Val	Ser	Met
	Ala 1150		Ser	Thr		Phe 1151					His 1151		Phe	Glu	Asp	Gln 11520
45	Gly	Met	Leu	Gly	Gly 1152		Val	Val	Phe	Ser 1153		Asp	Leu	Phe	Glu 1153	
	Glu.	Thr	Ile	Arg 1154		Val	Val	Ala	Val 1154		Gln	Glu	Thr	Leu 1155		Arg
50	Gly	Leu	Ala 1155		Pro	His	Ala	Asn 1156		Ala	Thr	Leu	Pro 1156		Thr	Asp
	Gly	Leu 1157		Ser	Leu	Arg	Ser 1157		Cys	Leu	Gln	Val 1158		Gln	Pro	Asp
	ጥህዮ	Pro	Ara	Asp	Ala	Ser	Va l	Ile	Asp	Val	Phe	Ara	Glu	Gln	Val	Ala

	Ser	Ile	Pro	Lys	Ser 116		Ala	Val	Ile	Asp 116		Ser	Ser	Gln	Leu 116	
5	Tyr	Thr	Glu	Leu 116	Asp 20	Glu	Arg	Ser	Ser 116		Leu	Ala	Thr	Trp 116		Arg
	Arg	Gln	Val		Val	Pro	Glu	Glu 116		Val	Gly	Val	Leu 116		Pro	Arg
10	Ser	Cys 116	Glu 50	Thr	Ile	Ile	Ala 116	Phe 55	Leu	Gly	Ile	Ile 116		Ala	Asn	Leu
	Ala 116	Tyr 65	Leu	Pro	Leu	Asp 116	Val 70	Asn	Ala	Pro	Ala 116		Arg	Ile	Glu	Thr 11680
15	Ile	Leu	Ser	Ser	Leu 116	Pro 85	Gly	Asn	Arg	Leu 116		Leu	Leu	Gly	Ser 116	
	Thr	Gln	Ala	Val 117	Lys 00	Leu	His	Ala	Asn 117		Val	Arg	Phe	Thr 117		Ile
20	Ser	Asp	Ala 117	Leu 15	Val	Glu	Ser	Gly 117		Pro	Pro	Thr	Glu 117	Glu 25	Leu	Ser
	Thr	Arg 117	Pro 30	Thr	Ala	Gln	Ser 117		Ala	Tyr	Val	Met 117		Thr	Ser	Gly
25	Ser 117	Thr 45	Gly	Val	Pro	Lys 117	Gly 50	Val	Met	Val	Glu 117		Arg	Gly	Ile	Thr 11760
	Arg	Leu	Val	Lys	Asn 117	Ser 65	Asn	Val	Val	Ala 117	Lys 70	Gln	Pro	Ala	Ala 1177	
30	Ala	Ile	Ala	His 117	Leu 30	Ser	Asn	Ile	Ala 1178		Asp	Ala	Ser	Ser 1179		Glu
	Ile	Tyr	Ala 117	Pro 95	Leu	Leu	Asn	Gly 118		Thr	Val	Val	Cys 118	Ile 05	Asp	Tyr
35	Tyr	Thr 1181	Thr 10	Ile	Asp	Ile	Lys 1181		Leu	Glu	Ala	Val 1182		Lys	Gln	His
	His 1182	Ile 25	Arg	Gly	Ala	Met 1183	Leu 30	Pro	Pro	Ala	Leu 1183	Leu 35	Lys	Gln	Cys	Leu 11840
40	Val	Ser	Ala	Pro	Thr 1184	Met 15	Ile	Ser	Ser	Leu 1185		Ile	Leu	Phe	Ala 1185	
	Gly	Asp	Arg	Leu 1186		Ser	Gln	Asp	Ala 1186		Leu	Ala	Arg	Arg 1187		Val
45	Gly	Ser	Gly 1187	Val 75	Tyr	Asn	Ala	Tyr 1188	Gly 0	Pro	Thr	Glu	Asn 1188	Thr 35	Val	Leu
	Ser	Thr 1189	Ile 0	His	Asn	Ile	Gly 1189	Glu 5	Asn	Glu	Ala	Phe 1190		Asn	Gly	Val
50	Pro 1190	Ile 5	Gly	Asn	Ala	Val 1191	Ser 0	Asn	Ser	Gly	Ala 1191		Val	Met	Asp	Gln 11920
w	Asn	Gln	Gln	Leu	Val 1192	Ser 5	Ala	Gly	Val	Ile 1193		Glu	Leu	Val	Val 1193	
55	Gly	Asp	Gly	Leu 1194	Ala O	Arg	Gly	Tyr	Thr 1194	Asp 5	Ser	Lys	Leu	Arg 1195		Asp
-	Arg	Phe	Ile	Tyr	Ile	Thr	Leu	Asp	Gly	Asn	Arq	Val	Arg	Ala	Tvr	Ara

	11955	11960	11965
	Thr Gly Asp Arg V	Val Arg His Arg Pro	Lys Asp Gly Gln Ile Glu Phe
	11970	11975	11980
5	Phe Gly Arg Met A	Asp Gln Gln Ile Lys 11990	Ile Arg Gly His Arg Ile Glu 11995 12000
		Glu Gln Ala Leu Ala .2005	Arg Asp Pro Ala Ile Ser Asp 12010 12015
10	Ser Ala Val Ile T 12020		Glu Glu Glu Pro Glu Leu Val 12030
	Ala Phe Phe Ser L	eu Lys Gly Asn Ala	Asn Gly Thr Asn Gly Val Asn
	12035	12040	12045
15	Gly Val Ser Asp G	Gln Glu Lys Ile Asp	o Gly Asp Glu Gln His Ala Leu
	12050	12055	12060
	Leu Met Glu Asn L	ys Ile Arg His Asn	Leu Gln Ala Leu Leu Pro Thr
	12065	12070	12075 12080
20		er Arg Ile Ile His 2085	Val Asp Gln Leu Pro Val Asn 12090 12095
	Ala Asn Gly Lys I 12100		Leu Ala Val Arg Ala Gln Ala 05 12110
25	Thr Pro Arg Thr S	er Ser Val Ser Thr	Tyr Val Ala Pro Arg Asn Asp
	12115	12120	12125
	Ile Glu Thr Ile I	le Cys Lys Glu Phe	Ala Asp Ile Leu Ser Val Arg
	12130	12135	12140
30	Val Gly Ile Thr A	asp Asn Phe Phe Asp	Leu Gly Gly His Ser Leu Ile
	12145	12150	12155 12160
		ala Ala Arg Leu Ser 2165	Arg Arg Leu Asp Thr Arg Val 12170 12175
35	Ser Val Arg Asp V 12180		Val Val Gly Gln Leu Ala Ala 85 12190
	Ser Ile Gln Gln G	ly Ser Thr Pro His	Glu Ala Ile Pro Ala Leu Ser
	12195	12200	12205
40	His Ser Gly Pro V	al Gln Gln Ser Phe	Ala Gln Gly Arg Leu Trp Phe
	12210	12215	12220
	Leu Asp Arg Phe A	sn Leu Asn Ala Ala	Trp Tyr Ile Met Pro Phe Gly
	12225	12230	12235 12240
45		ly Pro Leu Arg Val 2245	Asp Ala Leu Gln Thr Ala Leu 12250 12255
	Arg Ala Leu Glu G 12260		Leu Arg Thr Thr Phe Glu Glu 65 12270
50	Gln Asp Gly Val G	ly Met Gln Ile Val	His Ser Pro Arg Met Arg Asp
	12275	12280	12285
	Ile Cys Val Val A	sp Ile Ser Gly Ala	Asn Glu Asp Leu Ala Lys Leu
	12290	12295	12300
55	Lys Glu Glu Gln G	ln Ala Pro Phe Asn	Leu Ser Thr Glu Val Ala Trp
	12305	12310	12315 12320

	Arg	Val	Ala	Leu	Phe 123	Lys 25	ala	a Gly	/ Glu	123	n His 330	His	Ile	e Leu	Ser 123	
5	Val	Met	His	His 123	lle 40	Ile	Se 1	Asp	Gly 123	7 Trp 845	Ser	. Val	Asp	11e		Gln
	Gln	Glu	Leu 123	Ala 55	Gln	Phe	туг	Ser 123	Val	Ala	val	Arg	Gly 123		Asp	Pro
10	Leu	Ser 123	Gln 70	Val	Lys	Pro	Leu 123	Pro	Ile	His	Tyr	Arg 123	Asp 08	Phe	Ala	Val
	Trp 123	Gln 85	Arg	Gln	Asp	Lys 123	Gln 90	Val	Ala	Val	His 123		Ser	Gln	Leu	Gln 12400
15	Tyr	Trp	Ile	Glu	Gln 124	Leu 05	Ala	Asp	Ser	Thr 124	Pro 10	Ala	Glu	Ile	Leu 124	
	Asp	Phe	Asn	Arg 124	Pro 20	Glu	Val	Leu	Ser 124	Gly 25	Glu	Ala	Gly	Thr 124		Pro
20	Ile	Val	Ile 124	Glu 35	Asp	Glu	Val	Tyr 124	Glu 40	Lys	Leu	Ser	Leu 124		Cys	Arg
	Asn	His 124	Gln 50	Val	Thr	Ser	Phe 124	Val 55	Val	Leu	Leu	Ala 124		Phe	Arg	Val
25	Ala 1246	His 55	Tyr	Arg	Leu	Thr 124	Gly 70	Ala	Glu	Asp	Ala 124		Ile	Gly	Thr	Pro 12480
	Ile	Ala	Asn	Arg	Asn 1248	Arg 35	Pro	Glu	Leu	Glu 124	Asp 90	Leu	Ile	Gly	Phe 1249	
30	Val	Asn	Thr	Gln 1250	Cys 00	Met	Arg	Ile	Ala 125	Leu 05	Glu	Glu	His	Asp 125		Phe
	Leu	Ser	Val 1251	Val L5	Arg	Arg	Val	Arg 1252	Ser 20	Thr	Ala	Ala	Ser 125		Phe	Glu
35	Asn	Gln 1253	Asp 0	Val	Pro	Phe	Glu 125	Arg 35	Leu	Val	Ser	Ala 1254		Leu	Pro	Gly
	Ser 1254	Arg 5	Asp	Ala	Ser	Arg 1255	Asn 50	Pro	Leu	Val	Gln 1255		Met	Phe	Val	Val 12560
40	His	Ser	Gln	Arg	Asn 1256	Leu 5	Gly	Lys	Leu	Gln 125	Leu 70	Glu	Gly	Leu	Glu 1257	
	Glu	Pro	Thr	Pro 1258	Tyr 0	Thr	Ala	Thr	Thr 1258	Arg 5	Phe	Asp	Val	Glu 1259		His
45	Leu	Phe	Glu 1259	Gln 5	Asp	Lys	Gly	Leu 1260	Ala 0	Gly	Asn	Val	Val 1260		Ala	Ala
	Asp	Leu 1261	Phe 0	Glu	Ala	Ala	Thr 1261	Ile .5	Arg	Ser	Val	Val 1262	Glu 0	Val	Phe	His
50	Glu 1262	Ile 5	Leu	Arg	Arg	Gly 1263	Leu 0	Asp	Gln	Pro	Asp 1263	Ile 5	Ala	Ile		Thr 12640
	Met 1	Pro	Leu	Val	Asp 1264	Gly 5	Leu	Ala	Ala	Leu 1265	Asn 0	Ser	Arg		Leu 1265	
55	Ala '	Val (Glu .	Asp 1266	Ile (Glu	Pro	Asp	Phe 1266	Ala 5	Thr	Glu	Ala	Ser 1267		Val

	Asp Va	l Phe Gl	n Thr	Gln Val		a Asn	Pro As			Ala	Val
		12675 p_Thr Se:	Thr			r Ala				Gln	Ser
5		690		126	-			700			
	12705	s Val Ala		Trp Leu 12710	Ser Ly:	s Gln	Lys Le ² 12715	ı Pro	Ala	Glu	Ser 12720
10	Ile Va	l Val Val	Leu 1272		Arg Se	r Ser 1273		r Ile	Val	Ala 127	
	Ile Gly	y Ile Lei 12	Lys 140	Ala Asn		a Tyr 745	Leu Pro	Met	Asp 1275		Asn
15	Val Pro	Glu Ala 12755	Arg	Arg Gln	Ala Ile 12760	e Leu	Ser Gl	11e 127		Gly	Glu
13		e Val Leu 770	ı Leu	Gly Ala 127		l Pro		Asp 780	Asn	Lys	Thr
20	Ala Asp 12785	o Val Arç		Val Phe 12790	Ile Se	r Asp	Ile Va: 12795	l Ala	Ser	Lys	Thr 12800
20	Asp Lys	s Ser Ty	Ser 1280		Thr Arg	Pro 1281		s Ser	Ser	Leu 1281	
	Tyr Val	l Ile Phe 128		Ser Gly		Gly 325	Arg Pro	Lys	Gly 1283		Met
25	Val Glu	1 His Arg 12835	Gly '	Val Ile	Ser Leu 12840	ı Val	Lys Gl	1284		Ser	Arg
	Ile Pro 128	Gln Ser 350	Leu	Arg Met 128		val	Ser Ası 128		Ala	Phe	Asp
30	Ala Ser 12865	: Val Trp		Ile Phe 12870	Thr Thr		Leu Asr 12875	Gly	Gly	Thr	Leu 12880
	Phe Cys	: Ile Ser	Tyr 1		Val Leu	1 Asp 1289		Ala		Ser 1289	
35	Ala Phe	Ser Asp 129		Arg Ile	Asn Ile		Leu Leu	Pro	Pro 1291		Leu
	Leu Lys	Gln Cys 12915	Leu A	Ala Asp	Ala Pro 12920	Ser	Val Leu	Ser 1292		Leu	Glu
40	Ser Leu 129	Tyr Ile 30	Gly (Gly Asp 1293		qeA	Gly Ala 129		Ala	Thr	Lys
	Val Lys 12945	Asp Leu		Lys Gly 12950	Lys Ala		Asn Ala 12955	Tyr	Gly		Thr 12960
45	Glu Asn	Ser Val	Met 8		Ile Tyr	Thr 1297		His		Thr 1297	
	Ala Asn	Gly Val 129	Pro 1 80	lle Gly	Thr Ser 129		Gly Pro	Lys	Ser 1299		Ala
50	Tyr Ile	Met Asp 12995	Gln A	Asp Gln	Gln Leu 13000	Val 1	Pro Ala	Gly 1300		Met	Gly
	Glu Leu 130	Val Val 10	Ala G	Sly Asp 1301		Ala A	Arg Gly 130		Thr .	Asp	Pro
55	Ser Leu	Asn Thr	Gly A	Arg Phe	Ile His	Ile :	Thr Ile	Asp	Gly :	Lys	Gln

	13025		13	030		13035		13040
E	Val Gl	n Ala Ty	r Arg Th 13045	r Gly As	p Arg Va	al Arg Tyr 3050	Arg Pro Arg	g Asp 055
5	Tyr Gl	n Ile Glu 130	Phe Pho	e Gly Ar	g Leu As 13065	sp Gln Gln	Ile Lys Ile 13070	⊇ Arg
	Gly Hi	3 Arg Ile 13075	e Glu Pro	Ala Gl 13	u Val GI 080	lu Gln Ala	Leu Leu Sei 13085	Asp
10	Ser Ser 130	r Ile Asr)90	n Asp Ala	a Val Va 13095	l Val S∈	er Ala Gln 131	Asn Lys Glı 00	Gly
.2	Leu Glu 13105	ı Met Val	. Gly Ty: 131	Ile Th	r Thr Gl	n Ala Ala 13115	Gln Ser Val	Asp 13120
15			13125		13	130	Ala His Phe 131	.35
		131	40		13145		Asp Ala Leu 13150	
20		13133		13.	160		Ser Leu Ile 13165	
	131	70		13175		1318		
25	Asp Asn 13185	Gln Pro	Pro Gly 131	Lys Val	Leu Gl	u Ile Gly 13195	Thr Gly Thr	Gly 13200
	Met Val	Leu Phe	Asn Leu 13205	Gly Lys	3 Val G1:	u Gly Leu 210	Gln Ser Tyr 132	
30	Gly Leu	Glu Pro 132:	Ser Arg 20	Ser Val	Thr Ala 13225	a Trp Val	Asn Lys Ala 13230	Ile
		13233		132	40		His Val Gly 13245	
35	132	50		13255		1326		
	Ile Asn 13265	Ser Val	Ala Gln 132	Tyr Phe 70	Pro Sei	r Arg Glu 13275	Tyr Leu Ala	Glu 13280
40			13285		132	290	Arg Ile Phe 1329	5
	Gly Asp	Met Arg 1330	Thr Tyr	Ala Thr	Asn Lys 13305	Asp Phe	Leu Val Ala 13310	Arg
45		13313		133	20	:	Met Val Arg 13325	
	Gln Val 1333	Ala Lys 0	Leu Glu	Asp Asp 13335	Glu Glu	Glu Leu 1 1334(Ceu Val Asp)	Pro
50	Ala Phe 13345	Phe Thr	Ser Leu 1335	Ser Asp	Gln Phe	Pro Asp (Glu Ile Lys	His 13360
			13303		133	70	Slu Leu Ser 1337	5
55	Tyr Arg	Tyr Ala 1338	Ala Val O	Ile His	Val Gly 13385	Gly His G	In Met Pro	Asn

	Gly	, Glu	1 Asp	Glu 395	Asp	Lys	Glr	134	Ala 100	va]	Lys	a Asp	134		Pro	Lys
5	Ala	134	val	Asp	Phe	Ala	Gly 134	Thr	Arg	Met	. Asp	Arc 134		n Ala	Leu	Leu
	Gln 134	Leu 25	Leu	Gln	Asp	Arg 134	Glr	Arg	Gly	Asp	134	Val 35	. Val	. Ala	Val	Ser 13440
10	Asn	Ile	Pro	Tyr	Ser 134	Lys 45	Thr	Ile	Met	Glu 134		His	Leu	Ser	Gln 134	
	Leu	Asp	Asp	134		Asp	Gly	Thr	Ser 134		Val	. Asp	Gly	Thr 134		Trp
15	Ile	Ser	134	Thr 75	Gln	Ser	Arg	134		Glu	Cys	Pro	Ala 134		Ser	Val
	Ala	Asp 134	Leu 90	Ile	Glu	Ile	Gly 134	Lys 95	Gly	Ile	Gly	Phe 135		Val	Glu	Ala
20	Ser 135	Trp 05	Ala	Arg	Gln	His 135	Ser 10	Gln	Arg	Gly	Gly 135	Leu 15	Asp	Ala	Val	Phe 13520
	His	Arg	Phe	Glu	Pro 135	Pro 25	Arg	His	Ser	Gly 135		Val	Met	Phe	Arg 135	
25	Pro	Thr	Glu	His 135	Lys 40	Gly	Arg	Ser	Ser 135		Ser	Leu	Thr	Asn 135		Pro
	Leu	His	Leu 135	Leu 55	Gln	Ser	Arg	Arg 135		Glu	Ala	Lys	Val 135		Glu	Arg
30	Leu	Gln 135	Ser 70	Leu	Leu	Pro	Pro 135		Met	Ile	Pro	Ser 135		Ile	Thr	Leu
	Leu 135	Asp 35	Gln	Met	Pro	Leu 135		Ser	Asn	Gly	Lys 135		Asp	Arg	Lys	Lys 13600
35	Leu	Ala	Arg	Gln	Ala 1360	Arg)5	Val	Ile	Pro	Arg 136		Ala	Ala	Ser	Thr 1361	
	Asp	Phe	Val	Ala 1362	Pro	Arg	Thr	Glu	Ile 1362		Val	Val	Leu	Cys 136		Glu
40	Phe	Thr	Asp 1363	Leu 35	Leu	Gly	Val	Lys 1364		Gly	Ile	Thr	Asp 136		Phe	Phe
40	Glu	Leu 1365	Gly 50	Gly	His	Ser	Leu 1365		Ala	Thr	Lys	Leu 1366		Ala	Arg	Leu
45	Ser 1366	Arg 5	Arg	Leu	Asp	Ala 1367	Gly 70	Ile	Thr	Val	Lys 1367		Val	Phe	qeA	Gln 13680
45	Pro	Val	Leu	Ala	Asp 1368	Leu 5	Ala	Ala	Ser	Ile 1369		Gln	Gly	Ser	Ser 1369	
	His	Arg	Ser	Ile 1370	Pro 0	Ser	Leu	Pro	Tyr 1370	Glu 5	Gly	Pro	Val	Glu 1371		Ser
50	Phe	Ala	Gln 1371	Gly .5	Arg	Leu	Trp	Phe 1372	Leu 0	Asp	Gln	Phe	Asn 1372		Asp	Ala
	Leu	Trp 1373	Tyr 0	Leu	Ile	Pro	Phe 1373	Ala 5	Leu	Arg		Arg 1374		Pro	Leu	Gln
55																

	Va: 137	. Asp 45	Ala	Leu	Ala	Ala 137	Ala 50	Leu	val	Ala	Leu 137		Glu	Arç	, His	Glu 13760
5	Ser	Leu	Arg	Thr	Thr 137	Phe	Glu	Glu	Arg	Asp 137	Gly 70	Val	Gly	Ile	Gln 137	Val 75
	Val	Gln	Pro	Leu 137	Arg	Thr	Thr	Lys	137	Ile 85	Arg	Ile	Ile	137		Ser
10	Gly	Met	Arg 137	Asp 95	Asp	Asp	Ala	Tyr 138	Leu 00	Glu	Pro	Leu	Gln 138		Glu	Gln
	Gln	Thr 138	Pro 10	Phe	Asp	Leu	Ala 138	Ser 15	Glu	Pro	Gly	Trp 138		Val	Ala	Leu
15	Leu 138	Lys 25	Leu	Gly	Lys	Asp 138	Asp 30	His	Ile	Leu	Ser 138	Ile 35	Val	Met	His	His 13840
	Ile	Ile	Ser	Asp	Gly 138	Trp 45	Ser	Thr	Glu	Val 138		Gln	Arg	Glu	Leu 138	
20	Gln	Phe	Tyr	Leu 138	Ala 60	Ala	Lys	Ser	Gly 138	Lys 65	Ala	Pro	Leu	Ser 138		Val
			138	75				138	80			Val	138	85		
25		138	90				138	95				Asp 139	00		_	
	139	05				139	10				139					13920
3 <i>0</i>					1392	25				139.	30	Ser			1393	35
				1394	40				1394	15		Arg		139	50	
35			1395	5				1396	60			Ala	1396	65		
		1397	70				1397	75				Pro 1398	30			-
40	1398	35				1399	90				1399					14000
					1400	15				140:	LO	Phe			1401	.5
45				1402	20				1402	:5		Glu		1403	30	
			1403	5				1404	10			Gly	1404	15		
50		1405	0				1405	5				Val 1406	0			
	1406	5				1407	0				1407					14080
					1408	5				1409	0	His			1409	5
55	Ala	Asp	Arg	Leu	Asn	Gly	Ser	Val	Met	Phe	Ala	Thr	Asp	Leu	Phe	Gln

		14100	14105		14110
	Pro Glu Thr	Ile Gln Gly	Phe Val Ala Val 14120	Val Glu Glu 1412	
5	Arg Gly Leu 14130		Gln Ser Pro Ile 14135	Ala Thr Met 14140	Pro Leu Ala
	Glu Gly Ile 14145	Ala Gln Leu 1415	Arg Asp Ala Gly	Ala Leu Gln 14155	Met Pro Lys 14160
10	Ser Asp Tyr	Pro Arg Asn . 14165	Ala Ser Leu Val 1417		Gln Gln Gln 14175
	Ala Met Ala	Ser Pro Ser	Thr Val Ala Val 14185	Thr Asp Ser	Thr Ser Lys 14190
15	Leu Thr Tyr 1419		Asp Arg Leu Ser 14200	Asp Gln Ala 1420	
	Leu Arg Arg 14210		Pro Ala Glu Thr 14215	Met Val Ala 14220	Val Leu Ala
20	Pro Arg Ser 14225	Cys Glu Thr 1	Ile Ile Ala Phe O	Leu Ala Ile 14235	Leu Lys Ala 14240
	Asn Leu Ala	Tyr Met Pro 1 14245	Leu Asp Val Asn 1425		Ala Arg Met 14255
25	Glu Ala Ile	Ile Ser Ser V 14260	Val Pro Gly Arg 14265		Leu Val Gly 14270
	Ser Gly Val 1427	Arg His Ala A 5	Asp Ile Asn Val 14280	Pro Asn Ala 1428	
30	Leu Ile Ser 14290	Asp Thr Val 1	Thr Gly Thr Asp	Ala Ile Gly 1	Thr Pro Glu
	Pro Leu Val 14305	Val Arg Pro S 14310	Ser Ala Thr Ser	Leu Ala Tyr ' 14315	Val Ile Phe 14320
35	Thr Ser Gly	Ser Thr Gly I 14325	Lys Pro Lys Gly 1433		Glu His Arg 14335
	Ala Ile Met	Arg Leu Val I 14340	Lys Asp Ser Asn 14345		His Met Pro 14350
40	Pro Ala Thr 1	Arg Met Ala H 5	His Val Thr Asn 14360	Ile Ala Phe 1 14365	
	Leu Phe Glu I 14370	Met Cys Ala T 1	Thr Leu Leu Asn (.4375	Gly Gly Thr I 14380	Leu Val Cys
45	Ile Asp Tyr 1 14385	Leu Thr Leu L 14390	eu Asp Ser Thr I	Met Leu Arg (14395	Glu Thr Phe 14400
	Glu Arg Glu (Gln Val Arg A . 14405	la Ala Ile Phe 1 14410		Leu Leu Arg 14415
50	Gln Cys Leu V	/al Asn Met P 14420	ro Asp Ala Ile (14425		Glu Ala Val .4430
	Tyr Val Ala (1443	Sly Asp Arg P	he His Ser Arg 1 14440	Asp Ala Arg A 14445	
55	Ala Leu Ala C 14450	Sly Pro Arg V	al Tyr Asn Ala 1 4455	Tyr Gly Pro T 14460	hr Glu Asn

	Ala Ile Leu 14465	Ser Thr Ile		Asp Lys His Asp 14475	Pro Tyr Val 14480
5	Asn Gly Val	Pro Ile Gly 14485		Ser Asn Ser Gly 14490	Ala Tyr Val 14495
	Met Asp Arg	Asn Gln Gln 14500	Leu Leu Pro P 14505	Pro Gly Val Met	Gly Glu Leu 14510
10	Val Val Thr 145		Val Ala Arg 0 14520	Gly Tyr Thr Asp 145	
	Asp Thr Asp 14530	Arg Phe Val	Thr Val Thr I	Ile Asp Gly Gln 14540	Arg Gln Arg
15	Ala Tyr Arg 14545	Thr Gly Asp 145		Tyr Arg Pro Lys 14555	Gly Phe Gln 14560
	Ile Glu Phe	Phe Gly Arg 14565		Gln Ala Lys Ile 14570	Arg Gly His 14575
20	Arg Val Glu	Leu Gly Glu 14580	Val Glu His A	Ala Leu Leu Ser 5	Glu Asn Ser 14590
	Val Thr Asp 145		Val Leu Arg T 14600	Thr Met Glu Glu 1460	
25	Gln Leu Val 14610	Ala Phe Val	Thr Thr Asp H	His Glu Tyr Arg 14620	Ser Gly Ser
	Ser Asn Glu 14625	Glu Glu Asp 1463		Thr Gln Ala Ala 14635	Gly Asp Met 14640
30	Arg Lys Arg	Leu Arg Ser 14645		fyr Tyr Met Val 14650	Pro Ser Arg 14655
	Val Thr Ile	Leu Arg Gln 14660	Met Pro Leu A 14665	Asn Ala Asn Gly	Lys Val Asp 14670
35	Arg Lys Asp		Arg Ala Gln M 14680	Met Thr Pro Thr 1468	
	Ser Gly Pro 14690	Val His Val	Ala Pro Arg A 14695	Asn Glu Thr Glu 14700	Ala Ala Ile
40	Cys Asp Glu 14705	Phe Glu Thr 1471		Val Lys Val Gly 14715	Ile Thr Asp 14720
	Asn Phe Phe	Glu Leu Gly 14725	Gly His Ser L	Leu Leu Ala Thr 14730	Lys Leu Ala 14735
45	Ala Arg Leu	Ser Arg Arg 14740	Met Gly Leu A 14745	arg Ile Ser Val	Lys Asp Leu 14750
	Phe Asp Asp 1475	Pro Val Pro 55	Val Ser Leu A 14760	Ala Gly Lys Leu 1476	
50	Gln Gly Phe 14770	Ser Gly Glu	Asp Glu Ser S 14775	Ser Thr Val Gly 14780	Ile Val Pro
	Phe Gln Leu 14785	Leu Pro Ala 1479		arg Glu Ile Ile 14795	Gln Arg Asp 14800
55	Val Val Pro	Gln Ile Glu 14805		er Thr Pro Leu .4810	Asp Met Tyr 14815

	Pro	Ala	Thr	Gln 1482		Gln	Ile	Phe	Phe 1482	Leu 25	His	Asp	Lys	Ala 1483	Thr	Gly
5	His	Pro	Ala 1483		Pro	Pro	Leu	Phe 1484	Ser 0	Leu	Asp	Phe	Pro 1484	Glu IS	Thr	Ala
	Asp	Cys 1485	Arg 50	Arg	Leu	Ala	Ser 1485	Ala 5	Cys	Ala	Ala	Leu 1486	Val	Gln	His	Phe
10	Asp 1486		Phe	Arg	Thr	Val 1487		Val	Ser	Arg	Gly 1487		Arg	Phe	Tyr	Gln 14880
	Val	Val	Leu	Ala	His 1488		Asp	Val	Pro	Val 1489	Glu 90	Val	Ile	Glu	Thr 1489	Glu 5
15	Gln	Glu	Leu	Asp 1490		Val	Ala	Leu	Ala 1490	Leu)5	His	Glu	Ala	Asp 1491	Lys .0	Gln
	Gln	Pro	Leu 1491		Leu	Gly	Arg	Ala 1492		Leu	Arg	Ile	Ala 1492	Ile 25	Leu	Lys
20	Arg	Pro 1493	Gly 30	Ala	Lys	Met	Arg 1493		Val	Leu	Arg	Met 1494		His	Ser	Leu
	Tyr 1494		Gly	Leu	Ser	Leu 1495		His	Ile	Val	Asn 1495		Leu	His	Ala	Leu 14960
25	_		Asp		1496	5				1497	70				1497	75
			Met	1498	30				1498	35				1499	90	
30			Gln 1499	95				1500	0				1500)5		
		1501					1501	. 5				1502	20			
35	1502	25	Ile			1503	30				1503	35				15040
			Thr		1504	15				1505	50				1505	55
40		_	Val	1506	50				1506	55				1507	70	
			Cys 1507	75				1508	30				1508	35		
45		1509					1509	5				1510	0			
	1510)5	Asp			1511	.0				1511	15				15120
50			Val Cys		1512	25				1513	30				1513	35
			Glu	1514	10				1514	15				1515	50	
55			1515 Arg	55				1516	0				1516	55		
							3								2	_

### Ash Gly Thr Ash Gly Thr Ash Gly Ala Ash Gly Thr Ash Gly Thr Ash 15105 Gly Thr Ash Gly Thr His Ala Ash Gly Ite Ash Gly Ser Ash Gly Val 15205 15215 15215 15215 15216 1	5		151	70			151	75				151	80				
Ash Gly Arg Asp Ser Ash Val Ser Ala Ala Gly Asp Gln Ala Pro 15220 Val His Asp Leu Asp Ile Val Gly Ile Pro Glu Pro Asp Gly Ser Val 15235 15245 15245 Val His Asp Leu Asp Ile Val Gly Ile Pro Glu Pro Asp Gly Ser Val 15255 Lys Ile Gly Ile Gly Ala Ser Arg Gln Ile Leu Gly Glu Lys Val Val 15256 Gly Ser Met Leu Ash Glu Leu Cys Glu Thr Met Leu Ala Leu Ser Arg 15265 Thr (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) TYPE: nucleic: (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO 30 (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGACCTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (iii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:		As 15	n Gly 185	Thr A	sn Gly	Thr 151	Asn 90	Gly	Ala	Asn	Gly 151	Thr 95	Asn	Gly	Thr		
Asn Gly Arg Asp Ser Asn val val Ser Ala Ala Gly Asp Gln Ala Pro 15220 Val His Asp Leu Asp Ile val Gly Ile Pro Glu Pro Asp Gly Ser val 15235 Lys Ile Gly Ile Gly Ala Ser Arg Gln Ile Leu Gly Glu Lys Val Val 15250 Gly Ser Met Leu Asn Glu Leu Cys Glu Thr Met Leu Ala Leu Ser Arg 15265 Gly Ser Met Leu Asn Glu Leu Cys Glu Thr Met Leu Ala Leu Ser Arg 15265 Thr (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAGA ATATCCTT (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:		G1	y Thr	Asn G	ly Thr 152	His 05	Ala	Asn	Gly	Ile 152	Asn 10	Gly	Ser	Asn			
Lys Ile Gly Ile Gly Ala Ser Arg Gln Ile Leu Gly Glu Lys Val Val 15255 Gly Ser Met Leu Asn Glu Leu Cys Glu Thr Met Leu Ala Leu Ser Arg 15265 Thr (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	10	As	n Gly	Arg A	sp Ser 5220	Asn	Val	Val	Ser 1522	Ala 25	Ala	Gly	Asp			Pro	
Gly Ser Met Leu Asn Glu Leu Cys Glu Thr Met Leu Ala Leu Ser Arg 15265 Th: Th: (2) INFORMATION FOR SEQ ID NO: 3: (3) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE Type: DNA (genomic) (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGACA AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA 120 ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT 178 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (3) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:		Va	l His	Asp L 15235	eu Asp	Ile	Val	Gly 152	Ile 10	Pro	Glu	Pro			Ser	Val	
The (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	15	Ly	s Ile 1525	Gly I	le Gly	Ala	Ser 1525	Arg 55	Gln	Ile	Leu	Gly 152	Glu 60	Lys	Val	Val	
20 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) TYPE: nucleic acid (C) STRANDEDENESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE:		Gl ₂ 15	y Ser 265	Met L	eu Asn	Glu 1527	Leu 70	Cys	Glu	Thr	Met 1527	Leu 5	Ala	Leu	Ser		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 178 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	20	Th	:														
(A) LENGTH: 178 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:		(2) INFO	ORMATI	ON FOR	SEQ :	ID NO): 3:										
(iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA 120 ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT 178 (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	25	(i)	(A) (B) (C)	LENGT TYPE: STRAN	H: 178 nucle	B bas eic a SS: s	se pa cid singl	irs									
(iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: Single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:		(ii)	MOLE	CULE 1	YPE: I	NA (geno	mic)									
(vi) ORIGINAL SOURCE: (A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:		(iii)	нуро	THETIC	AL: NO												
(A) ORGANISM: Tolypocladium geodes (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG 60 GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA 120 ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT 178 (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	30	(iii)	ANTI-	-SENSE	: NO												
ATGCAACTAT CGGCTCTCCA ATTGCGAACA GAAATCGAGC AGAGCTTGAG GGCCTTATTG GCTGTTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT 178 (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:		(vi)					ocla	dium	geo	des							
GCTGTTTGT GAATACTCAG TGTATGAGAC TGCCAGTTAC CGATGAAGAT ACATTCGCCA ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT 178 40 (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	35																
ATTTGATTGA CTGTGTACGA GAGACGTCAA CCGAGGCCTT GAGCACCAAG ATATCCTT 40 (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:																	50
(2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:																12	30
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	40							CCGA	GGCC	rt G	AGCA	CCAA	G AT	ATCC:	ΓT	17	78
(A) LENGTH: 1713 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:																	
(iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:	45	(1)	(A) (B) (C)	LENGT: TYPE: STRAN	H: 171 nucle DEDNES	3 bas ic ac S: si	se pa cid ingle	airs									
(iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE:						VA (ç	genon	nic)									
50 (vi) ORIGINAL SOURCE:																	
	50		ORIGI	NAL SO	URCE:	eocos	mosp	ora	vasi	nfec	ta:						

	(X1) S	FOOFWCF DES	CRIPTION: 5	EQ ID NO: 4	•		
5	ACATCGGGGG	TATTGATCGC	GATGCCCTCG	GACAGGACTT	CTTATCCTGG	ACATCCATGT	60
	ACGACGGCTC	ATTGATTCCC	CGGGAAGAGA	TGCAGGAATG	GCTCAGCGAC	ACTATGCACT	120
10	CACTCCTCGA	CAACCAGCCA	CCCGGAAGAG	TGCTCGAGAT	CGGAACTGGT	ACCGGTATGG	180
	TGCTTTTCAA	TCTCGGCAAG	GTTGAGGGAC	TACAGAGCTA	TGCCGGTCTT	GAGCCCTCGC	240
	GCTCCGTCAC	TGCCTGGGTT	AACAAGGCAA	TCGAAACTTT	CCCAAGCCTG	GCAGGAAGCG	300
15	CCCGAGTCCA	CGTTGGAACC	GCCGAGGATG	TCAGCTCCAT	CAATGGACTG	CGTGCCGATC	360
	TCGTTGTGAT	CAACTCGGTC	GCCCAATACT	TCCCAAGTCG	AGAATATCTC	GCTGAGCTGA	420
	CGGCCAACTT	GATTCGACTG	CCCGGCGTCA	AGCGTATTTT	CTTCGGCGAC	ATGAGAACCT	480
	ATGCCACCAA	TAAGGACTTC	TTGGTGGCAC	GAGCAGTCCA	TACCCTAGGG	TCCAATGCAT	540
	CTAAGGCCAT	GGTTCGACAA	CAGGTGGCCA	AGCTTGAAGA	TGACGAGGAA	GAGTIGCTIG	600
20	TTGACCCTGC	CTTCTTCACC	AGCCTGAGCG	ACCAGTTCCC	TGACGAAATC	AAGCACGTCG	660
	AGATTCTGCC	AAAGAGGATG	GCCGCGACCA	ACGAACTCAG	CTCTTACCGA	TATGCTGCTG	720
	TTATTCATGT	GGGAGGCCAC	GAGATGCCGA	ATGGGGAGGA	TGAGGATAAG	CAATGGGCTG	780
25	TCAAGGATAT	CGATCCGAAG	GCCTGGGTGG	ACTTCGCCGG	CACGAGGATG	GACCGTCAGG	840
	CTCTCTTGCA	GCTCCTCCAG	GACCGCCAAC	GTGGCGATGA	CGTTGTTGCC	GTCAGTAACA	900
	TCCCATACAG	CAAGACCATC	ATGGAGCGCC	ATCTGTCTCA	GTCACTTGAC	GATGACGAGG	960
30	ACGGCACTTC	AGATGCAGAC	GGAACGGCCT	GGATATCGGC	CACTCAATCA	CGGGCGAAGG	1020
	AATGCCCTGC	TCTCTCAGTG	GCCGACCTGA	TTGAGATTGG	TAAGGGGATC	GGCTTCCAAG	1080
	TTGAGACCAG	CTGGGCTCGA	CAACACTCCC	AGCGCGGCGG	ACTCGATGCT	GTTTTCCACC	1140
25	GATTCGAAAA	ACCAAGACAC	TCGGGTCATG	TCATGTTCAG	GTTCCCAACT	GAACACAAGG	1200
35	GGCCGGTCTT	CGAGCAGTCT	CACGAATCGC	CCGCTACACC	TGGTTCAGAG	CCGCCGGCTG	1260
	GAGGCAAAGG	TCCGCGAGCG	GCTGCAATCG	CTGCTTCCAT	CGTACATGAT	TCCCTCTCGG	1320
40	ATCATGTTGC	TCGATCAGAT	GCCTCTCACG	TCCAACGGCA	AGGTGGATCG	CAAGAAGCTC	1380
	GCTCGACAAG	CCCGGGTCAT	CCCAACAATT	GCCGCAAGCA	CGTTGGACTT	TGTGGCGCGC	1440
	ACGCACGGAA	ATCGAGGTCG	GTTCTCTGCG	AAGAATTTAC	CGATCTACTA	GGCGTCAAGG	1500
45	TCGGCATTAC	AGACAACTTC	TTCGAGTTGG	GCGGCCATTC	GCTGCTGGCC	ACGAAACTGA	1560
	GCGCACGTCT	AAGTCGCAGA	CTGGACGCCG	GTGTCACTGT	GAAGCAGATC	TTTGACCAGC	1620
	CAGTACTTGC	TGATCTTGCT	GCTTCTATTC	GTCAAGGCTC	GTCCCGTCAC	AGGTCTATCC	1680
	CGTCTTTACC	CTACGAAGGA	CCCGTGGAGC	AGT			1713

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 655 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: unknown

55

	(ii) MOLECULE TYPE: cDNA						
5	(iii) HYPOTHETICAL: NO						
	(iii) ANTI-SENSE: NO						
10	(vi) ORIGINAL SOURCE:(A) ORGANISM: Tolypocladium niveum(B) STRAIN: ATCC 34921						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:						
	CATCAGCAAT CATGGGCAAC AAAGTCTTCT TCGACATTGA GTGGGAGGGC CCCGTCATGC	60					
15	AGGGTTGCAA GCCTACCTCT ACCGTCAAAG AGCAGTCTGG TCGCATCAAC TTCAAGCTGT	120					
	ACGATGACGT CGTCCCCAAG ACCGCCGAGA ACTTCCGCGC TCTCTGCACC GGCGAGAAGG	180					
	GCTTCGGCTA CGAGGGCTCG TCCTTCCACC GTATCATCCC CGAGTTCATG CTCCAGGGCG	240					
20	GCGACTTCAC CCGCGGTAAC GGCACTGGCG GCAAGTCCAT CTACGGCGAG AAGTTTGCCG	300					
	ATGAGAACIT CCAGCTGAAG CACGACCGCC CCGGTCTGCT GTCCATGGCT AACGCTGGCC	360					
	CCAACACCAA CGGCTCCCAG TTCTTCGTCA CCACCGTCGT CACCTCGTGG CTCAACGGCC	420					
	ACCACGTCGT CTTCGGCGAG GTCGCTGACC AGGAGTCCCT GGACGTCGTC AAGGCCCTTG	480					
25	AGGCCACTGG CTCTGGTAGC GGCGCTGTCA AGTACAACAA GCGCGCCACC ATTGTCAAGT	540					
	CTGGCGAGCT GTAAGCTATG GCATCTGTGT ATCTTGCGAT TTCCTGCACC CAATTCGGAC	600					
	GGACAAAAGA GGCGCTCCCC ACAGCAAGGA CCTTTGGTTC ACGGGACGGC TTGAA	655					
30	(2) INFORMATION FOR SEQ ID NO: 6:						
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown						
	(ii) MOLECULE TYPE: cDNA						
	(iii) HYPOTHETICAL: NO						
40	(iii) ANTI-SENSE: NO						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:						
45	GGGATATCGT GAATTGTAAT ACGACTCACT ATA (2) INFORMATION FOR SEQ ID NO: 7:						
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2157 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown						
	(ii) MOLECULE TYPE: cDNA						
	(iii) HYPOTHETICAL: NO						

86

(iii) ANTI-SENSE: NO

5

	(xi) S	EQUENCE DES	CRIPTION: S	EQ ID NO: 7	:		
	GGATCCGTGA	ATTGTAATAC	GACTCACTAT	AGGGCGAATT	CGCTCGACGT	CACCTAGGAG	60
10	ATCAGCCAGC	TCCTTGGCCC	TGTTCCGCAC	GTTGATGCCC	TGGTCTTTGC	CGTTTGGATC	120
	GATGAAGTGG	AACTGGCGCA	GCATCTTCAA	AAGTGTGATG	TGTCCCCGAG	CGTCATCAAT	180
	CACACGCTCA	GAGCCATGCT	TGACGAGGAA	CTCGAGCAGT	TGCAGAGCCT	TGTAGATCTG	240
15	GCGCCACTCC	TCGGCCGACT	TCTCCGTGAA	CCGTCGATAT	ATCATCGGCA	TGATCTCGTT	300
	GAGGGTTTGG	CTGGTTCTGT	TAGCTGAAGC	CGGGCTGTTC	AGTCGTCGAA	CCGCGTACTA	360
	GTTGAAGGTG	CCATTGGCAA	TCTCCTGCAT	AATACTGGAC	GATGCTCCCC	ATGGCTCGTT	420
	GTTCGTTGCC	TCTCGGACCT	AGTACACGGA	GTTAGCCACC	GTGTTAACAA	ACCGTCGCGG	480
20	CCGCAGACTA	ACCTTGGACT	CCATCTCGGT	ATAGTTCATA	ACAGCTACAT	GCCAGGTCAG	540
	CATTGGACGC	GCCAGGGCTG	AGGTCAGGCC	TGGTACCATT	TTGCGCCTTT	CGGAACCCAG	600
	CCTTGAGGTC	GTACAAGGTC	AGGTTGGAGA	CTGTGTTCTT	GATGTCGTTC	AAGTCCATTT	660
25	TGGCAGATTC	GACTTAGCGA	GACCGGCCGG	GAGCGGCAGA	GGAGTTGTCG	ATTCAGCACG	720
	AGTCGCTGAT	GAGCGATGGT	TGTGGTGCAA	GTCGATGGTC	CGAGGGCGGG	TGGTAGAGGT	780
	GCTTGTCGCG	ATGGACAGCT	GGACTTTCGG	GCCGCCAGCG	ACACCTACCC	GGCCTTGATG	840
30	GGTCAGAGGG	ATGATCACGT	GATATGGGTC	GGAGTCGCAT	CGTACTTCGT	ACCAGCATCA	900
	TCTCCAAGCC	AGAGGCAGCA	GAGATTATAT	GACTGCAAAT	GTGAAACGAA	ATAAACCGTC	960
	AATATGGTAT	TTATGTTGGC	AATTGCATGA	TGCATCCCGG	TGGAATTGAA	CTAGAACGTC	1020
0.5	GAGGGCTTGC	ATACCAGAGG	CTGCGGGTGC	ATCGTGGGCA	GCGGTACCTG	AGACTTCAGG	1080
35	CCAGAACGAC	TGCTAATAAG	CCGCGACGGA	GCCAAAACTT	TTCCCCTTTC	CAGAGGCTCT	1140
	CAGCTTTCGA	CTCAGCCATT	TGAACTTGCG	ACTCAAGCCC	GTTCATAACA	CTTCATCTCT	1200
	TGTACTTCTA	CCGCATTACC	TCCTGTACGA	ATTGTAATCC	CAGGTATGTC	TATTTTCCTG	1260
40	TTGTTCTCGT	CACATGCCCT	CCCCAGCATG	CGCAATGTCT	TTGGACAACG	CAGCTCCTCT	1320
	CGACACATCA	CAAAGGCTTC	ACCCAGCAGA	GCACGCGAGA	GCCTGCGCGC	GACAGCCTGC	1380
	GAGCGACATG	CAGCGCTTCC	CTGGAAGCCA	ACTGCACCAG	CCTGGAAAGT	TGCGCAGTTT	1440
45	GCCAGGGGGC	CTCCGTCCCC	CAGAATGGAT	GGCACTCCTC	GGCTTGACCT	GGAGCGCTGC	1500
	TCCCGATCAA	GCCAGAGCCC	GCCGGCGATG	GGGACTGGCC	GCGCCAGCCT	CTGCACATGA	1560
	GTGTGCTGGT	TGGCTGGAGG	TGGGTGGCCT	TTGGCCTCCC	AACCAGTCCC	CACCATTTGC	1620
50	TGGAAGCTGC	TGCAGCTGGT	CGGAACGCAC	CCAAGCCGTT	GAGCTCAGCG	CTCTGTCGGG	1680
30	TCGAGCGCCC	ATTGGGGTTC	CCGCGAAGGT	CCTTTGACTG	GCCGGGGCC	ACTCGTCTTG	1740
	CCGGCCAGAG	CTGAGCTCGC	TGGTCTGGCA	GCGACAGCAG	CCGGGAGCTC	CGTTGTCTAG	1800

	GCGATGAGCG	CAGCGGCCAG	AGCTCCGGGC	CGGATCGGTG	ACCTCACAGC	CGTGGAAGCT	1860
5	CCTGGGCCCC	CGAATCAAGG	ACCGCAATTC	CACGTGACTG	GCCGGTTGCT	CCCCTTCCGG	1920
	CATTGCCCGC	CCCGCTATTA	CACCCCTTTG	CGCGCCCTGG	TTGGTTCAAA	GTCCCACCGC	1980
	TAACTTTTAA	CCCCTCCAGC	AGCCTTCAAA	ATGAAGTCAA	CGCTCCTTCG	ACCCCTCCTA	2040
	CCCCGCTATA	AGCTCTGCTC	CCCCGGGTCA	AGATCTTTCC	CTCTTCCACA	ACTTGCATCA	2100
10	GCTTCCAACA	CATTCCGAGC	TGCTCGATTC	TTCTCCGCAA	CATCAGCAAT	CATCGAT	2157

15 Claims

25

30

- 1. An isolated DNA sequence which codes for an enzyme having cyclosporin synthetase-like activity.
- 2. A DNA sequence according to claim 1 which codes for cyclosporin synthetase or an enzyme that is at least 70% homologous thereto and that has cyclosporin synthetase-like activity.
 - A DNA sequence according to claim 1 or claim 2 which codes for an enzyme that has cyclosporin synthetase-like activity and in which at least one amino-acid recognition unit is different from that of cyclosporin synthetase.
 - 4. A DNA sequence according to any of claims 1 to 3 which includes the 2890 bp <u>Sall</u> restriction fragment containing sequences 40239 to 43129 of Seq Id 1, or a sequence which hybridizes thereto.
 - 5. A DNA sequence according to any of claims 1 to 3 which includes the 2482 bp Sall restriction fragment containing sequences 37781 to 40244 of Seq Id 1, or a sequence which hybridizes thereto.
 - A DNA sequence according to claim 1 which includes the sequence of Seq Id 1, or a sequence that hybridizes thereto.
- 7. A DNA sequence according to claim 1 which codes for an enzyme having an amino acid sequence as given in Seq Id 2.
 - 8. A recombinant vector containing a DNA sequence as defined in any one of claims 1 to 7.
- A recombinant vector according to claim 8 which has a restriction map as set out in any one of figures 2 to 5.
 - 10. A host cell carrying a vector according to claim 8 or claim 9.
 - 11. A process for the production of cyclosporin or a cyclosporin derivative, comprising cultivating a host cell according to claim 10 and causing the host cell to produce the cyclosporin or cyclosporin derivative.
 - 12. A method for the production of a cyclosporin derivative, comprising altering the DNA sequence coding for cyclosporin synthetase so that the enzyme causes the production of the cyclosporin derivative, placing the altered DNA sequence in a vector, transforming a host cell with the vector, and causing the host cell to produce the cyclosporin derivative.
 - 13. A method according to claim 11 in which the DNA sequence coding for cyclosporin synthetase is altered by changing the fragments that code for amino acid recognition units.

45

3000

20000

10000

THIS PAGE BLANK (USPTO)