epo-cpge-mp Durée : 3 heures

Examen unique d'algèbre IV

Exercice 1:5 points

1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que ${}^tAA = A^tA$. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0$.

a. Montrer que ${}^{t}AA = 0$.

b. En déduire que A=0.

2. Si $M \in \mathcal{M}_n(\mathbb{R})$ est symétrique et vérifie $M^p = I_n$ avec $p \in \mathbb{N}^*$. Calculer M^2 .

3. Calculer le minimum de $f: \left\{ \begin{array}{l} \mathbb{R}^3 \longrightarrow \mathbb{R} \\ (a,b,c) \longmapsto \int_0^{+\infty} (x^3 + ax^2 + bx + c)^2 e^{-2x} dx \end{array} \right.$

Exercice 2:5 points

On note S l'ensemble des matrices symétriques réelles d'ordre n. On pose, pour tout $M \in \mathcal{M}_n(\mathbb{R})$,

$$||M|| = \sqrt{\sum_{i,j=1}^{n} M_{ij}^2}.$$

1. Quel est le produit scalaire associé?

2. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Calculer

$$d(A,S) = \inf_{M \in S} \sqrt{\sum_{i,j=1}^{n} |A_{ij} - M_{ij}|^2}.$$

Exercice 3:5 points

Soit E un espace euclidien. On note $\mathcal{B}_0 = (u_1, \dots, u_n)$ une base orthonormée de E. On note H l'hyperplan d'équation $\sum_{i=1}^n x_i = 0$ dans la base \mathcal{B}_0 . Enfin, on note $\mathcal{B} = (e_1, \dots, e_{n-1})$ définie par $e_i = u_1 - u_{i+1}$ pour $i = 1, \dots, n-1$.

1. Montrer que \mathcal{B} est une base de \mathcal{H} .

2. Construire orthonormée de H.

3. Calculer le projeté orthogonal de u_n sur H.

Exercice 4:5 points

1. Soit (u_1, \dots, u_n) une famille de n réels tels que $\sum_{k=1}^n u_k^2 = 1$. On note A la matrice de coefficients $a_{ij} = u_i u_j$.

a. Montrer que $M = 2A - I_n$ est orthogonale.

b. On note f l'endomorphisme représenté par la matrice M dans la base canonique. Donner une représentation géométrique de f.

2. Dans l'espace euclidien \mathbb{R}^3 , quel est l'endomorphisme dont la matrice représentative dans la base canonique

$$\operatorname{est} \left(egin{array}{ccc} -2 & 2 & 1 \ 2 & 1 & 2 \ 1 & 2 & -2 \ \end{array}
ight) ?$$

Année Académique: 2022-2023

epo-cpge-mp Durée : 3 heures

Composition D'Algèbre 3

Exercice 1:5 points

Soit $A \in \mathcal{M}_n(K)$ une matrice de rang 1 sur un corps K.

- 1. Montrer que A est annulée par un polynôme de degré inférieur ou égal à deux.
- 2. En déduire que si $tr(A) \neq 0$, alors A est diagonalisable. Que dire si tr(A) = 0?
- 3. Application: Montrer que la matrice $A=(i/j)_{1\leq i,j\leq n}$ est diagonalisable et trouver ses éléments propres.

Exercice 2:5 points

Soient E un espace vectoriel sur $\mathbb C$ de dimension finie n et g un endomorphisme de E.

- 1. Montrer que l'application T définie sur $\mathcal{L}(E)$ par T(f) = fog gof est un endomorphisme.
- 2. Montrer que si g est nilpotent, alors T l'est aussi. Indication : on pourra remarque que T = G D avec G(f) = fog et D(f) = gof et justifier que GoD = DoG.
- 3. La réciproque est-elle vraie?
- 4. Montrer que si g est diagonalisable, alors T l'est aussi.

Exercice 3:5 points

On considère trois suites réelles $(u_n)_{n\geq 0}$, $(v_n)_{n\geq 0}$, $(w_n)_{n\geq 0}$ vérifiant, pour tout $n\in\mathbb{N}$, $u_{n+1}=-u_n+v_n+w_n$, $w_{n+1}=u_n+v_n-w_n$. Exprimer u_n , v_n et w_n en fonction de n et trouver une condition nécessaire et suffisante sur (u_0, v_0, w_0) pour que ces trois suites convergent.

Exercice 4:5 points

Soient E un R-espace vectoriel de dimension 3 et $f \in \mathcal{L}(E)$ tel que $f^2 \neq 0$ et $f^3 = 0$.

- 1. Montrer qu'il existe $x \in E$ tel que $(x, f(x), f^2(x))$ soit une base de E.
- 2. Montrer que la seule droite de E stable f est $\mathbb{R}f^2(x)$.

Année Académique: 2022-2023

epo-cpge-mp

Travaux dirigés d'algèbre 4

Exercice 0.0.1. Soient E un espace euclidien; F et G des sous-espaces vectoriels de E.

- 1. Démontrer que $(F+G)^{\perp}=F^{\perp}\cap G^{\perp}$.
- 2. Démontrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Exercice 0.0.2. Soit E l'espace l'espace vectoriel des fonctions continues 2π -périodiques de \mathbb{R} dans \mathbb{R} .

- 1. Démontrer que $(f \mid g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)g(x)dx$ définit un produit scalaire sur E.
- 2. Soit F le sous-espace vectoriel de E engendré par les fonctions

$$f: x \longmapsto \cos(x) \text{ et } g: x \longmapsto \sin(x).$$

Déterminer le projeté orthogonal sur F de la fonction $u: x \longmapsto \sin^2(x)$

Exercice 0.0.3. On définit l'application :

$$\varphi: (\in (\mathbb{R}))^2 \longrightarrow \mathbb{R}, (A, B) \longmapsto tr(A^tB).$$

On admet que φ est un produit scalaire sur $\in (\mathbb{R})$. On note :

$$F = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) : (a,b) \in \mathbb{R}^2 \right\}.$$

- 1. Démontrer que F est un sous-espace vectoriel de $\in (\mathbb{R})$.
- 2. Déterminer une base de F^{\perp} .
- 3. Déterminer la projection orthogonale de $J=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur F^{\perp} .

Exemple 0.0.4. On note F l'espace vectoriel des fonctions continues de $\mathbb R$ dans $\mathbb R$.

- 1. Montrer que l'application $(f,g) \mapsto \int_{-1}^{1} f(t)g(t)dt$ est un produit scalaire.
- 2. Déterminer une base orthonormée de $\mathbb{R}_3[X]$.
- 3. Quelle est la projection de $x \mapsto |x|$ sur cette base?

Exercice 0.0.5. On considère le produit sur $\mathbb{R}[X]$ défini par :

$$\forall (P,Q) \in \mathbb{R}[X]^2, \ (P \mid Q) = \int_0^1 p(x)Q(x)dx.$$

Pour $n \in \mathbb{N}$, posons $L_n = (X^n(1-X^n))^{(n)}$.

- 1. Démontrer que L_n est degré n et de coefficient dominant $\frac{(-1)^n(2n)!}{n!}$.
- 2. Soit $P \in \mathbb{R}[X]$ tel que P(1) = P(0) = 0. Soit $Q \in \mathbb{R}[X]$. Démontrer que $(P' \mid Q) = -(P \mid Q')$.
- 3. Déterminer que L_n est orthogonale à $\mathbb{R}_{n-1}[X]$. En déduire que $(L_n)_{n\in\mathbb{N}}$ est une base orthogonale de $\mathbb{R}[X]$.

Exemple 0.0.6. On munit l'espace vectoriel euclidien \mathbb{R}^n de son produit scalaire habituel. Soient $x, y \in \mathbb{R}^n$ de norme 1 formant une famille libre. On note $A \in \mathcal{M}_n()\mathbb{R}$ la matrice dont les coefficients sont

$$a_{ij} = \delta_{ij} + \alpha x_i x_j + \beta y_i y_j.$$

- 1. Donner une condition nécessaire et suffisante pour que A soit inversible. Indication : on pourra considérer $\Pi = vect(x, y)$ et Π^{\perp} .
- 2. Donner une condition nécessaire et suffisante pour que A soit orthogonale.

Exemple 0.0.7. On munit $\mathbb{R}[X]$ du produit scalaire ϕ défini par

$$\forall P, Q \in \mathbb{R}[X], \quad \phi(P,Q) = \int_a^b P(t)Q(t)\omega(t)dt$$

où $-\infty \le a < b \le +\infty$ et où $\omega \in \mathcal{C}([a,b],\mathbb{R})$ est telle que, pour tout $n \in \mathbb{N}$, la fonction $t \mapsto t^n \omega(t)$ est intégrable.

- 1. Montrer qu'il existe une unique base orthonormée $(P_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ vérifiant : $deg(P_k) = k$ pour tout $k \in \mathbb{N}$ et de coeficient dominant positif.
- 2. On pose a=-1, b=1 et $\omega(t)=\frac{1}{\sqrt{1-t^2}}$. Montrer que $\forall n\in\mathbb{N},\ P_n=\frac{\alpha_n}{2^{n-1}}\cos(n\arccos t)$.
 - 3. Déterminer les racines de P_n .
 - 4. soit \mathcal{U} l'ensemble des polynômes de $\mathbb{R}_n[X]$ de degré égal à n et de coefficient dominant égal à 1. Montrer que

$$\inf_{P \in \mathcal{U}} \int_{a}^{b} \frac{P^{2}(t)}{\sqrt{1 - t^{2}}} dt$$

est atteinte pour $P = P_n$.

Exemple 0.0.8. Soient E un espace euclidien de dimension n et f un endomorphisme symétrique de E tel que tr(f) = 0.

- 1. Montrer qu'il existe un vecteur $x \neq 0$ tel que $(f(x) \mid x) = 0$.
- 2. En déduire qu'il existe une base orthonormée (e_1, \dots, e_n) telle que $\forall k \in [1; n], (f(e_k) \mid e_k) = 0$.

Exemple 0.0.9. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il y'a équivalence entre les énoncés :

- 1. il existe $M \in \mathcal{M}_n(\dot{\mathbb{R}})$ telle que $A = M^t M$.
- 2. A est symétrique et ses valeurs propres sont toutes positives.
- 3. Soit $B \in \mathcal{M}_{n,p}(\mathbb{R})$. En déduire que $\det(B^t B) \geq 0$.

Exemple 0.0.10. Soient E un espace euclidien et p, q deux projecteurs orthogonaux de E. Montrer que poq = 0 si et seulement si qop = 0.

Exemple 0.0.11. Dans l'espace $E = \mathbb{R}^3$ muni du produit scalaire usuel, on considère le vecteur n = (1, 1, 1) et le sous-espace $F = vect(n)^{\perp}$. Ecrire la matrice du projecteur orthogonal sur F dans la base canonique. Si x = (3, 2, 1), déterminer d(x, F)

Exemple 0.0.12. Soit $E = \mathcal{C}([-\pi, \pi], \mathbb{R})$. Trouver $(a, b, c) \in \mathbb{R}^3$ tels que la quantité

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (e^t - (a + b \sin t + c \cos t))^2 dt$$

soit minimale.

Exemple 0.0.13. Soit a un vecteur unitaire d'un espace euclidien E. Tout réel λ , on associe l'application $\varphi_{\lambda}: E \longrightarrow E, x \longmapsto x + \lambda(x \mid a)a$.

- 2. Pour p entier naturel non nul donné, calculer U^p .
- 3. Montrer que E est stable pour la multiplication.
- 4. Soit $A = \alpha I + \beta U$ un élément de E.
 - (a) Calculer A^p en fonction de α, β, p, I, U ; où p désigne un entier naturel non nul.
 - (b) Calculer det A.
 - (c) A quelle(s) condition(s) portant sur α et β , A est-elle inversible? Calculer alors l'inverse A^{-1} en fonction de α , β , I et U.

Partie II

Soit u l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique de \mathbb{R}^n est U. Soit i l'identité de \mathbb{R}^n . Soit $p_0 = \frac{1}{n}u$ et $p_1 = i - \frac{1}{n}u$.

- 1. (a) Montrer que p_0 et p_1 sont des projecteurs.
 - (b) Comparer ker p_0 et $\text{Im } p_1$ ainsi que ker p_1 et $\text{Im } p_0$. Donner la dimension de ces espaces.
 - (c) Soit \mathcal{B}' une base adaptée à la décomposition $E = \operatorname{Im} p_0()$ ker P_0 . Former les matrices représentatives de p_0 et p_1 dans cette base \mathcal{B}' .
- 2. Soit A_0 la matrice de p_0 dans la base canonique B de \mathbb{R}^n , A_1 la matrice de p_1 dans cette même base. Montrer que (A_0, A_1) est une base de E = Vect(I, U).
- 3. Soit $A = \alpha I + \beta U$ un élément de E, β étant non nul.
 - (a) Donner les composantes λ et μ de A dans la base (A_0, A_1) .
 - (b) Calculer A^p en fonction de λ, μ, p, A_0 et A_1 .