# Работа 4.4.3 Изучение призмы с помощью гониометра

## Шарапов Денис, Б05-005

## Содержание

| 1 | Аннотация                               | 2 |
|---|-----------------------------------------|---|
| 2 | Теоретические сведения                  | 2 |
| 3 | Результаты измерений и обработка данных | 2 |
| 4 | Вывод                                   | 4 |
| 5 | Приложение: графики                     | 4 |

#### 1 Аннотация

**Цель работы:** знакомство с работой и настройкой гониометра Г5, определение зависимости показателя преломления стекла призмы от длины волны, определение марки стекла и спектральных характеристик призмы.

В работе используются: гониометр, ртутная лампа, призма.

#### 2 Теоретические сведения

Показатель преломления материала призмы  $n(\lambda)$  удобно определять по углу наименьшего отклонения  $\delta(\lambda)$  (рис. 1). Минимальное отклонение луча, преломлённого призмой, от направления луча, падающего на призму, получается при симметричном ходе луча (в призме луч идёт параллельно основанию). Угол минимального отклонения  $\delta$ , преломляющий угол  $\alpha$  (угол при вершине призмы) и показатель преломления связаны соотношением

$$n(\lambda) = \frac{\sin\frac{\alpha + \delta(\lambda)}{2}}{\sin\frac{\alpha}{2}}.$$



Рис. 1: Ход лучей в призме для угла наименьшего отклонения

### 3 Результаты измерений и обработка данных

Измеренные углы наименьшего отклонения 6-ти ярких линий спектра ртути представлены в табл. 1. По этой таблице вычислим значение показателя преломления (табл. 2) и построим график (рис. 2).

Таблица 1: Результаты измерения наименьшего отклонения 6-ти ярких диний спектра ртути

| $K_1$     | $K_2$     | 1         | 2         | 3         | 4         | 5         | 6         |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 86°02′56″ | 85°36′31″ | 85°34′19″ | 85°36′01″ | 85°29′56″ | 85°29′14″ | 85°13′52″ | 85°11′21″ |

Таблица 2: Результат измерения наименьшего отклонения 6-ти ярких линий спектра ртути

| $N_{\overline{o}}$ | $K_1$   | $K_2$   | 1       | 2       | 3       | 4       | 5       | 6       |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| $\lambda$ , HM     | 690, 7  | 623, 4  | 579, 1  | 577,0   | 546, 1  | 491, 6  | 435, 8  | 404, 7  |
| n                  | 1,46750 | 1,46970 | 1,47060 | 1,47065 | 1,47120 | 1,47222 | 1,47480 | 1,47623 |

По графику определим значения  $n_D$  (жёлтый дублет натрия),  $n_F$  (голубая линия водорода) и  $n_C$  (красная линия водорода)

| $n_D$               | $n_F$               | $n_C$               |  |
|---------------------|---------------------|---------------------|--|
| $1,4704 \pm 0,0001$ | $1,4724 \pm 0,0001$ | $1,4687 \pm 0,0001$ |  |

Рассчитаем среднюю дисперсию оптического стекла

$$D = n_F - n_C = 0,0037 \pm 0,0002$$



Рис. 2: Дисперсионная кривая. Треугольниками обозначены точки  $F,\,D,\,C,$  соответствующие длинам волн  $486,1,\,589,3,\,656,3$  нм соответственно

и коэффициент дисперсии

$$\nu = \frac{n_D - 1}{n_F - n_C} = 125 \pm 5.$$

По наклону прямой  $|\frac{dn}{d\lambda}|=2,4\cdot 10^3~{
m cm}^{-1}$  рассчитаем максимальную разрешающую способность призмы

$$R = b \frac{dn}{d\lambda} \approx (1,776 \pm 0,002) \cdot 10^4.$$

Для оценки разрешающей способности призмы воспользуемся табл. 3 и сопроводительным рисунком (рис. 3).

Таблица 3: Измерение угловой ширины жёлтых линий дублета

| $x_0 \qquad x_1$ |       | $x_2$ | $x_3$ |  |
|------------------|-------|-------|-------|--|
| 7'14"            | 6'40" | 5'53" | 5'23" |  |



Рис. 3: Измерение угловой ширины жёлтых линий дублета

Рассчитаем экспериментальную величину R по измерениям жёлтого дублета

$$R > \frac{d\lambda}{\lambda} \approx 275.$$

Рассчитаем угловую дисперсию

$$\frac{d\phi}{d\lambda} = 0,0126 \pm 0,0006 \text{ mm}^{-1}$$

и сравним её с дисперсией решётки в первом порядке, имеющей 100 штр/мм:

$$D = 5,73 \cdot 10^5 \text{ Hm}^{-1}.$$

#### 4 Вывод

В ходе работы исследовали дисперсию света ртутной лампы на стеклянной призме. По измеренным данным определили показатели преломления для длин волн жёлтого дублета натрия, голубой и красной линий водорода. По графику, изображенному на рис. 2, можно определить марку стекла (по наклону). Полученное значение соответствует марке стекла  $T\Phi 3$ . Также с помощью графика была получена максимальная разрешающая способность призмы. Далее была исследована экспериментальная величина R по измерениям жёлтого дублета. После чего была рассчитана угловая дисперсия, которую сравнили с дисперсией решётки в первом порядке.

#### 5 Приложение: графики



Рис. 4: Диаграмма Аббе