ASSIGNMENT 2

Question: Two lines passing through the point (2,3) intersect each other at an angle of 60° . If slope of one line is 2, find equation of the other line.

Solution:

Symbol	Description	Value
m_1	Slope of one line	2
m_2	Slope of another line	m
P	Intersecting point	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$
θ	Angle between two lines	60°

Table 1: Table of input parameters

Symbol	Description	Value
m_1	Direction vector of one line	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
$\mathbf{n_1}$	Normal vector of one line	$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$
m_2	Direction vector of another line	$\begin{pmatrix} 1 \\ m \end{pmatrix}$
n_2	Normal vector of another line	$\begin{pmatrix} m \\ -1 \end{pmatrix}$

Table 2: Table of output parameters

So,

$$\cos \theta = \frac{(\mathbf{m_1^T})\mathbf{m_2}}{\|\mathbf{m_1}\|\|\mathbf{m_2}\|} \tag{1}$$

$$or, \frac{1}{2} = \frac{\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ m \end{pmatrix}}{\sqrt{5}\sqrt{m^2 + 1}} \tag{2}$$

$$or, \frac{1}{2} = \frac{1+2m}{\sqrt{5m^2+5}} \tag{3}$$

$$or, 11m^2 + 16m - 1 = 0 (4)$$

$$or, m = \frac{-8 \pm 5\sqrt{3}}{11} \tag{5}$$

Therefore, the direction vector is, $\mathbf{m_2} = \begin{pmatrix} 1 \\ \frac{-8+5\sqrt{3}}{11} \end{pmatrix} \text{ or, } \begin{pmatrix} 1 \\ \frac{-8-5\sqrt{3}}{11} \end{pmatrix}$ The normal vector is, $\mathbf{n_2} = \begin{pmatrix} \frac{-8+5\sqrt{3}}{11} \\ -1 \end{pmatrix} \text{ or, } \begin{pmatrix} \frac{-8-5\sqrt{3}}{11} \\ -1 \end{pmatrix}$ So, the equation of the line is

$$\mathbf{n}^{\mathbf{T}}\mathbf{x} = c \tag{6}$$

$$\left(\frac{-8\pm5\sqrt{3}}{11} - 1\right)\mathbf{x} = c \tag{7}$$

Passes through the point $\mathbf{P} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

$$\left(\frac{-8\pm5\sqrt{3}}{11} - 1\right)\mathbf{P} = c \tag{8}$$

$$or, c = \frac{-49 \pm 16\sqrt{3}}{11} \tag{9}$$

Figure:

Figure 1: