Load the dataset

AGE

built prior to 1940

```
In [1]:
from sklearn.datasets import load boston
boston = load boston()
Dataset characteristics
In [2]:
print(boston.DESCR)
.. boston dataset:
Boston house prices dataset
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical pred
ictive. Median Value (attribute 14) is usually the tar
get.
    :Attribute Information (in order):
        - CRIM
                   per capita crime rate by town
        - ZN
                   proportion of residential land zone
d for lots over 25,000 sq.ft.
                   proportion of non-retail business a
        - INDUS
cres per town
                   Charles River dummy variable (= 1 i
        - CHAS
f tract bounds river; 0 otherwise)
        - NOX
                   nitric oxides concentration (parts
per 10 million)
                 average number of rooms per dwellin
        - RM
g
```

proportion of owner-occupied units

- DIS weighted distances to five Boston e mployment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per \$1 0,000
 - PTRATIO pupil-teacher ratio by town
- B $1000(Bk 0.63)^2$ where Bk is the p roportion of blacks by town
 - LSTAT % lower status of the population
- MEDV Median value of owner-occupied home s in \$1000's

:Missing Attribute Values: None

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databa
ses/housing/ (https://archive.ics.uci.edu/ml/machine-l
earning-databases/housing/)

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinf eld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Econ omics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many mach ine learning papers that address regression problems.

.. topic:: References

- Belsley, Kuh & Welsch, 'Regression diagnostics: I dentifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.

- Quinlan, R. (1993). Combining Instance-Based and M odel-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

Load data into a dataframe and explore

In [5]:

Out[5]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	F
(0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	

target value MEDV is missing, we create a new column for MEDV and add into data frame

In [6]:

```
boston_df['MEDV'] = pd.Series(boston.target)
boston_df.head()
```

Out[6]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	F
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	

In [7]:

boston_df.describe()

Out[7]:

	CRIM	ZN	INDUS	CHAS	NOX	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.28
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.70;
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.56
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.88
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.20
75 %	3.677083	12.500000	18.100000	0.000000	0.624000	6.62
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780

Data visualizations

We use heatmap to visualize the linear relationship between variables. In this case, we are only looking at the realtionship to MEDV column.

```
In [8]:
```

```
sample_df = boston_df.sample(frac=0.4) # sample data to 40%
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(15,8))
correlation_matrix = sample_df.corr().round(2)
# annot = True to print the values inside the square
axe=sns.heatmap(data=correlation_matrix, annot=True,cmap="Reds")
axe.set_title('Boston Housing Price Heatmap');
```


From heatmap, we can see: CHAS, DIS,B have week corrlation between MEDV with coefficient of 0.16, 0.28 and 0.4 respectively.

```
In [9]:
```

```
sns.set(font_scale=2)
sns.set_style('whitegrid')
```

```
In [18]:
```


Split the data for training and testing

```
In [16]:
```

```
from sklearn.model_selection import train_test_split
import numpy as np
boston_data_new = np.delete(boston.data,3,1)
# We found that CHAS contains only variables 0 and 1, which may hur
X_train, X_test, y_train, y_test = \
    train_test_split(boston_data_new, boston.target, random_state=5)

print(f'Shape of training set = {X_train.shape}')
print(f'Shape of testing set = {X_test.shape}')
Shape of training set = (379, 12)
```

Train the model

Shape of testing set = (127, 12)

```
In [13]:
```

```
from sklearn.linear model import LinearRegression
linear regression = LinearRegression()
linear regression.fit(X=X train, y=y train)
for i, name in enumerate(np.delete(boston.feature names,3,0)):
    print(f'{name:>11}: {linear regression.coef [i]:24.20f}')
print()
print(f'y-intercept: {linear regression.intercept :23.20f}')
             -0.15913839634194795747
       CRIM:
             0.04890147232976368302
         ZN:
      INDUS:
             0.01445084249427397612
        NOX: -13.69906809612140463628
               3.95110016068859470906
        RM:
        AGE: -0.00539332527178060499
             -1.45933358556167180886
        DIS:
        RAD:
             0.36650893681391799594
             -0.01395246623283373857
        TAX:
    PTRATIO:
             -0.95282684633969105814
             0.01359438499293804704
          B:
             -0.53257535640300879276
      LSTAT:
y-intercept: 32.62557602342805296303
```

Test the model

```
In [14]:
```

```
import math
from sklearn import metrics

predicted = linear_regression.predict(X_test)
expected = y_test

r2 = metrics.r2_score(expected, predicted)
r = math.sqrt(r2)

print(f'coefficient of determination = {r2:.1f}')
print(f' correlation coefficient = {r:.1f}')
```

coefficient of determination = 0.7
 correlation coefficient = 0.8

Visualize the expected vs. predicted prices

In [15]:

Load the dataset

```
In [1]:
```

Dataset characteristics

Target shape = (506,)

```
In [2]:
.. boston dataset:
Boston house prices dataset
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical pred
ictive. Median Value (attribute 14) is usually the tar
get.
    :Attribute Information (in order):
                   per capita crime rate by town
        - CRIM
                   proportion of residential land zone
        - ZN
d for lots over 25,000 sq.ft.
                   proportion of non-retail business a
        - INDUS
cres per town
In [3]:
 Data shape = (506, 13)
```

```
In [4]:
```

```
Out[4]:
```

Load data into a dataframe and explore

In [5]:

Out[5]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	F
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	

target value MEDV is missing, we create a new column for MEDV and add into data frame

In [6]:

Out[6]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	F
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	

In [7]:

Out[7]:

	CRIM	ZN	INDUS	CHAS	NOX	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.56 ⁻
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.88
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.20
75 %	3.677083	12.500000	18.100000	0.000000	0.624000	6.62
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780

Data visualizations

We use heatmap to visualize the linear relationship between variables. In this case, we are only looking at the realtionship to MEDV column.

In [8]:

From heatmap, we can see: CHAS, DIS,B have week corrlation between MEDV with coefficient of 0.16, 0.28 and 0.4 respectively.

Split the data for training and testing

In [16]:

```
Shape of training set = (379, 12)
Shape of testing set = (127, 12)
```

Train the model

In [13]:

```
CRIM:
          -0.15913839634194795747
     ZN:
          0.04890147232976368302
  INDUS:
           0.01445084249427397612
    NOX: -13.69906809612140463628
     RM:
          3.95110016068859470906
    AGE:
          -0.00539332527178060499
    DIS:
          -1.45933358556167180886
          0.36650893681391799594
    RAD:
          -0.01395246623283373857
    TAX:
PTRATIO:
          -0.95282684633969105814
          0.01359438499293804704
      B:
          -0.53257535640300879276
 LSTAT:
```

y-intercept: 32.62557602342805296303

Test the model

```
In [14]:
```

```
coefficient of determination = 0.7
    correlation coefficient = 0.8
```

Visualize the expected vs. predicted prices

In [15]:

