「情報科学における論理1」問題解答集(途中省略有り)

高田 篤司² 原田 崇司³

2016年11月15日

¹小野寛晰, 日本評論社, 1994

²神奈川大学理学部情報科学科 田中研究室

³神奈川大学大学院理学研究科理学専攻 田中研究室

問 1.1 の解答

- 1) 正しくない.
- 1) が正しくないことを証明する為には、 $A \supset B$ および A がともに充足可能であることを仮定して、B が充足可能であることを示せば良い。

よって, 初めに,

$$A \supset B$$
 および A がともに充足可能である (1)

と仮定する. そして,

論理式
$$A$$
 を p , 論理式 B を $r \land \neg r$ (2)

と仮定する.

仮定 (2) より、論理式 $A \supset B$ 、即ち、 $p \supset r \land \neg r$ の真理値表は表 1 となる.

表 1: $p \supset r \land \neg r \quad (A \supset B)$ の真理値表

p	r	¬r	p	$r \wedge \neg r$	$p \supset r \land \neg r$
t	t	f	t	f	f
t	f	t	t	f	f
f	t	f	f	f	t
f	f	f	f	f	t

表 1 より,A \supset B は充足可能である.

さらに、表1より、A は充足可能である.

しかし、表1より、Bは充足可能でない。

以上より、1) は正しくない.

- 2) 正しい.
- 2) が正しいことを証明する為には、 $A \supset B$ がトートロジで A が充足可能であることを仮定して、B が充足可能であることを示せば良い、よって、初めに、

$$A \supset B$$
 がトートロジで A 充足可能である (3)

と仮定する.

仮定 (3) より, $A \supset B$ がトートロジーで A が充足可能なので, $\nu(A) = t$, $\nu(A \supset B) = t$ を満たす付値 ν が存在する.

ここで、表 2 より、 $\nu(A) = t \wedge \nu(A \supset B) = t$ ならば、 $\nu(B) = t$ である.

表 2: A ⊃ B の真理値表

Α	В	$A\supset B$
t	t	t
t	f	f
f	t	t
f	f	t

よって、 $A \supset B$ がトートロジーで A が充足可能なとき、 $\nu(B) = t$ となる付値 ν が存在するので、B も充足可能である.

以上より, 2) は正しい.

問 1.2 の解答

表 3 より、 $(\nu(p),\nu(q),\nu(r))=(t,f,f)$ 若しくは、 $(\nu(p),\nu(q),\nu(r))=(f,t,f)$ の組を与えればよい.

表 3: $((p \lor q) \supset r) \lor (p \land q)$ の真理値表

p	q	r	$p \lor q$	$\mid (\mathfrak{p} \vee \mathfrak{q}) \supset \mathfrak{r}$	$\mathfrak{p} \wedge \mathfrak{q}$	$ ((p \lor q) \supset r) \lor (p \land q) $
t	t	t	t	t	t	t
t	t	f	t	f	t	t
t	f	t	t	t	f	t
t	f	f	t	f	f	f
f	t	t	t	t	f	t
f	t	f	t	f	f	f
f	f	t	f	t	f	t
f	f	f	f	t	f	t

問 1.3 の解答

論理結合子として ⊃と ∧ だけを用いる任意の論理式を Lと表す.

L に現れる全ての論理式に t を割り当てるような付値 ν を与えれば、 \supset の真理値表 2 と \land の真理値表 4 より、 $\nu(L)=t$ となる.

よって、Lを真とするような付値 ν が存在するので、論理結合子として \supset と \land のみを含むようなすべての論理式は充足可能である.

表 4: A ⊃ B の真理値表

A	В	$A \wedge B$
t	t	t
t	f	f
f	t	f
f	f	f

間 1.4 の解答

表 5 の $A \equiv B$ の真理値表より $A \succeq B$ の真偽が等しいとき、またそのときに限り $A \equiv B$ は真となっているので、任意の付値 ν に対して、 $\nu(A \equiv B) = t \iff \nu(A) = \nu(B)$ である.

表 5: $A \equiv B \iff (A \supset B) \land (B \supset A)$ の真理値表

A	В	$A\supset B$	$B\supset A$	$A \equiv B$
t	t	t	t	t
t	f	f	t	f
f	t	t	f	f
f	f	t	t	t

間 1.5 の解答

問 1.4 と同様に、 $(A \land B) \lor (\neg A \land \neg B)$ の真理値表を書くことにより示す。 $(A \land B) \lor (\neg A \land \neg B)$ の真理値表 6 より、

任意の付値 ν に対して A と B の真偽が等しいとき、またそのときに限り $(A \land B) \lor (\neg A \land \neg B)$ は真となる.

(4)

問1.4より,

任意の付値 ν に対してAとBの真偽が等しいとき、またそのときに限りA \equiv Bは、真となる. (5)

(4), (5) より, 任意の付値 ν に対して $A \equiv B$ が真のとき, またそのときに限り $(A \land B) \lor (\neg A \land \neg B)$ は真となる. 即ち, 任意の付値 ν に対して $\nu(A \equiv B) = \nu((A \land B) \lor (\neg A \land \neg B))$ となる.

表 6: (A ∧ B) ∨ (¬A ∧ ¬B) の真理値表

A	В	3	$A \wedge B$	¬А	$\neg B$	$\neg A \land \neg B$	$ (A \wedge B) \vee (\neg A \wedge \neg B) $
t	t	t	t	f	f	f	t
t	f	f	f	f	t	f	f
f	f	f	f	t	t	t	f
f	f	f	f	t	f	f	t

問 1.6 1) の解答

1. 真理値表 7 より、 $A \land A \equiv A$ はトートロジーである. 真理値表 8 より、 $A \lor A \equiv A$ はトートロジーである.

表 7: $(A \supset A \land A) \land (A \land A \supset A)$ の真理値表

$\frac{A}{t}$		$A \wedge A$	$A \supset A \wedge A$	$A \wedge A \supset A$	$(A \supset A \land A) \land (A \land A \supset A)$	
		t	t	t	t	
_	f	f	t	t	t	

表 8: $(A \supset A \lor A) \land (A \lor A \supset A)$ の真理値表

A	$A \vee A$	$A\supset A\vee A$	$A \lor A \supset A$	$(A\supset A\vee A)\wedge (A\vee A\supset A)$	
t	t	t	t	t	
f	f	t	t	t	

2. 真理値表 9 より、任意の付値 ν で $\nu(\underline{(A \wedge (B \wedge C) \supset (A \wedge B) \wedge C)} \wedge \underline{((A \wedge B) \wedge C \supset A \wedge (B \wedge C))}) = t$ なので、 $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$ はトートロジーである。 また、真理値表 10 より、任意の付値 ν で $\nu((A \vee (B \vee C) \supset (A \vee B) \vee C) \wedge ((A \vee B) \vee C \supset A \vee (B \vee C))) = t$

なので、 $A \lor (B \lor C) \equiv (A \lor B) \lor C$ はトートロジーである.

表 9: $A \wedge (B \wedge C) \geq (A \wedge B) \wedge C$ の真理値表

A	В	C	$B \wedge C$	$A \wedge (B \wedge C)$	$A \wedge B$	$(A \land B) \land C$	$A \wedge (B \wedge C) \supset (A \wedge B) \wedge C$	$(A \land B) \land C \supset A \land (B \land C)$
t	t	t	t	t	t	t	t	t
t	t	f	f	f	t	f	t	t
t	f	t	f	f	f	f	t	t
t	f	f	f	f	f	f	t	t
f	t	t	t	f	f	f	t	t
f	t	f	f	f	f	f	t	t
f	f	t	f	f	f	f	t	t
f	f	f	f	f	f	f	t	t

- 3. 真理値表 11 より、 $A \wedge B \equiv B \wedge A$ はトートロジーである. 真理値表 12 より、 $A \vee B \equiv B \vee A$ はトートロジーである.
- 4. 真理値表 13 より、 $A \wedge (A \vee B) \equiv A$ はトートロジーである. 真理値表 14 より、 $A \vee (A \wedge B) \equiv A$ はトートロジーである.

表 10: $A \lor (B \lor C)$ と $(A \lor B) \lor C$ の真理値表

Α	В	C	$B \vee C$	$A \lor (B \lor C)$	$A \vee B$	$(A \lor B) \lor C$	$A \lor (B \lor C) \supset (A \lor B) \lor C$	$(A \lor B) \lor C \supset A \lor (B \lor C)$
t	t	t	t	t	t	t	t	t
t	t	f	t	t	t	t	t	t
t	f	t	t	t	t	t	t	t
t	f	f	f	t	t	t	t	t
f	t	t	t	t	t	t	t	t
f	t	f	t	t	t	t	t	t
f	f	t	t	t	f	t	t	t
f	f	f	f	f	f	f	t	t

表 11: $A \wedge B \equiv B \wedge A$ の真理値表

Α	В	$A \wedge B$	$B \wedge A$	$A \wedge B \supset B \wedge A$	$B \wedge A \supset A \wedge B$	$(A \land B \supset B \land A) \land (B \land A \supset A \land B)$
t	t	t	t	t	t	t
t	f	f	f	t	t	t
f	t	f	f	t	t	t
f	f	f	f	t	t	t

表 12: $A \lor B \equiv B \lor A$ の真理値表

A	В	$A \vee B$	$B \vee A$	$A \vee B \supset B \vee A$	$B \vee A \supset A \vee B$	$(A \lor B \supset B \lor A) \land (B \lor A \supset A \lor B)$
t	t	t	t	t	t	t
t	f	t	t	t	t	t
f	t	t	t	t	t	t
f	f	f	f	t	t	t

表 13: A ^ (A ∨ B) ≡ A の真理値表

A	В	$A \vee B$	$A \wedge (A \vee B)$	$A \wedge (A \vee B) \supset A$	$A \supset A \land (A \lor B)$	$(A \land (A \lor B) \supset A) \land (A \supset A \land (A \lor B))$
t	t	t	t	t	t	t
t	f	t	t	t	t	t
f	t	t	f	t	t	t
f	f	f	f	t	t	t

表 14: A ∨ (A ∧ B) ≡ A の真理値表

Α	В	$A \wedge B$	$A \vee (A \wedge B)$	$A \vee (A \wedge B) \supset A$	$A \supset A \lor (A \land B)$	$(A \land (A \lor B) \supset A) \land (A \supset A \lor (A \land B))$
t	t	t	t	t	t	t
t	f	f	t	t	t	t
f	t	f	f	t	t	t
f	f	f	f	t	t	t

- 5.
- 6.
- 7.
- 8.

問 1.7 の解答

1. CがDVEの形のとき,

 C_A および C_B はそれぞれ $D_A \vee E_A$ および $D_B \vee E_B$ である. D と E はともに C よりも「簡単」な論理式だから,仮定より $D_A \sim D_B$, $E_A \sim E_B$ がともになりたつ. つまり,どんな付値 ν をとっても $\nu(D_A) = \nu(D_B)$ および $\nu(E_A) = \nu(E_B)$ となる.ところが

$$u(D_A \lor E_A) = t \iff \nu(D_A) = t または \nu(E_A) = t$$
 $\iff \nu(D_B) = t または \nu(E_B) = t$
 $\iff \nu(D_B \lor E_B) = t$

より、 $\nu(C_A) = \nu(C_B)$ となる. ν は任意の付値だから、 $C_A \sim C_B$ が得られる.

2. CがD \supset E の形のとき,

 C_A および C_B はそれぞれ D_A \supset E_A および D_B \supset E_B である. D E E はともに C よりも「簡単」な論理式だから,仮定より D_A \sim D_B , E_A \sim E_B がともになりたつ. つまり,どんな付値 ν をとっても $\nu(D_A) = \nu(D_B)$ および $\nu(E_A) = \nu(E_B)$ となる. ところが

$$u(D_A \supset E_A) = t \iff \nu(D_A) = f または \nu(E_A) = t$$
 $\iff \nu(D_B) = f または \nu(E_B) = t$
 $\iff \nu(D_B \supset E_B) = t$

より、 $\nu(C_A) = \nu(C_B)$ となる. ν は任意の付値だから、 $C_A \sim C_B$ が得られる.

3. C が¬D の形のとき,

 C_A は $\neg D_A$ である. D は C よりも「簡単」な論理式だから、仮定より $D_A \sim D_B$ がともになりたつ. つまり、どんな付値 ν をとっても $\nu(D_A) = \nu(D_B)$ となる. ところが

$$\begin{split} \nu(\neg D_A) &= t \iff \nu(D_A) = f \\ &\iff \nu(D_B) = f \\ &\iff \nu(\neg D_B) = t \end{split}$$

より、 $\nu(C_A) = \nu(C_B)$ となる. ν は任意の付値だから、 $C_A \sim C_B$ が得られる.

問 1.8 の解答

 $p \supset (q \supset r) \sim (p \land q) \supset r$ がなりたつことを、論理式 $p \supset (q \supset r)$ を同値変形で置き換えて論理式 $(p \land q) \supset r$ へと置き換えることにより示す.

$$p \supset (q \supset r) \sim \neg p \lor (q \supset r)$$
 (定理 1.3.8 より)
$$\sim \neg p \lor (\neg q \lor r)$$
 (定理 1.3.8 より)
$$\sim (\neg p \lor \neg q) \lor r$$
 (\lor の結合法則より)
$$\sim (\neg (p \land q)) \lor r$$
 (De Morgan の法則より)
$$\sim (p \land q) \supset r$$
 (De Morgan の法則より)

以上の置き換えより、 $p \supset (q \supset r) \sim (p \land q) \supset r$ がなりたつ.

問 1.9 の解答

1. $\neg(p \supset (q \land r))$ と $(p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$ の真理値表を書いて、それぞれを照らし合わせて $\neg(p \supset (q \land r)) \sim (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$ となることを確かめる.

表 15: $\neg(p \supset (q \land r))$ の真理値表

p	,	q	r	q∧r	$p \supset (q \wedge r)$	$\neg(\mathfrak{p}\supset(\mathfrak{q}\wedge\mathfrak{r}))$
t	;	t	t	t	t	f
t	;	t	f	f	f	t
t	;	f	t	f	f	t
t	;	f	f	f	f	t
f	?	t	t	t	t	f
f	?	t	f	f	t	f
f	?	f	t	f	t	f
f	:	f	f	f	t	f

表 16: $(p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$ の真理値表

р	q	r	$p \land q \land \neg r$	$p \land \neg q \land r$	$p \land \neg q \land \neg r$	$ (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r) $
t	t	t	f	f	f	f
t	t	f	t	f	f	t
t	f	t	f	t	f	t
t	f	f	f	f	t	t
f	t	t	f	f	f	f
f	t	f	f	f	f	f
f	f	t	f	f	f	f
f	f	f	f	f	f	f

 $\neg (p \supset (q \land r))$ の真理値表と $(p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$ の真理値表を見ると、どちらの論理式も (p = t, q = t, r = f), (p = t, q = f, r = t), (p = t, q = f, r = f) の割り当てのときのみ t となる。つまり、任意の付置 v に対して二つの論理式の真偽が一致しているので、 $\neg (p \supset (q \land r)) \sim (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land \neg q \land \neg r)$ となる。

2. 2016年11月15日の時点において分かっていない.

問 1.10 の解答

それぞれの論理式を例1.10のように論理和標準形および論理積標準形置き換える.

1. $((p \supset q) \supset p)) \supset p$

```
((p \supset q) \supset p)) \supset p \sim ((\neg p \lor q) \supset p)) \supset p (定理 1.3.8 より)
                       \sim (\neg(\neg p \lor q) \lor p)) \supset p (定理 1.3.8 より)
                       \sim \neg (\neg (\neg p \lor q) \lor p) \lor p (定理 1.3.8 より)
                        \sim \neg((\neg \neg p \land \neg q) \lor p) \lor p (de Morgan の法則より)
                        \sim (\neg(\neg\neg p \land \neg q) \land \neg p) \lor p (de Morgan の法則より)
                        \sim ((\neg(\neg\neg p) \lor \neg\neg q) \land \neg p) \lor p
                                                                  (de Morgan の法則より)
                        \sim ((\neg p \lor q) \land \neg p) \lor p (定理 1.3.6 より)
                        \sim ((\neg p \land \neg p) \lor (q \land \neg p)) \lor p (分配律より)
                        \sim (\neg p \lor (q \land \neg p)) \lor p (冪等律より)
                                                                                               「論理和標準形」
                        \sim ((\neg p \lor q) \land (\neg p \lor \neg p)) \lor p (分配律より)
                        \sim ((\neg p \lor q) \land \neg p) \lor p (冪等律より)
                        \sim ((\neg p \lor q) \lor p) \land (\neg p \lor p) (分配律より)
                       \sim ((\neg p \lor p) \lor q) \land (\neg p \lor p) (結合律と交換律より)
                        ~ (⊤∨ q) ∧ ⊤ (定理 1.3.9 より)
                                                                                               「論理積標準形?」
```

「論理和標準形」と注を付けている行の3行下の行は,節に同一の論理変数が二つ以上現れているので「論理積標準形」と見做さない.

2. $(\mathfrak{p} \supset (\mathfrak{p} \land \neg \mathfrak{q})) \land (\mathfrak{q} \supset (\mathfrak{q} \land \neg \mathfrak{p}))$

```
(p\supset (p\land \neg q))\land (q\supset (q\land \neg p))) \sim (\neg p\lor (p\land \neg q))\land (q\supset (q\land \neg p))) \qquad (定理 1.3.8 より)
\sim (\neg p \lor (p \land \neg q)) \land (\neg q \lor (q \land \neg p))) (定理 1.3.8 より)
\sim ((\neg p \lor (p \land \neg q)) \land \neg q) \lor ((\neg p \lor (p \land \neg q)) \land (q \land \neg p))) \qquad (分配律より)
\sim ((\neg p \land \neg q) \lor ((p \land \neg q) \land \neg q)) \lor ((\neg p \lor (p \land \neg q)) \land (q \land \neg p))) (分配律より)
\sim ((\neg p \land \neg q) \lor (p \land \neg q)) \lor ((\neg p \lor (p \land \neg q)) \land (q \land \neg p)))  (冪等律より)
\sim ((\neg p \land \neg q) \lor (p \land \neg q))
  \vee ((\neg p \wedge (q \wedge \neg p)) \vee ((p \wedge \neg q) \wedge (q \wedge \neg p))) (分配律より)
\sim ((\neg p \land \neg q) \lor (p \land \neg q))
  \vee ((\neg p \wedge q) \vee ((p \wedge \neg p) \wedge (q \wedge \neg q))) (交換律と結合律と冪等律より)
\sim ((\neg p \land \neg q) \lor (p \land \neg q)) \lor ((\neg p \land q) \lor (\bot \land \bot)) (定理 1.3.9 より)
\sim ((\neg p \land \neg q) \lor (p \land \neg q)) \lor (\neg p \land q) (定理 1.3.11 より) 「論理和標準形」
\sim ((\neg p \lor (p \land \neg q) \lor (\neg q \lor (p \land \neg q)) \lor (\neg p \land q)) (分配律より)
\sim ((\neg p \lor p) \land (\neg p \lor \neg q) \lor (\neg q \lor (p \land \neg q)) \lor (\neg p \land q) (分配律より)
\sim (\top \land (\neg p \lor \neg q) \lor (\neg q \lor (p \land \neg q)) \lor (\neg p \land q) (定理 1.3.9 より)
\sim ((\neg p \lor \neg q) \lor (\neg q \lor (p \land \neg q)) \lor (\neg p \land q) (定理 1.3.9 より)
\sim ((\neg p \lor \neg q) \lor ((\neg q \lor p) \land (\neg q \lor \neg q))) \lor (\neg p \land q) (分配律より)
\sim ((\neg p \lor \neg q) \lor ((\neg q \lor p) \land \neg q)) \lor (\neg p \land q) (冪等律より)
\sim ((\neg p \lor \neg q) \lor (\neg q \lor p)) \land ((\neg p \lor \neg q) \lor \neg q)) \lor (\neg p \land q) (分配律より)
\sim ((\neg p \lor \neg q) \lor p) \land (\neg p \lor \neg q)) \lor (\neg p \land q) (結合律と冪等律より)
\sim (\top \land (\neg p \lor \neg q)) \lor (\neg p \land q) (結合律と交換律と定理 1.3.10 より)
\sim (\neg p \lor \neg q) \lor (\neg p \land q) (結合律と交換律と定理 1.3.11 より)
\sim ((\neg p \lor \neg q) \lor \neg p) \land ((\neg p \lor \neg q) \lor q) (分配律より)
\sim (\neg p \lor \neg q) \land (\neg p \lor (\neg q \lor q)) (結合律と交換律と冪等律より)
~ (¬p∨¬q) (定理 1.3.9, 1.3.10, 1.3.11 より) 「論理積標準形」
```

間 1.11 の解答

 $A \land B \lor C \lor D$ の形の論理式を $\supset \lor \neg$ のみを用いた同値な論理式へ置き換えることによって示す.

$$A \wedge B \sim \neg \neg A \wedge \neg \neg B$$
 (定理 1.3.6 より)
$$\sim \neg (\neg A \vee \neg B)$$
 (De Morgan の法則より)
$$\sim \neg (A \supset \neg B)$$
 (定理 1.3.8 より)

$$A \lor B \sim \neg \neg A \lor B$$
 (定理 1.3.6 より)
$$\sim \neg A \supset B$$
 (定理 1.3.8 より)

2016年11月15日の時点において分かっていない.

問 1.13 の解答

$$\frac{\frac{A \to A}{\to A, \neg A} (\neg \, \text{右})}{\frac{\to A, A \lor \neg A}{\to A, A \lor \neg A} (\lor \, \text{右} \, 2)}$$
$$\frac{\frac{\to A, A \lor \neg A, A}{\to A \lor \neg A, A \lor \neg A} (\text{exchange} \, \text{右})}{\frac{\to A \lor \neg A, A \lor \neg A}{\to A \lor \neg A} (\text{contraction} \, \text{右})}$$

問 1.14 の解答

$$\frac{A \to A \quad B \to B}{A \supset B, A \to B} (\supset £)$$

$$\frac{A \to A \quad B \to B}{\neg B, A \supset B, A \to} (\neg £)$$

$$\frac{\neg B, A, A \supset B \to}{\neg B, A, A \supset B \to} (\land £ 2)$$

$$\frac{A \land \neg B, A, A \supset B \to}{A, A \land \neg B, A \supset B \to} (\land £ 1)$$

$$\frac{A \land \neg B, A \land \neg B, A \supset B \to}{A \land \neg B, A \supset B \to} (\land £ 1)$$

$$\frac{A \land \neg B, A \supset B \to}{A \supset B \to \neg (A \land \neg B)} (\neg £)$$

問 1.15 の解答

$$\frac{\frac{A,\Gamma\to\Delta,B}{A,\Gamma\to\Delta,\neg A\vee B}(\vee \text{\it f} 2)}{\frac{\Gamma\to\Delta,\neg A\vee B,\neg A}{\Gamma\to\Delta,\neg A\vee B,\neg A\vee B}(\neg \text{\it f} 1)}$$
$$\frac{\Gamma\to\Delta,\neg A\vee B,\neg A\vee B}{\Gamma\to\Delta,\neg A\vee B}(\text{cont. } \text{\it f} 1)$$

問 1.16 の解答

1) $\frac{\frac{A \to A}{\to A, \neg A}(\neg \, \pm)}{\frac{\to A, \neg A \lor \neg B}{\to A, \neg A \lor \neg B, A}(\text{ex.} \, \pm)} \frac{\frac{B \to B}{\to B, \neg B}(\neg \, \pm)}{\frac{\to B, \neg A \lor \neg B}{\to \neg A \lor \neg B, B}}(\lor \, \pm \, 2)} \frac{(\lor \, \pm \, 2)}{\frac{\to B, \neg A \lor \neg B, B}{\to \neg A \lor \neg B, A \land B}}(\land \, \pm \, 2)}$

3)
$$\frac{A \to A}{\xrightarrow{\neg \neg A} \xrightarrow{A} \xrightarrow{A}} (\neg \, \triangle)$$

4)

$$\frac{\frac{B \to B}{A, B \to B} \text{ (weakening } \pm)}{B \to A \supset B} \frac{A \to A \quad C \to C}{A \supset C, A \to C} \text{ (\supset \pm)}$$

$$\frac{(A \supset B) \supset (A \supset C), B, A \to C}{B, A, (A \supset B) \supset (A \supset C) \to C} \text{ (ex. } \pm^*)$$

$$\frac{A, (A \supset B) \supset (A \supset C) \to B \supset C}{(A \supset B) \supset (A \supset C) \to A \supset (B \supset C)} \text{ (\supset \pm)}$$

5)

$$\frac{A \to A}{\neg A, A \to} \frac{A \to A}{(\neg \, \text{右})} (\neg \, \text{右})$$

$$\frac{A \to A}{\neg A, A, A \to} (\neg \, \text{右})$$

$$\frac{A \to A}{A, A, A \to \neg A \to} (\text{ex. } \text{左*})$$

$$\frac{A, A, A \to \neg A \to}{A, A \to \neg A} (\text{cont. } \text{左})$$

問 1.17 の解答

$$\frac{\Gamma \to \Delta, A \perp \to}{A \supset \bot, \Gamma \to \Delta} (\supset \Xi) \qquad \frac{A, \Gamma \to \Delta}{A, \Gamma \to \Delta, \bot} (\text{weak. } \Xi) \qquad \frac{A, \Gamma \to \Delta}{A, \Gamma \to \Delta, \bot} (\supset \Xi)$$

問 1.18 の解答

- (1a)
- (1b)
- (2a)
- (2b)
- (3a)
- (4a)
- (4b)

問 1.22 の解答

9)

$$\alpha \cup \alpha = \alpha$$
 定義 1.4 1) 右
 $\iff \alpha \le \alpha$ p.48 8)

10) $a < b (a \cup b = b) と b < c を仮定する. <math>a < c$ を示す.

$$b \le c$$
 仮定
 $\iff b \cup c = c$ p.48 8)
 $\iff (a \cup b) \cup c = c$ 仮定と p.48 8)
 $\iff a \cup (b \cup c) = c$ 定義 1.4 2) の右)
 $\iff a \cup c = c$ 仮定と p.48 8)
 $\iff a \le c$ p.48 8)

11) $a \cup b = b \ b \ b \cup a = a \ e \ d \ c \ c \ a = b \ e \ \pi$ す.

$$(a \cup b) = (b \cup a)$$
 定義 1.4 3) 右
 \iff $(b \cup a) = (a \cup b)$ 両辺のそれぞれに定義 1.4 3) 右を適用
 \iff $a = b$ 仮定と p.48 8)

12) これに関しては解答の書き方が解っていない.

$$\begin{array}{ll} \alpha \, \cap \, (\alpha \, \cup \, b) = \alpha \\ \\ \Longleftrightarrow & \alpha \, \cap \, b = \alpha \\ \\ \Longleftrightarrow & \alpha \leq b \end{array}$$

13)

$$a \cup 0 = a$$
 定義 1.4 7) 左

 \iff 0 \cup a = a
 定義 1.4 3) 右

 \iff 0 \le a
 p.48 8)

間 2.1 の解答

- (1) 1) すべての教師を好きな学生がいる.
 - 2) すべての怠け者は、すべての教師が好きではない.
- (2) $\neg(\forall x (T(x) \supset L(x)))$

問 2.2 の解答

- (1) 実数の集合は稠密順序集合である(任意の実数のいくらでも近くに別の実数が存在する).
- (2) 関係 < は推移律を満たす.

問 2.3 の解答

項tに変数yが出現せず,且つ,項sに変数xが出現しないこと.

間 2.4 の解答

変数 y が論理式 A に自由な出現をしないこと.

間 2.5 の解答

- (1) 1) 成り立たない. 何故ならば a_4 Ry, a_5 Ry となるような y は存在しないから.

(2)

- 3) 成り立つ. $y := a_4, z := a_5$ とすれば良い.
- 4) 成り立たない. $x := a_1, y := a_2, z := a_3$ とすると、 $xRy \wedge yRz$ は成り立つが、 $x = y \vee y = z$ は成り立たない. つまり、 $\forall x \forall y \forall z ((xRy \wedge yRz) \supset (x = y \vee y = z))$ は成り立たない.

問 2.8 の解答

(1) 1) $\models \forall x A \equiv A$ を示す.

恒真性の定義 (p.70) より,

任意の構造 $\mathfrak A$ に対し、 $\mathfrak A$ $\models \forall y_1 \cdots \forall y_n \ (\forall x A \equiv A)$ となることをいえばよい. ここで論理式 $\forall x A \equiv A$ は自由変数として $y_1 \cdots y_n$ を持つものとしておく. さらに、 \equiv の定義 (p.10) より

$$\mathfrak{A} \models \forall y_1 \cdots \forall y_n \ ((\forall x \, A \supset A) \land (A \supset \forall x \, A))$$

をいえばよい. これを示すには、任意の構造 $\mathfrak{A} = \langle \mathbf{U}, \mathbf{I} \rangle$ および任意の $\mathfrak{u}_1, \ldots, \mathfrak{u}_n \in \mathbf{U}$ に対し

$$\mathfrak{A} \models ((\forall x \ A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n] \supset A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n])$$
$$\land \ (A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n] \supset \forall x \ A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n]))$$

をいえばよい.

ここで、 $A \land B$ の形の論理式が正しいということの意味 (p.64(4)) より

$$\mathfrak{A} \models (\forall x \ A[u_1/y_1, \cdots, u_n/y_n] \supset A[u_1/y_1, \cdots, u_n/y_n])$$

と

$$\mathfrak{A} \models A[\mathfrak{u}_1/\mathfrak{y}_1,\cdots,\mathfrak{u}_n/\mathfrak{y}_n] \supset \forall x \ A[\mathfrak{u}_1/\mathfrak{y}_1,\cdots,\mathfrak{u}_n/\mathfrak{y}_n]$$

が正しいことを示せばよい. 以下の証明では、自由変数 x_1, \dots, x_n への $\underline{u_1}, \dots \underline{u_n}$ への代入がすでに行われているものとし、したがって、A が自由変数を一つも含まない場合について述べる.

a) $\mathfrak{A} \models \forall x A \supset A$ を示す.

これを示すには $\mathfrak{A} \models \forall x A$ を仮定して $\mathfrak{A} \models A$ を示せば十分である.

構造 $\mathfrak{A} = \langle \mathbf{U}, \mathbf{I} \rangle$ に対して、 $\mathfrak{A} \models \forall \mathbf{x} \, \mathbf{A} \, \mathbf{E}$ 仮定する. したがって,すべての $\mathbf{u} \in \mathbf{U}$ に対して $\mathfrak{A} \models \mathbf{A} \, [\underline{\mathbf{u}}/\mathbf{x}]$ となる. ここで, $\mathbf{A} \, \mathbf{u} \, \mathbf{x} \,$

b) $\mathfrak{A} \models A \supset \forall x A$ を示す.

これを示すには $\mathfrak{A} \models A$ を仮定して $\mathfrak{A} \models \forall x A$ を示せば十分である.

構造 $\mathfrak{A} = \langle \mathbf{U}, \mathbf{I} \rangle$ に対して、 $\mathfrak{A} \models \mathbf{A}$ と仮定する. したがって、すべての $\mathbf{u} \in \mathbf{U}$ に対して $\mathfrak{A} \models \mathbf{A}$ となる. ここで、 \mathbf{A} は \mathbf{x} を自由変数として含まないので、すべての $\mathbf{u} \in \mathbf{U}$ に対して、 \mathbf{A} は $\mathbf{A}[\underline{\mathbf{u}}/\mathbf{x}]$ に等しい. これは、 $\mathfrak{A} \models \forall \mathbf{x} \mathbf{A}$ である.

- a), b) より $\models \forall x A \equiv A$ は恒真である.
- 2) $\models \exists x A \equiv A$ を示す.

恒真性の定義 (p.70) より,

任意の構造 $\mathfrak A$ に対し、 $\mathfrak A \models \forall y_1 \cdots \forall y_n \ (\exists x \ A \equiv A)$ となることをいえばよい. ここで論理式 $\exists x \ A \equiv A$ は自由変数として $y_1 \cdots y_n$ を持つものとしておく. さらに、 \equiv の定義 (p.10) より

$$\mathfrak{A} \models \forall y_1 \cdots \forall y_n \ ((\exists x A \supset A) \land (A \supset \exists x A))$$

をいえばよい. これを示すには、任意の構造 $\mathfrak{A} = \langle \mathbf{U}, \mathbf{I} \rangle$ および任意の $\mathfrak{u}_1, \ldots, \mathfrak{u}_n \in \mathbf{U}$ に対し

$$\mathfrak{A} \models ((\exists x \ A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n] \supset A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n])$$
$$\land (A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n] \supset \exists x \ A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n]))$$

をいえばよい. ここで、 $A \wedge B$ の形の論理式が正しいということの意味 (p.64(4)) より

$$\mathfrak{A} \models (\exists x \ A[u_1/y_1, \cdots, u_n/y_n] \supset A[u_1/y_1, \cdots, u_n/y_n])$$

と

$$\mathfrak{A} \models A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n] \supset \exists x \ A[\underline{u_1}/y_1, \cdots, \underline{u_n}/y_n]$$

が正しいことを示せばよい. 以下の証明では、自由変数 x_1, \dots, x_n への $\underline{u_1}, \dots \underline{u_n}$ への代入がすでに行われているものとし、したがって、A が自由変数を一つも含まない場合について述べる.

a) $\mathfrak{A} \models \exists x A \supset A$ を示す.

これを示すためには $\mathfrak{A} \models \exists x A$ を仮定して $\mathfrak{A} \models A$ を示せば十分である.

構造 $\mathfrak{A} = \langle \mathbf{U}, \mathbf{I} \rangle$ に対して、 $\mathfrak{A} \models \exists x \, A \, E$ 仮定する.したがって,ある $\mathfrak{u} \in \mathbf{U}$ に対して $\mathfrak{A} \models A[\underline{\mathfrak{u}}/x]$ となる.ここで, $A \, \mathsf{d} \, x \, E$ 自由変数として含まないので, $A \, \mathsf{d} \, A[\underline{\mathfrak{u}}/x]$ に等しい.よって $\mathfrak{A} \models A$ である.

b) $\mathfrak{A} \models A \supset \exists x A$ を示す.

これを示すには $\mathfrak{A} \models A$ を仮定して $\mathfrak{A} \models \exists x A$ を示せば十分である.

構造 $\mathfrak{A} = \langle \mathbf{U}, \mathbf{I} \rangle$ に対して、 $\mathfrak{A} \models \mathbf{A}$ と仮定する. したがって、ある $\mathbf{u} \in \mathbf{U}$ に対して $\mathfrak{A} \models \mathbf{A}$ となる. ここで、 \mathbf{A} は \mathbf{x} を自由変数として含まないので、ある $\mathbf{u} \in \mathbf{U}$ に対して、 \mathbf{A} は $\mathbf{A}[\underline{\mathbf{u}}/\mathbf{x}]$ に等しい.これは、 $\mathfrak{A} \models \exists \mathbf{x} \mathbf{A}[\mathbf{x}]$ である.

a), b) より $\models \exists x A \equiv A$ は恒真である.

(2) 以下省略

問 2.11 の解答

1)

$$\exists x \ R(x,y) \supset \forall y \ (P(y) \land \neg \forall z \ Q(z))$$
 定理 $2.1 \ \mathcal{O} \ 2)$ 定理 $2.1 \ \mathcal{O} \ 1)$ の方 $2 \ \mathcal{O} \ \mathcal{O$

2)

```
\exists x (\forall y (P(y) \supset Q(x,z)) \lor \exists z (\neg (\exists u R(z,u) \land Q(x,z))))
\sim \exists x (\forall y (P(y) \supset Q(x,z)) \lor \exists v (\neg (\exists u R(v,u) \land Q(x,v))))
                                                                                                        定理 2.1 の 2) の右
\sim \exists x \exists v (\forall y (P(y) \supset Q(x,z)) \lor (\neg (\exists u R(v,u) \land Q(x,v))))
                                                                                                        定理 2.1 の 3) の右
\sim \exists x \exists v (\forall y (P(y) \supset Q(x,z)) \lor (\neg \exists u R(v,u) \lor \neg Q(x,v)))
                                                                                                        定理 1.3 の 7) の右
\sim \exists x \exists v (\forall y (P(y) \supset Q(x,z)) \lor (\forall u \neg R(v,u) \lor \neg Q(x,v)))
                                                                                                        定理 2.1 の 10) の右
\sim \exists x \exists v (\forall y (P(y) \supset Q(x,z)) \lor \forall u (\neg R(v,u) \lor \neg Q(x,v)))
                                                                                                        定理 2.1 の 4) の左
\sim \exists x \exists v \forall u (\forall y (P(y) \supset Q(x,z)) \lor (\neg R(v,u) \lor \neg Q(x,v)))
                                                                                                        定理 2.1 の 11) の左
\sim \exists x \exists v \forall u ((\neg R(v, u) \lor \neg Q(x, v)) \lor \forall y (P(y) \supset Q(x, z)))
                                                                                                        定理 1.3 の 3) の右
                                                                                                        定理 2.1 の 4) の左
\sim \exists x \exists v \forall u \forall y ((\neg R(v, u) \lor \neg Q(x, v)) \lor (P(y) \supset Q(x, z)))
```

問 2.14

1)

$P(x) \rightarrow P(x)$	
$P(x) \rightarrow P(x), Q(x)$	$Q(t) \to Q(t)$
$\rightarrow P(x), P(x) \supset Q(x)$	$\overline{P(t),Q(t)\toQ(t))}$
$\rightarrow \forall x P(x), P(x) \supset Q(x)$	$Q(t) \to P(t) \supset Q(t))$
$\rightarrow \forall x P(x), \exists x (P(x) \supset Q(x))$	$Q(t) \to \exists x (P(x) \supset Q(x))$
$\longrightarrow \exists x (P(x) \supset Q(x)), \forall x P(x)$	$\exists x Q(t) \to \exists x (P(x) \supset Q(x))$
$\forall x P(x) \supset \exists Q(x) \to \exists x (P(x))$	$(x) \supset Q(x), \exists x (P(x) \supset Q(x))$
$\forall x P(x) \supset \exists Q(x) -$	$\rightarrow \exists x (P(x) \supset Q(x))$

2) 誤り

$$\frac{P(x) \to P(x), Q(x)}{\to P(x), P(x) \supset Q(x)}$$
$$\to \forall x P(x), P(x) \supset Q(x)$$
$$\to \forall x P(x), \exists x (P(x) \supset Q(x))$$

正しい

$$\frac{P(x) \to P(x), Q(x)}{\to P(x), P(x) \supset Q(x)}$$
$$\to P(x), \exists x (P(x) \supset Q(x))$$
$$\to \forall x P(x), \exists x (P(x) \supset Q(x))$$

問 3.1 の解答

スコーレム標準形を求める.

1)

	$P(x) \supset (\exists y (\exists u Q(x,u) \supset R(y,z)) \lor S(x,y))$	12) の右
~	$P(x) \supset (\exists y \forall u (Q(x,u) \supset R(y,z)) \lor S(x,y))$	変数の置き換え
~	$P(x) \supset (\exists w \forall u (Q(x, u) \supset R(w, z)) \lor S(x, y))$	3) の右
~	$P(x) \supset \exists w (\forall u (Q(x,u) \supset R(w,z)) \lor S(x,y))$	4) の左
\sim	$P(x) \supset \exists w \forall u ((Q(x,u) \supset R(w,z)) \lor S(x,y))$	11) の右
\sim	$\exists w (P(x) \supset \forall u (Q(x,u) \supset R(w,z)) \lor S(x,y))$	11) の左
~	$\exists w \forall u (P(x) \supset ((Q(x,u) \supset R(w,z)) \lor S(x,y))$	

上記の論理式の冠頭標準形を以下に示す.

$$\forall x \forall y \forall z \exists w \forall u (P(x) \supset ((Q(x, u)) \supset R(w, z)) \lor S(x, y))$$

 \forall นの左側には、存在記号が一つ現れるので一変数関数記号 f を導入し、自由変数 (x,y,z) に定数記号 a,b,c を導入すると、

$$\exists w (P(a) \supset ((Q(a, f(w)) \supset R(w, c)) \lor S(a, b))$$

間 3.2 の解答

スコーレム標準形を求める.

ルブラン領域 H_I は,

1)

 $\begin{array}{lll} &\exists z((\forall x P(x) \supset \exists y Q(y) \supset (P(z) \supset Q(z)) & 11) \ \text{の右} \\ \sim &\exists z (\exists y (\forall x P(x) \supset Q(y) \supset (P(z) \supset Q(z)) & 12) \ \text{の右} \\ \sim &\exists z \forall y ((\forall x P(x) \supset Q(y) \supset (P(z) \supset Q(z)) & 12) \ \text{の右} \\ \sim &\exists z \forall y (\exists x (P(x) \supset Q(y) \supset (P(z) \supset Q(z)) & 12) \ \text{の左} \end{array}$

 $\forall y$ の左側には、存在記号が一つ現れるので一変数関数記号 f を導入、 $\forall x$ の左側にも、存在記号は一つ現れるので一変数関数記号 g を導入して、

 $\sim \exists z \forall y \forall x (P(x) \supset Q(y) \supset (P(z) \supset Q(z))$

$$\exists z ((P(g(z)) \supset Q(f(z))) \supset (P(z) \supset Q(z))$$

2) $A \in \exists z((\forall x P(x) \supset \exists y Q(y) \supset (P(z) \supset Q(z)))$ とする. このとき,A のスコーレム標準形は, $\exists z((P(g(z)) \supset Q(f(z))) \supset (P(z) \supset Q(z))$ になる. この論理式は,一つも対象定数を含まないので,新たな対象定数 c を付け加えることにする. そうするとエ

$$H_L = \{c, f(c), g(c), f(f(c)), f(g(c)), \dots\}$$

になる. 論理式 $(P(g(z)) \supset Q(f(z))) \supset (P(z) \supset Q(z))$ の z に c を代入すると, $(P(g(c)) \supset Q(f(c))) \supset (P(c) \supset Q(c))$ が得られる.

この論理式に対して、 π をほどこして命題論理の論理式を作ると、

$$(P\supset q)\supset (r\supset s)$$

の形になる.この論理式はトートロジーではない.

次に、 $(P(g(z)) \supset Q(f(z))) \supset (P(z) \supset Q(z))$ の z に f(c) を代入した論理式に π をほどこすと以下になる.

$$(t \supset u) \supset (v \supset q)$$

得られた論理式上の論理式との論理和は,

$$((P \supset q) \supset (r \supset s)) \lor ((t \supset u) \supset (v \supset q))$$

の形になる. この論理式はトートロジーではない. 次に, $(P(g(z))) \supset Q(f(z))) \supset (P(z)) \supset Q(z)$ の z に g(c) を代入した論理式に π をほどこすと以下になる.

$$(h \supset i) \supset (p \supset j)$$

得られた論理式上の論理式との論理和は,

$$((P \supset q) \supset (r \supset s)) \lor ((t \supset \mathfrak{u}) \supset (\nu \supset q)) \lor (h \supset \mathfrak{i}) \supset (p \supset \mathfrak{j})$$

の形となる.この論理式はトートロジーになる.したがって,

$$\exists z ((\forall x P(x) \supset ((\forall y Q(y) \supset (P(z) \supset Q(z))))$$

は,恒真になる.

間 3.3 の解答

スコーレム標準形を求める. $\forall z$ と $\forall w$ の左側には、存在記号が二つ現れるので二変数関数記号 f,g を導入すると、

$$\exists x \exists y \forall z \forall w ((p(x) \supset Q(z)) \lor (Q(y) \supset P(w)))$$

$$\sim \exists x \exists y ((p(x) \supset Q(f(x,y))) \lor (Q(y) \supset P(g(x,y))))$$

となる. この論理式は、一つも対象定数を含まないので、新たな対象定数 a を付け加えることにする. そうするとエルブラン領域 H_I は、

$$H_L = \{a, f(a, a), g(a, a), \dots\}$$

になる. 論理式 $((p(x) \supset Q(f(x,y))) \lor (Q(y) \supset P(g(x,y))))$ の x,y に a を代入すると, $((p(a) \supset Q(f(a,a))) \lor (Q(a) \supset P(g(a,a))))$ が得られる.

この論理式に対して, πをほどこして命題論理の論理式を作ると,

$$(r \supset s) \lor (t \supset u)$$

の形になる.この論理式はトートロジーではない.

次に、 $((p(x) \supset Q(f(x,y))) \lor (Q(y) \supset P(g(x,y))))$ の z に f(a,a) を代入した論理式に π をほどこすと以下になる.

$$(h \supset i) \lor (s \supset j)$$

得られた論理式上の論理式との論理和は,

$$((r\supset s)\lor(t\supset u))\lor((h\supset i)\lor(s\supset j))$$

の形となる.この論理式はトートロジーになる.したがって,

$$\exists x \exists y \forall z \forall w ((p(x) \supset Q(z)) \lor (Q(y) \supset P(w)))$$

は,恒真になる.

問 3.4 の解答

節集合 S は次の節からなる.

$$\{p \land \neg s\}, \{\neg p\}, \{r \land q\}, \{p \land \neg q \land s\}, \{\neg r \land q\}$$

この S に対して導出図を作る.

図 1: 導出図

空節を導くことが出来たので、論理式 $(p \land \neg s) \lor \neg p \lor (r \land q) \lor (p \land \neg q \land s) \lor (\neg r \land q)$ はトートロジーになる.

.1 証明の書き方

- 接続詞などに用いる用語を統一する(教科書を参考にする).
- 証明を書くときは、一行ずつ書いて改行する.
- サ変動詞を用いない. \sim として、 \sim とする \Longrightarrow \sim と仮定する、 \sim と置く、... となるような \sim をとる.
- 仮定が何で結論は何なのかを明示する.
- 問題文の情報を用いた場合は、問題文のどこを用いたのかを明示する.
- 推論する場合は、用いた根拠と用いた推論規則を明示する.