

AD-A012 748

NOISE MONITORING TITAN III D LAUNCH VANDENBERG AIR FORCE  
BASE, CALIFORNIA

Ronald D. Burnett

Environmental Health Laboratory  
McClellan Air Force Base, California

January 1975

DISTRIBUTED BY:



National Technical Information Service  
U. S. DEPARTMENT OF COMMERCE

This Document  
Reproduced From  
Best Available Copy

ADA012748

216092

Prof Report No 75M-2  
(Project No NAF-353)

C

NOISE MONITORING TITAN III D LAUNCH  
Vandenberg AFB CA

By

Ronald D. Burnett, Major, USAF

January 1975

DTP C  
PAC  
CPT

Reproduced by  
**NATIONAL TECHNICAL  
INFORMATION SERVICE**  
US Department of Commerce  
Springfield, VA 22151



USAF ENVIRONMENTAL HEALTH LABORATORY  
McClellan AFB CA

NOISE MONITORING TITAN III D LAUNCH  
Vandenberg AFB CA

Prof Report No 75M-2  
(Project No NAF-353)

January 1975

Prepared by:

  
RONALD D. BURNETT  
Major, USAF, BSC  
Chief, Occupational Safety & Health  
Engineering Division

Approved by:

  
DONALD D. HIGGINS  
Lt Col, USAF, BSC  
Commander

## ABSTRACT

During a Titan III D launch at Vandenberg AFB, sound pressure levels were recorded on tape as a function of time at four distances varying from 8,400 ft to 44,000 ft from the launch site. One-third octave band data were obtained from the recordings using real time analysis techniques. Some limited vibration (acceleration) data were also collected at the La Purisima Mission, a historical park located approximately eleven miles from the launch site.

These data are discussed in relation to the environmental impact on communities surrounding Vandenberg AFB, and the damage potential of these launches to the La Purisima Mission State Historic Park. The environmental impact of noise at distances of eight miles or greater was insignificant.

**DISTRIBUTION LIST**

|                                                                               | <u>No of Copies</u> |
|-------------------------------------------------------------------------------|---------------------|
| USAF Hosp Vandenberg<br>Vandenberg AFB CA 93437                               | 4                   |
| CINCSAC/SGP, Offutt AFB NE 68113                                              | 1                   |
| HQ USAF/SGPA, Wash DC 20314                                                   | 1                   |
| HQ USAF/PREV, Wash DC 20330                                                   | 1                   |
| AFLC/S 1, Wright-Patterson AFB OH 45433                                       | 1                   |
| USA FEHL/CC, Kelly AFB TX 78241                                               | 1                   |
| 4 MSES/SGHB, APO New York 09332                                               | 1                   |
| AFLC/SUL, Kirtland AFB NM 87117                                               | 1                   |
| AFWL/DEE, Kirtland AFB NM 87117                                               | 1                   |
| 1 MSEW/SGB, APO San Francisco 96274                                           | 1                   |
| SAMSO/SGX<br>PO Box 92960<br>World way Postal Center<br>Los Angeles CA 90009  | 2                   |
| SAMSO/LVRO<br>PO Box 92960<br>World way Postal Center<br>Los Angeles CA 90009 | 2                   |
| AMD/AMRV, Brooks AFB TX 78235                                                 | 1                   |
| USAFSAM/EDE, Brooks AFB TX 78235                                              | 3                   |
| ASD/ENCMP, Wright-Patterson AFB OH 45433                                      | 1                   |

## TABLE OF CONTENTS

| <u>SECTION</u>    |                                                          | <u>Page</u> |
|-------------------|----------------------------------------------------------|-------------|
| I                 | <b>Introduction</b>                                      | 1           |
|                   | 1. Purpose                                               | 1           |
|                   | 2. Scope of Study                                        | 1           |
|                   | 3. Personnel Conducting Survey & Survey Responsibilities | 1           |
| II                | <b>Survey Description</b>                                | 2           |
|                   | 1. Measurement Sites                                     | 2           |
|                   | 2. Basic Measurement and Analysis Techniques             | 4           |
| III               | <b>Discussion and Results</b>                            | 8           |
|                   | 1. General                                               | 8           |
|                   | 2. Noise                                                 | 8           |
|                   | 3. Vibration                                             | 22          |
| IV                | <b>Conclusions</b>                                       | 27          |
| <b>REFERENCES</b> |                                                          | 29          |
| <b>TABLES</b>     |                                                          |             |
| I                 | <b>Identification of Measurement Sites</b>               | 2           |
| II                | <b>SLC-3 Blockhouse</b>                                  | 9           |
| III               | <b>Range Operations (Bldg 488)</b>                       | 10          |
| IV                | <b>Tranquillon Peak</b>                                  | 11          |
| V                 | <b>Oak Mountain</b>                                      | 12          |
| VI                | <b>Comparison of Measured &amp; Predicted Levels</b>     | 13          |
| VII               | <b>Maximum PiNL's and Expected Response</b>              | 19          |
| VIII              | <b>NEF's and Estimated Community Response</b>            | 21          |
| IX                | <b>Vibration Data, Accelerometer A</b>                   | 25          |
| X                 | <b>Vibration Data, Accelerometer B</b>                   | 26          |

**TABLE OF CONTENTS (Cont)**

| <u>FIGURES</u>  |                                                                             | <u>Page</u> |
|-----------------|-----------------------------------------------------------------------------|-------------|
| 1               | Measurement Site Locations                                                  | 3           |
| 2               | Noise Measurement Systems                                                   | 5           |
| 3               | Noise Analysis System                                                       | 6           |
| 4               | Vibration Measurements                                                      | 7           |
| 5               | SLC-3 Blockhouse, Peak Sound Pressure Levels                                | 14          |
| 6               | Range Operations, Peak Sound Pressure Levels                                | 15          |
| 7               | Tranquillon Peak, Peak Sound Pressure Levels                                | 16          |
| 8               | Oak Mountain, Peak Sound Pressure Levels                                    | 17          |
| 9               | Overall Sound Pressure Levels as a Function<br>of Distance from Launch Pads | 18          |
| 10              | Curves of Equal Noisiness                                                   | 20          |
| 11              | Acoustical Damage Criteria for Walls                                        | 23          |
| 12              | Acoustical Damage Criteria for Glass                                        | 24          |
| <u>APPENDIX</u> |                                                                             |             |
| A               | Simplified Uncertainty Analysis of Recording &<br>Analysis Systems          | 30          |
| B               | Acoustic Data Titan III Launches (SAMSO/LVRO)                               | 32          |
| C               | Weather Data, 19 Oct 74, Vandenberg AFB                                     | 40          |

SECTION I  
INTRODUCTION

1. Purpose:

a. On 29 October 1974, noise data were collected at selected sites on and near Vandenberg AFB, California, during a Titan III D launch. This survey was requested by the bioenvironmental engineer, USAF Hospital, Vandenberg AFB, California. These data were required to estimate the acoustical impact of missile launches on communities adjacent to Vandenberg AFB. Limited vibration data were collected in the chapel of the La Purisima Mission State Historic Park to determine the extent of vibration induced in these historical structures during launches.

b. Because of the similarity between the Titan III D and launch vehicle systems for the space shuttle, these data are also to be used by personnel of the Space and Missile Systems Organization (SAMSO) to estimate the acoustical impact expected from space shuttle launches.

2. Scope of Study:

a. Overall and one-third octave band sound pressure levels as a function of time were measured at four sites. The frequency distribution of peak and background noise was measured at each site.

b. One-third octave band acceleration levels were measured on a roof beam of the La Purisima Mission Chapel, having the longest free span.

3. Personnel Contacted:

a. Lt Col Lynn R. Channell: Chief, Environmental Health Service, USAF Hospital, Vandenberg AFB.

b. Mr Clark Pease: Programs Support Manager, Programs Division, Range Operations, SAMTEC, Vandenberg.

c. Mr Mason: Area Director of State Historic Parks, La Purisima Mission.

**4. Personnel Conducting Survey & Survey Responsibilities:**

a. Maj Ronald B. Burnett, USAF Environmental Health Laboratory (USAFEHL), McClellan AFB: Project Engineer and Vibration Measurements.

b. Capt Larry Shingler, SAMSO/SGX, Los Angeles AFS: Noise Measurement at Oak Mountain Site.

c. 1st Lt Harry P. Guy, USAFEHL, McClellan AFB: Noise Measurement at Tranquillon Peak.

d. SSgt Ed Cox, USAFEHL, McClellan AFB: Noise Measurement at Range Operations (Building 488).

e. Mr Philip Diamond, USAFEHL, McClellan AFB: Noise Measurement at SLC-3 Blockhouse.

**SECTION II**

**SURVEY DESCRIPTION**

1. Measurement Sites. The location of the measurement sites in relation to the launch site are shown in Figure 1. Table I indicates the name of the measurement location and its designation on Figure 1.

**TABLE I**  
**IDENTIFICATION OF MEASUREMENT SITES**

| <u>Measurement Site</u>     | <u>Figure 1 Designation</u> |                 |
|-----------------------------|-----------------------------|-----------------|
|                             | <u>Radial</u>               | <u>Location</u> |
| SLC-3 Blockhouse            | 2                           | A               |
| Range Operations (Bldg 488) | 3                           | A               |
| Tranquillon Peak            | 3                           | B               |
| Oak Mountain                | 3                           | C               |
| La Purisima Mission         | 2                           | D               |

FIGURE 1  
MEASUREMENT SITE LOCATIONS



## 2. Basic Measurement and Analysis Techniques:

### a. Noise.

(1) Measurement: Missile noise levels were recorded on Ampex 434 low noise tape and analyzed in the laboratory to obtain one-third octave band sound pressure levels as a function of time. A 114 decibel (dB), 1000 Hertz (Hz) calibration tone was recorded prior to and following the actual noise measurements. The frequency distribution (1/3 octave bands) of peak noise levels was also determined. Overall sound pressure levels were calculated from the 1/3 octave band data and presented as a function of time. A block diagram showing the measurement equipment set up is presented in Figure 2.

(2) Analysis: The taped data were analyzed using a real time noise and vibration analysis system. The 114 dB, 1000 Hz, calibration tone recorded on each tape was used as a reference level for analysis of the taped noise. A frequency response curve for each recording and playback system was also developed to align data output during analysis in the laboratory. The recording and analysis systems accuracy was determined by a simplified uncertainty analysis (see Appendix A) and the uncertainty (limit of error) in the resulting data was  $\pm$  1.9 dB. A block diagram of the noise analysis system is shown in Figure 3.

### b. Vibration:

(1) Measurement: Two vibration pickups (accelerometers) were placed on a roof beam appearing to have the longest unsupported length. Vibration data (acceleration) were recorded on a dual channel tape recorder. The taped data were analyzed in the laboratory to obtain acceleration and frequency distribution data. Figure 4 shows a block diagram of the vibration measurement system.

(2) Analysis: The taped data were analyzed using the real time noise and vibration analysis system. A one g ( $g$  = acceleration of gravity), 100 Hz, calibration signal was recorded on the tape to be used as a reference signal during analysis of the taped vibration data. A frequency response curve for each measurement and playback channel was also developed to align the data output during analysis. The vibration analysis system was identical to that used for noise analysis (Figure 3).

FIGURE 2  
NOISE MEASUREMENT SYSTEMS



This system used for all sites except Tranquillon Peak



This system was used at Tranquillon Peak

FIGURE 3  
NOISE ANALYSIS SYSTEM

Note: Only the noise data taped at Tranquillon Peak were played back for analysis with the Nagra recorder. The other tapes were played back with the Ampex AG-350.



**FIGURE 4**  
**VIBRATION MEASUREMENTS**

Calibration



Measurement

2" x 12" Beam Cross Section



A = Channel A

7

B = Channel B

## SECTION III

### DISCUSSION AND RESULTS

1. General: The predominantly low frequency noise, characteristic of rocket engines, was difficult to measure and analyze with the laboratory's noise analysis systems which are normally used for a frequency range of 25 Hz to 10 KHz. However, by recording the noise levels at 7 1/2 inches/second (ips) and playing them back at 15 ips, which essentially doubled the frequency of the recorded noise, it was possible to obtain 1/3 octave band sound pressure level data from 15.75 Hz to 8 KHz. The vibration data were limited by the frequency characteristics of the measuring equipment to a range of 25 Hz to 2 KHz. These equipment limitations, the lack of experience of laboratory personnel in measuring and evaluating vibration, coupled with a lack of existing vibration criteria specifying some level at which structural damage might be expected to occur, severely limits the confidence which can be placed upon the vibration data and their interpretation.

2. Noise:

a. One-third octave band and overall sound pressure levels: These data are presented as a function of time in Tables II thru V. Since the exact noise levels occurring at each site were not precisely known prior to the launch it was necessary to adjust the sound level measuring and recording equipment such that expected peak levels would not overdrive the instrumentation and saturate the tapes. This procedure increased the noise floor of the measurement instrumentation. Therefore, the lower noise levels measured in the high frequencies and during the first and last seconds of the launch may represent inherent instrumentation noise rather than actual ambient noise levels. Where this was clearly the case the levels in the Tables are identified by less than or equal signs ( $\leq$ ). The values presented in the Tables are root mean squared (RMS) sound pressure levels over a sample time of 7.6 seconds (8 seconds at Tranquillon Peak site). Although the real time analysis system is capable of integrating noise data in each frequency band every 1/8 seconds, the data printer associated with the system cannot assimilate the data this rapidly; therefore, a 4.0 second integration time was used. This is equivalent to 3.8 seconds actual launch time because there is a slight difference between the record speed of the Uher field recorder and the playback speed of the Ampex laboratory reproduction system. Thus, at 15 ips playback speed, 7.6 seconds of actual range time elapsed during the 4 second data integration period. The Tranquillon Peak data were played back with the

TABLE II  
SLC-3 BLOCKHOUSE  
SOUND PRESSURE LEVELS AND FREQUENCY DIS-  
AS A FUNCTION OF TIME

| Time<br>(Sec) | 1/3 OCTAVE BAND (Hz) LEVELS (dB re 20 |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |
|---------------|---------------------------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|               | 15.75                                 | 20  | 25  | 31.5 | 40  | 50  | 63  | 80  | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1.0k |
| 0             | 86                                    | 83  | 78  | 76   | 76  | 74  | 72  | 68  | 67  | 68  | 69  | 77  | 65  | 71  | ≤65 | ≤65 | ≤65 | ≤65 | ≤65  |
| 7.7           | 102                                   | 105 | 107 | 107  | 106 | 103 | 105 | 101 | 96  | 93  | 93  | 92  | 87  | 88  | 89  | 90  | 88  | 89  | 88   |
| 15.4          | 112                                   | 113 | 116 | 116  | 116 | 114 | 113 | 110 | 108 | 106 | 104 | 101 | 100 | 101 | 102 | 101 | 98  | 98  | 96   |
| 23.1          | 115                                   | 112 | 114 | 113  | 112 | 112 | 112 | 111 | 106 | 101 | 101 | 103 | 103 | 103 | 99  | 97  | 96  | 95  | 94   |
| 30.1          | 105                                   | 105 | 109 | 110  | 109 | 107 | 106 | 103 | 96  | 98  | 100 | 101 | 98  | 94  | 94  | 93  | 90  | 90  | 89   |
| 38.5          | 99                                    | 103 | 106 | 104  | 99  | 97  | 93  | 88  | 88  | 93  | 93  | 93  | 85  | 88  | 86  | 85  | 83  | 83  | 82   |
| 46.2          | 97                                    | 97  | 99  | 98   | 96  | 90  | 85  | 82  | 85  | 90  | 90  | 88  | 80  | 86  | 80  | 81  | 77  | 74  | 71   |
| 53.9          | 92                                    | 91  | 92  | 92   | 90  | 82  | 82  | 79  | 77  | 81  | 86  | 85  | 83  | 76  | 80  | 73  | 74  | 70  | 67   |
| 61.5          | 90                                    | 88  | 86  | 85   | 84  | 76  | 73  | 71  | 73  | 76  | 74  | 77  | 68  | 73  | ≤65 | ≤65 | ≤65 | ≤65 | ≤65  |
| 69.2          | 87                                    | 82  | 83  | 81   | 80  | 75  | 76  | 72  | 71  | 71  | 71  | 78  | 65  | 72  |     |     |     |     |      |
| 76.9          | 84                                    | 78  | 80  | 76   | 76  | 73  | 73  | 71  | 71  | 73  | 71  | 77  |     | 72  |     |     |     |     |      |
| 84.6          | 82                                    | 76  | 74  | 75   | 72  | 72  | 69  | 68  | 68  | 69  | 69  | 77  |     | 71  |     |     |     |     |      |
| 92.3          | 80                                    | 79  | 77  | 76   | 74  | 74  | 73  | 71  | 70  | 70  | 70  | 77  | 71  | 71  | 71  | 71  | 71  | 71  | 71   |
| Background    | 67                                    | 64  | 61  | 57   | 55  | 51  | 55  | 58  | 58  | 64  | 53  | 47  | 53  | 44  | 38  | 42  | 41  | 42  | 42   |

TABLE II

## **SLC-3 BLOCKHOUSE**

## **SURE LEVELS AND FREQUENCY DISTRIBUTION AS A FUNCTION OF TIME**

### CTAVE BAND (Hz) LEVELS (dB re 20 $\mu$ N/m<sup>2</sup>)

| 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1.0k | 1.25k | 1.6k | 2.0k | 2.5k | 3.15k | 4.0k | 5.0k | 6.3k | 8.0k | Overall SPL |
|-----|-----|-----|-----|-----|-----|-----|------|-------|------|------|------|-------|------|------|------|------|-------------|
| 77  | 65  | 71  | ≤65 | ≤65 | ≤65 | ≤65 | ≤65  | ≤65   | ≤65  | ≤65  | ≤65  | ≤65   | ≤65  | ≤65  | ≤65  | ≤65  | 90          |
| 92  | 87  | 88  | 89  | 90  | 88  | 89  | 88   | 87    | 79   | 76   | 72   | 68    | 68   | 68   | 70   | 70   | 114         |
| 101 | 100 | 101 | 102 | 101 | 98  | 98  | 96   | 95    | 92   | 92   | 90   | 89    | 89   | 89   | 84   | 81   | 124         |
| 103 | 103 | 103 | 99  | 97  | 96  | 95  | 94   | 92    | 91   | 89   | 88   | 86    | 84   | 81   | 79   | 78   | 122         |
| 101 | 98  | 94  | 94  | 93  | 90  | 90  | 89   | 88    | 86   | 84   | 83   | 81    | 80   | 76   | 73   | 80   | 117         |
| 93  | 85  | 88  | 86  | 85  | 83  | 83  | 82   | 79    | 78   | 76   | 74   | 71    | 69   | 69   | 70   | 70   | 111         |
| 88  | 80  | 86  | 80  | 81  | 77  | 74  | 71   | 68    | 68   | 67   | 65   | 65    | 66   | 67   | 70   | 70   | 105         |
| 85  | 83  | 76  | 80  | 73  | 74  | 70  | 67   | ≤65   | ≤65  | ≤65  | ≤65  | ≤65   | ≤65  | ≤65  | ≤65  | ≤65  | 99          |
| 77  | 68  | 73  | ≤65 | ≤65 | ≤65 | ≤65 | ≤65  |       |      |      |      |       |      | ≤66  | ≤67  | 70   | 95          |
| 78  | 65  | 72  |     |     |     |     |      |       |      |      |      |       |      |      |      |      | 91          |
| 77  |     | 72  |     |     |     |     |      |       |      |      |      |       |      |      |      |      | 88          |
| 77  |     | 71  |     |     |     |     |      |       |      |      |      |       |      |      |      |      | 86          |
| 77  | ↑   | 71  | ↓   | ↓   | ↑   | ↑   | ↑    | ↑     | ↑    | ↑    | ↑    | ↑     | ↑    | ↑    | ↑    | ↑    | 87          |
| 47  | 53  | 44  | 38  | 42  | 41  | 42  | 42   | 42    | 39   | 39   | 37   | 34    | 34   | 30   | 29   | 28   | 72          |

TABLE III  
RANGE OPERATIONS (BLD)  
SOUND PRESSURE LEVELS AND FREQUENCY DE  
AS A FUNCTION OF TIME

1/3 OCTAVE BAND (Hz) LEVELS (dB re 20μ)

|             | 15  | 75  | 20  | 25 | 31.5 | 40  | 50  | 63  | 80  | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1,000 |
|-------------|-----|-----|-----|----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 0           | 76  | 73  | 70  | 70 | 63   | 63  | 65  | 58  | 59  | 560 | 560 | 558 | 560 | 564 | 560 | 559 | 559 | 560 | 560 | 561   |
| 7.6         | 80  | 78  | 74  | 60 | 64   | 69  | 72  | 61  | 62  | 61  | 63  | 62  | 61  | 564 | 60  | 60  | 559 | 560 | 560 | 561   |
| 15.2        | 91  | 93  | 86  | 78 | 88   | 94  | 99  | 92  | 93  | 91  | 89  | 86  | 84  | 85  | 84  | 80  | 78  | 78  | 78  | 77    |
| 22.9        | 107 | 106 | 103 | 90 | 105  | 110 | 111 | 99  | 101 | 101 | 99  | 94  | 94  | 94  | 92  | 90  | 88  | 88  | 87  |       |
| 30.5        | 113 | 112 | 105 | 93 | 107  | 112 | 114 | 106 | 102 | 106 | 103 | 98  | 97  | 93  | 94  | 93  | 92  | 91  | 91  | 89    |
| 37.0        | 115 | 112 | 106 | 95 | 104  | 109 | 111 | 103 | 101 | 103 | 96  | 94  | 97  | 99  | 98  | 93  | 90  | 90  | 88  |       |
| 45.7        | 108 | 106 | 102 | 93 | 99   | 103 | 107 | 99  | 92  | 92  | 88  | 94  | 97  | 94  | 86  | 87  | 87  | 85  | 85  |       |
| 53.3        | 106 | 102 | 100 | 92 | 95   | 102 | 106 | 97  | 88  | 85  | 92  | 93  | 94  | 89  | 88  | 87  | 83  | 82  | 80  |       |
| 60.9        | 101 | 98  | 98  | 89 | 90   | 97  | 100 | 91  | 86  | 85  | 94  | 92  | 92  | 85  | 87  | 82  | 80  | 75  | 73  |       |
| 68.6        | 99  | 96  | 94  | 86 | 87   | 92  | 94  | 86  | 80  | 80  | 87  | 85  | 81  | 76  | 76  | 70  | 67  | 64  | 562 |       |
| 76.2        | 97  | 94  | 91  | 84 | 85   | 88  | 88  | 80  | 73  | 78  | 80  | 80  | 74  | 72  | 72  | 65  | 63  | 560 | 561 |       |
| 83.8        | 94  | 91  | 87  | 79 | 84   | 83  | 85  | 77  | 71  | 74  | 75  | 73  | 68  | 66  | 64  | 60  | 559 | 559 | 560 |       |
| 91.4        | 91  | 89  | 85  | 80 | 83   | 83  | 84  | 76  | 70  | 75  | 76  | 74  | 71  | 65  | 63  | 559 | 560 | 560 | 560 |       |
| 99.1        | 89  | 87  | 85  | 78 | 82   | 82  | 83  | 77  |     | 72  | 74  | 72  | 69  | 65  | 61  |     | 560 | 560 | 560 |       |
| 106.7       | 89  | 85  | 83  | 77 | 81   | 80  | 82  | 75  |     | 72  | 75  | 74  | 72  | 564 | 560 |     | 560 | 560 | 560 |       |
| 114.3       | 85  | 83  | 84  | 76 | 80   | 78  | 81  | 72  |     | 70  | 72  | 69  | 67  | 564 | 560 |     | 560 | 561 | 561 |       |
| 121.9       | 85  | 84  | 85  | 76 | 80   | 79  | 82  | 72  |     | 72  | 74  | 72  | 69  | 564 | 560 |     | 559 | 560 | 560 |       |
| 129.5       | 83  | 85  | 82  | 75 | 78   | 77  | 79  | 70  |     | 70  | 71  | 68  | 66  | 564 | 561 |     | 560 | 561 | 561 |       |
| 138.5       | 81  | 84  | 81  | 73 | 77   | 75  | 76  | 67  | 64  | 65  | 68  | 66  | 63  | 563 | 560 |     |     | 561 | 561 |       |
| 144.8       | 83  | 79  | 80  | 72 | 75   | 74  | 75  | 65  | 64  | 63  | 65  | 64  | 62  | 563 | 560 | 558 |     | 561 | 561 |       |
| 152.4       | 79  | 79  | 79  | 70 | 73   | 74  | 74  | 64  | 64  | 61  | 64  | 62  | 62  | 563 | 560 | 559 |     | 560 | 560 |       |
| 160.0       | 73  | 77  | 76  | 70 | 72   | 71  | 72  | 61  | 61  | 61  | 62  | 62  | 561 | 564 | 559 | 560 |     | 561 | 561 |       |
| 167.6       | 76  | 76  | 76  | 70 | 72   | 72  | 72  | 63  | 62  | 61  | 63  | 62  | 561 | 563 | 560 | 559 |     | 560 | 560 |       |
| 175.2       | 78  | 76  | 76  | 70 | 72   | 74  | 72  | 63  | 63  | 560 | 62  | 562 | 561 | 564 | 559 | 558 |     |     |     |       |
| 182.9       | 76  | 76  | 78  | 72 | 72   | 73  | 71  | 63  | 62  | 560 | 561 | 559 | 560 | 563 | 559 | 558 |     |     |     |       |
| 190.5       | 75  | 75  | 76  | 71 | 71   | 74  | 72  | 63  | 64  | 562 | 561 | 561 | 561 | 564 | 560 | 559 |     |     |     |       |
| 198.1       | 74  | 71  | 73  | 64 | 69   | 73  | 70  | 60  | 64  | 563 | 560 | 560 | 561 | 564 | 560 | 558 | 558 |     |     |       |
| 205.7       | 76  | 75  | 77  | 68 | 78   | 71  | 70  | 62  | 61  | 560 | 560 | 561 | 560 | 563 | 559 | 559 | 559 | 559 |     |       |
| 213.3       | 71  | 71  | 72  | 66 | 67   | 68  | 70  | 61  | 60  | 560 | 560 | 558 | 560 | 563 | 559 | 558 | 559 | 559 | 559 |       |
| Back Ground | 78  | 74  | 74  | 63 | 64   | 63  | 62  | 53  | 51  | 51  | 46  | 44  | 44  | 42  | 41  | 40  | 39  | 40  | 41  |       |

TABLE III

## RANGE OPERATIONS (BLDG 488)

SIRE LEVELS AND FREQUENCY DISTRIBUTION  
AS A FUNCTION OF TIMEAVERAGE BAND (Hz) LEVELS (dB re 20 $\mu$ N/m<sup>2</sup>)

| 0 | 250 | 315 | 400 | 500 | 630 | 800 | 1.0k | 1.25k | 1.6k | 2.0k | 2.5k | 3.15k | 4.0k | 5.0k | 6.3k | 8.0k | Overall SIRE |
|---|-----|-----|-----|-----|-----|-----|------|-------|------|------|------|-------|------|------|------|------|--------------|
| 8 | ≤60 | ≤64 | ≤60 | ≤59 | ≤59 | ≤60 | ≤61  | ≤61   | ≤62  | ≤63  | ≤65  | ≤64   | ≤65  | ≤66  | ≤64  | ≤63  | 81           |
| 2 | 61  | ≤64 | 60  | 60  | ≤59 | ≤60 | ≤61  | ≤62   | ≤62  | ≤63  | ≤65  | ≤65   | ≤65  | ≤65  | ≤65  |      | 84           |
| 6 | 84  | 85  | 84  | 80  | 78  | 78  | 77   | 73    | 71   | 67   | ≤65  | ≤65   | ≤64  | ≤65  | ≤65  |      | 103          |
| 4 | 94  | 94  | 92  | 90  | 88  | 88  | 87   | 85    | 82   | 80   | 78   | 74    | 68   | 67   | ≤65  |      | 116          |
| 8 | 97  | 93  | 94  | 93  | 92  | 91  | 89   | 88    | 86   | 84   | 83   | 78    | 74   | 71   | 68   | ≤65  | 120          |
| 4 | 97  | 99  | 98  | 93  | 90  | 90  | 88   | 86    | 87   | 85   | 84   | 80    | 76   | 71   | 68   | ≤64  | 119          |
| 4 | 97  | 94  | 86  | 87  | 87  | 85  | 85   | 84    | 81   | 80   | 78   | 74    | 71   | 68   | ≤65  | ≤63  | 113          |
| 3 | 94  | 89  | 88  | 87  | 83  | 82  | 80   | 78    | 77   | 74   | 72   | 66    | ≤66  | ≤66  | ≤64  |      | 111          |
| 2 | 92  | 85  | 87  | 82  | 80  | 75  | 73   | 71    | 71   | 71   | 70   | 67    | ≤65  | ≤65  | ≤64  |      | 107          |
| 5 | 81  | 76  | 76  | 70  | 67  | 64  | ≤62  | ≤62   | ≤62  | ≤63  | ≤65  | ≤64   |      |      | ≤64  |      | 103          |
| 0 | 74  | 72  | 72  | 65  | 63  | ≤60 | ≤61  | ≤61   | ≤62  |      |      | ≤65   |      |      | ≤65  |      | 100          |
| 3 | 68  | 66  | 64  | 60  | ≤59 | ≤59 | ≤60  | ≤61   | ≤62  |      |      | ≤64   |      |      | ≤64  |      | 97           |
| 4 | 71  | 65  | 63  | ≤59 |     | ≤60 | ≤60  | ≤61   | ≤61  |      |      |       |      |      | ≤64  |      | 95           |
| 2 | 69  | 65  | 61  |     | ≤60 | ≤60 | ≤61  | ≤61   |      |      |      |       |      |      | ≤64  | ≤62  | 94           |
| 4 | 72  | ≤64 | ≤60 |     | ≤60 | ≤60 | ≤61  | ≤62   |      | ≤64  |      |       |      |      | ≤64  | ≤63  | 93           |
| 9 | 67  | ≤64 | ≤60 |     | ≤60 | ≤61 | ≤62  | ≤62   |      | ≤65  |      | ≤64   |      | ≤63  | ≤62  |      | 91           |
| 2 | 69  | ≤64 | ≤60 |     | ≤59 | ≤60 | ≤61  | ≤61   | ≤62  |      |      | ≤65   |      | ≤64  | ≤62  |      | 92           |
| 8 | 66  | ≤64 | ≤61 |     | ≤60 | ≤61 | ≤61  | ≤62   | ≤64  |      |      | ≤64   | ≤64  | ≤63  | ≤61  |      | 90           |
| 6 | 63  | ≤63 | ≤60 |     | ↓   | ≤61 | ≤61  | ≤62   | ≤63  |      |      | ≤64   | ≤65  | ≤63  | ≤62  |      | 88           |
| 4 | 62  | ≤63 | ≤60 | ≤58 |     | ≤61 | ≤61  | ≤61   |      |      |      | ≤65   | ≤64  |      | ≤61  |      | 87           |
| 2 | 62  | ≤63 | ≤60 | ≤59 |     | ≤60 | ≤62  | ≤62   |      |      |      | ≤64   | ≤65  |      | ≤62  |      | 86           |
| 2 | ≤61 | ≤64 | ≤59 | ≤60 |     | ≤61 | ≤61  | ≤62   |      | ↓    | ↓    |       | ≤64  |      | ≤61  |      | 83           |
| 2 | ≤61 | ≤63 | ≤60 | ≤59 |     | ≤60 |      | ≤62   |      | ≤64  | ≤65  |       |      |      | ≤65  |      | 83           |
| 2 | ≤61 | ≤64 | ≤59 | ≤58 |     |     | ≤61  |       | ≤65  | ≤64  | ≤65  | ≤65   |      |      | ↓    |      | 84           |
| 9 | ≤60 | ≤63 | ≤59 | ≤58 |     |     | ≤61  |       | ≤64  |      | ≤64  | ≤64   |      |      | ≤62  |      | 84           |
| 1 | ≤61 | ≤64 | ≤60 | ≤59 | ↓   |     |      | ≤62   |      |      |      |       |      |      | ≤61  |      | 83           |
| 0 | ≤61 | ≤64 | ≤60 | ≤58 | ≤58 |     |      | ≤62   |      |      |      |       |      |      | ≤62  |      | 81           |
| 1 | ≤60 | ≤63 | ≤59 | ≤59 | ≤59 | ↓   |      | ≤62   |      |      |      |       |      |      | ↓    | ≤61  | 83           |
| 8 | ≤60 | ≤63 | ≤59 | ≤58 | ≤59 | ≤59 | ↓    | ↓     | ≤61  | ↓    | ↓    | ↓     | ↓    | ↓    | ≤62  | ≤61  | 80           |
| 4 | 44  | 42  | 41  | 40  | 39  | 40  | 41   | 42    | 42   | 44   | 45   | 45    | 45   | 46   | 44   | 42   | 81           |

TABLE IV

## TRANQUILLON PEAK

SOUND PRESSURE LEVELS AND FREQUENCY DE  
AS A FUNCTION OF TIME1/3 OCTAVE BAND (Hz) LEVELS (dB re 20  $\mu$ Pa)

|             | 10.75 | 20  | 25  | 31.5 | 40  | 50  | 63 | 80  | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1.0k | 1. |
|-------------|-------|-----|-----|------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----|
| 0           | 69    | 67  | 65  | 60   | 58  | 57  | 57 | 56  | 55  | 53  | 50  | 63  | 55  | 57  | 52  | 50  | 50  | 51  | 52   |    |
| 8           | 68    | 66  | 60  | 60   | 56  | 55  | 54 | 52  | 53  | 52  | 50  | 62  | 54  | 57  | 53  | 51  | 50  | 51  | 52   |    |
| 16          | 74    | 74  | 74  | 74   | 72  | 73  | 70 | 70  | 69  | 68  | 69  | 65  | 61  | 61  | 60  | 60  | 57  | 54  | 53   |    |
| 24          | 88    | 90  | 90  | 93   | 94  | 94  | 92 | 92  | 91  | 90  | 89  | 85  | 83  | 81  | 78  | 77  | 75  | 71  | 68   |    |
| 32          | 99    | 100 | 99  | 102  | 102 | 100 | 99 | 100 | 100 | 96  | 96  | 91  | 87  | 87  | 84  | 83  | 81  | 76  | 73   |    |
| 40          | 95    | 95  | 95  | 96   | 99  | 96  | 94 | 95  | 94  | 90  | 88  | 85  | 84  | 84  | 83  | 81  | 78  | 78  | 75   |    |
| 48          | 100   | 100 | 98  | 100  | 102 | 99  | 99 | 99  | 96  | 91  | 89  | 89  | 90  | 91  | 86  | 83  | 85  | 82  | 82   |    |
| 56          | 104   | 103 | 101 | 101  | 102 | 99  | 98 | 95  | 95  | 89  | 92  | 94  | 95  | 90  | 87  | 86  | 84  | 84  | 83   |    |
| 64          | 99    | 100 | 98  | 99   | 98  | 94  | 93 | 92  | 88  | 84  | 90  | 89  | 88  | 81  | 84  | 80  | 78  | 77  | 75   |    |
| 72          | 97    | 97  | 96  | 96   | 93  | 92  | 91 | 87  | 82  | 82  | 87  | 85  | 82  | 78  | 81  | 75  | 74  | 72  | 70   |    |
| 80          | 93    | 94  | 94  | 91   | 91  | 91  | 87 | 83  | 80  | 81  | 85  | 81  | 78  | 76  | 75  | 71  | 68  | 62  | 59   |    |
| 88          | 92    | 93  | 90  | 88   | 89  | 88  | 83 | 79  | 77  | 78  | 81  | 76  | 73  | 72  | 72  | 67  | 62  | 57  | 56   |    |
| 96          | 91    | 92  | 88  | 88   | 87  | 86  | 83 | 78  | 76  | 78  | 80  | 75  | 70  | 69  | 69  | 61  | 56  | 53  | 52   |    |
| 104         | 89    | 89  | 84  | 86   | 83  | 80  | 76 | 73  | 73  | 76  | 71  | 68  | 66  | 65  | 64  | 59  | 53  | 51  | 51   |    |
| 112         | 87    | 86  | 84  | 85   | 83  | 81  | 77 | 74  | 72  | 72  | 76  | 71  | 69  | 64  | 65  | 58  | 53  |     |      |    |
| 120         | 87    | 82  | 82  | 82   | 81  | 78  | 74 | 73  | 69  | 68  | 70  | 67  | 60  | 59  | 56  | 52  | 50  |     |      |    |
| 128         | 85    | 83  | 82  | 81   | 80  | 79  | 74 | 71  | 69  | 68  | 72  | 68  | 64  | 60  | 58  | 50  |     |     |      |    |
| 136         | 87    | 84  | 82  | 82   | 80  | 77  | 73 | 72  | 67  | 67  | 71  | 84  | 62  | 59  | 57  | 51  | 50  |     |      |    |
| 144         | 85    | 82  | 79  | 81   | 78  | 74  | 71 | 70  | 67  | 63  | 67  | 66  | 60  | 58  | 54  | 51  | 50  | 51  |      |    |
| 152         | 83    | 80  | 77  | 78   | 76  | 73  | 72 | 69  | 66  | 62  | 66  | 65  | 60  | 58  | 55  | 51  | 50  | 50  |      |    |
| 160         | 82    | 78  | 75  | 77   | 76  | 73  | 72 | 67  | 66  | 60  | 62  | 63  | 57  | 57  | 53  | 50  | 49  | 51  |      |    |
| 168         | 82    | 78  | 75  | 76   | 75  | 70  | 67 | 64  | 62  | 60  | 60  |     |     |     |     | 53  | 51  | 50  |      |    |
| 176         | 78    | 78  | 73  | 75   | 73  | 71  | 68 | 67  | 62  | 60  | 62  |     |     |     |     | 54  | 50  | 50  |      |    |
| 184         | 79    | 77  | 75  | 76   | 75  | 71  | 68 | 66  | 60  | 57  | 58  | 62  |     |     |     | 53  | 50  | 49  | 50   |    |
| 192         | 80    | 75  | 73  | 75   | 72  | 70  | 68 | 66  | 61  | 59  | 60  | 63  | 58  | 58  |     | 51  | 50  | 50  |      |    |
| 200         | 77    | 74  | 70  | 73   | 70  | 64  | 52 | 62  | 61  | 59  | 58  | 63  | 56  | 57  |     | 51  | 50  | 51  |      |    |
| 208         | 77    | 74  | 70  | 73   | 72  | 68  | 66 | 61  | 56  | 54  | 52  | 52  | 55  |     |     | 50  | 50  | 51  |      |    |
| 216         | 77    | 74  | 70  | 73   | 70  | 69  | 66 | 59  | 58  | 55  | 54  | 51  | 55  |     |     | 50  | 50  | 50  |      |    |
| Back Ground | 70    | 71  | 63  | 62   | 61  | 60  | 60 | 53  | 51  | 51  | 49  | 49  | 49  | 49  | 48  | 47  | 47  | 47  | 48   |    |

TABLE IV

## TRANQUILLON PEAK

PRESSURE LEVELS AND FREQUENCY DISTRIBUTION  
AS A FUNCTION OF TIMEAVERAGE BAND (Hz) LEVELS (dB re 20  $\mu\text{N}/\text{m}^2$ )

| 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1.0k | 1.25k | 1.6k | 2.0k | 2.5k | 3.15k | 4.0k | 5.0k | 6.3k | 8.0k | Overall SPL |
|-----|-----|-----|-----|-----|-----|-----|------|-------|------|------|------|-------|------|------|------|------|-------------|
| 63  | 55  | 57  | 52  | 50  | 50  | 51  | 52   | 52    | 55   | 55   | 54   | 56    | 56   | 57   | 57   | 60   | 74          |
| 62  | 54  | 57  | 53  | 51  | 50  | 51  | 52   | 52    | 55   | 55   |      | 57    |      | 57   |      |      | 73          |
| 65  | 61  | 61  | 60  | 60  | 57  | 54  | 53   | 53    | 55   | 54   |      | 56    |      | 58   |      |      | 83          |
| 85  | 83  | 81  | 78  | 77  | 75  | 71  | 68   | 62    | 60   | 55   |      | 57    |      | 61   |      |      | 102         |
| 91  | 87  | 87  | 84  | 83  | 81  | 76  | 73   | 68    | 65   | 59   |      | 57    | 58   | 61   |      |      | 110         |
| 85  | 84  | 84  | 83  | 81  | 78  | 78  | 75   | 72    | 68   | 66   | 60   | 58    | 57   | 60   |      |      | 106         |
| 89  | 90  | 91  | 86  | 83  | 85  | 82  | 82   | 79    | 77   | 75   | 71   | 67    | 65   | 61   |      |      | 109         |
| 94  | 95  | 90  | 87  | 86  | 84  | 84  | 83   | 79    | 77   | 79   | 74   | 68    | 71   | 62   | 59   |      | 111         |
| 89  | 88  | 81  | 84  | 80  | 78  | 77  | 75   | 73    | 68   | 66   | 61   | 60    | 58   | 58   |      |      | 107         |
| 85  | 82  | 78  | 81  | 75  | 74  | 72  | 70   | 68    | 65   | 60   | 55   | 57    | 57   | 57   |      |      | 104         |
| 81  | 78  | 76  | 75  | 71  | 68  | 62  | 59   | 55    | 57   | 55   | 54   | 55    | 56   |      | 60   |      | 101         |
| 76  | 73  | 72  | 72  | 67  | 62  | 57  | 56   | 53    | 55   | 55   |      | 56    | 57   |      | 61   |      | 99          |
| 75  | 70  | 69  | 69  | 61  | 56  | 53  | 52   | 53    |      | 54   |      |       |      | 57   | 60   |      | 97          |
| 68  | 66  | 65  | 64  | 59  | 53  | 51  |      | 52    |      |      |      |       |      | 58   | 61   |      | 94          |
| 71  | 69  | 64  | 65  | 58  | 53  |     |      |       |      |      |      |       | 58   | 60   |      |      | 93          |
| 67  | 60  | 59  | 56  | 52  | 50  |     |      |       | 55   |      |      | 56    |      | 57   |      |      | 91          |
| 68  | 64  | 60  | 58  | 50  | 50  |     |      |       | 53   | 54   |      |       |      | 58   |      |      | 90          |
| 84  | 62  | 59  | 57  | 51  | 50  | 50  |      | 53    |      |      |      |       |      | 57   |      |      | 92          |
| 66  | 60  | 58  | 54  | 51  | 50  | 51  |      | 52    |      |      | 54   |       |      | 58   |      |      | 89          |
| 65  | 60  | 58  | 55  | 51  | 50  | 50  |      |       |      | 55   | 55   | 57    |      | 57   |      |      | 87          |
| 63  | 57  | 57  | 53  | 50  | 49  | 51  |      |       |      | 54   | 56   |       |      | 58   |      |      | 86          |
|     |     |     | 53  | 51  | 50  |     |      |       | 55   | 54   |      |       |      | 57   |      |      | 85          |
|     |     |     | 54  | 50  | 50  |     |      |       | 54   | 53   |      |       |      | 58   |      |      | 84          |
| 562 | 1   | 1   | 53  | 50  | 49  | 50  |      | 53    |      |      | 54   | 55    | 56   | 57   |      |      | 84          |
| 63  | 58  | 58  | 51  | 50  | 50  | 50  |      |       |      |      | 56   | 56    | 58   |      |      |      | 84          |
| 63  | 56  | 57  | 51  | 50  | 51  |     |      |       | 57   |      |      | 57    |      | 57   |      |      | 81          |
| 62  | 55  | 1   | 50  | 50  | 51  |     |      | 52    | 54   | 55   |      | 56    | 58   | 58   |      |      | 82          |
| 61  | 55  | 1   | 50  | 50  | 50  |     |      | 52    | 55   | 54   | Y    | 56    | 57   | 57   | 58   |      | 81          |
| 49  | 49  | 49  | 48  | 47  | 47  | 47  | 48   | 48    | 48   | 47   | 47   | 47    | 47   | 48   | 47   | 46   | 75          |

**TABLE V**  
**OAK MOUNTAIN**  
**SOUND PRESSURE LEVELS AND FREQUENCY D**  
**AS A FUNCTION OF TIME**

|                |     | 1/3 OCTAVE BAND (Hz) LEVELS (dB re 20 µPa) |    |     |      |    |    |    |    |     |     |     |     |     |     |     |     |     |     |      |      |
|----------------|-----|--------------------------------------------|----|-----|------|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| Frequency (Hz) |     | 13.75                                      | 20 | 25  | 31.5 | 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 | 400 | 500 | 630 | 800 | 1.0k | 1.5k |
| 0              | 70  | 65                                         | 61 | 62  | 59   | 63 | 59 | 56 | 55 | 58  | 54  | 51  | 50  | 57  | 48  | 47  | 47  | 47  | 47  | 47   | 47   |
| 7.7            | 72  | 67                                         | 63 | 63  | 61   | 63 | 60 | 59 | 59 | 60  | 57  | 54  | 51  | 57  | 49  |     | 48  |     |     |      |      |
| 15.4           | 71  | 68                                         | 64 | 64  | 62   | 64 | 62 | 61 | 59 | 60  | 56  | 54  | 51  | 58  | 49  |     | 47  |     |     |      |      |
| 23.1           | 79  | 78                                         | 72 | 73  | 69   | 67 | 62 | 59 | 56 | 57  | 55  | 50  | 49  | 56  | 48  | 46  |     |     |     |      |      |
| 30.8           | 82  | 78                                         | 74 | 74  | 70   | 69 | 63 | 61 | 58 | 60  | 56  | 53  | 50  | 58  | 49  | 48  | 47  |     |     |      |      |
| 38.5           | 76  | 74                                         | 73 | 73  | 76   | 75 | 72 | 74 | 74 | 72  | 69  | 69  | 63  | 61  | 55  | 52  | 50  | 48  | 47  |      |      |
| 46.2           | 85  | 80                                         | 80 | 83  | 86   | 85 | 84 | 86 | 85 | 82  | 80  | 77  | 73  | 69  | 63  | 61  | 60  | 56  | 51  |      |      |
| 53.9           | 95  | 95                                         | 95 | 96  | 97   | 96 | 95 | 95 | 93 | 91  | 89  | 86  | 81  | 77  | 72  | 69  | 66  | 63  | 58  |      |      |
| 61.5           | 93  | 91                                         | 91 | 95  | 95   | 97 | 96 | 96 | 95 | 93  | 91  | 88  | 83  | 79  | 75  | 73  | 71  | 68  | 63  |      |      |
| 69.2           | 92  | 90                                         | 92 | 95  | 95   | 93 | 93 | 92 | 89 | 87  | 85  | 81  | 76  | 78  | 78  | 75  | 68  | 67  |     |      |      |
| 76.9           | 100 | 100                                        | 98 | 101 | 100  | 98 | 96 | 94 | 93 | 90  | 87  | 81  | 81  | 85  | 86  | 84  | 80  | 74  | 74  |      |      |
| 84.6           | 99  | 96                                         | 98 | 100 | 99   | 97 | 96 | 93 | 89 | 87  | 81  | 82  | 84  | 87  | 84  | 77  | 77  | 74  | 72  |      |      |
| 92.3           | 97  | 96                                         | 95 | 98  | 97   | 95 | 92 | 89 | 86 | 81  | 80  | 82  | 83  | 83  | 77  | 74  | 74  | 68  | 66  |      |      |
| 100.0          | 93  | 95                                         | 93 | 96  | 94   | 93 | 90 | 86 | 81 | 75  | 77  | 79  | 78  | 76  | 66  | 68  | 64  | 61  | 53  |      |      |
| 107.7          | 94  | 92                                         | 90 | 93  | 92   | 91 | 88 | 84 | 77 | 74  | 75  | 78  | 77  | 72  | 64  | 64  | 56  | 54  | 49  |      |      |
| 115.4          | 95  | 95                                         | 92 | 90  | 92   | 91 | 90 | 87 | 83 | 75  | 74  | 77  | 80  | 77  | 70  | 64  | 53  | 50  | 48  |      |      |
| 123.1          | 93  | 91                                         | 88 | 89  | 89   | 87 | 85 | 80 | 73 | 72  | 76  | 78  | 74  | 66  | 66  | 59  | 53  | 48  | 47  |      |      |
| 130.8          | 90  | 91                                         | 87 | 89  | 87   | 86 | 83 | 77 | 70 | 72  | 75  | 76  | 71  | 63  | 64  | 54  | 51  | 49  | 51  |      |      |
| 138.5          | 89  | 88                                         | 86 | 84  | 84   | 83 | 80 | 75 | 70 | 71  | 73  | 74  | 69  | 61  | 60  | 53  | 49  | 47  | 47  |      |      |
| 146.2          | 90  | 88                                         | 84 | 84  | 82   | 81 | 79 | 75 | 68 | 71  | 71  | 72  | 67  | 59  | 56  | 51  | 48  | 48  |     |      |      |
| 153.9          | 87  | 85                                         | 83 | 82  | 80   | 79 | 77 | 73 | 66 | 69  | 70  | 71  | 65  | 60  | 58  | 51  | 48  | 47  |     |      |      |
| 161.5          | 85  | 82                                         | 79 | 80  | 77   | 75 | 74 | 72 | 65 | 67  | 68  | 68  | 62  | 58  | 56  | 49  | 47  |     |     |      |      |
| 169.2          | 86  | 83                                         | 81 | 81  | 79   | 76 | 75 | 72 | 67 | 66  | 69  | 69  | 64  | 58  | 53  | 48  |     |     |     |      |      |
| 176.9          | 87  | 84                                         | 80 | 82  | 80   | 76 | 75 | 73 | 67 | 65  | 67  | 68  | 62  | 57  | 53  | 48  | 47  |     |     |      |      |
| Background     | 83  | 81                                         | 73 | 76  | 71   | 65 | 62 | 60 | 58 | 57  | 49  | 46  | 43  | 43  | 41  | 40  | 40  | 40  | 40  | 40   |      |

TABLE V

## OAK MOUNTAIN

## SURE LEVELS AND FREQUENCY DISTRIBUTION AS A FUNCTION OF TIME

### AVE BAND (Hz) LEVELS (dB re 20 $\mu$ N/m<sup>2</sup>)

field recorder (see Figure 2), thus record and reproduce tape speeds were the same. At this site a 4 second integration time was equal to an actual 4 seconds of launch or range time at 7 1/2 ips and 8 seconds of range time at 15 ips playback speed.

b. Peak Noise and Frequency Distribution: The time that peak noise levels occurred was determined from the overall levels presented in Tables II thru V. The tapes were then analyzed at that time using a 1/8 second integration time to obtain peak instantaneous noise levels and their frequency distribution. Figures 5 thru 8 present peak noise levels as a function of frequency (1/3 octave bands). The peak levels and frequency distribution are a little more accurate because the averaging time, i.e., integration time (1/8 second) was much shorter.

c. Comparison of Measured With Predicted Noise Levels: The noise levels measured were within the range predicted on the basis of Titan III C, D and E noise data provided by SAMSO/LVRG personnel (see Appendix B). Table VI shows measured and predicted noise levels at each measurement site.

TABLE VI  
COMPARISON OF MEASURED & PREDICTED LEVELS

| <u>Location</u>         | <u>Ground Distance<br/>From Launch Site ft)</u> | <u>Peak OSPL'S (dB) re 20 <math>\mu</math> N/m<sup>2</sup></u> | <u>Predicted</u> | <u>Measured</u> |
|-------------------------|-------------------------------------------------|----------------------------------------------------------------|------------------|-----------------|
| SLC-3                   | 8,400                                           |                                                                | 124              | 124             |
| Range Ops<br>(Bldg 488) | 16,200                                          |                                                                | 118              | 120             |
| Tranquillon Peak        | 24,000                                          |                                                                | 114              | 111             |
| Oak Mountain            | 44,000                                          |                                                                | 107              | 108             |

These overall peak sound pressure levels are plotted as a function of distance in Figure 9 to facilitate extrapolation of these data to distances greater than measured. Since low frequency noise is difficult to attenuate, the use of existing data for application at different

FIGURE 5

SLC-3 BLOCKHOUSE  
PEAK SOUND PRESSURE LEVELS



FIGURE 6

RANGE OPERATIONS  
PEAK SOUND PRESSURE LEVELS



FIGURE 7

TRANQUILLON PEAK  
PEAK SOUND PRESSURE LEVELS



FIGURE 8  
OAK MOUNTAIN  
PEAK SOUND PRESSURE LEVELS



FIGURE 9

OVERALL SOUND PRESSURE LEVELS  
AS A FUNCTION OF DISTANCE FROM  
LAUNCH PADS



SOUND PRESSURE LEVEL (dB re 20  $\mu\text{N/m}^2$ )

sites and under different weather conditions should result in reasonably accurate predictions. However, the weather data during the measurements are shown in Appendix C so that correction for sound attenuation by air can be applied, if desired, when extrapolating these data to different weather conditions.

d. Estimated Environmental Impact:

(1) The impact of any single noise event is difficult to determine when one is concerned about levels and exposure times below those normally considered hazardous to hearing; however, perceived noise levels (PNL's) and effective perceived noise levels (EPNL's) are commonly used to define single event noise levels, e.g., aircraft flyovers. The maximum PNL's calculated from 1/3 octave band data (50 Hz - 10,000 Hz) are shown in conjunction with expected responses or judgements of personnel exposed in Table VII (Ref. 1).

TABLE VII  
MAXIMUM PNL'S AND EXPECTED RESPONSE

| <u>Location</u>  | <u>Max. PNL (dB)</u> | <u>Ranges of Response</u>                      |
|------------------|----------------------|------------------------------------------------|
| SLC-3            | 118                  | Unacceptable, annoying, noisy                  |
| Range Operations | 114                  |                                                |
| Tranquillon Peak | 110                  | Unacceptable, intrusive, moderately noisy      |
| Oak Mountain     | 105                  | Barely acceptable, intrusive, moderately noisy |

The PNL is calculated from a subjective unit of noisiness called the "noy." A sound of two noy is said to be subjectively twice as noisy as a sound of one noy. Curves of equal noisiness, with sound pressure levels plotted as a function of frequency, are shown in Figure 10. Considerably higher sound pressure levels are required in the lower frequencies than in middle and high frequencies to produce a subjectively equal level of noisiness. The PNL is calculated from these type curves and is basically a translation of the subjective noy scale to a dB scale. Therefore, the

FIGURE 10

Subjective Reaction to Acoustic Noise  
**CURVES OF EQUAL NOISINESS**



frequency or spectral characteristics of the noise significantly influence the value of the PNL calculated and may appear to be lower or higher than might be expected on the basis of overall sound pressure levels.

(2) The Noise Exposure Forecast (NEF) which is used to estimate community response to a series of noise events can be calculated from PNL's and EPNL's. The basic equations used for determination of EPNL and NEF are shown below:

$$EPNL = PNL + 10 \log \frac{t}{15}$$

where: PNL = maximum PNL calculated from 1/3 octave bands (50 Hz - 10,000 Hz) sound pressure levels

$t$  = duration, in seconds, of noise within 10 dB of maximum PNL

$$NEF = EPNL + 10 \log \left( \frac{Nd}{20} + \frac{Nn}{1.2} \right) - 75$$

where: Nd = number of day operations (0700 - 2200 hrs)

Nn = number of night operations (2200 - 0700 hrs)

The NEF at each site was determined by assuming one Titan III D missile launch per day. This is probably an overestimate of activity. These NEF's are shown for each measurement site in Table VIII.

TABLE VIII  
NEF'S AND ESTIMATED COMMUNITY RESPONSE

| <u>Location</u>      | <u>Approximate NEF's</u> | <u>Estimated Community Impact (Ref. 1)</u>                                   |
|----------------------|--------------------------|------------------------------------------------------------------------------|
| SLC-3                | 34                       | Individuals in private residences may complain vigorously.                   |
| Range Ops (Bldg 488) | 30                       | Commercial use - OK                                                          |
| Tranquillon Peak     | 27                       | Satisfactory for all uses except possibly schools, churches, hospitals, etc. |
| Oak Mountain         | 23                       |                                                                              |

It should be realized that the NEF was developed primarily for aircraft noise after studying the reactions of large numbers of individuals to specific aircraft noises. Also, individual tolerance varies considerably as demonstrated by survey around London Heathrow Airport which determined that approximately 10 percent of the population were ultra-sensitive to noise and objected to any outside noise intrusion while 25 percent of the population were unaffected even by very high community noise levels (Ref. 1,2). Therefore, these two portions of the population (35%) will not be significantly affected by noise abatement efforts; only the remaining 65 percent of the population will be helped by noise control and characterizing the noise environment. Some of the important factors other than the actual noise environment which affect human response to noise intrusion include:

- (a) Socioeconomic status
- (b) Relative importance and necessity of noise source
- (c) Relation of noise source to individual, i.e., an individual who is economically dependent on the noise source is less likely to be annoyed
- (d) Activity being done during noise exposure

(3) Acoustical damage to structures can be estimated from Figures 11 and 12. No damage is expected at distances greater than 24,000 ft.

### 3. Vibration:

a. Peak Vibration and Frequency Distributions (La Purisima Mission): Only the peak vibration (acceleration) levels were reported as other levels were not significantly above background. The peak vibration levels occurred essentially simultaneously with the peak noise levels, 92 - 100 seconds after launch, indicating that the vibration was induced by airborne noise. Thus, noise at this site would also be a satisfactory measurement parameter for damage estimation as there are single event noise criteria relating noise levels at various frequencies to structure damage (see Figures 11 & 12). Peak and background acceleration from 25 Hz to 2000 Hz (limiting frequencies of measurement equipment) are shown in Tables IX and X.

#### b. Effects on La Purisima Mission:

(1) Examination of the acceleration data indicates that peak values were only slightly above background and in some frequencies

FIGURE 11

## ACOUSTICAL DAMAGE CRITERIA FOR WALLS



FIGURE 12

ACOUSTICAL DAMAGE CRITERIA FOR GLASS



**TABLE IX**  
**VIBRATION DATA**  
**ACCELEROMETER A**

| <b>1/3 Octave Center<br/>Frequency (Hz)</b> | <b>Peak Acceleration (g's)</b> | <b>Background (g's)</b> |
|---------------------------------------------|--------------------------------|-------------------------|
| 2.0K                                        | $7.8 \times 10^{-5}$           | $1.4 \times 10^{-4}$    |
| 1.6K                                        | $9.8 \times 10^{-5}$           | $2.8 \times 10^{-4}$    |
| 1.25K                                       | $6.3 \times 10^{-5}$           | $1.6 \times 10^{-4}$    |
| 1.0K                                        | $5.7 \times 10^{-5}$           | $7.5 \times 10^{-4}$    |
| 800                                         | $4.9 \times 10^{-5}$           | $5.0 \times 10^{-5}$    |
| 630                                         | $4.5 \times 10^{-5}$           | $5.8 \times 10^{-5}$    |
| 500                                         | $5.8 \times 10^{-5}$           | $8.2 \times 10^{-5}$    |
| 400                                         | $1.5 \times 10^{-4}$           | $1.7 \times 10^{-4}$    |
| 315                                         | $1.5 \times 10^{-4}$           | $1.9 \times 10^{-4}$    |
| 250                                         | $1.8 \times 10^{-4}$           | $8.0 \times 10^{-5}$    |
| 200                                         | $3.8 \times 10^{-4}$           | $1.3 \times 10^{-4}$    |
| 160                                         | $1.6 \times 10^{-3}$           | $4.2 \times 10^{-4}$    |
| 125                                         | $4.1 \times 10^{-3}$           | $4.9 \times 10^{-4}$    |
| 100                                         | $6.7 \times 10^{-4}$           | $1.6 \times 10^{-4}$    |
| 80                                          | $5.3 \times 10^{-4}$           | $6.7 \times 10^{-4}$    |
| 63                                          | $2.2 \times 10^{-3}$           | $4.8 \times 10^{-3}$    |
| 50                                          | $1.1 \times 10^{-3}$           | $1.2 \times 10^{-3}$    |
| 40                                          | $2.0 \times 10^{-4}$           | $4.2 \times 10^{-4}$    |
| 31.5                                        | $2.1 \times 10^{-4}$           | $2.8 \times 10^{-4}$    |
| 25                                          | $4.0 \times 10^{-4}$           | $1.4 \times 10^{-4}$    |

TABLE X  
VIBRATION DATA  
ACCELEROMETER B

| <u>1/3 Octave Center Frequencies (Hz)</u> | <u>Peak Acceleration (g's)</u> | <u>Background (g's)</u> |
|-------------------------------------------|--------------------------------|-------------------------|
| 2.0K                                      | $2.9 \times 10^{-4}$           | $1.1 \times 10^{-6}$    |
| 1.6K                                      | $2.9 \times 10^{-4}$           | $1.4 \times 10^{-6}$    |
| 1.25K                                     | $2.9 \times 10^{-4}$           | $1.1 \times 10^{-6}$    |
| 1.0K                                      | $2.9 \times 10^{-4}$           | $1.0 \times 10^{-6}$    |
| 800                                       | $2.9 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 630                                       | $2.9 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 500                                       | $2.9 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 400                                       | $2.9 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 315                                       | $4.1 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 250                                       | $5.2 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 200                                       | $1.2 \times 10^{-3}$           | $9.2 \times 10^{-6}$    |
| 160                                       | $2.3 \times 10^{-3}$           | $9.2 \times 10^{-6}$    |
| 125                                       | $4.1 \times 10^{-3}$           | $9.2 \times 10^{-6}$    |
| 100                                       | $1.5 \times 10^{-3}$           | $9.2 \times 10^{-6}$    |
| 80                                        | $3.8 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 63                                        | $3.8 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 50                                        | $3.8 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 40                                        | $2.9 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 31.5                                      | $2.9 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |
| 25                                        | $5.2 \times 10^{-4}$           | $9.2 \times 10^{-6}$    |

the background fluctuated above peak levels.

(2) The magnitude of these acceleration values are roughly an order of magnitude or more below levels where individuals begin to perceive vibration. On this basis, the vibration would appear to be inconsequential. Seismic shock limits (Ref. 3) for building structures define a caution zone of approximately 0.01 g's which is well above the maximum acceleration level measured at the Mission. The measured vibration levels were also well below the structural damage threshold criteria adopted by the US Bureau of Mines (Ref. 4). If one assumes simple harmonic motion (sine wave) the displacement can be easily calculated from the acceleration values using the following relationship.

$$\text{Displacement} = \frac{\text{Acceleration} \text{ (inches/sec}^2\text{)}}{4 \pi^2 (\text{frequency})^2}$$

The resulting displacement values were orders of magnitude below displacement limits specified for safety from seismic shock damage.

(3) The Civilian Conservation Corps (CCC) restored the Mission ruins from 1934 to 1941. During the restoration certain construction modifications were made to make the buildings stronger, safer and more resistant to earthquakes. These modifications included the use of reinforced concrete columns, girders, beams and massive wooden beams. These construction modifications significantly reduce the vibration damage potential to the restored Mission as compared to the original adobe construction and the vibration levels measured during the missile launch would have little if any effect on the Mission.

#### SECTION IV

#### CONCLUSIONS

1. These noise data and similar data can be used to predict noise levels at distances other than those specified in this report and for future launches. The effects of varying atmospheric conditions are minimized because low frequency noise is not significantly affected by normal variations in atmospheric conditions; however, any extreme deviations from average atmospheric conditions should be considered when extrapolating these data.
2. No significant environmental impact is expected to result from these launches at distances of eight miles (44,000 ft) or greater from the

launch site. The relatively short duration of noise and infrequent occurrence of these launches further reduces the acoustical impact. These launches would probably be tolerated by personnel residing at closer distances, i.e., four miles from the launch pad.

3. The acceleration (vibration) levels, even-though unsophisticated and measured at only one location within the Mission, were so small that it is inconceivable that any damage to the La Purisima Mission buildings could result from the vibration caused by these launches. However, noise levels were also measured at the Mission by personnel of the Bioacoustics Division, Aeromedical Research Laboratories and these data should also be considered with regard to information presented in Figures 11 & 12 before any definite conclusions are drawn regarding the damage potential of these launches.

## REFERENCES

1. Kryter, Karl D. The Effects of Noise on Man, Academic Press, 1970.
2. Plotkin, K.J., Robertson, J.E., and Cockburn, J.A., Environmental Impact of Noise From the Proposed AEDC High Reynolds Number Tunnel (AEDC-TR-72-151), Wyle Laboratories Eastern Operations, Huntsville, Alabama, Oct 1972.
3. Handbook of Tables for Applied Engineering Science, The Chemical Rubber Co., 1970.
4. Cant, Stephen, M., and Breyse, Peter A., "Aircraft Noise Induced Vibration in Fifteen Residences Near Seattle-Tacoma International Airport" American Industrial Hygiene Association Journal, Oct 1973.
5. Peterson, A.P.G., and Cross, E.G., Handbook of Noise Measurement, General Radio, 1972.
6. Harris, Cyril M., Handbook of Noise Control, McGraw-Hill Book Co., 1957.
7. Schultz, Theodore J., Noise Assessment Guidelines Technical Background, (HUD Report No TE/NA 172) US Department of Housing and Urban Development, 1972.

**APPENDIX A**

**SIMPLIFIED UNCERTAINTY ANALYSIS  
OF  
RECORDING & ANALYSIS SYSTEMS**

A simplified uncertainty analysis was performed on the recording and analysis systems. Sources of error in recording include variations in microphone incidence angle, tape characteristics, non-linearity characteristics of the octave band analyzer, recorder, playback unit and real time analyzer, and calibration instrumentation uncertainties. The uncertainty in the incidence angle has the potential for the largest single error in the system as it seriously affects microphone sensitivity, especially at high frequencies. The limit of error calculation for the system is listed below. The final uncertainty (limit of error) in the data presented is the rms uncertainty of the components and was calculated to be  $\pm 1.9$  dB.

| <u>PARAMETER</u>                                   | <u>Limit of Error (dB)</u><br><u>(RE: 20 <math>\mu</math>N/m<sup>2</sup>)</u> |
|----------------------------------------------------|-------------------------------------------------------------------------------|
| Ampeax 434 uniformity (reel to reel)               | $\pm 1.0$                                                                     |
| Ampeax AG-350 reproducer (estimated non-linearity) | $\pm 0.1$                                                                     |
| Uher 2000L recorder (estimated non-linearity)      | $\pm 0.5$                                                                     |
| 1558 Filter uncertainty                            | 1.0                                                                           |
| Microphone Angle of Incidence                      | $\pm 1.0$                                                                     |
| Real Time Analyzer non-linearity                   | $\pm 0.5$                                                                     |
| <hr/>                                              |                                                                               |
| data limit of error = $\lambda$ =                  | $\pm 1.9$                                                                     |

**APPENDIX B**

**ACCUSTIC DATA TITAN III LAUNCHES  
(SAMSO/LVRO)**

DEPARTMENT OF THE AIR FORCE  
HEADQUARTERS SPACE AND MISSILE SYSTEMS ORGANIZATION  
LOS ANGELES AIR FORCE STATION, PO BOX 7100, WELDOWAY, LOS ANGELES, CALIFORNIA 90009

LIVRC

20 AUG 1974

Acoustic Measurements on Titan III Launches

WELL, JR

1. As part of a DOD-directed study on SCS siting at Vandenberg AFB, we are reviewing the limitation imposed on potential sites by acoustic energy levels.
2. To obtain current acoustic data on launch vehicle systems similar to the Space Shuttle, request you obtain data per the attached requirements document on the next Titan IIIC, IIID, and IIIE launches. We understand that these data can be obtained through a currently planned measurements program and, therefore, at no cost to the program office.
3. Three copies of the resulting data and analyses (overall and octave band sound pressure level histories vs time and background level) should be forwarded to SAMSO/LVRC, Maj A.B. Sloan, Autoven 663-1570.

*Kerry W. Haiker*

KERRY W. HAIKER, Lt Col, USAF  
Test Program Director, Ops & Eval  
Reusable Launch Vehicles SPO

1 Atch  
Acoustic Measurements  
Requirements

Cy to: AMRT/DO  
AMRT/DEM  
S. 100/DAM  
6555/AMC/OC  
6595/SLC/OC  
Aerospace/J. Smith  
Aerospace/P. Tornonova  
Aerospace/R. Kendall

# ACOUSTIC MONITORING AND RECORDING

## 1. PURPOSE

To outline requirements for monitoring and/or monitoring instrumentation for Titan IIIC, IIID, and IIE vehicles at range, C. Averell Hill and Vandenberg AFB.

## 2. SCOPE

This chapter covers the identification of acoustical and meteorological instruments and analytical methodology to obtain and evaluate overall short-term-acoustic sound pressure levels in addition to range time and space distributions for time periods of particular interest. Instantaneous slices are recommended to document sound propagation. Launch site distances from launch sites and for obtaining Lempco area environmental sound levels.

## 3. AUDIOPHYSICAL

### 3.1 Monitoring

In audio pick-up/recording, one is required for each observation station. Audio instrumentation need not be identical if each station can have similar operating characteristics and be calibrated. The absolute recorded data referenced to a common standard may be used compatible station-set to station-set. This is essential to eliminating pick-up/recording instrumentation as a source of discrepancy in observation. A positive correlation station-to-station and with range time must be established at rocket ignition and be maintained throughout vehicle lift-off.

Figure 1 represents the estimated overall sound pressure level expected to be generated by Titan IIIC, IID, and IIE vehicles launched at different distances from the launch site. The approximate spectral content of the launch sound is shown in Figure 2. Figures 1 and 2 are to be used in evaluating and selecting appropriate audio pick-up and recording components.

### 3.0 Acoustic Monitoring

For accurate and sensitive band sound pressure level/time histories, appropriate calibrations must be maintained to assure proper amplitude levels from the recorded data. It is important that amplitude and frequency correlate sound levels with real time.

#### 3.0.1 Measurement Setting - VAPR

Proposed acoustic measurement sites are shown in Figure 3 for the VAPR/Lempke area. Sites situated roughly on four radials from S.C.-1 have been indicated. Most of these have been located at existing installations to take advantage of existing electric power for the pick-up/recording sets (although battery-powered sets will also be provided, if needed) and to simplify coordination of recorded data with range time.

The available recording sets are such that up to five recording sites can be used simultaneously. Priorities have been assigned to the suggested sites as follows:

| Priority | Site                |
|----------|---------------------|
| 1        | Mr. Furkiss Mission |
| 2        | Radial 2            |
| 3        | Radial 4            |
| 4        | Radial 1            |
| 5        | Radial 3            |

SAMP is publicly committed to making acoustic observations at Mr. Furkiss Mission. Following that, priority is given to recording data at a minimum of three different distances from the plant, and preferably along the same radial. Since the existence of background sound level data from the VAPR/Lempke area is unknown, suggested sites are indicated on Figure 3 to be instrumented singly or simultaneously over a period of several weeks to characterize prevailing neighborhood noise.

### 5.5 AEROMETRIC STATIONS - CLASS

Aerometric measurements will be used by NASA for monitoring plume dispersion and downwind plume characteristics. These data will be obtained in accordance with the following procedures:

- a. Downwind plume monitoring will be conducted at the following measurement sites and provide aerometric data....

### 6.0 INSTRUMENTATION REQUIREMENTS

At each VAB and VAFB, print-outs of wind systems data observed at selected stations during a vehicle launch period will be required. Specific data required at lift-off are:

- a. Wind Speed ....., each station
  - b. Wind Direction ....., each station
  - c. Temperature ....., each station
  - d. Barometric Pressure ....., as available
  - e. Relative Humidity ....., as available
  - f. Downwind flow data (vertical wind, temperature, density, helium concentration).
  - g. Solar radiation ....., as available
- In addition to the above, staff meteorological prints will be required at the more significant observation stations.

MAX OVERALL SOUND PRESSURE LEVEL - dB re:  $2 \times 10^{-5}$  N/m<sup>2</sup>



FIG. 1 Estimated T-33C, D-5 Launch Overall Sound Pressure Levels vs.  
Ground Distance from Launch Pad.

11 OCTAVE AND SOUND PRESSURE LEVELS DB BELOW OVERALL  
SPL (Ref. 2x10<sup>-5</sup> N/m<sup>2</sup>)



Copy controlled by CIC does not  
necessarily reflect actual subject



Figure 11. Far Field Acoustic Measurements Locations B-7 CCAPS

**APPENDIX C**

**WEATHER DATA 29 OCT 74  
VANDENBERG AFB**

MMWVZCZG000070

RTTURYUW VI

3799 J022236-UUUU-0000

ZNR UUUUU

ZNR UUUUU

R 292238Z OCT 74

JN VEA VAFB CA

TO AFSCF (DOW) SUNNYVALE CA

ASH BLDG 21130

BT

TEST NBR 07122 T-8  
RAVINSIDE RUN AN/ORD-1  
BLDG 900 - VAFB, CALIF.  
1948Z 29 OCT 1974  
ASCENT NBR 8189

WIND 10 KTS 1000 FT

| ALT (FT) | DIR | KTS | TEMP  | D/PT  | PRESS   | RH  | AB/H  | DEW     | IR  | V3  | SHP  | SVD |
|----------|-----|-----|-------|-------|---------|-----|-------|---------|-----|-----|------|-----|
| 000367   | 300 | 013 | 14.3  | 6.9   | 8995.00 | 868 | 87.90 | 1280.72 | 313 | 661 | 8666 | 866 |
| 001500   | 319 | 017 | 12.1  | 8.7   | 8972.51 | 850 | 88.57 | 1182.39 | 316 | 658 | .812 | 882 |
| 002600   | 328 | 016 | 9.2   | 6.8   | 8937.71 | 866 | 87.18 | 1158.48 | 301 | 635 | .882 | 113 |
| 003600   | 329 | 017 | 6.6   | 2.5   | 8983.88 | 874 | 85.66 | 1121.26 | 285 | 632 | .884 | 837 |
| 004600   | 337 | 016 | 4.8   | 1.3   | 8878.82 | 879 | 63.32 | 1688.38 | 276 | 649 | .885 | 838 |
| 005600   | 348 | 023 | 2.7   | .9    | 8838.84 | 856 | 82.11 | 1956.43 | 268 | 647 | .811 | 349 |
| 006600   | 337 | 036 | 1.6   | -2.4  | 8867.83 | 873 | 84.89 | 1821.96 | 254 | 646 | .889 | 319 |
| 007600   | 331 | 033 | -.3   | -6.5  | 8777.66 | 869 | 82.98 | 8938.68 | 239 | 644 | .888 | 293 |
| 008600   | 327 | 032 | -1.8  | -8.7  | 8748.84 | 836 | 82.54 | 8937.18 | 238 | 643 | .884 | 283 |
| 009600   | 335 | 027 | -1.2  | -10.3 | 8738.83 | 847 | 82.13 | 8922.91 | 219 | 642 | .811 | 114 |
| 010600   | 338 | 025 | -2.7  | -11.7 | 8693.88 | 858 | 82.80 | 8898.58 | 218 | 641 | .883 | 829 |
| 011600   | 336 | 032 | -4.8  | -12.8 | 8667.61 | 834 | 81.83 | 8845.39 | 203 | 638 | .888 | 325 |
| 012600   | 334 | 036 | -5.7  | -14.9 | 8642.83 | 845 | 81.96 | 8835.79 | 196 | 637 | .887 | 315 |
| 013600   | 338 | 037 | -7.6  | -16.4 | 8617.72 | 849 | 81.39 | 8829.33 | 183 | 635 | .882 | 277 |
| 014600   | 331 | 038 | -9.9  | -18.2 | 8593.96 | 831 | 81.28 | 8785.44 | 123 | 638 | .882 | 275 |
| 015600   | 333 | 039 | -12.3 | -19.5 | 8578.98 | 837 | 81.88 | 8761.77 | 177 | 629 | .884 | 813 |
| 016600   | 337 | 044 | -14.9 | -21.4 | 8548.79 | 837 | 80.32 | 8739.36 | 171 | 626 | .888 | 818 |
| 017600   | 341 | 045 | -17.2 | -23.9 | 8526.88 | 835 | 80.73 | 8716.56 | 165 | 623 | .889 | 839 |
| 018600   | 344 | 053 | -19.3 | -26.4 | 8503.84 | 834 | 80.68 | 8698.97 | 159 | 621 | .889 | 828 |
| 019600   | 346 | 056 | -23.8 | -27.2 | 8485.47 | 823 | 80.96 | 8673.15 | 134 | 637 | .883 | 866 |
| 020600   | 347 | 063 | -24.7 | -28.6 | 8469.73 | 821 | 80.35 | 8652.76 | 136 | 614 | .812 | 355 |
| 021600   | 351 | 062 | -27.1 | -29.7 | 8446.61 | 879 | 80.46 | 8632.14 | 144 | 611 | .813 | 836 |
| 022600   | 353 | 063 | -29.3 | -32.1 | 8428.85 | 877 | 80.37 | 8611.38 | 139 | 608 | .811 | 152 |
| 023600   | 352 | 061 | -32.3 | -36.2 | 8410.13 | 864 | 80.23 | 8595.11 | 134 | 605 | .803 | 195 |
| 024600   | 351 | 061 | -34.4 | -42.6 | 8395.75 | 844 | 80.13 | 8578.18 | 129 | 602 | .808 | 203 |
| 025600   | 358 | 061 | -38.8 | -45.8 | 8373.59 | 834 | 80.06 | 8554.23 | 124 | 599 | .808 | 256 |
| 026600   | 348 | 061 | -39.3 | 99.9  | 8358.76 | 781 | 92.32 | 8536.32 | 120 | 796 | .808 | 891 |
| 027600   | 348 | 062 | -42.5 | 99.9  | 8344.85 | 779 | 99.99 | 8519.64 | 116 | 792 | .803 | 868 |
| 027600   | 348 | 064 | -43.4 | 99.9  | 8328.81 | 773 | 99.99 | 8502.91 | 112 | 588 | .808 | 838 |
| 029600   | 348 | 069 | -48.1 | 99.9  | 8314.89 | 799 | 99.99 | 8486.23 | 108 | 584 | .808 | 826 |
| 030600   | 349 | 069 | -51.1 | 99.9  | 8299.86 | 799 | 99.99 | 8476.42 | 103 | 581 | .808 | 838 |
| 031600   | 349 | 065 | -59.6 | 99.9  | 8286.17 | 789 | 99.99 | 8467.95 | 100 | 581 | .801 | 158 |
| 032600   | 348 | 074 | -51.4 | 99.9  | 8278.45 | 790 | 99.99 | 8459.96 | 896 | 588 | .816 | 357 |
| 033600   | 347 | 083 | -48.1 | 99.9  | 8268.76 | 799 | 92.33 | 8463.67 | 598 | 584 | .814 | 337 |
| 034600   | 345 | 077 | -43.6 | 99.9  | 8249.09 | 793 | 99.99 | 8451.48 | 585 | 588 | .818 | 185 |
| 035600   | 343 | 071 | -46.6 | 99.9  | 8237.98 | 799 | 99.99 | 8435.98 | 582 | 584 | .813 | 189 |
| 036600   | 339 | 063 | -48.9 | 99.9  | 8227.29 | 799 | 92.99 | 8393.18 | 579 | 583 | .811 | 198 |
| 037600   | 337 | 063 | -49.4 | 99.9  | 8217.61 | 799 | 99.99 | 8337.94 | 575 | 583 | .806 | 218 |
| 038600   | 339 | 066 | -49.3 | 99.9  | 8207.19 | 790 | 99.99 | 8322.92 | 572 | 583 | .806 | 297 |

