DS 4

MP* Option informatique

Durée: 4h

I Extrait Mines-Pont 2010

On appelle **variable booléenne** une variable qui ne peut prendre que les valeurs 0 (synonyme de faux) ou 1 (synonyme de vrai). Si x est une variable booléenne, on note \overline{x} le complémenté (ou négation) de x: x vaut 1 si x vaut 0 et x vaut 0 si x vaut 1.

On appelle littéral une variable booléenne ou son complémenté.

On représente la **disjonction** (« ou » logique) par le symbole \vee et la **conjonction** (« et » logique) par le symbole \wedge . On appelle **clause** une disjonction de littéraux.

On appelle formule logique sous forme normale conjonctive une conjonction de clauses.

On appelle **valuation** des variables d'une formule logique une application de l'ensemble de ces variables dans l'ensemble $\{0,1\}$. Une clause vaut 1 si au moins un de ses littéraux vaut 1 et 0 sinon. Une clause est dite **satisfaite** par une valuation des variables si elle vaut 1 pour cette valuation. Une formule logique sous forme normale conjonctive vaut 1 si toutes ses clauses valent 1 et 0 sinon. Une formule logique est dite **satisfaite** par une valuation des variables si elle vaut 1 pour cette valuation. Une formule logique est dite **satisfaite** s'il existe une valuation de ses variables qui la satisfait.

Étant donnée une formule logique f sous forme normale conjonctive, on note dans ce problème $\max(f)$ le nombre maximum de clauses de f pouvant être satisfaites par une même valuation.

En notant m le nombre de clauses de f, on remarque que f est satisfiable si et seulement si $\max(f) = m$.

On considère la formule f_1 (sous forme normale conjonctive) dépendant des variables x, y, z:

$$f_1 = (x \vee y \vee z) \wedge (\overline{x} \vee \overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{y}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee \overline{y} \vee z)$$

1. Indiquer si f_1 est satisfiable ou non et, si elle est satisfiable, donner l'ensemble des solutions de f_1 .

Une **instance de 3-SAT** est une formule logique sous forme normale conjonctive dont toutes les clauses contiennent 3 littéraux.

2. Déterminer une instance f_2 de 3-SAT non satisfiable et possédant exactement 8 clauses; indiquer $\max(f_2)$ en justifiant la réponse.

On considère une instance f de 3-SAT définie sur n variables booléennes.

On note V l'ensemble des 2^n valuations des variables de f.

Soit val une valuation des n variables. Si C est une clause, on note $\varphi(C, val)$ la valeur de C pour la valuation val et on note $\psi(f, val)$ le nombre de clauses de f qui valent 1 pour la valuation val.

On a:
$$\psi(f, val) = \sum_{C \text{ clause de } f} \varphi(C, val) \text{ et } \max(f) = \max_{val \in V} \psi(f, val).$$

- 3. Soit C une clause de f. Donner une expression simple de $\sum_{val \in V} \varphi(C, val)$, en fonction de n.
- 4. Soit m le nombre de clauses dont f est la conjonction. En considérant la somme $\sum_{C \text{ clause de } f} \sum_{val \in V} \varphi(C,val), \text{ donner en fonction de } m \text{ un minorant de } \max(f).$
- 5. Donner le nombre minimum de clauses d'une instance de 3-SAT non satisfiable.

Option informatique

MP

2017

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

$Mots\ synchronisants$

Notations

vect/vecteur est à remplacer par array/tableau

- Pour tout ensemble fini E, on note |E| son cardinal.
- On appelle machine tout triplet (Q, Σ, δ) où Q est un ensemble fini non vide dont les éléments sont appelés $\acute{e}tats$, Σ un ensemble fini non vide appelé alphabet dont les éléments sont appelés lettres et δ une application de $Q \times \Sigma$ dans Q appelée fonction de transition. Une machine correspond donc à un automate déterministe complet sans notion d'état initial ou d'états finaux.
- Pour un état q et une lettre x, on note $q.x = \delta(q, x)$.
- L'ensemble des mots (c'est-à-dire des concaténations de lettres) sur l'alphabet Σ est noté Σ^* .
- Le mot vide est noté ε .
- On note ux le mot obtenu par la concaténation du mot u et de la lettre x.
- On note δ^* l'extension à $Q \times \Sigma^*$ de la fonction de transition δ définie par

$$\begin{cases} \forall q \in Q, \quad \delta^*(q,\varepsilon) = q \\ \forall (q,x,u) \in Q \times \Sigma \times \Sigma^*, \quad \delta^*(q,xu) = \delta^*(\delta(q,x),u) \end{cases}$$

- Pour un état q de Q et un mot m de Σ^* , on note encore q.m pour désigner $\delta^*(q,m)$.

Pour deux états q et q', q' est dit accessible depuis q s'il existe un mot u tel que q' = q.u.

On dit qu'un mot m de Σ^* est synchronisant pour une machine (Q, Σ, δ) s'il existe un état q_0 de Q tel que pour tout état q de Q, $q.m = q_0$.

L'existence de tels mots dans certaines machines est utile car elle permet de ramener une machine dans un état particulier connu en lisant un mot donné (donc en pratique de la « réinitialiser » par une succession précise d'ordres passés à la machine réelle).

La partie I de ce problème étudie quelques considérations générales sur les mots synchronisants, la partie II est consacrée à des problèmes algorithmiques classiques, la partie III relie le problème de la satisfiabilité d'une formule logique à celui de la recherche d'un mot synchronisant de longueur donnée dans une certaine machine et enfin la partie IV s'intéresse à l'étude de l'existence d'un mot synchronisant pour une machine donnée. Les parties I, II et III peuvent être traitées indépendamment. La partie IV, plus technique, utilise la partie II.

Dans les exemples concrets de machines donnés plus loin, l'ensemble d'états peut être quelconque, de même que l'alphabet ($\Sigma = \{0,1\}, \{a,b,c\} \ldots$). Par contre, pour la modélisation en Caml, l'alphabet Σ sera toujours considéré comme étant un intervalle d'entiers $[\![0,p-1]\!]$ où $p=|\Sigma|$. Une lettre correspondra donc à un entier entre 0 et p-1. Un mot de Σ^* sera représenté par une liste de lettres (donc d'entiers).

```
type lettre == int;;
type mot == lettre list;;
```

De même, en Caml, l'ensemble d'états Q d'une machine sera toujours considéré comme étant l'intervalle d'entiers [0, n-1] où n=|Q|.

```
type etat == int;;
```

Ainsi, la fonction de transition δ d'une machine sera modélisée par une fonction Caml de signature etat -> lettre -> etat. On introduit alors le type machine

```
type machine = { n_etats : int ; n_lettres : int ; delta : etat -> lettre -> etat};;
```

 n_{etats} correspond au cardinal de Q, n_{etats} à celui de Σ et delta à la fonction de transition. Pour une machine nommée M, les syntaxes $M.n_{\text{etats}}$, $M.n_{\text{etats}}$ ou M.delta permettent d'accéder à ses différents paramètres. Dans le problème, on suppose que M.delta s'exécute toujours en temps constant.

Par exemple, on peut créer une machine M0 à trois états sur un alphabet à deux lettres ayant comme fonction de transition la fonction f0 donnée ci-après.


```
let f0 etat lettre = match etat,lettre with
| 0,0 -> 1
| 0,1 -> 1
| 1,0 -> 0
| 1,1 -> 2
| 2,0 -> 0
| 2,1 -> 2;;

f0 : int -> int -> int = <fun>
let M0 = { n_etats = 3 ; n_lettres = 2 ; delta = f0 };;
```

La figure 1 fournit une représentation de la machine M_0 .

Figure 1 La machine M_0

On pourra observer que les mots 11 et 10 sont tous les deux synchronisants pour la machine M_0 .

Dans tout le sujet, si une question demande la complexité d'un programme ou d'un algorithme, on attend une complexité temporelle exprimée en O(...).

I Considérations générales

I.A – Que dire de l'ensemble des mots synchronisants pour une machine ayant un seul état ?

Dans toute la suite du problème, on supposera que les machines ont au moins deux états.

 ${\it I.B}$ — On considère la machine M_1 représentée figure 2. Donner un mot synchronisant pour M_1 s'il en existe un. Justifier la réponse.

Figure 2 La machine M_1

- I.C On considère la machine M_2 représentée figure 3. Donner un mot synchronisant de trois lettres pour M_2 . On ne demande pas de justifier sa réponse.
- I.D Écrire une fonction delta_etoile de signature machine -> etat -> mot -> etat qui, prenant en entrée une machine M, un état q et un mot u, renvoie l'état atteint par la machine M en partant de l'état q et en lisant le mot u.
- I.E Écrire une fonction est_synchronisant de signature machine \rightarrow mot \rightarrow bool qui, prenant en entrée une machine M et un mot u, dit si le mot u est synchronisant pour M.
- I.F Montrer que pour qu'une machine ait un mot synchronisant, il faut qu'il existe une lettre x et deux états distincts de Q, q et q', tels que q.x = q'.x.
- I.G Soit LS(M) le langage des mots synchronisants d'une machine $M=(Q,\Sigma,\delta)$. On introduit la machine des parties $\widehat{M}=(\widehat{Q},\Sigma,\widehat{\delta})$ où \widehat{Q} est l'ensemble des parties de Q et où $\widehat{\delta}$ est définie par

$$\forall\,P\subset Q,\ \forall\,x\in\Sigma,\qquad \hat{\delta}\big(P,x\big)=\Big\{\delta(p,x),\ p\in P\Big\}$$

- **I.G.1)** Justifier que l'existence d'un mot synchronisant pour M se ramène à un problème d'accessibilité de certain(s) états(s) depuis certain(s) état(s) dans la machine des parties.
- **I.G.2)** En déduire que le langage LS(M) des mots synchronisants de la machine M est reconnaissable.

Figure 3 M_2 : une machine à 4 états

I.G.3) Déterminer la machine des parties associée à la machine M_0 puis donner une expression régulière du langage $LS(M_0)$. (l'expression régulière doit être assez simple pour le correcteur puisse la vérifier...)

I.H — Montrer que si l'on sait résoudre le problème de l'existence d'un mot synchronisant, on sait dire, pour une machine M et un état q_0 de M choisi, s'il existe un mot u tel que pour tout état q de Q, le chemin menant de q à q.u passe forcément par q_0 .

II Algorithmes classiques

On appellera graphe d'automate tout couple (S,A) où S est un ensemble dont les éléments sont appelés sommets et A une partie de $S \times \Sigma \times S$ dont les éléments sont appelés arcs. Pour un arc (q,x,q'), x est l'étiquette de l'arc, q son origine et q' son extrémité. Un graphe d'automate correspond donc à un automate non déterministe sans notion d'état initial ou d'état final.

Par exemple, avec

$$\begin{split} \Sigma &= \{a,b\} \\ S_0 &= \{0,1,2,3,4,5\} \\ A_0 &= \{(0,b,0),(0,a,3),(0,b,2),(0,a,1),(1,a,1),(1,a,2),(2,b,1),\\ &(2,b,3),(2,b,4),(3,a,2),(4,a,1),(4,b,5),(5,a,1)\} \end{split}$$

le graphe d'automate $G_0=(S_0,A_0)$ est représenté figure 4.

Soient s et s' deux sommets d'un graphe (S,A). On appelle chemin de s vers s' de longueur ℓ toute suite d'arcs $(s_1,x_1,s_1'), (s_2,x_2,s_2'),...,(s_\ell,x_\ell,s_\ell')$ de A telle que $s_1=s, s_\ell'=s'$ et pour tout i de $[\![1,\ell-1]\!], s_i'=s_{i+1}$. L'étiquette de ce chemin est alors le mot $x_1x_2...x_\ell$ et on dit que s' est accessible depuis s. En particulier, pour tout $s\in S, s$ est accessible depuis s par le chemin vide d'étiquette ε .

Figure 4 Le graphe d'automate G_0

Dans les programmes à écrire, un graphe aura toujours pour ensemble de sommets un intervalle d'entiers [0, n-1] et l'ensemble des arcs étiquetés par Σ (comme précédemment supposé être un intervalle [0, p-1]) sera codé par un vecteur de listes d'adjacence V: pour tout $s \in S$, V. (s) est la liste (dans n'importe quel ordre) de tous les couples (s',x) tel que (s,x,s') soit un arc du graphe. Pour des raisons de compatibilité ultérieure, les sommets (qui sont, rappelons-le, des entiers) seront codés par le type etat.

Ainsi, avec l'alphabet $\Sigma = \{a, b\}$, la lettre a est codée 0 et la lettre b est codée 1; l'ensemble des arcs du graphe G_0 , dont chaque sommet est codé par son numéro, admet pour représentation Caml:

```
V0 : (etat * lettre) list vect = [|
    [(0,1); (3,0); (2,1); (1,0)];
    [(1,0); (2,0)];
    [(1,1); (3,1); (4,1)];
    [(2,0)];
    [(1,0); (5,1)];
    [(1,0)]
```

(II.A a déjà été fait en TD en MPSI: vous pouvez la sauter)

H.A — On veut implémenter une file d'attente à l'aide d'un vecteur circulaire. On définit pour cela un type particulier nommé file par

```
type 'a file={tab:'a vect; mutable deb: int; mutable fin: int; mutable vide: bool}
```

deb indique l'indice du premier élément dans la file et fin l'indice qui suit celui du dernier élément de la file, vide indiquant si la file est vide. Les éléments sont rangés depuis la case deb jusqu'à la case précédent fin en repartant à la case 0 quand on arrive au bout du vecteur (cf exemple). Ainsi, on peut très bien avoir l'indice fin plus petit que l'indice deb. Par exemple, la file figure 5 contient les éléments 4, 0, 1, 12 et 8, dans cet ordre, avec fin=2 et deb=9.

Figure 5 Un exemple de file où fin < deb

On rappelle qu'un champ mutable peut voir sa valeur modifiée. Par exemple, la syntaxe f.deb <- 0 affecte la valeur 0 au champ deb de la file f.

- II.A.1) Écrire une fonction ajoute de signature 'a file -> 'a -> unit telle que ajoute f x ajoute x à la fin de la file d'attente f. Si c'est impossible, la fonction devra renvoyer un message d'erreur, en utilisant l'instruction failwith "File pleine".
- II.A.2) Écrire une fonction retire de signature 'a file -> 'a telle que retire f retire l'élément en tête de la file d'attente et le renvoie. Si c'est impossible, la fonction devra renvoyer un message d'erreur.
- II.A.3) Quelle est la complexité de ces fonctions?

On considère l'algorithme 1 s'appliquant à un graphe d'automate G = (S, A) et à un ensemble de sommets E (on note n = |S| et ∞ , vide et rien des valeurs particulières).

- II.B Justifier que l'algorithme 1 termine toujours.
- II.C Donner la complexité de cet algorithme en fonction de |S| et |A|. On justifiera sa réponse.
- II.D Justifier qu'au début de chaque passage dans la boucle « tant que F n'est pas vide », si F contient dans l'ordre les sommets $s_1, s_2, ..., s_r$, alors $D[s_1] \leq D[s_2] \leq \cdots \leq D[s_r]$ et $D[s_r] D[s_1] \leq 1$.
- II.E Pour s sommet de G, on note d_s la distance de E à s c'est-à-dire la longueur d'un plus court chemin d'un sommet de E à s (avec la convention $d_s = \infty$ s'il n'existe pas de tel chemin).
- **II.E.1)** Justifier brièvement qu'à la fin de l'algorithme, pour tout sommet $s, D[s] \neq \infty$ si et seulement si s est accessible depuis un sommet de E et que $d_s \leq D[s]$. Que désigne alors c?
- **II.E.2)** Montrer qu'en fait, à la fin, on a pour tout sommet s, $D[s] = d_s$. Que vaut alors P[s]?
- *II.F* Écrire une fonction accessibles de signature

```
((etat*lettre) list) vect -> etat list -> int * int vect * (etat*lettre) vect
```

prenant en entrée un graphe d'automate (sous la forme de son vecteur de listes d'adjacence V) et un ensemble E de sommets (sous la forme d'une liste d'états) et qui renvoie le triplet (c,D,P) calculé selon l'algorithme précédent. Les constantes ∞ , vide et rien seront respectivement codées dans la fonction accessibles par -1, (-2,-1) et (-1,-1).


```
créer une file d'attente F, vide au départ
créer un tableau D dont les cases sont indexées par S et initialisées à \infty
créer un tableau P dont les cases sont indexées par S et initialisées à vide
créer une variable c initialisée à n
pour tout s \in E faire
       insérer s à la fin de la file d'attente F
       fixer D[s] à 0
       fixer P[s] à rien
       diminuer c de 1
fin pour
tant que F n'est pas vide faire
       extraire le sommet s qui est en tête de F
       pour tout arc (s, y, s') \in A tel que D[s'] = \infty faire
               fixer D[s'] à D[s] + 1
fixer P[s'] à (s, y)
               insérer s^\prime à la fin de la file d'attente F
               diminuer c de 1
       fin pour
fin tant que
renvoyer (c, D, P)
```

Algorithme 1

II.G — Écrire une fonction chemin de signature etat -> (etat*lettre) vect -> mot qui, prenant en entrée un sommet s et le vecteur P calculé à l'aide de la fonction accessibles sur un graphe G et un ensemble E, renvoie un mot de longueur minimale qui est l'étiquette d'un chemin d'un sommet de E à s (ou un message d'erreur s'il n'en existe pas).

III Réduction SAT

On s'intéresse dans cette partie à la satisfiabilité d'une formule logique portant sur des variables propositionnelles $x_1,...,x_m$. On note classiquement \land le connecteur logique « et », \lor le connecteur « ou » et \bar{f} la négation d'une formule f.

On appelle littéral une formule constituée d'une variable x_i ou de sa négation \bar{x}_i , on appelle clause une disjonction de littéraux.

Considérons une formule logique sous forme normale conjonctive c'est-à-dire sous la forme d'une conjonction de clauses. Par exemple,

$$F_1 = (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_4) \land (x_2 \lor \bar{x}_3 \lor x_4)$$

est une formule sous forme normale conjonctive formée de trois clauses et portant sur quatre variables propositionnelles x_1, x_2, x_3 et x_4 .

Soit F une formule sous forme normale conjonctive, composée de n clauses et faisant intervenir m variables. On suppose les clauses numérotées $c_1, c_2, ..., c_n$. On veut ramener le problème de la satisfiabilité d'une telle formule au problème de la recherche d'un mot synchronisant de longueur inférieure ou égale à m sur une certaine machine. On introduit pour cela la machine suivante associée à F:

- $\ \ Q \text{ est form\'e de } mn+n+1 \text{ \'etats, un \'etat particulier not\'e } f \text{ et } n(m+1) \text{ autres \'etats qu'on notera } q_{i,j} \text{ avec } (i,j) \in \llbracket 1,n \rrbracket \times \llbracket 1,m+1 \rrbracket \text{ ;}$
- $\Sigma = \{0, 1\};$
- δ est défini par
 - f est un état puits, c'est-à-dire $\delta(f,0) = \delta(f,1) = f$,
 - $\bullet \quad \text{pour tout entier i de $[\![1,n]\!]$, $\delta(q_{i,m+1},0)=\delta(q_{i,m+1},1)=f$,}$
 - pour tout i dans [1, n] et j dans [1, m],

$$\delta(q_{i,j},1) = \begin{cases} f & \text{si le littéral } x_j \text{ apparaît dans la clause } c_i \\ q_{i,j+1} & \text{sinon} \end{cases}$$

$$\delta(q_{i,j},0) = \begin{cases} f & \text{si le littéral } \bar{x}_j \text{ apparaît dans la clause } c_i \\ q_{i,j+1} & \text{sinon} \end{cases}$$

III.A – Représenter la machine associée à la formule F_1 .

- III.B Donner une distribution de vérité $(v_1,v_2,v_3,v_4) \in [0,1]^4$ (la valeur v_i étant associée à la variable x_i) satisfaisant F_1 . Le mot $v_1v_2v_3v_4$ est-il synchronisant ?
- III.C Montrer que tout mot u de longueur m+1 est synchronisant. À quelle condition sur les $q_{i,1}$ un mot u de longueur m est-il synchronisant ?
- III.D Montrer que si la formule F est satisfiable, toute distribution de vérité la satisfaisant donne un mot synchronisant de longueur m pour l'automate.
- III.E Inversement, prouver que si l'automate dispose d'un mot synchronisant de longueur inférieure ou égale à m, F est satisfiable. Donner alors une distribution de vérité convenable.

IV Existence

2017-03-06 19:53:58

On reprend dans cette partie le problème de l'existence d'un mot synchronisant pour une machine M.

IV.A - Soit $M = (Q, \Sigma, \delta)$ une machine.

Pour toute partie E de Q et tout mot u de Σ^* , on note $E.u = \{q.u, q \in E\}$.

- **IV.A.1)** Soit u un mot synchronisant de M et $u_0, u_1, ..., u_r$ une suite de préfixes de u rangés dans l'ordre croissant de leur longueur et telle que $u_r = u$. Que peut-on dire de la suite des cardinaux $|Q.u_i|$?
- **IV.A.2)** Montrer qu'il existe un mot synchronisant si et seulement s'il existe pour tout couple d'états (q, q') de Q^2 un mot $u_{q,q'}$ tel que $q.u_{q,q'} = q'.u_{q,q'}$.

On veut se servir du critère établi ci-dessus pour déterminer s'il existe un mot synchronisant. Pour cela, on associe à la machine $\widetilde{M}=(\widetilde{Q},\Sigma,\widetilde{\delta})$ définie par :

- \widetilde{Q} est formé des parties à un ou deux éléments de Q ;
- $-\quad \widetilde{\delta} \text{ est définie par } \forall (E,x) \in \widetilde{Q} \times \Sigma, \, \widetilde{\delta}(E) = \big\{ \delta(q,x), q \in E \big\}.$
- IV.B Si n = |Q|, que vaut $\tilde{n} = |\widetilde{Q}|$?
- IV.C On a dit que pour la modélisation informatique, l'ensemble d'états d'une machine doit être modélisée par un intervalle $[\![0,n-1]\!]$. \widetilde{Q} doit donc être modélisé par l'intervalle $[\![0,\widetilde{n}-1]\!]$. Soit φ_n une bijection de \widetilde{Q} sur $[\![0,\widetilde{n}-1]\!]$. On suppose qu'on dispose d'une fonction $\mathtt{set_to_nb}$ de signature \mathtt{int} -> (etat list) -> etat telle que $\mathtt{set_to_nb}$ n ℓ pour n élément de \mathbb{N}^* et ℓ liste d'états renvoie

$$\begin{cases} \varphi_n(\{i\}) & \text{si } \ell = [i] \text{ avec } i \in \llbracket 0, n-1 \rrbracket \\ \varphi_n(\{i,j\}) & \text{si } \ell = [i;j] \text{ avec } (i,j) \in \llbracket 0, n-1 \rrbracket^2, \, i < j \end{cases}$$

On suppose qu'on dispose aussi d'une fonction réciproque nb_to_set de signature int -> etat -> (etat list) telle que nb_to_set n q pour n élément de \mathbb{N}^* et q élément de $[0,\tilde{n}-1]$ renvoie une liste d'états de la forme [i] ou [i;j] (avec i< j) correspondant à $\varphi_n^{-1}(q)$. Ces deux fonctions de conversion sont supposées agir en temps constant.

Enfin, pour ne pas confondre un état de \widetilde{Q} avec sa représentation informatique par un entier, on notera \bar{q} l'entier associé à l'état q.

Écrire une fonction delta2 de signature machine -> etat -> lettre -> etat qui prenant en entrée une machine M, un état \bar{q} de \widetilde{Q} et une lettre x, renvoie l'état de \widetilde{Q} atteint en lisant la lettre x depuis l'état q dans \widetilde{M} .

IV.D — Il est clair qu'à la machine \widetilde{M} , on peut associer un graphe d'automate \widetilde{G} dont l'ensemble des sommets est \widetilde{Q} et dont l'ensemble des arcs est $\{(q,x,\widetilde{\delta}(q,x)),(q,x)\in\widetilde{Q}\times\Sigma\}$. On associe alors à \widetilde{G} le graphe retourné \widetilde{G}_R qui a les mêmes sommets que \widetilde{G} mais dont les arcs sont retournés (i.e (q,x,q') est un arc de \widetilde{G}_R si et seulement si (q',x,q) est un arc de \widetilde{G}).

Écrire une fonction retourne_machine de signature machine \rightarrow ((etat*lettre) list) vect qui à partir d'une machine M, calcule le vecteur V des listes d'adjacence du graphe \widetilde{G}_R .

- IV.E Justifier qu'il suffit d'appliquer la fonction accessibles de la partie II au graphe \widetilde{G}_R et à l'ensemble des sommets de \widetilde{G}_R correspondant à des singletons pour déterminer si la machine M possède un mot synchronisant.
- IV.F Écrire une fonction existe_synchronisant de signature machine -> bool qui dit si une machine possède un mot synchronisant.

Jan Černý, chercheur slovaque, a conjecturé au milieu des années 60 que si une machine à n états possédait un mot synchronisant, elle en avait un de longueur inférieure ou égale à $(n-1)^2$. La construction faite dans la partie III affirme que la recherche, dans une machine, d'un mot synchronisant de longueur inférieure ou égale à une valeur m fixée est au moins aussi difficile en terme de complexité que celui de la satisfiabilité d'une formule logique à m variables sous forme normale conjonctive (qu'on sait être un problème « difficile »).

 \bullet \bullet FIN \bullet \bullet

Page 6/6

