Accueil / Cours / Cycle Ingénieur / Promo 2025 ING1 / 2025 ING1 S5 FPVA / Sections / Évaluation du 26/09 / Évaluation 1 - Dérivées partielles

Commencé le	Monday 26 September 2022, 10:48
État	Terminé
Terminé le	Monday 26 September 2022, 11:45
Temps mis	57 min 14 s
Points	6,13/10,00

Note 12,27 sur 20,00 (61,33%)

Question $\bf 1$

Correct

Note de 1,00 sur 1,00

Sans calcul associer chaque fonction à son graphique.

Without computation match each function to its graphic.

(a)
$$z=1/(x^2+y^2)$$

(b)
$$z=e^{-x^2-y^2}$$

(c)
$$z=x+2y+3$$

(d)
$$z=-y^2$$

(e)
$$z=x^3-\sin y$$

Votre réponse est correcte.

La réponse correcte est :

- $(b) \to (V),$
- (a) → (l),
- (c) \rightarrow (IV),

1	۱۱_		/ I	11
- 11	п.	\ —>	11	11

$$(e) \rightarrow (III)$$

Correct

Note de 1,00 sur 1,00

La fonction suivante est continue en (0,0).

The following function is continuous at (0,0).

$$f(x,y) = \left\{ egin{array}{ll} x^2 + y^2 & {
m si} \ / {
m if} & (x,y)
eq (0,0) \ 2 & {
m si} \ / {
m if} & (x,y) = (0,0) \end{array}
ight.$$

Veuillez choisir une réponse.

O Vrai

Faux

La réponse correcte est « Faux ».

Partiellement correct

Note de 0,47 sur 1,00

Parmi les propositions lesquelles sont correctes ?

Among the following propositions which are correct?

- \blacksquare a. La fonction $k(r,s)=rse^s$ augmente dans la direction s au point (r,s)=(-1,2). The function $k(r,s)=rse^s$ is increasing in the s direction at the point (r,s)=(-1,2).
- \blacksquare b. Si f est une fonction de deux variables symétrique, c'est-à-dire f(x,y)=f(y,x), alors $f_x(x,y)=f_y(x,y)$. If f is a symmetric two-variable function, that is f(x,y)=f(y,x), then $f_x(x,y)=f_y(x,y)$.
- \blacksquare c. Il existe une fonction f(x,y) avec $f_x(x,y)=y$ et $f_y(x,y)=x$ There is a function f(x,y) with $f_x(x,y)=y$ and $f_y(x,y)=x$
- d. Aucune des propositions n'est correcte.
 None of the propositions is correct.
- \square e. Il existe une fonction f(x,y) telle que $f_x(x,y)=y^2$ et $f_y(x,y)=x^2$ There is a function f(x,y) such that $f_x(x,y)=y^2$ and $f_y(x,y)=x^2$.
- lacksquare f. Si $f(x,y)=y\,e^{g(x)}$ alors $f_x=f$. If $f(x,y)=y\,e^{g(x)}$ then $f_x=f$.
- \square g. La fonction $z(u,v)=u\cos v$ satisfait l'équation ci-dessous. The function $z(u,v)=u\cos v$ satisfies the equation below. $\cos v\,rac{\partial z}{\partial u}-rac{\sin u}{u}\,rac{\partial z}{\partial v}=1$
- $\ \square$ h. SI f(x,y) satisfait $f_y(x,y)=0$ alors f doit être une constante. If f(x,y) satisfies $f_y(x,y)=0$ then f must be a constant.
- i. If f(x,y) is a function of two variables and g(x) is a function of a single variable, then we have the relation below. Si f(x,y) est une fonction de deux variables et g(x) est une function d'une variable, alors nous avons la relation ci-dessous. $\frac{\partial}{\partial y}\Big[g(x)\ f(x,y)\Big] = g(x)\ f_y(x,y)$

Votre réponse est partiellement correcte.

Vous en avez sélectionné correctement 2.

Les réponses correctes sont :

Il existe une fonction f(x,y) avec $f_x(x,y)=y$ et $f_y(x,y)=x$

There is a function f(x,y) with $f_x(x,y)=y$ and $f_y(x,y)=x$

La fonction $z(u,v)=u\cos v$ satisfait l'équation ci-dessous.

The function $z(u,v)=u\cos v$ satisfies the equation below.

$$\cos v \, \frac{\partial z}{\partial u} - \frac{\sin u}{u} \, \frac{\partial z}{\partial v} = 1$$

If f(x,y) is a function of two variables and g(x) is a function of a single variable, then we have the relation below.

Si f(x,y) est une fonction de deux variables et g(x) est une function d'une variable, alors nous avons la relation ci-dessous.

$$rac{\partial}{\partial y} \Big[g(x) \; f(x,y) \Big] = g(x) \; f_y(x,y)$$

Partiellement correct

Note de 0,50 sur 1,00

Parmi les propositions lesquelles sont correctes ?

Among the following propositions which are correct?

- a. Si f(x,y) iest une fonction constante, alors df=0. If f(x,y) is a constant function, then df=0.
- \blacksquare b. Le plan tangent d'approximation de $f(x,y)=ye^{x^2}$ au point (0,1) est f(x,y)pprox y. The tangent plane approximation of $f(x,y)=ye^{x^2}$ at the point (0,1) is f(x,y)pprox y.
- \square c. La linéarisation locale de $f(x,y)=x^2+y^2$ en (1,1) donne une surestimation de la valeur de f(x,y) au point (1.04,0.95). The local linearization of $f(x,y)=x^2+y^2$ at (1,1) gives an overestimate of the value of f(x,y) at the point (1.04,0.95).
- d. Aucune des propositions n'est correcte.

None of the propositions is correct.

- \square e. Si deux fonctions f et g ont la même differentielle au point (1,1), then f=g. If two functions f and g have the same differential at the point (1,1), then f=g.
- \blacksquare f. Si on zoome suffisament près du'un point (a,b) sur la carte isoligne de toute fonction différentiable, les lignes de niveau seront précisément parallèles et également séparées.

If you zoom close enough near a point (a, b) on the contour diagram of any differentiable function, the contours will be precisely parallel and exactly equally spaced.

- $\ \square$ h. Si deux fonctions f et g ont le même plan tangent au point (1,1), alors f=g. If two functions f and g have the same tangent plane at a point (1,1), then f=g.
- i. Si f est une fonction avec la différentielle $df=2y\,dx+\sin(xy)\,dy$, alors f varie de -0.4 entre les points (1,2) and (0.9,2.0002). If f is a function with differential $df=2y\,dx+\sin(xy)\,dy$, then f changes by about -0.4 between the points (1,2) and

Votre réponse est partiellement correcte.

(0.9, 2.0002).

Vous en avez sélectionné correctement 3.

Les réponses correctes sont :

Le plan tangent d'approximation de $f(x,y)=ye^{x^2}$ au point (0,1) est f(x,y)pprox y.

The tangent plane approximation of $f(x,y)=ye^{x^2}$ at the point (0,1) is $f(x,y)\approx y$.

Si f est une fonction avec la différentielle $df = 2y dx + \sin(xy) dy$, alors f varie de -0.4 entre les points (1,2) and (0.9,2.0002).

If f is a function with differential $df = 2y dx + \sin(xy) dy$, then f changes by about -0.4 between the points (1,2) and (0.9,2.0002).

Si f(x,y) iest une fonction constante, alors df=0.

If f(x,y) is a constant function, then df=0.

Si f(x,y) est une fonction linéaire, alors df est une fonction linéaire de dx et dy.

If f(x,y) is a linear function, then df is a linear function of dx and dy.

Question 5				
Incorrect				
Note de 0,00 sur 1,00				
Parmi les propositions suivantes lesquelles sont correctes?				
Among the following propositions which are correct?				
\square a. Le gradient de f au point $(3,4)$ est perpendiculaire au vecteur $3ec{i}+4ec{j}$.				
The gradient of f at the point $(3,4)$ is perpendicular to the vector $3ec{i}+4ec{j}$.				
$ ilde{f eta}$ b. Si on connait le gradient de f en un point alors on connait la dérivé directionnelle de f dans n'importe quelle direction partant $f{f eta}$				

 ${\Bbb Z}$ c. La dérivée directionnelle de f dans la direction $\vec u$ est parallèle à $\vec u$. $\ref{thm:direction}$ The directional derivative of f in the direction $\vec u$ is parallel to $\vec u$.

d. Aucune des propositions n'est correcte.

None of the propositions is correct.

If we know the gradient of f at a point then we know the directional derivative of f in any direction from that point.

If we know the directional derivative of f at a point and in any direction from this point then we can determine the gradient of f at that point.

Votre réponse est incorrecte.

de ce point.

Les réponses correctes sont :

Si on connait le gradient de f en un point alors on connait la dérivé directionnelle de f dans n'importe quelle direction partant de ce point. If we know the gradient of f at a point then we know the directional derivative of f in any direction from that point.

Si on connait la dérivée directionnelle de f en un point et dans n'importe quelle direction partant de ce point alors on peut déterminer le gradient de f en ce point.

If we know the directional derivative of f at a point and in any direction from this point then we can determine the gradient of f at that point.

Incorrect

Note de 0,00 sur 1,00

Si z=f(x,y) avec $x=r\cos\theta$ et $y=r\sin\theta$ alors l'équation ci-dessous est correcte.

If z=f(x,y) with $x=r\cos\theta$ and $y=r\sin\theta$ then the equation below is correct.

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$

Veuillez choisir une réponse.

- Vrai
- Faux 🗶

La réponse correcte est « Vrai ».

Partiellement correct

Note de 0,83 sur 1,00

Parmi les propositions suivantes lesquelles sont correctes?

Among the following questions which are correct?

- a. Si f a un minimum local en P_0 alors la fonction g(x,y)=f(x,y)+5 aussi. If f has a local minimum at P_0 then so does the function g(x,y)=f(x,y)+5.
- \blacksquare b. La fonction $f(x,y)=\sqrt{x^2+y^2}$ a un minimum local minimum à l'origine. \checkmark The function $f(x,y)=\sqrt{x^2+y^2}$ has a local minimum at the origin.
- \square d. Si P_0 est un point stationbaire de f, alors P_0 est soit un maximum local soit un minimum local de f. If P_0 is a stationary point of f, then P_0 is either a local maximum or local minimum of f.
- e. Si P_0 est un maximum local de f, alors $f(a,b) \leq f(P_0)$ pour tout point (a,b) du plan. If P_0 is a local maximum of f, then $f(a,b) \leq f(P_0)$ for all points (a,b) of the plane.
- If $f_x(P_0)=f_y(P_0)=0$, alors P_0 est un point stationnaire de f. If $f_x(P_0)=f_y(P_0)=0$, then P_0 is a stationary point of f.
- $\ \ \, \ \ \, \ \ \,$ g. Si $f_x(P_0)=f_y(P_0)=0$, alors P_0 est un maximum local ou un minimum local de f. If $f_x(P_0)=f_y(P_0)=0$, then P_0 is a local maximum or local minimum of f.
- \blacksquare i. Si P_0 est un maximum local ou un minimum local de f, et non sur la frontière du domaine de f, alors P_0 est un point stationnaire de f.

If P_0 is a local maximum or local minimum of f, and not on the boundary of the domain of f, then P_0 is a stationary point of f.

- j. Toute fonction a au moins un maximum local.
 Every function has at least one local maximum.
- ${\Bbb Z}$ k. Si f a un minimum local en P_0 alors la fonction g(x,y)=-f(x,y) a un maximum local en P_0 . \checkmark If f has a local minimum at P_0 then the function g(x,y)=-f(x,y) has a local maximum at P_0 .

Votre réponse est partiellement correcte

Vous avez sélectionné trop d'options.

Les réponses correctes sont : Si $f_x(P_0)=f_y(P_0)=0$, alors P_0 est un point stationnaire de f.

If $f_x(P_0) = f_y(P_0) = 0$, then P_0 is a stationary point of f.

Si P_0 est un maximum local ou un minimum local de f, et non sur la frontière du domaine de f, alors P_0 est un point stationnaire de f.

If P_0 is a local maximum or local minimum of f, and not on the boundary of the domain of f, then P_0 is a stationary point of f.

La fonction $f(x,y)=\sqrt{x^2+y^2}$ a un minimum local minimum à l'origine.

The function $f(x,y)=\sqrt{x^2+y^2}$ has a local minimum at the origin.

Si f a un minimum local en P_0 alors la fonction g(x,y)=f(x,y)+5 aussi.

If f has a local minimum at P_0 then so does the function g(x,y)=f(x,y)+5.

Si f a un minimum local en P_0 alors la fonction g(x,y)=-f(x,y) a un maximum local en P_0 .

If f has a local minimum at P_0 then the function g(x,y)=-f(x,y) has a local maximum at P_0 .

Question **8**Correct

Note de 1,00 sur 1,00

En prenant en compte les fonctions ci-dessous, indiquez parmi les propositions suivantes lesquelles sont correctes?

Taking into account the functions below, indicate among the following propositions which are correct?

$$f_1(x,y) = x^3 + e^{-y^2}, \quad f_2(x,y) = \sin x \sin y, \quad f_3(x,y) = 1 - \cos x + y^2/2$$

 \blacksquare a. f_3 a un maximum en $(\pi,0)$.

 f_3 has a maximum $(\pi,0)$.

 ${\color{red} \blacksquare}$ b. f_2 a un maximum en $(\pi/2,\pi/2)$. \checkmark

 f_2 has a maximum $(\pi/2,\pi/2)$.

 ${
m \ \ \, }$ c. f_3 a un point-col en $(\pi,0)$. ightharpoonup

 f_3 has a saddle point $(\pi,0)$.

 \square d. f_2 a un minimum en $(\pi/2,\pi/2)$.

 f_2 has a minimum $(\pi/2,\pi/2)$.

lacksquare e. f_1 n'a ni un minimum ni un maximum en (0,0). lacksquare

 f_1 has neither a minimum nor a maximum at (0,0).

 \blacksquare f. f_2 a un point-col en $(\pi/2, \pi/2)$.

 f_2 has a saddle point at $(\pi/2, \pi/2)$.

 \square g. f_1 a un minimum en (0,0).

 f_1 has a minimum (0,0).

 \square h. f_1 a un maximum en (1,1).

 f_1 has a maximum (1,1).

 \blacksquare i. f_3 a un minimum en $(\pi,0)$.

 f_3 has a minimum $(\pi,0)$.

j. Aucune des propositions n'est correcte.

None of the propositions is correct.

Votre réponse est correcte.

Les réponses correctes sont :

 f_1 n'a ni un minimum ni un maximum en (0,0).

 f_1 has neither a minimum nor a maximum at (0,0) .

```
f_2 a un maximum en (\pi/2,\pi/2). f_2 has a maximum (\pi/2,\pi/2). f_3 a un point-col en (\pi,0). f_3 has a saddle point (\pi,0).
```

Question **9**Correct

Note de 1,00 sur 1,00

À partir de la figure ci-dessous déterminer la nature des points P,Q,R et S. From the figure below determine the nature of the points P,Q,R and S.

P	est un maximum / is a maximum	~
S	n'est aucun des autres cas / is none of the other cases	~
R	est un minimum / is a minimum	~
Q	est un point-col / is a saddle point	~

Votre réponse est correcte.

La réponse correcte est :

P

→ est un maximum / is a maximum,

S

 \rightarrow n'est aucun des autres cas / is none of the other cases,

R

→ est un minimum / is a minimum,

Q

 \rightarrow est un point-col / is a saddle point

Partiellement correct

Note de 0,33 sur 1,00

En prenant en compte la fonction ci-dessous, indiquez parmi les propositions suivantes lesquelles sont correctes?

Taking into account the function below, indicate among the following propositions which are correct?

$$f(x,y) = egin{cases} y \, rac{|x|}{x} & ext{si / if} & x
eq 0 \ 0 & ext{si / if} & x = 0 \end{cases}$$

lacksquare a. f n'est pas continue à l'origine. lacksquare

f is not continuous at the origin.

 \square b. f n'est pas continue sur l'axe des y.

f is not continuous on the y-axis.

f is not continuous on the x-axis.

 \square d. f est continue sur l'axe des x.

f is continuous on the x-axis.

 \blacksquare e. f est continue sur l'axe des y.

f is continuous on the y-axis.

f. Aucune des propositions n'est correcte.

None of the propositions is correct.

f is continuous at the origin.

Votre réponse est partiellement correcte.

Vous en avez sélectionné correctement 2.

Les réponses correctes sont :

f est continue sur l'axe des x.

f is continuous on the x-axis.

f n'est pas continue sur l'axe des y.

f is not continuous on the y-axis.

f est continue à l'origine.

f is continuous at the origin.

Aller à...

Évaluation 2 - Intégrales multiples -