Chapter 8. Inferences on a Population Mean

8.1 Confidence Intervals

8.2 Hypothesis Testing

- 8.1 Confidence Intervals
- 8.1.1 Confidence Interval Construction
- Confidence Intervals
 - A *confidence interval* for an unknown parameter ϑ is an interval that contains a set of plausible values of the parameter.
 - It is associated with a *confidence level* **1-** α , which measures the probability that the confidence interval actually **contains the unknown parameter value**.
 - Confidence levels of 90%, 95%, and 99% are typically used.

8.1.1 Confidence Interval Construction

- Inferences on a Population Mean
 - Inference methods on a population mean based upon the t-procedure are appropriate for large sample sizes $n \ge 30$ and also for small sample sizes as long as the data can reasonably be taken to be approximately normally distributed.
 - Nonparametric techniques (Chapter 15) can be employed for small sample sizes with data that are clearly not normally distributed.

Two-Sided t-Interval

• A confidence interval with confidence level $1-\alpha$ for a population mean μ based upon a sample of n continuous data observations with a sample mean \overline{x} and a sample standard deviation s is

$$(\overline{x} - \frac{t_{\alpha/2,n-1}S}{\sqrt{n}}, \overline{x} + \frac{t_{\alpha/2,n-1}S}{\sqrt{n}})$$

• The interval is known as a two-sided t-interval.

• Technically speaking, $\frac{\sqrt{n}(\overline{X}-\mu)}{S}$ has a t-distribution only when the random sample is from a Normal distribution.

• Nevertheless, the central limit theorem ensures that the distribution of \overline{X} is approximately normal for reasonably large sample sizes, and in such cases it is sensible to construct t-intervals regardless of the actual distribution of the data observations.

Example 14: Metal Cylinder Production (p.340)

- Data: 60 metal cylinder diameters (page 271, Figure 6.5).
- Summary statistics:

```
n = 60 Median = 50.01 Max. = 50.36

\overline{x} = 49.999 Upper quartile = 50.07 Min. = 49.74

s = 0.134 Lower quartile = 49.91
```

• Critical points:

Sample size $n = 60$
Confidence level 90%: $t_{0.05,59} = 1.671$
Confidence level 95%: $t_{0.025,59} = 2.001$
Confidence level 99%: $t_{0.005,59} = 2.662$

• Confidence interval with confidence level 90%: $(49.999 - 1.671 \times \frac{0.134}{\sqrt{60}}, 49.999 + 1.671 \times \frac{0.134}{\sqrt{60}}) = (49.970, 50.028)$

• Confidence interval with confidence level 95%: $(49.999-2.001\times\frac{0.134}{\sqrt{60}},49.999+2.001\times\frac{0.134}{\sqrt{60}})=(49.964,50.033)$

• Confidence interval with confidence level 99%: $(49.999 - 2.662 \times \frac{0.134}{\sqrt{60}}, 49.999 + 2.662 \times \frac{0.134}{\sqrt{60}}) = (49.953, 50.045)$

Conclusion with confidence interval:

With over 99% certainty, the average cylinder diameter lies within 0.05 mm of 50.00mm, that is, within the interval (49.95, 50.05).

Comment:

It is important to remember that this confidence interval is for the *mean* cylinder diameter, and not for the actual diameter of a randomly selected cylinder.

8.1.2 Effect of the Sample Size on Confidence Intervals

Interval length(L)

$$L = 2 \times \frac{t_{\alpha/2, n-1}S}{\sqrt{n}}$$

ullet If a confidence interval with a length no large than L_0 is required, then the desired sample size n must satisfy

$$2 \times \frac{t_{\alpha/2, n-1}S}{\sqrt{n}} \le L_0.$$

8.1.4 Simulation Experiment

• In practice, an experimenter observes just one data set, and it has a probability of 0.95 of providing a 95% confidence interval that does indeed straddle the true value μ .

8.1.5 One-Sided Confidence Intervals

• One-Sided t-Interval: One-sided confidence intervals with confidence levels 1- α for a population mean μ based on a sample of n continuous data observations with a sample mean \overline{x} and a sample standard deviation s are

$$(-\infty, \ \overline{x} + \frac{t_{\alpha,n-1}S}{\sqrt{n}})$$

which provides an upper bound on the population mean μ , and

$$(\overline{x}-\frac{t_{\alpha,n-1}S}{\sqrt{n}},\infty)$$

which provides a lower bound on the population mean μ .

Python codes

- import numpy as np
- import pandas as pd
- from scipy import stats
- import statsmodels.stats.weightstats as sms
- data = pd.read_csv('E:/data/taxi.txt', sep='\t', index_col=0)
 # The data is of tire life times in kilometers.
- print(data) # output → next sheet
- print(data['BrandA']) # output → next sheet
- print(data.describe()) # produces basic statistics. → next sheet
- ds1=sms.DescrStatsW(data['BrandA'])
- print("confidence interval=(%.4f,%.4f)" %ds1.tconfint_mean(0.05, 'two-sided'))
 confidence interval=(31776.7759,42723.2241)

Python outputs

			pr	int(data['BrandA']) →			
print(data) →		۵	Tax	xi			
			1	34400			
	BrandA BrandB		2	45500			
Taxi			3	36700	print(data.describe()) →		
1	34400	36700	4	32000		BrandA	BrandB
2	45500	46800	5	48400	count	8.000000	8.000000
			6	32800	mean	37250.000000	38362.500000
3	36700	37700	7	38100	std	6546.754921	6181.062669
4	32000	31100	8	30100	min	30100.000000	
5	48400	47800			25%		35175.000000
6	32800	36400			50%		37200.000000
					75%		40875.000000
7	38100	38900			max	48400.000000	47800.000000
8	30100	31500					

8.1.6 *z*-Intervals

Two-Sided z-Interval

If an experimenter wishes to construct a confidence interval for a population mean μ based on a sample of size n with a sample mean \overline{X} and using an assumed known value for the population standard deviation σ , then the appropriate confidence interval is

$$(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$$

which is known as a two-sided z-interval.

• One-sided z-intervals are constructed analogously to the one-sided t-intervals with the z-quantile and σ replacing the t-quantile and s.

8.2 Hypothesis Testing

8.2.1 Hypotheses

Hypothesis Tests of a Population Mean

- A *null hypothesis* H_0 for a population mean μ is a statement that designates possible values for the population mean.
- It is associated with an *alternative hypothesis* $H_{\rm A}$, which is the "opposite" of the null hypothesis.
- A *two-sided* set of hypotheses is

$$H_0: \mu=\mu_0$$
 versus $H_A: \mu\neq\mu_0$ for a specified value μ_0 of μ .

• A *one-sided* set of hypotheses is either

 $H_0: \mu \leq \mu_0$ versus

 $H_{\rm A}$: $\mu > \mu_0$

or

 $H_0: \mu \ge \mu_0$ versus

 $H_{\rm A}$: μ < μ_0

Example 14: Metal Cylinder Production

- The machine that produces metal cylinders is **set to make cylinders** with a diameter of 50 mm.
- The two-sided hypotheses of interest are

$$H_0: \mu = 50$$
 versus $H_A: \mu \neq 50$

where the null hypothesis states that the machine is calibrated correctly.

Example 48 : Car Fuel Efficiency

- A manufacturer claim: its cars achieve an average of at least 35 miles per gallon in highway driving.
- The one-sided hypotheses of interest are

$$H_0: \mu \ge 35$$
 versus $H_A: \mu < 35$

• The null hypothesis states that the manufacturer's claim regarding the fuel efficiency of its cars is correct.

8.2.2 Interpretation of p-values

Types of error

- Type I error: An error committed by rejecting the null hypothesis when it is true.
- Type II error: An error committed by accepting the null hypothesis when it is false.

Significance level

• is specified as the upper bound of the probability of type I error.

- p-value of a test
 - Definition: The p-value of a test is the probability of obtaining a given data set or worse when the null hypothesis is true.
 - A data set can be used to measure the plausibility of null hypothesis H_0 through the construction of a p-value.
 - The smaller the *p*-value, the less plausible is the null hypothesis.

8.2.3 Calculation of p-values

Example 14: Metal Cylinder Production

- For testing H_0 : $\mu = \mu_0$ vs H_A : $\mu \neq \mu_0$
- The data set of metal cylinder diameters:

$$n = 60$$
, $\overline{x} = 49.99856$, $s = 0.1334$

$$\mu_0 = 50.0 \longrightarrow t = \frac{49.99856 - 50.0}{0.1334 / \sqrt{60}} = -0.0836$$

- *p*-value = 2 × $P(T \ge 0.0836)$ where $T \sim t_{59}$.
- p-value = $2 \times 0.467 = 0.934$

P-value for two-sided t-test

Consider testing

$$H_0: \mu = \mu_0 \text{ vs } H_A: \mu \neq \mu_0$$

•
$$p$$
 - value = $2 \times P(T \ge |t|)$
where $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$.

P-value for one-sided t-test

Consider testing

$$H_0: \mu \le \mu_0 \text{ vs } H_A: \mu > \mu_0$$

Then

$$p$$
 – value = $P(T \ge t)$

Consider testing

$$H_0: \mu \ge \mu_0 \text{ vs } H_A: \mu < \mu_0$$

Then

$$p$$
 – value = $P(T \le t)$

Making conclusions using p-values

Rejection of the Null Hypothesis

If a p-value is smaller than the significance level, then the hypothesis H_0 is **rejected** in favor of the alternative hypothesis H_A .

Acceptance of the Null Hypothesis

A p-value larger than 0.10 is generally taken to indicate that the null hypothesis H_0 is a plausible statement. The null hypothesis H_0 is therefore accepted.

However, this does **not mean** that the null hypothesis H_0 has been **proven to be true**.

Python codes for one-sample tests concerning a mean

- import numpy as np
- import pandas as pd
- import statsmodels.stats.weightstats as sms
- data = pd.read_csv("taxi.txt",sep='\t',index_col=0)
- dat=data/1000
- print(dat['BrandA'])
- print(dat.describe())
- dat_A= dat['BrandA']
- ds=sms.DescrStatsW(dat_A)
- print("One Sample Two-sided t-test")
- print("alternative hypothesis: true mean is not equal to 40")
- print("t, p-value, df: %.4f %.4f %.1f" %ds.ttest_mean(40, 'two-sided'))
- print("mean: %.4f" %np.mean(dat_A))

Python output

				BrandA	BrandB
	Тах	xi	Count	8.000000	8.000000
	1	34.4	mean	37.250000	38.362500
	2	45.5	std	6.546755	6.181063
,	3	36.7	min	30.100000	31.100000
	4	32.0	25%	32.600000	35.175000
	5	48.4		35.550000	
	6	32.8		39.950000	
	7	38.1			
,	8	30.1	max	48.400000	47.800000

[Output]

One Sample Two-sided t-test

alternative hypothesis: true mean is not equal to 40

t, p-value, df: -1.1881 0.2735 7.0

mean: 37.2500

8.2.4 Significance Levels

- Significance Level of a Hypothesis Test
 - A hypothesis test with a $significance\ level$ of $size\ \alpha$ rejects the null hypothesis H_0 if a p-value smaller than α is obtained and
 - accepts the null hypothesis H_0 if a p-value larger than α is obtained.

Two-Sided Hypothesis Test for a Population Mean with sig. level lpha

ullet A size α test for the two-sided hypotheses

$$H_0$$
: $\mu = \mu_0$ vs HA : $\mu \neq \mu_0$

rejects the null hypothesis H_0 if the **test statistic** |t| falls in the **rejection region**,

$$\{t: |t| > t_{\alpha/2,n-1}\}$$

and accepts the null hypothesis H_0 if the **test statistic** |t| falls in the **acceptance region**,

$$A = \{t: |t| \le t_{\alpha/2, n-1}\}$$

• Recall that
$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

One-Sided Hypothesis Test for a Population Mean with sig. level α

• A size α test for the one-sided hypotheses

$$H_0: \mu \le \mu_0 \ vs \ H_A: \mu > \mu_0$$

rejects the null hypothesis H_0 if the **test statistic** t falls in the **rejection region**,

$$\{t: \ t > t_{\alpha,n-1}\}$$

and accepts the null hypothesis H_0 if the **test statistic** \boldsymbol{t} falls in the **acceptance** region,

$$A = \{t: \ t \leq t_{\alpha,n-1}\}$$

• A size α test for the one-sided hypotheses

$$H_0: \mu \geq \mu_0 \quad vs \quad H_A: \mu < \mu_0$$

rejects the null hypothesis H_0 if the **test statistic** t falls in the **rejection region**,

$$\{t: \ t < -t_{\alpha,n-1}\}$$

and accepts the null hypothesis H_0 if the **test statistic** t falls in the **acceptance** region,

$$A = \{t: \ t \ge -t_{\alpha,n-1}\}$$

Power of a hypothesis Test

• The *power* of a hypothesis test power = $1 - P(Type | II error | H_A)$ which is the probability that the null hypothesis is rejected when it is false.

8.2.5 *z*-Tests

• Two-Sided *z*-test

The p-value for the two-sided hypothesis testing problem

$$H_0$$
: $\mu = \mu_0$ versus H_A : $\mu \neq \mu_0$

based upon a data set of size n from $N(\mu, \sigma^2)$ with σ known.

The p-value is given by

p-value =
$$2 \times P(Z > |z|)$$

where
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
.

As for the two-sided test,

a size α test rejects the null hypothesis H_0 if the *test statistic* z falls in the *rejection region*,

$$\{z: |z| > z_{\alpha/2}\},$$

and accepts the null hypothesis H_0 if the *test statistic* z falls in the *acceptance region*,

$$A = \{z : |\mathbf{z}| \le \mathbf{z}_{\alpha/2}\}.$$

• The only difference between t-test and z-test is that the *t*-statistic is used for the t-test while *z*-statistic is used for the z-test instead.

Computation of the power of a hypothesis test

- Consider testing H_0 : $\mu = \mu_0$ vs H_A : $\mu \neq \mu_0$ with significance level α . Assume that we have a random sample of size n from $N(\mu, \sigma^2)$. For computational convenience, assume σ is known.
- Power of test when $\mu = \mu^* > \mu_0$, $\beta(\mu^*)$. $\beta(\mu^*) = 1 - P_{\mu = \mu^*}(Accept H_0)$ $= 1 - P_{\mu = \mu^*}(|Z| \le z_{\alpha/2})$ $= 1 - P_{\mu = \mu^*}(\frac{|\overline{X} - \mu_0|}{\sigma/\sqrt{n}} \le z_{\alpha/2}) = 1 - P_{\mu = \mu^*}(-z_{\alpha/2} \le \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \le z_{\alpha/2})$

• (Continued)

$$1 - P_{\mu = \mu^{*}}(-z_{\alpha/2} \le \frac{\overline{X} - \mu_{0}}{\sigma/\sqrt{n}} \le z_{\alpha/2})$$

$$= 1 - P_{\mu = \mu^{*}}(-z_{\alpha/2} - \frac{\mu^{*} - \mu_{0}}{\sigma/\sqrt{n}} \le \frac{\overline{X} - \mu^{*}}{\sigma/\sqrt{n}} \le z_{\alpha/2} - \frac{\mu^{*} - \mu_{0}}{\sigma/\sqrt{n}})$$

$$= 1 - \Phi\left(z_{\alpha/2} - \frac{\mu^{*} - \mu_{0}}{\sigma/\sqrt{n}}\right) + \Phi\left(-z_{\alpha/2} - \frac{\mu^{*} - \mu_{0}}{\sigma/\sqrt{n}}\right)$$

$$= \beta(\mu^{*})$$

Determination of sample size in hypotheses testing

• Find n for which $\beta(\mu^*) = \beta^*$ with $\mu^* > \mu_0$.

$$\beta(\mu^*) = 1 - \Phi\left(z_{\alpha/2} - \frac{\mu^* - \mu_0}{\sigma/\sqrt{n}}\right) + \Phi\left(-z_{\alpha/2} - \frac{\mu^* - \mu_0}{\sigma/\sqrt{n}}\right)$$

$$\approx 1 - \Phi\left(z_{\alpha/2} - \frac{\mu^* - \mu_0}{\sigma/\sqrt{n}}\right)$$

$$z_{\alpha/2} - \frac{\mu^* - \mu_0}{\sigma/\sqrt{n}} \approx z_{\beta^*}$$
So, $\sqrt{n} \approx \sigma \frac{z_{\alpha/2} - z_{\beta^*}}{\mu^* - \mu_0}$

Chapter summary

8.1 Confidence Intervals for Mean

t-intervals

z-intervals

8.2 Hypothesis Testing about Mean

p-value

significance level

acceptance region

power of test