

ECON 310 - MACROECONOMIC THEORY

Instructor: Dr. Juergen Jung

Towson University

Disclaimer

These lecture notes are customized for Intermediate Macroeconomics 310 course at Towson University. They are not guaranteed to be error-free. Comments and corrections are greatly appreciated. They are derived from the Powerpoint© slides from online resources provided by Pearson Addison-Wesley. The URL is:

http://www.aw-bc.com/williamson

These lecture notes are meant as complement to the textbook and not a substitute. They are created for pedagogical purposes to provide a link to the textbook. These notes can be distributed with prior permission.

This version compiled February 17, 2014.

Representative Consumer

- Assume whole population can be described by a representative consumer
- The representative consumer makes a decision concerning a general good called 'consumption' and leisure.
- Metric to measure happiness call it utility
- The representative consumer gets utility from consumption and leisure:

■ Suppose two bundles (C_1, I_1) and (C_2, I_2) - bundle 1 is strictly preferred if:

$$U(C_1, I_1) > U(C_2, I_2)$$

indifferent if:

$$U(C_1, I_1) = U(C_2, I_2)$$

Representative Consumer (cont.)

- Note: levels don't really matter just preference ordering
- Remember 3 properties of utility curves:
 - 1 More is preferred to less. That is, u is increasing in C and I.
 - 2 Diversity in consumption.
 - 3 Consumption and leisure are normal goods (i.e. increase in these variables in income increases). Not inferior goods

An example of Indifferent Curves

$$U(C,I) = c^{\frac{1}{2}} + \frac{1}{2}(I)^{\frac{1}{2}}$$

Contour Plot

Indifferent Curve is locus of all (C,I) points giving the same utility level

Figure 4.2: Properties of Indifference Curves

Figure 4.3: Budget Constraint ($T > \pi$)

Leisure, I

Figure 4.6: Corner Solution no work!

Figure 4.8: Effect of a Increase in the Wage

Figure 4.10: Increase in π or decrease in T

Figure 4.11: Perfect Complements

Why do Americans work so hard?

Production Function

- We'll assume that firms use two broad factors of production, capital and labor.
- Output is produced according to a production function:

$$Y = zF(K, N^d)$$

- z: total factor productivity higher is z, the higher is MPN and MPK.
- K: amount of capital the firm hires
- \blacksquare N^d : amount of labor the firm hires

Figure 4.12: Production Function and MPN

Figure 4.13: Production Function and MPK

Figure 4.14: MPN Labor Schedule

Figure 4.15: Adding Capital increases MPN, KSC

Figure 4.16: Increases in TFP

Figure 4.17: Effect increases in TFP on MPN

Figure 4.18: Solow Residual

Figure 4.19: Profit Maximization

Figure 4.21: Average Labor Productivity

Figure 4.22: Percentage Deviations from Trend in Average Labor Productivity

