

Jeffrey Borowitz, PhD

Lecturer

Sam Nunn School of International Affairs

Generalizing Linear Regression to Binary Outcomes

Predicting Discrete Outcomes

- Lets say you are a bank and want to determine whether a transaction is fraudulent
- The strategy is to pretend you're modeling a "propensity" and then if the propensity is high enough, guess that it is fraudulent

• You can look at a bunch transactions (i) and make:
$$y_i = \left\{ \begin{array}{cc} 1, & if\ fraudulent \\ 0, & if\ not\ fraudulent \end{array} \right.$$

- And then you can just run a regression!
- Clearly bigger values of \hat{y}_i mean a transaction is more likely to be fraudulent
 - The problem is you want something between 100% sure and 0% sure that a transaction is a fraud
 - Theoretically, your \hat{y}_i can be anything: bigger than 1, less than 0

Predicting Discrete Outcomes: Logistic Regression

- We know our outcome will be either 0 or 1 (a fraud or not a fraud)
- So let's say there's some true underlying propensity to be fraudulent.
- So lets say we take our \hat{y} and then draw a random ϵ from a particular distribution.
 - "Logistic" regression actually means we've picked a distribution for ε
- We can think of our X variable as moving around a probability distribution
 - If you take a draw of ε so that $\hat{y} + \varepsilon < 0$, then the outcome is 0
 - If you take a draw of ε so that $\hat{y} + \varepsilon > 0$, then the outcome is 1
- We can have an objective function like:

$$\sum_{i} p(\epsilon_{i} \text{ gives observed } y_{i})$$

- Here the function $p(\cdot)$ depends on the shape of our logistic distribution
- And our parameters are allowing X to shift the probability up and down

Predicting Discrete Outcomes: Logistic Regression

- The center of the distribution depends on the X variables you care about
- If X is really big, curve moves way right, so you would never get a draw of ϵ so that $\alpha + \beta X + \epsilon < 0$

Logistic Regression

- Logistic regression is super common
- It has a nice role for uncertainty: because if you increase X, you can keep increasing your likelihood more and more and never getting to 100%

Logistic Regression

To estimate this, we change our objective function from

$$\min_{\alpha,\beta} F(\alpha,\beta) = \sum_{i} (y_i - \alpha - \beta x_i)^2$$

to

$$\min_{\alpha,\beta} F(\alpha,\beta) = \sum_{i} H(y_i - G(\alpha - \beta x_i))$$

where G and H are functions about the specific shape of the logistic function

 Note: this is NOT the traditional formulation, but is equivalent and I write it this way

Georgia

Probit Regression

- Instead of the logistic function, we could also use other functions
- For a probit, you use functions for G and H related to the shape of the normal distribution

$$\min_{\alpha,\beta} F(\alpha,\beta) = \sum_{i} H(y_i - G(\alpha - \beta x_i))$$

Example: Predicting Whether a Woman Works for Pay

- Whether a woman works is binary: it's either yes or no
- What things might affect whether a woman works for pay?
 - If she has young children, that might make her less likely to work
 - If she's more educated, she might want to work (didn't spend all that time in school if she didn't want to use it)

Logistic Regression vs. Linear Regression

 Logistic regression is used often in practice, but often many models give similar outputs

Lesson Summary

- Logistic regression is useful for binary outcome, as you can increase likelihood of a variable without getting to 100%
- A probit is another regression option for binary outcomes, based on a normal distribution assumption

