Assignment Project Exam Help

https://eduassistpro.github.

Add We@hatedu_assist_pr

Lecture 20: Summary

Final Assessment

Assignment Project Exam Help archi

- https://eduassistpro.github.
- 3 General purpose GPU (with OpenCL); Lectures 14-19.

The Part edu_assist_pr worksheets and courseworks) also followed this structure.

• Some mentions were out-of-order, e.g. OpenMP barriers mentioned in Lectures 11 and 17.

Today's lecture

Assignment Project Exame Help that transcend particular architectures.

- https://eduassistpro.github.

In this final lecture we will summarise all of the mater parall Acologo Wee an hatitedu_assist_pr Easier to see the commonalities.

At the end I'll also spend a few minutes talking about the **Final** assessment for the module!

Why parallel? Lectures 1 and 4

Assignment Project Exam Help

Parallel hardware allows simultaneous computations.

https://eduassistpro.github.

could be e.g. time-sharing on a single c

Add WeChat edu_assist_pr

Want to attain good **scaling** - decrease i time $t_{\rm p}$ for increasing number of **processing units** (threads, processes etc.) p.

Measuring parallel performance Lecture 4

Assignment Project Exam Help and efficiency E

https://eduassistpro.github.

Achieving S = p (i.e. F = 1) usually regar difficult to the every effect aring a teredu_assist_pr

- Synchronisation, load balancing, com calculations, . . .
- Super-linear scaling S > p possible (but rare) due to memory cache.

Laws for maximum parallel performance Lectures 4, 19

Assignment Project Exam Help

https://eduassistpro.github.

Weak scaling allows n to increase with

· Related to the Grista Scorp-Barsis | edu_assist_pr

The work-span model provides anothe maximum *S* from task-graphs [Lecture 19].

• $S \le (\text{work})/(\text{span})$, with **work** and **span** determined from the task graph.

Loop parallelism and data dependencies Lectures 3, 5, 9, 15

Assignment Project Exam Help

- If there are no data dependencies, is data parallel or a map.
- https://eduassistpro.github.

Synchronisation

Synchronisation Lectures 7, 9, 11, 17

SSIGNMENT Project Exam Help All but the simplest parallel problems require synchronisation betw

: https://eduassistpro.github.

Can lead to reduced performance.

• eg heektra of eathers leaded a GU_assist_pi

Can also lead to **deadlock** [Lectures 7, 9].

• When one or more processing units wait for a synchronisation even that never occurs.

Load balancing and task parallelism Lectures 13 and 19

Assignment Project Exam Help

Idle time is an example of poor load balancing [Lecture 13].

https://eduassistpro.github.

Can interced and the bhat aedu_assist_printered tasks are sent to processing unibecome idle.

• This is an example of dynamic scheduling; can also be static.

A sparillelising by tasks fat Project knows at the Help

https://eduassistpro.github.

- Can represent as a task graph, wit
 and dijected edges endted the depolar assisting.
 For tasks that take the same time, can define to he
- For tasks that take the same time, can define total number of tasks, and the **span** as the length of the critical path.

Data reorganisation Lecture 10

Assignment Project Exam Help

Parallel data reorganisation can be indexed by **read** locations ('gat

In shahttps://eduassistpro.github.example of a data race (see later).

In distributed menoly extend a lexand U_assist_processing the communication methods that are usual

- One-to-many, many-to-one (also many-to-many).
- e.g. broadcasting, scattering and gathering.

Parallel hardware
Data races / race condition
Explicit communication
Latency hiding

Parallel hardware Lectures 2, 8, 14, 16

Assignment Project Exam Help Moder HPC clusters are increasingly using all three architectures:

• re

https://eduassistpro.github.

Most multi-core CPUs usually have m

cache Address Address

Network connectivity affects communi **hypercube** often used [Lecture 8].

GPU's most suited for **data parallel problems** and have multiple types of **memory** [Lectures 14, 16].

Data races / race conditions

Lectures 5, 6, 18

Assignment Project Exam Help

A **data race** potentially arises when two or more processing units read t

- https://eduassistpro.github.
- Can And dry Wie Chat edu_assist_pr
 - Exclusive access by a single processing unit
 - Simple critical regions can be implemented more efficiently (*i.e.* by compiler and hardware) as **atomics**.

Data races / race conditions

Lower level control Lectures 7, 18

Assignment Project Exam Help

At a lo

mut

- https://eduassistpro.github.
 Improper use of multiple locks can result in deadlock.

At an even lower level, locks can be implemented us assist_pr exchange and atomic compare-and-exchange [Lecture 18].

• Lock-free data structures are desirable whenever possible.

Parallel hardware
Data races / race conditions
Explicit communication
Latency hiding

Explicit communication Lectures 9, 10, 12, 15, 19

Assignment Project Exam Help If memory is distributed (in some sense), may need to use explicit

com

- : https://eduassistpro.github.
- Between CPU and GPU, i.e. host

Communicated caree Chat edu_assist_pr

- Blocking: Returns once all resources safe to re-use.
- **Synchronous**: Does not complete until sender and receiver start their communication operations.

Parallel hardware
Data races / race condition
Explicit communication
Latency hiding

Latency hiding Lectures 12, 19

Assignment Project Exam Help Can improve performance by overlapping communication with

https://eduassistpro.github.

Often used with domain partitioning

[LectuAtdd WeChat edu_assist_pr

Can also overlap host-device communication w a GPU [Lecture 19].

 Can also perform calculations on host and device simultaneously.

The end

Assignment Project Exam Help

https://eduassistpro.github.

I will now say a few words about the final assessment of this module...

The final assessment

Asisignment example to the state of the stat

- https://eduassistpro.github.
 - on 17th May (unless you have been grante
- opying material directly from your lectur __ assist_pr
- Your overall module grade will be the sum of your scores on the 3 courseworks and your score (out of 50) on this final assessment
 - Hence the final assessment is worth 50% of the total marks

The final assessment (continued)

Assignment Project Exam Help The paper will consist of two questions worth 25 marks each

https://eduassistpro.github.

• The 2020 and 2021 papers were both "open book" but the students were given more time to comple

A culestions are longer than they will be this y assist or paper were to be this y assist or they were "closed book" - so some section questions

• See the announcement on Minerva for some further advice

Your revision questions

Assignments Project Examula Help

https://eduassistpro.github.

- There will also be a Zoom session at 1730 tod
- XJCO3221 Discussion Boards on Minerva prior to 1600 on 17th May
 - I will NOT answer any questions after the start of the final assessment!