Managerial Labor Market Competition and Incentive Contracts

Job Market Talk at the University of Rome Tor Vergata

Bo Hu

January 11, 2019

Department of Economics, Vrije Universiteit Amsterdam Tinbergen Institute

What we know:

- Principle-agent problem matters to explain incentive pay.
- Labor market competition gives total pay increases with firm size.

1

What we know:

- Principle-agent problem matters to explain incentive pay.
- Labor market competition gives total pay increases with firm size.

What I ask:

• Firm Size Incentive Premium:

Why is the fraction of incentives higher in larger firms?

What we know:

- Principle-agent problem matters to explain incentive pay.
- Labor market competition gives total pay increases with firm size.

What I ask:

- Firm Size Incentive Premium:
 Why is the fraction of incentives higher in larger firms?
- Firm Size Incentive Premium and Managerial Labor Market:
 Incentive premium is higher in industries where the labor market is more active.

What we know:

- Principle-agent problem matters to explain incentive pay.
- Labor market competition gives total pay increases with firm size.

What I ask:

- Firm Size Incentive Premium:
 Why is the fraction of incentives higher in larger firms?
- Firm Size Incentive Premium and Managerial Labor Market:
 Incentive premium is higher in industries where the labor market is more active.

What I provide:

• An explanation based on the executive job ladder.

1

Introduction — firm size incentive premium

Data: U.S. S&P 1500 companies, 1992 - 2016

Introduction — firm size incentive premium

Data: U.S. S&P 1500 companies, 1992 - 2016

Key variables:

- firm size by market capitalization
- performance-based incentives by PPS, pay-for-performance sensitivity

$$\text{PPS} = \frac{\Delta \text{Wealth(in dollars)}}{\Delta \text{Firm Value(in percentage)}}$$

Introduction — firm size incentive premium

Data: U.S. S&P 1500 companies, 1992 - 2016

Key variables:

- firm size by market capitalization
- performance-based incentives by PPS, pay-for-performance sensitivity

$$\texttt{PPS} = \frac{\Delta \texttt{Wealth(in dollars)}}{\Delta \texttt{Firm Value(in percentage)}}$$

Size incentive premium:

• Controlling for total compensation, year × industry dummies, etc.

Figure 1: PPS increases in firm size (size incentive premium)

Introduction — size incentive premium and labor market

	$\log(PPS)$				
	(1)	(2)	(3)	(4)	(5)
log(firm size)	0.585*** (0.0141)	0.347*** (0.0247)	0.529*** (0.00499)	0.561*** (0.00310)	0.571*** (0.0139)
log(firm size) × J-J rate			0.415** (0.101)		
log(firm size) × GAI				0.0648*** (0.00156)	
log(firm size) × inside CEO frac					-0.0458* (0.0202)
log(total pay)		0.609*** (0.0350)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)
tenure, age, year	X	X	X	X	X
other controls	X	X	X	X	X
industry	X	X			
year × industry	X	X			
Observations adj. R^2	146,747 0.442	128,006 0.514	125,858 0.521	75,747 0.531	125,858 0.521

Model:

ullet dynamic moral hazard + job ladder

Model:

• dynamic moral hazard + job ladder

Basic idea:

Model:

• dynamic moral hazard + job ladder

Basic idea:

performance-based incentives + labor market incentives

Model:

• dynamic moral hazard + job ladder

Basic idea:

- performance-based incentives + labor market incentives
- labor market incentives decrease with firm size

Model:

• dynamic moral hazard + job ladder

Basic idea:

- performance-based incentives + labor market incentives
- labor market incentives decrease with firm size
- more performance-based incentives are required in larger firms

Model:

• dynamic moral hazard + job ladder

Basic idea:

- performance-based incentives + labor market incentives
- labor market incentives decrease with firm size
- more performance-based incentives are required in larger firms

What are labor market incentives?

Model:

• dynamic moral hazard + job ladder

Basic idea:

- performance-based incentives + labor market incentives
- labor market incentives decrease with firm size
- more performance-based incentives are required in larger firms

What are labor market incentives?

on-the-job executives can be poached by outside firms

Model:

• dynamic moral hazard + job ladder

Basic idea:

- performance-based incentives + labor market incentives
- labor market incentives decrease with firm size
- more performance-based incentives are required in larger firms

What are labor market incentives?

- on-the-job executives can be poached by outside firms
- labor market incentives: effort ← productivity ← poaching offer

Introduction — model intuition, cont'd

Key assumption (Gabaix and Landier, 2008):

- cash flow = firm size × executive productivity
- larger firms can always outbid smaller ones
- the job ladder towards larger firms

Introduction — model intuition, cont'd

Key assumption (Gabaix and Landier, 2008):

- cash flow = firm size × executive productivity
- larger firms can always outbid smaller ones
- the job ladder towards larger firms

Labor market incentives decrease in firm size

- job ladder effect position on the ladder
- wealth effect wealthier executives are harder to incentivize

Introduction — contributions

This paper

- 1. documents the firm size incentive premium
- 2. develops a dynamic equilibrium framework to explain the premium
- 3. explains the significant increase in executive compensation since the mid 1970s (Frydman and Saks 2010)

- Assignment models:
 - Tervio (2008), Gabaix and Landier (2008), Edmans et al. (2009), etc.
 - This paper adds dynamics and search frictions.
- Moral hazard models
 - Gayle and Miller (2009), Gayle et al. (2015)
 - This paper features a job ladder towards larger firms.

- Assignment models:
 - Tervio (2008), Gabaix and Landier (2008), Edmans et al. (2009), etc.
 - This paper adds dynamics and search frictions.
- Moral hazard models
 - Gayle and Miller (2009), Gayle et al. (2015)
 - This paper features a job ladder towards larger firms.
- Dynamic contract literature
 - moral hazard: Spear and Srivastava (1987), etc.
 - limited commitment: Thomas Worrall (1988, 1990), etc.

- Assignment models:
 - Tervio (2008), Gabaix and Landier (2008), Edmans et al. (2009), etc.
 - This paper adds dynamics and search frictions.
- Moral hazard models
 - Gayle and Miller (2009), Gayle et al. (2015)
 - This paper features a job ladder towards larger firms.
- Dynamic contract literature
 - moral hazard: Spear and Srivastava (1987), etc.
 - limited commitment: Thomas Worrall (1988, 1990), etc.
- Labor search literature
 - sequential auction: Postel-Vinay and Robin (2002), etc.

Road Map

- 1. Model
- 2. Data & evidence
- 3. Structural estimation
- 4. Explain the pattern since the mid 1970s

The Model

Set Up: Moral Hazard

Discrete time and infinite periods

Set Up: Moral Hazard

Discrete time and infinite periods

Executives:

• risk averse, u(w) - c(e), $e \in \{0,1\}$, c(1) = c, c(0) = 0,

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

- effort e stochastically increases executive productivity $z \in \mathcal{Z}$
- z is persistent, follows a discrete Markov Chain process

$$z_t = \rho_0(e) + \rho_z z_{t-1} + \epsilon_t$$

ullet die with $\eta \in (0,1)$, the match breaks up, the job disappears

Set Up: Moral Hazard

Discrete time and infinite periods

Executives:

• risk averse, u(w) - c(e), $e \in \{0,1\}$, c(1) = c, c(0) = 0,

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

- effort e stochastically increases executive productivity $z \in \mathcal{Z}$
- z is persistent, follows a discrete Markov Chain process

$$z_t = \rho_0(e) + \rho_z z_{t-1} + \epsilon_t$$

ullet die with $\eta \in (0,1)$, the match breaks up, the job disappears

Firms:

- ullet firm size $s\in\mathcal{S}$, exogenous and permanent
- production (cash flow) $y(s,z) = \alpha_0 s^{\alpha_1} z$, $\alpha_0, \alpha_1 \in (0,1]$.

Set Up: Managerial Labor Market

Managerial Labor Market:

- search frictional and allows on-the-job search
- ullet with $\lambda_1 \in (0,1)$ sample an outside firm s' from F(s')

Set Up: Managerial Labor Market

Managerial Labor Market:

- search frictional and allows on-the-job search
- ullet with $\lambda_1 \in (0,1)$ sample an outside firm s' from F(s')

Bertrand Competition:

- current firm s versus outside firm s'
- each has a bidding frontier, $\overline{W}(z,s)$, defined by

$$\Pi\Big(z,s,\overline{W}(z,s)\Big)=0$$

• $\overline{W}(z,s)$ increases in z and s

Contracting Problem

Firms maximize profits by choosing

- current period compensation w
- state-contingent continuation value W(z', s')

subject to

Promise-keeping Constraint,	(PKC)
Incentive Compatibility Constraint,	(IC)
Participation Constraint of executive,	(PC-Executive)
Participation Constraint of firm,	(PC-Firm)

Contracting Problem

Firms maximize profits by choosing

- current period compensation w
- state-contingent continuation value W(z', s')

subject to

Promise-keeping Constraint,	(PKC)
Incentive Compatibility Constraint,	(IC)
$W(z',s') \geq \min\{\overline{W}(z',s'),\overline{W}(z',s)\},$	(PC-Executive)
Participation Constraint of firm,	(PC-Firm)

Contracting Problem

Firms maximize profits by choosing

- current period compensation w
- state-contingent continuation value W(z', s')

subject to

Promise-keeping Constraint, (PKC)
Incentive Compatibility Constraint, (IC)
$$W(z',s') \geq \min\{\overline{W}(z',s'), \overline{W}(z',s)\}, \qquad \text{(PC-Executive)}$$

$$W(z',s') \leq \overline{W}(z',s), \qquad \text{(PC-Firm)}$$

Details

The Equilibrium

A stationary equilibrium is defined by

- value functions $\{W^0, W, \Pi\}$;
- optimal contracts $\sigma = \{w, W(z', s')\}$ for $z' \in \mathbb{Z}$ and $s' \in \mathbb{S}$;
- $\Gamma(z'|z)$ follows the optimal effort choice;
- a distribution of executives across employment states evolving according to flow equations.

Labor market incentives

What is the incentive out of W(z')?

$$\mathcal{I}[W(z')] \equiv \mathbb{E}_{z'}\Big[W(z')|e=1\Big] - \mathbb{E}_{z'}\Big[W(z')|e=0\Big].$$

Labor market incentives

What is the incentive out of W(z')?

$$\mathcal{I}[W(z')] \equiv \mathbb{E}_{z'}\Big[W(z')|e=1\Big] - \mathbb{E}_{z'}\Big[W(z')|e=0\Big].$$

The incentive compatibility constraint is

$$\sum_{\underline{s'} \in \mathcal{M}_1} F(s') \mathcal{I}[\overline{W}(z',s)] + \sum_{\underline{s'} \in \mathcal{M}_2} \mathcal{I}[\overline{W}(z',s')] F(s') + \sum_{\underline{s'} \in \mathcal{M}_3} F(s') \mathcal{I}[W(z')] \geq \tilde{c},$$
Labor Market Incentives

Performance-based Incentives

where

 $\mathcal{M}_1: s' \geq s$, lead to job turnovers

 $\mathcal{M}_2: s' < s, \text{ improve compensation, no job turnovers}$

 \mathcal{M}_3 : other or no outside firms

Incentives from $\overline{W}(z',s)$ decrease in s

Incentives from $\overline{W}(z',s)$ decrease in s

Proposition

Suppose the executives' utility is of the CRRA form and the cost of effort $c=\overline{c}(s)$, then $\mathcal{I}\Big(\overline{W}(z',s)\Big)$ decreases in s if

$$\sigma > 1 + \frac{s^{1-\alpha_1}}{\alpha_1} \psi'(s), \tag{1}$$

where $\psi(s)$ is a function of s that is positive and increasing in s.

Summary

- Firms compete to retain/attract executives.
- Firm size matters.
- Labor market incentives decrease in firm size due to a job ladder effect and a wealth effect.

Data and Evidence

Data

Assemble a new dataset

- ExecuComp & BoardEX + hand-collected from LinkedIn/Bloomberg
- ExecuComp: annual records on top executives' compensation
- BoardEX: detailed executive employment history
- Final sample: 35,088 executives, 218,168 executive-year obs., spanning the period 1992 to 2016.

Define job turnovers

- Job-to-job transition: leaves the current firm, and starts to work in another firm within n? days.
- Exit: otherwise.

Data

Assemble a new dataset

- ExecuComp & BoardEX + hand-collected from LinkedIn/Bloomberg
- ExecuComp: annual records on top executives' compensation
- BoardEX: detailed executive employment history
- Final sample: 35,088 executives, 218,168 executive-year obs., spanning the period 1992 to 2016.

Define job turnovers

- Job-to-job transition: leaves the current firm, and starts to work in another firm within 180 days.
- Exit: otherwise.

Reduced-form evidence

- 1. Managerial labor market is active. Details
 - annual job-to-job transition rate 5%
 - relatively stable over years and across industries
- 2. Executives climb job ladders towards larger firms. Details
 - about 66% of job-to-job transitions are towards larger firms
 - for the rest, 20% of them are promotions from non-CEO to CEO

Reduced-form evidence

- 3. Executives in larger firms have less job-to-job transitions. Details
 - Cox model, 1% increase in firm size leads 8.3% lower hazard of job-to-job transitions.
- 4. Starting from the same level of compensation, the pay-growth is higher in larger firms. Details
 - 1% increase in firm size leads to 10% increase in pay-growth rate

Reduced-form evidence

- 5. Firm-size incentive premium is higher in industries where managerial labor market is more active. [Incentive Premium]
 - job-to-job transition rate (industry-year level)
 - general ability index (Custódio et al. 2013)
 - fraction of outsider CEO (Martijn Cremers and Grinstein 2013)

Estimation

Model Specifications

utility function of CRRA form

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

production function of multiplicative form

$$y(s,z)=e^{\alpha_0}s^{\alpha_1}z$$

• productivity process by AR(1), discretized by Tauchen (1989)

$$z_t = \rho_0(e) + \rho_z z_{t-1} + \epsilon_t$$

• poaching firm distribution by truncated log-normal F(s)

Parameters

Parameters	Description
$\overline{\eta}$	the death probability
λ_1	the offer arrival probability
ρ_z	the $AR(1)$ coefficient of productivity shocks
μ_z	the mean of productivity shocks for $\emph{e}=1$
σ_z	the standard deviation of productivity shocks
μ_s	the mean of $F(s)$
σ_{s}	the standard deviation of $F(s)$
<i>c</i>	cost of efforts
σ	relative risk aversion
α_0, α_1	production function parameters

Moments and Estimates

Data	Model	Estimates	Standard Error
0.0691	0.0691	$\eta = 0.0695$	0.0127
0.0498	0.0473	$\lambda_1 = 0.3164$	0.0325
0.7683	0.6299	$\rho_z = 0.8004$	0.0366
0.1260	0.1144	$\mu_z=0.0279$	0.0014
0.0144	0.0160	$\sigma_z^2 = 0.1198$	0.0044
7.4515	7.4806	$\mu_s = 1.2356$	0.0365
2.3060	2.1610	$\sigma_s = 2.5795$	0.1211
7.2408	7.2665	$\alpha_0 = -1.5534$	0.0147
1.1846	0.8960	$\alpha_1 = 0.5270$	0.0217
0.3830	0.2822		
1.1063	1.1997	$\sigma = 1.1038$	0.0030
8.4994	8.478	c = 0.0814	0.0259
3.4438	3.35872		
	0.0691 0.0498 0.7683 0.1260 0.0144 7.4515 2.3060 7.2408 1.1846 0.3830 1.1063 8.4994	0.0691 0.0691 0.0498 0.0473 0.7683 0.6299 0.1260 0.1144 0.0144 0.0160 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Data

Predictions — model

Predictions — without labor market incentives

Predictions — with higher job arrival rate

Predictions — with lower job arrival rate

Fraction of labor market incentives

Long-run trends

Long-run trends in executive compensation

Frydman and Saks (2010) document that since the mid-1970s:

- 1. sharp increase in total and incentive pay.
- 2. more inequality among executives
- 3. higher correlation between compensation and firm size

Long-run trends in executive compensation

Frydman and Saks (2010) document that since the mid-1970s:

- 1. sharp increase in total and incentive pay.
- 2. more inequality among executives
- 3. higher correlation between compensation and firm size

These facts can be quantitatively explained by an exogenous increase in higher job arrival rate λ_1 .

- Huson et al. (2001), Murphy and Zabojnik (2007): An increasing number of CEO openings have been filled through external hires.
- Frydman (2005): Executive jobs have increasingly placed greater emphasis on general rather than firm-specific skills.

Long-run trends in executive compensation

Moments	Da	ata	Model	
(dollar value in year 2000)	1970s	1990s	$\lambda_1 = 0.05$	$\lambda_1 = 0.4$
Mean total pay (thousand)	1090	4350	985	4296
Mean size (million)	-	-	2426	5710
Mean PPS (thousand)	21.743	120.342	24.972	125.310
$eta_{totalpay-size}$	0.199	0.264	0.175	0.240
Percentiles of total pay (thousand)				
25th percentile	640	1350	109	1217
50th percentile	930	2360	478	2957
75th percentile	1310	4430	1596	5860

Conclusion

Takeaways

- Moral hazard problem is not necessarily more severe in larger firms.
- Managerial labor market competition explains firm size incentive premium.
- Small and medium firms take advantage of the labor market incentives.

Thanks you for your attention.

http://bohuecon.github.io

Contracting Problem

Firms choose $\{w, W(z', s')\}$ to maximize profits

$$\Pi(z,s,V) = \max_{w,W(z',s')} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} \left[y(s,z') - w + \tilde{\beta} \Pi(z',s,W(z',s')) \right] \tilde{F}(s') \Gamma(z'|z)$$

subject to

$$V = u(w) - c + \tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') \Gamma(z'|z), \tag{PKC}$$

$$\tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') \Big(\Gamma(z'|z) - \Gamma^{s}(z'|z) \Big) \ge c, \tag{IC}$$

$$W(z', s') \ge \min\{ \overline{W}(z', s'), \overline{W}(z', s) \}, \tag{PC-Executive}$$

$$W(z',s') \leq \overline{W}(z',s).$$
 (PC-Firm)

Back

No Moral Hazard, Full Commitment

Only Moral Hazard

Only Limited Commitment

Optimal Contract

Job-to-job transition rate over age

Exit rate over age

Climb the Job Ladder

Table 3: Change of firm size upon job-to-job transitions

Panel A: All executives					
Total obs.	Firm size decrease obs. (%)	Firm size increase obs. (%)			
2567	985 (39%)	1582 (61%)			
2617	1051 (40%)	1566 (60%)			
2616	1038 (40%)	1578 (60%)			
	Total obs. 2567 2617	Total obs. Firm size decrease obs. (%) 2567 985 (39%) 2617 1051 (40%)			

Panel B: Across age groups

Age groups	Total obs.	Firm size decrease obs. (%)	Firm size increase obs. (%)
≤ 4 0	100	34 (34%)	66 (66%)
[40, 45)	381	135 (35%)	246 (65%)
[45, 50)	701	262 (37%)	439 (63%)
[50, 55)	766	304 (40%)	462 (60%)
[55, 60)	261	179 (43%)	82 (67%)
[60, 65)	73	52 (39%)	21 (61%)
[65, 70)	30	7 (25%)	23 (75%)
≥ 70	6	1 (16%)	5 (84%)

Table 4: Job-to-Job Transitions and Firm Size

Job	-to-Job Transition	
•	(1)	(2)
log(Firm Size)	0.917**** (0.0109)	0.972* (0.0139)
Age	0.985**** (0.00273)	0.967*** (0.0112)
log(tdc1)		0.830**** (0.0150)
Market-Book Ratio	0.942**** (0.0150)	0.939**** (0.0157)
Market Value Leverage	1.033** (0.0139)	1.035** (0.0142)
Profitability	0.913**** (0.0197)	0.905**** (0.0199)
Year FE	Yes	Yes
Industry FE	Yes	Yes
N chi2	154635 496.1	118119 491.4

Table 1: Compensation growth increases with firm size

	$\Delta \log(tdc1)$					
	(1)	(2)	(3)	(4)	(5)	(6)
log(firm size)_1	0.112*** (0.00903)	0.154*** (0.0129)	0.108*** (0.00183)	0.107*** (0.00189)	0.141*** (0.00177)	0.127*** (0.00489)
$\begin{array}{l} log(firm\ size)_{-1} \\ \times\ EE90 \end{array}$			0.0711* (0.0403)			
$\begin{array}{l} log(firm\ size)_{-1} \\ \times\ EE190 \end{array}$				0.0759** (0.0353)		
$\begin{array}{l} log(firm\ size)_{-1} \\ \times\ gai \end{array}$					0.0233*** (0.00546)	
$log(firm\ size)_{-1} \times inside\ CEO$						-0.000232*** (0.0000696)
$log(tdc1)_{-1}$	-0.290*** (0.0200)	-0.390*** (0.0262)	-0.251*** (0.00173)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)
Dummies	X	X	X	X	X	X
Other contorls		X	X	X	X	X
Observations adj. R ²	129068 0.157	106819 0.216	106820 0.260	106820 0.260	58188 0.233	106820 0.262

Table 2: Performance-based incentives increases with firm size						
	$\log(delta)$					
	(1)	(2)	(3)	(4)	(5)	(6)
log(firm size)	0.604*** (0.0141)	0.347*** (0.0247)	0.525*** (0.00512)	0.529*** (0.00499)	0.561*** (0.00310)	0.571*** (0.0139)
log(firm size) × EE90			0.359* (0.118)			
log(firm size) × EE190				0.415** (0.101)		
log(firm size) × gai					0.0648*** (0.00156)	
log(firm size) × inside CEO						-0.000458* (0.000202)
log(tdc1)		0.609*** (0.0350)	-0.251*** (0.00173)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)
Dummies	X	X	X	X	X	X
Other contorls		X	X	X	X	X
Observations adj. R^2	146747 0.442	128006 0.514	125858 0.521	125858 0.521	75747 0.531	125858 0.521

If labor market incentives are ignored ...


```
CEO's of "Small Firms" in S&P 500
```

_____ tdc1: total compensation delta: dollar-percentage incentive Company Market Cap tdc1 delta | millions 000's 000's/%|

1113.547

1130.155

1194.977

1328.171

1368.129

1474.909

1276.448

60.939838 I

165.73476 I

473.70974 I

566.14187

128.10688 |

344.02299 I

99.525198 I

428.10996

133.42285 |

431.01562 |

158.65569

1775.531

2602.093

3094.134

2638.243

4584.605

2709.708

1102.528

3738.803

8945.338

950.098

INCYTE CORP 446.408 2432.9734 WESTROCK CD 547.828 2800.668 130.96215 | ENVISION HEALTHCARE CORP 678.6906 1777.991 217.729 | PRICELINE GROUP INC 886.0817 LKQ CORP 889.9763 REGENERON PHARMACEUTICALS 897.3801

SKYWORKS SOLUTIONS INC

ALASKA AIR GROUP INC

ACUITTY BRANDS INC.

CENTENE CORP

HOLOGIC INC

ANSYS INC

GARTNER INC

```
CEO's of "Large Firms" in S&P 500
```

HOME DEPOT INC

COCA-COLA CO

PEPSICO INC

CHEVRON CORP

INTEL CORP

CISCO SYSTEMS INC

WAL-MART STORES INC

EXXON MOBIL CORP

INTL BUSINESS MACHINES CORP

AT&T INC

95494.39

97836.48

121238.6

126749.6

129381.2

86128.2 35750.103

94944.89 17283.529

147738.2 6101.835

192048.2 16652.894

12781.61

15268.415

16269.85

21693.615

13125.882

344490.6 48922.808 3843.027

2014.3633

1666.3201 I

425.62199 I

2919.7995 I

5981.3853 I

1106.8351 I

1298.8777 I

1874.5755 I

1465.7708 I

+----

References i

References

- Custódio, Cláudia, Miguel A Ferreira, and Pedro Matos (2013), "Generalists versus specialists: Lifetime work experience and chief executive officer pay." Journal of Financial Economics, 108, 471–492.
- Edmans, Alex, Xavier Gabaix, and Augustin Landier (2009), "A multiplicative model of optimal ceo incentives in market equilibrium." The Review of Financial Studies.
- Frydman, Carola and Raven E Saks (2010), "Executive compensation: A new view from a long-term perspective, 1936–2005." The Review of Financial Studies, 23, 2099–2138.
- Gabaix, Xavier and Augustin Landier (2008), "Why has ceo pay increased so much?" The Quarterly Journal of Economics, 123, 49–100.

References ii

- Gayle, George-Levi, Limor Golan, and Robert A Miller (2015), "Promotion, turnover, and compensation in the executive labor market." Econometrica, 83, 2293–2369.
- Gayle, George-Levi and Robert A Miller (2009), "Has moral hazard become a more important factor in managerial compensation?" American Economic Review, 99, 1740–69.
- Martijn Cremers, KJ and Yaniv Grinstein (2013), "Does the market for ceo talent explain controversial ceo pay practices?" Review of Finance, 18, 921–960.
- Tervio, Marko (2008), "The difference that ceos make: An assignment model approach." American Economic Review, 98, 642–68.