MSO202A COMPLEX ANALYSIS Assignment 2

Exercise Problems:

- 1. Let z = x + iy and $f(z) = x^2 y^2 2y + i(2x 2xy)$. Write f(z) as a function of z and \overline{z} .
- 2. Verify Cauchy-Riemann equation for z^2 , z^3 .
- 3. Using the relations $x = \frac{z + \overline{z}}{2}$, $y = \frac{z \overline{z}}{2i}$ and the chain rule show that $\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} i\frac{\partial}{\partial y})$; $\frac{\partial}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$.
- **4.** Let $z, w \in \mathbb{C}, |z|, |w| < 1$ and $\overline{z}w \neq 1$. Prove that $\frac{|w-z|}{|1-\overline{w}z|} < 1$. Further, show that the equality holds if either |z| = 1 or |w| = 1.
- 5. Determine $all\ z\in\mathbb{C}$ for which each of the following power series is convergent. a) $\sum \frac{z^n}{n^2}$ b) $\sum \frac{z^n}{n!}$ c) $\sum \frac{z^n}{2^n}$ d) $\sum \frac{1}{2^n} \frac{1}{z^n}$.
- 6. Find all $z \in \mathbb{C}$ such that $|e^z| \leq 1$.
- 7. Show that the CR-equations in polar form are given by: $u_r = \frac{1}{r}v_\theta$ and $u_\theta = -rv_r$.

Problem for Tutorial:

- 1. Let $\mathbb{D}=\{z\in\mathbb{C}:|z|\leq 1\}.$ For a fixed w in $\mathbb{D},$ with |w|<1, define the mapping $F:z\mapsto \frac{w-z}{1-\overline{w}z}.$ Show that
 - (a) F is a map from \mathbb{D} to itself;
 - (b) F(0) = w and F(w) = 0;
 - (c) |F(z)| = 1 if |z| = 1;
 - (d) $F: \mathbb{D} \to \mathbb{D}$ is bijective.
- 2. Let R be the radius of convergence of $\sum_{n} a_n z^n$. For a fixed $k \in \mathbb{N}$, find the radius of convergence of (a) $\sum_{n} a_n^k z^n$, (b) $\sum_{n} a_n z^{kn}$.
- 3. (a) Show that f satisfies the CR-equations if and only if $\frac{\partial}{\partial \overline{z}}f=0$. (Recall from Ex. 3 above that $\frac{\partial}{\partial \overline{z}}=\frac{1}{2}(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y})$.) Moreover, if f is analytic then $f'(z)=\frac{\partial}{\partial z}f$.
- 4. Consider the following functions

(a)
$$f(x+iy) = \begin{cases} \frac{xy(x+iy)}{x^2+y^2} & \text{if } x+iy \neq 0\\ 0 & \text{if } x+iy = 0 \end{cases}$$

(b)
$$f(x+iy) = \sqrt{|xy|}$$

Show that f satisfies the CR-equations but it is not differentiable at the origin.