```
import numpy as np
import pandas as pd
```

```
df=pd.read_csv('/Railway Traffic in all regions.new.csv')
print(df.columns)
df.head()
```

	Port	Traffic in Eleventh Plan (MT) (2011- 12)Proj.	Traffic in Eleventh Plan (MT) (2011- 12) Ach.	Traffic in Eleventh Plan (MT) (2011- 12) %	Total Capacity in Eleventh Plan (MT) (2011-12) Proj.	Total Capacity in Eleventh Plan (MT) (2011-12) Ach.	Total Capacity in Eleventh Plan (MT) (2011-12)
0	Kolkata	1343	1223	9100	3145	1635	5100
1	Haldia	4450	3101	7000	6340	5070	7900
2	Paradeep	7640	5425	7100	10640	7650	7100
3	Visakhapatnam	8220	6742	8200	10810	7293	6700

#Preprocessing the dataset

#renaming the columns

df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)Proj.':'Traffic_Projected','1
df

	ı	Port	Traffic_Projected	Traffic_Achieved	Traffic in Eleventh Plan (MT) (2011- 12) %	Total_Capacity_P
	0 Ko	kata	1343	1223	9100	
	1 H	aldia	4450	3101	7000	
:	2 Parad	deep	7640	5425	7100	
;	3 Visakhapat	nam	8220	6742	8200	
	/ En	n∩r≙	<i>1</i> 700	1/06	3300	
rna	aring the Cal	culat	tions:			

[#] Perparing the Calculations:

Traffic_Percent = round((df.Traffic_Achieved/df.Traffic_Projected)*100,2)

- 0.11

Traffic_Percent

- 0 91.06 1 69.69 2 71.01 3 82.02 4 31.83 5 96.89 6 88.59 7 52.66 8 67.49 9 87.54
- 10 79.07
- 11 99.56
- 12 95.13

dtype: float64

Total_Percent = round((df.Total_Capacity_Achieved/df.Total_Capacity_Projected)*100,2)
Total_Percent

0 51.99 1 79.97 2 71.90 3 67.47 4 48.29 5 110.26 6 52.11 7 74.85 8 84.25 9 62.63 48.45 10 66.95 11 12 71.12 dtype: float64

```
# Replacing the existing columns with newly created columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12) %':'Traffic_Percent%','Tota]
df.iloc[:,3:4] = Traffic_Percent
df.iloc[:,6:] = Total_Percent
df
```

Port Traffic_Projected Traffic_Achieved Traffic_Percent% Total_Ca

0	Kolkata	1343	1223	91.06
1	Haldia	4450	3101	69.69
2	Paradeep	7640	5425	71.01
3	Visakhapatnam	8220	6742	82.02
4	Ennore	4700	1496	31.83
5	Chennai	5750	5571	96.89
6	Tuticorin	3172	2810	88.59
7	Cochin	3817	2010	52.66
8	NMPT	4881	3294	67.49
9	Mormugao	4455	3900	87.54
10	Mumbai	7105	5618	79.07
11	JNPT	6604	6575	99.56
12	Kandla	8672	8250	95.13
4				•

```
df.shape
```

(13, 7)

Checking for null values

df.isnull().sum()

Port	0
Traffic_Projected	0
Traffic_Achieved	0
Traffic_Percent%	0
Total_Capacity_Projected	0
Total_Capacity_Achieved	0

Total Capacity in Eleventh Plan (MT) (2011-12) %

dtype: int64

Summary of Dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13 entries, 0 to 12
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Port	13 non-null	object
1	Traffic_Projected	13 non-null	int64
2	Traffic_Achieved	13 non-null	int64
3	Traffic_Percent%	13 non-null	float64
4	Total_Capacity_Projected	13 non-null	int64
5	Total_Capacity_Achieved	13 non-null	int64
6	Total Capacity in Eleventh Plan (MT) (2011-12) %	13 non-null	float64

dtypes: float64(2), int64(4), object(1)

memory usage: 856.0+ bytes

df.describe()

Traffic_Projected Traffic_Achieved Traffic_Percent% Total_Capacity_Proj

13.0	13.000000	13.000000	13.000000	count
7705.3	77.887692	4308.846154	5446.846154	mean
2570.2	19.382398	2212.894855	2133.280019	std
3145.0	31.830000	1223.000000	1343.000000	min
6340.0	69.690000	2810.000000	4450.000000	25%
6690.0	82.020000	3900.000000	4881.000000	50%
9560.0	91.060000	5618.000000	7105.000000	75%
12220.0	99.560000	8250.000000	8672.000000	max
•	_			4

#Finding Outliers anr replacing the outliers

import seaborn as sns

sns.boxplot(x='Port',y='Traffic_Projected',data=df)

Check For Categorical Columns and do encoding

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
print(df.Port.value_counts())

df.Port = le.fit_transform(df.Port)
print(df.Port.value_counts())

Kolkata 1 Haldia 1 Paradeep 1 Visakhapatnam 1 Ennore 1 Chennai Tuticorin 1 Cochin 1 **NMPT** 1 1 Mormugao Mumbai 1 JNPT 1 Kandla 1

Name: Port, dtype: int64

9 1 7 1

84151

Name: Port, dtype: int64

Colab paid products - Cancel contracts here

