Title

D. Zack Garza

Monday 21st September, 2020

Contents

 1 Monday, September 21
 1

 1.1 Simple G-modules
 3

1 | Monday, September 21

Let G be a reductive algebraic group scheme, $k = \overline{\mathbb{F}}_p$ with p > 0, equipped with the Frobenius map $F: G \to G$ with F^r its r-fold composition. We defined Frobenius kernels $G_r := \ker F^r$, which are in correspondence with the cocommutative Hopf algebras $\mathrm{Dist}(G_r)$.

Goal: We want to classify simple G_r -modules, and to do this we'll use socles.

We have a maximal torus $T \subseteq G$ and thus $T_r \subseteq G_r$ after acting by Frobenius. This yields a SES

$$0 \to p_r X(T) \to X(T) \to X(T)/p^r X(T) = X(T_r) \to 0.$$

How to think about this: take $\lambda \in X(T_r)$, then we can write $\lambda = \lambda + p^r \sigma$ in $X(T_r)$ for some other weight $\sigma \in X(T)$. We'll define the "baby Verma modules"

$$Z_r(\lambda) := \operatorname{Coind}_{B_r^+}^{G_r} \lambda$$

$$Z'_r(\lambda) := \operatorname{Ind}_{B_r^+}^{G_r} \lambda,$$

and we have dim $Z_r(\lambda) = \dim Z'_r(\lambda) = p^{r|\Phi^+|}$.

Proposition 1.1(?).

Let $\lambda \in X(T)$ be a weight.

- 1. $Z_r(\lambda) \downarrow_{B_r}$ is the projective cover of λ and the injective hull of $\lambda 2(p^r 1)\rho$.
- 2. $Z'_r(\lambda) \downarrow_{B_r^+}$ is the injective hull of λ and the projective cover of $\lambda 2(p^r 1)\rho$.

Note the latter are T_r -modules, so we let U^+ act trivially.

Proof (of 1).

What we need to do:

- 1. Show $Z_r(\lambda) \downarrow_{B_r}$ is projective.
- 2. Show $Z_r(\lambda)$ is the smallest projective module such that $Z_r(\lambda) \twoheadrightarrow \lambda$.

For (1), we can write

$$Dist(G_r) = Dist(U_r^+)Dist(B_r) = Dist(B_r^+)Dist(U_r),$$

and so

$$Z_r(\lambda) = \operatorname{Coind}_{B_r^+}^{G_r} \lambda$$

$$= \left(\operatorname{dist}(G_r) \otimes_{\operatorname{Dist}(B_r)} \lambda\right) \downarrow_{B_r^+}$$

$$= \operatorname{Dist}(U_r^+) \otimes \lambda$$

$$= \operatorname{Dist}(B_r^+) \otimes_{\operatorname{Dist}(T_r)} \lambda$$

$$= \operatorname{Coind}_{T_r}^{B_r^+} \lambda.$$

Why is this projective? Look at cohomology, suffices to show that higher Exts vanish. So consider

$$\operatorname{Ext}_{B_r^+}^n(\operatorname{Coind}_{T_r}^{B_r^+}, M) = \operatorname{Ext}_{T_r}^n(\lambda, M)$$
 by Frobenius reciprocity
$$= 0 \quad \text{for } n > 0.$$

since representations for T_r are completely reducible, and we've used the fact that $\operatorname{Coind}_{T_r}^{B_r^+}(\cdot)$ is exact.

Note: general algebra fact that higher exts vanish for projective modules.

For (2), we can write

$$\begin{aligned} \hom_{B_r^+}(Z_r(\lambda),\mu) &= \hom_{B_r^+}(\operatorname{Coind}_{T_r}^{B_r^+} \lambda,\mu) \\ &= \hom_{T_r}(\lambda,\mu) \quad \text{by Frobenius reciprocity} \\ &= \begin{cases} k \& \lambda = \mu \\ 0 \& \text{else.} \end{cases} \end{aligned}$$

Thus $Z_r(\lambda)/\mathrm{rad}\ Z_r(\lambda) \downarrow B_r^+ = \lambda$.

If we now write $A = \operatorname{Dist}(B_r^+)$ and $\mathfrak{g} = \mathfrak{n}^+ \oplus t \oplus \mathfrak{n}$ with $\mathfrak{b}^+ := \mathfrak{n}^+ \oplus t$,

$$\sum_{S} (\dim P(S))(\dim(S))$$

$$= \sum_{\lambda \in X(T_r)} (\dim Z_r(\lambda))(\dim \lambda)$$

$$= \sum_{\lambda \in X(T_r)} p^{r|\Phi^+|} \cdot 1$$

$$= |X(T_r)|p^{r|\Phi^+|}$$

$$= p^{rn}p^{r|\Phi^+|} \qquad n = \dim t$$

$$= p^{r \dim \mathfrak{b}^+}$$

$$= \dim A$$

1 MONDAY, SEPTEMBER 21

2

1.1 Simple G-modules

We know that after taking fixed points, $Z_r(\lambda)^{U_r}$ and $Z'_r(\lambda)^{U_r^+}$ are one-dimensional, and thus

$$Z_r(\lambda)/\operatorname{rad} Z_r(\lambda) \cong L_r(\lambda)$$
 $\operatorname{Soc}_{G_r} Z'_r(\lambda) = L_r(\lambda)$

following the same argument considering $H_0(\lambda)$.

For any $\lambda \in X(T_r)$ we have $0 \neq L_r = \operatorname{Soc}_{G_r} Z'_r(\lambda)$. By the one-dimensionality above, we know

$$L_r(\mu) = L_r(\lambda) \iff \lambda = \mu \in X(T_r).$$

Letting N be a simple G_r -module, we can consider it as a B_r -module, and the simple B_r -modules are one dimensional and obtained from simple T_r -modules. We then know that for some $\lambda \in X(T_r)$,

$$0 \neq \hom_{B_r}(N, \lambda)$$

$$= \hom_{G_r}(N, \operatorname{Ind}_{B_r}^{G_r} \lambda),$$

which implies that $N \hookrightarrow \operatorname{Ind}_{B_r}^{G_r} \lambda = Z'_r(\lambda)$ as a submodule, and thus $N = L_r(\lambda)$.

Theorem 1.2 (Main Theorem).

Let Λ be a set of representatives of $XX(T)/p^rX(T)\cong X(T_r)$. Then there exists a one-to-one correspondence

$$\Lambda \iff \{L_r(\lambda)\lambda \in \Lambda\},\,$$

where the RHS are simple G_r -modules.

How to think about this: restricted regions. Choose dominant weights as representatives

$$X_r(T) = \left\{ \lambda \in X(T)_+ \mid 0 \le \langle \lambda, \alpha^{\vee} \rangle < p^r \, \forall \alpha \in \Delta \right\}$$
$$= \left\{ \lambda \in X(T)_+ \mid \lambda = \sum_{i=1}^{\ell} n_i w_i, \, 0 \le n_j \le p^r - 1 \, \forall j \right\}$$

Pictures:

Figure 1: Root systems, chambers formed by dominant weights

Figure 2: Restricted regions

Some facts:

If $\lambda \in X(T)_+$, then $L(\lambda)$ is a simple G-module.

Question 1: What happens when we restrict $L(\lambda) \downarrow_{G_r}$?

Answer: This remains irreducible over G_r iff $\lambda \in X_r(T)$, i.e. if $L(\lambda) \downarrow_G \cong L_r(\lambda)$ when $\lambda \in X_r(T)$.

Question 2: Given $L(\lambda)$ for $\lambda \in X(T)_+$, can we express $L(\lambda)$ in terms of simple G_r -modules?

Answer: Yes, can be formulated in terms of Steinberg's twisted tensor product.