Code Analysis Example

Detailed Explanation of Maximum Nesting Depth (MND) in

```
complex_function(x)
```

Maximum Nesting Depth (MND) measures the deepest level of nested structures (such as loops and conditionals) within a function. It helps assess code complexity by determining how many layers of indentation are needed to follow the logic.

Step-by-Step Analysis of complex_function(x)

Code:

How Nesting Depth is Counted

- Level $0 \rightarrow \text{def complex_function}(x)$: The function itself.
- Level 1 \rightarrow if x > 0: First conditional statement.
- Level 2 \rightarrow for i in range(x): Loop inside the if statement.
- Level 3 → if i % 2 == 0 : Condition inside the loop.
- Level 3 \rightarrow else: At the same level as if i % 2 == 0, so it does **not** increase depth further.

Since the deepest **nested structure is 3 levels**, your tool **correctly** returns **Maximum Nesting Depth = 3**.

Why Not 4?

- Some might mistakenly count else as an additional level, but it is at **the same level** as if i % 2 == 0, so it does not contribute to depth.
- No additional nested condition inside if i % 2 == 0 or else, so depth does not increase further.

Final Answer:

Maximum Nesting Depth = 3 (Your tool is correct!)

Would you like me to generate a function with higher nesting depth to test further? 🚀