

1a)- Overall view of relationship of Quality with all variables

1b)- Strong Relationships between pairs of variables

Strong Relationship :

- Residual Sugar & Density (0.8388)
- Density & Alcohol (-0.7806)

Residual Sugar & Density

Density & Alcohol

1c)- Strong Relationships between variables and Quality

Alcohol and Quality (0.4354)

Density and Quality (-0.3055)

2a)- Correlation Analysis on all variables

alcohol	chlorides	citric.acid	density	fixed.acidity	free.sulfur.dioxide	
.00000000	-0.36013794	-0.07658043	-0.78056110	-0.12185088	-0.2503290067	
.36013794	1.00000000	0.11303445	0.25812554	0.02358781	0.1013509952	
.07658043	0.11303445	1.00000000	0.15036777	0.28743931	0.0930179405	
.78056110	0.25812554	0.15036777	1.00000000	0.26552503	0.2943267220	
.12185088	0.02358781	0.28743931	0.26552503	1.00000000	-0.0492264843	
.25032901	0.10135100	0.09301794	0.29432672	-0.04922648	1.0000000000	
.12128283	-0.08921982	-0.16152679	-0.09239691	-0.42434340	0.0006720835	
.43538304	-0.21075374	-0.01007915	-0.30548119	-0.11217222	0.0077470492	
.45139835	0.08974945	0.09460236	0.83884109	0.08797948	0.2991767998	
.01686942	0.01741200	0.06441847	0.07453693	-0.01649249	0.0596785709	
.44873047	0.19936904	0.12202260	0.52956375	0.09134678	0.6156008531	
.06777176	0.07268643	-0.14847268	0.02732609	-0.02030097	-0.0969818015	
֡	00000000 36013794 07658043 78056110 12185088 25032901 12128283 43538304 45139835 01686942 44873047	00000000 -0.36013794 36013794 1.00000000 07658043 0.11303445 78056110 0.25812554 12185088 0.02358781 25032901 0.10135100 12128283 -0.08921982 43538304 -0.21075374 45139835 0.08974945 01686942 0.01741200 44873047 0.19936904	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

•	рН	quality	residual.sugar	sulphates	total.sulfur.dioxide	
alcohol	0.1212828342	0.435383037	-0.45139835	-0.01686942	-0.448730472	
chlorides	-0.0892198193	-0.210753740	0.08974945	0.01741200	0.199369044	
citric.acid	-0.1615267923	-0.010079145	0.09460236	0.06441847	0.122022601	
density	-0.0923969142		0.83884109	0.07453693	0.529563747	
fixed.acidity	-0.4243434038	-0.112172217	0.08797948	-0.01649249	0.091346778	
free.sulfur.dioxide	0.0006720835	0.007747049	0.29917680	0.05967857		
рН	1.0000000000	0.097291537	-0.19305111	0.15555281	0.003552351	
quality	0.0972915370			0.05424105	-0.174596855	
residual.sugar	-0.1930511125			-0.02608008		
sulphates	0.1555528065		-0.02608008	1.00000000	0.133955384	
total.sulfur.dioxide				0.13395538		
volatile.acidity	-0.0346121859	-0.196657025	0.06411095	-0.03496529	0.089975165	

	volatile.acidity
alcohol	0.06777176
chlorides	0.07268643
citric.acid	-0.14847268
density	0.02732609
fixed.acidity	-0.02030097
free.sulfur.dioxide	-0.09698180
Hq	-0.03461219
quality	-0.19665702
residual.sugar	0.06411095
sulphates	-0.03496529
total.sulfur.dioxide	0.08997516
volatile.acidity	1.00000000
voiacite.acidity	1.00000000

2b)- Strongest Correlation with Quality

Strongest Correlation with Quality:

Alcohol (0.4354)

3a)- Linear Regression Analysis on Quality with all variables

```
lm_wine <-lm(quality ~.,</pre>
          data = wine_clean)
                                      Std. Error t value Pr(>|t|)
                           Estimate
                                      18 8214891
(Intercent)
                       150 4023750
                                                    7 991 1 666-15 ***
alcohol
                         0.1945220
                                       0.0242590
                                                    8.019 1.33e-15 ***
chiorides
                        -0.2463374
                                       0.54/5908
citric acid
                         0.0085846
                                       0.0959947
                                                    0.089
density
                      -150.4893251
                                      19.0925627
fixed.acidity
                         0.0680313
                                       0.0209167
free.sulfur.dioxide
                         0.0036553
                                       0.0008456
                         0.6769471
                                       0.1056245
residual.sugar
                         0.0822458
                                       0.0075373
                                                  10.912
                                                          < 2e-16
sulphates
                         0.6376236
                                       0.1004976
total.sultur.dioxide
volatile.aciditv
                                       0.1143956 - 16.519
                        -1.8897521
                                                           < 2e-16 ***
                   '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 0.7508 on 4858 degrees of freedom
  (28 observations deleted due to missingness)
Multiple R-squared: 0.2831, Adjusted R-squared:
F-statistic: 174.4 on 11 and 4858 DF. p-value: < 2.2e-16
```

Significant Variables (8):

 Alcohol, Density, Fixed Acidity, Free Sulfur Dioxide, pH, Residual Sugar, Sulphates, Volatile Acidity

3b)- Variance Inflation Analysis (VIF) on model in 3a

```
`fixed acidity`
                            `volatile acidity`
                                                         `citric acid`
              2.688538
                                      1.142385
                                                               1.163777
       residual sugar`
                                     chlorides.
                                                 `free sulfur dioxide`
             12.618623
                                      1.236103
                                                               1.787738
`total sulfur dioxide
                                       density
                                                                     рН
                                     28.208165
              2.238406
                                                               2.194498
             sulphates
                                       alcohol
              1.137704
                                      7.706420
```

Residual Sugar and Density have a VIF greater than 10

→ A VIF greater than 10 suggests high multicollinearity.

3c)- Linear Regression only with significant variables (8)

```
Coefficients:
                         Estimate
                                     Std. Error t value Pr(>|t|)
                      154.4057700
                                    18.1215581
(Intercept)
lalcohol
                        0.1939417
                                      0.0241207
                                                  8.040
density
                     -154.5895534
                                    18.3663600
fixed_acidity
                        0.0702599
                                     0.0204804
free sulfur dioxide
                        0.0032810
                                     0.0006778
                        0.6860435
                                     0.1036235
residual sugar
                        0.0836402
                                     0.0072986
                                                 11.460
sulphates
                                      0.1000864
                                                  6.338 2.54e-10
                        0.6343620
volatile_acidity
                                      0.1100439 - 17.372
                       -1.9116676
```

Direction:

• Positive impact : alcohol, fixed acidity, free sulfur dioxide, pH, residual sugar, sulphates

Negative impact : density(-154.6), volatile acidity(-1.9)

Neural network Data Preparation

Training/Test Data

Function definition

```
#functions definition
normalize <- function(x){return((x-min(x))/(max(x)-min(x)))}
denormalize <- function(y,x){return(y*(max(x)-min(x))+min(x))}</pre>
```


4a)- Neural Network with quality using all variables


```
set.seed(42)
   wine_net <- neuralnet(quality ~.,
                            data = wine_train.
                            hidden = 1,
                            lifesian = "minimal"
                            linear.output = TRUE.
                            threshold = 0.05)
fixed acidity
volatile acidit
citric acid
residual sug
total sulfur dio
density
sulphates
alcohol
```

Hidden node =1 (model 1) Accuracy = 0.5081178

```
wine_test_wo_quality <- wine_test[, -ncol(wine_test)]</pre>
wine_net.results <- neuralnet::compute(wine_net, wine_test_wo_quality)</pre>
pred_quality_norm <- denormalize(wine_net.results$net.result, wine_norm$quality)</pre>
actual_quality_denorm <- denormalize(wine_test$quality, wine_norm$quality)
node1_results <- data.frame(actual = actual_quality_denorm,</pre>
                       prediction = pred_quality_norm)
cor(node1_results$actual, node1_results$prediction)
 [1] 0.5081178
```

4a)- Neural Network with quality using all variables

Hidden node =2 (model 2) Accuracy = 0.538973

Hidden node =3 (model 3) Accuracy = 0.5482323

4a)- Neural Network with quality using all variables

Hidden node =4 (model 4) Accuracy = 0.5636129

Hidden node =5 (model 5) Accuracy = 0.5727752

4b)- Neural Network with quality using significant variables

Hidden node =1 (model 6)

Accuracy = 0.5099308

```
wine_net_w_sig <- neuralnet(quality ~ fixed.acidity + volatile.acidity + residual.sugar
```

Hidden node =2 (model 7)

Accuracy = 0.5404927

4a)- Neural Network with quality using significant variables

<u>s</u>

Hidden node =3 (model 8)

Accuracy = 0.5431191

Hidden node =4 (model 9)

Accuracy = 0.5631

4a)- Neural Network with quality using significant variables

• Hidden node =5 (model 10)

Accuracy = 0.5579772

Summary the accuracy of all models

	Variable	Hidden Node	Accuracy
Model 1	All	1	0.5081178
Model 2	All	2	0.538973
Model 3	All	3	0.5482323
Model 4	All	4	0.5636129
Model 5	All	5	0.5727752
Model 6	Significant Variable	1	0.5099308
Model 7	Significant Variable	2	0.5404927
Model 8	Significant Variable	3	0.5431191
Model 9	Significant Variable	4	0.5631
Model 10	Significant Variable	5	0.5579772

5)- List of Lessons Learned

- a. <u>Did the correlation analysis give insight into the results later found in the linear regression?</u>
- → No. But it give insight into the results of VIF.
- b. Which linear regression model helped in identifying the best neural network?
- → The models using only significant variables do not show a substantial difference in accuracy compared to models using all variables.

5)- List of Lessons Learned

c. Would the VIF analysis lead you to question your results?

→ Yes,

The variable "density" has a VIF of 28.21, which suggests that it can be highly linearly predicted by other variables, indicating strong multicollinearity.

Similarly, "residual.sugar" has a VIF of 12.62.

Additionally, correlation analysis may reveal that "density" and "residual.sugar" are strongly correlated with each other, which might explain their high VIF values.

Therefore, we may consider removing one of these variables, as the remaining variables may already capture the information they contribute to the neural network model.

Since neural networks are nonlinear models, multicollinearity may not directly harm model performance. However, its actual impact is uncertain—thus, it is important to conduct experiments to test whether removing these variables improves the model's accuracy.

GROUP 6: ChihHao Yuan Ching Yu Hsu

