

Espaces vectoriels

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 *T

Soit E le \mathbb{R} -espace vectoriel des applications de [0,1] dans \mathbb{R} (muni de f+g et $\lambda.f$ usuels) (ne pas hésiter à redémontrer que E est un \mathbb{R} espace vectoriel). Soit F l'ensemble des applications de [0,1] dans \mathbb{R} vérifiant l'une des conditions suivantes :

1)
$$f(0) + f(1) = 0$$
 2) $f(0) = 0$ 3) $f(\frac{1}{2}) = \frac{1}{4}$ 4) $\forall x \in [0, 1], f(x) + f(1 - x) = 0$ 5) $\forall x \in [0, 1], f(x) \ge 0$ 6) $2f(0) = f(1) + 3$

Dans quel cas F est-il un sous-espace vectoriel de E?

Correction ▼ [005164]

Exercice 2 **T

On munit \mathbb{R}^n des lois produit usuelles. Parmi les sous-ensembles suivants F de \mathbb{R}^n , lesquels sont des sous-espaces vectoriels?

1)
$$F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 = 0\}$$
 2) $F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 = 1\}$
3) $F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 = x_2\}$ 4) $F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 + ... + x_n = 0\}$
5) $F = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 ... = 0\}$

Correction ▼ [005165]

Exercice 3 **

Soit E un \mathbb{K} -espace vectoriel. Soient A, B et C trois sous-espaces vectoriels de E vérifiant $A \cap B = A \cap C$, A + B = A + C et $B \subset C$. Montrer que B = C.

Correction ▼ [005166]

Exercice 4 **T

Soit $\mathbb{R}^{\mathbb{N}}$ le \mathbb{R} -espace vectoriel des suites réelles (muni des opérations usuelles). On considère les trois éléments de E suivants : $u = (\cos(n\theta))_{n \in \mathbb{N}}$, $v = (\cos(n\theta + a))_{n \in \mathbb{N}}$ et $w = (\cos(n\theta + b))_{n \in \mathbb{N}}$ où θ , a et b sont des réels donnés. Montrer que (u, v, w) est une famille liée.

Correction ▼ [005167]

Exercice 5 **T

Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par u=(1,2,-5,3) et v=(2,-1,4,7). Déterminer λ et μ réels tels que $(\lambda,\mu,-37,-3)$ appartienne à F.

Correction ▼ [005168]

Exercice 6 **T

Montrer que a=(1,2,3) et b=(2,-1,1) engendrent le même sous espace de \mathbb{R}^3 que c=(1,0,1) et d=(0,1,1).

Correction ▼ [005169]

Exercice 7 **T

- 1. Vérifier qu'il existe une unique application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 vérifiant f((1,0,0))=(1,1) puis f((0,1,0))=(0,1) et f((0,0,1))=(-1,1). Calculer f((3,-1,4)) et f((x,y,z)) en général.
- 2. Déterminer Ker f. En fournir une base. Donner un supplémentaire de Ker f dans \mathbb{R}^3 et vérifier qu'il est isomorphe à Im f.

Correction ▼ [005170

Exercice 8 **I

Soit E un \mathbb{K} -espace vectoriel et f un élément de $\mathcal{L}(E)$.

- 1. Montrer que $[\operatorname{Ker} f = \operatorname{Ker} f^2 \Leftrightarrow \operatorname{Ker} f \cap \operatorname{Im} f = \{0\}]$ et $[\operatorname{Im} f = \operatorname{Im} f^2 \Leftrightarrow E = \operatorname{Ker} f + \operatorname{Im} f]$ (où $f^2 = f \circ f$).
- 2. Par définition, un endomorphisme p de E est un projecteur si et seulement si $p^2 = p$. Montrer que

[p projecteur
$$\Leftrightarrow Id - p$$
 projecteur]

puis que

$$[p \text{ projecteur} \Rightarrow \text{Im} p = \text{Ker}(Id - p) \text{ et } \text{Ker} p = \text{Im}(Id - p) \text{ et } E = \text{Ker} p \oplus \text{Im} p].$$

- 3. Soient p et q deux projecteurs, montrer que : $[\operatorname{Ker} p = \operatorname{Ker} q \Leftrightarrow p = p \circ q \text{ et } q = q \circ p]$.
- 4. p et q étant deux projecteurs vérifiant $p \circ q + q \circ p = 0$, montrer que $p \circ q = q \circ p = 0$. Donner une condition nécessaire et suffisante pour que p + q soit un projecteur lorsque p et q le sont. Dans ce cas, déterminer Im(p+q) et Ker(p+q) en fonction de Kerp, Kerq, Imp et Imq.

Correction ▼ [005171]

Exercice 9 **

Soient E un \mathbb{K} -espace vectoriel et A, B et C trois sous-espaces de E.

- 1. Montrer que : $(A \cap B) + (A \cap C) \subset A \cap (B + C)$.
- 2. A-t-on toujours l'égalité?
- 3. Montrer que : $(A \cap B) + (A \cap C) = A \cap (B + (A \cap C))$.

Correction ▼ [005172]

Exercice 10 **T

Dans $E = \mathbb{R}^4$, on considère $V = \{(x, y, z, t) \in E \mid x - 2y = 0 \text{ et } y - 2z = 0\}$ et $W = \{(x, y, z, t) \in E \mid x + z = y + t\}$.

- 1. Montrer que V et W sont des sous espaces vectoriels de E.
- 2. Donner une base de V, W et $V \cap W$.
- 3. Montrer que E = V + W.

Correction ▼ [005173]

Exercice 11 ***

Soit
$$f: [0, +\infty[\times[0, 2\pi[\rightarrow \mathbb{R}^2 (x,y) \mapsto (x\cos y, x\sin y)]]$$

- 1. *f* est-elle injective? surjective?
- 2. Soient a, b, α et β quatre réels. Montrer qu'il existe $(c, \gamma) \in \mathbb{R}^2$ tel que : $\forall x \in \mathbb{R}$, $a\cos(x \alpha) + b\cos(x \beta) = c\cos(x \gamma)$.
- 3. Soit E le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . Soit $F = \{u \in E / \exists (a, b, \alpha, \beta) \in \mathbb{R}^4 \text{ tel que } \forall x \in \mathbb{R}, \ u(x) = a\cos(x \alpha) + b\cos(2x \beta)\}$. Montrer que F est un sous-espace vectoriel de E.

- 4. Déterminer $\{\cos x, \sin x, \cos(2x), \sin(2x), 1, \cos^2 x, \sin^2 x\} \cap F$.
- 5. Montrer que $(\cos x, \sin x, \cos(2x), \sin(2x))$ est une famille libre de F.

Correction ▼ [005174]

Exercice 12 **

Soit C l'ensemble des applications de \mathbb{R} dans \mathbb{R} , croissantes sur \mathbb{R} .

- 1. C est-il un espace vectoriel (pour les opérations usuelles)?
- 2. Montrer que $V = \{ f \in \mathbb{R}^{\mathbb{R}} / \exists (g,h) \in \mathbb{C}^2 \text{ tel que } f = g h \}$ est un \mathbb{R} -espace vectoriel.

Correction ▼ [005175]

Exercice 13 **

Montrer que la commutativité de la loi + est une conséquence des autres axiomes de la structure d'espace vectoriel.

Correction ▼ [005176]

Exercice 14 ***

Soient E un \mathbb{K} -espace vectoriel et A, B et C trois sous-espaces vectoriels de E. Montrer que

$$(A \cap B) + (B \cap C) + (C \cap A) \subset (A+B) \cap (B+C) \cap (C+A).$$

Correction ▼ [005177]

Exercice 15 **IT

Soient u = (1, 1, ..., 1) et F = Vect(u) puis $G = \{(x_1, ..., x_n) \in \mathbb{R}^n / x_1 + ... + x_n = 0\}$. Montrer que G est un sous-espace vectoriel de \mathbb{R}^n et que $\mathbb{R}^n = F \oplus G$.

Correction ▼ [005178]

Exercice 16 ****

- 1. Soit *n* un entier naturel. Montrer que si *n* n'est pas un carré parfait alors $\sqrt{n} \notin \mathbb{Q}$.
- 2. Soit $E = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}, (a, b, c, d) \in \mathbb{Q}^4\}$. Vérifier que E est un \mathbb{Q} -espace vectoriel puis déterminer une base de E.

Correction ▼ [005179]

Exercice 17 ***T

Dans $E = \mathbb{R}^{\mathbb{R}}$, étudier la liberté des familles suivantes A de vecteurs de E:

- 1. a, b et c étant trois réels donnés, $A = (f_a, f_b, f_c)$ où, pour tout réel $x, f_u(x) = \sin(x + u)$.
- 2. $A = (f_n)_{n \in \mathbb{Z}}$ où, pour tout réel x, $f_n(x) = nx + n^2 + 1$.
- 3. $A = (x \mapsto x^{\alpha})_{\alpha \in \mathbb{R}} \text{ (ici } E = ([0; +\infty[)^2).$
- 4. $A = (x \mapsto |x a|)_{a \in \mathbb{R}}$.

Correction ▼ [005180]

Exercice 18 ****

Soit *E* un \mathbb{K} -espace vectoriel et soit $(u, v) \in (\mathcal{L}(E))^2$.

- 1. Montrer que [Ker $v \subset \text{Ker}u \Leftrightarrow \exists w \in \mathcal{L}(E)/u = w \circ v$].
- 2. En déduire que $[v \text{ injectif} \Leftrightarrow \exists w \in \mathcal{L}(E) / w \circ v = Id_E]$.

Correction ▼ [005181]

Exercice 19 ***

Soit $E = \mathbb{R}[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels.

— Soit $f: E \to E$. f est-elle linéaire, injective, surjective? Fournir un supplémentaire de Kerf. $P \mapsto P'$

— Mêmes questions avec
$$g: E \rightarrow E$$
 . $P \mapsto \int_0^x P(t) \ dt$

Correction ▼ [005182]

1. La fonction nulle est dans F et en particulier, $F \neq \emptyset$. Soient alors $(f,g) \in F^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

$$(\lambda f + \mu g)(0) + (\lambda f + \mu g)(1) = \lambda (f(0) + f(1)) + \mu (g(0) + g(1)) = 0.$$

Par suite, $\lambda f + \mu g$ est dans F. On a montré que :

$$F \neq \emptyset$$
 et $\forall (f,g) \in F^2$, $\forall (\lambda,\mu) \in \mathbb{R}^2$, $\lambda f + \mu g \in F$.

F est donc un sous-espace vectoriel de E.

- 2. Même démarche et même conclusion.
- 3. F ne contient pas la fonction nulle et n'est donc pas un sous-espace vectoriel de E.
- 4. La fonction nulle est dans F et en particulier, $F \neq \emptyset$. Soient alors $(f,g) \in F^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Pour x élément de [0,1],

$$(\lambda f + \mu g)(x) + (\lambda f + \mu g)(1 - x) = \lambda (f(x) + f(1 - x)) + \mu (g(x) + g(1 - x)) = 0$$

et $\lambda f + \mu g$ est dans F. F est un sous-espace vectoriel de E.

Remarque. Les graphes des fonctions considérés sont symétriques par rapport au point $(\frac{1}{2},0)$.

- 5. F contient la fonction constante 1 mais pas son opposé la fonction constante -1 et n'est donc pas un sous-espace vectoriel de E.
- 6. F ne contient pas la fonction nulle et n'est donc pas un sous-espace vectoriel de E.

Correction de l'exercice 2 A

Dans les cas où F est un sous-espace, on a à chaque fois trois démarches possibles pour le vérifier :

- Utiliser la caractérisation d'un sous-espace vectoriel.
- Obtenir *F* comme noyau d'une forme linéaire ou plus généralement, comme noyau d'une application linéaire.
- Obtenir *F* comme sous-espace engendré par une famille de vecteurs.

Je vous détaille une seule fois les trois démarches.

1. **1ère démarche.** F contient le vecteur nul (0,...,0) et donc $F \neq \emptyset$. Soient alors $((x_1,...,x_n),(x'_1,...,x'_n)) \in F^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. On a

$$\lambda(x_1,...,x_n) + \mu(x'_1,...,x'_n) = (\lambda x_1 + \mu x'_1,...,\lambda x_n + \mu x'_n)$$

avec $\lambda x_1 + \mu x_1' = 0$. Donc, $\lambda(x_1, ..., x_n) + \mu(x_1', ..., x_n') \in F$. F est un sous-espace vectoriel de \mathbb{R}^n .

2ème démarche. L'application $(x_1,...,x_n) \mapsto x_1$ est une forme linéaire sur \mathbb{R}^n et F en est lenoyau. F est donc un sous-espace vectoriel de \mathbb{R}^n .

3ème démarche.

$$F = \{(0, x_2, ..., x_n), (x_2, ..., x_n) \in \mathbb{R}^{n-1}\} = \{x_2(0, 1, 0, ..., 0) + ... + x_n(0, ..., 0, 1), (x_2, ..., x_n) \in \mathbb{R}^{n-1}\}$$
$$= \text{Vect}((0, 1, 0, ..., 0), ..., (0, ..., 0, 1)).$$

F est donc un sous-espace vectoriel de \mathbb{R}^n .

- 2. F ne contient pas le vecteur nul et n'est donc pas un sous-espace vectoriel de \mathbb{R}^n .
- 3. (Ici, $n \ge 2$). L'application $(x_1, ..., x_n) \mapsto x_1 x_2$ est une forme linéaire sur \mathbb{R}^n et F en est le noyau. F est donc un sous-espace vectoriel de \mathbb{R}^n .
- 4. L'application $(x_1,...,x_n) \mapsto x_1 + ... + x_n$ est une forme linéaire sur \mathbb{R}^n et F en est le noyau. F est donc un sous-espace vectoriel de \mathbb{R}^n .
- 5. (Ici, $n \ge 2$). Les vecteurs $e_1 = (1,0,...,0)$ et $e_2 = (0,1,0...,0)$ sont dans F mais $e_1 + e_2 = (1,1,0...0)$ n'y est pas. F n'est donc pas un sous espace vectoriel de E.

Remarque. F est la réunion des sous-espaces $\{(x_1,...,x_n) \in \mathbb{R}^n / x_1 = 0\}$ et $\{(x_1,...,x_n) \in \mathbb{R}^n / x_2 = 0\}$.

Correction de l'exercice 3

Il suffit de montrer que $C \subset B$.

Soit x un élément de C. Alors $x \in A + C = A + B$ et il existe $(y,z) \in A \times B$ tel que x = y + z. Mais $z \in B \subset C$ et donc, puisque C est un sous-espace vectoriel de E, y = x - z est dans C. Donc, $y \in A \cap C = A \cap B$ et en particulier y est dans B. Finalement, x = y + z est dans B. On a montré que tout élément de C est dans B et donc que, $C \subset B$. Puisque d'autre part $B \subset C$, on a B = C.

Correction de l'exercice 4 A

Soit $u' = (\sin(n\theta))_{n \in \mathbb{N}}$. On a : u = 1.u + 0.u', puis $v = \cos a.u - \sin a.u'$, puis $w = \cos b.u - \sin b.u'$. Les trois vecteurs u, v et w sont donc combinaisons linéaires des deux vecteurs u et u' et constituent par suite une famille liée (p + 1 combinaisons linéaires de p vecteurs constituent une famille liée).

Correction de l'exercice 5

Soit $(\lambda, \mu) \in \mathbb{R}^2$.

$$(\lambda, \mu, -37, -3) \in F \Leftrightarrow \exists (a,b) \in \mathbb{R}^2 / (\lambda, \mu, -37, -3) = au + bv \Leftrightarrow \exists (a,b) \in \mathbb{R}^2 / \begin{cases} a + 2b = \lambda \\ 2a - b = \mu \\ -5a + 4b = -37 \\ 3a + 7b = -3 \end{cases}$$
$$\Leftrightarrow \exists (a,b) \in \mathbb{R}^2 / \begin{cases} a + 2b = \lambda \\ 2a - b = \mu \\ a = \frac{247}{47} \\ b = -\frac{126}{47} \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{247}{47} + 2(-\frac{126}{47}) \\ \mu = 2\frac{247}{47} + \frac{126}{47} \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{5}{47} \\ \mu = \frac{620}{47} \end{cases}.$$

Correction de l'exercice 6

Posons F = Vect(a, b) et G = Vect(c, d).

Montrons que c et d sont dans F.

$$c \in F \Leftrightarrow \exists (\lambda, \mu) \in \mathbb{R}^2 / c = \lambda a + \mu b \Leftrightarrow \exists (\lambda, \mu) \in \mathbb{R}^2 / \begin{cases} \lambda + 2\mu = 1 \\ 2\lambda - \mu = 0 \\ 3\lambda + \mu = 1 \end{cases} \Leftrightarrow \exists (\lambda, \mu) \in \mathbb{R}^2 / \begin{cases} \lambda = \frac{1}{5} \\ \mu = \frac{2}{5} \\ 3\lambda + \mu = 1 \end{cases}.$$

Puisque $3.\frac{1}{5} + \frac{2}{5} = 1$, le système précédent admet bien un couple (λ, μ) solution et c est dans F. Plus précisément, $c = \frac{1}{5}a + \frac{2}{5}b$.

$$d \in F \Leftrightarrow \exists (\lambda, \mu) \in \mathbb{R}^2 / d = \lambda a + \mu b \Leftrightarrow \exists (\lambda, \mu) \in \mathbb{R}^2 / \begin{cases} \lambda + 2\mu = 0 \\ 2\lambda - \mu = 1 \\ 3\lambda + \mu = 1 \end{cases} \Leftrightarrow \exists (\lambda, \mu) \in \mathbb{R}^2 / \begin{cases} \lambda = \frac{2}{5} \\ \mu = -\frac{1}{5} \\ 3\lambda + \mu = 1 \end{cases}.$$

Puisque $3.\frac{2}{5} - \frac{1}{5} = 1$, le système précédent admet bien un couple (λ, μ) solution et d est dans F. Plus précisément, $d = \frac{2}{5}a - \frac{1}{5}b$. En résumé, $\{c,d\} \subset F$ et donc $G = \text{Vect}(c,d) \subset F$.

Montrons que a et b sont dans G mais les égalités $c = \frac{1}{5}a + \frac{2}{5}b$ et $d = \frac{2}{5}a - \frac{1}{5}b$ fournissent a = c + 2d et b = 2c - d. Par suite, $\{a,b\} \subset G$ et donc $F = \text{Vect}(a,b) \subset G$. Finalement F = G.

Correction de l'exercice 7

1. Si f existe alors nécessairement, pour tout $(x, y, z) \in \mathbb{R}^3$:

$$f((x,y,z)) = xf((1,0,0)) + yf((0,1,0)) + zf((0,0,1)) = x(1,1) + y(0,1) + z(-1,1) = (x-z,x+y+z).$$

On en déduit l'unicité de f.

Réciproquement, f ainsi définie vérifie bien les trois égalités de l'énoncé. Il reste donc à se convaincre que f est linéaire.

Soient $((x, y, z), (x', y', z')) \in (\mathbb{R}^3)^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$f(\lambda(x,y,z) + \mu(x',y',z')) = f((\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z'))$$

$$= ((\lambda x + \mu x') - (\lambda z + \mu z'), (\lambda x + \mu x') + (\lambda y + \mu y') + (\lambda z + \mu z'))$$

$$= \lambda (x - z, x + y + z) + \mu (x' - z', x' + y' + z')$$

$$= \lambda f((x,y,z)) + \mu f((x',y',z')).$$

f est donc linéaire et convient. On en déduit l'existence de f. On a alors f((3,-1,4)) = (3-4,3-1+4) = (-1,6).

Remarque. La démonstration de la linéarité de f ci-dessus est en fait superflue car le cours donne l'expression générale d'une application linéaire de \mathbb{R}^n dans \mathbb{R}^p .

2. Détermination de Ker f.

Soit $(x, y, z) \in \mathbb{R}^3$.

$$(x,y,z) \in \mathbb{R}^3 \Leftrightarrow f((x,y,z)) = (0,0) \Leftrightarrow (x-z,x+y+z) = (0,0) \Leftrightarrow \begin{cases} x-z=0 \\ x+y+z=0 \end{cases} \Leftrightarrow \begin{cases} z=x \\ y=-2x \end{cases}$$

Donc, $\operatorname{Ker} f = \{(x, -2x, x), \ x \in \mathbb{R}\} = \{x(1, -2, 1), \ x \in \mathbb{R}\} = \operatorname{Vect}((1, -2, 1))$. La famille ((1, -2, 1)) engendre $\operatorname{Ker} f$ et est libre. Donc, la famille ((1, -2, 1)) est une base de $\operatorname{Ker} f$. Détermination de $\operatorname{Im} f$. Soit $(x', y') \in \mathbb{R}^2$.

$$(x',y') \in \operatorname{Im} f \Leftrightarrow \exists (x,y,z) \in \mathbb{R}^3 / f((x,y,z)) = (x',y')$$

$$\Leftrightarrow \exists (x,y,z) \in \mathbb{R}^3 / \left\{ \begin{array}{l} x-z=x' \\ x+y+z=y' \end{array} \Leftrightarrow \exists (x,y,z) \in \mathbb{R}^3 / \left\{ \begin{array}{l} z=x-x' \\ y=-2x+x'+y' \end{array} \right.$$

$$\Leftrightarrow \text{le système d'inconnue } (x,y,z) : \left\{ \begin{array}{l} z=x-x' \\ y=-2x+x'+y' \end{array} \right. \text{a au moins une solution.}$$

Or, le triplet (0, x' + y', -x') est solution et le système proposé admet une solution. Par suite, tout (x', y') de \mathbb{R}^2 est dans Imf et finalement, Im $f = \mathbb{R}^2$.

Détermination d'un supplémentaire de Kerf.

Posons $e_1 = (1, -2, 1)$, $e_2 = (1, 0, 0)$ et $e_3 = (0, 1, 0)$ puis $F = \text{Vect}(e_2, e_3)$ et montrons que $\mathbb{R}^3 = \text{Ker } f \oplus F$.

Tout d'abord, $\operatorname{Ker} f \cap F = \{0\}$. En effet :

$$(x,y,z) \in \operatorname{Ker} f \cap F \Leftrightarrow \exists (a,b,c) \in \mathbb{R}^3 / (x,y,z) = ae_1 = be_2 + ce_3$$

$$\Leftrightarrow \exists (a,b,c) \in \mathbb{R}^3 / \begin{cases} x = a = b \\ y = -2a = c \Leftrightarrow x = y = z = 0 \\ z = a = 0 \end{cases}$$

Vérifions ensuite que $\operatorname{Ker} f + F = \mathbb{R}^3$.

$$(x,y,z) \in \operatorname{Ker} f + F \Leftrightarrow \exists (a,b,c) \in \mathbb{R}^3 / (x,y,z) = ae_1 + be_2 + ce_3$$

$$\Leftrightarrow \exists (a,b,c) \in \mathbb{R}^3 / \begin{cases} a+b=x \\ -2a+c=y \\ a=z \end{cases} \Leftrightarrow \exists (a,b,c) \in \mathbb{R}^3 / \begin{cases} a=z \\ b=x-z \\ c=y+2z \end{cases}$$

Le système précédent (d'inconnue (a,b,c)) admet donc toujours une solution et on a montré que $\mathbb{R}^3 = \operatorname{Ker} f + F$. Finalement, $\mathbb{R}^3 = \operatorname{Ker} f \oplus F$ et F est un supplémentaire de $\operatorname{Ker} f$ dans \mathbb{R}^3 .

Vérifions enfin que F est isomorphe à $\mathrm{Im} f$. Mais, $F = \{(x,y,0),\,(x,y) \in \mathbb{R}^2\}$ et $\varphi: F \to \mathbb{R}^2$ $(x,y,0) \mapsto (x,y)$

est clairement un isomorphisme de F sur $\operatorname{Im} f (= \mathbb{R}^2)$.

Correction de l'exercice 8 A

1. On a toujours $\operatorname{Ker} f \subset \operatorname{Ker} f^2$.

En effet, si x est un vecteur de Kerf, alors $f^2(x) = f(f(x)) = f(0) = 0$ (car f est linéaire) et x est dans Ker f^2 .

Montrons alors que : $[\operatorname{Ker} f = \operatorname{Ker} f^2 \Leftrightarrow \operatorname{Ker} f \cap \operatorname{Im} f = \{0\}]$. Supposons que $\operatorname{Ker} f = \operatorname{Ker} f^2$ et montrons que $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$.

Soit $x \in \text{Ker} f \cap \text{Im} f$. Alors, d'une part f(x) = 0 et d'autre part, il existe y élément de E tel que x = f(y). Mais alors, $f^2(y) = f(x) = 0$ et $y \in \text{Ker} f^2 = \text{Ker} f$. Donc, x = f(y) = 0. On a montré que $\text{Ker} f = \text{Ker} f \cap \text{Im} f = \{0\}$.

Supposons que $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$ et montrons que $\operatorname{Ker} f = \operatorname{Ker} f^2$.

Soit $x \in \operatorname{Ker} f^2$. Alors f(f(x)) = 0 et donc $f(x) \in \operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$. Donc, f(x) = 0 et x est dans $\operatorname{Ker} f$. On a ainsi montré que $\operatorname{Ker} f^2 \subset \operatorname{Ker} f$ et, puisque l'on a toujours $\operatorname{Ker} f \subset \operatorname{Ker} f^2$, on a finalement $\operatorname{Ker} f = \operatorname{Ker} f^2$. On a montré que $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\} \Rightarrow \operatorname{Ker} f = \operatorname{Ker} f^2$.

On a toujours $\mathrm{Im} f^2 \subset \mathrm{Im} f$. En effet : $y \in \mathrm{Im} f^2 \Rightarrow \exists x \in E / y = f^2(x) = f(f(x)) \Rightarrow y \in \mathrm{Im} f$.

Supposons que $\operatorname{Im} f = \operatorname{Im} f^2$ et montrons que $\operatorname{Ker} f + \operatorname{Im} f = E$. Soit $x \in E$. Puisque $f(x) \in \operatorname{Im} f = \operatorname{Im} f^2$, il existe $t \in E$ tel que $f(x) = f^2(t)$. Soit alors z = f(t) et y = x - f(t). On a bien x = y + z et $z \in \operatorname{Im} f$. De plus, f(y) = f(x) - f(f(t)) = 0 et y est bien élément de $\operatorname{Ker} f$. On a donc montré que $E = \operatorname{Ker} f + \operatorname{Im} f$. Supposons que $\operatorname{Ker} f + \operatorname{Im} f = E$ et montrons que $\operatorname{Im} f = \operatorname{Im} f^2$.

Soit $x \in E$. Il existe $(y,z) \in \operatorname{Ker} f \times \operatorname{Im} f$ tel que x = y + z. Mais alors $f(x) = f(z) \in \operatorname{Im} f^2$ car z est dans $\operatorname{Im} f$. Ainsi, pour tout x de E, f(x) est dans $\operatorname{Im} f^2$ ce qui montre que $\operatorname{Im} f \subset \operatorname{Im} f^2$ et comme on a toujours $\operatorname{Im} f^2 \subset \operatorname{Im} f$, on a montré que $\operatorname{Im} f = \operatorname{Im} f^2$.

2. Id - p projecteur $\Leftrightarrow (Id - p)^2 = Id - p \Leftrightarrow Id - 2p + p^2 = Id - p \Leftrightarrow p^2 = p \Leftrightarrow p$ projecteur. Soit x un élément de E. $x \in \text{Im}p \Rightarrow \exists y \in E/x = p(y)$. Mais alors $p(x) = p^2(y) = p(y) = x$. Donc, $\forall x \in E$, $(x \in \text{Im}p \Rightarrow p(x) = x)$.

Réciproquement, si p(x) = x alors bien sûr, x est dans Imp.

Finalement, pour tout vecteur x de E, $x \in \text{Im} p \Leftrightarrow p(x) = x \Leftrightarrow (Id - p)(x) = 0 \Leftrightarrow x \in \text{Ker}(Id - p)$. On a montré que Im p = Ker(Id - p).

En appliquant ce qui précède à Id-p qui est également un projecteur, on obtient Im(Id-p)=Ker(Id-(Id-p))=Kerp.

Enfin, puisque $p^2 = p$ et donc en particulier que $\operatorname{Ker} p = \operatorname{Ker} p^2$ et $\operatorname{Im} p = \operatorname{Im} p^2$, le 1) montre que $E = \operatorname{Ker} p \oplus \operatorname{Im} p$.

3.

$$\begin{aligned} p &= p \circ q \text{ et } q = q \circ p \Leftrightarrow p \circ (Id - q) = 0 \text{ et } q \circ (Id - p) = 0 \Leftrightarrow \operatorname{Im}(Id - q) \subset \operatorname{Ker} p \text{ et } \operatorname{Im}(Id - p) \subset \operatorname{Ker} q \\ &\Leftrightarrow \operatorname{Ker} q \subset \operatorname{Ker} p \text{ et } \operatorname{Ker} p \subset \operatorname{Ker} q \text{ (d'après 2))} \\ &\Leftrightarrow \operatorname{Ker} p = \operatorname{Ker} q. \end{aligned}$$

4. $p \circ q + q \circ p = 0 \Rightarrow p \circ q = (p \circ p) \circ q = p \circ (p \circ q) = -p \circ (q \circ p)$ et de même, $q \circ p = q \circ p \circ p = -p \circ q \circ p$. En particulier, $p \circ q = q \circ p$ et donc $0 = p \circ q + q \circ p = 2p \circ q = 2q \circ p$ puis $p \circ q = q \circ p = 0$. La réciproque est immédiate.

p+q projecteur $\Leftrightarrow (p+q)^2 = p+q \Leftrightarrow p^2+pq+qp+q^2 = p+q \Leftrightarrow pq+qp=0 \Leftrightarrow pq=qp=0$ (d'après ci-dessus). Ensuite, $\operatorname{Im}(p+q) = \{p(x)+q(x), \ x \in E\} \subset \{p(x)+q(y), \ (x,y) \in E^2\} = \operatorname{Im} p + \operatorname{Im} q$.

Réciproquement, soit z un élément de Imp + Imq. Il existe deux vecteurs x et y de E tels que z = p(x) + q(y). Mais alors, $p(z) = p^2(x) + pq(y) = p(x)$ et $q(z) = qp(x) + q^2(y) = q(y)$ et donc

$$z = p(x) + p(y) = p(z) + q(z) = (p+q)(z) \in \text{Im}(p+q).$$

Donc, $\operatorname{Im} p + \operatorname{Im} q \subset \operatorname{Im}(p+q)$ et finalement, $\operatorname{Im}(p+q) = \operatorname{Im} p + \operatorname{Im} q$.

$$\operatorname{Ker} p \cap \operatorname{Ker} q = \{x \in E \mid p(x) = q(x) = 0\} \subset \{x \in E \mid p(x) + q(x) = 0\} = \operatorname{Ker} (p + q).$$

Réciproquement, si x est élément de $\operatorname{Ker}(p+q)$ alors p(x)+q(x)=0. Par suite, $p(x)=p^2(x)+pq(x)=p(p(x)+q(x))=p(0)=0$ et $q(x)=qp(x)+q^2(x)=q(0)=0$. Donc, p(x)=q(x)=0 et $x\in\operatorname{Ker} p\cap\operatorname{Ker} q$. Finalement, $\operatorname{Ker}(p+q)=\operatorname{Ker} p\cap\operatorname{Ker} q$.

Correction de l'exercice 9 ▲

1. Soit $x \in E$.

$$x \in (A \cap B) + (A \cap C) \Rightarrow \exists y \in A \cap B, \exists z \in A \cap C / x = y + z.$$

y et z sont dans A et donc x = y + z est dans A car A est un sous-espace vectoriel de E.

Puis y est dans B et z est dans C et donc x = y + z est dans B + C. Finalement,

$$\forall x \in E, [x \in (A \cap B) + (A \cap C) \Rightarrow x \in A \cap (B + C)].$$

Autre démarche.

 $(A \cap B \subset B \text{ et } A \cap C \subset C) \Rightarrow (A \cap B) + (A \cap C) \subset B + C \text{ puis } (A \cap B \subset A \text{ et } A \cap C \subset A \Rightarrow (A \cap B) + (A \cap C) \subset A + A = A, \text{ et finalement } (A \cap B) + (A \cap C) \subset A \cap (B + C).$

2. Si on essaie de démontrer l'inclusion contraire, le raisonnement coince car la somme y + z peut être dans A sans que ni y, ni z ne soient dans A.

Contre-exemple. Dans \mathbb{R}^2 , on considère $A = \mathbb{R}.(1,0) = \{(x,0), x \in \mathbb{R}\}$, $B = \mathbb{R}.(0,1)$ et $C = \mathbb{R}.(1,1)$. $B + C = \mathbb{R}^2$ et $A \cap (B + C) = A$ mais $A \cap B = \{0\}$ et $A \cap C = \{0\}$ et donc $(A \cap B) + (A \cap C) = \{0\} \neq A \cap (B + C)$.

3. $A \cap B \subset B \Rightarrow (A \cap B) + (A \cap C) \subset B + (A \cap C)$ mais aussi $(A \cap B) + (A \cap C) \subset A + A = A$. Donc, $(A \cap B) + (A \cap C) \subset A \cap (B + (A \cap C))$.

Inversement, soit $x \in A \cap (B + (A \cap C))$ alors x = y + z où y est dans B et z est dans $A \cap C$. Mais alors, x et z sont dans A et donc y = x - z est dans A et même plus précisément dans $A \cap B$. Donc, $x \in (A \cap B) + (A \cap C)$. Donc, $A \cap (B + (A \cap C)) \subset (A \cap B) + (A \cap C)$ et finalement, $A \cap (B + (A \cap C)) = (A \cap B) + (A \cap C)$.

Correction de l'exercice 10 ▲

- 1. Pour $(x, y, z, t) \in \mathbb{R}^4$, on pose f((x, y, z, t)) = x 2y, g((x, y, z, t)) = y 2z et h((x, y, z, t)) = x y + z t. f, g et h sont des formes linéaires sur \mathbb{R}^4 . Donc, $V = \text{Ker } f \cap \text{Ker } g$ est un sous-espace vectoriel de \mathbb{R}^4 en tant qu'intersection de sous-espaces vectoriels de \mathbb{R}^4 et W = Ker h est un sous-espace vectoriel de \mathbb{R}^4 .
- 2. Soit $(x, y, z, t) \in \mathbb{R}^4$.

$$(x,y,z,t) \in V \Leftrightarrow \left\{ \begin{array}{l} x=2y \\ y=2z \end{array} \right. \Leftrightarrow \Leftrightarrow \left\{ \begin{array}{l} x=4z \\ y=2z \end{array} \right.$$

Donc, $V = \{(4z, 2z, z, t), (z, t) \in \mathbb{R}^2\} = \text{Vect}(e_1, e_2)$ où $e_1 = (4, 2, 1, 0)$ et $e_2 = (0, 0, 0, 1)$. Montrons alors que (e_1, e_2) est libre. Soit $(z, t) \in \mathbb{R}^2$.

$$ze_1 + te_2 = 0 \Rightarrow (4z, 2z, z, t) = (0, 0, 0, 0) \Rightarrow z = t = 0.$$

Donc, (e_1, e_2) est une base de V.

Pour $(x,y,z,t) \in \mathbb{R}^4$, $(x,y,z,t) \in W \Leftrightarrow t = x - y + z$. Donc, $W = \{(x,y,z,x-y+z), (x,y,z) \in \mathbb{R}^3\} = x + y + z$. $Vect(e'_1, e'_2, e'_3)$ où $e'_1 = (1, 0, 0, 1), e'_2 = (0, 1, 0, -1)$ et $e'_3 = (0, 0, 1, 1)$.

Montrons alors que (e'_1, e'_2, e'_3) est libre. Soit $(x, y, z) \in \mathbb{R}^3$.

$$xe'_1 + ye'_2 + ze'_3 = 0 \Rightarrow (x, y, z, x - y + z) = (0, 0, 0, 0) \Rightarrow x = y = z = 0.$$

Donc, (e'_1, e'_2, e'_3) est une base de W. Soit $(x, y, z, t) \in \mathbb{R}^4$.

$$(x,y,z,t) \in V \cap W \Leftrightarrow \left\{ \begin{array}{l} x = 2y \\ y = 2z \\ x - y + z - t = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 4z \\ y = 2z \\ t = 3z \end{array} \right.$$

Donc, $V \cap W = \{(4z, 2z, z, 3z), z \in \mathbb{R}\} = \text{Vect}(e)$ où e = (4, 2, 1, 3). De plus, e étant non nul, la famille (e) est libre et est donc une base de $V \cap W$.

3. Soit u = (x, y, z, t) un vecteur de \mathbb{R}^4 .

On cherche $v = (4\alpha, 2\alpha, \alpha, \beta) \in V$ et $w = (a, b, c, a - b + c) \in W$ tels que u = v + w.

$$u = v + w \Leftrightarrow \begin{cases} 4\alpha + a = x \\ 2\alpha + b = y \\ \alpha + c = z \\ \beta + a - b + c = t \end{cases} \Leftrightarrow \begin{cases} a = x - 4\alpha \\ b = y - 2\alpha \\ c = z - \alpha \\ \beta = -x + y - z + t - 3\alpha \end{cases}.$$

et $\alpha = 0$, $\beta = -x + y - z + t$, a = x, b = y et c = z conviennent. Donc, $\forall u \in \mathbb{R}^4$, $\exists (v, w) \in V \times W / u = z$ v + w. On a montré que $\mathbb{R}^4 = V + W$.

Correction de l'exercice 11 A

1. Pour tout (y, y') élément de $[0, 2\pi]^2$, f((0, y)) = f((0, y')) et f n'est pas injective.

Montrons que f est surjective.

Soit $(X,Y) \in \mathbb{R}^2$.

- Si X = Y = 0, f((0,0)) = (0,0).
- Si X = 0 et Y > 0, $f((Y, \frac{\pi}{2})) = (0, Y)$ avec $(Y, \frac{\pi}{2})$ élément de $[0, +\infty[\times [0, 2\pi[$.
- Si X = 0 et Y < 0, $f((-Y, \frac{3\pi}{2})) = (0, Y)$ avec $(-Y, \frac{3\pi}{2})$ élément de $[0, +\infty[\times [0, 2\pi[$ Si X > 0 et $Y \geqslant 0$, $f((\sqrt{X^2 + Y^2}, \arctan \frac{Y}{X})) = (X, Y)$ avec $(\sqrt{X^2 + Y^2}, \arctan \frac{Y}{X})$ élément de $[0,+\infty[\times[0,2\pi[.$
- Si X < 0 et $Y \ge 0$, $f((\sqrt{X^2 + Y^2}, \pi + \arctan \frac{Y}{X})) = (X, Y)$ avec $(\sqrt{X^2 + Y^2}, \pi + \arctan \frac{Y}{X})$ élément de $[0,+\infty[\times[0,2\pi[$.
- Si X > 0 et Y < 0, $f((\sqrt{X^2 + Y^2}, 2\pi + \arctan \frac{Y}{X})) = (X, Y)$ avec $(\sqrt{X^2 + Y^2}, 2\pi + \arctan \frac{Y}{X})$ élément de $[0, +\infty[\times[0, 2\pi[$.
- Si X < 0 et Y < 0, $f((\sqrt{X^2 + Y^2}, \pi + \arctan \frac{Y}{X})) = (X, Y)$ avec $(\sqrt{X^2 + Y^2}, \pi + \arctan \frac{Y}{X})$ élément de $[0,+\infty[\times[0,2\pi[$.
- 2. Pour tout réel x, on a $a\cos(x-\alpha) + b\cos(x-\beta) = (a\cos\alpha + b\cos\beta)\cos x + (a\sin\alpha + b\sin\beta)\sin x$. D'après 1), f est surjective et il existe (c, γ) élément de $[0, +\infty[\times [0, 2\pi[$ tel que $a\cos\alpha + b\cos\beta = c\cos\gamma]$ et $a \sin \alpha + b \sin \beta = c \sin \gamma$. Donc,

$$\exists (c, \gamma) \in [0, +\infty[\times[0, 2\pi[/\forall x \in \mathbb{R}, a\cos(x-\alpha) + b\cos(x-\beta)] = c(\cos x \cos \gamma + \sin x \sin \gamma) = c\cos(x-\gamma).$$

3. F est non vide car contient l'application nulle et est contenu dans E. De plus, pour x réel,

$$a\cos(x-\alpha) + b\cos(2x-\beta) + a'\cos(x-\alpha') + b'\cos(2x-\beta') = a\cos(x-\alpha) + a'\cos(x-\alpha') + b\cos(2x-\beta) + b'\cos(2x-\beta') = a''\cos(x-\alpha'') + b''\cos(2x-\beta''),$$

pour un certain $(a', b'', \alpha'', \beta'')$ (d'après 2)). F est un sous-espace vectoriel de E.

4. Pour tout réel x, $\cos x = 1 \cdot \cos(x - 0) + 0 \cdot \cos(2x - 0)$ et $x \mapsto \cos x$ est élément de F.

Pour tout réel x, $\sin x = 1.\cos(x - \frac{\pi}{2}) + 0.\cos(2x - 0)$ et $x \mapsto \sin x$ est élément de F.

Pour tout réel x, $\cos(2x) = 0$. $\cos(x-0) + 1$. $\cos(2x-0)$ et $x \mapsto \cos(2x)$ est élément de F.

Pour tout réel x, $\sin(2x) = 0$. $\cos(x-0) + 1$. $\cos(2x - \frac{\pi}{2})$ et $x \mapsto \sin(2x)$ est élément de F.

D'autre part, pour tout réel x, $cos(2x) = 2cos^2x - 1 = 1 - 2sin^2x$ et donc,

$$x \mapsto 1 \in F \Leftrightarrow x \mapsto \cos^2 x \in F \Leftrightarrow x \mapsto \sin^2 x \in F$$
.

Montrons alors que $1 \notin F$.

On suppose qu'il existe $(a, b, \alpha, \beta) \in \mathbb{R}^4$ tel que

$$\forall x \in \mathbb{R}, \ a\cos(x-\alpha) + b\cos(2x-\beta) = 1.$$

En dérivant deux fois, on obtient :

$$\forall x \in \mathbb{R}, -a\cos(x-\alpha) - 4b\cos(2x-\beta) = 0,$$

et donc en additionnant

$$\forall x \in \mathbb{R}, -3b\cos(2x-\beta) = 1,$$

ce qui est impossible (pour $x = \frac{\pi}{4} + \frac{\beta}{2}$, on trouve 0). Donc, aucune des trois dernières fonctions n'est dans F.

5. On a vu que $(x \mapsto \cos x, x \mapsto \sin x, x \mapsto \cos(2x), x \mapsto \sin(2x))$ est une famille d'éléments de F. Montrons que cette famille est libre.

Soit $(a,b,c,d) \in \mathbb{R}^4$.

Supposons que $\forall x \in \mathbb{R}$, $a\cos x + b\sin x + c\cos(2x) + d\sin(2x) = 0$. En dérivant deux fois, on obtient $\forall x \in \mathbb{R}$, $-a\cos x - b\sin x - 4c\cos(2x) - 4d\sin(2x) = 0$ et en additionnant : $\forall x \in \mathbb{R}$, $-3c\cos(2x) - 3d\sin(2x) = 0$. Donc,

$$\forall x \in \mathbb{R}, \begin{cases} a\cos x + b\sin x = 0\\ c\cos(2x) + d\sin(2x) = 0 \end{cases}.$$

x=0 fournit a=c=0 puis $x=\frac{\pi}{4}$ fournit b=d=0. Donc, $(x\mapsto\cos x,\,x\mapsto\sin x,\,x\mapsto\cos(2x),\,x\mapsto\sin(2x))$ est une famille libre d'éléments de F.

Correction de l'exercice 12 A

- 1. C contient l'identité de \mathbb{R} , mais ne contient pas son opposé. Donc, C n'est pas un espace vectoriel.
- 2. Montrons que V est un sous-espace vectoriel de l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . V est déjà non vide car contient la fonction nulle (0 = 0 0).

Soit $(f_1, f_2) \in V^2$. Il existe $(g_1, g_2, h_1, h_2) \in C^4$ tel que $f_1 = g_1 - h_1$ et $f_2 = g_2 - h_2$. Mais alors, $f_1 + f_2 = (g_1 + g_2) - (h_1 + h_2)$. Or, une somme de fonctions croissantes sur \mathbb{R} est croissante sur \mathbb{R} , et donc, $g_1 + g_2$ et $h_1 + h_2$ sont des éléments de C ou encore $f_1 + f_2$ est dans V.

Soit $f \in V$ et $\lambda \in \mathbb{R}$. Il existe $(g,h) \in V^2$ tel que f = g - h et donc $\lambda f = \lambda g - \lambda h$.

Si $\lambda \geqslant 0$, λg et λh sont croissantes sur \mathbb{R} et λf est dans V.

Si $\lambda < 0$, on écrit $\lambda f = (-\lambda h) - (-\lambda g)$, et puisque $-\lambda g$ et $-\lambda h$ sont croissantes sur \mathbb{R} , λf est encore dans V. V est donc un sous-espace vectoriel de l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} .

Correction de l'exercice 13 ▲

Soit $(x, y) \in E^2$.

$$(1+1).(x+y) = 1.(x+y) + 1.(x+y) = (x+y) + (x+y) = x+y+x+y$$
 mais aussi $(1+1).(x+y) = (1+1).x+(1+1).y = x+x+y+y$.

Enfin, (E, +) étant un groupe, tout élément est régulier et en particulier x est régulier à gauche et y est régulier à droite. On a montré que pour tout couple (x, y) élément de E^2 , x + y = y + x.

Correction de l'exercice 14 ▲

Soit $F = (A \cap B) + (A \cap C) + (B \cap C)$.

 $F \subset A + A + B = A + B$ puis $F \subset A + C + C = A + C$ puis $F \subset B + C + C = B + C$ et finalement $F \subset (A + B) \cap (A + C) \cap (B + C)$.

Correction de l'exercice 15 ▲

F = Vect(u) est un sous espace vectoriel de \mathbb{R}^n et G est un sous espace vectoriel de \mathbb{R}^n , car est le noyau de la forme linéaire $(x_1, ..., x_n) \mapsto x_1 + ... + x_n$.

Soit $x = (x_1, ..., x_n) \in \mathbb{R}^n$ et soit $\lambda \in \mathbb{R}$.

$$x - \lambda u \in G \Leftrightarrow (x_1 - \lambda, ..., x_n - \lambda) \in G \Leftrightarrow \sum_{k=1}^n (x_k - \lambda) = 0 \Leftrightarrow \lambda = \frac{1}{n} \sum_{k=1}^n x_k.$$

Donc,

$$\forall x \in \mathbb{R}^n, \ \exists ! \lambda \in \mathbb{R} / x - \lambda u \in G,$$

et donc,

$$\mathbb{R}^n = F \oplus G$$
.

Le projeté sur F parallèlement à G d'un vecteur $x = (x_1, ..., x_n)$ est

$$\frac{1}{n}\sum_{k=1}^{n}x_{k}.u = (\frac{1}{n}\sum_{k=1}^{n}x_{k},...,\frac{1}{n}\sum_{k=1}^{n}x_{k})$$

et le projeté du même vecteur sur G parallèlement à F est

$$x - (\frac{1}{n} \sum_{k=1}^{n} x_k).u = (x_1 - \frac{1}{n} \sum_{k=1}^{n} x_k, ..., x_n - \frac{1}{n} \sum_{k=1}^{n} x_k).$$

Correction de l'exercice 16

1. Soit *n* un entier naturel supèrieur ou égal à 2.

Si $\sqrt{n} \in \mathbb{Q}$, il existe $(a,b) \in (\mathbb{N}^*)^2$ tel que $\sqrt{n} = \frac{a}{b}$ ou encore tel que $n.b^2 = a^2$. Mais alors, par unicité de la décomposition d'un entier naturel supèrieur ou égal à 2 en facteurs premiers, tous les facteurs premiers de n ont un exposant pair ce qui signifie exactement que n est un carré parfait.

Si n=0 ou $n=1, \sqrt{n} \in \mathbb{Q}$ et n est d'autre part un carré parfait. On a montré que :

$$\forall n \in \mathbb{N}, (\sqrt{n} \in \mathbb{Q} \Rightarrow n \text{ est un carr\'e parfait})$$

ou encore par contraposition

 $\forall n \in \mathbb{N}, (n \text{ n'est pas un carr\'e parfait} \Rightarrow \sqrt{n} \notin \mathbb{Q}).$

2. D'après 1), $\sqrt{2}$, $\sqrt{3}$ et $\sqrt{6}$ sont irrationnels.

 $E = \text{Vect}_{\mathbb{Q}}(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ et donc, E est un \mathbb{Q} -espace vectoriel et $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ en est une famille génératrice.

Montrons que cette famille est Q-libre.

Soit $(a,b,c,d) \in \mathbb{Q}^4$.

$$a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = 0 \Rightarrow (a + d\sqrt{6})^2 = (-b\sqrt{2} - c\sqrt{3})^2 \Rightarrow a^2 + 2ad\sqrt{6} + 6d^2 = 2b^2 + 2bc\sqrt{6} + 3c^2$$
$$\Rightarrow a^2 - 2b^2 - 3c^2 + 6d^2 = 2(-ad + bc)\sqrt{6}$$

Puisque $\sqrt{6} \notin \mathbb{Q}$, on obtient $a^2 - 2b^2 - 3c^2 + 6d^2 = 2(-ad + bc) = 0$ (car si $bc - ad \neq 0$, $\sqrt{6} = \frac{a^2 - 2b^2 - 3c^2 + 6d^2}{2(-ad + bc)} \in \mathbb{Q}$) ou encore,

$$\begin{cases} a^2 - 3c^2 = 2b^2 - 6d^2 & (1) \\ ad = bc & (2) \end{cases}$$

De même,

$$a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = 0 \Rightarrow (a + c\sqrt{3})^2 = (-b\sqrt{2} - d\sqrt{6})^2 \Rightarrow (a^2 + 2ac\sqrt{3} + 3c^2 = 2b^2 + 4bd\sqrt{3} + 6d^2)$$
$$\Rightarrow \begin{cases} a^2 + 3c^2 = 2b^2 + 6d^2 & (3) \\ ac = 2bd & (4) \end{cases}.$$

(puisque $\sqrt{3}$ est irrationnel). En additionnant et en retranchant (1) et (3), on obtient $a^2 = 2b^2$ et $c^2 = 2d^2$. Puisque $\sqrt{2}$ est irrationnel, on ne peut avoir $b \neq 0$ (car alors $\sqrt{2} = \pm \frac{a}{b} \in \mathbb{Q}$) ou $d \neq 0$. Donc, b = d = 0 puis a = c = 0. Finalement, la famille $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est \mathbb{Q} -libre et est donc une base de E.

Correction de l'exercice 17 ▲

- 1. Notons respectivement g et h, les fonctions sinus et cosinus. $f_a = \cos a.g + \sin a.h$, $f_b = \cos b.g + \sin b.h$ et $f_c = \cos c.g + \sin c.h$. Donc, f_a , f_b et f_c sont trois combinaisons linéaires des deux fonctions g et h et constituent donc une famille liée (p+1 combinaisons linéaires de p vecteurs donnés constituent une famille liée).
- 2. f_0 , f_1 et f_2 sont trois combinaisons linéaires des deux fonctions $x \mapsto 1$ et $x \mapsto x$. Donc, la famille (f_0, f_1, f_2) est une famille liée puis la famille $(f_n)_{n \in \mathbb{Z}}$ est liée en tant que sur-famille d'une famille liée.
- 3. Pour α réel donné et x > 0, posons $f_{\alpha}(x) = x^{\alpha}$. Soient n un entier naturel supérieur ou égal à 2, puis $(\alpha_1, ..., \alpha_n) \in \mathbb{R}^n$ tel que $\alpha_1 < ... < \alpha_n$. Soit encore $(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$.

$$\sum_{k=1}^{n} \lambda_k f_{\alpha_k} = 0 \Rightarrow \forall x \in]0; +\infty[, \sum_{k=1}^{n} \lambda_k x^{\alpha_k} = 0 \Rightarrow \forall x \in]0; +\infty[, \sum_{k=1}^{n} \lambda_k x^{\alpha_k - \alpha_n} = 0,$$

(en divisant les deux membres par x^{α_n}). Dans cette dernière égalité, on fait tendre x vers $+\infty$ et on obtient $\lambda_n = 0$. Puis, par récurrence descendante, $\lambda_{n-1} = \dots = \lambda_1 = 0$. On a montré que toute sous-famille finie de la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre et donc, la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre.

4. Pour a réel donné et x réel, posons $f_a(x) = |x - a|$. Soient n un entier naturel supérieur ou égal à 2, puis $a_1,...,a_n$, n réels deux à deux distincts. Soit $(\lambda_1,...,\lambda_n) \in \mathbb{R}^n$ tel que $\sum_{k=1}^n \lambda_k f_{a_k} = 0$. S'il existe $i \in \{1,...,n\}$ tel que $\lambda_i \neq 0$ alors,

$$f_{a_i} = -\frac{1}{\lambda_i} \sum_{k \neq i} \lambda_k f_{a_k}.$$

Mais cette dernière égalité est impossible car f_{a_i} n'est pas dérivable en a_i alors que $-\frac{1}{\lambda_i}\sum_{k\neq i}\lambda_k f_{a_k}$ l'est. Donc, tous les λ_i sont nuls.

Correction de l'exercice 18 ▲

- 1. \Leftarrow Soit $(u, v)((\mathcal{L}(E))^2$. On suppose qu'il existe $w \in \mathcal{L}(E)$ tel que $u = w \circ v$. Soit x un élément de Kerv. Alors v(x) = 0 et donc u(x) = w(v(x)) = w(0) = 0. Mais alors, x est dans Keru. Donc Ker $v \subset Keru$.
 - \Rightarrow Supposons que Ker $v \subset$ Keru. On cherche à définir w, élément de $\mathcal{L}(E)$ tel que $w \circ v = u$. Il faut définir précisément w sur Imv car sur $E \setminus \text{Im}v$, on a aucune autre contrainte que la linéarité. Soit y un élément de Imv. (Il existe x élément de E tel que y = v(x). On a alors envie de poser w(y) = u(x) mais le problème est que y, élément de Imv donné peut avoir plusieurs antécédents x, x'... et on peut avoir $u(x) \neq u(x')$ de sorte que l'on n'aurait même pas défini une application w.)

Soient x et x' deux éléments de E tels que v(x) = v(x') = y alors v(x - x') = 0 et donc $x - x' \in \text{Ker} v \subset \text{Ker} u$. Par suite, u(x - x') = 0 ou encore u(x) = u(x'). En résumé, pour y élément donné de Imv, il existe x élément de E tel que v(x) = y. On pose alors w(y) = u(x) en notant que w(y) est bien uniquement défini, car ne dépend pas du choix de l'antécédent x de y par v. w n'est pas encore défini sur E tout entier. Notons E un supplémentaire quelconque de E0 l'existence de E1 est admise).

Soit X un élément de E. Il existe deux vecteurs y et z, de Imv et F respectivement, tels que X = y + z. On pose alors w(X) = u(x) où x est un antécédent quelconque de y par v (on a pris pour restriction de w à F l'application nulle). w ainsi définie est une application de E dans E car, pour E donné E est uniquement défini puis E uniquement défini (mais pas nécessairement E).

Soit x un élément de E et y = v(x). w(v(x)) = w(y) = w(y+0) = u(x) (car 1)y est dans Imv 2)0 est dans E 3) E est un antécédent de E par E0) et donc E0 est dans ImE2.

Montrons que w est linéaire. Soient, avec les notations précédentes, $X_1 = y_1 + z_1$ et $X_2 = y_2 + z_2$...

$$w(X_1 + X_2) = w((y_1 + y_2) + (z_1 + z_2)) = u(x_1 + x_2) \quad (\operatorname{car} y_1 + y_2 = v(x_1) + v(x_2) = v(x_1 + x_2))$$

= $u(x_1) + u(x_2) = w(X_1) + w(X_2)$

et

$$w(\lambda X) = w(\lambda y + \lambda z) = u(\lambda x) = \lambda u(x) = \lambda w(X).$$

2. On applique 1) à u = Id.

$$v \text{ injective} \Leftrightarrow \text{Ker}v = \{0\} \Leftrightarrow \text{Ker}v = \text{Ker}Id \Leftrightarrow \exists w \in \mathcal{L}(E) / w \circ v = Id.$$

Correction de l'exercice 19 ▲

1. $\forall P \in E, f(P) = P'$ est un polynôme et donc f est une application de E vers E.

 $\forall (P,Q) \in E^2, \ \forall (\lambda,\mu) \in \mathbb{R}^2, \ f(\lambda P + \mu Q) = (\lambda P + \mu Q)' = \lambda P' + \mu Q' = \lambda f(P) + \mu f(Q) \ \text{et } f \ \text{est un endomorphisme de } E.$

Soit $P \in E$. $P \in \text{Ker } f \Leftrightarrow P' = 0 \Leftrightarrow P$ est constant. Ker f n'est pas nul et f n'est pas injective.

Soient $Q \in E$ puis P le polynôme défini par : $\forall x \in \mathbb{R}$, $P(x) = \int_0^x Q(t) dt$. P est bien un polynôme tel que f(P) = Q. f est surjective.

Soit $F = \{P \in E \mid P(0) = 0\}$. F est un sous espace de E en tant que noyau de la forme linéaire $P \mapsto P(0)$. Ker $f \cap F = \{0\}$ car si un polynôme est constant et s'annule en 0, ce polynôme est nul. Enfin, si P est un polynôme quelconque, P = P(0) + (P - P(0)) et P s'écrit bien comme la somme d'un polynôme constant et d'un polynôme s'annulant en 0. Finalement $E = \operatorname{Ker} f \oplus F$.

2. On montre facilement que g est un endomorphisme de E.

 $P \in \text{Ker}g \Rightarrow \forall x \in \mathbb{R}, \ \int_0^x P(t) \ dt = 0 \Rightarrow \forall x \in \mathbb{R}, \ P(x) = 0 \ (\text{en d\'erivant}).$ Donc, $\text{Ker}g = \{0\}$ et donc g est injective.

Si P est dans Img alors P(0) = 0 ce qui montre que g n'est pas surjective. De plus, si P(0) = 0 alors $\int_0^x P'(t) dt = P(x) - P(0) = P(x)$ ce qui montre que P = g(P') est dans Img et donc que Im $g = \{P \in E \mid P(0) = 0\}$.