Math 550 Homework 6

Dr. Fuller Solutions

1. Using spherical coordinates $g(\theta, \varphi) = (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)$, the tangent space at $p = g(\theta, \varphi)$ has basis

 $((-\sin\theta\sin\varphi,\cos\theta\sin\varphi,0),(\cos\theta\cos\varphi,\sin\theta\cos\varphi,-\sin\varphi)).$

- 2. (a) Let (v_1, \dots, v_k) be a basis for V. Define $g : \mathbf{R}^k \to \mathbf{R}^n$ to be the linear transformation given by $g(e_i) = v_i$. Then
 - (i) $g(\mathbf{R}^k) = V = V \cap \mathbf{R}^n$;
 - (ii) rank $Dg(u) = \operatorname{rank} g = k$ for all $u \in \mathbf{R}^k$;
 - (iii) $g^{-1}: V \to \mathbf{R}^k$ is the linear transformation given by $g^{-1}(v_i) = e_i$, which is continuous.

This shows that g parameterizes V as a k-dimensional manifold.

- (b) If p = g(u), then $V_p = Dg(u)(\mathbf{R}^k) = g(\mathbf{R}^k) = V$.
- 3. Let $(p, v_p) \in TM$. Since $p \in M$, we have open sets U in \mathbf{R}^k and $W \in \mathbf{R}^n$, and a local parameterization $g: U \to \mathbf{R}^n$ with
 - (i) $g(U) = M \cap W$;
 - (ii) rank Dg(u) = k for all $u \in U$;
 - (iii) $g^{-1}: g(U) \to U$ continuous.

Define $G: U \times \mathbf{R}^k \to \mathbf{R}^n \times \mathbf{R}^n$ by G(u,v) = (g(u),Dg(u)(v)). We have

- (i) $g(U \times \mathbf{R}^k) = TM \cap (W \times \mathbf{R}^n);$
- (ii) Suppose that A is the matrix which represents Dg(u) with respect to the standard basis, so A has rank k. Then DG(u, v) is represented in the standard basis by a $2k \times 2k$ -matrix whose upper left and lower right $k \times k$ submatrices are both A. This implies that rank DG(u, v) = 2k.
- (iii) If $(q, v_q) \in TM$, so that $v_q \in M_q$, then $G^{-1}(q, v_q) = (g^{-1}(q), Dg^{-1}(q)(v_q))$. This shows that G^{-1} continuous.

This confirms that *G* is a local parameterization around $(p, v_p) \in TM$.

- 4. Let $x \in \partial M$, and suppose $g: U \subset \mathbf{H}^k \to \mathbf{R}^n$ is a local parameterization, with g(u) = x. This means we have
 - (i) $g(U) = M \cap W$ for some open set W in \mathbb{R}^n ;
 - (ii) rank Dg(u) = k for all $u \in U$;
 - (iii) $g^{-1}: g(U) \to U$ continuous.

Let $i: \mathbf{R}^{k-1} \to \mathbf{R}^k$ be the inclusion map $i(u_1, \dots, u_{k-1}) = (u_1, \dots, u_{k-1}, 0)$. Let $V = i^{-1}(U)$. Then:

- (i) $(g \circ i)(V) = \partial M \cap W$;
- (ii) rank $D(g \circ i)(u) = k 1$ for all $u \in V$, since rank D(g)(i(u)) = k and rank D(i)(u) = k 1;
- (iii) $(g \circ i)^{-1} = i^{-1} \circ g^{-1}$ continuous, as it is the composition of continuous functions.

Thus $g \circ i : V \to \mathbf{R}^n$ defines a local parameterization around $x \in \partial M$, showing that ∂M is a (k-1)-dimensional manifold.

5. In class, it was shown that f and g induce the same orientation on S_x if and only if $\det(Dg^{-1} \circ Df)(u) > 0$. Now write $g^*\omega = h \, dx_1 \wedge \cdots \wedge dx_k$. Then

$$f^*\omega = (g \circ g^{-1} \circ f)^*\omega$$

$$= (g^{-1} \circ f)^*g^*\omega$$

$$= (g^{-1} \circ f)^*(h dx_1 \wedge \dots \wedge dx_k)$$

$$= (g^{-1} \circ f)^*h (g^{-1} \circ f)^*dx_1 \wedge \dots \wedge dx_k$$

$$= (g^{-1} \circ f)^*h \det(Dg^{-1} \circ Df) dx_1 \wedge \dots \wedge dx_k$$

$$= \det(Dg^{-1} \circ Df) (h \circ g^{-1} \circ f) dx_1 \wedge \dots \wedge dx_k$$

Evaluating at u and v, where f(u) = g(v) = x, we get

$$f^*\omega(u)(e_1,\ldots,e_k) = \det(Dg^{-1}\circ Df)(u) (h\circ g^{-1}\circ f)(u)(dx_1\wedge\cdots\wedge dx_k)(e_1,\ldots,e_k)$$

$$= \det(Dg^{-1}\circ Df)(u) h(v)(dx_1\wedge\cdots\wedge dx_k)(e_1,\ldots,e_k)$$

$$= \det(Dg^{-1}\circ Df)(u) g^*\omega(v)(e_1,\ldots,e_k).$$

Thus $f^*\omega(e_1,\ldots,e_k)$ and $g^*\omega(e_1,\ldots,e_k)$ have the same sign if and only if $\det(Dg^{-1}\circ Df)(u)>0$.

6. Yes, they induce the same orientation.

Addendum

- 1. Suppose (v_1, \ldots, v_{k-1}) is a basis for the tangent space at a point in $\partial \mathbf{H}^k$.
 - Observe:
 - (v_1, \ldots, v_{k-1}) is a positively oriented basis for \mathbf{R}^{k-1} if and only if $(v_1, \ldots, v_{k-1}, e_k)$ is a positively oriented basis for \mathbf{R}^k .
 - $(v_1, ..., v_{k-1})$ is a positively oriented basis for $\partial \mathbf{H}^k$ if and only if $(-e_k, v_1, ..., v_{k-1})$ is a positively oriented basis of \mathbf{R}^k .
 - The orientations of $(-e_k, v_1, \dots, v_{k-1})$ and $(v_1, \dots, v_{k-1}, e_k)$ agree if and only if k is even, since we can equate them by k-1 transpositions, and changing the sign of e_k .

Combining these observations proves the statement.