${f 5.4}$ Áreas de figuras planas

1° CASO

Se f é integrável em [a,b] e $f(x) \ge 0$, $\forall x \in [a,b]$, a área da figura plana limitada pelas rectas x = a, x = b, pelo eixo dos xx e pelo gráfico de f (figura 5.3) é dada por $\int_a^b f(x) dx$, como vimos atrás.

EXEMPLO: A área da figura plana limitada pelas rectas x = 0, $x = \frac{\pi}{4}$, pelo eixo dos xx e pelo gráfico de $\cos(x)$ é dada por: $\int_0^{\frac{\pi}{4}} \cos(x) \, dx = \sin(\frac{\pi}{4}) - \sin(0) = \frac{\sqrt{2}}{2}$.

2° CASO

Se f é integrável em [a,b] e $f(x) \leq 0$, $\forall x \in [a,b]$, a área da figura plana limitada pelas rectas $x=a, \ x=b$, pelo eixo dos xx e pelo gráfico de f (figura 5.4) é dada por $-\int_a^b f(x) \, dx$. De facto, se considerarmos a simetria em relação ao eixo dos xx, obtemos uma figura com a mesma área (a simetria em relação a uma recta mantém as áreas invariantes), que é limitada pelas rectas $x=a, \ x=b$, pelo eixo dos xx e pelo gráfico de -f (figura 5.5). Visto que a função -f é não negativa em [a,b], estamos reduzidos ao 1° caso e a área é dada por $\int_a^b -f(x) \, dx = -\int_a^b f(x) \, dx$.

EXEMPLO: A área da figura plana limitada pelas rectas $x = \frac{\pi}{2}$, $x = \pi$, pelo eixo dos xx e pelo gráfico de $\cos(x)$ é dada por: $-\int_{\frac{\pi}{2}}^{\pi} \cos(x) dx = -(\sin(\pi) - \sin(\frac{\pi}{2})) = \sin(\frac{\pi}{2}) = 1$.

Figura 5.4

Figura 5.5

NOTAS:

- 1. Não esquecer que a área de uma figura não degenerada (isto é, não reduzida a um ponto ou segmento de recta ou curva, etc.) é um número positivo.
- 2. Em ambos os casos, 1 e 2, a área é dada por $\int_a^b |f(x)| \, dx.$

3° CASO

Figura 5.6

Se f é integrável em [a,b], a área da figura plana limitada pelas rectas x=a, x=b, pelo eixo dos xx e pelo gráfico de f (figura 5.4) é dada por $\int_a^b |f(x)| \, dx$ (note-se que os casos anteriores são casos particulares deste). De facto, se f muda de sinal em [a,b] (figura 5.6), consideramos os subintervalos em que f é positiva (nestes subintervalos a área é dada pelo integral de f, isto é de |f|) e os subintervalos em que f é negativa (nestes subintervalos a área é dada pelo integral de -f, isto é de |f|); a área total, que é a soma de todas estas áreas é, pois, dada por $\int_a^b |f(x)| \, dx$ (Proposição 11).

EXEMPLO: A área da figura plana limitada pelas rectas x = 0, $x = 2\pi$, pelo eixo dos xx e pelo gráfico de $\cos(x)$ é dada por: $\int_0^{2\pi} |\cos(x)| dx = \int_0^{\pi/2} \cos(x) dx + \int_{\pi/2}^{3\pi/2} -\cos(x) dx + \int_{3\pi/2}^{2\pi} \cos(x) dx = \sin(\pi/2) - \sin(0) + (-\sin(3\pi/2) + \sin(\pi/2)) + \sin(2\pi) - \sin(3\pi/2) = 1 - 0 - (-1) + 1 + 0 - (-1) = 4.$

4° CASO

Figura 5.7

Se f_1 e f_2 são integráveis em [a,b] e $f_1(x) \geq f_2(x)$, $\forall x \in [a,b]$, a área da figura plana limitada pelas rectas x=a, x=b, pelo gráfico de f_1 e pelo gráfico de f_2 (figura 5.7) é dada por $\int_a^b (f_1(x)-f_2(x)) \, dx \ (=\int_a^b |f_1(x)-f_2(x)| \, dx$ visto que $f_1(x)-f_2(x) \geq 0$, $\forall x \in [a,b]$). Vamos justificar este resultado. Seja $k \in \mathbb{R}$ tal que $f_2(x)+k \geq 0$, $\forall x \in [a,b]$; então $f_1(x)+k \geq f_2(x)+k \geq 0$, $\forall x \in [a,b]$ e a área pretendida é igual à área da figura plana limitada pelas rectas x=a, x=b, pelo gráfico de f_1+k e pelo gráfico de f_2+k (trata-se de uma translação da figura anterior). Mas a figura plana limitada pelas rectas x=a, x=b, pelo eixo dos xx e pelo gráfico de f_1+k contém a figura plana limitada pelas rectas x=a, x=b, pelo eixo dos xx e pelo gráfico de f_2+k . A área pretendida é, pois, a diferença entre as áreas destas duas figuras, isto é, $\int_a^b f_1(x) - \int_a^b f_2(x) \, dx = \int_a^b (f_1(x)-f_2(x)) \, dx$.

EXEMPLO: A área da figura plana limitada pelas rectas x = 0, x = 1, pelo gráfico de $f(x) = e^x$ e pelo gráfico de $\cos(x)$ é dada por $\int_0^1 (e^x - \cos(x)) dx = e^1 - \sin(1) - e^0 + \sin(0) = e - \sin(1) - 1$.

5° CASO

Se f_1 e f_2 são integráveis em [a,b], a área da figura plana limitada pelas rectas x=a, x=b, pelo gráfico de f_1 e pelo gráfico de f_2 (figura 5.7) é dada por $\int_a^b |f_1(x)-f_2(x)| dx$. Raciocinamos de modo idêntico ao do 3º caso. Se f_1-f_2 muda de sinal em [a,b] (figura 5.8), consideramos os subintervalos em que $f_1 \geq f_2$ (nestes subintervalos a área é dada pelo integral de f_1-f_2 , isto é de $|f_1-f_2|$) e os subintervalos em que $f_1 < f_2$ (nestes

Figura 5.8

subintervalos a área é dada pelo integral de $f_2 - f_1$, isto é de $|f_2 - f_1|$); a área total, que é a soma de todas estas áreas é, pois, dada por $\int_a^b |f_1(x) - f_2(x)| dx$ (Proposição 11).

EXEMPLO: A área da figura plana limitada pelas rectas x = 0, $x = \pi$, pelo gráfico de cos(x) e pelo gráfico de sen(x) é dada por: $\int_0^{\pi} |\sin(x) - \cos(x)| \, dx = \int_0^{\pi/4} (\cos(x) - \sin(x)) \, dx + \int_{\pi/4}^{\pi} (\sin(x) - \cos(x)) \, dx = \sin(\pi/4) + \cos(\pi/4) - \sin(0) - \cos(0) - \cos(\pi) - \sin(\pi/4) + \cos(\pi/4) + \sin(\pi/4) = \sqrt{2}/2 + \sqrt{2}/2 - 0 - 1 - (-1) - 0 + \sqrt{2}/2 + \sqrt{2}/2 = 2\sqrt{2}$.

6° CASO

Figura 5.9

Se f_1 e f_2 são integráveis, a área da figura plana limitada pelos gráficos de f_1 e f_2 (figura 5.9) é calculada do seguinte modo: em primeiro lugar calculamos os pontos de intersecção dos gráficos; consideramos as abcissas destes pontos, isto é, os $y \in \mathbb{R}$ tais que $f_1(y) = f_2(y)$; sejam a o menor dos y e b o maior; a área pretendida é dada por $\int_a^b |f_1(x) - f_2(x)| \, dx$ (trata-se do 5° caso, porque as rectas x = a e x = b têm, cada uma, um ponto comum com a figura). Note-se que a existência de a e b é garantida pelo facto de a figura ser limitada.

EXEMPLO: A área da figura plana limitada pelos gráficos das funções x^2 e $2-x^2$ é dada por $\int_{-1}^{1} ((2-x^2)-x^2) \, dx = \int_{-1}^{1} (2-2x^2) \, dx = 2 \cdot 1 - 2 \cdot 1/3 - (2 \cdot (-1) - 2 \cdot (-1)/3) = 4 - 4/3 = 8/3.$