Department of Computer Science and Engineering

National institute of Technology calicut

CS4043 IMAGE PROCESSING ASSIGNMENT SET 1

 $\begin{array}{c} Date\ of\ posting\ assignment:\ 4/1/17\\ Date\ of\ Submission:\ 15/1/17 \end{array}$

- 1. Write a program to read and display an image?
 - (a) Find the maximum and minimum pixel value in the image.
 - (b) Quantize the image assuming 4 bits are allocated per pixel.
- 2. Consider the following continuous

$$f(x,y) = \frac{1 + \sin(2\pi(x+y))}{2} \qquad 0 \le x, y \le 1$$

- (a) Convert to 100x100 image. Determine sampling intervals Δ_x and Δ_y ?
- (b) Let $\Delta_x = 0.1$ and $\Delta_y = 0.2$. What is the size of sampled image?
- 3. Create a checker-board pattern of size 64x64. Each square of the checker-board pattern is a small 8x8 square. Display the image?
- 4. Create an image of size 32x32 where

$$I(i,j) = \left| \sin \sqrt{(i^2 + j^2)} \right|$$

Display the image?

5. Quantize the intensity levels in the above image by dividing the range [0,1] into four equal intervals. Quantization happens according to the following table.

Image gray level	Output gary level
$0 \le I < 0.25$	0
$0.25 \le I < 0.5$	0.25
$0.5 \le I < 0.75$	0.5
$0.75 \le I < 1$	0.75
1	1

6. Increase the brightness of the image in Question 1. By increasing the value of each pixel by adding (1/4 * max_intensity). max_intensity is depends on the number of bits allotted for representing the image. For an 8 bit the max_intensity is 255). If on increasing the pixel value it crosses the max_intensity then round it to max_intensity value.

7. Perform

- (a) 4 level quantization of the intensities of the image in Question 1. (max_intensity interval divided into 4 equal intervals and follow the scheme in the previous question).
- (b) 8 level quantization of the intensities of the image Question 1.(max_intensity interval divided into 8 equal intervals and follow the scheme in the previous question). Observe the difference in image quality.
- 8. Find the mean pixel intensity of the image in question 1. Write a program that converts the image to a binary image by using the following transformation.

$$G(i,j) = \begin{cases} 1 & \text{if I(i, j)} > \text{mean} \\ 0 & \text{if I(i, j)} \leq \text{mean} \end{cases}$$

(This is also a way of quantizing the image but the range of pixel intensities is not divided into equal halves. This operation is called thresholding)

- 9. Perform the following the intensity transformations on the image in question 1.
 - (a) $G(i, j) = \log(1 + (e^{\sigma}) I(i, j))$ Try this transformation for various values of sigma ranging from 0 to 2 and note down your observations. Give a plausible explanation for the observations.
 - (b) $G(i, j) = e^{\sigma I(i,j)}$ Try this transformation for various values of sigma ranging from 0 to 2 and note down your observations. Give a plausible explanation for the observations.
 - (c) $G(i, j) = I(i, j)^{\gamma}$ Try this transformation for various gamma values ranging from 0 to 3. Note down the observations.

(*Hint: Plot the functions above and try to explain the observations based on the function property)

Output Required

• Create ASSIGNMENT1.tar file containing code for all questions with following naming convention.

```
ASSG < number > \_ < rollnumber > \_ < firstname > \_ < questionnumber > if < partnumber > . < extension >
```

- $\bullet \;$ Output images with naming convention < question number > if < partnumber >
- Observations in a Text file (include plots) for question 9 with naming convention < questionnumber > if < partnumber >.