Machine Learning

Michele Sebag — Alexandre Allauzen TAO, CNRS — INRIA — LRI — Université Paris-Sud

Orsay - Oct. 2017

Machine Learning

- 1. Bayesian Learning: Naive Bayes, classification, decision
- 2. Expectation Maximization, Mixture of distributions
- 3. Decision trees
- 4. Validation
- 5. Support Vector Machines

Issues

Performance indicators

Estimating an indicator

An Example

Validation issues

- 1. What is the result?
- 2. My results look good. Are they?
- 3. Does my system outperform yours?
- 4. How to set up my system?

Validation: Three questions

Define a good indicator of quality

- ► Misclassification cost
- ► Area under the ROC curve

Computing an estimate thereof

- Validation set
- Cross-Validation
- ▶ I eave one out
- Bootstrap

Compare estimates: Tests and confidence levels

Which indicator, which estimate: depends.

Settings

► Large/few data

Data distribution

- Dependent/independent examples
- ▶ balanced/imbalanced classes

Issues

Performance indicators

Estimating an indicator

An Example

Performance indicators

Binary class

- ► *h** the truth
- $ightharpoonup \hat{h}$ the learned hypothesis

Confusion matrix

\hat{h} / h^*	1	0	
1	а	b	a + b
0	С	d	c+d
	a+c	b+d	a + b + c + d

Performance indicators, 2

\hat{h} / h^*	1	0	
1	a	b	a+b
0	С	d	c+d
	a+c	b+d	a + b + c + d

- ► Misclassification rate $\frac{b+c}{a+b+c+d}$
- ▶ Sensitivity (recall), True positive rate (TP) $\frac{a}{a+c}$
- ▶ Specificity, False negative rate (FN) $\frac{b}{b+d}$
- ▶ Precision $\frac{a}{a+b}$

Note: always compare to random guessing / baseline alg.

Performance indicators, 3

The Area under the ROC curve

- ▶ ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

h leads to order the examples:

+++-+----

Performance indicators, 3

The Area under the ROC curve

- ▶ ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

Here, TP
$$(\theta)$$
= .8; FN (θ) = .1

ROC

The ROC curve

Ideal classifier: (0 False negative,1 True positive) Diagonal (True Positive = False negative) \equiv nothing learned.

ROC Curve, Properties

Properties

ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

 $\mathsf{Error} = \# \mathsf{ false positive} + c \times \# \mathsf{ false negative}$

In a multi-objective perspective, $\mathsf{ROC} = \mathsf{Pareto}$ front.

Best solution: intersection of Pareto front with $\Delta(-c,-1)$

ROC Curve, Properties, foll'd

Used to compare learners

Bradley 97

multi-objective-like insensitive to imbalanced distributions shows sensitivity to error cost.

Area Under the ROC Curve

Often used to select a learner

Don't ever do this!

Hand, 09

Sometimes used as learning criterion

Mann Whitney Wilcoxon

$$AUC = Pr(h(x) > h(x')|y > y')$$

WHY Rosset, 04

- ▶ More stable $\mathcal{O}(n^2)$ vs $\mathcal{O}(n)$
- With a probabilistic interpretation

Clemençon et al. 08

HOW

SVM-Ranking

Joachims 05; Usunier et al. 08, 09

► Stochastic optimization

Issues

Performance indicators

Estimating an indicator

An Example

Validation, principle

Desired: performance on further instances

Assumption: Dataset is to World, like Training set is to Dataset.

Validation, 2

Unbiased Assessment of Learning Algorithms $T. \ \, \text{Scheffer and} \ \, \text{R. Herbrich}, \ 97$

Validation, 2

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Validation, 2

Unbiased Assessment of Learning Algorithms
T. Scheffer and R. Herbrich, 97

Issues

Performance indicators

Estimating an indicator

An Example

Confidence intervals

Definition

Given a random variable X on \mathbb{R} , a p%-confidence interval is $I \subset \mathbb{R}$ such that

$$Pr(X \in I) > p$$

Binary variable with probability ϵ

Probability of r events out of n trials:

$$P_n(r) = \frac{n!}{r!(n-r)!} \epsilon^r (1-\epsilon)^{n-r}$$

- ► Mean: ne
- Variance: $\sigma^2 = n\epsilon(1 \epsilon)$

Gaussian approximation

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp^{-\frac{1}{2}\frac{x-\mu}{\sigma}^2}$$

Confidence intervals

Bounds on (true value, empirical value) for n trials, n > 30

$$Pr(|\hat{x}_n - x^*| > 1.96 \quad \sqrt{\frac{\hat{x}_n \cdot (1 - \hat{x}_n)}{n}}) < .05$$

Tablez
 ε .67
501.1.28
201.64
101.96
52.33
2.58
2

Empirical estimates

Empirical estimates, foll'd

Properties

Low bias; high variance; underestimate error if data not independent

Empirical estimates, foll'd

Average indicator over all (Training set, Test set) samplings.

Beware

Multiple hypothesis testing

- ▶ If you test many hypotheses on the same dataset
- ▶ one of them will appear confidently true...

More

- ► Tutorial slides: http://www.lri.fr/ sebag/Slides/Validation_Tutorial_11.pdf
- Video and slides: ICML 2012, Videolectures, Tutorial Japkowicz & Shah http://www.mohakshah.com/tutorials/icml2012/

Validation, summary

What is the performance criterion

- Cost function
- Account for class imbalance
- Account for data correlations

Assessing a result

- ► Compute confidence intervals
- Consider baselines
- ▶ Use a validation set

If the result looks too good, don't believe it

Unpleasant things that can happen if validation not taken seriously