Corpus generation for research in pause-internal phonetic particles (PINTS)

Mikey Elmers

Phonetic Particles

- Investigating phonetic particles in speech pauses
 - Silent pauses
 - Breath noises (BrN)
 - Filler particles
 - Clicks
 - Laughter

Silent Pauses

Breath Noises

Filler Particles

Clicks

SFB 1102

Laughter

PINTS TTS

- Improve TTS via the modeling and inclusion of PINTS
 - Location
 - Duration
 - Frequency
 - Variety

 In order to train the TTS system we need a large amount of (ideally) annotated training data

Purpose

- Primarily focused on:
 - Creating automated pipeline
 - Scrape audio data from YouTube
 - Annotations
 - Use annotated sound files with PINTS information for machine learning (ML) models

- Create a corpus that satisfies the following:
 - Consistent
 - High quality

Pipeline

Pipeline Example: Words

- Impromptu speech audio
 - Single speaker
 - Semi-spontaneous situation
 - ~ 2 minutes
- Subtitles from YouTube
 - Subtitle file format is video text tracks (VTT)
 - Convert VTT subtitles -> plain text file (TXT) format
 - Generate a Praat TextGrid

Pipeline Example: Words

Pipeline Example: POS

- Generating time-aligned parts of speech (POS)
 - Gather list of words used from previous module in pipeline
 - Use natural language toolkit (NLTK) to generate POS
 - Convert to TXT format
 - Generate a Praat TextGrid

Pipeline Example: POS

Pipeline Example: Manual BrN

- Breath noise annotation
 - Normally not part of the pipeline
 - Hand-labeled
 - Used for comparing against model predictions

Pipeline Example: Manual BrN

- Corpus for training model
 - Buckeye corpus
 - Annotated for BrN
 - ~ 10 minutes
- Model information
 - Input: mel frequency cepstral coefficients (MFCC)
 - Target: BrN or non-BrN
 - Neural network (NN) for binary classification

- Modeling breath noise predictions
 - Convert time to frames
 - MFCCs as input

```
"mfcc": [
        -582.6719360351562,
        0.8451012372970581,
        0.8422243595123291,
        0.8374413847923279,
        0.8307602405548096,
        0.8222096562385559,
        0.8118045330047607,
        0.799580454826355,
        0.7855702638626099,
        0.7698125839233398.
        0.7523539066314697,
        0.7332457900047302,
        0.7125375270843506
        -582.8423461914062.
        0.6043773293495178,
        0.6023807525634766.
        0.5990595817565918,
        0.5944247841835022,
        0.5884836912155151,
        0.5812586545944214,
        0.572767972946167,
        0.5630406141281128,
        0.5520878434181213,
        0.5399560928344727,
        0.5266737937927246,
        0.5122793316841125
```

- Modeling breath noise predictions
 - Convert time to frames
 - MFCCs as input
 - Labels as target
 - Predictions

- Modeling breath noise predictions
 - Frame length -> Time duration
 - Convert to TXT format
 - Create Praat TextGrid

```
0.02
28.77
28.79 br
34.55
34.57 br
37.04
37.18 br
37.52
37.55 br
41.12
41.17 br
41.47
41.66 br
43.35
43.4 br
45.21
45.28 br
51.13
51.15 br
52.87
53.01 br
57.98
58.03 br
68.92
69.03 br
75.02
75.05 br
76.09
76.12 br
79.11
79.13 br
```


Legal Issues

- Audio Scraping
 - Allowed to scrape audio from YouTube but not allowed to distribute it
 - Audio content must be monitored for personal information

- Distribution
 - Limited distribution for scientific research only

Conclusions

Pipeline

- Able to download audio from YouTube
- Generate time-aligned words and POS
- Label breath noises from model predictions
- Scale
 - Limited distribution for scientific research only

Reference

- Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with Python. O'Reilly Media Inc.
- Boersma, Paul & Weenink, David (2021). Praat: doing phonetics by computer [Computer program]. Version 6.1.53, retrieved 8 September 2021 from http://www.praat.org/
- Pitt, M.A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W., Hume, E. and Fosler-Lussier, E. (2007) Buckeye Corpus of Conversational Speech (2nd release) [www.buckeyecorpus.osu.edu] Columbus, OH: Department of Psychology, Ohio State University (Distributor).

PINTS Website

Thank you!

http://pauseparticles.org/