Quantum Computing & Applications for Engineering

10/22/2024

Announcements

- Project 2 proposals due w/ HW 4
- Guest Speakers
 - 10/28 Haimeng Zhang (IBM)
 - 11/5 Abhishek Chopra (BosonQPsi)
 - o 11/12 TBA
 - o 11/19 TBA
- Weekly bonus submissions on LMS

Quantum Sensing

Quantum Sensing

- If qubits are so sensitive to the environment, then they ought to make great sensors.
- Individual qubits or quantum systems can be very small.
 - SWaP-C: size, weight, power and cost.
 - Sizes are typically <1 mm
- We can definitely make noisy qubits!
- In many cases, we don't need to perform "gates" at all.
 - Optics and photonic elements
 - Simple signals

Quantum Sensing

- Control over may long-running operations is much less important.
 - You can prepare and read out the state many times.
 - Get a statistical distribution of the field over many repeated measurements.
- Entanglement lets you scale better than the "shot noise" limit.
 - Uncertainty decreases linearly with N.
 - Classical only goes as \sqrt{N} .
- "Squeezing" lets you arbitrarily increase the sensitivity of one signal at the expense of another.

The Quantum Sensing Protocol

- Start with a qubit (or entangled set) in superposition.
- Let it sit there for one coherence time.
 - The environment does "the computation".
 - Shorter times reduce the ability of the signal to couple.
 - Longer times result in decoherence and collapse to classical states.
- Read it out.
- Repeat.

Sensitivity

- The sensitivity of a quantum sensor is proportional to the coherence time and coupling constant.
- The ideal measuring time is equal to T₁ or T₂, depending on the measurement.
- The minimum detectable signal is defined by the signal that equals the noise floor.

$$v_{min} = \frac{\sqrt{2e}}{\gamma C \sqrt{T_{\chi}}}$$

Example - NV Center Magnetometry

- A substitutional nitrogen next to a vacancy in diamond acts as a qubit.
 - Negatively charged → NV⁻
 - Has its own energy and spin level structure.
- NV sensors use the +1, -1 and 0 spin states.
- Temperature, pressure and magnetic field change the location and frequency of the spin states.

NV Centers

- NV sensors use a technique called optically-detected magnetic resonance (ODMR).
 - Similar to MRI
- Use microwave signals to put the NV centers in superposition.
- Use laser pulses to read out the state.
- Record emitted photons

ODMR Measurements with NV Centers

- Start with the NV center in the 0 state.
- Tune a microwave signal to ~2.8 GHz.
 - Slightly higher than a microwave oven or WiFi radio.
 - ~0.1-100 mW (-20–20 dBm)
- Let the spins evolve under a pulse sequence.
- Illuminate with green light. (~520-532nm)
 - Laser, LED, or even filtered sunlight will do.
- NV center emits a red (637nm) photon if spin is 0, stays dark if it's +/- 1.
- Repeat for several frequencies

Magnetic Field

- To measure the magnetic field, we look at the spacing between the ODMR peaks.
- Stronger magnetic fields increase the spacing between the peaks.
- We can also get the field orientation.
 - 4 possible NV directions in the crystal.
 - 8 Possible peaks in the spectrum
- Sensitivities can be in the pT range.

Temperature & Pressure

 The centerline of the spectrum is proportional to the diamond's temperature and local crystal strain.

Fluorescence (norm.) ®

- Zero-field splitting
- Frequency decreases as temperature and strain increase.
- ~0.1 10 mK sensitivities
- NV centers work reliably up to 1000K!

NV Centers for Quantum Computing?

- If we're doing computing, we pick one spin peak and make that the |1> state.
 - Tune the frequency/phase to apply gates
 - Apply signals to two to entangle
- Laser does initialization and readout.
 - Record a 0 if we get a photon
 - Record a 1 if we don't
- Practical challenges in manufacturing and addressing.
 - Need to create individual defects deterministically.
 - Need them close enough to address and communicate.
 - Need them far enough apart to avoid interference.

Example - Quantum Magnetoencephelography (MEG)

- Magnetoencephelography (MEG) is a brain-imaging technique.
 - Measures the magnetic signatures of electrical activity in real-time
- Current systems are technologically demanding.
 - Large cryogenic tanks and shielded rooms.
 - Only 100 systems in the world.
- Quantum versions in development.
 - o Optically-pumped magnetometers.
 - Bike-helmet sized.
 - 100x improvement in signal and spatial resolution.

Example - Photon Interferometry at LIGO

- Laser-Interferometer Gravitational
 Wave Observatory
 - Detects displacements ~10⁻¹⁹ m
 - o 0.0001 the diameter of a proton
- Early observations failed due to a high noise floor.
- Quantum squeezing enabled improvements in sensitivity and positive results.

Example - Gravity Interferometers

- Very cold atoms enter a quantum phase of matter - Bose Einstein Condensate.
- Atoms are launched up a fountain (30cm - 10m) high.
- The atoms' wave functions create an interference pattern as they fall back to a screen.
- The spacing of the interference fringes is proportional to the acceleration.
- Sensitivities of 10⁻⁹ g → About the same as a person standing 1m away.

Gravity Interferometers - Mapping

- The Earth's gravity field is not uniform.
 - Lots of clumps and voids.
 - o Mountains, caves, etc.
- Classical gravimeters are common in geology.
 - Mining & prospecting
 - Aquifer depletion
- Quantum gravimeters offer higher resolution.
 - Civil engineering Mapping "lost" infrastructure.
 - Navigation Use gravity anomalies as waypoints.

Stray, B., Lamb, A., Kaushik, A. *et al.* Quantum sensing for gravity cartography. *Nature* **602**. 590–594 (2022), https://doi.org/10.1038/s41586-021-04315-3

Gravity Interferometers - Security

- In 2011, LLNL and AOSense tested an interferometer in a nuclear security application.
 - Portal monitors at ports-of-entry.
 - Reduce false positives.
- Uranium & plutonium are easy to hide.
 - Low kg-quantities are significant.
 - Radiation is easily shielded.
 - Very dense (~20g/cm³).
- Gravitational anomalies, plus gamma/neutron measurements, improve reliability.

Plasmonic Sensors - Rare Earth Materials

- Electrons in a metal oscillate like a wave.
 - Frequence is the plasma frequency.
 - A single wave is a *plasmon*
- Light at certain wavelengths will couple to the surface electrons of a metal.
- The presence of nearby materials affects the resonant frequency.
 - Rare earth metals
 - DNA bases
 - Trace chemicals

DIY Quantum Sensors?

- Costs of components are coming down:
 - NV-doped diamonds: \$180 \$500
 - Laser module: ~\$20
 - Photodetector: ~\$20
 - Signal generator: ~\$50
 - Computer (Raspberry Pi Pico): \$5
- It's totally conceivable that a person or group here could build one!

Adamas Nanotechnologies https://www.adamasnano.com/

Thorlabs/Element6 https://www.thorlabs.com/

Demo

Break

Quantum Networking

Quantum Networking

- Computers are way more useful when we can link them together.
 - Internet
 - Parallel computing
 - Secure communications
- We can send coherent quantum information between two quantum devices.
- Typically requires optical photons.

Teleportation

- Teleportation is the main method used to send quantum information over arbitrary distances.
- Quantum information can only be moved, not copied.
- Every qubit sent also requires communicating two classical bits to define the measurement basis.

Teleportation

- Alice and Bob have an entangled qubit pair.
- Bob goes away somewhere.
- Some time later, Alice has another qubit she wants to send to Bob.
- She entangles it with her half of the first pair, and measures the results.
- She classically communicates with Bob the results of her measurements.
- Bob applies X and or Z gates depending on Alice's results to recover the communicated information.

Teleportation

- Current distance records:
 - o 143 km (89 mi) through air
 - 102 km (63 mi) through fiber optics
 - o 21 m (69 ft) through solids
- Further distances require quantum repeaters.
 - Qubit data is encoded into a quantum memory.
 - Memory is re-entangled and re-transmitted.
- Classical communication is still required.
 - Bob needs Alice's result in order to apply the right gates and recover the qubit.
 - Teleportation does not enable faster than light travel.

Quantum Networking

- Two companies in the US making quantum networking equipment.
 - Qunnect (NYC)
 - Qubitekk (Chattanooga, TN)
- Create entangled pairs:
 - Nonlinear crystals
 - o Rubidium vapor cells
- Send one over the network.
- Receive by collecting the photon in a new vapor cell/crystal in a magnetic field. Storage time ~100µs
- Retransmit the exiting photon

Quantum Key Distribution

- QKD is a simpler form of quantum networking for sending cryptographic keys.
- Entanglement is not required.
 - Simplest protocol uses superposition only.
 - o BB84 Protocol
- Perfectly secure in principal.
 - The presence of an eavesdropper can be detected by the statistics of the measurement.
- Practical debates over true security.

Quantum Key Distribution

NST

- NSA and NIST have taken a stance opposing QKD. (<u>Link</u>)
 - Prohibited for securing sensitive government networks and defense systems.
 - Discouraged for non-sensitive applications.
 - Post-quantum cryptography is more cost-effective.
- Calls out 5 limitations:
 - No authentication of users
 - Supply chain security
 - Denial-of-service attacks
 - Incomplete physical validation
 - Physical hardware security
- Others disagree.
 - Some US government agencies
 - Private Companies
 - Many countries' programs

