```
import numpy as np
import pandas as pd
data=pd.read_csv("iris.csv")
data.tail()
<del>_</del>_₹
           Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                          Species
      145 146
                         6.7
                                       3.0
                                                     5.2
                                                                   2.3 Iris-virginica
      146 147
                         6.3
                                       2.5
                                                     5.0
                                                                   1.9 Iris-virginica
      147 148
                         6.5
                                       3.0
                                                     5.2
                                                                   2.0 Iris-virginica
                         6.2
                                       3.4
                                                     5.4
      148 149
                                                                   2.3 Iris-virginica
      149 150
                          5.9
                                       3.0
                                                     5.1
                                                                   1.8 Iris-virginica
data.shape
→ (150, 6)
# Check Category count
data['Species'].value_counts()
 →▼ Iris-setosa
                       50
     Iris-versicolor
                       50
     Iris-virginica
     Name: Species, dtype: int64
# check information of table
data.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 150 entries, 0 to 149
     Data columns (total 6 columns):
         Column
                        Non-Null Count Dtype
                        _____
         -----
         Ιd
                        150 non-null int64
         SepalLengthCm 150 non-null
                                      float64
      2 SepalWidthCm 150 non-null
                                       float64
      3 PetalLengthCm 150 non-null
                                        float64
      4 PetalWidthCm 150 non-null
                                        float64
      5 Species
                        150 non-null
                                        object
     dtypes: float64(4), int64(1), object(1)
```

memory usage: 7.2+ KB

data.describe()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

X Values

x=data.iloc[:,1:5] x.head()

₹		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	4				

y=data.iloc[:,-1] y.head()

- Iris-setosa
- Iris-setosa 2 Iris-setosa
- Iris-setosa Iris-setosa
- Name: Species, dtype: object

Feature Scaling - StandardScaler ##

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
x=scaler.fit_transform(x)
x[0:5]
 \rightarrow \forall array([[-0.90068117, 1.03205722, -1.3412724, -1.31297673],
            [-1.14301691, -0.1249576, -1.3412724, -1.31297673],
            [-1.38535265, 0.33784833, -1.39813811, -1.31297673],
            [-1.50652052, 0.10644536, -1.2844067, -1.31297673],
            [-1.02184904, 1.26346019, -1.3412724, -1.31297673]])
                 Devide into Test and Train data
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.2)
x_train.shape
 → (120, 4)
x test.shape
 → (30, 4)
                Used K-Nearest-Neighbors-Algorithem
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=1) # assume best k value is 1
model.fit(x_train,y_train)
    KNeighborsClassifier(n_neighbors=1)
pred=model.predict(x_test)
pred[0:5]
 环 C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
       mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
     array(['Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor',
            'Iris-versicolor'], dtype=object)
y_test[0:5]
```

```
→ 145
            Iris-virginica
     24
               Iris-setosa
     34
               Iris-setosa
           Iris-versicolor
     77
           Iris-versicolor
     Name: Species, dtype: object
                     ## Check Accuracy
from sklearn.metrics import accuracy_score
accuracy=accuracy_score(y_test,pred)
accuracy
→ 1.0
                   ## Confusion Metrics
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,pred)
\rightarrow array([[13, 0, 0],
           [0, 7, 0],
           [ 0, 0, 10]], dtype=int64)
                  ## check predicted value and actual value
result=pd.DataFrame(data=[y_test.values,pred],index=["y_test","pred"])
#horizonantaly display
result.transpose()
# result --> verticle display values
```


	y_test	pred
0	Iris-virginica	Iris-virginica
1	Iris-setosa	Iris-setosa
2	Iris-setosa	Iris-setosa
3	Iris-versicolor	Iris-versicolor
4	Iris-versicolor	Iris-versicolor
5	Iris-setosa	Iris-setosa
6	Iris-setosa	Iris-setosa
7	Iris-setosa	Iris-setosa
8	Iris-virginica	Iris-virginica
9	Iris-setosa	Iris-setosa
10	Iris-virginica	Iris-virginica
11	Iris-versicolor	Iris-versicolor
12	Iris-virginica	Iris-virginica
13	Iris-virginica	Iris-virginica
14	Iris-virginica	Iris-virginica
15	Iris-setosa	Iris-setosa
16	Iris-versicolor	Iris-versicolor
17	Iris-virginica	Iris-virginica
18	Iris-setosa	Iris-setosa
19	Iris-setosa	Iris-setosa
20	Iris-setosa	Iris-setosa
21	Iris-setosa	Iris-setosa
22	Iris-versicolor	Iris-versicolor
23	Iris-setosa	Iris-setosa
24	Iris-virginica	Iris-virginica
25	Iris-setosa	Iris-setosa
26	Iris-versicolor	Iris-versicolor
27	Iris-virginica	Iris-virginica
28	Iris-versicolor	Iris-versicolor
29	Iris-virginica	Iris-virginica

```
## To find correct K values

correct_sum=[]

for i in range(1,20):
    model=KNeighborsClassifier(n_neighbors=i)
    model.fit(x_train,y_train)
    pred=model.predict(x_test)
    correct=np.sum(pred==y_test)
    correct_sum.append(correct)
```

```
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( v[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( v[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, _ = stats.mode(_y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
  mode, = stats.mode( y[neigh ind, k], axis=1)
C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
```

```
mode, = stats.mode( y[neigh ind, k], axis=1)
```

```
# test data values -30
                 # correct sum - this returns number of correct prediction according to the y test values
correct_sum
[30, 29, 30, 30, 30, 30, 30, 29, 30, 29, 29, 29, 29, 29, 28, 28, 27, 27, 27]
result=pd.DataFrame(data=correct sum)
result.index=result.index+1
result.T
∓
         1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
     0 30 29 30 30 30 30 30 29 30 29 29 29 29 28 28 27 27 27
# low k values----> underfiting
# high k alues----> overfitting
# best middle values ----> k=9
model=KNeighborsClassifier(n_neighbors=9)
model.fit(x_train,y_train)
pred=model.predict(x_test)
 → C:\Users\Isuru sandaruwan\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py:228: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the
      mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
accuracy=accuracy_score(y_test,pred)
accuracy
 <del>→</del> 1.0
cm=confusion_matrix(y_test,pred)
\rightarrow array([[13, 0, 0],
           [ 0, 7, 0],
           [ 0, 0, 10]], dtype=int64)
Start coding or generate with AI.
```