Finite State Machines (FSM)

Automates à états finis

- A. Analyse des FSM
- B. Synthèse des FSM
- C. Analyse de timing
- D. Codage des états
- E. Réduction des machines séquentielles

Catégories de systèmes séquentiels

Système séquentiel asynchrone

moteur

Un circuit de commande un moteur à l'aide de sortie Z. 3 entrées a,m,c permettent de commander l'évolution du système uniquement à partir de leurs niveaux.

C est un interrupteur de sécurité à deux positions. C=0 verrouille le mécanisme.

A est un interrupteur précisant le mode de fonctionnement (intermittent si *a*=0 ou continu si *a*=1)

M est un bouton poussoir permettant de commander la mise en route du moteur.

Sorties différentes pour une méme combinaison d'entrée

Bloc diagramme

Illustration n°2

Cahier des charges

Un circuit numérique doit pouvoir commander le clignotement d'une diode électroluminescente si la grandeur de T° en entrées est supérieure à 5°1 La fréquence du clignotement de la diode sera de 5 Hz

<u>Spécification</u>

Limite des systèmes asynchrones

<u>chronogramme</u>

Méthode d'analyse

Illustration

Bloc diagramme

X

Fonctions d'excitation

$$\begin{array}{ccc} J_1 = X & K_1 = \overline{X} \\ J_0 = (X + Y_1) \ \overline{Y_0} & K_0 = \overline{(X + Y_1)} \ \overline{\overline{Y_0}} \end{array}$$

Equation de la bascule JK $Q^+=J\bar{Q}+\bar{K}Q$

Modèle algébrique

$$\begin{array}{l} {{Y_{1}}^{+}}\!\!=\!\!X} \\ {{Y_{0}}^{+}}\!\!=\!(X\!\!+\!\!Y_{\!1}\!)}\,\overline{Y_{\!0}} \\ Z\!\!=\!(X\!\!+\!\!Y_{\!1}\!)\,\overline{Y_{\!0}} \end{array}$$

Machine de Mealy

Bloc diagramme

Diagramme/table des transitions

Modèle algébrique

$$Y_0^+ = (X+Y_1) \overline{Y}_0$$

 $Y_1^+ = X$
 $Z = (X+Y_1) \overline{Y}_0$

Y_1Y_0	0	1
00	00/0	11/1
01	00/0	10/0
10	01/1	11/1
11	00/0	10/0

Table des transitions

 $Y_1^+ Y_0^+ / Z$

Diagramme des transitions

Diagramme/table des états

Bloc diagramme

X	0	1
E0	E0/0	E3/1
E1	E0/0	E2/0
E2	E1/1	E3/1
E3	E0/0	E2/0

Table des états

Diagramme des états

Machine de MOORE

Algébrique
Z= G(Y)

Analyse

Foncions d'excitation

$$\begin{split} D_0 &= Y_0 \oplus X \\ D_1 &= \overline{X}.Y_1 + X.\overline{Y_1}.Y_0 + X..Y_1.\overline{Y_0} \end{split}$$

Modèle algébrique

$$S = Y_1 \cdot Y_0$$

$$Y_1^+ = D_1$$

$$Y_0^+ = D_0$$

X Y_1Y_0	0	1	S
00	00	01	0
01	01	10	0
10	10	11	0
11	11	00	1

Table des transitions

<u>Diagramme des</u> <u>transitions</u>

Automates à états finis

- A. Analyse des FSM
- B. Synthèse des FSM
- C. Analyse de timing
- D. Codage des états
- E. Réduction des machines séquentielles

Synthèse des FSM

Méthode de synthèse tabulaire

Illustration: discriminateur de séquences

Le système à concevoir doit détecter l'apparition d'une séquence (ex: début d'un message) composé de 3 '1' consécutifs dans un signal x. Les données de la ligne sont synchronisées à partir d'une source d'impulsions d'horloge clk. Le circuit voit sa sortie z passer de 0 à 1 en coïncidence avec le front montant de l'horloge à partir du moment où la séquence est reconnue. La sortie repasse à zéro dans la période d'horloge suivante. Le circuit ne peut revenir sur son état initial que sur intervention externe. Un nouveau cycle complet ne peut donc s'effectuer que suite à un rst.

Description comportementale

Table des états symboliques

Y	0	1
$\mathbf{Q_0}$	$Q_0/0$	Q ₁ /0
Q_1	$Q_0/0$	Q ₂ /0
\mathbf{Q}_2	$Q_0/0$	$Q_F/1$
$\mathbf{Q}_{\mathbf{F}}$	$Q_F/0$	$Q_F/0$

Validation fonctionnelle

Identification des entrées des bascules

Transition	D
0 → 0	0
$1 \rightarrow 1$	1
$1 \rightarrow 0$	0
$0 \rightarrow 1$	1

Transition	S	R
0 → 0	0	X
$1 \rightarrow 1$	X	0
$1 \rightarrow 0$	0	1
$0 \rightarrow 1$	1	0

Codage séquentiel/FF JK

Table des transitions

X Y_1Y_0	0	1
00	00/0	01/0
01	00/0	10/0
10	00/0	11/1
11	11/0	11/0

 $Y_1^+ Y_0^+ / Z$

Equations des entrées mémoires et sortie

$$J_1 = xy_0$$

$$K_1 = \overline{x}\overline{y_0}$$

$$J_0 = x$$

$$K_0 = \overline{y_1}$$

$$z = xy_1\overline{y_0}$$

Table des excitations

$\begin{matrix} 0 \\ \mathbf{J_1}\mathbf{K_1}\mathbf{J_0}\mathbf{K_0} \end{matrix}$	$\begin{matrix} 1 \\ J_1K_1 J_0K_0 \end{matrix}$
0X 0X	0X 1X
0X X1	1X X1
X1 0X	X0 1X
X0 X0	X0 X0

Codage séquentiel/FF D

Table des transitions

X	0	1
00	00/0	01/0
01	00/0	10/0
10	00/0	11/1
11	11/0	11/0

 $Y_1^+ Y_0^+ / Z$

Table des excitations

$0 \\ D_1D_0$	$\begin{matrix} 1 \\ D_1D_0 \end{matrix}$
00	01
00	10
00	11
11	11

Equations des entrées mémoires et sortie

$$D_{1}=y_{0}y_{1} + (y_{0}+y_{1})x$$

$$D_{0}=xy_{0}^{-}+y_{1}y_{0}$$

$$z=xy_{1}y_{0}^{-}$$

Bloc diagramme

Discriminateur de séquences(Moore)

Le système à concevoir doit détecter l'apparition d'une séquence (ex: début d'un message) composé de 3 un consécutifs dans un signal x. Les données de la ligne sont synchronisées à partir d'une source d'impulsions d'horloge *clk*. Le circuit voit sa sortie z passer de 0 à 1 **sur le front montant de l'horloge suivant l'échantillonnage du 3**ème '1' de la séquence. La sortie repasse à zéro dans la période d'horloge suivante. Le circuit ne peut revenir sur son état initial que sur intervention externe. Un cycle complet de détection ne peut donc s'effectuer que suite à un *rst*.

Description de Moore

Diagramme des états

Table des états

Y	0	1	Z
Q_0	Q_0	Q_1	0
Q_1	Q_0	Q_2	0
\mathbf{Q}_2	Q_0	Q_{F}	0
Q_{v}	Q_{G}	Q_{G}	1
$\mathbf{Q}_{\mathbf{G}}$	Q_{G}	Q_{G}	0

Synthèse logique

Table des transition(codage séquentiel)s

X	0	1	Z
000	000	001	0
001	000	010	0
010	000	011	0
011	100	100	1
100	100	100	0

Bloc diagramme

Automates à états finis

- A. Analyse des FSM
- B. Synthèse des FSM
- C. Analyse de timing
- D. Codage des états
- E. Réduction des machines séquentielles

Table des délais

MEALY

MOORE

chemin	Délai critique	
clk to clk		
clk to output		
Input to clk		
Input to output		

chemin	Délai critique
clk to clk	
clk to output	
Input to clk	

Contraintes du design

Période minimale/Fréquence maximale d'horloge

chemin	Délai critique
clk to clk	
clk to output	
Input to clk	
Input to output	

Illustration

chemin	Délai critique
clk to clk	10.7 ns
clk to output	6.3 ns
Input to clk	4.8 ns
Input to output	2.8 ns

Timing diagram

Static timing analyzeur

$$T_{\text{clk to clk}} + T_{\text{setup}} = 10.8 \text{ ns}$$

Input delay+ $T_{intoclk}$ + T_{setup} =8.4 ns

$$F_{\text{max}} = 92,5 \text{ Mhz}$$

Limite des machines de MEALY

chemin	Délai critique
clk to clk	10.7 ns
clk to output	6.3 ns
Input to clk	4.8 ns
Input to output	2.8 ns

Timing diagram

Static timing analyzeur

Clk to clk+Tsetup=10.8 ns

Input delay+ T_{xaclk} + T_{setup} = 11.9 ns

 $F_{\text{max}} = 84 \text{ Mhz}$

Analyse de timing (Moore)

Table des délais

chemin	Délai
	critique
clk à clk	8.3 ns
X à clk	5.8 ns
clk à Z	6.3 ns

Timing diagram

Static timing analyzeur

Cl \rightarrow clk+tsetup=8.3+0.1=8.4 ns Input delay+Xàclk+ T_{setup} = 12.9 **ns**

 $F_{\text{max}} = 77.5 \text{ Mhz}$

Automates à états finis

- A. Analyse des FSM
- B. Synthèse des FSM
- C. Analyse de timing
- D. Codage des états
- E. Réduction des machines séquentielles

Contraintes et critères

Codage une bascule/état

Illustration

Diagramme des états

Bloc diagramme

Diagramme des états

Méthode traditionnelle

Table des transitions

ES $Y_2 Y_1 Y_0$	0x	10	/11
000	xxx/x	xxx/x	xxx/x
010	001/0	100/0	010/1
100	100/0	010/0	001/0
011	xxx/x	xxx/x	xxx/x
101 à 111	xxx/x	xxx/x	xxx/x
		V	+ V + V +
· ·		Y	$_{2}^{+} Y_{1}^{+} Y_{0}^{+}$

Table des excitation

ES	Ox	10	11	
Y_1Y_0	$D_2D_1D_0$	$D_2D_1D_0$		
000	xxx/x	XXX/X	XXX/X	
010	001/0	100/0	010/1	
100	100/0	010/0		
011	xxx/x	xxx/x	xxx/x	
101 à 111	xxx/x	xxx/x	xxx/x	
				\

Equations des états suivants

$$D_2 = Y_2.e + Y_1.s.e + Y_0.e.s$$

 $D_1 = Y_1.e + Y_0.s.e + Y_2.e.s$

$$D_1 = Y_1.e + Y_0.s.e + Y_2.e.s$$

$$D_0 = Y_0.e + Y_2.s.e + Y_1.e.s$$

Equation de la sortie

$$Z = Y_1.e.s + Y_0.s.e$$

Impact du codage binaire

Equations

Codage binaire naturel

N	n	Nbre de codes total $A_{2^n}^N = \frac{(2^n)!}{(2^n - N)!}$	Nbre de codes ≠ $\frac{A_{2^{n}}^{N}}{n!2^{n}} = \frac{(2^{n}-1)!}{n!(2^{n}-N)!}$
2	1	2	1
3		24	3
	2 2 3	24	3
4 5	3	6720	140
6	3	20160	420
7	3	40320	840
8	3	40320	840
9	4	4.10 ⁹	10.810.800
••	••	•••	•••
16	5	2.10^{13}	5.10^{10}

Codage du détecteur

Table des états symboliques

Y	0	1
Q_0	$Q_0/0$	Q ₁ /0
Q_1	Q ₀ /0	$Q_2/0$
\mathbf{Q}_2	Q ₀ /0	$Q_F/1$
$\mathbf{Q}_{\mathbf{F}}$	$Q_F/0$	$Q_F/0$

24 affectations 3 codes différents

Règles heuristiques

+

priorité

- I. (a) Chercher les lignes de la table d'états qui ont des états suivants identiques. Coder ces lignes par des codes adjacents. Si possible, les états suivants de ces lignes recevront des codes adjacents
 - (b) Chercher les lignes qui ont les mêmes états suivants mais dans un ordre différent. Choisir des codes adjacents pour ces lignes si on peut coder les états suivants par des codes adjacents.
 - (c) Des lignes avec quelques états suivants identiques recevront des codes adjacents. On considère tout d'abord les lignes ayant le plus de colonnes identiques.
- II. Les états suivants d'une ligne recevront des codes adjacents.
- III. Les codages sont tels qu'ils simplifient les tables de sortie.

Application règle I au détecteur

X	0	1
Q_0	Q ₀ /0	$Q_{1}/0$
Q_1	Q ₀ /0	$Q_2/0$
\mathbf{Q}_2	Q ₀ /0	$Q_F/1$
$\mathbf{Q}_{\mathbf{F}}$	$Q_F/0$	$Q_F/0$

REGLE la Chercher les lignes de la table d'états qui ont des états suivants identiques. Coder ces lignes par des codes adjacents. Si possible, les états suivants de ces lignes recevront des codes adjacents

Non applicable

REGLE Ib Chercher les lignes qui ont les mêmes états suivants mais dans un ordre différent. Choisir des codes adjacents pour ces lignes si on peut coder les états suivants par des codes adjacents.

Non applicable

REGLE Ic Des lignes avec quelques états suivants identiques recevront des codes adjacents. On considère tout d'abord les lignes ayant le plus de colonnes identiques.

Adjacences

 Q_0 et Q_1 Q_0 et Q_2 Q_1 et Q_2 Q_2 et Q_f

Application règle II au détecteur

Table des états symboliques

Y	0	1
Q_0	$Q_0/0$	$Q_1/0$
Q_1	$Q_0/0$	Q ₂ /0
\mathbf{Q}_2	$Q_0/0$	$Q_F/1$
$\mathbf{Q}_{\mathbf{F}}$	$Q_F/0$	$Q_F/0$

REGLE II Les états suivants d'une ligne recevront des codes adjacents.

Adjacences retenues(sol 1)

$$Q_0$$
 et Q_1 Règle II Q_0 et Q_2 Q_2 et Q_f

Affectations

Q₀: 00 Q₁: 01 Q₂: 10 Q_F: 11

Equations du détecteur de séquence

Affectation 1A

Q₀: 00 Q₁: 01 Q₂: 10 Q_F: 11

$$J_1 = xy_0$$

$$K_1 = \overline{xy_0}$$

$$J_0 = x$$

$$K_0 = \overline{y_1}$$

$$z = xy_1\overline{y_0}$$

 $Adjacent(Q_0, Q_1)$ $Adjacent(Q_0, Q_2)$ $Adjacent(Q_2, Q_f)$

Gate Input Cost: 2+2+3=7

Affectation 1B

 $Permutation(Q_0, Q_F)$

Affectation 1C

Q₀: 11 Q₁: 10 Q₂: 01 Q_F: 00

$$J_{1} = \overline{x}y_{0}$$

$$K_{1} = x\overline{y}_{0}$$

$$J_{0} = \overline{x}$$

$$K_{0} = \overline{y}_{1}$$

$$z = x\overline{y}_{1}y_{0}$$

Permutation(Q_1, Q_2)

(c) E.Dekneuvel

Affectation n°2

 $\begin{array}{c} Q_{0}: 00 \\ Q_{1}: 01 \\ Q_{2}: 11 \\ Q_{F}: 10 \end{array} \qquad \begin{array}{c} J_{1} = xy_{0} \\ K_{1} = \overline{x}y_{0} \\ J_{0} = x\overline{y_{1}} \\ K_{0} = \overline{x} + y_{1} \\ z = xy_{1}y_{0} \end{array}$

Gate Input Cost 2+2+2+3=11

Non respect regle II

$Adjacent(Q_0, Q_2)$

Affectation n°3

 $\begin{array}{c} Q_0: 00 \\ Q_1: 11 \\ Q_2: 01 \\ Q_F: 10 \end{array} \qquad \begin{array}{c} J_1 = x \\ K_1 = \underline{y_0} \\ J_0 = \overline{x} \overline{y_1} \\ K_0 = \overline{x} + \overline{y_1} \\ z = x \overline{y_1} y_0 \end{array}$

Gate Input Cost: 2+2+3=7

Non respect regle Ic

Illustration de la règle III

Affectations((respect règle III)

Q₀: 01 Q₁:00

 (Q_0,Q_1)

Q₂:10

 (Q_1, Q_2)

III. Les codages sont tels qu'ils simplifient les tables de sortie.

Affectations (non respect regle III)

 $Q_0: 00$ $Q_1: 10$ $Q_2: 01$ (Q_0, Q_1) (Q_1, Q_2)

Table des transitions

ES Y Y	0x	10	11	
01	01/0	00/0	10/1	
00	00/0	10/0	01/0	
10	10/0	01/1 xx/x	00/0 xx/x	X7.1/7
11	xx/x	xx/x	xx/x	Y+/Z

Table des transitions

ES Y, Y ₀	0x	10	11	
00	00/0	10/0	01/1	
10	10/0	01/0	00/0	
01	01/0	00/1	10/0	Y+/Z
11	xx/x	xx/x	xx/x	1 1/2

Equation de la sortie

$$Z = Y_1.\overline{s.e} + Y_0.s.e$$

Equation de la sortie(moins bon)

$$Z = Y_0.s.e + Y_1Y_0.s.e$$

Equations des états suivants

$$D_2 = Y_2.e + Y_1.s.e + Y_0.e.s$$

 $D_1 = Y_1.e + Y_0.s.e + Y_2.e.s$
 $D_0 = Y_0.e + Y_2.s.e + Y_1.e.s$

Equation de la sortie

$$Z = Y_1.e.s + Y_0.s.e$$

One-hot vs binaire

Equations des états suivants

$$D_1 = Y_1.\overline{e} + Y_0.s.e + \overline{Y_1}.\overline{Y_0}.e.\overline{s}$$

$$D_0 = \overline{Y_0}.\overline{e} + \overline{Y_1}.\overline{s}.e + \overline{Y_1}.e.s$$

Equation de la sortie

$$Z = \overline{Y_1.s.e} + Y_0.s.e$$

112 Transistors

Tmin=input delai(3.5)+inouttoclk(2.*2.8+1.0)+Tsetup(0.1)= **10.2** ns

Tmin=input delay(3.5)+inputtoclk(2.8+3.2+1.0)+Tsetup(0.1)= **10.6** ns

Tmin=input delay(3.5)+Inuttoclk(2.4+2.8+1.0)+Tsetup(0.1)= **9.8** ns clk to Z=3.5+2.4=5.9 ns

Tmin=Input delay(3.5)+inputtoclk(2.4+2.8)+Tsetup(0.1)= **8.8** ns clk to Z=3.5+2.8=6.3 ns

Borne intéractive

Mesure d'un signal

Cahier des charges

On souhaite réaliser un circuit capable de mesurer la largeur des impulsions en entrée. Le signal est synchronisé avec l'entrée d'horloge clk. Le rôle du circuit est de produire des sorties S_1S_0 dont la valeur détermine si l'impulsion est :

- •courte (sorties SB = 00) : l'impulsion dure une période d'horloge: on est en présence d'un bit de donnée à 0
- •moyenne (sorties SB = 01) : l'impulsion dure deux périodes d'horloge: on est en présence d'un bit de donnée à 1
- •longue (sorties SB= 1x) : l'impulsion dure trois périodes d'horloge.: on est en présence d'une barre de start

On notera qu'une impulsion de *x* dure au maximum 3 périodes d'horloge. Il est donc **impossible** d'avoir à mesurer une impulsion sur 4 périodes d'horloge ou plus. Un signal *valid* permet de préciser l'intervalle de validation des sorties.

Les différentes impulsions sont **obligatoirement** séparées d'au **minimum** deux périodes d'horloge durant lesquelles le signal d'entrée est maintenu à zéro.

Description MOORE

Diagramme des états

Table des états

Y	X=0	X=1	VSB
Q_0	Q_0	Q_1	0
:Q ₁	Q_2	Q_3	0
Q_2	Q_0	-	100
Q_3	Q_4	Q_5	0
Q_4	Q_0	-	101
Q_5	Q_6	-	0
Q_6	Q_0	-	11x

Codage binaire adjacences?

Table des états

Y	X=0	X=1	VSB
Q_0	Q_0	Q_1	0
:Q ₁	Q_2	Q_3	0
Q_2	Q_0	-	100
Q_3	Q_4	Q_5	0
Q_4	Q_0	-	101
Q_5	Q_6	-	0
Q_6	Q_0	-	11-

Table des transitions

$Y_2Y_1Y_0$	X=0	X=1	VSB
011	011	111	0
111	000	100	0
000	011	-	100
100	001	101	0
001	011	-	101
101	010	-	0
010	011	-	11-
110	-	-	XXX

Equations des entrées FF

$$D_0 = \overline{Y_2} + \overline{Y_0}$$

$$D_1 = \overline{Y_2} + \overline{Y_1}.Y_0$$

$$D_2 = x$$

Equations des sorties

$$V = Y_1 \overline{Y_0} + \overline{Y_2} \overline{Y_1}$$

$$S = Y_1$$

$$B = \overline{Y_2} Y_0$$

Analyse des performances

Codage one hot?

Diagramme des états

Analyse des performances

Codage par les sorties(Moore)

Table des transitions

XXX

Table des états

	Y	X=0	X=1	VSB
_	Q_0	Q_0	Q_1	0
	Q_1	Q_2	Q_3	0
	Q_2	Q_0	-	100
	Q_3	Q_4	Q_5	0
	Q_4	Q_0	-	101
	Q_5	Q_6	-	0
	Q_6	Q_0	-	11-

Affectations

$Y_2Y_1Y_0$	X=0 X=1	VSB
000	000 001	000
001	100 010	001
100	000 xxx	100
010	101 011	010
101	000 xxx	101
011	110 xxx	011
110	000 xxx	110

Equations des sorties(moore)

XXX XXX

111

Equations des FF

$$D_0 = \overline{Y_2} Y_1 \overline{Y_0} + \overline{Y_0}.x$$

$$D_1 = Y_0.x + Y_1.X + Y_1.Y_0$$

$$D_2 = \overline{Y_2} Y_1 \overline{x} + \overline{Y_2} Y_0 \overline{x}$$

Analyse des performances

Table des délais

chemin	délai
clk à clk	8.7 ns
clk à Z	3.5 ns
X à clk	6.2 ns

Tmin=clk→Z+outputdelay=18.5 ns Slack=+1.5 ns

Automates à états finis

- A. Analyse des FSM
- B. Synthèse des FSM
- C. Codage des états
- D. Analyse de timing
- E.Réduction des machines séquentielles

Réduction des systèmes séquentiels

Machines équivalentes

Machine S

Y	0	1	_
q_1	q ₃ /0	q ₂ /1	
q_2	q ₁ /1	$q_{2}/0$	
q_3	q ₁ /0	q ₂ /1	

	Machine T	Ţ,
Y	0	1
p ₁	p ₁ /0	p ₂ /1
p ₂	p ₁ /1	p ₂ /0

X 00110010011010

Etats indissociables

Deux états p et q d'une machine séquentielle sont dits états indissociables ou états équivalents (p = q), si la séquence de sortie est identique pour toute séquence d'entrée appliquée à p et q.

Deux machines M_1 et M_2 seront dites indissociables (équivalentes) ($M_1 \equiv M_2$)

ssi \forall soit $p \in a$ M_1 , il existe $q \in a$ M_2 tel que $p \equiv q$ et \forall soit $q \in a$ M_2 , il existe $p \in a$ M_1 tel que $q \equiv p$

Illustration

Machine S

 $q_2 \neq q_3$

X 00110010011010

Z 00101011010100

 $q_1 \equiv q_3$

 $q_2 \neq q_3 \text{ et } q_1 \equiv q_3 \Rightarrow q_2 \neq q_1$

Relation d'équivalence

Réflexive

$$\forall x \in E, x \Re x$$

≤

Est-de-la-même-casse-que (minuscule ou majuscule)
a-meme-couleur-d'yeux-ou-de-cheveux-que

Symétrique

$$\forall x,y \in E$$
, $x \Re y \Rightarrow y \Re x$

Est-de-la-même-casse-que

a-meme-couleur-d'yeux-ou-de-cheveux-que

Transitive

$$\forall x,y,z \in E$$
, $x \Re y$ et $y \Re z$
 $\Rightarrow x \Re z$

Est-de-la-même-casse-que

Classes d'equivalence $P_1 = \{a, b, c, d\}$ $P_2 = \{A, B, C, D\}$

Théorème pour le partitionnement en classes d'équivalences

$$\forall \chi$$
1. $G(p,x)=G(q,x)$
2. $F(p,x) \stackrel{\triangle}{=} F(q,x)$

Table d'états

Q^{X}	0	1
$\overline{Q_0}$	$Q_0/1$	$Q_4/0$
Q_1	$Q_{0}/0$	$Q_{4}/0$
\mathbf{Q}_2	$Q_{1}/0$	$Q_{5}/0$
Q_3	$Q_{1}/0$	$Q_{5}/0$
Q_4	$Q_{2}/0$	$Q_{6}/1$
Q_5	$Q_{2}/0$	$Q_{6}/1$
Q_6	$Q_{3}/0$	$Q_{7}/1$
Q_7	$Q_{3}/0$	Q ₇ /1

Partition initiale

Classes	a		b			C	•	
Etats	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7
Cl. Suivante x=0 x=1	a c	a c	b c	b c	b c	b c	b c	b c

Repartitionnement

Classes	a	b	c	d
Etats	Q_0	$Q_2 Q_3$	Q_4 Q_5 Q_6 Q_7	Q_1
Cl. Suiv.	a c	d c d c	$\begin{vmatrix} \mathbf{b} & \mathbf{c} & \mathbf{b} & \mathbf{c} & \mathbf{b} & \mathbf{c} \end{vmatrix}$	a c

Machine initiale

Y X	0	1
$\overline{Q_0}$	$Q_0/1$	$Q_4/0$
Q_1	$Q_0/0$	$Q_{4}/0$
Q_2	Q ₁ /0	$Q_{5}/0$
Q_3	$Q_{1}/0$	$Q_{5}/0$
Q_4	$Q_{2}/0$	$Q_{6}/1$
Q_5	Q ₂ /0	$Q_{6}/1$
Q_6	Q ₃ /0	$Q_7/1$
Q_7	Q ₃ /0	$Q_7/1$
		Y^+/Z

Y	0	1
A:{Q ₀ }	A /1	C /0
$B_{:\{Q_2,Q_3\}}$	D/o	C /0
C:{Q ₄ ,Q ₅ ,Q ₆ ,Q ₇ }	B /o	C/1
D:{Q ₁ }	A /o	C/0
		Y+/Z

Automate final

Systèmes incomplètement spécifiés

Un circuit séquentiel synchrone a une entrée x et une sortie z. Si le circuit est dans son état initial, il y reste tant que x=0 et la sortie est indifférente. Une entrée x=1 fait que le circuit quitte son état initial R avec une sortie à 0. Une séquence d'entrées '0' d'une longueur arbitraire produit alors une sortie z=1 au moment de la $1^{\frac{1}{2}}, 3^{\frac{1}{2}}, 5^{\frac{1}{2}}, \dots$ entrée à zéro. Une nouvelle entrée à 1 sur un état différent de R ramène le circuit dans son état initial, sortie à 0.

Classes d'équivalence?

qx	0	1	
r	r/-	q ₁ /0	
q_1	q ₂ /1	r /o	
q_2	q ₁ /0	r /o	

Classes	A		В	
Etats	r	q_1	q_2	
Cl suivantes X=0 X=1	A A	B A		
problème				

La sortie – est forcée à 1

La sortie – est forcée à 0

Machines compatibles

Machine T

q x	0	1	_
r	r/-	q ₁ /0	
q_1	q ₂ /1	r/ o	
q_2	q ₁ /0	r /o	

Machine S

q x	0	1
C1:{r,q2}	c2/0	c2/0
c2:{r,q1}	c1/1	c2/0

X 0011001

$$Z_{\rm s}$$
 - 00 - 00 $Z_{\rm s}$ 01001100

Relation de compatibilité

2 états p et q sont compatibles si et seulement si pour toute séquence d'entrée, la sortie est identique **lorsque celle-ci est déterminée**.

Illustration

/				
	Machine T)		
	q x	0	1	
	r	r/-	q ₁ /0	
	q_1	q ₂ /1	r /o	
	q_2	q ₁ /0	r /o	
Į				

 q_2 incompatible avec q_1

R compatible avec q_1

Méthode de la table/graphe des implications

 $\forall \chi$

- 1. G(p,x)=G(q,x) si sortie spécifiée
- 2. F(p,x) et F(q,x) compatibles si état suivant spécifié

	qX	00	01	11	10	
•	a	b/-	e/0	e/0	b/-	
	b	c/0	d/-	-/-	-/-	
	c	-/-	e/-	a/0	b/0	
	d	a/-	b/1	-/-	-/-	
	e	b/1	-/-	-/-	d/1	

- Table des implications -

- Graphe des implications

Ensembles des compatibles maximaux

- Graphe des implications

- Table des implications -

- Classes de compatibilités maximaux-

Machine réduite

Machine originale

qX	00	01	11	10
a	b/-	e/0	e/0	b/-
b	c/0	d/-	-/-	-/-
c	-/-	e/-	a/0	b/0
d	a/-	b/1	-/-	-/-
e	b/1	-/-	-/-	d/1

(a	e))
(a	b	c)
(b	d)
(d	e))

qX	00	01	11	10
q_0	$q_{1,}q_{2}/1$	$q_3, q_0/0$	$q_0, q_3/0$	$q_2/1$
q_1	q ₁ /0	$q_{3}/0$	$q_0/0$	$q_1, q_2/0$
q_2	q ₁ /0	$q_{2}/1$	-/-	-/-
q_3	q ₁ /1	$q_1, q_2/1$	-/-	$q_2, q_3/1$
	l			vo

Machine réduite