Лабораторная работа №2

Синхронизация данных для многопоточности

Работа с потоками в .NET

Работа с потоками

https://learn.microsoft.com/ru-ru/dotnet/standard/threading/using-threads-and-threading

Пул потоков

https://learn.microsoft.com/ru-ru/dotnet/api/system.threading.threadpool?view=net-8.0

Синхронизация потоков в .NET

Mutex

https://learn.microsoft.com/ru-ru/dotnet/api/system.threading.mutex?view=net-8.0

Semaphore

https://learn.microsoft.com/ru-ru/dotnet/api/system.threading.semaphore?view=net-8.0

Monitor (и в него встроены события)

https://learn.microsoft.com/ru-ru/dotnet/api/system.threading.monitor?view=net-8.0

Работа с потоками в Java

Работа с потоками

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Thread.html

Пул потоков

https://www.baeldung.com/thread-pool-java-and-guava

Синхронизация потоков в Java

ReentrantLock

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html

Semaphore

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/Semaphore.html

Monitor

https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.19 (п. 14.19)

События

https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.2 (π. 17.2)

Задание

Разработать однопоточное и многопоточное приложение для решения СЛАУ на *C#* или *Java*. Входные данные задачи:

- матрица коэффициентов уравнения (А)
- вектор правых частей (В)

Количество задач (СЛАУ) - не менее 10-ти. Размерность задач - не менее 5000. Задачи описать построчно в текстовом файле. Например:

```
al.csv,bl.csv
a2.csv,b2.csv
...
an.csv,bn.csv
```

где an.csv, bn.csv - файлы с входными данными задачи.

Реализовать приложение по следующей схеме:

- поток Producer выполняет чтение текстового файла с задачами и помещает их в очередь задач
- потоки Consumer берут задачи из очереди и выполняют их. Результаты кладут в отдельный список
- после завершения работы Producer и Consumer потоков результаты вычислений записываются в файлы x1.csv, x2.csv, ..., xn.csv

Примечание: Producer и Consumer потоки должны работать параллельно

Произвести замеры времени выполнения однопоточной и многопоточной реализации. Результаты замеров вывести на консоль.

Количество потоков должно быть равно количеству физических или логических ядер процессора, а при использовании пула потоков необходимо ограничить максимальное значение потоков числом физических или логических ядер + 4.

Таблица 1 - Варианты заданий

Nº	Метод решение СЛАУ	Способ реализации многопоточности	Механизм синхронизации
1	Решение СЛАУ методом Гаусса	Потоки	Semaphore
2	Решение СЛАУ методом Зейделя	Пул потоков	События
3	Решение СЛАУ методом Гаусса- Зейделя	Потоки	Monitor
4	Решение СЛАУ методом LL^t разложения	Пул потоков	Semaphore
5	Решение СЛАУ методом LU разложения	Потоки	События
6	Решение СЛАУ методом LDL^t разложения	Пул потоков	Monitor
7	Решение СЛАУ методом Гаусса	Потоки	Monitor
8	Решение СЛАУ методом Зейделя	Пул потоков	Mutex (ReentrantLock)
9	Решение СЛАУ методом Гаусса- Зейделя	Потоки	События
10	Решение СЛАУ методом LL^t разложения	Пул потоков	Monitor
11	Решение СЛАУ методом LU разложения	Потоки	Semaphore
12	Решение СЛАУ методом LDL^t разложения	Пул потоков	Mutex (ReentrantLock)
13	Решение СЛАУ методом LL^t разложения	Потоки	Mutex (ReentrantLock)
14	Решение СЛАУ методом LDL^t разложения	Пул потоков	События
15	Решение СЛАУ методом Гаусса	Потоки	Mutex (ReentrantLock)