B C D	Nombre:	1ª Evaluación		Nota
	Curso:	2º Bachillerato A	Examen I	
	Fecha:	18 de Octubre de 2017	Bloque Funciones	

La no explicación clara y concisa de cada paso en la resolución de los problemas implica una penalización del 25% de la nota

1.- (2 puntos) Calcular la derivada de las siguientes funciones, simplificando los resultados:

a)
$$f(x) = \frac{3\ln x}{x^3}$$

b)
$$g(x) = (1-x)^2 e^x$$

2.- (2 puntos) Representa gráficamente la función $y = -2x^2 + ax - b$, sabiendo que alcanza su máximo en el punto (2, 2). Calcula la ecuación de la recta tangente en el punto máximo.

3.- (2 puntos) La producción de cierta hortaliza en un invernadero, I(x) en kilogramos, depende de la temperatura, x en grados centígrados, según la expresión: $I(x) = (x+1)^2(32-x)$

- a) Calcular la temperatura óptima a mantener en el invernadero. Razonar la respuesta.
- **b)** ¿Qué producción se obtendrá con dicha temperatura óptima?
- c) Representar de forma aproximada la función en el intervalo [-5, 25].

4.- (2 puntos) Dada la función $f(x) = \begin{cases} \frac{a}{x} & \text{si } x \le -1 \\ \frac{x^2 - b}{4} & \text{si } x > -1 \end{cases}$, calcular a y b para que la función sea continua y derivable en x=-1.

5.- (1 punto) Calcular los siguientes límites:

a)
$$\lim_{x\to 2} \frac{x^2 - x - 2}{x - 2} =$$

b)
$$\lim_{x \to \infty} \left(\frac{x^2}{x - 1} - \frac{x^2 + 1}{x - 2} \right) =$$

6.- (1 punto) Dada la función: $f(x) = \frac{x^2 + 2x - 3}{x^2 + x - 6}$, estudiar su continuidad analizando los distintos tipos de discontinuidad que existan.

En aquellos puntos donde no es continua, ¿es posible definir de nuevo la función para evitar la discontinuidad?