OSM - Examen préliminaire

Lugano, Lausanne, Zurich - le 14 janvier 2012

Durée	:	3	heures
-------	---	---	--------

Chaque exercice vaut 7 points.

- 1. Trouver toutes les paires (m, n) de nombres naturels tels que (m+1)(n+2) est divisible par mn.
- 2. Considérons 6n jetons de 2n couleurs, tels qu'il y a exactement 3 jetons de chaque couleur. Ces jetons doivent être répartis en deux piles A et B de taille égale de sorte que aucune pile ne contienne trois jetons de la même couleur. Combien y a-t-il de manières de le faire si
 - a) l'ordre des jetons à l'intérieur d'une pile ne joue aucun rôle?
 - b) l'ordre est important?
- 3. Soient A et B les points d'intersection de deux cercles k et l centrés en K et L respectivement. Soient M et N les points d'intersection de k respectivement l avec une droite passant par A, de sorte que A se trouve entre M et N. Soit D le point d'intersection des droites MK et NL. Montrer que les points M, N, B et D se trouvent sur un cercle.
- **4.** Soit a_1, a_2, \ldots une suite arithmétique de nombres entiers. Supposons que pour tout $1 \le k \le 50$ le nombre a_k est divisible par k.
 - a) Montrer que a_{51} est divisible par 51 et que a_{52} est divisible par 52.
 - b) Est-ce que a_{53} est toujours divisible par 53?

La suite a_1, a_2, \ldots est arithmétique si la différence $a_{i+1} - a_i$ est la même pour tout i.

5. Un damier de taille 11×11 doit être recouvert complètement et sans chevauchement par des pièces de taille 2×2 , par des Skew-tetrominos et par des L-triominos. Il est permis d'appliquer des rotations et des symétries aux pièces. De combien de L-triominos a-t-on besoin au minimum?

Bonne chance!