机器学习 实验方法与原则

决策树学习

回归分析

机器学习

Machine Learning

主讲人:张敏清华大学长聘副教授

机器学习实验方法与原则(I)

*图片均来自网络或已发表刊物

机器学习实验方法与原则

- 评价指标
- 训练集、验证集与测试集
- 随机重复实验
- K折交叉验证
- 统计有效性检验

机器学习实验方法与原则1

- 评价指标
- 训练集、验证集与测试集
- 随机重复实验
- K折交叉验证
- 统计有效性检验

评价指标

在不同任务下衡量模型的性能,有不同的评价指标,例如:

机器学习基础

- 回归任务
 - 平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)等
- 分类任务
 - 准确率(Accuracy)、精度(Precision)、召回率(Recall)等
- 特定任务
 - 个性化推荐:前K项精度(Precision@K)、前K项召回率(Recall@K)、前K项 命中率(Hit@K)等
 - 对话系统:BLEU、ROUGE、METEOR等

<u>常用评价指</u>标 – 1.回归任务(MAE, MSE,RMSE)

预测值 p_i 常为连续值,需要衡量与真实值 y_i 之间的误差

• 平均绝对误差(MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - p_i|$$

• 均方误差 (MSE) : 预测误差较大的样本影响更大

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - p_i)^2$$

• 均方根误差 (RMSE) : 与预测值、标签单位相同

RMSE =
$$\sqrt{\text{MSE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - p_i)^2}$$

常用评价指标 – 2.分类任务 (Accuracy, ER)

预测值一般为离散的类别. 需要判断是否等于真实类别

• 准确率 (Accuracy)

$$Accuracy = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i = p_i)$$

• 错误率 (Error Rate)

Error Rate =
$$1 - Accuracy = 1 - \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i = p_i)$$

常用评价指标 – 2.二分类任务 (P,R,F)

针对二分类任务的评价指标

- 精准率 / 精度 (Precision)
 - 预测为正例的样本中有多少确为正例

$$Precision = \frac{TP}{TP + FP}$$

- 召回率 (Recall)
 - 找到的真实正例占所有正例中的比例

$$Recall = \frac{TP}{TP + FN}$$

• F_{β} 精准率和召回率的加权调和平均

	预测标签					
真实标签	p = 1	p = 0				
y = 1	TP (True Positive ,真正例,真阳性)	FN (False Negative ,假反例,假阴性)				
y = 0	FP (False Positive ,假正例,假阳性)	TN (True Negative ,真反例,真阴性)				

$$F_{\beta} = 1/[\frac{1}{1+\beta^2} \left(\frac{1}{P} + \frac{\beta^2}{R}\right)] = \frac{(1+\beta^2) \times P \times R}{(\beta^2 \times P) + R}$$

$$F_1 = \frac{2 \times P \times R}{P + R} = \frac{2TP}{2TP + FP + FN}$$

常用评价指标 – 2. 二分类任务(AUC)

考虑二分类时划分正负的阈值

• ROC曲线

- 根据预测值对样本排序
- 以该样本的预测值为阈值
- 大干或等干阈值记正例. 否则记负例
- 可得到一组结果及评价指标,共有样本数n组结果
- 假正例率 (False Positive Rate, FPR) 为横轴
- 真正例率 (True Positive Rate, TPR, 也即召回率) 为纵轴

- 随机猜测模型的ROC曲线为(0,0) 到 (1,1)的对角线
- 理想模型的ROC曲线为(0,0)-(0,1)-(1,1), 所有正例预测值大于所有负例预测值
- AUC: (Area Under ROC Curve) ROC曲线下的面积, 越大越好

常用评价指标 - 2. 二分类任务 (AUC)

• T: 阈值

对于一个模型f,每个阈值的取值T都对应于ROC空间上的一个点

class score					
1	0.98				
0	0.80				
1	0.67				
1	0.65				
0	0.54				
^	0.22				

Actual

Actua class		T=0.	7
1	0.98	1	
0	0.80	1	
1	0.67	0	
1	0.65	0	
0	0.54	0	
0	0.32	0	

	₀ а	ctual 1
0	2	2
predicted 1	1	1

FPR = 1/(2+1)=0.33TPR = 1/(2+1)=0.33

Actual		T=0.	
class	Score	Class	
1	0.98	1	
0	0.80	1	
1	0.67	1	
1	0.65	1	
0	0.54	1	
0	0.32	0	

	, а 0	ctual 1
0	1	0
predicted 1	2	3

FPR = 2/(1+2)=0.67TPR = 3/(0+3) = 1

: I—	レフフ	'	, , , ,		/		
	Inst#	Class	Score	Inst#	Class	Score	
	1	P	.9	11	p	.4	
	2	\mathbf{p}	.8	12	\mathbf{n}	.39	
	3	\mathbf{n}	.7	13	\mathbf{p}	.38	
	4	\mathbf{p}	.6	14	\mathbf{n}	.37	
	5	\mathbf{p}	.55	15	\mathbf{n}	.36	
	6	\mathbf{p}	.54	16	\mathbf{n}	.35	
	7	\mathbf{n}	.53	17	P	.34	
	8	\mathbf{n}	.52	18	\mathbf{n}	.33	
	9	P	.51	19	P	.30	
	10	n	.505	20	n	.1	
1						.30	
	'	' '	'	' '		34 33	
0.9	_				*		
0.8	L			;38;37	;36 ;	35	
υ			4	139			
0.7			¥	*		٦	
0.6	_	×	51505			_	
≘	.54	_{.53} .5	32				
S 0.5	- **	→=×	-			-	
즈 _{0.4}	_ i.55						
2	1,6						
0.3	- *.°					-	
	.8 .7						
0.23						٦	
0.13	<u>.9</u>					4	
In	inity		1		1 1	,	
0	finity 0 0.1	0.2 0.3		0.5 0.6	0.7 0.8	0.9 1	
False positive rate							

 γ_i

3

ML 秘器学》

常用评价指标 - 2. 二分类任务 (AUC)

AUC的简便计算方法:

- 把测试样例以预测值从大到小排序,其中有*n1*个真实正例, 其中n0个真实负例
- 设 r_i 为第 i个真实负例的秩(排序位置), $S_0 = \sum r_i$
- AUC可以计算为:

(Hand & Till, 2001, MLJ)

$$\hat{A} = \frac{S_0 - n_0(n_0 + 1)/2}{n_0 n_1}$$

Ranklist 1	+	+	+	+	_	+	_	_	_	_
Ranklist 2	_	+	+	+	+	_	_	_	_	+

$$\frac{(1+6+7+8+9)-5\times 6/2}{5\times 5} = \frac{1}{11}$$

常用评价指标 - 3.特定任务

新增用户

留存用户

活跃用户

- 一些特定任务有其特有评价指标
- 个性化推荐
 - 前K项精度(Precision@K):模型排序给出的前K个推荐中,用户喜欢的项目(正例)的比例
 - 前K项召回率(Recall@K):模型排序给出的前K个推荐中,正例数占候选集中所有正例的比例
 - 前K项命中率(Hit@K):模型排序给出的前K个推荐中,是否有正例
 - nDCG@K、点击率、用户留存、利润转化等
- 对话系统
 - BLEU、ROUGE、 METEOR:基于词、n-gram匹配衡量预测句子与目标句子之间的相似度
 - 基于词向量计算预测句子与目标句子之间的相似度
 - 用户与系统对话的时长、次数
 - 人工评价

常用评价指标 – 3.特定任务 (DCG)

- DCG: Discounted Cumulative Gain
- 检测一个文档, 用分级的相关性来衡量有用性,或者增益(Gain)
 - $rel_1 + rel_2 + rel_3 + \dots$
- 增益从排序列表的开头开始累积,随着位次增加,增益可能会减弱(Discounted)
 - rel_1 + discounted(rel_2) + discounted(rel_3) + ...
 - 典型的折损函数有1/log (rank)
 - 底数为2时, 位次4的折损为1/2, 位次8为1/3
 - $rel_1 + rel_2 / \log_2 2 + rel_3 / \log_2 3 + \dots$

常用评价指标 – 3.特定任务 (DCG)

- DCG: Discounted Cumulative Gain
- DCG 是对一个特定位次p的累积增益(Cumulative):

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

• 或:

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{log(1+i)}$$

ML 秘器学》

常用评价指标 - 3.特定任务(DCG)举例

- 10 个文档的展示列表,相关性分级0-3: 3, 2, 3, 0, 0, 1, 2, 2, 3, 0
- 折扣增益: (1/log₂i)
 3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0
 = 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0
- 累积折扣增益 (DCG@n):
 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

机器学习

常用评价指标 – 3.特定任务(NDCG)

- NDCG: 归一化DCG (Normalized Discounted Cumulative Gain)
- 文档: 3, 2, 3, 0, 0, 1, 2, 2, 3, 0

DCG@n: 3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61

• 归一化,通过对比理想排序的DCG

理想排序: 3, 3, 3, 2, 2, 2, 1, 0, 0, 0

理想DCG@n: 3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 10.88, 10.88, 10.88

• NDCG@n (除以理想值):

```
\left(\frac{3}{3}, \frac{5}{6}, \frac{6.89}{7.89}, \frac{6.89}{8.89}, \frac{6.89}{9.75}, \frac{7.28}{10.52}, \frac{7.99}{10.88}, \frac{8.66}{10.88}, \frac{9.61}{10.88}, \frac{9.61}{10.88}\right)
```

1, 0.83, 0.87, 0.76, 0.71, 0.69, 0.73, 0.8, 0.88, 0.88

常用评价指标 – 3.特定任务(NDCG)

- 通过与理想排序的对应位置的DCG进行对比来归一化
- 对有不同数量相关文档的搜索结果求均值时更科学简洁
- 在任何位置都有NDCG ≤ 1
- 考虑了分级相关性和位置信息
- 搜索引擎等与排序相关的应用中相当常用的评价指标之一

常用评价指标 – 3.特定任务 (BLEU)

- BLEU: bilingual evaluation understudy 双语替代评价
- 最早多用于机器翻译,后来也被其他任务借鉴(如对话生成等)
- 检测译文中的每个n-gram是否在参考译文中出现
- Precision没有考虑词出现的次数限制, 结果偏高
- 某个词在译文中的有效频次不应超过参考译文中的频次

你好	1-gram	2-gram
参考译文:how are you	how, are, you	how are, are you
模型译文:you you	you, you	you you
Precision	(1+1)/2 = 1.0	0/1 = 0
Precision – 修正	(1+0)/2 = 0.5	0/1 = 0

BL常用评价指标 – 3.特定任务(BLEU)

- 译文太短时精度高但翻译不一定准确:译文较参考译文更长时, BP = 1
 - 译文较参考译文更短时, $BP = \exp\left(1 \frac{\text{参考译文长度}}{\text{模型译文长度}}\right)$
- n-gram中n越大时的精度高表示句子越流畅,对n几何加权平均

你好	1-gram	2-gram	BLEU(n=2)
参考译文:how are you	how, are, you	how are, are you	$\binom{n}{n}$
模型译文:you you	you, you	you you	$BLEU = BP * \exp\left(\frac{1}{n}\sum_{i=1}^{n}\ln(P_i)\right)$
Precision $-$ 修正(P_i)	(1+0)/2 = 0.5	0/1 = 0	$= 0.61*\exp(0.5(ln0.5 + ln0)))$
BP	$e^{1-\frac{3}{2}}$	$\frac{3}{2} \approx 0.61$	= 0 $= 0$

常用评价指标 – 3.特定任务(BLEU)

机器学习基础

- 精度log可能出现为0的情况 → 置BLEU=0
- 也可对精度做平滑
- Google的参考实现(扩展:多个句子的翻译、多个参考译文)
 - https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py

你好	1-gram	2-gram	BLEU(n=2)
参考译文:how are you	how, are, you	how are, are you	$(1 \stackrel{n}{\triangleright})$
模型译文:you you	you, you	you you	$BLEU = BP * \exp\left(\frac{1}{n}\sum_{i=1}^{n}\ln(P_i)\right)$
Precision $-$ 修正平滑(P_i)	(1+0 <mark>+1</mark>)/(2 +1) =	(0+1)/(1+1) = 0.5	` !-1
	2/3		$= 0.61 \exp\left(0.5 \left(\ln\left(\frac{2}{3}\right) + \ln\left(\frac{1}{2}\right)\right)\right)$
BP	$e^{1-\frac{3}{2}}$	≈ 0.61	≈ 0.35
	C -	~ 0.01	20

机器学习实验方法与原则 2

- 评价指标
- 训练集、验证集与测试集
- 随机重复实验
- K折交叉验证
- 统计有效性检验