七段顯示器

接腳參數

接腳名稱 及 所在之bit位置	說明
E_GPC 4	第一顆七段顯示器 (最右邊)
E_GPC 5	第二顆七段顯示器
E_GPC 6	第三顆七段顯示器
E_GPC 7	第四顆七段顯示器 (最左邊)

Enable: 1 Disable: 0

同一時間,只能有有一個七段顯示器被選到(enable)

接腳參數

E_GPE負責控制七段顯示器中每個位置的暗或亮

亮: 0

暗: 1

四個七段顯示器共用這些資料接腳

		g	e	d	b	a	f	dp	c
		7	6	5	4	3	2	1	0
數字0~5	0	1	0	0	0	0	0	1	0
	1	1	1	1	0	1	1	1	0
	2	0	0	0	0	0	1	1	1
	3	0	1	0	0	0	1	1	0
	4	0	1	1	0	1	0	1	0
	5	0	1	0	1	0	0	1	0

Bit位置

控制

- 暫存器
 - E_GPC , E_GPE
- 暫存器之存取
 - 指定某一暫存器
 - tGPIO_C = (GPIO_T *)((uint32_t)GPIOA + (2*0x40));
 - tGPIO_E = (GPIO_T *)((uint32_t)GPIOA + (4*0x40));
 - 於該暫存器中存取資料
 - tGPIO_C->DOUT = 0xff10;

舉例1

• 兩個數字切換顯示,在同一個七段顯示器

```
tGPIO_C->DOUT = 0xff10; //最右邊的七段顯示器
while(1)
                           //輸出圖形5
 tGPIO_E->DOUT=0x52;
  DrvSYS_Delay(500000);
                           //輸出圖形4
 tGPIO E -> DOUT = 0x6a;
  DrvSYS_Delay(500000);
```

舉例2

· 顯示的資料,可用array存起來,再使用

```
int pattern[6]=\{0x82,0xee,0x07,0x46,0x6a,0x52\};
int index =0;
tGPIO_C->DOUT = 0xff10; //最右邊的七段顯示器
while(1)
  tGPIO_E->DOUT = pattern[index]; //從pattern中叫出所要顯示的圖形
  DrvSYS_Delay(500000);
  index = (index+1) \% 6;
```

舉例3-殘影問題

- 在2個七段顯示器上顯示 圖形6 和 5 相互交換顯示,要在第2個七段顯示器顯示圖形6時,由於資料還是0x52
 - · 所以在第2個七段顯示器**有可能**會看到圖形5

```
while(1)
{
    tGPIO_C->DOUT = 0xff10; //最右邊的七段顯示器
    tGPIO_E->DOUT = 0x52; //圖形5
    DrvSYS_Delay(500000);

    tGPIO_C->DOUT = 0xff20; //從右數第二個七段顯示器
    tGPIO_E->DOUT = 0x12; //圖形6
    DrvSYS_Delay(500000);
}
```

舉例3-解決殘影問題

• 先清除七段顯示器資料,在寫入要顯示的資料,來解決殘影

```
while(1) {
 tGPIO_C->DOUT = 0x0000; //清空七段顯示器
 tGPIO E->DOUT = 0x52; //圖形5
 tGPIO_C->DOUT = 0xff10; //最右邊的七段顯示器
 DrvSYS_Delay(500000);
 tGPIO_C->DOUT = 0x0000; //清空七段顯示器
 tGPIO E->DOUT = 0x12; //圖形6
 tGPIO_C->DOUT = 0xff20; //從右數第二個七段顯示器
 DrvSYS_Delay(500000);
```