執	-	益	11	17
446		13/	40	
131: 3	/ 1	1		1 1

1, 定容変化のでき、dv=0

熱力学第一法則 +1, de = du+pdv

-> d8= d11

 $\Rightarrow du = Cv dT$

·定压变化のX生。如=0

熱力学第一法則的, d8=du+pdn

I=Anton関係式もり、九=u+pv -> dt=du+pdn+vdp

Ida = du + por

-) (dh = du + pdn - vdp

de= df - vdp +0,

da= oth

dh = CP dT

(2)理想気体の状態方程式もり,

PV = RT

I 3 FILTO の関係式より、た= Utpv= U+RT

-> dh = du + RdT

dh-CpdT, du= (vdT =),

CpdT = CvdT + RdT

Cp = Cv+R

: CP - CN = R

(3) (i) 定容变化; 如=0

de = dut pdv +9,

d9 = du

da = Tds Fr

du CorolT

S = CVINT + SI

(前)定压变化;如=0

de=dh-vdp ky, de=dh

(4)
$$S = CpMT + S_1 \rightarrow T = \frac{1}{Cp} exp[S - S_1]$$

 $S = CvMT + S_2 \rightarrow T = \frac{1}{Cp} exp[S - S_2]$

(5) (i)
$$ds = \frac{ds}{T} = \frac{(\alpha + bT + cT^2)}{T} dT$$

$$\Delta \beta_1 = -\int \frac{d\varrho}{T}$$
, $\Delta \beta_2 = \frac{Q_2}{T_2}$

$$\Delta S = \Delta S_1 + \Delta S_2 = \int \frac{ds}{T} + \frac{R_2}{T_2} \stackrel{?}{=} 0 \qquad \Rightarrow Q_2 \stackrel{?}{=} T_2 \int \frac{ds}{T}$$

$$= 1200 \cdot 0.4 = 480 (19/14)$$

$$Q_a = Q_L - Q_a = 120 (19/14)$$

$$(2) \Delta S_1 = \frac{Q}{T_1} \Delta S_2 = \frac{Q_2^2}{T_2}$$

$$\Delta S = \Delta S_1 + \Delta S_2 = -\frac{Q}{T_1} + \frac{Q_2}{T_2} \ge 0 \implies Q_2 \ge \frac{T_2}{T_1} Q$$

-	-	• //	1	•	•	Ť.	•	330		-		(, -/)
		Q.		Q2min	7	T1 (3 =	450	1800	=	1200	(K)/cf)
		00%	11	Q -	Qá	All Control	600	(K)/K8)				

(3)
$$Q_{\alpha} = Q'_{\alpha} + Q''_{\alpha} = \eta_{20} (W'_{k\theta})$$

 $Q_{0} = Q'_{0} + Q''_{0} = |680|W'_{k\theta}|$

(2)
$$\&= \frac{190}{2} = \frac{190}{3150} = \frac{1190}{3150} = \frac{1190}{31$$