南京航空航天大学

第1页 (共6页)

二〇一七~二〇一八 学年 第II学期《工科数学分析 A(2)》考试试题

考试日期: 2018年6月30日 试卷类型: B

试卷代号:

		班	号		学号			姓名			
题号	_	11	三	四	五	六	七	八	九	+	总分
得分											

填空题: (每题 4 分, 共 24 分)

本题分数	24 分
得 分	

1. 已知 $z = f[\phi(x) - y, \psi(y) + x]$, f 具有连续的偏导数, ϕ, ψ

- 2. 设向量场 $\vec{A} = \{x^2y, y^2z, z^2x\}$,则 $\operatorname{div}\vec{A} = \underline{\hspace{1cm}}$, $\operatorname{grad}(\operatorname{div} \overrightarrow{A}) = \underline{\hspace{1cm}}$
- 3. 微分形式 $(x^2 + 2xy y^2)$ d $x + (x^2 2xy y^2)$ dy 的原函数为_____
- 4. 设 S 是球面 $x^2 + y^2 + z^2 = a^2$ 的外侧,

5. 写出以函数 $y = C_1 e^{-x} + C_2 \cos 2x + C_3 \sin 2x$ 为通解的常系数齐次线性微分方程:

6. 交换积分次序 $\int_{1}^{2} dy \int_{1}^{y^{2}} f(x, y) dx =$ _______.

工、单项选择题: (每题 4 分, 共 12 分)

1. 微分方程 $y'' + \lambda^2 y = \sin \lambda x$ ($\lambda > 0$) 的特解形式为

本题分数	12 分
得 分	

(A) $a\sin \lambda x$;

(B) $ax\sin \lambda x$:

- (C) $a\sin \lambda x + b\cos \lambda x$; (D) $x(a\sin \lambda x + b\cos \lambda x)$.

2.
$$\int_0^a dx \int_x^{\sqrt{2ax-x^2}} f(x,y) dy$$
 化为极坐标形式为

$$({\bf A}) \ \int_{\pi/4}^{\pi/2} {\rm d}\varphi \int_0^{2a\cos\varphi} f(\rho\cos\varphi,\rho\sin\varphi) \rho {\rm d}\rho \ ; \ ({\bf B}) \ \int_0^{\pi/4} {\rm d}\varphi \int_0^{2a\cos\varphi} f(\rho\cos\varphi,\rho\sin\varphi) \rho {\rm d}\rho \ ;$$

(C)
$$\int_0^{\frac{\pi}{4}} \mathrm{d}\varphi \int_0^{2a\sin\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho \mathrm{d}\rho \; ; \; \; (D) \; \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \mathrm{d}\varphi \int_0^{2a\sin\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho \mathrm{d}\rho \; .$$

3. 二元函数
$$f(x,y) = \begin{cases} \sqrt{x^2 + y^2} \sin \frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

则在(0,0)点,下述正确的是:

- (A) 极限不存在,因此不连续; (B) 偏导数不存在,因此不可微;
- (C) 可微,偏导函数不连续; (D) 可微且偏导函数连续.

计算题(每题7分,共28分)

本题分数	28 分
得 分	

1. 计算 $\iint_{\Sigma} (x+y+z) dS$,其中 Σ 为上半球面 $z = \sqrt{a^2 - x^2 - y^2}$.

2. 求线性微分方程组 $\begin{cases} \frac{dx_1}{dt} = & x_1 + 2x_2, \\ \frac{dx_2}{dt} = & 4x_1 + 3x_2 \end{cases}$ 的通解.

3. 求微分方程 $y'' + 4y' = \sin 2x$, $y|_{x=0} = \frac{1}{4}$, $y'|_{x=0} = 0$ 满足初始条件的特解.

4.
$$L$$
为曲线 $\begin{cases} z = x^2 + y^2 \\ x + y + z = 1 \end{cases}$, 从 z 轴的正方向看 L 沿逆时针方向,求 $\oint_L xy dx + yz dy + zx dz$.

本题分数	8分
得 分	

四、已知曲线积分 $\oint_C \frac{xdy - ydx}{2y^2 + \varphi(x)} \equiv A(A$ 为常数), 其中函数 $\varphi(x)$

具有连续导数,且 $\varphi(1)=1$,C是围绕原点一周的任一正向闭曲线,

- (1) 证明在任一不包含原点的单连通区域内,曲线积分 $\int_{L} \frac{xdy ydx}{2v^2 + \varphi(x)}$ 与路径无关;
- (2) 求函数 $\varphi(x)$ 的表达式,并求A的值.

本题分数	8分		
得分			

五、设z = f(x,y)具有连续偏导数, $x = r\cos\theta$, $y = r\sin\theta$ (1)求 $\frac{\partial z}{\partial r}$; (2)若f(x,y)在 $x^2 + y^2 = 1$ 上恒为 1 且 f(0,0) = 0,

本题分数	10分		
得 分			

六、设曲线 Γ 为 $x^2 + y^2 = 2x(y \ge 0)$ 上从O(0,0)到A(2,0)的一段弧,连续函数f(x)满足:

$$f(x) = x^2 + \int_{\Gamma} y \left(f(x) + e^x \right) dx + \left(e^x - xy^2 \right) dy ,$$

$$\vec{x} f(x).$$

本题分数	10分
得 分	

七 、 (1) 求 函 数 f(x,y,z) = x + 2y - 2z + 5 在 $\Omega: x^2 + y^2 + z^2 \le 1$ 上的最大值和最小值;

(2) 证明不等式 $\frac{11}{6}\pi < \iiint_{\Omega} \sqrt{x+2y-2z+5} dx dy dz < 4\pi$.

一、 填空题

1.
$$f_1 \phi'(x) + f_2$$

2.
$$2xy + 2yz + 2zx$$
; $\{2y + 2z, 2x + 2z, 2x + 2y\}$;

3.
$$\frac{x^3 - y^3}{3} + x^2 y - xy^2 + C$$
;

4.
$$\frac{12}{5}\pi a^5$$
; 5. $y''' + y'' + 4y' + 4y = 0$;

6.
$$\int_{\frac{1}{2}}^{1} dx \int_{\frac{1}{x}}^{2} f(x, y) dy + \int_{1}^{4} dx \int_{\sqrt{x}}^{2} f(x, y) dy.$$

二、 选择题

三、

1 解:
$$\Sigma 在 xoy 面投影为 D_{xy}$$
: $x^2 + y^2 \le a^2$, $dS = \frac{a dx dy}{\sqrt{a^2 - x^2 - y^2}}$,

原式=
$$\iint_{\Sigma} z dS = \iint_{D_{xy}} \sqrt{a^2 - x^2 - y^2} \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy = \pi a^3$$

2.
$$A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$
, $\det(A - \lambda E) = (1 - \lambda)(3 - \lambda) - 8 = \lambda^2 - 4\lambda - 5 = 0$

特征根为
$$\lambda_1 = -1$$
, $\lambda_2 = 5$, 特征向量为 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$,

解得通解为
$$x(t) = \begin{pmatrix} e^{-t} & e^{5t} \\ -e^{-t} & 2e^{5t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = c_1 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + c_2 e^{5t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
.

3 解:对应齐次方程的特征根为: $r_{1,2} = \pm 2i$,

对应齐次方程的通解为: $y = C_1 \cos 2x + C_2 \sin 2x$

自由项 $f(x) = e^x(x^2 + x - 3)$, $\lambda + \omega i = 2i$ 是特征根,

所以方程特解为: $y^* = x(A\cos 2x + B\sin 2x)$.

代入方程解得
$$A = -\frac{1}{4}$$
, $B = 0$, 所以 $y^* = -\frac{x}{4}\cos 2x$.

、由初始条件可得:
$$C_1 = \frac{1}{4}$$
, $C_2 = \frac{1}{8}$ 。

故满足初始条件的特解为: $y = \frac{1}{4}\cos 2x + \frac{1}{8}\sin 2x - \frac{x}{4}\cos 2x$

4 解:
$$\mathbb{R}\Sigma$$
: $z = 1 - x - y$, $(x^2 + y^2 + x + y \le 1)$ 上侧, $\cos \alpha = \cos \beta = \cos \gamma = \frac{1}{\sqrt{3}}$,

原式 =
$$\iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & yz & zx \end{vmatrix} dS = -\frac{1}{\sqrt{3}} \iint_{\Sigma} (x+y+z) dS = -\iint_{D_{xy}} dx dy = -\frac{3}{2} \pi \dots$$

四、解: (1)在不含原点的单连通区域内,任作两条起点为A终点为B的光滑曲线 C_1,C_2 ,再补充

一条光滑曲线 C_3 ,是 C_1+C_3 和 C_2+C_3 成为包含原点的正向曲线,则

$$\oint_{C_1+C_3} \frac{xdy - ydx}{2y^2 + \varphi(x)} = \oint_{C_2+C_3} \frac{xdy - ydx}{2y^2 + \varphi(x)} = A, \quad \text{If } \oint_{C_1} \frac{xdy - ydx}{2y^2 + \varphi(x)} = \oint_{C_2} \frac{xdy - ydx}{2y^2 + \varphi(x)}.$$

由 C_1,C_2 ,的任意性可知,曲线积分与路径无关。.....

(2) 由(1)知,在
$$(x,y) \neq (0,0)$$
时,有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$,即

$$\frac{\varphi(x) + 2y^2 - x\varphi'(x)}{(\varphi(x) + 2y^2)^2} = -\frac{\varphi(x) + 2y^2 - 4y^2}{(\varphi(x) + 2y^2)^2}, \quad \text{If } x\varphi'(x) = 2\varphi(x), \quad \text{Affi } \varphi(x) = x^2....(6 \text{ }\%)$$

取
$$L: x^2 + 2y^2 = 1$$
,取逆时针方向,则 $\oint_C \frac{xdy - ydx}{2y^2 + \varphi(x)} = \oint_C xdy - ydx = 2\iint_D dxdy = \sqrt{2}\pi$. (8 分)

五、(1)
$$\frac{\partial z}{\partial r} = \cos\theta f_x + \sin\theta f_y$$
;(3 分)

(2)
$$\iint_{\varepsilon^2 \le x^2 + y^2 \le 1} \frac{xf_x + yf_y}{x^2 + y^2} d\sigma = \int_0^{2\pi} d\theta \int_{\varepsilon}^1 \frac{r(\cos\theta f_x + \sin\theta f_y)}{r^2} r dr = \int_0^{2\pi} d\theta \int_{\varepsilon}^1 \frac{\partial z}{\partial r} dr$$

$$\begin{split} &= \int_0^{2\pi} f(r\cos\theta, r\sin\theta) \Big|_{\varepsilon}^1 d\theta = 2\pi - \int_0^{2\pi} f(\varepsilon\cos\theta, \varepsilon\sin\theta) d\theta \\ &= 2\pi - 2\pi f(\varepsilon\cos\theta_0, \varepsilon\sin\theta_0) \qquad \left(\theta_0 \in (0, 2\pi)\right) \end{split}$$
.....

于是
$$\lim_{\varepsilon \to 0+} \frac{1}{2\pi} \iint_{\varepsilon^2 < y^2 + y^2 < 1} \frac{xf_x + yf_y}{x^2 + y^2} d\sigma = 1 - \lim_{\varepsilon \to 0+} f(\varepsilon \cos \theta_0, \varepsilon \sin \theta_0) = 1$$

六、解: 令
$$\int_{\Gamma} y (f(x) + e^x) dx + (e^x - xy^2) dy = A$$
 ,则 $f(x) = x^2 + A$,记 Γ 与 \overline{AO} 包围的区

域为D,由 Green 公式

$$\int_{\Gamma + \overline{AO}} y \Big(f(x) + e^x \Big) dx + \Big(e^x - xy^2 \Big) dy = \iint_D \Big(y^2 + f(x) \Big) dx dy \dots$$

代入 $f(x) = x^2 + A$, 得

$$A = \iint_{D} (y^{2} + x^{2} + A) dx dy = \iint_{D} (y^{2} + x^{2}) dx dy + A \iint_{D} dx dy \dots$$

可得
$$A = \frac{3}{4}\pi + \frac{\pi}{2}A \Rightarrow A = \frac{3\pi}{2(2-\pi)} \Rightarrow f(x) = x^2 + \frac{3\pi}{2(2-\pi)} \dots$$

(2) 证明: 由于在 Ω 上, f(x,y,z) = x + 2y - 2z + 5 的最大值和最小值分别为8,2, 因此

$$\sqrt{2}\frac{4}{3}\pi \le \iiint\limits_{\Omega} \sqrt{x+2y-2z+5} dx dy dz \le \sqrt{8}\frac{4}{3}\pi$$

由于
$$\sqrt{2} \frac{4}{3} \pi > \frac{11}{6} \pi, \sqrt{8} \frac{4}{3} \pi < 4 \pi$$
 , 因此 $\frac{11}{6} \pi < \iiint_{\Omega} \sqrt{x + 2y - 2z + 5} dx dy dz < 4 \pi$ ……