Socio-Physical Interaction Network (SPIN)

Alark Sharma, Vaskar Raychoudhury

Department of Computer Science & Engineering

Introduction

- Human beings are smart entities. Objects also become smart when they are capable of:
 - ➤ Identification
 - Computing
 - Communication
- Following types of relationships used to exist among smart entities:
 - Human Human
 - Manifested in OSN
 - Data sharing (contacts, audio, video)
 - Activity scheduling
 - Object Object
 - Manifested in IoT
- We introduce the concept of Socio-Physical Interaction Network (SPIN) which enables smart objects to establish social relationships with each other
- Figure 1 represents SPIN as combination of Social features among humans and IoT

- The aim of the proposed project:
 - To capture different types of social interactions among smart entities
 - To analyze the characteristics of the network of smart entities formed under SPIN architecture

Application

- Smart applications:
 - ➤ Smart home, office, city
 - ➤ Healthcare for elderly and disabled
 - ➤ Security system for large public areas, like airports and shopping malls
- Intelligent transportation system, etc.
- Searching and browsing:
- Navigating from one object to others through their contextual links
- ➤ Effective service discovery
- Mobile Social Networking (MoSoN):
- ➤ MoSoN applications to cater to the social interaction needs of mobile users.
- ➤ Formation of Mobile social communities on the basis of common interests
- ➤ Scheduling of activities incorporating several smart users and objects

System Architecture

• We have introduced a four layer SPIN architecture as shown in Figure 2

- Figure 3 represents the typical organization of smart entities in SPIN architecture
 - ➤ Objects belonging to a person form *ownership* community
 - ➤ Sub-community among ownership community based on *stationary* and *non-stationary objects*
 - ➤ Resource-rich devices act as gateways between the communities
 - ➤ Intra-community communication through gateways
 - Description Objects in ownership community of a person interconnects with objects of friends and family community of the same person to form *social community*

Dataset

- Using the Stanford Large Network Dataset Collection we have generated the kind of network that will be formed among smart entities under the SPIN architecture
- 1115 preliminary social graphs taken from Facebook, Google Plus, and Twitter
- Graph shown in Figure 4 is example of one such preliminary graph. It represents author's Facebook graph and consist of 426 nodes and 6795 edges
- Nodes represents the humans and edges represents the friendship between them

Figure #4

- Using our preliminary dataset we have generated 3345 object graphs
- Figure 5 shows one such object graph consisting of 3240 nodes and 32284 edges
- Nodes represents the objects that belong to a person and edges represents the social relationship between objects
- We have generated three types of object graphs:
 - a) Regular Object Graphs: Object graphs representing the case where every human has 9 objects divided into two sets: *stationary* and *non-stationary* objects
 - b) One-Third Randomized Graphs: In these graphs one third of the randomly chosen nodes from the regular object graphs have been deleted
 - c) Half Randomized Graphs: In these graphs half of the randomly chosen nodes from the regular object graphs have been deleted

- Figure 6 represents the degree distribution of 6 randomly picked graphs out of 2230 degree distribution graphs we plotted on Log-Log scale
- The patterns resemble the degree distribution patterns of scale free networks

Acknowledgement

This research is partially funded by the DST Fast Track Scheme for Young Scientists under the grant number SER-726-ECD