L^2 -Betti numbers

Reading seminar

Kyoto University

Spring 2025

Contents

1	Bac	kground on von Neumann dimension
	1.1	Motivation
	1.2	Hilbert G-modules
	1.3	Background on von Neumann algebras
	1.4	The group von Neumann algebra and its trace
	1.5	Von Neumann dimension

Week 1 – Background on von Neumann dimension

Speaker: Alexis Marchand. References: [1, Chapter 2], [2], [4, Chapter 1], [3, §1.1].

1.1 Motivation

The goal of what follows is to develop a good equivariant homology theory for actions $G \curvearrowright X$ of groups on topological spaces. The usual singular chain complex $C_*^{\text{sing}}(X;\mathbb{C})$ and singular homology $H_*(X;\mathbb{C})$ inherit a G-action, so they have the structure of $\mathbb{C}G$ -modules. However, the group G is typically infinite and we do not have a good notion of dimension for modules over $\mathbb{C}G$. This is why we will work in an L^2 setting.

We will introduce a homology theory $H_*^{(2)}(G \curvearrowright X)$, together with associated Betti numbers $b_*^{(2)}(G \curvearrowright X)$. They will be well-defined when X is a G-CW-complex

under a certain finiteness property. Examples of properties they will satisfy include the following:

• (Homotopy invariance) If there is a G-equivariant homotopy equivalence $X \xrightarrow{\sim} X'$, then

$$b_*^{(2)}(G \curvearrowright X) = b_*^{(2)}(G \curvearrowright X').$$

• (Dimension) If X is a G-CW-complex of dimension $\leq n$, then

$$b_p^{(2)}(G \curvearrowright X) = 0$$
 for $p > n$.

• (Euler characteristic) If X is a free G-CW-complex and the quotient $G\backslash X$ is a finite CW-complex, then

$$\chi(G\backslash X) = \sum_{p=0}^{\infty} (-1)^p b_p^{(2)} (G \curvearrowright X).$$

• (Finite-index subgroups) If H is a finite-index subgroup of G, then

$$b_*^{(2)}\left(H\curvearrowright X\right)=[G:H]\cdot b_*^{(2)}\left(G\curvearrowright X\right).$$

In the first talk, we will introduce the relevant notions around Hilbert modules and von Neumann dimension that will allow us to define L^2 -Betti numbers.

1.2 Hilbert G-modules

We fix a countable group G. We will work with \mathbb{C} -coefficients throughout.

Definition 1.1. The group ring of G over \mathbb{C} is the \mathbb{C} -algebra $\mathbb{C}G$ (or $\mathbb{C}[G]$), with underlying \mathbb{C} -vector space

$$\mathbb{C}G := \bigoplus_{g \in G} \mathbb{C}g,$$

with multiplication defined on the basis vectors by $g \cdot h = gh$.

Example 1.2. • $\mathbb{C}[\mathbb{Z}] = \mathbb{C}[t, t^{-1}]$ is the ring of Laurent polynomials over \mathbb{C} .

• For $n \in \mathbb{N}_{>1}$, $\mathbb{C}[\mathbb{Z}/n] = \mathbb{C}[t]/(t^n - 1)$.

The group ring $\mathbb{C}G$ can be equipped with a natural inner product $\langle \cdot, \cdot \rangle$ defined by

$$\left\langle \sum_{g \in G} a_g g, \sum_{g \in G} b_g g \right\rangle \coloneqq \sum_{g \in G} \bar{a}_g b_g$$

The completion of $\mathbb{C}G$ with respect to $\langle \cdot, \cdot \rangle$ is a complex Hilbert space, which we denote by ℓ^2G ; it can also be defined as the \mathbb{C} -vector space of ℓ^2 -summable functions $G \to \mathbb{C}$.

Note that $\ell^2 G$ has the structure of a $\mathbb{C} G$ -module, with action given by

$$h \cdot \sum_{g \in G} a_g g \coloneqq \sum_{g \in G} a_{gh} g.$$

Example 1.3. • If G is finite, then $\ell^2G = \mathbb{C}G$.

• If $G = \mathbb{Z}$, then Fourier analysis shows that there is an isomorphism $\ell^2 G \cong L^2([-\pi,\pi],\mathbb{C})$ given by

$$\sum_{n \in \mathbb{Z}} a_n t^n \longmapsto \left(x \mapsto \frac{1}{\sqrt{2\pi}} \sum_{n \in \mathbb{Z}} a_n e^{inx} \right).$$

Since the group G is assumed to be countable, the Hilbert space ℓ^2G is separable.

Definition 1.4. A Hilbert G-module is a complex Hilbert space V with a \mathbb{C} -linear isometric (left) G-action such that there is an isometric G-embedding

$$V \hookrightarrow \left(\ell^2 G\right)^n$$

for some $n \in \mathbb{N}_{>1}$.

A morphism between two Hilbert G-modules V and W is a G-equivariant bounded \mathbb{C} -linear map $V \to W$.

Our homology groups will be Hilbert G-modules; our main task will be to define a notion of dimension for such modules.

1.3 Background on von Neumann algebras

Let \mathcal{H} be a complex Hilbert space. Then the space $B(\mathcal{H})$ of bounded linear operators $\mathcal{H} \to \mathcal{H}$ is a \mathbb{C} -algebra, with multiplication given by composition.

Recall that, given $u \in B(\mathcal{H})$, there is a unique $u^* \in B(\mathcal{H})$ — called the *adjoint* of f — such that, for all $x, y \in \mathcal{H}$,

$$\langle u(x), y \rangle = \langle x, u^*(y) \rangle.$$

(This follows from the Riesz Representation Theorem applied to the linear form $\langle u(\cdot), y \rangle$ for fixed $y \in \mathcal{H}$.) Hence, \cdot^* defines an involution on $B(\mathcal{H})$; this turns the latter into a *-algebra.

There are several topologies that one can define on $B(\mathcal{H})$:

• The norm topology, given by

$$u_n \xrightarrow{\|\cdot\|} u \iff \|u_n - u\| \to 0,$$

• The strong topology, given by

$$u_n \xrightarrow{s} u \iff \forall x \in \mathcal{H}, \ \|u_n(x) - u(x)\| \to 0,$$

• The weak topology, given by

$$u_n \xrightarrow{w} u \stackrel{\text{def}}{\iff} \forall x, y \in \mathcal{H}, \langle u_n(x), y \rangle \to \langle u(x), y \rangle.$$

Definition 1.5. A von Neumann algebra is a unital weakly closed *-subalgebra of $B(\mathcal{H})$ for some complex Hilbert space \mathcal{H} .

Given a subset $S \subseteq B(\mathcal{H})$, its *commutant* is defined by

$$S' := \{ u \in B(\mathcal{H}) \mid \forall s \in S, \ us = su \}.$$

The *bicommutant* of S is simply S'' := (S')'.

The following theorem is a fundamental structural result for von Neumann algebras:

Theorem 1.6 (von Neumann Bicommutant Theorem). Let \mathcal{H} be a complex Hilbert space and let $A \subseteq B(\mathcal{H})$ be a unital *-subalgebra of $B(\mathcal{H})$. Then the following are equivalent:

- (i) A'' = A.
- (ii) A is strongly closed.
- (iii) A is weakly closed.

For abelian von Neumann algebras, we also have the following:

Theorem 1.7. Let N be an abelian von Neumann algebra on a separable Hilbert space. Then there is a standard Borel σ -finite measure space (X, μ) such that N is isomorphic to the von Neumann algebra $L^{\infty}(X, \mu) \subseteq L^2(X, \mu)$.

1.4 The group von Neumann algebra and its trace

We come back to the setup of §1.2: G is a countable group and we are considering the Hilbert space ℓ^2G . As above, we denote by $B(\ell^2G)$ the \mathbb{C} -algebra of bounded linear operators $\ell^2G \to \ell^2G$.

Observe that there are two embeddings

$$\lambda, \rho: \mathbb{C}G \hookrightarrow B\left(\ell^2 G\right)$$

given by the respective actions of $\mathbb{C}G$ on ℓ^2G by left and right multiplication.

Proposition/Definition 1.8. The following subsets of $B(\ell^2G)$ are all equal:

- (i) The weak closure of $\rho(\mathbb{C}G)$,
- (ii) The strong closure of $\rho(\mathbb{C}G)$,
- (iii) The bicommutant of $\rho(\mathbb{C}G)$,

 $x \in \ell^2 G$, we have

(iv) The set of $u \in B(\ell^2 G)$ that are left $\mathbb{C}G$ -equivariant.

This set is called the (right) group von Neumann algebra of G, and denoted by NG.

Proof. The equalities (i) = (ii) = (iii) follow from the Bicommutant Theorem (1.6). We first show that (ii) \subseteq (iv). It is clear that $\rho(\mathbb{C}G) \subseteq$ (iv), so it suffices to prove that (iv) is strongly closed. Let $(u_n)_{n\geq 1}$ be a sequence of left $\mathbb{C}G$ -equivariant bounded linear operators on ℓ^2G , converging to $u \in B(\ell^2G)$. For all $a \in \mathbb{C}G$ and

$$a \cdot u(x) = a \cdot \lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} (a \cdot u_n(x)) = \lim_{n \to \infty} u_n(ax) = u(ax),$$

so u is also left $\mathbb{C}G$ -equivariant. This proves that (iv) is sequentially closed in the strong topology. The same proof, after replacing sequences with nets, shows that (iv) is strongly closed.

Next, we will show that $(iv) \subseteq (iii)$. Observe that

$$\lambda \left(\mathbb{C}G\right) ^{\prime }=\rho \left(\mathbb{C}G\right) .$$

Thus, $\rho(\mathbb{C}G)' = \lambda(\mathbb{C}G)'' = \overline{\lambda(\mathbb{C}G)}$ by the Bicommutant Theorem (1.6) (for the weak or the strong closure). Now let $u \in \text{(iv)}$. By definition, u commutes with every element of $\lambda(\mathbb{C}G)$, and therefore with every element of $\overline{\lambda(\mathbb{C}G)} = \rho(\mathbb{C}G)'$ by continuity. In other words, $u \in \rho(\mathbb{C}G)''$ as wanted.

In order to define a notion of dimension for Hilbert G-modules, the basic idea is that, in a finite-dimensional Hilbert space, the dimension of a subspace is equal to the trace of the orthogonal projection onto that subspace.

Our next step is therefore to equip NG with a trace.

Definition 1.9. The *trace* on NG is the map $\operatorname{tr}_G : \operatorname{NG} \to \mathbb{C}$ given by

$$\operatorname{tr}_G: a \mapsto \langle e, a(e) \rangle$$
,

where $e \in \mathbb{C}G \subseteq \ell^2G$ is the atomic function at the identity $e \in G$.

Proposition 1.10. The following properties hold for all $a, b \in NG$:

- (i) (Trace property) $\operatorname{tr}_G(a \circ b) = \operatorname{tr}_G(b \circ a)$.
- (ii) (Faithfulness) $\operatorname{tr}_G(a^* \circ a) = 0$ if and only if a = 0.
- (iii) (Positivity) Suppose that $a \ge 0$, in the sense that $\forall x \in \ell^2 G$, $\langle x, a(x) \rangle \ge 0$. Then $\operatorname{tr}_G(a) \ge 0$.
- Proof. (i) Note that, for $a = \sum_g a_g g \in \mathbb{C}G$, we have $\operatorname{tr}_G(a) = a_e$. Moreover, for $a, b \in \mathbb{C}G$, the composition $a \circ b$ acts on $\ell^2 G$ as the product ba (because $\mathbb{C}G$ acts on $\ell^2 G$ by right multiplication!), so $\operatorname{tr}_G(a \circ b)$ is equal to the coefficient of e in ba:

$$\operatorname{tr}_{G}(a \circ b) = \sum_{\substack{g,h \in G \\ gh = e}} b_{g} a_{h}.$$

This is symmetric in a and b, and hence equal to $\operatorname{tr}_G(b \circ a)$. This proves the trace property for $a, b \in \mathbb{C}G$, which extends by continuity to NG.

(ii) Let $a \in NG$ with $\operatorname{tr}_G(a^* \circ a) = 0$. Then

$$0 = \langle e, a^* \circ a(e) \rangle = \langle a(e), a(e) \rangle \,,$$

so a(e) = 0. By G-equivariance, we have $a(g) = g \cdot a(e) = 0$ for all $g \in G$. It follows by linearity that a is 0 on $\mathbb{C}G$, and by continuity that a is 0 on $\mathbb{N}G$.

(iii) This is clear. \Box

Given a matrix $A \in M_{n \times n}$ (NG), we define

$$\operatorname{tr}_{G}(A) := \sum_{j=1}^{n} \operatorname{tr}_{G}(A_{jj}).$$

Usual linear algebra shows that this trace also satisfies Proposition 1.10.

Now any bounded left G-equivariant map $(\ell^2 G)^n \to (\ell^2 G)^n$ is represented by a matrix in $M_{n\times n}$ (NG) and hence has a trace.

Von Neumann dimension 1.5

Let G be a countable group.

Proposition/Definition 1.11. Let V be a Hilbert G-module. The von Neumann-G-dimension of V is defined by

$$\dim_{NG} V := \operatorname{tr}_G(p),$$

where $i: V \hookrightarrow (\ell^2 G)^n$ is a choice of isometric G-embedding for some $n \in \mathbb{N}_{>1}$ and $p:(\ell^2G)^n\to (\ell^2G)^n$ is the orthogonal projection onto the closed subspace i(V). This is independent of the choice of i, and $\dim_{NG} V \in \mathbb{R}_{>0}$.

Proof. Let $j:V\hookrightarrow \left(\ell^2G\right)^m$ be another isometric G-embedding, with $m\in\mathbb{N}_{\geq 1}$, and let $q: (\ell^2 G)^m \to (\ell^2 G)^m$ be the orthogonal projection onto j(V).

Define a map $u: (\ell^2 G)^n \to (\ell^2 G)^m$ by $u_{|\operatorname{Im} i} \coloneqq j \circ i^{-1}$ and $u_{|(\operatorname{Im} i)^{\perp}} \coloneqq 0$. By

construction, $j = u \circ i$; it follows that $q = p \circ u^*$. Hence,

$$\operatorname{tr}_G(q) = \operatorname{tr}_G(u \circ q) = \operatorname{tr}_G(u \circ p \circ u^*) = \operatorname{tr}_G(p \circ u^* \circ u) = \operatorname{tr}_G(p \circ p) = \operatorname{tr}_G(p).$$

To see that $\dim_{NG} V \in \mathbb{R}_{>0}$, note that p is a positive operator, so the diagonal entries of its matrix are also positive operators; the result follows from positivity of the trace.

We give two examples of computations of von Neummann dimensions.

Example 1.12 (Finite groups). If G is a finite group, then $\mathbb{C}G = \ell^2 G = \mathbb{N}G$. A Hilbert G-module V is finite-dimension over \mathbb{C} and satisfies

$$\dim_{\mathrm{N}G}V=\frac{1}{|G|}\dim_{\mathbb{C}}V.$$

Example 1.13 (\mathbb{Z}). If $G = \mathbb{Z}$, then $\ell^2 G \cong L^2([-\pi, \pi], \mathbb{C})$ (see Example 1.3), and

$$NG \cong L^{\infty}([-\pi, \pi], \mathbb{C}),$$

with the action of NG on ℓ^2G given by pointwise multiplication.

Under this isomorphism, $\operatorname{tr}_G: L^{\infty}([-\pi,\pi],\mathbb{C})$ is given by

$$\operatorname{tr}_G: f \mapsto \frac{1}{2\pi} \int_{-\pi}^{\pi} f \, d\lambda.$$

Now let $A \subseteq [-\pi, \pi]$ be a measurable set, and consider

$$V \coloneqq \left\{ f \cdot \chi_A \,\middle|\, f \in L^2\left([-\pi, \pi], \mathbb{C}\right) \right\} \subseteq L^2\left([-\pi, \pi], \mathbb{C}\right) \cong \ell^2 G.$$

This is a Hilbert-G-module (embedding into ℓ^2G). The orthogonal projection onto A is represented by the matrix $(\chi_A) \in M_{1\times 1}(NG)$. Therefore,

$$\dim_{\mathrm{N}G} V = \mathrm{tr}_G(\chi_A) = \frac{1}{2\pi}\lambda(A).$$

In particular, every number in [0, 1] occurs as a von Neumann dimension! We finish with some basic properties of the von Neumann dimension.

Proposition 1.14. The von Neumann dimension has the following properties.

- (i) (Normalisation) $\dim_{NG} \ell^2 G = 1$.
- (ii) (Faithfulness) For every Hilbert G-module V, we have $\dim_{NG} V = 0$ if and only if V = 0.
- (iii) (Weak isomorphism invariance) If $f: V \to W$ is a morphism of Hilbert G-modules with Ker f=0 and $\overline{\operatorname{Im} f}=W$, then $\dim_{\operatorname{NG}}V=\dim_{\operatorname{NG}}W$.
- (iv) (Additivity) Assume that the sequence of Hilbert G-modules

$$0 \to V_1 \xrightarrow{i} V_2 \xrightarrow{\pi} V_3 \to 0$$

is weakly exact, in the sense that i is injective, $\overline{\operatorname{Im} i} = \operatorname{Ker} \pi$, and $\overline{\operatorname{Im} \pi} = V_3$. Then

$$\dim_{\mathcal{N}G} V_2 = \dim_{\mathcal{N}G} V_1 + \dim_{\mathcal{N}G} V_3.$$

(v) (Multiplicativity) Let H be another countable group. Let V be a Hilbert Gmodule and W a Hilbert H-module. Then the completed tensor product $V \bar{\otimes}_{\mathbb{C}} W$ is a Hilbert $G \times H$ -module, and

$$\dim_{\mathcal{N}(G\times H)}(V\bar{\otimes}_{\mathbb{C}}W) = \dim_{\mathcal{N}G}V \cdot \dim_{\mathcal{N}H}W.$$

(vi) (Restriction) Let V be a Hilbert G-module and let $H \leq G$ be a finite-index subgroup. Then V is naturally a Hilbert H-module, and

$$\dim_{NH} \operatorname{Res}_{H}^{G} V = [G:H] \cdot \dim_{NG} V.$$

Sketch of proof. (i) This is clear (taking $\ell^2 G \hookrightarrow (\ell^2 G)^1$ and p = id).

(ii) This follows from faithfulness of the von Neumann trace (1.10).

- (iii) This is a consequence of polar decomposition: the map f can be written as $f = u \circ p$, where u is a partial isometry and p is a positive operator with $\operatorname{Ker} u = \operatorname{Ker} p$. In this case, f is injective, so $\operatorname{Ker} u = \operatorname{Ker} p = 0$; moreover, u has closed image and so $\operatorname{Im} u = \overline{\operatorname{Im} u} = \overline{\operatorname{Im} f} = W$. Hence, u is an isometry, which is G-equivariant by uniqueness of the polar decomposition.
- (iv) Note first that \dim_{NG} is additive with respect to direct sums, and define a weak isomorphism $V \to \overline{\operatorname{Im}} i \oplus V_3$ by $x \mapsto p(x) \oplus \pi(x)$, where $p: V \to \overline{\operatorname{Im}} i$ is the orthogonal projection.
- (v) The key fact is that there is an isomorphism $\ell^2(G \times H) \cong \ell^2 G \bar{\otimes}_{\mathbb{C}} \ell^2 H$ of Hilbert $G \times H$ -modules.

References

- [1] Holger Kammeyer, Introduction to ℓ^2 -invariants, Lecture Notes in Mathematics, vol. 2247, Springer, Cham, 2019. MR3971279
- [2] _____, ℓ^2 -Betti numbers, Bounded cohomology and simplicial volume, 2023, pp. 57–62. MR4496345
- [3] Wolfgang Lück, L²-invariants: theory and applications to geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR1926649
- [4] Clara Löh, Ergodic theoretic methods in group homology—a minicourse on L²-Betti numbers in group theory, SpringerBriefs in Mathematics, Springer, Cham, [2020] ©2020. MR4177798