

# Real Time Decision Support System In Agriculture

Presented By:-

ALOK ROY(12000320052) CHHANDA NIYOGI(12000320077) SURAJIT PATAR(12000320080)

FOR:

PROJECT STAGE –II (EC-881)
Under the Supervision of : Dr. Sarit Pal
OF
ELECTRONICS AND COMMUNICATION ENGINEERING

DR. B. C. ROY ENGINEERING COLLEGE, DURGAPUR

## CONTENT

- Introduction
- Brief Related works or Literature survey
- Research Gap and Problem Formulation
- Detailed Proposed model
- Advantages & Disadvantages
- Conclusion & Future Work
- References

## Introduction

- > Application of smart irrigation system.
- Adoption of Smart Irrigation Systems for optimized water usage and automated irrigation scheduling.
- > Aim:
  - Enhance environmental monitoring
  - Promote smart farming
  - Improve yield
  - Optimize water usage
  - Reducing manual labor

## Related works

#### 1. S. Harishankar et al. (2014)

- 1. Collect field data using soil moisture sensor, converting it into voltage readings.
- 2. Decision circuit deployed for determination of water requirements based on the reference voltage.

#### 2. Datta, Stivers, & Taghvaeian (2017)

- 1 Explored fundamental soil water concepts to improve irrigation scheduling efficiency.
- 2. Defined crucial thresholds, such as saturation, field capacity, and management allowable depletion, emphasizing their variability depending on soil type, crop type, and climate conditions.

## Related works (Cont..)

#### 3. R. Nageswara Rao et al. (2018)

- 1 System consists of Raspberry Pi 3, soil moisture sensors, an LM35 temperature sensor, an LM358, and a relay.
- 2. Digitized crop data and controlled the motor in response to predetermined soil moisture thresholds.
- 3. Adjusted voltage thresholds to accommodate diverse crop types and seasonal fluctuations.

#### 4. Sultana et al. (2022)

- 1. Activates a pump at a preset water level threshold.
- 2. Compared current water levels with preset threshold for decision-making.
- 3. Integrated a SIM800L module for real-time field condition notifications to the farmer's mobile.

## Research Gap and Problem Formulation

#### 1. S. Harishankar et al. (2014)

Method for determining the threshold value was not specified.

#### 2. R. Nageswara Rao et al. (2018)

- Though effective, but not cost-efficient due to the use of Raspberry Pi.
- Details regarding the determination of the threshold value and its adjustment according to various crop fields and seasons were not addressed.

#### 3. Sultana et al. (2022)

- Used an additional components SIM800L for communication.
- Integration challenges, network connectivity and compatibility issues, affecting real-time notifications.
- Additionally, the power consumption of SIM800L, especially in remote areas, poses a concern for sustained operation.

## Proposed System

- Establishes a real-time decision-making system considering crop type and soil type of the field.
- Helps to automate the irrigation scheduling process by determining the threshold value of soil moisture content for irrigation.
- Aims to automate the irrigation process using real-time data of the soil moisture, temperature, and humidity sensors.
- By deploying a network of sensors with ESP32 across fields, data is transmitted and stored on the ThingSpeak API for monitoring and analysis.
- Based on crop-specific Management Allowable Depletion (MAD) values, irrigation is scheduled, preventing under or over-irrigation.

## Proposed System (Cont...)



Fig 1. Block Diagram of the Proposed System

## Equipment Used:

Here are some of the key equipments used in the project:

#### a) HARDWARE

- > ESP32 Microcontroller
- ➤ Soil Moisture Sensor (Resistive and capacitive)
- ➤ Temperature and Humidity DHT11 Sensor
- > Relay Module
- > 9V mini submersible water pump
- Jumper Wires and Breadboard

#### b) SOFTWARE

- > Thonny IDE
- > ThingSpeak
- > Arduino IDE
- Blynk IoT

## ESP-32 Communication with Thingspeak Cloud



Fig 2. Block diagram of ESP 32 communication with Thingspeak cloud

## Data Visualisation In Thingspeak

Thingspeak channel link: Click here



#### Sensor Data Stored In Excel Sheet

| <b>⊿</b> A                   | В               | c ]         | D        | E               |
|------------------------------|-----------------|-------------|----------|-----------------|
| 1 timestamp                  | Soil Moisture 1 | Temperature | Humidity | Soil Moisture 2 |
| 2 2023-11-09T08:50:29+05:30  | 0.8701172       | 25          | 51       | 0.8958984       |
| 3 2023-11-09T08:50:44+05:30  | 0.928125        | 25          | 51       | 0.9635742       |
| 4 2023-11-09T08:50:59+05:30  | 0.918457        | 25          | 51       | 0.9410156       |
| 5 2023-11-09T08:51:15+05:30  | 1.008691        | 25          | 51       | 1.060254        |
| 6 2023-11-09T08:51:33+05:30  | 1.028027        | 25          | 51       | 1.076367        |
| 7 2023-11-09T08:51:49+05:30  | 0.9861328       | 25          | 51       | 1.034473        |
| 8 2023-11-09T08:52:07+05:30  | 0.9216797       | 25          | 51       | 0.9861328       |
| 9 2023-11-09T08:52:23+05:30  | 1.060254        | 25          | 51       | 1.086035        |
| 10 2023-11-09T08:55:32+05:30 | 1.105371        | 25          | 51       | 1.018359        |
| 11 2023-11-09T08:55:47+05:30 | 0.9990234       | 25          | 51       | 1.034473        |
| 12 2023-11-09T08:56:06+05:30 | 1.028027        | 25          | 51       | 1.060254        |
| 13 2023-11-09T08:56:25+05:30 | 1.005469        | 25          | 51       | 1.076367        |
| 14 2023-11-09T08:56:40+05:30 | 0.9152344       | 25          | 51       | 1.024805        |
| 15 2023-11-09T08:56:55+05:30 | 1.018359        | 25          | 51       | 1.028027        |
| 16 2023-11-09T08:57:10+05:30 | 1.021582        | 25          | 51       | 1.024805        |
| 17 2023-11-09T08:57:25+05:30 | 1.047363        | 25          | 51       | 1.086035        |
| 18 2023-11-09T09:17:33+05:30 | 0.9893555       | 25          | 51       | 1.082812        |
| 19 2023-11-09T09:17:48+05:30 | 0.8314453       | 25          | 49       | 1.053809        |
| 20 2023-11-09T09:18:07+05:30 | 0.8926758       | 25          | 49       | 1.102148        |
| 21 2023-11-09T09:18:26+05:30 | 1.008691        | 25          | 50       | 1.102148        |
| 22 2023-11-09T09:18:41+05:30 | 1.011914        | 25          | 50       | 1.105371        |
| 23 2023-11-09T09:18:56+05:30 | 0.9925781       | 25          | 49       | 1.082812        |
| 24 2023-11-09T09:19:11+05:30 | 1.040918        | 25          | 49       | 1.124707        |
| 25 2023-11-09T09:19:26+05:30 | 1.008691        | 25          | 49       | 1.102148        |
| 26 2023-11-09T09:39:35+05:30 | 0.9861328       | 25          | 49       | 1.057031        |
| 27 2023-11-09T09:39:53+05:30 | 0.9925781       | 25          | 50       | 1.063477        |
| 28 2023-11-09T09:40:09+05:30 | 0.9925781       | 26          | 50       | 1.063477        |
| 29 2023-11-09T09:40:25+05:30 | 0.9861328       | 26          | 50       | 1.060254        |
| 30 2023-11-09T09:40:40+05:30 | 0.9861328       | 26          | 50       | 1.060254        |
| < > 9th Nov                  | +               |             |          |                 |

## Soil Moisture Sensing and Analysis

After establishing communication with the cloud, soil moisture sensor is placed in the soil planted with <u>Impatiens balsamina</u>

#### Two Sensor Directions:

- Vertical Placement:
  - Positioned one sensor vertically from the top level of the soil.
  - Monitors moisture content in the upper layers of the soil.
- Horizontal Placement near Root Area:
  - Placed another sensor horizontally, close to the root area.
  - Monitors moisture content in the soil around the roots.
- The temperature, humidity and the soil moisture sensor reading for the two sensors are taken for more than 2 months and a datasheet is prepared.



Fig 3: Two Sensor Position

#### STATISTICAL ANALYSIS OF OBSERVED DATA

- Performed calculations on the observed dataset for each individual day.
- Computed the max value of each parameter.
- Plotted the graph between Temp vs Max Voltage Value (i.e. min moisture)
- Soil Moisture Sensor 1(SMS1)is the top level sensor
- Soil Moisture Sensor 2(SMS2) is the root level sensor



Fig 4: Temp vs Max of SMS1 and MAX SMS2

#### STATISTICAL ANALYSIS OF OBSERVED DATA(Cont..)

#### • SMS1 Decrease:

- Due to its location at the topsoil, SMS1 experiences quicker evaporation.
- Evaporation leads to a decrease in SMS1 levels over time.

#### • SMS2 Evaporation Dynamics:

- SMS2, being deeper in the soil, experiences less evaporation compared to SMS1.
- The presence of plant roots at this depth contributes to moisture retention in SMS2.

#### • Root Absorption Effect:

- The roots in the depth of SMS2 hold a significant amount of moisture, contributing to a balanced moisture level.
- This absorption effect helps prevent SMS2 from showing a rapid decrease in moisture.



Fig 5:Soil Moisture 1 (SMS1) vs. Soil Moisture 2 (SMS2) Analysis

## Road Map of the Proposed System

Real-time Field data sensing and Monitoring using Blynk IoT

## Shrinkage Limit Test

(Saturation level of the soil is determined)

#### **Sensor Calibration**

(Mapping the sensor output voltage against different proportions of saturation moisture content)

#### **TAW**

(Total Available water of the soil type is determined.)

#### Soil Type

(By visual Inspection)

#### Polynomial Regression

(The relation between the actual soil content and sensor output voltage is determined.)

#### **MAD**

(Management Allowable Depletion percentage of the crop type is determined.)

#### Threshold value

(Threshold Water content =(MAD%)\*TAW(%)\*saturation moisture content of soil)

Automated Irrigation based on Threshold value

## Real-time Field Data Monitoring

Components: Soil moisture sensor, DHT11, Blynk IoT platform

Monitored Parameters: Soil moisture, Temperature, Humidity

#### **Data Communication:**

- Real-time data transmission to Blynk cloud.
- User-friendly interface for easy monitoring Soil moisture, Temperature and Humidity.
- Accessible via Blynk IoT mobile application.



Fig 6: Blynk IoT mobile app

### Road Map of the Shrinkage Limit Test

#### Soil Sample Preparation

(Oven-dry soil, Pulverize and sieve, Coat shrinkage dish, Weigh empty dish (W1))

## Fill Dish with Moist Soil

(Add soil in layers, Level top layer, Weigh dish with wet soil (W2))

#### Oven-dry the Soil

(Dry at 110°C for 24 hrs, Weigh dish with dry soil (W3)

## Determine Volume of Wet Soil

(Fill dish with mercury, Press glass plate, Weigh dish with mercury (Wf), Calculate volume (V))

## Determine Volume of Dry Soil

(Immerse dry soil in mercury, Weigh dish with mercury, after displacement (Wp), Calculate volume (V0))

#### Calculate Shrinkage Limit

(Calculate initial water content (w), Use Shrinkage Limit formula)

## Lab Pictures of Shrinkage Limit Test



Fig 7: Calculating the weight of the wet soil content



Fig 9: Taking mercury in a dish



Fig 8: Calculating the weight of the dry soil content



Fig 10: Measuring the weight of the dish with mercury

## Lab Pictures of Shrinkage Limit Test (Cont..)



Fig 11: Dipping the dry soil pat into the filled mercury container



Fig 12: Measuring the weight of the dish after mercury displacement

## Observation Table of Shrinkage Limit Test

| Determination                                           | Value            |
|---------------------------------------------------------|------------------|
| Weight of Container in gm(W1)                           | 31.396 gm        |
| Weight of container + Weight of wet soil pat(in gm)(W2) | 73.598 gm        |
| Weight of Container + Weight of dry soil pat(in gm)(W3) | 61.774 gm        |
| Weight of oven dry soil pat(in gm)(W0)                  | 29.635 gm        |
| Weight of water (in gm)(Ww= W2-W3)                      | 11.824 gm        |
| Moisture content or water content(w) = (Ww/W0)*100%     | 39.89 %          |
| Volume of wet soil pat(V)(in cm3)                       | $22.042 cm^3$    |
| Volume of dry soil particle(V0)(in cm3)                 | $16.5812 \ cm^3$ |

# Relation between sensor output voltage and actual soil moisture content

- Using the Shrinkage limit test, the saturation water content of the sampled soil is calculated.
- Now, different proportion of the saturation water content is added to identical samples of the soil, and its corresponding soil moisture sensor output is observed.
- For the conversion of sensor output raw data to sensor output voltage, the formula used is:
- $v = u * \frac{3.3}{1024}$ where, v= Sensor Voltage (in Volts) u = Sensor raw data
- Polynomial regression is performed, considering the sensor output voltage as the dependent variable 'y' and soil moisture content as the independent variable 'x'.

## Observation Table

| Moisture content (in %) | Water content (in gm) | Soil Moisture Sensor raw data | Soil moisture Sensor voltage (in V) |
|-------------------------|-----------------------|-------------------------------|-------------------------------------|
| 0                       | 00                    | 511                           | 1.6467467                           |
| 18                      | 1.69                  | 504                           | 1.624                               |
| 32                      | 3.0                   | 449                           | 1.44                                |
| 50                      | 4.695                 | 395                           | 1.27                                |
| 70                      | 6.5732                | 364                           | 1.17                                |
| 85                      | 7.982                 | 294                           | 0.947                               |
| 100                     | 9.3903                | 232                           | 0.747                               |

 Table 1. Observation table of soil moisture sensor output

## Relation between sensor output voltage and actual soil moisture content (Cont..)

• The relation between the sensor output voltage (y) and actual soil moisture content (x) is calculated to be:

$$y = -0.005x^2 - 0.0502x + 1.6644$$



Fig 13. Water content vs sensor voltage graph

## Identification of Soil Type

- Type of soil is classified based on visual attributes of the soil in the field.
- Soil seems as a blend of sandy and clay particles due to
  - Variations in soil color.
  - Muted hue influenced by both sandy lightness and clayey richness.
  - Granular texture, resulting from the combination of sand's gritty texture and clay's stickiness.
- After identifying the soil type, the TAW(in %) (Total Available Water) of the soil is assessed.

| Soil texture                                        | FC (%) | PWP (%) | TAW (%) |
|-----------------------------------------------------|--------|---------|---------|
|                                                     |        |         |         |
| Sand                                                | 10     | 4       | 6       |
| Loamy sand                                          | 16     | 7       | 9       |
| Sandy loam                                          | 21     | 9       | 12      |
| Loam                                                | 27     | 12      | 15      |
| Slit loam                                           | 30     | 15      | 15      |
| Sandy clay loam                                     | 36     | 16      | 20      |
| Sandy clay                                          | 32     | 18      | 14      |
| Clay loam                                           | 29     | 18      | 11      |
| Silty clay loam                                     | 28     | 15      | 13      |
| Silty clay                                          | 40     | 20      | 20      |
| Clay                                                | 40     | 22      | 18      |
| Source: Ratliff et al. (1983); Hanson et al. (2000) |        |         |         |
| Referred by Sumon Datta, Saleh Taghvaeian, Jacob    |        |         |         |

TABLE 2. FC, PWP, and TAW (%) of soil textures

Stivers (2017)

## Graphical Representation of TAW



Fig 14. Graphical representation of FC,PWP and TAW of sandy clay soil

# Estimation of Threshold soil moisture sensor output voltage

- Now, as per crop type, the MAD percentage of the crop can be determined.
- Threshold Water content=(MAD% of the crop)\*(TAW% of the soil)\*(saturation water content of the soil).
- Threshold Soil moisture sensor output voltage is determined using the polynomial relation between actual soil moisture content(x) and sensor output voltage(y).

$$y = -0.005x^2 - 0.0502x + 1.6644$$

where, y= Sensor Voltage output of the soil at x amount of moisture content.

x= Water Content or moisture Content of the Soil

| Type of Crop                                                                    | MAD           | Maximum<br>Root<br>Depth(ft) |  |
|---------------------------------------------------------------------------------|---------------|------------------------------|--|
| Rice                                                                            | 0.20          | 1.6-3.3                      |  |
| Beans                                                                           | 0.45          | 1.6-4.3                      |  |
| Soybeans                                                                        | 0.50          | 2.0-4.1                      |  |
| Cool Season-Turf grass                                                          | 0.40          | 1.6-2.2                      |  |
| Warm season-Turf grass                                                          | 0.50          | 1.6-2.2                      |  |
| Carrots                                                                         | 0.35          | 1.5-3.3                      |  |
| Cantaloupes/Watermelons                                                         | 0.40-<br>0.45 | 2.6-5.0                      |  |
| Potatoes                                                                        | 0.65          | 1.0-2.0                      |  |
| Source: Allen et al. (1998)<br>Referred by Sumon Datta, Saleh Taghvaeian, Jacob |               |                              |  |

TABLE 3. Mad values for different crops

Stivers (2017

## Irrigation Scheduling using Blynk IoT



Fig 15. Flow Diagram Of The Automated Irrigation System

## Results

- Using the shrinkage limit test, the saturation moisture content of the sample soil of 50 gm is found to be 9.3903gm of water.
- Using polynomial regression, the relation between the sensor output voltage (y) and actual soil moisture content (x) is calculated to be:

$$y = -0.005x^2 - 0.0502x + 1.6644$$
 -----(i)

- Soil sample is identified as Sandy-Clay soil.
- TAW (Total Available Water) percentage of Sandy-clay soil is 14%.

## Results (Cont..)

- MAD (Management Allowable Depletion) percentage of the sample plant is 50%.
- Threshold Moisture content for 50gm soil sample is calculated as 2.3475 gm of water.
- The corresponding threshold soil moisture sensor output voltage is calculated using the polynomial relation (i) as 1.5189V.
- As the soil moisture sensor output voltage goes above 1.5189V value, water pump is switched on and irrigation is started.

## Pros and Cons of the Proposed System



## Conclusions & Future Work

- Research finds soil moisture threshold for irrigation using MAD and TAW values.
- The need for regression analysis to calibrate sensors accurately.
- Establishment of a robust irrigation scheduling framework using MAD values.
- In the future, we aim to increase the precision of the system by analyzing more environmental factors and weather conditions.
- Refining threshold values based on types of crop, soil, and climatic conditions.

## References

- [1].Sumon Datta, Saleh Taghvaeian, Jacob Stiver, "Understanding soil water content and thresholds for irrigation management", Oklahoma Cooperative Extension Service, Issue 1537, Oklahoma State University, 2017.
- [2]. R. Nageswara Rao, B. Sridhar, "Iot based smart crop-field monitoring and automation irrigation system", IEEE Xplore Compliant, ISBN:978-1-5386-0807-4, 2018.
- [3].Yu-Chuan Chang, Ting-Wei Huang, Nen-Fu Huang, "A machine learning based smart irrigation system with lora p2p networks", IEEE, 2576-8565, 10.23919/APNOMS.2019.8893034, 2019.
- [4]. Revanth Kondaveti, Akash Reddy and Supreet Palabtla, "Smart irrigation system using machine learning and iot", IEEE, 10.1109/ViTECoN.2019.8899433, 2019.
- [5]. Atia Sultana et al., "Iot-based low-cost automated irrigation system for smart farming", ResearchGate, 10.1007/978-981-16-6309-3\_9, 83-91, 2022.

## Thank You!

## Any Question?