3 Fahrwerke

- Fahrzeugkoordinatensystem
- Einspur-Fahrzeugmodell
- Lenkung
- Radaufhängungen
- Federung

Fahrzeug-Koordinatensystem

Kraftfahrzeugtechnik 3 Fahrwerke Herzog

3.1 Einspur-Fahrzeugmodell

Kraftfahrzeugtechnik 3 Fahrwerke Herzog

Einspur-Fahrzeugmodell

$$\tan \delta = \frac{1}{R_h}$$

$$\tan \beta = \frac{I_h}{R_h}$$

Übungsaufgabe

Berechnen Sie Lenkwinkel und Schwimmwinkel für eine Kreisfahrt mit 25 m Radius. Die Geschwindigkeit des Fahrzeugs ist sehr gering, so dass Fliehkräfte vernachlässigt werden können. Der Radstand des Fahrzeugs beträgt 2560 mm. Die Achslastverteilung von Vorder- zu Hinterachse beträgt 60:40.

Einspur-Fahrzeugmodell

$$m \cdot a_q = m \cdot \frac{{v_S}^2}{R} = m \cdot \frac{v_S}{R} \cdot v \cdot R$$

$$\mathsf{m} \cdot \mathsf{a}_{\mathsf{q}} = \mathsf{m} \cdot \mathsf{v}_{\mathsf{S}} \cdot (\mathring{\psi} - \mathring{\beta}) <= \mu \cdot \mathsf{m} \cdot \mathsf{g}$$

Für stationäre Kreisfahrt ($\hat{\beta} = 0$) ergibt sich:

$$\dot{\Psi} = \frac{a_q}{V_S}$$

$$\alpha_{v} = \delta + \beta - \frac{I_{v} \cdot \psi}{v_{s}}$$

$$\alpha_h = \beta + \frac{I_h \cdot \psi}{V_S}$$

Übungsaufgabe

Ein Fahrzeug fährt auf einer Kreisbahn mit einer konstanten Geschwindigkeit von 40 km/h. Der Kurvenradius beträgt 25 m und es wird ein Schwimmwinkel von 4° und Lenkwinkel von 5° gemessen. Der Schwerpunkt befindet sich genau in der Mitte des Fahrzeugs ($I_v = I_h = 1,25$ m). Wie groß sind die Gierwinkelgeschwindigkeit und die Schräglaufwinkel an Vorder- und Hinterachse?

Übungsaufgabe

Das Lenkverhalten eines Fahrzeugs soll mit Hilfe des Einspurmodells untersucht werden. Gegeben sind folgende Daten:

Fahrzeugmasse $m_F = 1200 \text{ kg}$

Schwerpunktabstand vorne $I_v = 1,25 \text{ m}$

Schwerpunktabstand hinten $I_h = 1,35 \text{ m}$

Schräglaufsteifigkeit an Vorderachse $C_{\alpha \nu} = 50 000 \text{ N/rad}$

Schräglaufsteifigkeit an Hinterachse $C_{\alpha h} = 60\ 000\ N/rad$

Das Fahrzeug befährt stationär eine Kurve mit einem Radius von 120 m.

Bestimmen Sie für eine Geschwindigkeit von 22 m/s den Schwimm- und den

Lenkwinkel. Wie ändern sich die Verhältnisse wenn die Geschwindigkeit auf

28m/s erhöht wird?

Eigenlenkverhalten des Einspur-Fahrzeugmodells

Für stationäre Kreisfahrt ($\dot{\psi} = 0$, $\dot{\beta} = 0$) gilt:

$$F_{Sv} \cdot I = m \cdot a_q \cdot I_h$$

$$c_{\text{Sv}} \bullet \alpha_{\text{v}} \bullet I = m \bullet a_{\text{q}} \bullet I_{\text{t}}$$

$$c_{sv} \cdot \alpha_{v} \cdot I = m \cdot a_{q} \cdot I_{h}$$

$$c_{sv} \cdot (\delta + \beta - \frac{I_{v} \cdot \psi}{V_{s}}) \cdot I = m \cdot a_{q} \cdot I_{h}$$

Auflösen nach β ergibt:

$$\beta = \frac{m \cdot a_q \cdot I_h}{c_{sv} \cdot I} - \delta + \frac{I_v \cdot \psi}{v_s}$$

Analoge Berechnung mit Hilfe von F_{Sh} ergibt:

$$\beta = \frac{m \cdot a_q \cdot I_v}{c_{Sh} \cdot I} - \frac{I_h \cdot \psi}{v_S}$$

 $\beta = \frac{m \cdot a_q \cdot I_v}{c_{Sh} \cdot I} - \frac{I_h \cdot \dot{\psi}}{v_S}$ Gleichsetzen und mit $\dot{\psi} = \frac{v_S}{R}$ ergibt:

$$\delta = \frac{I}{R} + \frac{m}{I} \cdot (\frac{I_h}{c_{Sv}} - \frac{I_v}{c_{Sh}}) \cdot a_q$$

Lenkwinkelcharakteristik

Unterschiedliche Definitionen des Lenkverhaltens

Quelle: ika

Definitionen des Lenkverhaltens

Definition des Lenkverhaltens nach "OLLEY":

$$\alpha_{v} > \alpha_{h} \Rightarrow untersteuern$$

$$\alpha_{\rm v} = \alpha_{\rm h} \Rightarrow {\rm neutral}$$

$$\alpha_v < \alpha_h \Rightarrow \ddot{u}bersteuern$$

Definition des Lenkverhaltens nach "BERGMANN":

$$\frac{d\delta}{da_q} > 0 \Rightarrow untersteuern$$

$$\frac{d\delta}{da_{\alpha}} = 0 \Rightarrow neutral$$

$$\frac{d\delta}{da_{q}}\!<\!0 \Rightarrow \ddot{u}bersteuern$$

Übungsaufgabe

Gegeben ist ein Fahrzeug mit folgende Daten:

Fahrzeugmasse	m_{F}	=	1200 kg
---------------	---------	---	---------

Schwerpunktabstand vorne
$$I_V = 1,25 \text{ m}$$

Schwerpunktabstand hinten
$$I_h = 1,35 \text{ m}$$

Das Fahrzeug soll ein neutrales Lenkverhalten nach "Bergmann" ($\frac{d\delta}{da_q} = 0$)

aufweisen. Berechnen Sie das Verhältnis der erforderlichen Schräglaufsteifigkeiten an Vorder- und Hinterachse mit Hilfe des linearisierten Einspurmodells.

3.2 Lenkungen

- Geometrische Bedingungen bei Kurvenfahrt
- Kennwerte für die Lage der Lenkachse
- Lenkgetriebe
- Lenkunterstützung
- Lenkungsbauteile

Geometrische Bedingungen für Schräglauffreies Abrollen

Zusammenhang zwischen innerem und äußerem Lenkwinkel

Für schräglauffreies Abrollen gilt:

$$\delta_{\rm i} = \arctan\left(\frac{\rm I}{\frac{\rm I}{\tan(\delta_{\rm a})} - s_{\rm Lenk}}\right)$$

Lenktrapez

Beispiel für die Auslegung des Spurdifferenzwinkels

Kraftfahrzeugtechnik

Kennwerte für die Lage der Lenkachse

Quelle: ika

Übungsaufgabe

Bei Kurvenfahrt tritt an einem Vorderrad eine Seitenkraft von 1240 N auf. Der Nachlaufwinkel beträgt 8,3°, und der Nachlaufversatz hat einen Wert von 15 mm. Der dynamische Rollradius beträgt 315 mm. Wie groß ist das Rückstellmoment?

Störkrafthebelarme

Quelle: ika

Gewichtsrückstellung infolge des Spreizungswinkels

 $M_L \approx F_N \cdot \sin \sigma \cdot \sin \delta \cdot a$, $(\tau = 0)$

Zusammenhang zwischen Störkrafthebelarm b und Lenkrollradius

$$b = r_L \cdot \cos(\sigma)$$

Übungsaufgabe

Ein Fahrzeug verzögert auf einer μ-Split Fahrbahn (μ_{rechts}=0, μ_{links}=1). Die Bremskraftaufteilung zwischen Vorder- und Hinterachse beträgt 70:30 und das Fahrzeug verzögert mit 0,3 g. Welches Lenkmoment entsteht durch den Bremsvorgang?

Fahrzeugmasse $m_F = 1200 \text{ kg}$

Lenkrollradius $r_L = 5 \text{ mm}$

Spreizungswinkel $\sigma = 14,2^{\circ}$

Lenkgetriebe

Quelle: ZF

Lenkübersetzung unter Last

Geometrische Lenkübersetzung:

Standard- Pkw *i* = 17
 Servolenkung *i* = 14 ÷ 13

Quelle: ika

Hydraulikplan einer Servolenkung

Kraftfahrzeugtechnik 3 Fahrwerke Herzog

Zahnstangenlenkung

Quelle: ZF

Volumenstromregelung Lenkungspumpe

Kraftfahrzeugtechnik 3 Fahrwerke Herzog

Messergebnisse zur Leistungsaufnahme

Drehschieberventil

Quelle: ZF

Aktive Lenkung mit variabeler Übersetzung

Quelle: ZF

Elektrohydraulische Lenkunterstützung

Quelle: TRW

Elektrische Lenkunterstützung

Quelle: TRW

Aufbau einer elektrisch unterstützten Lenkung

Quelle: ATZ 10/2011

3.3 Radaufhängungen

- Anforderungen
- Bauformen
- Rollzentrum und Rollachse
- Brems- und Anfahrnickausgleich
- Elastokinematik
- Beispiele verschiedener Radaufhängungen

Anforderungen der Radaufhängung

- Übertragung von Radlasten, Antriebs- und Bremskräften
- Lenkbarkeit des Fahrzeugs ermöglichen
- Fahrbahnunebenheiten ausgleichen
- Minimierung von Radlastschwankungen
- Kinematik der Aufhängung soll Fahrdynamik optimieren
- geringes Gewicht und geringer Bauraum
- Geräuschisolation

Grundbauformen der Radaufhängungen

- Einzelradaufhängung
- Starrachsaufhängungen
- Verbundlenkerachsen

Schema Einzelradaufhängung

Schema Starrachse

Schema Verbundlenkerachse

Rollzentrum (Wankzentrum)

Ermittlung des Rollzentrums bei parallelen Lenkern

Ermittlung des Rollzentrums bei einer McPherson Achse

Ermittlung des Rollzentrums bei einer Längslenkerachse

Quelle: Reimpell

Ermittlung des Rollzentrums bei einer Schräglenkerachse

Rollachse

Übungsaufgabe

Gegeben sind folgende Daten eines Transporters mit verwindungssteifem Aufbau und Starrachsen:

Fahrzeugmasse	m_{F}	=	3500 kg
Achsmasse vorne:	m_{Rv}	=	220 kg
Achsmasse hinten:	\mathbf{m}_{Rh}	=	380 kg
Achslastverteilung vorne/hinten:	2/3		
Schwerpunkthöhe Aufbau:	h_{A}	=	0,9 m
Schwerpunkthöhe Gesamtfahrzeug:	h	=	0,8 m
Höhe des Rollzentrums vorne:	\mathbf{W}_{V}	=	0,4 m
Höhe des Rollzentrums hinten:	Wh	=	0,4 m
Aufbaufedersteife vorne:	C_Av	=	34 N/mm
Aufbaufedersteife hinten:	C_Ah	=	66 N/mm
Federspurweite vorne:	SFv	=	1,4 m
Federspurweite hinten:	SFh	=	1,2 m
Spurweite vorne:	S_V	=	1,8 m
Spurweite hinten:	Sh	=	1,6 m

Bei einer stationären Kreisfahrt tritt eine Querbeschleunigung von 4 m/s² auf. Wie groß ist der Rollwinkel und wie hoch sind die Radlasten an den einzelnen Rädern?

Rollzentrumsänderung bei Kurvenfahrt am Beispiel einer Pendelachse

Quelle: ika

Kinematik einer Schräglenkerachse (BMW 5er Reihe)

Quelle: Reimpell

Bremsnicken

Quelle: ika

Bremsstützwinkel für vollständigen Bremsnickausgleich

$$\tan(\varepsilon_{\text{opt,v}}) = \frac{h}{I} \cdot (1 + \frac{1}{F_{\text{Bv}} / F_{\text{Bh}}})$$

$$\tan(\varepsilon_{\text{opt,h}}) = \frac{h}{I} \cdot (1 + F_{\text{Bv}} / F_{\text{Bh}})$$

 $\epsilon_{\text{opt,v}}$ = Bremsstützwinkel vorne für vollständigen Nickausgleich

 $\epsilon_{\text{opt,h}}$ = Bremsstützwinkel hinten für vollständigen Nickausgleich

h = Schwerpunkthöhe

I = Radstand

 F_{Bv}/F_{Bh} = Bremskraftverteilung

Güte des Bremsnickausgleichs

Bremsnickausgleich
$$X = \frac{tan(\epsilon_{tats.})}{tan(\epsilon_{opt})} \cdot 100\%$$

Übungsaufgabe

Bestimmen Sie die Güte des Bremsnickausgleichs an der Vorderachse für ein Fahrzeug mit folgenden Daten:

Schwerpunkthöhe h = 0.4 m

Radstand I = 2,60 m

Bremskraftaufteilung Vorder- zu Hinterachse 70:30

Stützwinkel an der Vorderachse $\varepsilon_{v} = 10^{\circ}$

Anfahrnicken

Quelle: ika

Elastokinematik am Beispiel Querlenkerlager

Elastokinematik

Beispiel einer McPherson-Achse (Lancia)

Quelle: Reimpell

Vergleich von "Revo-Knuckle" und "McPherson" Radaufhängung

Quelle: ATZ 10/2010 (Ford Focus RS500)

Schräglenkerhinterachse Opel Omega

Verbundlenkerhinterachse VW Golf II

Sturzänderung bei gleichseitigem Einfedern verschiedener Radaufhängungen

Quelle: Reimpell

"Raumlenker-Hinterachse" Daimler

Quelle: Matschinsky

Hinterachse BMW E90 WTCC

3.4 Federungen

- Einmassen-Ersatzsystem
- Zweimassen-Ersatzsystem
- Federn
- Dämpfer

Einmassen-Federungsmodell

Einmassen-Federungsmodell

Bewegungsgleichung für Einmassenfederungsmodell

$$m_A\cdot \ddot{z}_A + k_R\cdot (\dot{z}_A - \dot{z}_E) + c_R\cdot (z_A - z_E) = 0$$

Kennkreisfrequenz
$$\omega_0 = \sqrt{\frac{c_R}{m_A}}$$

Abklingkonstante
$$\delta = \frac{k_R}{2 \cdot m_A}$$

Dämpfungsmaß D =
$$\frac{\delta}{\omega_0}$$

Eigenkreisfrequenz des gedämpften Systems $\omega_d = \omega_0 \cdot \sqrt{1-D^2}$

Übertragungsfunktion des Einmassen-Federungsmodells

Zweimassen-Federungsmodell

Bewegungsgleichungen Zweimassen-Federungsmodell

$$\mathbf{m}_{\mathsf{A}}\cdot\ddot{\mathbf{z}}_{\mathsf{A}}+\mathbf{k}_{\mathsf{A}}\cdot(\dot{\mathbf{z}}_{\mathsf{A}}-\dot{\mathbf{z}}_{\mathsf{R}})+\mathbf{c}_{\mathsf{A}}\cdot(\mathbf{z}_{\mathsf{A}}-\mathbf{z}_{\mathsf{R}})=0$$

$$m_R \cdot \ddot{z}_R + k_A \cdot (\dot{z}_R - \dot{z}_A) + c_A \cdot (z_R - z_A) + c_R \cdot (z_R - z_E) = 0$$

Abschätzung der Eigenkreisfrequenzen beim Zweimassen-Federungsmodell

Aufbaueigenkreisfrequenz $\omega_{eA} \approx \sqrt{\frac{c_A}{m_A}}$

$$\omega_{eA} \approx \sqrt{\frac{c_A}{m_A}}$$

Radeigenkreisfrequenz

$$\omega_{eR} \approx \sqrt{\frac{c_R + c_A}{m_R}}$$

Übungsaufgabe

Schätzen Sie die Radeigenfrequenz und die Aufbaueigenfrequenz für folgende Radaufhängung ab:

Fahrzeugaufbaumasse pro Rad	m_A	=	400 kg
ungefederte Masse pro Rad	m_{R}	=	30 kg
radbezogene Aufbaufedersteifigkeit	CA	=	21 N/mm
Reifenfedersteifigkeit	CR	=	150 N/mm

Simulationsergebnisse für dynamische Radlastschwankungen

Simulationsergebnisse für Aufbauschwankungen

Simulationsergebnisse für dynamische Radlastschwankungen

Simulationsergebnisse für Aufbauschwankungen

Vierstempelanlage (4-Poster-Rig) zur Untersuchung der Vertikaldynamik

Quelle: ZF Sachs

Drehstab

Torsionsfedersteifigkeit $c_{tor} = \frac{G}{I} \cdot \frac{\pi \cdot d^4}{32}$

mit

G = Schubmodul

I = Länge

d = Stabdurchmesser

Übungsaufgabe

Bestimmen Sie die radbezogene Aufbaufedersteifigkeit einer Drehstabfederung mit folgenden Daten:

Wirksame Länge des Drehstabes I = 0.5 m

Durchmesser des Drehstabes d = 25 mm

Hebelarmlänge der Federstrebe $I_H = 420 \text{ mm}$

Schubmodul Federstahl G = 83000 N/mm²

Für den Zusammenhang zwischen Federweg und Torsionswinkel des Drehstabes kann eine Nährung für kleine Winkel angesetzt werden.

Schraubenfedern

Minblockfeder | Section 2015 | Sect

Federsteifigkeit einer zylindrischen Schraubenfeder

Schraubenfedersteifigkeit c =
$$\frac{G \cdot d^4}{8 \cdot D_m^3 \cdot i_f}$$

mit

G = Schubmodul

d = Drahtdurchmesser

 D_m = mittlere Federdurchmesser

i_f = Anzahl der federnden Windungen

Übungsaufgabe

Bestimmen Sie die radbezogene Aufbaufedersteifigkeit einer Radaufhängung mit Schraubenfeder. Die Hebelverhältnisse zwischen Radkraft und Federkraft können durch ein konstantes Übersetzungsverhältnis beschrieben werden. Gegeben sind die folgenden Daten:

Mittlerer Federdurchmesser $D_m = 100 \text{ mm}$

Durchmesser des Federdrahtes d = 16 mm

Anzahl der federnden Windungen $i_f = 5$

Schubmodul Federstahl G = 83000 N/mm²

Übersetzung Federkraft/Radkraft $i_R = 2$

Blattfedern

Federsteifigkeit einer Blatthälfte

$$c = \frac{b \cdot s^3}{4 \cdot l^3} \cdot E$$

mit

E = Elastizitätsmodul

Quelle: ika

Blattfeder

Gasfeder

Quelle: ika

theoretische Federlänge $h_{th} = \frac{V}{A}$

Federsteifigkeit

$$c(f) = A \cdot n \cdot p(f) \cdot \frac{1}{h_{th}}; h_{th} = \frac{V(f)}{A}$$

mit

f = Federweg

n = Polytropenexponent

Luftfeder

Kraftfahrzeugtechnik 3 Fahrwerke Herzog

Zweirohrdämpfer

Einrohr-Gasdruckstoßdämpfer

Dämpferkennlinien Sachs-Racing-Dämpfer RD 45-2

Motorsport-Dämpfer

Quelle: ZF Sachs

Kraftfahrzeugtechnik 3 Fahrwerke Herzog

Einstellmöglichkeiten an Motorsport-Dämpfern

Quelle: ZF Sachs