

UNIVERSIDADE FEDERAL DO PARANÁ – UFPR

Departamento de Informática

Computer Vision and Perception

Introduction

Prof. Eduardo Todt 2023

Sumary

Text book
Introduction
recognition problem
image basics

Textbook

Computer Vision
Principles, Algorithms, Applications,
Learning

5th Edition - November 14, 2017

Author: E. R. Davies

Hardback ISBN: 9780128092842

978-0-12-809284-2

eBook ISBN: 9780128095751

Journal

The process of recognition

5x5 characters NxN image

window sliding: 52 x N2 ops

orientation: x 360 ?

2^{N2} possible patterns

FIGURE 1.1

Some simple 25-bit patterns and their recognition classes used to illustrate some of the basic problems of recognition: (A) training set patterns (for which the known classes are indicated); (B) test patterns.

Trying to generalize

FIGURE 1.2

Use of thinning to regularize character shapes. Here character shapes of different limb widths—or even varying limb widths—are reduced to stick figures or skeletons. Thus irrelevant information is removed and at the same time recognition is facilitated.

Basic pipeline

FIGURE 1.3

The two-stage recognition paradigm: C, input from camera; G, grab image (digitize and store); P, preprocess; R, recognize (i, image data; a, abstract data). The classical paradigm for object recognition is that of (1) preprocessing (image processing) to suppress noise or other artefacts and to regularize the image data and (2) applying a process of abstract (often statistical) pattern recognition to extract the very few bits required to classify the object.

Object location

FIGURE 1.4

Template matching, the process of moving a suitable template over an image to determine the precise positions at which a match occurs, hence revealing the presence of objects of a particular type. Generalized Hamming distance:

$$D = \sum_{t} |I_i - I_t|$$

For a 30x30 template and 256x256 image ~60x10⁶ ops

Without considering orientation and scale ...

Computer Vision – Prof. Eduardo Todt

Information reduction

Two-stage template matching instead of template uses features e.g. lines, corners, the problem of feature size

Vision as inverse graphics

CG: N to 1 CV: 1 to N

N can be infinite ...

Binary images

Fig. Binary image

Gray-scale images

Fig. Gray-scale image

Typical: 8 bits/pixel

Pixel intensity value f(1,1) = 103Pixel location columns rows f(645:650,1323:1328) =83 82 82 82 82 82 82 82 82 81 81 81 82 82 81 81 80 80 82 82 81 80 80 79

80 79 78 77 77 77 80 79 78 78 77 77

f(2724,2336) = 88

Consider the following image (2724x2336 pixels) to be 2D function or a matrix with rows and columns

In 8-bit representation
Pixel intensity values change
between 0 (Black) and 255 (White)

color images

8-bit color images

16-bit color images

R 5 bits G 6 bits B 5 bits

24-bit color images

R 8 bits G 8 bits B 8 bits

OpenCV image container

Early times: *lpllmage*

Computer Vision – Prof. Eduardo Todt

OpenCV image container

Currently: Mat

n-dimensional dense array

```
//including all the necessary headers
#include "opencv2/core.hpp"
#include <iostream>
#include <opencv2/opencv.hpp>
//defining the namespace std and cv
using namespace std;
using namespace cv;
void main()
//creating a matrix using mat function and
displaying the matrix as the output on the screen
Mat Mvalue(4, 4, CV 8UC3, Scalar(1, 0, 1));
cout<<"The resulting matrix is:\n";</pre>
cout << "Mvalue = " << endl << " " << Mvalue <<
endl << endl:
```

```
Cv::Mat_< _Tp > Cv::Mat_< double > Cv::Mat_< float > Cv::Mat_< uchar > Cv::Mat_< unsigned char > Cv::Mat_< uchar > Cv::M
```

https://docs.opencv.org/4.x/d6/d6d/tutorial_mat_the_basic_image_container.html

Computer Vision – Prof. Eduardo Todt

https://docs.opencv.org/4.x/d3/d63/classcv 1 1Mat.html#details

Image processing basics

quantization, up sample, down sample grayscale range intensity


```
[[ 66 156 43 106 195 209 136 155 193 97]
[229 192 146 239 231 118 103 66 142 149]
[112 187 229 177 143 114 117 237 22 103]
[197 226 62 125 173 99 118 47 41 43]
[ 64 156 236 54 12 231 144 242 246 105]
[ 25 152 164 130 184 155 178 230 87 210]
[152 226 5 56 135 96 205 154 96 11]
[ 19 209 138 12 153 147 162 124 198 59]
[ 134 184 133 0 80 128 18 72 131 58]
[ 65 137 212 87 35 146 135 97 33 89]]
```

Applied to whole image

Linear transformations

$$s = cr + x$$

ex. c=1; x=25, 50, ...

r initial pixel value s transformed pixel value

x offset

c coefficient

Thresholding

The simplest approach to segment an image is thresholding

If
$$f(x, y) > T$$
 then $f(x, y) = 0$ else $f(x, y) = 255$

Computer Vision – Prof. Eduardo Todt

Thresholding

Automatic Thresholding

Regions with uniform intensity give rise to strong peaks in the histogram

Automatic Thresholding

Multilevel thresholding is also possible

If f (x, y) < T1 then f (x, y) = 255
else if T1
$$\leq$$
 f (x, y) < T2 then f (x, y) = 128
else f (x, y) = 0

Local Thresholding

A single threshold will not work well when we have uneven illumination due to shadows or due to the direction of illumination

Applied to whole image

Log transformations

Applied to whole image

Power law transformations

Gamma correction

$$s = c r^{\gamma}$$

Computer Vision – Prof. Eduardo Todt

Applied to whole image

Generalized

Image Negatives

$$s = (L-1)-r$$

(left) Original digital mammogram. (right) Negative image obtained using the negative transformation

L = 2^k k=número de bits

Logarithmic Transformations

 $s = c \log(1+r)$

(left) Fourier spectrum of Barbara's image. (right) Result of applying the log transformation

You should know Lena

Capa playboy 1973

https://en.wikipedia.org/wiki/Lenna

Logarithmic Transformations

 $s=c r^{\gamma}$

s is the pixel value of the output image and r is the pixel value of the input image. ($y \ge 0$ and $0 \le r \le 1$)

Plots for various values of y (c=1)

Logarithmic Transformations

а	b
С	d

- (a) original image
- (b) y = 0.5 (c) y = 0.3
- (d) y = 0.7

An example of piecewise linear transformation function

Other pixel values are darkened

Bit Plane slicing

An 8-bit fractal image

Histogram Processing

Histogram: is the discrete function $h(r_k)=n_k$, where r_k is the k^{th} gray level in the range of [0, L-1] and n_k is the number of pixels having gray level r_k .

Normalized histogram: is $p(r_k)=n_k/n$, for k=0,1,...,L-1 and $p(r_k)$ can be considered to give an estimate of the probability of occurrence of gray level r_k .

Histogram Processing

0	0	1	0	2	0
1	0	7	7	7	0
0	7	0	0	7	0
1	0	0	7	2	0
0	0	7	1	0	1
1	0	7	7	7	0

Histogram of 4 basic grey-level characteristics

Histogram of 4 basic grey-level characteristics

Histogram Equalization

Histogram equalization: is a method which increases the dynamic range of the gray-levels in a low-contrast image to cover full range of gray-levels.

How-to-Do: is achieved by having a transformation function which is the Cumulative Distribution Function (CDF) of a given PDF of gray-levels in a given image.

Histogram Equalization

Histogram equalization

The new intensity value of pixel x is calculated by:

$$I(x) = \text{round}\left(\frac{cdf(x) - \min cdf}{1 - \min cdf} \times (L - 1)\right)$$

				256		
	original H(x)	original h'(x)	original cdf(h'(x))	new H(x)	new(h'(x))	new(cdf'(x))
1	5	0,125	0,125	32	0,024	0,024
2	3	0,075	0,200	51	0,038	0,06
3	9	0,225	0,425	108	0,080	0,142
4	16	0,400	0,825	210	0,156	0,29
5	0	0,000	0,825	210	0,156	0,45
6	4	0,100	0,925	236	0,175	0,62
7	2	0,050	0,975	249	0,184	0,81
8	1	0,025	1,000	255	0,189	1,000
total	40	1,000		1351,5	1,000	

https://en.wikipedia.org/wiki/Histogram_equalization

Computational Vision and Perception

Prof. Eduardo Todt

todt@inf.ufpr.br

