Вспоминаем определения

Пусть $\mathcal{F} \supset \mathbb{Q}$ – расширение полей. Элемент $a \in \mathcal{F}$ называется алгебраическим, если он является корнем многочлена с целыми коэффициентами, а такой многочлен наименьшей степени называется минимальным многочленом числа¹ a. Алгебраическое число называется алгебраическим целым, если его минимальный многочлен приведённый.

Обозначим через \mathcal{R} множество целых алгебраических чисел. Элемент $\varepsilon \neq 0$ называется $e \partial u h u u e \dot{u}$, если $\varepsilon^{-1} \in \mathcal{R}$. Элементы $a, b \in \mathcal{R}$ называются $accouuupobah h u h u u, если <math>a = \varepsilon b$ для некоторой единицы ε . Ненулевой элемент множества \mathcal{R} называется hepas no ж u h u u, если каждый его делитель является либо ассоциирован с ним, либо является единицей. Наконец, ненулевой и неединичный элемент $a \in \mathcal{R}$ называется npocmum, если из $a \mid bc$, $b, c \in \mathcal{R}$, следует, что $a \mid b$ или $a \mid c$.

Квадратичные расширения

Пусть $d \neq 1$ – целое число, свободное от квадратов. $Kea\partial pamuчным$ расширением $\mathbb Q$ называется поле $\mathbb Q[\sqrt{d}]$, все алгебраические операции, а также понятия "сопряжение" и "норма" считаем известными. Нас будет интересовать теория делимости в кольце целых алгебраических чисел этого расширения.

- 1. Опишите все целые алгебраические числа в поле $\mathbb{Q}[\sqrt{d}]$.
- 2. Опишите все единицы в поле $\mathbb{Q}[\sqrt{d}], d < -4.$
- 3. Опишите все единицы в поле² $\mathbb{Q}[\sqrt{-1}]$.
- 4. Опишите все единицы в поле³ $\mathbb{Q}[\sqrt{-3}]$.
- 5. Из теоремы о рациональных приближениях докажите, что при d>1 существует бесконечно много целых алгебраических чисел с нормой, не превышающей $3\sqrt{d}$, и выведите отсюда ещё раз, что любое уравнение Пелля имеет нетривиально решение.
- 6. Опишите все единицы вещественного поля $\mathbb{Q}[\sqrt{d}], d > 1.$
- 7. Докажите или опровергните следующие два утверждения: 1) каждое простое число является неразложимым; и 2) каждое неразложимое число является простым.

Квадратичное поле $\mathbb{Q}[\sqrt{d}]$ называется ϕ акториальным или eвкли ϕ овым, если таковым является его кольцо целых алгебраических чисел.

- 8. В терминах задачи 7 сформулируйте и докажите критерий факториальности $\mathbb{Q}[\sqrt{d}]$.
- 9. Докажите, что $\mathbb{Q}[\sqrt{d}]$ евклидово при $d=-2,\;-1,\;2$ и 3.
- 10. Докажите, что $\mathbb{Q}[\sqrt{d}]$ евклидово при $d=-11,\ -7,\ -3,\ 5$ и 13.
- 11. Докажите, что $\mathbb{Q}[\sqrt{d}]$ не евклидово при всех отрицательных d, кроме перечисленных в предыдущих двух пунктах.

Все евклидовы поля получаются при $d=-11,\ -7,\ -3,\ -2,\ -1,\ 2,\ 3,\ 5,\ 6,\ 7,\ 11,\ 13,\ 17,\ 19,\ 21,\ 29,\ 33,\ 37,\ 41,\ 57$ и 73.

Известны все мнимые квадратичные поля, у которых кольцо алгебраических целых чисел факториально, они получаются при d=-1,-2,-3,-7,-11,-19,-43,-67,-163. Насколько я знаю, все такие вещественные поля не описаны.

 $^{^1}$ Элементы расширения ${\mathcal F}$ для удобства будем называть числами.

 $^{^2}$ Целые алгебраические числа этого расширения называются $\it rayccosыmu$ числами.

³Целые алгебраические числа этого расширения называются *целыми числами Эйзенштейна*.

Упражнения

- 12. Опишите все гауссовы простые числа.
- 13. Найдите все единицы в $\mathbb{Q}[\sqrt{2}]$ и $\mathbb{Q}[\sqrt{3}]$.
- 14. Объясните, почему равенство $2 \cdot 11 = (5 + \sqrt{3})(5 \sqrt{3})$ не противоречит факториальности поля $\mathbb{Q}[\sqrt{3}]$, а равенство $2 \cdot 3 = (\sqrt{-6}) \cdot (-\sqrt{-6})$ доказывает нефакториальность поля $\mathbb{Q}[\sqrt{-6}]$.
- 15. Решите в целых числах уравнение $x^2 + 2 = y^3$.
- 16. Решите в целых числах уравнение $x^3 4 = y^2$.
- 17. Пусть p простое число. Вычислите $\prod_{k=1}^{p-1} (k^2 + 1) \pmod{p}$. 18. Докажите, что у решения $x^3 + y^3 + z^3 = 0$ нет нетривиальных решений в \mathbb{Z}^3 .
- 19. Докажите аналог малой теоремы Ферма для гауссовых чисел: если π гауссово простое число и a – гауссово число, взаимно простое с π , то $a^{N(\pi)}-a$ кратно π .
- 20. Докажите, что в любом квадратичном поле есть бесконечно много неразложимых чисел.

Off topic

- 21. Пусть p простое число вида 4k+1, а $d^2 \equiv -1 \pmod p$. На координатной плоскости рассмотрим решётку с базисными векторами (1,0), $(\frac{d}{p},1)$ и эллипс в ней, заданный уравнением $px^2 + \frac{y^2}{p} = 1$. При помощи теоремы Минсковского ещё раз докажите, что число p представимо в виде суммы двух квадратов натуральных чисел.
- 22. Докажите, что каждое натурально число представимо в виде суммы четырёх квадратов целых чисел.