	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Winter 2009

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1		Aufgabe 6	
Aufgabe 2		Aufgabe 7	
Aufgabe 3		Aufgabe 8	
Aufgabe 4		Aufgabe 9	
Aufgabe 5			
Total OC I		Total OC II	
Note OC I		Note OC II	
		Note OC	

1. Aufgabe (9.5 Pkt)

a) 1 Pkt. Zeichnen Sie die Strukturformeln (inkl. Stereochemie) von: (2R,5R)-5-Benzyl-2-isopropyl-2-vinylhexandial			
	(2/1,3/1)-3-Benzyi-2-isopropyi-2-viriyinexandiai		
b) 1 Pkt.	Zeichnen Sie die Strukturformeln (inkl. Stereochemie) von:		
	(S,E)-6-Methoxy-1-methyl-3-(3-methylpent-1-enyl)-indol		
c) 15 Pkt	. Benennen Sie die folgenden Verbindungen nach IUPAC		
0) 4.5 T KI.	(wo erforderlich inkl. stereochemische Deskriptoren!)		
	0		
	NH ₂ HO		
	HO' JIMIN O Br CI		
	0		
d) 3 Pkt	Zu welcher Substanzklasse gehören die folgenden Verbindungen?		
u) 5 i ki	OH		
	HŅ ŅH S		
	S		
	OH		
	Punkte Aufgabe 1		

2. Aufgabe (5.5 Pkt)

a) 2 Pkt. Tragen Sie in den folgenden Lewisformeln die fehlenden Formalladungen ein:	
H_3C CH_3	
b) 1 1/2 Pkt. Zeichnen Sie je eine weitere möglichst gute Grenzstruktur der untenstehenden	
Verbindungen ⊕ H ₂ N=C=C=C	
c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten Atomen an.	
Bindungsgeometrie Hybridisierung 1	
3	
Punkte Aufgabe 2	

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folgenden Strukturen Isomerie von Wenn ja, um welche Art von Isomerie handelt es sich?	r?
HO OH OH OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
HO OH OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
ноос соон ноос соон	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
SH N N S	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
	Übertrag Aufgabe 3

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?	
Welches ist die Beziehung zwischen a und d?	
chiral achiral Diastereoisomere identisch	
c) 5 Pkt. Die Fischerprojektion eines Mannitols ist unten angegeben.	-
1 CH ₂ OH HO 2 H HO 3 H H 4 OH H 5 OH 6 CH ₂ OH	
Mannitol Perspektivformel Enantiomeres	
c1) 1/2 Pkt. Handelt es sich um D- oder L- Mannitol?	
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).	
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zum dargestellten Mannitol enantiomeren Moleküls (Projektion ergänzen).	
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C2 und C4 im abgebildeten Mannitol mit CIP Deskriptoren. C2: R S S S S 	
c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es?	
Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung).

4. Aufgabe (14 Pkt)

Aufgabe 4 (Fortsetzung).

 b) 5 Pkt. (je ½ für richtige Wahl und Begründung pro Paar) Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen. Wichtgste Effekte: 1. Elektronegativität des direkt an das Proton gebunden Atoms. 2. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms. 3. Hybridisierung des durch Deprotonierung entstehenden lone pairs 4. σ-Akzeptor = -I Effekt. 5. π-Akzeptor Effekt (-M). 6. π-Donor Effekt (+M). 7. Solvatation (Wechselwirkung mit dem Lösungsmittel). 8. Wasserstoffbrücken. 		
HO HO Wichtigster Effekt (1-8)		
HH H CN		
(⊕)N-H (⊕)N <h td="" ="" <=""><td></td><td></td></h>		
— ОН N— ОН □ □		
Übertrag Aufgabe 4		
	•	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Begründung

Begründung

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?
 Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

$$0 = \frac{\frac{H}{H}}{NH}$$

Begründung:

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

2 Pkt. Wie gross ist die Gleichgewichtskonstante K₂? 1) $\Delta G^{\circ}(1) = -5.7 \text{ kJ/mol}$ $K_2 = 100$ 2) Wie gross ist K₃? Antwort: K₃ = (Keine Punkte ohne schriftliche Herleitung des Resultats) b) 2 Pkt. Zeichnen Sie die Konformere von (2S,3S)-2,3-Dibrombutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil $[E(\Theta)]$ der Rotation um die C(2)-C(3) Bindung (Θ = Diederwinkel C(4)-C(3)-C(2)-C(1), d.h. Θ =0°, wenn die Bindungen C(4)-C(3) und C(2)-C(1) verdeckt stehen). Brom hat etwa den gleichen Van der Waals Radius wie eine Methylgruppe. c) 2 Pkt. Inosin C₁' (Zucker) (Zucker) C₁ Inosin ist eine Nucleobase, die nicht zu den 4 kanonischen Basen der DNA gehört. Mit welchen kanonischen DNA-Nucleobasen kann Inosin ein Watson-Crick Basenpaar bilden? Antwort: Punkte Aufgabe 5

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Wie würden Sie die nachstehenden Umwandlungen durchführen? Geben Sie **alle** benötigten Reagenzien, Lösungsmittel und allenfalls Katalysatoren an!

Bemerkung: eine Stufe beinhaltet auch die entsprechende Aufarbeitung!

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Welche Hauptprodukte erwarten Sie bei den fo welchen Reaktionstyp, bzw. um welche Namer (Wo erforderlich, Stereochemie angeben!).		
a) $COOEt$ $ \begin{array}{c} $	Тур:	
b) K tert-BuO DMSO, 8 h 50°	Тур:	
c) NC FeBr ₃ , Br ₂ 16 h 80°	Тур:	
d) O H NaOEt EtOH 16 h Rückfluss	Тур:	
e) CI NaCN DMF 16 h 60°	Тур:	
	Punkte Aufgabe 7	

8. Aufgabe (a=8 Pkt, b=2 Pkt; total 10 Pkt)

a) Formulieren Sie einen detaillierten Med	chanismus für folgende	Umsetzung!	
NH ₂ -NH-Ph + (Ph = Phenyl) Mechanismus: Ph	AcOH, 8 ^h , 100°	Ph Ph	
b) Ist der neugebildete Heterocyclus aroma Begründung (ohne befriedigende Begründ		nein:	
		Punkte Aufgabe 8	

9. Aufgabe (a=4 Pkt,b=2x3 Pkt; total 10Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus:

b) Wie lautet die Regel von *Saytzew*? Geben Sie ein Anwendungsbeispiel!

Regel:

Anwendungsbeispiel: