

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:		
Tong	Yang.	

UB Person Number:

	-						
5	0	2		8	7	8	う
① ① ① ② ③ ④ ● ⑥	1 2 3 4 5 6	①①③③④⑤⑥	① ① ② ③ ④ ⑤ ⑥	① ①① ②③ ④⑤ ⑥	0 1 2 3 4 5 6	①①②③④⑤⑥	0 1 2 4 6 6 6
(7) (8) (9)	(F) (8) (9)	(T) (B) (9)	(7) (8) (9)	(7) (9) (9)	88 9	(7) (9)	(7) (8) (9)

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
			×					

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.

 \mathfrak{b} is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

when b+6=0 so w = Span (vi, v2. v3)

motified It has infinite solution. with free variable 13

b) wo, for set { v. v. v. v.) ofter row reduced.

we got [0 3 3] the third column is not a pivot column.

which meath means it is not a linearly independent set.

have infinite solution

50 not linear indep.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A-1.

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 1 & 10 \\ 0 & 2 & 1 & 10 \\ 0 & 2 & 1 & 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 1 & 10 \\ 0 & 2 & 1 & 10 \\ 0 & 2 & 1 & 10 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 1 & 10 \\ 0 & 2 & 1 & 10 \\ 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 1 & 10 \\ 0 & 2 & 1 & 10 \\ 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 1 & 11 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 1 & 11 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 1 & 11 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 1 & 11 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & 11 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 100 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 &$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{-1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} A^{-1} = \begin{bmatrix} -1 & 0 & 2 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$(A^{-1})^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(v) = Av$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

o) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$

co (with), One foliate

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

if worky [CIU+CIU] & Span(UIV] It WHUE Spay (U,V) W= CIU OF W=CZV (NE Span (U.V)

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

Falle. N= [0] V. [0] W=[2]. H=1 N+V+ON V+93W=0. IS linear independent

but AIRATED = 0 is not linearly todependen

NI[1] + N, [2] =0.

to that MU is not linear toleper.

NI[0] W[0] is Cinear dependent

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

False