LR-анализ

Сегодня посмотрим только на готовый анализатор. Как его создавать посмотрим позднее.

Самая важная тема курса!

Готовый анализатор — автомат с магазинной памятью. Главное отличие автомата от обычного — возможность вынуть более одного символа из стека за раз. Но заглянуть в стек больше, чем на один символ, по-прежнему нельзя! Но стековый символ может нести в себе информацию о символах ниже.

Заучивать не надо — КСГ распознаются МПА.

С какими грамматиками будем работать:

- однозначными, так как нам нужен детерминированный алгоритм
- приведённые

Можем работать с аннулирующими правилами!

Будем рассматривать LR(k) грамматики.

Вспомним нашу арифметическую грамматику.

$$E \rightarrow E \overset{(1)}{+} T | \overset{(2)}{T}$$

$$T
ightarrow T \overset{(1)}{st} F | \overset{(4)}{F}$$

$$F
ightarrow \overset{(5)}{(E)}|\overset{(6)}{x}$$

в GOTO — нетерминалы грамматики. Она говорит о том, что нужно делать во время свёртки Без цифр — перенос. С цифрой — свёртка по правилу из грамматики.

	Α	С	Т	I	0	N	GO		то
	+	*	x	()	-	E	T	F
E^1	+					✓			
T^1	(2)	*			(2)	(2)			
F^1	(4)	(4)			(4)	(4)			
(x	(E^2	T^1	F^1
x	(6)	(6)			(6)	(6)			
+			x	(T^2	F^1
*			x	(F^2
E^2	+)				
T^2	(1)	*			(1)	(1)			
F^2	(3)	(3)			(3)	(3)			
)	(5)	(5)			(5)	(5)			
∇			x	(E^1	T^1	F^1

Если происходит перенос, то вершина на стеке остаётся!

Анализатор смотрит на вершину на стеке, на символ, делает то, что написано

Пример

Вершину стека пишем справа!

$$(x+x)*x$$

Стек	Остаток входной строки	Комментарий
∇	$(x+x)*x\dashv$	
∇ ($(x+x)*x\dashv$	
$\nabla(x$	$+x)*x\dashv$	Свёртка по (6)
$ abla(F^1)$	$+x)*x\dashv$	F^1 — потому что на стеке была открытая скобка, а свернулись к F. См. GOTO
$ abla (T^1$	$+x)*x\dashv$	Свернулись по (4)
$ abla(E^2$	$+x)*x\dashv$	Свернулись по (2). Не было бы скобки, было бы E^1
$ abla(E^2+$	$x) * x \dashv$	
$ abla(E^2+x)$	$)*x \dashv$	
$ abla(E^2+F^1$)* <i>x</i> ⊣	Свёртка по (6)
$ abla(E^2+T^2)$	$)*x \dashv$	Свёртка по (4). Взяли F, сворачиваемся к T, на стеке +
$ abla(E^2$)∗x ⊣	Свёртка по (1). Его длина— 3, поэтому и из стека выкидываем 3 символа.
$ abla(E^2)$	$*x \dashv$	
$ abla F^1$	*x ¬	
$ abla T^1$	*x ¬	
$ abla T^1 *$	$x\dashv$	
$\nabla T^1 * x$	Н	
$ abla T^1 * F^2$	Н	
$ abla T^1$	Н	
$ abla E^1$	Н	
✓	✓	

Внешняя аксиома S^\prime

$$G = (\Sigma, \Gamma, P, S)$$

$$G' = (\Sigma, \Gamma \cup \{S'\}, P \cup \{S' \rightarrow S\}, S')$$

Свёртка по добавленному правилу говорит, что свёртка произошла по первой аксиоме. S' в правых частях отсутствует, поэтому она — начало. Свёртка к ней — это команда допуска.

Распознаватель — таблица, которую мы нарисовали выше. *Автомат* — другая штука, который будем рассматривать далее. Состояния этого автомата — стековый алфавит анализатора.

Автомат LR(0)-пунктов

<u>Опр</u>. LR(k)-**пункт** в $G=(\Sigma,\Gamma,P,S)$ это четвёрка $[A oeta_1\cdoteta_2,v]$, где

- $A \rightarrow \beta_1 \beta_2 \in P$
- ullet |v| = k или |v| < k и $v[|v|] = \dashv$

Пункт — разделение правила на две части. Он указывает, какую часть продукции мы уже посмотрели в данной точке в процессе синтаксического анализа.

Зачем это нужно? Чтобы отслеживать, насколько мы готовы к свёртке.

Например, пункт $A o \cdot XYZ$ указывает, что во входном потоке мы ожидаем встретить строку, порождаемую XYZ. Пункт $A o X \cdot YZ$ указывает, что нами уже просмотрела строка, порождаемая X, и мы ожидаем получить из входного потока строку, порождаемую YZ. Пункт $A o XYZ \cdot$ говорит о том, что уже обнаружено тело XYZ и что, возможно, пришло время свернуть XYZ в A.

LR(0)-пункт — просто правило с точкой.

$$E \rightarrow E + T$$
:

$$E \rightarrow \cdot E + T E \rightarrow E \cdot + T E \rightarrow E + \cdot T E \rightarrow E + T \cdot$$

Теперь построим автомат пунктов, который будем использовать для принятия решений в процессе синтаксического анализа — **LR(0)-автомат**. Как этот автомат используется? Если в нём есть переход по текущему символу входной строки, то осуществляется перенос. Если нет, то произведём свёртку по правилу, о котором сообщает пункт.

<u>Опр</u>. **Автоматом LR(0)-пунктов** расширенной грамматики $G=(\Sigma,\Gamma,P,S')$ называется λ -НКА $I_G=(\Sigma\cup\Gamma,I,\delta,i_o,I)$, где :

- I множество LR(0)-пунктов грамматики
 - I начальные состояния, совпадают с конечными
- $i_0 = [S' \rightarrow \cdot S]$
- ullet δ множество переходов вида: $[A oeta_1\cdot xeta_2]\stackrel{x}{ o}[A oeta_1x\cdoteta_2]$ базисные

$$[A oeta_1\cdot Beta_2]\stackrel{\lambda}{ o} [B o\cdoteta]$$

Если после точки стоит терминал, то из этого пункта по этому терминалу можно перейти в следующее состояние, в котором точка передвинется на шаг вправо.

Если после точки стоит нетерминал, то можно перейти по лямбде в следующее множество пунктов: все правила для этого нетерминала, в самом начале правых частей которых стоит точка.

// Переход по лямбде == замыкание

Базисные пункты — $[A
ightarrow eta_1 \cdot eta_2]$, $eta_1
eq \lambda$ и i_0

Начальный пункт и все пункты, у которых точки расположены не у левого края

<u>Опр</u>. **Активный префикс** — префикс r-формы, не выходящий за правый конец основы.

== префикс, который может находится в стеке нашего анализатор.

В стеке не может лежать основа и ещё что-то над ней, потому что как только мы видим основу, мы её сворачиваем

<u>Опр</u>. Пункт $[A \to \beta_1 \cdot \beta_2, v]$ **допустим** для активного префикса γ , если \exists правый вывод $S \Rightarrow^+ \gamma' Aw \Rightarrow \gamma' \beta_1 \beta_2 w \Rightarrow^* uw$, где $\gamma = \gamma' \beta_1$, v — префикс $w \dashv$

LR(0)-автомат распознаёт активные префиксы

Основная теорема LR-анализа

LR(0)-пункт i допустим для активного префикса $\gamma \iff$ в I_G существует пусть из i_0 в i, помеченный γ

Лемма 1

Для активного префикса γ существует допустимый для него базисный пункт.

Д-во

Давайте рассмотрим вывод, в котором появляется данный активный префикс. Нас интересует первое появление. Как только встретили форму, у которой появился такой префикс

$$S \Rightarrow^* \gamma \alpha \Rightarrow^* w$$

Перед появлением префикса было применено какое то правило, значит, префикс откуда-то взялся, и его можно свернуть до этого нетерминала. Если основа лежит в альфе, то предыдущая форма тоже начиналась с гаммы, а значит это не первое появление. Теперь покажем, что основа лежит на границе гаммы и альфы $-\beta_1 \beta_2$.

Если $\beta_1 \neq \lambda$, тогда $\gamma \neq \lambda$ и $S \Rightarrow^* \gamma' A \alpha; \Rightarrow \gamma' \beta_1 \beta_2 \alpha' \Rightarrow^*$, где $\gamma' \beta_1 = \gamma$, $\beta_2 \alpha' = \alpha$ и пункт $[A \to \beta_1 \cdot \beta_2]$ — допустим

Если $\gamma=\lambda$, то i_0 допустим для γ

Лемма 2

Пункт $[B o\cdot\beta]$ допустим для активного префикса $\gamma\iff$ он достижим по λ -переходу из некоторого базисного пункта, допустимого для γ .

Д-во

 \Leftarrow Рассмотрим допустимый для γ пункт $[A o eta_1 \cdot B eta_2]$. Надо перейти к пункту из условия. Существует правый вывод $S' \Rightarrow^* \gamma' Aw \Rightarrow \gamma' eta_1 \cdot B eta_2 w \Rightarrow uw$.

Где то тут использовали первую лемму, чтобы обосновать возможность таких переходов в выводе.

Мы не заботились о том, как преобразовывали формы. Но, так как грамматика приведённая, из нетерминала В можно вывести разные терминальные цепочки:

$$S' \Rightarrow^* \gamma' Aw \Rightarrow \gamma' \beta_1 B\beta_2 w \Rightarrow^* \gamma' \beta_1 Buw \Rightarrow \gamma' \beta_1 \beta uw \Rightarrow^* vuw$$

 \Rightarrow

 $[B o\cdoteta]$, значит, существует правый вывод: $S'\Rightarrow^*\gamma Bw\Rightarrow\gamma\beta w\Rightarrow^*uw$. По первой лемме для γ существует допустимый базисный пункт $[A oeta_1\cdoteta_2]$, который мы хотим найти.

Распишем тот же самый вывод, уточняя переходы через беты.

$$S' \Rightarrow^* \gamma' Au \Rightarrow \gamma' \beta_1 \beta_2 u = \gamma \beta_2 u = [\gamma Bw \Rightarrow \gamma \beta w] \Rightarrow^* \gamma Bw \Rightarrow \gamma \beta w \dots$$

1)
$$\gamma \beta_2 u = \gamma B v$$

$$[A o eta_1 eta_2] \stackrel{\lambda}{ o} [B o \cdot eta]$$

2) eta_2 разворачивается в В\alpha

 eta_2 начинается с нетерминала C, из которого выводится цепочка, начиная с B

Существенно, что вывод правосторонний! Если бы это было не так, то могла бы случиться такая ситуация: $\beta \to DC$

$$\gamma \beta_2 u = \gamma C \alpha_1 u \Rightarrow^* \gamma C u_1 u \Rightarrow \gamma C_2 \alpha_2 u_1 u \Rightarrow \gamma C_2 u_2 u_1 u \Rightarrow^* \dots \gamma B u_k \dots u_1 u$$

$$A o eta_a C lpha_1$$

$$c o C_2 lpha_2$$

$$C_2
ightarrow C_3 lpha_3$$

$$C_{k-1} \to B\alpha_k$$

Все лежат в Р

$$[A \to \beta_1 C \alpha_1] \overset{\lambda}{\to} [C \to \cdot C_2 \alpha_2] \overset{\lambda}{\to} [C_2 \to \cdot C_3 \alpha_3] \overset{\lambda}{\to} \dots \overset{\lambda}{\to} [C_{k-1} \to \cdot B \alpha_k] \overset{\lambda}{\to} [B \to \cdot \beta]$$

Доказательство теоремы

 \Leftarrow

Индукция по длине γ

БИ.
$$|\gamma|=0$$

 $i_0 = [S'
ightarrow \cdot S]$ допустима для $\gamma = \lambda$ по определению

Всё, что достижимо из i_0 , по λ -переходу достижимо для $\gamma=\lambda$ по второй лемме

ШИ. Ненулевая длина, значит на конце есть какой-то символ

$$\gamma = \bar{\gamma} X$$

Последний базисный переход в пути, помеченном γ

$$[A
ightarrow eta_1 \cdot X eta_2] \stackrel{X}{
ightarrow} [A
ightarrow eta_1 X \cdot eta_2]$$

 $[A o eta_1 \cdot X eta_2]$ допустим для $ar{\gamma}$ по ПИ $\Rightarrow \exists$ правосторонний вывод

$$S' \Rightarrow^* \gamma' Aw \Rightarrow \gamma' eta_1 X eta_2 w \Rightarrow^* uw \Rightarrow [A o eta_1 \cdot X eta_2]$$
 допустим для γ

$$\bar{\gamma} = \gamma' \beta_1 \ \gamma = \gamma' \beta_1 X$$

Все пункты, достижимые из $[A oeta_1\cdot Xeta_2]$ по \lambda-переходам, допустим для \gamma по второй лемме.

 \Rightarrow

Индукция по $|\gamma|$

БИ. $\gamma=\lambda$

 i_0 допустим для γ

Воспользуемся леммой два. Все переходы по пустому слову из i_0 достижимы и допустимы.

ШИ.

$$\gamma = \bar{\gamma} X$$

 $[A oeta_1\cdoteta_2]$ допустим для $\gamma\Rightarrow\exists$ правосторонний вывод:

$$S' \Rightarrow^* \gamma' Aw \Rightarrow \gamma' \beta_1 X \beta_2 w \Rightarrow^* uw$$

$$\gamma = \gamma' \beta_1 = \bar{\gamma} X$$

$$\beta_1 = \beta_1' X$$

$$[A \to \beta_1 \cdot \beta_2] = [A \to \beta_1' X \cdot \beta_2]$$

 $[A o eta_1' \cdot X eta_2]$ достижим в I_G по пути, помеченному $ar{\gamma}$ (по ПИ)

$$[A
ightarrow eta_1 \cdot X eta_2] \stackrel{X}{
ightarrow} [A
ightarrow eta_1 X \cdot eta_2]$$

19.09.19

LR(0)-автомат

<u>Следствие 1</u>. Автомат I_G распознаёт язык активных префиксов грамматики G

Автомат, который мы построили — недетерминированный из-за лямбда-переходов. Поэтому построим эквивалентный ДКА, $\mathbf{LR}(\mathbf{0})$ -автомат — A_G . Обычно он рассматривается как неполный, поэтому все состояния — терминальные.

<u>Следствие 2</u>. Состояние i автомата A_G , достижимое из i_0 , по пути, помеченному γ , совпадает с множеством пунктов, допустимых для активного префикса γ

<u>Следствие 3</u>. Если в состоянии автомата A_G есть пункт $A o eta_1 X\cdot eta_2$ и $B o eta_1' Y\cdot eta_2'$, то X=Y.

Как построить состояния?

<u>Опр</u>. CLOSURE(M) — минимальное по включению множество пунктов, содержащее M, такое, что если в нём содержится пункт вида $[A o eta_1\cdot Beta_2]$, то в CLOSURE(M) сдержатся все пункты вида $[B o \cdot eta]$

Добавляем все пункты, которые можно получить переходом по лямбде

CLOSURE(M) =
$$\{i|i\in M$$
 и $\exists (i,j)$ -путь, помеченный $\gamma\}\cup M$

$$i_0 = [S' \rightarrow \cdot S]$$

В A_G начальное состояние — CLOSURE($\{i_0\}$)

GOTO(M,X) — новые состояния, функция перехода в ДКА

$$\mathsf{GOTO}(\mathsf{M},\mathsf{X}) = \mathsf{CLOSURE}(\{[A \to \beta_1 X \cdot \beta_2] | [A \to \beta_1 \cdot X \beta_2] \in M\})$$

Пример

$$S' o S \: S o ASa|b \: A o bB|b \: B o Aa$$

<u>Опр</u>. LR(0)-грамматика — грамматика, LR(0)-автомат которой не содержит конфликтов. То есть любое состояние, содержащее пункт вида $[A o eta \cdot]$, содержит ровно 1 пункт ???

Конфликты

 β и β_1 кончаются на один символ (см. следствие 3)

1. Перенос-свёртка:

$$B o eta_1 \cdot aeta_2$$

Если точка стоит перед нетерминалом — будем замыкать, и всё равно появится терминал. И либо первый конфликт, либо второй

2. Свёртка-свёртка:

$$A o eta_1$$
.

$$B oeta_2$$
 ·

Другой пример

Стек	Входная строка
abla	$abbbc \dashv$
abla a	$bbbc\dashv$
$ abla ab^1$	$bbc\dashv$
откатываемся на длину основы (правой части)	
abla a	$bbc\dashv$
abla aD	$bbc\dashv$
$ abla a Db^2$	$bc\dashv$
откатываемся на 2 элемента к состоянию ${\cal D}$	
abla a	$bc\dashv$
abla aD	$bc\dashv$
$ abla a Db^2$	$c\dashv$
abla a	$c\dashv$
abla aD	$c\dashv$
abla aDc	Н
∇	Н
abla S	Н
✓	Н

Построение LR(0)-распознавателя

Для расширенной грамматики

- 1. Построить A_G
- 2. Описать таблицы ACTION, GOTO
- 3. Проиндексировать строки таблицы (стековые алфавиты) состояниями ${\cal A}_G$
- 4. Проиндексировать столбцы ACTION символами из $\Sigma \cup \dashv$
- 5. Проиндексировать столбцы GOTO символами из Γ
- 6. $orall \delta(I,a): ACTION(I,a) = \delta(I,a), a \in \Sigma$
- 7. $ACTION([S' \rightarrow S \cdot], \dashv) = \checkmark$

SLR(1)-грамматики

26.09.19

Поменяем грамматику: $S' o S \: S o aDb$ — b вместо с D o Db|b

Тогда у нас случится конфликт.

В стеке лежит какая то обработанная часть, часть основы и символ

 $\underline{\hspace{1cm}} \beta \quad a \underline{\hspace{1cm}}$

___B a___

Если множества FOLLOW не пересекаются, то конфликт можно разрешить. В чью пользу?

 $FOLLOW(S) = \{ \exists \}$

 $FOLLOW(D) = \{b\}$

Сворачиваемся к тому нетерминалу, у которого во множестве FOLLOW есть данный терминал

Также можно решить конфликт перенос-свёртка.

<u>Опр</u>. Грамматики с бесконфликтными таблицами называются SLR(1)-грамматиками

$$I = [B
ightarrow eta \cdot] \Rightarrow ACTION(I,a) = N_2\left(B
ightarrow eta
ight) \ orall a \in FOLLOW(B)$$

ACTION

	a	ь	-1	
b^2		(2)	(1)	
b^1		(3)		

$$E \rightarrow E \overset{(1)}{+} T | \overset{(2)}{T}$$

$$T
ightarrow T \overset{(1)}{st} F | \overset{(4)}{F}$$

$$F
ightarrow \overset{(5)}{(E)}\overset{(6)}{x}$$

Включения: $LR(0)\subset SLR(1)$

Фото автомата 26.09. ~13:15

FOLLOW:

- $E = \{ \dashv, +,) \}$
- $T = \{ \dashv, +, *,) \}$
- $F = \{ \dashv, +, * \}$

Если видим умножение — то переносим, потому что есть такой переход в автомате. Если видим символы, которые есть в FOLLOW нетерминала слева, то можно к нему свернуться

| ACTION |

	+	*	()	x	4
E^1	+					√
T^1	(2)	*		(2)		(2)
T^2	(1)	*		(1)		(1)

Ещё пример

$$S o ac|bDc|Da \ D o a$$

Фото автомата от 26.09 ~13:32

Есть конфликт в состоянии a. Либо сворачиваемся к D, либо переносим. $FOLLOW(D)=\{a,c\}$. Если на входе окажется c, то у нас конфликт, непонятно, что делать. НО. Этот пункт оказался из-за переноса замыкания в предыдущем состоянии — $D \to \cdot a$. А это замыкание было замыкания другого пункта, $S \to \cdot Da$. Значит, после D должно быть a, и если после него окажется c, то это ерунда. Значит, нужно символ переносить, но по одному FOLLOW мы это понять не можем. Вот так мы и переходим к LR(1)-грамматикам

Добавим к пунктам символы.

LR(1) анализ

 ${\hbox{\it Oпр}}$. LR(1)-пункт — $[A oeta_1\cdoteta_2,a]$. \uparrow — **ядро**

LR(1)-пункт **допустим**, если \exists правый вывод $S \Rightarrow^+ \gamma' Aw \Rightarrow \gamma' \beta_1 \beta_2 w \Rightarrow^* uw$, где:

- $\gamma = \gamma' \beta_1$ активный префикс
- v префикс w \dashv
- ullet a первый символ w \dashv

То, с чего должна начинаться оставшаяся строка, чтобы можно было свернуться до $\it A$

<u>Опр</u>. **Автоматом LR(1)-пунктов** расширенной грамматики $G=(\Sigma,\Gamma,P,S')$ называется λ -НКА $I_G^1=(\Sigma\cup\Gamma,I',\delta,i'_o,I')$, где :

- $i_0' = [S' o \cdot S, \dashv]$
- δ множество переходов вида:
 - $\circ \ [A o eta_1 \cdot xeta_2, a] \stackrel{x}{ o} [A o eta_1 x \cdot eta_2, a]$ базисные
 - $\circ~~[A oeta_1\cdot Beta_2,a]\overset{\lambda}{ o}[B o\cdoteta,b],~~b\in FIRST(eta_2a)$ λ -переходы

Прежде чем сделать переход, надо что-то свернуть. За тем, что выводится из B, должно следовать то, с чего начинается β_2a

Детерминированный автомат теперь будет огромный, так как пункты с одинаковыми ядрами но разными символами должны быть разнесены по разным состояниям.

Построим автомат для грамматики, на которой не сработал SLR(1) автомат

$$S' \rightarrow \cdot S, \dashv$$

Начинаем замыкать:

$$S
ightarrow \cdot ac, \dashv S
ightarrow \cdot bDc, \dashv S
ightarrow \cdot Da, \dashv$$

$$D
ightarrow \cdot a, a$$
 — взяли FIRST(a)

Фото 26.09 ~13:58

Надо быть осторожнее с состояниями, в которых возможны и перенос, и свёртка. Когда переносим, нам пофиг на символ, смотрим только на ядро.

$$A_G^1$$
 — LR(1)-ДКА

$$[A
ightarroweta\cdot,a]\in I\Rightarrow ACTION(I,a)={}_{ ext{ t N\!e}}\left(A
ightarroweta
ight)$$

| ACTION | GOTO |

	a	b	c	4	S	D
S				✓		
a^1	(4)		c^1			
a^2			(4)			
a^3				(3)		
b	a^2					D^2
c^1				(1)		
c^2				(2)		
D^1	a^3					
D^2			c^2			
∇	a^1	b			S	D^1