SRM Institute of Science and Technology Department of Mathematics

18MAB102T-Advanced Calculus and Complex Analysis 2020-2021 Even

Unit – I: Multiple Integrals Tutorial Sheet - I

S.No	Questions	Answers	
•	Part – A [3 Marks]		
1	Evaluate $\int_{0}^{3} \int_{0}^{2} xy(x+y)dxdy$	30	
2	Evaluate $\int_{21}^{42} \frac{dxdy}{xy}$	$(\log 2)^2$	
3	Evaluate $\int_{0}^{\pi/2} \int_{0}^{2a\cos\theta} rdrd\theta$	$\frac{\pi}{8}$	
4	Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r dr d\theta$	$\frac{3\pi a^2}{4}$	
5	Change the order of integration $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy$	$\int_{1}^{2} \int_{0}^{4-x^2} (x+y) dy dx$	
Part – B [6 Marks]			
6	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}$ Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{a} r^2 dr d\theta$	$\frac{\pi}{4}\log(1+\sqrt{2})$	
7	Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{a(1-\cos\theta)}^{a} r^2 dr d\theta$	a^3	
8	Change the order of integration $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$ and hence	$\frac{\pi}{4}a$	
0	evaluate it	2.2	
9	Change the order of integration $\int_{0}^{b} \int_{0}^{\frac{a}{b}\sqrt{b^2-y^2}} xydxdy$ and hence evaluate	$\frac{a^2b^2}{8}$	
10	it Change the order of integration and hence find the value of $ \int_{0}^{1} \int_{x}^{1} \frac{x}{x^{2} + y^{2}} dx dy $	$\frac{1}{2}\log 2$	