

STM32H562xx and STM32H563xx

Arm® Cortex®-M33 32-bit MCU+TrusZone® + FPU, 375 DMIPS 250 MHz, 2-Mbyte flash, 640 Kbytes RAM, Math accelerators

Datasheet - production data

Features

Includes ST state-of-the-art patented technology

Core

 Arm[®] Cortex[®]-M33 CPU with TrustZone[®], FPU, frequency up to 250 MHz, MPU, 375 DMIPS (Dhrystone 2.1)

ART Accelerator

- 8-Kbyte instruction cache allowing
 0-wait-state execution from flash and external memories
- 4-Kbyte data cache for external memories

Benchmarks

- 1.5 DMIPS/MHz (Drystone 2.1)
- 1023 CoreMark[®] (4.092 CoreMark[®]/MHz)

Memories

- Up to 2 Mbytes of embedded flash memory with ECC, 2 banks read-while-write
- Up to 48-Kbyte per bank with high-cycling capability (100 K cycles) for DATA flash
- 2-Kbyte OTP (one-time programmable)
- 640 Kbytes of SRAM (64-Kbyte SRAM2 with ECC and 320-Kbyte SRAM3 with flexible ECC)
- 4 Kbytes of backup SRAM available in the lowest power modes
- Flexible external memory controller with up to 16-bit data bus: SRAM, PSRAM, FRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories
- One Octo-SPI memory interface with support for serial PSRAM/NAND/NOR, Hyper RAM/flash frame formats
- Two SD/SDIO/MMC interfaces

Clock management

 Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 kHz LSI

External oscillators: 4-50 MHz HSE, 32.768 kHz LSE

General-purpose inputs/outputs

- Up to 139 fast I/Os with interrupt capability (most 5 V tolerant)
- Up to 10 I/Os with independent supply down to 1.08 V

Low-power consumption

- · Sleep, Stop and Standby modes
- V_{BAT} supply for RTC, 32x 32-bit backup registers

Security

- Arm[®] TrustZone[®] with Armv8-M mainline security extension
- Up to eight configurable SAU regions
- TrustZone[®] aware and securable peripherals
- Flexible life-cycle scheme with secure debug authentication
- SFI (secure firmware installation)

- Secure firmware upgrade support with TF-M
- HASH hardware accelerator
- True random number generator, NIST SP800-90B compliant
- 96-bit unique ID
- Active tampers

Two DMA controllers to offload the CPU

Two dual-port DMAs with FIFO

Mathematical acceleration

- CORDIC for trigonometric functions acceleration
- FMAC (filter mathematical accelerator)

Reset and supply management

- 1.71 V to 3.6 V application supply and I/O
- POR, PDR, PVD and BOR
- Embedded regulator (LDO) or SMPS stepdown converter regulator with configurable scalable output to supply the digital circuitry

Up to 24 timers

- 18x 16-bit (including x6 low-power 16-bit timer available is Stop mode)
- Two 32-bit timers with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
- Two watchdogs
- Two SysTick timer

Up to 34x communication interfaces

• Up to four I2C FM+ interfaces (SMBus/PMBus)

- One I3C interface
- Up to 12 U(S)ARTS (ISO7816 interface, LIN, IrDA, modem control) and 1x LP UART
- Up to six SPIs including three muxed with full-duplex I2S for audio class accuracy via internal audio PLL or external clock and up to five additional SPI from five USART when configured in Synchronous mode (one additional SPI with OctoSPI)
- Two SAI
- Two FD-CAN
- One 8- to 14- bit camera interface
- One 16-bit parallel slave synchronousinterface
- One HDMI-CEC
- One Ethernel MAC interface with DMA controller
- One USB 2.0 full-speed host and device
- One USB Type-C[®]/ USB power-delivery r3.1

Analog

- Two 12-bit ADC with up to 5 MSPS in 12-bit
- Two 12-bit D/A converters

Digital temperature sensor

Debug

- Authenticated debug and flexible device life cycle
- Serial wire-debug (SWD), JTAG, Embedded Trace Microcell™ (ETM)

ECOPACK2 compliant packages

Table 1. Device summary

Reference	Part numbers
S IMB2H562xx	STM32H562AG, STM32H562AI, STM32H562IG, STM32H562II, STM32H562RG, STM32H562RI, STM32H562VG, STM32H562VI, STM32H562ZG, STM32H562ZI
STM32H563xx	STM32H563AG, STM32H563AI, STM32H563IG, STM32H563II, STM32H563MI, STM32H563RG, STM32H563RI, STM32H563VG, STM32H563VI, STM32H563ZG, STM32H563ZI

Contents

1	Intro	duction		13
2	Desc	ription		14
3	Func	tional o	verview	19
	3.1	Arm Co	ortex-M33 core with TrustZone and FPU	19
	3.2	ART Ac	ccelerator (ICACHE and DCACHE)	19
		3.2.1	Instruction cache (ICACHE)	19
		3.2.2	Data cache (DCACHE)	20
	3.3	Memor	y protection unit	21
	3.4	Embed	ded flash memory	21
		3.4.1	FLASH security and protections	22
		3.4.2	FLASH privilege protection	22
	3.5	Embed	ded SRAMs	22
		3.5.1	SRAMs TrustZone security	23
		3.5.2	SRAMs privilege protection	23
	3.6	Securit	y overview	23
	3.7	Boot m	odes	24
		3.7.1	STM32H562/H563boot modes	24
	3.8	Global	TrustZone controller (GTZC)	25
	3.9	TrustZo	one security architecture	26
		3.9.1	TrustZone peripheral classification	26
		3.9.2	Default TrustZone security state	26
	3.10	Power	supply management	27
		3.10.1	Power supply schemes	28
		3.10.2	Power supply supervisor	31
		3.10.3	Reset mode	32
		3.10.4	VBAT operation	32
		3.10.5	PWR TrustZone security	33
	3.11	Periphe	eral interconnect matrix	33
	3.12	Reset a	and clock controller (RCC)	33
		3.12.1	RCC TrustZone security	34
	3.13	Clock r	ecovery system (CRS)	34

3.14	Genera	ıl-purpose inputs/outputs (GPIOs)	. 35
	3.14.1	GPIOs TrustZone security	35
3.15	Multi-A	HB bus matrix	. 35
3.16	Genera	Il purpose direct memory access controller (GPDMA)	. 35
3.17	Interrup	ots and events	. 37
	3.17.1	Nested vectored interrupt controller (NVIC)	37
	3.17.2	Extended interrupt/event controller (EXTI)	38
3.18	Cyclic r	redundancy check calculation unit (CRC)	. 38
3.19	CORDI	C co-processor (CORDIC)	. 38
3.20	Filter m	ath accelerator (FMAC)	. 39
3.21	Flexible	e memory controller (FMC)	. 39
	3.21.1	LCD parallel interface	40
	3.21.2	FMC TrustZone security	40
3.22	Octo-S	PI interface (OCTOSPI)	. 40
	3.22.1	OCTOSPI TrustZone security	41
3.23	Delay b	olock (DLYB)	. 41
3.24	Analog-	-to-digital converter (ADC1 and ADC2)	. 42
	3.24.1	Temperature sensor	42
	3.24.2	Internal voltage reference (VREFINT)	42
	3.24.3	VBAT battery voltage monitoring	43
3.25	Digital t	to analog converter (DAC)	. 43
3.26	Voltage	reference buffer (VREFBUF)	. 44
3.27	Digital o	camera interface (DCMI)	. 44
3.28	Paralle	I synchronous slave interface (PSSI)	. 44
3.29	True ra	ndom number generator (RNG)	. 45
3.30	HASH I	hardware accelerator (HASH)	. 45
3.31	Timers	and watchdogs	. 46
	3.31.1	Advanced-control timers (TIM1, TIM8)	47
	3.31.2	General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)	48
	3.31.3	Basic timers (TIM6 and TIM7)	48
	3.31.4	Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5, LPTIM6)	48
	3.31.5	Independent watchdog (IWDG)	49
	3.31.6	Window watchdog (WWDG)	49
	3.31.7	SysTick timer	49

	3.32	Real-tir	me clock (RTC), tamper and backup registers	. 50
		3.32.1	Real-time clock (RTC)	50
		3.32.2	Tamper and backup registers (TAMP)	51
	3.33	Inter-in	tegrated circuit interface (I ² C)	. 52
	3.34	Improv	ed inter-integrated circuit (I3C)	. 53
	3.35		sal synchronous/asynchronous receiver transmitter (USART/UAF v-power universal asynchronous receiver transmitter (LPUART)	,
		3.35.1	Universal synchronous/asynchronous receiver transmitter (USART/UART)	54
		3.35.2	Low-power universal asynchronous receiver transmitter (LPUART) $\ .$	56
	3.36	Serial p	peripheral interface (SPI) / inter-integrated sound interfaces (I2S)	57
	3.37	Serial a	audio interfaces (SAI)	. 59
	3.38	Secure	e digital input/output and MultiMediaCards interface (SDMMC)	. 60
	3.39	Contro	ller area network (FDCAN)	. 61
	3.40	USB fu	III speed (USB)	. 62
	3.41	USB Ty	ype-C /USB Power Delivery controller (UCPD)	. 62
	3.42	Etherne	et MAC interface with dedicated DMA controller (ETH)	. 63
	3.43		efinition multimedia interface (HDMI) umer electronics control (CEC)	. 63
	3.44		pment support	
		3.44.1	Serial-wire/JTAG debug port (SWJ-DP)	
		3.44.2	Embedded Trace Macrocell	64
4	Pino	ut, pin c	description and alternate function	. 65
	4.1	Pinout/	ballout schematics	. 65
	4.2	Pin des	scription	. 77
	4.3	Alterna	te functions	107
5	Elect	rical ch	aracteristics	125
	5.1	Parame	eter conditions	125
		5.1.1	Minimum and maximum values	. 125
		5.1.2	Typical values	. 125
		5.1.3	Typical curves	. 125
		5.1.4	Loading capacitor	. 125
		5.1.5	Pin input voltage	
		5.1.6	Power supply scheme	. 126

	5.2	Absolu	te maximum ratings	28
	5.3	Operat	ing condition	29
		5.3.1	General operating conditions	29
		5.3.2	VCAP external capacitor	34
		5.3.3	SMPS step-down converter	34
		5.3.4	Operating conditions at power-up / power-down	37
		5.3.5	Embedded reset and power control block characteristics13	38
		5.3.6	Embedded reference voltage	39
		5.3.7	Supply current characteristics	łO
		5.3.8	External clock source characteristics	52
		5.3.9	Internal clock source characteristics15	58
		5.3.10	PLL characteristics	31
		5.3.11	Memory characteristics	32
		5.3.12	EMC characteristics	34
		5.3.13	Absolute maximum ratings (electrical sensitivity)16	36
		5.3.14	I/O port characteristics	36
		5.3.15	NRST pin characteristics	79
		5.3.16	Extended interrupt and event controller input (EXTI) characteristics 18	30
		5.3.17	FMC characteristics	30
		5.3.18	Octo-SPI interface characteristics)1
		5.3.19	Delay block (DLYB) characteristics)6
		5.3.20	DCMI interface characteristics)6
		5.3.21	PSSI interface characteristics)7
		5.3.22	12-bit ADC characteristics	0
		5.3.23	DAC characteristics	18
		5.3.24	Analog temperature sensor characteristics	22
		5.3.25	Digital temperature sensor characteristics	22
		5.3.26	V _{CORE} monitoring characteristics	23
		5.3.27	Temperature and V _{BAT} monitoring	23
		5.3.28	Voltage booster for analog switch22	24
		5.3.29	V _{REFBUF} characteristics	24
		5.3.30	Timer characteristics	25
		5.3.31	Low-power timer characteristics	26
		5.3.32	Communication interfaces	26
6	Pack	kage info	ormation	-5
	6.1	LQFP6	4 package information	16

ST	M3	2H56	2vv	and	STM	132	H56	3vv
JΙ	IVIO	2000	_ X X X	anu	O I IV	IJZ	поч	

Contents

	6.2	VFQFPN68 package information	.9
	6.3	WLCSP80 package information	51
	6.4	LQFP100 package information	;3
	6.5	LQFP144 package information	7
	6.6	UFBGA169 package information	1
	6.7	LQFP176 package information	3
	6.8	UFBGA(176+25) package information	7
	6.9	Package thermal characteristics	9
		6.9.1 Reference documents	'0
7	Orde	ering information	1
8	Impo	ortant security notice	3
۵	Povi	ision history	· /I

List of tables

Table 1.	Device summary	2
Table 2.	STM32H56xxx features and peripheral counts	
Table 3.	STM32H562/H563 / Boot mode when TrustZone is disabled (TZEN=0xC3)	
Table 4.	STM32H562/H563 / Boot mode when TrustZone is enabled (TZEN=0xB4)	
Table 5.	ADC features	
Table 6.	Timer feature comparison	
Table 7.	I2C implementation	
Table 8.	I3C peripheral controller/target features versus MIPI v1.1	
Table 9.	USART, UART and LPUART features	
Table 10.	SPI features	
Table 11.	SAI implementation	
Table 12.	SDMMC features	
Table 13.	Legend/abbreviations used in the pinout table	
Table 14.	STM32H562xx and STM32H563xx pin/ball definition	
Table 15.	Alternate function AF0 to AF7	
Table 16.	Alternate function AF8 to AF15	
Table 17.	Voltage characteristics	
Table 18.	Current characteristics	
Table 19.	Thermal characteristics	
Table 20.	General operating conditions	
Table 21.	Maximum allowed clock frequencies	
Table 22.	Supply voltage and maximum frequency configuration	
Table 23.	Characteristics of SMPS step-down converter external components	
Table 24.	Operating conditions at power-up/power-down (regulator ON)	
Table 25.	Embedded reset and power control block characteristics	
Table 26.	Embedded reference voltage	
Table 27.	Internal reference voltage calibration value	
Table 28.	Typical and maximum current consumption in run mode, code with data processing	
	running from flash memory, 2-ways instruction cache ON, PREFETCH ON	. 141
Table 29.	Typical and maximum current consumption in run mode, code with data processing	
	running from flash memory, 1-way instruction cache ON, PREFETCH ON	. 142
Table 30.	Typical and maximum current consumption in run mode, code with data processing	
	running from SRAM with cache 1-WAY	. 142
Table 31.	Typical and maximum current consumption in run mode, code with data processing	
	running from SRAM with cache 2-WAY	. 143
Table 32.	Typical consumption in run mode with CoreMark running	
	from flash memory and SRAM	. 144
Table 33.	Typical consumption in run mode with SecureMark running from	
	flash memory and SRAM	. 145
Table 34.	Typical and maximum current consumption in sleep mode	
Table 35.	Typical and maximum current consumption in stop mode	
Table 36.	Typical and maximum current consumption in standby mode	
Table 37.	Typical and maximum current consumption in VBAT mode	
Table 38.	Peripheral current consumption in sleep mode	
Table 39.	Low-power mode wakeup timings	
Table 40.	High-speed external user clock characteristics.	
Table 41.	Low-speed external user clock characteristics	
Table 42	4-50 MHz HSE oscillator characteristics	155

Table 43.	Low-speed external user clock characteristics	
Table 44.	HSI48 oscillator characteristics	
Table 45.	HSI oscillator characteristics	
Table 46.	CSI oscillator characteristics	
Table 47.	LSI oscillator characteristics	
Table 48.	PLL characteristics (wide VCO frequency range)	
Table 49.	PLL characteristics (medium VCO frequency range)	
Table 50.	Flash memory characteristics	162
Table 51.	Flash memory programming	163
Table 52.	Flash memory endurance and data retention	
Table 53.	EMS characteristics	
Table 54.	EMI characteristics	165
Table 55.	ESD absolute maximum ratings	166
Table 56.	Electrical sensitivities	166
Table 57.	I/O static characteristics	167
Table 58.	Output voltage characteristics for all I/Os except PC13, PC14, PC15, and PI8	169
Table 59.	Output voltage characteristics for PC13 and PI8	170
Table 60.	Output voltage characteristics for PC14 and PC15	170
Table 61.	Output timing characteristics (HSLV OFF)	171
Table 62.	Output timing characteristics (HSLV ON)	175
Table 63.	Output timing characteristics VDDIO2 1.2 V range (HSLV OFF)	176
Table 64.	Output timing characteristics VDDIO2 1.2 V (HSLV ON)	
Table 65.	NRST pin characteristics	
Table 66.	EXTI input characteristics	180
Table 67.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	182
Table 68.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings	182
Table 69.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	184
Table 70.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings	
Table 71.	Asynchronous multiplexed PSRAM/NOR read timings	186
Table 72.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings	186
Table 73.	Asynchronous multiplexed PSRAM/NOR write timings	
Table 74.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings	
Table 75.	Synchronous multiplexed NOR/PSRAM read timings	
Table 76.	Synchronous multiplexed PSRAM write timings	191
Table 77.	Synchronous non-multiplexed NOR/PSRAM read timings	192
Table 78.	Synchronous non-multiplexed PSRAM write timings	
Table 79.	Switching characteristics for NAND flash read cycles	196
Table 80.	Switching characteristics for NAND flash write cycles	197
Table 81.	SDRAM read timings	199
Table 82.	LPSDR SDRAM read timings	199
Table 83.	SDRAM write timings	200
Table 84.	LPSDR SDRAM Write timings	201
Table 85.	OCTOSPI characteristics in SDR mode	201
Table 86.	OCTOSPI characteristics in DTR mode (no DQS)	202
Table 87.	OCTOSPI characteristics in DTR mode (with DQS)/ hyperbus	203
Table 88.	Delay block characteristics	
Table 89.	DCMI characteristics	
Table 90.	PSSI transmit characteristics	207
Table 91.	PSSI receive characteristics	
Table 92.	12-bit ADC characteristics	210
Table 93.	Minimum sampling time versus R _{AIN}	212
Tahla 0/1	ADC accuracy	215

List of tables

Table 95.	DAC characteristics	218
Table 96.	DAC accuracy	220
Table 97.	Analog temperature sensor characteristics	222
Table 98.	Temperature sensor calibration values	222
Table 99.	Digital temperature sensor characteristics	222
Table 100.	V _{CORE} monitoring characteristics	223
Table 101.	V _{BAT} monitoring characteristics	223
Table 102.	V _{BAT} charging characteristics	
Table 103.	Temperature monitoring characteristics	223
Table 104.	Voltage booster for analog switch characteristics	
Table 105.	V _{REFBUF} characteristics	224
Table 106.	TIMx characteristics	
Table 107.	LPTIMx characteristics	226
Table 108.	I2C analog filter characteristics	
Table 109.	USART characteristics	227
Table 110.	I3C open-drain measured timing	230
Table 111.	I3C push-pull measured timing	
Table 112.	SPI characteristics	
Table 113.	I ² S dynamic characteristics	
Table 114.	SAI characteristics	236
Table 115.	Dynamics characteristics: SD / MMC characteristics,	
	VDD = 2.7 to 3.6 V	238
Table 116.	Dynamics characteristics: eMMC characteristics	
	VDD = 1.71V to 1.9V	
Table 117.	Dynamics characteristics: Ethernet MAC signals for SMI	
Table 118.	Dynamics characteristics: Ethernet MAC signals for RMII	
Table 119.	Dynamics characteristics: Ethernet MAC signals for MII	
Table 120.	Dynamics JTAG characteristics	
Table 121.	Dynamics SWD characteristics	
Table 122.	LQFP64 - Mechanical data	
Table 123.	VFQFPN68 - Mechanical data	
Table 124.	WLCSP80 - Mechanical data	
Table 125.	WLCSP80 - Example of PCB design rules	
Table 126.	LQFP100 - Mechanical data	
Table 127.	LQFP144 - Mechanical data	
Table 128.	UFBGA169 - Mechanical data	
Table 129.	UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA)	
Table 130.	LQFP176 - Mechanical data	
Table 131.	UFBGA(176+25) - Mechanical data	
Table 132.	UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA)	
Table 133.	Package thermal characteristics	
Table 134.	Document revision history	274

List of figures

Figure 1.	STM32H562xx and STM32H563xx block diagram	18
Figure 2.	STM32H562xx and STM32H563xx power supply overview (with SMPS)	29
Figure 3.	STM32H562xx and STM32H563xx power supply overview (with LDO)	30
Figure 4.	Power-up /down sequence	31
Figure 5.	LQFP64 pinout	65
Figure 6.	VFQFPN68 pinout	65
Figure 7.	WLCSP80 SMPS ballout	66
Figure 8.	LQFP100 pinout	67
Figure 9.	LQFP100 SMPS pinout	68
Figure 10.	LQFP144 pinout	69
Figure 11.	LQFP144 SMPS pinout	70
Figure 12.	UFBGA169 ballout	71
Figure 13.	UFBGA169 SMPS ballout	72
Figure 14.	LQFP176 pinout	73
Figure 15.	LQFP176 SMPS pinout	74
Figure 16.	UFBGA176+25 ballout	75
Figure 17.	UFBGA176+25 SMPS ballout	76
Figure 18.	Pin loading conditions	125
Figure 19.	Pin input voltage	125
Figure 20.	STM32H563 power supply scheme with SMPS	126
Figure 21.	STM32H562/H563 power supply scheme with LDO	127
Figure 22.	External capacitor C _{EXT}	134
Figure 23.	SMPS efficiency versus load current in run, sleep and stop mode	
	with SVOS3 mode, T _J = 30 °C	135
Figure 24.	SMPS efficiency versus load current in Run, Sleep and Stop mode	
	with SVOS3 mode, T _J = 130 °C	
Figure 25.	SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 30 °C	136
Figure 26.	SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 130 °C	136
Figure 27.	High-speed external clock source AC timing diagram	153
Figure 28.	Low-speed external clock source AC timing diagram	154
Figure 29.	Typical application with an 8 MHz crystal	156
Figure 30.	Typical application with a 32.768 kHz crystal	157
Figure 31.	VIL/VIH for all I/Os except BOOT0	168
Figure 32.	Recommended NRST pin protection	
Figure 33.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	181
Figure 34.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	
Figure 35.	Asynchronous multiplexed PSRAM/NOR read waveforms	
Figure 36.	Synchronous multiplexed NOR/PSRAM read timings	
Figure 37.	Synchronous multiplexed PSRAM write timings	
Figure 38.	Synchronous non-multiplexed NOR/PSRAM read timings	
Figure 39.	Synchronous non-multiplexed PSRAM write timings	
Figure 40.	NAND controller waveforms for read access	
Figure 41.	NAND controller waveforms for write access	
Figure 42.	NAND controller waveforms for common memory read access	
Figure 43.	NAND controller waveforms for common memory write access	196
Figure 44.	SDRAM read access waveforms (CL = 1)	
Figure 45.	SDRAM write access waveforms	
Figure 46.	OCTOSPI SDR read/write timing diagram	202

Figure 47.	OCTOSPI timing diagram - DTR mode	204
Figure 48.	OCTOSPI hyperbus clock	205
Figure 49.	OCTOSPI hyperbus read	205
Figure 50.	OCTOSPI hyperbus write	205
Figure 51.	DCMI timing diagrams	207
Figure 52.	PSSI transmit timing diagram	209
Figure 53.	vPSSI receive timing diagram	209
Figure 54.	ADC conversion timing diagram	214
Figure 55.	ADC accuracy characteristics	216
Figure 56.	Typical connection diagram when using the ADC with FT/TT pins	
	featuring analog switch function	216
Figure 57.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	
Figure 58.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	
Figure 59.	12-bit buffered /non-buffered DAC	
Figure 60.	USART timing diagram in Master mode	228
Figure 61.	USART timing diagram in Slave mode	229
Figure 62.	SPI timing diagram - master mode ⁽¹⁾	232
Figure 63.	SPI timing diagram - slave mode and CPHA = 0	232
Figure 64.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	233
Figure 65.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	234
Figure 66.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	235
Figure 67.	SAI master timing waveforms	
Figure 68.	SAI slave timing waveforms	237
Figure 69.	SDIO high-speed/eMMC timing	239
Figure 70.	SD default speed timings	239
Figure 71.	DDR mode timings	240
Figure 72.	Ethernet RMII timing diagram	241
Figure 73.	Ethernet MII timing diagram	
Figure 74.	Ethernet SMI timing diagram	
Figure 75.	JTAG timing diagram	
Figure 76.	SWD timing diagram	244
Figure 77.	LQFP64 - Outline ⁽¹⁵⁾	
Figure 78.	LQFP64 - Footprint example	
Figure 79.	VFQFPN68 - Outline	
Figure 80.	VFQFPN68 - Recommended footprint	
Figure 81.	WLCSP80 - Outline	
Figure 82.	WLCSP80 - Footprint example	
Figure 83.	LQFP100 - Outline ⁽¹⁵⁾	
Figure 84.	LQFP100 - Footprint example	
Figure 85.	LQFP144 - Outline ⁽¹⁵⁾	
Figure 86.	LQFP144 - Footprint example	
Figure 87.	UFBGA169 - Outline	
Figure 88.	UFBGA169 - Footprint example	262
Figure 89.	LQFP176 - Outline ⁽¹⁵⁾	
Figure 90.	LQFP176 - Footprint example	
Figure 91.	UFBGA(176+25) - Outline	
Figure 92.	UFBGA(176+25) - Footprint example	268

1 Introduction

This document provides the ordering information and mechanical device characteristics of the STM32H562xx and STM32H563xx microcontrollers.

For information on the device errata with respect to the datasheet and reference manual, refer to the STM32H562xx and STM32H563xx errata sheet.

For information on the Arm^{®(a)} Cortex[®]-M33 core, refer to the Cortex[®]-M33 Technical Reference Manual, available from the www.arm.com website.

arm

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

DS14258 Rev 1 13/275

2 Description

The STM32H562xx and STM32H563xx devices are a high-performance microcontrollers family (STM32H5 Series) based on the high-performance Arm[®] Cortex[®]-M33 32-bit RISC core. They operate at a frequency of up to 250 MHz.

The Cortex[®]-M33 core features a single-precision floating-point unit (FPU), that supports all the Arm[®] single-precision data-processing instructions and all the data types.

The Cortex[®]-M33 core also implements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) that enhances the application security.

The devices embed high-speed memories (2 Mbytes of dual bank flash memory and 640 Kbytes of SRAM), a flexible external memory controller (FMC) (for devices with packages of 100 pins and more), one Octo-SPI memory interface (at least one Quad-SPI available on all packages) and an extensive range of enhanced I/Os and peripherals connected to three APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.

The devices offer security foundation compliant with the trusted-based security architecture (TBSA) requirements from Arm[®]. It embeds features to implement a secure firmware update. Besides these capabilities, the devices incorporate a secure firmware installation feature, that allows the customer to secure the provisioning of the code during its production. A flexible life cycle is managed thanks to multiple levels of protection and secure debug authentication. Firmware hardware isolation is supported thanks to securable peripherals, memories and I/Os, and privilege configuration of peripherals and memories.

The devices feature several protection mechanisms for embedded flash memory and SRAM: readout protection, write protection, secure and hide protection areas.

The devices embed several peripherals reinforcing security: a HASH hardware accelerator, and a true random number generator

The devices offer active tamper detection and protection against transient and environmental perturbation attacks, thanks to several internal monitoring generating secret data erase in case of attack. This helps to fit the PCI requirements for point of sales applications.

The devices offer two fast 12-bit ADC, two DAC channels, an internal voltage reference buffer, a low-power RTC, two 32-bit general-purpose timers, two 16-bit PWM timers dedicated to motor control, eight 16-bit general-purpose timers, two 16-bit basic timers and six 16-bit low-power timers.

The devices also feature standard and advanced communication interfaces such as: four I^2Cs , one I3C, six SPIs, three I2Ss, six USARTs, six UARTs and one low-power UART, two SAIs, one digital camera interface (DCMI), up to two SDMMC, up to two FDCAN, one USB full-speed, one USB Type- C^{TM} /USB Power Delivery controller, an Ethernet interface (available only on STM32H563xx device).

The devices operate in the - 40 to + 85 $^{\circ}$ C (+ 130 $^{\circ}$ C junction) and - 40 to + 125 $^{\circ}$ C (+ 130 $^{\circ}$ C junction) temperature ranges from a 1.71 to 3.6 V power supply.

A comprehensive set of power-saving modes allow the design of low-power applications.

Some independent power supplies are supported like an analog independent supply input for ADC, DACs, a 3.3 V dedicated supply input for USB and a dedicated supply input for some GPIOs and SDMMC. A VBAT input is available for connecting a backup battery in

order to preserve the RTC functionality and to backup 32x 32-bit registers and 4-Kbyte SRAM.

The devices offer eight packages from 64-pin to 176-pin.

All packages are available with two options LDO or SMPS supply for the V_{CORE} (except for LQFP64 and VFQFPN68 packages which are not available in SMPS and WLCSP80 which is not available in LDO).

Table 2. STM32H56xxx features and peripheral counts

Peripherals		STM32H563RI/G	STM32H562RI/G	STM32H563MI	STM32H563VI/G	STM32H562VI/G	STM32H563ZI/G	STM32H562ZI/G	STM32H563AI/G	STM32H562AI/G	STM32H563II/G	STM32H562II/G
Flash memo	ry (Mbytes)					Up to 2	2 Mbyte	es				
SRAM				64	10 (256	6+64+3	320)					
SKAWI	Backup (bytes)					4 K	bytes					
Flexible memory controller for external memories (FMC)		No yes ⁽¹⁾ yes ⁽²⁾ yes										
ОСТС)SPI	1										
Advanced control		2 (16 bits)										
	General purpose	2 (32 bits) and 8 (16 bits)										
	Basic	2 (16 bits)										
Timers Low power		6 (16 bits)										
	SysTick timer						2					
	2											

Table 2. STM32H56xxx features and peripheral counts (continued)

	Table 2. STIV						1	_ `				
Peripherals		STM32H563RI/G	STM32H562RI/G	STM32H563MI	STM32H563VI/G	STM32H562VI/G	STM32H563ZI/G	STM32H562ZI/G	STM32H563AI/G	STM32H562AI/G	STM32H563II/G	STM32H562II/G
	SPI / I2S		4/:	3	5/	3			(6/3		
	I2C						4					
	I3C					1	(3)					
	USART		5						6			
	UART		5						6			
	LPUART						1					
	SAI						2					
	FDCAN	2	1	2		1	2	1	2	1	2	1
Communication	USB						es es	•				
interfaces	UCPD	yes										
	SDMMC	1			2	1	2	1	2	1	2	1
	Digital camera interface (DCMI) / PSSI ⁽⁴⁾				yes							
	Ethernet (Legacy / SMPS)	Yes/ NA	No	NA/ Yes	Yes / No	No	Yes/ No	No	Yes/ Yes	No	Yes /Yes	No
	HDMI-CEC	Yes										
CORDIC co-	-processor	Yes										
Filter mathemation (FMA)		Yes										
Real time cl	ock (RTC)	Yes										
Tamper pins (le	egacy/SMPS)	5 / NA NA / 5 8/8										
Active tampers (legacy/SMPS) ⁽⁵⁾		4 / NA NA / 4 7/7										
True random number generator		Yes										
HASH (SHA-512)						Υ	⁄es					
GPIOs (legacy/SMPS)		53 /	NA ⁽⁶⁾	NA / 57	80/ 78	80/ NA	112/ 110	112/ NA	136/ 134	136/ NA	140 ⁽⁷⁾ /139	140 (7)
Wakeup pins (legacy/SMPS)		6/1	VA ⁽⁸⁾	NA / 6	7/7	7/ NA	7/7	7/ NA	8/8	8/ NA	8/8	8/ NA
Number of I/Os o		0 /	NA	NA / 0	0/0	0/ NA	10/ 10	10/ NA	10/7	10/ NA	10/7	10/ NA

Table 2. STM32H56xxx features and peripheral counts (continued)

Peripherals		STM32H563RI/G	STM32H562RI/G	SТМ32Н563MI	STM32H563VI/G	STM32H562VI/G	STM32H563ZI/G	STM32H562ZI/G	STM32H563AI/G	STM32H562AI/G	STM32H563II/G	STM32H562II/G
	12-bit ADC	S								0,		
ADC	Number of channels (legacy/SMP S)	16/	/NA	NA / 16	16/ 14	16/ NA	20/ 18	20/ NA	20/	20/ NA	20/ 20	20/ NA
	12-bit DAC controller	1										
DAC	Number of 12-bit Dto-A converters											
	Internal voltage reference buffer		No YES									
Maximum CP	Maximum CPU frequency		250 MHz									
Operating	Operating voltage		1.71 to 3.6 V									
Operating temperature		Ambient operating temperature: – 40 to 85 °C / – 40 to 125 °C Junction temperature: – 40 to 130 °C										
Package			LQFP64 VFQFPN68 WLCSP80 LQFP100 LQFP144 UFBGA169 UFBGA									

- 1. 8-bit to interface LCD controller.
- 2. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 chip select.
- 3. Shares the same IOs than I2C4.
- 4. DCMI and PSSI cannot be used at the same time as they share the same circuitry.
- 5. Active tampers in output sharing mode (one output shared by all inputs).
- 6. 49 for LQFP64.
- 7. 136 for LQFP176.
- 8. 5 for VFQFPN68.

Figure 1. STM32H562xx and STM32H563xx block diagram

Note: PC[15:13] are in the VBAT domain.

47/

3 Functional overview

3.1 Arm Cortex-M33 core with TrustZone and FPU

The Cortex-M33 with TrustZone and FPU is a highly energy-efficient processor designed for microcontrollers and deeply embedded applications, especially those requiring efficient security.

The Cortex-M33 processor delivers a high computational performance with low-power consumption and an advanced response to interrupts. It features:

- Arm TrustZone technology, using the Armv8-M main extension supporting secure and non-secure states
- Memory protection units (MPUs), supporting up to 16 regions for secure and non-secure applications
- Configurable secure attribute unit (SAU) supporting up to height memory regions as secure or non-secure
- Floating-point arithmetic functionality with support for single precision arithmetic

The processor supports a set of DSP instructions that allows an efficient signal processing and a complex algorithm execution.

The Cortex-M33 processor supports the following bus interfaces:

System AHB bus:

The system AHB (S-AHB) bus interface is used for any instruction fetch and data access to the memory-mapped SRAM, peripheral, external RAM and external device, or Vendor_SYS regions of the Armv8-M memory map.

Code AHB bus:

The code AHB (C-AHB) bus interface is used for any instruction fetch and data access to the code region of the Armv8-M memory map.

Figure 1 shows the general block diagram of the STM32H562xx and STM32H563xx devices.

3.2 ART Accelerator (ICACHE and DCACHE)

3.2.1 Instruction cache (ICACHE)

The instruction cache (ICACHE) is introduced on C-AHB code bus of Cortex-M33 processor to improve performance when fetching instruction (or data) from both internal and external memories.

ICACHE offers the following features:

- Multi-bus interface:
 - slave port receiving the memory requests from the Cortex-M33 C-AHB code execution port
 - master1 port performing refill requests to internal memories (flash memory and SRAMs)
 - master2 port performing refill requests to external memories (external flash memory and RAMs through Octo-SPI and FMC interfaces)

4

DS14258 Rev 1 19/275

- a second slave port dedicated to ICACHE registers access
- Close to zero wait-states instructions/data access performance:
 - 0 wait-state on cache hit
 - hit-under-miss capability, allowing to serve new processor requests while a line refill (due to a previous cache miss) is still ongoing
 - critical-word-first refill policy, minimizing processor stalls on cache miss
 - hit ratio improved by two-ways set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance
 - dual master ports allowing to decouple internal and external memory traffics, on fast and slow buses, respectively; also minimizing impact on interrupt latency
 - optimal cache line refill thanks to AHB burst transactions (of the cache line size)
 - performance monitoring by means of a hit counter and a miss counter
- Extension of cacheable region beyond the code memory space, by means of address remapping logic that allows four cacheable external regions to be defined
- Power consumption reduced intrinsically (more accesses to cache memory rather to bigger main memories); even improved by configuring ICACHE as direct mapped (rather than the default two-ways set-associative mode)
- TrustZone security support
- Maintenance operation for software management of cache coherency
- Error management: detection of unexpected cacheable write access, with optional interrupt raising

3.2.2 Data cache (DCACHE)

The data cache (DCACHE) is introduced on S-AHB system bus of Cortex-M33 processor to improve the performance of data traffic to/from external memories.

DCACHE offers the following features:

- Multi-bus interface:
 - slave port receiving the memory requests from the Cortex-M33 S-AHB system port
 - master port performing refill requests to external memories (external flash memory and RAMs through Octo-SPI and FMC interfaces)
 - a second slave port dedicated to DCACHE registers access
- Close to zero wait-states external data access performance:
 - zero wait-states on cache hit
 - hit-under-miss capability, allowing to serve new processor requests to cached data, while a line refill (due to a previous cache miss) is still ongoing
 - critical-word-first refill policy for read transactions, minimizing processor stalls on cache miss
 - hit ratio improved by two-ways set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance
 - optimal cache line refill thanks to AHB burst transactions (of the cache line size)
 - performance monitoring by means of two hit counters (for read and write) and two miss counters (for read and write)

- Supported cache accesses:
 - supports both write-back and write-through policies (selectable with AHB bufferable attribute)
 - read and write-back always allocated
 - write-through always non-allocated (write-around)
 - supports byte, half-word and word writes
- TrustZone security support
- Maintenance operations for software management of cache coherency:
 - full cache invalidation (non interruptible)
 - address range clean and/or invalidate operations (background task, interruptible)
- Error management: detection of error for master port request initiated by DCACHE (line eviction or clean operation), with optional interrupt raising

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to 20 protected areas (12 secure and 8 non-secure). The MPU regions and registers are banked across secure and non-secure states.

The MPU is especially helpful for applications where some critical or certified code must be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system).

If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed.

3.4 Embedded flash memory

The devices feature 2 Mbytes of embedded flash memory that is available for storing programs and data. The flash memory supports high-cycle data area of up to 100 K cycles.

The flash memory interface features:

- dual-bank operating modes
- read-while-write (RWW)

This allows a read operation to be performed from one bank while an erase or program operation is performed to the other bank. Each bank contains 128 pages of 8 Kbytes.

The flash memory embeds 2-Kbyte OTP (one-time programmable) for user data and up to 96 Kbytes supporting high cycling capability (100 K cycles) to be used for data (EEPROM emulation).

DS14258 Rev 1 21/275

The Options bytes are available to set the flash memory protection mechanisms:

- Different product states for protecting memory content from debug access
- Write protection (WRP) to protect areas against erasing and programming. Two areas per bank can be selected with 8-Kbyte granularity.
- Sector group write-protection (WRPSG), protecting up to 32 groups of 4 sectors (32 Kbytes) per bank
- Two secure-only areas (one per user flash memory bank). When enabled, this area is accessible only if the STM32 device operates in Secure-access mode
- One HDP per area bank providing temporal isolation for startup code

The whole non-volatile memory embeds the error correction code (ECC) feature supporting:

- Single-error detection and correction
- Double-error detection
- ECC fail address report

3.4.1 FLASH security and protections

Sensitive information is stored in the flash memory and it is important to protect the memory against unwanted operations such as reading confidential areas, illegal programming of immutable sectors, or malicious flash memory erasing.

For that purpose FLASH implements the following protection mechanisms:

- TrustZone backed watermark and block security protection
- Temporal isolation protection (HDP)
- Configuration protection
- User flash memory write protection
- Device non-volatile security life cycle and application boot state management
- OTP locking

Refer to the product reference manual for a detailed description of all these security mechanisms.

3.4.2 FLASH privilege protection

Each flash memory sector can be programmed on the fly as privileged or unprivileged.

3.5 Embedded SRAMs

Four SRAMs are embedded in the STM32H562xx and STM32H563xx devices, each with specific features. SRAM1, SRAM2, and SRAM3 are the main SRAMs.

These SRAMs are made of several blocks that can be powered down in Stop mode to reduce consumption:

- SRAM1: 256 Kbytes
- SRAM2: 64 Kbytes with ECC
- SRAM3: 320 Kbytes with optional ECC. When ECC is enabled, 64 bytes are reserved for ECC
- BKPSRAM (backup SRAM): 4 Kbytes with optional ECC. The BKPSRAM can be retained in all low-power modes and when V_{DD} is off in VBAT mode.

Note:

The ECC is supported by SRAM2, SRAM3, and BKPSRAM when enabled with the SRAM2 ECC, SRAM3 ECC, and BKPRAM ECC user option bits.

3.5.1 SRAMs TrustZone security

When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM1, SRAM2, SRAM3, can be programmed as secure or non-secure by blocks, using the MPCBB (block-based memory protection controller).

The granularity of SRAM secure block based is a page of 512 bytes. Backup SRAM regions can be programmed as secure or non-secure with watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone controller).

3.5.2 SRAMs privilege protection

The SRAM1, SRAM2, SRAM3, can be programmed as privileged or non-privileged by blocks, using the MPCBB. The granularity of SRAM privilege block based is a page of 512 bytes. Backup SRAM regions can be programmed as privileged or non-privileged with watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone controller).

3.6 Security overview

The STM32H562xx and STM32H563xx security enables the possibility to reopen the debug mode even if the product is in secure state.

The reopening of the debug mode is controlled with a debug authentication procedure which permits the authentication of the host.

The sensible assets such as keys or secret codes must be protected when opening the debug mode. The protection is made via code protection and hardware keys storage solutions where all *root of trust* can be protected thanks to hardware mechanisms.

In cases where sensitive information cannot be protected, a partial or a full regression can be launched in order to allow a debugging. Regressions are enabled by a debug authentication method.

The STM32H562xx and STM32H563xx design also permits the developers to introduce their own root of trust solution (OEM-iROT), including their installation in a non-trusted environment thanks to a secure firmware install (SFI) solution.

The STM32H562xx and STM32H563xx boot stages are isolated via a hardware mechanism called HDPL (temporal isolation level). The HDPL guarantees isolation of the different boot stages: ST assets, iROT (immutable root of trust), uROT (updatable root of trust), secure operating system and non-secure applications.

STM32H562xx and STM32H563xx devices embed a hardware key storage solution with the following characteristics:

 Feature a dedicated flash memory area per boot stages with access-control based on HDPL and which can be secure or non-secure.

STM32H562xx and STM32H563xx devices are powered by an Arm Cortex-M33 microcontroller, which is associated with all the TrustZone isolation infrastructure. This design permits to benefit from a run time isolation to run secure applications.

4

DS14258 Rev 1 23/275

3.7 Boot modes

At startup, a BOOT0 pin and NSBOOTADD[31:8]/SECBOOTADD[31:8] option bytes are used to select the boot memory address that includes:

- Boot from any address in user flash memory
- Boot from system memory
 - Bootloader
 - ST immutable root of trust (ST-iROT)
 - Root security service (RSS)
 - Debug authentication library (RSS-DA)

Embedded bootloader

The embedded bootloader is located in the system memory, programmed by ST during production. It is used to reprogram the flash memory by using USART, I2C, I3C, SPI, FDCAN, or USB FS in device mode through the DFU (device firmware upgrade).

Refer to the application note STM32 microcontroller system memory boot mode (AN2606).

Embedded root security services (RSS)

The embedded RSS are located in the secure information block, programmed by ST during production.

Refer to the application note Overview secure firmware install (SFI) (AN4992).

Embedded immutable root of trust (ST-iROT)

The embedded ST-iROT in the system memory, programmed by ST during production. ST-iROT is the immutable root of trust managing the secure boot and secure install of the first updatable level to execute in a boot sequence.

Embedded debug authentication (ST-DA)

The embedded ST-DA in the system memory, programmed by ST during production. ST-DA is the library that manages the debug authentication protocol by allowing to securely reopen the debug or to launch regressions on secured products in the field.

3.7.1 STM32H562/H563boot modes

The table below provides the detail of the boot mode when the TrustZone is disabled (TZEN=0xC3), for the STM32H562/H563 devices.

Table 3. STM32H562/H563 / Boot mode when TrustZone is disabled (TZEN=0xC3)

PRODUCT_STATE	BOOT0 pin	Boot address option- byte selection	Boot area	ST programmed default value
Open	0	NSBOOTADD[31:8]	Boot address defined by user option byte NSBOOTADD[31:8]	Flash: 0x0800 0000
-	1	NA	Bootloader	Bootloader

PRODUCT_STATE	PRODUCT_STATE BOOT0 pin		Boot area	ST programmed default value	
Provisioning	Х	NA	RSS	RSS	
Provisioned, Closed, Locked	х	NSBOOTADD[31:8]	Boot address defined by user option byte NSBOOTADD[31:8]	Flash: 0x0800 0000	

Table 3. STM32H562/H563 / Boot mode when TrustZone is disabled (TZEN=0xC3) (continued)

The below table provides the detail of the boot mode when the TrustZone is enabled (TZEN=0xB4), for the STM32H562/H563 devices.

Table 4. STM32H562/H563 / Boot mode when TrustZone is enabled (TZEN=0xB4)

PRODUCT_STATE	BOOT0 pin	Boot address option- byte selection	Boot area	ST programmed default value
Open	0	SECBOOTADD[31:8]	Boot address defined by user option byte SECBOOTADD[31:8]	Flash: 0x0C00 0000
-	1	NA	Bootloader	Bootloader
Provisioning	Х	NA	RSS	RSS
Provisioned, TZ_Closed, Closed, Locked	х	SECBOOTADD[31:8]	Boot address defined by user option byte SECBOOTADD[31:8]	Flash: 0x0C00 0000

When TrustZone is enabled (TZEN=0xB4), the boot space must be in secure area. The SECBOOTADD0[24:0] option bytes are used to select the boot secure memory address. A unique boot entry option can be selected by setting the SECBOOT LOCK option bit.

3.8 Global TrustZone controller (GTZC)

GTZC is used to configure TrustZone and privileged attributes within the full system.

The GTZC includes three different sub-blocks:

TZSC: TrustZone security controller

attributes.

- This sub-block defines the secure/privilege state of slave/master peripherals. It also controls the non-secure area size for the watermark memory peripheral controller (MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about the secure status of each securable peripheral, by sharing with RCC and I/O logic.
- TZIC: TrustZone illegal access controller
 This sub-block gathers all security illegal access events in the system and generates a secure interrupt towards NVIC.
- MPCBB: MPCBB: block-based memory protection controller
 This sub-block controls secure states of all memory blocks (512-byte pages) of the associated SRAM. This peripheral aims at configuring the internal RAM in a TrustZone system product having segmented SRAM with programmable-security and privileged

577

The GTZC main features are:

- Three independent 32-bit AHB interfaces for TZSC, TZIC and MPCBB
- MPCBB and TZIC accessible only with secure transactions
 - Enable illegal access events that may trig a secure interrupt
- Secure and non-secure access supported for privileged/non-privileged part of TZSC
- Set of registers to define product security settings:
 - Secure/privilege regions for external memories
 - Secure/privilege access mode for securable peripherals
 - Secure/privilege access mode for securable legacy masters

3.9 TrustZone security architecture

The security architecture is based on Arm TrustZone with the Armv8-M main extension.

The TrustZone security is activated by the TZEN option bit in the FLASH OPTR register.

When the TrustZone is enabled, the SAU (security attribution unit) and IDAU (implementation defined attribution unit) define the access permissions based on secure and non-secure state.

- SAU: up to eight SAU configurable regions are available for security attribution.
- IDAU: It provides a first memory partition as non-secure or non-secure callable attributes. It is then combined with the results from the SAU security attribution and the higher security state is selected.

Based on IDAU security attribution, the flash memory, system SRAMs and peripherals memory space is aliased twice for secure and non-secure states. However, the external memories space is not aliased.

3.9.1 TrustZone peripheral classification

When the TrustZone security is active, a peripheral can be either securable or TrustZone-aware type as follows:

- securable: peripheral protected by an AHB/APB firewall gate that is controlled from TZSC to define security properties
- TrustZone-aware: peripheral connected directly to AHB or APB bus and implementing a specific TrustZone behavior such as a subset of registers being secure

3.9.2 Default TrustZone security state

The default system security state is detailed below:

- CPU:
 - Cortex-M33 is in secure state after reset. The boot address must be in secure address.
- Memory map:
 - SAU is fully secure after reset. Consequently, all memory map is fully secure. Up to eight SAU configurable regions are available for security attribution.
- Flash memory:
 - Flash memory security area is defined by watermark user options.

- Flash memory block based area is non-secure after reset.
- SRAMs:
 - All SRAMs are secure after reset. MPCBB (memory protection block based controller) is secure.
- External memories:
 - FMC, OCTOSPI banks are secure after reset. MPCWMx (memory protection watermark based controller) is secure.
- Peripherals
 - Securable peripherals are non-secure after reset.
 - TrustZone-aware peripherals are non-secure after reset. Their secure configuration registers are secure.
- All GPIOs are secure after reset.
- Interrupts:
 - NVIC: All interrupts are secure after reset. NVIC is banked for secure and nonsecure state.
- TZIC: All illegal access interrupts are disabled after reset.

3.10 Power supply management

The power controller (PWR) main features are:

- Power supplies and supply domains
 - Core domains (VCORE)
 - VDD domain
 - Backup domain (VBAT)
 - Analog domain (VDDA)
 - SMPS power stage (VDDSMPS, available only on SMPS packages)
 - VDDIO2 domain
 - VDDUSB for USB transceiver
 - System supply voltage regulation
 - SMPS step down converter
 - Voltage regulator (LDO)
- Power supply supervision
 - POR/PDR monitor
 - BOR monitor
 - PVD monitor
- Power management
 - Operating modes
 - Voltage scaling control
 - Low-power modes
- VBAT battery charging
- TrustZone security and privileged protection

4

3.10.1 Power supply schemes

The devices require a 1.71 V to 3.6 V V_{DD} operating voltage supply. Several independent supplies can be provided for specific peripherals:

V_{DD} = 1.71 V to 3.6 V

 V_{DD} is the external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins.

V_{DDA} = 1.71 V (ADCs, DACs) or 2.1 V (VREFBUF) to 3.6 V

 V_{DDA} is the external analog power supply for ADCs, DACs and voltage reference buffer. The V_{DDA} voltage level is independent from the V_{DD} voltage and must preferably be connected to V_{DD} when these peripherals are not used.

V_{DDSMPS} = 1.71 V to 3.6 V

 V_{DDSMPS} is the external power supply for the SMPS step down converter. It is provided externally through VDDSMPS supply pin and must be connected to the same supply than VDD.

V_{I XSMPS} is the switched SMPS step down converter output.

Note: The SMPS power supply pins are available only on a specific package with SMPS step down converter option.

V_{DDUSB} = 3.0 V to 3.6 V

 V_{DDUSB} is the external independent power supply for USB transceivers. V_{DDUSB} voltage level is independent from the V_{DD} voltage and must preferably be connected to VDD when the USB is not used.

• $V_{DDIO2} = 1.08 \text{ V to } 3.6 \text{ V}$

 V_{DDIO2} is the external power supply for 10 I/Os (PD6, PD7, PG9:14, PB8, PB9). The V_{DDIO2} voltage level is independent from the V_{DD} voltage and must preferably be connected to VDD when those pins are not used.

V_{BAT} = 1.2 V to 3.6 V

 V_{BAT} is the power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

VREF-, VREF+

V_{REF+} is the input reference voltage for ADCs and DACs. It is also the output of the internal voltage reference buffer when enabled.

V_{REF+} can be grounded when ADC and DAC are not active.

VREF- and VREF+ pins are not available on all packages. When not available, they are bonded to VSSA and VDDA, respectively.

When the VREF+ is double-bonded with VDDA in a package, the internal voltage reference buffer is not available and must be kept disabled.

 V_{REF-} must always be equal to V_{SSA} .

The STM32H562xx and STM32H563xx devices embed two regulators: one LDO or one SMPS depending on the package, to provide the V_{CORE} supply for digital peripherals, SRAM1, SRAM2, SRAM3 and embedded flash memory. The SMPS generates this voltage on VCAP (two pins), with a total external capacitor of 10 μ F typical. SMPS requires an external coil. The LDO generates this voltage on VCAP pin connected to an external capacitor of 2x 2.2 μ F typical.

47/

Both regulators can provide four different voltages (voltage scaling) and can operate in Stop modes.

Figure 2. STM32H562xx and STM32H563xx power supply overview (with SMPS)

Figure 3. STM32H562xx and STM32H563xx power supply overview (with LDO)

During power-up and power-down phases, the following power sequence requirements must be respected:

- When V_{DD} is below 1 V, other power supplies (V_{DDA}, V_{DDIO2}, V_{DDUSB}) must remain below V_{DD} + 300 mV.
- When V_{DD} is above 1 V, all power supplies are independent.
- During the power-down phase, V_{DD} can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the powerdown transient phase.

Figure 4. Power-up /down sequence

1. V_{DDX} refers to any power supply among V_{DDA} , V_{DDUSB} , and V_{DDIO2} .

3.10.2 Power supply supervisor

The devices have an integrated ultra-low-power brownout reset (BOR) active in all modes; The BOR ensures proper operation of the devices after power on and during power down. The devices remain in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes. The devices feature an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold.

An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the devices embed a peripheral voltage monitor that compares the independent supply voltages V_{DDA} , V_{DDUSB} and V_{DDIO2} to ensure that the peripheral is in its functional supply range.

The devices support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the main regulator that supplies the logic (V_{CORE}) can be adjusted according to the system's maximum operating frequency.

The main regulator operates in the following ranges:

- VOS0 (Vcore = 1.35V) with CPU and peripherals running at up to 250 MHz
- VOS1 (Vcore = 1.2V) with CPU and peripherals running at up to 200 MHz
- VOS2 (Vcore = 1.1V) with CPU and peripherals running at up to 150 MHz
- VOS3 (Vcore = 1.0V) with CPU and peripherals running at up to 100 MHz

Low-power modes

By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the CSI, the HSI, the HSI48 and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

The system clock when exiting from Stop mode can be either HSI up to 64 MHz or CSI (4 MHz), depending on software configuration.

Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The PLL, the HSI, the CSI, the HSI48 and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The BOR always remains active in Standby mode.

The I/Os state during Standby mode can be retained.

After entering Standby mode, SRAMs and register contents are lost except for registers and backup SRAM in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), an RTC event occurs (alarm, periodic wakeup, timestamp), or a tamper detection. The tamper detection can be raised either due to external pins or due to an internal failure detection.

The system clock after wakeup is HSI at 32 MHz.

3.10.3 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O Schmitt trigger is disable).

3.10.4 VBAT operation

The VBAT pin allows the device VBAT domain to be powered from an external battery or an external super-capacitor.

The VBAT pin supplies the RTC with LSE, anti-tamper detection (TAMP), backup registers and 4-Kbyte backup SRAM. Eight anti-tamper detection pins are available in VBAT mode.

The VBAT operation is automatically activated when V_{DD} is not present. An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note:

When the microcontroller is supplied from V_{BAT} , neither external interrupts nor RTC alarm/events exit the microcontroller from the VBAT operation.

5

3.10.5 PWR TrustZone security

When the TrustZone security is activated by the TZEN option bit, the PWR is switched in TrustZone security mode.

The PWR TrustZone security secures the following configuration:

- Low-power mode
- Wake-up (WKUP) pins
- Voltage detection and monitoring
- VBAT mode

Some of the PWR configuration bits security is defined by the security of other peripherals:

- The voltage scaling (VOS) configuration is secure when the system clock selection is secure in RCC.
- The I/O pull-up/pull-down in Standby mode configuration is secure when the corresponding GPIO is secure.
- The backup domain write protection is secure when the RTC is secure.

3.11 Peripheral interconnect matrix

Several peripherals have direct connections between them, that allow autonomous communication between them and support the saving of CPU resources (thus power supply consumption). In addition, these hardware connections allow fast and predictable latency.

Depending on the peripherals, these interconnections can operate in Run and Sleep modes.

3.12 Reset and clock controller (RCC)

The clock controller distributes the clocks coming from the different oscillators to the core and to the peripherals. It also manages the clock gating for low-power modes and ensures the clock robustness. It features:

- **Clock prescaler:** in order to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Clock security system:** clock sources can be changed safely on the fly in Run mode through a configuration register.
- **Clock management:** in order to reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock source: four different clock sources can be used to drive the master clock SYSCLK:
 - 4 to 50 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 64 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL.
 - 4 MHz low-power internal oscillator (CSI), trimmable by software that can supply a PLL.

Ly/

- System PLL that can be fed by HSE, HSI or CSI, with a maximum frequency at 250 MHz.
- RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48), can be used to drive the USB.
- **UCPD kernel clock**, derived from HSI clock. The HSI RC oscillator must be enabled prior to the UCPD kernel clock use.
- Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
- Peripheral clock sources: several peripherals have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, USB, SDMMC, RNG, FDCAN1, OCTOSPI and the two SAIs.
- Startup clock: after reset, the microcontroller restarts by default with an internal 32 MHz clock (HSIdiv 2). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock automatically switches to HSI and a software interrupt is generated if enabled. LSE failure can also be detected and generates an interrupt.
- Clock-out capability:
 - MCO (microcontroller clock output): it outputs one of the internal clocks for external use by the application.
 - LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes (except VBAT).

Several prescalers allow AHB and APB frequencies configuration. The maximum frequency of the AHB and the APB clock domains is 250 MHz.

3.12.1 RCC TrustZone security

When the TrustZone security is activated by the TZEN option bit, the RCC is switched in TrustZone security mode.

The RCC TrustZone security secures some RCC system configuration and peripheral configuration clock from being read or modified by non-secure accesses: when a peripheral is secure, the related peripheral clock, reset, clock source selection and clock enable during low-power modes control bits are secure.

A peripheral is in secure state:

- when its corresponding SEC security bit is set in the TZSC (TrustZone security controller), for securable peripherals.
- when a security feature of this peripheral is enabled through its dedicated bits, for TrustZone-aware peripherals.

3.13 Clock recovery system (CRS)

The devices embed a special block that allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This

automatic trimming is based on the external synchronization signal, that is either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup, automatic trimming and manual trimming action can be combined.

3.14 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

After reset, all GPIOs are in analog mode to reduce power consumption.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

10 IOs (PD6, PD7, PG9:14, PB8, PB9) can be independently supplied by a dedicated VDDIO supply.

3.14.1 GPIOs TrustZone security

Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O pin is configured as secure, its corresponding configuration bits for alternate function, mode selection, I/O data are secure against a non-secure access. The associated registers bit access is restricted to a secure software only. After reset, all GPIO ports are secure.

3.15 Multi-AHB bus matrix

A 32-bit multi-AHB bus matrix interconnects all the masters (CPU, GPDMA1, GPDMA2, SDMMC1, SDMMC2, Ethernet) and the slaves (flash memory, FMC, OCTOSPI, SRAMs, AHB and APB) peripherals. It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

3.16 General purpose direct memory access controller (GPDMA)

The general purpose direct memory access (GPDMA) controller is a bus master and system peripheral.

The GPDMA is used to perform programmable data transfers between memory-mapped peripherals and/or memories via linked-lists, upon the control of an off-loaded CPU.

The GPDMA main features are:

- Dual bidirectional AHB master
- Memory-mapped data transfers from a source to a destination:
 - Peripheral-to-memory
 - Memory-to-peripheral
 - Memory-to-memory
 - Peripheral-to-peripheral
- Autonomous data transfers during Sleep mode
- Transfers arbitration based on a four-grade programmed priority at a channel level:

577

- One high-priority traffic class, for time-sensitive channels (queue 3)
- Three low-priority traffic classes, with a weighted round-robin allocation for non time-sensitive channels (queues 0, 1, 2)
- Per channel event generation, on any of the following events: transfer complete or half transfer complete or data transfer error or user setting error, and/or update linked-list item error or completed suspension
- Per channel interrupt generation, with separately programmed interrupt enable per event
- 8 concurrent DMA channels:
 - Per channel FIFO for queuing source and destination transfers
 - Intra-channel DMA transfers chaining via programmable linked-list into memory, supporting two execution modes: run-to-completion and link step mode
 - Intra-channel and inter-channel DMA transfers chaining via programmable DMA input triggers connection to DMA task completion events
- Per linked-list item within a channel:
 - Separately programmed source and destination transfers
 - Programmable data handling between source and destination: byte-based reordering, packing or unpacking, padding or truncation, sign extension and left/right realignment
 - Programmable number of data bytes to be transferred from the source, defining the block level
 - 12 channels with linear source and destination addressing: either fixed or contiguously incremented addressing, programmed at a block level, between successive single transfers
 - Four channels with 2D source and destination addressing: programmable signed address offsets between successive burst transfers (non-contiguous addressing)

- within a block, combined with programmable signed address offsets between successive blocks, at a second 2D/repeated block level)
- Support for scatter-gather (multi-buffer transfers), data interleaving and deinterleaving via 2D addressing
- Programmable DMA request and trigger selection
- Programmable DMA half-transfer and transfer complete events generation
- Pointer to the next linked-list item and its data structure in memory, with automatic update of the DMA linked-list control registers

Debug:

- Channel suspend and resume support
- Channel status reporting including FIFO level and event flags

TrustZone support:

- Support for secure and non-secure DMA transfers, independently at a first channel level, and independently at a source/destination and link sub-levels
- Secure and non-secure interrupts reporting, resulting from any of the respectively secure and non-secure channels
- TrustZone-aware AHB slave port, protecting any DMA secure resource (register, register field) from a non-secure access
- Privileged/unprivileged support:
 - Support for privileged and unprivileged DMA transfers, independently at a channel level
 - Privileged-aware AHB slave port.

3.17 Interrupts and events

3.17.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller that is able to manage 16 priority levels and to handle up to 125 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M33.

The NVIC benefits are the following:

- closely coupled NVIC giving low-latency interrupt processing
- interrupt entry vector table address passed directly to the core
- · early processing of interrupts
- processing of late arriving higher priority interrupts
- support for tail chaining
- processor state automatically saved
- interrupt entry restored on interrupt exit with no instruction overhead
- TrustZone support: NVIC registers banked across secure and non-secure states

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

4

3.17.2 Extended interrupt/event controller (EXTI)

The extended interrupts and event controller (EXTI) manages the individual CPU and system wakeup through configurable event inputs. It provides wakeup requests to the power control, and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU an additional event generation block (EVG) is needed to generate the CPU event signal.

The EXTI wakeup requests allow the system to be woken up from Stop modes.

The interrupt request and event request generation can also be used in Run modes. The EXTI also includes the EXTI multiplexer IO port selection.

The EXTI main features are the following:

- All event inputs allowed to wake up the system
- Configurable events (signals from I/Os or peripherals able to generate a pulse)
 - Selectable active trigger edge
 - Interrupt pending status register bit independent for the rising and falling edge
 - Individual interrupt and event generation mask, used for conditioning the CPU wakeup, interrupt and event generation
 - Software trigger possibility
- TrustZone secure events
 - The access to control and configuration bits of secure input events can be made secure
- EXTI IO port selection

3.18 Cyclic redundancy check calculation unit (CRC)

The CRC is used to get a CRC code using a configurable generator with polynomial value and size.

Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the flash memory integrity.

The CRC calculation unit helps to compute a signature of the software during runtime, that can be ulteriorly compared with a reference signature generated at link-time and that can be stored at a given memory location.

3.19 CORDIC co-processor (CORDIC)

The CORDIC co-processor provides hardware acceleration of certain mathematical functions, notably trigonometric, commonly used in motor control, metering, signal processing and many other applications. It speeds up the calculation of these functions compared to a software implementation, allowing a lower operating frequency, or freeing up processor cycles in order to perform other tasks.

The CORDIC main features are:

- 24-bit CORDIC rotation engine
- Circular and hyperbolic modes
- Rotation and vectoring modes
- Functions: sine, cosine, sinh, cosh, atan, atan2, atanh, modulus, square root, natural logarithm
- Programmable precision
- Low-latency AHB slave interface
- Results can be read as soon as ready without polling or interrupt
- DMA read and write channels
- Multiple register read/write by DMA

3.20 Filter math accelerator (FMAC)

The FMAC performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic that allows it to index vector elements held in local memory.

The unit includes support for circular buffers on input and output, that allows digital filters to be implemented. Both finite and infinite impulse response filters can be done.

The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks.

The FMAC main features are:

- 16 x 16-bit multiplier
- 24 + 2-bit accumulator with addition and subtraction
- 16-bit input and output data
- 256 x 16-bit local memory
- Up to three areas can be defined in memory for data buffers (two input, one output), defined by programmable base address pointers and associated size registers
- Input and output buffers can be circular
- Filter functions: FIR, IIR (direct form 1)
- Vector functions: dot product, convolution, correlation
- AHB slave interface
- DMA read and write data channels

3.21 Flexible memory controller (FMC)

The FMC includes three memory controllers:

- NOR/PSRAM memory controller
- NAND memory controller
- SDRAM memory controller

47/

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR flash memory/OneNAND flash memory
 - PSRAM (four memory banks)
 - NAND flash memory with ECC hardware to check up to 8 Kbytes of data
 - Ferroelectric RAM (FRAM)
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16- bit data bus width
- Independent chip select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO

3.21.1 LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel[®] 8080 and Motorola[®] 6800 modes, and is flexible enough to adapt to specific LCD interfaces.

This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

3.21.2 FMC TrustZone security

When the TrustZone security is enabled, the whole FMC banks are secure after reset. Non-secure area can be configured using the TZSC MPCWMx controller.

- The FMC NOR/PSRAM bank:
 - Up to two non-secure area can be configured thought the TZSC MPCWM2 controller with a 64-Kbyte granularity
- The FMC NAND bank:
 - Can be either configured as fully secure or fully non-secure using the TZSC MPCWM3 controller

The FMC registers can be configured as secure through the TZSC controller.

3.22 Octo-SPI interface (OCTOSPI)

The OCTOSPI supports most external serial memories such as serial PSRAMs, serial NAND and serial NOR flash memories, HyperRAMs™ and HyperFlash™ memories, with the following functional modes:

- Indirect mode: all the operations are performed using the OCTOSPI registers.
- Status-polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting.
- Memory-mapped mode: the external memory is memory mapped and is seen by the system as if it were an internal memory supporting read and write operation.

The OCTOSPI supports the following protocols with associated frame formats:

- the standard frame format with the command, address, alternate byte, dummy cycles and data phase
- the HyperBus[™] frame format

The OCTOSPI offers the following features:

- Three functional modes: Indirect, Status-polling, and Memory-mapped
- Read and write support in Memory-mapped mode
- Supports for single, dual, quad and octal communication
- Dual-quad mode, where eight bits can be sent/received simultaneously by accessing two quad memories in parallel.
- SDR (single-data rate) and DTR (double-transfer rate) support
- Data strobe support
- Fully programmable opcode
- Fully programmable frame format
- HyperBus support
- Integrated FIFO for reception and transmission
- 8-, 16-, and 32-bit data accesses allowed
- DMA channel for Indirect mode operations
- Interrupt generation on FIFO threshold, timeout, operation complete, and access error

3.22.1 OCTOSPI TrustZone security

When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset.

Up to two non-secure area can be configured thought the TZSC MPCWM1 controller with a granularity of 64 Kbytes.

The OCTOSPI registers can be configured as secure through the TZSC controller.

3.23 Delay block (DLYB)

The delay block (DLYB) is used to generate an output clock that is dephased from the input clock. The phase of the output clock must be programmed by the user application. The output clock is then used to clock the data received by another peripheral such as an SDMMC or Octo-SPI interface. The delay is voltage and temperature dependent, that may require the application to re-configure and recenter the output clock phase with the received data.

The delay block main features are:

- Input clock frequency ranging from 25 to 250 MHz
- Up to 12 oversampling phases

3.24 Analog-to-digital converter (ADC1 and ADC2)

The devices embed two successive approximation analog-to-digital converters.

Table 5. ADC features

ADC modes/features	ADC1	ADC2				
Abo modes/reatures		1.2.2				
Resolution	12 bit					
Maximum sampling speed		sps				
, , ,	(12-01116	esolution)				
Dual mode operation		K				
Hardware offset calibration		(
Hardware linearity calibration		-				
Single-end input	>	<				
Differential input	X					
Injected channel conversion	X					
Oversampling	up to x256					
Data register	16 bits					
Data register FIFO depth	3 stages					
DMA support	X					
Parallel data output to ADF	-					
Offset compensation	X					
Gain compensation	-					
Number of analog watchdog	3					
Option register	-	X				

3.24.1 Temperature sensor

The temperature sensor generates a voltage V_{SENSE} that varies linearly with temperature. The temperature sensor is internally connected to ADC input channel that is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it must be calibrated to obtain a good accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by STMicroelectronics in the system memory area, accessible in read-only mode.

3.24.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC. The VREFINT is internally connected to ADC input channel.

The precise voltage of VREFINT is individually measured for each part by STMicroelectronics during production test and stored in the system memory area. It is accessible in read-only mode.

3.24.3 V_{BAT} battery voltage monitoring

This embedded hardware enables the application to measure the V_{BAT} battery voltage using ADC or input channel. As the V_{BAT} voltage may be higher than the V_{DDA} , and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by four. As a consequence, the converted digital value is a quarter of the V_{BAT} voltage.

3.25 Digital to analog converter (DAC)

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data may be left- or right-aligned.

The DAC features two output channels, each with its own converter. In dual DAC channel mode, conversions can be done independently or simultaneously when both channels are grouped together for synchronous update operations. An input reference pin, VREF+ (shared with others analog peripherals) is available for better resolution. An internal reference can also be set on the same input.

The DAC_OUTx pin can be used as general purpose input/output (GPIO) when the DAC output is disconnected from output pad and connected to on chip peripheral. The DAC output buffer can be optionally enabled to allow a high drive output current. An individual calibration can be applied on each DAC output channel. The DAC output channels support a low power mode, the Sample and hold mode.

The digital interface supports the following features:

- One DAC interface, maximum two output channels
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave and triangular-wave generation
- Sawtooth wave generation
- Dual DAC channel for independent or simultaneous conversions
- DMA capability for each channel including DMA underrun error detection
- Double data DMA capability to reduce the bus activity
- External triggers for conversion
- DAC output channel buffered/unbuffered modes
- Buffer offset calibration
- Each DAC output can be disconnected from the DAC_OUTx output pin
- DAC output connection to on chip peripherals
- Sample and Hold mode for low-power operation in Stop mode. The DAC voltage can be changed autonomously with the DMA while the device is in Stop mode.
- Voltage reference input

3.26 Voltage reference buffer (VREFBUF)

The devices embed a voltage reference buffer that can be used as voltage reference for ADCs, DACs and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports three voltages: 1.8 V, 2.048 V and 2.5 V.

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

3.27 Digital camera interface (DCMI)

The digital camera is a synchronous parallel interface able to receive a high-speed data flow from an external 8-, 10-, 12- or 14-bit CMOS camera module. It supports different data formats: YCbCr4:2:2/RGB565 progressive video and compressed data (JPEG).

This interface is for use with black and white cameras, X24 and X5 cameras, and it is assumed that all preprocessing such as resizing is performed in the camera module.

The DCMI features are:

- 8-, 10-, 12- or 14-bit parallel interface
- Embedded/external line and frame synchronization
- Continuous or snapshot mode
- Crop feature
- Supports the following data formats:
 - 8/10/12/14-bit progressive video: either monochrome or raw bayer
 - YCbCr 4:2:2 progressive video
 - RGB 565 progressive video
 - Compressed data: JPEG

3.28 Parallel synchronous slave interface (PSSI)

The PSSI peripheral and the DCMI (digital camera interface) use the same circuitry. As a result, these two peripherals cannot be used at the same time: when using the PSSI, the DCMI registers cannot be accessed, and vice versa. In addition, the PSSI and the DCMI share the same alternate functions and the same interrupt vector.

The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It enables the transmitter to send a data valid signal that indicates when the data is valid, and the receiver to output a flow control signal that indicates when it is ready to sample the data.

The PSSI peripheral main features are the following:

- Slave mode operation
- 8-bit or 16-bit parallel data input or output
- 4-word (16-byte) FIFO
- Data enable (PSSI_DE) alternate function input and ready (PSSI_RDY) alternate function output

When selected, these inputs can either enable the transmitter to indicate when the data is valid, or allow the receiver to indicate when it is ready to sample the data, or both.

3.29 True random number generator (RNG)

The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component.

The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a non-deterministic random bit generator (NDRBG).

The true random generator:

- delivers 32-bit true random numbers, produced by an analog entropy source conditioned by a NIST SP800-90B approved conditioning stage
- can be used as entropy source to construct a non-deterministic random bit generator (NDRBG)
- produces four 32-bit random samples every 412 AHB clock cycles if f_{AHB} < 77 MHz (256 RNG clock cycles otherwise)
- embeds start-up and NIST SP800-90B approved continuous health tests (repetition count and adaptive proportion tests), associated with specific error management
- can be disabled to reduce power consumption, or enabled with an automatic low-power mode (default configuration)
- has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated, and the write accesses are ignored)

3.30 HASH hardware accelerator (HASH)

The HASH is a fully compliant implementation of the secure hash algorithm (SHA-1, SHA-224, SHA-256, SHA-512) and the HMAC (keyed-hash message authentication code) algorithm. HMAC is suitable for applications requiring message authentication.

The HASH computes FIPS (Federal information processing standards) approved digests of length of 160, 224, 256, 512 bits, for messages of up to $(2^{64} - 1)$.

The HASH main features are:

- Suitable for data authentication applications, compliant with:
 - Federal Information Processing Standards Publication FIPS PUB 180-4, Secure Hash Standard (SHA-1 and SHA-2 family)
 - Federal Information Processing Standards Publication FIPS PUB 186-4, Digital Signature Standard (DSS)
 - Internet Engineering Task Force (IETF) Request For Comments RFC 2104, HMAC: Keyed-Hashing for Message Authentication and Federal Information Processing Standards Publication FIPS PUB 198-1, The Keyed-Hash Message Authentication Code (HMAC)
- Fast computation of SHA-1, SHA-224, SHA-256 and SHA-512
 - 82 (respectively 66) clock cycles for processing one 512-bit block of data using SHA-1 (respectively SHA-256) algorithm

5

- Corresponding 32-bit words of the digest from consecutive message blocks are added to each other to form the digest of the whole message
 - Automatic 32-bit words swapping to comply with the internal little-endian representation of the input bit string
 - Word swapping supported: bits, bytes, half-words and 32-bit words
- Automatic padding to complete the input bit string to fit digest minimum block size of 512 bits (16 × 32 bits)
- Single 32-bit input register associated to an internal input FIFO of sixteen 32-bit words, corresponding to one block size
- AHB slave peripheral, accessible through 32-bit word accesses only (else an AHB error is generated)
- 8 × 32-bit words (H0 to H7) for output message digest
- Automatic data flow control with support of direct memory access (DMA) using one channel. Single or fixed burst of 4 supported.
- Interruptible message digest computation, on a per-32-bit word basis
 - Re-loadable digest registers
 - Hashing computation suspend/resume mechanism, including using DMA

3.31 Timers and watchdogs

The devices include two advanced control timers, up to seven general-purpose timers, two basic timers, six low-power timers, two watchdog timers and two SysTick timers.

The table below compares the features of the advanced control, general-purpose and basic timers.

Table of Times Toutage Companies.										
Timer type	Timer	Counter resolution type Prescaler factor		DMA request generation	Capture/ compare channels	Complementary outputs				
Advanced control	TIM1, TIM8	16 bits	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3			
General- purpose	TIM2, TIM5	32 bits	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No			
General- purpose	TIM3, TIM4	16 bits	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No			
General- purpose	TIM12, TIM15	16 bits	Up	Any integer between 1 and 65536	Yes	2	1			

Table 6. Timer feature comparison

Timer type	rpe Timer Counter counter resolution type		Counter Prescaler type factor		DMA request generation	Capture/ compare channels	Complementary	
General- purpose	TIM13, TIM14, TIM16, TIM17	16 bits	Up	Any integer between 1 and 65536	Yes	1	1	
Basic	TIM6, TIM7	16 bits	Up	Any integer between 1 and 65536	Yes	0	No	

Table 6. Timer feature comparison (continued)

3.31.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers.

The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0 - 100 %)
- One-pulse mode output

In Debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs.

Many features are shared with the general-purpose TIMx timers (described in the next section) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the *Timer Link* feature for synchronization or event chaining.

3.31.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)

There are up to seven synchronizable general-purpose timers embedded in the STM32H562xx and STM32H563xx devices (see *Table 6* for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

TIM2 and TIM5

They are full-featured general-purpose timers with 32-bit auto-reload up/downcounter and 32-bit prescaler.

These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the *Timer Link* feature for synchronization or event chaining. The counters can be frozen in Debug mode.

All have independent DMA request generation and support quadrature encoders.

TIM3 and TIM4

They are full-featured general-purpose timers with 16-bit auto-reload up/downcounter and 16-bit prescaler.

These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output.

They can work together, or with the other general-purpose timers via the *Timer Link* feature for synchronization or event chaining.

The counters can be frozen in Debug mode. All have independent DMA request generation and support quadrature encoders.

TIM12, 13, 14, 15, 16 and 17

They are general-purpose timers with mid-range features.

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM12 and TIM15 have two channels and one complementary channel
- TIM13, TIM14, TIM16 and TIM17 have one channel and one complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the *Timer Link* feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in Debug mode.

3.31.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebase.

3.31.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5, LPTIM6)

The devices embed six low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wake up the system from Stop mode.

The low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 3-bit prescaler with eight possible dividing factors (1, 2, 4, 8, 16, 32, 64, 128)
- Selectable clock
 - Internal clock sources: LSE, LSI, HSI or APB clock
 - External clock source over LPTIM input (working with no LP oscillator running, used by *Pulse Counter* application)
- 16 bit ARR autoreload register
- 16 bit capture/compare register
- Continuous/One-shot mode
- Selectable software/hardware input trigger
- · Programmable digital glitch filter
- Configurable output: pulse, PWM
- Configurable I/O polarity
- Encoder mode (except on LPTIM4)
- Repetition counter
- Up to 2 independent channels (except for LPTIM4) for:
 - Input capture
 - PWM generation (edge-aligned mode)
 - One-pulse mode output
- Interrupt generation on 10 events
- DMA request generation on the following events:
 - Update event
 - Input capture

3.31.5 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and, as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in Debug mode.

3.31.6 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in Debug mode.

3.31.7 SysTick timer

The Cortex-M33 with TrustZone embeds two SysTick timers.

When TrustZone is activated, two SysTick timer are available:

- SysTick, secure instance
- SysTick, non-secure instance

DS14258 Rev 1 49/275

When TrustZone is disabled, only one SysTick timer is available. This timer (secure or non-secure) is dedicated to real-time operating systems, but can also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.32 Real-time clock (RTC), tamper and backup registers

3.32.1 Real-time clock (RTC)

The RTC supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), weekday, date, month, year, in BCD (binary-coded decimal) format
- Binary mode with 32-bit free-running counter
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month
- Two programmable alarms
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy
- Timestamp feature that can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period
- TrustZone support:
 - RTC fully securable
 - Alarm A, alarm B, wakeup timer and timestamp individual secure or non-secure configuration
 - Alarm A, alarm B, wakeup timer and timestamp individual privileged protection

The RTC is supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The RTC clock sources can be one of the following:

- 32.768 kHz external crystal (LSE)
- external resonator or oscillator (LSE)
- internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- high-speed external clock (HSE), divided by a prescaler in the RCC.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes.

All RTC events (alarm, wakeup timer, timestamp) can generate an interrupt and wakeup the device from the low-power modes.

3.32.2 Tamper and backup registers (TAMP)

The anti-tamper detection circuit is used to protect sensitive data from external attacks. 32 32-bit backup registers are retained in all low-power modes and also in VBAT mode. The backup registers, as well as other secrets in the device, are protected by this anti-tamper detection circuit with height tamper pins and nine internal tampers. The external tamper pins can be configured for edge detection, or level detection with or without filtering, or active tamper that increases the security level by auto checking that the tamper pins are not externally opened or shorted.

TAMP main features:

- A tamper detection can erase the backup registers, backup SRAM, SRAM2, caches and cryptographic peripherals.
- 32 32-bit backup registers:
 - The backup registers (TAMP_BKPxR) are implemented in the Backup domain that remains powered-on by V_{BAT} when the V_{DD} power is switched off.
- Up to 8 tamper pins for 8 external tamper detection events:
 - Active tamper mode: continuous comparison between tamper output and input to protect from physical open-short attacks
 - Flexible active tamper I/O management: from 4 meshes (each input associated to its own exclusive output) to 7 meshes (single output shared for up to 7 tamper inputs)
 - Passive tampers: ultra-low power edge or level detection with internal pull-up hardware management
 - Configurable digital filter

Note: As a tamper input, only PC13, PI8, PA0, PA1, and PA2 are functional in Standby and VBAT modes. As a tamper output, only PC13, PA1, and PI8 are functional in Standby and VBAT modes.

- Internal tamper events to protect against transient or environmental perturbation attacks
- Each tamper can be configured in two modes:
 - Hardware mode: immediate erase of secrets on tamper detection, including backup registers erase
 - Software mode: erase of secrets following a tamper detection launched by software
- Any tamper detection can generate an RTC time stamp event.
- TrustZone support:
 - Tamper secure or non-secure configuration.
 - Backup registers configuration in 3 configurable-size areas:
 - 1 read/write secure area
 - 1 write secure/read non-secure area
 - 1 read/write non-secure area
 - Secret key, stored in backup registers, protected against read and write access
- Tamper configuration and backup registers privilege protection

477

DS14258 Rev 1 51/275

Monotonic counter

3.33 Inter-integrated circuit interface (I2C)

The device embeds four I2C. Refer to *Table 7: I2C implementation* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and Master modes, multimaster capability
 - Standard-mode (Sm), with a bit rate up to 100 Kbit/s
 - Fast-mode (Fm), with a bit rate up to 400 Kbit/s
 - Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System management bus (SMBus) specification rev 3.0 compatibility:
 - Hardware PEC (packet error checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power system management protocol (PMBus) specification rev 1.3 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming
- Wakeup from Stop capability
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 7. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3	I2C4
Standard-mode (up to 100 Kbit/s)	X	Х	Х	Х
Fast-mode (up to 400 Kbit/s)	Х	Х	Х	Х
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х	Х
Independent clock	Х	Х	Х	Х
Wakeup capability	Х	Х	Х	Х

1. X: supported

3.34 Improved inter-integrated circuit (I3C)

The I3C interface handles communication between this device and others, like sensors and host processor(s), that are all connected on an I3C bus.

The I3C peripheral implements all the required features of the MIPI I3C specification v1.1. It can control all I3C bus-specific sequencing, protocol, arbitration and timing, and can be acting as controller (formerly known as master) or as target (formerly known as slave).

The I3C peripheral, acting as controller, improves the features of the I2C interface still preserving some backward compatibility: it allows an I2C target to operate on an I3C bus in legacy I2C fast-mode (Fm) or legacy I2C fast-mode plus (Fm+), provided that this latter does not perform clock stretching.

The I3C peripheral can be used with DMA in order to off-load the CPU.

Table 8. I3C peripheral controller/target features versus MIPI v1.1

Table 6. 130 periprieral controller/target reactires versus wir r v 1. 1											
Feature	MIPI 13C v1.1	I3C peripheral when controller	I3C peripheral when target	Comments							
I3C SDR message	Х	Х	Х	-							
Legacy I ² C message (Fm/Fm+)	Х	Х	-	Mandatory when controller and the I3C bus is mixed with (external) legacy I ² C target(s). Optional in MIPI v1.1 when target.							
HDR DDR message	Х	-	-	Optional in MIPI v1.1							
HDR-TSL/TSP, HDR-BT	Х	-	-	Optional in MIPI v1.1							
Dynamic address assignment	Х	Х	Х	-							
Static address	Х	Х	-	No (intended) support of I3C peripheral as a target on an I ² C bus.							
Grouped addressing	Х	Х	-	Optional in MIPI v1.1							
CCCs	Х	Х	Х	Mandatory CCCs and some optional CCCs are supported							
Error detection and recovery	Х	Х	Х	-							
In-band interrupt (with MDB)	Х	Х	Х	-							
Secondary controller	Х	Х	Х	-							
Hot-join mechanism	Х	Х	Х	-							
Target reset	Х	Х	Х	-							
Synchronous timing control	Х	Х	-	Optional in MIPI v1.1							
Asynchronous timing control 0	Х	Х	-	Optional in MIPI v1.1							
Asynchronous timing control 1,2, 3	Х	-	-	Optional in MIPI v1.1							
Device to device tunneling	Х	Х	-	Optional in MIPI v1.1							
Multi-lane data transfer	Х	Х	-	Optional in MIPI v1.1							
Monitoring device early termination	X	-	-	Optional in MIPI v1.1							

DS14258 Rev 1 53/275

3.35 Universal synchronous/asynchronous receiver transmitter (USART/UART) and low-power universal asynchronous receiver transmitter (LPUART)

The devices have six embedded universal synchronous receiver transmitters (USART1/USART2/USART3/USART6/USART10/USART11), six universal asynchronous receiver transmitters (UART4/UART5/UART7/UART8/UART9/UART12) and one low-power universal asynchronous receiver transmitter (LPUART1).

USART1/2/3/6/ UART4/5/7/8/9/ USART modes/features(1) LPUART1 10/11 12 Hardware flow control for modem Χ Х Χ Χ Χ Χ Continuous communication using DMA Multiprocessor communication Х Х Χ Х Synchronous mode (master/slave) Smartcard mode Х Single-wire half-duplex communication Х Х Х IrDA SIR ENDEC block Χ Χ LIN mode Χ Х X⁽²⁾ X⁽²⁾ X⁽²⁾ Dual-clock domain and wakeup from Stop mode Receiver timeout interrupt Χ Х Modbus communication Χ Χ Auto-baud rate detection Χ Χ Х Х Driver enable Х USART data length 7, 8 and 9 bits Χ Tx/Rx FIFO Х Х Tx/Rx FIFO size 8 bytes

Table 9. USART, UART and LPUART features

3.35.1 Universal synchronous/asynchronous receiver transmitter (USART/UART)

The USART offers a flexible means to perform full-duplex data exchange with external equipments requiring an industry standard NRZ asynchronous serial data format. A very wide range of baud rates can be achieved through a fractional baud rate generator.

The USART supports both synchronous one-way and half-duplex single-wire communications, as well as LIN (local interconnection network), Smartcard protocol, IrDA (infrared data association) SIR ENDEC specifications, and modem operations (CTS/RTS). Multiprocessor communications are also supported.

^{1.} X = supported.

^{2.} Wakeup supported from Stop mode.

High-speed data communications up to 20 Mbauds are possible by using the DMA (direct memory access) for multibuffer configuration.

The USART main features are:

- Full-duplex asynchronous communication
- NRZ standard format (mark/space)
- Configurable oversampling method by 16 or 8 to achieve the best compromise between speed and clock tolerance
- · Baud rate generator systems
- Two internal FIFOs for transmit and receive data
 Each FIFO can be enabled/disabled by software and come with a status flag.
- A common programmable transmit and receive baud rate
- Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK
- Auto baud rate detection
- Programmable data word length (7, 8 or 9 bits)
- Programmable data order with MSB-first or LSB-first shifting
- Configurable stop bits (1 or 2 stop bits)
- Synchronous Master/Slave mode and clock output/input for synchronous communications
- SPI slave transmission underrun error flag
- Single-wire half-duplex communications
- Continuous communications using DMA
- Received/transmitted bytes are buffered in reserved SRAM using centralized DMA
- Separate enable bits for transmitter and receiver
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver
- Communication control/error detection flags
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Interrupt sources with flags
- Multiprocessor communications: wakeup from Mute mode by idle line detection or address mark detection
- Autonomous functionality in Stop mode with wakeup from stop capability
- LIN master synchronous break send capability and LIN slave break detection capability
 - 13-bit break generation and 10/11 bit break detection when USART is hardware configured for LIN
- IrDA SIR encoder decoder supporting 3/16 bit duration for Normal mode
- Smartcard mode
 - Supports the T=0 and T=1 asynchronous protocols for smartcards as defined in the ISO/IEC 7816-3 standard
 - 0.5 and 1.5 stop bits for Smartcard operation
- Support for Modbus communication

DS14258 Rev 1 55/275

- Timeout feature
- CR/LF character recognition

3.35.2 Low-power universal asynchronous receiver transmitter (LPUART)

The LPUART supports bidirectional asynchronous serial communication with minimum power consumption. It also supports half-duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher-speed clock can be used to reach higher baudrates.

The LPUART interface can be served by the DMA controller.

The LPUART main features are:

- Full-duplex asynchronous communications
- NRZ standard format (mark/space)
- Programmable baud rate
- From 300 baud/s to 9600 baud/s using a 32.768 kHz clock source
- Higher baud rates can be achieved by using a higher frequency clock source
- Two internal FIFOs to transmit and receive data
 Each FIFO can be enabled/disabled by software and come with status flags for FIFOs states.
- Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK
- Programmable data word length (7 or 8 or 9 bits)
- Programmable data order with MSB-first or LSB-first shifting
- Configurable stop bits (1 or 2 stop bits)
- Single-wire half-duplex communications
- · Continuous communications using DMA
- Received/transmitted bytes are buffered in reserved SRAM using centralized DMA
- Separate enable bits for transmitter and receiver
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver
- Transfer detection flags:
 - Receive buffer full
 - Transmit buffer empty
 - Busy and end of transmission flags
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Four error detection flags:
 - Overrun error
 - Noise detection
 - Frame error

- Parity error
- Interrupt sources with flags
- Multiprocessor communications: wakeup from Mute mode by idle line detection or address mark detection
- Wakeup from Stop capability

3.36 Serial peripheral interface (SPI) / inter-integrated sound interfaces (I2S)

The devices embed six serial peripheral interfaces (SPI) that can be used to communicate with external devices while using the specific synchronous protocol. The SPI protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices.

The interface can be configured as master or slave and can operate in multi-slave or multi-master configurations. The device configured as master provides communication clock (SCK) to the slave device. The slave select (SS) and ready (RDY) signals can be applied optionally just to setup communication with concrete slave and to assure it handles the data flow properly. The Motorola data format is used by default, but some other specific modes are supported as well.

The SPI main features are:

- Full-duplex synchronous transfers on three lines
- Half-duplex synchronous transfer on two lines (with bidirectional data line)
- Simplex synchronous transfers on two lines (with unidirectional data line)
- 4-bit to 32-bit data size selection or fixed to 8-bit and 16-bit only
- Multi master or multi slave mode capability
- Dual-clock domain, separated clock for the peripheral kernel that can be independent of PCLK
- Baud rate prescaler up to kernel frequency/2 or bypass from RCC in Master mode
- Protection of configuration and setting
- Hardware or software management of SS for both master and slave
- Adjustable minimum delays between data and between SS and data flow
- Configurable SS signal polarity and timing, MISO x MOSI swap capability
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting
- Programmable number of data within a transaction to control SS and CRC
- Dedicated transmission and reception flags with interrupt capability
- SPI Motorola and TI formats support
- Hardware CRC feature can secure communication at the end of transaction by:
 - Adding CRC value in Tx mode
 - Automatic CRC error checking for Rx mode
- Error detection with interrupt capability in case of data overrun, CRC error, data underrun at slave, mode fault at master
- Two 16x or 8x 8-bit embedded Rx and TxFIFOs with DMA capability
- Programmable number of data in transaction

DS14258 Rev 1 57/275

- Configurable FIFO thresholds (data packing)
- Configurable behavior at slave underrun condition (support of cascaded circular buffers)
- Wakeup from Stop capability
- Optional status pin RDY signalizing the slave device ready to handle the data flow.

Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in Master or Slave mode, in full-duplex communication modes, and can be configured to operate with configurable resolutions as an input or output channel.

I2S main features:

- Full duplex communication
- Simplex communication (only transmitter or receiver)
- Master or slave operations
- 8-bit programmable linear prescaler
- Data length may be 16, 24 or 32 bits
- Channel length can be 16 or 32 in master, any value in slave
- Programmable clock polarity
- Error flags signaling for improved reliability: Underrun, Overrun and Frame Error
- Embedded Rx and TxFIFOs
- Supported I2S protocols:
 - I2S Philips standard
 - MSB-Justified standard (Left-Justified)
 - LSB-Justified standard (Right-Justified)
 - PCM standard (with short and long frame synchronization)
- Data ordering programmable (LSb or MSb first)
- DMA capability for transmission and reception
- Master clock can be output to drive an external audio component. The ratio is fixed at 256 x FWS (where FWS is the audio sampling frequency)

Table 10. SPI features

SPI feature	SPI1, SPI2, SPI3 (full feature set instances)	SPI4, SPI5, SPI6 (limited feature set instance)		
Data size	Configurable from 4 to 32-bit	8/16-bit		
CRC computation	CRC polynomial length configurable from 5 to 33-bit	CRC polynomial length configurable from 9 to 17-bit		
Size of FIFOs	16x 8-bit	8x 8-bit		
Number of transfered data	Unlimited, expandable	Up to 1024, no data counter		
I2S feature	Yes	No		

3.37 Serial audio interfaces (SAI)

The devices embed two SAI. Refer to *Table 11: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks that can be transmitters or receivers with their respective FIFO
- 8-word integrated FIFOs for each audio sub-block
- Synchronous or Asynchronous mode between the audio sub-blocks
- Master or slave configuration independent for both audio sub-blocks
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
- Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out
- Up to 16 slots available with configurable size and with the possibility to select which
 ones are active in the audio frame
- Number of bits by frame may be configurable
- Frame synchronization active level configurable (offset, bit length, level)
- · First active bit position in the slot is configurable
- LSB first or MSB first for data transfer
- Mute mode
- Stereo/mono audio frame capability
- Communication clock strobing edge configurable (SCK)
- Error flags with associated interrupts if enabled respectively
 - Overrun and underrun detection
 - Anticipated frame synchronization signal detection in Slave mode
 - Late frame synchronization signal detection in Slave mode
 - Codec not ready for the AC'97 mode in reception
- Interruption sources when enabled:
 - Errors
 - FIFO requests
- DMA interface with two dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

Table 11. SAI implementation

SAI features ⁽¹⁾	SAI1	SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	X	Х
Mute mode	Х	Х
Stereo/mono audio frame capability.	X	Х
16 slots	Х	Х

SAI features ⁽¹⁾	SAI1	SAI2
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	X	Х
FIFO size	X (8 words)	X (8 words)
SPDIF	Х	Х
PDM	X	-

Table 11. SAI implementation (continued)

3.38 Secure digital input/output and MultiMediaCards interface (SDMMC)

The SD/SDIO, embedded MultiMediaCard (e•MMC™) host interface (SDMMC) provides an interface between the AHB bus and SD memory cards, SDIO cards and e•MMC devices.

The MultiMediaCard system specifications are available through the MultiMediaCard association website at www.mmca.org, published by the MMCA technical committee.

SD memory card and SD I/O card system specifications are available through the SD card Association website at www.sdcard.org.

The SDMMC features include the following:

- Compliance with Embedded MultiMediaCard System Specification Version 5.1
 Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
 (HS200 SDMMC_CK speed limited to maximum allowed I/O speed) (HS400 is not supported).
- Full compatibility with previous versions of MultiMediaCards (backward compatibility).
- Full compliance with SD memory card specifications version 6.0
 (SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported).
- Full compliance with SDIO card specification version 4.0
 Card support for two different databus modes: 1-bit (default) and 4-bit
 (SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported).
- Data transfer up to 208 Mbyte/s for the 8-bit mode (Depending maximum allowed I/O speed).
- Data and command output enable signals to control external bidirectional drivers
- IDMA linked list support

The MultiMediaCard/SD bus connects cards to the host.

The current version of the SDMMC supports only one SD/SDIO/e•MMC card at any one time and a stack of e•MMC.

^{1.} X: supported

SDMMC modes/features ⁽¹⁾	SDMMC1	SDMMC2
Variable delay (SDR104, HS200)	X	X
SDMMC_CKIN	X	Х
SDMMC_CDIR, SDMMC_D0DIR	X	-
SDMMC_D123DIR	Х	-

Table 12. SDMMC features

When SDMMC peripherals are used simultaneously:

- Only one can be used in e•MMC with 8-bit bus width.
- Usage of SDMMC1 SDIO voltage switch use is mutually exclusive with SDMMC2 e•MMC with 8-bit bus width.
- If SDMMC1 has to support SDIO UHS-I modes (SDR12, SDR25, SDR50, SDR104 or DDR50), then SDMMC2 cannot support e•MMC with 8-bit bus width.
- If SDMMC2 has to support e•MMC with 8-bit bus width, then SDMMC1 can only support SDIO Default mode and High-speed mode.

3.39 Controller area network (FDCAN)

The controller area network (CAN) subsystem consists of one CAN module, a shared message RAM memory and a configuration block.

The modules (FDCAN) are compliant with ISO 11898-1: 2015 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

A 0.8-Kbyte message RAM implements filters, receives FIFOs, transmits event FIFOs and transmits FIFOs.

The FDCAN main features are:

- Conform with CAN protocol version 2.0 part A, B and ISO 11898-1: 2015, -4
- CAN FD with maximum 64 data bytes supported
- CAN error logging
- AUTOSAR and J1939 support
- Improved acceptance filtering
- 2 receive FIFOs of three payloads each (up to 64 bytes per payload)
- Separate signaling on reception of high priority messages
- Configurable transmit FIFO / queue of three payload (up to 64 bytes per payload)
- Configurable transmit Event FIFO
- Programmable loop-back test mode
- Maskable module interrupts
- Two clock domains: APB bus interface and CAN core kernel clock
- Power-down support

^{1.} X = supported.

3.40 USB full speed (USB)

USB main features

- USB specification version 2.0 full-speed compliant
- Host and device functions
- 2048bytes of dedicated SRAM data buffer memory with 32-bit access
- USB clock recovery
- Configurable number of endpoints from 1 to 8
- Cyclic redundancy check (CRC) generation/checking, non-return-to-zero inverted (NRZI) encoding/decoding and bit-stuffing
- Isochronous transfers support
- Double-buffered bulk/isochronous endpoint support
- USB suspend/resume operations
- Frame-locked clock pulse generation
- USB 2.0 Link power management support
- Battery charging specification revision 1.2 support in device

3.41 USB Type-C /USB Power Delivery controller (UCPD)

The device embeds one controller (UCPD) compliant with USB Type-C Cable and Connector Specification release 2.0 and USB Power Delivery Rev. 3.0 specifications.

The controller uses specific I/Os supporting the USB Type-C and USB power delivery requirements, featuring:

- USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
- "Dead battery" support
- USB power delivery message transmission and reception
- FRS (fast role swap) support

The digital controller handles notably:

- USB Type-C level detection with debounce, generating interrupts
- FRS detection, generating an interrupt
- Byte-level interface for USB power delivery payload, generating interrupts (DMA compatible)
- USB power delivery timing dividers (including a clock pre-scaler)
- CRC generation/checking
- 4b5b encode/decode
- Ordered sets (with a programmable ordered set mask at receive)
- Frequency recovery in receiver during preamble

The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB power delivery messages and FRS signaling.

3.42 Ethernet MAC interface with dedicated DMA controller (ETH)

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

3.43 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The devices embed a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wakeup the MCU from Stop mode on data reception.

3.44 Development support

3.44.1 Serial-wire/JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded and is a combined JTAG and serial-wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using two pins only instead of five required by the JTAG (JTAG pins can be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

4

DS14258 Rev 1 63/275

3.44.2 Embedded Trace Macrocell

The Arm Embedded Trace Macrocell (ETM) provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device.

Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The ETM operates with third party debugger software tools.

4 Pinout, pin description and alternate function

4.1 Pinout/ballout schematics

Figure 5. LQFP64 pinout

1. The above figure shows the package top view.

Figure 6. VFQFPN68 pinout VBAT ☐ 1 51 VDD PC13 🔲 2 50 🗆 VSS PC14-OSC32_IN [49 PA13 PC15-OSC32_OUT 48 🗖 PA12 PH0-OSC_IN 47 🗖 PA11 PH1-OSC_OUT 46 🏻 PA10 NRST 🗌 45 🗖 PA9 44 🗖 PA8 PC0 🗆 8 PC1 9 PC2 10 VFQFPN68 43 PC9 42 PC8 PC3 | 11 41 PC7 VSSA 🔲 12 40 PC6 39 🗖 PD12 38 🗖 PD11 PA1 🔲 15 37 🗖 PB15 36 PB14 PA2 🗆 16 PA3 35 PB13 VSS | VSD | VDD | PA4 | PA5 | PA6 | PA7 | PC4 | PC5 | PB0 | PB1 | PB1 | PB1 | PB1 | PB1 | VSS | VDD | VSS | VDD | PB1 | MSv67302V2

1. The above figure shows the package top view.

577

DS14258 Rev 1 65/275

Figure 7. WLCSP80 SMPS ballout

57

Figure 8. LQFP100 pinout

Figure 9. LQFP100 SMPS pinout

4

Figure 10. LQFP144 pinout

1. The above figure shows the package top view.

Figure 11. LQFP144 SMPS pinout

Figure 12. UFBGA169 ballout

	Figure 12. OFBGA 109 Danout												
	1	2	3	4	5	6	7	8	9	10	11	12	13
А	PE2	PI7	VDD	РВ9	РВ6	РВ4	VDDIO2	PG10	PD3	VDD	PC11	PA14	PI2
В	PC14- OSC32 _IN	PE3	vss	VCAP	воото	PG15	vss	PD7	PC12	vss	PA15	PI1	PIO
С	PC15- OSC32 OUT	PE5	PI6	PI4	PE0	РВ5	PG14	PG12	PD2	PC10	PI3	vss	VDD
D	VDD	vss	PE6	PE4	PE1	РВ7	PG13	PD5	PD0	PH14	PH15	PH13	VDDUS B
E	PF1	VBAT (PI8	PC13	PB8	РВ3	PG11	PD6	PD1	PA10	PA9	PA13	PA12
F	PF4	PF2	PF0	PI11	PF3	PF5	PG9	PD4	PC6	РС7	PG8	PA8	PA11
G	VDD	vss	PF7	PF6	PF8	PF10	PE8	PG7	PG3	PG5	PG6	PC8	PC9
Н	PH0- OSC_IN	PH1- OSC_O UT	PF9	NRST	PC3	PC5	PF13	PE10	PD15	PD11	PD14	vss	VDD
J	PC0	PC1	PC2	PA0	PA1	PF11	PF15	PE14	PD9	PB15	PD10	PG2	PG4
К	VREF-	VSSA	PH2	PA5	PA7	PB1	PG1	PE12	PB10	PH6	PB12	PD12	PD13
L	VDDA	VREF+)	PA2	PA4	РВ0	PB2	PG0	PE9	PE13	PH7	PB13	PD8	VDD
М	VDD	vss	PH5	vss	PA6	PF14	vss	PE11	PB11	PH8	PH10	vss	PB14
N	PH4	РН3	PA3	VDD	PC4	PF12	VDD	РЕ7	PE15	VCAP	VDD	PH11	PH12
'													MSv68827V2

\7/

DS14258 Rev 1 71/275

Figure 13. UFBGA169 SMPS ballout

4

Figure 14. LQFP176 pinout

1. The above figure shows the package top view.

DS14258 Rev 1 73/275

Figure 15. LQFP176 SMPS pinout

1. The above figure shows the package top view.

74/275 DS14258 Rev 1

Figure 16. UFBGA176+25 ballout

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	РВ8) PB5	PG14	PG13	РВ4	РВЗ	PD7	PC12	PA15	PA14	PA13
В	PE4	PE5	PE6	РВ9	РВ7) (PB6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
С	VBAT	PI7 (PI6	PI5	VDD	VCAP	VDD	VDDIO2	VDD	PG9	PD5	PD1	PI3	Pl2	PA11
D	PC13	PI8	PI9	PI4	vss	ВООТО	vss	vss	vss	PD4	PD3	PD2	PH15	PI1	PA10
E	PC14- OSC32 IN	PF0 (PI10	PI11								PH13	PH14	PIO	PA9
F	PC15- OSC32 OUT	vss	VDD	PH2		vss	vss	vss	vss	vss		vss	VDD	PC9	PA8
G	PH0- OSC_IN	(vss)	VDD	РН3		vss	vss	vss	vss	vss		vss	VDD	PC8	РС7
Н	PH1- OSC_O UT	PF2	PF1	PH4		vss	vss	vss	vss	vss		vss	VDDUS B	PG8	PC6
J	NRST	PF3	PF4	PH5		vss	vss	vss	vss	vss		VDD	VDD	PG7	PG6
К	PF7	PF6	PF5	VDD		vss	vss	vss	vss	vss		PH12	PG5	PG4	PG3
L	PF10	PF9 (PF8	vss			پيستور	,				PH11	PH10	PD15	PG2
М	VSSA	PC0 (PC1	PC2	РС3)(PB2)	PG1	vss	vss	VCAP	PH6	РН8	РН9	PD14	PD13
N	VREF-	PA1 (PA0	PA4	PC4	PF13	PG0)(VDD)	VDD	VDD	PE13	РН7	PD12	PD11	PD10
Р	(VREF+)	PA2	PA6	PA5	PC5	PF12	PF15	PE8	PE9	PE11	PE14	PB12	PB13	PD9	PD8
R	VDDA	PA3	PA7	РВ1	РВ0	PF11	PF14) (PE7)	PE10	PE12	PE15	PB10	(PB11)	PB14	PB15
	_														MSv67306V3

1. The above figure shows the package top view.

47/

DS14258 Rev 1

75/275

Figure 17. UFBGA176+25 SMPS ballout

					rigui	e 17.	OFBG	4170+4	23 SIVIE	3 Dali	out				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
											$\overline{}$	/		$\overline{}$	
Α	PI7	PI5	VCAP	PB9	ВООТО	PB5) (PG15)	PG13	PG10	PD7	PD5	PD3)(PD1)	PI3	(PI1)
		\sim	\geq	\sim	\sim	\sim	\sim	\sim	\geq	\geq	\geq	\leq	\sim	\geq	\times
В	(VBAT	(PE3)	(PI4)	(PE1	PB8	PB6)(PB3)	(PG12)	PG9	PD6	PD4	PD0) (PA14)	Pl2	(PH13)
			\geq	\sim	\geq		\geq	\geq	\geq	\geq	\geq			\geq	\geq
С	vss	PE6	(PE4)	PI6	(PE0) (РВ7	PB4	PG13	(PG11)	PD2	PC12	PC11	(PA15	(PH15)	PA12
	/PC15-\	/PC14-\	$\overline{\wedge}$	\overline{A}	\nearrow	\mathcal{I}	\mathcal{I}	\overline{A}	\overline{A}	$\overline{\wedge}$	\overline{A}	$\overline{}$	\mathcal{I}	$\overline{\wedge}$	A
D	OSC32_ OUT	OSC32_ IN	PE5	PE2	VDD	vss	(VDDIO2	VDD	vss	VDD	vss	PC10	PH14	vss	PA11
E	PI9	PI8	PC13	VDD								VDD	PA13	PA10	PA9
				VDD /								VDD	/ FAIS		TA9
F	PF1	PF0	PI11	PI10		vss	vss	vss	vss	vss		VDD33U	PC9	PC8	PA8
-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		PIII		\v_>>	/\v_00	(NO)	(NO)	(NO)		SB			PAO
							V						V\	\langle	
G	PF4	PF3	PF2	vss		VSS	vss	VSS	VSS	vss		vss	PC7	PC6	PG8
Н	PF6	PF8	PF5	VDD		vss	vss	vss	vss	vss		vss	PG7	PG3	PG5
"	PF6			VDD		1000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(NO.)	()	()				PG3	PG5
J	PH0-	PH1- OSC_O	PF9	PF10	i	vss	vss	vss	vss	vss		VDD	PD15	PG6	PG4
	OSC_IN	UT	Ų.				\ <u></u>	\mathcal{L}		<u>ٽ</u>					
к	vss	PF7	NRST	PC2		vss	vss	vss	vss	vss		PD10	PD14	PD12	PG2
		\searrow	\searrow	\searrow			$' \setminus \mathcal{I}$	\/	\/			\searrow	$^{\prime}\searrow$	\searrow	$\searrow 1$
L	PC0	PC1	PA1	VDD								PB12	PD9	PD11	PD13
		\searrow	\searrow	\searrow	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 	,	, .		$^{\prime}\searrow$	\searrow	\searrow
М	VDDA	VSSA	PA2	vss	PA4	VDD	vss	(VDD)	vss	PB10	VDD	PH9	PH12	PB15	PD8
		\searrow	\searrow	\searrow			\searrow	\searrow	\searrow	\searrow	\searrow		\searrow	\searrow	≤ 1
N	VREF+	(VREF-)	PC3	PC4	PA3	PB1	PF12	PF15	PE9	PE14	PE15	PB11	PH8	PH10	PB14
		\searrow	\searrow	\searrow	\searrow	\mathbf{X}	$^{\prime}\searrow$	\searrow	\searrow	\searrow	\searrow	\searrow	$^{\prime}\searrow$	\searrow	\searrow
Р	PH5	PA0	PH3	PC5	PA6	PB2	PF13	PG1	PE8	PE11	PE13	VSSSM	PH6	PH7	PH11
		\searrow	\searrow	\searrow	\searrow		\searrow	\searrow	\searrow	\searrow	\searrow			\searrow	≤ 1
R	PH4	PH2	PA5	PA7	РВ0	PF11	PF14	PG0	PE7	PE10	PE12	VLXSM PS	VDDSM PS	VCAP	PB13
															MSv67300V2
L															

^{1.} The above figure shows the package top view.

4.2 Pin description

Table 13. Legend/abbreviations used in the pinout table

	Name	Abbreviation	Definition
Pi	n name		ed in brackets below the pin name, the pin function during reset is the same as the actual pin name
		S	Supply pin
P	in type	1	Input only pin
		I/O	Input/output pin
		FT	5V-tolerant I/O
		TT	3.6V-tolerant I/O
		RST	Bidirectional reset pin with embedded weak pull-up resistor
			Option for TT or FT I/Os ⁽¹⁾
		_a	I/O, with analog switch function supplied by V _{DDA}
I/O	structure	_c	I/O with USB Type-C power delivery function
		_d	I/O with USB Type-C power delivery dead battery function
		_f	I/O, Fm+ capable
		_h	I/O with high-speed low-voltage mode
		_s	I/O supplied only by V _{DDIO2}
		_t	I/O with tamper function functional in VBAT mode
		_u	I/O, with USB function supplied by V _{DDUSB}
	Notes	Unless otherwise specified reset.	by a note, all I/Os are set as analog inputs during and after
Pin	Alternate functions	Functions selected through	n GPIOx_AFR registers
functions		Functions directly selected	/enabled through peripheral registers

^{1.} The related I/O structures in the table below are a concatenation of various options. Examples: FT_hat, FT_fs, FT_u, TT_a.

					Pin n	umbe	r ⁽¹⁾⁽²⁾						er		-			
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	1	C3	1	D4	-	1	1	A1	1	A2	-	PE2	I/O	FT_h	-	TRACECLK, LPTIM1_IN2, SAI1_CK1, SPI4_SCK, SAI1_MCLK_A, USART10_RX, UART8_TX, OCTOSPI1_IO2, ETH_MII_TXD3, FMC_A23, DCMI_D3/PSSI_D3, EVENTOUT	-
-	2	2	D4	2	B2	-	2	2	B2	2	A1	-	PE3	I/O	FT_h	-	TRACED0, TIM15_BKIN, SAI1_SD_B, USART10_TX, FMC_A19, EVENTOUT	TAMP_IN6/TAMP_OUT3
-	3	3	D3	3	С3	-	3	3	D4	3	B1	-	PE4	I/O	FT_h	-	TRACED1, SAI1_D2, TIM15_CH1N, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4/PSSI_D4, EVENTOUT	TAMP_IN7/TAMP_OUT8
-	4	4	C2	4	D3	-	4	4	C2	4	B2	-	PE5	I/O	FT_h	-	TRACED2, SAI1_CK2, TIM15_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6/PSSI_D6, EVENTOUT	TAMP_IN8/TAMP_OUT7
-	5	5	D2	5	C2	-	5	5	D3	5	В3	-	PE6	I/O	FT_h	-	TRACED3, TIM1_BKIN2, SAI1_D1, TIM15_CH2, SPI4_MOSI, SAI1_SD_A, SAI2_MCLK_B, FMC_A22, DCMI_D7/PSSI_D7, EVENTOUT	TAMP_IN3/TAMP_OUT6
A1	ı	-	-	-	-	ı	-	-	-	ı	-	-	VDD	S	ı	-	-	-
В8	-	-	-	-	-	-	-	-	-	-	-	-	VSS	S	-	-	-	-
B10	6	6	C1	6	B1	1	6	6	E2	6	C1	1	VBAT	S	-	-	-	-
D2	-	-	-	-	-	-	-	-	-	-	-	-	VSS	S	-	-	-	-

Table 14. STM32H562xx and STM32H563xx pin/ball definition

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

								17. 0	1 1110	21100		una (1111021100	2VV P	Jiii/Daii	uen	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	E4	7	E2	-	-	-	E3	7	D2	-	PI8	I/O	FT_t	(5)	EVENTOUT	TAMP_IN2/TAMP_OUT3, RTC_OUT2, WKUP3
C9	7	7	E3	8	E3	2	7	7	E4	8	D1	2	PC13	I/O	FT_t	(5)	EVENTOUT	TAMP_IN1/TAMP_OUT2/ TAMP_OUT3, RTC_OUT1/ RTC_TS, WKUP4
G9	1	1	1	-	-	-	-	1	-	1	1	-	VSS	S	-	-	-	-
D10	8	8	D1	9	D2	3	8	8	B1	9	E1	3	PC14- OSC32_ IN (OSC32_IN)	I/O	FT	-	EVENTOUT	OSC32_IN
F10	0	9	E1	10	D1	4	0	9	C1	10	F1	4	PC15- OSC32_OU T (OSC32_O UT)	I/O	FT	-	EVENTOUT	OSC32_OUT
-	1	-	-	11	E1	-	-	-	-	11	D3	-	PI9	I/O	FT_h	-	UART4_RX, FDCAN1_RX, EVENTOUT	-
-	ı	ı	ı	12	F4	-	-	ı	ı	12	E3	-	PI10	I/O	FT_h	-	FDCAN1_RX, ETH_MII_RX_ER, PSSI_D14, EVENTOUT	-
-	-	-	-	13	F3	-	-	-	F4	13	E4	-	PI11	I/O	FT	-	PSSI_D15, EVENTOUT	TAMP_IN4/TAMP_OUT5
-	1	-	B2	14	C1	-	1	-	D2	14	D5	-	VSS	S	-	-	-	-
-	-	-	B1	15	D5	-	-	-	D1	15	C5	-	VDD	S	-	-	-	-
-	-	10	E2	16	F2	-	-	10	F3	16	E2	-	PF0	I/O	FT_f	-	I2C2_SDA, FMC_A0, LPTIM5_CH1, EVENTOUT	-
-	-	11	F3	17	F1	-	-	11	E1	17	Н3	-	PF1	I/O	FT_f	-	I2C2_SCL, FMC_A1, LPTIM5_CH2, EVENTOUT	-

						Т	able	14. S	TM3	2H56	2xx	and S	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						ē					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	12	F4	18	G3	-	-	12	F2	18	H2	-	PF2	I/O	FT_h	-	LPTIM3_CH2, LPTIM3_IN2, I2C2_SMBA, UART12_TX, USART11_CK, FMC_A2, LPTIM5_IN1, EVENTOUT	-
-	-	13	G6	19	G2	-	-	13	F5	19	J2	-	PF3	I/O	FT_h	-	LPTIM3_IN1, USART11_TX, FMC_A3, LPTIM5_IN2, EVENTOUT	-
-	-	14	G5	20	G1	-	-	14	F1	20	J3	-	PF4	I/O	FT_h	-	LPTIM3_ETR, USART11_RX, FMC_A4, EVENTOUT	-
-	-	15	G3	21	НЗ	-	-	15	F6	21	КЗ	-	PF5	I/O	FT_fh	-	LPTIM3_CH1, I2C4_SCL, I3C1_SCL, UART12_RX, USART11_CTS/USART11_NSS, FMC_A5, LPTIM3_IN1, EVENTOUT	-
H2	10	16	F2	22	G4	-	10	16	G2	22	F2	-	VSS	S	-	-	-	-
A7	11	17	G1	23	E4	-	11	17	G1	23	F3	-	VDD	S	-	-	-	-
-	1	18	G7	24	H1	ı	-	18	G4	24	K2	-	PF6	I/O	FT_h	-	TIM16_CH1, SPI5_NSS, SAI1_SD_B, UART7_RX, OCTOSPI1_IO3, LPTIM5_CH1, EVENTOUT	-
-	-	19	F1	25	K2	-	-	19	G3	25	K1	-	PF7	I/O	FT_h	-	TIM17_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_TX, OCTOSPI1_IO2, LPTIM5_CH2, EVENTOUT	-

					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	NFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	20	G4	26	H2	-	-	20	G5	26	L3	-	PF8	I/O	FT_h	ı	TIM16_CH1N, SPI5_MISO, SAI1_SCK_B, UART7_RTS, TIM13_CH1, OCTOSPI1_IO0, LPTIM5_IN1, EVENTOUT	-
-	-	21	G2	27	J3	-	-	21	НЗ	27	L2	-	PF9	I/O	FT_h	ı	TIM17_CH1N, SPI5_MOSI, SAI1_FS_B, UART7_CTS, TIM14_CH1, OCTOSPI1_IO1, LPTIM5_IN2, EVENTOUT	-
-	1	22	H4	-	J4	1	-	22	G6	28	L1	i	PF10	I/O	FT_h	i	TIM16_BKIN, SAI1_D3, PSSI_D15, OCTOSPI1_CLK, DCMI_D11/PSSI_D11, EVENTOUT	•
K10	12	23	H1	28	J1	5	12	23	H1	29	G1	5	PH0- OSC_IN(PH 0)	I/O	FT	ı	EVENTOUT	OSC_IN
J9	13	24	J1	29	J2	6	13	24	H2	30	H1	6	PH1- OSC_OUT(PH1)	I/O	FT	ı	EVENTOUT	OSC_OUT
F8	14	25	НЗ	30	K3	7	14	25	H4	31	J1	7	NRST	I/O	RST	-	-	-
Н8	15	26	J2	31	L1	8	15	26	J1	32	M2	8	PC0	I/O	FT_a	-	TIM16_BKIN, SAI1_MCLK_A, SPI2_RDY, SAI2_FS_B, FMC_A25, OCTOSPI1_IO7, FMC_SDNWE, EVENTOUT	ADC12_INP10

						T	able	14. S	TM3	2H56	2xx	and S	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						Je					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
G7	16	27	J3	32	L2	9	16	27	J2	33	М3	9	PC1	I/O	FT_ah	1	TRACED0, SAI1_D1, SPI2_MOSI/I2S2_SDO, SAI1_SD_A, USART11_RTS, SAI2_SD_A, SDMMC2_CK, OCTOSPI1_IO4, ETH_MDC, EVENTOUT	ADC12_INP11, ADC12_INN10, TAMP_IN3/TAMP_OUT5, WKUP6
M10	17	28	K1	33	K4	10	17	28	J3	34	M4	10	PC2	I/O	FT_a	-	PWR_CSLEEP, TIM17_CH1, TIM4_CH4, SPI2_MISO/I2S2_SDI, OCTOSPI1_I05, OCTOSPI1_IO2, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT	ADC12_INP12, ADC12_INN11
L9	18	29	K2	34	N3	11	18	29	H5	35	M5	11	PC3	I/O	FT_a	-	PWR_CSTOP, SAI1_D3, LPTIM3_CH1, SPI2_MOSI/I2S2_SDO, OCTOSPI1_IO6, OCTOSPI1_IO0, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT	ADC12_INP13, ADC12_INN12
G1	-	-	-	35	H4	-	-	30	M1	36	G3	-	VDD	S	-	-	-	-
P2	-	-	H2	-	K1	-	-	-	M2	-	G2	-	VSS	S	-	-	-	-
N9	19	30	L1	36	M2	12	19	31	K2	37	M1	12	VSSA	S	-	-	-	-
-	-	-	L2	-	N2	-	20	-	K1	-	N1	-	VREF-	S	-	-	-	-
-	20	31	M2	37	N1	-	21	32	L2	38	P1	-	VREF+	S	-	-	-	-
P10	21	32	M1	38	M1	13	22	33	L1	39	R1	13	VDDA	S	-	-	-	-

					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
K8	22	33	КЗ	39	P2	14	23	34	J4	40	N3	14	PA0	I/O	FT_at	(5)	TIM2_CH1, TIM5_CH1, TIM8_ETR, TIM15_BKIN, SPI6_NSS, SPI3_RDY, USART2_CTS/USART2_NSS, UART4_TX, SDMMC2_CMD, SAI2_SD_B, ETH_MII_CRS, TIM2_ETR, EVENTOUT	ADC12_INP0, ADC12_INN1, TAMP_IN2/TAMP_OUT1, WKUP1
J7	23	34	H5	40	L3	15	24	35	J5	41	N2	15	PA1	I/O	FT_aht	(5)	TIM2_CH2, TIM5_CH2, TIM15_CH1N, LPTIM1_IN1, OCTOSPI1_DQS, USART2_RTS, UART4_RX, OCTOSPI1_IO3, SAI2_MCLK_B, ETH_MII_RX_CLK/ETH_RMII_R EF_CLK, EVENTOUT	ADC12_INP1, TAMP_IN5/TAMP_OUT4
M8	24	35	L3	41	МЗ	16	25	36	L3	42	P2	16	PA2	I/O	FT_hat	(5)	TIM2_CH3, TIM5_CH3, TIM15_CH1, LPTIM1_IN2, USART2_TX, SAI2_SCK_B, ETH_MDIO, EVENTOUT	ADC12_INP14, TAMP_IN4/TAMP_OUT3, WKUP2
-	-	-	J4	42	R2	-	-	-	K3	43	F4	-	PH2	I/O	FT_h	-	LPTIM1_IN2, OCTOSPI1_IO4, SAI2_SCK_B, ETH_MII_CRS, FMC_SDCKE0, EVENTOUT	-
H10	-	-	-	-	L4	-	-	-	-	-	K4	-	VDD	S	-	-	-	-
P8	-	-	-	-	M4	-	-	-	-	-	L4	-	VSS	S	-	-	-	-
-	-	-	N2	43	P3	-	-	-	N2	44	G4	-	PH3	I/O	FT_ah	-	OCTOSPI1_IO5, SAI2_MCLK_B, ETH_MII_COL, FMC_SDNE0, EVENTOUT	-

						T	able	14. S	тмз	2H56	2xx	and S	STM32H56	3хх ј	oin/ball	def	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						Je.					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	-	N1	-	R1	-	-	-	N1	45	H4	-	PH4	I/O	FT_fa	-	I2C2_SCL, SPI5_RDY, SPI6_RDY, PSSI_D14, EVENTOUT	-
-	1	-	L4	-	P1	-	-	-	МЗ	46	J4	-	PH5	I/O	FT_fa	-	I2C2_SDA, SPI5_NSS, SPI6_RDY, FMC_SDNWE, EVENTOUT	-
T10	25	36	K4	44	N5	17	26	37	N3	47	R2	17	PA3	I/O	FT_ah	-	TIM2_CH4, TIM5_CH4, OCTOSPI1_CLK, TIM15_CH2, SPI2_NSS/I2S2_WS, SAI1_SD_B, USART2_RX, ETH_MII_COL, EVENTOUT	ADC12_INP15
-	26	37	М3	45	M7	18	27	38	M4	48	M8	18	VSS	S	-	-	-	-
R1	27	38	N3	46	M6	19	28	39	N4	49	N8	19	VDD	S	-	-	-	-
R9	28	39	M4	47	M5	20	29	40	L4	50	N4	20	PA4	I/O	TT_a	-	TIM5_ETR, LPTIM2_CH1, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, SPI6_NSS, DCMI_HSYNC/PSSI_DE, EVENTOUT	ADC12_INP18, DAC1_OUT1
L7	29	40	J5	48	R3	21	30	41	K4	51	P4	21	PA5	I/O	TT_ah	-	TIM2_CH1, TIM8_CH1N, SPI1_SCK/I2S1_CK, SPI6_SCK, ETH_MII_TX_EN/ETH_RMII_TX _EN, PSSI_D14, TIM2_ETR, EVENTOUT	ADC12_INP19, ADC12_INN18, DAC1_OUT2

					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
Н6	30	41	N4	49	P5	22	31	42	M5	52	P3	22	PA6	I/O	FT_ah	-	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO/I2S1_SDI, OCTOSPI1_IO3, USART11_TX, SPI6_MISO, TIM13_CH1, DCMI_PIXCLK/PSSI_PDCK, EVENTOUT	ADC12_INP3
K6	31	42	K5	50	R4	23	32	43	K5	53	R3	23	PA7	I/O	FT_ah	-	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SDO, USART11_RX, SPI6_MOSI, TIM14_CH1, OCTOSPI1_IO2, ETH_MII_RX_DV/ETH_RMII_CR S_DV, FMC_SDNWE, FMC_NWE, EVENTOUT	ADC12_INP7, ADC12_INN3
M6	-	-	L5	51	N4	24	33	44	N5	54	N5	24	PC4	I/O	FT_a	-	TIM2_CH4, SAI1_CK1, LPTIM2_ETR, I2S1_MCK, USART3_RX, ETH_MII_RXD0/ETH_RMII_RXD 0, FMC_SDNE0, EVENTOUT	ADC12_INP4
N7	-	-	M5	52	P4	25	34	45	Н6	55	P5	25	PC5	I/O	FT_ah	-	TIM1_CH4N, SAI1_D3, PSSI_D15, SAI1_FS_A, UART12_RTS, OCTOSPI1_DQS, ETH_MII_RXD1/ETH_RMII_RXD 1, FMC_SDCKE0, EVENTOUT	ADC12_INP8, ADC12_INN4
Т8	-	-	-	-	M8	-	-	-	-	-	-	-	VDD	S	-	-	-	-

						T	able	14. S	тмз	2H56	2xx	and S	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						Je					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
R7	32	43	N5	53	R5	26	35	46	L5	56	R5	26	PB0	I/O	FT_ah	-	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, OCTOSPI1_IO1, USART11_CK, UART4_CTS, ETH_MII_RXD2, LPTIM3_CH1, EVENTOUT	ADC12_INP9, ADC12_INN5
P6	33	44	H6	54	N6	27	36	47	K6	57	R4	27	PB1	I/O	FT_ah	-	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, OCTOSPI1_IO0, ETH_MII_RXD3, LPTIM3_CH2, EVENTOUT	ADC12_INP5
L5	34	45	N6	55	P6	28	37	48	L6	58	M6	28	PB2	I/O	FT_ah	-	RTC_OUT2, SAI1_D1, TIM8_CH4N, SPI1_RDY, LPTIM1_CH1, SAI1_SD_A, SPI3_MOSI/I2S3_SDO, OCTOSPI1_CLK, OCTOSPI1_DQS, SDMMC1_CMD, LPTIM5_ETR, EVENTOUT	LSCO
-	-	46	J6	56	R6	-	-	49	J6	59	R6	-	PF11	I/O	FT_ah	-	SPI5_MOSI, OCTOSPI1_NCLK, SAI2_SD_B, FMC_NRAS, DCMI_D12/PSSI_D12, LPTIM6_CH1, EVENTOUT	ADC1_INP2
-	-	47	K6	57	N7	ı	-	50	N6	60	P6	-	PF12	I/O	FT_ah	-	FMC_A6, LPTIM6_CH2, EVENTOUT	ADC1_INP6, ADC1_INN2
-	-	48	M7	58	-	1	-	51	M7	61	-	-	VSS	S	-	-	-	-
-	-	49	N7	59	-	-	-	52	N7	62	N9	-	VDD	S	-	-	-	-
-	-	50	H7	60	P7	-	-	53	H7	63	N6	-	PF13	I/O	FT_ah	-	I2C4_SMBA, FMC_A7, LPTIM6_IN1, EVENTOUT	ADC2_INP2

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	51	L6	61	R7	-	-	54	M6	64	R7	1	PF14	I/O	FT_fah	-	FMC_A8, LPTIM6_IN2, EVENTOUT	ADC2_INP6, ADC2_INN2
-	-	52	J7	62	N8	-	-	55	J7	65	P7	-	PF15	I/O	FT_fh	-	I2C4_SDA, I3C1_SDA, FMC_A9, EVENTOUT	-
-	-	53	M6	63	R8	-	-	56	L7	66	N7	-	PG0	I/O	FT_h	-	UART9_RX, FMC_A10, LPTIM4_IN1, EVENTOUT	-
-	-	54	K7	64	P8	-	-	57	K7	67	M7	-	PG1	I/O	FT_h	-	SPI2_MOSI/I2S2_SDO, UART9_TX, FMC_A11, EVENTOUT	-
Т6	35	55	L7	65	R9	1	38	58	N8	68	R8	1	PE7	I/O	FT_ah	-	TIM1_ETR, UART12_RTS, UART7_RX, OCTOSPI1_IO4, FMC_D4/FMC_AD4, EVENTOUT	-
N5	36	56	J8	66	P9	-	39	59	G7	69	P8	-	PE8	I/O	FT_ah	-	TIM1_CH1N, UART12_CTS/UART12_NSS, UART7_TX, OCTOSPI1_IO5, FMC_D5/FMC_AD5, EVENTOUT	-
R5	37	57	N8	67	N9	-	40	60	L8	70	P9	1	PE9	I/O	FT_ah	-	TIM1_CH1, UART12_RX, UART7_RTS, OCTOSPI1_IO6, FMC_D6/FMC_AD6, EVENTOUT	-
-	-	58	-	68	-	-	-	61	-	71	-	-	VSS	S	-	-	-	-
-	-	59	-	69	-	-	-	62	-	72	-	-	VDD	S	-	-	-	-

						T	able	14. S	TM3	2H56	2xx	and s	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						ē					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
M4	38	60	L8	70	R10	-	41	63	Н8	73	R9	-	PE10	I/O	FT_ah	-	TIM1_CH2N, UART12_TX, UART7_CTS, OCTOSPI1_IO7, FMC_D7/FMC_AD7, EVENTOUT	-
-	39	61	M8	71	P10	-	42	64	M8	74	P10	-	PE11	I/O	FT_ah	•	TIM1_CH2, SPI1_RDY, SPI4_NSS, OCTOSPI1_NCS, SAI2_SD_B, FMC_D8/FMC_AD8, EVENTOUT	-
-	40	62	M9	72	R11	-	43	65	K8	75	R10	-	PE12	I/O	FT_h	-	TIM1_CH3N, SPI4_SCK, SAI2_SCK_B, FMC_D9/FMC_AD9, EVENTOUT	-
-	41	63	K8	73	P11	-	44	66	L9	76	N11	-	PE13	I/O	FT_h	-	TIM1_CH3, SPI4_MISO, SAI2_FS_B, FMC_D10/FMC_AD10, EVENTOUT	-
-	42	64	J9	74	N10	-	45	67	J8	77	P11	-	PE14	I/O	FT_h	-	TIM1_CH4, SPI4_MOSI, SAI2_MCLK_B, FMC_D11/FMC_AD11, EVENTOUT	-
-	43	65	L9	75	N11	-	46	68	N9	78	R11	-	PE15	I/O	FT_h	-	TIM1_BKIN, TIM1_CH4N, USART10_CK, FMC_D12/FMC_AD12, EVENTOUT	-

						T	able	14. S	TM 3	2H56	2xx	and \$	STM32H56	3xx p	oin/ball	def	inition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						Ē					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
P4	44	66	K9	76	M10	29	47	69	K9	79	R12	29	PB10	I/O	FT_f	-	TIM2_CH3, LPTIM3_CH1, LPTIM2_IN1, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, OCTOSPI1_NCS, ETH_MII_RX_ER, EVENTOUT	-
-	45	67	L10	77	N12	-	-	-	M9	80	R13	30	PB11	I/O	FT_f	-	TIM2_CH4, LPTIM2_ETR, I2C2_SDA, SPI2_RDY, SPI4_RDY, USART3_RX, ETH_MII_TX_EN/ETH_RMII_TX _EN, FMC_NBL1, EVENTOUT	-
T4	46	68	N9	78	R12	-	-	-	-	-	-	-	VLXSMPS	S	-	-	-	-
R3	47	69	N10	79	R13	-	-	-	-	-	-	-	VDDSMPS	S	-	-	-	-
N3	48	70	M10	80	P12	ı	-	-	-	-	-	1	VSSSMPS	S	-	-	-	-
T2	49	71	N11	81	R14	30	48	70	N10	81	M10	31	VCAP	S	-	-	-	-
-	50	72	M11	82	M9	31	49	71	M12	82	M9	32	VSS	S	-	-	-	-
-	51	73	N12	83	M11	32	50	72	N11	83	N10	33	VDD	S	-	-	-	-
-	-	-	N13	84	P13	-	-	-	K10	84	M11	-	PH6	I/O	FT	-	TIM1_CH3N, TIM12_CH1, TIM8_CH1, I2C2_SMBA, SPI5_SCK, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8/PSSI_D8, EVENTOUT	-
-	-	-	L11	85	P14	-	-	-	L10	85	N12	-	PH7	I/O	FT_f	-	TIM1_CH3, TIM8_CH1N, I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9/PSSI_D9, EVENTOUT	-

						T	able	14. S	STM3	2H56	2xx	and s	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						ī.					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	M12	-	N13	-	-	-	M10	86	M12	-	PH8	I/O	FT_fh	-	TIM1_CH2N, TIM5_ETR, TIM8_CH2, I2C3_SDA, SPI5_MOSI, DCMI_HSYNC/PSSI_DE, EVENTOUT	-
-	1	1	M13	86	M12	1	-	-	1	87	M13	-	PH9	I/O	FT_h	-	TIM1_CH2, TIM12_CH2, TIM8_CH2N, I2C3_SMBA, SPI5_NSS, DCMI_D0/PSSI_D0, EVENTOUT	-
-	-	-	K10	87	N14	-	-	-	M11	88	L13	-	PH10	I/O	FT_h	-	TIM1_CH1N, TIM5_CH1, TIM8_CH3, I2C4_SMBA, SPI5_RDY, DCMI_D1/PSSI_D1, EVENTOUT	-
-	-	ı	L13	88	P15	1	-	ı	N12	89	L12	ı	PH11	I/O	FT_fh	-	TIM1_CH1, TIM5_CH2, TIM8_CH3N, I2C4_SCL, I3C1_SCL, DCMI_D2/PSSI_D2, EVENTOUT	-
-	-	-	L12	89	M13	-	-	-	N13	90	K12	-	PH12	I/O	FT_fh	-	TIM1_BKIN, TIM5_CH3, TIM8_BKIN, I2C4_SDA, I3C1_SDA, TIM8_CH4N, DCMI_D3/PSSI_D3, EVENTOUT	-
-	-	-	-	90	H12	•	-	-	-	-	-	-	VSS	S	-	-	-	-
-	-	-	-	91	J12	-	-	-	L13	91	J12	-	VDD	S	-	-	-	-

					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
L3	-	-	K11	92	L12	33	51	73	K11	92	P12	34	PB12	I/O	FT_fh	1	TIM1_BKIN, OCTOSPI1_NCLK, I2C2_SDA, SPI2_NSS/I2S2_WS, UCPD1_FRSTX, USART3_CK, FDCAN2_RX, ETH_MII_TXD0/ETH_RMII_TXD 0, UART5_RX, EVENTOUT	-
M2	52	74	K12	93	R15	34	52	74	L11	93	P13	35	PB13	I/O	FT_c	1	TIM1_CH1N, LPTIM3_IN1, LPTIM2_CH1, I2C2_SMBA, SPI2_SCK/I2S2_CK, USART3_CTS/USART3_NSS, FDCAN2_TX, SDMMC1_D0, UART5_TX, EVENTOUT	UCPD1_CC1
N1	53	75	J10	94	N15	35	53	75	M13	94	R14	36	PB14	I/O	FT_c	1	TIM1_CH2N, TIM12_CH1, TIM8_CH2N, USART1_TX, SPI2_MISO/I2S2_SDI, USART3_RTS, UART4_RTS, SDMMC2_D0, LPTIM3_ETR, EVENTOUT	UCPD1_CC2
L1	54	76	H10	95	M14	36	54	76	J10	95	R15	37	PB15	I/O	FT_h	-	RTC_REFIN, TIM1_CH3N, TIM12_CH2, TIM8_CH3N, USART1_RX, SPI2_MOSI/I2S2_SDO, USART11_CTS/USART11_NSS, UART4_CTS, SDMMC2_D1, OCTOSPI1_CLK, ETH_MII_TXD1/ETH_RMII_TXD 1, DCMI_D2/PSSI_D2, UART5_RX, EVENTOUT	PVD_IN

						T	able	14. S	TM3	2H56	2xx	and S	STM32H56	3xx į	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						ē					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	55	77	J11	96	M15	-	55	77	L12	96	P15	-	PD8	I/O	FT_h	-	USART3_TX, FMC_D13/FMC_AD13, EVENTOUT	-
-	-	-	-	-	G12	-	-	-	-	-	-	-	VSS	S	-	-	-	-
-	56	78	Н9	97	L13	-	56	78	J9	97	P14	-	PD9	I/O	FT_h	-	USART3_RX, FDCAN2_RX, FMC_D14/FMC_AD14, EVENTOUT	-
-	57	79	K13	98	K12	-	57	79	J11	98	N15	-	PD10	I/O	FT_h	-	LPTIM2_CH2, USART3_CK, FMC_D15/FMC_AD15, EVENTOUT	-
-	58	80	Н8	99	L14	-	58	80	H10	99	N14	38	PD11	I/O	FT_h	-	SAI1_CK1, LPTIM2_IN2, I2C4_SMBA, USART3_CTS/USART3_NSS, UART4_RX, OCTOSPI1_IO0, SAI2_SD_A, FMC_A16/FMC_CLE, EVENTOUT	-
-	59	81	H11	100	K14	-	59	81	K12	100	N13	39	PD12	1/0	FT_fh	-	LPTIM1_IN1, TIM4_CH1, LPTIM2_IN1, I2C4_SCL, I3C1_SCL, SAI1_D1, USART3_RTS, UART4_TX, OCTOSPI1_IO1, SAI2_FS_A, FMC_A17/FMC_ALE, DCMI_D12/PSSI_D12, EVENTOUT	-

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

								17. 0	1 1110	<u> </u>		una (51100		Jiii/ Daii	ucii	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						Je.					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
1	60	82	G8	101	L15	1	60	82	K13	101	M15	-	PD13	I/O	FT_fh	-	LPTIM1_CH1, TIM4_CH2, LPTIM2_CH1, I2C4_SDA, I3C1_SDA, OCTOSPI1_IO3, SAI2_SCK_A, UART9_RTS, FMC_A18, DCMI_D13/PSSI_D13, LPTIM4_IN1, EVENTOUT	-
-	-	83	J12	102	-	-	-	83	H12	102	H12	-	VSS	S	-	-	-	-
-	-	84	J13	103	-	-	-	84	H13	103	J13	-	VDD	S	1	-	-	-
K2	61	85	H12	104	K13	1	61	85	H11	104	M14	-	PD14	I/O	FT_h	-	TIM4_CH3, UART8_CTS, UART9_RX, FMC_D0/FMC_AD0, EVENTOUT	-
J1	62	86	G10	105	J13	ı	62	86	Н9	105	L14	-	PD15	I/O	FT_h	-	TIM4_CH4, UART8_RTS, UART9_TX, FMC_D1/FMC_AD1, EVENTOUT	-
-	1	-	-	-	-	-	-	-	-	,	-	-	VDD	S	-	-	-	-
-	1	1	1	-	-	1	-	1	-	-	1	-	VSS	S	ı	-	-	-
-	1	87	H13	106	K15	-		87	J12	106	L15	-	PG2	I/O	FT_h	-	TIM8_BKIN, UART12_RX, FMC_A12, LPTIM6_ETR, EVENTOUT	-
-	-	88	G9	107	H14	-	-	88	G9	107	K15	-	PG3	I/O	FT_h	-	TIM8_BKIN2, UART12_TX, FMC_A13, LPTIM5_ETR, EVENTOUT	-
-	-	89	G11	108	J15	-	-	89	J13	108	K14	-	PG4	I/O	FT_h	-	TIM1_BKIN2, FMC_A14/FMC_BA0, LPTIM4_ETR, EVENTOUT	-

						T	able	14. S	TM3	2H56	2xx	and S	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						Je					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	90	F8	109	H15	-	-	90	G10	109	K13	-	PG5	I/O	FT_h	-	TIM1_ETR, FMC_A15/FMC_BA1, EVENTOUT	-
-	-	91	G12	110	J14	-	-	91	G11	110	J15	-	PG6	I/O	FT_fh	-	TIM17_BKIN, I3C1_SDA, I2C4_SDA, SPI1_RDY, OCTOSPI1_NCS, UCPD1_FRSTX, FMC_NE3, DCMI_D12/PSSI_D12, EVENTOUT	-
-	-	92	F9	111	H13	1	1	92	G8	111	J14	1	PG7	I/O	FT_fh	ı	SAI1_CK2, I3C1_SCL, I2C4_SCL, SAI1_MCLK_A, USART6_CK, UCPD1_FRSTX, FMC_INT, DCMI_D13/PSSI_D13, EVENTOUT	-
-	-	93	G13	112	G15	-	-	93	F11	112	H14	-	PG8	I/O	FT_h	-	TIM8_ETR, SPI6_NSS, USART6_RTS, ETH_PPS_OUT, FMC_SDCLK, EVENTOUT	-
-	-	94	-	113	-	ı	-	94	-	113	1	1	VSS	S	ı	-	-	-
-	-	95	-	114	-	ı	-	95	-	114	-	-	VDD	S	-	-	-	-
J3	63	96	F10	115	G14	37	63	96	F9	115	H15	40	PC6	I/O	FT_h	-	TIM3_CH1, TIM8_CH1, I2S2_MCK, SAI1_SCK_A, USART6_TX, SDMMC1_D0DIR, FMC_NWAIT, SDMMC2_D6, OCTOSPI1_IO5, SDMMC1_D6, DCMI_D0/PSSI_D0, EVENTOUT	-

					Pin n	umbe	er ⁽¹⁾⁽²⁾						je.					_
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
K4	64	97	F11	116	G13	38	64	97	F10	116	G15	41	PC7	I/O	FT_h	-	TRGIO, TIM3_CH2, TIM8_CH2, I2S3_MCK, USART6_RX, SDMMC1_D123DIR, FMC_NE1, SDMMC2_D7, OCTOSPI1_IO6, SDMMC1_D7, DCMI_D1/PSSI_D1, EVENTOUT	-
J5	65	98	E9	117	F14	39	65	98	G12	117	G14	42	PC8	I/O	FT_h	1	TRACED1, TIM3_CH3, TIM8_CH3, USART6_CK, UART5_RTS, FMC_NE2/FMC_NCE, FMC_INT, FMC_ALE, SDMMC1_D0, DCMI_D2/PSSI_D2, EVENTOUT	-
F2	66	99	F12	118	F13	40	66	99	G13	118	F14	43	PC9	I/O	FT_fh	-	MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, AUDIOCLK, UART5_CTS, OCTOSPI1_IO0, FMC_CLE, SDMMC1_D1, DCMI_D3/PSSI_D3, EVENTOUT	UCPD1_DB2
-	-	-	-	-	-	-	-	-	-	-	G12	-	VSS	S	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	G13	-	VDD	S	-	-	-	-
G3	67	100	E10	119	F15	41	67	100	F12	119	F15	44	PA8	I/O	FT_fh	-	MCO1, TIM1_CH1, TIM8_BKIN2, I2C3_SCL, SPI1_RDY, USART1_CK, USB_SOF, UART7_RX, FMC_NOE, DCMI_D3/PSSI_D3, EVENTOUT	-

DS14258 Rev 1

						Ta	able	14. S	TM3	2H56	2xx	and :	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						5					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
H4	68	101	F13	120	E15	42	68	101	E11	120	E15	45	PA9	I/O	FT_d	-	TIM1_CH2, LPUART1_TX,	UCPD1_DB1
G5	69	102	E11	121	E14	43	69	102	E10	121	D15	46	PA10	I/O	FT_h	-	TIM1_CH3, LPUART1_RX, LPTIM2_IN2, UCPD1_FRSTX, USART1_RX, FDCAN2_TX, SDMMC1_D0, DCMI_D1/PSSI_D1, EVENTOUT	-
E1	70	103	C13	122	D15	44	70	103	F13	122	C15	47	PA11	I/O	FT_u	-	TIM1_CH4, LPUART1_CTS, SPI2_NSS/I2S2_WS, UART4_RX, USART1_CTS/USART1_NSS, FDCAN1_RX, USB_DM, EVENTOUT	-
C1	71	104	B13	123	C15	45	71	104	E13	123	B15	48	PA12	I/O	FT_u	1	TIM1_ETR, LPUART1_RTS, SPI2_SCK/I2S2_CK, UART4_TX, USART1_RTS, SAI2_FS_B, FDCAN1_TX, USB_DP, EVENTOUT	-
F4	72	105	D12	124	E13	46	72	105	E12	124	A15	49	PA13(JTMS /SWDIO)	I/O	FT	(6)	JTMS/SWDIO, EVENTOUT	-
-	74	107	E12	126	D14	47	74	107	C12	126	F12	50	VSS	S	-	-	-	-
-	75	108	D13	127	E12	48	75	108	C13	127	F13	51	VDD	S	-	-	-	-
B2	73	106	E13	125	F12	-	73	106	D13	125	H13	-	VDDUSB	S	-	-	-	-

						T	able	14. S	тмз	2H56	2xx	and S	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						-					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	-	C12	128	B15	-	-	-	D12	128	E12	1	PH13	I/O	FT_h	-	LPTIM1_IN2, TIM8_CH1N, UART8_TX, UART4_TX, FDCAN1_TX, DCMI_D3/PSSI_D3, EVENTOUT	-
-	-	-	D11	129	D13	1	-	-	D10	129	E13	ı	PH14	I/O	FT_h	ı	TIM8_CH2N, UART4_RX, FDCAN1_RX, DCMI_D4/PSSI_D4, EVENTOUT	-
-	-	-	A13	130	C14	1	-	-	D11	130	D13	1	PH15	I/O	FT_h	1	TIM8_CH3N, DCMI_D11/PSSI_D11, EVENTOUT	-
-	-	-	B12	131	-	-	-	-	B13	131	E14	-	PI0	I/O	FT_h	-	TIM5_CH4, SPI2_NSS/I2S2_WS, DCMI_D13/PSSI_D13, EVENTOUT	-
-	-	-	C11	132	A15	-	-	-	B12	132	D14	1	PI1	I/O	FT_h	-	TIM8_BKIN2, SPI2_SCK/I2S2_CK, DCMI_D8/PSSI_D8, EVENTOUT	-
-	-	1	D10	133	B14	1	-	1	A13	133	C14	ı	PI2	I/O	FT_h	ı	TIM8_CH4, SPI2_MISO/I2S2_SDI, DCMI_D9/PSSI_D9, EVENTOUT	,
-	-	ı	A12	134	A14	1	-	ı	C11	134	C13	ı	PI3	I/O	FT_h	-	TIM8_ETR, SPI2_MOSI/I2S2_SDO, DCMI_D10/PSSI_D10, EVENTOUT	-
-	-	-	B8	135	D9	-	-	-	B10	135	D9	1	VSS	S	-	1	-	-
-	-	-	A8	136	D8	-	-	-	A10	136	C9	-	VDD	S	-	-	-	-

						Ta	able	14. S	TM3	2H56	2xx	and :	STM32H563	Зхх р	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
E3	76	109	C10	137	B13	49	76	109	A12	137	A14	52	PA14(JTCK/ SWCLK)	I/O	FT	(6)	JTCK/SWCLK, EVENTOUT	-
D4	77	110	B10	138	C13	50	77	110	B11	138	A13	53	PA15(JTDI)	I/O	FT	(6)	JTDI, TIM2_CH1, LPTIM3_IN2, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS, UART4_RTS, UART7_TX, FMC_NBL1, DCMI_D11/PSSI_D11, TIM2_ETR, EVENTOUT	-
С3	78	111	A10	139	D12	51	78	111	C10	139	B14	54	PC10	I/O	FT_h	-	LPTIM3_ETR, SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, OCTOSPI1_IO1, ETH_MII_TXD0/ETH_RMII_TXD 0, SDMMC1_D2, DCMI_D8/PSSI_D8, EVENTOUT	-
E5	79	112	A9	140	C12	52	79	112	A11	140	B13	55	PC11	I/O	FT_h	1	LPTIM3_IN1, SPI3_MISO/I2S3_SDI, USART3_RX, UART4_RX, OCTOSPI1_NCS, SDMMC1_D3, DCMI_D4/PSSI_D4, EVENTOUT	-
F6	80	113	D9	141	C11	53	80	113	В9	141	A12	56	PC12	I/O	FT_h	1	TRACED3, TIM15_CH1, SPI6_SCK, SPI3_MOSI/I2S3_SDO, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9/PSSI_D9, EVENTOUT	-
-	-	-	B11	-	D11	-	-	-	-	-	-	-	VSS	S	-	-	-	-

					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	A11	-	D10	-	-	-	ı	-	-	-	VDD	S	-	-	-	-
А3	81	114	C9	142	B12	1	81	114	D9	142	B12	1	PD0	I/O	FT_h	-	TIM8_CH4N, UART4_RX, FDCAN1_RX, UART9_CTS, FMC_D2/FMC_AD2, EVENTOUT	-
B4	82	115	В9	143	A13	-	82	115	E9	143	C12	-	PD1	I/O	FT_h	-	UART4_TX, FDCAN1_TX, FMC_D3/FMC_AD3, EVENTOUT	-
A5	83	116	E8	144	C10	54	83	116	С9	144	D12	-	PD2	I/O	FT_h	-	TRACED2, TIM3_ETR, TIM15_BKIN, UART5_RX, SDMMC1_CMD, DCMI_D11/PSSI_D11, LPTIM4_ETR, EVENTOUT	WKUP7
-	84	117	C8	145	A12	-	84	117	A9	145	D11	-	PD3	I/O	FT_h	-	SPI2_SCK/I2S2_CK, USART2_CTS/USART2_NSS, FMC_CLK, DCMI_D5/PSSI_D5, EVENTOUT	WKUP8
-	85	118	D8	146	B11	-	85	118	F8	146	D10	-	PD4	I/O	FT_h	-	USART2_RTS, OCTOSPI1_IO4, FMC_NOE, EVENTOUT	-
-	86	119	A7	147	A11	-	86	119	D8	147	C11	1	PD5	I/O	FT_h	-	TIM1_CH4N, SPI2_RDY, USART2_TX, FDCAN1_TX, OCTOSPI1_IO5, FMC_NWE, EVENTOUT	-
-	-	120	-	148	-	-	-	120	В7	148	D8	-	VSS	S	-	-	-	-
-	-	121	A6	149	D7	-	-	121	A7	149	C8	-	VDDIO2	S	-	-	-	-

						Т	able	14. S	тмз	2H56	2xx	and S	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						ē					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	87	122	F7	150	B10	-	87	122	E8	150	B11	1	PD6	I/O	FT_sh	-	SAI1_D1, SPI3_MOSI/I2S3_SDO, SAI1_SD_A, USART2_RX, OCTOSPI1_IO6, SDMMC2_CK, FMC_NWAIT, DCMI_D10/PSSI_D10, EVENTOUT	-
-	88	123	В7	151	A10	-	88	123	В8	151	A11	-	PD7	I/O	FT_sh	-	SPI1_MOSI/I2S1_SDO, USART2_CK, OCTOSPI1_IO7, SDMMC2_CMD, FMC_NE1/FMC_NCE, LPTIM4_OUT, EVENTOUT	-
-	-	-	-	-	D6	-	-	-	-	-	-	-	VSS	S	-	-	-	-
-	-	124	E7	152	В9	-	-	124	F7	152	C10	-	PG9	I/O	FT_sh	-	SPI1_MISO/I2S1_SDI, USART6_RX, OCTOSPI1_IO6, SAI2_FS_B, SDMMC2_D0, FMC_NE2/FMC_NCE, DCMI_VSYNC/PSSI_RDY, EVENTOUT	-
-	-	125	C7	153	A9	-	-	125	A8	153	B10	-	PG10	I/O	FT_sh	-	SPI1_NSS/I2S1_WS, SAI2_SD_B, SDMMC2_D1, FMC_NE3, DCMI_D2/PSSI_D2, EVENTOUT	-

					Pin n	umbe	r ⁽¹⁾⁽²⁾						er					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	154	С9	-	1	126	E7	154	В9	-	PG11	I/O	FT_sh	1	LPTIM1_IN2, SPI1_SCK/I2S1_CK, USART10_RX, USART11_RTS, SDMMC2_D2, ETH_MII_TX_EN/ETH_RMII_TX _EN, DCMI_D3/PSSI_D3, EVENTOUT	-
-	-	126	D7	155	B8	-		127	C8	155	В8	-	PG12	I/O	FT_sh	-	LPTIM1_IN1, PSSI_D15, SPI6_MISO, USART10_TX, USART6_RTS, SDMMC2_D3, ETH_MII_TXD1/ETH_RMII_TXD 1, FMC_NE4, DCMI_D11/PSSI_D11, LPTIM5_CH1, EVENTOUT	-
-	-	127	-	156	C8	-	,	128	D7	156	A8	1	PG13	I/O	FT_sh	,	TRACEDO, LPTIM1_CH1, SPI6_SCK, USART10_CTS/USART10_NSS, USART6_CTS/USART6_NSS, SDMMC2_D6, ETH_MII_TXD0/ETH_RMII_TXD 0, FMC_A24, LPTIM5_CH2, EVENTOUT	,
-	-	128	-	157	A8	-	-	129	C7	157	A7	-	PG14	I/O	FT_sh	-	TRACED1, LPTIM1_ETR, LPTIM1_CH2, SPI6_MOSI, USART10_RTS, USART6_TX, OCTOSPI1_IO7, SDMMC2_D7, ETH_MII_TXD1/ETH_RMII_TXD 1, FMC_A25, LPTIM5_IN1, EVENTOUT	-
-	-	129	B4	158	-	-	-	130	-	158	D7	-	VSS	S	-	-	-	-

DS14258 Rev 1

						т	able	14. S	тмз	2H56	2xx	and :	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	numbe	r ⁽¹⁾⁽²⁾					_	e					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	130	A3	159	-	-	-	131	-	159	C7	-	VDD	S	-	-	-	-
-	-	131	В6	160	A7	-	-	132	В6	160	В7	-	PG15	I/O	FT_h	-	SPI4_RDY, USART10_CK, USART6_CTS/USART6_NSS, FMC_NCAS, DCMI_D13/PSSI_D13, EVENTOUT	-
C5	89	132	F6	161	В7	55	89	133	E6	161	A10	57	PB3(JTDO/ TRACESW O)	I/O	FT_fh	-	JTDO/TRACESWO, TIM2_CH2, I2C2_SDA, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, UART12_CTS/UART12_NSS, SPI6_SCK, SDMMC2_D2, CRS_SYNC, UART7_RX, LPTIM6_ETR, EVENTOUT	-
В6	90	133	A5	162	C7	56	90	134	A6	162	A9	58	PB4(NJTRS T)	I/O	FT_h	-	NJTRST, TIM16_BKIN, TIM3_CH1, OCTOSPI1_CLK, LPTIM1_CH2, SPI1_MISO/I2S1_SDI, SPI3_MISO/I2S3_SDI, SPI2_NSS/I2S2_WS, SPI6_MISO, SDMMC2_D3, UART7_TX, DCMI_D7/PSSI_D7, EVENTOUT	-

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

					Pin n	umbe	r ⁽¹⁾⁽²⁾										muon (conumacu)	
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
D6	91	134	E6	163	A6	57	91	135	C6	163	A6	59	PB5	I/O	FT_h	-	TIM17_BKIN, TIM3_CH2, OCTOSPI1_NCLK, I2C1_SMBA, SPI1_MOSI/I2S1_SDO, I2C4_SMBA, SPI3_MOSI/I2S3_SDO, SPI6_MOSI, FDCAN2_RX, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10/PSSI_D10, UART5_RX, EVENTOUT	-
E7	92	135	C6	164	В6	58	92	136	A5	164	B6	60	PB6	I/O	FT_f	-	TIM16_CH1N, TIM4_CH1, I3C1_SCL, I2C1_SCL, HDMI_CEC, I2C4_SCL, USART1_TX, LPUART1_TX, FDCAN2_TX, OCTOSPI1_NCS, FMC_SDNE1, DCMI_D5/PSSI_D5, UART5_TX, EVENTOUT	-
C7	93	136	D6	165	C6	59	93	137	D6	165	B5	61	PB7	I/O	FT_fa	-	TIM17_CH1N, TIM4_CH2, I3C1_SDA, I2C1_SDA, I2C4_SDA, USART1_RX, LPUART1_RX, FDCAN1_TX, SDMMC2_D5, SDMMC2_CKIN, FMC_NL, DCMI_VSYNC/PSSI_RDY, EVENTOUT	WKUP5
D8	94	137	B5	166	A5	60	94	138	B5	166	D6	62	воото	ı	В	-	-	-

						T	able	14. S	TM3	2H56	2xx	and s	STM32H56	3xx p	oin/ball	defi	nition (continued)	
					Pin n	umbe	r ⁽¹⁾⁽²⁾						ē					
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
E9	95	138	F5	167	B5	61	95	139	E5	167	A5	63	PB8	I/O	FT_fh	1	TIM16_CH1, TIM4_CH3, I3C1_SCL, I2C1_SCL, SPI4_RDY, I2C4_SCL, SDMMC1_CKIN, UART4_RX, FDCAN1_RX, SDMMC2_D4, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6/PSSI_D6, EVENTOUT	-
-	96	139	E5	168	A4	-	96	140	A4	168	B4	64	PB9	I/O	FT_fh	-	TIM17_CH1, TIM4_CH4, I3C1_SDA, I2C1_SDA, SPI2_NSS/I2S2_WS, I2C4_SDA, SDMMC1_CDIR, UART4_TX, FDCAN1_TX, SDMMC2_D5, SDMMC2_CKIN, SDMMC1_D5, DCMI_D7/PSSI_D7, EVENTOUT	-
-	97	140	D5	169	C5	1	97	141	C5	169	A4	65	PE0	I/O	FT_h	ı	LPTIM1_ETR, TIM4_ETR, LPTIM2_CH2, LPTIM2_ETR, SPI3_RDY, UART8_RX, FDCAN1_RX, SAI2_MCLK_A, FMC_NBL0, DCMI_D2/PSSI_D2, EVENTOUT	-
-	-	141	C5	170	B4	1	-	-	D5	170	A3	-	PE1	I/O	FT_h	1	LPTIM1_IN2, UART8_TX, FDCAN1_TX, FMC_NBL1, DCMI_D3/PSSI_D3, EVENTOUT	-
A9	98	142	A4	171	А3	62	98	142	B4	171	C6	66	VCAP	S	-	-	-	-
-	99	143	-	-	-	63	99	143	В3	-	-	67	VSS	S	-	-	-	-
-	100	144	-	172	-	64	100	144	А3	172	-	68	VDD	S	-	-	-	-

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

								14. 0	1 1010			una (51111021100	OXX P	JIII/ Dali		muon (conunuea)	
			ı	ı	PIN N	umbe)r(·/(- /	ı			ı	ı	ter					w
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	C4	173	В3	-	-	-	C4	173	D4	-	PI4	I/O	FT_h	-	TIM8_BKIN, SPI2_RDY, SAI2_MCLK_A, DCMI_D5/PSSI_D5, EVENTOUT	-
-	-	-	ВЗ	174	A2	-	-	-	-	174	C4	-	PI5	I/O	FT_h	-	TIM8_CH1, SAI2_SCK_A, DCMI_VSYNC/PSSI_RDY, EVENTOUT	-
-	-	-	A2	175	C4	-	-	-	C3	175	С3	-	PI6	I/O	FT_h	-	TIM8_CH2, SAI2_SD_A, DCMI_D6/PSSI_D6, EVENTOUT	-
-	1	-	A1	176	A1	-	-	-	A2	176	C2	-	PI7	I/O	FT_h	-	TIM8_CH3, SAI2_FS_A, DCMI_D7/PSSI_D7, EVENTOUT	-
-	-	-	-	-	F6	-	-	-	-	-	F6	-	VSS	S	-	-	-	-
-	-	-	-	-	F7	-	-	-	-	-	F7	-	VSS	S	-	-	-	-
-	-	-	-	-	F8	-	-	-	-	-	F8	-	VSS	S	-	-	-	-
-	1	-	-	-	F9	-	-	-	ı	1	F9	-	VSS	S	ı	-	-	-
-	1	-	-	-	F10	-	-	-	1	1	F10	-	VSS	S	ı	-	-	-
-	-	-	-	-	G6	-	-	-	-	-	G6	-	VSS	S	-	-	-	-
-	-	-	-	-	G7	-	-	-	-	-	G7	-	VSS	S	-	-	-	-
-	-	-	-	-	G8	-	-	-	-	-	G8	-	VSS	S	-	-	-	-
-	-	-	-	-	G9	-	-	-	-	-	G9	-	VSS	S	-	-	-	-
-	-	-	-	-	G10	-	-	-	-	-	G10	-	VSS	S	-	-	-	-
-	-	-	-	-	H6	-	-	-	-	-	H6	-	VSS	S	-	-	-	-
-	-	-	-	-	H7	-	-	-	-	-	H7	-	VSS	S	-	-	-	-
-	-	-	-	-	Н8	-	-	-	-	-	H8	-	VSS	S	ı	-	-	-

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

					Pin n	umbe	r ⁽¹⁾⁽²⁾										intion (continuou)	
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	H9	-	-	-	-	-	Н9	ı	VSS	S	-	-	-	-
-	-	-	-	-	H10	-	-	-	ı	-	H10	1	VSS	S	1	-	-	-
-	-	-	-	-	J6	-	-	-	1	-	J6	1	VSS	S	ı	-	·	-
-	-	-	-	-	J7	-	-	-	1	-	J7	1	VSS	S	-	-	-	-
-	-	-	-	-	J8	-	-	-	ı	-	J8	1	VSS	S	1	-	•	-
-	-	-	-	-	J9	-	-	-	1	-	J9	1	VSS	S	ı	-	·	-
-	-	-	-	-	J10	-	-	-	-	-	J10	-	VSS	S	-	-	-	-
-	-	-	-	-	K6	-	-	-	ı	-	K6	1	VSS	S	1	-	•	-
-	-	-	-	-	K7	-	-	-	-	-	K7	-	VSS	S	-	-	-	-
-	-	-	-	-	K8	-	-	-	1	-	K8	1	VSS	S	1	-	ı	-
-	-	-	-	-	K9	-	-	-	ı	-	K9	1	VSS	S	1	-	-	-
-	-	-	-	-	K10	-	-	-	-	-	K10	-	VSS	S	-	-	-	-

- 1. The devices with SMPS correspond to commercial code STM32H53xlxxQ.
- 2. A non-connected I/O in a given package is configured as an output tied to VSS. When VREF+ pad is not available on a package, the internal voltage reference buffer (VREFBUF) is not available and must be kept disabled.
- 3. PC13, PC14 and PC15 are supplied through the power switch (by VSW). Since the switch only sinks a limited amount of current, the use of PC13 to PC15 GPIOs in output mode is limited: The speed must not exceed 2 MHz with a maximum load of 30 pF. These GPIOs must not be used as current sources (for example to drive a LED).
- 4. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function depends then on the content of the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the backup domain and RTC register descriptions in the product reference manual.
- 5. As a tamper input, only PC13, PI8, PA0, PA1, and PA2 are functional in Standby and VBAT mode. As a tamper output, only PC13, PA1, and PI8 are functional in Standby and VBAT mode.
- After reset, these pins are configured as JTAG/SW debug alternate functions. The internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated too.

4.3 Alternate functions

Table 15. Alternate function AF0 to AF7⁽¹⁾

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
1	Port	sys	LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11
	PA0	-	TIM2_CH1	TIM5_CH1	TIM8_ETR	TIM15_BKIN	SPI6_NSS	SPI3_RDY	USART2_CTS/U SART2_NSS
	PA1	-	TIM2_CH2	TIM5_CH2	-	TIM15_CH1N	LPTIM1_IN1	OCTOSPI1_DQS	USART2_RTS
	PA2	-	TIM2_CH3	TIM5_CH3	-	TIM15_CH1	LPTIM1_IN2	-	USART2_TX
	PA3	-	TIM2_CH4	TIM5_CH4	OCTOSPI1_CLK	TIM15_CH2	SPI2_NSS/I2S2_WS	SAI1_SD_B	USART2_RX
	PA4	-	-	TIM5_ETR	LPTIM2_CH1	-	SPI1_NSS/I2S1_WS	SPI3_NSS/I2S3_ WS	USART2_CK
	PA5	-	TIM2_CH1	-	TIM8_CH1N	-	SPI1_SCK/I2S1_CK	-	-
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO/I2S1_SDI	OCTOSPI1_IO3	USART11_TX
Port A	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	SPI1_MOSI/I2S1_SDO	-	USART11_RX
Por	PA8	MCO1	TIM1_CH1	-	TIM8_BKIN2	I2C3_SCL	SPI1_RDY	-	USART1_CK
	PA9	-	TIM1_CH2	-	LPUART1_TX	I2C3_SMBA	SPI2_SCK/I2S2_CK	-	USART1_TX
	PA10	-	TIM1_CH3	-	LPUART1_RX	LPTIM2_IN2	-	UCPD1_FRSTX	USART1_RX
	PA11	-	TIM1_CH4	-	LPUART1_CTS	-	SPI2_NSS/I2S2_WS	UART4_RX	USART1_CTS/U SART1_NSS
	PA12	-	TIM1_ETR	-	LPUART1_RTS	-	SPI2_SCK/I2S2_CK	UART4_TX	USART1_RTS
	PA13	JTMS/SWDIO	-	-	-	-	-	-	-
	PA14	JTCK/SWCLK	-	-	-	-	-	-	-
	PA15	JTDI	TIM2_CH1	LPTIM3_IN2	-	HDMI_CEC	SPI1_NSS/I2S1_WS	SPI3_NSS/I2S3_ WS	SPI6_NSS

Table 15.	Alternate	function	AFO to	AF7(1)
Table 15.	Allemale	TUITIC: HOLL	AFU IO	ALI

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	sys	LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	OCTOSPI1_IO1	USART11_CK
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	-	-	OCTOSPI1_IO0	-
	PB2	RTC_OUT2	-	SAI1_D1	TIM8_CH4N	SPI1_RDY	LPTIM1_CH1	SAI1_SD_A	SPI3_MOSI/I2S3 _SDO
	PB3	JTDO/TRACE SWO	TIM2_CH2	-	-	I2C2_SDA	SPI1_SCK/I2S1_CK	SPI3_SCK/I2S3_ CK	UART12_CTS/U ART12_NSS
	PB4	NJTRST	TIM16_BKIN	TIM3_CH1	OCTOSPI1_CLK	LPTIM1_CH2	SPI1_MISO/I2S1_SDI	SPI3_MISO/I2S3 _SDI	SPI2_NSS/I2S2_ WS
	PB5	-	TIM17_BKIN	TIM3_CH2	OCTOSPI1_NCLK	I2C1_SMBA	SPI1_MOSI/I2S1_SDO	I2C4_SMBA	SPI3_MOSI/I2S3 _SDO
В	PB6	-	TIM16_CH1N	TIM4_CH1	I3C1_SCL	I2C1_SCL	HDMI_CEC	I2C4_SCL	USART1_TX
Port	PB7	-	TIM17_CH1N	TIM4_CH2	I3C1_SDA	I2C1_SDA	-	I2C4_SDA	USART1_RX
-	PB8	-	TIM16_CH1	TIM4_CH3	I3C1_SCL	I2C1_SCL	SPI4_RDY	I2C4_SCL	SDMMC1_CKIN
	PB9	-	TIM17_CH1	TIM4_CH4	I3C1_SDA	I2C1_SDA	SPI2_NSS/I2S2_WS	I2C4_SDA	SDMMC1_CDIR
	PB10	-	TIM2_CH3	LPTIM3_CH1	LPTIM2_IN1	I2C2_SCL	SPI2_SCK/I2S2_CK	-	USART3_TX
	PB11	-	TIM2_CH4	-	LPTIM2_ETR	I2C2_SDA	SPI2_RDY	SPI4_RDY	USART3_RX
	PB12	-	TIM1_BKIN	-	OCTOSPI1_NCLK	I2C2_SDA	SPI2_NSS/I2S2_WS	UCPD1_FRSTX	USART3_CK
	PB13	-	TIM1_CH1N	LPTIM3_IN1	LPTIM2_CH1	I2C2_SMBA	SPI2_SCK/I2S2_CK	-	USART3_CTS/U SART3_NSS
	PB14	-	TIM1_CH2N	TIM12_CH1	TIM8_CH2N	USART1_TX	SPI2_MISO/I2S2_SDI	-	USART3_RTS
	PB15	RTC_REFIN	TIM1_CH3N	TIM12_CH2	TIM8_CH3N	USART1_RX	SPI2_MOSI/I2S2_SDO	-	USART11_CTS/ USART11_NSS

Table 15. Alternate function AF0 to AF7⁽¹⁾

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	sys	LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11
	PC0	-	TIM16_BKIN	-	-	-	-	SAI1_MCLK_A	SPI2_RDY
	PC1	TRACED0	-	SAI1_D1	-	-	SPI2_MOSI/I2S2_SDO	SAI1_SD_A	USART11_RTS
	PC2	PWR_CSLEE P	TIM17_CH1	TIM4_CH4	-	-	SPI2_MISO/I2S2_SDI	OCTOSPI1_IO5	-
	PC3	PWR_CSTOP	-	SAI1_D3	LPTIM3_CH1	-	SPI2_MOSI/I2S2_SDO	OCTOSPI1_IO6	-
	PC4	-	TIM2_CH4	SAI1_CK1	LPTIM2_ETR	-	I2S1_MCK	-	USART3_RX
	PC5	-	TIM1_CH4N	SAI1_D3	-	PSSI_D15	-	SAI1_FS_A	UART12_RTS
	PC6	-	-	TIM3_CH1	TIM8_CH1	-	I2S2_MCK	SAI1_SCK_A	USART6_TX
	PC7	TRGIO	-	TIM3_CH2	TIM8_CH2	-	-	I2S3_MCK	USART6_RX
Port C	PC8	TRACED1	-	TIM3_CH3	TIM8_CH3	-	-	-	USART6_CK
٩	PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_SDA	AUDIOCLK	-	-
	PC10	-	-	LPTIM3_ETR	-	-	-	SPI3_SCK/I2S3_ CK	USART3_TX
	PC11	-	-	LPTIM3_IN1	-	-	-	SPI3_MISO/I2S3 _SDI	USART3_RX
	PC12	TRACED3	-	TIM15_CH1	-	-	SPI6_SCK	SPI3_MOSI/I2S3 _SDO	USART3_CK
	PC13	-	-	-	-	-	-	-	-
	PC14	-	-	-	-	-	-	-	-
	PC15	-	-	-	-	-	-	-	-

Table 15. Alternate function AF0 to A	AF7 ⁽¹⁾
---------------------------------------	--------------------

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	sys	LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11
	PD0	-	-	-	TIM8_CH4N	-	-	-	-
	PD1	-	-	-	-	-	-	-	-
	PD2	TRACED2	-	TIM3_ETR	-	TIM15_BKIN	-	-	-
	PD3	-	-	-	-	-	SPI2_SCK/I2S2_CK	-	USART2_CTS/U SART2_NSS
	PD4	-	-	-	-	-	-	-	USART2_RTS
	PD5	-	TIM1_CH4N	-	-	-	SPI2_RDY	-	USART2_TX
	PD6	-	-	SAI1_D1	-	-	SPI3_MOSI/I2S3_SDO	SAI1_SD_A	USART2_RX
Port D	PD7	-	-	-	-	-	SPI1_MOSI/I2S1_SDO	-	USART2_CK
Por	PD8	-	-	-	-	-	-	-	USART3_TX
	PD9	-	-	-	-	-	-	-	USART3_RX
	PD10	-	-	-	LPTIM2_CH2	-	-	-	USART3_CK
	PD11	-	-	SAI1_CK1	LPTIM2_IN2	I2C4_SMBA	-	-	USART3_CTS/U SART3_NSS
	PD12	-	LPTIM1_IN1	TIM4_CH1	LPTIM2_IN1	I2C4_SCL	I3C1_SCL	SAI1_D1	USART3_RTS
	PD13	-	LPTIM1_CH1	TIM4_CH2	LPTIM2_CH1	I2C4_SDA	I3C1_SDA	-	-
	PD14	=	-	TIM4_CH3	-	-	-	-	-
	PD15	-	-	TIM4_CH4	-	-	-	-	-

Table 15. Alternate function AF0 to AF7⁽¹⁾

			I		To. Allemate lui			<u> </u>	
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Peo Pe1 Pe2 Pe3 Pe4	SYS	LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11	
	PE0	-	LPTIM1_ETR	TIM4_ETR	LPTIM2_CH2	LPTIM2_ETR	-	SPI3_RDY	-
	PE1	-	LPTIM1_IN2	-	-	-	-	-	-
	PE2	TRACECLK	LPTIM1_IN2	SAI1_CK1	-	-	SPI4_SCK	SAI1_MCLK_A	USART10_RX
	PE3	TRACED0	-	-	-	TIM15_BKIN	-	SAI1_SD_B	USART10_TX
	PE4	TRACED1	-	SAI1_D2	-	TIM15_CH1N	SPI4_NSS	SAI1_FS_A	-
	PE5	TRACED2	-	SAI1_CK2	-	TIM15_CH1	SPI4_MISO	SAI1_SCK_A	-
	PE6	TRACED3	TIM1_BKIN2	SAI1_D1	-	TIM15_CH2	SPI4_MOSI	SAI1_SD_A	-
ш	PE7	-	TIM1_ETR	-	-	-	-	UART12_RTS	UART7_RX
Port	PE8	-	TIM1_CH1N	-	-	-	-	UART12_CTS/U ART12_NSS	UART7_TX
	PE9	-	TIM1_CH1	-	-	-	-	UART12_RX	UART7_RTS
	PE10	=	TIM1_CH2N	-	-	-	-	UART12_TX	UART7_CTS
	PE11	=	TIM1_CH2	-	-	SPI1_RDY	SPI4_NSS	OCTOSPI1_NCS	-
	PE12	=	TIM1_CH3N	-	-	-	SPI4_SCK	-	-
	PE13	=	TIM1_CH3	-	-	-	SPI4_MISO	-	-
	PE14	=	TIM1_CH4	-	-	-	SPI4_MOSI	-	-
	PE15	-	TIM1_BKIN	-	TIM1_CH4N	-	-	-	USART10_CK

Table	15. Alternate fur	nction AF0 to AF	7 ⁽¹⁾

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	SYS	LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11
	PF0	-	-	-	-	I2C2_SDA	-	-	-
	PF1	-	-	-	-	I2C2_SCL	-	-	-
	PF2	-	-	LPTIM3_CH2	LPTIM3_IN2	I2C2_SMBA	-	UART12_TX	USART11_CK
	PF3	-	-	LPTIM3_IN1	-	-	-	-	USART11_TX
	PF4	-	-	LPTIM3_ETR	-	-	-	-	USART11_RX
	PF5	-	-	LPTIM3_CH1	-	I2C4_SCL	I3C1_SCL	UART12_RX	USART11_CTS/ USART11_NSS
	PF6	-	TIM16_CH1	-	-	-	SPI5_NSS	SAI1_SD_B	UART7_RX
Port F	PF7	-	TIM17_CH1	-	-	-	SPI5_SCK	SAI1_MCLK_B	UART7_TX
ď	PF8	-	TIM16_CH1N	-	-	-	SPI5_MISO	SAI1_SCK_B	UART7_RTS
	PF9	-	TIM17_CH1N	-	-	-	SPI5_MOSI	SAI1_FS_B	UART7_CTS
	PF10	-	TIM16_BKIN	SAI1_D3	-	PSSI_D15	-	-	-
	PF11	-	-	-	-	-	SPI5_MOSI	-	-
	PF12	-	-	-	-	-	-	-	-
	PF13	-	-	-	-	I2C4_SMBA	-	-	-
	PF14	-	-	-	-	-	-	-	-
	PF15	-		-		I2C4_SDA	I3C1_SDA	-	

Table 15. Alternate function AF0 to AF7⁽¹⁾

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	sys	LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11
	PG0	=	-	-	-	-	-	-	-
	PG1	-	-	-	-	-	-	-	SPI2_MOSI/I2S2 _SDO
	PG2	-	-	-	TIM8_BKIN	-	-	-	UART12_RX
	PG3	-	-	-	TIM8_BKIN2	-	-	-	UART12_TX
	PG4	-	TIM1_BKIN2	-	-	-	-	-	-
	PG5	-	TIM1_ETR	-	-	-	-	-	-
	PG6	-	TIM17_BKIN	-	I3C1_SDA	I2C4_SDA	SPI1_RDY	-	-
g	PG7	-	-	SAI1_CK2	I3C1_SCL	I2C4_SCL	-	SAI1_MCLK_A	USART6_CK
Port	PG8	-	-	-	TIM8_ETR	-	SPI6_NSS	-	USART6_RTS
	PG9	-	-	-	-	-	SPI1_MISO/I2S1_SDI	-	USART6_RX
	PG10	-	-	-	-	-	SPI1_NSS/I2S1_WS	-	-
	PG11	-	LPTIM1_IN2	-	-	-	SPI1_SCK/I2S1_CK	USART10_RX	USART11_RTS
	PG12	-	LPTIM1_IN1	-	-	PSSI_D15	SPI6_MISO	USART10_TX	USART6_RTS
	PG13	TRACED0	LPTIM1_CH1	-	-	-	SPI6_SCK	USART10_CTS/ USART10_NSS	USART6_CTS/U SART6_NSS
	PG14	TRACED1	LPTIM1_ETR	-	-	LPTIM1_CH2	SPI6_MOSI	USART10_RTS	USART6_TX
	PG15	-	-	-	-	-	SPI4_RDY	USART10_CK	USART6_CTS/U SART6_NSS

Port

PH0 PH1 PH2

PH3 PH4 PH5 PH6

PH7

PH8

PH9

PH10

PH11

PH12

PH13

PH14

PH15

AF0

SYS

TIM1_CH1N

TIM1_CH1

TIM1_BKIN

LPTIM1_IN2

-

TIM5_CH1

TIM5_CH2

TIM5_CH3

TIM8_CH3

TIM8_CH3N

TIM8_BKIN

TIM8_CH1N

TIM8_CH2N

TIM8_CH3N

Port H

UART8_TX

-

	Table	15. Alternate fur	nction AF0 to A	F7 ⁽¹⁾		
AF1	AF2	AF3	AF4	AF5	AF6	AF7
LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11
-	-	-	-	-	-	-
-	-	-	-	-	-	-
LPTIM1_IN2	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	I2C2_SCL	SPI5_RDY	-	SPI6_RDY
-	-	-	I2C2_SDA	SPI5_NSS	-	SPI6_RDY
TIM1_CH3N	TIM12_CH1	TIM8_CH1	I2C2_SMBA	SPI5_SCK	-	-
TIM1_CH3	-	TIM8_CH1N	I2C3_SCL	SPI5_MISO	-	-
TIM1_CH2N	TIM5_ETR	TIM8_CH2	I2C3_SDA	SPI5_MOSI	-	-
TIM1_CH2	TIM12_CH2	TIM8_CH2N	I2C3_SMBA	SPI5_NSS	-	-

SPI5_RDY

I3C1_SCL

I3C1_SDA

I2C4_SMBA

I2C4_SCL

I2C4_SDA

-

Table 15. Alternate function AF0 to AF7⁽¹⁾

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	SYS	LPTIM1/TIM1/2/1 6/17	LPTIM3/PDM_ SAI1/TIM3/4/5/ 12/15	I3C1/LPTIM2/3/LP UART1/OCTOSPI/ TIM1/8	CEC/DCMI/I2C1/ 2/3/4/LPTIM1/2/ SPI1/I2S1/TIM15 /USART1	CEC/I3C1/LPTIM1/SPI 1/I2S1/SPI2/I2S2/SPI3/ I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/USB_ PD	SDMMC1/SPI2/I 2S2/SPI3/I2S3/S PI6/UART7/8/12/ USART1/2/3/6/1 0/11
	PI0	-	-	TIM5_CH4	-	-	SPI2_NSS/I2S2_WS	-	-
	PI1	-	-	-	TIM8_BKIN2	-	SPI2_SCK/I2S2_CK	-	-
	PI2	-	-	-	TIM8_CH4	-	SPI2_MISO/I2S2_SDI	-	-
	PI3	-	-	=	TIM8_ETR	-	SPI2_MOSI/I2S2_SDO	-	-
	PI4	-	-	=	TIM8_BKIN	-	-	-	SPI2_RDY
Port I	PI5	-	-	-	TIM8_CH1	-	-	-	-
Po	PI6	-	-	-	TIM8_CH2	-	-	-	-
	PI7	-	-	-	TIM8_CH3	-	-	-	-
	PI8	-	-	-	-	-	-	-	-
	PI9	-	-	-	-	-	-	-	-
	PI10	-	-	-	-	-	-	-	-
	PI11	-	-	-	-	-	-	-	-

^{1.} Refer to the next table for AF8 to AF15.

Table 16	. Alternate functi	on AF8 to AF15 ⁽¹⁾		
AF10	AF11	AF12	AF13	AF14

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	sys
	PA0	UART4_TX	SDMMC2_CMD	SAI2_SD_B	ETH_MII_CRS	-	-	TIM2_ETR	EVENTOUT
	PA1	UART4_RX	OCTOSPI1_IO3	SAI2_MCLK_B	ETH_MII_RX_CLK /ETH_RMII_REF_ CLK	-	-	-	EVENTOUT
	PA2	SAI2_SCK_B	-	-	ETH_MDIO	-	-	=	EVENTOUT
	PA3	-	-	-	ETH_MII_COL	-	-	-	EVENTOUT
	PA4	SPI6_NSS	-	-	-	-	DCMI_HSYNC/PSSI_ DE	-	EVENTOUT
	PA5	SPI6_SCK	-	-	ETH_MII_TX_EN/ ETH_RMII_TX_EN	-	PSSI_D14	TIM2_ETR	EVENTOUT
₹ ¥	PA6	SPI6_MISO	TIM13_CH1	-	-	-	DCMI_PIXCLK/PSSI_ PDCK	-	EVENTOUT
PortA	PA7	SPI6_MOSI	TIM14_CH1	OCTOSPI1_IO2	ETH_MII_RX_DV/ ETH_RMII_CRS_ DV	FMC_SDNWE	FMC_NWE	-	EVENTOUT
	PA8	-	-	USB_SOF	UART7_RX	FMC_NOE	DCMI_D3/PSSI_D3	-	EVENTOUT
	PA9	-	-	-	ETH_MII_TX_ER	FMC_NWE	DCMI_D0/PSSI_D0	-	EVENTOUT
	PA10	-	FDCAN2_TX	-	-	SDMMC1_D0	DCMI_D1/PSSI_D1	-	EVENTOUT
	PA11	-	FDCAN1_RX	USB_DM	-	-	-	-	EVENTOUT
	PA12	SAI2_FS_B	FDCAN1_TX	USB_DP	-	-	-	-	EVENTOUT
	PA13	-	-	-	-	-	-	-	EVENTOUT
	PA14	-	-	-	-	-	-	-	EVENTOUT
	PA15	UART4_RTS	-	-	UART7_TX	FMC_NBL1	DCMI_D11/PSSI_D11	TIM2_ETR	EVENTOUT

Table 16. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	SYS
	PB0	UART4_CTS	-	-	ETH_MII_RXD2	-	-	LPTIM3_CH1	EVENTOUT
	PB1	-	-	-	ETH_MII_RXD3	-	-	LPTIM3_CH2	EVENTOUT
	PB2	-	OCTOSPI1_CLK	OCTOSPI1_DQ S	-	SDMMC1_CMD	LPTIM5_ETR	-	EVENTOUT
	PB3	SPI6_SCK	SDMMC2_D2	CRS_SYNC	UART7_RX	-	-	LPTIM6_ETR	EVENTOUT
	PB4	SPI6_MISO	SDMMC2_D3	-	UART7_TX	-	DCMI_D7/PSSI_D7	-	EVENTOUT
	PB5	SPI6_MOSI	FDCAN2_RX	-	ETH_PPS_OUT	FMC_SDCKE1	DCMI_D10/PSSI_D10	UART5_RX	EVENTOUT
	PB6	LPUART1_TX	FDCAN2_TX	OCTOSPI1_NCS	-	FMC_SDNE1	DCMI_D5/PSSI_D5	UART5_TX	EVENTOUT
В	PB7	LPUART1_RX	FDCAN1_TX	SDMMC2_D5	SDMMC2_CKIN	FMC_NL	DCMI_VSYNC/PSSI_ RDY	-	EVENTOUT
Port	PB8	UART4_RX	FDCAN1_RX	SDMMC2_D4	ETH_MII_TXD3	SDMMC1_D4	DCMI_D6/PSSI_D6	-	EVENTOUT
	PB9	UART4_TX	FDCAN1_TX	SDMMC2_D5	SDMMC2_CKIN	SDMMC1_D5	DCMI_D7/PSSI_D7	-	EVENTOUT
	PB10	-	OCTOSPI1_NCS	-	ETH_MII_RX_ER	-	-	-	EVENTOUT
	PB11	-	-	-	ETH_MII_TX_EN/ ETH_RMII_TX_EN	FMC_NBL1	-	-	EVENTOUT
	PB12	-	FDCAN2_RX	-	ETH_MII_TXD0/E TH_RMII_TXD0	-	-	UART5_RX	EVENTOUT
	PB13	-	FDCAN2_TX	-	-	SDMMC1_D0	-	UART5_TX	EVENTOUT
	PB14	UART4_RTS	SDMMC2_D0	-	-	-	-	LPTIM3_ETR	EVENTOUT
	PB15	UART4_CTS	SDMMC2_D1	OCTOSPI1_CLK	ETH_MII_TXD1/E TH_RMII_TXD1	-	DCMI_D2/PSSI_D2	UART5_RX	EVENTOUT

				Table 16. Alter	nate function AF	8 to AF15 ⁽¹⁾ (conti	nued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	sys
	PC0	SAI2_FS_B	FMC_A25	OCTOSPI1_IO7	-	FMC_SDNWE	-	-	EVENTOUT
	PC1	SAI2_SD_A	SDMMC2_CK	OCTOSPI1_IO4	ETH_MDC	-	-	-	EVENTOUT
	PC2	-	OCTOSPI1_IO2	-	ETH_MII_TXD2	FMC_SDNE0	-	-	EVENTOUT
	PC3	-	OCTOSPI1_IO0	-	ETH_MII_TX_CLK	FMC_SDCKE0	-	-	EVENTOUT
	PC4	-	-	-	ETH_MII_RXD0/E TH_RMII_RXD0	FMC_SDNE0	-	-	EVENTOUT
	PC5	-	-	OCTOSPI1_DQ S	ETH_MII_RXD1/E TH_RMII_RXD1	FMC_SDCKE0	-	-	EVENTOUT
	PC6	SDMMC1_D0D IR	FMC_NWAIT	SDMMC2_D6	OCTOSPI1_IO5	SDMMC1_D6	DCMI_D0/PSSI_D0	-	EVENTOUT
Port C	PC7	SDMMC1_D12 3DIR	FMC_NE1	SDMMC2_D7	OCTOSPI1_IO6	SDMMC1_D7	DCMI_D1/PSSI_D1	-	EVENTOUT
	PC8	UART5_RTS	FMC_NE2/FMC_ NCE	FMC_INT	FMC_ALE	SDMMC1_D0	DCMI_D2/PSSI_D2	-	EVENTOUT
	PC9	UART5_CTS	OCTOSPI1_IO0	-	FMC_CLE	SDMMC1_D1	DCMI_D3/PSSI_D3	-	EVENTOUT
	PC10	UART4_TX	OCTOSPI1_IO1	-	ETH_MII_TXD0/E TH_RMII_TXD0	SDMMC1_D2	DCMI_D8/PSSI_D8	-	EVENTOUT
	PC11	UART4_RX	OCTOSPI1_NCS	-	-	SDMMC1_D3	DCMI_D4/PSSI_D4	-	EVENTOUT
	PC12	UART5_TX	-	-	-	SDMMC1_CK	DCMI_D9/PSSI_D9	-	EVENTOUT
	PC13	-	-	-	-	-	-	-	EVENTOUT
	PC14	-	-	-	-	-	-	-	EVENTOUT
	PC15	-	-	-	-	-	-	-	EVENTOUT

Table 16. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	sys
	PD0	UART4_RX	FDCAN1_RX	-	UART9_CTS	FMC_D2/FMC_AD2	-	-	EVENTOUT
	PD1	UART4_TX	FDCAN1_TX	-	-	FMC_D3/FMC_AD3	-	-	EVENTOUT
	PD2	UART5_RX	-	-	-	SDMMC1_CMD	DCMI_D11/PSSI_D11	LPTIM4_ETR	EVENTOUT
	PD3	-	-	-	-	FMC_CLK	DCMI_D5/PSSI_D5	-	EVENTOUT
	PD4	-	-	OCTOSPI1_IO4	-	FMC_NOE	-	-	EVENTOUT
	PD5	-	FDCAN1_TX	OCTOSPI1_IO5	-	FMC_NWE	-	-	EVENTOUT
	PD6	-	-	OCTOSPI1_IO6	SDMMC2_CK	FMC_NWAIT	DCMI_D10/PSSI_D10	-	EVENTOUT
	PD7	-	-	OCTOSPI1_IO7	SDMMC2_CMD	FMC_NE1/FMC_NC E	-	LPTIM4_OUT	EVENTOUT
Port D	PD8	-	-	-	-	FMC_D13/FMC_AD1	-	-	EVENTOUT
	PD9	-	FDCAN2_RX	-	-	FMC_D14/FMC_AD1 4	-	-	EVENTOUT
	PD10	-	-	-	-	FMC_D15/FMC_AD1 5	-	-	EVENTOUT
	PD11	UART4_RX	OCTOSPI1_IO0	SAI2_SD_A	-	FMC_A16/FMC_CLE	-	-	EVENTOUT
	PD12	UART4_TX	OCTOSPI1_IO1	SAI2_FS_A	-	FMC_A17/FMC_ALE	DCMI_D12/PSSI_D12	-	EVENTOUT
	PD13	=	OCTOSPI1_IO3	SAI2_SCK_A	UART9_RTS	FMC_A18	DCMI_D13/PSSI_D13	LPTIM4_IN1	EVENTOUT
	PD14	UART8_CTS	-	-	UART9_RX	FMC_D0/FMC_AD0	-	-	EVENTOUT
	PD15	UART8_RTS	-	-	UART9_TX	FMC_D1/FMC_AD1	-	-	EVENTOUT

				Table 16. Alter	nate function AF	8 to AF15 ⁽¹⁾ (conti	nued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	sys
	PE0	UART8_RX	FDCAN1_RX	SAI2_MCLK_A	-	FMC_NBL0	DCMI_D2/PSSI_D2	=	EVENTOUT
	PE1	UART8_TX	FDCAN1_TX	-	-	FMC_NBL1	DCMI_D3/PSSI_D3	-	EVENTOUT
	PE2	UART8_TX	OCTOSPI1_IO2	-	ETH_MII_TXD3	FMC_A23	DCMI_D3/PSSI_D3	-	EVENTOUT
	PE3	-	-	-	-	FMC_A19	-	-	EVENTOUT
	PE4	-	-	-	-	FMC_A20	DCMI_D4/PSSI_D4	-	EVENTOUT
	PE5	-	-	-	-	FMC_A21	DCMI_D6/PSSI_D6	-	EVENTOUT
	PE6	-	-	SAI2_MCLK_B	-	FMC_A22	DCMI_D7/PSSI_D7	-	EVENTOUT
	PE7	-	-	OCTOSPI1_IO4	-	FMC_D4/FMC_AD4	-	-	EVENTOUT
Port E	PE8	-	-	OCTOSPI1_IO5	-	FMC_D5/FMC_AD5	-	-	EVENTOUT
Pol	PE9	-	-	OCTOSPI1_IO6	-	FMC_D6/FMC_AD6	-	-	EVENTOUT
	PE10	-	-	OCTOSPI1_IO7	-	FMC_D7/FMC_AD7	-	-	EVENTOUT
	PE11	-	-	SAI2_SD_B	-	FMC_D8/FMC_AD8	-	-	EVENTOUT
	PE12	-	-	SAI2_SCK_B	-	FMC_D9/FMC_AD9	-	-	EVENTOUT
	PE13	-	-	SAI2_FS_B	-	FMC_D10/FMC_AD1 0	-	-	EVENTOUT
	PE14	-	-	SAI2_MCLK_B	-	FMC_D11/FMC_AD1 1	-	-	EVENTOUT
	PE15	-	-	-	-	FMC_D12/FMC_AD1 2	-	-	EVENTOUT

Table 16. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	sys
	PF0	-	-	-	-	FMC_A0	LPTIM5_CH1	-	EVENTOUT
	PF1	-	-	-	-	FMC_A1	LPTIM5_CH2	-	EVENTOUT
	PF2	-	-	-	-	FMC_A2	LPTIM5_IN1	-	EVENTOUT
	PF3	-	-	-	-	FMC_A3	LPTIM5_IN2	-	EVENTOUT
	PF4	-	-	-	-	FMC_A4	-	-	EVENTOUT
	PF5	-	-	-	-	FMC_A5	-	LPTIM3_IN1	EVENTOUT
	PF6	-	-	OCTOSPI1_IO3	-	-	LPTIM5_CH1	-	EVENTOUT
ш	PF7	-	-	OCTOSPI1_IO2	-	-	LPTIM5_CH2	-	EVENTOUT
Port	PF8	-	TIM13_CH1	OCTOSPI1_IO0	-	-	LPTIM5_IN1	-	EVENTOUT
	PF9	-	TIM14_CH1	OCTOSPI1_IO1	-	-	LPTIM5_IN2	-	EVENTOUT
	PF10	-	OCTOSPI1_CLK	-	-	-	DCMI_D11/PSSI_D11	-	EVENTOUT
	PF11	-	OCTOSPI1_NCL K	SAI2_SD_B	-	FMC_NRAS	DCMI_D12/PSSI_D12	LPTIM6_CH1	EVENTOUT
	PF12	-	-	-	-	FMC_A6	-	LPTIM6_CH2	EVENTOUT
	PF13	-	-	-	-	FMC_A7	-	LPTIM6_IN1	EVENTOUT
	PF14	-	-	-	-	FMC_A8	-	LPTIM6_IN2	EVENTOUT
	PF15	-	-	-	-	FMC_A9	-	-	EVENTOUT

				Table 16. Alter	rnate function AF	8 to AF15 ⁽¹⁾ (conti	nued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	sys
	PG0	-	-	-	UART9_RX	FMC_A10	-	LPTIM4_IN1	EVENTOUT
	PG1	-	-	-	UART9_TX	FMC_A11	-	-	EVENTOUT
	PG2	-	-	-	-	FMC_A12	-	LPTIM6_ETR	EVENTOUT
	PG3	-	-	-	-	FMC_A13	LPTIM5_ETR	-	EVENTOUT
	PG4	-	-	-	-	FMC_A14/FMC_BA0	-	LPTIM4_ETR	EVENTOUT
	PG5	-	-	-	-	FMC_A15/FMC_BA1	-	=	EVENTOUT
	PG6	-	-	OCTOSPI1_NCS	UCPD1_FRSTX	FMC_NE3	DCMI_D12/PSSI_D12	=	EVENTOUT
	PG7	-	-	-	UCPD1_FRSTX	FMC_INT	DCMI_D13/PSSI_D13	-	EVENTOUT
۲۵.	PG8	-	-	-	ETH_PPS_OUT	FMC_SDCLK	-	-	EVENTOUT
Port G	PG9	-	OCTOSPI1_IO6	SAI2_FS_B	SDMMC2_D0	FMC_NE2/FMC_NC E	DCMI_VSYNC/PSSI_ RDY	-	EVENTOUT
	PG10	-	-	SAI2_SD_B	SDMMC2_D1	FMC_NE3	DCMI_D2/PSSI_D2	-	EVENTOUT
	PG11	-	-	SDMMC2_D2	ETH_MII_TX_EN/ ETH_RMII_TX_EN	-	DCMI_D3/PSSI_D3	-	EVENTOUT
	PG12	-	-	SDMMC2_D3	ETH_MII_TXD1/E TH_RMII_TXD1	FMC_NE4	DCMI_D11/PSSI_D11	LPTIM5_CH1	EVENTOUT
	PG13	-	-	SDMMC2_D6	ETH_MII_TXD0/E TH_RMII_TXD0	FMC_A24	LPTIM5_CH2	-	EVENTOUT
	PG14	-	OCTOSPI1_IO7	SDMMC2_D7	ETH_MII_TXD1/E TH_RMII_TXD1	FMC_A25	LPTIM5_IN1	-	EVENTOUT
	PG15	-	-	-	-	FMC_NCAS	DCMI_D13/PSSI_D13	-	EVENTOUT

Table 16. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	sys
	PH0	-	-	-	-	-	-	-	EVENTOUT
	PH1	-	-	-	-	-	-	-	EVENTOUT
	PH2	-	OCTOSPI1_IO4	SAI2_SCK_B	ETH_MII_CRS	FMC_SDCKE0	-	-	EVENTOUT
	PH3	-	OCTOSPI1_IO5	SAI2_MCLK_B	ETH_MII_COL	FMC_SDNE0	-	-	EVENTOUT
	PH4	-	-	-	-	-	PSSI_D14	-	EVENTOUT
	PH5	-	-	-	-	FMC_SDNWE	-	-	EVENTOUT
	PH6	-	-	-	ETH_MII_RXD2	FMC_SDNE1	DCMI_D8/PSSI_D8	-	EVENTOUT
ı	PH7	-	-	-	ETH_MII_RXD3	FMC_SDCKE1	DCMI_D9/PSSI_D9	-	EVENTOUT
Port	PH8	-	-	-	-	-	DCMI_HSYNC/PSSI_ DE	-	EVENTOUT
	PH9	-	-	-	-	-	DCMI_D0/PSSI_D0	-	EVENTOUT
	PH10	-	-	-	-	-	DCMI_D1/PSSI_D1	-	EVENTOUT
	PH11	-	-	-	-	-	DCMI_D2/PSSI_D2	-	EVENTOUT
	PH12	-	-	TIM8_CH4N	-	-	DCMI_D3/PSSI_D3	-	EVENTOUT
	PH13	UART4_TX	FDCAN1_TX	-	-	-	DCMI_D3/PSSI_D3	-	EVENTOUT
	PH14	UART4_RX	FDCAN1_RX	-	-	-	DCMI_D4/PSSI_D4	-	EVENTOUT
	PH15	-	-	-	-	-	DCMI_D11/PSSI_D11	-	EVENTOUT

Table 16. Alterna	te function AF8 to	AF15 ⁽¹⁾ (continued)
-------------------	--------------------	---------------------------------

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC[NAND16)/FMC[NORmux)/FMC[NOR_RAM)/OC TOSPI/SDMMC2 /TIM13/14	CRS/FMC[NAN D16)/OCTOSPI/ SAI2/SDMMC2/T IM8/USB_	ETH[MII/RMII)/FM C[NAND16)/OCT OSPI/SDMMC2/U ART7/9/USB_PD	FMC[NAND16)/FMC [NORmux)/FMC[NO R_RAM)/FMC[SDRA M_16bit)/SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/FMC[NOR_RAM)/LPTIM5	LPTIM3/4/5/6/T IM2/UART5	SYS
	PI0	-	-	-	-	-	DCMI_D13/PSSI_D13	-	EVENTOUT
	PI1	-	-	-	-	-	DCMI_D8/PSSI_D8	-	EVENTOUT
	PI2	-	-	-	-	-	DCMI_D9/PSSI_D9	-	EVENTOUT
	PI3	-	-	-	-	-	DCMI_D10/PSSI_D10	-	EVENTOUT
	PI4	-	-	SAI2_MCLK_A	-	-	DCMI_D5/PSSI_D5	-	EVENTOUT
Port I	PI5	-	-	SAI2_SCK_A	-	-	DCMI_VSYNC/PSSI_ RDY	-	EVENTOUT
6	PI6	-	-	SAI2_SD_A	-	-	DCMI_D6/PSSI_D6	-	EVENTOUT
	PI7	-	-	SAI2_FS_A	-	-	DCMI_D7/PSSI_D7	-	EVENTOUT
	PI8	=	-	-	-	-	-	-	EVENTOUT
	PI9	UART4_RX	FDCAN1_RX	-	-	-	-	-	EVENTOUT
	PI10	=	FDCAN1_RX	-	ETH_MII_RX_ER	-	PSSI_D14	-	EVENTOUT
	PI11	-	-	-	-	-	PSSI_D15	-	EVENTOUT

^{1.} Refer to the previous table for AF0 to AF7.

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_J = 25 °C and T_J = T_{Jmax} (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes, and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on T_J = 25 °C, V_{DD} = V_{DDA} = 3.3 V (for the 1.71 \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 18*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 19*.

5.1.6 Power supply scheme

STM32H5 SMPS disabled 577 SMPS packages V_{DDSMPS} SMPS Switched Mode **Power Supply** floating 100 pF or 200 pF step down converter V_{SSSMPS} $V_{\text{CAP1/2}}$ Core domain 1 100 nF LDO SMPS enabled Voltage regulator I V_{DDIO2} V_{DDIO2} Two different possible use cases V_{DD} 100 nF V_{DD} IOs V_{DD} V_{DD} 100 nF V_{DD} domain Backup Two different possible use cases domain Battery 100 nF BKUP IOs Two different possible use cases V_{DDUSB} 100 nF USB FS $V_{D\underline{DA}}$ V_{DDA} Analog domain 100 nF V_{REF} V_{REF} V_{REF+} 100 nF

Figure 20. STM32H563 power supply scheme with SMPS

MSv71967V3

Defines different use case options

Define power domaines

Internal VREFBUF enabled

Three different possible use cases

Figure 21. STM32H562/H563 power supply scheme with LDO

Note: Refer to "Getting started with STM32H5 Series hardware development" (AN5711) for more details.

127/275

Caution:

Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 17: Voltage characteristics*, *Table 18: Current characteristics* and *Table 19*. Thermal characteristics may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit	
V _{DDx} - V _{SS}	External main supply voltage (including $V_{DDSMPS}^{(2)}$, V_{DDA} , V_{DDUSB} , $V_{DDIO2}^{(2)(3)(4)}$, V_{BAT} , and V_{REF+})	-0.3	4.0	V	
V _{DDIOx} ⁽⁴⁾ -	I/O supply when HSLV ⁽²⁾ = 0	-0.3	4.0	W	
V _{SS}	I/O supply when HSLV ⁽²⁾ = 1	-0.3	2.75	V	
	Input voltage on FT_xxx pins except FT_c pins	V _{SS} -0.3	$\begin{aligned} & \min \; (\min(V_{DD}, V_{DDA}, V_{DDUSB}, \\ & V_{DDIO2}) + 4.0, 6.0 \; V)^{(6)(7)} \end{aligned}$	V	
	Input voltage on FT_t in V _{BAT} mode	V _{SS} -0.3	$\begin{aligned} & \min{(\text{min}(\text{V}_{\text{BAT}}, \text{V}_{\text{DDA}}, \text{V}_{\text{DDUSB}}, \\ & \text{V}_{\text{DDIO2}}) + 4.0\text{V}, 6.0\text{ V})} \end{aligned}$		
$V_{IN}^{(5)}$	Input voltage on TT_xx pins	V _{SS} -0.3	4.0		
	Input voltage on BOOT0 pin	V _{SS}	$\begin{aligned} & \min{(\text{min}(\text{V}_{\text{DD}}, \text{V}_{\text{DDA}}, \text{V}_{\text{DDUSB}}, \\ & \text{V}_{\text{DDIO2}}) + 4.0, 6.0 \text{V})^{(6)}} \end{aligned}$	V	
	Input voltage on FT_c pins	V _{SS} -0.3	5.5		
	Input voltage on any other pins	V _{SS} -0.3	4.0		
V _{REF+} -V _{DDA}	Allowed voltage difference for V _{REF+} > V _{DDA}	-	0.4		
$ \Delta V_{DDx} $	Variations between different V _{DDX} power pins of the same domain	-	50.0	mV	
V _{SSx} -V _{SS}	Variations between all the different ground pins	-	50.0		

Table 17. Voltage characteristics⁽¹⁾

- 2. HSLV = High-speed low-voltage mode. Refer to General-purpose I/Os (GPIO) section of RM0481.
- 3. If HSLV = 0.
- 4. V_{DDIO1} or V_{DDIO2} . $V_{DDIO1} = V_{DD}$.
- 5. V_{IN} maximum must always be respected. Refer to the maximum allowed injected current values.
- 6. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
- 7. This formula has to be applied on power supplies related to the I/O structure described by the pin definition table.

All main power (V_{DD}, V_{DDA}V_{DDUSB}, V_{DDIO2}, V_{REF+}, V_{DDSMPS}, V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

Symbol Max Unit Ratings $\Sigma I \Lambda^{DD}$ Total current into sum of all V_{DD} power lines (source)⁽¹⁾ 350 Total current out of sum of all V_{SS} ground lines (sink)⁽¹⁾ ΣIV_{SS} 350 Maximum current into each V_{DD} power pin (source)⁽¹⁾ IV_{DD} 100 Maximum current out of each V_{SS} ground pin (sink)⁽¹⁾ IV_{SS} 100 Output current sourced by any I/O and control pin 20 mΑ I_{IO(PIN)} Total output current sunk by sum of all I/Os and control pins(2) 140 $\Sigma I_{IO(PIN)}$ Total output current sourced by sum of all I/Os and control pins(2) 140 I_{INJ(PIN)}(3)(4) Injected current on FT_xxx, TT_xx, NRST pins -5/0 Total injected current (sum of all I/Os and control pins)⁽⁵⁾ ±25 $\sum |I_{INJ(PIN)}|$

Table 18. Current characteristics

- All main power (V_{DD}, V_{DDA}, V_{DDIO2}, and V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.
- 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
- Positive injection (when V_{IN} > V_{DDIOx}) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 17: Voltage characteristics for the minimum allowed input voltage values.
- When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

Table 19. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	130 ⁽¹⁾	°C

^{1.} The junction temperature is limited to 105 °C in the VOS0 voltage range.

5.3 Operating condition

5.3.1 General operating conditions

Table 20. General operating conditions

Symbol	Parameter	Operating conditions	Min	Тур	Max	Unit
V _{DD}	Standard operating	HSLV ⁽¹⁾ = 0	1.71 ⁽²⁾	-	3.6	V
	voltage	HSLV ⁽¹⁾ = 1	1.71 ⁽²⁾	-	2.7	V
V _{DDSMPS}	Supply voltage for the internal SMPS stepdown converter	V_{DD}	V _{DD}	-	V _{DD}	V

Table 20. General operating conditions (continued)

Symbol	Parameter	Operating conditions	Min	Тур	Max	Unit
		At least one I/O in PB8, PB9, PD6, PD7, PG[9:14] is used, HSLV ⁽¹⁾ = 0	1.08	-	3.6	
V _{DDIO2}	PB8, PB9, PD6, PD7, PG[9:14] I/Os supply voltage	At least one I/O in PB8, PB9, PD6, PD7, PG[9:14] is used, HSLV ⁽¹⁾ = 1	1.08	-	2.7	V
	-	PB8,PB9, PD6,PD7, PG[9:14] not use	0		3.6	
V _{DDUSB}	USB supply voltage	USB used	3.0	-	3.6	V
*DD02B	OCD cupply voltage	USB not used	0	-	3.6	·
		ADC is used	1.62	-		
V _{DDA}	Analog supply voltage	DAC is used	1.8	-	3.6	V
		VREFBUF is used		-		
		ADC, DAC, and VREFBUF are not used	0	-		
V _{BAT}	Backup domain supply voltage	-	1.2	-	3.6	V
		All I/O except FT_c and TT_xx	-0.3	-	min (min (V _{DD} , V _{DDA} , V _{DDIO2}) + 3.6V, 5.5 V) ⁽³⁾⁽⁴⁾	
V_{IN}	I/O input voltage	Input voltage on FT_t in VBAT mode	-0.3	-	min (min (V _{BAT} , V _{DDA} , V _{DDIO2}) + 3.6 V, 5.5 V) ⁽³⁾⁽	V
		FT_c I/O	-0.3	-	5.0]
		TT_xx I/O	-0.3	-	V _{DDIOx} + 0.3	

Table 20. General operating conditions (continued)

Symbol	Parameter	Operating conditions	Min	Тур	Max	Unit
		VOS0 ⁽⁵⁾ (max frequency for AHB and APB: 250 MHz)	1.30	1.35	1.40	
	Internal regulator ON	VOS1 (max frequency for AHB and APB: 200 MHz)	1.15	1.20	1.26	V
	internal regulator ON	VOS2 (max frequency for AHB and APB: 150 MHz)	1.05	1.10	1.15	V
		VOS3 (max frequency for AHB and APB: 100 MHz)	0.95	1.00	1.05	
V _{CORE}	Regulator OFF:	VOS0 ⁽⁵⁾	1.32	1.35	1.40	
	external VCORE voltage must be	VOS1	1.17	1.20	1.26	١.,
	supplied from external	VOS2	1.07	1.10	1.15	V
	regulator on VCAP pins.	VOS3	0.97	1.00	1.05	
	Stop mode	SVOS3	-	1.0	-	V
		SVOS4	-	0.9	-	
		SVOS5	-	0.74	-	
	AHB clock frequency	VOS0 ⁽⁵⁾	-	-	250	
£		VOS1	-	-	200	MHz
f _{HCLK}		VOS2	-	-	150	
		VOS3	-	-	100	
		VOS0 ⁽⁵⁾	-	-	250	
f _{PCLKx}	APB1, APB2, APB3	VOS1	-	-	200	NALI-
(x=1,2,3)	clock frequency	VOS2	-	-	150	MHz
		VOS3	-	-	100	
		LQFP64		ble 19: 1		
		LQFP100		<i>eristics</i> tion app		
		LQFP144	thermal	l resista	nce and	
6	Power dissipation at	LQFP176	package. Power dissipation is then calculated according to ambient temperature			mW
P_{D}	$T_A = 85 ^{\circ}\text{C}$ for suffix $6^{(6)}$	UFBGA169			ording to	
		UFBGA176				
		VFQFPN68	(T _A), maximum junction temperature (T _J) and selected thermal		_J) and	
		WLCSP80	resistar		aı	
		I.	1			1

Table 20. General operating conditions (continued)

Symbol	Parameter	Operating conditions	Min	Тур	Max	Unit		
		LQFP64		See Table 19: Thermal characteristics for application appropriate thermal resistance and				
		LQFP100						
		LQFP144	thermal					
Б	Power dissipation at	LQFP176		e. Powe tion is th		mW		
P_{D}	$T_A = 125 ^{\circ}\text{C for suffix}$ $3^{(6)}$	UFBGA169		calculated according to ambient temperature				
		UFBGA176		junction				
		VFQFPN68		ature (T _.	,			
		WLCSP80	resistar					
т	Ambient temperature for the suffix 3 version	Maximum power dissipation	-40	-	125	°C		
	Ambient temperature for the suffix 6 version	Maximum power dissipation	-40 -		85	°C		
т.	Junction temperature	VOS0	-40	-	105	- °C		
T_J	range	VOS1, VOS2, and VOS3	-40	-	130			

- 1. HSLV = High-speed low-voltage mode. Refer to General-purpose I/Os (GPIO) section of RM0481.
- 2. When RESET is released functionality is guaranteed down to BOR level 0 minimum voltage.
- This formula has to be applied on power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between min (VDD, VDDA, VDDIO2) + 3.6 V and 5.5 V.
- 4. For operation with voltage higher than min (VDD, VDDA, VDDIO2) +0.3V, the internal pull-up and pull-down resistors must be disabled.
- 5. In VOS0 mode the max T_J is 105 °C.
- 6. If T_A is lower, higher PD values are allowed as long as T_J does not exceed T_{Jmax} (see *Table 19: Thermal characteristics*).

Table 21. Maximum allowed clock frequencies

Symbol ⁽¹⁾⁽²⁾	Parameter	VOS0	VOS1	VOS2	VOS3	Unit
f _{CPU}	CPU	250	200	150	100	
f _{HCLK}	AHB	250	200	150	100	
f _{PCLK}	APB	250	200	150	100	
-	FMC	250	200	150	100	
f _{octospi_ker_ck}	OCTOSPI[1:2]	250	200	150	100	
f _{sdmmc_ker_ck}	SDMMC[1:2]	250	200	150	100	
-	HDMI_CEC	4	4	4	4	
f _{fdcan_ker_ck}	FDCAN	250	200	150	100	
f _{I2C_ker_ck}	I2C[1:4]	250	200	150	100	
f _{I3C_ker_ck}	I3C	250	200	150	100	
f _{lptim_ker_ck}	LPTIM[1:6]	250	200	150	100	
f.	TIM[1:8] TIM[12:17]	250	200	150	100	
f _{tim_ker_ck}	TIM6/17	64	64	64	64	MHz
f _{rng_clk}	RNG	50	50	50	50	IVITZ
f _{sai_a_ker_ck}	- SAI1/2	250	200	150	100	
f _{sai_b_ker_ck}						
form the sta	SPI(I2S)1,2,3	125	100	75	50	
f _{spi_ker_ck}	SPI 4,5,6	125	100	75	50	
f _{lpuart_ker_ck}	LPUART1	250	200	150	100	
f _{usart_ker_ck}	USART/UART	250	200	150	100	
f _{usb_ker_ck}	USB2FS	50	50	50	50	
f _{adc_ker_ck}	ADC/DAC	125	100	75	50	
f _{dac_pclk}	DAC	250	200	150	100	
f _{usb_ker_ck}	USBPD	64	64	64	64	
f _{rtc_ker_ck}	RTC	1	1	1	1	
-	DCMI	250	200	150	100	

^{1.} Specified by design - Not tested in production.

57

^{2.} The maximum kernel clock frequencies can be limited by the maximum peripheral clock frequency (refer to each peripheral electrical characteristics).

5.3.2 VCAP external capacitor

Stabilization for the embedded LDO regulator is achieved by connecting an external capacitor C_{EXT} to the VCAPx (one or two pins depending on the packages). CEXT is specified in Table 25. VCAP operating conditions. Two external capacitors must be connected to VCAP pins (refer to STM32H5 Series hardware development (AN5711).

Figure 22. External capacitor C_{FXT}

1. Legend: ESR is equivalent series resistance.

Table 22. Supply voltage and maximum frequency configuration

Symbol	Parameter	Conditions
CEXT	External capacitor for LDO enabled	2.2 µF ⁽¹⁾
ESR	ESR of external capacitor	< 100 mΩ

^{1.} This value corresponds to CEXT typical value. A variation of ±20% is tolerated

5.3.3 SMPS step-down converter

The devices embed a high power efficiency SMPS step-down converter requiring external components.

Table 23. Characteristics of SMPS step-down converter external components

Symbol	Parameter	Conditions
	Capacitance of external capacitor on V _{DDSMPS}	4.7 μF
C _{in}	ESR of external capacitor	100 mΩ
C _{filt}	Capacitance of external capacitor on V _{LXSMPS} pin	220 pF
C	Capacitance of external capacitor on V _{CAP} pin	10 μF
C _{OUT}	ESR of external capacitor	20 mΩ
L	Inductance of external Inductor on V _{LXSMPS} pin	2.2 μH
-	Serial DC resistor	150 mΩ
I _{SAT}	DC current at which the inductance drops 30% from its value without current.	1.7 A
I _{RMS}	Average current for a 40 °C rise: rated current for which the temperature of the inductor is raised 40°C by DC current	1.4 A

The SMPS current consumption can be determined using the following formula based on the maximum LDO current consumption provided in *Section 5.3.7: Supply current characteristics*:

IDDSMPS=IDDLDOx(VCORE÷(VDDxefficency))

Where: IDDLDO is the current in LDO configuration given in the following tables, VCORE is the digital core supply (VCAP), and efficiency is defined in the following curves.

Figure 23. SMPS efficiency versus load current in run, sleep and stop mode with SVOS3 mode, $T_J = 30$ °C

Note: SVOS3 is equivalent to VOS3 in run and sleep mode.

Figure 24. SMPS efficiency versus load current in Run, Sleep and Stop mode with SVOS3 mode, $T_{.1}$ = 130 °C

Note: SVOS3 is equivalent to VOS3 in run and sleep mode.

DS14258 Rev 1 135/275

Figure 25. SMPS efficiency versus load current in stop SVOV4, SVOS5, T_J = 30 °C

5.3.4 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A .

Operating conditions at power-up / power-down (regulator ON)

Table 24. Operating conditions at power-up/power-down (regulator ON)

Symbol	Parameter	Min	Max	Unit
т	V _{DD} rise time rate	0	8	
T _{VDD}	V _{DD} fall time rate	10	∞	
т	V _{DDA} rise time rate	0	80	
T _{VDDA}	V _{DDA} fall time rate	10	∞	
T.	T _{VDDUSB} rise time rate	0	8	uo/\/
T _{VDDUSB}	T _{VDDUSB} fall time rate	10	8	μs/V
T	T _{VDDIO2} rise time rate	0	∞	
T _{VDDIO2}	T _{VDDIO2} fall time rate	10	8	
T	T _{VBAT} rise time rate	0	∞	
T _{VBAT}	T _{VBAT} fall time rate	10	∞	

Embedded reset and power control block characteristics 5.3.5

The parameters given in Table 25: Embedded reset and power control block characteristics are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 20: General operating conditions.

Table 25. Embedded reset and power control block characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{RSTTEMPO} (2)	Reset temporization after BOR0 is detected	V _{DD} rising	-	377	550	μs
V	Power-on/power-down reset threshold	Rising edge	1.62	1.67	1.71	
V _{POR/PDR}	(BORH_EN =0)	Falling edge	1.58	1.62	1.68	
V	Brownout reset threshold 1		2.04	2.10	2.15	
V _{BOR1}	(BORH_EN =1)	Falling edge	1.95	2.00	2.06	
V	Brownout reset threshold 2	Rising edge	2.34	2.41	2.47	
V _{BOR2}	(BORH_EN =1)	Falling edge	2.25	2.31	2.37	
V	Brownout reset threshold 3	Rising edge	2.63	2.70	2.78	
V _{BOR3}	(BORH_EN =1)	Falling edge	2.54	2.61	2.68	
V	Programmable voltage detector (PVD)	Rising edge	1.90	1.96	2.01	
V_{PVD0}	threshold 0	Falling edge	1.81	1.86	1.91	
V	Programmable voltage detector (PVD)	Rising edge	2.05	2.10	2.16	V
V _{PVD1}	threshold 1	Falling edge	1.96	2.01	2.06	
V	Programmable voltage detector (PVD)	Rising edge	2.19	2.26	2.32	
V _{PVD2}	threshold 2	Falling edge	2.10	2.15	2.21	
V	Programmable voltage detector (PVD)	Rising edge	2.35	2.41	2.47	
V _{PVD3}	threshold 3	Falling edge	2.25	2.31	2.37	
V	Programmable voltage detector (PVD)	Rising edge	2.49	2.56	2.62	
V_{PVD4}	threshold 4	Falling edge	2.39	2.45	2.51	
V	Programmable voltage detector (PVD)	Rising edge	2.64	2.71	2.78	
V_{PVD5}	threshold 5	Falling edge	2.55	2.61	2.68	
V	Programmable voltage detector (PVD)	Rising edge	2.78	2.86	2.94	
V _{PVD6}	threshold 6	Falling edge	2.69	2.76	2.83	
V _{POR/PDR}	Hysteresis for power-on/power-down reset	Hysteresis in run mode	-	43	-	mV
V _{hyst_BOR_PVD}	Hysteresis voltage of BOR (unless BORH_EN = 0) and PVD	-	-	100	-	1117
I _{DD_BOR_PVD} ⁽²⁾	BOR and PVD consumption from V_{DD}	-	-	-	0.630	μA
I _{DD_POR_PDR}	POR and PDR consumption from V_{DD}	-	0.8	-	1.2	μΑ

DS14258 Rev 1 138/275

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	V voltage monitor 0 threshold	Rising edge	1.66	1.71	1.76	
V _{AVD0}	V _{DDA} voltage monitor 0 threshold	Falling edge	1.56	1.61	1.66	
N/	V voltage magniture 4th reach ald	Rising edge	2.06	2.12	2.19	
V _{AVD1}	V _{DDA} voltage monitor 1threshold	Falling edge	1.96	2.02	2.08	V
V	V voltage meniter 2 threshold	Rising edge	2.42	2.50	2.58	V
V _{AVD2}	V _{DDA} voltage monitor 2 threshold	Falling edge	2.35	2.42	2.49	
N/	V voltage magnitur 2 throughold	Rising edge	2.74	2.83	2.91	
V _{AVD3}	V _{DDA} voltage monitor 3 threshold	Falling edge	2.64	2.72	2.80	
V _{IO2VM}	V _{DDIO2} voltage monitor threshold	-	-	0.9	-	V
V _{hyst_AVD}	Hysteresis of V _{DDA} voltage monitor	-	-	100	-	mV
I _{DD_AVD_IO2VM} ⁽²⁾	Power voltage detector consumption from V _{DD} (AVD, IO2VM)	-	-	-	0.25	
I _{DD_AVD_A} ⁽²⁾	V _{DDA} analog voltage detector consumption from VDDA (resistor bridge)	-	-	-	0.25	μA

Table 25. Embedded reset and power control block characteristics⁽¹⁾ (continued)

5.3.6 Embedded reference voltage

The parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 26*.

Table 26. Embedded reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT} ⁽¹⁾	Internal reference voltage	-40 °C < T _J < +130 °C	1.180	1.216	1.255	V
t _{S_vrefint} (2)(3)	ADC sampling time when reading the internal reference voltage	-	4.3	ı	ı	
t _{S_vbat}	V_{BAT} sampling time when reading the internal V_{BAT} voltage		9	ı	ı	μs
t _{start_vrefint} (3)	Start time of reference voltage buffer when the ADC is enabled	-	1	-	4.4	
I _{refbuf} ⁽³⁾	Reference buffer consumption for ADC	V _{DD} = 3.3 V	9	13.5	23	μΑ
$\Delta V_{REFINT}^{(3)}$	Internal reference voltage spread over the temperature range	-40°C < T _J < +130 °C	ı	5	15	mV
T _{Coeff}	Average temperature coefficient	Average temperature coefficient	-	20	70	ppm/°C
V_{DDcoeff}	Average voltage coefficient	3.0 V < V _{DD} < 3.6 V	-	10	1370	ppm/V

139/275

^{1.} Evaluated by characterization and not tested in production, unless otherwise specified.

^{2.} Specified by design - not tested in production

	rabio 10: 1 modada rotorono vottago (comunada)										
Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
V _{REFINT_DIV1} (3)	1/4 reference voltage		-	25	-	- 1					
V _{REFINT_DIV2} (3)	1/2 reference voltage	-		50	-	% V _{REFINT}					
V _{REFINIT DIV3} (3)	3/4 reference voltage		-	75	-	IXLI IIVI					

Table 26. Embedded reference voltage (continued)

- 1. $V_{\mbox{\scriptsize REFINT}}$ does not take into account package and soldering effects.
- 2. The shortest sampling time for the application can be determined by multiple iterations.
- 3. Specified by design not tested in production

Table 27. Internal reference voltage calibration value

Symbol	Parameter	Memory address
V _{REFINT_CAL}	Raw data acquired at temperature of 30 °C, V _{DDA} = 3.3 V	0x08FF F810 - 0x08FF F811

5.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

All the run-mode current consumption measurements given in this section are performed with a CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode.
- All peripherals are disabled except when explicitly mentioned.
- The flash memory access time is adjusted with the minimum wait-state number, depending on the f_{HCLK} frequency (refer to the tables "FLASH recommended number of wait states and programming delay" available in the reference manual).
- When the peripherals are enabled, the AHB clock frequency is the CPU frequency and the APB clock frequency is AHB frequency.

The parameters given in the below tables are derived from tests performed under supply voltage conditions summarized in *Table 20: General operating conditions* and unless otherwise specified at ambient temperature.

The maximum current consumptions provided in the following tables are given for LDO regulator ON.

Table 28. Typical and maximum current consumption in run mode, code with data processing running from flash memory, 2-ways instruction cache ON, PREFETCH ON

	running i	Conditions		liuyo ii			Max ⁽¹⁾⁽²⁾						
Symbol	Symbol			f _{HCLK} (MHz)	Typ LDO	Typ SMPS	T _J = 25°C	T _J = 85°C	T _J = 105°C	T _J = 130°C	Unit		
				250	32.1	17.5	41	89	124	-			
			VOS0	215	27.9	15.0	37	84	119	-			
				200	25.7	13.8	35	84	120	-			
				200	22.1	11.0	28	63	92	140			
			VOS1	180	20.3	10.1	26	58	84	134			
		All peripherals	VUS1	168	18.8	9.3	24	60	86	136			
				150	16.9	8.5	22	59	84	134			
			VOS2	150	15.4	7.4	19	47	70	111			
				100	10.8	5.2	15	41	62	104			
						100	9.8	4.5	13	33	50	83	
	Committee or comment			VOS3	60	6.4	3.0	9	30	46	79		
I _{DD} (Run)	Supply current in run mode			25	3.2	1.7	6	26	42	75	mA		
(* 12.17)				250	100.8	55.7	110	164	203	-			
			VOS0	215	87.1	46.7	96	151	190	-			
				200	80.8	43.3	90	147	188	-			
				200	70.5	34.5	76	116	147	203			
			VOS1	180	63.8	31.4	69	106	135	192			
		All peripherals enabled		150	53.2	27.0	58	100	129	184			
			VOS2	150	48.9	23.1	52	85	108	154			
			VU32	100	32.8	15.6	37	67	90	137			
				100	29.8	13.3	33	55	74	113			
			VOS3	60	18.4	8.0	21	44	63	103			
				25	8.2	3.8	12	35	54	92			

^{1.} Evaluated by characterization - Not tested in production.

577

^{2.} The maximum values are given for LDO regulator ON. Refer to Section 5.3.3: SMPS step-down converter for the SMPS maximum current consumption.

Table 29. Typical and maximum current consumption in run mode, code with data processing running from flash memory, 1-way instruction cache ON, PREFETCH ON

Symbol	16	Conditions		f _{HCLK} (MHz)	Typ LDO	Typ SMPS	Max ⁽¹⁾⁽²⁾				
	Parameter						T _J = 25°C	T _J = 85°C	T _J = 105°C	T _J = 130°C	Unit
	Supply current in run mode	current All peripherals disabled VOS	VOS0	250	29.2	15.9	38	86	121	-	
				200	23.3	12.5	32	81	117	-	
			VOS1	200	20.1	10.0	26	61	86	136	
				180	18.5	9.2	24	57	82	133	
I _{DD} (Run)				150	15.4	7.8	21	55	81	132	mA
(Kull)			V000	150	14.0	6.7	18	45	66	108	
			VU32	100	9.8	4.8	14	40	61	104	
			VOS3	100	8.9	4.2	12	32	49	82	
				25	3.0	1.6	6	26	42	75	

^{1.} Evaluated by characterization - Not tested in production.

Table 30. Typical and maximum current consumption in run mode, code with data processing running from SRAM with cache 1-WAY

lo	eter	Conditions		f _{HCLK} (MHz)	Typ LDO	Typ SMPS	Max ⁽¹⁾⁽²⁾				
Symbol	Parameter						T _J = 25°C	T _J = 85°C	T _J = 105°C	T _J = 130°C	Unit
		All peripherals de disabled	VOS0	250	27.8	15.5	37	85	120	-	-
				215	24.1	13.4	33	81	116	-	
				200	22.1	12.3	32	80	115	-	
			VOS1	200	19.1	9.9	25	60	85	135	
				180	17.6	9.1	23	56	81	133	
I _{DD} (Run)				150	14.6	7.6	25	60	85	135	mA
(Rull)			VOS2	150	13.3	6.6	20	54	79	131	
				100	9.4	4.7	13	40	61	103	
			VOS3	100	8.5	4.1	11	32	49	82	
				60	5.6	2.8	8	29	45	78	
				25	2.9	1.6	6	26	42	75	

^{1.} Evaluated by characterization - Not tested in production.

^{2.} The maximum values are given for LDO regulator ON. Refer to Section 5.3.3: SMPS step-down converter for the SMPS maximum current consumption.

^{2.} The maximum values are given for LDO regulator ON. Refer to Section 5.3.3: SMPS step-down converter for the SMPS maximum current consumption.

Table 31. Typical and maximum current consumption in run mode, code with data processing running from SRAM with cache 2-WAY

lo	ster	Conditions		f _{HCLK} (MHz)	Tyro	Typ SMPS	Max ⁽¹⁾⁽²⁾				
Symbol	Parameter				Typ LDO		T _J = 25°C	T _J = 85°C	T _J = 105°C	T _J = 130°C	Unit
	Supply current in run mode	rrent All peripherals de disabled	VOS0	250	30.8	17.2	40	88	123	-	
				215	26.7	14.4	36	84	119	-	
				200	24.6	13.3	34	84	119	-	
			VOS1	200	21.2	10.5	27	62	90	139	
				180	19.5	9.7	25	58	83	134	
I _{DD}				168	18.0	9.0	24	59	86	135	mA
(Run)				150	16.2	8.4	22	58	83	134	IIIA
			VOS2	150	14.8	7.2	19	47	69	110	
				100	10.3	5.1	14	40	62	104	
			VOS3	100	9.4	4.5	12	32	50	83	
				60	6.1	2.9	9	29	46	79	
				25	3.2	1.7	6	26	42	75	

^{1.} Evaluated by characterization - Not tested in production.

^{2.} The maximum values are given for LDO regulator ON. Refer to Section 5.3.3: SMPS step-down converter for the SMPS maximum current consumption.

Table 32. Typical consumption in run mode with CoreMark running from flash memory and $\mathsf{SRAM}^{(1)}$

Symbol	Parameter	Conditions		f _{HCLK} (MHz)	Typ LDO	Typ SMPS	Unit	Typ LDO	Typ SMPS	Unit
Syl		Peripheral	code	(IVITIZ)	LDO	SIVIFS		LDO	SIVIPS	
				250	32.1	17.5	_	128.6	70.1	
		All peripherals disabled,		200	22.1	10.97		110.7	54.8	
	Supply current in run mode	instruction cache	FLASH	168	18.8	9.3		111.8	55.6	
		2-WAY, prefetch ON		150	15.4	8.5	mA 102.7 97.9 116.6 100.4 93.3 88.9 123.3 106.2 107.3 98.5 94.1 111.1 95.4 88.9 84.9	102.7	56.9	μΑ/MHz
				100	9.8	4.5		97.9	45.3	
		All peripherals disabled, instruction cache 1-WAY, prefetch ON	FLASH -	250	29.2	15.9		116.6	63.8	
				200	20.1	12.5		100.4	62.7	
				150	14.0	10.0		93.3	66.4	
I _{DD}				100	8.9	4.2		88.9	41.7	
(Run)		All peripherals disabled, instruction cache 2-WAY	SRAM	250	30.8	17.2		123.3	68.7	
				200	21.2	10.5		106.2	52.6	
				168	18.0	9.0		107.3	53.4	
				150	14.8	7.2		98.5	48.2	
				100	9.4	4.5		94.1	44.6	
		All peripherals disabled, instruction cache 1-WAY	SRAM -	250	27.8	15.5		111.1	61.9	
				200	19.1	9.9		49.3		
				150	13.3	6.6		88.9	43.8	
				100	8.5	4.1		84.9	40.7	

^{1.} Evaluated by characterization - Not tested in production.

Table 33. Typical consumption in run mode with SecureMark running from flash memory and ${\rm SRAM}^{(1)}$

loqu	Symbol	Conditions		f _{HCLK}	Тур	Тур	Unit	Тур	Тур	Unit					
Syr	Para	Peripheral	code	(MHz)	LDO	SMPS		LDO	SMPS						
				250	34.1	17.9		136.3	71.8						
	All peripherals disabled,		180	21.8	10.6		120.9	58.8							
		instruction cache 2-	FLASH	168	20.1	9.8		119.7	58.5						
		WAY, prefetch ON		150	24.9	7.7		166.2	51.2						
I _{DD}	Supply current in			100	10.6	4.8	mA 1	106.0	47.6	μΑ/MHz					
(Run)	run mode			250	31.3	16.6	ША	125.2	66.3	µAVIVII 12					
		All peripherals disabled,							180	20.1	9.8		111.6	54.5	
		instruction cache 1-	FLASH	168	18.5	9.1		110.4	SMPS 6.3 71.8 0.9 58.8 9.7 58.5 6.2 51.2 6.0 47.6 5.2 66.3 1.6 54.5 0.4 54.2 5.1 47.7						
		WAY, prefetch ON		150	18.8	7.2		125.1	47.7						
				100	9.8	4.5		98.3	44.5						

^{1.} Evaluated by characterization - Not tested in production.

Table 34. Typical and maximum current consumption in sleep mode

-	iter			f _{HCLK}	_	_		Max ⁽¹⁾ (2)			
Symbol	Parameter	Condition	Conditions		Typ LDO	Typ SMPS	T _J = 25°C	T _J = 85°C	T _J = 105°C	T _J = 130°C	Unit
			VOS0	250	7.3	4.2	17	64	100	-	
			VO30	200	5.8	3.3	15	63	99	-	
				200	4.8	2.6	11	44	70	121	
			VOS1	180	4.8	2.6	10	44	70	121	
I _{DD}	I _{DD} Supply current	All peripherals	VOS1	168	4.3	2.3	10	44	70	120	mA
(sleep)	in sleep mode	disabled		150	3.9	2.2	10	43	69	120	ША
			VOS2	150	3.5	1.9	8	34	54	95	
			VO32	100	2.8	1.6	7	33	54	94	
			VOS3	100	2.5	1.4	6	25	42	74	
			V 000	60	2.0	1.2	5	25	41	74	

^{1.} Evaluated by characterization - Not tested in production.

47/

^{2.} The maximum values are given for LDO regulator ON. Refer to Section 5.3.3: SMPS step-down converter for the SMPS maximum current consumption.

Table 35. Typical and maximum current consumption in stop mode

	7.	Conditions					Мах	₍ (1) (2)		
Symbol	Paramete			Typ LDO	Typ SMPS	T _J = 25°C	T _J = 85°C	T _J = 105°C	T _J = 130°C	Unit
		Flash memory in	SVOS3	0.37	0.09	3.1	20.8	35.1	63.5	
	low power mode,	SVOS4	0.27	0.07	2.1	15.5	26.8	49.6		
		SRAMs ON	SVOS5	0.19	0.06	1.3	10.2	18.3	35.2	
		Flash memory in	SVOS3	0.38	0.10	3.1	20.8	35.2	63.7	
	Supply ourront	normal mode, SRAMs	SVOS4	0.29	0.09	2.2	15.6	26.9	49.8	
I _{DD}	Supply current in stop	Flash memory in	SVOS3	0.34	0.09	3.0	19.9	33.5	60.6	mA
(low power mode, all SRAMs OFF except	SVOS4	0.25	0.07	2.1	14.7	25.5	46.9	
		SRAM2 16 Kbytes ON	SVOS5	0.17	0.05	1.2	9.4	16.7	32.1	
		Flash memory in	SVOS3	0.35	0.10	3.0	20.1	33.9	61.3	
		low power mode, SRAMs OFF except	SVOS4	0.26	0.08	2.1	14.9	25.7	47.5	
		SRAM2 ON	SVOS5	0.17	0.08	1.2	9.6	17.1	33.8	

^{1.} Evaluated by characterization - Not tested in production.

Table 36. Typical and maximum current consumption in standby mode

_	Je	Condit	ions		Тур) ⁽¹⁾			М	ax ⁽¹⁾		
Symbol	Parameter	Backup RAM	RTC and LSE ⁽²⁾	1.8 V	2.4 V	3 V	3.3 V	T _J = 25 (°C)	T _J = 85 (°C)	T _J = 105 (°C)	T _J = 130 (°C)	Unit
	Supply	OFF	OFF	2.58	2.78	3.01	3.19	4.3	8.8	16.5	42.6	
I _{DD}	current in standby	ON	OFF	3.79	4.05	4.38	4.63	6	17	30	75	
(standby)	mode,	OFF	ON	2.91	3.15	3.47	3.67	-	-	-	-	μA
	ואים בי סרב	ON	ON	4.16	4.46	4.85	5.12	-	-	-	-	

^{1.} Evaluated by characterization - Not tested in production.

^{2.} The maximum values are given for LDO regulator ON. Refer to Section 5.3.3: SMPS step-down converter for the SMPS maximum current consumption.

^{2.} LSE is in medium-low drive mode.

	<u>.</u>	Condit	ions		Typ ⁽¹) (V)		Max ⁽¹⁾ (°C)				
Symbol	Parameter	Backup RAM	RTC and LSE ⁽²⁾	1.62	2	3	3.3	T _J = 25	T _J = 85	T _J = 105	T _J = 130	Unit
		OFF	OFF	0.01	0.01	0.02	0.02	0.2	2.0	4.9	14.9	
I _{DD}	Supply current	ON	OFF	1.11	1.14	1.17	1.29	3	14	27	62	пΔ
(VBAT)	in V _{BAT} mode	OFF	ON	0.45	0.46	0.48	0.59	ı	ı	-	ı	μA
		ON	ON	1.56	1.57	1.62	1.84	ı	ı	-	ı	

Table 37. Typical and maximum current consumption in VBAT mode

- 1. Evaluated by characterization Not tested in production.
- 2. LSE is in medium-low drive mode.

I/O system current consumption

I/O static current consumption

All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 65. I/O static characteristics.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see Table 44. Peripheral current consumption in run mode), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDx} \times f_{SW} \times C_{L}$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DDx} is the MCU supply voltage

f_{SW} is the I/O switching frequency

 C_L is the total capacitance seen by the I/O pin: $C = C_{INT} + C_{EXT} + C_S$

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- The I/O compensation cell is enabled.
- f_{HCLK} is the CPU clock. f_{PCLK} = f_{rcc_cpu_ck}, and f_{HCLK} = f_{rcc_cpu_ck}.

The given value is calculated by measuring the difference of current consumption:

- with all peripherals clocked off
- with only one peripheral clocked on
- $f_{rcc_cpu_ck}$ = 250 MHz (Scale 0), $f_{rcc_cpu_ck}$ = 200 MHz (Scale 1), $f_{rcc_cpu_ck}$ = 150 MHz (Scale 2), $f_{rcc_cpu_ck}$ = 100 MHz (Scale 3)
- the ambient operating temperature is 25 °C and VDD=3.0 V

Table 38. Peripheral current consumption in sleep mode

BUE	Davinhaval		IDD	(typ)		Unit
BUS	Peripheral	VOS0	VOS1	VOS2	VOS3	Offic
	SRAM1	0.9	0.9 0.85 0.78 0.7 0.95 0.89 0.82 0.74 0.5 0.45 0.42 0.4 0.22 0.21 0.18 0.18 0.66 0.59 0.55 0.51 1.33 10 9.13 8.32 0.19 8.87 8.09 7.35 0.07 1.84 1.68 1.56 0.62 0.55 0.51 0.45 0.45 0.43 0.38 0.35 0.19 1.05 0.97 0.9 0.86 0.81 0.75 0.67 0.88 0.79 0.71 0.67			
	BKPRAM	0.95	0.89	OS1 VOS2 VOS3 .85 0.78 0.7 .89 0.82 0.74 .45 0.42 0.4 .21 0.18 0.18 .59 0.55 0.51 10 9.13 8.32 .87 8.09 7.35 .84 1.68 1.56 .55 0.51 0.45 .43 0.38 0.35 .05 0.97 0.9 .81 0.75 0.67		
	CORDIC	0.5	0.45			
	CRC					
	DCACHE	0.66	0.59	0.55	0.51	
	ETH 11.33 10 9.13	9.13	8.32			
AUD1	FLASH	10.19 8.87 8.09 7.35	7.35	µA/MHz		
ALIDI	FMAC	2.07	1.84	1.68	1.56	μΑνίνιι ιΖ
	GPDMA1	0.62	0.55	0.51	0.45	
	GPDMA2	0.45	0.43	0.38	0.35	
	GTZC1	1.19	1.05	0.97	0.9	
	ICACHE	0.86	0.81	0.75	0.67	
	RAMCFG	0.88	0.79	0.71	0.67	
	AHB1	1.09	0.94	0.86	0.79	

Table 38. Peripheral current consumption in sleep mode (continued)

DUC	Davimb aval		IDD	(typ)		l lmi4
BUS	Peripheral	VOS0	VOS1	VOS2	VOS3	Unit
	ADC12	2.35	2.1	1.9	1.74	
	DAC1	1.35	1.19	1.07	1.74 0.98 2.55 0.08 0.05 0.04 0.05 0.05 0.05 0.05 0.06 0.04 1 3.98 0.82 0.96	
	DCMI	3.49	3.09	2.83	2.55	
	GPIOA	0.1	0.08	0.07	0.08	
	GPIOB	0.07	0.06	0.05	0.05	
	GPIOC	0.08	0.05	0.04	0.04	
	GPIOD	0.09	0.06	0.05	0.04	
	GPIOE	0.09	0.09	0.08	0.05	
ALIDO	GPIOF	0.06	0.08	0.08	0.05	A /N/ILI-
AHB2	GPIOG	0.07	0.07	0.06	0.04	μΑνίνιπΖ
	GPIOH	0.07	0.07	0.05	0.06	
	GPIOI	0.07	0.07	0.06	0.04	
	HASH1	1.37	1.2	1.1	1	
	PKA	5.43	4.78	4.37	3.98	
	RNG1	1.12	0.99	0.9	0.82	
	SRAM2	1.33	1.18	1.06	0.96	
	SRAM3	1.5	1.33	1.22	1.1	
	AHB2	1.59	1.39	1.29	1.16	
	FMC	9.73	8.48	7.69	6.95	
	OSPI1	2.88	2.54	2.29	2.08	
AHB4	SDMMC1	8.71	7.64	6.98	6.36	uA/MHz
	SDMMC2	8.46	7.45	6.82	6.2	
	AHB4	0.36	0.32	0.32	0.28	

Table 38. Peripheral current consumption in sleep mode (continued)

						-
802	Peripheral	VOS0	VOS1	VOS2	VOS3	Unit
	CEC	0.15	0.15	0.14	0.11	
	APB1 CEC 0.15 0.15 0.14 CRS 0.22 0.23 0.2 FDCAN1 6.37 5.63 5.14 I2C1 0.57 0.5 0.49 I2C2 0.57 0.52 0.5 I3C1 0.28 0.27 0.28 LPTIM2 0.91 0.81 0.75 SPI2 1.04 0.93 0.89 SPI3 1 0.92 0.85 TIM12 1.41 1.26 1.18 TIM13 0.92 0.82 0.77 TIM14 0.89 0.78 0.75 TIM2 2.86 2.51 2.3 TIM3 2.52 2.21 2.03 TIM4 2.43 2.15 1.96 TIM5 2.79 2.48 2.26 TIM6 0.54 0.49 0.45 TIM7 0.56 0.5 0.48 UART12 1.17 1.06 0.95 UART4 1.12 0.98 0.93 UART5 1.09 0.99 0.93 UART5 1.09 0.99 0.93 UART7 1.28 1.14 1.05 UART8 1.17 1.06 0.94 UART9 1.12 1 0.9 UCPD1 1.1 1 0.9 USART10 1.35 1.22 1.14 USART2 1.42 1.29 1.19 USART3 1.35 1.24 1.14 USART3 1.35 1.24 1.14	0.19				
	FDCAN1	6.37	5.63	5.14	4.7	
	I2C1	0.57	0.5	0.49	0.42	
	12C2	0.57	0.52	0.5	0.46	
	I3C1	0.28	0.27	0.28	0.25	
	LPTIM2	0.91	0.81	0.75	0.69	
	SPI2	1.04	0.93	0.89	0.78	
	SPI3	1	0.92	0.85	0.76	
	TIM12	1.41	1.26	1.18	1.06	
	TIM13	0.92	0.82	0.77	0.7	
	TIM14	0.89	0.78	0.75	0.66	
	TIM2	2.86	2.51	2.3	2.11	
	TIM3	2.52	2.21	2.03	1.87	
	TIM4	2.43	2.15	1.96	1.79	
ADD1	TIM5	2.79	2.48	2.26	2.06	A /N/ILI=
APDI	TIM6	0.54	0.49	0.45	0.42	μA/MHz
	TIM7	0.56	0.5	0.48	0.43	
	UART12	1.17	1.06	0.95	0.88	
	UART4	1.12	0.98	0.93	0.83	
	UART5	1.09	0.99	0.93	0.84	
	UART7	1.28	1.14	1.05	0.93	
	UART8	1.17	1.06	0.94	0.86	
	UART9	1.12	1	0.9	0.84	
	UCPD1	1.1	1	0.9	0.84	
	USART10	1.35	1.22	1.14	1.02	
	USART11	1.24	1.11	1.04	0.94	
	USART2	1.42	1.29	1.19	1.07	
	USART3	1.35	1.24	1.14	1.02	
	USART6	1.19	1.08	1.02	0.92	
	WWDG1	0.39	0.35	0.35	0.3	
	APB1	1.85	1.61	1.49	1.34	

Table 38. Peripheral current consumption in sleep mode (continued)

	Designate and			(typ)		-
BUS	Peripheral	VOS0	VOS1	VOS2	VOS3	Unit
	SAI1	1.13	0.99	0.93	0.82	
	SAI2	1.06	0.9	0.85	0.75	
	SPI1	1.03	0.91	0.85	0.75	
	SPI4	1.03	0.89	0.83	0.73	
	SPI6	1.03	0.9	0.85	0.74	
	TIM1	4.35	3.86	3.52	3.2	
APB2	TIM15	2.08	1.84	1.69	1.54	μΑ/MHz
	TIM16	1.43	1.26	1.16	1.05	
	TIM17	1.44	1.25	1.17	1.05	
	TIM8	4.33	3.82	3.5	3.18	
	USART1	1.24	1.11	1.02	0.91	
	USBFS	2.53	2.22	2.04	1.84	
	APB2	1.04	0.92	0.84	0.77	
	I2C3	2.43	2.14	1.93	1.76	
	I2C4	2.37	2.08	1.89	1.73	
	LPTIM1	0.92	0.82	0.75	0.67	
	LPTIM3	0.88	0.77	0.71	0.65	
	LPTIM4	0.49	0.45	0.41	0.37	
	LPTIM5	0.84	0.76	0.69	0.63	
APB3	LPTIM6	0.93	0.82	0.76	0.7	uA/MHz
	LPUART1	0.84	0.74	0.66	0.63	
	RTCAPB	1.93	1.7	1.54	1.38	
	SBS	0.45	0.41	0.38	0.34	
	SPI5	1.05	0.93	0.84	0.75	
	VREFBUF	0.08	0.08	0.07	0.05	
	APB3	0.64	0.57	0.53	0.48	

Wakeup time from low-power modes

The wakeup times given in *Table 39: Low-power mode wakeup timings* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- for Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA1) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and VDD=3.0 V.

DS14258 Rev 1 151/275

Symbol	Parameter	Conditions	Тур	Max	Unit	
	Wakeup time from	Instruction cache enabled	enabled 15 16 C cl disabled 15 16 cy ory in normal mode 4.0 4.8 ory in low-power mode 7.9 11.5 ory in normal mode 13.8 16.0 ory in low-power mode 17.7 21.9 ory in low-power mode 31.4 36.8 ry in normal mode 25.5 31.0 ry in low power mode 27.7 34.2 ry in normal mode 35.3 40.8 ory in low-power mode 37.5 44.0	CPU		
twusleep	sleep	Instruction cache disabled	15	16	clock cycles	
		SVOS3, HSI 64MHz, flash memory in normal mode			4.8	
		SVOS3, HSI 64MHz, flash memory in low-power mode	7.9	11.5		
		SVOS4, HSI 64MHz, flash memory in normal mode	13.8	16.0		
		SVOS4, HSI 64MHz, flash memory in low-power mode	17.7	21.9		
+	Wakeup time from	SVOS5, HSI 64MHz, flash memory in low-power mode	31.4	36.8		
TWUSTOP	stop mode	SVOS3, CSI 4MHz, flash memory in normal mode		31.0	μs	
		SVOS3, CSI 4MHz, flash memory in low power mode	27.7	34.2	·	
		SVOS4, CSI 4MHz, flash memory in normal mode	35.3	40.8		
		SVOS4, CSI 4 MHz, flash memory in low-power mode	37.5	44.0		
		SVOS5, CSI 4 MHz, flash memory in low-power mode	51.2	58.9		
t _{WUSTBY}	Wakeup time from standby mode	VCAP capacitors discharged	506.0	653.6		

Table 39. Low-power mode wakeup timings⁽¹⁾

5.3.8 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the *Table 40: High-speed external user clock characteristics* in addition to Table 65. I/O static characteristics. The external clock can be low-swing (analog) or digital. In case of a low-swing analog input clock, the clock squarer must be activated (refer to RM0481).

Table 40. High-speed external user clock characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	External digital/analog clock	4	25	50	MHz
V _{HSEH}	Digital OSC_IN input high-level voltage	External digital clock	0.7 V _{DD}	-	V_{DD}	V
V _{HSEL}	Digital OSC_IN input low-level voltage	External digital clock	V _{SS}	-	0.3 V _{DD}	V
t _{w(HSEH)} /t _{w(HSEL)} (2)	Digital OSC_IN input high or low time	External digital clock	7	-	-	ns

^{1.} Evaluated by characterization - Not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{isw(HSEH)} (V _{HSEH} -V _{HSEH}) ⁽³⁾	Analog low-swing OSC_IN peak-to- peak amplitude	External analog low	0.2	-	2/3 V _{DD}	٧
DuCy _{HSE}	Analog low-swing OSC_IN duty cycle	External analog low swing clock	45	50	55	%
t _{r(HSE)} /t _{f(HSE)}	Analog low-swing OSC_IN rise and fall times		0.05 / f _{HSE_ext}	-	0.3 / f _{HSE_ext}	ns

Table 40. High-speed external user clock characteristics⁽¹⁾ (continued)

- 1. Specified by design Not tested in production.
- 2. The rise and fall times for a digital input signal are not specified. However the VHSEH and VHSEL conditions must be fulfilled
- 3. The DC component of the signal must ensure that the signal peaks are located between VDD and VSS.

Figure 27. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the *Table 41: Low-speed external user clock characteristics* in addition to *Table 57: I/O static characteristics*. The external clock can be low-swing (analog) or digital. In case of a low-swing analog input clock, the clock squarer must be activated (refer to RM0481).

Table 41. Low-speed external user clock characteristics ⁽¹⁾)
--	---

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency	External digital/analog clock	-	32.768	1000	kHz
V _{LSEH}	Digital OSC32_IN input high-level voltage	External digital clock	0.7 V _{DD}	-	V _{DD}	V
V _{LSEL}	Digital OSC32_IN input low-level voltage	External digital clock	V _{SS}	-	0.3 V _{DD}	V
t _{w(LSEH)} /t _{w(LSEL)}	Digital OSC_IN input high or low time	External digital clock	250	-	-	ns
V _{isw_H}	Analog low-swing OSC_IN high-level voltage		0.6	-	1.225	
V _{isw_L}	Analog low-swing OSC_IN low-level voltage	External analog low swing	0.35	-	0.8	V
V _{iswLSE} (V _{LSEH} -V _{LSEL})	Analog low-swing OSC_IN peak-to-peak amplitude	clock	0.5	-	0.875	
DuCy _{LSE}	Analog low-swing OSC_IN duty cycle		45	50	55	%
t _{r(LSE)} /t _{f(LSE)}	Analog low-swing OSC_IN rise and fall times	External analog low swing clock, 10% to 90%	-	100	200	ns

^{1.} Specified by design - Not tested in production.

For information on selecting the crystal, refer to the application note AN2867 "Oscillator Note: design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 28. Low-speed external clock source AC timing diagram VLSEH 90% V_{LSEL} tr(LSE) → tf(LSE) ^L tW(LSE) TLSE fLSE ext External clock source OSC32 IN STM32 ai17529b

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 50 MHz crystal/ceramic resonator oscillator.

All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 42*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 42. 4-50 MHz HSE oscillator characteristics⁽¹⁾

Symbol	Parameter	Operating conditions ⁽²⁾	Min	Тур	Max	Unit
F	Oscillator frequency	-	4	-	50	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	10	
		V_{DD} = 3 V, Rm = 20 Ω , C_L = 10 pF at 4 MHz	-	0.44	-	
	HSE current consumption	$V_{DD} = 3 V$, $Rm = 20 \Omega$, $C_L = 10 pF@8 MHz$	-	0.44	-	
I _{DD(HSE)}		$V_{DD} = 3 V$, Rm = 20 Ω , CL = 10 pF@16 MHz	-	0.55	-	mA
		$V_{DD} = 3 V,$ $Rm = 20 \Omega,$ $C_{L} = 10 pF@32 MHz$	-	0.67	-	
		$V_{DD} = 3 V,$ $Rm = 20 \Omega,$ $C_{L} = 10 pF@48 MHz$	-	1.17	-	
Gm _{critmax}	Maximum critical crystal gm	Startup	-	-	1.5	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

- 1. Evaluated by design Not tested in production.
- $2. \ \ \, \text{Resonator characteristics given by the crystal/ceramic resonator manufacturer.}$
- 3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time
- 4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 29*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

DS14258 Rev 1 155/275

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 29. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 43*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
F	Oscillator frequency	-	-	32.768	-	kHz
		LSEDRV[1:0] = 00 Low drive capability	-	246	-	
	LSE current consumption	LSEDRV[1:0] = 01 Medium low drive capability	-	333	-	nA
I _{DD}	LSE current consumption	LSEDRV[1:0] = 10 Medium high drive capability	-	462	-	IIA
		LSEDRV[1:0] = 11 High drive capability	ı	747	-	
	Maximum critical crystal gm	LSEDRV[1:0] = 00 Low drive capability	-	-	0.5	
Cm		LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75	μΑ/V
Gm _{critmax}		LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7	μΑνν
		LSEDRV[1:0] = 11 High drive capability	ı	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S

Table 43. Low-speed external user clock characteristics⁽¹⁾

- 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Resonator with integrated capacitors

CL1

OSC32_IN

Bias controlled gain

OSC32_OUT

STM32

ai17531c

Figure 30. Typical application with a 32.768 kHz crystal

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

^{1.} Specified by design - Not tested in production.

5.3.9 Internal clock source characteristics

The parameters given in *Table 44: HSI48 oscillator characteristics* to *Table 47: LSI oscillator characteristics* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*.

48 MHz high-speed internal RC oscillator (HSI48)

Table 44. HSI48 oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	HSI48 frequency	V _{DD} =3.3 V, T _J =30 °C	47.5 ⁽¹⁾	48	48.5 ⁽¹⁾	MHz
TRIM ⁽³⁾	User trimming step	-	-	0.175	0.250	
USER TRIM COVERAGE ⁽²⁾	User trimming coverage	± 32 steps	±4.70	±5.6	-	%
DuCy(HSI48) ⁽³⁾	Duty cycle	-	45	-	55	%
ACCHSI48_REL ⁽³⁾	Accuracy of the HSI48 oscillator over temperature (reference is 30 °C)	T _J = -40 to 130 °C	-4.5	-	4	%
(110140)	HSI48 oscillator frequency	V _{DD} = 3.0 to 3.6 V	-	0.025	0.05	%
Δ_{VDD} (HSI48)	drift with V _{DD} (reference is 3.3 V)	V _{DD} = 1.71 to 3.6 V	-	0.05	0.1	%
t _{su} (HSI48) ⁽³⁾	HSI48 oscillator start-up time	-	-	2.1	4.0	μs
I _{DD} (HSI48) ⁽³⁾	HSI48 oscillator power consumption	-	-	350	400	μA
N _T jitter ⁽³⁾	Next transition jitter accumulated jitter on 28 cycles	-	-	±0.15	-	ns
P _T jitter ⁽³⁾	Paired transition jitter accumulated jitter on 56 cycles ⁽⁴⁾	-	-	±0.25	-	ns

^{1.} Calibrated during manufacturing tests.

^{2.} Evaluated by characterization not tested in production.

^{3.} Specified by design - not tested in production.

^{4.} Jitter measurements are performed without clock sources activated in parallel.

64 MHz high-speed internal RC oscillator (HSI)

Table 45. HSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	HSI frequency	V _{DD} =3.3 V, T _J =30 °C	63.7 ⁽²⁾	64 ⁽²⁾	64.3 ⁽²⁾	MHz
		Trimming is not a multiple of 32 ⁽³⁾	-	0.24	0.32	
TRIM		Trimming is 128, 256 and 384 ⁽³⁾	-5.2	-1.8	-	
	User trimming step	Trimming is 64, 192, 320 and 488 ⁽³⁾	-1.4	-0.8	-	%
		Other trimming are a multiple of 32 (not including multiple of 64 and 128) ⁽³⁾	-0.6	-0.25	-	
DuCy(HSI)	Duty Cycle	-	45	-	55	%
Δ _{VDD} (HSI)	HSI oscillator frequency drift with V _{DD} (reference is 3.3 V)	V _{DD} = 1.71 to 3.6 V	-0.12	-	0.03	%
4 (10)	HSI oscillator frequency drift	T _J = 20 to 105 °C	-1 ⁽⁴⁾	-	1 ⁽⁴⁾	%
$\Delta_{TEMP}(HSI)$	with V _{DD} (reference is 64 MHz)	T _J = -40 to 130 °C	-2 ⁽⁴⁾	-	1 ⁽⁴⁾	%
t _{su} (HSI)	HSI oscillator start-up time	-	-	1.4	2	μs
t (HSI)	HSI oscillator stabilization	at 1% of target frequency	-	4	8	μs
t _{stab} (HSI)	time	at 1% of target frequency	-	-	4	μο
I _{DD} (HSI)	HSI oscillator power consumption	-	-	300	450	μΑ

^{1.} Specified by design - Not tested in production, unless otherwise specified.

^{2.} Calibrated during manufacturing tests.

^{3.} Trimming value of HSICAL[8:0.]

^{4.} Guaranteed by characterization - not tested n production.

4 MHz low-power internal RC oscillator (CSI)

Table 46. CSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{CSI}	CSI frequency	V _{DD} =3.3 V, T _J =30 °C	3.96 ⁽²⁾	4	4.04 ⁽²⁾	MHz
		Trimming is not a multiple of 16	-	0.40	0.75	
TRIM	User trimming step	Trimming is not a multiple of 32	-4.75	-2.75	0.75	%
DuCy(CSI)		Other trimming are a multiple of 32 (not including multiple of 64 and 128)	-0.43	0.00	0.75	
DuCy(CSI)	Duty Cycle	-	45	-	55	%
A (CCI)	CSI oscillator frequency drift	T _J = 0 to 85 °C	-3.7 ⁽³⁾	-	4.5 ⁽³⁾	%
$\Delta_{TEMP}(CSI)$	over temperature	T_J = -40 to T_J = 130 °C	-11 ⁽³⁾	-	7.5 ⁽³⁾	%
Δ _{VDD} (CSI)	CSI oscillator frequency drift over V _{DD}	V _{DD} = 1.71 to 3.6 V	-0.06	-	0.06	%
t _{su} (CSI)	HSI oscillator start-up time	-	-	1	2	μs
t _{stab} (CSI)	CSI oscillator stabilization time (to reach \pm 3% of f_{CSI})	-	-	-	4	Cycle
I _{DD} (CSI)	CSI oscillator power consumption	-	-	23	30	μA

- 1. Specified by design not tested in production, unless otherwise specified.
- 2. Calibrated during manufacturing tests.
- 3. Evaluated by characterization not tested in production.

Low-speed internal (LSI) RC oscillator

Table 47. LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{DD} =3.3 V, T _J = 25 °C	31.4 ⁽¹⁾	32	32.6 ⁽¹⁾	
f _{LSI}	LSI frequency	T_J = -40 to 110 °C, V_{DD} =1.71 to 3.6 V	29.76 ⁽²⁾	-	33.6 ⁽²⁾	kHz
		T_J = -40 to 130 °C, V_{DD} =1.71 to 3.6 V	29.4 ⁽²⁾	-	33.6 ⁽²⁾	
t _{su} (LSI) ⁽³⁾	LSI oscillator start-up time	-	-	80	130	
t _{stab} (LSI) ⁽³⁾	LSI oscillator stabilization time (5% of final value)	-	-	120	170	μs
I _{DD} (LSI) ⁽³⁾	LSI oscillator power consumption	-	-	130	280	μA

- 1. Calibrated during manufacturing tests.
- 2. Evaluated by characterization not tested in production.
- 3. Specified by design not tested in production.

5.3.10 PLL characteristics

The parameters given in *Table 48* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*.

Table 48. PLL characteristics (wide VCO frequency range)⁽¹⁾

Symbol	Parameter	Conditio	ns	Min	Тур	Max	Unit
f	PLL input clock	-		2	-	16	MHz
f _{PLL_IN}	PLL input clock duty cycle	-		10	-	90	%
		VOS0		1	-	250 ⁽²⁾	
£	PLL multiplier output clock	VOS1		1	-	200 ⁽²⁾	
f _{PLL_P_OUT}	P, Q, R	VOS2		1	-	150 ⁽²⁾	MHz
		VOS3		1	-	100 ⁽²⁾	
f _{VCO_OUT}	PLL VCO output	-		128	-	560 ⁽²⁾	
4	PLL lock time	Normal m	ode	-	45	100 ⁽³⁾	μs
t _{LOCK}	PLL lock time	Sigma-delta mode (f _F	P _{LL_IN} ≥ 8 MHz)	-	60	120 ⁽³⁾	
	Cycle-to-cycle jitter	f _{VCO_OUT} = 12	f _{VCO_OUT} = 128 MHz		60	-	
		f _{VCO_OUT} = 200 MHz		-	50	-	±nc.
		f _{VCO_OUT} = 400 MHz		-	20	-	±ps
		f _{VCO_OUT} = 560 MHz		-	15	-	
Jitter		Normal mode (f $_{PLL_IN}$ = 2 MHz), f $_{VCO_OUT}$ = 560 MHz		-	±0.2	-	
		Normal mode (f _{PLL_IN} = 16 MHz), f _{VCO_OUT} = 560 MHz		-	±0.8	-	%
	Long term jitter	Sigma-delta mode (f _{PLL_IN} = 2 MHz), f _{VCO_OUT} = 560 MHz		-	±0.2	-	70
		Sigma-delta mode (f _{PLL_IN} = 16 MHz), f _{VCO_OUT} = 560 MHz		-	±0.8	-	
			V_{DD}	-	330	420	
I (DLI)	PLL power consumption on	f _{VCO_OUT} = 560 MHz	V _{CORE}	-	630	-	
I _{DD} (PLL)	V_{DD}	f - 129 MU-	V_{DD}	-	155	230	μA
		f _{VCO_OUT} = 128 MHz	V _{CORE}	-	170	-	

^{1.} Specified by design - Not tested in production, unless otherwise specified.

^{2.} This value must be limited to the maximum frequency due to the product limitation.

^{3.} Evaluated by characterization - Not tested in production.

Symbol	Parameter	Conditio	ns	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
f	PLL input clock	-	-		-	2	MHz
f _{PLL_IN}	PLL input clock duty cycle	-		10	-	90	%
		VOS0		1.17	-	210	
f	PLL multiplier output clock	VOS1		1.17	-	210	
f _{PLL_OUT}	P, Q, R	VOS2		1.17	-	160 ⁽²⁾	MHz
		VOS3		1.17	-	88 ⁽²⁾	
f _{VCO_OUT}	PLL VCO output	-		150	-	420	
	PLL lock time	Normal m	ode	-	45	80 ⁽³⁾	
t _{LOCK}	PLL IOCK UITIE	Sigma-delta	mode	forbitten			μs
	Cycle-to-cycle jitter	f _{VCO_OUT} = 150 MHz	-	-	60	-	
		f _{VCO_OUT} = 200 MHz	-	-	40	-	
		f _{VCO_OUT} = 400 MHz	-	-	18	-	±00
Jitter		f _{VCO_OUT} = 420 MHz	-	-	15	-	±ps
	Daried iitter	f _{VCO_OUT} = 150 MHz	f _{PLL_OUT} =	-	75	-	
	Period jitter	f _{VCO_OUT} = 400 MHz	50 MHz	-	25	-	
	Long term jitter	Normal mode f _{VCO_C}	_{OUT} = 400 MHz	-	±0.2	-	%
		f = 420 MU=	V_{DD}	-	275	360	
I (DLI)	PLL power consumption on	f _{VCO_OUT} = 420 MHz	V _{CORE}	-	450	-	μΑ
I _{DD} (PLL)	V_{DD}	V _{DD}	V_{DD}	-	160	240	
		f _{VCO_OUT} = 150 MHz	V _{CORE}	-	165	-	

Table 49. PLL characteristics (medium VCO frequency range)

5.3.11 Memory characteristics

Flash memory

The characteristics are given at T_J = -40 to 130 °C unless otherwise specified.

The devices are shipped to customers with the flash memory erased.

Table 50. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
	I _{DD} Supply current	Word program ⁽²⁾	-	2.5	3.6	
I _{DD}		Sector erase	-	1.8	4	mA
		Mass erase	-	2.0	4	

^{1.} Specified by design - Not tested in production

^{1.} Specified by design - Not tested in production, unless otherwise specified.

^{2.} This value must be limited to the maximum frequency due to the product limitation.

^{3.} Evaluated by characterization - Not tested in production.

2. Data is evaluated with a write of 50% of the programmed bits equals to 10 .

Table 51. Flash memory programming⁽¹⁾

Symbol	Parameter	Conditions	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
t _{prog}	Word program time	128 bits (user area)	-	31	-	ше
	Word program time	16 bits (OTP area)	-	31	-	μs
t _{ERASE}	Sector erase time (8 Kbytes)	-	-	2	10.5	ms
t _{ME}	Mass erase time		-	2	2.68	s
V_{prog}	Programming voltage		1.71	-	3.6	V

^{1.} Data are valid for program memory and high-cycling data memory.

Table 52. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{PEND}	Endurance program memory	T _J = -40 to +130 °C	10	kcycles
N _{DEND} Endurance data memory		T _J = -40 to +130 °C	100	kcycles
	Program memory, Data retention	1 kcycle at T _A = 125 °C	10	
t _{PRET}	-	1 kcycles at T _A = 85 °C	30	Years
	-	10 kcycles at T _A = 55 °C	30	
	Data retention for data memory	100 kcycle at T _A = 125 °C	1	
t _{DRET}	-	100 kcycles at T _A = 85 °C	10	Years
	-	100 kcycles at T _A = 55 °C	10	

^{1.} Evaluated by characterization - Not tested in production, unless otherwise specified.

^{2.} Specified by design - Not tested in production.

5.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in application note AN1709 "*EMC design guide for STM8, STM32 and Legacy MCUs*".

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, T _A = 25 °C,	3B
V _{FTB}	Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance	LQFP144, f _{rcc_cpu_ck} = 250 MHz, conforms to IEC 61000-4-2	5A

Table 53. EMS characteristics

As a consequence, it is recommended to add a serial resistor (1 $k\Omega$) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015 "Software techniques for improving microcontrollers EMC performance").

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Table 54. EMI characteristics

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}]	Unit
			nequency band	8/250 MHz	
S _{EMI} Peak level ⁽¹⁾			0.1 to 30 MHz	8	
			30 to 130 MHz	0	dBµV
			130 MHz to 1 GHz	24	иБμν
			1 GHz to 2 GHz	19	
			EMI level	4	-

Refer to the EMI radiated test chapter of application note AN1709 "EMC design guide for STM8, STM32 and Legacy MCUs" available from the ST website www.st.com.

5.3.13 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESDA/JEDEC JS-002 standards.

Maximum **Symbol Conditions Packages** Class Unit Ratings value⁽¹⁾ Packages with 1000(2) 1C Electrostatic discharge **SMPS** T_{Δ} = 25 °C conforming to V_{ESD(HBM)} voltage (human body ANSI/ESDA/JEDEC JS-001 **Packages** model) 2 2000 without SMPS V All LQFP packages and C1 250 Electrostatic discharge $T_A = +25$ °C conforming to WLCSP V_{ESD(CDM)} voltage (charge device ANSI/ESDA/JEDEC JS-002 model) All BGA C2a 500 packages

Table 55. ESD absolute maximum ratings

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with JESD78 IC latchup standard.

Table 56. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latchup class	T _J = 130 °C, conforming to JESD78,	II level A

5.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 57: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 20: General operating conditions*. All I/Os are CMOS and TTL compliant (except for BOOT0).

Note:

For information on GPIO configuration, refer to application note AN4899 "STM32 GPIO configuration for hardware settings and low-power consumption", available from the ST website www.st.com.

^{1.} Evaluated by characterization - not tested in production.

^{2.} The electrostatic discharge is 2000 V for all pins, except V_{FBSMPS}, for which the test fails at 2000 V and passes at 1600 V.

Table 57. I/O static characteristics⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Unit
	I/O input low level voltage except BOOT0		-		0.3V _{DDIOx} ⁽²⁾	
V_{IL}	I/O input low level voltage except BOOT0	1.08 V <v<sub>DD<3.6 V</v<sub>	-		0.14V _{DDIOx} -0.1 ⁽³⁾	٧
	BOOT0 I/O input low level voltage		-		$0.19V_{\rm DDIOx} + 0.1^{(3)}$	
	I/O input high level voltage except BOOT0		0.7V _{DDIOx} ⁽²⁾			
V_{IH}	I/O input high level voltage except BOOT0	1.08 V <v<sub>DD<3.6 V</v<sub>	0.52V _{DDIOx} +0.18 ⁽³⁾			٧
	BOOT0 I/O input high level voltage		0.17V _{DDIOx} +0.6 ⁽³⁾			
V _{HYS} ⁽³⁾	TT_xx, FT_xxx and NRST I/O input hysteresis	1.08 V< V _{DD} <3.6 V	-	250		m\/
	BOOT0 I/O input hysteresis	1.71 V< V _{DD} <3.6 V	-	200		mV
		$0 < V_{IN} \le Max(V_{DDXXX})^{(7)}$	-	-	±200	
. (4)	FT_xx Input leakage current ⁽³⁾	$\begin{aligned} &Max(V_{DDXXX}) < \\ &V_{IN} \leq &Max(V_{DDXXX}) + \\ &1 \; V)^{\;(5)(7)} \end{aligned}$	-	-	2500	
I _{leak} ⁽⁴⁾		$Max(V_{DDXXX}) < V_{IN} \le 5.5 V^{(5)(7)}$	-	-	750	nA
	TT_xx Input leakage current	$0 < V_{IN} \le Max(V_{DDXXX})$	-	-	±200	
	воото	0< V _{IN} ≤ V _{DDOX}	-	-	15	
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	V _{IN} =V _{SS}	30	40	50	10
R _{PD}	Weak pull-down equivalent resistor ⁽⁶⁾	V _{IN} =V _{DD} ⁽⁷⁾	30	40	50	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

- 1. V_{DDIOx} represents V_{DD} or V_{DDIO2} .
- 2. Compliant with CMOS requirements.
- 3. Specified by design Not tested in production.
- 4. This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following formula: $I_{Total_leak_max} = 10 \ \mu A + [number of I/Os where V_{IN}]$ is applied on the pad] $x \ I_{Ikg(Max)}$.
- 5. V_{IN} must be less than Max(VDDXXX) + 3.6 V.
- 6. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).
- 7. $Max(V_{DDXXX})$ is the maximum value of all the I/O supplies.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 31*.

Figure 31. V_{IL}/V_{IH} for all I/Os except BOOT0

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Table 5.2: Absolute maximum ratings*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 18: Current characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 18: Current characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 58: Output voltage characteristics* for all I/Os except PC13, PC14, PC15, and PI8 and Table 59: Output voltage characteristics for PC13 and PI8 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*. All I/Os are CMOS and TTL compliant.

Table 58. Output voltage characteristics for all I/Os except PC13, PC14, PC15, and PI8

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit
V _{OL}	Output low level voltage	CMOS port ⁽²⁾ $I_{IO} = 8 \text{ mA}$ $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$	-	0.4	
V _{OH}	Output high level voltage	CMOS port ⁽²⁾ $I_{IO} = -8 \text{ mA}$ 2.7 V≤ $V_{DD} \le 3.6 \text{ V}$	V _{DD} −0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	TTL port ⁽²⁾ $I_{IO} = 8 \text{ mA}$ $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	TTL port ⁽²⁾ $I_{IO} = -8 \text{ mA}$ $2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage	$I_{IO} = 20 \text{ mA}$ 2.7 V≤ $V_{DD} \le 3.6 \text{ V}$	-	1.3	
V _{OH} ⁽³⁾	Output high level voltage	$I_{IO} = -20 \text{ mA}$ 2.7 V \le V_DD \le 3.6 V	V _{DD} - 1.3	-	V
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} = 4 mA 1.71 V≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH} (3)	Output high level voltage	I _{IO} = -4 mA 1.71 V≤V _{DD} <3.6 V	V _{DD} - 0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	$I_{IO} = 2 \text{ mA}$ 1.08 V≤ $V_{DD} \le 1.32 \text{ V}$	-	0.3 x V _{DDIO2}	
V _{OH} (3)	Output high level voltage	I _{IO} = -2 mA 1.71 V≤V _{DD} < 1.32 V	0.7 x V _{DDIO2}	-	
		$I_{IO} = 20 \text{ mA}$ 2.3 V≤ $V_{DD} \le 3.6 \text{ V}$	-	0.4	
V _{OLFM+} ⁽³⁾	Output low level voltage for an FTf I/O pin in (FT I/O with "f" option)	I _{IO} = 10 mA 1.71 V≤ V _{DD} ≤ 3.6 V	-	0.4	
		I _{IO} = 4.5 mA 1.08 V≤ V _{DD} ≤ 3.6 V	-	0.4	

The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 17: Voltage characteristics*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO.

^{3.} Specified by design - Not tested in production.

DS14258 Rev 1 169/275

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

V_{DD} - 0.4

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
V _{OL}	Output low level voltage	CMOS port ⁽²⁾ $I_{IO} = 3 \text{ mA}$ 2.7 V≤ $V_{DD} \le 3.6 \text{ V}$	-	0.4	
V _{OH}	Output high level voltage	CMOS port ⁽²⁾ $I_{IO} = -3 \text{ mA}$ 2.7 $V \le V_{DD} \le 3.6 \text{ V}$	V _{DD} - 0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	TTL port ⁽²⁾ $I_{IO} = 3 \text{ mA}$ 2.7 $V \le V_{DD} \le 3.6 \text{ V}$	-	0.4	.,
V _{OH} ⁽³⁾	Output high level voltage	TTL port ⁽²⁾ I _{IO} = -3 mA 2.7 V≤ V _{DD} ≤3.6 V	2.4	-	V
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} = 1.5 mA 1.71 V≤ V _{DD} ≤ 3.6 V	-	0.4	

Table 59. Output voltage characteristics for PC13 and PI8⁽¹⁾

 $I_{IO} = -1.5 \text{ mA}$

 $1.71~\textrm{V}{\leq}~\textrm{V}_\textrm{DD}{\leq}~3.6~\textrm{V}$

Output high level voltage

 $V_{OH}{}^{(3)} \\$

Table 60. Output voltage characteristics for PC14 and PC15⁽¹⁾

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
V _{OL}	Output low level voltage	CMOS port ⁽²⁾ $I_{IO} = 0.5 \text{ mA}$ 2.7 $V \le V_{DD} \le 3.6 \text{ V}$	-	0.4	
V _{OH}	Output high level voltage	CMOS port ⁽²⁾ $I_{IO} = -0.5 \text{ mA}$ 2.7 $V \le V_{DD} \le 3.6 \text{ V}$	V _{DD} - 0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	TTL port ⁽²⁾ $I_{IO} = 0.5 \text{ mA}$ 2.7 V \leq V _{DD} \leq 3.6 V	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage	TTL port ⁽²⁾ $I_{IO} = -0.5 \text{ mA}$ 2.7 V \leq V _{DD} \leq 3.6 V	2.4	-	V
V _{OL} ⁽³⁾	Output low level voltage	$I_{IO} = 0.25 \text{ mA}$ 1.71 V \leq V _{DD} \leq 3.6 V	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	$I_{IO} = -0.25 \text{ mA}$ 1.71 V \leq V _{DD} \leq 3.6 V	V _{DD} - 0.4	-	

The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 17: Voltage characteristics*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO.

The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 17: Voltage characteristics*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO.

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

^{3.} Specified by design - Not tested in production.

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

^{3.} Specified by design - Not tested in production.

Output buffer timing characteristics (HSLV option disabled)

The HSLV bit of GPIOx_HSLVR register can be used to optimize the I/O speed when the product voltage is below 2.7 V.

Table 61. Output timing characteristics (HSLV OFF)⁽¹⁾

Speed	Symbol	Parameter	conditions	Min	Max	Unit
			C = 50 pF, 2.7 V≤ V _{DD} ≤ 3.6 V	-	8	
			C = 50 pF, 1.71 V≤V _{DD} ≤ 2 V	-	5	
			C = 40 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	10	
			C = 40 pF, 1.71 V≤V _{DD} ≤ 2 V	-	5	
	F _{max} ⁽²⁾⁽³⁾	Maximum fraguanay	C = 30 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	12	MHz
	Fmax` /*/	Maximum frequency	C = 30 pF, 1.71 V≤V _{DD} ≤ 2 V	-	5	IVITZ
			C = 20 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	14	
			C = 20 pF, 1.71 V≤V _{DD} ≤ 2 V	-	5	
			C = 10 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	16	
00			C = 10 pF, 1.71 V≤V _{DD} ≤ 2 V	-	5	
00			C=50 pF, 2.7 V≤ V _{DD} ≤3.6 V	-	18.0	
			C = 50 pF, 1.71 V≤V _{DD} ≤ 2 V	-	36.0	
			C = 40 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	17.0	
			C = 40 pF, 1.71 V≤V _{DD} ≤ 2 V	-	34.0	
	$t_r/t_f^{(4)(5)}$	Output high to low level fall time and output low	C = 30 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	15.5	ns
	\r'\f` ^` /	to high level rise time	C = 30 pF, 1.71 V≤V _{DD} ≤ 2 V	-	32.0	113
			C = 20 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	14.2	
			C = 20 pF, 1.71 V≤V _{DD} ≤ 2 V	-	30.0	
			C = 10 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	12.2	
			C = 10 pF, 1.71 V≤V _{DD} ≤ 2 V	-	27	

Table 61. Output timing characteristics (HSLV OFF)⁽¹⁾ (continued)

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
				C =50 pF, 2.7 V≤ V _{DD} ≤3.6		40	
			C = 50 pF, 1.71 V≤V _{DD} ≤ 2 V	-	12		
			C = 40 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	45		
			C = 40 pF, 1.71 V≤V _{DD} ≤ 2 V	-	14		
	F _{max} ⁽²⁾⁽³⁾	Maximum frequency	C = 30 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	50	MHz	
	Fmax (-/(-/	Maximum frequency	C = 30 pF, 1.71 V≤V _{DD} ≤ 2 V	-	16	IVITZ	
			C = 20 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	55		
			C = 20 pF, 1.71 V≤V _{DD} ≤ 2 V	-	18		
			C = 10 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	60		
01			C = 10 pF, 1.71 V≤V _{DD} ≤ 2 V	-	20		
UI			C=50 pF, 2.7 V≤ V _{DD} ≤3.6 V	-	6.2		
			C = 50 pF, 1.71 V≤V _{DD} ≤ 2 V	-	11.4		
			C = 40 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	5.7		
			C = 40 pF, 1.71 V≤V _{DD} ≤ 2 V	-	10.5		
	$t_r/t_f^{(4)(5)}$	Output high to low level fall time and output low	C = 30 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	5.1		
	l _r /lf` ^` /	to high level rise time	C = 30 pF, 1.71 V≤V _{DD} ≤ 2 V	-	9.5	ns	
			C = 20 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	4.5		
			C = 20 pF, 1.71 V≤V _{DD} ≤ 2 V		8.4		
			C = 10 pF, 2.7 V≤V _{DD} ≤ 3.6 V		3.7		
			C = 10 pF, 1.71 V≤V _{DD} ≤ 2 V		7.0		

Table 61. Output timing characteristics (HSLV OFF)⁽¹⁾ (continued)

Speed	Symbol	Parameter	conditions	Min	Max	Unit
			C =50 pF, 2.7 V≤ V _{DD} ≤3.6	-	80	
			C = 50 pF, 1.71 V≤V _{DD} ≤ 2 V	-	30	
			C = 40 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	90	
			C = 40 pF, 1.71 V≤V _{DD} ≤ 2 V	-	35	
	F _{max} ⁽²⁾⁽³⁾	Maximum frequency	C = 30 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	100	MHz
	Fmax` /*/	Maximum frequency	C = 30 pF, 1.71 V≤V _{DD} ≤ 2 V	-	40	IVITIZ
			C = 20 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	110	
			C = 20 pF, 1.71 V≤V _{DD} ≤ 2 V	-	45	
			C = 10 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	133	
10			C = 10 pF, 1.71 V≤V _{DD} ≤ 2 V	-	50	
10			C=50 pF, 2.7 V≤ V _{DD} ≤3.6 V	-	3.8	
			C = 50 pF, 1.71 V≤V _{DD} ≤ 2 V	-	7.5	
			C = 40 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	3.4	
				C = 40 pF, 1.71 V≤V _{DD} ≤ 2 V	-	6.6
	$t_r/t_f^{(4)(5)}$	Output high to low level fall time and output low	C = 30 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	2.9	ns
	r/lf`^`	to high level rise time	C = 30 pF, 1.71 V≤V _{DD} ≤ 2 V	-	5.7	113
			C = 20 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	2.5	
			C = 20 pF, 1.71 V≤V _{DD} ≤ 2 V		4.7	
			C = 10 pF, 2.7 V≤V _{DD} ≤ 3.6 V		1.9	
			C = 10 pF, 1.71 V≤V _{DD} ≤ 2 V	-	3.7	

	Table 61. Output timing	characteristics	(HSLV OFF	(1)	(continued)
--	-------------------------	-----------------	-----------	-----	-------------

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
			C =50 pF, 2.7 V≤ V _{DD} ≤3.6	-	100		
			C = 50 pF, 1.71 V≤V _{DD} ≤ 2 V	-	40		
			C = 40 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	120		
			C = 40 pF, 1.71 V≤V _{DD} ≤ 2 V	-	50		
	F _{max} ⁽²⁾⁽³⁾	Maximum frequency	C = 30 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	140	MHz	
	Fmax` /*/	Maximum frequency	C = 30 pF, 1.71 V≤V _{DD} ≤ 2 V	-	60	IVITZ	
			C = 20 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	166		
			C = 20 pF, 1.71 V≤V _{DD} ≤ 2 V	-	70		
			C = 10 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	200		
11			C = 10 pF, 1.71 V≤V _{DD} ≤ 2 V	-	80		
11		$t_{r}/t_{f}^{(4)(5)} \begin{tabular}{l} Output high to low level \\ fall time and output low \\ to high level rise time \\ \end{tabular}$	C=50 pF, 2.7 V≤ V _{DD} ≤3.6 V	-	3.3		
			C = 50 pF, 1.71 V≤V _{DD} ≤ 2 V	-	6.3		
			C = 40 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	2.8		
			C = 40 pF, 1.71 V≤V _{DD} ≤ 2 V	-	5.5		
	+ /+ (4)(5)		C = 30 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	2.3		
	ι _τ / ι _f ` ^` /		C = 30 pF, 1.71 V≤V _{DD} ≤ 2 V	-	4.6	ns	
			C = 20 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	1.9	7	
			C = 20 pF, 1.71 V≤V _{DD} ≤ 2 V	-	3.7		
			C = 10 pF, 2.7 V≤V _{DD} ≤ 3.6 V	-	1.4		
			C = 10 pF, 1.71 V≤V _{DD} ≤ 2 V	-	3		

^{1.} Specified by design - Not tested in production.

- 3. When 2 V < V_{DD} < 2.7 V maximum frequency is between values given for Vdd=1.98V and Vdd=2.7V
- 4. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 5. When 2 V < V_{DD} < 2.7 V maximum trise/tfall is between values given for Vdd=1.98V and V_{DD} = 2.7 V

^{2.} The maximum frequency is defined with the following conditions: $(t_r+t_f) \le 2/3$ T Skew $\le 1/20$ T 45%<Duty cycle<55%

Output buffer timing characteristics (HSLV option enabled)

Table 62. Output timing characteristics $(HSLV\ ON)^{(1)}$

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
			C =50 pF, 1.71 V≤V _{DD} ≤2 V	-	8		
			C =40 pF, 1.71 V≤V _{DD} ≤2 V	-	10		
	F _{max} ⁽²⁾	Maximum frequency	C =30 pF, 1.71 V≤V _{DD} ≤2 V	-	12	MHz	
			C =20 pF, 1.71 V≤V _{DD} ≤2 V	-	14		
00			C =10 pF, 1.71 V≤V _{DD} ≤2 V	-	16		
00			C =50 pF, 1.71 V≤V _{DD} ≤2.7 V	-	17.8		
		Output high to low level	C =40 pF, 1.71 V≤V _{DD} ≤2 V	-	15.8		
	$t_r/t_f^{(3)}$	fall time and output low	C =30 pF, 1.71 V≤V _{DD} ≤2 V	-	14.4	ns	
		to high level rise time	C =20 pF, 1.71 V≤V _{DD} ≤2 V	-	13.1		
			C =10 pF, 1.71 V≤V _{DD} ≤2 V	-	11.4		
			C = 50 pF, 1.71 V≤V _{DD} ≤2.7 V	-	40		
	F _{max} ⁽²⁾	Maximum frequency	C = 40 pF, 1.71 V≤V _{DD} ≤2 V	-	45	MHz	
			C = 30 pF, 1.71 V≤V _{DD} ≤2 V	-	50		
			C = 20 pF, 1.71 V≤V _{DD} ≤2 V	-	55		
01			C =10 pF, 1.71 V≤V _{DD} ≤2 V	-	60		
01	t _r /t _f ⁽³⁾⁽⁴⁾	Output high to low level fall time and output low to high level rise time	C = 50 pF, 1.71 V≤V _{DD} ≤2.7 V	-	7.2	ns	
			C = 40 pF, 1.71 V≤V _{DD} ≤2 V	-	6.5		
			C = 30 pF, 1.71 V≤V _{DD} ≤2 V	-	5.6		
			C = 20 pF, 1.71 V≤V _{DD} ≤2 V	-	4.8		
			C =10 pF, 1.71 V≤V _{DD} ≤2 V	-	3.8		
			C = 50 pF, 1.71 V≤V _{DD} ≤2.7 V	-	60		
			C = 40 pF, 1.71 V≤V _{DD} ≤2 V	-	70		
	F _{max} ⁽²⁾⁽⁴⁾	Maximum frequency	C = 30 pF, 1.71 V≤V _{DD} ≤2 V	-	90	MHz	
			C = 20 pF, 1.71 V≤V _{DD} ≤2 V	-	110		
10			C =10 pF, 1.71 V≤V _{DD} ≤2 V	-	140		
10			C = 50 pF, 1.71 V≤V _{DD} ≤2.7 V	-	5.3		
		Output high to low level	C = 40 pF, 1.71 V≤V _{DD} ≤2 V	-	4.6		
	$t_r/t_f^{(3)(4)}$	fall time and output low	C = 30 pF, 1.71 V≤V _{DD} ≤2 V	-	3.8	ns	
		to high level rise time	C = 20 pF, 1.71 V≤V _{DD} ≤2 V	-	3.0		
			C =10 pF, 1.71 V≤V _{DD} ≤2 V	-	2.2		

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
			C=50 pF, 1.71 V≤V _{DD} ≤2 V	-	67		
			C = 40 pF, 1.71 V≤V _{DD} ≤2 V	-	100		
	F _{max} ⁽²⁾⁽⁴⁾	Maximum frequency	C = 30 pF, 1.71 V≤V _{DD} ≤2 V	-	120	MHz	
			C = 20 pF, 1.71 V≤V _{DD} ≤2 V	-	155		
11			C=10 pF, 1.71 V≤V _{DD} ≤2 V	-	200		
11		Output high to low level fall time and output low to high level rise time	C = 50 pF, 1.71 V≤V _{DD} ≤2.7 V	-	5.0		
			C = 40 pF, 1.71 V≤V _{DD} ≤2 V	-	4.1		
	t _r /t _f ⁽³⁾⁽⁴⁾		C = 30 pF, 1.71 V≤V _{DD} ≤2 V	-	3.3	ns	
			C = 20 pF, 1.71 V≤V _{DD} ≤2 V	-	2.5		
			C=10 pF, 1.71 V≤V _{DD} ≤2 V	-	1.8		

^{1.} Specified by design - Not tested in production.

- 3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 4. Compensation system enabled.

Table 63. Output timing characteristics VDDIO2 1.2 V range (HSLV OFF)⁽¹⁾

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	1		
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	1		
	$F_{\text{max}}^{(2)}$	Maximum frequency	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	1	MHz	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	1		
00			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	1		
00		Output high to low level fall time and output low to high level rise time	C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	83.0		
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	79.0		
	t _r /t _f ⁽³⁾		C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	46.0	ns	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	72.0		
			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	68.0		

^{2.} The maximum frequency is defined with the following conditions: $(t_r+t_f) \le 2/3$ T Skew $\le 1/20$ T 45%<Duty cycle<55%

Table 63. Output timing characteristics VDDIO2 1.2 V range (HSLV OFF)⁽¹⁾ (continued)

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5		
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5	MHz	
	F _{max} ⁽²⁾	Maximum frequency	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5		
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5		
01			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5		
UI			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	24.5		
		Output high to low level	C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	22.2		
	$t_{r}/t_{f}^{(3)}$	fall time and output low	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	20.0	ns	
		to high level rise time	C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	17.8		
			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	15.0		
			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	10		
	F _{max} ⁽²⁾	Maximum frequency	C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	10	MHz	
			C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	10		
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	10		
10			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	10		
10	t _r /t _f (3)	Output high to low level fall time and output low to high level rise time	C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	16.2	ns	
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	14.3		
			C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	12.2		
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	10.0		
			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	7.9		
			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	20		
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	23		
	F _{max} ⁽²⁾⁽⁴⁾	Maximum frequency	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	25	MHz	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	28		
44			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	30		
11			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	14.0		
		Output high to low level	C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	12.0		
	$t_r/t_f^{(3)(4)}$	fall time and output low	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	10.0	ns	
		to high level rise time	C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	8.0	1	
			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	6.0		

^{1.} Specified by design - Not tested in production.

- 3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 4. Compensation system enabled.

177/275

^{2.} The maximum frequency is defined with the following conditions: $(t_r+t_f) \le 2/3$ T Skew $\le 1/20$ T 45% < Duty cycle < 55%

Table 64. Output timing characteristics VDDIO2 1.2 V (HSLV ON)⁽¹⁾

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5		
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5		
	F _{max} ⁽²⁾	Maximum frequency	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5	MHz	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5		
00			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5		
00			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	32.5		
		Output high to low level	C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	30.0		
	$t_r/t_f^{(3)}$	fall time and output low	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	27.5	ns	
		to high level rise time	C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	25.0		
			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	22.5		
			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	15.0		
	F _{max} ⁽²⁾	Maximum frequency	C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	17.5		
			C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	20.0	MHz	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	22.5		
01			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	25.0		
01	t _r /t _f ⁽³⁾		C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	14.6		
		Output high	Output high to low level	C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	12.9	1
		$t_r/t_f^{(3)}$ fall time and output low to high level rise time	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	11.2	ns	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	9.3		
			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	7.3	1	
			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	25		
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	30		
	F _{max} ⁽²⁾⁽⁴⁾	Maximum frequency	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	33	MHz	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	44		
40			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	55		
10			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	11.6		
		Output high to low level	C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	9.7	ns	
	$t_r/t_f^{(3)(4)}$	fall time and output low	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	7.8		
		to high level rise time	C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	6.1		
			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	4.3]	

Speed	Symbol	Parameter	conditions	Min	Max	Unit	
			C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	30		
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	35		
	F _{max} ⁽²⁾⁽⁴⁾	Maximum frequency	C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	44	MHz	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	55		
11			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	77		
''	t _r /t _f ⁽³⁾⁽⁴⁾	Output high to low level fall time and output low to high level rise time	C =50 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	11.1		
			C =40 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	9.2	1	
			C =30 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	7.2	ns	
			C =20 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	5.4		
			C =10 pF, 1.08 V≤V _{DDIO2} ≤1.32 V	-	3.6		

Table 64. Output timing characteristics VDDIO2 1.2 V (HSLV ON)⁽¹⁾ (continued)

- 3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.
- 4. Compensation system enabled.

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 57: I/O static characteristics*).

Unless otherwise specified, the parameters given in *Table 65* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU} ⁽²⁾	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse	1.71 V < V _{DD} < 3.6 V	-	-	50	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	1.71 V < V _{DD} < 3.6 V	350	-	-	115

Table 65. NRST pin characteristics

2. Specified by design - not tested in production.

^{1.} Specified by design - Not tested in production.

^{2.} The maximum frequency is defined with the following conditions: $(t_r + t_f) \le 2/3$ T Skew $\le 1/20$ T 45%<Duty cycle<55%

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10 % order).

Figure 32. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 57. Otherwise the reset is not taken into account by the device.

5.3.16 Extended interrupt and event controller input (EXTI) characteristics

The pulse on the interrupt input must have a minimal length in order to guarantee that it is detected by the event controller.

Table 66. EXTI input characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLEC	Pulse length to event controller	-	20	-	-	ns

^{1.} Specified by design - Not tested in production.

5.3.17 FMC characteristics

Unless otherwise specified, the parameters given in *Table 67* to *Table 80* for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- IO Compensation cell activated.
- HSLV activated when V_{DD} ≤ 2.7 V
- VOS level set to VOS0.

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Asynchronous waveforms and timings

Figure 33 through Figure 35 represent asynchronous waveforms and Table 67 through Table 74 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capacitive load C_L = 30 pF

In all timing tables, the $T_{\mbox{\scriptsize fmc_ker_ck}}$ is the $f_{\mbox{\scriptsize HCLK}}$ clock period.

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 67. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{fmc_ker_ck} - 1	3T _{fmc_ker_ck} +1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	0.5	
t _{w(NOE)}	FMC_NOE low time	2T _{fmc_ker_ck} - 1	2T _{fmc_ker_ck} +1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	T _{fmc_ker_ck} - 0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	1	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	2T _{fmc_ker_ck} -1.5	-	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{fmc_ker_ck} +10	-	ns
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	9	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	
t _{w(NADV)}	FMC_NADV low time	-	T _{fmc_ker_ck} +1	

^{1.} Evaluated by characterization - Not tested in production.

Table 68. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings $^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{fmc_ker_ck} -1	8T _{fmc_ker_ck} +1	
t _{w(NOE)}	FMC_NOE low time	7T _{fmc_ker_ck} -1	7T _{fmc_ker_ck} +1	
t _{w(NWAIT)}	FMC_NWAIT low time	T _{fmc_ker_ck} - 0.5	-	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{fmc_ker_ck} +10	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{fmc_ker_ck} +10	-	

^{1.} Evaluated by characterization - not tested in production.

DS14258 Rev 1 182/275

^{2.} N_{WAIT} pulse width is equal to 1 fmc_ker_ck cycle.

Figure 34. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Table 69. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{fmc_ker_ck} - 1	3T _{fmc_ker_ck} + 1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} +0.5	
t _{w(NWE)}	FMC_NWE low time	T _{fmc_ker_ck} -1	T _{fmc_ker_ck} +1	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{fmc_ker_ck} - 1	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{fmc_ker_ck} + 1	-	ns
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{fmc_ker_ck} -1	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{fmc_ker_ck} + 1	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{fmc_ker_ck}	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	
t _{w(NADV)}	FMC_NADV low time	-	T _{fmc_ker_ck} + 1	

^{1.} Evaluated by characterization - Not tested in production.

Table 70. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT $timings^{(1)(2)}$

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{fmc_ker_ck} –1	8T _{fmc_ker_ck} +1	
t _{w(NWE)}	FMC_NWE low time	6T _{fmc_ker_ck} -1	6T _{fmc_ker_ck} +1	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{fmc_ker_ck} +10	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{fmc_ker_ck} +10	-	

^{1.} Evaluated by characterization - Not tested in production.

DS14258 Rev 1 184/275

^{2.} N_{WAIT} pulse width is equal to 1 fmc_ker_ck cycle.

Figure 35. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 71. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{fmc_ker_ck} - 1	4T _{fmc_ker_ck} + 1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{fmc_ker_ck} - 1	2T _{fmc_ker_ck} +0.5	
t _{tw(NOE)}	FMC_NOE low time	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} + 1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	T _{fmc_ker_ck} - 0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	1	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	1	
t _{w(NADV)}	FMC_NADV low time	T _{fmc_ker_ck} - 0.5	T _{fmc_ker_ck} + 1	
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high)	T _{fmc_ker_ck} + 0.5	-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	2T _{fmc_ker_ck} - 0.5	-	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{fmc_ker_ck} +10	-	
t _{su(Data_NOE}	Data to FMC_NOE high setup time	9	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

^{1.} Evaluated by characterization - Not tested in production.

Table 72. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings⁽¹⁾ (2)

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	9T _{fmc_ker_ck} -1	9T _{fmc_ker_ck} +1	
t _{w(NOE)}	FMC_NWE low time	7T _{fmc_ker_ck} –1	7T _{fmc_ker_ck} +1	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	4T _{fmc_ker_ck} +10	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	3T _{fmc_ker_ck} +10	-	

^{1.} Evaluated by characterization - Not tested in production.

^{2.} NWAIT pulse width is equal to 1 fmc_ker_ck cycle.

Table 73. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{fmc_ker_ck} -1	4T _{fmc_ker_ck} +1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} +0.5	
t _{w(NWE)}	FMC_NWE low time	2T _{fmc_ker_ck} - 1	2T _{fmc_ker_ck} + 1	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{fmc_ker_ck} - 0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	1	
t _{w(NADV)}	FMC_NADV low time	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} + 1	
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high)	T _{fmc_ker_ck} - 1	-	ns
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{fmc_ker_ck} - 1	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{fmc_ker_ck} - 1	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{fmc_ker_ck} + 0.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{fmc_ker_ck} - 0.5	-	

^{1.} Evaluated by characterization - not tested in production.

Table 74. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	9T _{fmc_ker_ck} - 1	9T _{fmc_ker_ck} + 1	
t _{w(NWE)}	FMC_NWE low time	7T _{fmc_ker_ck} -1	7T _{fmc_ker_ck} + 1	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{fmc_ker_ck} + 10	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{fmc_ker_ck} + 10	-	

^{1.} Evaluated by characterization - not tested in production.

^{2.} N_{WAIT} pulse width is equal to 1 fmc_ker_ck cycle.

Synchronous waveforms and timings

Figure 36 through Figure 39 represent synchronous waveforms and Table 75 through Table 78 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC BurstAccessMode Enable
- MemoryType = FMC_MemoryType_CRAM
- WriteBurst = FMC WriteBurst Enable
- CLKDivision = 1
- DataLatency = 1 for NOR flash, DataLatency = 0 for PSRAM.
- With capacity load $C_1 = 30 pF$

In all the timing tables, the $T_{fmc\ ker\ ck}$ is the $f_{mc\ ker\ ck}$ clock period, with the following FMC_CLK maximum values:

- For 2.7 V<V_{DD}<3.6 V: maximum FMC_CLK = 100 MHz at C_L = 20 pF
- For 1.71 V<V_{DD}<1.8 V: maximum FMC_CLK = 95 MHz at C_L = 20 pF
- For 1.71 V<V_{DD}<1.8 V: maximumFMC_CLK = 100 MHz at C₁ = 15 pF

Figure 36. Synchronous multiplexed NOR/PSRAM read timings

Table 75. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{fmc_ker_ck} - 0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1	
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	1	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{fmc_ker_ck} + 0.5	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3.5	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0.5	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	3.5	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	1.5	-	
t _{su(NWAIT} - CLKH)	FMC_NWAIT valid before FMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	1.5	-	

^{1.} Evaluated by characterization - Not tested in production.

189/275

Figure 37. Synchronous multiplexed PSRAM write timings

Ty/

Table 76. Synchronous multiplexed PSRAM write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period, V _{DD} = 2.7 to 3.6 V	2T _{fmc_ker_ck} - 0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x =02)	-	1	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high $(x = 02)$	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	ı	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x =1625)	-	1	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x =1625)	T _{fmc_ker_ck} - 1	ı	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	ı	1	ns
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{fmc_ker_ck} + 0.5	ı	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	1	3.5	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	1	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	1	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	1	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{fmc_ker_ck}	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	1.5	-	

^{1.} Evaluated by characterization - Not tested in production.

Figure 38. Synchronous non-multiplexed NOR/PSRAM read timings

Table 77. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{fmc_ker_ck} -0.5	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	1	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	1	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{fmc_ker_ck} - 1	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK ow to FMC_NOE low	-	1	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{fmc_ker_ck} + 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	3.5	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	1.5	-	
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	1.5	-	

^{1.} Evaluated by characterization - not tested in production.

Figure 39. Synchronous non-multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
t _(CLK)	FMC_CLK period	2T _{fmc_ker_ck} - 0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1	
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{fmc_ker_ck} - 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	1	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{fmc_ker_ck} + 0.5	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1	ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{fmc_ker_ck} + 0.5	-	
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	1.5	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{fmc_ker_ck} - 0.5	-	
t _{su(NWAIT} - CLKH)	FMC_NWAIT valid before FMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	1.5	-	

Table 78. Synchronous non-multiplexed PSRAM write timings⁽¹⁾

NAND controller waveforms and timings

Figure 40 through Figure 43 represent synchronous waveforms, and Table 79 and Table 80 provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration and a capacitive load (C_1) of 30 pF:

- COM.FMC_SetupTime = 0x01
- COM.FMC_WaitSetupTime = 0x03
- COM.FMC_HoldSetupTime = 0x02
- COM.FMC_HiZSetupTime = 0x01
- ATT.FMC_SetupTime = 0x01
- ATT.FMC WaitSetupTime = 0x03
- ATT.FMC_HoldSetupTime = 0x02
- ATT.FMC HiZSetupTime = 0x01
- Bank = FMC Bank NAND
- MemoryDataWidth = FMC_MemoryDataWidth_16b
- ECC = FMC ECC Enable
- ECCPageSize = FMC_ECCPageSize_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0
- Capacitive load C_L = 30 pF

In all timing tables, the $T_{fmc\ ker\ ck}$ is the HCLK clock period.

^{1.} Evaluated by characterization - Not tested in production.

Figure 40. NAND controller waveforms for read access

Figure 42. NAND controller waveforms for common memory read access

Table 79. Switching characteristics for NAND flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{fmc_ker_ck} - 0.5	4T _{fmc_ker_ck} +0.5	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	11	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{fmc_ker_ck} +0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	4T _{fmc_ker_ck} - 1.5	-	

^{1.} Evaluated by characterization - Not tested in production.

Table 80. Switching characteristics for NAND flash write cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{fmc_ker_ck} - 0.5	4T _{fmc_ker_ck} +0.5	
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	2T _{fmc_ker_ck} + 0.5	-	
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{fmc_ker_ck} - 2.5	-	ns
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{fmc_ker_ck} +0.5	
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	2T _{fmc_ker_ck} - 1	-	

^{1.} Evaluated by characterization - not tested in production.

SDRAM waveforms and timings

In all timing tables, the $t_{fmc\ ker\ ck}$ is the f_{HCLK} clock period, with the following FMC_SDCLK maximum values:

- For 2.7 $V<_{DD}$ <3.6 V: maximum FMC_SDCLK = 95 MHz at 20 pF (100 MHz for $V_{DD} > 3.0V$)
- For 1.71 V<V_{DD}<1.8 V: maximum FMC_SDCLK = 95 MHz at 15 pF
- For 1.71 V<V_{DD}<1.8 V: maximum FMC_SDCLK = 90 MHz at 20 pF

Figure 44. SDRAM read access waveforms (CL = 1)

DS14258 Rev 1 198/275

Table 81. SDRAM read timings⁽¹⁾

Symbol Parameter		Min	Max	Unit
t _{w(SDCLK)}	t _{w(SDCLK)} FMC_SDCLK period		2T _{fmc_ker_ck} +0.5	
t _{su(SDCLKH _Data)}	Data input setup time	3	-	
th(SDCLKH_Data)	Data input hold time	0.5	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL-SDNE)}	Chip select valid time	-	1.5	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	1.5	
th(SDCLKL_SDNRAS)	SDNRAS hold time	0	-	
t _d (SDCLKL_SDNCAS)	SDNCAS valid time	-	1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

^{1.} Evaluated by characterization - Not tested in production.

Table 82. LPSDR SDRAM read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit	
t _{W(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} - 0.5	2T _{fmc_ker_ck} +0.5		
t _{su(SDCLKH_Data)}	Data input setup time	3	-		
t _{h(SDCLKH_Data)}	Data input hold time	0.5	-		
t _{d(SDCLKL_Add)}	Address valid time	-	1.5		
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1.5	ns	
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115	
t _d (SDCLKL_SDNRAS	SDNRAS valid time	-	1.5		
th(SDCLKL_SDNRAS)	SDNRAS hold time	0	-		
t _d (SDCLKL_SDNCAS)	SDNCAS valid time	-	1		
t _h (SDCLKL_SDNCAS)	SDNCAS hold time	0	-		

^{1.} Evaluated by characterization - not tested in production.

Figure 45. SDRAM write access waveforms

Table 83. SDRAM write timings⁽¹⁾

Symbol Parameter		Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} - 0.5	2T _{fmc_ker_ck} +0.5	
t _{d(SDCLKL _Data})	Data output valid time	-	1	
t _{h(SDCLKL_Data)}	Data output hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-	ns
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1	113
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	
t _d (SDCLKL_SDNRAS)	SDNRAS valid time	-	1.5	
th(SDCLKL_SDNRAS)	SDNRAS hold time	0	-	
t _d (SDCLKL_SDNCAS)	SDNCAS valid time	-	1	
t _{d(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

^{1.} Evaluated by characterization - Not tested in production.

Symbol Parameter		Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} - 0.5	2T _{fmc_ker_ck} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	1	
t _{h(SDCLKL _Data)}	Data output hold time	0.	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2	
t _{d(SDCLKL-SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	0	-	ns
t _{d(SDCLKL-SDNE)}	Chip select valid time	-	1.5	113
t _{h(SDCLKL-SDNE)}	Chip select hold time	0	-	
t _{d(SDCLKL-SDNRAS)}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL-SDNCAS)}	SDNCAS valid time	-	1	
t _{d(SDCLKL-SDNCAS)}	SDNCAS hold time	0	-	

Table 84. LPSDR SDRAM Write timings⁽¹⁾

5.3.18 Octo-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 85: OCTOSPI characteristics in SDR mode* and *Table 86: OCTOSPI characteristics in DTR mode (no DQS)* for OCTOSPI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5V_{DD}
- IO Compensation cell activated.
- HSLV activated when V_{DD} ≤ 27 V
- VOS level set to VOS0

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Table 85. OCTOSPI characteristics in SDR mode⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max ⁽³⁾	Unit
France	OCTOSPI clock frequency	1.71 V < V _{DD} < 1.9 V, C _L = 15 pF	-	-	110	MHz
F _(CLK)	OCTOSI I Clock frequency	1.7 V < V _{DD} < 3.6 V, C _L =15 pF	-	-	150	IVIIIZ

^{1.} Evaluated by characterization - not tested in production.

					/	
Symbol	Parameter	Conditions	Min	Тур	Max ⁽³⁾	Unit
t _{w(CLKH)}	OCTOSPI clock high and	PRESCALER[7:0] = n	t _(CLK) /2 - 0.5	-	$t_{(CLK)}/2 + 0.5$	
t _{w(CLKL)}	low time, even division	= 0,1,3,5.3 255	t _(CLK) /2 - 0.5	-	t _(CK) /2 + 0.5	
t _{w(CLKH)}	OCTOSPI clock high and	PRESCALER[7:0] = n	(n/2)*t _(CLK) / (n+1)-0.5	-	(n/2)*t _(CLK) / (n+1) + 0.5	
t _{w(CLKL)}	low time, odd division	= 2,4,6,254	(n/2+1)*t _(CLK) / (n+1)-0.5	-	(n/2+1)*t _(CLK) / (n+1) + 0.5	ns
t _{s(IN)}	Data input setup time	-	4	-	-	
t _{h(IN)}	Data input hold time	-	1	-	-	
t _{v(OUT)}	Data output valid time	-	-	0.5	1	
t _{h(OUT)}	Data output hold time	-	0	-	-	

Table 85. OCTOSPI characteristics in SDR mode⁽¹⁾⁽²⁾ (continued)

- 1. All values apply to Octal and Quad-SPI mode.
- 2. Evaluated by characterization not tested in production.
- 3. At VOS1, these values are degraded by up to 5%.

Table 86. OCTOSPI characteristics in DTR mode (no DQS)(1)(2)(3)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{CLK}	OCTOSPI clock frequency	$1.71 \text{ V} < \text{V}_{DD} < 3.6 \text{ V},$ $C_L = 15 \text{ pF}$	-	-	100 ⁽⁴⁾	MHz
	OCTOSPI clock frequency	$1.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V},$ $\text{C}_{L} = 15 \text{ pF}$	-	-	125	IVII IZ
t _{w(CLKH)}	OCTOSPI clock high and	PRESCALER[7:0] = n	t _(CLK) /2-0.5	-	t _(CLK) /2+0.5	
t _{w(CLKL)}	low time	= (0,1,3,5,255)	t _(CLK) /2-0.5	-	t _(CLK) /2+0.5	
t _{w(CLKH)}	OCTOSPI clock high and	DDESCALED(7:01 = n	(n/2)*t _(CLK) / (n+1)-0.5	-	(n/2)*t _(CLK) / (n+1)+0.5	ns
t _{w(CLKL)}	OCTOSPI clock high and low time PRESCALER[7:0] = n = $(2,4,6,8,254)$	(n/2+1)*t _(CLK) /(n+1) - 0.5	-	(n/2+1)* t _(CLK) /(n+1) +0.5		
t _{v(CLK)}	Clock valid time	-	-	-	t _(CLK) +0.5	

Table 86. OCTOSPI characteristics in DTR mode (no DQS)⁽¹⁾⁽²⁾⁽³⁾ (continued)

Symbol	Parameter	Condi	Conditions		Тур	Max	Unit
$t_{sr(IN),} \ t_{sf(IN)}$	Data input setup time	-		4	-	-	
t _{hr(IN),} t _{hf(IN)}	Data input hold time	-		1.5	-	-	
	Data output valid time		DHQC = 0	-	2.5	3.5	
t _{vr(OUT)} t _{vf(OUT)}		-	DHQC = 1, Prescaler[7 :0] = 1,2	-	t _(CLK) /4 +0.5	t _(CLK) /4+1	ns
			DHQC = 0	1.5	-	-	
t _{hr(OUT)} t _{hf(OUT)}	Data output hold time	-	DHQC = 1, Prescaler[7 :0] = 1,2	t _(CLK) /4 - 1	-	-	

- 1. All values apply to Octal and Quad-SPI mode.
- 2. Evaluated by characterization not tested in production.
- 3. Delay block bypassed.
- 4. DHQC must be set to reach the mentioned frequency.

Table 87. OCTOSPI characteristics in DTR mode (with DQS)/ hyperbus⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F	OCTOSPI clock frequency	$1.71 \text{ V} < \text{V}_{DD} < 3.6 \text{ V},$ $\text{C}_{L} = 15 \text{ pF}$	-	-	125 ⁽³⁾⁽⁴⁾	MHz
F _{CLK}	OCTOSI TCIOCK frequency	$1.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V},$ $\text{C}_{L} = 15 \text{ pF}$	-	-	125 ⁽³⁾⁽⁵⁾	IVIIIZ
t _{w(CLKH)}	OCTOSPI clock high and	PRESCALER[7:0] = n	t _(CLK) /2-0.5	ı	t _(CLK) /2+0.5	
t _{w(CLKL)}	low time	= (0,1,3,5,255)	t _(CLK) /2-0.5	ı	t _(CLK) /2+0.5	
t _{w(CLKH)}	OCTOSPI clock high and	PRESCALER[7:0] = n	(n/2)*t _(CLK) / (n+1)-0.5	-	(n/2)*t _(CLK) / (n+1)+0.5	
t _{w(CLKL)}	low time	= (2,4,6,8,254)	(n/2+1)*t _(CLK) /(n+1) - 0.5	-	(n/2+1)* t _(CLK) /(n+1) +0.5	ns
t _{v(CLK)}	Clock valid time	-	-	-	t _(CLK) +2	
t _{h(CLK)}	Clock hold time	-	t _(CLK) /2-1	-	-	
t _{ODr(CLK)}	CLK, NCLK crossing level on CLK rising edge	V _{DD} =1.8 V	890	-	1300	mV
t _{ODf(CLK)}	CLK, NCLK crossing level on CLK falling edge	V _{DD} =1.8 V	790	-	1080	IIIV
t _{w(CS)}	Chip select high time	-	3 * t _(CLK)	-	-	
t _{v(DQ)}	Data input valid time	-	3	-	-	
t _{v(DS)}	Data strobe input valid time	-	1	I		
t _{h(DS)}	Data strobe input hold time	-	0	-	-	

Table 87. OCTOSPI characteristics in DTR mode (with DQS)/ hyperbus⁽¹⁾⁽²⁾ (continued)

indication of the contraction of							,
Symbol	Parameter	Condi	itions	Min	Тур	Max	Unit
t _{v(RWDS)}	Data strobe output valid time	-		-	-	3 * t _(CLK)	
$t_{\rm sr(DQ),} \ t_{\rm sf(DQ)}$	Data input setup time	-		-0.5	-	-	
$t_{hr(DQ),} \ t_{hf(DQ)}$	Data input hold time	-		2	-	-	
			DHQC = 0	-	2.5	3.5	
t _{vr(OUT)} t _{vf(OUT)}	Data output valid time	-	DHQC = 1, All prescaler value (except 0)	-	t _(CLK) /4 +0.5	t _(CLK) /4+1	ns
			DHQC = 0	1.5	-	-	
t _{hr(OUT)} t _{hf(OUT)}	Data output hold time	-	DHQC = 1, All prescaler value (except 0)	t _(CLK) /4 - 1	-	-	

- 1. Evaluated by characterization Not tested in production.
- 2. Delay block activated.
- 3. Maximum frequency value are given for a RWDS to DQ skew of maximum \pm 1.0 ns.
- 4. DHQC must be set to reach the mentioned frequency.
- 5. Crossing results are in line with specification except for PA3/PF11 CLK/NCLK which exceeds specification.

 $t_{r(CLK)}$ $t_{(\text{CLK})} \\$ $t_{\text{w}(\text{CLKH})}$ $t_{\text{w}(\text{CLKL})}$ $t_{f(CLK)}$ Clock vr(OUT) $t_{\text{vf}(\text{OUT})}$ $t_{\text{hr}(\text{OUT})}$ $t_{\text{hf}(\text{OUT})}$ Data output D0 D2 D3 D4 D1 D5 $t_{\text{sf(IN)}}\,t_{\text{hf(IN)}}$ $t_{\text{sr(IN)}}t_{\text{hr(IN)}}$ Data input D0 D2 D1 D3 D4 D5 MSv36879V4

Figure 47. OCTOSPI timing diagram - DTR mode

Figure 48. OCTOSPI hyperbus clock

Figure 49. OCTOSPI hyperbus read

Figure 50. OCTOSPI hyperbus write

5.3.19 Delay block (DLYB) characteristics

Unless otherwise specified, the parameters given in *Table 88* for Delay Block are derived from tests performed under the ambient temperature, f_{HCLK} frequency and VDD supply voltage summarized in *Table 20: General operating conditions*, with the following configuration:

Table 88. Delay block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{init}	Initial delay	-	750	1100	1700	ps
t_{Δ}	Unit delay	-	38	44	54	ps

5.3.20 DCMI interface characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in *Table 89*, with the following configuration:

- DCMI_PIXCLK polarity: falling.
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits
- Capacitive load C_I = 30 pF
- Measurement points done at CMOS levels: 0.5 * V_{DD}
- I/O compensation cell activated.
- HSLV activated when V_{DD} ≤ 2.7 V
- Voltage scaling VOS0 selected

Table 89. DCMI characteristics⁽¹⁾

Symbol	Parameter		Max	Unit
-	Frequency ratio DCMI_PIXCLK/fHCLK	-	0.4	-
DCMI_PIXCLK	Pixel clock input	-	100	MHz
D _{PIXEL}	Pixel clock input duty cycle	30	70	%
t _{su(DATA)}	Data input setup time	2.5	-	
t _{h(DATA)}	Data hold time	2	-	
t _{su(HSYNC)} t _{su(VSYNC)}	DCMI_HSYNC and DCMI_VSYNC input setup times	2.5	-	ns
$t_{h(HSYNC)} t_{h(VSYNC)} t_{\Delta}$	DCMI_HSYNC and DCMI_VSYNC input hold times	1.5	-	

^{1.} Evaluated by characterization - Not tested in production.

Figure 51. DCMI timing diagrams

5.3.21 PSSI interface characteristics

Unless otherwise specified, the parameters given in *Table 89: DCMI characteristics* and *Table 90: PSSI transmit characteristics* for PSSI are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 20: General operating conditions* and *Section 5.3.1: General operating conditions*, with the following configuration:

- PSSI_PDCK polarity: falling
- PSSI_RDY and PSSI_DE polarity: low
- Bus width: 16 linesDATA width: 32 bits
- Capacitive load C_I =30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- I/O compensation cell activated
- HSLV activated when V_{DD} ≤ 2.7 V
- Voltage scaling VOS0 selected

Table 90. PSSI transmit characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
-	Frequency ratio PSSI_PDCK/f _{HCLK}	-	-	0.4	-
DSSI DDCK	PSSI Clock input	2.7 V≤V _{DD} ≤3.6 V.	-	90 ⁽²⁾	MHz
PSSI_PDCK		1.71 V≤V _{DD} ≤3.6 V.	-	86	IVII IZ
D _{pixel}	PSSI Clock input duty cycle		30	70	%

Table 90. PSSI transmit characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Max	Unit
t (DATA)	Data output valid time	2.7 V≤V _{DD} ≤3.6 V.	-	11	
t _{ov} (DATA)	-	1.71 V≤V _{DD} ≤3.6 V.	-	11.5	
t _{oh} (DATA)	Data output hold time		5.5	-	
t _{ov(} (DE)	DE output valid time		-	11.5	ns
t _{oh} (DE)	DE output hold time	1.71 V≤V _{DD} ≤3.6 V.	5.5	-	
tsu(RDY)	RDY input setup time		0.5	-	
th(RDY)	RDY input hold time		0.5	-	

^{1.} Evaluated by characterization - Not tested in production.

Table 91. PSSI receive characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
-	Frequency ratio PSSI_PDCK/f _{HCLK}		-	0.4	-
PSSI_PDCK	PSSI Clock input	1.71 V≤V _{DD} ≤3.6 V.	-	100	MHz
D _{pixel}	PSSI Clock input duty cycle	-	30	70	%
t _{su} (DATA)	Data input setup time		2	-	
t _h (DATA)	Data input hold time		2.5	-	
t _{su(} (DE)	DE input setup time	1.71 V≤V _{DD} ≤3.6 V.	1.5	-	ns
t _h (DE)	DE input hold time	1.71 V = V _{DD} = 3.0 V.	2	-	115
tov(RDY)	RDY output valid time		-	16.5	
toh(RDY)	RDY output hold time		5.5	-	

^{1.} Evaluated by characterization - Not tested in production.

^{2.} This maximal frequency does not consider receiver setup and hold timings.

Figure 52. PSSI transmit timing diagram

5.3.22 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 92* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 20: General operating conditions*.

Table 92. 12-bit ADC characteristics⁽¹⁾⁽²⁾

Symbol	Parameter		Conditions					Min	Тур	Max	Unit		
V_{DDA}	Analog supply voltage for ADC ON		-					1.62	-	3.6	V		
V _{REF+}	Positive reference voltage			-				1.62	-	V _{DDA}	V		
V_{REF}	Negative reference voltage			-					V_{SSA}		v		
f _{ADC}	ADC clock frequency			1.62V ≤ V _{DDA} ≤	3.6 V			1.5	-	75	MHz		
			Continuous	1.8V≤V _{DDA} ≤3.6V		f _{ADC} = 75MHz		ı	5.00	=			
		Resolution	Mode	1.6V≤V _{DDA} ≤3.6V	-40°C ≤ T _J ≤ 130°C	f _{ADC} = 70 MH z	SMP		4.66				
		= 12 bits	Single or Discontinuous	2.4V≤V _{DDA} ≤3.6V	-40 C 2 I J 2 I 30 C	f _{ADC} = 60MHz	=2.5		4.00	-			
					Mode	1.6V≤V _{DDA} ≤3.6V		f _{ADC} = 50MHz			3.33	-	
		rate for fast channels		Continuous Mode	1.6V≤V _{DDA} ≤3.6V		f _{ADC} = 75MHz		-	5.77	-		
. (3)			(1, 1,	Resolution = 10 bits	Single or Discontinuous	2.4V≤V _{DDA} ≤3.6V	-40°C ≤ T _J ≤ 130°C	f _{ADC} = 75MHz	SMP =2.5		5.77	-	
$f_S^{(3)}$ with RAIN=47 Ω and C_{PCB} =22pF			Mode	1.6V≤V _{DDA} ≤3.6V		f _{ADC} = 65MHz			5.00	-	MSPS		
-FCBF		Resolution = 8 bits	All Modes	1.6V≤V _{DDA} ≤3.6V	-40°C ≤ T _J ≤ 130°C	f _{ADC} = 75MHz	SMP	-	6.82	-			
		Resolution = 6 bits	All Modes	1.6V≤V _{DDA} ≤3.6V	-40°C ≤ T _J ≤ 130°C	f _{ADC} = 75MHz	=2.5	-	8.33	-			
		Resolution = 12 bits			f _{ADC} = 35MHz		-	2.30	-				
	Sampling rate for slow	Resolution = 10 bits	All modes ⁽⁴⁾	1.6V≤V _{DDA} ≤3.6V	-40°C ≤ T ₁ ≤ 130°C	f _{ADC} = 35MHz	SMP	-	2.70	-			
	channels	Resolution = 8 bits	esolution	1.0v = v DDA = 0.0V		f _{ADC} = 50MHz	=2.5	-	4.50	-			
		Resolution = 6 bits			:	f _{ADC} = 50MHz		ı	5.50	-			
t _{TRIG}	External trigger period			Resolution = 12	! bits			-	-	15	1/f _{ADC}		

Table 92. 12-bit ADC characteristics⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{AIN} ⁽²⁾	Conversion voltage range	-	0	-	V _{REF+}	V
V _{CMIV}	Common mode input voltage	-	V _{REF} /2- 10%	V _{REF} /2	V _{REF} /2+ 10%	·
		Resolution = 12 bits, T _J = 130°C (Tolerance 4 LSBs)	-	-	321	
		Resolution = 12 bits, T _J = 125°C	-	-	220	
		Resolution = 10 bits, T _J = 130°C	-	-	1039	
D (5)	External	Resolution = 10 bits, T _J = 125°C	-	-	2100	0
R _{AIN} ⁽⁵⁾	input impedance	Resolution = 8 bits, T _J = 130°C	-	-	6327	Ω
		Resolution = 8 bits, T _J = 125°C	-	-	12000	
	1	Resolution = 6 bits, T _J = 130°C	-	-	47620	
	1	Resolution = 6 bits, T _J = 125°C	-	-	80000	
C _{ADC}	Internal sample and hold capacitor	-	-	3	-	pF
t _{ADCVREG_} STUP	ADC LDO startup time	-	-	5	10	μs
t _{STAB}	ADC power-up time	LDO already started	1	-	-	conversion cycle
t _{OFF_CAL}	Offset calibration time	-		1335		
	Trigger	CKMODE = 00	1.5	2	2.5	
	conversion latency for	CKMODE = 01	-	-	2.5	
t _{LATR}	regular and injected	CKMODE = 10			2.5	
	channels without aborting the conversion	CKMODE = 11			2.25	
	Trigger	CKMODE = 00	2.5	3	3.5	
	conversion latency for	CKMODE = 01	-	-	3.5	
t _{LATRINJ}	regular and injected	CKMODE = 10	-	-	3.5	1/f _{ADC}
:LAI KIINJ	channels when a regular conversion is aborted	CKMODE = 11	-	-	3.25	
t _S	Sampling time	-	2.5	-	640.5	
t _{CONV}	Total conversion time (including sampling time)	N-bits resolution	t _S + 0.5 + N			

Table 92. 1	12-bit ADC	characteristics(1)(2)	(continued)
-------------	------------	-----------------------	-------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	ADC	fs= 5MSPS	-	600	-	
	consumption	fs= 1MSPS	-	190	-	
$\begin{array}{c c} I_{DDA_D(ADC)} & V_{DDA} \text{ and} \\ & V_{REF}, \\ & \text{Differentia} \\ & \text{mode} \end{array}$	V _{REF} , Differential	fs= 0.1MSPS	-	50	-	
ADC	fs= 5MSPS	-	500	-		
I _{DDA_SE(ADC)}	consumption on V _{DDA} and	fs= 1MSPS	-	150	-	
	V _{REF} Single- ended mode	fs= 0.1MSPS	-	50	-	μΑ
		f _{ADC} =75MHz	-	265	-	
		f _{ADC} =50MHz		175	-	
	ADC	f _{ADC} =25MHz	-	90	-	
I _{DD(ADC)}	consumption on V _{DD}	f _{ADC} =12.5MHz	-	45	-	
		f _{ADC} =6.25MHz	-	22	-	
		f _{ADC} =3.125MHz	-	11	-	

- 1. Specified by design Not tested in production.
- 2. The voltage booster on ADC switches must be used for V_{DDA} < 2.7 V (embedded I/O switches).
- 3. These values are valid on BGA packages.
- 4. Depending on the package, V_{REF+} can be internally connected to V_{DDA} and V_{REF-} to V_{SSA} .
- 5. The tolerance is 2 LSBs for 12-bit, 10-bit and 8-bit resolutions, otherwise specified.

Table 93. Minimum sampling time versus $R_{AIN}^{(1)(2)}$

Resolution	B (0)	Minimum sam	pling time (s)
Resolution	R _{AIN} (Ω)	Fast channel	Slow channel ⁽³⁾
	47	3.75E-08	6.12E-08
	68	3.94E-08	6.25E-08
	100	4.36E-08	6.51E-08
12 bits	150	5.11E-08	7.00E-08
12 513	220	6.54E-08	7.86E-08
	330	8.80E-08	9.57E-08
	470	1.17E-07	1.23E-07
	680	1.60E-07	1.65E-07

Table 93. Minimum sampling time versus $R_{AIN}^{(1)(2)}$ (continued)

	B (O)	Minimum sampling time (s)			
Resolution	R _{AIN} (Ω)	Fast channel	Slow channel ⁽³⁾		
	47	3.19E-08	5.17E-08		
	68	3.35E-08	5.28E-08		
	100	3.66E-08	5.45E-08		
	150	4.35E-08	5.83E-08		
	220	5.43E-08	6.50E-08		
10 hita	330	7.18E-08	7.89E-08		
10 bits	470	9.46E-08	1.00E-07		
	680	1.28E-07	1.33E-07		
	1000	1.81E-07	1.83E-07		
	1500	2.63E-07	2.63E-07		
	2200	3.79E-07	3.76E-07		
	3300	5.57E-07	5.52E-07		
	47	2.64E-08	4.17E-08		
	68	2.76E-08	4.24E-08		
	100	3.02E-08	4.39E-08		
	150	3.51E-08	4.66E-08		
	220	4.27E-08	5.13E-08		
	330	5.52E-08	6.19E-08		
	470	7.17E-08	7.72E-08		
O hita	680	9.68E-08	1.00E-07		
8 bits	1000	1.34E-07	1.37E-07		
	1500	1.93E-07	1.94E-07		
	2200	2.76E-07	2.74E-07		
	3300	4.06E-07	4.01E-07		
	4700	5.73E-07	5.62E-07		
	6800	8.21E-07	7.99E-07		
	10000	1.20E-06	1.17E-06		
	15000	1.79E-06	1.74E-06		

Resolution	B (O)	Minimum san	npling time (s)
Resolution	R _{AIN} (Ω)	Fast channel	Slow channel ⁽³⁾
	47	2.14E-08	3.16E-08
	68	2.23E-08	3.21E-08
	100	2.40E-08	3.31E-08
	150	2.68E-08	3.52E-08
	220	3.13E-08	3.87E-08
	330	3.89E-08	4.51E-08
	470	4.88E-08	5.39E-08
6 bits	680	6.38E-08	6.79E-08
O DIES	1000	8.70E-08	8.97E-08
	1500	1.23E-07	1.24E-07
	2200	1.73E-07	1.73E-07
	3300	2.53E-07	2.49E-07
	4700	3.53E-07	3.45E-07
	6800	5.04E-07	4.90E-07
	10000	7.34E-07	7.11E-07
	15000	1.09E-06	1.05E-06

Table 93. Minimum sampling time versus $R_{AIN}^{(1)(2)}$ (continued)

- 1. Specified by design Not tested in production.
- 2. Data valid up to 130 °C, with a 22 pF PCB capacitor, and V_{DDA} = 1.6 V.
- 3. Slow channels correspond to all ADC inputs except for the fast channels.

Figure 54. ADC conversion timing diagram

DS14258 Rev 1 214/275

Table 94. ADC accuracy⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
ET	Total unadjusted error	Fast and slow channels	Single ended	-	±3.5	±12	- LSB
			Differential	-	±2.5	±7.5	
EO	Offset error	-	Single ended	-	±3	±5.5	
		-	Differential	-	±2	±3.5	
EG	Gain error	-	Single ended	-	±3.5	±11	
		-	Differential		±2.5	±7	
ED	Differential linearity error	-	Single ended	-	±0.75	+2/-1	
		-	Differential	-	±0.75	+2/-1	
EL	Integral linearity error	Fast and slow channels	Single ended	-	±2	±6.5	
			Differential	-	±1	±4	
ENOB	Effective number of bits	Single ended		-	10.8	-	Bits
		Differential		-	11.5	-	
SINAD	Signal-to-noise and distortion ratio	Single ended		-	68	-	
		Differential		-	71	-	- dB
SNR	Signal-to-noise ratio	Single ended		-	70	-	
		Differential		-	72	-	
THD	Total harmonic distortion	Single ended		-	-70	-	
		Differential		-	-80	-	

^{1.} Evaluated by characterization for BGA packages. The values for LQFP package might differ. - Not tested in production.

Note:

ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

^{2.} ADC DC accuracy values are measured after internal calibration in continuous mode.

Figure 55. ADC accuracy characteristics

- 1. Example of an actual transfer curve.
- 2. Ideal transfer curve.
- 3. End point correlation line.
- 4. E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
- 5. EO = Offset Error: deviation between the first actual transition and the first ideal one.
- 6. EG = Gain Error: deviation between the last ideal transition and the last actual one.
- 7. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
- 8. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point

 $V_{DDA}^{(4)}$ $V_{REF+}^{(4)}$ Sample-and-hold ADC converter I/O analog switch R_{ADC} Converter (3) C_{ADC} Sampling switch with multiplexing $\bar{V}_{S\underline{s}}$ V_{SS} V_{SSA} MSv67871V3

Figure 56. Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function

- Refer to Table 92: 12-bit ADC characteristics for the values of R_{AIN}, and C_{ADC}.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 57: I/O static characteristics*). A high C_{parasitic} value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.
- 3. Refer to Table 57: I/O static characteristics for the value of I_{lkq}.
- 4. Refer to Figure 20: STM32H563 power supply scheme with SMPS.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 57* or *Figure 58*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 57. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

STM32

1 µF // 100 nF

1 µF // 100 nF

V_{SSA}/V_{REF-}(1)

V_{REF+} input is not available on all package (refer to *Table 14: STM32H562xx and STM32H563xx pin/ball definition*) whereas V_{REF-} is available only on UFBGA176+25, UFBGA169 with SMPS, LQFP100, UFBGA169, and UFBGA176+25. When V_{REF-} is not available, it is internally connected to V_{SSA}.

Figure 58. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

V_{REF+} input is not available on all package (refer to *Table 14: STM32H562xx and STM32H563xx pin/ball definition*) whereas V_{REF-} is available only on UFBGA176+25, UFBGA169 with SMPS, LQFP100, UFBGA169, and UFBGA176+25. When V_{REF-} is not available, it is internally connected to V_{SSA}.

DS14258 Rev 1 217/275

5.3.23 DAC characteristics

Table 95. DAC characteristics⁽¹⁾

Symbol	Parameter	Condition	ıs	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage	-		1.8	3.3	3.6	
V _{REF+}	Positive reference voltage	-		1.80	-	V_{DDA}	V
V _{REF-}	Negative reference voltage	-		-	V_{SSA}	-	
В	Resistive Load	DAC output buffer	connected to V _{SSA}	5	-	-	
R _L	Resistive Loau	ON	connected to V _{DDA}	25	-	-	kΩ
R _O	Output Impedance	DAC output buf	fer OFF	10.3	13	16	
	Output impedance	DAC output buffer	V _{DD} = 2.7 V	-	-	1.6	
R _{BON}	sample and hold mode, output buffer ON	ÓN	V _{DD} = 2.0 V	-	-	2.6	kΩ
_	Output impedance	DAC output buffer	V _{DD} = 2.7 V	ī	-	17.8	
R _{BOFF}	sample and hold mode, output buffer OFF	OFF	V _{DD} = 2.0 V	-	-	18.7	kΩ
C _L	Capacitive Load	DAC output buffer OFF		-	-	50	pF
C _{SH}	Capacitive Load	Sample and Ho	Sample and Hold mode		0.1	1	μF
V _{DAC_OUT}	Voltage on DAC_OUT	DAC output bu	ffer ON	0.2	-	V _{DDA} -0.2	V
	output	DAC output buf	fer OFF	0	-	V _{REF+}	
	Cattling time (full and)		±0.5 LSB	-	2.05	3	
	Settling time (full scale: for a 12-bit code transition	Normal mode, DAC	±1 LSB	-	1.97	2.87	
	between the lowest and the highest input codes	output buffer ON, C _L ≤ 50 pF,	±2 LSB	-	1.67	2.84	
t _{SETTLING}	when DAC_OUT reaches	R _L ≥ 5 kΩ	±4 LSB	i	1.66	2.78	μs
	the final value of ±0.5LSB, ±1LSB, ±2LSB, ±4LSB,		±8 LSB	ı	1.65	2.7	
	±8LSB)	Normal mode, DAC OFF, ±1LSB C _L		-	1.7	2	
(2)	Wakeup time from off state (setting the ENx bit	Normal mode, DAC ON, $C_L \le 50 \text{ pF}$,		-	5	7.5	
t _{WAKEUP} ⁽²⁾	in the DAC Control register) until the final value of ±1LSB is reached Normal mode, DA OFF, CL			-	2	5	μs
PSRR	DC V _{DDA} supply rejection ratio	Normal mode, DAC ON, $C_L \le 50 \text{ pF}$,		-	-80	-28	dB

Table 95. DAC characteristics⁽¹⁾ (continued)

Symbol	Parameter	Condition	าร	Min	Тур	Max	Unit
	Sampling time in Sample and Hold mode	MODE<2:0>_V12 (BUFFER (ı	0.7	2.6	- ms
t _{SAMP}	C _L =100 nF (code transition between the lowest input code and	MODE<2:0>_V (BUFFER C		-	11.5	18.7	1113
	the highest input code when DAC_OUT reaches the ±1LSB final value)	MODE<2:0>_V1 (INTERNAL BUFI		-	0.3	0.6	μs
I _{leak}	Output leakage current	-		ı	-	(4)	nA
C _{lint}	Internal sample and hold capacitor			1.8	2.2	2.6	pF
t _{TRIM}	Middle code offset trim time	Minimum time to ve code	rify the each	50	-	-	μs
V	Middle code offset for 1	V _{REF+} = 3.	6 V	-	850	-	μV
V _{offset}	trim code step	V _{REF+} = 1.	8 V	-	425	-	μν
	DAC quiescent consumption from V _{DDA}	DAC output buffer	No load, middle code (0x800)	-	360	-	
		w	No load, worst code (0xF1C)	-	490	-	
I _{DDA(DAC)}		DAC output buffer OFF	No load, middle/ worst code (0x800)	-	20	-	
		Sample and Hol C _{SH} =100		-	360*T _{ON} / (T _{ON} +T _{OFF})	-	
		DAC output buffer	No load, middle code (0x800)	-	170	-	μΑ
		ON	No load, worst code (0xF1C)	-	170	-	
I _{DDV} (DAC)	DAC consumption from VREF+ DAC output but OFF	DAC output buffer OFF	No load, middle/ worst code (0x800)	-	160	-	
		Sample and Hold m ON, C _{SH} =100 nF (v		-	170*T _{ON} / (T _{ON} +T _{OFF})	-	
		Sample and Hold m OFF, C _{SH} =100 nF (-	160*T _{ON} / (T _{ON} +T _{OFF})	-	

Specified by design - Not tested in production, unless otherwise specified.

- 2. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).
- 3. DACx_OUT pin is not connected externally (internal connection only).
- 4. Refer to Table 57: I/O static characteristics.
- T_{ON} is the refresh phase duration, while T_{OFF} is the hold phase duration. Refer to the product reference manual for more details.

Table 96. DAC accuracy⁽¹⁾

Symbol	Parameter	Cond	itions	Min	Тур	Max	Unit	
DNL	Differential non	DAC outpu	t buffer ON	-2	-	2	LSB	
DINL	linearity ⁽²⁾	DAC output	buffer OFF	-2	-	2	LOB	
-	Monotonicity	10	bits	-	-	-	-	
INL	Integral non linearity ⁽³⁾	DAC output buffe R _L ≥	r ON, C _L ≤ 50 pF, 5 kΩ	-4	-	4	LSB	
IINL	Thegrai non inleanty.	DAC output C _L ≤ 50	buffer OFF, pF, no R _L	-4	-	4	LOD	
		DAC output	V _{REF+} = 3.6 V	-	-	±12		
Offset	Offset error at code 0x800 (3)	buffer ON, C _L ≤ 50 pF, R _L ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB	
		DAC output C _L ≤ 50	buffer OFF, pF, no R _L	-	-	±8		
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF, C _L ≤ 50 pF, no R _L		-	-	±5	LSB	
	Offset error at code	DAC output	V _{REF+} = 3.6 V	-	-	±5		
OffsetCal	0x800 after factory calibration	buffer ON, C _L ≤ 50 pF, R _L ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	LSB	
Gain	Gain error ⁽⁵⁾	DAC output buffe R _L ≥	er ON,C _L ≤ 50 pF, 5 kΩ	1	-	±1	%	
Gaili	Gain enory		buffer OFF, pF, no R _L	-	-	±1	70	
TUE	Total unadjusted error	DAC output buffe R _L ≥	r ON, C _L ≤ 50 pF, 5 kΩ	-	-	±30		
TOL	Total unaujusted error	DAC output bu 50 pF,	ıffer OFF, C _L ≤ no R _L			±12	LSB	
TUECal	Total unadjusted error after calibration	DAC output buffer ON, $C_L \le 50$ pF, $R_L \ge 5$ kΩ		-	-	±23		
		DAC output buffe R _L ≥ 5 kΩ , 1 kH:	r ON,C _L ≤ 50 pF, z, BW = 500 KHz	-	67.8	-		
SNR	Signal-to-noise ratio ⁽⁶⁾	C _L ≤ 50 pF, no l	buffer OFF, R _L ,1 kHz, BW = KHz	-	67.8	-	dB	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	Total harmonic	DAC output buffer ON, $C_L \le 50$ pF, $R_L \ge 5 \text{ k}\Omega$, 1 kHz	-	-78.6	-	dB
ITID	distortion ⁽⁶⁾	DAC output buffer OFF, $C_L \le 50$ pF, no R_L , 1 kHz	-	-78.6	-	uБ
SINAD	Signal-to-noise and	DAC output buffer ON, $C_L \le 50$ pF, $R_L \ge 5 \text{ k}\Omega$, 1 kHz	-	67.5	-	dB
SINAD	distortion ratio ⁽⁶⁾	DAC output buffer OFF, $C_L \le 50 \text{ pF, no R}_L, 1 \text{ kHz}$	-	67.5	-	uБ
ENOB	Effective number of	DAC output buffer ON, $C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$, 1 kHz	-	10.9	-	bits
ENOB	bits	DAC output buffer OFF, $C_L \le 50$ pF, no R_L , 1 kHz	-	10.9	-	Dita

Table 96. DAC accuracy⁽¹⁾ (continued)

- 1. Evaluated by characterization not tested in production.
- 2. Difference between two consecutive codes minus 1 LSB.
- 3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and last Code 4095.
- 4. Difference between the value measured at Code (0x001) and the ideal value.
- Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF when the buffer is OFF, and from code giving 0.2 V and (V_{REF+} - 0.2 V) when the buffer is ON.
- 6. Signal is -0.5 dBFS with $F_{sampling}$ =1 MHz.

Buffered/Non-buffered DAC

| 12-bit | digital to | analog | converter | C | L | ai17157V3

Figure 59. 12-bit buffered /non-buffered DAC

The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.

5.3.24 Analog temperature sensor characteristics

Table 97. Analog temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit	
T _I ⁽¹⁾	V _{SENSE} linearity with temperature (from V _{SENSOR} voltage)	-	-	3	°C	
'L'. '	V _{SENSE} linearity with temperature (from ADC counter)	-	-	3	O	
Avg_Slope ⁽²⁾	Average slope (from V _{SENSOR} voltage)	-	2	-	mV/°C	
Avg_Slope -/	Average slope (from ADC counter)	-	2	-	IIIV/ C	
V ₃₀ ⁽³⁾	Voltage at 30°C ± 5 °C	-	0.62	-	V	
t _{start_run}	Startup time in Run mode (buffer startup)	-	-	25.2	0	
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	9	-	-	μs	
I _{sens} ⁽¹⁾	Sensor consumption	-	0.18	0.31		
I _{sensbuf} ⁽¹⁾	Sensor buffer consumption	-	3.8	6.5	μΑ	

- 1. Specified by design not tested in production.
- 2. Evaluated by characterization not tested in production.
- 3. Measured at V_{DDA} = 3.3 V \pm 10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 bytes.

Table 98. Temperature sensor calibration values

Symbol	Parameter	Memory address
TS_CAL1	Temperature sensor raw data acquired value at 30 °C, V _{DDA} =3.3 V	0x08FF F814 -0x08FF F815
TS_CAL2	Temperature sensor raw data acquired value at 130 °C, V _{DDA} =3.3 V	0x08FF F818 - 0x08FF F819

5.3.25 Digital temperature sensor characteristics

Table 99. Digital temperature sensor characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{DTS} ⁽²⁾	Output Clock frequency	-	500	750	1150	kHz
T _{LC} ⁽²⁾	Temperature linearity coefficient	VOS2	1660	2100	2750	Hz/° C
T _{TOTAL} ERROR	Temperature offset	T _J = -40°C to 30°C	-13	-	4	°C
(2)	measurement, all VOS	T _J = 30°C to Tjmax	-7	-	2	
	Additional error due to supply	VOS2	0	-	0	
T _{VDD_CORE}	variation	VOS0, VOS1, VOS3	-1	-	1	°C
t _{TRIM}	Calibration time	-	-	-	2	ms

Table 99. Digital temperature sensor characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{WAKE_UP}	Wake-up time from off state until DTS ready bit is set	-	-	67	116.00	μs
I _{DDCORE_DTS}	DTS consumption on VDD_CORE	-	8.5	30	70.0	μA

^{1.} Specified by design - not tested in production, unless otherwise specified.

5.3.26 V_{CORE} monitoring characteristics

Table 100. V_{CORE} monitoring characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
T _{S_VCORE}	ADC sampling time when reading the V _{CORE} voltage	1	1	ı	μs

^{1.} Specified by design - Not tested in production.

5.3.27 Temperature and V_{BAT} monitoring

Table 101. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	4 x 26	-	ΚΩ
Q	Ratio on V _{BAT} measurement	-	4	-	-
Er ⁽¹⁾	Error on Q	-10	-	+10	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading V _{BAT} input	9	-	-	μs
V _{BAThigh}	High supply monitoring	3.5	3.575	3.63	V
V _{BATIow}	Low supply monitoring		1.36		V
I _{VBATbuf}	Sensor buffer consumption	-	3.8	6.5	μA

^{1.} Specified by design - Not tested in production.

Table 102. V_{BAT} charging characteristics

		<u> </u>				
Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _{BC}	Battery charging resistor	VBRS in PWR_CR3= 0	1	5	-	ΚΩ
'`BC	Dattery charging resistor	VBRS in PWR_CR3= 1		1.5	-	1332

Table 103. Temperature monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
TEMP _{high}	High temperature monitoring	-	126	-	°C
TEMP _{low}	Low temperature monitoring	-	-37	-)

DS14258 Rev 1 223/275

^{2.} Evaluated by characterization - not tested in production.

5.3.28 Voltage booster for analog switch

Table 104. Voltage booster for analog switch characteristics⁽¹⁾

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{DD}	Supply voltage	-	1.71	2.6	3.6	V
t _{SU(BOOST)}	Booster startup time	-	-	-	50	μs
I _{DD(BOOST)}	Booster consumption	1.71 V ≤ V _{DD} ≤ 2.7 V	-	-	125	μA
	Booster Consumption	2.7 V < V _{DD} < 3.6 V	-	-	250	μΑ

^{1.} Evaluated by characterization - not tested in production.

5.3.29 V_{REFBUF} characteristics

Table 105. V_{REFBUF} characteristics⁽¹⁾

Symbol	Parameter	Condition		Min	Тур	Max	Unit
			VRS = 000	2.8	3.3	3.6	
		Normal mode VDDA = 3.3V	VRS = 001	2.4	-	3.6	
V	Analog supply	VDD/(= 0.0V	VRS = 010	2.1	-	3.6	V
V_{DDA}	voltage		VRS = 000	1.62	-	2.80	V
		Degraded mode ⁽²⁾	VRS = 001	1.62	-	2.40	
			VRS = 010	1.62	-	2.10	
			VRS = 000	2.498 ⁽³⁾	2.5000	2.5035 ⁽³⁾	
		Normal mode at 30°C, I _{LOAD} =100μΑ	VRS = 001	2.0460	2.0490	2.0520	
	Voltage reference	Cit of C, ILOAD TOOK .	VRS = 010	1.8010	1.8040	1.8060	0 V
	Buffer Output		VRS = 000	V _{DDA} - 150 mV	-	2.5035	V
		Degraded mode ⁽²⁾	VRS = 001	V _{DDA} - 150 mV	-	2.0520	
			VRS = 010	V _{DDA} - 150 mV	-	1.806	
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%
C _L	Load capacitor	-	-	0.5	1	1.50	uF
esr	Equivalent serial resistor of C _L	-	-	-	-	2	Ω
I _{load}	Static load current	-	-	-	-	4	mA
L	Line regulation	2.8 V ≤ V _{DDA} ≤ 3.6 V	I _{load} = 500 μA	-	200	-	ppm/ V
I _{line_reg}	Line regulation	2.0 v = v _{DDA} = 0.0 v	I _{load} = 4 mA	-	100	-	
I _{load_reg}	Load regulation	500 μA ≤ I _{load} ≤ 4 mA	Normal Mode	-	50	-	ppm/ mA

Symbol	Parameter	Condition	ıs	Min	Тур	Max	Unit
T _{coeff}	Temperature coefficient	-40 °C < T _J < +130 °C	-	-	-	T _{coeff} V _{REFINT} + 100	ppm/ °C
PSRR	Power supply	DC	-	-	60	-	dB
rejection	100 KHz	-	-	40	-		
		C _L =0.5 μF	-	-	300	-	μs
t _{START}	Start-up time	C _L =1 µF	-	-	500	-	
		C _L =1.5 μF	-	-	650	-	
Inrush	Control of maximum DC current drive on VREFBUF_OUT during startup phase ⁽⁴⁾⁽⁴⁾	-		-	8	-	mA
	\\D==D\\=	I _{LOAD} = 0 μA	-	-	15	25	μA
I _{DDA(VREF} BUF)	VREFBUF consumption from VDDA	I _{LOAD} = 500 μA	-	-	16	30	
		I _{LOAD} = 4 mA	-	-	32	50	

Table 105. V_{REFBUF} characteristics⁽¹⁾ (continued)

5.3.30 Timer characteristics

The parameters given in Table 106 are guaranteed by design.

Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 106. TIMx characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
t	Timer resolution time	AHB/APBx prescaler=1 or 2 or 4, f _{TIMxCLK} = 250 MHz	1	-	t _{TIMxCLK}
^L res(TIM)	Timer resolution time	AHB/APBx prescaler>4, f _{TIMxCLK} = 125 MHz	1	-	t _{TIMxCLK}

^{1.} Specified by design - Not tested in production, unless otherwise specified.

^{2.} In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (V_{DDA}-drop voltage).

^{3.} Evaluated by characterization - Not tested in production.

^{4.} To properly control V_{REFBUF} I_{INRUSH} current during the startup phase and the change of scaling, V_{DDA} voltage should be in the range of 2.1 V - 3.6 V, 2.4 V -3.6 V and 2.8 V - 3.6 V for VRS = 010, 001, and 000, respectively.

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 250 MHz	0	f _{TIMxCLK} /2	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
t _{MAX_COUNT}	Maximum possible count with 32-bit counter	-	-	65536 × 65536	t _{TIMxCLK}

Table 106. TIMx characteristics⁽¹⁾⁽²⁾ (continued)

- 1. TIMx is used as a general term to refer to the TIM1 to TIM17 timers.
- 2. Specified by design not tested in production.
- The maximum timer frequency on APB1 or APB2 is up to 250 MHz, by setting the TIMPRE bit in the RCC_CFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4 x F_{rcc_pclkx1} or TIMxCLK = 4 x F_{rcc_pclkx2}.

5.3.31 Low-power timer characteristics

Table 107. LPTIMx characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{res(TIM)}	Timer resolution time	1	-	t _{TIMxCLK}
f _{LPTIMxCLK}	Timer kernel clock	0	250	
f _{EXT}	Timer external clock frequency on Input1 and Input2	0	f _{LPTIMxCLK} /2	MHz
Res _{TIM}	Timer resolution	-	16	bit
t _{MAX_COUNT}	Maximum possible count	-	65536	t _{TIMxCLK}

- 1. LPTIMx is used as a general term to refer to the LPTIM1 to LPTIM6 timers.
- 2. Specified by design Not tested in production.

5.3.32 Communication interfaces

I²C interface characteristics

The I²C interface meets the timings requirements of the I²C-bus specification and user manual revision 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are specified by design, not tested in production, when the I²C peripheral is properly configured (refer to the product reference manual - RM0481)

The SDA and SCL I/O requirements are met with the following restrictions:

The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but still present. Only FT_f I/O pins support Fm+ low level output current maximum requirement. Refer to Section 5.3.14: I/O port characteristics for the I2C I/Os characteristics

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog fil-

ter characteristics:

Table 108. I²C analog filter characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by analog filter	50 ⁽³⁾	160 ⁽⁴⁾	ns

- 1. Evaluated by characterization Not tested in production.
- 2. Measurement points are done at 50% V_{DD}.
- 3. Spikes with widths below $t_{\text{AF}(\text{min})}$ are filtered.
- 4. Spikes with widths above $t_{AF(max)}$ are not filtered.

USART interface characteristics

Unless otherwise specified, the parameters given in *Table 109* for USART are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C_L = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- IO compensation cell activated
- VOS level set to VOS0
- HSLV activated when V_{DD}≤ 2.7 V

Refer to *Section 5.3.14: I/O port characteristics* for more details on the input/output alternate function characteristics (NSS, CK, TX, RX for USART).

Table 109. USART characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
				Master receiver 1.71 V < V _{DD} < 3.6 V					31	
		Master transmitter 1.71 V < V _{DD} < 3.6 V			31/6 ⁽²⁾					
£.	LICADT clock fraguancy	Master transmitter 2.7 V < V _{DD} < 3.6 V			31/6 ⁽²⁾	MHz				
f _{CK}	USART clock frequency	Slave receiver 1.71 V < V _{DD} < 3.6 V	-	-	83	IVITZ				
		Slave transmitter 1.71 V < V _{DD} < 3.6 V			32/6 ⁽²⁾	-				
		Slave transmitter 2.7 V < V _{DD} < 3.6 V			35/6 ⁽²⁾					

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{su(NSS)}	NSS setup time	Slave mode	$t_{ker} + 3.5^{(3)}$	-	-	
t _{h(NSS)}	NSS hold time	Slave mode	2.5	-	-	
t _{w(SCKH)} t _{w(SCKL)}	CK high and low time	Master mode	1/f _{ck} /2 -1	1/f _{ck} /2	1/f _{ck} /2 +1	
+	Data input setup time	Master mode	13	-	-	
t _{su(RX)}	Data input setup time	Slave mode	3.5	-	-	
4	Data input hold time	Master mode	0.5	-	-	
t _{h(RX)}	Data input hold time	Slave mode	1.5	-	-	
		Slave mode, 1.71 V < V _{DD} < 3.6 V	-	11.5	15.5/71 ⁽²⁾	ns
4	Data output valid time	Slave mode, 2.7 V < V _{DD} < 3.6 V	-	11.5	14/35 ⁽²⁾	
t _{v(TX)}	Data output valid time	Slave mode, 1.71 V < V _{DD} < 3.6 V	-		3/52 ⁽²⁾	
		Slave mode, 2.7 V < V _{DD} < 3.6 V	-	2.5	3/22 ⁽²⁾	
+	Data output hold time	Slave mode	7.5	-	-	
t _{h(TX)}	Data output hold time	Master mode	0	-	-	

Table 109. USART characteristics⁽¹⁾ (continued)

- 1. Evaluated by characterization Not tested in production.
- 2. For PB14 with OSPEEDRy[1:0] = 01.
- 3. T_{ker} is the usart_ker_ck_pres clock period.

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

Figure 61. USART timing diagram in Slave mode

I3C interface characteristics

The I3C interface meets the timings requirements of the MIPI® I3C specification v1.1.

The I3C peripheral supports:

- I3C SDR-only as controller
- I3C SDR-only as target
- I3C SCL bus clock frequency up to 12.5 MHz

The parameters given in *Table 110: I3C open-drain measured timing* are obtained with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- I/O Compensation cell activated.
- HSLV activated when V_{DD} ≤ 2.7 V
- VOS level set to VOS 0.

The I3C timings are in line with MIPI specification except for the ones given in *Table 110: I3C open-drain measured timing* and *Table 111: I3C push-pull measured timing*. For t_{SU_OD} and t_{SU_PP} this can be mitigated by increasing the corresponding SCL low duration in the I3C_TIMINGR0 register. For t_{SCO} this can be mitigated by enabling and adjusting the clock stall time both on the address ACK phase and on the data read Tbit phase in the I3C_TIMINGR2 register. This can also be mitigated by increasing the SCL low duration in the I3C_TIMINGR0 register. For further details refer to the AN5879.

Table 110. I3C open-drain measured timing

Symbol	Parameter	Conditions	I3C open drain mode (specification)		Timing measurements	Unit
			Min	Max	measurements	
t _{su_od}	SDA data setup time during open drain mode	Controller 1.71 V < V _{DD} < 3.6 V	3	-	16.5	ns

Table 111. I3C push-pull measured timing

Symbol	Parameter	Conditions	I3C open drain mode (specification)		Timing measurements	Unit
			Min	Max		
t _{SU_PP}	SDA signal data setup in push-pull mode	Controller 1.71 V < V _{DD} < 3.6 V	3	-	12	ns

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 112* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_L = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- IO Compensation cell activated.
- HSLV activated when VDD ≤ 2.7 V
- VOS level set to VOS0

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 112. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master receiver mode 2.7 V < V _{DD} < 3.6 V	-	-	135/3 ⁽²⁾	
		Master receiver mode 1.71 V < V _{DD} < 2.7 V	-	-	120/3 ⁽²⁾	
f _{SCK}	SPI clock frequency	Master receiver mode 1.71 V < V _{DD} < 3.6 V	-	-	120/3 ⁽²⁾	MHz
1/t _{SCK}		Slave receiver mode 1.71V < V _{DD} < 2.7 V	-	-	120	IVIIIZ
		Slave transmitter mode 2.7 V < V _{DD} < 3.6V	-	-	43/6 ⁽³⁾	
		Slave transmitter mode 1.71V < V _{DD} < 2.7 V	-	-	41/6 ⁽³⁾	

Table 112. SPI characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{su(NSS)}	NSS setup time	Slave mode	3.5	-	-	
t _{h(NSS)}	NSS hold time	Slave mode	4.5	-	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	(t _{SCK} /2) - 1	(t _{SCK} /2)	(t _{SCK} /2) + 1	
t _{su(MI)}	Data investorations	Master mode	3.5	-	-	ns
t _{su(SI)}	Data input setup time	Slave mode	2	-	-	
t _{h(MI)}	Data input hold time	Master mode	1	-	-	
t _{h(SI)}	- Data input hold time	Slave mode	1.5	-	-	
t _{a(SO)}	Data output access time	Slave mode	6.5	-	15	
t _{dis(SO)}	Data output disable time	Slave mode	7.5	-	18	
t		Slave mode, 2.7 V < V _{DD} < 3.6 V	-	8.5/25 ⁽³⁾	11.5/33 ⁽³⁾	
t _{v(SO)}	Data output valid time	Slave mode, 1.71 V < V _{DD} < 3.6 V	-	10/59 ⁽³⁾	12/76 ⁽³⁾	
t _{v(MO)}		Master mode	-	1.5	2	
t _{h(SO)}	Data output hold time	Slave mode, 1.71 V < V _{DD} < 3.6 V	6.5/20.5 ⁽³⁾	-	-	
t _{h(MO)}	· ·	Master mode	0	-	-	

^{1.} Evaluated by characterization - Not tested in production.

^{2.} When using PB13.

^{3.} When using PB14.

Figure 62. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ and with external $C_L = 30 \text{ pF}$.

Figure 63. SPI timing diagram - slave mode and CPHA = 0

Figure 64. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

I²S Interface characteristics

Unless otherwise specified, the parameters given in *Table 113* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_L = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- IO Compensation cell activated.
- HSLV activated when VDD ≤ 2.7 V
- VOS level set to VOS0

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,WS).

Table 113. I²S dynamic characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I ² S main clock output	-	-	50	
		Master transmitter	-	50	MHz
f _{CK}	I ² S clock output	Slave transmitter (TX)	-	21	IVII IZ
		Slave receiver (RX)	-	50	

Table 113. I²S dynamic characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Max	Unit
t _{v(WS)}	WS valid time	Master mode	-	2	
t _{h(WS)}	WS hold time	Waster Houe	0.5	-	
t _{su(WS)}	WS setup time	- Slave mode	3	-	
t _{h(WS)}	WS hold time	Slave Illoue	1.5	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	4	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	2	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	1	-	
t _{h(SD_SR)}	Data iriput riolu tirrie	Slave receiver	1.5	-	ns
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	14	
t _{v(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	-	1	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	5.5	-	
t _{h(SD_MT)}	Data output Hold time	Master transmitter (after enable edge)	0	-	

^{1.} Evaluated by characterization - Not tested in production.

Figure 65. I²S slave timing diagram (Philips protocol)⁽¹⁾

^{1.} LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 66. I²S master timing diagram (Philips protocol)⁽¹⁾

 LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

SAI characteristics

Unless otherwise specified, the parameters given in *Table 114* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and VDD supply voltage conditions summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C_I = 30 pF
- IO Compensation cell activated.
- Measurement points are done at CMOS levels: 0.5V_{DD}
- VOS level set to VOS0

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

4

235/275

Table 114. SAI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	SAI Main clock output	-	-	50	
		Master transmitter, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	38	
		Master transmitter, 1.71 V ≤ V _{DD} ≤ 3.6 V	-	38	
£	CAL ala ak francusanav	Master receiver, 1.71 V ≤ V _{DD} ≤ 3.6 V	-	38	MHz
f _{CK}	SAI clock frequency	Slave transmitter, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	34	
		Slave transmitter, 1.71 V ≤ V _{DD} ≤ 3.6 V	-	33	
		Slave receiver, 1.71 V ≤ V _{DD} ≤ 3.6 V	-	50	
		Master mode, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	13	
t _{v(FS)}	F _S valid time	Master mode, 1.71 V ≤ V _{DD} ≤ 3.6 V	-	13	
t _{su(FS)}	F _S setup time	Slave mode	3	-	
4	C hold time	Master mode	5	-	
t _{h(FS)}	F _S hold time	Slave mode	2	-	
t _{su(SD_A_MR)}	Data input actus time	Master receiver	4	-	
t _{su(SD_B_SR)}	Data input setup time	Slave receiver	3.5	-	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	1.5	-	
t _{h(SD_B_SR)}	Data input hold time	Slave receiver	0.5	-	ns
4	Data output valid time	Slave transmitter (after enable edge), $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-	14.5	
t _{v(SD_B_ST)}	Data output valid time	Slave transmitter (after enable edge), $1.71 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	-	15	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	7	-	
+ .	Data output valid time	Master transmitter (after enable edge), $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	13	
t _{v(SD_A_MT)}	Data output valid time	Master transmitter (after enable edge), 1.71 V ≤ V _{DD} ≤ 3.6 V	-	13	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	5.5	-	

^{1.} Evaluated by characterization - Not tested in production.

Figure 67. SAI master timing waveforms

SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in *Table 115* and *Table 116* for SDIO are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and VDD supply voltage summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_I =30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- IO compensation cell activated
- HSLV activated when V_{DD} ≤ 2.7 V

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output characteristics.

4

Table 115. Dynamics characteristics: SD / MMC characteristics, V_{DD} = 2.7 to 3.6 $V^{(1)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	130 ⁽²⁾	MHz
t _{W(CKL)}	Clock low time	f -52MU-7	8.5	9.5	-	ns
t _{W(CKH)}	Clock high time	f _{PP} =52MHz	8.5	9.5	-	115
CMD, D inp	outs (referenced to CK) in eMMC lega	cy/SDR/DDR and	SD HS/	SDR ⁽³⁾ /[DDR ⁽³⁾ m	node
t _{ISU}	Input setup time HS	-	3	-	-	
t _{IH}	Input hold time HS	-	1	-	-	ns
t _{IDW} ⁽⁴⁾	Input valid window (variable window)	-	4.5	-	-	
CMD, D out	tputs (referenced to CK) in eMMC leg	gacy/SDR/DDR an	d SD HS	S/SDR ⁽³⁾	/DDR ⁽³⁾	mode
t _{OV}	Output valid time HS	-	-	5	5.5	20
t _{OH}	Output hold time HS	-	3	-	-	ns
CMD, D inp	outs (referenced to CK) in SD default	mode				
t _{ISUD}	Input setup time SD	-	2.5		-	
t _{IHD}	Input hold time SD	-	1.5		-	ns
CMD, D out	tputs (referenced to CK) in SD defau	It mode			1	
t _{OVD}	Output valid default time SD	-	-	0.5	1	no
t _{OHD}	Output hold default time SD	-	0	-	-	ns

- 1. Evaluated by characterization Not tested in production.
- 2. C_L applied is 20 pF.
- 3. For SD 1.8V support, an external voltage converter is needed.
- 4. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

Table 116. Dynamics characteristics: eMMC characteristics VDD = 1.71V to $1.9V^{(1)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{PP}	Clock frequency in data transfer mode	-	0	-	110 ⁽²⁾	MHz
t _{W(CKL)}	Clock low time	f _{PP} =52 MHz	8.5	9.5	-	ns
t _{W(CKH)}	Clock high time	IPP -32 MITZ	8.5	9.5	-	115
CMD, D inp	outs (referenced to CK) in eMMC mod	е				
t _{ISU}	Input setup time HS	-	1.5	-	-	
t _{IH}	Input hold time HS	-	1.5	-	-	ns
t _{IDW} (3)	Input valid window (variable window)	-	4	-	-	
CMD, D outputs (referenced to CK) in eMMC mode						

Table 116. Dynamics characteristics: eMMC characteristics VDD = 1.71V to $1.9V^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{OV}	Output valid time HS	-	-	5.5	6	ne
t _{OH}	Output hold time HS	-	3	-	-	ns

- 1. Evaluated by characterization Not tested in production.
- 2. C_L = 20 pF.
- 3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

Figure 69. SDIO high-speed/eMMC timing

Figure 70. SD default speed timings

Figure 71. DDR mode timings

Ethernet interface characteristics

Unless otherwise specified, the parameters given in *Table 117*, *Table 118* and *Table 119* for SMI, RMII and MII are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage conditions summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C_I =20 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}
- IO compensation cell activated
- HSLV activated when VDD ≤ 2.5 V

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output characteristics:

Table 117. Dynamics characteristics: Ethernet MAC signals for SMI (1)

Symbol	Parameter	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time(2.5 MHz)	400	400	403	
T _{d(MDIO)}	Write data valid time	0	0.5	1	ne
t _{su(MDIO)}	Read data setup time	12.5	-	-	ns
t _{h(MDIO)}	Read data hold time	0	-	-	

^{1.} Evaluated by characterization - Not tested in production.

Table 118. Dynamics characteristics: Ethernet MAC signals for RMII (1)

Symbol	Parameter	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	3	-	-	
t _{ih(RXD)}	Receive data hold time	1	-	-	
t _{su(CRS)}	Carrier sense setup time	2	-	-	ne
t _{ih(CRS)}	Carrier sense hold time	1	-	-	ns
t _{d(TXEN)}	Transmit enable valid delay time	7.5	9.5	15	
t _{d(TXD)}	Transmit data valid delay time	7.5	10	15.5	

^{1.} Evaluated by characterization - Not tested in production.

Table 119. Dynamics characteristics: Ethernet MAC signals for MII ⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
t _{su(RXD)}	Receive data setup time	3	-	-	
t _{ih(RXD)}	Receive data hold time	1.5	-	-	
t _{su(DV)}	Data valid setup time	2	-	-	
t _{ih(DV)}	Data valid hold time	1	-	-	ne
t _{su(ER)}	Error setup time	3	-	-	ns
t _{ih(ER)}	Error hold time	1	-	-	
t _{d(TXEN)}	Transmit enable valid delay time	7.5	10	16	
t _{d(TXD)}	Transmit data valid delay time	8	10.5	16.5	

^{1.} Evaluated by characterization - Not tested in production.

Figure 72. Ethernet RMII timing diagram

4

DS14258 Rev 1 241/275

Figure 73. Ethernet MII timing diagram

Figure 74. Ethernet SMI timing diagram

JTAG/SWD interface characteristics

Unless otherwise specified, the parameters given in *Table 120* and *Table 121* for JTAG/SWD are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage summarized in *Table 20: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_I =30 pF
- HSLV activated when VDD ≤ 2.7 V
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output characteristics:

Table 120. Dynamics JTAG characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{pp}	T _{CK} clock frequency	2.7V <v<sub>DD< 3.6 V</v<sub>	-	-	50	
1/t _{c(TCK)}	1 CK Clock frequency	1.71 V < V _{DD} < 3.6 V	-	-	45	MHz
ti _{su(TMS)}	TMS input setup time	-	2	-	-	IVITIZ
ti _{h(TMS)}	TMS input hold time	-	1.5	-	-	
ti _{su(TDI)}	TDI input setup time	-	1.5	-	-	-
ti _{h(TDI)}	TDI input hold time	-	1.5	-	-	-
+	TDO output valid time	2.7V <v<sub>DD< 3.6 V</v<sub>	-	8	10	-
t _{ov(TDO)}	100 output valid time	1.71 <v<sub>DD< 3.6 V</v<sub>	-	8	11	-
t _{oh(TDO)}	TDO output hold time	-	6.5	-	-	-

Table 121. Dynamics SWD characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{pp}	SWCLK clock frequency	2.7V <v<sub>DD< 3.6 V</v<sub>	-	-	80	MHz
1/t _{c(SWCLK)}		1.71 <v<sub>DD< 3.6 V</v<sub>	-	-	71	IVII IZ
ti _{su(SWDIO)}	SWDIO input setup time	-	1.5	-	-	-
ti _{h(SWDIO)}	SWDIO input hold time	-	1.5	-	-	-
+	SWDIO output valid time	2.7V <v<sub>DD< 3.6 V</v<sub>	-	10.5	12.5	-
^t ov(SWDIO)	SVVDIO output Valid time	1.71 <v<sub>DD< 3.6 V</v<sub>	-	10.5	14	-
t _{oh(SWDIO)}	SWDIO output hold time	-	8.5	-	-	-

Figure 75. JTAG timing diagram

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 LQFP64 package information

This LQFP is 64-pin, 10 x 10 mm low-profile quad flat package.

Note: See list of notes in the notes section.

Figure 77. LQFP64 - Outline⁽¹⁵⁾

Table 122. LQFP64 - Mechanical data

Symbol	millimeters			inches ⁽¹⁴⁾			
	Min	Тур	Max	Min	Тур	Max	
Α	-	-	1.60	-	-	0.0630	
A1 ⁽¹²⁾	0.05	-	0.15	0.0020	-	0.0059	
A2	1.35	1.40	1.45	0.0531	0.0551	0.0570	
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106	
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0091	
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079	
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063	
D ⁽⁴⁾	12.00 BSC			0.4724 BSC			
D1 ⁽²⁾⁽⁵⁾	10.00 BSC			0.3937 BSC			
E ⁽⁴⁾	12.00 BSC			0.4724 BSC			
E1 ⁽²⁾⁽⁵⁾	10.00 BSC			0.3937 BSC			
е	0.50 BSC			0.1970 BSC			
L	0.45	0.60	0.75	0.0177	0.0236	0.0295	
L1	1.00 REF			0.0394 REF			
N ⁽¹³⁾	64						
θ	0°	3.5°	7°	0°	3.5°	7°	
θ1	0°	-	-	0°	-	-	
θ2	10°	12°	14°	10°	12°	14°	
θ3	10°	12°	14°	10°	12°	14°	
R1	0.08	-	-	0.0031	-	-	
R2	0.08	-	0.20	0.0031	-	0.0079	
S	0.20	-	-	0.0079	-	-	
aaa ⁽¹⁾	0.20			0.0079			
bbb ⁽¹⁾	0.20			0.0079			
ccc ⁽¹⁾	0.08			0.0031			
ddd ⁽¹⁾	0.08			0.0031			

Notes:

- Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

1. Dimensions are expressed in millimeters.

6.2 VFQFPN68 package information

This VFQFPN is a 68 pins, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat package

^{2.} The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body. Exact shape and size of this feature is optional.

rabio 1201 VI QLI 1100 Information data							
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Max	
Α	0.80	0.90	1.00	0.0315	0.0354	0.0394	
A1	0	0.02	0.05	0	0.0008	0.0020	
A3	-	0.20	-	-	0.0008	-	
b	0.15	0.20	0.25	0.0059	0.0079	0.0098	
D	7.85	8.00	8.15	0.3091	0.3150	0.3209	
D2	6.30	6.40	6.50	0.2480	0.2520	0.2559	
E	7.85	8.00	8.15	0.3091	0.3150	0.3209	
E2	6.30	6.40	6.50	0.2480	0.2520	0.2559	
е	-	0.40	-	-	0.0157	-	
L	0.40	0.50	0.60	0.0157	0.0197	0.0236	
ddd	-	-	0.08	-	-	0.0031	

Table 123. VFQFPN68 - Mechanical data

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 80. VFQFPN68 - Recommended footprint

1. Dimensions are expressed in millimeters.

6.3 WLCSP80 package information

This WLCSP is a 80 ball, 3.50 x 3.27 mm, 0.35 mm pitch, wafer level chip scale package.

Figure 81. WLCSP80 - Outline

- 1. Drawing is not to scale.
- 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
- 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
- 4. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.

DS14258 Rev 1 251/275

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
A ⁽²⁾	-	-	0.58	-	-	0.228
A1	-	0.17	-	-	0.0067	-
A2	-	0.38	-	-	0.0150	-
A3 ⁽³⁾	-	0.025	-	-	0.0098	-
b	0.22	0.24	0.27	0.0087	0.0094	0.0106
D	3.47	3.50	3.52	0.1366	0.1378	0.1386
E	3.25	3.27	3.30	0.1279	0.1287	0.1299
е	-	0.35	-	-	0.138	-
e1	-	2.73	-	-	0.1075	-
e2	-	2.45	-	-	0.0964	-
F ⁽⁴⁾	-	0.384	-	-	0.0151	-
G ⁽⁴⁾	-	0.484	-	-	0.0190	-
Н	-	0.1025	-	-	0.0040	-
aaa	-	-	0.10	-	-	0.0039
bbb	-	-	0.10	-	-	0.0039
ccc ⁽⁵⁾	-	-	0.10	-	-	0.0039
ddd ⁽⁶⁾	-	-	0.05	-	-	0.0020
eee	-		0.05	-	-	0.0020

Table 124. WLCSP80 - Mechanical data

- 1. Values in inches are converted from mm and rounded to 4 decimal digits.
- 2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal and tolerances values of A1 and A2.
- Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process capability.
- 4. Calculated dimensions are rounded to the 3rd decimal place
- 5. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.
- 6. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone ddd perpendicular to datum Z and located on true position as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone. Each tolerance zone ddd in the array is contained entirely in the respective zone ccc above. The axis of each ball must lie simultaneously in both tolerance zones.

Dpad Dsm BGA_WLCSP_FT_V1

Figure 82. WLCSP80 - Footprint example

Table 125. WLCSP80 - Example of PCB design rules

Dimension	Values
Pitch	0.35 mm
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on soldermask registration tolerance)
Stencil opening	0.235 mm
Stencil thickness	0.080 mm

6.4 LQFP100 package information

This LQFP is 100 lead, 14 x 14 mm low-profile quad flat package.

Note: See list of notes in the notes section.

GAUGE PLANE D1/4-∳θ E1/4 θ3, 4x N/4 TIPS (L1) △aaa C A-B D bbb HA-BD (1) (11) SECTION A-A BOTTOM VIEW (9) (11) A2 A1₍₁₂₎ b -___ccc C WITH PLATING SIDE VIEW (4) (11) c c1 (11) (2) (5) -D1 D (3) (10) (4) BASE METAL (11) E1/4 SECTION B-B D1/4 (2) A (5) E1 SECTION A-A TOP VIEW 1L_LQFP100_ME_V3

Figure 83. LQFP100 - Outline⁽¹⁵⁾

Table 126. LQFP100 - Mechanical data

	Table 1201 2411 100 Moonamout data					
Symbol	millimeters					
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	1.50	1.60	-	0.0590	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0019	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0570

Table 126. LQFP100 - Mechanical data (continued)

rable 120. EQL F 100 - Mechanical data (Continued)						
Symbol		millimeters		inches ⁽¹⁴⁾		
0 ,	Min	Тур	Max	Min	Тур	Max
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0090
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾		16.00 BSC			0.6299 BSC	
D1 ⁽²⁾⁽⁵⁾		14.00 BSC			0.5512 BSC	
E ⁽⁴⁾		16.00 BSC			0.6299 BSC	
E1 ⁽²⁾⁽⁵⁾		14.00 BSC			0.5512 BSC	
е		0.50 BSC		0.0197 BSC		
L	0.45	0.60	0.75	0.177	0.0236	0.0295
L1 ⁽¹⁾⁽¹¹⁾		1.00		-	0.0394	-
N ⁽¹³⁾			1	00		
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa ⁽¹⁾	0.20				0.0079	
bbb ⁽¹⁾	0.20			0.0079		
ccc ⁽¹⁾		0.08			0.0031	
ddd ⁽¹⁾		0.08			0.0031	

Notes:

- Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- To be determined at seating datum plane C.
- Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

16.7 1L LQFP100 FP V1

Figure 84. LQFP100 - Footprint example

1. Dimensions are expressed in millimeters.

6.5 LQFP144 package information

This LQFP is a 144-pin, 20 x 20 mm low-profile quad flat package.

Note: See list of notes in the notes section.

Figure 85. LQFP144 - Outline⁽¹⁵⁾

Table 127. LQFP144 - Mechanical data

0		millimeters	·		inches ⁽¹⁴⁾		
Symbol	Min Typ M		Max	Min	Тур	Max	
Α	-	-	1.60	-	-	0.0630	
A1 ⁽¹²⁾	0.05	-	0.15	0.0020	-	0.0059	
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571	
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106	
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0090	
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079	
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063	
D ⁽⁴⁾		22.00 BSC			0.8661 BSC		
D1 ⁽²⁾⁽⁵⁾		20.00 BSC			0.7874 BSC		
E ⁽⁴⁾		22.00 BSC		0.8661 BSC			
E1 ⁽²⁾⁽⁵⁾		20.00 BSC		0.7874 BSC			
е		0.50 BSC		0.0197 BSC			
L	0.45	0.60	0.75	0.0177	0.0236	0.0295	
L1		1.00 REF		0.0394 REF			
N ⁽¹³⁾			1	44			
θ	0°	3.5°	7°	0°	3.5°	7°	
θ1	0°	-	-	0°	-	-	
θ2	10°	12°	14°	10°	12°	14°	
θ3	10°	12°	14°	10°	12°	14°	
R1	0.08	-	-	0.0031	-	-	
R2	0.08	-	0.20	0.0031	-	0.0079	
S	0.20	-	-	0.0079	-	-	
aaa	0.20			0.0079			
bbb	0.20			0.0079			
ccc		0.08		0.0031			
ddd		0.08			0.0031		

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 86. LQFP144 - Footprint example

1. Dimensions are expressed in millimeters.

6.6 UFBGA169 package information

This UFBGA is a 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.

Figure 87. UFBGA169 - Outline

1. Drawing is not to scale.

Table 128. UFBGA169 - Mechanical data

Cumbal	millimeters			millimeters inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	-	0.130	-	-	0.0051	-
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.230	0.280	0.330	0.0091	0.0110	0.0130
D	6.950	7.000	7.050	0.2736	0.2756	0.2776
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382
E	6.950	7.000	7.050	0.2736	0.2756	0.2776
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382
е	-	0.500	-	-	0.0197	-
F	0.450	0.500	0.550	0.0177	0.0197	0.0217

Table 1	Table 128. UFBGA169 - Mechanical data (continued)						
	millimeters			inches ⁽¹⁾			
	_			_			

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 88. UFBGA169 - Footprint example

Table 129. UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA)

Dimension	Values
Pitch	0.5 mm
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note: Non-solder mask defined (NSMD) pads are recommended.

Note: 4 to 6 mils solder paste screen printing process.

DS14258 Rev 1 262/275

6.7 LQFP176 package information

This LQFP is a 176-pin, 24 x 24 mm, 0.5 mm pitch, low profile quad flat package.

Note: See list of notes in the notes section.

Figure 89. LQFP176 - Outline⁽¹⁵⁾

Table 130. LQFP176 - Mechanical data

millimeters			inches ⁽¹⁴⁾		
Min	Min Typ Max		Min	Тур	Max
-	-	1.600	-	-	0.0630
0.050	-	0.150	0.0020	-	0.0059
1.350	1.400	1.450	0.0531	0.0551	0.0571
0.170	0.220	0.270	0.0067	0.0087	0.0106
0.170	0.200	0.230	0.0067	0.0079	0.0091
0.090	-	0.200	0.0035	-	0.0079
0.090	-	0.160	0.0035	-	0.063
	26.000	•		1.0236	
	24.000			0.9449	
	26.000		0.0197		
	24.000		0.9449		
	0.500		0.1970		
0.450	0.600	0.750	0.0177	0.0236	0.0295
	1		0.0394 REF		
		1	76		
0°	3.5°	7°	0°	3.5°	7°
0°	-	-	0°	-	-
10°	12°	14°	10°	12°	14°
10°	12°	14°	10°	12°	14°
0.080	-	-	0.0031	-	-
0.080	-	0.200	0.0031	-	0.0079
0.200	-	-	0.0079	-	-
0.200				0.0079	I .
0.200			0.0079		
	0.080		0.0031		
0.080			İ	0.0031	
	0.050 1.350 0.170 0.170 0.090 0.090 0.090 0.450 0° 0° 10° 10° 0.080 0.080	Min Typ - - 0.050 - 1.350 1.400 0.170 0.220 0.170 0.200 0.090 - 0.090 - 26.000 24.000 26.000 24.000 0.500 0.500 0.450 0.600 1 1 0° 3.5° 0° - 10° 12° 10° 12° 0.080 - 0.200 - 0.200 0.200	Min Typ Max - - 1.600 0.050 - 0.150 1.350 1.400 1.450 0.170 0.220 0.270 0.170 0.200 0.230 0.090 - 0.200 0.090 - 0.160 26.000 24.000 26.000 24.000 0.500 0.500 0.450 0.600 0.750 1 1 0° 3.5° 7° 0° - - 10° 12° 14° 10° 12° 14° 0.080 - - 0.200 - - 0.200 - -	Min Typ Max Min - - 1.600 - 0.050 - 0.150 0.0020 1.350 1.400 1.450 0.0531 0.170 0.220 0.270 0.0067 0.170 0.200 0.230 0.0067 0.090 - 0.200 0.0035 26.000 24.000 0.0035 26.000 24.000 0.500 0.450 0.600 0.750 0.0177 1 176 0° 3.5° 7° 0° 0° 7 0° 0° 10° 12° 14° 10° 10° 12° 14° 10° 0.080 - 0.200 0.0031 0.200 - 0.0079	Min Typ Max Min Typ - - 1.600 - - 0.050 - 0.150 0.0020 - 1.350 1.400 1.450 0.0531 0.0551 0.170 0.220 0.270 0.0067 0.0087 0.170 0.200 0.230 0.0067 0.0079 0.090 - 0.200 0.0035 - 0.090 - 0.160 0.0035 - 26.000 - 0.160 0.0035 - 24.000 0.9449 0.9449 0.9449 0.500 0.1970 0.0450 0.1970 0.450 0.600 0.750 0.0177 0.0236 1 0.0394 REF 176 0° 3.5° 7° 0° 3.5° 0° - - 0° - 10° 12° 14° 10° 12° 10° 12° 14°

265/275

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 90. LQFP176 - Footprint example

1. Dimensions are expressed in millimeters.

4

6.8 UFBGA(176+25) package information

This UFBGA is a 176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package

Figure 91. UFBGA(176+25) - Outline

1. Drawing is not to scale.

Table 131. UFBGA(176+25) - Mechanical data

Comple al	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	-	-	0.600	-	-	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	-
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	9.850	10.000	10.150	0.3878	0.3937	0.3996
D1	-	9.100	-	-	0.3583	-
E	9.850	10.000	10.150	0.3878	0.3937	0.3996
E1	-	9.100	-	-	0.3583	-
е	-	0.650	-	-	0.0256	-
F	-	0.450	-	-	0.0177	-
ddd		-	0.080	-		0.0031

Table 131. UFBGA(176+25) - Mechanical data (continued)

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 92. UFBGA(176+25) - Footprint example

Table 132. UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA)

Dimension	Values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Package thermal characteristics 6.9

The maximum chip-junction temperature, T_{Jmax}, in degrees Celsius, may be calculated using the following equation:

 $T_J max = T_A max + (P_D max \times \Theta_{JA})$

Where:

- T_Amax is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD} , expressed in Watts. This is the maximum chip

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}}\mathsf{max} = \Sigma \; (\mathsf{V}_\mathsf{OL} \times \mathsf{I}_\mathsf{OL}) + \Sigma ((\mathsf{V}_\mathsf{DD} - \mathsf{V}_\mathsf{OH}) \times \mathsf{I}_\mathsf{OH}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

	Table 133. Package thermal characteristics		
bol	Definition	Parameter	

Symbol	Definition	Parameter	Value	Unit
	Thermal resistance junction-ambient	LQFP64 (10 x 10 mm)	48.1	°C/W
		VFQFPN68 (8 x 8 mm)	24.2	
		WLCSP80 (3.50 X 3.27 mm)	47.3	
		LQFP100 (14 x 14 mm)	35.9	
Θ_{JA}		LQFP144 (20 x 20 mm)	37.5	
		LQFP176 (24 x 24 mm)	38.3	
		UFBGA169 (7 x 7 mm)	40.6	
		UFBGA176 (10 x 10 mm)	39.1	
	Thermal resistance junction-board	LQFP64 (10 x 10 mm)	24.1	°C/W
		VFQFPN68 (8 x 8 mm)	9.4	
		WLCSP80 (3.50 X 3.27 mm)	23.0	
6		LQFP100 (14 x 14 mm)	21.9	
Θ _{JB}		LQFP144 (20 x 20 mm)	26.3	
		LQFP176 (24 x 24 mm)	28.3	
		UFBGA169 (7 x 7 mm)	26.4	
		UFBGA176 (10 x 10 mm)	27.0	

Table 133. Package thermal characteristics (continued)

Symbol	Definition	Parameter	Value	Unit
	Thermal resistance junction-case	LQFP64 (10 x 10 mm)	10.3	
		VFQFPN68 (8 x 8 mm)	10.8	
		WLCSP80 (3.50 X 3.27 mm)	2.3	
		LQFP100 (14 x 14 mm)	8.5	°C/W
Θ _{JC}		LQFP144 (20 x 20 mm)	8.6	C/VV
		LQFP176 (24 x 24 mm)	9.1	
		UFBGA169 (7 x 7 mm)	11.2	1
		UFBGA176 (10 x 10 mm)	10.9	

6.9.1 Reference documents

- JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions Natural Convection (Still Air). Available from www.jedec.org.
- For information on thermal management, refer to application note "Thermal management guidelines for STM32 32-bit Arm Cortex MCUs applications" (AN5036) available from www.st.com.

7 Ordering information

5

DS14258 Rev 1 271/275

For a list of available options (such as speed or package) or for further information on any aspect of this device, contact the nearest ST sales office.

8 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that:

- ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified.
- Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product.
- Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies.
- While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application.
- All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise.

DS14258 Rev 1 273/275

9 Revision history

Table 134. Document revision history

Date	Revision	Changes
06-Mar-2023	1	Initial release

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

DS14258 Rev 1 275/275