

EL OBSERVATION RECORD

Experiential Learning

For the IV Semester B.E PROGRAMS (ACY 2024-25) CS-A

Topic		DEP	DEPT PROJECT : TELLER LOOP		
Mentor		Dr.	Dr. Minal Moharir		
Subject Faculty			Dr. K Badarinath, Dr. Deepmala N, Dr. Krishnappa HK, Dr. Sowmya		
Team Leader Name		ne An	Anirudh Kulkarni		
Details of the Group Members					
SI. No.	Program	USN	Name	Email Id	
1.	CSE	1RV23CS038	Anirudh R kulkarni	anirudhkulkarni.cs23@rvce.edu.in	
2.	CSE	1RV23CS039	Anish	anish.cs23@rvce.edu.in	

Abstract

Section	Details		
Problem Statement	To manually transport via staff or trolleys not only consumes time and resources but also increases the likelihood of human error, contamination risks, and delivery delays, especially during emergencies.		
Proposed Solution	A Teller Loop System, also known as a pneumatic tube transport system (PTS), is a network of vaccum tubes used to send capsules containing medications, documents, or samples quickly and securely between various hospital departments.		
Key Technologies Used	 Carrier Capsules: Sealed containers for medicines or samples. Pneumatic Tubes: Network of vacuum/suction-enabled tubes. Stations/Terminals: Entry and exit points across different hospital departments. Central Control System: Controls routing, speed, and security. Sensors & IoT Modules: Real-time tracking and alerts. Backend: Python (FastAPI, Flask) Frontend: React.js Database: Django Cloud/Edge Platforms: AWS IoT Core, Azure Sphere 		

Workflow Summary

1. System performance audit:

Analyze capsule dispatch logs and routing delays and identify bottlenecks in high-traffic or priority paths.

- 2. Intelligent dispatch & routing
 - Implement dynamic path selection based on current load.
 - Use smart routing algorithms (e.g., a*, dijkstra) to minimize travel
 - Incorporate priority flags for emergency capsules.
- 3. Real-time load balancing
 - Monitor capsule queues across stations.
 - Distribute dispatch timing to prevent congestion.
 - Auto-adjust routing based on network pressure.
- 4. Integration with hospital systems
 - Automate capsule dispatches triggered by pharmacy/lab orders.
 - Sync metadata like department, urgency level, and contents type.

Evaluation Approach

- 1. Performance of the waste detection model (YOLOv5) based on accuracy and speed.
- 2. Route optimization success rate using the Nearest Path Algorithm.
- 3. Effectiveness of IoT sensors in monitoring water quality.
- 4. Real-time responsiveness of the dashboard using WebSockets.
- 5. Overall efficiency measured by reduction in waste and cleanup time.

Objectives

- 1. Reduce manual labor involved in the delivery of medicines and medical items.
- 2. Provide minimalistic and user friendly interface for quick and easy transport
- 3. Minimize the turnaround time for medicine and sample transport between departments.
- 4. Ensure secure and contamination-free transfer
- 5. Optimize resource utilization and increase hospital efficiency.
- 6. To provide a smoother user experience and help society in a novel way.