

Tabela de Derivadas do Prof. Douglas Maioli

Seja $a \in \mathbb{R}$ uma constante.

Função:	Derivada
y = a	y'=0
y = x	y'=1
y = ax	y'=a
$y = x^a$	$y' = ax^{a-1}$
$y = a^x$	$y' = \ln(a) \cdot a^x$
$y = e^x$	$y'=e^x$
$y = \log_a(x)$	n' – 1
	$y - \frac{1}{x \cdot \ln(a)}$
$y = \ln(x)$	' _ 1
	$y = \frac{1}{x}$
y = sen(x)	$y' = \cos(x)$
$y = \cos(x)$	y' = -sen(x)
y = tg(x)	$y' = \sec^2(x)$
$y = \sec(x)$	$y' = tg(x).\sec(x)$
y = cossec(x)	y' = -cotg(x).cossec(x)
y = cotg(x)	$y' = -cossec^2(x)$

Regras de Derivação:

$$h(x) = a.f(x) \Rightarrow h'(x) = a.f'(x)$$

• Regra da Soma e Subtração

$$h(x) = f(x) + g(x) \implies h'(x) = f'(x) + g'(x)$$

$$h(x) = f(x) - g(x) \implies h'(x) = f'(x) - g'(x)$$

Regra do Produto

$$h(x) = f(x).g(x) \Rightarrow h'(x) = f'(x).g(x) + f(x).g'(x)$$

• Regra do Quociente

$$h(x) = \frac{f(x)}{g(x)} \implies h'(x) = \frac{f'(x).g(x) - f(x).g'(x)}{g^2(x)}$$

• Regra da Cadeia

$$h(x) = f(g(x)) \Rightarrow h'(x) = f'(g(x)).g'(x)$$

Derivadas das Funções Trigonométricas Inversas:

$$y = arcsen(x) \quad \Rightarrow \quad y' = \frac{1}{\sqrt{1 - x^2}}, |x| < 1 \qquad (sen^{-1}(x))$$

$$y = arccos(x) \quad \Rightarrow \quad y' = \frac{-1}{\sqrt{1 - x^2}}, |x| < 1 \qquad (cos^{-1}(x))$$

$$y = arctg(x) \quad \Rightarrow \quad y' = \frac{1}{x^2 + 1} \qquad (tg^{-1}(x))$$

$$y = arcsec(x) \quad \Rightarrow \quad y' = \frac{1}{x\sqrt{x^2 - 1}}, |x| > 1 \qquad (sec^{-1}(x))$$

$$y = arccossec(x) \quad \Rightarrow \quad y' = \frac{-1}{x\sqrt{x^2 - 1}}, |x| > 1 \qquad (cossec^{-1}(x))$$

$$y = arccotg(x) \quad \Rightarrow \quad y' = \frac{-1}{x^2 + 1} \qquad (cotg^{-1}(x))$$

Identidades Trigonométricas:

1.
$$tg(x) = \frac{sen(x)}{\cos(x)}$$

$$2. sec(x) = \frac{1}{\cos(x)}$$

3.
$$cossec(x) = \frac{1}{sen(x)}$$

4.
$$cotg(x) = \frac{1}{tg(x)} = \frac{cos(x)}{sen(x)}$$

5.
$$sen^2(x) + cos^2(x) = 1$$

6.
$$1 + tg^2(x) = \sec^2(x)$$

7.
$$1 + cotg^2(x) = cossec^2(x)$$

8.
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

9.
$$sen(a + b) = sen(a)cos(b) + sen(b)cos(a)$$

10.
$$tg(a+b) = \frac{tg(a)+tg(b)}{1-tg(a).tg(b)}$$

11.
$$\cos^2(x) = \frac{1+\cos(2x)}{2}$$

12.
$$\operatorname{sen}^{2}(x) = \frac{1-\cos(2x)}{2}$$