Computational Physics 05 Prathvik GS

Numerical Integration 1

Plot and integrate the tabulated data given below by a suitable method. Take the endpoints of the table as integration limits

X	1.34	1.46	1.52	1.6	1.87	2.03	2.18	2.8	3.2	3.8	4.15
f(x)	1.5	2.3	2.3	2.4	2.5	3.2	4.9	4.7	3.4	7.8	17.1

The plot of the given points

The Value of integration is 14.59

Numerical Integration 2

$$f(x) = x^2$$
 from x=-1 to x=+1

Integral values

- 1). By Trapezoidal rule =0.666
- 2). By Simpson's rule =0.666

Error vs. n graph

For Trapezoidal rule

For Simpson's method

2).
$$f(x) = sin(x)$$
, $x = 0$ to $x = \pi$
By Simpson's method= 2.0000
By Trapezoidal rule=1.9835
Error vs n graphs

Simpson's method

Trapezoidal method

3).
$$f(x) = (\sin(x)/x)^2$$
 from $x = 0$ to $x = \infty$ analytical ans is $\pi/2$ Simpson's=1.5658
Trapezoidal=1.5658

Simpson's method

Trapezoidal rule

Numerical Integration 4

We consider the bound 1-D motion of a particle of mass min a time independent potential V(x). The fact that the energy Ewill be conserved allows us to integrate the equation of motion and obtain a solution in closed form. The time period of the oscillation T is given by

$$T = \int_{a}^{b} \frac{\sqrt{2m}}{\sqrt{E - V(x)}} dx$$

Where the limits a and b are obtained by solving V(x) = E, a < x < b.

a)

solving E=V(x) we get a and b to be $\frac{+1}{\omega_o}\sqrt{\frac{2E}{m}}$ and $\frac{-1}{\omega_o}\sqrt{\frac{2E}{m}}$ respectively

given

$$V(x) = \frac{1}{2}m\omega_o^2 x^2$$

where $\emph{m}=1\emph{Kg}, \omega_o=2\pi \emph{sec}^{-1}$

substituting $y=\frac{x}{\sqrt{\frac{2E}{m\omega_b^2}}}$, we replace the limit of integrals as follows, a by -1 and b by +1, the integral reduces to

$$T\omega_o = \int_{-1}^{+1} \frac{2}{\sqrt{1 - y^2}} dy$$

Now solving this numerically from a value of $-1 + \epsilon$ to $1 - \epsilon$ we get the time period

The expected value is 1 sec, so the value we obtained is very close to the actual value

We get the Time period to be 1 sec

Epsilon vs no. of steps

b)

Given

$$V(x) = \frac{m\omega_o^2 L^2}{2} \left[e^{\frac{x^2}{L^2}} - 1 \right]$$

 $V(x)=\frac{m\omega_o^2L^2}{2}[e^{\frac{x^2}{L^2}}-1]$ equating E=V(a), and putting E in the equation, we get the final integral as

$$T = \frac{1}{5\pi} \int_{-A}^{A} \frac{dx}{\sqrt{e^{\frac{A^2}{L^2}} - e^{\frac{x^2}{L^2}}}}$$

where \boldsymbol{A} is the amplitude

Time period vs Amplitude

We can see that for small amplitudes the Time period remains constant and does not depen on the Amplitude