1. Prove or disprove: Suppose f is convex and X is submortingate, prove that
g(t) = Z[f(Xt)) is increasing.
Pf Assume fix) = -x,
$-: f\left(\frac{x_1+x_2}{2}\right) = \frac{1}{2}\left(f(x_1) + f(x_2)\right), \text{ for } \forall x_1, x_2 \in \mathbb{R}. \text{ is a since} x$
:. + < &t, \(\mathcal{E}[f(X_t) - f(X_s)] \mathcal{F}_{\mathcal{e}}) = \mathcal{E}[-X_t + X_s \mathcal{F}_{\mathcal{e}}] = \text{X}_{\mathcal{e}} - \mathcal{E}[X_t \mathcal{F}_{\mathcal{e}})
Since Xs is Fs-measwalde.
": Xt is submartingale, E[X+175] > E[Xs175] = Xs
:. Xs - E[Xt Fs] <0, which means E[f(Xt)-f(xs) 9s] <0
2. Let t -> e-rtSt be a martingale, then prove that
$C(t) = \overline{z} \left[e^{-rt} (S_t - k)^+ \right]^{\frac{1}{2}} $ is increasing.
Pr. + >e-tstis a mortingale, So FIe-tst/Fs] = Fle+ss/Fs)
= e-15Ss. Hsst.
OS+>k, Z[e-rt(S+-K)+1]s) = E[e-rt(S+-K)]s)
= = = Te-+St - e-+k [7s]
= Z[e-rtSt-kle-rt + e-rs-e-rs)[Fs]
= Ele-H(Ss-K) - KEle-H-e-H) = Ele-H(Ss-K) [Fs)
Clt) = C(s). for ++ =s
(3) St < K. E [e + (St - K) + [F] = 0.
So ((t) is increasing.
3. Suppose r=0 and S is martingale, prove that P(+) = E[(S+-K)]
is increasing. Pf Since Sis a martineale with the Ciltration 97+3+6N.

FISt Fs] = FISs [Fs] = Ss, for + S < +.
© St < k,
E[(K-S+) Fs] = K-Ss > (Ss-K)
② St » k,
£[(S ₄ - k) [f̄s] = 0 ≥ (S ₅ - k)
E[Z[(St-K)]]] = Z[Ss-K) [Fs]. for \ s \leq t.
So PUI) is increasing.