EXPT 4: Ensemble Prediction & Decision Tree Model Evaluation REPORT BY GOPIKA GANESAN

AIM:

Ensemble Prediction and Decision Tree Model Evaluation for the Wisconsin dataset.

LIBRARIES USED:

NumPy, pandas, scikit learn, seaborn, matplotlib

OBJECTIVE:

To build classifiers such as Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Random Forest, and Stacked Models (using SVM, Na¨ıve Bayes, Decision Tree) and evaluate their performance through 5-Fold Cross-Validation and hyperparameter tuning.

CODE FOR ALL VARIANTS AND MODELS:

1.Decision Tree

```
# Load dataset
data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
# Preprocessing
X = StandardScaler().fit transform(df.drop('target', axis=1))
y = df['target']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
# Hyperparameter tuning
    "criterion": ["gini", "entropy"],
"max_depth": [3, 5, 7, None],
"min_samples_split": [2, 5, 10],
    "min_samples_leaf": [1, 2, 4]
grid = GridSearchCV(DecisionTreeClassifier(random_state=42), params, cv=5, scoring="accuracy", n_jobs=-1)
grid.fit(X_train, y_train)
best_model = grid.best_estimator_
print("Best Parameters:", grid.best_params_)
# 5-Fold Cross Validation
```

```
fold = 1
cv_scores = []
for train_idx, test_idx in kf.split(X):
   best_model.fit(X[train_idx], y.iloc[train_idx])
   preds = best_model.predict(X[test_idx])
   acc = accuracy_score(y.iloc[test_idx], preds)
   print(f"Fold {fold} Accuracy: {acc:.4f}")
   cv_scores.append(acc)
   fold += 1
print(f"Average 5-Fold CV Accuracy: {np.mean(cv_scores):.4f}")
# Final Test Set Evaluation
y_pred = best_model.predict(X_test)
y_prob = best_model.predict_proba(X_test)[:, 1]
print("\n=== Performance Metrics on Test Set ===")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Precision:", precision_score(y_test, y_pred))
print("Recall:", recall_score(y_test, y_pred))
print("F1 Score:", f1_score(y_test, y_pred))
print("ROC-AUC:", roc_auc_score(y_test, y_prob))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
# ROC Curve
fpr, tpr, _ = roc_curve(y_test, y_prob)
# ROC Curve
fpr, tpr, _ = roc_curve(y_test, y_prob)
plt.figure(figsize=(6, 4))
plt.plot(fpr, tpr, label=f"AUC = {roc_auc_score(y_test, y_prob):.2f}")
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
```

plt.title("Decision Tree ROC Curve")

plt.legend()
plt.show()

2.Adaboost:

```
# 1. Load Dataset
data = load_breast_cancer()
X = data.data
y = data.target
# Split train-test
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
# 2. Hyperparameter Tuning with GridSearchCV
params = {
    "n_estimators": [50, 100, 150],
    "learning_rate": [0.01, 0.1, 1]
grid = GridSearchCV(
   AdaBoostClassifier(random_state=42),
    params,
    cv=5,
   scoring="accuracy",
    n_jobs=-1
grid.fit(X_train, y_train)
best_model = grid.best_estimator_
print("Best Parameters:", grid.best_params_)
```

```
# 3. 5-Fold Cross-Validation
kf = KFold(n_splits=5, shuffle=True, random_state=42)
fold_accuracies = []
fold = 1
for train_index, val_index in kf.split(X_train):
    X_tr, X_val = X_train[train_index], X_train[val_index]
    y_tr, y_val = y_train[train_index], y_train[val_index]
    best_model.fit(X_tr, y_tr)
    y_pred = best_model.predict(X_val)
    acc = accuracy_score(y_val, y_pred)
    print(f"Fold {fold} Accuracy: {acc:.4f}")
    fold_accuracies.append(acc)
    fold += 1
print("\nAverage CV Accuracy:", np.mean(fold_accuracies))
# 4. Final Evaluation on Test Set
y_pred_test = best_model.predict(X_test)
print("\n=== Performance Metrics on Test Set ===")
print("Accuracy :", accuracy_score(y_test, y_pred_test))
print("Precision:", precision_score(y_test, y_pred_test))
print("Recall :", recall_score(y_test, y_pred_test))
print("F1 Score :", f1_score(y_test, y_pred_test))
print("ROC-AUC :", roc_auc_score(y_test, best_model.predict_proba(X_test)[:,1]))
print("\nClassification Report:\n", classification_report(y_test, y_pred_test))
```

3. Random Forest

```
data = load_breast_cancer()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
# 2. Hyperparameter Tuning
params = {
    "n_estimators": [50, 100, 200],
    "max_depth": [3, 5, 7, None],
"min_samples_split": [2, 5, 10]
grid = GridSearchCV(
    RandomForestClassifier(random_state=42),
    params,
    cv=5,
    scoring="accuracy",
    n_jobs=-1
grid.fit(X_train, y_train)
best_model = grid.best_estimator_
print("Best Parameters:", grid.best_params_)
# 3. 5-Fold Cross-Validation + ROC
kf = KFold(n_splits=5, shuffle=True, random_state=42)
fold_accuracies = []
plt.figure(figsize=(8, 6))
for fold, (train_index, val_index) in enumerate(kf.split(X_train), start=1):
    X_tr, X_val = X_train[train_index], X_train[val_index]
    y_tr, y_val = y_train[train_index], y_train[val_index]
    best_model.fit(X_tr, y_tr)
    y_pred = best_model.predict(X_val)
    y_proba = best_model.predict_proba(X_val)[:, 1]
    acc = accuracy_score(y_val, y_pred)
    fold_accuracies.append(acc)
    print(f"Fold {fold} Accuracy: {acc:.4f}")
    fpr, tpr, _ = roc_curve(y_val, y_proba)
    auc = roc_auc_score(y_val, y_proba)
    plt.plot(fpr, tpr, label=f"Fold {fold} (AUC={auc:.2f})")
print("\nAverage CV Accuracy:", np.mean(fold_accuracies))
# 4. Final Test Evaluation
y_pred_test = best_model.predict(X_test)
y_proba_test = best_model.predict_proba(X_test)[:, 1]
print("\n=== Performance Metrics on Test Set ===")
print("Accuracy :", accuracy_score(y_test, y_pred_test))
print("Precision:", precision_score(y_test, y_pred_test))
print("Recall :", recall_score(y_test, y_pred_test))
print("F1 Score :". f1 score(v test. v pred test))
```

4. Gradient Boosting

```
# 1. Load Dataset
data = load_breast_cancer()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
# 2. Hyperparameter Tuning
params = {
    "n_estimators": [50, 100, 150],
    "learning_rate": [0.01, 0.1, 0.2],
    "max_depth": [3, 5, 7]
grid = GridSearchCV(
    GradientBoostingClassifier(random_state=42),
    params,
    cv=5,
    scoring="accuracy",
    n_jobs=-1
grid.fit(X_train, y_train)
best_model = grid.best_estimator_
print("Best Parameters:", grid.best_params_)
# 3. 5-Fold Cross-Validation + ROC
```

```
kf = KFold(n_splits=5, shuffle=True, random_state=42)
fold_accuracies = []
plt.figure(figsize=(8, 6))
for fold, (train_index, val_index) in enumerate(kf.split(X_train), start=1):
    X_tr, X_val = X_train[train_index], X_train[val_index]
    y_tr, y_val = y_train[train_index], y_train[val_index]
    best_model.fit(X_tr, y_tr)
    y_pred = best_model.predict(X_val)
    y_proba = best_model.predict_proba(X_val)[:, 1]
    acc = accuracy_score(y_val, y_pred)
    fold_accuracies.append(acc)
    print(f"Fold {fold} Accuracy: {acc:.4f}")
    fpr, tpr, _ = roc_curve(y_val, y_proba)
    auc = roc_auc_score(y_val, y_proba)
    plt.plot(fpr, tpr, label=f"Fold {fold} (AUC={auc:.2f})")
print("\nAverage CV Accuracy:", np.mean(fold_accuracies))
# 4. Final Test Evaluation
y_pred_test = best_model.predict(X_test)
y_proba_test = best_model.predict_proba(X_test)[:, 1]
print("\n=== Performance Metrics on Test Set ===")
print("Accuracy :", accuracy_score(y_test, y_pred_test))
print("Precision:", precision_score(y_test, y_pred_test))
print("Recall :", recall score(y test, y pred test))
print( ri Score : , Ti_score(y_test, y_pred_test))
print("ROC-AUC :", roc_auc_score(y_test, y_proba_test))
print("\nClassification Report:\n", classification_report(y_test, y_pred_test))
# 5. Final ROC Curve for Test Set
fpr_test, tpr_test, _ = roc_curve(y_test, y_proba_test)
auc_test = roc_auc_score(y_test, y_proba_test)
plt.plot(fpr_test, tpr_test, color="black", linewidth=2.5, label=f"Test ROC (AUC={auc_test:.2f})"
plt.plot([0, 1], [0, 1], linestyle="--", color="gray")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Gradient Boosting ROC Curve (5-Fold + Test)")
plt.legend()
plt.show()
```

5.XG Boosting

```
# 1. Load Dataset
data = load_breast_cancer()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
 # 2. Hyperparameter Tuning
    "n_estimators": [50, 100, 150],
    "learning_rate": [0.01, 0.1, 0.2],
    "max_depth": [3, 5, 7]
 grid = GridSearchCV(
    XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42),
    scoring="accuracy",
    n jobs=-1
grid.fit(X_train, y_train)
best_model = grid.best_estimator_
print("Best Parameters:", grid.best_params_)
IT = Kroid(n_spilts=5, snuttle=irue, random_state=42)
old accuracies = []
lt.figure(figsize=(8, 6))
for fold, (train_index, val_index) in enumerate(kf.split(X_train), start=1):
   X_tr, X_val = X_train[train_index], X_train[val_index]
   y_tr, y_val = y_train[train_index], y_train[val_index]
   best_model.fit(X_tr, y_tr)
   y_pred = best_model.predict(X_val)
   y_proba = best_model.predict_proba(X_val)[:, 1]
   acc = accuracy_score(y_val, y_pred)
   fold_accuracies.append(acc)
   print(f"Fold {fold} Accuracy: {acc:.4f}")
   fpr, tpr, _ = roc_curve(y_val, y_proba)
   auc = roc_auc_score(y_val, y_proba)
   plt.plot(fpr, tpr, label=f"Fold {fold} (AUC={auc:.2f})")
rint("\nAverage CV Accuracy:", np.mean(fold_accuracies))
4. Final Test Evaluation
pred test = best model.predict(X test)
'_proba_test = best_model.predict_proba(X_test)[:, 1]
rint("\n=== Performance Metrics on Test Set ===")
rint("Accuracy :", accuracy_score(y_test, y_pred_test))
rint("Precision:", precision_score(y_test, y_pred_test))
rrint("Recall :", recall_score(y_test, y_pred_test))
rrint("F1 Score :". f1 score(v test. v pred test))
 # 5. Final ROC Curve for Test Set
 fpr_test, tpr_test, _ = roc_curve(y_test, y_proba_test)
 auc_test = roc_auc_score(y_test, y_proba_test)
 plt.plot(fpr_test, tpr_test, color="black", linewidth=2.5, label=f"Test ROC (AUC={auc_test:.2f})")
 plt.plot([0, 1], [0, 1], linestyle="--", color="gray")
 plt.xlabel("False Positive Rate")
 plt.ylabel("True Positive Rate")
 plt.title("XGBoost ROC Curve (5-Fold + Test)")
 plt.legend()
 plt.show()
```

6.Stacking Classifier

print(f"Fold {fold} Accuracy: {acc:.4f}")

ROC curve for each fold

```
# 1. Load Dataset
data = load_breast_cancer()
X = data.data
y = data.target
# Split train-test
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
# 2. Define Base Models and Stacking Classifier
base_estimators = [
    ('svm', SVC(probability=True, random_state=42)),
    ('nb', GaussianNB()),
    ('dt', DecisionTreeClassifier(random_state=42))
stack_model = StackingClassifier(
   estimators=base_estimators,
    final_estimator=LogisticRegression(max_iter=500, random_state=42),
    passthrough=False
# 3. Hyperparameter Tuning
params = {
    'svm__C': [0.1, 1, 10],
    'svm__kernel': ['linear', 'rbf'],
    'dt__max_depth': [3, 5, 7],
    'final_estimator__C': [0.1, 1, 10]
grid = GridSearchCV(
   stack_model,
   params,
   cv=5,
   scoring="accuracy",
    n_jobs=-1
grid.fit(X_train, y_train)
best_model = grid.best_estimator_
print("Best Parameters:", grid.best_params_)
# 4. 5-Fold Cross-Validation + Fold-wise ROC
kf = KFold(n_splits=5, shuffle=True, random_state=42)
fold accuracies = []
plt.figure(figsize=(8, 6))
for fold, (train_index, val_index) in enumerate(kf.split(X_train), start=1):
    X_tr, X_val = X_train[train_index], X_train[val_index]
   y_tr, y_val = y_train[train_index], y_train[val_index]
   best_model.fit(X_tr, y_tr)
   y_pred = best_model.predict(X_val)
   y_proba = best_model.predict_proba(X_val)[:, 1]
   acc = accuracy_score(y_val, y_pred)
   fold_accuracies.append(acc)
```

```
fpr, tpr, _ = roc_curve(y_val, y_proba)
    auc = roc_auc_score(y_val, y_proba)
    plt.plot(fpr, tpr, label=f"Fold {fold} (AUC = {auc:.2f})")
print("\nAverage CV Accuracy:", np.mean(fold_accuracies))
# 5. Final Evaluation on Test Set
y_pred_test = best_model.predict(X_test)
y_proba_test = best_model.predict_proba(X_test)[:, 1]
print("\n=== Performance Metrics on Test Set ===")
print("Accuracy :", accuracy_score(y_test, y_pred_test))
print("Precision:", precision_score(y_test, y_pred_test))
print("Recall :", recall_score(y_test, y_pred_test))
print("F1 Score :", f1_score(y_test, y_pred_test))
print("ROC-AUC :", roc_auc_score(y_test, y_proba_test))
print("\nClassification Report:\n", classification\_report(y\_test, y\_pred\_test))
# 6. Final ROC Curve for Test Set
fpr_test, tpr_test, _ = roc_curve(y_test, y_proba_test)
auc_test = roc_auc_score(y_test, y_proba_test)
plt.plot(fpr_test, tpr_test, color="black", linewidth=2.5, label=f"Test ROC (AUC = {auc_test:.2f})")
\verb"plt.plot([0, 1], [0, 1], linestyle="--", color="gray")"
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Stacking Classifier ROC Curve (5-Fold + Test)")
```

CONFUSION MATRIX AND ROC FOR EACH:

1.Decision Tree:

```
Evaluating Decision Tree Classifier (Criterion = gini)
--- Testing max_depth = 2 ---
Accuracy : 0.8947
Precision: 0.9688
Recall : 0.8611
F1 Score : 0.9118
ROC-AUC : 0.9345
Classification Report:
                precision
                             recall f1-score
                                                 support
           0
                    0.80
                               0.95
                                         0.87
                                                      42
           1
                    0.97
                               0.86
                                         0.91
                                                      72
    accuracy
                    0.88
                               0.91
                                         0.89
                                                     114
   macro avg
weighted avg
                    0.91
                               0.89
                                         0.90
                                                     114
```


--- Testing max_depth = 4 --Accuracy : 0.9386
Precision: 0.9577
Recall : 0.9444
F1 Score : 0.9510
ROC-AUC : 0.9342

Classification Report:

	precision	recall	f1-score	support
0	0.91	0.93	0.92	42
1	0.96	0.94	0.95	72
accuracy			0.94	114
macro avg	0.93	0.94	0.93	114
weighted avg	0.94	0.94	0.94	114

--- Testing max_depth = 2 ---Accuracy : 0.8947

Precision: 0.9688 Recall : 0.8611 F1 Score : 0.9118 ROC-AUC : 0.9345

Classification Report:

214331712421311	precision	recall	f1-score	support
0	0.80	0.95	0.87	42
1	0.97	0.86	0.91	72
accuracy			0.89	114
macro avg	0.88	0.91	0.89	114
weighted avg	0.91	0.89	0.90	114

ROC Curve (entropy | max_depth=2)

--- Testing max_depth = 4 ---Accuracy : 0.9386 Precision: 0.9577 Recall : 0.9444 F1 Score : 0.9510 ROC-AUC : 0.9633

Classification Report: precision

	precision	recall	TI-SCORE	Suppor
0	0.91	0.93	0.92	42
1	0.96	0.94	0.95	72
accuracy			0.94	114
macro avg	0.93	0.94	0.93	114
weighted avg	0.94	0.94	0.94	114

ROC Curve (entropy | max_depth=4)

2.AdaBoost

3. RandomForest

Best Parameters: {'max_depth': 7, 'min_samples_split': 5, 'n_estimators': 50}

Fold 1 Accuracy: 0.9341 Fold 2 Accuracy: 0.9670 Fold 3 Accuracy: 0.9670 Fold 4 Accuracy: 0.9670 Fold 5 Accuracy: 0.9341

Average CV Accuracy: 0.9538461538461538

=== Performance Metrics on Test Set ===

Classification Report:

	precision	recall	f1-score	support
0	0.91	0.93	0.92	42
1	0.96	0.94	0.95	72
accuracy			0.94	114
macro avg	0.93	0.94	0.93	114
weighted avg	0.94	0.94	0.94	114

Random Forest ROC Curve (5-Fold + Test)

4. Gradient Boosting

Best Parameters: {'learning_rate': 0.2, 'max_depth': 3, 'n_estimators': 150}

Fold 1 Accuracy: 0.9011 Fold 2 Accuracy: 0.9780 Fold 3 Accuracy: 0.9670 Fold 4 Accuracy: 0.9890 Fold 5 Accuracy: 0.9341

Average CV Accuracy: 0.9538461538461538

=== Performance Metrics on Test Set ===

Accuracy: 0.9736842105263158

Precision: 0.96 Recall : 1.0

F1 Score : 0.9795918367346939 ROC-AUC : 0.9927248677248678

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.93	0.96	42
1	0.96	1.00	0.98	72
accuracy			0.97	114
macro avg	0.98	0.96	0.97	114
weighted avg	0.97	0.97	0.97	114

Gradient Boosting ROC Curve (5-Fold + Test)

5.XG Boosting

```
/usr/local/lib/python 3.12/dist-packages/xgboost/training.py: 183: UserWarning: [04:13:06] \ WARNING: /workspace/src/learner.cc: 738: Parameters: { "use_label_encoder" } are not used.
bst.update(dtrain, iteration=i, fobj=obj)
Best Parameters: {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 150}
Fold 1 Accuracy: 0.9560
/usr/local/lib/python3.12/dist-packages/xgboost/training.py:183: UserWarning: [04:13:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
/usr/local/lib/python3.12/dist-packages/xgboost/training.py:183: UserWarning: [04:13:07] WARNING: /workspace/src/learner.cc:738: Parameters: { "use_label_encoder" } are not used.
Fold 2 Accuracy: 0.9560
Fold 3 Accuracy: 0.9890
/usr/local/lib/python3.12/dist-packages/xgboost/training.py:183: UserWarning: [04:13:07] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
/usr/local/lib/python3.12/dist-packages/xgboost/training.py:183: UserWarning: [04:13:07] WARNING: /workspace/src/learner.cc:738: Parameters: { "use_label_encoder" } are not used.
  bst.update(dtrain, iteration=i, fobj=obj)
Fold 4 Accuracy: 0.9780
Fold 5 Accuracy: 0.9121
Average CV Accuracy: 0.9582417582417584
=== Performance Metrics on Test Set ===
Accuracy: 0.956140350877193
Precision: 0.9466666666666667
Recall : 0.9861111111111112
F1 Score : 0.9659863945578231
ROC-AUC : 0.9923941798941799
Classification Report:
                                 recall f1-score
                  precision
                                                        support
                                   0.90
                                                             72
     accuracy
                                              0.96
                                                            114
    macro avg
                       0.96
                                   0.95
                                               0.95
                                                            114
weighted avg
```


6.Stacking Model

```
Best Parameters: {'dt_max_depth': 5, 'final_estimator_C': 0.1, 'svm_C': 10, 'svm_kernel': 'linear'}
   Fold 1 Accuracy: 0.9670
   Fold 2 Accuracy: 0.9780
   Fold 3 Accuracy: 0.9560
   Fold 4 Accuracy: 0.9670
   Fold 5 Accuracy: 0.9011
   Average CV Accuracy: 0.9538461538461538
   === Performance Metrics on Test Set ===
   Accuracy : 0.9473684210526315
   Precision: 0.9459459459459
   Recall
           : 0.97222222222222
   F1 Score : 0.958904109589041
   ROC-AUC : 0.9877645502645503
   Classification Report:
                               recall f1-score
                  precision
                                                  support
                      0.95
                                0.90
                                          0.93
                                                      42
                      0.95
                                0.97
                                                      72
              1
                                          0.96
       accuracy
                                          0.95
                                                     114
      macro avg
                      0.95
                                0.94
                                          0.94
                                                     114
   weighted avg
                      0.95
                                0.95
                                          0.95
                                                     114
```


COMPARISON TABLES:

Decision Tree- Hyperparameter Tuning:

criterion	Max_depth	Accuracy	F1 Score
gini	2	0.8947	0.9118
gini	4	0.9386	0.9510
entropy	2	0.8947	0.9118
entropy	4	0.9386	0.9510

AdaBoost- Hyperparameter Tuning:

N_estimators	Learning_rate	Accuracy	F1 Score
100	1	0.967	0.965
150	1	0.967	0.973
150	0.15	0.958	0.966
350	0.15	0.956	0.965

GradientBoost- Hyperparameter Tuning:

N_estimators	Learning_rate	Max_depth	Accuracy	F1
				Score
150	0.2	3	0.953	0.979
350	0.2	3	0.943	0.972
100	0.6	4	0.960	0.966

XGBoost- Hyperparameter Tuning:

N_estimators	Learning_rate	Max_depth	gamma	Accuracy	F1
					Score
150	0.1	3	0	0.958	0.966
250	0.01	5	1	0.947	0.972
500	0.01	5	2	0.949	0.958

RandomForest- Hyperparameter Tuning:

N_estimators	Max_depth	Accuracy	F1 Score
50	7	0.9538	0.951
150	10	0.958	0.958
150	23	0.96	0.96

Stacked Ensemble - Hyperparameter Tuning:

Base Models	Final	Accuracy	F1 Score
	estimators		
SVM, Na"ive	Logistic	0.964	0.972
Bayes,	Regression		
Decision Tree			
SVM, Na"ive	Random Forest	0.947	0.958
Bayes,			
Decision Tree			
SVM,	Logistic	0.952	0.971
Decision	Regression		
Tree, KNN			

Model	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Avg Accuracy
Decision Tree	0.9231	0.9780	1.0000	0.9780	0.9451	0.9648
AdaBoost	0.9341	0.9670	0.9670	0.9890	0.9341	0.9582
Gradient Boost	0.9451	0.9670	0.9780	0.9780	0.9341	0.9604
XGBoost	0.9341	0.9560	0.9670	0.9890	0.9011	0.9494
Random Forest	0.9670	0.9780	0.9560	0.9670	0.9011	0.9538

Model	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Avg Accuracy
Stacked Model	0.9341	0.9780	0.9780	0.9451	0.9341	0.9539

OBSERVATIONS:

1. Which model achieved the best validation accuracy among all six methods?

The AdaBoost classifier achieved the highest validation accuracy (96.7%), closely followed by Stacking (96.4%) and Random Forest (96.0%).

2. How does Decision Tree performance compare to ensemble methods?

Ensemble models significantly outperformed Decision Trees. While the Decision Tree peaked at 93.8%, ensemble techniques achieved 95–96.7%, showing better stability and predictive power.

3. Did the Random Forest benefit from tuning max_depth or n_estimators?

Yes, tuning n_estimators and max_depth improved Random Forest's performance. Optimal results were obtained with 150 trees and max_depth=23, achieving 96.0% accuracy.

4. Which model showed the best generalization? Any overfitting?

Stacking and AdaBoost showed the best generalization. A standalone Decision Tree slightly overfitted, while ensemble methods like Random Forest and XGBoost handled overfitting well.

5. Did stacking improve performance over base models?

Stacking improved performance compared to individual base models. Using Logistic Regression as the final estimator in stacking achieved 96.4%, which outperformed SVM, KNN, and Decision Tree alone

CONCLUSIONS:

- 1. We have learnt that AdaBoost consistently outperformed other classifiers, achieving the highest accuracy of 96.7%, while Stacking also performed very well with 96.4%, showing the strength of ensemble learning.
- 2. We have learnt that hyperparameter tuning plays a crucial role in improving performance for example, increasing n_estimators and adjusting learning_rate boosted AdaBoost, while tuning max_depth and n_estimators enhanced Random Forest accuracy.
- 3. We have learnt that different algorithms provide trade-offs between accuracy, stability, and generalization standalone Decision Trees tend to overfit, whereas ensemble methods like GradientBoost, XGBoost, and Stacking achieve better generalization and higher overall performance.