Package 'weaana'

October 12, 2022

Maintainer Bangyou Zheng Sbangyou.zheng@csiro.au>
Title Analysis the Weather Data
Type Package
Description Functions are collected to analyse weather data for agriculture purposes including to read weather records in multiple formats, calculate extreme climate index.
License MIT + file LICENSE
<pre>URL https://weaana.bangyou.me/, https://github.com/byzheng/weaana</pre>
<pre>BugReports https://github.com/byzheng/weaana/issues</pre>
Encoding UTF-8
Version 0.1.1
Date 2021-09-06
LazyData true
Depends R (>= $3.5.0$)
Imports methods, stats, settings, reshape2, lubridate, magrittr, rlang, dplyr, tibble
RoxygenNote 7.1.2
Suggests testthat
NeedsCompilation no
Author Bangyou Zheng [aut, cre]
Repository CRAN
Date/Publication 2021-09-27 10:00:02 UTC
R topics documented:
changeWeatherRecords

	diurnalT	4
	getWeatherRecords	5
	interpolationFunction	6
	readWeatherRecords	6
	records	7
	result-class	7
	show, Wea Ana-method	8
	siteInfor	8
	sphericalDistance	9
	thermalTime	10
	thermalTimeDaily	10
	thermalTimeHourly	11
	ttest_ts	12
	WeaAna-class	12
	WeaAnaSite-class	13
	writeWeatherRecords	14
	[,WeaAna-method	14
Index	1	16

 ${\it change Weather Records} \quad {\it Change weather records}$

Description

Change weather records

Change weather records

Usage

```
changeWeatherRecords(object, ...)
## S4 method for signature 'WeaAna'
changeWeatherRecords(object, ...)
```

Arguments

```
object A WeaAna object.
... New weather records
```

Value

A new WeaAna object with updated records

convert2Records 3

convert2Records

Convert a data frame to weaana class

Description

Convert a data frame to weaana class

Usage

```
convert2Records(infor, records)
```

Arguments

infor A list or data frame of site information records A data frame will convert to records

Value

A new WeaAna object

createWeaAna

create WeaAna class

Description

create WeaAna class

Usage

createWeaAna(mets)

Arguments

mets

A list contained information of weather records.

Value

A new WeaAna class

4 diurnalT

dayLength	The time elapsed in hours between the specified sun angle from 90 degree in am and pm. +ve above the horizon, -ve below the horizon.
	degree in am and pm. +ve above the horizon, -ve below the horizon.

Description

The time elapsed in hours between the specified sun angle from 90 degree in am and pm. +ve above the horizon, -ve below the horizon.

Usage

```
dayLength(doy, lat, angle = -6)
```

Arguments

doy	day of year number
lat	latitude of site (deg)
angle	angle to measure time between, such as twilight (deg). angular distance between 90 deg and end of twilight - altitude of sun. +ve up, -ve down.

Value

day length in hours

diurnalT Calculate the diurnal variation in air temperature with Parton and Logan, 1981	l
---	---

Description

Calculate the diurnal variation in air temperature. Parton WJ, Logan JA (1981) A model for diurnal variation in soil and air temperature. Agricultural Meteorology, 23, 205?216. Codes copied from APSIM Utilities.cpp

```
diurnalT(maxt, mint, doy, hour, latitude, A = 1.5, B = 4, C = 1)
```

getWeatherRecords 5

Arguments

maxt	maximum daily temperature
mint	minimum daily temperature

doy day of year
hour hour from 1 to 24
latitude latitude in radials

A is the time lag in temperature after noon

B is coef that controls temperature decrease at night C is the time lag for min temperature after sunrise

Value

A vector with diurnal air temperature

Examples

```
diurnalT(maxt = 20, mint = 10, doy = 1,
hour = seq(from = 1, to = 23.99, by = 0.1),
latitude = -10, A = 1.5, B = 4, C = 1)
```

getWeatherRecords

Get all weather records by year range

Description

Get all weather records by year range Get all weather records by year range

Usage

```
getWeatherRecords(object, ...)
## S4 method for signature 'WeaAna'
getWeatherRecords(object, yrange = NULL, vars = "all", ...)
```

Arguments

```
object A WeaAna object.
... Other arguments
yrange Year range.
vars Variable
```

Value

A data frame with all weather records

6 readWeatherRecords

Examples

```
library(weaana)
data( "WeatherRecordsDemo" )
getWeatherRecords( records, yrange = c( 2008, 2009 ) )
getWeatherRecords( records, yrange = c( 2008, 2009 ), length = 10 )
```

interpolation Return a y value from a linear interpolation function

Description

Return a y value from a linear interpolation function

Usage

```
interpolationFunction(x, y, values, split = "\s+")
```

Arguments

```
\begin{array}{ccc} x & & x \\ y & & y \\ values & values \\ split & split \end{array}
```

Value

The interpolated values

 ${\tt readWeatherRecords}$

Read weather records from a file list and/or a folder list

Description

Read weather records from a file list and/or a folder list

```
readWeatherRecords(
  dataFiles = NULL,
  dataFolders = NULL,
  dataFormat = "APSIM",
  dataWeather = NULL,
  load.later = FALSE,
   ...
)
```

records 7

Arguments

dataFiles A character vector to specify the path of weather data files.

dataFolders A character vector to specify the path of weather data folders.

dataFormat The format of weather data file.
dataWeather A data.frame for existing data.

load.later Whether load weather records now or later. "dataFroamt" should be One of

"APSIM" and "RDATA".

... Other arguments

Value

A WeaAna class which contains all weather data.

records Demo weather records

Description

Demo weather records

Usage

records

Format

An object of class WeaAna of length 1.

result-class Define the class for statistics results

Description

Define the class for statistics results

Slots

name Name of result
type Type of result

8 siteInfor

show, WeaAna-method

Show basic information of class WeaAna

Description

Show the name, number, latitude, longitude of all weather stations.

Usage

```
## S4 method for signature 'WeaAna'
show(object)
```

Arguments

object

WeaAna objects

Examples

```
library(weaana)
data( "WeatherRecordsDemo" )
show( records )
records
```

siteInfor

Get site information

Description

Get site information

Get site information

Get site information

```
siteInfor(object, ...)
## S4 method for signature 'WeaAna'
siteInfor(object, load.now = FALSE)
## S4 method for signature 'WeaAnaSite'
siteInfor(object, load.now = FALSE)
```

sphericalDistance 9

Arguments

object A WeaAnaSite object.

... Not used

load.now Whether load site information

Value

Site information in the WeaAna object Site information in the WeaAnaSite object

Examples

```
library(weaana)
data( "WeatherRecordsDemo" )
siteInfor( records )
siteInfor( records, load.now = TRUE )
```

sphericalDistance

Calculate the sphere distance

Description

Calculate the sphere distance

Usage

```
sphericalDistance(lat1, lon1, lat2, lon2)
```

Arguments

lat1	Latitude
lon1	Longitude
lat2	Latitude
lon2	Longitude

Value

Distance in km

10 thermalTimeDaily

+	ha	rm:	₂ 1	тi	mΔ
- 1	rı⊢	rilli	- 1		III C

Calculate thermal time using cardinal temperatures

Description

Calculate thermal time using cardinal temperatures

Usage

```
thermalTime(weather, x_temp, y_temp, method = NULL)
```

Arguments

weather	WeaAna object
x_temp	The cardinal temperatures
y_temp	The effective thermal time
method	The method to calculate thermal time. The default method is (maxt + mint) / 2 - base. The three hour temperature methods will be used if method = '3hr'

Value

A data.frame with three columns: year, day and thermalTime.

Examples

```
met_file <- system.file("extdata/WeatherRecordsDemo1.met", package = "weaana")
records <- readWeatherRecords(met_file)
x_temp <- c(0, 26, 34)
y_temp <- c(0, 26, 0)
res <- thermalTime(records, x_temp, y_temp)
head(res)
res <- thermalTime(records, x_temp, y_temp, method = "3hr")
head(res)</pre>
```

thermalTimeDaily

Calculate thermal time using cardinal temperatures

Description

Calculate thermal time using cardinal temperatures

```
thermalTimeDaily(mint, maxt, x_temp, y_temp, method = NULL)
```

thermalTimeHourly 11

Arguments

mint	The minimum temperature
maxt	The maximum temperature
x_temp	The cardinal temperatures
y_temp	The effective thermal time
method	The method to calculate thermal time. The default method is (maxt + mint) / 2 - base. The three hour temperature methods will be usesd if method = '3hr'

Value

The thermal time.

Examples

```
\label{eq:mint} \begin{array}{lll} \mbox{mint} <& -\ c(0,\ 10) \\ \mbox{maxt} <& -\ c(30,\ 40) \\ \mbox{x\_temp} <& -\ c(0,\ 20,\ 35) \\ \mbox{y\_temp} <& -\ c(0,\ 20,\ 0) \\ \mbox{thermalTimeDaily(mint, maxt, x\_temp, y\_temp)} \\ \mbox{thermalTimeDaily(mint, maxt, x\_temp, y\_temp, method = '3hr')} \end{array}
```

thermalTimeHourly Calculate thermal time using the hourly temperature (non daily temperature)

Description

Calculate thermal time using the hourly temperature (non daily temperature)

Usage

```
thermalTimeHourly(timestamp, temperature, x_temp, y_temp)
```

Arguments

 $\begin{array}{ll} \text{timestamp} & \text{The timestamp of weather records} \\ \text{temperature} & \text{The temperature} \\ \text{x_temp} & \text{The cardinal temperatures} \\ \text{y_temp} & \text{The effective thermal time} \\ \end{array}$

Value

A data frame with daily thermal time

12 WeaAna-class

Examples

```
met_file <- system.file("extdata/WeatherHourly.csv", package = "weaana")
hourly <- read.csv(met_file, as.is = TRUE)

hourly$timestamp <- as.POSIXct(hourly$timestamp, format = "%Y-%m-%dT%H:%M:%SZ")
x_temp <- c(0, 20, 35)
y_temp <- c(0, 20, 0)
thermalTimeHourly(hourly$timestamp, hourly$temperature, x_temp, y_temp)</pre>
```

ttest_ts

Significantly t-test with auto-correlation for time serial data

Description

Method is presented by Santer et al. 2000

Usage

```
ttest_ts(y, slope = NULL)
```

Arguments

y A vector of time serial data slope Whether export slope

Value

p values of t-test

WeaAna-class

Define the class for multiple sites

Description

Define the class for multiple sites

Slots

num total number of weather station
records A pointer vector to weather records of each site
result A pointer for all results name and type.

WeaAnaSite-class 13

WeaAnaSite-class

Define the class of WeaAna

Description

Define the class of WeaAna

Slots

name Name of weather station

number Station number of weather station

latitude Latitude of weather station

longitude Latitude of weather station

tav Annual average ambient temperature

amp Annual amplitude in mean monthly temperature

marker The extra marker for this site

year A vector of year of weather station

day A vector of day of weather station

radn A vector of radiation of weather station

maxt A vector of maximum temperature of weather station

mint A vector of minimum temperature of weather station

evap A vector of evaporation of weather station

rain A vector of rainfall of weather station

vp A vector of pressure atmosphere of weather station

code The 6 digit code indicates the source of the 6 data columns

extra A list of variables need to store

res All statistics results store in this slot

figures A list to store all plotted figures.

file.path The file path for this site.

data. format The data format for this site.

load.later Whether are records loaded laterly.

[,WeaAna-method

writeWeatherRecords

Write weather records into file

Description

Write weather records into file Write weather records into file

Usage

```
writeWeatherRecords(object, ...)
## S4 method for signature 'WeaAna'
writeWeatherRecords(object, file, cols = NULL)
```

Arguments

object A WeaAna object.

... Not used

file Path of output file.

cols Columns to export. All columns exported if NULL

Value

No return values

[,WeaAna-method

Getter to access the weather data at a specific position.

Description

Getter to access the weather data at a specific position.

Usage

```
## S4 method for signature 'WeaAna' x[i, j, drop]
```

Arguments

x A WeaAna object.

i the specific position which will access.

j None use parameter.drop None use parameter.

[,WeaAna-method 15

Value

A WeaAnaSite object at the position i.

Examples

```
library(weaana)
data( "WeatherRecordsDemo" )
records[1]
records[1:2]
records[2:2]
```

Index

```
* datasets
                                                ttest_ts, 12
    records, 7
                                                WeaAna-class, 12
[, WeaAna-method, 14
                                                WeaAnaSite-class, 13
changeWeatherRecords, 2
                                                writeWeatherRecords, 14
changeWeatherRecords, WeaAna, WeaAna-method
                                                writeWeatherRecords, WeaAna, WeaAna-method
                                                         (writeWeatherRecords), 14
        (changeWeatherRecords), 2
changeWeatherRecords, WeaAna-method
                                                writeWeatherRecords, WeaAna-method
        (changeWeatherRecords), 2
                                                         (writeWeatherRecords), 14
convert2Records, 3
createWeaAna, 3
dayLength, 4
diurnalT, 4
getWeatherRecords, 5
getWeatherRecords, WeaAna, WeaAna-method
        (getWeatherRecords), 5
getWeatherRecords, WeaAna-method
        (getWeatherRecords), 5
interpolationFunction, 6
readWeatherRecords, 6
records, 7
result-class, 7
show, WeaAna-method, 8
siteInfor, 8
siteInfor,WeaAna,WeaAna-method
        (siteInfor), 8
siteInfor,WeaAna-method(siteInfor), 8
siteInfor, WeaAnaSite, WeaAnaSite-method
        (siteInfor), 8
siteInfor,WeaAnaSite-method
        (siteInfor), 8
spherical Distance, 9
thermalTime, 10
thermalTimeDaily, 10
thermalTimeHourly, 11
```