Lecture# 06

Thinking about Quantifiers as Conjunctions and Disjunctions

- If the domain is finite, a universally quantified proposition is equivalent to a conjunction of propositions without quantifiers and an existentially quantified proposition is equivalent to a disjunction of propositions without quantifiers.
- If U consists of the integers 1,2, and 3:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$
$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

 Even if the domains are infinite, you can still think of the quantifiers in this fashion, but the equivalent expressions without quantifiers will be infinitely long.

Negating Quantified Expressions

- Consider $\forall_{X} J(x)$ "Every student in your class has taken a course in Java." Here J(x) is "x has taken a course in Java" and the domain is students in your class.
- Negating the original statement gives "It is not the case that every student in your class has taken a course in Java." This implies that "There is a student in your class who has not taken a course in Java."

Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent

Negating Quantified Expressions (continued)

• Now Consider $\exists x J(x)$

"There is a student in this class who has taken a course in Java."

Where J(x) is "x has taken a course in Java."

Negating the original statement gives "It is not the case that there is a student in this class who has taken Java." This implies that "Every student in this class has not taken a course in Java"

Symbolically $\neg \exists x J(x)$ and $\forall x \neg J(x)$ are equivalent

De Morgan's Laws for Quantifiers

The rules for negating quantifiers are:

TABLE 2 De Morgan's Laws for Quantifiers.				
Negation	Equivalent Statement	When Is Negation True?	When False?	
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.	
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .	

The reasoning in the table shows that:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

These are important. You will use these.

Translation from English to Logic

Examples:

1. "Some student in this class has visited Mexico."

Solution: Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people.

$$\exists x (S(x) \land M(x))$$

2. "Every student in this class has visited Canada or Mexico."

Solution: Add C(x) denoting "x has visited Canada."

and U be all people.
$$\forall x (S(x) \rightarrow (M(x) \lor C(x)))$$

Some Fun with Translating from English into Logical Expressions

U = {Nitwits, Blubbers, Oddments}

F(x): x is a Nitwit

S(x): x is a Blubber

T(x): x is a Oddment

Translate "Everything is a Nitwit"

Solution: $\forall x F(x)$

• U = {Nitwits, Blubbers, Oddments}

F(x): x is a Nitwit

S(x): x is a Blubber

T(x): x is a Oddment

"Nothing is a Blubber."

Solution: $\neg \exists x S(x)$ What is this

equivalent to?

Solution: $\forall x \neg S(x)$

• U = {Nitwits, Blubbers, Oddments}

F(x): x is a Nitwit

S(x): x is a Blubber

T(x): x is a Oddment

"All Nitwits are Blubbers."

Solution: $\forall x (F(x) \rightarrow S(x))$

• U = {Nitwits, Blubbers, Oddments}

F(x): x is a Nitwit

S(x): x is a Blubber

T(x): x is a Oddment

"Some Nitwits are Oddments."

Solution: $\exists x (F(x) \land T(x))$

• U = {Nitwits, Blubbers, Oddments}

F(x): x is a Nitwit

S(x): x is a Blubber

T(x): x is a Oddment

"No Blubber is a Oddment."

Solution: $\neg \exists_X (S(x) \land T(x))$ What is this equivalent to?

Solution:
$$\forall_{X \neg (S(x) \land T(x))} \forall x (\neg S(x) \lor \neg T(x))$$

• U = {Nitwits, Blubbers, Oddments}

F(x): x is a Nitwit

S(x): x is a Blubber

T(x): x is a Oddment

"If any Nitwit is a Blubber then it is also a Oddment."

Solution: $\forall x ((F(x) \land S(x)) \rightarrow T(x))$

System Specification Example

- Predicate logic is used for specifying properties that systems must satisfy.
- For example, translate into predicate logic:
 - "Every mail message larger than one megabyte will be compressed."
 - "If a user is active, at least one network link will be available."
- Decide on predicates and domains (left implicit here) for the variables:
 - Let L(m, y) be "Mail message m is larger than y megabytes."
 - Let C(m) denote "Mail message m will be compressed."
 - Let A(u) represent "User u is active."
 - Let S(n, x) represent "Network link n is state x.
 - Now we have: $\forall m(L(m,1) \to C(m))$ $\exists u \, A(u) \to \exists n \, S(n, available)$

Lewis Carroll Example

Charles Lutwidge Dodgson (AKA Lewis Caroll) (1832-1898)

- The first two are called premises and the third is called the conclusion.
 - 1. "All lions are fierce."
 - "Some lions do not drink coffee."
 - "Some fierce creatures do not drink coffee."
- Here is one way to translate these statements to predicate logic. Let P(x), Q(x), and R(x) be the propositional functions "x is a lion," "x is fierce," and "x drinks coffee," respectively.
 - 1. $\forall x (P(x) \rightarrow Q(x))$
 - 2. $\exists x (P(x) \land \neg R(x))$
 - 3. $\exists x (Q(x) \land \neg R(x))$
- Later we will see how to prove that the conclusion follows from the premises.

Section 1.5

Section Summary

- Nested Quantifiers
- Order of Quantifiers
- Translating from Nested Quantifiers into English
- Translating Mathematical Statements into Statements involving Nested Quantifiers.
- Translated English Sentences into Logical Expressions.
- Negating Nested Quantifiers.

Nested Quantifiers

 Nested quantifiers are often necessary to express the meaning of sentences in English as well as important concepts in computer science and mathematics.

Example: "Every real number has an inverse" is

$$\forall x \exists y (x + y = 0)$$

where the domains of x and y are the real numbers.

• We can also think of nested propositional functions:

 $\forall x \exists y (x + y = 0)$ can be viewed as $\forall x Q(x)$ where Q(x) is $\exists y P(x, y)$ where P(x, y) is (x + y = 0)

Thinking of Nested Quantification

- Nested Loops
 - O To see if $\forall x \forall y P(x,y)$ is true, loop through the values of x:
 - At each step, loop through the values for y.
 - If for some pair of x and y, P(x,y) is false, then $\forall x \forall y P(x,y)$ is false and both the outer and inner loop terminate.

 $\forall x \ \forall y \ P(x,y)$ is true if the outer loop ends after stepping through each x.

- To see if $\forall x \exists y P(x,y)$ is true, loop through the values of x:
 - At each step, loop through the values for y.
 - The inner loop ends when a pair x and y is found such that P(x, y) is true.
 - If no y is found such that P(x, y) is true the outer loop terminates as $\forall x \exists y P(x,y)$ has been shown to be false.

 $\forall x \exists y P(x,y)$ is true if the outer loop ends after stepping through each x.

 If the domains of the variables are infinite, then this process can not actually be carried out.

Order of Quantifiers

Examples:

- 1. Let P(x,y) be the statement "x + y = y + x." Assume that U is the real numbers. Then $\forall x \forall y P(x,y)$ and $\forall y \forall x P(x,y)$ have the same truth value.
- 2. Let Q(x,y) be the statement "x + y = 0." Assume that U is the real numbers. Then $\forall_x \exists_{yP(x,y)}$ is true, but $\exists_y \forall_{xP(x,y)}$ is false.

Questions on Order of Quantifiers

Example 1: Let U be the real numbers, Define P(x,y): $x \cdot y = 0$ What is the truth value of the following:

- 1. $\forall x \forall y P(x,y)$ Answer: False
- 2. $\forall x \exists y P(x,y)$ Answer: True
- 3. $\exists x \forall y P(x,y)$ Answer: True
- *4.* ∃x∃yP(x,y) **Answer**: True

Questions on Order of Quantifiers

Example 2: Let *U* be the real numbers,

Define P(x,y): x/y=1

What is the truth value of the following:

- ∀x∀yP(x,y)
 Answer: False
- 2. ∀x∃yP(x,y) Answer: True
- ∃x∀y P(x,y)
 Answer: False
- 4. $\exists x \exists y P(x,y)$

Answer: True

Quantifications of Two Variables

Statement	When True?	When False
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x,y) is true for every pair x,y.	There is a pair x , y for which $P(x,y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x,y)$ is true.	There is an x such that $P(x,y)$ is false for every y .
$\exists x \forall y P(x,y)$	There is an x for which $P(x,y)$ is true for every y .	For every <i>x</i> there is a y for which <i>P</i> (x,y) is false.
$\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y)$	There is a pair x , y for which $P(x,y)$ is true.	P(x,y) is false for every pair x,y

Translating Nested Quantifiers into English

Example 1: Translate the statement

$$\forall x (C(x) \lor \exists y (C(y) \land F(x,y)))$$

where C(x) is "x has a computer," and F(x,y) is "x and y are friends," and the domain for both x and y consists of all students in your school.

Solution: Every student in your school has a computer or has a friend who has a computer.

Translating Mathematical Statements into Predicate Logic

Example: Translate "The sum of two positive integers is always positive" into a logical expression.

Solution:

- Rewrite the statement to make the implied quantifiers and domains explicit:
 - "For every two integers, if these integers are both positive, then the sum of these integers is positive."
- Introduce the variables x and y, and specify the domain, to obtain:
 - "For all positive integers x and y, x + y is positive."
- The result is:

$$\forall x \forall y ((x>0) \land (y>0) \rightarrow (x+y>0))$$

where the domain of both variables consists of all integers

Translating English into Logical Expressions Example

Example: Use quantifiers to express the statement "There is a woman who has taken a flight on every airline in the world." Solution:

- 1. Let P(w,f) be "w has taken f" and Q(f,a) be "f is a flight on a ."
- 2. The domain of w is all women, the domain of f is all flights, and the domain of a is all airlines.
- 3. Then the statement can be expressed as:

$$\exists w \exists f \ \forall a \ (P(w,f) \land Q(f,a))$$

Questions on Translation from English

Choose the obvious predicates and express in predicate logic.

Example 1: "Brothers are siblings."

Solution: $\forall x \ \forall y \ (B(x,y) \rightarrow S(x,y))$

Example 2: "Siblinghood is symmetric."

Solution: $\forall x \ \forall y \ (S(x,y) \rightarrow S(y,x))$

Example 3: "Everybody loves somebodý."

Solution: $\forall x \exists y L(x,y)$

Example 4: "There is someone who is loved by everyone."

Solution: $\exists y \ \forall x \ L(x,y)$

Example 5: "There is someone who loves someone."

Solution: $\exists x \exists y L(x,y)$

Example 6: "Everyone loves himself"

Solution: $\forall x L(x,x)$