3

4

5

WHAT IS CLAIMED IS:

1	1	· •	A	method	for	forming	silicon	quantum	dots	comprising	the
2	steps	of:									

forming a first insulating film on a semiconductor substrate;

forming a plurality of nano-crystalline silicons on the first

insulating film;

forming a second insulating film on the first insulating film including the nano-crystalline silicons;

partially etching the second insulating film and the nanocrystalline silicons; and

oxidizing surfaces of the nano-crystalline silicons.

- 2. The method of claim 1, wherein the nano-crystalline silicons are formed at a size of about 30nm.
- 3. The method of claim 1, wherein the second insulating film and the nano-crystalline silicons are etched by etching the nano-crystalline silicons by about 10nm.

- 4. The method of claim 1, wherein the nano-crystalline silicons are oxidized by about 5nm.
- 1 5. A method for fabricating a nonvolatile memory device
- 2 comprising the steps of:
- 3 forming a tunnelling insulating film on a semiconductor
- 4 substrate;

5

9

10

11

- forming a plurality of nano-crystalline silicons on the tunnelling insulating film;
 - forming a first insulating film on the tunnelling insulating film including the nano-crystalline silicons;
 - partially etching the first insulating film and the nanocrystalline silicons;
 - oxidizing surfaces of the nano-crystalline silicons;
- forming a second insulating film on the first insulating film including the nano-crystalline silicons;
- 14 forming a control gate on the second insulating film;
- 15 removing the second insulating film, the nano-crystalline
- 16 silicons, and the tunnelling insulating film using the control gate
- 17 as a mask; and

- forming impurity regions in a surface of the semiconductor substrate at both sides of the control gate.
- 6. The method of claim 5, wherein the nano-crystalline silicons are formed at a size of about 30nm.
- 7. The method of claim 5, wherein the second insulating film and the nano-crystalline silicons are etched by etching the nano-crystalline silicons by about 10nm.
- 8. The method of claim 5, wherein the nano-crystalline silicons are oxidized by about 5nm.