- ♣ The Limitations of Propositional Logic CPC
- ♣ Formal (Object) Language (Syntax) of Classical First-Order Predicate Calculus (CFOPC)
- Substitutions
- ♣ Semantics (Model Theory) of **CFOPC**
- ♣ Semantic (Model-theoretical, Logical) Consequence Relation
- ♣ Hilbert Style Formal Logic Systems for **CFOPC**
- Gentzen's Natural Deduction System for CFOPC
- ♣ Gentzen's Sequent Calculus System for CFOPC
- Semantic Tableau Systems for CFOPC
- Resolution Systems for CFOPC
- Classical Second-Order Predicate Calculus (CSOPC)

Free and Bound Variables: A Motivation Example

- An Example
 - $\sum_{k=1}^{n} x^k + k = (x^n + n) + (x^{n-1} + n 1) + \dots + (x + 1)$ (x, k, n)
- A Consider the following question about the above example
- $\sum_{k=1}^{n} x^k + k = \sum_{j=1}^{n} x^j + j$? (k is replaced by j)
- $\sum_{k=1}^{n} x^k + k = \sum_{n=1}^{n} x^n + n$? (*k* is replaced by *n*)
- $\sum_{k=1}^{n} x^k + k = \sum_{k=1}^{n} x^k + x$? (*k* is replaced by *x*)
- $\sum_{k=1}^{n} x^k + k = \sum_{k=1}^{j} x^k + k$? (*n* is replaced by *j*)
- $\sum_{k=1}^{n} x^{k} + k = \sum_{k=1}^{k} x^{k} + k$? (*n* is replaced by *k*)
- $\sum_{k=1}^{n} x^{k} + k = \sum_{k=1}^{x} x^{k} + k$? (*n* is replaced by *x*) • $\sum_{k=1}^{n} x^k + k = \sum_{k=1}^{n} y^k + k$? (x is replaced by y)
- $\sum_{k=1}^{n} x^{k} + k = \sum_{k=1}^{n} k^{k} + k$? (x is replaced by k)
- $\sum_{k=1}^{n} x^{k} + k = \sum_{k=1}^{n} n^{k} + k$? (x is replaced by n)

Free and Bound Variables: A Motivation Example

- An Example
 - $\sum_{k=1}^{n} x^{k} + k = (x^{n} + n) + (x^{n-1} + n 1) + ... + (x + 1)$ (x, k, n)
- Notes
 - In the above example, x and n are free (occurrence) variables, and k is a bound (occurrence) variable.
 - A bound (occurrence) variable can be replaced by another variable, expect free (occurrence) variables in the formula, without meaning change.
 - The value of a formula is dependent on values of its free (occurrence) variables.
 - A free (occurrence) variable cannot be replaced by another variable, otherwise, the meaning of the formula will be changed.

Free and Bound Occurrences of Individual Variables

Free occurrences of individual variables

- Let $A, B \in \mathbf{WFF}$ and x be an individual variable.
 - (1) The *free variable occurrences* in an atomic formula are all the variable occurrences in the formula:
 - (2) The free variable occurrences in $(\neg A)$ are the free variable occurrences
 - (3) The free variable occurrences in (A*B) (* is a binary connective) are the free variable occurrences in A together with the free variable occurrences in B:
 - (4) The free variable occurrences in $((\forall x)A)$ and $((\exists x)A)$ are the free variable occurrences in A, except for occurrences of x.
- **Bound occurrences** of individual variables
 - An individual variable occurrence is **bound** IFF it is not free occurrence.

Free and Bound Occurrences of Individual Variables

- Bound occurrences of individual variables
 - An occurrence of an individual variable x is said to be **bound** in a formula B if either it is the occurrence of x in a quantifier " $(\forall x)$ " or " $(\exists x)$ " in B or it lies within the scope of a quantifier " $(\forall x)(...)$ " or " $(\exists x)(...)$ " in B.
- ♣ Free occurrences of individual variables
 - An individual variable occurrence is *free* in a formula IFF it is not bound occurrence.
- Free / Round variables
 - An individual variable is said to be free (bound) in a formula B if it has a free (bound) occurrence in B.
 - Thus, a variable may be both free and bound in the same formula.
- Closed formulas (Sentences)
 - · A formula with no free (occurrence) variables (called a closed formula or sentence) represents a proposition that must be true or false.

Free and Bound Occurrences of Individual Variables: Examples

- **A** Example 1: $p^2(x_1, x_2)$
 - In Example 1, the single occurrence of x_1 is free.
- **♣** Example 2: $p^2_1(x_1, x_2) \rightarrow (\forall x_1)p^1_1(x_1)$
 - In Example 2, the first occurrence of x_1 in $p^2(x_1, x_2)$ is free, but the second and third occurrences of x_1 in $(\forall x_1)p_1^1(x_1)$ are bound.
- ♣ Example 3: $(\forall x_1)p^2(x_1, x_2) \rightarrow (\forall x_1)p^1(x_1)$
 - In Example 3, all occurrences of x_1 are bound.
- ***** Example 4: $(\exists x_1)p^2(x_1, x_2)$
 - In Example 4, both occurrences of x_1 are bound.
- ♣ Notes
 - In all four examples, every occurrence of x_2 is free.
 - A variable may have both free and bound occurrences in the same formula; a variable may be bound in a formula but free in a subformula of the formula.

Terms being Free for Individual Variables [Mendelson]

* Terms being free for variables (very important!)

- If B is a formula and t is a term, then t is said to be free for variable x in B if no free occurrence of x in B lies within the scope of any quantifier $(\forall y)$ or $(\exists y)$, where y is a variable in t.
- If B is a formula, t is a term, and y is a variable in t, then t is said to be free
 for variable x in B if no free occurrence of x in B lies within the scope of
 any quantifier (∀y) or (∃y).

• Facts

- A term that contains no variables is free for any variable in any formulas.
- A term *t* is free for any variable in formula *B* if none of the variables of *t* is bound in *B*.
- A variable x is free for x in any formula.
- Any term is free for variable x in formula B if B contains no free occurrences of x.

Lingle Chang | Saitama University

Terms being Free for Individual Variables [Mendelson]

* Terms being free for variables (very important!)

- If B is a formula and t is a term, then t is said to be free for variable x in B if no free occurrence of x in B lies within the scope of any quantifier $(\forall y)$ or $(\exists y)$, where y is a variable in t.
- If B is a formula, t is a term, and y is a variable in t, then t is said to be free
 for variable x in B if no free occurrence of x in B lies within the scope of
 any quantifier (∀y) or (∃y).
- The concept of t being free for x in a formula B(x) means that, if t is substituted for all free occurrences (if any) of x in B(x), no occurrence of a variable in t becomes a bound occurrence in B(t).

Examples

- The term x_2 is free for x_1 in $p_1^1(x_1)$, but x_2 is not free for x_1 in $(\forall x_2)p_1^1(x_1)$.
- The term $f_1^2(x_1, x_2)$ is free for x_1 in $(\forall x_2)p_1^2(x_1, x_2) \to p_1^1(x_1)$ but is not free for x_1 in $(\exists x_2)(\forall x_2)p_1^2(x_1, x_2) \to p_1^1(x_1)$.

Jingde Cheng / Saitama University

Substitutions of Variables

* Substitution of variable

- A formula may contain some free variables that can be replaced by other terms.
- A variable substitution is a mapping σ: V→Ter from the set of individual variables V to the set of terms Ter.
- We denote $\sigma[x]$ by $x\sigma$, to represent the result of applying the mapping σ to
- ♣ Substitution of variable on all terms
 - Let σ : $V \rightarrow Ter$ be a variable substitution. It can be extended to all terms (σ) : $Ter \rightarrow Ter$:
 - (1) $x\sigma' = x\sigma$ for any $x \in \mathbf{V}$, $c\sigma' = c$ for any $c \in \mathbf{Con}$, $\mathsf{T}\sigma' = \mathsf{T}$, $\mathbf{\bot}\sigma' = \mathbf{\bot}$; (2) $[f(t_1, ..., t_n)]\sigma' = f(t_1\sigma', ..., t_n\sigma')$ for any n-ary $f \in \mathbf{Fun}$.

Examples

• Let a, b, c, x, y, z be variables and f, g, h, i, j, k be functions. Suppose $x\sigma = f(x, y), y\sigma = h(a)$, and $z\sigma = g(c, h(x))$. Then $j(k(x), y)\sigma = j(k(f(x, y)), h(a))$.

Jingde Cheng | Saitama University

Substitutions of Variables: Composition and Support

***** Composition of substitutions

- Let σ and τ be substitutions. By the *composition* of σ and τ , we mean that substitution, which we denote by $\sigma^{\bullet}\tau$, such that for each variable $x \in V$, $x(\sigma^{\bullet}\tau) = (x\sigma)\tau$.
- Theorem: For any term $t \in \mathbf{Ter}$ and any two substitutions σ and τ , $t(\sigma^{\bullet}\tau) = (t\sigma)\tau$.
- Note: The above theorem does not carry over to formulas.
- Theorem: Composition of substitutions is associative, i.e., for any substitutions σ_1 , σ_2 , and σ_3 , $(\sigma_1^{\bullet}\sigma_2)^{\bullet}\sigma_3 = \sigma_1^{\bullet}(\sigma_2^{\bullet}\sigma_3)$.

♣ Support of a substitution

- The *support* of a substitution σ is the set of variables x for which xσ ≠ x. A substitution has *finite support* if its support set is finite.
- Theorem: The composition of two substitutions having finite support is a substitution having finite support.

Jingde Cheng / Saitama University

75

Substitutions of Variables: Notation of Substitution and Composition

♣ Notation of substitution

- Suppose σ is a substitution having finite support; say $\{x_1, x_2, ..., x_n\}$ is the support, and for each $i = 1, ..., n, x_i \sigma = t_i$.
- Our notation for σ is: $[x_1/t_1, x_2/t_2, ..., x_n/t_n]$.
- In particular, our notation for the identity substitution is [].
- ♣ Notation of substitution composition
 - Let $\sigma_1 = [x_1/t_1, ..., x_n/t_n]$ and $\sigma_2 = [y_1/u_1, ..., y_k/u_k]$ are two substitutions having finite support. Then $\sigma_1 \circ \sigma_2$ has notation: $[x_1/(t_1\sigma_2), ..., x_n/(t_n\sigma_2), z_1/(z_1\sigma_2), ..., z_m/(z_m\sigma_2)]$ where $z_1, ..., z_m$ are those variables in the list $y_1, ..., y_k$ that are not also in the list $x_1, ..., x_n$.
- Examples
 - Let Suppose $\sigma_1 = [x/f(x, y), y/h(a), z/g(c, h(x))]$ and $\sigma_2 = [x/b, y/g(a, x), w/z]$. Then $\sigma_1 \circ \sigma_2 = [x/f(b, g(a, x)), y/h(a), z/g(c, h(b)), w/z]$.

lingde Cheng / Saitama University

Substitutions of Variables on Terms and Formulas

- ♣ Substitution of variable on terms and formulas
 - Let σ: V→Ter be a variable substitution. It can be extended to all terms and formulas as follows:
 - (1) $c\sigma = c$ for any $c \in \mathbf{Con}$, $\mathsf{T}\sigma = \mathsf{T}$, $\bot \sigma = \bot$;
 - (2) $x\sigma = x\sigma$ for any $x \in \mathbf{V}$;
 - (3) $[f(t_1, ..., t_n)]\sigma = f(t_1\sigma, ..., t_n\sigma)$ for any n-ary $f \in \mathbf{Fun}$;
 - (4) $[p(t_1, ..., t_n)]\sigma = p(t_1\sigma, ..., t_n\sigma)$ for any n-ary $p \in \mathbf{Pre}$;
 - (5) $(\neg A)\sigma = (\neg (A\sigma))$ for any $A \in \mathbf{WFF}$;
 - (6) $(A*B)\sigma = ((A\sigma)*(B\sigma))$ for a binary connective * and any $A, B \in \mathbf{WFF}$; (7) $((\forall x)A)\sigma = ((\forall x)(A\sigma_x))$ and $((\exists x)A)\sigma = ((\exists x)(A\sigma_x))$ for any $A \in \mathbf{WFF}$, where by σ_x we mean the substitution that is like σ except that it does not change x, i.e., $y\sigma_x = y\sigma$ if $y \neq x$ and $y\sigma_x = x$ if y = x.
 - Note: The result of applying a substitution to a term always producers another term.

Jingde Cheng / Saitama University -

76

72

Substitutions of Variables on Terms and Formulas: Examples

An example

• Let $\sigma = [x/a, y/b]$. $((\forall x)R(x, y) \rightarrow (\exists y)R(x, y))\sigma = ((\forall x)R(x, y))\sigma \rightarrow ((\exists y)R(x, y))\sigma$ $= (\forall x)(R(x, y))\sigma_x \rightarrow (\exists y)(R(x, y))\sigma_y$ $= (\forall x)(R(x, b)) \rightarrow (\exists y)(R(a, y))$

An example

- Let $\sigma = [x/y]$ and $\tau = [y/c]$. Then $\sigma \bullet \tau = [x/c, y/c]$. If $A = ((\forall y)R(x, y))$, then $A\sigma = ((\forall y)R(y, y))$, so $(A\sigma)\tau = ((\forall y)R(y, y))$. But $A(\sigma \bullet \tau) = ((\forall y)R(c, y))$, which is different.
- The example shows that the fact about substitution in terms, for any term t, $(t\sigma)\tau = t(\sigma^{\bullet}\tau)$, does not carry over to formulas.
- What is needed is some restriction that will ensure composition of substitutions behaves well.

Jingde Cheng / Saitama University

♣ Free substitution

- A substitution being *free for a formula* is characterized as follows:
- (1) If $A \in \mathbf{WFF}$ is an atomic formula, then σ is free for A.
- (2) For any $A \in \mathbf{WFF}$, σ is free for $\neg A$, if σ is free for A.
- (3) For any $A, B \in \mathbf{WFF}$, σ is free for (A*B), if σ is free for A and σ is free for B, where * is a binary connective.

Free Substitutions

- (4) For any $A \in \mathbf{WFF}$, σ is free for $((\forall x)A)$ and $((\exists x)A)$ provided: σ_x is free for A, and if y is a free variable of A other than x, $y\sigma$ does not contain x.
- ♣ Theorem (*free substitution*)
 - Suppose the substitution σ is free for the formula A, and the substitution τ is free for $A\sigma$. Then $(A\sigma)\tau = A(\sigma^{\bullet}\tau)$.

Jingde Cheng / Saitama University —

7

An Introduction to Classical Predicate Calculus

- ♣ The Limitations of Propositional Logic **CPC**
- Formal (Object) Language (Syntax) of Classical First-Order Predicate Calculus (CFOPC)
- Substitutions
- ♣ Semantics (Model Theory) of **CFOPC**
- ♣ Semantic (Model-theoretical, Logical) Consequence Relation
- ♣ Hilbert Style Formal Logic Systems for **CFOPC**
- ♣ Gentzen's Natural Deduction System for **CFOPC**
- ♣ Gentzen's Sequent Calculus System for **CFOPC**
- ♣ Semantic Tableau Systems for **CFOPC**
- Resolution Systems for CFOPC
- ♣ Classical Second-Order Predicate Calculus (CSOPC)

Jingde Cheng / Saitama University •