Regularized Logistic Regression

We can regularize logistic regression in a similar way that we regularize linear regression. As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pink line, is less likely to overfit than the non-regularized function represented by the blue line:

Regularized logistic regression.

Cost Function

Recall that our cost function for logistic regression was:

$$J(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \; \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \; \log(1-h_ heta(x^{(i)}))]$$

We can regularize this equation by adding a term to the end:

$$J(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \; \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \; \log(1-h_ heta(x^{(i)}))] + rac{\lambda}{2m} \sum_{j=1}^n heta_j^2$$

The second sum, $\sum_{j=1}^{n} \theta_{j}^{2}$ means to explicitly exclude the bias term, θ_{0} . I.e. the θ vector is indexed from 0 to n (holding n+1 values, θ_{0} through θ_{n}), and this sum explicitly skips θ_{0} , by running from 1 to n, skipping 0. Thus, when computing the equation, we should continuously update the two following equations:

Gradient descent

Repeat {
$$\Rightarrow \quad \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\Rightarrow \quad \theta_j := \theta_j - \alpha \underbrace{\left[\frac{1}{m} \sum_{i=1}^m (\underline{h}_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \odot_j \right]}_{\text{$0_1 \dots 0_n$}}$$
 }
$$\underbrace{\left[\frac{1}{m} \sum_{i=1}^m (\underline{h}_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \odot_j \right]}_{\text{$0_1 \dots 0_n$}}$$
 }_{\text{\$0_1 \dots \cdots \omega_n\$}} \left\[\frac{\delta_0}{\sqrt{2} \omega_1} \frac{\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}}{\sqrt{2} - \frac{1}{m} \cos_j x_j^{(i)}} \right]