Lecture 11: WiFi Security

ENGG5105/CSCI5470 Computer and Network Security
Spring 2014
Patrick P. C. Lee

The Story

- ➤ WiFi is getting more widely used
- ➤ We always hear that WiFi can be insecure.
 What does it actually mean?
- ➤ The SafeWifi campaign in Hong Kong:
 - http://www.safewifi.hk/

Threat Model

Compromise confidentiality and integrity of encrypted packets sent over WiFi

Roadmap

- ➤ WiFi basics
- >WEP & aircrack-ng
- >802.11i

Introduction to WiFi

- WiFi refers to the wireless LAN technology based on the IEEE 802.11 standard.
- > 802.11b
 - 2.4-5 GHz unlicensed spectrum
 - up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

- > 802.11a
 - 5-6 GHz range
 - up to 54 Mbps
- > 802.11g
 - 2.4-5 GHz range
 - up to 54 Mbps
- > 802.11n: multiple antennae
 - 2.4-5 GHz range
 - up to 200 Mbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN Architecture

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") contains:
 - wireless hosts
 - access point (AP): base station
- ➤ 802.11 LANs typically run infrastructure mode, which connects hosts to the wired network via the AP
 - ad hoc mode: for host-tohost only

802.11: Channels, association

- ➤ 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies; 3 non-overlapping
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- > AP regularly sends beacon frame
 - Includes SSID
- host: must associate with an AP
 - scans channels, listening for beacon frames
 - selects AP to associate with; initiates association protocol
 - may perform authentication
 - After association, host will typically run DHCP to get IP address in AP's subnet

802.11 frame: addressing

Address 2: source
MAC address
of wireless host or AP
transmitting this frame

802.11 frame: addressing

802.11 frame: addressing

802.11 frame: more

802.11: mobility within same subnet

- ➤ H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning: switch will see frame from H1 and "remember" which switch port can be used to reach H1

Roadmap

- ➤ WiFi basics
- ➤ WEP & aircrack-ng
- >802.11i

802.11 Sniffing

- ➤802.11 runs on a shared wireless medium, so sniffing is possible.
 - A wireless host can sniff traffic between another host and the AP (as long as in the same mode (e.g., 802.11b with 802.11b) and the same channel)

802.11 Sniffing

- >Two modes of sniffing:
 - promiscuous mode: capture all frames associated with the same AP (frames converted to 802.3 format)
 - monitor mode: sniff the raw 802.11 frames, including management frames and erroneous frames

802.11 Sniffing

- Requires wireless card that supports raw monitoring mode (rfmon)
 - Grabs all frames including management frames
- > Tools:
 - There are many. Dump packets into Wireshark; interfaces with GPS devices, storing physical location

Access control lists based on MAC addresses

- Do they work?
 - Attacker sniffs channel, obtains valid MAC address
 - Attacker modifies its MAC address to valid address

Firewalled Networks with Wi-Fi (1)

- Firewall blocks traceroutes,...
- Traffic sent by wireless hosts/APs not blocked by firewall
 - Leaking of internal information

- Trudy can traceroute and port scan through AP
 - Establish connections
 - Attempt to overtake

Firewalled Networks with Wi-Fi (2)

- Move AP outside of firewall?
 - Trudy can no longer tracetroute internal network via AP
 - But Trudy still gets everything sent/received by wireless hosts

Firewalled Networks with Wi-Fi (3)

- Crypto at link layer between wireless hosts and AP
 - Trudy doesn't hear anything
 - Trudy can not port scan
 - Wireless hosts can access internal services

WEP

- Wired Equivalent Privacy (WEP) protocol addresses the security problem in 802.11
 - confidentiality: prevents eavesdropping
 - access control: discards packets not encrypted properly
 - integrity: prevent tampering with messages
- ➤ However, WEP has several security flaws

Ref: Borisov et al.,, "Intercepting Mobile Communications: The Insecurity of 802.11", ACM Mobicom'01

How WEP Works?

- WEP relies on a security key k
- > Checksumming
 - Integrity checksum c(M) on message M
 - Plaintext P = <M, c(M)>
- > Encryption
 - Start with an initialization vector v
 - Use RC4, a stream cipher scheme, to generate a keystream (a long sequence of pseudorandom bytes): RC4(v, k)
 - Ciphertext C = P xor RC4(x, k)

How WEP Works?

- > Transmission
 - A \rightarrow B: v, (P xor RC4(v, k))
- ➤ Decryption:
 - Based on XOR as in encryption
 - Assume the receiver side uses same v and k
 - P' = C xor RC4(v, k)
 = (P xor RC4(v, k)) xor RC4(v, k)
 = P

How WEP Works?

> Illustration:

Decryption: (P xor RC4(v, k)) xor RC4(v, k) = P

Is WEP Secure?

- Security of WEP "relies on the difficulty of discovering the secret key through a brute-force attack", as claimed by the 802.11 standard
- ➤ Two key sizes:
 - 40 bits: vulnerable to brute force by a general computer
 - 128 bits: brute force more resourceful, but attack on WEP is still possible

Risks of Keystream Reuse

- In stream ciphers, encryption is performed by XORing the generated keystream with the plaintext
- > A well known pitfall for stream ciphers:
 - If encrypting two messages with same IV and key, then it reveals information about the plaintext
 - $C_1 = P_1 \text{ xor } RC4(v, k)$ $C_2 = P_2 \text{ xor } RC4(v, k)$ $\rightarrow C_1 \text{ xor } C_2 = P_1 \text{ xor } P_2$

Risks of Keystream Reuse

- ➤ Why it's bad?
- Imagine an application that sends a username followed by a password:
 - P_1 = user: pclee P_2 = pass: xxxxx
 - I can deduce the password for pclee by P₁ and P₂
 - This assumes that I have partial knowledge about plaintexts, but this assumption holds in many cases
- ➤ If n ciphertexts reuse the same keystream, I can generate n(n-1)/2 XOR pairs.
 - $C_i \times C_j = P_i \times C_j = P_i \times C_j$ for all I, j

Risks of Keystream Reuse

- To prevent keystream reuse, WEP uses a perpacket IV
- ➤ But, not help much due to poor IV management in WEP:
 - The shared secret key rarely changes in practice
 - WEP only uses 24-bit IV
 - same IV will be reused very soon
 - half-day for sending 1500-byte pkts at 5Mbps
 - IV's are public, so I know when an IV is reused

Message Authentication

- ➤ WEP uses CRC-32 checksum to ensure the integrity of messages in transit
- ➤ Yet, a CRC checksum doesn't prevent an attacker from tampering with the message
 - CRC is vulnerable, making WEP also vulnerable
- > Attacks on message integrity:
 - Message modification
 - Message Injection

Message Modification

- Property 1: WEP checksum is a linear function of message:
 - c(x xor y) = c(x) xor c(y)
- ➤ Suppose that C is a ciphertext for message M. An attacker can replace with another ciphertext C' that will decrypt to message M', where M' = M + d
 - Imagine M stands for your salary. You can set
 M' = M + 1000000

Message Modification

- >An attacker generates C' such that
 - C' = C xor <d, c(d)>
 = RC4(v, k) xor <M, c(M)> xor <d, c(d)>
 = RC4(v, k) xor <M xor d, c(M) xor c(d)>
 = RC4(v, k) xor <M', c(M xor d)>
 = RC4(v, k) xor <M', c(M')>
- ➤ The receiver side will just take C', even it's generated by the attacker
- > The attacker doesn't need to know k

Message Injection

- Property 2: WEP checksum is unkeyed function of message
- If an attacker knows a mapping of <plaintext, ciphertext> = <P, C>, then

$$P xor C = P xor (P xor RC4(v, k)) = RC4(v, k)$$

- An attacker can construct any ciphertext for any message M':
 - $C' = \langle M', c(M') \rangle \times RC4(v, k)$

Message Injection

- ➤ Property 3: It's possible to reuse old IV values without triggering any alarms at the receiver
 - Once we know IV v and the corresponding RC4(v, k), then we can reuse the IV forever

WEP Crypto Problem

- ➤ Weak Key Attack on RC4
 - Deduce the RC4 key by observing many IVs and encrypted packets
 - Presented in the paper: Scott Fluhrer, Itsik Mantin, and Adi Shamir, "Weaknesses in the Key Scheduling Algorithm of RC4".

WEP Crypto Problem

- ➤ A more advanced attack, called the PTW approach, was published in 2007 and it needs fewer IVs to crack WEP key
- The attack is implemented in the tool like aircrack-ng
 - http://www.aircrack-ng.com
- > See Demo
 - Suppose WEP-encrypted traffic is captured via monitored mode and saved in a file ptw.pcap
 - Example: ./aircrack-ng -a 1 -n 64 ptw.cap

Summary of WEP Flaws

- ➤ Many flaws in WEP
 - Stream ciphers based on XORs
 - Small IV space (only 24 bits)
 - Weak checksum
 - Crypto problem in RC4

Roadmap

- ➤ WiFi basics
- >WEP & aircrack-ng
- **>**802.11i

IEEE 802.11i

- Much stronger encryption
 - TKIP (temporal key integrity protocol)
 - But use RC4 for compatibility with existing WEP hardware
- Extensible set of authentication mechanisms
 - Employs 802.1X authentication
- > Key distribution mechanism
 - Typically public key cryptography
 - RADIUS authentication server
 - distributes different keys to each user
 - also there's a less secure pre-shared key mode
- > WPA: Wi-Fi Protected Access
 - Pre-standard subset of 802.11i

TKIP: Changes from WEP

- Message integrity scheme that works
- IV length increased
- Rules for how the IV values are selected
- Use IV as a replay counter
- Generates different message integrity key and encryption key from master key
- Hierarchy of keys derived from master key
- Secret part of encryption key changed in every packet.
- Much more complicated than WEP!

TKIP: Message integrity

- Uses message authentication code (MAC); called a MIC in 802.11
- Different keys from encryption key
- Source and destination MAC addresses appended to data before hashing
- ➤ Before hashing, key is combined with data with XORs (not just a concatenation)
- > Computationally efficient

TKIP: IV Selection and Use

- > IV is 56 bits
 - 10,000 short packets/sec
 - WEP IV: recycle in less than 30 min
 - TKIP IV: 900 years
 - Must still avoid two devices separately using same key
- > IV acts as a sequence counter
 - Starts at 0, increments by 1
 - But two stations starting up use different keys:
 - MAC address is incorporated in key

WPA2

- >WPA2 has replaced WPA
- ➤ WPA2 implements the mandatory elements of 802.11. In particular, it introduces CCMP, a new AES-based encryption mode with strong security.
- ➤ aircrack-ng uses dictionary attack to crack WPA/WPA2 keys

Authentication

- WPA/WPA2 also includes Extensible Authentication Protocol (EAP) to authenticate wireless users
 - uses authentication server separate from access point
 - only authenticated clients can use the network
 - EAP: end-end client to authentication server protocol
 - EAP sent over separate "links"
 - client-to-AP (EAP over LAN)
 - AP to authentication server (RADIUS over UDP)

Authentication

> Illustration

Modern access points can also act as authentication servers

Preventions Against Sniffing

- ➤ Use strong link-level encryption (WPA2)
- ➤ Authenticate wireless users with protocols like 802.11x/RADIUS
- Use application-level or network-level encryption:
 - AES (application-level)
 - IPSec/VPN (network-level)

Other Vulnerabilities of 802.11

- ➤ Besides sniffing, 802.11 has other security vulnerabilities
- Identity vulnerabilities:
 - 802.11 nodes are identified at the MAC layer with globally unique 12 byte addresses (i.e., sender and receiver MAC addresses)
 - No way to tell the correctness of self-reported identity (just like ARP spoofing)
- Media access vulnerabilities:
 - Medium is shared by many nodes
 - If one node sends, other nodes wait until the medium is idle
 - One attacker node can occupy the medium via RTS/CTS messages and deny other nodes from accessing the medium

Other Vulnerabilities of 802.11

- >(Optional) Reading:
 - John Bellardo and Stefan Savage, "802.11
 Denial-of-Service Attacks: Real Vulnerabilities and Practical Solutions", USENIX Security Symposium, 2003.

References

- Some slides are adapted from http://cis.poly.edu/~ross/networksecurity/SecureWiFi.ppt
- Required Reading:
 - Borisov et al., "Intercepting Mobile Communications: The Insecurity of 802.11", ACM MOBICOM '01
- Optional Readings
 - SANS Institute, "802.11i (How we got here and where are we headed)", 2004
 - John Bellardo and Stefan Savage, "802.11 Denial-of-Service Attacks: Real Vulnerabilities and Practical Solutions", USENIX Security Symposium, 2003.
 - Scott Fluhrer, Itsik Mantin, and Adi Shamir, "Weaknesses in the Key Scheduling Algorithm of RC4", Selected Areas in Cryptography 2001