Лабораторна робота №3

Розв'язання оптимізаційних задач

Мета: Вивчити основні бібліотеки для розв'язання оптимізаційних задач на мові програмування Python.

2. Завдання:

- 1. Моделювання та розв'язання задачі лінійного програмування:
 - а. Оберіть завдання за номером журналу групи
 - b. Опишіть введені змінні.
 - с. Створіть математичну модель задачі.
 - d. Знайдіть рішення, використовуючи графічне представлення задачі лінійного програмування. Малюнок повинен містити лінії з їх рівняннями, виділеною напівплощиною, що задовольняє вихідним нерівностям, область допустимих рішень, точку оптимального рішення, лінію рівня.
 - e. Розв'яжіть задачу за допомогою scipy.optimize.
 - f. Розв'яжіть задачу за допомогою pulp.LpProblem.
 - g. Порівняйте рішення за допомогою np.allclose ().
 - h. Порівняйте час для розв'язання задачі за допомогою scipy.optimize та pulp.LpProblem.
 - і. Поясніть отриманий результат.
- 2. Розв'язання транспортної задачі.
 - а. Опишіть введені змінні.
 - b. Створіть математичну модель задачі.
 - с. Вирішіть проблему за допомогою scipy.optimize.
 - d. Поясніть отриманий результат.

Варіанти завдань

- **1.** План випуску деталей 1 типу не менш, ніж 1100 одиниць, 2 типу 900 одиниць та 3 типу 700 одиниць. При розкрої стандартного листа одним варіантом отримують 7 деталей 1 типу, 5 2 типу, 9 третього типу та 0,2 ум. одиниць залишків. Другий варіант розкрою дає 3 деталі 1 типу, 4 другого типу, 2 3 типу та 0,3 ум. од. залишків. Визначити, скільки листів треба кроїти кожним із варіантів так, щоб був виконаним план випуску, а сума залишків була мінімальною..
- **2** При виготовленні продукції двох видів Π_1 і Π_2 використовується 4 типа сировини: C_1 , C_2 , C_3 і C_4 , умовні одиниці записів яких та норми їх споживання для випуску одиниці продукції приведені у таблиці. Прибуток від реалізації одиниці Π_1 дорівнює 7 ум. од., а Π_2 5 ум. од. Скласти такий план випуску продукції, який забезпечує тах прибутку від її реалізації.

Вигляд продукції	Π_1	Π_2	Запас сировини
Bill this in bod i Redii	1	Z	Sanas Cirpobinini

C_1	2	8	19
C_2	2	1	13
C_3	0	3	15
C_4	3	0	18
Здобуток від реалізації	7	5	
одиниці продукції			

- **3.** Для виготовлення бетонної суміші необхідно не менш, ніж 300 ум. од. цементу і 850 ум. од. гранітної крихти. У сировині двох видів C_1 і C_2 , яку пропонують підприємству, наявність складових суміші така: C_1 12 і 24 ум. од., C_2 25 і 13 ум. од. Скільки треба придбати сировини кожного виду, щоб сумарні витрати були мінімальними, якщо умовна одиниця сировини C_1 коштує 18 ум. од., а C_2 13 ум. од.
- **4.** Для збереження здоров'я та працездатності людина повинна отримувати за добу не менш, ніж: 12 ум. од. білків, 10 ум. од. жирів, 16 ум. од. вуглеводів, 10 ум. од. води та 3 ум. од. вітамінів. Місткість цих елементів у двох типах їжі Π_1 і Π_2 та вартість їжі наведені у таблиці. Скласти раціон харчування так, щоб споживач отримав необхідну кількість усіх наведених елементів і при цьому його витрати були б мінімальними.

	Білки	Жири	Вуглеводи	Вода	Вітаміни	Вартість
Π_{l}	3	1	2	2	1	2
Π_2	2	5	4	2	0,5	3

- **5.** Для складання 1 виробу необхідні 2 деталі \mathcal{L}_1 та 1 деталь \mathcal{L}_2 . Їх можна отримати двома способами: 1 спосіб дає 6 деталей \mathcal{L}_1 та 4 деталі \mathcal{L}_2 із одиниці сировини: 0,06 ум. од. відходів; 2 спосіб, відповідно, 1 деталь \mathcal{L}_1 та 2 деталі \mathcal{L}_2 і 0,05 ум. од. відходів. Скільки одиниць сировини і якими способами треба обробити, щоб виготовити не менш, ніж 70 виробів. При цьому відходи повинні бути мінімальними
- **6.** Для підживлення рослин необхідно внести на один гектар: не менш, ніж 24 ум. од. хімічної речовини B_1 , 30 ум. од. $-B_2$ і 15 ум. од. $-B_3$. Усі ці речовини містяться у комбінованих добавках V_1 та V_2 у кількостях, які наведені у таблиці. Яку кількість комбінованих добрив кожного типу треба придбати, щоб забезпечити внесення необхідної кількості хімічних речовин, зробивши при цьому мінімальні витрати.

		B_1	B_2	B_3	Вартість 1 ум.
					ОД.
	Y_1	3	4	1	3
Ī	V_2	2	5	3	5

7. Для виготовлення залізобетонних конструкцій двох типів Π_1 і Π_2 , вартість яких 25 та 15 ум. од. відповідно, використовуються металеві конструкції трьох типів: K_1 , K_2 та K_3 , запаси яких на виробництві відповідно 40, 65 та 80

- ум. од. Для виготовлення конструкції Π_1 необхідні 2 ум. од. K_1 , 3 ум. од. K_2 і 4 ум. од. K_3 , а для виготовлення конструкції Π_2 необхідні 1 ум. од. K_1 , 2 ум. од. K_2 і 2 ум. од. K_3 . Скласти план випуску залізобетонних конструкцій, який би забезпечив підприємству максимальний прибуток.
- **8**. Місячний план цеху крою є 1000 одиниць деталей Π_1 та 6000 одиниць деталей Π_2 . При кроєнні 1 ум. од. матеріалу 1 способом отримують 10 одиниць деталей Π_1 і 90 одиниць Π_2 . 2 спосіб крою дає, відповідно, 30 одиниць Π_1 і 40 одиниць Π_2 . Визначити число ум. од. матеріалу, які треба кроїти кожним із способів, щоб забезпечити сумарний мінімум відходів, якщо 1 спосіб із кожної ум. од. матеріалу дає 0,2 ум. од. відходів, а 2 спосіб 0,31 ум. од.
- 9. На обладнанні, яке є на підприємстві, за зміну можна виготовити або 400 виробів типу Π_1 , або 100 виробів типу Π_2 , вартість одиниці кожного з яких відповідно 18 та 54 ум. од. Скласти план випуску продукції, який би забезпечив максимальний прибуток, якщо цех фарбування може за зміну обробити не більш, ніж 300 виробів будь-якого типу.
- **10**. Для виробництва двох типів бетонних сумішей E_1 і E_2 використовується сировина, яку добувають у трьох кар'єрах C_1 , C_2 і C_3 , потужність яких відповідно дорівнює 34, 42 і 60 ум. од. Виготовлення 1 ум. од. E_1 потребує 3 ум. од. сировини із E_1 , 1 ум. од. сировини із E_2 та 4 ум. од. сировини із E_3 . Для E_2 це, відповідно, 1, 4 і 5 ум. од. Скласти план випуску бетонних сумішей, який забезпечує максимальний прибуток, якщо 1 ум. од. E_1 коштує 3 ум. од., а E_2 5 ум. од.
- **11**. Для виготовлення двох видів виробів A та B використовується токарне, фрезерне та зварювальне обладнання. Витрати часу на обробку одного з виробів для кожного з типів обладнання указані у таблиці. У ній же вказані загальний фонд робочого часу кожного з типів обладнання, а також прибуток від реалізації одного виробу кожного виду.

	Затрати часу на	Загальний фонд			
Тип обладиония	виробу (робочого часу			
Тип обладнання	A	В	обладнання		
			(годин)		
фрезерне	2	4	120		
токарне	1	8	280		
зварювальне	7	4	240		
Прибуток	10	14			

Визначити, скільки виробів та якого виду треба виготовити, щоб мати максимальний прибуток.

12. Кондитерська фабрика для виготовлення двох видів карамелі A і B на новому обладнанні використовує три види сировини: цукор, патоку та

фруктове пюре. Норми витрати сировини кожного виду приведені в таблиці (на виготовлення 1 т карамелі даного виду). У ній же вказана загальна кількість сировини кожного виду, яка може бути використана фабрикою, а також наведений приріст продуктивності праці на 1 т карамелі даного виду. Знайти план виробництва карамелі, який забезпечує максимальний приріст продуктивності праці на новому обладнанні.

	Норми вит	Загальна		
Види сировини	кар	рамелі	кількість	
	A	В	сировини (т)	
цукор	0,8	0,5	800	
патока	0,4	0,4	600	
фруктове пюре	-	0,1	120	
Приріст продукції на 1 т	108	112		
сировини (%)				

Варіанти для завдання 2

Транспортна задача: задано 4 постачальники і 5 замовників для перевезення однорідного вантажу. Кожен i-й постачальник має a_i (i=1, 2, ..., m) одиниць вантажу, а кожному j-му замовнику потрібно доставити b_j (j=1, 2, ..., n) одиниць вантажу. Задані тарифи (вартості) c_{ij} перевезення одиниці вантажу від будь-якого i-го постачальника до будь-якого j-го замовника. Транспортному підприємству, яке виконує перевезення вантажів, необхідно визначити скільки одиниць вантажу x_{ij} потрібно перевезти від кожного i-го постачальника до кожного j-го замовника щоб здійснити перевезення усіх вантажів з мінімально-можливою загальною вартістю усіх перевезень

				1				2							3					
i/j	1	2	3	4	5	a_i	1	2	3	4	5	a_i	1	2	3	4	5	a_i		
1	12	8	7	10	9	85	12	5	7	10	9	85	10	8	7	12	9	85		
2	4	5	11	3	14	110	4	5	11	3	10	110	4	6	5	3	14	110		
3	15	10	6	5	9	65	15	12	6	5	9	65	15	10	6	5	7	65		
4	16	8	6	4	5	80	16	8	6	4	5	80	11	3	6	4	5	80		
b_i	90	70	70	60	50	340	90	70	70	60	50	340	90	70	70	60	50	340		
				4						5					Ć	5				
i/j	1	2	3	4	5	a_i	1	2	3	4	5	a_i	1	2	3	4	5	a_i		
1	12	6	7	5	9	85	17	8	3	9	5	85	14	8	7	15	9	85		
2	4	5	11	3	16	110	4	5	4	3	18	110	4	5	11	8	14	110		
3	15	9	6	5	9	65	11	10	6	5	9	65	15	12	6	5	9	65		
4	12	10	6	4	5	80	7	8	9	4	5	80	10	8	6	4	5	80		
b_i	90	70	70	60	50	340	90	70	70	60	50	340	90	70	70	60	50	340		
				7				8							Ç)				
i/j	1	2	3	4	5	a_i	1	2	3	4	5	a_i	1	2	3	4	5	a_i		
1	9	5	7	10	9	90	11	3	7	10	9	85	19	4	7	10	9	85		
2	8	15	11	3	12	70	4	5	11	3	7	110	4	5	11	3	14	110		
3	10	14	6	11	9	65	15	10	6	5	8	65	15	10	6	5	9	65		
4	16	5	7	4	8	75	6	8	6	4	5	80	12	8	9	8	5	80		

b_i	70	90	50	60	30	300	90	70	70	60	50	340	90	70	70	60	50	340		
	10							11						12						
i/j	1	2	3	4	5	a_i	1	2	3	4	5	a_i	1	2	3	4	5	a_i		
1	16	4	7	10	15	85	5	17	7	10	9	85	12	8	7	10	9	85		
2	4	5	11	3	10	110	4	5	11	3	14	110	4	5	11	3	14	110		
3	15	12	6	5	9	65	12	10	6	5	9	65	15	10	6	5	9	65		
4	10	8	12	4	5	80	11	8	6	4	16	80	16	8	6	4	5	80		
b_i	90	70	70	60	50	340	90	70	70	60	50	340	80	80	70	60	50	340		

3. Зміст звіту

- 1. Титульна сторінка звіту.
- 2. Тема та мета лабораторії.
- 3. Хід роботи:
 - а. Постановка задачі;
 - b. Таблиця для більш зручного подання постановки задачі;
 - с. Пояснення змінних задачі;
 - d. Математичні моделі для задач 1 і 2;
 - е. Графічне зображення для задачі 1;
 - f. Переліки вхідних комірок;
 - д. Відповіді у вихідних комірках;
 - h. Пояснення рішень.
- 4. Посилання на створений блокнот Jupyter на GitHub, наданий nbviewer.
- 5. Висновки.

Додаток 1

Приклад графічного рішення

Додаток 2.

Приклад пояснення розв'язання задачі.

```
con: array([], dtype=float64)
   fun: -12.66666666663677

message: 'Optimization terminated successfully.'
   nit: 5
   slack: array([9.946e-12, 1.994e-11, 3.000e+00, 6.667e-01])
   status: 0
   success: True
        x: array([3.333, 1.333])
Time:
0.014000892639160156
```

Рис. 2. Рішення, отримане за допомогою scipy.optimize ()

Пояснення: Для того, щоб отримати максимальний прибуток, який дорівнює 12,667, нам потрібно виготовити перший тип фарб у кількості 3,333, а фарби другого типу у розмірі 1,3333. Причому сировина першого та другого типів ϵ дефіцитною, тобто повністю (без залишків) використовується.