Prof. Asim Tewari IIT Bombay

Characteristic Function

The characteristic function of a random variable X is
$$\phi_{X}(t) \equiv E(e^{itx}) = \int e^{itx} f_{X}(x) dx$$

$$e^{itx} = \frac{1}{20} + \frac{itx}{21} + \frac{(itx)^{2}}{22} + \dots$$

$$f_{X}(t) = E\left[\frac{1}{20} + \frac{itx}{21} + \frac{(itx)^{2}}{22} + \dots\right]$$

$$= \frac{1}{20} + \frac{itE(x)}{21} + \frac{(it)^{2}E(x^{2})}{22} + \frac{(it)^{3}E(x^{3})}{23} + \dots$$

Characteristic Function

$$\therefore \phi(t) = \frac{1}{20} + \frac{itm_1}{20} + \frac{(it)^2 m_2}{20} + \cdots$$
where mn is the new moment of the n.v. \times
ie $m_n = E[x^n]$

$$\phi(t)$$
 = 1; $\frac{d}{dt} \phi(t)$ = im; $\frac{d}{dt} \phi(t)$ = (i) mn $\frac{d}{dt} \phi(t)$ = (i) mn

Moment generating Function

Amoment generating function of a
$$\pi.v. X$$
 is
$$M_{x}(t) = \phi_{x}(-it) = \int_{-\infty}^{\infty} e^{tx} f_{x}(x) dx$$

Now
$$\frac{d^{n} \phi_{x}(t)}{dt^{n}} = (i)^{n} m_{n} = \frac{d^{n} M_{x}(t)}{dt^{n}} = m_{n}$$

$$\frac{d^{n} \phi_{x}(t)}{dt^{n}} = m_{n}$$

$$\frac{d^{n} \phi_{x}(t)}{dt^{n}} = m_{n}$$

$$\frac{d^{n} M_{x}(t)}{dt^{n}} = m_{n}$$

$$\frac{d^{n} M_{x}(t)}{d$$

Characteristic Function

$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$

There is a one-to-one correspondence between the cumulatine distribution function and the characteristic function.

If the 9.v. has a probability density function $f_{x}(x)$ then $f_{x}(x) = F_{x}(x) = \frac{1}{2\pi} \int_{x} e^{-itx} \phi(t) dt$

Characteristic Function

$$\int_{X}^{1} (t) = \int_{Z}^{1} \frac{it \, m_{1} + (it)^{2} \, m_{2} + (it)^{3} \, m_{3} + \dots}{L^{2}}$$

If a r.v. x how $u = 0$ and $\sigma^{2} = 1$, i.e. $X \sim (0, 1)$

Then $\phi(t) = 1 + 0 - \frac{t^{2}}{2} + 0(t^{2})$ For $N(u, \sigma^{2})$

then $\phi_{x}(t) = 1 + 0 - \frac{t^{2}}{2} + 0(t^{2})$ For $N(u, \sigma^{2})$

For a normal distribution $N(u, \sigma^{2})$ fx = $\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(x-u)^{2}}$
 $\phi_{x}(t) = e^{itu - \frac{1}{2}\sigma^{2} + 2}$

For $N(0, 1)$
 $\phi_{x}(t) = e^{-\frac{t^{2}}{2}}$

and for $N(0, 1)$ $\phi_{x}(t) = e^{-\frac{t^{2}}{2}}$

Sample mean
$$\overline{X}_n = \frac{1}{n} \underbrace{\sum_{i=1}^{n} X_i}$$

Expected value of the sample mean is
$$E[\overline{X}_n] = E[\underbrace{\frac{1}{n} \sum_{i=1}^{n} X_i}] = \frac{1}{n} (\underbrace{\sum_{i=1}^{n} E[X_i]})$$

$$= \frac{1}{n} (\underbrace{\sum_{i=1}^{n} X_i}] = \frac{1}{n} n u = u$$

Variance of the sample mean
$$Vor(X_n)$$

 $Vor(X_n) = Vor(\sum_{i=1}^{n} X_i) = \frac{1}{n^2} \sum_{i=1}^{n} Vor(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2$

$$- > Vor(Xn) = \frac{n}{n^2}6^2 = \frac{6^2}{n}$$

Mean of sample mean
$$E(Xn) = M$$

and Voriance of sample mean $Var(Xn) = \frac{6^2}{n}$

Now we define
$$2\pi = \frac{\pi \times n - nu}{6\sqrt{n}}$$

$$= \frac{\pi}{2} \frac{1}{2} \underbrace{\sum_{i=1}^{n} x_i - nu}_{6\sqrt{n}} = \underbrace{\sum_{i=1}^{n} x_i - nu}_{6\sqrt{n}}$$

$$= \underbrace{\sum_{i=1}^{n} (x_i - u)}_{6\sqrt{n}}$$

$$= \underbrace{\sum_{i=1}^{n} (x_i - u)}_{6\sqrt{n}}$$

$$= \underbrace{\sum_{i=1}^{n} x_i - nu}_{6\sqrt{n}} = \underbrace{\sum_{i=1}^{n} x_i - u}_{6\sqrt{n}}$$

$$= \underbrace{\sum_{i=1}^{n} x_i - nu}_{6\sqrt{n}} = \underbrace{\sum_{i=1}^{n} x_i - u}_{6\sqrt{n}}$$

$$= \underbrace{\sum_{i=1}^{n} x_i - nu}_{6\sqrt{n}} = \underbrace{\sum_{i=1}^{n} x_i - u}_{6\sqrt{n}} = \underbrace{\sum_{i=1}^{n}$$

$$Y_{i} = \underbrace{X_{i} - \mu}_{\delta} ; E(Y_{i}) = 0 \text{ and}$$

$$Vox(Y_{i}) = Vox(\underbrace{X_{i}}_{\delta}) = \frac{1}{6}e^{2} = 1$$

$$V_{i}(Y_{i}) = 1 - \frac{t^{2}}{2} + 0(t^{2})$$

$$E(Y_{i}) = \frac{1}{2}e^{2} = 1$$

$$E(Y_{i}) = 0 \text{ and}$$

$$E(Y_{$$

Central limit theorem $\geq \infty = \sum_{i=1}^{\infty} \frac{1}{\sqrt{2}}$

$$\therefore \phi_{2n}^{(t)} = \left[\phi_{y}(t/\tau_{n})\right]^{n} = \left[1 - \frac{t^{2}}{2n} + o\left(\frac{t}{n}\right)\right]^{n}$$

As we increase the sample singe n, we get the limit

Lim $\phi(t) = \lim_{n \to \infty} \left[1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n$ $-\frac{t^2}{2}$ This is same on the $= e^{-\frac{t^2}{2}}$ Shoratristic furtion for N(0,1)

Hence, $\lim_{n\to\infty} Z_n = N(0,1)$

$$\times_1$$
 \sim (M, σ^2) $\times_m = \frac{1}{m} \sum_{i=1}^m x_i$

$$\frac{2}{3} = \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$$

$$\lim_{n\to\infty} \mathbb{Z}_n \sim N(0,1) = \lim_{n\to\infty} \sqrt{m} \frac{(\mathbb{X}_n - u)}{n \to \infty} \sim N(0,1)$$

$$- \sum_{n \to \infty} \sqrt{n} \left(\frac{1}{x_n} + \mu \right) \sim N \left(0, \sigma^2 \right)$$

$$= \sum_{n \to \infty} \left(\overline{X}_n - \mu \right) \sim N \left(0, \frac{\sigma^2}{n} \right)$$

$$= \sum_{n \to \infty} (X_n - u) \sim N(0, \frac{\sigma^2}{n})$$

$$= \sum_{n \to \infty} (X_n - u) \sim N(0, \frac{\sigma^2}{n}) \sim N(u, \frac{\sigma^2}{n})$$

$$= \sum_{n \to \infty} (X_n - u) \sim u + N(0, \frac{\sigma^2}{n}) \sim N(u, \frac{\sigma^2}{n})$$

Central limit theorem

For Xi
$$\stackrel{?}{N}$$
 (\mathcal{U}, σ^2) if we define samplemen $\overline{X}_n = \frac{1}{n} \stackrel{?}{\underset{l=1}{\sum}} X_l$

then mean of sample mean (\overline{X}_n) is $\overline{X}_n = \frac{1}{n} \stackrel{?}{\underset{l=1}{\sum}} X_l$

and variance of sample mean (\overline{X}_n) is $\overline{X}_n = \frac{1}{n} \stackrel{?}{\underset{l=1}{\sum}} X_l$

Now by Central limit theorem, we get that

 $\overline{X}_n = \frac{1}{n} \stackrel{?}{\underset{l=1}{\sum}} X_l$
 $\overline{X}_n = \frac{1}{n} \stackrel{?}{\underset{l=1}{\sum}} X_l$
 $\overline{X}_n = \frac{1}{n} \stackrel{?}{\underset{l=1}{\sum}} X_l$
 $\overline{X}_n = \frac{1}{n} \stackrel{?}{\underset{l=1}{\sum}} X_l$

Sample mean=8.14

Distribution of Means, N=2

Application of Central limit theorem

Population

$$X_n = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Xi N (M, σ^2)

Find population mean from a sample fright

Population mean $M = E$ (sample moon) = $E(\frac{1}{N} \sum_{i=1}^{N} X_i)$

Population variance $\sigma^2 = E$ (sample variance) = $E(\frac{1}{N} \sum_{i=1}^{N} (X_n - X_i)^2)$

CLT him $N > \infty$ = N (M, σ^2)

$$X_{i} \stackrel{iid}{\wedge} (\mathcal{U}, \sigma^{2}) \qquad \overline{X}_{n} = \frac{1}{N} \underbrace{\sum_{i \in I}^{N} X_{i}}_{i \in I}$$

$$CLT \qquad Lim \qquad X_{n} = N(\mathcal{U}, \sigma^{2})$$

$$\mathcal{U} = \overline{X}_{n} \pm 2^{N} \underbrace{A}_{m} \underbrace{A}_{n} \underbrace{A}_{n}$$

Xi i'd (
$$\mu$$
, σ^2) If we take a sample of singe n then $X_n = \sum_{i=1}^{\infty} X_i$

Then for large n , $CLT = X_n \rightarrow N(\mu, \sigma^2)$

C 2^*
Therefore we can say with C confidence S sample S sampl

t-distribution

Solution of the state of fredom
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{$

Confidence Interval