EST-46114 Métodos Multivariados	Nombre:
Primavera 2018	C.U.:
Tarea 1	$1/\mathrm{Feb}/2018$

1. Suponga que un conjunto de n datos p dimensionales antes de ser observados pueden describirse con la variables aleatorias X_1, \ldots, X_n . Supongamos que las X_i s condicionalmente independientes con distribución homogénea, $N(x|\mu,\Sigma)$; siendo μ un vector p dimensional y Σ una matriz de dimensión $p \times p$ simétrica positivo definida. La descripción del desconocimiento acera de la especificidad de esta distribución es complementada suponiendo que (μ, Σ) son aleatorias y que ambas siguen una distribución normal-WishartInversa $(\mu, \Sigma) \sim N - WiI(\mu, \Sigma | m_0, s_0, S_0, n_0)$, con m_0, s_0, S_0, n_0 hiperparámetros fijos. Esquemáticamente, nos referimos al siguiente modelo bayesiano,

$$X_i|\mu, \Sigma \sim^{i.i.d.} N(x|\mu, \Sigma)$$
 (1)

$$\mu|\sigma \sim N(\mu|m_0, s_0\Sigma)$$

$$\Sigma \sim WiI(\Sigma|n_0, S_0).$$
(2)

$$\Sigma \sim WiI(\Sigma|n_0, S_0).$$
 (3)

Con base en lo anterior, deriva la distribución condicional de (μ, Σ) dado un conjunto de datos observados x_1, \ldots, x_n .

- 2. Con base en lo anterior, deriva la expresión analítica de la descomposición espectral de Σ. Así, desarrolla una función (en R, Python o Matlab) que:
 - lea un conjunto de datos genéericos escalares x_1, \ldots, x_n expreseados como aun matriz de $n \times p$
 - lea el conjunto de hiperparámetros m_0, s_0, S_0, n_0
 - ullet lea un número arbirtrario entero M
 - genere un conjunto de tamaño M de datos simulados i.i.d. $(\mu^{(m)}, \Sigma^{(m)})_{m=1}^{M}$ de la distribción final del inciso anterior
 - a cada $\Sigma^{(m)}$ le genere su descomposición espectral
 - almacede los datos simulados y los correspondientes a la descomposición espectral.

Por invarianza, se tiene que los datos $(\Lambda^{(m)}, P^{(m)})$ de la descomposición espectral corresponden a una muestra i.i.d. de la distribución condicional de (Λ, P) dados los datos, x_1, \ldots, x_n , cuya distribución existe pero no es necesaria de evidenciar analíticamente (es muy complejo!).

HINT: Para las derivaciones analíticas apoyense en el libro Press (2005, cap.3).