Remote Sensing Data Acquisition, 11 January 2022

$$\frac{\partial L_{t}}{\partial f} = \frac{2h}{c} 5f^{4} \left(\frac{1}{e_{1}} \frac{1}{e_{1}} \right) + \frac{h}{r_{0}r} \frac{e^{x}}{c^{3}} + \frac{2h}{c^{3}} \frac{f^{7}}{c^{3}}$$

- a) Define the following radiometric quantities and write explicitly their units of measurement:
 - radiance,

Exercise 1

- irradiance,
- radiant exitance.
- $\frac{\partial L_{f}}{\partial f} = \frac{10hf''}{10hf''} \frac{1}{e^{\kappa}} \frac{1}{t_{8}T} \frac{he^{\kappa k}}{t_{8}T} e^{\kappa} \frac{a^{h}f''}{c^{s}} = 0$ = $f = \frac{-5 \text{k} \text{ksT}}{\text{he}^{2}} = \frac{c}{h}$
- b) Write the formula for the spectral radiance of the black body as a function of the wavelength and explain its meaning.
- c) Starting from the definitions of emissivity and brightness temperature explain how the thermal radiation of any object can be described.
- d) Starting from the result of point b) obtain the formula of the spectral radiance of the black body as a function of the frequency.
- XX e) Starting from the result of point b) obtain an approximate formula for the wavelength of maximum spectral radiance; comment this result.
 - f) Plot qualitatively the spectral radiance of the black body for the following 3 temperatures: -100 °C, 0 °C, 2000 °C.

$$\frac{\Delta}{\exp\left(\frac{hf}{kgT}\right)-1}$$

$$\frac{C^{2}}{\lambda^{2}\cdot\lambda^{3}}$$

$$\frac{C^{2}}{\lambda^{2}\cdot\lambda^{3}}$$

$$\frac{C^{2}}{\lambda^{3}\cdot\lambda^{3}}$$

$$\frac{C^{3}}{\lambda^{3}\cdot\lambda^{3}}$$

Exercise 2

- a) Describe a simple aerial photographic system based on a single lens camera.
- b) Define the f/number of a lens and explain why this parameter is important in a photographic system.
- c) Define the resolution of a photographic film and, in the case of a single lens camera placed on a satellite, derive a formula for the film limited resolution on the ground.
- d) Explain how the resolution of a single lens camera is limited by diffraction and obtain a formula for the diffraction limited resolution on the ground.
- e) Let us consider a camera on board of a satellite orbiting at an altitude of 200 km, the film has a resolution of 150 lp/mm, the lens has a diameter of 8 cm and a focal length of 120 mm: is the ground resolution of the photos taken by the camera in the near infrared wavelength range limited by diffraction or by the film resolution?

 Justify the answer.

Remote Sensing Data Acquisition, 11 January 2022

Exercise 3

- (explain the meaning and importance of the following types of satellite orbits: polar, geosynchronous, geostationary.
- b) Explain how the motion of a two-dimensional detector array placed on a satellite can be exploited to acquire an image of a very large portion of the Earth's surface.
- c) Explain how the motion of a linear (one-dimensional) detector array placed on a satellite can be exploited to acquire an image of a very large portion of the Earth's surface.

$$t_{S} = \frac{1}{2r} + \frac{4}{r} = \frac{1}{2 \times \frac{150 \text{ lp}}{1 \text{ mm}}} \times \frac{200 \times 10^{3} \text{ m}}{120 \text{ mm}}$$

$$= 5.55 \left(\frac{\text{m}}{\text{lp}} \right)$$