Appl. No. 10/716,309 Amdt. dated May 4, 2007 Preliminary Amendment

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	2. (Currently Amended) The method according to claim 1 wherein the
2	design goal includes both routability and signal timing in the user design.
1	3. (Original) The method according to claim 1 wherein the circuit elements
2	include lookup tables and registers.
1	4. (Original) The method according to claim 1 wherein the circuit elements
2	include DSP blocks and RAM blocks.
1	5. (Canceled)
1	6. (Currently Amended) The method according to claim 5-1 wherein each of
2	the abstract blocks are grouped into a cluster based on an attraction of the abstract block to the
3	cluster, and the attraction measures a number of nets and connections of nets absorbed into the
4	cluster if the abstract block is placed inside the cluster.
1	7. (Currently Amended) The method according to claim 5-1 wherein each of
2	the abstract blocks are grouped into a cluster based on an attraction of the abstract block to the
3	cluster, and the attraction measures a number of timing critical connections absorbed into the
4	cluster if the abstract block is placed inside the cluster.
1	8. (Currently Amended) The method according to claim 5-1 wherein placing
2	a respective one or more of the abstract blocks into each of a plurality of logic blocks further
3	eomprises includes:
4	placing the abstract block into another logic block within the same cluster if
5	placing that abstract block into that specific logic block violates any of the design rules relating
6	to that specific logic block; and
7	placing the abstract block into another cluster if placing that abstract block into

that cluster violates any of the design rules relating to that cluster.

8

1	9. (Previously Presented) The method according to claim 1 wherein the
2	logic blocks implement functions performed by two lookup tables with less than an integer k
3	unique input variables; and the method further comprises:
4	determining whether placing an abstract block into a logic block causes that logic
5	block to have more than k unique input variables.
1	10. (Original) The method according to claim 1 wherein the placement
2	information includes floorplanning information.
1	11. (Original) The method according to claim 1 wherein the placement
2	information includes partition information.
1	
1	12. (Previously Presented) The method according to claim 1 wherein the
2	placement information includes data obtained by a previous placement of a portion of the user
3	design on the programmable integrated circuit.
1	13. (Canceled)
1	14. (Currently Amended) A computer program product stored on a computer
2	readable medium encoded with computer program instructions for controlling operation of a
3	computer system for designing a programmable integrated circuit, the computer program product
4	comprising:
5	computer program instructions for assigning each of a plurality of circuit elements
6	to a separate abstract block, wherein the each abstract block represents a functional attribute of
7	its assigned circuit element;
8	computer program instructions for placing a respective one or more of the abstract
9	blocks into each of a plurality of logic blocks based at least in part on a correspondence between
10	a functional attribute of a particular logic block and the functional attribute of an a respective
11	abstract block placed into that logic block, wherein a first abstract block is placed into a first
12	logic block, wherein the logic blocks are grouped into clusters of logic blocks, and wherein the

Appl. No. 10/716,309 Amdt. dated May 4, 2007 Preliminary Amendment

13	computer program instructions for placing a respective one or more of the abstract blocks into
14	each of a plurality of logic blocks includes:
15	computer program instructions for determining whether placing the
16	abstract blocks into the clusters violates any design rules of the clusters; and
17	computer program instructions for determining whether placing the
18	abstract blocks into the logic blocks violates any design rules of the logic blocks;
19	computer program instructions for determining whether placement information
20	indicates that a design goal would be improved by moving at least one of the abstract blocks into
21	a different logic block, wherein the design goal includes at least one of routability and signal
22	timing in the user design; and
23	computer program instructions for removing the first abstract block from a first
24	logic block and placing the first abstract block into a second logic block in response to the
25	determination based on the placement information, wherein the functional attribute of the
26	removed first abstract block corresponds with a functional attribute of the second logic block.
1	15. (Currently Amended) The computer program product as defined in claim
2	14 wherein the design goal includes <u>both</u> signal timing and routability in the user design.
1	16. (Currently Amended) The computer program product as defined in claim
2	14-wherein the logic blocks are grouped into clusters of logic blocks, and the computer program
3	instructions for placing a respective one or more of the abstract blocks into each of a plurality of
4	logic blocks further comprises, further comprising computer program instructions for grouping
5	each of the abstract blocks into a cluster of logic blocks based on an attraction of the abstract
6	block to the cluster.
1	17. (Canceled)
1	18. (Original) The computer program product as defined in claim 14 wherein
2	some of the circuit elements are lookup tables, and some of the circuit elements are registers.

1	19. (Original) The computer program product as defined in claim 16 wherein
2	the attraction measures a number of nets and connections of nets absorbed into the cluster if the
3	abstract block is placed inside the cluster.
1	20. (Original) The computer program product as defined in claim 16 wherein
2	the attraction measures a number of timing critical connections absorbed into the cluster if the
3	abstract block is placed inside the cluster.
1	21. (Previously Presented) The computer program product as defined in claim
2	17 further comprising:
3	computer program instructions for placing one of the abstract blocks into another
4	logic block if placing that abstract block to the logic block violates any of the design rules
5	relating to the logic block in which that abstract block was first placed.
1	22. (Previously Presented) The computer program product as defined in claim
2	17 further comprising:
3	computer program instructions for placing one of the abstract blocks to another
4	cluster if placing that abstract block to the first cluster violates any of the design rules relating to
5	the first cluster.
1	23. (Previously Presented) The computer program product as defined in claim
2	14 further comprising:
3	computer program instructions for determining whether placing the abstract
4	blocks into the logic blocks causes any of the logic blocks to have more than k unique input
5	variables,
6	wherein the logic blocks are configurable to implement functions performed by
7	two lookup tables with less than k unique input variables.
1	24. (Original) The computer program product as defined in claim 14 wherein

the placement information includes floorplanning information.

2

2

1	25. (Original) The computer program product as defined in claim 14 wherein
2	the placement information includes partition information.
1	26. (Original) The computer program product as defined in claim 14 wherein
2	the placement information includes data obtained by placing logic blocks that implement
3	portions of the user design on the programmable integrated circuit.
1	27. (Previously Presented) The method of claim 1, wherein each logic block
2	includes a first functional attribute and a second functional attribute, and wherein placing each of
3	the abstract blocks into a logic block further comprises:
1	assigning the first abstract block associated with a first circuit element to the first
5	functional attribute of the first logic block; and
5	assigning a second abstract block associated with a second circuit element to the
7	second functional attribute of the first logic block, such that the first logic block is assigned the
3	functional attributes of the first and second circuit elements.
1	28. (Previously Presented) The method of claim 27, wherein the first
2	functional attribute of the logic block includes a register and the functional attribute of the first
3	circuit element includes a register.
1	29. (Previously Presented) The method of claim 27, wherein the second
2	functional attribute of the logic block includes a look-up table circuit adapted to implement a
3	logic function and the functional attribute of the first circuit element includes a logic function
4	capable of being implemented by the look-up table circuit.
1	29. (Previously Presented) The method of claim 1 wherein a second abstract

block is placed into the first logic block prior to removing the first abstract block.