Package 'saturnin'

October 14, 2022

Type Package

Index

Title Spanning Trees Used for Network Inference

Version 1.1.1		
Date 2015-07-22		
Author Loïc Schwaller		
Maintainer Loïc Schwaller <loic.schwaller@ens-lyon.org></loic.schwaller@ens-lyon.org>		
Description Bayesian inference of graphical model structures using spanning trees.		
Suggests parallel		
Imports Rcpp		
LinkingTo Rcpp, RcppEigen		
License GPL-2		
Encoding UTF-8		
NeedsCompilation yes		
Repository CRAN		
Date/Publication 2015-07-23 11:35:07		
R topics documented:		
•		
saturnin-package		
account.for.prior		
data_gaussian		
data_multinomial		
edge.prob		
lweights_gaussian		
lweights_multinomial		
prior_unif_dirichlet		
weights_gausscopula		

10

account.for.prior

saturnin-package

Spanning Trees Used for Network Inference

Description

Bayesian inference of graphical model structures using spanning trees. For further details on the considered framework, we refer the reader to the paper quoted in the references section.

Details

Package: saturnin Type: Package Version: 1.0

Date: 2015-04-10 License: GPL-2

Author(s)

Loïc Schwaller

Maintainer: Loïc Schwaller <loic.schwaller@ens-lyon.org>

References

This package implements the method described in the paper "Bayesian Inference of Graphical Model Structures Using Trees" by L. Schwaller, S. Robin, M. Stumpf, 2015 (submitted and availavable on arXiv).

Examples

```
library('saturnin')
data(data_gaussian)

W <- lweights_gaussian(data_gaussian)
prob <- edge.prob(W, log = TRUE, account.prior = TRUE, q0 = 0.5)</pre>
```

account.for.prior

Accounting for prior edge appearance probability.

data_gaussian 3

Description

The function transforms the posterior edge appearance probability matrix given by edge.prob to account for prior edge appearance probability. For further details on the transformation, we refer the reader to the paper quoted in the references section. The function can be directly applied in edge.prob by setting account.prior to TRUE.

Usage

```
account.for.prior(prob, q0)
```

Arguments

Posterior edge appearance probability matrix.

Q0 Desired prior edge appearance probability.

Value

prob.q0 Transformed posterior edge appearance probability matrix.

Author(s)

Loïc Schwaller

References

This package implements the method described in the paper "Bayesian Inference of Graphical Model Structures Using Trees" by L. Schwaller, S. Robin, M. Stumpf, 2015 (submitted and available on arXiv).

Examples

```
library('saturnin')
data(data_gaussian)

W <- lweights_gaussian(data_gaussian)
prob <- edge.prob(W, log = TRUE)

prob.q0 <- account.for.prior(prob, q0 = 0.5)</pre>
```

data_gaussian

Gaussian data.

Description

Sample of size n=100 from a multivariate gaussian distribution with p=50 variables.

Usage

```
data("data_gaussian")
```

4 edge.prob

Format

The format is: num [1:50, 1:100] 1.001 -0.21 0.513 0.166 2.135 ...

Examples

```
data(data_gaussian)
```

data_multinomial

Multinomial data.

Description

Sample of size n = 100 from a multinomial distribution with p = 100 variables.

Usage

```
data("data_multinomial")
```

Format

The format is: int [1:100, 1:100] 8 10 5 3 2 8 3 5 8 3 ...

Examples

```
data(data_multinomial)
```

edge.prob

Computation of posterior edge appearance probabilities in a random tree.

Description

The function computes posterior edge appearance probabilities in a random tree from a (log-)weight matrix. The (log-)weight matrix can be obtained from one of the functions lweights_multinomial, lweights_gaussian or weights_gausscopula. The function can also account for prior edge appearance probability.

Usage

```
edge.prob(W, log = TRUE, account.prior = FALSE, q0 = 0.5)
```

Arguments

W (log-)weight matrix

log TRUE when using a log-weight matrix, FALSE otherwise.

account.prior FALSE for no accounting, TRUE otherwise. q0 Desired prior edge appearance probability. lweights_gaussian 5

Value

prob

Posterior edge appearance probability matrix.

Author(s)

Loïc Schwaller

References

This package implements the method described in the paper "Bayesian Inference of Graphical Model Structures Using Trees" by L. Schwaller, S. Robin, M. Stumpf, 2015 (submitted and available on arXiv).

Examples

```
library('saturnin')
data(data_gaussian)

W <- lweights_gaussian(data_gaussian)
prob <- edge.prob(W, log = TRUE, account.prior = TRUE, q0 = 0.5)</pre>
```

lweights_gaussian

Computation of the log-weight matrix in a gaussian setting.

Description

The function computes the log-weights of all edges in a gaussian setting. The result should be used in edge.prob with argument log set to TRUE. Usual values are used as default for the prior normal-Wishart hyperparameters. Computation can be parallelized by setting nbcores to more than 2. Parallelization relies on parallel.

Usage

```
lweights_gaussian(data,
    a = ncol(data),
    mu = numeric(p),
    au = 1,
    T = diag(ncol(data),
    ncol(data)),
    nbcores = 1)
```

Arguments

data	Matrix containing continuous data.
а	Prior degree of freedom of the normal-Wishart distribution.
mu	Prior mean for the mean of the normal-Wishart distribution.
au	Prior relative precision of the normal-Wishart distribution.

T Prior scale matrix of the normal-Wishart distribution.

Number of cores to be used in parallelized computation.

Value

W log-weight matrix

Author(s)

Loïc Schwaller

References

This package implements the method described in the paper "Bayesian Inference of Graphical Model Structures Using Trees" by L. Schwaller, S. Robin, M. Stumpf, 2015 (submitted and available on arXiv).

Examples

```
library('saturnin')
data(data_gaussian)

W <- lweights_gaussian(data_gaussian)
prob <- edge.prob(W, log = TRUE)</pre>
```

lweights_multinomial Computation of the log-weight matrix in a multinomial setting.

Description

The function computes the log-weights of all edges in a multinomial setting. The result should be used in edge.prob with argument log set to TRUE. Prior counts can be generated using the function prior_unif_dirichlet. Computation can be parallelized by setting nbcores to more than 2. Parallelization relies on parallel.

Usage

```
lweights_multinomial(data, prior = defaut.prior, nbcores = 1)
```

Arguments

data Matrix containing discrete data.

prior Prior to be used for the Dirichlet distribution.

nbcores Number of cores to be used in parallelized computation.

prior_unif_dirichlet 7

Value

W log-weight matrix.

Author(s)

Loïc Schwaller

References

This package implements the method described in the paper "Bayesian Inference of Graphical Model Structures Using Trees" by L. Schwaller, S. Robin, M. Stumpf, 2015 (submitted and availavable on arXiv).

Examples

```
library('saturnin')
data(data_multinomial)

W <- lweights_multinomial(data_multinomial)
prob <- edge.prob(W, log = TRUE)</pre>
```

Description

Usage

```
prior_unif_dirichlet(p, r, Neq = 0.5 * r^2)
```

Arguments

p Number of variables.r Number of levels.Neq Equivalent sample size.

Value

prior A(r, r, p, p)-array containings counts.

Author(s)

Loïc Schwaller

References

This package implements the method described in the paper "Bayesian Inference of Graphical Model Structures Using Trees" by L. Schwaller, S. Robin, M. Stumpf, 2015 (submitted and availavable on arXiv).

Examples

```
library('saturnin')
p <- 100
r <- 10
prior <- prior_unif_dirichlet(p,r)</pre>
```

weights_gausscopula

Computation of the weight matrix in a gaussian copula setting.

Description

The function computes the weights of all edges in a gaussian copula setting. The result should be used in edge.prob with argument log set to FALSE. The function brings the values of all variables back to [0;1] by computing univariate empirical cdf functions. The prior distribution for the correlation of the bivariate gaussian copulas prior can be set to either "uniform" or "beta". Beta prior is understood as a beta distribution with a change of variables to bring it back to [-1;1]. Computation can be parallelized by setting nbcores to more than 2. Parallelization relies on parallel.

Usage

```
weights_gausscopula(data, prior_type = "uniform", a = 1, b = 1, nbcores = 1)
```

Arguments

data Matrix containing the data.

prior_type Prior to be used for the correlation.

a Shape parameter 1 for beta prior.

b Shape parameter 2 for beta prior.

nbcores Number of cores to be used in parallelized computation.

Value

W weight matrix.

Author(s)

Loïc Schwaller

weights_gausscopula 9

References

This package implements the method described in the paper "Bayesian Inference of Graphical Model Structures Using Trees" by L. Schwaller, S. Robin, M. Stumpf, 2015 (submitted and available on arXiv).

Examples

```
library('saturnin')
data(data_multinomial)

W <- weights_gausscopula(data_multinomial)
prob <- edge.prob(W, log = FALSE)</pre>
```

Index

```
* bayesian inference
    saturnin-package, 2
* datasets
    data_gaussian, 3
    data_multinomial, 4
* gaussian copula
    weights_gausscopula, 8
* gaussian
    lweights_gaussian, 5
* graphical models
    saturnin-package, 2
* hyper Markov
    saturnin-package, 2
* hyper dirichlet
    prior_unif_dirichlet, 7
* multinomial
    lweights_multinomial, 6
* network inference
    saturnin-package, 2
* posterior edge probability
    account.for.prior, 2
    edge.prob, 4
* spanning trees
    saturnin-package, 2
account.for.prior, 2
data_gaussian, 3
data_multinomial, 4
edge.prob, 3, 4, 5, 6, 8
{\tt lweights\_gaussian}, {\tt 5}
lweights_multinomial, 6, 7
prior_unif_dirichlet, 7
saturnin(saturnin-package), 2
saturnin-package, 2
{\tt weights\_gausscopula}, 8
```