

Nicosia Haspolat via mersin 10

Project		Job Ref.			
Calc. by				Sheet no./rev.	
Asst. Prof. Dr. S	Shihab Ibrahim (1			
Section	Date	App'd by	Date		
	09-Jun-25				

FOOTING ANALYSIS

In accordance with ACI318-19 (22)

Summary results

Overall design status PASS
Overall design utilisation 0.873

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kN	373.6			Pass
Overturning stability, x	kNm	5	-280.2	58.65	Pass
Sliding stability, x	kN	6.8	219.2	32.113	Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	kN/m²	174.5	200	0.873	Pass
Description	Unit	Required	Provided	Utilization	Result
Moment, positive, x-direction	kNm	32.2	72.5	0.444	Pass
Moment, positive, y-direction	kNm	32.2	100.7	0.319	Pass
Shear, one-way, x-direction	kips	77.2	104.5	0.739	Pass
Shear, one-way, y-direction	kips	77.2	115.2	0.671	Pass
Shear, two-way, Col 1	N/mm ²	0.477	1.134	0.420	Pass
Min.area of reinf.bot., x-direction	mm ²	810	905		Pass
Max.reinf. spacing, bot, x-direction	mm	457	191		Pass
Min.area of reinf.bot., y-direction	mm ²	810	1357		Pass
Max.reinf. spacing, bot, y-direction	mm	457	121		Pass

Pad footing details

Footing area $A = L_x \times L_y = 2.250 \text{ m}^2$

 $\begin{array}{ll} \text{Depth of footing} & \text{h} = \textbf{300} \text{ mm} \\ \\ \text{Depth of soil over footing} & \text{h}_{\text{soil}} = \textbf{450} \text{ mm} \\ \\ \text{Density of concrete} & \gamma_{\text{conc}} = \textbf{24.5} \text{ kN/m}^3 \end{array}$

Nicosia Haspolat via mersin 10

Project

Calc. by
Asst. Prof. Dr. Shihab Ibrahim (PhD, M.ACI, Aff.M.ASCE)

Section

Date
09-Jun-25

Job Ref.

Sheet no./rev.
2

App'd by
Date
App'd by
Date

Column no.1 details

Soil properties

Gross allowable bearing pressure qallow_Gross = 200 kN/m² Density of soil $\gamma_{soil} = 18.0 \text{ kN/m}^3$ Angle of internal friction $\phi_b = 30.0 \text{ deg}$ Design base friction angle $\delta_{bb} = 30.0 \text{ deg}$ Coefficient of base friction $tan(\delta_{bb}) = 0.577$ Design wall friction angle $\delta_b = 15.0 \text{ deg}$ Horizontal acceleration factor $K_h = 0.4$ Vertical acceleration factor $K_v = \mathbf{0}$

Acceleration coefficient $\theta = atan(K_h / (1 - K_v)) = 21.801$

Passive pressure coefficient (Coulomb) $K_P = \sin(90 - \phi_b)^2 / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\sin(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \sin(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times \cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [1 - \sqrt{[\cos(\phi_b + \delta_b) \times (\cos(\phi_b)]}) / (\sin(90 + \delta_b) \times [\cos(\phi_b + \delta_b) \times [\cos(\phi_b + \delta_b) \times (\cos(\phi_b) \times (\cos(\phi_b))]) / (\sin(\phi_b) \times [\cos(\phi_b + \delta_b) \times (\cos(\phi_b) \times (\cos(\phi_b))]) / (\sin(\phi_b) \times [\cos(\phi_b + \delta_b) \times (\cos(\phi_b) \times (\cos(\phi_b))]) / (\sin(\phi_b) \times [\cos(\phi_b + \delta_b) \times (\cos(\phi_b) \times (\cos(\phi_b))]) / (\cos(\phi_b) \times [\cos(\phi_b) \times (\cos(\phi_b) \times (\cos(\phi_b))]) / (\cos(\phi_b) \times [\cos(\phi_b) \times (\cos(\phi_b) \times (\cos(\phi_b))]) / (\cos(\phi_b) \times (\cos(\phi_b) \times (\cos(\phi_b))) / (\cos(\phi_b) \times (\cos(\phi_b) \times (\cos(\phi_b))) / (\cos(\phi_b) \times (\cos(\phi_b) \times (\cos(\phi_b))) / (\cos(\phi_b) \times (\cos(\phi_b))) / (\cos(\phi_b) \times (\cos(\phi_b) \times (\cos(\phi_b))) / (\cos(\phi_b) \times (\cos(\phi_b))) / (\cos(\phi_b) \times (\cos(\phi_b) \times (\cos(\phi_b))) / (\cos(\phi_b) \times (\cos(\phi_b))) / (\cos(\phi_b) \times (\cos(\phi_b) \times (\cos(\phi_b)))) / (\cos(\phi_b) \times (\cos(\phi_b) \times$

 $\delta_b))]]^2) =$ **4.977** Kpe = 0 =**0**

Passive dynamic pressure coefficient (M-O)

Dead surcharge load $F_{Dsur} = \textbf{1.1} \text{ kN/m}^2$ Live surcharge load $F_{Lsur} = \textbf{4.5} \text{ kN/m}^2$

 $Self \ weight \\ F_{\text{swt}} = h \times \gamma_{\text{conc}} = \textbf{7.4} \ kN/m^2$

Nicosia Haspolat via mersin 10

Project		Job Ref.			
,					
Calc. by				Sheet no./rev.	
Asst. Prof. Dr. S	Shihab Ibrahim (3			
Section	Date	Chk'd by	Date	App'd by	Date
	09-Jun-25	-			

Soil weight $F_{soil} = h_{soil} \times \gamma_{soil} = 8.1 \text{ kN/m}^2$

Column no.1 loads

Pedestal self weight $F_{SWz1} = 3.5 \text{ kN}$ Dead load in z $F_{Dz1} = 150.0 \text{ kN}$ Live load in z $F_{Lz1} = 185.0 \text{ kN}$ Seismic load in z $F_{Ez1} = 53.0 \text{ kN}$ Seismic load in x $F_{Ex1} = 13.0 \text{ kN}$

Footing analysis for soil and stability

Load combinations per ASCE 7-22

1.0D (0.417)

1.0D + 1.0L (0.851)

1.0D + 1.0Lr (0.417)

1.0D + 0.75L + 0.75Lr (0.743)

 $(1.0 + 0.14 \times S_{DS})D + 0.7E (0.591)$

 $(1.0 + 0.105 \times S_{DS})D + 0.75L + 0.1S + 0.525E (0.873)$

 $(0.6 - 0.14 \times S_{DS})D + 0.7E (0.355)$

Combination 14 results: $(1.0 + 0.105 \times S_{DS})D + 0.75L + 0.1S + 0.525E$

Forces on footing

Force in x-axis $F_{dx} = \gamma_E \times F_{Ex1} = 6.8 \text{ kN}$

Force in z-axis $F_{dz} = \gamma_{D} \times A \times (F_{swt} + F_{soil} + F_{Dsur}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + F_{swz1} - I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times A \times F_{Lsur} + \gamma_{D} \times (F_{Dz1} + I_{x,ped1}) + \gamma_{L} \times (F_{Dz2} + I_{x,ped1}) + \gamma_{L} \times$

 \times ly,ped1 \times hsoil \times ysoil) + $\gamma_L \times$ FLz1 + $\gamma_E \times$ FEz1 = 373.6 kN

Moments on footing

Moment in x-axis, about x is 0 $M_{dx} = \gamma_{D} \times (A \times (F_{swt} + F_{soil} + F_{Dsur}) \times L_{x} / 2) + \gamma_{L} \times A \times F_{Lsur} \times L_{x} / 2 + \gamma_{D} \times A_{x} / 2 + \gamma_{D} / 2 +$

 $\left(\left(\left(F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil}\right)\right) \times X_1\right) + \gamma_L \times \left(F_{Lz1} \times X_1\right) + \gamma_E \times \left(F_{Ez1} \times X_1\right) + \gamma_E \times \left(F_{Lz1} \times X_1\right) + \gamma_E \times \left$

 $\times x_1 + F_{Ex1} \times (h + h_{ped1})) = 285.0 \text{ kNm}$

Moment in y-axis, about y is 0 $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil} + F_{Dsur}) \times L_y / 2) + \gamma_L \times A \times F_{Lsur} \times L_y / 2 + \gamma_D \times A \times F_{Lsur} \times L_y / 2 + \gamma_D \times A \times F_{Lsur} \times L_y / 2 + \gamma_D \times A \times F_{Lsur} \times A \times$

 $(((F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil})) \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) + \gamma_E \times (F_{Ez1} \times y_1) + \gamma_L \times (F_{Lz1} \times y_$

 \times y₁) = **280.2** kNm

Uplift verification

Vertical force $F_{dz} = 373.6 \text{ kN}$

PASS - Footing is not subject to uplift

Stability against overturning in \boldsymbol{x} direction, moment about \boldsymbol{x} is $\boldsymbol{L}_{\boldsymbol{x}}$

Overturning moment $MotxL = \gamma E \times (F_{Ex1} \times (h + h_{ped1})) = 4.8 \text{ kNm}$

Resisting moment $M_{RxL} = -1 \times (\gamma_D \times (A \times (F_{swt} + F_{soil} + F_{Dsur}) \times L_x / 2) + \gamma_L \times A \times F_{Lsur} \times A$

 $\gamma_{D}\times\left(\left(\left(F_{Dz1}+F_{SWz1}-I_{x,ped1}\times I_{y,ped1}\times h_{soil}\times \gamma_{soil}\right)\right)\times\left(x_{1}-L_{x}\right)\right)+\gamma_{L}\times\left(F_{Lz1}\times\left(x_{1}-L_{x}\right)\right)$

 $L_x)) + \gamma_E \times (F_{Ez1} \times (x_1 - L_x)) = -280.2 \text{ kNm}$

Factor of safety $abs(M_{RxL} / M_{OTxL}) = 58.646$

PASS - Overturning moment safety factor exceeds the minimum of 1.00

Stability against sliding

Resistance due to base friction $F_{RFriction} = max(F_{dz}, 0 \text{ kN}) \times tan(\delta_{bb}) = 215.7 \text{ kN}$

Nicosia Haspolat via mersin 10

Project		Job Ref.	Job Ref.		
Calc. by	Calc. by				
Asst. Prof.	Asst. Prof. Dr. Shihab Ibrahim (PhD, M.ACI, Aff.M.ASCE)				
Section	Date	Chk'd by	Date	App'd by	Date
	09-Jun-25				

Stability against sliding in x direction

Resistance from passive soil pressure $F_{RxPass} = 0.5 \times K_{PE} \times (h^2 + 2 \times h \times h_{soil}) \times L_y \times \gamma_{soil} = 3.5 \text{ kN}$

Total sliding resistance $F_{Rx} = F_{RFriction} + F_{RxPass} = 219.2 \text{ kN}$

abs(F_{Rx} / F_{dx})

PASS - Sliding factor of safety exceeds the minimum of 1.00

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = \textbf{13} \text{ mm}$ Eccentricity of base reaction in y-axis $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = \textbf{0} \text{ mm}$

Pad base pressures

$$\begin{split} q_1 &= F_{dz} \times (1 - 6 \times e_{dx} \, / \, L_x - 6 \times e_{dy} \, / \, L_y) \, / \, (L_x \times L_y) = \textbf{157.5} \, \, kN/m^2 \\ q_2 &= F_{dz} \times (1 - 6 \times e_{dx} \, / \, L_x + 6 \times e_{dy} \, / \, L_y) \, / \, (L_x \times L_y) = \textbf{157.5} \, \, kN/m^2 \\ q_3 &= F_{dz} \times (1 + 6 \times e_{dx} \, / \, L_x - 6 \times e_{dy} \, / \, L_y) \, / \, (L_x \times L_y) = \textbf{174.5} \, \, kN/m^2 \\ q_4 &= F_{dz} \times (1 + 6 \times e_{dx} \, / \, L_x + 6 \times e_{dy} \, / \, L_y) \, / \, (L_x \times L_y) = \textbf{174.5} \, \, kN/m^2 \end{split}$$

Minimum base pressure $q_{min} = min(q_1,q_2,q_3,q_4) = \textbf{157.5 kN/m}^2$ Maximum base pressure $q_{max} = max(q_1,q_2,q_3,q_4) = \textbf{174.5 kN/m}^2$

Allowable bearing capacity

Allowable bearing capacity qallow = qallow_Gross = **200.0** kN/m²

 $q_{max} / q_{allow} = 0.873$

PASS - Allowable bearing capacity exceeds design base pressure

FOOTING DESIGN

In accordance with ACI318-19 (22)

Tedds calculation version 3.3.08

Material details

f'c = **21** MPa Compressive strength of concrete Yield strength of reinforcement $f_y = 420 \text{ MPa}$ Compression-controlled strain limit (21.2.2) $\varepsilon_{tv} = 0.00200$ Cnom t = **75** mm Cover to top of footing Cover to side of footing Cnom s = **75** mm Cover to bottom of footing Cnom_b = **75** mm Concrete type Normal weight Concrete modification factor $\lambda = 1.00$ Concrete Column type

Analysis and design of concrete footing

Load combinations per ASCE 7-22

1.4D (0.327)

1.2D + 1.6L + 0.5Lr (0.739)

Combination 2 results: 1.2D + 1.6L + 0.5Lr

Forces on footing

Ultimate force in z-axis $F_{UZ} = \gamma_D \times A \times (F_{Swt} + F_{Soil} + F_{Dsur}) + \gamma_L \times A \times F_{Lsur} + \gamma_D \times (F_{DZ1} + F_{SWZ1} - I_{x,ped1})$

 \times Iy,ped1 \times hsoil \times γ soil) + γ L \times FLz1 = **537.6** kN

Nicosia Haspolat via mersin 10

Project	Job Ref.				
Calc. by Asst. Prof. Dr. 3	Sheet no./rev.				
Section	Date 09-Jun-25	Chk'd by	Date	App'd by	Date

Moments on footing

Ultimate moment in x-axis, about x is 0 $M_{UX} = \gamma_D \times (A \times (F_{SWI} + F_{Soil} + F_{Dsur}) \times L_X / 2) + \gamma_L \times A \times F_{Lsur} \times L_X / 2 + \gamma_D \times A \times F_{Lsur} \times L_X / 2 + \gamma_D \times A \times F_{Lsur} \times A \times F_{Lsur$

 $(((F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil})) \times x_1) + \gamma_L \times (F_{Lz1} \times x_1) = 403.2$

kNm

Ultimate moment in y-axis, about y is 0 $\text{M}_{\text{Uy}} = \gamma_{\text{D}} \times \left(\text{A} \times \left(\text{F}_{\text{swt}} + \text{F}_{\text{Soil}} + \text{F}_{\text{Dsur}} \right) \times \text{L}_{\text{y}} \, / \, 2 \right) + \gamma_{\text{L}} \times \text{A} \times \text{F}_{\text{Lsur}} \times \text{L}_{\text{y}} \, / \, 2 + \gamma_{\text{D}} \times \text{L$

 $(((F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil})) \times y_1) + \gamma_L \times (F_{Lz1} \times y_1) = \textbf{403.2}$

kNm

Eccentricity of base reaction

Eccentricity of base reaction in x-axis $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = 0 \text{ mm}$

Pad base pressures

$$\begin{split} q_{u1} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{238.9 kN/m}^2 \\ q_{u2} &= F_{uz} \times (1 - 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{238.9 kN/m}^2 \\ q_{u3} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x - 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{238.9 kN/m}^2 \\ q_{u4} &= F_{uz} \times (1 + 6 \times e_{ux} / L_x + 6 \times e_{uy} / L_y) / (L_x \times L_y) = \textbf{238.9 kN/m}^2 \\ q_{umin} &= min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{238.9 kN/m}^2 \end{split}$$

Minimum ultimate base pressure Maximum ultimate base pressure

$q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = 238.9 \text{ kN/m}^2$

Moment diagram, x axis (kNm)

Moment design, x direction, positive moment

Ultimate bending moment Mu.x.max = **32.2** kNm

Tension reinforcement provided 8 x 12mm bottom bars (191 c/c)

Area of tension reinforcement provided Asx.bot.prov = **905** mm²

Minimum area of reinforcement (8.6.1.1) $A_{s.min} = 0.0018 \times L_y \times h = \textbf{810} \text{ mm}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2) $s_{max} = min(2 \times h, 457 \text{ mm}) = 457 \text{ mm}$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x,bot} / 2 = 219 \text{ mm}$

Depth of compression block $a = A_{\text{sx.bot.prov}} \times f_y / (0.85 \times f'_c \times L_y) = 14 \text{ mm}$

Neutral axis factor $\beta_1 = 0.85$

Nicosia Haspolat via mersin 10

Project		Job Ref.			
Calc. by				Sheet no./rev.	
Asst. Prof. Dr. Shihab Ibrahim (PhD, M.ACI, Aff.M.ASCE)				6	
ASSET TOIL DI. SHIINAS ISTAINITI (TITE, W.AGI, AII.W.AGCE)				Ŭ	
Section	Date	Chk'd by	Date	App'd by	Date
	09-Jun-25				

Depth to neutral axis	c = a /	В1	= 17	mm
-----------------------	---------	----	------	----

Strain in tensile reinforcement
$$\epsilon_t = 0.003 \times d / c - 0.003 = \textbf{0.03635}$$

Minimum tensile strain(8.3.3.1)
$$\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity
$$M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = 80.5 \text{ kNm}$$

Flexural strength reduction factor
$$\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = \mathbf{0.900}$$

Design moment capacity
$$\phi M_n = \phi_f \times M_n = \textbf{72.5 kNm}$$

$$M_{u.x.max} / \phi M_n = \textbf{0.444}$$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction

Ultimate shear force
$$V_{u.x} = 77.2 \text{ kN}$$

Depth to reinforcement
$$d_{v} = h - c_{nom_b} - \phi_{x.bot} / 2 = 219 \text{ mm}$$

Size effect factor (22.5.5.1.3)
$$\lambda_s$$

Ratio of longitudinal reinforcement
$$\rho_{W} = A_{\text{Sx.bot.prov}} / \left(L_{y} \times d_{v} \right) = \textbf{0.00275}$$

Shear strength reduction factor
$$\phi_V = 0.75$$

Nominal shear capacity (Eq. 22.5.5.1)
$$V_n = min(0.66 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_y \times d_v, \ 0.42 \times$$

MPa)
$$\times$$
 L_y \times d_v) = **139.3** kN

Design shear capacity
$$\varphi V_n = \varphi_v \times V_n = \textbf{104.5} \ kN$$

$$V_{u.x} / \phi V_n = 0.739$$

PASS - Design shear capacity exceeds ultimate shear load

Shear diagram, y axis (kN)

Moment diagram, y axis (kNm)

Moment design, y direction, positive moment

Minimum area of reinforcement (8.6.1.1) As.min =
$$0.0018 \times L_x \times h = 810 \text{ mm}^2$$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2)
$$s_{max} = min(2 \times h, 457 \text{ mm}) = 457 \text{ mm}$$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Nicosia Haspolat via mersin 10

Project	Job Ref.				
Calc. by				Sheet no./rev.	
Asst. Prof. Dr. Shihab Ibrahim (PhD, M.ACI, Aff.M.ASCE)				7	
Section	Date	Chk'd by	Date	App'd by	Date
	09-Jun-25				

Depth to tension reinforcement $d = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 207 \text{ mm}$ Depth of compression block $a = A_{sy.bot.prov} \times f_y / (0.85 \times f'_c \times L_x) = 21 \text{ mm}$

Neutral axis factor $\beta_1 = 0.85$

Depth to neutral axis $c = a / \beta_1 = 25 \text{ mm}$

Strain in tensile reinforcement $\epsilon_t = 0.003 \times d / c - 0.003 = \textbf{0.02179}$

Minimum tensile strain(8.3.3.1) $\varepsilon_{min} = \varepsilon_{ty} + 0.003 = 0.00500$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity $M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 111.9 \text{ kNm}$

Flexural strength reduction factor $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.003), 0.65), 0.9) = \textbf{0.900}$

Design moment capacity $\phi M_n = \phi_f \times M_n = \textbf{100.7} \text{ kNm}$

 $M_{u.y.max} / \phi M_n = 0.319$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

Ultimate shear force $V_{u.y} = 77.2 \text{ kN}$

Depth to reinforcement $d_V = h - c_{nom_b} - \phi_{x,bot} - \phi_{y,bot} / 2 = 207 \text{ mm}$

Size effect factor (22.5.5.1.3) $\lambda_s = 0$

Ratio of longitudinal reinforcement $\rho_{W} = A_{\text{sy.bot.prov}} / (L_{x} \times d_{v}) = \textbf{0.00437}$

Shear strength reduction factor $\phi_V = 0.75$

Nominal shear capacity (Eq. 22.5.5.1) $V_n = \min(0.66 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} \times L_x \times d_v, \ 0.42 \times \lambda \times d_v, \ 0.42 \times \lambda \times d_v, \ 0.42 \times d_v \times d_v \times d_v, \ 0.42 \times d_v \times$

MPa) \times Lx \times dv) = **153.5** kN

Design shear capacity $\phi V_n = \phi_V \times V_n = 115.2 \text{ kN}$

 $V_{u.y} / \phi V_n = 0.671$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement $d_{V2} = 213 \text{ mm}$ Shear perimeter length (22.6.4) $l_{Xp} = 813 \text{ mm}$ Shear perimeter width (22.6.4) $l_{yp} = 813 \text{ mm}$

Shear perimeter (22.6.4) $b_0 = 2 \times (I_{x,ped1} + d_{v2}) + 2 \times (I_{y,ped1} + d_{v2}) = 3252 \text{ mm}$

Shear area $A_p = I_{x,perim} \times I_{y,perim} = 660969 \text{ mm}^2$

Surcharge loaded area $A_{\text{sur}} = A_p - I_{x,\text{ped1}} \times I_{y,\text{ped1}} = \textbf{300969} \text{ mm}^2$

Ultimate bearing pressure at center of shear area qup.avg = 238.9 kN/m²

Ultimate shear load $F_{Up} = \gamma_D \times \left(F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil}\right) + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} \\ + \gamma_D \times A_{sur} \times F_{soil} + \gamma_D \times A_{sur} \times F_{Dsur} + \gamma_L \times A_{sur} \times F_{Lsur} - q_{up.avg} \times A_p = 330.1 \text{ kN}$

Ultimate shear stress from vertical load $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ N/mm}^2) = 0.477 \text{ N/mm}^2$

Column geometry factor (Table 22.6.5.2) $\beta = I_{y,ped1} / I_{x,ped1} = 1.00$

Column location factor (22.6.5.3) $\alpha_s = \textbf{40}$ Size effect factor (22.5.5.1.3) $\lambda_s = \textbf{1}$

Concrete shear strength (22.6.5.2) $v_{cpa} = 0.17 \times (1 + 2 / \beta) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} = 2.337 \text{ N/mm}^2$

 $V_{cpb} = 0.083 \times (\alpha_s \times d_{v2} / b_o + 2) \times \lambda_s \times \lambda \times \sqrt{(f'_c \times 1 \text{ MPa})} = 1.757 \text{ N/mm}^2$

 $V_{\text{cpc}} = 0.33 \times \lambda_s \times \lambda \times \sqrt{(f'_{\text{c}} \times 1 \text{ MPa})} = 1.512 \text{ N/mm}^2$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 1.512 \text{ N/mm}^2$

Shear strength reduction factor $\phi_V = 0.75$

MshStructure Nicosia Haspolat via mersin 10

Project		Job Ref.			
Calc. by Asst. Prof. Dr. S	Shihab Ibrahim (Sheet no./rev.			
Section	Date 09-Jun-25	Chk'd by	Date	App'd by	Date

Nominal shear stress capacity (Eq. 22.6.1.2)

Design shear stress capacity (8.5.1.1(d))

 $V_n = V_{cp} = 1.512 \text{ N/mm}^2$

 $\phi v_n = \phi_v \times v_n =$ **1.134** N/mm²

 $v_{ug} / \phi v_n =$ **0.420**

PASS - Design shear stress capacity exceeds ultimate shear stress load

8 x 12 mm bottom bars (191 c/c)