9 класс

Код работы	
тод рассты	

Таблица результатов

	Задача	Σ_{max}	Балл жюри	Апелляция	Результат	Подпись
9-1.	Прогрессивная разминка	26				
9-2.	Двойное скольжение	29				
9-3.	Конечная бесконечность	26				
	Σ_{max}	81	Σ :			

Схемы оценивания

Пункт	Содержание	Баллы	Оценки жюри
	Задание 9-1. Прогрессивная разминка (26 баллов)		
	Отмечено, что в данной системе разность противоположных по направлению сил попарно остается постоянной и равной $F_0=60~\mathrm{H.}$	2	
	Система 12 сил упрощена до шести сил, записано (1) для равнодействующей $F = 2F_0(\cos 15^\circ + \cos 45^\circ + \cos 75^\circ).$	3	
1.1	Найдено ускорение (2) материальной точки $a_1 = \frac{F}{m} = \frac{{}^{2F_0(\cos 15^\circ + \cos 45^\circ + \cos 75^\circ)}}{m}.$ Указан угол $\beta = 105^\circ$ с осью оси Ox .	2	
	Правильно посчитано (3) и округлено (до двух значащих цифр) $a_1 = \frac{2\cdot 60\cdot (\cos 15^\circ + \cos 45^\circ + \cos 75^\circ)}{23,2} {M \choose c^2} = 10 {M \choose c^2}.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
1.2	Сформулирована идея решения: умножим все векторы на (-1), повернем на угол α и наложим на исходную систему — получим систему одинаковых по модулю векторов.	3	
	Указано, что сумма одинаковых векторов равна нулю, найден некомпенсированный вектор (7) $F_1 - F_n = -n\Delta F + \Delta F.$	2	
	Изображена векторная диаграмма для указанных векторов	3	
	Записано (8) для равнодействующей всех сил $n\Delta F = 2F \sin\left(\frac{\alpha}{2}\right) \Longrightarrow F = \frac{n\Delta F}{2\sin\left(\frac{\alpha}{2}\right)}.$	2	
	Из треугольника найден угол (9) с осью Ox $\beta = \frac{n+2}{2n}\pi.$	1	
	Найдено ускорение (10) материальной точки	1	

	$a_2 = \frac{F}{m} = \frac{n\Delta F}{2m\sin(\frac{\pi}{n})}.$		
	Найдены необходимые для вычисления параметры механической	1	
1.3	системы: $n=12$; $\Delta F=10$ H . Правильно проведен расчет: $a_1=\frac{12\cdot 10}{2\cdot 23,2\cdot \sin\left(\frac{\pi}{12}\right)}\left(\frac{\text{M}}{\text{c}^2}\right)=10\left(\frac{\text{M}}{\text{c}^2}\right),$ $\beta=\frac{12+2}{2\cdot 12}\pi=\frac{7}{12}\pi=105^{\circ}.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	26	Σ :
	Задание 9-2. Двойное скольжение (29 баллов)		
	Отмечено, что шарик относительно земли будет двигаться равномерно и прямолинейно.	1	
	Рассмотрено смещение параллелепипеда на длину вертикальной стороны $b=vt. \label{eq:bound}$	2	
1.1	Использовано свойство нерастяжимости нити, указано, что при этом шарик поднялся до вершины параллелепипеда и совершил перемещение (2) $AB = \sqrt{2}b.$	2	
	Найдена скорость u_1 шарика $u_1 = \frac{AB}{t} = \frac{\sqrt{2}b}{b/v} = \sqrt{2}v,$ указан угол с горизонтом $\alpha = 45^\circ = \frac{\pi}{4},$ отмечено, что траектория — отрезок.	3	
	Отмечено, что шарик относительно земли будет двигаться равномерно и прямолинейно.	1	
	Рассмотрена система через промежуток времени t , когда наклонная плоскость сместился вправо на свою длину $l=vt$.	2	
1.2	Использовано свойство нерастяжимости нити, указано, что шарик поднялся по наклонной плоскости до ее вершины D $CD = 2l \sin\left(\frac{\alpha}{2}\right).$	3	
	Найден угол $\beta = \frac{\pi}{2} - \frac{\alpha}{2} = \frac{\pi - \alpha}{2}$ к горизонту.	1	
	Определена скорость шарика $u_2 = \frac{cD}{t} = \frac{2l\sin\left(\frac{\alpha}{2}\right)}{l/v} = 2v\sin\left(\frac{\alpha}{2}\right).$	2	
1.3	Отмечено, что движение сферы равномерное, нить нерастяжима, поэтому длина дуги EF $\widecheck{EF} = x = vt = \varphi R$.	1	
	Правильно найден угол φ $\varphi = \frac{x}{R} = \frac{vt}{R}.$	1	
	Найден угол (13) касательной с горизонтом $ \gamma = \frac{\pi}{2} - \varphi. $	2	

	Сформулирована идея: маленький участок полусферы можно считать «кусочком» наклонной плоскости.	2	
	Использованы формулы из предыдущего пункта (для наклонной плоскости) $u_3(\varphi) = 2v \sin\left(\frac{\pi}{4} - \frac{\varphi}{2}\right), \text{ или} $ $u_3(x) = 2v \sin\left(\frac{\pi}{4} - \frac{x}{2R}\right), \text{ или} $ $u_3(t) = 2v \sin\left(\frac{\pi}{4} - \frac{vt}{2R}\right).$	3	
	Найден угол (17) с горизонтом $\delta = \frac{\pi}{4} + \frac{vt}{2R}.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	29	Σ :
	Задание 9-3. Конечная бесконечность (26 баллов)		
1.1	Шаг за шагом		
	Найдено сопротивление R_1 одного звена и R_2 двух звеньев $R_1=R+2R=3R$ $R_2=R+\frac{2R\cdot R_1}{2R+R_1}=\frac{11}{5}R=2\frac{1}{5}R.$	2	
	Получена погрешность ε_1 для первого шага $\varepsilon_1 = \frac{R_1 - R_2}{R_1} = \frac{4}{15} = 27 \%.$	1	
	Найдено сопротивление R_3 трех звеньев $R_3=R+\frac{2R\cdot R_2}{2R+R_2}=\frac{43}{21}R=2\frac{1}{21}R.$	2	
	Получена погрешность ε_2 для второго шага $\varepsilon_2 = \frac{R_2 - R_3}{R_2} = 6.9 \%.$	1	
1.1	Найдено сопротивление R_4 четырех звеньев $R_4 = R + \frac{2R \cdot R_3}{2R + R_3} = R + \frac{2R \cdot \frac{43}{21}R}{2R + \frac{43}{21}R} = \frac{171}{85}R = 2\frac{1}{85}R.$	2	
	Получена погрешность ε_3 для третьего шага $\varepsilon_3 = \frac{R_3 - R_4}{R_3} = \frac{\frac{43}{21} - \frac{171}{85}}{\frac{43}{21}} = \frac{64}{3655} = 1,8 \%.$	1	
	Найдено сопротивление R_5 пяти звеньев $R_5 = R + \frac{2R \cdot R_4}{2R + R_4} = \frac{683}{341} R = 2 \frac{1}{341} R.$	2	
	Получена погрешность ε_4 для четвертого шага $\varepsilon_4 = \frac{R_4 - R_5}{R_4} = \frac{\frac{171}{85} - \frac{683}{341}}{\frac{171}{85}} = \frac{256}{58311} = 0,44 \%.$	1	
	Сделан вывод, что $n=4$, т.е. на четвертом шаге мы получили оценку с погрешностью меньше процента.	1	
1.2	«Линейная бесконечность»		
	Сформулирована идея об отбрасывании одного звена.	1	
1.2	Перечерчена цепь и записано (11) $R_{\infty} = R + \frac{2R \cdot R_{\infty}}{2R + R_{\infty}}.$	2	

	Найдены корни (13)		
	$R_{\infty 1} = \frac{R + \sqrt{9R^2}}{2} = 2R$ $R_{\infty 2} = \frac{R - \sqrt{9R^2}}{2} = -R$	2	
	$R_{\infty 2} = {}{} = -R$		
	Отброшен отрицательный корень, дан верный ответ $R_{\infty}^* = 2R.$	1	
1.3	«Плоская бесконечность»		
1.3	Предложен вариант бесконечного соединения резисторов.	4	
	Рассчитано сопротивление предложенной схемы $R_{\infty}^{**} = R_{AZ} = R_{AB} = R.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.		
	Всего за задачу:	26	Σ :

10 класс

Код работы	
тод рассты	

Таблица результатов

	Задача	Σ_{max}	Балл жюри	Апелляция	Результат	Подпись
10-1.	«Лихо закручено»	25				
10-2.	«Годограф ускорения»	31				
10-3.	«Не хуже Карно?»	34				
	Σ_{max}	90	Σ :			

Схемы оценивания

Пункт	Содержание	Баллы	Оценки жюри
	Задание 10-1. «Лихо закручено» (25 баллов)		
1.1 «Дв	а шарика на нити»		
	Отмечено, что вращение шариков будет происходить вокруг их центра масс, который будет оставаться неподвижным.	2	
1.1	Указано, что траектории шариков будут окружностями, радиусы которых есть расстояния l_1 и l_2 до центра масс. Записана система (1), найдены расстояния (2) $l_1 = \frac{m_2}{m_1 + m_2} l$ $l_2 = \frac{m_1}{m_1 + m_2} l$	3	
	Записан второй закон Ньютона для каждого из шариков, правильно найдены силы натяжения $m_1\omega^2l_1=T_1 \Longrightarrow T_1=m_1\omega^2\frac{m_2}{m_1+m_2}l=\frac{m_1m_2}{m_1+m_2}\omega^2l,$ $m_2\omega^2l_2=T_2 \Longrightarrow T_2=m_2\omega^2\frac{m_1}{m_1+m_2}l=\frac{m_1m_2}{m_1+m_2}\omega^2l.$	4	
	Подмечено, что они одинаковы $T_1 = T_2 = T = \frac{m_1 m_2}{m_1 + m_2} \omega^2 l.$	1	
1.2 «Tp	и шарика на нити»		
	Отмечено, что вращение шариков по-прежнему будет происходить вокруг их центра масс, который будет оставаться неподвижным.	1	
1.2	Правильно записан второй закон Ньютона для движения каждого из шариков (6), (7), (8) по окружности $m_2\omega^2x=T_2,\\ m_1\omega^2(l-x)=T_1,\\ m_3\omega^2(\frac{l}{2}-x)=T_2-T_1.$	3	
	Из системы найдены расстояние x и угловая скорость ω вращения шариков $x = \frac{m_1 T_2}{m_1 T_2 + m_2 T_1} l,$	2	

$\omega = \sqrt{\frac{m_1 T_2 + m_2 T_1}{m_1 m_2 l}}.$		
Получено правильное выражение для массы третьего шари $m_3 = \frac{2m_1m_2(T_2-T_1)}{m_2T_1-m_1T_2}.$	ика 2	
1.3 «Космическое вращение»	I	
Указано, что центр масс троса находится на середине д т.е. можно воспользоваться формулами из предыд пункта.	•	
Использована формула (12) для массы троса с учетом ма $\Delta T \ll T$ $m_{\rm T} = \frac{2m_1m_2(T_2-T_1)}{m_2T_1-m_1T_2} = \frac{2m_1m_2\Delta T}{(m_2-m_1)T+m_2\Delta T} = \{\Delta T \ll T\} \approx \frac{2m_1m_2}{(m_2-m_2)T}$	2	
Использована формула (11) для угловой скорости космич станции $\omega_{\text{кс}} = \sqrt{\frac{m_1 T_2 + m_2 T_1}{m_1 m_2 l}} = \sqrt{\frac{(m_1 + m_2) T + m_1 \Delta T}{m_1 m_2 l}} = \{\Delta T \ll T\} \approx \sqrt{\frac{(m_1 + m_2) T + m_2 \Delta T}{m_1 m_2 l}}$	еской 2	
Решение оформлено аккуратно, с необходи комментариями, рисунками и пояснениями.		
Всего за за	адачу: 25	Σ:
Задание 10-2. «Годограф ускорения» (31 бал	1 Л)	
Часть 1. Вычисление полного ускорения		
Правильно записан закон сохранения энергии (1) для двих шарика $mgh = mgl\cos\alpha = \frac{m\upsilon^2}{2} \implies \upsilon^2 = 2gl\cos\alpha$	жения 1	
Верно найдено нормальное (центростремительное) уско шарика (2) на нерастяжимой нити в данной точке $a_n = a_{uc} = \frac{\upsilon^2}{R} = \frac{\upsilon^2}{l} = \{(1)\} = 2g\cos\alpha.$	рение 2	
Записаны законы Ньютона (3) для двух осей $ma_n = T - mg\cos\alpha$ $ma_\tau = mg\sin\alpha$	2	
Получены правильные формулы (4) для тангенциал (касательного) ускорения и силы натяжения нити $a_{\tau} = g \sin \alpha$ $T = 3mg \cos \alpha$	2	
1.2 Найдено (5) для модуля полного ускорения $a(\alpha) = \sqrt{a_n^2 + a_\tau^2} = g\sqrt{1 + 3\cos^2\alpha} \ .$	3	
Записано условие (7) для горизонтального случая $a_{\tau} \sin \alpha_1 = a_n \cos \alpha_1 \implies tg^2 \alpha_1 = 2 \implies \alpha_1 = 55^{\circ} .$	2	
1.3 Найдено ускорение (8) в этот момент времени $a_1 = g\sqrt{1 + \frac{3}{1 + tg^2\alpha_1}} = g\sqrt{2} = 1,4 g \ .$	3	
Часть 2. Построение годографа полного ускорения шарика		-

	Правильно выведены формулы (9) для декартовых проекций полного ускорения		
2.1	$a_x = -3g \sin \alpha \cos \alpha = -\frac{3}{2}g \sin 2\alpha$	2	
	$a_y = g(2\cos^2\alpha - \sin^2\alpha)$		
	Верно записаны безразмерные проекции (10)		
	$a_x^*(\alpha) = -3\sin\alpha\cos\alpha$	2	
	$a_y^*(\alpha) = 2\cos^2\alpha - \sin^2\alpha$		
2.2	Выполнение этого пункта удобно выполнить после заполнения Таблицы 1. Как следует из таблицы, максимальное (по модулю) горизонтальное ускорение шарика равно $ a_x^* = -1,5 = 1,5$.	2	
	Максимальное же вертикальное ускорение $a_y^* = 2.0$		
2.3	Верно заполнена Таблица 1. Получены правильные расчеты.	3	
2.4	На бланке правильно построен годограф полного ускорения шарика. Тодограф 2 ускорения 1,5 0,5 -0,5 -1,5	2	
2.5	Доказано (12) – (19), что годограф является окружностью, найдены ее параметры.	4	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	31	Σ :
He 1	Задание 10-3. Не хуже Карно? (34 балла)		
часть 1	Адиабатный процесс Записана формула (1) для внутренней энергии идеального газа		
	$U = \frac{3}{2} \frac{m}{M} RT = \frac{3}{2} \nu RT$,		
1.1	получено (4) для молярной теплоемкости идеального одноатомного газа	2	
	$c_V^M = \frac{3}{2}R.$		
	Правильно выведено (5) для внутренней энергии идеального газа $U = c_V^M \nu T = \nu c_V^M T.$	1	
Ĺ	$o - c_V v_I - v_{CV} I$.		

	Записано первое начало (закон) (1) термодинамики $\Delta Q = \Delta U + p \Delta V.$	1
	Использованы два близких состояния системы, для которых записаны уравнения Клапейрона–Менделеева (7) $pV = \nu R \Delta T$ $p(V + \Delta V) = \nu R (T + \Delta T)$	2
1.2	Получено (10) для теплоёмкости $c_p^M = \frac{\Delta Q}{\nu \Delta T} = \frac{c_V^M \nu \Delta T + \nu R \Delta T}{\nu \Delta T}.$	2
	Выведено уравнение Майера (11) $c_p^M = c_V^M + R.$	1
	Указано, что теплоёмкость системы не зависит от параметров состояния идеального газа, следовательно, является постоянной величиной в этом процессе.	1
	Записано уравнение адиабатного процесса ($Q=0=\Delta U+A$), указано (14), что работа совершается за счет внутренней энергии газа $p\Delta V=-\Delta U=-\nu c_V^M\Delta T$	1
1.3	Записано уравнение Клапейрона–Менделеева (15) и получено (16) $-\frac{R}{c_V^M} \cdot \frac{\Delta V}{V} = \frac{\Delta T}{T}.$	2
	С учетом математической подсказки выведено (17) для идеального газа $TV^{\frac{R}{c_V^M}} = TV^{\gamma-1} = \text{const.}$	2
1.4	$TV^{r_V} = TV^{r-1} = \text{const.}$ Использовано уравнение Клапейрона–Менделеева для перехода к координатам $T = \frac{pV}{\nu R} \implies \frac{pV}{\nu R}V^{\gamma-1} = \text{const.} \implies pV^{\gamma} = \text{const}^*.$	1
1.5.	Построено схематическое изображение изотермы и адиабаты. Рис. 5	1
Часть 2	. Цикл с адиабатой	
2.1	На участке AB цикла работает нагреватель $(Q_{AB}>0)$. На участке BC цикла работает холодильник $(Q_{BC}<0)$. Участок CA цикла соответствует адиабате $(Q_{CA}=0)$. Найдено количество теплоты (23) , полученное от нагревателя $Q_1=\frac{5}{2}p_AV_A(n-1)$.	4
2.2	Использовано уравнение адиабаты, получены выражения (25) и (26) $p_C = \frac{p_A}{n^\gamma}, \ \ p_C = \frac{p_A}{n^\gamma}.$	2

Холодильник работает на участке BC цикла $(Q_{BC} < 0)$. Записано первое начало термодинамики (27) $Q_2 = Q_{BC} = \frac{3}{2} \nu R \Delta T = \frac{3}{2} (p_A - p_C) n V_A.$ Получено окончательное выражение (28) через p_A и V_A $Q_2 = \frac{3}{2} p_A \left(1 - \frac{1}{n^{5/3}}\right) n V_A = \frac{3}{2} p_A V_A \left(n - \frac{1}{n^{2/3}}\right).$	3	
2.4 Найден термодинамический КПД (29) данного цикла $\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{3}{5} \cdot \frac{\left(n - \frac{1}{n^{2/3}}\right)}{n-1}.$	2	
Для оценки η_{max} получена система неравенств (30) (или эквивалентная) $1 < \frac{\left(n - \frac{1}{n^{2/3}}\right)}{n-1} < \frac{n}{n-1},$ Найдено значение (31) для η_{max} $\eta_{max} = \eta(n \to \infty) = 1 - \frac{3}{5} \cdot 1 = \frac{2}{5} = 0,40 = 40\%.$	3	
Из Рис. 4 найдено отношение объемов, получено (32) для КПД построенного цикла $\eta = 1 - \frac{3}{5} \cdot \frac{\left(7 - \frac{1}{7^{2/3}}\right)}{7 - 1} = 0,33 = 33\%.$	2	
Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями. Всего за задачу:	34	Σ:

11 класс

TC	_		
$K \cap \Pi$	работы		
тод	paooibi		

Таблица результатов

	Задача	Σ_{max}	Балл жюри	Апелляция	Результат	Подпись
11-1.	«Гармоническая разминка»	33				
11-2.	«Миг невесомости»	35				
11-3.	«Прогрессивная электростатика»	38				
	Σ_{max}	106	Σ :			

Схемы оценивания

Пункт	Содержание	Баллы	Оценки жюри
	Задание 11-1. «Гармоническая разминка» (37 балло	в)	•
1.1 «P	азгон маятника»		
	Записана формула Гюйгенса (1) для «неподвижного» маятника $T_0 = 2\pi \sqrt{\frac{l}{g}}.$	1	
	Использован метод «эффективного ускорения» (2) (или эквивалентный) $T = 2\pi \sqrt{\frac{l}{g^*}}.$	2	
1.1	Проанализированы эффективные ускорения (3), (4, (5) для электрички и лифта (два случая), указано, что равенство возможно только при условии (4) (ускорение лифта направлено вверх) $\mathbf{g}^* = \mathbf{g} + a_1.$	3	
	Записано (6) для равенства периодов $\sqrt{a_2^2 + g^2} = g + a_1.$	1	
	Получено и правильно посчитано (7) ускорение электрички (в любом направлении) $a_2 = \sqrt{a_1(a_1+2\mathrm{g})} = 5.6 \; \mathrm{m/c^2}.$	2	
	Указано, что лифт может ехать куда угодно – как вверх, так и вниз. Данных условия недостаточно для однозначного ответа.	2	
1.2 «M	аятник в шахте»		
	Записано (8) для ускорения свободного падения на поверхности Земли $\alpha = C^{M}$	1	
1.2	$g=G\frac{M}{R^2}.$ Получено (9) для периода колебаний маятника на поверхности Земли $T_0=2\pi\sqrt{\frac{l}{g}}=2\pi\sqrt{\frac{l\cdot R^2}{GM}}=2\pi R\sqrt{\frac{l}{GM}}.$	2	

		·	
	Правильно проведено разложение $(10) - (12)$ $g(h) \approx \frac{1}{\left(1 + \frac{h}{R}\right)^2} g = \left(1 - \frac{2h}{R}\right) g.$	2	
	$(1+\frac{\pi}{R})$ Выведено (13) для периода колебаний на горе		
	$T_1(h) = 2\pi \sqrt{\frac{l}{g(h)}} = T_0 \left(1 + \frac{h}{R}\right).$	1	
	Вычислено (14) – (15) для суточного отставания часов $N_1 = \frac{{24 \times 60 \times 60}}{{1.000157}} = 86\ 386.$	1	
	Получено (16) для ускорения в шахте $g(h) = \left(1 - \frac{h}{R}\right)g.$	2	
	Найдено (17) для периода в шахте $T_2(h) = T_0\left(1 + \frac{h}{2R}\right).$	2	
	Получено (18) $T_0\left(1+\frac{h_1}{R}\right) = T_0\left(1+\frac{h_2}{2R}\right) \Longrightarrow h_2 = 2h_1 = 2,0 \text{ км}.$	2	
1 3 «H	епостоянная планка»		
	Записаны (20) — (22) для вычисления центра масс $l_1 = \frac{m_2}{m_1 + m_2} l$ $l_2 = \frac{m_1}{m_1 + m_2} l$	2	
	Правильно найдено (23) и (24) $AO = \overrightarrow{AB} = \alpha R,$ $h_1 = BC = R(1 - \cos \alpha) \approx \frac{\alpha^2}{3}R.$	1	
İ	Выведено (25) – (26) для потенциальной энергии	2	
1.3	$E^{\Pi}=(m_1+m_2)\mathbf{g}\cdot\ h_2=(m_1+m_2)\mathbf{g}R\cdot\frac{\alpha^2}{2}.$ Записано (28) для скоростей шариков $v_1=\omega(l_1-\alpha R)$ $v_2=\omega(l_2+\alpha R)$	2	
	Получено (29) и преобразовано к виду (30) $E^{\kappa} = \frac{\omega^2}{2} (m_1 l_1^2 + m_2 l_2^2).$	2	
	Правильно записано уравнение для полной энергии (32) $E^{\Pi} + E^{K} = (m_1 + m_2)gR \cdot \frac{\alpha^2}{2} + (m_1l_1^2 + m_2l_2^2) \cdot \frac{\omega^2}{2} = const.$	1	
	Найден период колебаний (35) $T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m_1 l_1^2 + m_2 l_2^2}{(m_1 + m_2) gR}} = 2\pi \frac{l}{m_1 + m_2} \sqrt{\frac{m_1 m_2}{gR}}.$	2	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	37	Σ :
	Задание 11-2. «Миг невесомости» (35 баллов)		
	Часть 1. Общая теория	Г	
1.1	Правильно нарисованы силы, действующие на бусинку в процессе движения, записан второй закон Ньютона (1) и (2) для ее движения	2	
	дыя 🕶 движения	L	

	$ma_{\rm uc} = m\frac{v^2}{R} = m \mathrm{g} \cos \alpha - N.$		
	10		
	Записан закон сохранения энергии (3) $\frac{mv^2}{2} = mgR(1 - \cos \alpha) \implies \frac{v^2}{R} = 2g(1 - \cos \alpha).$	1	
	Получено (4) для $N(\alpha)$ $N(\alpha) = mg\cos\alpha - m\frac{v^2}{R} = mg(3\cos\alpha - 2).$	2	
1.2	Из (4) правильно найдено значение $\cos\alpha_1 = \frac{2}{3} \Longrightarrow \alpha_1 = 48, 1^\circ = 0,839 \text{ рад.}$	1	
	Правильно разложена сила реакции на компоненты (6) $\vec{N} = \vec{N}_y + \vec{N}_x$		
1.3	$N_{y}(\alpha) = N(\alpha)\cos\alpha.$ $N_{x}(\alpha) = N(\alpha)\sin\alpha$	2	
	Найдена зависимость (7) $N_y(\alpha) = N(\alpha)\cos\alpha = mg(3\cos\alpha - 2)\cdot\cos\alpha.$	2	
	Проведены правильные вычисления, заполнена таблица вычислений.	2	
	В соответстсвие с таблицей на бланке построен график заввисимости $N_y^*(\alpha)$		
1.4	6	3	
1.5	Отмечены участки убывания и возрастания функции, точка минимума, точка максимального значения.	2	
	Часть 2. Работа с графиком		
	Отмечена точка касания графика и оси абсцисс, указано, что здесь вес равен нулю.	1	
	Записано (10) для веса системы $P(\alpha) = Mg + 2N_y(\alpha) = g(M + 2m(3 \cos \alpha - 2) \cdot \cos \alpha).$	2	
2.1	Найдена точка экстремума (11) $\cos \alpha_4 = \frac{1}{3} \implies \alpha_4 = 70,5^\circ = 1,23 \text{ рад,}$ и значение в минимуме (12) $(3\cos \alpha_4 - 2) \cdot \cos \alpha_4 = -\frac{1}{3}.$	2	
	Записаны (13) и (14) $m = \frac{3}{2}M,$	2	

	учтено начальное условие (15) $8m_0g = (M+2m)g \implies M+2m = 8m_0.$		
	Получено верные значения (16) для искомых масс $m=3m_0=30\ { m r}$ $M=2m_0=20\ { m r}$	2	
2.2	Указано, что максимальный вес достигается в нижней точке бусинок при $\alpha = \pi$.	2	
	Записано (17) $P_{max} = P(\alpha = \pi) = 32m_0 \text{g}.$	2	
	Предложен метод оцифровки, указано, как найти систему отсчета, как найти масштабный отрезок (две реперные точки).	2	
2.3	Предложенный метод реализован на графике в тетради.	1	
	Решение оформлено аккуратно, с необходимыми комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	35	Σ :
	Задание 11-3. Прогрессивная электростатика (38 балл	ов)	
	Часть 1. Арифметическая электростатика		
1 1	Методом «мысленного поворота» (или любым другим)		
1.1	показано, что поле \vec{E}_1 равно нулю (2) $\vec{E}_1 = \vec{0}$.	1	
	Для вычислений использован закон Кулона (3) и принцип суперпозиции электрических полей (4) $\vec{E}_2 = \sum_i \vec{E}_i = \vec{E}_1 + \dots + \vec{E}_{n-1} + \vec{E}_n.$	2	
	Сформулирована идея модернизированного «метода мысленного поворота»: повернуть всю систему на угол α и умножить на (-1). Отмечено (5), что при этом модули соответствующих векторов не изменятся $E_2 = E_2^* = E_2^{**}.$	3	
1.2	Далее «накладываем» полученную систему на старую, строим векторную диаграмму, записано (6) $\vec{E}_S = \vec{E}_2 + \vec{E}_2^{**}.$	2	
	Указано, это же поле есть поле точечного заряда $(-nq_0)$, находящегося в первой точке цепочки (7) $E_S = \frac{nq_0}{4\pi\varepsilon_0R^2}.$	2	
	Из векторной диаграммы получено (8) $E_S = 2E_2 \sin\left(\frac{\alpha}{2}\right) \implies E_2 = \frac{E_S}{2\sin\left(\frac{\alpha}{2}\right)}.$	2	
	Из (7) и (8) найдено искомое значение (9) $E_2 = \frac{nq_0}{8\pi\varepsilon_0 R^2 \sin\left(\frac{\alpha}{2}\right)} = \frac{nq_0}{8\pi\varepsilon_0 R^2 \sin\left(\frac{\pi}{n}\right)} = \frac{n}{2\sin\left(\frac{\pi}{n}\right)} E_0.$	2	

	Из векторной диаграммы найден угол β	1	
	$\beta = \frac{\pi}{2} - \frac{\alpha}{2} = \frac{\pi}{2} - \frac{\pi}{n} = \frac{n-2}{2n}\pi.$		
	Из векторной диаграммы найдено количество вершин n многоугольника (11) и угол α	_	
	$\beta = 2\alpha \implies \frac{n-2}{2n}\pi = 2\frac{2\pi}{n} \implies n = 10.$	2	
1.3	Проведены расчеты (13) и (14), сохранено три значащие		
	цифры		
	$E_2 = 5.00 \cdot 10^3 \frac{B}{M} = 5.00 \frac{\kappa B}{M}$	3	
	$\beta = \frac{10-2}{2\cdot10}\pi = \frac{2\pi}{5} = 1,26$ рад = 72,0°.		
	Часть 2. Геометрическая электростатика		
2.1	Вычислена напряжённость E_0 (15)		
2.1	$E_0 = \frac{q_0}{4\pi\epsilon_0 R^2} = 588 \frac{B}{M}$	1	
	Сформулирована идея вновь		
	модернизированного «метода $\vec{E}_{\text{доп}}$		
	мысленного поворота»: удвоить все заряды и повернуть всю систему на угол α Результирующий вектор \vec{E}_3^*	2	
	угол α . Результирующий вектор \vec{E}_3^*	2	
	также удвоится. При этом векторная 0 Рис. 07		
	диаграмма примет вид:		
	Указано, это же поле есть поле старой системы и точечного заряда $(2^n - 1) \cdot q_0$, находящегося в первой точке цепочки.		
	Записано (16) для его напряженности	2	
	$\vec{E}_{\text{доп}} = (2^n - 1) \cdot \vec{E}_0.$		
	Записаны принцип суперпозиции (17) и теорема косинусов		
2.2	(18) $ (E_{\text{доп}})^2 = (E_0 \cdot (2^n - 1))^2 = E_3^2 + 4E_3^2 - 2E_3(2E_3)\cos\alpha. $	3	
	Получен верный результат (19) для напряженности $(19)^n$		
	$E_3 = \frac{2^{n} - 1}{\sqrt{5 - 4\cos\alpha}} E_0 = \frac{(2^n - 1) \cdot q_0}{4\pi\varepsilon_0 R^2 \sqrt{5 - 4\cos\left(\frac{2\pi}{n}\right)}}.$	2	
	V		
	По теореме синусов найден угол γ (21)		
	$\sin \gamma = \frac{2(2^n - 1)}{\sqrt{5 - 4\cos \alpha}} E_0 \cdot \frac{\sin \alpha}{E_0 \cdot (2^n - 1)} = \frac{2\sin \alpha}{\sqrt{5 - 4\cos \alpha}} = \frac{2\sin\left(\frac{2\pi}{n}\right)}{\sqrt{5 - 4\cos\left(\frac{2\pi}{n}\right)}}.$	2	
	$\sqrt{5-4\cos(\frac{\pi}{n})}$ Указано, что в этом случае треугольник напряженностей		
	прямоугольный, записано (22)	1	
	$\sin \gamma = \sin \frac{\pi}{2} = 1 = \frac{2 \sin \alpha}{\sqrt{5 - 4 \cos \alpha}}.$	1	
	Найдено значение угла (23) и числа сторон (24)		
2.3	$\cos \alpha = \frac{1}{2} \implies \alpha = \frac{\pi}{3} = 60^{\circ}, n = \frac{2\pi}{\alpha} = 6.$	2	
	Проведены расчеты (25) и (26)		
	$E_3 = 21.4 \cdot 10^3 \left(\frac{\text{B}}{\text{M}}\right) = 21.4 \left(\frac{\text{KB}}{\text{M}}\right)$.	2	
	Решение оформлено аккуратно, с необходимыми	1	
	комментариями, рисунками и пояснениями.	1	
	Всего за задачу:	38	Σ :

1 ретии этип	республиканской	олимпиасы п	о учеоному п	редмету «Ф	изика» (2023 _/	/2024 учеонь