Corrigé 5

1. Résoudre les équations suivantes :

a)
$$\sin x - \sqrt{3}\cos x = \sqrt{2}$$

b)
$$\sin x + 2\cos x = 9$$

c)
$$\frac{\sqrt{2}}{2} \left[\sin(3x) + \cos(3x) \right] = 1$$

d)
$$\sin(2x) - \cos(2x) + 1 = 0$$
, $-5\pi \le x \le -3\pi$

e)
$$\sin(\frac{x}{2}) + \cos(\frac{x}{2}) = 0$$
, $-\pi \le x \le 0$

a) On se ramène à une équation élémentaire en sinus

Il s'agit de transformer l'équation $\sin x - \sqrt{3}\cos x = \sqrt{2}$ en une équation élémentaire de la forme

$$\sin(x+\varphi) = \frac{\sqrt{2}}{c} \,.$$

• Normalisation

L'équation $\sin x - \sqrt{3}\cos x = \sqrt{2}$ est du type $a\sin x + b\cos x = p$, avec $\sqrt{a^2 + b^2} = 2$.

On divise les deux membres de cette équation par ce coefficient de normalisation :

$$\sin x - \sqrt{3}\cos x = \sqrt{2} \quad \Leftrightarrow \quad \frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x = \frac{\sqrt{2}}{2}.$$

• Transformation

$$\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x = \frac{\sqrt{2}}{2} \iff \cos\left(\frac{\pi}{3}\right)\sin x - \sin\left(\frac{\pi}{3}\right)\cos x = \frac{\sqrt{2}}{2}$$
$$\Leftrightarrow \sin\left(x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4}\right).$$

Résolution

$$\sin\left(x - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{4}\right)$$

$$\Leftrightarrow \begin{cases} x - \frac{\pi}{3} = \frac{\pi}{4} + 2k\pi \\ \text{ou} \\ x - \frac{\pi}{3} = \pi - \frac{\pi}{4} + 2k\pi \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{7\pi}{12} + 2k\pi \\ \text{ou} \\ x = \frac{13\pi}{12} + 2k\pi \end{cases}$$

$$\begin{cases} 7\pi \\ 13\pi \end{cases}$$

$$S = \left\{ \frac{7\pi}{12} + 2k\pi, \frac{13\pi}{12} + 2k\pi, k \in \mathbb{Z} \right\}.$$

Ou bien on se ramène à une équation élémentaire en cosinus

Il s'agit de transformer l'équation $\sin x - \sqrt{3}\cos x = \sqrt{2}$ en une équation élémentaire de la forme

$$\cos(x + \varphi') = \frac{\sqrt{2}}{c}.$$

• Normalisation

$$\sin x - \sqrt{3}\cos x = \sqrt{2} \quad \Leftrightarrow \quad \frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x = \frac{\sqrt{2}}{2}.$$

Transformation

$$\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x = \frac{\sqrt{2}}{2} \iff \sin\left(\frac{\pi}{6}\right)\sin x - \cos\left(\frac{\pi}{6}\right)\cos x = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \cos\left(\frac{\pi}{6}\right)\cos x - \sin\left(\frac{\pi}{6}\right)\sin x = -\frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \cos\left(x + \frac{\pi}{6}\right) = \cos\left(\frac{3\pi}{4}\right).$$

• Résolution

$$\cos\left(x + \frac{\pi}{6}\right) = \cos\left(\frac{3\pi}{4}\right)$$

$$\Leftrightarrow \begin{cases} x + \frac{\pi}{6} = \frac{3\pi}{4} + 2k\pi \\ \text{ou} \\ x + \frac{\pi}{6} = -\frac{3\pi}{4} + 2k\pi \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{7\pi}{12} + 2k\pi \\ \text{ou} \\ x = -\frac{11\pi}{12} + 2k\pi \end{cases}$$

$$k \in \mathbb{Z}.$$

$$S = \left\{ -\frac{11\pi}{12} + 2k\pi \,, \, \frac{7\pi}{12} + 2k\pi \,, \, k \in \mathbb{Z} \,\right\} = \left\{ \frac{7\pi}{12} + 2k\pi \,, \, \frac{13\pi}{12} + 2k\pi \,, \, k \in \mathbb{Z} \,\right\}.$$

• Normalisation b)

$$\sin x + 2\cos x = 9 \quad \Leftrightarrow \quad \frac{1}{\sqrt{5}}\sin x + \frac{2}{\sqrt{5}}\cos x = \frac{9}{\sqrt{5}}.$$

• Transformation

Il existe
$$\varphi$$
, tel que $\sin(\varphi) = \frac{1}{\sqrt{5}}$ et $\cos(\varphi) = \frac{2}{\sqrt{5}}$.
 $\frac{1}{\sqrt{5}} \sin x + \frac{2}{\sqrt{5}} \cos x = \frac{9}{\sqrt{5}} \iff \sin(\varphi) \sin x + \cos(\varphi) \cos x = \frac{9}{\sqrt{5}}$
 $\iff \cos(x - \varphi) = \frac{9}{\sqrt{5}}$.

• Résolution

L'équation $\cos(x-\varphi) = \frac{9}{\sqrt{5}}$ n'admet pas de solution car $\frac{9}{\sqrt{5}} > 1$. (On aurait pu le constater dès l'étape de normalisation.)

- c) L'équation linéaire est déjà normalisée.
 - Transformation
 - o Transformation en cosinus

$$\frac{\sqrt{2}}{2} \left[\sin(3x) + \cos(3x) \right] = 1 \iff \sin\left(\frac{\pi}{4}\right) \sin(3x) + \cos\left(\frac{\pi}{4}\right) \cos(3x) = 1$$
$$\Leftrightarrow \cos\left(3x - \frac{\pi}{4}\right) = 1.$$

o Transformation en sinus

$$\frac{\sqrt{2}}{2} \left[\sin(3x) + \cos(3x) \right] = 1 \iff \cos\left(\frac{\pi}{4}\right) \sin(3x) + \sin\left(\frac{\pi}{4}\right) \cos(3x) = 1$$
$$\Leftrightarrow \sin\left(3x + \frac{\pi}{4}\right) = 1.$$

- Résolution
 - o Résolution de l'équation en cosinus

$$\cos\left(3x - \frac{\pi}{4}\right) = 1$$

$$\Leftrightarrow 3x - \frac{\pi}{4} = 2k\pi$$

$$\Leftrightarrow 3x = \frac{\pi}{4} + 2k\pi$$

$$\Leftrightarrow x = \frac{\pi}{12} + \frac{2k\pi}{3}, \quad k \in \mathbb{Z}.$$

o Résolution de l'équation en sinus

$$\sin\left(3x + \frac{\pi}{4}\right) = 1$$

$$\Leftrightarrow 3x + \frac{\pi}{4} = \frac{\pi}{2} + 2k\pi$$

$$\Leftrightarrow 3x = \frac{\pi}{4} + 2k\pi$$

$$\Leftrightarrow x = \frac{\pi}{12} + \frac{2k\pi}{3}, \quad k \in \mathbb{Z}.$$

$$S = \left\{ \frac{\pi}{12} + \frac{2k\pi}{3}, \quad k \in \mathbb{Z} \right\}.$$

d) • Normalisation

$$\sin(2x) - \cos(2x) + 1 = 0 \quad \Leftrightarrow \quad \frac{\sqrt{2}}{2}\sin(2x) - \frac{\sqrt{2}}{2}\cos(2x) = -\frac{\sqrt{2}}{2}.$$

Transformation

$$\frac{\sqrt{2}}{2}\sin(2x) - \frac{\sqrt{2}}{2}\cos(2x) = -\frac{\sqrt{2}}{2} \iff \frac{\sqrt{2}}{2}\cos(2x) - \frac{\sqrt{2}}{2}\sin(2x) = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \cos\left(\frac{\pi}{4}\right)\cos(2x) - \sin\left(\frac{\pi}{4}\right)\sin(2x) = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \cos\left(2x + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right).$$

ullet Résolution sur $\mathbb R$

$$\cos\left(2x + \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) \iff \begin{cases} 2x + \frac{\pi}{4} = \frac{\pi}{4} + 2k\pi, & \text{ou} \\ 2x + \frac{\pi}{4} = -\frac{\pi}{4} + 2k\pi, & k \in \mathbb{Z} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = k\pi, & \text{ou} \\ x = -\frac{\pi}{4} + k\pi, & k \in \mathbb{Z} \end{cases}$$

$$x = -5\pi, \quad x = -4\pi - \frac{\pi}{4}, \quad x = -4\pi,$$

$$x = -3\pi - \frac{\pi}{4}, \quad x = -3\pi.$$

$$S = \left\{ -5\pi, -\frac{17\pi}{4}, -4\pi, -\frac{13\pi}{4}, -3\pi \right\}.$$

- e) L'équation $\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0$ est une équation trigonométrique linéaire particulière car le terme constant est nul.
 - Résolution sur \mathbb{R}
 - o Première méthode de résolution

On utilise la technique de résolution des équations linéaires.

$$\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0 \iff \frac{\sqrt{2}}{2}\sin\left(\frac{x}{2}\right) + \frac{\sqrt{2}}{2}\cos\left(\frac{x}{2}\right) = 0$$

$$\Leftrightarrow \sin\left(\frac{x}{2} + \frac{\pi}{4}\right) = 0$$

$$\Leftrightarrow \frac{x}{2} + \frac{\pi}{4} = k\pi$$

$$\Leftrightarrow x = -\frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}.$$

o Deuxième méthode de résolution

On se ramène à une équation élémentaire en tangente.

$$\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0 \iff \sin\left(\frac{x}{2}\right) = -\cos\left(\frac{x}{2}\right)$$

$$\Leftrightarrow \tan\left(\frac{x}{2}\right) = -1, \quad \cos\left(\frac{x}{2}\right) \neq 0$$

$$\Leftrightarrow \frac{x}{2} = -\frac{\pi}{4} + k\pi$$

$$\Leftrightarrow x = -\frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}.$$

Remarque:

les x vérifiant $\cos(\frac{x}{2}) = 0$ ne sont pas solutions : $\cos(\frac{x}{2}) = 0 \Leftrightarrow \sin(\frac{x}{2}) = \pm 1$.

o Troisième méthode de résolution

Les coefficients des termes en sinus et cosinus étant identiques (a = b), on peut se ramener à une équation élémentaire en sinus ou en cosinus.

$$\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) = 0 \iff \sin\left(\frac{x}{2}\right) = -\cos\left(\frac{x}{2}\right)$$

$$\Leftrightarrow \sin\left(\frac{x}{2}\right) = -\sin\left(\frac{\pi}{2} - \frac{x}{2}\right)$$

$$\Leftrightarrow \sin\left(\frac{x}{2}\right) = \sin\left(-\frac{\pi}{2} + \frac{x}{2}\right)$$

$$\Leftrightarrow \left\{\frac{x}{2} = -\frac{\pi}{2} + \frac{x}{2} + 2k\pi, \text{ ou} \right.$$

$$\frac{x}{2} = \pi - \left(-\frac{\pi}{2} + \frac{x}{2}\right) + 2k\pi$$

$$\Leftrightarrow x = \frac{3\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}.$$

• Résolution sur l'intervalle $[-\pi\,,\,0\,]$ Il n'y a qu'une solution, $S=\left\{-\frac{\pi}{2}\,\right\}$.

2. Résoudre les inéquations suivantes :

a)
$$\cos x + \sqrt{3}\sin x > 1$$

b)
$$-\sqrt{3}\sin(2x) + \cos(2x) \le -\sqrt{2}$$
, $5\pi \le x \le 6\pi$

c)
$$\sin x \ge \cos x$$
, $\frac{\pi}{2} \le x \le \frac{5\pi}{2}$

a) On résout les inéquations linéaires comme les équations linéaires.

On se ramène à une inéquation élémentaire en cosinus

Normalisation

$$\cos x + \sqrt{3} \sin x > 1 \quad \Leftrightarrow \quad \frac{1}{2} \cos x + \frac{\sqrt{3}}{2} \sin x > \frac{1}{2}.$$

• Transformation

$$\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x > \frac{1}{2} \iff \cos\left(\frac{\pi}{3}\right)\cos x + \sin\left(\frac{\pi}{3}\right)\sin x > \frac{1}{2}$$
$$\Leftrightarrow \cos\left(x - \frac{\pi}{3}\right) > \frac{1}{2}.$$

• Résolution

$$\cos\left(x - \frac{\pi}{3}\right) > \frac{1}{2} \quad \Leftrightarrow \quad -\frac{\pi}{3} + 2k\pi < x - \frac{\pi}{3} < \frac{\pi}{3} + 2k\pi \,, \quad k \in \mathbb{Z} \,.$$

$$\Leftrightarrow \quad 2k\pi < x < \frac{2\pi}{3} + 2k\pi \,, \quad k \in \mathbb{Z} \,. \qquad \qquad S = \bigcup_{k \in \mathbb{Z}} \, \big] \, 2k\pi \,, \ \ \tfrac{2\pi}{3} + 2k\pi \, \big[\,.$$

$$S = \bigcup_{k \in \mathbb{Z}} \left[2k\pi, \frac{2\pi}{3} + 2k\pi \right].$$

Ou bien on se ramène à une inéquation élémentaire en sinus

Normalisation

$$\cos x + \sqrt{3}\sin x > 1 \quad \Leftrightarrow \quad \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x > \frac{1}{2}.$$

• Transformation

$$\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x > \frac{1}{2} \iff \sin\left(\frac{\pi}{6}\right)\cos x + \cos\left(\frac{\pi}{6}\right)\sin x > \frac{1}{2}$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{6}\right) > \frac{1}{2}.$$

Résolution

$$\sin\left(x + \frac{\pi}{6}\right) > \frac{1}{2} \quad \Leftrightarrow \quad \frac{\pi}{6} + 2k\pi < x + \frac{\pi}{6} < \frac{5\pi}{6} + 2k\pi \,, \quad k \in \mathbb{Z} \,.$$

$$\Leftrightarrow \quad 2k\pi < x < \frac{2\pi}{3} + 2k\pi \,, \quad k \in \mathbb{Z} \,. \qquad \qquad S = \bigcup_{k \in \mathbb{Z}} \, \big] \, 2k\pi \,, \,\, \tfrac{2\pi}{3} + 2k\pi \, \big[\,.$$

$$S = \bigcup_{k \in \mathbb{Z}} \left[2k\pi, \frac{2\pi}{3} + 2k\pi \right]$$

- b) On se ramène à une inéquation élémentaire en cosinus
 - Normalisation

$$-\sqrt{3} \sin(2x) + \cos(2x) \le -\sqrt{2} \iff -\frac{\sqrt{3}}{2} \sin(2x) + \frac{1}{2} \cos(2x) \le -\frac{\sqrt{2}}{2}$$
.

EPF - Lausanne

• Transformation

$$\frac{1}{2}\cos(2x) - \frac{\sqrt{3}}{2}\sin(2x) \le -\frac{\sqrt{2}}{2} \iff \cos\left(\frac{\pi}{3}\right)\cos(2x) - \sin\left(\frac{\pi}{3}\right)\sin(2x) \le -\frac{\sqrt{2}}{2}$$
$$\Leftrightarrow \cos\left(2x + \frac{\pi}{3}\right) \le -\frac{\sqrt{2}}{2}.$$

ullet Résolution sur $\mathbb R$

$$\cos\left(2x + \frac{\pi}{3}\right) \le -\frac{\sqrt{2}}{2} \quad \Leftrightarrow \quad \frac{3\pi}{4} + 2k\pi \le 2x + \frac{\pi}{3} \le \frac{5\pi}{4} + 2k\pi \,, \quad k \in \mathbb{Z}$$

$$\Leftrightarrow \quad \frac{5\pi}{12} + 2k\pi \le 2x \le \frac{11\pi}{12} + 2k\pi$$

$$\Leftrightarrow \quad \frac{5\pi}{24} + k\pi \le x \le \frac{11\pi}{24} + k\pi \,.$$

• Résolution sur l'intervalle $[5\pi, 6\pi]$

$$5\pi + \frac{5\pi}{24} \le x \le 5\pi + \frac{11\pi}{24}$$
, ou $6\pi - \frac{19\pi}{24} \le x \le 6\pi - \frac{13\pi}{24}$.

- c) Sur l'intervalle $\left[\frac{\pi}{2}, \frac{5\pi}{2}\right]$, sin x et $\cos x$ sont de signes variables, il est difficile de se ramener à une inéquation élémentaire en tagente ou en cotangente. Il est préférable d'utiliser la technique de résolution des équations linéaires.
 - Normalisation $\sin x \ge \cos x \quad \Leftrightarrow \quad \cos x \sin x \le 0 \quad \Leftrightarrow \quad \frac{\sqrt{2}}{2} \cos x \frac{\sqrt{2}}{2} \sin x \le 0.$

• Transformation

$$\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x \le 0 \iff \cos\left(\frac{\pi}{4}\right)\cos x - \sin\left(\frac{\pi}{4}\right)\sin x \le 0$$
$$\Leftrightarrow \cos\left(x + \frac{\pi}{4}\right) \le 0.$$

ullet Résolution sur $\mathbb R$

$$\cos\left(x + \frac{\pi}{4}\right) \le 0 \iff \frac{\pi}{2} + 2k\pi \le x + \frac{\pi}{4} \le \frac{3\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}$$
$$\Leftrightarrow \frac{\pi}{4} + 2k\pi \le x \le \frac{5\pi}{4} + 2k\pi.$$

$$\rightarrow X \qquad S = \left[\frac{\pi}{2}, \frac{5\pi}{4}\right] \cup \left[\frac{9\pi}{4}, \frac{5\pi}{2}\right].$$

3. Factoriser avant de résoudre l'équation et l'inéquation suivantes :

a)
$$\sin(2x) - 2\cos^2 x + 2\cos x = 0$$

b)
$$\cos(2x) + \sin x + \cos x > 0$$
, $0 \le x \le 2\pi$

a) $\sin(2x) - 2\cos^2 x + 2\cos x = 0$ \Leftrightarrow $2\sin x \cos x - 2\cos^2 x + 2\cos x = 0$

$$\Leftrightarrow$$
 $2\cos x (\sin x - \cos x + 1) = 0 \Leftrightarrow$
$$\begin{cases} \cos x = 0 & \text{ou} \\ \sin x - \cos x + 1 = 0 \end{cases}$$

•
$$\cos x = 0$$
 \Leftrightarrow $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

•
$$\sin x - \cos x + 1 = 0$$
 \Leftrightarrow $\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x = \frac{\sqrt{2}}{2}$

$$\Leftrightarrow \quad \cos\frac{\pi}{4}\cos x - \sin\frac{\pi}{4}\sin x = \frac{\sqrt{2}}{2} \quad \Leftrightarrow \quad \cos(x + \frac{\pi}{4}) = \cos\frac{\pi}{4}$$

$$\Leftrightarrow \begin{cases} x + \frac{\pi}{4} = \frac{\pi}{4} + 2k\pi \\ \text{ou} \\ x + \frac{\pi}{4} = -\frac{\pi}{4} + 2k\pi \end{cases} \Leftrightarrow \begin{cases} x = 2k\pi \\ \text{ou} \\ x = -\frac{\pi}{2} + 2k\pi \end{cases} \qquad k \in \mathbb{Z}.$$

D'où $S = \left\{ \frac{\pi}{2} + k\pi, 2k\pi, k \in \mathbb{Z} \right\}.$

b)
$$\cos(2x) + \sin x + \cos x > 0$$
, $0 \le x \le 2\pi$.

$$\cos(2x) + \sin x + \cos x > 0 \quad \Leftrightarrow \quad \cos^2 x - \sin^2 x + \cos x + \sin x > 0$$

$$\Leftrightarrow$$
 $(\cos x + \sin x)(\cos x - \sin x) + (\cos x + \sin x) > 0$

$$\Leftrightarrow$$
 $(\cos x + \sin x) [(\cos x - \sin x) + 1] > 0$

$$\Leftrightarrow \begin{cases} \cos x + \sin x > 0 & (i) \\ \text{et} & \text{ou} \end{cases} \begin{cases} \cos x + \sin x < 0 & (iii) \\ \text{et} \\ \cos x - \sin x + 1 > 0 & (ii) \end{cases}$$

(i)
$$\cos x + \sin x > 0 \Leftrightarrow \frac{\sqrt{2}}{2} \cos x + \frac{\sqrt{2}}{2} \sin x > 0$$

 $\Leftrightarrow \cos \frac{\pi}{4} \cos x + \sin \frac{\pi}{4} \sin x > 0 \Leftrightarrow \cos(x - \frac{\pi}{4}) > 0$

Résolution sur \mathbb{R} :

$$-\frac{\pi}{2} + 2k\pi < x - \frac{\pi}{4} < \frac{\pi}{2} + 2k\pi$$
$$-\frac{\pi}{4} + 2k\pi < x < \frac{3\pi}{4} + 2k\pi .$$
Résolution sur $[0, 2\pi]$:

$$S_i = [0, \frac{3\pi}{4}[\cup]\frac{7\pi}{4}, 2\pi].$$

(iii) On en déduit l'ensemble solution de $\cos x + \sin x < 0$: $S_{iii} = \frac{3\pi}{4}, \frac{7\pi}{4}$ [.

(ii)
$$\cos x - \sin x > -1 \iff \frac{\sqrt{2}}{2} \cos x - \frac{\sqrt{2}}{2} \sin x > -\frac{\sqrt{2}}{2}$$

 $\Leftrightarrow \cos \frac{\pi}{4} \cos x - \sin \frac{\pi}{4} \sin x > -\frac{\sqrt{2}}{2} \iff \cos(x + \frac{\pi}{4}) > -\frac{\sqrt{2}}{2}$

Résolution sur \mathbb{R} :

$$-\frac{3\pi}{4} + 2k\pi < x + \frac{\pi}{4} < \frac{3\pi}{4} + 2k\pi$$
$$-\pi + 2k\pi < x < \frac{\pi}{2} + 2k\pi.$$

Résolution sur $[0, 2\pi]$:

$$S_{ii} = [0, \frac{\pi}{2}[\cup]\pi, 2\pi].$$

(iv) On en déduit l'ensemble solution de $\cos x - \sin x + 1 < 0$: $S_{iv} = \frac{\pi}{2}$, π [.

Et pour finir:

$$S = (S_i \cap S_{ii}) \cup (S_{iii} \cap S_{iv}) = \left[0, \frac{\pi}{2} \left[\cup \right] \frac{3\pi}{4}, \pi \left[\cup \right] \frac{7\pi}{4}, 2\pi\right].$$

4. D'un rectangle ABCD on connaît la longueur d de la diagonale AC, et on fait varier l'angle $\alpha = \widehat{BAC}$.

- a) Pour quelles valeurs de l'angle α le périmètre P de ce rectangle satisfait-il la relation : $P \ge d\sqrt{6}$?
- b) Pour quelle valeur de l'angle α le périmètre est-il maximal ? Que vaut-il ?

a) Expression du périmètre P en fonction de d et de α :

$$P = 2 \left(AB + BC \right) \quad \text{avec} \quad AB = d \cos \alpha \quad \text{et} \quad BC = d \sin \alpha \,, \quad \alpha \in \,]0 \,, \, \frac{\pi}{2} [\,.$$

$$P = 2d \left(\cos \alpha + \sin \alpha \right) \,, \quad \alpha \in \,]0 \,, \, \frac{\pi}{2} [\,.$$

Résolution de l'inéquation :

$$P \ge d\sqrt{6} \quad \Leftrightarrow \quad 2d\left(\cos\alpha + \sin\alpha\right) \ge d\sqrt{6} \quad \Leftrightarrow \quad \frac{\sqrt{2}}{2}\cos\alpha + \frac{\sqrt{2}}{2}\sin\alpha \ge \frac{\sqrt{3}}{2}$$
$$\Leftrightarrow \quad \cos\frac{\pi}{4}\cos\alpha + \sin\frac{\pi}{4}\sin\alpha \ge \frac{\sqrt{3}}{2} \quad \Leftrightarrow \quad \cos(\alpha - \frac{\pi}{4}) \ge \frac{\sqrt{3}}{2}$$

Résolution sur \mathbb{R} :

$$-\frac{\pi}{6} + 2k\pi \le \alpha - \frac{\pi}{4} \le \frac{\pi}{6} + 2k\pi$$
$$\frac{\pi}{12} + 2k\pi \le \alpha \le \frac{5\pi}{12} + 2k\pi.$$

Résolution sur $]0, \frac{\pi}{2}[$:

Satisfies $S = \begin{bmatrix} \frac{\pi}{12}, \frac{5\pi}{12} \end{bmatrix}$.

b) Pour déterminer la valeur de l'angle $\,\alpha\,$ pour laquelle le périmètre est maximum, on exprime $\,P\,$ à l'aide d'une seule fonction sinus ou cosinus :

$$P = 2d\left(\cos\alpha + \sin\alpha\right) = 2d\sqrt{2}\left(\frac{\sqrt{2}}{2}\cos\alpha + \frac{\sqrt{2}}{2}\sin\alpha\right) = 2d\sqrt{2}\cos(\alpha - \frac{\pi}{4}).$$

Le périmètre P est maximum lorsque $\cos(\alpha - \frac{\pi}{4}) = 1$.

$$\cos(\alpha - \frac{\pi}{4}) = 1 \quad \Leftrightarrow \quad \alpha - \frac{\pi}{4} = 2k\pi \quad \Leftrightarrow \quad \alpha = \frac{\pi}{4} + 2k\pi \,, \quad k \in \mathbb{Z} \,.$$

Or
$$\alpha \in]0, \frac{\pi}{2}[, \text{ d'où } \alpha = \frac{\pi}{4}.$$

Et le périmètre vaut alors $P = 2d\sqrt{2}$.