Activity_1

5645242_Daniel_Guo

2025-02-05

1

https://www.kaggle.com/datasets/abdelrahmanemad 594/premier-league-season-2024

```
F1_2022 <- read.csv(
   "/Users/danielguo/Desktop/University/Year 1/ST117/Activity 1/F1_2022_Data.csv",
   sep = ",")
F1_2022</pre>
```

##		POS	Driver.Code	Driver.Name			Constructor	Points
##	1	1	VER	Max Verstappen		Red Bull	Racing RBPT	454
##	2	2	LEC	Charles Leclerc			Ferrari	308
##	3	3	PER	Sergio Perez		Red Bull	Racing RBPT	305
##	4	4	RUS	George Russell			Mercedes	275
##	5	5	SAI	Carlos Sainz			Ferrari	246
##	6	6	HAM	Lewis Hamilton			Mercedes	240
##	7	7	NOR	Lando Norris		McLa	aren Mercedes	122
##	8	8	000	Esteban Ocon		A	lpine Renault	92
##	9	9	ALO	Fernando Alonso		A	lpine Renault	81
##	10	10	BOT	Valtteri Bottas		Alfa F	Romeo Ferrari	49
##	11	11	RIC	Daniel Ricciardo		McLa	aren Mercedes	37
##	12	12	VET	Sebastian Vettel	Aston	Martin Ara	amco Mercedes	37
##	13	13	MAG	Kevin Magnussen			Haas Ferrari	25
##	14	14	GAS	Pierre Gasly		-	ohaTauri RBPT	23
##	15	15	STR	Lance Stroll	Aston	Martin Ara		18
	16	16	MSC	Mick Schumacher			Haas Ferrari	12
	17	17	TSU	Yuki Tsunoda		-	ohaTauri RBPT	12
##		18	ZHO	Zhou Guanyu			Romeo Ferrari	6
	19	19	ALB	Alexander Albon			iams Mercedes	4
	20	20	LAT	Nicholas Latifi			iams Mercedes	2
	21	21	DEV	Nyck De Vries			iams Mercedes	2
##	22	22	HUL	Nico Hulkenberg				0
##		Pole		No.of.Fastest.Laps				
##			7	5		17	2	
## ##			9	3	3 3 2	11 11	3 3	
##	-		1 2	4		8	1	
	5		3		2 1	9	6	
	6		0		2 0	9	2	
	7		0		2 0	1	2	
	8		0	(0	2	
##	9		0	(0	6	
##	-		0	(-	0	6	
	± 0		O	,	, 0	0	•	

```
## 11
                              0
                                  0
## 12
                                            3
              0
                              0
                                  0
## 13
              0
                                           5
                                  0
## 14
              0
                              0
                                  0
                                        0 3
              0
                                        0 3
## 15
                              0
                                  0
## 16
              0
                              0
                                  0
                                        0 3
## 17
              0
                              0
                                  0
                                        0 6
              0
## 18
                                  0
                                        0 5
                              1
                                           5
## 19
              0
                              0
                                  0
                                        0
## 20
              0
                              0
                                  0
                                        0 5
## 21
               0
                                  0
                                        0 0
## 22
                                  0
                                        0 0
```

```
Constructor_colors <- c(</pre>
 "Red Bull Racing RBPT" = "blue",
 "Mercedes" = "grey",
 "Ferrari" = "red",
 "McLaren Mercedes" = "orange",
  "Alpine Renault" = "pink",
  "Aston Martin Aramco Mercedes" = "darkgreen",
  "AlphaTauri RBPT" = "navy",
  "Alfa Romeo Ferrari" = "maroon",
 "Haas Ferrari" = "white",
 "Williams Mercedes" = "lightblue"
barplot(F1_2022$Points,
        names.arg = F1_2022$Driver.Code,
        main = "F1 2022 Driver Points",
        xlab = "Drivers",
        ylab = "Points",
        col = Constructor_colors[F1_2022$Constructor],
        las = 2,
        border = "black",
        ylim = c(0,500)
```

F1 2022 Driver Points

I wanted to show the number of points each driver won across the 2022 season, while having the bar chart in the colours of the constructors also reflects the number of points each constructors won across this season.

Unlike a histogram, a bar chart is perfect for categorical data such as each driver. It clearly shows who won the 2022 season with the ranking of every drivers.

Clearly, Max Verstappen and its constructor won the 2022 season with a distant margin, followed by Leclerc and his constructor Ferrari. The top three constructors lead the rest of the pack by a very large margin, difference between Hamilton and Norris.

2.

https://www.kaggle.com/datasets/vivekattri/global-ev-charging-stations-dataset

```
EV_Charging_Station <- read.csv(
   "/Users/danielguo/Desktop/University/Year 1/ST117/Activity 1/detailed_ev_charging_stations.csv",
   sep = ",")
head(EV_Charging_Station)

## Station.ID Latitude Longitude Address
## 1 EVS00001 -33.40100 77.97497 4826 Random Rd, City 98, Country
## 2 EVS00002 37.86186 -122.49030 8970 San Francisco Ave, San Francisco</pre>
```

##	2	E/200002	37.00100	-122.49030	ogio san Fia	ancisco ave, san riancisco
##	3	EVS00003	13.77609	100.41278		5974 Bangkok Ave, Bangkok
##	4	EVS00004	43.62825	-79.46894		6995 Toronto Ave, Toronto
##	5	EVS00005	19.11987	72.91337		5704 Mumbai Ave, Mumbai
##	6	EVS00006	-23.69501	-46.54819	1545	São Paulo Ave, São Paulo
##		Charger.	Type Cost.	USD.kWh.	Availability	Distance.to.Citykm.
##	1	AC Lev	rel 2	0.27	9:00-18:00	4.95
##	2 D	C Fast Cha	arger	0.19	24/7	4.96
##	3	AC Lev	7el 2	0.48	6:00-22:00	8.54
##	4	AC Lev	rel 1	0.41	9:00-18:00	13.28

```
## 5
          AC Level 2
                                        9:00-18:00
                                                                       9.76
                                 0.11
          AC Level 2
                                 0.22
                                        6:00-22:00
## 6
                                                                       2.02
     Usage.Stats..avg.users.day. Station.Operator Charging.Capacity..kW.
## 1
                                35
                                                EVgo
## 2
                                83
                                                EVgo
                                                                          350
## 3
                                24
                                        ChargePoint
                                                                           50
## 4
                                70
                                           Greenlots
                                                                          350
## 5
                                                                          350
                                19
                                                EVgo
## 6
                                39
                                              Ionity
                                                                          350
##
     Connector. Types Installation. Year Renewable. Energy. Source Reviews.. Rating.
## 1
        CCS, CHAdeMO
                                    2013
                                                               Yes
       Tesla, Type 2
                                    2010
                                                                                 3.9
## 2
                                                               Yes
## 3
         Type 2, CCS
                                    2019
                                                                No
                                                                                 3.6
## 4
               Type 2
                                    2010
                                                               Yes
                                                                                 4.2
## 5
                  CCS
                                    2015
                                                               Yes
                                                                                 3.7
## 6
                Tesla
                                    2016
                                                               Yes
                                                                                 3.2
##
     Parking.Spots Maintenance.Frequency
                  7
                                  Annually
                  2
## 2
                                   Monthly
## 3
                  9
                                  Annually
                  7
## 4
                                   Monthly
## 5
                  6
                                  Annually
## 6
                  9
                                 Quarterly
hist(EV_Charging_Station$Distance.to.City..km.,
     main = "Histogram of Distance to City",
     xlab = "Distance (km)",
     col = "pink",
     breaks = 10)
```

Histogram of Distance to City


```
barplot(table(EV_Charging_Station$Installation.Year),
    main = "Bar Plot of Installation Years",
    xlab = "Year",
    ylab = "Count",
    col = "lightcyan",
    border = "black",
    ylim = c(0,400))
```

Bar Plot of Installation Years


```
maintenance_table <- table(EV_Charging_Station$Maintenance.Frequency)
pie(maintenance_table,
    main = "Pie Chart of Maintenance Frequency",
    labels = paste(names(maintenance_table), "\n", maintenance_table))</pre>
```

Pie Chart of Maintenance Frequency


```
boxplot(EV_Charging_Station$Usage.Stats..avg.users.day. ~ EV_Charging_Station$Maintenance.Frequency,
    main = "Usage Per Day by Maintenance Frequency",
    xlab = "Maintenance Frequency",
    ylab = "Usage Per Day",
    col = c("lightblue", "beige", "lightpink"),
    border = "black")
```

Usage Per Day by Maintenance Frequency

3.

The written answer for the small data set is in section 1, under the first plot.

i.

- 1. Distance to cities show the availability of the EV stations to citizens in suburban area, travelling between cities. A wide range of distance can be essential for the use of EV and can encourage more EV consumptions.
- 2. Installation years show the year which the EV charging stations are installed, which could indicate the how recency and the quality of the charging stations.
- 3. Maintenance frequency shows the operational reliability of EV stations.
- 4. How usage per day may differ with different maintenance frequency. Further, box plot shows if most stations are used (if the median is high, many stations have high usage.) Further, a long lower whisker can show that some are under-utilised.

ii.

- Histogram works best for numerical ranges, like distances in km). It shows urban rural comparison
 by showing where charging stations are mostly located. Useful for policy decisions or expanding
 infrastructure in areas with less stations. It can detects outliers: if there are stations located extremely
 far from cities.
- 2. Unlike a histogram, a bar chart is perfect for categorical data like each year. It can show the trend over the years.
- 3. Pie chart shows the proportion of each maintenance frequency, can show if most stations need frequent or rare maintenance.
- 4. A series of box plot allows you to compare how the distribution of usage per day differs, including the median and max and min values, based on maintenance frequency. Median represents the middle value of charging station usage, a higher of which shows a higher use of the stations with the corresponding maintenance frequency.

iii.

- 1. Relative similar number of stations at each distance except marginally less closser to the city, 0-2km. However, no data outside of 20km radius of the city, therefore more infrastructures may need to be planned in areas 20km outside of the cities.
- 2. There is no trend of increase or decrease across the years, although several peaks in 2013, 2015, 2017, 2020, which is surprising because the increasing risks of climate change and increase encouragement of EV usage.
- 3. Even spread of each Maintenance Frequency, which indicates that there is a relatively large proportion that are less maintenance, so that some of them may require more maintenance.
- 4. Even whisker and no outlier, so that no stations are extremely under-utilised. Annually and Monthly have relatively similar box plot, while quarterly has a higher median, so that the stations has more use, which is unusual.