Ordinaux et l'hydre de Lerne

Maxime Muller

May 24, 2025

Contents

0.1 Introduction aux ordinaux

Definition 0.1.1 (Ensemble). Un ensemble est une collection d'éléments non ordonnée et non redondante.

Lemma 0.1.1 (Axiome 1). On dispose de l'ensemble vide \emptyset .

Lemma 0.1.2 (Axiome 2). Si on dispose d'un objet a, alors $\{a\}$ existe.

Lemma 0.1.3 (Axiome 3). Si A, B, C, \ldots sont des ensembles, alors $A \cup B \cup C \cup \ldots$ est un ensemble.

Corollary 0.1.1 (Construction des entiers.). Question : Est-il possible de construire les entiers?

- 0 sera représenté par \emptyset
- 1 sera représenté par $\{0\} = \{\emptyset\}$
- On réprésente alors 2 par $\{0,1\} = \{\emptyset, \{\emptyset\}\}\$
- Dans le cas général, on définit n par : $n = \{1, \dots, n-1\} = (n-1) \cup \{n-1\}$.

Definition 0.1.2 (Sup). Soit X un ensemble de nombres $(X = \{0, 2, 7\})$ et je veux créer une fonction sup qui à X m'associe le plus grand nombre de X.

$$\sup X = \bigcup_{a \in X} a$$

Definition 0.1.3 (Infini). On cherche $\sup\{0,\ldots,n,\ldots\}$.

$$\sup\{0,\dots\} = 0 \cup 1 \cup \dots$$

$$= \{0,0,1,0,1,2,\dots\}$$

$$= \{0,1,\dots\}$$

$$= \omega$$

On a ainsi:

- 1. $0, 1, \ldots, n$ les entiers
- 2. . $^+$ la fonction qui à n associe son successeur
- 3. ω le supérieur de tous les entiers
- 4. $\omega^+ = 0, 1, \dots, n, \dots, \omega \text{ donc } \omega^+ \neq \omega$

Definition 0.1.4 (Comparaison). Soient x et y des ordinaux.

Notation. Si x appartient à y, on note x < y

Notation. Si x est inclus dans y, on note $x \leq y$

Corollary 0.1.2 (Propriétés). Pour tout n un ordinal on a :

$$\begin{cases} n < \omega \\ n < n^+ \end{cases}$$

Notamment, on a:

$$\omega < \omega^+ < \omega^{++}$$

Corollary 0.1.3 (Transitivité). On a :

$$x < y \land y < z \Rightarrow x < z$$

Definition 0.1.5 (Ordinal). x est un ordinal, si:

$$y < x \Rightarrow y < x$$

$$y < x \land z < x \Rightarrow \begin{cases} y < z \\ \text{ou} \\ y = z \\ \text{ou} \\ y > z \end{cases}$$

Lemma 0.1.4 (Axiome de fondation). Soit x_0 un ensemble, $x_1 < x_0, x_2 < x_1...$, alors :

$$\exists n, \not\exists x_{n+1}$$

Theorem 0.1.1 (Minimum). Soit x un ordinal, $\tilde{x} \leq x, \tilde{x} \neq \emptyset$ alors:

$$\exists y < \tilde{x} \text{ t.q. } \forall z < \tilde{x}, y \leq z$$

Proof. laissée en exercice au lecteur

*

Theorem 0.1.2 (Egalité). Soit x, y des ordinaux :

$$x \le y, y \ge x \Rightarrow x = y$$

Theorem 0.1.3 (thm). Soient x, y des ordinaux, alors :

$$x \le y \Rightarrow \begin{cases} x = y \\ \text{ou} \\ x < y \end{cases}$$

Proof. Laissée en exercice au lecteur

*

2

Notation. On note:

"Soit x un ordinal" \Leftrightarrow "Soit $x \in \text{On}$ "

et toutes les notations que l'on peut en découler.

Theorem 0.1.4 (Construction des ordinaux). Soit $x \in \text{On}^*$, alors l'une exactement des deux choses est vraies :

- $\exists y \in \text{On}, x = y^+$
- $x = \sup_{a < x} a$

Proof. Laissée en exercice au lecteur \square .

*

Theorem 0.1.5 (BIG theorem).

$$(a,b) \in \mathrm{On}^2 \Rightarrow \begin{cases} a \leq b \\ \mathrm{ou} \\ b \leq a \end{cases}$$

Proof. Laissée en exercice au lecteur \square .

(

Theorem 0.1.6 (Le sup).

$$a \in \text{On} \Rightarrow a^+ \in \text{On}$$

 $X \subset \text{On} \Rightarrow \sup X \in \text{On}$

Proof. Laissée en exercice au lecteur \square .

*

CONTENTS 3