Eigenvectors and linear transformations

• Let $T:V\to W$ be a linear transformation with $\dim(V)=n, \dim(W)=m$, let $\mathscr B$ and $\mathscr C$ be bases for V and W respectively. In terms of the coordinates with respect to the bases, T is described by a matrix M.

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}}$$

$$M = [[T(\mathbf{b}_1)]_{\mathcal{C}} \quad [T(\mathbf{b}_2)]_{\mathcal{C}} \quad \cdots \quad [T(\mathbf{b}_n)]_{\mathcal{C}}]$$

• The matrix M is a matrix representation of T, called the matrix for T relative to the bases $\mathscr B$ and $\mathscr C$.

• In case that V=W, and $\mathscr{B}=\mathscr{C}$, the matrix M is called the matrix for T relative to \mathscr{B} .

• Let A be a $n \times n$ matrix, it defines a linear transformation $f: R^n \to R^n$ sending x to Ax. Let $\mathscr{B} = \{b_1, \cdots, b_n\}$ be another basis of R^n , let $P = [b_1 \cdots b_n]$, then the transition matrix $P_{\mathscr{E} \to \mathscr{B}}$ equals P^{-1} . The matrix of f relative to \mathscr{B} equals $C = P^{-1}AP$. In other words, $A = PCP^{-1}$, which can be expressed as the commutative diagram:

Theorem

Diagonal Matrix Representation

Suppose $A = PDP^{-1}$, where D is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for \mathbb{R}^n formed from the columns of P, then D is the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$.

Diagonalization of complex matrices

- Recall that the matrix $A=\begin{bmatrix}1\\-1\end{bmatrix}$ can not be diagonalized as a real matrix, i.e. there is no real matrices B and D with B invertible and D diagonal such that $B^{-1}AB=D$.
- The reason is that its characteristic equation $\det(A-\lambda I)=\lambda^2+1$ has no real roots.
- But it does have complex roots, this suggests that we should consider the complex matrices *B* and *D*.

• Example: Diagonalize $A = \begin{bmatrix} & 1 \\ -1 & \end{bmatrix}$ if possible.

Solution The characteristic equation of A is

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & I \\ -I & -\lambda \end{vmatrix} = \lambda^2 + I = 0$$

It has nots $\lambda = \pm i$

We need to calculate its eigenvectors:

1) For $\lambda = i$, solve the system

$$\begin{bmatrix} -\mathbf{i} & 1 \\ -1 & -\mathbf{i} \end{bmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = 0 \quad \Rightarrow \quad \chi_1 + \mathbf{i} \chi_2 = 0 \quad \Rightarrow \quad \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \mathbf{c} \cdot \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix}.$$

2) For $\lambda = -i$, need to solve the system

These two eigenvector equation can be written together as

$$A \left(\begin{array}{cc} 1 & 1 \\ i & -i \end{array} \right) = \left(\begin{array}{cc} 1 & 1 \\ i & -i \end{array} \right) \left(\begin{array}{cc} i \\ & -i \end{array} \right)$$

$$\Rightarrow$$
 A = $\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$ $\begin{bmatrix} i & 1 \\ i & -i \end{bmatrix}$ is diagonalizable.

- Let A be an $n \times n$ complex matrix. Following the same procedure as before, we can determine whether A is diagonalizable.
- The difference with the real case is that the characteristic equation will always have *n* roots if counted with the multiplicity, i.e.

$$\det(A - \lambda I) = \prod_{i=1}^{r} (\lambda_i - \lambda)^{m_i}, \quad \text{with } \sum_{i=1}^{r} m_i = n.$$

 This is due to the fundamental theorem of algebra: Any polynomial of degree n has n complex roots if counted with multiplicity.

- We use the same notation as before: Let m_{λ} be the multiplicity of a root λ of the characteristic equation $\det(A-\lambda I)=0$, let d_{λ} be the dimension of the eigenspace V_{λ} .
- Theorem: Let A be a $n \times n$ complex matrix, then $m_{\lambda} \geq d_{\lambda}$ for any complex eigenvalue λ . The matrix A is diagonalizable if and only if $m_{\lambda} = d_{\lambda}$ for all the complex roots of the equation $\det(A \lambda I) = 0$.
- Corollary: If the roots of $\det(A \lambda I) = 0$ appear with multiplicity 1, then A must be diagonalizable.

- The theorem has applications to the real matrices as well
- Let A be a 2×2 real matrix with a complex but non-real eigenvalue λ , let $v \in \mathbb{C}^2$ be the eigenvector, i.e. $Av = \lambda v$. Take complex conjugate, we get $A\bar{v} = \bar{\lambda}\bar{v}$. Hence A has another eigenvalue $\bar{\lambda}$ with eigenvector \bar{v} .
- · We write this relation as

$$A[v \ \overline{v}] = [v \ \overline{v}] \begin{bmatrix} \lambda & \\ & \overline{\lambda} \end{bmatrix}.$$

• To go back to the real matrices, consider the real part Re(v) and imaginary part Im(v) of v:

$$v = \text{Re}(v) + i\text{Im}(v)$$
 with $\text{Re}(v), \text{Im}(v) \in \mathbb{R}^2$.

- Take complex conjugate, get $\bar{v} = \text{Re}(v) i\text{Im}(v)$.
- The above two equations can be written as

$$[v \ \overline{v}] = [\text{Re}(v) \ \text{Im}(v)] \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}.$$

· Plug it into the eigenvector equation, we get

$$A \cdot [\operatorname{Re}(v) \operatorname{Im}(v)] \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} = [\operatorname{Re}(v) \operatorname{Im}(v)] \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \cdot \begin{bmatrix} \lambda & 1 \\ \lambda & \lambda \end{bmatrix}.$$

. Let $\lambda=a-bi$. Move the factor $\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$ to the right, the above equation becomes

$$A \cdot [\text{Re}(v) \text{ Im}(v)] = [\text{Re}(v) \text{ Im}(v)] \cdot \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

• The above discussion can be summarized as the theorem:

Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ $(b \neq 0)$ and an associated eigenvector \mathbf{v} in \mathbb{C}^2 . Then

$$A = PCP^{-1}$$
, where $P = [\operatorname{Re} \mathbf{v} \ \operatorname{Im} \mathbf{v}]$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

• Geometric meaning: Let $r = |\lambda| = \sqrt{a^2 + b^2}$, then $\left(\frac{a}{r}\right)^2 + \left(\frac{b}{r}\right)^2 = 1$

and we can set $a/r = \cos \varphi$, $b/r = \sin \varphi$. Then

$$C = r \begin{bmatrix} a/r & -b/r \\ b/r & a/r \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

- Recall that the matrix $\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$ acts on \mathbb{R}^2 as rotation around the origin by the angle φ .
- The theorem states that we can find a basis of \mathbb{R}^2 with respect to which the action of A is the composition of a rotation by angle φ and a scaling by $|\lambda|$.

- With the same idea, we can prove:
- Theorem: Let A be a real 3×3 matrix with a complex eigenvalue $\lambda = a bi, b \neq 0$, then there exists an invertible matrix B such that

$$A = B \begin{bmatrix} a & -b \\ b & a \end{bmatrix} B^{-1}, \quad \text{with } c \in \mathbb{R}.$$

• Geometrically, this means that we can find a basis of \mathbb{R}^3 such that A acts on the new x_3 -ax by scaling and on the new (x_1, x_2) -plane by a composition of scaling and rotation.

• Iterating the action of A on a point $x_0 \in \mathbb{R}^3$, get a picture like:

Jordan form

• It is not true that any matrix can be diagonalized, even as a complex matrix. Nonetheless, we have the theorem:

(Jordan form) If A has s independent eigenvectors, it is similar to a matrix J that has s Jordan blocks $J_1 \ldots, J_s$ on its diagonal. Some matrix B puts A into Jordan form:

Jordan form
$$B^{-1}AB = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_s \end{bmatrix} = J. \tag{3}$$

Each block J_i has one eigenvalue λ_i , one eigenvector, and 1's just above the diagonal:

Jordan block $J_{i} = \begin{bmatrix} \lambda_{i} & 1 & & \\ & \cdot & \cdot & \\ & & \cdot & 1 \\ & & \lambda_{i} \end{bmatrix}. \tag{4}$

Matrices are similar if they share the same Jordan form J-not otherwise.