Compilation

Variable

$$\begin{split} \llbracket x \rrbracket_{x::E} &=& \text{FST} \\ \llbracket x \rrbracket_{y::E} &=& \text{SND} \\ \llbracket x \rrbracket_{E} \end{aligned}$$

Constant

$$\llbracket c \rrbracket_E \ = \ \mathsf{LOAD} \ \mathsf{c}$$

Pair

$$\begin{split} [\![(e_1,e_2)]\!]_E &= & \mathtt{DUPL} \\ & [\![e_2]\!]_E \\ & \mathtt{SWAP} \\ & [\![e_1]\!]_E \\ & \mathtt{CONS} \end{aligned}$$

Arithmetic Expression

$$\begin{split} [\![e_1 + e_2]\!]_E &= & \text{DUPL} \\ & [\![e_2]\!]_E \\ & \text{SWAP} \\ & [\![e_1]\!]_E \\ & \text{ADD} \\ \end{split}$$

$$[\![e_1 - e_2]\!]_E &= & \text{DUPL} \\ & [\![e_2]\!]_E \\ & \text{SWAP} \\ & [\![e_1]\!]_E \\ & \text{SUB}$$

Function

where ${\tt Q}$ is the address of ${\tt \ \, [\![e]\!]_{x::E}}$ RETURN

Application

Conditional

RETURN

Let

$$\label{eq:constant} [\![\mbox{ let } \mathbf{x} = e_1 \mbox{ in } e_2]\!]_E &= \mbox{ DUPL } \\ & [\![e_1]\!]_E \\ & \mbox{ CONS } \\ & [\![e_2]\!]_{x::E}$$

Letrec