郑!

西安电子科技大学

考试时间 120 分钟

<i>1</i> −72	H7
试	题
W-1	72

题号	_	11	111	四	五	六	七	总分
分数								

1. 考试形式: 闭卷■ 开卷□

2. 考试日期: 年 月 日(答题内容请写在装订线外)

Problem 1. Analysis of algorithms (15 points.)

Fill in the table to give the name and code framework of corresponding order-of-growth.

Order of growth	Name	Code framework
1	constant	a = b + c;
N	linear	<pre>for (int i = 0; i < N; i++) { }</pre>
logN		
NlogN		
N ²		

Problem 2. Union-Find. (14 points.)

Fill in the table below to give the contents of the id[] array and the number of connected components for each input pair when you use quick-find for the sequence 5-0 3-4 3-0 6-2 2-1 0-7 5-8.

input-pair	id[] array	number of connected components
5-0		
3-4		
3-0		
6-2		
2-1		
0-7		
5-8		

Problem 3. Sorting. (18 points.)

Fill in the table below to give the property of the sorting algorithms.

sorting algorithm	inplace ?	stable ?	time complexity in the worst case	optimal ?
selection sort	Yes	No	N^2	No
insertion sort	Yes	Yes	N^2	No
quick sort				
merge sort				
heap sort				

Problem 4. Binary search trees (BST). (8 points)

Fill in the blanks to complete the implementation of BST Insert operation.

級

卢

裁

江

摋

Consider the following edge-weighted graph G with 6 vertices and 10 edges. Give the process of computing the MST of G by using Kruskal's algorithm.

Problem 6. Shortest paths. (15 points)

Give an edge-weighted digraph shown below, write the process of computing the shortest paths from the vertex a to every other vertex by using Dijkstra's algorithm.

Problem 7. Algorithm design. (15 points.)

Given an array a[] of N numbers, design an algorithm to find the kth smallest number in a[]. For example, if a[] = $\{5, 2, 1, 8, 1, 3\}$, then the fourth smallest number is 3. Your answer will be graded on correctness, efficiency and clarity.

附: 单词释义表

题目	单词释义
1	order-of-growth 增长量级;
2	sequence 序列;connected components 连通分量;
3	property 性质;
4	implementation 实现;
5	vertex (vertices) 顶点;
6	digraph 有向图;
7	correctness, efficiency and clarity 正确性、效率和清晰度