

Course > Unit 8: ... > Lec. 20:... > 14. Exe...

14. Exercise: Natural estimators

Exercises due May 1, 2020 05:29 IST Completed

Exercise: Natural estimators

3/3 points (graded)

The random variables X_i are i.i.d. and satisfy $\mathbf{E}\left[X_i^2\right]=\theta$. Use a natural estimator to calculate an estimate of θ based on the values $X_1=1$, $X_2=3$, $X_3=-1$, $X_4=2$, $X_5=0$.

3 **✓** Answer: 3

In order to calculate confidence intervals around your estimator, you need information on the variance of your estimator. This variance is determined by $\mathbf{E}\left[X_i^2\right]$ and $\mathbf{E}\left[X_i^a\right]$ for some other power a. What is the value of a?

$$a = \boxed{4}$$
 Answer: 4

If you do not have any prior knowledge about the value of $\mathbf{E}\left[X_{i}^{a}\right]$, can you estimate it based on the available data?

Yes

✓ Answer: Yes

Solution:

A natural estimator is

$$rac{1}{5}\sum_{i=1}^5 X_i^2 = rac{1}{5}(1+9+1+4+0) = 3.$$

To find the variance of the estimator, you need the variance of X_i^2 . Since ${\sf Var}(X_i^2) = {\bf E}[X_i^4] - \left({\bf E}[X_i^2]\right)^2$, you need to know ${\bf E}[X_i^4]$. This quantity can be estimated using the natural estimator

$$\frac{1}{n}\sum_{i=1}^n X_i^4.$$

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 8: Limit theorems and classical statistics:Lec. 20: An introduction to classical statistics / 14. Exercise: Natural estimators

© All Rights Reserved

