SHUDA DONG

Curriculum Vitae

☐ +86 18910287209 wishudadong@mail.scut.edu.cn

RESEARCH INTERESTS & GOAL

■ Sichuan University | **►** Bachelor | Automation

My primary research interests encompass the theoretical analysis and systematic application of **robotics**, focusing on **state estimation**, **electrical system design**, **nonlinear control** and **artificial intelligent** methods. I aim to integrate these areas to develop **intelligent solutions guided by control theory philosophies**, advancing the field of robotics.

09/2018 - 06/2022

EDUCATION

College of Electrical Engineering Comprehensive Ranking Overall GPA	♥ Chengdu, China 4/117 3.48/4.00
	09/2022 - 06/2025 ♥ Guangzhou, China 8/38 83.44/100
Publication & Patent	
A Compact and Robust 6-DoF Pose Tracking System Using Magnetic-Inertial Sen a Single Uniaxial Electromagnetic Coil Shuda Dong and Heng Wang IEEE Sensors Journal First Author	nsors and 1/2024
A Virtual Ultrasonography Simulator for Skill Training Using Magnetic-Inertial Probe Heng Wang, Shuda Dong, Qi Yang, Jiancheng Han, Ze'an He, Yihua He and Shuangyi Wang IEEE/ASME Transactions on Mechatronics Co-first Author	Tracking 6/2023
On Ambiguity in 6-DoF Electromagnetic Pose Estimation Systems with Dipole Sources Xinlei Zhang, Shuda Dong, and Heng Wang The International Journal of Robotics Research (under the second-round review) Co-fire	
Active 6-DoF Electromagnetic Pose Tracking Using Orientation Control of the Magnetic Yile Shen, Shuda Dong, Dekang Liu, Kaixiang Zhang and Heng Wang IEEE International Conference on Robotics and Biomimetics (ROBIO) Co-first Author	ic Source 12/2023
Virtual simulation system and method for medical ultrasonic operation training Heng Wang, Shuangyi Wang, Suqi Liu, Shuda Dong, Xinlei Zhang CN Patent Pending No.CN116312122A	3/2023
SELECTED COMPETITION AWARDS	
RoboMaster University Championship 2021 National Second Prize, Top 16	8/2021
RoboMaster University League 2021 First Prize in Engineering Robot Mining, Top 5 in Southern China	8/2021
The 16th National College Student Intelligent Car Competition Second Prize in Baidu Intelligent Traffic Group, Top 20%	7/2021
2020 RoboCup China Open Third Prize in Small Size Robot League, Obstacle Avoidance Challenge	10/2020

Magnetic Medical Robotics Lab, SCUT

Graduate Student, advised by Prof. Heng Wang &

10/2021-Present

6-DoF Magnetic-Inertial Pose Tracking System | Research Leader

Pose Tracking System Design

Contribution:

- * Developed the compact 6-DoF pose tracking system only using a magnetic-inertial sensor and a uniaxial coil.
- * Proposed an ON-OFF switching control for the electromagnetic coil to reject magnetic disturbances.
- * Designed and implemented EKF framework for sensor fusion and state estimation
- * Conducted extensive experiments to validate the tracking and disturbance rejection performance of the system

Outcome:

- * Achieved millimeter-level accuracy in 6-DoF pose estimation, robust against magnetic disturbances.
- * Published in the IEEE Sensors Journal.

• System Application in Ultrasonography Simulator for Skill Training

Contribution:

- * Integrated the 6-DoF pose tracking system into the virtual ultrasonography simulator for skill training
- * Conducted experiments to validate the tracking performance moving along a typical scanning trajectory
- * Conducted experiments to validate the interactive performance of the simulator

Outcome:

- * Developed a simulator that provides an immersive training experience for quick ultrasound skill acquirement.
- * Published in the IEEE/ASME Transactions on Mechatronics.
- * Applied for one CN patent.

System Optimization Using Active Sensing

Contribution:

- * Analyzed distribution of magnetic sensitivity relative to magnet direction
- * Developed an active 6-DoF electromagnetic tracking system to maintain high accuracy
- * Conducted simulations and experiments to validate the improvements in tracking performance of the active tracking system.

Outcome:

- * Developed an active pose tracking system that expands the workspace and enhances accuracy.
- * Presented at ROBIO 2023.
- * Journal article in preparation.

Multi-Source Electromagnetic Pose Tracking System | Research Leader

• On Ambiguity in 6-DoF Magnetic Pose Estimation

Contribution:

- * Systematized the framework to analyze the ambiguity issue in magnetic pose estimation system.
- * Proposed an optimal minimum magnetic source design for a 6-DoF pose tracking system without ambiguity.
- * Conducted experiments to validate the tracking performance of the proposed system on a continuum robot.

Outcome:

- * Extended the research frontier by defining and addressing ambiguity issues in magnetic pose tracking systems.
- * Submitted a manuscript to International Journal of Robotics Research, currently under second-round review.

6-DoF Robust Electromagnetic Pose Tracking System using Error-State Kalman Filter Contribution:

- * Developed a robust electromagnetic pose tracking system addressing quaternion norm violation issue.
- * Conduct simulations and experiments to validate the effectiveness error-state Kalman filter in electromagnetic pose tracking system

Outcome:

* Completed a journal article manuscript.

SKILLS

Languages: Mandarin (Native), English (TOFEL: 92/120)

Programming: MATLAB & Simulink, Python, C, C++, Linux Shell

Others: Altium Designer, SolidWorks, Embedded System Development, Multisim, Photo & Video Editing, Markdown