MATH597 Analysis II

Pingbang Hu

January 24, 2022

Abstract

Notice that since in this course, the cross-referencing between theorems, lemmas, and propositions are quite complex and hard to keep track of, hence in this note, whenever you see a ! over =, like $\stackrel{!}{=}$, then that ! is clickable! It will direct you to the corresponding theorem, lemma, or proposition.

Additionally, we'll use [FF99] as our main text, while using [Tao13] and [Ax119] as supplementary references.

Contents

0.1	Hahn-Kolmogorov Theorem	2
0.2	Borel Measures on \mathbb{R}	7
0.3	Lebesgue-Stieltjes Measure on \mathbb{R}	10
	0.3.1 Cantor Function	12
0.4	Regularity Properties of Lebesgue-Stieltjes Measures	12

Lecture 5: Hahn-Kolmogorov Theorem

14 Jan. 11:00

Firstly, we see a stronger version of ?? we have seen before.

Lemma 0.1. Let μ^* be an outer measure on X. Suppose B_1, B_2, \ldots are disjoint C-measurable sets. Then,

$$\forall E \subset X, \ \mu^* \left(E \cap \left(\bigcup_{i=1}^{\infty} B_i \right) \right) = \sum_{i=1}^{\infty} \mu^* \left(E \cap B_i \right).$$

Proof.

$$\sum_{n=1}^{\infty} \mu^*(E \cap B_i) \ge \mu^* \left(E \cap \bigcup_{n=1}^{\infty} B_n \right) \ge \mu^* \left(E \cap \left(\bigcup_{n=1}^N B_n \right) \right) \stackrel{!}{=} \sum_{n=1}^N \mu^* \left(E \cap B_n \right).$$

Now, we just take $N \to \infty$ (or note that $N \in \mathbb{N}$ is arbitrary, we then get the result according to Squeeze Theorem¹).

 $^{^{1} \}verb|https://en.wikipedia.org/wiki/Squeeze_theorem|$

Let's continue the proof of ??.

- 2. Since from ??, we need to show
 - $\mu(\varnothing) = 0$. This means that we need to show $\mu^*|_{\mathcal{A}}(\varnothing) = 0$. Since $\varnothing \in \mathcal{A}$ and μ^* is an outer measure, hence from the property of outer measure, it clearly holds.
 - Countable additivity of μ^* on \mathcal{A} follows from the Lemma 0.1 with E=X
- 3. Hw.

0.1 Hahn-Kolmogorov Theorem

We see that we can start with any collection of open sets \mathcal{E} and any ρ such that it assigns measure on \mathcal{E} , then induces an outer measure by ??, finally complete the outer measure by ??.

Specifically, we have

$$(\mathcal{E}, \rho) \xrightarrow{??} (\mathcal{P}(X), \mu^*) \xrightarrow{??} (\mathcal{A}, \mu)$$

To introduce this concept, we see that we can start with a more general definition compared to σ -algebra we are working on till now.

Definition 0.1 (Algebra). Let X be a set. A collection \mathcal{A} of subsets of X, i.e., $\mathcal{A} \subset \mathcal{P}(X)$ is called an *algebra on* X if

- $\varnothing \in \mathcal{A}$.
- \mathcal{A} is closed under complements. i.e., if $A \in \mathcal{A}$, $A^c = X \setminus A \in \mathcal{A}$.
- \mathcal{A} is closed under **finite** unions. i.e., if $A_i \in \mathcal{A}$, then $\bigcup_{i=1}^n A_i \in \mathcal{A}$ for $n < \infty$.

Remark. The only difference between an algebra and a σ -algebra is whether they closed under **countable** unions in the definition.

Now, we can look at a more general setup compared to an outer measure.

Definition 0.2 (Pre-measure). Let A_0 be an algebra on X. We say

$$\mu_0 \colon \mathcal{A}_0 \to [0, \infty]$$

is a pre-measure if

- 1. $\mu_0(\emptyset) = 0$
- 2. (finite additivity) $\mu_0\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu_0(A_i)$ if $A_1, \ldots, A_n \in \mathcal{A}_0$ are disjoint.
- 3. (countable additivity within the algebra) If $A \in \mathcal{A}_0$ and $A = \bigcup_{n=1}^{\infty} A_n$, $A_n \in \mathcal{A}_0$, disjoint, then

$$\mu_0(A) = \sum_{n=1}^{\infty} \mu_0(A_n).$$

Lemma 0.2. $(1) + (3) \implies (2)$ in Definition 0.2.

Proof. It's easy to see that since μ_0 is monotone.

Theorem 0.1 (Hahn-Kolmogorov Theorem). Let μ_0 be a pre-measure on algebra \mathcal{A}_0 on X. Let μ^* be the outer measure induced by (\mathcal{A}_0, μ_0) in ??. Let \mathcal{A} and μ be the Carathéodory σ -algebra and measure for μ^* , then (\mathcal{A}, μ) extends (\mathcal{A}_0, μ_0) . i.e.,

$$\mathcal{A} \supset \mathcal{A}_0, \quad \mu|_{\mathcal{A}_0} = \mu_0.$$

Proof. We prove this theorem in two parts.

• We first show $A \supset A_0$. Let $A \in A_0$, we want to show $A \in A$, i.e., A is C-measurable, i.e.,

$$\forall E \subset X \ \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

We first fix an $E \subset X$. From countable subadditivity of μ^* , we have

$$\mu^*(E) < \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Hence, we only need to show another direction. If $\mu^*(E) = \infty$, then $\mu^*(E) = \infty \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$ clearly. So, assume $\mu^*(E) < \infty$.

Fix $\epsilon > 0$. By the ?? of μ^* , $\exists B_1, B_2, \ldots \in \mathcal{A}_0$, $\bigcup_{n=1}^{\infty} B_n \supset E$ such that

$$\mu^*(E) + \epsilon \stackrel{!}{\geq} \sum_{n=1}^{\infty} \mu_0(B_n) = \sum_{n=1}^{\infty} \left(\mu_0(\underbrace{B_n \cap A}_{\in \mathcal{A}_0}) + \mu_0(\underbrace{B_n \cap A^c}_{\in \mathcal{A}_0}) \right)$$

CONTENTS

by the finite additivity of μ_0 . Note that

$$\begin{cases} \bigcup_{n=1}^{\infty} (B_n \cap A) \supset E \cap A \\ \bigcup_{n=1}^{\infty} (B_n \cap A^c) \subset E \cap A^c \end{cases} \Longrightarrow \mu^*(E) + \epsilon \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

since

$$\mu^*(E \cap A) \le \mu^* \left(\bigcup_{n=1}^{\infty} (B_n \cap A) \right) \le \sum_{n=1}^{\infty} \mu^*(B_n \cap A)$$

and

$$\mu^*(E \cap A^c) \le \mu^* \left(\bigcup_{n=1}^{\infty} (B_n \cap A^c) \right) \le \sum_{n=1}^{\infty} \mu^*(B_n \cap A^c).$$

We then see that for any $\epsilon > 0$, the inequality

$$\mu^*(E) + \epsilon \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

holds, hence so does

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c),$$

which implies $A \supset A_0$.

The proof will be continued...

Lecture 6: Hahn-Kolmogorov Theorem and Extension.

18 Jan. 11:00

Let's continue the proof of Theorem 0.1.

• Let $A \in \mathcal{A}_0$, we want to show that

$$\mu(A) = \mu_0(A).$$

- Firstly, let

$$B_i = \begin{cases} A, & \text{if } i = 1\\ \varnothing, & \text{if } i \ge 2 \end{cases} \in \mathcal{A}_0,$$

hence $\bigcup_{i=1}^{\infty} B_i = A$, then we see that

$$\mu^*(A) \le \sum_{i=1}^{\infty} \mu_0(B_i) = \mu_0(A)$$

from the definition of μ^* and countable additivity within the algebra of μ_0 .

– Secondly, let $B_i \in \mathcal{A}_0$, $\bigcup_{i=1}^{\infty} B_i \supset A$ be arbitrary. Let $C_1 = A \cap B_1 \in \mathcal{A}_0$, $C_i = A \cap B_i \setminus \left(\bigcup_{j=1}^{i-1} B_j\right) \in \mathcal{A}_0$ for $i \geq 2$ since the operations are finite. Then we see

$$A = \bigcup_{i=1}^{\infty} C_i \in \mathcal{A}_0$$

are disjoint countable unions, by countable additivity within the algebra, we therefore have

$$\mu_0(A) = \sum_{i=1}^{\infty} \mu_0(C_i) \le \sum_{i=1}^{\infty} \mu_0(B_i) \implies \mu_0(A) \le \mu^*(A)$$

by taking the infimum from the definition of μ^* .

Combine these two inequality, we see that

$$\mu^*(A) = \mu_0(A),$$

for every $A \in \mathcal{A}_0$, which implies

$$\mu(A) = \mu_0(A)$$

for every $A \in \mathcal{A}_0$ from ??, where we extend μ^* to μ respect to \mathcal{A}_0 .

Definition 0.3 (HK extension). (A, μ) obtained from Theorem 0.1 is the *Hahn-Kolmogorov extensions* of (A_0, μ_0) .

We can actually show the uniqueness of HK extension.

Theorem 0.2 (Uniqueness of HK extension). Let \mathcal{A}_0 be an algebra on X, μ_0 be a pre-measure on \mathcal{A}_0 . Let (\mathcal{A}, μ) be the HK extension of (\mathcal{A}_0, μ_0) . Let (\mathcal{A}', μ') be another extension of (\mathcal{A}_0, μ_0) . Then if μ_0 is σ -finite, $\mu = \mu'$ on $\mathcal{A} \cap \mathcal{A}'$.

Note. Notice that $A_0 \subset A$, A' since they both extend A_0 .

Proof. Let $A \in \mathcal{A} \cap \mathcal{A}'$, we need to show

$$\underbrace{\mu(A)}_{\mu^*(A)} = \mu'(A).$$

Firstly, it's easy to show that $\mu^*(A) \ge \mu'(A)$ by choosing the arbitrary cover of A and using the definition of μ^* .

Secondly, we will show that $\mu(A) \leq \mu'(A)$.

CONTENTS

5

• Assume $\mu(A) < \infty$, and fix $\epsilon > 0$. Then there exists $B_i \in \mathcal{A}_0$ with $B := \bigcup_{i=1}^{\infty} B_i \supset A$ such that

$$\mu(A) + \epsilon = \mu^*(A) + \epsilon \stackrel{!}{\geq} \sum_{i=1}^{\infty} \mu_0(B_i) \stackrel{!}{=} \sum_{i=1}^{\infty} \mu(B_i) \geq \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \mu(B).$$

This implies that

$$\mu(B \setminus A) = \mu(B) - \mu(A) \le \epsilon$$

where the first equality comes from $A \subset B$ and $\mu(A) < \infty$. On the other hand,

$$\mu(B) = \lim_{N \to \infty} \mu\left(\bigcup_{i=1}^{N} B_i\right) = \lim_{N \to \infty} \mu'\left(\bigcup_{i=1}^{N} B_i\right) = \mu'(B),$$

hence,

$$\mu(A) \le \mu(B) = \mu'(B) = \mu'(A) + \mu'(B \setminus A) \le {}^{3}\mu'(A) + \mu(B \setminus A) \le \mu'(A) + \epsilon$$
 for arbitrary ϵ , so we conclude $\mu(A) \le \mu'(A)$.

• Assume $\mu(A) = \infty$. Since μ_0 is σ -finite, so we know $X = \bigcup_{n=1}^{\infty} X_n$ for some $X_n \in \mathcal{A}_0$ such that

$$\mu_0(X_n) < \infty$$
.

Replacing X_n by $X_1 \cup \ldots \cup X_n \in \mathcal{A}_0$, we may assume that

$$X_1 \subset X_2 \subset \dots$$

Then,

$$\bigvee_{n \in \mathbb{N}} \mu(A \cap X_n) < \infty \stackrel{!}{\Longrightarrow} \mu(A \cap X_n) \le \mu'(A \cap X_n).$$

From the continuity of measure, we then have

$$\mu(A) = \lim_{n \to \infty} \mu(A \cap X_n) \le \lim_{n \to \infty} \mu'(A \cap X_n) = \mu'(A).$$

Corollary 0.1. Let μ_0 be a pre-measure on algebra \mathcal{A}_0 on X. Suppose μ_0 is σ -finite, then

 $\exists!$ measure μ on $\langle \mathcal{A}_0 \rangle$ that extends \mathcal{A}_0 .

Furthermore,

• The completion of $(X, \langle A_0 \rangle, \mu)$ is the HK extension of (A_0, μ_0) .

$$\mu(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(B_i) \mid B_i \in \mathcal{A}_0, \, \bigvee_{i \in \mathbb{N}} \bigcup_{i=1}^{\infty} B_i \supset A \right\}$$

for all $A \in \langle \bar{\mathcal{A}}_0 \rangle$.

 $^{^{2}\}mu = \mu'$ on \mathcal{A}_{0} .

³From the first part.

Lecture 7: Borel Measures

21 Jan. 11:00

0.2 Borel Measures on \mathbb{R}

We first introduce so-called distribution function.

Definition 0.4 (Distribution function). An increasing^a function

$$F \colon \mathbb{R} \to \mathbb{R}$$

and right-continuous. F is then a distribution function.

^aHere, increasing means $F(x) \leq F(y)$ for x < y.

Example. Here are some examples of right-continuous functions.

- 1. F(x) = x.
- 2. $F(x) = e^x$.
- 3. Define

$$F(x) = \begin{cases} 1, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0. \end{cases}$$

4. Let $\mathbb{Q} := \{r_1, r_2, \ldots\}$. Define

$$F_n(x) = \begin{cases} 1, & \text{if } x \ge r_n \\ 0, & \text{if } x < r_n, \end{cases}$$

and

$$F(x) := \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}.$$

Then F is a distribution function (hence right-continuous).

Note. If F is increasing, and

$$F(\infty)\coloneqq \lim_{x\nearrow\infty} F(x), \quad F(-\infty)\coloneqq \lim_{x\searrow\infty} F(x)$$

exist in $[-\infty, \infty]$.

In probability theory, cumulative distribution function (CDF) is a distribution function with $F(\infty) = 1$, $F(-\infty) = 0.4$

Definition 0.5 (Locally finite). Let X be a topological space, μ on $(X, \mathcal{B}(X))$ is called *locally finite* if $\mu(K) < \infty$ for every compact set $K \subset X$.

⁴There are <u>distributions</u> [FF99] Ch9., but these are different from distribution functions.

Lemma 0.3. Let μ be a locally finite Borel measure on \mathbb{R} , then

$$F_{\mu}(x) = \begin{cases} \mu((0,x]), & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -\mu((x,0]), & \text{if } x < 0 \end{cases}$$

is a distribution function.

Proof.

DIY, use continuity of measure

Definition 0.6 (Half intervals). We call

$$\varnothing$$
, $(a, b]$, (a, ∞) , $(-\infty, b]$, $(-\infty, \infty)$

half-intervals.

Lemma 0.4. Let \mathcal{H} be the collection of finite disjoint unions of half-intervals. Then, \mathcal{H} is an algebra on \mathbb{R} .

Proof.

DIY

Proposition 0.1 (Distribution function defines a pre-measure). Let $F: \mathbb{R} \to \mathbb{R}$ be a distribution function. For a half-interval I, define

$$\ell(I) := \ell_F(I) = \begin{cases} 0, & \text{if } I = \varnothing \\ F(b) - F(a), & \text{if } I = (a, b] \\ F(\infty) - F(a), & \text{if } I = (a, \infty] \\ F(b) - F(-\infty), & \text{if } I = (-\infty, b] \\ F(\infty) - F(-\infty), & \text{if } I = (-\infty, \infty). \end{cases}$$

Define $\mu_0 := \mu_{0,F}$ as

$$\mu_{0,F} \colon \mathcal{H} \to [0,\infty]$$

by

$$\mu_0(A) = \sum_{k=1}^N \ell(I_k) \text{ if } A = \bigcup_{k=1}^N I_k,$$

where A is a finite disjoint union of half-intervals I_1, \ldots, I_N . Then, μ_0 is a pre-measure on \mathcal{H} .

Proof. We see that

- 1. μ_0 is well-defined.
- 2. $\mu_0(\emptyset) = 0$.
- 3. μ_0 is finite additive.

4. μ_0 is countable additive within \mathcal{H} .

Suppose $A \in \mathcal{H}$ where $A = \bigcup_{i=1}^{\infty} A_i$ is a countable disjoint union. It is enough to consider the case that A = I, $A_k = I_k$ are all half-intervals.⁵ Focus on the case I = (a, b]. Let

$$(a,b] = \bigcup_{n=1}^{\infty} (a_n, b_n],$$

which is a disjoint union. Then we only need to check

$$F(b) - F(a) = \sum_{n=1}^{\infty} (F(b_n) - F(a_n)).$$

• Since $(a,b] \supset \bigcup_{n=1}^{N} (a_n,b_n]$, hence

$$\forall_{N \in \mathbb{N}} F(b) - F(a) \ge \sum_{n=1}^{N} \left(F(b_n) - F(a_n) \right).$$

By letting $N \to \infty$, we have

$$F(b) - F(a) \ge \sum_{n=1}^{\infty} (F(b_n) - F(a_n)).$$

• Fix $\epsilon > 0$. Since F is right-continuous, $\exists a' > a$ such that

$$F(a') - F(a) < \epsilon$$
.

For each $n \in \mathbb{N}$, $\exists b'_n > b_n$ such that

$$F(b_n') - F(b_n) < \frac{\epsilon}{2^n}.$$

Then, we have

$$[a',b] \subset \bigcup_{n=1}^{\infty} (a_n,b'_n),$$

hence

$$\underset{N\in\mathbb{N}}{\exists} [a',b] \subset \bigcup_{n=1}^{N} (a_n,b'_n),$$

which is only finitely many unions now. In this case, we have

$$F(b) - F(a') \le \sum_{n=1}^{N} F(b'_n) - F(a_n).$$

⁵why?

Finally, we see that

$$F(b) - F(a) \le F(b) - F(a') + \epsilon$$

$$\le \sum_{n=1}^{\infty} (F(b'_n) - F(a_n)) + \epsilon$$

$$\le \sum_{n=1}^{\infty} \left(F(b_n) - F(a_n) + \frac{\epsilon}{2^n} \right) + \epsilon.$$

Remark. It's again the $\frac{\epsilon}{2^n}$ trick we saw before!

Lecture 8 24 Jan. 11:00

To classify all measure, we now see this last theorem to complete the task.

Theorem 0.3 (Locally finite Borel measures on \mathbb{R}). We have

- 1. $F: \mathbb{R} \to \mathbb{R}$ a distribution function, then there exists a unique locally finite Borel measure μ_F on \mathbb{R} satisfying $\mu_F((a,b]) = F(b) F(a)$ for every a < b.
- 2. Suppose $F,G:\mathbb{R}\to\mathbb{R}$ are distribution functions. Then,

$$\mu_F = \mu_G$$

on $\mathcal{B}(\mathbb{R})$ if and only if F - G is a constant function.

Proof. ■ HW.

0.3 Lebesgue-Stieltjes Measure on \mathbb{R}

We see that

F distribution function $\stackrel{!}{\Longrightarrow} \mu_F$ on Carathéodory σ -algebra $\mathcal{A}_{\mu_F} \supset \mathcal{B}(\mathbb{R})$.

Actually, we have

$$(\mathcal{A}_{\mu_F}, \mu_F) = \overline{(\mathcal{B}(\mathbb{R}), \mu_F)}.$$

Definition 0.7 (Lebesgue-Stieltjes measure). We define

- μ_F on \mathcal{A}_{μ_F} is called the *Lebesgue-Stieltjes* measure corresponding to F.
- Special case: $F(x) = x \implies$ Lebesgue measure (\mathcal{L}, m) , where \mathcal{L} is called Lebesgue σ -algebra, and m is called Lebesgue measure.

Note. We see that since F is right-continuous and increasing, hence

$$F(x^-) \le F(x) = F(x^+),$$

Example. We first see some examples.

- 1. $\mu_F((a,b]) = F(b) F(a)$. Then
 - $\mu_F(\{a\}) = F(a) F(a^-)$
 - $\mu_F([a,b]) = F(b) F(a^-)$
 - $\mu_F((a,b)) = F(b^-) F(a)$
- 2. We define

$$F(x) = \begin{cases} 1, & \text{if } x \ge 0; \\ 0, & \text{if } x < 0. \end{cases}$$

Then

- $\mu_F(\{0\}) = 1$
- $\mu_F(\mathbb{R}) = 1$
- $\mu_F(\mathbb{R}\setminus\{0\})=0.$

We call that μ_F is the <u>Dirac measure</u> at 0.

3. Denote $\mathbb{Q} = \{r_1, r_2, \ldots\}$, and we define

$$F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n} \text{ where } F_n(x) = \begin{cases} 1, & \text{if } x \ge r_n; \\ 0, & \text{if } x < r. \end{cases}$$

Then___

HW

- $\mu_F(\lbrace x \rbrace) > 0$ for all $r_i \in \mathbb{Q}$.
- $\mu_F(\mathbb{R} \setminus \mathbb{Q}) = 0$
- 4. If F is continuous at a, then $\mu_F(\{a\}) = 0$.
- 5. F(x) = x
 - m((a,b]) = m((a,b)) = m([a,b]) = b a.
- 6. $F(x) = e^x$
 - $\mu_F((a,b]) = \mu_F((a,b)) = e^b e^a$.

Remark. We see that the first two examples are discrete measures.

Example (Middle thirds Cantor set). Let $C := \bigcap_{n=1}^{\infty} K_n$.

Figure 1: Cantor Function (Devil's Staircase).

Since C is uncountable set, hence m(C) = 0. And notice that

$$x \in C \iff x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, \ a_n \in \{0, 2\}.$$

0.3.1 Cantor Function

Consider F as follows.

We see that F is continuous and increasing. Furthermore,

$$\begin{split} \mu_F(\mathbb{R} \setminus C) &= 0 & m(\mathbb{R} \setminus C) = \infty > 0 \\ \mu_F(C) &= 1 &\iff m(C) = 0 \\ \mu_F(\{a\}) &= 0 & m(\{a\}) = 0 \end{split}$$

Remark. μ_F and m are said to be **singular** to each other.

0.4 Regularity Properties of Lebesgue-Stieltjes Measures

We first see a lemma.

Lemma 0.5. Let μ be Lebesgue-Stieltjes measure on \mathbb{R} . Then we have

$$\mu(A) \stackrel{!}{=} \inf \left\{ \sum_{i=1}^{\infty} \mu((a_i, b_i]) \mid \bigcup_{i=1}^{\infty} (a_i, b_i] \supset A \right\}$$
$$= {}^{6} \inf \left\{ \sum_{i=1}^{\infty} \mu((a_i, b_i)) \mid \bigcup_{i=1}^{\infty} (a_i, b_i) \supset A \right\}$$

for every $A \in \mathcal{A}_{\mu}$

This follows from the continuity of measure.

Appendix

References

- [Axl19] S. Axler. Measure, Integration & Real Analysis. Graduate Texts in Mathematics. Springer International Publishing, 2019. ISBN: 9783030331429. URL: https://books.google.com/books?id=8hCDyQEACAAJ.
- [FF99] G.B. Folland and G.B.A. FOLLAND. Real Analysis: Modern Techniques and Their Applications. A Wiley-Interscience publication. Wiley, 1999. ISBN: 9780471317166. URL: https://books.google.com/books?id=uPkYAQAAIAAJ.
- [Tao13] T. Tao. An Introduction to Measure Theory. Graduate studies in mathematics. American Mathematical Society, 2013. ISBN: 9781470409227. URL: https://books.google.com/books?id=SPGJjwEACAAJ.