Linear regression - Logistic regression

Diane Lingrand

2022 - 2023

Outline

1 Linear regression

2 Logistic regression

Linear regression

- Context :
 - supervised learning, regression
- Data :
 - m data of dimension :
 - 1 : scalar value : x
 - n: many scalar values : vector : $\mathbf{x} = [x_1 x_2 ... x_n]$
- Goal : we want to predict y value
- Examples :
 - amount of rain from altitude in the Alps
 - price of an appartment from size in m²
 - vote from age, sex, income, residence location, ...
 - risk of a disease from age, weight, result of blood analysis, . . .

Example of linear regression : Ohm law

Linear regression

- Regression : determine value of y with respect to x.
- Linear (dim 1) : the function is a line parameterised by $\theta = [\theta_0 \theta_1]$:

$$y = \theta_0 + x * \theta_1$$

- Learning : determine θ_0 et θ_1
- Regression : compute $y = h_{\theta}(x) = \theta_0 + x * \theta_1$
- Cost function (or error) :

$$J(\theta) = \frac{1}{2m} \sum_{i=0}^{m-1} (h_{\theta}(x^i) - y^i)^2$$

Learning : determine θ

- Cost minimisation $J(\theta)$
 - Let us consider cases where $heta_0=0$: determine $heta_1$ that minimises J(heta)

- Exhaustive search?
- Gradient descent

Gradient descent (one variable)

- ullet Find extrema of J : find the zeros of $\frac{dJ}{d\theta_1}$
- Iterative algorithm :
 - ullet pick initial value of $heta_1$
 - while $J(\theta_1)$ changes (stop when $\frac{dJ}{d\theta_1}(\theta_1)\simeq 0$) :
 - replace θ_1 by $\theta_1 \alpha \, \frac{dJ}{d\theta_1}$ ($\alpha >$ 0, small)
 - ullet α : learning rate
 - α has to be chosen carefully :
 - if too small : slow convergence
 - if too big : oscillations
 - \Rightarrow plot $J(\theta)$

Gradient descent (many variables)

- many scalar values : vector $x = [x_1...x_n]$
- linear model : $y = \theta_0 + x_1 \theta_1 + x_2 \theta_2 + \ldots + x_n \theta_n$
- Find extrema of J : find the zeros of $\frac{dJ}{d\theta}$
- Iterative algorithm :
 - pick initial value of $\theta = [\theta_0...\theta_n]$
 - while $J(\theta)$ changes (stop when $\frac{dJ}{d\theta}(\theta) \simeq 0$) :
 - replace each θ_i by $\theta_i \alpha \frac{dJ}{d\theta_i}$ ($\alpha > 0$, small)

Gradient descent: many data

- batch gradient descent
 - all training samples for each step
- stochastic gradient descent
 - one training sample for each step (need to shuffle training data)
- mini batch (b=10)
 - a set of b training samples for each step

Linear regression using scikit-learn

Description at: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
A toy example:

```
#linear regression object creation
lr = LinearRegression()
#learning
lr.fit(data, labels)
#prediction
pred = lr.predict(data)
#score
score = lr.score(data, labels)
print("train score =", score)
```

Practice (1)

- toy dataset : Diabetes dataset ¹
 - describe the dataset : nb of data, dimension of data, interval of features. . .
 - split train / test
 - learn on the train dataset
 - metrics on train dataset and on test dataset

//scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset

^{1.} https:

Outline

1 Linear regression

2 Logistic regression

Context

- Supervised learning = learn to predict an output when given an input vector
- ullet We know the class / label y for all training data x
- Logistic regression is a classification method
 - Linear regression leads to values $h_{ heta}(x) \in \mathcal{R}$
 - the idea : values in [0 1] then thresholding at 0.5
- Also known as logit regression or maximum-entropy classification

Logistic regression

- Data separation according to labels (0 or 1).
 - Linear separation : line, plane or hyperplane
 - Non-linear separation : polynomial or gaussian
- Notations :
 - data : $x = [x_1 \ x_2...]$
 - labels : $y \in \{0, 1\}$
 - ullet decision criteria $h_{ heta}$ parameterised by heta

•
$$\theta = [\theta_0 \ \theta_1 \ ...]$$

Linear separation

- Decision boundary :
 - line of equation : $\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
 - also written as : $\theta^T x = 0$
- Decision :
 - if $\theta^T x \ge 0$ then y = 1
 - if $\theta^T x < 0$ then y = 0

Logistic function

$$h_{\theta}(x) = s(\theta^T x)$$

with:

$$s(z) = \frac{1}{1 + e^{-z}}$$

- The decision is :
 - if $h_{\theta}(x) \geq 0.5$ then y = 1
 - if $h_{\theta}(x) < 0.5$ then y = 0

Logistic regression: learning

- data : $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$
- m data
- ullet learning aims at finding heta
- method :
 - error minimisation
 - gradient descent (or other minimisation method)

Cost function: binary cross-entropy

$$J = -rac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log(h_{ heta}(\mathsf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{ heta}(\mathsf{x}^{(i)})))$$

Gradient descent

For all components θ_i de θ :

$$\theta_j = \theta_j - \alpha \frac{\partial J}{\partial \theta_j}$$

with

$$\frac{\partial J}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}) \mathbf{x}_j^{(i)}$$

Non linear logistic regression

polynomial model :

$$x = [x_0x_1 \dots x_nx_0^2x_1^2 \dots x_0x_1x_0x_2 \dots]$$

- under-fitting
 - add parameters
- over-fitting
 - reduce the number of parameters

Regularisation

- in order to avoid over-fitting
- add $\|\theta\|$ to the cost :

$$J = \|\theta\| - C \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log(h_{\theta}(\mathsf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\mathsf{x}^{(i)})))$$

- norm : \mathcal{L}_1 (Lasso), \mathcal{L}_2 (Ridge), Elastic-Net $(\frac{1-\rho}{2}||\theta||_2^2 + \rho||\theta||_1)$
- many solvers :
 - Coordinate Descent (C++ LIBLINEAR library),
 - Stochastic Average Gradient (SAG) or variant SAGA : good for large dataset
 - Broyden–Fletcher–Goldfarb–Shanno algorithm (small data set only) : family of Newton algorithm
- more details on https://scikit-learn.org/stable/modules/linear_ model.html#logistic-regression

Logistic regression using scikit-learn

Description at: https://scikit-learn.org/stable/modules/ generated/sklearn.linear_model.LogisticRegression.html A toy example:

```
#logistic regression object creation
logisticRegr = LogisticRegression()
#learning
logisticRegr.fit(data, labels)
#predicted labels computation
labelsPredicted = logisticRegr.predict(data)
#score computation and display
score = logisticRegr.score(data, labels)
print("train score = ", score)
```

Practice 2

- dataset : digits
 - split train/test
 - learn the classification
 - evaluate the classification (train scrore, test score)
 - compare with decision trees
- dataset : wine
 - same questions

Practice 3 (probably on several weeks)

- Evaluation of classification
 - metrics are usefull
 - if the accuracy is 95 %, is it good? enough?
- Build a GUI for drawing phone numbers
- Use a classification method to save phone numbers

