Casos Especiais e Dualidade

Professores André L.M. Marcato, Ivo C.da Silva Jr, João A.Passos Filho

Universidade Federal de Juiz de Fora Programa de Pós-Graduação em Engenharia Elétrica

 $and re.marcato @ufjf.edu.br,\ ivo.junior @ufjf.edu.br,\ joao.passos @ufjf.edu.br$

Primeiro Semestre de 2018

Agenda da Apresentação

- Casos Especiais
 - Problema com Múltiplas Soluções
 - Problema Ilimitado
 - Problema Sem Solução
 - Empate na Escolha (entrar ou sair da base)
- Dualidade na Programação Linear
 - Motivações
 - Regras de Transformação Primal ⇔ Dual
 - Exemplos
 - Como tratar restrições de Igualdade

Casos Especiais em PL - Como Identificar no Tableau?

Como identificar esta situação no Tableau Simplex?

Quando, <u>na forma tableau ótima</u>, o coeficiente de uma das variáveis não-básicas (VNB) for nulo na linha referente a expressão da FOB.

Como identificar esta situação no Tableau Simplex?

Quando, <u>na forma tableau ótima</u>, o coeficiente de uma das variáveis não-básicas (VNB) for nulo na linha referente a expressão da FOB.

Exemplo:

$$\max z = 8x_1 + 4x_2$$

 $Sujeitoa:$
 $4x_1 + 2x_2 \le 16$
 $x_1 + x_2 \le 16$
 $x_1, x_2 \ge 0$

Observações:

Caso Especial: Múltipla Solução

Como identificar esta situação no Tableau Simplex?

Quando, <u>na forma tableau ótima</u>, o coeficiente de uma das variáveis não-básicas (VNB) for nulo na linha referente a expressão da FOB.

Exemplo:

$\max z = 8x_1 + 4x_2$ Sujeitoa: $4x_1 + 2x_2 \le 16$ $x_1 + x_2 \le 16$ $x_1, x_2 \ge 0$

Problema com múltiplas soluções $4x_1 + 2x_2 \le 16$ $x_1 + x_2 \le 6$ $8x_1 + 4x_2$ Maximização de Z $x_1 + x_2 \le 6$ $x_1 + x_2 \le 6$ $x_1 + x_2 \le 6$ $x_1 + x_2 \le 0$ Região Múltiplas Soluções (Z=32) Factivel (4,0)

Tableau ótimo em um problema de Maximização.
 Convergência ⇔ Coef. das VNBs ≥ 0.

Variável	Nº da		C	Constantes			
Básica	Equação	Z		constantes			
<i>x</i> ₁	1	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	4
<i>x</i> ₄	2	0	0	$\frac{1}{2}$	$-\frac{1}{4}$	1	2
Z	3	1	0	0	2	0	32

Tableau ótimo em um problema de Maximização.
 Convergência ⇔ Coef. das VNBs ≥ 0.

Variável	Nº da		Co	Constantes			
Básica	Equação	Z		<i>x</i> ₂	<i>X</i> 3		Constantes
<i>x</i> ₁	1	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	4
<i>X</i> ₄	2	0	0	$\frac{1}{2}$	$-\frac{1}{4}$	1	2
z	3	1	0	0	2	0	32

Tableau ótimo em um problema de Maximização.
 Convergência ⇔ Coef. das VNBs ≥ 0.

Variável	Nº da		C	Constantes			
Básica	Equação	Z		<i>x</i> ₂	<i>X</i> 3		Constantes
<i>x</i> ₁	1	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	4
<i>x</i> ₄	2	0	0	$\frac{1}{2}$	$-\frac{1}{4}$	1	2
Z	3	1	0	0	2	0	32

Como x_2 (VNB) tem coeficiente igual a zero, sua entrada não altera o valor de Z (FOB).

Tableau ótimo em um problema de Maximização.
 Convergência ⇔ Coef. das VNBs ≥ 0.

Variável	N^o da		C	Constantes			
Básica	Equação	Z		<i>x</i> ₂	<i>X</i> 3		Constantes
<i>x</i> ₁	1	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	4
×4	2	0	0	$\frac{1}{2}$	$-\frac{1}{4}$	1	2
Z	3	1	0	0	2	0	32

Como x_2 (VNB) tem coeficiente igual a zero, sua entrada não altera o valor de Z (FOB).

• Sai x_4 e entra x_2

Tableau ótimo em um problema de Maximização.
 Convergência ⇔ Coef. das VNBs ≥ 0.

Variável	Nº da		C	Constantes			
Básica	Equação	Z		<i>x</i> ₂	<i>X</i> 3		constantes
<i>x</i> ₁	1	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	4
X4	2	0	0	$\frac{1}{2}$	$-\frac{1}{4}$	1	2
Z	3	1	0	0	2	0	32

Como x_2 (VNB) tem coeficiente igual a zero, sua entrada não altera o valor de Z (FOB).

• Sai x_4 e entra x_2

	Variável	Nº da		C	Constantes			
	Básica	Equação	Z			<i>X</i> 3	X4	constantes
Ī	<i>x</i> ₁	1	0	1	0	$\frac{1}{2}$	-1	2
	<i>x</i> ₂	2	0	0	1	$-\frac{1}{2}$	2	4
	Z	3	1	0	0	2	0	32

Tableau ótimo em um problema de Maximização.
 Convergência ⇔ Coef. das VNBs ≥ 0.

Variável	N° da		C	Constantes			
Básica	Equação	Z		<i>x</i> ₂	<i>X</i> 3		Constantes
<i>x</i> ₁	1	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	4
<i>X</i> 4	2	0	0	$\frac{1}{2}$	$-\frac{1}{4}$	1	2
Z	3	1	0	0	2	0	32

Como x_2 (VNB) tem coeficiente igual a zero, sua entrada não altera o valor de Z (FOB).

• Sai x_4 e entra x_2

Variável	Nº da		Co	Constantes			
Básica	Equação	Z		constantes			
<i>x</i> ₁	1	0	1	0	$\frac{1}{2}$	-1	2
<i>x</i> ₂	2	0	0	1	$-\frac{1}{2}$	2	4
z	3	1	0	0	2	0	32

Com a entrada x_2 na base o valor de Z (FOB) não se altera.

Como identificar esta situação no Tableau Simplex?

Quando, <u>na forma tableau simplex (em qualquer iteração)</u>, não há a possibilidade de retirar nenhuma VB devido aos coeficientes negativos ou nulos na coluna referente a VNB que entratá na base.

Exemplo:

$$\max z = 4x_1 + 3x_2$$

Sujeito a:
 $2x_1 + 5x_2 \ge 20$
 $x_1 \le 8$
 $x_1, x_2 \ge 0$

Como identificar esta situação no Tableau Simplex?

Quando, na forma tableau simplex (em qualquer iteração), não há a possibilidade de retirar nenhuma VB devido aos coeficientes negativos ou nulos na coluna referente a VNB que entratá na base.

Exemplo:

$\max z = 4x_1 + 3x_2$ Sujeito a: $2x_1 + 5x_2 \ge 20$ $x_1 \le 8$ $x_1, x_2 > 0$

Observações:

Tableau 2^a Iteração, problema de Maximização. Convergência
 ⇔ Coef. das VNBs ≥ 0.

Variável	Nº da		C	Constantes			
Básica	Equação	W	<i>x</i> ₁		<i>X</i> 3		33131411133
<i>x</i> ₂	1	0	0	1	$-\frac{1}{5}$	$-\frac{2}{5}$	<u>4</u> 5
<i>X</i> ₄	2	0	1	0	0	1	8
W	3	1	0	0	$-\frac{3}{5}$	<u>14</u> 5	172 5

Tableau 2^a Iteração, problema de Maximização. Convergência
 ⇔ Coef. das VNBs ≥ 0.

Variável	N^o da		C	peficie	Constantes			
Básica	Equação	W	<i>x</i> ₁		<i>X</i> 3		Constantes	
<i>x</i> ₂	1	0	0	1	$-\frac{1}{5}$	$-\frac{2}{5}$	<u>4</u> 5	= -4
X4	2	0	1	0	0	1	8	$=\infty$
w	3	1	0	0	$-\frac{3}{5}$	<u>14</u> 5	<u>172</u> 5	

Tableau 2^a Iteração, problema de Maximização. Convergência
 ⇔ Coef. das VNBs ≥ 0.

Variável	Nº da		C	peficie	Constantes			
Básica	Equação	W	<i>x</i> ₁		<i>X</i> 3		Constantes	
<i>x</i> ₂	1	0	0	1	$-\frac{1}{5}$	$-\frac{2}{5}$	<u>4</u> 5	= -4
x ₄	2	0	1	0	0	1	8	$=\infty$
w	3	1	0	0	$-\frac{3}{5}$	<u>14</u> 5	172 5	

 x_3 deve entrar na base - maior coeficiente negativo em w (FOB). Entretanto, todos os elementos de sua coluna são negativos ou nulos, não há como uma variável básica (x_2 ou x_4) sair da base.

Tableau 2^a Iteração, problema de Maximização. Convergência
 ⇔ Coef. das VNBs ≥ 0.

Variável	N^o da		C	peficie	Constantes			
Básica	Equação	w	<i>x</i> ₁		Х3		Constantes	
<i>x</i> ₂	1	0	0	1	$-\frac{1}{5}$	$-\frac{2}{5}$	<u>4</u> 5	= -4
<i>X</i> ₄	2	0	1	0	0	1	8	$=\infty$
W	3	1	0	0	$-\frac{3}{5}$	14 5	<u>172</u> 5	
	x ₂ x ₄	Básica Equação x ₂ 1 x ₄ 2	Básica Equação w x2 1 0 x4 2 0	Básica Equação w x1 x2 1 0 0 x4 2 0 1	Básica Equação w x1 x2 x2 1 0 0 1 x4 2 0 1 0	Básica Equação w x_1 x_2 x_3 x_2 1 0 0 1 $-\frac{1}{5}$ x_4 2 0 1 0 0	Básica Equação w x_1 x_2 x_3 x_4 x_2 1 0 0 1 $-\frac{1}{5}$ $-\frac{2}{5}$ x_4 2 0 1 0 0 1	Básica Equação w x_1 x_2 x_3 x_4 x_2 1 0 0 1 $-\frac{1}{5}$ $-\frac{2}{5}$ $\frac{4}{5}$ x_4 2 0 1 0 0 1 8

 x_3 deve entrar na base - maior coeficiente negativo em w (FOB). Entretanto, todos os elementos de sua coluna são negativos ou nulos, não há como uma variável básica (x_2 ou x_4) sair da base.

Valor da Função Objetivo Ilimitado!

Como identificar esta situação no Tableau Simplex?

Quando, <u>na forma tableau ótimo</u>, a solução final tiver pelo menos uma variável artificial com valor não nulo na base.

Exemplo:

max
$$z = x_1 + x_2$$

Sujeito a:
 $5x_1 + 4x_2 \ge 40$
 $2x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

Como identificar esta situação no Tableau Simplex?

Quando, <u>na forma tableau ótimo</u>, a solução final tiver pelo menos uma variável artificial com valor não nulo na base.

Exemplo:

max
$$z = x_1 + x_2$$

Sujeito a:
 $5x_1 + 4x_2 \ge 40$
 $2x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

$$\begin{array}{l} \max z = x_1 + x_2 \\ \text{Sujeito a:} \\ 5x_1 + 4x_2 \geq 40 \\ 2x_1 + x_2 \leq 6 \\ x_1, x_2 \geq 0 \end{array}$$

max
$$z = x_1 + x_2$$

Sujeito a:
 $5x_1 + 4x_2 \ge 40$
 $2x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

$$\max z = x_1 + x_2 + Ma_1$$
Sujeito a:
$$5x_1 + 4x_2 - x_3 + a_1 = 40$$

$$2x_1 + x_2 + x_4 = 6$$

$$x_1, x_2, x_3, x_4, a_1 \ge 0$$

$$\max z = x_1 + x_2$$

Sujeito a:
 $5x_1 + 4x_2 \ge 40$
 $2x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

max
$$z = x_1 + x_2 + Ma_1$$

Sujeito a:
 $5x_1 + 4x_2 - x_3 + a_1 = 40$
 $2x_1 + x_2 + x_4 = 6$
 $x_1, x_2, x_3, x_4, a_1 \ge 0$

 Tableau ótimo no prob. Maxim. Convergência ⇔ Coef. das VNBs ≥ 0.

Variável	N^o da	Coeficientes						Constantes
Básica	Equação	W	<i>x</i> ₁		<i>X</i> 3	<i>X</i> 4		001101011100
a ₁	1	0	-3	0	-1	-4	1	16
<i>x</i> ₂	2	0	2	1	0	1	0	6
W	3	1	3M + 1	0	-M	M+1	0	-16M + 6

$$\begin{array}{l} \max z = x_1 + x_2 \\ \text{Sujeito a:} \\ 5x_1 + 4x_2 \geq 40 \\ 2x_1 + x_2 \leq 6 \\ x_1, x_2 \geq 0 \end{array}$$

$$\max z = x_1 + x_2 + Ma_1$$
Sujeito a:
$$5x_1 + 4x_2 - x_3 + a_1 = 40$$

$$2x_1 + x_2 + x_4 = 6$$

$$x_1, x_2, x_3, x_4, a_1 \ge 0$$

 Tableau ótimo no prob. Maxim. Convergência ⇔ Coef. das VNBs > 0.

Variável	N^o da	Coeficientes						Constantes
Básica	Equação	W	<i>x</i> ₁		<i>X</i> 3	X4		Constantes
a ₁	1	0	-3	0	-1	-4	1	16
<i>x</i> ₂	2	0	2	1	0	1	0	6
W	3	1	3M + 1	0	-M	M+1	0	-16M + 6

• Observe que a_1 possui valor não nulo (= 16). Ou seja, a solução final encontrada não é ótima, uma vez que a solução encontrada não corresponde à formulação original (FOB Original.

Empate na Escolha da Variável para Entrar ou Sair da base

Empate para entrar na base

Empate para sair da Base

Empate na Escolha da Variável para Entrar ou Sair da base

Empate na Escolha da Variável para Entrar ou Sair da base

Empate para entrar na base

Empate para sair da Base

Conseqüência: \pm iterações dependendo da escolha.

 A dualidade foi uma das descobertas mais importantes no desenvolvimento da Programação Linear

- A dualidade foi uma das descobertas mais importantes no desenvolvimento da Programação Linear
- Onde é utilizada?

- A dualidade foi uma das descobertas mais importantes no desenvolvimento da Programação Linear
- Onde é utilizada?
 - Casos em que a resolução do problema primal é difícil, de forma que a transformação do problema primal em dual facilitaria a resolução.

- A dualidade foi uma das descobertas mais importantes no desenvolvimento da Programação Linear
- Onde é utilizada?
 - Casos em que a resolução do problema primal é difícil, de forma que a transformação do problema primal em dual facilitaria a resolução.

Deve-se optar pelo problema, primal ou dual, que tiver o menor número de restrições.

- A dualidade foi uma das descobertas mais importantes no desenvolvimento da Programação Linear
- Onde é utilizada?
 - Casos em que a resolução do problema primal é difícil, de forma que a transformação do problema primal em dual facilitaria a resolução.

Deve-se optar pelo problema, primal ou dual, que tiver o menor número de restrições.

 Sensibilidades fornecidas pelos multiplicadores de lagrange (variáveis duais) em relação à FOB.

O problema primal deve estar na forma canônica

O problema primal deve estar na forma canônica

Maximização - Forma Canônica

max
$$z = f(x_1, x_2, \dots, x_n) = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

Sujeito a:

O problema primal deve estar na forma canônica

Minimização - Forma Canônica

min
$$z = f(x_1, x_2, \dots, x_n) = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

Sujeito a:

Se o problema primal é de minimização, o dual será de maximização e vice-versa.

Problema Primal

Encontre o vetor *x* de forma que:

$$\max Z = \mathbf{c}' \mathbf{x}$$

Sujeito a:
 $\mathbf{A}\mathbf{x} < \mathbf{b} \rightarrow \mathbf{v}$

 $x \ge 0$

Problema Dual

Encontre o vetor *y* de forma que:

min W Sujeito a

 $y \ge 0$

y são as variáveis Duais

Os coeficientes transpostos da FOB do problema primal serão as constantes do lado direito das restrições do problema dual.

Problema Primal

Encontre o vetor x de forma que:

 $\max Z = \mathbf{c}'\mathbf{x}$

Sujeito a: $\mathbf{A}\mathbf{x} < \mathbf{b} \rightarrow \mathbf{y}$

x > 0

Problema Dual

Encontre o vetor *y* de forma que:

 $\min W$

Sujeito a:

 $\geq c$

 $\boldsymbol{y} \geq 0$

x são as variáveis Primais

As constantes do lado direito das restrições do problema primal serão os coeficientes da FOB do problema dual.

Problema Primal

Encontre o vetor x de forma que:

$$\max Z = \mathbf{c}' \mathbf{x}$$

Sujeito a:

$$Ax \leq b \rightarrow y$$

Problema Dual

Encontre o vetor *y* de forma que:

min
$$W = b'y$$

Sujeito a:

$$\geq c$$

$$\mathbf{y} \geq \mathbf{0}$$

Os coeficientes transpostos das variáveis primais 'x' em cada uma das restrições do problema primal serão os coeficientes das variávies duais 'y' do problema dual.

Problema Primal

x > 0

Encontre o vetor *x* de forma que:

 $\max Z = \mathbf{c}' \mathbf{x}$ Sujeito a: $\mathbf{A} \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{y}$

Problema Dual

Encontre o vetor *y* de forma que:

min $W = \mathbf{b}'\mathbf{y}$ Sujeito a:

 $A'y \ge c$

 $\mathbf{y} \geq 0$

x são as variáveis Primais

Os coeficientes transpostos das variáveis primais 'x' em cada uma das restrições do problema primal serão os coeficientes das variávies duais 'y' do problema dual.

Problema Primal

x > 0

Encontre o vetor *x* de forma que:

 $\max Z = \mathbf{c}' \mathbf{x}$ Sujeito a: $\mathbf{A} \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{y}$

Problema Dual

Encontre o vetor *y* de forma que:

min $W = \mathbf{b}'\mathbf{y}$ Sujeito a:

 $A'y \ge c$

 $\mathbf{y} \geq \mathbf{0}$

x são as variáveis Primais

5 Things That Happen When You Meet Your Soulmate

Como fica a formulação dual do problema abaixo?

max
$$Z = 600x_1 + 800x_2$$

Sujeito à:
 $x_1 + x_2 \le 100$
 $3x_1 + 2x_2 \le 240$
 $x_1 \le 60$
 $x_2 \le 80$
 $x_1, x_2 > 0$

Como fica a formulação do problema apresentado?

Como fica a formulação dual do problema abaixo?

max
$$Z = 600x_1 + 800x_2$$

Sujeito à:
 $x_1 + x_2 \le 100$
 $3x_1 + 2x_2 \le 240$
 $x_1 \le 60$
 $x_2 \le 80$
 $x_1, x_2 \ge 0$

Já está na forma canônica?

Como fica a formulação dual do problema abaixo?

$$\max Z = 600x_1 + 800x_2$$

Sujeito à:
 $x_1 + x_2 \le 100$
 $3x_1 + 2x_2 \le 240$
 $x_1 \le 60$
 $x_2 \le 80$
 $x_1, x_2 \ge 0$

Já está na forma canônica?

Como fica a formulação dual do problema abaixo?

max
$$Z = 600x_1 + 800x_2$$

Sujeito à:
 $x_1 + x_2 \le 100 \implies y_1$
 $3x_1 + 2x_2 \le 240 \implies y_2$
 $x_1 \le 60 \implies y_3$
 $x_2 \le 80 \implies y_4$
 $x_1, x_2 > 0$

Para cada restrição do problema primal existe uma variável dual associada

Como fica a formulação dual do problema abaixo?

max
$$Z = 600x_1 + 800x_2$$

Sujeito à:
 $x_1 + x_2 \le 100 \implies y_1$
 $3x_1 + 2x_2 \le 240 \implies y_2$
 $x_1 \le 60 \implies y_3$
 $x_2 \le 80 \implies y_4$
 $x_1, x_2 > 0$

Problema Primal

 $\mathbf{A} \mathbf{x} \leq \mathbf{b} \to \mathbf{y}$ $\mathbf{x} > \mathbf{0}$

Problema Dual

Encontre o vetor y de forma que: $\min W = \mathbf{b'y}$ Sujeito a: $\mathbf{A'y} \ge \mathbf{c}$ $\mathbf{y} \ge \mathbf{0}$

Formulação Dual:

```
min w = 100y_1 + 240y_2 + 60y_3 + 80y_4

Sujeito à:

1y_1 + 3y_2 + 1y_3 + 0y_4 \ge 600 \longrightarrow x_1

1y_1 + 2y_2 + 0y_3 + 1y_4 \ge 800 \longrightarrow x_2

y_1, y_2, y_3, y_4 \ge 0
```


Apresente a formulação dual do problema abaixo:

min
$$z = -2.5x_1 + 3x_2 + x_3$$

Sujeito à:

$$x_1 + 4x_2 + 0x_3 \le 20$$
$$2x_1 + 0x_2 - 3x_3 \ge 5$$

Apresente a formulação dual do problema abaixo:

min
$$z = -2.5x_1 + 3x_2 + x_3$$

Sujeito à:

$$x_1 + 4x_2 + 0x_3 \le 20$$
$$2x_1 + 0x_2 - 3x_3 \ge 5$$

$$x_1, x_2, x_3 \ge 0$$

Já está na forma canônica?

Apresente a formulação dual do problema abaixo:

min
$$z = -2.5x_1 + 3x_2 + x_3$$

Sujeito à:
 $x_1 + 4x_2 + 0x_3 \le 20$
 $2x_1 + 0x_2 - 3x_3 \ge 5$
 $x_1, x_2, x_3 > 0$

Já está na forma canônica ?

Apresente a formulação dual do problema abaixo:

$$\begin{aligned} &\min z = -2.5x_1 + 3x_2 + x_3 \\ &\text{Sujeito à:} \\ &x_1 + 4x_2 + 0x_3 \leq 20 \\ &2x_1 + 0x_2 - 3x_3 \geq 5 \end{aligned}$$

 $x_1, x_2, x_3 > 0$

Forma Canônica

min
$$z = -2.5x_1 + 3x_2 + x_3$$

Sujeito à:
 $-x_1 - 4x_2 + 0x_3 \ge -20$
 $2x_1 + 0x_2 - 3x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

Apresente a formulação dual do problema abaixo:

min
$$z = -2.5x_1 + 3x_2 + x_3$$

Sujeito à:
 $x_1 + 4x_2 + 0x_3 \le 20$
 $2x_1 + 0x_2 - 3x_3 > 5$

 $x_1, x_2, x_3 > 0$

Forma Canônica

min
$$z = -2.5x_1 + 3x_2 + x_3$$

Sujeito à:
 $-x_1 - 4x_2 + 0x_3 \ge -20 \rightarrow y_1$
 $2x_1 + 0x_2 - 3x_3 \ge 5 \rightarrow y_2$
 $x_1, x_2, x_3 \ge 0$

Apresente a formulação dual do problema abaixo:

 $\min z = -2.5x_1 + 3x_2 + x_3$

Sujeito à: $x_1 + 4x_2 + 0x_3 \le 20$ $2x_1 + 0x_2 - 3x_3 > 5$

 $x_1, x_2, x_3 > 0$

Forma Canônica

min
$$z = -2.5x_1 + 3x_2 + x_3$$

Sujeito à:
 $-x_1 - 4x_2 + 0x_3 \ge -20 \mapsto y_1$
 $2x_1 + 0x_2 - 3x_3 \ge 5 \mapsto y_2$
 $x_1, x_2, x_3 \ge 0$

Forma Canônica

min
$$w = -20y_1 + 5y_2$$

Sujeito à:
 $-y_1 + 2y_2 \le -2.5 \mapsto x_1$
 $-4y_1 + 0y_2 \le 3 \mapsto x_2$
 $0y_1 - 3y_2 \le 1 \mapsto x_3$
 $y_1, y_2 \ge 0$

$$\max = f(x_1, x_2) = c_1 x_1 + c_2 x_2$$
Sujeito à:
$$a_{11}x_1 + a_{12}x_2 \le b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{31}x_1 + a_{32}x_2 \ge b_3$$

$$x_i \ge 0, j = 1, 2$$

max =
$$f(x_1, x_2) = c_1x_1 + c_2x_2$$

Sujeito à:
 $a_{11}x_1 + a_{12}x_2 \le h_1$

$$a_{11}x_1 + a_{12}x_2 \le b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{31}x_1 + a_{32}x_2 \ge b_3$$

Forma Canônica?

max =
$$f(x_1, x_2) = c_1x_1 + c_2x_2$$

Sujeito à:

$$a_{11}x_1 + a_{12}x_2 \leq b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{31}x_1 + a_{32}x_2 \ge b_3$$

$$x_j \ge 0, j = 1, 2$$

Forma Canônica?

max =
$$f(x_1, x_2) = c_1x_1 + c_2x_2$$

Sujeito à:

$$a_{11}x_1 + a_{12}x_2 \leq b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{31}x_1 + a_{32}x_2 \ge b_3$$

$$x_j \ge 0, j = 1, 2$$

Como obter a formulação dual de problemas com restrições de igualdade?

Duas Abordagens de Formulação

1º Passo: Transformar as igualdades em desigualdades

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{21}x_1 + a_{22}x_2 \le b_2$$

$$a_{21}x_1 + a_{22}x_2 \ge b_2$$

2º Passo:

Transformar as desigualdades \geq em \leq (Prob. Maximização) Transformar as desigualdades \leq em \geq (Prob. Minimização

Por exemplo: Se o problema for de maximização:

$$a_{21}x_1 + a_{22}x_2 \ge b_2$$

$$a_{31}x_1 + a_{22}x_2 \ge b_3$$

$$x(-1)$$

$$-a_{21}x_1 - a_{22}x_2 \le -b_2$$

$$-a_{31}x_1 - a_{22}x_2 \le -b_3$$

Forma Original:

max =
$$f(x_1, x_2) = c_1x_1 + c_2x_2$$

Sujeito à:
 $a_{11}x_1 + a_{12}x_2 \le b_1 \rightarrow y_1$
 $a_{21}x_1 + a_{22}x_2 = b_2 \rightarrow y_2$

 $a_{31}x_1 + a_{32}x_2 \ge b_3 \rightarrowtail v_3$

 $x_i \ge 0, j = 1, 2$

Forma Canônica:

$$\begin{aligned} \max &= f(x_1, x_2) = c_1 x_1 + c_2 x_2 \\ \text{Sujeito à:} \\ a_{11} x_1 + a_{12} x_2 &\leq b_1 \rightarrowtail y_1 \\ a_{21} x_1 + a_{22} x_2 &\leq b_2 \rightarrowtail y_2' \\ -a_{21} x_1 - a_{22} x_2 &\leq -b_2 \rightarrowtail y_2'' \\ -a_{31} x_1 - a_{32} x_2 &\leq -b_3 \rightarrowtail y_3 \\ x_i &\geq 0, j = 1, 2 \end{aligned}$$

Forma Canônica

$$\max z = f(x_1, x_2) = c_1 x_1 + c_2 x_2$$
 sujeito a:
$$a_{11} x_1 + a_{12} x_2 \le b_1 \quad \text{y1}$$

$$\underbrace{a_{21} x_1 + a_{22} x_2 \le b_2 \quad \text{y2'}}_{-a_{21} x_1 - a_{22} x_2 \le -b_2 \quad \text{y2''}}_{-a_{31} x_1 - a_{32} x_2 \le -b_3 \quad \text{y3}}$$

$$x_j \ge 0, \qquad j = 1, 2$$

Opção 1: Formulação Dual

min
$$w = b_1 y_1 + b_2 y_2^1 - b_2 y_2^2 - b_3 y_3$$

sujeito a:

$$a_{11} y_1 + a_{21} y_2^1 - a_{21} y_2^2 - a_{31} y_3 \ge c_1$$

$$a_{12} y_1 + a_{22} y_2^1 - a_{22} y_2^2 - a_{32} y_3 \ge c_2$$

$$y_1, y_2^1, y_2^2, y_3 \ge 0$$

Forma Canônica

$$\begin{aligned} \max z &= f(x_1, x_2) = c_1 x_1 + c_2 x_2 \\ \text{sujeito a:} & a_{11} x_1 + a_{12} x_2 \leq b_1 \quad \text{v1} \\ \hline a_{21} x_1 + a_{22} x_2 \leq b_2 \quad \text{v2} \\ \hline -a_{31} x_1 - a_{32} x_2 \leq -b_3 \quad \text{v3} \\ x_j \geq 0, \qquad j = 1, 2 \end{aligned}$$

Opção 2: Formulação Dual

min
$$w = b_1 y_1 + b_2 y_2 - b_3 y_3$$

sujeito a:

$$a_{11}y_1 + a_{21}y_2 - a_{31} y_3 \ge c_1$$

$$a_{12}y_1 + a_{22}y_2 - a_{32} y_3 \ge c_2$$

$$y_1, y_3 \ge 0$$

$$y_2 \text{ livre}$$

Forma Canônica

$$\begin{aligned} \max z &= f(x_1, x_2) = c_1 x_1 + c_2 x_2 \\ \text{sujeito a:} & a_{11} x_1 + a_{12} x_2 \leq b_1 \quad \text{vi} \\ & a_{21} x_1 + a_{22} x_2 \leq b_2 \quad \text{vz} \\ & -a_{21} x_1 - a_{22} x_2 \leq -b_2 \quad \text{vz} \\ & -a_{31} x_1 - a_{32} x_2 \leq -b_3 \quad \text{va} \\ & x_j \geq 0, \qquad j = 1, 2 \end{aligned}$$

OU

Opção 1: Formulação Dual

min
$$w = b_1 y_1 + b_2 y_2^1 - b_2 y_2^2 - b_3 y_3$$

sujeito a:

$$a_{11}y_1 + a_{21}y_2^1 - a_{21}y_2^2 - a_{31}y_3 \ge c_1$$

$$a_{12}y_1 + a_{22}y_2^1 - a_{22}y_2^2 - a_{32}y_3 \ge c_2$$

$$y_1, y_1^2, y_2^2, y_3 \ge 0$$

Opção 2: Formulação Dual

min
$$w = b_1 y_1 + b_2 y_2 - b_3 y_3$$

sujeito a:

eito a:

$$a_{11}y_1 + a_{21}y_2 - a_{31}y_3 \ge c_1$$

 $a_{12}y_1 + a_{22}y_2 - a_{32}y_3 \ge c_2$
 $y_1, y_3 \ge 0$
 y_2 livre

Observações em relação à dualidade

 As variáveis duais correspondentes as restrições de igualdade serão sempre livres ou irrestritas de sinal. Ou seja, poderão assumir valores negativos ou positivos.

Observações em relação à dualidade

Problema Primal

Encontre o vetor x de forma que:

 $\max Z = \mathbf{c}' \mathbf{x}$ Sujeito a: $\mathbf{A} \mathbf{x} \leq \mathbf{b} \rightarrow \mathbf{y}$ $\mathbf{x} > 0$

x são as variáveis Primais

Problema Dual

Encontre o vetor y de forma que:

min $W = \mathbf{b}'\mathbf{y}$ Sujeito a: $\mathbf{A}'\mathbf{y} \ge \mathbf{c}$ $\mathbf{y} \ge 0$

Solução Factível Solução Ótima
$$Z \neq W$$
 $Z = W$

Fim

