

Frekvencijska karakteristika sustava

Signali i sustavi

Profesor Branko Jeren

24. svibnja 2010.

Odziv sustava na

nobudu eksponencijalom

Odziv sustava na pobudu eksponencijalom

razmotrimo odziv sustava na svevremensku eksponencijalu

$$t \in \mathbb{R}, \quad s \in \mathbb{C}$$

 $u(t) = e^{st}$

 odziv, linearnog, vremenski stalnog, mirnog sustava određujemo konvolucijom pa je

$$y(t) = h(t) * u(t) = h(t) * e^{st} =$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau =$$

$$= e^{st} \underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau}_{H(s)}$$

pa je

$$v(t) = H(s)e^{st}$$

gdje je

$$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{$$

Signali i sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija Frekvencijska karakteristika

Odziv sustava na pobudu eksponencijalom

- za konkretnu kompleksnu frekvenciju pobude s, dakle kompleksni broj, H(s) je također kompleksan broj, pa vrijedi:
- za pobudu kompleksnom eksponencijalom odziv je istog oblika i rezultat je množenja pobude s konstantom
- kompleksnu eksponencijalu nazivamo karakterističnom ili vlastitom funkcijom sustava
- budući da sinusoidni signali mogu biti razmatrani kao eksponencijale $(cos(\omega t)=0.5e^{j\omega t}+0.5e^{-j\omega t})$, svevremenske sinusoide su također vlastite ili karakteristične funkcije linearnih vremenski stalnih sustava

Frekvencijski karakteristiki sustava

Odziv sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Odziv sustava na pobudu eksponencijalom

kontinuirani SISO sustav opisan je diferencijalnom jednadžbom

$$\frac{d^N y}{dt^N} + a_1 \frac{d^{N-1} y}{dt^{N-1}} + \cdots + a_{N-1} \frac{dy}{dt} + a_N y(t) =$$

$$= b_{N-M} \frac{d^M u}{dt^M} + b_{N-M+1} \frac{d^{M-1} u}{dt^{M-1}} + \dots + b_{N-1} \frac{du}{dt} + b_N u(t)$$

 podsjetimo se, kako uvođenjem operatora deriviranja D, koji predstavlja operaciju deriviranja d/dt, gornju jednadžbu zapisujemo kao

$$\underbrace{(D^{N} + a_{1}D^{N-1} + \ldots + a_{N-1}D + a_{N})}_{A(D)}y(t) =$$

$$= \underbrace{(b_{N-M}D^{M} + b_{N-M+1}D^{M-1} + \ldots + b_{N-1}D + b_{N})}_{B(D)}u(t)$$

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih

Odziv sustava na pobudu eksponencijalom

diferencijalnu jednadžbu možemo zapisati i kao

$$y(t) = \left(\frac{B(D)}{A(D)}\right)u(t) \Rightarrow y(t) = H(D)u(t)$$

 složeni operator H(D) pridružuje vremenskoj funkciji y funkciju u i predstavlja formalni zapis diferencijalne jednadžbe (2)

sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija Frekvencijsk karakteristik vremenski

Odziv sustava na pobudu eksponencijalom

sustav pobuđujemo kompleksnom eksponencijalom

$$u(t) = Ue^{st}, \qquad U = |U|e^{j\varphi}$$

U – kompleksna amplituda pobude,

|U| – amplituda,

 φ — faza

s – neka konkretna kompleksna frekvencija $s=\sigma+j\omega$

- partikularno rješenje je oblika $y_p(t) = Ye^{st}$
- kompleksnu amplitudu odziva Y određujemo iz polazne jednadžbe metodom neodređenih koeficijenata pa slijedi

$$(s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N})Ye^{st} =$$

= $(b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N})Ue^{st}$

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija Frekvencijs

Frekvencijska karakteristika vremenski kontinuiranih sustava

Odziv sustava na pobudu eksponencijalom

pa je kompleksna amplituda odziva Y

$$Y = \underbrace{\frac{b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N}}{s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N}}}_{H(s)}U = H(s)U$$

ullet amplituda partikularnog rješenja Y određena je amplitudom pobude, svojstvima sustava, te konkretnom kompleksnom frekvencijom s

2009/2010

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prijenosna funkcija

• H(s) je veličina koja određuje odnos kompleksne amplitude prisilnog odziva Ye^{st} i kompleksne amplitude pobude Ue^{st}

$$H(s) = \frac{b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N}}{s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N}} = \frac{Y}{U}$$

 za konkretnu frekvenciju s, H(s) ima značenje faktora kojim treba množiti kompleksnu amplitudu ulaza da se dobije amplituda izlaza

$$Y = H(s)U$$

 H(s) možemo formalno zapisati iz složenog operatora H(D), zamjenom operatora D s kompleksnom frekvencijom s

2009/2010

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prijenosna funkcija

• H(s), za $s \in \mathbb{C}$, nazivamo prijenosna funkcija ili transfer funkcija i možemo je definirati kao

$$t \in \mathbb{R}, \quad s \in \mathbb{C}$$
 $H(s) = \frac{y_p(t)}{u(t)}\Big|_{u(t)=e^{st}}$

• transfer ili prijenosna funkcija sustava H(s) racionalna je funkcija koju možemo prikazati kao

$$H(s) = K \frac{(s - s_{01})(s - s_{02}) \cdots (s - s_{0M})}{(s - s_{p1})(s - s_{p2}) \cdots (s - s_{pN})}$$

K je konstanta

 $s_{01}, s_{02}, \dots, s_{0M}$ su nule prijenosne funkcije $s_{p1}, s_{p2}, \dots, s_{pN}$ su polovi¹ prijenosne funkcije

¹dolazi od engleske riječi tent-pole

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prijenosna funkcija

• svaki od članova $(s-s_{0k})$ ili $(s-s_{pk})$ može biti predstavljen kao vektor u kompleksnoj s ravnini

• vektor $(s - s_{pk})$ je usmjeren od s_{pk} do s i može biti prikazan u polarnom obliku

$$(s-s_{pk})=|s-s_{pk}|e^{j\angle(s-s_{pk})}$$

Frekvencijski karakteristiki sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prijenosna funkcija

prijenosnu funkciju možemo pisati kao produkt i kvocijent vektora

$$H(s) = K \frac{|s - s_{01}| e^{j \angle (s - s_{01})} |s - s_{02}| e^{j \angle (s - s_{02})} \cdots |s - s_{0M}| e^{j \angle (s - s_{0M})}}{|s - s_{p1}| e^{j \angle (s - s_{p1})} |s - s_{p2}| e^{j \angle (s - s_{p2})} \cdots |s - s_{pN}| e^{j \angle (s - s_{pN})}}$$

ullet prijenosnu funkciju H(s) možemo pisati i kao

$$H(s) = |H(s)|e^{j\angle H(s)}$$

pri čemu su²

$$|H(s)| = |K| \frac{|s - s_{01}||s - s_{02}| \cdots |s - s_{0M}|}{|s - s_{p1}||s - s_{p2}| \cdots |s - s_{pN}|}$$

$$\angle H(s) = \angle K + [\angle (s - s_{01}) + \angle (s - s_{02}) + \dots + \angle (s - s_{0M})] - [\angle (s - s_{p1}) + \angle (s - s_{p2}) + \dots + \angle (s - s_{pN})]$$

 $^{^2}$ Za realne sustave je $K \in \mathbb{R}$, pa je $\angle K = 0$ za K > 0, odnosno $\angle K = \pi$ za K < 0

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

karakteristika vremenski kontinuiranih

Primjer određivanja prijenosne funkcije

za sustav opisan jednadžbom

$$\ddot{y}(t) + 0.2\dot{y}(t) + 0.16y(t) = u(t)$$

pobuđen s

$$u(t) = Ue^{st}$$

partikularno rješenje je

$$y_p(t) = Ye^{st}$$

kompleksna amplituda odziva je

$$Y = \frac{1}{s^2 + 0.2s + 0.16}U$$

Priienosna funkcija

Primjer određivanja prijenosne funkcije

partikularno rješenje je

$$y_p(t) = \frac{1}{s^2 + 0.2s + 0.16} Ue^{st} = H(s) Ue^{st}$$

pa je prijenosna funkcija zadanog sustava

$$H(s) = \frac{1}{s^2 + 0.2s + 0.16} = \frac{1}{(s - s_{p1})(s - s_{p2})}$$

odnosno

$$H(s) = \frac{1}{[s - (-0.1 + j0.3873)][s - (-0.1 - j0.3873)]}$$

• |H(s)| i $\angle H(s)$, izračunate iz diferencijalne jednadžbe, možemo prikazati i odgovarajućim plohama iznad kompleksne ravnine³

³plava krivulja označuje vrijednosti H(s) za $s=\pm j\omega$, odnosno, presjecište ploha s ravninom koju određuje imaginarna os 👢 👢 🥏 🖎

2009/2010

Frekvencijska karakteristika sustava

Odziv sustava na pobudu

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Primjer određivanja prijenosne funkcije

Signali i sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

karakteristika vremenski kontinuiranih

Primjer određivanja prijenosne funkcije

2009/2010

Frekvencijski karakteristiki sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prisilni odziv sustava

- razmatraju se specijalni slučajevi kompleksne frekvencije pobude s=0 i $s=j\omega$
- za s=0, pobuda je $u(t)=Ue^{st}=Ue^{0\cdot t}=U$, dakle, konstanta amplitude $U\in\mathbb{R}^+$

$$H(s) = \frac{b_{N-M}s^M + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_N}{s^N + a_1s^{N-1} + \dots + a_{N-1}s + a_N}\bigg|_{s=0} = \frac{b_N}{a_N}$$

pa je prisilni odziv

$$y_p(t) = H(0)U$$

Frekvencijska karakteristika sustava

pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prisilni odziv sustava

• za $s=j\omega$, pobuda je harmonijski (sinusoidalni) signal konstantne amplitude

$$u(t) = Ue^{j\omega t} = U[\cos(\omega t) + j\sin(\omega t)], \text{ za } U \in \mathbb{R}^+$$

kompleksna amplituda prisilnog odziva je

$$Y = \frac{b_{N-M}(j\omega)^{M} + b_{N-M+1}(j\omega)^{M-1} + \dots + b_{N-1}(j\omega) + b_{N}}{(j\omega)^{N} + a_{1}(j\omega)^{N-1} + \dots + a_{N-1}(j\omega) + a_{N}}U$$

• pa je prisilni odziv

$$y_p(t) = H(j\omega)Ue^{j\omega t}$$

• $H(j\omega)$ je frekvencijska karakteristika sustava⁴

⁴Iz jedandžbe (1), $H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$, za $s = j\omega \Rightarrow H(j\omega) = \int_{-\infty}^{\infty} h(\tau) e^{-j\omega\tau} d\tau$, što znači kako je $H(j\omega)$ Fourierova transformacija impulsnog odziva $h(t) \mapsto -\infty + 0$

školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

karakteristika vremenski kontinuiranih sustava

Prisilni odziv sustava

za pobudu

$$u(t) = Ue^{-j\omega t} = U[\cos(\omega t) - j\sin(\omega t)], \text{ za } U \in \mathbb{R}^+$$

kompleksna amplituda prisilnog odziva je

$$Y = \frac{b_{N-M}(-j\omega)^{M} + \dots + b_{N-1}(-j\omega) + b_{N}}{(-j\omega)^{N} + a_{1}(-j\omega)^{N-1} + \dots + a_{N-1}(-j\omega) + a_{N}}U$$

• pa je prisilni odziv

$$y_p(t) = H(-j\omega)Ue^{-j\omega t}$$

Frekvencijska karakteristika sustava

Odziv sustava na pobudu

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prisilni odziv sustava

• za pobudu

$$u(t) = \frac{Ue^{j\omega t} + Ue^{-j\omega t}}{2} = U\cos(\omega t), \qquad \text{za } U \in \mathbb{R}^+$$

prisilni odziv je⁵

$$y_{p}(t) = \frac{H(j\omega)Ue^{j\omega t} + H(-j\omega)Ue^{-j\omega t}}{2},$$

$$y_{p}(t) = \frac{H(j\omega)Ue^{j\omega t}}{2} + \left(\frac{H(j\omega)Ue^{j\omega t}}{2}\right)^{*},$$

$$y_{p}(t) = 2Re\left(\frac{H(j\omega)Ue^{j\omega t}}{2}\right) = Re\left(|H(j\omega)|e^{j\omega t}|Ue^{j\omega t}\right)$$

$$y_{p}(t) = U|H(j\omega)|\cos(\omega t + \angle H(j\omega))$$

⁵Da vrijedi $H(-j\omega) = H^*(j\omega)$ pokazuje se malo kasnije $\rightarrow 4$ $\rightarrow 5$

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika kontinuiranog sustava

 frekvencijska karakteristika je kompleksna funkcija pa vrijedi

$$H(j\omega) = Re[H(j\omega)] + jIm[H(j\omega)] = |H(j\omega)|e^{j\angle H(j\omega)}$$

pri čemu su

amplitudna frekvencijska karakteristika

$$|H(j\omega)| = \sqrt{(Re[H(j\omega)])^2 + (Im[H(j\omega)])^2}$$

fazna frekvencijska karakteristika⁶

$$\angle H(j\omega) = \arctan\left(\frac{Im[H(j\omega)]}{Re[H(j\omega)]}\right)$$

⁶zbog višeznačnosti *arctan* funkcije treba se računati *arctan* za sva četiri kvadranta. U MATLAB-u se u tu svrhu koristi funkcija *atan*2 ← **3** → **3** ◆ **9** ○

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika kontinuiranog sustava

• očigledno je kako vrijedi veza frekvencijske karakteristike kontinuiranog sustava, $H(j\omega)$, i prijenosne funkcije H(s)

$$H(j\omega) = H(s)|_{s=j\omega} = \left[\int_{-\infty}^{\infty} h(t)e^{-st}dt\right]_{s=j\omega} = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$$

• za realni impulsni odziv h(t) vrijedi

$$H(j\omega) = \underbrace{\int_{-\infty}^{\infty} h(t) \cos(\omega t) \ dt}_{Re[H(j\omega)]} - j \underbrace{\int_{-\infty}^{\infty} h(t) \sin(\omega t) \ dt}_{-Im[H(j\omega)]}$$

$$H(j\omega) = Re[H(j\omega)] + jIm[H(j\omega)]$$

- očigledno je kako je
 - $Re[H(j\omega)]$ parna funkcija od ω , a
 - $Im[H(j\omega)]$ neparna funkcija od ω

 $^{^7}$ Frekvencijska karak. definirana je kao $H:\mathbb{R} \to \mathbb{C}$, a prijenosna funkcija kao funkcija $H:\mathbb{C} \to \mathbb{C}$

Signali i sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika kontinuiranog sustava

- iz parnosti i neparnosti realnog i imaginarnog dijela frekvencijske karakteristike slijedi $H(-j\omega)=H^*(j\omega)$
- iz

$$H(j\omega) = Re[H(j\omega)] + jIm[H(j\omega)]$$

į

$$H(-j\omega) = Re[H(-j\omega)] + jIm[H(-j\omega)]$$

uz parni $Re[H(j\omega)]$ i neparni $Im[H(j\omega)]$ slijedi

$$H(-j\omega) = Re[H(j\omega)] - jIm[H(j\omega)] = H^*(j\omega)$$

- iz parnosti $Re[H(j\omega)]$ i neparnosti $Im[H(j\omega)]$, slijedi kako je
 - $|H(j\omega)|$ parna funkcija od ω i
 - $\angle H(j\omega)$ neparna funkcija od ω

Signali i sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika kontinuiranog sustava

• prijenosna funkcija sustava opisanog jednadžbom $\ddot{y}(t)+0.2\dot{y}(t)+0.16y(t)=u(t)$ je

$$H(s) = \frac{1}{s^2 + 0.2s + 0.16} = \frac{1}{(s + 0.1 - j0.387)(s + 0.1 + j0.387)}$$

pa je frekvencijska karakteristika

$$H(j\omega) = rac{1}{(j\omega)^2 + 0.2(j\omega) + 0.16}$$
 $H(j\omega) = rac{1}{(j\omega - 0.4e^{j0.3873})(j\omega - 0.4e^{-j0.3873})}$

Frekvencijski karakteristiki sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

funkcija Frekvencijska karakteristika

karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

ω	$ H(j\omega) $	$\angle H(j\omega)$
0.0	6.2500	0.0000
0.2	7.9057	-0.3218
0.4	12.5000	-1.5708
0.6	4.2875	-2.6012
0.8	1.9764	-2.8198
1.0	1.1581	-2.9078
1.2	0.7679	-2.9562
1.4	0.5490	-2.9873
1.6	0.4130	-3.0090
1.8	0.3225	-3.0252
2.0	0.2590	-3.0378

sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

 razmotrimo još jednom utjecaj polova na frekvencijsku karakteristiku

$$H(j\omega) = \frac{1}{(j\omega - s_{\rho 1})(j\omega - s_{\rho 2})} = \frac{1}{(d_1e^{j\theta_1})(d_2e^{j\theta_2})} = \frac{1}{d_1d_2}e^{-j(\theta_1 + \theta_2)}$$

karakteristika sustava Odziv sustava r pobudu

eksponencijalom Prijenosna funkcija Frekvencijska

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

- uvidom u frekvencijsku karakteristiku sustava, u prethodnom primjeru, zaključujemo da sustav ima filtarska svojstva tzv. niskopropusnog filtra
- sustav "propušta" sinusoidne pobude nižih frekvencija (recimo nižih od neke granične frekvencije ω_c), a "guši" sinusoidne pobude viših frekvencija
- primjer jasno pokazuje kako položaj polova (kasnije se pokazuje i za položaj nula) određuje frekvencijsku karakteristiku sustava
- intuitivno zaključujemo kako, odgovarajućim razmještajem polova i nula, možemo projektirati sustav odgovarajuće frekvencijske karakteristike
- ovdje će se kroz nekoliko primjera, pogodnim razmještajem polova i nula, ilustrirati "projektiranje" sustava raznih filtarskih karakteristika⁸

⁸sustavni postupci projektiranja sustava izučavaju se u drugim specijaliziranim predmetima

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

- iz prethodnog primjera možemo zaključiti kako je maksimum $H(j\omega)$, za $j\omega$, točno nasuprot pola
- uzevši to u obzir "projektiramo" niskopropusni filtar prvog reda
- izabiremo pol na mjestu $s_{p1} = -1$
- maksimum $H(j\omega)$ će biti na frekvenciji $j\omega=0$

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – primjer sustava prvog reda

$$H(s) = \frac{1}{s - s_{p1}} = \frac{1}{s + 1} \Rightarrow |H(j\omega)| = \frac{1}{\sqrt{\omega^2 + 1}}$$

polovi

Frekvencijsk karakteristik sustava

pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

- sustav bolje formiranih filtarskih karakteristika može se postići postavljanjem "zida" polova nasuprot $j\omega$ osi
- ovo će biti ilustrirano nizom primjera tzv. Butterworth-ovih niskopropusnih filtara za koje vrijedi da su polovi jednoliko razmješteni na kružnici radijusa $\omega_c=1$, gdje je $\omega_c=1$ granična frekvencija filtra
- u projektiranju koristimo Matlab naredbu za projektiranje vremenski kontinuiranih Butterworth-ovih filtara

$$[num, den] = butter(n, \omega_c, 'low', 's')$$

gdje su: n red sustava, ω_c granična frekvencija, num izračunati brojnik, i den izračunati nazivnik prijenosne funkcije

⁹postupak projektiranja Butterworth-ovih filtara izučava se u specijaliziranim predmetima

sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

sustavi školska godina 2009/2010 Cjelina 12.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

 ovdje je posebno napisana samo prijenosna funkcija, i vrijednosti polova, za Butterworth-ov filtar 5-tog reda

$$H(s) = \frac{1}{s^5 + 3.2361s^4 + 5.2361s^3 + 5.2361s^2 + 3.2361s + 1}$$

a vrijednosti polova su

$$\begin{array}{lll} s_{p1} = -0.3090 + j0.9511 & = & e^{j1.8849} = e^{j\frac{3\pi}{5}} \\ s_{p2} = -0.8090 + j0.5877 & = & e^{j2.5133} = e^{j\frac{4\pi}{5}} \\ s_{p3} = -1.0000 & = & e^{j3.1416} = e^{j\frac{5\pi}{5}} = e^{j\pi} \\ s_{p4} = -0.8090 - j0.5877 & = & e^{-j2.5133} = e^{-j\frac{4\pi}{5}} \\ s_{p5} = -0.3090 - j0.9511 & = & e^{-j1.8849} = e^{-j\frac{3\pi}{5}} \end{array}$$

Frekvencijsk karakteristik sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – doprinos nula

za prijenosnu funkciju sustava vrijedi

$$|H(s)|_{s=s_{0j}} = K \frac{(s-s_{01})\cdots(s-s_{0M})}{(s-s_{p1})\cdots(s-s_{pN})} = 0, \quad j=1,\ldots,M$$

• ako prije razmatranom sustavu prvog reda, s polom $s_{p1}=-1$, dodamo "nulu" u $s_{01}=0$, rezultirajući sustav će postati visokopropusni filtar prvog reda s prijenosnom funkcijom

$$H(s) = \frac{s - s_{01}}{s - s_{p1}} = \frac{s}{s + 1}$$

• amplitudna frekvencijska karakteristika ovog sustava je

$$|H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + 1}}$$

a fazna frekvencijska karakteristika je

$$\angle H(j\omega) = \angle (j\omega) - \angle (j\omega + 1)$$

2009/2010

Frekvencijsk karakteristik sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – primjer sustava prvog reda

$$H(s) = \frac{s}{s+1} \Rightarrow |H(j\omega)| = \frac{\omega}{\sqrt{\omega^2 + 1}}$$

2009/2010

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – doprinos nula

- doprinos nule na ukupnu frekvencijsku karakteristiku visokopropusnog filtra možemo razmotriti na slijedeći način
- ullet prijenosnu funkciju H(s) možemo razložiti i kao

$$H(s) = \frac{s}{s+1} = \underbrace{s}_{H_1(s)} \cdot \underbrace{\frac{1}{s+1}}_{H_2(s)} = |H_1(s)| e^{j \angle H_1(s)} |H_2(s)| e^{j \angle H_2(s)}$$

odnosno

$$H(s) = |H_1(s)| \cdot |H_2(s)| e^{j(\angle H_1(s) + \angle H_2(s))}$$

Frekvencijski karakteristiki sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – doprinos nula

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – pojasna brana

- ilustrira se projektiranje jednostavne pojasne brane čije su nule na frekvenciji $s=\pm j0.5$
- imajući u vidu prije dane primjere Butterworth-ovih filtara, za zaključiti je kako sustavi čiji su polovi na jediničnoj kružnici daju frekvencijsku karakteristiku koja je glatka u pojasu propuštanja
- zato i ovdje biramo polove koji su razmješteni na kružnici radijusa 0.5
- neka su, dakle, nule

$$s_{01,02} = \pm j0.5$$

a polovi neka su

$$s_{p1,p2} = 0.5e^{\pm j1.8}$$

Frekvencijsk karakteristik sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – pojasna brana

• za zadane polove i nule prijenosna funkcija je

$$H(s) = \frac{s^2 + 0.25}{s^2 + 0.2272s + 0.25}$$

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – pojasna brana

• i ovdje se može ilustrirati doprinos nula

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – fazna frekvencijska karakteristika

razmatra se frekvencijska karakteristika sustava

$$H(s) = \frac{1}{s^4 + 2.6131s^3 + 3.4142s^2 + 2.6131s + 1}$$

frekvencijska karakteristika je kompleksna funkcija pa vrijedi

$$H(j\omega) = Re[H(j\omega)] + jIm[H(j\omega)] = |H(j\omega)|e^{j\angle H(j\omega)}$$

karakteristik sustava

pobudu eksponencijalon Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – fazna frekvencijska karakteristika

fazna frekvencijska karakteristika je

$$\angle H(j\omega) = \arctan\left(\frac{Im[H(j\omega)]}{Re[H(j\omega)]}\right)$$

- kako je arkus funkcija višeznačna, u prikazu vrijednosti $\angle H(j\omega)$, uzimaju se samo glavne vrijednosti faze u intevalu $-\pi$ i π (dakle faza modulo 2π)
- za primijetiti je kako ova funkcija sadrži, na nekim frekvencijama, diskontinuitete u iznosu 2π , no oni nemaju nikakvo fizikalno značenje i <u>samo</u> su posljedica izračuna i uobičajnog načina prikaza funkcije faze
- pribrajanjem, ili oduzimanjem, cjelobrojnog višekratnika 2π , vrijednostima faze, na bilo kojoj frekvenciji, izvorna frekvencijska karakteristika se ne mijenja i moguće je prikazati $\angle H(j\omega)$ u obliku tzv. nerazmotane faze (unwrapped phase)

2009/2010

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – fazna frekvencijska karakteristika

