EXERCISES 6.2

In Problems 1-6, expand the given function in a Laurent series valid for the given annular domain.

1.
$$f(z) = \frac{\cos z}{z}, \ 0 < |z|$$

1.
$$f(z) = \frac{\cos z}{z}$$
, $0 < |z|$ 2. $f(z) = \frac{z - \sin z}{z^5}$, $0 < |z|$

3.
$$f(z) = e^{-1/z^2}, 0 < |z|$$

3.
$$f(z) = e^{-1/z^2}$$
, $0 < |z|$ 4. $f(z) = \frac{1 - e^z}{z^2}$, $0 < |z|$

5.
$$f(z) = \frac{e^z}{z-1}$$
, $0 < |z-1|$ **6.** $f(z) = z \cos \frac{1}{z}$, $0 < |z|$

6.
$$f(z) = z \cos \frac{1}{z}$$
, $0 < |z|$

In Problems 7–12, expand $f(z) = \frac{1}{z(z-3)}$ in a Laurent series valid for the indicated annular domain.

7.
$$0 < |z| < 3$$

8.
$$|z| > 3$$

9.
$$0 < |z - 3| < 3$$

10.
$$|z-3|>3$$

11.
$$1 < |z - 4| < 4$$

12.
$$1 < |z+1| < 4$$

In Problems 13–16, expand $f(z) = \frac{1}{(z-1)(z-2)}$ in a Laurent series valid for the given annular domain.

13.
$$1 < |z| < 2$$

14.
$$|z| > 2$$

15.
$$0 < |z - 1| < 1$$

16.
$$0 < |z - 2| < 1$$

In Problems 17–20, expand $f(z) = \frac{z}{(z+1)(z-2)}$ in a Laurent series valid for the given annular domain.

17.
$$0 < |z+1| < 3$$

18.
$$|z+1| > 2$$

19.
$$1 < |z| < 2$$

20.
$$0 < |z - 2| < 3$$

In Problems 21 and 22, expand $f(z) = \frac{1}{z(1-z)^2}$ in a Laurent series valid for the given annular domain.

21.
$$0 < |z| < 1$$

22.
$$|z| > 1$$