こんにちは

Python and Machine Learning 101

Welcome to General Assembly!

We empower people to pursue work they love through education in business, coding, data, and design.

Gregory Godreau (he/his)

Data Science Immersive Instructor Freelance Developer

Worked at:

Gregory Godreau

Freelance Developer

- M.E. scorned
- Mom got internets in 2013
- That 30 y/o boomer who AOL Onlines

Agenda

- Learn what machine learning experts do and the types of problems they solve.
- Walk through the typical workflow and see how the pros identify powerful business predictions.
- Explore key tools and processes to use to analyze, visualize, and model data.

Agenda IRL

- File I/O and basic analytics and charting in Python / Pandas
 - Processing Austin SXSW 2018 EMS incidents
- Overview of traditional and deep learning methods and applications
 - Creating an object classifier in tensorflow

(25m)

Python 101

"You can't just copy pseudocode and expect it to work."

What Python's Good At

- Very readable
- Easy to learn
- Prototyping
- Defacto DS lang for small/mid size
- Wrappers / SDKs for other libs
- Glue code and scripting (shell sellout)
- Simple APIs (Flask)

What Python's Not So Good At

- Embedded deployments
- Hardware / drivers
- Mission-critical code / algos
- Getting you street cred at C++ meetups

Weapons d'Choix

Python

Logic Code / Machine Learning / Do Thangs Flask

React

Front end Web Interface (JS)

Kubernetes

Scale in the Cloud

How Deployments Look IRL - "PFRK??" Stack

How Deployments Look IRL - Serverless JS

When you mistype x = obj.fiedl instead of x = obj.field

Computers Out: Reading in An Excel File in Pandas

We'll be reading in an excel file using Pandas!

- Automate your excel workflow
- Wrap your work in a library
- Share with others

(25m)

Machine Learning 101

66

"Computer: I'm a fast learner."

"Me: What's 11 x 11?"

"Computer: 65."

"Me: Not even close, 121."

"Computer: 121."

credit: adapted from u/z0ltan x

A Brief History of Machine Learning:

Year	Milestone				
1959	Widrow / Hoff of Stanford - MADALINE				
1982	John Hopfield of Caltech - Nat'l Academy of Sciences Resurrection of Neural Nets				
1986	Advent of > 2 layer networks using back propagation				
1996	IBM Deep Blue beats Garry Kasparov at chess				
2006	Geoffrey Everest Hinton - rebrands NNs as Deep Learning				
2012	AlexNet (Alex Krizhevsky / Hinton) ImageNet comp; improving top-5 error score by ~11%				
2016	Lee Sedol - Alpha Go (13 layers, 200 GPUs, 30m board positions, 160k real-life games, RL)				

Common Modern UCs

Types of ML Probs

Classification

Regression

Clustering

Dimensionality Reduction

Predicting a continuous value:

- Temperature
- Stock Price

Similarities between unlabeled data:

- Recommender systems
 - Fraud / anomalies

Reducing many features to few features:

- LDA
- PCA

'Traditional' ML: Scikit-Learn (Python stack)

Scikit-Learn Classifier Comparison

https://playground.tensorflow.org

Deap Larnin'

Deap Larnin'

DL/NN Model Types

Name	General UCs
FFNN	Feed Forward NN: Simple and fast modeling of linearish systems
CNN	Convolutional NN: Sliding window NN, very common for image processing
RNN	Recurrent NN: Short-term memory, next-event prediction based on few prior events
LSTM	Long short term memory NN: RNN with a longer term memory
GRUs	Gated recurrent unit: Similar to LSTM with fewer matrix mult operations

'Simple' FFNN

RNN

Convolutional Neural Net

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0
0	•			

TF Components

- Tensorflow
- <u>TF Hub</u> model reuse
- <u>Tensorflow Serving</u> inference
- <u>Tensorboard</u> training and vis
- Tensorflow Lite mobile
- <u>Tensorflow.js</u> in-browser

Tensorboard

Guided Walk-Through: TF Demo - Object classification

(a) Image classification

(c) Semantic segmentation

(b) Object localization

(d) Instance segmentation

Upcoming at GA ATX Campus:

- 3/30 Python Fundamentals Bootcamp
- 5/18 + 5/19 Python & Machine Learning Weekend Bootcamp
 - Day 1: Python Fundamentals
 Bootcamp
 Day 2: Intro to Data Science &
 Machine Learning
- Free, 2-hour intro classes in data science, data analytics, coding, product management, digital marketing, UX design and Python held regularly on campus and online!

Want More?

Checkout upcoming workshops at your local GA campus ga.co/education

Thank You!

github.com/ggodreau/sxsw2019 godreau.xyz

