Home Work 12

The problems in this problem set cover lectures C16

1.

a. Using truth tables, show that $\overline{A} \langle \overline{B} = \overline{(A+B)}$

A	В	\overline{A}	\overline{B}	$\overline{A} \langle \overline{B}$	A + B	$\overline{(A+B)}$
0	0	1	1	1	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	1	0	0	0	1	0

b. Using K-Maps, simplify the following expression:

$$\overline{A} \langle \overline{B} \langle \overline{C} + \overline{A} \langle \overline{B} \langle C + A \langle \overline{B} \langle C + A \langle \overline{B} \langle \overline{C} \rangle$$

A	В	C	Minterm
0	0	0	$\overline{A} \langle \overline{B} \langle \overline{C} \rangle$
0	0	1	$\overline{A} \langle \overline{B} \langle C$
0	1	0	$\overline{A} \langle B \langle \overline{C} \rangle$
0	1	1	$\overline{A} \langle B \langle C$
1	0	0	$A \langle \overline{B} \langle \overline{C} \rangle$
1	0	1	$A \langle \overline{B} \langle C$
1	1	0	$A \langle B \langle \overline{C} \rangle$
1	1	1	$A \langle B \langle C$

$$\overline{A} \left\langle \ \overline{B} \left\langle \ \overline{C} + \overline{A} \left\langle \ \overline{B} \left\langle \ C + A \left\langle \ \overline{B} \left\langle \ C + A \left\langle \ \overline{B} \left\langle \ \overline{C} = \overline{B} \right. \right. \right. \right. \right. \right.$$

c.

Using K-Maps, simplify the following expression:
$$A\langle B \langle D + \overline{B} \langle C \langle D + \overline{A} \langle B \langle C \langle D + \overline{C} \langle D \rangle \rangle \rangle = 0$$

A	В	C	D	Minterm
0	0	0	0	$\overline{A} \langle \overline{B} \langle \overline{C} \langle \overline{D} \rangle$
0	0	0	1	$\overline{A} \langle \overline{B} \langle \overline{C} \langle D \rangle$
0	0	1	0	$\overline{A} \langle \overline{B} \langle C \langle \overline{D} \rangle$
0	0	1	1	$\overline{A} \langle \overline{B} \langle C \langle D \rangle$
0	1	0	0	$\overline{A} \langle B \langle \overline{C} \langle \overline{D} \rangle$
0	1	0	1	$\overline{A} \langle B \langle \overline{C} \langle D \rangle$
0	1	1	0	$\overline{A} \langle B \langle C \langle \overline{D} \rangle$
0	1	1	1	$\overline{A} \langle B \langle C \langle D \rangle$
1	0	0	0	$A \langle \overline{B} \langle \overline{C} \langle \overline{D} \rangle$
1	0	0	1	$A\langle \overline{B}\langle \overline{C}\langle D$
1	0	1	0	$A \langle \overline{B} \langle C \langle \overline{D} \rangle$
1	0	1	1	$A \langle B \langle C \langle D \rangle$
1	1	0	0	$A \langle B \langle \overline{C} \langle \overline{D} \rangle$
1	1	0	1	$A \langle B \langle \overline{C} \langle D \rangle$
1	1	1	0	$A \langle B \langle C \langle \overline{D} \rangle$
1	1	1	1	$A \langle B \langle C \langle D$

CD/ AB	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0

$$A \left\langle \right. B \left\langle \right. D + \overline{B} \left\langle \right. C \left\langle \right. D + \overline{A} \left\langle \right. B \left\langle \right. C \left\langle \right. D + \overline{C} \left\langle \right. D = D$$

d. Simplify the same expression using the rules of simplification.

$$A \langle B \langle D + \overline{B} \langle C \langle D + \overline{A} \langle B \langle C \langle D + \overline{C} \langle D \rangle \rangle \rangle$$

$$B \langle D(A + \overline{A}C) + D(\overline{B} \langle C + \overline{C})$$

[Distributive Property]

$$B \langle D \langle (A+C) + D(\overline{B} + \overline{C}) \rangle$$

[Two Value Theorem]

$$A \langle B \langle D + B \langle C \langle D + D \langle \overline{B} + D \langle \overline{C} \rangle$$

[Distributive Property]

$$D(AB + \overline{B}) + D(BC + \overline{C})$$

[Distributive Property]

$$D(A + \overline{B}) + D(B + \overline{C})$$

[Two Value Theorem]

$$D\langle A+D\langle \overline{B}+D\langle B+D\langle \overline{C}$$

[Distributive Property]

$$D\langle A+D(B\langle B)+D\langle \overline{C}$$

[Distributive Property]

$$D\langle A+D\langle 1+D\langle \overline{C}$$

[Single Value Theorem]

$$(D\langle A+D)+D\langle \overline{C}$$

[Two Value Theorem]

$$D+D \langle \overline{C}$$

[Single Value Theorem]

,

D

[Single Value Theorem]

2. Convert the following expression into product of sum form:

$$\overline{A} \left\langle \ \overline{B} \left\langle \ \overline{C} + \overline{A} \left\langle \ B \left\langle \ C + A \left\langle \ B \left\langle \ \overline{C} + A \left\langle \ \overline{B} \right\langle \ C \right\rangle \right. \right. \right. \right.$$

A	В	C	Minterm
0	0	0	$\overline{A} \langle \overline{B} \langle \overline{C}$
0	0	1	$\overline{A} \langle \overline{B} \langle C$
0	1	0	$\overline{A} \langle B \langle \overline{C} \rangle$
0	1	1	$\overline{A} \langle B \langle C$
1	0	0	$A \langle \overline{B} \langle \overline{C} \rangle$
1	0	1	$A \langle \overline{B} \langle C$
1	1	0	$A \langle B \langle \overline{C} \rangle$
1	1	1	$A \langle B \langle C$

$$\overline{A} \left\langle \ \overline{B} \left\langle \ \overline{C} + \overline{A} \left\langle \ B \left\langle \ C + A \left\langle \ B \left\langle \ \overline{C} + A \left\langle \ \overline{B} \right\langle \ C \right. \right. \right. \right. \right.$$

C/ AB	00	01	11	10
0	1	0	1	0
1	0	1	0	1

$$= \overline{(\overline{\overline{A} \bra{\overline{B}} \lang{C} + \overline{\overline{A}} \lang{B} \lang{\overline{C}} + A \lang{B} \lang{C} + A \lang{\overline{B}} \lang{\overline{C}})}$$

$$= (A+B+\overline{C}) \langle (A+\overline{B}+C) \langle (\overline{A}+\overline{B}+\overline{C}) \langle (\overline{A}+B+C) \rangle$$