

Universidade Estadual de Maringá (UEM) Departamento de Informática (DIN)

Curso:			
Disciplina:	Modelagem e Otimização Algorítmica		
Professor:	Lucas de Oliveira Teixeira	Data:	
Aluno:		R.A.:	

Trabalho Prático

Objetivo: Consolidar o conhecimento sobre heurísticas para a solução de problemas de otimização combinatória, desenvolvendo a programação de uma heurística estudada em sala de aula.

Instruções:

- 1. O trabalho pode ser desenvolvido em equipe de, no máximo, duas pessoas ou individualmente.
- 2. O trabalho deve ser apresentado no mesmo dia da data de entrega do trabalho. A apresentação deve durar aproximadamente 10 minutos.
- 3. O trabalho pode ser desenvolvido em qualquer linguagem de programação.
- 4. Além do código-fonte, deve ser elaborado um relatório sobre as decisões tomadas durante a implementação da heurística.
- 5. Os arquivos do trabalho devem ser compactados em um único arquivo que deve ser nomeado de acordo com o nome dos integrantes da equipe seguido de seu R.A (NomeAluno123456.zip; FulanodeTal123456_OutroSicrano678910.zip).
- 6. O trabalho deve ser entregue via Moodle, por meio de um link para upload de arquivos disponível até as 18h da data da entrega.
- 7. A interação entre as equipes é permitida, porém cópias de códigos serão automaticamente atribuidos nota zero a todos os trabalhos envolvidos.
- **Descrição:** Deve ser escolhido uma heurística dentre as estudadas em sala de aula para resolver um dos problemas cássicos.
 - 1. Heurísticas:
 - (a) Simulated annealing.
 - (b) Variable Neighbourhood Search Variable Neighbourhood Descent.
 - (c) Busca Tabu.
 - (d) GRASP.
 - (e) Colônia de formigas.
 - (f) Algoritmo genético.
 - 2. Problemas:
 - (a) Problema do caixeiro viajante
 - (b) Problema da mochila
 - (c) Problema de cobertura de conjuntos

Relatório:

- 1. Identificação da equipe
- 2. Definição conceitual do problema escolhido: modelagem do problema.
- 3. Definição conceitual da heurística escolhida para resolver o problema: conceitos básicos da heurística.
- 4. Espaço de busca: como o espaço de busca foi gerado.
- 5. Explicação sobre a heurística implementada:
 - (a) Parâmetros de entrada e respectivo significado.

Universidade Estadual de Maringá (UEM) Departamento de Informática (DIN)

- (b) Estruturas de dados utilizadas e quais motivos de utilizar tais estruturas.
- (c) Explicação sobre as principais decisões tomadas durante a implementação do algoritmo:
 - Critério de parada considerado: por exemplo, quantas iterações o algoritmo executará?
 Será definido por um contador de iterações ou uma expressão condicional?
 - Como a solução inicial é gerada?
 - Como funciona a busca local?
 - Como é realizado o movimento para a próxima solução? (Como a vizinhança é examinada?)
 - Como o algoritmo tenta escapar de ótimos locais?
 - Quando a solução é atualizada?
 - Ao final da execução do programa, a solução retornada é a solução ótima? Justifique.
- Análise e discussão dos resultados: Gere pelo menos duas soluções iniciais diferentes e compare com as soluções parciais obtidas pela heurística implementada até alcançar a solução ótima.
- 7. Conclusão:
 - Descreva como o problema selecionado foi resolvido.
 - A solução ótima global foi encontrada?
 - Apresente as dificuldades encontradas no desenvolvimento deste trabalho.
- 8. Apéndice: Apresente o código fonte completo no apêndice do trabalho (quanto mais comentado e explicado melhor!).