What is claimed is:

- 1 1. An encryption method for use by an encryption apparatus
- 2 that encrypts plaintext data composed of a plurality of
- 3 blocks, the encryption method comprising:
- a block obtaining step for obtaining the plaintext
- 5 data one block at a time in order from outside the
- 6 encryption apparatus;
- 7 a selecting step for selecting either a first mode
- 8 or a second mode for a current block obtained in the block
- 9 obtaining step according to how many blocks have been
- 10 obtained;
- 11 a key generating step for generating
- (1) a first group composed of a predetermined
- number n of different subkeys when the first
- 14 mode is selected, and
- 15 (2) a second group composed of less than n
- different subkeys when the second mode is
- 17 selected; and
- an encrypting step for encrypting the current block
- 19 by subjecting the current block to n conversion processes
- 20 in order, wherein
- in the first mode, each of the *n* conversion processes
- 22 is associated with a different subkey in the first group
- 23 and is performed using the associated subkey, and
- in the second mode, the *n* conversion processes are
- 25 associated with subkeys in the second group and are each
- 26 performed using the associated subkey.

1	2. An encryption method according to Claim 1,
2	wherein the selecting step selects
3	(i) the first mode for blocks whenever a number
4	of blocks that have been obtained is equal to
5	a multiple of a predetermined value, and
6	(ii) the second mode for all other cases.

- 1 3. An encryption method according to Claim 1,
- wherein the encryption apparatus includes an initial
- 3 value storing means for storing an initial value,
- 4 the encrypting step encrypts the current block to
- 5 generate a ciphertext block having a predetermined length,
- 6 and
- the key generating step generates the first group
- 8 using the initial value in the first mode and generates
- 9 the second group using the initial value and the ciphertext
- 10 block most recently generated by the encrypting step in
- 11 the second mode.
- 1 4. An encryption apparatus for encrypting plaintext data
- 2 composed of a plurality of blocks, the encryption apparatus
- 3 comprising:
- 4 block obtaining means for obtaining the plaintext
- 5 data one block at a time in order from outside;
- 6 selecting means for selecting either a first mode or
- 7 a second mode for use with a current block obtained in the
- 8 block obtaining means according to how many blocks have

25

9	been obtained;
10	key generating means for generating
11	(1) a first group composed of a predetermined
12	number n of different subkeys when the first
13	mode is selected, and
14	(2) a second group composed of less than n
15	different subkeys when the second mode is
16	selected; and
17	encrypting means for encrypting the current block by
18	subjecting the current block to n conversion processes in
19	order, wherein
20	in the first mode, each of the n conversion processes
21	is associated with a different subkey in the first group
22	and is performed using the associated subkey, and
23	in the second mode, the n conversion processes are

1 5. A computer-readable storage medium storing an

each performed using the associated subkey.

2 encryption program for use by a computer that encrypts

each associated with a subkey in the second group and are

- 3 plaintext data composed of a plurality of blocks,
- 4 the encryption program comprising:
- a block obtaining step for obtaining the plaintext
- 6 data one block at a time in order from outside the
- 7 encryption apparatus;
- 8 a selecting step for selecting either a first mode
- 9 or a second mode for a current block obtained in the block

10	obtaining step according to how many blocks have been
11	obtained;
12	a key generating step for generating
13	(1) a first group composed of a predetermined
14	number n of different subkeys when the first
15	mode is selected, and
16	(2) a second group composed of less than n
17	different subkeys when the second mode is
18	selected; and
19	an encrypting step for encrypting the current block
20	by subjecting the current block to n conversion processes
21	in order, wherein
22	in the first mode, each of the n conversion processes
23	is associated with a different subkey in the first group

in the second mode, the *n* conversion processes are associated with subkeys in the second group and are each performed using the associated subkey.

and is performed using the associated subkey, and

- 1 6. A decryption method for use by a decryption apparatus
- 2 that decrypts ciphertext data in ciphertext block units,
- 3 the decryption method comprising:
- a block obtaining step for obtaining the ciphertext
- 5 data one ciphertext block at a time in order from outside
- 6 the decryption apparatus;
- a selecting step for selecting either a first mode
- 8 or a second mode for use with a current ciphertext block

9	obtained in the block obtaining step according to how many
10	ciphertext blocks have been obtained;
11	a key generating step for generating
12	(1) a first group composed of a predetermined
13	number n of different subkeys when the first
14	mode is selected and
15	(2) a second group composed of less than n
16	different subkeys when the second mode is
17	selected; and
18	a decrypting step for decrypting the current
19	ciphertext block by subjecting the current ciphertext
20	block to n conversion processes in order, wherein
21	in the first mode, each of the n conversion processes
22	is associated with a different subkey in the first group
23	and is performed using the associated subkey, and
24	in the second mode, the n conversion processes are
25	associated with subkeys in the second group and are each
26	performed using the associated subkey.

- 7. A decryption method according to Claim 6,
- wherein the selecting step selects
- 3 (1) the first mode whenever a number of
- 4 ciphertext blocks that have been obtained is
- given as a multiple of a predetermined value,
- 6 and
- 7 (2) the second mode for all other cases.

1	8. A decryption method according to Claim 6,
2	wherein the decryption apparatus includes an initial
3	value storing means for storing an initial value,
4	the key generating step generating the first group
5	using the initial value in the first mode and generating
6	the second group using the initial value and the ciphertext
7	block obtained immediately before the current ciphertext
8	block in the second mode.
1	9. A decryption apparatus that decrypts ciphertext data
2	in ciphertext block units, the decryption apparatus
3	comprising:
4	block obtaining means for obtaining the ciphertext
5	data one ciphertext block at a time in order from outside;
6	selecting means for selecting either a first mode or
7	a second mode for use with a current ciphertext block
8	obtained by the block obtaining means according to how many
9	ciphertext blocks have been obtained;
10	key generating means for generating
11	(1) a first group composed of a predetermined
12	number n of different subkeys when the first
13	mode is selected, and
14	(2) a second group composed of less than n
15	different subkeys when the second mode is
16	selected; and
17	decrypting means for decrypting the current

ciphertext block by subjecting the current ciphertext

11

13

14

15

16

17

19

in the first mode, each of the n conversion processes
is associated with a different subkey in the first group
and is performed using the associated subkey, and
in the second mode, the n conversion processes are
associated with subkeys in the second group and are each
performed using the associated subkey.

1 10. A computer-readable storage medium storing a
2 decryption program for use by a computer that decrypts
3 ciphertext data in ciphertext block units,

the decryption program comprising:

a block obtaining step for obtaining the ciphertext data one ciphertext block at a time in order from outside the decryption apparatus;

a selecting step for selecting either a first mode or a second mode for use with a current ciphertext block obtained in the block obtaining step according to how many ciphertext blocks have been obtained;

a key generating step for generating

(1) a first group composed of a predetermined number n of different subkeys when the first

mode is selected and

(2) a second group composed of less than n different subkeys when the second mode is

selected; and

a decrypting step for decrypting the current

ciphertext block by subjecting the current ciphertext
block to n conversion processes in order, wherein
in the first mode, each of the n conversion processes
is associated with a different subkey in the first group
and is performed using the associated subkey, and
in the second mode, the n conversion processes are
associated with subkeys in the second group and are each

performed using the associated subkey.