第五章 优化程序性能

本章重点

- 熟练掌握普遍有用优化的方法
- 优化障碍(两个)
 - 理解函数调用为什么会阻碍优化
 - 理解内存别名的使用为什么会阻碍优化
- ■循环展开
- 经典例题

目录

--本章PPT与书上内容互为补充

- 综述
- 普遍有用的优化方法
 - 代码移动/预先计算
 - 复杂运算简化Strength reduction
 - 公用子表达式的共享
 - 去掉不必要的过程调用
- 妨碍优化的因素Optimization Blockers (优化障碍)
 - 过程调用
 - 存储器别名使用Memory aliasing(不同名字指向相同内存)
- 运用指令级并行
- 处理条件

怎么优化源程序?

- 1. 更快(本课程重点!本章重点!)
- 2. 更省(存储空间、运行空间)
- 3. 更美 (UI 交互)
- 4. 更正确(本课程重点! 各种条件下)
- 5. 更可靠(各种条件下的正确性、安全性)
- 6. 可移植
- 7. 更强大(功能)
- 8. 更方便(安装、使用、帮助/导航、可维护)
- 9. 更规范(格式符合编程规范、接口规范)
- 10.更易懂(能读明白、有注释、模块化—清晰简洁)

关于性能的现实---性能比时间复杂度更重要

- 常数因子也很重要!
 - 代码编写不同,性能会差10倍!
 - 要在多个层次进行优化:
 - 算法、 数据表示/结构、过程、循环(重点优化内循环)
- 优化性能一定要理解"系统"
 - 程序是怎样被编译和执行的---编译器友好的代码
 - 理解编译器的能力与局限性很重要!!!
 - 现代处理器/存储系统是怎么运作的-CPU/RAM友好的代码
 - 怎样测量程序性能、确定"瓶颈"-- valgrind/gprof/Test Studio/Load Runner
 - 如何在不破坏代码模块性和通用性的前提下提高性能

优化编译器---编写编译器友好的代码!

- 提供从程序到机器的有效映射
 - 寄存器分配
 - 代码的选择与顺序
 - 消除死代码
 - 消除轻微的低效率问题
- 源程序稍变一下,编译器优化方式与性能变化很大
- (通常)不要提高渐进效率(asymptotic efficiency)
 - 由程序员来选择最佳的总体算法
 - 大O常常比常数因子更重要,但常数因子也很重要
- 难以克服"优化障碍"
 - 潜在的函数副作用
 - 潜在的内存别名使用

编译器优化的局限性

- 在基本约束条件下运行
 - 不能引起程序行为的任何改变
 - 通常不会采取可能导致病态行为的优化
- 对程序员来说很明显的行为,可能会因语言和编码 风格而变得模糊/混乱
 - 如:实际所需范围可能比所用变量类型对应的范围更小,多占内存
- 低级别优化往往降低程序可读性和模块性
 - 程序易出错,难以修改和扩展

编译器优化的局限性

- 大多数分析只在过程范围内进行
 - 在大多数情况下,全程序分析过于昂贵
 - 新版本的GCC在单个文件中进行过程间分析
 - 但是, 不做文件间的代码分析
- 大多数分析都是基于静态信息的
 - 编译器很难预测运行时的输入
- 当有疑问时,编译器必须是保守的

普遍有用的优化

- 程序员或编译器应该做的优化
- 代码移动
 - 减少计算执行的频率 如果它总是产生相同的结果,将代码从循环中移出

```
void set_row(double *a, double *b,
    long i, long n)
{
    long j;
    for (j = 0; j < n; j++)
        a[n*i+j] = b[j];
}

long j;
    int ni = n*i;
    for (j = 0; j < n; j++)
        a[ni+j] = b[j];
}</pre>
```

编译器生成的代码移动 (-O1)

```
void set_row(double *a, double *b, long i, long n)
{
    long j;
    for (j = 0; j < n; j++)
        a[n*i+j] = b[j];
}</pre>
```

```
long j;
long ni = n*i;
double *rowp = a+ni;
for (j = 0; j < n; j++)
*rowp++ = b[j];
```

```
set_row:
                                              # Test n
                 %rcx, %rcx
         testq
                                              # If 0, goto done
                  .L1
         jle
                                              # ni = n*i
         imulq
                 %rcx, %rdx
                                              \# rowp = a + ni*8
         leag
                  (%rdi,%rdx,8), %rdx
                                              #j=0
         movl
                  $0, %eax
.L3:
                                              # loop:
                                              \# \mathbf{t} = \mathbf{b}[\mathbf{i}]
                  (%rsi,%rax,8), %xmm0
         movsd
                                              \# M[a+ni*8 + j*8] = t
                  %xmm0, (%rdx,%rax,8)
         movsd
                  $1, %rax
                                              # j++
         addq
                                              # j:n
                  %rcx, %rax
         cmpq
                                              # if !=, goto loop
                  .L3
         jne
.L1:
                                              # done:
         rep; ret
```

复杂运算简化 Reduction in Strength

- 用更简单的方法替换昂贵的操作
- 移位、加,替代乘法/除法

```
16*x   --> x << 4
```

- 实际效果依赖于机器,取决于乘法或除法指令的成本
 - Intel Nehalem CPU整数乘需要3个CPU周期

```
for (i = 0; i < n; i++) {
  int ni = n*i;
  for (j = 0; j < n; j++)
    a[ni + j] = b[j];
}

int ni = 0;
for (i = 0; i < n; i++) {
  for (j = 0; j < n; j++)
    a[ni + j] = b[j];
    ni += n;//用加来替代乘
}
```

共享公用子表达式

- 重用表达式的一部分
- GCC 使用 -O1 选项实现这个优化

```
/* Sum neighbors of i,j */
up = val[(i-1)*n + j ];
down = val[(i+1)*n + j ];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;
```

3 乘法: i*n, (i-1)*n, (i+1)*n

```
leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j
```

```
long inj = i*n + j;
up = val[ inj - n];
down = val[ inj + n];
left = val[ inj - 1];
right = val[ inj + 1];
sum = up + down + left + right;
```

1 乘法: i*n

```
imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n
```

妨碍优化的因素/优化障碍#1: 函数调用

■ 将字符串转换为小写的函数

```
void lower(char *s)
{
    size_t i;
    for (i = 0; i < strlen(s); i++)
        if (s[i] >= 'A' && s[i] <= 'Z')
        s[i] -= ('A' - 'a');
}</pre>
```

小写转换性能

- 当字符串长度双倍时,时间增加了四倍
- 二次方(平方)的性能Quadratic performance

把循环变成 Goto形式—-- 类汇编实现

```
void lower(char *s){
 size_t i = 0;
 if (i \ge strlen(s))
   goto done;
loop:
 if (s[i] >= 'A' & & s[i] <= 'Z')
    s[i] = ('A' - 'a');
 i++;
 if (i < strlen(s))
   goto loop;
done:
```

```
/* My version of strlen */
size_t strlen(const char *s)
  size_t length = 0;
  while (*s != '\0') {
       S++;
       length++;
  return length;
```

- **■** strlen每次循环都要重复执行
- strlen 性能
 - 确定字符串长度的唯一方法是扫描它的整个长度,查找null字符
- 整体性能,长度为N的字符串
 - N 次调用 strlen
 - 整体 O(N2) 性能

提高性能

```
void lower(char *s)
{
    size_t i;
    size_t len = strlen(s);
    for (i = 0; i < len; i++)
        if (s[i] >= 'A' && s[i] <= 'Z')
        s[i] -= ('A' - 'a');
}</pre>
```

- 代码移动: 把调用 strlen 移到循环外
- 根据:从一次迭代到另一次迭代, strlen返回结果不会变化

Lower 小写转换的效率

- 字符串长度2倍时,时间也2倍
- lower2 的线性效率

妨碍优化的因素: 函数调用

- 为什么编译器不能将strlen从内层循环中移出呢?
 - 函数可能有副作用
 - 例如:每次被调用都改变全局变量/状态
 - 对于给定的参数,函数可能返回不同的值
 - 依赖于全局状态/变量的其他部分
 - 函数lower可能与 strlen 相互作用
- Warning:
 - 编译器将函数调用视为黑盒
 - 在函数附近进行弱优化
- 补救措施:
 - 使用 inline 内联函数
 - 用 _O1 时GCC这样做,但 局限于单一文件之内
 - 程序员自己做代码移动

```
size_t lencnt = 0;
size_t strlen(const char *s)
{
    size_t length = 0;
    while (*s != '\0') {
        s++; length++;
    }
    lencnt += length;
    return length;
}
```

妨碍优化的因素#2: 内存别名使用

- ■别名使用
 - 两个不同的内存引用指向相同的位置
 - C很容易发生
 - 因为允许做地址运算
 - ■直接访问存储结构
 - ■养成引入局部变量的习惯
 - ■在循环中累积

内存的麻烦

```
/* Sum rows is of n X n matrix a
 and store in vector b */
void sum_rows1(double *a, double *b, long n) {
  long i, j;
  for (i = 0; i < n; i++)
        b[i] = 0;
        for (j = 0; j < n; j++)
           b[i] += a[i*n + j];
                                   # sum_rows1 inner loop
                                    .L4:
                                        movsd (%rsi,%rax,8), %xmm0# FP load
                                        addsd (%rdi), %xmm0
                                                                       # FP add
                                        movsd %xmm0, (%rsi, %rax,8)# FP store
                                        addq $8, %rdi
                                        cmpq %rcx, %rdi
                                        jne
                                            .L4
```

- 代码每次循环都更新 b[i]
- 为什么编译器不能优化这个?

内存别名使用Memory Aliasing

```
/* Sum rows is of n X n matrix a
    and store in vector b */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
        b[i] += a[i*n + j];
    }
}
```

{ 0, 1, 2, 4, 8, 16, 32, 64, 128}; double B[3]; sum_rows1(A, A+3, 3);

- 代码每次循环都更新 b[i]
- 必须考虑这些更新会影响程序行 为的可能性

Value of b:

double A[9] =

init: [4, 8, 16] i = 0: [3, 8, 16] i = 1: [3, ?, ?]

内存别名使用Memory Aliasing

```
/* Sum rows is of n X n matrix a
    and store in vector b */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
        b[i] += a[i*n + j];
    }
}
```

- 代码每次循环都更新 b[i]
- 必须考虑这些更新会影响程序行为的可能性

```
i=0时: b[0]=0+1+2=3,此时b[0]=a[3]=3;
i=1时: b[1]初始化为0,开始循环
b[1]+=a[3](此时a[3]=3)则b[1]=0+3=3;
此时b[1]=3,意味着a[4]=3;
所以b[1]+=a[4]推出b[1]=3+3=6;
继续b[1]+=a[5]推出b[1]=6+16=22;
此时b[1]=a[4]=22;
i=2 b[2]=32+64+128=224,此时b[2]=a[5]=224;
```

```
double A[9] =
{ 0, 1, 2,
4, 8, 16,
32, 64, 128};
double B[3];
sum_rows1(A, A+3, 3);
```

Value of b:

init: [4, 8, 16]

i = 0: [3, 8, 16]

 $i = 1: [3, \frac{22}{10}, 16]$

i = 2: [3, 22, 224]

与原本期望值 [3, 28, 224]有差别

移除内存别名

```
/* Sum rows is of n X n matrix a
    and store in vector b */
void sum_rows2(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        double val = 0;
        for (j = 0; j < n; j++)
            val += a[i*n + j];
        b[i] = val;
    }
}
```

■ 而且不需要存储中间 结果

```
# sum_rows2 inner loop
.L10:
addsd (%rdi), %xmm0 # FP load + add
addq $8, %rdi
cmpq %rax, %rdi
jne .L10
```

表示程序性能

- CPE: 每个元素的周期数(Cycles Per Element)
- 表示向量或列表操作的程序性能的方便方式
- Length = n
- In our case: CPE = cycles per OP
- T = CPE*n + 经常开销(Overhead)
 - CPE 是线的斜率slope

"经常开销"是指在系统运行过程中,除了主要任务之外的固定额外开销。它可能来自初始化、清理、上下文切换、通信、管理等多个方面。它是一个常数项,表示与任务数量无关的额外成本或时间开销。

CPE: 例子

```
/* Compute prefix sum of vector a */
     void psum1(float a[], float p[], long n)
 2
     ſ
 3
         long i;
 4
         p[0] = a[0];
 5
         for (i = 1; i < n; i++)
 6
             p[i] = p[i-1] + a[i];
 7
     }
8
9
     void psum2(float a[], float p[], long n)
10
     {
11
         long i;
12
         p[0] = a[0];
13
         for (i = 1; i < n-1; i+=2) {
14
             float mid_val = p[i-1] + a[i];
15
             p[i]
                  = mid_val;
16
             p[i+1] = mid_val + a[i+1];
17
         }
18
         /* For even n, finish remaining element */此时, i=n-1
19
         if (i < n)
20
             p[i] = p[i-1] + a[i];
21
     }
22
```

CPE

程序示例: 向量的数据类型

```
/* data structure for vectors */
typedef struct{
    size_t len;
    data_t *data;
} vec;
```


定义一个指针: vec* vec_ptr

- ■数据类型
 - 使用 data_t的不同声明
 - int
 - long
 - float
 - double

```
/* retrieve vector element
   and store at val */
int get_vec_element
   (*vec v, size_t idx, data_t *val)
{
     if ( idx >= v->len )
        return 0;
     *val = v->data[idx];
     return 1;
}
```

程序示例的计算

```
void combine1(vec_ptr v, data_t *dest){
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}</pre>
```

计算向量元素的 和或积

■数据类型

- 使用 data_t的不同声明
- int
- long
- float
- double

■操作

- 使用 OP 和IDENT 的不同 定义
- +/0 (op为+时IDENT为0)
- */1 (op为*时IDENT为1)

编译优化选项介绍

•00 (无优化):

编译器在OO选项下不会对代码进行任何优化,其主要目标是尽量缩短编译时间和内存占用。在这种模式下,编译器会尽量保持代码的原始结构,调试工具(如debugger)能够准确地反映程序的预期行为。当程序运行时,开发者可以在调试器中断点处对变量进行赋值,或者将程序计数器跳转到函数内的其他语句,从而从源代码中精确地获取预期结果。这种模式非常适合开发和调试阶段,因为它能够确保代码的可读性和调试的准确性。

•01 (轻度优化):

O1选项会在不显著增加编译时间和内存占用的前提下,对代码进行一些基本优化。它主要针对代码的分支结构、常量表达式等进行简化和优化,从而在一定程度上提高程序的运行效率。这种优化程度适合对性能要求不高,但又希望代码有一定优化的场景。

·O2 (中度优化):

O2选项会尝试更多的寄存器级和指令级优化。编译器会更积极地利用寄存器来存储变量和中间结果,同时对指令序列进行调整和优化,以提高程序的运行速度。然而,这些优化会增加编译时间和内存占用。O2是较为常用的优化级别,它在性能提升和编译成本之间取得了较好的平衡。

•03 (高级优化):

O3选项在O2的基础上进一步增加了优化程度。它会使用更复杂的优化技术,例如伪寄存器网络、普通函数的内联展开以及针对循环的高级优化(如循环展开、循环融合等)。这些优化可以显著提高程序的性能,但也会大幅增加编译时间和内存占用。O3适用于对性能要求极高的场景,但开发者需要权衡编译成本和运行效率之间的关系。

·Os(优化代码大小)

Os选项主要关注代码的体积优化,目标是生成更小的可执行文件。它会通过消除冗余代码、合并函数等方式减少代码大小,但可能会牺牲一定的运行效率。这种优化适用于嵌入式系统或对存储空间有限制的场景。

程序示例的性能(CPE度量值)

```
void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}</pre>
```

计算向量元素的 和或积

方法	Inte	ger	Double FP		
操作 OP	+	*	+	*	
Combine1 未优化	22.68	20.02	19.98	20.18	
Combine1 -O1	10.12	10.12	10.17	11.14	

基础/简单优化

```
      void combine1(vec_ptr v, data_t *dest)
      void combine4(vec_ptr v, data_t *dest)

      {
      long int i;
      long i;

      *dest = IDENT;
      long length = vec_length(v);

      for (i = 0; i < vec_length(v);</td>
      data_t *d = get_vec_start(v);

      data_t val;
      data_t t = IDENT;//局部变量累计结果

      get_vec_element(v, i, &val);
      for (i = 0; i < length; i++)</td>

      *dest = *dest OP val;
      t = t OP d[i];//消除不必要的内存引用

      *dest = t;
      *dest = t;
```

- 把函数vec_length移到循环外
- 避免每个循环的边界检查
- 用临时/局部变量累积结果

```
int get_vec_element
    (*vec v, size_t idx, data_t *val)
{
    if (idx >= v->len)
        return 0;
    *val = v->data[idx];
    return 1;
}
```

基础/简单优化的效果

```
void combine4(vec_ptr v, data_t *dest){
  long i;
  long length = vec_length(v);
  data_t *d = get_vec_start(v);
  data_t t = IDENT;
  for (i = 0; i < length; i++)
       t = t OP d[i];
  *dest = t;
}</pre>
```

方法	Inte	ger	Double FP		
操作OP	+	*	+	*	
Combine1 -O1	10.12	10.12	10.17	11.14	
Combine4	1.27	3.01	3.01	5.01	

■ 消除循环中大量开销的来源sources of overhead

利用指令级并行进行优化

- 需要理解现代处理器的设计
 - 硬件可以并行执行多个指令
- 性能受数据依赖(比如冒险)的限制
- 简单的转换可以带来显著的性能改进
 - 编译器通常无法进行这些转换
 - 浮点运算缺乏结合性和可分配性

指令级并行(Instruction-Level Parallelism, ILP)是一种通过重新排列或调整指令的执行顺序,以充分利用处理器的多条执行流水线,从而提高程序运行效率的技术。通过简单的转换(如指令调度、循环展开等),可以显著减少处理器的空闲时间,提高指令吞吐量,从而带来显著的性能改进。

现代CPU设计-超标量

超标量Superscalar处理器

- 定义: 一个周期执行多条指令。 这些指令是从一个连续的指令流获取的,通常被动态调度的。
- 好处: 不需要编程的努力,超标量处理器可以利用大多数程序所具有的指令级并行性。
- ■大多数现代的CPU都是超标量
- Intel: 从Pentium (1993)起

流水线功能单元

```
long mult_eg(long a, long b, long c) {
    long p1 = a*b;
    long p2 = a*c;
    long p3 = p1 * p2;
    return p3;
}
```


	Time							
	1	2	3	4	5	6	7	
阶段1	a*b	a*c			p1*p2			
阶段 2		a*b	a*c			p1*p2		
阶段 3			a*b	a*c			p1*p2	

- 把计算分解为多个阶段
- 一个阶段又一个阶段地通过各部分计算
- 一旦值传送给 i+1,阶段 i 就能开始新的计算,
- 例如,即使每个乘法需要3个周期,在7个周期里完成3个乘法

Haswell 架构的CPU

- 8 个功能单元—P359
- 可并行执行多条指令
 - 2个加载,带地址计算
 - 1个存储, 带地址计算
 - 4个整数运算

2个浮点乘法运算 容量:能够执行该运算的功能单元数

1 个浮点加法 延迟: 完成运算所需要的总clk (时钟周期)

1 个浮点除法 发射时间: 连续同类型运算间最小clk

■ 某些指令>1周期,但能够被流水 P361

指令	延迟Latency	周期/发射
Load / Store	4	1
Integer 乘法	3	1
Integer/Long 除法	3-30	3-30
Single/Double FP 乘法	5	1
Single/Double FP 加法	3	1
Single/Double FP 除法	3-15	3-15

155 ANY		整数	整数		浮点数		
运算	延迟	发射	容量	延迟	发射	容量	
加法	1	1	4	3	1	1	
乘法	3	1	1	5	1	2	
除法	3 ~ 30	3 ~ 30	1	3 ~ 15	3 ~ 15	1	

图 5-12 参考机的操作的延迟、发射时间和容量特性。延迟表明执行实际运算所需要的时钟周期总数, 而发射时间表明两次运算之间间隔的最小周期数。容量表明同时能发射多少个这样的操作。除法 需要的时间依赖于数据值

```
/* Accumulate result in local variable */
    void combine4(vec_ptr v, data_t *dest)
    {
 3
         long i;
         long length = vec_length(v);
         data_t *data = get_vec_start(v);
6
         data_t acc = IDENT;
7
         for (i = 0; i < length; i++) {
             acc = acc OP data[i];
10
11
         *dest = acc;
12
    }
13
```

Combine4-P355的x86-64 编译

■ 内循环(做整数乘法) acc=acc OP data[i]

```
      .L519:
      # Loop:

      imull (%rax,%rdx,4), %ecx
      # t = t * d[i]

      addq $1, %rdx
      # i++

      cmpq %rdx, %rbp
      # Compare length:

      jg
      .L519

      # If >, goto Loop
```

方法	Inte	eger	Doub	le FP
操作	+	*	+	*
Combine4	1.27	3.01	3.01	5.01
延迟界限	1.00	3.00	3.00	5.00

延迟界限:任何必须按照严格顺序完成合并运算的函数所需要的最小CPE值(等于单独完成每次操作需要的时钟周期)

Combine4 = 串行计算(操作OP = *)

- 计算 (向量长度=8)
 (((((((((1 * d[0]) * d[1]) * d[2]) * d[3])
 * d[4]) * d[5]) * d[6]) * d[7])
- 顺序依赖性Sequential dependence
 - 性能: 由OP的延迟决定

循环展开Loop Unrolling 2x1(步长为2,1路展开)

```
void unroll2a combine(vec ptr v, data t *dest)
  long length = vec_length(v);
  long limit = length-1;
  data_t *d = get_vec_start(v);
  data_t x = IDENT;
  long i;
  /* Combine 2 elements at a time */
  for (i = 0; i < limit; i+=2) {
        x = (x OP d[i]) OP d[i+1];
  /* Finish any remaining elements */
                                            此时, i=length-1
  for (; i < length; i++) {
        x = x OP d[i];
  *dest = x:
```

■ 每个循环 运行 2倍的更有用的工作,即多做了一个OP

循环展开的效果

方法	Inte	ger	Doub	le FP
操作	+	*	+	*
Combine4	1.27	3.01	3.01	5.01
2x1循环展开	1.01	3.01	3.01	5.01
延迟界限	1.00	3.00	3.00	5.00

x = (x OP d[i]) OP d[i+1];

- 对整数 + 有帮助
 - 达到延迟界限
- 其他没有改进, Why?
 - 仍然是顺序依赖

在原始代码中,每次循环迭代都需要进行循环控制(如循环计数、条件判断等),这些操作会消耗额外的时钟周期。通过循环展开(比如本例的2x1循环展开),可以减少循环控制的次数,从而提高效率。

带重组Reassociation的循环展开 (2x1a)

```
void unroll2aa_combine(vec_ptr v, data_t *dest)
  long length = vec_length(v);
  long limit = length-1;
  data_t *d = get_vec_start(v);
  data_t x = IDENT;
  long i;
  /* Combine 2 elements at a time */
  for (i = 0; i < limit; i+=2) {
        x = x OP(d[i] OPd[i+1]);
  /* Finish any remaining elements */
  for (; i < length; i++) {
        x = x OP d[i];
  *dest = x;
                                                  Compare to before
                                                 x = (x OP d[i]) OP d[i+1];
```

- 这能改变运算结果吗?
- 是的,对 FP浮点数. Why? 浮点数加法和乘法不满足结合律

重组的效果/影响

方法	Int	eger	Double FP		
操作OP	+	*	+	*	
Combine4	1.27	3.01	3.01	5.01	
循环展开 2x1	1.01	3.01	3.01	5.01	
循环展开 2x1a	1.01	<mark>1.51</mark>	<mark>1.51</mark>	2.51	
延迟界限	1.00	3.00	3.00	5.00	
吞吐量界限	0.50	1.00	1.00	0.50	

整数加法的延迟通常非常低(1到2个时钟周期),这意味着单个加法操作本身并不会显著影响性能。因此,即使使用多个加法器,性能提升也可能不明显。原因如下:

·<mark>低延迟特性</mark>:整数加法的延迟已经 很低,进一步优化的空间有限。

•数据依赖关系: x 的值仍然依赖于前一次加法的结果,这种依赖关系限制了并行化的程度。

•硬件资源利用率:现代处理器通常已经配备了多个整数加法器(超标量架构),并且通过流水线技术隐藏了部分延迟。进一步增加加法器数量带来的边际效益有限

吞吐量界 限:CPE的 最小界限

4 个整数加法功能单元 2 个加载功能单元

- 接近 2倍的速度提升: Int *, FP +, FP *
 - 原因: 打破了顺序依赖

$$x = x OP (d[i] OP d[i+1]);$$

■ 为何是这样?(下一页)

2个浮点乘法功能单元 2个浮点加载功能单元

重组的计算(注意结合律不一定合理)

$$x = x OP(d[i] OPd[i+1]);$$

- 什么改变了:
 - 下一个循环的操作可以 早一些开始(没有依赖)
- ■整体性能
 - N 个元素, 每个操作D 个周期延迟
 - (N/2+1)*D cycles: CPE = D/2

循环展开: 使用分离的累加器 (2x2)

■ 重组的不同形式

```
void unroll2a_combine(vec_ptr v, data_t *dest)
  long length = vec_length(v);
  long limit = length-1;
  data_t *d = get_vec_start(v);
  data_t x0 = IDENT;
  data_t x1 = IDENT;
  long i;
  /* Combine 2 elements at a time */
  for (i = 0; i < limit; i+=2)
    x0 = x0 \text{ OP d[i]};
    x1 = x1 OP d[i+1];
  /* Finish any remaining elements */
  for (; i < length; i++) {
         x0 = x0 \text{ OP d[i]};
  *dest = x0 OP x1;
```

分离的累加器的效果

方法	Inte	eger	Double FP	
操作	+	*	+	*
Combine4	1.27	3.01	3.01	5.01
Unroll 2x1	1.01	3.01	3.01	5.01
Unroll 2x1a	1.01	1.51	1.51	2.51
Unroll 2x2	<mark>0.81</mark>	1.51	1.51	2.51
延迟界限	1.00	3.00	3.00	5.00
吞吐量界限	0.50	1.00	1.00	0.50

■ 整数加 + 同时使用了两个加载单元

■ 2倍速度提升: Int *、FP + 、FP *

分离的累加器

■ 什么改变了:

■两个独立的操作的"流水"

■整体性能

- N 个元素, 每个操作 D个 周期延迟
- 应为 (N/2+1)*D cycles: CPE = D/2
- CPE与预测匹配!

循环展开 & 累加

- 设想对元素i到i+k-1合并运算
- 能循环展开到任一程度L吗?
 - 能够并行累加K个结果吗?
 - K是L的倍数
- 只有保持能够执行该操作的所有功能单元的流水线都是满的,程序才能达到这个操作的吞吐量界限。K>=C容量*L延迟
- ■限制

K: 表示需要同时进行的独立操作的数量(即并行度)

C: 表示每个功能单元的容量(即每个功能单元一次可以处理的操作数量)

L: 表示操作的延迟(即完成一个操作所需的时钟周期数)

- 效果/收益递减 Diminishing returns
 - 不能超出执行单元的吞吐量限制
- 长度小开销大Large overhead for short lengths
 - 顺序地完成循环

2. 并行累加 K 个结果

假设我们希望并行累加 K 个结果,其中 K 是展开程度 L 的倍数。例如,如果 L=4 且 K=8,那么可以将循环展开为:

```
c

for (i = 0; i < n; i += 8) {
   temp1 = d[i] + d[i+1] + d[i+2] + d[i+3];
   temp2 = d[i+4] + d[i+5] + d[i+6] + d[i+7];
   x = x + temp1 + temp2;
}
```

在这种情况下,如果处理器有足够的加法器(例如两个加法器),那么可以并行执行 temp1 和 temp2 的计算。

3. 公式 $K \geq C \times L$ 的解释

- K: 表示需要同时进行的独立操作的数量(即并行度)。
- C: 表示每个功能单元的容量(即每个功能单元一次可以处理的操作数量)。
- L: 表示操作的延迟 (即完成一个操作所需的时钟周期数)。

为了达到某个操作的最大吞吐量,需要满足 $K \geq C \times L$ 。这意味着,为了隐藏延迟并达到最大吞吐量,需要有足够的并行操作来填满所有功能单元的流水线。

循环展开 & 累加: Double *

■ 案例

- Intel Haswell
- Double FP 乘法
- 延迟界限: 5.00. 吞吐量界限: 0.50

FP*	L							
K	1	2	3	4	6	8	10	12
1	5.01	5.01	5.01	5.01	5.01	5.01	5.01	
2		2.51		2.51		2.51		
3			1.67					
4				1.25		1.26		
6					0.84			0.88
8						0.63		
10							0.51	
12								0.52

Accumulators

循环展开 & 累加: Int +

■ 案例

- Intel Haswell
- Integer 加法
- 延迟界限: 1.00. 吞吐量界限: 0.50

INT+				l	-			
K	1	2	3	4	6	8	10	12
1	1.27	1.01	1.01	1.01	1.01	1.01	1.01	
2		0.81		0.69		0.54		
3			0.74					
4				0.69		1.24		
6					0.56			0.56
8						0.54		
10							0.54	
12								0.56

可得到的性能

- 只受功能单位的吞吐量限制
- 比原始的、未优化的代码提高了42倍

方法	Inte	eger	Double FP	
操作	+ *		+	*
最好Best	0.54	1.01	1.01	0.52
延迟界限	1.00	3.00	3.00	5.00
吞吐量界限	0.50	1.00	1.00	0.50

方法	Inte	ger	Doub	le FP
操作 OP	+	*	+	*
Combine1 未优化	22.68	20.02	19.98	20.18
Combine1 -O1	10.12	10.12	10.17	11.14

用 AVX2 编程

YMM 寄存器: 16 个, 每个32字节

SIMD 操作

■ SIMD 操作: 单精度

■ SIMD 操作: 双精度

vaddpd %ymm0, %ymm1, %ymm1

使用向量指令

方法	Integer		Doub	le FP
操作	+ *		+	*
标量 Best	0.54	1.01	1.01	0.52
向量 Best	0.06	0.24	0.25	0.16
延迟界限	1.00	3.00	3.00	5.00
吞吐量界限	0.50	1.00	1.00	0.50
向量 吞吐量界限	0.06	0.12	0.25	0.12

- 使用AVX 指令
 - 多数据元素的并行操作
 - 看网络旁注 OPT:SIMD on CS:APP web 页面

分支怎么处理?

■挑战

■在执行单元前,指令控制单元必须工作好,以生成足够的操作来使EU保持繁忙

■遇到条件分支时、无法可靠地确定继续取指的位置

现代CPU设计

分支的结果

- 当遇到条件分支时,无法确定继续取指的位置
 - ■选择分支:将控制转移到分支目标
 - ■不选择分支:继续下一个指令
- 直到分支/整数单元的结果确定后 才能解决

分支预测

- ■设想
 - 猜测会走哪个分支
 - 在预测的位置开始执行指令
 - 但不要真修改寄存器或内存数据

穿过循环的分支预测

```
假定
401029:
                (%rdx), %xmm0, %xmm0
         vmulsd
                                        向量(数组)长度= 100
40102d:
         add
                $0x8,%rdx
401031:
                %rax,%rdx
         cmp
                            i = 98
401034:
                401029
         jne
                                         预测选择分支(OK)
401029:
         vmulsd
                (%rdx),%xmm0,%xmm0
40102d:
         add
                $0x8,%rdx
401031:
                %rax,%rdx
         cmp
                            i = 99
401034:
                401029
         jne
                                        预测选择分支(Oops)
                (%rdx)_%xmm0,%xmm0
401029:
         vmulsd
                $0x8,%rdx
40102d:
         add
                                                          执行
                                        读无效位置
401031:
                %rax,%rdx
         cmp
                            i = 100
401034:
         jne
                401029
401029:
         vmulsd
                (%rdx),%xmm0,%xmm0
                                                          取指
40102d:
                $0x8,%rdx
         add
                %rax,%rdx
401031:
         cmp
                            i = 101
401034:
                401029
         jne
```

分支错误预测的失效

```
假定
401029:
         vmulsd (%rdx),%xmm0,%xmm0
                                          向量长度 = 100
40102d:
         add
                 $0x8,%rdx
401031:
                 %rax,%rdx
         cmp
                             i = 98
401034:
                 401029
         jne
                                          预测选择分支(OK)
401029:
         vmulsd (%rdx),%xmm0,%xmm0
40102d:
         add
                 $0x8,%rdx
401031:
                 %rax,%rdx
         cmp
                             i = 99
                 401029
401034:
         jne
                                         预测选择分支(Oops)
101029.
         vmuled (%rdx) %ymm0 %ymm0
40102d:
                 $0x8, %rdx
         add
401031 ·
                 &rax,&rdx
                             i = 100
                 401029
401034:
         ine
                                             无效
401029:
         vmulsd (%rdx) %xmm0 %xmm0
401024.
         add
                 SOv8 grdy
401031 •
                 %rax %rdx
         CMD
                             i = 101
401034 •
                 101029
         ine
```

分支错误预测的恢复

```
401029:
         vmulsd
                 (%rdx),%xmm0,%xmm0
40102d:
                 $0x8,%rdx
         add
                               i = 99
401031:
                 %rax,%rdx
         cmp
401034:
                 401029 -
          jne
                                        绝对不会采纳
401036:
                 401040
          jmp
401040:
         vmovsd %xmm0, (%r12)
```

- 性能开销
 - 现代处理器上的多个时钟周期
 - 可能是一个主要的性能限制器

怎么办?

- Intel的分支预测:太多了......哭@@@@@@
- 条件true--分支正确正确率60%
- 距离为负---分支正确正确率80%
- 尽量少用分支!!!!能替换吗?
 - 1)编程时提高跳转到预测正确分支的概率
 - 2) 用条件传送与条件运算指令
 - 3) Arm等嵌入式CPU(特有的条件执行指令)

高性能分支预测 (回顾)

- ■影响性能的关键
 - 处理预测错误通常需要11-15个周期
- 分支目标缓存
 - 512 个目的地址
 - 4 bits 用于历史信息
 - 自适应算法
 - 可以识别重复的模式, 例如交替跳转或不跳转
- 处理BTB未命中

(BTB: Branch Target Buffer, 分支目标buffer)

- 在第六个周期检测
- 负偏移地址时采用预测,正偏移时不采用预测
 - 循环vs条件

分支预测示例(回顾)

- 分支历史
 - 编码分支指令先前的历史信息

NT代表not true

■ 预测是否采取分支

- ■状态机
 - 每次采取分支后,向右过渡
 - 不采取则向左过渡
 - 在状态 "Yes!"或 "Yes?"下, 预测采取分支

获得高性能

- 搭配好的编译器和优化选项
- 编写高效算法
- 编写编译器友好的代码
- **使用内联函数**:减少函数调用开销。
- **避免复杂的数据依赖**:减少指令之间的数据依赖,提高指令级并行度。
- 使用常量和宏:減少运行时的计算开销。
- 小心妨碍优化的因素: 函数调用 & 存储器引用
- 仔细观察最内层的循环 (循环展开, 减少循环控制开销)
- 为机器优化代码(gcc中的-O2/O3)
 - 利用指令级并行
 - 避免不可预测的分支
 - 使代码能较好地缓存(在后续的课程介绍)

经典例题

```
1. 优化如下程序,给出优化结果并说明理由。
int sum array(int a[M][N][N]) //M、N足够大
       int i, j, k, sum = 0;
       for (i = 0; i < N; i++)
              for (j = 0; j < N; j++)
                     for (k = 0; k < M; k++)
                     sum += a[k][i][j];
       return sum;
```

本章主要以设计题考查,基本上一定会有个程序优化的大题。

参考答案

```
int sum array(int a[M][N][N]) //M、N足够大
        int limit=N-1;
        int i, j, k, sum = 0;
        for (i = 0; i < M; i++){
                int *i ptr = &a[i][0][0];
               for (j = 0; j < N; j++){
                        int *j ptr = i ptr+j*N;
                        for (k = 0; k < limit; k+=2)
                                sum = sum + (*(j ptr+k) + *(j ptr+k+1));
                        if(k < N)
                                sum += *(j ptr+k);
        return sum;
```

解答

- (1)一般优化:通过计算i ptr,j ptr减少第三层循环中的计算量。
- (2)面向编译器的优化: 使用循环展开2x1, 也可使用其他循环展开。
- (3)面向cache的优化:修改i,j,k的遍历顺序,使的cache的命中率尽可能地高。

运行时间比较:性能提升了2.53倍

机器: Intel (R) Core(TM) i7-8550U CPU @1.8GHz 1.99GHz

```
M = 100, N = 70

Runtime of v1 is : 0.001620 s

Runtime of v2 is : 0.000620 s

Process returned 0 (0x0) execution time : 0.136 s

Press any key to continue.

M = 100, N = 60

Runtime of v1 is : 0.001020 s

Runtime of v2 is : 0.000400 s

Process returned 0 (0x0) execution time : 0.090 s

Press any key to continue.
```

```
M=70,N=70
Runtime of v1 is : 0.001000 s
Runtime of v2 is : 0.000420 s
Process returned 0 (0x0) execution time : 0.091 s
Press any key to continue.
```

Hope you enjoyed the CSAPP course!