CLAIM AMENDMENTS

- (Previously Presented) A method for the production of a composition comprising:
 - (a) admixing: 1) a liquid, 2) a zinc-containing compound, 3) a silica containing material, 4) alumina, and 5) a promoter so as to form a mixture thereof:
 - (b) drying said mixture so as to form a dried mixture;
 - (c) calcining said dried mixture so as to form a calcined mixture;
 - (d) reducing said calcined mixture with a reducing agent under conditions to produce a composition having a reduced valence promoter content therein; and
 - (e) recovering said composition.
- 2. (Original) A method in accordance with claim 1 wherein said calcined mixture is reduced in step (d) such that said composition will effect the removal of sulfur from a stream of hydrocarbons when such stream is contacted with same under desulfurization conditions.
- 3. (Original) A method in accordance with claim 1 wherein said promoter comprises a metal selected from the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony, vanadium, gold, platinum, ruthenium, iridium, chromium, palladium, titanium, zirconium, rhodium, rhenium, and combinations of any two or more thereof.
- (Original) A method in accordance with claim 3 wherein said promoter comprises nickel.
- (Original) A method in accordance with claim 1 wherein said silicacontaining material is in the form of crushed expanded perlite.
- (Original) A method in accordance with claim 1 wherein said mixture from step (a) is in the form of one of a wet mix, dough, paste, or slurry.

7. (Original) A method in accordance with claim 6 wherein said mixture

from step (a) is in the form of a slurry.

8. (Original) A method in accordance with claim 1 wherein said mixture

from step (a) is particulated prior to said drying in step (b).

9. (Original) A method in accordance with claim 1 wherein said mixture

from step (a) is particulated in the form of one of granules, extrudates, tablets, spheres, pellets, or

microspheres prior to said drying in step (b).

10. (Original) A method in accordance with claim 1 wherein said mixture

from step (a) is particulated by spray drying in step (b) so as to form said dried mixture.

11. (Original) A method in accordance with claim 1 wherein said mixture is

dried in step (b) at a temperature in the range of from about 65.5°C to about 550°C.

12. (Original) A method in accordance with claim 1 wherein said dried

mixture is calcined in step (c) at a temperature in the range of from about 204.4°C to about

815.5°C.

13. (Original) A method in accordance with claim 1 wherein said calcined

mixture is reduced in step (d) at a temperature in the range of from about 37.8°C to about

815.5°C and at a pressure in the range of from about 15 to about 1500 psia and for a time

sufficient to permit the formation of a reduced valence promoter.

14. (Original) A method in accordance with claim 1 wherein during said

calcining of step (c) at least a portion of said alumina is converted to an aluminate.

15. (Original) A composition produced by the process of claim 1.

 (Previously Presented) A method for the production of a composition comprising:

- (a) admixing: 1) a liquid, 2) a metal-containing compound, 3) a silicacontaining material, 4) alumina, and 5) a first promoter so as to form a mixture thereof:
- (b) drying said mixture so as to form a dried mixture;
- incorporating a second promoter onto or into said dried mixture to form an incorporated mixture:
- (d) drying said incorporated mixture so as to form a dried incorporated mixture:
- (e) calcining said dried incorporated mixture so as to form a calcined incorporated mixture;
- reducing said calcined incorporated mixture with a reducing agent under conditions to produce a composition having a reduced valence promoter content therein; and
- (g) recovering said composition.
- 17. (Original) A method in accordance with claim 16 wherein said first promoter comprises a metal selected from the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony, vanadium, gold, platinum, ruthenium, iridium, chromium, palladium, titanium, zirconium, rhodium, rhenium, and combinations of any two or more thereof.
- 18. (Original) A method in accordance with claim 16 wherein said first promoter comprises nickel
- 19. (Original) A method in accordance with claim 16 wherein said calcined incorporated mixture is reduced in step (f) such that said composition of step (g) will effect the removal of sulfur from a stream of hydrocarbons when such stream is contacted with same under desulfurization conditions.

20. (Original) A method in accordance with claim 16 wherein said metal-containing compound comprises a metal selected from the group consisting of zinc, manganese, silver, copper, cadmium, tin, lanthanum, scandium, cerium, tungsten, molybdenum, iron, niobium, tantalum, gallium, indium, and combinations of any two or more thereof.

 (Original) A method in accordance with claim 20 wherein said metalcontaining compound comprises zinc.

22. (Original) A method in accordance with claim 16 wherein said second promoter is comprised of at least one metal selected from the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony, vanadium, gold, platinum, ruthenium, iridium, chromium, palladium, titanium, zirconium, rhodium, rhenium, and combinations of any two or more thereof.

 (Original) A method in accordance with claim 22 wherein said second promoter comprises nickel.

24. (Original) A method in accordance with claim 16 wherein said silicacontaining material is present in the form of crushed expanded perlite.

 (Original) A method in accordance with claim 16 wherein said mixture from step (a) is in the form of one of a wet mix, dough, paste, or slurry.

 (Original) A method in accordance with claim 25 wherein said mixture from step (a) is in the form of a slurry.

27. (Original) A method in accordance with claim 16 wherein said mixture from step (a) is particulated prior to drying in step (b).

28. (Original) A method in accordance with claim 16 wherein said mixture

from step (a) is particulated in the form of one of granules, extrudates, tablets, spheres, pellets, or

microspheres.

29. (Original) A method in accordance with claim 16 wherein said mixture

from step (a) is particulated by spray drying in step (b) so as to form said dried mixture.

30. (Original) A method in accordance with claim 16 wherein said mixture

and said incorporated mixture are each dried in steps (b) and (e), respectively, at a temperature in

the range of from about 65.5°C to about 550°C.

31. (Original) A method in accordance with claim 16 wherein said dried

incorporated mixture is calcined in step (e) at a temperature in the range of from about 204.4°C

to about 815.5°C.

32. (Original) A method in accordance with claim 16 wherein the reduction of

said calcined incorporated mixture in step (g) is carried out at a temperature in the range of from

about 37.4°C to about 815.5°C and at a pressure in the range of from about 15 to about 1500 psia

and for a time sufficient to permit the formation of a reduced valence promoter.

33. (Original) A method in accordance with claim 16 wherein during said

calcining in step (e) at least a portion of said alumina is converted to an aluminate.

34. (Original) A method in accordance with claim 16 wherein said dried

mixture from step (b) is calcined prior to said incorporating of step (c).

35. (Original) A method in accordance with claim 34, wherein said dried

mixture is calcined at a temperature in the range of from about 204.4°C to about 815.5°C.

37. (Withdrawn) A process for the removal of sulfur from a hydrocarbon stream comprising:

- (a) contacting said hydrocarbon stream with a composition produced by the process of claim 1 in a desulfurization zone under conditions such that there is formed a at least partially desulfurized hydrocarbon stream and a sulfurized composition;
- (b) separating said at least partially desulfurized hydrocarbon stream from said sulfurized composition thereby forming a separated desulfurized hydrocarbon stream and a separated sulfurized composition;
- regenerating at least a portion of said separated sulfurized composition in a regeneration zone so as to remove at least a portion of the sulfur contained therein and/or thereon thereby forming a regenerated composition;
- (d) reducing said regenerated composition in a reduction zone so as to provide a reduced composition having a reduced valence promoter content therein which will effect the removal of sulfur from sulfur-containing hydrocarbons when contacted with same; and thereafter
- returning at least a portion of said reduced composition to said desulfurization zone.
- 38. (Withdrawn) A process in accordance with claim 37 wherein said hydrocarbon stream comprises a fuel selected from the group consisting of cracked-gasoline, diesel fuel, and combinations thereof.
- 39. (Withdrawn) A process in accordance with claim 37 wherein said desulfurization in step (a) is carried out at a temperature in the range of from about 37.8°C to about 537.8°C and a pressure in the range of from about 15 to about 1500 psia for a time sufficient to effect the removal of sulfur from said stream.

40. (Withdrawn) A process in accordance with claim 37 wherein said regeneration in step (c) is carried out at a temperature in the range of from about 37.8°C to about 815.5°C and a pressure in the range of from about 10 to about 1500 psia for a time sufficient to

effect the removal of at least a portion of the sulfur from said separated sulfurized composition.

41. (Withdrawn) A process in accordance with claim 37 wherein air is employed in step (c) as a regeneration agent in said regeneration zone.

42. (Withdrawn) A process in accordance with claim 37 wherein said

regenerated composition from step (c) is subjected to reduction with hydrogen in step (d) in said

reduction zone which is maintained at a temperature in the range of from about 37.8°C to about

815.5°C and at a pressure in the range of from about 15 to about 1500 psia and for a period of time sufficient to effect a reduction of the valence of the promoter content of said regenerated

composition.

43. (Withdrawn) A process in accordance with claim 37 wherein said separated

sulfurized composition from step (b) is stripped prior to introduction into said regeneration zone

in step (c).

44. (Withdrawn) A process in accordance with claim 37 wherein said

regenerated composition from step (c) is stripped prior to introduction to said reduction zone in

step (d).

45. (Withdrawn) The cracked-gasoline product of the process of claim 38.

46. (Withdrawn) The diesel fuel product of the process of claim 38.

47. (Withdrawn) A process for the removal of sulfur from a hydrocarbon stream

comprising:

(a) contacting said hydrocarbon stream with a composition produced by the process of claim 16 in a desulfurization zone under conditions such that there is formed a desulfurized hydrocarbon stream and a sulfurized composition;

 (b) separating said desulfurized hydrocarbon stream from said sulfurized composition thereby forming a separated desulfurized hydrocarbon stream and a separated sulfurized composition;

(c) regenerating at least a portion of said separated sulfurized composition in a regeneration zone so as to remove at least a portion of the sulfur contained therein and/or thereon thereby forming a regenerated composition;

(d) reducing said regenerated composition in an activation zone so as to provide a reduced composition having a reduced valence promoter content therein which will effect the removal of sulfur from a hydrocarbon stream when contacted with same: and thereafter

 (e) returning at least a portion of said reduced composition to said desulfurization zone.

48. (Withdrawn) A process in accordance with claim 47 wherein said hydrocarbon stream comprises a fuel selected from the group consisting of cracked-gasoline, diesel fuel, and combinations thereof.

49. (Withdrawn) A process in accordance with claim 47 wherein said desulfurization in step (a) is carried out at a temperature in the range of from about 37.8°C to about 537.8°C and a pressure in the range of from about 15 to about 1500 psia for a time sufficient to effect the removal of sulfur from said stream.

50. (Withdrawn) A process in accordance with claim 47 wherein said regeneration in step (c) is carried out at a temperature in the range of from about 37.8°C to about

815.5°C and a pressure in the range of from about 10 to about 1500 psia for a time sufficient to effect the removal of at least a portion of the sulfur from said separated sulfurized composition.

51. (Withdrawn) A process in accordance with claim 47 wherein air is employed in step (c) as a regeneration agent in said regeneration zone.

52. (Withdrawn) A process in accordance with claim 47 wherein said

regenerated composition from step (c) is subjected to reduction with hydrogen in step (d) in said

reduction zone which is maintained at a temperature in the range of from about 37.8°C to about

815.5°C and at a pressure in the range of from about 15 to about 1500 psia and for a period of time sufficient to effect a reduction of the valence of the promoter content of said regenerated

composition.

53. (Withdrawn) A process in accordance with claim 47 wherein said separated

sulfurized composition from step (b) is stripped prior to introduction into said regeneration zone

in step (c).

54. (Withdrawn) A process in accordance with claim 47 wherein said

regenerated composition from step (c) is stripped prior to introduction to said reduction zone in

step (d).

55. (Withdrawn) The cracked-gasoline product of the process of claim 48.

56. (Withdrawn) The diesel fuel product of the process of claim 48.

57. (Previously Presented) A method in accordance with claim 1, wherein step

(a) further comprises admixing a second liquid, a second alumina, a second zinc-containing

compound, and a second silica-containing material.

- 58. (Previously Presented) A method in accordance with claim 57 wherein the admixing of step (a) comprises the following steps:
 - (1) admixing said liquid and said alumina so as to form a first mixture;
 - admixing said zinc-containing compound, said silica-containing material, said second alumina, and said first mixture so as to form a second mixture;
 - (3) admixing said second liquid and said second silica-containing material so as to form a third mixture;
 - (4) admixing said promoter and said third mixture so as to form a fourth mixture;
 - (5) admixing said second mixture and said fourth mixture so as to form a fifth mixture; and
 - (6) admixing said second zinc-containing compound and said fifth mixture so as to form a sixth mixture.
- 59. (Previously Presented) A method in accordance with claim 16, wherein step (a) further comprises admixing a second liquid, a second alumina, a second metal-containing compound, and a second silica-containing material.
- 60. (Previously Presented) A method in accordance with claim 59 wherein the admixing of step (a) comprises the following steps:
 - (1) admixing said liquid and said alumina so as to form a first mixture;
- (2) admixing said metal-containing compound, said silica-containing material, said second alumina, and said first mixture so as to form a second mixture;
- (3) admixing said second liquid and said second silica-containing material so as to form a third mixture;
 - (4) admixing said promoter and said third mixture so as to form a fourth mixture;
- (5) admixing said second mixture and said fourth mixture so as to form a fifth mixture; and
- (6) admixing said second metal-containing compound and said fifth mixture so as to form a sixth mixture.

61. (Previously Presented) A method in accordance with claim 1 wherein said promoter is present in the composition in the range of from about 5 to about 40 weight percent based on the total weight of the composition.

- 62. (Previously Presented) A method in accordance with claim 1 wherein said promoter is present in the composition in the range of from 8 to 20 weight percent based on the total weight of the composition.
- 63. (Previously Presented) A method in accordance with claim 16 wherein the combination of said first promoter and said second promoter is present in the composition in the range of from about 5 to about 40 weight percent based on the total weight of the composition.
- 64. (Previously Presented) A method in accordance with claim 16 wherein the combination of said first promoter and said second promoter is present in the composition in the range of from 8 to 20 weight percent based on the total weight of the composition.