

*On the face of it the DCF Formula looks quite daunting but we are going to break it down to make it easier to understand

*DCF Formula

- *The sum of the future cash flow in each period divided by 1 + the discount rate (WACC) raised to the power of the number of the period
- *Plus the Terminal Value similarly discounted to the present by the power of the number of the period

- *Cash Flow = CF
- *r = Interest Rate
- *n = number of periods
- *TV = Terminal Value

$$DCF = \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \dots + \frac{CF_n}{(1+r)^n}$$

- *Cash Flow (CF) is the cash generated by the asset in each period
- *When conducting a DCF valuation on a company, we use the unlevered Free Cash Flow
- *This is the Free Cash Flow assuming the company has no debt, also known as the UFCF and the Free Cash Flow to the Firm, FCFF

- *The discount rate (r) is the rate by which we discount the cash flows to the present day value
- *When valuing a company we use the company's weighted average cost of capital WACC

- *The Period Number (n) is the time period of the cash flows, typically years, sometimes months
- *Note that if using months the discount rate needs to be adjusted to reflect this shorter time period

- *The Terminal Value (TV) is the value of the cash flows beyond the five period (year) projection
- *This is because after the 5 year period of a model, the future values become increasingly difficult to estimate based on the assumptions in the model

- *There are two ways to arrive at the Terminal Value
- *Exit Multiple (EBITDA multiple) where it is assumed the business is sold for this multiple of earnings
- *Perpetual Growth Model which assumes perpetual growth into the future.

Period n 1 2 3 4 5 TV

Cash Flow CF \$200 \$200 \$200 \$200 \$200 \$600 $\frac{1}{(1+r)^n}$ $\frac{1}{(1+r)^2}$ $\frac{1}{(1+r)^2}$ $\frac{1}{(1+r)^3}$ $\frac{1}{(1+r)^4}$ $\frac{1}{(1+r)^5}$

*This means that the present value of a cash flow reduces over time as the discount rate is applied

*When we total the Discounted cash flow we arrive at a DCF Enterprise value of \$1,130m

- *The DCF value is also referred to as the Net Present Value
- *The sum of all negative and positive cash flows discounted to the present

- *In Excel you can use the NPV() function, input the discount rate and specify the range of cells containing the FCF and Terminal to arrive at an Enterprise Value
- *This is then adjusted for Cash and Debt to arrive at an Equity value

- *NPV Formula
 - *NPV(Discount rate, series of cash flows)
- *Time Adjusted NPV Formula
 - *XNPV(Discount rate, series of cash flows, dates of cash flows)

- *The Net Present Value tells you how much to pay in order to make a rate of return equal to the discount rate.
- *If you pay more, your return will be less than the discount rate
- *If you pay less, you will exceed that rate of return

- *In the context of a company valuation, the value is based on the cost of the company's capital WACC.
- *This takes into account the blended cost of capital for each type of capital in the company's capital structure
- *It is also used as a hurdle rate by the company when evaluating investment or acquisition opportunities

