Question 1

MATH 425

The functions are defined in the math425hw2.m file, under the section %% Question 1.

Part A

See math425hw2.m.

Part B

Using myPartialPivot, myRank simply counts the number of non-zero pivots in the upper triangular matrix returned from myPartialPivot.

Note that, even with partial pivoting, the computation still suffer from the precision issue of floating-point arithmetic. For this reason, in the implementation for myRank, I have rounded pivot entries to the tenth decimal place to determine whether they are really zeroes.

For example, consider a matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

For the first pivot, we would row swap R_3 and R_1 and perform the row eliminations as follows.

$$\begin{pmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix} \xrightarrow{-\frac{4}{7}R_1 + R_2 \to R_2} \begin{pmatrix} 7 & 8 & 9 \\ 0 & 3/7 & 6/7 \\ 1 & 2 & 3 \end{pmatrix} \xrightarrow{-\frac{1}{7}R_1 + R_3 \to R_3} \begin{pmatrix} 7 & 8 & 9 \\ 0 & 3/7 & 6/7 \\ 0 & 6/7 & 12/7 \end{pmatrix}$$

Then, for the second pivot, we perform the row operation $-\frac{1}{2}R_2 + R_3 \rightarrow R_3$. This also happens to take out the third pivot. Thus, the rank is 2.

$$\begin{pmatrix} 7 & 8 & 9 \\ 0 & 6/7 & {}^{12}/7 \\ 0 & {}^{3}/7 & 6/7 \end{pmatrix} \xrightarrow{-\frac{1}{2}R_{2} + R_{3} \to R_{3}} \begin{pmatrix} 7 & 8 & 9 \\ 0 & 6/7 & {}^{12}/7 \\ 0 & 0 & 0 \end{pmatrix}$$

The above should be our upper triangular matrix, U. However, due floating point error, the result is not quiet zero. In MATLAB, when we display U using format rational, it displays:

7	8	9
0	6/7	12/7
0	*	*

where the asterisks denote that the denominator is too large. By using format long we can see that the result is pretty much zero:

7.000000000000000	8.000000000000000	9.000000000000000
0	0.857142857142857	1.714285714285714
0	0.000000000000000	0.000000000000000

Using format longG we can see that the stored values aren't quiet zero. Hence, I have rounded the digits to ten decimal places.

7	8	9
0	0.857142857142857	1.71428571428571
0	5.55111512312578e-17	1.11022302462516e-16

Part C

Yes, the function virtually always returns 3. Since the question did not specify the bounds for the values from which a matrix could be generated, I simply used rand(5, 3) and rand(3, 5) to generate a 5×3 and 3×5 matrix, respectively. As such, it is virtually impossible for two or more rows to be identical or be a multiple of each other.

Furthermore, the floating-point precision issue discussed in part (b) would almost certainly ensure that the result appears to be full rank — especially when the values in the matrix are floating-point numbers to begin with — as values that should be zero may instead be interpreted as non-zero.