ÖDEV 4

ELEKTROMAGNETİK DALGALAR

CRN: 12094 - **Son Teslim Tarihi ve Saati:** 05.12.2022 - 23:30

- **1.** Bir dik polarize düzlem dalga $\epsilon_{r_1}=25$ olan bir bölgeden $\epsilon_{r_1}=4$ olan bir bölgeye doğru dik olarak ilerlemektedir. Dalganın elektrik alan vektörünün genliği 10 V/m ve ortamlar kayıpsız ise, aşağıdaki soruları cevaplayınız. ($\mu_1=\mu_2=\mu_0$)
 - a) Yansıma ve iletim katsayılarını belirleyiniz. (5p)
 - b) ϵ_{r_1} olan ortamdaki duran dalga oranını belirleyiniz. (5p)
 - c) İletilen dalganın ortalama güç yoğunluğu vektörünü bulunuz. (5p)
- **2.** Havada ilerleyen 300 MHz frekanslı, 100 V/m genlikli bir düzlem dalga z > 0 ile ifade edilen $\epsilon_r = 2$ ve $\sigma = 10^{-3}$ olan bir ortama doğru dik olarak gelmektedir. (Ortamlar manyetik olmayan yapıdadır.) Buna göre, dalganın güç yoğunluğunun ortama girmeden önceki güç yoğunluğunun %1'ine düştüğü z değeri (mesafesi) nedir? (20p)

3.

Şekilde kırmızı ok ile gösterilen ışın demeti, katmanlı yapıya şekildeki gibi giriş yaptığına göre; (n kırıcılık indisini ifade etmektedir.)

- a) θ_2 , θ_3 , ve θ_4 açılarını belirleyiniz. (10p)
- b) $x_2 = 2$ cm, $x_3 = 3$ cm, $x_4 = 4$ cm için h değerini hesaplarınız. (5p)

4. Aşağıdaki şekilde verilen yansıma problemini düşünelim.

Bir düzlem dalga, dielektrik sabiti $\epsilon_{r_1}=4$ olan bir ortam içinde x>0, $\epsilon_{r_2}=9$ ortamına doğru ilerlemektedir. Ortamlar kayıpsız ve manyetik olmayan yapıdadır. Elektrik alan bileşeni aşağıdaki gibi verildiğine göre,

$$E_i(x, y, t) = 3\cos(\omega t - x - \sqrt{3}y)e_z$$
 V/m

Aşağıdaki soruları cevaplayınız.

- a) $k_1, k_2, \theta_i, \theta_t = ? (10p)$
- b) İki bölgedeki tüm elektrik ve manyetik alan bileşenlerinin (gelen, yansıyan, iletilen) ifadelerini yazınız. (15p)

5. Havada ilerlemekte olan bir düzlem dalga, n=1.7 olan bir ortama doğru ilerlemektedir. Ortam kayıpsız ve manyetik olmayan yapıdadır. Gelen dalganın elektrik alan bileşeni aşağıdaki gibi verilmiştir:

$$\mathbf{E}_{i}(x,z,t) = 2\cos(\omega t - 4x - 2z)\mathbf{e}_{x} - 4\cos(\omega t - 4x - 2z)\mathbf{e}_{z}$$

- a) Tüm bölgelerdeki tüm alan bileşenlerini belirleyiniz. (20p)
- b) Yansıyan ve iletilen dalgalara ilişkin güç yüzdelerini belirleyiniz. (5p)

GÜNCELLEME:

DURAN DALGA ORANI (SWR) =
$$\frac{1 + |\Gamma|}{1 - |\Gamma|}$$

n, kırıcılık indisini ifade etmektedir:

$$n = \frac{c}{v} = \frac{c}{c/\sqrt{\epsilon_r}} = \sqrt{\epsilon_r}$$

$$\frac{sin\theta_t}{sin\theta_i} = \frac{k_1}{k_2} = \frac{\beta_1}{\beta_2} = \frac{\sqrt{\epsilon_{r_1}}}{\sqrt{\epsilon_{r_2}}} = \frac{n_1}{n_2}$$

NOTLAR:

Sorulardan tam puan alınabilmesi için çözümlerin ve cevapların doğru olmasının yeterli olmadığını unutmayınız. Ödev puanlamasına etki eden ek faktörler aşağıdaki gibi verilebilir:

- Ödev çözümlerinin okunaklı ve düzenli bir şekilde yazılması.
- Birbirini takip eden hesaplamalar arasındaki nedensel ilişkiyi gösteren sözel açıklamaların eklenmesi.
- Çözümlerin diğer öğrencilerin çözümleri ile fazlaca benzeşmemesi.