Clase 3. Autómatas Finitos.

Minimización (Repaso).

Autómatas Finitos No Deterministas (AFND).

Autómatas Finitos No Deterministas Lambda (AFND-λ).

Equivalencias.

Construcción del conjunto cociente.

Entrada: Q

Salida: Conjunto cociente de Q por la relación de indistinguibilidad. $\frac{Q}{E}$

1.
$$\frac{Q}{E_0} = \{F, Q - F\}$$

2. Generar $\frac{Q}{E_{i+1}}$ a partir de $\frac{Q}{E_i}$ de la siguiente manera:

Los estados p y q pertenecen a la misma clase en $\frac{Q}{E_{i+1}} \Leftrightarrow$

- p y q pertenecen a la misma clase en $\frac{Q}{E_i}$ y
- $\forall a \in \Sigma, \delta(p, a)y \ \delta(q, a)$ pertenecen a la misma clase en $\frac{Q}{E_i}$
- 3. Si $\frac{Q}{E_{i+1}} = \frac{Q}{E_i}$, entonces $\frac{Q}{E_{i+1}} = \frac{Q}{E}$. Sino, volver al paso 2.

Minimización de AFD.

Entrada: $A = \langle Q, \Sigma, \delta, q_0, F \rangle$

Salida: $A' = \langle Q', \Sigma, \delta', q_0', F' \rangle$ equivalente a A con mínima cantidad de estados.

- 1. Eliminar estados inaccesibles desde q_0
- 2. Construir el conjunto cociente $\frac{Q}{E}$.
- 3. $A' = \langle Q', \Sigma, \delta', q_0', F' \rangle$ donde:
 - $Q' = \frac{Q}{E}$
 - q_0' es el elemento de $\frac{Q}{E}$ tal que $q_0 \in q_0'$ (la clase donde está q_0)
 - $F' = \{ s \in \frac{Q}{F} | S \cap F \neq \emptyset \}$
 - $\delta'(s_i, a) = s_j \Leftrightarrow \exists p \in s_i \land \exists q \in s_j | \delta(p, a) = q$

Teorema

El autómata A' obtenido con el algoritmo anterior es equivalente al autómata A y es mínimo (el número de estados de A' es menor o igual que el de cualquier otro AFD equivalente a A).

Demostración

- 1. Demostrar equivalencia: L(A)=L(A'). Para ello, primero ver que $\hat{\delta}'(q'_0,\omega) = s_i \Leftrightarrow \exists p \in s_i | \hat{\delta}(q_0,\omega) = p$.
- 2. Suponer que existe un autómata $A'' = \langle Q'', \Sigma, \delta'', q_0'', F'' \rangle$ equivalente a A' con menos estados.

Sean α y β tales que $\hat{\delta}(q_0',\alpha)=p$ y $\hat{\delta}(q_0',\beta)=q$ en A', pero $\hat{\delta}(q_0'',\alpha)=\hat{\delta}(q_0'',\beta)=r$ en A''.

Como A' fue obtenido por el algoritmo, se sabe que p y q son distinguible tanto A' aceptaría $\alpha\omega$ pero no $\beta\omega$.

Sin embargo, en A", $\hat{\delta}(q_0", \alpha\omega) = \hat{\delta}(q_0", \beta\omega)$, aceptando ambas o rechazano ambas.

Autómatas Finitos No Determinísticos (AFND)

- Cinco componentes: $A = \langle Q, \Sigma, q_0, F, \delta \rangle$
 - δ = función de transición.
 - Se define de $Qx \Sigma \rightarrow P(Q)$

Autómatas Finitos No Determinísticos

• Función de transición: 8

 δ se define de Qx $\Sigma \rightarrow P(Q)$

• Función de transición extendida: $\hat{\delta}$

Describe lo que ocurre cuando se parte de cualquier estado y se sigue una secuencia de entradas.

BASE:
$$\widehat{\delta}(q, \lambda) = \{q\}$$

PASO INDUCTIVO: Si
$$\omega = \omega' a$$
, $\delta(q, \omega') = \{p_1, p_2, ..., p_k\}, y \cup_{i=1}^k \delta(p_i, a) = \{r_1, r_2, ..., r_m\}$
$$\Rightarrow \delta(q, \omega) = \delta(q, \omega' a) = \{r_1, r_2, ..., r_m\}$$

Lenguaje aceptado por un AFND.

Mediante secuencia de configuraciones:

$$L = \{ \omega \in \Sigma * / [q_0, \omega] \mapsto * [p, \lambda], p \in F \}$$

Mediante función de transición extendida:

$$L = \left\{ \omega \in \Sigma * | \hat{\delta}(q_0, \omega) \cap F \neq \emptyset \right\}$$

Equivalencia entre AFD y AFND.

Todo lenguaje reconocido por un AFND puede ser reconocido por un AFD y viceversa.

CONSTRUCCIÓN DE SUBCONJUNTOS.

Sea N = < Q_N, Σ , δ_N , q_0 , F_N > un AFND y sea D = < Q_D, Σ , δ_D , $\{q_0\}$, F_D > donde:

- $Q_D = P(Q_N)$
- $F_D = \{S \in Q_D | S \cap F_N \neq \emptyset\}$
- $\forall a \in \Sigma, \forall S \subseteq Q_N : \delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)$

Se puede hacer una "construcción lazy" para dejar en Q_D sólo los estados accesibles.

- $1. \ \{q_0\} \in Q_D$
- 2. $\forall a \in \Sigma, \forall S \in Q_D, si \ \delta_D(S, a) \notin Q_D,$ $agregar \ \delta_D(S, a) \ a \ Q_D$

Equivalencia entre AFD y AFND.

1ª parte:

Si D = < Q_D, Σ , δ_D , $\{q_0\}$, F_D > se construyó a partir de N = < Q_N, Σ , δ_N , q_0 , F_N > con el algoritmo anterior, L(D)=L(N).

DEMOSTRACIÓN.

Por inducción en la longitud de ω , se demuestra primero que:

$$\forall \omega \in \Sigma^* : \widehat{\delta_D}(\{q_0\}, \omega) = \widehat{\delta}_N(q_0, \omega)$$

Luego se demuestra que:

$$\forall \omega \in \Sigma^* : \omega \in L(N) \Leftrightarrow \omega \in L(D)$$

Equivalencia entre AFD y AFND.

2ª parte:

Existe N = < Q_N, Σ , δ_N , $\{q_0\}$, F_N > construido a partir de D = < Q_D, Σ , δ_D , q_0 , F_D > Tal que: L(D)=L(N).

Construcción:

- $Q_{N} = \{\{q\} | q \in Q_{D}\}$
- $F_N = \{ \{q\} | q \in F_D \}$
- $\forall \{q\} \in Q_N \forall a \in \Sigma : \delta_N(\{q\}, a) = \{p\} \Leftrightarrow \delta_D(q, a) = p$

Por inducción en la longitud de ω , se demuestra primero que:

$$\forall \omega \in \Sigma^* : \widehat{\delta_N}(\{q_0\}, \omega) = \widehat{\delta}_D(q_0, \omega)$$

Luego se demuestra que:

$$\forall \omega \in \Sigma^* : \omega \in L(N) \Leftrightarrow \omega \in L(D)$$

Autómatas Finitos No Determinísticos con transiciones lambda. (AFND- λ)

- Cinco componentes: $A = \langle Q, \Sigma, q_0, F, \delta \rangle$
 - δ = función de transición.
 - Se define de $Qx \Sigma \cup {\lambda} \rightarrow P(Q)$

$$M = (\{p,q,r,s\},\{a,b\},\mathcal{S},p,\{p,s\})$$

+1+				
	δ	а	ь	λ
	* p	{g}		
	q	$\{q,r,s\}$	$\{p,r\}$	{z}
	7*		{p,s}	$\{r,s\}$
	* 5			{r}

Autómatas Finitos No Determinísticos Lambda

• Función de transición extendida: $\hat{\delta}$

Se redefine teniendo en cuenta los conjuntos de estados a los que se puede llegar con las transiciones λ

Construcción de clausuras λ para cada estado.

BASE: $claus_{\lambda}(q) = \{q\}$

PASO INDUCTIVO: Si $p \in claus_{\lambda}(q) \land r \in \delta(p, \lambda) \Rightarrow r \in claus_{\lambda}(q)$

DEFINICIÓN DE LA FUNCIÓN DE TRANSICIÓN EXTENDIDA.

BASE: $\hat{\delta}(q, \lambda) = claus_{\lambda} \{q\}$

PASO INDUCTIVO: Si $\omega = \omega' a$, $\delta(q, \omega') = \{p_1, p_2, ..., p_k\}, y \cup_{i=1}^k \delta(p_i, a) = \{r_1, r_2, ..., r_m\}$

$$\Rightarrow \widehat{\delta}(q,\omega) = \widehat{\delta}(q,\omega'a) = \bigcup_{i=1}^{m} claus_{\lambda}(r_i)$$

Lenguaje aceptado por un AFND- λ .

Mediante secuencia de configuraciones:

$$L = \{ \omega \in \Sigma * / [q_0, \omega] \mapsto * [p, \lambda], p \in F \}$$

Mediante función de transición extendida:

$$L = \{ \omega \in \Sigma * | \hat{\delta}(q_0, \omega) \cap F \neq \emptyset \}$$

Equivalencia entre AFD y AFND- λ .

Todo lenguaje reconocido por un AFND- λ puede ser reconocido por un AFD y viceversa.

Eliminación de transiciones λ .

Sea $E = \langle Q_E, \Sigma, \delta_E, q_0, F_E \rangle$ un AFND- λ .

El AFD equivalente $D = \langle Q_D, \Sigma, \delta_D, claus_{\lambda} \{q_0\}, F_D \rangle$ se define así:

- Q_D es el conjunto de subconjuntos de Q_E , $S \subseteq Q_E$ tales que $S = claus_{\lambda}(S)$
- $F_D = \{S \in Q_D | S \cap F_E \neq \emptyset\}$
- Se calcula $\delta_D(S,a)$ para todo $a \in \Sigma$ y para todos los subconjuntos S pertenecientes a Q_D así:
 - $\forall S = \{p_1, p_2, ..., p_k\}, \ \bigcup_{i=1}^k \delta_E(p_i, a) = \{r_1, r_2, ..., r_m\}$
 - Luego, $\delta_D(S, a) = \bigcup_{j=1}^m claus_{\lambda}(r_j)$

Se puede hacer una "construcción lazy" para dejar en Q_D sólo los estados accesibles.

Equivalencia entre AFD y AFND- λ .

L es aceptado por algún AFND- λ si y sólo si L es aceptado por algún AFD.

DEMOSTRACIÓN.

1^a parte:

Si L es aceptado por algún AFND- λ . $E=< Q_E, \Sigma, \delta_E, \{q_D\}$, $F_E>$

entonces es aceptado por un AFD: $D=<\mathrm{Q}_\mathrm{D},\Sigma,q_D,\delta_D,F_D>$, construido por eliminación de transiciones lambda.

Se demuestra primero por inducción que $\hat{\delta}_D(claus_{\lambda}(q_0), \omega) = \hat{\delta}_E(q_0, \omega)$.

Luego se demuestra que $\forall \omega : \omega \in L(D) \Leftrightarrow \omega \in L(E)$

Equivalencia entre AFD y AFND- λ

2ª parte.

Si L es aceptado por algún AFD $D=<\mathrm{Q}_{\mathrm{D}},\Sigma,q_{D},\delta_{D},F_{D}>,$ entonces L es aceptado por un AFND- λ . $E=<Q_{E},\Sigma,\delta_{E},\{q_{D}\}$, $F_{E}>$ construido por:

- $Q_E = \{\{q\} | q \in Q_D\} \cup \emptyset$
- $\forall q \in Q_D : \delta_E(q, \lambda) = \emptyset \ \ \forall \ q \in Q_D, \forall a \in \Sigma : \delta_D(q, a) = p \Rightarrow \delta_E(\{q\}, a) = \{p\}$
- $F_E = \{ \{q\} | q \in F_D \}$