M378K Introduction to Mathematical Statistics

Problem Set #7

Moment generating functions.

Definition 7.1. The k^{th} moment of a random variable Y taken about the origin is defined as $\mathbb{E}[Y^k]$ provided that the expectation exists. We write

$$\mu_k = \mathbb{E}[Y^k]$$

when there is no ambiguity about the random variable in question.

Remark 7.2. μ_k is also referred to as the k^{th} raw moment.

Remark 7.3. In particular, $\mu_1 = \mu$ happens to be the **mean** of the random variable Y.

Definition 7.4. The k^{th} central moment of a random variable Y is defined as $\mathbb{E}[(Y - \mu)^k]$ provided that the expectation exists. We write

$$\mu_k^c = \mathbb{E}[(Y - \mu)^k]$$

when there is no ambiguity about the random variable in question.

Remark 7.5. μ_k is also referred to as the k^{th} moment of a random variable Y taken about its mean.

Definition 7.6. The moment-generating function (mgf) m_Y for a random variable Y is defined as

$$m_Y(t) = \mathbb{E}[e^{tY}]$$

for all t for which the above expectation exists. In fact, we say that the moment-generating function **exists** if there exists a positive number b such that $m_Y(t)$ is finite for all t such that $|t| \le b$.

Problem 7.1. How much is $m_Y(0)$?

Remark 7.7. On the choice of terminology ...

Step 1.

$$\frac{d}{dt}m_Y(t) = ?$$

$$m'_Y(0) = ?$$

$$\frac{d^2}{dt^2}m_Y(t) = ?$$

$$m_Y''(0) = ?$$

 $\underline{Step~5.}~\textit{What do you suspect the}~\textbf{generalization}~\textit{of the above would be?}$

Theorem 7.8. If m_Y exists, then for $k \in \mathbb{N}$, we have

$$m_Y^{(k)}(0) = \mu_k.$$

Example 7.9. Let $Y \sim b(n = 1, p)$, i.e., let Y model a Bernoulli trial with the probability of success denoted by p. Find m_Y .

Proposition 7.10. Let Y_1 and Y_2 be independent random variables with m.g.f.s denoted by m_{Y_1} and m_{Y_2} . Define $Y=Y_1+Y_2$. Then, for every t for which both m_{Y_1} and m_{Y_2} are well defined, we have

$$m_Y(t) =$$

Proof. By definition:

$$m_Y(t) =$$

Using $Y = Y_1 + Y_2$, we can substitute $Y_1 + Y_2$ for Y in the expression above. So,

$$m_Y(t) =$$

One of the properties of the exponential function is that $e^{A+B}=e^A\times e^B$. Thus, the above becomes:

$$m_Y(t) =$$

Recall that Y_1 and Y_2 are assumed to be independent random variables. With this in mind, we get:

$$m_Y(t) =$$

Finally, using the definition of a m.g.f., we have

$$m_Y(t) =$$

Example 7.11. Let $Y \sim b(n, p)$. What is the moment generating function of Y?

Example 7.12. Let $N \sim Poisson(\lambda)$. What is the moment generating function m_N of N?

Example 7.13. Let $Z \sim N(0,1)$. What is the moment generating function m_Z of Z?

Example 7.14. Let the random variable Y have the $mgf m_Y$. Define X = aY + b for some constants a and b. Express the $mgf m_X$ of X in terms of m_Y , a and b.

Example 7.15. Let $X \sim N(\mu, \sigma^2)$. What is the moment generating function m_X of X?

Problem 7.2. A random variable Y is said to be lognormal if there exists a normally distributed random variable $X \sim N(\mu, \sigma^2)$ such that $Y \stackrel{(d)}{=} e^X$. Express the mean and the variance of the lognormal r.v. Y in terms of the parameters μ and σ .

Proposition 7.16. 1. If m_Y exists for a certain probability distribution, then it is unique.

2. If m_{Y_1} and m_{Y_2} are equal on an interval, then $Y_1 \overset{(d)}{=} Y_2$.

Corollary 7.17. Let X_1 and X_2 be independent and normally distributed. Define $X = X_1 + X_2$. Then, the distribution of X is ...

Proof. $X_i \sim N(\mu = \check{\mu}_i, \sigma_i^2)$ for i = 1, 2

Corollary 7.18. Let N_1 and N_2 be independent and Poisson distributed. Define $N=N_1+N_2$. Then, the distribution of N is ...

Proof. $N_i \sim Poisson(\lambda_i)$ for i = 1, 2