MATH 350: Graph Theory and Combinatorics. Fall 2016. Assignment #4: Ramsey theory, Matchings, Colorings

Due Wednesday, November 16th, 2016, 14:30

- 1. Recall that $R(k,\ell)$ is the minimum integer n such that every red/blue coloring of $E(K_n)$ contains a red K_k or blue K_ℓ .
- a) Construct a red/blue coloring of $E(K_8)$ such that the coloring contains neither red K_3 nor blue K_4 .
- **b)** Prove that R(3,4) = 9.
- **c)** Show that $R(4,4) \le 18$.

[Note that there exists a coloring of $E(K_{17})$ coming from number theory that has no monochromatic K_4 .]

2. Recall that $R_k(3) := R_k(\overbrace{3,3,\ldots,3}^k)$ is the minimum integer n such that any k-coloring of $E(K_n)$ contains a monchromatic K_3 .

Prove that $R_k(3) \leq 3k!$ for any integer $k \geq 1$.

- **3.** Let G be a 3-regular simple graph with no cut-edge, and let $e \in E(G)$ be an edge of G.
- a) Show that G contains a perfect matching M_1 such that $e \in M_1$.
- **b)** Show that G contains a perfect matching M_2 such that $e \notin M_2$.
- **4.** Recall that for a simple graph G, the chromatic number $\chi(G)$ is the minimum number of colors needed to color the vertices of G so that for every edge e the endpoints of e receive two different colors.

Let G be a simple graph such that any two odd cycles C_1 and C_2 in G it holds that $V(C_1) \cap V(C_2) \neq \emptyset$. Prove that $\chi(G) \leq 5$.

5. A simple graph G = (V, E) is called *triangle-free* if no 3-vertex subgraph of G is isomorphic to K_3 .

Let G be a triangle-free simple graph with n vertices. Show that G contains an independent set of size $|\sqrt{n}|$. Deduce that $R(3, \ell) \leq \ell^2$.