Introduction to the Method of Moments

Mohamed Kamal AbdElrahman

November 10, 2019

This is an introduction the basic aspects of the Method of Moments (MOM).

Review

Given g(x), find f(x) in the interval $\Omega = [0,1]$ satisfying

$$-\frac{d^2f}{dx^2} = g(x), \quad \Omega$$

$$f = 0 \quad \partial\Omega$$
(1)

This is a boundary value problem of the form Lf = g for which

$$L = -\frac{d^2f}{dx^2} \tag{2}$$

The operator *L* is hermitian and positive-definite

$$\langle Lf \mid g \rangle = \langle f \mid Lg \rangle \tag{3}$$

$$\langle Lf \mid f \rangle \ge 0 \tag{4}$$

The inverse of operator L can be obtained with the help of standard Green's function techniques

$$f(x) = L^{-1}(g) = \int_0^1 G(x, x')g(x')dx'$$
 (5)

where G is the Green's function

$$G(x,x) = \begin{cases} x(1-x') & x < x' \\ (1-x)x' & x > x' \end{cases}$$
 (6)

The operator L^{-1} is also Hermitian and positive-definite. Note that the boundary conditions must be specified for the domain of L, however, they are not required for L^{-1} (Green functions already accounts for them).