DEFINITION: For a real number x, the **absolute value** of x is $|x| := \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$.

THEOREM 8.1 (TRIANGLE INEQUALITY): Let x, y, z be real numbers. Then

$$|x-z| \le |x-y| + |y-z|.$$

We use often use the Triangle Inequality to show precise versions of "if x is close to y and y is close to z, then x is close to z."

THEOREM 8.2 (REVERSE TRIANGLE INEQUALITY): Let x, y, z be real numbers. Then

$$|x - z| \ge ||x - y| - |y - z||.$$

We use often use the Reverse triangle Inequality to show precise versions of "if x is far from y and y is close to z, then x is far from z."

- (1) If x and y are real numbers, what is the geometric meaning of |x y|?
- (2) We will often look at conditions like $|x-L| < \varepsilon$, where L and ε are real numbers and x is a variable. Describe $\{x \in \mathbb{R} : |x-L| < \varepsilon\}$ in interval notation. Now draw a picture of this on the real number line, showing the role of L and ε .
- (3) Describe $\{x \in \mathbb{R} : |3x+7| < 4\}$ explicitly in interval notation.
- (4) Suppose that $|x-2| < \frac{1}{5}$, $|y-2| < \frac{2}{5}$.
 - (a) Show that $x > \frac{8}{5}$.
 - (b) Show that $|x-y| < \frac{3}{5}$.
 - (c) Use the reverse triangle inequality to show that $|y-3| > \frac{3}{5}$.
- (5) True or false & justify¹: There is a rational number x such that $|x^2 2| = 0$.
- (6) True or false & justify¹: There is a rational number x such that $|x^2 2| < \frac{1}{1000000}$

Here is another important fact in the relationship between \mathbb{R} and \mathbb{Z} :

THEOREM 8.3: For every real number r, there is a unique integer $n \in \mathbb{Z}$ such that $n \le r < n+1$.

- (7) Proof of Theorem 8.3:
 - (a) First, assume that $r \ge 0$. Complete the following sentence: "The number n+1 should be the smallest natural number that _____."
 - (b) Take your sentence and turn it into a recipe for n to prove that such an integer n exists in this case.
 - (c) Now, assume that r < 0. Explain why there is some $j \in \mathbb{N}$ such that j + r > 0. Deduce that an integer n as in the statement exists in this case too.
 - (d) Finally, prove that n is unique. You can use without proof that there are no integers in between 0 and 1.

¹You can use anything we've proven in class, but don't use things we haven't, like decimal expansions.