第5章 HブCPI

5-1 サブ CPU

5-1-1 サブ CPU の構成

X1 シリーズでは,メイン CPU の負担を軽減するために,2つのワンチップ CPU を搭載しています。これらの CPU は、キーボード、カセットなどのコントロールを行い、メイン CPU はサブ CPU に命令を送るだけで、各種の処理が行われるようになっています。

サブ CPU とメイン CPU 周りの構成を、図 5-1 に示します。但し、この図は X1turbo model -20 の場合で、機種によって構成は若干の違いがあります。

ここで使われている CPU8049 (80C49) は、8 ビットのワンチップ CPU で、2K バイトの ROM、ワーク用の RAM、I/O ポートなどが内蔵されています。ROM には、サブ CPU のコントロールプログラムが、IC の製造段階で書き込まれています。

ここでは、2つの8049を各々、キーボード CPU、サブ CPU と呼ぶことにします(X1 では、キーボード CPU は8048で、一部の機能に制限があります)。25-1 からもわかるように、これらの CPU は、以下のようなことを行っています。

(1) キーボード CPU

・キーボードをスキャンし、押されたキーのデータをサブ CPU に送信

(2) サブ CPU

- ・キーボード CPU からのデータ受信
- 専用カセットデッキのコントロール
- ・タイマ IC の時刻データの読み書き
- ・メイン CPU とのデータの受け渡し

サブ CPU とキーボード CPU の電源は、メイン CPU 系統とは分離されています。フロントのスイッチが off になっていても、後面パネルのスイッチが入っていれば、サブ CPU 系には電源が供給され、動作を続けます。このためフロントスイッチが off であっても、キーボードを用いた各種の TV コントロールと TV タイマー機能は動作するのです。

サブ CPU は、BASIC を用いている限り、意識する必要はありません。しかし、マシン語を使って、I/O を制御しようとするとどうしてもサブ CPU とデータのやり取りを行わなければなりません。以降、サブ CPU の使い方を説明していきます。

5-1-2 直接アクセスによるコマンドの送受信

サブ CPU には、メイン CPU と独立して動作しています。サブ CPU に何かのコントロールを 実行させたり、結果を受け取ったりするには、決められた手続きに従ってコマンドを送らなけれ ばなりません。サブとメインには、図 5-1 に示すように、2 つの8255で接続されています。サブ CPU との通信に必要な I/O ポートは、以下に示す通りです。

8255②ポートB(入力)

I∕Oアドレス=1A01H

ビット6:IBF(Input Buffer Full)

Lの時8049にデータを送っても良い

ピット5: OBF(Output Buffer Full)

Lなら8049からのデータがある

・8255 ①ポート A(サブ CPU の管理下にある)

I/Oアドレス=1900H

サブ CPU とのデータの入出力

サブ CPU と、直接データのやり取りをする場合は、データのぶつかり合いが起こらないように、IBF と OBF の2本の制御線を用いて通信します。

- (1) サブ CPU にコマンドやデータを渡す場合
 - 1) IBF を読み込む
 - 2) IBF が1なら、0になるまで待つ
 - 3) データを1バイト1900H に書き込む
 - 4) まだ送るデータがあるなら1)へ
- (2) サブ CPU からデータを読み込む場合
 - 1) OBF を読み込む
 - 2) OBF が1なら、0 になるまで待つ
 - 3) データを1バイト1900Hから読み込む
 - 4)まだ読み込むべきデータがあるなら1)へ

サンプルプログラムをリスト5-1と5-2に示します.

リスト5-1 Z-80から80C49にデータを送る場合

```
GET49:
          LD
                     BC, 01A01H
                    A, (C)
040H
GET49 1: IN
                                     80C49がデータを受け取れるまで待つ
          AND
          J R
                     NZ, GET49_1
                     BC, 01900H
          LD
                     A, OE3H
          LD
                                     ゲームキーデータ送信要求コマンド
                     (C), A
          OUT
          RET
          END
                                   リスト5-2 Z-80が80C49からデータを受け取る場合
RCV49:
          LD
                   BC, 1A01H
                   A, (C)
20H
R49_1:
          I N
                                  80C49からデータが送られるまで待つ
          AND
          J R
                   NZ, R49_1
                   BC, 01900H
A, (C)
          LD
                                  データを受け取る
          I N
          RET
          END
```

サブ CPU との通信は、このように送る手順が決っており、バイト数はコマンドの種類によって変ってきます。従って、サブ CPU の実行状態と、メイン CPU の要求が何かのはずみで食い違うと、サブーメイン間の通信が不可能となり、システムがハング・アップする可能性があります。プログラムの起動直後など、サブ CPU の状態が不明の時は、サブ CPU の初期化を行う必要があります。このためのサブルーチンを、リスト5-3に示します。

リスト5-3 80C49を初期化する

				· · · · · · · · · · · · · · · · · · ·
S49RES	EQU	13E5H		
INT49:	LD	BC, 1A01H	7	
	I N	A, (C)		
	AND	10H		
	JR	NZ, C49_1		
	LD	A, 1EH	BIOS ROMがアクティブかどうか調べ、	その状態をセーブする
	JR	C49_2		
C49_1:	LD	A, 1EH		
C49_2:	PUSH	AF .	_	
	- 4-			

```
LD A, 1 D H (O O H), A ROMをアクティブに S 4 9 R E S P O P (O O H), A RET; END
```

5-2 キー入力

5-2-1 キー入力の概要

図5-2 キー・データの流れ

どのキーが押されたかというキーデータは、上の図に示すように伝達されます。キーボード用 CPU は、すべてのキーを順次スキャンしており、新しく押されたキーや離されたキーを判定します。そして、キーの情報を直列のビット列にして、サブ CPU に送ります。送る信号には、一般のキー入力に用いるモードA型の信号と、一度に複数のキーを読み取ることができるモードB型の信号があります。どちらの信号を使うかは、キーボード横のスイッチで選択します(X1 には、モードBはありません)。サブ CPU では、送られてきた信号のパルスの幅から、モードを自動的に判別し、読み込みます。そして、その信号を基に現在のキーの状態を把握し、メイン CPU からの要求があると、そのデータをメイン CPU に渡します。

モードBで同時読み込みができるキーは、テンキーやスペースキーなどの24個のキーです。これを「ゲームキー」と呼びます。また、モードBでは、キーボードのカナ文字の配列が、JIS 配列から五十音配列になります。

キーデータをメイン CPU で受け取る方法には 2 通りあります。割り込み(インターラプト)を使用する方法と、使用しない方法です。割り込みを使うと、キーを押した瞬間に、データを受け取ることができるので、キー入力に対しすぐに応答しなければならない場合に適します。逆に、割り込みを使わない方法では、必要なときだけキーの情報を見に行けば良いので、不必要なキー入力を無視することができます。また、プログラムも若干簡単になります。

5-2-2 キーボードの信号

キーボードから送られて来る信号は、何種類もの幅を持ったパルス列による特殊なものです。 この信号は、メイン CPU から直接読むことはできないので、その概要だけ説明します。

(1) モード A 信号

キーボードからの信号は,図5-3のようになっています.ファンクションコード(1バイト目)は,データ(2バイト目)のデータの種類や各種シフトキーの内容を表しています。このファンクションコードの内容を,表5-1に示します。

	(MSB) 7	6	5	4	3	2	1	(LSB) 0
	ファンク ション	キーデータ 有効/無効	リピート	GRAPH	CAPS	カナ	SHIFT	CTRL
0	・テンキー ・ファンク ションキー ・TVキー ・カセット キー	・データ・ コード (8 ビット) が 有効である。	・リピート・データである。	・GRAPHキ 一が押され ている。	・CAPSキー が押されて いる。 (LOCKされ ている)	・カナキー が押されて いる。 (LOCKされ ている)	・SHIFT キ ーが押され ている。	・CTRLキー が押されて いる。
1	・上記以外	・データ・ コード (8 ビット) が 無効である。	・1回目の データであ る。	・GRAPHキ ーがはなさ れている。	・CAPSキー がはなされ ている。	・カナキー がはなされ ている。	・SHIFT キ ーがはなさ れている。	・CTRLキー がはなされ ている。

表5-1 ファンクションコード

(2) モード B 信号

モードBでは、モードAで送られてくるのと同じキーデータの前に、3バイトのゲームキーデータが付くことがあります。この3バイト(24ビット)のゲームキーデータは、ゲームキーのいずれかが押されるか、離されたときに送られます。このデータによって、24種類のキーに限って同

時に読み取ることができます.

図5-4にゲームキー信号の内容を示します。信号の各ビットは、24種類のそれぞれのキーに対応していて、そのキーが押されている時は、そのビットが1に、押されていないときは0になります。各ビットとキーの対応表を、表5-2に示します。

●ゲーム・キー信号の形式

表5-2 ゲームキー信号の各ビットとキーの対応

20

+

テンキー

21

22

HTAB

23

スペース

24

RET

ビット

17

ESC

18

19

5-2-3 割り込みを用いないキー入力

割り込みを用いるモードでも用いないモードでも、どちらのモードを使うかを、最初にサブ CPU に宣言しておかなければなりません。このためのサブ CPU のコマンドコードが、[E4H]です。

・サブ CPU コマンド[E4H]

(キー入力割り込みのベクタアドレスセット)

メイン→サブ:E4, <アドレス>

サブ→メイン:なし

<アドレス>=0の時、割り込みを使わないモードになる。

割り込みを使わない場合は、0E4H に続いて 00H を送ります。そうするとサブ CPU は、それ以降キー入力があっても、割り込みを起こしません。

実際にキーデータを読み込むには、コマンド[E6H]をサブ CPU に送り、続いて 2 バイトサブ CPU から読み込みます。この 2 バイトは、ファンクションコード 1 バイトと、押されたキーの ASCII(アスキー)コード 1 バイトです。

・サブ CPU コマンド[E6H]

(キーデータの読み込み))

メイン→サブ:E6

サブ→メイン: <ファンクションコード>, <キーコード>

<ファンクションコード>の内容は、表5-1に同じ

<キーコード>は ASCII コードに変換されている

リスト5-4 キー割り込みによらないキーデータ読み込みのサンプルプログラム

COMOUT	EQU EQU EQU	1413H 1432H 143BH	
NKYIN:	LD	BC, 1A01H	7
	IN	A, (C)	
	AND	10H	
	JR	NZ, NKIN1	BIOS ROMの状態を調べ、その状態をセープする
	LD	A, 01H	BIOS HOMOPACIER EMP 4, CONTRIGHT E E 77 0
	JR	NKIN2	
NKIN1:	LD	A, 1EH	
NKIN2:	PUSH	AF	7
	LD	A, 1DH	ROMアクティブ
	OUT	(00H), A	₹
	LD	A, OE4H	
	CALL	сомоит	キー割り込みを禁止する
	XOR	A	
	CALL LD	OT49SB A, OE6H	J
	LD	DE, KEYBUF	キー入力をバッファに受け取る
	CALL	TAK49S	1 7076 777 762000
	CALL	144499	<u> </u>

POP AF OUT (OOH),A ROMの状態を元に戻す RET

2

KEYBUF: DS

ÉND

キーボードがモードBにセットされているときは、ゲームキーの状態を得ることができます。 このときはコマンド[E3H]を使います。

・サブ CPU コマンド[E3H]

(ゲームキーデータの読み込み))

メイン→サブ:E3

サプ→メイン: <ゲームキーデータ(3バイト)>

<ゲームキーデータ>の内容は、表5-2を参照

このコマンドは、キーボードがモードAでも動作しますが、返ってくるデータには意味がありません。必ずキーボードをモードBにして使用して下さい。

5-2-4 割り込みを用いたキー入力

X1 シリーズでは、一般に Z-80CPU の割り込みモードをモード 2 にして使用します。モード 2 割り込みでは、割り込みが発生したときの処理ルーチンの先頭番地(エントリーアドレス)が書かれているアドレス(ベクタアドレス)を、CPU の I レジスタを上位 8 ビット、各 I/O デバイスの出力する値を下位 8 ビットとして指定します。そこでキー入力を割り込みで使うときは、割り込みベクタアドレスの下位 8 ビットを、あらかじめサブ CPU にセットしておきます。このためのコマンドは、先ほど説明した[E4H]です。このコマンドに続いて、ベクタアドレスの下位 8 ビットを送ります。この値は 0 であってはなりません。0 の場合、割り込みを使わない、という意味になってしまうからです。また、アドレスの最下位ビットは 0 でなければなりません。ベクタは、偶数番地から始めることになっているからです。

・サブ CPU コマンド[E4H]

(キー入力割り込みのベクタアドレスセット)

メイン→サプ:E4, <アドレス>

サブ→メイン:なし

<アドレス>=割り込みベクタアドレスの下位8ビット 最下位ビットは必ず0でなければならない <アドレス>=0の時,割り込みを使わないモードになる

割り込み処理ルーチンでは,5-2-3で示したのと同様,コマンド[E6H]を使ってキーデータ

を読み込みます。普通のプログラムでは、得られたキーデータをメモリ上のバッファにセットし、必要とあればキー入力フラグを立て、EI(割り込み許可)命令を実行してリターンします。Z-80では、割り込みがかかると、自動的に割り込み禁止になりますから、EIを忘れると二度と割り込みがかからなくなります。サンプルプログラムをプログラム5-5に示します。

リスト5-5 キー入力割り込みによるキーデータ読み込みのサンプルプログラム

```
IN49SB EQU
                   1408H
IKYIN:
        PUSH
                   ВC
        PUSH
                   DΕ
        PUSH
                   ΗL
        PUSH
                   ΑF
                   BC, 1A01H
        LD
                   A, (C)
        I N
        AND
                   10 H
                   NZ, IKIN1
         JR
                                   BIOS ROMの状態をセーブ
        LD
                   A, 1DH
                   IKIN2
         J R
IKIN1:
        LD
                   A, 1EH
IKIN2: PUSH
                   ΑF
        L.D
                   A, 1DH
                                   .ROMアクティブ
         OUT
                   (00H), A
                   IN49SB
        CALL
        LD
                   L, A
                   IN495B
        CALL
                                   80C49よりキーデータを受け取り、バッファにセーブする
         LD
                   H, A
                   (KEYBUF), HL
        LD
         POP
                   ΑF
         OUT
                   (00H), A
         POP
                   ΑF
         POP
                   HL
         POP
                   DΕ
         POP
                   ВC
         ΕI
         RETI
KEYBUF: DS
                   2
         END
```

割り込み処理ルーチン内でゲームキーを読み込むときは、まず[E6H]のキー入力コマンドを実行し、キー入力データを受け取ってから[E3H]のゲームキー入力を行って下さい。

リスト5-6 キー割り込み中のゲームキー読み込み

IN49SB TAK49S GKYIN:	EQU EQU PUSH PUSH PUSH PUSH	1408H 143BH BC DE HL AF	
	L D I N	BC, 1A01H A, (C)	
	AND JR	O10H NZ, GKIN1	ROMの状態をセーブ
	L D J R	A, 01DH GKIN2	
GKIN1: GKIN2:	LD PUSH	A, 1EH AF	

GKBUF:	LD OUT CALL LD CALL POP OUT POP POP POP POP POP EI RETI ; END	A, 1DH (00H), A IN49SB IN49SB A, 0E3H DE, GKBUF TAK49S AF (00H), A AF HL DE BC	【 ROMアクティブ 】 キーファンクションとASCII コードを読み込む 】 ゲームキーデータをパッファにセットする 【 ROMを元の状態に戻す

5-3 専用モニター TV のコントロール

5-3-1 モードの切り換え

X1 シリーズの専用モニターには次の 4 つのモードがあり、X1 本体からのリモコン信号によって切り換えることができます。

- 1) テレビ画面のみ
- 2) コンピュータ画面のみ
- 3) スーパーインポーズ1(テレビとコンピュータ画面を重ねて表示。テレビのコントラストを ダウンさせる)
- 4) スーパーインポーズ 2 (テレビとコンピュータ画面を重ねて表示。テレビのコントラストは ダウンさせない)

これらのモード切り換えも, サブ CPU にコマンドを送ることによって行うことができます。このためのコマンドが[E7H]です。

・サブ CPU コマンド[E7H]

(専用モニターのコントロール) メイン→サブ: E7, <コード> サブ→メイン: なし

モード切り換えのためのコードには、X1 シリーズ共通の $1\sim5$ バイトのものと、X1turbo 以降追加された1 バイトのものがあります。これらのコードを表5-3 に示します。 $1\sim5$ バイトのコードでは、最初に0E7H、05H を送って、テレビ画面に切り換えてからモード切り換えをするので、一瞬テレビ画面が写ります。

(a) X1(1~5バイト)

送信コード(バイト数)	1	2	3	4	5	6
TV画面	E7	05				
コンピュータ画面	E7	05	E7 08			
スーパーインポーズ 1 (コントラストダウン)	E7	05	E7	0F	E7	0A
スーパーインポーズ 2 (コントラストノーマル)	E7	05	E7	0F		

コードはすべて16進数

(b) X1turbo以降(1バイト)

送信コード(バイト数)	1	2
TV画面	E7	1C
コンピュータ画面	E7	1D
スーパーインボーズ 1 (コントラストダウン)	E7	1E
スーパーインポーズ 2 (コントラストノーマル)	E7	1F

コードはすべて16進数

表5-3 モニターのモード切り換えコード

リスト5-7 モニター画面をコンピュータ画面にするためのアクセス手順

```
OT49SB EQU
                  1413H
COMOUT
        EQU
                  1432H
CMDSP: LD
                  BC, 1A01H
        I N
                  A, (C)
        AND
                  10H
                  NZ, CMDPI
        JR
                              ROMの状態をセーブ
        LD
                  A, 1DH
        J R
                  CMDP2
CMDP1:
                  A, 1EH
AF
        LD
CMDP2: PUSH
        LD
                  A, 1DH
                              ROMをアクティブに
                  (00H), A
        OUT
        LD
                  A, E7H
        CALL
                  COMOUT
                              80C49にコマンドとデータを送る。画面モードを
        LD
                  A, 1DH
                              コンピュータ画面に変更する
        CALL
                  0T49SB
        POP
                  AF
                              ROMを元の状態に戻す
        OUT
                  (00H), A
        RET
        END
```

5-3-2 コントロール

専用モニターでは、モード切り換えの他、チャンネル、音量などのコントロールがコンピュータ側から可能です。この制御にも、コマンド[E7H]を使います。このコマンドの後に、表5-4に示すコードを送ります。

内	容	送任	言コー	· F (/	44	数)	1	2
ボ	りょ	1 -	٨	ア	ッ	プ	E7	01
ボ	IJ :	ı —	ム	ダ	ゥ	ン	E7	02
ボリ	ュー	ムノーマ	マル(42/6	64階	調)	E7	03
音	声	Ξ	ュ	-	-	۲	E7	06
チ	+ :	ノネ	ル	ア	ッ	プ	E7	0B
チ	ヤン	ノネ	ル	ダ	ゥ	ン	E7	0C
۲	ワ	_	-	オ		フ	E7	0D
ない	ーオ	ン/オ	フ(ト	グリ	レ動	作)	E7	0E
チ	ヤ	ン	ネ	J	V	1		10
チ	ヤ	ン	ネ	,	ı	12	E7	1B
*	ワ		•	オ		٨	E7	80

コードはすべて16進数

表5-4 モニターのコントロールコード

リスト5-8 モニター画面をスーパーインポーズ1モードにするためにアクセス手順

```
OT49SB EQU
                    1413H
        EQU
COMOUT
                    1432H
                    BC, 1A01H
A, (C)
010H
·IIDSP: LD
         I N
         AND
          JR
                    NZ, I1DP2
                                 ROMの状態をセーブ
                    A, 1 D H
         LD
          JΒ
                    I1DP2
                    A, 1EH
AF
I1DP1:
         LD
I1DP2: PUSH
                    A, 1DH
(00H), A
         LD
                                 ROMをアクティブに
         OUT
         LD
                    A, E7H
                    COMOUT
         CALL
                                 画面モードをスーパーインポーズ1に変更
                    A, 1EH
OT49SB
         LD
         CALL
         POP
                    ΑF
                                 ROMを元の状態に戻す
         OUT
                    (00H), A
         RET
         ÉND
```

5-4 専用カセットデッキのコントロール

5-4-1 カセットメカのコントロール

X1 シリーズの専用カセット(内蔵のものを含む)は、サブ CPU によってコントロールされています。メカのコントロールの他、カセットの有無、テープエンド、消去防止ツメなどのチェックもしています。カセットのコントロールをメイン CPU から行うには、コマンド[E9H]を使います。なお、サブ CPU が行うのは、メカニズム関係のみで、実際の信号の読み書きはメイン CPU から直接 I/O ポートを通じて行います。8255②の項(5-6-3)を参照して下さい。

・サブ CPU コマンド「E9HT

(カセットメカのコントロール)

メイン→サブ:E9, <コントロールコード>

サブ→メイン:なし

コントロールコードは1バイトです. その内容を表 5-5 に示します. ここで APSS とは頭出しのための状態で、ヘッドをテープにつけたまま早送りや巻き戻しを行います。このときの APSS 読み取り信号は、8255①(サブ CPU 側)に接続されています。

動作	コントロールコード
EJECT	00
STOP	01
PLAY	02
FF	03
REW	04
APSS-FF	05
APSS-REW	06
REC	0A

表5-5 カセット・コントロール・コード

5-4-2 ステータスの読み出し

専用カセットを使用しているときは、サブ CPU から現在のカセットの状態を知ることができます。このためのコマンドとして、メカの状態を知る[EAH]とカセットの状態を知る[EBH]があります。

・サブ CPU コマンド[EAH]

(カセットメカニズムの状態検出)

メイン→サブ:EA

サブ→メイン: <状態コード>

<状態コード>の見方は、表5-5を参照

・サブ CPU コマンド[EBH]

(カセットの状態検出)

メイン→サブ:EB

サブ→メイン: <カセット状態コード>

<カセット状態コード>の見方は、図5-5を参照

図5-5 カセット状態コード

カセットメカが動作中(PLAY や REC の状態など)に BREAK キー等が押されると, サブ CPU は次のような動作を行います.

(1) BREAK キーが押された時

- ・カセットを STOP する
- ・メイン CPU の BREAK フラグ(8255② PB-0)をLにする
- ・キー入力割り込みをメイン CPU にかける(割り込みが許可されている時)
- ・メインからのキー入力に対しては、キーコード 03H を返す

(2) カセットコントロールキーが押された時

- ・押されたキーに対応するカセットの動作を行う
- ・メイン CPU の BREAK フラグ(8255② PB-0)を Lにする

```
OT49BS EQU
                  1413H
COMOUT
        EQU
                  1432H
TCCTR:
                 BC, 1A01H
        LD
                 A, (C)
        ΙN
                 10H
        AND
                 NZ, TCCT1
                             ROMの状態をセーブ
        JR
        LD
                 BC, 1DOOH
                 TCCT2
        JR
TCCT1:
        LD
                 BC, 1EOOH
TCCT2:
        LD
                 A, 1DH
                             ROMをアクティブ
        OUT
                  (00H), A
                 A, OE9H
        LD
        CALL
                  COMOUT
                             カセットストップコード送信
                 A, (01H)
        LD
                  OT49SB
        CALL
        OUT
                  (C), A ······ROMを元に戻す
        RET
        END
```

リスト5-11 カセットメカの状態の読み出し

```
IN49SB EQU
                  1408H
COMOUT
        EQU
                  1432H
RCCTR:
                  BC, 1A01H
        LD
                  A, (C)
        ΙN
                  10H
        AND
                  NZ, RCCT1
BC, 1D00H
        JR
                                ROMの状態をセーブ
        LD
        J R
                  RCCT2
RCCT1:
                  BC, 1EOOH
        LD
RCCT2:
        LD
                  A, 1DH
                                ROMをアクティブに
                   (00H), A
        OUT
                  A, OEAH
        LD
                                カセット状態読み出し
        CALL
                  COMOUT
                  IN49SB
        CALL
        LD
                   (RCCBF), A
                   (C), A ……ROMを元に戻す
        OUT
        RET
RCCBF: DS
                  1
        END
```

5-4-3 カセットテープのフォーマット

カセットに記録されているデータの読み書きは、メイン CPU が I/O ポートを通して直接行います。 カセット関係の I/O ポートは、以下の通りです。

・8255 ②ポート B(入力)

I∕Oアドレス=1A01H

ピット1:READ DATA

カセットからの読み込み信号

・8255 ②ポート C(出力)

I ∕Oアドレス=1A02H

ピット0:WRITE DATA

カセットへの書き込み信号

カセット書き込み用のポートC出力は、他のコントロール出力と共通ですから、カセット出力に必要なビット 0 以外は変更しないように注意しなければなりません。このためには8255のビットセット・リセット機能を使用します。

さて、X1シリーズの標準フォーマットでは、信号にシャープ PWM 方式という変調方式が使用されています。 PWM (Pulse Width Modulation:パルス幅変調)では、パルスの幅を変化させて情報を記録します。パルスの1サイクルが $250\mu s$ なら0、 $500\mu s$ なら1となっています。読み込むときは、波形がHになってから $185\mu s$ 後の状態を調べ、このときHなら1、Lなら0と判断します

読み書きは1バイトを単位として行われます。パルスの形式と、1バイトの構成を図5-6に示します。

● 1 ピットの信号

図5-6 シャープPWM方式

X1 シリーズのテープフォーマット(論理フォーマット)は、インフォメーションブロックとデータブロックの2つに大きく分けられます。各ブロックの最後にはデータの総和を取った2バイトのチェックサムがつきます。全体では、まず8秒間の無録音部分、インフォメーションブロック、そしてデータブロックと続きます。また、データブロックについては、データが連続してベタで記録される「連続セーブ」と256バイトずつのブロック毎に区切って記録する「ブロッキングセーブ」があります。

BASIC では、プログラムのセーブに連続セーブ、データファイルや ASCII セーブにはブロッキングセーブを使っています。フォーマットの詳細を図5-7に示します。

(2) ブロッキングセーブの場合

図5-7 テープの論理フォーマット

5-5 タイマーのコントロール

5-5-1 時刻の設定と読み出し

サブ CPU には、タイマーIC (μPD1990) が接続されており、日付や時刻の読み出し、書き込みをメイン CPU から行うことができます。タイマーIC は、ニッカド (充電式) 電池でバックアップされており、本体の電源が切れても時を刻み続けます。 ただし、「年」の情報だけはサブ CPU がカウントしているため、本体背面のメインスイッチを切ると「年」情報は無くなってしまいます。

日付、時刻の読み出し、書き込みのサブ CPU コマンドは次の通りです。

・サブ CPU コマンド[ECH]

(日付の設定)

メイン→サブ:EC, <日付データ(3バイト)>

サブ→メイン:なし

・サブ CPU コマンド[EDH]

(日付データの読み出し)

メイン→サブ:ED

サブ→メイン: <日付データ(3バイト)>

・サブ CPU コマンド[EEH]

(時刻の設定)

メイン→サブ:EE, <時刻データ(3バイト)>

サブ→メイン:なし

・サブ CPU コマンド[EFH]

(時刻データの読み出し)

メイン→サブ:EF

サブ→メイン: <時刻データ(3バイト)>

日付データ、時刻データはどちらも3バイトのブロックになっています。これらのデータの構成を次頁に示します。

リスト5-12 カレンダー時計から日付と日時を読み出してメモリーに書き込む

```
TAK49S EQU
                  143BH
RCCLD:
        L D
                  BC, 1A01H
        AND
                  10H
        JR
                  NZ, RCCL1
        LD
                  BC, 1DOOH
                              ROMの状態をセーブ
        JR
                  RCCL2
RCCL1:
        L D
                  BC, 1EOOH
RCCL2:
        PUSH
                  ВC
                  A, 1DH
        LD
                              ROMをアクティブに
                  (00H), A
        OUT
                  DE, CLBUF
        LD
                  A, OEDH ……日付読み出しコマンド
        LD
RCCL3: PUSH
                  AF
        CALL
                  TAK49S
        INC
                  DΕ
                                -タをバッファにセーブ
        INC
                  DΕ
        INC
                  DΕ
        POP
                  ΑF
        ADD
                  'A, 02H ······=EF 時刻読み出しコマンド
        JR.
                  NC, RCCL3
        POP
                  ВC
                             ROMを元の状態に戻す
        OUT
                  (C), A
        RET
CLBUF: DS
                  6
        END
```

●データの形式

項目				デ		g	説	明		
	ピット	7	6	5	4	3	2	1	0	
年										
"			100	0位 ——			10			
	(注1)	00年~99	年の値を	そのまま	指定して	下さい。				
	ピット	7	6	5	4	3	2	1	0	
						*				* 印は無効 ピット
月,曜日	(注2)		効(XX)と	なります	•				。(О)Н	を指定すると
	ピット	7	6	5	4	3	2	1	0	
	רטו	,	O	, J	4	3		'	· · ·	ı
	(注3)	└────────────────────────────────────								
	ピット	7	6	5	4	3	2	1	0	
時		10の位: 1の位:				定して下 定して下		nd ——		
	ピット	7	6	5	4	3	2	1	0	
分		*								*印は無効
73"	(注4)		10の位:(0)~(5) Hまでの値を指定して下さい。 100位:(1)~(9) Hまでの値を指定して下さい。							בשר
	ピット	7	6	5	4	3	2	1	0	
秒		*								*印は無効
				・10の位・			1 0	7位 —		ピット

図5-8 日付, 時刻データの構成

5-5-2 テレビタイマーの設定と読み出し

X1シリーズには、最大7回まで設定できるテレビタイマーコントロール機能があります。これらはサブ CPU が行っているので、本体のフロント電源が off でも動作します。

テレビタイマーに関するサブ CPU コマンドコードは, [D1H]~[D7H](設定)と[D9H]~[DFH] (読み出し)の14個で, コードによって7つのタイマの選択を行います。

・サブ CPU コマンド[D1H]~[D7H]

(テレビタイマーの設定)

メイン→サブ:[コマンド], <タイマーデータ(6パイト)>

サブ→メイン:なし

・サブ CPU コマンド[D9H]~[DFH]

(テレビタイマーの設定状態の読み出し)

メイン→サブ:[コマンド]

サプ→メイン: <タイマーデータ(6バイト)>

コマンドの一覧表を表 5-6 に、タイマーデータの構成を図 5-9と表 5-7に示します。

TIMER番号	設定コード	読出しコード
1	D1	D9
2	D2	DA DA
3	D3	DB
4	D4	DC
5	D5	DD
6	D6	DE
7	D7	DF

コードはすべて16進数

図5-6 タイマー番号と送信コードの対応

		· ——			
コントロール対象 及びインターバル	コントロール内容	分	時	月 曜日	日
11		L_3_	4_	<u> </u>	L_6

図5-9 タイマーデータの構成

項目			+	ř -	-	У	説	明			
	ビット	7	6	5	4	3	2	1	0		
]	
コント	タイマー有無 インターバル(1~59分)								j		
ロール		ビット内容									
対 象			7	6		機		能			
及び			0	0	9	1	マ ー	無効	7		
インタ			1	0	未			用			
ーバル			1 0	1 1	4	1	7 – 1	有が	-		
	0 1 4 ターイーマーー 有一効 ※インターパルタイマーとは、あるタイマーが動作してから指定された時間間隔									:周問篇	
	※イングーバルノイマーとは、あるツイマーが動作してから指定された時间间隔 (1~59分)が経過したら、再び同じ動作を行うタイマーです。										
		7	6	5	4	3	2	1	0		
	Г		0	0]	
	│										
	0 TV ONのコードは出力しない。										
	1 TVパワーONしたのち、0~4ビットのコードをTVへ送ります。										
	全	全コントロール内容とその設定データコードを下表に示します。									
	希望のコードを設定して下さい。(00) H の場合,タイマー動作をしません。										
				ントロー			デー	タコード(Hex)		
	ボリュームアップ							01			
	ポリュームダウン						02				
		ボリュームノーマル						03			
		音声ミュート						06 0B			
コント	T						00				
ロール											
内容						動作)					
			· · · · · · · · · · · · · · · · · · ·	ンネル		1		10			
			チャ	ンネル		ا 12		ا 1B			
			パワ	ーオン				80			
	パワーオン―→ボリュームアップ						i	81			
		─→ポリ.	ュームタ	ウン		82					
		185	フーオン-	→ボリ.	ュームノ	マル	/	83			
		パワ	フーオン-	→音声	ミュート			86			
		<u> </u>		 →チャ:				8B			
		パワ	7ーオン-	> チャ:	ンネルタ	ウン		8D			
		パワ	7ーオン-	→チャ:	ンネル	1		90 {			
		パワ	フーオン-	→チャ:	ンネル	12		9B			
	· · · · · · · · · · · · · · · · · · ·										

表5-7 タイマーコントロールバイト(6バイト)の各ビットの内容

リスト5-13 テレビタイマーの設定例

```
TAK49S EQU
                   143BH
                   BC, IAO1H 7
STTMR:
         LD
         AND
                   10H
                   NZ, STTM1
         JR
                   BC, 1DOOH
STTM2
         LD
                                BIOS ROMの状態をセーブ
         JR
STTM1:
         LD
                   BC, 1EOOH
STTM2:
         PUSH
                   ВС
                   A, 1DH
         LD
                               ROMアクティブ
                   (00H), A
         OUT
```

```
LD
                  DE, TMBUF
                  A, ODIH
        LD
                              80C49ヘタイマーセットコマンドを送信
        CALL
                  TAK49S
        POP
                  BC
                              ROMを元の状態に戻す
        OUT
                  (C), A
        RET
TMBUF:
       DB
                  1 ……タイマー番号
                  40H, 96H
        DВ
        DΒ
                  17H, 00H, 7DH, 26H
        END
```

5-5-3 タイマー用IC

X1 シリーズに使われている μPD1990 は、カレンダ機能、クロック機能を持った IC です。サブ CPU とは、40ビットのシリアルデータの形でデータの入出力を行います。この IC は、充電式電池によってバックアップされており、本体の電源を切っても動作します。電池の充電は、サブ CPU の電源系統を使って行われており、従ってフロントの電源スイッチが off であっても、背面のメインスイッチが入っていれば、電池の充電が行われます。

この IC は、データの読み書きをしていない時、DATA OUT 端子から 1Hz の信号を出力しています。この信号は、画面のプリンク用に使われています。

5-6 PPI(8255)

X1 シリーズでは、メイン CPU とサブ CPU に 1 つずつ、PPI と呼ばれる I/O デバイスが接続されており、メイン \longleftrightarrow サブ CPU 間の通信や、各種の I/O 制御に使われています。サブ CPU に接続された方の PPI を8255①、メイン CPU に接続された方を8255②と呼びます。

5-6-1 PPIの概要

8255PPI は、インテル社が開発し、世界で広く使われているパラレル入出力用の LSI です。この LSI には24本の入出力端子(ポート)があり、これらは8本づつ3組に分けてポートA、ポート B、ポート C と呼ばれます。各ポートは、入力にするか出力にするか、データ転送にハンドシェイク法を使うかどうか、などが CPU からのプログラムによって決められるようになっています。また、データが入力された時に割り込みをかけたり、ポート C の出力を 1 ビットづつセット、リセットする機能もあります。 図 5-10 に、8255②の機能 設定などに使われるコントロールレジスタの内容を示します。なお、8255①はサブ CPU の管理下あるのでメイン CPU 側から操作することはできません。

8255の初期設定は、X1 シリーズの場合、リセット時に IPL によって行われています。初期設定は、ハードウェアと密接な関係があり、設定を勝手に変更したりしてはいけません。

さて、8255には大きく分けて3つのモードがあります。

・モードの

単純な入力か出力しかしないモードです。8ビットの入出力ポート2個(ポートA, ポートB)と,4ビットの入出力ポート2個(ポートCの上位4ビット,下位4ビット)をそれぞれ,入力にするか出力にするか決めることができます。

・モード1

8 ビットのデータを、3本のコントロールラインを使ったハンドシェイクと呼ぶ方法で転送します。コントロールラインにはポートCの一部が使われます。

・モード2

モード 2 はポートAだけが指定できます。このモードを指定するとポートAは、8 ビットの入出力兼用線となります。ポートCの内 5 本がコントロールラインとなり、ハンドシェイクによるデータ転送を制御します。サブ CPU とのコマンド送受信の項で、IBF(Input Buffer Full)、OBF (Output Buffer Full)というフラグが出てきましたが、実はこの 5 本のコントロールラインの一部なのです。

X1 シリーズでは、サブ CPU の管理下にある8255①のポートAがモード 2 に設定され、メイン CPU との通信に使われている他は、すべてモード 0 の単純入出力になっています。入力、出力の 設定の様子を表 5 - 9 に示します。 先に述べたように、これらの設定をプログラムで勝手に変更し てはいけません。 従ってコントロールワードのうちポート Cのビットセット、リセット機能だけ が使用できます。

グループ	ポート端子	アクティブ	コントロール内容	信号名
	PA7	_		1D7
	PA6	_		1D6
	PA5	-		1D5
	PA4	_	 - データ入出力	1D4
A	PA3	_		1D3
	PA2			1D2
	PA1	_		1D1
	PA0			1D0
	PC7	L	Z-80Aに対してデータ受取り .	OBF
	PC6	L	Z-80AがポートAからデータを受取り信号	8049RD
	PC5	Н	Z-80Aに対してデータ転送禁止信号	1BF
	PC4	L	L Z-80AからのデータをポートAに入力/ラッチ指示信号	
	PC3		未使用	
	PC2	н	PLAY時READ LED点灯します(L:WRITE LED)	
	PC1	L	Z-80AへのBREAK信号	BREAK
	PC0	L	カセットのEJECTソレノイドコントロール	EJECT SOL
	PB7	_	OBF信号	
В	PB6	_	8049RD信号	
В	PB5		APSS(無記錄部検出)	APSS DATA(注)
	PB4	L	EJECT SW. センス	EJECT SW
	PB3		未使用	
	PB2	Н	カセットテープの書き込み禁止用の爪がある状態	REC PROTECT
	PB1	Н	カセットがセットされている状態	PACKAGE
	PB0	L	テープエンド検出	TAPE END

(注) READ DATA信号を、積分回路を通すことにより得た信号。

表5-8 X1 turbo model 10 における8255①のポートの割り当て

	CPU	ポート	モード	設定
8255①	サブ	A B C	2 0 —	入出力 入 入出力
8255②	メイン	A B C	0 0 —	出入出

表5-9 X1シリーズにおける8255の設定

●モード設定

●ピット・セット/リセット

コントロールワード

図5-10 8255のコマンドレジスタ