Kernel Logistic Regression

JrPhy

Introduction

• Now we record the error data in ξ , then minimize w with the constrain,

$$\left| \min_{w} \left(\frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i \right) = \min_{w} \left(\frac{1}{2} w w^T + C \sum_{i} err_i \right) \right|$$

• This form is like the regularization

$$\left| \min_{w} \left(\frac{\lambda}{N} w w^{T} + \frac{1}{N} \sum_{i} err_{i} \right) \right|$$

• Now let's connect the soft-margin SVM and logistic regression

Logistic regression \rightarrow soft-margin

- The constrain of soft-margin SVM is
- $y(w^Tx + b) \ge 1 \xi_i, \ \xi_i \ge 0 \rightarrow \xi_i \ge 1 y(w^Tx + b),$
- this equivalent as $\max(1 y(w^Tx + b), 0)$. So the score of soft-margin SVM is
- $err_{SVM} = \max(1 y(\mathbf{w}^T \mathbf{x} + b), 0)$
- The score of Logistic regression is
- $err_{Logistic} = log 2(1 y(\mathbf{w}^T \mathbf{x} + b))$, Let $s = \mathbf{w}^T \mathbf{x} + b$

$$ys \rightarrow \infty$$
, $err_{SVM} \& err_{Logistic} \rightarrow 0$
 $ys \rightarrow -\infty$, $err_{SVM} \& err_{Logistic} \rightarrow \infty$

Hsuan Tien Lin, mltech/205_handout

Combine logistic regression and SVM

- So we can run SVM to get the b_{SVM} and w_{SVM} , then input then in the logistic regression, but we can't get a target function with a probability distribution.
- Or we can set the b and w as initial condition of gradient descent to get the optimal b_{opt} and w_{opt} , but it can not use kernel trick because of the nonlinear transform. So that we have to modify the score.
- The idea is running SVM with a kernel first, then take as a score $z = w_{SVM}^T \Phi(x) + b_{SVM}$. then times A and plus B so that the form Az + B, so that the form is similar to logistic regression.

Combine logistic regression and SVM

•
$$g(x) = \theta(Az + B) = \theta(A(w_{SVM}^T \Phi(x) + b_{SVM}) + B)$$

$$\min_{A,B} \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \exp\left(-y_n \left(A\left(w_{SVM}^T \Phi(x) + b_{SVM}\right) + B\right) \right) \right)$$

- Here A > 0 and $B \sim 0$, otherwise the solution of SVM is very BAD.
- This SVM is called "Probability SVM",
- It was proposed by platt, so it's called platt's model. It runs SVM first then does logistic regression. But it is just an approximated solutions. Next we want to find a solution by logistic regression.

Key of the kernel trick

• Let's recall why does the kernel work, the optimal w_{opt} was combined by z linearly, N

linearly,
$$N = \sum_{i=1}^{N} \beta_n z_n \to w_{opt}^T z_n = \sum_{i=1}^{N} \beta_n z_n^T z_n = \sum_{i=1}^{N} \beta_n K(x_n, x)$$

• The methods we've introduced are the same, so our goal is to represent w_{opt} by z.

Hsuan Tien Lin, mltech/205_handout

Representation theorem

• Claim: for any L2 regularized linear model

$$\min_{w} \left(\frac{\lambda}{N} w w^{T} + \frac{1}{N} \sum_{i} err_{i} \right) \qquad w_{opt} = \sum_{i=1}^{N} \beta_{i} z_{i}$$

$$w_{opt} = \sum_{i=1}^{N} \beta_i z_i$$

- Proof:
- Let $w_{opt} = w_{\parallel} + w_{\perp}$, w_{\parallel} is span by z_n , w_{\perp} and is linearly dependent to z_n . So That $\operatorname{err}(y_n, w_{opt}^T, z_n) = \operatorname{err}(y_n, (w_{\parallel} + w_{\perp})^T, z_n)$, then
- $w_{opt} w_{opt}^{T} = w_{\parallel} w_{\parallel}^{T} + w_{\perp} w_{\perp}^{T} + 2 w_{\parallel} w_{\perp} > w_{\parallel} w_{\parallel}^{T} (\rightarrow \leftarrow)$
- So $\mathbf{w}_{\perp}^{T} = 0$

L2-regularized logistic regression

• So by the representation theorem, $w_{opt} = \sum_{i=1}^{N} \beta_i z_i$

$$\min_{w} \left(\frac{\lambda}{N} w w^{T} + \frac{1}{N} \sum_{i} err_{i} \right) = \min_{w} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \beta_{i} \beta_{j} K(x_{i}, x_{j}) + \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \exp \left(-y_{n} \sum_{j=1}^{N} \beta_{j} K(x_{i}, x_{j}) \right) \right) \right)$$

- Here $K(x_i, x_j)$ is the kernel, $\sum_{j=1}^{N} \beta_j K(x_i, x_j)$ is the linear model,
- $\sum_{i=1}^{N} \sum_{j=1}^{N} \beta_i \beta_j K(x_i, x_j) = \beta K \beta^T$ is the regularizer

L2-regularized logistic regression

- So it can be seen as a linear model of β_i with kernel as transformation and kernel regularized. It's like SVM
- The β_i is not often 0 but α_i in SVM is often 0