Cardiovascular Analysis

Chi - Scrum Master / Developer Gabby - Developer Alejandro - Developer

Introduction

We aim to establish a streamlined data pipeline in a cloud environment

- Integrating Amazon S3 buckets
- Lambda functions
- RDS
- Potentially EC2

This is crucial for organizations aiming to derive actionable insights from their data assets effectively, enabling informed decisions.

Objectives & Issues

Use dataset (Cardiovascular Disease) to run analysis on our local machine:

- Creating an S3 bucket
- Creating an RDS
- Creating a triggering Lambda function
- Pull data from the cloud environment and run analysis

ISSUES: Although we were able to successfully build this infrastructure, we ran into some issues

- Incomplete data (only about a ¼ of our data was displayed
- Permissions (Access denied)

Project Tracking

We used Jira to track our progress

Checkpoint 1: Create S3 bucket

- After specifying the bucket name and additional configuration, we were able to successfully create a bucket.
- IAM users were created and given permission to access the bucket.

Checkpoint 2: Create RDS

Used AWS console to create and configured the RDS.


```
RDS > Databases
             Databases (2)
              Q Filter by databases
                   □ DB identifier ▲
                                       Status
                                                     Role
                                                                Engine
                                                                                   Region & AZ
             0
                       cardio-db
                                      Available
                                                    Instance
                                                               MySQL Community
                                                                                   us-east-1b
# RDS configuration
rds endpoint = 'cardio-db.crkc44qquibr.us-east-1.rds.amazonaws.com'
rds port = 3306
rds_username = 'admin'
rds password = 'rootroot'
                         def connect to rds():
                             try:
                                 connection = mysql.connector.connect(
                                     host=rds_endpoint,
                                     port=rds port,
                                     user=rds username,
                                     password=rds_password,
                                 print("Connected to RDS successfully.")
                                 return connection
                             except Exception as e:
                                 print("An error occurred while connecting to RDS:", e)
                                 return None
```

Checkpoint 3: Create a Lambda function

- This function will act as a triggering event
 - Listening for any activity in the s3 bucket
 - Cleaning the data and registering it to the rds database.
- Creating the Lambda from the rds.
 - Creating a direct connection to the rds proxy

ssues

Lambda Issues:

- Permissions
 - Getting the correct access for the correct actions
- Timeouts
 - Understanding where and why the data was not being processed successfully
- Troubleshooting

2024-02-08T13:44:46.600-05:00

Using standard debugging technique and pair programing to pinpoint a solution

START RequestId: 80923608-6bf8-4215-9142-34953122feaa Version: \$LATEST

 ▶
 2024-02-08T13:44:48.191-05:00
 succesfully pulled data from bucket

 ▶
 2024-02-08T13:44:48.191-05:00
 bucket: cardiovascular-disease-data

 ▶
 2024-02-08T13:44:48.191-05:00
 key: cardio_train.csv

 ▼
 2024-02-08T13:44:56.652-05:00
 2024-02-08T18:44:56.652Z 80923608-6bf8-4215-9142-34953122feaa Task timed out after 10.05 seconds

 2024-02-08T18:44:56.652Z 80923608-6bf8-4215-9142-34953122feaa Task timed out after 10.05 seconds

Database

 All the information needed (ex. patient information and details) was stored under the same table.

```
1 • use cardio_train;
2
3 • select * from cardio_train order by id asc;
4
5
```

id		gender	height	weight	ap_hi	ap lo	cholesterol	gluc	smoke	alco	active	cardio
IU	age	gender	neight	weight	ap_n	ap_io	Criolesteroi	gluc	Smoke	alco	acuve	Carulo
0	18393	2	168	62	110	80	1	1	0	0	1	0
1	20228	1	156	85	140	90	3	1	0	0	1	1
2	18857	1	165	64	130	70	3	1	0	0	0	1
3	17623	2	169	82	150	100	1	1	0	0	1	1
4	17474	1	156	56	100	60	1	1	0	0	0	0
8	21914	1	151	67	120	80	2	2	0	0	0	0
9	22113	1	157	93	130	80	3	1	0	0	1	0
12	22584	2	178	95	130	90	3	3	0	0	1	1
13	17668	1	158	71	110	70	1	1	0	0	1	0

Checkpoint 4: Data Analysis

Checkpoint 4- Pull Data from RDS to create meaningful insight

To uncover patterns, correlations and potential risk factors related to cardiovascular disease we used:

- Pandas
- Maplotlib.pyplot
- Sglalchemy to create engine

```
from sqlalchemy import create_engine
from config import rds_port, rds_username, rds_password, rds_endpoint
hostname = rds_endpoint
port = rds_port
username = rds_username
password = rds_password
database_name = 'cardio_train'
engine = create_engine(f'mysql+mysqlconnector://{username}:{password}@{hostname}:{port}/{database_name}')
connection = engine.connect()
```

```
import pandas as pd
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

cardio_csv = 'cardio_train2.csv'

cardio_df = pd.read_csv(cardio_csv)

0.0s

engine = create_engine('sqlite:///cardio.db', echo=False)
cardio_df.to_sql('cardio_table', engine, if_exists='replace', index=False)
print("Database created successfully.")
```

Impact to Lifestyle

Both Alcohol consumption and Smoking should increase the risk of cardiovascular disease. However from the data set everything was almost split evenly.

Blood Pressure and Cardiovascular Disease

Normal blood pressure for most adults is defined as a systolic pressure of less than 120 and a diastolic pressure of less than 80. Elevated blood pressure is defined as a systolic pressure between 120 and 129 with a diastolic pressure of less than 80.

Age Distribution

The first graph is the main one used for analysis. We can see with an increase of age the risk of cardiovascular disease.

BMI

Finding the BMI gave clearer insight to which patients were more at risk for cardiovascular disease.

Cardiovascular Disease by Gender

We wanted to see what the correlation between Gender and cardiovascular disease was.

Cardiovascular Disease by Gender

