Text Mining: Detecting Insults in Social Commentary?

-2012 kaggle competition

Jumao Yuan

EXST 7152 Final Project April 28th, 2015

Background

Data Description

Data Preprocessing

Evaluation

Models

Results

Background

Data Description

Data Preprocessing

Evaluation

Models

Results

Comments	Insult
"Either you are fake or extremely stupidmaybe both"	yes
"@tonnyb Or they just don't pay attention"	no
"You with the 'racist' screen name\\n\nYou are a PieceOfShit"	yes
"your such a dickhead"	yes
http://www.youtube.com/watch?v=tLYLLPHKRU4	no
"You are a liar."	no

Background

Data Description

Data Preprocessing

Evaluation

Models

Results

Workflow

Pre-processing Select Variables

Build Models Compare Models

Results

Single-classifier problem

Insult Comment

- 1 "You fuck your dad."
- 0 "i really don't understand your point.\xa
- 0 "A\\xc2\\xa0majority of Canadians can
- 0 "listen if you dont wanna get married to
- 0 "C\xe1c b\u1ea1n xu\u1ed1ng \u0111\
- 0 "@SDL OK, but I would hope they'd sign
- 0 "Yeah and where are you now?"
- 1 "shut the fuck up. you and the rest of yo
- 1 "Either you are fake or extremely stupid
- 1 "That you are an idiot who understands
- 0 "@jdstorm dont wish him injury but it h
- 0 "Be careful, Jimbo. OG has a fork with yo

Background

Data Description

Data Preprocessing

Evaluation

Models

Results

2 variables and 3947 observations

Response variable is binary: "Is Insult" or "Is Not Insult".

No missing values, but need do token and regular expression analysis.

TF-IDF (term frequency – inverse document frequency): reflect how important a word is to a document in a collection Library(tm) in R

Text Parsing

"You with the 'racist' screen name\\n\n\xc2You are a PieceOfShit 012....."

TermDocumentMatrix

D1 = "I like databases"

D2 = "I hate databases",

		like	hate	databases
D1	1	1	0	1
D2	1	0	1	1

Stemming

"use", "uses" "used", "useful", "using" have the same stem "use"

Feature Extraction

The sparse matrix is huge with high dimensional variables.

Our main task is to downsize the high dimensional sparse matrix since the stack pointer of memory in R is limited (500000).

Data split

70% training data set and 30% testing data set

R code

dd <- Corpus(VectorSource(docs)) dd <- tm map(dd, stripWhitespace) % Eliminating Extra White Spaces dd <- tm map(dd, tolower) % Convert to Lower Case dd <- tm map(dd, removePunctuation) % Remove **Punctuations** dd <- tm map(dd, removeWords, stopwords("english")) % Remove stopwords %dd <- tm_map(dd, stemDocument) dd <- tm map(dd, removeNumbers) % Remove numbers dd <- tm map(dd, stemDocument,language = 'english') %

16297 features

Do Stemming

"You with the 'racist' screen name\\n\n\xc2You are a PieceOfShit 012......fuckkkkkkkk"

You with the racist screen name You are a PieceOfShit fuckkkkkkkk

racist screen name PieceOfShit fuckkkkkkkk

racist screen name PieceOfShit fuck

Background

Data Description

Data Preprocessing

Evaluation

Models

Results

In R (using the verification package): auc = roc.area(true_labels, predictions)

> ROC Curve AUC Score

Background

Data Description

Data Preprocessing

Evaluation

Models

Results

Models

Classification Tree

Random Forest

Models

Classification Tree

Random Forest

Library(tree)

Models

Classification Tree

Random Forest

Library(randomForest)

RF

AUC score = 0.814

Background

Data Description

Data Preprocessing

Evaluation

Models

Results

Method	AUC Score	Computation Time (s)
Random Forest	0.814	323.362
Decistion Tree	0.789	46.725
Logistic Regression	0.785	
Naive Bayes	0.798	
KNN	0.730	
SVM	0.786	

Background

Data Description

Data Preprocessing

Evaluation

Models

Results

√ 1. Sparse matrix optimization (16297 variables)

PieceOfShit = Shit; You're (need be deleted)

✓ 2. Random Forest, SVM and Naïve Bayes work well

√ 3. It is still difficult to detect some false negative results
such as "this book is fXXXing good" or new words
(wordplays) such as "yuck fou"

Thanks ©