س: الف وقتى مك نابه جايى داشته بالليم يعن يكن از ظامة هاى آرايد وعاى درستا نی باشد پس تا زمان که حرجای درستی قرار بلیرد ناجاب جایی داریم و در insertion تعداد ما برجايي ها باتعداد ناجاب جايي ها برابراست . سي تعداد ناجبهمايي ها با تعداد اجرای حلقه عالی رابطه مستقیم دارد و هرجه ناجابه جایی بسی ترمشود تكرار دستورات داخل عااله نيز بيش ترمي تشود و زمان اجرا بالامي رود. ب) بازوج به فتست قبل فرض كنيم أرايه ي وتب الده مفتظ يك نابه جا يي دارد یس برای ویت شدن با ید ۱زا ۸ تک تک باخانه بعدی جابه جا مشور تابه خانه [i] A برسد وان مقدار طبه طبی برا بر خ- i است که (واقع j - i تانامها م رخ می دهد تا به جای درست حود برسد.

 ACTI	J	AEiJ
JR	*	JVi

ı	-		
١	1 V A'	c (1)	. U.
۱	1. X = 0.2		
١			

3.
$$for(j=1), j <= n, j++) \times ++;$$
 $C_{r}(n)(n+1) + C_{r}(n)(n)$

4.
$$j=1;$$
 $C_0(n)(1)$

5. While
$$(j < n)$$
 $(j < n)$ $(j < n)$

6.
$$X++ij=j+2i$$
 $C_{V}(n)(\lceil \log_{1} n \rceil)(1)+C_{N}(n)(\lceil \log_{1} n \rceil)(1)$

 $T(n) = C_1 + C_1(n+1) + C_2(n+1) + C_2(n+1) + C_2(n+1) + C_3(n+1) + C_3(n+1$ + Cy (n/legrn7) + Cn (n/legr) = (Cr + Cx) n'+ (Cs+Cv+Cn) n/legrn7 +(Cr+Cr+Co+Co)n+(C1+Cr)=An+An[legen]+An+Ar

for (i=1; i<=n; i++) if(A[i] == a) return i; بعترین حالت A درظانه اول است. پس طفته ۱ بار اجراص شود. (۱) = T(n) = (۱) برترین عالت a درخانه آخر است. پس ملقه ۱۱ بار اجرامی سود. (۱۳ است. پس ملقه ۱۱ بار اجرامی سود. (۱۳ ا– Tin) 光+ドル+ケル=1⇒ル=1。 $E(n) = \sum_{n} x P(x=n) = \sum_{i=1}^{n} i \times \frac{1}{n} \times \frac{1}$ $\frac{1}{10}\left(\frac{1}{10}\sum_{i=1}^{n}i+\frac{1}{10}\sum_{i=n+1}^{n}i+\frac{1}{10}\sum_{i=n+1}^{n}i\right)=$ 片(上(年1)(年)+上(N+1)(年)+上(四+1)(年))= *(方(学+1)+ 片(n+1)+ 片(部+1))= $\frac{1}{4}\left(\frac{n}{m}+1+4^{n}+4^{n}+4^{n}+4^{n}+4^{n}\right)=\frac{1}{4^{n}}\left(10+\frac{4^{n}}{4^{n}}\right)=\frac{1}{4^{n}}\left(10+\frac{4^{$ سى: راى آرايى نامرتب [۸ م. . . ۱ ا for (i=1; i <= n; i++){ for (j=1; j =1-1; j++){ if(A[i]+A[i]==K)return 1; تومینم: دراین الگوریخ زوجهای ولب تک بهتل برای م يكوريك حلقه عدد اول را پيهاييل مي كندويك صلة عدد دوم و کلکردن عجم آن دو . اگرهم برتزين خالب] returno; سانشاه (Yeturne) طعة ها تام مي سونر. $T(n) = C_i(n) + C_i \sum_{j=1}^{n} f_j = C_i(n) + C_i (n+y(n)-n)$ =(C1-Cx)n+(Cx)n=An+Bn=Q(n)

Kian King.

-	
	عالت دوم برای آرایی و تب سُده ی n]
P1 = 1;	C, (1)
P2=n;	C ₁ (1)
While $(P1 < P2)$	Crtm
if(A[P]+A[P2]==K)	
return1;	توصيم: دراين الكورستم أرايه ورتب سره را
}	م گیریم و دولشاره گررانقریف می کینم که
if(A[P1]+A[P2]>K)	اول ابترای بازه وآخری انتهای بازه
P2;	می باشد. دراول کار ابتدای بازه برابراو بین
3	خاندارایه و درانتهابرابرا خری خانداست.
else{	سس درون حلقه تا موقعی کمرابترا از
P1++;	انتها كو يك نتراست عمليات حست وجو
3	را انجام مي رهيم. اكر مقوار ظان ابتدابه كلاوه
]	مقدارظ ندانس السودك دوعدد
retum o;	وقارير اين دوظ نه هستند. (Yeturn 1) و
	كارتام م سود اكر جمع مقاديراين دوغانه
ریم واگر از مقدار Xکتربود استدای بازه را	از X کبورکرد انتهای بازه را یکی برعب میا
می سور تا وقت که بر کابرسیم . اکرهم که X	یک به علومی بریم. و دوباره این کال کرار ا
ر و حلقه را م می میشود. (return o).	تبدانشد، ابترابا انتهای بازه برابرص سو
ش(۱-۱) است وحداقل بابر.	بعداد اجرای دستورات دامل صلقر صداک
T(n) = C1(1) + Cr(1) + Cr tm	
Ton1 = (C++C+) + C+(n-1) = An	البرترين حالت مي گيريم: +B
=0	(n)
المرزاز حالت ورتب نشاه است.	پس درحالت ورتب سنده زمان اجرا
	* *

Date:

011 leg (n!) = leg (n(n-1)(n-r)(n-r)...(r)(1)) = leg n+legn-1+legn-1+legn-r+... + $leg_1 + leg_1 < leg_{n+leg_{n+\dots}} + leg_{n+leg_{n}} = leg_{(n\times n\times n\times n\times n)}$ $=leg(n^{r})$ => 3c,no>0/4n>no legini) (clg(nn) (slg(n!) = O(lg(nn))) 0 leg(n!) = leg(n(n-1)(n-r)...(r)(1)) = leg(n+leg(n-1)+leg(n-r)+...+lg1> log n + lg(n-1) + ··· + log(t) > log t) + log t + ··· + log t = 1, log(t) (Vn>r land logn > rnlog+>logn x plog > tlogn a Deg(n!) > + legn =>]c, no>o Vn>nolog(n!)> clg(n!) = D(gon) $\Omega_{9} \longrightarrow J_{9}(n!) = \Theta(J_{9}n^{n})$ b) degin = logny with non = nlogny = y = ntan = Y D FC, ocr on 0> 0 | Un > no CIXIX | < CXX T > T = QU >c1=+ , C1=1 $\mathcal{O}_{\mathcal{S}} = \theta(1)$ c) $\lim_{n\to\infty}\frac{h!}{h!}=\lim_{n\to\infty}\frac{(2)^n}{(2)^n}\frac{(1+G(\frac{1}{n}))}{(n+G(\frac{1}{n}))}=\lim_{n\to\infty}\frac{h!}{(n+G(\frac{1}{n}))}=\infty \Rightarrow n!=\omega(r^n)$ d) $\lim_{n\to\infty} \frac{n!}{n^n} = \lim_{n\to\infty} \frac{(+)^n \sqrt{1} \ln (1+\theta(+))}{n^n} = \lim_{n\to\infty} \frac{n^n e^{-n}}{n^n} = \lim_{n\to\infty} e^{-n} = 0$ $\Rightarrow n! = o(n^n)$

Kian King-

Date:

Subject:

a) bli; f(n) = n $g(n) = n^r$ \vdots f(n) = n f(n) =

b) ble: f(n)=n g(n)=n'

 $n+n^r=\Theta(n^r)=\Theta(\min\{n,n^r\})=\Theta(n)$

>> O(n')= Om)x.

C) = f(n) E O (g(n)) =>] Co No>o | V n>no f(n) & g(n)

ره کا: اخلیق فرون اخلیق فرون اخلیق فرون اخلیق فرون اخلیق فرون اخلیق فرون ا

isposileg -> log, 1 < leg(f(r)) < leg(c g(n))

 $o \leq lg(f(n)) \leq lg(cg(n)) = lg(+lg(gm))$

 $\Rightarrow = \lg g(m) \left(\frac{\lg c}{\lg g(n)} + 1 \right) \leq \lg (g(n)) \left(\lg c + 1 \right) = c' \lg (g(n))$

 \Rightarrow o \leq f(n) \leq C' $|g|g(n) \Leftrightarrow |g|f(n) \in O(|g|(f(n)))$

 \implies lg(f(n)) = O(lg(f(n)))

A) $dd\dot{\epsilon}$: f(n) = Yn g(n) = n $f^{(n)} = Y^n = \epsilon^n$ $f^{(n)} = Y^n = \epsilon^n$ $f^{(n)} = Y^n = \epsilon^n$ $f^{(n)} = Y^n = \epsilon^n$

e) blé: f(n) = h, f(n) = h = 0(h)

f) $c_{n,r}$: $f(n) \in O(g(n)) \iff \exists c, n, r > 0 \mid \forall n > n > 0 \leq g(n) \iff \exists f(n) \leq g(n) \implies f(n) \leq g(n) \iff f(n) \leq g(n)$

 $g(n) > c'f(n) \Leftrightarrow g(n) \in SL(f(n))$ $\Rightarrow g(n) = SL(f(n))$

Kian King.

Date: Subject:

9) bic: $f(n) = Y^n \Rightarrow f(x) = Y^{+}$ $Y^n = \Theta(Y^{+}) \iff (Y^{-} = \Omega(Y^{+})) / (Y^{-} = \Omega(Y^{+})$

h) = 0(f(n)) (r = 0(r))

 $f(n) + g(n) = \Theta(f(n)) \Leftrightarrow \exists a, cr, n, > 0 \mid \forall n > n.$

c.fm<fm+gm<crtin

 $g(n) = O(f(n)) \Rightarrow g(n) \in O(f(n)) \Rightarrow \exists C_{\delta}n_{\delta} > o(f(n) > o(f(n))) \Rightarrow \exists C_{\delta}n_{\delta} >$

 $\Rightarrow Cr = 1$ $\Rightarrow f(n) + g(n) = g(n)$

 $\Rightarrow f(n) + Off(n) = \Theta(n)$

Α	В		0	2	w	0	· Vr
η ^γ	n٣	Yes	yes	No	No	No	
logkn	3,	yes	ye5	No	No	No	
NK	Cn	yes	Yes	No	No	No	
rn	y Dir	No	No	yes	yes	No	
1090	logn	Yes	No	Yes	No	Yes	
. Flogn	Nr	yes!	No	yes	No	yes	
'nΙ	NYN	No	No	yes	yes	No	
TF logn	NEIGH	No	No	yes	yes	No	
(legn)!	rrn	Ye5	Yes	No	No	No	
109(109m)	(logn) logn	Yes	No	Yes	No	Yes	
V •		I				anamaa aanaa aanaa aanaa aanaa aa aa aa aa a	
	120 S	A Pest				iganasiya waxa ka	
nanamanaman		***************************************					

Kian King_