Midterm Exam 2

Date : Wednesday 29th March, 2023, from 4:30 pm to 6:30 pm

Total Marks : 50

Notes: : All questions are scored (no optionals).

Do not forget to write your name and student ID below.

Fully circle your selected option in the MCQ section.

Name:	Student ID:

Reference:

1 Fill In the Blanks:

Instructions

- $\,\rhd\,$ There are total 16 questions in this section that carry total of 28 marks.
- \triangleright There is no negative marking in this section.

Questions

1. (2 points) Name two reasons why a sinusoidal electromagnetic waveform is used as a carrier waveform by the modulator (and frequency upconvertor) to transmit the informative messages.

2. (2 points) What are two advantages of a digital communication system compared to an analog communication system.

pically
chemes
ATOTTO,
2 (you

7.	(2 points) State the complex-envelope (CE) notation of the transmitted modulated signal $s(t)$ as a
	function of the inphase and the quadrature modulating information components s_i and s_q and the
	carrier frequency f_c . From this CE notation, derive (show the steps of your derivation) the cartesian
	coodinate representation (i.e., the inphase/quadrature notation) and the polar coodinate representation
	(i.e., the magnitude and representation) of $s(t)$.

8. (1 point) State the two requirements for the inphase and the quadrature signal waveforms $g_i(t)$ and $g_q(t)$ so that they can be used at a modulator.

9. (2 points) Suppose a digital communication system sends one bit at a time. The modulator transmits $s_0(t)$ to send bit X=0 and it uses $s_1(t)$ to send bit X=1, where $s_0(t)$ and $s_1(t)$ are the modulated waveforms shown in Fig. 1. Draw appropriate $g_i(t)$ and $g_q(t)$ given these two modulated waveforms. Represent $s_0(t)$ and $s_1(t)$ as vectors in a two-dimensional space whose \hat{i} and \hat{j} vectors are $g_i(t)$ and $g_q(t)$, respectively.

Figure 1: Two signals for Problem 9.

10. (2 points) Given that the transmitter uses two orthogonal waveforms $g_i(t)$ and $g_q(t)$ for transmitting the modulated signal s(t), the noise component at the receiver - regardless of what its exact shape is - can always be written as $n(t) = n_i g_i(t) + n_q g_q(t) + u(t)$, where u(t) is the component of the noise n(t) that lies in a vector subspace that is orthogonal to the two-dimensional space formed by $g_i(t)$ and $g_q(t)$, i.e., the dot product of u(t) with either $g_i(t)$ or $g_q(t)$ is zero. Show that u(t) - no matter how powerful or strong it is - has no effect on the receiver (demodulator) operation.

11. (1 points) Let m_n^2 be the power in a normalized version $m_n(t)$ of the message signal m(t) – where the normalization is performed such that the minimum value of $m_n(t) = -1$. Let a_{mod} be the modulation index of the DSB-FC (Conventional) AM. Express the power efficiency η_{AM} of the conventional AM as a function of m_n^2 and a_{mod} .

12. (2 points) Name four blocks that a digital communication system has which an analog communication system does not have.

13.	(2 points) Show that the F.T. of a signal that exhibits time-domain symmetry (i.e., it is an even signal $s_e(t) = s_e(-t)$) is real-valued.
14.	(2 points) Prove that if modulo-two sum of two binary error patterns \mathbf{e}_1 and \mathbf{e}_2 is a valid binary codeword \mathbf{c} , each error pattern has the same syndrome.
15.	(1 points) Why is DSB-SC AM preferred over DSB-FC AM?
16.	(1 points) Why is DSB-FC (Conventional) AM preferred over DSB-SC AM?
2	Multiple Choice Questions:
In	structions
	\triangleright This is MCQ Version I of IV.
	▶ There are total 15 questions in this section that carry a maximum of 22 marks.

- \rightarrow If the question is answered incorrectly, negative one-fourth of the total marks shown next to each question will be given.
- ▷ Circle the correct option. No tick marks or partial circling, etc.
 - \rightarrow If more than one option is circled, zero marks will be given for the question.
- \triangleright Note: Volume $V(N; t_c)$ of a Hamming Sphere of radius t_c is defined as the number of (binary) codewords of length N bits whose Hamming weight is less than or equal to t_c bits.

Questions

- 1. (1 points) A digital modulation scheme that transmits $s_m(t) = \cos(2\pi f_c t + (2m+1)\pi/4)$ for m = 0, 1, 2 and 3 is called
 - (a) analog phase modulation scheme
 - (b) digital quaternary phase modulation scheme
 - (c) digital quaternary amplitude and phase modulation scheme
 - (d) analog quaternary amplitude modulation scheme
- 2. (1 points) For a perfect channel code, the minimum Hamming distance d_{\min}^H should be:
 - (a) can be either even or odd
 - (b) can be either even or odd depending on the specific channel code
 - (c) odd
 - (d) even
- 3. (1 points) The syndrome vector computed as $\mathbf{s} = \mathbf{H} \mathbf{r}$ using the parity check matrix \mathbf{H} uniquely identifies the error pattern \mathbf{e} affecting the received codeword $\mathbf{r} = \mathbf{c} + \mathbf{e}$. This statement is
 - (a) true
 - (b) false
- 4. (1 points) The syndrome vector computed as $\mathbf{s} = \mathbf{H}\mathbf{r}$ using the parity check matrix \mathbf{H} uniquely identifies the transmitted codeword. This statement is
 - (a) true
 - (b) false
- 5. (1 points) A two-bit repetition code (N; K = 2) of rate r = 2/N (for N even) is defined as follows. The encoder takes a pair of bits, and repeats it N/2 times (as an example, a rate r = 2/6 code repeats an input bit-pair $\{0; 1\}$ N/2 = 3 times such that encoded bit stream is $\{0; 1; 0; 1; 0; 1; 0; 1\}$). Compared to the standard one-bit repetition code (N' = N/2; K = 1) of rate r = 1/N' = 2/N (that repeats one bit N' = N/2 times, where N is even), the probability of codeword detection error for this two-bit repetition code of length N bits operating over the BSC(p) remains
 - (a) undetermined
 - (b) the same

- (c) becomes smaller
- (d) becomes larger
- 6. (2 points) Suppose a modulated transmitted signal is given as $s(t) = 2\cos(2000t + \pi/6)$ for $0 \le t \le 1$ T_{sym} , where the symbol duration $T_{sym} = 8$ seconds. What are s_i and s_q ?

(a)
$$s_i = 0.866, s_q = 0.5$$

(b)
$$s_i = \sqrt{2}, s_q = \sqrt{2}$$

(c)
$$s_i = 3.46, s_q = 2$$

(d) $s_i = 1.73, s_q = 1$

(d)
$$s_i = 1.73, s_q = 1$$

- 7.)(2 points) Suppose a CN of degree $d_c = 3$ at an LDPC decoder receives the messages from the two connected VNs (the message from a VN contains the probability that the respective VN equals 1) that are 0.9 and 0.1. What message should the CN send to the third VN connected to it?
 - (a) 0.5
 - (b) 0.09
 - (c) 0.91
 - (d) 0.82
- (8.)(2 points) Suppose a VN of degree $d_v = 3$ at an LDPC decoder receives the messages from the two connected CNs that are 0.9 and 0.1. What message should the VN send to the third CN?
 - (a) 0.82
 - (b) 0.5
 - (c) 0.91
 - (d) 0.09
- 9. (2 points) What is the probability of codeword decoding error for the minimum Hamming distance decoder operating at the output of the BSC(p) when the transmitter sends a rate r = 1/5 code that maps bits X = 0 to a codeword $\{1, 1, 0, 0, 1\}$ and bit X = 1 to another codeword $\{1, 0, 1, 1, 1\}$?

(a)
$$1 - p^5 - 5p^4(1-p)$$

(b)
$$1 - (1-p)^5 - 5p(1-p)^4$$

(c)
$$\sum_{n=2}^{5} {5 \choose n} (1-p)^n p^{5-n}$$

(a)
$$1 - p^5 - 5p^4(1 - p)$$

(b) $1 - (1 - p)^5 - 5p(1 - p)^4$
(c) $\sum_{u=2}^{5} {5 \choose u} (1 - p)^u p^{5-u}$
(d) $\sum_{u=3}^{5} {5 \choose u} p^u (1 - p)^{5-u}$

(1 points) A transmitted conventional DSB-FC AM signal is given as $s(t) = 5\cos(2\pi f_c t) + m(t)\cos(2\pi f_c t)$. Suppose $m(t) = 3.5 \sin(20\pi t)$ is the message signal. What are the values of modulation indices a_{mod} and the power efficiency η_{AM} ?

(a)
$$a_{\text{mod}} = 0.7$$
; $\eta_{\text{AM}} = 0.2$

(b)
$$a_{\text{mod}} = 1.75; \, \eta_{\text{AM}} = 0.6$$

- (c) $a_{\text{mod}} = 0.35$; $\eta_{\text{AM}} = 0.25$
- (d) $a_{\text{mod}} = 0.5$; $\eta_{\text{AM}} = 0.333$
- 11. (1 points) What is the maximum possible number of unique syndrome vectors that the decoder of a (N;K) binary linear code with rate K/N can encounter?

 - (b) 2^{N-K} (c) 2^{N-2K}
- 12. (3 points) The $V(N;t_c)$ is related to the rate r=K/N of the channel code with error correction capability of t_c bits as

 - $\begin{aligned} &\text{(a)} \ \ r \leq \frac{\log_2(V(N;t_c)}{N} \\ &\text{(b)} \ \ r \leq 1 \frac{\log_2(V(N;t_c)}{N} \\ &\text{(c)} \ \ r \geq \frac{\log_2(V(N;t_c)}{N} \\ &\text{(d)} \ \ r \leq 1 + \frac{\log_2(V(N;t_c)}{N} \end{aligned}$
- 13. (1 points) Linear algebraic representation of the modulation (transmitter) and demodulation (receiver) allows us to think of them as
 - (a) demodulator implements synthesis followed by analysis, the modulator performs analysis followed by synthesis
 - (b) modulator performs analysis operation, the demodulator performs synthesis operation
 - (c) modulator implements synthesis followed by analysis, the demodulator performs analysis followed
 - (d) modulator performs synthesis operation, the demodulator performs analysis operation
- (1 points) A message $m(t) = 2\sin(2000\pi t)$ is used in a Conventional AM (DSB-FC) system which has a modulation index $a_{\text{mod}} = 0.71$. What is the power efficiency η_{AM} ?
 - (a) 1/4
 - (b) 1/6
 - (c) 1/3
 - (d) 1/5
- 15. (2 points) The Hamming (N = 7, K = 4, r = 4/7) code is a perfect code because
 - (a) $2^N = 2^K \times V(N, t_c)$ for this Hamming code (b) $2^N \neq 2^K \times V(N, t_c)$ for this Hamming code (c) $2^N \neq 2^K/V(N, t_c)$ for this Hamming code

 - (d) $2^N = 2^K/V(N, t_c)$ for this Hamming code