Semaine 11 : Polynôme d'endomorphsime, début réduction

Hussein El gouch

Exercice 1 : Matrices nilpotentes et trace des puissances

Enoncé:

Soit $A \in M_n(\mathbb{C})$. Montrer que A est nilpotente si et seulement si, pour tout $p \geq 1$, on a $Tr(A^p) = 0$.

Exercice 2 : Polynôme caractéristique de la comatrice

Enoncé:

Soit $A \in M_n(\mathbb{R})$. Calculer le polynôme caractéristique de la comatrice de A.

Exercice 3: Puissances triangulaires supérieures

Enoncé:

Soit $A \in M_n(\mathbb{K})$ une matrice inversible. Montrer que A est triangulaire supérieure si et seulement si, pour tout $k \geq 2$, A^k est triangulaire supérieure.

Le résultat subsiste-t-il si on ne suppose plus que A est inversible?

Exercice 4 : Polynôme caractéristique évalué en une autre matrice

Enoncé:

- (1) Soient $M, N \in M_n(\mathbb{C})$. Montrer que MN est inversible si et seulement si M et N sont inversibles.
- (2) Soient $A, B \in M_n(\mathbb{C})$. Montrer que

$$\chi_A(B) \in GL_n(\mathbb{C}) \iff \operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \varnothing.$$

1

Exercice 5 : Puissance d'une matrice et polynôme d'endomorphisme

Enoncé:

Soit $J \in M_n(\mathbb{R})$ la matrice ne comportant que des 1. Déterminer un polynôme annulateur pour J. En déduire la valeur de J^k pour $k \geq 2$.

Exercice 6: Endomorphisme et valeurs propres

Enoncé:

Soit $E = C([0;1], \mathbb{R})$. Si $f \in E$, on pose

$$T(f): x \in [0;1] \mapsto \int_0^1 \min(x,t) f(t) dt.$$

- (a) Vérifier que T est un endomorphisme de E.
- (b) Déterminer les valeurs propres et les vecteurs propres de ${\cal T}.$

Exercice 7 : Décomposition de l'espace

Enoncé:

Montrer qu'il existe un entier naturel non nul r, des nombres complexes distincts $\lambda_1, \lambda_2, \ldots, \lambda_r$, ainsi que des entiers naturels non nuls m_1, m_2, \ldots, m_r , tels que :

$$\mathbb{C}^n = \bigoplus_{i=1}^r E_i,$$

où pour $i \in [1; r], E_i = \ker(a - \lambda_i \mathrm{id}_{\mathbb{C}^n})^{m_i}$.

Montrer que pour tout $t \in [1; r], V \in \mathbb{R}$, on a :

$$||e^{at}|| \le e^{\lambda t} \sum_{k=0}^{m-1} \frac{|t^k|}{k!} ||a_i - \lambda id_{E_i}||^k.$$

Exercice 8 : Décomposition de l'espace vectoriel

Soit $P(\lambda) = \prod_{i=1}^{r} (\lambda - \lambda_i)^{m_i}$. On pose:

$$E = \bigoplus_{i=1}^{r} N_i,$$

où N_i est stable par a, et :

$$N_i = \ker ((a - \lambda_i \mathrm{id}_E)^{m_i}).$$

À démontrer :

1. $\dim(N_i) = m_i$.

Exercice 9

Soient A et B deux matrices de $M_n(\mathbb{C})$ et Φ l'endomorphisme de $M_n(\mathbb{C})$ déterminé par :

$$\Phi(M) = AM - MB$$
 pour tout $M \in M_n(\mathbb{C})$.

- (a) Soient α une valeur propre de A et β une valeur propre de B. Montrer que $\alpha \beta$ est valeur propre de Φ .
- (b) Soit $M \in M_n(\mathbb{C})$. À quelle condition la matrice $\chi_A(M)$ n'est-elle pas inversible?
- (c) Soit λ une valeur propre de Φ . Montrer qu'il existe α valeur propre de A et β valeur propre de B telles que $\lambda = \alpha \beta$.