Tema 2

Problemas complementarios

Ejercicio 1. Sea H un subgrupo de un grupo G. Supongamos que el producto de dos clases cualesquiera de la forma xH y yH es otra clase de la forma zH. Demostrar que H es un subgrupo normal de G.

Solución. Si el producto de las clases xH y yH está bien definido y es zH, como xy ha de estar en la clase zH, los elementos xy y z, definen la misma clase y por tanto podemos suponer que el producto de las clases dadas es xyH.

Dado ahora $a \in G$, hemos de ver que $aHa^{-1} \subseteq H$. El producto de las dos clases $aH \vee a^{-1}H$, ha de ser la clase H, con lo que

$$aHa^{-1}H = (aHa^{-1})H = H,$$

lo que implica que $aHa^{-1} \subseteq H$.

Ejercicio 2. Si un elemento a de un grupo G tiene exactamente dos conjugados, entonces G admite un subgrupo normal propio.

Solución. Sea b el conjugado de a distinto de a. Entonces bab^{-1} es también conjugado de a. Además $bab^{-1} \neq b$, ya que si fuera $bab^{-1} = b$ entonces $ab^{-1} = 1$, con lo que a = b, que es una contradicción. De esta forma $bab^{-1} = a$, con lo que ab = ba. Considermos el subgrupo $H = \langle a, b \rangle$ de G. Dado que a y b conmutan, cada elemento $x \in H$ es de la forma $x = a^m b^n$ para ciertos enteros m y n.

Veamos que $H \neq G$. En efecto, si H fuese igual a G como existe $x \in G$ tal que $b = xax^{-1}$, x ha de ser de la forma $x = a^n b^m$, con lo que

$$b = xax^{-1} = a^m b^n a b^{-n} a^{-m} = a.$$

que es absurdo.

Para concluir es suficiente demostrar que H es un subgrupo normal de G. Hemos de ver que si $x \in H$ e $y \in G$, entonces $yxy^{-1} \in H$. Como $x = a^mb^n$, basta ver que ya^my^{-1} , $yab^ny^{-1} \in G$, pues $ya^mb^ny^{-1} = ya^my^{-1}yb^ny^{-1}$. Ahora bien, $ya^my^{-1} = \left(yay^{-1}\right)^m$, y como yay^{-1} es un conjugado de a, se

tiene $yay^{-1} \in \{a, b\}$. Análogamente con yb^ny^{-1} y se concluye.

Ejercicio 3. Sea N un subgrupo normal de índice finito en un grupo G:

$$[G:N]=n.$$

Sea t un elemento de G y sea h el mínimo entero positivo tal que $t^h \in N$. Demostrar que h divide a n.

Solución. Si h es el mínimo entero positivo tal que $t^h \in N$ entonces también es el mínimo entero positivo tal que $(tN)^h = N$. Luego h = o(tN) es el orden del elemento tN en el grupo cociente G/N. De esta forma, el teorema de Lagrange concluye que h divide a n.

Ejercicio 4. Sea G un grupo finito y sean H y K subgrupos cuyos índices son primos entre sí. Probar que G = HK.

Solución. Por el segundo teorema de isomorfismo podemos escribir:

$$[G: H \cap K] = [G: H][H: H \cap K] = [G: K][K: H \cap K].$$

De esta forma, puesto que [G:H] y [G:K] son primos entre sí, cada uno de los factores primos que aparece en la descomposición de [G:H] ha de estar en $[K:H\cap K]$, y por tanto

$$[G:H]$$
 divide a $[K:H\cap K]$,

con lo que

$$[G:H]o(H)$$
 divide a $[K:H\cap K]o(H)$,

lo que significa que o(G) divide a card(HK), lo que implica que G = HK.

Ejercicio 5. En las mismas condiciones del ejercicio anterior probar que

$$G/(H \cap K) \simeq G/H \times G/K$$
.

Solución. Sabemos por la teoría (observación 1.12.12) que existe un morfismo inyectivo de grupos

$$G/(H \cap K) \hookrightarrow G/H \times G/K$$
,

y por tanto basta ver que ambos grupos tienen el mismo orden. Por ser $card(HK)o(H\cap K)=o(H)o(K)$, invirtiendo y multiplicando por $o(G)^2$ tendremos

$$\frac{o(G)}{card(HK)}\frac{o(G)}{o(H\cap K)} = \frac{o(G)}{o(H)}\frac{o(G)}{o(K)},$$

y por tanto $o(G/(H \cap K)) = o(G/H \times G/K)$.

Ejercicio 6. Si N es un subgrupo normal de índice finito de un grupo G y H es un subgrupo de orden finito de tal forma que [G:N] y o(H) son primos entre si, entonces HN.

Solución. Sabemos que NH es un subgrupode G, con lo que NH/N es también un subgrupo de G/N, y por tanto d = o(NH/N) divide a [G:N]. Ahora bien, por ser:

$$d = o(NH/N) = o(H/(H \cap N)) = \frac{o(H)}{o(H \cap N)},$$

se tiene que también d divide a o(H) y por tanto d=1 con lo que NH=N, lo que implica que $H\subset N.$

Ejercicio 7. Sea G un grupo y Z(G) su centro. Probar que si G/Z(G) es un grupo cíclico, entonces G es abeliano.

Solución. Que G/Z(G) sea cíclico, quiere decir que está generado por una clase de la forma tZ(G) para cierto $t \in G$. Esto proporciona la siguiente descomposición en clases de G:

$$G = \bigsqcup_r t^r Z(G).$$

De esta manera, dados $a, b \in G$, serán de la forma $a = t^r c$, $b = t^s c'$ para ciertos enteros $c, c' \in Z(G)$. Ahora tenemos

$$ab = t^r c t^s c' = t^{r+s} c c' = t^s t^r c' c = t^s c' t^r c = ba,$$

donde hemos usado que c y c', al ser elementos del centro, conmutan entre si y con las potencias de t. Con ello se concluye.

Ejercicio 8. Sea G un grupo H y K dos subgrupos suyos. Consideremos la aplicación

$$f: H \times K \to G: f(h, k) = hk.$$

Probar que f es un isomorfismo si y sólo si:

- i) hk = kh, para todo $h \in H$ y $k \in K$.
- *ii)* $H \cap K = \{1\}$
- iii) G = HK.

Solución. Veamos en primer lugar los siguientes puntos.

a) f es un morfismo de grupos si y sólo si se cumple la condición i).

En efecto si f es un morfismo entonces $f(h',k) \cdot f(h,k') = f(h'h,kk')$, lo que equivale a que h'khk' = h'hkk', esto es kh = hk.

b) Se cumple que $\ker(f) = H \cap K$.

En efecto si $h \in H \cap K$, entonces $(h, h^{-1}) \in \ker(f)$. Recíprocamente si $(h, k) \in \ker(f)$ entonces hk = 1, con lo que $h = k^{-1} \in H \cap K$.

Con ello se concluye fácilmente el enunciado del ejercicio.

Ejercicio 9. Si G es un grupo y H es un subgrupo normal tal que [G:H]=n, probar que para todo elemento $g \in G$ se tiene $g^n \in H$. Dar un ejemplo que muestre que lo anterior no es cierto si H no es normal.

Solución. Puesto que G/H es un grupo de orden n, cualquier elemento suyo $gH \in G/H$ cumple que $(gH)^n = g^nH = H$, de donde $g^n \in H$.

Un contraejemplo a este hecho viene dado por el grupo D_3 , cuyo subgrupo $H = \langle f \rangle$ no es normal y cumple [G:H] = 3, pero $(gf)^3 = gf \notin H$.

Ejercicio 10. Sea $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ y consideremos el grupo multimplicativo (\mathbb{R}^*, \cdot) . Demostrar que no existe ningún subgrupo de índide finito impar en (\mathbb{R}^*, \cdot) .

Solución. Procedamos por reducción al absurdo y supongamos que existe un subgrupo H de índice impar $m \geq 3$. Entonces podemos escribir a \mathbb{R}^* como unión disjunta

$$\mathbb{R}^* = H \cup g_1 H \cup ... \cup g_{m-1} H, g_i \notin H \ (1 \le i \le m-1).$$

Ahora por ser m impar, existe un valor real para $a = \sqrt[m]{g_1}$. Como $[\mathbb{R}^* : H] = m$, por el ejercicio anterior, todo elemento de \mathbb{R}^* elevado a m pertenece a H; en particular $a^m = g_1 \in H$, lo que supone una contradicción.

Ejercicio 11. Un grupo abeliano finito G (que supondremos dado en notación aditiva) se dice que es p-elemental (donde p es p-rimo) si $p \cdot g = 0$ para todo elemento $g \in G$. Probar que todo grupo abeliano p-elemental es suma directa de grupos cíclicos de orden p.

Solución. Por el teorema de estructura podemos escribir

$$G = \mathbb{Z}/m_1\mathbb{Z}. \times \mathbb{Z}/m_2\mathbb{Z}. \times ... \times \mathbb{Z}/m_r\mathbb{Z}$$

De esta forma si denotamos por $e_i \in G$ al generador correspondiente a (0, ..., 1, ...0), se tiene que su orden es m_i , pero por ser también $p \cdot e_i = 0$, ha de cumplirse que p es múltiplo de m_i , con lo que $p = m_i$ y se concluye.

Ejercicio 12. Clasificar todos los grupos abelianos de orden $5^3 \cdot 7^2$. Solución. En primer lugar realizamos todas las particiones posibles de los dos exponentes, 3 y 2, en sumandos decrecientes:

$$3 = 3$$
 $2 = 2$
 $3 = 2 + 1$ $2 = 1 + 1$
 $3 = 1 + 1 + 1$

y combinamos cada partición de la primera columna con cada una de la segunda, para obtener las siguientes descomposiciones de 5^37^2 en factores decrecientes: $\{5^37^2\}, \{5^37,7\}, \{5^27^2,5\}, \{5^27,5\cdot7\}, \{5\cdot7^2,5,5\}, \{5\cdot7,5\cdot7,5\},$ lo que proporciona los factores de torsión de todos los grupos abelianos de orden $5^3\cdot7^2$.

Ejercicio 13. Supongamos que G es un grupo de orden pq, con p, q primos distintos, y que existe un homomorfismo sobreyectivo

$$g:G\to\mathbb{Z}_q.$$

Dempostrar que G tiene un subgrupo H isomorfo a \mathbb{Z}_q .

Solución. Puesto que g es sobreyectivo, existe $a \in G$ tal que $g(a) = \overline{1}$ (la clase del 1 en \mathbb{Z}_q y generador de este grupo). De esta forma, puesto que o(G) = pq se tiene $a^{pq} = 1$, esto es $(a^p)^q = 1$. De esta forma tenemos dos posibilidades

$$a^p = 1$$
$$a^p \neq 1.$$

En el primer caso se tiene que $g(a^p) = 0$, esto es $pg(a) = p \cdot \overline{1} = \overline{0}$. Como $\overline{1}$ es el generador del grupo cíclico \mathbb{Z}_q , ello implica que p es múltiplo de q, lo que es una contradicción.

De esta forma, $b = a^p \neq 1$, y como $b^q = 1$, el subgrupo $\langle b \rangle \subset G$ es cíclico de orden q, y por tanto isomorfo a \mathbb{Z}_q .

Ejercicio 14. Sean p, q números primos distintos y supongamos que o(G) = pq, y que existen homomorfismo sobreyectivos $f: G \to \mathbb{Z}_p$ y $g: G \to \mathbb{Z}_q$. Demostrar que entonces $G \cong \mathbb{Z}_{pq}$, esto es, G es cíclico.

Solución. Si llamamos $H = \ker(f)$, entonces $H \triangleleft G$, y como $G/H \cong \mathbb{Z}_p$, se sigue o(H) = q. Análogamente si llamamos $K = \ker(g)$, se tiene $K \triangleleft G$ y o(K) = p.

Por otra parte, se tiene que HK = KH (ya que H y K son normales), con lo que HK es un subgrupo de G. Calculemos su orden:

$$o(HK) = \frac{o(H)o(K)}{o(H \cap K)} = \frac{pq}{1} = o(G).$$

Así G = HK. Veamos que ab = ba. Por una parte $ab \in aK = Ka$, con lo que

$$ab = b^{j}a$$
, para cierto $j < ord(b)$.

Pero también $ab \in Hb = bH$, y por tanto

$$ab = ba^i$$
, para cierto $i < ord(a)$.

En conclusión $b^ja=ba^i$, esto es $b^{j-1}=a^{i-1}\in H\cap K$ con lo que j=1 e i=1, y así ab=ba.

De esta forma, por la proposición 1.10, ord(ab) = pq, lo que implica que G es el grupo cíclico de orden pq.