Astronomisches Institut

Universität Bern Betreuer: Linda Geisser, Martin Lasser

Prof. Dr. A. Jäggi ExWi Zi. 204, Zi. 212

linda.geisser@unibe.ch martin.lasser@unibe.ch

Sprechzeiten: Bitte vorbeikommen

Abgabetermin: 30. Mai 2025

Numerische Methoden der Physik

Serie 5 - Fourierreihe und Filterung

GRACE-Akzelerometer

Aufgaben

Für die Aufgaben steht der Datensatz GRCAT07001.ACC zur Verfügung (ASCII-Datei). Der Aufbau der Datei ist im Header angegeben. Verwenden Sie für alle Aufgaben die linearen Beschleunigungen in S-Richtung $[mm/s^2]$. Die Zeit in der ersten Spalte ist in Bruchteilen eines Tages gegeben. Zur schnelleren Berechnung ist ein Sampling von 10 s zu verwenden.

Filterung

Erzeugen Sie eine gefilterte Messreihe für die GRACE-A S-Akzelerometerdaten (along-track) mit einem gleitenden Polynom vom Grad q über jeweils 2n+1 aufeinanderfolgende Messwerte. Das Zeitfenster der verwendeten Messungen ist um den gefilterten Funktionswert zu zentrieren. Es sollen q und n wählbar sein. Verwenden Sie $q \in \{0,1,2\}$ und eine Fensterbreite von 10 Minuten.

- Stellen Sie die ursprünglichen sowie die gefilterten Messwerte und den Hochpassanteil im unproblematischen Teil dar. Erzeugen Sie auch einen Zoom für den Zeitbereich einer Stunde.
- Erzeugen Sie ein Amplituden- und Leistungsspektrum (z.B. durch Fast Fourier Transformation mittels der *Numpy*-Funktion fft) der ursprünglichen sowie der hochpass- und tiefpassgefilterten Reihen. Diskutieren Sie den Bereich mit Perioden bis zu 30 Minuten.
- Wenden Sie sich nun den Messzeiten zu, in welchen das gleitende Polynom nicht gebildet werden kann. Welche sinnvollen Filterwerte können hier definiert und berechnet werden? Implementieren Sie eine entsprechende Lösung.

Diskrete Fouriertransformation

Stellen Sie die GRACE-A S-Beschleunigungen durch folgende Funktion dar:

$$a(t) = a_0 + \sum_{i=1}^{m} (a_i \cos(i\omega t) + b_i \sin(i\omega t)) \quad \text{mit} \quad \omega = \frac{2\pi}{|t_N - t_1|}$$
 (1)

• Für die Grundperiode des Signals werde die Länge des Datenintervalls hergenommen. Bestimmen Sie die Unbekannten a₀, a_i, b_i, i = 1,..,m der Fourierreihe (Gl. 1) mit der Methode der kleinsten Quadrate unter der Annahme, sämtliche Beobachtungen seien unabhängig und von gleicher Genauigkeit. Stellen Sie für die unterschiedlichen Werte von m ∈ {30, 120, 720, 1440} die Messwerte, die bestimmte Funktion, sowie die Verbesserungen in einer Graphik dar. Wie gross ist der maximale Entwicklungsgrad m_{max} der Reihe?

• Verwenden Sie die zuvor bestimmten Koeffizienten der Fourierreihe und stellen Sie das Amplitudenspektrum für die verschiedene Werte von m dar. Welche Perioden erkennen Sie in den Messungen? Benutzen Sie auch die Numpy-Funktion fft, um ein Amplitudenspektrum darzustellen und mit dem zuvor berechneten Spektrum zu vergleichen.

Abgabe

Laden Sie Ihr(e) Skript(e) und die Plots sowie eine ein- bis zweiseitige, ordentlich formatierte Zusammenfassung der Ergebnisse auf $ILIAS \rightarrow Numerische Methoden der Physik \rightarrow Abgaben$ hoch. Verwenden Sie bitte die Skript- und Dateinamen:

```
\label{eq:serie5} \begin{split} & \texttt{serie5}\_< Nachname > .py \\ & \texttt{serie5}\_< Nachname > .pdf \end{split}
```

Abgabetermin ist Freitag, der 30. Mai 2025.