Specification: Historical

- Original approaches considered equivalence only
 - Model M₁ implements model M₂ exactly
- Duality between model and specification
 - The specification is itself a model
 - But the big innovation is that it can be a partially specified model
 - And can have loose definitions of timing, e.g. something eventually happens
 - Specification is typically higher-level, abstract behavior
 - Language considerations
 - Specification language should be sufficiently different from the implementation language
 - i.e. can always prove that $M_1 \equiv M_1$, but that's useless