

Towards Accurate Active Camera Localization

Qihang Fang^{1*}, Yingda Yin^{2*}, Qingnan Fan^{3†}, Fei Xia⁴, Siyan Dong¹, Sheng Wang⁵, Jue Wang³, Leonidas Guibas⁴, Baoquan Chen^{2†}

¹Shandong University, ²Peking University, ³Tencent Al Lab, ⁴Stanford University, ⁵3vjia

*Equal contribution; ordered alphabetically | †Corresponding authors

Introduction

> Problem Definition

- Camera localization: Estimate the accurate camera pose in a known environment.
- Active camera localization: Allow the agent to move to a new position where the camera can be accurately localized.

Drawbacks of Existing Methods

• Camera localization in the coarse-scale discrete pose space.

Memory & computation inefficient, and not scalable to large environments and continuous camera pose space.

Grid-based Belief Map

• Agnostic to localization-driven scene uncertainty.
Without considering the localization-driven scene uncertainty information, which is an important guidance for camera movements.

Large scene uncertainty

Small scene uncertainty

> Critical Questions

- How to locate: How to accurately localize the camera
- Where to go: Where it should move for accurate active localization
- When to stop: When it should decide to stop the camera movement

➤ Our Work

- A novel active camera localization algorithm solved by reinforcement learning
- Camera localization in continuous space
- Explicitly models the **scene uncertainty** to guide the camera movement towards localizable regions
- Explicitly models the **camera uncertainty** to determine the adaptive stop condition

Method Overview

➤ Passive Localizer – How to locate

We adopt the state-of-the-art approach, **decision tree**, to achieve pose estimation in continuous space.

> Scene Uncertainty - Where to go

We describe scene uncertainty from two perspectives, where the camera is located and what underlying part of the scene is observed are more effective for accurate localization.

> Camera Uncertainty - When to stop

Prediction error is estimated by ICP between the observed depth and the rendered depth with the predicted pose

Observed depth Relative pose by ICP Rendered depth via D_{scene} and $\hat{\mathcal{C}}^{(t)}$

> Rewards

- Slack reward: $R_s = -1$, punish unnecessary steps
- Exploration reward: $R_e=0.1/v$, award for visiting the unseen cells where v is the visit count in the currently occupied cell

Full Pipeline

Algorithm 1 The full pipeline of our algorithm

```
function Passive Loc. Module (observation I^{(t)}, posed RGB-D stream \{I_{basis}^{(i)}, C_{basis}^{(i)}\}_{i=1}^{m})
     if initialization then
         Adapt the passive localizer by posed RGB-D stream \{I_{basis}^{(i)}, C_{basis}^{(i)}\}_{i=1}^{m}
         Construct the scene model D_{scene} by fusing posed RGB-D stream \{I_{basis}^{(i)}, C_{basis}^{(i)}\}_{i=1}^{m}
     Current pose estimation \widehat{C}^{(t)} \leftarrow \text{Passive localizer}(I^{(t)})
   return \widehat{C}^{(t)}
function Active Loc. Module(pose estimation \widehat{C}^{(t)}, scene model D_{scene})
     M_{wd}^{(t)}, M_{cd}^{(t)} \leftarrow \text{Scene uncertainty computation}(\{\widehat{C}^{(t)}, D_{scene}\})
    U_{cu}^{(t)} \leftarrow \text{Camera uncertainty computation}(\{\widehat{C}^{(t)}, D_{scene}\})
    Action a^{(t)} \leftarrow \text{Policy network}(\{M_{wd}^{(t)}, M_{cd}^{(t)}\})
    return U_{cu}^{(t)}, a^{(t)}
procedure Entire Pipeline(posed RGB-D stream \{I_{basis}^{(i)}, C_{basis}^{(i)}\}_{i=1}^{m}, accuracy threshold \lambda_{cu})
     D_{scene} \leftarrow NULL
     initialization \leftarrow true
     while t < \text{maximum step length do}
          Obtain the current observation I^{(t)}
          \widehat{C}^{(t)} \leftarrow \text{Passive Loc. Module}(I^{(t)}, \{I_{basis}^{(i)}, C_{basis}^{(i)}\}_{i=1}^m)
          U_{cu}^{(t)}, a^{(t)} \leftarrow \text{Active Loc. Module}(\widehat{C}^{(t)}, D_{scene})
          if U_{cu}^{(t)} is within \lambda_{cu} cm, \lambda_{cu} degrees then
         Execute the action a^{(t)}
         t \leftarrow t + 1
     return \widehat{C}^{(t)}
```

Experiments

Numerical results evaluated with 5cm, 5° accuracy

	ACL-synthetic		ACL-real	
Methods	Acc (%)	\parallel #steps	Acc (%)	#steps
ANL [15]	3.25	100	3.20	100
No-movement (DecisionTree)	9.35	0	6.80	0
No-movement (DSAC)	14.90	0	7.80	0
Turn-around	25.00	12	35.20	12
Camera-descent (t+1)	61.55	22.90	61.40	26.85
Camera-descent $(t+2)$	55.30	22.60	59.20	25.78
Scene-descent	57.65	18.56	54.20	16.87
Ours (w/o $\mathcal{R}_e \& M_{cd}^{(t)}$) Ours (w/o $\mathcal{R}_e \& M_{wd}^{(t)}$)	67.65	17.40	70.60	19.71
Ours (w/o $\mathcal{R}_e \& M^{(t)}$)	66.40	16.27	67.40	18.63
$ \text{Ours } (\text{w/o } \mathcal{R}_e) $	72.50	18.57	73.00	20.72
Ours	83.05	17.33	82.40	17.90

d) Failure case e) Camera-driven uncertainty channel

nel f) World-driven uncertainty channel