

Observation: Clones of size *s* have a well-defined probabilities to be captured in the following sample that increase exponentially with *s*:

Solution: Group clones by size *s* and build a linear model (using common R-style syntax)

$$\log P \sim s + N$$

where P is the fraction of clones from A captured in B.

Condition/clone grouping effects are tested by introducing factor G

$$\log P \sim s + N + G$$

Problem: Estimate expected overlaps A_B and/or B_A if we only know summary statistics of both samples, such as diversity N: $\{N(A), n_i(A), c_i(A), N(B), n_i(B), c_i(B)\}$

Applications: Allows quantifying - chimerism/subset survival in HSCT

- clonal dynamics in time courses

- emerging antigen-specific T-cells

