# Explainable Artificial Intelligence



# **Approaches to Robust Online Explanations**

August 2021

## **Outline**

- Introduction
  - Motivation
  - Properties
- Experiments
- Results
- (Outlook)

#### **Introduction: Motivation**

- Data streams
  - Noise, Concept drift
  - Retraining of explained model
- Inconsistent explanations
- Example:
  - At time: t
    - Transient model state
    - · Loan not approved with explanation e
  - At time: t + N
    - Loan not approved with explanation e' != e
    - e.g. Applicant increased expenses, but transient model state passed

## **Introduction: Properties**

- Concentration on Approaches:
  - (Explained) Model agnostic
  - Handle Post-hoc explanations
  - Explanations = Feature attributions
- Model attributions from weights as ground truth

- Desired properties
  - Local faithfulness
  - Global faithfulness
  - Efficiency
  - Stability

# **Approaches**

- Local Explainers
  - LIME
  - SHAP

$$a_t = l(x_t, f(x_t), X)$$

- *X* is baseline

## **Approaches**

#### Global Explainers

- FIRES
  - Feature scores used as Feature attributions
  - Importance + Uncertainty

$$a_t = FIRES(x_t, f(x_t))$$

- Weighted Gaussian Explainer
  - Outputs linearly dependent on attributions

$$P(y_t|x_t, a_t) = \mathcal{N}(y_t; x_t^T a_t, \Lambda)$$

Mean of posterior

# **Approaches: Combination of Local and Global Explainers**

- Ensemble of Explainers
  - 1. FIRES → Model distribution
  - Sample N Models
  - 3. Local explainer → Explain predictions of N models
    - LIME or SHAP
  - 4. Aggregate explanations (e.g. Mean of explanations)

Weighted Local and Global Explainers

$$a_t = \frac{w_l \cdot l(x_t, f(x_t)) + w_g \cdot g(x_t, f(x_t))}{w_l + w_g}$$

# **Experiments**

#### xEvaluator

Environment for experimentation with explanations and data streams

#### Datasets:

- Synthetic, 5000 samples
- From practice:
  - Spambase
  - Card default

#### • Ground truth:

Explained model weights

# **Experiments**

## **Desired Properties**

**Evaluation Metrics** 

Local faithfulness

$$LF_{t+1} = LF_t + \left| \frac{a_{t+1}}{\sum_i |a_{t+1}|} - \frac{g_{t+1}}{\sum_i |g_{t+1}|} \right|$$

Global faithfulness

**Top-10 Ranking Accuracy** 

Efficiency

**Timings** 

Stability

$$S_{t+1} = S_t + \left| \frac{a_{t+1}}{\sum_i |a_{t+1_i}|} - \frac{a_t}{\sum_i |a_{t_i}|} \right|$$

# **Results: Time and Stability**

#### Average over all data sets

|    | Explainer        | Time (ms) |
|----|------------------|-----------|
| 1. | FIRES            | 0.87      |
| 2. | WeightedGaussian | 2.34      |
| 3. | LIME             | 8.00      |
| 4. | LIME+FIRES       | 8.95      |
| 5. | SHAP             | 9.56      |
| 6. | SHAP+FIRES       | 10.10     |
| 7. | LIME-Ensemble    | 115.92    |
| 8. | SHAP-Ensemble    | 158.85    |

- Ensemble efficiency penalty

|    | Explainer        | Stablity |
|----|------------------|----------|
| 1. | FIRES            | 106.36   |
| 2. | WeightedGaussian | 108.73   |
| 3. | LIME+FIRES       | 1296.45  |
| 4. | LIME             | 1906.25  |
| 5. | LIME-Ensemble    | 2431.43  |
| 6. | SHAP+FIRES       | 4567.24  |
| 7. | SHAP-Ensemble    | 6079.14  |
| 8. | SHAP             | 7192.02  |

- Ensemble stabilizes SHAP
- Global better than Local
- LIME better than SHAP

## Results: Local Faithfulness vs Stability



## Results: Global Faithfulness vs Stability



#### **Outlook**

- Feature selection scores as explanations
- Global + Local explainers
  - e.g. Include local explainer output into prior of global explainers
- (Time-weighted) sliding window for ranking accuracy
- Surrogate rule extraction approaches

### **Outlook**

• (Global) explanations through

visualization

 Explainer evaluation through visualization



# Thank you!