Documento - Análisis Factorial - Marcelo Chávez

April 6, 2023

1 Curso: Construcción de Índices con Análisis Multivariante

1.1 Descripción

El presente documento sirve para la aprobación del curso sobre Construcción de Índices con Análisis Multivariante.

1.2 Contenido

- Librerías a emplearse
- Lectura de la base de datos
- Descripción de la base de datos
- Perfilamiento de variables
- KMO
- Gráfico de Factores
- Matriz de Componentes Rotados
- Comunalidades
- Análisis de la Varianza
- Selección de Factores
- Resultados del AF

1.3 Fecha de elaboración

• 26 de marzo de 2023

1.4 Lenguaje de programación

• Python 3.10

1.5 Desarrollado por:

• Ing. Marcelo Chávez

1. Librerías a utilizar:

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from factor_analyzer import FactorAnalyzer
import warnings
```

```
warnings.filterwarnings('ignore')
```

2. Lectura de la base de datos fuente: Para el presente ejercicio se ha utilizado el data set de Kaggle: COVID-19 effect on Pollution

[2]:		StationId	d Da	te PM2.	5 PN	M10 N	0 NO2	NOx	NH3	CO	
	0	AP001	l 2017-11-	24 71.3	86 115.	.75 1.7	5 20.65	12.40	12.19	0.10	\
	1	AP001	l 2017-11-	25 81.4	124.	.50 1.4	4 20.50	12.08	10.72	0.12	
	2	AP001	l 2017-11-	26 78.3	32 129.	.06 1.2	6 26.00	14.85	10.28	0.14	
	3	AP001	l 2017-11-	27 88.7	'6 135.	.32 6.6	0 30.85	21.77	12.91	0.11	
	4	AP001	l 2017-11-	28 64.1	.8 104.	.09 2.5	6 28.07	17.01	11.42	0.09	
	•••	•••	•••		•••						
	99716	WB013	3 2020-04-	27 11.5	31.	.71 1.7	3 10.21	11.93	21.52	0.54	
	99717	WB013	3 2020-04-	28 9.3	33.	.70 1.7	7 12.39	14.15	22.44	0.64	
	99718	WB013	3 2020-04-	29 16.8	32.	.17 2.0	0 14.26	16.27	24.19	0.57	
	99719	WB013	3 2020-04-	30 15.1	.7 32.	.10 2.0	2 12.40	14.41	25.58	0.61	
	99720	WB013	3 2020-05-	01 17.0	5 29.	.15 1.7	0 10.54	12.22	24.21	0.65	
		S02	03 Ben	zene To	luene	Xylene	AQI	AQI_Bu	cket		
	0	10.76	109.26	0.17	5.92	0.10	NaN		NaN		
	1	15.24	127.09	0.20	6.50	0.06	184.0	Mode	rate		
	2	26.96	117.44	0.22	7.95	0.08	197.0	Mode	rate		
	3	33.59	111.81	0.29	7.63	0.12	198.0	Mode	rate		
	4	19.00	138.18	0.17	5.02	0.07	188.0	Mode	rate		
	•••		•••	•••			•••				
	99716	6.92	28.90	1.33	8.96	NaN	38.0		Good		
	99717	6.09	26.34	1.35	9.47	NaN	39.0		Good		
	99718	7.27	29.62	1.66	10.45	NaN	44.0		Good		
	99719	11.53	33.93	0.96	8.92	NaN	46.0		Good		
	99720	6.51	23.48	0.77	7.91	NaN	57.0	Satisfac	tory		

[99721 rows x 16 columns]

```
[3]: print("El nro de registros del data set es:", db_pollution.shape[0]) print("El nro de variables del data set es:", db_pollution.shape[1])
```

El nro de registros del data set es: 99721 El nro de variables del data set es: 16

3. Descripción de la base de datos:

About this Dataset

Context Air is what keeps humans alive. Monitoring it and understanding its quality is of immense importance to our well-being.

Content The dataset contains air quality data and AQI (Air Quality Index) at hourly and daily level of various stations across multiple cities in India.

A tutorial of how AQI is calculated is available here: https://www.kaggle.com/rohanrao/calculating-aqi-air-quality-index

Cities Ahmedabad Aizawl Amaravati Amritsar Bengaluru Bhopal Brajrajnagar Chandigarh Chennai Delhi Ernakulam Gurugram Guwahati Hyderabad Jaipur Jorapokhar Kochi Kolkata Lucknow Mumbai Patna Shillong Talcher Thiruvananthapuram Acknowledgements

The data has been made publicly available by the Central Pollution Control Board: https://cpcb.nic.in/ which is the official portal of

Fuente URL: https://www.kaggle.com/code/parulpandey/breathe-india-covid-19-effect-on-pollution/notebook

3. Perfilamiento de variables:

```
[4]: def perfilamiento(df):
         # Catálogo de variables:
         catalogo_variables = pd.DataFrame(df.dtypes).rename(columns={0:
      catalogo_variables['len_max'] = [columnData.str.len().max() if columnData.
      dtype == object else columnData.max() for columnName, columnData in df.
      →items()]
         catalogo_variables['len_min'] = [columnData.str.len().min() if columnData.
      dtype == object else columnData.min() for columnName, columnData in df.
      →items()]
         catalogo_variables = pd.concat([catalogo_variables, df.isnull().sum()],__
      →axis=1).rename(columns={0:'absoluto_missing'})
         catalogo variables = catalogo variables.loc[catalogo variables.index !=__

¬"Unnamed: 0"]
        porcentaje missing = pd.DataFrame(((df.isnull().sum() / len(df))*100).
      \rightarrowround(2))
        porcentaje_missing = porcentaje_missing.loc[porcentaje_missing.index !=u

¬"Unnamed: 0"].rename(columns={0:"porcentaje_missing"})

         # selección de las columnas numéricas
        num_cols = df.select_dtypes(include=['float64', 'int64']).columns.tolist()
         # resumen estadístico descriptivo de las columnas numéricas
        resumen_estadistico = df[num_cols].describe().round(2)
         # cálculo de la correlación de las columnas numéricas
        corr_matrix = df[num_cols].corr()
         catalogo_variables = pd.concat([catalogo_variables, porcentaje_missing],_
      ⇔ignore index=False, axis=1)
        return catalogo_variables, resumen_estadistico, corr_matrix
```

```
catalogo_variables, resumen_estadistico, corr_matrix = □

⇔perfilamiento(db_pollution)
```

Tipo de variable y missings:

[5]: catalogo_variables

[5]:		tipo_variable	len_max	len_min	absoluto_missing				
	${\tt StationId}$	object	5.00	5.00	0	\			
	Date	object	10.00	10.00	0				
	PM2.5	float64	1000.00	0.02	20737				
	PM10	float64	1000.00	0.01	41021				
	NO	float64	470.00	0.01	16277				
	NO2	float64	448.05	0.01	15764				
	NOx	float64	467.63	0.00	14915				
	NH3	float64	418.90	0.01	45811				
	CO	float64	175.81	0.00	12491				
	S02	float64	195.65	0.01	23977				
	03	float64	963.00	0.01	24508				
	Benzene	float64	455.03	0.00	29670				
	Toluene	float64	454.85	0.00	36265				
	Xylene	float64	170.37	0.00	79749				
	AQI	float64	2049.00	8.00	20128				
	AQI_Bucket	object	12.00	4.00	20128				
	StationId	porcentaje_mi	0.00						
	Date		0.00						
	PM2.5		20.80						
	PM2.5 PM10		41.14						
	NO		16.32						
	NO2		15.81						
	NOX		14.96						
	NUX NH3		45.94						
	CO		12.53						
	S02		24.04						
	03		24.04						
	Benzene		29.75						
	Toluene		36.37						
	Xylene		79.97						
	AQI		20.18						
	AQI_Bucket		20.18						
	wat Dacker		20.10						

ANÁLISIS DE MISSING VALUES: Todas las variables que miden la contaminación del aire presentan valores perdidos, para lo cual se proceder a eliminar todos los registros que tienen missing values. En la siguiente línea se encuentra dicho proceso:

```
[6]: db_pollution_new = db_pollution.copy().dropna()
     print("El nro de registros del data set es:", db_pollution_new.shape[0])
     print("El nro de variables del data set es:", db pollution new.shape[1])
    El nro de registros del data set es: 8430
    El nro de variables del data set es: 16
[7]: catalogo_variables, resumen_estadistico, corr_matrix =_
      →perfilamiento(db_pollution_new)
[8]: catalogo_variables
[8]:
                tipo_variable len_max len_min
                                                  absoluto_missing
     StationId
                       object
                                   5.00
                                            5.00
                                                                     \
                                                                  0
     Date
                       object
                                  10.00
                                           10.00
                                                                  0
    PM2.5
                      float64
                                734.56
                                            1.31
                                                                  0
    PM10
                      float64
                                 830.10
                                            5.77
                                                                  0
    NO
                      float64
                                 262.00
                                            0.10
                                                                  0
     NO2
                      float64
                                 254.78
                                            0.10
                                                                  0
     NOx
                      float64
                                 331.50
                                            0.02
                                                                  0
     NH3
                      float64
                                 269.93
                                            0.10
                                                                  0
     CO
                      float64
                                  4.74
                                            0.00
                                                                  0
     S02
                                                                  0
                      float64
                                  67.26
                                            0.10
     03
                      float64
                                 138.18
                                            0.03
                                                                  0
                      float64
                                 165.41
                                            0.00
                                                                  0
     Benzene
                                                                  0
     Toluene
                      float64
                                 259.03
                                            0.00
     Xylene
                      float64
                                 133.60
                                            0.00
                                                                  0
                                 692.00
                                                                  0
     AQI
                      float64
                                           19.00
     AQI_Bucket
                       object
                                  12.00
                                            4.00
                                                                  0
                 porcentaje_missing
     StationId
                                 0.0
                                 0.0
     Date
     PM2.5
                                 0.0
    PM10
                                 0.0
     NO
                                 0.0
     NO2
                                 0.0
                                 0.0
     NOx
     NH3
                                 0.0
     CO
                                 0.0
     S02
                                 0.0
     03
                                 0.0
     Benzene
                                 0.0
     Toluene
                                 0.0
                                 0.0
     Xylene
     AQI
                                 0.0
     AQI Bucket
                                 0.0
```

Análisis Exploratorio de variables:

```
[9]: resumen_estadistico
```

[9]:		PM2.5	PM10	NO	NO2	NOx	NH3	CO	S02	
[9]:				_	_	_				
	count	8430.00	8430.00	8430.00	8430.00	8430.00	8430.00	8430.00	8430.00	\
	mean	55.31	111.85	12.57	34.19	31.25	18.15	0.70	9.53	
	std	45.50	70.06	20.25	23.75	30.02	13.04	0.45	7.84	
	min	1.31	5.77	0.10	0.10	0.02	0.10	0.00	0.10	
	25%	27.45	64.83	2.59	15.47	12.97	9.94	0.42	4.00	
	50%	46.26	101.63	6.12	28.99	22.75	15.19	0.62	7.47	
	75%	68.41	141.58	12.99	48.41	38.24	23.43	0.89	12.39	
	max	734.56	830.10	262.00	254.78	331.50	269.93	4.74	67.26	
		03	Benzene	Toluene	Xylene	AQI				
	count	8430.00	8430.00	8430.00	8430.00	8430.00				
	mean	31.51	4.65	12.77	2.90	123.80				
	std	18.25	14.79	25.83	7.61	78.25				

```
std
          18.25
                   14.79
                             25.83
                                        7.61
                                                78.25
                    0.00
                              0.00
                                        0.00
                                                19.00
min
          0.03
25%
         18.83
                    0.18
                              1.20
                                        0.10
                                                74.00
50%
         28.22
                    1.12
                              4.07
                                        0.70
                                               107.00
75%
         40.77
                    3.63
                                               142.00
                             12.92
                                        2.68
                  165.41
max
        138.18
                            259.03
                                     133.60
                                               692.00
```

Coeficiente de variación:

```
[10]: def coef_variacion(df):
    # selecciona solo las columnas numéricas
    num_cols = df.select_dtypes(include=['float64', 'int64']).columns.tolist()
    des_std = df[num_cols].std()/df[num_cols].mean()
    return des_std
```

[11]: coef_variacion(db_pollution_new)

```
[11]: PM2.5
                 0.822619
      PM10
                 0.626413
      NO
                 1.610619
      NO2
                 0.694618
      NOx
                 0.960550
      NH3
                 0.718350
      CO
                 0.647255
      S02
                 0.822019
      03
                 0.579173
      Benzene
                 3.181601
      Toluene
                 2.022600
      Xylene
                 2.621274
                 0.632106
      AQI
```

dtype: float64

Análisis del CV: De la revisión del CV se observan variables que tienen mayor dispersión (de -1 a 1): NO, Benzene, Toluene, y Xylene, por lo cual serán excluidos del análisis

Matriz de Correlación: [12]: corr_matrix

[12]:		PM2.5	PM10	NO	NO2	NOx	NH3	CO	
	PM2.5	1.000000	0.899029	0.477051	0.549542	0.553259	0.347301	0.612865	\
	PM10	0.899029	1.000000	0.466039	0.560939	0.563885	0.342937	0.586988	
	NO	0.477051	0.466039	1.000000	0.432057	0.874927	0.236836	0.520822	
	NO2	0.549542	0.560939	0.432057	1.000000	0.704155	0.331459	0.464276	
	NOx	0.553259	0.563885	0.874927	0.704155	1.000000	0.301988	0.573869	
	NH3	0.347301	0.342937	0.236836	0.331459	0.301988	1.000000	0.275159	
	CO	0.612865	0.586988	0.520822	0.464276	0.573869	0.275159	1.000000	
	S02	0.189603	0.224109	-0.006125	0.125957	0.037567	0.199884	0.102803	
	03	-0.024981	-0.022058	-0.216404	-0.015600	-0.163291	-0.059098	-0.070788	
	Benzene	0.103686	0.115193	0.433082	0.103471	0.426687	0.090257	0.218287	
	Toluene	0.222077	0.237397	0.378883	0.346232	0.427640	0.054423	0.274064	
	Xylene	0.132979	0.157813	0.178278	0.251379	0.226008	0.028464	0.167609	
	AQI	0.919838	0.908759	0.490139	0.543730	0.586693	0.355752	0.614860	
		S02	03	Benzene	Toluene	Xylene	AQI		
	PM2.5	0.189603	-0.024981	0.103686	0.222077	0.132979	0.919838		
	PM10	0.224109	-0.022058	0.115193	0.237397	0.157813	0.908759		
	NO	-0.006125	-0.216404	0.433082	0.378883	0.178278	0.490139		
	NO2	0.125957	-0.015600	0.103471	0.346232	0.251379	0.543730		
	NOx	0.037567	-0.163291	0.426687	0.427640	0.226008	0.586693		
	NH3	0.199884	-0.059098	0.090257	0.054423	0.028464	0.355752		
	CO	0.102803	-0.070788	0.218287	0.274064	0.167609	0.614860		
	S02	1.000000	0.179632	-0.039887	0.093414	0.086383	0.188907		
	03	0.179632	1.000000	-0.106756	-0.074450	-0.034643	0.013340		
	Benzene	-0.039887	-0.106756	1.000000	0.685674	0.154776	0.138371		
	Toluene	0.093414	-0.074450	0.685674	1.000000	0.513484	0.225213		
	Xylene	0.086383	-0.034643	0.154776	0.513484	1.000000	0.140339		
	AQI	0.188907	0.013340	0.138371	0.225213	0.140339	1.000000		

4. Cálculo del KMO:

4.1 Selección para el cálculo del KMO previo al Análisis Factorial:

```
[13]: db_pollution_new.columns
  var_selection = ['PM2.5', 'PM10', 'N02', 'N0x', 'NH3', 'C0', 'S02', '03']
  db_pollution_selec = db_pollution_new[var_selection]
  db_pollution_selec
```

```
[13]: PM2.5 PM10 NO2 NOx NH3 CO SO2 O3
1 81.40 124.50 20.50 12.08 10.72 0.12 15.24 127.09
```

```
2
       78.32 129.06 26.00
                            14.85 10.28 0.14 26.96
                                                      117.44
3
       88.76 135.32 30.85
                            21.77
                                   12.91 0.11 33.59
                                                      111.81
4
       64.18 104.09 28.07
                            17.01
                                   11.42 0.09 19.00
                                                      138.18
                            16.59
5
       72.47 114.84 23.20
                                   12.25 0.16 10.55
                                                      109.74
                       •••
                           •••
                                    •••
98073
       80.93 174.84 56.74 139.70
                                   29.32 1.18
                                                9.36
                                                       15.96
98074 103.75 217.89 63.28 181.55
                                   27.56 1.71 11.43
                                                       24.75
                                                       22.11
98075 115.40 225.76 70.41 213.77
                                   35.25 2.11 10.49
98076
       97.37 179.87 64.34 169.46
                                                       12.55
                                   36.24 1.51
                                                6.90
98077
       89.13 179.89 56.37 134.84 37.98 1.30
                                                8.13
                                                       23.21
```

[8430 rows x 8 columns]

5. Cálculo del KMO:

KMO

```
[15]: from factor_analyzer.factor_analyzer import calculate_kmo
kmo_all, kmo_model = calculate_kmo(db_pollution_selec)
print(kmo_model.round(2))
```

0.78

Test de Barlett

```
[16]: # Barlett's
from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
calculate_bartlett_sphericity(db_pollution_selec)
```

[16]: (31773.710774973093, 0.0)

ANÁLISIS DEL KMO: Dado que el valor del KMO es estadísticamente significativo, esto nos indica que las variables seleccionadas del data frame son aptas para realizar un AF

6. Análisis Gráfico de los Factores:

```
[17]: fa = FactorAnalyzer(rotation=None, n_factors=len(db_pollution_selec.columns))
    fa.fit(db_pollution_selec)

# Check Eigenvalues
ev, v = fa.get_eigenvalues()
ev

plt.scatter(range(1,db_pollution_selec.shape[1]+1),ev)
plt.plot(range(1,db_pollution_selec.shape[1]+1),ev)
plt.title('Gráfico de Sedimentación')
```

```
plt.xlabel('Factores')
plt.ylabel('Autovalores')
plt.axhline(y=1, color='r', linestyle='--')
plt.grid()
plt.show()
```


ANÁLISIS DEL GRÁFICO DE SEDIMENTACIÓN: En el gráfico se puede observar que máximo en dos dimensiones se puede resumir la varianza de las variables originales.

7. Matriz de Componentes Rotados con el Método Varimax

```
[18]: fa = FactorAnalyzer(rotation="varimax", n_factors=2)
    fa.fit(db_pollution_selec)

# Check loadings
loadings = pd.DataFrame(fa.loadings_)
loadings.rename(columns = lambda x: 'Dimensión-' + str(x + 1), inplace=True)
loadings.index = db_pollution_selec.columns
loadings
```

```
[18]:
             Dimensión-1 Dimensión-2
      PM2.5
                0.926310
                              0.057106
      PM10
                0.933908
                              0.050690
      NO2
                0.591678
                              0.419971
      NOx
                0.559260
                              0.828554
      NH3
                0.394735
                              0.112495
      CO
                0.618897
                              0.276618
      S02
                0.267926
                             -0.155719
      03
                0.017911
                             -0.220189
```

ANÁLISIS DEL MÉTODO DE ROTACIÓN VARIMAX: Los loadings son una medida importante en el análisis factorial porque permiten identificar qué variables están más estrechamente relacionadas con cada factor.

8. Comunalidades

```
[19]:
              Comunalidades
      03
                   0.048804
      S02
                   0.096032
      NH3
                   0.168471
      CO
                   0.459551
      NO2
                   0.526459
      PM2.5
                   0.861312
      PM10
                   0.874754
      NOx
                   0.999272
```

ANÁLISIS DE LAS COMUNALIDADES: Las comunalidades representan la cantidad de información en cada variable que se comparte con los demás factores. En este sentido, las comunalidades de PM2.5 (86%), PM10 (87%), NOx (0.99%) indican la proporción de la varianza explicado por los factores extraídos en el AF.

9. Análisis de la Varianza en cada Factor

```
[20]: Factor-1 Factor-2
SS Loadings 3.00 1.03
Proportion Variance 0.38 0.13
Cumulative Variance 0.38 0.50
```

10. Selección de Factores según el nivel de varianza

```
[24]: def color_factor_importance(val):
    if np.abs(val) > 0.7:
        color = 'green'
    elif np.abs(val) > 0.5 and np.abs(val) < 0.7:
        color = 'blue'
    else:
        color = 'red'
    return 'color: %s' % color</pre>
```

```
[27]: loadings.style.applymap(color_factor_importance)
```

- [27]: <pandas.io.formats.style.Styler at 0x18d7a921f30>
 - 11. Resultados del AF en las variables de la base de contaminación atmosférica CON-SIDERACIÓN: Tomando como valores significativos en cada dimensión a los que son mayores a 0.7. Tenemos que el Índice de Contaminación Ambiental queda planteado de la siguiente forma:

$$ICA = 0.92 * PM2.5 + 0.93 * PM10 + 0.82 * NOx$$

Donde: ICA: Índice de Contaminación Atmosférica