Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Engenharia Elétrica

Instrumentação Prof. Jaidilson Jó da Silva

Experimento 1:

Medição de Inclinação

Data:22/08/2024

Aluno: Rogério Moreira Almeida

Relatório de Caracterização do Acelerômetro ADXL202

Descrição do Sensor

Nome do Sensor: ADXL202

Tipo: Acelerômetro MEMS bidimensional

Descrição: O ADXL202 é um acelerômetro de baixa potência que mede a aceleração em dois eixos (X e Y). Ele utiliza tecnologia micro eletromecânica (MEMS) para detectar a aceleração nâmica (por exemplo, vibração) e aceleração estática (por exemplo gravidade) e converter essas medições em um sinal de saída modulado por largura de pulso (PWM). O tempo do pulso varia de acordo com a aceleração aplicada, permitindo a leitura precisa das forças em ambas as direções.

O sensor é uma estrutura de polissilício micro usinado de superfície construído em cima do wafer de silício. Molas de polissilício suspendem a estrutura sobre a superfície do wafer e fornecem uma resistência contra forças de aceleração. A deflexão da estrutura é medida usando um capacitor diferencial que consiste em placas fixas independentes e placas centrais presas à massa em movimento. As placas fixas são acionadas por ondas quadradas de 180° fora de fase. Uma aceleração desviará o feixe e desequilibrará o capacitor diferencial, resultando em uma onda quadrada de saída cuja amplitude é proporcional à aceleração. Técnicas de demodulação sensíveis à fase são então usadas para segmentar o sinal e determinar a direção da aceleração

Figura 1: Diagrama de Blocos Funcionais

Fonte: ADXL202 folha de dados(1/11 páginas) AD | Baixo custo +-2 g/+-10 g Acelerômetros iMEMS de eixo duplo com saída digital (alldatasheet.com)

Aplicações

Vale ressalta que quando os dispositivos como micro controladores compartilham a mesma fonte de alimentação, ruídos na alimentação podem causa interferências no sistema ADXL202, mesmo o sistema possuindo mecanismos internos de filtragem.

dispositivos essenciais para o monitoramento da condição de máquinas e estruturas.

Figura 2: [Analog Devices Inc.] ADXL202JQC

Fonte: ADXL202JQC / 디바이스마트 (devicemart.co.kr)

Dispositivos Eletrônicos Portáteis: Utilizado em smartphones, tablets e controles de videogame para detecção de movimento e orientação.

Sistemas de Navegação: Em veículos e drones, o ADXL202 ajuda na estabilização e orientação.

Monitoramento de Vibrações: Em aplicações industriais para detecção de vibrações e movimentos mecânicos, muito importante no sistema de prevenção e manutenção em maquinários.

Figura 3: utilização de sensor de vibração com a finalidade de mensura a vibração mecânica em um sistema eletromecânico.

Fonte: Vibração mecânica: como reduzir? - Antares Acoplamentos

Dispositivos de Medição de Inclinação: Utilizado em nível digital e sistemas de medição de inclinação.

Descrição do Experimento

Objetivo: Caracterizar o acelerômetro ADXL202 através de seu modelo matemático e realizar a aquisição de dados utilizando o LabVIEW.

Procedimento:

- 1. **Configuração do Hardware**: Conectar o ADXL202 a um microcontrolador ou placa de aquisição de dados.
- 2. **Aquisição de Dados com LabVIEW**: Configurar o LabVIEW para capturar o sinal PWM gerado pelo acelerômetro.
- 3. **Processamento do Sinal**: Converter os sinais PWM em valores de aceleração utilizando o modelo matemático do sensor.
- Análise dos Dados: Plotar os dados obtidos e comparar com o modelo teórico.

Tabela 1: Dado Obtidos no experimento Medição de inclinação com o acelerômetro

	Tensão(V)	
ângulo(°)	X	у
-90	-1,539	1,4595
-85	-1,5348	1,4563
-80	-1,5184	1,4459
-75	-1,4903	1,4169
-70	-1,4481	1,3761
-65	-1,3969	1,3283
-60	-1,339	1,2742
-55	-1,2616	1,2002
-50	-1,1851	1,1128
-45	-1,0848	1,0248
-40	-1,0369	0,9317
-35	-0,8924	0,8293
-30	-0,9023	0,7154
-25	-0,788	0,5992
-20	-0,6348	0,4726
-15	-0,534	0,3448
-10	-0,3893	0,2151
-5	-0,275	0,0805
0	-0,0257	-0,0528
5	0,0043	-0,1877
10	0,1476	-0,3248
15	0,2727	-0,4438
20	0,4113	-0,5792
25	0,5433	-0,6988
30	0,6651	-0,8179
35	0,7965	-0,9371
40	0,9028	-1,0536
45	1,0074	-1,1621
50	1,1079	-1,2541
55	1,2032	-1,331
60	1,2904	-1,4115
65	1,3523	-1,4762
70	1,4245	-1,5329
75	1,5176	-1,5781
80	1,5604	-1,6147
85	1,5662	-1,6354
90	1,5758	-1,608

Modelo Matemático e Gráficos

Modelo Matemático:

Relação entre Aceleração e Inclinação:

A aceleração Ax ou Ay em um dos eixo em fução do ângulo de inclinação θ é da dado por:

$$Ax = g * sin (\theta)$$

Sendo g a aceleração da gravidade aproximadamente 9,81 m/s² e θ o ângulo (°) de inclinação em relação ao eixo horizontal.

Relação entre Tensão e Aceleração:

A tensão de saída Vout medida pelo sensor pode ser expressa em função da aceleração Ax_ ou Ay:

```
Vout = V0 + (Vsens*Ax).
```

Vout é a tensão de saída medida.

V0 é a tensão correspondente à condição de zero aceleração.

Vsens a sensibilidade do sensor, que expressa quanto a tensão muda por unidade de aceleração (geralmente em V/g).

Relação Final entre Tensão e Inclinação:

Vout =
$$V0 + (Vsens^* g * sin (\theta))$$
.

Para o sensor ADXL202, o valor típico de Vsens é aproximadamente **167 mV/g** (0,167 V/g) para uma alimentação de 5V.

Tabela 2: Dado Obtidos a partir dos cálculos Teóricos de inclinação com o acelerômetro

	Tensão(V)
ângulo(°)	Х
-90	-1,63827
-85	-1,632035888
-80	-1,613380998
-75	-1,582447303
-70	-1,53947023
-65	-1,484776858
-60	-1,418783438
-55	-1,34199222
-50	-1,25498763
-45	-1,158431826
-40	-1,053059657
-35	-0,939673068
-30	-0,819135
-25	-0,69236282
-20	-0,56032134
-15	-0,424015477
-10	-0,2844826
-5	-0,142784639
0	0
5	0,142784639
5 10	0,142784639 0,2844826
10	0,2844826
10 15	0,2844826 0,424015477
10 15 20	0,2844826 0,424015477 0,56032134
10 15 20 25	0,2844826 0,424015477 0,56032134 0,69236282
10 15 20 25 30	0,2844826 0,424015477 0,56032134 0,69236282 0,819135
10 15 20 25 30 35	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068
10 15 20 25 30 35 40	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657
10 15 20 25 30 35 40 45	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657 1,158431826
10 15 20 25 30 35 40 45 50	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657 1,158431826 1,25498763
10 15 20 25 30 35 40 45 50	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657 1,158431826 1,25498763 1,34199222
10 15 20 25 30 35 40 45 50 55 60	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657 1,158431826 1,25498763 1,34199222 1,418783438
10 15 20 25 30 35 40 45 50 55 60	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657 1,158431826 1,25498763 1,34199222 1,418783438 1,484776858
10 15 20 25 30 35 40 45 50 55 60 65 70	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657 1,158431826 1,25498763 1,34199222 1,418783438 1,484776858 1,53947023
10 15 20 25 30 35 40 45 50 55 60 65 70	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657 1,158431826 1,25498763 1,34199222 1,418783438 1,484776858 1,53947023 1,582447303
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80	0,2844826 0,424015477 0,56032134 0,69236282 0,819135 0,939673068 1,053059657 1,158431826 1,25498763 1,34199222 1,418783438 1,484776858 1,53947023 1,582447303 1,613380998

• **Gráfico Teórico**: Ângulo de inclinação eixo x & Tensão de saída do acelerômetro.

 Gráfico Experimental: Ângulo de inclinação eixo x e y & Tensão de saída do acelerômetro.

Conclusão

O modelo matemático em relação aos dados adquiridos, foi capaz de prever corretamente a aceleração medida, o que prova ser um modelo robusto nos possibilitando a aplicação eficiente do sensor

Limitações e Sugestões: as limitações no experimento se deu por pequenas variações ocasionadas pelo operado na manipulação dos ângulos assim como possíveis inclinações e imperfeições da mesa de medição. Sugestões seria a automatização das variações angulares, facilmente implementada com um micro rolador e um servo motor

Aplicações Futuras: Como os resultados obtidos podemos aplicar em contextos reais de uso do ADXL202. Pois possui um modelo matemático robusto, exige pouca potência da fonte implicando na grande flexibilidade de aplicações

Referências Bibliográficas:

ADXL202 folha de dados(11/11 páginas) AD | Baixo custo +-2 g/+-10 g Acelerômetros iMEMS de eixo duplo com saída digital (alldatasheet.com)

Mascarenhas. A, W. dezembro de 2006. Dispositivo Baseado em Acelerômetros Capacitivos para Monitoração de Máquinas Rotativas. UFCG.

gustavo b. r.m; josé. r.do n.a; lucas. R. a; rogério. M. a; Thiago. h. de o.s. 2024. E S T U D O D I R I G I D O : S E N S O R E S , AT U A D O R E S E A P L I C A Ç Õ E S. UFCG

Matérias fornecidos na Disciplina.