$$\frac{P_r}{P_t} = \left(\frac{\lambda}{4\pi d}\right)^2 G_t G_r$$

$$\frac{P_r}{P_t} = \left(\frac{\lambda}{4\pi d}\right)^2 = \frac{1}{\left(\frac{4\pi d}{\lambda}\right)^2}$$

$$\begin{split} L_{fs} &= 10 \log_{10} \left(\frac{4\pi d}{\lambda}\right)^2 = 20 \log_{10} \frac{4\pi d}{\lambda} \\ &= 20 \log_{10} \frac{4\pi df}{c} \\ &= 20 \log_{10} \frac{4\pi}{c} + 20 \log_{10} d + 20 \log_{10} f \\ &= 20 \log_{10} d + 20 \log_{10} f - 148 \text{[dB]} \end{split}$$

 $\therefore c = 3.0 \times 10^8$

	住宅環境	オフィス環境	商業施設環境
縦×横	10m ×	$25 \mathrm{m} \times 25 \mathrm{m}$	$50 \mathrm{m} \times 50 \mathrm{m}$
高さ	2.5m	3m	3m
床	木造, コンクリート	コンクリート	コンクリート
壁面	木造, 耐火ボード	金属, コンクリート	コンクリート

 S_1

環境	集合住宅内		戸建て住宅内		オフィス内	
周波数 [GHz]	2.45	5.2	2.45	5.2	2.45	5.2
N	28	30	28	28	30	31
$L_f[dB]$	10*1	13*1	5	7*2	14	16
備考	*1: コンクリート壁	*1: コンクリート壁		*2: 木造モルタル		
	1 枚あたり	1 枚あたり		2. 水道 1/1/2/10		
環境	集合信	注宅内		戸建て住宅内	オフィ	ィス内
環境 周波数 [GHz]	集合d 2.45	主宅内 5.2	2.45	戸建て住宅内 5.2	オフィ	ィス内 5.2
周波数 [GHz]	2.45	5.2	2.45	5.2	2.45	5.2
周波数 [GHz] N	2.45 28	5.2 30	2.45	5.2	2.45	5.2

$$\begin{split} S_1 &= \frac{h_{22}}{h_{11}h_{22} - h_{12}h_{21}} \cdot y_1 - \frac{h_{12}}{h_{11}h_{22} - h_{12}h_{21}} \cdot y_2 \\ S_2 &= -\frac{h_{21}}{h_{11}h_{22} - h_{12}h_{21}} \cdot y_1 + \frac{h_{11}}{h_{11}h_{22} - h_{12}h_{21}} \cdot y_2 \\ & \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \cdot \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \\ & \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}^{-1} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \end{split}$$

$$G = HH^H$$

$$\begin{split} H &= UDV^H \\ &= \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^H \end{split}$$

$$H = UDV^{H}$$

$$= \begin{bmatrix} u_{1} & \cdots & u_{n} \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_{1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{\lambda_{2}} \end{bmatrix} \begin{bmatrix} v_{1} & \cdots & v_{n} \end{bmatrix}^{H}$$

$$D = \begin{bmatrix} \sqrt{\lambda_1} & 0\\ 0 & \sqrt{\lambda_2} \end{bmatrix}$$

$$\begin{split} \tilde{s} &= U^H(HVs(t) + n(t)) \\ &= U^H(UDV^HVs(t) + n(t)) \\ &= (U^HU)D(V^HV)s(t) + U^Hn(t) \\ &= Ds(t) + U^Hn(t) \end{split}$$

$$U^H = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}^H$$

$$V = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$$

$$\sqrt{\lambda_1}, \sqrt{\lambda_2}, \sqrt{\lambda_j}$$

$$\begin{bmatrix} s_1(t) \\ s_2(t) \\ \vdots \\ s_J(t) \end{bmatrix}$$

$$\begin{bmatrix} \sqrt{\lambda_1} s_1(t) \\ \sqrt{\lambda_2} s_2(t) \\ \vdots \\ \sqrt{\lambda_J} s_j(t) \end{bmatrix}$$

$$HW = \begin{bmatrix} H^{(1)}W^{(1)} & 0_{N_R \times (N_T - N_R)} \\ 0_{N_R \times (N_T - N_R)} & H^{(2)}W^{(2)} \end{bmatrix}$$

株式会社 ゼネット

- 設立 1999 年
- 技術者合計 198 名
- 事業内容 金融機関のシステム開発や保守,ERP事業, AWS 事業や研修事業まで幅広く活躍.

$$D = \begin{bmatrix} \sqrt{\lambda_1} & 0\\ 0 & \sqrt{\lambda_2} \end{bmatrix}$$