Advanced Bending and Torsion **Shear Flow in Open Thin-Walled Sections**

Dr Luiz Kawashita

Luiz.Kawashita@bristol.ac.uk

01 November 2018

Shearing of Open Thin-Walled Sections - Derivations

- Thin-wall assumptions
 - Direct stresses are constant through the thickness:

Through-thickness direct and shear stresses are negligible:

$$\sigma_r = 0$$
 $au_{rz} = 0$

- In-plane shear stresses are constant through the thickness:
- The **shear flow** (shear force per unit arclength s) is defined as:

$$q_{zs} = t \, \tau_{zs}$$

- Thin wall approximations mean that:
 - The aspect ratio of each member should be 10 or greater (ideally 20)
 - Forces act along the centre line of each member
 - In-plane stresses are constant along the thickness direction

• For vertical upward loading S_{γ} :

 The shear flow is 'transferred' between thin walled members, e.g. flanges and web:

Analytical thin-wall solution vs. numerical full 3D solution:

Analytical thin-wall solution vs. numerical full 3D solution:

