

### Mosaic

Lavigna vuole colorare un mosaico di argilla su una parete. Il mosaico è una griglia  $N \times N$ , costituita da  $N^2$  tessere quadrate  $1 \times 1$  inizialmente non colorate. Le righe del mosaico sono numerate da 0 a N-1 dall'alto verso il basso, e le colonne sono numerate da 0 a N-1 da sinistra a destra. La tessera nella riga i e nella colonna j ( $0 \le i < N$ ,  $0 \le j < N$ ) è indicata con (i,j). Ogni tessera deve essere colorata di bianco (indicato con 0) o nero (indicato con 1).

Per colorare il mosaico, Lavigna sceglie prima due array X e Y di lunghezza N, ciascuno costituito dai valori 0 e 1, tali che X[0]=Y[0]. Colora quindi le tessere della riga 0 (la più in alto) secondo la matrice X, cioè in modo che il colore della tessera (0,j) sia X[j] ( $0 \le j < N$ ); e le tessere della colonna 0 (la più a sinistra) secondo la matrice Y, cioè in modo che il colore della tessera (i,0) sia Y[i] ( $0 \le i < N$ ).

Poi ripete i seguenti passaggi fino a quando tutte le tessere sono colorate:

- Trova una qualsiasi tessera non colorata (i,j) tale che il suo vicino in alto (tessera (i-1,j)) e il vicino a sinistra (tessera (i,j-1)) sono entrambi  $gi\grave{a}$  colorati.
- Quindi, colora la tessera (i,j) di nero se entrambi i vicini sono bianchi; altrimenti colora la tessera (i,j) di bianco.

Si può dimostrare che i colori finali delle piastrelle non dipendono dall'ordine in cui Lavigna le sta colorando.

Yasmin vorrebbe conoscere i colori delle tessere del mosaico, quindi pone a Lavigna Q domande, numerate da 0 a Q-1. Nella domanda k ( $0 \le k < Q$ ), Yasmin specifica un sottorettangolo del mosaico tramite:

- la riga più in alto T[k] e la riga più in basso B[k] ( $0 \le T[k] \le B[k] < N$ ),
- la colonna più a sinistra L[k] e la colonna più a destra R[k] ( $0 \leq L[k] \leq R[k] < N$ ),

e vuole sapere quante tessere nere sono contenute in quel sottorettangolo.

Nello specifico, Lavigna deve calcolare quante tessere (i,j) soddisfano entrambe le seguenti condizioni:

- $T[k] \leq i \leq B[k]$ ,  $L[k] \leq j \leq R[k]$ ;
- il colore della tessera (i,j) è nero.

Scrivi un programma che risponda alle domande di Yasmin.

# Note di implementazione

Devi implementare la seguente funzione.

```
std::vector<long long> mosaic(
  std::vector<int> X, std::vector<int> Y,
  std::vector<int> T, std::vector<int> B,
  std::vector<int> L, std::vector<int> R)
```

- X, Y: array di lunghezza N che descrivono i colori delle tessere rispettivamente nella riga più in alto e nella colonna più a sinistra.
- T, B, L, R: array di lunghezza Q che descrivono le domande poste da Yasmin.
- La funzione deve restituire un array C di lunghezza Q, tale che C[k] è la risposta alla domanda k ( $0 \le k < Q$ ).
- Questa funzione viene chiamata esattamente una volta per ogni caso di test.

#### **Assunzioni**

- $1 \le N \le 200\,000$
- $1 \le Q \le 200\,000$
- $X[i] \in \{0,1\}$  e  $Y[i] \in \{0,1\}$  per ogni i tale che  $0 \leq i < N$
- X[0] = Y[0]
- $0 \leq T[k] \leq B[k] < N$  e  $0 \leq L[k] \leq R[k] < N$  per ogni k tale che  $0 \leq k < Q$

### Subtask

| Subtask | Punteggio | Limitazioni aggiuntive                                    |
|---------|-----------|-----------------------------------------------------------|
| 1       | 5         | $N \leq 2; Q \leq 10.$                                    |
| 2       | 7         | $N \leq 200; Q \leq 200.$                                 |
| 3       | 7         | $T[k] = B[k] = 0$ (per ogni $0 \leq k < Q$ ).             |
| 4       | 10        | $N \leq 5000.$                                            |
| 5       | 8         | $X[i] = Y[i] = 0$ (per ogni $0 \leq i < N$ ).             |
| 6       | 22        | $T[k] = B[k]$ e $L[k] = R[k]$ (per ogni $0 \leq k < Q$ ). |
| 7       | 19        | $T[k] = B[k]$ (per ogni $0 \leq k < Q$ ).                 |
| 8       | 22        | Nessuna limitazione aggiuntiva.                           |

# Esempio

Consideriamo la seguente chiamata.

```
mosaic([1, 0, 1, 0], [1, 1, 0, 1], [0, 2], [3, 3], [0, 0], [3, 2])
```

Questo esempio è illustrato nelle immagini sottostanti. L'immagine a sinistra mostra i colori delle tessere del mosaico. Le immagini al centro e a destra mostrano i sottorettangoli che Yasmin ha chiesto rispettivamente nella prima e nella seconda domanda.

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 2 | 0 | 1 | 0 | 0 |
| 3 | 1 | 0 | 1 | 0 |

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 2 | 0 | 1 | 0 | 0 |
| 3 | 1 | 0 | 1 | 0 |

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 2 | 0 | 1 | 0 | 0 |
| 3 | 1 | 0 | 1 | 0 |

Le risposte alle domande (cioè il numero di uni nei rettangoli ombreggiati) sono rispettivamente 7 e 3. Quindi, la funzione deve restituire [7,3].

# Grader di esempio

Formato di input:

```
N
X[0] X[1] ... X[N-1]
Y[0] Y[1] ... Y[N-1]
Q
T[0] B[0] L[0] R[0]
T[1] B[1] L[1] R[1]
...
T[Q-1] B[Q-1] L[Q-1] R[Q-1]
```

Formato di output:

```
C[0]
C[1]
...
C[S-1]
```

dove S è la lunghezza dell'array C restituito da mosaic.