École Pour l'Informatique et les Techniques Avancées – EPITA

BSc L1 - 18 May 2024

Course: Introduction to Computer Networks

Introduction to Computer Networks

Date & Time	No.	Topics	Duration (hours)
Fri 19/04/24 - 10:00-13:00	1	Primer, Network protocols, types, topology, architecture	3
Fri 26/04/24 - 10:00-13:00	2	Network models, TCP/IP model, Packet switching	3
Sat 27/04/24 - 10:00-13:00	3	Physical Layer (Function, Signals, Modulation, Multiplexing, Transmission media & Hardware, Optical networks)	3
Sat 27/04/24 - 14:00-17:00	4	Data Link Layer (Function, Framing, Protocols, Flow control, Access control, Error correction, Hardware)	3
Fri 03/05/24 - 14:30-17:30	5	Network Layer (Function, IP addressing and subnets)	3
Sat 04/05/24 - 10:00-13:00	6	Network Layer (Routing algorithms and protocols), Internet Control Message Protocol	3
Tue 14/05/24 - 16:30-19:30	7	Network Layer (IGP & EGP), Autonomous System, Border Gateway Protocol	3
Wed 15/05/24 - 14:30-17:30	8	Transport Layer (Function, Flow and congestion controls, Protocols)	3
Thu 16/05/24 - 11:15-13:15	9	Cross-layer process: Access Control Lists	2

Introduction to Computer Networks

Date & Time	No.	Topics	Duration (hours)
Fri 17/05/24 - 14:00-17:00	10	Application Layer (DNS, SMTP)	3
Sat 18/05/24 - 14:00-17:00	11	Cross-layer process: Network Address Translation	3
Fri 24/05/24 - 10:00-13:00	12	Review / Open-session	3
		Total	<i>35</i>
Fri 31/05/24 - 14:30-15:30		EXAM	1

GRADING criteria:

- Class participation comprising attendance & reactivity): 10%
- Exercises (practical work): 40%
- Final evaluation (Quiz & Exercises): 50%

Lecture 11 Outline

- Network Address Translation (NAT)
 - Types
 - One-to-Many NAT
 - Class exercise 17
- Run-down
 - Open session

NAT (Network Address Translation)

- A built-in component of most Routers
- NAT main Types:
 - One-to-One NAT (a.k.a Basic or Static NAT):
 - Enables interconnection of two incompatibly addressed (e.g., IPv4 to IPv6 & vice versa) or different assigned IP networks
 - Follows RFC 2663

NAT (cont.)

- NAT main Types:
 - One-to-Many NAT (A.k.a. IP Masquerading / Overload):
 - IP address space (with many private IP addresses) hidden behind a single public IP address
 - Uses Port Address Translation (PAT): Inside Local and Inside Global PAT table (each local device is mapped with the public IP address using a unique port number)

One-to-Many NAT

Pro's:

- Provides enhanced security
- Facilitate the process of saving public IPv4 addresses
 - Partial solution for the IPv4 address space exhaustion problem
 - •

Con's

- Creates overhead/latency
- Difficult to manage with protocols that detect changes in headers (e.g., IPSec, ...)
- 0

Exercise 17: Practical work (1/2)

Inside Local: Fa0/0 Inside Global: Se3/2 Outside Local: Fa0/0 Outside Global: Se2/0 Inside Local: Fa0/0 Inside Global: Se2/2 Outside Local: Fa0/0 Outside Global: Se3/0

Exercise 17: Practical work (2/2)

Using your last cisco packet tracer file:

1. Apply NAT overload in AS200 for NID: 172.16.0.0

R# (config-if)#ip nat inside //interface: inside local e.g., Fa0/0

R# (config-if)#ip nat outside //interface: inside global e.g., Se6/0

R# (config)# access-list NUM permit IP_OR_Net-ID Wild_Card

//Using access list to designate inside local IP address (or 'Interesting traffic ') to be used for dynamic translation for NAT

R# (config)# ip NAT inside source list NUM interface INT_Num overload //NATing using the access list for 'local inside' devices with the IP address of 'outside local' interface IP

2. Apply NAT Static on HTTP and Mail server on AS100, and restrict these services for AS 200 only

R# (config-if)#ip nat inside //interface: inside local e.g., Fa0/0

R# (config-if)#ip nat outside //interface: inside global e.g., Se6/0

R# (config)# ip NAT inside source static Private_IP_Address Public_IP_Address

R# Show ip nat translations

Verify from outside networks using PING or TRACERT/TRACEROUTE.

e networks using rind of TRACERT/TRACEROOTE

Save cisco packet tracer file with your 'First_Last-name_Ex-6-17

Deadline: See 'Teams' Assignment section

Static NAT: We can

initiate translation from both inside to outside

and vice versa. That is

not desired in Dynamic NAT and Overload (PAT)

Lecture 11 Outline

- Network Address Translation (NAT)
 - Types
 - One-to-Many NAT
 - Class exercise 17
- Run-down
 - Open session

Open session

- Practice discussed topics on Network Simulation Program
- Questions?

Lecture 11 ends here

- Course Slides: Go to MS Teams:
 'Introduction to Computer Networks Spring 2024 | BSc'
 -> Files section
- Send your questions by email: mohammad-salman.nadeem@epita.fr OR via direct message using MS Teams
- Thank You!

Course references

- Internet Engineering Task Force, www.ietf.org
- Wikipedia, www.wikipedia.org
- IPv6.com, http://ipv6.com
- Cisco, Resolve IP Fragmentation, MTU, MSS, and PMTUD Issues with GRE and IPSEC, http://www.cisco.com/c/en/us/support/docs/ip/genericrouting-encapsulationgre/25885-pmtud-ipfrag.html [Accessed June 1, 2015]
- Microsoft technet, IPv6, IPv6 Technical Reference https://technet.microsoft.com/enus/library/cc738109(v=ws.10).aspx [Accessed June 1, 2015]
- Networking For Dummies, John Wiley & Sons, 8th Ed.
- William Stallings, Data and Computer Communications, 10th Ed.
- W. Stallings, Data and Computer Communications, 10th Ed.
- L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach, 5th Ed., Morgan Kaufmann
- J. Postel, "Internet Protocol DARPA Internet Program Protocol Specification," IETF RFC 791, Sep. 1981

