Física Moderna Difração de Multiplas Fendas

Luiz Fernando Gomes de Oliveira- 10/46969 Lucas Severo Alves- 10/0034772 Leonardo- xx/yyyyy

Resumo

Este experimento tem como objetivo apresentar o experimento de Thomas Young - experimento da fenda dupla. Este experimento demonstra como a luz em específico pode se comportar como partícula e onda ao mesmo tempo, o que gera uma grande dificuldade de compreensão de sua composição.

This experiment aims to present the experiment of Thomas Young - double slit experiment. This experiment demonstrates how light can behave as specific particle and wave at the same time, which creates a great difficulty to understand its composition.

Index Terms

Física Moderna, Arduino, Difração de Multiplas Fendas, Thomas Young, Double-slit experiment, ondas, partículas

SUMÁRIO

1	Crianção do Circuito	1
	.1 Ponte de Wheatstone	1
	.2 Abstração da ponte para o circuito final	1
2	evantando o programa	2
	Shield Comum	2
Refe	ncias	2
Apê	ice A: Códigos Fontes	2
Apê	ice B: Anexos	3
Lis	DE FIGURAS	
1	Ponte de Wheatstone	1
2	Circuito do LDR	1
3	Circuito proposto do LDR	2
4	dealização do circuito do LDR	3
5	Genda dupla	4
6	Difração em fenda simples	4
7	Difração em fenda dupla	5
Lıs	DE TABELAS	
Lis	NGS	
1	main.c	2

1 CRIANÇÃO DO CIRCUITO

PARA a criação do circuito, precisamos inicialmente entender como funciona uma ponte de *Wheatstone*.

1.1 Ponte de Wheatstone

A ponte de Wheatstone é utilizada quando queremos balancear um circuito com uma resistência desconhecida. A ponte é comumente caracterizada pelo desenho na figura 1, onde pode-se obter uma corrente no amperímetro igual a zero quando a seguinte equação é respeitada:

$$R_1 \cdot R_x = R_3 \cdot R_2 \tag{1}$$

Quando a equação 1 é respeitada, as tenções entre os pontos **A** e **B** é a mesma, de forma que não existe corrente nestes pontos

Figura 1: Ponte de Wheatstone

1.2 Abstração da ponte para o circuito final

Com base no conhecimento obtido na sessão 1.1, podemos inferir que no circuito da figura 2 teremos equilíbrio se:

$$R_1 \cdot R_x = R_3 \cdot R_2 \text{ , sendo}$$

$$R_x = \frac{(R_3 + LDR) \cdot R_4}{(R_3 + LDR) + R_4}$$

Para uma maior facilidade em montar o circuito, podemos considerar que $R_1=R_2=R_3=R$. Outra fator importante é considerar o range da resistência que o LDR adota de acordo com a intensidade de luz.

Normalmente, um LDR possui resistência em torno de 100Ω quando exposto a luz e $10^6\Omega$ quando em completa escuridão.

1

Figura 2: Circuito do LDR

Com base neste range e, adotando um valor para $r=10K\Omega$, podemos chegar as seguintes equações:

$$\begin{split} R \cdot R_x &= R \cdot R \\ R_x &= R \\ R_x &= \frac{(R_3 + LDR) \cdot R_4}{(R_3 + LDR) + R_4} \\ R_x &= \frac{(R_3 + LDR) \cdot R_4}{(R_3 + LDR) + R_4} = 10^3 \\ 10^3 &= \frac{(R_3 + LDR) \cdot R_4}{(R_3 + LDR) + R_4} \end{split}$$
 Tal que: $10^2 \Omega < LDR < 10^6 \Omega$

Podemos observar que assumindo $R_3 = 8.2 \cdot 10^3 \Omega$, temos o valor de R_4 muito próximo para ambos os casos $(10^3 \text{ e } 1.2 \cdot 10^3)$. Assim, uma possibilidade para o circuito final que abranja quase todo o range de resistência do LDR é o seguinte circuito:

Figura 3: Circuito proposto do LDR

REFERÊNCIAS

APÊNDICE A CÓDIGOS FONTES

LEVANTANDO O PROGRAMA

Inicialmente, é importante frisar que o kit do Arduíno nada mais é que uma camada de abstração criada acima do microcontrolador AVR. Desta forma, podemos programar nos kits do Arduíno de duas formas sob o sistema Linux:

2.1 Shield Comum

A forma mais simples de utilizar um kit do Arduíno é utilizando a própria IDE oferecida para o kit. A sua instalação é bem simples e fácil de ser feita. Basta entrar com o seguinte comando no terminal:

1 user@DESKTOP: sudo apt-get install arduino

```
Listing 1: Código principal
                                                      34 *
                                                      35 */
1 / * *
                                                      36 void loop()
2 * Test model for Arduino - UNO
                                                      37 {
                                                      38 static int i=0;
                                                      39 char buf[20];
5 #include <Arduino.h>
                                                      40
6 #include <stdio.h>
                                                      41
                                                             //! raw values
7 #include <stdlib.h>
                                                      42
                                                             sprintf(buf, "%d %d\n", i++, analogRead(0) );
                                                      43
                                                             Serial.print(buf);
9 / * *
                                                      44
10 *
                                                      45
                                                             delay(1);
                                                                               // wait for 1ms
11 * The setup() method runs once, when the
                                                      46 }
12 * sketch starts
                                                      47
13 * This is just starting the UART in 9600
                                                      48 / * *
14 * and setting the reference for the analog
                                                         * This is the standard main function. On
15
  * as External
                                                              Arduino, it's NEVER changes.
16
                                                      50
                                                         * @return the standard returns that the main
17 */
                                                              should return.
18 void setup()
19 {
                                                      52 int main (void)
20
       // wait for 10ms
                                                      53 {
21
      delay(10);
                                                      54
22
       //! initialize the default debug output:
                                                      55
                                                             //! Initialize the pins I/O and standard
23
      Serial.begin(9600);
                                                                 configures.
24
       //! Setting the analog reference as
                                                      56
                                                             init();
          external
                                                      57
                                                             //! Call the user's setup function.
25
      analogReference (EXTERNAL);
                                                      58
                                                             setup();
26
      // wait for 100ms to stabilize
                                                      59
27
      delay(100);
                                                      60
                                                             //! The eternal loop
28 }
                                                      61
                                                             while(true) {
29
                                                      62
                                                             loop();
30 / * * *
31
      The loop() method runs over and over again \overset{64}{\cdot \cdot}
32
                                                      65
                                                             return 0;
                                                      66 }
      as long as the Arduino has power
```

APÊNDICE B ANEXOS

Fluxograma do microcontrolador

Fluxograma do computador

Figura 4: Idealização do circuito do LDR

Figura 5: Fenda dupla

Figura 6: Difração em fenda simples

Figura 7: Difração em fenda dupla