Universal Algebra Week 4

James Newman Winter 2019

Theorem. $\operatorname{Sg}(X) = X \cup E(X) \cup E^2(X) \cup \dots$

Proof. First by induction, $E^k(X) \subseteq \operatorname{Sg}(X)$ for all $k \in \mathbb{N}$.

Theorem. If $\sim \in \text{Con } \mathbf{G}$ then $1/\sim$ is the universe of a normal subgroup of \mathbf{G} , and for $a, b \in G$ we have $a \sim b$ if and only if $a \cdot b^{-1} \in 1/\sim$.

Proof. Assume $\sim \in \text{Con } \mathbf{G}$.

For any $g \in G$, take any $g \cdot a \cdot g^{-1} \in g(1/\sim)g^{-1}$. Then $a \in 1/\sim$ and thus $1 \sim a$. Then by compatibility,

$$g \cdot 1 \sim g \cdot a$$
$$g \sim g \cdot a$$
$$g \cdot g^{-1} \sim g \cdot a \cdot g^{-1}$$
$$1 \sim g \cdot a \cdot g^{-1}$$

Then $g \cdot a \cdot g^{-1} \in 1/\sim$. So $g(1/\sim)g^{-1} \subseteq (1/\sim)$ for all $g \in G$ and thus $1/\sim$ is the universe of normal subgroup of G.

Next, for $a, b \in G$,

$$a \sim b \qquad \qquad \text{iff}$$

$$a \cdot b^{-1} \sim b \cdot b^{-1} \qquad \qquad \text{iff}$$

$$a \cdot b^{-1} \sim 1 \qquad \qquad \text{iff}$$

$$a \cdot b^{-1} \in 1/\sim$$

by compatibility and properties of groups.

Theorem. If **N** is a normal subgroup of a group **G**, then the relationship \sim defined as

$$a \sim b \text{ iff } a \cdot b^{-1} \in N$$

is a congruence on **G** with $1/\sim = N$.

Proof. Assume **N** is a normal subgroup of a group **G** and define \sim as above. First we confirm \sim is an equivalence relation:

- 1. For any $a \in G$ we have that $a \sim a$ because $a \cdot a^{-1} = 1 \in N$.
- 2. For any $a,b\in G$ assume $a\sim b$. Then $a\cdot b^{-1}\in N$ so its inverse $b\cdot a^{-1}\in N$, and thus $b\sim a$.
- 3. For any $a,b,c\in G$ assume $a\sim b$ and $b\sim c$. That is, $a\cdot b^{-1}\in N$ and $b\cdot c^{-1}\in N$. Then since **N** is closed, $a\cdot b^{-1}\cdot b\cdot c^{-1}=a\cdot c^{-1}\in N$. Thus $a\sim c$.

Therefore \sim is an equivalence relation.

Next we check the compatibility property.

- 1. Take any $a, b \in G$ such that $a \sim b$. Then $b \sim a$, i.e. $b \cdot a^{-1} \in N$. Then because N is normal, $a^{-1}ba^{-1}a = a^{-1}b = a^{-1}(b^{-1})^{-1} \in N$. Therefore $a^{-1} \sim b^{-1}$.
- 2. Next take any $a_1, a_2, b_1, b_2 \in G$ such that $a_1 \sim b_1$ and $a_2 \sim b_2$. Then $a_1b_1^{-1} \in N$ and $a_2b_2^{-1} \in N$. Because N is normal and $a_1b_1^{-1} \in N$ we have that $b_1^{-1}a_1b_1^{-1}b_1 = b_1^{-1}a_1 \in N$. Next since $b_1^{-1}a_1 \in N$ and $a_2b_2^{-1} \in N$ their product $b_1^{-1}a_1a_2b_2^{-1} \in N$. Again since N is normal, $b_1 \cdot b_1^{-1} \cdot a_1 \cdot a_2 \cdot b_2^{-1} \cdot b_1^{-1} = a_1 \cdot a_2 \cdot b_2^{-1} \cdot b_1^{-1} = (a_1 \cdot a_2) \cdot (b_1 \cdot b_2)^{-1} \in N$. Therefore $a_1 \cdot a_2 \sim b_1 \cdot b_2$.

Finally, since \sim is an equivalence relationship that satisfies the compatibility property it is a congruence on G.

Theorem. The normal subgroups of a group form an algebraic lattice which is modular.

Proof. Take any group G. By Exercise 1 the lattice of normal subgroups of G is isomorphic to the lattice of congruences on G. By theorem 5.5, the lattice of congruences on G is algebraic. By theorem 5.10, if G is congruence permutable, then G is congruence modular. Then it is sufficient to show that G is congruence permutable to show that the lattice of normal subgroups of G is algebraic and modular

Take any $\sim_1, \sim_2 \in$ Con **G**. Take any $a, b \in G$ such that $a \sim_1 \circ \sim_2 b$. Then there is a $c \in G$ such that $a \sim_1 c$ and $c \sim_2 b$. Then by compatibility

$$c \sim_2 b \qquad \qquad a \qquad \sim_2 c$$

$$1 \sim_2 c^{-1}b \qquad \qquad ac^{-1} \sim_2 1$$

$$a \sim_2 ac^{-1}b \qquad \qquad ac^{-1}b \sim_2 b$$

Then $a \sim_2 \circ \sim_1 b$. Thus $\sim_1 \circ \sim_2 \subseteq \sim_2 \circ \sim_1$, and by theorem 5.9, $\sim_1 \circ \sim_2 = \sim_2 \circ \sim_1$. That is, **G** is congruence permutable and thus also congruence modular.

Therefore the lattice of normal subgroups of a group form an algebraic and modular lattice. $\hfill\Box$