

planetmath.org

Math for the people, by the people.

category of C*-algebras

Canonical name CategoryOfCalgebras
Date of creation 2013-03-22 18:24:13
Last modified on 2013-03-22 18:24:13

Owner bci1 (20947) Last modified by bci1 (20947)

Numerical id 23

Author bci1 (20947)
Entry type Definition
Classification msc 18E05
Classification msc 46L05
Classification msc 18-00

Synonym C^* -algebra category Synonym category of C^* -algebras

Related topic CAlgebra3
Related topic Category

Related topic QuantumGroup Related topic QuantumGroups Related topic 2CCategory

 $\begin{array}{ll} \mbox{Related topic} & \mbox{IndexOfCategories} \\ \mbox{Defines} & \mbox{*-homomorphism} \\ \mbox{Defines} & \mbox{C^*-algebra category} \\ \end{array}$

Defines *-convolution

Definition 0.1. Let \mathcal{A}, \mathcal{B} be two http://planetmath.org/CAlgebra3C*-algebras. Then a *-homomorphism $\phi_* : \mathcal{A} \longrightarrow \mathcal{B}$ is defined as a C*-algebra homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ which respects involutions, that is:

$$\phi(a^{*_{\mathcal{A}}}) = \phi(a)^{*_{\mathcal{B}}}, \quad \text{ for any } a \in \mathcal{A}.$$

Remark 0.1. If 'by abuse of notation' one uses * to denote both $*_{\mathcal{A}}$ and $*_{\mathcal{B}}$, then any *-homomorphism ϕ commutes with *, i.e., $\phi* = *\phi$. Homomorphisms between C^* -algebras are http://planetmath.org/ContinuousLinearMappingautomatically continuous.

Definition 0.2. The category C whose objects are C^* -algebras and whose morphisms are *-homomorphisms is called the *category of* C^* -algebras or the C^* -algebra category.

References

- [1] Kustermans, J., C*-algebraic Quantum Groups arising from Algebraic Quantum Groups, Ph.D. Thesis, K.U.Leuven, 1997.
- [2] Sheu, A.J.L., Compact Quantum Groups and Groupoid C*-Algebras, J. Funct. Analysis 144 (1997), 371-393.