МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе $N\!\!^{}_{2}1$

по дисциплине «Организация ЭВМ и систем»

Тема: Трансляции, отладка и выполнение программ на языке Ассемблера

Студент гр. 0382	Парфенов В.М.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Изучать как устроены тРАНСЛЯЦИЯ, ОТЛАДКА И ВЫПОЛНЕНИЕ ПРОГРАММ НА языке Ассемблера

Задание.

Часть 1

1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h).

Выполняемые функцией действия и задаваемые ей параметры - следующие:

- обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$";
- требуется задание в регистре ah номера функции, равного 09h, a в регистре dx смещения адреса выводимой строки;
 - используется регистр ах и не сохраняется его содержимое.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными.
 - 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.
 - 4. Протранслировать программу с помощью строки

> masm hello1.asm

с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.

5. Скомпоновать загрузочный модуль с помощью строки

> link hello1.obj

- с созданием карты памяти и исполняемого файла hello1.exe.
- 6. Выполнить программу в автоматическом режиме путем набора строки

> hello1.exe

убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.

7. Запустить выполнение программы под управлением отладчика с помощью команды

> afd hello1.exe

Записать начальное содержимое сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды. Обычные команды выполняются по F1 (Step), а вызовы обработчиков прерываний (Int) - по F2 (StepProc), чтобы не входить внутрь обработчика прерываний. Продвижение по сегментам экранной формы отладчика выполняется с помощью клавиш F7 — F10 (up, down, left, right). Перезапуск программы в отладчике выполняется клавишей F3 (Retrieve). Выход из отладчика - по команде Quit.

Результаты прогона программы под управлением отладчика должны быть представлены в виде, показанном на примере одной команды в табл.1, и подписаны преподавателем.

Таблица 1 - Пример

Адрес	Символический	16-ричный	Содержимое регистров и ячеек памяти	
Команды	код команды	код команды	до выполнения	После выполнения
0003	Mov DS, AX	8E D8	(AX) = 2D87	(AX) = 2D87
			(DS) = 2D75	(DS) = 2D75
			(IP) = 0003	(IP) = 0003

Часть 2

Выполнить пункты 1 - 7 части 1 настоящего задания применительно к программе hello2.asm, приведенной в каталоге Задания, которая выводит на экран приветствие пользователя с помощью процедуры WriteMsg, а также использует полное определение сегментов. Сравнить результаты прогона под управлением

отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

Ход работы

Часть 1 (ИСПРАВИТЬ)

- 1.1. Каталог с MASM смонтирован с помощью команды mount с С:\Путь. Использовалась встроенная возможность Windows перетаскивания каталога на иконку приложения DOSBox)
- 1.2. Изменена символьная строка Greeting в сегменте данный на «Вас приветствует ст.гр.0383 Парфенов В.М.»
- 1.3. Протранслирована программа с помощью MASM.EXE с созданием объектного файла hello1.obj и файлом листинга hello1.lst без ошибок.
- 1.4. Скомпонован загрузочный модуль с созданием исполняемого файла hello1.exe без ошибок.
- 1.5. Программа hello1.exe запущена, все отработало без ошибок, вывелась строка «Вас приветствует ст.гр.0383 Парфенов В.М.».
- 1.6. Запущено выполнение программы под управлением отладчика с пошаговым выполнением и занесением данных в таблицу 2.

Начальное значение сегментных регистров:

CS = 1A05; DS = 19F5;

ES = 19F5; SS = 1A08;

Таблица 2 - Отладка hello1.exe

Адрес	Символический	16-ричный	Содержимое регистров и ячеек памяти	
Команды	код команды	код команды	до выполнения	После выполнения
0010	MOV AX, 1A07	B8071A	AX = 0000	AX = 1A07
			IP = 0010	IP = 0013

0013	MOV DS, AX	8ED8	DS = 19F5	DS = 1A07
			IP = 0013	IP = 0015
0015	MOV DX, 000	BA0000	DX = 0000	DX = 0000
			IP = 0015	IP = 0018
0018	MOV AH, 09	B409	AX = 1A07	AX = 0907
			IP = 0018	IP = 001A
001A	INT 21	CD21	IP = 001A	IP = 001C
001C	MOV AH, 4C	B44C	AX = 0907	AX = 4C07
			IP = 001C	IP = 001E
001E	INT 21	CD21	IP = 001E	IP = 14A1

2. Часть 2

2.1. Проделаны аналогичные шаги 1.1-1.6 для программы hello2.asm. Результат пошагового выполнения находится в таблице 3.

Начальное значение сегментных регистров:

CS = 1A0A; DS = 19F5;

ES = 19F5; SS = 1A05;

Таблица 3 - Отладка hello2.exe

Адрес	Символический	16-ричный	Содержимое регистров и ячеек памяти	
Команды	код команды	код команды	до выполнения	После выполнения
0005	PUSH DS	1E	IP = 0005	IP = 0006
			SP = 0018	SP = 0016
			Stack +0 0000	Stack +0 19F5
			+2 0000	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000
0006	SUB AX, AX	2BC0	IP = 0006	IP = 0008

0008	PUSH AX	50	IP = 0008	IP = 0009
			SP = 0016	SP=0014
			Stack +0 19F5	Stack +0 0000
			+2 0000	+2 19F5
			+4 0000	+4 0000
			+6 0000	+6 0000
0009	MOV AX, 1A07	B8071A	IP = 0009	IP = 000C
			AX = 0000	AX = 1A07
000C	MOV DS, AX	8ED8	IP = 000C	IP = 000E
			DS = 19F5	DS = 1A07
000E	MOV DX, 0000	BA0000	IP = 000E	IP = 0011
0011	CALL 0000	E8ECFF	IP = 0011	IP = 0000
			SP = 0014	SP = 0012
			Stack +0 0000	Stack +0 0014
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0000	MOV AH, 09	B409	IP = 0000	IP = 0002
			AX = 1A07	AX = 0907
0002	INT 21	CD21	IP = 0002	IP = 0004
0004	RET	C3	IP = 0004	IP = 0014
			SP = 0012	SP = 0014
			Stack +0 0014	Stack +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			+6 0000	+6 0000
0014	MOV DX,0010	BA0F00	IP = 0014	IP = 0017
			DX = 0000	DX = 000F
0017	CALL 0000	E8E6FF	IP = 0017	IP = 0000
			SP = 0014	SP = 0012
			Stack +0 0000	Stack +0 001A

i.				
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0000	MOV AH, 09	B409	IP = 0000	IP = 0002
0002	INT 21	CD21	IP = 0002	IP = 0004
0004	RET	C3	IP = 0004	IP = 001A
			SP = 0012	SP = 0014
			Stack +0 001A	Stack +0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			+6 0000	+6 0000
001A	Ret Far	СВ	IP = 001A	IP = 0000
	2000 2000		SP = 0014	SP = 0018
			CS = 1A0A	CS = 19F5
			Stack +0 0000	Stack +0 0000
			+2 19F5	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000

Вывод.

В ходе данной лабораторной работы были изучены основы языка Ассемблера, такие вещи как трансляция, отладка и выполнение программ. Также было отмечено, что программа Hello1.asm более автоматизирована, в отличии от hello2.asm, так как там используются упрощенные директивы.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: hello1.asm

```
; HELLO1.ASM - упрощенная версия учебной программы лаб.раб. N1
            по дисциплине "Архитектура компьютера"
************************
    ; Назначение: Программа формирует и выводит на экран приветствие
           пользователя с помощью функции ДОС "Вывод строки"
            (номер 09 прерывание 21h), которая:
            - обеспечивает вывод на экран строки символов,
             заканчивающейся знаком "$";
            - требует задания в регистре ah номера функции=09h,
             а в регистре dx - смещения адреса выводимой
            - использует регистр ах и не сохраняет его
             содержимое.
*************************
      DOSSEG
                                 ; Задание сегментов под ДОС
      .MODEL SMALL
                                     ; Модель памяти-SMALL(Малая)
                                  ; Отвести под Стек 256 байт
      .STACK 100h
      .DATA
                               ; Начало сегмента данных
    Greeting LABEL BYTE
                                      ; Текст приветствия
      DB 'Вас приветствует ст.гр.0383 - Парфенов В.М',13,10,'$'
      .CODE
                            ; Начало сегмента кода
                               ; Загрузка в DS адреса начала
      mov ax, @data
      mov ds, ax
                             ; сегмента данных
      mov dx, OFFSET Greeting
                                   ; Загрузка в dx смещения
                        ; адреса текста приветствия
    DisplayGreeting:
      mov ah, 9
                            ; # функции ДОС печати строки
      int 21h
                           ; вывод на экран приветствия
                             ; # функции ДОС завершения программы
      mov ah, 4ch
                           ; завершение программы и выход в ДОС
      int 21h
      END
```

Название файла: hello1.lst

#Microsoft (R) Macro Assembler Version 5.10 9/12/21 13:29:40

```
; HELLO1.ASM - упрощенная версия учебной прогр
аммы лаб.раб. N1
      по дисциплине "Архитектура комп
ьютера"
*******
; Назначение: Программа формирует и выводит на
экран приветствие
      пользователя с помощью функции ДО
С "Вывод строки"
      (номер 09 прерывание 21h), котора
я:
      - обеспечивает вывод на экран ст
роки символов,
       заканчивающейся знаком "$";
      - требует задания в регистре ah
номера функции=09h,
       а в регистре dx - смещения а
дреса выводимой
       строки;
      - использует регистр ах и не
сохраняет его
       содержимое.
********
```

DOSSEG

; Задание сегментов под ДОС

.MODEL SMALL

; Модель памяти-SMALL(Малая)

.STACK 100h

; Отвести под Стек 256 байт

.DATA

; Начало сегмента данных

0000 Greeting LABEL BYTE

; Текст приветствия

0000 A8 A2 A5 E2 E1 E2 DB 'Вас приветствует ст.гр.0383 – Парфенов

B.M',13,10,'\$'

A2 E3 A5 E2 20 E1

E2 2E A3 E0 2E 30

33 38 33 20 2D 20

8F A0 E0 E4 A5 AD

AE A2 20 82 2E 8C

2E 0D 0A 24

.CODE ; Начал

о сегмента кода

0000 B8 ---- R mov ax, @data ; Загр

узка в DS адреса начала

0003 8E D8 mov ds, ax ; сегм

ента данных

0005 BA 0000 R mov dx, OFFSET Greeting ; Загр

узка в dx смещения

; адрес

а текста приветствия

0008 DisplayGreeting:

0008 B4 09 mov ah, 9 ;# φy

нкции ДОС печати строки

000A CD 21 int 21h ; вывод #Microsoft (R) Macro Assembler Version 5.10 9/12/21 13:29:40

Page 1-2

на экран приветствия

000C B4 4C mov ah, 4ch ; # φy

нкции ДОС завершения программы

000E CD 21 int 21h ; завер

шение программы и выход в ДОС

END

Название файла: hello2.asm

; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине

"Архитектура компьютера"

; Программа использует процедуру для печати строки

•

; ТЕКСТ ПРОГРАММЫ

EOFLine EQU '\$' ; Определение символьной константы

; "Конец строки"

; Стек программы

ASSUME CS:CODE, SS:AStack

AStack SEGMENT STACK

DW 12 DUP('!') ; Отводится 12 слов памяти

AStack ENDS

; Данные программы DATA **SEGMENT** ; Директивы описания данных HELLO DB 'Вас приветствует ст.гр.0383 – Парфенов В.М.', 0AH, 0DH,EOFLine GREETING DB 'Student from 0383 - \$' DATA **ENDS** ; Код программы CODE **SEGMENT** ; Процедура печати строки WriteMsg PROC NEAR mov AH,9 int 21h; Вызов функции DOS по прерыванию ret WriteMsg ENDP ; Головная процедура Main PROC FAR ;\ Сохранение адреса начала PSP в стеке push DS sub AX,AX ; > для последующего восстановления по push AX ;/ команде ret, завершающей процедуру. mov AX,DATA ; Загрузка сегментного

; регистра данных.

mov DX, OFFSET HELLO ; Вывод на экран первой

mov DS,AX

call WriteMsg ; строки приветствия.

mov DX, OFFSET GREETING; Вывод на экран второй

call WriteMsg ; строки приветствия.

ret ; Выход в DOS по команде,

; находящейся в 1-ом слове PSP.

Main ENDP

CODE ENDS

END Main

Название файла: hello2.lst

Microsoft (R) Macro Assembler Version 5.10 9/15/21 11:21:52

Page 1-1

; HELLO2 - Учебная программа N2 лаб.раб.#1 по

дисциплине "Архитектура компьютера"

Программа использует процедуру для п

ечати строки

,

; ТЕКСТ ПРОГРАММЫ

= 0024 EOFLine EQU '\$' ; Определение символь

ной константы

; "Конец строки"

; Стек программы

ASSUME CS:CODE, SS:AStack

AStack SEGMENT STACK

0000

0000 000C[

DW 12 DUP(?) ; Отводится 12 слов п

амяти

????

Пар

]

0018 AStack ENDS

; Данные программы

0000 DATA SEGMENT

; Директивы описания данных

0000 82 A0 E1 20 AF E0 HELLO DB 'Вас приветствует ст.гр.0383 -

фенов В.М.', 0АН, 0DH, EOFLine

A8 A2 A5 E2 E1 E2

A2 E3 A5 E2 20 E1

E2 2E A3 E0 2E 30

33 38 33 20 2D 20

8F A0 E0 E4 A5 AD

AE A2 20 82 2E 8C

2E 0A 0D 24

002E 53 74 75 64 65 6E GREETING DB 'Student from 0383 - \$'

74 20 66 72 6F 6D

20 30 33 38 33 20

2D 20 24

0043 DATA ENDS

; Код программы

0000 CODE SEGMENT

; Процедура печати строки

0000 WriteMsg PROC NEAR

0000 B4 09 mov AH,9

0002 CD 21 int 21h; Вызов функции DOS по пре

рыванию

0004 C3 ret

0005 WriteMsg ENDP

Microsoft (R) Macro Assembler Version 5.10 9/15/21 11:21:52

Page 1-2

; Головная процедура

0005 Main PROC FAR

0005 1E push DS ;\ Сохранение адреса

начала PSP в стеке

0006 2B C0 sub AX,AX ; > для последующего в

осстановления по

0008 50 push AX ;/ команде ret, завер

шающей процедуру.

0009 B8 ---- R mov AX,DATA ; Загрузка

сегментного

000С 8E D8 mov DS,AX ; регистра

данных.

000E BA 0000 R mov DX, OFFSET HELLO ; Вывод на

экран первой

0011 E8 0000 R call WriteMsg ; строки пр

иветствия.

0014 BA 002E R mov DX, OFFSET GREETING; Вывод на

экран второй

0017 E8 0000 R call WriteMsg ; строки пр

иветствия.

001A CB ret ; Выход в D

OS по команде,

; находящей

ся в 1-ом слове PSP.

001B Main ENDP

001B CODE ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10 9/15/21 11:21:52

Symbols-1

Segments and Groups:

N a m e Length Align Combine Class

ASTACK 0018 PARA STACK

CODE 001B PARA NONE

DATA...... 0043 PARA NONE

Symbols:

N a m e Type Value Attr

EOFLINE NUMBER 0024

GREETING L BYTE 002E DATA

HELLO LBYTE 0000 DATA

MAIN F PROC 0005 CODE Length = 0016

WRITEMSG...... N PROC 0000 CODE Length = 0005

@CPU TEXT 0101h

@FILENAME TEXT hello2

@VERSION TEXT 510

52 Source Lines

52 Total Lines

13 Symbols

48000 + 461307 Bytes symbol space free

- 0 Warning Errors
- 0 Severe Errors