Introduction to NP-Completeness: Lecture 19

Lecturer: S. S. Ravi

Affiliation: Biocomplexity Institute and Initiative, UVA

Email: ssravi@virginia.edu

Date: Oct. 29, 2020

Request: If you send email to Ravi regarding this lecture, please be sure to cc the message to Professor Haifeng Xu (hx4ad@virginia.edu).

Outline for Lecture 19

- Steps to prove NP-completeness (brief review from Lecture 18)
- 2 Additional reductions to show **NP**-completeness
- **3** Coping with **NP**-complete problems

Steps to Prove **NP**-completeness

Goal: To prove that Problem Q is **NP**-complete.

- Show that Q is in NP. (This step shows the membership in NP.)
- Identify a suitable problem P which is known to be NP-complete.
- Show that $P \leq_p Q$. (This step shows the NP-hardness of Q.)

Minimum Set Cover (MSC):

<u>Instance</u>: A universal set $U = \{u_1, u_2, \dots, u_n\}$, a collection $S = \{S_1, S_2, \dots, S_m\}$, where each S_j is a subset of U $(1 \le j \le m)$ and an integer $r \le m$.

Question: Is there is a subcollection S' of S such that $|S'| \le r$ and the union of the sets in S' is equal to U?

Example: Let
$$U = \{u_1, u_2, u_3, u_4, u_5\}$$
 and $S = \{S_1, S_2, S_3, S_4\}$, where $S_1 = \{u_1, u_3\}$, $S_2 = \{u_2, u_4\}$, $S_3 = \{u_3, u_5\}$ and $S_4 = \{u_2, u_5\}$.

With r = 3, we have a "YES" instance of MSC: choose $S' = \{S_1, S_2, S_3\}$ as a solution.

Minimum Set Cover (MSC):

<u>Instance</u>: A universal set $U = \{u_1, u_2, \dots, u_n\}$, a collection $S = \{S_1, S_2, \dots, S_m\}$, where each S_j is a subset of U $(1 \le j \le m)$ and an integer $r \le m$.

Question: Is there is a subcollection S' of S such that $|S'| \le r$ and the union of the sets in S' is equal to U?

Example: Let
$$U = \{u_1, u_2, u_3, u_4, u_5\}$$
 and $S = \{S_1, S_2, S_3, S_4\}$, where $S_1 = \{u_1, u_3\}$, $S_2 = \{u_2, u_4\}$, $S_3 = \{u_3, u_5\}$ and $S_4 = \{u_2, u_5\}$.

- With r = 3, we have a "YES" instance of MSC: choose $S' = \{S_1, S_2, S_3\}$ as a solution.
- With r = 2, we have a "NO" instance of MSC. (Why?)

An Application of MSC in Software Testing:

Suppose the source code for some software has N lines numbered 1 through N. ($U = \{1, 2, ..., N\}$.)

- Suppose the source code for some software has N lines numbered 1 through N. ($U = \{1, 2, ..., N\}$.)
- For a test input t_i , let $S_i \subseteq U$ be the subset of lines of the source code reached by t_i .

- Suppose the source code for some software has N lines numbered 1 through N. ($U = \{1, 2, ..., N\}$.)
- For a test input t_i , let $S_i \subseteq U$ be the subset of lines of the source code reached by t_i .
- Let $T = \{t_1, t_2, \dots, t_m\}$ consist of m tests such that running all the tests in T will reach all the lines.

- Suppose the source code for some software has N lines numbered 1 through N. ($U = \{1, 2, ..., N\}$.)
- For a test input t_i , let $S_i \subseteq U$ be the subset of lines of the source code reached by t_i .
- Let $T = \{t_1, t_2, \dots, t_m\}$ consist of m tests such that running all the tests in T will reach all the lines.
- There may be smaller test set $T' \subseteq T$ that may also be sufficient.

- Suppose the source code for some software has N lines numbered 1 through N. ($U = \{1, 2, ..., N\}$.)
- For a test input t_i , let $S_i \subseteq U$ be the subset of lines of the source code reached by t_i .
- Let $T = \{t_1, t_2, \dots, t_m\}$ consist of m tests such that running all the tests in T will reach all the lines.
- There may be smaller test set $T' \subseteq T$ that may also be sufficient.
- Finding T' is exactly the MSC problem where $U = \{1, 2, ..., N\}$, the set $S_i \subseteq U$ corresponds to test t_i $(1 \le i \le n)$.

Theorem 1: MSC is **NP**-complete.

Proof:

■ Membership in **NP**: **Exercise**. (**Hint**: Proposed solution S' to MSC is a subcollection of S.)

Theorem 1: MSC is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution S' to MSC is a subcollection of S.)
- Proof of NP-hardness: Reduction from Minimum Vertex Cover (MVC).

Theorem 1: MSC is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution S' to MSC is a subcollection of S.)
- Proof of NP-hardness: Reduction from Minimum Vertex Cover (MVC).
- **Recall:** An MVC instance has graph G(V, E) and integer k. The question is whether G has a vertex cover of size $\leq k$.

Theorem 1: MSC is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution S' to MSC is a subcollection of S.)
- Proof of NP-hardness: Reduction from Minimum Vertex Cover (MVC).
- **Recall:** An MVC instance has graph G(V, E) and integer k. The question is whether G has a vertex cover of size $\leq k$.
- Intuitive idea:

Theorem 1: MSC is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution S' to MSC is a subcollection of S.)
- Proof of NP-hardness: Reduction from Minimum Vertex Cover (MVC).
- **Recall:** An MVC instance has graph G(V, E) and integer k. The question is whether G has a vertex cover of size $\leq k$.
- Intuitive idea:
 - Edges in MVC become elements in MSC.

Theorem 1: MSC is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution S' to MSC is a subcollection of S.)
- Proof of NP-hardness: Reduction from Minimum Vertex Cover (MVC).
- **Recall:** An MVC instance has graph G(V, E) and integer k. The question is whether G has a vertex cover of size $\leq k$.
- Intuitive idea:
 - Edges in MVC become elements in MSC.
 - Nodes in MVC become sets in MSC.

An Example to Illustrate the Reduction:

MVC Instance with k = 2

Resulting MSC instance:

- $U = \{u_1, u_2, u_3, u_4, u_5\}$
- $S = \{S_1, S_2, S_3, S_4, S_5\}$, where $S_1 = \{u_1, u_4\}$ $S_2 = \{u_1, u_2, u_5\}$ $S_3 = \{u_2, u_3\}$ $S_4 = \{u_3, u_4\}$ $S_5 = \{u_5\}$
- Bound r on the number of sets = 2

Steps of the Reduction from MVC:

■ MVC instance I has graph G(V, E) and integer k. Let $V = \{v_1, v_2, \dots, v_n\}$ and $E = \{e_1, e_2, \dots, e_m\}$. (Size of the MVC instance = O(m + n).)

Steps of the Reduction from MVC:

- MVC instance I has graph G(V, E) and integer k. Let $V = \{v_1, v_2, \dots, v_n\}$ and $E = \{e_1, e_2, \dots, e_m\}$. (Size of the MVC instance = O(m + n).)
- MSC instance I' has U, S and integer r.

Steps of the Reduction from MVC:

- MVC instance I has graph G(V, E) and integer k. Let $V = \{v_1, v_2, \dots, v_n\}$ and $E = \{e_1, e_2, \dots, e_m\}$. (Size of the MVC instance = O(m + n).)
- MSC instance I' has U, S and integer r.
- Construct $U = \{u_1, u_2, \dots, u_m\}$. (Thus, element u_i corresponds to edge e_i , $1 \le i \le m$.) [Time: O(m)]

Steps of the Reduction from MVC (continued):

■ Construct $S = \{S_1, S_2, \dots, S_n\}$.

Steps of the Reduction from MVC (continued):

- Construct $S = \{S_1, S_2, ..., S_n\}$.
- Set S_j corresponding to node v_j is chosen as follows: for each edge e_i that touches node v_j , add the corresponding element u_i to S_j . [Time: O(m)]

Steps of the Reduction from MVC (continued):

- Construct $S = \{S_1, S_2, ..., S_n\}$.
- Set S_j corresponding to node v_j is chosen as follows: for each edge e_i that touches node v_j , add the corresponding element u_i to S_j . [Time: O(m)]
- Set r (bound on the number of sets in MSC) = k (bound on the number of nodes in MVC). [Time: O(1)]

Steps of the Reduction from MVC (continued):

- Construct $S = \{S_1, S_2, ..., S_n\}$.
- Set S_j corresponding to node v_j is chosen as follows: for each edge e_i that touches node v_j , add the corresponding element u_i to S_j . [Time: O(m)]
- Set r (bound on the number of sets in MSC) = k (bound on the number of nodes in MVC). [Time: O(1)]
- Total time for the reduction = O(m + n). So, the reduction is efficient.

Correctness:

Part 1: Suppose MSC instance I' has a solution. (We must show that the MVC instance I has a solution.)

■ Let $S' = \{S_1, S_2, \dots, S_\ell\}$ be a solution to MSC, where $\ell < r = k$.

Correctness:

Part 1: Suppose MSC instance I' has a solution. (We must show that the MVC instance I has a solution.)

- Let $S' = \{S_1, S_2, \dots, S_\ell\}$ be a solution to MSC, where $\ell < r = k$.
- Let $V' = \{v_1, v_2, \dots, v_\ell\}.$

Correctness:

Part 1: Suppose MSC instance I' has a solution. (We must show that the MVC instance I has a solution.)

- Let $S' = \{S_1, S_2, \dots, S_\ell\}$ be a solution to MSC, where $\ell < r = k$.
- Let $V' = \{v_1, v_2, \dots, v_\ell\}$.
- **Claim:** V' is a solution to MVC.

Correctness Part 1 (continued):

Claim: V' is a solution to MVC.

- **Claim:** V' is a solution to MVC.
- Reason:

- Claim: V' is a solution to MVC.
- Reason:
 - $|V'| = \ell < r = k$. (So V' has the right size.)

- Claim: V' is a solution to MVC.
- Reason:
 - $|V'| = \ell < r = k$. (So V' has the right size.)
 - Consider any edge $e_x = \{v_i, v_j\}$ of G.

- Claim: V' is a solution to MVC.
- Reason:
 - $|V'| = \ell < r = k$. (So V' has the right size.)
 - Consider any edge $e_x = \{v_i, v_j\}$ of G.
 - The element u_x corresponding to e_x appears only in sets S_i and S_i .

- Claim: V' is a solution to MVC.
- Reason:
 - $|V'| = \ell < r = k$. (So V' has the right size.)
 - Consider any edge $e_x = \{v_i, v_j\}$ of G.
 - The element u_x corresponding to e_x appears only in sets S_i and S_i .
 - S' must contain at least one of S_i and S_j (since S' is a valid set cover).

- Claim: V' is a solution to MVC.
- Reason:
 - $|V'| = \ell < r = k$. (So V' has the right size.)
 - Consider any edge $e_x = \{v_i, v_j\}$ of G.
 - The element u_x corresponding to e_x appears only in sets S_i and S_i .
 - S' must contain at least one of S_i and S_j (since S' is a valid set cover).
 - So, V' contains at least one of v_i and v_j .

- Claim: V' is a solution to MVC.
- Reason:
 - $|V'| = \ell < r = k$. (So V' has the right size.)
 - Consider any edge $e_x = \{v_i, v_j\}$ of G.
 - The element u_x corresponding to e_x appears only in sets S_i and S_i .
 - S' must contain at least one of S_i and S_j (since S' is a valid set cover).
 - So, V' contains at least one of v_i and v_j .
 - Thus, V' is a solution to the MVC instance I'.

Part 2: Suppose MVC instance I has a solution. (We need to show that the MSC instance I' has a solution.)

■ Let $V' = \{v_1, v_2, \dots, v_\ell\}$ be a solution to MVC, where $\ell \le k = r$.

- Let $V' = \{v_1, v_2, \dots, v_\ell\}$ be a solution to MVC, where $\ell < k = r$.
- Let $S' = \{S_1, S_2, \dots, S_\ell\}.$

- Let $V' = \{v_1, v_2, \dots, v_\ell\}$ be a solution to MVC, where $\ell < k = r$.
- Let $S' = \{S_1, S_2, \dots, S_\ell\}.$
- Claim: S' is a solution to MSC.

- Let $V' = \{v_1, v_2, \dots, v_\ell\}$ be a solution to MVC, where $\ell < k = r$.
- Let $S' = \{S_1, S_2, \dots, S_\ell\}.$
- Claim: S' is a solution to MSC.
- Proof similar to that of Part 1. (Reading exercise)

- Let $V' = \{v_1, v_2, \dots, v_\ell\}$ be a solution to MVC, where $\ell < k = r$.
- Let $S' = \{S_1, S_2, \dots, S_\ell\}.$
- Claim: S' is a solution to MSC.
- Proof similar to that of Part 1. (Reading exercise)
- Thus, MSC is **NP**-complete.

Review: 3SAT and Maximum Independent Set (MIS)

■ 3SAT:

<u>Instance</u>: A set $X = \{x_1, x_2, ..., x_n\}$ of Boolean variables and a set $F = \{C_1, C_2, ..., C_m\}$ of m clauses using the variables in X. Each clause has *exactly* 3 literals.

Question: Is F satisfiable?

Review: 3SAT and Maximum Independent Set (MIS)

■ 3SAT:

<u>Instance</u>: A set $X = \{x_1, x_2, ..., x_n\}$ of Boolean variables and a set $F = \{C_1, C_2, ..., C_m\}$ of m clauses using the variables in X. Each clause has *exactly* 3 literals.

Question: Is *F* satisfiable?

■ Maximum Independent Set (MIS):

<u>Instance:</u> An undirected graph G(V, E) and an integer $\ell \leq |V|$.

Question: Does G have an **independent set** with at least ℓ vertices?

Theorem 2: MIS is **NP**-complete.

Proof:

■ Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MIS is a subset of nodes.)

Theorem 2: MIS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MIS is a subset of nodes.)
- Proof of NP-hardness: Reduction from 3SAT.

Theorem 2: MIS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MIS is a subset of nodes.)
- Proof of NP-hardness: Reduction from 3SAT.
- Intuitive idea:

Theorem 2: MIS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MIS is a subset of nodes.)
- Proof of NP-hardness: Reduction from 3SAT.
- Intuitive idea:
 - From each clause of 3SAT construct a subgraph (of the eventual graph of MIS).

Theorem 2: MIS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MIS is a subset of nodes.)
- Proof of NP-hardness: Reduction from 3SAT.
- Intuitive idea:
 - From each clause of 3SAT construct a subgraph (of the eventual graph of MIS).
 - 3SAT requires at least one literal to have the value 1 in each clause. This corresponds to choosing one vertex from each subgraph in the independent set.

Theorem 2: MIS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MIS is a subset of nodes.)
- Proof of NP-hardness: Reduction from 3SAT.
- Intuitive idea:
 - From each clause of 3SAT construct a subgraph (of the eventual graph of MIS).
 - 3SAT requires at least one literal to have the value 1 in each clause. This corresponds to choosing one vertex from each subgraph in the independent set.
 - Must avoid conflicts in assignments to 3SAT (i.e., two complementary literals should not both be set to 1); this is ensured by adding suitable edges in the MIS instance.

Example to Illustrate the reduction from 3SAT to MIS:

3SAT Instance:

$$X = \{x_1, x_2, x_3, x_4\}$$

 $F = \{C_1, C_2\}$, where
 $C_1 = (x_1 \lor \overline{x_2} \lor x_3)$
 $C_2 = \{\overline{x_1} \lor x_2 \lor x_4\}$

Resulting MIS Instance:

Indep. set size $\ell=2$

Steps of the Reduction from 3SAT to MIS:

• Size of the 3SAT instance I = O(m).

- Size of the 3SAT instance I = O(m).
- For each clause C_j , construct a 3-node complete graph G_j . (Each node of G_j corresponds to a literal in C_j .) [Time: O(m)]

- Size of the 3SAT instance I = O(m).
- For each clause C_j , construct a 3-node complete graph G_j . (Each node of G_j corresponds to a literal in C_j .) [Time: O(m)]
- **Note:** From each G_j , only one node can be chosen in any independent set.

- Size of the 3SAT instance I = O(m).
- For each clause C_j , construct a 3-node complete graph G_j . (Each node of G_j corresponds to a literal in C_j .) [Time: O(m)]
- **Note:** From each G_j , only one node can be chosen in any independent set.
- For any pair of subgraphs G_p and G_q $(p \neq q)$, if a node v in G_p and a node w in G_q correspond to complementary literals, add the edge $\{v,w\}$. (These are **conflict** edges.) [Time: $O(m^2)$]

- Size of the 3SAT instance I = O(m).
- For each clause C_j , construct a 3-node complete graph G_j . (Each node of G_j corresponds to a literal in C_j .) [Time: O(m)]
- **Note:** From each G_j , only one node can be chosen in any independent set.
- For any pair of subgraphs G_p and G_q $(p \neq q)$, if a node v in G_p and a node w in G_q correspond to complementary literals, add the edge $\{v,w\}$. (These are **conflict** edges.) [Time: $O(m^2)$]
- The size ℓ of independent set = m (number of clauses). [Time: O(1)]

- Size of the 3SAT instance I = O(m).
- For each clause C_j , construct a 3-node complete graph G_j . (Each node of G_j corresponds to a literal in C_j .) [Time: O(m)]
- **Note:** From each G_j , only one node can be chosen in any independent set.
- For any pair of subgraphs G_p and G_q $(p \neq q)$, if a node v in G_p and a node w in G_q correspond to complementary literals, add the edge $\{v,w\}$. (These are **conflict** edges.) [Time: $O(m^2)$]
- The size ℓ of independent set = m (number of clauses). [Time: O(1)]
- Time used by the reduction = $O(m^2)$.

Correctness:

Part 1: Suppose 3SAT instance I has a solution. (Must show that the MIS instance I' has a solution.)

■ Each clause C_j of 3SAT has one or more literals with value 1. Choose one such literal a_j from c_j and v_j be the node corresponding to a_j in G_j , $1 \le j \le m$.

Correctness:

- Each clause C_j of 3SAT has one or more literals with value 1. Choose one such literal a_j from c_j and v_j be the node corresponding to a_j in G_j , $1 \le j \le m$.
- Let $V' = \{v_1, v_2, \dots, v_m\}.$

Correctness:

- Each clause C_j of 3SAT has one or more literals with value 1. Choose one such literal a_j from c_j and v_j be the node corresponding to a_i in G_i , $1 \le j \le m$.
- Let $V' = \{v_1, v_2, \dots, v_m\}$.
- **Claim:** V' is a solution to MIS.

Correctness Part 1 (continued):

Claim: V' is a solution to MIS.

- **Claim:** V' is a solution to MIS.
- Reason:

- **Claim:** V' is a solution to MIS.
- Reason:
 - |V'| = m. (So, V' has the right size.)

- **Claim:** V' is a solution to MIS.
- Reason:
 - |V'| = m. (So, V' has the right size.)
 - Suppose V' is not an independent set. Then there is an edge $e = \{v_i, v_j\}$ in the MIS graph G.

- **Claim:** V' is a solution to MIS.
- Reason:
 - |V'| = m. (So, V' has the right size.)
 - Suppose V' is not an independent set. Then there is an edge $e = \{v_i, v_i\}$ in the MIS graph G.
 - v_i and v_j are from different subgraphs; that is, e is a conflict edge.

- **Claim:** V' is a solution to MIS.
- Reason:
 - |V'| = m. (So, V' has the right size.)
 - Suppose V' is not an independent set. Then there is an edge $e = \{v_i, v_i\}$ in the MIS graph G.
 - v_i and v_j are from different subgraphs; that is, e is a conflict edge.
 - So, the literals corresponding to v_i and v_j are complements of each other.

- **Claim:** V' is a solution to MIS.
- Reason:
 - |V'| = m. (So, V' has the right size.)
 - Suppose V' is not an independent set. Then there is an edge $e = \{v_i, v_i\}$ in the MIS graph G.
 - v_i and v_j are from different subgraphs; that is, e is a conflict edge.
 - So, the literals corresponding to v_i and v_j are *complements* of each other.
 - Hence, the given solution to 3SAT sets both a variable and its complement to 1, a contradiction.

- **Claim:** V' is a solution to MIS.
- Reason:
 - |V'| = m. (So, V' has the right size.)
 - Suppose V' is not an independent set. Then there is an edge $e = \{v_i, v_i\}$ in the MIS graph G.
 - v_i and v_j are from different subgraphs; that is, e is a conflict edge.
 - So, the literals corresponding to v_i and v_j are complements of each other.
 - Hence, the given solution to 3SAT sets both a variable and its complement to 1, a contradiction.
 - Thus, V' is a solution to the MIS instance I'.

Part 2: Suppose MIS instance I' has a solution. (Must show that the 3SAT instance I' has a solution.)

Example:

- Suppose MIS solution $V' = \{v_{1,2}, v_{2,3}\}.$
- The corresponding literals: $\overline{x_2}$, x_4 .
- Set $x_2 = 0$ and $x_4 = 1$.
- Set the remaining variables x_1 and x_3 to 0.

Part 2: Suppose MIS instance I' has a solution. (Must show that the 3SAT instance I' has a solution.)

■ Let $V' = \{v_1, v_2, \dots, v_m\}$ be a solution to MIS.

- Let $V' = \{v_1, v_2, \dots, v_m\}$ be a solution to MIS.
- Construct a solution to 3SAT as follows:

- Let $V' = \{v_1, v_2, \dots, v_m\}$ be a solution to MIS.
- Construct a solution to 3SAT as follows:
 - For each $v_i \in V'$, let a_i be the corresponding literal in the 3SAT instance. Set a_i to 1 (and thus $\overline{a_i}$ to 0).

- Let $V' = \{v_1, v_2, \dots, v_m\}$ be a solution to MIS.
- Construct a solution to 3SAT as follows:
 - For each $v_i \in V'$, let a_i be the corresponding literal in the 3SAT instance. Set a_i to 1 (and thus $\overline{a_i}$ to 0).
 - If there is a variable x_b that has not been assigned a value, set x_b to 0.

- Let $V' = \{v_1, v_2, \dots, v_m\}$ be a solution to MIS.
- Construct a solution to 3SAT as follows:
 - For each $v_i \in V'$, let a_i be the corresponding literal in the 3SAT instance. Set a_i to 1 (and thus $\overline{a_i}$ to 0).
 - If there is a variable x_b that has not been assigned a value, set x_b to 0.
- Claim: We have a solution to the 3SAT instance I.

■ **Claim:** We have a solution to the 3SAT instance *I*.

- Claim: We have a solution to the 3SAT instance *I*.
- **■** Reason:

- **Claim:** We have a solution to the 3SAT instance *I*.
- Reason:
 - Each variable has been assigned a value.

- **Claim:** We have a solution to the 3SAT instance *I*.
- Reason:
 - Each variable has been assigned a value.
 - Since V' is an independent set, the chosen assignment does not have any conflicts.

■ **Claim:** We have a solution to the 3SAT instance *I*.

- Each variable has been assigned a value.
- lacksquare Since V' is an independent set, the chosen assignment does not have any conflicts.
- Since |V'| = m, for each subgraph G_j , V' has node, say v_j from G_j .

■ **Claim:** We have a solution to the 3SAT instance *I*.

- Each variable has been assigned a value.
- Since V' is an independent set, the chosen assignment does not have any conflicts.
- Since |V'| = m, for each subgraph G_j , V' has node, say v_j from G_j .
- consider any clause C_j and let v_j be the node in V' from subgraph G_j .

■ Claim: We have a solution to the 3SAT instance 1.

- Each variable has been assigned a value.
- $lue{}$ Since V' is an independent set, the chosen assignment does not have any conflicts.
- Since |V'| = m, for each subgraph G_j , V' has node, say v_j from G_j .
- consider any clause C_j and let v_j be the node in V' from subgraph G_i .
- The literal y corresponding to v_j is in clause C_j and y has been set to 1, C_i is satisfied.

■ **Claim:** We have a solution to the 3SAT instance *I*.

- Each variable has been assigned a value.
- Since V' is an independent set, the chosen assignment does not have any conflicts.
- Since |V'| = m, for each subgraph G_j , V' has node, say v_j from G_j .
- consider any clause C_j and let v_j be the node in V' from subgraph G_j .
- The literal y corresponding to v_j is in clause C_j and y has been set to 1, C_i is satisfied.
- Thus, MIS is **NP**-complete.

Minimum Dominating Set (MDS)

<u>Instance</u>: An undirected graph G(V, E) and an integer $r \leq |V|$.

Question: Does G have a **dominating set** of size at most r, that is, is there a subset $V' \subseteq V$ such that $|V'| \le r$ and for each node $v_i \in V - V'$, there is some node $v_j \in V'$ such that $\{v_i, v_j\} \in E$?

Note: Suppose V' is a dominating set. We say that each node in V-V' is **dominated** by a node in V'.

Example:

- Here, $V_1 = \{v_4, v_5\}$ is a dominating set; v_4 dominates v_1 and v_3 while v_5 dominates v_2 . (It is also a minimum dominating set.)
- $V_2 = \{v_1, v_3\}$ is <u>not</u> a dominating set since v_5 is not dominated by any vertex in V_2 .

Vertex Cover and Dominating Set:

- For the above graph, any vertex cover must have at least 3 vertices.
- However, a dominating set needs only one vertex. (That vertex dominates the other three.)

An Application of Dominating Sets:

Minimum set of monitoring devices needed = $\{m_1, m_2\}$

Theorem 3: MDS is **NP**-complete.

Proof:

■ Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MDS is a subset of nodes.)

Theorem 3: MDS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MDS is a subset of nodes.)
- Proof of NP-hardness: Reduction from MSC.

Theorem 3: MDS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MDS is a subset of nodes.)
- Proof of NP-hardness: Reduction from MSC.
- Intuitive idea:

Theorem 3: MDS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MDS is a subset of nodes.)
- Proof of NP-hardness: Reduction from MSC.
- Intuitive idea:
 - The graph for MDS has two classes of nodes (one to represent sets and the other to represent elements of MSC).

Theorem 3: MDS is **NP**-complete.

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MDS is a subset of nodes.)
- Proof of NP-hardness: Reduction from MSC.
- Intuitive idea:
 - The graph for MDS has two classes of nodes (one to represent sets and the other to represent elements of MSC).
 - "Set covering an element" corresponds to "set node dominating an element node".

Theorem 3: MDS is **NP**-complete.

Proof:

- Membership in **NP**: **Exercise**. (**Hint**: Proposed solution V' for MDS is a subset of nodes.)
- Proof of NP-hardness: Reduction from MSC.

Intuitive idea:

- The graph for MDS has two classes of nodes (one to represent sets and the other to represent elements of MSC).
- "Set covering an element" corresponds to "set node dominating an element node".
- Make sure that there is a solution to MDS consisting only of nodes representing sets.

Example to Illustrate the reduction from MSC to MDS:

MSC Instance:

- $U = \{u_1, u_2, u_3, u_4, u_5\}$
- $S = \{S_1, S_2, S_3, S_4\}$ where $S_1 = \{u_1, u_2, u_3\}$ $S_2 = \{u_4, u_5\}$ $S_3 = \{u_1, u_3\}$ $S_4 = \{u_2, u_4, u_5\}$
- k=2

MDS Instance:

r=2

Note: Set nodes are in blue.

Steps of the Reduction from MSC to MDS:

■ In the given MSC instance, $U = \{u_1, u_2, ..., u_n\}$ and $S = \{S_1, S_2, ..., S_m\}$. (Size of MSC instance I = O(mm).)

Steps of the Reduction from MSC to MDS:

- In the given MSC instance, $U = \{u_1, u_2, \dots, u_n\}$ and $S = \{S_1, S_2, \dots, S_m\}$. (Size of MSC instance I = O(mm).)
- For the MDS instance I', the node set $V = V_1 \cup V_2$, where $V_1 = \{v_1, v_2, \dots, v_n\}$ corresponds to elements and $V_2 = \{w_1, w_2, \dots, w_n\}$ corresponds to sets. (Thus, V_1 has **element nodes** and V_2 has **set nodes**.) [Time: O(m+n)]

Steps of the Reduction from MSC to MDS:

- In the given MSC instance, $U = \{u_1, u_2, ..., u_n\}$ and $S = \{S_1, S_2, ..., S_m\}$. (Size of MSC instance I = O(mm).)
- For the MDS instance I', the node set $V = V_1 \cup V_2$, where $V_1 = \{v_1, v_2, \dots, v_n\}$ corresponds to elements and $V_2 = \{w_1, w_2, \dots, w_n\}$ corresponds to sets. (Thus, V_1 has **element nodes** and V_2 has **set nodes**.) [Time: O(m+n)]
- The edge set for MDS $E = E_1 \cup E_2$, where

$$E_1 = \{\{v_i, w_j\} : u_i \in S_j\} \text{ and } E_2 = \{\{w_i, w_j\} : i \neq j\}$$

Thus, E_1 has the membership edges and E_2 connects the nodes in V_2 as a complete graph (or clique). [Time: $O(mn + m^2)$]

Steps of the Reduction from MSC to MDS:

- In the given MSC instance, $U = \{u_1, u_2, ..., u_n\}$ and $S = \{S_1, S_2, ..., S_m\}$. (Size of MSC instance I = O(mm).)
- For the MDS instance I', the node set $V = V_1 \cup V_2$, where $V_1 = \{v_1, v_2, \dots, v_n\}$ corresponds to elements and $V_2 = \{w_1, w_2, \dots, w_n\}$ corresponds to sets. (Thus, V_1 has **element nodes** and V_2 has **set nodes**.) [Time: O(m+n)]
- The edge set for MDS $E = E_1 \cup E_2$, where

$$E_1 = \{\{v_i, w_j\} : u_i \in S_j\} \text{ and } E_2 = \{\{w_i, w_j\} : i \neq j\}$$

Thus, E_1 has the membership edges and E_2 connects the nodes in V_2 as a complete graph (or clique). [Time: $O(mn + m^2)$]

■ The size r of dominating set = k (the size of set cover). [Time: O(1)]

Steps of the Reduction from MSC to MDS:

- In the given MSC instance, $U = \{u_1, u_2, ..., u_n\}$ and $S = \{S_1, S_2, ..., S_m\}$. (Size of MSC instance I = O(mm).)
- For the MDS instance I', the node set $V = V_1 \cup V_2$, where $V_1 = \{v_1, v_2, \dots, v_n\}$ corresponds to elements and $V_2 = \{w_1, w_2, \dots, w_n\}$ corresponds to sets. (Thus, V_1 has **element nodes** and V_2 has **set nodes**.) [Time: O(m+n)]
- The edge set for MDS $E = E_1 \cup E_2$, where

$$E_1 = \{\{v_i, w_j\} : u_i \in S_j\} \text{ and } E_2 = \{\{w_i, w_j\} : i \neq j\}$$

Thus, E_1 has the membership edges and E_2 connects the nodes in V_2 as a complete graph (or clique). [Time: $O(mn + m^2)$]

- The size r of dominating set = k (the size of set cover). [Time: O(1)]
- Time used by the reduction = $O(mn + m^2)$.

Correctness:

Part 1: Suppose MSC instance I has a solution. (Must show that the MDS instance I' has a solution.)

■ Let $S' = \{S_1, S_2, \dots, S_\ell\}$ for some $\ell \le k = r$ be a solution to the MSC instance.

Correctness:

- Let $S' = \{S_1, S_2, \dots, S_\ell\}$ for some $\ell \le k = r$ be a solution to the MSC instance.
- Let $V' = \{w_1, w_2, \dots, w_\ell\}$ be the set nodes corresponding to the sets in S'.

Correctness:

- Let $S' = \{S_1, S_2, \dots, S_\ell\}$ for some $\ell \le k = r$ be a solution to the MSC instance.
- Let $V' = \{w_1, w_2, \dots, w_\ell\}$ be the set nodes corresponding to the sets in S'.
- **Claim:** V' is a solution to the MDS instance I'.

Correctness:

- Let $S' = \{S_1, S_2, \dots, S_\ell\}$ for some $\ell \le k = r$ be a solution to the MSC instance.
- Let $V' = \{w_1, w_2, \dots, w_\ell\}$ be the set nodes corresponding to the sets in S'.
- **Claim:** V' is a solution to the MDS instance I'.
- $|V'| \le r$. So, V' is of the right size for MDS.

Correctness:

- Let $S' = \{S_1, S_2, \dots, S_\ell\}$ for some $\ell \le k = r$ be a solution to the MSC instance.
- Let $V' = \{w_1, w_2, \dots, w_\ell\}$ be the set nodes corresponding to the sets in S'.
- **Claim:** V' is a solution to the MDS instance I'.
- $|V'| \le r$. So, V' is of the right size for MDS.
- \blacksquare Show that V' is a dominating set. (Reading exercise)

Correctness:

Part 2: Suppose MDS instance I' has a solution. (Must show that the MSC instance I has a solution.)

Why is this proof different from Part 1?

- Suppose r = 3.
- One possible solution to MDS is $D' = \{w_1, v_4, v_5\}$. (This solution has element nodes as well.)
- We can "convert" this solution to $D = \{w_1, w_2, w_4\}$ which contains only set nodes and has size 3.

Correctness:

Part 2: Suppose MDS instance I' has a solution. (Must show that the MSC instance I has a solution.)

■ Let D' be a solution to the MDS instance I'. (Thus, $|D'| \le k$.)

Correctness:

- Let D' be a solution to the MDS instance I'. (Thus, $|D'| \le k$.)
- Partition D' into D_1 and D_2 so that $D_1 \subseteq V_1$ (element nodes) and $D_2 \subseteq V_2$ (set nodes).

Correctness (continued):

■ If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:

Correctness (continued):

- If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:
 - Take any node $v \in D_1$.

Correctness (continued):

- If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:
 - Take any node $v \in D_1$.
 - Find a node $w \in V_2$ such that $\{v, w\}$ is an edge. (Such a node must exist since each element occurs in some set.)

Correctness (continued):

- If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:
 - Take any node $v \in D_1$.
 - Find a node $w \in V_2$ such that $\{v, w\}$ is an edge. (Such a node must exist since each element occurs in some set.)
 - Delete v from D_1 and add w to D_2 (if w is not already in D_2).

- If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:
 - Take any node $v \in D_1$.
 - Find a node $w \in V_2$ such that $\{v, w\}$ is an edge. (Such a node must exist since each element occurs in some set.)
 - Delete v from D_1 and add w to D_2 (if w is not already in D_2).
- Now, D_2 has only set nodes and $|D_2| \le k$.

- If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:
 - Take any node $v \in D_1$.
 - Find a node $w \in V_2$ such that $\{v, w\}$ is an edge. (Such a node must exist since each element occurs in some set.)
 - Delete v from D_1 and add w to D_2 (if w is not already in D_2).
- Now, D_2 has only set nodes and $|D_2| \le k$.
- Let $D_2 = \{w_1, w_2, \dots, w_\ell\}$ for some $\ell \leq k$.

- If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:
 - Take any node $v \in D_1$.
 - Find a node $w \in V_2$ such that $\{v, w\}$ is an edge. (Such a node must exist since each element occurs in some set.)
 - Delete v from D_1 and add w to D_2 (if w is not already in D_2).
- Now, D_2 has only set nodes and $|D_2| \le k$.
- Let $D_2 = \{w_1, w_2, \dots, w_\ell\}$ for some $\ell \leq k$.
- Construct $S' = \{S_1, S_2, \dots, S_\ell\}$. (Note that $|S| \leq k$).

- If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:
 - Take any node $v \in D_1$.
 - Find a node $w \in V_2$ such that $\{v, w\}$ is an edge. (Such a node must exist since each element occurs in some set.)
 - Delete v from D_1 and add w to D_2 (if w is not already in D_2).
- Now, D_2 has only set nodes and $|D_2| \le k$.
- Let $D_2 = \{w_1, w_2, \dots, w_\ell\}$ for some $\ell \leq k$.
- Construct $S' = \{S_1, S_2, \dots, S_\ell\}$. (Note that $|S| \leq k$).
- Showing that S' is a solution to MSC is similar to Part 1.

- If D_1 is nonempty, modify D' repeatedly as follows until D_1 becomes empty:
 - Take any node $v \in D_1$.
 - Find a node $w \in V_2$ such that $\{v, w\}$ is an edge. (Such a node must exist since each element occurs in some set.)
 - Delete v from D_1 and add w to D_2 (if w is not already in D_2).
- Now, D_2 has only set nodes and $|D_2| \le k$.
- Let $D_2 = \{w_1, w_2, \dots, w_\ell\}$ for some $\ell \leq k$.
- Construct $S' = \{S_1, S_2, \dots, S_\ell\}$. (Note that $|S| \leq k$).
- Showing that S' is a solution to MSC is similar to Part 1.
- Thus, MDS is **NP**-complete.

Coping with NP-completeness in Practice

- Many optimization problems arising in practice are **NP**-hard.
- Two methods for coping with **NP**-hardness:
 - Express the problem under the mathematical programming framework and use available software (e.g., Gurobi, CPLEX) for solving such problems.

Coping with NP-completeness in Practice

- Many optimization problems arising in practice are **NP**-hard.
- Two methods for coping with **NP**-hardness:
 - Express the problem under the mathematical programming framework and use available software (e.g., Gurobi, CPLEX) for solving such problems.
 - 2 Develop efficient approximation algorithms.

Illustration – An Integer Linear Program (ILP) for MVC:

• Consider the optimization version of MVC (i.e., given G(V, E), find a minimum vertex cover for G).

Illustration – An Integer Linear Program (ILP) for MVC:

- Consider the optimization version of MVC (i.e., given G(V, E), find a minimum vertex cover for G).
- Integer Linear Program (ILP): A formulation where the objective function and constraints are *linear* and variables are required to take on *integer* values.

Illustration – An Integer Linear Program (ILP) for MVC:

- Consider the optimization version of MVC (i.e., given G(V, E), find a minimum vertex cover for G).
- Integer Linear Program (ILP): A formulation where the objective function and constraints are *linear* and variables are required to take on *integer* values.
- $\{0,1\}$ -ILP: Same as ILP except that each variable must take on a value from $\{0, 1\}$.

Illustration – An Integer Linear Program (ILP) for MVC:

• Given G(V, E), let $V = \{v_1, v_2, \dots, v_n\}$.

Illustration – An Integer Linear Program (ILP) for MVC:

- Given G(V, E), let $V = \{v_1, v_2, \dots, v_n\}$.
- For each node v_i , introduce a $\{0,1\}$ -valued variable x_i , $1 \le i \le n$, with the following significance: $x_i = 1$ if v_i is chosen in the (optimal) solution and 0 otherwise.

Illustration – An Integer Linear Program (ILP) for MVC:

- Given G(V, E), let $V = \{v_1, v_2, \dots, v_n\}$.
- For each node v_i , introduce a $\{0,1\}$ -valued variable x_i , $1 \le i \le n$, with the following significance: $x_i = 1$ if v_i is chosen in the (optimal) solution and 0 otherwise.
- Now, $\sum_{i=1}^{n} x_i$ is the number of nodes chosen in the solution. Therefore, the objective of the ILP is:

Minimize
$$\sum_{i=1}^{n} x_i$$

Illustration – An Integer Linear Program (ILP) for MVC:

- Given G(V, E), let $V = \{v_1, v_2, \dots, v_n\}$.
- For each node v_i , introduce a $\{0,1\}$ -valued variable x_i , $1 \le i \le n$, with the following significance: $x_i = 1$ if v_i is chosen in the (optimal) solution and 0 otherwise.
- Now, $\sum_{i=1}^{n} x_i$ is the number of nodes chosen in the solution. Therefore, the objective of the ILP is:

$$Minimize \sum_{i=1}^{n} x_i$$

Constraints: For each edge $e = \{v_i, v_j\}$, at least one of v_i and v_j must be in the solution; i.e., at least one of x_i and x_j must be set to 1. So:

$$x_i + x_j \ge 1$$
 for each edge $\{v_i, v_j\}$

Illustration – An Integer Linear Program (ILP) for MVC:

- Given G(V, E), let $V = \{v_1, v_2, \dots, v_n\}$.
- For each node v_i , introduce a $\{0,1\}$ -valued variable x_i , $1 \le i \le n$, with the following significance: $x_i = 1$ if v_i is chosen in the (optimal) solution and 0 otherwise.
- Now, $\sum_{i=1}^{n} x_i$ is the number of nodes chosen in the solution. Therefore, the objective of the ILP is:

$$Minimize \sum_{i=1}^{n} x_i$$

Constraints: For each edge $e = \{v_i, v_j\}$, at least one of v_i and v_j must be in the solution; i.e., at least one of x_i and x_j must be set to 1. So:

$$x_i + x_i \ge 1$$
 for each edge $\{v_i, v_i\}$

■ So, the complete {0,1}-ILP for the MVC problem is:

Minimize $\sum_{i=1}^{n} x_i$ subject to the following constraints:

$$x_i + x_j \ge 1$$
, for each edge $\{v_i, v_j\}$
 $x_i \in \{0, 1\}$, $1 \le i \le n$.

Example:

Minimize $x_1 + x_2 + x_3 + x_4 + x_5$ subject to the following constraints:

$$x_1 + x_2 \ge 1$$

 $x_1 + x_4 \ge 1$
 $x_2 + x_3 \ge 1$
 $x_2 + x_5 \ge 1$
 $x_3 + x_4 \ge 1$
 $x_i \in \{0, 1\}, 1 \le i \le 5$

Note: A solution to the above ILP is to set $x_2 = x_4 = 1$ and the other variables to 0. The corresponding minimum vertex cover is $\{v_2, v_4\}$.

Some Advantages of the ILP Formulation:

■ **Handling costs:** Suppose there is a cost c_i for each node v_i and we want a vertex cover of minimum cost. The objective can be modified to

$$Minimize \sum_{i=1}^{n} c_i x_i.$$

The objective remains linear.

Some Advantages of the ILP Formulation:

■ **Handling costs:** Suppose there is a cost c_i for each node v_i and we want a vertex cover of minimum cost. The objective can be modified to

$$Minimize \sum_{i=1}^{n} c_i x_i.$$

The objective remains linear.

■ Additional constraints: Suppose node v_i must be in the solution and node x_j should not be in the solution. Add the constraints " $x_i = 1$ " and " $x_j = 0$ " to the formulation.

Approximation Algorithms:

In practice, optimal solutions may not be needed; near-optimal solutions may be sufficient.

Approximation Algorithms:

- In practice, optimal solutions may not be needed; near-optimal solutions may be sufficient.
- To obtain a near-optimal solution for a problem, it may be possible to devise an efficient algorithm for the problem.

Approximation Algorithms:

- In practice, optimal solutions may not be needed; near-optimal solutions may be sufficient.
- To obtain a near-optimal solution for a problem, it may be possible to devise an efficient algorithm for the problem.
- Such an algorithm is an approximation algorithm (or a heuristic).

Approximation Algorithms:

- In practice, optimal solutions may not be needed; near-optimal solutions may be sufficient.
- To obtain a near-optimal solution for a problem, it may be possible to devise an efficient algorithm for the problem.
- Such an algorithm is an approximation algorithm (or a heuristic).
- For some approximation algorithms, one can rigorously establish a performance guarantee:

"For every instance, the solution produced by the algorithm is within a factor of 2 of the optimal solution."

Approximation Algorithms:

- In practice, optimal solutions may not be needed; near-optimal solutions may be sufficient.
- To obtain a near-optimal solution for a problem, it may be possible to devise an efficient algorithm for the problem.
- Such an algorithm is an approximation algorithm (or a heuristic).
- For some approximation algorithms, one can rigorously establish a performance guarantee:
 - "For every instance, the solution produced by the algorithm is within a factor of 2 of the optimal solution."
- In other cases, researchers evaluate the performance of a heuristic experimentally.

An Approximation Algorithm for MVC:

Definitions:

• Given an undirected graph G(V, E), a matching M in G is a subset of edges such that no two edges in M share an end point.

An Approximation Algorithm for MVC:

Definitions:

- Given an undirected graph G(V, E), a matching M in G is a subset of edges such that no two edges in M share an end point.
- A matching M is maximal if no edge can be added to it without violating the matching property.

An Approximation Algorithm for MVC:

Definitions:

- Given an undirected graph G(V, E), a matching M in G is a subset of edges such that no two edges in M share an end point.
- A matching M is maximal if no edge can be added to it without violating the matching property.
- A matching M^* is a maximum matching if it has the *largest* number of edges among all the matchings of G.

Example:

- For the graph G (on the left), the set M consisting of the edges $\{v_1, v_2\}$ and $\{v_2, v_6\}$ is <u>not</u> a matching; the edges share v_2 .
- The set M_1 consisting of the **blue** edges is a **maximum** matching with 4 edges.
- The set M₂ consisting of the two red edges is a maximal matching.
- For any graph, finding a maximum or maximal matching can be done efficiently.

Example:

- For the graph G (on the left), the set M consisting of the edges $\{v_1, v_2\}$ and $\{v_2, v_6\}$ is not a matching; the edges share v_2 .
- The set M_1 consisting of the **blue** edges is a **maximum** matching with 4 edges.
- The set M₂ consisting of the two red edges is a maximal matching.
- For any graph, finding a maximum or maximal matching can be done efficiently.
- There is a very simple algorithm for finding a maximal matching.
 (That algorithm is useful for approximating MVC.)

Finding a Maximal Matching:

- 1 Let $M = \emptyset$. (M will contain a maximal matching at the end.)
- 2 while $E \neq \emptyset$ do
 - Choose any edge $\{x,y\}$ from E and add it to M.
 - Delete the edges in E that have x or y as an end point.
- 3 Output M.

Example:

Note: For the above graph G, the algorithm may output all the red edges or all the blue edges.

Approximation Algorithm for MVC:

- \blacksquare Find a maximal matching M for G.
- Let V' contain both the end points of each edge in M. Output V'.

Theorem 4: Let V^* denote a minimum vertex cover for G and let V' be the solution produced by the above approximation algorithm.

- $\mathbf{1}$ V' is a vertex cover for G.
- $|V'| \leq 2|V^*|.$

Note: No algorithm with a better performance guarantee is currently known.

Proof of Theorem 4:

Part 1: V' a vertex cover for G.

Part 2:

- Suppose |M| = q. Then $|V^*| \ge q$ since V^* must contain at least one end point of each edge in M.
- V' contains 2q nodes. Hence, $|V'| \le 2|V^*|$.