

Accelerated Spark on Azure: Seamless and Scalable Hardware Offloads in the Cloud

Yuval Degani, Mellanox Technologies Evan Burness, Microsoft Azure

#HWCSAIS18

- End-to-end designer and supplier of interconnect solutions: network adapters, switches, system-on-a-chip, cables, silicon and software
- 10-400 Gb/s Ethernet and InfiniBand

Microsoft Azure

- RDMA capable network, powered by Mellanox
- H-series (Intel CPUs with FDR InfiniBand)
- NC-series (Nvidia GPUs with FDR InfiniBand)
- Only major Cloud provider with RDMA
- Run simulation and Al workloads at large-scale
- Dozens of RDMA clusters around the world

Why are we here?

 Azure hardware accelerated networks will soon support general-purpose RDMA (on top of SR-IOV)

 SparkRDMA Shuffle Plugin (appeared at Spark Summit Europe 2017) can now be used in the cloud, providing instant speedups for Spark jobs

What's RDMA?

- Remote Direct Memory Access
 - Read/write from/to remote memory locations
- Zero-copy
- Direct hardware interface bypasses the kernel and TCP/IP in IO path
- Flow control and reliability is offloaded in hardware
- Sub-microsecond latency
- Supported on almost all mid-range/highend network adapters

RDMA on Azure

- No need for buying expensive hardware
- Lowest latency on the Cloud (~2.5 uSec)
- Pre-built OS images for easy deployment
- K80, P100, and V100 GPUs with InfiniBand
- Other uses cases for RDMA on Azure:

RDMA on Azure

Azure accelerated networking is build on top of SR-IOV (Single Root Input/Output Virtualization) hardware support provided by Mellanox ConnectX network cards

Under the hood

Spark's Shuffle Internals

Map

Input

Map output

Map A

File

Publish Map Status

Map A

File

Map

Мар

Мар

Мар

Map

Fetch blocks

Map

Reduce

Input

Reduce task

Map output

Driver

Driver

Shuffle Read

Reader

Driver

Shuffle Read

Reader

Driver

Reader

Request Map Statuses

The Cost of Shuffling

- Shuffling is very expensive in terms of CPU, RAM, disk and network IOs
- Spark users try to avoid shuffles as much as they can
- Speedy shuffles can relieve developers of such concerns, and simplify applications

Accelerating Shuffle with RDMA

SparkRDMA Shuffle Plugin

SparkRDMA

- Dedicated session at Spark Summit Europe 2017: <u>Accelerating Shuffle: A Tailor-Made RDMA Solution for Apache Spark</u>
- Open-source and free to use: https://github.com/Mellanox/SparkRDMA
- Supports any RDMA-capable device
 - Ethernet (RoCE RDMA over Converged Ethernet)
 - InfiniBand

SparkRDMA - Design Notes

- Entire Shuffle-related communication is done with RDMA
 - RPC messaging for meta-data transfers
 - Block transfers
- SparkRDMA is an independent plugin
 - Implements the ShuffleManager interface
 - No changes to Spark's code use with any existing Spark installation
- Reuses Spark facilities
 - Maximize reliability
 - Minimize impact on the data
- No functionality loss of any kind, SparkRDMA supports:
 - Compression
 - Spilling to disk
 - Recovery from failed map or reduce tasks

SortShuffleManager

RdmaShuffleManager

Shuffle Read Protocol – Standard vs. RDMA

Driver

Shuffle Read

Reader

Shuffle Read Protocol - Standard vs. RDMA

Shuffle Read Protocol – Standard vs. RDMA

Shuffle Read Protocol - Standard vs. RDMA

Shuffle Read Protocol - Standard vs. RDMA

Shuffle Read Protocol - Standard vs. RDMA

No-op on writer HW offloads transfers

Writer

No-op on writer HW offloads

transfers

Server-side:

- ✓ 0 CPU
- ✓ Shuffle transfers are not blocked by GC in executor
- ✓ No buffering

Client-side:

- ✓ Instant transfers
- ✓ Reduced messaging
- Direct, unblocked access to remote blocks

Benefits

- Substantial improvements in:
 - Block transfer times: latency and total transfer time
 - Memory consumption and management
 - CPU utilization
- Easy to deploy and configure:
 - Packed into a single JAR file
 - Plugin is enabled through a simple configuration handle
 - Allows finer tuning with a set of configuration handles
- Configuration and deployment are on a per-job basis:
 - Can be deployed incrementally
 - May be limited to Shuffle-intensive jobs

Demo time!

Demo Testbed

- Hardware:
 - 8 Azure "h16mr" VM instances
 - Intel Haswell E5-2667 V3
 - InfiniBand FDR (56Gb/s)
 - 224GiB RAM
 - 2000GiB SSD for temporary storage
- Workload:
 - HiBench TeraSort
 - Size: "gigantic" (320GB)

- Ubuntu 16.04
- HDFS on Hadoop 2.7.4
 - No replication
- Spark 2.2.0
 - 1 Master
 - 7 Workers
 - 16 active Spark cores on each node, 112 total

yuvaldeg@LT-YUVALDEG-747: ~


```
/home/sparkdemo/spark-2.2.0-bin-hadoop2.7
hibench.spark.home
spark.driver.extraClassPath
                                /home/sparkdemo/spark-rdma-2.0/spark-rdma-2.0-for-spark-2.2.0-jar-with-dependencies.jar
spark.executor.extraClassPath
                                /home/sparkdemo/spark-rdma-2.0/spark-rdma-2.0-for-spark-2.2.0-jar-with-dependencies.jar
hibench.spark.master
                               spark://namenoder:7077
spark.shuffle.compress false
spark.executor.memory 180G
spark.driver.memory
spark.eventLog.enabled true
spark.eventLog.dir=file:///tmp/spark-events
spark.default.parallelism
                             ${hibench.default.map.parallelism}
spark.sql.shuffle.partitions ${hibench.default.map.parallelism}
hibench.streambench.spark.batchInterval
                                                 100
hibench.streambench.spark.receiverNumber
hibench.streambench.spark.storageLevel 2
hibench.streambench.spark.enableWAL false
"HiBench/conf/spark.conf" 51L, 1938C
                                                                                                             1,1
                                                                                                                            Top
```

TeraSort - Performance Results

x4.4 Faster Shuffles!

Stages for All Jobs

Completed Stages: 3

Completed Stages (3)

Stage Id 🔻	Description		Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Write
2	runJob at SparkHadoopMapReduceWriter.scala:88	+details	2018/05/25 15:00:53	9.3 min	20000/20000		298.0 GB	315.9 GB	
1	map at ScalaTeraSort.scala:49	+details	2018/05/25 14:59:47	1.1 min	10000/10000	298.0 GB			315.9 GB
0	BaseRangePartitioner at ScalaTeraSort.scala:56	+details	2018/05/25 14:59:20	25 s	10000/10000	298.0 GB			

Spark 2.2.0	Jobs	Stages	Storage	Environment	Executors	ScalaTeraSort application UI
-------------	------	--------	---------	-------------	-----------	------------------------------

Stages for All Jobs

Completed Stages: 3

Completed Stages (3)

Stage Id 🔻	Description	Submitted	Duration	Tasks: Succeeded/Total	Input	Output	Shuffle Read	Shuffle Write
2	runJob at SparkHadoopMapReduceWriter.scala:88 +details	2018/05/25 15:12:55	2.1 min	20000/20000		298.0 GB	315.9 GB	
1	map at ScalaTeraSort.scala:49 +details	2018/05/25 15:11:46	1.2 min	10000/10000	298.0 GB			315.9 GB
0	BaseRangePartitioner at ScalaTeraSort.scala:56 +details	2018/05/25 15:11:19	25 s	10000/10000	298.0 GB			

x1000 Faster Transfers!

Summary Metrics for 20000 Completed Tasks

Metric	Min	25th percentile	Median	75th percentile	Max
Duration	1.0 s	2 s	3 s	4 s	8 s
GC Time	0 ms	0 ms	0 ms	0 ms	3 s
Output Size / Records	8.8 MB / 92630	13.9 MB / 145609	15.1 MB / 158772	16.5 MB / 173356	23.1 MB / 242307
Shuffle Read Blocked Time	5 ms	2 s	2 s	3 s	7 s
Shuffle Read Size / Records	9.4 MB / 92630	14.7 MB / 145609	16.1 MB / 158772	17.5 MB / 173356	24.5 MB / 242307
Shuffle Remote Reads	7.9 MB	12.6 MB	13.8 MB	15.0 MB	21.5 MB

Summary Metrics for 20000 Completed Tasks

Metric	Min	25th percentile	Median	75th percentile	Max
Duration	0.3 s	0.6 s	0.7 s	0.8 s	3 s
GC Time	0 ms	0 ms	0 ms	0 ms	0.2 s
Output Size / Records	8.8 MB / 92630	13.9 MB / 145609	15.1 MB / 158772	16.5 MB / 173356	23.1 MB / 242307
Shuffle Read Blocked Time	0 ms	1 ms	2 ms	3 ms	0.1 s
Shuffle Read Size / Records	9.4 MB / 92630	14.7 MB / 145609	16.1 MB / 158772	17.5 MB / 173356	24.5 MB / 242307
Shuffle Remote Reads	7.9 MB	12.6 MB	13.8 MB	15.0 MB	21.4 MB

0 Shuffle Read Time

Recap

- SR-IOV+RDMA comes to Azure H and N-series in Fall 2018
- Support for all major MPI
 - MVAPICH, OpenMPI, Intel MPI, Platform MPI, etc.
- General-purpose RDMA support
 - Support for SparkRDMA, Caffe2, TensorFlow or any other RDMA application
- Be on the lookout for more at SC'18!

