Programowanie strukturalne - wykład 5

dr Piotr Jastrzębski

Uzupełnienie

```
#include <stdio.h>
#include <stdlib.h>
#define ROZMIAR 2
int main()
{
    int tab[ROZMIAR] =\{2,3,-2,0\};
    for(int i=0;i<ROZMIAR;i++)</pre>
        printf("%d\n",tab[i]);
    }
    printf("%d\n",tab[3]);
    return 0;
```

Wykonanie zależy od kompilatora i standardu języka C.

```
#include <stdio.h>
#include <stdlib.h>
int main()
    int tabb5[(int)2.5]={3,3,3};
    return 0;
```

Przykład do przeanalizowania

```
#include <stdio.h>
int main()
{
    int tab[] = \{2, -3, 5, 18, 5, 8, 12, 44\};
    printf("%p %p %d\n",tab,&tab,*tab);
    int *wsk:
    wsk=tab + -3:
    printf("%d \n", *(wsk+=4));
    printf("%p \n", (wsk + 5));
    printf("%p \n", &(wsk-=-2)[-2]);
    printf("d \n", (wsk+=-1)[2]);
```

Pamięć wirtualna

Pamięć wirtualna – mechanizm zarządzania pamięcią komputera zapewniający procesowi wrażenie pracy w jednym, dużym, ciągłym obszarze pamięci operacyjnej podczas, gdy fizycznie może być ona pofragmentowana, nieciągła i częściowo przechowywana na urządzeniach pamięci masowej. Systemy korzystające z tej techniki ułatwiają tworzenie rozbudowanych aplikacji oraz poprawiają wykorzystanie fizycznej pamięci RAM w systemach wielozadaniowych.

ASLR

ASLR (Address Space Layout Randomization) tłumaczony jest jako mechanizm losowego generowania lokalizacji alokacji pamięci wirtualnej.

Wykonywanie czynności przedstawionych na dalszych slajdach związanych z ASLR może oznaczać narażenie komputera na niebezpieczeństwo i podatność na ataki. Wykonanie tych działań nie jest zalecane i robione tylko na własną odpowiedzialność.

Exploit Protection

Funkcja Exploit Protection jest wbudowana w system Windows 10 w celu zabezpieczenia urządzenia przed atakami. Twoje urządzenie jest od razu skonfigurowane za pomocą ustawień ochrony, które są odpowiednie dla większości użytkowników.

Ustawienia funkcji Exploit Protection

Dowiedz się więcej

Wymuś losowe generowanie obrazów (obowiązkowa funkcja ASLR) Wymuś relokację obrazów, które nie zostały skompilowane z użyciem przełącznika /DYNAMICBASE		
Włączone domyślnie		

Generuj losowo alokacje pamięci (funkcja ASLR "od dołu do góry") Generuj losowo lokalizacje alokacji pamięci wirtualnej.

Włączone domyślnie	\vee
--------------------	--------

Funkcja ASLR o wysokiej entropii

Zwiększ zmienność podczas używania ustawienia Generuj losowo alokacje pamięci (funkcja ASLR "od dołu do góry").

Włączone domyślnie	~

Napisy (łańcuchy znakówe)

Napisy

Napis - ciąg składający się z conajmniej jednego znaku. Znaki cudzysłowiu nie są częścią łańcucha.

Język C nie posiada typu string/łańcuchowego. Wszystkie napisy traktowane są jako tablice typu char. Ostatnim znakiem w tablicy jest znak \0.

Znak a napis

```
#include <stdio.h>
#include <stdlib.h>

int main()
{
    char a = 'q';
    char b[] = "q";
    return 0;
}
```

srtlen a sizeof

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
    char nap1[] = "Hello World";
    char nap2[50] = "Hello World";
    printf("%d\n",sizeof nap1);
    printf("%d\n",strlen(nap1));
    printf("%d\n",sizeof nap2);
    printf("%d\n",strlen(nap2));
    return 0;
```

Tablica a wskaźnik

```
#include <stdio.h>
#define NAPIS "jakiś tekst"
int main()
{
    char tab[] = NAPIS;
    const char *wsk = NAPIS;
    printf("adres napisu %p\n", "jakiś tekst");
    printf(" adres tab: %p\n", tab);
    printf(" adres wsk: %p\n", wsk);
    printf(" adres NAPIS-u: %p\n", NAPIS);
    printf("adres napisu: %p\n", "jakiś tekst");
    return 0;
```

```
#include <stdio.h>
int main()
{
    char nap1[] = "absddfvjskjf";
    char *nap2 = "oijefj";
    nap1[4] = 'M';
    *(nap1 + 7) = 'M';
    nap2[2]='3';
    return 0;
```

Kopiowanie napisu

```
#include <stdio.h>
int main()
{
    char * napis = "ab6sWR";
    char * kopia;
    kopia=napis;
    printf("%s\n",napis);
    printf("%p\n",napis);
    printf("%p\n",&napis);
    printf("%s\n",kopia);
    printf("%p\n",kopia);
    printf("%p\n",&kopia);
    return 0;
```

Wczytywanie napisów

- scanf https://pl.wikibooks.org/wiki/C/scanf
- gets https://pl.wikibooks.org/wiki/C/gets
- ▶ fgets https://pl.wikibooks.org/wiki/C/fgets

Wyświetlanie napisów

- printf https://pl.wikibooks.org/wiki/C/printf
- puts https://pl.wikibooks.org/wiki/C/puts
- fputs https://pl.wikibooks.org/wiki/C/fputs

Funckje łańuchowe

- strlen https://pl.wikibooks.org/wiki/C/strlen
- strcat https://pl.wikibooks.org/wiki/C/strcat
- strncat https://pl.wikibooks.org/wiki/C/strncat
- strcmp https://pl.wikibooks.org/wiki/C/strcmp
- strcpy https://pl.wikibooks.org/wiki/C/strcpy
- strncpy https://pl.wikibooks.org/wiki/C/strncpy
- sprintf https://pl.wikibooks.org/wiki/C/sprintf

Typ wchar_t

 $https://en.wikibooks.org/wiki/C_Programming/wchar.h\\ https://en.cppreference.com/w/c/language/string_literal$

Bibliografia

- https: //pl.wikipedia.org/wiki/Pami%C4%99%C4%87_wirtualna , dostep online 30.03.2020.
- ► Stephen Prata, Jezyk C. Szkoła programowania. Wydanie VI, Wyd. Helion, 2016.