

Star Trek

Zjednoczona Federacja Planet jest sojuszem N planet, ponumerowanych kolejno od 1 do N. Niektóre z planet połączone są kosmicznymi tunelami. W takim tunelu statek kosmiczny może poruszać się bardzo szybko. Wiemy, że jest dokładnie N-1 tuneli, a ponadto z każdej planety można dotrzeć do każdej innej używając jedynie tych tuneli.

Jak każdy wie istnieje D dodatkowych równoległych wszechświatów. Każdy z tych wszechświatów jest identyczną kopią naszego wszechświata, składa się z takich samych planet i takich samych tuneli. Wszystkie wszechświaty numerujemy kolejno od 1 do D (nasz wszechświat ma numer 0). Oznaczmy planetę x we wszechświecie i jako P_x^i . Między wszechświatami można podróżować używając międzywymiarowych portali. Dla każdego i ($0 \le i \le D-1$) należy rozmieścić dokładnie jeden portal pozwalający nam polecieć z $P_{A_i}^i$ do $P_{B_i}^{i+1}$, dla pewnych numerów planet A_i i B_i ($1 \le A_i, B_i \le N$).

Krążownik Batthyány zaczyna swoją podróż z planety P_1^0 . Kapitan Ágnes i porucznik Gábor postanowili zagrać w następującą grę: na przemian wybierają planetę, na którą polecą. Planeta może zostać wybrana, jeśli znajduje się w tym samym wszechświecie i istnieje tunel kosmiczny łączący ją z aktualną planetą, lub znajduje się w innym wszechświecie i istnieje portal łączący ją z aktualną planetą. Celem Ágnes i Gábora jest odwiedzanie miejsc w których nikt nie byl przed nimi. Dlatego jeśli odwiedzą planetę P_x^i nigdy nie zamierzają do niej wrócić (ale mogą odwiedzić planetę x w innym wszechświecie). Kapitan Ágnes pierwsza wybiera cel podróży (następnie Gábor, potem Ágnes itd.). Przegrywa gracz, który nie może wybrać jeszcze nieodwiedzonej planety.

Zarówno kapitan Ágnes jak i porucznik Gábor są bardzo mądrzy: każde z nich zna położenie wszystkich tuneli i portali oraz oboje grają optymalnie. Na ile różnych sposobów można rozmieścić portale tak, aby kapitan Ágnes wygrała grę? Dwa rozmieszczenia są różne, jeśli istnieje takie i ($0 \le i \le D-1$), że i-ty portal łączy dwie różne pary planet (A_i lub B_i różnią się).

Ponieważ liczba sposobów może być bardzo duża należy podać ją modulo $10^9 + 7$.

Wejście

Pierwsza linia wejścia zawiera dwie liczby całkowite N i D.

Każda z następnych N-1 linii zawiera dwie liczby całkowite u i v oznaczające, że P_u^i i P_v^i są połączone tunelem kosmicznym dla każdego i $(0 \le i \le D)$.

Wyjście

Na wyjściu powinna znaleźć się jedna liczba całkowita będącą liczbą różnych rozmieszczeń portali, które zapewniają Ágnes wygraną. Wynik należy wypisać modulo $10^9 + 7$.

1

v4

Przykłady

 Wejście
 Wyjście

 3 1
 4

 1 2
 4

2 3

Wyjaśnienie

Jest tylko 1 portal i $3\cdot 3=9$ różnych rozmieszczeń. Następujące 4 rozmieszczenia zapewniają Ágnes wygraną.

2

Ograniczenia

 $\begin{aligned} 2 &\leq N \leq 10^5 \\ 1 &\leq D \leq 10^{18} \\ 1 &\leq u,v \leq N \end{aligned}$

Limit czasu: 0.2 s

Limit pamięci: 32 MiB

v4

Ocenianie

Podzadanie	Punkty	Ograniczenia
1	0	przykład
2	7	N=2
3	8	$N \leq 100$ i $D = 1$
4	15	$N \leq 1000$ i $D = 1$
5	15	D=1
6	20	$N \leq 1000$ i $D \leq 10^5$
7	20	$D \le 10^5$
8	15	brak dodatkowych ograniczeń

3

v4