Optimal Theory and Method

程春杰 杭州电子科技大学 自动化学院 科技馆512

Email: cjzhai@hdu.edu.cn

目录

- 单纯形方法原理(考)
- 两段法与大M法(考)

目录

- 单纯形方法原理(考)
- 两段法与大M法(考)

■ 两段法与大M法

- ▶什么时候使用两段法和大M法
- →什么是人工变量
- ▶什么是两段法
- →什么是大M法

■ 两段法与大M法

▶什么时候使用两段法与大M法

使用单纯形方法,需要给定一个初始基本可行解,以 便从这个基本可行解出发,求改进的基本可行解

s.t.
$$Ax = b$$
, $x \ge 0$,

若 A 中含有m阶单位矩阵,则初始基本可行解立即得到, 比如 $A=[I_m,N]$

那么
$$x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$
就是一个基本可行解

- 两段法与大M法
- ▶什么时候使用两段法与大M法

s.t.
$$Ax = b$$
, $x \geqslant 0$,

若A中不包含m阶单位矩阵,就需要用某种方法求出一个基本可行解

两段法:第一阶段

大M法

■ 两段法与大M法

>人工变量

min cx

s.t.
$$Ax = b$$
, $x \geqslant 0$,

介绍两阶段法之前,先引入人工变量的概念

设A中不包含m阶单位矩阵,为使约束方程的系数矩阵中含有m阶单位矩阵,把每个方程增加一个非负变量,令

$$egin{aligned} A\,x + x_a &= b\,, & (A\,,I_m\,)igg[egin{array}{c} x \ x_a igg] &= b\,, \ x \geqslant 0\,, & x_a \geqslant 0\,. \end{aligned}$$

显然,
$$\begin{bmatrix} x \\ x_a \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix}$$
 是上式的一个基本可行解.

■ 两段法与大M法

▶人工变量

min
$$cx$$

s.t. $Ax = b$.

$$x \geqslant 0$$
,

$$Ax = b$$
,

$$x \geqslant 0$$
.

$$Ax + x_a = b$$
,

$$x \geqslant 0$$
, $x_a \geqslant 0$,

$$x_a \geqslant 0$$

若从右式已知的基本可行解出发,能够求出一个使 $x_a = 0$ 的基本可行解,那么就可得到原式的一个基本可行解

松弛变量是"合法"的变量.而人工变量的引入,改变了原 来的约束条件,是"不合法"的变量

■ 两段法与大M法

>两段法

min
$$cx$$
s.t. $Ax = b$,
 $x \ge 0$,

两阶段法的第一阶段是用单纯形方法消去人工变量(如果可能的话),<u>即把人工变量都变换成非基变量</u>,求出原来问题的一个基本可行解

消去人工变量的一种方法是解下列第一阶段问题:

min
$$e^{T} x_a$$
s.t. $Ax + x_a = b$,
 $x \ge 0$, $x_a \ge 0$.

 $e = (1, 1, \dots, 1)^{T}$ 是分量全是 1 的 m 维列向量, $\mathbf{x}_{a} = (x_{n+1}, \dots, x_{n+m})^{T}$ 是人工变量构成的 m 维列向量.

由于x=0,x_a=b是第一阶段问题的基本可行解,目标函数值有下界,原规划问题必存在最优基本可行解

■ 两段法与大M法

> 两段法

$$egin{array}{lll} \min & oldsymbol{e}^{\scriptscriptstyle ext{T}} oldsymbol{x}_a & & & & \\ ext{s.t.} & oldsymbol{A} oldsymbol{x} + oldsymbol{x}_a & = oldsymbol{b} \,, & & & \\ & oldsymbol{x} \geqslant oldsymbol{0} \,, & oldsymbol{x}_a \geqslant oldsymbol{0} \,. & & & & \end{array}$$

采用单纯形法求得第一阶段问题的最优基本可行解为 $(x^T,x_a^T)^T$,则存在以下三种情况:

(1) $\overline{x}_a \neq 0$,这时原线性规划无可行解

若原线性规划存在可行解 \hat{x} ,则 $(x, x_a)^T = (\hat{x}, 0)^T$ 为第一阶段问题的可行解,在此点该问题的目标函数值

$$f = \mathbf{0} \cdot \mathbf{\hat{x}} + \mathbf{e}^{\mathrm{T}} \cdot \mathbf{0} = 0 < \mathbf{e}^{\mathrm{T}} \mathbf{\hat{x}}_{a}$$

而 $e^{T}x_a$ 是目标函数的最优值,矛盾.

min $e^{T} x_a$

s.t. $Ax + x_a = b$.

 $x \geqslant 0$, $x_a \geqslant 0$.

两段法与大M法

▶两段法

(2) $\overline{x}_a = 0$ 且 x_a 的分量都是非基变量.

这时m个基变量都是原来的变量,又知

$$\begin{bmatrix} x \\ x_a \end{bmatrix} = \begin{bmatrix} \bar{x} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ x_a \end{bmatrix} = \begin{bmatrix} x \\ 0 \end{bmatrix}$$

为第一阶段问题的基本可行解,因此x=x 是原线性规 划问题的一个基本可行解。

(3) $\overline{x}_a = 0$ 且 x_a 的某些分量是基变量.

这时,可用主元消去法,把原来变量中的某些非基变量引 进基、替换出基变量中的人工变量、再开始两阶段法的第 二阶段。

■ 两段法与大M法

>两段法

s.t.
$$Ax = b$$
, $x \geqslant 0$,

两阶段法的第二阶段: 从得到的基本可行解出发, 用单纯形方法求原线性规划的最优解。

例子1: 用两阶段法求下列问题的最优解

max
$$2x_1 - x_2$$

s.t. $x_1 + x_2 \ge 2$,
 $x_1 - x_2 \ge 1$,
 $x_1 \le 3$,
 $x_1, x_2 \ge 0$.

解:

先引进松弛变量 x4, x5, x6, 把问题化成标准形式

■ 两段法与大M法

▶两段法

 $\max 2x_1 - x_2$

s.t.
$$Ax = b$$
, $x \geqslant 0$,

s.t.
$$x_1 + x_2 - x_3 = 2$$
,
 $x_1 - x_2 - x_4 = 1$,
 $x_1 + x_5 = 3$,

由于此标准形式中约束方程的系数矩阵并不包含 3 阶单位矩阵,因此还要引进人工变量 x_6 , x_7 .

min
$$x_6 + x_7$$

s.t. $x_1 + x_2 - x_3$ $+ x_6 = 2$,
 $x_1 - x_2$ $- x_4$ $+ x_7 = 1$,
 x_1 $+ x_5$ $= 3$,
 $x_j \geqslant 0$, $j = 1, \dots, 7$.

 $x \geqslant 0$,

▶两段法

仍然用主元消去法

两段法与大M法	min	cx
	s.t.	Ax = b,

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
x_6	1	1	-1	0	0	1	0	2
x 7	[]	-1	0	-1	0	0	1	1
x_5	1	0	0	0 1 0	1	0	0	3
	2	0	-1	-1	0	0	0	3

	0	2	-1	1	0	0	-2	1
x_5	0	1	0	1	1	0	1 -1	2
x 1	1	-1	0	-1	0	0	1	1
		2	-1	1	0	1	-1	1

min

cx

s.t. Ax = b,

 $x \ge 0$,

■ 两段法与大M法

>两段法

x_2	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	1 2
x_1	1	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	ଅ ସ କାସ କାସ
x_5	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$ $\frac{1}{2}$ $-\frac{1}{2}$	3 2
	0	0	0	0	0	-1	-1	0

判别数 \leq 0 → 最优解 \rightarrow 人工变量x6,x7都是非基变量

初始基本可行解:

$$(x_1, x_2, x_3, x_4, x_5) = \left(\frac{3}{2}, \frac{1}{2}, 0, 0, \frac{3}{2}\right)$$

第一阶段结束后,修改最后的单纯形表

去掉人工变量 x6 和 x7 下面的列

把最后的判别数行按原来问题进行修正

 $+ x_5 = 3$

两段法与大M法

 $2x_1-x_2$ max

>两段法

s.t.
$$x_1 + x_2 - x_3 = 2$$
,

第二阶段迭代

$$x_1-x_2 - x_4 = 1,$$

$$B = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad c_B = [-1, 2, 0]p_3 = [-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}]^{\wedge}T$$

■ 两段法与大M法

>两段法

min cx

s.t.
$$Ax = b$$
, $x \geqslant 0$,

第二阶段迭代

	بنسبببسس					
x_4	0	1	0	1	1	2
<i>x</i> ₄	1	, 0	0	0	1	3
<i>x</i> ₃	0	-1	1	0	1	1
	0	1	0	0	2	6

最优解 $(x_1,x_2)=(3,0)$ 目标函数最优值 $f_{max}=6$

min

s.t. Ax = b,

 $x \ge 0$,

■ 两段法与大M法

▶两段法

例子2: 用两阶段法求下列问题的最优解

min
$$x_1 - x_2$$

s.t. $-x_1 + 2x_2 + x_3 \le 2$,
 $-4x_1 + 4x_2 - x_3 = 4$,
 $x_1 - x_3 = 0$,
 $x_1, x_2, x_3 \ge 0$.

解:引进松弛变量 x_4 ,把上述问题化成标准形式

$$\min x_1 - x_2$$

s.t.
$$-x_1 + 2x_2 + x_3 + x_4 = 2$$
,
 $-4x_1 + 4x_2 - x_3 = 4$,
 $x_1 - x_3 = 0$,

■ 两段法与大M法

min cx

s.t.
$$Ax = b$$
,

$$x \geqslant 0$$
,

再引进人工变量 x5,x6,得到下列一阶段问题:

min
$$x_5 + x_6$$

s.t. $-x_1 + 2x_2 + x_3 + x_4 = 2$,
 $-4x_1 + 4x_2 - x_3 + x_5 = 4$,
 $x_1 - x_3 + x_6 = 0$,
 $x_j \geqslant 0$, $j = 1, \dots, 6$.

先用单纯形法解一阶段问题,迭代如下:

min

cx

s.t. Ax = b,

 $x \geqslant 0$,

■ 两段法与大M法

>两段法

文法.	x_1	x_2	x_3	x_4	x_5	x_6	
$egin{array}{c} x_4 \ x_5 \end{array}$	1	2	1	1.	0	0	2
x_5	4	4	-1	0	1	0	4
x_6	1	0	-1	0	0	1	4 0
	-3	4	-2	0	0	0	4

x_2	$-\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0		
x_5	- 2 1	0	- 3	- 2	1	0 1	0
x_6	1	0	- 3 - 1	0	0	1	9
	-1	0	- 4	- 2	0	0	0

人工变量x5, x6,以零值出现在基变量中

2

■ 两段法与大M法

>两段法

min cx

s.t.
$$Ax = b$$
,

 $x \ge 0$,

在开始第二阶段的迭代以前,可用原来变量(即非人工变量)把人工变量从基中驱赶出去

在进行这样步骤时,判别数行可以略去

x_2	$-\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	o	1
x_5	- 2	0	- 3	- 2	I	0	0
x_6	1	0	-1	0	0	1	0
	-1	0	- 4	- 2	0	0	0

主元可以先为 $y_{31}=1$ 或 $y_{33}=-1$

由于当人工变量以零值出现在基中时 ,相应行的右端为零 , 因此主元取负值时也不会破坏可行性 2

■ 两段法与大M法

▶两段法

	x_1	x_2	x_3	x_4	x_5	x_6	12486 SE S
x_2	0	1	0	$\frac{1}{2}$	0	$\frac{1}{2}$	1
x_5	0	0	$\overline{-5}$	-2	1	2	0
x_1	1	0	-1	0	0	1	0

min cx

s.t. Ax = b, $x \geqslant 0$,

再以 $y^{23} = -5$ 为主元,进行主元消去,得到

把判别数行增加进去

	x_1	x_2	x_3	x_4	x_5	x_6	1117
x_2	0	1	0	$\frac{1}{2}$	0	$\frac{1}{2}$	1
x_3	0	0	1	<u>2</u> 5	$-\frac{1}{5}$	$\frac{1}{2}$ $-\frac{2}{5}$	0
x_1	1	0	0	$\frac{2}{5}$	$-\frac{1}{5}$	3 5	0

基变量均为原来的变量,得原问题的一个基本可行解

$$(x1, x2, x3, x4)=(0, 1, 0, 0)$$

两段法与大M法

▶两段法

第二阶段的初表:

	x_1	x ₂	x_3	x	
x_2	0	1	0	1 2	1
x_3	0	0	1	2 5	0
x_1	1	0	0	$\frac{2}{5}$	0
	0	0	0	$-\frac{1}{10}$	-1

最优解是: (x1,x2,x3)=(0, 1, 0) 目标函数的最优值 $f_{min} = -1$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad c_B = [-1, 0, 1] \quad p_4 = [\frac{1}{2}, \frac{2}{5}, \frac{2}{5}]^{\wedge}T$$

min

s.t. $-x_1+2x_2+x_3 \leq 2$,

 $x_1, x_2, x_3 \ge 0$.

 $-4x_1+4x_2-x_3=4$

 $x_1 - x_3 = 0,$

min

s.t. Ax = b,

 $x \ge 0$,

■ 两段法与大M法

▶两段法

例子3:用两阶段法求下列问题的最优解

max
$$3x_1 + x_2 - 2x_3$$

s.t. $2x_1 - x_2 + x_3 = 4$,
 $x_1 + x_2 + x_3 = 6$,
 $x_1 + x_4 = 2$,
 $3x_1 + 2x_3 = 10$,
 $x_j \ge 0$, $j = 1, \dots, 4$.

解: 引进人工变量 x_5 , x_6 , x_7 . 解一阶段问题:

■ 两段法与大M法

▶两段法

min cx

s.t.
$$Ax = b$$
, $x \geqslant 0$,

min
$$x_5 + x_6 + x_7$$

s.t. $2x_1 - x_2 + x_3 + x_5 = 4$,
 $x_1 + x_2 + x_3 + x_6 = 6$,
 $x_1 + x_4 = 2$,
 $3x_1 + 2x_3 + x_7 = 10$,
 $x_j \geqslant 0$, $j = 1, \dots, 7$.

得第一阶段最优表:

min

s.t. Ax = b,

 $x \ge 0$,

两段法与大M法

▶两段法

x_3	0	0	1	$-\frac{3}{2}$	$\frac{1}{2}$		0	2
x_2	0 1 0	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	0	2
x_1	1	0	0	1	0	0	0	2
x_7	0	0	0	0	-1	-1	1	0
3	0	0	0	0	- 2	-2	0	0

- (1)人工变量均为零值
- (2)基变量原来的系数均为0,不能进行基转换
- (3)第4行约束无效,可直接略去

得到初始基本可行解 $(x_1, x_2, x_3, x_4) = (2, 2, 2, 0)$.

两段法与大M法

▶两段法

max
$$3x_1 + x_2 - 2x_3$$

s.t. $2x_1 - x_2 + x_3 = 4$,
 $x_1 + x_2 + x_3 = 6$,
 $x_1 + x_2 + x_3 = 10$,
 $3x_1 + 2x_3 = 10$,
 $x_j \ge 0$, $j = 1, \dots, 4$.

去掉人工变量下面的列,得到第二阶段的初始单纯形表:

_	x_1	x_2	x_3	x_4	
x_3	0	0	1	$\frac{3}{2}$	2
x_2	0	1	0	$\frac{1}{2}$	2
x_1	1	0	0	1	2
	0	0	0	$\frac{13}{2}$	4

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad c_B = [-2, 1, 3] \quad p_4 = [-\frac{3}{2}, \frac{1}{2}, 1]^T$$

$$p_4 = [-\frac{3}{2}, \frac{1}{2}, 1]^{\wedge}T$$

■ 两段法与大M法

▶大M法

初始基本可行解未知的情况下 ,也可以采用另外一种求解方法 —— 大 M 法

基本思想: 在约束中增加人工变量 x_a ,同时修改目标函数,加上罚项 Me^Tx_a ,其中M 是很大的正数,这样,在极小化目标函数的过程中,由于大 M 的存在 ,将迫使人工变量离基.

$$egin{array}{lll} \min & cx & \min & cx + Me^{\mathrm{T}} x_a \ \mathrm{s.t.} & Ax = b, & \mathrm{s.t.} & Ax + x_a = b, \ x \geqslant 0, & x \geqslant 0, & x_a \geqslant 0, \end{array}$$

 $A \in m \times n$ 矩阵, $b \ge 0$,M > 0很大,

 $e = (1, \dots, 1)^{T}$ 是 m 维列向量,分量全为 1.

■ 两段法与大M法

≻大M法

s.t.
$$Ax = b$$
, $x \ge 0$,

$$\min \quad \boldsymbol{c}\boldsymbol{x} + \boldsymbol{M}\boldsymbol{e}^{\mathrm{T}} \boldsymbol{x}_{a}$$

s.t.
$$Ax + x_a = b$$
, $x \geqslant 0$, $x_a \geqslant 0$,

显然,右边的线性规划可行

$$x=0, x_a=b$$
 就是一个可行解.

用单纯形方法求解右边的线性规划,结果必为以下情形:

(1) 达到右边线性规划的最优解,且 $x_a = 0$. 此时,得到的x即为原规划问题的最优解.

■ 两段法与大M法

- ≻大M法
 - (2) 达到右边线性规划的最优解,且 $e^T x_a > 0$. 此时,原规划问题无可行解.

因为如果原线性规划有可行解 , 比如说 \hat{x} , 则 $x = \hat{x}$, $x_a = 0$ 是右边线性规划的可行解.

右边线性规划在这一点的目标函数值

$$Z = c\hat{x} + Me^{T}0 = c\hat{x}$$
.

设右边线性规划的最优解是

最优值 $\overline{Z} = c\overline{x} + Me^{T}x_a$.

矛盾

由于 M 是很大的正数 $,e^{T}x_{a}>0$,因此 $Me^{T}x_{a}$ 可以很大 0

■ 两段法与大M法

≻大M法

(3) 右边线性规划不存在有限最优值,在单纯形表中

$$z_k - c_k = \max\{z_j - c_j\} > 0,$$

 $y_k \leq 0, \quad x_a = 0,$

此时,原线性规划无界

(4) 右边线性规划不存在有限最优值,在单纯形表中

$$z_k - c_k = \max\{z_j - c_j\} > 0, \quad y_k \leq 0,$$

有些人工变量不等于零,即 $e^{T} x_a > 0$.

此时,原线性规划无可行解

■ 两段法与大M法

>大M法

· ·	\boldsymbol{x}_1	•••	x_p	x_{p+1}	•••	χ_m	•••	x_k	•••	x_j	•••	
\boldsymbol{x}_1	1	•••	0	0	•••	0	•••	y_{1k}	•••	y_{1j}		\overline{b} 1
	•••		•••	•••		•••		•••		•••		
x_p	0		1	0	•••	0		$y_{\scriptscriptstyle pk}$		$y_{p,j}$		$\overline{b}_{\scriptscriptstyle P}$
x_{p+1}	0		0	1		0		$y_{p+1,k}$	•••	$y_{p+1,j}$		\overline{b}_{p+1}
	•••		•••	•••				•••		•••		
χ_m	0		0	0		1		$y_{\it mk}$		y_{mj}		\overline{b}_m
	0		0	0		0		$z_k - c_k$	•••	$z_j - c_j$	•••	$c_B\overline{b}$

表中 x_1, \dots, x_p 是原来问题的变量 $, x_{p+1}, \dots, x_m$ 是人工变量 $, x_{p+1}, \dots, x_m$ 是人工变量 $, x_p \in \mathbb{Z}$

根据人工变量不全为零的假设,必有 $\sum_{i=p+1}^{m} \bar{b}_i > 0$.

易证 $\sum_{i=n+1}^{n} y_{ij} \leq 0$, $j=m+1,\dots,n$.

现将最后 $m-p_m$ 个方程(它们都以表中数据为系数)相加,得到

$$\sum_{j=p+1}^{m} x_{j} + \sum_{j=m+1}^{n} \left(\sum_{i=p+1}^{m} y_{ij} \right) x_{j} = \sum_{i=p+1}^{m} \overline{b}_{i}$$

■ 两段法与大M法

≻大M法

$$\sum_{i=p+1}^{m} y_{ij} \leq 0, \quad j = m+1, \dots, n.$$

$$\begin{bmatrix} x \\ x_a \end{bmatrix} = \begin{bmatrix} \hat{x} \\ 0 \end{bmatrix}$$

是线性规划(3.2.7)的可行解

$$\sum_{j=p+1}^{m} x_j + \sum_{j=m+1}^{n} \left(\sum_{i=p+1}^{m} y_{ij}\right) x_j = \sum_{i=p+1}^{m} \overline{b}_i$$
小于或等于0
大于0

因此原线性规划无可行解

■ 两段法与大M法

≻大M法

例子 用大 M 法求解下列问题:

min
$$x_1 + x_2 - 3x_3$$

s.t. $x_1 - 2x_2 + x_3 \le 11$,
 $2x_1 + x_2 - 4x_3 \ge 3$,
 $x_1 - 2x_3 = 1$,
 $x_1, x_2, x_3 \ge 0$.

解:引进松弛变量 x_4 , x_5 和人工变量 x_6 , x_7 ,用单纯形方法解下列问题:

■ 两段法与大M法

▶大M法

min
$$x_1 + x_2 - 3x_3 + M(x_6 + x_7)$$

s.t. $x_1 - 2x_2 + x_3 + x_4 = 11$,
 $2x_1 + x_2 - 4x_3 - x_5 + x_6 = 3$,
 $x_1 - 2x_3 + x_7 = 1$,
 $x_j \ge 0$, $j = 1, \dots, 7$.

选择最大判别数时要注意 M 是很大的正数 ,它的数值可超过每个已知的正数

■ 两段法与大M法

≻大M法

	$\boldsymbol{\chi}_1$	\mathcal{X}^2	$\boldsymbol{\mathcal{X}}$ 3	$\mathbf{\chi}_4$	$oldsymbol{\mathcal{X}}$ 5	$\boldsymbol{\chi}_6$	\mathcal{X} 7		
X 4	1	- 2	1	1	0	0	0		11
X 6	2	1	- 4	0	-1	1	0		3
x 7	1	0	- 2	0	0	0	1	,	1
	3 M -1	M - 1	-6M + 3	0	-M	0	0		4 M

X 4	0	-2	3	1	0	0	-1	10
x 6	0	1	0	0	-1	1	-2	1
x 1	1	0	— 2	0	0	0	1	1
	0	M-1	1	0	-M	0	1 - 3M	1+M

■ 两段法与大M法

≻大M法

X 4	0	0	3	1	— 2	2	- 5	12
x 2	0	1	0	0	-1	1	— 2	1
\boldsymbol{x}_1	1	0	— 2	0	0	0	1	1
	0	0	1	0	-1	1-M	-1-M	2
x 3	0	0	1	<u>1</u> 3	$-\frac{2}{3}$	<u>2</u> 3	$-\frac{5}{3}$	4
x 2	0	1	0	0	-1	1	-2	1
x 1	1	0	0	<u>2</u> 3	$-\frac{4}{3}$	<u>4</u> 3	$-\frac{7}{3}$	9
	0	0	0	$-\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$ $-M$	$\frac{2}{3}$ $-M$	-2

由于 M 是很大的正数,因此所有的判别数 $z_j - c_j \le 0$,达到最优解. 人工变量 $x_6 = 0$, $x_7 = 0$.原来问题的最优解(x_1 , x_2 , x_3) = (9,1,4),

■ 作业

P119:

1(3), 2(8)