

Introduction to **Genetic Algorithms – Part II**

Speaker: Nick S.H. Chung PhD (HKU), MPhil (HKU), BEng (HKU)

Lecturer: The Hong Kong Polytechnic University Email: mfnick@inet.polyu.edu.hk

*7*017-07

Outline: GA

Idea of Crossover

- Swap gene(s)/segment(s) between chromosomes (i.e. 2 or 3 ...).
- Swap Structure
- Swapping can be random.

Crossover Methods

- One Point
- Two Points
- Cut and Slice
- Uniform
- Adaptive

One Point Crossover

Two Points Crossover

Cut and Slice Crossover

Uniform Crossover

- Rather than segment, now gene
- Exchange with a Probability

Invalid after Chromosome: Allocation Example

Cargo	Volume (m³)	Weight (lb)		
1	3	400		
2	4	500		
3	6	200		
4	5	600		
5	2	250		
6	1	300		
7	2	350		

Cargo	Volume	Weight
1	3	400
4	5	600
5	2	250
6	1	300
7	2	350
Total	13	1900

Constraints 12 2100	00
---------------------	----

What to do?

- Fix it
- No allow, discard chromosome
- Assign a penalty

Others??

Skills:

Avoid dramatic change of chromosome Exchange probability: 0.1 ~ 0.2

Avoid: Random search

Effect of Rates

Adaptive Crossover

- Depending on
- 1) Performance after crossover (Fitness Value)
- 2) No. of Evoluions

Evolution - Mutation

Idea of Mutation

- Maintain diversity of solution pool
- Avoid local minima
- Prevent chromosome too similar to each other
- By change the gene(s) value

Remark

- Change all genes (new chromosome)
- Mutation probability should be low

Evolution - Mutation

Singe Point Mutation

Evolution - Premature

Regenerate chromosome

- The weakness one(s)
- Randomly select

Stopping Condition

Idea of Stopping Condition

Checking when to stop

Methods

- Number of Evolutions
- Steady solution

Design Evolution Process

Question: Design for Production Scheduling

Crossover and Mutation

Problem

10 Jobs and 3 Machines Minimize Makespan

Job	PT	Job	PT	
1	12	6	5	
2	15	7	12	
3	16	8	17	
4	11	9	21	
5	17	10	15	

Setup										
Time	1	2	3	4	5	6	7	8	9	10
1	-	12	4	2	5	6	4	12	5	3
2	5	-	3	6	7	3	2	4	6	4
3	3	1	-	1	3	4	6	7	8	8
4	7	4	2	-	12	3	3	1	3	5
5	12	3	6	3	-	12	3	3	12	6
6	4	1	8	3	4	-	6	7	2	8
7	6	9	5	3	2	1	-	9	4	3
8	12	4	7	3	9	4	10	-	2	6
9	1	2	7	4	9	3	12	15	-	4
10	9	6	2	6	8	11	3	8	6	17 <u></u>

Chromosome Encoding

Fitness Value of Chromosome i = 1-1/makespan of i

Crossover

Validation

Discard duplicated

Discard Import

- Retain most origin structure

Validation

Discard duplicated

Discard Origin

- Retain most import structure

Validation

Mutation

- Change to any value (Swapping)

