Machine Learning in Biology:

Predicting Heart Failure based on Patient Medical History and Blood Chemistry

Prepared by: Joseph Matthew R. Azanza

Problems Encountered

- Public datasets are too complex for traditional ML models
- Small sample sizes (tens to hundreds)
- Need to collaborate with scientists

Learning Goals

How to handle public datasets with small sample sizes

How ML models can be interpreted in a biological context

Dataset

- Obtained from Ahmad, et al. (2017): Survival analysis of heart failure patients: A case study
- 299 Pakistani patients with 12 variables, predicting mortality (299x13)
- Patient info: age, sex, smoker, time
 - Medical history: anemic, blood pressure, diabetic
 - Blood chemistry: creatinine phosphokinase, blood creatinine,
 - blood sodium, ejection fraction, platelets,

Performed Methodology

Data Processing and EDA Classification via Train-test split (8 models) Classification Leave One Out CV (8 models) Compare and Interpret

Leave One Out Cross Validation

- Extreme version of k-fold cross validation using all but one data point as train set; left out = test set
- Advantage: more robust model performance and no randomness Disadvantage: variability of model performance and computation cost
- We can use LOOCV to handle small datasets

Results

Interpreting ML in a Biological Problem

- Best Model: Random Forest Classifier, 85% Accuracy
- Skepticism on applying model to non-Pakistani People
- Value: ML model used to augment decision making

Summary

- We can use the Leave One Out Cross Validation method to handle small datasets
- Application and interpretation of ML in a biological problem is highly context dependent
- The value ML gives is the augmentation of decision making

Appendix

LOOCV Calculated Variance

	Machine Learning Model	Test Accuracy	Variance
0	kNN	0.715719	0.203465
1	Logistic Regression (L2 Reg)	0.829431	0.141475
2	Logistic Regression (L1 Reg)	0.826087	0.143667
3	Linear SVM (L2 Reg)	0.836120	0.137023
4	Linear SVM (L1 Reg)	0.829431	0.141475
5	Decision Tree	0.772575	0.175703
6	Random Forest	0.849498	0.127851
7	Gradient Boosting Method	0.809365	0.154294