Topology I

Course by Viktoryia Ozornova

Table des matières

1	Hon	nology Theories	2
2	Con	structing singular homology	6
List of Theorems			
	1	Axiom (Eilenberg-Steenrod Axiom)	2
	2	Lemma	3
	4	Proposition	5
	5	Corollary	5
	6	Corollary (Brouwer fixed point theorem)	5

1 Homology Theories

Lecture 1: Introduction

Mon 10 Oct

Aim: Study further algebraic invariants of topological spaces. We want to assign to pairs of topological spaces abelian groups.

$$h_n: T \to Ab \quad \forall n \in \mathbb{Z}$$

and to pairs continuous maps, we want to assign a map $h_n(f): h_n(X) \to h_n(Y)$ which is functorial. Here T is the category of pairs of topological spaces $A \subset X$ with morphisms $f: (X, A) \to (Y, B)$ such that $f(A) \subset B$.

To relate h_n for different $n \in \mathbb{N}$, we will construct connecting morphisms $\partial_n : h_n(X,A) \to h_{n-1}(A,\emptyset)$.

Axiom 1 (Eilenberg-Steenrod Axiom)

A (generalised) homology theory consists of functors $h_n: T \to Ab$ and natural connecting homomorphisms $\partial_n: h_n(X, A) \to h_{n-1}(A, \emptyset)$ satisfying

- Homotopy invariance:
 - If $f, g: (X, A) \to (Y, B)$ are homotopic continous maps of pairs then the induced maps $h_n(f) = h_n(g)$. Here homotopy of pairs means that there exists $H: X \times [0, 1] \to Y$ such that $H(A \times [0, 1]) \subset B$
- Long exact sequence of a pair (LES) :

Given a pair of topological spaces (X, A) there is a long exact sequence of abelian groups.

Denote $i:(A,\emptyset)\to (X,\emptyset)$ and $j:(X,\emptyset)\to (X,A)$, then

$$h_n(A,\emptyset) \xrightarrow{h_n(i)} h_n(X,\emptyset) \xrightarrow{h_n(j)} h_n(X,A) \xrightarrow{\partial_n} h_{n-1}(A,\emptyset)$$

- Excision

Given $B \subset A \subset X$ subspaces such that $\overline{B} \subset A^o$, the inclusion induces a group isomorphism

$$h_n(X \setminus B, A \setminus B) \to h_n(X, A)$$

We add another axiom to "make things easier"

— Additivity:

Given a family of pairs of spaces $(X_i, A_i)_{i \in I}$, the inclusions induce an isomorphism

$$\bigoplus h_n(X_i, A_i) \to h_n(\coprod X_i, \coprod A_i)$$

This is the end of the axioms for a generalised homology theory, the homology theory is called an ordinary homology theory if the <u>Dimension Axiom</u> holds, namely

$$h_n(pt) = 0 \forall n \neq 0$$

^{1.} From now on, we write $h_n(A) := h_n(A, \emptyset)$

The abelian group $h_0(pt)$ is the called the coefficient group of (h_n, ∂_n)

Lemma 2

If $f: X \to Y$ is a homotopy equivalence, then $\forall n \in \mathbb{Z}$ we obtain $h_n(f): h_n(X) \to h_N(Y)$ to be an isomorphism for any homology theory (h_n, ∂_n)

Proof

Choose $g: Y \to X$ such that $g \circ f \simeq \operatorname{Id}_X$ and $f \circ g \simeq \operatorname{Id}_Y$, then by functoriality and homotopy invariance $\operatorname{Id}_{h_n(X)} = h_n(\operatorname{Id}_X) = h_n(g) \circ h_n(f)$, by symmetry, $h_n(f)$ and $h_n(g)$ are inverses.

Similarly, if $f:(X,A)\to (Y,B)$ is a homotopy equivalence of pairs, then the same result holds.

Example

For any such homology theory

$$h_n(\mathbb{R}^k) \simeq h_n(pt) \simeq h_n(D^k)$$

Lecture 2: Homology Theories

Wed 12 Oct

Recall that the natural homomorphisms ∂_n are natural, in the sense that the compositions

$$h_{n-1}(f) \circ \partial_n : h_n(X, A) \to h_{n-1}(A) \to h_{n-1}(B)$$

and

$$\partial_n \circ h_n(f) : h_n(X, A) \to h_n(Y, B) \to h_{n-1}(B)$$

coincide.

Today, we compute the homology groups $h_*(S^k)$ for $k \geq 0$ for a given ordinary homology theory h_* Here, the k-sphere is defined as a subspace of \mathbb{R}^{k+1} .

Recall from the exercises that $h_*(pt \coprod pt) = h_*(pt) \oplus h_*(pt)$ for ordinary homology theories concentrated in degree 0.

There are two maps $\pm : pt \to S^0$ and one natural map $S^0 \to pt$ called the "fold" map.

By functoriality, the composition $h_*(pt) \to h_*(S^0) \to h_*pt$ is the identity. To compute $h_*(S^k)$, we use two LES

$$\dots \xrightarrow{\partial_{n+1}} h_n(S^k) \xrightarrow{h_* \iota} h_n(D^{k+1}) = 0 \xrightarrow{h_* \iota} h_n(D^{k+1}, S^k) \to h_{n-1}(S^k) \to h_{n-1}(D^{k+1}) = 0 \dots$$

As $h_n(D^{k+1}) = 0$ for $n \neq 0$, we have an isomorphism $\partial_n : h_n(D^{k+1}, S^k) \to h_{n-1}(S^k)$.

The inclusion $D^k \subset S^k$ (as the upper hemisphere) gives rise to another LES

$$0 = h_n D^k \xrightarrow{h_* \iota} h_n S^k \xrightarrow{h_* \iota} h_n (S^k, D^k) \xrightarrow{\partial_n} h_{n-1} D^k = 0 \to h_{n-1} S^k \dots$$

And thus we also get an isomorphism $h_n\iota:h_nS^k\to h_{n-1}D^k$ The inclusion of the north pole $pt\subset D^k\subset S^k$ induces, using excision, the isomorphism $h_n(S^k\setminus pt,D^k\setminus pt)\simeq h_n(S^k,D^k)$ of the following diagram

$$h_n(D^k, S^{k-1}) \longleftarrow \cong h_n(S^k \setminus pt, D^k \setminus pt) \stackrel{\cong}{\longrightarrow} h_n(S^k, D^k)$$

$$\cong \partial_n \downarrow \qquad \qquad \downarrow \partial_n$$

$$h_{n-1}(S^{k-1}) \xrightarrow{h_{n-1}} h_{n-1}(D^k \setminus pt) \xrightarrow{} h_{n-1}(D^k)$$

We know that the bottom row of this diagram is an ES.

In particular $h_n(D^k, S^{k-1}) \simeq h_n(S^k, D^k)$.

The isomorphism $\partial_n: h_n(D^k, S^{k-1}) \to h_{n-1}(S^{k-1})$ now almost allows us to use induction to find the homology groups.

We now consider the case $n \in \{0, 1\}$

$$h_1(D^k) = 0 \to h_1 S^k \to h_1(S^k, D^k) \xrightarrow{\partial_1} h_0 D^k \to h_0 S^k \to h_0(S^k, D^k) \to h_{-1} D^k = 0$$

The case $n \in \{0,1\}$ gives a split short exact sequence

$$0 \to h_0 D^k \to h_0 S^k \to h_0 (S^k, D^k) \simeq h_0 (D^k, S^{k-1}) \to 0$$

The homotopy equivalence $pt\to D^k$ gives a split of this exact sequence $h_0S^k\to h_0pt\to h_0D^k$.

The boundary homomorphism $h_1(S^k, D^k) \to h_0 D_k$ being 0 using results from the exercise sheet.

Now by induction, $h_n S^k = 0$ for all n < 0 and $h_0 S^k = h_0(pt)$ for all k > 0. We also have that $h_n S^1 \simeq h_{n-1} S^0$ for $n \notin \{0, 1\}$.

What about h_1S^1 ?

$$h_1(D^1, S^0) \to h_1(S^1, D^1) \to h_0(D^1)$$

and

$$h_1(D^1, S^0) \to h_0 S^0 \to h_0(D^1)$$

Where the last morphism is induced by the fold map, namely $h_0S^0 = h_0pt \oplus h_0pt \to h_0(pt)$ and $(x,y) \mapsto x + y$.

We have

$$h_1D^1 \to h_1(D^1, S^0) \to h_0S^0 = h_0pt \oplus h_0pt \to h_0D^1$$

We were able to show isomorphisms $h_n S^k \simeq h_{n-1} S^{k-1}$ for $n \notin \{0,1\}$, $h_0 S^k \simeq h_0 pt$ for k > 0 and $h_1 S^1 \simeq h_0 pt$.

What about $h_1 S^k$ for k > 1?

We have isomorphisms

$$h_1S^k \to h_1(S^k, D^k) \xrightarrow{\partial} h_0D^k \simeq h_0S^k$$

and

$$h_1(D^k, S^{k-1}) \simeq h_1(S^k, D^k) \to h_0 S^{k-1} \simeq h_0 D^k$$

and thus $h_1 S^k = 0$ for k > 1.

Proposition 4

FOr any ordinary homology theory (h_*, ∂_*) , the following holds

$$h_n S^k = \begin{cases} h_0 pt \oplus h_0 pt & \text{if } k = 0 = n \\ 0, k > 0, n \notin \{0, k\} \\ h_0 pt & \text{if } k > 0 \text{ and } n \in \{0, k\} \\ 0, else \end{cases}$$

We add one additional assumption, that there exists an ordinary homology theory with coefficient group $h_0pt\simeq\mathbb{Z}$

Corollary 5

 S^k and S^l are not homotopy equivalent for $k \neq l$

Proof

$$h_k S^k \simeq h_0 pt \neq h_k S^l = 0 \qquad \qquad \Box$$

Corollary 6 (Brouwer fixed point theorem)

Any continuous map $f: D^n \to D^n$ has a fixed point.

Proof

Assume $f: D^n \to D^n$ is a map without a fixed point.

Consider $g:D^n\to S^{n-1}$ sending $x\mapsto \frac{x-f(x)}{\|x-f(x)\|}$, by assumption, this is continuous.

Next, we claim that $g|_{S^{n-1}}$ is homotopic to $\mathrm{Id}_{S^{n-1}}$ via the map

$$H(x,t) \coloneqq \frac{x - tf(x)}{\|x - tf(x)\|}$$

If t = 1, the denominator is $\neq 0$, if t < 1

$$||tf(x)|| = t ||f(x)|| < ||f(x)|| \le 1$$

Hence, $||x - tf(x)|| \neq 0$ and H is a well defined continuous map. Now, consider

$$h_{n-1}S^{n-1} \xrightarrow{ind} h_{n_1}D^n \xrightarrow{h_{n-1}(g)} h_{n-1}S^{n-1}$$

By homotopy equivalence $h_{n-1}(g) \circ ind$ is the identity.

For n > 1, this implies that the identity factors through 0, which is a contradiction.

The special case n = 1 gives

$$h_0 S^0 \to h_0 D^1 \to h_0 S^0$$

If the coefficient group is \mathbb{Z} , this is a contradiction.

2 Constructing singular homology

We want to construct a (ordinary) homology theory.

The idea is to study X by mapping topological simplices into X, here the topological n simplex is defined as

$$\Delta^n = \left\{ (t_0, \dots, t_n) | t_i \ge 0 \forall i, \sum_i t_i = 1 \right\} \subset \mathbb{R}^{n+1}$$

We define

$$Sing_n(X) = \{ f : \Delta^n \to X \text{ continuous } \}$$

in general, this set is huge.