Supplement to: Multiple imputation of missing covariates when using the Fine–Gray model

Edouard F. Bonneville¹, Jan Beyersmann², Ruth H. Keogh³, Jonathan W. Bartlett³, Tim P. Morris⁴, Nicola Polverelli⁵, Liesbeth C. de Wreede^{1,6,*}, and Hein Putter^{1,7,*}

⁴MRC Clinical Trials Unit at UCL, United Kingdom
⁵Unit of Bone Marrow Transplantation, Division of Hematology, Fondazione IRCCS
Policlinico San Matteo di Pavia, Italy
⁶DKMS Clinical Trials Unit, Germany
⁷Mathematical Institute, Leiden University, the Netherlands
*Shared senior authorship

S1 Minimal code example

This is the minimal R code companion to section 3.4 of main manuscript. The parameters from the simulation study scenario with p = 0.15, random censoring, and correctly specified Fine–Gray were used to generate the example dataset below.

```
# Load libraries
library(data.table)
library(survival)
library(kmi)
library(mice)
library(smcfcs)

# Minimal dataset
head(dat, n = 10)
```

```
time D
                     Χ
                             Ζ
   id
1
    1 0.491195 0
                     1
                        0.126
2
    2 0.028680 2 <NA>
                        1.266
3
    3 0.910797 0
                     0 - 1.571
4
    4 0.217566 2
                     1 - 0.500
5
    5 0.132420 2
                     0 0.781
    6 0.800913 2
                     0 - 0.434
6
7
    7 0.041653 2 <NA> -0.844
    8 0.036202 1 <NA>
```

¹Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands ²Institute of Statistics, Ulm University, Germany

³Department of Medical Statistics, London School of Hygiene and Tropical Medicine, United Kingdom

```
9 9 0.046798 0 0 -1.653

10 10 0.997413 0 <NA> -1.196

sapply(dat, class)

id time D X Z

"integer" "numeric" "factor" "factor" "numeric"

nrow(dat)
```

[1] 2000

1. Add columns $\hat{H}_1(T)$ and $\hat{H}_2(T)$ to the original data, which are the marginal cause-specific cumulative hazards for each competing risk evaluated at an individual's event or censoring time (obtained using the Nelson–Aalen estimator).

```
# Add cause-specific event indicators + cumulative hazards
dat$D1 <- as.numeric(dat$D == 1)
dat$D2 <- as.numeric(dat$D == 2)
dat$H1 <- nelsonaalen(data = dat, timevar = "time", statusvar = "D1")
dat$H2 <- nelsonaalen(data = dat, timevar = "time", statusvar = "D2")</pre>
```

2. Multiply impute the potential censoring for those failing from cause 2 using $\{kmi\}$, yielding m censoring complete datasets (i.e. with "complete" V). Any completely observed covariates that are known to affect the probability of being censored should be included as predictors in the model for the censoring process. $\{kmi\}$ imputes based on stratified Kaplan–Meier when Z are categorical, and based on a Cox model when at least one of Z are continuous.

```
# 5 imputed datasets
M <- 5

# Multiply impute the censoring times
cens_imps <- kmi(
  formula = Surv(time, D != 0) ~ 1, # Additional predictors added here
  data = dat,
  etype = D,
  failcode = 1, # Specify event of interest
  nimp = M,
  #nboot = M, # Bootstrap for uncertainty in P(C > t)
  #bootstrap = TRUE
)
```

3. In each censoring complete dataset, add an additional column $\hat{\Lambda}_1(V)$. This takes the value of the marginal cumulative subdistribution hazard for cause 1 at an individual's observed or imputed subdistribution time, obtained with the Nelson–Aalen estimator based on I(D=1) and imputed V.

```
# Preparation for covariate imputation:
# Create list of censoring complete datasets (with imputed V)
list_to_impute <- lapply(cens_imps$imputed.data, function(imp_dat) {</pre>
```

```
# Adjust new ordering from kmi (cause 2 individuals appended at bottom)
  dat_to_impute <- cbind(cens_imps$original.data, imp_dat)</pre>
  # Compute/add Lambda 1(V) in each imputed dataset
  dat to impute$Lambda1 <- nelsonaalen(</pre>
    data = dat_to_impute,
    timevar = "newtimes", # kmi naming for V
    statusvar = "D1" # I(D=1)
 return(dat to impute)
})
# newevent is equal to I(D=1)
head(list_to_impute[[1]])
          time D
                            Z D1 D2
                                                        H2 newtimes newevent
   id
                    X
                                            H1
1
    1 0.491195 0
                    1 0.126 0 0 0.16736459 0.55436927 0.491195
                                                                            \cap
3
    3 0.910797 0
                    0 -1.571 0 0 0.25761243 0.83833716 0.910797
                                                                            0
    8 0.036202 1 <NA> 1.564 1 0 0.02028935 0.09603222 0.036202
                                                                            1
                    0 -1.653 0 0 0.02606228 0.10990397 0.046798
                                                                            0
    9 0.046798 0
10 10 0.997413 0 <NA> -1.196 0 0 0.27549886 0.87116320 0.997413
                                                                            0
12 12 0.056015 0 <NA> 0.058 0 0 0.02903112 0.12350351 0.056015
                                                                            0
      Lambda1
1 0.12385222
3 0.16659793
8 0.01932257
9 0.02452308
10 0.17340532
12 0.02715245
  4. In each censoring complete dataset (each with different V and \Lambda_1(V), but same
     H_1(T) and H_2(T), create a single imputed dataset using the desired covariate
     imputation method(s).
```

```
# Prepare predictor matrices for MICE using first censoring complete dataset
predmat_cs_approx <- predmat_fg_approx <- mice::make.predictorMatrix(
    data = list_to_impute[[1]]
)
predmat_cs_approx[] <- predmat_fg_approx[] <- 0

# Explicitly specify predictors to include in the imputation model
predmat_cs_approx["X", c("Z", "D1", "D2", "H1", "H2")] <- 1
predmat_fg_approx["X", c("Z", "D1", "Lambda1")] <- 1
predmat_fg_approx</pre>
```

```
id time D X Z D1 D2 H1 H2 newtimes newevent Lambda1
id
             0 0 0 0
                      0 0
                             0
                                     0
             00000000
                                                    0
time
        0
                                     0
                                             0
             0 0 0 0 0 0 0
        0
                                     0
                                                    0
D
```

```
Χ
         0
              0 0 0 1 1 0 0 0
                                         0
                                                  0
                                                          1
Z
         0
              00000000
                                         0
                                                  0
                                                          0
D1
         0
              00000000
                                         0
                                                  0
                                                          0
D2
         0
              00000000
                                         0
                                                  0
                                                          0
H1
         0
              00000000
                                         0
                                                  0
                                                          0
              00000000
H2
         0
                                         0
                                                  0
                                                          0
         0
              00000000
                                         0
                                                  0
                                                          0
newtimes
newevent 0
              00000000
                                         0
                                                  0
                                                          0
              00000000
                                                          0
Lambda1
         0
                                         0
# Prepare the methods:
# - Approx methods: model type for X | Z, outcome
methods_approx <- mice::make.method(data = list_to_impute[[1]])</pre>
# - SMC methods: proposal model for X | Z (need to use {smcfcs} naming)
methods_smcfcs <- mice::make.method(</pre>
 data = list to impute[[1]],
  defaultMethod = c("norm", "logreg", "mlogit", "podds")
)
methods smcfcs
      id
            time
                        D
                                 X
                                          Ζ
                                                  D1
                                                           D2
                                                                    H1
                       "" "logreg"
                                         11-11
                                                  11-11
                                                           11 11
                                                                    11 11
                          Lambda1
     H2 newtimes newevent
# Impute X in each censoring complete dataset
# (parallelise this loop for speed improvements on larger data)
list_imps <- lapply(list_to_impute, function(imp_dat) {</pre>
  iters <- 10 # Often upwards of 15 or 20 needed: check convergence
  imps cs approx <- mice(</pre>
   data = imp_dat,
   m = m,
   maxit = iters,
   method = methods_approx,
   predictorMatrix = predmat_cs_approx
  )
  imps_fg_approx <- mice(</pre>
   data = imp dat,
   m = m,
   maxit = iters,
   method = methods_approx,
   predictorMatrix = predmat_fg_approx
  )
```

```
imps cs smc <- smcfcs(</pre>
    originaldata = imp_dat,
    smtype = "compet",
    smformula = list(
      "Surv(time, D == 1) \sim X + Z",
      "Surv(time, D == 2) ~ X + Z"
    ),
    method = methods smcfcs,
    m = m,
    numit = iters
  imps_fg_smc <- smcfcs(</pre>
    originaldata = imp_dat,
    smtype = "coxph",
    smformula = "Surv(newtimes, D1) ~ X + Z",
    method = methods_smcfcs,
    m = m,
    numit = iters
  )
  # Bring all the imputed datasets together
  imps <- rbind.data.frame(</pre>
    cbind(method = "CCA", imp_dat),
    cbind(method = "cs_smc", imps_cs_smc$impDatasets[[1]]),
    cbind(method = "cs_approx", complete(imps_cs_approx, action = 1L)),
    cbind(method = "fg_smc", imps_fg_smc$impDatasets[[1]]),
    cbind(method = "fg_approx", complete(imps_cs_approx, action = 1L))
  return(imps)
})
```

5. Fit the Fine–Gray substantive model in each imputed dataset (using standard Cox software with I(D=1) and imputed V as outcome variables), and pool the estimates using Rubin's rules.

```
# Bind everything together
dat_imps <- rbindlist(list_imps, idcol = ".imp")
dat_imps</pre>
```

	.imp	method	id	time	D	X	Z	D1	D2
	<int></int>	<char></char>	<int></int>	<num></num>	<fctr></fctr>	<fctr></fctr>	<num></num>	<num></num>	<num></num>
1:	1	CCA	1	0.491195	0	1	0.126	0	0
2:	1	CCA	3	0.910797	0	0	-1.571	0	0
3:	1	CCA	8	0.036202	1	<na></na>	1.564	1	0
4:	1	CCA	9	0.046798	0	0	-1.653	0	0
5:	1	CCA	10	0.997413	0	<na></na>	-1.196	0	0
49996:	5	fg_approx	1992	0.319702	2	0	-2.670	0	1

```
5 fg approx 1993 0.229071
                                           2
                                                  0 - 0.243
                                                                0
49997:
                                                                      1
                                           2
                                                  1 -0.366
           5 fg approx 1994 1.836303
                                                                0
                                                                      1
49998:
                                           2
                                                  0 0.283
                                                                      1
49999:
           5 fg_approx 1997 0.702380
                                                                0
50000:
           5 fg_approx 1999 0.023554
                                           2
                                                  1 1.377
                                                                      1
               H1
                          H2 newtimes newevent
                                                  Lambda1
            <num>
                                <num>
                                        <fctr>
                                                     <num>
                       <num>
    1: 0.16736459 0.55436927 0.491195
                                             0 0.12385222
    2: 0.25761243 0.83833716 0.910797
                                             0 0.16659793
    3: 0.02028935 0.09603222 0.036202
                                             1 0.01932257
    4: 0.02606228 0.10990397 0.046798
                                             0 0.02452308
    5: 0.27549886 0.87116320 0.997413
                                             0 0.17340532
49996: 0.12370372 0.43826433 0.957205
                                             0 0.17116627
49997: 0.09740419 0.35023923 0.453168
                                             0 0.12098105
49998: 0.47538639 1.23075745 2.841599
                                             0 0.25988878
49999: 0.21877205 0.71087168 1.170590
                                             0 0.19454317
50000: 0.01356742 0.06584427 2.997529
                                             0 0.26284736
# To use the usual workflow: subset one of the methods first
imps fg smc <- dat imps[dat imps$method == "fg smc", ]</pre>
# Fit model in each imputed dataset
mods_fg_smc <- lapply(</pre>
 X = seq len(M),
 FUN = function(m) {
    imp_m <- imps_fg_smc[imps_fg_smc$.imp == m, ]</pre>
    coxph(Surv(newtimes, D1) ~ X + Z, data = imp m)
 }
)
# Pool results
summary(pool(mods fg smc))
 term estimate std.error statistic
                                              df
                                                      p.value
1
   X1 0.7768682 0.21722362 3.576352
                                        9.883541 5.136286e-03
     Z 0.4920664 0.06519244 7.547906 105.385333 1.659276e-11
# Alternative:
# Use (nested) {data.table} workflow to pool all methods simultaneously!
dat mods <- dat imps[, .(</pre>
 mod = list(coxph(Surv(newtimes, D1) ~ X + Z, data = .SD))
), by = c("method", ".imp")]
dat mods
       method
              .imp
                            mod
       <char> <int>
                         t>
1:
          CCA
                1 <coxph[22]>
2:
       cs_smc
                1 <coxph[21]>
                1 <coxph[21]>
3: cs approx
4:
       fg smc
                1 <coxph[21]>
```

```
1 <coxph[21]>
 5: fg_approx
                   2 <coxph[22]>
           CCA
 6:
                   2 <coxph[21]>
 7:
       \mathtt{cs\_smc}
 8: cs_approx
                   2 <coxph[21]>
                   2 <coxph[21]>
 9:
       fg smc
10: fg_approx
                   2 <coxph[21]>
                   3 <coxph[22]>
11:
           CCA
12:
                   3 <coxph[21]>
       cs smc
                   3 <coxph[21]>
13: cs approx
                   3 <coxph[21]>
14:
       fg_smc
15: fg_approx
                   3 <coxph[21]>
                   4 <coxph[22]>
16:
           CCA
                   4 <coxph[21]>
17:
       cs smc
                   4 <coxph[21]>
18: cs approx
                   4 <coxph[21]>
19:
       fg smc
20: fg_approx
                   4 <coxph[21]>
21:
           CCA
                   5 <coxph[22]>
22:
       cs_smc
                   5 <coxph[21]>
                   5 <coxph[21]>
23: cs approx
24:
       fg_smc
                   5 <coxph[21]>
                   5 <coxph[21]>
25: fg_approx
                              mod
       method
                .imp
```

dat_mods[, summary(pool(as.list(mod))), by = "method"]

```
method
                term
                     estimate
                                std.error statistic
                                                              df
                                                                      p.value
       <char> <fctr>
                         <num>
                                     <num>
                                                                        <num>
                                               <num>
                                                           <num>
          CCA
 1:
                  X1 0.7781281 0.17916465
                                            4.343089 152.067624 2.554742e-05
          CCA
                   Z 0.4003856 0.10186017
                                            3.930737 145.744472 1.304356e-04
 2:
                  X1 0.6980657 0.18538543
 3:
       cs smc
                                            3.765483
                                                      14.973349 1.875994e-03
                  Z 0.5079436 0.06538007
                                            7.769090
                                                      93.531830 9.965454e-12
 4:
       cs smc
 5: cs_approx
                  X1 0.6092265 0.19461615
                                            3.130400
                                                      12.205414 8.525728e-03
                  Z 0.5225790 0.06779656
                                            7.708046
                                                      58.618467 1.775328e-10
   cs approx
 7:
       fg_smc
                  X1 0.7768682 0.21722362
                                            3.576352
                                                       9.883541 5.136286e-03
                                            7.547906 105.385333 1.659276e-11
       fg_smc
                   Z 0.4920664 0.06519244
                  X1 0.6092265 0.19461615
                                            3.130400
                                                      12.205414 8.525728e-03
 9: fg approx
                                            7.708046
                                                     58.618467 1.775328e-10
10: fg_approx
                   Z 0.5225790 0.06779656
```

S2Simulation study results

S2.1 Additional simulations

S2.2Supplementary simulations: covariate-dependent censoring

S3 Applied data example

S3.1 Data dictionary

Table 1: Data dictionary. CMV: cytomegalovirus; HLA: human leukocyte antigen; HCT-CI: Hematopoietic stem cell transplantation-comorbidity index; MF: myelofibrosis.

Characteristic	N = 3,982
Patient age (years)	58 (52, 64)
Patient/donor CMV match	(, ,
Patient negative/Donor negative	1,142 (30%)
Other	2,715 (70%)
(Missing)	$12\overline{5}$
Donor type	
HLA identical sibling	1,183 (30%)
Other	2,795 (70%)
(Missing)	4
Hemoglobin (g/dL)	9.10 (8.10, 10.40)
(Missing)	1,873
HCT-CI risk category	,
Low risk (0)	1,674 (54%)
Intermediate risk $(1-2)$	743 (24%)
High risk (≥ 3)	674 (22%)
(Missing)	891
Interval diagnosis-transplantation (years)	3(1, 9)
Karnosfky performance score	3 (1, 0)
≥ 90	2,475 (66%)
80	986 (26%)
≤ 70	267 (7.2%)
(Missing)	254
Patient sex	
Female	1,484 (37%)
Male	2,498 (63%)
Peripheral blood (PB) blasts (%)	1.0 (0.0, 3.0)
(Missing)	2,323
Conditioning	_,===
Standard	1,373 (35%)
Reduced	2,553 (65%)
(Missing)	56
Ruxolitinib given	
No	1,832 (66%)
Yes	931 (34%)
(Missing)	1,219
Disease subclassification	±, = ±0
Primary MF	2,912 (73%)
Secondary MF	1,070 (27%)
Night sweats	±, · · · (= · / · /)
1.10110 2110000	

No	1,256 (70%)
Yes	529 (30%)
(Missing)	2,197
T-cell depletion (in- or ev-vivo)	
No	1,012~(26%)
Yes	2,905 (74%)
(Missing)	65
Cytogenetics	
Normal	1,318 (59%)
Abnormal	910 (41%)
(Missing)	1,754
White blood cell count (WBC, $x10^9/L$)	7 (4, 14)
(Missing)	1,884
>10% Weight loss prior to transplantation	
No	1,329 (73%)
Yes	492~(27%)
(Missing)	2,161
Year of transplantation	2,015.0 (2,012.0, 2,018.0)

¹ Median (IQR); n (%)

S3.2 Non-parametric cumulative incidence curves

S3.3 Pooled regression coefficients

Table 2: Pooled log hazard ratios [log HR, 95% confidence interval] for Fine–Gray model for relapse, cause-specific Cox model relapse, and cause-specific Cox model for non-relapse mortality (NRM).

	D.1	D 1 1 17D	1777			
Term + method	Relapse subdist. log HR	Relapse cause-spec. log HR	NRM cause-spec. log HR			
Conditioning: 1	reduced					
CCA	0.02 [-0.33, 0.36]	0.01 [-0.33, 0.35]	0 [-0.29, 0.28]			
CS-SMC	0.13 [-0.02, 0.28]	0.1 [-0.05, 0.25]	-0.05 [-0.18, 0.07]			
CS-Approx	0.13 [-0.02, 0.28]	0.1 [-0.05, 0.25]	-0.05 [-0.18, 0.07]			
FG-SMC	0.13 [-0.02, 0.28]	0.1 [-0.05, 0.25]	-0.06 [-0.18, 0.07]			
FG-Approx	0.13 [-0.03, 0.28]	0.1 [-0.06, 0.25]	-0.05 [-0.18, 0.07]			
CMV match: o	CMV match: other					
CCA	0.04 [-0.31, 0.4]	0.05 [-0.3, 0.41]	0.09 [-0.19, 0.37]			
CS-SMC	-0.1 [-0.26, 0.05]	-0.05 [-0.2, 0.11]	0.22 [0.08, 0.36]			
CS-Approx	-0.1 [-0.26, 0.05]	-0.05 [-0.2, 0.11]	0.22 [0.08, 0.36]			
FG-SMC	-0.1 [-0.26, 0.05]	-0.04 [-0.2, 0.11]	0.22 [0.08, 0.36]			
FG-Approx	-0.11 [-0.26, 0.05]	-0.05 [-0.2, 0.11]	0.22 [0.08, 0.35]			
Cytogenetics: a	abnormal					
CCA	0.36 [0.04, 0.68]	0.37 [0.05, 0.68]	-0.08 [-0.35, 0.19]			
CS-SMC	0.35 [0.15, 0.54]	0.35 [0.16, 0.54]	-0.07 [-0.23, 0.1]			
CS-Approx	0.36 [0.17, 0.55]	0.35 [0.16, 0.54]	-0.08 [-0.25, 0.08]			
FG-SMC	0.36 [0.17, 0.55]	0.36 [0.17, 0.54]	-0.06 [-0.21, 0.08]			
FG-Approx	0.34 [0.17, 0.52]	0.34 [0.17, 0.51]	-0.07 [-0.22, 0.08]			
Donor relation: other						
CCA	0.12 [-0.28, 0.52]	0.2 [-0.2, 0.6]	0.53 [0.18, 0.88]			
CS-SMC	-0.26 [-0.41, -0.1]	-0.19 [-0.34, -0.03]	$0.35 \ [0.21, \ 0.5]$			
			(continued)			

(continued ...)

Table 2: (continued)

Term + method	Relapse subdist. log HR	Relapse cause-spec. log HR	NRM cause-spec. log HR
CS-Approx	-0.25 [-0.41, -0.1]	-0.18 [-0.34, -0.02]	0.36 [0.21, 0.5]
FG-SMC	-0.26 [-0.41, -0.1]	-0.19 [-0.34, -0.03]	0.35 [0.2, 0.49]
FG-Approx	-0.26 [-0.41, -0.1]	-0.19 [-0.34, -0.03]	0.35 [0.2, 0.49]
Hemoglobin (pe	er 5 g/dL)		
CCA	-0.38 [-0.85, 0.09]	-0.39 [-0.85, 0.08]	-0.12 [-0.49, 0.25]
CS-SMC	-0.24 [-0.51, 0.03]	-0.3 [-0.58, -0.03]	-0.19 [-0.42, 0.04]
CS-Approx	-0.25 [-0.53, 0.02]	-0.32 [-0.59, -0.06]	-0.19 [-0.41, 0.02]
FG-SMC	-0.25 [-0.51, 0.02]	-0.29 [-0.56, -0.02]	-0.08 [-0.28, 0.11]
FG-Approx	-0.23 [-0.5, 0.04]	-0.27 [-0.54, 0]	-0.09 [-0.29, 0.11]
HCT-CI $(1-2)$			
CCA	-0.15 [-0.53, 0.22]	-0.04 [-0.42, 0.33]	0.38 [0.08, 0.69]
CS-SMC	-0.22 [-0.42, -0.01]	-0.17 [-0.37, 0.03]	0.15 [-0.02, 0.31]
CS-Approx	-0.19 [-0.38, 0.01]	-0.14 [-0.34, 0.06]	0.15 [-0.01, 0.31]
FG-SMC	-0.22 [-0.42, -0.01]	-0.18 [-0.38, 0.02]	0.12 [-0.04, 0.28]
FG-Approx	-0.19 [-0.38, 0.01]	-0.15 [-0.35, 0.04]	0.11 [-0.05, 0.27]
HCT-CI (≥ 3)			
CCA	-0.27 [-0.7, 0.16]	-0.19 [-0.62, 0.23]	0.4 [0.07, 0.73]
CS-SMC	-0.07 [-0.28, 0.14]	-0.01 [-0.21, 0.2]	0.27 [0.1, 0.44]
CS-Approx	-0.08 [-0.28, 0.13]	-0.02 [-0.22, 0.18]	0.26 [0.1, 0.43]
FG-SMC	-0.06 [-0.27, 0.14]	-0.02 [-0.22, 0.19]	$0.21 \ [0.05, \ 0.37]$
FG-Approx	-0.08 [-0.28, 0.11]	-0.04 [-0.23, 0.16]	$0.21 \ [0.05, \ 0.38]$
Interval diagnos	sis to alloHCT (decades	s)	
CCA	0.01 [-0.24, 0.26]	0 [-0.25, 0.26]	-0.03 [-0.25, 0.19]
CS-SMC	-0.02 [-0.14, 0.09]	-0.02 [-0.14, 0.1]	0.05 [-0.05, 0.15]
CS-Approx	-0.03 [-0.14, 0.09]	-0.02 [-0.14, 0.1]	0.05 [-0.05, 0.15]
FG-SMC	-0.02 [-0.14, 0.09]	-0.02 [-0.13, 0.1]	0.05 [-0.05, 0.15]
FG-Approx	-0.02 [-0.14, 0.09]	-0.02 [-0.14, 0.1]	0.05 [-0.05, 0.15]
Karnofsky (80)			
CCA	-0.09 [-0.48, 0.31]	-0.08 [-0.48, 0.31]	0.04 [-0.27, 0.34]
CS-SMC	0.07 [-0.1, 0.24]	0.12 [-0.05, 0.28]	0.17 [0.03, 0.31]
CS-Approx	0.06 [-0.1, 0.23]	0.1 [-0.06, 0.27]	0.15 [0.01, 0.29]
FG-SMC	0.07 [-0.09, 0.24]	0.12 [-0.05, 0.29]	0.17 [0.03, 0.31]
FG-Approx	0.07 [-0.1, 0.24]	0.12 [-0.06, 0.29]	0.17 [0.03, 0.31]
Karnofsky (≤ 70	0)		
CCA	0.63 [0.15, 1.11]	0.79 [0.3, 1.28]	0.33 [-0.13, 0.79]
CS-SMC	0.44 [0.19, 0.69]	0.55 [0.3, 0.81]	$0.31 \ [0.08, \ 0.53]$
CS-Approx	0.42 [0.17, 0.67]	$0.51 \ [0.26, \ 0.76]$	0.26 [0.04, 0.49]
FG-SMC	0.44 [0.19, 0.7]	$0.55 \ [0.29, \ 0.81]$	0.32 [0.09, 0.54]
FG-Approx	$0.43 \ [0.17, \ 0.68]$	$0.53 \ [0.28, \ 0.78]$	$0.31 \ [0.08, \ 0.53]$
Disease subclas	sification: secondary M	F	
CCA	-0.05 [-0.45, 0.35]	-0.02 [-0.42, 0.38]	0.07 [-0.27, 0.41]
CS-SMC	0.01 [-0.17, 0.19]	0.01 [-0.17, 0.19]	0 [-0.16, 0.15]
CS-Approx	0 [-0.18, 0.18]	0 [-0.18, 0.19]	0 [-0.16, 0.15]
FG-SMC	0 [-0.18, 0.18]	0 [-0.18, 0.18]	-0.01 [-0.16, 0.15]
FG-Approx	0 [-0.18, 0.18]	0 [-0.18, 0.18]	-0.01 [-0.16, 0.15]
Night sweats: y			
CCA	-0.33 [-0.7, 0.04]	-0.4 [-0.77, -0.02]	-0.02 [-0.32, 0.27]
CS-SMC	-0.18 [-0.41, 0.05]	-0.2 [-0.44, 0.03]	-0.02 [-0.23, 0.19]
CS-Approx	-0.12 [-0.36, 0.13]	-0.14 [-0.38, 0.1]	0.03 [-0.19, 0.24]
FG-SMC	-0.17 [-0.4, 0.07]	-0.18 [-0.41, 0.05]	0.01 [-0.16, 0.19]
FG-Approx	-0.16 [-0.4, 0.07]	-0.18 [-0.42, 0.05]	0 [-0.17, 0.18]
Patient age (de	cades)		
CCA	0.1 [-0.09, 0.28]	0.13 [-0.06, 0.32]	0.13 [-0.02, 0.28]
CS-SMC	-0.03 [-0.12, 0.05]	0.01 [-0.08, 0.09]	$0.21 \ [0.14, \ 0.29]$
CS-Approx	-0.03 [-0.12, 0.05]	0.01 [-0.08, 0.09]	0.21 [0.14, 0.29]
FG-SMC	-0.04 [-0.12, 0.05]	0.01 [-0.08, 0.09]	0.22 [0.15, 0.3]
			(continued

(continued ...)

Table 2: (continued)

Term + method	Relapse subdist. log HR	Relapse cause-spec. log HR	NRM cause-spec. log HR
FG-Approx	-0.03 [-0.12, 0.05]	0.01 [-0.08, 0.09]	0.22 [0.15, 0.3]
Patient sex: ma	ale		
CCA	-0.24 [-0.56, 0.09]	-0.18 [-0.51, 0.15]	0.39 [0.11, 0.68]
CS-SMC	-0.1 [-0.24, 0.05]	-0.06 [-0.21, 0.09]	0.18 [0.05, 0.31]
CS-Approx	-0.1 [-0.24, 0.05]	-0.06 [-0.21, 0.09]	0.18 [0.05, 0.31]
FG-SMC	-0.09 [-0.24, 0.05]	-0.06 [-0.2, 0.09]	$0.18 \ [0.05, \ 0.31]$
FG-Approx	-0.1 [-0.24, 0.05]	-0.06 [-0.21, 0.08]	$0.18 \ [0.05, \ 0.31]$
PB Blasts (per	5%)		
CCA	0.16 [-0.04, 0.36]	0.17 [-0.02, 0.37]	0 [-0.18, 0.18]
CS-SMC	0.18 [0.05, 0.31]	0.18 [0.05, 0.31]	0.01 [-0.12, 0.13]
CS-Approx	0.19 [0.07, 0.31]	0.19 [0.07, 0.32]	0.01 [-0.12, 0.13]
FG-SMC	0.17 [0.04, 0.3]	0.17 [0.05, 0.3]	-0.01 [-0.12, 0.1]
FG-Approx	$0.18 \ [0.05, \ 0.32]$	$0.18 \ [0.05, \ 0.31]$	-0.02 [-0.12, 0.09]
Ruxolitinib give	en: yes		
CCA	0.08 [-0.26, 0.43]	0.08 [-0.26, 0.43]	-0.05 [-0.33, 0.23]
CS-SMC	-0.02 [-0.2, 0.17]	-0.03 [-0.22, 0.16]	-0.06 [-0.21, 0.1]
CS-Approx	0.01 [-0.19, 0.2]	-0.01 [-0.2, 0.18]	-0.05 [-0.21, 0.11]
FG-SMC	-0.02 [-0.21, 0.17]	-0.03 [-0.22, 0.16]	-0.04 [-0.19, 0.11]
FG-Approx	0 [-0.19, 0.18]	-0.01 [-0.2, 0.17]	-0.04 [-0.19, 0.11]
T-cell depletion	: yes		
CCA	0.2 [-0.21, 0.62]	0.16 [-0.25, 0.58]	-0.23 [-0.54, 0.08]
CS-SMC	0.3 [0.13, 0.48]	0.26 [0.09, 0.44]	-0.18 [-0.32, -0.04]
CS-Approx	0.3 [0.12, 0.48]	0.26 [0.08, 0.43]	-0.19 [-0.33, -0.05]
FG-SMC	0.31 [0.13, 0.48]	0.26 [0.09, 0.44]	-0.18 [-0.31, -0.04]
FG-Approx	0.31 [0.13, 0.48]	0.26 [0.09, 0.44]	-0.18 [-0.32, -0.04]
WBC count (lo	$\mathbf{g})$		
CCA	0.17 [0.02, 0.33]	0.17 [0.01, 0.33]	0.02 [-0.12, 0.15]
CS-SMC	0.17 [0.09, 0.26]	0.18 [0.09, 0.27]	0 [-0.07, 0.07]
CS-Approx	0.17 [0.08, 0.26]	0.17 [0.09, 0.26]	0 [-0.08, 0.07]
FG-SMC	0.17 [0.09, 0.26]	0.18 [0.09, 0.26]	-0.01 [-0.07, 0.05]
FG-Approx	0.17 [0.1, 0.25]	0.18 [0.1, 0.26]	-0.01 [-0.08, 0.05]
Weight loss: ye	\mathbf{s}		
CCA	0 [-0.37, 0.38]	0.05 [-0.33, 0.43]	0.17 [-0.13, 0.48]
CS-SMC	0.23 [-0.03, 0.49]	0.27 [0.01, 0.53]	0.16 [-0.05, 0.36]
CS-Approx	0.24 [0, 0.47]	0.28 [0.04, 0.51]	0.16 [-0.05, 0.36]
FG-SMC	0.23 [-0.01, 0.47]	0.24 [0.01, 0.48]	0.06 [-0.12, 0.24]
FG-Approx	0.24 [0, 0.48]	$0.26 \ [0.02, \ 0.49]$	0.06 [-0.14, 0.26]
Year of alloHC'	$\Gamma \; ({ m decades})$		
CCA	-0.36 [-0.99, 0.26]	-0.41 [-1.04, 0.23]	-0.15 [-0.67, 0.37]
CS-SMC	-0.08 [-0.34, 0.18]	-0.11 [-0.37, 0.15]	-0.24 [-0.46, -0.02]
CS-Approx	-0.09 [-0.35, 0.17]	-0.12 [-0.38, 0.14]	-0.24 [-0.46, -0.02]
FG-SMC	-0.08 [-0.34, 0.17]	-0.12 [-0.37, 0.14]	-0.24 [-0.46, -0.03]
FG-Approx	-0.08 [-0.34, 0.17]	-0.11 [-0.37, 0.14]	-0.24 [-0.46, -0.03]