

UNIVERSIDAD DE BUENOS AIRES FACULTAD DE INGENIERÍA Año 2015 - 1^{er} Cuatrimestre

ÁLGEBRA II A (61.08)

Resumen de Álgebra II

INTEGRANTE:

Maria Inés Parnisari - 92235 ⟨maineparnisari@gmail.com⟩

Menéndez, Martín Nicolás - 92830 ⟨menendez91@live.com.ar⟩

Índice

1.		rices	2
	1.1.	Propiedades generales	2
	1.2.	Propiedades de la inversa, la traza y la traspuesta	2
	1.3.	Propiedades de los determinantes	3
	1.4.	Subespacios fila, columna y null	3
2.	Espa	acios vectoriales	5
		Propiedades de los subespacios	5
		Independencia lineal	5
	2.3.		5
		Bases	6
		Coordenadas de un vector en una base	e
		Matriz de cambio de variable	e
		Teorema de la dimensión	6
•			_
5.		ducto interno	-
		Axiomas	7
		Producto interno canónico	7
		Definiciones	7
	3.4.	Matriz asociada al producto interno	9
4.		vecciones y matrices de proyección	10
	4.1.	Propiedades de la proyección	10
	4.2.	Proyección y reflexión	10
		4.2.1. Proyección y transformaciones lineales	11
		4.2.2. Reflexión y transformaciones lineales	11
	4.3.	Matriz de Householder	12
		Rotaciones en \mathbb{R}^3	12
	4.5.	Proceso de Gram-Schmidt	12
	4.6.	Matrices de proyección	13
	4.7.	Inversas y pseudoinversas	13
	4.8.	Cuadrados mínimos	14
		4.8.1. Norma mínima	14
	4.9.	Regresión lineal	14
5.	Trar	nsformaciones lineales	15
6.	Anto	ovalores y Autovectores	15
		·	
7.	Mat	rices hermíticas y simétricas	15
8.	Forn	nas cuadráticas	15
9.	Desc	composición en Valores Singulares (DVS)	15
10.	Ecua	aciones diferenciales	15
		emas de Ecuaciones diferenciales lineales	15

Álgebra II (61.08) Página 1 de 15

Matrices 1.

Propiedades generales

Propiedades de matrices

Dadas las matrices A, B, C se tiene que:

$$A + B = B + A$$

$$A \perp (B \perp C) - (A \perp B) \perp C$$

$$\alpha(A+B) = \alpha A + \alpha B$$

$$(\alpha + \beta)A = \alpha A + \beta A$$

$$\alpha (\beta A) = (\alpha \beta) A$$

$$A + 0_n = A$$

$$A + (-A) = 0_n$$

■
$$A + (B + C) = (A + B) + C$$
 ■ $A(B + C) = AB + AC$

$$(A+B)C = AC + BC$$

$$A(BC) = (AB)C$$

$$a(AB) = (\alpha A)B = A(\alpha B)$$

$$\bullet \ A0_n = 0_n$$

Ж

Propiedades de la inversa, la traza y la traspuesta

Propiedades de matrices

Dadas las matrices A, B, C se tiene que:

Propiedades de la inversa:

$$(A^{-1})^{-1}$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$\bullet (\alpha A)^{-1} = \frac{A^{-1}}{\alpha}, \alpha \neq 0 \qquad \bullet \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

$$(A^n)^{-1} = (A^{-1})^n$$

$$A^{-1} = \frac{\operatorname{adj}(A)}{|A|}$$

Propiedades de la traza:

$$tr(A+B) = tr(A) + tr(B)$$

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$

•
$$\operatorname{tr}(\alpha A) = \alpha \operatorname{tr}(A)$$

$$\quad \blacksquare \ \operatorname{tr}(A^T) = \operatorname{tr}(A)$$

Propiedades de la traspuesta:

$$(A+B)^T = A^T + B^T$$

$$(AB)^T = B^T A^T$$

$$(\alpha A)^T = \alpha A^T$$

$$(A^T)^{-1} = (A^{-1})^T$$

Propiedades de los determinantes 1.3.

Propiedades de determinantes

Sean $A, B \in \mathbb{R}^{n \times m}$

$$|A^T| = |A| \tag{1.1}$$

$$|A^{T}| = |A|$$
 (1.1)
 $|AB| = |A||B|$ (1.2)

Si B la obtengo de sumar k veces una fila de A sobre otra:

$$|B| = |A| \tag{1.3}$$

Si B la obtengo de intercambiar k veces las fila de A:

$$|B| = (-1)^k |A| \tag{1.4}$$

Si B la obtengo de multiplicar por k, n veces las filas de A:

$$|B| = k^n |A| \tag{1.5}$$

Si A es una matriz triangular:

$$|A| = \prod_{i=1}^{n} aii \tag{1.6}$$

Subespacios fila, columna y null

Espacio fila, columna y nulo de matrices

Sean $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{r \times n}$, se define:

- **Espacio Fila:** Fif $(A) = \{x \in R^m | x \text{ es combinación lineal de las filas de } A\}$
- **Espacio Columna:** $Col(A) = \{b \in R^n | Ax = b \text{ para alguna x} \}$
- Espacio nulo: $\operatorname{Nul}(A) = \{x \in R^m | Ax = 0\}$

Propiedades de los espacios definidos

Propiedades:

$$Nul(A) = Nul(A^T A) = Fil(A)^{\perp}$$
(1.7)

$$Nul(A^T) = Nul(AA^T) = Col(A)^{\perp}$$
(1.8)

$$\operatorname{rango}(A) = \operatorname{rango}(A^T A) \Rightarrow A^T A \tag{1.9}$$

$$Dim(Col(A)) = Dim(Fil(A))$$
(1.10)

$$\operatorname{Col}(A) \bigotimes \operatorname{Col}(A)^{\perp} = R^{n} \tag{1.11}$$

$$\operatorname{Fil}(A) \bigotimes \operatorname{Fil}(A)^{\perp} = R^{m} \tag{1.12}$$

$$\operatorname{rango}(A) + \dim \operatorname{Nul}(A) = m \tag{1.13}$$

$$Col(BA) \subseteq Col(B)$$
, Iguales si $rango(A) = n$ (1.14)

$$Nul(A) \subseteq Nul(BA)$$
, Iguales si rango $(B) = n$ (1.15)

$$Si \operatorname{rango}(A) = n \Rightarrow \operatorname{rango}(BA) = \operatorname{rango}(B) \tag{1.16}$$

$$Si \operatorname{rango}(B) = n \Rightarrow \operatorname{rango}(BA) = \operatorname{rango}(A) \tag{1.17}$$

$$Col(A) \perp Col(B) \Leftrightarrow A^T B = 0 \tag{1.18}$$

De (1.15) se ve que $A^T A$ invertible $\longleftrightarrow A$ invertible

X

Matrices equivalentes

Dos matrices A y B son equivalentes si existen otras dos matrices E y F regulares tal que:

$$A = EBF (1.19)$$

Dos matrices equivalentes pueden pensarse como dos descripciones de una misma Transformación Lineal, pero con respecto a bases distintas.

Matrices semejantes

Dos matrices cuadradas A y B son semejantes (notamos $A \sim B$) si y solo si existe una matriz P inversible tal que:

$$B = P^{-1}AP, 6 \tag{1.20}$$

$$A = PBP^{-1} \tag{1.21}$$

×

Propiedades de matrices semejantes

Dos matrices semejantes pueden pensarse como dos descripciones de un mismo operador lineal, pero con respecto a bases distintas. Estas dos matrices cumplen que:

$$|A| = |B| \tag{1.22}$$

$$tr(A) = tr(B) (1.23)$$

$$rango(A) = rango(B) \tag{1.24}$$

$$p_A(\lambda) = p_B(\lambda) \Rightarrow \sigma(A) = \sigma(B)$$
 (1.25)

X

Álgebra II (61.08) Página 4 de 15

2. **Espacios vectoriales**

2.1. Propiedades de los subespacios

Propiedades de los subespacios

S es un subespacio vectorial del espacio V_K si y solo si:

$$0_V \in S \tag{2.1}$$

$$(\alpha X + Y) \in S, \forall X, Y \in V \text{ y } \forall \alpha \in K$$
 (2.2)

Independencia lineal

Combinación lineal

El vector $\overline{\mathbf{x}}$ es una combinación lineal de $\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2, \dots, \overline{\mathbf{v}}_n$ si:

$$\bar{\mathbf{x}} = \sum_{i=1}^{n} \alpha_i v_i \tag{2.3}$$

Y si a_1, \ldots, a_n no son todos nulos.

Independencia lineal

 $\bar{\mathbf{x}}$ es linealmente independiente si:

$$\sum_{i=1}^{n} \alpha_i v_i = 0 , \mathbf{y} \tag{2.4}$$

$$a_i = 0 \forall i \tag{2.5}$$

Dos vectores son linealmente dependientes si son proporcionales. Un subconjunto de un conjunto linealmente dependiente sigue siendo linealmente dependiente

2.3. **Operaciones con subespacios**

Operaciones con subespacios

- Intersección: $S = \bigcap_{i=1}^{n} S_i = \{\overline{\mathbf{x}} \in V | \overline{\mathbf{x}} \in S_i, \forall i = 1, \dots, n\}$
- Suma: $S = \sum_{i=1}^{n} S_i = \text{gen}\left\{\bigcup_{i=1}^{m} B_i\right\}$, donde B_i es una base de S_i
- Unión: $S = S_1 \cup S_2$ es un subespacio cuando $S_1 \subseteq S_2$ ó $S_2 \subseteq S_1$
- Suma directa: S_1, \ldots, S_k están en suma directa \iff la unión de sus bases es base de V

Dos subespacios son suplementarios cuando están en suma directa y su suma es todo el espacio.

Álgebra II (61.08) Página 5 de 15

2.4. Bases

Bases

Si $Dim(V) = n, \{\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_n\}$ es base de V si y solo si:

$$\{v_1, \dots, v_n\}$$
 genera V (2.6)

$$\{v_1, \dots, v_n\}$$
 son linealmente independientes (2.7)

×

2.5. Coordenadas de un vector en una base

Coordenadas de un vector en una base

Si $\{\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_n\}$ es base de un espacio vectorial B y $\overline{\mathbf{x}}=\sum_{i=1}^n\alpha_i\overline{\mathbf{v}}_i$, entonces $C_B(\overline{\mathbf{x}})=(\alpha_1,\ldots,\alpha_n)$

Dado un vector y una base, las coordenadas de ese vector en esa base son únicas.

 $\forall \overline{\mathbf{v}}, \overline{\mathbf{w}} \in V \text{ y } \forall k \in K$:

$$C_B(v+w) = C_B(v) + C_B(w)$$
 (2.8)

$$C_B(k \times v) = k \times C_B(v) \tag{2.9}$$

Finalmente $\{\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_n\}$ son linealmente independientes $\iff \{C_B(\overline{\mathbf{v}}_1),\ldots,C_B(\overline{\mathbf{v}}_n)\}$ lo son para cualquier base de B.

×

2.6. Matriz de cambio de variable

Matriz de cambio de variable

Sean $B = {\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_n}$ y $C = {\overline{\mathbf{w}}_1, \dots, \overline{\mathbf{w}}_n}$ bases del espacio V. Las matrices de cambio de base son:

$$C_{BC} = \begin{bmatrix} & & & & & & \\ C_C(v_1) & C_C(v_2) & \dots & C_C(v_n) \\ & & & & & \end{bmatrix}$$
 (2.10)

$$C_{CB} = \begin{bmatrix} | & | & | \\ C_B(w_1) & C_B(w_2) & \dots & C_B(w_n) \end{bmatrix} = C_{BC}^{-1}$$
(2.11)

Si B y C son bases ortonormales, entonces C_{BC} es una matriz ortogonal.

×

2.7. Teorema de la dimensión

Teorema de la dimensión

Dados los subespacios S, H y T:

$$Dim(S+H) = Dim(S) + Dim(H) - Dim(S \cap H)$$
 (2.12)

$$Dim(S + H + T) = Dim(S) + Dim(H) + Dim(T) - Dim(S \cap (H + T)) - Dim(H \cap T)$$
 (2.13)

X

Álgebra II (61.08) Página 6 de 15

3. Producto interno

3.1. Axiomas

Axiomas del producto interno

Sea $<,>: V_K \times V_K \to R$ un producto interno:

- 1. $(\overline{\mathbf{x}}, \overline{\mathbf{y}}) \in K \ \mathbf{y} \ \forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$
- 2. $(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = (\overline{\overline{\mathbf{y}}, \overline{\mathbf{x}}})$, $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$
- 3. $(\lambda \overline{\mathbf{x}}, \overline{\mathbf{y}}) = \overline{\lambda}(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$ y $\forall \lambda \in K$
- 4. $(\overline{\mathbf{x}}, \lambda \overline{\mathbf{y}}) = \lambda(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$ y $\forall \lambda \in K$
- 5. $(\overline{\mathbf{x}}, \overline{\mathbf{y}} + \overline{\mathbf{z}}) = (\overline{\mathbf{x}}, \overline{\mathbf{y}}) + (\overline{\mathbf{x}}, \overline{\mathbf{z}})$, $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}} \in V$
- 6. $(\overline{\mathbf{x}}, \overline{\mathbf{x}}) \ge 0, (\overline{\mathbf{x}}, \overline{\mathbf{y}}) = 0 \longleftrightarrow \overline{\mathbf{x}} = \overline{\mathbf{0}}$

X

3.2. Producto interno canónico

Producto interno canónico

Se definen los siguientes productos internos para los siguientes espacios vectoriales:

- Vectores reales: $R^n: (\overline{\mathbf{x}}, \overline{\mathbf{y}}) = \overline{\mathbf{x}}^T \overline{\mathbf{y}}$
- Vectores complejos: $C^n: (\overline{\mathbf{x}}, \overline{\mathbf{y}}) = \overline{\mathbf{x}}^H \overline{\mathbf{y}}$
- Matrices reales: $R^{n \times m}$: $(A, B) = \operatorname{tr}(A^T B)$
- Matrices complejas: $C^{n \times m} : (A, B) = \operatorname{tr}(A^H B)$
- Funciones reales: $P_R[a,b]:(p,q)=\int_a^b p(t)q(t)dt$
- Funciones complejas: $P_C[a,b]:(p,q)=\int_a^b \overline{p(t)}q(t)dt$

X

3.3. Definiciones

Ortogonalidad

Dados $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$:

$$(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = 0 \Longleftrightarrow \bar{\mathbf{x}} \perp \bar{\mathbf{y}} \tag{3.1}$$

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

X

norma de un vector

Se define la norma de un vector como:

$$|\overline{\mathbf{x}}|^2 = (\overline{\mathbf{x}}, \overline{\mathbf{x}}) \tag{3.2}$$

La norma de un vector depende del producto interno, pero cumple las siguientes propiedades:

- $|\overline{\mathbf{x}}| \in R \forall \overline{\mathbf{x}} \in V$
- $|\overline{\mathbf{x}}| \ge 0 (|\overline{\mathbf{x}}| = 0 \Longleftrightarrow \overline{\mathbf{x}} = 0)$
- $|k \cdot \overline{\mathbf{x}}| = |k| \cdot |\overline{\mathbf{x}}|$
- Desigualdad de Cauchy-Schwarz:

$$|(\overline{\mathbf{x}}, \overline{\mathbf{y}})| \le |\overline{\mathbf{x}}| \cdot |\overline{\mathbf{y}}|, x, y \in V_K \tag{3.3}$$

La igualdad se cumple si $\bar{\mathbf{x}} \parallel \bar{\mathbf{y}}$

Desigualdad triangular:

$$|\overline{\mathbf{x}} + \overline{\mathbf{y}}| \le |\overline{\mathbf{x}}| + |\overline{\mathbf{y}}| \tag{3.4}$$

■ Teorema de pitágoras: Si $\bar{\mathbf{x}} \perp \bar{\mathbf{y}}$ entonces:

$$|\overline{\mathbf{x}} + \overline{\mathbf{y}}|^2 = |\overline{\mathbf{x}}|^2 + |\overline{\mathbf{y}}|^2 \tag{3.5}$$

La recíproca solo vale para R

Identidad del paralelogramo:

$$|\overline{\mathbf{x}} + \overline{\mathbf{y}}|^2 + |\overline{\mathbf{x}} - \overline{\mathbf{y}}|^2 = 2(|\overline{\mathbf{x}}|^2 + |\overline{\mathbf{y}}|^2), \forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$$
 (3.6)

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

X

Ángulo entre dos vectores

Dado $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$:

$$\cos(\theta) = \frac{(\overline{\mathbf{x}}, \overline{\mathbf{y}})}{|\overline{\mathbf{x}}| \cdot |\overline{\mathbf{y}}|}$$
(3.7)

Con $\theta \in [0, \pi], \forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \neq 0$ para espacios vectoriales reales con producto interno.

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

X

Complemento ortogonal

Sea
$$A \subset V_K \cdot A^{\perp} = \{ \overline{\mathbf{x}} \in V_K | (\overline{\mathbf{x}}, \overline{\mathbf{y}}) = 0, \forall \overline{\mathbf{y}} \in A \}$$

Para el cálculo del complemento ortogonal a un subespacio de dimensión finita, alcanza con exigir la ortogonalidad a un sistema de generadores

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

Álgebra II (61.08) Página 8 de 15

Distancia entre vectores

Dados $\overline{\mathbf{x}}, \overline{\mathbf{y}}$, se define la función distancia como:

$$d: V_R \times V_R \to R^+: d(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = |\overline{\mathbf{x}} - \overline{\mathbf{y}}| = |\overline{\mathbf{y}} - \overline{\mathbf{x}}|$$
(3.8)

Los elementos pueden ser de cualquier espacio vectorial, se utilizaron vectores por comodidad.

×

3.4. Matriz asociada al producto interno

Matriz de producto interno

Sea $B=\{\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_k\}$ base de V_K . Entonces $G\in K^{k\times k},$ $g_{ij}=(\overline{\mathbf{v}}_i,\overline{\mathbf{v}}_j)$ es la matriz de producto interno:

$$G = \begin{bmatrix} |\overline{\mathbf{v}}_1|^2 & \dots & (\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_k) \\ \vdots & \ddots & \vdots \\ (\overline{\mathbf{v}}_k, \overline{\mathbf{v}}_1) & \dots & |\overline{\mathbf{v}}_k|^2 \end{bmatrix}$$
(3.9)

Si B es base de V_K y G es la matriz del producto interno en esa base, entonces $\forall \overline{\mathbf{x}}, \overline{\mathbf{y}} \in V$:

$$(\overline{\mathbf{x}}, \overline{\mathbf{y}}) = C_B^H(\overline{\mathbf{x}}) \cdot G \cdot C_B(\overline{\mathbf{y}})$$
(3.10)

N

Propiedades de la matriz de producto interno

Dada la matriz G de producto interno se tiene que:

$$g_{ii} \ge 0, \forall i = 1, \dots, k \tag{3.11}$$

$$G^H = H (3.12)$$

$$G$$
 es definida positiva (3.13)

$$\exists G^{-1} \tag{3.14}$$

$$G$$
 de una Base Ortogonal (BOG) es una matriz diagonal (3.15)

$$G$$
 de una Base Ortonornal (BON) es una matriz identidad (3.16)

X

4. Proyecciones y matrices de proyección

4.1. Propiedades de la proyección

Propiedades de la proyección

Sea $S \subset VyS^{\perp}$ su complemento ortogonal, entonces $\forall \overline{\mathbf{x}} \in V$:

$$\overline{\mathbf{x}} = \underbrace{\overline{\mathbf{u}}}_{\in S} + \underbrace{\overline{\mathbf{v}}}_{\in S^{\perp}} = P_S(\overline{\mathbf{x}}) + P_S^{\perp}(\overline{\mathbf{x}}) \tag{4.1}$$

Se definen las siguientes propiedades:

- $P_S(\overline{\mathbf{x}})$ es el vector de S mas próximo a $\overline{\mathbf{x}}$
- $P_S(\overline{\mathbf{v}}) = \overline{\mathbf{v}} \Longleftrightarrow \overline{\mathbf{v}} \in S \text{ y además } P_S(\overline{\mathbf{w}}) = 0 \Longleftrightarrow \overline{\mathbf{w}} \in S^{\perp}$
- Por pitágoras: $|\overline{\mathbf{x}}|^2 = |P_S(\overline{\mathbf{x}})|^2 + |P_S^{\perp}(\overline{\mathbf{x}})|^2, \forall x \in V$
- $\qquad |P_S(\overline{\mathbf{x}})| \leq |\overline{\mathbf{x}}|. \text{ Si } |P_S(\overline{\mathbf{x}})| = |\overline{\mathbf{x}}| \text{ entonces } \overline{\mathbf{x}} \in S$
- $d(\overline{\mathbf{x}}, S) = |P_S^{\perp}(\overline{\mathbf{x}})|$
- $d(\overline{\mathbf{x}}, S^{\perp}) = |P_S(\overline{\mathbf{x}})|$

X

4.2. Proyección y reflexión

Proyección y reflexión

Sea S un subespacio de V, y $B = \{\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_k\}$ una base ortogonal (BOG) de S. Entonces $\forall \overline{\mathbf{x}} \in V$:

$$P_S(\overline{\mathbf{x}}) = \sum_{i=1}^k \frac{(\overline{\mathbf{v}}_i, \overline{\mathbf{x}})}{(\overline{\mathbf{v}}_i, \overline{\mathbf{v}}_i)} \overline{\mathbf{v}}_i$$
(4.2)

$$R_S(\overline{\mathbf{x}}) = 2P_S(\overline{\mathbf{x}}) - \overline{\mathbf{x}} = 2P_S(\overline{\mathbf{x}}) - \left(P_S(\overline{\mathbf{x}}) + P_S^{\perp}(\overline{\mathbf{x}})\right) = P_S(\overline{\mathbf{x}}) - P_S^{\perp}(\overline{\mathbf{x}}) = \overline{\mathbf{x}} - 2P_S^{\perp}(\overline{\mathbf{x}})$$
(4.3)

N

4.2.1. Proyección y transformaciones lineales

Proyecciones y Transformaciones lineales

Sea $T:V_K\to V_K$ una transformación lineal tal que:

$$Im(P_S) = S (4.4)$$

$$Nul(P_S) = S^{\perp} \tag{4.5}$$

 $Y \text{ sea } B = \{ \underbrace{\overline{\mathbf{v}}_1, \dots, \overline{\mathbf{v}}_q}_{\in S}, \underbrace{\overline{\mathbf{v}}_{q+1}, \dots, \overline{\mathbf{v}}_n}_{\in S^\perp} \} \text{ una base de V, entonces la matriz de la transformación lineal es: }$

$$[P_S]_B = \begin{bmatrix} 1 & & \dots & 0 \\ & \ddots & & & \vdots \\ & & 1 & & \\ & & & 0 & \\ \vdots & & & \ddots & \\ 0 & \dots & & & 0 \end{bmatrix}$$
(4.6)

Tantos 1 como la dimensión del espacio sobre el cual proyecto, y tantos 0 como la dimensión del complemento ortogonal.

Nota: La matriz de un operador proyección en una Base Ortonormal (BON) es una matriz de proyección. En cualquiera otra base, no lo es.

4.2.2. Reflexión y transformaciones lineales

Proyecciones y Transformaciones lineales

Sea $T:V_K\to V_K$ una transformación lineal tal que:

$$T(\overline{\mathbf{v}}) = \overline{\mathbf{v}}, \forall \overline{\mathbf{v}} \in S \tag{4.7}$$

$$T(\overline{\mathbf{v}}) = -\overline{\mathbf{v}}, \forall \overline{\mathbf{v}} \in S^{\perp} \tag{4.8}$$

Y sea $B=\{\overline{\mathbf{v}}_1,\dots,\overline{\mathbf{v}}_q,\overline{\mathbf{v}}_{q+1},\dots,\overline{\mathbf{v}}_n\}$ una base de V, entonces la matriz de la transformación lineal es:

$$[T]_{B} = \begin{bmatrix} 1 & & \dots & 0 \\ & \ddots & & & \vdots \\ & & 1 & & \\ & & & -1 & & \\ \vdots & & & \ddots & \\ 0 & & & & 1 \end{bmatrix}$$
(4.9)

Tantos 1 como la dimensión del espacio sobre el cual proyecto, y tantos -1 como la dimensión del complemento ortogonal.

Nota: La matriz de un operador proyección en una Base Ortonormal (BON) es una matriz de proyección. En cualquiera otra base, no lo es.

Figura 4.1: Proyección y reflexión

X

Álgebra II (61.08) Página 11 de 15

4.3. Matriz de Householder

Propiedades de la proyección

La matriz de reflexión sobre un subespacio de dimensión n-1 que es ortogonal a un vector $\overline{\mathbf{w}}$ en un espacio de dimensión n se puede obtener mediante la expresión:

$$H = I_d - 2\frac{\overline{\mathbf{w}} \cdot \overline{\mathbf{w}}^T}{\overline{\mathbf{w}}^T \cdot \overline{\mathbf{w}}}$$

$$\tag{4.10}$$

Dicha matriz tiene las siguientes propiedades:

- Es involutiva: $H \circ H = I_d$
- Es simétrica: $H^T = H$
- Es inversible: $\exists H^{-1} \ y \ \exists H^{-1} = H$
- Es ortogonal: $H^TH = HH^T = I_d$

Rotaciones en \mathbb{R}^3

Rotaciones en R^3

Sea $B = \{\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2, \overline{\mathbf{v}}_3\}$ una Base Ortonormal (BON) de R^3 y sea T la rotación θ grados alrededor del eje v_i :

Rotación sobre
$$\overline{\mathbf{v}}_1 : [T]_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$
 (4.11)

Rotación sobre
$$\overline{\mathbf{v}}_2 : [T]_B = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$
 (4.12)

(4.14)

4.5. Proceso de Gram-Schmidt

Proceso de Gram-Schmidt

Dada una base $\{\overline{\mathbf{x}}_1,\overline{\mathbf{x}}_2,\ldots,\overline{\mathbf{x}}_p\}$ para un subespacio $W\in R^n$ defina:

1.
$$\overline{\mathbf{v}}_1 = \overline{\mathbf{x}}_1$$

2.
$$\overline{\mathbf{v}}_2 = \overline{\mathbf{x}}_2 - \frac{\overline{\mathbf{x}}_2 \cdot \overline{\mathbf{v}}_1}{\overline{\mathbf{v}}_1 \cdot \overline{\mathbf{v}}_1} \overline{\mathbf{v}}_1$$

3.
$$\overline{\mathbf{v}}_p = \overline{\mathbf{x}}_p - \sum_{i=1}^{p-1} \frac{\overline{\mathbf{x}}_p \cdot \overline{\mathbf{v}}_i}{\overline{\mathbf{v}}_i \cdot \overline{\mathbf{v}}_i} \overline{\mathbf{v}}_i$$

Entonces $\{\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2, \dots, \overline{\mathbf{v}}_p\}$ es una Base Ortogonal (BOG) de W.

Si luego se divde a cada componente por la norma de la base se obtiene una Base Ortogonal (BON) de W.

4.6. Matrices de proyección

Matriz de proyección

Utilizando el producto interno canónico de sobre K^n , con K = R o K = C.

 $P \in K^{n \times n}$ es una matriz de proyección si y solo si:

$$P^2 = P (4.15)$$

$$P^H = P (4.16)$$

Dicha matriz tiene las siguientes propiedades:

- $\operatorname{Col}(P) = \operatorname{Nul}(P)^{\perp}$
- $P \cdot y = y \Longleftrightarrow y \in \operatorname{Col}(P)$
- Si P_S es matriz de proyección sobre S y P_S^{\perp} es matriz de proyección sobre S^{\perp} entonces $P_S + P_S^{\perp} = I_d$
- Las columnas de P son una base del espacio sobre el cual proyectan
- rango $(P) = \operatorname{tr}(P)$
- $\det P \neq 0$ si $P \neq I_d$
- Si P_1 y P_2 son matrices de proyección y $P_1 \cdot P_2 = P_2 \cdot P_1 = 0$, entonces $P_1 + P_2$ es matriz de proyección y rango $(P_1 + P_2) = \text{rango}(P_1) + \text{rango}(P_2)$

Obtención de la matriz de proyección:

- 1. Sea Q una matriz cuyas columnas son una Base Ortonormal (BON) de $S \subset V$. Entonces la única matriz de proyección sobre S es $[P_S] = Q \cdot Q^T$. La matriz de proyección sobre S^{\perp} es $[P_S^{\perp}] = I_d [P_S]$
- 2. Sea $B=\{\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_q\}$ una base de S, y A la matriz que tiene por columnas a $\overline{\mathbf{v}}_1,\ldots,\overline{\mathbf{v}}_q$. Entonces la única matriz de proyección sobre S se obtiene mediante $[P_S]=A\left(A^HA\right)^{-1}A^H=AA^\#$

4.7. Inversas y pseudoinversas

Propiedades de la pseudoinversa

Sea $A \in K^{n \times q} | \operatorname{rango}(A) = q$. La matriz pseudoinversa de A es $A^{\#} = (A^H A)^{-1} A^H$:

- Si A es cuadrada invertible, $A^{-1} = A^{\#}$
- $A^\# \in R^{q \times n}$
- $A^{\#}A = I_{d_{(q)}}$
- $AA^{\#} = [P]_{Col(A)}$
- $\operatorname{Nul}(AA^{\#}) = [\operatorname{Col}(A)]^{\perp}$

×

4.8. Cuadrados mínimos

Cuadrados mínimos

Sea $A \in K^{n \times q}, \overline{\mathbf{x}} \in K^q, \overline{\mathbf{b}} \in R^n$. Si Ax = b tiene una solución extra, entonces $\overline{\mathbf{b}} \in \operatorname{Col}(A)$. Si $b \notin \operatorname{Col}(A)$, intentamos hallar una solución $\hat{\overline{\mathbf{x}}} \in K^q$ (la solución por **cuadrados mínimos**) tal que:

- $|A\hat{\overline{\mathbf{x}}} \overline{\mathbf{b}}| < |A\overline{\mathbf{u}} \overline{\mathbf{b}}|, \forall \overline{\mathbf{u}} \in K^q$
- $d(A\hat{\overline{\mathbf{x}}}, \overline{\mathbf{b}}) \leq d(A\overline{\mathbf{u}}, \overline{\mathbf{b}}), \forall \overline{\mathbf{u}} \in K^q$
- $|A\hat{\overline{\mathbf{x}}}| \leq |\overline{\mathbf{b}}|$ (Son iguales si $\overline{\mathbf{b}} \in \text{Col}(A)$)
- Ecuaciones normales de cuadrados mínimos: $A^T A \hat{\overline{\mathbf{x}}} = A^T \overline{\mathbf{b}} = \hat{\overline{\mathbf{b}}}$

Figura 4.2: Cuadrados mínimos

$$A\hat{\bar{\mathbf{x}}} \in \text{Col}(A) \tag{4.17}$$

$$\overline{\mathbf{b}} - A\hat{\overline{\mathbf{x}}} \in \operatorname{Col}(A)^{\perp} \tag{4.18}$$

Ŋ

Propiedades de Cuadrados mínimos

- 1. Si $\hat{\bar{\mathbf{x}}} = 0$ entonces $\bar{\mathbf{b}} \in [\operatorname{Col}(A)]^{\perp}$. La recíproca solo es cierta si A es invertible.
- 2. Si las columnas de A son linealmente independientes, la solución por cuadrados mínimos es única y se obtiene mediante:

$$\hat{\overline{\mathbf{x}}} = (A^T A)^{-1} A^T \overline{\mathbf{b}} = A^\# \overline{\mathbf{b}}$$
(4.19)

Si las columnas de A son linealmente dependientes, el sistema $A^T A \hat{\overline{\mathbf{x}}} = A^T b$ tiene infinitas soluciones, y éstas son de la forma $\hat{\overline{\mathbf{x}}} = \hat{\overline{\mathbf{x}}}_p + \hat{\underline{\mathbf{x}}}_n$

- 3. Si $\overline{\mathbf{b}} \in \operatorname{Col}(A)$, entonces toda solución de $A\overline{\mathbf{x}} = \overline{\mathbf{b}}$ es una solución exacta y por cuadrados mínimos
- 4. El error de aproximación ϵ es igual a $|\overline{\mathbf{b}} \hat{\overline{\mathbf{b}}}|$

×

4.8.1. Norma mínima

Pseudoinversa de Moore-Pensore

La solución por cuadrados mínimos de norma mínima pertenece al espacio Fil(A)y se obtiene como:

$$\tilde{\overline{\mathbf{x}}} = A^{+} \overline{\mathbf{b}} \tag{4.20}$$

Página 14 de 15

Siendo A^+ la pseudoinversa de Moore-Penrose de A.

×

4.9. Regresión lineal

Propiedades de la proyección

K

- 5. Transformaciones lineales
- **6.** Autovalores y Autovectores
- 7. Matrices hermíticas y simétricas
- 8. Formas cuadráticas
- 9. Descomposición en Valores Singulares (DVS)
- 10. Ecuaciones diferenciales
- 11. Sistemas de Ecuaciones diferenciales lineales

Álgebra II (61.08) Página 15 de 15