lecture

October 15, 2025

1 HC

beat greedy baseline of $\frac{1}{3} - \alpha px$. this is average linkage or random this alg will give $\geq .336OPT$

$$\sum_{ij\in E} w_{ij} \left(n - |T_{ij}| \right) = \sum_{ij\in E} w_{ij} \sum_{k\neq i,j} \mathbb{1}\{\text{k not aleaf of } T_{ij}\}$$
 (1)

consider

$$y_{ijk} = w_{ij} \mathbb{1}\{k \text{ not aleaf of } T_{ij}\}$$
 (2)

it only atkes on values of w_{ij} , 0

$$y_{ij} = \sum_{k \neq i,j} y_{ijk} \tag{3}$$

2 ALG1

random always

for a given triplet i, j, k, the probability $P[ij|k]^1$ is $\frac{1}{3}$.

3 ALG 2

SDP first, random next

solve sdp for hc, look for vectors at mid level, $t^* = \lfloor n/2$, then we set $x_{ij}^t = x_{ij}^{t^*}$. do hyperplane rounding to partition into S, \bar{S} randomalways S, and sdp \bar{S} .

recursive max uncut bisection gives 0.585.

 $^{^1 \}mathrm{see}$ lec 5

remember x_{ij}^t , at level t each cluster is at most size t. sdp objective,

$$\max \sum_{t=1}^{n} \sum_{ij \in E} w_{ij} (1 - x_{ij}^{t}) \tag{4}$$

constraints:

$$\sum_{i \neq j} x_{ij}^t \ge n - t, \forall i, \forall t \tag{5}$$

$$x_{ij}^{t+1} \le x_{ij}^t \forall ij \in E, \forall t, x_{ij}^{(0)} = 1$$
 (6)

to convert to sdp, $x^t + ij\frac{1}{2}\left|v_i^t - v_j^t\right|_2^2, \, v_i^{((t))} \in \mathbb{R}^n$

4 case 1

$$OPT < (1 - \epsilon_1)(n - 2) \sum_{ij \in E} w_{ij} \tag{7}$$

if ϵ_1 is large then just use random always

5 case2

if SDP \geq OPT $\geq (1 - \epsilon_1)W$,

consider 3 cases

 ϵ_{ij} ij is together, ϵ_{ijk} ijk all together $\epsilon_{ij|k}$ ij together but k split the final one is $\frac{\theta_{ik}+\theta_{jk}-\theta_{ij}}{2\pi}$

the expectation of 3 is

$$E[y_{ijk}] = \frac{w_{ij}}{3} p[\epsilon_{ijk}] + w_{ij} P[\epsilon_{ij|k}]$$
(8)

$$E[y_{ij}] = \sum_{k \neq i,j} E[y_{ijk}] \tag{9}$$

because

$$P[\epsilon_{ij}] = 1 - P[\epsilon_{ijk}] - P[\epsilon_{ij|k}]$$
(10)

we get that 8 is also equal to

$$\frac{w_{ij}}{3}P[\epsilon_{ij} + \frac{2w_{ij}}{3}P[\epsilon_{ij|k}]] \tag{11}$$

and 9 is

$$E[y_{ij}] = \frac{w_{ij}}{3} \left((n-2)P[\epsilon_{ij}] + 2\sum_{k \neq i,j} P[\epsilon_{ij|k}] \right)$$
(12)