目录

1 问题分析

- 2 数据准备
- 3 建模求解

4 总结评价

1.1 问题背景

某机场现有航站楼T的旅客流量已达饱和状态,现正增设卫星厅S

若出、入境航班都在卫星厅S

出入境手续

国际航班到达

国内航班出发

- ➤ T具有完整的国际机场航站功能,包括出发、到达、出入境
- ➤ 卫星厅S是航站楼T的延伸,没有出入境功能

@ National University of Defense Technology

1.1 问题背景

机场停机位分配问题 GAP (Gate Assignment Problem)

问题一

问题二

问题三

增设卫星厅S

加入流程时间

加入捷运时间与步行时间

Max 匹配登机口

Max 匹配登机口

Max 匹配登机口

Min 占用登机口数

Min 中转流程时间

NKL.

Min 旅客中转紧张度

Min 占用登机口数

Min 占用登机口数

最短流程时间+捷运时间+行走时间

航班连接时间

旅客中转紧张度

1.2 约束关系

- ① 同一个登机口同一时间最多只能停靠一架飞机
- ② 登机口与航班执飞机到达类型匹配 (国际/国内)
- ③ 登机口与航班执飞机宽窄类型匹配 (宽体机/窄体机)
- ④ 登机口与航班执飞飞机离开类型匹配(国际/国内)
- ⑤ 分配在同一登机口的两飞机之间的空挡间隔时间必须大于等于45分钟

目录

- 1 问题分析
- 2 数据准备

3 建模求解

4 总结评价

2 数据准备

2.1 属性简化

登机口属性

登机口	终端厅	区域	到达类型	出发类型	机体类别
T5	Т	北	国内	国内/国际	宽机型

航班属性

转场	到达	到达	到达	到达	出发	出发	出发	出发	飞机
记录号	日期	时刻	航班	类型	航班	日期	时刻	类型	型号
PK001	19-Jan-18	10:00	NV6294	国内	NV3118	19-Jan-18	12:40	国际	321

航班-登机口匹配属性 W_{ij}

航班冲突属性Pilia

(a) National University of Defense Technology

2 数据准备

2.2 航班合并

方	依客记录号	乘客数	到达航班	到达日期	出发航班	出发日期
	T1356	2	NV673	19-Jan-18	NV664	20-Jan-18
	T1357	2	NV673	19-Jan-18	NV664	20-Jan-18
	T1358	2	NV673	19-Jan-18	NV664	20-Jan-18
	T1359	2	NV673	19-Jan-18	NV664	20-Jan-18
	T1360	2	NV673	19-Jan-18	NV664	20-Jan-18
	T1361	2	NV673	19-Jan-18	NV320	20-Jan-18
	T1362	2	NV673	19-Jan-18	NV320	20-Jan-18

数量	到达飞机	出发飞机
10	192	189
7	192	192
1	192	190
2	193	189
1	193	188

@ National University of Defense Technology

- 2 数据准备
- 3 建模求解

4 总结评价

3.1 问题一航班-登机口分配

$$\max \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} - \mu \sum_{j=1}^{J} y_j$$

$$\sum_{j=1}^{J} x_{ij} \le 1 \quad (1 \le i \le I)$$

$$x_{ij} \leq w_{ij}$$

$$x_{i_1j} + x_{i_2j} \le 2 - \rho_{i_1i_2}(i_1 \ne i_2)$$

$$x_{ij} \leq y_j$$

 $x_{ij} = 0 \text{ or } 1, y_i = 0 \text{ or } 1 (1 \le i \le I, 1 \le j \le J)$

$$w_{ii}$$
 航班 i 与登机口 j 属性是否匹配

 $\rho_{i_1i_2}$ 表示航班 i_1 和航班 i_2 是否冲突

 μ 权重系数,在此取0.01

(6)

$$x_{ij}$$
 航班 i 是否停靠在登机口 j ,若停靠则为 1

 y_i 登机口j是否开放,若开放则为1

3.1 问题一航班-登机口分配

成功率

宽体飞机

窄体飞机

未安排

84.48%

49架次

207架次

47架次

- ➤ 调用CPLEX可以在2s内求得最优解
- 在参与分配的303架次飞机中,总计为最多256架次飞机(即512架次航班)安排合适登机口
- ▶ 宽体飞机安排49架次(共49架次);窄体飞机安排207架次(共254架次)
- ▶ 共使用65个登机口
- ➤ 未使用的登机口1个位于航站楼T,3个位于卫星厅S

-1440

21日

20日登机口使用情况图

3.2 问题二 考虑中转旅客最短流程时间登机口分配

出发		国内出发	发(D)	国际出发(I)		
到达		航站楼T	卫星厅S	航站楼T	卫星厅S	
国内到达	航站楼T	15/0	20/1	35/0	40/1	
(D)	卫星厅S	20/1	15/0	40/1	35/0	
国际到达	航站楼T	35/0	40/1	20/0	30/1	
(1)	卫星厅S	40/1	45/2	30/1	20/0	

最短流程时间

3.2 问题二 考虑中转旅客最短流程时间登机口分配

开启的登机口数

$$\min \sum_{k=1}^{K} n_k (T_a^k T_l^k Tran_{TT} + T_a^k S_l^k Tran_{TS} + S_a^k T_l^k Tran_{ST} + S_a^k S_l^k Tran_{SS}) - \lambda \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} + \mu \sum_{j=1}^{J} y_j$$

最小化乘客的流程时间

a表示乘客到达的航班编号

*表*示乘客离开的航班编号

 T_a^k 表示乘客 ℓ 到达的航班是否在航站楼

 S_a^k 表示乘客k到达的航班是否在卫星厅 T_l^k 表示乘客k离开的航班是否在航站楼 S_l^k 表示乘客k离开的航班是否在卫星厅

最大化航班

 $\lambda = 100000$

流程时间

 $Tran_{TT}$ 航站楼到航站楼 $Tran_{TS}$ 航站楼到卫星厅 $Tran_{ST}$ 卫星厅到航站楼 $Tran_{SS}$ 卫星厅到卫星厅

@ National University of Defense Technology

3.2 问题二 考虑中转旅客最短流程时间登机口分配

$$\min \sum_{k=1}^{K} n_k (T_a^k T_l^k Tran_{TT} + T_a^k S_l^k Tran_{TS} + S_a^k T_l^k Tran_{ST} + S_a^k S_l^k Tran_{SS}) - \lambda \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} + \mu \sum_{j=1}^{J} y_j$$
 (7)

$$\sum_{j=1}^{J} x_{ij} \le 1 \quad (1 \le i \le I) \tag{8}$$

$$x_{i_1j} + x_{i_2j} \le 2 - \rho_{i_1i_2} \quad (i_1 \ne i_2) \tag{9}$$

$$T_i = \sum_{j=1}^{J_T} x_{ij} \quad (1 \le i \le I) \tag{10}$$

$$S_i = \sum_{j=J_T+1}^{J} x_{ij} \quad (1 \le i \le I)$$
 (11)

$$x_{ij} \le y_{j} \tag{12}$$

$$x_{ij} \le w_{ij} \tag{13}$$

$$x_{ij} = 0 \text{ or } 1, \ y_j = 0 \text{ or } 1 \ (1 \le i \le m, 1 \le j \le n)$$
 (14)

@ National University of Defense Technology

3.2 问题二 考虑中转旅客最短流程时间登机口分配

分配到固定登机口 61.25%

- ➤ CPLEX可以在83.70s内求得最优解
- ▶ 256架次飞机安排在合适登机口
- ▶ 20日中转旅客共有2751人次。其中有1685人次分配到了固定登机口
- ▶ 分配成功率为61.25%, 这部分旅客换乘失败率为0
- ▶ 中转流程时间共计50025分钟
- ▶ 共使用65个登机口, 4个未使用登机口均为卫星厅S的登机口。

3.3 问题三 考虑换乘旅客总体紧张度的登机口分配

出发		国内出发	发(D)	国际出发(I)		
到达		航站楼T	卫星厅S	航站楼T	卫星厅S	
国内到达	航站楼T	15/0	20/1	35/0	40/1	
(D)	卫星厅S	20/1	15/0	40/1	35/0	
国际到达	航站楼T	35/0	40/1	20/0	30/1	
(1)	卫星厅S	40/1	45/2	30/1	20/0	

最短流程时间

捷运乘坐次数: 8分钟/次

3.3 问题三 考虑换乘旅客总体紧张度的登机口分配

行走时间

登机口区域	T-北	T-中	T-南	S-北	S-中	S-南	S-东
T-北	10	15	20	25	20	25	25
T-中		10	15	20	15	20	20
T-南			10	25	20	25	25
S-北				10	15	20	20
S-中					10	15	15
S-南						10	20
S-东							10

@ National University of Defense Technology

3.3 问题三 考虑换乘旅客总体紧张度的登机口分配

$$\min \sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{n=1}^{M} n_k (p_{kmn} tran_{mn}) / tranMAX_k - \lambda \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} + \mu \sum_{j=1}^{J} y_j$$

 p_{kmn}

乘客k从登机口区域m中转到区域n(若中转则为1,不中转为0)

tran_{mn}

区域m到区域n的最小中转时间

 $tranMAX_{k}$

乘客k的航班连接时间

 λ , μ

权重系数 $\lambda = 100000$ $\mu = 0.01$

3.3 问题三

$$\min \sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{n=1}^{M} (p_{kmn} \cdot tran_{mn}) / tranMAX_{k} - \lambda \sum_{i=1}^{I} \sum_{j=1}^{J} x_{ij} + \mu \sum_{j=1}^{J} y_{j}$$
 (15)

$$\sum_{i=1}^{J} x_{ij} \le 1 \quad (1 \le i \le m) \tag{16}$$

$$x_{i_1j} + x_{i_2j} \le 2 - \rho_{i_1i_2} \quad (i_1 \ne i_2) \tag{17}$$

$$x_{ij} \le y_j \tag{18}$$

$$x_{ij} \le w_{ij} \tag{19}$$

$$f_{im} = \sum_{j=T_m}^{T_{m+1}} x_{ij} \tag{20}$$

$$p_{kmn} \ge f_{km}^{a} + f_{kn}^{l} - 1 \tag{21}$$

$$x_{ij} = 0 \text{ or } 1, \ y_j = 0 \text{ or } 1 \ (1 \le i \le m, 1 \le j \le n)$$
 (22)

 f_{im} : 航班i停靠在登机口区域m,若停靠则为1,不停靠则为0

 f_{km}^a 表示乘客k到达航班是否处于区域m f_{km}^l 表示乘客k出发航班是否处于区域n

3.3 问题三 初始解+禁忌搜索

TabuSearch:

```
s \leftarrow solutionGeneratedByCPLEX()
While ite < Iteration<sub>max</sub>
    updateTabuList()
     innerExchangeOperation(s):
         for flight_i and flight_i in s, i \neq j
             s' \leftarrow exchange(i, j)
               evaluation(s')
     outerExchangeOperation(s):
          for flight_i out s and flight_i in s, i \neq j
               s' \leftarrow exchange(i, j)
               evaluation(s')
   chooseMinS(s') and operation not in tabuList
end
```

求解工具

- 采用CPLEX快速地为禁忌搜索生成一个 可行解,
- 然后采用禁忌搜索进行优化。

求解效率

- 使用CPLEX生成初始解,该初始解满足 飞机停靠登机口数量最大化。
- 结合禁忌进行优化,禁忌搜索50代内结果未搜索到更好的解时停止运行。

3.3 问题三 邻域生成

内交换操作

- 内交换定义为已安排航班之间的交换
- 交换已安排的两个航班停靠的登机口,得到一个新解
- 交换的两个航班的登机口属性要相互满足
- 属于同一个登机口的两个航班不进行交换(交换得到的是相同解)

外交换操作

- 外交换操作定义为移出一个已安排航班,并插入一个未安排成功的航班
- 插入航班选择的登机口首先需要满足属性要求

3.3 问题三 结果对比

CPLEX

- ➤ CPLEX求解**240分钟(14400s)**
- ▶ 固定登机口256架次
- ▶ 临时停机坪47架次
- ▶ 旅客换乘紧张度为474.45
- ▶ 共使用65个登机口
- ▶ 分配成功的旅客换乘失败率为0

CPLEX与禁忌搜索

- ➤ CPLEX与禁忌搜索运行时间共计732s
- ▶ 固定登机口256架次
- ▶ 临时停机坪47架次
- ▶ 旅客换乘紧张度为478.06
- ▶ 共使用65个登机口
- ▶ 分配成功的旅客换乘失败率为0

目录

1 问题分析

- 2 数据准备
- 3 建模求解

4 总结评价

4 总结评价

优点:

- ▶ 提前简化约束。我们对于一些复杂约束包括停机位的属性匹配和 空挡间隔时间进行了预处理,将这些约束变成了0-1变量加入模型
- ▶ 提高了模型求解速度。在简化约束后模型在求解性上提升很大。
- ➤ 0-1整数规划模型对问题描述直观,方便CPLEX等求解器进行求解。

改进:

- ▶ 增加模型的扩展性。使得当实际问题的约束发生变化时,无需再对问题进行重新建模。
- ▶ 提升求解效率。当问题规模和求解的复杂性较大时,模型求解难度比较大。无法在有限的时间内求得问题的最优解。
- ▶ 在大规模问题的求解算法上,还需要进一步的研究。