		Note	:
		I	\prod
Name Vorname	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
TECHNISCHE UNIVERSITÄT MÜNCHEN	5		
	6		
Fakultät für Mathematik			
Klausur			
Mathematik für Physiker 4	'		
(Analysis 3)	8		
(11101), 515-0)			
Prof. Dr. M. Wolf			
25. Februar 2014, 11:00 – 12:30 Uhr	\sum		
Hörsaal: Platz:	I	 Erstkorrekt	tur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	П	 Zweitkorre	 ktur
Bearbeitungszeit: 90 min		ZWEITKOITE	Ktui
Hilfsmittel: Ein selbsterstelltes Din A4 Blatt			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis	_		

Vorzeitig abgegeben um

Besondere Bemerkungen:

Berechnen Sie das Volumen der Menge $S=\{x\in\mathbb{R}^3\mid 1\geq x_1\geq x_2\geq x_3\geq 0\}.$. Volumenberechnung	[6 Punkte]
	Berechnen Sie das Volumen der Menge $S = \{x \in \mathbb{R}^3 \mid 1 \ge x_1 \ge x_2 \ge x_3 \ge 0\}.$	

2. Transformationsformel

[13 Punkte]

Sei $\Phi: \mathbb{R}^2 \to (\mathbb{R}^+)^2$ gegeben durch $\Phi(u, v) = (e^{u+v}, e^{u-v})$.

(a) Geben Sie die Jacobi-Determinante von Φ auf $(\mathbb{R}^+)^2$ an:

$$\det J_{\Phi}(u,v) =$$

(b) Wie lautet die Umkehrabbildung von Φ auf $(\mathbb{R}^+)^2$?

$$\Phi^{-1}(x,y) =$$

(c) Skizzieren Sie die Menge $M := \Phi([0,1]^2)$.

(d) Wie lautet die Transformationsformel für das Integral einer stetigen Funktion $f:(\mathbb{R}^+)^2\to\mathbb{R}$ über die Menge $M\subseteq(\mathbb{R}^+)^2$ mit der Transformation Φ ?

(e) Geben Sie den Wert von $\int\limits_M f(x)\mathrm{d}^2x$ für $f(x,y)=\ln(\frac{y}{x})$ an.

$$\int_{M} f(x, y) \mathrm{d}x \mathrm{d}y =$$

3. Oberflächenintegrale

[10 Punkte]

Gegeben ist die Abbildung $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$, $\Phi(u,v) = \begin{pmatrix} u^2 + 2u \\ 2uv \\ v^2 + 2v \end{pmatrix}$.

(a) Für welche Werte von u und v ist $\Phi'(u, v)$ surjektiv?

Für $(u,v)\in$

(b) Geben Sie für $(u,v) \in B_1(0) \subseteq \mathbb{R}^2$ jeweils eine Basis des Tangential- und des Normalraums für das Flächenstück $M := \Phi(B_1(0))$ im Punkt $\Phi(u,v)$ an.

 $T_{\Phi(u,v)}M = \operatorname{span}\Big($ $\Big)$ $\Big| N_{\Phi(u,v)}M = \operatorname{span}\Big($ $\Big)$

(c) Sei nun $F: \mathbb{R}^3 \to \mathbb{R}^3$ ein C^1 -Vektorfeld mit rot $F(x) \in T_xM$ für alle $x \in M$. Begründen Sie, warum das Wegintegral von F entlang der Randlinie von M gleich Null ist.

4. Komplexe Kurvenintegrale

[8 Punkte]

Gegeben ist die Menge $G := \{z \in \mathbb{C} \mid \operatorname{Re} z \geq \operatorname{Im} z, (\operatorname{Re} z)^2 + (\operatorname{Im} z - 1)^2 \leq 1\}.$

(a) Skizzieren Sie die Menge ${\cal G}$

(b) Geben Sie unter Beachtung der Umlaufrichtung eine Parametrisierung von ∂G durch zwei Kurvenstücke an.

$$\gamma_1(t) =$$

$$\gamma_2(t) =$$

(c) Berechnen Sie (mit kurzer Begründung) den Wert des Integrals $\int\limits_{\partial G} \frac{e^z}{6z-3-2i} \mathrm{d}z$.

$$\int_{\partial G} \frac{e^z}{6z - 3 - 2i} \mathrm{d}z =$$

5. Residuen		[9 Punkte]
Sei $f(z) = \frac{\tan z}{z}$ für $z \in \mathbb{C} \setminus \{r\}$	$\pi + \frac{\pi}{2} \mid n \in \mathbb{Z} \}.$	
(a) f hat bei $z = 0$		
<u> </u>	ät, □ eine hebbare Singularität, □ einen Poler Ordnung, □ eine wesentliche Singularität.	erster Ordnung,
(b) Bestimmen Sie das Resi	duum von f bei $z = \frac{\pi}{2}$.	
	$\operatorname{Res}_{rac{\pi}{2}}(f) =$	
(c) Wie lautet der Haupttei	l $H_{f,\frac{\pi}{2}}(z)$ der Laurententwicklung von f in einer	r Umgebung von $z = \frac{\pi}{2}$?
	$H_{f,\frac{\pi}{2}}(z) =$	
(d) Welchen Konvergenzber punkt $z = \frac{\pi}{2}$?	eich $B\subset \mathbb{C}$ hat die Laurentreihenentwicklung	von f im Entwicklungs-
B =		
(e) Welchen Wert hat das k	omplexe Wegintegral $\int f(z)dz$ entlang der Kurv	ve $\gamma: [0, 4\pi] \to \mathbb{C}$,
$\gamma(t) = 2 + 2e^{-it}?$	γ	
	$\int\limits_{\gamma}f(z)\mathrm{d}z=$	

6. Residuenkalkül	[11 Punkte]
Sei $f(z) = \frac{z}{z^2 + c^2}$ mit $c > 0$.	
	∞

(a) Wo in der komplexen Ebene verläuft der Hilfsweg zur Berechnung des Integrals $\int\limits_{-\infty}^{\infty}f(x)e^{ix}\mathrm{d}x?$

□ In der rechten Halbebene.□ In der oberen Halbebene.□ In der unteren Halbebene.

(b) Welchen Wert hat das Integral $I_1 := \int_{-\infty}^{\infty} f(x)e^{ix}dx$?

 $I_1 =$

(c) Welchen Wert hat das Integral $I_2 := \int_{-\infty}^{\infty} f(x)e^{-ix}dx$?

 $I_2 =$

(d) Berechnen Sie nun das Integral $\int_{0}^{\infty} \frac{x \sin x}{x^2 + c^2} dx$.

$\overline{}$	T		C	mation
1.	rom	riertra	mstori	mation

[10 Punkte]

(a) Wie wurde in der Vorlesung die Faltung f*g zweier Funktionen $f,g\in L^1(\mathbb{R})$ definiert?

(b) Wie lautet die Fouriertransformierte der Gauß-Kurve $x\mapsto \exp(-\frac{x^2}{2t}),\ x\in\mathbb{R},\ t>0$?

(c) Beweisen Sie, dass die Faltung f_1*f_2 zweier Gauß-Kurven, $f_j(x)=\exp(-\frac{x^2}{2t_j}),\,t_j>0,\,j=1,2,$ wieder eine Gauß-Kurve ist.

(d) Sei nun $h := f_1 * f_2$.

(i) Welche Aussagen gelten für h?

 $\Box h \in \mathcal{S}(\mathbb{R}), \quad \Box h \text{ ist stetig}, \quad \Box h \in L^1(\mathbb{R}), \quad \Box h \in L^2(\mathbb{R}).$

(ii) Welche Aussagen gelten für $\widehat{h}?$

 $\square \ \widehat{h} \in \mathcal{S}(\mathbb{R}), \qquad \square \ \widehat{h} \ \text{ist stetig}, \qquad \square \ \widehat{h} \in L^1(\mathbb{R}), \qquad \square \ \widehat{h} \in L^2(\mathbb{R}).$

8. Hilbertraum	[8 Punkte]
In der gesamten Aufgabe ist $\{b_n\}_{n\in\mathbb{N}}$ eine orthonormale Folge von Vektoren im Hilbe	
(a) Zeigen Sie, dass b_n für $n \to \infty$ keinen Grenzwert haben kann.	
(b) Geben Sie mindestens eine der vier in der Vorlesung behandelten Charakterisier dass $\{b_n\}_{n\in\mathbb{N}}$ eine ONB (orthonormale Basis) von \mathcal{H} ist.	rungen dafür an,
(c) Geben Sie explizit ein Beispiel für einen Hilbertraum \mathcal{H} und eine orthonormale die keine ONB von \mathcal{H} ist und beweisen dies mit Hilfe von (b).	e Folge $\{b_n\}_{n\in\mathbb{N}}$,