import numpy as np
import pandas as pd
df=pd.read_csv('/content/LoanApprovalPrediction.csv')
df

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Te
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360
609	LP002978	Female	No	0	Graduate	No	2900	0.0	71.0	360
610	LP002979	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180
611	LP002983	Male	Yes	1	Graduate	No	8072	240.0	253.0	360
612	LP002984	Male	Yes	2	Graduate	No	7583	0.0	187.0	360
613	LP002990	Female	No	0	Graduate	Yes	4583	0.0	133.0	360

614 rows × 13 columns

df.drop(['Loan_ID'],axis=1,inplace=True)
df

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit
0	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	
609	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	
610	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	
611	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	
612	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	
613	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	

614 rows × 12 columns

df.head()

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_H
0	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	
1	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
2	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
3	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
4	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	

df.tail()

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit
609	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	
610	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	
611	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	
612	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	
613	Female	No	0	Graduate	Yes	4583	0.0	133 0	360.0	

```
df.dtypes
     Gender
                           object
     Married
                           object
     Dependents
                           object
     Education
                           object
     Self_Employed
                           object
     ApplicantIncome
                            int64
                          float64
     CoapplicantIncome
     LoanAmount
                          float64
     Loan_Amount_Term
                          float64
     Credit_History
                          float64
     Property Area
                           object
     Loan Status
                           object
     dtype: object
df.isna().sum()
     Gender
                          13
     Married
                           3
     Dependents
                          15
     Education
     Self_Employed
     ApplicantIncome
                           0
     CoapplicantIncome
                           0
     LoanAmount
                          22
     Loan Amount Term
                          14
     Credit_History
                          50
     Property_Area
                           0
     Loan_Status
                           0
     dtype: int64
df['Gender']=df['Gender'].fillna(df['Gender'].mode()[0])#Single line filling
df['Married']=df['Married'].fillna(df['Married'].mode()[0])
df['Dependents']=df['Dependents'].fillna(df['Dependents'].mode()[0])
df['Self_Employed']=df['Self_Employed'].fillna(df['Self_Employed'].mode()[0])
df['LoanAmount']=df['LoanAmount'].fillna(df['LoanAmount'].mean())
df['Loan_Amount_Term']=df['Loan_Amount_Term'].fillna(df['Loan_Amount_Term'].mean())
df['Credit_History']=df['Credit_History'].fillna(df['Credit_History'].mean())
df.isna().sum()
     Gender
                          0
     Married
     Dependents
     Education
                          0
     Self Employed
                          0
     ApplicantIncome
                          0
     CoapplicantIncome
                          0
     LoanAmount
                          0
     Loan_Amount_Term
                          0
     Credit_History
                          0
     Property_Area
                          0
     Loan_Status
     dtype: int64
from sklearn.preprocessing import LabelEncoder
encode=LabelEncoder()
df['Gender']=encode.fit_transform(df['Gender'])#since its a dataframe colomn namedf['Gender]
df['Married']=encode.fit_transform(df['Married'])
df['Dependents']=encode.fit_transform(df['Dependents'])
df['Education']=encode.fit_transform(df['Education'])
```

```
df['Self_Employed']=encode.fit_transform(df['Self_Employed'])
df['Property_Area']=encode.fit_transform(df['Property_Area'])
df['Loan_Status']=encode.fit_transform(df['Loan_Status'])
df.dtypes
         Gender
                                              int64
         Married
                                              int64
         Dependents
                                              int64
         Education
                                              int64
         Self_Employed
                                              int64
         ApplicantIncome
                                              int64
         CoapplicantIncome
                                           float64
        LoanAmount
                                           float64
         Loan Amount Term
                                           float64
        Credit History
                                           float64
        Property_Area
                                              int64
        Loan_Status
                                              int64
        dtype: object
x=df.iloc[:,:-1].values
                                            0., ..., 360.,
         array([[ 1.,
                                   0.,
                                                                         1.,
                                                                                   2.],
                                                                        1.,
                        1.,
                                  1.,
                                            1., ...,
                                                           360.,
                                                                                   0.],
                        1.,
                                  1.,
                                                                         1.,
                    [
                                            0., ..., 360.,
                                                                                   2.]
                                            1., ..., 360.,
                                                                                   2.],
                                            2., ..., 360.,
                                                                         1.,
                        1.,
                                  1.,
                                                                                   2.],
                                            0., ..., 360.,
                                                                                  1.]])
                                  0.,
                                                                        0.,
y=df.iloc[:,-1].values
         array([1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 
                    0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
                    1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0,
                    0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1,
                    1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
                    1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
                    1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0,
                    1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1,
                    1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1,
                    1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,
                        1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
                    1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
                    1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
                    0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0,
                    0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                    1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
                    1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0,
                    1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                    0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,
                    1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
                    1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1,
                    1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1,
                    1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
                    1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
                    1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1,
                    0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0,
                    from sklearn.model selection import train test split
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.30, random\_state=0)
x_train
                                            0., ..., 360.,
                                                                                   0.],
         array([[ 1.,
                                  0.,
                                                                        1.,
                         1.,
                                  1.,
                                                                                   0.],
                                            0., ..., 180.,
                                                                         1.,
                        1.,
                                  1.,
                                            0., ..., 360.,
                                                                         1.,
                                                                                   1.]
                    [ 1.,
                                   1.,
                                            4., ..., 360.,
                                                                         1.,
                                                                                   1.],
                                            0., ..., 360.,
                                   1.,
                                                                         1.,
                                            0., ..., 360.,
y_train
        array([0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1,
                    1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
                    0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
                    1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
                    1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0,
```

```
1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
          0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0,
          1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1,
             1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0,
          1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0,
          0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
          0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
          1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1,
          1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0,
          1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1,
          1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,
          0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,
          0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1])
from sklearn.preprocessing import StandardScaler
scale=StandardScaler()
scale.fit(x_train)
x_train=scale.transform(x_train)
x_test=scale.transform(x_test)
from sklearn.naive_bayes import BernoulliNB
base=BernoulliNB()
base.fit(x_train,y_train)
y_pred=base.predict(x_test)
y_pred
    array([1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
          1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0,
          from sklearn.metrics import confusion_matrix,accuracy_score
cm=confusion_matrix(y_test,y_pred)
print(cm)
    [[ 21 30]
     [ 2 132]]
score=accuracy_score(y_test,y_pred)
score
    0.827027027027027
```