NATIONAL INSTITUTE OF TECHNOLOGY CALICUT MA1002D MATHEMATICS II

Winter Semester 2019-2020 Tutorial on Beta-Gamma functions.

1. Evaluate (a)
$$\Gamma$$
 (8) (b) Γ (-5.5)

2. Using Beta, Gamma function, evaluate the following

(a)
$$\int_{0}^{\infty} e^{-x^3} dx$$

(b)
$$\int_{0}^{\infty} e^{-k^2x^2} dx$$

(c)
$$\int_{0}^{1} y^{q-1} (\log y)^{p-1} dy (p > 0)$$

(d)
$$\int_{0}^{\infty} e^{-kx} x^{p-1} dx$$
 $(k > 0)$

(e)
$$\int_{0}^{\infty} \frac{x^{c}}{c^{x}} dx.$$

3. Prove that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive integer and m>-1.

4. Using Gamma function evaluate, $\int_{0}^{1} x^{4} \left[\log \left[\frac{1}{x} \right] \right]^{3} dx$.

5. Using Gamma function evaluate $\int_{-\infty}^{\infty} e^{-x^2-2axx} dx = \int_{-\infty}^{\infty} e^{-\left[(x+a)^2-a^2\right]} dx = e^{a^2} \int_{-\infty}^{\infty} e^{-(x+a)^2} dx.$

6. Evaluate in terms of Gamma function

(a)
$$\beta(4.5,3.5)$$

(b)
$$\beta(4,5)$$

7. Prove that $\int_{0}^{1} \frac{x dx}{\sqrt{1-x^{5}}} = \frac{1}{5} \beta \left[\frac{2}{5}, \frac{1}{2} \right].$

8. Using Beta, Gamma functions evaluate $\int_{0}^{3} x^{3} (3-x)^{7} dx.$

9. Using Beta, Gamma functions evaluate $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx.$
