Construction of \mathbb{Z}

March 7, 2024

Assumptions

- There exists a set $\mathbb{N} = \{0, 1, 2, ...\}$.
- There exists $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $(\mathbb{N}, +)$ forms a commutative monoid with identity $0 \in \mathbb{N}$.
- The function $succ: \mathbb{N} \to \mathbb{N}^+, n \mapsto n+1$ is injective.

¹We will use infix notation for +

Goals

• Constructing the set \mathbb{Z} .

• Defining $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ and $\cdot: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}^2$

 $^{^2}$ We will use infix notation for + and \cdot

Defining the set \mathbb{Z}

Idea

We want
$$z \equiv (a, b) \Leftrightarrow z = a - b$$
.

Issue: This representation is not unique. E.g. $0 = 1 - 1 = 2 - 2 = \dots$

Definition: \sim

$$(a,b) \sim (c,d) :\Leftrightarrow a+d=b+c$$

Lemma

 \sim is an equivalence relation

Defining the set \mathbb{Z}

Proof.

Reflexivity:

$$\forall (a, b) \in \mathbb{N} \times \mathbb{N} : a + b = b + a.$$

Symmetry:

$$(a,b) \sim (c,d) \Rightarrow c+b=b+c \underset{(a,b) \sim (c,d)}{=} a+d=d+a \Rightarrow (c,d) \sim (a,b).$$

Transitivity:

Let
$$(a, b) \sim (c, d), (c, d) \sim (e, f)$$
. Then $succ^{c+d}(a+f) = \underbrace{a+d}_{=b+c} + \underbrace{c+f}_{=d+e} = b+c+d+e = succ^{c+d}(b+e)$
 $\Rightarrow a+f = b+e \Rightarrow (a, b) \sim (e, f)$

Defining the set \mathbb{Z}

Definition: \mathbb{Z}

 $\mathbb{Z} := \{ [(a,b)] \mid a,b \in \mathbb{N} \}$

Defining + and \cdot

Definition: +

$$[a, b] + [c, d] := [a + c, b + d]$$

Remark

This gives us the usual Addition on \mathbb{Z} : $y=a-b, z=c-d \Rightarrow y+z=a+c-(b+d)$