Math 191 Sample Midterm	2A
Spring 2023, Wilkening	

Your Name:	
------------	--

1a. (5 points) Suppose A is an $n \times n$ matrix with complex entries and $A^* = A$. Suppose V is a subspace of \mathbb{C}^n such that $AV \subset V$, i.e., $x \in V \Rightarrow Ax \in V$. Show that $A(V^{\perp}) \subset V^{\perp}$.

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

1b. (5 points) Suppose A is a real, symmetric, $n \times n$ matrix. Show that e^A is positive definite.

2a. (2 points) Write down the overdetermined linear system Ax = b whose least squares solution $x = \begin{pmatrix} C \\ D \end{pmatrix}$ gives the best-fit line y(t) = C + Dt to the following points (t_i, b_i)

in the sense that $||r||_2$ is minimized, where $r_i = b_i - y(t_i)$.

2b. (5 points) Find the Householder transformation $H_1 = I - \tau_1 v_1 v_1^T$ that reflects the first column of the matrix from part (a) to lie along the b_1 axis. (Find τ_1 and v_1 , following the convention that $(v_1)_1 = 1$.)

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

2c. (3 points) After applying H_1 and computing and applying a second householder transformation, the above system becomes

$$\begin{pmatrix} -2 & -13/3 \\ 0 & -5 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} -1 \\ -5 \\ -0.3 \\ -0.4 \end{pmatrix}.$$

Compute C, D and the norm $||r||_2$ of the minimum residual.

3. (10 points) Let $A = \begin{pmatrix} 6 & 8 \\ 4 & -3 \end{pmatrix}$. Find all rank-1 matrices B such that $||A - B||_2$ is minimized. Hint: if you can't figure out the SVD by inspection, AA^T is simpler than A^TA as a starting point to compute the SVD systematically.

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

4. (10 points) Compute the pseudo-inverse of

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ -2 & 0 & 1 \end{pmatrix}.$$

You can leave your answer as a product of 3 matrices if you wish, but compute each entry of each of those matrices.

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs