COMS12200 hand-out: Boolean algebra quick reference

Axioms

Axioms in AND-form

commutativity	$x \wedge y$	=	$y \wedge x$
association	$(x \wedge y) \wedge z$		J
	, ,		
distribution	$x \wedge (y \vee z)$	=	$(x \wedge y) \vee (x \wedge z)$
identity	$x \wedge 1$	=	\boldsymbol{x}
null	$x \wedge 0$	=	0
idempotency	$x \wedge x$	=	x
inverse	$x \land \neg x$	=	0
absorption	$x \wedge (x \vee y)$	=	x
de Morgan	$\neg(x \land y)$	=	$\neg x \lor \neg y$

Axioms in OR-form

commutativity	$x \vee y$	=	$y \vee x$
association	$(x \lor y) \lor z$	=	$x \lor (y \lor z)$
distribution	$x \vee (y \wedge z)$	≡	$(x \lor y) \land (x \lor z)$
identity	$x \vee 0$	=	\boldsymbol{x}
null	$x \vee 1$	=	1
idempotency	$x \vee x$	=	x
inverse	$x \vee \neg x$	=	1
absorption	$x \lor (x \land y)$	=	x
de Morgan	$\neg(x \lor y)$	≡	$\neg x \land \neg y$

Misc

equivalence
$$x \equiv y \equiv (x \Rightarrow y) \land (y \Rightarrow x)$$

implication $x \Rightarrow y \equiv \neg x \lor y$
involution $\neg \neg x \equiv x$

Transformations and standard forms

Definition 1 The fact there are AND and OR forms of most axioms hints at a more general underlying **principle of duality**. Consider a Boolean expression e: the **dual expression** e^D is formed by

- 1. leaving each variable as is,
- 2. swapping each \land with \lor and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Definition 2 *The de Morgan axiom can be generalised into a* **principle of complements***. Consider a Boolean expression e: the* **complement expression** $\neg e$ *is formed by*

- 1. swapping each variable x with the complement $\neg x$,
- 2. swapping each \land with \lor and vice versa, and
- 3. swapping each 0 with 1 and vice versa.

Definition 3 Consider a Boolean function f with n inputs. When the expression for f is written as a sum (i.e., OR) of terms which each comprise the product (i.e., AND) of a number of inputs, it is said to be in **disjunctive normal form** or **Sum of Products (SoP)** form; the terms in this expression are called the **minterms**. For example,

$$\underbrace{(a \land b \land c)}_{minterm} \lor (d \land e \land f),$$

is in SoP form. Note that each variable can exist as-is or complemented using NOT, meaning

$$\underbrace{(\neg a \land b \land c)}_{minterm} \lor (d \land \neg e \land f),$$

is also a valid SoP expression.

Conversely, when the expression for f is written as a product (i.e., AND) of terms which each comprise the sum (i.e., OR) of a number of inputs, it is said to be in **conjunctive normal form** or **Product of Sums (PoS)** form; the terms in this expression are called the **maxterms**. For example,

$$\underbrace{(a \lor b \lor c)}_{maxterm} \land (d \lor e \lor f),$$

is in PoS form. As above, each variable can exist as-is or complemented using NOT.