Analiza I

Adisa Bolić, abolic@pmf.unsa.ba

Vj. br. 12. Kriteriji konvergencije redova

- **D'Alamberov kriterij:** Ako je dat red $\sum_{n=0}^{\infty} a_n$ takav da postoji $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = L$, onda vrijedi:
 - 1° ako je L < 1 onda je red $\sum_{n=0}^\infty a_n$ konvergentan
 - 2° ako je L>1 (uključuje i slučaj $L=+\infty$) onda je red $\sum_{n=0}^{\infty}a_n$ divergentan
 - 3° ako je L=1 onda je pitanje konvergencije reda $\sum_{n=0}^{\infty}a_n$ i dalje otvoreno
- Caucyhev kriterij: Ako je dat red $\sum_{n=0}^{\infty} a_n$ takav da postoji $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$, onda vrijedi:
 - 1° ako je L < 1 onda je red $\sum_{n=0}^{\infty} a_n$ konvergentan
 - 2° ako je L>1 (uključuje i slučaj $L=+\infty$) onda je red $\sum_{n=0}^{\infty}a_n$ divergentan
 - 3° ako je L=1 onda je pitanje konvergencije reda $\sum_{n=0}^\infty a_n$ i dalje otvoreno
- **Raabeov kriterij:** Ako je $\sum_{n=0}^{\infty} a_n$ red sa pozitivnim članovima takav da postoji $\lim_{n \to \infty} n$

$$\left(\frac{a_n}{a_{n+1}}-1\right)=L$$
, onda vrijedi:

- 1° ako je L>1 (uključuje i slučaj $L=+\infty$) onda je red $\sum_{n=0}^\infty a_n$ konvergentan
- 2° ako je L < 1 onda je red $\sum_{n=0}^\infty a_n$ divergentan
- 3° ako je L=1 onda je pitanje konvergencije reda $\sum_{n=0}^\infty a_n$ i dalje otvoreno
- [1] Ispitati konvergenciju sljedećih redova:
 - a) $\sum_{n=1}^{\infty} \frac{2^n}{n}$
 - b) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
 - c) $\sum_{n=3}^{\infty} \left(\frac{n-2}{n+1} \right)^{n(n+1)}$
 - d) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$
 - e) $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1} \right)^n$
- [2] Ispitati konvergenciju sljedećih redova:

 - a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ b) $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \cdot \frac{1}{2n+1}$

Gaussov kriterij: Ako je $\sum_{n=0}^{\infty}a_n$ red sa pozitivnim članovima takav da $\exists \lambda,\gamma,\epsilon\in\mathbb{R}$, $\epsilon>0$ i ograničen niz $\{\theta_n\}_{n\in\mathbb{N}}$ tako da vrijedi

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\gamma}{n} + \frac{\theta_n}{n^{1+\epsilon}}$$

onda vrijedi:

 1° ako je $\lambda>1$ onda je red $\,\sum_{n=0}^{\infty}a_{n}\,$ konvergentan

 2° ako je $\lambda < 1$ onda je red $\sum_{n=0}^\infty a_n$ divergentan

 3° ako je $\lambda=1$ i $\gamma>1$ onda je red $\,\sum_{n=0}^{\infty}a_{n}\,$ konvergentan

 4° ako je $\lambda=1$ i $\gamma\leq 1$ onda je red $\sum_{n=0}^{\infty}a_{n}$ divergentan

[3] Ispitati konvergenciju reda $\sum_{n=1}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^2$.

Redovi sa elementima proizvoljnog znaka

- **Apsolutna konvergencija:** Red $\sum_{n=0}^{\infty} a_n$ se naziva apsolutno konvergentnim ako red $\sum_{n=0}^{\infty} |a_n|$ konvergira.
- Teorema: Ako je red apsolutno konvergentan, onda je on i konvergentan. Obrat ne važi nužno.

Leibnizov kriterij: Ako je $\{a_n\}_{n\in\mathbb{N}}$ realan niz koji počevši od nekad monotono teži 0, onda red $\sum_{n=1}^{\infty} (-1)^n a_n$ konvergira.

Abelov kriterij: Red $\sum_{n=1}^{\infty} a_n b_n$ konvergira, ako konvergira red $\sum_{n=1}^{\infty} a_n$, a niz $\{b_n\}_{n\in\mathbb{N}}$ je monoton i ograničen.

Dirichleov kriterij: Red $\sum_{n=1}^\infty a_n b_n$ konvergira, ako niz $\{b_n\}_{n\in\mathbb{N}}$ počevši od nekad monotono teži 0, a niz parcijalnih suma reda $\sum_{n=1}^{\infty} a_n$ je ograničen.

- [4] Ispitati konvergenciju sljedećih redova:

 - c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ d) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{(n+2)^3 \sqrt[3]{n+1}}$
 - e) $\sum_{n=1}^{\infty} \cos\left(\frac{\pi}{4} + n\pi\right) \sin\left(\frac{1}{n}\right)$

Zadaci za samostalan rad

Zadaci iz zbirki!