Notations et définitions

Soit E un espace vectoriel euclidien (préhilbertien réel de dimension finie). On note $\langle \ , \ \rangle$ le produit scalaire de E et $\| \ \|$ la norme euclidienne associée. Si H est une partie de E, on appelle enveloppe convexe de H, notée conv(H), la plus petite partie convexe de E contenant H, c'est-à-dire l'intersection de tous les convexes de E contenant E.

Soit n un entier naturel ≥ 2 . On désigne par $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels. On note I la matrice identité de $\mathcal{M}_n(\mathbb{R})$ et si $A \in \mathcal{M}_n(\mathbb{R})$, on note tA la matrice transposée de A et $\mathrm{tr}(A)$ la trace de A. On rappelle que le groupe orthogonal $O_n(\mathbb{R})$ de $\mathcal{M}_n(\mathbb{R})$ est l'ensemble des matrices U de $\mathcal{M}_n(\mathbb{R})$ telles que U ${}^tU = I$. On rappelle également qu'une matrice symétrique réelle est dite positive si ses valeurs propres sont positives ou nulles.

On pourra identifier \mathbb{R}^n et l'ensemble des matrices colonnes $\mathcal{M}_{n,1}(\mathbb{R})$, que l'on suppose muni du produit scalaire canonique, pour lequel la base canonique de \mathbb{R}^n est orthonormée. On note $\| \|_2$ la norme sur $\mathcal{M}_n(\mathbb{R})$ subordonnée à la norme euclidienne de \mathbb{R}^n : pour tout $A \in \mathcal{M}_n(\mathbb{R})$,

$$||A||_2 = \sup_{X \in \mathbb{R}^n, ||X|| = 1} ||AX||.$$

Les parties A, B, C et D sont indépendantes.

A. Produit scalaire de matrices

On rappelle que tr(A) désigne la trace de la matrice $A \in \mathcal{M}_n(\mathbb{R})$.

- 1) Montrer que pour toute base orthonormée $(e_1, e_2, ..., e_n)$ de \mathbb{R}^n , on a la formule $\operatorname{tr}(A) = \sum_{i=1}^n \langle Ae_i, e_i \rangle$.
- **2)** Montrer que l'application $(A, B) \to \operatorname{tr}({}^t A B)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$, noté \langle , \rangle .

On note $\| \|_1$ la norme euclidienne associée à ce produit scalaire. L'attention du candidat est attirée sur le fait que $\mathcal{M}_n(\mathbb{R})$ est désormais muni de deux normes différentes $\| \|_1$ et $\| \|_2$.

3) Si A et B sont symétriques réelles positives, montrer que $\langle A, B \rangle \ge 0$. On pourra utiliser une base orthonormée de vecteurs propres de B.

B. Décomposition polaire

Soit f un endomorphisme de E. On note A la matrice de f dans une base orthonormée de E, et on note f^* l'adjoint de f.

- **4)** Montrer que tAA est une matrice symétrique réelle positive. Exprimer $\|A\|_2$ en fonction des valeurs propres de tAA .
- 5) Montrer qu'il existe un endomorphisme auto-adjoint positif h de E tel que $f^* \circ f = h^2$.
- **6)** Montrer que la restriction de h à $\operatorname{Im} h$ induit un automorphisme de $\operatorname{Im} h$. On notera cet automorphisme \tilde{h} .
- 7) Montrer que ||h(x)|| = ||f(x)|| pour tout $x \in E$. En déduire que Ker h et $(\operatorname{Im} f)^{\perp}$ ont même dimension et qu'il existe un isomorphisme v de Ker h sur $(\operatorname{Im} f)^{\perp}$ qui conserve la norme.
- 8) À l'aide de \tilde{h} et v, construire un automorphisme orthogonal u de E tel que $f = u \circ h$.
- 9) En déduire que toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ s'écrit sous la forme A = US, où $U \in O_n(\mathbb{R})$ et S est une matrice symétrique positive. On admet que si A est inversible, cette écriture est unique.

C. Projeté sur un convexe compact

Soit *H* une partie de *E*, convexe et compacte, et soit $x \in E$. On note

$$d(x, H) = \inf_{h \in H} ||x - h||.$$

- **10)** Montrer qu'il existe un unique $h_0 \in H$ tel que $d(x, H) = ||x h_0||$. On pourra utiliser pour h_0 , h_1 dans H la fonction définie pour tout $t \in \mathbb{R}$ par la formule $q(t) = ||x th_0 (1 t)h_1||^2$.
- 11) Montrer que h_0 est caractérisé par la condition $\langle x h_0, h h_0 \rangle \le 0$ pour tout $h \in H$. On pourra utiliser la même fonction q(t) qu'à la question précédente.

Le vecteur h_0 s'appelle *projeté* de x sur H.

D. Théorème de Carathéodory et compacité

Dans cette partie, on suppose que E est de dimension n. On dit que $x \in E$ est une *combinaison convexe* des p éléments $x_1, x_2, ..., x_p \in E$ s'il existe des réels $\lambda_1, \lambda_2, ..., \lambda_p$ positifs ou nuls tels que

$$x = \sum_{i=1}^{p} \lambda_i x_i$$
 et $\sum_{i=1}^{p} \lambda_i = 1$.

12) Montrer que l'enveloppe convexe conv(H) d'une partie H de E est constituée des combinaisons convexes d'éléments de H.

On souhaite montrer que l'enveloppe convexe conv(H) est constituée des combinaisons convexes d'*au plus* n+1 éléments de H.

Soit $x = \sum_{i=1}^{p} \lambda_i x_i$ une combinaison convexe de $x_1, x_2, ..., x_p \in H$ avec $p \ge n+2$.

13) Montrer qu'il existe p réels non tous nuls $\mu_1, \mu_2, \dots, \mu_p$ tels que

$$\sum_{i=1}^{p} \mu_{i} x_{i} = 0 \qquad \text{et} \qquad \sum_{i=1}^{p} \mu_{i} = 0.$$

On pourra considérer la famille $(x_2 - x_1, x_3 - x_1, ..., x_p - x_1)$.

- 14) En déduire que x s'écrit comme combinaison convexe d'au plus p-1 éléments de H et conclure que $\operatorname{conv}(H)$ est constituée des combinaisons convexes d'au plus n+1 éléments de H.

 On pourra considérer une suite de coefficients de la forme $\lambda_i \theta \mu_i \ge 0$, $i \in \{1, 2, ..., p\}$ pour un réel θ bien choisi.
- **15)** Si H est une partie compacte de E, montrer que conv(H) est compacte. On pourra introduire l'ensemble compact de \mathbb{R}^{n+1} défini par

$$\Lambda = \left\{ (t_1, \dots, t_{n+1}), \text{ avec } t_i \ge 0 \text{ pour tout } i \in \{1, \dots, n+1\} \text{ et } \sum_{i=1}^{n+1} t_i = 1 \right\}.$$

E. Enveloppe convexe de $O_n(\mathbb{R})$

16) Montrer que l'enveloppe convexe conv $(O_n(\mathbb{R}))$ est compacte.

On note \mathcal{B} la boule unité fermée de $(\mathcal{M}_n(\mathbb{R}), \| \|_2)$.

17) Montrer que $conv(O_n(\mathbb{R}))$ est contenue dans \mathcal{B} .

On suppose qu'il existe $M \in \mathcal{B}$ telle que M n'appartient pas à $\operatorname{conv}(O_n(\mathbb{R}))$. On note N le projeté de M sur $\operatorname{conv}(O_n(\mathbb{R}))$ défini à la partie C pour la norme $\| \|_1$, et on pose $A = {}^t(M - N)$. On écrit enfin A = US, avec $U \in O_n(\mathbb{R})$ et S symétrique réelle positive (question 9).

- **18)** Montrer que pour tout $V \in \text{conv}(O_n(\mathbb{R}))$, $\text{tr}(AV) \leq \text{tr}(AN) < \text{tr}(AM)$. En déduire que tr(S) < tr(USM).
- **19)** Montrer que $tr(MUS) \le tr(S)$. On pourra appliquer le résultat de la question 1).
- **20)** Conclure : déterminer conv $(O_n(\mathbb{R}))$.

F. Points extrémaux

Un élément $A \in \mathcal{B}$ est dit *extrémal* dans \mathcal{B} si l'écriture $A = \frac{1}{2}(B+C)$, avec B, C appartenant à \mathcal{B} , entraı̂ne A = B = C. Dans cette partie, on cherche à déterminer l'ensemble des points extrémaux de \mathcal{B} .

21) On suppose que $U \in O_n(\mathbb{R})$ s'écrit sous la forme $U = \frac{1}{2}(V + W)$, avec V, W appartenant à \mathcal{B} . Montrer que pour tout $X \in \mathbb{R}^n$, les vecteurs VX et WX sont liés. En déduire que U est extrémal dans \mathcal{B} .

Soit *A* appartenant à \mathcal{B} mais n'appartenant pas à $O_n(\mathbb{R})$.

- **22)** Montrer que l'on peut écrire A sous la forme A = PDQ, où P et Q sont deux matrices orthogonales et où D est une matrice diagonale dont les éléments diagonaux d_1, d_2, \ldots, d_n sont positifs ou nuls.
- **23)** Montrer que $d_i \le 1$ pour tout $i \in \{1, 2, ..., n\}$, et qu'il existe $j \in \{1, 2, ..., n\}$ tel que $d_i < 1$.
- **24)** En déduire qu'il existe deux matrices A_{α} et $A_{-\alpha}$ appartenant à \mathcal{B} telles que $A = \frac{1}{2}(A_{\alpha} + A_{-\alpha})$. Conclure.

FIN DU PROBLÈME