STM32G4 Mainstream Series Mixed Signals MCU

Continuing the STM32 Success Story

Leader in Arm® Cortex®-M 32-bit General Purpose MCU

1st Mixed Signal DSP + Analog STM32F3 Cortex-M4

World 1st World 1st Cortex-M Cortex-M MCU Ultra-low-power 120 MHz. 90nm

1st High Perf.

STM32 F2

1st High Perf. Cortex-M4 168 MHz

> **Entry Cost** STM32F0 Cortex-M0

STM32 FO

Entry Cost Ultra-low-power

World 1st Cortex-M7

Leadership Ultra-low-power Cortex-M4

#1 UI P 447 ULPBench™

Mainstream Cortex-M0+ MCUs Efficiency at its best!

Introduction of M33 Excellence in ULP with more security

#1

Performance

2400 CoreMark

Ultra-low-power

Excellence

Dual-core. multiprotocol and open radio

Multicore Microporcessor

2007 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Continuing the STM32 Success Story

STM32G4 series in the continuity of the STM32F3 series

1st Mixed Signal DSP + Analog STM32F3 Cortex-M4

447 ULPBench™

STM32G4: Continuity in STM32 MCUs

Keep releasing your growing creativity

STM32G4 Series 5

Ideal for applications requiring MCU with advanced and rich analog peripherals

- Control applications (Motor Control...)
- Industrial equipment
- Instrumentation and Measurement
- **Digital Power**
 - Digital SMPS (switch mode power supply)
 - PFC (power factor correction)

Reducing PCB Size and BOM Cost 6

System-on-Chip – All-in-one solution

Project cost \$\$\$

Project cost \$

STM32G4 Series – Key Messages

Performance

- Arm® Cortex®-M4 at 170 MHz
- 213 DMIPS and 550 CoreMark® results
- Better dynamic power consumption (163µA/MHz)
- ART Accelerator™ (dynamic cache)
- Mathematical accelerators
- CCM-SRAM Routine Booster (static cache)

Rich Integrated Analog and Digital

- Op-Amps (Built-in gain), DACs, Comparators
- 12-bit ADCs 4Msps with hardware oversampling
- CAN-FD (flexible data rate 8Msps bit rate)

- High resolution timer (184 ps)
- USB type-C Power Delivery3.0
- 1% RC accuracy [-5°..90°C], 2% full T° range

Safety and security focus

- Dual Bank Flash with ECC (error code correction)
- Securable Memory Area
- Hardware encryption AES-256
- SIL, Class-B
- SRAM with Parity bit

Secure Live Upgrade

Functional safety design packages

Complete portfolio

- Complements existing STM32F3 Series portfolio
- From -40°c up to 85 or 125°C devices

- From 32- up to 128-pin
- From 32KB to 512KB Flash

Greater Performance

Pure 170 MHz CPU performance (Arm® Cortex®-M4) with 3 accelerators

Arm Cortex-M4 with FPU

Up to 170 MHz CPU frequency

Up to 213 DMIPS and 550 CoreMark® results

3 different HW accelerators:

- **ART accelerator** (~dynamic cache) → Full code acceleration (average)
- **Routine Booster CCM-SRAM** (~static cache) → determinism preserved
- Mathematical (Cordic + FMAC

Mathematical Accelerators 9

Function acceleration and CPU offload

1. Cordic (Trigo)

 Very helpful for Field **Oriented Motor Control** method (FOC)

- Vector rotation (polar to rectangular): Sin, Cos
- Vector translation (rectangular to polar): Atan2, Modulus
- Sinh, Cosh, Exp
- Atan, Atanh
- Square root
- Ln

2. Filter Math ACcelerator (FMAC)

- Can be used to create
 - 3p3z Compensator (→ Digital power)
 - Sigma Delta modulator
 - Noise Shaper

FIR filter

IIR filter

Rich, Advanced Analog 101

Mixed-signal SoC for wide variety of applications

ADC (up to 5)	Values
Topology	SAR 12-bit + HW oversampling → 16-bit
Sampling rate	Up to 4 Msps
Input	Single-ended and differential
Offset and Gain compensation	Auto calibration to reduce gain and offset

Op-Amp (up to 6)	Values
GBW	13 MHz
Slew rate	45 V/μs
Offset	3mV over full T° range 1.5mV @ 25°C
PGA Gain (accuracy)	2, 4, 8, 16, -1,-3,-7,-15 (1%) 32, 64, -31,-63 (2%)

DAC (up to 7)	Values
Sampling rate	15 Msps (internal) 1Msps (from buffered output)
Settling time	16ns

Comparator (up to 7)	Values
Power supply	1.62 3.6V
Propagation delay	16.7ns
Offset	-6 +2 mV
Hysteresis	8 steps:
-	0, 9, 18, 27, 36, 45, 54, 63 mV

Set

point

ARM Cortex-M4 core @ 170MHz

- FPU
 - Enhance dynamics
 - · No scaling overhead
 - No saturation
- DSP (fast MAC)
- SIMD
- Parallel processing
- Low interrupt latency

ST's product architecture

- ART accelerator
 - · Wait state removal
- CCM-SRAM accelerator
 - · Real time execution
- Math accelerator
 - Cordic (Trigo)
 - FMAC (Filtering)

5x 12-bit 4Msps ADC

- SAR (no pipeline delay)
- Low latency (250ns)
- Low aperture time (20ns) for snapshot measurements
- Simultaneous sampling on multiple ADCs
- HW oversampling

Shaped for Control 11

Easy use of the **Analog and Digital** resources thanks to high peripherals interconnect and flexible bus matrix

Key Features for Targeted Applications

Home appliances, E-bikes, Air Conditioning

- Fast CPU 170MHz
- Mathematical accelerator (Cordic)
- Advanced Motor Control timers
- Fast comparators
- 4Msps ADC-12bit + HW oversampling
- Op-Amp with built-in gain (PGA)
- DAC-12bit
- 1% RC accuracy (UART communication w/o external Xtal)

High-End Consumer

Rechargeable devices, drones, toys

- Low-thickness, small form-factor
- Low consumption in run mode ~ 160µA/MHz
- Embedded analog
- SAI (Sound Audio Interface)
- USB type-C Power Delivery 3.0

Industrial devices

Industrial equipment

- Fast CPU 170MHz
- Mathematical accelerator (Cordic)
- High temperature 125°C
- CAN FD support
- SPI, USART, I²C
- Advanced timers
- Real Time Clock with backup registers
- Dual bank flash for live upgrade
- AES & security

Servers, Telecom, EV Charging station

- Fast CPU 170 MHz
- Mathematical accelerator (Filtering)
- 12ch High Resolution timer (184ps)
- 4Msps ADC-12bit + HW oversampling
- Fast comparators (17ns)
- Embedded analog
- Dual bank flash for live upgrade
- AES & security
- FMAC for 3p3z compensation

Ease Digital Power Conversion 13

Enhance your digital power solutions using the STM32G4's full features High **Resolution Timer** (HRTIM)

HRTimer – Not only High Resolution...

High resolution PWM

- 12 channels with 184ps resolution on frequency and duty cycle
- 184ps is equivalent to 5.4GHz timer clock

Flexible PWM generation

- 7x independent time base to create various shape of PWM
- 6x complementary pair PWM outputs
- Up to 32 set/reset transition per PWM period thx to the built-in crossbar
- Master/Slave configuration for multi phase converter

Multiple Event handler

- 6x Digital and Analog fault input
- 10x Events cycle to cycle current control or PWM restart (constant Ton/Toff)
- Blanking, windowing and digital filter

12 independent channels

Any topology supported from 1x 12 PWM (triple interleaved LLC (servers application) up to 12x1 PWM (multiple independent buck converters (lighting)

Area

Greater Security 15

Integrated security features, ready for tomorrow's needs

User Flash Bank1 Bank2 **Securable Memory Area:** Configurable size Securable Securable Can be secured once **Memory Memory** exitina

Area

- No more access nor debug possible
- Good fit to store critical data
 - Critical routines
 - Keys

Dynamic Efficiency Modes 161

When Mainstream MCU Series meets low-power requirements

Conditions: 25°C, $V_{DD} = 3V$

Note: * without RTC / with RTC

STM32G4 Products Lines 17

General Purpose

Applications Specific

Extensive & Innovative Peripheral Set 18

No compromise on what matters

Unit parameters	STM32G474 Hi-Resolution line	STM32G473 Performance line	STM32G431 Access line		
Core, frequency	Arm Cortex-M4, 170 MHz				
Flash (max)	512 Kbytes (2x2	56KB dual bank)	128 Kbytes single bank		
RAM (up to)	96 KI	22 Kbytes			
CCM -SRAM (code-SRAM)	32 KI	10 Kbytes			
12-bit ADC SAR	4x 1: 4 MS	2x 12-bit 4 MSPS			
Comparator	7	4			
Op amp with 4 built-in gain values with 1% accuracy	6	3			
12-bit DAC	7	4			
Motor Control timer	3x (170	2x (170 MHz)			
CAN-FD	3x		1x		
12 channel Hi-resolution Timer	1x	-	-		
Power supply	1.72 to 3.6 V				

STM32G47x 19

High Resolution and Performance lines [128KB .. 512KB]

- 32-bit Arm Cortex-M4 core with FPU
- ART + CCM-SRAM + **Mathematic Accelerators**
- **Dual Bank Flash with ECC**
- **SRAM** with Parity bit
- +/- 1% internal clock
- 1.72 to 3.6V power supply
- Up to 125°C

FSMC 8-/16-bit (TFT-LCD, SRAM, NOR, NAND) Quad SPI **Accelerators** ART Accelerator™ 32-Kbyte CCM-SRAM **Math Accelerators** Cordic (trigo...) Filtering

Connectivity

4x SPI, 4x I2C, 6x UxART

1x USB 2.0 FS.

1x USB-C PD3.0 (+PHY)

3x CAN-FD

2x I2S half duplex, SAI

External interface

Arm® Cortex®-M4 Up to 170 MHz 213 DMIPS **Floating Point Unit**

Memory Protection Uni Embedded Trace Macrocell

16-channel DMA + MUX

Up to 2x 256-Kbyte Flash memory / ECC **Dual Bank**

96-Kbyte SRAM

Timers

5x 16-bit timers

2x 16-bit basic timers

3x 16-bit advanced motor control timers

2x 32-bit timers

1x 16-bit LP timer

1x HR timer (D-Power) 12-channel w/ 184ps (A. delay line)

Analog

5x 12-bit ADC w/ HW overspl

7x Comparators

7x DAC (3x buff + 4x non-buff)

6x Op-Amp (PGA)

1x temperature sensor

Internal voltage reference

- **High resolution timer**
- 3x Advanced Motor Control timers
- **Rich Advanced Analog**
- 3x CAN Flexible Data rate
- **USB-C Power Delivery3.0**
- **Advanced Security and Safety** features
- Robustness: highest level 5 / FTB/ESD - IEC 61000-4-4

STM32G43x 20

Access line [32KB .. 128KB] and up to 512KB in H1-2020!

- 32-bit Arm Cortex-M4 core with FPU
- ART + CCM-SRAM + **Mathematic Accelerators**
- **Single Bank Flash with ECC**
- **SRAM** with Parity bit
- +/- 1% internal clock
- 1.72 to 3.6V power supply
- Up to 125°C

Connectivity

Timers

- 2x Advanced Motor Control timers
 - **Rich Advanced Analog**
 - **CAN Flexible Data rate**
 - **USB-C Power Delivery3.0**
 - **Advanced Security and Safety** features
 - Robustness: highest level 5 / FTB/ESD - IEC 61000-4-4

STM32G4 Portfolio 21

Flash memory / RAM size (bytes)

	4						
		STM32G484CE	STM32G484RE	STM32G484ME	STM32G484VE	STM32G484QE	
		STM32G474CE	STM32G474RE	STM32G474ME	STM32G474VE	STM32G474QE	
512 K / 128 K		STM32G483CE	STM32G483RE	STM32G483ME	STM32G483VE	STM32G483QE	
		STM32G473CE	STM32G473RE	STM32G473ME	STM32G473VE	STM32G473QE	
		STM32G491CE	STM32G491RE	STM32G491ME	STM32G491VE		
		STM32G474CC	STM32G474RC	STM32G474MC	STM32G474VC	STM32G474QC	
256 K / 128 K		STM32G473CC	STM32G473RC	STM32G473MC	STM32G473VC	STM32G473QC	
EGO IV TEGIN	STM32G491CC	STM32G491RC	STM32G491MC	STM32G491VC		STM32 G4	
128 K / 128 K		STM32G474CB	STM32G474RB	STM32G474MB	STM32G474VB	STM32G474QB	
120 N / 120 N		STM32G473CB	STM32G473RB	STM32G473MB	STM32G473VB	STM32G473QB	
128 K / 32 K	STM32G441KB	STM32G441CB	STM32G441RB	STM32G441MB	STM32G441VB		
	STM32G431KB	STM32G431CB	STM32G431RB	STM32G431MB	STM32G431VB		
64 K / 32 K	STM32G431K8	STM32G431C8	STM32G431R8	STM32G431M8	STM32G431V8		
32 K / 32 K	STM32G431K6	STM32G431C6	STM32G431R6	STM32G431M6	STM32G431V6		
	32-pin LQFP/QFN	48-pin LQFP/QFN/WLCSP	64-pin LQFP/BGA	80-pin LQFP/WLCSP	100-pin LQFP/BGA	128-pin LQFP	→ Pin count

Legend:

Crypto AES-256

Broad Portfolio 22

Portfolio extended to support budget applications efficiently

More memory and pin counts

Flash memory (bytes)	32-pin LQFP QFN	48-pin LQFP QFN	64-pin LQFP BGA WLCSP	80-pin LQFP WLCSP	100-pin LQFP BGA	121-pin BGA	128-pin LQFP
512 K		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
256 K		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
128 K	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
64 K	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
32 K	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

More packages

QFN

LQFP

Note: new packages in STM32 portfolio

STM32G4 Hardware Solutions 23

Accelerate evaluation, prototyping and design

STM32 Nucleo

Flexible prototyping

- NUCLEO-G431RB
- NUCLEO-G474RE
- NUCLEO-G431KB*

Evaluation boards

Full feature STM32G4 evaluation

- STM32G484E-EVAL
- STM32G474F-FVAL
- STM32G474E-EVAL1

Motor Control Pack

Full feature for Motor Control and Analog

P-NUCLEO-IHM03

Discovery kits

Key feature prototyping

- B-G474E-DPOW1*
- B-G431B-ESC1*

Available in distributor stocks from Q3-2019

STM32G4 Software Tools 24

Complete support of Arm Cortex-M ecosystem

All-in-one STM32 programming tool Multi-mode, user-friendly

STM32CubeMX

STM32CubeMX

- · Configure and generate Code
- Conflicts solver

IDEs Compile and Debug

Flexible Solutions

- Partners IDE, like IAR and Keil
- Free IDE based on Eclipse, like STM32CubeIDE*

STM32 Programming Tool

STM32CubeProgrammer

- Flash and/or system memory
- GUI or command line interface

^{*} SW examples will be available in Q4 19

Dedicated Ecosystems

Motor Control

- Complete ecosystem (HW boards, SW Development Kit (SDK), docs and trainings)
 - X-CUBE-MCSDK (v5.4)
 - Motor Control FW library based on STM32Cube HAL and LL
 - Motor control workbench: Graphical configurator of the motor control library linked with STM32CubeMx
 - P-NUCLEO-IHM03: Motor Control Nucleo pack
 - NUCLEO-G431RB Nucleo-64
 - X-NUCLEO-IHM16M1 motor driver expansion board
 - Low Voltage motor

 Motor Profiler: Plug and spin your motor within less than one minute

Digital Power

- Complete ecosystem (HW boards, FW examples, SW tools, docs and trainings)
- Dedicated HRTIM Cook Book AN4539: How to operate the Hi-Resolution timer in different topology
- Digital Power training (PSU and PFC) based on STM32
 G4 series done in collaboration with Biricha (from Q4 2019)

STM32G4 Series - Take Away

Analog-rich MCUs for mixed-signal applications

Performance

170MHz Cortex-M4 coupled with 3x accelerators

Rich and Advanced Integrated Analog ADC, DAC, Op-Amp, Comp.

Safety and security focus

Large portfolio available from NOW!

32..512KB Flash memory 32..128-pin packages

Releasing Your Creativity 27

Backup Slides

