# Impacto Económico del Maíz Transgénico en El Salvador, Honduras y México

Diego Maximiliano Macall

Octubre 2021

#### Introducción

- El maíz transgénico podría tener un impacto económico de USD 1,000 millones en El Salvador.
  - Macall and Smyth (2019).
- El maíz transgénico continua proveyendo beneficios agronómicos y económicos significativo en Honduras.
  - Macall el al. (2020).
- La prohibición de la importación de maíz transgénico y el glifosato en México tendrá significativos costos económicos.
  - Macall el al. (Próximamente).

# Organización

• El Salvador

Honduras

México

#### Introducción – El Salvador

• En 2008-2009 se evaluaron agronómicamente híbridos de maíz GM en El Salvador.

 Marco regulatorio para la comercialización de OGMs existe en El Salvador.

• ¿Cual sería el impacto económico de adoptar un híbrido *Bt* en El Salvador? ¿Qué externalidades tiene esta tecnología?

#### Ensayos con maíz GM



## Área, producción y rendimiento de maíz en El Salvador (1996-2017)



#### Mercado de Semillas de Maíz Blanco en El Salvador (2009)



#### Parámetros Considerados

| Parámetro                                    | Escenario 1 | Escenario 2 |
|----------------------------------------------|-------------|-------------|
| Precio de Equilibrio                         | 255         | 255         |
| Precio de Semilla GM                         | 130         | 130         |
| Cantidad de Equilibrio en toneladas métricas | 700,896     | 700,896     |
| Rendimiento actual (t/ha)                    | 2           | 2           |
| % Incremento de Rendimiento                  | 18          | 18          |
| % Reducción de Costo                         | 9           | 24          |
| Elasticidad de Oferta                        | 0.22        | 0.22        |
| Elasticidad de Demanda (valor absoluto)      | 0.12        | 0.12        |
| Adopción Inicial                             | 30          | 52          |
| Nivel máximo de adopción (%)                 | 90          | 90          |
| Tiempo hasta máxima adopción (años)          | 10          | 10          |

Fuente: Autor

#### **CAFTA-DR**

| Año | Año Calendario | Volumen de Cuota |
|-----|----------------|------------------|
| 10  | 2016           | 42,000           |
| 11  | 2017           | 42,700           |
| 12  | 2018           | 43,400           |
| 13  | 2019           | 44,100           |
| 14  | 2020           | 44,800           |
| 15  | 2021           | 45,500           |
| 16  | 2022           | 46,200           |
| 17  | 2023           | 46,900           |
| 18  | 2024           | 47,600           |
| 19  | 2025           | 48,300           |
| 20  | 2026           | 49,000           |

Fuente: USTR (2019)

#### Precios maíz blanco

| Año  | Precio USD/t |
|------|--------------|
| 2006 | 232.54       |
| 2007 | 241.3        |
| 2008 | 242.9        |
| 2009 | 317.9        |
| 2010 | 296.12       |
| 2011 | 517.22       |
| 2012 | 339.46       |
| 2013 | 292.38       |
| 2014 | 338.58       |

Fuente: MAG (2019)

#### Distribución de excedente económico generado



• 
$$\Delta PS = PtQt (Kt - Zt) (1 + 0.5Zt\eta)$$

• 
$$\Delta CS = PtQt Zt (1 + 0.5Zt\eta)$$

• 
$$K_t = \{ [E(Y)] / \varepsilon - [E(C)] / [1 + E(Y)] \} p A_t (1 - \delta_t)$$

• 
$$Z = K\varepsilon/(\varepsilon + \eta)$$

• 
$$\Delta PS = PtQt (Kt - Zt) (1 + 0.5Zt\eta)$$

• 
$$\Delta CS = PtQt Zt (1 + 0.5Zt\eta)$$

• 
$$K_t = \{ [E(Y)] / \varepsilon - [E(C)] / [1 + E(Y)] \} p A_t (1 - \delta_t)$$

• 
$$Z = K\varepsilon/(\varepsilon + \eta)$$

• 
$$\Delta PS = PtQt (Kt - Zt) (1 + 0.5Zt\eta)$$

• 
$$\Delta CS = PtQt Zt (1 + 0.5Zt\eta)$$

• 
$$K_t = \{ [E(Y)] / \varepsilon - [E(C)] / [1 + E(Y)] \} p A_t (1 - \delta_t)$$

• 
$$Z = K\varepsilon/(\varepsilon + \eta)$$

• 
$$\Delta PS = PtQt (Kt - Zt) (1 + 0.5Zt\eta)$$

• 
$$\Delta CS = PtQt Zt (1 + 0.5Zt\eta)$$

• 
$$K_t = \{ [E(Y)] / \varepsilon - [E(C)] / [1 + E(Y)] \} p A_t (1 - \delta_t)$$

• 
$$Z = K\varepsilon/(\varepsilon + \eta)$$

#### Innovador y Excedente Total

•  $\pi_t = Q_{GMRI} (P_{GMRI} - P_c)$  (Moschini et al. 2000).

• 
$$\Delta TS = \Delta PS + \Delta CS + \pi$$

• VAN = 
$$\sum_{t=0}^{10} \frac{\Delta TS |\Delta PS| \Delta CS |\pi|}{(1+r)^r}$$

#### Innovador y Excedente Total

•  $\pi_t = Q_{GMRI} (P_{GMRI} - P_c)$  (Moschini et al. 2000).

• 
$$\Delta TS = \Delta PS + \Delta CS + \pi$$

• VAN = 
$$\sum_{t=0}^{10} \frac{\Delta TS |\Delta PS| \Delta CS |\pi|}{(1+r)^r}$$

#### Innovador y Excedente Total

•  $\pi_t = Q_{GMRI} (P_{GMRI} - P_c)$  (Moschini et al. 2000).

• 
$$\Delta TS = \Delta PS + \Delta CS + \pi$$

• VAN = 
$$\sum_{t=0}^{10} \frac{\Delta TS |\Delta PS| \Delta CS |\pi|}{(1+r)^r}$$

#### Curva de adopción

• 
$$A_t = A^{MAX} / 1 + e^{-(-\alpha + \beta_t)}$$

• 
$$\beta = [\ln (A_t / A^{MAX} - A_t) - \alpha] 1 / t$$

#### Curva de adopción

• 
$$A_t = A^{MAX} / 1 + e^{-(-\alpha + \beta_t)}$$

• 
$$\beta = [\ln (A_t / A^{MAX} - A_t) - \alpha] 1 / t$$

#### Resultados de Escenario I

| Año  | ΔΤS     | ΔCS     | ΔΡS     | π      |
|------|---------|---------|---------|--------|
| 2016 | 59,003  | 31,430  | 17,143  | 10,430 |
| 2017 | 74,506  | 39,706  | 21,658  | 13,142 |
| 2018 | 91,443  | 48,757  | 26,595  | 16,091 |
| 2019 | 108,891 | 58,091  | 31,686  | 19,114 |
| 2020 | 125,814 | 67,153  | 36,629  | 22,032 |
| 2021 | 141,293 | 75,449  | 41,154  | 24,690 |
| 2022 | 154,710 | 82,646  | 45,080  | 26,984 |
| 2023 | 165,808 | 88,603  | 48,329  | 28,876 |
| 2024 | 174,640 | 93,346  | 50,916  | 30,378 |
| 2025 | 181,453 | 97,006  | 52,913  | 31,534 |
|      |         |         |         |        |
| VAN  | 848,482 | 503,206 | 274,476 | 70,800 |

#### Resultados de Escenario II

| Año  | ΔΤS       | ΔCS     | ΔΡS     | π      |
|------|-----------|---------|---------|--------|
| 2016 | 103,728   | 62,148  | 33,899  | 7,681  |
| 2017 | 111,547   | 66,840  | 36,458  | 8,248  |
| 2018 | 119,744   | 71,760  | 39,142  | 8,842  |
| 2019 | 128,307   | 76,901  | 41,946  | 9,460  |
| 2020 | 137,218   | 82,252  | 44,865  | 10,101 |
| 2021 | 146,456   | 87,800  | 47,891  | 10,764 |
| 2022 | 155,992   | 93,530  | 51,016  | 11,447 |
| 2023 | 165,796   | 99,421  | 54,230  | 12,146 |
| 2024 | 175,832   | 105,453 | 57,520  | 12,859 |
| 2025 | 186,059   | 111,602 | 60,874  | 13,583 |
|      |           |         |         |        |
| VAN  | 1,076,410 | 645,287 | 351,975 | 79,148 |

#### Exportación de miel Salvadoreña (1998-2016)



#### Conclusión – El Salvador

• La comercialización (adopción) de un híbrido Bt en El Salvador tendría un impacto económico de USD 850 millones — 1,000 millones.

• El 90% del beneficio económico generado quedaría en El Salvador.

 Mercados alternos se podrían buscar para colocar la miel actualmente destinada a Alemania.

# Organización

• El Salvador

Honduras

México

#### Introducción – Honduras



#### Producción y rendimiento de maíz en Honduras (1961-2018)



#### ¿Por qué hacer este estudio?

• Falck-Zepeda et al. (2012) fueron de los primeros en medir de manera holística el impacto del maiz GM RI.

 Pero esa encuesta esta basada en información de 2007-2008. ¿Que ha sucedido desde entonces?

## Demografía





- Primary School
- Secondary School (High School)
- University







## Demografía





# Conocimiento de biotecnología

| Overtion                                                                                                                                                            | Yes |     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|
| Question                                                                                                                                                            | %   | SD  |  |
| Q1. Do you know that genetically modified maize is a product of molecular biology with a foundation in genetic modification and that can be applied in agriculture? | 84  | 0.4 |  |
| Q2. Do you know that GM maize is a genetically modified hybrid?                                                                                                     | 97  | 0.2 |  |
| Q3. Have you heard of another biotech crop that is not GM maize?                                                                                                    | 38  | 0.5 |  |

# Comprensión de tecnología maíz GM (áreas de refugio)

| Question                                                                                  | Yes    |     |  |
|-------------------------------------------------------------------------------------------|--------|-----|--|
| Question                                                                                  | %      | SD  |  |
| Q5. Are you familiar with refuge areas?                                                   | 88     | 0.3 |  |
| Q6. Do you or the firm that provides your GM maize seed plant a refuge area on your plot? | 66     | 0.5 |  |
|                                                                                           |        |     |  |
| Q7. Of total maize area, how much of a refuge area do you plant?                          | Number | %   |  |
| 0% of area planted                                                                        | 11     | 34  |  |
| 5% of area planted                                                                        | 10     | 31  |  |
| 10% of area planted                                                                       | 10     | 31  |  |
| Other                                                                                     | 1      | 3   |  |

## Percepción de productores sobre la productividad del maíz GM

| Affirmation                                                                                           | True |     |  |
|-------------------------------------------------------------------------------------------------------|------|-----|--|
| Ammation                                                                                              | %    | SD  |  |
| Q8. Regarding pesticides, I have noticed a reduction in the need to apply them since I plant GM maize | 94   | 0.2 |  |
| Q9. With respect to weed control, I have noticed savings in weed management costs because I use       | 97   | 0.2 |  |
| less herbicides since I use GM maize                                                                  |      |     |  |
| Q10. GM maize requires the same amounts of fertilizer as conventional maize                           | 75   | 0.4 |  |
| Q11. Since I plant GM maize, occasionally I use more than two pesticide applications due to           | 6    | 0.3 |  |
| lepidopteran attacks                                                                                  |      |     |  |
| Q12. I agree that the GM maize hybrid I use has an adequate resistance to lepidopteran attacks        | 94   | 0.3 |  |
| Q13. Producing GM maize increases my manual labor productivity in comparison to conventional          | 63   | 0.5 |  |
| maize                                                                                                 |      |     |  |
| Q14. To produce GM maize, I must change my traditional maize management practices (weed               | 38   | 0.5 |  |
| management, etc)                                                                                      |      |     |  |
| Q15. Producing GM maize, I save a lot of manual labor because of the reduction in the number of       | 84   | 0.4 |  |
| applications (pesticides and herbicides)                                                              |      |     |  |
| Q16. Since I produce GM maize, I have a better yield in terms of maize ears thanks to the absence of  |      |     |  |
| lepidopterans                                                                                         | 97   | 0.2 |  |
| Q17. The production cycle for GM maize is longer than the conventional maize cycle                    | 9    | 0.3 |  |

# Opiniones sobre aspectos económicos de cultivar maíz GM

|                                                                                                  | Very l         | Much | Some           | what | A li           | ttle |
|--------------------------------------------------------------------------------------------------|----------------|------|----------------|------|----------------|------|
| Affirmation                                                                                      |                |      |                |      |                |      |
|                                                                                                  | N <sub>o</sub> | %    | N <sub>o</sub> | %    | N <sub>o</sub> | %    |
| Q19.Since I produce GM maize, my income has been higher                                          | 25             | 78   | 7              | 22   |                |      |
| Q20.Since I produce GM maize, my quality of life has increased due to a better income.           | 14             | 44   | 14             | 44   | 4              | 13   |
| Q21.Producing GM maize allows me to improve my quality of life                                   | 21             | 66   | 11             | 34   |                |      |
| Q22. The income obtained from cultivating GM maize allows me to gradually expand my landholdings | 12             | 38   | 15             | 47   | 5              | 16   |

# Opiniones sobre aspectos ambientales y salud de cultivar maíz GM

| Question and Affirmations                                                                                                                     |    | e   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|                                                                                                                                               | %  | SD  |
| Q25.Do you believe that insecticides used against pests have a negative effect on the health of the person who applies them?                  | 88 | 0.3 |
| Q26.The reduction in number of applications has had some effect on health                                                                     | 34 | 0.5 |
| Q27. Producing GM maize, there are fewer empty bottles of pesticides thrown into the environment.                                             | 78 | 0.4 |
| Q28. GM maize represents a threat to livestock.                                                                                               | 6  | 0.3 |
| Q29. Since I cultivate GM maize, I observe in my plot bees, termites, and ants.                                                               | 81 | 0.4 |
| Q30. Have you, or anyone that applies pesticides against pests experienced health problems during or after applying them in your maize plots? | 25 | 0.4 |

# Numero de aplicaciones de pesticidas y fertilizantes hechas en maíz convencional y maíz GM

|              |                   | Number of Applications |    |                |     |                |    |                |   |                |   |
|--------------|-------------------|------------------------|----|----------------|-----|----------------|----|----------------|---|----------------|---|
| Treatment    | Maíz Hybrid       | C                      | )  | 1-2            | 2   | 3.             | -4 | 5-             | 6 | 7-             | 8 |
|              |                   | N <sub>o</sub>         | %  | N <sub>o</sub> | %   | N <sub>o</sub> | %  | N <sub>o</sub> | % | N <sub>o</sub> | % |
| Insecticides | Conventional (32) | 1                      | 3  | 17             | 53  | 14             | 44 |                |   |                |   |
|              | GM (32)           | 27                     | 84 | 5              | 16  |                |    |                |   |                |   |
| Herbicides   | Conventional (32) | 17                     | 53 | 15             | 47  |                |    |                |   |                |   |
|              | GM (32)           |                        |    | 32             | 100 |                |    |                |   |                |   |
| Fertilizers  | Conventional (32) |                        |    | 24             | 75  | 7              | 22 | 1              | 3 |                |   |
|              | GM (32)           |                        |    | 25             | 78  | 5              | 16 | 1              | 3 | 1              | 3 |

# Costos de producción e ingresos por hectárea de maíz

| Component (US Dollars/ha) | Conventional Maize | GM Maize |                |
|---------------------------|--------------------|----------|----------------|
| Land Rental (per year)    | 353.16             | 353.16   |                |
| Machinery and Equipment   | 189.20             | 189.20   |                |
| Seed Costs                | 75.34              | 180.34   | 139% Increase  |
| Plant Protection Costs    |                    |          |                |
| Insecticides              | 95.45              | 9.59     | 90% decrease   |
| Herbicides                | 46.11              | 68.50    | 48% Increase   |
| Fertilizers               | 171.72             | 156.27   | 10/5 111010000 |
| Sub total                 | 313.28             | 234.36   |                |
| Labor Costs               |                    |          |                |
| Fertilization             | 43.38              | 39.48    |                |
| Herbicide Applications    | 13.11              | 13.11    |                |
| Insecticide Applications  | 30.16              | 6.56     |                |
| Harvest                   | 166.27             | 216.56   |                |
| Drying of Grain           | 87.82              | 87.82    |                |
| Sub total                 | 340.75             | 363.53   |                |
| Total Costs               | 1271.72            | 1320.59  |                |

# Costos de producción e ingresos por hectárea de maíz

| Net Benefit Estimation                  |        |        |               |
|-----------------------------------------|--------|--------|---------------|
| a) Expected Production (ton/ha)         | 5      | 7.5    | 50% Increase  |
| b) Expected price (\$/ton)              | 307.11 | 307.11 |               |
| c) Price of Production (a)*(b) in \$/ha | 1,536  | 2,304  |               |
| d) Production Costs (\$ /ha)            | 1,272  | 1,320  |               |
| e) Revenue/ha (c)-(d) in \$             | 264    | 983    | 272% Increase |
| f) Revenue/ha (landowner)               | 617    | 1,336  |               |

#### Conclusión – Honduras

• El maíz GM continua superando al maíz convencional.

• Los ingresos obtenidos utilizando maíz GM son mas altos que con maíz convencional.

• La fuente principal de información sobre el maíz GM continua siendo la empresa que distribuye la semilla.

# Organización

• El Salvador

Honduras

México

- El 9 de Diciembre 2020 se publica un borrador de decreto presidencial que pide reducir paulatinamente el uso del glifosato y las importaciones del maíz GM (GAIN, 2020).
- El 31 de Diciembre 2020, (¡22 días después!), el borrador se convierte en decreto presidencial (SEGOB, 2020). El maíz se producirá mediante agroecología y el maíz GM queda prohibido.
- Inmediatamente el sector que produce concentrados se pronuncia en contra del decreto.

- El 9 de Diciembre 2020 se publica un borrador de decreto presidencial que pide reducir paulatinamente el uso del glifosato y las importaciones del maíz GM (GAIN, 2020).
- El 31 de Diciembre 2020, (¡22 días después!), el borrador se convierte en decreto presidencial (SEGOB, 2020). El maíz se producirá mediante agroecología y el maíz GM queda prohibido.
- Inmediatamente el sector que produce concentrados se pronuncia en contra del decreto.

- El 9 de Diciembre 2020 se publica un borrador de decreto presidencial que pide reducir paulatinamente el uso del glifosato y las importaciones del maíz GM (GAIN, 2020).
- El 31 de Diciembre 2020, (¡22 días después!), el borrador se convierte en decreto presidencial (SEGOB, 2020). El maíz se producirá mediante agroecología y el maíz GM queda prohibido.
- Inmediatamente el sector que produce concentrados se pronuncia en contra del decreto.

• El maíz amarillo es el principal ingrediente en los concentrados para animales de granja en México, prácticamente todo es importado de EEUU (CONAFAB, 2021; ERS, 2021).

- México tiene una relación compleja con el maíz GM.
  - Quist and Chapela (2001).
  - Comisión para la cooperación ambiental (CEC, 2004) que maíz GM activo entra a México mediante importaciones, y también mediante trabajadores que vuelven de EEUU.

## ¿Cual es el impacto económico de esta política?

- Nuestra Metodología:
  - 1. Usamos un modelo de *equilibrio parcial* para medir el bienestar económico generado a partir del comercio de maíz amarillo entre México y EEUU en los últimos 20 años.
  - 2. Usamos el método de *excedente económico* para proyectar el cambio en el bienestar económico de la decisión Mexicana de sustituir la producción de maíz mediante métodos convencionales, por la producción de maíz mediante la agroecología.

# Área, producción y rendimiento maíz amarillo en México (2000-2019)



# Área, producción y rendimiento maíz amarillo en México (2000-2019)



## Importaciones de maíz amarillo (2000-2019)



## Trascendencia de adoptar agroecología

- En promedio 384,000 ha son sembradas con maiz amarillo anualmente en México.
- Promedio de productividad en los últimos 20 años es de 5 t/ha con agricutura convencional.
- Con agicultura convencional 2.35 M ha se van a necesitar sembrar anualmente (+512%).
- Con agroecología, -31% perdida en productividad, 3.95 M ha se van a necesitar sembrar anualmente (+761%).

# Costos de producción maíz amarillo en México

| Cost component                             | Conventional yellow maize | Agroecological yellow maize |
|--------------------------------------------|---------------------------|-----------------------------|
| Land Preparation                           | <b>\$154</b>              | <b>\$154</b>                |
| Planting                                   | <b>\$217</b>              | <b>\$217</b>                |
| Fertilization                              | <b>\$407</b>              | <b>\$0</b>                  |
| Plot management                            | <b>\$118</b>              | <b>\$118</b>                |
| Irrigation                                 | <b>\$610</b>              | <b>\$610</b>                |
| Pest management (insects, weeds, diseases) | <b>\$217</b>              | \$415                       |
| Harvest                                    | \$133                     | \$133                       |
| Incidentals                                | <b>\$129</b>              | <b>\$129</b>                |
| Cost per MT                                | \$1,985                   | \$1,776                     |

Source: Adapted from FIRA (2021).

Note: Prices are in USD at 2010 nominal USD/Peso exchange rate.

# Costos de producción maíz amarillo en México

| Cost component                             | Conventional yellow maize | Agroecological yellow maize |
|--------------------------------------------|---------------------------|-----------------------------|
| Land Preparation                           | <b>\$154</b>              | \$154                       |
| Planting                                   | \$217                     | <b>\$217</b>                |
| Fertilization                              | <b>\$407</b>              | <b>\$0</b>                  |
| Plot management                            | <b>\$118</b>              | <b>\$118</b>                |
| Irrigation                                 | \$610                     | <b>\$610</b>                |
| Pest management (insects, weeds, diseases) | <b>\$217</b>              | <b>\$415</b>                |
| Harvest                                    | \$133                     | <b>\$133</b>                |
| Incidentals                                | <b>\$129</b>              | <b>\$129</b>                |
| Cost per MT                                | <b>\$1,985</b>            | \$1,776                     |

Source: Adapted from FIRA (2021).

Note: Prices are in USD at 2010 nominal USD/Peso exchange rate.

## Parámetros

| Parameter                                  | Scenario 1 | Scenario 2 | Scenario 3 |
|--------------------------------------------|------------|------------|------------|
| Initial Equilibrium Price                  | 191        | 191        | 191        |
| Agroecology Maize Seed Price               | 0          | 0          | 0          |
| Equilibrium Quantity Metric Ton            | 13,636,908 | 13,636,908 | 19,899,882 |
| % Change in Demand per year                | 0          | 1          | 0          |
| Current Yield (MT/ha)                      | 5          | 5          | 5          |
| % Yield Increase                           | -31        | -31        | -31        |
| % Cost Reduction                           | 10.5       | 10.5       | 10.5       |
| Supply Elasticity $(\varepsilon)$          | 0.22       | 0.22       | 0.22       |
| Demand Elasticity, absolute value $(\eta)$ | 0.12       | 0.12       | 0.12       |
| Initial Adoption Level (%)                 | 100        | 100        | 100        |
| Maximum Adoption Level (%)                 | 100        | 100        | 100        |
| Lag to maximum Adoption Level (years)      | 0          | 0          | 0          |

## Parámetros

| Parameter                                  | Scenario 1 | Scenario 2 | Scenario 3 |
|--------------------------------------------|------------|------------|------------|
| Initial Equilibrium Price                  | 191        | 191        | 191        |
| Agroecology Maize Seed Price               | 0          | 0          | 0          |
| Equilibrium Quantity Metric Ton            | 13,636,908 | 13,636,908 | 19,899,882 |
| % Change in Demand per year                | 0          | 1          | 0          |
| Current Yield (MT/ha)                      | 5          | 5          | 5          |
| % Yield Increase                           | -31        | -31        | -31        |
| % Cost Reduction                           | 10.5       | 10.5       | 10.5       |
| Supply Elasticity $(\varepsilon)$          | 0.22       | 0.22       | 0.22       |
| Demand Elasticity, absolute value $(\eta)$ | 0.12       | 0.12       | 0.12       |
| Initial Adoption Level (%)                 | 100        | 100        | 100        |
| Maximum Adoption Level (%)                 | 100        | 100        | 100        |
| Lag to maximum Adoption Level (years)      | 0          | 0          | 0          |

## Parámetros

| Parameter                                  | Scenario 1 | Scenario 2 | Scenario 3 |
|--------------------------------------------|------------|------------|------------|
| Initial Equilibrium Price                  | 191        | 191        | 191        |
| Agroecology Maize Seed Price               | 0          | 0          | 0          |
| <b>Equilibrium Quantity Metric Ton</b>     | 13,636,908 | 13,636,908 | 19,899,882 |
| % Change in Demand per year                | 0          | 1          | 0          |
| Current Yield (MT/ha)                      | 5          | 5          | 5          |
| % Yield Increase                           | -31        | -31        | -31        |
| % Cost Reduction                           | 10.5       | 10.5       | 10.5       |
| Supply Elasticity $(\varepsilon)$          | 0.22       | 0.22       | 0.22       |
| Demand Elasticity, absolute value $(\eta)$ | 0.12       | 0.12       | 0.12       |
| Initial Adoption Level (%)                 | 100        | 100        | 100        |
| Maximum Adoption Level (%)                 | 100        | 100        | 100        |
| Lag to maximum Adoption Level (years)      | 0          | 0          | 0          |

### Mercado Mexicano de maíz de amarillo



# Mexican decision to implement agroecology



#### Modelo de Distribución de excedente

• 
$$\Delta PS = PtQt (Kt - Zt) (1 + 0.5Zt\eta)$$

• 
$$\Delta CS = PtQt Zt (1 + 0.5Zt\eta)$$

• 
$$K_t = \{ [E(Y)] / \varepsilon - [E(C)] / [1 + E(Y)] \} p A_t (1 - \delta_t)$$

• 
$$Z = K\varepsilon/(\varepsilon + \eta)$$

# Excedente económico de producción e importaciones de maíz amarillo en México (2000-2019)



## Excedente económico generado adoptando agroecología







### Excedente económico generado adoptando agroecología



### Precio de equilibrio por tonelada métrica de maíz amarillo







#### Conclusión – México

Negar las importaciones de maíz amarillo va a salir ¡caro!

 Siendo conservador, el precio por 1 MT de maíz amarillo incrementara un 81%.

 ¿Tiene México las condiciones agroclimáticas para producir anualmente 13 millones de toneladas métricas de maíz amarillo?

# ¡Gracias!