

ADVANCED OPERATING SYSTEMS AND NETWORKS

Computer Science Engineering Universidad Complutense de Madrid

1.1. IPv4 Review. DHCP

PROFESSORS:

Rubén Santiago Montero Eduardo Huedo Cuesta

OTHER AUTHORS:

Rafael Moreno Vozmediano Juan Carlos Fabero Jiménez

TCP/IP Architecture

IP (Internet Protocol)

Network Protocol in Internet

- Provides a basic service for packet delivery send packets between hosts even in different networks
- Connectionless, unreliable ("best effort") protocol
 - No detection of lost packets
 - Packets may arrive out of order
 - No detection of duplicate packets

Basic Functions

- Addressing
 - Global addressing scheme

- size of packet > MTU
 - DF (dont fragment)=1 => rejection (ICMP
 msg)
 - DF=0 =>fragmentation

- Datagram fragmentation and reassembly
 - Division of packets into smaller fragments to be accepted by the network
- Datagram forwarding
 - Packet forwarding based on routing table information
 - Protocols to create routing tables (RIP, OSPF, BGP)

Structure and Notation

- An IPv4 address has 32 bits (4 bytes)
- Represented in "dotted decimal notation" (e.g. 10.0.0.1)

CIDR (Classless Inter Domain Routing)

- Tries to alleviate the address exhaustion problem
- Removes fixed structure based on classes
- Address space divided in blocks of arbitrary size
- Represented in "CIDR notation", including network prefix length after a slash

Network Mask

- Used to determine network prefix of an IP address (logical AND)
- Represented in dotted decimal or CIDR notation

Network Addresses

- Used to represent a whole network in routing tables
- Never used as a target address and never assigned to a host

Broadcast Addresses

Used to send a packet to all the hosts in a network

Loopback Addresses

- Addresses for local loop
- Format: 127.x.y.z (usually 127.0.0.1)

Private Addresses

- Set of addresses reserved for private use
- Not valid for use in Internet You need an address translation protocol to use these in the internet
- Ranges for private IP addresses are the following:

```
    10.0.0.0 - 10.255.255.255
    10.0.0.0 - 10.255.255.255
```

172.16.0.0 - 172.31.255.255 ~ 16 class-B private networks

192.168.0.0 - 192.168.255.255 ~ 256 class-C private networks

Multicast Addresses (224.0.0.0/4) - RFC 1112

• Logically identify a group of hosts in the network segment. Examples:

```
224.0.0.1 (all hosts)
```

224.0.0.2 (all routers)

o 224.0.0.251 (mDNS)

Relation to link layer (Ethernet - type 0x0800, RFC 7042 - Section 2.1.1)

○ IP: 224.0.0.1 • 23 bits

O MAC: 01:00:5E:00:00:01

IP: Datagram Format

ARP (Address Resolution Protocol)

Target: To establish the correspondence between IP and MAC addresses

ARP Table

Temporarily keeps IP-to-MAC address associations

Net to Device	Media Table IP Address	Mask	Flags	Phys Addr
le0	147.96.48.203	255.255.255.255		00:00:b4:c3:c8:f4
le0	147.96.37.196	255.255.255.255		00:a0:24:57:78:3e
le0	147.96.48.217	255.255.255.255		00:20:18:2f:1d:60

ARP (Address Resolution Protocol)

ICMP (Internet Control Message Protocol)

Characteristics

- Protocol for the exchange of control messages in the network
- Messages can be classified in two types:
 - Error, generated in response to errors in IP operations
 - Informative, used for diagnostics or control purposes (e.g. presence or status of a given system)

Informative Messages			
Туре	Meaning		
0	Echo Reply		
5	Redirect		
8	Echo Request		
9	Router Solicitation		
10	Router Advertisement		

ICMP: Echo Request/Reply

- Used to check if a host is reachable
- Format
 - Identifier: To establish correspondence between request and reply (same identifier)
 - Sequence: Also used to establish correspondence when multiple consecutive requests are sent with the same identifier
 - Data: A given number of random bytes
- The ping command sends Echo Request messages and waits for Echo Reply messages

DHCP (Dynamic Host Configuration Protocol)

- Provides automatic configuration of network parameters
- used when a client connects to a network

- IP address and network mask
- Default router
- DNS servers
- Other network parameters and services

History

- RARP (Reverse ARP) is only useful in the network segment and just provides IP addresses
- BOOTP (Bootstrap Protocol) solves RARP limitations, but only supports static configurations (similar to DHCP in static configuration)
- Characteristics (RFC 2131)

request for comment

Based on BOOTP

trivial file tranfer protocol

- Client/server protocol over UDP using ports 67 for server and 68 for client (client port is not ephemeral) its not a random port provided by the OS
- Error control based on checksums, timeouts and retransmissions
- ∘ ¹ TFTP protocol to transfer files with additional information or boot images
- DHCP Relay Agent for servers/clients in different networks

DHCP: State Diagram

- DHCPDISCOVER: Client broadcast to locate available servers (may contain the last assigned address and suggested lease time)
- DHCPOFFER: Reply from servers, with an offer of configuration parameters (possibly more than one)
- DHCPREQUEST: Client broadcast to request an offer or extend a lease, specifying the selected server as an option (Server Identifier, code 54)
- DHCPACK: Server broadcast to confirm and commit the offer, including the definitive parameters and lease duration
- DHCPRELEASE: Client message to inform the server that the use of the IP address has finalized and cancelling remaining lease (not mandatory)

Length in byted defined in the length field.

Opcode: 0x01 (request), 0x02 (reply)

Hw type - length: 1 - 6 for Ethernet

Trans. ID: Correspondence between request and reply

Your IP: Offered by the server

Server name - Boot file name:

BOOTP compatibility

Options: Configuration information (RFC 2132)

- DNS servers
- Hostname
- TCP/IP (MTU, TTL...)
- Servers for NTP, SMTP, POP3...
- DHCP extensions (DHCP Message Type, Server ID, Client ID, TFTP Server, Lease Time...)