Learning Sets of Rules

[Read Ch. 10] [Recommended exercises 10.1, 10.2, 10.5, 10.7, 10.8]

- Sequential covering algorithms
- FOIL
- Induction as inverse of deduction
- Inductive Logic Programming

Learning Disjunctive Sets of Rules

Method 1: Learn decision tree, convert to rules

Method 2: Sequential covering algorithm:

- 1. Learn one rule with high accuracy, any coverage
- 2. Remove positive examples covered by this rule
- 3. Repeat

230

Sequential Covering Algorithm

SEQUENTIAL-

 ${\tt COVERING}(Target_attribute, Attributes, Examples, Thresholds, Examples, Thresholds, Examples, Thresholds, Examples, Thresholds, Examples, Examples, Thresholds, Examples, E$

- $Learned_rules \leftarrow \{\}$
- $Rule \leftarrow \text{LEARN-ONE-}$ $\text{RULE}(Target_attribute, Attributes, Examples)$
- while Performance(Rule, Examples)
 - > Threshold, do
 - $-Learned_rules \leftarrow Learned_rules + Rule$
 - $-Examples \leftarrow Examples \{\text{examples} \text{correctly classified by } Rule\}$
 - $-Rule \leftarrow \text{LEARN-ONE-}$ RULE($Target_attribute, Attributes, Examples$)
- $Learned_rules \leftarrow \text{sort } Learned_rules \text{ accord to}$ PERFORMANCE over Examples
- return Learned_rules

Learn-One-Rule

LEARN-ONE-RULE(Target_attribute, Attributes, Examples, k)

- Best_hypothesis ← true
- $Candidate_hypothesis \leftarrow \{true\}$
- 当 Candidate hypothesis 不空, 做以下操作:
 - 1. 生成紧邻更特殊的候选假设
 - ●All_constraints ← 所有形式为(a=v)的约束的集合,其中 a 为 Attributes 的成员,而 v 为出现在当前 Examples 集合中的 a 值
 - ●New_Candidate_hypothesis ← 对 Candidate_hypothesis 中每个 h,对
 All constraints 中的每个 c, 通过加入约束 c 创建一个 h 的特化式
 - ●从 New_Candidate_hypothesis 中移去任意重复的、不一致的或非极大特殊化的假设
 - 2. 更新 Best_hypothesis
 - ●对 New_Candidate_hypothesis 中所有 h 做以下操作:
 - ●如果(PERFORMANCE(h, Examples, Target_attribute)
 - > PERFORMANCE(Best_hypothesis, Examples, Target_attribute))
 则 Best_hypothesis ← h
 - 3. 更新 Candidate_hypothesis
 - ●Candidate_hypothesis ← New_Candidate_hypothesis 中 k 个最佳成员,按照 PERFORMANCE 度量
- •返回一个如下形式的规则:
- "如果 Best_hypothesis,则 prediction",其中 prediction 为在与 Best_hypothesis 匹配的 Examples 中最频繁的 Target_attribute 值

PERFORMANCE(h, Examples, Target_attribute)

- •h_examples ← 与 h 匹配的 Examples 子集
- ●返回 -Entropy(h_ examples),其中 Entropy 是关于 Target_attribute 的熵

-Entropy(h_examples)=
$$\sum_{i=1}^{c} p_i \log_2 p_i$$

LEARN-ONE-RULE

- $Pos \leftarrow positive Examples$
- $Neg \leftarrow negative \ Examples$
- while Pos, do

Learn a NewRule

- $-NewRule \leftarrow most general rule possible$
- $-NewRuleNeg \leftarrow Neg$
- while NewRuleNeg, do $Add\ a\ new\ literal\ to\ specialize\ NewRule$
 - 1. $Candidate_literals \leftarrow$ generate candidates
 - 2. $Best_literal \leftarrow \operatorname{argmax}_{L \in Candidate \exists iterals}$ Performance(SpecializeRule(NewRule, L))
 - 3. add Best_literal to NewRule preconditions
 - 4. $NewRuleNeg \leftarrow \text{subset of } NewRuleNeg$ that satisfies NewRule preconditions
- $-Learned_rules \leftarrow Learned_rules + NewRule$
- $-Pos \leftarrow Pos \{\text{members of } Pos \text{ covered by } NewRule\}$
- Return Learned_rules

Subtleties: Learn One Rule

- 1. May use beam search
- 2. Easily generalizes to multi-valued target functions
- 3. Choose evaluation function to guide search:
 - Entropy (i.e., information gain)
 - Sample accuracy:

$$\frac{n_c}{n}$$

where $n_c = \text{correct rule predictions}$, n = all predictions

• m estimate:

$$\frac{n_c + mp}{n + m}$$

Variants of Rule Learning Programs

- Sequential or simultaneous covering of data?
- General \rightarrow specific, or specific \rightarrow general?
- Generate-and-test, or example-driven?
- Whether and how to post-prune?
- What statistical evaluation function?

Learning First Order Rules

Why do that?

• Can learn sets of rules such as

$$Ancestor(x,y) \leftarrow Parent(x,y) Ancestor(x,y) \leftarrow Parent(x,z) \land Ancestor(z,y)$$

• General purpose programming language Prolog: programs are sets of such rules

- 常量、变量、谓词、函数
- 项:任意常量、变量、应用到项集合上的函数。Mary、 x、age(Mary)、age(x)
- ◆ 文字(literal): 应用到项集合上的谓词及其否定。
 Female(Mary)、¬ Female(x)、Greater_than(age(Mary),20)
- 负文字:谓词为否定的文字。¬Female(x)
- 正文字: 如: Female(x)
- •Horn子句:

$$H \leftarrow (L_1 \land ... \land L_n)$$

其中: H, L₁,..., L_n为正文字

First Order Rule for Classifying Web Pages

[Slattery, 1997]

 $course(A) \leftarrow \\ has-word(A, instructor), \\ Not has-word(A, good), \\ link-from(A, B), \\ has-word(B, assign), \\ Not link-from(B, C)$

Train: 31/31, Test: 31/34

$FOIL(Target_predicate, Predicates, Examples)$

- $Pos \leftarrow positive Examples$
- $Neg \leftarrow \text{negative } Examples$
- while Pos, do

Learn a NewRule

- $-NewRule \leftarrow most general rule possible$
- $-NewRuleNeg \leftarrow Neg$
- while NewRuleNeg, do $Add\ a\ new\ literal\ to\ specialize\ NewRule$
 - 1. $Candidate_literals \leftarrow$ generate candidates
 - $2. \ Best_literal \leftarrow \\ \operatorname{argmax}_{L \in Candidate_literals} Foil_Gain(L, NewRule)$
 - 3. add $Best_literal$ to NewRule preconditions
 - 4. $NewRuleNeg \leftarrow \text{subset of } NewRuleNeg$ that satisfies NewRule preconditions
- $-Learned_rules \leftarrow Learned_rules + NewRule$
- $-Pos \leftarrow Pos \{\text{members of } Pos \text{ covered by } NewRule\}$
- Return Learned_rules

Specializing Rules in FOIL

Learning rule: $P(x_1, x_2, ..., x_k) \leftarrow L_1 ... L_n$ Candidate specializations add new literal of form:

- $Q(v_1, \ldots, v_r)$, where at least one of the v_i in the created literal must already exist as a variable in the rule.
- $Equal(x_j, x_k)$, where x_j and x_k are variables already present in the rule
- The negation of either of the above forms of literals

Information Gain in FOIL

$$Foil_{-}Gain(L, R) \equiv t \left(\log_2 \frac{p_1}{p_1 + n_1} - \log_2 \frac{p_0}{p_0 + n_0} \right)$$

Where

- \bullet L is the candidate literal to add to rule R
- p_0 = number of positive bindings of R
- n_0 = number of negative bindings of R
- p_1 = number of positive bindings of R + L
- n_1 = number of negative bindings of R + L
- t is the number of positive bindings of R also covered by R+L

Note

• $-\log_2 \frac{p_0}{p_0+n_0}$ is optimal number of bits to indicate the class of a positive binding covered by R

Induction is finding h such that

$$(\forall \langle x_i, f(x_i) \rangle \in D) \ B \land h \land x_i \vdash f(x_i)$$

where

- x_i is ith training instance
- $f(x_i)$ is the target function value for x_i
- B is other background knowledge

So let's design inductive algorithm by inverting operators for automated deduction!

"pairs of people, $\langle u, v \rangle$ such that child of u is v,"

```
f(x_i): Child(Bob, Sharon)
```

 $x_i: Male(Bob), Female(Sharon), Father(Sharon, Bob)$

 $B: Parent(u, v) \leftarrow Father(u, v)$

What satisfies $(\forall \langle x_i, f(x_i) \rangle \in D) \ B \land h \land x_i \vdash f(x_i)$?

 $h_1: Child(u,v) \leftarrow Father(v,u)$

 $h_2: Child(u,v) \leftarrow Parent(v,u)$

Induction is, in fact, the inverse operation of deduction, and cannot be conceived to exist without the corresponding operation, so that the question of relative importance cannot arise. Who thinks of asking whether addition or subtraction is the more important process in arithmetic? But at the same time much difference in difficulty may exist between a direct and inverse operation; ... it must be allowed that inductive investigations are of a far higher degree of difficulty and complexity than any questions of deduction. . . .

(Jevons 1874)

We have mechanical deductive operators

$$F(A, B) = C$$
, where $A \wedge B \vdash C$

need inductive operators

$$O(B, D) = h$$
 where $(\forall \langle x_i, f(x_i) \rangle \in D) (B \land h \land x_i) \vdash f(x_i)$

Positives:

- ullet Subsumes earlier idea of finding h that "fits" training data
- Domain theory B helps define meaning of "fit" the data

$$B \wedge h \wedge x_i \vdash f(x_i)$$

ullet Suggests algorithms that search H guided by B

Negatives:

• Doesn't allow for noisy data. Consider

$$(\forall \langle x_i, f(x_i) \rangle \in D) \ (B \land h \land x_i) \vdash f(x_i)$$

- \bullet First order logic gives a huge hypothesis space H
 - \rightarrow overfitting...
 - \rightarrow intractability of calculating all acceptable h's

Deduction: Resolution Rule

$$\begin{array}{c|ccc} P & \vee & L \\ \neg L & \vee & R \\ \hline P & \vee & R \end{array}$$

- 1. Given initial clauses C_1 and C_2 , find a literal L from clause C_1 such that $\neg L$ occurs in clause C_2
- 2. Form the resolvent C by including all literals from C_1 and C_2 , except for L and $\neg L$. More precisely, the set of literals occurring in the conclusion C is

$$C = (C_1 - \{L\}) \cup (C_2 - \{\neg L\})$$

where \cup denotes set union, and "—" denotes set difference.

Inverting Resolution

Inverted Resolution (Propositional)

- 1. Given initial clauses C_1 and C, find a literal L that occurs in clause C_1 , but not in clause C.
- **2.** Form the second clause C_2 by including the following literals

$$C_2 = (C - (C_1 - \{L\})) \cup \{\neg L\}$$

First order resolution

First order resolution:

- 1. Find a literal L_1 from clause C_1 , literal L_2 from clause C_2 , and substitution θ such that $L_1\theta = \neg L_2\theta$
- 2. Form the resolvent C by including all literals from $C_1\theta$ and $C_2\theta$, except for $L_1\theta$ and $\neg L_2\theta$. More precisely, the set of literals occurring in the conclusion C is

$$C = (C_1 - \{L_1\})\theta \cup (C_2 - \{L_2\})\theta$$

Inverting First order resolution

$$C_2 = (C - (C_1 - \{L_1\})\theta_1)\theta_2^{-1} \cup \{\neg L_1\theta_1\theta_2^{-1}\}$$

Cigol

Progol

Progol: Reduce comb explosion by generating the most specific acceptable h

- 1. User specifies H by stating predicates, functions, and forms of arguments allowed for each
- 2. Progol uses sequential covering algorithm. For each $\langle x_i, f(x_i) \rangle$
 - Find most specific hypothesis h_i s.t. $B \wedge h_i \wedge x_i \vdash f(x_i)$
 - actually, considers only k-step entailment
- 3. Conduct general-to-specific search bounded by specific hypothesis h_i , choosing hypothesis with minimum description length