

E-values: Calibration, combination, and applications

Sam Rosenberg University of Pennsylvania rosesamk@sas.upenn.edu

April 7, 2022

Outline

Motivations

Background

Basic definitions Calibrating e- and p-values Merging e-values

Testing multiple hypotheses

Definitions
FWV arbitrary e-value adjustment
FWV independent e-value adjustment

Conclusion

Bibliography

The multiple comparisons problem

- Consider a meta-analysis in which we want to test a hypothesis common to a number of past studies
- What happens if we cannot access each of the original datasets?
 - Can we combine information from published results to perform the analysis?
- ► In practice, often combine p-values for multiple testing or testing multiple hypotheses
 - Class of functions for merging p-values complicated¹
 - Class of functions for merging e-values, an alternative, is much nicer²

¹Vovk, B. Wang, and R. Wang 2022.

²Vovk and R. Wang 2021.

Setting

- Consider a probability space (Ω, \mathcal{A}, Q) with sample space Ω (a set), event space \mathcal{A} (a σ -algebra on Ω), and probability measure Q
- ► For a random variable $X: \Omega \to S \subseteq \overline{\mathbb{R}}$ on our probability space, denote its expectation with respect to Q by $\mathbb{E}^Q[X] := \int_{\Omega} X \, dQ$
 - ▶ We write $\mathbb{E}[X]$ when Q is obvious from context

- ▶ An e-variable $E:\Omega \to [0,\infty]$ is an extended random variable with $\mathbb{E}^Q[E] \leq 1$
 - Any value taken by an e-variable (a realization of the random variable) is called an e-value
 - lacktriangle The set of all e-variables for our probability space is denoted \mathcal{E}_Q
 - Larger values of E are stronger evidence against the null hypothesis Q (e.g. since $Q(E \ge e) \le e^{-1}$ by Markov's inequality)
- ▶ Why do we let $E = \infty$?
 - ▶ When testing a null hypothesis measure Q with a pre-specified e-variable E, an observed e-value of $E(\omega) = \infty$ allows us to reject Q

P-values

▶ A p-variable is a $P: \Omega \rightarrow [0,1]$ s.t.

$$\forall \epsilon \in (0,1), \ Q(P \le \epsilon) \le \epsilon$$

- P-values are defined similarly to e-values
- PQ denotes the set of all p-variables for our probability space

Calibrators: P-values to e-values

- ► Calibrators convert between p-values and e-values (and vice versa):
 - ▶ A p-to-e calibrator is a decreasing function $f:[0,1] \to [0,\infty]$ if for any probability space (Ω, \mathcal{A}, Q) and any p-variable $P \in \mathcal{P}_Q$, $f(P) \in \mathcal{E}_Q$
 - i.e. for any probability space, the p-variables on that space are transformed to e-variables on that space by f
 - A calibrator f dominates another calibrator g if $f \ge g$ and strictly dominates if $f \ne g$
 - A calibrator is admissible if it isn't strictly dominated by another calibrator

P-to-e calibrators characterization

We have the following characterization of (admissible) p-to-e calibrators:

Theorem 1

A decreasing function $f:[0,1]\to [0,\infty]$ is a p-to-e calibrator iff $\int_0^1 f(p)\,dp \le 1$. It is admissible iff f is upper semicontinuous, $f(0)=\infty$, and

 $\int_0^1 f(p) dp = 1.$

Since $\int_0^1 \kappa p^{\kappa-1} = 1$ for $\kappa \in (0,1)$, an example family of calibrators immediately following from this result is:

$$\Big\{f_{\kappa}(p):=\kappa p^{\kappa-1}\,|\,\kappa\in(0,1)\Big\}.$$

f is a p-to-e calibrator $\Rightarrow \int_0^1 f \leq 1$: This follows immediately, taking $(\Omega, \mathcal{A}, Q) = ([0,1], \sigma([0,1]), \mu)$ and $P = \mathrm{id}_{[0,1]}$, where μ is the uniform measure on [0,1].

 $\int_0^1 f \le 1 \Rightarrow f$ is a p-to-e calibrator: Suppose P is a p-variable and P' is uniform on [0,1]. Then $Q(P < x) \le x =: Q(P' < x)$ for any $x \in (0,1)$ since P is a p-variable and by definition of P' as uniform.

So $Q(f(P) > y) \le Q(f(P') > y)$ for any $y \in (0,1)$ since f is decreasing. Then $\mathbb{E}[f(P)] \le \mathbb{E}[f(P')] = \int_0^1 f(p) dp \le 1$, where the equality holds since P' is uniform on [0,1].

We omit the proof of the latter statement for brevity, but it follows readily from the definitions.

Calibrators: E-values to p-values

- ▶ The case for converting from e-values to p-values is similar:
 - An e-to-p calibrator is a decreasing function $f:[0,\infty] \to [0,1]$ iff for any probability space (Ω,\mathcal{A},Q) and any e-variable $E \in \mathcal{E}_Q$, $f(E) \in \mathcal{P}_Q$
 - (Strict) domination and admissibility are defined analogously to before

E-to-p calibrators characterization

Similar to Theorem 1, we can characterize (admissible) e-to-p calibrators:

Theorem 2

The function $f:[0,\infty] \to [0,1]$ given by $f(t) := \min(1,t^{-1})$ is an e-to-p calibrator. In fact, it dominates every other e-to-p calibrator and is the only admissible e-to-p calibrator.

So, there are effectively many admissible p-to-e calibrators, but only a single admissible e-to-p calibrator.

 $m{f(t)}$ is an e-to-p calibrator: For $E \in \mathcal{E}_Q$ and $\epsilon \in (0,1)$,

$$Q(f(E) \le \epsilon) = Q(\epsilon^{-1} \le f(E)^{-1}) = Q(\epsilon^{-1} \le E) \le \frac{\mathbb{E}^{Q}[E]}{\epsilon^{-1}} \le \epsilon,$$

where the second equality is because $\epsilon^{-1} > 1$ so $f(E)^{-1} = E$ when $\epsilon^{-1} \le f(E)^{-1}$, the first inequality uses Markov's inequality, and the last inequality is true because E is an e-variable.

f(t) dominates any e-to-p calibrator: Let g be another e-to-p calibrator. Note that it is sufficient to show that f dominates g. Suppose that for some $t_0 \in [0,\infty]$, $g(t_0) < f(t_0) = \min(1,t_0^{-1})$. We have two cases:

- ▶ When $g(t_0) < f(t_0) = t_0^{-1}$ for some $t_0 > 1$, consider an e-variable E that equals t_0 with probability $1/t_0$ and is 0 otherwise. Note that $g(E) = g(t_0) < t_0^{-1}$ with probability t_0^{-1} . But if g(E) was a p-variable, then $P(g(E) \le g(t_0)) \le g(t_0) < t_0^{-1}$, indicating a contradiction (since $t_0^{-1} = P(g(E) = g(t_0)) \le P(G(E) \le g(t_0))$.
- When $g(t_0) < f(t_0) = 1$ for some $t_0 \in [0,1]$, consider an e-variable E that equals 1 a.s. We have $g(E) = g(t_0) < 1$ a.s., so $P(g(E) < t_0) = 1 > t_0$ and g(E) cannot be a p-variable.

An e-merging function of $K \geq 2$ e-values is an increasing Borel function $F: [0, \infty)^K \to [0, \infty)$ s.t. for any probability space (Ω, \mathcal{A}, Q) and random variables E_1, \ldots, E_K on the space,

$$E_1,\ldots,E_K\in\mathcal{E}_Q\Rightarrow F(E_1,\ldots,E_K)\in\mathcal{E}_Q$$

- ▶ An e-merging function F dominates another G if $F \ge G$ and is strict if F(e) > G(e) for some $e \in [0, \infty)^K$
 - ▶ F essentially dominates G if for any $e \in [0, \infty)^K$,

$$G(e) > 1 \Rightarrow F(e) \geq G(e)$$

(i.e. F is at least as good as G when G is useful)

- An e-merging function is admissible if it is not dominated by another e-merging function
 - i.e. it is maximal in the partial order defined by the relation of domination

Theorem 3

The arithmetic mean $M_K: [0,\infty)^K \to [0,\infty)$, given by

$$M_K(e_1,\ldots,e_K):=\frac{e_1+\cdots+e_K}{K},$$

essentially dominates any symmetric e-merging function.

Theorem 4

Suppose that F is a symmetric e-merging function. Then F is dominated by a function in the class

$$M_{K,\lambda} := \Big\{ \lambda + (1-\lambda)M_k : \lambda \in [0,1] \Big\}.$$

Specifically, F is admissible iff $F \in M_{K,\lambda}$ with $F(0) = \lambda$.

We will provide a proof of Theorem 3, but omit that of Theorem 4 for expositional brevity (see Vovk and R. Wang 2021).

Proof.

Suppose F is a symmetric e-merging function. Suppose for contradiction that there is some $(e_1, \ldots, e_K) \in [0, \infty)^K$ s.t.

$$b:=F(e_1,\ldots,e_K)>\max\Big(M_K(e_1,\ldots,e_K),1\Big)=:a.$$

Let π by uniformly selected from $\mathcal{S}_{\mathcal{K}}$ and

 $(D_1,\ldots,D_K):=(e_{\pi(1)},\ldots,e_{\pi(K)})$ (i.e. a random permutation of our e-values).

Take $(D'_1, \ldots, D'_K) := (D_1, \ldots, D_K)1_A$, where A is independent of π and $P(A) = a^{-1}$.

For each k, $\mathbb{E}[D_k] = M_K(e_1, \dots, e_K)$ since π was uniform on S_K implies that D_k equals e_1, \dots, e_K with equal probability.

Then $\mathbb{E}[D_k'] = M_K(e_1, \dots, e_K)/a \le 1$ by construction.

Since D'_k is nonnegative, we must have $D'_k \in \mathcal{E}_Q$.

Then $F(D'_1, \ldots, D'_K) \in \mathcal{E}_Q$ since F is an e-merging function, so

 $\mathbb{E}[F(D_1',\ldots,D_K')] \leq 1.$

But by symmetry,

$$\mathbb{E}[F(D_1', \dots, D_K')] = Q(A)F(e_1, \dots, e_K) + (1 - Q(A))F(0, \dots, 0)$$

$$\geq b/a$$

$$> 1.$$

a contradiction.

So, no such (e_1, \ldots, e_K) exists and M_K essentially dominates F.

- Can also consider merging functions specifically for independent e-values
- An ie-merging function of $K \geq 2$ e-values is an increasing Borel function $F: [0,\infty)^K \to [0,\infty)$ s.t. for any probability space (Ω, \mathcal{A}, Q) ,

$$E_1, \ldots, E_k \in \mathcal{E}_Q$$
 are independent $\Rightarrow F(E_1, \ldots, E_K) \in \mathcal{E}_Q$

- ► Define domination, strict domination, and admissibility for ie-merging functions analogously to case of e-merging functions
- ▶ Define $i\mathcal{E}_Q^K \subseteq \mathcal{E}_Q^K$ to be the set of component-wise independent random vectors in \mathcal{E}_Q^K and $\mathbf{1} := (1, \dots, 1) \in \mathbb{R}^K$
- ▶ Say an ie-merging function F weakly dominates another ie-merging function G if for all e_1, \ldots, e_K ,

$$(e_1,\ldots,e_K)\in[1,\infty)^K\Rightarrow F(e_1,\ldots,e_K)\geq G(e_1,\ldots,e_K)$$

▶ i.e. F is at least as good as G when all e-value inputs are useful

(i)e-merging functions characterization

We have the following sufficient condition for being an (i)e-merging function:

Theorem 5

For an increasing Borel function $F:[0,\infty)^K \to [0,\infty)$, if $\mathbb{E}[F(E)]=1$ for all $E \in \mathcal{E}_Q^K$ s.t. $\mathbb{E}[(E_1,\ldots,E_K)]=1$ (resp. for all $E \in i\mathcal{E}_Q^K$ s.t. $\mathbb{E}[(E_1,\ldots,E_K)]=1$), then F is an admissible e-merging (resp. ie-merging) function.

So, the M_K is an admissible e-merging function and the U-statistics

$$U_n(e_1,\ldots,e_K) := \frac{1}{\binom{K}{n}} \sum_{\{k_1,\ldots,k_n\} \subseteq \{1,\ldots,K\}} e_{k_1} \ldots e_{k_n}, \ n \in \{0,\ldots,K\}$$

and their convex mixtures are admissible ie-merging functions

- ▶ Contains the product (n = K), arithmetic average M_K (n = 1), and constant function 1 (n = 0)
- ► Family is not complete class of admissible ie-merging functions

Clearly, $F(E) \in \mathcal{E}_Q^K$ (resp. $F(E) \in i\mathcal{E}_Q^K$), so F is an e-merging (resp. ie-merging function).

Suppose for contradiction that there is an (i)e-merging function F such that $G \ge F$ and $G(e_1, \ldots, e_K) > F(e_1, \ldots, e_K)$ for some $(e_1, \ldots, e_K) \in [0, \infty)^K$.

Take $(E_1, \ldots, E_K) \in \mathcal{E}_Q^K$ (resp. $i\mathcal{E}_Q^K$) with $\mathbb{E}[(E_1, \ldots, E_K)] = \mathbf{1}$ s.t. $Q((E_1, \ldots, E_K) = (e_1, \ldots, e_K)) > 0$ (e.g. by considering a distribution with a positive mass on e_1, \ldots, e_K).

Then

$$Q(G(E_1,\ldots,E_K)>F(E_1,\ldots,E_K))>0$$

since $(E_1,\ldots,E_K)=(e_1,\ldots,e_K)\Rightarrow G(E_1,\ldots,E_K)>F(E_1,\ldots,E_K).$ So.

$$\mathbb{E}[G(E_1,\ldots,E_K)] > \mathbb{E}[F(E_1,\ldots,E_K)] = 1,$$

contradicting that G is an (i)e-merging function.

Thus, F is admissible.

Domination of ie-merging functions

We have an additional nice property of the product merging function:

Theorem 6

The product $(e_1, \ldots, e_K) \mapsto e_1 \ldots e_K$ weakly dominates any ie-merging function.

Suppose for contradiction that there exists $(e_1,\ldots,e_K)\in [1,\infty)^K$ s.t. $F(e_1,\ldots,e_K)>e_1\ldots e_K$ for some ie-merging function F. Let E_1,\ldots,E_K be independent random variables such that for $k\in\{1,\ldots,K\}$, $E_k=e_k$ with probability e_k^{-1} and $E_k=0$ otherwise. Clearly, each E_k is an e-variable, but

$$\mathbb{E}[F(E_1, \dots, E_K)] \ge F(e_1, \dots, e_K) Q(E_1 = e_1, \dots, E_K = e_K)$$
 $> (e_1 \dots e_K) (e_1^{-1} \dots e_K^{-1})$
 $= 1.$

So, F is not an ie-merging function and the product weakly dominates any ie-merging function.

- Let (Ω, \mathcal{A}) be a measurable space (the sample space and event space, resp.) and $\mathcal{B}(\Omega)$ be the family of all probability measures on the space
- ▶ Say E is an e-variable w.r.t. a composite null hypothesis $H \subseteq \mathcal{B}(\Omega)$ if $\mathbb{E}^Q[E] \leq 1$ for any measure $Q \in H$
- ▶ In multiple testing, have a set of composite null hypotheses $\{H_k : 1 \le k \le K\}$
- For each k, have an e-variable E_k w.r.t. H_k

A conditional e-variable is a family of extended nonnegative random variables E_Q , $Q \in \mathcal{B}(\Omega)$ satisfying

$$\forall Q \in \mathcal{B}(Q), \mathbb{E}^Q[E_Q] \leq 1$$

(i.e. each $E_Q \in \mathcal{E}_Q$)

Say that extended random variables E_1^*, \ldots, E_K^* are family-wise valid (FWV) for testing H_1, \ldots, H_K if there exists a conditional e-variable $(E_Q)_{Q \in \mathcal{B}(\Omega)}$ s.t.

$$\forall k \in \{1, \dots, K\} , \forall Q \in H_k : E_Q \ge E_k^*$$

From the definition of a conditional e-variable, we see that this equivalent to

$$orall Q \in \mathcal{B}(\Omega): \mathbb{E}^Q \Big[\max_{k:Q \in \mathcal{H}_k} E_k^* \Big] \leq 1$$

(i.e. joint validity of the e-variables E_k^*)

▶ Say that $(E_Q)_{Q \in \mathcal{B}(\Omega)}$ witnesses that $E_1^*, \dots E_K^*$ are FWV

Algorithm 1 Adjusting arbitrary e-values for multiple testing

```
Require: Arbitrary e-values e_1, \ldots, e_K.
 1: Find the ordering permutation \pi \in S_k s.t. e_{\pi(1)} \leq \cdots \leq e_{\pi(K)}
 2: Define the order statistics e_{(k)} := e_{\pi(k)} for k \in \{1, \dots, K\}
 3: Set S_0 := 0
 4: for i \in \{1, ..., K\} do
 5: S_i := S_{i-1} + e_{(i)} (cumulative sum of ordered values)
 6: for k \in \{1, ..., K\} do
    e_{\pi(k)}^* := e_{\pi(k)}
 8: for i \in \{1, ..., k-1\} do
             e := \frac{e_{\pi(k)} + S_i}{i+1} (average of first i and k-th ordered values)
 9:
             if e < e_{\pi(k)}^* then
10:
                 e_{\pi(k)}^* := e
11:
12: return e_{\pi(1)}^*, \ldots, e_{\pi(K)}^*
```

FWV arbitrary e-value adjustment

Theorem 7

Algorithm 1 is family-wise valid. It has a computational complexity of $O(K^2)$.

Note that the computational complexity immediately follows from the nested for-loops, so we need only show FWV.

It suffices to check that the e-variables E_1^*,\ldots,E_k^* from Algorithm 1 are FWV. For any subset $I\subseteq\{1,\ldots,K\}$, the composite hypothesis H_I is

$$H_I := \left(\bigcap_{k \in I} H_k\right) \bigcap \left(\bigcap_{k \in \{1, \dots, K\} \setminus I} H_k^c\right),$$

with H_k^c defined as the complement of H_k . The conditional e-variable witnessing the FWV of E_1^*, \ldots, E_K^* is the arithmetic mean

$$E_Q := \frac{1}{|I_Q|} \sum_{k \in I_Q} E_k,$$

with $I_Q := \{k | Q \in H_k\}$ and E_Q defined as 1 when $I_Q = \emptyset$.

We use the following (conservative) definition for our adjusted e-variables E_k^* :

$$E_k^* := \min_{I \subseteq \{1, \dots, K\} : k \in I} \frac{1}{|I|} \sum_{i \in I} E_i.$$

Note that for each $k \in \{1, ..., K\}$,

$$E_{\pi(k)}^* = \min_{i \in \{0, \dots, k-1\}} \frac{E_{\pi(k)} + E_{(1)} + \dots + E_{(i)}}{i+1}.$$

In lines 3-5 of Algorithm 1, we compute

$$S_i := e_{(1)} + \cdots + e_{(i)}, i \in \{1, \ldots, K\}$$

and in lines 8-9 we calculate

$$e_{k,i} := \frac{e_{\pi(k)} + e_{(1)} + \dots + e_{(i)}}{i+1}, i \in \{1, \dots, k-1\}$$

Then

$$e_{\pi(k)}^* = \min_{i \in \{1, \dots, k-1\}} e_{k,i} = \min_{i \in \{0, \dots, k-1\}} \frac{e_{\pi(k)} + e_{(1)} + \dots + e_{(i)}}{i+1},$$

so the algorithm is in fact FWV since these are e-values associated with the adjusted e-variables E_k^* .

Algorithm 2 Adjusting independent e-values for multiple testing

Require: Independent e-values e_1, \ldots, e_K .

- 1: Let $a:=\prod_{k\in\{1,\ldots,K\}:e_k<1}e_k$ (with empty product defined as 1)
- 2: **for** $k \in \{1, ..., K\}$ **do**
- 3: $e_k^* := ae_k$
- 4: **return** e_1^*, \ldots, e_K^*

FWV independent e-value adjustment

Theorem 8

Algorithm 2 is family-wise valid. It has a computational complexity of O(K).

Note that Algorithm 2 is actually FWV for sequential e-variables, but we focus on independent e-variables for brevity.

Again, the computational complexity immediately follows from the algorithm pseudocode so we focus on proving FWV.

As before, take $I_Q := \{k | Q \in H_k\}$. Our conditional e-variable that witnesses that e_1^*, \dots, e_K^* are FWV are the ones given by the product ie-merging function, i.e.

$$E_Q := \prod_{k \in I_Q} E_k,$$

where our adjusted e-variables are

$$E_k^* := \min_{I \subseteq \{1,\ldots,K\}: k \in I} \prod_{i \in I} E_i.$$

By inspection, we can see that e_1^*, \ldots, e_K^* in Algorithm 2 are realizations of E_1^*, \ldots, E_K^* , so the Algorithm is FWV.

- ► E-values as an alternative to p-values
- Conversion between p- and e-values with calibrators that have known domination structure
- Combine e-values together with e-merging functions that have complicated domination structure
- FWV valid algorithms for adjusting (independent) e-values
- Applications to multiple testing

- Vovk, Vladimir, Bin Wang, and Ruodu Wang (2022). "Admissible ways of merging p-values under arbitrary dependence". In: The Annals of Statistics 50.1, pp. 351–375. DOI: 10.1214/21-AOS2109. URL: https://doi.org/10.1214/21-AOS2109.

Vovk, Vladimir and Ruodu Wang (2021). "E-values: Calibration, combination and applications". In: The Annals of Statistics 49.3. pp. 1736-1754. DOI: 10.1214/20-AOS2020. URL: https://doi.org/10.1214/20-AOS2020.