Estimation of constant stock-recruitment parameters for mixed fisheries Management Strategy Evaluation

Ghassen Halouani & Cóilín Minto

•00

FishKOSM Project

FishKOSM Project

Mixed fisheries, MSY ranges and Management Strategy Evaluation

Investigate the performance of MSY reference values and ranges to provide practical and operational advice on the management of mixed demersal fisheries.

FishKOSM Project

FLBEIA toolbox which facilitates the development of bio-economic impact assessments of fisheries management strategies.

The simulation is divided in two worlds:

- the operating model (OM, the real world)
- the management procedure model (MPM, the perceived world)

Estimation of S-R parameters

Study area

Divisions 7.e-k (Eastern English Channel and Southern Celtic Seas)

Data

 $^{^{0}}$ Data from the ICES Stock Assessment Graphs database http://sg.ices.dk for the period (1999 - 2017)

Standard estimation of the S-R parameters

The Beverton and Holt stock recruitment relationship

$$R = \frac{\alpha B}{\beta + B}$$

Where

• R: the recruitment

• B: the spawing stock biomass

ullet α : the maximum rectruitment

• β : the spawing stock biomass needed to produce $\alpha/2$

Standard estimation of the S-R parameters

Direct estimation of α and β using a likelihood function

The Beverton and Holt stock recruitment relationship

$$R = \frac{B}{\alpha + \beta B}$$

Where

R: the recruitement

• B: the spawing stock biomass

ullet α : the inverse of the initial slope of the curve

• β : the inverse of asymptotic recruitment

 α and β parameters

$$\alpha = \frac{S_0}{R_0} \frac{1 - h}{4h}$$
$$\beta = \frac{5h - 1}{4hR_0}$$

Where

- R_0 : the recruitment when F=0
- h: the steepness parameter defined as the proportion of unfished recruitment R_0 produced by 20% of unfished population (spawning biomass S_0)
- S_0 : the spawing stock biomass when at F=0

⁰from Mangel et al. 2009

The Beverton-Holt spawner-recruit function expressed with steepness parameter

$$R = \frac{0.8R_0hS}{0.2S_0(1-h) + (h-0.2)S}$$

Where

- R: the recruitement
- R₀: the unfished recruitment
- h: the steepness parameter defined as the proportion of unfished recruitment R_0 produced by 20% of unfished population (spawning biomass S_0)
- S: the spawing stock biomass

⁰from Mace and Doonan 1988

Etimation of N by age when F = 0

$$N_{a+1} = N_a e^{-M_a}$$

N : Abundance of Whiting

M_a: Natural mortality

• *a* : age

Etimation of S by age when F = 0

$$S_0 = \sum_{a=0}^{T} N_a W_a Mat_a$$

Where

• S_0 : the unfished spawing biomass

• N_a : the number at age

• W_a : the weight at age

• Mata: the maturity at age

Using a fixed value for the steepness parameter

- Estimation of α and β using a likelihood function
- h = 0.81

Estimation of the S-R parameters using **the steepness h**Using a fixed value for the steepness parameter

Estimated from (Myers et al. 1999)

h

Estimated from (Myers et al. 1999)

WHG SRR using a prior on the steepness parameter h

Estimation of the S-R parameters

R Code

Standard estimation of the S-R parameters

Direct estimation of α and β using a likelihood function

```
LL <- function(par){
    a <- exp(par[1])
    b <- exp(par[2])
    c <- exp(par[3])

R <- a*ssb / (b*ssb)

11 = dlnorm(rec, meanlog = log(R)-(c^2)/2, sdlog = c, log = T)
    -sum(11)
}

LL_opt_WHG <- optim(par = log(c(15e3, 1e4, 2)), fn = LL)</pre>
```

Using a fixed value for the steepness parameter

```
## likelihood function
LL <- function(par) {
  R0 \leftarrow exp(par[1])
  c <- exp(par[2])
  M <- M # vector of natural mortality by age
  N \leftarrow rep(NA, 7)
  N[1] <- RO
  for (i in 1:6) {
    N[i+1] \leftarrow N[i] * exp(-M[i])
  data$N <-N
  S \leftarrow apply(data, 1, function(x) x[2]*x[3]*x[4])
  SO \leftarrow sum(S)
  R \leftarrow 0.8*R0*h*ssb / (0.2*S0*(1-h) + ssb*(h-0.2))
  11 = dlnorm(rec, meanlog = log(R) - (c^2)/2, sdlog = c, log = T)
  -sum(11)
LL_opt <- nlminb(start = log(c(10000, 0.2)), objective = LL)
```

Adding a prior on the steepness parameter Estimation of the distribution of the prior

```
# adding a prior for the steepness parameter
zmed <- 0.81
z20 <- 0.64
z80 <- 0.91

## sum of square of the difference at z20 and z80
ssq <- function(alpha) {
  beta <- (alpha - 1/3) / zmed - alpha + 2/3
  z20.pred <- qbeta(p = 0.2, shape1 = alpha, shape2 = beta)
  z80.pred <- qbeta(p = 0.8, shape1 = alpha, shape2 = beta)
  return((z20.pred-z20)^2 + (z80.pred-z80)^2)
}
fit <- optim(par = 2, fn = ssq, method = "Brent", lower = 1, upper = 50)
alpha.hat <- fit$par
beta.hat <- (alpha.hat - 1/3) / zmed - alpha.hat + 2/3</pre>
```

```
# Likelihood function : Estimation of RO using a prior en h
LL <- function(par) {
  # parameters to estimate
  R0 \leftarrow exp(par[1])
  sdev <- exp(par[2])
  h <- exp(par[3])
  # abundance by age class
  N \leftarrow rep(NA, 8)
  N[1] <- RO
  for (i in 1:7) {
    N[i+1] \leftarrow N[i]*exp(-M[i])
  # 50
  data$N <- N
  S \leftarrow apply(data, 1, function(x) x[2]*x[3]*x[4])
  SO \leftarrow sum(S)
  R \leftarrow 0.8*R0*h*ssb / (0.2*S0*(1-h) + ssb*(h-0.2))
  11 = dlnorm(rec, meanlog = log(R)-(sdev^2)/2, sdlog = sdev, log = T)
  11p <- 11 + dbeta(h, shape1 = alpha.hat, shape2 = beta.hat) # adding the prior
  -sum(11p)
LL_opt \leftarrow nlminb(start = log(c(10000, 0.2, 0.8)), objective = LL)
RO.hat <- exp(LL_opt$par[1])
```