

PII, Ch 9 : Connections

This chapter introduces the notion of vertical vector fields in a principal bundle and then asks what would a horizontal field be? In order to get there we must talk about how to connect several different tangent spaces horizontally which amounts to a special choice of one form on the principal bundle. From this comes a special derivative that keeps this connection in mind.

Vertical Spaces and Generated Vector Fields

Def: Generated Vector Fields on a Principle Bundle

Consider that for any $A \in \mathfrak{g}$ we have that $\exp(tA) \in G$, and hence we may define the following curve $\gamma(t) = p \triangleleft \exp(tA)$, by the fibre-wise closure of the action $\gamma(t)$ is a curve in the fibre, this allows us to define the following, **the vector field generated by** A, $X^A \in \Gamma^1_0 P$ as follows

$$|X^A|_p riangleright f = rac{d}{dt} f(p riangle \exp(tA))|_{t=0}$$

Def: Vertical Spaces

The existence of the surjection $\pi:P o M$ induces a map $\pi_*|_p:T_pP o T_{\pi(p)}M$. The we define $V_pP=\ker\pi_*|_p$, called the **vertical subspace**. Furthermore we denote the sub-bundle $VP=\bigcup_{p\in M}V_pP$. A vector field X is said to be vertical if

$$\forall p \in P : X|_p \in V_p P$$

We should picture the following in a simple example with $P=\mathbb{R}^2$ and $M=\mathbb{R}^1$

PII, Ch 9 : Connections

Lemma: Generated Vector Fields are Vertical

Proof:

$$\pi_*|_p X^A|_p riangleright f = X^A|_p riangleright (f \circ \pi) = rac{d}{dt} f(\pi(p riangleright \exp(tA)))|_{t=0} = rac{d}{dt} f(\pi(p))|_{t=0} = 0 \ \Longrightarrow \ X^A|_p \in \ker \pi_*|_p$$

Lemma: Vertical Vector Fields are Generated

Suppose $\pi_*|_p X|_p = 0$, then it follows that $\frac{d}{dt} f(\pi(\gamma(t)) = 0$, well as $\gamma(t)$ is a curve in the fibre it follows that $\gamma(t) = \tilde{p} \triangleright g(t)$ where $\tilde{p} \in \operatorname{orb}(p)$ and we know that $g(t) = g_0 \exp(tA)$ then we can write choose $p = \tilde{p} \triangleleft g_0$. Such that we get $\gamma(t) = p \triangleright \exp(tA)$. Then we have that

$$X = X^A$$

Corollary

Since all vertical vector fields are generated and vice versa it follows that $i_p:\mathfrak{g} o V_pP$ given by $i_p(A)=X^A|_p$ is a bijection $\forall p\in P$

Lemma: An Identity For Vertical Fields

$$\lhd g_*X^A=X^{\operatorname{Ad}_{g^{-1}}A}$$

Proof:

Omitted but was a quick computation.

Connections, Connected Derivative and Curvature

We would like to have a similar notion for what it would mean to have a horizontal space but to do that we would need to know what it means

Def: Connection (Horizontal Spaces)

A connection is a map $f:P o \mathcal{P}(TP)$ such that $f(p)=H_pP\in \mathcal{P}(T_pP)$ and $\$ we have

$$H_pP\subset_{\mathcal{VS}}T_pP \ V_pP+H_pP=T_pP$$

These two conditions induce the existence of the breakdown $\forall X \in \Gamma_0^1 P: X|_p = \text{hor}(X)|_p + \text{ver}(X)|_p$ such that $\text{hor}(X)|_p \in H_p P$ and $\text{ver}(X)|_p \in V_p P$. We have in addition that

$$\operatorname{hor}(X),\operatorname{ver}(X)\in\Gamma^1_0P$$

Evidently the choice of such an f is non-canonical and arbitrary. To concretize it a little we require that a connection on a principle bundle is compatible with the principle structure.

Corollary:

A field is horizontal if X = hor(X) and vertical if X = ver(X)

Def: Principle Connections

If P is a principle G bundle then we a connection f is called **a principle** G **connection** if and only if

$$orall g \in G: H_{p riangleleft g} = \operatorname{im}_{ riangleleft g_*|_p}(H_p P)$$

For our purposes all connections will be principle.

Theorem: A Principle Connection is equivalent to a \$\mathfrak{g}\$ Valued 1-Form

A Principle Connection is equivalent to a Lie Algebra Valued 1 form $\omega\in\Omega^1P\otimes\mathfrak{g}$ satisfying

$$egin{aligned} \omega riangleright X^A &= A \ (riangleright g^* \omega) riangleright X &= \operatorname{Ad}_{g^{-1}} (\omega riangleright X) \end{aligned}$$

Proof:

The forwards proof goes as follows, suppose we have a principle connection, then $\operatorname{ver}(X)$ exists, then we may define

$$\omega|_p \triangleright X = i_n^{-1}(\operatorname{ver}(X|_p)) \in \mathfrak{g}$$

PII, Ch 9 : Connections 3

Which intern defines ω . From this it follows $H_pP=\ker(\omega|_p\triangleright)$. Why? Because if $\omega\triangleright X=0\iff \operatorname{ver}(X)=0$ as i is invertible. And if so $X=\operatorname{hor}(X)$ so naturally $X|_p=\operatorname{hor}(X)|_p\in H_pP$. Now that ω satisfies the first condition is trivial as X^A is vertical so $i_p^{-1}(\operatorname{ver}(X^A|_p))=i_p^{-1}(X^A|_p)=A$. That ω satisfies the 2nd property is a little more difficult, we need to consider two cases. First when X is vertical, so $X=X^A$, then

$$((\lhd g^*\omega) \rhd X^A)|_p = \omega|_{p \lhd g} \rhd (\lhd g_*X^A|_p) = \omega|_{p \lhd g} \rhd (X^{\operatorname{Ad}_{g^{-1}}A}|_{p \lhd g}) = \operatorname{Ad}_{g^{-1}}A = \operatorname{Ad}_{g^{-1}}(\omega \rhd X^A)|_p$$

Since this holds for all p we have that $(\triangleleft g^*\omega) \triangleright X^A = \mathrm{Ad}_{g^{-1}}(\omega \triangleright X^A)$. Now if we should assume that the field is horizontal, then the argument progresses in much the same way until

$$((\lhd g^*\omega) \triangleright X)|_p = \omega|_{p \lhd g} \triangleright (\lhd g_*X|_p)$$

But now since X is horizontal it follows that $X|_p \in H_pP$ and hence $\lhd g_*|_pX|_p \in \operatorname{im}_{\lhd g_*}(H_pP)$ but by the axioms of a principle connection we know that this is equivalent to $H_{p\lhd g}P$ and hence $\lhd g_*X$ is again horizontal. Lets call it Y to save time. Hence we now have

$$\omega riangleright Y|_{p riangleleft g} = i_{p riangleleft g}^{-1} (\operatorname{ver}(Y)|_{p riangleleft g})$$

But as Y is horizontal the whole thing is 0

$$|\omega
hd Y|_{p
ld g} = 0 = \operatorname{Ad}_{g^{-1}} 0 = \operatorname{Ad}_{g^{-1}} \omega
hd X$$

This completes the forwards proof. The backwards proof is quite simple. Given the two conditions of ω , we define the map ver as follows

$$\mathrm{ver}(X)|_p = i_p(\omega \triangleright X|_p)$$

We know this works because all vertical fields are generated $\operatorname{ver}(X^A)|_p = X^A|_p$ which is exactly what $i_p(\omega \triangleright X^A|_p) = i_p(A) = X^A|_p$. Next take $\operatorname{hor}(X) = X - \operatorname{ver}(X)$. We know both hor , ver are smooth functions. Finally define $H_pP = \ker(\omega|_p\triangleright)$. Its clear from the 2nd property that $\forall g \in G: H_{p \triangleleft g} = \operatorname{im}_{\triangleleft g_*|_p}(H_pP)$ as we explained in the forwards proof. Hence any Lie algebra valued 1 form ω induces a principal connection. QED.

For these reasons some authors write call a Lie algebra valued 1-form a connection. This feels kind of sneaky to me so I will separate the terminology, but I will call such 1-forms **connection 1-forms**. Moreover we will call a principle bundle with a chosen connection, **a principle bundle with connection**.

PII, Ch 9: Connections

4

Given any connection 1-form we have the ability to define a new exterior derivative that takes the connection into account. We call this the connection's exterior derivative

Lemma: Brackets of Vector Fields

If X_1, X_2 are horizontal fields and Y_1, Y_2 are vertical fields then $[X_1, X_2], [X_1, Y_1]$ are horizontal and $[Y_1, Y_2]$ is vertical

Def: Connected Derivative

Let V be any vector space (or algebra), then $\mathcal{D}_\omega:\Omega^kP\otimes V\to\Omega^{k+1}P\otimes V$ which is defined as follows. $\forall \phi\in\Omega^kP\otimes V$ we have that $\mathcal{D}_\omega\phi$ is that k+1 form satisfying

$$\mathcal{D}_{\omega}\phi \triangleright (X_i)_{i=1}^{k+1} = d\phi \triangleright (\operatorname{hor}(X_i))_{i=1}^{k+1}$$

Given that the choice of connection is usually implies we omit writing the subscript ω every time.

Def: Curvature 2-Form

We define the \mathfrak{g} -valued 2 form called the <u>curvature form</u> of the connection as follows

$$\Omega = \mathcal{D}\omega$$

Lemma:

$$\Omega = d\omega + \omega imes \omega$$

Proof:

The proof for this theorem is long, but roughly consist of evaluating $\mathcal{D}\omega$ and $d\omega + \omega \times \omega$ on vertical and horizontal fields, to show equality.

Theorem: Bianchi's Identity

$$\mathcal{D}\Omega = 0$$

Proof:

Like the above proof, this proof evaluates on vertical and horizontal fields to show equality.

It should be noted that Bianchi I can be re-expressed as $\mathcal{D}^2\omega=0$, in contrast with $d^2\omega=0$. No where the latter can be generalized into $d^2=0$ the former cannot be generalized to $\mathcal{D}^2=0$, and so Bianchi I stands as a special case where this property of d appears in \mathcal{D} .

5

In summary for this chapter, vertical vector fields are those generated by Lie algebra elements, and horizontal fields are those generated by 0 (roughly as they lie in the kernel of the connection form). All of these notions about giving connecting at first completely separate and distinct tangent spaces together with a 1 form causes the existence of a special derivative.

PII, Ch 9: Connections 6