

ZIMBABWE

MINISTRY OF PRIMARY AND SECONDARY EDUCATION

O-LEVEL CHEMISTRY SYLLABUS

FORMS 3 - 4

Curriculum Development Unit P.O. Box MP 133 Mount Pleasant Harare

© All Rights Reserved Copyright 2024

ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education wishes to acknowledge the following for their valued contribution in the production of this syllabus:

- The Lower Secondary Level Chemistry Syllabus Development Panel
- Zimbabwe School Examinations Council (ZIMSEC)
- Ministry of Higher and Tertiary Education, Innovation, Science and Technology Development (MoHTEISTD)
- United Nations Children's Fund (UNICEF)
- United Nations Educational Scientific and Cultural Organisation (UNESCO)

Table of Contents

Table of Contents
1.0 PREAMBLE
1.1 Introduction
1.2 Rationale
1.3 Summary of Content
1.4 Assumptions
1.5 Cross- Cutting Themes
2.0 PRESENTATION OF THE SYLLABUS
3.0 AIMS
4.0 OBJECTIVES OF THE SYLLABUS
4.0 OBJECTIVES OF THE SYLLABUS
5.1 METHODOLOGY
5.1 METHODOLOGY
6.0 SUBJECT TOPICS
7.0 SCOPE AND SEQUENCE
7.0 SCOPE AND SEQUENCE 8.0 COMPETENCY MATRIX
FORM 3
FORM 42
9.0 ASSESSMENT
9.1 Assessment Objectives
9.2 Assessment Model
9.3 Scheme of Assessment
9.4 Specification Grid

1.0 PREAMBLE

1.1 Introduction

The forms 3 - 4 Chemistry syllabus document is designed to put greater emphasis on the heritage based technological concepts acquired through a hands-on learner centred approach. The syllabus is hinged on the rich cultural heritage of our community and focuses to stimulate interest, imagination and critical thinking. Traditional scientific knowledge and modern innovations are used to connect scientific concepts to everyday lives and global challenges through hands on activities. By integrating chemistry syllabus with cultural relevant, learners are empowered to investigate, innovate, solve problems and become informed, responsible citizens who appreciate our heritage and promote sustainable development. The learners will be assessed through a continuous assessment system in the form of project-based assessments, hands on experiences and demonstrations.

1.2 Rationale

The Heritage-Based Chemistry syllabus provides an integration of traditional knowledge and contemporary technologies learners will develop essential critical thinking, problem solving and

collaborations skills through hands on enquiry-based learning to apply scientific principles to real world challenges and impact the society positively. The syllabus fosters responsible stewardship of natural resources and cultural heritage.

1.3 Summary of Content

The Chemistry syllabus emphasizes integrating heritage-based knowledge into secondary education and supports diversity. The syllabus covers various topics aimed at fostering a deep connection with cultural roots while promoting scientific curiosity and technological skills. Continuous assessment is based on school projects to evaluate the understanding of both the scientific and cultural aspects of the learning area. Forms 3 - 4 Chemistry syllabus will cover theory and practical activities in the following areas, Physical chemistry, Inorganic chemistry, Organic chemistry and Environmental chemistry.

1.4 Assumptions

The Heritage-Based Chemistry syllabus for Zimbabwe has taken deliberate consideration of several assumptions critical for socio-economic transformation. The assumptions are based on the context of Zimbabwe's heritage, educational system, societal needs and aspirations. It therefore becomes critical to consider that learners:

- are exposed to scientific experiences
- live in diverse social contexts
- use technological devices
- are conscious of their environment
- are aware of their obligation towards health and well-being

The general assumption is that a Heritage-Based Chemistry syllabus can effectively integrate science and technology education, fostering a deeper understanding of scientific concepts, technological innovations and their relationship with Zimbabwe's heritage.

1.5 Cross- Cutting Themes

This phase will develop an appreciation of:

- Environmental management
- Enterprise Education
- Gender equality
- Child rights and responsibilities
- Climate change

- Health and wellbeing
- · Disaster risk management
- ICT

2.0 PRESENTATION OF THE SYLLABUS

The Ordinary Level Chemistry syllabus is a single document covering Forms 3 - 4. It contains the Preamble, Aims, Syllabus Objectives, Syllabus Topics, Methodology and Time Allocation, Scope and Sequence, Competency Matrix and Assessment. The Scope and Sequence chart shows the progression of topics from Forms 3 - 4, while the syllabus matrix gives details of the content to be covered.

3.0 AIMS

The aims are to:

- 3.1 create opportunities for learners to acquire research, experimental and practical skills and attitudes in Chemistry
- 3.2 enable learners to acquire basic principles of Chemistry for application in life and as a basis for further studies in Chemistry and related discipline
- 3.3 inculcate in learners the desire to apply Chemistry for the benefit of society as guided by the principles of Unhu/Ubuntu and recognising the detrimental effects of misapplication of Chemistry
- 3.4 inculcate in learners the appreciation of the usefulness of ICT in the study and application of Chemistry
- 3.5 develop, in learners the appreciation of the use of Chemistry in value creation, addition and beneficiation in mining and other industries.
- 3.6 inculcate in learners the regard for safety and protection of the environment in the study of Chemistry.
- 3.7 introduce learners to the principles of science and technology, through a heritagebased approach.
- 3.8 incorporate indigenous knowledge, cultural practices, historical perspectives and national endowments into science and technology education.
- 3.9 foster an understanding of the learning area matter and promoting cultural appreciation in its diverse nature.

4.0 OBJECTIVES OF THE SYLLABUS

Learners should be able to:

- 4.1 demonstrate knowledge of facts, laws, definitions and concepts in Chemistry
- 4.2 follow instructions in practical work in order to manipulate record observations and analyse data to confirm or establish relationships
- 4.3 apply safety measures in all practical work

- 4.4 demonstrate knowledge about physical phenomena, facts, laws, definitions and concepts of Chemistry
- 4.5 design a practical solution through a Chemistry project to solve a real-life problem.
- 4.6 use ICT to simulate Chemistry phenomena, present and analyse data
- 4.7 apply safety measures in all practical work
- 4.8 explore the connections among heritage, science and technology
- 4.9 explain and apply procedures in Chemistry to protect the environment
- 4.10 use ICT to simulate Chemistry phenomena
- 4.11 present, analyse and interpret data to establish relationships

5.0 METHODOLOGY AND TIME ALLOCATION

5.1 METHODOLOGY

It is envisaged that teaching and learning programmes based on this Heritage based Chemistry syllabus could feature a wide variety of learning experiences designed to promote acquisition of scientific expertise and understanding, and to develop values and attitudes relevant to science and life. Teachers are encouraged to use a combination of appropriate strategies to effectively and equitably engage and challenge their learners through:

- Planned experiments
- Problem based learning
- Individual and group work
- Educational tours
- Project based learning
- Design based learning
- Learning by discovery
- E-learning such as simulation
- Collaboration with museums and heritage sites.

N.B. Ortho-didactic principles, such as visual tactile, simulation and self-activity, will be applied when need arises to cater for diverse needs of learners.

Safety precautions must always be observed.

5.2 TIME ALLOCATION

A minimum of **8** periods of 40 minutes each in a week should be allocated as double periods for adequate coverage of the syllabus

6.0 SUBJECT TOPICS

- Physical Chemistry:
- Inorganic Chemistry:
- Organic Chemistry:
- Environmental Chemistry

7.0 SCOPE AND SEQUENCE

SEQUENCE

TOPIC	FORM 3	FORM 4
PHYSICAL CHEMISTRY:		
Laboratory techniques	 Measuring Instruments Separation techniques Filtration, Distillation Crystallisation 	 Volumetric Analysis Separation Techniques Fractional distillation Chromatography Qualitative analysis
Matter	Matter	Heating and cooling curves
Atoms, Elements and Compounds	 Atomic structure Elements Compounds Metallic Bonding 	
The Mole concept	Mole Concept	Percentage CompositionMolar gas volume
Stoichiometry	Chemical equations	Percentage yield and purity
Acids, Bases and Salts	Properties of Acids and BasesPreparation of salts	
Electrochemistry	 Redox reactions Cells and batteries Electrolysis of water 	Redox equationsElectrolytic purification of copper
Chemical energetics	 Endothermic and Exothermic reactions Energy profile diagrams 	Enthalpy changesNeutralisationCombustionSolution
Equilibrium	 Reversible reactions Dynamic equilibrium Haber process Contact process 	Production of fertilisers

	Ostwald process	
Reaction kinetics	Rates of reactionsFactors affecting rate of reactions	Industrial applications
INORGANIC CHEMISTRY		
Periodic table	Periodic trendsGroup trends	Transition elements Properties and uses
Metals and Non - Metals	 Properties of metals and non-metals Reactivity series 	 Composition of mineral ores Extraction of metals
Non metals	Lime in agriculture and construction	Processing of diamond and coalLiquefaction and distillation of air
ORGANIC CHEMISTRY:		
Fuels	Types of fuelsProduction of fuels	Fuel efficiency
Classification and nomenclature of organic Compounds	 Homologous series Hydro carbons Alcohols Carboxylic acids 	• Isomerism
Hydrocarbons		Alkanes and Alkenes
Alcohols		FermentationProperties of ethanol
Carboxylic Acids		Carboxylic acids
Polymers		Synthetic polymersNatural Polymers
ENVIRONMENTAL CHEMISTRY		

Waste management	 Classification of waste Effects of waste on the environment 	Waste disposal methods
Pollution		Sources of pollutants
Water purification	Composition of water from different sources	Water purification
Herbs	200	Herbs

8.0 COMPETENCY MATRIX

FORM 3

8.1 LABORATORY TECHNIQUES

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Measuring Instruments	Identify suitable apparatus used in measurement of Time Temperature mass volume distance	 Apparatus for measuring: Thermometer balance, Burettes, pipettes, measuring cylinders gas syringes stop watch 	Naming apparatus used in measurement of time, temperature, mass, volume, distance	 Stop watches thermometer Balance burettes Pipettes syringes measuring cylinders
	use measuring apparatus correctly .	Measurement ofTimeTemperaturemassvolume	Taking measurements of temperature, mass, volum e, distance, time	
Separation techniques	 identify different methods of separating mixtures Suggest suitable separation techniques, 	Methods of separation such as: Filtration, Simple distillation and Crystallization and evaporation	 Discussing on methods of separating mixtures Experimenting on separating mixtures 	 Filter papers Cheese cloth Funnels Sand filters Distillation apparatus

given the nature of the mixture.	Making sand filters	 Evaporating dishes
		 Beakers
		 Sodium
		chloride
		Burner

8.2 MATTER

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
Matter	 State the three states of matter Explain the states of matter using the kinetic theory. Explain the changes between the states of matter in terms of energy and arrangement of particles Describe and explain diffusion 	 States of matter Kinetic theory Change of states of matter Diffusion of matter 	 Discussing states of matter experimenting on the changes of state of matter Drawing and describing arrangement of particles in solids, liquids and gases Demonstrating diffusion using perfume, ammonia and Hydrochloric acid, potassium permanganate 	 Ice Candle wax Iodine Heating source Gas jars Potassium permangana te

	•	NB: use of Bromine is not recommended since it is poisonous

8.3 ATOMS, ELEMENTS AND COMPOUNDS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
Atomic Structure	Describe the sub- atomic particles of an atom	Atomic StructureProtonsElectronsNeutrons	Drawing diagrams to illustrate structure of atoms	Atomic models
Elements	 Represent elements using chemical symbols Use and interpret nuclide notation deduce the electronic configuration of an element from given data 	 Elements Atomic Number Mass Number Nuclide notation Electronic configuration of the first 20 elements 	 representing elements using chemical symbols and nuclide notation calculating number of protons, electrons and neutrons from mass numbers and atomic numbers 	 periodic tables models of elements text books ICT tools Moulding clay/
	Explain the concept of an isotope	• Isotopes	drawing electronic structures of elements using dots and crosses	plasticine

Compounds	 describe the formation of an ionic bonds between a metal and a non-metal describe the formation of a covalent bond deduce chemical formula of a compound from dots and cross diagram Differentiate ionic from covalent compounds. 	 Valence Theory Ionic bonding covalent bond Properties of ionic and covalent compounds 	 Drawing dot and cross diagrams to show ionic and covalent bonding in the following: NaCI, MgO, AI₂O₃, H₂; CI₂; O₂; HCI; N₂;H₂O; CH₄, CO₂, NH₃, Constructing models to represent compounds Experimenting on: melting points boiling points electrical conductivity solubility 	 Text books Molecular models Science kits Sodium chloride Candle wax Burner Circuit boards Water
Metallic bonding	 describe metallic bonding as a lattice of positive ions in a 'sea of electrons' relate the physical properties of metals to metallic bonding 	 metallic bonding refer to Properties of Metals 	 discussing metallic bonding simulating drawing metallic bond model 	ICT tools textbooks

8.4 THE MOLE CONCEPT

TOPIC	OBJECTIVES	\	SUGGESTED NOTES	SUGGESTED
	Learners should be able to:	skills, values, and attitudes)	AND ACTIVITIES	RESOURCES

Mole Concept	describe the mole concept	Mole	Calculating:	periodic table
	·	Relative atomic mass	- moles from mass	Balance
		Relative molecular mass	- mass from moles	
		Concentration of solutions	- relative molecular masses	Science kit
		molar mass	- concentrations	

8.5 STOICHIOMETRY

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
Chemical Equations	 Write balanced chemical equations Calculate quantities of products given the quantities of reactants and vice versa Determine limiting reactant from given data 	 Balancing chemical equations Masses and volumes of reactants and products Limiting reagents 	 Writing balanced chemical equations Experimenting with neutralisation, precipitation and decomposition reactions Calculating quantities from given data 	Science kitsText bookAcidsBases

8.6 ACIDS, BASES AND SALTS

TOPIC	OBJECTIVES	CONTENT	SUGGESTED	SUGGESTED
	Learners should be able	(knowledge, skills, values,	ACTIVITIES AND	RESOURCES
	to:	and attitudes)	NOTES	

Properties of Acids and Bases	 Identify properties of acids and bases classify oxides as acidic, basic or amphoteric 	 Acids, bases, pH scale, acid-base indicators Calcium oxide, sodium oxide, aluminium oxide, sulphur trioxide, carbon dioxide, nitrogen dioxide, 	 Experimenting to identify acidic and basic substances Describing properties of acids and bases 	 Science kit ICT tools acid-base indicators vinegar lemons toothpaste ash household detergents
Preparation of salts	describe the methods of preparing salts	 methods of preparing salts neutralisation displacement precipitation 	 preparing salts by reacting acids with alkalis, carbonates, metal oxides preparing salts by precipitation and displacement reactions 	 Science kits ICT tools textbooks

8.7 ELECTROCHEMISTRY

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Redox reactions	 Define oxidation and reduction in terms of 	Redox reactions	Discussing redox reactions	Test tubesDroppers

	electron transfer and changes in oxidation number Identify oxidising and reducing agents		 Observing redox reactions Describing redox reactions 	 Potassium permanganate Potassium dichromate Hydrogen peroxide Ethanol Iron (II) sulphate Potassium iodide Sulphuric acid
Cells and batteries	 identify the composition of a simple cell Describe the electrode reactions in a simple cell Describe the composition and maintenance of a lead acid batteries 	 Cells Batteries Electrolyte Electrodes 	 Describing the composition of a simple cell Constructing of Zinc/Copper cell Examining a car battery 	 Ammeter/voltmeter Zinc rod Carbon rod Copper rod Lemon / dilute acid Torch bulb Car battery
Electrolysis of water	Describe the electrolysis of acidified water	Electrolysis of acidified water	Constructing electrolytic cellDiscussing electrode reactions	 Power supply (DC) Test tubes Beaker Graphite
	Identify the products of electrolysis of water and their uses	Uses of hydrogen and oxygenFormula for water	Testing for hydrogen and oxygen gasesCalculating ratio of volumes	electrodes • Wooden splints

Deduce the formula of water from the ratio of volumes of products		30	
		1201 A	
	BUST		
	12		

8.8 CHEMICAL ENERGETICS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Endothermic and Exothermic reactions	 describe endothermic and exothermic reactions in terms of bond forming and bond breaking differentiate between endothermic and exothermic reactions 	Endothermic and exothermic reactions	Burning of fuels e.g. ethanol, sugar, saw dust, mealie-meal dissolving washing powders in water Reacting acids and bases Dissolving ammonium nitrate/fertiliser, sodium hydroxide, potassium iodide, copper (II) sulphate plus zinc powder in water N.B. sodium hydroxide is corrosive	 Washing powder Sodium hydroxide Ammonium nitrate Potassium iodide Plastic beakers/cups Copper (II) sulphate plus Zinc powder Thermometers Spatula Ethanol Sugar Saw dust Mealie-meal
Energy profile diagrams	 draw energy profile diagrams to represent endothermic and exothermic reactions interpret energy profile diagrams 	 Energy profile diagrams 	 Drawing energy profile diagrams Analysing energy profile diagrams 	Images of energy profile diagrams

8.9 EQUILIBRIUM

TOPIC	OBJECTIVES	CONTENT (knowledge,	SUGGESTED ACTIVITIES	SUGGESTED
	Learners should be able to:	skills, values, and attitudes)	AND NOTES	RESOURCES
Reversible reactions	 explain the term reversible reaction use the reversible sign in equations (⇌) analyse reversible reactions predict the effect of change of conditions of a reversible reactions at equilibrium 	Reversible reactions	 Dipping litmus in acid and in base Experimenting on the chromate/ dichromate conversion using dilute acids and bases 	 Burner Copper (II) sulphate Litmus paper Chromate
Dynamic equilibrium	explain the term dynamic equilibrium	dynamic equilibrium	Experimenting on the sublimation of iodine in a sealed tube	lodineSealed tubeWater bath
Haber process	 describe the production of raw materials for the Haber process (nitrogen and hydrogen) explain the conditions for the Haber process state the uses of ammonia observe safety during site visits describe environmental impacts of ammonia production 	 Haber process (refer to electrolysis of water and liquefaction and fractional distillation of air) Uses of ammonia Safety Impacts of ammonia production on the environment 	 Discussing the production of ammonia Visiting sites e.g. Sable Chemicals Making models of the plant Discussing the uses of ammonia Discussing possible hazards of ammonia production Discussing environmental impacts of ammonia production 	 Flow charts Models Protective clothing Chart with danger warning signs Ammonium nitrate fertiliser Household detergents

Contact process	 identify sources of raw materials for the contact process explain the conditions for the contact process describe the contact process state the uses of sulphuric acid describe environmental impacts of sulphuric acid production 	 Sources of raw materials (refer to production of copper, iron and coal) Contact process Uses of sulphuric acid Impacts of sulphuric acid production on the environment 	 Discussing the production of sulphuric acid Visiting sites e.g Zimphos Making models of the plant Discussing the uses of sulphuric acid Discussing possible hazards of sulphuric acid production Discussing environmental impacts of sulphuric acid production 	 Flow charts Models Protective clothing Chart with danger warning signs Ammonium sulphate fertiliser Household detergents
Ostwald process	 identify sources of raw materials for the Ostwald process explain the conditions for the Ostwald process describe the Ostwald process state the uses of nitric acid describe environmental impacts of nitric acid production 	 Sources of raw materials (refer to Haber process) Ostwald process Uses of nitric acid Impacts of nitric acid production on the environment 	 Discussing the production of nitric acid Visiting sites e.g Sable Chemicals Making models of the plant Discussing the uses of nitric acid Discussing possible hazards of nitric acid production Discussing environmental impacts of nitric acid production 	 Flow charts Models Protective clothing Charts with danger warning signs Ammonium nitrate fertiliser Pictures of explosives Resource person

8.10 REACTION KINETICS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values,	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Rates of reactions	 describe methods of measuring reaction rates deduce from graphs the rates of reactions calculate reaction rates from given information 	Rates of reactions such as changes in volume, mass, colour with time	Measuring rates of reactions e.g. using magnesium and hydrochloric acid, sodium thiosulphate and hydrochloric acid/ sulphuric acid	 Balance Stop watch Beaker Conical flask Magnesium Hydrochloric acid Gas syringe Sodium thiosulphate Sulphuric acid
Factors affecting rate of reactions	describe factors affecting rates of reaction	 Factors affecting rates of reactions Temperature Concentration Surface area Catalysts Pressure Stirring 	Experimenting on factors affecting rates of reaction	 Sodium thiosulphate Hydrogen peroxide Potassium iodide Hydrochloric acid Manganese dioxide/ potato/ liver

INORGANIC CHEMISTRY

8.11 PERIODIC TABLE

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Periodic trends	 describe the changes from metallic to non- metallic character across a period explain the relationship between number of electron shells and the period 	Periodic trends (refer to electronic configuration)	 Analysing the periodic table Making a model of the periodic table 	Periodic tables
Group trends	 describe the relationship between group number and number of valence electrons describe the reactions of magnesium, calcium and barium with oxygen and water describe the trend in the physical properties of group (VII) elements 	 Group trends (refer to electronic configuration) Reactivity of group (II) elements Trends in physical properties of group (VII) elements Colour Physical state Volatility 	 Analysing the periodic table Experimenting on reaction of calcium and magnesium ribbon with cold water Simulating the reactions of group (II) elements Simulating the reactions of group (II) elements NB: Experiments involving pure fluorine and bromine should be avoided for safety reasons 	 Periodic tables Magnesium ribbon Calcium granules Test tubes Spatula ICT tools Text books

8.12 METALS AND NON- METALS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Properties of metals and non-metals	 Compare the physical properties of metals and non-metals Explain the differences in the physical properties of metals and non-metals 	 Physical properties Malleability Ductility Conductivity (thermal and electrical) Melting and boiling points Density Lustre 	 Collecting and classifying materials as metals or non-metals Comparing the physical properties of metals and non-metals 	Samples of metals and non- metals
Reactivity series	 demonstrate practically the reactivity of metals arrange elements in order of reactivity use the reactivity series to explain electroplating, electrolytic cells and metal extraction 	Reactivity series Displacement reactions (refer to electrochemistry and metal extraction)	 Listing of elements in order of reactivity Experimenting on reactions of metals with water and dilute acids Reacting zinc and copper (II) sulphate solution Comparing the voltages of different combinations of elements in a simple cell NB: potassium, sodium and calcium should be used in very small quantities and never to be used with acids. 	 Dilute acids Distilled water Splinters Copper Calcium Iron Magnesium Potassium Silver Sodium Zinc Copper (II) sulphate Test tubes Voltmeter Connecting wires

8.13 NON-METALS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Lime in agriculture and construction	 describe the production of calcium oxide (lime) from calcium carbonate (limestone) explain the use of calcium oxide in agriculture and construction 	Lime in Agriculture and construction	 Demonstrating Lime as a base Reacting lime with dilute acids 	Calcium oxideDilute acidsCalcium carbonate

ORGANIC CHEMISTRY

8.14 FUELS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Types of fuels	classify fuels according to their physical states	 Classification of fuels Solid fuel Liquid fuels Gaseous fuels 	Discussing the Classification of fuels	 Wood Charcoal Ethanol Diesel Petrol Biogas Coal Coke Biodiesel

Describe the process of fermentation Outline the fractional distillation of crude oil Describe the process of destructive distillation of coal and wood Describe the production of biodiesel from Jatropha oil	 Fractional distillation of petroleum Destructive distillation of coal and wood Biodiesel production 	 Experimenting on production of fuels by: fermentation of carbohydrates destructive distillation of coal/ wood Visiting sites e.g. Green Fuels, Mutoko Jatropha plant 	 Glucose Yeast Burners Distillation apparatus Models of biogas Digester Science kit
--	---	---	---

8.15 CLASSIFICATION AND NOMENCLATURE OF ORGANIC COMPOUNDS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Homologous series	 Define the term homologous series Classify organic compounds as hydrocarbons, alcohols and carboxylic acids up to six carbon atoms 	 Homologous series Hydrocarbons Alcohols Carboxylic acid 	 Making molecular models up to six carbon atoms Drawing structures of organic molecules up to six carbon atoms Simulations of organic molecules 	 Plasticine Molecular model kits Models of organic molecules

ENVIRONMENTAL CHEMISTRY

8.16 WASTE MANAGEMENT

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Classification of waste	 Classify waste into solids, liquids and gases Identify biodegradable and non-biodegradable waste Identify the different sources of waste Suggest ways of controlling waste Describe methods of identifying wastes from industries 	 Classification of waste Household and industrial waste such as: Food left overs Waste gases gold processing oils from soap making tyre industries dust from cement industry Methods of controlling wastes 	 Collecting and classifying waste material Discussing sources of waste material Visiting sites Burning of papers and an explanation on observable changes	 Refuse from shops and residential areas Industrial wastes Environmental policies and Acts Pictures and films Resource person
Effect of waste on the environment	describe the effects of waste on the environment	 Eutrophication Acid rain Global warming Health effects Ozone layer depletion 	 Visiting sites Researching and discussing the effects Case studies 	 Magazine articles Resource persons ICT tools Text books

8.17 WATER PURIFICATION

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Composition of water from different sources	 describe the composition of water from different sources distinguish between hard and soft water 	 Composition of water from different sources such as dam, borehole, river and rain hard and soft water 	 Colleting water samples from different sources and analysing the following: colour, smell and pH testing for hardness of water using foam, boiling water and analysing the residue desalting using an acid /vinegar, lemon juice 	 Water samples pH meter burners matches science kit
	describe the effects of hard water	 effects of hard water on: boilers, electric jug, geysers, water pipes, solubility of soap 		acidheatingelementssoap

FORM 4

COMPETENCY MATRIX

8.1.1 LABORATORY TECHNIQUES

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURSES
Volumetric Analysis	carry out a titration	Volumetric Analysis	 Assembling titration apparatus Carrying out experiments on acid – base titrations 	Science kit
Separation techniques	 describe the principles of fractional and steam distillation describe the concept of paper chromatography 	 Separation Techniques -Fractional distillation - Steam distillation Chromatography R_f values 	 Separating ethanol from water Carrying out steam distillation to produce perfumes and flavours separating ink/chlorophyll pigments by paper chromatography Calculating Rf values 	 Fractional distillation apparatus Filter paper ethanol

Qualitative analysis	carry out tests to identify ions	• Qualitative Analysis (Al³+, NH₄+, Mg²+, Pb²+, Cu²+, Fe²+, Fe³+, Cr³+, Zn²+, Ct, I⁻, NO₃⁻, SO₄²⁻, CO₃²⁻	Carrying out experiments to identify cations and anions (refer to qualitative analysis table)	 Sodium hydroxide Ammonia solution Silver nitrate Nitric acid Barium chloride Aluminium powder Delivery tube Oranges, lemon, herbs, flowers
	describe tests to identify gases	 Tests for gases such as: ammonia; carbon dioxide; chlorine; hydrogen; oxygen and sulphur dioxide 	 Testing for: oxygen Hydrogen Carbon dioxide Ammonia Sulphur dioxide 	 Limewater/bicarbonate indicator Litmus paper splints

7.1.2 MATTER

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURSES
Heating and cooling curves	 interpret heating and cooling curves describe the effects of impurities on boiling and melting point 	 Heating and cooling curves Melting and boiling points Effects of impurities on melting and boiling points 	 Experimenting on heating and cooling of ice, stearic acid, wax and naphthalene. Drawing heating and cooling curves Interpreting heating and cooling curves 	 Science kit Heating source Thermometers Boiling tubes Salt ice, stearic acid, wax naphthalene.

7.1.3 THE MOLE CONCEPT

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURSES
Percentage composition	calculate percentage compositions of elements in compounds and ores	 Percentage composition (hematite, copper pyrite, fertilizers, bauxite, platinum group of metals (PGMs) empirical and molecular formula 	 Calculating percentage compositions of given elements in given compounds and ores. Calculating Empirical formula and molecular formula. 	 Balances Text books Science kit Ore samples Resource people
Molar gas volume	 explain the concept of molar gas volume use the molar gas volume concept in calculations. 	Molar gas volume	 collecting and measuring gases produced from chemical reactions Calculating volumes of gases N.B Use 24dm³/mole as molar gas volume at rtp 	Science kit

7.1.4 STOICHIOMETRY

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURSES
Percentage yield and purity	 Calculate percentage purity and yield Explain the difference between actual and theoretical yield. 	 Percentage yield actual yield, theoretical yield Percentage purity 	 Experimenting on determining percentage yield and purity Thermal decomposition of calcium wood carbonate destructive distillation of, coal, sawdust Calculating percentage yields and purity 	 Science kit Calcium carbonate Periodic table Balance wood Coal sawdust

7.1.6 ELECTROCHEMISTRY

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Redox equations	Construct balanced redox equations	redox equations e.g displacement reactions	 Deducing electrode reactions Balancing redox equations Visiting sites e.g Sable Chemicals, , Chloride batteries 	ICT tools
Electrolytic purification of copper	Describe the electrolytic cell on production of copper	Electrolytic purification of copper	Assembling the electrolytic cellAnalysing electroplating	BeakersCell/ batteriesConnecting wires

7.1.7 CHEMIICAL ENERGETICS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Enthalpy changes	 describe the concept of enthalpy change determine experimentally enthalpy change calculate enthalpy changes 	Enthalpy changescombustionneutralisationsolution	Carrying out experiments to determine enthalpy changes of combustion, neutralisation and solution	 Thermometers Ethanol burner Stirrer Styrofoam/ plastic cups Sodium hydroxide Hydrochloric acid
	using the relationship, $q = mc \Delta T$		Calculating enthalpy changes	Ammonium nitratepotassium iodide

7.1.8 EQUILIBRIUM

TOPIC	OBJECTIVES	CONTENT	SUGGESTED ACTIVITIES	SUGGESTED
		(knowledge, skills,	AND NOTES	RESOURCES
		values, and attitudes)		

	Learners should be able to:			
Production of fertilisers	Describe the manufacture of ammonium nitrate and ammonium sulphate fertilisers	 Production of fertilisers ammonium nitrate ammonium sulphate 	 experimenting on production of fertilisers by neutralising ammonia with nitric acid/sulphuric acid followed by crystalisation visiting sites e.g Sable chemicals, ZimPhos 	 science kit resource persons text book titration apparatus ammonia nitric acid sulphuric acid

7.1.9 REACTION KINETICS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Industrial applications	 Link reaction conditions to production costs for the Haber, and contact process Analyse the cost of production in relation to the cost of product Justify the conditions for Haber and contact processes 	 Industrial Applications Effects of conditions on yields and costs Alternative sources of raw materials 	 Analysing reaction conditions against productivity Visiting sites Analysing graphs showing relationships between conditions and yield 	Resource personICT toolsGraphs

INORGANIC CHEMISTRY

7.1.10 PERIODIC TABLE

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Transition elements	 Describe the properties of transition elements explain the industrial and biological significance of transition elements 	 Transition elements (copper, iron, manganese, cobalt, chromium, nickel, vanadium) Physical properties Industrial and biological significance of transition elements (catalysis, haemoglobin and alloys) 	 Discussing properties of transition elements Experimenting to investigate the colours and catalytic properties of transition elements iron II, iron (III), Cu²⁺, MnO₄-, Cr³⁺, Cr₂O₇², CrO₄²⁻ visiting site 	 Periodic table Salts metals Science kit Resource person iron II, iron (III), Cu²⁺,MnO₄-,Cr^{3+,}Cr₂O₇², CrO₄²⁻

7.1.11 METALS AND NON - METALS

TOPIC	OBJECTIVES	CONTENT (knowledge,	SUGGESTED ACTIVITIES	SUGGESTED
	Learners should be	skills, values, and attitudes)	AND NOTES	RESOURCES
	able to:			

Composition of Mineral ores	Describe the composition of mineral ores	 Composition of mineral ores of Iron Copper Platinum Lithium Nickel Gold 	 visiting sites e.g Zimbabwe School of Mines, Bikita minerals, Platinum mines, Arcturus mine analysing composition of samples of mineral ores 	 Sample of mineral ores ICT tools Resource person
Extraction of metals	Describe the methods of processing minerals Explain the uses of metals and alloys in respect to their properties	 Methods of processing minerals Blast furnace Purification of copper, nickel, platinum, gold Value addition and beneficiation Uses of metals and alloys 	 Discussing the methods of extracting minerals discussing importance of value addition and beneficiation on mineral resources visiting sites e.g Zimbabwe School of Mines, Bikita minerals, Platinum mines, Arcturus mine discussing the formation of alloys of copper, iron, aluminium discussing uses of metals and alloys 	 Sample of mineral ores ICT tools Resource person

7.1.12 NON METALS

TOPIC	OBJECTIVES	CONTENT (knowledge,	SUGGESTED ACTIVITIES	SUGGESTED RESOURCES
	Learners should be	skills, values, and attitudes)	AND NOTES	
	able to:			

diamond and coal	Describe the processing of diamond and coal	 Processing of diamond and coal Destructive distillation of coal Coal gasification Value addition and beneficiation 	 discussing importance of value addition and beneficiation on mineral resources Visiting sites Hwange Zimchem 	ICT toolsCoalResource person
Liquefaction and fractional distillation of air	 Describe the liquefaction and fractional distillation of air Identify the uses of Oxygen, Nitrogen, Carbon dioxide and noble gases 	 Composition of air liquefaction and fractional distillation of air uses of Oxygen, Nitrogen, Carbon dioxide and noble gases 	 discussing the composition, liquefaction and fractional distillation of air visiting sites e.g Sable chemicals, BOC gases simulating using ICT tools 	 Flow charts ICT tools Resource person
	Tiobio gadoo		•	
ORGANIC CHEMIS 7.1.13 FUEL	STRY			

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Fuel efficiency	 Determine, experimentally, the heating values of fuels Explain why some fuels are more efficient than others 	Types of fuelsFuel efficiency	 Experimenting with fuels to determine their heating values Discussing the reasons why the fuels have different efficiency 	FuelsThermometerBeakerBurnersScience kit

7.1.14 CLASSIFICATION AND NOMENCLATURE OF ORGANIC COMPOUNDS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Isomerism	 describe the term isomerism identify structural isomers of alkanes draw the structures of the isomers 	structures of isomers of alkanes up to 6 carbon atoms	 discussing on isomerism making models of isomers of alkanes simulating isomerism 	modelsICT toolsText books

7.1.15 HYDROCARBONS

TOPIC	OBJECTIVES	CONTENT (knowledge,	SUGGESTED ACTIVITIES	SUGGESTED RESOURCES
	Learners should be	skills, values, and attitudes)	AND NOTES	
	able to:			

Alkanes and Alkenes	 Describe the manufacture of alkanes and alkenes Distinguish between alkanes and alkenes Describe the chemical properties of alkanes as exemplified by methane Describe the chemical properties of alkenes as exemplified by ethene 	 Cracking of long chain alkanes Combustion of alkanes and alkenes Reaction with chlorine in the presence of UV light and in darkness Reaction with bromine water Reaction of ethene with steam and hydrogen 	 Making models of alkenes and alkanes Drawing structures of alkanes and alkenes Experimenting with cooking oil to demonstrate cracking Burning hydrocarbons Discussing the manufacture of margarine 	 Hydrocarbon Burner Sand Cooking oil Bromine water Boiling tube Delivery tubes
7.1.16 A	LCOHOLS	33		

7.1.16

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Fermentation	 Describe the conditions necessary for the fermentation process Describe the industrial production of ethanol by fermentation 	 Conditions for fermentation Fermentation ethanol mahewu Indigenous beer brewing 	 Discussing conditions necessary for fermentation investigating the conditions necessary for fermentation visiting sites e.g breweries, ethanol production plants 	 Glucose Yeast Sugarcane Malt, hops, maize, barley, rapoko, sorghum
properties of ethanol	 Describe the properties of ethanol describe the uses and social effects of ethanol 	 Solubility Boiling point Combustion Oxidation to carboxylic acids Dehydration of ethanol to ethene Uses of ethanol Solvents Fuels (blend petrol) Perfumes Alcoholic beverages Social effects 	 Burning of ethanol Testing for ethanol using potassium dichromate Dehydrating ethanol using concentrated sulphuric acid Discussing the uses and social effects of using ethanol 	 ethanol K₂Cr₂O₇ concentrated sulphuric acid burner science kit

7.1.17 CARBOXYLIC ACIDS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Carboxylic acids	 describe the formation of ethanoic acid describe the chemical properties of carboxylic acids describe the uses of ethanoic acids describe the process of saponification 	 Oxidation of ethanol (refer to alcohols) Properties of carboxylic acids Esterification Reaction with carbonates Uses of ethanoic acids Manufacture of perfumes Food preservation Flavouring Soap manufacturing Structure of soap molecule Glycerine/glycerol 	 Experimenting on chemical properties of ethanoic acid Discussing the uses of ethanoic acids Making soap in the laboratory 	 Science kit Ethanoic acid Ethanol Sulphuric acid Sodium carbonate Perfume samples Vinegar Animal fat Sodium chloride Sodium hydroxide

7.1.18 POLYMERS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Synthetic polymers	 Describe the formation of polythene Draw structures to represent synthetic polymers Deduce the structure of the monomer from a given polymer and vice-versa Describe the uses of synthetic polymers 	 Addition polymerisation Structures of: Polythene Nylon Terylene Uses of synthetic polymers N.B: Use block diagrams to represent condensation polymers 	 Discussing polymerisation Identifying and naming linkages in synthetic polymers Drawing structures to represent monomers and polymers Discussing on the uses of synthetic polymers Visiting sites Saltrama plastics Treger plastics 	 Models and images to represent structures of monomers ICT tools Samples of different polymers Resource persons
Natural Polymers	 Name the type of linkages in each of the polymers Draw structures to represent natural polymers Deduce structure of the monomer from a given polymer and vice-versa Describe the hydrolysis of natural polymers 	 Natural polymers Starch Proteins Hydrolysis of natural polymers 	 Discussing structures of natural polymers Drawing structures of natural polymers Discussing hydrolysis of natural polymers Experimenting on acid hydrolysis of natural polymers 	 Starch Mineral acid Albumen Science kit

ENVIRONMENTAL CHEMISTRY

7.1.19 WASTE MANAGEMENT

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Waste disposal methods	 Identify the waste disposal methods Describe the advantages and disadvantages of each of the methods of waste disposal Explain the concepts of re-using and recycling of waste 	 Waste disposal methods: incineration, landfills, activated sludge re-using and recycling of wastes 	 Visiting sites e.g biodigesters, incinerators, landfills Describing each of the methods of waste disposal 	 Incinerators Landfills Sewage treatment plants Composts Bio-digesters Resource person

7.1.20 POLLUTION

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Sources of pollutants	 List the sources of pollutants Explain the effects of pollution describe methods of controlling pollution 	 Sources of pollutants Industrial waste Exhaust fumes Domestic waste Effects of pollutants Acid rain Eutrophication Global warming Health hazards Ozone layer depletion Methods of controlling pollution Catalytic convertors Scrubbers shakers 	 Discussing sources of pollution Discussing effects of pollution Visiting sites Discussing methods of controlling pollution 	 ICT tools Text books Resource person Catalytic convertor

7.1.21 WATER PURIFICATION

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Water purification	 Describe the process of large scale water purification Explain the role of aluminium sulphate and chlorine in the treatment of water 	 Water purification Filtration Flocculation Sedimentation Chlorination role of aluminium sulphate and chlorine challenges associated with water purification 	 Experimenting on sedimentation and filtration Visiting sites e.g Water works Discussing the roles of aluminium sulphate and chlorine 	 Resource person Models of Sand filters Water guard Aluminium sulphate Chloride tablets Chlorate (V)

7.1.22 HERBS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values, and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Herbs	 describe the uses of herbs Describe advantages and disadvantages of using herbs 	 Uses of herbs Health and agriculture Advantages and disadvantages of herbs 	 Listing of herbs found in the local environment Visiting herbal gardens discussing on the advantages and disadvantages of using herbs 	herbsResource person

9.0 ASSESSMENT

The Lower Secondary Chemistry syllabus learning area for Forms 3 – 4 shall be assessed through School Based Continuous Assessment (SBCA) and Summative Assessment (SA). These assessments shall be guided by the principles of inclusivity, practicability, authenticity, transparency, flexibility, validity and reliability. The principles are crucial for creating a supportive and effective learning environment that fosters growth and development in learners at secondary school level. Arrangements, accommodations and modifications shall be visible to enable candidates with special needs to access assessments.

This section covers the assessment objectives, the assessment model, the scheme of assessment, and the specification grid.

9.1 Assessment Objectives

Learners will be assessed on their ability to:

- 9.1.1 Show knowledge and understanding.
- 9.1.2 Handle information and solve problems.
- 9.1.3 Display experimental skills and investigations.

9.2 Assessment Model

Assessment of learners at Lower Secondary school level for Chemistry Syllabus shall be both Continuous and Summative as illustrated in Figure 1. School Based Continuous Assessment shall include recorded activities from the School Based Projects. The mark shall be included on the learner's end of term and year report. Summative assessment at school level shall include terminal examinations which are at the end of the term and year.

Fig. 1 Assessment Model

In addition, learners shall be profiled and learner profile records established. Learner profile certificates shall be issued for checkpoints assessment in schools as per the dictates of the Teacher's Guide to Learning and Assessment. The aspects to be profiled shall include learner's prior knowledge, values and skills, and subsequently the new competences acquired at any given point.

9.3 Scheme of Assessment

The Assessment Model shows that learners shall be assessed using both School Based Continuous Assessment and Summative Assessment for both School and ZIMSEC assessments.

The table shows the Scheme of Assessment where 20% is allocated to School Based Continuous Assessment and 80% to School or ZIMSEC Summative Assessment.

FORM OF ASSESSMENT	WEIGHTING
School Based Continuous Assessment	20%
Summative Assessment	80%
Total	100%

9.3.1 Description of School Based Continuous Assessment

Learners shall do one school-based project per Form which contributes to 20% of the end of year final mark. The end of year summative assessment shall then contribute 80%. However, for ZIMSEC public examinations, two (2) school-based projects shall be considered as School Based Continuous Assessment at Form 4. The two School Based Projects shall include those done during Form 3. and Form 4 sessions. Each will contribute 10%.

9.3.1.1: School – Based Project Continuous Assessment Scheme

The Table given below shows the Learning and Assessment Scheme for the School Based Project.

Project Execution Stages	Project Stage Description	Timelines	Marks
1	Problem Identification	January	5
2	Investigation of related ideas to the problem/innovation	February	10
3	Generation of possible solutions	March	10
4	Selecting the most suitable solution	April-May	5
5	Refinement of selected solution	June	5
6	Presentation of the final solution	July	10
7	Evaluation of the solution and Recommendations	August-September	5
	TOTAL		50

9.3.2 Description of the ZIMSEC Summative Assessment

ZIMSEC Summative Assessment shall be a public examination at Form 4. The examination shall consist of three papers of different weighting.

Paper	Paper type	Marks	Duration	Weighting
1	Multiple choice	40	1hr	20%
2	Theory	100	2hrs	40%
3	Practical test	40	1hr 30 mins	20%
TOTAL				80%

Paper 1: Multiple choice

Duration: 1 hour

The paper consists of 40 compulsory multiple-choice items of the direct choice type.

Each question shall have 4 response items.

Paper 2: Theory

Duration: 2 hours.

The paper has 2 sections

Section A will carry 40 marks and will consists of five compulsory structured questions of variable mark valve.

Section B carries 60 marks and will consist of 4 structured questions. Each question will carry 20 marks. Candidates will be required to answer any 3 questions.

Paper 3: Practical Test

Duration: 2hours

This paper will consist of 2 compulsory questions each carrying 20 marks.

9.4 Specification Grid

KNOWLEDGE A	Paper 1	Paper 2	Paper 3	Paper 4
	ND 15%	15%		15%
UNDERSTANDING				
ANALYSIS, SYNTHESIS A	ND 45%	45%		45%
EVALUATION				3
APPLICATION AND PROBL	.EM 40%	40%		40%
SOLVING				
PRACTICAL			100%	
TOTAL	100%	100%	100%	100%