5XCC0 Biopotential and Neural Interface Circuits

Assignment 6
Neural Recording and Stimulation

Pieter Harpe

Overall Assignment

- In this standalone design assignment (week 6), we will:
 - Take a look at cross-talk in neural recording arrays.
 - Check the impact of active electrodes in such arrays.
 - Design and simulate neural stimulation circuits based on constant current, constant voltage, and constant charge.
 - Look at charge balancing using biphasic pulses and using a blocking capacitor.

Instructions

• First, do the various exercises in Cadence Virtuoso

- The final answers need to be entered in CANVAS
 - Carefully check the unit that is asked on CANVAS (e.g.: V, mV, V_{rms}, dB)
 - This will determine your score for this assignment
 - You can enter results twice
 - The correct results will be shown after the deadline

Before You Start: Create a New Design Library

- Create a new design library (from the menu in the library manager, or from the menu in the main virtuoso window)
 - You can give the library any name you like
 - Attach it to the gpdk045 technology library
 - In case of doubt how to do this, please check the Cadence tutorial

Cross-talk in Neural Recording Arrays

- Ideally V_{out1} only depends on V_{in1} and V_{out2} only depends on V_{in2} . In practice there is cross-talk (due to Z_c), which means V_{in1} also appears (with attenuation) at V_{out2} and V_{in2} appears at V_{out1} .
- If H_{jj} is the transfer function from input i to output j, the cross-talk C_{ba} from channel a to b can be calculated as: C_{ba} [dB] = 20 log_{10} { log_{10} { log_{10} } log_{10} }

- Z_{elec}: electrode-tissue impedance
- Z_c: coupling impedance between adjacent traces
- Z_{sh}: impedance of each trace to ground
- Z_L: input impedance of the load (e.g. readout amplifier)

Cross-Talk Simulations

- Given the 2-channel setup on the previous slide, draw a model of the network in Cadence using ideal components:
 - Use components res, cap, gnd and vdc from the library analogLib for resistors, capacitors, ground connections, and the input signals (V_{in1} and V_{in2}), respectively.
 - We want to check the cross-talk from V_{in1} to V_{out2} , so set the "AC magnitude" of the vdc source for V_{in1} to 1V, while you keep all values for V_{in2} at 0.
- Run an AC simulation to determine $|H_{11}|$ and $|H_{21}|$.
- Question 1: Based on the simulated results, what is the cross-talk C₂₁ (in dB) for a frequency of 1kHz?
- Question 2: Now assume we use active electrodes, which means Z_{elec} can be replaced by a single resistor representing the amplifier R_{out} . What is the required value for R_{out} (in Ω) to achieve a C_{21} of -80dB at 1kHz?

Impedance	Value
Z _{elec}	ETI model, as shown in the figure
Z_c	20pF
Z_{sh}	20pF
Z_L	1pF

Constant Current Stimulation

- Build the ETI model as shown in the figure in Cadence.
- For the stimulation source, you can insert an ipwl component (a current source with a "programmable" waveform) and adjust its parameters so that it creates a single current pulse as sketched below

- Run a transient simulation (10ms total time) and confirm you get patterns for the source current and $V_{\rm ETI}$ voltage similar to the ones shown on the right (taken from the lecture)
- Question 3: Which component(s) is/are responsible for the initial voltage step (V_0) at the start of the stimulation pulse?
- Question 4: What is the total charge delivered to the body during the entire response (in nC)?

Constant Voltage Stimulation

- Build the ETI model as shown in the figure in Cadence.
- You now replace the stimulation source with a vpwl component (a voltage source with a "programmable" waveform) and adjust its parameters so that it creates a single voltage pulse as sketched below

- Question 5: Which component(s) is/are responsible for the I_{∞} current value once the stimulation is active long enough?
- Question 6: What is the total charge delivered to the body during the entire response (in nC)?

Constant Charge Stimulation

- Build the ETI model as shown in the figure in Cadence.
- You now replace the stimulation source with a capacitor of 10nF. If you set the initial condition to 1V, it will behave as a pre-charged capacitor that will immediately (at time t = 0) start to stimulate the body.

- Run a transient simulation (<u>100ms</u> total time) and confirm you get patterns a decaying current and voltage.
- Question 7: What is the total charge delivered to the body during the entire response (in nC)?

Biphasic Current Stimulation

- Return to your test bench with the current source stimulation source (slide 7).
- Modify ipwl such that it creates a biphasic current as shown in the figure below.
- Also set the parameter "Period of the PWL" to 5ms. In that way, you get repetitive biphasic patterns.

- Run a transient simulation (<u>1s</u> total time)
- Question 8: What is the final charge (in nC) delivered to the body after 1s of stimulation time?

Biphasic Current Stimulation

Now generate some mismatch in the biphasic currents, by lowering the second pulse to -10.1μA.

- Run a transient simulation (<u>1s</u> total time)
- Question 9: What is the final charge (in nC) delivered to the body after 1s of stimulation time?

Biphasic Current Stimulation

• As a final step, keep the mismatch in the ipwl source, but add a series blocking capacitor of 100nF

- Run a transient simulation (<u>1s</u> total time)
- Question 10: Does this capacitor solve the charge accumulation problem in this particular case?