Leçon 5 : Phénomènes interfaciaux dans les fluides

Niveau:

CPGE

Pré-requis :

- Description des fluides en mouvement
- Actions de contact
- Interactions moléculaires
- Mécanique
- Thermodynamique

Bibliographie:

- Hydrodynamique Physique
- Gouttes, bulles, perles et ondes
- Cours de Marc Rabaud

Introduction

Un liquide coule et pourtant il peut adopter des formes géométriques remarquables très stables naturellement. Goutte d'eau de la rosée du matin, lentille d'huile sur la surface de l'eau, les formes ondulées des vagues, les formes géométriques des bulles de savons.

La surface d'un liquide semble se comporter comme une membrane tendue, dont la tension est caractérisée par une force qui s'oppose à ses déformations : c'est la tension superficielle. Dans cette leçon nous nous intéresserons à son origine et à ses conséquences.

Schéma d'une membrane tendue : vidéo https://youtu.be/DZOB5GVAxJg.

1. Tension superficielle

Manipulation:

On fabrique un film de savon dans un cadre métallique sur lequel on pose une tige métallique au milieu. Le film savonneux doit mouiller la tige métallique. On perce le film de savon d'un côté, la tige se met à rouler dans la direction où le film de savon existe encore. Le film de savon exerce une force de tension sur la tige métallique.

1.1. Approche microscopique

Un liquide est composé de molécules qui sont proches les unes des autres : c'est ce que nous appelons un état condensé. Ces molécules tendent à s'attirer entre elles, grâce aux interactions électrostatiques de Van der Waals et grâce aux liaisons hydrogènes. Une molécule est attirée par ses voisines avec la même intensité dans toutes les directions de l'espace, mais si cette molécule est à la surface du liquide, elle perd la moitié de ses interactions comme l'illustre le schéma I.2. Dans ce cas, les molécules sont dans un état énergétique défavorable.

1.2. Approche macroscopique

a. Thermodynamique

L'interface entre deux fluides (air et eau par exemple) est un milieu continu à travers lequel on passe d'une phase condensée, l'eau à une phase gazeuse, l'air. Pour simplifier, on suppose que l'on peut réduire cette zone à une ligne infiniment fine séparant les deux phases α et β .

Schéma : définition du système thermidynamique avec deux compartiments.

Cette ligne définit l'interface σ entre les deux milieux tel que

$$V = V^{\alpha} + V^{\beta} \text{ avec } V_{\sigma} = 0. \tag{1}$$

Dans ce contexte, on peut exprimer l'énergie du système, à partir de l'énergie libre F. En général l'énergie libre s'écrit :

$$dF = -SdT - PdV + \sum_{i} \mu_{i} dn_{i} + dW$$
 (2)

SdT tient compte de la variation de la température du système, PdV de l'expansion du système, les $\mu_i dn_i$ de la composition chimique et dW est le travail sans l'expansion du volume, il correspond à la variation du travail à fournir lorsque la surface change de dA.

$$dW = \gamma dA \tag{3}$$

Si on écrit l'énergie totale du système :

$$dF_{\text{tot}} = dF^{\alpha} + dF^{\beta} + dF^{\sigma} \tag{4}$$

il vient :

$$dF_{\text{tot}} = -SdT - P^{\alpha}dV - (P^{\beta} - P^{\alpha})dV^{\beta} + \sum_{i} \left(\mu_{i}^{\alpha} dn_{i}^{\alpha} + \mu_{i}^{\beta} dn_{i}^{\beta} + \mu_{i}^{\sigma} dn_{i}^{\sigma} \right) + \gamma dA$$
 (5)

Défintion thermodynamique de la tension de surface

À volume constant, température constante et nombre de constituants constants, on obtient :

$$\left. \frac{\partial F_{\text{tot}}}{\partial A} \right|_{V,V^{\beta},T,n_{i}} = \gamma. \tag{6}$$

L'existence de la surface coûte de l'énergie au système. Cette énergie est proportionnelle à la surface séparent les deux fluides. Le facteur de proportionnalité est noté γ , c'est la tension de surface. Il s'agit d'une énergie par unité de surface. Les fluides cherchent à minimiser l'énergie que coûte la présence de cette interface. Hors pour un volume donnée la forme qui minimise la surface c'est la sphère. C'est pourquoi les gouttes à petite échelle préfèrent adopter une forme parfaitement sphèrique.

b. Force de tension surperficielle

On peut aussi voir la tension surperficielle comme une force par unité de longueur. Dans la première manipulation, pour accroître la surface du film de savon d'une quantité dS=Ldl il faut fournir une énergie :

$$dW = Fdl = 2\gamma Ldl = 2\gamma dS \tag{7}$$

 γ est une force par unité de longueur dirigée suivant la normale à l'interface et dirigée vers le liquide.

Manipulation:

Boucle de fil attachée en deux endroits à un cadre. On forme un film de savon dans le cadre, le film prend une forme quelconque. Lorsqu'on perce le film de savon au centre du fil, le fil se tend tirer par la force de tension exercée par la film de savon sur la corde.

2. Lois d'équilibre des interfaces

2.1. Loi de Laplace

Lorsque l'on observe une mousse ou une émulsion, on peut voir que les plus petites bulles disparaissent au profit des plus grosses. C'est la tension de surface qui est responsable de la surpression dans les petties bulles par rapport aux grandes gouttes.

Si une surface est courbée, les contraintes de traction existant sur la surface ont une composante non nulle dans la direction normale à la surface et orientée vers le centre de courbure, c est à dire du côté concave de la surface. À l'équilibre, cette force normale est compensée par une pression plus forte du côté intérieur que du côté extérieur. Prenons l'exemple d'une goutte sphérique que nous allons couper en deux par la pensée. La force dirigée vers le haut due a la surpression à l'intérieur de la goutte, $\Delta P\pi R^2$, doit être égale à la somme des forces de tension de surface sur l'équateur $\gamma 2\pi R$.

Schéma au tableau

Donc pour une goutte sphérique :

$$\Delta P = P_{\rm int} - P_{\rm ext} = \frac{2\gamma}{R}.$$
 (8)

Définition - Loi de Laplace

Dans le cas général, on montre que la loi de Laplace, formulée pour la première for en 1806 par Pierre-Simon de Laplace, s'écrit en chaque point d'une surface courbée :

$$P_{\rm int} - P_{\rm ext} = \gamma \mathcal{C}. \tag{9}$$

Avec C la courbure de la surface courbée.

Où R_1 et R_2 sont les deux rayons de courbure de la surface en ce point, comptés positivement lorsque leur centre de courbure se trouve du côté. En effet, pour tout point d'une surface on peut définir la normale et donc les plans contenant cette normale. Chacun de ces plans coupe la surface selon une courbe dont on peut déterminer le centre de courbure et le rayon de courbure.

Conséquences

En conséquence de la loi de Laplace, plus une goutte est petite plus le fluide à l'intérieur est à une pression élevée. Les petites bulles sont donc bien sphériques et peu déformables. Cette surpression dans les petites bulles a de nombreuses conséquences, par exemple pour le vieillissement d'une mousse liquide, l'initiation de la cavitation ou de l'ébullition ou pour la formation de brouillards.

Démonstration : (démonstration au choix suivant le temps on peut pas tout faire)

La force de tension superficielle en M vaut par élément de longueur dz dans la direction transverse :

$$\overrightarrow{F}(s) = \gamma dz \overrightarrow{t} \tag{10}$$

À l'équilibre cette force à le même volume en s+ds mais pas la même direction :

$$\overrightarrow{F}(s+ds) = \overrightarrow{F}(s) + \gamma dz \overrightarrow{dt}$$
(11)

Or $\overrightarrow{\frac{dt}{d\theta}} = -\overrightarrow{n}$ et $ds = R'd\theta$, où R' = OM est le rayon de courbure en M. Donc $\overrightarrow{dF} = -\gamma dz \frac{ds}{R'} \overrightarrow{n}$. S'il existe aussi un rayon de courbure R' dans le plan perpendiculaire à Oxy et contenant \overrightarrow{n} , il existe une deuxième contribution à la foce normale $\overrightarrow{dF} = -\gamma dz \frac{ds}{R'} \overrightarrow{n}$.

À l'équilibre cette force est compensée par une force de surpression $\Delta P(dzds)\overrightarrow{n}$ ce qui donne finalement l'équation $\ref{eq:condition}$.

Pour une courbe y=f(x), la courbure C qui caractérise la rotation du vecteur tangent lorsqu'on se déplace sur la courbe est donnée par la relation :

$$C' = \frac{1}{R} = \frac{y'}{(1+y'')^{3/2}} \tag{12}$$

2.2. Mouillage, loi d'Young Dupré

Dans de nombreuses situations trois phases (solide, liquide et vapeur) sont présentes et leur frontière est une ligne nommée **ligne triple**. C'est le cas par exemple lorsque l'on dépose une goutte sur une surface solide indéformable. Comprendre le mouillage c'est expliquer pourquoi l'eau s'étale sur du verre propre mais pas sur du plastique. Controller le mouillage c'est modifier la surface. Il est essentiel de comprendre les mécanismes du mouillage pour un très grand nombre d'application très techniques comme le traitement des verres (de lunettes par exemple ou pour des optiques d'appareil de photos), fabrication de miroirs pour les télescopes, gonflements des poumons à la naissance, adhésion de parasites, montée de la sève, langue des colibris.

On peut distinguer deux régimes de mouillages différenciés par le paramètre d'étalement :

$$S = E_{\text{sec}}^{\text{substrat}} - E_{\text{mouille}}^{\text{substrat}}$$
$$= \gamma_{\text{sv}} - (\gamma_{\text{sl}} - \gamma_{\text{lv}})$$
(13)

Loi d'Young Dupré (1805) :

Pour une surface solide indéformable, on projetteles forces capillaires suivant la direction horizontale, à l'équilibre il vient :

$$\gamma_{\rm lv}\cos\theta_E = \gamma_{\rm sv} - \gamma_{\rm sl} \tag{14}$$

Verticalement les forces capillaires sont compensées par la réaction du substrat, indéformable.

Remarques : En pratique les mesures de γ $_{sl}$ et γ_{sv} sont difficiles. On mesure plutôt γ_{lv} et θ_E

• S>0, $\theta_{\rm E}=0$, c'est l'état final oú le film est d'épaisseur macroscopique, ce qui résulte d'une compétil faut farm les tenebrions ition entre forces moléculaires et capillaires.

• S<0, on parle de mouillage partiel, c'est à dire que la goutte ne s'étale pas et forme une calotte sphérique qui s'appuie sur le substrat avec un angle $\theta_{\rm E}$ non nul. Si $\theta_{\rm E}\!\geq\!\frac{\pi}{2}$ le substrat est non mouillant, si $\theta_{\rm E}\leq\frac{\pi}{2}$ il est plutôt mouillant.

et $\theta_{\rm E}$ puis on en déduit les valeurs des autres paramètres. Les mesures peuvent être réalisées par mesures d'interférences ou à l'aide d'une nappe Laser.

Matériaux hydrophiles / hydrophobes :

On s'attend à ce que la goutte glisse dès que $\theta=\theta_E$ mais en pratique elle reste coincée dû aux effets de viscosité sur le support. Le glissement d'une goutte sur une paroi a un comportement hystérétique. On a un angle d'avancée et de récession. Il faudrait rajouter un schéma mais pas le temps et je ne pense pas en parler pendant la leçon mais à garder en tête en cas de questions.

2.3. Longueur capillaire et nombre de Bond

On peut caractériser l'importance relative des effets de gravité et ceux de capillarité par le rapport des différences de pression correspondantes, soit :

$$Bo = \frac{\rho gh}{\gamma/R} = \frac{\rho ghR}{\gamma} \tag{15}$$

Ce rapport est appelé **nombre de Bond.** Une grande valeur de Bo correspond à des effets de gravité dominants ceux de tension superficielle. Lorsque Bo = 1 on peut définir une longueur caractéristique, la longueur capillaire :

$$l_c = \sqrt{\frac{\gamma}{\rho g}} \tag{16}$$

Dans le cas de l'eau pure avec une tension de surface de $70~\mathrm{mN/m},\ l_c=2.7~\mathrm{mm}.$ Pour déterminer l'importance relative de la tension superficielle pour un écoulement donné, on compare l_c aux dimensions caractéristiques de l'écoulement.

2.4. Mesure de la tension de surface par la loi de Jurin

Ascension du ménisque dans un coin entre deux plaques :

Quelle est la hauteur d'ascension du liquide au voisinage d'une paroi ? Hypothèses de travail :

On négligle le film d'épaisseur de quelques Angstrom qui peut précéder la montée capillaire du liquide. On a une paroi sur laquelle le liquide monte suivant la verticale y=f(x). À l'extérieur du liquide la pression est celle de l'atmosphère $P=P_0=1~{\rm bar}$. On note θ l'angle entre la verticale et la surface du liquide grimpant. D'apres la loi de Laplace que nous avons énoncé précédemment :

$$P_{\rm int}(x) - P_{\rm ext} = -\gamma \frac{1}{R(x)} \tag{17}$$

 $P_{\rm int}$ est la pression sous la surface du liquide, $P_{\rm ext}$ est la pression juste au-dessus de la surface du liquide, γ est la tension de surface du liquide ($\gamma=70~{\rm mN\cdot m^{-1}}$ pour de l'eaut très pure), R est le rayon de courbure de la surface :

$$\frac{1}{R(x)} = \frac{2\cos(\theta)}{d(x)} = \frac{2\cos(\theta)}{\alpha x} \approx \frac{2}{\alpha x}$$
 (18)

D'après la pression hydrostatique, il vient que :

$$P_{\rm int} = P_0 - \rho_{\rm liq} gy(x). \tag{19}$$

Lorsque le système revient à l'équilibre, on doit avoir égalité des pressions ($P_{\rm int}-P_0=0$) dans ce cas on a l'égalité suivante :

Loi de Jurin

Il vient vient directement, la loi de montée capillaire, la loi de Jurin :

$$y(x) = \frac{2\gamma}{\rho g \alpha x}. (20)$$

Manipulation:

On réalise la montée capilaire dans un coin entre deux lames. On en prend une photo, à l'aide d'ImageJ on repère la position du ménisque que l'on peut ainsi retracer à l'aide de regressi ou de tout autre logiciel. On ajuste la courbe à partir de l'expression théorique de la montée capilaire. Pour un coin :

$$y(x) = \frac{2\gamma}{\rho g \alpha x} \tag{21}$$

Pour l'éthanol, on trouve une tension de surface de $\gamma=21.8~\mathrm{mN/m}$ à $17^{\circ}\mathrm{C}$, la valeur attendue est de $22.6~\mathrm{mN/m}$ d'après le Handbook. L'erreur peut s'expliquer par plusieurs raisons, le mouillage du liquide avec les plaques en verre n'est pas parfait. Mesure de l'angle $\alpha=1.53E-2$ rad pourrait peut être être amélioré en prenant un objet pointu comme pour les mesures des diamètres des anneaux. L'incertitude peut être estimée à partir de la largeur du ménisque observé à partir de la photo.

3. Phénomènes interfaciaux en régime dynamique (faire un choix ou en parler dans un élargissement)

3.1. Ménisque Dynamique (Landau Levitch)

Dans le cas où la plaque sur laquelle le ménisque est formée est mise en mouvement la description du système se complique un peu. On a initialement une plaque immobile immergée $v=0m\cdot s^{-1}$ à t<0. Si S>0, $\theta=0$ le liquide mouillant monte jusqu'à une hauteur $h=\sqrt{2}l_c$. Puis à t>0, on tire la plaque à une vitesse v constante.

Le haut du ménisque statique est emporté par la plaque (ménisque dynamique), L est la distance de raccord entre le ménisque statique et dynamique. Au voisinage de la plaque, le liquide se déplace à la vitesse du solide (c'est la viscosité qui entre en jeu). Tandis l'interface liquide/vapeur est déformé par l'entraı̂nement ce à quoi s'oppose la tension superficielle γ . On peut ajouter l'effet de la gravité qui s'oppose au mouvement en tirant le liquide vers le bas.

À des échelles où la gravité peut être considérée négligeable, deux forces s'opposent, les forces visqueuses et de tension de surface. On peut comparer ces deux grandeurs à travers le nombrecapillaire C_a .

ombre Capillaire

Nombre capillaire:

$$Ca = \frac{\eta v}{\gamma} \tag{22}$$

3.2. Instabilité de Rayleigh Taylor (démo trop longue pas le temps)

Un exemple de compétition entre les effets de la tension superficielle et ceux de la gravité est l'instabilité de Rayleigh Taylor. La tension de surface tend à minimiser la surface de l'interface entre deux fluides. Dans le cas où l'on a deux liquides, l'un sur l'autre, le plus lourd étant au dessus du plus léger. Une telle situation est très instable. Toute déformation de l'interface crée un déséquilibre de pression qui tend à l'amplifier.

On désigne deux points M et M' infiniment voisins situés de part et d'autre de l'interface dans chacun des deux fluides. Si R(x) désigne le rayon de courbure de l'interface au niveau de ces deux points, on peut écrire d'après la loi de Laplace :

$$p_{M'} - p_M = \frac{\gamma}{R(x)}. (23)$$

Le principe fondamental de l'hydrostatique appliqué à l'intérieur de chacun des deux fludies permet d'écrire :

$$p_{M\prime} = p_{M_0} + \rho \prime g \epsilon \tag{24}$$

et

$$p_M = p_{M_0} + \rho g \epsilon \tag{25}$$

Au point M_0 le rayon de courbure de l'interface est nul et la pression a la même valeur de part et d'autre de l'interface. De cette façon on peut éliminer les pressions $p_{M\prime},~p_M$ et p_{M_0} entre les trois équations, il vient donc :

$$\Delta \rho g \epsilon(x) = \gamma \frac{1}{R(x)} \tag{26}$$

Hors

$$\frac{1}{R(x)} = \frac{\epsilon''}{(1 + {\epsilon'}^2)^{2/3}} \tag{27}$$

On a fait l'hypothèse que l'interface est peu déformée de sorte que $\epsilon \approx 0$, par conséquent il vient :

$$\Delta \rho g \epsilon(x) = \gamma \frac{d^2 \epsilon}{dx^2}.$$
 (28)

Cette équation a pour solution générale :

$$\epsilon(x) = A\cos(kx) + B\sin(kx)$$
 (29)

avec:

$$k = \sqrt{\frac{\Delta \rho g}{\gamma}} \tag{30}$$

On suppose que l'interface est fixe aux parois latérales, c'est à dire : $\epsilon(x=0)=\epsilon(x=L)=0.$ Par conséquent :

$$\epsilon(x,t) = B\sin(kx) \tag{31}$$

avec $k=\frac{2n\pi}{L}$ où n est un entier. Le seuil est obtenu pour la plus petite valeur de k satisfaisant cette conidtion (n=1) avec $\frac{2\pi}{L}=\sqrt{\frac{\Delta\rho g}{\gamma}}$ ou encore :

$$\frac{\Delta \rho g}{\gamma} L^2 = 4\pi^2. \tag{32}$$

Un calcul d'ordre de grandeur avec une interface eau-air donne une valeur seuil :

$$L_c = \sqrt{\frac{4\pi^2\gamma}{\Delta\rho g}} \approx 1.7 \cdot 10^{-2} m. \tag{33}$$

En général on se retrouve dans un cas où l'interface est instable ($L\gg L_c$). Dans le cas de l'huile où $\gamma=32~{\rm mN\cdot m^{-1}}:\lambda\approx 1.2~{\rm cm}.$

3.3. Effet Marangoni

Les gradients de tension superficielle dus à des variations de température ou de concentration de solutés peuvent créer des contraintes en surface. Les écoulements induits par de telles contraintes constituent **l'effet Marangoni** : on parle aussi d'effets thermocapillaires lorsqu'ils sont causés par des gradients de température.

Nombre de Marangoni

Nombre de Marangoni solutocapillaire :

$$Ma = \frac{\partial \gamma}{\partial c} \frac{Q}{2\pi\nu\eta D} \tag{34}$$

c la concentration, Q est le débit molaire de tensioactifs, ν la viscosité cinématique, η la viscosité dynamique, D le coefficient de diffusion des tensioactifs.

Nombre de Marangoni thermocapillaire :

$$Ma = \frac{\partial \gamma}{\partial T} \frac{Q}{2\pi\nu\eta\kappa} \tag{35}$$

T la température, Q est le débit de chaleur, ν la viscosité cinématique, η la viscosité dynamique, κ le coefficient de diffusion de la chaleur.

Si une couche d'eau est posée sur une surface et qu'un point de la surface est touché par un morceau de savon, on voit cette partie de la surface s'assécher : la tension de surface est réduite localement et les forces de tension superficielles sont déséquilibrées. On a donc un écoulement vers les parties voisines où la tension de surface reste inchangée.

Manipulation : Effet marangoni solutocapillaire

Déposer une goutte de liquide vaisselle à la surface de l'eau sur laquelle on a déposer des particules inertes (non tensioactives comme le poivre même si le poivre est un peu tensioactif). On verra le povre s'éloigner rapidement de la zone d'injection.

Conclusion

Conclure sur la définition de la tension de surface comme le rapport d'une énergie par unité de surface. Loi qui se retrouve dans le comportement des fluides aux échelles où la gravité devient négligeable par rapport à la tension de surface. Ouvrir sur des applications des phénomènes mettant en jeu les forces de tension de surface : médicaments (poumons chez les nouveaux nés, administration de médicaments par effet Marangoni) / déplacement des insectes sur l'eau, problème de pollution dans les rivières /dans un cadre plus industriel stabilité de film liquide / traitements de surface déperlante , mouillante etc