

Prof. Dr. kazer A N K IVIONTANO

Transfer Learning

Tem-se várias arquiteturas famosas

https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

Oxford VGG: http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Google Inception:
https://github.com/tensorflow/models/tree/master/research/inception

Microsoft ResNet: https://github.com/KaimingHe/deep-residual-networks

etc

Transfer Learning https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202 Inception v1: https://arxiv.org/pdf/1409.4842v1.pdf Inception v1: https://arxiv.org/pdf/1409.4842v1.pdf Imagens podem precisar de kernels de tamanhos diferentes Aplicar na mesma camada, em paralelo Inception v2 e v3: https://arxiv.org/pdf/1512.00567v3.pdf Diminuir o tamanho da convolução (mais eficiente) Uso de outros otimizadores etc Inception v4, Inception-ResNet: https://arxiv.org/pdf/1602.07261.pdf Simplificação das camadas Etc

Transfer Learning

O desenvolvimento dessas redes também foi impulsionado pelo ImageNet Challange

ILSYRC: ImageNet Large Scale Visual Recognition Challenge

http://www.image-net.org/challenges/LSVRC/

ImageNet DataSet: grande banco de dados de imagens, com propósito de pesquisa em visão computacional

Até 2017

Agora Kaggle (Google)

https://www.kaggle.com/

Comunidade de cientistas de dados

Kaggle Competitions

Prof. Dr. kazer A N K IVIONTANO

Importações

import os import zipfile import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tqdm import tqdm notebook from tensorflow.keras.preprocessing.image import ImageDataGenerator # plota os gráficos inline e salva no notebook %matplotlib inline

Gatos e Cachorros

Adicionar Cabeçalho Personalizado

print(base_model.output.shape)

reduzir a dimensionalidade (4 x 4 x 1280 = 20480 pesos para treinar!!)

Global Average Pooling

global_average_layer = tf.keras.layers.GlobalAveragePooling2D() (base_model.output)

print(global_average_layer.shape)

prediction_layer = tf.keras.layers.Dense(units=1, activation="sigmoid") (
global_average_layer)

Plotar a Acurácia

plt.plot(r.history["accuracy"], label="accuracy")
plt.plot(r.history["val_accuracy"], label="val_accuracy")
plt.xlabel("Épocas")
plt.ylabel("Acurácia")
plt.xticks(np.arange(0, EPOCHS, step=1))
plt.legend()

Prof. Dr. Rozer A. N. R. Montoño - UFPRZEPT

Tensoritow

Fine Tuning: Gatos e Cachorros

• Efetuar o Fine Tuning: Congelar as camadas até a 100

Efetuar o Fine Tuning
Primeiro fazer o Transfer Learning
Depois o Fine Tuning

descongelar algumas camadas
base model.trainable = True
len(base_model.layers)

deixar o inicio da base
congelar o final
fine_tuning_at = 100

for 1 in base_model.layers[:fine_tuning_at]:
1.trainable = False

Fine Tuning: Gatos e Cachorros

Plotar a evolução da Loss-Function

plt.plot(r.history["loss"], label="loss")
plt.plot(r.history["val_loss"], label="val_loss")
plt.xlabel("Épocas")
plt.ylabel("Loss")
plt.xticks(np.arange(0, EPOCHS, step=1))
plt.legend()

Fine Tuning: Gatos e Cachorros.

Avaliação do Modelo

val_loss, val_accuracy = model.evaluate(test_generator)

print(val_accuracy)

Prof. Dr. Rozer A. N. R. Montoho - UFPR/SEPT

