```
from keras.preprocessing.image import ImageDataGenerator
train data dir='/content/drive/MyDrive/pnemonia/train'
valid data dir='/content/drive/MyDrive/pnemonia/test'
train_datagen=ImageDataGenerator(rescale=1.0/255,
                                 rotation_range=45,
                                 shear range=0.2,
                                 zoom_range=0.2,
                                 height_shift_range=0.2,
                                 width_shift_range=0.2,
                                 horizontal_flip=True,
                                 fill mode='nearest')
test_datagen=ImageDataGenerator(rescale=1.0/255)
batch_size=32
train_generator=train_datagen.flow_from_directory(
   train_data_dir,
    target_size=(150,150),
   color_mode='rgb',
    class mode='binary',
   shuffle=True,
   batch_size=batch_size
valid generator=test datagen.flow from directory(
   valid data dir,
   target_size=(150,150),
   color_mode='rgb',
   shuffle=False,
   class mode='binary',
   batch size=batch size)
     Found 5211 images belonging to 2 classes.
     Found 624 images belonging to 2 classes.
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPooling2D, LeakyReLU, Flatten, Dropout
model=Sequential()
#Building a CNN Model
#A CNN model has three layers which includes Convolutional layer, pooling layer and a fully connected layer
#convolutional layer
model.add(Conv2D(32,(3,3),strides=(1,1),padding='same',input_shape=(150,150,3)))
model.add(LeakyReLU(0.1))
#pooling layer
model.add(MaxPooling2D(2,2))
#convolutional layer
model.add(Conv2D(64,(3,3),strides=(1,1),padding='same'))
model.add(LeakyReLU(0.1))
#pooling layer
```

```
#convolutional layer
model.add(Conv2D(128,(3,3),strides=(1,1),padding='same'))
model.add(LeakyReLU(0.1))
#pooling layer
model.add(MaxPooling2D(2,2))

model.add(Flatten())
#fully connected layer
model.add(Dense(128,activation='relu'))
model.add(Dense(128,activation='rigmoid'))

#compiling a model
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
#model summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 150, 150, 32)	896
leaky_re_lu_3 (LeakyReLU)	(None, 150, 150, 32)	0
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 75, 75, 32)	0
conv2d_4 (Conv2D)	(None, 75, 75, 64)	18496
leaky_re_lu_4 (LeakyReLU)	(None, 75, 75, 64)	0
<pre>max_pooling2d_4 (MaxPooling 2D)</pre>	(None, 37, 37, 64)	0
conv2d_5 (Conv2D)	(None, 37, 37, 128)	73856
leaky_re_lu_5 (LeakyReLU)	(None, 37, 37, 128)	0
max_pooling2d_5 (MaxPooling 2D)	(None, 18, 18, 128)	0
flatten_1 (Flatten)	(None, 41472)	0
dense_2 (Dense)	(None, 128)	5308544
dense_3 (Dense)	(None, 1)	129

 $history = model. fit (train_generator, epochs=50, steps_per_epoch=5211/batch_size, validation_data=valid_generator, validation_steps=624/batch_size)$

```
EDOCH 23/50
Epoch 24/50
162/162 [============] - 105s 648ms/step - loss: 0.1364 - accuracy: 0.9459 - val_loss: 0.2631 - val accuracy: 0.8830
Epoch 25/50
162/162 [============] - 102s 629ms/step - loss: 0.1387 - accuracy: 0.9443 - val loss: 0.2694 - val accuracy: 0.8830
Epoch 26/50
Epoch 27/50
Epoch 28/50
Epoch 29/50
Epoch 30/50
Epoch 31/50
Epoch 33/50
Epoch 34/50
Epoch 35/50
Epoch 36/50
Epoch 38/50
Epoch 40/50
Epoch 41/50
Epoch 43/50
Epoch 44/50
Epoch 45/50
162/162 [============] - 103s 633ms/step - loss: 0.1108 - accuracy: 0.9553 - val loss: 0.3135 - val accuracy: 0.8782
Epoch 46/50
162/162 [===========] - 100s 616ms/step - loss: 0.1197 - accuracy: 0.9514 - val loss: 0.3105 - val accuracy: 0.8574
Epoch 47/50
162/162 [============] - 105s 646ms/step - loss: 0.1073 - accuracy: 0.9603 - val_loss: 0.3280 - val_accuracy: 0.8910
Epoch 48/50
162/162 [============] - 103s 634ms/step - loss: 0.1179 - accuracy: 0.9528 - val_loss: 0.3048 - val_accuracy: 0.8878
Epoch 49/50
162/162 [===========] - 105s 645ms/step - loss: 0.1169 - accuracy: 0.9545 - val loss: 0.3270 - val accuracy: 0.8429
Epoch 50/50
162/162 [============] - 103s 635ms/step - loss: 0.1106 - accuracy: 0.9557 - val_loss: 0.2598 - val_accuracy: 0.9006
```

```
plt.plot(history.history['loss'])
plt.plot(history.history['accuracy'])
plt.title('Model History')
plt.ylabel('Loss/Accuracy')
plt.xlabel('Epoch')
plt.legend(['Loss', 'Accuracy'], loc='upper left')
plt.show()
```


cr=classification_report(y_predict,true_labels)
print('Classification Report')
print(cr)

Classification	on Report			
	precision	recall	f1-score	support
0.0	0.91	0.84	0.87	254
1.0	0.89	0.94	0.92	370
accuracy			0.90	624
macro avg	0.90	0.89	0.90	624
weighted avg	0.90	0.90	0.90	624

Testing model with unseen pics

```
import cv2 as cv
import matplotlib.pyplot as plt

path = '/content/drive/MyDrive/pnemonia/val/pneumonia/person1947_bacteria_4876.jpeg' #pneumonia x-ray image
input_pic = cv.tmread(path)
resized_pic = cv.resize(input_pic, (150, 150))
normalized_pic = resized_pic / 255.0
reshaped_pic = normalized_pic.reshape(1, 150, 150, 3)
prediction = model.predict(reshaped_pic)
predicted_class = "pneumonia" if prediction[0][0]> 0.5 else "normal"

plt.imshow(normalized_pic)
plt.title(f"Predicted Class: {predicted_class}")
plt.axis('off')
plt.show()
```

1/1 [======] - 0s 80ms/step

Predicted Class: pneumonia

model.save('pneumonia.h5')

✓ 1s completed at 5:28 AM

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

×