

# Society of Tracking Parts

Elena Burceanu eburceanu@bitdefender.com

 $1^{st}$  Conference on Recent Advances in Artificial Intelligence RAAI 2017



### **Tracking**

Problem Description Previous Approaches

### Society of Tracking Parts

Motivation

STP Algorithm

Mathematical novelty

Experiments and Results

Benchmark

Results

RAAI 2017 2 / 22



## **Tracking**

- ▶ the root for (m)any video application (e.g. medical-posture apps, self-driving cars, smart houses, surveillance)
- Types:
  - specific classes: pedestrians, cars, etc (integrate prior knowledge about a certain class)
  - generic (no special treatment, works with "undefined" objects)
- Challenges in tracking
  - integrate changes in appearance, but keep the model learned so far
  - problems: bkg clutter, fast or complex motion, deformation, etc
  - drifting: accumulating small errors (eg. bkg as positive sample)
  - decide bounding box based on detection map (weight and height)

**RAAL 2017** 3 / 22



### Related Work

- Key-components in a tracker:
  - ▶ appearance model: features for parts [4, 11, 12, 16] or for all object
  - mathematical formulation, optimization
  - motion model
  - target region: bbox, ellipse [10], superpixels [18], blobs [5]
  - features: pixel level or region descriptors invariant to several transformations (but more expensive)
- Best current trackers [9]
  - CNNs (supervised or/and pre-trained: [3, 14, 15, 17])
    - problems with unseen/uncommon objects
    - small datasets (prone to overfit)
  - Correlation Filters (unsupervised: [1, 2, 6, 8])
    - Fourier formulation for "1 vs all" classifier
    - enables very fast computing for one obj descriptor

**RAAL 2017** 4 / 22



Tracking by Detection



- use a discriminative appearance model
- sampler and labeler
  - chooses patches to update on (near previous detection)
  - ex. label = threshold on the distance from the max activation
- learner (appearance model)
  - binary classifier (foreground vs background)
  - trains with samples based on previous frame detection
- tracker
  - use the learner activations to choose the next object location
  - choose the maximum activation zone







# Learning a Robust Society of Tracking Parts

Elena Burceanu, Marius Leordeanu eburceanu@bitdefender.com, marius.leordeanu@imar.ro

https://arxiv.org/abs/1705.09602

RAAI 2017 6 / 22



### Intuition and Motivation

- Purpose:
  - adapt the current knowledge of the object model to continuous changes
  - don't forget valuable info
- Our solution
  - many parts of the object (like members in a company)
  - parts vote for the target object center (decision making)
  - each part has its own reliability and follows different rules
  - each part is validated in time (founders = initiators are by default valid)
- ► **Stability**: only "founders" and parts validated in time will vote (robust against noisy variations)
- ► Adaptation: over time, new candidates come in, old reliables get out
- ▶ Never forget: gold members (consistent behavior) are never removed

RAAI 2017 7 / 22

# Society of Tracking Parts



**RAAL 2017** 8 / 22



## Algorithm details

#### Voting

- at each frame, each part contribute with its activation map, displaced by its relative to center position
- add individual voting map and choose maximum activation (center)
- maximum is proportional with the number of parts in agreement
- Update Parts
  - reliability: the frequency of part agreement with the majority
  - ▶ long time candidate and reliable, promote to reliables and gold
- Weak Tracker State
  - reliable and gold parts can't decide
  - allow new candidates (sampled from previous several frames) to vote
  - promote them to reliable if they were able to build a strong vote

RAAI 2017 9 / 22



# Vote Examples I



Strong vote. Votes for the object position concentrate in the same center.



Voting map when the frame is moved (motion blur).

RAAI 2017 10 / 22



# Vote Examples II





Weak voting in frames over the video.





Distractors in the frame.

**RAAI 2017** 11 / 22



### Classifiers for Parts I

- Choose patches
  - centered on a thin grid over the searching zone
  - build data matrix D (with one patch per row)



#### #features

| patch 1 |    |
|---------|----|
| patch 2 |    |
| patch 3 | #p |
|         |    |
|         |    |
|         |    |
|         |    |
|         |    |

D

atches

▶ Pixel level features: HSV and edges for 0,  $\pi/4$ ,  $\pi/2$ ,  $\pi$ 

**RAAL 2017** 12 / 22



## Classifiers for Parts II

- ▶ Build linear "1 vs all" classifiers
  - $\mathbf{c}_i = (\mathbf{D}^{\top}\mathbf{D} + \lambda \mathbf{I}_k)^{-1}\mathbf{D}^{\top}\mathbf{y}_i$
  - balance positive vs negatives: weighted linear ridge regression, in closed form:  $\theta_i = (\mathbf{D}^\top \mathbf{W}_i \mathbf{D} + \lambda \mathbf{I}_k)^{-1} \mathbf{D}^\top \mathbf{W}_i \mathbf{y}_i$
  - $y_i^{\top} = [0 \ 0 \ ... \ 1 \ ... \ 0 \ 0]$
  - **novelty**: for "1 vs all" case, the solution vector  $(\theta_i)$  has the same direction with the one for the linear ridge regression  $(c_i)$ , having the ratio  $q_i = \frac{n}{1 + (n-1)\mathbf{d}^{\top}\mathbf{c}_i}$ , so  $\theta_i = q_i c_i$
- Advantages
  - c<sub>i</sub> can be computed in one operation for all "i"s (not possible for the weighted case)
  - ▶ bonus: invert a smaller matrix ( $DD^{\top}$  instead of  $D^{\top}D$ )
  - $\mathbf{c}_i = \mathbf{D}^{\top}(\mathbf{D}\mathbf{D}^{\top} + \lambda \mathbf{I}_n)^{-1}\mathbf{y}_i^{-1}$ , invert a matrix with 2 orders of magnitude smaller
- we can compute all positive and all negative classifiers with only one (small) matrix inversion

<sup>&</sup>lt;sup>1</sup>Matrix Inversion Lemma, see [13], Ch. 4.3.4.2

### Dataset and Metrics

- ► OTB50 dataset [19]
  - ▶ 50 videos, 51 targets
  - ▶ 100 3000 frames
  - ▶ labeled with difficulty: Illumination Variation, Scale Variation, OCClusion, DEFormation, Motion Blur, Fast Motion, Out-of-Plane Rotation/In-Plane Rotation, Out-of-View, Background Clutter, Low Resolution
  - Ground Truth rectangles for all frames
- Metrics
  - Average Overlap
    - ▶ IoU for area of bounding boxes (GT and predicted) > 60%
    - mean over all frames
    - very sensitive (small values for ok trackers)
    - disadvantage for scale agnostic trackers
  - Mean Precision
    - ▶ distance between GT center and predicted center < 20 px
    - mean over all frames

RAAI 2017 14 / 22



### Results

| Algorithm          | OPR  | MB   | BC   | OCC  | SV   | IV   | LR   | OV   | FM   | DEF  | All  | FPS |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|-----|
| OURS (STP)         | 75.9 | 72.5 | 68.4 | 78.5 | 76.9 | 73.2 | 63.7 | 73.4 | 69.8 | 80.1 | 78.7 | 30  |
| KCF on HOG [13]    | 72.9 | 65   | 73.3 | 74.9 | 67.9 | 71.1 | 38.1 | 65   | 60.2 | 74   | 73.2 | 172 |
| Struck [11]        | 59.7 | 55.1 | 58.5 | 56.4 | 63.9 | 55.8 | 54.5 | 53.9 | 60.4 | 52.1 | 65.6 | 20  |
| KCF on pixels [13] | 54.1 | 39.4 | 50.3 | 50.5 | 49.2 | 44.8 | 39.6 | 35.8 | 44.1 | 48   | 56   | 154 |
| TLD [16]           | 59.6 | 51.8 | 42.8 | 56.3 | 60.6 | 53.7 | 34.9 | 57.6 | 55.1 | 51.2 | 60.8 | 28  |
| ORIA [31]          | 49.3 | 23.4 | 38.9 | 43.5 | 44.5 | 42.1 | 19.5 | 31.5 | 27.4 | 35.5 | 45.7 | 9   |
| MIL [2]            | 46.6 | 35.7 | 45.6 | 42.7 | 47.1 | 34.9 | 17.1 | 39.3 | 39.6 | 45.5 | 47.5 | 38  |
| MOSSE [4]          | 39   | 24.4 | 33.9 | 39.7 | 38.7 | 37.5 | 23.9 | 22.6 | 21.3 | 36.7 | 43.1 | 615 |
| CT [34]            | 39.4 | 30.6 | 33.9 | 41.2 | 44.8 | 35.9 | 15.2 | 33.6 | 32.3 | 43.5 | 40.6 | 64  |

- Mean Precision:
- ▶ 22% improvement over pixel level features (tracker vs features)
- ▶ 5% better than stronger features (HOG)

| Algorithm        | STP-S | STP-SW | STP-full |
|------------------|-------|--------|----------|
| Precision (20px) | 63.97 | 70.48  | 78.7     |

- results for: Strong-only, Strong-Weak only, full (tracker states)
- detect and recover from failures helps (+6%, +8%)

RAAI 2017 15 / 22

### Conclusions and Future work

#### Conclusion

- our tracker is functioning as a society of parts, each one with a different state and role
- the solution for linear ridge regression classifier has the same vector direction with the weighted least squares (one sample versus all case)
- ► SoTA results without using deep features (better emphasize the value of our tracker, not the greatness of the features)
- online ("pure") unsupervised learning from video (unlike CNNs solutions - few tracking datasets, supervised approaches might overfit)

#### Future work

- use negative classifiers to vote where the object is not (combine them with the positive vote)
- use stronger (CNN) features
- add rotation invariance
- VOT contest

RAAI 2017 16 / 22



Bitdefender

# Thank you!



RAAI 2017 17 / 22

### References I

- [1] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr. Staple: Complementary learners for real-time tracking. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 1401–1409, 2016.
- [2] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg. Learning spatially regularized correlation filters for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, pages 4310–4318, 2015.
- [3] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In *European Conference on Computer Vision*, pages 472–488. Springer, 2016.
- [4] D. A. Forsyth. Object detection with discriminatively trained part-based models. *IEEE Computer*, 47:6–7, 2010.

RAAI 2017 18 / 22

### References II

- [5] M. Godec, P. M. Roth, and H. Bischof. Hough-based tracking of non-rigid objects. *Computer Vision and Image Understanding*, 117:1245–1256, 2011.
- [6] E. Gundogdu and A. A. Alatan. Spatial windowing for correlation filter based visual tracking. In *Image Processing (ICIP)*, 2016 IEEE International Conference on, pages 1684–1688. IEEE, 2016.
- [7] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M. Cheng, S. L. Hicks, and P. H. S. Torr. Struck: Structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell., 38(10):2096–2109, 2016.
- [8] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking with kernelized correlation filters. *IEEE Trans. Pattern Anal. Mach. Intell.*, 37(3):583–596, 2015.



### References III

- [9] G. Hua and H. Jégou, editors. Computer Vision ECCV 2016 Workshops - Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II, volume 9914 of Lecture Notes in Computer Science, 2016.
- [10] C.-H. Kuo and R. Nevatia. How does person identity recognition help multi-person tracking? In CVPR, 2011.
- [11] J. Kwon and K. M. Lee. Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 1208–1215, 2009.

RAAI 2017 20 / 22

### References IV

- [12] Y. Li, J. Zhu, and S. C. Hoi. Reliable patch trackers: Robust visual tracking by exploiting reliable patches. In *Proceedings of the IEEE* Conference on Computer Vision and Pattern Recognition, pages 353–361, 2015.
- [13] K. P. Murphy. Machine learning a probabilistic perspective. Adaptive computation and machine learning series. MIT Press, 2012.
- [14] H. Nam, M. Baek, and B. Han. Modeling and propagating cnns in a tree structure for visual tracking. arXiv preprint arXiv:1608.07242, 2016.
- [15] H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In *Proceedings of the IEEE Conference* on Computer Vision and Pattern Recognition, pages 4293–4302, 2016.

RAAI 2017 21 / 22



### References V

- [16] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah. Part-based multiple-person tracking with partial occlusion handling. In CVPR, 2012.
- [17] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional networks. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 3119–3127, 2015.
- [18] S. Wang, H. Lu, F. Yang, and M.-H. Yang. Superpixel tracking. In *ICCV*, 2011.
- [19] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark. *IEEE Trans. Pattern Anal. Mach. Intell.*, 37:1834–1848, 2015.

RAAI 2017 22 / 22