Chapitre 7: trigonométrie

qu'est-ce que le sinus, le cosinus et la tangente par Ben Sparks - petit tour de magie avec le nombre 5

1 découverte des fonctions trigonométriques

1.1 déplacement d'1 point sur 1 cercle

simulation

- voici la simulation du déplacement d'1 point sur 1 cercle

définition

- le <u>cercle trigonométrique</u> est le cercle de centre O(0;0) et de rayon 1
- le <u>sens trigonométrique</u> est le sens inverse des aiguilles d'1 montre
- M(x) 1 point pouvant se déplacer sur le cercle
- x correspond à l'angle (en radian) \widehat{IOM} (enroulement de la droite $\mathbb R$ sur le cercle)

- \bullet comme vu dans la simulation supra, le déplacement de M sur le cercle définit 3 fonctions :
 - sinus : abscisse du point M, notée $x \mapsto sin(x)$
 - cosinus : ordonnée du point M, notée $x \mapsto cos(x)$
 - tangente : $T = (OM) \cap (x = 1)$ où (x=1) est la tangente en I, , notée $x \mapsto tan(x)$

1.2 premières propriétés

propriété visuelle

• $\forall x \in \mathbb{R}, -1 \le \sin x \le 1$

preuve :

• $\forall x \in \mathbb{R}, -1 \le \cos x \le 1$

preuve :

• $\forall x \in \mathbb{R}$, $\sin^2 x + \cos^2 x = 1$

preuve:

• $\forall x \in \mathbb{R}, -1 \le \sin x \le 1$

preuve :

• $x \mapsto tan(x)$ est définie sur $\mathbb{R} \setminus \{n\frac{\pi}{2} \mid n \in \mathbb{Z}\}$

• $\forall x \in D_{tan}$, $\tan x \in \mathbb{R}$

preuve :

valeurs de sinus cosinus tangente à retenir

x (rad)	x (°)	$\sin x$	$\cos x$	$\tan x$
0	0	0	1	0
$\frac{\pi}{2}$	90	1	0	∞
$\frac{\pi}{6}$	30	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{3}$	60	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{4}$	45	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
π	180	0	-1	0

preuve:

1.3 formule de transformation

transformer l'angle -x

- $\sin(-x) = -\sin(x) \Longrightarrow$ c'est 1 fonction impaire
- $\cos(-x) = \cos(x) \Longrightarrow$ c'est 1 fonction paire
- $\tan(-x) = -\tan(x) \Longrightarrow$ c'est 1 fonction impaire

preuve immédiate : (faire 1 graphique)

transformer (\sin en \cos) ou (\cos en \sin) avec $\frac{\pi}{2} - x$

- $\sin(\frac{\pi}{2} x) = \cos(x)$
- $\cos(\frac{\pi}{2} x) = \sin(x)$
- $\tan(\frac{\pi}{2} x) = \frac{1}{\tan(x)}$

 $\mathbf{preuve} \ \mathbf{imm\'ediate} : (\mathrm{faire} \ 1 \ \mathrm{graphique})$

transformer l'angle $x + \frac{\pi}{2}$

- $\sin(x + \frac{\pi}{2}) =$ $\cos(x + \frac{\pi}{2}) =$ $\tan(x + \frac{\pi}{2}) =$

preuve immédiate : (faire 1 graphique)

transformer l'angle $\pi + x$

- $\sin(\pi + x) =$
- $\cos(\pi + x) =$
- $\tan(\pi + x) =$

preuve immédiate : (faire 1 graphique)

transformer l'angle $\pi-x$

- $\sin(\pi x) =$
- $\cos(\pi x) =$
- $\tan(\pi x) =$

preuve immédiate : (faire 1 graphique)

2 étude des fonctions trigonométriques

2.1 étude de $x \mapsto \sin x$

propriété

•
$$f: \begin{bmatrix} \mathbb{R} & \longrightarrow & [-1; 1] \\ x & \longrightarrow & \sin x \end{bmatrix}$$

- elle est impaire et périodique, de période 2π
- $(\sin x)' = \cos x$

x	0		$\frac{\pi}{2}$		π
signe de $\cos(x)$		+	Ö	_	
variation de $\sin(x)$	0		1		0

graphique

2.2 étude de $x \mapsto \cos x$

propriété

•
$$f: \begin{bmatrix} \mathbb{R} & \longrightarrow & [-1; 1] \\ x & \longrightarrow & \cos x \end{bmatrix}$$

- elle est paire et périodique, de période 2π
- $(\cos x)' = -\sin x$

x	0	$\frac{\pi}{2}$	π
$-\sin(x)$		_	
$\cos(x)$	1	0	-1

graphique

2.3 HP : étude de $x \mapsto \tan x$

propriété

$$\bullet \ f: \left| \begin{array}{ccc} \mathbb{R}\backslash \{n\frac{\pi}{2} \, | \, n \in \mathbb{Z}\} & \longrightarrow & \mathbb{R} \\ x & \longrightarrow & \tan x \end{array} \right.$$

- elle est impaire et périodique, de période π

•
$$(\tan x)' = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

		COD W	
x	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$
$1 + \tan^2 x$		+	
$\tan(x)$	$-\infty$		+∞

graphique

Christie Vassilian

2.4 un peu de geogebra ou python

retour sur la simulation de Ben Sparks

grâce à geogebra ou python, réaliser la simulation pour :

- 2 points
- 3 points
- 10 points
- on pourra s'inspirer de ce qu'a pu faire Ben Sarks

8