Assignment Project Exam Help

https://powcoder.com

Normaldr Wenket Bowend 3NF Decompositions

CS430/630 Lecture 17

Decomposition of a Relation Schema

- A <u>decomposition</u> of R replaces it by two or more relations
 - Each new relation schema contains a subset of the attributes of R
 - Every attribute of R appears in one of the new relations
 Assignment Project Exam Help
 E.g., SNLRWH decomposed into SNLRH and RW

https://powcoder.com

- Decompositions should be used only when needed
 Cost of join will be incurred at query time
- Problems may arise with (improper) decompositions
 - Reconstruction of initial relation may not be possible
 - Dependencies cannot be checked on smaller tables

Lossless Join Decompositions

- Decomposition of R into X and Y is <u>lossless-join</u> if:
- It is always true that $r ext{ = } Project Exam_X Help$
 - In general, the differsell parison der northold!
 - If it does, the decomposition is lossless-join.

 Add WeChat powcoder
- It is essential that all decompositions used to deal with redundancy be lossless!

Incorrect Decomposition

Assignment Project Exam Help

https://powcoder.com

Add We Chat powcoder

B

•	B	
	2	3
	5	6
	2	8

A	В	C
1		3
4	2 5	6
7	2	8
1	2	3 6 8 8
7	2	3

Condition for Lossless-join

The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:

```
X \ Y \ Assignment Project Exam Help
```

https://powcoder.com

In particular, the decomposition of R into UV and R - V is lossless-join if U→ V holds over R.

Dependency Preserving Decomposition

- ▶ Consider CSJDPQV, C is key, JP \rightarrow C and SD \rightarrow P.
 - Consider decomposition: CSJDQV and SDP
- ▶ Problem: Checking JP → C requires a join!
 ▶ Assignment Project Exam Help
 ▶ Dependency preserving decomposition (Intuitive):
 - If R is decompose the FDs that hold on X, Y then all FDs that were given to hold on R must also hold Add WeChat powcoder
- Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X (denoted F_{\times}) is the set of FDs $U \rightarrow V$ in F^+ (closure of F) such that U,V are in X.

Dependency Preserving Decompositions

- Decomposition of R into X and Y is <u>dependency preserving</u> if $(F_X \cup F_Y)^+ = F^+$
 - Dependencies that can be specked in X without considering Y, and in Assignment Project Exam Help
 Y without considering X, together represent all dependencies in F⁺

https://powcoder.com

Add WeChat powcoder

- Dependency preserving does not imply lossless join:
 - \rightarrow ABC, A \rightarrow B, decomposed into AB and BC.

Normal Forms

If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized.

- Assignment Project Exam Help
 Role of FDs in detecting redundancy:
 - Consider a relation https://powcoder.com
 - No FDs hold: There is no redundancy Add WeChat powcoder
 - \rightarrow Given A \rightarrow B:
 - ☐ Several tuples could have the same A value
 - ☐ If so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- ▶ Relation R with FDs F is in BCNF if, for all X \rightarrow A in F^+
 - Arr A \subseteq X (called a trivial FD), or
 - X contains a key for Rent Project Exam Help
- The only non-trivial FDs allowed are key constraints

 Add WeChat powcoder
- ▶ BCNF guarantees no anomalies occur

Decomposition into BCNF

- Consider relation R with FDs F. If X→ Y violates BCNF, decompose R into R - Y and XY.
 - Repeated application of this idea will give us a collection of relations that are in BCNI clossless join decomposition, and guaranteed to terminate.
 - https://powcoder.com • e.g., CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
 - To deal with SD-Adeldeen bestep new coolers SJDQV.
 - ▶ To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV

Decomposition into BCNF

In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF
 - e.g., $\underline{AB}C$, $\underline{AB} \rightarrow C$, $C \rightarrow A$
 - Can't decompose while preserving fir Exam, Help BCNF

https://powcoder.com

Add WeChat powcoder

Third Normal Form (3NF)

- ▶ Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a trivial FD), or
 - X contains a key for R, or
 Assignment Project Exam Help
 A is part of some key for R (A here is a single attribute)
- Minimality of a keyttipscr/powwipodardoomdition above!
- If R is in BCNF, it is also in 3NF powcoder
- If R is in 3NF, some redundancy is possible
 - compromise used when BCNF not achievable
 - e.g., no ``good'' decomposition, or performance considerations
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

Decomposition into 3NF

- Lossless join decomposition algorithm also applies to 3NF
- To ensure dependency preservation, one idea:
 - If X → Y is not preserved, add relation XY ASSIGNMENT Project Exam Help
 Refinement: Instead of the given set of FDs F, use a minimal
 - cover for F https://powcoder.com
- Example: CSJDPQY, JP→ C, SD → P, J→ S Add WeChat powcoder
 Choose SD→ P, result is SDP and CSJDQV

 - ► Choose \rightarrow S, result is \mid S and C \mid DQV, all 3NF
 - Add CIP relation

Summary of Schema Refinement

- BCNF: relation is free of FD redundancies
 - Having only BCNF relations is desirable
 - If relation is not in BCNF, it can be decomposed to BCNF
 Assignment Project Exam Help
 Lossless join property guaranteed

 - But some FD may het ost.//powcoder.com
- 3NF is a relaxation of BCNF
 - Guarantees both lossless join and FD preservation
- Decompositions may lead to performance loss
 - performance requirements must be considered when using decomposition

