

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

UTILITY PATENT APPLICATION TRANSMITTAL FORM
(only for new nonprovisional applications under 37 CFR 1.53(b))

JCS11 U.S. PTO
09/27/17
03/19/99

SISTANT COMMISSIONER FOR PATENTS
ashington, D.C. 20231

DX: PATENT APPLICATION

IR:

Transmitted herewith for filing is the patent application (including Specification, Claims, and Abstract, 27 pages and Sequence Listing (2 pages)) of:

Inventor : **Xin-Yun Huang**

For : **METHODS FOR DESIGNING SPECIFIC ION CHANNEL BLOCKERS**

***If a CONTINUING APPLICATION, please mark where appropriate and supply the requisite information below and in a preliminary amendment:*

continuation divisional Continuation-In-Part (CIP)
of prior application Serial No. _____

Prior application information: Examiner :
Art Unit :

Enclosed are:

- 6 sheets of informal drawings.
- Signed** Combined Declaration and Power of Attorney (____ pages).
- Copy of signed** Combined Declaration and Power of Attorney (____ pages) from a prior application (1.63(d)) (for continuation/divisional).
- Signed** statement deleting inventor(s) named in prior application (____ pages) (1.63(d)(2) and 1.33(b)).
- Incorporation By Reference:** The entire disclosure of the prior application, from which a **copy** of the oath or declaration is supplied herewith, is considered as being part of the disclosure of the enclosed application and is hereby incorporated by reference therein.
- Assignment (____ pages) of the invention to _____.
- Assignment Transmittal Letter.
- Certified copy of a foreign priority document.
- Associate power of attorney.
- Verified statement to establish small entity status (____ pages) (newly signed or copy filed in prior application).

[] Preliminary Amendment (____ pages).

Information Disclosure Statement, form PTO-1449 (1 pages) and 14 references.

UNSIGNED Combined Declaration and Power of Attorney (2 pages).

Statement in Accordance with 37 CFR § 1.821(f) and computer readable 3.5" Diskette.

A self-addressed, prepaid postcard acknowledging receipt.

[] Other:

The Filing fee has been calculated as shown below:

	(Col. 1)	(Col. 2)	SMALL ENTITY	LARGE ENTITY
FOR:	NO. FILED	NO. EXTRA	RATE	RATE
BASIC FEE	XXXXXXX	XXXXXXX	XXXX	\$380
TOTAL CLAIMS	35 - 20 =	15	x 9 =	\$135
INDEP CLAIMS	4 - 3 =	1	x 39=	\$39
[] MULTIPLE DEPENDENT CLAIM PRESENTED			x130 =	\$
*If the Total Claims are less than 20 and Indep. Claims are less than 3, enter "0" in Col. 2			TOTAL	\$554

[] Please charge my Deposit Account No. _____ in the amount of \$ _____. **A duplicate copy of this sheet is enclosed.**

A check in the amount of **\$554.00** to cover the filing fee is enclosed.

The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. **14-1138**. **A duplicate copy of this sheet is enclosed.**

Address all future communications to:

Michael L. Goldman
Nixon, Hargrave, Devans & Doyle LLP
Clinton Square, P.O. Box 1051
Rochester, New York 14603

Date: March 19, 1999

Michael L. Goldman
Registration No. 30,727

Nixon, Hargrave, Devans & Doyle LLP
Clinton Square, P.O. Box 1051
Rochester, New York 14603
Telephone: (716) 263-1304
Facsimile: (716) 263-1600

TITLE: **METHODS FOR DESIGNING SPECIFIC ION
CHANNEL BLOCKERS**

INVENTOR: **XIN-YUN HUANG**

DOCKET NO.: **19603/1451 (CRF D-2008A)**

METHODS FOR DESIGNING SPECIFIC ION CHANNEL BLOCKERS

This application claims benefit of U.S. Provisional Patent Application Serial No. 60/079,268, filed March 25, 1998.

5

BACKGROUND OF THE INVENTION

Cell membranes must allow passage of various polar molecules, including ions, sugars, amino acids, and nucleotides. Special membrane proteins are responsible for transferring such molecules across cell membranes. These proteins, referred to as membrane transport proteins, occur in many forms and in all types of biological membranes. Each protein is specific in that it transports a particular class of molecules (such as ions, sugars, or amino acids) and often only certain molecular species of the class. All membrane transport proteins that have been studied in detail have been found to be multipass transmembrane proteins. By forming a continuous protein pathway across the membrane, these proteins enable the specific molecules to cross the membrane without coming into direct contact with the hydrophobic interior of the lipid bilayer of the plasma membrane.

There are two major classes of membrane transport proteins: carrier proteins and channel proteins. Carrier proteins bind the specific molecule to be transported and undergo a series of conformational changes in order to transfer the bound molecule across the membrane. Channel proteins, on the other hand, need not bind the molecule. Instead, they form hydrophilic pores that extend across the lipid bilayer; when these pores are open, they allow specific molecules (usually inorganic ions of appropriate size and charge) to pass through them and thereby cross the membrane. Transport through channel proteins occurs at a much faster rate than transport mediated by carrier proteins.

Channel proteins which are concerned specifically with inorganic ion transport are referred to as ion channels, and include ion channels for sodium, potassium, calcium, and chloride ions. Ion channels which open in response to a change in the voltage across the membrane are referred to as voltage-sensitive ion channels.

Ion channels serve numerous physiological functions in excitable and nonexcitable cells (Catterall, W.A., Science 242:50-61 (1988); Lester, H.A., Annu. Rev. Physiol. 53:477-496 (1991); Jan. L.Y. et al., Annu. Rev. Physiol. 54:537-555 (1992)). They transmit electrical signals to generate physiological cell responses.

5 With electrophysiological recording techniques, a variety of ionic currents in many kinds of cells have been observed (Catterall, W.A., Science 242:50-61 (1988); Lester, H.A., Annu. Rev. Physiol. 53:477-496 (1991); Jan. L.Y. et al., Annu. Rev. Physiol. 54:537-555 (1992)). The importance of these ionic currents has been demonstrated by pharmacological approaches using either naturally existing ion channel toxins or

10 inorganic and organic ion channel blockers (such as local anesthetics). The essential physiological roles of ion channels in normal cellular functions have been further strengthened by the link of diseases to defects in ion channel genes (Catterall, W.A., Science 242:50-61 (1988); Lester, H.A., Annu. Rev. Physiol. 53:477-496 (1991); Jan. L.Y. et al., Annu. Rev. Physiol. 54:537-555 (1992)).

15 Over the past few years, molecular biological studies have revealed a large number of ion channel genes that could be responsible for the observed ionic currents (Pongs, O., Physiol. Rev. 72:S69-S88 (1992); Perney, T.M. et al., Semin. Neurosci. 5:135-145 (1993); Chandy, K.G. et al., In CRC Handbook of Receptors and Channels ed. North, R.A. (Boca Raton, FL:CRC), pp. 1-71 (1995); Deal, K.K. et al., Physiol. Rev. 76:49-67 (1996)). For example, there are more than 20 genes that have been cloned coding for voltage-gated potassium channels (Pongs, O., Physiol. Rev. 72:S69-S88 (1992); Perney, T.M. et al., Semin. Neurosci. 5:135-145 (1993); Chandy, K.G. et al., In CRC Handbook of Receptors and Channels ed. North, R.A. (Boca Raton, FL:CRC), pp. 1-71 (1995); Deal, K.K. et al., Physiol. Rev. 76:49-67 (1996)).

20 Just within the Kv1 subfamily of the voltage-gated K⁺ channels, there are at least seven members, and most of them (except Kv1.4) generate similar delayed-rectifier K⁺ currents. Moreover, different potassium channel subunits can co-assemble to form heteromultimeric channels (Isacoff, E.Y. et al., Nature 345:530-534 (1990); Ruppersberg, J.P. et al., Nature 345:535:537 (1990); Christie, M.J. et al., Neuron 2:405-411 (1990)). Finally, the native complex of voltage-gated K⁺ channels is also composed of accessory β-units and these β-subunits could convert the

25

30

delayed-rectifier currents into rapidly inactivating A-type K⁺ currents (Rettig, J. et al., Nature 369:289-294 (1994)).

Antibodies have previously been used in functional studies of channels. Antipeptide antibodies, made against regions between S5 and S6 transmembrane segments of domains I and IV of the sodium channel α-scorpion toxin to sodium channels reconstituted in phospholipid vesicles or synaptosomes (Thomsen et al., Proc. Natl. Acad. Sci. USA 86:10161-10165 (1989)). It was not shown whether these antibodies could block sodium currents. An antipeptide antibody, by binding to a region in the intracellular loop between domains III and IV, slows sodium channel inactivation (Vassilev et al., Science 241:1658-1661 (1988)). Furthermore, it has been found that antisera from patients with Lambert-Eaton Myasthenic Syndrome (an autoimmune disease of neuromuscular transmission) could inhibit calcium channel currents (Kim et al., Science 239:405-408 (1988)). Antisera from some patients with Isaacs' Syndrome (acquired neuromyotonia) have antibodies against potassium channels and could increase neuronal excitability, possibly due to blocking of potassium currents (Shillito et al., Ann. Neurol. 38:714-722 (1995)). One monoclonal antibody that was generated against membrane fragments of the eel electropax attenuates sodium current (Meiri et al., Proc. Natl. Acad. Sci. USA 88:8385-8399 (1986)). Another monoclonal antibody that recognizes the dihydropyridine-binding complex in rabbit muscle transverse tubules inhibits calcium current in a mouse muscle cell line (Morton et al., J. Biol. Chem. 263:613-616 (1988)). However, in all these cases, the binding sites on the channel proteins was not clear.

The challenge now is to pin-point the underlying molecular identities (ion channel proteins) responsible for the observed ionic currents in native cells and to define their physiological functions. Although genetic manipulation with targeted deletion of ion channel genes would be helpful, the interpretation of results could be complicated by functional redundancy and developmental abnormalities. Some ion channel blockers are available, but they usually affect a group of ion channels and, thus, lack specificity towards one specific channel protein. These blockers were found empirically, either by clinical use or by broad functional screening, rather than by rational design. The present invention is directed to overcoming these deficiencies.

SUMMARY OF THE INVENTION

The present invention relates to a method of designing an ion channel blocker for an ion channel which includes providing an ion channel having an external vestibule portion and providing an antibody, binding portion, probe, or ligand specific to the external vestibule portion of the ion channel, where the antibody, binding portion, probe, or ligand is effective to inhibit ion transport through the ion channel.

Another aspect of the present invention relates to a method of inhibiting the ion transport through an ion channel having an external vestibule portion which includes providing an ion channel blocker which is specific to the external vestibule portion of the ion channel under conditions effective to inhibit ion transport through the ion channel.

Yet another aspect of the present invention relates to a method of screening a drug for effectiveness as an ion channel blocker for an ion channel where the ion channel has an external vestibule portion. The method includes contacting a cell having an ion channel with an ion channel blocker candidate and evaluating the cell to determine if the ion channel blocker candidate binds to the external vestibule portion of the ion channel and inhibits ion transport through the ion channel.

Yet another aspect of the present invention relates to an antibody where the antibody, binding portion, probe, or ligand which inhibits ion transport of an ion channel by binding to an external vestibule portion of the ion channel.

A number of compounds useful in treating various diseases in animals, including humans, are thought to exert their beneficial effects by modulating the functioning of ion channels. An understanding of the pharmacology of compounds that interact with ion channels, and the ability to rationally design compounds that will interact with ion channels to have desired therapeutic effects, have been hampered by the lack of rapid, effective means to identify those compounds which interact with specific ion channels. The availability of rapid, effective means to identify compounds which interact with ion channels would enable the rapid screening of a large number of compounds to identify those candidates suitable for further, in-depth studies of therapeutic applications. With the method of the present

invention, blockers for each specific ion channel based on available nucleotide or amino acid sequence information are rationally designed. Using a specific antibody against the external vestibule of a channel protein, the specific blocking of this channel is achieved by this antibody, but other related channels are not blocked. This approach provides a method to rationally design specific ion channel blockers.

DESCRIPTION OF THE FIGURES

Figures 1A-1E show the S5-S6 linker region of Kv1.2, Kv1.3 and Kv3.1 potassium channels. In Figure 1A, the amino acid sequence alignment of rKv1.2, hKv1.3 and rKv3.1 shows the S5 and S6 transmembrane domains, the pore-forming region (P region) and indicates the peptide used for generating the blocking antibody (underlined). Dashes represent same amino acids as rKv1.2. In Figure 1B, a schematic model is shown for the proposed arrangement of the external vestibule of Kv1.2. The peptide used for generating the blocking antibody is in bold and shaded. Only the flanking S5 and S6 domains and two of the four subunits of the channel are illustrated. Figures 1C and 1D are a characterization of Kv1.2-BA and Kv1-NA antibodies. Membrane preparations from HEK-293 cells, untransfected (lanes 1), transfected with Kv1.2 (lanes 2 and 4), or transfected with Kv1.3 (lane 3), were subjected to 10% SDS-polyacrylamide gel electrophoresis and were Western blotted with Kv1.2BA antibody (Figure 1C) or Kv1-NA antibody (Figure 1D). Estimated molecular masses of Kv1.2 and Kv1.3 were 70 to 80 kDa. Bands representing endogenous Kv1 proteins could be seen upon longer exposure. Figure 1E illustrates characterization of the Kv3.1-BA antibody. Membrane preparations from HEK-293 cells, untransfected (lane 1), transfected with Kv3.1 (lanes 2 and 4), or transfected with Kv1.2 (lane 3) were subjected to SDS-PAGE and were Western blotted with Kv3.1-BA antibody. Lane 4 was probed with Kv3.1-BA that had been preincubated with the peptide used to generate Kv3.1-BA. Estimated molecular mass of Kv3.1 was 100 kD. Positions of prestained molecular mass markers in kilodaltons are indicated on the left.

Figures 2A-2E show the blockage of Kv1.2 currents by Kv1.2-BA antibody. Figure 2A shows Kv1.2 currents in Kv1.2 stably transfected HEK-293 cells

in the absence of Kv1.2-BA (HEK/Kv1.2 cells) or in the presence of Kv1.2-BA (+ Kv1.2-BA). Untransfected HEK-293 cells have very small endogenous currents (HEK). Addition of 250 nM Kv1.2-BA resulted in an about 70% suppression of Kv1.2 currents. Whole-cell currents were elicited by voltage pulses of 300-ms duration from a holding potential of -70 mV. Current was measured in the range from -40 mV to 60 mV varying the voltage in 10-mV steps. Figure 2B shows a time course of the blockage of Kv1.2 currents by Kv1.2-BA (+Kv1.2-BA). In the absence of Kv1.2-BA, the Kv1.2 current is quite stable for over 15 minutes (HEK/Kv1.2). Peak currents (I) at + 60 mV at each time point are compared with the currents (I_0) before the addition of the antibody. Figure 2C shows the current-voltage relationship of whole-cell currents. All currents (I) are expressed as a fraction of the peak current (I_{max}) at +60 mV in the absence of the antibody. Figure 2D shows that Kv1.2-BA blockage is concentration-dependent. Data points were taken at 15 minutes after the addition of antibody. The data are mean \pm standard deviation of five to seven (n) experiments. Figure 2F shows whole-cell potassium currents from Kv1.2-transfected HEK-293 cells in the absence of (HEK/Kv1.2) or in the presence (+Kv1.2-BA) of the blocking antibody Kv1.2-BA. Kv1.2-BA (250 nM) reduced the whole cell K⁺ currents by about 70%. Preincubation of Kv1.2-BA with excess of the immunogenic peptide (*Kv1.2-BA + peptide*) reduced the suppression to the residual effect of about 25%. Preincubation of Kv1.2-BA with excess of a control peptide (the Kv1-NA immunogenic peptide) had no effects on Kv1-2-BA suppression of Kv1.2 currents.

Figures 3A-3F illustrate a demonstration of the specificity of the blockage by Kv1.2-BA. Figure 3A and 3B show that a control antibody, Kv1-NA (250nM), has a limited effect on Kv1.2 currents. Figures 3C and 3D show that Kv1.2-BA (250 nM) has limited effect on Kv1.3 currents in Kv1.3 stably transfected HEK-293 cells. Figures 3E and 3F show that Kv1.2-BA (250nM) has no significant effect on Kv3.1 currents in Kv3.1 stably transfected HEK-293 cells. The data are mean \pm standard deviation of five to seven experiments.

Figure 4 illustrates the inhibition of ¹²⁵I-dendrotoxin binding by Kv1.2-BA antibody. HEK-293 cells with stably transfected Kv1.2 channels were incubated with ¹²⁵I-labeled α -dendrotoxin (10 nM; 290 Ci/mmol) in the presence of the indicated concentrations of Kv1.2-BA antibody. Preimmune IgG did not have

significant effects. At 500 nM, preimmune IgG produced about 10% inhibition of ^{125}I -dendrotoxin binding. Data are expressed as fractions of dendrotoxin binding compared with controls in which no Kv1.2-BA antibody was added. Data are representative of three similar experiments.

5 Figures 5A and 5B show the blockage of endogenous Kv1.2 currents by Kv1.2-BA in neuronal cells. Figure 5A shows whole-cell potassium currents from NG108-15 cells in the absence (NG108-15 cells) or presence (+Kv1.2-BA) of the blocking antibody Kv1.2-BA. Kv1.2-BA (250 nM) reduced the whole-cell K^+ currents by about 75%. Figure 5B shows that the control antibody Kv1-NA (250 nM) reduced the current by about 25%. Data are representative of six similar experiments.

10 Figures 6A-6D shows the blockage of Kv3.1 currents by Kv3.1-BA antibody. Figure 6A illustrates Kv3.1 currents in Kv3.1 stably transfected HEK-293 cells in the absence (HEK/Kv3.1) or presence (+Kv3.1-BA) of Kv3.1-BA. Addition of 250 nM of Kv3.1-BA led to an about 80% suppression of Kv3.1 currents.

15 Figure 6B illustrates that Kv3.1-BA blockage is concentration dependent. Data points were taken at 15 minutes after the addition of antibody. Figures 6C and 6D show that Kv3.1-BA has limited effects on Kv1.2 currents in Kv1.2 stably transfected HEK-293 cells. The data are mean \pm SD of five to seven experiments.

DETAILED DESCRIPTION OF THE INVENTION

20 The present invention relates to a method of designing an ion channel blocker for an ion channel which includes providing an ion channel having an external vestibule portion and providing an antibody, binding portion, probe, or ligand specific to the external vestibule portion of the ion channel, where the antibody, binding portion, probe, or ligand inhibits ion transport through the ion channel.

25 Another aspect of the present invention relates to a method of inhibiting the ion transport through an ion channel having an external vestibule portion which includes providing an ion channel blocker which is specific to the external vestibule portion of the ion channel under conditions effective to inhibit ion transport through the ion channel.

Yet another aspect of the present invention relates to a method of screening a drug for effectiveness as an ion channel blocker for an ion channel where the ion channel has an external vestibule portion. The method includes contacting a cell having an ion channel with an ion channel blocker candidate and evaluating the cell to determine if the ion channel blocker candidate binds to the external vestibule portion of the ion channel and inhibits ion transport through the ion channel.

Yet another aspect of the present invention relates to an antibody where the antibody, binding portion, probe, or ligand which inhibits ion transport of an ion channel by binding to an external vestibule portion of the ion channel.

Ion channels are generally discussed in Jan, L.Y., et al., Annu. Rev. Neurosci., 20:91-123 (1997) and Jan, L.Y., et al., Annu. Rev. Physiol., 54:537-555 (1992), which are hereby incorporated by reference.

The ion channel blockers obtained in accordance of the present invention are any compounds which will bind to the ion channel to inhibit ion transport through the ion channel. Preferably, the ion channel blockers bind to an external vestibule portion of the ion channel. The ion channel blockers may be antibodies, binding portions thereof, probes, or ligands. Typically, the ion channel blockers are antibodies.

Ion transport to be inhibited according to the present invention include ion transport through potassium, sodium, calcium, and chloride channels. Preferably, the portion of the ion channel to be blocked is the external vestibule portion. Most preferably, the external vestibule portion is located between the S5 transmembrane and the pore forming region of the channel protein or between the pore forming region and the S6 transmembrane of the channel protein (Figure 1A). For example, the external vestibule portion is a 15 amino acid peptide from Kv1.2 potassium channel having SEQ. ID. NO. 1:

Phe Ala Glu Ala Asp Glu Arg Asp Ser Gln Phe Pro Ser Ile Pro
1 5 10 15

or a 14 amino acid peptide from Kv3.1 potassium channel having SEQ. ID. NO. 3:

Gly Ala Gln Pro Asn Asp Pro Ser Ala Ser Glu His Thr His
1 5 10

or a 15 amino acid peptide from Kv1.3 potassium channel having SEQ. ID. NO. 4:

Phe Ala Glu Ala Asp Asp Pro Thr Ser Gly Phe Ser Ser Ile Pro
1 5 10 15

5

or any other Kv related channels(Jan, L.Y. et al., Annu. Rev. Physiol. 54:537-555(1992), which is hereby incorporated by reference).

10

The term "inhibit" or "inhibiting" as used in the present application refers to the ability of the ion channel blocker of the present invention to prevent passage of (i.e. block) the ions through the ion channel. Although not meaning to be bound be theory, it is believed that the channel blocker of the present invention binds to the target peptide sequence and physically blocks the permeation of ions through the pore. Alternatively, ion channel blocker binding could cause a conformational change in the channel protein that closes the pore.

15

Preferably, the channel is contained in a mammalian cell, such as a neuronal cell, a cardiac myocyte, a muscle cell, or any other excitable cell.

20

As indicated above, ion channel blockers which bind to the external vestibule portion of an ion channel are utilized. These ion channel blockers include antibodies, such as monoclonal and polyclonal antibodies, antibody fragments, half-antibodies, hybrid derivatives, probes, or other molecular constructs.

25

Monoclonal antibody production may be effected by techniques which are well-known in the art. Basically, the process involves first obtaining immune cells (lymphocytes) from the spleen of a mammal (e.g., mouse) which has been previously immunized with the antigen of interest either *in vivo* or *in vitro*. The antibody-secreting lymphocytes are then fused with (mouse) myeloma cells or transformed cells, which are capable of replicating indefinitely in cell culture, thereby producing an immortal, immunoglobulin-secreting cell line. The resulting fused cells, or hybridomas, are cultured, and the resulting colonies screened for the production of the desired monoclonal antibodies. Colonies producing such antibodies are cloned, and grown either *in vivo* or *in vitro* to produce large quantities of antibody. A description of the theoretical basis and practical methodology of fusing such cells is set forth in Kohler and Milstein, Nature, 256:495 (1975), which is hereby incorporated by reference.

RECEIVED
U.S. PATENT AND TRADEMARK OFFICE

Mammalian lymphocytes are immunized by *in vivo* immunization of the animal (e.g., a mouse) with the protein or polypeptide of the present invention. Such immunizations are repeated as necessary at intervals of up to several weeks to obtain a sufficient titer of antibodies. Following the last antigen

5 boost, the animals are sacrificed and spleen cells removed.

Fusion with mammalian myeloma cells or other fusion partners capable of replicating indefinitely in cell culture is effected by standard and well-known techniques, for example, by using polyethylene glycol ("PEG") or other fusing agents. (See Milstein and Kohler, *Eur. J. Immunol.*, 6:511 (1976), which is hereby incorporated by reference.) This immortal cell line, which is preferably murine, but may also be derived from cells of other mammalian species, including but not limited to rats and humans, is selected to be deficient in enzymes necessary for the utilization of certain nutrients, to be capable of rapid growth, and to have good fusion capability. Many such cell lines are known to those skilled in the art, and others are regularly described.

Procedures for raising polyclonal antibodies are also well known. Typically, such antibodies can be raised by administering the protein or polypeptide of the present invention subcutaneously to New Zealand white rabbits which have first been bled to obtain pre-immune serum. The antigens can be injected at a total volume of 100 µl per site at six different sites. Each injected material will contain synthetic surfactant adjuvant pluronic polyols, or pulverized acrylamide gel containing the protein or polypeptide after SDS-polyacrylamide gel electrophoresis. The rabbits are then bled two weeks after the first injection and periodically boosted with the same antigen three times every six weeks. A sample of serum is then collected 10 days after each boost. Polyclonal antibodies are then recovered from the serum by affinity chromatography using the corresponding antigen to capture the antibody. Ultimately, the rabbits are euthanized with pentobarbital 150 mg/Kg IV. This and other procedures for raising polyclonal antibodies are disclosed in Harlow et. al., editors,

20

25

30

Antibodies: A Laboratory Manual (1988), which is hereby incorporated by reference.

In addition to utilizing whole antibodies, binding portions of such antibodies can be used. Such binding portions include Fab fragments, $F(ab')_2$ fragments, and Fv fragments. These antibody fragments can be made by conventional procedures, such as proteolytic fragmentation procedures, as described in Goding, Monoclonal Antibodies: Principles and Practice, New York: Academic Press, pp. 98-118 (1983), which is hereby incorporated by reference.

The present invention also relates to probes found either in nature or prepared synthetically by recombinant DNA procedures or other biological procedures. Suitable probes are molecules which bind to the external vestibule portion of the ion channels identified by the antibodies of the present invention. Such probes can be, for example, proteins, peptides, lectins, or nucleic acid probes.

The external vestibule portions of the ion channels listed herein include sequences which are substantially the same as the sequences listed herein. Variations, may be made by, for example, the deletion or addition of amino acids that have minimal influence on the properties, structure, or nature of the amino acid. Amino acid additions, deletions, and/or substitutions which do not negate the ability of the resulting protein to raise an antibody capable of blocking an external vestibule portion of an ion channel are within the scope of an amino acid sequence corresponding to or having or as shown in a particular amino acid sequence. Such additions, deletions, and/or substitutions can be, for example, the result of point mutations in the DNA encoding the amino acid sequence, such point mutations made according to methods known to those skilled in the art. Substitutions may be conservative substitutions of amino acids. As used herein, two amino acid residues are conservative substitutions of one another where the two residues are of the same type. In this regard, for purposes of the present invention, proline, alanine, glycine, serine, and threonine, all of which are neutral, weakly hydrophobic residues, are of the same type. Glutamic acid and aspartic acid, which are acidic, hydrophilic residues, are of the same type. Another type of residue is the basic, hydrophilic amino acid residues, which include histidine, lysine, and arginine. Leucine, isoleucine, valine, and methionine all of which are hydrophobic, aliphatic amino acid residues, form yet another type of

residue. Yet another type of residue consists of phenylalanine, tyrosine, and tryptophan, all of which are hydrophobic, aromatic residues. Further descriptions of the concept of conservative substitutions are given by French et al., J. Molecular Evolution 19:171-175 (1983), Taylor, J. Theor. Biol. 119:205-218 (1986), and Bordo et al., J. Mol. Biol. 217:721-729 (1991).

Any one of a number of methods well known in the art can be used to identify a hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, Western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell. Res. 175:109-124 (1988), which is hereby incorporated by reference).

Hybridomas secreting the desired antibodies are cloned and the class and subclass are determined using procedures known in the art.

Having described the ion channel blocker of the present invention, and methods for designing the ion channel blocker, this ion channel blocker can be used in a method of screening a drug for effectiveness as an ion channel blocker. The ion channel blocker which is specific to the external vestibule portion of the ion channel is contacted with a cell which contains ion channels. The cell is then evaluated to determine whether the ion channel blocker inhibits ion transport through the ion channel. From this evaluation, ion channel blockers which inhibit ion transport through the ion channel can be found. The ability of the ion channel blocker to inhibit ion transport through the ion channel can be assayed according to methods known in the art, such as voltage clamp analysis of the channel as described in Huang et al., Cell 75:1145-1150 (1993), which is hereby incorporated by reference.

Thus, the present invention may screen drugs useful in treating diseased states, such as hypertension, cardiac ischemia, cerebral ischemia, bronchi construction, and neurological diseases.

EXAMPLES

Materials and Methods

Affinity-purified polyclonal antibodies and immunoblot.

Kv1.2-BA, Kv1-NA, and Kv3.1-BA rabbit polyclonal antibodies were made and

affinity purified through Genemed Biotechnologies, Inc. (South San Francisco, CA). A cysteine residue was added to the carboxyl end of the peptide having SEQ. ID.

No. 1:

5 Phe Ala Glu Ala Asp Glu Arg Asp Ser Gln Phe Pro Ser Ile Pro
1 5 10 15

or the amino end of the peptide having SEQ. ID. No. 2:

10 Asp Pro Leu Arg Asn Glu Tyr Phe Phe Asp Arg Asn Arg Pro Ser
1 5 10 15

or the carboxyl end of the peptide having SEQ. ID. No. 3:

15 Gly Ala Gln Pro Asn Asp Pro Ser Ala Ser Glu His Thr His
1 5 10

for keyhold limpet hemocyanin conjugation. Rabbit antiserum was purified with the peptide-affinity matrix. The specificity of these antibodies was confirmed by competition experiments with different peptides during immunoblotting. Immunoblot of membrane proteins (30 µg per lane) from HEK and transfected HEK cells was done as described, with some modifications (Langhans-Rajasekaran, S.A. et al., Proc. Natl. Acad. Sci. USA 92:8601-8605 (1995); Wan Y. et al., Nature, 380:541-544 (1996), which are hereby incorporated by reference). Boiling lysis solution (1% Triton X-100, 150 mM NaCl, 10 mM Tris, pH 7.4, 1 mM EDTA, 1 mM EGTA, 0.5% NP-40, 0.1% SDS, 1% Na-deoxycholate) was used to resuspend membrane proteins.

Electrophysiological recordings with HEK-293 cells. Maintenance, growth, and stable transfection of HEK-293 cells were performed as described (Huang, X.Y. et al., Cell 75:1145-1156 (1993); Langhans-Rajasekaran, S.A. et al., Proc. Natl. Acad. Sci. USA 92:8601-8605 (1995), which are hereby incorporated by reference). At each passage, some cells were plated onto 2.5-cm culture dishes with small cover slips for electrophysiological measurements. Electrophysiological recordings were made on the same day. Whole-cell patch-clamp recordings were performed as described, with some modifications (Huang, X.Y. et al., Cell 75:1145-1156 (1993), which is hereby incorporated by reference). Recordings were done at room temperature with pipettes pulled from micro-hematocrit capillary tubes

with resistances of 2 to 4 M Ω . The pipette solution contained 180 mM K-Asp, 5 mM NaCl, 5 mM Na-HEPES, 5 mM EGTA, 0.28 mM CaCl₂, 0.8 mM MgCl₂, 1.5 mM ATP, 0.1 mM GTP, pH adjusted to 6.7 with HCl. The bath solution contained 118 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl₂, 0.8 mM MgCl₂, 5 mM Na-HEPES, 5 23 mM Glucose, 54 mM Sucrose, pH adjusted to 7.4 with NaOH. Whole-cell currents were elicited by voltage pulses of 300-ms duration from a holding potential of -70 mV. Current was measured in the range from -40 mV to 60 mV, varying the voltage in 10-mV steps. Series resistance values after seal formation were less than 3 M Ω and were electronically compensated. The current signals were low pass filtered at 5 kHz and leak subtracted. The data were collected by using Axopatch 10 200A via pCLAMP6 (Axon, Forster City, CA) To investigate the effects of antibodies on membrane potassium currents, cells were patched for 5 minutes to obtain a stable baseline before antibodies were added to the recording chamber.

15 **Electrophysiological recordings with Neuronal cells.** Maintenance and growth of the neuronal NG108-15 cells are as described (Huang, X.Y. et al., *Cell* 75:1145-1156 (1993); Han, H.Q. et al., *Nature*, 349:697-700 (1991), which are hereby incorporated by reference). At each passage, some cells were plated onto 2.5-cm collagen-coated culture dishes with small cover slips for electrophysiological measurements. Electrophysiological recordings were made about 3 to 7 days after 20 differentiation. Whole-cell patch-clamp recordings of potassium currents were performed as described (Wilk-Blaszcak, M.A. et al., *Neuron*, 13:1215-1224 (1994), which is hereby incorporated by reference). Recordings were done at room temperature using a 2 to 4 M Ω resistance electrode. The pipette solution contained 115 mM KCl, 0.1 mM MgCl₂, 40 mM HEPES, 3 mM ATP, 0.1 mM GTP, pH 25 adjusted to 7.3 with KOH. The bath solution contained 125 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂, 20 mM HEPES, 5 mM Glucose, pH adjusted to 7.4 with NaOH. Recording protocol, data collection, and analysis were done as described above for HEK-293 cells.

30 **Dendrotoxin Binding Assay.** Binding assay was performed as previously described for agonist binding to muscarinic receptors (Wan et al., *J. Biol. Chem.* 272:17209-17215 (1997), Wan et al., *Nature* 380:541-544 (1996); and Bence et al., *Nature* 389:296-299 (1997), which are hereby incorporated by reference).

Briefly, HEK293 cells stably expressing Kv1.2 channel proteins were grown in 12-well dishes. After being washed two times with Hank's balanced salt solution ("HBSS") plus 10 mM HEPES (pH 7.4), 300 μ l binding solution was added to each well. The binding solution contains HBSS plus 10 mM HEPES (pH 7.4), 1 mg/ml BSA, 1 mg/ml bacitracin, 1 mM PMSF, 10 nM 125 I- α -dendrotoxin (290 Ci/mmol) (Amersham Corp., Arlington Heights, IL; or Alomone Labs, Jerusalem, Israel), and various concentrations of Kv1.2-BA antibody. After incubation for 4 hours at 4°C, cells were washed two times with HBSS plus 10 mM HEPES (pH 7.4) to remove unbound 125 I-dendrotoxin. Cells were then lysed with 1 ml of 0.4 N NaOH and transferred to borosilicate tubes. The bound 125 I-dendrotoxin was counted with a gamma counter. Nonspecific binding of 125 I-dendrotoxin to cells was determined in the presence of excess (10 μ M) unlabeled dendrotoxin. Nonspecific inhibition of antibody on dendrotoxin binding was examined in the presence of 500 nM of preimmune IgG with <10% inhibition.

Data Analysis Data for multisite inhibition can be expressed in terms of a Hill equation (Segel, I.H. Enzyme Kinetics, John Wiley & Sons, Inc., New York, (1993), which is hereby incorporated by reference):

$$\log \{I/I_0/(1-I/I_0)\} = -n\log[\text{antibody}] + \log K'$$

where I_0 is the current amplitude before the addition of the antibody; I is that after the addition of the antibody; [antibody] is the concentration of the antibody; and n indicates the number of binding sites of the antibody on the channel. IC_{50} is related to K' as $IC_{50} = K' / (n+1)$. A Hill plot for the inhibition by both Kv1.2-BA or Kv3.1-BA antibodies gave the slope of the Hill plot -0.75, indicating only one antibody binding to one channel complex. Thus, the Hill equation can be simplified as:

$$I/I_0 = 1/(1 + [\text{antibody}]/K').$$

All curve fittings were performed using this equation.

Example 1 - Suppression of Kv1.2 Current by Kv1.2-BA Antibody

To test whether antibodies specific for peptides around the pore-regions of individual ion channels can be used as a channel blocker, the blocking ability of an affinity-purified polyclonal antibody generated against a 15 amino-acid peptide of a delayed-rectifier potassium channel Kv1.2 (Huang, X.Y. et al., *Cell* 75:1145-1156 (1993)) (Fig. 1A) was examined. This sequence identified as SEQ. ID.

NO. 1:

Phe Ala Glu Ala Asp Glu Arg Asp Ser Gln Phe Pro Ser Ile Pro
1 5 10 15

located between the S5 transmembrane and the pore-forming (P) region, is very likely part of the external vestibule (or the outer mouth) of the channel protein (Fig. 1B) (Lu, Q. et al., *Science* 268:304-307 (1995); Hidalgo, P. et al., *Science* 268:307-310 (1995); Aiyar, J. et al., *Neuron* 15:1169-1181 (1995), which are hereby incorporated by reference). Kv1.2 was stably expressed in a mammalian cell line, HEK-293 cells (Huang, X.Y. et al., *Cell* 75:1145-1156 (1993), which is hereby incorporated by reference). The affinity-purified polyclonal antibody (Kv1.2-BA) detected Kv 1.2 protein in plasma membranes of Kv1.2-transfected cells (Fig. 1C). Whole-cell patch-clamp recording revealed large outward potassium currents, elicited at depolarizing voltages, that are absent in untransfected HEK-293 cells (Fig. 2A). Addition of 250nM of the affinity-purified polyclonal antibody (Kv1.2-BA) to the external solution blocked about 70% of the Kv1.2 currents (Fig. 2). The current amplitude decline, seen only after addition of Kv1.2-BA, occurred within 1 minute and reached about 70% suppression in about 7–15 minutes (Fig. 2B). The Kv1.2 current is stable in the absence of antibodies (Fig. 2B). The current is decreased by the antibody Kv1.2-BA for all voltages ≥ 0 mV (Fig. 2C). Also, the suppression was antibody concentration-dependent: with a rise in concentration of Kv1.2-BA, the inhibition of Kv1.2 currents increases (Fig. 2D). The data for the channel inhibition by the blocking antibody could be well fitted by an equation for 1:1 binding between the antibody and the Kv1.2 channel with an IC_{50} of 54 nM (see data analysis in Materials and Methods). This IC_{50} is similar to the K_d of most potassium channel neurotoxins. Thus, the antibody Kv1.2-BA can suppress the Kv1.2 current in Kv1.2 transfected cells.

Example 2

To ensure that the Kv1.2-BA antibody does indeed bind to the external region of Kv1.2 channel protein and that the blocking effect is due to the binding of the Kv1.2-BA antibody to the channel protein, Kv1.2-BA antibody was preincubated with the immunogenic peptide that was used to generate Kv1.2-BA. If blocking is due to binding of the antibody to the peptide sequence in the external vestibule of the channel protein, preincubation with the peptide should prevent the inhibition. As shown in Fig. 2E, addition of 250 nM Kv1.2-BA after preincubation with the immunogenic peptide only produced about 25% inhibition. Preincubation with a control peptide did not inhibit the Kv1.2-BA-induced suppression of Kv1.2 currents (Fig. 2E). Thus, the majority of the inhibition by Kv1.2-BA on Kv1.2 currents is due to specific binding of Kv1.2 to the particular peptide sequence around the pore region of Kv1.2 channels. The residual about 25% inhibition is likely due to either nonspecific blocking of the channel by high concentrations of proteins in the bath solution or the presence of another antiserum in the polyclonal antibody preparation that fortuitously recognize sequences of the channel protein. Nonetheless, Kv1.2-BA can significantly block Kv1.2 currents in Kv1.2-transfected cells.

Example 3 - No Effect of Kv1.2 Current by a Control Antibody Kv1-NA

To further exclude the possibility that the Kv1.2 BA blocking effects were non-specific and that any antibody added outside cells somehow interferes the channel function, the effects on the Kv1.2 currents by another affinity-purified polyclonal antibody (Kv1-NA) was examined (Fig. 3A and 3B). Kv1-NA was generated against a peptide having SEQ ID. NO. 2:

Asp Pro Leu Arg Asn Glu Tyr Phe Phe Asp Arg Asn Arg Pro Ser
1 5 10 15

from the intracellular N-terminus of Kv1.2, which is identical in all members of the Kv1 family (Fig. 1D). Addition of this control antibody Kv1-NA had no effect at low concentrations (<20nM) and very small effects at very high concentrations (>100nM) on the Kv1.2 currents (Fig. 3B). These results indicate that the effect of antibody Kv1.2-BA is specific.

Example 4 - Effects of Related Kv1.3 or Kv3.1 Currents by Kv1.2-BA Antibody

To additionally ensure the specificity, the Kv1.2-BA antibody was tested on related potassium channels. Kv1.3 belongs to the same subfamily of delayed-rectifier potassium channels as Kv1.2. Kv1.3 has the same sequence around the pore-region as Kv1.2, with the exception of five amino acids (Fig. 1A). When stably expressed in HEK-293 cells, Kv1.3 exhibits C-type slow inactivation (Attali, B. *J. Biol. Chem.* 267:8650-8657 (1992); Panyi, G. et al. *Biophys. J.* 68:896-903 (1995), which are hereby incorporated reference) (Fig. 3C). In contrast to the results obtained with Kv1.2 currents, addition of Kv1.2-BA had little effects on Kv1.3 currents, only small effect at high concentrations (similar to the residual effect of Kv1.2 currents by Kv1.2-BA preincubated with the immunogenic peptide) (Fig. 3C and 3D). Kv3.1 is another delayed-rectifier K⁺ channel, but belongs to a different subfamily (Yokoyama, S. et al. *FEBS Letters* 259:37-42 (1989); Luneau, C.J. et al. *Proc. Natl. Acad. Sci. USA* 88:3932-3936 (1991), which are hereby incorporated by reference). Although Kv3.1 has high sequence homology with Kv1.2 in transmembrane domains and pore-forming regions, it differs from Kv1.2 in the region where Kv1.2-BA binds (Fig. 1A). As would be expected, there was only a small change of Kv3.1 currents expressed in HEK-293 cells after addition of Kv1.2-BA (Figs. 3E and 3F). These experiments demonstrated that Kv1.2-BA specifically blocks the Kv1.2 currents, without affecting other related K⁺ currents.

Example 5 - Inhibition of Binding of ¹²⁵I-Dendrotoxin by Kv1.2-BA

Kv1.2 channel protein is one of the major receptors for dendrotoxin *in vivo* (Scott, *J. Biol. Chem.* 265:20094-20097 (1990)), which is hereby incorporated by reference). Since α-dendrotoxin also binds to the external vestibule of Kv1.2 channel protein (Hurst, R.S. *Mol. Pharmacol.* 40:572-576 (1991), which is hereby incorporated by reference), it is expected that binding by α-dendrotoxin and Kv1.2-BA antibody should be mutually exclusive. If the Kv1.2 channel protein is first bound with the Kv1.2-BA antibody, then binding of α-dendrotoxin to Kv1.2-BA channel protein should be decreased compared to the binding in the absence of Kv1.2-BA antibody due to the occupancy of the channel proteins by the antibody that

excludes the binding of α -dendrotoxin. As shown in Fig. 4, increased concentrations of Kv1.2-BA led to the inhibition of ^{125}I - α -dendrotoxin binding in Kv1.2-transfected HEK cells. Thus, this data further demonstrates that Kv1.2-BA blocks Kv1.2 currents by binding to the external vestibule of Kv1.2 channel protein.

5

Example 6 - Suppression of Endogenous Kv1.2 Current by Kv1.2-BA Antibody

10

15

20

The method of the present invention was tested in a neuronal cell line. Previously, Kv1.2 had also been cloned by screening a cDNA library made from the neuronal NG108-15 cells, and it has been shown that Kv1.2 is abundantly expressed in NG108-15 cells (Yokoyama, S. et al. FEBS Letters 259:37-42 (1989), which is hereby incorporated by reference). Therefore, whole-cell patch-clamp analysis was performed on NG108-15 cells (Han, H.Q. et al. Nature 349:697-700 (1991); Wilk-Blaszczak, M.A. et al., Neuron 13:1215-1224 (1994), which are hereby incorporated by reference) (Fig. 5). Addition of the blocking antibody Kv1.2-BA (250 nM) resulted in a $76\pm12\%$ ($n=6$) decrease of the whole-cell potassium currents within 10-15 minutes, a significantly ($P<0.002$, paired t test) higher inhibition than that caused by the control antibody Kv1-NA ($25\pm8\%[n=6]$) decrease over the same period with 250 nM Kv1-NA). Untreated cells showed a $8\pm3\%(n=6)$ decrease. These results demonstrate that the Kv1.2-BA antibody blocks endogenous Kv1.2 current as well as heterologously expressed Kv1.2 currents.

Example 7 - Application of the Method to Another Subfamily of K⁺ Channels

25

To extend the method of the present invention to other subfamilies of K⁺ channels, another polyclonal antibody was generated against a 14 amino-acid peptide, having SEQ. ID. No. 3:

30

Gly Ala Gln Pro Asn Asp Pro Ser Ala Ser Glu His Thr His
1 5 10

35

from the external vestibule of the Kv3.1 channel protein (Fig. 1A and 1E). This affinity-purified anti-Kv3.1 antibody (Kv3.1-BA) detected Kv3.1 protein in plasma membranes of Kv3.1-transfected HEK-293 cells (Fig. 1E). Kv3.1-BA at 250 nM blocked about 79% of the Kv3.1 currents from Kv3.1-transfected HEK cells (Fig.

6A). The Kv3.1 current is stable in the absence of antibodies. The suppression is antibody dose dependent (Fig. 6B). The IC₅₀ is 58 nM. This Kv3.1-BA antibody had limited effects on Kv1.2 currents (Figs. 6C and 6D). Thus, the antibody Kv3.1-BA can specifically suppress Kv3.1 currents.

5

DISCUSSION

In practice, like any other methods using antibodies, the concentration used is important and controls are essential. It is useful to test several concentrations of antibodies to obtain appropriate amounts to maximize inhibition and minimize nonspecific background suppression. If the antibody is used at too high a concentration, high background (nonspecific suppression) can result. If the antibody concentration is too low, the inhibition will be too small to be certain of specificity. In general, the optimal concentrations for purified polyclonal antibodies will be in the range of about 20-60 nM. At concentrations <60 nM, the specific antibodies could reduce the currents significantly (as high as 50%), while nonspecific antibodies produced no suppression other than rundown (<10%). When examining endogenous currents, it is very important to compare the suppression produced by the channel-blocking antibody with a control antibody, or one can perform the experiments in the presence and absence of the immunogenic peptide used to generate the antibody and compare the differences.

Given the remarkable specificity and selectivity of antibodies for their targets, the method of the present invention provides a superior approach to rationally design specific ion channel blockers. A large number of K⁺ channels expressing similar properties makes it a difficult task to identify a native K⁺ current as one expressed by a cloned K⁺ channel gene. At present time, the identification of a particular current in cells possessing a broad array of overlapping currents depends on a limited array of pharmacological tools. Although the availability of mutants is of great help for such an endeavor, there are not many K⁺ channel mutants identified in vertebrates. Approaches targeted at the biosynthesis or assembly of channel proteins such as introducing antisense oligonucleotides or expressing dominant negative mutant channels in native cells have limitations, for example, the dependence on the

50 55 60 65 70 75 80 85 90 95

turnover rate of endogenous channel proteins (Tu, L. et al. (1995) Biophys. J. 68:147-156; Chung, S. et al. (1995) Proc. Natl. Acad. Sci USA 92:5955-5959). Since the method of the present invention is aimed at the functional membrane channel proteins, it avoids such limitation. Furthermore, antibodies have been raised that detect single amino acid substitutions, or differentiate between phosphorylated and unphosphorylated peptides (Harlow, E. Antibodies (Cold Spring Harbor Laboratory, 1988). Thus, they are excellent tools to discriminate among structurally related ion channels.

The biophysical mechanism of the blocking ability of Kv1.2-BA on Kv1.2 currents or Kv3.1-BA on Kv3.1 currents is not yet clear. The target peptide sequence is close to the ion flux pathway, and it is likely that the antibody binds to the peptide and physically blocks the permeation of K⁺ ions as is the case with sorption toxins (MacKinnon, R. et al., J. Gen. Physiol. 91:335-349 (1988), which is hereby incorporated by reference). Alternatively, antibody binding could cause a conformational change in the channel protein that closes the pore. Regardless of the mechanism, however, the present invention is a novel approach to identify a specific ion channel involved in producing a particular endogenous current. This immuno-electrophysiological approach should also be applicable to other ion channels. Also, this method can be used or modified as a rational drug design using ion channels as therapeutic targets. In addition, it should be possible to design channel openers by generating antibodies that force the channel into an open configuration. Furthermore, using the same peptide or other nearby peptides as probes, it is possible to screen for small peptides or oligonucleotides that could be used as ion channel blockers using combinatorial chemistry.

Although the invention has been described in detail for the purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

WHAT IS CLAIMED:

1. A method of designing an ion channel blocker for an ion channel comprising:
 - 5 providing an ion channel having an external vestibule portion and
 - providing an antibody, binding portion, probe, or ligand specific to the external vestibule portion of the ion channel, wherein the antibody, binding portion, probe, or ligand is effective to inhibit ion transport through the ion channel.
 - 10
2. The method according to claim 1, wherein the ion channel is a potassium channel, a sodium channel, a calcium channel, or a chloride channel.
- 15 3. The method according to claim 1, wherein the ion channel blocker is an antibody.
4. The method according to claim 3, wherein the ion channel is contained in a mammalian cell.
- 20 5. The method according to claim 3, wherein the ion channel is from an excitable cell.
- 25 6. The method according to claim 5, wherein the ion channel is a Kv ion channel.
7. The method according to claim 6, wherein the antibody is a polyclonal antibody.
- 30 8. The method according to claim 7, wherein the ion channel is a Kv1.2, Kv1.3, or Kv3.1 ion channel.

9. The method according to claim 8, wherein the external vestibule portion has a sequence corresponding to SEQ. ID. NO. 1, SEQ. ID. NO. 3, or SEQ. ID. NO. 4.

5 10. A method of inhibiting ion transport through an ion channel having an external vestibule portion comprising:

providing an ion channel blocker which is specific to the external vestibule portion of the ion channel under conditions effective to inhibit ion transport through the ion channel.

10 11. The method according to claim 10, wherein the ion channel blocker is an antibody, a binding portion, a probe, or a ligand.

15 12. The method according to claim 10, wherein the ion channel is a potassium channel, a sodium channel, a calcium channel or a chloride channel.

13. The method according to claim 11, wherein the ion channel is contained in a mammalian cell.

20 14. The method according to claim 13, wherein the ion channel is from an excitable cell.

15. The method according to claim 12, wherein the ion channel is a Kv ion channel.

25 16. The method according to claim 15, wherein the antibody is a polyclonal antibody.

17. The method according to claim 16, wherein the ion channel is a Kv1.2, Kv1.3, or Kv3.1 ion channel.

18. The method according to claim 17, wherein the external vestibule portion has a sequence corresponding to SEQ. ID. NO. 1, SEQ. ID. NO. 3, or SEQ. ID. NO. 4.

5 19. A method of screening a drug for effectiveness as an ion channel blocker for an ion channel, wherein the ion channel has an external vestibule portion, said method comprising:

contacting a cell having an ion channel with an ion channel blocker candidate and

10 evaluating the cell to determine if the ion channel blocker candidate binds to the external vestibule portion of the ion channel and inhibits ion transport through the ion channel.

15 20. The method according to claim 19, wherein the ion channel blocker is an antibody, binding portion, probe, or ligand.

21. The method according to claim 20, wherein the ion channel is a potassium channel, a sodium channel, a calcium channel, or a chloride channel.

20 22. The method according to claim 21, wherein the ion channel is a mammalian ion channel.

25 23. The method according to claim 22, wherein the cell is an excitable cell.

24. The method according to claim 21, wherein the ion channel is a Kv ion channel.

25 30 25. The method according to claim 24, wherein the antibody is a polyclonal antibody.

26. The method according to claim 25, wherein the ion channel is a Kv1.2, a Kv1.3, or a Kv3.1 ion channel.

5 27. The method according to claim 26, wherein the external
vestibule portion has a sequence corresponding to SEQ. ID. NO. 1, SEQ. ID. NO. 3,
or SEQ. ID. NO. 4.

10 28. An antibody, binding portion, probe, or ligand which inhibits
ion transport of an ion channel by binding to an external vestibule portion of the ion
channel.

15 29. The antibody, binding portion, probe, or ligand according to
claim 28, wherein the ion channel is a potassium channel, a sodium channel, a
calcium channel, or a chloride channel.

30. The antibody, binding portion, probe, or ligand according to
claim 29, wherein the ion channel is a mammalian ion channel.

20 31. The antibody, binding portion, probe, or ligand according to
claim 30, wherein the ion channel is from an excitable cell.

32. The antibody, binding portion, probe, or ligand according to
claim 29, wherein the ion channel is a Kv ion channel.

25 33. The antibody, binding portion, probe, or ligand according to
claim 32, wherein the antibody is a polyclonal antibody.

30 34. The antibody, binding portion, probe, or ligand according to
claim 33, wherein the ion channel is a Kv1.2, Kv1.3, or Kv3.1 ion channel.

35. The antibody according to claim 34, wherein the external vestibule portion has a sequence corresponding to SEQ. ID. NO. 1, SEQ. ID. NO. 3, or SEQ. ID. NO. 4.

ABSTRACT OF THE INVENTION

The present invention relates to a method of designing an ion channel blocker for an ion channel which includes providing an ion channel having an external vestibule portion and raising an antibody, binding portion, probe, or ligand specific to the external vestibule portion of the ion channel, where the antibody, binding portion, probe, or ligand inhibits ion transport through the ion channel. The present invention further relates to a method of inhibiting ion transport through an ion channel, a method for screening a drug for effectiveness as an ion channel blocker, and an antibody, binding portion, probe, or ligand.

10
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460

FIG. 1

A

B

FIG.1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

A

NG108-15

+Kv1.2-BA

B

NG108-15

+Kv1-NA

100 ms
1 nA

FIG. 6

COMBINED DECLARATION FOR PATENT
APPLICATION AND POWER OF ATTORNEY
(Includes Reference to PCT International Applications)

ATTORNEY'S DOCKET NUMBER
19603/1451 (CRF D-2008A)

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHODS FOR DESIGNING SPECIFIC ION CHANNEL BLOCKERS

the specification of which (check only one item below):

is attached hereto.

was filed as U.S. Patent Application Serial No. _____
on _____
and was amended on _____ (if applicable).

was filed as PCT International Application Number _____
on _____
and was amended under PCT Article 19 on _____ (if applicable).

Hereby state that I have reviewed and understand the contents of the above-identified specifications, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, § 1.56(a).

Hereby claim foreign priority benefits under Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by me on the same subject matter having a filing date before that of the application(s) of which priority is claimed:

PRIOR FOREIGN/PCT APPLICATION(S) AND ANY PRIORITY CLAIMS UNDER 35 U.S.C. 119:

COUNTRY (IF PCT, indicate "PCT")	APPLICATION NUMBER	DATE OF FILING (day, month, year)	PRIORITY CLAIMED UNDER 35 USC 119
United States	60/079,268	25-MAR-1998	<input checked="" type="checkbox"/> YES <input type="checkbox"/> NO
			<input type="checkbox"/> YES <input type="checkbox"/> NO
			<input type="checkbox"/> YES <input type="checkbox"/> NO
			<input type="checkbox"/> YES <input type="checkbox"/> NO
			<input type="checkbox"/> YES <input type="checkbox"/> NO
			<input type="checkbox"/> YES <input type="checkbox"/> NO
			<input type="checkbox"/> YES <input type="checkbox"/> NO
			<input type="checkbox"/> YES <input type="checkbox"/> NO

**COMBINED DECLARATION FOR PATENT
APPLICATION AND POWER OF ATTORNEY (Continued)**
(Includes Reference to PCT International Applications)

ATTORNEY'S DOCKET NUMBER
19603/1451 (CRF D-2008A)

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) or PCT international application(s) designating the United States of America that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in that/those prior application(s) in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, § 1.56(a) which occurred between the filing date of the prior application(s) and the national or PCT International filing date of this application:

**PRIOR U.S. APPLICATIONS OR PCT INTERNATIONAL APPLICATIONS DESIGNATING THE U.S. FOR BENEFIT
UNDER 35 U.S.C. 120:**

U.S. APPLICATIONS		STATUS (Check One)		
U.S. APPLICATION NUMBER	U.S. FILING DATE	PATENTED	PENDING	ABANDONED
PCT APPLICATIONS DESIGNATING THE U.S.				
PCT APPLICATION NO.	PCT FILING DATE	U.S. SERIAL NUMBERS ASSIGNED (if any)		

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. **Michael L. Goldman, Registration No. 30,727, Gunnar G. Leinberg, Registration No. 35,584; Dennis M. Connolly, Registration No. 40,964; Edwin V. Merkel, Registration No. 40,087; Jeffery B. Arnold, Registration No. 39,540**

Send Correspondence to: Michael L. Goldman Nixon, Hargrave, Devans & Doyle LLP Clinton Square, P.O. Box 1051 Rochester, New York 14603	Direct telephone calls to: Michael L. Goldman (716) 263-1304
---	--

2 0 2	FULL NAME OF INVENTOR	FAMILY NAME Huang	FIRST GIVEN NAME Xin-Yun	SECOND GIVEN NAME
2 0 2	RESIDENCE & CITIZENSHIP	CITY New York	STATE/FOREIGN COUNTRY New York	COUNTRY OF CITIZENSHIP China
2 0 3	POST OFFICE ADDRESS	P.O. ADDRESS 500 E. 63rd Street, Apt. 22D	CITY New York	STATE & ZIP CODE/COUNTRY New York 10021/USA
2 0 3	FULL NAME OF INVENTOR	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME
2 0 3	RESIDENCE & CITIZENSHIP	CITY	STATE/FOREIGN COUNTRY	COUNTRY OF CITIZENSHIP
2 0 3	POST OFFICE ADDRESS	P.O. ADDRESS	CITY	STATE & ZIP CODE/COUNTRY

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

SIGNATURE OF INVENTOR 201 UNSIGNED	SIGNATURE OF INVENTOR 202	SIGNATURE OF INVENTOR 203
DATE	DATE	DATE

SEQUENCE LISTING

<110> Huang, Xin-Yun

<120> METHODS FOR DESIGNING SPECIFIC ION CHANNEL BLOCKERS

<130> 19603/1451

<140>

<141>

<150> 60/079,268

<151> 1998-03-25

<160> 4

<170> PatentIn Ver. 2.0

<210> 1

<211> 15

<212> PRT

<213> rat

<400> 1

Phe Ala Glu Ala Asp Glu Arg Asp Ser Gln Phe Pro Ser Ile Pro
1 5 10 15

<210> 2

<211> 15

<212> PRT

<213> rat

<400> 2

Asp Pro Leu Arg Asn Glu Tyr Phe Phe Asp Arg Asn Arg Pro Ser
1 5 10 15

<210> 3

<211> 14

<212> PRT

<213> rat

<400> 3

Gly Ala Gln Pro Asn Asp Pro Ser Ala Ser Glu His Thr His
1 5 10

<210> 4
<211> 15
<212> PRT
<213> rat

<400> 4
Phe Ala Glu Ala Asp Asp Pro Thr Ser Gly Phe Ser Ser Ile Pro
1 5 10 15