Unit 2: EDA Paradigms & Complexity

Course contents:

- Computational Complexity
- EDA paradigms:Algorithms,Frameworks,Methodology
- Readings
 - W&C&C: Chapter 4
 - S&Y: Appendix A

Why Does Complexity Matter?

- To characterize the efficiency/hardness of problem solving
- Have a better idea on how to come up with good algorithms
 - Algorithm: a well-defined procedure transforming some input to a desired output in finite computational resources in time and space.
- Runtime comparison: assume 1 BIPS (Billion Instructions Per Sec.), 1 instruction/operation.

Time	Big-Oh	n = 10	n = 100	n = 104	n = 10 ⁶	n = 10 ⁸
500	O(1)	5*10 ⁻⁷ sec				
3 <i>n</i>	O(n)	3*10 ⁻⁸ sec	3*10 ⁻⁷ sec	3*10 ⁻⁵ sec	0.003 sec	0.3 sec
<i>n</i> lg <i>n</i>	O(<i>n</i> lg <i>n</i>)	3*10-8 sec	6*10-7 sec	1*10-4 sec	0.018 sec	2.5 sec
n ²	O(n2)	1*10 ⁻⁷ sec	1*10-⁵ sec	0. 1 sec	16.7 min	116 days
n³	O(n3)	1*10-8 sec	0.001 sec	16.7 min	31.7 yr	∞
2 ⁿ	O(2 ⁿ)	1*10 ⁻⁸ sec	4 *1011 cent.	∞	∞	∞
n!	O(n!)	0.003 sec	∞	∞	∞	∞

O: Upper Bounding Function

- **Def**: f(n) = O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.
 - Examples: $2n^2 + 3n = O(n^2)$, $2n^2 = O(n^3)$, $3n \lg n = O(n^2)$
- Intuition: f(n) " \leq " g(n) when we ignore constant multiples and small values of n.

Big-O Notation

- "An algorithm has worst-case running time O(f(n))": there is a constant c s.t. for every n big enough, every execution on an input of size n takes at most cf(n) time.
- Only the dominating term needs to be kept while constant coefficients are immaterial.

- e.g.,

$$0.3n^2 = O(n^2)$$
,
 $3n^2 + 152n + 1777 = O(n^2)$,
 $n^2 \lg n + 3n^2 = O(n^2 \lg n)$

The following are correct but not used

$$3n^2 = O(n^2 \lg n)$$

 $3n^2 = O(0.1n^2)$
 $3n^2 = O(n^2 + n)$

Computational Complexity

- Computational complexity: an abstract measure of the time and space necessary to execute an algorithm as function of its "input size".
- Input size examples:
 - sort n words of bounded length 2 n
 - the input is the integer n □ lg n
 - the input is the graph G(V, E) |V| and |E|
- Time complexity is expressed in *elementary* computational steps (e.g., an addition, multiplication, pointer indirection).
- Space Complexity is expressed in *memory locations* (e.g. bits, bytes, words).

Example: Insertion Sort

• Idea:

- Insert a number A[j] into a sorted sequence with j-1 numbers
- Result in a sorted sequence with j numbers

http://en.wikipedia.org/wiki/Image:Insertion_sort_animation.gif

Amortized Analysis

- Why Amortized Analysis?
 - Find a tight bound of a sequence of data structure operations.
- No probability involved, guarantees the average performance of each operation in the worst case
- Three popular methods
 - Aggregate method
 - Accounting method
 - Potential method

Methods for Amortized Analysis

Aggregate method

- *n* operations take T(n) time.
- Average cost of an operation is T(n)/n time.

Accounting method

- Charge each type of operation an amortized cost.
- Store the overcharge of early operations as "prepaid credit" in "bank."
- Use the credit for later operations.
- Must guarantee nonnegative balance at all time
- Potential method
 - View "prepaid credit" as "potential energy."

Aggregate Method: Stack and MULTIPOP

- n operations take T(n) time 2 average cost of an operation is T(n)/n time.
- Consider a sequence of n PUSH, POP, and MULTIPOP operations on an initially empty stack.
 - Worst-case analysis: a MULTIPOP operation takes O(n).
 - Aggregate method: Any sequence of n PUSH, POP, MULTIPOP costs at most O(n) time (why?) \Rightarrow amortized cost of an operation: O(n)/n=O(1).

Multipop(S, k)

1. **while** not Stack-Empty(S) and k > 0 **do**2. Pop(S)

3. $k \leftarrow k-1$

Accounting Method

- Assign differing charges to different operations.
 - Amortized cost = actual cost + credit.
 - Credit is assigned to specific objects and must be nonnegative all the times.
- Stack operations (s: stack size):

	Actual cost	Amortized cost
PUSH	1	2
POP	1	0
MULTIPOP	Min(k,s)	0

— For any sequence of n operations, total actual cost ≤ total amortized cost = O(n).

Potential Method

- Represent the prepaid work as "potential" that can be released to pay for future operations.
 - Potential is associated with the whole data structure, not with specific items in the data structure. (cf. accounting method)
- The potential method:
 - D_0 : initial data structure D_i : data structure after applying the *i*th operation to D_{i-1} c_i : actual cost of the *i*th operation
 - Define the potential function $\Phi: D_i \to \Re$.
 - Amortized cost \hat{c}_i , $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$.

$$\sum_{i=1}^{n} \hat{c_i} = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$
$$= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

- _ Pick $\Phi(D_n)$ ≥ $\Phi(D_0)$ to make $\sum_{i=1}^n \hat{C}_i \ge \sum_{i=1}^n C_i$
- _ Often define $Φ(D_0)$ = 0 and then show that $Φ(D_i)$ ≥ 0, ∀ i.

Potential Method: Stack Operations

- Amortized cost of each operation = O(1).
- $\Phi(D)$ = # of objects in the stack D; $\Phi(D_0)$ =0, $\Phi(D_i) \ge 0$.
- PUSH: $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 + (s+1) s = 2$.
- POP: $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 + (-1) = 0$.
- MULTIPOP(S, k): $k' = \min(k, s)$ objects are popped off.

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

= $k' - k'$
= 0.

Asymptotic Functions

- Polynomial-time complexity: $O(n^k)$, where n is the **input** size and k is a constant.
- Example polynomial functions:
 - 999: constant
 - Ig n: logarithmic
 - $-\sqrt{n}$: sublinear
 - _ n: linear
 - − n lg n: loglinear
 - n^2 : quadratic
 - $-n^3$: cubic
- Example non-polynomial functions
 - 2ⁿ, 3ⁿ: exponential
 - _ n!: factorial

Complexity Classes

- Class P: class of problems that can be solved in polynomial time in the size of input.
 - Edmonds: Problems in P are considered tractable.
- Class NP (Nondeterministic Polynomial): class of problems whose solutions can be verified in polynomial time in the size of input.
 - $-P \subset NP \text{ or } P = NP?$
- Class NP-complete (NPC): Any NPC problem can be solved in polynomial time → all problems in NP can be solved in polynomial time (i.e., P = NP).

Coping with a "Tough" Problem: Trilogy I

"I can't find an efficient algorithm.

I guess I'm just too dumb."

Coping with a "Tough" Problem: Trilogy II

"I can't find an efficient algorithm, because no such algorithm is possible!"

Coping with a "Tough" Problem: Trilogy III

"I can't find an efficient algorithm, but neither can all these famous people."

Algorithmic Paradigms

- Exhaustive search: Search the entire solution space
- Branch and bound: Search with pruning
- Greedy: Pick a locally optimal solution at each step
- **Dynamic programming**: if subproblems are not independent
- **Divide-and-conquer** (a.k.a. **hierarchical**): Divide a problem into subproblems (small and similar), solve subproblems, and then combine the solutions of subproblems
- Mathematical programming: Solve an objective function under constraints
- Local search: Move from solution to solution in the search space until a solution deemed optimal is found or a time bound is elapsed
- Probabilistic: Make some choices randomly (or pseudo-randomly
- Reduction: Transform into a known and optimally solved problem

Algorithm Types

- Algorithms usually used for P problems
 - Exhaustive search
 - Branch and bound
 - Divide-and-conquer (a.k.a. hierarchical)
 - Dynamic programming
 - Mathematical programming
- Algorithms usually used for NP (but not P) problems (strategy: not seeking an "optimal solution", but a "good" one)
 - Approximation
 - Pseudo-polynomial time: polynomial form, but NOT to input size
 - Restriction: restrict the problem to a special case that is in P
 - Exhaustive search/branch and bound
 - Local search: simulated annealing, genetic algorithm, ant colony
 - Heuristics: greedy, … etc

The Traveling Salesman Problem (TSP)

- Instance: a set of n cities, a distance between each pair of cities, and a bound B.
- Question: is there a route that starts and ends at a given city, visits every city exactly once, and has total distance ≤ B?

NP vs. P

TSP ∈ NP.

- Need to check a solution (tour) in polynomial time.
 - Guess a tour.
 - Check if the tour visits every city exactly once, returns to the start, and total distance ≤ B.

• TSP ∈ P?

- Need to solve (find a tour) in polynomial time.
- Still unknown if TSP ∈ P.

Decision Problems and NP-Completeness

- Decision problems: those having yes/no answers.
 - TSP: Given a set of cities, distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B?
- Optimization problems: those finding a legal configuration such that its cost is minimum (or maximum).
 - TSP: Given a set of cities and that distance between each pair of cities, find the distance of a "minimum route" that starts and ends at a given city and visits every city exactly once.
- Could apply binary search on decision problems to obtain solutions to optimization problems.
- NP-completeness is associated with decision problems.

Polynomial-time Reduction

- Motivation: Let L1 and L2 be two decision problems.
 Suppose algorithm A2 can solve L2. Can we use A2 to solve L1?
- Polynomial-time reduction f from L1 to L2: L1 \leq_P L2
 - f reduces input for L1 into an input for L2 s.t. the reduced input is a "yes" input for L2 iff the original input is a "yes" input for L1.
 - $L1 \leq_P L2$ if \exists polynomial-time computable function $f: \{0, 1\}^* \rightarrow \{0, 1\}^*$ s.t. $x \in L1$ iff $f(x) \in L2$, $\forall x \in \{0, 1\}^*$.
 - L2 is at least as hard as L1.
- f is computable in polynomial time.

Significance of Reduction

- Significance of L1 ≤_P L2:
 - = \exists polynomial-time algorithm for $L2 \Rightarrow \exists$ polynomial-time algorithm for L1 ($L2 \in P \Rightarrow L1 \in P$).
 - polynomial-time algorithm for $L1 \Rightarrow$ polynomial-time algorithm for L2 ($L1 \notin P \Rightarrow L2 \notin P$).
- \leq_P is transitive, i.e., $L1 \leq_P L2$ and $L2 \leq_P L3 \Rightarrow L1 \leq_P L3$.

A_1 : Algorithm for L_1

NP-Completeness

- NP-completeness: worst-case analyses for decision problems.
- A decision problem L is NP-complete (NPC) if
 - 1. $L \in NP$, and
 - 2. $L' \leq_P L$ for every $L' \in NP$.
- **NP-hard:** If *L* satisfies property 2, but not necessarily property 1, we say that *L* is **NP-hard**.
- Suppose $L \in NPC$.
 - If L ∈ P, then there exists a polynomial-time algorithm for every L' ∈ NP (i.e., P = NP).
 - If $L \notin P$, then there exists no polynomial-time algorithm for any $L' \in NPC$ (i.e., $P \neq NP$).

Proving NP-Completeness

Five steps for proving that L is NP-complete:

- 1. Prove $L \in NP$. (easy)
- 2. Select a known NP-complete problem *L*'.
- 3. Construct a reduction *f* transforming **every** instance of *L* to an instance of *L*.
- 4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.
- 5. Prove that *f* is a polynomial-time transformation.

Coping with NP-hard Problems

Exhaustive search/Branch and bound

— Is feasible only when the problem size is small.

Approximation algorithms

- Guarantee to be a fixed percentage away from the optimum.
- E.g., MST for the minimum Steiner tree problem.

Pseudo-polynomial time algorithms

- Has the form of a polynomial function for the complexity, but is not to the problem size.
- E.g., O(nW) for the 0-1 knapsack problem. (W: maximum weight)

Restriction

- Work on some subset of the original problem.
- E.g., the maximum independent set problem in circle graphs.
- Heuristics: No guarantee of performance.

Spanning Tree vs. Steiner Tree

- Manhattan distance: If two points (nodes) are located at coordinates (x_1, y_1) and (x_2, y_2) , the Manhattan distance between them is given by $d_{12} = |x_1-x_2| + |y_1-y_2|$ (a.k.a. λ -1 metric)
- Rectilinear spanning tree: a spanning tree that connects its nodes using Manhattan paths (Fig. (b) below).
- Steiner tree: a tree that connects its nodes, and additional points (Steiner points) are permitted to be used for the connections.
- The minimum rectilinear spanning tree problem is in P, while the minimum rectilinear Steiner tree (Fig. (c)) problem is NP-complete.
 - The spanning tree algorithm can be an approximation for the Steiner tree problem (at most 50% away from the optimum).

Exhaustive Search vs. Branch and Bound

TSP example

Backtracking/exhaustive search

Branch and bound

Divide-and-Conquer

- Divide and conquer:
 - (Divide) Recursively break down a problem into two or more subproblems of the same (or related) type
 - (Conquer) Until these become simple enough to be solved directly
 - (Combine) The solutions to the sub-problems are then combined to give a solution to the original problem
- Correctness: proved by mathematical induction
- Complexity: determined by solving recurrence relations

Example: Fibonacci Sequence

- Recurrence relation: $F_n = F_{n-1} + F_{n-2}$, $F_0 = 0$, $F_1 = 1$
 - _ e.g., 0, 1, 1, 2, 3, 5, 8, ...
- Direct implementation:
 - Recursion!

fib(n)

- 1. **if** n = 0 **return** 0
- 2. **if** n = 1 **return** 1
- 3. **return** fib(n 1) + fib(n 2)

What's Wrong?

fib(n) 1. **if** n == 0 **return** 0 2. **if** n == 1 **return** 1 3. **return** fib(n - 1) + fib(n - 2)

- What if we call fib(5)?
 - _ fib(5)
 - fib(4) + fib(3)
 - (fib(3) + fib(2)) + (fib(2) + fib(1))
 - -((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
 - -(((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
 - A call tree that calls the function on the same value many different times
 - fib(2) was calculated three times from scratch
 - Impractical for large n

Too Many Redundant Calls!

Recursion

True dependency

- How to remove redundancy?
 - Prevent repeated calculation

Dynamic Programming

- Store the values in a table
 - Check the table before a recursive call
 - Top-down!
 - The control flow is almost the same as the original one

fib(n)

- 1. Initialize *f*[0..*n*] with -1 // -1: unfilled
- 2. f[0] = 0; f[1] = 1
- 3. fibonacci(*n*, *f*)

fibonacci(n, f)

- 1. If f[n] == -1 then
- 2. f[n] = fibonacci(n 1, f) + fibonacci(n 2, f)
- 3. **return** f[n] // if f[n] already exists, directly return

Maximum Independent Set (MIS) in Circle Graphs

- MIS in general is NP-complete
- Problem: Given a set of chords, find a maximum planar subset of chords.
 - Label the vertices on the circle 0 to 2n-1.
 - Compute MIS(i, j): size of MIS between vertices i and j, i < j.
 - -MIS(0, 2n-1) is efficiently solvable by dynamic programming.

Example: Bin Packing

- The Bin-Packing Problem Π : Items $U = \{u_1, u_2, ..., u_n\}$, where u_i is of an integer size s_i ; set B of bins, each with capacity b.
- Goal: Pack all items, minimizing # of bins used. (NP-hard!)

Algorithms for Bin Packing

- Greedy approximation alg.: First-Fit Decreasing (FFD)
 - FFD(Π) \leq 11OPT(Π)/9 + 4
- Dynamic Programming? Hierarchical Approach?
 Genetic Algorithm? ...
- Mathematical Programming: Use integer linear programming (ILP) to find a solution using |B| bins, then search for the smallest feasible |B|.

ILP Formulation for Bin Packing

• 0-1 variable: x_{ij} =1 if item u_i is placed in bin b_i , 0 otherwise.

max
$$\sum_{(i,j)\in E} w_{ij}x_{ij}$$
 objective function subject to
$$\sum_{\forall i\in U} w_{ij}x_{ij} \leq b_j, \forall j\in B \ /* \ capacity \ constraint*/\ (1)$$
 constraints
$$\sum_{\forall j\in B} x_{ij} = 1, \forall i\in U \ /* \ assignment \ constraint*/\ (2)$$

$$\sum_{ij} x_{ij} = n \ /* \ completeness \ constraint*/\ (3)$$

$$x_{ij} \in \{0,1\} \ /*0, \ 1 \ constraint*/\ (4)$$

- **Step 1:** Set |B| to the lower bound of the # of bins.
- Step 2: Use the ILP to find a feasible solution.
- **Step 3:** If the solution exists, the # of bins required is |B|. Then exit.
- Step 4: Otherwise, set $|B| \leftarrow |B| + 1$. Goto Step 2.

Machine Learning for EDA

Problem types solved with Machine Learning

- Classification
- Regression
- Dimensionality reduction
- Structured prediction
- Anomaly detection

Past ML applications in EDA literature

- Yield modeling (anomaly detection, classification)
- Lithography hotspot detection (classification)
- Identification of datapath-regularity (classification)
- Noise and process-variation modeling (regression)
- Performance modeling for analog circuits (regression)
- Design- and implementation-space exploration (regression)

ML in PD: modeling, prediction, correlation, ...

A. B. Kahng, 180327 ISPD--2018

Pyramid for Solving an EDA Problem

Classifications of Popular EDA Algorithms

Framework Evolution

- Billions of transistors may be fabricated in a single chip for nanometer technology.
- Need frameworks for very large-scale designs.
- Framework evolution for EDA tools:

Flat → Hierarchical → Multilevel

Source: Intel (ISSCC-03)

Flat Framework for 2D Bin Packing (Floorplanning)

- Process the circuit components in the whole chip
- Limitation: Good for small-scale designs, but hard to handle larger problems directly

Hierarchical Framework

- The hierarchical approach recursively divides a circuit region into a set of subregions and solve those subproblems *independently*.
- Good for scalability for large-scale design, but lack the global information for the interaction among subregions.

Multilevel Floorplanning

- Bottom-up Coarsening (clustering): Iteratively groups a set of circuit components and collects global information.
- Top-down Uncoarsening (declustering): Iteratively ungroups clustered components and refines the solution.
- Good for scalability and quality trade-off

Design Methodology Evolution

TSMC Reference Flow

Physical Design Related Conferences/Journals

- Important Conferences:
 - ACM/IEEE Design Automation Conference (DAC)
 - IEEE/ACM Int'l Conference on Computer-Aided Design (ICCAD)
 - ACM Int'l Symposium on Physical Design (ISPD)
 - ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC)
 - ACM/IEEE Design, Automation, and Test in Europe (DATE)
 - IEEE Int'l Conference on Computer Design (ICCD)
 - IEEE Int'l Symposium on Circuits and Systems (ISCAS)
 - IEEE-TSA VLSI Design, Automation and Test (VLSI-DAT)
 - Many more, e.g., GLSVLSI, ISLPED, ISQED, SOCC, VLSI, VLSI Design/CAD Symposium/Taiwan
- Important Journals:
 - IEEE Transactions on Computer-Aided Design (TCAD)
 - ACM Transactions on Design Automation of Electronic Systems (TODAES)
 - IEEE Transactions on VLSI Systems (TVLSI)
 - IEEE Transactions on Computers (TC)
 - INTEGRATION: The VLSI Journal
 - IEE Proceedings