	2ª Aula (1ª Aula: Apresentação da disciplina)
	Objetivos de Análise de Algoritmos (AA):
	Prove de corretude de un elgoritmo
	- Analise de quantidade de recursos para
	- Análise de quantidade de recursos para executar um algoritmo (Somplexidade) - Projeto de algoritmos usando diferentes es El-atégias
	Definição (informal) de algoritmo: Algoritmo é um procedimento bem definido para resolver um problema computacional especifico.
2)	Busca e Ordenação são exemplos de problemas computacionais classicos.
	Algoritmos e Tecnologia
	Dois cenátios diferentes:
	Mundo ideal: computadotes possuem, capacidades de processamento e memoria infinitas
	infinites
	-0 Mundo 1-621. Composidotes tem poder
	de processamento e 21 manezamento finitos

Problema:

Dodo umo sequêncio de n números (a), a, a, a, determinor umo per mutoção (a), az, and de sequêncie de entrede tel que a/ \ a_2 \ ... \ a_n.

Instância:

Conjunto de valores de entrada necessários para que se possa resolver o problema.

- Algoritmos eficientes são mais importantes que espectos tecnológicos de hardware/software.
 - Exemplo de ordenação de um vetor com n elementos:
 - Algoritmo (Insertion-Sort): Kin2 operações,
 - Com K1>0 Algoritmo2(Merge-Sort): K2n Ig(n) operações, com kz>0

- (5) Suponha computadores A e B que execu tam 10 G e 10 M instruções por segundo, i.e, o computador A é 1000 vezes mais hapido que o computador B.
- -00 computador A implementa o Algoritmo 1 com 2na operações e o melhor programador assembry do planeta.
- com 50 n lg(n) experzédes e un bom programador Java.
- 6 Qual abordagem é mais tépide para nº 107?

 Algoritmol (Insertion-Sort): 2. (107) instruções 2000s

 1010 aperações/s

 Algoritmo2 (Merge-Sort): 50. 107. 1g (107) instruções 1163s

 107 aperações/s

Portento, a execução no computador B foi aproximadamente 20 vezes mais rapida que no computador A!

Insertion-Sort (A)

1 for j = 2 to m

2 chave = A[j]

3 l'insere chave no sequência ordenada A[1.j-1]

4 i = j-1

5 while i>0 e A[i] > chave

6 A[i+1] = A[i]

7 A[i+1] = chave

- Algoritmo iterativo

Tempo de processemento Nº de vezes

C1

n-1

C2

n-1

n-1

C4

C5

C6

C7

C8

T-1

C8

tj=Nº devezes que o tester do linho 5 è executado
para cada valor de j.

1) Notação essintotica

(1) Notação O(theta)

Para uma função q(n), denotamos por \(\theta(g(n))\) o conjunto de funções,

$$\Theta(g(n)) = \{f(n): \exists c_1, c_2 > 0 \in n_0 > 0 \neq q_1 c_1g(n) \leqslant f(n) \leqslant c_2g(n) \}$$

Em vez de escrever f hi) E O(gh))
escrevernos f (ni) = O (g(ni))

A notecto O é usada para delimitações exates de funções.

$$c_2 = \frac{1}{2} (f_{5a}) \Rightarrow \frac{1}{2} n^2 - 3n \leqslant \underline{1} n^2, \forall n \ge 0$$

$$c_1 = \frac{1}{4} \Rightarrow \frac{1}{4} \Rightarrow \frac{1}{4} \Rightarrow \frac{1}{2} \Rightarrow \frac{1}{4} \Rightarrow \frac{1}{2} \Rightarrow \frac{1}{2}$$

(2) Notação O (oh-grande)

A notação O serve para atribuir delimitações superiores para uma função g(n).

O (g(n))=}f(n): ∃ c, no>0 t.q. f(n) < c g(n), ∀n>no)

Novemente escrevemos f(n) = O(g(n)) em vez de $f(n) \in O(g(n))$.

Exemplos:

(a)
$$n = O(n^2)$$
?

Sim, tome c=1e no=1.

(b)
$$4n^2-3n=0(n^2)$$
?

Sim, tome C= Le no=7

(3) Notação D (omega)

A motação D serve para atribuir delimitações inferiores para uma função q(n).

 $\Omega_{-}(g(n)) = \{f(n): \exists c, no > 0 \pm q \cdot f(n) \ge cg(n), \forall n \ge no \}$

$$f(n) = \int (g(n))^n$$

16 Ezemplo:

 $\frac{1}{2}n^2 - 3n = \Omega(n^2)$

Tome c= 1 e no= 7

Outras notações:

 $o\left(g(n)\right) = O\left(g(n)\right) \setminus \Theta\left(g(n)\right)$

 $w\left(q(m)\right) = \Omega\left(q(m)\right) \setminus \Theta(q(m))$

Obset vac 201:

 $f(n) = O(g(n)) \approx a \leq b$ $f(n) = \Omega(g(n)) \approx a \geq b$

 $f(n) = \Theta(g(n)) \approx \alpha = b$

=b | f(n)=w(g(n)) 2 a>b

f(n)=0(q(n)) 2 a(b

Observação 2:

$$f(n) = O(g(n))$$
 se $\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$

$$f(n) = \Omega(g(n))$$
 se $\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$

$$f(n) = \Theta(g(n))$$
 se $O(\lim_{n \to \infty} \frac{f(n)}{g(n)})$

(18) Propriedades

$$\beta(m) = \Omega(\beta(m))$$

$$f(n) = \Theta(g(n))$$
 se e somente se $g(n) = \Theta(f(n))$.
 $f(n) = O(g(n))$ se e somente se $g(n) = \Omega(f(n))$
 $f(n) = O(g(n))$ se e somente se $g(n) = \omega(f(n))$
 $f(n) = O(g(n))$ se e somente se $g(n) = \omega(f(n))$

$$\frac{1}{f(n)} = \frac{1}{g(n)} = \frac{$$

$$f(n) = w(q(n)) \dots$$

20 Notação assimtática em expressões Como interpretar, por exemplo, 2n2+n-1= 2n2+0(n)? Existe uma função f(n)=0(n) tal que

 $2n^{2} + n - 1 = 2n^{2} + f(n)$

Neste c250, f (n)= n-1.

€ 2 explessão 2n2 + Θ(n) = Θ(n2)?

Para Loda função $f(n) = \Theta(n)$, existe uma função $g(n) = \Theta(n^2)$ tal que $2n^2 + f(n) = g(n)$

Pot exemplo, f(n)=n-lgn+5=0 (n)eg(n)=2n2+n-lgn+5=0(n)