Závěrečná paralympiáda starších, LMFS 2023: Závěrečný deathmatch

1 Teplý drát (11 bodů)

Prof. Grill plave ve Slapech mezi termobójemi pod válcovým měděným vodičem, jehož konce leží na špičkách bójí. Odpor vodiče při teplotě 0° C je $10\,\Omega$, bóje ovšem zahřívají jeden konec na 34° C a druhý na 380° C. Průběh teploty vodičem se ustálí v lineárním tvaru. Určete celkový odpor vodiče.

2. kosmická rychlost (10 bodů)

Určete 2. kosmickou rychlost, tedy nejmenší počáteční rychlost, se kterou hmotný bod (např. vesmírná loď) dokáže z povrchu Země setrvačností docestovat neomezeně daleko. Zanedbejte odpor atmosféry apod. Potenciální energie gravitační síly je

$$E_p(\vec{r}) = -G\frac{m_1 m_2}{|\vec{r}|} . (1)$$

3 Elektrosilná interakce (12 bodů)

Ondra se rozhodl postavit urychlovač částic, aby v něm proton-protonovými srážkami vytvořil Higgsův boson, na což potřebuje celkovou energii srážky alespoň 125 GeV. Postavil trubici kolem rovníku Země a na zakřivení trajektorie protonů využívá gravitační sílu a zemské magnetické pole, které na rovníku míří přímo na sever (vodorovně). Je ovšem pro tento účel příliš slabé a inspirován filmem The Core, Ondra roztáčí zemské jádro. Jak silné magnetické pole potřebuje, aby udrželo urychlené protony v trubici?

4 Otáčení (8 bodů)

Mějme vektorové pole dané rovnicí

$$\vec{E}(x, y, z) = \left(\frac{2xy}{z}, \frac{x^2}{z}, -\frac{x^2y}{z^2} + e^z\right)$$
 (2)

Rozhodněte, zda má potenciál, a pokud ano, určete jej. Pokud ne, nemusíte jej určovat.

5 Deska v2.0 (12 bodů)

Nekonečná rovinná deska o tloušťce a je rovnoměrně nabita nábojem s objemovou hustotou ρ . Najděte intenzitu i potenciál (pozor, musí být spojitý!) v každém bodě jak vně, tak uvnitř desky.

6 Odporný odporník (8 bodů)

Určete proudy ve všech větvích vyobrazeného obvodu. Elektromotorická napětí zdrojů jsou $U_1=8\,\mathrm{V},\,U_2=4\,\mathrm{V}$ a $U_3=2\,\mathrm{V},\,$ a odpory rezistorů jsou $R_1=12\,\Omega,\,R_2=6\,\Omega$ a $R_3=8\,\Omega.$

7 Nabitý prostor (8 bodů)

Spočtěte objemové rozložení náboje v prostoru, jehož elektrické pole má potenciál

$$\varphi\left(\vec{r}\right) = U_0 e^{-|\vec{r}|/l} \ . \tag{3}$$

8 Drž úhel! (10 bodů)

Rozmístíme 23 stejně velké bodové náboje $Q \neq 0$ do 23 vrcholů pravidelného 24-úhelníku o délce strany a. Jaká je elektrická intenzita ve středu 24-úhelníku?

9 Velmi napjaté dráty (11 bodů)

Pro vedení elektřiny na dlouhé vzdálenosti se používá vedení, které se zahřívá podle vztahu

$$P = UI = \frac{U^2}{R} , \qquad (4)$$

který rychle roste se zvyšujícím se napětím. Pro omezení ztrát by se tedy vyplatilo používat nízké napětí. Proč se naopak používá velmi vysoké napětí a transformuje na nízké až blízko k zákazníkovi? Vysvětlete chybu v argumentu výše.

10 – Koule proklatě nízko (10 bodů)

Dvě stejné kuličky jsou nabity stejným elektrickým nábojem a ve vzduchu zavěšeny ve stejném bodě na dvou stejně dlouhých nitích, které spolu svírají úhel 2α . Po ponoření do benzenu o hustotě $\rho_b = 879\,\mathrm{kg}\cdot\mathrm{m}^{-3}$ a relativní PerMitivitě $\epsilon_r = 2.3$ se tento úhel nezmění. Jakou mají kuličky hustotu?

(Ne)užitečné konstanty

gravitační konstanta $G = 6.67 \cdot 10^{-11} \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^2$