

Rachael Alexandroff, Sofia Pignataro, Racquel Fygenson, Ruxin Shen Group 13

EU regulation 261/2004 requires
airlines to give you money
if your flight is

if your flight is
 delayed > 3 hours!

What about in the US?

Are delayed flights a problem in the US?

Distribution of Cause for Delay

Proportional Summary*

Let's <u>separate</u>
by variables we
think might be
relevant

Proportional Summary*

Let's <u>separate</u>
by variables we
think might be
relevant

and look at the proportion of flights that are delayed

Proportional Summary*

Variables we evaluated

- → Day of the week
- → Month of the year
- → Time of day (4 buckets)
- → Elapsed flight time
- → Distance of flight
- → Airlines
- → Season

Group 13

Proportional Summary*

Variables we evaluated

- → Day of the week
- → Month of the year
- → Time of day (4 buckets)
- → Elapsed flight time
- → Distance of flight
- → Airlines (2 buckets)
- → Season

Proportional Summary*

- Data Used --Flight Traffic

Data Not Used

Weather ← Outside → Fare scope of question Event ← Outside → Fare

Do not
contain
important
data points
(like ORD
or DFW)
that are
represented
in our main

dataset

- → Day of the week
- → Month of the year
- → Time of day (4 buckets)
- → Elapsed flight time
- → Distance of flight
- → Airlines (2 buckets)
- → Season

Group 13

Hypothesis Testing

Group 13

Non-Budget Airlines

Hypothesis Testing

	Budget
Not Budget	S

S Significant
NS Not Significant

 H_0 = Proportion of delayed flights are equal Proportion of delayed flights are not equal

"Budget" Airlines:

- → Spirit
- → JetBlue
- → ExpressJet
- → Frontier
- → SkyWest
- → Southwest
- → Virgin

"Non-Budget" Airlines:

- → American
- → Delta
- → Hawaiian Air
- → United
- → Alaska Air

Hypothesis Testing

Hypothesis Testing

	Morning	Afternoon	Evening
Afternoon	S		
Evening	S	S	
Night	S	S	S

H₀ = Proportion of delayed flights are equal

 H_a = Proportion of delayed flights are not equal

S Significant
NS Not Significant

Hypothesis Testing

Hypothesis Testing

	Spring	Summer	Autumn
Summer	NS		
Autumn	S	S	
Winter	NS	NS	S

H₀ = Proportion of delayed flights are equal

H_a = Proportion of delayed flights are not equal

S Significant
NS Not Significant

Hypothesis Testing

Hypothesis Testing

Day of the Week

	Sun	Mon	Tue	Wed	Thu	Fri
Mon	S					
Tue	NS	S				
Wed	NS	S	NS			
Thu	S	NS	S	S		
Fri	S	NS	S	S	S	
Sat	S	S	S	S	S	S

H₀ = Proportion of delayed flights are equal

H_a = Proportion of delayed flights are not equal

S Significant
NS Not Significant

Can we predict delay?

Machine Learning

Benchmark:
Logistic Regression

Modeling: Random Forest

Random Forest

Delay: Y/N?

Random Forest

Delay: Y/N?

Time of day is an important feature

Random Forest

Delay: Y/N?

Right now, our model has a lot of false positives

Overall Accuracy: 68%

Random Forest

Delay: Y/N?

Right now, our model has a lot of false positives

Overall Accuracy: 68%

Can we predict length of delay?

Random Forest

Length of Delay?

Flight duration, flight distance, day of week, and month are important features

Can we predict length of delay?

Can we predict length of delay?

(So What?)

Alert shoppers when a flight is at risk of being delayed.

(So What?)

Alert shoppers when a flight is at risk of being delayed.

Booking.com

Alert shoppers when a flight is at risk of being delayed.

(So What?)

Alert shoppers when a flight is at risk of being delayed.

(So What?)

Alert shoppers when a flight is at risk of being delayed.

(So What?)

Things we could do better

Bucket delays by type:

- → >3hrs ("Catastrophic")
- → <3hrs ("Not Catastrophic")</p>
- → Cancelled

Bucket delays by cause:

- → Airline
- → Weather
- → Air System
- → Aircraft
- → Security

Group 13

A quick overview...

Time of day and length of flight most affect whether a flight will be delayed.

Our model recall is 60% for delayed flights and 70% for non-delayed flights.

To improve we would use more data, optimize feature selection and investigate differences between types of delays.

... to open for questions :)

Outputs:\

How Long would the Delay be?

scheduled elapsed distance day of week Friday day of week Monday day of week Sunday day_of_week_Wednesday day of week Thursday day of week Tuesday day of week Saturday month name December month name February month name May month_name_June month_name_January month name July month name August airline_id_WN month_name_October month name March day period Evening

Important Factors

Scheduled duration Distance Day of week Month

Good At predicting short-term delay

Recommendation: Alternative Airports?

Run same on airports within a given distance-- still working on this code

Route Comparison: Fare vs. Delay

We came up with a pricing metric that calculates the median price for a single flight and then compares it against the average median price for that flight path across airlines

What factors affect delay?

Hypothesis Testing

	Morning	Afternoon	Evening
Afternoon	S		
Evening	S	S	
on	C	C	C

In hypothesis testing with pairwise comparison procedures, we found out that all the periods of the dayNight S S presented statistically significant difference in their

proportions of delayed/cancelled flights.

Group 13

Can we predict instance of delay?

Random Forest

Delay: Y/N?

Right now, our model has a lot of false positives :/

What factors affect delay?

Hypothesis Testing

Morning	Afterno	on Evening
Morning	ο.2- Α	fternoon
		!
		:
	0.4	
	0.6	

	Morning	Afternoon	Evening
Afternoon	S		
Evening	S	S	
Night	S	S	S

presented statistically significant difference in their proportions of delayed/cancelled flights.

Obs: significance level = 1%

S: significant
NS: not significant
Group 13

	Sun	Mon	Tue	Wed	Thur	Fri
Mon	S					
Tue	NS	S				
Wed	NS	S	NS			
Thur	S	NS	S	S		
Fri	S	NS	S	S	S	
Sat	S	S	S	S	S	S

S: significant NS: not significant In hypothesis testing with pairwise comparison procedures, we found out that the days of the week presented statistically significant difference in their proportions of delayed/cancelled flights, except for:

- Sunday versus both Tuesday and Wednesday
- Monday versus Thursday and Friday
- Tuesday versus Wednesday

Obs: significance level = 1%

	Morning	Afternoon	Evening
Afternoon	S		2.2
Evening	S	S	
Night	S	S	S

In hypothesis testing with pairwise comparison procedures, we found out that all the periods of the day presented statistically significant difference in their proportions of delayed/cancelled flights.

Obs: significance level = 1%

S: significant
NS: not significant
Group 13

Group 13

In hypothesis testing, we found out that budget airlines presented statistically significant difference in their proportions of delayed/cancelled flights.

In hypothesis testing with pairwise comparison procedures, we found out that Fall season flights presented statistically significant difference in their proportions of delayed/cancelled flights.

Obs: significance level = 1%

Create your own delay-adjusted fare

Some model for how much an individual is willing to pay to avoid/minute of delay

Model as a polynomial or exponential with some assumptions, user input

Exploratory Analysis

Proportional Summary*

Delay Comparison: What factors most affect delay?

Can we predict instance of delay?

Random Forest

Delay: Y/N?

Right now, our model has a lot of false positives :/

