第 14 回 分布ラグと MIDAS モデル

村澤 康友

2023年1月17日

今日	の	ポィ	イン	1
----	---	----	----	---

1.	経済時系列は様々な頻度で観測される.
	観測頻度が異なる時系列を含む多変量時
	系列を混合頻度時系列という.

- 2. $\{x_t\}$ を所与とした $\{y_t\}$ の p 次の分布ラ グモデルは,任意の t について $y_t = \alpha + \beta(\mathbf{L})x_t + u_t$,ただし $\beta(\mathbf{L}) := \beta_0 + \beta_1 \mathbf{L} + \cdots + \beta_p \mathbf{L}^p$ で $\{u_t\}$ は平均 0 の $\mathbf{I}(0)$. p が 大きい場合は分布ラグ $\beta(\mathbf{L})$ の形状を制約 する.
- 3. 混合頻度時系列を直接的に定式化するモデルを混合データ抽出 (MIDAS) モデルという. $\{y_t\}$ を低頻度系列, $\{x_t\}$ を $\{y_t\}$ の S 倍の頻度で観測される高頻度系列とすると, p 次の MIDAS 回帰モデルは, 任意のt について $\mathbf{E}(y_t|\mathbf{X}_t) = \alpha + \beta \left(\mathbf{L}^{1/S}\right) x_t$, ただし $\beta \left(\mathbf{L}^{1/S}\right) := \beta_0 + \beta_1 \mathbf{L}^{1/S} + \cdots + \beta_n \mathbf{L}^{p/S}$.

目次

_	戊口须及阿尔门	
1.1	経済時系列の頻度	1
1.2	超短期予測(ナウキャスト)	1
1.3	混合頻度時系列	2
2	分布ラグ	2
2.1	分布ラグモデル	2
2.2	コイック・ラグ	2
2.3	アーモン・ラグ	2

海本語由時玄別

2.4	正規化指数アーモン・ラグ	3
3	MIDAS	3
3.1	MIDAS モデル	3
3.2	MIDAS 回帰モデル	3
3.3	U-MIDAS モデル	4
4	今日のキーワード	4
5	次回までの準備	4
1 10	人性中的大型	

1 混合頻度時系列

1.1 経済時系列の頻度

経済時系列は様々な頻度で観測される.

年次 国民経済計算(SNA)

四半期 四半期別 GDP 速報 (QE)

月次 各種経済指標(失業率・生産指数・物価指数 など)

日次 各種金融指標(金利・株価・為替レートなど)

複数の時系列を扱う場合,通常は最も低頻度の時系 列に頻度を揃える(低頻度の時系列を補間して高頻 度に揃える場合もある).

例 1. 実質 GDP と失業率の関係(オークンの法則) の分析なら四半期に揃える.

1.2 超短期予測 (ナウキャスト)

実質 GDP は四半期系列であり、かつ公表が遅い。 直近の実質 GDP の予測には、足元の月次系列の情報が役立つ。

定義 1. 直近の予測を**超短期予測(ナウキャスト)** という. 注 1. 「ナウキャスト」は気象学(天気予報)の用語だが、最近は経済予測でも使われる.

定義 2. 高頻度系列を低頻度に揃えて低頻度系列を 予測する式を**ブリッジ方程式**という.

注 2. まず高頻度系列の予測値を作成して低頻度に変換し、それを用いてブリッジ方程式で低頻度系列を予測する.

1.3 混合頻度時系列

定義 3. 観測頻度が異なる時系列を含む多変量時系列を**混合頻度時系列**という.

注 3. 混合頻度時系列の分析には 2 つのアプローチ がある.

MIDAS モデル 低頻度系列と高頻度系列の関係を 分布ラグモデルで定式化し,(非線形)最小2 乗法で係数を推定する.

潜在変数モデル 低頻度系列を欠損値をもつ高頻度 系列とみなして状態空間モデルを定式化し、カルマン・フィルターで係数と欠損値を推定する.

2 分布ラグ

2.1 分布ラグモデル

 $\{x_t\}, \{y_t\}$ を I(0) とする. $\{x_t\}$ から $\{y_t\}$ を予測したい.

定義 4. $\{x_t\}$ を所与とした $\{y_t\}$ の p 次の分布ラグモデルは、任意の t について

$$y_t = \alpha + \beta(\mathbf{L})x_t + u_t$$

ただし $\beta(\mathbf{L}) := \beta_0 + \beta_1 \mathbf{L} + \dots + \beta_p \mathbf{L}^p$ で $\{u_t\}$ は 平均 0 の $\mathbf{I}(0)$.

注 4. p が無限なら $|\beta(1)| < \infty$ が必要.

注 5. ラグ多項式を使わずに書くと、任意の t について

$$y_t = \alpha + \sum_{s=0}^{p} \beta_s x_{t-s} + u_t$$

 $(\alpha, \beta_0, \dots, \beta_p)$ は OLS で推定できる. ただし p が 大きいと推定値が不安定になる.

注 6. $w(L) := \beta(L)/\beta(1)$ と正規化すると分布ラグ の形状が分かりやすい. すなわち任意の t について

$$y_t = \alpha + \beta w(\mathbf{L}) x_t + u_t$$

ただし $\beta := \beta(1)$.

2.2 コイック・ラグ

 $\{y_t\}$ に AR(1) の動学モデルを仮定する. すなわち任意の t について

$$y_t = \alpha + \phi y_{t-1} + \beta x_t + u_t$$

ただし $|\phi|<1$ で $\{u_t\}$ は平均 0 の $\mathrm{I}(0)$. (α,ϕ,β) は OLS で推定できる.

定理 1. 任意の t について

$$y_t = \frac{\alpha}{1 - \phi} + \beta \sum_{s=0}^{\infty} \phi^s x_{t-s} + \sum_{s=0}^{\infty} \phi^s u_{t-s}$$

証明. 逐次代入より任意のtについて

$$y_{t} = \alpha + \phi(\alpha + \phi y_{t-2} + \beta x_{t-1} + u_{t-1}) + \beta x_{t} + u_{t}$$

$$= \dots$$

$$= \alpha(1 + \phi + \dots) + \beta(x_{t} + \phi x_{t-1} + \dots) + u_{t} + \phi u_{t-1} + \dots$$

$$= \frac{\alpha}{1 - \phi} + \beta \sum_{s=0}^{\infty} \phi^{s} x_{t-s} + \sum_{s=0}^{\infty} \phi^{s} u_{t-s}$$

注 7. すなわち幾何級数の分布ラグが得られる.

定義 5. 幾何級数の分布ラグを**コイック・ラグ**という.

2.3 アーモン・ラグ

p を有限とする. p が大きい場合, $\{\beta_s\}$ を低次の 多項式で表現すれば, 推定する係数を減らせる.

定義 6. m 次のアーモン・ラグは, $s=0,\ldots,p$ に ついて

$$\beta_s := \gamma_0 + \gamma_1 s + \dots + \gamma_m s^m$$

ただしm < p.

2

定理 2. m 次のアーモン・ラグをもつ p 次の分布ラグモデルは、任意の t について

$$y_{t} = \alpha + \gamma_{0} \sum_{s=0}^{p} x_{t-s} + \gamma_{1} \sum_{s=1}^{p} s x_{t-s} + \cdots$$
$$+ \gamma_{m} \sum_{s=1}^{p} s^{m} x_{t-s} + u_{t}$$

証明. 代入して式変形すると、任意のtについて

$$y_{t} = \alpha + \sum_{s=0}^{p} (\gamma_{0} + \gamma_{1}s + \dots + \gamma_{m}s^{m}) x_{t-s} + u_{t}$$

$$= \alpha + \gamma_{0} \sum_{s=0}^{p} x_{t-s} + \gamma_{1} \sum_{s=0}^{p} sx_{t-s} + \dots$$

$$+ \gamma_{m} \sum_{s=0}^{p} s^{m}x_{t-s} + u_{t}$$

$$= \alpha + \gamma_{0} \sum_{s=0}^{p} x_{t-s} + \gamma_{1} \sum_{s=1}^{p} sx_{t-s} + \dots$$

$$+ \gamma_{m} \sum_{s=1}^{p} s^{m}x_{t-s} + u_{t}$$

注 8. $(\alpha, \gamma_0, \ldots, \gamma_m)$ は OLS で推定できる.

2.4 正規化指数アーモン・ラグ

 $\{\beta_s\}$ が非負なら多項式を指数変換する. すなわち $s=0,\ldots,p$ について

$$\beta_s := \exp(\gamma_0 + \gamma_1 s + \dots + \gamma_m s^m)$$

= $\exp(\gamma_0) \exp(\gamma_1 s + \dots + \gamma_m s^m)$

正規化すると, $s=0,\ldots,p$ について

$$w_s := \frac{\beta_s}{\sum_{r=0}^p \beta_r}$$

$$= \frac{\exp(\gamma_1 s + \dots + \gamma_m s^m)}{\sum_{r=0}^p \exp(\gamma_1 r + \dots + \gamma_m r^m)}$$

定義 7. m 次の正規化指数アーモン・ラグは、 $s=0,\ldots,p$ について

$$w_s := \frac{\exp(\gamma_1 s + \dots + \gamma_m s^m)}{\sum_{r=0}^{p} \exp(\gamma_1 r + \dots + \gamma_m r^m)}$$

ただしm < p.

注 9. したがって任意の t について

$$y_t = \alpha + \beta \sum_{s=0}^p \frac{\exp(\gamma_1 s + \dots + \gamma_m s^m)}{\sum_{r=0}^p \exp(\gamma_1 r + \dots + \gamma_m r^m)} x_{t-s} + u_t$$

 $(\alpha, \beta, \gamma_1, \dots, \gamma_m)$ は非線形最小 2 乗法で推定できる。

3 MIDAS

3.1 MIDAS モデル

 $\{y_t\}$ を低頻度系列, $\{x_t\}$ を $\{y_t\}$ の S 倍の頻度で観測される高頻度系列とする.すなわち任意のt について $x_t, x_{t-1/S}, \dots, x_{t-(S-1)/S}$ を観測する.(任意の t について $x_t, x_{t+1/S}, \dots, x_{t+(S-1)/S}$ を観測するとみなす場合もある.)

例 2. $\{y_t\}$ が四半期, $\{x_t\}$ が月次なら,例えば第 1 四半期は 1 月に $x_{1/3}$,2 月に $x_{2/3}$,3 月に (x_1,y_1) を観測する.

定義 8. 混合頻度時系列を直接的に定式化するモデルを**混合データ抽出(***mixed-data sampling, MI-DAS***)モデル**という.

注 10. 潜在変数モデルは間接的に定式化する.

3.2 MIDAS 回帰モデル

高頻度系列 $\{x_t\}$ から低頻度系列 $\{y_t\}$ を予測したい. 時点 t までの $\{x_t\}$ の観測値を行列で表すと, 任意の t について

$$\boldsymbol{X}_t := \begin{bmatrix} x_1 & \dots & x_{1-(S-1)/S} \\ & \vdots & \\ x_t & \dots & x_{t-(S-1)/S} \end{bmatrix}$$

定義 9. y_t の X_t 上への p 次の MIDAS 回帰モデルは、任意の t について

$$E(y_t|\boldsymbol{X}_t) = \alpha + \beta \left(L^{1/S}\right) x_t$$

ただし $\beta\left(\mathbf{L}^{1/S}\right) := \beta_0 + \beta_1 \mathbf{L}^{1/S} + \dots + \beta_p \mathbf{L}^{p/S}$.

注 11. $w(L) := \beta(L)/\beta(1)$ と正規化すると、任意の t について

$$E(y_t|\mathbf{X}_t) = \alpha + \beta w \left(L^{1/S}\right) x_t$$

ただし $\beta := \beta(1)$. ラグ多項式を使わずに書くと、 任意の t について

$$E(y_t|\mathbf{X}_t) = \alpha + \beta \sum_{s=0}^{p} w_s x_{t-s/S}$$

注 12. 係数が多い場合は分布ラグの形状を制約する. 右辺に y_{t-1} を追加する場合もある (コイック・ラグ).

3.3 U-MIDAS モデル

定義 10. 分布ラグの形状を制約しない MIDAS モデルを**制約なしの** *MIDAS* (unrestricted MIDAS, U-MIDAS) モデルという.

注 13. 係数が少なければ U-MIDAS モデルでよい.

例 3. アメリカの実質 GDP (四半期) と鉱工業生産指数 (月次) の対数階差系列に関する分布ラグの MIDAS 回帰による推定結果: U-MIDAS (図 1) と 2 次の正規化指数アーモン・ラグ (図 2).*1

4 今日のキーワード

超短期予測(ナウキャスト),ブリッジ方程式,混合頻度時系列,分布ラグモデル,コイック・ラグ,アーモン・ラグ,正規化指数アーモン・ラグ,混合データ抽出(MIDAS)モデル,MIDAS 回帰モデル,制約なしの MIDAS(U-MIDAS)モデル

5 次回までの準備

復習 復習テスト 14

提出 宿題 14,復習テスト 9~14

試験 (1) 教科書を読む (2) 用語の定義を覚える (3) 復習テストを自力で解く (4) 過去問に挑戦

 $^{^{*1}}$ gretl は期首に低頻度系列を観測すると想定している。例えば第 1 四半期は 1 月に (x_1,y_1) , 2 月に $x_{1+1/3}$, 3 月に $x_{1+2/3}$ を観測する。そのため期末に低頻度系列を観測する場合(例えばフロー変数),分析の際に時点をずらす必要がある。

図 1 実質 GDP(四半期)と鉱工業生産指数(月次)の対数階差系列に関する分布ラグ(U-MIDAS)

図 2 実質 GDP(四半期)と鉱工業生産指数(月次)の対数階差系列に関する分布ラグ(2 次の正規化指数アーモン・ラグ)