LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ TEMELE COLECTIVE **3**, **4** ȘI **5**

Claudia MUREŞAN cmuresan@fmi.unibuc.ro, claudia.muresan@g.unibuc.ro, c.muresan@yahoo.com

Universitatea din București Facultatea de Matematică și Informatică București

2022-2023, Semestrul I

Toate temele colective se adresează AMBELOR SERII.
Rezolvarea fiecărei teme colective trebuie trimisă într—un singur exemplar de fiecare grupă a seriei IF și fiecare grupă a seriei ID ca răspuns la aceste assignments MS Teams.

Temă colectivă (din CURSURILE I-II)

Demonstrați că operațiile cu numere cardinale și relațiile între numere cardinale sunt bine definite, i.e. nu depind de reprezentanții claselor de cardinal **echivalență**, adică: pentru orice mulțimi A, A', B și B' astfel încât |A| = |A'| și |B| = |B'| (adică $A \cong A'$ și $B \cong B'$), au loc:

- $\bullet |A \prod B| = |A' \prod B'|$
- $\bullet |A \times B| = |A' \times B'|$
- $|B^A| = |(B')^{(A')}|$
- |A| < |B| ddacă |A'| < |B'|
- |A| < |B| ddacă |A'| < |B'|

Indicație: Dacă $\varphi: A \to A'$ și $\psi: B \to B'$ sunt bijecții, atunci funcțiile $f:A \coprod B \to A' \coprod B', g:A \times B \to A' \times B'$ si $h:B^A \to (B')^{(A')}$, definite prin: pentru orice $a \in A$, orice $b \in B$ și orice $p : A \to B$, $f(a,1) := (\varphi(a),1)$, $f(b,2) := (\psi(b),2), g(a,b) := (\varphi(a),\psi(b))$ si $h(p) := \psi \circ p \circ \varphi^{-1}$, sunt, de asemenea, bijecții (vedeți și SEMINARUL I, PARTEA A DOUA); în plus, o funcție $\iota:A\to B$ este injecție, respectiv bijecție ddacă funcția $\gamma:=\psi\circ\iota\circ\varphi^{-1}:A'\to B'$, care satisface $\iota = \psi^{-1} \circ \gamma \circ \varphi$, este injecție, respectiv bijecție.

Am folosit licența de scriere (convenția) ca în scrierea funcțiilor aplicate unor perechi de elemente să eliminăm o pereche de paranteze: de exemplu, scriem g(a,b) în loc de g((a,b)).

Temă colectivă (din CURSURILE I–II)

Fie I o mulțime nevidă, A o mulțime, $(A_i)_{i \in I}$ o familie de mulțimi și $k \in I$. Să se demonstreze că:

- $A_k \subseteq \bigcup A_i$ și $\bigcap A_i \subseteq A_k$
- $A \subseteq \bigcap A_i$ ddacă $(\forall i \in I) (A \subseteq A_i)$
- $\bigcup A_i \subseteq A \text{ ddacă } (\forall i \in I) (A_i \subseteq A)$ $i \in I$

Observație: Pentru $I = \emptyset$ proprietățile din tema de mai sus nu sunt satisfăcute.

Temă colectivă (din CURSURILE I–II)

Fie A și I mulțimi, iar $(B_i)_{i \in I}$ o familie de mulțimi. Să se demonstreze că:

- $A \times ([] B_i) = [] (A \times B_i)$ și $([] B_i) \times A = [] (B_i \times A)$
- $A \times (\bigcap B_i) = \bigcap (A \times B_i)$ și $(\bigcap B_i) \times A = \bigcap (B_i \times A)$, considerând, pentru cazul $I = \emptyset$, o mulțime T astfel încât $(B_i)_{i \in I} \subseteq \mathcal{P}(T)$, iar $(A \times B_i)_{i \in I} \subseteq \mathcal{P}(A \times T)$ și $(B_i \times A)_{i \in I} \subseteq \mathcal{P}(T \times A)$

Indicație:Tratați separat, folosind o temă anterioară, respectiv cursul, cazul 🛚 = 🐠 🤏