ESERCIZI SU OPERAZIONI SUI LINGUAGGI, LINGUAGGI REGOLARI, AUTOMI A STATI FINITI E PUMPING LEMMA PER I LINGUAGGI REGOLARI

Docente: Cataldo Musto

Si ringrazia il prof. Marco de Gemmis ed il Tutor 2018-2019: *Francesco Paolo Caforio*

Esercizio #1

Dimostrare formalmente che il seguente linguaggio

$$L = \{a^n b^k c \mid n \ge k \ge 0\}$$

non è lineare destro

- Parole che costituiscono il linguaggio L
 - C
 - ac
 - a^2c
 - a^3c
 - •
 - abc
 - a^2bc
 - a^3bc
 - ...

- Supponiamo, per assurdo, che L sia lineare destro
- Per il teorema di Kleene, $\mathcal{L}_3 \equiv \mathcal{L}_{FSL} \equiv \mathcal{L}_{REG}$
 - Quindi, se *L* è lineare è anche regolare ed anche a stati finiti
- Quindi: $\exists M = (Q, \delta, q_0, F) \ FSA \ \text{su} \ X = (a, b, c) \ \text{tale che}$ L = T(M)
- Sia p = |Q|, ossia p è il numero di stati di M
- Per il Pumping lemma sui linguaggi regolari abbiamo che $\forall z \in L, |z| \geq p$
 - z = uvw
 - $|uv| \leq p$
 - $v \neq \lambda$
 - $\forall k \ge 0 : uv^k w \in T(M)$

Consideriamo una parola in L

$$z = a^p b^p c$$

- Avremo che
 - |z| = 2p + 1 > p
 - z deve essere accettata da M

- L'automa M parte dallo stato q_0 e legge una a per volta
- Dopo aver letto la prima a si porta in q_1 , dopo la seconda a in q_2,\ldots , dopo la n-sima a si porta in q_p

• Per riconoscere le prime p a, l'automa M ha bisogno di transitare in p+1 stati

$$p \ a \begin{cases} q_0 \overset{a}{\rightarrow} q_1 \\ q_1 \overset{a}{\rightarrow} q_2 \\ \dots \\ q_{p-1} \overset{a}{\rightarrow} q_p \end{cases}$$

 Poiché M ha solo p stati si deve verificare un ciclo

Trace di M

- Avremo che:
 - z si può scrivere come

$$z = uvw = a^i \underbrace{a^{j-i}}_{w} \underbrace{a^{p-j}b^pc}$$

- $|uv| = |a^i a^{j-i}| \le p$
- $a^{j-i} \neq \lambda$, $0 < j-i \leq p$
- Sia k=0, per il lemma abbiamo che la parola depompata $uv^kw\in T(M)$

$$t = uv^0 w = a^{p-(j-i)}b^p c \in T(M)$$

• Osservazione: $uv^0w \notin L$, dato che $\#_a(t) < \#_b(t)$

- Abbiamo raggiunto una contraddizione
- L non è regolare in quanto $\exists M$ tale che T(M) = L
- L non è lineare destro

Esercizio #2

Dimostrare formalmente che il seguente linguaggio

$$L = \{a^n b c^{3n} | n > 0\}$$

non è lineare destro

- Parole che costituiscono il linguaggio L
 - abc^3
 - a^2bc^6
 - a^3bc^9
 - a^4bc^{12}
 - •

- Supponiamo, per assurdo, che L sia lineare destro
- Per il teorema di Kleene, $\mathcal{L}_3 \equiv \mathcal{L}_{FSL} \equiv \mathcal{L}_{REG}$
 - Quindi, se *L* è lineare è anche regolare ed anche a stati finiti
- Quindi: $\exists M = (Q, \delta, q_0, F) \ FSA \ \text{su} \ X = (a, b, c) \ \text{tale che}$ L = T(M)
- Sia p = |Q|, ossia p è il numero di stati di M
- Per il Pumping lemma sui linguaggi regolari abbiamo che $\forall z \in L, |z| \ge p$
 - z = uvw
 - $|uv| \leq p$
 - $v \neq \lambda$
 - $\forall k \ge 0 : uv^k w \in T(M)$

Consideriamo una parola in L

$$z = a^p b c^{3p}$$

- Avremo che
 - $\cdot |z| = p + 3p > p$
 - z deve essere accettata da M

- L'automa M parte dallo stato q_0 e legge una a per volta
- Dopo aver letto la prima a si porta in q_1 , dopo la seconda a in q_2,\ldots , dopo la n-sima a si porta in q_p

• Per riconoscere le prime p a, l'automa M ha bisogno di transitare in p+1 stati

$$p \ a \begin{cases} q_0 \overset{a}{\rightarrow} q_1 \\ q_1 \overset{a}{\rightarrow} q_2 \\ \dots \\ q_{p-1} \overset{a}{\rightarrow} q_p \end{cases}$$

 Poiché M ha solo p stati si deve verificare un ciclo

- Avremo che:
 - z si può scrivere come

$$z = uvw = a^i a^{j-i} a^{p-j} bc^{3p}$$

- $|uv| = |a^i a^{j-i}| \le p$
- $v \neq \lambda$, infatti $a^{j-i} \neq \lambda$, $0 < j i \le p$
- Sia k > 0, per il lemma abbiamo che la parola pompata $uv^k w \in T(M)$

$$t = uv^k w = a^{p+k(j-i)}bc^{3p} \in T(M)$$

• Osservazione: $uv^kw \notin L$, dato che $\#_c(t) \neq 3\#_a(t)$

- Abbiamo raggiunto una contraddizione
- L non è regolare in quanto $\exists M$ tale che T(M) = L
- L non è lineare destro

Esercizio #3

Sia L_1 il linguaggio formale su $X = \{a, b\}$ denotato dall'espressione regolare $(a + b)^*$.

Sia L_2 il linguaggio formale su $X = \{a, b\}$ denotato dall'espressione regolare ab.

• Determinare una grammatica lineare destra che genera $L = L_1 \cdot L_2$

- $\cdot R_1 = (a+b)^*$
 - Troviamo ora $S(R_1)$, ossia il linguaggio regolare corrispondente all'espressione regolare R_1

$$S((a+b)^*) = (S(a+b))^* = (S(a) \cup S(b))^* =$$

= $(\{a\} \cup \{b\})^* = \{a,b\}^*$

- $R_2 = ab$
 - Troviamo ora $S(R_2)$, ossia il linguaggio regolare corrispondente all'espressione regolare R_2

$$S(ab) = (S(a) \cdot S(b)) = \{ab\}$$

- Determinare una grammatica lineare destra che genera $L = L_1 \cdot L_2$
 - Sia G_1 grammatica generativa $G_1 = (X_1, V_1, S_1, P_1)$ t.c. $L_1 = L(G_1)$
 - $X_1 = \{a, b\}$
 - $V = \{S_1\}$
 - S₁ assioma
 - $P_1 = \{S_1 \rightarrow \lambda \mid aS_1 \mid bS_1\}$

- Determinare una grammatica lineare destra che genera $L = L_1 \cdot L_2$
 - Sia G_2 grammatica generativa $G_2 = (X_2, V_2, S_2, P_2)$ t.c. $L_2 = L(G_2)$
 - $X_2 = \{a, b\}$
 - $V = \{S_2\}$
 - S₂ assioma
 - $P_2 = \{S_2 \rightarrow aA, A \rightarrow b\}$

- Determinare una grammatica lineare destra che genera $L = L_1 \cdot L_2$
 - $P_1 = \{S_1 \rightarrow \lambda \mid aS_1 \mid bS_1\}$
 - $P_2 = \{S_2 \to aA, A \to b\}$

- $G = (X, V \{S\}, S_1, P)$
 - $X = \{a, b\}$
 - $V = \{S_1, S_2, A\}$
 - S_1 assioma
 - $P = \{S_1 \to aS_1 | bS_1 | aS_2 | bS_2 | aA, S_2 \to aA, A \to b\}$

$$G = (X, V - \{S\}, S_1, P)$$

$$P = \{A \rightarrow bB \mid A \rightarrow bB \in P_1\} \cup \{A \rightarrow bS_2 \mid A \rightarrow b \in P_1, b \neq \lambda\} \cup \{A \rightarrow bS_2 \mid A \rightarrow bB \in P_1, b \neq \lambda\} \cup \{A \rightarrow bS_2 \mid A \rightarrow bB \in P_1, b \neq \lambda\} \cup \{S_1 \rightarrow w \mid S_2 \rightarrow w \in P_2, S_1 \rightarrow \lambda \in P_1\} \cup P_2$$

Esercizio #4

Sia data la seguente grammatica lineare destra G =

$$X = \{a, b\}, V = \{S, A, b\}, S$$

$$P = \{S \to a | aA | aB, A \to aB | bA, B \to b | bB\}$$

 Costruire il diagramma di transizione di un automa a stati finiti M che riconosce L(G)

- Data la grammatica G = (X, V, S, P) lineare destra, l'automa $M = (Q, \delta, q_0, F)$ t.c. L = T(M) viene costruito come segue:
 - $X = \{a, b\}$ alfabeto di ingresso
 - $Q = V \cup \{q\} = \{S, A, B\} \cup \{q\}, q \notin V$ insieme degli stati
 - $q_0 = S$
 - $F = \{q\} \cup \{B | B \to \lambda \in P\} = \{q\}$

- Data la grammatica G = (X, V, S, P) lineare destra, l'automa $M = (Q, \delta, q_0, F)$ t.c. L = T(M) viene costruito come segue:
 - $\delta: Q \times V \to 2^Q$ t.c.
 - $\forall A \rightarrow bC \in P$, allora $C \in \delta(A, b)$
 - $\forall A \rightarrow b \in P$, allora $q \in \delta(A, b)$

δ	S	A	B	q
а	${A,B,q}$	{ <i>B</i> }	_	_
b	_	<i>{A}</i>	$\{B,q\}$	_

- Data la grammatica G = (X, V, S, P) lineare destra, l'automa $M = (Q, \delta, q_0, F)$ t.c. L = T(M) viene costruito come segue:
 - Diagramma degli stati

Esercizio #5

Sia dato il seguente automa riconoscitore a stati finiti non deterministico

$$M = (Q, \delta, q_0, F)$$

con alfabeto di ingresso $X = \{1,2\}$ ove

$$Q = \{q_0, B, C, D\}$$

$$\delta(q_0, 1) = \{B, C\}$$
 $\delta(q_0, 2) = \{D\}$

$$\delta(B,1) = \{B,D\} \qquad \delta(B,2) = -$$

$$\delta(C,1) = \{D\} \qquad \delta(C,2) = -$$

$$\delta(D,1) = -$$

$$\delta(D,2) = \{B\}$$

$$F = \{D\}$$

Esercizio #5

- Determinare una grammatica lineare destra che genera T(M)
- Costruire il diagramma di transizione di un automa a stati finiti deterministico equivalente a M

- Determinare una grammatica lineare destra che genera T(M)
 - G = (X, V, S, P) t.c. L(G) = T(M) si costruisce secondo il seguente algoritmo
 - $X = \{1,2\}$ coincide con l'alfabeto di ingresso di M
 - $S = q_0$
 - $\bullet V = Q = \{q_0, B, C, D\}$

- Determinare una grammatica lineare destra che genera T(M)
 - G = (X, V, S, P) t.c. L(G) = T(M) si costruisce secondo il seguente algoritmo
 - $P = \{q \to xq' | q' \in \delta(q, x)\} \cup$ $\cup \{\{q \to x | \delta(q, x) \in F\} \cup \{q_0 \to \lambda | q_0 \in F\}$
 - $P = \{S \to 1B | 1C | 2D | 2, B \to 1B | 1D | 1, C \to 1D | 1, D \to 2B \}$

 Costruire il diagramma di transizione di un automa a stati finiti deterministico equivalente a M

Esercizio #6

Sia dato il seguente linguaggio

$$L = \{a^n b a^{2m} | n, m > 0\}$$

- Di che tipo è L?
 - Il più specifico nella gerarchia di Chomsky
- Giustificare formalmente la risposta

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$
 - $L_1 = \{a^n b | n > 0\}$
 - $L_1 \in \mathcal{L}_{FSL}$ in quanto $\exists M_1 FSA$ t.c. $M_1 = T(M_1)$

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L_1 = \{a^n b | n > 0\}$
 - $L_1 \in \mathcal{L}_{FSL}$ in quanto $\exists M_1 FSA$ t.c. $M_1 = T(M_1)$
 - $X = \{a, b\}$ alfabeto di ingresso
 - $Q = \{q_0, q_1, q_2\}$ insieme degli stati, $F = \{q_2\}$ stato finale
 - $\delta: Q \times Q \to Q$ funzione di transizione t.c.

δ	q_0	q_1	q_2
а	q_1	q_1	_
b	_	q_2	_

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$

- Per il teorema di Kleene, $\mathcal{L}_3 \equiv \mathcal{L}_{FSL} \equiv \mathcal{L}_{REG}$
- Quindi, $L_1 \in \mathcal{L}_3$

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$
 - $L_2 = \{a^{2m} | m > 0\}$
 - $L_2 \in \mathcal{L}_{FSL}$ in quanto $\exists M_2 FSA$ t.c. $M_2 = T(M_2)$

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L_2 = \{a^{2m} | m > 0\}$
 - $L_2 \in \mathcal{L}_{FSL}$ in quanto $\exists M_2 \ FSA \ \text{t.c.} \ M_2 = T(M_2)$
 - $X = \{a, b\}$ alfabeto di ingresso
 - $Q = \{q_0, q_1, q_2\}$ insieme degli stati, $F = \{q_2\}$ stato finale
 - $\delta: Q \times Q \to Q$ funzione di transizione t.c.

δ	q_0	q_1	q_2
а	q_1	q_2	q_1

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$

- Per il teorema di Kleene, $\mathcal{L}_3 \equiv \mathcal{L}_{FSL} \equiv \mathcal{L}_{REG}$
- Quindi, $L_2 \in \mathcal{L}_3$

- Di che tipo è $L = \{a^n b a^{2m} | n, m > 0\}$?
 - $L = L_1 \cdot L_2$ dove $L_1 = \{a^n b | n > 0\}$ e $L_2 = \{a^{2m} | m > 0\}$
- Per il teorema di chiusura, $L \in \mathcal{L}_3$ perché concatenazione di L_1 e L_2 linguaggi lineari destri

Esercizio #7

Progettare, commentando opportunamente, un automa a stati finiti che riconosce il seguente linguaggio:

$$L = \{ w \in X^* | \#1(w) = 3k, k > 0 \}$$

dove

$$X = \{0,1,2\}$$

#x(w) indica il numero delle volte che il simbolo $x \in X$ compare nella stringa w

- $L \in \mathcal{L}_{FSL}$ dato che $\exists M = (Q, \delta, q_0, F) \ FSA$ t.c. L = T(M)
 - $X = \{0,1,2\}$ alfabeto di ingresso
 - $Q = \{q_0, q_1, q_2, q_3\}$ insieme finito e non vuoto di stati
 - $F = \{q_3\}$ insieme degli stati finali

- $L \in \mathcal{L}_{FSL}$ dato che $\exists M = (Q, \delta, q_0, F) \ FSA$ t.c. L = T(M)
 - $\delta: Q \times Q \to Q$ funzione di transizione t.c.

δ	q_0	q_1	q_2	q_3
0	q_0	q_1	q_2	q_3
1	q_1	q_2	q_3	q_1
2	q_0	q_1	q_2	q_3

Esercizio #8

Si considerino le seguenti espressioni regolari:

$$R_1 = (01)^* + 1 + 0$$
$$R_2 = 0^*1^*$$

• Determinare $L = S(R_1) \cap S(R_2)$

- $R_1 = (01)^* + 1 + 0$
 - Troviamo ora $S(R_1)$, ossia il linguaggio regolare corrispondente all'espressione regolare R_1

$$S((01)^* + 1 + 0) = S((01)^*) \cup S(1) \cup S(0) =$$

= $(S(01))^* \cup S(1) \cup S(0) = \{01\}^* \cup \{1\} \cup \{0\}$

• $S(R_1) = \{\lambda, 0, 1, 01, 0101, 010101, 01010101, \dots\}$

- $R_2 = 0^*1^*$
 - Troviamo ora $S(R_1)$, ossia il linguaggio regolare corrispondente all'espressione regolare R_1

$$S(0^*1^*) = S(0^*) \cdot S(1^*) = (S(0))^* \cdot (S(1))^* = \{0\}^* \cdot \{1\}^*$$

• $S(R_2) = {\lambda, 0, 1, 01, 001, 0001, ..., 011, 0111, ...}$

- Determinare $L = S(R_1) \cap S(R_2)$
 - $S(R_1) = \{\lambda, 0, 1, 01, 0101, 010101, 01010101, \dots\}$
 - $S(R_2) = \{\lambda, 0, 1, 01, 001, 0001, \dots, 011, 0111, \dots\}$
 - $L = S(R_1) \cap S(R_2) = {\lambda, 0, 1, 01}$
- Calcolare L²
 - $L^2 = \{\lambda, 0, 1, 01, 00, 01, 001, 10, 11, 101, 010, 011, 0101\}$

Esercizio #9

Siano dati l'alfabeto $X = \{a, b\}$ ed il linguaggio

$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L = L_1 \cdot L_2 \cdot L_3$$

•
$$L_1 = \{w_1 | w_1 \in \{a, b\}^*\}$$

•
$$L_2 = bb$$

•
$$L_3 = \{a^{2n} | n \ge 0\}$$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L_1 = \{w_1 | w_1 \in \{a, b\}^*\}$$

•
$$R_1 = (a + b)^*$$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

- Determinare un'espressione regolare che denoti L
- $L_2 = bb$
- $R_2 = bb$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L_3 = \{a^{2n} | n \ge 0\}$$

•
$$R_3 = (aa)^*$$

•
$$L = \{w_1 w_2 w_3 | w_1 \in X^*, w_2 = bb, w_3 = a^{2n}, n \ge 0\}$$

•
$$L_1 = \{w_1 | w_1 \in \{a, b\}^*\}, L_2 = bb, L_3 = \{a^{2n} | n \ge 0\}$$

•
$$R_1 = (a + b)^*, R_2 = bb, R_3 = (aa)^*$$

$$\cdot R = (a+b)^*bb(aa)^*$$