Lukas Gesing, Patrick Kaster MA-INF 4201 - Artificial Life Exercise Sheet 3

Assignment 16 🗸

The rule has a silent state, if a dead cell is has no neighbours. I wouldn't characterize it as totalistic, without having specified some kind of binary value to the neighbouring cells. It is symmetric though, since the 23/3 rule doesn't depend on the position of the neighbours. So each symmetric configuration will lead to the same result. It is legal, since it is symmetric and shows a silent state. It is not peripheral, since the outcome is in any case dependent on whether the cell os dead or alive.

In shot:

- silent state √
- totalistic ×
- symmetric √
- peripheral ×
- legal √

Assignment 17

That it is possibly to create a Game of Life pattern that can grow infinitely.

Assignment 18 <

Class IV. It's evolution leads to complex structures, even releasing a glider at some point of it's evolution, and the *r-pentomino* is long lived.

Assignment 19 Exam relevant!

Figure 1: Possible solution

Was asked in each exam in the past!!!

Just lern the pattern by heart.

.

Assignment 20

A cellular d-graph automaton \mathcal{M} is a triple (Γ, M, H) , where

 Γ is a d-graph, (N, A, f, g) on the label set L

M is a finite-state automaton $(Q,\,\delta),$ where Q is a finite nonempty set of states such that $L\subseteq Q$ δ is a transition function from $Q\times Z_d^d\times Q^d$ into subsets of Q which maps any triple whose first term is # into #

H is a mapping from N into $Z_d^d;$ the image $H(n)=(t_1....t_d)\in Z_d^d$ called the neighbor vector of n

If the range of δ is the singleton subsets of Q, then it is called a deterministic cellular d-graph automaton and δ may be considered as a function from $QZ_d^dZ_d^d$ into $Q.^1$

Assignment 22

overcroweding \rightarrow at least 4

not birth \rightarrow 4 cells or more

Figure 2: Possible solution

Assignment 23

¹http://www.sciencedirect.com/science/article/pii/S0019995879902882