ปฏิบัติการวงจรดิจิทัลและพื้นฐานการทำงานของคอมพิวเตอร์

อ. ดร. วาธิส ลีลาภัทร
ภาควิชาวิศวกรรมคอมพิวเตอร์
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

เนื้อหา

- หลักการพื้นฐานของคอมพิวเตอร์
- ระบบเลขฐาน
- ตรรกศาสตร์บูลีนเบื้องต้น
- วงจรดิจิทัลเบื้องต้น
- วงจรบวกและลบเลข

หลักการพื้นฐานของคอมพิวเตอร์

คอมพิวเตอร์ถูกออกแบบและสร้างขึ้นบนหลักการ 2 ข้อได้แก่

- 1. คำสั่ง (Instruction) และข้อมูล (Data) สำหรับคอมพิวเตอร์ จะต้องอยู่ในรูปของตัวเลขเท่านั้น
- 2. คำสั่งและข้อมูลจะเก็บในหน่วยความจำในรูปของตัวเลข การเขียนและอ่านก็จะอยู่ในรูปของตัวเลข

เลขฐาน (Base Number) เป็นการเขียนแทนค่าของตัวเลขในรูปแบบที่ต่างกัน ตามฐาน (base) ดังนี้:

- เลขฐาน 2 แต่ละหลักจะมีได้ 2 ค่าได้แก่ 0, 1 (Binary number)
- เลขฐาน 3 แต่ละหลักจะมีได้ 3 ค่าได้แก่ 0, 1, 2
- เลขฐาน 8 แต่ละหลักจะมีได้ 8 ค่าได้แก่ 0, 1, 2, 3, 4, 5, 6, 7 (Octal number)
- เลขฐาน 10 แต่ละหลักจะมีได้ 10 ค่าได้แก่ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (Decimal number)
- เลขฐาน 16 แต่ละหลักจะมีได้ 16 ค่าได้แก่ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (Hexadecimal number)

แต่ละหลักจะมีตัวเลขที่เป็นไปได้ 10 ค่า (0-9)

0	10	20		90	100
1	11	21		91	101
2	12	22		92	102
3	13	23		93	103
4	14	24	••••	94	104
5	15	25		95	105
6	16	26		96	106
7	17	27		97	107
8	18	28		98	108
9	19	29		99	109

$$35607_{10} = 3*(10)^{4} + 5*(10)^{3} + 6*(10)^{2} + 0*(10)^{1} + 7*(10)^{0}$$

แต่ละหลักจะมีตัวเลขที่เป็นไปได้ 2 ค่า (0, 1)

```
0 10 100 110 1000
1 11 101 111 1001
```

หลักของเลขฐาน 2 เรียกว่า binary digit (bit)

Bit ซ้ายสุดจะมีค่าสูงที่สุด หรือ มีนัยสำคัญ (Significant) สูงที่สุด Bit ขวาสุดจะมีค่าต่ำที่สุด หรือ มีนัยสำคัญต่ำที่สุด

10101100 LSB

Most Significant Bit Least Significant Bit

แต่ละหลักจะมีตัวเลขที่เป็นไปได้ 2 ค่า (0, 1)

```
0 0
1 1
10 2
11 3
100 4
101 = 5
110 6
111 7
1000 8
1001 9
```

$$111_2 = 1*(2)^2 + 1*(2)^1 + 1*(2)^0 = 4+2+1 = 7$$

- ระบบเลขฐาน 2 สามารถสร้างเป็นวงจรไฟฟ้าได้ง่าย
- เลข 0 แทนด้วย การไม[่]มีแรงดันไฟฟ้า (0 Volt)
- เลข 1 แทนด้วย การมีแรงดันไฟฟ้า (5 Volt)

Lab 1: แนะนำชุดทดลองวงจรดิจิทัล

Lab 1: แนะนำชุดทดลองวงจรดิจิทัล

ปุ่มกดเลือกสถานะ (8 ชุด แยกอิสระ)

Lab 1: แนะนำชุดทดลองวงจรดิจิทัล

จอแสดงผลเลขฐาน 16

MSB D C B A LSB

2³ 2² 2¹ 2⁰

 $0 \ 1 \ 1 \ 1 = 7$

จุดต่อสัญญาณเลขฐาน 2

Lab 2: การนับเลขฐาน 2

ใช้สายไฟ 4 เส้น ต่อเข้ากับปุ่มกดและจอแสดงตัวเลข

การแปลงเลขฐาน 10 เป็นฐาน 2

การแปลงจากเลขฐาน 10 ให้เป็นฐานใดๆ จะใช้การหาร

<u>ตัวอย่าง</u>

แปลง 13₁₀ ให้เป็นฐาน 2

13 หาร 2 ได้ 6 เศษ 1

6 หาร 2 ได้ 3 เศษ 0

3 หาร 2 ได้ 1 เศษ 1

นำผลลัพธ์สุดท้ายและเศษที่ได้ไล่จากบรรทัดสุดท้ายย้อนกลับไปบรรทัดแรกจะได้ 1101

์ ซึ่งเป็นเลขฐาน 2 ที่มีค่า 13₁₀

การบวกเลขฐาน 2

- ใช้หลักการเดียวกันกับการบวกเลขฐาน 10
- บวกจากหลักทางขวา ไปทางซ้าย
- ถ้าผลบวกเกินค่าสูงสุด ให้ทดไปหลักถัดไปทางขวา

$$0 + 0 = 0 \text{ MA } 0$$

$$0 + 1 = 1 \text{ MQ } 0$$

$$1 + 0 = 1 \text{ MA } 0$$

$$1 + 1 = 0 \text{ NO } 1$$

ตรรกศาสตร์บูลีน (Boolean Logic)

- ค่าความจริง (Truth) ในเชิงตรรกศาสตร์นิยามไว้ 2 ค่าได้แก่ **จริง (True)** กับ เท็จ **(False)**
- ค่าความจริงอาจแทนด้วยตัวเลข (True = 1) และ (False = 0)
- ตัวกระทำ (operator) สำหรับค่าความจริง มีได้ดังนี้

NOT (~, ¬)	นิเสธ	
	~0 = 1	~1 = 0
AND (∧, •)	และ	
	0 AND 0 = 0	1 AND 0 = 0
(0 AND 1 = 0	1 AND 1 = 1
OR (V, +)	หรือ	
	0 OR 0 = 0	1 OR 0 = 1
	0 OR 1 = 1	1 OR 1 = 1
EXCLUSIVE-	OR (XOR: ⊕)	
(0 XOR 0 = 0	1 XOR 0 = 1
(0 XOR 1 = 1	1 XOR 1 = 0

```
A = 01011001, ~A = 10100110
อาจใช้ A แทน ~A ได้
1011 AND 1110 = 1010
1011 OR 1110 = 1111
1011 XOR 1110 = 0101
```

วงจรดิจิทัลเบื้องต้น

- วงจรดิจิทัลเป็นวงจรอิเลกทรอนิกส์ที่ใช้สัญญาณไฟฟ้า 2 ระดับ เพื่อแทนสถานะ "0" และ "1"
- วงจรดิจิทัลประกอบด้วย เกต (Gate) เชื่อมต่อเข้าด้วยกัน
- 1. AND gate (c = a . b)

а	b	c = a . b
0	0	0
0	1	0
1	0	0
1	1	1

4. XOR gate (c = a⊕b)
---------------	----------

2. 0	R ga	ate (c	= a	+b)
------	------	--------	-----	-----

а	b	c = a + b
0	0	0
0	1	1
1	0	1
1	1	1

а	b	c = a⊕b
0	0	0
0	1	1
1	0	1
1	1	0

3. Inverter (c = a)

а	c = ā
0	1
1	0

Lab 2: วงจรดิจิทัลพื้นฐาน

- เกตถุกสร้างและบรรจุในวงจรรวม (Integrated Circuit: IC)
- IC จะมีหมายเลขกำกับ เพื่อใช้บอกรายละเอียดวงจรที่อยู่ภายใน

74LS04 Inverters

74LS08 AND Gates

74LS32 OR Gates

74LS86 XOR Gates

สมการบูลีนพื้นฐาน

สมการบูลีน (Boolean Expression) คือสมการที่แสดงความสัมพันธ์ระหว่างตัวแปร
 และตัวกระทำทางตรรก (Operator) เช่น

$$A = BC + DE$$

$$Z = \overline{X}Y + X\overline{Y}$$

- ผลลัพธ์ของสมการบูลีนหาได้จากการแทนค่าที่เป็นไปได้ทั้งหมดของตัวแปรทางขวามือของสมการ
- สามารถใช[้]ตารางค[่]าความจริง (Truth table) เพื่ออธิบายสมการบูลีนได[้]

$$Z = \overline{X}Y + X\overline{Y}$$

X	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	0

วงจรบวกเลข

- วงจรดิจิทัลบวกเลขจะใช้หลักการพื้นฐานมาจากการบวกเลขฐาน 2 ทีละหลัก
- สมการบูลีนของวงจรบวกเลขทีละหลักได้จากตารางค่าความจริง
- กำหนดให้ a และ b คือตัวตั้งและตัวบวก, Sum คือผลบวก และ Cout คือตัวทด <u>ทั้งหมดมีขนาด 1 bit</u>

a	b	Sum
0	0	0
0	1	1
1	0	1
1	1	0

Sum = a ⊕ b หรือ a xor b

Cout = a⋅b หรือ a and b

Lab 3: วงจร Half-adder

- วงจร half-adder ประกอบด้วย XOR gate และ AND gate อย่างละ 1 ตัว
- IC จะมีหมายเลขกำกับ เพื่อใช้บอกรายละเอียดวงจรที่อยู่ภายใน

วงจรบวกเลขที่สมบูรณ์

- วงจรดิจิทัลบวกเลขที่สมบูรณ์จะสามารถบวกเลขฐาน 2 ได้หลายหลัก เรียกว่าวงจร Full-adder
- กำหนดให้ a และ b คือตัวตั้งและตัวบวก, Sum คือผลบวก Cout คือตัวทด <u>ทั้งหมดมีขนาด 1 bit</u>

а	b	Cin	Sum
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Sum = $a \oplus b \oplus Cin$

Cout = $(a \oplus b) \cdot Cin + a \cdot b$

วงจร Full-adder 1 บิต

Lab 4: วงจร 1 Bit Full-adder

- วงจร half-adder ประกอบด้วย XOR gate และ AND gate อย่างละ 1 ตัว
- IC จะมีหมายเลขกำกับ เพื่อใช้บอกรายละเอียดวงจรที่อยู่ภายใน

วงจรบวกเลขฐาน 2 หลายหลัก

- วงจรดิจิทัลบวกเลขที่สมบูรณ์จะสามารถบวกเลขฐาน 2 ได้หลายหลัก เรียกว่าวงจร Full-adder
- กำหนดให้ a และ b คือตัวตั้งและตัวบวก, Sum คือผลบวก และ Cout คือตัวทด <u>ทั้งหมดมีขนาด 1 bit</u>

วงจร Full-adder 1 บิต

วงจร Full-adder 4 บิต

Lab 4: วงจร 2 Bit Full-adder

• วงจร 2 bit full-adder ประกอบด้วย full-adder 2 ชุด ต่อพ่วงกัน โดยต่อ

<u>Cout ของวงจรบวก LSB ไปเข้าที่ Cin</u> ของวงจรบวก MSB

• ใช้ 2 XOR gate, 2 AND gate และ 1 OR gate

Lab 5: วงจร 4 Bit Full-adder

• ใช้ Tinker CAD จำลองการทำงาน เพื่อความสะดวก

การแทนจำนวนเต็มลบด้วยเลขฐาน 2

เลขฐาน 2 มี 2 ชนิด

- ไม่มีเครื่องหมาย (Unsigned binary number)
- มีเครื่องหมาย (Signed binary number)
 - 1's Complement
 - 2's Complement
- เลขฐาน 2 ที่ไม่มีเครื่องหมายแทนได้เฉพาะจำนวนบวก เลขฐาน 2 ที่มีเครื่องหมายแทนได้ทั้งจำนวนบวกและลบดังนี้

ฐาน 10	Unsigned	1's Complement	2's Complement
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
0	0000	0000	0000
-1	-	1110	1111
-2	-	1101	1110
-3	-	1100	1101

การแทนจำนวนเต็มลบด้วยเลขฐาน 2

การแปลงจำนวนเต็มลบ (ฐาน 2) ให้อยู่ในรูป 1's complement และ 2's complement

กำหนดให้ X เป็นจำนวนเต็มลบ การหา 1's complement ของ X มีขั้นตอนดังนี้

- 1. กำหนดจำนวนบิตของตัวเลขที่ต้องการ
- 2. หาเลขฐาน 2 ของ |X|
- 3. หานิเสธของแต่ละบิต ผลลัพธ์ที่ได้จะเป็น 1's complement ของ X
- 4. นำผลลัพธ์ในข้อ 3 บวกด้วย 1 จะได้เป็น 2's complement ของ X

การแทนจำนวนเต็มลบด้วยเลขฐาน 2

<u>ตัวอย่าง</u> จงหา 1's complement และ 2's complement ของ -9₁₀, และ -13₁₀

|-9| = 9 = 1001₂ กำหนดให้ใช้ตัวเลขฐาน 2 จำนวน **8 บิต** ดังนั้น 1001₂ = 00001001₂ หานิเสธของแต่ละบิต จะได้ 00001001 \rightarrow 11110110 ดังนั้น -9 = 11110110₂ (1's complement) 11110110₂ + 1 = **11110111**₂ (2's complement) ซึ่งเลขฐาน 2 ทั้งสอง มีค่าเท่ากับ -9

|-13| = 13 = 1101 กำหนดให้ใช้ตัวเลขฐาน 2 จำนวน 8 บิต ดังนั้น 1101 = 00001101 จะได้ -13 = 11110010 (1's complement) และ **11110011 (2's complement)**

การลบในระบบเลขฐาน 2

- การลบเลข อาจเขียนให้อยู่ในรูปการบวกได้ เช่น $Z = X Y \rightarrow Z = X + (-Y)$
- หลักการคือ บวก X ด้วยค่ำ 2 s Complement ของ Y จะได้ผลลัพธ์เท่ากับ X Y

ตัวอย่าง 13 – 9 ในระบบเลขฐาน 2 <u>ขนาด 4 บิต</u>

$$13 - 9 = 13 + (-9) = 1101 + 0111 = (1)0100 = 0100 = 4_{10}$$

วงจรดิจิทัลลบเลขฐาน 2

- การลบเลขคือการบวกตัวตั้งด้วยค่า 2's Complement ของตัวลบ 2's Complement ได้จาก การหานิเสธของทุกบิต จากนั้นบวกด้วย 1 การหานิเสธคือการเพิ่ม NOT gate และการบวก 1 ทำได้โดยกำหนดให้ Cin ของ LSB มีค่าเป็น 1

Lab 6: วงจร 4 Bit Subtractor

• ใช้ Tinker CAD จำลองการทำงาน เพื่อความสะดวก

หน่วยความจำ

- หน่วยความจำ ทำหน้าที่คงค่าข้อมูลที่กำหนด จนกว่าจะมีการเปลี่ยนค่าข้อมูลใหม่
- การกำหนดข้อมูลในหน่วยความจำให้เป็น "1" เรียกว่า SET
- การกำหนดข้อมูลในหน่วยความจำให้เป็น "**0**" เรียกว่า RESET

Lab 7: วงจรหน่วยความจำ 1 บิต

• หน่วยความจำ ทำหน้าที่คงค่าข้อมูลที่กำหนด จนกว่าจะมีการเปลี่ยนค่าข้อมูลใหม่

	SET	RESET	Data	
	1	0	1	กำหนดข้อมูลเป็น 1
6	0	0	1	จำ (Latch)
	0	1	0	กำหนดข้อมูลเป็น 0
S	0	0	0	จำ (Latch)