Math 341: Homework 1

Daniel Ko

Spring 2020

§1 A

a. $p \Rightarrow (p \lor q)$

р	q	$p \lor q$	$p \Rightarrow (p \lor q)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

b. $p \lor F \Leftrightarrow F$

р	F	$p \vee F$	$p \lor F \Leftrightarrow F$
T	F	T	T
F	F	F	T

c. $p \land \neg p \Leftrightarrow F$

р	$\neg p$	$p \wedge \neg p$	$p \land \neg p \Leftrightarrow F$
T	F	F	T
F	T	F	T

d. $(p \Leftrightarrow q) \Leftrightarrow [(p \land q) \lor (\neg p \land \neg q)]$

p	q	$p \Leftrightarrow q$	$p \wedge q$	$\neg p \land \neg q$	$(p \wedge q) \vee (\neg p \wedge \neg q)$	$(p \Leftrightarrow q) \Leftrightarrow [(p \land q) \lor (\neg p \land \neg q)]$
T	T	T	T	F	T	T
T	F	F	F	F	F	T
F	T	F	F	F	F	T
F	F	T	F	T	T	T

e. $[(p \Leftrightarrow q) \land (q \Leftrightarrow r)] \Rightarrow (p \Leftrightarrow r)$

р	q	r	$p \Leftrightarrow q$	$q \Leftrightarrow r$	$(p \Leftrightarrow q) \land (q \Leftrightarrow r)$	$p \Leftrightarrow r$	$[(p \Leftrightarrow q) \land (q \Leftrightarrow r)] \Rightarrow (p \Leftrightarrow r)$
T	T	T	T	T	T	T	T
T	T	F	\mathcal{T}	F	F	F	T
T	F	T	F	F	F	T	T
T	F	F	F	T	F	F	T
F	T	T	F	T	F	T	T
F	T	F	F	F	F	T	T
F	F	T	\mathcal{T}	F	F	F	T
F	F	F	T	T	T	T	T

f.
$$[p \land \neg q \Rightarrow \neg p] \Rightarrow (p \Rightarrow q)$$

1)	q	$p \wedge \neg q$	$(p \land \neg q) \Rightarrow \neg p$	$p \Rightarrow q$	$[p \land \neg q \Rightarrow \neg p] \Rightarrow (p \Rightarrow q)$
7		T	F	T	T	T
7		F	T	F	F	T
F	=	Τ	F	T	T	T
F	=	F	F	T	T	T

§2 B

a.
$$(p \lor q \Leftrightarrow p \land r) \Rightarrow ((p \Rightarrow p) \land (p \Rightarrow r))$$

$$(p \lor q \Leftrightarrow p \land r) \Rightarrow (p \Rightarrow r) \qquad \text{(Transitivity)}$$

$$[(p \lor q \Rightarrow p \land r) \land (p \land r \Rightarrow p \lor q)] \Rightarrow (p \Rightarrow r) \qquad \text{(Def. of bicondtional)}$$

$$\neg [(p \lor q \Rightarrow p \land r) \land (p \land r \Rightarrow p \lor q)] \lor (\neg p \lor r) \qquad \text{(Material Implication)}$$

$$\neg [(\neg (p \lor q) \lor (p \land r)) \land (\neg (p \lor r) \lor (p \lor q))] \lor (\neg p \lor r) \qquad \text{(Material Implication)}$$

$$[\neg (\neg (p \lor q) \lor (p \land r)) \lor \neg (\neg (p \lor r) \lor (p \lor q))] \lor (\neg p \lor r) \qquad \text{(De Morgan's Law)}$$

$$(\neg \neg (p \lor q) \land \neg (p \land r)) \lor (\neg (p \lor r) \land \neg (p \lor q)) \lor (\neg p \lor r) \qquad \text{(Double negation)}$$

$$((p \lor q) \land \neg (p \land r)) \lor ((p \lor r) \land \neg (p \lor q)) \qquad \text{(Commutative)}$$

$$((\neg p \lor r) \lor (p \lor q) \land \neg (p \land r)) \lor ((p \lor r) \land \neg (p \lor q)) \qquad \text{(Distributive)}$$

$$(True \land True) \lor ((p \lor r) \land \neg (p \lor q)) \qquad \text{(Excluded middle)}$$

$$True$$

(Excluded middle)

(Excluded middle)

(Excluded middle)

b.
$$[(p\Rightarrow \neg q) \land (r\Rightarrow q)] \Rightarrow (p\Rightarrow \neg r)$$

$$\neg [(\neg p \lor \neg q) \land (\neg r \land q)] \lor \neg p \lor \neg r$$
 (Material Implication) $\neg (\neg p \lor \neg q) \lor \neg (\neg r \land q) \lor \neg p \lor \neg r$ (De Morgan's Law) $(p \land q) \lor (r \land \neg q) \lor \neg p \lor \neg r$ (De Morgan's Law) $\neg p \lor (p \land q) \lor \neg r \lor (r \land \neg q)$ (Commutative) $[(\neg p \lor p) \land (\neg p \lor q)] \lor [(\neg r \lor r) \land (\neg r \lor \neg q)]$ (Excluded middle) $True$

c. $(p\Rightarrow q) \Rightarrow [\neg (q \land r) \Rightarrow \neg (p \land r)]$ (De Morgan's Law) $\neg p \lor (p \land q) \lor (q \land r) \lor \neg (p \land r)]$ (De Morgan's Law) $\neg p \lor (p \land q) \lor (q \land r) \lor (\neg p \lor \neg r)$ (De Morgan's Law) $\neg p \lor (p \land \neg q) \lor (\neg r \lor q) \land (\neg r \lor r)]$ (De Morgan's Law) $\neg p \lor (p \land \neg q) \lor (\neg r \lor q) \land (\neg r \lor r)]$ (Distributive) $\neg p \lor (p \land \neg q) \lor (\neg r \lor q) \land (\neg r \lor r)$ (Distributive) $\neg p \lor (p \land \neg q) \lor (\neg r \lor q) \land (\neg r \lor q) \land$

 $[(True) \land (\neg p \lor q)] \lor [(True) \land (\neg r \lor \neg q)]$

 $\neg p \lor q \lor \neg r \lor \neg q$

True

§3 C

loren ipsum or something

§4 D

Corollary

The additive inverse is unique.

Proof. Suppose u, v are the additive inverse of x.

$$x + u = 0 \quad x + v = 0$$

$$x + u = x + v$$
 (Transitive property)
 $u + x = v + x$ (Commutative property)
 $u = v$ (Theorem 1.1)

Corollary

The vector 0 is unique.

Proof. Suppose $u, v \in V$ satisfies the "zero property", which is defined as:

$$\forall x \in V \quad x + u = x \Rightarrow v + u = v$$

$$\forall x \in V \quad x + v = x \Rightarrow u + v = u$$

$$u = u + v = v + u = v$$

$$u = v$$
 (Transitive property)
$$u = v$$
 (Theorem 1.1)

§5 E

Theorem (1.2(c) In any vector space the following statements are true.)

 $a\mathbf{0} = \mathbf{0}$

 $\forall a \in F \quad \mathbf{0} \in \mathbf{V}$

Any scalar multiplied by the 0 vector will result in the 0 vector.

Proof.

$$a\mathbf{0} = a(\mathbf{0} + \mathbf{0})$$
 (Identity element of addition)
 $a\mathbf{0} = a\mathbf{0} + a\mathbf{0}$ (Distributive)
 $a\mathbf{0} - a\mathbf{0} = a\mathbf{0} + a\mathbf{0} - a\mathbf{0}$ (Inverse element of addition)
 $\mathbf{0} = a\mathbf{0}$

§6 F

Proof.

Prove that diagonal matrices (as defined in your book in Example 3, Section 1.3) are symmetric.

Let
$$D$$
 equal a diagonal matrix D is symmetric $\Leftrightarrow (\forall i,j)(D_{i,j}=D_{j,i})$ By definition of diagonal matrix: When $i \neq j, D_{i,j}=D_{j,i}=0$ When $i=j, D_{i,j}=D_{j,i}$ $\therefore (\forall i,j)(D_{i,j}=D_{j,i})$ so diagonal matrix is symmetric

П

§7 G

Prove that

$$W_1 = (a_1, a_2, \dots, a_n) \in F^n : a_1 + a_2 + \dots + a_n = 0$$
 is a subspace of F_n , but $W_2 = (a_1, a_2, \dots, a_n) \in F^n : a_1 + a_2 + \dots + a_n = 1$ is not.

Proof. Proof that W_1 is a subspace of F^n

a. $0 \in W_1$

Let
$$a_1, a_2, \dots, a_n = 0$$

 $0 + 0 + \dots + 0 = 0 \in W_1$

b. $X, Y \in W_1 \Rightarrow X + Y \in W_1$

$$X = (x_1, x_2, \dots, x_n) \quad Y = (y_1, y_2, \dots, y_n)$$

$$X + Y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$\sum_{i=1}^{n} x_i + y_i = x_1 + y_1 + x_2 + y_2 + \dots + x_n + y_n$$

$$= (x_1 + x_2 + \dots + x_n) + (y_1 + y_2 + \dots + y_n)$$

$$= 0 + 0$$

$$= 0 \in W_1$$

c. $c \in F, X \in W_1 \Rightarrow cX \in W_1$

$$X = (x_1, x_2, \dots, x_n)$$

$$cX = (cx_1, cx_2, \dots, cx_n)$$

$$\sum_{i=1}^{n} cx_i = cx_1 + cx_2 + \dots + cx_n$$

$$= (x_1 + x_2 + \dots + x_n) + (y_1 + y_2 + \dots + y_n)$$

$$= c(x_1, x_2, \dots, x_n)$$

$$= c(0)$$

$$= 0 \in W_1$$