

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /1º Semestre ANÁLISE MATEMÁTICA I

Teste 2

15-fev-2013 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efectuados.

- 1. Justificando convenientemente as suas respostas:
 - a. Prove que $\sum_{n=4}^{\infty} \frac{1}{n^2 5n + 6}$ é uma série de Mengoli convergente e determine a sua soma.
 - b. Averigue se a série $\sum_{n=2}^{\infty} (2)^{1-2n}$ é uma série geométrica convergente e em caso afirmativo determine a sua soma.
 - c. Averigue a natureza da série $\sum_{n=2}^{\infty} \left(\frac{2}{\sqrt[3]{n^4}} + \frac{3n^2 + 1}{1 5n^2} \right).$
- 2. Considere a função real de variável real $f(x) = \pi + 2arctg(2\sqrt{x})$.
 - a. Determine a expressão analítica da derivada da função, f'.
 - b. Aplicando a técnica por decomposição e a primitivação imediata resolva a primitiva $\int \frac{4 + arctg(2\sqrt{x})}{\sqrt{x}(1+4x)} dx$ e justifique em que medida a expressão encontrada na alínea a. pode ajudar no respetivo cálculo.
- 3. Utilize a técnica de primitivação por partes para resolver a primitiva $\int x^2 ln(x^2+1)dx$.
- 4. Justificando convenientemente a sua escolha, identifique em cada uma das seguintes primitivas a(s) expressão(ões) em falta marcadas com [] por forma a que possam ser aplicadas as regras da primitivação imediata:

a.
$$\int \frac{sen[\]}{[\]cos^3(e^{-x}+1)} dx$$
 b.
$$\int \frac{[\]sen[\]}{cos(ln(x))+1} dx$$
 c.
$$\int \frac{[\]e^{[\]}}{\sqrt{1-9e^{2cos(x)}}} dx$$

- 5. Resolva a primitiva $\int \frac{tg^3x}{sec(x)} dx$ utilizando uma técnica apropriada para funções trigonométricas.
- 6. Usando a técnica de primitivação por substituição resolva a primitiva $\int \frac{x^3}{\sqrt{\left(1-4x^2\right)^3}} dx$.

7. Calcule as seguintes primitivas:

a.
$$\int \frac{e^x + e^{2x+1}}{e^{2x}} dx$$

a.
$$\int \frac{e^x + e^{2x+1}}{e^{2x}} dx$$
 b. $\int \frac{x^2 - 7x + 12}{(x^2 - 5x + 6)(x - 3)} dx$ c. $\int arcsen(-2x) dx$

c.
$$\int arcsen(-2x)dx$$

Cotação

1a	1b	1c	1d	2a	2b	3	4	5	6	7a	7b	7c
1	1	1	1	1	1,5	2	2,5	1,5	1,5	2	2	2