

دانشگاه تهران، دانشکده مهندسی برق و کامپیوتر آمار و احتمال مهندسی

تمرین هفتم _ مقدمهای بر برآورد، آزمون فرض و بازه اطمینان

طراح: سارا معصومي

سوپروایزر: سروش مسفروش مشهد

تاریخ تحویل: ۲۷ دی ۱۴۰۲

۱. برآوردگر ماکسیمم درستنمایی

فرض کنید $X_1, X_7, ..., X_n$ یک نمونه تصادفی از توزیعی با تابع چگالی زیر هستند:

$$f(x|\theta) = \frac{\theta}{x^{\mathsf{Y}}}, \qquad {\boldsymbol{\cdot}} < \theta \le x$$

برآوردگر ماکسیمم درستنمایی پارامتر θ را بهدست آورید.

۲. برآوردگر پایدار

فرض کنید $X_1, X_7, ..., X_n$ متغیرهای تصادفی مستقل و هم توزیع با تابع چگالی زیر باشند. ابتدا به روش گشتاوری یک برآوردگر برای θ پیدا کنید و سپس بررسی کنید که آیا این برآوردگر پایدار است یا نه؟

$$f(x) = \frac{1}{7}(1 + \theta x), \qquad -1 < x, \theta < 1$$

یادآوری: $\hat{\theta}$ یک برآوردگر پایدار برای θ است اگر و تنها اگر دو شرط زیر برقرار باشند، (*)

$$\lim_{n \to \infty} E(\hat{\theta}) = \theta,$$

$$\lim_{n\to\infty} Var(\hat{\theta}) = \cdot$$

٣. تحليل فاصله اطمينان

فرض کنید $X \sim B(n,p)$. برای nهای بزرگ، کدام یک از فاصلههای اطمینان زیر با احتمال بیشتری پارامتر p را در برمی گیرد؟

$$\left(\frac{X}{n}, 1\right)$$
 $\tilde{\mathsf{I}}$

$$\left(\frac{X}{n},\infty\right)$$
 .ب

$$\left(\frac{X}{n}-lac{1}{2}\sqrt{rac{X}{n}(1-rac{X}{n})}}{n},rac{X}{n}+lac{1}{2}\sqrt{rac{X}{n}(1-rac{X}{n})}}{n}
ight)$$
्ट

Consistent estimator

۴. تست فرض

نمونهای تصادفی به اندازه ۲۵ از یک توزیع نرمال با ۱۰ μ و ۲ = σ به یک دانشجو داده شده است. هر چند این دانشجو در جریان $H.: \mu. = 1 \cdot / \$$ vs $H_1: \mu. \neq 1 \cdot / \$$ مقدار واقعی میانگین این توزیع نیست. اگر این دانشجو علاقه مند به بررسی آزمون فرض ۴۰/۰ و $\mu. = 1 \cdot / \$$ مقدار $\mu. = 1 \cdot / \$$ مقدار و امحاسبه کنید.

اطلاعات بیشتر: در مبحث آزمون فرض α و β خطاهای آزمون نامیده میشوند. به α خطای نوع اول آزمون میگویند و مقدار آن برابر با "احتمال پذیرفتن "احتمال رد فرض H. به شرط برقرار بودن فرض H. است. و همچنین β خطای نوع دوم آزمون است و مقدار آن برابر با "احتمال پذیرفتن فرض H. است.

Type I error: $\alpha = P(\text{incorrectly rejecting the } H.) = P(\text{reject } H.|H. \text{ is true})$ Type II error: $\beta = P(\text{incorrectly failing to reject the } H.) = P(\text{not rejecting } H.|H. \text{ is not true})$

۵. برآوردگر ماکسیمم درستنمایی نااریب (امتیازی)

 σ^{Υ} هستند و μ مقداری معلوم دارد. ابتدا برآوردگر ماکسیمم درستنمایی $N(\mu,\sigma^{\Upsilon})$ هستند و $\chi_1,\chi_2,...,\chi_n$ ماکسیمم درستنمایی $\chi_1,\chi_2,...,\chi_n$ را به دست آورید و سپس بررسی کنید آیا این برآوردگر نااریب است؟

یادآوری ۱: $\hat{\theta}$ برآوردگری نااریب برای θ است اگر θ است اگر $\hat{\theta}$: یادآوری ۲: اگر $Z\sim N(\cdot,1)$ آنگاه $X\sim Y(\cdot,1)$ و یادآوری ۲: اگر $Z\sim N(\cdot,1)$

۶. آشنایی با توزیع Student's t (امتیازی)

گفته می شود که میانگین وزن نوزادان سالمی که ۱۲ ساعت از تولدشان می گذرد ۷/۵lbs (پوند) است. لیست زیر شامل وزن نمونه ای از نوزادانی است که ۱۲ ساعت از تولدشان می گذرد و همگی در محله ای کم بضاعت متولد شده اند. آیا در سطح ۱۰/۰ $\alpha=0$ می توان نتیجه گرفت که نوزادان متولد شده در این محله دچار کمبود وزن هستند؟

9, 1/4, 1/4, 1/6, 1/6, 1/6, 1/6, 1/1, 1/7

T یعنی $T=rac{X}{\sqrt{rac{Y}{r}}}\sim t_{(r)}$ اگر (۲ , ۱) یعنی $X\sim X_{(r)}^{
m t}$ دو متغیر تصادفی مستقل از هم باشند، آنگاه $X\sim N({f \cdot},{f \cdot})$ یعنی $X\sim N({f \cdot},{f \cdot})$ است.

اطلاعات بیشتر: توزیع t بسیار شبیه به توزیع نرمال استاندارد است و تابع چگالی احتمال زنگولهای شکل دارد، با این تفاوت که دو سر تابع چگالی توزیع t در دارد. تابع چگالی توزیع t در به سمت صفر میل میکنند؛ یا به بیان دیگر توزیع t در مباحث فاصله اطمینان و آزمون فرض، در مواقعی که اندازه نمونه کوچک است یا واریانس جامعه نامعلوم است به جای توزیع نرمال استاندارد از توزیع t استفاده می شود.

Unbiased estimator[†]

Chi-squared distribution⁷

Student's t-distribution

degrees of freedom

شکل ۱: مقایسه pdf توزیع t و توزیع نرمال استاندارد