Experiment Title: Resistance Measurement and Verification

Objective

- 1. To identify the resistance values of given resistors using the color code.
- 2. To verify the resistance values using a multimeter.
- 3. To compare the measured values with the tolerance given in the color code.
- 4. To study the equivalent resistance in series and parallel combinations of two resistors.

Apparatus Required

- Resistors with color codes.
- Digital or analog multimeter.
- Connecting wires.
- Breadboard (optional).

Theory

Resistor Color Code

- Resistor values are identified using the color bands painted on their body.
- \bullet The resistance R is calculated as:

$$R = (AB \times 10^C) \,\Omega$$

where:

- -A, B: Significant digits (Band 1 and Band 2).
- -C: Multiplier (Band 3).
- Band 4 indicates the tolerance.

Resistor Color Code Chart

Color	Significant Digit (Bands 1 & 2)	Multiplier (Band 3)	Tolerance (Band 4)
Black	0	$10^0 = 1$	-
Brown	1	$10^1 = 10$	±1%
Red	2	$10^2 = 100$	±2%
Orange	3	$10^3 = 1,000$	-
Yellow	4	$10^4 = 10,000$	-
Green	5	$10^5 = 100,000$	$\pm 0.5\%$
Blue	6	$10^6 = 1,000,000$	$\pm 0.25\%$
Violet	7	$10^7 = 10,000,000$	±0.1%
Gray	8	$10^8 = 100,000,000$	$\pm 0.05\%$
White	9	$10^9 = 1,000,000,000$	-
Gold	-	$10^{-1} = 0.1$	±5%
Silver	-	$10^{-2} = 0.01$	±10%
None	-	-	±20%

Series and Parallel Resistance

1. Series Resistance:

$$R_s = R_1 + R_2$$

2. Parallel Resistance:

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$

Procedure

Part A: Resistance Identification using Color Code

- 1. Observe the color bands on the resistor and note them.
- 2. Decode the resistance value and tolerance using the color code chart.

Part B: Verification using Multimeter

- 1. Set the multimeter to the appropriate resistance range.
- 2. Connect the resistor terminals to the multimeter probes.
- 3. Record the measured resistance value.

Part C: Comparison of Tolerance

1. Calculate the range of resistance using the formula:

Range =
$$R \pm (Tolerance \times R)$$

2. Verify if the measured value falls within this range.

Part D: Series and Parallel Resistance

- 1. Connect two resistors $(R_1 \text{ and } R_2)$ in series.
 - Measure the equivalent resistance using the multimeter.
 - Verify it using the formula $R_s = R_1 + R_2$.
- 2. Connect the same resistors in parallel.
 - Measure the equivalent resistance using the multimeter.
 - Verify it using the formula $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$.

Observations

Resistance Identification and Verification

Resistor	Color Bands (AB-C)	Nominal Value (Ω)	Tolerance (%)	Measured Value (
R1				
R2				

Series and Parallel Resistance

Combination	Theoretical Value (Ω)	Measured Value (Ω)	Difference (Δ)
Series			
Parallel			

Calculations

- 1. Decode resistance values using the color code chart.
- 2. Verification of measured values within the tolerance range.
- 3. Calculation of series and parallel resistances.

Result

- 1. The resistance values obtained from the color code closely match the values measured using the multimeter.
- 2. The measured values fall within the specified tolerance range.
- 3. Theoretical and experimental values of series and parallel resistances are consistent.

Conclusion

- The color code method provides an effective way to determine resistor values.
- Multimeter measurements confirm the nominal values within the tolerance range.
- Series resistance adds, while parallel resistance decreases, as per the theoretical formulas.

Precautions

- Ensure clean and tight connections while using the multimeter.
- Avoid touching the resistor terminals during measurement to prevent errors due to body resistance.
- Use the correct range setting on the multimeter to avoid damage to the device.