Combo 4

2 de julio de 2024

1. Proposición 7: Caracterización básica de conjuntos enumerables

1.1. Enunciado

Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacio. Entonces son equivalentes:

- (1) S es Σ -enumerable
- (2) Hay un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ tal que:
 - a) Para cada $x \in \omega$, tenemos que \mathcal{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$, donde $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$.
 - b) Para cada $(x_1,...x_n,\alpha_1,...,\alpha_m) \in S$ hay un $x \in \omega$ tal que \mathcal{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$

Nota: hacer el caso n = 2 y m = 1.

1.2. Demostración

Queremos demostrar la proposición anterior para $S\subseteq\omega^2\times\Sigma^*$. Luego, entonces podemos ver los dos casos:

• (1) \Rightarrow (2): Ya que S es no vacio, por definición tenemos que hay una $F: \omega \to \omega^2 \times \Sigma^*$ tal que $I_F = S$ y $F_{(i)}$ es Σ -computable, para cada $i \in \{1, ..., 3\}$. Por la Proposición de existencia de macros de asignación, tenemos que existen macros:

$$\begin{aligned} & \left[\mathbf{V2} \leftarrow F_{(1)}(\mathbf{V1}) \right] \\ & \left[\mathbf{V2} \leftarrow F_{(2)}(\mathbf{V1}) \right] \\ & \left[\mathbf{W1} \leftarrow F_{(3)}(\mathbf{V1}) \right] \end{aligned}$$

Sea \mathcal{P} el siguiente programa:

$$\begin{aligned} & \left[\text{P1} \leftarrow F_{(3)}(\text{N1}) \right] \\ & \left[\text{N2} \leftarrow F_{(2)}(\text{N1}) \right] \\ & \left[\text{N1} \leftarrow F_{(1)}(\text{N1}) \right] \end{aligned}$$

donde se supone que las expansiones de los macros usados son hechas usando variables auxiliares no pertenecientes a la lista N1, N2, P1, y que los labels auxiliares usados en dichas expansiones son todos distintos. Luego, tenemos que corroborar que \mathcal{P} cumple las propiedades (a) y (b):

- (a) Dado $x \in \omega$, \mathcal{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((F_{(1)}(x), F_{(2)}(x), y_1, ...), (F_{(3)}(x), \beta_1, ...))$. Por propiedad, sabemos que $F(x) = (F_{(1)}(x), F_{(2)}(x), F_{(3)}(x))$ y, como $I_F = S$, entonces $(F_{(1)}(x), F_{(2)}(x), F_{(3)}(x)) \in S$, por lo que se cumple la propiedad.
- (b) Dado $(x_1, x_2, \alpha_1) \in S$, como $I_F = S$, entonces $(x_1, x_2, \alpha_1) \in I_F$. Luego, esto significa que $\exists x \in \omega : F(x) = (x_1, x_2, \alpha_1)$, por lo que $F_{(1)}(x) = x_1, F_{(2)}(x) = x_2, F_{(3)}(x) = \alpha_1$ y se puede ver fácilmente que $\mathcal P$ partiendo desde ||x||, se detiene y llega a un estado de la forma $((F_{(1)}(x), F_{(2)}(x), y_1, \ldots), (F_{(3)}(x), \beta_1, \ldots)) = ((x_1, x_2, y_1, \ldots), (\alpha_1, \beta_1, \ldots))$. Luego, se cumple la propiedad

Finalmente, se demuestra este caso.

• (2) \Rightarrow (1): Supongamos $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ cumple (a) y (b) de (2). Sean

$$\mathcal{P}_1 = \mathcal{P}N1 \leftarrow N1$$

 $\mathcal{P}_2 = \mathcal{P}N1 \leftarrow N2$
 $\mathcal{P}_3 = \mathcal{P}P1 \leftarrow P1$

Definamos

$$F_1 = \Psi_{\mathcal{P}_1}^{1,0,\#}$$

$$F_2 = \Psi_{\mathcal{P}_2}^{1,0,\#}$$

$$F_3 = \Psi_{\mathcal{P}_3}^{1,0,*}$$

Nótese que cada F_i es Σ -computable y tiene dominio igual a ω . Sea $F = [F_1, F_2, F_3]$, tenemos por definición que $D_F = \omega$ y, ya que $F_{(i)} = F_i$, para cada i = 1, 2, 3, tenemos que cada $F_{(i)}$ es Σ -computable. Luego, solo falta ver que $I_F = S$, por lo que consideraremos:

• $I_F \subseteq S$: Sea $(x_1, x_2, \alpha_1) \in I_F$, entonces sabemos que $(x_1, x_2, \alpha_1) = \begin{pmatrix} \Psi_{\mathcal{P}_1}^{1,0,\#}, \Psi_{\mathcal{P}_2}^{1,0,\#}, \Psi_{\mathcal{P}_3}^{1,0,*} \end{pmatrix}$. Luego, por cómo están definidos los programas $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$, esto significa que $\exists x \in \omega : \mathcal{P}$ se detiene partiendo de ||x|| y llega a un estado de la forma $((x_1, x_2, y_1, ...), (\alpha_1, \beta_1, ...))$. Ahora, como \mathcal{P} cumple (a), tenemos que $(x_1, x_2, \alpha_1) \in S$. Luego, se demuestra este caso.

• $I_F \supseteq S$: Sea $(x_1, x_2, \alpha_1) \in S$, por (b) tenemos que $\exists x \in \omega : \mathcal{P}$ se detiene partiendo del estado ||x|| y llega a un estado de la forma $((x_1, x_2, y_1, ...), (\alpha_1, \beta_1, ...))$. Luego, por cómo están definidos los programas $\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3$, tenemos que $(x_1, x_2, \alpha_1) = F(x)$, por lo que $(x_1, x_2, \alpha_1) \in I_F$. Luego, se demuestra este caso.

Finalmente, dado que vimos que $I_F \subseteq S$ y $I_F \supseteq S$, tenemos que $I_F = S$, por lo que se demuestra este caso.

Luego, entonces, como se demostró tanto $(1) \Rightarrow (2)$ como $(2) \Rightarrow (1)$, se demuestra la proposición anterior para n = 2, m = 1.

2. Lema 8: Lema de la sumatoria

2.1. Enunciado

Sea Σ un alfabeto finito. Si $f: \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$ es Σ -p.r., con $S_1, ..., S_n \subseteq \omega$ y $L_1, ..., L_m \subseteq \Sigma^*$ no vacios, entonces la función $\lambda xy\vec{x}\vec{\alpha}\left[\sum_{t=x}^{t=y} f(t, \vec{x}, \vec{\alpha})\right]$ es Σ -p.r.

2.2. Demostración

Sea
$$G = \lambda t x \vec{x} \vec{\alpha} \left[\sum_{i=x}^{i=t} f(i, \vec{x}, \vec{\alpha}) \right]$$
. Ya que

$$\lambda xy\vec{x}\vec{\alpha}\left[\sum_{i=x}^{i=y}f(i,\vec{x},\vec{\alpha})\right] = G \circ \left[p_2^{n+2,m},p_1^{n+2,m},p_3^{n+2,m},...,p_{n+m+2}^{n+2,m}\right]$$

basta con probar que G es Σ -p.r.. Primero note que

$$G(0,x,\vec{x},\vec{\alpha}) = \begin{cases} 0 & \text{si } x > 0 \\ f(0,\vec{x},\vec{\alpha}) & \text{si } x = 0 \end{cases}$$

$$G(t+1,x,\vec{x},\vec{\alpha}) = \begin{cases} 0 & \text{si } x > t+1 \\ G(t,x,\vec{x},\vec{\alpha}) + f(t+1,\vec{x},\vec{\alpha}) & \text{si } x \leq t+1 \end{cases}$$

O sea que si definimos

$$h: \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \rightarrow \omega$$

$$(x, \vec{x}, \vec{\alpha}) \rightarrow \begin{cases} 0 & \text{si } x > 0 \\ f(0, \vec{x}, \vec{\alpha}) & \text{si } x = 0 \end{cases}$$

$$g: \omega^3 \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \quad \to \quad \omega$$

$$(A, t, x, \vec{x}, \vec{\alpha}) \quad \to \quad \left\{ \begin{array}{ll} 0 & \text{si } x > t+1 \\ A + f(t+1, \vec{x}, \vec{\alpha}) & \text{si } x \leq t+1 \end{array} \right.$$

tenemos que G=R(h,g). Es decir que solo nos falta probar que h y g son Σ -p.r.. Sean

$$\begin{split} D_1 &= \{ (x, \vec{x}, \vec{\alpha}) \in \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m : x > 0 \} \\ D_2 &= \{ (x, \vec{x}, \vec{\alpha}) \in \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m : x = 0 \} \\ H_1 &= \{ (z, t, x, \vec{x}, \vec{\alpha}) \in \omega^3 \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m : x > t + 1 \} \\ H_2 &= \{ (z, t, x, \vec{x}, \vec{\alpha}) \in \omega^3 \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m : x \leq t + 1 \} . \end{split}$$

Notese que

$$h = C_0^{n+1,m}|_{D_1} \cup \lambda x \vec{x} \vec{\alpha} [f(0, \vec{x}, \vec{\alpha})]|_{D_2}$$

$$g = C_0^{n+3,m}|_{H_1} \cup \lambda A t x \vec{x} \vec{\alpha} [A + f(t+1, \vec{x}, \vec{\alpha})])|_{H_2}$$

Ya que f es Σ -p.r. y

$$\begin{split} \lambda x \vec{x} \vec{\alpha} \left[f(0, \vec{x}, \vec{\alpha}) \right] &= f \circ \left[C_0^{n+1,m}, p_2^{n+1,m}, p_3^{n+1,m}, ..., p_{n+1+m}^{n+1,m} \right] \\ \lambda A t x \vec{x} \vec{\alpha} \left[A + f(t+1, \vec{x}, \vec{\alpha}) \right]) &= \lambda x y [x+y] \circ \left[p_1^{n+3,m}, f \circ \left[Suc \circ p_2^{n+3,m}, p_4^{n+3,m}, ..., p_{n+3+m}^{n+3,m} \right] \right] \end{split}$$

tenemos que $\lambda x \vec{x} \vec{\alpha} [f(0, \vec{x}, \vec{\alpha})]$ y $\lambda A t x \vec{x} \vec{\alpha} [A + f(t+1, \vec{x}, \vec{\alpha})]$) son Σ -p.r..O sea que solo nos falta ver que los conjuntos D_1, D_2, H_1, H_2 son Σ -p.r.:

- D_1 : Debemos ver que $\chi_{D_1}^{\omega^{1+n} \times \Sigma^{*m}}$ es Σ -p.r.. Como f es Σ -p.r., $R = D_f = \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ es Σ -p.r., Ahora, como $\chi_{D_1}^{\omega^{1+n} \times \Sigma^{*m}} = \left(\chi_R^{\omega^{1+n} \times \Sigma^{*m}} \wedge \lambda x \vec{x} \vec{\alpha} \left[x > 0\right]\right)$, llegamos a que $\chi_{D_1}^{\omega^{1+n} \times \Sigma^{*m}}$ es Σ -p.r. por ser conjunción de dos predicados Σ -p.r.
- D_2 : Totalmente análogo al caso anterior pero con el predicado $\lambda x \vec{x} \vec{\alpha} [x=0]$.
- H_1 : Debemos ver que $\chi_{H_1}^{\omega^{3+n} \times \Sigma^{*m}}$ es Σ -p.r.. Como f es Σ -p.r., $D_f = \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ es Σ -p.r., lo que nos dice que $S_1, ..., S_n, L_1, ..., L_m$ son Σ -p.r. y, por loanto, $R = \omega^3 \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ es Σ -p.r. Ahora, como $\chi_{H_1}^{\omega^{3+n} \times \Sigma^{*m}} = (\chi_R^{\omega^{3+n} \times \Sigma^{*m}} \wedge \lambda z t x \vec{x} \vec{\alpha} [x > t+1])$, llegamos a que $\chi_{H_1}^{\omega^{3+n} \times \Sigma^{*m}}$ es Σ -p.r. por ser conjunción de dos predicados Σ -p.r.
- H_2 : Totalmente análogo al caso anterior pero con el predicado $\lambda z t x \vec{x} \vec{\alpha} [x \leq t+1]$.

Finalmente, entonces, se demuestra que h,g son Σ -p.r., por lo que G=R(h,g) es Σ -p.r.. Esto último implica que $\lambda xy\vec{x}\vec{\alpha}\left[\sum_{i=x}^{i=y}f(i,\vec{x},\vec{\alpha})\right]=G\circ\left[p_2^{n+2,m},p_1^{n+2,m},p_3^{n+2,m},...,p_{n+m+2}^{n+2,m}\right]$ es Σ -p.r., por lo que se demuestra.