TED (10)–1003B	Reg. No
(REVISION—2010)	Signature
FIRST SEMESTER DIPLOMA EXAMINATION TECHNOLOGY—MARCH, 20	
APPLIED SCIENCE-I (CHEMISTR	YY)
(Common except DCP and CAB)	M)
	[Time: 1½ hours
(Maximum marks : 50)	60
	Marks
PART—A	
(Answer the questions in one or two sentences. Each	question carries 2 marks.)
I 1. Write down the molecular formulae of two compour valency.	nds where iron shows variable 2
2. What is nanosize? Name three nanosized materials.	2
	$(2\times 2=4)$
PART—B	
(Answer any two full questions. Each question	carries 8 marks.)
40	
II 1. Balance the following equations:	
(a) $Mg_3N_2 + H_2O \longrightarrow Mg (OH)_2 + NH_3$ (b) $Al_4C_3 + H_2O \longrightarrow Al (OH)_3 + CH_4$	4
	imple 4
III 1. You had a sample of hard water. How can you prep water from it?	4
 Calculate equivalent weight of H₂SO₄ and Na₂CO equations. 	o ₃ using different chemical 4
IV 1. Which indicator will you use in the following titrat $H_2SO_4 \times Na_2CO_3$	
CH ₃ COOH × NaOH	4
2. Calculate the weight of Zinc required to produce excompletely with 6.4 g of oxygen to form water [At	nough hydrogen to combine t.wt. of $Zn = 65.4$]. 4 (2×8=16)
PART—C	
(Answer one full question from each unit. Each que	stion carries 15 marks.)
Unit—I	
V 1. Calculate the pH and specify the nature of the following	owing solutions:
(a) $[H^+] = 0.0123 \text{ mol/l}.$	
(b) $[H^+] = 1 \times 10^{-7} \text{ mol/l.}$ (c) $[H^+] = 5 \times 10^{-13} \text{ mol/l.}$	4
(c) $[H] = 5 \times 10^{-6} \text{ mol/1}.$	[P.T.O.

		M	arks
	2.	Using Arrhenius concept and Lewis concept, describe the neutralisation reaction in acids and bases.	4
- San	3.	Mention different units used for expressing the concentration of chemical solutions.	3
	4.	Propose any two industrial and biological applications of pH.	4
		OR	
VI	1.	What are buffer solutions? Classify them.	4
	2.	Calculate the normality and molarity of the following solutions: (a) NaOH solution containing 20g in 500 ml. (b) 0.63 g of oxalic acid (H ₂ C ₂ O ₄ 2H ₂ O) in 250 ml.	4
	3.	Calculate the molecular weight of : (a) Cane sugar	3
	4.	(b) Ferrous Ammonium Sulphate. Briefly explain volumetric analysis.	4
	4.	Briefly explain volumetre analysis.	170
		Unit—II	
VII	1.	What are the disadvantages of hard water?	4
	2.	List the peculiar properties of carbon nanotubes. What are their applications?	4
	3.	Compare the sterilization of water using bleaching powder and ozone.	3
	4.	How can carbon nanotubes be synthesized? (any two methods).	4
		OR	
VIII	1.	Give any four applications of nanotechnology.	4
	2.	Explain the sterilisation of water using chlorine.	4
	3.	Describe EDTA method of determination of hardness of water.	4
	4.	Classify different nanotubes.	3
N			