Implementation and Evaluation of a Compact Table Propagator in Gecode

Linnea Ingmar <linnea.ingmar.3244@student.uu.se>

The ASTRA Group on Combinatorial Optimisation
Uppsala University

16th May 2017

Supervisor: Mats Carlsson (SICS)
Reviewer: Pierre Flener

Outline

Background

Algorithms Evaluation

- **Background**

 - The Compact Table algorithm
- **Algorithms**
 - Sparse bit-set
 - Compact Table
- - Setup

Outline

Background

Algorithms Evaluation

Conclusions

Background

- Constraint Problems
- Constraint Propagation
- Gecode
- The Compact Table algorithm
- **Algorithms**
 - Sparse bit-set

Kakuro puzzle

Background Constraint Problems

Algorithms

Evaluation

Conclusions

7	9		3	1
2	8	3	6	4
	3	2	1	
7	5	4	2	6
3	1		7	8

Assign the cells digits from 1 to 9 such that for each row and column:

- digits are distinct, and
- the sum of the digits is equal to the *clue*

- 4 -

Kakuro puzzle as a constraint problem (1)

Background

Constraint Problems

Algorithms

Evaluation

Conclusions

Variables One per empty cell.

Domains {1...9} for all variables.

Constraints For each row and column: distinct digits, and the sum of the digits is equal to the clue.

Kakuro puzzle as a constraint problem (2)

Background

Constraint Problems

Gecode

algorithm

Algorithms Evaluation

Lvaidatio

Conclusions

Variables One per empty cell.

Domains {1...9} for all variables.

Constraints For each row

and column: state the

possible
combinations of
values that the
variables can
take.

For an entry of size 2 and clue 4: $\langle 1,3 \rangle$ and $\langle 3,1 \rangle$ are the only combinations.

Constraint problems (definition)

Background

Constraint Problems

Algorithms

Evaluation

Conclusions

Definition (Constraint problem)

A constraint satisfaction problem (CSP) is a triple

 $\langle V, D, C \rangle$

where:

- $V = v_1, \dots, v_n$ is a finite sequence of variables,
- $D = D_1, ..., D_n$ is a finite sequence of domains, that are possible values for the respective variable,
- $C = \{c_1, \dots, c_m\}$ is a finite set of constraints, each on a subset of V. Express relations among the variables that have to be true.

Background

Constraint Propagation

Algorithms Evaluation

- Constraint store
- Propagator
- Constraint propagation

Constraint Stores

Background

Constraint Propagation

Algorithms

Evaluation

Conclusions

Definition (Constraint store)

A **constraint store** s is a function mapping variables to domains:

 $s: variables \mapsto domains$

$$s(x_0) = \{1,2,3,4,5,6,7,8,9\}$$

 $s(x_1) = \{1,2,3,4,5,6,7,8,9\}$
...

Propagators

Background

Constraint Propagation

The Compact Table

algorithms

Evaluation

Conclusions

Definition (Propagator)

A **propagator** *p* is a function mapping stores to stores:

p: $store \mapsto store$

Implement constraints

Background

Constraint Propagation

Algorithms

Evaluation

Conclusions

$X_0 \in \{1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,$,7,8,9}
$x_1 \in \{1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,$	7,8,9

 $x_4 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

. . .

		<i>x</i> ₀	<i>X</i> 4
		1	8
v	V	2	7
<i>x</i> ₀ 7	<i>X</i> ₁	3	6
	9	4	5
9	7	5	4
		6	3
		7	2
		8	1

Background

Constraint Propagation

Algorithms

Evaluation

Conclusions

$x_0 \in \left\{ \text{X}, \text{Z}, \text{Z}, \text{A}, \text{S}, \text{B}, \text{7}, \text{B}, 9 \right\} \\ x_1 \in \left\{ \text{X}, \text{Z}, \text{Z}, \text{A}, \text{S}, \text{B}, \text{7}, \text{B}, 9 \right\}$
$x_4 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
•••

8

3 2

1

Background

Constraint Propagation

Algorithms

Evaluation

Conclusions

$x_0 \in \{$	[<i>X</i> ,2, <i>3</i> , <i>A</i> , <i>5</i> , <i>6</i> , 7 , <i>8</i> , <i>9</i> }
$x_1 \in \{$	$\{\chi, \chi, \chi$

 $x_4 \in \{x, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}\}$

8

2

1

Background

Constraint Propagation

Algorithms

Evaluation

Conclusions

$x_0 \in \{1,2,2\}$	2,3,4,5	8, 6 , 7 , 8 , 9 }
$x_1 \in \{1/2,2\}$	2,3,4,5	(,Ø,7,8, 9 }

 $x_4 \in \{x, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}\}$

 X_4 x_0 6 5

TABLE constraints

Background

Constraint Propagation

Algorithms

Evaluation

Conclusions

Definition (TABLE constraint)

A TABLE constraint lists the possible combinations of values that the variables can take as a sequence of *n*-tuples.

TABLE(
$$\{x_0, x_1\}, [\langle 7, 9 \rangle, \langle 9, 7 \rangle]$$
)

Gecode

Background

Algorithms

Evaluation

Conclusions

Gecode (Generic Constraint Development Environment) is...

- ...a constraint solver (a software that solves constraint problems).
- ...written in C++, modular, extensible, and has state-of-the-art performance.
- ...supports the programming of new propagators.

Two existing propagators for the TABLE constraint

Compact Table

Background
Constraint Problems
Constraint
Propagation

The Compact Table algorithm

Algorithms

Evaluation

Compact Table

Background

The Compact Table algorithm

Algorithms

Evaluation

- A new propagation algorithm for the TABLE constraint.
- Published in a 2016 paper
- No attempt to implement it in Gecode (until now).

Outline

Background

Algorithms

Compact Table

Evaluation

Conclusions

Background

- The Compact Table algorithm
- **Algorithms**
 - Sparse bit-set
 - Compact Table
- - Setup

Background

Algorithms Sparse bit-set

Compact Table

Evaluation

$$s(x_0) = s(x_1) = s(x_2) = \{1, 2, 3, 4\}$$

<i>x</i> ₀	7	2	1	2	6	7	4	1	7	8	2	0	2	5	4
<i>X</i> ₁	5	1	3	4	5	7	2	1	8	9	2	0	3	8	3
<i>X</i> ₀ <i>X</i> ₁ <i>X</i> ₂	8	4	2	2	9	8	1	1	9	6	3	0	1	5	1

Background

Algorithms

Compact Table

Evaluation

$$s(x_0) = s(x_1) = s(x_2) = \{1, 2, 3, 4\}$$

<i>x</i> ₀	7	2	1	2	6	7	4	1	7	8	2	0	2	5	4
<i>X</i> ₁	5	1	3	4	5	7	2	1	8	9	2	0	3	8	3
<i>x</i> ₀ <i>x</i> ₁ <i>x</i> ₂	8	4	2	2	9	8	1	1	9	6	3	0	1	5	1

Background

Algorithms

Compact Table

Evaluation

$$s(x_0) = s(x_1) = s(x_2) = \{1, 2, 3, 4\}$$

<i>X</i> ₀ <i>X</i> ₁ <i>X</i> ₂	2	1	2	4	1	2	2	4
<i>X</i> ₁	1	3	4	2	1	2	3	3
Χo	4	2	2	1	1	3	1	1

$$s(x_0) = s(x_1) = s(x_2) = \{1, 2, 3, 4\}$$

Background

Algorithms Sparse bit-set

Compact Table

Evaluation

Conclusions

supports:

$$\langle x_2,4\rangle$$
 1 0 0 0 0 0 0 0

$$s(x_0) = s(x_1) = s(x_2) = \{1, 2, 3, 4\}$$

Background

Algorithms Sparse bit-set

Compact Table

Evaluation

Conclusions

supports:

 $\langle x_2,4\rangle$ 0 0

x_0	2	1	2	4	1	2	2	4
<i>X</i> ₀ <i>X</i> ₁ <i>X</i> ₂	1	3	4	2	1	2	3	3
Χo	4	2	2	1	1	3	1	1

Sparse bit-set
Compact Table

Evaluation

Conclusions

The Compact Table Algorithm

$$s(x_0) = \{1, 2, 4\}$$

 $s(x_1) = s(x_2) = \{1, 2, 3, 4\}$

Background validTuples:

words 1 1 1 1 1 1 1 1

supports:

11								
$\langle x_0, 1 \rangle$	0	1	0	0	1	0	0	0
$\langle x_0,2\rangle$	1	0	1	0	0	1	1	0
$\langle x_0,3\rangle$	0	0	0	0	0	0	0	0
$\langle x_0,4\rangle$	0	0	0	1	0	0	0	1
$\langle x_0, 1 \rangle $ $\langle x_0, 2 \rangle $ $\langle x_0, 3 \rangle $ $\langle x_0, 4 \rangle $ $\langle x_1, 1 \rangle $	1	0	0	0	1	0	0	0

 $\langle x_2,4\rangle \mid 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

x_0	2	1	2	4	1	2	2	4
<i>X</i> ₀ <i>X</i> ₁ <i>X</i> ₂	1	3	4	2	1	2	3	3
Χo	4	2	2	1	1	3	1	1

Background

Algorithms Sparse bit-set

Compact Table

Evaluation

$$s(x_0) = \{1, 2, 4\}$$

 $s(x_1) = \{1, 2, 3, 4\}$
 $s(x_2) = \{1, 2, 3, 4\}$

- 18 -

Background **Algorithms** Sparse bit-set

Compact Table words **Evaluation**

Conclusions

validTuples:

1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0

$$s(x_0) = \{1, 2, 4\}$$

 $s(x_1) = \{1, 2, 3, 4\}$
 $s(x_2) = \{1, 2, 3, 4\}$

mask

Background

Algorithms Sparse bit-set

Compact Table

Evaluation Conclusions

validTuples' words

1	1	1	1	1	1	1	1
0	1	1	0	0	0	1	1

$$supports[x_1,3]$$

 $supports[x_1,4]$

mask

 $mask = supports[x_1, 3] || supports[x_1, 4]$

$$s(x_0) = \{1, 2, 4\}$$

 $s(x_1) = \{1, 2, 3, 4\}$
 $s(x_2) = \{1, 2, 3, 4\}$

Background

Algorithms Sparse bit-set

Compact Table

Evaluation

Conclusions

validTuples:

W	О	r	α	S
1	na	18	sl	ζ

1	1	1	1	1	1	1	1
0	1	1	0	0	0	1	1

words = words && mask

$$s(x_0) = \{1, 2, 4\}$$

$$s(x_1) = \{1, 2, 3, 4\}$$

$$s(x_2) = \{1, 2, 3, 4\}$$

Background **Algorithms** Sparse bit-set

Compact Table words **Evaluation**

Conclusions

validTuples:

$$s(x_0) = \{1, 2, 4\}$$

 $s(x_1) = \{1, 2, 3, 4\}$
 $s(x_2) = \{1, 2, 3, 4\}$

mask

Procedure for updating validTuples

Background **Algorithms**

Sparse bit-set Compact Table

Evaluation

Conclusions

PROCEDURE UPDATETABLE(s: store, x: variable)

- 1: validTuples.clearMask()
- 2: foreach $a \in s(x)$ do
- validTuples.addToMask(supports[x, a])
- 4: validTuples.intersectWithMask()

- 19 -

Filtering out values

Background

Algorithms Sparse bit-set Compact Table

Evaluation

Conclusions

- Intersect every support entry with validTuples
- Remove value if intersection is empty

&&

$$s(x_2) = \{1, 2, 3, 4\}$$

Filtering out values

Background

Algorithms Sparse bit-set Compact Table

Evaluation

Conclusions

Intersect every support entry with validTuples

Remove value if intersection is empty

&&

$$s(x_2) = \{1, 2, 3, 4\}$$

Filtering out values

Background

Algorithms Sparse bit-set

Compact Table

Fvaluation

```
PROCEDURE FILTERDOMAINS(s): store
 1: foreach x \in s such that |s(x)| > 1 do
       foreach a \in s(x) do
3:
           index \leftarrow residues[x, a]
4:
           if validTuples[index] & supports[x, a][index] = 0 then
               index \leftarrow validTuples.intersectIndex(supports[x, a])
5:
6:
              if index \neq -1 then
                  residues[x,a] \leftarrow index
7:
              else
8:
                  s \leftarrow s[x \mapsto s(x) \setminus \{a\}]
9:
10: return s
```


Background

Algorithms Compact Table

Evaluation

Conclusions

```
PROCEDURE COMPACTTABLE(s: store): (StatusMsg, store)
```

1: if the propagator is being posted then

 $s \leftarrow \text{INITIALISECT}(s, T_0)$

3: if $s = \emptyset$ then

return (FAIL, Ø) 4.

5. else

foreach variable $x \in s$ whose domain has changed since 6.

last time do

UPDATETABLE(s, x) 7:

if validTuples.isEmpty() then 8:

return ⟨FAIL,∅⟩ g.

10: if validTuples has changed since last time then

 $s \leftarrow \mathsf{FILTERDomains}(s)$ 11:

12: if there is at most one unassigned variable left then

return (SUBSUMED, s) 13:

14: else

15: return (FIX, s)

Algorithm 1: Compact Table Propagator.

Outline

Background

Algorithms

Evaluation

- **Background**

 - The Compact Table algorithm
- **Algorithms**
 - Sparse bit-set
- **Evaluation**
 - Setup
 - Results
 - Discussion

Outline

Background

Algorithms

Evaluation

- **Background**
 - Constraint Problems

 - The Compact Table algorithm
- **Algorithms**
 - Sparse bit-set
 - Compact Table
- - Setup
- **Conclusions**