Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

Find the po	ossible values o	f the constant	t <i>p</i> .			
••••••	•••••	••••••	••••••	••••••	•	•••••••
•••••	•••••	••••••	•••••	•••••		•••••
	•••••					
•••••	•••••	•••••		•••••		•••••
	•••••					
•••••	••••••	•••••	•••••	•••••		•••••
•••••						
	•••••	••••••	••••••			
•••••				•••••		
•••••				•••••		

2

The diagram shows part of the curve with equation $y = p \sin(q\theta) + r$, where p, q and r are constants.

(a)	State the value of p .	[1]
(b)	State the value of q .	[1]
(a)	State the value of r .	[1]
(C)	State the value of 7.	[1]

An arithmetic progression has first term 4 and common difference d. The sum of the first n terms of

(a)	Show that $(n-1)d = \frac{11726}{n} - 8$.
(b)	Given that the n th term is 139, find the values of n and d , giving the value of d as a fraction. [4]

Find the equation of the translated curve, giving your answer in the form $y = ax^2 + bx + c$.	[2]
Find the equation of the translated curve, giving your answer in the form $y = ax + bx + c$.	[3]
	•••••
	•••••
	•••••
	•••••
The curve with equation $y = x^2 + 2x - 5$ is transformed to a curve with equation $y = 4x^2 + 4x + 4$	- 5
The curve with equation $y = x^2 + 2x - 5$ is transformed to a curve with equation $y = 4x^2 + 4x + 4x$. Describe fully the single transformation that has been applied.	- 5. [2]
	[2]
Describe fully the single transformation that has been applied.	[2]
Describe fully the single transformation that has been applied.	[2]
Describe fully the single transformation that has been applied.	[2]
Describe fully the single transformation that has been applied.	[2]
Describe fully the single transformation that has been applied.	[2]
Describe fully the single transformation that has been applied.	[2]

		<u></u>		Solve the	()
		V y		Solve the	
•••••		•••••		•••••	
			• • • • • • • • • • • • • • • • • • • •		
		•••••		•••••	
•••••		•••••		•••••	
•••••		•••••		•••••	
			• • • • • • • • • • • • • • • • • • • •		
			•••••		
		•••••		•••••	
		•••••		•••••	
					(b)
	$-7 - 0$ for $0^{\circ} < x < 360^{\circ}$	$6\sqrt{\tan x} +$	lve the equation	Hanca cols	
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(D)
	$\frac{1}{x}$ - 7 = 0 for $0^{\circ} \le x \le 360^{\circ}$.	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(D)
	$\frac{1}{x}$ - 7 = 0 for $0^{\circ} \le x \le 360^{\circ}$.	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(D)
	$ = 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}. $	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(b)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(b)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(b)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(D)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(0)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	6√tan x +	lve the equation	Hence solv	(0)
	$\frac{1}{x}$ - 7 = 0 for $0^{\circ} \le x \le 360^{\circ}$.	6√tan <i>x</i> +	lve the equation	Hence solv	(u)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	6√tan x +	lve the equation	Hence solv	(0)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	$6\sqrt{\tan x} +$	lve the equation	Hence solv	(0)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	6√tan x +	lve the equation	Hence solv	(0)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	6√tan x +	lve the equation	Hence solv	(U)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	6√tan x +	lve the equation	Hence solv	(U)
	$\frac{1}{x} - 7 = 0 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	6√tan x +	lve the equation	Hence solv	(U)

	Express $f(x)$ in the form $2(x+a)^2 + b$.	[2
b)	Find the range of f.	
b)		
()		
b)		[1

	Find an expression for $f^{-1}(x)$.	[3
		•••••
The	function g is defined by $g(x) = 2x + 4$ for $x < -1$.	
	function g is defined by $g(x) = 2x + 4$ for $x < -1$.	[2]
	function g is defined by $g(x) = 2x + 4$ for $x < -1$. Find and simplify an expression for $fg(x)$.	[2
		[2
		[2
		[2
		[2
		[2
		[2
		[2
		[2
		[2
		[2

(a)

The diagram shows the circle with equation $(x-2)^2 + (y+4)^2 = 20$ and with centre C. The point B has coordinates (0, 2) and the line segment BC intersects the circle at P.

Find the equation of BC .	[2]

Hence find the coordinates of P , giving your answer in exact form.	[5

The diagram shows the curve with equation $y = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}$. The line y = 5 intersects the curve at the points A(1, 5) and B(16, 5).

(a)	Find the equation of the tangent to the curve at the point A . [4]

)	Calculate the area of the shaded region.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••

The diagram shows triangle ABC with AB = BC = 6 cm and angle ABC = 1.8 radians. The arc CD is part of a circle with centre A and ABD is a straight line.

(a)	Find the perimeter of the shaded region.	[5]

)	Find the area of the shaded region.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

10	The function f is	defined by	f(x) =	$(4x + 2)^{-}$	2 for <i>x</i> > -	$-\frac{1}{2}$
----	-------------------	------------	--------	----------------	-------------------------	----------------

J	f(x) dx.							
							•••••	
							•••••	
	•••••							
•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••
•••••								
	•••••			•••••	•••••	•••••	•••••	••••••
	••••							
••••••	•••••••••••	••••••	•••••	••••••	••••••	•••••	•••••	•••••
•••••	•••••	••••••	•••••		•••••	•••••	•••••	••••••
•••••						•••••		
							•••••	
••••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••
•••••								
	•••••	•••••	•••••	•••••	•••••		•••••	
••••••	••••••	•••••	•••••		•••••	•••••	•••••	••••••
•••••	•••••		•••••		••••••	•••••	••••••	••••••

A point is moving along the curve y = f(x) in such a way that, as it passes through the point A, its y-coordinate is **decreasing** at the rate of k units per second and its x-coordinate is **increasing** at the rate of k units per second.

))	Find the coordinates of A .	[6]

11	has	point <i>P</i> lies on the line with equation $y = mx + c$, where <i>m</i> and <i>c</i> are positive constants. A curve equation $y = -\frac{m}{x}$. There is a single point <i>P</i> on the curve such that the straight line is a tangent to curve at <i>P</i> .
	(a)	Find the coordinates of P , giving the y -coordinate in terms of m . [6]

The normal to the curve at P intersects the curve again at the point Q.

	••••••
	•
	••••••
	••••••
	••••••
	•
	••••••
	••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.