

The dreamers guide to runaway physics

O. Embreus and M. Hoppe

- Fully implicit, non-linear, self-consistent solver for runaway generation during tokamak disruptions (time-linearized mode also available)
- Treating electrons as 1, 2 or 3 separate populations
- Numerical conservation of particle number and positivity (in the future?)
- Two-component code
 - ► High-performance kernel written in C++17 (with PETSc for linear algebra)
 - User-friendly frontend written in Python

Scalar quantities

- ▶ $I_p(t)$: Total plasma current
- $lackbox{}\psi_{\mathrm{edge}}(t)$: Poloidal magnetic flux at plasma edge

■ Fluid quantities

- $ightharpoonup E_{\parallel}(t,r)$: Parallel electric field
- ▶ $n_{\text{cold}}(t,r)$: Cold electron density
- ▶ $n_{\text{hot}}(t,r)$: Hot electron density
- $ightharpoonup n_i(Z, Z_0; t, r)$: Ion (charge state) densities
- $ightharpoonup n_{
 m RE}(t,r)$: Runaway density
- ▶ $n_{\text{tot}}(t,r)$: Total electron density
- \blacktriangleright $j_{\text{hot}}(t,r)$: Hot electron current density
- $ightharpoonup j_{\Omega}(t,r)$: Ohmic current density
- ▶ $j_{\text{tot}}(t,r)$: Total current density
- $lackbox{}\psi_{\mathrm{p}}(t,r)$: Poloidal magnetic flux
- $ightharpoonup T_{\mathrm{cold}}(t,r)$: Cold electron temperature

■ Hot-tail grid quantities

• $f_{\text{hot}}(t, r, p, \xi)$: Hot electron distribution function

■ Runaway grid quantities

• $f_{RE}(t,r,p,\xi)$: Runaway electron distribution function

Scalars

- $I_p(t)$: Total plasma current
- $\Psi_{\mathrm{edge}}(t)$: Poloidal magnetic flux at plasma edge

Densities

- $n_{\text{cold}}(t,r)$: Cold electron density
- $n_{\text{hot}}(t,r)$: Hot electron density
- \blacksquare $n_i(Z, Z_0; t, r)$: lon densities
- $n_{RE}(t,r)$: Runaway density
- $n_{\text{tot}}(t,r)$: Total electron density

Distribution functions

- \blacksquare $f_{\text{hot}}(t, r, p, \xi)$: Hot electrons
- $f_{RE}(t, r, p, \xi)$: Runaway electrons

Current densities

- $\mathbf{j}_{\mathrm{hot}}(t,r)$: Hot electron current density
- $\mathbf{J}_{\Omega}(t,r)$: Ohmic current density
- $j_{tot}(t,r)$: Total current density

Other quantities

- \blacksquare $E_{\parallel}(t,r)$: Parallel electric field
- $lackbox{}\psi_{\mathbf{p}}(t,r)$: Poloidal magnetic flux
- $T_{\text{cold}}(t,r)$: Cold electron temperature