AI Planning Exercise Sheet 5

AI Planning Exercise Sheet 5

Date: 27.11.2014

Students: Axel Perschmann, Tarek Saier

Exercise 5.1

As given in the lecture slides:

```
Proof by induction over the structure of \chi.
```

Base case $\chi = \top$: then $s' \models \top$.

Base case $\chi = \bot$: then $s \not\models \bot$.

Base case $\chi = a \in A$: assume $s \models a$ and $on(s) \subseteq on(s')$.

Wich $a \in on(s)$ we get $a \in on(s')$, hence $s' \models a$.

Inductive case
$$\chi = \chi_1 \wedge \chi_2$$

 $s \models \chi \iff s \models \chi_1 \wedge \chi_2$
 $\iff s \models \chi_1 \text{ and } s \models \chi_2$
 $\implies s' \models \chi_1 \text{ and } s' \models \chi_2$
 $\iff s' \models \chi_1 \text{ and } \chi_2$
 $\iff s' \models \chi$

Inductive case $\chi = \chi_1 \vee \chi_2$ (Analogous to previous case)

$$s \models \chi \iff s \models \chi_1 \lor \chi_2$$

$$\iff s \models \chi_1 \text{ or } s \models \chi_2$$

$$\implies s' \models \chi_1 \text{ or } s' \models \chi_2$$

$$\iff s' \models \chi_1 \text{ or } \chi_2$$

$$\iff s' \models \chi$$

Exercise 5.2

```
(a) \Pi^+ = \langle A, I, O, \gamma \rangle with A, I, \gamma unchanged and O = \{eatCake^+, bakeCake^+\} eatCake^+ = \langle haveCake, \top \wedge haveNoCake \wedge eatenCake \rangle bakeCake^+ = \langle haveNoCake, haveCake \wedge \top \rangle
```

```
(b) \pi = bakeCake, eatCake

\pi in \Pi results in \{haveCake \mapsto 0, eatenCake \mapsto 1, haveNoCake \mapsto 1\}

\pi^+ in \Pi^+ results in \{haveCake \mapsto 1, eatenCake \mapsto 1, haveNoCake \mapsto 1\}
```

AI Planning Exercise Sheet 5

Exercise 5.3

Considerations:

 $h^{Manhattan}(s)$ sums up distances of tiles to their target position.

 $h^+(s)$ considers the relaxed planning task with relaxed operators. This means when a tile is moved it moves to the new position but also "stays" at the old (at()) for the old position is not negated). χ of each o^+ should be the same in Π and Π^+ though.

(a) $h^{Manhattan}(s)$ is equal to $h^+(s)$ without the restictions given by χ for each o^+ . In other words: for $h^{Manhattan}(s)$ you can move any tile freely, for $h^+(s)$ you can move tiles freely along the paths where $empty(p_{i,j})$ was made true at one point or was true for s in the first place. Therefore $h^{Manhattan}(s)$ can never yield a larger number than $h^+(s)$.