PCT -

国際事務局 特許協力条約に基づいて公開された国際出願

世界知的所有権機関

(51) 国際特許分類6 G11B 20/10, H04L 11/00, H04N 5/91

A1

(11) 国際公開番号

WO98/02881

(43) 国際公開日

1998年1月22日(22.01.98)

(21) 国際出願番号

PCT/JP97/01873

(22) 国際出願日

1997年6月2日(02.06.97)

(30) 優先権データ

特願平8/184881 特願平8/248110

1996年7月15日(15.07.96)

1996年9月19日(19.09.96)

(71) 出願人(米国を除くすべての指定国について) 株式会社 東芝(KABUSHIKI KAISHA TOSHIBA)[JP/JP] 〒210 神奈川県川崎市幸区堀川町72番地 Kanagawa, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

奥山武彦(OKUYAMA, Takehiko)[JP/JP]

〒233 神奈川県横浜市港南区日野3-8-2-316 Kanagawa, (JP)

下田乾二(SHIMODA,Kenji)[JP/JP]

〒246 神奈川県横浜市瀬谷区二ッ橋町547

サージュ三境515 Kanagawa, (JP)

遠藤謙二郎(ENDOH,Kenjiro)[JP/JP]

〒145 東京都大田区東嶺町36-11 Tokyo, (JP)

(74) 代理人

弁理士 伊藤 進(ITOH, Susumu)

〒160 東京都新宿区西新宿7丁目4番4号

武蔵ビル Tokyo, (JP)

(81) 指定国 JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

APPARATUS HAVING DIGITAL INTERFACE, NETWORK SYSTEM EMPLOYING THE APPARATUS AND (54)Title: **COPY PROTECTION METHOD**

ディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト (54)発明の名称

(57) Abstract

Copy generation management information is detected by a copy flag detecting circuit of an apparatus. The copy generation management information is inserted into the CIP header of an IEEE 1394 packet and transmitted. The copy generation management information in the CIP header is detected by a copy flag detector of a 13941/F of the apparatus. In accordance with the detection result, a copy generation management circuit records the new copy generation management information and a record control circuit permits or forbids the recording. With this constitution, a decoding circuit on a receiver side can be eliminated.

(57) 要約

機器のコピーフラグ検出回路によってコピー世代管理情報を検出する。このコピー世代管理情報はIEEE1394パケットのCIPヘッダ内に挿入されて伝送される。機器の1394I/Fのコピーフラグ検出器は、CIPヘッダ内のコピー世代管理情報を検出する。この検出結果に基づいて、コピー世代管理回路は新たなコピー世代管理情報の記録を行い、記録制御回路は記録の許可又は禁止を行う。これにより、受信側機器においてデコード回路は不要である。

参写情報 PCTに基づいて公開される国際出願のパンフレット第一頁に記載されたPCT加盟国を問定するために使用されるコード

1

明細書

ディジタルインターフェースを有する装置及びこれを用いたネット ワークシステム並びにコピープロテクト方法

技術分野

本発明は、コピープロテクト機能を有するディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法に関する。

背景技術

近年、画像及び音声のディジタル処理が普及してきており、記録及び 再生をディジタル化したDVC(ディジタルビデオカセットレコーダ) も開発されている。ディジタル化によって、伝送及び記録等におけるノ イズの混入を防止することができ、信号品質を向上させることができる。 このようなディジタル記録においては、オリジナルと同一の複製を作成 することができ、記録メディアに記録された情報の著作権を保護する必 要性が高くなってきた。

特に、音声データを含む動画像データの著作権保護については、日本で提案され、現在、米国を中心に協議されているVHRA(Video Home Recording Act)等関係団体による規定化が進められている。このVHRAにおいては、アナログ機器をソースとしたアナログ接続では、マクロビジョン方式又はCGMS(COPY GENERATION MANAGEMENT SYSTEM)ーA方式を採用することが規定されており、ディジタル機器をソースとしたアナログ接続にはマクロビジョン方式を採用することが規定されており、ディジタル機器をソースとしたディジタル接続においては、CGMS-A(COPY GENERATION MANAGEMENT SYSTEM -ANALOG)又はCGM

S-D (COPY GENERATION MANAGEMENT SYSTEM -DIGITAL) 方式を採用することが規定されている。

アナログ接続に用いられるマクロビジョン方式は、ビデオ信号の垂直 帰線期間にコピーガード信号を重畳することにより、正常な記録を困難 にするものである。即ち、この方式では、画像の同期信号のレベルを変 化させて記録側機器におけるシンク検出を不能にすると共に、バースト 位相を変化させることにより記録側機器の正常な色再現性を困難にする。 コピーガード信号が重畳された画像信号については、記録側機器が特別 な対応を行うことなく正常な録画が阻止される。

また、CGMS-A方式は、映像信号の垂直帰線期間の所定の水平期間にコピーが可能であるか否かを示すフラグを挿入するものであり、このフラグに基づいて、記録側機器は記録を制御する。

ディジタル接続において用いられるCGMS-Dは、ディジタルVCR及びDVD等の各機器固有の記録フォーマット中に、あるいはディジタルインターフェースフォーマット(伝送時のデータフォーマット)中に2ビットのコピー世代管理情報を付加するものである。再生側機器においては、出力信号中にコピー世代管理情報を必ず挿入し、記録側機器においては、入力信号中からコピー世代管理情報を検出して記録を制御するようになっている。

コピー世代管理情報は、"11"によってコピー禁止を示し、"10"によってコピー1回許可を示し、"00"によってコピーフリーを示す。記録側機器は、入力信号中に含まれるコピー世代管理情報が"10"である場合には、入力信号を記録すると共に、記録時にコピー世代管理情報を"11"(コピー禁止)に変更する。つまり、孫記録は不能である。ディジタルVCR(以下、DVCともいう)については、日本国の民

生用ディジタルVCR協議会において、NTSC又はPAL規格等に対応したSD(Standard Definition)規格及びハイビジョンに対応したHD(High Definition)規格が規格化されている。これらのSD,HD規格(以下、DVC規格という)では、DVCにおけるコピー世代管理情報についての記録フォーマット及びディジタルインターフェースフォーマットは規定済みである。即ち、記録フォーマット及びディジタルインターフェースフォーマットのいずれにおいても、コピー世代管理情報は後述するVAUXエリアのソースコントロール(SOURCE CONTROL)パケット内に挿入されるようになっている。

DVCの規格以外では、MPEG2のトランスポートストリームのヘッダ内にコピー世代管理情報を挿入することが略々規定されている。しかし、これらの規格以外の規格では、CGMS-Dについて考慮されておらず、コピー世代管理情報を各種ディジタル信号、各種ディジタル機器のパケット又はI/Fフォーマットのいずれの位置に挿入するか規定されていない。

現在、IEC (International Electrotechnical Committee) で審議されている規格によれば、各種画像を取り扱う機器の記録ディジタルデータ中にコピー世代管理情報を記録すると共に、再生時にはコピー世代管理情報を含むディジタルインターフェース出力を出力することが規定されている。また、このディジタルインターフェース出力を記録する記録側機器においては、コピー世代管理情報を検出してその規則に従った記録を行うことが規定されている。

ところで、近年、マルチメディアの発展と共にネットワークシステムが普及してきている。マルチメディアにおいては、パーソナルコンピュータ相互間でデータの送受を行うだけでなく、オーディオ機器及びビデ

オ機器(以下、AV機器という)とのデータの送受も可能にする必要がある。

そこで、コンピュータとディジタル画像機器との間で、データの送受を行うためのディジタルインターフェース方式の統一規格が検討されている。マルチメディア用途に適した低コストの周辺インターフェースとしては、IEEE (The Institute of Electrical and Electronics Engineers, Inc.) 1394が有力視されている。

IEEE1394は、複数のチャンネルの多重転送が可能である。また、IEEE1394は、映像及び音声データ等を一定時間以内で転送することを保証するアイソクロノス(isochronous)転送機能を有していることから、画像伝送に適したディジタルインターフェースとなっている。

現在、IEEE1394は、ディジタルVCR協議会のDVB(欧州ディジタル放送対応)-WG、米国のDTV(Digital TV)デコーダを協議するEIAのR4.1やIEEE1394T.A.(トレードアソシエイション)で詳細コマンドが取り決められている。このIEEE1394は、もともとコンピュータ用技術がベースであるが、同期通信が可能であることから、AV機器メーカーも規格化作業に参加しており、ディジタルVCR協議会の提案も1394TAで審議されている。

IEEE1394については、日経エレクトロニクス1994.7.4 (no.612)号の「ポストSCSIの設計思想を探る三つの新ィンターフェースを比較」の記事(文献1)の152~163ページ他に内容が詳述されている。また、関連技術である本件出願人の発明による日本国特開平8-279818号公報においてもIEEE1394について詳述されている。

IEEE1394においては、複数チャンネルの多重伝送が可能であり、複数の機器からの画像データをアイソクロノスパケットに割り当てられた複数のチャンネルによって伝送することができる。しかし、IEEE1394のディジタルインターフェースについては、コピープロテクトに関するルールは規定されていない。IEEE1394では、DVCの伝送フォーマット(以下、DーI/Fフォーマットという)のデータ及びMPEG2トランスポートパケットのデータ等の各種の機器のディジタルインターフェースフォーマットのデータを単にフォーマット変換して伝送するだけである。

従って、画像をコピーするためにIEEE1394を用いてデータを 伝送した場合には、記録側機器は、IEEE1394のバスに流れているデータから自機に対するデータを取り込み、取り込んだデータを再生 側機器に固有のディジタルインターフェースフォーマットに戻した後に、挿入されているコピー世代管理情報を抽出しなければならない。即ち、ディジタルインターフェース処理部又はエラー訂正回路等の記録,再生 データ処理部において、コピー世代管理情報の挿入位置を検出してコピー世代管理情報を得る。例えば、伝送されたデータがDVCのデータであれば、VAUX内のSOURCE CONTROLバケット内の所定の2ピットが "11"であるか、"10"であるか又は"00"であるかによってコピーを制御する。

図1はこのようなIEEE1394規格に対応したディジタルインターフェースを有する装置の関連技術を示すブロック図である。また、図2及び図3はD-I/Fフォーマット及びMPEG2トランスポートストリームを説明するための説明図である。

再生(送信)側機器1,2は夫々DVC及びDVDである。これらの

再生側機器1,2と記録(受信)側機器3とはIEEE1394規格に対応したバス25によって接続されている。再生側機器1は、再生処理回路4によって再生データに所定の信号処理を施した後、D-I/Fフォーマット出力処理回路5によって、再生データをD-I/Fフォーマットに変換する。

図2はD-I/Fフォーマット出力処理回路5からのデータのフォーマットを示している。ディジタルVCRの規格であるD-I/Fフォーマットにおいては、VCRの1記録トラック分のデータを150パケットに変換して、150パケット単位でデータの伝送を行うようになっている。

この150パケットの先頭にはヘッダパケットHを配列し、次に、2つのサブコードパケットSC、3つのビデオ補助パケットVAを配列する。次いで、9シンクブロックに対応する9つのオーディオパケットA0乃至A8と135シンクブロックに対応する135のビデオパケットV0乃至V134とを配列する。コピー世代管理情報は、斜線で示すビデオ補助パケットVA内のSOURCE CONTROLパケット内に挿入される。更に、再生データは1394I/F6に供給されて、IEEE1394のパケットに変換された後、バス25に送出される。

再生側機器2においては、再生処理回路7によって再生データに所定の信号処理が施される。再生処理回路7からのデータはMPEG TS 出力処理回路8に与えられて、MPEG2規格のトランスポートストリームに変換される。

図3はこのトランスポートストリームを示している。トランスポート ストリームはマルチプログラム (チャンネル) に対応しており、復号化 時において時分割で伝送される複数のプログラムの中から所望のプログ ラムのパケットを選択することができる。この選択のために、トランスポートストリームは、図3に示すように、情報を伝送するペイロード (Payload)の前に斜線にて示すリンクレベルヘッダ (Link Level Header)を付加して伝送される。トランスポートパケット188バイトのうち4バイトがリンクレベルヘッダである。そして、コピー世代管理情報をこのヘッダ内に挿入するようになっている。MPEG2のトランスポートストリームは、1394I/F9によって、IEEE1394バケットに変換された後、バス25に送出される。

記録側機器3の1394I/F10は、バス25に流れている再生側機器1,2からのIEEE1394パケットを取り込んで、デパケット化する。1394I/F10はデパケット化した各種データを対応するデコーダに出力する。即ち、再生側機器1からのデータに基づく受信データはDVCのD-I/Fデコーダ11に供給され、再生側機器2からのデータに基づく受信データはMPEG2のTSデコーダ12に供給される。なお、他の種類のデータについても同様に、対応するデコーダに供給される。図1では他の種類のデータに対応するデコードを、他のデータのD-I/Fデコーダ13によって代表して示している。

デコーダ11,12,13は入力されたデータをデコードする。デコード結果はフラグ検出回路14,15,16を介してフォーマット変換回路17に供給される。フォーマット変換回路17は入力されたデータを自機の記録フォーマットに変換して記録処理回路18に供給する。

フラグ検出回路14,15,16は夫々デコーダ11,12,13の出力からコピー世代管理情報を検出して記録制御回路19に出力する。記録制御回路19は検出されたコピー世代管理情報に基づいて記録処理回路18の記録(コピー)を制御する。

IEEE1394においては、バス25に最大で63台のノードを接続することができる。記録側機器は、コピー世代管理情報については、受信データに固有のディジタルインターフェースフォーマットを認識すると共に、検出可能である必要がある。つまり、複数種類のデータを受信して記録する場合には、受信する全てのデータに対応する必要があり、記録側機器の回路規模が増大する。また、既に規格が定まっているディジタルインターフェースフォーマットには対応可能であるが、規格が定まっていないディジタルインターフェースフォーマットには対応可能である。

ところで、画像デコード回路を有しておらず単に画像データの記録のみを行うデータストリーマによって画像データのコピーを行うことも考えられる。現時点では、このようなデータストリーマはコピー世代管理情報ルールを適用する機器には該当していないが、将来規制の対象となる可能性もある。しかしながら、上述したように、IEEE1394のバスを介して受信したデータからコピー世代管理情報を検出するためには各受信データに対応するデコーダが必要であり、本来デコーダが不要なデータストリーマにおいても、コピー世代管理情報の検出のためだけにデコード回路が必要になってしまうという問題もあった。

また、IEEE1394では、バスに63台のノードを接続することができるので、同時に63のコピーを作成することが可能となる。このようなコピーは現在のルールでは認められているが、著作権保護の観点からは問題である。

そこで、本発明は、記録側機器において記録するデータのフォーマットに拘わらず、コピー世代管理情報に基づく記録を可能にすることにより、既存のフォーマット以外のフォーマットにも対応すると共に、回路

規模を低減することができるディジタルインターフェースを有する装置 及びこれを用いたネットワークシステム並びにコピープロテクト方法を 提供することを目的とする。

また、本発明は、記録側機器においてコピー世代管理情報に基づく記録を行う場合でも、デコード回路を不要にすることができるディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法を提供することを目的とする。

また、本発明は、複数のノードが接続可能である場合でも、同時に1 又は所定数のコピーの「呼成のみを可能にすることができるディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法を提供することを目的とする。

また、本発明は、IEEE1394上に接続されるディジタル画像機器の種類を増加されたり、新規なディジタルインターフェースフォーマットを有する新しいディジタル画像機器をIEEE1394上に新たに接続しても、コピー制御情報に基づくコピー世代管理を問題なく実施することが可能なディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法を提供することを目的とする。

発明の開示

本発明の請求項1に係るディジタルインターフェースを有する装置は、コピー世代管理情報を含む所定のデータフォーマットのデータから前記コピー世代管理情報を検出する第1の検出手段と、前記所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換するものであって、前記第1の検出手段の検出結果に基づくコピー世代管

世界知的所有権機關 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

G11B 20/10, H04L 11/00, H04N 5/91

(11) 国際公開番号

WO98/02881

(43) 国際公開日

1998年1月22日(22.01.98)

(21) 国際出願番号

PCT/JP97/01873 (74) 代理人

1997年6月2日(02.06.97)

A1

弁理士 伊藤 進(ITOH, Susumu)

〒160 東京都新宿区西新宿7丁目4番4号

武蔵ビル Tokyo, (JP)

(22) 国際出願日 (30) 優先権データ

特願平8/184881 特願平8/248110

1996年7月15日(15.07.96)

1996年9月19日(19.09.96)

JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) 出願人(米国を除くすべての指定国について) 株式会社 東芝(KABUSHIKI KAISHA TOSHIBA)[JP/JP] 〒210 神奈川県川崎市幸区堀川町72番地 Kanagawa, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

奥山武彦(OKUYAMA, Takehiko)[JP/JP]

〒233 神奈川県横浜市港南区日野3-8-2-316 Kanagawa, (JP)

下田乾二(SHIMODA,Kenji)[JP/JP]

〒246 神奈川県横浜市瀬谷区二ッ橋町547

サージュ三境515 Kanagawa, (JP)

遠藤謙二郎(ENDOH,Kenjiro)[JP/JP]

〒145 東京都大田区東嶺町36-11 Tokyo, (JP)

添付公開書類

国際調査報告書

APPARATUS HAVING DIGITAL INTERFACE, NETWORK SYSTEM EMPLOYING THE APPARATUS AND (54)Title: **COPY PROTECTION METHOD**

ディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト (54)発明の名称 方法

(57) Abstract

Copy generation management information is detected by a copy flag detecting circuit of an apparatus. The copy generation management information is inserted into the CIP header of an IEEE 1394 packet and transmitted. The copy generation management information in the CIP header is detected by a copy flag detector of a 13941/F of the apparatus. In accordance with the detection result, a copy generation management circuit records the new copy generation management information and a record control circuit permits or forbids the recording. With this constitution, a decoding circuit on a receiver side can be eliminated.

(57) 要約

機器のコピーフラグ検出回路によってコピー世代管理情報を検出する。このコピー世代管理情報はIEEE1394パケットのCIPヘッダ内に挿入されて伝送される。機器の1394I/Fのコピーフラグ検出器は、CIPヘッダ内のコピー世代管理情報を検出する。この検出結果に基づいて、コピー世代管理回路は新たなコピー世代管理情報の記録を行い、記録制御回路は記録の許可又は禁止を行う。これにより、受信側機器においてデコード回路は不要である。

1

明細書

ディジタルインターフェースを有する装置及びこれを用いたネット ワークシステム並びにコピープロテクト方法

技術分野

本発明は、コピープロテクト機能を有するディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法に関する。

背景技術

近年、画像及び音声のディジタル処理が普及してきており、記録及び再生をディジタル化したDVC(ディジタルビデオカセットレコーダ)も開発されている。ディジタル化によって、伝送及び記録等におけるノイズの混入を防止することができ、信号品質を向上させることができる。このようなディジタル記録においては、オリジナルと同一の複製を作成することができ、記録メディアに記録された情報の著作権を保護する必要性が高くなってきた。

特に、音声データを含む動画像データの著作権保護については、日本で提案され、現在、米国を中心に協議されているVHRA(Video Home Recording Act)等関係団体による規定化が進められている。このVHRAにおいては、アナログ機器をソースとしたアナログ接続では、マクロビジョン方式又はCGMS(COPY GENERATION MANAGEMENT SYSTEM)ーA方式を採用することが規定されており、ディジタル機器をソースとしたアナログ接続にはマクロビジョン方式を採用することが規定されており、ディジタル機器をソースとしたディジタル接続においては、CGMS-A(COPY GENERATION MANAGEMENT SYSTEM -ANALOG)又はCGM

S - D (COPY GENERATION MANAGEMENT SYSTEM -DIGITAL) 方式を採用することが規定されている。

アナログ接続に用いられるマクロビジョン方式は、ビデオ信号の垂直 帰線期間にコピーガード信号を重畳することにより、正常な記録を困難 にするものである。即ち、この方式では、画像の同期信号のレベルを変 化させて記録側機器におけるシンク検出を不能にすると共に、バースト 位相を変化させることにより記録側機器の正常な色再現性を困難にする。 コピーガード信号が重畳された画像信号については、記録側機器が特別 な対応を行うことなく正常な録画が阻止される。

また、CGMS-A方式は、映像信号の垂直帰線期間の所定の水平期間にコピーが可能であるか否かを示すフラグを挿入するものであり、このフラグに基づいて、記録側機器は記録を制御する。

ディジタル接続において用いられるCGMS-Dは、ディジタルVCR及びDVD等の各機器固有の記録フォーマット中に、あるいはディジタルインターフェースフォーマット(伝送時のデータフォーマット)中に2ビットのコピー世代管理情報を付加するものである。再生側機器においては、出力信号中にコピー世代管理情報を必ず挿入し、記録側機器においては、入力信号中からコピー世代管理情報を検出して記録を制御するようになっている。

コピー世代管理情報は、"11"によってコピー禁止を示し、"10"によってコピー1回許可を示し、"00"によってコピーフリーを示す。記録側機器は、入力信号中に含まれるコピー世代管理情報が"10"である場合には、入力信号を記録すると共に、記録時にコピー世代管理情報を"11"(コピー禁止)に変更する。つまり、孫記録は不能である。ディジタルVCR(以下、DVCともいう)については、日本国の民

生用ディジタルVCR協議会において、NTSC又はPAL規格等に対応したSD (Standard Definition) 規格及びハイビジョンに対応したHD (High Definition) 規格が規格化されている。これらのSD,HD規格 (以下、DVC規格という) では、DVCにおけるコピー世代管理情報についての記録フォーマット及びディジタルインターフェースフォーマットは規定済みである。即ち、記録フォーマット及びディジタルインターフェースフォーマットのいずれにおいても、コピー世代管理情報は後述するVAUXエリアのソースコントロール (SOURCE CONTROL)パケット内に挿入されるようになっている。

DVCの規格以外では、MPEG2のトランスポートストリームのヘッダ内にコピー世代管理情報を挿入することが略々規定されている。しかし、これらの規格以外の規格では、CGMS-Dについて考慮されておらず、コピー世代管理情報を各種ディジタル信号、各種ディジタル機器のパケット又はI/Fフォーマットのいずれの位置に挿入するか規定されていない。

現在、IEC (International Electrotechnical Committee) で審議されている規格によれば、各種画像を取り扱う機器の記録ディジタルデータ中にコピー世代管理情報を記録すると共に、再生時にはコピー世代管理情報を含むディジタルインターフェース出力を出力することが規定されている。また、このディジタルインターフェース出力を記録する記録側機器においては、コピー世代管理情報を検出してその規則に従った記録を行うことが規定されている。

ところで、近年、マルチメディアの発展と共にネットワークシステム が普及してきている。マルチメディアにおいては、パーソナルコンピュ ータ相互間でデータの送受を行うだけでなく、オーディオ機器及びビデ オ機器(以下、AV機器という)とのデータの送受も可能にする必要がある。

そこで、コンピュータとディジタル画像機器との間で、データの送受を行うためのディジタルインターフェース方式の統一規格が検討されている。マルチメディア用途に適した低コストの周辺インターフェースとしては、IEEE (The Institute of Electrical and Electronics Engineers, Inc.) 1394が有力視されている。

IEEE1394は、複数のチャンネルの多重転送が可能である。また、IEEE1394は、映像及び音声データ等を一定時間以内で転送することを保証するアイソクロノス(isochronous)転送機能を有していることから、画像伝送に適したディジタルインターフェースとなっている。

現在、IEEE1394は、ディジタルVCR協議会のDVB(欧州ディジタル放送対応)-WG、米国のDTV(Digital TV)デコーダを協議するEIAのR4.1やIEEE1394T.A.(トレードアソシエイション)で詳細コマンドが取り決められている。このIEEE1394は、もともとコンピュータ用技術がベースであるが、同期通信が可能であることから、AV機器メーカーも規格化作業に参加しており、ディジタルVCR協議会の提案も1394TAで審議されている。

IEEE1394については、日経エレクトロニクス1994.7.4 (no.612)号の「ポストSCSIの設計思想を探る三つの新ィンターフェースを比較」の記事(文献1)の152~163ページ他に内容が詳述されている。また、関連技術である本件出願人の発明による日本国特開平8-279818号公報においてもIEEE1394について詳述されている。

IEEE1394においては、複数チャンネルの多重伝送が可能であり、複数の機器からの画像データをアイソクロノスパケットに割り当てられた複数のチャンネルによって伝送することができる。しかし、IEEE1394のディジタルインターフェースについては、コピープロテクトに関するルールは規定されていない。IEEE1394では、DVCの伝送フォーマット(以下、D-I/Fフォーマットという)のデータ及びMPEG2トランスポートパケットのデータ等の各種の機器のディジタルインターフェースフォーマットのデータを単にフォーマット変換して伝送するだけである。

従って、画像をコピーするためにIEEE1394を用いてデータを 伝送した場合には、記録側機器は、IEEE1394のバスに流れているデータから自機に対するデータを取り込み、取り込んだデータを再生 側機器に固有のディジタルインターフェースフォーマットに戻した後に、挿入されているコピー世代管理情報を抽出しなければならない。即ち、ディジタルインターフェース処理部又はエラー訂正回路等の記録,再生 データ処理部において、コピー世代管理情報の挿入位置を検出してコピー世代管理情報を得る。例えば、伝送されたデータがDVCのデータであれば、VAUX内のSOURCE CONTROLバケット内の所定の2ピットが "11"であるか、"10"であるか又は"00"であるかによってコピーを制御する。

図1はこのようなIEEE1394規格に対応したディジタルインターフェースを有する装置の関連技術を示すブロック図である。また、図2及び図3はD-I/Fフォーマット及びMPEG2トランスポートストリームを説明するための説明図である。

再生 (送信) 側機器 1, 2 は夫々DVC及びDVDである。これらの

再生側機器1,2と記録(受信)側機器3とはIEEE1394規格に対応したバス25によって接続されている。再生側機器1は、再生処理回路4によって再生データに所定の信号処理を施した後、D-I/Fフォーマット出力処理回路5によって、再生データをD-I/Fフォーマットに変換する。

図2はD-I/Fフォーマット出力処理回路5からのデータのフォーマットを示している。ディジタルVCRの規格であるD-I/Fフォーマットにおいては、VCRの1記録トラック分のデータを150パケットに変換して、150パケット単位でデータの伝送を行うようになっている。

この150パケットの先頭にはヘッダパケットHを配列し、次に、2つのサブコードパケットSC、3つのビデオ補助パケットVAを配列する。次いで、9シンクブロックに対応する9つのオーディオパケットA0乃至A8と135シンクブロックに対応する135のビデオパケットV0乃至V134とを配列する。コピー世代管理情報は、斜線で示すビデオ補助パケットVA内のSOURCE CONTROLパケット内に挿入される。更に、再生データは1394Γ/F6に供給されて、IEEE1394のパケットに変換された後、バス25に送出される。

再生側機器2においては、再生処理回路7によって再生データに所定の信号処理が施される。再生処理回路7からのデータはMPEG TS 出力処理回路8に与えられて、MPEG2規格のトランスポートストリームに変換される。

図3はこのトランスポートストリームを示している。トランスポートストリームはマルチプログラム (チャンネル) に対応しており、復号化時において時分割で伝送される複数のプログラムの中から所望のプログ

WO 98/02881 PCT/JP97/01873

7

ラムのパケットを選択することができる。この選択のために、トランスポートストリームは、図3に示すように、情報を伝送するペイロード (Payload) の前に斜線にて示すリンクレベルヘッダ (Link Level Header) を付加して伝送される。トランスポートパケット188バイトのうち4バイトがリンクレベルヘッダである。そして、コピー世代管理情報をこのヘッダ内に挿入するようになっている。MPEG2のトランスポートストリームは、1394I/F9によって、IEEE1394バケットに変換された後、バス25に送出される。

記録側機器 3 の 1 3 9 4 I / F10は、バス25に流れている再生側機器 1,2からの I E E E 1 3 9 4 パケットを取り込んで、デパケット化する。1394 I / F10はデパケット化した各種データを対応するデコーダに出力する。即ち、再生側機器 1 からのデータに基づく受信データは D V C の D ー I / F デコーダ11に供給され、再生側機器 2 からのデータに基づく受信データは M P E G 2 の T S デコーダ12に供給される。なお、他の種類のデータについても同様に、対応するデコーダに供給される。 図 1 では他の種類のデータに対応するデコードを、他のデータの D ー I / F デコーダ13によって代表して示している。

デコーダ11,12,13は入力されたデータをデコードする。デコード結果はフラグ検出回路14,15,16を介してフォーマット変換回路17に供給される。フォーマット変換回路17は入力されたデータを自機の記録フォーマットに変換して記録処理回路18に供給する。

フラグ検出回路14,15,16は夫々デコーダ11,12,13の出力からコピー世代管理情報を検出して記録制御回路19に出力する。記録制御回路19は検出されたコピー世代管理情報に基づいて記録処理回路18の記録(コピー)を制御する。

IEEE1394においては、バス25に最大で63台のノードを接続することができる。記録側機器は、コピー世代管理情報については、受信データに固有のディジタルインターフェースフォーマットを認識すると共に、検出可能である必要がある。つまり、複数種類のデータを受信して記録する場合には、受信する全てのデータに対応する必要があり、記録側機器の回路規模が増大する。また、既に規格が定まっているディジタルインターフェースフォーマットには対応可能であるが、規格が定まっていないディジタルインターフェースフォーマットには対応可能であるさ、規格が定まっていないディジタルインターフェースフォーマットには対応することができない。

ところで、画像デコード回路を有しておらず単に画像データの記録のみを行うデータストリーマによって画像データのコピーを行うことも考えられる。現時点では、このようなデータストリーマはコピー世代管理情報ルールを適用する機器には該当していないが、将来規制の対象となる可能性もある。しかしながら、上述したように、IEEE1394のバスを介して受信したデータからコピー世代管理情報を検出するためには各受信データに対応するデコーダが必要であり、本来デコーダが不要なデータストリーマにおいても、コピー世代管理情報の検出のためだけにデコード回路が必要になってしまうという問題もあった。

また、IEEE1394では、バスに63台のノードを接続することができるので、同時に63のコピーを作成することが可能となる。このようなコピーは現在のルールでは認められているが、著作権保護の観点からは問題である。

そこで、本発明は、記録側機器において記録するデータのフォーマットに拘わらず、コピー世代管理情報に基づく記録を可能にすることにより、既存のフォーマット以外のフォーマットにも対応すると共に、同路

規模を低減することができるディジタルインターフェースを有する装置 及びこれを用いたネットワークシステム並びにコピープロテクト方法を 提供することを目的とする。

また、本発明は、記録側機器においてコピー世代管理情報に基づく記録を行う場合でも、デコード回路を不要にすることができるディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法を提供することを目的とする。

また、本発明は、複数のノードが接続可能である場合でも、同時に1 又は所定数のコピーの言成のみを可能にすることができるディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法を提供することを目的とする。

また、本発明は、IEEE1394上に接続されるディジタル画像機器の種類を増加されたり、新規なディジタルインターフェースフォーマットを有する新しいディジタル画像機器をIEEE1394上に新たに接続しても、コピー制御情報に基づくコピー世代管理を問題なく実施することが可能なディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法を提供することを目的とする。

発明の開示

本発明の請求項1に係るディジタルインターフェースを有する装置は、コピー世代管理情報を含む所定のデータフォーマットのデータから前記コピー世代管理情報を検出する第1の検出手段と、前記所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換するものであって、前記第1の検出手段の検出結果に基づくコピー世代管

理情報をフォーマット変換後のデータに前記ネットワークバスのデータフォーマットに対応したデータフォーマットで挿入して前記ネットワークバスに送出する第1のインターフェース手段とを具備する。

本発明の請求項1においては、第1の検出手段によって、所定のデータフォーマットのデータからコピー世代管理情報が検出される。第1のインターフェース手段は、所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換すると共に、第1の検出手段の検出結果に基づくコピー世代管理情報をネットワークバスのデータフォーマットに対応したフォーマットで挿入する。これにより、受信側において、ネットワークバスに対応したデータフォーマットを元のデータフォーマットに戻す処理中において、コピー世代管理情報を検出可能にする。

本発明の請求項2に係るディジタルインターフェースを有する装置は、コピー世代管理情報を含む所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換することにより得られる伝送データであって、前記ネットワークバスのデータフォーマットに対応したデータフォーマットで前記コピー世代管理情報が挿入された前記伝送データを前記ネットワークバスを介して受信し、受信したデータのデータフォーマットを前記ネットワークバスのデータフォーマットから元のデータフォーマットに戻して出力する第2のインターフェース手段と、前記第2のインターフェース手段が受信したデータに含まれている前記コピー世代管理情報を検出する第2の検出手段と、前記第2の検出手段の検出結果に基づいて前記第2のインターフェース手段の出力の記録を許可又は禁止する記録制御手段とを具備する。

本発明の請求項2においては、第1のインターフェース手段からのデ

ータは第2のインターフェース手段によって受信されて、ネットワークバスに対応したデータフォーマットから元のデータフォーマットに戻される。第2の検出手段によって、受信データに挿入されているコピー世代管理情報が検出され、この検出結果に基づいて記録制御手段が第2のインターフェース手段の出力の記録を許可又は禁止する。

本発明の請求項14に係るコピープロテクト方法は、コピー世代管理情報を含む所定のデータフォーマットのデータから前記コピー世代管理情報を検出するステップと、前記所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換するものであって、検出したコピー世代管理情報をフォーマット変換後のデータに前記ネットワークバスのデータフォーマットに対応したデータフォーマットで挿入して前記ネットワークバスに送出するステップとを具備する。

本発明の請求項14において、所定のデータフォーマットのデータからコピー世代管理情報が検出される。所定のデータフォーマットのデータはネットワークバスのデータフォーマットに変換される。この際に、検出されたコピー世代管理情報がネットワークバスのデータフォーマットに対応したフォーマットで挿入される。

本発明の請求項15に係るコピープロテクト方法は、コピー世代管理情報を含む所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換することにより得られる伝送データであって、前記ネットワークバスのデータフォーマットに対応したデータフォーマットで前記コピー世代管理情報が挿入された前記伝送データを前記ネットワークバスを介して受信し、受信したデータのデータフォーマットを前記ネットワークバスのデータフォーマットから元のデータフォーマットに戻して出力するステップと、受信したデータに含まれている前記コ

ピー世代管理情報を検出するステップと、検出した前記コピー世代管理 情報に基づいて前記受信したデータの記録を許可又は禁止するステップ とを具備する。

本発明の請求項14においては、受信データはネットワークバスに対応したデータフォーマットから元のデータフォーマットに戻される。受信データに挿入されているコピー世代管理情報は検出され、この検出結果に基づいて受信データの記録が許可又は禁止する。

本発明の請求項19に係るネットワークシステムは、送信側において、 コピー世代管理情報を含む所定のデータフォーマットのデータから前記 コピー世代管理情報を検出する第1の検出手段と、前記所定のデータフ オーマットのデータをネットワークバスのデータフォーマットに変換す るものであって、前記第1の検出手段の検出結果に基づくコピー世代管 理情報をフォーマット変換後のデータに前記ネットワークバスのデータ フォーマットに対応したデータフォーマットで挿入して前記ネットワー クバスに送出する第1のインターフェース手段とを有し、受信側におい て、前記第1のインターフェース手段から前記ネットワークバスに送出 されたデータを受信し、受信したデータのデータフォーマットを前記ネ ットワークバスのデータフォーマットから元のデータフォーマットに戻 して出力する第2のインターフェース手段と、前記第2のインターフェ ース手段が受信したデータに含まれている前記コピー世代管理情報を検 出する第2の検出手段と、前記第2の検出手段の検出結果に基づいて前 記第2のインターフェース手段の出力の記録を許可又は禁止する記録制 御手段とを有する。

本発明の請求項19において、送信側からの送信データにはネットワークバスのデータフォーマットに対応してコピー世代管理情報が挿入さ

WO 98/02881 PCT/JP97/01873

れている。受信側では挿入されているコピー世代管理情報を検出して、 受信データのコピー制御を行う。

本発明の請求項23に係るディジタルインターフェースを有する装置は、それぞれコピー世代管理情報を含むマルチチャンネルのデータからチャンネル毎に前記コピー世代管理情報を検出する第4の検出手段と、マルチチャンネルの信号を同期伝送可能なバスに、マルチチャンネルのデータを送出すると共に、前記第4の検出手段が検出したコピー世代管理情報によってコピー禁止が指定されているチャンネルが所定の受信機において受信可能チャンネルとなっている場合には、前記受信可能チャンネルの指定を変更する再指定手段とを具備する。

本発明の請求項23において、第4の検出手段によって、各チャンネル毎にコピー世代情報が検出される。再指定手段は、コピー禁止が指定されているチャンネルを受信機が受信する場合には、このチャンネルを受信可能チャンネルとして受信機に指定しない。これにより、この受信機におけるコピーを禁止する。

本発明の請求項24に係るネットワークシステムは、ディジタルインターフェース手段を有する複数の機器が、前記ディジタルインターフェース手段を介し、複数のアイソクロノスパケットの送受信が可能なネットワークに接続された状態を呈するネットワークシステムにおいて、前記ディジタルインターフェース手段を有する複数の機器各々に対して、前記ディジタルインターフェース手段を介して自己の装置IDを前記ネットワーク上に通知させる手段と、前記機器の内、前記アイソクロノスパケットを前記ディジタルインターフェース手段を介して前記ネットワーク上に出力する1または複数を送信機器に、残りの1または複数の機器を受信機器にそれぞれ設定する手段と、前記送信機器において、伝送

WO 98/02881 PCT/JP97/01873

14

データのフォーマットを、前記ディジタルインターフェース手段によっ て定められるチャンネル番号毎に構成されたデータフォーマットに変換 し、アイソクロノスパケットとして前記ネットワーク上に出力する手段 と、前記受信機器のディジタルインターフェース手段より、1または複 数の前記送信機器のディジタルインターフェース手段に対し、受信可能 チャンネル番号を要求するための、チャンネル番号要求通知手段と、ネ ットワーク内のいずれかの機器のディジタルインターフェース手段より、 1または複数の前記受信機器のディジタルインターフェース手段に対し、 前記各受信機器毎に1または複数の受信可能なチャンネル番号を指定す るチャンネル番号指定手段と、前記受信可能チャンネル番号を指定する 指定手段による情報を受信した受信機器のディジタルインターフェース 手段に対し、前記ネットワーク上に出力されたアイソクロノスパケット の中から、前記チャンネル番号指定手段により指定された1または複数 の受信可能チャンネル番号のデータのみを受信させる手段と、受信機は、 前記送信機器が送信する1または複数のチャンネルの信号から、チャン ネル毎のコピー世代管理情報を検出する手段と、前記1または複数の受 信機器各々が前記ネットワーク上に通知した装置IDから、前記受信機 器それぞれについて、前記ネットワーク上を流れるアイソクロノス信号 を記録可能な機器か記録不能な機器かを判別する手段と、前記記録可能 な受信機器のディジタルインターフェース手段に対して指定されている 1または複数の受信可能なチャンネル番号が、前記コピー世代管理情報 によりコピー禁止指定のなされた1または複数のチャンネル番号と一致 した場合、前記受信機器に対し受信可能なチャンネル番号を指定する手 段を有する機器は、前記受信機器のディジタルインターフェース手段に 対し、以前に指定された1または複数の受信可能チャンネル番号から、

前記コピー禁止指定のなされた1または複数のチャンネル番号を削除して、前記1または複数の受信可能チャンネル番号を再指定する手段とを 具備する。

本発明の請求項24において、送信機器記が受信機器に対しコピープロテクトをかける手段として、受信機器より要求されたチャンネル(番号)の中にコピープロテクト信号の入っているチャンネル(番号)があれば送信機器が受信可能チャンネルからそのチャンネル番号を削除する。これにより、コピー制御を実現する。

本発明の請求項25に係るネットワークシステムは、ディジタルイン ターフェース手段を有する複数の機器が、前記ディジタルインターフェ ース手段を介し、複数のアイソクロノスパケットの送受信が可能なネッ トワークに接続された状態を呈するネットワークシステムにおいて、前 記ディジタルインターフェース手段を有する複数の機器各々に対して、 前記ディジタルインターフェース手段を介して自己の装置IDを前記ネ ットワーク上に通知させる手段と、前記機器の内、前記アイソクロノス パケットを前記ディジタルインターフェース手段を介して前記ネットワ ーク上に出力する1または複数を送信機器に、残りの1または複数の機 器を受信機器にそれぞれ設定する手段と、前記送信機器において、伝送 データのフォーマットを、前記ディジタルインターフェース手段によっ て定められるチャンネル番号毎に構成されたデータフォーマットに変換 し、アイソクロノスパケットとして前記ネットワーク上に出力する手段 と、前記受信機器のディジタルインターフェース手段より、1または複 数の前記送信機器のディジタルインターフェース手段に対し、受信可能 チャンネル番号を要求するための、チャンネル番号要求通知手段と、ネ ットワーク内のいずれかの機器のディジタルインターフェース手段より、 WO 98/02881 PCT/JP97/01873

16

1または複数の前記受信機器のディジタルインターフェース手段に対し、 前記各受信機器毎に1または複数の受信可能なチャンネル番号を指定す るチャンネル番号指定手段と、前記受信可能チャンネル番号を指定する 指定手段による情報を受信した受信機器のディジタルインターフェース 手段に対し、前記ネットワーク上に出力されたアイソクロノスパケット の中から、前記チャンネル番号指定手段により指定された1または複数 の受信可能チャンネル番号のデータのみを受信させる手段と、受信機は、 前記送信機器が送信する1または複数のチャンネルの信号の中から、チ ャンネル毎のコピー世代管理情報を検出する手段と、前記1または複数 の受信機器各々が前記ネットワーク上に通知した装置IDから、前記受 信機器それぞれについて、前記ネットワーク上を流れるアイソクロノス 信号を記録可能な機器か記録不能な機器かを判別する手段と、前記記録 可能な受信機器のディジタルインターフェース手段に対して指定されて いる1または複数の受信可能なチャンネル番号が、前記検出したコピー 世代管理情報によりコピー禁止指定のなされた1または複数のチャンネ ル番号と一致した場合、前記送信機器は、以前に指定された1または複 数の受信可能チャンネル番号別に、一致したチャンネル番号については 記録禁止を、一致しないチャンネル番号については記録許可を与えるよ うに、前記受信可能チャンネルの指定を変更する情報を出力する手段と を具備する。

本発明の請求項25においては、送信機器記が受信機器に対しコピープロテクトをかける手段として、受信機器より要求されたチャンネル (番号)の中にコピープロテクト信号の入っているチャンネル (番号)があれば送信機器が非同期コマンドとして送信する「受信可能(許可)チャンネル指定コマンド」パケット内に、チャンネル毎の記録許可/禁

止の情報を直接書き込み受信側機器に送信することによりコピー制御 (制限)を実現するものである。

本発明の請求項26に係るネットワークシステムは、ディジタルイン ターフェース手段を有する複数の機器が、前記ディジタルインターフェ ース手段を介し、複数のアイソクロノスパケットの送受信が可能なネッ トワークに接続された状態を呈するネットワークシステムにおいて、前 記ディジタルインターフェース手段を有する複数の機器各々に対して、 前記ディジタルインターフェース手段を介して自己の装置IDを前記ネ ットケーク上に通知させる手段と、前記機器の内、前記アイソクロノス パケットを前記ディジタルインターフェース手段を介して前記ネットワ ーク上に出力する1または複数を送信機器に、残りの1または複数の機 器を受信機器にそれぞれ設定する手段と、前記送信機器より出力される 1または複数のチャンネルの信号の中から、チャンネル毎のコピー世代 管理情報を検出する手段と、前記送信機器において、伝送データのフォ ーマットを、前記ディジタルインターフェース手段によって定められる チャンネル番号毎に構成されたデータフォーマットに変換する手段と、 前記ディジタルインターフェース手段によって定められるチャンネル番 号毎に再構成された前記データのうち、前記コピー世代管理情報により コピー禁止指定のなされた1または複数のチャンネル番号と一致するチ ャンネル番号に相当するデータの送信順序の並べ替えを、所定のパケッ ト数をパケット並べ替えの単位として行う手段と、前記コピー禁止指定 がなされ並べ替えの行われたデータと、コピー禁止指定のないチャンネ ルであって、並べ替えの行われていないデータとを、アイソクロノスパ ケットとして前記ネットワーク上に出力する手段と、前記受信機器のデ ィジタルインターフェース手段より、1または複数の前記送信機器のデ

ィジタルインターフェース手段に対し、1または複数の受信可能チャン ネル番号を要求するための、チャンネル番号要求通知手段と、ネットワ ーク内のいずれかの機器のディジタルインターフェース手段より、1ま たは複数の前記受信機器のディジタルインターフェース手段に対し、前 記各受信機器毎に1または複数の受信可能チャンネル番号を指定するチ ヤンネル番号指定手段と、前記受信可能チャンネル番号を指定する指定 手段による情報を受信した受信機器のディジタルインターフェース手段 に対し、前記ネットワーク上に出力されたアイソクロノスパケットの中 から、前記チャンネル番号指定手段により指定された1または複数の受 信可能チャンネル番号のデータのみを受信させる手段と、前記1または 複数の受信機器各々が前記ネットワーク上に通知した装置IDから、前 記受信機器それぞれについて、前記ネットワーク上を流れるアイソクロ ノス信号を記録可能な機器か記録不能な機器かを判別する手段と、前記 記録不能な受信機器より、前記コピー禁止指定がなされたチャンネル番 号を受信可能チャンネル番号として要求された送信機器が、該記録不能 な受信機器に対してのみ、並べ替えの行われたデータを、並べ替え前の 順序に復元するための、バケットの正しい順序を表すキー情報を出力す る第1の復元キー情報出力手段とを具備する。

本発明の請求項26においては、受信機器より要求されたチャンネル (番号)の中にコピープロテクト信号の入っているチャンネル (番号)があれば、送信機器がそのチャンネルに対応したパケット (同期的伝送信号)に対して、IEEE1394上の伝送パケットの伝送順番を変える(伝送順位をスクランブルする)処理を行って、記録不能機器に対しては正しいパケット順序を表すキー(スクランブル解除キー)を通常の受信可能(許可)チャンネル番号と共に、又は別々(2つの非同期コマ

WO 98/02881 PCT/JP97/01873

19

ンド)に非同期コマンドによる応答を返すようにし、記録可能機器に対しては通常の受信可能(許可)チャンネルの番号のみ若しくは前記通常の受信可能(許可)チャンネルの番号と共に不正な(ダミーの)スクランブル解除キーを非同期コマンドによる応答として返すか、または何の応答も返さないようにすることにより前記コピー制御を行う(実現する)ものである。

本発明の請求項27に係るネットワークシステムは、ディジタルイン ターフェース手段を有する複数の機器が、前記ディジタルインターフェ 一ス手段を介し、複数のアイソクロノスパケットの送受信が可能なネッ トワークに接続された状態を呈するネットワークシステムにおいて、前 記ディジタルインターフェース手段を有する複数の機器各々に対して、 前記ディジタルインターフェース手段を介して自己の装置IDを前記ネ ットワーク上に通知させる手段と、前記機器の内、前記アイソクロノス パケットを前記ディジタルインターフェース手段を介して前記ネットワ ーク上に出力する1または複数を送信機器に、残りの1または複数の機 器を受信機器にそれぞれ設定する手段と、前記送信機器より出力される 1または複数のチャンネルの信号の中から、チャンネル毎のコピー世代 管理情報を検出する手段と、前記送信機器において伝送データのフォー マットを、前記ディジタルインターフェース手段によって定められるチ ャンネル番号毎に構成されたデータフォーマットに変換する手段と、前 記ディジタルインターフェース手段によって定められるチャンネル番号 毎に再構成された前記データのうち、前記コピー世代管理情報によりコ ビー禁止指定又は1回のみのコピー許可指定のなされた1または複数の チャンネル番号と一致するチャンネル番号に相当するデータに対し、バ ケット単位に暗号化を施す手段と、前記コピー禁止指定がなされ暗号化

されたデータと、コピー禁止指定のないチャンネルであって暗号化の行 われていないデータとを、アイソクロノスパケットとして前記ネットワ ーク上に出力する手段と、前記受信機器のディジタルインターフェース 手段より、1または複数の前記送信機器のディジタルインターフェース 手段に対し、1または複数の受信可能チャンネル番号を要求するための、 チャンネル番号要求通知手段と、ネットワーク内のいずれかの機器のデ ィジタルインターフェース手段より、1または複数の前記受信機器のデ イジタルインターフェース手段に対し、前記各受信機器毎に1または複 数の受信可能チャンネル番号を指定するチャンネル番号指定手段と、前 記受信可能チャンネル番号を指定する指定手段による情報を受信した受 信機器のディジタルインターフェース手段に対し、前記ネットワーク上 に出力されたアイソクロノスパケットの中から、前記チャンネル番号指 定手段により指定された1または複数の受信可能チャンネル番号のデー タのみを受信させる手段と、前記1または複数の受信機器各々が前記え ットワーク上に通知した装置IDから、前記受信機器それぞれについて、 前記ネットワーク上を流れるアイソクロノス信号を記録可能な機器か記 録不能な機器かを判別する手段と、前記記録不能な受信機器より、前記 コピー禁止指定がなされたチャンネル番号を受信可能チャンネル番号と して要求された送信機器が、該記録不能な受信機器に対してのみ、暗号 化の行われたデータを、暗号化される前のデータに復元するための、正 しいデータに戻すキー情報を出力する第2の復元キー情報出力手段とを 具備する。

本発明の請求項27においては、受信機器より要求されたチャンネル (番号)の中にコピープロテクト信号の入っているチャンネル(番号) があれば、送信機器がそのチャンネルに対応したパケット(同期的伝送 信号)に対して、IEEE1394上の伝送パケット内のデータ(数値列)の順番をスクランブルし、前記記録不能機器に対しては、正しいパケット内データの順番を表すキー(スクランブル解除キー)を送信し、記録可能機器に対しては、不正な(ダミーの)スクランブル解除キーを送信することにより前記コピー制御を行う(実現する)ものである。

図面の簡単な説明

図1はディジタルインターフェースを有する装置の関連技術を示すブ ロック図、図2及び図3はコピー世代管理情報の挿入位置を説明するた めの説明図、図4は本発明に係るディジタルインターフェースを有する 装置の一実施の形態を示すブロック図、図5はDVCフォーマット説明 するための説明図、図6はDVCフォーマット説明するための説明図、 図7及び図8はDVCフォーマット説明するための説明図、図9はDV Cフォーマット説明するための説明図、図10はDVCフォーマット説 明するための説明図、図11はD-I/Fフォーマットを説明するため の説明図、図12はD-I/Fフォーマットを説明するための説明図、 図13はIEEE1394パケットのフォーマットを説明するための説 明図、図14はMPEG2のトランスポートストリームを説明するため の説明図、図15は図4の実施の形態の動作を説明するためのタイミン グチャート、図16は本発明の他の実施の形態を示すプロック図、図1 7はアイソクロノスパケット挿入回路210 によるコピー制御情報のアイ ソクロノスパケット内の配列を説明するための説明図、図18はtco de値を説明するための図表、図19はコピー制御情報のサイクリック な挿入方法を説明するための説明図、図20はコピー制御情報のサイク リックな挿入方法を説明するための図表、図21は図16の実施の形態

の動作を説明するための説明図、図22は本発明の他の実施の形態を示すブロック図、図23は本発明の他の実施の形態を示すブロック図、図24は図23の実施の形態の概観を示す概観図、図25は図23の実施の形態におけるコピー制御方法の手順を示したフローチャート、図26は図23の実施の形態においてアイソクロノスパケットとアシンクロナスパケットとの送受信処理の一例を時系列に示した図、図27乃至図29はアイソクロノスパケットと非同期コマンドとを示す説明図、図30は図23の変形例を示すブロック図、図31は本発明の他の実施の形態を示すブロック図、図32なで図33は図31のSTB119から送信される非同期コマンドを示す説明図である。

発明を実施するための最良の形態

以下、図面を参照して発明の実施の形態について詳細に説明する。本実施の形態はIEEE1394に適用したものである。各機器はIEEE1394規格のインターフェースを有すると共に、コピー世代管理情報の検出等については、自機のディジタルフォーマットのみに対応していればよい。

図4において、機器21乃至23は、例えば、IEEE1394等のように複数の同期データを同期伝送可能なディジタルインターフェースのバス24を介して接続されている。機器21乃至23は、夫々例えばDVC、DVD又は記録機器である。機器21,22が送信(再生)側機器で、機器23が受信(記録)側機器であるものとして説明する。

機器21は1394I/F6に代えて1394I/F27を用いると共に、 コピーフラグ検出回路28を設けた点が関連技術を示す図1の再生側機器 1と異なる。再生処理回路4は図示しない再生装置からの再生データに 所定の信号処理を施してD-I/Fフォーマット出力処理回路5に出力する。例えば、再生処理回路4は、磁気テープの再生データに復調処理及び誤り訂正処理を施し、伸張処理によって元のオーディオデータ及びビデオデータを得る。

D-I/Fフォーマット出力処理回路5は、入力されたデータをD-I/Fフォーマットに変換する。即ち、D-I/Fフォーマット出力処理回路5は磁気テープの記録フォーマットとDVC規格の伝送フォーマットとの変換を行って1394I/F27に出力する。

図5万至図10はDVCである機器21の記録フォーマットを示す説明図である。図5は磁気テープに形成される記録トラックを示し、図6は各記録トラック上の記録フォーマットを示し、図7はオーディオ領域及びオーディオQ領域の構成を具体的に示し、図8はビデオ領域及びビデオQ領域の構成を具体的に示し、図9は図6中のVAUX0, VAUX1のフォーマットを示し、図10は図9中のSOURCE CONTROL PACK のフォーマットを示している。

図5に示すように、DVC規格においては、1フレーム分のデータを磁気テープ51上の複数の記録トラック(10トラック)に記録するようになっている。図6に示すように、各記録トラックはデータの種類に対応した複数の領域、即ち、ITI、オーディオ領域(Audio)、オーディオQ領域(AudioQ)、ビデオ補助領域(VAUX0,VAUX1)、ビデオ領域(Video)、ビデオ補助領域(VAUX2)、ビデオQ領域(VideoQ)及びサブコード領域(Subcode)を有しており、これらの領域はテープ51の下端から上端に向かって順次配列される。図示しないヘッドのトレースによって、これらの領域が順次記録再生される。

DVC規格のSDフォーマットにおいては、各トラックに1シンクブロックを記録単位としてデータを記録するようになっている。各シンクブロックは図7及び図8に示すように、90バイト長であり、先頭に2パイトの同期信号(SYNC)が配列され、次に3バイトのIDが設けられ、次に77パイトのデータが配列され、最後に内符号及び外符号から成るパリティが配列される。即ち、誤り訂正符号化処理によって、例えばビデオデータについては、図8に示すように、縦方向のデータに対して第157乃至167シンクブロックに誤り訂正用の外符号が配列され、横方向のデータに対して第19乃至167シンクブロックの第82乃至89バイトに誤り訂正用の内符号が配列される。

図9は第19、第20及び第156シンクブロックのビデオ補助領域 (VAUX0, VAUX1, VAUX2)の具体的なフォーマットを示している。ビデオ補助領域は第19、第20及び第156シンクブロックに対応する。

上述したように、各シンクプロックの先頭にはSYNC及びIDが配列され、次に、77バイトのデータが配列される。ビデオ補助領域においては、この部分に5バイト長の15個のパックが配列され、2バイトはリザーブ領域である。図9に示すように、第19シンクブロックのVAUX0には第0乃至第14パックが配列され、第20シンクブロックのVAUX1には第15乃至第29パックが配列され、第156シンクブロックのVAUX2には第30乃至第44パックが配列される。各パックは1バイトのパックヘッダPC0と4バイトのパックデータPC1乃至PC4によって構成される。

DVCフォーマットにおいては、奇数トラックでは図9の斜線で示す VAUX0 の第1パックがSOURCE CONTROL PACKであり、偶数トラック では図9の斜線で示すVAUX2の第40バックがSOURCE CONTROL PAC K である。

図10は第1又は第40パックのSOURCE CONTROL PACK の具体的な構成を示している。SOURCE CONTROL PACK の第1パイトPC0 にはパックヘッダとして"01100001"が配列されている。第2パイトPC1 にはMSBから2ピットずつでCGMS(Copy generation management system)、ISR(Input source of just previous recording)、СMP(The number of times of compression)及びSS(Source and recorded situation)が順次配列される。このうちのCGMSに2ビットのコピー世代管理情報が配列される。

図4において、再生処理回路4からは図5乃至図10に示すフォーマットのデータがD-I/Fフォーマット出力処理回路5に供給される。コピーフラグ検出回路28は、D-I/Fフォーマット出力処理回路5の出力のうちCGMSのコピー世代管理情報を検出し、検出結果を1394I/F27に供給するようになっている。

DVCフォーマットでは、ビデオデータは1トラック当たり135シンクブロックのビデオ領域に記録されており、オーディオデータは9シンクブロックのオーディオ領域に記録されている。DーI/Fフォーマット出力処理回路5は、1シンクブロックを1パケットとすると共に、1トラックを150パケットに変換して150パケット単位でデータの入出力を行うようになっている。

図11は1トラックに対応するパケットデータを示す説明図である。 図11に示すように、150パケットの先頭にはヘッダパケットH0を 配列し、次に、2つのサブコードパケットSC0, SC1、3つのビデ オ補助パケットVA0乃至VA2を配列する。次いで、9シンクブロッ クに対応する9つのオーディオパケットA0 乃至A8 と135シンクブロックに対応する135のビデオパケットV0 乃至V134 とを配列する。

図12は図4中のD-I/Fフォーマット出力処理回路5からの出力のデータ構造を示している。図12に示すように、各ブロック(DIFブロック)は先頭にIDが配列され、次に各種データが配列されている。図12のブロックは図11のパケットに相当する。即ち、ブロック0乃至ブロック149は1トラックの150パケットのデータに対応する。ブロック0乃至ブロック149によって1トラック分のヘッダ、サブコード、ビデオ補助データ及びオーディオ、ビデオデータが伝送される。そして、nトラックのデータによって1フレームが復元される。

1394I/F27は、入力されたパケットデータをIEEE1394のパケットフォーマットに変換して出力する。ディジタルVCRのSD規格では、1フレーム分のデータを10トラックに記録するようになっているので、1トラック分のデータは1/10フレーム期間、即ち、3.3 m秒で伝送すればよい。つまり、3.3 m秒間にビデオ135ブロック、オーデイオ9ブロック、VAUX3ブロック、サブコード2ブロック及びヘッダ1ブロックの計150ブロック(DIFブロック)を伝送する必要がある。

IEEE1394においては、画像データについては、125μ秒毎のアイソクロノスサイクルでデータを転送する。3.33m秒は26.6アイソクロノスサイクルに相当する。従って、ディジタルVTRの1トラック分のデータ、即ち、150DIFブロックを26.6アイソクロノスサイクルで伝送すればよい。1アイソクロノスサイクルでは5又は6DIFブロックだけ伝送することになる。

図13は図4中の1394I/F27が作成するアイソクロノスパケッ

トを示す説明図である。

パケットの先頭にはヘッダが配列され、次に誤り訂正用のヘッダCR Cが配列される。次に、CIPヘッダが配列され、次に5又は6DIF ブロックの同期データが配列される。最後に、誤り訂正用のデータCR Cが配列される。本実施の形態においては、1394I/F27は、コピーフラグ検出回路28の検出結果に基づく2ビットのコピー世代管理情報をCIPヘッダ内に挿入するようになっている。

IEEE1394における現規格では、CIP \land ッダとして、SID, DBS, FN, QPC, SPH, DBC, FMT, 50/60, STY PE, SYT等が設けられるようになっており、更に、2ビットのリザーブ領域が設けられている。例えば、1394I/F27は、このリザーブ領域にコピー世代管理情報を挿入する。

機器22は再生処理回路7に代えて復調及びFEC回路20を用い、1394I/F9に代えて1394I/F33を用いると共に、コピーフラグ検出回路34を設けた点が関連技術である図1の再生側機器2と異なる。復調及びFEC回路20は図示しない再生装置からの再生データに所定の信号処理を施してMPEG TS出力処理回路8に出力する。例えば、復調及びFEC回路20は、ディスクから再生したMPEG2規格の圧縮データに誤り訂正処理等を施す。MPEG TS出力処理回路8は、入力されたデータを188バイト単位のMPEG2のトランスポートバケットに変換して1394I/F33に出力する。

図14はMPEG TS出力処理回路8からのトランスポートパケットを示す説明図である。図14に示すように、トランスポートパケットは、情報を伝送するペイロードの前に斜線にて示すLink Level Headerが付加されて伝送される。トランスポートパケット188バイトのうち4バイトがリンクレベルヘッダである。コピー世代管理情報はこのヘッダ内に挿入されるようになっている。

コピーフラグ検出回路34は、トランスポートパケットのヘッダ内のコピー世代管理情報を検出し、検出結果を1394I/F33に出力するようになっている。1394I/F33の構成は1394I/F27と同様であり、1394I/F33は、MPEG2のトランスポートストリームを図13に示すIEEE1394パケットに変換する。この場合には、1394I/F33はコピーフラグ検出回路34の検出結果に基づく2ビットのコピー世代管理情報をCIPヘッダ内に挿入するようになっている。1394I/F33はアイソクロノスパケットをバス24上に送出するようになっている。

機器23の1394I/F41はバス24に流れているパケットを取り込んでデパケット化し、元のフォーマットのデータをフォーマット変換回路43に出力する。本実施の形態においては、1394I/F41はコピーフラグ検出器42を有している。コピーフラグ検出器42は、パケットのCIPへッダ内に挿入されているコピー世代管理情報を検出して、コピー世代管理回路44及び記録制御回路19に出力するようになっている。

フォーマット変換回路43は入力されたデータのフォーマットを自機の 記録フォーマットに変換する。例えば、機器23がMPEG2規格の記録 を行う場合には、機器22からのデータについてはフォーマット変換する ことなくそのまま記録処理回路18に出力し、機器21からのデータについ てはD-I/FフォーマットをMPEG2フォーマットに変換して記録処理回路18に出力する。

コピー世代管理回路44はフォーマット変換回路43においてフォーマット変換を行った場合には、変換後のフォーマットに対応する位置に、コピーフラグ検出器42の検出結果に基づくコピー世代管理情報を挿入するようになっている。例えば、自機の記録フォーマットがD-I/Fフォーマットに対応している場合において、機器22からのデータに基づく記録を行う場合には、コピーフラグ検出器42の検出結果に基づくコピー世代管理情報をSOURCE CONTROL PACK のCGMSに挿入するようになっている。また、コピー世代管理回路44は、コピーフラグ検出器42が検出したコピー世代管理情報が1回のみの記録を許可する"10"である場合には、コピー世代管理情報としてコピー禁止を示す"11"を挿入するようになっている。

なお、機器23が画像ストリーマ又はデータストリーマ等であって、デバケット化後のデータをそのまま記録する場合には、フォーマット変換回路43によるフォーマット変換処理は不要であり、この場合には、フォーマット変換回路43を省略することができる。

記録処理回路18はフォーマット変換回路43からのデータに所定の記録信号処理を施して図示しない記録装置によって記録するようになっている。記録処理回路18の記録処理は記録制御回路19によって制御される。記録制御回路19はコピーフラグ検出器42が検出したコピー世代管理情報がコピー禁止を示す"11"である場合には、記録処理回路18の記録処理を禁止し、1回のみの記録を許可する"10"又はコピーフリーを示す"00"である場合には、記録処理回路18の記録処理を許可するようになっている。

なお、機器23が記録機器であるものとして説明したが、機器23がテレビジョン受像機であってもよい。この場合には、機器23はアナログ出力及びディジタル出力が可能である必要があるが、コピー世代管理回路44によってこれらの出力にマクロビジョン、CGMS-A又はCGMS-D規格等のコピー制御情報を挿入すればよい。

次に、このように構成された実施の形態の動作について図15の説明図を参照して説明する。図15は所定のディジタルフォーマットのデータ、データの記録単位、DIFブロック及びバス24上のアイソクロノスパケットを示している。なお、図15は一般的なディジタルフォーマットについて示しており、具体的なDVCフォーマット又はMPEG2のディジタルフォーマットとは若干異なる。

機器21,22,23は夫々DVC、DVD又は所定の記録フォーマットの記録機器であるものとし、機器21の再生データを機器23によって記録するものとする。再生データは再生処理回路4によって、復調処理及び誤り訂正処理が施されて出力される。DII/Fフォーマット出力処理回路5は、入力されたDVCフォーマットのデータをD-I/Fフォーマットに変換して出力する。

図15の1段目は送信側機器に固有のディジタルフォーマットを示しており、D-I/Fフォーマット出力処理回路5の出力を示している。なお、D-I/Fフォーマット出力処理回路5の具体的なディジタルフォーマットは図12に示すものである。即ち、このデータの記録単位は150パケットである。図15では先頭にヘッダパケットを有する記録単位が複数パケットで構成されることのみを示しており、パケット数等は無視している。

コピーフラグ検出回路28は、DVCフォーマットのビデオ補助パケッ

トVA内のSOURCE CONTROL PACK 内に挿入されているコピー世代管理情報を検出して検出結果を1394I/F27に出力する。

D-I/Fフォーマット出力処理回路5の出力は1394I/F27に供給されて、IEEE1394の規格のパケットフォーマットに変換される。D-I/Fフォーマット出力処理回路5は、アイソクロノスサイクル毎に入力された複数のDIFブロックを1アイソクロノスパケットで伝送する。図15の3段目はDIFブロックを示しており、図15の4段目では、1アイソクロノスサイクルで3又は2DIFブロックが伝送されていることを示している。

なお、上述したように、DVC規格に対応させた場合には、D-I/ Fフォーマット出力処理回路 5 からは 1 アイソクロノスサイクル当たり 5 又は 6 DIFブロックが伝送される。 1 3 9 4 I/F27はコピーフラ グ検出回路28からの検出結果に基づくコピー世代管理情報をアイソクロ ノスパケットのCIPヘッダ内に挿入する。こうして、D-I/Fフォ ーマット出力処理回路 5 からは図 1 3 に示すフォーマットのアイソクロ ノスパケットが出力される。

機器21からのアイソクロノスパケットはバス24に送出される。機器23の1394I/F41はバス24上に流れているデータから宛先として自機が指定されているアイソクロノスパケットを取り込んでデパケット化する。1394I/F41からはD-I/Fフォーマットのパケットデータが出力される。

コピーフラグ検出器42は、アイソクロノスパケットのCIPへッダ内 に挿入されているコピー世代管理情報を検出する。コピーフラグ検出器 42の検出結果はコピー世代管理回路44及び記録制御回路19に与えられる。 いま、コピーフラグ検出器42が検出したコピー世代管理情報がコピーの 禁止を示す"11"であるものとする。この場合には、記録制御回路19 は記録処理回路18を制御して、記録を禁止する。例えば、記録処理回路 18は図示しないシステムコントロール又はサーボ回路等の動作を制御して記録を行わない。なお、この場合には、フォーマット変換回路43のフォーマット変換処理を禁止してもよい。

コピーフラグ検出器42が検出したコピー世代管理情報がコピーフリーを示す"00"であるものとする。この場合には、自由な記録が可能である。1394 I / F41からのパケットデータはフォーマット変換回路43に与えられて、機器23の記録フォーマットにフォーマット変換される。

例えば、送信側機器がDVCである場合において、機器23がDVCフォーマットに対応した記録を行うものであれば、フォーマット変換回路43は入力されたD-I/FフォーマットのデータをDVCフォーマットに変換して記録処理回路18に出力する。また、この場合において機器23がMPEG2のフォーマットに対応した記録を行う場合には、フォーマット変換回路43は、DVCに対応したD-I/FフォーマットのデータをMPEG2のトランスポートストリームに変換する。この場合には、コピー世代管理回路44はMPEG2のトランスポートストリームのヘッグにコピー世代管理情報として"00"を挿入する。

また、送信側機器がDVDである場合において、機器23がDVCフォーマットに対応した記録を行う場合には、フォーマット変換回路43は、MPEG2のトランスポートストリームをDVCフォーマットのデータに変換する。この場合には、コピー世代管理回路44は、VAUXのSOURCE CONTROL PACK のCGMSエリアにコピー世代管理情報として"00"を挿入する。フォーマット変換回路43からのデータは記録処理回路18に与えられて図示しない記録媒体に記録される。

コピーフラグ検出器42が検出したコピー世代管理情報がコピーを1回だけ許可する"10"である場合には、コピー世代管理回路44は、フォーマット変換回路43に入力されるデータに含まれるコピー世代管理情報("10")を書き換えて、コピー禁止を示すコピー世代管理情報("11")とする。なお、このコピー世代管理情報は、記録フォーマットに応じた位置に挿入されることは当然である。

こうして、機器23において、コピー世代管理情報に基づいた記録が可能である。

なお、送信側機器がMPEG2-TSを出力するセットトップボックスである場合の動作も同様である。機器22の復調及びFEC回路20からの再生データはMPEG TS出力処理回路8によって、188バイト単位のトランスポートパケットに変換される。この場合には、コピーフラグ検出回路43によってトランスポートパケットのヘッダからコピー世代管理情報が検出されて1394I/F33に供給される。1394I/F33はトランスポートパケットを1394パケットに変換する。この場合には、1394I/F33はCIPヘッダにコピーフラグ検出回路34が検出したコピー世代管理情報を挿入する。

また、送信側機器がDVC及びMPEG2規格以外の他の規格に対応 した機器である場合でも同様にして送信データにコピー世代管理情報を 挿入することができることは明らかである。

このように、送信側の機器においては、自機のデータフォーマットを認識してコピー世代管理情報を検出することは容易である。送信側機器の1394I/Fは検出したコピー世代管理情報を1394パケットのCIPヘッダに挿入して送出する。一方、受信側機器においては、伝送されたアイソクロノスパケットのCIPヘッダに含まれるコピー世代管

理情報を検出する。即ち、受信側機器は、受信データの種類に拘わらず、 受信データをデコードすることなく、コピー世代管理情報を検出するこ とができる。従って、受信側機器において、コピー世代管理情報を検出 するためにデコーダを設ける必要はない。また、既存のフォーマット以 外のフォーマットのデータを受信した場合でも、コピー世代管理情報を 検出することができる。受信データをデコードする必要がないので、記 録の許可又は禁止のための制御が短時間に行われる。

図16は本発明の他の実施の形態を示すブロック図である。

図4の実施の形態においては、コピー世代管理情報としてCGMSを用い、映像機器のコピー制御を行う例を説明した。コピー世代管理情報としては、CGMSだけでなく、音声データのコピー制御を行うためのSCMS(Serial Copy Management System)も規定されている。しかし、SCMSは、基本的には、音声のディジタルーディジタルコピーを1世代のみは許可することを目的としており、CGMSとは取り扱いが異なる。そこで、これらの2種類のコピー世代管理情報を用いたコピー制御を行うことが必要となることが考えられる。本実施の形態は、本発明をCGMS及びSCMSの2種類のコピー世代管理情報を用いた場合におけるコピー制御を実現する装置に適用した例を示している。

ディジタルインターフェースを有する装置201 は、所定の機器に設けられている。装置201 が取り付けられる機器としては、各種の機器が考えられ、例えば、映像及び音声データの記録再生が可能な機器、音声データのみの記録再生が可能な機器及びその他の種類のデータの記録再生を行う機器等が考えられる。具体的には、VCR、DAT、DVD、ディジタル放送の受信装置及びデータストリーマ等である。

本実施の形態においては、装置201 は送信系において、伝送データを

IEEE1394規格のアイソクロノスパケットで伝送すると共に、伝送データにCGMS及びSCMSを挿入するようになっている。また、 受信系において、受信データからCGMS及びSCMSを抽出して、受信データのコピーを制御するようになっている。

送信系において、機器201 の送信データ処理回路202 には例えば図示しない再生手段からの再生信号が与えられる。送信データ処理回路202 は、自機で処理するデータフォーマットに応じたデータを出力するものであり、例えば、図4のD-I/Fフォーマット出力処理回路5及びMPEG TS出力処理回路8等と同様の構成を有する。送信データ処理回路202 は、再生信号に所定の信号処理を施して送信データとして1394送信処理回路211 に出力する。

一方、送信データ処理回路202 の出力はCGMS検出回路204、SCMS検出回路205、APS検出回路206及びDSB検出回路207にも与えられる。CGMS検出回路204及びSCMS検出回路205は、夫々送信データ処理回路202の出力に含まれるCGMS及びSCMSを検出してアイソクロノスパケット挿入回路210に出力する。

更に、送信系では、コピー世代管理情報であるCGMS,SCMSだけでなく、PSP(マクロビジョン方式のAGC疑似パルス)が挿入されているか否かを示すAPS(Analog Protection System)及びDVD-ROMディスクのコピー禁止を規定するDSB(Digital Source Bit)も伝送可能である。APS検出回路206及びDSB検出回路207は、夫々送信データ処理回路202の出力に含まれるAPS,DSBを検出してアイソクロノスパケット挿入回路210に出力するようになっている。

なお、APS,DSBの値は以下の通りである。

f f	
	f f

- 01 PSP on, カラーストライプoff
- 10 PSP on, カラーストライプ2ライン方式on
- 11 PSP on, カラーストライプ4ライン方式on
- DSB 1 コピー禁止がエンコードされたDVD-ROMディスク
 - 0 上記以外

アイソクロノスパケット挿入回路210 は、CGMS,SCMSのコピー世代管理情報及びAPS,DSBからなるコピー制御情報(CCI (Copy Control Information))をアイソクロノスパケットに挿入するようになっている。図17はアイソクロノスパケット挿入回路210 によるコピー制御情報のアイソクロノスパケット内の配列を説明するための説明図である。

アイソクロノスパケットは、図15にも示したように、ヘッダ、ヘッダ CR Cによって構成されるパケットヘッダ (packet header) と、C I Pヘッダ (CIP_header) (斜線部)、同期データ (Data_field)及び データ CR C (data_CRC) によって構成されるデータブロック (data b lock) とを有している。 C I Pヘッダは、図17に示すように、SID, DBS, FN, QPC, SPH, リザーブ領域 (res) (斜線部), DBC, FMT, FDFが配列されている。本実施の形態においては、図4の実施の形態と同様に、C I Pヘッダのリザーブ領域 (斜線部) にコピー制御情報を挿入するようになっている。即ち、本実施の形態においては、このリザーブ領域に、C G M S だけでなく、S C M S , A P S , D S B も挿入される。

ところで、装置201 の送信系から送信されるデータは、例えば映像データ及び音声データを含む場合もあり、また、音声データのみの場合も

ある。従って、アイソクロノスパケットに挿入されたコピー制御情報の全てが有効であるとは限らない。従って、送信系においては、リザーブ領域に挿入されるCGMS, SCMSが有効であるか又は無効であるかを示す情報を挿入するようになっている。

即ち、CGMS検出回路203 及びSCMS検出回路204 の検出結果はCGMS/SCMS有効無効決定回路208 にも供給される。CGMS/SCMS有効無効決定回路208 はCGMS, SCMSの検出結果からCGMS, SCMSが有効であるか無効であるかを決定して、決定結果をCGMS/SCMS有効無効フラグ挿入回路209 に出力するようになっている。

本実施の形態は、CGMS/SCMS有効無効フラグとして例えばアイソクロノスパケットのヘッダのtcode値を利用して、CGMS/SCMSの有効無効を定義する例を示す。これはtcode値が現在未定義値であるからである。別にtcode値に限定する必要はない。

CGMS/SCMS有効無効フラグ挿入回路209 は、CGMS/SCMS MS有効無効決定回路208 の決定結果に基づいて、CGMS, SCMS の有効無効を示すtcode値を決定してアイソクロノスパケット挿入回路210 に出力するようになっている。

図17に示すように、ヘッダは、データ長(data_length)、タグ(tag)、チャンネル(channel)、4ビットのt Code (斜線部)及びsyが配列されている。アイソクロノスパケット挿入回路210 は、CGMS/SCMS有効無効フラグ挿入回路209 からのt code値をヘッダのt Codeの部分に配列するようになっている。図18はt code値を説明するための図表である。図18に示すように、IEEE 1394の現在の規格では、t CodeをAhに設定することによって、

アイソクロノスパケットであることが示される。本実施の形態においては、図18に示すように、tcode値をAhに設定することによって、パケットがアイソクロノスパケットであることを示すと共に、コピー制御情報は無効である(情報が入っていない)ことを示すようになっている。また、Chのtcode値によって音声データのためのコピー世代管理情報も有効であることを示す。

なお、実際にはCGMSが無効で、SCMSのみが有効であることはほとんど考えられないので、図18ではtCodeによってこの状態を表現するようにはしていないが、この状態をtCodeの他の値によって設定してもよい。

ところで、アイソクロノスパケット挿入回路210 が挿入するコピー制御情報としては、現在、各団体で定義されているコピー制御情報である CGMS, SCMS, APS, DSBの4種類が考えられる。これに対し、コピー制御情報の伝送に用いるCIPへッダのリザーブ領域は2ビットである。そこで、アイソクロノスパケット挿入回路210 はこれらの 4種類のコピー制御情報を複数サイクルで送ればよく、例えば8アイソクロノスサイクル周期でサイクリックに挿入すればよい。図19及び図20はコピー制御情報のサイクリックな挿入方法を説明するための説明 図及び図表である。

図19の斜線部に示すように、コピー制御情報が挿入されるCIPへッダのリザーブ領域には、8アイソクロノスサイクルでコピー制御情報が挿入される。アイソクロノスバケット挿入回路210 は、映像情報については、8アイソクロノスサイクルのうちの第1乃至第3アイソクロノスサイクルでいずれもリザーブ領域に"01"を設定し、第4アイソク

ロノスサイクルでリザーブ領域にCGMSを挿入する。同様に、アイソクロノスパケット挿入回路210 は、第5及び第6アイソクロノスサイクルでは夫々リザーブ領域にAPS,DBSを挿入する。また、第7及び第8アイソクロノスサイクルのリザーブ領域はリザーブ領域として"01"以外の値を挿入するようになっている。つまり、"01"を3回検出した次のサイクルの値("01"ではない値)がCGMSであると識別できる。

また、音声情報については、第1万至第6アイソクロノスサイクル及び第8アイソクロノスサイクルのリザーブ領域の設定は映像情報の場合と同様である。音声情報では、アイソクロノスパケット挿入回路210 は、第7アイソクロノスサイクルにおいてリザーブ領域にSCMSを挿入するようになっている。

1394送信処理回路211 及び1394 I / F212 は、図4の139 4 I / F27及び1394 I / F33等と同様の作用を呈する。即ち、13 94送信処理回路211 及び1394 I / F212 によって、送信データ処 理回路202 からの所定フォーマットのデータはIEEE1394規格の パケットに変換されて図示しない伝送路に送出されるようになっている。

アイソクロノスパケット挿入回路210 は、1394送信処理回路211を制御することにより、送信データ処理回路202 から1394送信処理回路211に出力された送信データに対して、上述したコピー制御情報及びtcode値の設定を行う。

IEEE1394では、データの伝送に先立って機器認証(Authenti cation)を行うようになっている。送信機認証回路213 は自機が受信機である場合において、相手が正しい送信機であることを認識し、受信機認証回路214 は自機が送信機である場合において、相手が正しい受信機

であることを認識することができるようになっている。受信機認証回路 214 からの認証用のキーが 1 3 9 4 送信処理回路 211 に供給され、送信機認証回路 213 からの認証用のキーが 1 3 9 4 受信処理回路 215 に供給されるようになっている。

ところで、コピーを禁止する送信データについて暗号化を施すことにより、著作権者の保護を一層厚くすることが考えられる。本実施の形態においては、エンクリプション回路207 は、CGMS検出回路203 及びSCMS検出回路204 の検出結果によってコピー禁止又は1回のみコピー許可が示された場合には、1394送信処理回路211 を制御して、送信データに暗号化処理を施すようになっている。

エンクリプション回路207 は、暗号化処理を施した場合には、暗号化処理を施したことを示すエンクリプションフラグをアイソクロノスパケットに挿入するようになっている。図17に示すように、ヘッダのsy領域は空き領域となっており、本実施の形態においては、エンクリプション回路207 は、エンクリプションフラグをsy領域のLSBに設定するようになっている。エンクリプションフラグは、例えば"1"でデータが暗号化されていることを示し、"0"でデータが暗号化されていないことを示す。

一方、受信系においては、1394I/F212及び1394受信処理回路215は、図1の1394I/F10と同様の作用を呈する。1394 I/F212及び1394受信処理回路215によって受信した受信データは、デクリプション回路216及びアイソクロノスパケット抽出回路217に供給される。デクリプション回路216は受信データが暗号化されている場合には、復号処理を行って元のデータを受信データ処理回路223に出力するようになっている。

アイソクロノスパケット抽出回路217 は、受信されたアイソクロノスパケットのCIPへッダのリザーブ領域に挿入されているコピー制御情報を抽出し、APS,DSBの検出結果を受信データ処理回路223 に出力し、CGMS,SCMSを夫々CGMS検出回路218 及びSCMS検出回路219 に出力するようになっている。

CGMS検出回路218 はアイソクロノスパケットのCIPへッダから CGMSの値を検出し、SCMS検出回路219 はアイソクロノスパケットのCIPへッダからSCMSの値を検出するようになっている。CG MS検出回路218 及びSCMS検出回路219 の検出結果は夫々スイッチ 224 の端子a, bを介して受信データ制御回路222 に供給されるようになっている。受信データ制御回路222 は入力されたコピー世代管理情報に基づいて記録を制御するための記録制御信号を出力するようになっている。

受信データ処理回路223 は、受信機が記録機器である場合、デクリプション回路216 からの受信データを自機の図示しない記録系の記録フォーマットに変換すると共に、その記録フォーマットに対応させて、CGMS,SCMSを所定のデータ位置に挿入するようになっている。この場合には、受信データ制御回路222 は、コピーを1回だけ許可するコピー世代管理情報についてはコピーを禁止するコピー世代管理情報に変更して挿入するようになっている。受信データ処理回路223 からの受信データは記録系に供給される。

また、アイソクロノスパケット抽出回路217 はt Codeのデータを抽出してCGMS/SCMS有効無効検出回路220 に出力するようになっている。CGMS/SCMS有効無効検出回路220 は入力されたデータからtcode値を検出してSCMS/CGMS有効無効決定回路22

1 に出力する。SCMS/CGMS有効無効決定回路221 は、tcodeの を値及びモード信号が与えられて、SCMS及びCGMSが有効であるか無効であるかを決定して、決定した結果に基づいてスイッチ224 を制御するようになっている。スイッチ224 はSCMS/CGMS有効無効決定回路221 に制御されて、CGMS検出回路218 又はSCMS検出回路219 の出力のいずれか一方を受信データ制御回路222 に供給するようになっている。

表 1

表 1				
	送信機	受信機A	受信機B	受信機C
		(オーディオ機器)	(ビデオ機器)	(ビデオ機器)
	:	=SCMS優先機器	=CGMS優先機器	=CGMS優先機器
(1)	CGMS有効	SCMSに従った	CGMSに従った	CGMSに従った
	SCMS有効	記録制御	記録制御	記録制御
(2)	CGMS有効	CGMS値を	CGMSに従った	CGMSに従った
	SCMS無効	SCMS値として	記録制御	記録制御
		記録制御		
(3)	CGMS無効	SCMSに従った	SCMS(ビット1)に	SCMS(ビット1)に
	SCMS有効	記録制御	よりCGMS値を	よりCGMS値を

定義し記録制御

定義し記録制御

SCMS/CGMS有効無効決定回路221 は、先ず、自機をSCMSによるコピー制御を優先させるかCGMSによるコピー制御を優先させるかを決定するようになっている。例えば、装置201 がDAT等のオーディオ機器に設けられている場合には、SCMS/CGMS有効無効決定回路221 は自機がSCMS優先機器であるものと決定する。また、例えば、装置201 がVCRに設けられている場合には、SCMS/CGMS有効無効決定回路221 は自機がCGMS優先機器であるものと決定する。

また、オーディオ機器及びビデオ機器のいずれにも用いらるDVD等に装置201 が設けられている場合には、SCMS/CGMS有効無効決定回路221 は、モード信号に基づいて自機がSCMS優先機器であるかCGMS優先機器であるかを決定する。モード信号は例えばユーザーが決定した記録モードに基づくものであり、自機をオーディオ機器として用いるかオーディオ機器以外の機器として用いるかを示す。従って、自機をオーディオ機器用として用いるかオーディオ機器用として用いるかが固定されている場合にはモード信号は不要である。

上記表1の(1)の場合に示すように、SCMS/CGMS有効無効決定回路221 は、送信機からの送信データに含まれるCGMS,SCMSのいずれも有効であることがtcode値によって示された場合には、自機をSCMS優先機器と決定したときにはSCMSを用いてコピー制御を行うための決定結果をスイッチ224に出力し、自機をCGMS優先機器と決定したときにはCGMSを用いてコピー制御を行うための決定結果をスイッチ224に出力する。

また、(2)の場合に示すように、送信機からの送信データに含まれるCGMS挿入期間のコピー制御情報のみが有効で、SCMS挿入期間

のコピー制御情報が無効である場合には、SCMS/CGMS有効無効決定回路221 は、自機をCGMS優先機器と決定したときでもSCMS優先機器と決定したときでも、いずれのときでもCGMSに基づくコピー制御を行うための決定結果をスイッチ224 に出力するようになっている。そして、この場合には、自機がSCMS優先機器と決定されたときには、受信データ制御回路222 は、供給されたCGMSの値をSCMSの値であるものとしてコピー制御を行うようになっている。

逆に、(3)の場合に示すように、送信機からの送信データに含まれるCGMS挿入期間のコピー制御情報が無効で、SCMS挿入期間のコピー制御情報のみが有効である場合には、SCMS/CGMS有効無効決定回路221 は、自機をSCMS優先機器又はCGMS優先機器のいずれに決定したときでもSCMSに基づくコピー制御を行うための決定結果をスイッチ224 に出力する。そして、この場合には、受信データ制御回路222 は入力されたSCMSによってCGMSを定義してコピー制御を行うようになっている。例えば、受信データ制御回路222 は、SCMSの値が"10"であって、1回のみのコピー許可を示すものである場合には、CGMSの値として"10"又は"11"を定義する。

上記表1は送信データに含まれるCGMS, SCMSを用いたコピー制御の一例を示すもので、他のコピー制御方法を採用してもよい。例えば、受信機器がパーソナルコンピュータであって受信データをハードディスクにコピーするものとすると、この受信機器は単なるデータストリーマでありコピー世代管理を行うことができない。即ち、この場合には、上記表1の(3)のようにSCMSによってCGMSを再定義するときには、"10"又は"11"のSCMSについては、CGMSが"11"であるものと見なすようにしてもよい。

なお、映像情報については、SCMSが規定されていないことがあるので、この場合には、SCMSは無効であるものとして伝送を行うようになっている。

次に、このように構成された実施の形態の動作について図21の説明 図を参照して説明する。

いま、図21に示すように、1台の送信機231 及び3台の受信機232 乃至234 がIEEE1394規格に対応した1394ケーブル235 でディジーチェイン状に接続されているものとする。例えば、A受信機232 はDATであり、B受信機233 及びC受信機234 はDVCであるものとする。送信機231 及び受信機232 乃至234 は図16の装置201を有している。なお、送信機231 は装置201のうち送信系の回路のみを有していればよく、受信機232 乃至234 は装置201のうち受信系の回路のみを有していればよく、受信機232 乃至234 は装置201のうち受信系の回路のみを有していてもよい。

ここで、送信機231 が送信した送信データを受信機232 乃至234 によって受信してコピーを行うものとする。先ず、データの伝送に先立って、機器認証が行われる。即ち、送信機231 は装置201 内の受信機認証回路214 によって受信機232 乃至234 が正しい受信機であることを認識する。また、受信機232 乃至234 は、装置201 内の送信機認証回路213 によって送信機231 が正しい送信機であることを認識する。なお、認証は機器認証キーの交換によって行われる。

本実施の形態においては、受信機232 乃至234 の各装置201 内の各 S CMS/CGMS有効無効決定回路221 は、認証時に、自機がCGMS 優先機器であるかSCMS優先機器であるかを決定する。

送信機231 は、例えばVCRであり、装置201 のCGMS検出回路23 0 、SCMS検出回路204 、APS検出回路205 及びDSB検出回路20 6 によって、再生データに含まれるコピー制御情報を検出する。送信機231 のアイソクロノスパケット挿入回路210 はコピー制御情報をアイソクロノスパケットのCIPへッダのリザーブ領域に8アイソクロノスサイクルでサイクリックに挿入する。また、アイソクロノスパケット挿入回路210 は、SCMS, CGMSの有効無効を示す値をアイソクロノスパケットのヘッダのtcodeに挿入する。なお、CGMS, SCMSによって記録の禁止又は1回のみのコピー許可が示された場合には、エンクリプション回路207 によって送信データに暗号化が施される。

いま、送信データのCGMS, SGMSのいずれも有効であるものとする。この場合には、送信機231 のCGMS/SCMS有効無効フラグ挿入回路209 は、tcode値としてDhを決定する。アイソクロノスパケット挿入回路210 は、CGMS/SCMS有効無効フラグ挿入回路209 の出力によってアイソクロノスパケットのヘッダのtCodeに値を設定する。

送信機231 の1394 I / F212 からのアイソクロノスパケットは1394ケーブル235 上に送出される。A,B,C受信機232 乃至234 は1394ケーブル235 上に流れている送信機231 からのデータを各装置201の1394 I / F212 を介して取り込む。受信機232 乃至234の1394 受信処理回路215 はアイソクロノスパケットを受信してデクリプション回路216 に出力する。送信機231 からの送信データに暗号化が施されている場合には、デクリプション回路216 によって復号処理が行われて元のデータが受信データ処理回路223 に供給される。

受信機232 乃至234 の各CGMS検出回路218 は、アイソクロノスパケット抽出回路217 によって抽出されたアイソクロノスパケットのCIPへッダのリザーブ領域から、CGMS挿入期間のデータを検出する。

WO 98/02881 PCT/JP97/01873

47

例えば、CGMS検出回路218 は、アイソクロノスパケットのCIPへッダのリザーブ領域の値が"01"であるサイクルが3回繰り返し、次に"01"以外の値となったサイクルの値をCGMSとして検出する。同様にして、SCMS検出回路219 は、アイソクロノスパケットのCIPへッダのリザーブ領域から、SCMS挿入期間のデータを検出する。

CGMS検出回路218 及びSCMS検出回路219 が夫々検出したCGMS, SCMSはスイッチ224 を介して受信データ制御回路222 に供給される。また、CGMS/SCMS有効無効検出回路220 はtCodeの値を検出してtcode値をSCMS/CGMS有効無効決定回路221 に出力する。

DVCであるB、C受信機233、234 は、SCMS/CGMS有効無効決定回路221によって、CGMS優先機器に決定されているものとする。tcode値はDhであって、CGMS、SCMSのいずれも有効であることが示されているので、上記表1の(1)に示すように、受信機233、234のSCMS/CGMS有効無効決定回路221は、CGMSを選択するようにスイッチ224を制御する。これにより、CGMS検出回路218からのCGMSが受信データ制御回路222に供給され、受信データ制御回路222は、入力されたCGMSに基づいて図示しない記録系の記録を制御する。即ち、CGMSが"11"である場合には記録を禁止し、"10"である場合にはCGMSを"11"に変更して記録を行い、"00"である場合には自由に記録を行う。

一方、DATであるA受信機232 は、SCMS/CGMS有効無効決 定回路221 によって、SCMS優先機器に決定されているものとする。 tcode値はDhであって、CGMS, SCMSのいずれも有効であ ることが示されているので、上記表1の(1)に示すように、受信機23 2 のSCMS/CGMS有効無効決定回路221 は、SCMSを選択するようにスイッチ224 を制御する。これにより、SCMS検出回路219 からのSCMSが受信データ制御回路222 に供給され、受信データ制御回路222 は、入力されたSCMSに基づいて図示しない記録系の記録を制御する。即ち、SCMSが"10"である場合にはSCMSを"11"に変更して記録を行い、"00"である場合には自由に記録を行う。

次に、送信機231 のCGMS/SCMS有効無効フラグ挿入回路209がCGMSのみ有効で、SCMSが無効であることを示すtcodeを発生するものとする。この場合には、受信機232 乃至234 のSCMS/CGMS有効無効決定回路221 は、スイッチ224 にCGMS検出回路218の出力を選択させる。これにより、CGMSが受信データ制御回路222に供給される。

VCRである受信機233 , 234 の受信データ制御回路222 は、CGM Sに基づいて記録系のコピー制御を行う。一方、DATである受信機23 2 の受信データ制御回路222 は、CGMSの値をSCMSの値として用いる。即ち、受信機232 の受信データ制御回路222 は、入力されたCG MSが"11"の場合には受信データの記録を禁止し、"10"の場合には、SCMSを"11"に変更して1回のみ記録を行い、"00"の場合には自由に記録を行う。

次に、送信機からの送信データがSCMSのみ有効で、CGMSが無効であるものとする。この場合には、受信機232 乃至234 のSCMS/ CGMS有効無効決定回路221 は、スイッチ224 にSCMS検出回路21 8 の出力を選択させる。これにより、SCMSが受信データ制御回路22 2 に供給される。

DATである受信機232 の受信データ制御回路222 は、SCMSに基

づいて記録系のコピー制御を行う。一方、DVCである受信機233 , 23 4 の受信データ制御回路222 は、入力されたSCMSの値に基づいて新たにCGMSの値を定義する。例えば、受信機233 , 234 の受信データ制御回路222 は、入力されたSCMSが"11"の場合及び"10"には、CGMSとして"11"を設定して記録系によるコピーを禁止し、"00"の場合にはCGMSを"00"に設定して記録系による自由なコピーを許可する。

なお、APSが"00"以外の場合は記録を禁止し、DSBが1の場合にも記録を禁止することがある。

このように、本実施の形態においては、図4の実施の形態と同様の効果が得られると共に、CGMSだけでなくSCMSを用いたコピー制御も可能である。

なお、本実施の形態においては、受信機が用いようとするコピー世代管理情報が無効である場合には、伝送された有効なコピー世代管理情報に基づいて受信側で対応するコピー世代管理情報を作成する例を説明したが、送信側で検出したコピー世代管理情報が無効である場合には、送信側で対応する有効なコピー世代管理情報を作成して伝送するようにしてもよい。

図22は本発明の他の実施の形態を示すブロック図である。図22において図4と同一の構成要素には同一符号を付して説明を省略する。

IEEE1394においては、図22に示すように、ディージーチェイン接続及びツリー接続のトポロジを採用することができる。図22では、機器47はバス24を介して図示しない他の機器にディージーチェイン状に接続されており、更に、機器47には機器(以下、子機ともいう)48及び機器(以下、孫機ともいう)49がツリー状に接続されている。1台

の送信機器に対して、受信機器として子機だけでなく孫機を含めた複数台の機器を指定して、同期データの送信が可能である。機器47を送信側機器とし、機器48,49を夫々子機及び孫機であるものとして説明する。

本実施の形態においては、送信側機器47は1394I/F27に代えて1394I/F51を採用し、受信側機器48,49は1394I/F41に代えて1394I/F52を採用した点が図4の実施の形態と異なる。なお、受信側機器48,49は同一構成であるものとする。

IEEE1394においては、データの転送に先立ってバスアービトレーションが行われる。データの転送を行う機器はバス使用権の要求コマンドを発生する。これに対して、親機がバス使用権を許諾することにより、データの送信が可能となる。IEEE1394はバスリセットによってバス構造が自動的に構築され、各ノードにノードIDが割り当てられる。バス構造の自動構築において、各機器の装置名を各機器が認識することができる。これにより、接続されている機器のうち記録が可能な機器を送信側機器が認識することができる。例えば、送信側機器は、接続されている機器のうち例えばDVC,DVD,HDD(ハードディスク装置)等を記録可能機器として認識する。

送信側機器の1394I/F51は、1394I/F27と同様に、入力されたデータを1394パケットに変換すると共に、1394パケット内のCIPヘッダにコピーフラグ検出回路28の検出結果に基づくコピー世代管理情報を挿入する。

本実施の形態においては、1394I/F51は、コピーフラグ検出回路28によって1回のみのコピー許可を示すコピー世代管理情報 ("10")が検出された場合には、記録可能機器が複数台あるか否かを判断する。1394I/F51は、記録可能機器が複数台あることを検出すると、非

同期コマンドによって、所定の機器のみに対してコピーを1回のみ許可するコピー世代情報を送信し、他の機器にはコピーを禁止するコピー世代情報を送信するようになっている。例えば、1394I/F51は、孫接続されている記録可能機器49に対しては、コピー禁止を指示するコピー世代情報を送信するようになっている。

受信側機器48,49の1394I/F52は、1394I/F41と同様に、コピーフラグ検出器42を有しており、入力された1394パケットをデパケット化すると共に、CIPヘッダに挿入されているコピー世代管理情報を検出する。更に、本実施の形態においては、1394I/F52は、非同期コマンドで伝送されているコピー世代情報を検出する。1394I/F52は、非同期コマンドでコピー世代情報が検出された場合には、CIPヘッダに挿入されているコピー世代管理情報に優先させて、コピー世代情報の検出結果をコピー世代管理回路44及び記録制御回路19に出力するようになっている。こうして、受信側機器48,49においては、コピー世代情報に基づいて記録が行われるようになっている。

このように構成された実施の形態においては、バスリセットによって、各機器の装置名が各機器において認識される。送信側機器において、再生データに含まれるコピー世代管理情報がコピー禁止を示す"11"又はコピーフリーを示す"00"である場合には、図4の実施の形態と同様の動作が行われる。即ち、この場合には、送信側機器のコピーフラグ検出回路28によって検出されたコピー世代管理情報は1394I/F51によってCIPヘッダ内に挿入される。

1394パケットはバス24を介して伝送され、受信側機器48,49の1394 I / F52によって取り込まれる。1394 I / F52は1394 バケットをデパケット化すると共に、コピーフラグ検出器42によって C I

Pヘッダ内のコピー世代管理情報を検出する。このコピー世代管理情報 に基づいてコピー世代管理回路44及び記録制御回路19の制御が行われて、 コピー世代管理情報に従った記録が行われる。

一方、再生データに含まれるコピー世代管理情報が1回のみのコピーを許可する"10"であった場合には、1394I/F51はCIPヘッダ内に"10"のコピー世代管理情報を挿入すると共に、宛先を子機48とする非同期コマンドによって1回のみのコピーを許可するコピー世代情報を伝送し、宛先を孫機49とする非同期コマンドによってコピー禁止を示すコピー世代情報を伝送する。

子機48の1394 I / F52は、非同期コマンドから1回のみのコピーを許可するコピー世代情報を検出すると、この検出結果をコピー世代管理回路44及び記録制御回路19に出力する。これにより、子機48において機器47からのデータを記録することができる。なお、コピー世代管理回路44がコピー世代管理情報を"11"に変更することは図4の実施形態と同様である。

一方、孫機49の1394I/F52は、非同期コマンドからコピー禁止を示すコピー世代情報を検出する。このコピー世代情報の検出結果は記録制御回路19に供給され、孫機49においては記録は行われない。

このように、本実施の形態においては、図4の実施の形態と同様の効果が得られると共に、記録可能な機器が複数台存在する場合でも、所定の機器のみに記録を可能にさせて、著作権者の保護を厚くすることも可能であり、特に孫記録の防止に有効である。

図23乃至図26及び図27乃至図29は本発明の他の実施の形態に係り、図23は他の実施の形態を示すブロック図であり、図24はその概観を示す概観図である。また、図25は図23の実施の形態における

コピー制御方法の手順を示すフローチャートであり、図26はIEEE 1394ケーブル上を流れるアイソクロノスパケットと非同期パケットの送受信処理の一例を時系列に示す説明図である。図27乃至図29はアイソクロノスパケットと非同期コマンドを示す説明図である。

本実施の形態は非同期データを利用することにより、ネットワーク接続された複数の機器を1台の機器でコピー世代管理するものである。本実施の形態は、コピー世代管理情報については、各機器のうち親機のみが各機器のディジタルフォーマットに対応していればよく、他の機器はIEEE1394規格のインターフェースのみを有していればよい。

図23において、セットトップボックス(以下、STBという)101 はバス100を介して機器110乃至113に接続されている。STB101には、例えば、4つのチャンネルcha,chb,chc,chdが多重されて成るディジタルのマルチCH放送信号が入力される。このマルチCH放送信号は、例えば、QPSK変調され、パケット化されて伝送される。STB101は、入力されたマルチCH放送信号によって伝送された番組を表示装置109に映出させることができると共に、マルチCH放送信号を機器110乃至113に対応したディジタルフォーマットに変換してバス100に転送することができるようになっている。

即ち、マルチCH放送信号は、STB101 の復調回路102 に供給される。復調回路102 はマルチCH放送信号に対応した復調処理、例えばQPSK復調を行ってエラー訂正回路(以下、ECCという)103 に出力する。ECC103 は、伝送時の符号誤り訂正処理等を行って、マルチCH放送信号をデコーダ104 及びデータフォーマット変換回路105 に出力する。デコーダ104 はマルチCH放送信号をデコードして、デコード信号を表示装置109 に出力する。表示装置109 はデコーダ104 からのデコ

ード信号に基づく表示を行う。

データフォーマット変換手段 5 は E C C 103 の出力を所定のディジタルデータフォーマットに変換してコピーフラグ検出回路106 及び139 4 制御回路108 に出力する。コピーフラグ検出回路106 は、E C C 3 より供給されたディジタルマルチ C H 放送信号から各チャンネル毎にコピーフラグ (例えば C G M S - D: COPY GENERATION MANAGEMENT SYSTEM -DIGITAL) を抜き出して1394制御回路108 に出力する。1394制御回路108 は、データフォーマット変換回路105 の出力を例えばIEEE1394規格のアイソクロノス転送を行うためのデータフォーマットに変換してデコーダ104 に出力すると共に、バス100 にも送出するようになっている。

バス100 は例えばIEEE1394ケーブルであり、1394制御回路108 と同様の構成の1394制御回路108 a 乃至108 dを有する機器110 乃至113 に接続されている。機器110 乃至113 は例えば夫々テレビジョン受像機(TV)、DVC、DVD_RAM及びHDDである。

次に、このように構成された実施の形態の動作について図23乃至図26及び図27乃至図29を参照して説明する。

図23のSTB1は、ディジタルマルチCH放送信号を受け、データフォーマットをIEEE1394形式に変換し、IEEE1394ケーブル等のバス100を介して、機器110乃至113に伝送する。そして、各機器110乃至113は、バス100を介してSTB101より供給されるチャンネルのうち、自分が受信したいチャンネルのみを受信する。本実施の形態では、各機器110乃至113のうち、伝送データの記録が可能な機器がそれぞれ所望のチャンネルを記録しようとした際に、IEEE1394が有するコマンドセット等の機能を用いてコピー制御を行うことを特

徴とする。

以下、本実施の形態の適用処理について、図25を参照して説明を行う。尚、STB101が送信側機器であり、機器110乃至113が受信側機器であるものとして説明を行う。また、IEEE1394では、送信機器が親機になるのが一般的であるので、STB101が親機であるとして説明を行う。

STB101 は、同期転送であるアイソクロノス転送機能を用いて、マルチCH放送信号の受信中には常時IEEE1394のバス100を介してマルチCH放送信号を伝送し、非同期転送であるasynchronous転送機能による各機器との非同期通信によって、コピー制御を行う。

IEEE1394においては、電源が投入されたタイミング、または、装置を接続したり切り離したタイミングにトポロジの自動設定が行われる。これは、1394制御回路108,108 a乃至108 dのフィジカルレイヤーにおける、図示しないコントローラ回路により行われる。トポロジの自動設定は3段階に分けて行われる。即ち、先ずバスにリセットをかけ、次に接続構造を調べ、最後に各ノードは自分のノードの番号を他のノードに通知する。

トポロジの自動設定が終了すると、IEEE1394はSCSI等と同様に、バスアービトレーションを行う。このバスアービトレーションは各機器がデータ転送を行うのに先立って必ず行われる。そして、トポロジの自動設定により決定された親機STB101 は、IEEE1394のバス100 上に接続された各機器(子機)に対して機器名を識別するための問い合わせを行う。そして、STB101 は、接続された機器110 乃至113 が例えばTV,DVC,DVD_RAM,並びにHDDであることを各機器110 乃至113 よりの応答(図26(a))によって認識する

(ステップS1)。

これにより、親機(STB101)は、例えば自己のメモリ空間内に、前記各機器名と、その機器が記録可能機器であるか否かの対応テーブルを用意しておくことによって、TVである機器110 は記録不能機器であり、DVC,DVD_RAM,並びにHDDである機器111 乃至113 は記録可能機器であることを判別する(ステップS2)。そして、このバスアービトレーションが終了すると、STB101 は、IEEE1394パケット(図26(f))に変換されたディジタルマルチCH放送信号を、IEEE1394のバス100 を介してIEEE1394のアイソクロノス転送機能を用いて各機器111 乃至113 に転送する(ステップS3)

次に、ユーザーが、各機器(子機)により、ディジタルマルチでH放送の表示または記録を行おうとしたとして、例えば、ユーザーがTVである機器110 の2画面でチャンネルAとチャンネルBの2番組を視聴しようとして2チャンネル分のチャンネルの設定を行い、DVCである機器111 にチャンネルAとチャンネルBの2番組を録画しようとして機器111 の録画スイッチを設定し、DVD_RAMである機器112 にチャンネルCの番組を記録しようとして機器112 の記録スイッチを設定し、HDDである機器113 には4チャンネル全てのデータを記録しようとして機器113 の設定がなされたとすると、各機器110 乃至113 それぞれは、STB101 に対し、受信チャンネル要求(図26(b))を、IEEE1394のアシンクロナス転送機能による非同期コマンドとして転送する(ステップS4)。尚、各機器でのディジタルマルチでH放送の受信、録画、並びに記録等の操作方法は種々有り、本実施の形態ではこだわらない。また、図26において、各機器110万至113ぞれぞれからSTB

101 に対して送信される非同期コマンドが1パケットとして表現(略記)されているが、実際には要求を行った各機器の数分のパケットが送信されている。さらに、受信側機器からSTBへの非同期コマンドは図27に示すようなパケットとして構成される。

一方、STB101 から送信されるアイソクロノスデータは、本実施の形態では、常に4チャンネル分のディジタルマルチ C H 放送が各受信側機器に対しI E E E 1 3 9 4 のバス100 を介して伝送されているわけであるが、各受信側機器の受信可能なチャンネルは、アイソクロノスデータを送信する送信側機器が、各受信側機器毎に送信する非同期コマンドにより指定する受信可能チャンネルによって決定される。即ち、STB101 は、ステップS 4 で各受信側機器よりの受信チャンネルの要求を受信すると、受信チャンネル要求の送信元である各受信側機器に対して、各々にA,B,C,Dの4チャンネルのうちの受信可能チャンネルの指定を行う(ステップS 5)。尚、STB101 から各受信側機器毎に送信する非同期コマンドは、図 2 8 に示すようなパケットとして構成される。また、前記4チャンネル分のディジタルマルチCH放送であるアイソクロノスパケットは、図 2 9 に示す様なパケットとして構成される。

ここで、ステップS4は省略することも可能である。即ち、例えば、STB101 は既にオン状態にあり、その後IEEE1394がオンとなった場合等のように、送信側機器が前記各受信側機器に送信する1または複数のチャンネル番号に相当するアイソクロノスパケットにコピー禁止信号が挿入されていることを予め検知済みの場合には、前記受信側機器は受信チャンネル要求を送信側機器に送信せず、送信側機器がネットワークトポロジの自動設定後、コピー禁止信号の挿入されたチャンネル番号の削除された受信可能チャンネル番号の指定(ステップS5)を、

各受信側機器に対して一方的に送信する用にしても良い。

さて、今、伝送されている4チャンネル分のディジタルマルチCH放送の全チャンネルがコピーフリーであったとすると、STB101 は、次のような非同期コマンドを各受信側機器に対して送信する。即ち、図26(c)に示すように、TVである機器110に対しては受信可能チャンネルとしてchA/chBの指定を行い、DVC11に対しては受信可能チャンネルとしてchA/chBの指定を行い、DVD_RAMである機器112に対しては受信可能チャンネルとしてchA/chDの指定をそれぞれ行う。各受信側機器は、これを受信することにより、それぞれ希望したチャンネルの放送信号を受信することが可能となる。

ところで、図23に示す如くに、マルチCH放送信号はSTB101 により復調され、IEEE1394のアイソクロノスパケットに変換されるわけであるが、この時、画像データ、音声データ、並びに文字データ等の識別は、マルチCH放送信号パケットのヘッダーの内容に基づいて行われる。したがってSTB101 はこのマルチCH放送信号のヘッダーに付加されたコピー世代管理情報を含む各種情報を認識することが可能である。

一方、上述したように、ディジタル放送における画像圧縮方式として 最も有力であるMPEG2方式のトランスポートパケットにおいては、 Link Level Header にコピー世代管理情報 (CGMS-D) が挿入され る。STB101 はMPEG2のトランスポートストリームに含まれるコ ピー世代管理情報を容易に検出することが可能である。

例えば、図26の(d)に示すタイミングで、マルチCH放送信号中

のチャンネル bのコピー世代管理情報(CGMS-D)に、コピー禁止信号"11"が検出されたとすると、STB101の1394制御回路108は、チャンネルBの受信要求を送信した機器111,113に対して受信可能チャンネルの再設定を行う(ステップS6,S7)。即ち、DVCである機器111に対しては受信可能チャンネルとしてchAの指定を行い、HDDである機器113に対しては受信可能チャンネルとしてchA/chC/chDの指定をそれぞれ行う。これを受信した受信側機器である機器111,113は、それぞれ希望したチャンネルの放送信号のうち、chBを受信することが不可能(コピープロテクトが可能)となる。尚、TVである機器110は記録不能機器であるので、また、DVD_RAMである機器112はもともとchBを指定していないので受信可能チャンネルの再設定を行う必要はない。

ところで、コピープロテクト処理の実行に際し、ユーザーが記録可能機器に対して録画のチャンネル指定をしたにも拘わらず録画ができなかった場合、記録可能機器の操作設定ミスか或いは機器の故障ではないか等の誤解をユーザーに対して与える恐れがある。そのため、録画できない理由をユーザーに通知するような機能を付加しても良い。例えば、記録可能機器からの受信要求にコピー禁止指定がなされたチャンネル番号が含まれていた場合、STBや受信要求を受け付けた他の送信側機器等は、受信可能チャンネル番号から、コピー禁止指定がなされたチャンネル番号を削除した受信可能チャンネル番号を指定する非同期コマンドと共に、または別々に、受信要求のあったチャンネルがコピー禁止となっている旨の情報を、受信要求を送信した受信機器またはIEEE1394ネットワークに接続された機器の何れかに送信し、機器に設けられているCRTやLEDやLCD等の表示装置を介してユーザーに通知する。

又は、別の方法として、記録可能機器が受信要求を行ったチャンネルに対して受信許可を得られなかった場合、当該受信機器がそのチャンネルはコピー禁止となっている旨を、当該受信機器に設けられている表示装置を介してユーザーに通知するようにすればよい。

さて、その後、マルチCH放送信号中のチャンネルBのコピー世代管理情報として、"10"または"00"が検出された場合には、DVCである機器111並びにHDDである機器113に対して受信可能チャンネルの再設定を行う(ステップS6,S7)。即ち、機器111に対しては受信可能チャンネルとしてchA/chBの指定を行い、機器113に対しては受信可能チャンネルとしてchA/chB/chC/chDの指定をそれぞれ行う。これにより、機器111,113は、再びそれぞれが希望したチャンネルの放送信号全てを受信することが可能となる。尚、以上のステップS3からS7までの処理は、全て、各機器及びSTB101の1394制御回路108,108a乃至108dのアプリケーションレイヤーにて実現される。また、ステップS1及びS2の処理を含めた上記処理は、現在IEEE1394,並びにIEEE1394T.A.(トレードアソシエーション)で規定されている通信プロトコル及びコマンドで全て実現される。

また、記録可能機器にコピープロテクトをかける手段として、上記方法以外にSTB101 が非同期コマンドとして送信する「受信可能チャンネル指定コマンド」に、チャンネル毎の記録許可/禁止の情報を直接書き込み受信側機器に送信する方法もある。この方法は、現在のIEEE 1394,並びにIEEE1394T.A.(トレードアソシエーション)で規定されているコマンドには無いものであり、新たにこのようなコマンドを追加して実現する方法である。

以上、送信機器をSTB101 であるとして説明したが、IEEE1394の仕様上、どの機器が送信機器となっても良く、例えば、STB101以外の送信機器として、マルチチャンネル記録されている映像等を再生し出力する機器111 (DVC)や、機器110 112,113等が送信機器となっても上記動作を実現することが可能である。さらに、IEEE1394等のバス100に、マルチCH信号chA/chB/chC/chDを送信する送信機器以外の他の送信機が接続されていて、例えば送信機器が2台以上の場合のように、chEを同一のバス上に一緒に伝送されている状態であっても、chEの信号を送信する送信機器が、パケットデータ変換を行う際にコピー世代管理情報を検出し、chA/chB/chC/chDを送信する送信機器と同様に、非同期コマンドを送信して受信側機器に受信可能チャンネルを指定することにより、chA/chB/chC/chD/chE全ての信号に対して、コピー世代管理情報に基づくコピー制御を行うことが可能である。

さらに、DVD_RAMである機器112 が非同期コマンドにより、チャンネルCのみを受信要求している場合に、STB101 がコピーフラグ検出回路106 でチャンネルCについてコピー禁止信号"11"を検出している場合、DVD_RAMである機器112 にコピープロテクトをかける手段として、記録可能機器である機器112 に対して送信側機器であるSTB101 が非同期コマンドとして送信する、「受信可能チャンネル指定コマンド」の、受信可能チャンネル番号としてあり得ない番号、即ち、アイソクロノスデータのチャンネルとして存在しない番号を指定して、「受信可能チャンネル指定コマンド」を送信するようにしても良いし、或いは「受信可能チャンネル指定コマンド」を返さないようにしても良い。前者の場合、STB101 により指定されたあり得ないチャンネル番

号に該当する信号を待ち続けることになって結果として受信できず、後者の場合には、STB101 より受信可能チャンネルの指定がされないため、どの信号も受信不可能となる。即ち、結果として、機器112 にコピープロテクトをかけることができる。

さて、既述したように、IEEE1394ではディジーチェーン接続されたトポロジーだけでなくツリー状のトポロジも可能である。図30はディジーチェーンプラスツリー型トポロジーの一例を示したブロック図である。

図30は、図23の実施の形態の変形例であり、図23の機器112に機器114を、IEEE1394のバス100を用いてツリー状に追加接続したものである。なお、機器114は例えばTVである。このように接続された場合でも、IEEE1394のバス100上には4チャンネル分の全てのアイソクロノスパケットが伝送されているので、機器112にチャンネルCのみしか伝送されていなくても、機器114はチャンネルA,B,C,Dの何れの信号であっても受信可能である。なお、この場合には、非同期コマンドによる受信要求コマンドを出力する必要はある。また、図30に示すように、例えばチャンネルB及びチャンネルCがコピー禁止状態であっても機器114においては、チャンネルA,B,C,Dの全ての信号が受信可能である。即ち、機器114はトポロジー的に見ると、DVD_RAMである機器112にぶら下がったツリー構造であるが、論理的に見ると、STB101とディジーチェインで接続された場合と同様な構成に置き換えることが可能である。

次に、コピー世代管理情報に基づくコピー制御方法として、例えば、 IEEE1394上の伝送パケットの伝送順番を変えることによりスクランブルを施してコピー制御を実現する方法について説明を行う。 図31は本発明他の実施の形態を示すブロック図である。また、図32及び図33は図31中のSTB119から受信側機器に送信される非同期コマンドを示す説明図である。図31において図23と同一の構成要素には同一符号を付して説明を省略する。

本実施の形態におけるSTB119 は、1394制御回路108 に代えて 1394制御回路115 を採用した点が図23のSTB101 と異なる。また、バス100 には1394制御回路115 と同様の構成の1394制御回路115a 乃至115d を夫々有する機器120乃至123とSTB119とが接続されている。機器120乃至123は夫々例えばTV,DVC,DVD_RAM,HDDである。

1394制御回路115 は、パケット順序入れ替え/復元回路116 を有しており、パケット順序入れ替え/復元回路116 は、IEEE1394上のアイソクロノスデータの時系列的な並びをチャンネル毎に入れ替えてスクランブルを施すと共に、スクランブルデータの復元を行うことができる。また、1394制御回路115 は、スクランブルを解除するためのスクランブル解除キーを非同期コマンドによって送信することができるようになっている。

一方、各受信側機器120 乃至123 に設けられたIEEE1394制御回路115 a 乃至115 d は、IEEE1394制御回路115 と同様の機能を有しており、スクランブル解除キーを受信することによって、アイソクロノスデータに施されたスクランブルを解除することができるようになっている。

以上のような構成における1394制御回路115 は、ディジタルのマルチCH放送 (cha/chb/chc/chd) のデータパケットを、 IEEE1394のバス100 上に流せるよう、データパケットのフォー マット変換を行う際のフォーマット変換時に要する (使用する) 数サイクル期間程度のパケットデータを蓄えるバッファ (FIFOメモリ) を有している。

そこで、ディジタルマルチCH放送(cha/chb/chc/chd)の内、コピー禁止信号の挿入されたチャンネル信号に対しては、データバケットのフォーマット変換時において、バッファを、パケット順序の入れ替え/復元回路116により制御して、IEEE1394パケットの時系列的な並びを入れ替えてスクランブルを施し、このスクランブル処理が施された順番でIEEE1394パケットをバス100上に流すようにする。

そして、各受信側機器120 乃至123 から非同期コマンドによる受信要求コマンドにより、コピー禁止信号の挿入されたチャンネルの要求があった場合、記録不能機器に対しては、図32に示す如くの正しいパケット順序を表すキスクランブル解除キーを通常の受信可能チャンネル番号と共に、又は別々の2つの非同期コマンドによる応答を返すようにする。

一方、記録可能機器に対しては、図33に示す如くの通常の受信可能 チャンネルの番号のみ、若しくは通常の受信可能チャンネルの番号と共 に不正なスクランブル解除キーを非同期コマンドによる応答として返す か、または何の応答も返さないようにする。

これにより、前者(記録不能機器)は正しいスクランブル解除キーに基づき、受信したアイソクロノスパケットをもとの順序に正しく復元することができるが、後者(記録可能機器)は正しいスクランブル解除キーを得られないため、受信したアイソクロノスパケットをもとの順序に正しく復元することができず、コピープロテクトを実現することができる。

尚、厳密には、記録可能機器は記録を行うことはできるが、該記録可能機器が記録情報を再生したときにデータパケットの順番が入れ替わっているため元の画像を正しく復元できず、結果としてコピーをプロテクトしたのと同等の効果を得ているものである。また、このパケットスクランブルは、図31のP1394制御回路115のFIFOメモリに入る範囲、即ち、画像で言うと1フレームに相当するパケット数の中でIEE1394パケットの順番をスクランブルすれば、容易に実現することが可能である。

さらに、図31に示した実施の形態では、IEEE1394パケットの順番をスクランブルして送信することによりコピープロテクトを実現したが、パケットの順番をスクランブルすることは行わず、パケットの中のデータを暗号化することによりコピープロテクトを実現する事も可能である。例えば、暗号化の方法の一例として、パケット内のデータの順番をスクランブルし、記録不能機器に対しては、正しいパケット内データの順番を表すスクランブル解除キーを送信し、記録可能機器に対しては、不正なスクランブル解除キーを送信するようにする。これにより、前者(記録不能機器)は正しいスクランブル解除キーに基づき、受信したアイソクロノスパケット内データの順番をもとの順序に正しく復元することができるが、後者(記録可能機器)は正しいスクランブル解除キーを得られないため、受信したアイソクロノスパケット内データの順番をもとの順序に正しく復元することができる。

本発明においては、発明の精神及び範囲から逸脱することなく、広い 範囲において異なる実施態様を、本発明に基づいて構成することができ ることは明白である。本発明は、添付のクレームによって限定される以 外には、それの特定の実施態様によって制約されない。

産業上の利用可能性

以上のように、本発明に係るディジタルインターフェースを有する装置及びこれを用いたネットワークシステム並びにコピープロテクト方法は、オーディオ機器及びビデオ機器等のコピー制御に有用であり、例えば、IEEE1394規格に対応したネットワークを介してデータを伝送することによりコピーを行うシステムに用いるのに適している。

67

請求の範囲

1. コピー世代管理情報を含む所定のデータフォーマットのデータから前記コピー世代管理情報を検出する第1の検出手段と、

前記所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換するものであって、前記第1の検出手段の検出結果に基づくコピー世代管理情報をフォーマット変換後のデータに前記ネットワークバスのデータフォーマットに対応したデータフォーマットで挿入して前記ネットワークバスに送出する第1のインターフェース手段とを具備したことを特徴とするディジタルインターフェースを有する装置。2. コピー世代管理情報を含む所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換することにより得られる伝送データであって、前記ネットワークバスのデータフォーマットに対応したデータフォーマットで前記コピー世代管理情報が挿入された前記伝送データを前記ネットワークバスを介して受信し、受信したデータのデータフォーマットを前記ネットワークバスのデータフォーマットから元のデータフォーマットに戻して出力する第2のインターフェース手段と、前記第2のインターフェース手段が受信したデータに含まれている前記コピー世代管理情報を検出する第2の検出手段と、

前記第2の検出手段の検出結果に基づいて前記第2のインターフェース手段の出力の記録を許可又は禁止する記録制御手段とを具備したことを特徴とするディジタルインターフェースを有する装置。

3. 前記第2のインターフェース手段の出力を所定の記録装置の記録フォーマットに対応したデータフォーマットに変換するフォーマット変換手段を具備したことを特徴とする請求項2に記載のディジタルインター

フェースを有する装置。

- 4. 前記第2の検出手段が検出したコピー世代管理情報が1回のみの記録許可を示すものである場合には前記第2のインターフェース手段の出力に含まれるコピー世代管理情報を記録禁止を示すものに変更するコピー世代管理手段を具備したことを特徴とする請求項3に記載のディジタルインターフェースを有する装置。
- 5. 前記ネットワークバスは、同期伝送が可能であり、前記第1のインターフェース手段又は前記第2のインターフェース手段は、前記コピー世代管理情報が挿入されたデータを同期伝送することを特徴とする請求項1又は2のいずれか一方に記載のディジタルインターフェースを有する装置。
- 6. 前記所定のデータフォーマットのデータには受信側でデータの種類毎にコピー制御を行うための1種類以上のコピー世代管理情報が挿入されており、

前記第1の検出手段は、前記1種類以上のコピー世代管理情報を検出 し、

前記第1のインターフェース手段は、前記1種類以上のコピー世代管理情報をフォーマット変換後のデータに前記ネットワークバスのデータフォーマットに対応したデータフォーマットで挿入して前記ネットワークバスに送出することを特徴とする請求項1に記載のディジタルインターフェースを有する装置。

7. 前記伝送データにはデータの種類毎にコピー制御を行うための1種類以上のコピー世代管理情報が挿入されており、

前記第2の検出手段は、前記第2のインターフェース手段が受信した データに含まれている前記1種類以上のコピー世代管理情報を検出し、 前記記録制御手段は、前記第2の検出手段が検出した前記1種類以上のコピー世代管理情報のうちの1つのコピー世代管理情報に基づいて前記第2のインターフェース手段の出力の記録又は受信を許可又は禁止することを特徴とする請求項2に記載のディジタルインターフェースを有する装置。

- 8. 前記1種類以上のコピー世代管理情報は、オーディオ機器用のコピー世代管理情報とオーディオ機器用以外のコピー世代管理情報とを含むことを特徴とする請求項6又は7のいずれか一方に記載のディジタルインターフェースを有する装置。
- 9. 前記第1のインターフェース手段は、前記1種類以上のコピー世代管理情報について各コピー世代管理情報毎にその情報が有効であるか又は無効であるかを示す有効無効情報を、前記ネットワークバスに送出するデータ中に挿入することを特徴とする請求項6に記載のディジタルインターフェースを有する装置。
- 10.前記記録制御手段は、前記1種類以上のコピー世代管理情報について各コピー世代管理情報毎にその情報が有効であるか又は無効であるかを示す有効無効情報が前記伝送データに挿入されていた場合には、前記有効無効情報とオーディオ記録であるかオーディオ記録以外の記録であるかを示す自機の記録モードとに基づいて前記1種類以上のコピー世代管理情報のうちのいずれのコピー世代管理情報に基づくコピー制御を行うかを決定することを特徴とする請求項7に記載のディジタルインターフェースを有する装置。
- 11. 前記第1のインターフェース手段は、前記1種類以上のコピー世代管理情報によってコピーの禁止又は1回のみのコピー許可が示されている場合には、前記ネットワークバスに送出するデータに暗号化処理を

施すことを特徴とする請求項 6 に記載のディジタルインターフェースを 有する装置。

- 12. 前記第1のインターフェース手段は、前記ネットワークバスに送出するデータに暗号化処理を施したか否かを示す情報を、前記ネットワークバスに送出するデータに挿入することを特徴とする請求項11に記載のディジタルインターフェースを有する装置。
- 13. 前記所定のデータフォーマットのデータには受信側でデータの種類毎にコピー制御を行うための1種類以上のコピー世代管理情報を含むコピー制御情報が挿入されており、

前記第1の検出手段は、前記コピー制御情報を検出し、

前記第1のインターフェース手段は、前記コピー制御情報をフォーマット変換後のデータのアイソクロノスパケットに、所定のアイソクロノス周期でサイクリックに挿入して前記ネットワークバスに送出することを特徴とする請求項1に記載のディジタルインターフェースを有する装置。

14. コピー世代管理情報を含む所定のデータフォーマットのデータから前記コピー世代管理情報を検出するステップと、

前記所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換するものであって、検出したコピー世代管理情報をフォーマット変換後のデータに前記ネットワークバスのデータフォーマットに対応したデータフォーマットで挿入して前記ネットワークバスに送出するステップとを具備したことを特徴とするコピープロテクト方法。15.コピー世代管理情報を含む所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換することにより得られる伝送データであって、前記ネットワークバスのデータフォーマットに対

応したデータフォーマットで前記コピー世代管理情報が挿入された前記 伝送データを前記ネットワークバスを介して受信し、受信したデータの データフォーマットを前記ネットワークバスのデータフォーマットから 元のデータフォーマットに戻して出力するステップと、

受信したデータに含まれている前記コピー世代管理情報を検出するステップと、

検出した前記コピー世代管理情報に基づいて前記受信したデータの記録を許可又は禁止するステップとを具備したことを特徴とするコピープロテクト方法。

16. 前記記録制御手段は、前記1種類以上のコピー世代管理情報のうちのいずれのコピー世代管理情報に基づいてコピー制御を行うかを前記自機の記録モードに応じて決定する優先指定手段を具備し、

前記優先指定手段によって指定された種類のコピー世代管理情報が前記有効無効情報によって無効であることが示された場合には、前記有効無効情報によって有効であることが示された種類のコピー世代管理情報を利用してコピー制御を行うことを特徴とする請求項10に記載のディジタルインターフェースを有する装置。

- 17. 前記第1のインターフェース手段は、前記第1の検出手段の検出結果によってコピーが1回のみ許可されていることが示された場合には、受信装置毎にコピーを制御するために、非同期データによって、受信装置毎に、前記コピー世代管理情報に応じた新たなコピー世代管理情報であってコピーが1回のみ許可されていることを示すものか又はコピー禁止を示すものを送出することを特徴とする請求項1に記載のディジタルインターフェースを有する装置。
- 18. 前記第2のインターフェース手段は、非同期データで伝送された

情報であって前記コピー世代管理情報に応じた新たなコピー世代管理情報を検出する第3の検出手段を具備し、

前記記録制御手段は、前記第3の検出手段によって前記新たなコピー世代管理情報が検出された場合には、同期伝送されたデータに挿入されているコピー世代管理情報に優先させて、前記新たなコピー世代管理情報に基づいて前記第2のインターフェース手段の出力の記録を許可又は禁止することを特徴とする請求項2に記載のディジタルインターフェースを有する装置。

19. 送信側において、

コピー世代管理情報を含む所定のデータフォーマットのデータから前 記コピー世代管理情報を検出する第1の検出手段と、

前記所定のデータフォーマットのデータをネットワークバスのデータフォーマットに変換するものであって、前記第1の検出手段の検出結果に基づくコピー世代管理情報をフォーマット変換後のデータに前記ネットワークバスのデータフォーマットに対応したデータフォーマットで挿入して前記ネットワークバスに送出する第1のインターフェース手段とを有し、

受信側において、

前記第1のインターフェース手段から前記ネットワークバスに送出されたデータを受信し、受信したデータのデータフォーマットを前記ネットワークバスのデータフォーマットから元のデータフォーマットに戻して出力する第2のインターフェース手段と、

前記第2のインターフェース手段が受信したデータに含まれている前記コピー世代管理情報を検出する第2の検出手段と、

前記第2の検出手段の検出結果に基づいて前記第2のインターフェー

ス手段の出力の記録を許可又は禁止する記録制御手段とを有することを 特徴とするネットワークシステム。

- 20. 前記ネットワークバスは、IEEE1394規格に対応したものであることを特徴とする請求項1又は2のいずれか一方に記載のディジタルインターフェースを有する装置。
- 21. 前記ネットワークバスは、IEEE1394規格に対応したものであることを特徴とする請求項19に記載のネットワークシステム。
- 22. 前記ネットワークバスは、マルチチャンネルに対応しており、前記コピー世代管理情報はチャンネル毎に設定されることを特徴とする請求項1又は2のいずれか一方に記載のディジタルインターフェースを有する装置。
- 23. それぞれコピー世代管理情報を含むマルチチャンネルのデータからチャンネル毎に前記コピー世代管理情報を検出する第4の検出手段と、

マルチチャンネルの信号を同期伝送可能なバスに、マルチチャンネルのデータを送出すると共に、前記第4の検出手段が検出したコピー世代管理情報によってコピー禁止が指定されているチャンネルが所定の受信機において受信可能チャンネルとなっている場合には、前記受信可能チャンネルの指定を変更する再指定手段とを具備したことを特徴とするディジタルインターフェースを有する装置。

24.

ディジタルインターフェース手段を有する複数の機器が、前記ディジタルインターフェース手段を介し、複数のアイソクロノスパケットの送 受信が可能なネットワークに接続された状態を呈するネットワークシステムにおいて、

前記ディジタルインターフェース手段を有する複数の機器各々に対し

て、前記ディジタルインターフェース手段を介して自己の装置 I D を前記ネットワーク上に通知させる手段と、

前記機器の内、前記アイソクロノスパケットを前記ディジタルインターフェース手段を介して前記ネットワーク上に出力する1または複数を送信機器に、残りの1または複数の機器を受信機器にそれぞれ設定する手段と、

前記送信機器において、伝送データのフォーマットを、前記ディジタルインターフェース手段によって定められるチャンネル番号毎に構成されたデータフォーマットに変換し、アイソクロノスパケットとして前記ネットワーク上に出力する手段と、

前記受信機器のディジタルインターフェース手段より、1または複数 の前記送信機器のディジタルインターフェース手段に対し、受信可能チャンネル番号を要求するための、チャンネル番号要求通知手段と、

ネットワーク内のいずれかの機器のディジタルインターフェース手段 より、1または複数の前記受信機器のディジタルインターフェース手段 に対し、前記各受信機器毎に1または複数の受信可能なチャンネル番号 を指定するチャンネル番号指定手段と、

前記受信可能チャンネル番号を指定する指定手段による情報を受信した受信機器のディジタルインターフェース手段に対し、前記ネットワーク上に出力されたアイソクロノスパケットの中から、前記チャンネル番号指定手段により指定された1または複数の受信可能チャンネル番号のデータのみを受信させる手段と、

受信機は、前記送信機器が送信する1または複数のチャンネルの信号から、チャンネル毎のコピー世代管理情報を検出する手段と、

前記1または複数の受信機器各々が前記ネットワーク上に通知した装

置IDから、前記受信機器それぞれについて、前記ネットワーク上を流れるアイソクロノス信号を記録可能な機器か記録不能な機器かを判別する手段と、

前記記録可能な受信機器のディジタルインターフェース手段に対して 指定されている1または複数の受信可能なチャンネル番号が、前記コピー世代管理情報によりコピー禁止指定のなされた1または複数のチャンネル番号と一致した場合、前記受信機器に対し受信可能なチャンネル番号を指定する手段を有する機器は、前記受信機器のディジタルインターフェース手段に対し、以前に指定された1または複数の受信可能チャンネル番号から、前記コピー禁止指定のなされた1または複数のチャンネル番号を削除して、前記1または複数の受信可能チャンネル番号を削除して、前記1または複数の受信可能チャンネル番号を再指定する手段と

を具備したネットワークシステム。

25.

ディジタルインターフェース手段を有する複数の機器が、前記ディジタルインターフェース手段を介し、複数のアイソクロノスパケットの送受信が可能なネットワークに接続された状態を呈するネットワークシステムにおいて、

前記ディジタルインターフェース手段を有する複数の機器各々に対して、前記ディジタルインターフェース手段を介して自己の装置IDを前記ネットワーク上に通知させる手段と、

前記機器の内、前記アイソクロノスパケットを前記ディジタルインターフェース手段を介して前記ネットワーク上に出力する1または複数を送信機器に、残りの1または複数の機器を受信機器にそれぞれ設定する手段と、

前記送信機器において、伝送データのフォーマットを、前記ディジタルインターフェース手段によって定められるチャンネル番号毎に構成されたデータフォーマットに変換し、アイソクロノスパケットとして前記ネットワーク上に出力する手段と、

前記受信機器のディジタルインターフェース手段より、1または複数 の前記送信機器のディジタルインターフェース手段に対し、受信可能チャンネル番号を要求するための、チャンネル番号要求通知手段と、

ネットワーク内のいずれかの機器のディジタルインターフェース手段より、1または複数の前記受信機器のディジタルインターフェース手段に対し、前記各受信機器毎に1または複数の受信可能なチャンネル番号を指定するチャンネル番号指定手段と、

前記受信可能チャンネル番号を指定する指定手段による情報を受信した受信機器のディジタルインターフェース手段に対し、前記ネットワーク上に出力されたアイソクロノスパケットの中から、前記チャンネル番号指定手段により指定された1または複数の受信可能チャンネル番号のデータのみを受信させる手段と、

受信機は、前記送信機器が送信する1または複数のチャンネルの信号の中から、チャンネル毎のコピー世代管理情報を検出する手段と、

前記1または複数の受信機器各々が前記ネットワーク上に通知した装置IDから、前記受信機器それぞれについて、前記ネットワーク上を流れるアイソクロノス信号を記録可能な機器か記録不能な機器かを判別する手段と、

前記記録可能な受信機器のディジタルインターフェース手段に対して 指定されている1または複数の受信可能なチャンネル番号が、前記検出 したコピー世代管理情報によりコピー禁止指定のなされた1または複数 のチャンネル番号と一致した場合、前記送信機器は、以前に指定された 1または複数の受信可能チャンネル番号別に、一致したチャンネル番号 については記録禁止を、一致しないチャンネル番号については記録許可 を与えるように、前記受信可能チャンネルの指定を変更する情報を出力 する手段と

を具備したネットワークシステム。

26.

ディジタルインターフェース手段を有する複数の機器が、前記ディジタルインターフェース手段を介し、複数のアイソクロノスパケットの送 受信が可能なネットワークに接続された状態を呈するネットワークシステムにおいて、

前記ディジタルインターフェース手段を有する複数の機器各々に対して、前記ディジタルインターフェース手段を介して自己の装置IDを前記ネットワーク上に通知させる手段と、

前記機器の内、前記アイソクロノスパケットを前記ディジタルインターフェース手段を介して前記ネットワーク上に出力する1または複数を送信機器に、残りの1または複数の機器を受信機器にそれぞれ設定する手段と、

前記送信機器より出力される1または複数のチャンネルの信号の中から、チャンネル毎のコピー世代管理情報を検出する手段と、

前記送信機器において、伝送データのフォーマットを、前記ディジタルインターフェース手段によって定められるチャンネル番号毎に構成されたデータフォーマットに変換する手段と、

前記ディジタルインターフェース手段によって定められるチャンネル 番号毎に再構成された前記データのうち、前記コピー世代管理情報によ りコピー禁止指定のなされた1または複数のチャンネル番号と一致する チャンネル番号に相当するデータの送信順序の並べ替えを、所定のパケット数をパケット並べ替えの単位として行う手段と、

前記コピー禁止指定がなされ並べ替えの行われたデータと、コピー禁止指定のないチャンネルであって、並べ替えの行われていないデータとを、アイソクロノスパケットとして前記ネットワーク上に出力する手段と、

前記受信機器のディジタルインターフェース手段より、1または複数 の前記送信機器のディジタルインターフェース手段に対し、1または複 数の受信可能チャンネル番号を要求するための、チャンネル番号要求通 知手段と、

ネットワーク内のいずれかの機器のディジタルインターフェース手段 より、1または複数の前記受信機器のディジタルインターフェース手段 に対し、前記各受信機器毎に1または複数の受信可能チャンネル番号を 指定するチャンネル番号指定手段と、

前記受信可能チャンネル番号を指定する指定手段による情報を受信した受信機器のディジタルインターフェース手段に対し、前記ネットワーク上に出力されたアイソクロノスパケットの中から、前記チャンネル番号指定手段により指定された1または複数の受信可能チャンネル番号のデータのみを受信させる手段と、

前記1または複数の受信機器各々が前記ネットワーク上に通知した装置IDから、前記受信機器それぞれについて、前記ネットワーク上を流れるアイソクロノス信号を記録可能な機器か記録不能な機器かを判別する手段と、

前記記録不能な受信機器より、前記コピー禁止指定がなされたチャン

ネル番号を受信可能チャンネル番号として要求された送信機器が、該記録不能な受信機器に対してのみ、並べ替えの行われたデータを、並べ替え前の順序に復元するための、パケットの正しい順序を表すキー情報を出力する第1の復元キー情報出力手段と

を具備したネットワークシステム。 27.

ディジタルインターフェース手段を有する複数の機器が、前記ディジタルインターフェース手段を介し、複数のアイソクロノスパケットの送受信が可能なネットワークに接続された状態を呈するネットワークシステムにおいて、

前記ディジタルインターフェース手段を有する複数の機器各々に対して、前記ディジタルインターフェース手段を介して自己の装置IDを前記ネットワーク上に通知させる手段と、

前記機器の内、前記アイソクロノスパケットを前記ディジタルインターフェース手段を介して前記ネットワーク上に出力する1または複数を送信機器に、残りの1または複数の機器を受信機器にそれぞれ設定する手段と、

前記送信機器より出力される1または複数のチャンネルの信号の中から、チャンネル毎のコピー世代管理情報を検出する手段と、

前記送信機器において伝送データのフォーマットを、前記ディジタル インターフェース手段によって定められるチャンネル番号毎に構成され たデータフォーマットに変換する手段と、

前記ディジタルインターフェース手段によって定められるチャンネル 番号毎に再構成された前記データのうち、前記コピー世代管理情報によ りコピー禁止指定又は1回のみのコピー許可指定のなされた1または複 数のチャンネル番号と一致するチャンネル番号に相当するデータに対し、 パケット単位に暗号化を施す手段と、

前記コピー禁止指定がなされ暗号化されたデータと、コピー禁止指定のないチャンネルであって暗号化の行われていないデータとを、アイソクロノスパケットとして前記ネットワーク上に出力する手段と、

前記受信機器のディジタルインターフェース手段より、1または複数 の前記送信機器のディジタルインターフェース手段に対し、1または複 数の受信可能チャンネル番号を要求するための、チャンネル番号要求通 知手段と、

ネットワーク内のいずれかの機器のディジタルインターフェース手段より、1または複数の前記受信機器のディジタルインターフェース手段に対し、前記各受信機器毎に1または複数の受信可能チャンネル番号を指定するチャンネル番号指定手段と、

前記受信可能チャンネル番号を指定する指定手段による情報を受信した受信機器のディジタルインターフェース手段に対し、前記ネットワーク上に出力されたアイソクロノスパケットの中から、前記チャンネル番号指定手段により指定された1または複数の受信可能チャンネル番号のデータのみを受信させる手段と、

前記1または複数の受信機器各々が前記ネットワーク上に通知した装置IDから、前記受信機器それぞれについて、前記ネットワーク上を流れるアイソクロノス信号を記録可能な機器か記録不能な機器かを判別する手段と、

前記記録不能な受信機器より、前記コピー禁止指定がなされたチャンネル番号を受信可能チャンネル番号として要求された送信機器が、該記録不能な受信機器に対してのみ、暗号化の行われたデータを、暗号化さ

れる前のデータに復元するための、正しいデータに戻すキー情報を出力 する第2の復元キー情報出力手段と

を具備したネットワークシステム。

28.

請求項24,25,26,又は27に記載のネットワークシステムにおいて、

前記1または複数の送信機器は、前記1または複数の受信機器の内の記録可能な機器より前記チャンネル番号要求通知手段によって1または複数の受信可能チャンネル番号の要求を受けた際に、前記要求を受けた1または複数の受信可能チャンネル番号の中に前記コピー禁止指定がなされた1または複数のチャンネル番号が含まれていた場合、前記要求を受けた1または複数の受信可能チャンネル番号から前記コピー禁止指定のなされた1または複数のチャンネル番号を削除して、前記受信機器のディジタルインターフェース手段に対し、前記チャンネル番号指定手段によって前記1または複数の受信可能チャンネル番号の指定を行うもの。29.

請求項24から28の何れか1に記載のネットワークシステムにおいて、

前記1または複数の送信機器は、前記1または複数の受信機器の内の記録可能な機器より前記チャンネル番号要求通知手段によってコピー禁止指定のなされた1または複数のチャンネル番号の要求を受けた場合、前記コピー禁止指定のなされた1または複数のチャンネル番号を、前記チャンネル番号の要求を受けた送信機器または前記ネットワークに接続された機器の何れかの表示手段を用いて表示するもの。

30.請求項26から29の何れか1に記載のネットワークシステムに

おいて、

前記キー情報は、前記コピー禁止指定がなされた1または複数のチャンネル番号を受信可能チャンネル番号として前記チャンネル番号要求通知手段により要求を行った、前記記録不能な1または複数の受信機器に対してのみ伝達されるもの。

31.

請求項24から30の何れか1に記載のネットワークシステムにおいて、

前記ディジタルインターフェース手段は、IEEE1394方式であるもの。

図1

図2

H|S C |SC | VA|VA A0V0V1V2V3·· A1V15V16V17·· A2V30V31V32·· A3V45V46V47·· A8V120··V133V134

図3

図4

図5

図6

シンクブロック	
番号	
	-
	ITI
	オーディオ
	オーディオ Q
19 20	VAUX () VAUX 1
20	VAUX j
	ヒ* テ" オ
156	VAUX 2
. 30	ヒ" テ" オ Q
	サブコード
	L

図了

図8

図9

図10

	MSE	3						LSB
PCO	0	1	1	0	0	0	0	1
PC1	CG	MS	1 9	SR	CN	ИP	S	S
PC2	REC ST	1	REC E-F		1	DISP		.
РСЗ	FF	FS	FC	IL	ST	sc	BCS	SYS
PC4	1	ジャンルカテゴリ						

図11

ヘッダ サブコード ビデオ補助 オーディオ,ビデオ 、パケット/パケット パケット パケット HO SCO SCI VAD VAI VA2 7
A0 V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14
A 1 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26 V27 V28 V29
A 2 V30 V31 V32 V33 V34 V35 V36 V37 V38 V39 V40 V41 V42 V43 V44]
A 3 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57 V58 V59
A 4 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74
A 5 V75 V76 V77 V78 V79 V80 V81 V82 V83 V84 V85 V86 V87 V88 V89
A 6 V90 V91 V92 V93 V94 V95 V96 V97 V98 V90 A101 A102 A103 A104
A 7 A105 A106 A107 A108 A109 A110 A111 A112 A113 A114 A115 A116 A117 A118 A119
A B A 20 A 21 A 22 A 23 A 24 A 25 A 26 A 27 A 28 A 29 A 30 A 31 A 32 A 33 A 34

図12

図13

図14

図15

図16

図17

図18

	t Code	コメント
IEEE1394 1995規格	Αh	アイソクロノスバケット
*****		79.85.97955.873659959.875555.8 3 58.657584 75 88
		<u> </u>
		8849899988
	17034	\#\\\#\\#\\#\\#\\#\\#\\#\\#\\#\\#\\#\\#

図20

アイソクロノス	CCI			
パケット	ビデオコンテンツ	オーディオコンテンツ		
第1サイクル	01	01		
第2サイクル	01	01		
第3サイクル	01	01		
第4サイクル	CGMS(11, 10, 00)	CGMS (11, 10, 00)		
第5サイクル	APS(00,01,10,11)	APS(00,01,10,11)		
第6サイクル	DSB(1*, 0*)	DSB(1*, O*)		
第7サイクル	リザーブ(ローでない)	SCMS(11, 10, 00)		
第8サイクル	リザーブ (01でない)	リザーブ (0) でない)		

図19

WO 98/02881 PCT/JP97/01873

図21

図24

図22

図23

図26

図27

送信先ID			
送信元 I D		 	
受信要求チャンネルの番号			
	CRC		

送信先ID	
送信元ID	
受信指定(許可)チャンネルの)番号
	CRC

図29

データ長	同期信号のチャンネル番号	
	ヘッダCRC	
		=
†	アイソクロノスデータ	
	データCRC	_

図31

図32

送信先 I D					
送信元 I D					
パケット順序復元のための順番	を表すこ	マン	ドヘ	ッダ	
バケットの順番 005,00A,001,004,010,013,002,	006, 00¢,			, , ,	
	CRC				

送信先 I D					
送信元ID					
受信指定(許可)チャンネルの番号	号(受信要	要求チャ	・ン	ネルの者	舒
	CRC				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/01873

A. CLA	ASSIFICATION OF SUBJECT MATTER				
Int	. C16 G11B20/10, H04L11/00	, H04N5/91			
According	to International Patent Classification (IPC) or to both	national classification and IPC			
B. FIE	LDS SEARCHED				
Minimum d	ocumentation searched (classification system followed b	y classification symbols)			
Int	. C16 G11B20/10, H04L11/00	, H04N5/91			
Jit Kok Tor	tion searched other than minimum documentation to the suyo Shinan Koho ai Jitsuyo Shinan Koho oku Jitsuyo Shinan Koho	1940 - 1997 1971 - 1997 1994 - 1997			
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, search t	erms used)		
C. DOCT	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
Y	JP, 1-227270, A (Matsushita Co., Ltd.), September 11, 1989 (11. 09 & EP, 328141, A1 & US, 505 & DE, 68911331, T2	. 89)	1-4, 19-21		
A	JP, 5-258463, A (Sony Corp October 8, 1993 (08. 10. 9)	.), 3)(Family: none)	1 - 31		
Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
"A" docume	categories of cited documents: ant defining the general state of the art which is not considered particular relevance	W" designed of antique of antique of the	ation but cited to understand invention		
"L" docume	iocument but published on or after the international filling dake int which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified)	considered novel or cannot be considered step when the document is taken along	ered to involve an inventive		
"O" docume means	ent referring to an oral disclosure, use, exhibition or other	considered to involve an inventive : combined with one or more other such of being obvious to a person skilled in the	step when the document is locuments, such combination		
	"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family				
Date of the	actual completion of the international search	Date of mailing of the international sear	ch report		
Aug	ust 26, 1997 (26. 08. 97)	September 9, 1997	(09. 09. 97)		
	nailing address of the ISA/	Authorized officer			
Japa Facsimile N	anese Patent Office	Telephone No.			
	··				

国際調査報告

, , , , , ,	属する分野の分類(国際特許分類(IPC))		
Ir	nt. C1 G11B20/10, H04L1	1/00,H04N5/91	
R 超宏丸4	テった分野		
B. 関査を行った。	サース である できます できます できます できます できます できます できます できます		
		1 /00 HOANS/91	
I 1	nt. Cl G11B20/10, H04L1	TANO UNAMOARI	
	外の資料で調査を行った分野に含まれるもの **国家用新客公報 1940-1997	'年	
	★団人間学田新安小部 1971—1997	7年	
日本	本国登録実用新案公報 1994-1997	'年	
			
国際調査で使用	用した電子データベース (データベースの名称、	調査に使用した用語)	
	ると認められる文献		関連する
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	: きは、その関連する箇所の表示	請求の範囲の番号
Y	IP. 1-227270, A (松下電器産業	类株式会社),	1-4,
	11.9月.1989 (11.09.89) &US,5057947,A&DE,689	&EP, 328141, A1	19-21
	&US, 5US/947, A&DE, 689	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
A	JP, 5-258463, A (ソニー株式会	(社) ,	1-31
	8. 10月. 1993 (08. 10. 93)	(ファミリーなし)	
]
	<u> </u> きにも文献が列挙されている。	── パテントファミリーに関する別	川紙を参照。
C欄の統:	さにも又献か列争されしいる。		
* 引用文献(のカテゴリー	の日の後に公表された文献	された かねがる ニーブ
-	連のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表 て出願と矛盾するものではなく	C4Vに入訳じめつし 、発明の原理又は理
もの 「E」先行文i	献ではあるが、国際出願日以後に公表されたも	論の理解のために引用するもの	
n		「X」特に関連のある文献であって、	当該文献のみで発明
「L」優先権	主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考 「Y」特に関連のある文献であって、	たりれるもの 当 該文献と 他の1以
	くは他の特別な理由を確立するために引用する 理由を付す)	上の文献との、当業者にとって	自明である組合せに
「〇」口頭に	よる開示、使用、展示等に言及する文献	よって進歩性がないと考えられ	
「P」国際出	顧日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献	
国際調査を完	了した日	国際調査報告の発送日	07
E PONTE E JO	26. 08. 97	09.09	.91
国歌物本华 郡	の名称及びあて先	特許庁審査官(権限のある職員)	5D 7736
日本	国特許庁(ISA/JP)	小松 正	p L
	郵便番号100	神経学 品 02-2591-1101	
東京	都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	ו פפני אשניי

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.