

Start with a cost function $J(\beta)$:

Then gradually move to the minimum.

How can we do this?

How can we do this? (without seeing the graph of $J(\beta)$!)

Start with the function $J(\beta)$:

How can we do this?

(without seeing the graph of $J(\beta)$!)

Start with the function $J(\beta)$:

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

How can we do this? (without seeing the graph of $J(\beta)$!)

Start with the function
$$J(\beta)$$
:
$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{n} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

and compute its gradient vector $\nabla J(\beta)$.

How can we do this? (without seeing the graph of $J(\beta)$!)

Start with the function $J(\beta)$:

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

and compute its gradient vector $\nabla J(\beta)$.

The gradient points in the "direction of maximum increase" of J.

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_1 = w_0 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_{0}, \beta_{1}) = 1/2 \sum_{i=1}^{m} \left((\beta_{0} + \beta_{1} x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

$$w_{1} = w_{0} - \alpha \left(\frac{\partial}{\partial \beta_{0}}, \dots, \frac{\partial}{\partial \beta_{n}} \right) 1/2 \sum_{i=1}^{m} \left((\beta_{0} + \beta_{1} x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_1 = w_0 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_2 = w_1 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_3 = w_2 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_4 = w_3 - \alpha \nabla 1 / 2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_1 = w_0 - \alpha \nabla 1 / 2 \left((\beta_0 + \beta_1 x_{obs}^{(0)}) - y_{obs}^{(0)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_2 = w_1 - \alpha \nabla 1 / 2 \left((\beta_0 + \beta_1 x_{obs}^{(1)}) - y_{obs}^{(1)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_3 = w_2 - \alpha \nabla 1 / 2 \left((\beta_0 + \beta_1 x_{obs}^{(2)}) - y_{obs}^{(2)} \right)^2$$

$$J(\beta_0, \beta_1) = \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_4 = w_3 - \alpha \nabla 1 / 2 \left((\beta_0 + \beta_1 x_{obs}^{(3)}) - y_{obs}^{(3)} \right)^2$$

Faster

Derivative of single point at each step (instead of 100K)

Online Training

Only need to keep single point in memory
No need to store 100K rows, large data no problem

Covers Many Algorithms

Gradient Descent is the bottleneck for linear algorithms Can do Linear Regression, Logistic Regression, SVMs

Some Implementations

Some Implementations

from sklearn.linear_model import SGDRegressor

from sklearn.linear_model import SGDClassifier

from sklearn.linear_model import SGDRegressor

from sklearn.linear_model import SGDRegressor

SGDRegressor(loss='squared_loss')

Sum of squared errors

squared loss == Linear Regression

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

from sklearn.linear_model import SGDClassifier

SGDClassifier(loss='hinge')

Looks like a hinge.

hinge loss == SVM

Li= max(0, Δ -yHat*y)

What is Δ ? Just like with λ within our regularization term, Δ it affects the trade-off between our data loss and our regularization loss within our objective function.

from sklearn.linear_model import SGDClassifier

SGDClassifier(loss='log')

This one's kind of clear

log loss == Logistic Regression

Optimization **Function:**

$$Li = -\log(\frac{e^{f_{yi}}}{\sum_{i} e^{f_{j}}})$$

where
$$Li = -\log(\frac{e^{f_{yi}}}{\sum_{i} e^{f_{j}}}) \qquad e^{f_{yi}} = \exp(\beta_0 + \omega^T x_{obs}^{(i)})$$

from sklearn.linear_model import SGDClassifier

Regularization parameters

Penalty values: '11', '12', 'elasticnet'

L1 optimiz.
$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 - \alpha \sum_{j=1}^{k} |\beta_j|$$

Function:

L2 optimiz.
$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2 - \alpha \sum_{j=1}^{k} \beta_j^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_1 = w_0 - \alpha \nabla 1 / 2 \sum_{i=1}^{n} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_2 = w_1 - \alpha \nabla 1 / 2 \sum_{i=1}^{n} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$J(\beta_0, \beta_1) = 1/2 \sum_{i=1}^{m} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

$$w_3 = w_2 - \alpha \nabla 1 / 2 \sum_{i=1}^{n} \left((\beta_0 + \beta_1 x_{obs}^{(i)}) - y_{obs}^{(i)} \right)^2$$

- Mini Batch implementation is typically used for neural nets
- Mini Batch sizes typically range from 50 to 256.
- There is a trade off between MB size and the learning rate (α): we can reduce learning rate for larger mini batch sizes (vice versa)
- We can tailor a learning rate schedule (i.e.): we can reduce the learning rate as go further along within our training epoch.
- We can implement with SGDClassifier (using 'partial fit') ex:
 SGDClassifier(loss='log').partial_fit()