Question 1

We import the file using read csv() and utilize pandas. DataFrame library to do the computation. Note that pandas.DataFrame.var() has default N-1 freedom.

max

```
In [3]:
import pandas as pd
import numpy as np
import math
from scipy.spatial.distance import minkowski
from sklearn.metrics.pairwise import cosine similarity as cos
header = ['id', 'mid_scores', 'final_scores']
data = pd.read csv('data.online.scores.txt', delimiter = '\t', names = header)
print (data['mid_scores'].describe())
modes = data['mid scores'].mode().values
emp var = data['mid scores'].var()
print ('empirical variance is {0}'.format(emp var))
print ('modes are {0}'.format(modes))
count
         1000.00000
           76.71500
mean
std
           13.16355
min
           37.00000
25%
           68.00000
50%
           77.00000
75%
           87.00000
          100.00000
```

We get the following answer from the output:

Name: mid scores, dtype: float64

```
(a)max = 100, min = 37
```

modes are [77 83]

(b)first quantile = 68, median = 77, third quantile = 87

empirical variance is 173.27905405405397

(c)mean score = 76.715

(d)mode scores = 77, 83

(e)Empirical Variance = 173.27905405405397

Question 2

(a) The empirical variance before normalization is what we get in the previous question, which equals to 173.27905405405397.

Using the formula for z-score normalization:

```
z = \frac{x-\mu}{\sigma}
```

```
In [4]:
```

```
data['z_score'] = (data['mid_scores'] - data['mid_scores'].mean())/(data['mid_scores'].std())
print ('the variance after normalization is {0}'.format(data['z_score'].var(ddof = 1)))
```

the variance after normalization is 1.0000000000000002

(b)By using pandas.DataFrame.query funciton we extract the rows with midterm scores = 90

```
In [5]:
```

```
df_90 = data.query('mid_scores == 90')
print (df_90)
```

	id	mid_scores	final_scores	z_score
11	11	90	99	1.009226
42	42	90	79	1.009226
62	62	90	83	1.009226
82	82	90	99	1.009226
90	90	90	100	1.009226
101	101	90	92	1.009226
154	154	90	95	1.009226
157	157	90	93	1.009226
223	223	90	90	1.009226
247	247	90	77	1.009226
345	345	90	88	1.009226
351	351	90	100	1.009226
494	494	90	87	1.009226
564	564	90	76	1.009226
565	565	90	100	1.009226
574	574	90	96	1.009226
591	591	90	89	1.009226
598	598	90	79	1.009226
637	637	90	96	1.009226
803	803	90	86	1.009226
836	836	90	96	1.009226
885	885	90	100	1.009226
911	911	90	100	1.009226
927	927	90	92	1.009226
939	939	90	93	1.009226

We see that the corresponding score of 90 after normalization is 1.009226.

- (c) In order to calculate Pearson's Correlation Coefficient between midterm scores and final scores
 - we first need to find the covariance between midterm scores and final scores. Using pandas.DataFrame.cov(which has N-1 freedom by default) function, we get a table of all the correlations between the data.

In [6]:

final_scores

z_score

```
print (data.cov())

id mid_scores final_scores z_score
id 83416.666667 -51.146647 11.645646 -3.885475
mid_scores -51.146647 173.279054 78.254194 13.163550
```

119.232176

5.944764

5.944764

1.000000

So we find that the covariance between midterm scores and final scores is 78.254194 Formula for PCC is:

78.254194

13.163550

11.645646

-3.885475

•
$$\rho_{(X,Y)} = \frac{cov(X,Y)}{(\sigma_X \sigma_Y)}$$

```
In [7]:
```

```
print ("Pearson's correlation coefficient between midterm scores and final score
s is {0}".format(78.254194 / (data['mid_scores'].std() * data['final_scores'].st
d())))
```

Pearson's correlation coefficient between midterm scores and final s cores is 0.5444247409613782

(d) solved in (c)

Question 3

- (a) The formula for Jaccard coefficient is:
 - $sim(i,j) = \frac{q}{q+r+s}$ In this case, q is 58, r is 2, s is 120. Thus, Jaccard Coefficient for CBL and CML is 0.322.
- (b) The formula for minkowski distance is:
 - $d(i,j) = \sqrt[h]{|x_{i1} x_{j1}|^h + |x_{i2} x_{j2}|^h + \dots + |x_{ip} x_{jp}|^h}$

The following code uses the scipy library which has minkowski function to compute it.

```
In [8]:
```

```
import math
from scipy.spatial.distance import minkowski
from sklearn.metrics.pairwise import cosine_similarity as cos

data = pd.read_csv('data.libraries.inventories.txt', delimiter = '\t')
CML = data.iloc[0][1:]
CBL = data.iloc[1][1:]

h_1 = minkowski(CBL, CML, 1)
h_2 = minkowski(CBL, CML, 2)
h_inf = minkowski(CBL, CML, 2)
h_inf = minkowski(CBL, CML, math.inf)
print ('minkowski distance for h = 1 is {0}'.format(h_1))
print ('minkowski distance for h approaches infinity is {0}'.format(h_inf))
```

```
minkowski distance for h = 1 is 6152
minkowski distance for h = 2 is 715.3278968417211
minkowski distance for h approaches infinity is 170
```

We get:

- 1. h = 1, Minkowski Distance = 6152
- 2. h = 2, Minkowski Distance = 715.3278968417211
- 3. h = infinite, Minkowski Distance =170
- (c)The formula for cosine similarity is:
 - $sim(x, y) = \frac{x \cdot y}{||x|| ||y||}$

```
In [9]:
```

```
cos_sim = np.dot(CML, CBL) / (np.linalg.norm(CML) * np.linalg.norm(CBL))
print (cos_sim)
```

0.841404025662

We get Cosine similarity = 0.841404025662

(d) The formula for KL Divergence is:

•
$$D_{KL}(p(x)||q(x)) = \sum_{x \in X} p(x) ln \frac{p(x)}{q(x)}$$

We compute it as follows:

```
In [10]:
```

0.207080937332

We get Kullback–Leibler divergence of these two libraries P(CML | CBL) = 0.207080937332

Question 4

The formula for chi_square test is:

$$\bullet \ \chi^2 = \sum_{k}^n \frac{(O_k - E_k)^2}{E_k}$$

Using this formula and compute it in python:

In [11]:

```
buy_beer_sum = 190
no_beer_sum = 3315
buy_diaper_sum = 165
no_diaper_sum = 3340

tol_sum = buy_beer_sum + no_beer_sum
buy_beer = np.array([150, 40])
no_beer = np.array([15, 3300])
buy_beer_exp = np.array([buy_diaper_sum * (buy_beer_sum/tol_sum), no_diaper_sum * (buy_beer_sum/tol_sum)])
no_beer_exp = np.array([buy_diaper_sum * (no_beer_sum/tol_sum), no_diaper_sum * (no_beer_sum/tol_sum)])
chi_square = np.sum((buy_beer - buy_beer_exp)**2 / buy_beer_exp) + np.sum((no_beer_exp)**2 / no_beer_exp)
```

chi-square correlation value is 2468.183255909104

we get chi-square correlation value \approx 2468.183