Artifical Intelligence Problem Set 9

Willie Yee

Problem 1.

dogs $P(S0 \rightarrow S1) = 1$ implies that dogs must be a noun.

wag

- 1. wag is noun with probability 0.2: $P(S1 \rightarrow S2) = 0.1$
 - tail (a) tail cannot be noun: no state $P(S2 \rightarrow S2)$
 - (b) tail is verb with probability 0.2: $P(S2 \rightarrow S4) = 0.6$ and is conjunction with probability 1: $P(S4 \rightarrow S8) = 0.4$
 - i. bark is noun with probability 0.2: $P(S8 \rightarrow S6) = 0.4$
 - ii. bark is verb with probability 0.8: $P(S8 \rightarrow S7) = 0.6$
- 2. wag is verb with probability 0.8: $P(S1 \rightarrow S4) = 0.7$
 - tail (a) tail is noun with probability 0.8: $P(S4 \rightarrow S9) = 0.2$ and is conjunction with probability 1: $P(S9 \rightarrow S3) = 0.6$
 - i. **bark** is noun with probability 0.2: $P(S3 \rightarrow S6) = 0.8$
 - ii. bark is verb with probability 0.8: $P(S3 \rightarrow S7) = 0.2$
 - (b) Verb Verb STATE DOES NOT EXIST

Taggings with non-zero probabilities:

- 1. *START* *START* noun noun verb conjunction noun *END* *END*
- 2. *START* *START* noun noun verb conjunction verb *END* *END*
- 3. *START* *START* noun verb noun conjunction noun *END* *END*
- 4. *START* *START* noun verb noun conjunction verb *END* *END*

$$\frac{P(t|w)}{P(t)}$$

Unnormalized probabilities:

1.
$$1 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 0.4 \cdot 0.4 \cdot 0.4 \cdot 0.3 \cdot 1 \cdot \frac{0.8}{0.5} \cdot \frac{0.2}{0.5} \cdot \frac{0.2}{0.4} \cdot \frac{1}{0.1} \cdot \frac{0.2}{0.5} = 0.0036864$$

2.
$$1 \cdot 1 \cdot 0.1 \cdot 0.6 \cdot 0.4 \cdot 0.6 \cdot 0.4 \cdot 1 \cdot \frac{0.8}{0.5} \cdot \frac{0.2}{0.5} \cdot \frac{0.2}{0.4} \cdot \frac{1}{0.1} \cdot \frac{0.8}{0.4} = 0.036864$$

3.
$$1 \cdot 1 \cdot 0.7 \cdot 0.2 \cdot 0.6 \cdot 0.8 \cdot 0.3 \cdot 1 \cdot \frac{0.8}{0.5} \cdot \frac{0.8}{0.4} \cdot \frac{0.8}{0.5} \cdot \frac{1}{0.1} \cdot \frac{0.2}{0.5} = 0.4128768$$

$$4. \ \ 1 \cdot 1 \cdot 0.7 \cdot 0.2 \cdot 0.6 \cdot 0.2 \cdot 0.4 \cdot 1 \cdot \frac{0.8}{0.5} \cdot \frac{0.8}{0.4} \cdot \frac{0.8}{0.5} \cdot \frac{1}{0.1} \cdot \frac{0.8}{0.4} = 0.688128$$

Problem 2. The following two-word sentence has a non-zero probability in the k-gram model, but is not a possible tagging in the CFG in problem set 1: Dogs bark (noun noun).

Problem 3. The following string of words has a non-zero probability in the k-gram model, but has no parse at all in the CFG in problem set 1: dogs wag dogs bark tail dogs and wag

Problem 4.

- S0. *START* *START*
- S1. *START* Noun
- $\mathbf{S2.}$ Noun Prep
- S3. Noun Verb
- S4. Noun *END*
- ${f S5.}$ Verb Noun
- S6. Verb Prep
- S7. Verb *END*
- S8. Prep Noun
- **S9.** *END* *END*