Clustering Aggregation

Boston University CS 506 - Lance Galletti

Clustering Aggregation

Some terminology:

Clustering: A group of clusters output by a clustering algorithm

Cluster: A group of points

Clustering Aggregation

Goals:

- 1. Compare clusterings
- 2. Combine the information from multiple clusterings to create a new clustering

Given 2 clusterings P and C

$$D(P,C) = \sum_{x,y} \mathbb{I}_{P,C}(x,y)$$

where

$$\mathbb{I}_{P,C}(x,y) = \begin{cases} 1 & \text{if P \& C disagree on which clusters x \& y belong to} \\ 0 & \end{cases}$$

	Р	С
X ₁	1	1
X ₂	1	2
x ₃	2	1
X ₄	3	3
x ₅	3	4

What is the disagreement distance between P and C?

	Р	С
X ₁	1	а
X ₂	1	b
X ₃	2	а
X ₄	3	С
X ₅	3	d

x ₂	x ₁	1
X ₃	x ₁	1
X ₄	x ₁	0
X ₅	x ₁	0
x ₃	X ₂	0
X ₄	X ₂	0
x ₅	X ₂	0
X ₄	x ₃	0
x ₅	x ₃	0
X ₄	x ₅	1

Is D(P, C) a distance function?

1.
$$D(C, P) = 0 \text{ iff } C = P$$

- 2. D(C, P) = D(P, C)
- 3. Triangle Inequality:

$$\mathbb{I}_{C_1,C_3}(x,y) \le \mathbb{I}_{C_1,C_2}(x,y) + \mathbb{I}_{C_2,C_3}(x,y)$$

C, C 2 C3

C Z Z 3

Since I_{CP} can only be 0 or 1, the above can only be violated if

$$I_{x,y}(C_1,C_3) = 1$$
, $I_{x,y}(C_1,C_2) = 0$, $I_{x,y}(C_2,C_3) = 0$ is this possible?

Goal: From a set of clusterings C_1 , ..., C_m , generate a clustering C^* that minimizes:

$$\sum_{i=1}^{m} D(C^*, C_i)$$

The problem is equivalent to clustering categorical data

	City	Profession	Nationality
x ₁	NY	Doctor	US
X ₂	NY	Teacher	French
x ₃	Boston	Lawyer	Canada
X ₄	Boston	Doctor	US
x ₅	LA	Lawyer	Canda
X ₆	LA	Actor	French

Benefits:

- 1. Can identify the best number of clusters (optimization function does not make any assumptions on the number of clusters)
- Can handle / detect outliers (points where there is no consensus)
- 3. Improve robustness of the clustering algorithms combining clusterings can produce a better result
- 4. Privacy preserving clustering (can compute aggregate clustering without sharing the data, need only share the assignments)

But... The problem is NP-Hard.

Often use approximations and heuristics to solve this problem.

What about the majority rule?

This only works **if** it produces a clustering

Possible to have a majority saying:

- 1. $x_1 \& x_2$ together
- 2. $x_2 & x_3$ together
- 3. $x_1 & x_3$ separate

