

RBE 510 – Multi-Robot Systems Lecture 2: Consensus and Formations

Kevin Leahy August 26, 2025

Admin

This Friday:

- HW0 Due
- HW1 Out
 - Start early
 - Not just pattern-matching
 - Includes programming (will discuss next lecture)
- Office hours:
 - Wednesdays 3 3:45 in UH 250 D
 - Starts next Wednesday, 9/3
 - Or by appointment/virtual

Paper Presentations

- Form pairs/groups by 9/2
 - Aim for 2-3 students per group; 4-5 groups total
- First paper assigned, presentation rubric on 9/2
- Presentation dates
 - -9/9
 - -9/16
 - -9/23
 - -9/30
 - -10/7

Today

- Consensus
 - Recap
 - Clarification and applications
 - Variations and extensions
- Formation Control

Recap

Linear Consensus Protocol

- We have I agents
 - Here, $I = \{1,2,3,4\}$
- Generic agent is agent i
 - Agent i has state x_i
 - Initial state of agent i is x_i^0
- Want all agents to agree on common state
 - e.g., states converge to $\bar{x} = \frac{1}{4} \sum_{i=1}^{4} x_i$
- How?

Linear Consensus Protocol

- Agents need to share information
- Agents communicate if they are "close enough"
 - We'll talk more about this in future lectures
- Represent this as a graph
 - Edge between two nodes says that they can exchange information

Algebraic Graph Theory

- We can use matrices to make our lives easier!
- Degree matrix

$$D = \begin{bmatrix} |\mathcal{N}_1| & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & |\mathcal{N}_n| \end{bmatrix}$$

Algebraic Graph Theory

Adjacency relationship

$$a_{ij} = \begin{cases} 1 & if \ (i,j) \in E \\ 0 & otherwise \end{cases}$$

Adjacency matrix

$$A = \begin{bmatrix} 0 & \cdots & a_{ij} \\ \vdots & \ddots & \vdots \\ a_{ji} & \cdots & 0 \end{bmatrix}$$

Graph Laplacian

- Laplacian matrix of a graph is L = D A
- What is L for this graph?

Linear Consensus Protocol

$$\dot{x}_i(t) = \sum_{j \in \mathcal{N}_i} \left(x_{j(t)} - x_{i(t)} \right)$$

$$x_i(t+1) = x(t) + \alpha \sum_{j \in \mathcal{N}_i} \left(x_j(t) - x_i(t) \right)$$

- A nice feature agents only need information from their neighbors (i.e., local information)
- But we care about global behavior
- How can we link the two?

Agent view to Global View

Consensus to the Average and some Proofs

Resources for Consensus Lectures

- There are lots of papers/resources/tutorials available for consensus
 - Mesbahi and Egerstedt Graph Theoretic Methods in Multiagent Networks Chapter 3, is a good general resource
- Today, we look at results from
 - Jadbabaie, Lin, and Morse "Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules" IEEE Trans. on Automatic Control, 2003 9,521 citations
 - Olfati-Saber and Murray "Consensus Problems in Networks of Agents with Switching Topology and Time-Delays" IEEE Trans. on Automatic Control, 2004 13,497 citations
 - Moreau "Stability of Multiagent Systems With Time-Dependent Communication Links" IEEE Trans. on Automatic Control, 2005 3,148 citations
- Also drawn from Mesbahi and Egerstedt, and Bullo, Cortes, and Martinez books

Consensus Extensions and Applications

Some Important Points

- Not just position! Applies to "processor state" or other information (like sensing)
- Will formalize next time when we discuss distributed algorithms more generally
- Is it useful for physical robots (i.e., will they collide?)
 - To discuss today somewhat
 - Also, generally get more connected with rendezvous, which I'll ask you to think about for the homework

Heading Consensus

Rendezvous

Flocking

- Model developed by Vicsek (1995) in particle physics
- Jadbabaie et al. generalized this model in 2003

Consensus Applied

Assumptions

- We've made a lot of assumptions so far
 - Graph is undirected
 - Graph is time-invariant
 - Consensus is synchronous
 - No weighting on the graph
 - **—** ...
- Results exist for consensus that remove these assumptions (and many more)
- We'll cover only the first two cases

- Directed graph has Laplacian L = D A
- What is the adjacency matrix?

- Directed graph has Laplacian L = D A
- What is the out-degree matrix?

- Directed graph has Laplacian L = D A
- What is the Laplacian?

- Directed graph has Laplacian L = D A
- The graph is unbalanced
 - $-\deg_{out}(v_i) \neq \deg_{in}(v_i)$ for all nodes
- Does it reach consensus?
- If so, to what?

- Initial values
 - $-x_1(0)$, $x_2(0)$, and $x_3(0)$
- Converges to

$$-x_i^* = \frac{\left[x_1(0) + x_{2(0)} + 2x_3(0)\right]}{4}$$

What is happening here?

Convergence Proof

- Can't use eigendecomposition as before. Why?
- Still, $0 = \lambda_1 \le \lambda_2 \le \cdots$
- All eigenvalues in closed LHP, so converges
- $x^* = \mathbf{1}^T \alpha$ is still a right eigenvector for λ_1 , so it still converges to agreement for some $\alpha \in \mathbb{R}$

Prior Results

It has been shown that for G that is connected, applying

$$u_i(t) = \sum_{j \in \mathcal{N}_i} \left(x_j(t) - x_i(t) \right)$$

Converges to the average $\Leftrightarrow \sum_{i=1}^{n} u_i = 0$ (Saber and Murray 2003)

Condition Does Not Hold!

$$L = \begin{bmatrix} 2 & -1 & -1 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

Graphs and Balance

• A graph is balanced iff: $\deg_{out}(v_i) = \deg_{in}(v_i) \ \forall v_i \in V$

Worcester Polytechnic Institute

Theorem (Saber and Murray 2004)

For a graph G = (V, E) the following are equivalent

- 1. G is balanced
- 2. $\mathbf{1}^T L = 0$
- 3. $\sum_{i=1}^n u_i = 0 \ \forall x \in \mathbb{R}^n$ when executing $u_i = \sum_{j \in \mathcal{N}_i} a_{ij}(x_j x_i)$

What does this mean for convergence?

Proof 1 ⇔ **2**

Proof 2 ⇔ **3**

More Consisely

- The linear consensus protocol over a digraph converges to average consensus for every initial condition if and only if it is weakly connected and balanced.
- Strongly connected if there is a directed path from every node to every other node
- Weakly connected if there is an undirected path from every node to every other node
- Weakly connected + balanced → strongly connected

More Concisely

- Digraph converges to average iff
 - Balanced
 - Weakly connected

Time-Varying Consensus and Other Ideas

Time-Varying Problem Set-Up

- A set of graphs Γ
- k^{th} graph is G_k
- Will we reach consensus? Under what conditions?

Time-Varying Topologies

- Saber and Murray also proved that for a set of connected graphs, consensus still converges to the average
- This is a hybrid system!
- Non-trivial, but it makes sense if it requires that all graphs are connected and contracting

General Time-Varying Topologies

- This is harder! Non-linear and time-varying!
- Nonetheless, a proof was found for directed graphs by Moreau in 2005

General Time-Varying Topologies

- $v_i \in V$ is connected to $v_j \in V \setminus \{i\}$ if there is a path from i to j in the graph w.r.t. the direction of the edges
- For a sequence of graphs G=(V,E(t)) with $t\in\mathbb{N}$, a node $v_i\in V$ is connected to $v_j\in V\setminus\{i\}$ across interval $I\subseteq\mathbb{N}$ if it is connected to v_j for $G=\left(V,\cup_{t\in I}E(t)\right)$
- For a sequence of graphs G=(V,E(t)) if $\exists T\geq 0$ such that $\forall t_0\in\mathbb{N}$ there is a node connected to all other nodes across $[t_0,t_0+T]$ then the sequence converges as $t\to\infty$

One last view of consensus

Define a function

$$\Psi_G(\mathbf{x}) = \frac{1}{2} (\mathbf{x}^T) L \mathbf{x}$$

Formation Control

Formations

Formations with Robots

Formation Goal

- How to specify?
- Does it converge?
- Is convergence unique

Formation with Nearest-Neighbors

- Idea:
 - Specify inter-agent distances between pairs of agents
- d_{ij} : desired separation between agent i and agent j (expressed as a <u>vector</u> in \mathbb{R}^n)
- Proposed controller

$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} a_{ij} (x_j - x_i - d_{ij})$$

 Almost consensus. What is different about what agents need to know?

Formation with Nearest-Neighbors

Proposed controller

$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} a_{ij} (x_j - x_i - d_{ij})$$

Where is equilibrium?

$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} \dot{a}_{ij} (x_j - x_i - d_{ij}) = 0$$

- Guess:
 - $-d_{ij} = -d_{ji}$ (and graph is undirected)

$$-x_i-x_i=d_{ij}$$

- Will $d_{ij} = -d_{ji}$ reach an equilibrium?
- What equilibirium?

$$d_{ij} = -d_{ji}$$

• Equilibrium:

$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} a_{ij} (x_j - x_i - d_{ij}) = 0$$

Equilibria

• There are other equilibria!

$$d_{12} = 1 d_{32} = -1$$

$$d_{21} = -(1 + \epsilon) d_{23} = (1 + \epsilon)$$

System Level View

•
$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} a_{ij} (x_j - x_i - d_{ij})$$

•
$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} a_{ij} (x_j - x_i) - \sum_{j \in \mathcal{N}_i} a_{ij} d_{ij}$$

•
$$\dot{x} = -Lx + d$$

• Consensus was *linear*, this is *affine*

System-Level View

•
$$\dot{x} = -Lx + d$$

- What are equilibria?
- $\dot{x} = 0$
- 0 = -Lx + d
- Lx = d
- Great, let's compute $x = L^{-1}d$

Problem!

- *L* is not invertible
- Why?

$$-\lambda_1 = 0$$
, $e_1 = [1,1,...,1]$

- This directly implies that L is singular
- Even more side note—rank of connected graph Laplacian is n-1

What now?

- $\dot{x} = -Lx + d$
- L is not invertible
- Two possibilities
 - No solution
 - Many solutions
- Let's examine what happens if we "guess" a solution

Candidate Solution x^*

- Assume x^* is a solution to $Lx^* + d$
- What if we perturb it by a constant α ?
- $x = x^* + 1\alpha$; $\alpha \in \mathbb{R}$
- $L(\mathbf{x}^* + \mathbf{1}\alpha) = L\mathbf{x}^* + L\mathbf{1}\alpha$
- ∴ if ∃ one solution, ∃ infinitely many solutions

When is there a solution?

- We claimed that $d_{ij} = -d_{ji}$ was necessary condition
- But what about d?
- Reminder, $d_i = \sum_{j \in \mathcal{N}_i} a_{ij} d_{ij}$
- Suppose that $\mathbf{1}^T \mathbf{d} = 0$

When is there a solution

- Suppose $\mathbf{1}^T d = 0$
- Then
 - $-d \perp 1$
 - *d* ∈ range(L)
- Proof by counterexample:

Sum of all elements of d is zero!

Reducing to Consensus

How to prove convergence?

$$\dot{x} = -Lx + d$$

- Change of variables:
- Let x^* be a solution

Some observations

Centroid is invariant again

Some observations

Formation can be translated but not rotated and remain a formation

What do Agents Need to Know?

- State of neighbors
- Desired distance
- Which neighbor is which!
- What don't they know?
 - Centroid
 - Therefore, where it will converge
 - That's what the infinite solutions mean!
 Translation invariant

Wrap Up

Summary

- Consensus Recap
- Time-varying and weighted topologies
- Formation Control

Next Time

- HW0 Due
- HW1 Out
- Next time: detour to models and distributed algorithms
- Next Monday: how to control formations and abstractions