第2章 矩阵运算及其应用

把多个线性系统相互联接,构成更大、更复杂的系统,是线性代数要完成的重要任务,这就需要建立矩阵代数的理论和算法。

2.1.1 矩阵的加法

例2.1 四个超市销售情况如下表:

四超市上下两个半年的销售清单						
上半年销售表	大米	面粉	食油			
超市一	150	250	50			
超市二	250	500	100			
超市三	300	700	120			
超市四	450	850	80			
下半年销售表	大米	面粉	食油			
超市一	180	350	60			
超市二	300	550	120			
超市三	350	850	150			
超市四	500	850	100			

例2.1 把上表内容写成矩阵形式:

$$\mathbf{A} = \begin{bmatrix} 150 & 250 & 50 \\ 250 & 500 & 100 \\ 300 & 700 & 120 \\ 450 & 850 & 80 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 180 & 350 & 60 \\ 300 & 550 & 120 \\ 350 & 850 & 150 \\ 500 & 850 & 100 \end{bmatrix}$$

全年里的销售情况所对应的矩阵C,

$$C = \begin{bmatrix} 150 + 180 & 250 + 350 & 50 + 60 \\ 250 + 300 & 500 + 550 & 100 + 120 \\ 300 + 350 & 700 + 850 & 120 + 150 \\ 450 + 500 & 850 + 850 & 80 + 100 \end{bmatrix} = \begin{bmatrix} 330 & 600 & 110 \\ 550 & 1050 & 220 \\ 650 & 1550 & 270 \\ 950 & 1700 & 180 \end{bmatrix}$$

2.1.2 矩阵的数乘

例2.2 甲、乙、丙三位同学在期末考试中,4门课程的成绩分别由矩阵A给出,而他们的平时成绩则由矩阵B给出,若期末考试成绩占总成绩的90%,而平时成绩占10%,请计算这三名同学的总成绩。

$$\mathbf{A} = \begin{bmatrix} 85 & 85 & 65 & 98 \\ 75 & 95 & 70 & 95 \\ 80 & 70 & 76 & 92 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 90 & 70 & 80 & 92 \\ 80 & 90 & 82 & 92 \\ 85 & 75 & 90 & 90 \end{bmatrix}$$

解:用矩阵C表示总成绩,显然有:

$$\mathbf{C=0.9A+0.1B=} \begin{bmatrix} 85.5 & 83.5 & 66.5 & 97.4 \\ 75.5 & 94.5 & 71.2 & 94.7 \\ 80.5 & 70.5 & 77.4 & 91.8 \end{bmatrix}$$

数乘的定义及运算规则

定义2. 2 数 λ 与矩阵 $\mathbf{A} = \left(a_{ij}\right)_{m \times n}$ 的乘积,简称数乘,记作 λ A或A λ ,规定为

$$\lambda \mathbf{A} = \mathbf{A}\lambda = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{bmatrix}$$

数乘的定义及运算规则

矩阵的加法和数乘统称为矩阵的线性运算,运算规律:

- (1) 加法交换律: A+B=B+A
- (2) 加法结合律: A+(B+C)=(A+B)+C
- (3) 数乘结合律: $(\lambda \mu)A = \lambda(\mu A) = \mu(\lambda A)$
- (4) 数乘分配律: $\lambda(A+B) = \lambda A + \lambda B$

矩阵的乘法

例2.3 有甲、乙、丙、丁4个服装厂,一个月的产量情况由表2.5给出,若甲厂生产8个月,乙厂生产10个月,丙厂生产5个月,而丁厂生产9个月,则共生产帽子、衣服、裤子各多少?用矩阵来描述。

表2.5 服装厂的月产量						
	甲	乙	丙	丁		
帽	20	4	2	7		
衣	10	18	5	6		
裤	5	7	16	3		

$$\mathbf{A} = \begin{bmatrix} 20 & 4 & 2 & 7 \\ 10 & 18 & 5 & 6 \\ 5 & 7 & 16 & 3 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 8 \\ 10 \\ 5 \\ 9 \end{bmatrix}$$

$$\mathbf{C} = \mathbf{A} * \mathbf{b} = \begin{bmatrix} 20 \times 8 + 4 \times 10 + 2 \times 5 + 7 \times 9 \\ 10 \times 8 + 18 \times 10 + 5 \times 5 + 6 \times 9 \\ 5 \times 8 + 7 \times 10 + 16 \times 5 + 3 \times 9 \end{bmatrix} = \begin{bmatrix} 273 \\ 339 \\ 217 \end{bmatrix}$$

矩阵乘法定义

定义2.3 设A是m×s矩阵,B是s×n矩阵,那么A与B的乘积是一个m×n矩阵C,记作C=A*B。其中C的各个元素为:

$$c_{ij} = \sum_{k=1}^{s} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{is} b_{sj}$$

$$(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{is} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{ms} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & & \vdots & & \vdots \\ b_{s1} & \cdots & b_{sj} & \cdots & b_{sn} \end{bmatrix} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & & \vdots & & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & & \vdots & & \vdots \\ c_{m1} & \cdots & c_{mj} & \cdots & c_{mn} \end{bmatrix}$$

矩阵乘法3要点:

- (1) AB可乘条件: A的列数=B的行数
- (2) AB乘积C的形状: A的行*B的列
- (3) AB乘积C的元素构成: A的行与B的列的内积

矩阵乘法不符合交换律

例如1:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}, \ \ \mathbb{M} \ \mathbf{AB} = \begin{bmatrix} 1 \times 7 + 2 \times 8 + 3 \times 9 \\ 4 \times 7 + 5 \times 8 + 6 \times 9 \end{bmatrix} = \begin{bmatrix} 50 \\ 122 \end{bmatrix}$$

但BA,就没有意义。

例如2:
$$A = [1, 2, 3], B = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix},$$

$$AB = 1 \times 3 + 2 \times 2 + 3 \times 1 = 1 , BA = \begin{bmatrix} 3 & 6 & 9 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

定义2.4 线性变换

对于变量 $Y = [y_1, y_2, ..., y_m]^T$, 若它们能由变量 $X = [x_1, x_2, ..., x_n]^T$ 线性表示,即有:

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{cases}$$

则称此关系式为变量 X 到变量 Y 的线性变换。可以写成输出向量Y等于系数矩阵A左乘输入向量X:

$$\boldsymbol{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \boldsymbol{A}\boldsymbol{X}$$

例2.5 多次线性变换等价于矩阵连乘

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ y_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \end{cases}$$
 写成Y=AX

及
$$\begin{cases} x_1 = b_{11}t_1 + b_{12}t_2 \\ x_2 = b_{21}t_1 + b_{22}t_2 \\ x_3 = b_{31}t_1 + b_{32}t_2 \end{cases}$$

写成X=BT

则有:

$$\mathbf{Y} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \mathbf{ABT}$$

$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

线性方程组看做矩阵乘式

线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + & \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + & \cdots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + & \cdots + a_{mn}x_n = b_m \end{cases}$$

可看成系数矩阵A与输入变量X的乘积: A*X=b

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

例2.6

已知
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 4 & 0 \\ -2 & 5 & 6 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} 10 & 20 \\ -10 & 30 \\ -5 & 8 \end{bmatrix}$, 求AB和BA

$$\mathbf{AB} = \begin{bmatrix} 1 \times 10 + 2 \times (-10) + (-1) \times (-5) & 1 \times 20 + 2 \times 30 + (-1) \times 8 \\ 3 \times 10 + 4 \times (-10) + 0 \times (-5) & 3 \times 20 + 4 \times 30 + 0 \times 8 \\ (-2) \times 10 + 5 \times (-10) + 6 \times (-5) & (-2) \times 20 + 5 \times 30 + 6 \times 8 \end{bmatrix}$$

$$= \begin{bmatrix} -5 & 72 \\ -10 & 180 \\ -100 & 158 \end{bmatrix}$$

BA不成立, 因为内阶数不等。

例2.7 已知
$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
 $B = \begin{bmatrix} 4 & 5 & 5 \\ 6 & 5 & 6 \end{bmatrix}$

解:

$$\mathbf{AB} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 1 \times 4 + 2 \times 5 + 3 \times 6 = 32$$

$$\mathbf{BA} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 1, & 2, & 3 \end{bmatrix} = \begin{bmatrix} 4 \times 1 & 4 \times 2 & 4 \times 3 \\ 5 \times 1 & 5 \times 2 & 5 \times 3 \\ 6 \times 1 & 6 \times 2 & 6 \times 3 \end{bmatrix} = \begin{bmatrix} 4 & 8 & 12 \\ 5 & 10 & 15 \\ 6 & 12 & 18 \end{bmatrix}$$

矩阵乘法与标量乘法的不同

- (1) 矩阵乘法不满足交换律,即在一般情况下AB≠BA.
- (2) 不能由AB=0, 推出A=0或B=0.

比如
$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ 却有AB=0.

(3) 不能由AC=AB, A \neq 0, 推出B=C。上题若设 $C = \begin{bmatrix} 6 \\ -3 \end{bmatrix}$,同样有AB=AC=0,但B \neq C。

要注意,有些我们习惯的标量运算的公式,其中隐含地包含了乘法交换律,这些公式在矩阵运算中也不能使用。如

$$(A + B)^2 \neq A^2 + 2AB + B^2$$

 $(A + B)(A - B) \neq A^2 - B^2$

矩阵乘法满足的规律

- $(1) \qquad (AB) C=A (BC)$
- (2) A (B+C) = AB+AC, (A+B) C = AC+BC
- (3) λ (AB) = $(\lambda A) B = A (\lambda B)$
- (4) $A_{m\times n}I_n = I_mA_{m\times n} = A_{m\times n}$
- (5) 设A, B均为下(上)三角方阵,则C=AB也是下(上)三角方阵,且C的对角主元逐项等于A和B的对角主元的乘积。如

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 9 & 8 & 7 \\ 0 & 6 & 5 \\ 0 & 0 & 4 \end{bmatrix}, \ \ \mathbb{M} \ \mathbf{C} = \mathbf{A} * \mathbf{B} = \begin{bmatrix} 9 & 20 & 29 \\ 0 & 24 & 40 \\ 0 & 0 & 2 \end{bmatrix}$$

2.1.4 矩阵的转置

定义2.5 设A是一个m×n矩阵,将矩阵中所有i行j列的元素a(i,j)换到j行i列位置,得到的一个n×m矩阵,称为A的转置矩阵,记作A^T,在MATLAB中记作A'。例如:

$$\mathbf{A} = \begin{bmatrix} 1 & 5 & 3 \\ 2 & 9 & 4 \end{bmatrix} \qquad \mathbf{A}^T = \begin{bmatrix} 1 & 2 \\ 5 & 9 \\ 3 & 4 \end{bmatrix}$$

2.1.4 矩阵的转置

矩阵转置满足以下运算规律:

(1)
$$(\mathbf{A}^T)^T = \mathbf{A}$$
 (2) $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$

(3)
$$(\lambda \mathbf{A})^T = \lambda \mathbf{A}^T$$
 (4) $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$

定义 如果阶方阵满足AT=A,则称A为对称矩阵。

如:

$$\mathbf{A} = \begin{bmatrix} -2 & 3 & -1 \\ 3 & -6 & 7 \\ -1 & 7 & 10 \end{bmatrix}$$

2.2 矩阵的逆

引例 已知变量到变量的线性变换

$$\begin{cases} y_1 = 2x_1 + 3x_2 - x_3 \\ y_1 = 3x_1 - 2x_2 + x_3 \Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ y_3 = 5x_1 + 8x_2 + x_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & -1 \\ 3 & -2 & 1 \\ 5 & 8 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \Rightarrow \mathbf{Y} = \mathbf{A}\mathbf{X} \quad (2.2.1)$$

现在要研究它的逆运算,即变量Y到变量X的线性变换:

称V为A的逆矩阵。对于数的乘法y=ax,想用变量来表示变量,当a \neq 0时,可写成x=a $^{-1}$ y。自然地联想到,是否可以把式(2. 2. 1)中的系数矩阵也"搬"到等式的另一边,从而得到该式的逆变换:

$$A^{-1}Y=X$$

逆矩阵是否存在?如果存在,又如何求得?这是一个极为重要的问题。

2.2.1 逆矩阵的定义

定义2.7 设为A为n阶方阵,若存在n阶方阵V,使得AV=I_n,其中I_n为n阶单位矩阵,则称为A可逆矩阵或是可逆的,并称V为A的逆矩阵。

如果A的逆矩阵为V,记A⁻¹=V,显然,V的逆矩阵为A,记V⁻¹=A,我们也称矩阵A和矩阵V互逆。

例2.8 设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}, \mathbf{A}\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}_2$$

$$\mathbf{C} = \begin{bmatrix} 3 & -6 & 0 \\ 9 & 0 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} 1/3 & -1/6 & 0 \\ 0 & 1/9 \end{bmatrix}, \quad \mathbf{C}\mathbf{D} = \mathbf{I}_3$$

故A, B互逆, C, D也互逆。

2.2.2 逆矩阵的性质

- 1. 如果矩阵A可逆,则A的逆矩阵唯一。
- 2. 若A和B为同阶可逆方阵,且满足AB=I,则BA=I,即矩阵A和B互逆。
- 3. 若A可逆,则A-1也可逆,且(A-1)-1=A。
- 4. 若A可逆, 数 λ ≠ 0, 则 λ A可逆, 且 (λ A) ⁻¹=A⁻¹ λ ⁻¹
- 5. 若A、B均为n阶可逆方阵,则AB也可逆,且 (AB)⁻¹=B⁻¹A⁻¹。

此性质可推广至k个同阶方阵连乘的情况:

$$\left(\mathbf{A}_{1}\mathbf{A}_{2}\cdots\mathbf{A}_{k}\right)^{-1}=\mathbf{A}_{k}^{-1}\mathbf{A}_{k-1}^{-1}\cdots\mathbf{A}_{1}^{-1}$$

逆矩阵的求法:

1. 按定义求,设二阶方阵A的逆阵为V,

$$\mathbf{AV} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \mathbf{v}_{11} & \mathbf{v}_{12} \\ \mathbf{v}_{21} & \mathbf{v}_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

按乘法规则展开,得到关于四个未知数v_{ij}的四个线性方程,

$$av_{11} + bv_{21} = 1$$
, $cv_{11} + dv_{21} = 0$, $av_{12} + bv_{22} = 0$, $cv_{12} + dv_{22} = 1$,
解出: $v_{11} = \frac{d}{ad - bc}$, $v_{12} = \frac{-c}{ad - bc}$, $v_{21} = \frac{-b}{ad - bc}$, $v_{22} = \frac{a}{ad - bc}$

$$\mathbf{V} = \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

但这个求逆方法太复杂,二阶矩阵要解四个联立方程,三阶矩阵就要解9个联立方程,··· 。计算量最少的矩阵求逆方法是高斯消元法,将在2.4节介绍。

2.2.3 逆矩阵看作矩阵除法

MATLAB中对逆矩阵的计算提供了多种内部函数,工程中只需调用,不必自己编程。下面列举几种函数或运算符,它增强了编程的灵活性。调用时注意,A必须是n×n方阵。

- (1) 逆函数 V=inv(A);
- (2) 负指数V=A⁻¹;

特别有趣的是,尽管矩阵理论中没有矩阵除法的定义,但 MATLAB创新地把"乘以逆阵"看作除法,因为有左乘和右 乘的不同,运算符也有左除"\"和右除"/"的差别。

- (3) 左除 V=A\eye(n); A-1B可写成算式A\B, B可以不是方阵,但其行数要等于n。
- (4)右除 V=eye(n)/A; BA-1可写成算式, B/A, B可以不是方阵, 但其列数要等于n。

2.3 矩阵的分块

将矩阵A分为若干个小矩阵,每一个小矩阵称为A的子块

$$\mathbf{A} = \begin{bmatrix} 1 & 7 & 0 \\ 2 & 3 & 9 \\ 3 & 8 & 1 \\ 4 & -1 & 6 \end{bmatrix} \quad \begin{bmatrix} 1 & 7 & 0 \\ 2 & 3 & 9 \\ 3 & 8 & 1 \\ 4 & -1 & 6 \end{bmatrix} \quad \begin{bmatrix} 1 & 7 & 0 \\ 2 & 3 & 9 \\ 3 & 8 & 1 \\ 4 & -1 & 6 \end{bmatrix} \quad \begin{bmatrix} 1 & 7 & 0 \\ 2 & 3 & 9 \\ 3 & 8 & 1 \\ 4 & -1 & 6 \end{bmatrix}$$

最有用的分块方法是按行和按列分块。如下所示,

$$\mathbf{A}\mathbf{\beta}\mathbf{\beta}\begin{bmatrix} a_{11}, \cdots, a_{1n} \\ \vdots & \ddots & \vdots \\ a_{11}, \cdots, a_{1n} \end{bmatrix} = \begin{bmatrix} \mathbf{\alpha_1} \\ \vdots \\ \mathbf{\alpha_m} \end{bmatrix} = \begin{bmatrix} a_{11}, \cdots, a_{1n} \\ \vdots & \ddots & \vdots \\ a_{11}, \cdots, a_{1n} \end{bmatrix} = \begin{bmatrix} \mathbf{1}, \cdots, \mathbf{n} \end{bmatrix},$$

其中
$$\mathbf{a_1} = [a_{11}, a_{12}, \dots, a_{1n}]$$
,为行向量, $\mathbf{\beta_n} = \begin{bmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{bmatrix}$ 为列向量

矩阵A既可看作行向量 α 的组合, 也可以看作列向量 β 的组合。

分块矩阵的运算规则

矩阵分块以后,其加减、数乘、乘法、转置等四则运算规则仍然适用。所以分块矩阵相加时,两个矩阵及其子矩阵必须保持同型;相乘时,左乘矩阵及其子矩阵的列数必须等于右乘矩阵及其子矩阵的行数。

设:

$$\mathbf{A} = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1t} \\
A_{21} & A_{22} & \cdots & A_{2t} \\
\vdots & \vdots & \ddots & \vdots \\
A_{r1} & A_{r2} & \cdots & A_{rt}
\end{bmatrix} \quad
\mathbf{B} = \begin{bmatrix}
B_{11} & B_{12} & \cdots & B_{1s} \\
B_{21} & B_{22} & \cdots & B_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
B_{t1} & B_{t2} & \cdots & B_{ts}
\end{bmatrix} \quad
\mathbf{AB} = \begin{bmatrix}
C_{11} & C_{12} & \cdots & C_{1s} \\
C_{21} & C_{22} & \cdots & C_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
C_{r1} & C_{r2} & \cdots & C_{rs}
\end{bmatrix}$$

其中
$$C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \cdots + A_{it}B_{tj} = \sum_{k=1}^{t} A_{ik}B_{kj}$$

例2.9 分块乘法举例

利用分块矩阵的概念, 把下列线性方程组写成向量等式。

$$\begin{cases} 2x_1 - 2x_2 & +6x_4 = -2 \\ 2x_1 - x_2 + 2x_3 + 4x_4 = -2 \\ 3x_1 - x_2 + 4x_3 + 4x_4 = -3 \end{cases}$$

解:线性方程组的矩阵可看做四个列矩阵(列向量)乘以四个行元素:

$$\begin{bmatrix} 2 & -2 & 0 & 6 \\ 2 & -1 & 2 & 4 \\ 3 & -1 & 4 & 4 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} x_1 + \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix} x_2, + \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix} x_3 + \begin{bmatrix} 6 \\ 4 \\ 4 \end{bmatrix} x_4 = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$$

化成了向量等式。 $x_1 \alpha \alpha \alpha \alpha = b_1 + x_3 + x_4 + x_4$

2.4 初等矩阵

2. 4. 1 用矩阵乘法实现行初等变换 方程组的三种初等变换都可以用初等矩阵左乘A来实现。

(1) 消元变换阵左乘A得:
$$\mathbf{E}_{21}\mathbf{A}\alpha\alpha$$
 $\begin{bmatrix} 1 & 0 & 0 \\ e_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \alpha \\ \alpha \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} \alpha \alpha \\ \alpha \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} \alpha \alpha \\ \alpha \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} \alpha \alpha \\ \alpha \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

(3) 数乘变换阵左乘A得:
$$\mathbf{D}_{2}\mathbf{A}\boldsymbol{\alpha}\boldsymbol{\alpha}\begin{bmatrix} 1 & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} \boldsymbol{\alpha}\boldsymbol{\rho} \\ \mathbf{2} \\ \boldsymbol{\alpha}\boldsymbol{\varphi} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ d_{2} \\ \mathbf{3} \end{bmatrix}$$

初等矩阵的逆矩阵

这三种初等变换矩阵是可逆的:

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ e & 0 & 1 \end{bmatrix}, \quad \mathbf{P}_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{D}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

其逆阵为:

$$\mathbf{E}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -e & 0 & 1 \end{bmatrix}, \quad \mathbf{P}_{23}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{D}_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/k & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

关于初等矩阵和方阵的定理

把三种初等矩阵统称为Q,总结出两个定理。

定理2.1 设A是一个矩阵,对A施行一次初等行变换,

其结果等于在A的左边乘以相应的m阶初等矩阵Q。

关于初等矩阵和方阵的定理

定理2.2 设A为n阶方阵,那么下面各命题等价,互 为充要条件:

- ① A是可逆矩阵;
- ② 线性方程组Ax=0只有零解;
- ③ A可以经过有限次初等行变换化为单位矩阵;
- ④ A可以表示为有限个初等矩阵的乘积。

定理2.2的证明

定理2.2 设A为n阶方阵,那么下面各命题等价,互为充要条件:

- ① A是可逆矩阵;
- ② 线性方程组Ax=0只有零解;
- ③ A可以经过有限次初等行变换化为单位矩阵;
- ④ A可以表示为有限个初等矩阵的乘积。

证明:

(1) ①→② A是可逆矩阵,则存在A⁻¹,用A⁻¹同时左乘
 线性方程组Ax=0的两边,有:A⁻¹Ax= A⁻¹0=0,则x=0,即线
 性方程组Ax=0只有零解。

定理2.2的证明

定理2.2 设A为n阶方阵,那么下面各命题等价,互为充要条件:

- ① A是可逆矩阵;
- ② 线性方程组Ax=0只有零解;
- ③ A可以经过有限次初等行变换化为单位矩阵;
- ④ A可以表示为有限个初等矩阵的乘积。

证明:

(2)②→③ 线性方程组Ax=0只有零解,说明系数矩阵A 经过若干次初等行变换后,其行最简形必然是单位矩阵I_n。 即A可以经过有限次初等变换化为单位矩阵In。

定理2.2的证明

定理2.2 设A为n阶方阵,那么下面各命题等价,互为充要条件:

- ① A是可逆矩阵;
- ② 线性方程组Ax=0只有零解;
- ③ A可以经过有限次初等行变换化为单位矩阵;
- ④ A可以表示为有限个初等矩阵的乘积。

证明:

(3)③→④ A可以经过有限次初等行变换化为单位矩阵 I_n 。由于初等变换是可逆的,故 I_n 也可以经过有限次初等 行变换化为A。再利用定理2. 1知,存在初等矩阵 Q_1 , Q_2 , ···Q_n, 使得 Q_1Q_2 ···Q_n, I_n =A ,即得A= Q_1Q_2 ···Q_n 。

定理2.2的证明

定理2.2 设A为n阶方阵,那么下面各命题等价,互为充要条件:

- ① A是可逆矩阵;
- ② 线性方程组Ax=0只有零解;
- ③ A可以经过有限次初等行变换化为单位矩阵;
- ④ A可以表示为有限个初等矩阵的乘积。

证明:

(4) 4 由于A= $Q_1Q_2\cdots Q_n$,而初等矩阵是可逆的,又根据逆矩阵的性质知,可逆矩阵的乘积也可逆,故A是可逆矩阵。

2.4.2 用初等行变换求逆矩阵

方法:

把矩阵A和同阶单位矩阵I并排放置,构成矩阵 [A, I], 对该矩阵进行初等行变换,如果把矩阵A化为单位矩阵I时,原来的单位矩阵I就变为矩阵A的逆矩阵了。

即:
$$(A,I) \rightarrow \cdots \rightarrow (I,A^{-1})$$

理论依据:

如果A可逆,即存在矩阵 A^{-1} , 而必有 $A^{-1} = Q_1Q_2\cdots Q_s$, 其中Q为初等矩阵,对矩阵进行初等行变换,也就是对其左乘初等矩阵,于是有:

$$Q_1Q_2\cdots Q_s(A,I) = A^{-1}(A,I) = (A^{-1}A,A^{-1}I) = (I,A^{-1})$$

求逆阵例 2.11

设
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -2 \\ -3 & -6 & 5 \\ 1 & 1 & -1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 3 & 6 & 2 \\ 2 & 4 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

判断A、B是否可逆,如果可逆,求之。

解:程序为:

$$A=[1, 3, -2; -3, -6, 5; 1, 1, -1], C=[A, eye(3)], Uc=rref(C)$$

B=[3, 6, 2; 2, 4, 1; 1, 2, 1] , D=[B, eye(3)], Ud=rref(D)

运行结果: A-1存在, B-1不存在, 因B秩为2, 不能变为

单位矩阵。

$$\mathbf{A}^{-1} = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix}$$

2.6 应用实例

例2.14 某厂生产三种产品,每件产品的成本及每季 度生产件数如表所示。

成本(元)	产品A	产品B	产品C
原材料	0. 10	0. 30	0. 15
劳动	0. 30	0. 40	0. 25
企业管理费	0. 10	0. 20	0. 15

产品	夏	秋	冬	春
Α	4000	4500	4500	4000
В	2000	2800	2400	2200
С	5800	6200	6000	6000

试提供该厂每季度的总成本分类表。

2.6.1 成本核算问题

解:用矩阵来描述此问题,设产品分类成本矩阵为M,季度产量矩阵为P,则有:

$$\mathbf{M} = \begin{bmatrix} 0.10 & 0.30 & 0.15 \\ 0.30 & 0.40 & 0.25 \\ 0.10 & 0.20 & 0.15 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} 4000 & 4500 & 4500 & 4000 \\ 2000 & 2800 & 2400 & 2200 \\ 5800 & 6200 & 6000 & 6000 \end{bmatrix}$$

按Q=M*P可计算出以下的分类成本,用sum命令进行列相加。

成本(元)	夏	秋	冬	春	全年
原材料	1870	2220	2070	1960	8120
劳动	3450	4020	3810	3580	14860
企业管理费	1670	1940	1830	1740	7180
总成本	6990	8180	7710	7280	30160

2.6.2

特殊矩阵的生成

生成特殊规则的矩阵,可用单列乘单行的矩阵乘法。如

$$\mathbf{X}_{10\times 21} = \begin{bmatrix} -10 & -9 & \cdots & 0 & \cdots & 9 & 10 \\ -10 & -9 & \cdots & 0 & \cdots & 9 & 10 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ -10 & -9 & \cdots & 0 & \cdots & 9 & 10 \end{bmatrix}$$

可令
$$\mathbf{v_1} = [-10, -9, \dots, 9, 10], \mathbf{v_2} = [\underbrace{1, 1, \dots, 1, 1}_{10}]$$

则
$$\mathbf{X} = \mathbf{v}_2^{\mathrm{T}} \mathbf{v}_1$$

则 $X = \mathbf{v}_2^T \mathbf{v}_1$ 是一个10×21的矩阵。

列2.16 范德蒙矩阵的生成

解:这里除了用列向量乘行向量之外,还用了Matlab的 符号运算功能。程序pla216为:

syms x1 x2 x3 x4 real % 定义实符号变量

x=[x1, x2, x3, x4]; y=0:3; % 生成符号行矩阵x和行矩阵y

A= x'*ones(1, 4) % 列乘行生成方阵A

V=A. ^B

% 两个方阵作元素群求幂

结果:

$$A = \begin{bmatrix} x1, x1, x1, x1 \\ x2, x2, x2, x2 \\ x3, x3, x3, x3 \\ x4, x4, x4, x4 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix}, V = \begin{bmatrix} 1 & x1 & x1^2 & x1^3 \\ 1 & x2 & x2^2 & x2^3 \\ 1 & x3 & x3^2 & x3^3 \\ 1 & x4 & x4^2 & x4^3 \end{bmatrix}$$

2.6.4 图及其矩阵表述

例2.18 航线图

图为1, 2, 3, 4四个城市之间的空 运航线,用有向图表示。则该图可 以用航路矩阵表示: 其中第一行为 由第一个城市出发的航班, 分别可 以到城市3、4, . 因此在3、4两列处 的元素为1,其余为零。以此类推可 以写出其他各行的元素,构成邻接 矩阵A1。

$$\mathbf{A1} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

多次转机到达矩阵的计算

若要分析经过一次转机(也就是坐两次航班)能到达的城市,可以将邻接矩阵与自己相乘,得到A2=A1²来求得。实际意义就是把第一次航班的到站再作为起点,求下一个航班的终点。

$$\mathbf{A2} = \mathbf{A1} * \mathbf{A1} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

经过两次以内转机能够到达的航路矩阵应为:

$$\mathbf{A} = \mathbf{A1} + \mathbf{A2} = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 1 \end{bmatrix}$$

2.6.5 网络的矩阵分割和连接

在电路设计中,经常要把复杂的电路分割为局部电路,每一个电路都用一个网络"黑盒子"来表示。"黑盒子"的输入为u1, i1, 输出为u2, i2, 都有两个变量,因此其输入输出关系用2×2矩阵A来表示(如右图):

A被称为该电路的传输矩阵。传输矩阵的元素可以用理论计算,也可用实验测试的方法取得。把复杂的电路分成许多串接局部电路,分别求出或测出它们的传输矩阵,再相乘起来,得到总的传输矩阵,可以使分析和测量电路的工作简化。

$$\begin{bmatrix} u_2 \\ i_2 \end{bmatrix} = \mathbf{A} \begin{bmatrix} u_1 \\ i_1 \end{bmatrix}$$

网络分解成矩阵串接

例2.19 网络的矩阵分割

$$u_1$$
 R_1
 u_2
 R_2
 u_3

按图列出第一个子网络的电路方程为:

$$i_2 = i_1, \ u_2 = u_1 - i_1 R_1$$

写成矩阵方程:

$$\begin{bmatrix} u_2 \\ i_2 \end{bmatrix} = \begin{bmatrix} 1 & -R_1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ i_1 \end{bmatrix} = \mathbf{A_1} \begin{bmatrix} u_1 \\ i_1 \end{bmatrix}$$

第二个子网络的电路方程,

$$i_3 = i_2 - u_2 / R_2, \quad u_3 = u_2$$

写成矩阵方程为:

$$\begin{bmatrix} u_3 \\ i_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/R_2 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_2 \\ i_2 \end{bmatrix} = \mathbf{A_2} \begin{bmatrix} u_2 \\ i_2 \end{bmatrix} = \mathbf{A_2} \mathbf{A_1} \begin{bmatrix} u_1 \\ i_1 \end{bmatrix}$$

例2.19 网络的矩阵分割

综上可以得出电路传输矩阵A:

$$\mathbf{A} = \mathbf{A}_2 * \mathbf{A}_1 = \begin{bmatrix} 1 & 0 \\ -1/R_2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -R_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -R_1 \\ -1/R_2 & 1 + R_1/R_2 \end{bmatrix}$$

$$\begin{bmatrix} u_3 \\ i_3 \end{bmatrix} = A \begin{bmatrix} u_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} 1 & -R_1 \\ -1/R_2 & 1 + R_1/R_2 \end{bmatrix} \begin{bmatrix} u_1 \\ i_1 \end{bmatrix}$$

第二章要求掌握的概念和计算

- 1. 矩阵乘法(包括分块乘法)的定义;
- 2. 行初等变换和左乘初等矩阵的等价性;
- 3. 如何用单列m×1向量乘单行1×n向量构成m×n矩阵 以简化矩阵赋值;
- 4. 弄清矩阵[A, I]经rref函数行化简后求逆矩阵的原理; 掌握矩阵求逆函数inv(A),

第二章要求掌握的概念和计算

- 5. 掌握逆矩阵的定义及用逆矩阵求方程组解的方法, 特别是左除和右除的概念和用法;
- 6. 矩阵乘积的逆与逆矩阵的乘积次序要颠倒, inv(A*B)=inv(B)*inv(A), 转置也是如此。
- 7. MATLAB实践:矩阵的四则运算和元素群运算,分块运算,用矩阵乘法求解方程组。
- 8. MATLAB函数: eye, diag, inv, sum, 矩阵运算符[^], \((左除), / (右除),

2.5 lu分解

2.5 行阶梯变换等价于——LU分解

前面证明了可以用初等矩阵连乘用把方阵A变成单位矩阵,这些初等矩阵连乘积就是A的逆阵V,即VA=I。如果只把A变成行阶梯矩阵U为止(特别是少了数乘变换D),把这过程中初等变换E和P的连乘积取为L⁻¹,即L⁻¹A=U,写成A=LU。相当于把矩阵A分解为一个下三角矩阵L和一个上三角矩阵U乘积。这种变换称为lu变换。

其调用格式为:

- [L,U]=lu(A)
- •它返回的结果是一个对角元素均为1的下三角矩阵L和一个上三角矩阵U。这个变换实质上是高斯消元法表示为矩阵乘法的一种形式。

用例1.4中矩阵A,b的数据求lu分解

• **例2.12** 增广矩阵为C,经三次消法变换(乘以 $E_1E_2E_3$)消去左下方三个元素后,成为上三角阵

$$\mathbf{C} = [\mathbf{A}, \mathbf{b}] = \begin{bmatrix} 3 & 2 & -2 & -4 \\ 3 & 3 & -1 & -5 \\ 2 & 2 & -1 & 4 \end{bmatrix} \qquad \mathbf{U} = \begin{bmatrix} 3 & 2 & -2 & -4 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -1/3 & 20/3 \end{bmatrix}$$

这些都是消法变换,相当于三个下三角消法阵的连乘, 所以L仍然是下三角阵

$$\mathbf{L} = \text{inv}(\mathbf{E}_3 \mathbf{E}_2 \mathbf{E}_1) = \text{inv}(\mathbf{E}_1) \text{inv}(\mathbf{E}_2) \text{inv}(\mathbf{E}_3) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2/3 & 2/3 & 1 \end{bmatrix}$$

用U1=ref1(C) 得到的U1与U相同.

如果变换中出现行交换,得到的下三角阵L就不标准, 各行有些交换,称为准下三角阵,见下例。

下三角矩阵和准下三角矩阵

- 列出这些矩阵相乘的结果,主要是提供读者做笔算时作为参考,读者最好用软件来检验这些结果,学完这本书后就不要再用笔算了!像这道题,可直接调用lu分解,键入语句:[L1,U1]=lu(A)。细致的检验可执行程序pla212,看其结果。
- 还要说明一下L为什么是下三角矩阵。从上一节知道,消法矩阵E及其逆阵E-1都是下三角矩阵,本例的行阶梯变换中只用E,根据矩阵相乘的规则(5),它们的连乘积也必定是下三角矩阵。但商用软件中还要多次用行交换矩阵P来保证消元法的精度。这会使得最后的下三角矩阵L不那末标准,各行有些颠倒,故称之为准下三角矩阵。

例2.13

・ 把矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & -2 & 0 & 6 \\ 2 & -1 & 2 & 4 \\ 3 & -1 & 4 & 4 \\ 1 & 1 & 1 & 8 \end{bmatrix}$$
, 进行lu分解,求出**U**及L。

• 键入[L,U]=lu(A),得到

$$\mathbf{L} = \begin{bmatrix} 2/3 & 1 & 0 & 0 \\ 2/3 & 1/4 & * & 1 \\ 1 & 0 & 0 & 0 \\ 1/3 & -1 & 1 & 0 \end{bmatrix}, \ \mathbf{U} = \begin{bmatrix} 3 & -1 & 4 & 4 \\ 0 & -4/3 & -8/3 & 10/3 \\ 0 & 0 & -3 & 10 \\ 0 & 0 & 0 & 1/2 \end{bmatrix}$$

• 结果上三角阵U是标准的行阶梯形,下三角阵L就不大标准, 要进行行交换,**1→2**,**2→** 4 , 4→3, 3→1, 才能成为真正的下 三角阵,且其对角元素都是 1 。