EEE 587 Optimal Control – HW 1

Siddharth Jain 1226137070

Question 1. Forward Enumeration

1. Route
$$1 - a - d - e - h$$

$$Cost - 1 + 2 + 8 = 11$$

2. Route
$$2 - a - b - c - f - g - h$$

$$Cost - 1 + 1 + 1 + 13 + 2 = 18$$

Optimal Route
$$-S-E-E-E-N$$

3. Route
$$3 - a - d - e - f - g - h$$

$$Cost - 1 + 2 + 2 + 13 + 2 = 20$$

Optimal Route
$$-E-E-S-E-N$$

4. Route
$$4 - a - b - c - d - e - h$$

$$Cost - 1 + 1 + 2 + 2 + 8 = 14$$

Optimal Route
$$-S - E - N - E - E$$

5. Route
$$5 - a - b - c - d - e - f - g - h$$

$$Cost - 1 + 1 + 2 + 2 + 2 + 13 + 2 = 23$$

Optimal Route
$$-S-E-N-E-S-E-N$$

Based on the minimum cost – Route 1 is selected with the cost of 11 (highlighted in green)

Optimal Route is therefore – E – E – E

Question 2. Principal of Optimality

Applying the principal of optimalitym we start from the last state g and move backwards to the initial state a. In each state, the most optimal path is selected.

Current Intersection	Heading	Next Intersection	Min. cost to reach from a to h via xi	Min. cost to reach from a to h	Optimal Heading
g	N	h	2 + 0 = 2	2	N
f	Е	g	13 + 2 = 15	15	E
e	Е	h	8 + 0 = 8	8	E
	S	f	2 + 15 = 17		
d	E	е	2 + 8 = 10	10	E
С	N	d	2 + 10 = 12	12	N
	Е	f	1 + 15 = 16		
b	Е	С	1 + 12 = 13	13	E
a	Е	d	1 + 10 = 11	11	E
	S	b	1 + 13 = 14		

As it can be seen, there is no optimal route if we start from G

Optimal path when we start from E

Optimal Route using Principal of Optimality -a - d - e - h (highlighted in green)

Route
$$-E-E-E$$

Therefore the optimal action at state a is East which will take it to state d, then again East to take it to state e and finally East to take it to the destination h.

Hence total cost is 11.

Which is the same as the route found using forward enumeration.