CLAIMS

1. A method comprising:

identifying that a storage array is close to permanently losing data; and giving, in response to identifying that the storage array is close to permanently losing data, input/output (I/O) requests for rebuilding at least a portion of the storage array priority over host I/O requests.

- 2. A method as recited in claim 1, wherein the identifying comprises identifying that the storage array is close to permanently losing data when failure of one additional storage device of a plurality of storage devices in the storage array would result in permanent data loss in the storage array.
- 3. A method as recited in claim 1, wherein the storage array comprises a redundant array of independent disks (RAID) system.
- 4. A method as recited in claim 3, wherein:

the RAID system includes a plurality of RAID levels;

the identifying comprises identifying when at least one of the plurality of RAID levels is close to permanently losing data; and

giving, rebuild I/O requests priority over host I/O requests only for the at least one RAID level that is close to permanently losing data.

5. A method as recited in claim 4, wherein one of the plurality of RAID levels includes RAID level 6.

- 6. A method as recited in claim 1, further comprising giving host I/O requests priority over rebuild I/O requests if the storage array is not close to permanently losing data.
- 7. A method as recited in claim 1, wherein giving I/O requests for rebuilding at least a portion of the storage array priority over host I/O requests comprises:

placing both I/O requests for rebuilding at least the portion of the array and host I/O requests into a queue in the order they are received; and

processing the I/O requests for rebuilding and the host I/O requests from the queue in a first-in-first-out (FIFO) manner.

8. A method as recited in claim 1, wherein giving I/O requests for rebuilding at least a portion of the storage array priority over host I/O requests comprises:

allocating, among a plurality of resources in the storage array and a corresponding controller, more resource usage to the I/O requests for rebuilding than to the host I/O requests.

9. A method as recited in claim 1, wherein giving I/O requests for rebuilding at least a portion of the storage array priority over host I/O requests comprises preempting a host I/O request in favor of a rebuild I/O request.

- 10. A method as recited in claim 1, wherein how many failed disks in the storage array can be endured without permanently losing data varies based at least in part on a particular redundant array of independent disks (RAID) architecture level of the storage array.
- 11. One or more computer-readable media having stored thereon a computer program that, when executed by one or more processors of a computer, causes the one or more processors to perform acts including:

identifying that a storage array is close to permanently losing data; and giving, in response to identifying that the storage array is close to permanently losing data, input/output (I/O) requests for rebuilding at least a portion of the storage array priority over host I/O requests.

- 12. One or more computer-readable media as recited in claim 11, wherein the identifying comprises identifying that the storage array is close to permanently losing data when failure of one additional storage device of a plurality of storage devices in the storage array would result in permanent data loss in the storage array.
- 13. One or more computer-readable media as recited in claim 11, wherein giving I/O requests for rebuilding at least a portion of the storage array priority over host I/O requests comprises:

allocating, among a plurality of resources in the storage array and a corresponding controller, more resource usage to the I/O requests for rebuilding than to the host I/O requests.

14. One or more computer-readable media as recited in claim 11, wherein how many failed disks in the storage array can be endured without permanently losing data varies based at least in part on a particular redundant array of independent disks (RAID) architecture level of the storage array.

15. An apparatus comprising:

a priority identifier to determine whether host input/output (I/O) requests or rebuild I/O requests for a storage array are to have priority; and

a request dispatcher, communicatively coupled to the priority identifier, to select host I/O requests and rebuild I/O requests for execution based at least in part on whether host I/O requests or rebuild I/O requests are to have priority.

- 16. An apparatus as recited in claim 15, wherein the storage array comprises a redundant array of independent disks (RAID) system.
- 17. An apparatus as recited in claim 15, further comprising a request queue structure into which the rebuild I/O requests and the host I/O requests are placed to await selection for execution by the request dispatcher.
- 18. An apparatus as recited in claim 17, wherein the request dispatcher is configured to select requests from the top of the queue structure regardless of whether the requests are host I/O requests or rebuild I/O requests.

- 19. An apparatus as recited in claim 17, further comprising a queue controller, communicatively coupled to the request queue structure, configured to order requests in the queue structure so that host I/O requests are higher than rebuild requests only if host I/O requests are to have priority.
- 20. An apparatus as recited in claim 17, wherein the request queue structure includes a plurality of queues.
- 21. An apparatus as recited in claim 15, further comprising: a plurality of resources; and

wherein the request dispatcher is to limit the host I/O request usage of at least one of the plurality of resources if rebuild I/O requests are to have priority.

- 22. An apparatus as recited in claim 15, wherein the priority identifier is to determine that rebuild I/O requests are to have priority if failure of one additional storage device of a plurality of storage devices in the storage array would result in data loss in the storage array.
- 23. An apparatus as recited in claim 15, further comprising a request processor, communicatively coupled to the request dispatcher, to process I/O requests and preempt a host I/O request in favor of a rebuild I/O request.