Atomic radii of the elements (data page)

The **atomic radius** of a <u>chemical element</u> is the distance from the centre of the nucleus to the outermost shell of the electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Depending on the definition, the term may apply only to isolated atoms, or also to atoms in <u>condensed matter</u>, <u>covalently bound</u> in <u>molecules</u>, or in <u>ionized</u> and <u>excited</u> <u>states</u>; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context.^[1]

Atomic radii vary in a predictable and explicable manner across the <u>periodic table</u>. For instance, the radii generally decrease rightward along each period (row) of the table, from the <u>alkali metals</u> to the <u>noble gases</u>; and increase down each group (column). The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the <u>electron shell</u> theory of the atom; they provided important evidence for the development and confirmation of <u>quantum theory</u>.

Contents

Atomic radii

See also

Notes

References

Atomic radius (empirical)
Atomic radius (calculated)
Van der Waals radius
Covalent radii (single bond)
Triple-bond covalent radii
Metallic radius

Atomic radii

Note: All measurements given are in picometers (pm). For more recent data on covalent radii see Covalent radius.

atomic number	symbol	name	empirical	Calculated	van der Waals	Covalent (single bond)	Covalent (triple bond)	Metallic
1	Н	hydrogen	25	53	120	38	no data	
2	He	helium	120	31	140	32	no data	
3	Li	lithium	145	167	182	134	no data	152
4	Ве	beryllium	105	112	153 ^a	90	85	112
5	В	boron	85	87	192 ^a	82	73	
6	С	carbon	70	67	170	77	60	
7	N	nitrogen	65	56	155	75	54	
8	0	oxygen	60	48	152	73	53	
9	F	fluorine	50	42	<u>147</u>	<u>71</u>	<u>53</u>	
10	Ne	neon	<u>160</u>	38	<u>154</u>	<u>69</u>	no data	
11	Na	sodium	<u>180</u>	<u>190</u>	227	<u>154</u>	no data	<u>186</u>
12	Mg	magnesium	<u>150</u>	<u>145</u>	<u>173</u>	<u>130</u>	<u>127</u>	<u>160</u>
13	Al	aluminium	125	118	184 a	118	111	143
14	Si	silicon	110	111	210	111	102	
15	Р	phosphorus	100	98	180	106	94	
16	S	sulfur	100	88	<u>180</u>	<u>102</u>	<u>95</u>	
17	CI	chlorine	<u>100</u>	<u>79</u>	<u>175</u>	<u>99</u>	<u>93</u>	
18	Ar	argon	<u>71</u>	<u>71</u>	188	<u>97</u>	<u>96</u>	
19	K	potassium	220	243	<u>275</u>	<u>196</u>	no data	227
20	Ca	calcium	180	<u>194</u>	231 a	<u>174</u>	<u>133</u>	<u>197</u>
21	Sc	scandium	160	184	211 ^a	144	114	162 b
22	Ti	titanium	140	176	no data	136	108	147
23	V	vanadium	<u>135</u>	171	no data	125	106	134 b
24	Cr	chromium	140	166	no data	127	103	128 b
25	Mn	manganese	140	161	no data	139	103	127 b
26	Fe	iron	140	156	no data	125	102	126 b
27	Со	cobalt	<u>135</u>	152	no data	126	<u>96</u>	125 b
28	Ni	nickel	<u>135</u>	<u>149</u>	<u>163</u>	<u>121</u>	<u>101</u>	124 b
29	Cu	copper	135	145	140	138	120	128 b
30	Zn	zinc	135	142	139	131	no data	134 b
31	Ga	gallium	130	<u>136</u>	187	126	<u>121</u>	135 ^c
32	Ge	germanium	125	125	211 ^a	122	114	

33	As	arsenic	115	114	185	119	106	
34	Se	selenium	<u>115</u>	103	190	116	107	
35	Br	bromine	115	94	185	114	110	
36	Kr	krypton	no data	88	202	110	108	
37	Rb	rubidium	235	265	303 ^a	211	no data	248
38	Sr	strontium	200	219	249 a	<u>192</u>	139	215
39	Y	yttrium	180	212	no data	162	124	180 b
40	Zr	zirconium	155	206	no data	148	121	160
41	Nb	niobium	145	198	no data	137	116	146 b
42	Мо	molybdenum	145	190	no data	145	113	139 b
43	Tc	technetium	<u>135</u>	183	no data	<u>156</u>	110	136 b
44	Ru	ruthenium	130	178	no data	126	103	134 b
45	Rh	rhodium	135	173	no data	135	106	134 b
46	Pd	palladium	<u>140</u>	169	<u>163</u>	<u>131</u>	112	137 b
47	Ag	silver	<u>160</u>	<u>165</u>	<u>172</u>	<u>153</u>	<u>137</u>	144 b
48	Cd	cadmium	<u>155</u>	<u>161</u>	<u>158</u>	148	no data	151 b
49	In	indium	155	156	193	144	146	167
50	Sn	<u>tin</u>	<u>145</u>	<u>145</u>	217	<u>141</u>	132	
51	Sb	antimony	<u>145</u>	<u>133</u>	206 ^a	<u>138</u>	<u>127</u>	
52	Те	tellurium	<u>140</u>	123	206	<u>135</u>	121	
53	1	iodine	<u>140</u>	<u>115</u>	198	<u>133</u>	125	
54	Xe	xenon	no data	108	216	130	122	
55	Cs	caesium	260	298	343 a	225	no data	265
56	Ва	<u>barium</u>	<u>215</u>	<u>253</u>	268 ^a	<u>198</u>	<u>149</u>	222
57	La	lanthanum	195	195	no data	169	139	187 b
58	Ce	cerium	185	158	no data	no data	<u>131</u>	181.8 ^c
59	Pr	praseodymium	185	247	no data	no data	128	182.4 ^c
60	Nd	neodymium	185	206	no data	no data	no data	181.4 ^c
61	Pm	promethium	185	205	no data	no data	no data	183.4 ^c
62	Sm	samarium	<u>185</u>	238	no data	no data	no data	180.4 ^c

63	Eu	europium	185	231	no data	no data	no data	180.4 ^c
64	Gd	gadolinium	180	233	no data	no data	132	180.4 ^c
65	Tb	terbium	<u>175</u>	225	no data	no data	no data	<u>177.3</u> ^c
66	Dy	dysprosium	175	228	no data	no data	no data	178.1 ^c
67	Но	holmium	175	226	no data	no data	no data	176.2 ^c
68	Er	erbium	175	226	no data	no data	no data	176.1 ^c
69	Tm	thulium	175	222	no data	no data	no data	175.9 ^c
70	Yb	ytterbium	175	222	no data	no data	no data	<u>176 ^c</u>
71	Lu	lutetium	175	217	no data	160	131	<u>173.8</u> ^c
72	Hf	hafnium	155	208	no data	150	122	159
73	Ta	tantalum	145	200	no data	138	119	146 b
74	W	tungsten	135	193	no data	146	115	139 b
75	Re	rhenium	135	188	no data	159	110	137 b
76	Os	osmium	130	185	no data	128	109	135 b
77	Ir	iridium	135	180	no data	137	107	135.5 b
78	Pt	platinum	135	177	175	128	110	138.5 b
79	Au	gold	135	174	166	144	123	144 b
80	Hg	mercury	150	171	155	149	no data	151 b
81	TI	thallium	190	156	196	148	150	170
82	Pb	lead	180	154	202	147	137	
83	Bi	bismuth	160	143	207 ^a	146	135	
84	Po	polonium	190	135	197 ^a	no data	129	
85	At	astatine	no data	127	202 ^a	no data	138	
86	Rn	radon	no data	120	220 ^a	145	133	
87	Fr	francium	no data	no data	348 ^a	no data	no data	no data
88	Ra	radium	215	no data	283 ^a	no data	159	no data
89	Ac	actinium	195	no data	no data	no data	140	
90	Th	thorium	180	no data	no data	no data	136	179 b

91	Pa	protactinium	180	no data	no data	no data	129	163 ^d
92	U	uranium	175	no data	186	no data	118	156 ^e
93	Np	neptunium	<u>175</u>	no data	no data	no data	116	155 e
94	Pu	plutonium	<u>175</u>	no data	no data	no data	no data	159 e
95	Am	americium	175	no data	no data	no data	no data	173 b
96	Cm	curium	no data	no data	no data	no data	no data	174 b
97	Bk	berkelium	no data	no data	no data	no data	no data	170 b
98	Cf	californium	no data	no data	no data	no data	no data	186+/- 2 b
99	Es	einsteinium	no data	no data	no data	no data	no data	186+/- 2 b
100	Fm	fermium	no data	no data	no data	no data	no data	no data
101	Md	mendelevium	no data	no data	no data	no data	no data	no data
102	No	nobelium	no data	no data	no data	no data	no data	no data
103	Lr	lawrencium	no data	no data	no data	no data	no data	no data
104	Rf	rutherfordium	no data	no data	no data	no data	131	no data
105	Db	dubnium	no data	no data	no data	no data	126	no data
106	Sg	seaborgium	no data	no data	no data	no data	121	no data
107	Bh	bohrium	no data	no data	no data	no data	119	no data
108	Hs	hassium	no data	no data	no data	no data	118	no data
109	Mt	meitnerium	no data	no data	no data	no data	113	no data
110	Ds	darmstadtium	no data	no data	no data	no data	112	no data
111	Rg	roentgenium	no data	no data	no data	no data	118	no data
112	Cn	copernicium	no data	no data	no data	no data	130	no data
113	Nh	nihonium	no data	no data	no data	no data	no data	no data
114	FI	flerovium	no data	no data	no data	no data	no data	no data
115	Mc	moscovium	no data	no data	no	no data	no data	no data

					data			
116	Lv	livermorium	no data	no data	no data	no data	no data	no data
117	Ts	tennessine	no data	no data	no data	no data	no data	no data
118	Og	oganesson	no data	no data	no data	no data	no data	no data

See also

- Atomic radius
- Covalent radius (Single-, double- and triple-bond radii, up to the superheavy elements.)
- Ionic radius

Notes

- The radius of an atom is not a uniquely defined property and depends on the definition.
 Data derived from other sources with different assumptions cannot be compared.
- † to an accuracy of about 5 pm
- (a) These radii are taken from M. Mantina, A.C. Chamberlin, R. Valero, C.J. Cramer, and D.G. Truhlar, *J. Phys. Chem.* 2009, **113**, 5806.
- (b) 12 coordinate
- (c) gallium has an anomalous crystal structure
- (d) 10 coordinate
- (e) uranium, neptunium and plutonium have irregular structures

References

 Cotton, F. A.; Wilkinson, G. (1988). Advanced Inorganic Chemistry (5th ed.). Wiley. p. 1385. ISBN 978-0-471-84997-1.

Data is as quoted at http://www.webelements.com/ from these sources:

Atomic radius (empirical)

J.C. Slater (1964). "Atomic Radii in Crystals". J. Chem. Phys. 41: 3199.
 Bibcode: 1964JChPh..41.3199S (https://ui.adsabs.harvard.edu/abs/1964JChPh..41.3199S).
 doi:10.1063/1.1725697 (https://doi.org/10.1063%2F1.1725697).

Atomic radius (calculated)

E. Clementi; D.L.Raimondi; W.P. Reinhardt (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". *J. Chem. Phys.* 47: 1300. Bibcode:1967JChPh..47.1300C (https://ui.adsabs.harvard.edu/abs/1967JChPh..47.1300C). doi:10.1063/1.1712084 (https://doi.org/10.1063%2F1.1712084).

Van der Waals radius

- A. Bondi (1964). "van der Waals Volumes and Radii". J. Phys. Chem. 68: 441. doi:10.1021/j100785a001 (https://doi.org/10.1021%2Fj100785a001).
- M. Mantina; A.C. Chamberlin; R. Valero; C.J. Cramer; D.G. Truhlar (2009). "Consistent van der Waals Radii for the Whole Main Group" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC 3658832). J. Phys. Chem. A. 113 (19): 5806–12. Bibcode:2009JPCA..113.5806M (https://ui.adsabs.harvard.edu/abs/2009JPCA..113.5806M). doi:10.1021/jp8111556 (https://doi.org/1 0.1021%2Fjp8111556). PMC 3658832 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658 832). PMID 19382751 (https://pubmed.ncbi.nlm.nih.gov/19382751).

Covalent radii (single bond)

More recent data can be found in Covalent radius. The above values are based on

- R.T. Sanderson (1962). *Chemical Periodicity*. New York, USA: Reinhold.
- L.E. Sutton, ed. (1965). "Supplement 1956–1959, Special publication No. 18". Table of interatomic distances and configuration in molecules and ions. London, UK: Chemical Society.
- J.E. Huheey; E.A. Keiter & R.L. Keiter (1993). *Inorganic Chemistry: Principles of Structure and Reactivity* (https://archive.org/details/inorganicchemist00huhe_0) (4th ed.). New York, USA: HarperCollins. ISBN 0-06-042995-X.
- W.W. Porterfield (1984). *Inorganic chemistry, a unified approach*. Reading Massachusetts, USA: Addison Wesley Publishing Co. ISBN 0-201-05660-7.
- A.M. James & M.P. Lord (1992). *Macmillan's Chemical and Physical Data*. MacMillan. ISBN 0-333-51167-0.

Triple-bond covalent radii

- S. Riedel; P.Pyykkö, M. Patzschke; Patzschke, M (2005). "Triple-Bond Covalent Radii".
 Chem. Eur. J. 11 (12): 3511–3520. doi:10.1002/chem.200401299 (https://doi.org/10.1002% 2Fchem.200401299). PMID 15832398 (https://pubmed.ncbi.nlm.nih.gov/15832398). Meansquare deviation 3pm.
- Triple-Bond Covalent Radii Table online (http://www.psichem.de/triple-bond/index.htm)

Metallic radius

<u>Greenwood, Norman N.</u>; Earnshaw, Alan (1997). *Chemistry of the Elements* (2nd ed.). <u>Butterworth-</u>Heinemann. ISBN 978-0-08-037941-8.

Retrieved from "https://en.wikipedia.org/w/index.php? title=Atomic_radii_of_the_elements_(data_page)&oldid=940284421"

This page was last edited on 11 February 2020, at 16:48 (UTC).

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use</u> and <u>Privacy Policy</u>. Wikipedia® is a registered trademark of the <u>Wikimedia</u> Foundation, Inc., a non-profit organization.