## Data Visualization

Level 1 Perform Exploratory Data Analysis for a given data set by creating Scatter Plot, Pair Plot, Count Plot using Matplotlib and Seaborn Level 2 Create Heat Maps, WordCloud

| <b>②</b> |      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | alcohol | quality |
|----------|------|------------------|---------------------|----------------|-------------------|-----------|------------------------|----------------------------|---------|------|-----------|---------|---------|
|          | 0    | 7.0              | 0.27                | 0.36           | 20.7              | 0.045     | 45.0                   | 170.0                      | 1.00100 | 3.00 | 0.45      | 8.8     | 6       |
|          | 1    | 6.3              | 0.30                | 0.34           | 1.6               | 0.049     | 14.0                   | 132.0                      | 0.99400 | 3.30 | 0.49      | 9.5     | 6       |
|          | 2    | 8.1              | 0.28                | 0.40           | 6.9               | 0.050     | 30.0                   | 97.0                       | 0.99510 | 3.26 | 0.44      | 10.1    | 6       |
|          | 3    | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                   | 186.0                      | 0.99560 | 3.19 | 0.40      | 9.9     | 6       |
|          | 4    | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                   | 186.0                      | 0.99560 | 3.19 | 0.40      | 9.9     | 6       |
|          |      |                  |                     |                |                   |           |                        |                            |         |      |           |         |         |
|          | 4893 | 6.2              | 0.21                | 0.29           | 1.6               | 0.039     | 24.0                   | 92.0                       | 0.99114 | 3.27 | 0.50      | 11.2    | 6       |
|          | 4894 | 6.6              | 0.32                | 0.36           | 8.0               | 0.047     | 57.0                   | 168.0                      | 0.99490 | 3.15 | 0.46      | 9.6     | 5       |
|          | 4895 | 6.5              | 0.24                | 0.19           | 1.2               | 0.041     | 30.0                   | 111.0                      | 0.99254 | 2.99 | 0.46      | 9.4     | 6       |
|          | 4896 | 5.5              | 0.29                | 0.30           | 1.1               | 0.022     | 20.0                   | 110.0                      | 0.98869 | 3.34 | 0.38      | 12.8    | 7       |
|          | 4897 | 6.0              | 0.21                | 0.38           | 0.8               | 0.020     | 22.0                   | 98.0                       | 0.98941 | 3.26 | 0.32      | 11.8    | 6       |
|          |      |                  |                     |                |                   |           |                        |                            |         |      |           |         |         |

```
import matplotlib.pyplot as plt
# Create a scatter plot of alcohol content vs. pH
plt.scatter(data['alcohol'], data['pH'])
plt.xlabel('Alcohol')
plt.ylabel('pH')
plt.show()
```



```
import seaborn as sns
# Create a pair plot of all columns in the dataset
sns.pairplot(data)
plt.show()
```



```
# Create a count plot of the "quality" column
sns.countplot(x='quality', data=data)
plt.show()
```



```
import seaborn as sns
# Create a heatmap of the correlation between all columns in the dataset
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
plt.show()
```



```
from wordcloud import WordCloud
# Get column names of the dataset
column_names = data.columns.tolist()
# Create a word cloud plot of the column names
wordcloud = WordCloud(background_color='white').generate(' '.join(column_names))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show()
```