學號: b04505004

姓名: 林棋祥

Homework #1

Deep Learning for Computer Vision

No collaborators.

Problem 1:

Problem 2:

1.

mean	eigen1	eigen2	eigen3	eigen4
- 2	55		0	6
3		1- /	53	

original	3 eigens	45 eigens	140 eigens	229 eigens
		3		
MSE: 0	MSE: 1007	MSE: 277.3	MSE: 22.33	MSE: 0.1096

3. Reported above.

4.

Training Accuracy

k	n	fold1	fold2	fold3	average
1	3	60.0%	67.5%	70.0%	65.8%
1	45	90.0%	86.3%	90.0%	88.8%
1	140	90.0%	88.8%	91.3%	90.0%
3	3	40.0%	55.0%	53.8%	49.6%
3	45	73.8%	81.3%	68.8%	74.6%
3	140	72.5%	81.3%	70.0%	74.6%
5	3	38.8%	47.5%	43.8%	43.3%
5	45	62.5%	73.8%	63.8%	66.7%
5	140	58.8%	73.8%	58.8%	63.8%

由於 (k, n) = (1, 140) 得到最高的正確率,因此選擇這組參數。

5.

Testing Accuracy

k	n	Accuracy
1	140	94.375%

Problem 3:

1.

original	patch1	patch2	patch3
1	SW	5-2 5-4	di

因為各類別 patches 的顏色跟質料有顯著差異, 某種程度上可以分的出是哪類別。

PCA Subspace

4. Accuracy: 55.6%

Problem 4:

1.

4. -1.
$$G(x,y) = \frac{1}{2\pi s^2} e^{-\frac{x^2 + y^2}{2s^2}}$$

$$= \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{x^2 + y^2}{2s^2}} \times \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{y^2}{2s^2}}$$

$$= \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{x^2 + y^2}{2s^2}} \times \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{y^2}{2s^2}}$$

$$= \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{x^2 + y^2}{2s^2}}$$

2.

2D Gaussian filter 造成模糊效果。

$$kx = [-1/2, 0, 1/2], ky = [-1/2, 0, 1/2]^T$$

圖片經過 2D Gaussian filter 再算 gradient,輪廓邊緣都更加明顯。