ASSIGNMENT 1 NUMERICAL ANALYSIS

ANS GOMAA ABD ELSAYED

18010421

AMR IBRAHIM AHMED

18011169

SAMER MOHAMED EL SAYED

18010778

SEIF MOHAMED MAHMOUD

18010834

ABDELRAHMAN ASHRAF HASSAN

18012538

1-Pseudo-code

a- Gauss Elimination:for j=1 to n-1 //checking if the pivot is zero If $a_{ij} = 0$ K=j for k=k+1 to nif $a_{kj} = 0$ continue break //swapping the rows row number j = row number krow number k = row number j//forward elimination for i =1+s"s=0" to n-1 M=a(i+1)j/ajjfor p = each column $a_{(i+1)}p = a_{(i+1)p} - M * a_{jp}$ $b_{(i+1)} = b_{(i+1)} - M^*b_{i}$ s=s+1 //backward substitution xn = bn / annfor i = n-1 downto 1 sum = 0for j = i+1 to n $sum = sum + a_{ij} * x_{j}$

 $x_i = (b_i - sum) / a_{ii}$

b- Gauss Elimination using pivoting:-

```
// pivoting matrix
for i=1 to n-1{
       for j = i+1 to n {
               if (abs(aji) > abs(aii) {
                      //swapping rows
                      row i = row j
                      row j = row i
       }
}
//gauss elimination
for j=1 to n-1
       //checking if the pivot is zero
       If a_{jj} = 0
               K=j
              for k=k+1 to n
                      if a_{kj} = 0
                              continue
                      break
       //swapping the rows
       row number j = row number k
       row number k = row number j
       //forward elimination
       for i =1+s"s=0" to n-1
               M=a(i+1)j/ajj
              for p = each column
               a_{(i+1)}p = a_{(i+1)p} - M * a_{jp}
               b_{(i+1)} = b_{(i+1)} - M^*b_{i}
       s=s+1
//backward substitution
xn = bn / ann
for i = n-1 downto 1
       sum = 0
```

for
$$j = i+1$$
 to n
 $sum = sum + a_{ij} * x_j$
 $x_i = (b_i - sum) / a_{ii}$

c- Gauss Jordan:-

```
//gauss elimination
for j=1 to n-1
       //checking if the pivot is zero
       If a_{jj} = 0
               K=j
               for k=k+1 to n
                       if a_{kj} = 0
                              continue
                       break
       //swapping the rows
       row number j = row number k
       row number k = row number j
       //forward elimination
       for i =1+s"s=0" to n-1
               M=a(i+1)j/ajj
               for p = each column
               a_{(i+1)}p = a_{(i+1)p} - M * a_{jp}
               b_{(i+1)} = b_{(i+1)} - M^*b_{j}
       s=s+1
//getting answers
for j=n-1 downto 1 {
       sum=0
       for i=1 to n-j
               sum=sum+aj(n+1-i) * X(n+1-i)
       x_j = (a_j(n+1) - sum) / a_{jj}
}
x=transpose(x)
```

d- LU Decomposition:-

Doolittle Decomposition

```
//checking if it can be decomposed
[^{\sim}, n] = size(a(1,:))
a = round(a,precision,'significant')
  x = ones(n, 1)
  0 = 1 : n
  s = ones(n, 1)
  er = 0
  [a, o, er] = decompose(a, n, o, s, er, precision)
  If er = -1 {
    // can't be solved
     x = -1
     return
  else
     x = substitute(a, o, n, b, x, precision)
//decomposition
decompose(a, n, o, s, er){
  //finding scales
  for h = 1 to n {
     s(h) = abs(a(h, 1))
    for w = 2 to n {
       if(s(h) < abs(a(h, w)))  {
          s(h) = abs(a(h, w))
  for k = 1 to n-1 {
     o = pivot(a, o, s, n, k, precision)
     if(\sim isfinite(abs(a(o(k),k)) / s(o(k))))  {
       er = -1
       return
    for r = k+1 to n {
       a(o(r), k) = round(a(o(r), k) / a(o(k), k), precision, 'significant')
       for c = k+1 to n {
          a(o(r), c) = a(o(r), c) - round((a(o(r), k) * a(o(k), c)), precision, 'significant')
          a(o(r), c) = round(a(o(r), c), precision, 'significant')
```

```
}
  if( \simisfinite(abs(a(o(n),n)) / s(o(n))) ) {
    er = -1
  }
}
pivot(a, o, s, n, k, precision){
  p = k
  big = abs(round(a(o(k),k) / s(o(k)), precision, 'significant'))
  for i = k+1 to n {
    dummy = abs(round(a(o(i),k) / s(o(i)),precision,'significant'))
    if(dummy > big) {
       big = dummy
      p = i
    }
  // swapping the rows indeces
  dummy = o(p)
  o(p) = o(k)
  o(k) = dummy
substitute(a, o, n, b, x, precision){
  y = ones(n, 1)
  y(o(1)) = b(o(1))
 // forward substitution
  for q = 2 to n {
    sum = b(o(q))
    for p = 1 to q-1 {
       sum = sum - round(a(o(q), p) * y(o(p)), precision, 'significant')
      sum = round(sum,precision,'significant')
    y(o(q)) = sum
  // backward substitution
  x(n) = y(o(n)) / a(o(n), n)
  for q = n-1 downto 1 {
    sum = 0
```

```
for p = q+1 to n {
    sum = sum + round(a(o(q), p) * x(p),precision,'significant')
    sum = round(sum,precision,'significant')
}
x(q) = round((y(o(q)) - sum) / a(o(q), q),precision,'significant')
}
```

Crout Decomposition

```
croutLU(a, b, precision) {
  [\sim, n] = size(a)
  a = round(a,precision,'significant')
  x = ones(n, 1)
  0 = 1 : n
  s = ones(n, 1)
  er = 0
  [a, o, er] = decompose(a, n, o, s, er, precision)
  if(er == -1) {
    // can't be solved
    x = -1
    return
 }
  else
    [x, er] = substitute(a, o, n, b, x, er, precision)
    if(er == -1) {
       x = -1
       return
  }
decompose(a, n, o, s, er, precision) {
  //finding scales
  for h = 1 to n {
    s(h) = abs(a(h, 1))
    for w = 2 to n {
       if(s(h) < abs(a(h, w))) {
         s(h) = abs(a(h, w))
```

```
o = pivot(a, o, s, n, 1, precision)
   if(~isfinite(abs(a(o(1),1)) / s(o(1)))) {
     er = -1
     return
  for j = 2 to n {
     a(o(1), j) = round(a(o(1), j) / a(o(1), 1), precision, 'significant')
     if(~isfinite(a(o(1), j))) {
       er = -1
       return
  for i = 2 to n {
     for j = 2 to n {
       if(i \le i)
          // Lij
          for k = 1 to j-1{
             a(o(i), j) = a(o(i), j) - round(a(o(i), k) * a(o(k), j), precision, 'significant')
            a(o(i), j) = round(a(o(i), j), precision, 'significant')
       else
          a(o(i), j) = (a(o(i), j) - round(a(o(i), 1:o(i) - 1) * a(1:o(i) - 1,
j),precision,'significant')) / a(o(i), i)
          a(o(i), j) = round(a(o(i), j), precision, 'significant')
       }
  }
pivot(a, o, s, n, k, precision) {
  p = k
  big = abs(round(a(o(k),k) / s(o(k)), precision, 'significant'))
  for i = k+1 to n {
     dummy = abs(round(a(o(i),k) / s(o(i)),precision,'significant'))
     if(dummy > big) {
       big = dummy
       p = i
  // swapping the rows indeces
   dummy = o(p)
```

```
o(p) = o(k)
  o(k) = dummy
substitute(a, o, n, b, x, er, precision) {
  y = ones(n, 1)
  y(o(1)) = b(o(1)) / a(o(1), 1)
  if( ~isfinite(y(o(1))) ) {
    er = -1
    return
  // forward substitution
  for i = 2 to n {
    sum = 0
    for j = 1 to i-1 {
       sum = sum + round(a(o(i), j) * y(o(j)), precision, 'significant')
       sum = round(sum,precision,'significant')
    y(o(i)) = round((b(o(i)) - sum), precision, 'significant')/ a(o(i), i)
    y(o(i)) = round(y(o(i)), precision, 'significant')
    if( ~isfinite(y(o(i))) ) {
       er = -1
       return
    }
  // backward substitution
  x(n) = y(o(n))
  for i = n-1 downto 1 {
    sum = y(o(i))
    for j = i+1 to n {
       sum = sum - round(a(o(i), j) * x(j), precision, 'significant')
       sum = round(sum,precision,'significant')
    x(i) = sum
```

Cholesky Decomposition

```
choleskyD(a, b, precision) {
  [~, n] = size(a)
  a = round(a,precision,'significant')
```

```
x = ones(n, 1)
for i = 1 to n {
  for j = 1 to I {
     sum = 0
     if (j == i) {
       for k = 1 to j - 1 {
         sum = sum + round(a(j,k) * a(j,k),precision,'significant')
         sum = round(sum,precision,'significant')
       a(j,j) = round(sqrt(a(j,j) - sum),precision, 'significant')
     else
       for k = 1 to j-1 {
         sum = sum + round(a(i,k) * a(j,k), precision, 'significant')
         sum = round(sum,precision,'significant')
       }
       a(i,j) = round((a(i,j) - sum), precision, 'significant') / a(j,j)
       a(i,j) = round(a(i,j),precision,'significant')
    }
  }
for i = 1 to n {
  if(a(i,i) == 0) {
     x = -1
     return
  }
for i = 1 to n {
  for j = i+1 to n {
     a(i,j) = a(j,i)
}
y = ones(n, 1)
// forward substitution
y(1) = b(1) / a(1, 1)
for i = 2 to n {
  sum = 0
  for j = 1 to i-1 {
     sum = sum + round(a(i, j) * y(j),precision,'significant')
     sum = round(sum,precision,'significant')
```

```
y(i) = round((b(i) - sum),precision,'significant') / a(i, i)
y(i) = round(y(i),precision,'significant')
}
// backward substitution
x(n) = round(y(n) / a(n, n),precision,'significant')
for q = n-1 downto 1 {
    sum = 0
    for p = q+1 to n {
        sum = sum + round(a(q, p) * x(p),precision,'significant')
        sum = round(sum,precision,'significant')
    }
    x(q) = round((y(q) - sum),precision,'significant') / a(q, q)
    x(q) = round(x(q),precision,'significant')
}
```

e- Gauss Seidil:-

//Gauss seidel iteration

- Check the precision of the input matrices.
- Check if the matrix is diagonally dominant.
 - if not then try all permutations of the input matrix to get the nearest diagonally matrix of the input to have more chance for convergence.
- loop over the number of iterations given
 - iterate over the rows of the matrix to get Xi = (Bi aj * Xjnew– ak * Xk new- az * Xz new) / ai.
 - round after each operation to achieve the precision required.
 - Calculate the error in each iteration to check the convergence

//Gauss seidel relative error

- Check the precision of the input matrices.
- Check if the matrix is diagonally dominant.
 - if not then try all permutations of the input matrix to get the nearest diagonally matrix of the input to have more chance for convergence.
- loop until you get error less than the tolerance limit
 - iterate over the rows of the matrix to get Xi = (Bi aj * Xj new– ak * Xk new- az * Xz new) / ai.
 - round after each operation to achieve the precision required.
 - Calculate the error in each iteration to check the convergence and check if we can get the relative error required or not.
 - Break if it does not converge.

f- Jacobi Iteration:-

//Jacobi iteration

- Check the precision of the input matrices.
- Check if the matrix is diagonally dominant.
 - if not then try all permutations of the input matrix to get the nearest diagonally matrix of the input to have more chance for convergence.
- loop over the number of iterations given
 - save the old guess.
 - iterate over the rows of the matrix to get Xi = (Bi aj * Xj old ak * Xk old ak * Xz old) / ai
 - round after each operation to achieve the precision required.
 - Calculate the error in each iteration to check the convergence

//Jacobi relative error

- Check the precision of the input matrices.
- Check if the matrix is diagonally dominant.
 - if not then try all permutations of the input matrix to get the nearest diagonally matrix of the input to have more chance for convergence.
- loop until you get error less than the tolerance limit
 - save the old guess.
 - iterate over the rows of the matrix to get Xi = (Bi aj * Xj old ak * Xk old az * Xz old) / ai.
 - round after each operation to achieve the precision required.
 - Calculate the error in each iteration to check the convergence and check if we can get the relative error required or not.
 - Break if it does not converge.

2-Sample runs

a- Gauss Elimination:-

b- Gauss Elimination using pivoting:-

c- Gauss Jordan:-

d- LU Decomposition:-

Dolittle

Crout

Chelosky

e- Gauss Seidil:-

f- Jacobi Iteration:-

3-Date structure used

Arrays

4-Comparison between different methods

Method Name	Time complexity	Convergence	Best Case	Worst Case	Precisions Precise	
Gauss Elimination	K* O(n ³)	Converges	Matrix that doesn't require pivoting	Singular Matrix		
Gauss Elimination using pivoting	K* O(n ³)	Converges	Matrix that doesn't require pivoting	Singular Matrix	Precise	
Gauss Jordan	K* O(n ³)	Converges	Matrix that doesn't require pivoting	Singular Matrix	Precise	
LU Decomposition	$O(n^3) + K^*$ $O(n^2)$	Converges	Matrix that doesn't require pivoting Chelosky-> Positive definite matrix	Singular Matrix Chelosky ->Not positive definite matrix	Precise	
Gauss Seidil	Seidil $N*O(n^2)$ It may not converge or it converges very slowly If Diagonally dominant guarantee for convergence		Matrix is Diagonally dominant	There are no combinations to make it Diagonally dominant	Gauss Seidil is faster to get to the required precision	
Jacobi Iteration	the Diagram of the description		Matrix is Diagonally dominant	There are no combinations to make it Diagonally dominant	Gauss Seidil is faster	

5-Analysis of the behavior

a- Gauss Elimination:-

b- Gauss Elimination using pivoting:-

c- Gauss Jordan:-

d- LU Decomposition:-

Doolittle decomposition

Crout Decomposition

Cholesky Decomposition

e- Gauss Seidil:-

- Gauss Seidil relative error:-

f- Jacobi Iteration:-

- Jacobi relative error:-

	А	В	С	D	E	F	G	Н	1	J	K
1	10	0.0013529	0.00119	0.00073283	0.00185	0.00058393	0.0018592	0.00047293	0.00046463	0.00045503	0.00062693
2	20	0.006312	0.0044151	0.0043478	0.0070468	0.0024476	0.0069961	0.0021654	0.0025953	0.0027146	0.003828
3	30	0.020166	0.01302	0.012565	0.014043	0.0059024	0.014078	0.0045303	0.0077616	0.0076878	0.011082
4	40	0.046634	0.028706	0.027429	0.024365	0.011975	0.025263	0.0077025	0.016753	0.016704	0.02695
5	50	0.090348	0.053181	0.051423	0.036447	0.020201	0.036813	0.011582	0.031256	0.031147	0.047825
6	60	0.16025	0.088926	0.08661	0.055944	0.036638	0.056808	0.016388	0.052255	0.052221	0.081463
7	70	0.26103	0.14878	0.13472	0.078177	0.053231	0.074563	0.024066	0.081127	0.081506	0.12751
8	80	0.36336	0.21572	0.19804	0.099396	0.080326	0.093035	0.043752	0.12057	0.11957	0.20078
9	90	0.51507	0.2883	0.27949	0.11475	0.12217	0.11612	0.050059	0.16726	0.16844	0.27831
10	100	0.70674	0.40044	0.37859	0.14682	0.14444	0.14265	0.066823	0.22654	0.22847	0.37863
11	110	0.95049	0.51578	0.50129	0.16108		0.17441	0.060697			
12	120	1.2116	0.68237	0.64702	0.18983		0.19205	0.085027			
13	130				0.22364		0.21904				
14	140				0.25149		0.25292				
15	150				0.29077		0.30681				
16	number of rows	doolittleLU	croutLU	choleskyD	Jacobi _i terations	Jacobi, elativeError	Gauss _S eidel _i teration	$Gauss_Seidel_relativeError$	gaussEliminationWithPivoting	gaussElimination	gaussJordan
17											
18											
19											
20								(i)			
21											
22											
23											
24											
25											