10-301/601: Introduction to Machine Learning Lecture 2 – Decision Trees

Front Matter

- Announcements:
 - HW1 released 5/17 due 5/24 at 1 PM
 - Recitation 1 on 5/19: review of prerequisite material
 - General advice for the summer:
 - Start HWs early!
 - Go to office hours! Starting today, 5/18
- Recommended Readings:
 - Daumé III, <u>Chapter 1: Decision Trees</u>

Our second Machine Learning Classifier

- A classifier is a function that takes feature values as input and outputs a label
- Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

Family History	Resting Blood Pressure	Cholesterol	Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

Notation

- Feature space, X
- Label space, $y = \{"No", "Tes"\}$
- (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
- Training dataset:

$$\mathcal{D} = \{ (x^{(1)}, c^*(x^{(1)}) = y^{(1)}), (x^{(2)}, y^{(2)}) \dots, (x^{(N)}, y^{(N)}) \}$$

Data point:

$$(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}) = ([x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}] \mathbf{y}^{(n)})$$

- Classifier, $h: \mathcal{X} \to \mathcal{Y}$
- Goal: find a classifier, h, that best approximates c^*

Evaluation

- Loss function, $\ell:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$
 - Defines how "bad" predictions, $\widehat{\mathcal{G}} = h(x)$, are compared to the true labels, $y = c^*(x)$
 - Common choices
 - 1. Squared loss (for regression): $\ell(y, \hat{y}) = (y \hat{y})^2$
 - 2. Binary or 0-1 loss (for classification):

$$\ell(y, \hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{otherwise} \end{cases}$$

Evaluation

- Loss function, $\ell:\mathcal{Y}\times\mathcal{Y}\to\mathbb{R}$
 - Defines how "bad" predictions, $\hat{y} = h(x)$, are compared to the true labels, $y = c^*(x)$
 - Common choices
 - 1. Squared loss (for regression): $\ell(y, \hat{y}) = (y \hat{y})^2$
 - 2. Binary or 0-1 loss (for classification):

$$\ell(y, \hat{y}) = \mathbb{1}(y \neq \hat{y})$$
indicator function

• Error rate:

$$err(h(\mathcal{D})) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(y^{(n)} \neq \hat{y}^{(n)})$$

Notation: Example

 Memorizer: if a set of features exists in the training dataset, predict its corresponding label; otherwise, predict the majority vote

	(x_1) Family History	Resting Blood Pressure	x_3 Cholesterol	y Heart Disease?	\hat{y} Predictions
	Yes	Low	Normal	No	No
$x^{(2)}$	(No)	Medium	Normal	No	No
	No	Low	Abnormal	Yes	Yes
	Yes	Medium	Normal	Yes	Yes
	Yes	High	Abnormal	Yes	Yes

•
$$N = 5$$
 and $D = 3$

•
$$x^{(2)} = (x_1^{(2)} = \text{"No"}, x_2^{(2)} = \text{"Medium"}, x_3^{(2)} = \text{"Normal"})$$

Our second Machine Learning Classifier

Memorizer: $def train(\mathcal{D})$: Store D def majority_vote(\mathcal{D}): return mode (y(i), y(z), ..., y(N)) def predict(x'): Sif $\exists x^{(n)} \in \mathbb{D}$ s.t. $x^{(n)} == x^{(n)}$:
return $y^{(n)}$ else : return majority-vote (D)

Our third Machine Learning Classifier

Alright, let's actually (try to) extract a pattern from the data

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

• Decision stump: based on a single feature, x_d , predict the most common label in the training dataset among all data points that have the same value for x_d

Alright, let's actually (try to) extract a pattern from the data

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

• Decision stump on x_1 :

$$h(x') = h(x'_1, ..., x'_p) = \begin{cases} ??? & \text{if } x'_1 = \text{"Yes"} \\ ??? & \text{otherwise} \end{cases}$$

Alright, let's actually (try to) extract a pattern from the data

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

• Decision stump on x_1 :

$$h(x') = h(x'_1, ..., x'_d) = \begin{cases} \text{"Yes" if } x'_1 = \text{"Yes"} \\ ??? \text{ otherwise} \end{cases}$$

Alright, let's actually (try to) extract a pattern from the data

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

• Decision stump on x_1 :

$$h(\mathbf{x}') = h(x_1', \dots, x_p') = \begin{cases} \text{"Yes" if } x_1' = \text{"Yes"} \\ \text{"No" otherwise} \end{cases}$$

Alright, let's actually (try to) extract a pattern from the data

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?	\hat{y} Predictions
Yes	Low	Normal	No	Yes
No	Medium	Normal	No	No
No	Low	Abnormal	Yes	No
Yes	Medium	Normal	Yes	Yes
Yes	High	Abnormal	Yes	Yes

Decision Stumps: Pseudocode

def train(D): 1. pick a feature, xd
2. Split D according to Xd
for v in $V(x_s) = all$ possible value of xd $\mathcal{P}_{v} = \mathcal{E}(x^{(n)}, y^{(n)}) \in \mathcal{D} \mid x^{(n)} = v^{2}$ 3. Compute the majority vote for v in $V(x_d)$ I'v = majority_vote (Dv) def predict(x'): for V in $V(X_4)$ if x' == v, return }

Decision Stumps: Questions

1. How can we pick which feature to split on?

Lecture 2 Polls

0 done

Which feature do you think we should split on for this data set?

x ₁ Family History	x ₂ Resting Blood Pressure	x ₃ Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

Splitting Criterion

- A **splitting criterion** is a function that measures how good or useful splitting on a particular feature is *for a specified dataset*
- Insight: use the feature that optimizes the splitting criterion for our decision stump.

Training error rate as a Splitting Criterion

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

Training error rate as a Splitting Criterion?

x_1	x_2	у
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

 Which feature would you split on using training error rate as the splitting criterion?

Splitting Criterion

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.
- Potential splitting criteria:
 - Training error rate (minimize)
 - Gini impurity (minimize) → CART algorithm
 - Mutual information (maximize) → ID3 algorithm

Splitting Criterion

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.
- Potential splitting criteria:
 - Training error rate (minimize)
 - Gini impurity (minimize) → CART algorithm
 - Mutual information (maximize) → ID3 algorithm

Entropy

• Entropy describes the purity or uniformity of a collection of values: the lower the entropy, the more pure

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2\left(\frac{|S_v|}{|S|}\right)$$

where *S* is a collection of values,

V(S) is the set of unique values in S

 S_v is the collection of elements in S with value v

If all the elements in S are the same, then

$$\frac{|S_{v}|}{|S|} = 1 \Rightarrow H(S) = -1 \log_{2}(1) = 0$$

Entropy

 Entropy describes the purity or uniformity of a collection of values: the lower the entropy, the more pure

$$H(S) = -\sum_{v \in V(S)} \frac{|S_v|}{|S|} \log_2 \left(\frac{|S_v|}{|S|}\right)$$

where S is a collection of values,

$$\{Y(S), V(S)\}$$
 is the set of unique values in S

 $\{\gamma_{c}, \gamma_{c}, \gamma_{c}\} S_{v}$ is the collection of elements in S with value v

• If S is split fifty-fifty between two values, then

$$\frac{|S_0|}{|S|} = \frac{|S_1|}{|S|} = \frac{1}{|S|} = \frac{1}{|S|} + \frac{1}{|z|} \frac{|g_2(\frac{1}{z})|}{|z|} = \frac{1}{|z|}$$

Mutual Information

 Mutual information describes how much information or clarity a particular feature provides about the label

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} (f_v) \left(H(Y_{x_d=v}) \right)$$

where x_d is a feature

Y is the collection of all labels

 $V(x_d)$ is the set of unique values of x_d

 f_v is the fraction of inputs where $x_d = v$

 $Y_{x_d=v}$ is the collection of labels where $x_d=v$

Mutual Information: Example

x_d	y	
1	1	7
1	1	
0	0	Ź
0	0)

$$I(x_d, Y) = H(Y) - \sum_{v \in V(x_d)} (f_v) \left(H(Y_{x_d=v}) \right)$$

$$= \left| -\left(\frac{1}{2} \left(0 \right) + \frac{1}{2} \left(0 \right) \right) \right|$$

$$= \left| -\left(\frac{1}{2} \left(0 \right) + \frac{1}{2} \left(0 \right) \right) \right|$$

Mutual Information: Example

	x_d	y	
	1	1	-
	0	1	
	1	0	-
	0	0	
$I(x_d, Y)$	H(Y)	$\sum_{V(x_d)} (f_v) \left(\int_{Y(x_d)} f(x_d) \left(\int_{Y(x_d)} f(x_d) \left(\int_{Y(x_d)} f(x_d) f(x_d) \left(\int_{Y(x_d)} f(x_d) f(x_d) \left(\int_{Y(x_d)} f(x_d) f(x_d) f(x_d) \left(\int_{Y(x_d)} f(x_d) f(x_d) f(x_d) f(x_d) f(x_d) \right) \right) \right) dx$	$H(Y_{x_d=v})$
_	1 — (-	7(1)	$+\frac{7}{1}(1)$
	\bigcirc		

Mutual Information as a Splitting Criterion

x_1	x_2	у
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

 Which feature would you split on using mutual information as the splitting criterion?

Mutual Information: 0

Mutual Information:
$$H(Y) - \frac{1}{2}H(Y_{x_2=0}) - \frac{1}{2}H(Y_{x_2=1})$$

Mutual Information as a Splitting Criterion

 Which feature would you split on using mutual information as the splitting criterion?

 $\begin{array}{c|c}
 & x_1 \\
 & 1 \\
\hline
 & 0 \\
\hline
 & 1
\end{array}$ Mutual Information: 0

Mutual Information: $\left(-\frac{2}{8}\log_2\frac{2}{8} - \frac{6}{8}\log_2\frac{6}{8}\right) - \frac{1}{2}(1) - \frac{1}{2}(0) \approx 0.31$

Decision Stumps: Questions

1. How can we pick which feature to split on?

2. Why stop at just one feature?

From Decision Stump

• • •

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

essure	Cholesterol	Heart Disease?
W	Normal	No
edium	Normal	No
W	Abnormal	Yes
edium	Normal	Yes
gh	Abnormal	Yes
	w edium w edium	w Normal edium Normal w Abnormal edium Normal

Normal

High

No

Henry Chai - 5/18/22

No

x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Low	Normal	No
Medium	Normal	No
Low	Abnormal	Yes
Medium	Normal	Yes
High	Abnormal	Yes
	Resting Blood Pressure Low Medium Low Medium	Resting Blood Pressure Low Normal Medium Normal Low Abnormal Medium Normal

No	High	Normal	No

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

Normal

High

No

Henry Chai - 5/18/22

No

x_1 Family History	x_2 Resting Blood Pressure	x_3 Cholesterol	<i>y</i> Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

Normal

High

No

Henry Chai - 5/18/22

No

Decision
Tree:
Example

Learned from medical records of 1000 women Negative examples are C-sections

```
[833+,167-] .83+ .17-
 Fetal_Presentation = (1:) [822+,116-] .88+ .12-
Previous_Csection = (0; [767+,81-] .90+ .10-
   \downarrow Primiparous = 0; [399+,13-] .97+ .03-
 ++ Primiparous = (1) [368+,68-] .84+ .16-
   | \ | \ | Fetal_Distress = 0: [334+,47-] .88+ .12-
   | \ | \ | Fetal_Distress = 1: [34+,21-] .62+ .38-
Previous_Csection = (1) [55+,35-] .61+ .39-
Fetal_Presentation = (2) [3+,29-] (11+ .89-

Fetal_Presentation = (3) [8+,22-] .27+ .73-
```

leaf node

Decision Tree: Pseudocode

def predict(x'): - walkunthom fromt thode to a least node entrade while (true) of current node is not a leaf check the associated fectore, X_d go down the branch corresponding to X_d else return the label stored at that leaf

def train(\mathcal{D}):

Decision Tree: Pseudocode

Decision Tree: Pseudocode

```
def train(\mathcal{D}):
    store root = tree recurse(\mathcal{D})
def tree recurse(\mathcal{D}'):
    q = new node()
    base case - if (SOME CONDITION):
    recursion - else:
                find the best attribute to split on, xi
              for V in V(x_d)
D_V = \{(x^{(n)}, y^{(n)}) \in D \mid x_d^{(n)} = V\}
q. children(V) = tree-vecurse(D_V)
```

Decision Tree: Pseudocode

```
def train(\mathcal{D}):
   store root = tree recurse(\mathcal{D})
def tree_recurse(\mathcal{D}'):
   q = new node()
   base case - if(D' is empty or
          all labels in D' are the same or
         all feature values in D) are the
         same or MI of all features is low...)
            q. prediction = majority-vote(D')
   recursion - else:
```

return q

Decision Trees: Pros & Cons

Pros - Interpretable _ Efficient - Regression or Classification/work on real-valued a) categorical - Greedy =) no optimely quarantee in terms of minimizing + of splits - Overfitting!

Decision Trees: Inductive Bias

- The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm?

Breedily fund the smallest decision tree that is consistent of the training data and has high mutual information Features at

• Occam's razor: try to find the "simplest" (e.g., smallest decision tree) classifier that explains the training dataset

Overfitting

- Overfitting occurs when the classifier (or model)...
 - is too complex
 - fits noise or "outliers" in the training dataset as opposed to the actual pattern of interest
 - doesn't have enough inductive bias pushing it to generalize
- Underfitting occurs when the classifier (or model)...
 - is too simple
 - can't capture the actual pattern of interest in the training dataset
 - has too much inductive bias

Overfitting in Decision Trees

Henry Chai - 5/18/22 Figure courtesy of Tom Mitchell

Combatting Overfitting in Decision Trees

- Heuristics:
 - Do not split leaves past a fixed depth, δ
 - Do not split leaves with fewer than *C* data points
 - Do not split leaves where the maximal information gain is less than au
 - Take a majority vote in impure leaves

Combatting Overfitting in Decision Trees

- Pruning:
 - First, learn a decision tree
 - Then, evaluate each split using a "validation" dataset by comparing the validation error rate with and without that split
 - Greedily remove the split that most decreases the validation error rate
 - Stop if no split is removed

Pruning Decision Trees

Henry Chai - 5/18/22 Figure courtesy of Tom Mitchell 48

Key Takeaways

- Mutual information as a splitting criterion for decision stumps/trees
- Decision tree algorithm via recursion
- Inductive bias of decision trees
- Overfitting vs. Underfitting
- How to combat overfitting in decision trees