

VHDL Design and Implementation of an Instruction Set Architecture Z. Navabi

Course on Details of Hardware of Processors (Processors)

VHDL Design and Implementation of an Instruction Set Architecture

VHDL Design and Implementation of an Instruction Set Architecture Z. Navabi

Topic 3

Processor Devices

Zain Navabi

Course Roadmap

Learning Outcomes:

- Learn I/O device structure
- Learn memory mapped I/O
- Learn Bus interface
- Learn address decoding

Outline:

- I/O Devices
- Processor-I/O Communication
- Memory Mapped I/O
- Bussing
- Address Decoding

I/O Devices

- Storage devices (disk, tapes)
- Transmission devices (network card, modem, serial)
- Human interface devices (screen, keyboard, mouse)
- Process control (start/stop, set device, get status)
- Data IO (A/D, D/A)

I/O Devices

- Device ID
- Status signals:
 - Device busy, error, completed last task, etc.
- Control signals:
 - start/stop the device, change mode, start reading, start writing, etc.
- Inputs
- Outputs

Processor interacting with I/O Devices

- Distinct input and output instructions
- Instructions use device ID as address
- The CPU addresses the device
- The CPU enables the I/O read or I/O write
- The IO device will respond accordingly

Memory-Mapped I/O

- The memory mapped I/O uses the same address space for both memory and I/O
- In this case device IDs look like memory addresses and occupy part of the memory address space

Memory-Mapped I/O

• Dedicating one interface register for each port of I/O device

• Register mapping by decoding the corresponding I/O device ID (memory-mapped address)

Bussing

- Converts processor address lines to I/O interface signals
- Address decoding

Address decoding

•Use lower order bits for a specific device and specific registers within that device.

•Use higher order bits for enabling specific device

Conclusion

In this topic we have covered:

- I/O Devices
- Processor-I/O Communication
- Memory Mapped I/O
- Bussing
- Address Decoding