Microéconomie – Devoir Maison

Dimitri Choudhury Jibril Boucham

31/03/2025

Exercice 1 : Équilibre général et Optimum de Pareto (15 points)

1. Représentation initiale dans la boîte d'Edgeworth

Les dotations initiales sont :

• Individu 1 : $E^1 = (8, 1)$

• Individu 2 : $E^2 = (12, 9)$

Les quantités totales sont :

$$X: 8+12=20$$
 et $Y: 1+9=10$

La boîte d'Edgeworth est de dimensions 20×10 .

2. Courbes d'indifférence

Individu 1: $U_1(x_1, y_1) = x_1 \cdot y_1$

Niveau à la dotation : $U_1 = 8 \cdot 1 = 8$

Courbe : $x_1 \cdot y_1 = 8$ Quelques points :

Individu 2 : $U_2(x_2, y_2) = (x_2 \cdot y_2)^{2/3}$

Niveau à la dotation : $U_2 = (12 \cdot 9)^{2/3} = 36$

Courbe: $x_2 \cdot y_2 = k$

3. Allocation initiale et Pareto-optimalité

$$TMS_1 = \frac{y_1}{x_1} = \frac{1}{8} = 0.125$$
 $TMS_2 = \frac{y_2}{x_2} = \frac{9}{12} = 0.75$

Comme $TMS_1 \neq TMS_2$, l'allocation n'est pas Pareto optimale.

4. Courbe des contrats

Condition : $TMS_1 = TMS_2$

$$\frac{y_1}{x_1} = \frac{10 - y_1}{20 - x_1} \Rightarrow y_1 = \frac{1}{2}x_1$$

5. Prix d'équilibre et allocation Φ

À l'équilibre :

$$TMS_1 = TMS_2 = \frac{P_Y}{P_X} = \frac{1}{2}$$

Revenus:

$$R_1 = 8 \cdot 1 + 1 \cdot 2 = 10, \quad R_2 = 12 \cdot 1 + 9 \cdot 2 = 30$$

Demande optimale (car $y = \frac{1}{2}x$):

$$x_1 = 5, y_1 = 2.5, x_2 = 15, y_2 = 7.5$$

Donc: $\Phi^1 = (5, 2.5), \Phi^2 = (15, 7.5)$

6. Représentation graphique

Inclure:

- Boîte d'Edgeworth (2010)
- Dotations E^1, E^2
- Courbe des contrats : $y = \frac{1}{2}x$
- Zone Pareto-améliorante

7. Justification de l'optimalité

$$TMS_1 = \frac{2.5}{5} = 0.5, \quad TMS_2 = \frac{7.5}{15} = 0.5$$

Ressources:

$$x_1 + x_2 = 20, \quad y_1 + y_2 = 10$$

2

8. Allocation égalitaire $\Phi' = ((10, 5), (10, 5))$

a) Réalisable avec transferts ?

Oui, Φ' vérifie $y = \frac{1}{2}x$ donc sur la courbe des contrats. Réalisable par redistribution.

b) Calcul du transfert

Transfert : +4 unités de chaque bien de 2 vers 1.

$$\tilde{E}^1 = (12, 5), \ \tilde{E}^2 = (8, 5)$$

Revenus:

$$R_1 = 12 + 10 = 22, \ R_2 = 8 + 10 = 18$$

Demande optimale:

$$x_1 = 11, \ y_1 = 5.5$$
 $x_2 = 9, \ y_2 = 4.5$

c) Représentation graphique

Inclure:

- Dotations initiales et après transfert
- Point Φ'
- Courbe des contrats

Exercice 2: Compléments parfaits (5 points)

1. Courbes d'indifférence

Préférences : $u_i = \min(x_i, y_i)$

Boîte : 100×50 Optima : $y_1 = y_2 = 25$

2. Ensemble des optima

Conditions:

$$x_i = y_i, \quad y_1 + y_2 = 50$$

3. Augmentation de α à 100

Même conditions sur β :

$$y_1 = y_2 = 25$$

Mais α excédentaire : $x_1+x_2=100$

Donc l'ensemble des optima est une ligne horizontale à y=25 sur toute la boîte.