

Digital Arithmetic

Computer Systems 2016

Oleks

DIKU

September 14, 2016

Truth Tables

NO	TC
\boldsymbol{A}	\overline{A}
0	1
1	0

Truth Tables

N	OT.
A	$ \overline{A}$
0	1
1	0

	AN	ID		O	R
A	B	$A \cdot B$	\boldsymbol{A}	B	A+B
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

An **algebra** is a collection of functions adhering to **laws**.

The functions NOT, AND, and OR form a boolean algebra:

$$\textbf{NOT}:\mathbb{B}^1\to\mathbb{B}$$

$$\textbf{AND}: \mathbb{B}^2 \to \mathbb{B}$$

$$\mathbf{OR}: \mathbb{B}^2 o \mathbb{B}$$

Boolean Algebra Laws - AND form

Name	AND Form
Identity Law	$1 \cdot A = A$
Null Law	$0 \cdot A = 0$
Idempotent Law	$A \cdot A = A$
Inverse Law	$A\cdot \overline{A}=0$
Commutative Law	$A \cdot B = B \cdot A$
Associative Law	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
Distributive Law	$A + B \cdot C = (A + B) \cdot (A \cdot C)$
Absorption Law	$A\cdot (A+B)=A$
De Morgan's Law	$\overline{A\cdot B}=\overline{A}+\overline{B}$

Boolean Algebra Laws - OR form

Name	OR Form
Identity Law	0 + A = A
Null Law	1 + A = 1
Idempotent Law	A + A = A
Inverse Law	$A + \overline{A} = 1$
Commutative Law	A + B = B + A
Associative Law	(A + B) + C = A + (B + C)
Distributive Law	$A \cdot (B + C) = A \cdot B + A \cdot C$
Absorption Law	$A + A \cdot B = A$
De Morgan's Law	$\overline{A+B}=\overline{A}\cdot\overline{B}$

Truth Tables

N	OT.
A	$ \overline{A}$
0	1
1	0

	AN	ID		O	R
A	B	$A \cdot B$	\boldsymbol{A}	B	A+B
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

Gates

More Truth Tables

	XOR			R NAND				NO	OR
A	B	$A \oplus B$		\boldsymbol{A}	В	$A \uparrow B$	\boldsymbol{A}	B	$A \downarrow B$
0	0	0		0	0	1	0	0	1
0	1	1		0	1	1	0	1	0
1	0	1		1	0	1	1	0	0
1	1	0		1	1	0	1	1	0

More Truth Tables

	XOR		NAND		ND		NO	OR
Α	В	$A \oplus B$	Α	В	$A \uparrow B$	Α	В	$A \downarrow B$
0	0	0	0	0	1	0	0	1
0	1	1	0	1	1	0	1	0
1	0	1	1	0	1	1	0	0
1	1	0	1	1	0	1	1	0

Do we add these as functions to our boolean algebra?

More Truth Tables

	XOR N		NA	ND		NO	OR	
\boldsymbol{A}	В	$A \oplus B$	A	В	$A \uparrow B$	\boldsymbol{A}	B	$A \downarrow B$
0	0	0	0	0	1	0	0	1
0	1	1	0	1	1	0	1	0
1	0	1	1	0	1	1	0	0
1	1	0	1	1	0	1	1	0

Do we add these as functions to our boolean algebra?

Do we need fancy new hardware?

Admissibility

A function is admissible if

it can be derived from other functions

Admissibility

A function is **admissible** if

it can be derived from other functions \equiv it does not contradict the laws of the algebra

XOR is admissible

— Proof by reading the truth table.

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

$$A \oplus B \equiv (\overline{A} \cdot B) + (A \cdot \overline{B})$$

NAND is admissible

— Proof by reading the truth table.

$$\begin{array}{c|cccc} A & B & A \uparrow B \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$A \uparrow B \equiv (\overline{A} \cdot \overline{B}) + (\overline{A} \cdot B) + (A \cdot \overline{B})$$

NOR is admissible

— Proof by reading the truth table.

$$\begin{array}{c|cccc} A & B & A \downarrow B \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

$$A \downarrow B \equiv (\overline{A} \cdot \overline{B})$$

More Gates

