Практическое занятие 4

РАСЧЕТ ПЕРЕМЕННЫХ РАДИАЛЬНЫХ ЭЛЕКТРОМАГНИТНЫХ СИЛ В АД ПРИ НЕСИММЕТРИИ И НЕСИНУСОИДАЛЬНОМ НАПРЯЖЕНИИ В СЭЭС

Постановка задачи. Радиальные силы, создаваемые основными магнитными полями, вызывают вибрацию на частоте $2\omega_1$ с порядком r=2p. Такие вибрации сильно проявляются в крупных АД с числом полюсов 2p==2. Силовые волны, возникающие при взаимодействии высших гармоник, вызывают наиболее интенсивные вибрацию и шум при низких порядках r=0, 1, 2, 3, 4. Значение и распределение радиальных магнитных сил в воздушном зазоре определяюется магнитной индукцией, расчет которой требует достаточно подробных характеристик обмоток статора и ротора. Некоторые характеристики достаточно стабильны и могут быть использованы для расчета. Радиальная электромагнитная сила, действующая на единицу площади (приведенная к среднему радиусу спинки статора), определяется формулой для амплитудных значений:

$$P = \frac{1}{2\mu_0} B^2$$
,

где $\mu_0 = 4\pi \cdot 10^{-7}~{\rm \Gamma H \cdot m^{-1}}$ — магнитная постоянная; B — магнитная индукция в воздушном зазоре. Обычно принимают B = 0,8 Тл для амплитуды силовых волн, возбуждаемых первыми пазовыми гармониками. Если знать число пазов на полюс и фазу q (q_0 = 3–5), можно воспользоваться приближенным выражением P = $10/q_0^2$. При этом амплитуда силовой волны составляет 0,5...1 ${\rm H/cm}^2$. В данном расчете необходимо определить влияние качества электроэнергии на шум и вибрации, поэтому следует рассчитать амплитуды магнитного поля, возбуждаемого системой токов прямой и обратной последовательностей q-й гармоники тока.

Uсходные данные. Амплитуда основной волны магнитной индукции прямой и обратной последовательностей при несимметрии напряжения B_{10} , B_{20} , Tл; частота напряжения питания ω_0 , рад/с; число пар полюсов p; амплитуда основной волны магнитной индукции, создаваемой q-й гармоникой тока B_q . В том случае, когда параметры магнитной индукции не заданы, необходимо иметь данные об обмотке статора и параметры схемы замеще-

ния. Кроме того, должны быть заданы: число эффективных проводников в фазе обмотки статора w; обмоточный коэффициент $K_{\rm o6}$; коэффициент Картера $K_{\rm c}$; величина воздушного зазора δ , мм; амплитуды намагничивания тока из схемы замещения АД для напряжения прямой и обратной последовательностей I_{01} , I_{02} или данные для их расчета.

Алгоритм расчета. Радиальные электромагнитные силы при несимметрии напряжения без учета высших гармоник и зубцовых гармоник поля характеризуются угловой частотой силовых волн: $\omega_2 = 2\,\omega_1$; порядком силовых волн $r_1 = r_2 = 2p, \; r_{12} = 0$ и амплитудой силовых волн:

$$P_{10} = \frac{1}{4\mu_0} B_{10}^2; \ P_{20} = \frac{1}{4\mu_0} B_{20}^2; \ P_{1020} = \frac{1}{4\mu_0} B_{10} B_{20},$$

где
$$B_{10} = 1,35 \frac{wK_{06}\mu_0}{pK_{c}\delta}$$
; $B_{20} = 1,35 \frac{wK_{06}\mu_0}{pK_{c}\delta}$ I_{02} ; $\dot{I}_{01} = \dot{U}_1 \left(1 - \frac{Z_{st}}{Z_1}\right) Y_m$;

$$\dot{I}_{02} = \dot{U}_2 \left(1 - \frac{Z_{st}}{Z_2} \right) Y_m; \quad Z_{st} = R_{st} + j X_{st}; \quad Z_1, \quad Z_2 -$$
 полные комплексные

сопротивления схемы замещения АД для токов прямой и обратной последовательностей.

Схемы замещения АД для токов прямой и обратной последовательностей приведены на рис. 4.1. Радиальные электромагнитные силы при несинусоидальности напряжения питания характеризуются:

— амплитудой силовых волн
$$P_q = \frac{1}{4\mu_0} B_q^2$$
; $P'_{qq} = \frac{1}{4\mu_0} B_q B'_q$;

- угловой частотой силовых волн ω_q = $2q\,\omega_1$; ω'_{qq} = $|q\pm q'|\,\omega_1$ = = $2|\,3k+1|\,\omega_1$;
 - порядком силовых волн $r_q = 2p; r'_{qq} = 0.$

Напомним, что упрощенная схема замещения АД приведена на рис. 5.1. Пример расчета. Исходные данные для несимметрии напряжения: $I_{01}=10$ A; $I_{02}=1$ A ; w=10; p=2; $\delta=0,2$ мм; $\mu_0=4\pi\cdot 10^{-7}$ Гн · м $^{-1}$; $K_{\text{of}}=0,9;$ $K_{\text{c}}=1,2.$ Амплитуды основной волны магнитной индукции прямой и обратной последовательностей:

$$B_{10} = 1,35 \frac{10 \cdot 0,9}{2 \cdot 1,2 \cdot 0,0002} 4\pi \cdot 10^{-7} \cdot 10 = 0,318$$
 Тл; $B_{20} = 1,35 \frac{10 \cdot 0,9}{2 \cdot 1,2 \cdot 0,0002} 4\pi \cdot 10^{-7} = 0,032$ Тл.

Амплитуды силовых волн радиальных электромагнитных сил:

$$P_{10} = \frac{1}{4\mu_0} 0.318^2 = \frac{10^7}{4 \cdot 4\pi} 0.318^2 = 20128 \text{ H} \cdot \text{m}^{-2};$$

$$P_{20} = \frac{1}{4\mu_0} 0.032^2 = 203 \text{ H} \cdot \text{m}^{-2}.$$

Исходные данные для несинусоидальности напряжения:

$$I_1 = 5 \text{ A}$$
; $I_5 = 3 \text{ A}$; $I_7 = 2 \text{ A}$; $I_{11} = 1 \text{ A}$; $I_{13} = 0.5 \text{ A}$.

Амплитуды основной волны магнитной индукции:

$$B_1 = 1,35 \frac{10 \cdot 0,9}{2 \cdot 1,2 \cdot 0,0002} 4\pi \cdot 10^{-7} \cdot 5 = 0,0318 \cdot 5 = 0,159$$
 Тл.

Аналогично рассчитываются амплитуды магнитной индукции:

$$B_5 = 0.0318 \cdot 3 = 0.096 \text{ Тл}; \ B_7 = 0.0318 \cdot 2 = 0.064 \text{ Тл};$$
 $B_{11} = 0.0318 \cdot 1 = 0.032 \text{ Тл}; \ B_{13} = 0.0318 \cdot 0.5 = 0.016 \text{ Тл}.$

Амплитуды силовых волн:

$$P_{1} = \frac{1}{4\mu_{0}} B_{1}^{2} = \frac{10^{7}}{4 \cdot 4\pi} 0,159^{2} = 5032 \text{ H} \cdot \text{m}^{-2}; P_{5} = \frac{1}{4\mu_{0}} B_{5}^{2} = 1834 \text{ H} \cdot \text{m}^{-2};$$

$$P_{7} = \frac{1}{4\mu_{0}} B_{7}^{2} = 815 \text{ H} \cdot \text{m}^{-2}; P_{11} = \frac{1}{4\mu_{0}} B_{11}^{2} = 203 \text{ H} \cdot \text{m}^{-2};$$

$$P_{13} = \frac{1}{4\mu_{0}} B_{13}^{2} = 50 \text{ H} \cdot \text{m}^{-2}.$$

Значение угловой частоты: $\omega_1 = 2\,\omega_0$; $\omega_5 = 5\,\omega_0$; $\omega_7 = 7\,\omega_0$; $\omega_{11} = 11\,\omega_0$; $\omega_{13} = 13\,\omega_0$. Исходные данные для расчета приведены в табл. 6.1.

Таблица 6.1

Величина	Размерность	Вариант								
		1	2	3	4	5	6	7	8	9
I_{01}	A	10	10,5	11	9	9,5	10,5	11	10	9
I_{02}	A	1,0	1,5	2,0	1,7	1,8	1,4	1,3	1,2	1,1
I_1	A	5,0	5,1	5,2	5,3	5,4	5,5	4,9	4,8	4,7

I_5	A	3,0	3,1	3,0	2,9	3,0	3,1	2,9	3,1	2,9
I_7	A	2,0	2,1	2,2	2,1	2,0	1,9	2,0	2,1	2,2
I_{11}	A	1,0	1,0	1,0	1,1	1,0	0,9	1,0	1,1	0,9
I_{13}	A	0,5	0,5	0,6	0,5	0,6	0,6	0,5	0,4	0,4

Для всех вариантов практического занятия № 6 принимаются одинаковые значения для следующих параметров: $w=10; p=2; \delta=0,2$ мм; $K_{\text{of}}=0,9; K_{\text{c}}=1,2.$