aws re: Invent

Build, Train, and Deploy Machine Learning for the Enterprise with Amazon SageMaker

Julien Simon Principal Technical Evangelist, AI & Machine Learning Amazon Web Services @julsimon

Agenda

- Welcome & housekeeping
- Slides: quick overview of Amazon SageMaker
- Labs
- What we'll cover today:
 - Loading data from Amazon S3
 - Training and deploying with built-in algorithms,
 - Finding optimal hyper parameters with Automatic Model Tuning,
 - Running HTTPS predictions and batch predictions,
 - Beyond built-in algorithms: a peek at Deep Learning.

Easily build, train, and deploy Machine Learning models

Build

Build

Train

Build Train Deploy

Model options

Training code

Factorization Machines

Linear Learner

Principal Component

Analysis

K-Means

XGBoost

And more

mxnet ↑TensorFlow ÖPyTorch

Built-in Algorithms

Bring Your Own Script Bring Your Own Container

The Amazon SageMaker SDK

- Python SDK orchestrating all Amazon SageMaker activity
 - Algorithm selection, training, deploying, hyper parameter optimization, etc.
 - There's also a Spark SDK (Python and Scala) which we won't cover today.
- High-level objects for:
 - Some built-in algos: Kmeans, PCA, etc.
 - Deep Learning libraries: TensorFlow, MXNet, PyTorch, Chainer.
 - Sagemaker.estimator.estimator for everything else.

https://github.com/aws/sagemaker-python-sdk

https://sagemaker.readthedocs.io/en/latest/

Built-in algorithms pink: supervised, blue: unsupervised

Linear Learner: regression, classification	Image Classification: Deep Learning (ResNet)
Factorization Machines: regression, classification, recommendation	Object Detection: Deep Learning (VGG or ResNet)
K-Nearest Neighbors: non-parametric regression and classification	Neural Topic Model: topic modeling
XGBoost: regression, classification, ranking https://github.com/dmlc/xgboost	Latent Dirichlet Allocation: topic modeling (mostly)
K-Means : clustering	Blazing Text: GPU-based Word2Vec, and text classification
Principal Component Analysis: dimensionality reduction	Sequence to Sequence: machine translation, speech to text and more
Random Cut Forest: anomaly detection	DeepAR: time-series forecasting (RNN)
Object2Vec: general-purpose embeddings	IP Insights: usage patterns for IP addresses

XGBoost

- Open Source project
- Popular tree-based algorithm for regression, classification and ranking
- Builds a collection of trees.
- Handles missing values and sparse data
- Supports distributed training
- Can work with data sets larger than RAM

https://github.com/dmlc/xgboost https://xgboost.readthedocs.io/en/latest/ https://arxiv.org/abs/1603.02754

Loading training data from Amazon S3

- Two modes: File Mode and Pipe Mode.
 - input_mode parameter in sagemaker.estimator.Estimator.
- File Mode copies the data set to training instances.
 - You need to provision enough storage.
 - S3DataSource object.
 - S3DataDistributionType : FullyReplicated | ShardedByS3Key
 - Differerent data formats are supported: CSV, protobuf, JSON, libsvm (check algo docs!).
- Pipe Mode streams the data set to training instances.
 - This allows you to process infinitely-large data sets.
 - Training starts faster.
 - This mode is supported by some built-in algos as well as Tensorflow.
 - Your data set must be in recordIO-encoded protobuf format.

Walkthrough:

- AWS credits
- SageMaker console
- Notebook instance setup

Labs

Labs

- 1. Training, deploying and predicting with XGBoost
- 2. Finding optimal hyper parameters with Automatic Model Tuning
- 3. Running HTTPS predictions and batch predictions,
- 4. Beyond built-in algorithms: a peek at TensorFlow.

Resources

Resources

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/awslabs/amazon-sagemaker-examples

https://github.com/aws/sagemaker-python-sdk

https://medium.com/@julsimon

Thank you!

Julien Simon Principal Technical Evangelist, AI & Machine Learning Amazon Web Services @julsimon

