Una matriz de 2 × 2 con un valor característico y dos vectores característicos linealmente independientes

Sea $A = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$. Entonces $\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 0 \\ 0 & 4 - \lambda \end{vmatrix} = (\lambda - 4)^2 = 0$; así, $\lambda = 4$ es un valor característico de multiplicidad algebraica 2. Como A = 4I, se sabe que $A\mathbf{v} = 4\mathbf{v}$ para todo vector $\mathbf{v} \in \mathbb{R}^2$, de manera que $E_4 = \mathbb{R}^2 = \text{gen}\left\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\}$.

Una matriz de 2 × 2 con un valor característico y sólo un vector característico independiente

Sea $A = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}$. Entonces $\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 1 \\ 0 & 4 - \lambda \end{vmatrix} = (\lambda - 4)^2 = 0$; así, $\lambda = 4$ es un valor característico de multiplicidad algebraica 2. Pero esta vez se tiene $(A - 4I)\mathbf{v} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ 0 \end{pmatrix}$. Por lo tanto, $x_2 = 0$, $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ es un vector propio y $E_4 = \operatorname{gen} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.

Sea
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
. Entonces $\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & 4 \\ 2 & -\lambda & 2 \\ 4 & 2 & 3 - \lambda \end{vmatrix} = -\lambda^3 + 6\lambda^2 + 15\lambda + 8 =$

Nota

 $-(\lambda+1)^2(\lambda-8)=0$, de manera que los valores característicos son $\lambda_1=8$ y $\lambda_2=-1$ (con multiplicidad algebraica 2). Para $\lambda_1=8$ se obtiene

En lo subsecuente no se dan los detalles algebraicos para un determinante de 3×3 .

$$(A - 8I)\mathbf{v} = \begin{pmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

o reduciendo por renglones, se tiene

$$\begin{pmatrix} -5 & 2 & 4 & | & 0 \\ 2 & -8 & 2 & | & 0 \\ 4 & 2 & -5 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -5 & 2 & 4 & | & 0 \\ -18 & 0 & 18 & | & 0 \\ 8 & 0 & -9 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix}
-5 & 2 & 4 & | & 0 \\
-1 & 0 & 1 & | & 0 \\
9 & 0 & -9 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 & -1 & | & 0 \\
-1 & 0 & 1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Entonces, $x_3 = 2x_2$ y $x_1 = x_3$ y se obtiene el vector característico $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ y $E_8 = \text{gen} \left\{ \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \right\}$. Para $\lambda_2 = -1$ se tiene $(A+I)\mathbf{v} = \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, lo que da la ecuación única $2x_1 + x_2 + x_3 + x_4 + x_5 +$