Assessment Schedule – 2016

Chemistry: Demonstrate understanding of equilibrium principles in aqueous systems (91392)

Evidence Statement

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE (a)	$K_{\rm s} = [{\rm Ag}^{+}]^{2} [{\rm CO_{3}}^{2-}]$	• Correct K_s expression.		
(b)	Let $s = \text{solubility}$ $[Ag^+] = 2s$ $[CO_3^{2-}] = s$ $K_s = 4s^3$ $s = 1.27 \times 10^{-4} \text{ mol L}^{-1}$ $n = c \times v = 6.33 \times 10^{-6} \text{ mol}$ $m = n \times M = 1.75 \times 10^{-3} \text{ g}$ OR $g L^{-1} = c \times M = 0.0349 \text{ g L}^{-1}$ so mass in 50 mL = $\frac{0.0349 \times 50}{1000} = 1.75 \times 10^{-3} \text{ g}$	One step correct.	Correct process for two steps.	Mass in 50 mL correctly calculated, including correct units and significant figures.
(c)	$Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq)$ $Ag^+(aq) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2](aq)$ The equilibrium responds by favouring the forward reaction and thus more dissolves.	 One correct equation. Recognises that a complex ion is formed. 	Explanation linked to the effect on equilibrium.	Correct explanation, giving both correct equations.
(d)	AgNO ₃ dilution: $\frac{20}{55} \times 0.105 = 0.0382$ Na ₂ CO ₃ dilution: $\frac{35}{55} \times 0.221 = 0.141$ $Q/I.P. = [0.03818]^2[0.1406] = 2.06 \times 10^{-4}$ As $Q/I.P. > K_s$, a precipitate will form.	Correct value for <i>Q</i> calculated with incorrect dilution. OR ONE dilution calculated correctly.	• Correct value for <i>Q</i> calculated, based on correct dilutions, but no conclusion given.	• Correct value for <i>Q</i> calculated, based on correct dilutions, with the correct conclusion.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence	1a	2a	3a	4a	2m	3m	2e	3e

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
TWO (a)	$CH_3CH_2NH_2 + H_2O \rightleftharpoons CH_3CH_2NH_3^+ + OH^-$	Correct equation with equilibrium arrow.		
(b)	$[H_3O^+] = \sqrt{(K_a \times K_w \div [CH_3CH_2NH_2])}$ $[H_3O^+] = \sqrt{(2.51 \times 10^{-11} \times 1.00 \times 10^{-14} \div 0.109)}$ $[H_3O^+] = 1.52 \times 10^{-12} \text{ molL}^{-1}$ $pH = -\log [H_3O^+] = 11.8$	ONE step correct.	Correct answer, with minor error, e.g. sig. fig. or rounding error.	Correct answer, including significant figures.
(c)	Cl ⁻ > CH ₃ CH ₂ NH ₃ ⁺ > H ₃ O ⁺ > CH ₃ CH ₂ NH ₂ > OH ⁻ OR Cl ⁻ > CH ₃ CH ₂ NH ₃ ⁺ > H ₃ O ⁺ = CH ₃ CH ₂ NH ₂ > OH ⁻ CH ₃ CH ₂ NH ₃ Cl → CH ₃ CH ₂ NH ₃ ⁺ + Cl ⁻ CH ₃ CH ₂ NH ₃ Cl completely dissociates. (<i>The chloride ion does not react further with water and so will be in the greatest concentration</i> .) The ethanamine ion will react further with water, but only partially, leaving it the next in the series. CH ₃ CH ₂ NH ₃ ⁺ + H ₂ O ⇌ CH ₃ CH ₂ NH ₂ + H ₃ O ⁺ For every mole of CH ₃ CH ₂ NH ₃ ⁺ that reacts with water, 1 mole of CH ₃ CH ₂ NH ₂ and H ₃ O ⁺ are formed. (However, H ₃ O ⁺ is slightly more concentrated than CH ₃ CH ₂ NH ₂ , as there is a small contribution from water). OH ⁻ is present in the lowest concentration as this comes from the dissociation of water only.	 FOUR species in the correct order. ONE correct equation. OR ONE correct justification. 	All species in their correct order. AND TWO correct equations / justifications.	All species in their correct order. AND TWO correct equations. AND Correct justifications.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence	1a	2a	3a	4a	1m + 1a	2m	1e + 1m	2e

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
THREE (a)	(Ammonium chloride) is acidic OR $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$ So therefore $[H_3O^+] > [OH^-]$	• H ₃ O ⁺ is produced. OR It is acidic.	BOTH concepts correct.	
(b)	$[NH_4^+] = 0.320 \times 20 / 30 = 0.213 \text{ molL}^{-1}$ $(K_a = 10^{-9.24} = 5.75 \times 10^{-10})$ $[H_3O^+] = \sqrt{(5.75 \times 10^{-10} \times 0.213)}$ $= 1.11 \times 10^{-5} \text{ molL}^{-1}$ $pH = -\log[H_3O^+]$ $pH = 4.96$	One step correct.	TWO steps correct.	• All correct.
(c)	Since B is half way to the equivalence point, $[NH_4^+] = [NH_3]$. $K_a = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$ OR $pK_a = pH + log [acid] \div [c.base]$ $so K_a = [H_3O^+]$ therefore $pK_a = pH.$	• EITHER K_a expression rearranged OR $[NH_4^+] = [NH_3]$ at B OR $pH = pK_a$	• $[NH_4^+] = [NH_3]$ AND $pH = pK_a$	Complete explanation.
(d)	The solution at the equivalence point is NH_4Cl . NH_4^+ solution is acidic since, $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$	• NH ₄ ⁺ is acidic. OR Correct equation.	• NH ₄ ⁺ is acidic AND equation in either symbols or words.	

NCEA Level 3 Chemistry (91392) 2016 — page 4 of 4

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence	1a	2a	3a	4a	2m	3m	2e with minor error	2e

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 6	7 – 13	14 – 19	20 – 24