1. Introducción

Dada una función $f:\ [a,b] \to \mathbb{R},$ se quiere calcular la integral definida

$$I(f) = \int_{a}^{b} f(x) \ dx$$

Por el Teorema Fundamental del Cálculo

$$I(f) = F(b) - F(a)$$

donde F(x) es cualquier antiderivada de f(x).

Sin embargo, muchos integrandos f(x) no tienen una antiderivada explícita (expresable en términos de funciones elementales), o la antiderivada no es fácil de obtener. Por este motivo, se necesitan otros métodos para evaluar integrales.

La cuadratura o integración numérica aproxima $\int_a^b f(x)dx$ empleando una suma del tipo

$$\sum_{i=0}^{n} a_i f(x_i)$$

2. Integración Numérica Basada en Polinomios Interpolantes

Sean $\{x_0, \ldots, x_n\}$ n+1 nodos distintos en [a, b]. Tenemos

$$f(x) = p_n(x) + \prod_{i=0}^{n} (x - x_i) \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$

donde

$$p_n(x) = \sum_{i=0}^{n} f(x_i) L_i(x)$$

es el polinomio interpolante de Lagrange. Integrando en el intervalo [a,b], tenemos

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) L_{i}(x) dx + \int_{a}^{b} \prod_{i=0}^{n} (x - x_{i}) \frac{f^{(n+1)}(\xi(x))}{(n+1)!} dx$$
$$= \sum_{i=0}^{n} a_{i} f(x_{i}) + \frac{1}{(n+1)!} \int_{a}^{b} \prod_{i=0}^{n} (x - x_{i}) f^{(n+1)}(\xi(x)) dx$$

donde $\xi(x) \in [a, b] \ \forall x \in [a, b] \ y$

$$a_i = \int_a^b L_i(x)dx, \qquad i = 0, 1, \dots, n$$

3. Regla del Trapecio

Aproximamos f(x) mediante el polinomio lineal. Sean

$$x_0 = a, \quad x_1 = b, \quad h = b - a$$

El polinomio de primer grado que interpola dichos nodos es

$$p_1(x) = \frac{(x-x_1)}{(x_0-x_1)}f(x_0) + \frac{(x-x_0)}{(x_1-x_0)}f(x_1)$$

Luego

$$\int_{a}^{b} f(x) \ dx = \int_{x_0}^{x_1} \left[\frac{(x - x_1)}{(x_0 - x_1)} f(x_0) + \frac{(x - x_0)}{(x_1 - x_0)} f(x_1) \right] dx + \frac{1}{2} \int_{x_0}^{x_1} f''(\xi(x)) (x - x_0) (x - x_1) dx$$

 $(x-x_0)(x-x_1)$ no cambia de signo en $[x_0,x_1]$. Luego podemos aplicar el Teorema del valor medio ponderado de las integrales,

$$\int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1)dx = f''(c) \int_{x_0}^{x_1} (x - x_0)(x - x_1)dx$$

para algún $c \in [x_0, x_1]$.

$$\int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1) dx = f''(c) \left[\frac{1}{3} x^3 - \frac{(x_1 + x_0)}{2} x^2 + x_0 x_1 x \right]_{x_0}^{x_1}$$

$$= f''(c) \left[\left(\frac{1}{3} x_1^3 - \frac{(x_1 + x_0)}{2} x_1^2 + x_0 x_1^2 \right) - \left(\frac{1}{3} x_0^3 - \frac{(x_1 + x_0)}{2} x_0^2 + x_0^2 x_1 \right) \right]$$

$$= f''(c) \left[\left(-\frac{x_1^3}{6} + \frac{x_0 x_1^2}{2} \right) - \left(-\frac{x_0^3}{6} + \frac{x_0^2 x_1}{2} \right) \right]$$

$$= -\frac{f''(c)}{6} \left[x_1^3 - 3x_0 x_1^2 - x_0^3 + 3x_0^2 x_1 \right]$$

$$= -\frac{f''(c)}{6} (x_1 - x_0)^3 = -\frac{h^3}{6} f''(c)$$

Luego

$$\int_{a}^{b} f(x) dx = \left[\frac{(x - x_{1})^{2}}{2(x_{0} - x_{1})} f(x_{0}) + \frac{(x - x_{0})^{2}}{2(x_{1} - x_{0})} f(x_{1}) \right]_{x_{0}}^{x_{1}} - \frac{h^{3}}{12} f''(c)$$

$$= \frac{(x_{1} - x_{0})}{2} [f(x_{0}) + f(x_{1})] - \frac{h^{3}}{12} f''(c)$$

Obtenemos entonces la siguiente Regla del Trapecio:

$$\int_{x_0}^{x_1} f(x) \ dx = \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f''(c) \tag{1}$$

Notar que integrando el polinomio de primer grado en el intervalo [a, b], obtenemos la superficie de un trapecio, dada por $\frac{h}{2}[f(x_0) + f(x_1)]$. La Figura 1 presenta la interpretación gráfica de la regla del trapecio.

4. Método Compuesto del Trapecio

En el método compuesto del trapecio se utilizan varios subintervalos de igual longitud, como se ilustra en la Figura 2.

Sea n el número de subintervalos.

$$h = \frac{b-a}{n}, \quad x_j = a + jh, \quad j = 0, 1, \dots, n$$

Figura 1: Regla del trapecio.

Figura 2: Método compuesto del trapecio.

$$I(f) = \int_{a}^{b} f(x) \ dx = \int_{x_0}^{x_1} f(x) \ dx + \int_{x_1}^{x_2} f(x) \ dx + \dots + \int_{x_{n-1}}^{x_n} f(x) \ dx$$

Aproximando cada integral por un trapecio,

$$T_n(f) = \frac{h}{2} \left(f(x_0) + f(x_1) \right) + \frac{h}{2} \left(f(x_1) + f(x_2) \right) + \dots + \frac{h}{2} \left(f(x_{n-1}) + f(x_n) \right)$$

de donde obtenemos la siguiente fórmula de integración numérica trapezoidal:

$$T_n(f) = h \left[\frac{1}{2} f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{n-1}) + \frac{1}{2} f(x_n) \right]$$
 (2)

Error de la Integración Numérica Trapezoidal

Teorema 1 Sea $f: \mathbb{R} \to \mathbb{R}, \ f \in \mathbb{C}^2$ en [a, b]. Luego

$$E_n^T(f) := \int_a^b f(x) \, dx - T_n(f) = -\frac{h^2(b-a)}{12} f''(c_n) \tag{3}$$

para algún $c_n \in [a, b]$.

Demostración. Caso n = 1:

$$a = x_0,$$
 $b = x_1,$ $h = b - a$

$$E_1^T(f) = -\frac{h^3}{12}f''(c)$$

Vemos que para n=1 obtenemos la regla del trapecio.

Caso n > 1:

$$h = \frac{b-a}{n}, \quad x_j = a+jh, \quad j = 0, 1, \dots, n$$
$$E_n^T(f) = -\frac{h^3}{12}f''(\gamma_1) - \frac{h^3}{12}f''(\gamma_2) - \dots - \frac{h^3}{12}f''(\gamma_n)$$

donde $x_{j-1} \le \gamma_j \le x_j$. Luego

$$E_n^T(f) = -\frac{h^3 n}{12} \left[\frac{f''(\gamma_1) + \dots + f''(\gamma_n)}{n} \right] = -\frac{h^3 n}{12} \xi_n$$

donde

$$\xi_n = \frac{f''(\gamma_1) + \dots + f''(\gamma_n)}{n}$$

es un promedio de valores de f''(x) en el intervalo [a,b]. Luego se cumple

$$\min_{x \in a,b} f''(x) \le \xi_n \le \max_{x \in a,b} f''(x)$$

Por hipótesis f''(x) es continua. Luego, existe $c_n \in [a,b]$ tal que $f''(c_n) = \xi_n$. Además, hn = b - a. Luego

$$E_n^T(f) = -\frac{h^3 n}{12} \xi_n = -\frac{h^2 (b-a)}{12} f''(c_n)$$

Lo cual completa la demostración.

5. Regla de Simpson

Aproximamos f(x) mediante el polinomio de interpolación de grado 2, con los nodos

$$x_0 = a$$
, $x_1 = a + h$, $x_2 = b$, $con h = \frac{b - a}{2}$

El polinomio interpolante de Lagrange está dado por

$$p_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2)$$

Luego,

$$\int_{a}^{b} f(x) \ dx = \int_{x_0}^{x_2} p_2(x) \ dx + \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)(x - x_2)}{6} f^{(3)}(\xi(x)) \ dx$$

La integración de un polinomio de segundo grado no presenta dificultades. Se obtiene

$$\int_{x_0}^{x_2} p_2(x) \ dx = \frac{h}{3} \left(f(x_0) + 4f(x_1) + f(x_2) \right)$$

Por otra parte, se puede demostrar que el error de integración está dado por (la demostración no es directa):

$$\int_{x_0}^{x_2} \frac{(x-x_0)(x-x_1)(x-x_2)}{6} f^{(3)}(\xi(x)) \ dx = -\frac{h^5}{90} f^{(4)}(\xi)$$

para algún $\xi \in [x_0, x_2]$.

Con lo cual obtenemos la siguiente Regla de Simpson:

$$\int_{x_0}^{x_2} f(x) \ dx = \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2)) - \frac{h^5}{90} f^{(4)}(\xi) \tag{4}$$

para algún $\xi \in [x_0, x_2]$.

La Figura 3 presenta la interpretación gráfica de la regla de Simpson.

Figura 3: Regla de Simpson.

6. Método Compuesto de Simpson

En el método compuesto de Simpson se divide el intervalo [a, b] en n subintervalos de igual longitud, siendo n un número par.

$$h = \frac{b-a}{n}, \quad x_j = a + jh, \quad j = 0, 1, \dots, n$$

La integral definida se aproxima aplicando la regla de Simpson a cada par de subintervalos adyacentes.

$$I(f) = \int_a^b f(x) \ dx = \int_{x_0}^{x_2} f(x) \ dx + \int_{x_0}^{x_4} f(x) \ dx + \dots + \int_{x_{n-2}}^{x_n} f(x) \ dx$$

Aproximando cada integral mediante la regla se Simpson

$$S_n(f) = \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2))$$

$$+ \frac{h}{3} (f(x_2) + 4f(x_3) + f(x_4))$$

$$+ \dots$$

$$+ \frac{h}{3} (f(x_{n-4}) + 4f(x_{n-3}) + f(x_{n-2}))$$

$$+ \frac{h}{3} (f(x_{n-2}) + 4f(x_{n-1}) + f(x_n))$$

de donde obtenemos la siguiente fórmula de iteración numérica de Simpson:

$$S_n(f) = \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots$$

$$\dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$
(5)

Error de la Integración Numérica de Simpson

Teorema 2 Sea $f: \mathbb{R} \to \mathbb{R}$, $f \in \mathbb{C}^4$ en [a,b], y sea $n \in \mathbb{Z}^+$ un número par. Luego

$$E_n^S(f) := \int_a^b f(x) - S_n(f) = -\frac{h^4(b-a)}{180} f^{(4)}(c_n)$$
 (6)

para algún $c_n \in [a, b]$.

Demostración. Caso n=2:

$$x_0 = a$$
, $x_1 = a + h$, $x_2 = b$, $con h = \frac{b - a}{2}$
 $E_2^S(f) = -\frac{h^5}{90} f^{(4)}(c_n)$

Vemos que para n=2 obtenemos la regla de Simpson.

Caso n > 2:

$$h = \frac{b-a}{n}, \quad x_j = a+jh, \quad j = 0, 1, \dots, n$$

$$E_n^S(f) = -\frac{h^5}{90} f^{(4)}(\gamma_1) - \frac{h^5}{90} f^{(4)}(\gamma_2) - \dots - \frac{h^5}{90} f^{(4)}(\gamma_{n/2})$$

donde $x_{2j-2} \le \gamma_j \le x_{2j}$. Luego

$$E_n^S(f) = -\frac{h^5}{90} \left(\frac{n}{2}\right) \left[\frac{f^{(4)}(\gamma_1) + \dots + f^{(4)}(\gamma_{n/2})}{\left(\frac{n}{2}\right)} \right] = -\frac{h^5}{90} \left(\frac{n}{2}\right) \xi_{n/2}$$

donde

$$\xi_{n/2} = \frac{f^{(4)}(\gamma_1) + \dots + f^{(4)}(\gamma_{n/2})}{\left(\frac{n}{2}\right)}$$

es un promedio de valores de $f^{(4)}(x)$ en el intervalo [a,b]. Luego se cumple

$$\min_{x \in a,b} f^{(4)}(x) \le \xi_{n/2} \le \max_{x \in a,b} f^{(4)}(x)$$

Por hipótesis $f^{(4)}(x)$ es continua. Luego, existe $c_n \in [a,b]$ tal que $f^{(4)}(c_n) = \xi_{n/2}$. Además, hn = b - a. Luego

$$E_n^S(f) = -\frac{h^5}{90} \left(\frac{n}{2}\right) \xi_{n/2} = -\frac{h^4(b-a)}{180} f^{(4)}(c_n)$$

Lo cual completa la demostración.

7. Integración Numérica en Dominio Bidimensional

Se desea calcular la integral de una función f(x,y) en un dominio bidimensional $Q=\{(x,y)\in\mathbb{R}^2:\ a\leq x\leq b,\ c(x)\leq y\leq d(x)\}.$

$$I = \int_a^b \int_{c(x)}^{d(x)} f(x, y) \ dy \ dx$$

Definimos

$$G(x) = \int_{c(x)}^{d(x)} f(x, y) \ dy$$

Luego

$$I = \int_{a}^{b} G(x) \ dx$$

que puede aproximarse como

$$I \approx \sum_{i=1}^{n} w_i G(x_i)$$

siendo

 w_i : factores de ponderación del método específico utilizado. x_i : nodos.

Por otra parte,

$$G(x_i) = \int_{c(x_i)}^{d(x_i)} f(x_i, y_i) dy \approx \sum_{i=1}^{n_i} a_{ij} f(x_i, y_i), \quad i = 1, \dots, n$$

En la Figura 4 se representa el caso particular de un dominio rectangular, para el cual c(x)=c y d(x)=d.

Figura 4: Dominio de integración rectangular.