7. Aritmetički sklopovi (1)

Sadržaj predavanja

- binarno zbrajalo
 - poluzbrajalo
 - potpuno zbrajalo
 - višebitno paralelno zbrajalo
 - izdvojeno generiranje prijenosa
 - MSI izvedbe
 - akumulator
- zbrajanje u kodu
- binarno oduzimanje
- binarno množenje
- sklop za posmak

Aritmetički sklopovi

- značajna funkcija digitalnog sustava
 - ~ "obrada podataka": obavljanje aritmetičkih i logičkih operacija
 - važni podsustav
 - ~ procesor:
 - obavljanje operacija
 - cijeli brojevi (engl. integers)
 - miješani (racionalni) brojevi
 - glavni registri
 - upravljačka jedinica
 - algoritmi digitalne aritmetike

Aritmetički sklopovi

- "radni" dio procesora
 - ~ aritmetičko-logička jedinica, ALU (engl. Arithmetic-Logic Unit):
 - osnovna izvedba
 operacije nad cijelim brojevima
 - građa ALU:
 - binarno zbrajalo
 zbrajanje, oduzimanje, množenje, dijeljenje
 - jedinica za logičke operacije
 ~ I, ILI, NE, EX-ILI
 - sklop za posmak
 množenje, dijeljenje

osnovni algoritam *binarnog* zbrajanja
 zbrajanje *dva* bita

$$S_{i} = A_{i}\overline{B}_{i} + \overline{A}_{i}B_{i} = A_{i} \oplus B_{i}$$

$$C_{i} = A_{i} \cdot B_{i}$$

sklopovska izvedba zbrajanja dva bita
 poluzbrajalo (engl. half-adder)

$$S_{i} = A_{i}\overline{B}_{i} + \overline{A}_{i}B_{i}$$

$$= A_{i} \oplus B_{i}$$

$$C_{i} = A_{i} \cdot B_{i}$$

$$C_{i}$$

$$A_{i} \quad S_{i}$$

$$B_{i} \quad C_{i}$$

zbrajanje s prijenosom
 zbrajanje tri bita

- sklopovska izvedba zbrajanja tri bita
 potpuno zbrajalo (engl. full-adder):
 kaskadiranje dva poluzbrajala!
 - $S' = A_i \oplus B_i$ $C' = A_i \cdot B_i$ $S_i = S' \oplus C_{i-1}$ $C_i = S' \cdot C_{i-1} + C'$ = C'' + C' $A_i \quad S_i \\
 H_{B_i} \quad C_i \\
 C' \\
 B_i \quad C_i$ C_{i-1}

VHDL ponašajni model potpunog zbrajala

```
library ieee;
use ieee.std_logic_1164.all;

entity potpunoZbrajalo is
   port (a, b, cin: in std_logic;
        s, cout: out std_logic);
end potpunoZbrajalo;

architecture ponasajna of potpunoZbrajalo is
   begin
        s <= a xor b xor cin;
        cout <= (a and b) or (a and cin) or (b and cin);
end ponasajna;</pre>
```

 izvedba potpunog zbrajala samo sklopovima NI s 2 ulaza
 ~ C_i samo jednim dodatnim NI s 2 ulaza

$$C_{i} = \overline{(A_{i} \oplus B_{i}) \cdot C_{i-1}} \cdot \overline{A_{i}B_{i}}$$
$$= (A_{i} \oplus B_{i}) \cdot C_{i-1} + A_{i}B_{i}$$

- zbrajanje *višebitnih* brojeva
 - ~ *iteriranje* (jednobitnih) potpunih zbrajala:
 - iteriranje u prostoru
 - paralelno izvršavanje operacije zbrajanja
 - ipak se prijenos širi "serijski" (engl. ripple carry)
 - a_0 PLUS b_0 ~ potpuno zbrajalo (uz $C_{i-1} = 0$)

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 7: Standardni kombinacijski moduli.
- binarno zbrajalo (poluzbrajalo i potpuno zbrajalo): str. 287-290

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 7: Standardni kombinacijski moduli.
- binarno zbrajalo (poluzbrajalo i potpuno zbrajalo): 7.35-7.37, 7.48-7.50

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 8: Digitalna aritmetika. Cjelina 6: Standardni programirljivi moduli.
- binarno zbrajalo (poluzbrajalo i potpuno zbrajalo):
 - riješeni zadaci: 8.15, 8.16, 6.12