UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering
Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Prelab 8: Multi-stage Amplifiers

Name:

Lab Section:

Figure 1: Cascode amplifier with ideal current source

1. The cascode in Figure 1 is biased by an ideal current source. Let $R_S=51~\Omega,~I_S=1\times10^{-15}~\mathrm{A},~V_A=100~\mathrm{V},~\beta=200,~I_{SUP}=1~\mathrm{mA},~T=300~\mathrm{K},~v_{OUT,DC}=3.5~\mathrm{V},$ and $V_{BIAS2}=2~\mathrm{V}.$ Calculate V_{BIAS1} to match these biasing conditions.

 $V_{BIAS1} =$

2. What is the gain of this amplifier?

 $A_v =$

Figure 2: Multi-stage amplifier

3. Now construct a SPICE netlist for the multi-stage amplifier shown in Figure 2. Let $R_C = 10 \text{ k}\Omega$, $R_S = 51 \text{ k}\Omega$, and $R_{REF} = 200 \Omega$. Bias transistor Q_1 with $V_{BE1} = 560 \text{ mV}$. What is the small signal gain (A_{v1}) between v_{IN} and v_{OUT1} ? What is the small signal gain (A_{v2}) between v_{OUT1} and v_{OUT2} ? Using A_{v1} and A_{v2} , find the overall gain $(A_{v,tot})$ between v_{IN} and v_{OUT2} . Attach the SPICE netlist to the end of this prelab.

$A_{v1} =$		
$A_{v2} =$		
$A_{v,tot} =$		