

# Logistička regresija

## Logistička regresija

- Jedan specijalan slučaj GLM-a je Logistic Regression Classifier
- Kao funkcija g koristi se logistic link function (sigmoid, logit):



"soft threshold": reflektuje meru nesigurnosti

| score | sigmoid(score) |
|-------|----------------|
| -∞    | 0              |
| -2    | 0.12           |
| 0     | 0.5            |
| 2     | 0.88           |
| +∞    | 1              |

#### Logistička regresija – linearna granica odluke



# Logistička regresija

$$P(y^{(i)} = 1 | x^{(i)}, \theta) = \sigma(\theta x^{(i)}) = \frac{1}{1 + e^{-\theta x^{(i)}}}$$



Primer iz klase 0

$$score = -3.5$$
  
 $P(y = 1|x^{(i)}) = 0.03$ 

Primer blizu granice odluke score = 0.5 $P(y = 1|x^{(i)}) = 0.62$ 

Primer daleko od granice odluke 
$$score = 3$$

$$P(y = 1|x^{(i)}) = 0.95$$

#### Uticaj heta na sigmoid

| $\boldsymbol{\theta_0}$ | -2 |
|-------------------------|----|
| $\theta_{awesome}$      | +1 |
| $\theta_{awful}$        | -1 |

| $\boldsymbol{	heta_0}$ | 0  |
|------------------------|----|
| $\theta_{awesome}$     | +1 |
| $\theta_{awful}$       | -1 |

| $\boldsymbol{\theta_0}$ | 0  |
|-------------------------|----|
| $\theta_{awesome}$      | +3 |
| $\theta_{awful}$        | -3 |







Sigmoid se pomerio u desno

Što je veća magnituda koeficijenata, kriva je strmija – brže postajemo sigurni u predikciju

### Treniranje modela (određivanje $\theta$ )

• Trening skup  $T = \{(x^{(i)}, y^{(i)})\}, i \in \{1, ..., N\}$ 

- Svaki pimer opisan je sa D obeležja:  $x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_D \end{bmatrix}$ ,  $x_0 = 1$
- Ciljna varijabla  $y \in \{1,0\}$
- Hipoteza:

$$h_{\theta}(x) = \sigma(\theta x) = 1/(1 + e^{-\theta x})$$

• Kako odrediti parametre  $\theta$ ?

#### Treniranje modela (određivanje $\theta$ )

Da li bismo mogli kao kod linearne regresije?

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$





Linearna regresija

ullet Treba da odaberemo eta tako da verovatnoća uočenog trening skupa bude najveća

• Idealno, želeli bismo da za svaki primer x iz skupa T:

$$h_{\theta}(x^{(i)}) = \begin{cases} 1, & \text{ako je } y^{(i)} = 1 \\ 0, & \text{ako je } y^{(i)} = 0 \end{cases}$$

Željenu verovatnoću modelujemo kao

$$p_{\theta}(y|x) = h_{\theta}(x)^{y} \left(1 - h_{\theta}(x)\right)^{1-y}$$

 Funkcija verodostojnosti (pod pretpostavkom da su primeri generisani IID):

$$L(\theta) = \prod_{i=1}^{N} p_{\theta}(y^{(i)}|x^{(i)}, \theta)$$

• Cilj: naći heta za koje je verodostojnost L( heta) najveća

 Minimalizovaćemo negativan logaritam funkcije verodostojnosti

$$L(\theta) = \prod_{i=1}^{N} p_{\theta}(y^{(i)}|x^{(i)}, \theta)$$

Negativna vrednost logaritma verodostojnosti:

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p_{\theta}(y^{(i)}|x^{(i)}, \theta)$$

$$= -\sum_{i=1}^{N} \log \left[ h_{\theta}(x^{(i)})^{y^{(i)}} \left( 1 - h_{\theta}(x^{(i)}) \right)^{1 - y^{(i)}} \right]$$

$$= -\sum_{i=1}^{N} \left[ y^{(i)} \log h_{\theta}(x^{(i)}) + \left( 1 - y^{(i)} \right) \log \left( 1 - h_{\theta}(x^{(i)}) \right) \right]$$

• Optimizacioni problem:  $\min_{ heta} \mathcal{L}( heta) \frown$  Cross-entropy error

• Optimizacioni problem:  $\min_{\theta} \mathcal{L}(\theta)$ 

Ne postoji closed-form solution

• Funkcija  $\mathcal{L}(\theta)$  je konveksna pa ima jedinstven globalni minimum

- Za optimizaciju možemo upotrebiti metod gradijentnog spusta
- Obično se koristi Njutnova metoda

# Gradijentni spust

Update rule:

$$\frac{\partial}{\partial \theta} \mathcal{L}(\theta)$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \sum_{i=1}^N \left( h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

• Izgleda identično linearnoj regresiji! Razlika je samo u obliku hipoteze  $h_{ heta}(x^{(i)})$ 

- Kao i kod linearne regresije
  - Konvergenciju možemo proveritu iscrtavanjem  $\mathcal{L}(\theta)$  kao funcije broja iteracija  $\mathcal{L}(\theta)$  treba da se smanjuje sa svakom iteracijom
  - Bolje je normalizovati obeležja (brža konvergencija)

## Evaluacija klasifikatora



Tačnost (accuracy) na test skupu:

$$accuracy = \frac{count(correct)}{N_{test}}$$

(broj korektno klasifikovanih instanci test skupa podeljen sa ukupnim brojem instanci test skupa)