Use the definition with constants to show that $f(n) = n\sqrt{n} - n + 20\lg n$ is $\Theta(n\sqrt{n})$. Definition: f(n) is $\Theta(g(n))$ if there exist positive constants c_1 , c_2 and n_0 such that: $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

Here g(n) =

For c₂:

$$f(n) = n\sqrt{n} - n + 20\lg(n) \le n\sqrt{n} + 20\lg(n) \le n\sqrt{n} + 20n\sqrt{n} = 2\ln\sqrt{n}, \forall n \ge 2 \Rightarrow c_2 = 21, n_2 = 1$$

We also want c_1 and n_1 : $c_1 n \sqrt{n} \le n \sqrt{n} - n + 20 \lg(n)$, $\forall n \ge n_1$. It suffices to show that

$$c_1 n \sqrt{n} \le n \sqrt{n} - n \Longrightarrow$$

$$n\sqrt{n} - c_1 n\sqrt{n} - n \ge 0 \Longrightarrow$$

$$n[\sqrt{n}(1-c_1)-1] \ge 0 \Longrightarrow$$

$$\sqrt{n}(1-c_1)-1\geq 0 \Longrightarrow$$

$$\sqrt{n}(1-c_1) \ge 1$$

 $(1-c_1)>0 => c_1 < 1$. If we pick $c_1 = \frac{1}{2}$ we can solve for n => 1

$$\sqrt{n}(1-\frac{1}{2}) \ge 1 \Rightarrow \frac{\sqrt{n}}{2} \ge 1 \Rightarrow n \ge 4 \Rightarrow n_1 = 4$$

We want both inequalities to hold at the same time => pick $n_0 = max(n_1, n_2) = max(1, 4) = 4. => c_1 = 1/2, c_2 = 21, n_0 = 4.$