VITMO

Современные архитектуры нейронных сетей

Трансформеры

LSTM Encoder-Decoder

LSTM Encoder-Decoder

Attention

Проблемы рекуррентности

- Сложно масштабировать
- Сложно распараллеливать, что значит, что использование видеокарт даст меньший прирост в скорости вычислений

Вывод: рекуррентность - зло

Attention is all you need

LITMO

Токенизация по словам

Токенизация по символам

Токенизация по подсловам

Слой Embedding

Позиционное кодирование

$$PE(pos, 2i) = \sin\left(\frac{pos}{1000^{2i/\text{embedding_size}}}\right),$$

$$PE(pos, 2i + 1) = \cos\left(\frac{pos}{1000^{(2i+1)/\text{embedding_size}}}\right),$$

$$ext{pos} = egin{bmatrix} \sin\left(rac{pos}{1000^{0/ ext{embedding_size}}}
ight) \ \cos\left(rac{pos}{1000^{1/ ext{embedding_size}}}
ight) \ \sin\left(rac{pos}{1000^{2/ ext{embedding_size}}}
ight) \ \cdots \ \cos\left(rac{pos}{1000^{(ext{embedding_size}-1)/ ext{embedding_size}}
ight) \end{bmatrix}$$

$$\hat{x} = x + \text{pos_encoding}$$

Позиционное кодирование

Attention

Multi-Head Attention

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

VİTMO Attention 1.0 0.8 0.6 0.2

MultiHead Attention

 $MultiHeadAttention = Concat(head_1, head_2, ..., head_h)W^O$

 $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Encoder и Decoder

LayerNorm

Формула общая с пакетной нормализацией

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

Masked MultiHead Attention

Cross attention

Температура трансформера

Softmax без температуры (обычный)

$$Softmax = rac{e^{x_k}}{\sum\limits_{i=0}^{n-1} e^{x_i}}$$

Softmax с температурой

$$Softmax_T = rac{e^{x_k/T}}{\sum\limits_{i=0}^{n-1} e^{x_i/T}}$$

ViT. Проблемы сверточных нейронных сетей

- Отсутствие восприятия глобального контекста
- Фиксированная структура

С глобальным контекстом может помочь механизм внимания, а проблему фиксированной структуры хорошо решает архитектура трансформера

Архитектура ViT

Обучаемое позиционное кодирование

