基本信息

硕士经历 科研经历

姓名:张磊

研究方向: 非线性泛函分析及其应用与偏微分方程与算子

指导教师: 尤波

专业课成绩:

マエルルのが、	
课程	成绩
非线性分析	97
黎曼几何	100
凸分析	94
广义函数与 Sobolev 空间	优
椭圆与抛物方程	良
Modern Functional Analysis	优
偏微分方程正则性理论	良
Carleman 估计以及应用	优
Stochastic Differential Equation with Application	良

Regularization technique and bootstrap argument to prove the wellposedness of the following 3D MHD Equation Riemannian integral can be thought of a net convergence

定义

A net is a function from a directed set (D, \leq) to a topological space X.

$$\int_{a}^{b} f(x)dx \tag{1}$$

学术讲习班:

无穷维动力系统天元数学讲习班	南京大学	
Strichartz 估计及应用,随机发展方程,正	不变吸引子	
分数 Brown 运动与随机动力系统专题讲习班	华南理工大学	
分数阶 Brown 运动,随机吸引子,随机偏微分方程		
第二十届西部高校数学教师暑期学校	四川大学	
高等概率论,随机分析,随机偏微分	方程	

协办学术会议:

考虑如下的全空间磁流体 MHD 方程 试图证明如下定理

定理

假设 $(v,B) \in L^2_{loc,\sigma}\left(\mathbb{R}^3 \times [0,T)\right)$ 为 MHD 方程在 $\mathbb{R}^3 \times [0,T)$ 的相对弱解,初值 $(v_0,B_0)\in L^2_\sigma(\mathbb{R}^3)$. 若对任意的 h>0,(v,B)满足如下约束

$$v, B \in L^p(h, T; L^q(\mathbb{R}^3)), \quad \frac{2}{p} + \frac{3}{q} = 1, \quad q \in (3, \infty).$$

以及 $(v,B) \longrightarrow^w (v_0,B_0) \in L^2(\mathbb{R}^3)$.则 (v,B) 是一个 Leray-Hopf 弱解.