Chapter IV: Frequency Analysis of Discrete Systems

Introduction

- Very useful to analyze signals in frequency domain
- ► The **spectrum** of a signal indicates the frequency contents
- Mathematical tools:
 - periodicac signals: Fourier series
 - non-periodical signals: Fourier transform

Analog periodical signals

Periodical signal:

$$x(t) = x(t+T)$$

▶ The fundamental frequency is

$$F_0 = \frac{1}{T}$$

► The signal can be decomposed as a sum of complex exponential signals, with multiples of the fundamental frequency, kF_0

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$$

ightharpoonup The coefficients c_k are the **spectrum** of the signal

$$c_k = \frac{1}{T} \int_{T/2}^{T/2} x(t) e^{-j2\pi k F_0 t}$$

- \triangleright The coefficients c_k are complex values
 - their modulus = "amplitude spectrum"
 - ▶ their phase = "phase spectrum""

Conditions for convergence

- When is the Fourier series convergent to the signal?
 - ▶ i.e. when is the relation correct,
 - i.e. when is the sum actually equal to x(t)?
- Dirichlet conditions: the sum is convergent in all continuity points if:
 - 1. x(t) is continuous or has a finite number of discontinuities in any finite interval
 - 2. x(t) has a finite number of maxima and minima in any period
 - 3. x(t) is absolutely integrable in any period, i.e.:

$$\int_{T}|x(t)|dt<\infty$$

- Weaker condition:
 - ightharpoonup if x(t) is square summable

$$\int_T x(t)^2 dt < \infty$$

- then the he difference $d(t) = x(t) \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$ has zero energy
- Does not guarantee pointwise convergence

Signal spectrum

- ▶ The coefficients c_k are complex numbers
- ▶ If the signal is **real** $x(t) \in \mathbb{R}$, then the c_k are **even**
 - $|c_k| = |c_{-k}|$
 - $ightharpoonup \angle c_k = -\angle c_{-k}$
 - ▶ group the terms with c_k with c_{-k} -> cosine with amplitude $|\mathbf{c}_{-k}|$ and phase $\angle c_k$
- Average power of signal = energy of coefficients

$$P_T = \frac{1}{T} \int_T |x(t)|^2 = \sum_{-infty}^{\infty} |c_k|^2$$

- Interpretation of Fourier series for real signal
 - ▶ the signal is the sum of cosine signals with frequency $0, F_0, 2F_0...$, with amplitudes $|c_k|$ and phase $\angle c_k$
- No other frequencies appear in spectrum → spectrum is made of "lines"

Time-frequency duality

- ► Time-frequency **duality**:
 - ► Real signal -> Even spectrum
 - ▶ Periodic signal → Discrete spectrum

Analog non-periodical signals

▶ The signal is composed of all frequencies (inverse Fourier transform)

$$x(t) = \int_{infty}^{\infty} X(F) e^{j2\pi ft} dF$$

The frequency content is found by the Fourier transform

$$X(F) = \int_{infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

- (Can use instead $\Omega = 2\pi F$)
- X(F) is a complex function
 - \blacktriangleright |X(F)| is the amplitude spectrum
 - \triangleright $\angle X(F)$ is the phase spectrum

Conditions for convergence

- When is the Fourier series convergent to the signal?
 - ▶ i.e. when is the relation correct,
 - i.e. when is the sum actually equal to x(t)?
- ▶ Dirichlet conditions: the sum is convergent in all continuity points if:
 - 1. x(t) is continuous or has a finite number of discontinuities
 - 2. x(t) has a finite number of maxima and minima
 - 3. x(t) is absolutely integrable:

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

- Weaker condition:
 - if x(t) is square summable

$$\int_{-\infty}^{\infty} x(t)^2 dt < \infty$$

- then the he difference $d(t) = x(t) \sum_{k=-\infty}^{\infty} c_k e^{j2\pi k F_0 t}$ has zero energy
- ▶ Does not guarantee *pointwise* convergence

Signal spectrum

- X(F) is a complex function
- ▶ If the signal is **real** $x(t) \in \mathbb{R}$, then the X(F) is **even**
 - ▶ |X(F)| = |X(-F)|
 - $ightharpoonup \angle X(F) = -\angle X(-F)$
 - ▶ group the terms with c_k with c_{-k} -> cosine with amplitude |X(F)| and phase $\angle X(F)$
- Signal energy is the same in time and frequency domains

$$E = \int_{\infty}^{\infty} |x(t)|^2 dt = \int_{\infty}^{\infty} |X(F)|^2 dF$$

▶ The power spectral density of x(t) is

$$S_{xx}(F) = |X(F)|^2$$

Fourier series of discrete periodical signals

- ▶ A discrete signal of period N: x[n] = x[n + N]
- Decomposed as a sum of complex exponentials:

$$x[n] = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}, n = 0, 1, ...N - 1$$

Finding the coefficients:

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}$$

Comparison with analog Fourier series

- Compared to analog signals:
 - consider fundamental frequency $f_0 = 1/N$
 - only *N* terms, with frequencies $k \cdot f_0$:
 - \triangleright 0, f_0 , $2f_0$, ... $(N-1)f_0$
 - ▶ only N distinct coefficients c_k
 - ▶ the *N* coefficients c_k can be chosen like $-\frac{N}{2} < k \le \frac{N}{2} =>$ the frequencies span the range -1/2...1/2

$$-\frac{1}{2} < f_k \le \frac{1}{2}$$

$$-\pi < \omega_k \le \pi$$

Basic properties of Fourier coefficients

1. Signal is **discrete** –> coefficients are **periodic** with period N

$$c_{k+N} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi(k+N)n/N} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}$$

- 2. If signal is real $x[n] \in \mathbb{R}$, the coefficients are **even**:
 - $c_k^* = c_{-k}$
 - $|c_k| = |c_{-k}|$
 - $ightharpoonup \angle c_k = \angle c_{-k}$
- Together with periodicity:
 - $|c_k| = |c_{-k}| = |c_{N-k}|$

Expressing as sum of sinusoids

▶ Grouping terms with c_k and c_{-k} we get

$$x[n] = c_0 + 2\sum_{k=1}^{L} |c_k| cos(2\pi \frac{k}{N} + \angle c_k)$$

where L = N/2 or L = (N-1)/2 depending if N is even or odd

- ightharpoonup Signal = DC value + a finite sum of sinusoids with frequencies kf_0
 - $ightharpoonup |c_k|$ give the amplitudes (x 2)
 - $ightharpoonup \angle c_k$ give the phases

Power spectral density

▶ The average power of a discrete periodic signal

$$P = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$$

Is the same in the frequency domain (with proof):

$$P = \sum_{k=0}^{N-1} |c_k|^2$$

Power spectral density of the signal is

$$S_{xx}[k] = |c_k|^2$$

► Energy over one period is

$$E = \sum_{n=0}^{N-1} |x[n]|^2 = N \sum_{k=0}^{N-1} |c_k|^2$$

Examples

Examples:

$$x_1[n] = cos(\sqrt{5}\pi n)$$
$$x_2[n] = 2sin(\frac{\pi}{3}n)$$
$$x_3[n] = \{1, 1, 0, 0\}$$

Example in Python

```
>>> import numpy as np
>>> from scipy.fftpack import fft, ifft
>>> x = np.array([1.0, 1.0, 0.0, 0.0])
>>> y = 1.0/4.0 * fft(x)
>>> y
array([ 0.50+0.j , 0.25-0.25j, 0.00+0.j , 0.25+0.25j])
```

1. Linearity

If the signal $x_1[n]$ has the Fourier series coefficients $\{c_k^{(1)}\}$, and $x_2[n]$ has $\{c_k^{(2)}\}$, then their sum has

$$a \cdot x_1[n] + b \cdot x_2[n] \leftrightarrow \{a \cdot c_k^{(1)} + b \cdot c_k^{(2)}\}$$

Proof: via definition

2. Shifting in time

If $x[n] \leftrightarrow \{c_k\}$, then

$$x[n-n_0] \leftrightarrow \{e^{(-j2\pi k n_0/N)}c_k\}$$

Proof: via definition

▶ The amplitudes $|c_k|$ are not affected, shifting in time affects only the phase

3. Modulation in time

$$e^{j2\pi k_0 n/N} \leftrightarrow \{c_{k-k_0}\}$$

4. Complex conjugation

$$x^*[n] \leftrightarrow \{c_{-k}^*\}$$

5. Circular convolution

Circular convolution of two signals \leftrightarrow product of coefficients

$$x_1[n] \otimes x_2[n] \leftrightarrow \{N \cdot c_k^{(1)} \cdot c_k^{(2)}\}$$

Circular convolution:

$$x_1[n] \otimes x_2[n] = \sum_{k=0}^{N-1} x_1[k] x_2[(n-k)_N]$$

- ▶ takes two periodic signals of period N, result is the same
- Example at the whiteboard: how it is computed

6. Product in time

Product in time \leftrightarrow circular convolution of Fourier series coefficients

$$x_1[n] \cdot x_2[n] \leftrightarrow \sum_{k=1}^{N-1} c_m^{(1)} c_{(k-m)_N}^{(2)} = c_k^{(1)} \otimes c_k^{(2)}$$

Fourier transform of discrete non-periodical signals

- Non-periodical signals contain all frequencies, not only the multiples of f_0
- ▶ The Fourier transform of a discrete signal:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

▶ The inverse Fourier transform:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

Comparison

- ▶ Compared with the Fourier transform of analog signals
 - sum instead of integral in Fourier transform
 - spectrum is only in range:

$$\omega \in [-\pi, \pi]$$

$$f\in\left[-\frac{1}{2},\frac{1}{2}\right]$$

- ▶ Compared with the Fourier series of discrete periodical signals
 - general ω instead of $2\pi k f_0$
 - spectrum is continuous, not discrete
 - ▶ integral, not sum in inverse Fourier transform

Parseval theorem

▶ Parseval theorem: energy of the signal is the same in time and frequency domains

$$E = \sum_{-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2$$

- Proof: on whiteboard
- ► The **energy spectral density** gives the energy contained for each frequency

$$S_{xx}(\omega) = |X(\omega)|^2$$

Basic properties of Fourier transform

• It is **periodical** with period 2π

$$X(\omega + 2\pi) = X(\omega)$$

▶ If the signal x[n] is real, the Fourier transform is **even**

$$x[n] \in \mathbb{R} \to X^*(\omega) = X(-\omega)$$

- ▶ This means
 - modulus is even: $|X(\omega)| = |X(-\omega)|$
 - phase is odd: $X(\omega) = -X(-\omega)$

Convergence of the Fourier transform

- When are the relations valid?
- Assume we compute the Fourier transform with only 2M + 1 samples:

$$X_M(\omega) = \sum_{-M}^M x[n] e^{-j\omega n}$$

▶ If a signal x[n] is **absolutely summable**:

$$\sum_{\infty}^{\infty} |x[n]| < \infty$$

▶ then the Fourier series is **uniform convergent** for every ω (OK):

$$\lim_{M\to\infty}X(\omega)-X_M(\omega)=0$$

Convergence for square-summable signals

► Signals that are only **square summable**

$$\sum_{\infty}^{\infty} |x[n]|^2 < \infty$$

have a weaker convergence:

$$\lim_{M\to\infty}\int_{-\pi}^{\pi}|X(\omega)-X_M(\omega)|^2d\omega=0$$

The Gibbs phenomenon

- ▶ When $H(\omega)$ has discontinuities, then h[n] is not absolutely summable, only square summable
- ▶ Problem: if we only use *M* samples, even if *M* is very large, we will obtain **small oscillations around the discontinuity**
- ▶ As $M \to \infty$, the oscillations do not become smaller, but thinner –> they don't go away!
- ► The Fourier transform will always *overshoot* with about 9% below and above
- ► Known as the Gibbs phenomenon

Gibbs phenomenon

Relation between Fourier series and Fourier transform

- ▶ If apply Fourier transform to periodical discrete signals, $X(\omega)$ contains Diracs
- ▶ The Diracs are at frequencies kf_0 , just like the Fourier series
- ▶ The value of an impulse = the coefficient c_k of the Fourier series
- ▶ The Fourier series \approx the Fourier transform of periodic signals
 - lacktriangle we directly compute the coefficients c_k of the impulses in the spectrum

Fourier transform and Z transform

▶ Definition of Fourier transform = Z transform with:

$$z = e^{j\omega}$$

- $e^{j\omega}$ = points on the unit circle
- ► Fourier transform = Z transform evaluated **on the unit circle**
 - ▶ if the unit circle is in the convergence region of Z transform
 - otherwise, equivalence does not hold
- ▶ This is true for most usual signals we work with
 - there are exceptions, but they are outside the scope of this class

Properties of Fourier transform

1. Linearity

$$a \cdot x_1[n] + b \cdot x_2[n] \leftrightarrow a \cdot X_1(\omega) + b \cdot X_2(\omega)$$

Proof: via definition

Properties of Fourier transform

2. Shifting in time

$$x[n-n_0] \leftrightarrow e^{-j\omega n_0}X(\omega)$$

Proof: via definition

▶ The amplitudes $|X(\omega)|$ is not affected, shifting in time affects only the phase

3. Modulation in time

$$e^{j\omega_0 n} \leftrightarrow X(\omega - \omega_0)$$

4. Complex conjugation

$$x^*[n] \leftrightarrow X^*(-\omega)$$

5. Convolution

$$x_1[n] * x_2[n] \leftrightarrow X_1(\omega) \cdot X_2(\omega)$$

▶ Not circular convolution, this is the normal convolution

6. Product in time

Product in time \leftrightarrow convolution of Fourier series coefficients

$$x_1[n] \cdot x_2[n] \leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\omega - \lambda) d\lambda$$