Выпускная квалификационная работа

Система физического моделирования на основе априорного подхода обнаружения столкновений

Владислав Прекель

ИКИТ СФУ КИ18-16б

Красноярск 20 июня 2022 г.

Априорный подход

Основан на том, что можно найти время столкновения через уравнение (1):

$$distance(t) = r_1 + r_2 \tag{1}$$

где distance(t) – расстояние между центрами двух тел в момент времени t;

 r_1 – радиус первого тела;

 r_2 – радиус второго тела.

Цель работы

Целью выпускной квалификационной работы является разработка физического движка, использующего априорный подход для обнаружения столкновений.

1 Теоретические сведения

$$\vec{a} = -\frac{\vec{v_0}}{|\vec{v_0}|} \mu g \tag{2}$$

$$x(t) = \begin{cases} x_0 + v_{0x}t + \frac{a_x t^2}{2}, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ x_0 + \frac{v_{0x}|\vec{v_0}|}{|\vec{a}|} + \frac{a_x|\vec{v_0}|^2}{2|\vec{a}|^2}, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
(3)

$$y(t) = \begin{cases} y_0 + v_{0y}t + \frac{a_yt^2}{2}, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ y_0 + \frac{v_{0y}|\vec{v_0}|}{|\vec{a}|} + \frac{a_y|\vec{v_0}|^2}{2|\vec{a}|^2}, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$

$$(4)$$

$$\sqrt{(x_1(t)-x_2(t))^2+(y_1(t)-y_2(t))^2}=r_1+r_2 \tag{5}$$

где $x(t),\,y(t)$ – координаты положения тела в момент времени $t;\,x_0,\,y_0$ – координаты начального положения тела; $\vec{v_0}$ – вектор начальной скорости тела; \vec{a} – вектор ускорения тела;

m – масса тела;

 μ – коэффициент трения тела;

r – радиус тела.

2 Использованные технологии

- OCaml язык программирования;
- Js_of_ocaml компилятор OCaml в JavaScript;
- Lwt библиотека для конкурентного программирования;
- Core стандартная библиотека;
- Dream web-фреймворк;
- ppx_inline_test, ppx_expect библиотеки юнит-тестирования;
- Sexplib библиотека для сериализации и десериализации S-выражений;
- Bulma CSS-фреймворк;
- Dune, opam система сборки и пакетный менеджер;
- ▶ VS Code, OCaml Platform среда разработки и плагин для работы с OCaml.

3 Программная реализация

Название	Описание	Пункт и
подпроекта		стр. ВКР
solver	Численное решение алгебраических	3.1, c. 31
	уравнений	
expr	Символьные вычисления	3.2, c. 34
engine	Движок	3.3, c. 39
client	Клиентская часть приложения	3.4, c. 47
client_bin		
protocol	Общая часть приложения	3.5, c. 50
server	Серверная часть приложения	
server_bin		

4 Интерактивная демострация возможностей

https://prekel.github.io/chapgame/

Решённые задачи

Были выполнены все поставленные задачи, а именно:

- в разделе 1 определена модель и систематизирована математическая база, требующаяся для реализации движка;
- в разделе 2 проведён обзор используемых технологий при разработке;
- в разделе 3 описана программная реализация физического движка и интерактивной демонстрацию его работы;
- в разделе 4 продемонстрирована работа движка на примерах и обозначены возможности развития.

Выпускная квалификационная работа

Система физического моделирования на основе априорного подхода обнаружения столкновений

Владислав Прекель

ИКИТ СФУ КИ18-16б

Красноярск 20 июня 2022 г.