Project Sugandh

August 31, 2022

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib
  import matplotlib.pyplot as plt
  import seaborn as sns
  import datetime
  from scipy import stats
  from scipy.stats import ttest_1samp
```

1 Task 1) Import a 311 NYC service request.

```
[2]: data=pd.read_csv('311_Service_Requests_from_2010_to_Present.csv')
     data.head()
[2]:
       Unique Key
                              Created Date
                                              Closed Date Agency
     0
          32310363 12/31/2015 11:59:45 PM 01-01-16 0:55
                                                            NYPD
          32309934 12/31/2015 11:59:44 PM
     1
                                            01-01-16 1:26
                                                            NYPD
     2
         32309159 12/31/2015 11:59:29 PM
                                            01-01-16 4:51
                                                            NYPD
     3
          32305098 12/31/2015 11:57:46 PM
                                            01-01-16 7:43
                                                            NYPD
          32306529 12/31/2015 11:56:58 PM
                                           01-01-16 3:24
                                                            NYPD
                            Agency Name
                                                  Complaint Type
     O New York City Police Department
                                        Noise - Street/Sidewalk
     1 New York City Police Department
                                                Blocked Driveway
     2 New York City Police Department
                                                Blocked Driveway
     3 New York City Police Department
                                                 Illegal Parking
     4 New York City Police Department
                                                 Illegal Parking
                          Descriptor
                                        Location Type
                                                       Incident Zip
     0
                    Loud Music/Party Street/Sidewalk
                                                            10034.0
                                     Street/Sidewalk
     1
                          No Access
                                                            11105.0
     2
                           No Access
                                     Street/Sidewalk
                                                            10458.0
     3
       Commercial Overnight Parking Street/Sidewalk
                                                            10461.0
                    Blocked Sidewalk Street/Sidewalk
                                                            11373.0
```

```
0
          71 VERMILYEA AVENUE
                                                    NaN
                                                                               NaN
     1
              27-07 23 AVENUE
                                                    NaN
                                                                               NaN
     2
        2897 VALENTINE AVENUE
                                                    NaN
                                                                               NaN
     3
          2940 BAISLEY AVENUE
                                                    NaN
                                                                               NaN
                 87-14 57 ROAD
                                                    NaN
                                                                               NaN
       Road Ramp Bridge Highway Segment Garage Lot Name Ferry Direction
     0
             NaN
                                      NaN
                                                       NaN
                                                                         NaN
     1
             NaN
                                      NaN
                                                       NaN
                                                                        NaN
     2
             NaN
                                      NaN
                                                       NaN
                                                                        NaN
     3
             NaN
                                      NaN
                                                       NaN
                                                                        NaN
             NaN
                                      NaN
                                                       NaN
                                                                        NaN
       Ferry Terminal Name
                              Latitude Longitude
     0
                        {\tt NaN}
                             40.865682 -73.923501
     1
                        {\tt NaN}
                             40.775945 -73.915094
     2
                        {\tt NaN}
                             40.870325 -73.888525
     3
                             40.835994 -73.828379
     4
                        NaN
                             40.733060 -73.874170
                                          Location
         (40.86568153633767, -73.92350095571744)
     0
     1
        (40.775945312321085, -73.91509393898605)
        (40.870324522111424, -73.88852464418646)
     2
     3
         (40.83599404683083, -73.82837939584206)
       (40.733059618956815, -73.87416975810375)
     [5 rows x 53 columns]
[3]: data.shape
[3]: (1667, 53)
[4]: data.dtypes
[4]: Unique Key
                                           int64
     Created Date
                                          object
     Closed Date
                                          object
     Agency
                                          object
     Agency Name
                                          object
     Complaint Type
                                          object
     Descriptor
                                          object
     Location Type
                                          object
     Incident Zip
                                         float64
     Incident Address
                                          object
     Street Name
                                          object
```

... Bridge Highway Name Bridge Highway Direction

Incident Address

Cross Street 1	object
Cross Street 2	object
Intersection Street 1	object
Intersection Street 2	object
Address Type	object
City	object
Landmark	float64
Facility Type	object
Status	object
Due Date	object
Resolution Description	object
Resolution Action Updated Date	object
Community Board	object
Borough	object
X Coordinate (State Plane)	float64
Y Coordinate (State Plane)	float64
Park Facility Name	object
Park Borough	object
School Name	object
School Number	object
School Region	object
School Code	object
School Phone Number	object
School Address	object
School City	object
School State	object
School Zip	object
School Not Found	object
School or Citywide Complaint	float64
Vehicle Type	float64
Taxi Company Borough	float64
Taxi Pick Up Location	float64
Bridge Highway Name	float64
Bridge Highway Direction	float64
Road Ramp	float64
Bridge Highway Segment	float64
Garage Lot Name	float64
Ferry Direction	float64
Ferry Terminal Name	float64
Latitude	float64
Longitude	float64
Location	object
dtype: object	

2 Task 2) Read or convert the columns 'Created Date' and Closed Date' to datetime datatype

[5]: Created Date datetime64[ns]
Closed Date datetime64[ns]
dtype: object

3 Create a new column 'Request_Closing_Time' as the time elapsed between request creation and request closing

```
[6]: data['Request_Closing_Time']=(data['Closed Date']-data['Created Date']).dt.

→seconds/60/60
data['Request_Closing_Time'].head()
```

```
[6]: 0 0.920833

1 1.437778

2 4.858611

3 7.753889

4 3.450556

Name: Request_Closing_Time, dtype: float64
```

- 4 Task 3) Provide major insights/patterns that you can offer in a visual format (graphs or tables); at least 4 major conclusions that you can come up with after generic data mining.
- 4.1 Conclusion 1
- 4.1.1 Five cities with maximum numbers of complaints

```
[8]: data.City.value_counts().sort_values(ascending=True).plot.bar()
data.City.value_counts().sort_values(ascending=False).head()
```

```
[8]: BROOKLYN 547

NEW YORK 331

BRONX 231

STATEN ISLAND 77

RIDGEWOOD 41
```

Name: City, dtype: int64

4.2 Conclusion 2

4.2.1 In each city maximum no. of complaints is of which type

```
[9]: newframe1=pd.DataFrame(data.groupby('City')['Complaint Type'].value_counts())
newframe1.groupby('City').head(1)
```

[9]:			Complaint Type
	City	Complaint Type	
	ASTORIA	Blocked Driveway	25
	BAYSIDE	Derelict Vehicle	3
	BELLEROSE	Derelict Vehicle	1
	BRONX	Blocked Driveway	116
	BROOKLYN	Blocked Driveway	191

CAMBRIA HEIGHTS	Derelict Vehicle	1
COLLEGE POINT	Blocked Driveway	3
CORONA	Blocked Driveway	20
EAST ELMHURST	Blocked Driveway	5
ELMHURST	Blocked Driveway	15
FAR ROCKAWAY	Blocked Driveway	3
FLUSHING	Blocked Driveway	14
FOREST HILLS	Blocked Driveway	7
FRESH MEADOWS	Illegal Parking	4
GLEN OAKS	Illegal Parking	1
HOLLIS	Blocked Driveway	3
HOWARD BEACH	Derelict Vehicle	4
JACKSON HEIGHTS	Blocked Driveway	4
JAMAICA	Blocked Driveway	20
KEW GARDENS	Blocked Driveway	4
LITTLE NECK	Blocked Driveway	1
LONG ISLAND CITY	Blocked Driveway	3
MASPETH	Blocked Driveway	7
MIDDLE VILLAGE	Illegal Parking	7
NEW YORK	Noise - Commercial	79
OAKLAND GARDENS	Blocked Driveway	1
OZONE PARK	Blocked Driveway	11
QUEENS VILLAGE	Blocked Driveway	7
REGO PARK	Blocked Driveway	3
RICHMOND HILL	Blocked Driveway	11
RIDGEWOOD	Illegal Parking	20
ROCKAWAY PARK	Blocked Driveway	2
ROSEDALE	Illegal Parking	3
SAINT ALBANS	Illegal Parking	5
SOUTH OZONE PARK	Blocked Driveway	6
SOUTH RICHMOND HILL		9
SPRINGFIELD GARDENS	Illegal Parking	2
STATEN ISLAND	Illegal Parking	30
SUNNYSIDE	Blocked Driveway	2
WOODHAVEN	Blocked Driveway	12
WOODSIDE	Blocked Driveway	8
	•	

4.3 Conclusion 3

4.3.1 Measuring the frequency of the different complaint

```
[10]: data['Complaint Type'].value_counts().to_frame().rename(columns={'Complaint_\textsupers'}).plot(kind='bar')
```

[10]: <AxesSubplot:>

4.4 Conclusion 4

No. of unique Complaint types

```
[11]: data['Complaint Type'].nunique()
```

[11]: 17

5 Task 4) Order the complaint types based on the average 'Request_Closing_Time', grouping them for different location Type

[12]: data.groupby(['Location Type','Complaint Type'])['Request_Closing_Time'].mean()

[12]:	Location Type	Complaint Type	
	Club/Bar/Restaurant	Drinking	1.706333
		Noise - Commercial	2.063981
	House and Store	Animal Abuse	1.633889
	House of Worship	Noise - House of Worship	1.121111
	Park/Playground	Homeless Encampment	3.516667
		Noise - Park	4.352685
	Residential Building	Animal Abuse	3.508958
	Residential Building/House	Animal Abuse	3.412000
		Drinking	4.989444
		Homeless Encampment	6.017431
		Urinating in Public	5.814444
	Store/Commercial	Animal Abuse	2.511944
		Drinking	0.776944
		Homeless Encampment	4.522847
		Noise - Commercial	2.882218
		Vending	3.608611
	Street/Sidewalk	Animal Abuse	2.962882
		Bike/Roller/Skate Chronic	3.509444
		Blocked Driveway	4.517120
		Derelict Vehicle	4.527636
		Homeless Encampment	3.420688
		Illegal Parking	4.044109
		Noise - Street/Sidewalk	2.346090
		Noise - Vehicle	3.409079
		Panhandling	3.536389
		Posting Advertisement	1.676500
		Traffic	2.324525
		Urinating in Public	2.910833
		Vending	2.145129
	Vacant Lot	Derelict Vehicle	5.720139
	Name: Request_Closing_Time,	dtype: float64	

6 Task 5) Perform a statistical test

6.0.1 Whether the average response time across complaint types is similar or not (overall)

```
[13]: Hnull1='The average response time across complaint types is similar'
      Halternate1='The average response time across complaint types is not similar'
[14]: newframe3=data[data['Request_Closing_Time'].notnull()]
      Sample=newframe3.sample(n=1000)
      ttest,pvalue=ttest_1samp(Sample['Request_Closing_Time'],newframe3['Request_Closing_Time'].
       \rightarrowmean())
[15]: if(pvalue>0.05):
          print("Null Hypothesis is accepted,",Hnull1)
      else:print("Null Hypothesis is Rejected", Halternate1)
     Null Hypothesis is accepted, The average response time across complaint types is
     similar
     6.0.2 Are the type of complaint or service requested and location related
[16]: | Hnull2='The type of complaint or service requested and location are not related'
      Halternate2='The type of complaint or service requested and location are ⊔
       →related'
[17]: newframe4=pd.crosstab(newframe3['Complaint Type'],newframe3['Location Type'])
      observedval=newframe4.values
      squarex,pvalue,dof,expected=stats.chi2_contingency(newframe4)
[18]: if(pvalue>0.05):print("Null Hypothesis accepted",(Hnull2))
      else:(print("Null Hypothesis is rejected,",Halternate2))
     Null Hypothesis is rejected, The type of complaint or service requested and
     location are related
 []:
```