# Digital Signal Processing

## Pradeep Mundlik\*

| ( : | O | Tν | $\mathbf{E}$ | VΊ | ГS |
|-----|---|----|--------------|----|----|

| 1 Soft | ware Ins | stallation |
|--------|----------|------------|
|--------|----------|------------|

1

### 2 Digital Filter

1

Abstract—This manual provides a simple introduction to digital signal processing.

#### 1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

#### 2 Digital Filter

2.1 Download the sound file from

wget https://raw.githubusercontent.com/ gadepall/ EE1310/master/filter/codes/Sound\_Noise.wav

- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

Solution: We can get code from below link-

https://github.com/PradeepMundlik/ EE3900/Assignment1/codes/Cancelnoise.py

2.4 The output of the python script in Problem 2.3 is the audio file Sound With ReducedNoise.wav. Play

the file in the spectrogram in Problem 2.2. What do you observe?

**Solution:** The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.