Outline

Introduction to optimization

Reminders: Differential calculus and convexity Memory

help

Isovalues, contouring, level curves

Numerical approximation of derivatives and gradient

Unconstrained optimisation

Optimality conditions in the unconstrained case

Solving systems of non linear equations

Descent methods

Linear and non linear regression

Optimisation with constraints

Duality

Optimality conditions for equality constraints

Optimality conditions for inequality constraints

Algorithms for constrained optimization

Canonical problem

$$R^{(2)} = ||x||^{2}$$
on $R^{(2)}$

$$C(x) = ||x - c||^{2} R^{2}$$

$$\begin{cases} c^{E}(x) = 0 \\ c'(x) \leq 0 \\ x \in \mathbb{R}^{n} \end{cases}$$

with
$$\begin{cases} f: \mathbb{R}^n \longrightarrow \mathbb{R}, \\ c^E: \mathbb{R}^n \longrightarrow \mathbb{R}^m, \\ c^I: \mathbb{R}^n \longrightarrow \mathbb{R}^p, \\ f, c, \text{ smooth.} \end{cases}$$

$$D_a = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$D_a = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) \le 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) = 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) = 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) = 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) = 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) = 0\}$$

$$C = \{x \in \mathbb{R}^n, c^E(x) = 0, c'(x) = 0\}$$

General existence theorem

We consider f continuous from $C \subset \mathbb{R}^n$ into \mathbb{R} with C closed. If one of the following hypotheses is satisfied

- C bounded
- C not bounded and f coercive

then f has a minimum on C

$$c^{t}:\mathbb{R}^{n}-\mathbb{N}\mathbb{R}^{m}$$

$$C^{\Sigma}:\mathbb{R}^{n}-\mathbb{N}\mathbb{R}^{n}$$

$$C^{\Sigma}:\mathbb{R}^{n}-\mathbb{N}\mathbb{R}^{n}$$

Notations for the gradient and the hessian of the *i*th constraint

$$a_i^E(x) = \nabla c_i^E(x), \quad H_i^E(x) = \text{Hess } c_i^E(x),$$

 $a_i^I(x) = \nabla c_i^I(x), \quad H_i^I(x) = \text{Hess } c_i^I(x).$

Jacobian matrices of the constraints:

$$A^{E}(x) = \nabla c^{E}(x) = \begin{pmatrix} a_{1}^{E}(x)^{T} \\ \vdots \\ a_{m}^{E}(x)^{T} \end{pmatrix}, \quad A^{I}(x) = \nabla c^{I}(x) = \begin{pmatrix} a_{1}^{I}(x)^{T} \\ \vdots \\ a_{p}^{I}(x)^{T} \end{pmatrix}.$$

$$\mathcal{T}C^{E} = A^{E} = \begin{pmatrix} \nabla C_{A}^{E} \\ \nabla C_{A}^{E} \end{pmatrix} \text{ in Theory.}$$

Lagrangian and Lagrange multipliers (P)

Let y a vector of \mathbb{R}^m , z a vector of \mathbb{R}^p , Lagrange multipliers.

The Lagrangien is defined by

$$\ell(x,y,z) = f(x) + y \cdot c^{E}(x) + z \cdot c^{I}(x)$$

$$= \ell(x) + \sum_{i=1}^{K} y_{i} \cdot c_{i}^{E}(x) + \sum_{i=1}^{K} g_{i} \cdot c_{i}^{T}(x)$$

The gradient and the hessian of the Lagrangien with respect to x are

$$g(x, y, z) = \nabla x (x, y, z) = \nabla f(x) + \sum_{i=1}^{m} y_i a_i^E(x) + \sum_{i=1}^{p} z_i a_i^I(x),$$

$$H(x, y, z) = Hes_{i=1}^{\infty}(x, y, z) = Hf(x) + \sum_{i=1}^{m} y_i H_i^{E}(x) + \sum_{i=1}^{p} z_i H_i^{I}(x).$$

Example 1:
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $f(x) = x_1 + x_2$, $\inf_{x_1^2 + x^2 = 2} f(x)$

$$l: \mathbb{R}^2 \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(x, y) = x_1 + x_2 + y(x_1^2 + x_2^2 - 2)$$

Example 2:
$$f : \mathbb{R}^n \to \mathbb{R}$$
 $f(x) = ||x||^2$, $\inf_{\substack{x_{i+1} - x_i \leq 2 \\ i = 1, ..., n-1}} f(x)$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1} \\
\mathbb{R}^{n} \times \mathbb{R}^{n-1} \\
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1} \\
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1} \\
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1} \\
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1} \\
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}
\end{array}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n-1}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$$

$$\begin{array}{l}
\mathbb{R}^{n} \times \mathbb{R}$$

Examples

Actives constraints

Let x^* a minimizer of f. \sim $\sqrt{2a}$

 $(P) \inf_{Q_{\alpha}} (x)$ $Q_{\alpha} = \begin{cases} C^{E}(x) = 0, C^{T}(x) \leq 0 \end{cases}$ The i^{th} inequality constraint is active if $c_i^l(x^*) = 0$.

Actives constraints

Let x^* a minimizer of f.

The i^{th} inequality constraint is active if $c_i^I(x^*) = 0$.

1. Exemple $f: \mathbb{R}^2 \to \mathbb{R}$ $f(x) = ||x||^2$, $\inf_{x_1 + x_2 \le 1} f(x)$

Actives constraints

Let x^* a minimizer of f.

The i^{th} inequality constraint is active if $c_i^I(x^*) = 0$.

2. Exemple
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 $f(x) = ||x||^2$, $\inf_{x_1 + x_2 \le -1} f(x)$

$$g(y, 3) = \inf_{x_1 + x_2 \le -1} g(x) + g \cdot \operatorname{cE}(x) + g \cdot \operatorname{cE}(x)$$

$$\leq \varrho(x^*, y, 3) = f(x^*) + g \cdot \operatorname{cE}(x^*)$$

$$\leq g(x^*) = p^*$$

Example: solution of a linear system with minimal

norm

Solve

$$p^* = \inf_{Ax=b} x^T x$$

Lagrangian:
$$\ell(x,y) = x^{T}x + y^{T}(Ax - b)$$

$$= g(x) + y \cdot C^{T}(x)$$

$$= g(x)$$

Example: solution of a linear system with minimal norm

Solve

$$p^* = \inf_{Ax=b} x^T x$$

- Lagrangian : $\ell(x, y) = x^T x + y^T (Ax b)$
- In order to minimize $\ell(x, y)$ with respect to x we seek gradient zeros

$$\nabla_{\mathbf{x}}\ell(\mathbf{x},\mathbf{y}) = 2\mathbf{x} + \mathbf{A}^T\mathbf{y} = 0 \iff \mathbf{x} = -\mathbf{A}^T\mathbf{y}/2$$

Example: solution of a linear system with minimal norm

Solve

$$p^* = \inf_{Ax=b} x^T x$$

- Lagrangian : $\ell(x, y) = x^T x + y^T (Ax b)$
- In order to minimize $\ell(x, y)$ with respect to x we seek gradient zeros

$$\nabla_{\mathbf{x}}\ell(\mathbf{x},\mathbf{y}) = 2\mathbf{x} + \mathbf{A}^T\mathbf{y} = 0 \iff \mathbf{x} = -\mathbf{A}^T\mathbf{y}/2$$

Inject in the definition of the dual function

$$g(y) = \ell(-A^T y/2, y) = -\frac{1}{4} y^T A A^T y - b^T y$$

concave in y

Example: solution of a linear system with minimal norm the point is on the dual 13 on

Solve

$$p^* = \inf_{Ax=b} x^T x$$

- Lagrangian : $\ell(x, y) = x^T x + y^T (Ax b)$
- In order to minimize $\ell(x, y)$ with respect to x we seek gradient zeros

$$\nabla_X \ell(x,y) = 2x + A^T y = 0 \iff x = -A^T y/2$$

Inject in the definition of the dual function

$$g(y) = \ell(-A^T y/2, y) = -\frac{1}{4} y^T A A^T y - b^T y$$

concave in *y*

Inferior bound property

perty
$$p^* \ge -\frac{1}{4}y^T A A^T y - b^T y \forall y$$
easier to solve
this than p

Resolution of the dual problem

$$d^{\star} = \sup_{y \in \mathbb{R}^m, z \in \mathbb{R}^p, z \geq 0} g(y, z)$$

- ▶ Best inferior bound for $p^* \ge d^*$
- The dual problem is concave : existence of an optimal problem d* Weak duality $d^* \le p^*$ always hue I,B,P. Strong duality $d^* = p^*$

Weak duality
$$d^* \leq p^*$$

Strong duality
$$d^* = p^*$$

Qualified constraints : condition for $d^* = p^*$

Linear independence constraint qualification: the rank of the matrix formed by the union of the Jacobian matrix of equality constraints and the Jacobian matrix of $q \neq 1$ constraints of active inequality in x^* is equal to m + q, then called maximal rank.

CI.R. = R^p at $C^E(x^*) = \begin{cases} 0 & \text{p conshouts} \\ 0 & \text{and } q \leq P_x^* \end{cases}$ if m > n $JC^E(x^*)$ connot be man rank.

Case of equality constraints

$$\begin{cases} \text{inf} & f(x) \\ s.c. & C(x) = 0 \\ & x \in \mathbb{R}^n \end{cases}$$

with

$$f: \mathbb{R}^n \longrightarrow \mathbb{R},$$

$$C : \mathbb{R}^n \longrightarrow \mathbb{R}^m,$$

f C smooth.

Lagrange multipliers Theorem

Let f and C in C^1 , and x^* a local minimizer of f satisfying

$$C(x^*) = 0$$
 primal feasability

If the constraints are qualified, there exists a vector of Lagrange multipliers $y^* \in \mathbb{R}^m$ s. t. $\nabla Q(x^*, y^*) = 0$

$$\nabla f(x^*) + \sum_{i=1}^m y_i^* \nabla C_i(x^*) = 0$$
 dual feasability

- Linear constraints special case
- ightharpoonup n=2, m=1 special case

Linear constraints special case

$$c(x) = (c_1 \cdot x, \ldots, c_m \cdot x)^{\perp}$$

$$\underbrace{(c_i)_{i=1,...,m}}_{i=1,...,m} \text{ independant vectors family in } R^n \qquad M \leq N$$

$$\underbrace{\{x,c_i\cdot x=0,i=1,...,m\}}_{i=1,...,m} \text{ linear substitute}$$

$$\mathcal{D}_{\alpha} = \operatorname{span}(C_i)_{i=,m}$$

$$\inf_{\mathbf{x}\in\mathbb{R}^p} f(\mathbf{x}) \Leftrightarrow \inf_{\alpha\in\mathbb{R}^p} g(\alpha)$$

with
$$g(\alpha) = f\left(\sum_{i=1}^{p} \alpha_{i} k_{i}\right)$$
, $(k_{i})_{i=1,...,p}$ basis of $P = N - M$

after $\alpha \in \mathbb{R}^{p}$ basis of α

 $\operatorname{Im} \mathbb{R}^p + \nabla g(\alpha) = 0$ $g(\alpha) = g(\alpha) = g(\alpha)$ $\nabla g(\alpha) = \left(\nabla f(\Sigma a, k_i), k_i \right)_{i=1,\dots,p}$ $\Rightarrow \nabla f(x^*) \cdot k_i = 0 \quad f_n = 1 \cdot p$ span ki = Da => \f\(\set\) \in Da $\mathcal{D}_{a} = \{(C_{i})_{i}\}^{+} = \mathcal{D}_{a} \cup \{(C_{i})_{i}\}_{m}$ => 37: Cf(x*)= 57:Ci $y_i^* = -\lambda;$ $y(x^*) + \sum y(x^*) = 0$

Special case n = 2, m = 1

Qualification condition for one single constraint m=1: $\nabla_x c_1(x^*) \neq 0$, we can suppose $\partial_{x_2} c_1(x^*) \neq 0$. Implicit function theorem : $\exists V_1 \times V_2$ containing x^* and φ unique and differentiable in x^* s. t. $\forall x_1 \in V_1$ $c_1([x_1, \varphi(x_1)]) = 0$ and $x_2^* = \varphi(x_1^*)$ with

$$\varphi'(x_1) = \frac{-1}{\partial_{x_2} c_1(x)} \partial_{x_1} c_1(x).$$

Proof

$$\inf_{c_1(x)=0} f(x) \Leftrightarrow \inf_{x_1 \in V_1} \tilde{f}(x_1), \quad \text{with } \tilde{f}(x_1) = f([x_1, \varphi(x_1)])$$

First order optimality conditions for \tilde{f} (without constraints since V_1 is an open set)

$$\tilde{f}'(x_1^{\star}) = 0 \Leftrightarrow \frac{\partial f}{\partial x_1}([x_1^{\star}, \varphi(x_1^{\star})]) + \varphi'(x_1^{\star}) \frac{\partial f}{\partial x_2}([x_1^{\star}, \varphi(x_1^{\star})]) = 0.$$

$$y = -\frac{\partial_{x_2} f(x^*)}{\partial_{x_2} c_1(x^*)}$$

Example 1 Da= inde of radius 1, center 0,0

$$\inf_{x_1^2 + x_2^2 = 1} x_1^4 + x_2^4.$$

Resolution by changing variables in polar coordinates

Set $x_1 = \cos(\theta)$, $x_2 = \sin(\theta)$, problem (4) becomes $\inf_{\theta \in [0,2\pi]} (\cos \theta^4 + \sin \theta^4)$ whose solution is obtained by finding the zero of the derivative:

$$4\cos\theta\sin\theta(-\cos\theta^2+\sin\theta^2)=-2\sin(2\theta)\cos(2\theta)=0,$$

4 local minima
$$(\pm \sqrt{2}/2, \pm \sqrt{2}/2)$$
, where $f(x) = 1/2$,

4 local maxima
$$\{(1,0),(0,1),(-1,0),(0,-1)\}$$
, where $f(x)=1$.

Resolution using Lagrange multipliers

Resolution using Lagrange multipliers

We seek $x^* \in \mathbb{R}^2$ and $y^* \in \mathbb{R}$ s. t.

$$(x_1^*)^2 + (x_2^*)^2 = 1$$

 $4(x_1^*)^3 + y^*2x_1^* = 0$
 $4(x_2^*)^3 + y^*2x_2^* = 0$

Resolution using Lagrange multipliers

We seek $x^* \in \mathbb{R}^2$ and $y^* \in \mathbb{R}$ s. t.

$$(x_1^*)^2 + (x_2^*)^2 = 1$$

$$2x_1(2x_1^2 + y) = 4(x_1^*)^3 + y^*2x_1^* = 0$$

$$2x_2(2x_2^2 + y) = 4(x_2^*)^3 + y^*2x_2^* = 0$$

	$x_1^{\star}=0$	$y^* = -2(x_1^*)^2$
$X_2^{\star}=0$	$(x_1^{\star})^2 + (x_2^{\star})^2 \neq 1$	$(x_1^*)^2 = 1$ et $y^* = -2$
		$f(x^{\star})=1$
$y^* = -2(x_2^*)^2$	$(x_2^*)^2 = 1$ et $y^* = -2$	$(x_1^*)^2 = (x_2^*)^2 = 1/2 \text{ et } y^* = -1,$
	$f(x^{\star})=1$	$f(x^{\star})=1/2$

Second order optimality conditions

Let f and c in C^2 , and x^* be a local minimizer of f verifying the constraints of equality $c(x^*) = 0$. If the constraints are qualified, there exists a vector of Lagrange multipliers $y^* \in \mathbb{R}^m$ such that

$$s \cdot H(x^*, y^*)s \ge 0 \quad \text{for all } s \in \mathcal{N}$$

$$\text{where}$$

$$\mathcal{N} = \{s \in \mathbb{R}^n, A(x^*)s = 0\}.$$

$$H(x^*, y^*) = H(x^*) + \sum_{i=1}^m y^i + C_i(x^*)$$

$$H(x^*, y^*) = H(x^*) + \sum_{i=1}^m y^i + C_i(x^*)$$

Interpretation of Lagrange multipliers

The Lagrange multiplier y_i measures the sensitivity of the minimum x^* with respect to the corresponding constraint. Initial primal and dual problems

$$\inf_{c(x)=0} f(x)$$
 $\sup_{y} g(y)$ $\operatorname{avec} g(y) = \inf_{x} f(x) + y^{t} c(x)$

Perturbated primal and dual problems

$$\inf_{c(x)=\varepsilon} f(x) \mid \sup_{y} g(y) - \varepsilon^{T} y$$

- \triangleright x is the primal variable, ε a parameter
- $ightharpoonup p^*(\varepsilon)$ the optimal value when ε varies

Global interpretation of Lagrange multipliers

Hyp: strong duality for the undisturbed problem, that is y^* t.q.

$$g(y^{\star})=d^{\star}=p^{\star}(0)$$

For the perturbated problem we have

$$p^*(\varepsilon) \geq \max_{y} g(y) - \varepsilon^T y$$

 $\geq g(y^*) - \varepsilon^T y^*$
 $\geq p^*(0) - \varepsilon^T y^*$

hence

- if $y_i^* > 0$ and large, p^* increases a lot if $\varepsilon_i < 0$
- ▶ if y_i^* < 0 and large, p^* disminishes a lot if $\varepsilon_i > 0$

Local interpretation of Lagrange multipliers

cal interpretation of Lagrange r
$$(z^{n} = span(e_{i}))$$

$$e_{i} = (\delta_{i})_{j=1,\dots,n}$$

$$y_{i}^{*} = -\frac{\partial p^{*}(0)}{\partial \varepsilon_{i}}$$

$$p^*(\epsilon) = inf f(z)$$

$$C(x) = \epsilon e_i$$

Proof : $\varepsilon = te_i$ in the global sensitivity $p^{*}(te_{i}) \geq p^{*}(0) - ty_{i}^{*}$

$$\lim_{t \searrow 0} \frac{p^{\star}(te_i) - p^{\star}(0)}{t} \ge -y_i^{\star}$$

$$\lim_{t \nearrow 0} \frac{p^{\star}(te_i) - p^{\star}(0)}{t} \le -y_i^{\star}$$

Example 2: Diagonalization of a symetric matrix

$$Q: \mathbb{R}^2 \times \mathbb{R} \longrightarrow \mathbb{R} \qquad ((x,y) = Ax.x + y) = Ax.x + y (x)$$

$$A \in S^n$$

$$||x|| = 1$$

with A a symetric matrix in \mathbb{R}^{m} .

A a symetric matrix in
$$\mathbb{R}^n$$
.

$$\inf_{c(x)=0} f(x) \quad \text{with } f(x) = Ax \cdot x \text{ and } c(x) = \|x\|^2 - 1 \quad \text{find } c(x) = 0$$

Existence of a minimum since f is continuous and $\{x, ||x|| = 1\}$ bounded closed set.

f differentiable and
$$\{c(x)=0\}$$
 Lagrange multipliers $\Rightarrow \exists y^* \in \mathbb{R}$ s.t. $2Ax^* + 2y^*x^* = 0$ $\exists z - y^*$ is a real eigenvalue $\Rightarrow \exists (\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$, $Av = \lambda v$ and $f(v) = \inf_{\|x\|=1} f(x)$. Induction hypothesis H_n : existence of an orthonormal eigenvector basis of A with n related eigenvalues

$$n = 1$$
 easy

Suppose H_n true We know that there is one eigenvalue $\nabla L(x^*, y^*) = 0$ $Ax^* = -y^*x^*$

For $A \in \mathbb{R}^{n+1 \times n+1}$ we consider the subspace $H = \{ \text{vect}(x^*) \}^{\perp}$. $dim \ H = n$ H is stable by A. Indeed

if
$$x^* \cdot x = 0$$
 then $x^* \cdot Ax = Ax^* \cdot x = -y^*x^* \cdot x = 0$

The restriction of A to H is a matrix $n \times n$ therefore using H_n existence of a orthonormal eigenvector basis of the restriction of A to H.

We divide x^* by $||x^*||$ in order to complete this basis on \mathbb{R}^{n+1} .

Example 3: Minimization of a quadratic function under linear constraints of equality

$$f(x) = \frac{1}{2}Ax \cdot x + b \cdot x$$

$$c(x) = Bx - C$$
enthic definite positive.

with A defined symetric positive matrix in $\mathbb{R}^{n\times n}$, b vector in \mathbb{R}^n ,

B matrix in $\mathbb{R}^{m \times n}$ and C vector in \mathbb{R}^m .

Qualified constraints \Leftrightarrow rank(B) = m.

Lagrangian:

$$\ell(x,y) = \underbrace{\frac{1}{2}Ax \cdot x + b \cdot x + y \cdot (Bx - C)}_{\text{(x)}}$$

Theorem of Lagrange multipliers
$$y \in \mathbb{R}^{m} \quad \ell(x,y) = \int_{Z} Ax \cdot x + (Bx - c) \cdot y$$

$$A \in S_{m}^{++}$$

$$\nabla_{x}\ell(x,y) = Ax + b + B^{t}y = 0$$

$$Bx = C$$

A defined symetric positive matrix $\Rightarrow x = -A^{-1}(b + B^t y)$. $\Rightarrow B(-A^{-1}(b + B^t y)) = C$ $\Rightarrow B(-A^{-1}(b + B^t y)) = C$

$$B(-A^{-1}(b+B^ty)) = C - BA^{-1}b - B$$

 $rank(B) = m \Rightarrow BA^{-1}B^{T}$ is invertible

$$BA^{-1}B^{t}y = -(BA^{-1}b + C)$$
 from which we get y then x.

Application

write fas a quadratic function
$$f(x) = \frac{1}{2} A \times . \times + b. \times$$

Find

$$\inf_{C(x)=0} f(x) \quad \text{with } \begin{cases} f(x) = 3x_1^2 + 5x_2^2 - 3x_1x_2, \\ C(x) = x_1 + x_2 - 1 \end{cases}$$

Lagrangian $\ell(x,y) = 3x_1^2 + 5x_2^2 - 3x_1x_2 + y(x_1 + x_2 - 1)$ for the hyper computations:

$$g(x) = f(x, 1-x)$$