ACELERANDO COM PANDAS

ANÁLISE DE DADOS NA FÓRMULA 1

MATHEUS FAGUNDES

INTRODUÇÃO

A ANÁLISE DE DADOS DESEMPENHA UM PAPEL CRUCIAL NA FÓRMULA 1, ONDE CADA MILISSEGUNDO CONTA. A BIBLIOTECA PANDAS DO PYTHON É UMA FERRAMENTA PODEROSA PARA MANIPULAÇÃO E ANÁLISE DE DADOS, PROPORCIONANDO INSIGHTS VALIOSOS PARA MELHORAR O DESEMPENHO DOS CARROS E ESTRATÉGIAS DAS EQUIPES.

NESTE EBOOK, EXPLORAREMOS COMO APLICAR TÉCNICAS DE ANÁLISE DE DADOS COM PANDAS NO CONTEXTO DA FÓRMULA 1, UTILIZANDO EXEMPLOS DE CÓDIGO EM SITUAÇÕES REAIS.

1. COLETA DE DADOS: A BASE DE TUDO

PARA COMEÇAR A ANÁLISE, PRECISAMOS DE DADOS. NA FÓRMULA 1, ESSES DADOS PODEM VIR DE SENSORES NO CARRO, TELEMETRIA, CONDIÇÕES CLIMÁTICAS E MUITO MAIS.

VAMOS CARREGAR UM CONJUNTO DE DADOS FICTÍCIO DE TELEMETRIA DE UMA CORRIDA.

```
import pandas as pd

# Carregar dados de telemetria
telemetry_data = pd.read_csv('telemetry.csv')
print(telemetry_data.head())
```

2. LIMPEZA DE DADOS: PREPARANDO O TERRENO

ANTES DE ANALISAR, PRECISAMOS LIMPAR OS DADOS. ISSO ENVOLVE TRATAR VALORES AUSENTES E REMOVER DUPLICATAS.

```
# Preencher valores ausentes com a média da coluna
telemetry data.fillna(telemetry data.mean(), inplace=True)
```

Remover duplicatas

3. ANÁLISE DE DESEMPENHO: VELOCIDADE MÉDIA

ANTES DE ANALISAR, PRECISAMOS LIMPAR OS DADOS. ISSO ENVOLVE TRATAR VALORES AUSENTES E REMOVER DUPLICATAS.

```
# Calcular a velocidade média
telemetry_data['speed'] = telemetry_data['distance'] / telemetry_data['time']
average_speed = telemetry_data['speed'].mean()
print(f"Velocidade média: {average_speed} km/h")
```

4. IDENTIFICAÇÃO DE PADRÕES: VOLTAS RÁPIDAS

IDENTIFICAR AS VOLTAS MAIS RÁPIDAS PODE AJUDAR A ENTENDER O QUE CONTRIBUI PARA UM BOM DESEMPENHO.

```
# Agrupar por volta e calcular a velocidade média de cada volta
lap_times = telemetry_data.groupby('lap')['speed'].mean().reset_index()
fastest_laps = lap_times.sort_values(by='speed', ascending=False)
print(fastest_laps.head())
```

5. ANÁLISE DE PNEU: ESTRATÉGIA DE PIT STOP

ANALISAR O DESGASTE DOS PNEUS E A EFICÁCIA DOS PIT STOPS PODE MELHORAR A ESTRATÉGIA DE CORRIDA.

```
# Analisar o desgaste dos pneus
tire_wear = telemetry_data.groupby('lap')['tire_wear'].mean().reset_index()
print(tire_wear.head())

# Visualizar a estratégia de pit stops
import matplotlib.pyplot as plt

plt.plot(tire_wear['lap'], tire_wear['tire_wear'])
plt.xlabel('Volta')
plt.ylabel('Desgaste dos Pneus')
plt.title('Desgaste dos Pneus ao Longo da Corrida')
plt.show()
```

6. CONDIÇÕES CLIMÁTICAS: DESEMPENHO

AS CONDIÇÕES CLIMÁTICAS PODEM AFETAR SIGNIFICATIVAMENTE O DESEMPENHO DO CARRO. VAMOS ANALISAR ESSA RELAÇÃO.

```
# Calcular a correlação entre temperatura e velocidade

correlation = telemetry_data['temperature'].corr(telemetry_data['speed'])

print(f"Correlação entre temperatura e velocidade: {correlation}")

# Visualizar a relação

plt.scatter(telemetry_data['temperature'], telemetry_data['speed'])

plt.xlabel('Temperatura (°C)')

plt.ylabel('Velocidade (km/h)')

plt.title('Impacto da Temperatura na Velocidade')

plt.show()
```

6. CONDIÇÕES CLIMÁTICAS: DESEMPENHO

AS CONDIÇÕES CLIMÁTICAS PODEM AFETAR SIGNIFICATIVAMENTE O DESEMPENHO DO CARRO. VAMOS ANALISAR ESSA RELAÇÃO.

```
# Calcular a correlação entre temperatura e velocidade

correlation = telemetry_data['temperature'].corr(telemetry_data['speed'])

print(f"Correlação entre temperatura e velocidade: {correlation}")

# Visualizar a relação

plt.scatter(telemetry_data['temperature'], telemetry_data['speed'])

plt.xlabel('Temperatura (°C)')

plt.ylabel('Velocidade (km/h)')

plt.title('Impacto da Temperatura na Velocidade')

plt.show()
```

7. CONCLUSÃO

A ANÁLISE DE DADOS COM PANDAS NA FÓRMULA 1 PERMITE INSIGHTS VALIOSOS QUE PODEM SER UTILIZADOS PARA OTIMIZAR O DESEMPENHO DO CARRO E A ESTRATÉGIA DA EQUIPE. AO DOMINAR ESSAS TÉCNICAS, VOCÊ ESTARÁ PREPARADO PARA EXPLORAR E ENTENDER OS DADOS COMPLEXOS QUE MOVEM O MUNDO DAS CORRIDAS.

