Proyecto #2 Series de tiempo

Primavera 2024

Profesor: Daniel Nuño <u>Daniel.nuno@iteso.mx</u> Fecha de entrega y presentación: 8 mayo, 2024

Introducción

El primer proyecto realizaste un trabajo detallado para una serie de tiempo. En el mundo laboral te enfrentarías con la necesidad de estimar muchas series de tiempo a la vez. El propósito de este proyecto es explorar modelos avanzados y trabajar con metodologías y aplicaciones que ayuden a pronosticar los valores futuros de las acciones de un portafolio de inversión.

El portafolio de inversión simulado se conforma por las acciones y pesos del índice <u>S&P</u> 500. Pronosticaras 30 días al futuro.

Especificaciones e instrucciones

- Descarga los precios al cierre diarios de las 503 acciones desde el 1 de enero del 2022 hasta el 29 de marzo del 2024 utilizando *tidyquant*.
- Determina el peso de cada acción en el índice derivado de la capitalización del mercado. Esto para simular un portafolio de inversión.
- Obtén el sector correspondiente de cada acción.
- Analiza cada acción para decidir si necesita:
 - o Cambiar las fechas a una secuencia numérica.
 - o Transformación matemática.
 - Tratamiento de datos atípicos.
 - o Diferenciación para hacerla estacionaría.
 - Suavización.
 - Recortar la serie a los últimos valores representativos.
- Ajusta los modelos correspondientes:
 - ARIMA
 - o ETS
 - GARCH
 - o <u>Prophet</u>
 - o Complex Seasonality equipo 2
 - Vector autoregression equipo 4
 - o Neural network autoregression equipo 1
 - Bootstrapping and bagging y ensamble equipo 3
- Valida tus resultados y escoge el mejor modelo para cada acción a partir de una métrica de error.

- Calcula el valor de tu portafolio con los pesos obtenidos en el punto 2.
- Realiza tus pronósticos de 30 días utilizando la metodología jerárquica <u>bottoms-up</u> para obtener el resultado de cada sector y de tu portafolio.

Equipos

Neural network autoregression

Camila Zapata

Milca Correa

Rogelio Adrian

Alejandro salinas

Jero Alvarado

Andres gonzalez

Complex seasonality

Mariana Ripoll

Juan Pablo Barba

Diego Canales

Juan Pablo Dominguez

Jose Pablo Romo

Azanza

Bootstrapping and bagging **y** ensamble

Isabel Torres

Emiliano valderrama

Regina Espinoza

David Pérez

Renata Orozco

Daniel Pastrana

Vector autoregression

Ayelen Reyes

Elena Martinez

Ricardo Ibarra

Renato Mendoza

Entregables

Notebook

- En formato nb, nb.html, html o pdf.
- Portada.
- Índice de contenidos.
- Introducción.
- Teoría del modelo GARCH.
- Teoría del modelo asignado a tu equipo.
- Applica las transformaciones matemáticas necesarias.
- Ajusta los modelos correspondientes.
- Valida tus resultados y escoge el mejor modelo para cada acción a partir de una métrica de error.
- Pronósticos a 30 días cada industria y el portafolio.
- Conclusión.

Presentación

- En PDF (de diapositivas en PowerPoint o Presentación en R con Quarto, ioslides o slidy).
- 25 minutos para presentar.
- Explica el desarrollo de tu trabajo.
- Explica el modelo correspondiente asignado a tu equipo de una manera intuitiva, gráfica y matemática. Describe las ventajas y desventajas.
- Explica el modelo GARCH de una manera intuitiva, gráfica y matemática. Describe las ventajas y desventajas.
- Comparte tus resultados y conclusiones.
- Código no es necesario.
- Se presenta el 8 de mayo, 2024.