

11 Veröffentlichungsnummer:

0 094 349

12

EUROPÄISCHE PATENTANMELDUNG

Anmeldenummer: 83810186.3

Anmeldetag: 02.05.83

6) Int. Cl.3: C 07 D 215/26, C 07 D 215/28, A 01 N 43/42

Priorität: 07.05.82 CH 2841/82

Anmeider: CIBA-GEIGY AG, Patentabtellung Postfach, CH-4002 Basel (CH)

Veröffentlichungstag der Anmeldung: 18.11.83 Patentblatt 83/48

Benannte Vertragsstaaten: AT BE CH DE FRIT LI NL SE

Erfinder: Hubele, Adolf, Dr., Obere Egg 9, CH-4312 Magden (CH)

Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen.

Beim Verfahren zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien werden Chinolinderivate der Formel

worin R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyan, Alkyl oder Alkoxy,

R4, R5 und R6 unabhängig voneinander Wasserstoff, Halogen oder Alkyi,

X einen aliphatischen, acyclischen, gesättigten Kohlenwasserstoffrest mit 1 bis 3 Kohlenstoffatomen und

Y eine Carboxylgruppe oder ein Salz davon, eine Mercaptocarbonylgruppe oder ein Salz davon, eine Carbonsäureestergruppe, eine Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder substituiertes Derivat einer Carbonsäureamidgruppe oder eine Carbonsäurehydrazidgruppe oder X und Y zusammen einen unsubstituierten oder substituierten Tetrahydrofuran-2-on-Ring

bedeuten, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe, oder Mittel, welche solche Derivate enthalten, eingesetzt. Es werden auch neue Chinolinderivate und ihre Herstellung beschrieben.

Case 5-13910/+

Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen

Die vorliegende Erfindung betrifft die Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien, Mittel, welche diese Chinolinderivate enthalten, neue Chinolinderivate und die Herstellung der Chinolinderivate. Die Chinolinderivate lassen sich auch zur Regulierung des Pflanzenwachstums einsetzen.

Beim Einsatz von Agrarchemikalien, wie Pflanzenschutzmitteln und insbesondere Herbiziden, können in Abhängigkeit von Faktoren wie beispielsweise Dosis der Agrarchemikalie und Applikationsart, Art der Kulturpflanze, Bodenbeschaffenheit und klimatischen Bedingungen, wie beispielsweise Belichtungsdauer, Temperatur und Niederschlagsmengen, die Kulturpflanzen in gewissem Masse geschädigt werden. So ist beispielsweise bekannt, dass Herbizide aus den verschiedensten Stoffklassen, wie Triazine, Harnstoffderivate, Carbamate, Thiolcarbamate, Halogenacetanilide, Halogenphenoxyessigsäuren und anderen Klassen bei der Anwendung in wirksamer Dosis die Kulturpflanzen, welche gegen die nachteilige Wirkung von unerwünschtem Pflanzenwuchs geschützt werden sollen, in gewissem Masse schädigen können. Um diesem Problem zu begegnen, sind schon verschiedene Stoffe vorgeschlagen worden, welche befähigt sind, die schädigende Wirkung eines Herbizids auf die Kulturpflanze spezifisch zu antagonisieren, d.h., die Kulturpflanze zu schützen, ohne zugleich die Herbizidwirkung gegen zu bekämpfende Unkräuter merklich zu beeinflussen. Dabei hat sich jedoch gezeigt, dass die vorgeschlagenen Gegenmittel häufig nur ein enges Einsatzgebiet haben, d.h., ein bestimmtes Gegenmittel eignet sich oftmals nur zur Anwendung bei einzelnen Kulturpflanzenarten und/oder zum Schutz der Kulturpflanzen gegen einzelne herbizide Substanzen oder Stoffklassen.

So beschreibt die Britische Patentschrift 1,277,557 die Behandlung von Samen bzw. Sprösslingen von Weizen und Sorghum mit gewissen Oxamsäure-estern und Amiden zum Schutz vor dem Angriff durch "ALACHLOR" (N-Methoxymethyl-N-chloracetyl-2,6-diäthylanilin). In den Deutschen Offen-legungsschriften 1,952,910 und 2,245,471, sowie in der Französischen Patentschrift 2,021,611 werden Gegenmittel zur Behandlung von Getreide-, Mais- und Reissamen zum Schutz gegen die schädigende Einwirkung von herbizid wirksamen Thiolcarbamaten vorgeschlagen. Gemäss der Deutschen Patentschrift 1,567,075 und der US-Patentschrift 3,131,509 werden Hydroxyaminoacetanilide und Hydantoine für den Schutz von Getreidesamen gegenüber Carbamaten verwendet.

Die direkte pre- oder postemergente Behandlung gewisser Nutzpflanzen mit Gegenmitteln als Antagonisten bestimmter Herbizidklassen auf einer Anbaufläche ist in den Deutschen Offenlegungsschriften 2,141,586 und 2,218,097, sowie im US-Patent 3,867,444 beschrieben.

Ferner können Maispflanzen gemäss der Deutschen Offenlegungsschrift 2,402,983 wirksam vor Schädigung durch Chloracetanilide geschützt werden, indem man dem Boden als Gegenmittel ein N-disubstituiertes Dichloracetamid zuführt.

Gemäss EP-A 11.047 können auch Alkoximinobenzylcyanide, deren Alkoxygruppe u.a. durch eine acetalisierte Carbonylgruppe substituiert ist, als Mittel zum Schutz von Kulturpflanzen vor der schädigenden Wirkung von Herbiziden verschiedener Stoffklassen verwendet werden.

Es wurde nun gefunden, dass sich überraschenderweise eine Gruppe von Chinolinderivaten hervorragend dazu eignet, Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien, wie beispielsweise Pflanzenschutzmitteln, insbesondere Herbiziden, zu schützen. Diese Chinolinderivate werden daher im folgenden auch als "Gegenmittel", "Antidot" oder "Safener" bezeichnet. Sie besitzen zusätzlich auch eine pflanzenwuchsregulierende Wirkung und eignen sich besonders zur Wuchsregulierung bei Dicotylen, vor allem zur Ertragssteigerung bei Kulturpflanzen, insbesondere bei Soja. Ferner können Wurzelwachstum und Keimung gefördert werden.

Chinolinderivate, welche zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien geeignet sind, entsprechen der Formel I

$$\begin{array}{c|c}
R_2 & R_5 \\
R_1 & R_6 \\
0 - x - y
\end{array}$$
(I),

worin

 R_1 , R_2 und R_3 unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyan, Alkyl oder Alkoxy,

 R_4 , R_5 und R_6 unabhängig voneinander Wasserstoff, Halogen oder Alkyl, X einen aliphatischen, acyclischen, gesättigten Kohlenwasserstoffrest mit 1 bis 3 Kohlenstoffatomen und

Y eine Carboxylgruppe oder ein Salz davon, eine Mercaptocarbonylgruppe oder ein Salz davon, eine Carbonsäureestergruppe, eine Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder substituiertes Derivat einer Carbonsäureamidgruppe oder eine Carbonsäurehydrazidgruppe oder

X und Y zusammen einen unsubstituierten oder substituierten Tetrahydrofuran-2-on-Ring

bedeuten, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe.

Wenn in den Verbindungen der Formel I X für -CH(CH₃)-, -CH(C₂H₅)- oder -CH(A)-CH(E)- steht, wobei A und E die für Formel I angegebenen Bedeutungen haben, oder X und Y zusammen einen Tetrahydrofuran-2-on-Ring bilden, existieren optisch isomere Verbindungen. Im Rahmen der vorliegenden Erfindung sind unter den entsprechenden Verbindungen der Formel I sowohl die optisch reinen Isomere wie auch die Isomerengemische zu verstehen.

Unter Halogen sind Fluor, Chlor, Brom und Jod zu verstehen, insbesondere Chlor, Brom und Jod. Die als Substituenten R₁, R₂, R₃, R₄, R₅ und R₆ vorkommenden Alkylund Alkoxygruppen können geradkettig oder verzweigt sein. Sie enthalten zweckmässigerweise 1 bis 18, insbesondere 1 bis 6 und bevorzugt 1 bis 3 Kohlenstoffatome.

Für X als aliphatischen, acyclischen, gesättigten Kohlenwasserstoffrest mit 1 bis 3 Kohlenstoffatomen kommen vor allem die folgenden Gruppen in Betracht: -CH₂-, -CH₂-CH₂-, -CH(CH₃)-, -CH₂-CH₂-CH₂-, -CH(C₂H₅)-, -C(CH₃)₂- oder -CH(A)-CH(E)-, worin eines der Symbole A und E für Wasserstoff und das andere für eine Methylgruppe steht.

Für Y als Carbonsäureestergruppe oder Carbonsäurethiolestergruppe kommt ein entsprechender Säurerest in Betracht, der beispielsweise durch einen gegebenenfalls substituierten, aliphatischen Rest oder einen gegebenenfalls über einen aliphatischen Rest gebundenen und gegebenenfalls substituierten cycloaliphatischen, aromatischen oder heterocyclischen Rest verestert ist.

Als Carbonsäureesterrest bevorzugt ist der Rest -COOR, und als Carbonsäurethiolesterrest bevorzugt ist der Rest - $COSR_8$, wobei R_7 und R_8 die nachfolgend angegebenen Bedeutungen haben: gegebenenfalls substituierter Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Phenyl- oder Naphthylrest oder gegebenenfalls substituierter heterocyclischer Rest. Die Reste -COOR, und -COSR, schliessen auch die freien Säuren ein, wobei R_7 und R_8 für Wasserstoff stehen, sowie die Salze davon, wobei R_7 und R_8 für ein Kation stehen. Als Salzbildner eignen sich hier besonders Metalle und organische Stickstoffbasen, vor allem quaternäre Ammoniumbasen. Hierbei kommen als zur Salzbildung geeignete Metalle Erdalkalimetalle, wie Magnesium oder Calcium, vor allem aber die Alkalimetalle in Betracht, wie Lithium und insbesondere Kalium und Natrium. Ferner sind als Salzbildner auch Uebergangsmetalle wie beispielsweise Eisen, Nickel, Kobalt, Kupfer, Zink, Chrom oder Mangan geeignet. Beispiele für zur Salzbildung geeignete Stickstoffbasen sind primäre, sekundäre und tertiäre, aliphatische und aromatische, gegebenenfalls am Kohlen-

wasserstoffrest hydroxylierte Amine, wie Methylamin, Aethylamin, Propylamin, Isopropylamin, die vier isomeren Butylamine, Dimethylamin, Diäthylamin, Dipropylamin, Diisopropylamin, Di-n-butylamin, Pyrrolidin, Piperidin, Morpholin, Trimethylamin, Triäthylamin, Tripropylamin, Chinuclidin, Pyridin, Chinolin, Isochinolin sowie Methanolamin, Aethanolamin, Propanolamin, Dimethanolamin, Diäthanolamin oder Triäthanolamin. Als organische Stickstoffbasen kommen auch quaternäre Ammoniumbasen in Betracht. Beispiele für quaternäre Ammoniumbasen sind Tetraalkylammoniumkationen, in denen die Alkylreste unabhängig voneinander geradkettige oder verzweigte $^{\rm C}_{\rm 1}$ $^{\rm -C}_{\rm 6}$ -Alkylgruppen sind, wie das Tetramethylammoniumkation, das Tetraäthylammoniumkation oder das Trimethyläthylammoniumkation, sowie weiterhin das Trimethylbenzylammoniumkation, das Triäthylbenzylammoniumkation und das Trimethyl-2hydroxyäthylammoniumkation. Besonders bevorzugt als Salzbildner sind das Ammoniumkation und Trialkylammoniumkationen, in denen die Alkylreste unabhängig voneinander geradkettige oder verzweigte, gegebenenfalls durch eine Hydroxylgruppe substituierte C_1 - C_6 -Alkylgruppen, insbesondere C₁-C₂-Alkylgruppen, sind, wie beispielsweise das Trimethylammoniumkation, das Triäthylammoniumkation und das Tri-(2hydroxyäthylen)-ammoniumkation.

Für Y als Carbonsäureamidgruppe kommt ein entsprechender Amidrest in Betracht, welcher umsubstituiert oder am Stickstoffatom mono- oder disubstituiert sein kann oder in welchem das Stickstoffatom Bestandteil eines gegebenenfalls substituierten heterocyclischen Restes ist. Als Substituenten der Amidgruppe sind beispielsweise ein gegebenenfalls substituierter und gegebenenfalls über ein Sauerstoffatom gebundener aliphatischer Rest, ein gegebenenfalls über einen aliphatischen Rest gebundener und gegebenenfalls substituierter cycloaliphatischer, aromatischer oder heterocyclischer Rest oder eine gegebenenfalls mono- oder disubstituierte Aminogruppe zu nennen.

Als Carbonsäureamidrest bevorzugt ist der Rest $-\text{CONR}_9 \text{R}_{10}$, worin R_9 für Wasserstoff, einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Phenyl- oder Naphthylrest, einen gegebenenfalls substituierten heterocyclischen Rest oder einen Alkoxyrest, R_{10} für Wasserstoff, Amino, mono- oder disubstituiertes Amino oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Cycloalkyl- oder Phenylrest oder R_9 und R_{10} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Rest stehen.

Als Substituenten der organischen Reste R₇, R₈, R₉ und R₁₀ kommen beispielsweise Halogen, Nitro, Cyan, Hydroxy, Alkyl, Halogenalkyl, Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Alkylthio, Halogenalkoxy, Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Hydroxyalkylthio, Alkoxycarbonyl, Amino, Alkylamino, Dialkylamino, Hydroxyalkylamino, Di-(hydroxyalkyl)-amino, Aminoalkylamino, Cycloalkyl, gegebenenfalls substituiertes Phenoxy oder ein gegebenenfalls substituierter heterocyclischer Rest in Betracht.

Unter heterocyclischen Resten sind vorzugsweise 5- bis 6-gliedrige, gesättigte oder ungesättigte, gegebenenfalls substituierte monocyclische Heterocyclen mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S zu verstehen, wie beispielsweise Furan, Tetrahydrofuran, Tetrahydropyran, Tetrahydropyrimidin, Pyridin, Piperidin, Morpholin und Imidazol.

Unter Cycloalkylresten sind insbesondere solche mit 3 bis 8 Kohlenstoffatomen, vor allem mit 3 bis 6 Kohlenstoffatomen, zu verstehen.

Im Substituenten Y vorliegende aliphatische, acyclische Reste können geradkettig oder verzweigt sein und enthalten zweckmässigerweise bis maximal 18 Kohlenstoffatome. Eine geringere Anzahl von Kohlenstoffatomen ist häufig, insbesondere bei zusammengesetzten Substituenten, von Vorteil.

Für Y als cyclisiertes Derivat einer Carbonsäureamidgruppe kommt insbesondere ein gegebenenfalls substituierter Oxazolin-2-yl-Rest, vorzugsweise ein unsubstituierter Oxazolin-2-yl-Rest, in Betracht.

X und Y können zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, wobei der unsubstituierte Tetrahydrofuran-2on-Ring bevorzugt ist, insbesondere der unsubstituierte Tetrahydrofuran-2-on-3-yl-Ring.

Als Salzbildner kommen organische und anorganische Säuren in Betracht. Beispiele organischer Säuren sind Essigsäure, Trichloressigsäure, Oxalsäure, Benzolsulfonsäure und Methansulfonsäure. Beispiele anorganischer Säuren sind Chlorwasserstoffsäure, Bromwasserstoffsäure, Jodwasserstoffsäure, Schwefelsäure, Phosphorsäure, phosphorige Säure und Salpetersäure.

Als Metallkomplexbildner eignen sich beispielsweise Eiemente der 3. und 4. Hauptgruppe, wie Aluminium, Zinn und Blei, sowie der 1. bis 8. Nebengruppe, wie beispielsweise Chrom, Mangan, Eisen, Kobalt, Nickel, Zirkon, Zink, Kupfer, Silber und Quecksilber. Bevorzugt sind die Nebengruppenelemente der 4. Periode.

Besonders geeignet zur erfindungsgemässen Verwendung sind Verbindungen der Formel I, die den nachfolgend aufgeführten Verbindungsgruppen angehören:

a) Verbindungen der Formel I, in denen R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, $-\text{COOR}_7$, $-\text{COSR}_8$ oder $-\text{CONR}_9R_{10}$ bedeutet, worin R_7 , R_8 und R_9 für Wasserstoff oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Phenyl- oder Naphthylrest oder einen gegebenenfalls substituierten heterocyclischen Rest oder R_7 und R_8 auch für ein Kation oder R_9 auch für einen Alkoxyrest und worin R_{10} für Wasserstoff, Amino, mono- oder disubstituiertes Amino oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Cycloalkyl- oder Phenylrest oder R_9 und

R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Rest stehen, oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe; von Verbindungen der Gruppe a) sind diejenigen als Untergruppe a/l hervorzuheben, in denen R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, -COOR₇, -COSR₈ oder -CONR₉R₁₀ bedeutet, worin

${\bf R_7}$ und ${\bf R_8}$ unabhängig voneinander

- Wasserstoff oder ein Kation;
- Alkyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Hydroxy, Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Alkylthio, Halogenalkoxy, Hydroxy-alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Hydroxyalkylthio, Alkoxycarbonyl, Dialkylamino, Cycloalkyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy oder einen gegebenenfalls substituierten heterocyclischen Rest substituiert ist;
- Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- Cycloalkyl, welches unsubstituiert oder durch Halogen, Alkyl oder Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Alkyl, Alkoxy, Alkoxycarbonyl oder Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder Alkyl substituiert ist; oder
- einen gegebenenfalls substituierten heterocyclischen Rest;

R - Wasserstoff;

- Alkyl, welches unsubstituiert oder durch Halogen, Cyan, Hydroxy, Amino, Alkylamino, Dialkylamino, Hydroxyalkylamino, Di-(hydro-

xyalkyl)amino, Aminoalkylamino, Alkoxy, Alkoxycarbonyl, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Alkyl oder Alkoxy substituiert ist, Cycloalkyl oder einen gegebenenfalls substituierten heterocyclischen Rest substituiert ist;

- Alkoxy:
- Alkeny1;
- Cycloalkyl:
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Alkyl, Alkoxy oder Halogenalkyl substituiert ist:
- Naphthyl, welches unsubstituiert oder durch Nitro oder Alkyl substituiert ist; oder
- einen gegebenenfalls substituierten heterocyclischen Rest; und
 Wasserstoff;
- Amino;
 - Dialkylamino;
 - Alkyl, welches unsubstituiert oder durch Hydroxy, Cyan oder Alkoxy substituiert ist;
 - Alkenyl;
 - Cycloalkyl; oder
 - Phenyl.

oder R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten heterocyclischen Rest bedeuten, oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe; von den Verbindungen der Gruppe a/l sind diejenigen als Subgruppen hervorzuheben, in denen

- i) R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COOR, steht, worin
- R Wasserstoff, ein Alkalimetall- oder ein quaternäres Ammoniumkation;
 - C₁-C₁₈-Alkyl;
 - C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy,

- ${
 m C_2-C_6-Hydroxyalkoxy}$, welches durch ein oder mehrere Sauerstoff-atome unterbrochen sein kann, ${
 m C_2-C_6-Hydroxyalkylthio}$, ${
 m C_1-C_4-Alkoxycarbonyl}$, ${
 m C_2-C_{12}-Dialkylamino}$ oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
- C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
- C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- C₃-C₈-Cycloalkyl, welches unsubstituiert oder durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl oder C₁-C₂-Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C,-C,-Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S bedeutet,

und von diesen Verbindungen insbesondere diejenigen, in denen R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COOR, steht, worin

- R₇ Wasserstoff, ein Alkalimetallkation oder ein quaternäres Ammoniumkation ausgewählt aus der Gruppe Ammoniumkation, Trimethyl-, Triäthyl- und Tri-(2-hydroxyäthylen)-ammoniumkation;
 - C₁-C₁₈-A1ky1;
 - C₁-C₁-Alkyl, welches durch 1 oder 2 Hydroxygruppen substituiert ist;
 - C₁-C₄-Alkyl, welches durch 1 bis 3 Chlor- oder Bromatome, eine Nitrogruppe, eine Cyanogruppe, eine C₁-C₄-Alkoxygruppe, eine C₂-C₈-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome

umterbrochen ist, eine Hydroxy-C₁-C₄-Alkoxygruppe, eine Hydroxy-C₂-C₆-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine C₁-C₄-Alkoxycarbonylgruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, einen Phenylrest, welcher unsubstituiert oder durch Chlor oder Methoxy substituiert ist, einen Cyclohexylrest, einen Furan-, Tetrahydrofuran-, Tetrahydropyran-, Pyridino-, Piperidino- oder Morpholinorest substituiert ist;

- C₃-C₁₀-Alkenyl;
- C₂-C₄-Alkinyl, welches unsubstituiert oder durch eine Hydroxygruppe substituiert ist;
- Cyclohexyl, welches unsubstituiert oder durch 1 oder 2 Methylgruppen substituiert ist;
- Phenyl, welches unsubstituiert oder durch 1 bis 2 Substituenten aus der Gruppe Chlor, Nitro, C₁-C₄-Alkyl oder Methoxy substituiert ist;
- Naphthyl; oder
- Pyridin

bedeutet:

ii) R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COSR₈ steht, worin

- R_R Wasserstoff;
 - C₁-C₁₈-Alky1;
 - C₁-C₁-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
 - C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis

and the second of the second o

- 3 Heteroatomen substituiert ist;
- C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- C₃-C₈-Cycloalkyl, welches unsubstituiert oder durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl oder C₁-C₂-Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C₁-C₃-Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S bedeutet,

und von diesen Verbindungen insbesondere diejenigen, in denen R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COSR₈ steht, worin

- $R_8 C_1 C_{12} A1ky1;$
 - C₁-C₄-Alkyl, welches durch eine C₁-C₄-Alkoxycarbonylgruppe substituiert ist; oder
 - Phenyl, welches unsubstituiert oder durch ein Chloratom substituiert ist,

bedeutet;

girthy.

iii) R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -CONR $_0$ R $_{10}$ steht, worin

- R_o Wasserstoff;
 - C₁-C₁₈-Alkyl;
 - C2-C8-Alkyl, welches durch Amino substituiert ist;
 - C₂-C₆-Alkyl, welches durch Halogen, Hydroxy, C₁-C₆-Alkylamino, C₂-C₈-Dialkylamino, C₂-C₆-Hydroxyalkylamino, C₂-C₆-Di-(hydroxyalkyl)-amino, C₂-C₆-Aminoalkylamino oder C₁-C₄-Alkoxycarbonyl substituiert ist;

- C₁-C₄-Alkyl, welches durch Cyan, C₁-C₄-Alkoxy, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen 5-oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S substituiert ist;
- C₁-C₃-Alkoxy;
- C₃-C₆-Alkenyl;
- C3-C8-Cycloalkyl;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan,
 C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiert
 ist; oder
- Naphthyl, welches unsubstituiert oder durch Nitro oder Methyl substituiert ist; und

R₁₀ - Wasserstoff;

- Amino;
- C₂-C₄-Dialkylamino;
- C₁-C₆-Alkyl;
- C₁-C₄-Alkyl, welches durch Hydroxy oder Cyan substituiert ist;
- C2-C6-Alkoxyalkyl;
- C₃-C₆-Alkenyl;
- C3-C6-Cycloalkyl; oder
- Phenyl;

oder worin R₉ und R₁₀ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten, heterocyclischen Ring, welcher noch 1 oder 2 weitere Heteroatome aus der Gruppe N, O und S enthalten kann, bedeuten,

und von diesen Verbindungen insbesondere diejenigen, in denen R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für $-\text{CONR}_0 R_{10}$ steht, worin

R_o - Wasserstoff;

- $-c_{1}-c_{18}-A1ky1;$
- C₂-C₈-Alkyl, welches durch eine Aminogruppe substituiert ist;

- C₂-C₆-Alkyl, welches durch eine Hydroxygruppe substituiert ist;
- C₂-C₄-Alkyl, welches durch ein Chlor- oder Bromatom, eine C₁-C₄-Alkylaminogruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, eine C₁-C₄-Hydroxyalkylaminogruppe, eine Di-(C₁-C₃-Hydroxyalkyl)-aminogruppe, eine C₁-C₄-Alkoxygruppe oder eine C₁-C₄-Alkoxy-carbonylgruppe substituiert ist;
- C₁-C₄-Alkyl, welches durch eine Cyanogruppe, oder einen Phenylrest, welcher unsubstituiert oder durch Chlor substituiert ist, einen Furanyl-, Tetrahydrofuranyl-, Piperidino- oder Morpholinorest substituiert ist;
- C₁-C₃-Alkoxy;
- C₂-C₄-Alkenyl;
- Cyclohexyl, welches unsubstituiert oder durch eine Methylgruppe substituiert ist; oder
- Phenyl, welches unsubstituiert oder durch 1 oder 2 Substituenten aus der Gruppe Chlor, Nitro, Cyano, Methyl, Aethyl, Methoxy und Trifluormethyl substituiert ist,

R₁₀ - Wasserstoff;

- C,-C,-Alkyl;
- C₁-C₄-Alkyl, welches durch eine Hydroxygruppe oder eine Cyanogruppe substituiert ist;
- C₂-C₄-Alkoxyalkyl;
- C₂-C₄-Alkenyl;
- Cycloheyl; oder
- Phenyl, oder

R₉ und R₁₀ gemeinsam mit dem Stickstoffatomm an das sie gebunden sind, einen unsubstituierten oder durch 1 oder 2 Methylgruppen substituierten Piperidino-, Tetrahydropyrimidino-, Morpholino- oder Imidazolylrest bedeuten;

iv) R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y für einen gegebenenfalls substituierten Oxazolin-2-yl-Rest steht,

und von diesen Verbindungen insbesondere diejenigen, in denen R₁, R₂,

 R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für einen unsubstituierten Oxazolin-2-yl-Rest steht; und v) R_1 , R_2 , R_3 , R_4 , R_5 und R_6 die für Formel I angegebenen Bedeutungen haben und X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden,

und von diesen Verbindungen insbesondere diejenigen, in denen R₁, R₂, R₃, R₄, R₅ und R₆ die für Formel I angegebenen Bedeutungen haben und X und Y zusammen einen unsubstituierten Tetrahydrofuran-2-on-Ring, vor allem einen unsubstituierten Tetrahydrofuran-2-on-3-yl-Ring bilden;

- b) Verbindungen der Formel I, in denen R₁, R₂, R₃, R₄, R₅, R₆ und Y die für Formel I angegebenen Bedeutungen haben und X für -CH₂- steht;
- c) Verbindungen der Formel I, in denen R₁, R₂, R₃, R₄, R₅, R₆ und Y die für Formel I angegebenen Bedeutungen haben und X für -CH₂-CH₂- steht;
- d) Verbindungen der Formel I, in denen R₁, R₂, R₃, R₄, R₅, R₆ und Y die für Formel I angegebenen Bedeutungen haben und X für -CH(CH₂)- steht;
- e) Verbindungen der Formel I, in denen R₁, R₂, R₃, R₄, R₅, R₆ und Y die für Formel I angegebenen Bedeutungen haben und X für -CH(A)-CH(E)-, worin eines der Symbole A und E Wasserstoff und das andere eine Methylgruppe bedeutet, steht;
- f) Verbindungen der Formel I, in denen R₁, R₂, R₃, R₄, R₅, R₆ und Y die für Formel I angegebenen Bedeutungen haben und X für -CH₂-CH₂-CH₂-steht;
- g) Verbindungen der Formel I, in denen R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und Y die für Formel I angegebenen Bedeutungen haben und X für -CH(C_2H_5)- steht; h) Verbindungen der Formel I, in denen R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und Y die für Formel I angegebenen Bedeutungen haben und X für -C(CH_3)₂- steht;
- i) Verbindungen der Formel I, in denen R_1 , R_2 und R_3 unabhängig voneinander Wasserstoff, Halogen, Nitro oder C_1 - C_3 -Alkyl und R_4 , R_5 und R_6 unabhängig voneinander Wasserstoff oder C_1 - C_3 -Alkyl bedeuten und X und Y die für Formel I angegebenen Bedeutungen haben;
- k) Verbindungen der Formel I, in denen R_1 Wasserstoff oder Halogen, R_2 Wasserstoff, R_3 Wasserstoff, Halogen, Nitro oder C_1 - C_3 -Alkyl, R_4 Wasserstoff, R_5 Wasserstoff und R_6 Wasserstoff oder C_1 - C_3 -Alkyl bedeuten

und X und Y die für Formel I angegebenen Bedeutungen haben;

1) Verbindungen der Formel I, in denen R₁ Wasserstoff, Chlor, Jod oder Brom, R₂ Wasserstoff, R₃ Wasserstoff, Chlor, Jod, Brom, Nitro, Methyl

oder Aethyl, $\rm R_4$ Wasserstoff, $\rm R_5$ Wasserstoff und $\rm R_6$ Wasserstoff oder Methyl bedeuten und X und Y die für Formel I angegebenen Bedeutungen

haben;

- m) Verbindungen der Formel I, in denen R_1 , R_2 und R_3 unabhängig voneinander Wasserstoff, Halogen, Nitro oder C_1 - C_3 -Alkyl und R_4 , R_5 und R_6 unabhängig voneinander Wasserstoff oder C_1 - C_3 -Alkyl bedeuten, X die für Formel I angegebene Bedeutung hat und Y für einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, -COOR₇, -COSR₈ oder -CONR₉R₁₀ steht, worin
- R₇ Wasserstoff, ein Alkalimetall- oder ein quaternäres Ammoniumkation;
 - C₁-C₁₈-Alkyl;
 - C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
 - C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
 - C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
 - C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
 - C₃-C₈-Cycloalkyl, welches unsubstituiert oder durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist;
 - Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, ${^{\rm C}1^{-\rm C}4^{-\rm Alkyl}}$, ${^{\rm C}1^{-\rm C}4^{-\rm Alkoxy}}$, ${^{\rm C}1^{-\rm C}4^{-\rm Alkoxy}}$ oder ${^{\rm C}1^{-\rm C}2^{-\rm Alkoxy}}$ Halogenalkyl substituiert ist;

- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder
 C₁-C₂-Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S,

R_Ω - Wasserstoff;

- C₁-C₁₈-Alkyl;
- C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
 - C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
 - C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- C_3 - C_8 -Cycloalkyl, welches unsubstituiert oder durch Halogen, C_1 - C_3 -Alkyl oder C_1 - C_3 -Alkoxy substituiert ist:
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, $C_1^{-C_4^{-Alkyl}}$, $C_1^{-C_4^{-Alkoxy}}$, $C_1^{-C_4^{-Alkoxy}}$, $C_1^{-C_4^{-Alkoxy}}$ oder $C_1^{-C_2^{-Alkoxy}}$. Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C_1 - C_2 -Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S,

R_Q - Wasserstoff;

- C₁-C₁₈-Alkyl;
- C2-C8-Alkyl, welches durch Amino substituiert ist;
- C₂-C₆-Alkyl, welches durch Halogen, Hydroxy, C₁-C₆-Alkylamino, C₂-C₈-Dialkylamino, C₂-C₆-Hydroxyalkylamino, C₂-C₆-Di-(hydroxyalkyl)-amino, C₂-C₆-Aminoalkylamino oder C₁-C₄-Alkoxycarbonyl substituiert ist;
- C₁-C₄-Alkyl, welches durch Cyan, C₁-C₄-Alkoxy, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen 5-oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S substituiert ist;
- C₁-C₃-Alkoxy;
- C₃-C₆-Alkenyl;
- C3-C8-Cycloalkyl;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan,
 C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiert
 ist; oder
- Naphthyl, welches unsubstituiert oder durch Nitro oder Methyl substituiert ist; und

R₁₀ - Wasserstoff;

- Amino;
- C₂-C₄-Dialkylamino;
- C₁-C₆-Alkyl;
- C₁-C₄-Alkyl, welches durch Hydroxy oder Cyan substituiert ist;
- C₂-C₆-Alkoxyalkyl;
- C₃-C₆-Alkenyl;
- C3-C6-Cycloalkyl; oder
- Phenyl;

oder worin R₉ und R₁₀ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten, heterocyclischen Ring, welcher noch 1 oder 2 weitere Heteroatome aus der Gruppe N, 0 und S enthalten kann, bedeuten; oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden;

- n) Verbindungen der Formel I, in denen R₁ Wasserstoff, Chlor, Jod oder Brom, R₂ Wasserstoff, R₃ Wasserstoff, Chlor, Jod, Brom, Nitro, Methyl oder Aethyl, R₄ Wasserstoff, R₅ Wasserstoff und R₆ Wasserstoff oder Methyl bedeuten, X die für Formel I angegebene Bedeutung hat und Y für einen unsubstituierten Oxazolin-2-yl-Rest, -COOR₇, -COSR₈ oder -CONR₉R₁₀ steht, worin
- R₇ Wasserstoff, ein Alkalimetallkation oder ein quaternäres Ammoniumkation ausgewählt aus der Gruppe Ammoniumkation, Trimethyl-, Triäthyl- und Tri-(2-hydroxyäthylen)-ammoniumkation;
 - c₁-c₁₈-Alky1;
 - C₁-C₁₀-Alkyl, welches durch 1 oder 2 Hydroxygruppen substituiert ist;
 - C₁-C₄-Alkyl, welches durch 1 bis 3 Chlor- oder Bromatome, eine Nitrogruppe, eine Cyanogruppe, eine C₁-C₄-Alkoxygruppe, eine C₂-C₈-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unter brochen ist, eine Hydroxy-C₁-C₄-Alkoxygruppe, eine Hydroxy-C₂-C₆-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine C₁-C₄-Alkoxycarbonylgruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, einen Phenylrest, welcher unsubstituiert oder durch Chlor oder Methoxy substituiert ist, einen Cyclohexylrest, einen Furan-, Tetrohydrofuran-, Tetrahydropyran-, Pyridino-, Piperidino- oder Morpholinorest substituiert ist;
 - C₃-C₁₀-Alkeny1;
 - C₂-C₄-Alkinyl, welches unsubstituiert oder durch eine Hydroxygruppe substituiert ist;
 - Cyclohexyl, welches unsubstituiert oder durch 1 oder 2 Methyl-gruppen substituiert ist;
 - Phenyl, welches unsubstituiert oder durch 1 bis 2 Substituenten aus der Gruppe Chlor, Nitro, C₁-C₄-Alkyl oder Methoxy substituiert ist;
 - Naphthyl; oder
 - Pyridin,
- $^{R}_{8}$ $^{C}_{1}$ - $^{C}_{12}$ -Alkyl;
 - C₁-C₄-Alkyl, welches durch eine C₁-C₄-Alkoxycarbonylgruppe substituiert ist;

- Phenyl, welches unsubstituiert oder durch ein Chloratom substituiert ist,

R_o - Wasserstoff;

- C₁-C₁₈-Alkyl;
- C₂-C₈-Alkyl, welches durch eine Aminogruppe substituiert ist;
- C₂-C₆-Alkyl, welches durch eine Hydroxygruppe substituiert ist;
- C₂-C₄-Alkyl, welches durch ein Chlor- oder Bromatom, eine C₁-C₄-Alkylaminogruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, eine C₁-C₄-Hydroxyalkylaminogruppe, eine Di-(C₁-C₃-Hydroxyalkyl)-aminogruppe, eine C₁-C₄-Alkoxygruppe oder eine C₁-C₄-Alkoxy-carbonylgruppe substituiert ist;
- C₁-C₄-Alkyl, welches durch eine Cyanogruppe, oder einen Phenylrest, welcher unsubstituiert oder durch Chlor substituiert ist,
 einen Furanyl-, Tetrahydrofuranyl, Piperidino- oder Morpholinorest substituiert ist;
- C₁-C₃-Alkoxy;
- C₂-C₄-Alkenyl;
- Cyclohexyl, welches unsubstituiert oder durch eine Methylgruppe substituiert ist;
- Phenyl, welches unsubstituiert oder durch 1 oder 2 Substituenten aus der Gruppe Chlor, Nitro, Cyano, Methyl, Aethyl, Methoxy und Trifluormethyl substituiert ist, und

R₁₀ - Wasserstoff;

- C_1 - C_6 -Alkyl;
- C₁-C₄-Alkyl, welches durch eine Hydroxygruppe oder eine Cyanogruppe substituiert ist;
- C₂-C₄-Alkoxyalkyl;
- C₂-C₄-Alkenyl;
- Cyclohexyl; oder
- Phenyl, oder

R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen unsubstituierten oder durch 1 oder 2 Methylgruppen substituierten Piperidino-, Tetrahydropyrimidino-, Morpholino- oder Imidazolylrest bedeuten, oder X und Y zusammen einen unsubstituierten Tetrahydrofuran-2-on-3-yl-Ring bilden;

- o) Verbindungen der vorstehend genannten Gruppe m), in denen X für -CH₂- steht, mit der Massgabe, dass, wenn gleichzeitig R₁ Wasserstoff, Chlor, Brom oder Jod, R₂ Wasserstoff, Nitro oder Methyl, R₃ Wasserstoff, Chlor, Brom, Nitro, Methyl oder Aethyl, R₄ und R₅ Wasserstoff, R₆ Wasserstoff oder Methyl bedeuten und Y für -COOR₇ oder -CONR₉R₁₀ steht,
- i) R_7 nicht Wasserstoff, unsubstituiertes oder durch Diäthylamino substituiertes C_1 - C_4 -Alkyl bedeutet, und
- ii) R_9 nicht für Wasserstoff, C_1 - C_4 -Alkyl, Allyl, unsubstituiertes oder p-Chlor-substituiertes Phenyl steht, wenn R_{10} Wasserstoff, Amino, C_1 - C_4 -Alkyl, Allyl oder Phenyl bedeutet, und
- iii) R_9 und R_{10} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, nicht einen Morpholinring bilden;
- p) Verbindungen der vorstehend genannten Gruppe n), in denen X für -CH₂- steht, mit der Massgabe, dass, wenn gleichzeitig R₁ Wasserstoff, Chlor, Jod oder Brom, R₂ Wasserstoff, R₃ Wasserstoff, Chlor, Brom, Nitro, Methyl oder Aethyl, R₄ und R₅ Wasserstoff, R₆ Wasserstoff oder Methyl und Y -COOR₇ oder -CONR₉R₁₀ bedeuten,
- i) R_7 nicht Wasserstoff, unsubstituiertes oder durch Diäthylamino substituiertes C_1 - C_4 -Alkyl bedeutet und
- ii) R_9 nicht für Wasserstoff, C_1 - C_4 -Alkyl, Allyl, unsubstituiertes oder p-Chlor-substituiertes Phenyl steht, wenn R_{10} Wasserstoff, C_1 - C_4 -Alkyl, Allyl oder Phenyl bedeutet und
- iii) R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, nicht einen Morpholinring bilden;
- q) Verbindungen der vorstehend genannten Gruppe m), in denen X für $-\text{CH}_2-\text{CH}_2-$ steht, mit der Massgabe, dass, wenn gleichzeitig R_1 , R_2 , R_3 , R_4 , R_5 und R_6 Wasserstoff und Y $-\text{COOR}_7$ bedeuten, R_7 nicht Wasserstoff ist;
- r) Verbindungen der vorstehend genannten Gruppe n), in denen X für $-\text{CH}_2$ -CH₂- steht, mit der Massgabe, dass, wenn R₁, R₂, R₃, R₄, R₅ und R₆ Wasserstoff und Y-COOR₇ bedeuten, R₇ nicht Wasserstoff ist;

- s) Verbindungen der vorgenannten Gruppe m), in denen
- X für -CH(CH $_3$)- steht, mit der Massgabe, dass, wenn R $_1$ Wasserstoff oder Chlor, R $_2$ Wasserstoff, R $_3$ Wasserstoff oder Chlor,
- $\rm R_4$ und $\rm R_5$ Wasserstoff, $\rm R_6$ Wasserstoff oder Methyl und
- Y -COOR₇ oder -CONR₉R₁₀ bedeuten,
- i) R7 nicht für Aethoxy steht und
- ii) R_9 nicht für Wasserstoff, Aethyl, sek.-Butyl oder Allyl steht, wenn R_{10} Wasserstoff, Aethyl, sek.-Butyl oder Allyl bedeutet und
- iii) ${\bf R_9}$ und ${\bf R_{10}}$ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, nicht einen Pyrrolidinoring bilden;
- t) Verbindungen der vorgenannten Gruppe n), in denen
- X für -CH(CH₃)- steht, mit der Massgabe, dass, wenn gleichzeitig
- R₁ Wasserstoff oder Chlor, R₂ Wasserstoff, R₃ Wasserstoff oder
- Chlor, R_4 und R_5 Wasserstoff, R_6 Wasserstoff oder Methyl und
- Y -COOR₇ oder -CONR₉R₁₀ bedeuten,
- i) R₇ nicht für Aethyl steht und
- ii) R_9 nicht für Wasserstoff, Aethyl, sek.-Butyl oder Allyl steht, wenn R_{10} Wasserstoff, Aethyl, sek.-Butyl oder Allyl bedeutet;
- u) Verbindungen der vorgenannten Gruppe m), in denen
- X für -CH(A)-CH(E)- steht, worin eines der Symbole A und E Wasserstoff und das andere eine Methylgruppe bedeutet;
- v) Verbindungen der vorgenannten Gruppe n), in denen
- X für -CH(A)-CH(E)- steht, worin eines der Symbole A und E Wasserstoff und das andere eine Methylgruppe bedeutet;
- w) Verbindungen der vorgenannten Gruppe m), in denen
- X für $-\text{CH}_2$ - CH_2 - CH_2 steht, mit der Massgabe, dass, wenn gleichzeitig R_1 , R_2 , R_3 , R_4 , R_5 und R_6 Wasserstoff und Y $-\text{COOR}_7$ oder $-\text{CONR}_9$ R₁₀ bedeuten, R_7 nicht für Wasserstoff, Methyl oder Aethyl und R_9 und R_{10} nicht beide für Aethyl stehen;
- x) Verbindungen der vorgenannten Gruppe n), in denen X für $-\text{CH}_2-\text{CH}_2-\text{CH}_2$ -steht, mit der Massgabe, dass, wenn gleichzeitig R_1 , R_2 , R_3 , R_4 , R_5 und R_6 Wasserstoff und Y $-\text{COOR}_7$ oder $-\text{CONR}_9R_{10}$ bedeuten, R_7 nicht Wasserstoff, Methyl oder Aethyl und R_9 und R_{10} nicht beide Aethyl bedeuten;

- y) Verbindungen der vorgenannten Gruppe m), in denen X für $-CH(C_2H_5)-steht$;
- z) Verbindungen der vorgenannten Gruppe n), in denen X für -CH(C₂H₅)-steht;
- z¹) Verbindungen der vorgenannten Gruppe m), in denen X für -C(CH₃)₂-steht;
- z²) Verbindungen der vorgenannten Gruppe n), in denen X für -C(CH₃)₂-steht;
- z³) Verbindungen der vorgenannten Gruppe m), in denen X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden;
- z⁴) Verbindungen der vorgenannten Gruppe n), in denen X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden.

Die Chinolinderivate der Formel I besitzen in hervorragendem Masse die Eigenschaft, Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien zu schützen. Als Agrarchemikalien kommen beispielsweise Defoliationsmittel, Desiccationsmittel, Mittel zum Schutz gegen Frostschäden und Pflanzenschutzmittel, wie beispielsweise Insektizide, Fungizide, Bakterizide, Nematozide und insbesondere Herbizide in Betracht. Die Agrarchemikalien können verschiedenen Stoffklassen angehören. Herbizide können beispielsweise zu einer der folgenden Stoffklassen gehören:

Triazine und Triazinone; Harnstoffe wie beispielsweise 1-(Benzthiazol-2-yl)-1,3-dimethylharnstoff ("Methabenzthiazuron") oder insbesondere Phenylharnstoffe,vor allem 3-(4-Isopropylphenyl)-1,1-dimethylharnstoff ("Isoproturon"), oder Sulfonylharnstoffe; Carbamate und Thiocarbamate; Halogenacetanilide, insbesondere Chloracetanilide; Chloracetamide; Balogenphenoxyessigsäureester; Diphenyläther, wie beispielsweise substituierte Phenoxyphenoxyessigsäureester und -amide und substituierte Phenoxyphenoxypropionsäureester und -amide; substituierte Pyridyloxyphenoxyessigsäureester und -amide und substituierte Pyridyloxyphenoxypropionsäureester und -amide und substituierte Pyridyloxyphenoxypropionsäureester und -amide, insbesondere 2-[4-(3,5-Dichlor-pyridyl-2-oxy)-phenoxy]-propionsäure-2-propinylester und 2-[4-(5-

Trifluormethylpyridyl-2-oxy)-phenoxy]-propionsäure-n-butylester; Benzoesäurederivate; Nitroaniline; Oxadiazolone; Phosphate; und Pyrazole.

Im einzelnen kommen beispielsweise folgende Substanzen in Betracht:

Triazine und Triazinone: 2,4-Bis(isopropylamino)-6-methylthio-1,3,5
triazin ("Prometryn"), 2,4-bis(äthylamino)-6-methylthio-1,3,5-triazin

("Simetryn"), 2-(1',2'-Dimethylpropylamino)-4-äthylamino-6-methyl
thio-1,3,5-triazin ("Dimethametryn"), 4-Amino-6-tert.butyl-4,5-di
hydro-3-methylthio-1,2,4-triazin-5-on ("Metribuzin"), 2-Chlor-4-äthyl
amino-6-isopropylamino-1,3,5-triazin ("Atrazin"), 2-Chlor-4,6-bis
(äthylamino)-1,3,5-triazin ("Simazin"), 2-tert.Butylamino-4-chlor-6
äthylamino-1,3,5-triazin ("Terbuthylazin"), 2-tert.Butylamino-4-äthyl
amino-6-methoxy-1,3,5-triazin ("Terbumeton"), 2-tert.Butylamino-4-äthyl
amino-6-methylthio-1,3,5-triazin ("Terbutryn"), 2-Aethylamino-4-iso
propylamino-6-methylthio-1,3,5-triazin ("Ametryn");

Harnstoffe: 1-(Benzothiazol-2-y1)-1,3-dimethylharnstoff; Phenylharnstoffe wie beispielsweise 3-(3-Chlor-p-tolyl)-1,1-dimethylharnstoff ("Chlortoluron"), 1,1-Dimethyl-3-(ααα-trifluor-m-tolyl)-harnstoff ("Fluometuron"), 3-(4-Brom-3-chlorphenyl)-1-methoxy-1-methylharnstoff ("Chlorbromuron"), 3-(4-Bromphenyl)-1-methoxy-1-methylharnstoff ("Metobromuron"), 3-(3,4-Dichlorphenyl)-1-methoxy-1-methylharnstoff ("Monolinuron"), 3-(4-Chlorphenyl)-1-methoxy-1-methylharnstoff ("Monolinuron"), 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff ("Diuron"), 3-(4-Chlorphenyl)-1,1-dimethylharnstoff ("Monuron"), 3-(3-Chlor-4-methoxyphenyl)-1,1-dimethylharnstoff ("Metoxuron"); Sulfonylharnstoffe wie beispielsweise N-(2-Chlorphenylsulfonyl)-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff, N-(2-Methoxycarbonylphenylsulfonyl)-N'-4,6-dimethylpyrimidin-2-yl)-harnstoff, N-(2,5-Dichlorphenylsulfonyl)-N'-4,6-dimethoxypyrimidin-2-yl)-harnstoff, N-[2-(2-butenyloxy)-phenyl-sulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff sowie

die in den europäischen Patentpublikationen 44808 und 44809 genannten Sulfonylharnstoffe;

Carbamate und Thiocarbamate: N-(3',4'-Dichlorphenyl)-propionanilid ("Propanil"), S-4-Chlorbenzyl-diäthyl-thiocarbamat ("Benthiocarb"), S-Aethyl-N,N-hexamethylen-thiocarbamat ("Molinate"), S-Aethyl-di-propyl-thiocarbamat ("EPTC"), N,N-di-sec.Butyl-S-benzyl-thiocarbamat, S-(2,3-Dichlorallyl)-di-isopropyl-thiocarbamat ("Di-allate"), l-(Propylthiocarbonyl)-decahydro-chinaldin, S-Aethyl-di-isobutyl-thiocarbamat ("Butylate");

Chloracetanilide: 2-Chlor-2',6'-diäthyl-N-(2"-m-propoxyäthyl)-acetanilid ("Propalochlor"), 2-Chlor-6'-äthyl-N-(2"-methoxy-1"-methyl-äthyl)-acet-o-toluidid ("Metolachlor"), 2-Chlor-2',6'-diäthyl-N-(butoxymethyl)acetanilid ("Butachlor"), 2-Chlor-6'-äthyl-N-(äthoxymethyl)acet-o-toluidid ("Acetochlor"), 2-Chlor-6'-äthyl-N-(2"-propoxy-1"-methyläthyl)acet-o-toluidid, 2-Chlor-2',6'-dimethyl-N-(2"-methoxy-l"-methyläthyl)acetanilid, 2-Chlor-2',6'-dimethyl-N-(2"-methoxy-äthyl)acetanilid ("Dimethachlor"), 2-Chlor-2',6'-diäthyl-N-(pyrazol-l-ylmethyl)acet-o-toluidid, 2-Chlor-6'-äthyl-N-(pyrazol-l-ylmethyl)acet-o-toluidid, 2-Chlor-6'-äthyl-N-(3,5-dimethyl-pyrazol-l-ylmethyl)acet-o-toluidid, 2-Chlor-6'-äthyl-N-(2"-butoxy-l"-methyläthyl)acet-o-toluidid ("Metazolachlor"), 2-Chlor-6'-äthyl-N-(2"-butoxyl-1"-(methyläthyl)acet-o-toluidid und 2-Chlor-2'-trimethylsilyl-N-(butoxymethyl)-acet-anilid;

Chloracetamide: N-[1-Isopropy1-2-methylpropen-1-y1-(1)]-N-(2'-methoxy-athyl)-chloracetamid;

Diphenyläther und Nitrodiphenyläther: 2,4-Dichlorphenyl-4'-nitro-phenyläther ("Nitrofen"), 2-Chlor-1-(3'-äthoxy-4'-nitrophenoxy)-4-tri-fluormethyl-benzol ("Oxyfluorfen"), 2',4'-Dichlorphenyl-3-methoxy-4-nitrophenyl-äther ("Chlormethoxynil"), 2-[4'-(2",4"-Dichlorphenoxy)-phenoxy)propionsäure-methylester, N-(2'-Phenoxyäthyl)-2-[5'(2"-chlor-4"-trifluormethylphenoxy)-phenoxy]-propionsäureamid, 2-[2-Nitro-5-(2-chlor-4-trifluormethylphenoxy)-phenoxy]-propionsäure-2-methoxyäthyl-

ester, 2-Chlor-4-trifluormethylphenyl-3'-oxazolin-2'-yl-4'-nitrophenyl-äther;

Benzoesäurederivate: Methyl-5-(2',4'-dichlorphenoxy)-2-nitrobenzoat ("Bifenox"), 5-(2'-Chlor-4'-trifluormethylphenoxy)-2-nitrobenzoe-säure ("Acifluorfen"), 2,6-Dichlorbenzonitril ("Dichlobenil");

Nitroaniline: 2,6-Dinitro-N,N-dipropyl-4-trifluormethylanilin ("Tri-fluralin"), N-(1'-Aethylpropyl)-2,6-dinitro-3,4-xylidin ("Pendimethalin");

Oxadiazolone: 5-tert.-Buty1-3-(2',4'-dichlor-5'-isopropoxypheny1)-1,3,4-oxadiazo1-2-on ("Oxadiazon");

Phosphate: S-2-Methylpiperidino-carbonylmethyl-0,0-dipropyl-phospho-rodithioat ("Piperophos");

Pyrazole: 1,3-Dimethyl-4-(2',4'-dichlorbenzoyl)-5-(4'-tolylsulfonyl-oxy)-pyrazol;

2-[1-(Athoxyimino)-buty1]-5-[2-(athy1thio)-propy1]-3-hydroxy-2-cyclo-hexen-1-on und das Natriumsalz von 2-[1-(N-Allyloxyamino)-butyliden]-5,5-dimethy1-4-methoxycarbonyl-cyclohexan-1,3-dion.

Besonders geeignet sind die Verbindungen der Formel I zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Herbiziden der Formel A

$$X_{2}^{"} - \underbrace{\begin{array}{c} X_{1}^{"} \\ \bullet = Q \end{array}}_{\bullet = Q} - \underbrace{\begin{array}{c} CH \\ \bullet & 3 \\ \bullet & -O - CH - COOR" \end{array}}_{\bullet \text{CH}}$$
(A)

worin

X" Wasserstoff oder Halogen,
X" Wasserstoff, Halogen oder Trifluormethyl,

Q das Fragment =N- oder =CH-,

R" C_1 - C_4 -Alkyl, welches unsubstituiert oder durch C_1 - C_4 -Alkoxy substituiert ist, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl oder -N=C R_{14}

 $\rm ^{R}_{13}$ $\rm ^{C}_{1}^{-C}_{4}^{-Alkyl},$ $\rm ^{R}_{14}$ $\rm ^{C}_{1}^{-C}_{4}^{-Alkyl}$ oder $\rm ^{R}_{13}$ und $\rm ^{R}_{14}$ gemeinsam $\rm ^{C}_{1}^{-C}_{5}^{-Alkylen}$ bedeuten.

Als Kulturpflanzen, welche durch Chinolinderivate der Formel I gegen Agrarchemikalien geschützt werden können, kommen insbesondere diejenigen in Betracht, die auf dem Nahrungs- oder Textilsektor von Bedeutung sind, wie beispielsweise Kulturhirse, Reis, Mais, Getreidearten (Weizen, Roggen, Gerste, Hafer), Baumwolle, Zuckerrüben, Zuckerrohr und Soja.

Besonders erwähnenswert ist die Schutzwirkung von Verbindungen der Formel I bei Getreide gegen schädigende Wirkungen von Herbiziden, wie Diphenyläthern und substituierten Pyridyloxyphenoxypropionsäureestern, insbesondere 2-[4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy]-propionsäure-2-propinylester.

Ein geeignetes Verfahren zum Schützen von Kulturpflanzen unter Verwendung von Verbindungen der Formel I besteht darin, dass man Kulturpflanzen, Teile dieser Pflanzen oder für den Anbau der Kulturpflanzen bestimmte Böden vor oder nach dem Einbringen des pflanzlichen Materials in den Boden mit einer Verbindung der Formel I oder einem Mittel, welches eine solche Verbindung enthält, behandelt. Die Behandlung kann vor, gleichzeitig mit oder nach dem Einsatz der Agrarchemikalie erfolgen. Als Pflanzenteile kommen insbesondere diejenigen in Betracht, die zur Neubildung einer Pflanze befähigt sind, wie beispielsweise Samen, Früchte, Stengelteile und Zweige (Stecklinge) sowie auch Wurzeln, Knollen und Rhizome.

Die Erfindung betrifft auch ein Verfahren zur selektiven Bekämpfung von Unkräutern in Kulturpflanzenbeständen, wobei die Kulturpflanzenbestände, Teile der Kulturpflanzen oder Anbauflächen für Kulturpflanzen mit einem Herbizid und einer Verbindung der Formel I

oder einem Mittel, welches diese Kombination enthält, behandelt. Die die Herbizid/Antidot-Kombination enthaltenden Mittel bilden ebenfalls einen Bestandteil der vorliegenden Erfindung.

Bei den zu bekämpfenden Unkräutern kann es sich sowohl um monokotyle wie um dikotyle Unkräuter handeln.

Als Kulturpflanzen oder Teile dieser Pflanzen kommen beispielsweise die vorstehend genannten in Betracht. Als Anbauflächen gelten die bereits mit Kulturpflanzen bewachsenen oder die ausgesäten Bodenareale, wie auch die zur Bebauung mit Kulturpflanzen bestimmten Böden.

Die zu applizierende Aufwandmenge Antidot im Verhältnis zur Agrarchemikalie richtet sich weitgehend nach der Anwendungsart. Bei einer Feldbehandlung, welche entweder unter Verwendung einer Tankmischung oder durch getrennte Applikation von Agrarchemikalie und Antidot durchgeführt wird, liegt in der Regel ein Verhältnis von Antidot zu Agrarchemikalie von 1:100 bis 10:1, bevorzugt 1:5 bis 8:1, und insbesondere 1:1, vor.

Dagegen werden bei der Samenbeizung und ähnlichen Einsatzmethoden weit geringere Mengen Antidot im Verhältnis zur Aufwandmenge an Agrarchemikalie/ha Anbaufläche benötigt. Bei der Samenbeizung werden in der Regel 0,1 bis 10 g Antidot/kg Samen, bevorzugt 1 bis 2 g, appliziert. Wird das Gegenmittel kurz vor der Aussaat unter Samenquellung appliziert, so werden zweckmässigerweise Antidot-Lösungen verwendet, welche den Wirkstoff in einer Konzentration von 1 bis 10 000 ppm, bevorzugt 100 bis 1000 ppm, enthalten.

Die Verbindungen der Formel I können für sich allein oder zusammen mit inerten Zusatzstoffen und/oder den zu antagonisierenden Agrarchemikalien zur Anwendung gelangen. Die vorliegende Anmeldung betrifft daher auch Mittel, welche Verbindungen der Formel I und inerte Zusatzstoffe und/oder zu antagonisierende Agrarchemikalien, insbesondere Pflanzenschutzmittel und vor allem Herbizide, enthalten.

Zur Applikation als Antidot oder Wuchsregulator werden die Verbindungen der Formel I oder Kombinationen von Verbindungen der Formel I mit zu antagonisierenden Agrarchemikalien zweckmässigerweise zusammen mit den in der Formulierungstechnik üblichen Hilfsmitteln eingesetzt und werden daher z.B. zu Emulsionskonzentraten, streichfähigen Pasten, direkt versprühbaren oder verdünnbaren Lösungen, verdünnten Emulsionen, Spritzpulvern, löslichen Pulvern, Stäubemitteln, Granulaten, auch Verkapselungen in z.B. polymeren Stoffen in bekannter Weise verarbeitet. Die Anwendungsverfahren wie Versprühen, Vernebeln, Verstäuben, Verstreuen, Bestreichen oder Giessen werden gleich wie die Art der Mittel den angestrebten Zielen und den gegebenen Verhältnissen entsprechend gewählt.

Die Formulierungen, d.h., die den Wirkstoff der Formel I oder eine Kombination von Wirkstoff der Formel I mit zu antagonisierender Agrarchemikalie und gegebenenfalls einen festen oder flüssigen Zusatzstoff enthaltenden Mittel, Zubereitungen oder Zusammensetzungen werden in bekannter Weise hergestellt, z.B. durch inniges Vermischen und/oder Vermahlen der Wirkstoffe mit Streckmitteln, wie z.B. mit Lösungsmitteln, festen Trägerstoffen, und gegebenenfalls oberflächenaktiven Verbindungen (Tensiden).

Als Lösungsmittel können in Frage kommen: Aromatische Kohlenwasserstoffe, bevorzugt die Fraktionen C₈ bis C₁₂, wie z.B. Xylolgemische oder substituierte Naphthaline, Phthalsäureester wie Dibutyl- oder Dioctylphthalat, aliphatische Kohlenwasserstoffe wie Cyclohexan oder Paraffine, Alkohole und Glykole sowie deren Aether und Ester, wie Aethanol, Aethylenglykol, Aethylenglykolmonomethyl- oder -äthyläther, Ketone wie Cyclohexanon, stark polare Lösungsmittel wie N-Methyl-2-pyrrolidon, Dimethylsulfoxid oder Dimethylformamid, sowie gegebenenfalls epoxydierte Pflanzenöle wie epoxydiertes Kokosnussöl oder Soja-öl; oder Wasser.

Als feste Trägerstoffe, z.B. für Stäubemittel und dispergierbare Pulver, werden in der Regel natürliche Gesteinsmehle verwendet, wie Calcit, Talkum, Kaolin, Montmorillonit oder Attapulgit. Zur Verbesserung der physikalischen Eigenschaften können auch hochdisperse Kieselsäure oder hochdisperse saugfähige Polymerisate zugesetzt werden. Als gekörnte, adsorptive Granulatträger kommen poröse Typen wie z.B. Bimsstein, Ziegelbruch, Sepiolit oder Bentonit, als nicht sorptive Trägermaterialien z.B. Calcit oder Sand in Frage. Darüberhinaus kann eine Vielzahl von vorgranulierten Materialien anorganischer oder organischer Natur wie insbesondere Dolomit oder zerkleinerte Pflanzenrückstände verwendet werden.

Als oberflächenaktive Verbindungen kommen je nach Art des zu formulierenden Wirkstoffs der Formel I und gegebenenfalls auch der zu antagonisierenden Agrarchemikalie nichtionogene, kation- und/oder anionaktive Tenside mit guten Emulgier-, Dispergier- und Netzeigenschaften in Betracht. Unter Tensiden sind auch Tensidgemische zu verstehen.

Geeignete anionische Tenside können sowohl sog. wasserlösliche Seifen wie wasserlösliche synthetische oberflächenaktive Verbindungen sein.

Als Seifen seien die Alkali-, Erdalkali- oder gegebenenfalls substituierten Ammoniumsalze von höheren Fettsäuren (C₁₀-C₂₂), wie z.B. die Na- oder K-Salze der Oel- oder Stearinsäure, oder von natürlichen Fettsäuregemischen, die z.B. aus Kokosnuss- oder Talgöl gewonnen werden können, genannt. Ferner sind auch die Fettsäure-methyllaurinsalze zu erwähnen.

Häufiger werden jedoch sog. synthetische Tenside verwendet, insbesondere Fettsulfonate, Fettsulfate, sulfonierte Benzimidazolderivate oder Alkylarylsulfonate.

Die Fettsulfonate oder -sulfate liegen in der Regel als Alkali-, Erdalkali- oder gegebenenfalls substituierte Ammoniumsalze vor und weisen einen Alkylrest mit 8 bis 22 C-Atomen auf, wobei Alkyl auch den Alkylteil von Acylresten einschliesst, z.B. das Na- oder Ca-Salz der Ligninsulfonsäure, des Dodecylschwefelsäureesters oder eines aus natürlichen Fettsäuren hergestellten Fettalkoholsulfatgemisches. Hierher gehören auch die Salze der Schwefelsäureester und Sulfonsäuren von Fettalkohol-Aethylenoxyd-Addukten. Die sulfonierten Benzimidazolderivate enthalten vorzugsweise 2-Sulfonsäuregruppen und einen Fettsäurerest mit 8 bis 22 C-Atomen. Alkylarylsulfonate sind z.B. die Na-, Ca- oder Triäthanolaminsalze der Dodecylbenzolsulfonsäure, der Dibutylnaphthalinsulfonsäure, oder eines Naphthalinsulfonsäure-Formaldehydkondensationsproduktes.

Ferner kommen auch entsprechende Phosphate wie z.B. Salze des Phosphorsäureesters eines p-Nonylphenol-(4-14)-Aethylenoxyd-Adduktes oder Phospholipide in Frage.

Als nichtionische Tenside kommen in erster Linie Polyglykolätherderivate von aliphatischen oder cycloaliphatischen Alkoholen, gesättigten oder ungesättigten Fettsäuren und Alkylphenolen in Frage,
die 3 bis 30 Glykoläthergruppen und 8 bis 20 Kohlenstoffatome im (aliphatischen) Kohlenwasserstoffrest und 6 bis 18 Kohlenstoffatome im
Alkylrest der Alkylphenole enthalten können.

Weitere geeignete nichtionische Tenside sind die wasserlöslichen, 20 bis 250 Aethylenglykoläthergruppen und 10 bis 100 Propylenglykoläthergruppen enthaltenden Polyäthylenoxidaddukte an Polypropylenglykol, Aethylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit 1 bis 10 Kohlenstoffatomen in der Alkylkette. Die genannten Verbindungen enthalten üblicherweise pro Propylenglykol-Einheit 1 bis 5 Aethylenglykoleinheiten.

Als Beispiele nichtionischer Tenside seien Nonylphenolpolyäthoxyäthanole, Ricinusölpolyglykoläther, Polypropylen-Polyäthylenoxydaddukte, Tributylphenoxypolyäthoxyäthanol, Polyäthylenglykol und Octylphenoxypolyäthoxyäthanol erwähnt.

Ferner kommen auch Fettsäureester von Polyoxyäthylensorbitan wie das Polyoxyäthylensorbitan-trioleat in Betracht.

Bei den kationischen Tensiden handelt es sich vor allem um quartäre Ammoniumsalze, welche als N-Substituenten mindestens einen Alkylrest mit 8 bis 22 C-Atomen enthalten und als weitere Substituenten niedrige, gegebenenfalls halogenierte Alkyl-, Benzyl- oder niedrige Hydroxyalkylreste aufweisen. Die Salze liegen vorzugsweise als Halogenide, Methylsulfate oder Aethylsulfate vor, z.B. das Stearyltrimethylammoniumchlorid oder das Benzyldi(2-chloräthyl)äthylammoniumbromid.

Die in der Formulierungstechnik gebräuchlichen Tenside sind u.a. in folgenden Publikationen beschrieben:

"Mc Cutcheon's Detergents and Emulsifiers Annual" MC
Publishing Corp., Ringwood New Jersey, 1980
Sisely and Wood, "Encyclopedia of Surface Active Agents",
Chemical Publishing Co., Inc. New York, 1980

Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 %, insbesondere 0,1 bis 95 %, Wirkstoff der Formel I, 99,9 bis 1 % insbesondere 99,8 bis 5 % eines festen oder flüssigen Zusatzstoffes und 0 bis 25 %, insbesondere 0,1 bis 25 % eines Tensides.

Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel.

Die Mittel können auch weitere Zusätze wie Stabilisatoren, Entschäumer, Viskositätsregulatoren, Bindemittel, Haftmittel sowie Dünger oder andere Wirkstoffe zur Erzielung spezieller Effekte enthalten.

Für die Verwendung von Verbindungen der Formel I oder sie enthaltende Mittel zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien kommen verschiedene Methoden und Techniken in Betracht, wie beispielsweise die folgenden:

i) Samenbeizung

- a) Beizung der Samen mit einem als Spritzpulver formulierten Wirkstoff durch Schütteln in einem Gefäss bis zur gleichmässigen Verteilung auf der Samenoberfläche (Trockenbeizung). Man verwendet dabei etwa 10 bis 500 g Wirkstoff der Formel I (40 g bis 2 kg Spritzpulver) pro 100 kg Saatgut.
- b) Beizung der Samen mit einem Emulsionskonzentrat des Wirkstoffs der Formel I nach der Methode a) (Nassbeizung).
- c) Beizung durch Tauchen des Saatguts in eine Brühe mit 50-3200 ppm Wirkstoff der Formel I während 1 bis 72 Stunden und gegebenenfalls nachfolgendes Trocknen der Samen (Tauchbeizung).

Die Beizung des Saatguts oder die Behandlung des angekeimten Sämlings sind naturgemäss die bevorzugten Methoden der Applikation, weil die Wirkstoffbehandlung vollständig auf die Zielkultur gerichtet ist. Man verwendet in der Regel 10 g bis 500 g, vorzugsweise 50 bis 250 g AS pro 100 kg Saatgut, wobei man je nach Methodik, die auch den Zusatz anderer Wirkstoffe oder Mikronährstoffe ermöglicht, von den angegebenen Grenzkonzentrationen nach oben oder unten abweichen kann (Wiederholungsbeize).

ii) Applikation aus Tankmischung

Eine flüssige Aufarbeitung eines Gemisches von Gegenmittel und Herbizid (gegenseitiges Mengenverhältnis zwischen 10:1 und 1:10) wird verwendet, wobei die Aufwandmenge an Herbizid 0,1 bis 10 kg pro Hektar beträgt. Solche Tankmischung wird vorzugsweise vor oder unmittelbar nach der Aussaat appliziert oder 5 bis 10 cm tief in den noch nicht gesäten Boden eingearbeitet.

iii) Applikation in die Saatfurche

Das Gegenmittel wird als Emulsionskonzentrat, Spritzpulver oder als Granulat in die offene besäte Saatfurche eingebracht und hierauf wird nach dem Decken der Saatfurche in normaler Weise das Herbizid im Vorauflaufverfahren appliziert.

iv) Kontrollierte Wirkstoffabgabe

Der Wirkstoff wird in Lösung auf mineralische Granulatträger oder polymerisierte Granulate (Harnstoff/Formaldehyd) aufgezogen und trocknen gelassen. Gegebenenfalls kann ein Ueberzug aufgebracht werden (Umhüllungsgranulate), der es erlaubt, den Wirkstoff über einen bestimmten Zeitraum dosiert abzugeben.

Die Herstellung von Verbindungen der Formel I erfolgt, indem man

a) eine Verbindung der Formel II

worin R₁, R₂, R₃, R₄, R₅ und R₆ die für Formel I angegebenen Bedeutungen haben und M für Wasserstoff, ein Alkali- oder Erdalkalimetallatom steht, mit einer Verbindung der Formel III

$$z - x - y$$

(III)

worin X und Y die für Formel I angegebenen Bedeutungen haben und Z für einen abspaltbaren Rest steht, umsetzt, oder

b) zur Herstellung von Verbindungen der Formel I, in denen Y für -COOR, steht, ein Säurehalogenid der Formel IV

worin R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Hal für ein Halogenatom steht, mit einer Verbindung der Formel V

$$M^{T} - O - R_{7} \tag{V}$$

worin R₇ die für Formel I angegebene Bedeutung hat und M¹ für Wasserstoff, ein Alkali- oder Erdalkalimetallatom steht, umsetzt, oder

c) zur Herstellung von Verbindungen der Formel I, in denen Y für -COSR₈ steht, ein Säurehalogenid der Formel VI

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Hal für ein Halogenatom steht, mit einer Verbindung der Formel VII

$$M'' - S - R_8 (VII),$$

worin R die für Formel I angegebene Bedeutung hat und M" für Wasserstoff, ein Alkali- oder Erdalkalimetallatom steht, umsetzt, oder

d) zur Herstellung von Verbindungen der Formel I, in denen Y für -CONR₉R₁₀ steht, ein Säurehalogenid der Formel VIII

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Hal für ein Halogenatom steht, mit einer Verbindung der Formel IX

$$^{\mathrm{HNR}}_{9}^{\mathrm{R}}_{10}$$
 (IX),

worin R_9 und R_{10} die für Formel I angegebenen Bedeutungen haben, umsetzt, oder

e) zur Herstellung von Verbindungen der Formel I, in denen Y für -COOR, steht, eine Verbindung der Formel X

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Me für ein Alkalimetall-, Erdalkalimetall-, Bleioder Silberatom steht, mit einer Verbindung der Formel XI

$$Hal - R_{7} \qquad (XI),$$

worin R_7 die für Formel I angegebene Bedeutung hat und Hal für ein Halogenatom steht, umsetzt, oder

f) zur Herstellung von Verbindungen der Formel I, in denen Y für -COSR steht, eine Verbindung der Formel XII

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Me' für ein Alkalimetall-, Erdalkalimetall-, Bleioder Silberatom steht, mit einer Verbindung der Formel XIII

$$Hal - R_8 \qquad (XIII)$$

worin R_8 die für Formel I angegebene Bedeutung hat und Hal für ein Halogenatom steht, umsetzt, oder

g) zur Herstellung von Verbindungen der Formel I, in denen Y für -COOR, steht, eine Verbindung der Formel XIV

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben, mit einer Verbindung der Formel XV

$$HO - R_7$$
 (XV),

worin R7 die für Formel I angegebene Bedeutung hat, umsetzt, oder

h) zur Herstellung von Verbindungen der Formel I, in denen Y für -COSR₈ steht, eine Verbindung der Formel XVI

worin R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben, mit einer Verbindung der Formel XVII

$$HO - R_8$$
 (XVII),

worin R₈ die für Formel I angegebene Bedeutung hat, umsetzt, oder

i) zur Herstellung von Verbindungen der Formel I, in denen Y für -COOR, steht, eine Verbindung der Formel Ia

werin R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und R_7 die für R_7 in Formel I angegebene Bedeutung hat, mit einer Verbindung der Formel XVIII

$$HO - R_7^{"}$$
 (XVIII),

worin $R_7^{\prime\prime}$ die für R_7 in Formel I angegebene Bedeutung hat und nicht mit $R_7^{\prime\prime}$ identisch ist, umsetzt, oder

k) zur Herstellung von Verbindungen der Formel I, in denen Y für $-\cos SR_{\rm R}$ steht, eine Verbindung der Formel Ib

worin R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und R_8 die für R_8 in Formel I angegebene Bedeutung hat, mit einer Verbindung der Formel XIX

SR" (XIX),

worin $R_8^{\prime\prime}$ die für R_8 in Formel I angegebene Bedeutung hat und nicht mit $R_8^{\prime\prime}$ identisch ist, umsetzt, oder

1) zur Herstellung von Verbindungen der Formel I, in denen Y für -CONR₉R₁₀ steht, eine Verbindung der Formel XX

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und R' für einen aliphatischen, acyclischen Kohlenwasserstoffrest steht, mit einer Verbindung der Formel XXI

$$HNR_9R_{10}$$
 (XXI),

worin R_9 und R_{10} die für Formel I angegebenen Bedeutungen haben, umsetzt, oder

m) zur Herstellung von Verbindungen der Formel I, in denen X für $-\mathrm{CH}_2\mathrm{CH}_2$ steht, eine Verbindung der Formel XXII

worin R₁, R₂, R₃, R₄, R₅ und R₆ die für Formel I angegebenen Bedeutungen haben, mit einer Verbindung der Formel XXIII

$$CH_2 = CH - Y$$
 (XXIII),

worin Y die für Formel I angegebene Bedeutung hat, umsetzt, oder

n) zur Herstellung von Verbindungen der Formel I, in denen Y für einen gegebenenfalls substituierten Oxazolin-2-yl-Rest steht, eine Verbindung der Formel XXIV

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Hal für ein Halogenatom, insbesondere ein Chloroder Bromatom, steht, in Gegenwart eines säurebindenden Mittels cyclisiert.

Bei der Verfahrensvariante a) kommt in der Verbindung der Formel III als abspaltbarer Rest Z insbesondere ein Halogenatom oder eine Methylsulfonyloxy-, Phenylsulfonyloxy- oder para-Tolylsulfonyloxygruppe in Betracht. Halogen steht hier für Fluor, Chlor, Brom und Jod, bevorzugt für Chlor und Brom.

Wenn in der Verbindung der Formel II M für Wasserstoff und in der Verbindung der Formel III Z für ein Halogenatom steht, so lässt sich die Umsetzung bevorzugt in Gegenwart eines üblichen Protonenakzeptors durchführen. Ferner wirkt, wenn in der Verbindung der Formel III Z für ein Halogenatom steht, die Zugabe einer geringen Menge Alkalijodid katalytisch.

Bei den Verfahrensvarianten b), c) und d) steht in den Verbindungen der Formeln IV, VI und VIII Hal für ein Halogenatom, wobei als Halogenatom Fluor, Chlor, Brom und Jod, vorzugsweise Chlor und Brom, in Betracht kommen.

Wenn bei den Verfahrensvarianten b) und c) in den Verbindungen der Formeln V oder VII M' oder M" für Wasserstoff stehen, wird die Reaktion wie bei der Verfahrensvariante d) vorzugsweise in Gegenwart eines säurebindenden Mittels durchgeführt.

Als Säurehalogenide der Verbindungen IV, VI und VIII kommen vorzugsweise Halogenwasserstoffsäuren, insbesondere Chlor- und Bromwasserstoffsäure, in Betracht.

Bei den Verfahrensvarianten g) und h) lässt sich das bei der Umsetzung entstehende Wasser beispielsweise mittels eines Wasserabscheiders aus dem Reaktionsgemisch entfernen. Durch Zugabe von Säure wird eine katalytische Wirkung erzielt.

Die Umesterung gemäss den Verfahrensvarianten i) und k) kann durch Zusatz von Säure oder Base katalytisch beeinflusst werden. Vorteilhafterweise wird die Umsetzung mit einem Ueberschuss an Verbindungen der Formeln XVIII oder XIX durchgeführt.

Bei der Verfahrensvariante 1) steht in den Verbindungen der Formel XX R' vorzugsweise für einen Alkylrest mit 1 bis 6 Kohlenstoffatomen, insbesondere Methyl oder Aethyl.

Die Umsetzungen gemäss Verfahrensvarianten a) bis n) werden zweckmässigerweise in Gegenwart von gegenüber den Reaktionsteilnehmern inerten Lösungsmitteln durchgeführt. Als inerte Lösungsmittel kommen beispielsweise Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Petroläther oder Cyclohexan, Aether wie beispielsweise Diäthyläther, Tetrahydrofuran, Dioxan, Dimethoxyäthan oder Diäthylenglykol-dimethyläther, Säureamide wie beispielsweise Dimethylformamid, 2-Pyrrolidinon oder Hexamethylphosphorsäuretriamid oder Sulfoxide wie beispielsweise Dimethylsulfoxid in Betracht.

Als säurebindende Mittel können beispielsweise Alkalimetall- und Erdalkalimetallhydroxide oder -alkoholate, Alkalicarbonate oder tertiäre organische Basen eingesetzt werden.

Die Reaktionstemperaturen liegen im allgemeinen in einem Bereich von 0 bis 200°C, insbesondere im Bereich von 50 bis 150°C.

Die in den Verfahrensvarianten a) bis m) verwendeten Ausgangsprodukte sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Aus der Literatur ist eine Anzahl von Chinolinderivaten und ihre Verwendung in verschiedenen Anwendungsbereichen bekannt. So beschreiben beispielsweise die amerikanische Patentschrift 4.176.185, die britischen Patentschriften 760.319, 989.578, 1.003.477 und 1.003.478, die schweizerische Patentschrift 408.007, die DE-OS 25 46 845, Areschke, A. et al., Eur.J.Med.Chem.-Chimica Therapeutica, Sept.-Okt. 1975-10, No. 5, 463-469, Major R.T. et al., J. Med. Pharm. Chem. 4, 317-326, 1961, und Thompson, H.E., Botan. Gaz. 107, 476-507, 1946, den Einsatz von Chinolinderivaten auf therapeutischem Gebiet, als Ausgangsprodukt zur Herstellung therapeutischer Wirkstoffe, als Mittel zur Wachstumsförderung bei Tieren, als Pflanzenwuchshemmer oder als Herbizide.

Einen Bestandteil der vorliegenden Erfindung bilden neue Chinolinderivate der Formel I. Besonders erwähnenswert sind neue Verbindungen der Formel I, die zu einer der vorgängig aufgeführten Untergruppen o), p), q), r), s), t), u), v), w), x), y), z), z^1), z^2), z^3) und z^4) gehören.

Beispiel 1: 23,2 g 8-Hydroxychinolin werden in der Wärme in 400 ml Butanon-2 gelöst und portionenweise mit 30 g Kaliumcarbonat versetzt. Das Gemisch wird eine Stunde unter Rückfluss erhitzt. Anschliessend werden zunächst 2 g Kaliumjodid und dann unter Rühren und Kochen 40 g 2-Brompropionsäuremethylester in 100 ml Butanon-2 innerhalb einer Stunde zugetropft. Dann wird das Gemisch noch 10 Stunden unter Rückfluss erhitzt. Nach dem Abkühlen auf Raumtemperatur wird das Gemisch auf 1 Liter Wasser gegossen und dreimal mit je 200 ml Aethylacetat extrahiert. Die vereinigten Extrakte werden einmal mit 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wird verdampft und der ölige Rückstand durch Anreiben mit Petroläther zur Kristallisation gebracht. Nach dem Umkristallisieren aus Hexan erhält man 2-(8-Chinolinoxy)-propionsäuremethylester (Verbindung Nr. 3) in Form beigefarbener Kristalle. Smp. 70 bis 72° C.

Analog einer der vorstehend beschriebenen Methoden lassen sich auch die folgenden, in der Tabelle 1 zusammen mit der Verbindung des vorstehenden Beispiels aufgeführten Verbindungen der Formel I herstellen:

					
	Physikal. Konstante	Smp. 65-66°C		Smp. 70-72°C	Smp.184-185°C
Þ	ť	-соосн3	-соо(сн ₂) ₁₃ -сн ₃	-соосн ₃	-соон • н ₂ о
×	. €	-cn- cm ₃	-ca- - - - - - -	-cH- - H3	-CH ₂ -
2	9	æ	н	æ	13C
R	.5	H	н	Ħ	H
R R	7	Ħ	н	н	Ħ
R	m	CI	н	н	Ħ
R	7	Ħ	Ħ	Ħ	æ
R	r	CI	Æ	æ	н
Verbindung	No.	. 1	2	en en	4

Tabelle 1

Tabelle 1 (Fortsetzung)

*	· · · · · · · · · · · · · · · · · · ·	,				A
Physikal. Konstante		Smp. 80-82°C		Smp. 46.5-67.0°C	·	
Ā	носо-	-соосн ₂ сн ₂ осн ₃	-соосн ₂ сн ₂ осн ₃	-соосн ³	-соосн ₂ сн ₂ ос ₂ н ₅	CH ₂ CH ₃ -COOCH 2 CH ₃ CH ₂ -C-CH=CH ₂ CH ₂ H CH ₂
×	-CH- - HD	-сн ₂ -	енэ -кэ-	-сн ₂ -	-CH- -H CH ₃	-CH- L CH ₃
Re	Н	н	н	Ħ	н	Ħ
R ₅	н	н	Ħ	н	н	H
R4	Н	н	н	H	H	Ħ
R ₃	Н	н	н	Н	н	H
R2	Н	Ħ	Ħ	н	н	Ħ
R1	н	н	н	н	н	Ħ
Verbindung No.	5	9	7	8	6	10

Tabelle 1 (Fortsetzung)

Physikal. Konstante	Smp. 56-59°C		Smp. 54-56°C			
X.	-соос ₂ н ₅ • н ₂ о	-соосн ₂ сн сн ₃	-соин(сн ₂) ₃ ос ₂ н ₅	-0000H2-1-1-1	-cooc ₂ H ₅	-conncr ₂ cn CH ₃
Х	-сн ₂	-CH- - CH- CH ₃	-cH- - - - -	-th- -th-	-G- 	-GH- -GH-
R ₆	Ħ	Ħ	Ħ	н	Ħ	×
R ₅	Ħ	H	Ħ	Ħ	щ	pt.
R4	н	H	н	н	Ħ	н
R ₃	Ħ	н	н	н	H	Œ
R2	Ħ	н	н	Н	H	ж
R ₁	H	н	н	н	н	н
Verbindung No.	11	12	13	14	15	16

Smp. 86-88°C Smp. 28-31°C Physikal. Konstante -cooch₂ ch₂ ch₃ -connc₂H₅ -cooc₃H₇n × $-cH_2-$ #-E 는 프 - 프 #-E 유-변 ж 6 Ħ I Ħ H Ħ Ħ R₅ H Ħ Ħ H Ħ Ħ R. Ħ H **z** I Ħ 33 ≖. H Ħ Ħ H Ħ R_2 Ħ Ħ H Ħ Ħ a I X Ħ Ħ H Ŧ Ħ Verbindung No. 18 19 17 20 22 21

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

					
A	-conh-chi	-con C2H5	-conh-ch ch ₃	-соосн ₂ сн(с ₂ н ₅) ₂	-con C ₂ H ₅
X	-CH- - CH3	-다- -다-	-cH- -CH- CH ₃	-cH-	-CH- CH ₃
R ₆	選	ж	H	H	. #
R _S	æ	H	Ħ	н	=
R	Ħ	Ħ	н	н	æ
33	æ	H	Н	×	н
R ₂	H	Ħ	Н	Ħ	Ħ
R ₁	Н	Ħ ·	н	ж	ж
Verbindung No.	23	24	25	26	27

Tabelle 1 (Fortsetzung)

Physikal. Konstante	n _D 1,5696				Smp. 74-81°C	
I.	-coc ₃ H ₇ iso	-соосн ₂ сн ₂ он	-coscat car ₃	$-$ соинсн $_2$ сн (сн $_2$) $_3$ сн $_3$	-соинсн ₃ • н ₂ о	-cosc ₂ H ₅
x	-сн ₂ -	-GH- -HD- -HD-		-сн- сн ₃	-сн2-	-GR- CH3
R6	æ	н	æ	н	н	ж
R ₅	H	H	Ħ	Ħ	Ħ	H
R ₄	H	н	ж	н	Ħ	н
R ₃	H	н	н	H	Ħ	=
R ₂	Н	н	н	н	н	ж
R	Н	Н	æ	н	Ħ.	Ħ
Verbindung No.	28	29	30	31	32	33

			T	T		
	Physikal. Konstante			Smp. 142-145°C	n _D .5= 1,6002	·
	×	-cooca ₂ ca ₃ ca ₃	-000	-con CH ₃	conhc ₂ H ₅	-cooch2cH=cH2
	м .	-GH- GH- 3	-GH -B -33	-CH ₂ -	-сн ₂	-ch- ch ₃
	R6	Ħ	Ħ	. #	н	Ħ
	R ₅	耳	H	н	н	出
	x	æ	=	Ħ	æ	æ
	×ε,	æ	æ	Ħ	Ħ	×
(gunz	R 2	æ	æ	æ	æ	×
ortset	R	æ	Ħ	æ	Ħ	=
Tabelle 1 (Fortsetzung)	Verbindung No.	. 34	35	36	37	38

Tabelle 1 (Fortsetzung)

			₁	·	
Y	нооо-	$-\cos$ nhch $_2$ $-ch=ch_2$	-coo	-connch ₂ ch ₂ be	-conhch ₂ ch ₂ -k
X	-G- - CH- CH3	-GH- CH3	-cH- - CH- CH3	-CH- CH ₃	-CH- - CH- CH ₃
R ₆	æ	Ħ	н	н	æ.
RS	Ħ	Ħ	н		Ħ
R4	ж	н	Ħ	н	н
R ₃	NO ₂	æ	н	Н	π .
R ₂	æ	H	н	н	н
R ₁	æ	н	ш	н	н
Verbindung No.	39	40	41	42	£ħ

сн₃ 1 -соосн₂ -с=сн₂ $-\cos$ сн $_2$ сн $_2$ осн $_3$ × #-#E -CH-CH₃ R 6 Ħ . H Ħ H H Ħ Ħ Ħ H Ξ Ħ ж Э Ħ I Ħ Ħ R_2 Ħ X H Ħ Ħ R_1 H Ħ H Ħ Verbindung No. 44 45 46 47 48

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

	٠			,	
A	-соинсн ^{С2 н} 5 сн ₂ он	-соосн ₂ сн ₂ осн ₃	$\begin{array}{c} c_1^{H_5} \\ c_2^{H_5} \\ c_2^{H_5} \end{array}$	conh ₂	-conn-i i cha
×	후- <i>됩</i>	-сн- сн ₃	후- 8	-cH ₂ -	년 - 8
R ₆	Ħ	н	Ħ	Ħ	×
R ₅	Ħ	н	ж	. #	. ш
R ₄	H	н	н	H	Ħ
R ₃	æ	н	Я	Н	
R ₂	Ħ	н	H	Н	ж
R ₁	Ħ	н	н	H	н
Verbindung No.	64	20	51	52	53

Physikal. Konstante			Smp. 120-122°C		n _D = 1,5673
H.	CH3 conn	-соинсн ₂ сн ₂ осн ₃	-соин (сн ₂) ₃ он		-соосн ₂ сн ₂ ос ₂ н ₅
м.	-G- -H- -H-	-сн- сн ₃	-CH- -HO	-ca- ca-	-cH ₂ -
86 6	H	н	н	Ħ	æ
R ₅	Ħ	н	Е	н	æ
R ₄	н	н	Ħ	ж	Ħ
^π 3	н	н	н	Ħ	Ħ
R2	н	н	н	н	Ħ
				i	н
R ₁	æ	#	#	莊	

Tabelle 1 (Fortsetzung)

Y	-conh ₂	-cooch ₂ c _m och ₃	-conne-	-соосн ₃
×	-GH- -GH3	-сн- сн ₃	-음-	-GR- GH ₃
R ₆	н	エ	æ	Ħ
R ₅	Ħ	Ħ	¤	Ħ
R4	н	н	Ħ	Ħ
R ₃	H	н	н	NO ₂
R ₂	н	н	H	н
R ₁	н	н	н	н
Verbindung No.	59	. 09	61	62

Tabelle I (Fortsetzung)

Smp. 88-90°C Physikal. Konstante -conh(ch₂)₃och₃ × -conncn₂— -conhch₃ -cooc₂H₅ × #_E #-E -CH-유_품 ж 6 H Ħ Ħ H Ħ ш Ħ Ħ A S Ħ Ħ R4 Ħ Ħ Ħ H H Ħ ж 3 Ħ Ħ Ħ R₂ Ħ Ħ Ħ I I $_{1}^{R}$ X Ħ Ħ Ħ I Verbindung No. 65 99 **6**2 9 63

Tabelle 1 (Fortsetzung)

_
\sim
- M
=
un
-
٠.
N
- : :
u
a
L/A
ŭ
For
~
\sim
.~
124
_
~
63
_
_
_
6)
~
മ
_ _
···

				·		
Physikal. Konstante		Smp. 66-68°C		n _D = 1,6054		
Y	-con CH ₂ CH ₂ On CH ₂ -ch	-соин(сн ₂) ₃ сн ₃	-cow cH ₃ cow cH ₂ cow	-con CH ₃ CH ₂ CH ₂ OH	-con cH ₂	C00C ₃ H ₇ n
х	₽ <u>₽</u> ₽	-cH ₂ -	-th-	-CH- CH ₃	-сн- сн ₃	-дн- сн ₃
R 6	H	Ħ	æ	æ	H	Ħ
R _S	Ħ	н	Ħ	н	#	# .
R ₄	Ħ	Ħ	Ħ	н	н	Ħ
R ₃	ж	н	H	H	н	NO ₂
R ₂	ж	Н	н	н	H	н
R	щ	н	н	Н	н	Ħ
Verbindung No.	89	69	70	71	72	73

Tabelle 1 (Fortsetzung)

¥	$-\cos(\operatorname{CH}_2)_3$ -N $-\operatorname{CH}_2\operatorname{CH}_2$ OH $-\operatorname{CONH}(\operatorname{CH}_2)_3$ -N $-\operatorname{CH}_2\operatorname{CH}_2$ OH	COOC3H7 iso	он -сом(сн ₂ снсн ₃) ₂	$-\cos(\mathrm{ch_2^{} ch_2^{} och_3^{})_2^{}}$	$-conh(ch_2)_3$ nhch $_3$	-соосн ₂ сн ₂ вг	-conhch ₃	-соо(сн ₂) ₄ он
Х	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃
Re	н	н	н	н	Ħ	Ħ	Н	н
R ₅	H	Н	н	H ·	Ħ	Ħ	н	Ħ
R4	H	н	Ħ	E	æ	Ħ	#_	н
ж 3	Ħ	NO ₂	Ħ	#	Œ	æ	NO ₂	н
R ₂	H	н	H ·	æ	æ	н	н	н
R	Æ	#	×	#	æ	Ħ	Ħ	Ħ
Verbindung No.	74	75	9/	77	78	79	80	81

Smp. 146-149°C zähe Masse Physikal. Konstante -соосн2-с≅с-сн2он × COOCH CH-OH CH₃

CH-OH CH₃

CH₃

CH₃

CH₃ -cooc₄H₉n --сиоосн -CH₂--CH₂-× ₽<u>₽</u> ₽-₽ ### ### R 6 Ħ H \blacksquare H H I × я 5 H Ħ H Ħ H H R 4 H Ħ H Ħ H H Ħ ж Э × H H H H Ħ Ħ $^{R}_{2}$ H I H Ħ Ħ H R H × Ħ Ħ H I I Verbindung No. 82 83 84 85 86 88 87

Tabelle 1 (Fortsetzung)

Smp. 73-76°C Physikal. Konstante • H₂0 сн -соо-сн-соос₄ н₉ п сн₂сн₂он (сн₂)₃сн₃ $-\text{conh(ch}_2)_3\text{Ch}_3$ -conh-ch-c₂H₅ CH3 -C00CH-C2H5 -conh₂ 수 표 교 습 유 윤 -63-6H3 ₽<u>₽</u>£ ₽<u>₽</u> \$-2 ₽<u>₽</u>₽ R 6 × Ħ Ħ Ħ I Ξ Ħ H ж 5 H Ħ I Ħ Ħ Ħ R 4 H **=** , Ħ Ħ Ξ Ħ Ħ NO₂ $^{NO}_2$ ಷ್ಟ H H Ħ Ħ Ħ $^{\rm R}_2$ Ħ Ħ Ħ Ħ Ħ Ħ Ħ R₁ Ħ Ħ Ħ Ħ Ħ H Verbindung No. 95 89 9 16 92 93 94

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

		,	,		·			
Y	$-\cos \cos_2 \cot_2 \cot_2 H_5$	-cos (ch ₂) ₃ ch ₃	CH 3	-con ^{CH₃} (CH ₂) ₃ CH ₃	-соосн ₃	-сооси2си2ос4н9п	-cooc ₂ H ₅	-соосн ₂ сн ₂ с1
X	-сн- сн ₃	-сн- -сн ₃	-сн- сн ₃	-сн- -сн ₃	-CH ₂ -	-cH- CH ₃	-CH ₂ -	-G- cm ₃
R ₆	Н	Н	Ħ	Ħ	н	H	н	н
R ₅	Н	н	æ	21	Н	н	Н	H
R ₄	Н	н	æ	н	Н	Н	Н	H
R ₃	NO ₂	Ħ	æ	н	CI	н	C1	H
R2	Н	H	Ħ	æ	H	H	Н	н
R ₁	æ	æ	Œ	н	Br	н	Br	Ħ.
Verbindung No.	96	26	. 86	66	100	101	102	103

-conh-ch2---connch₃ × ₽<u>₽</u>₽ ₽₽ ₽₽ R 6 X H Ħ Ħ Ħ H Ħ Ħ H Ħ H R 4 I H Ħ ₹ ប ဌ H Ħ Ħ Ħ R₂ H Ħ H × Ħ Ħ Ħ R₁ Br Verbindung No. 104 105 106 108 107 109 110

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

				`.* 		
¥	CH 1-3 -C00	сн ₃ -соосн ₂ снсн ₂ сн ₃	-coo()c1	-соо(сн ₂) ₃ с1	-соин(сн ₂) ₃ с1	ло ₂ -соосн ₂ -сн-сн ₃
×	-сн- сн ₃	-сн- сн ₃	-çн- сн _з	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃
R ₆	Ħ	н	E	Ħ	н	Ħ
R ₅	Ħ	н	H	Ħ	Н	Ħ
R4	н	н	H	Ħ	Ħ	#
R ₃	н	Ħ	н	н	Ħ	Ħ
R2	H	н	н	H	H	æ
R ₁	Ħ	Ħ	н	Ħ	Ħ	Ħ
Verbindung No.	111	112	113	114	115	116

-cooch₂-ch=ch-ch₃ -соо(сн₂)₁₀он -CONH--H -CH2-× ### ### ₽<u>₽</u>₽ ₽<u>₽</u> ₽<u>₽</u>₽ ж 6 I Ħ I Ħ Ħ I Ħ I ≖ . Ħ H H R. Ħ × Ħ Ħ Ħ ^هد \mathbf{c} H Ħ H Ħ Ħ R₂ Ħ H H Ħ Ħ R Br × Ξ Ħ H Ħ Verbindung No. 117 118 119 120 122 121 123

Tabelle 1 (Fortsetzung)

-CH₂

 Ξ

×

Ħ

Ħ

Ħ

Ħ

131

 $-\text{CONH}(\text{CH}_2)_9\text{CH}_3$ $\left| -\cos(c H_2)_9 c H_3 \right|$ CH₂CH₂OH -cooch₂ch₂N -conh₂ \$-5 × ₽<u>₽</u> 습<mark>-</mark>윤 ₽<u>₽</u> -CH-R 6 H X Ħ Ħ I R₅ H H H × Ħ × Ħ H × Ħ مي ដ Ħ Ħ H Ħ R_2 Ħ × Ħ Ħ Ħ Ξ $_{1}^{R}$ I H Br H H Verbindung No. 124 125 126 127 128 129 130

Tabelle 1 (Fortsetzung)

Smp. 120-121°C Physikal. Konstante $-\cos \cos ^{2}_{2} \cos ^{2}_{2} \cos ^{2}_{4} \cos ^{2}_{9} \cos ^{2}$ -cooch2ch2och2ch2och3 $-conh(ch_2)_3-h\begin{pmatrix}c_2^{H_5}\\c_2^{H_5}\end{pmatrix}$ -соосн₂сн₂осн₂сн₂он × CH₂CH=CH₂ ### ### × ₽-E 습 급 급 함.. ₽ 6 Ħ H Ħ × Ξ ¥ R₅ H E × H X R. H Ħ Ħ H Ħ E Ħ 33 H Ħ H I Ħ R2 ¥ Ħ H Ħ H × X R, Ħ H Ħ Ħ Ħ 耳 Verbindung No. 132 133 134 135 136 137 138

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

		,	· 					
þı	-conh(ch ₂) ₆ Nh ₂	-cooch ch-ch2br br	-con C, H 9n	-000-	-conh(ch ₂) ₈ nh ₂	-cooch ₂ ch ₂ n(ch ₂ ch ₂ ch ₂ ch ₃) ₂	-conech ₂ ch ₂ n(c ₄ h ₉ n) ₂	-соин (сн ₂) ₃ ин ₂
×	-но -но-	-ED-	€нр -Кр-	-нэ -нэ-	-cn- cn ₃	-сн- сн ₃	-cн- ch ₃	-сн- сн ₃
R ₆	H	Ħ	н	Ħ	Н	н	н	Н
R ₅	н	н	н	н	H	Н	н	ж
R4	Н	Н	н	н	н	Н	н	Ħ
R ₃	Н	н	н	н	н	Н	H	æ
R ₂	H	н	н	н	н	Н	Н	æ
R ₁	н	Н	н	н	Н	н	Ħ	æ
Verbindung No.	139	140	141	142	143	144	145	146

-con(cH₂CH CH₃) -соосн (сн₂с1)₂ -соо(сн₂)₁₇сн₃ -COOCH2CH2NO2 × \$-E ₽<u>₽</u>₽ 습<u>유</u> ₽<u>₽</u>₽ Ħ Ħ H Ξ д 5 Ħ Ħ H H R 4 耳 Ħ Ħ Ħ H Ħ ж Э Ħ Œ H H $^{R}_{2}$ Ħ H # Ħ Ħ R 1 × H H Ħ Verbindung No. 148 147 149 150 152 151

Tabelle 1 (Fortsetzung)

Smp. 105-111°C Physikal. Konstante -cooch₂ch₂N(ch ch ch₃ -cooch ch N CH3 × -COOCH₃ ₽<u>₽</u> ₽<u>₽</u> 유-판 \$-£ × 흒죭 ₽₽ ₽₽ R 6 Ħ H H H I ж 5 H Ħ Ħ H H R 4 X H H H Ħ I ж 3 C_1 H H × Ξ Ħ H $^{R}_{2}$ 耳 Ħ H Ξ H H Ħ R Ħ Ħ Br Ħ H H Verbindung No. 153 155 154 156 158 159 157

Tabelle 1 (Fortsetzung)

-conh(ch₂)₃K -cooc₂H₅ R 6 æ Ħ H Ħ H $_{5}^{R}$ Ħ Ħ Ξ Ħ H ಜ್ \Box C_1 H $^{R}_{2}$ H Ħ Ħ Ħ R 1 Ħ Br Ξ Br Ξ Verbindung No. 160 161 162 163 165 164

Tabelle 1 (Fortsetzung)

 $-\text{conh(CH}_2)_{11}^{\text{CH}_3}$ -соо(сн₂)₁₁сн₃ $-\cos(c_{5}H_{11}^{n})_{2}$ $-\cos(c_3H_7^n)_2$ -cooc₃H₇n -conh₂ $-CH_2CH_2^ -cH_2CH_2$ × ₽-£ R₆ H Ħ H X H Ħ I . Б Ħ H Ħ Ħ Ħ Ħ Ħ R 4 I H Ħ Ħ H H Ħ H a J こ ದ = × H H H Ħ R 2 Ħ Œ H Ħ æ H Ħ Ħ 7, X Ħ Br × Ħ Ħ H Br Verbindung No. 166 168 170 167 169 172 171 173

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

								
. 4	-соосн ₂ -іі іі	-cos(сн ₂) ₁₁ сн ₃	-conh-ch ₂ -i	-соосн ₂ ¢н-сн ₂ он он	Енэооэ	-соо(сн ₂) ₆ сн ₃	-соо(сн ₂) ₁₅ сн ₃	-соо(сн ²) ⁶ он
×	-de- cea	-GH-	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃
R	н	H	н	н	Н	н	н	н
R ₅	Н	Н	н	н	н	Æ	æ.	н
R4	н	н	н	Ħ	Ħ	Ħ	ш	H
R ₃	Ħ	н	# .	Æ	C1	н	н	H
R ₂	æ	н	ж	æ	н	Ħ	Ħ	Ħ
R ₁	m	æ	五	H	Br	н	Ħ	н
Verbindung No.	174	175	176	177	178	179	180	181

Tabelle 1 (Fortsetzung)

		<u> </u>	 ,				
Y	-cooc _{.2} H ₅	сн ₃ сн ₃ -соосн(сн ₂) ₂ снон	-соо(сн ₂) ₅ сн ₃	-conh(ch ₂) ₅ ch ₃	-coo	-connch ₂ ch ₂ nhch ₂ ch ₂ oh	-Cooc ₃ H ₇ iso
×	-cH- CH ₃	-CH- CH ₃	-сн- сн ₃	-ca- ca ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃
R ₆	×	×	æ	Ħ	н	Ħ	ш
R _S	æ	×	æ	Ħ	Ħ	Ħ	ш
R4	Æ	æ	Ħ	H	æ	Ħ	æ
R ₃	13	æ	Ħ	H	Ħ	Ħ	C1
R2	×	æ	Æ	Ħ	Ħ	ж	m
R	Br	Ħ	H	æ	æ	斑	Br
Verbindung No.	182	183	184	185	186	187	188

-connch₃ (-conh₂ ₽<u>₽</u> ## E × ж 6 Ħ H H I Ħ H H Ħ R 4 Ħ H Ħ C ប ဌ [₩] Ħ \mathbb{R}_2 H E $_{1}^{R}$ H Br Br Br Verbindung No. 194 190 193 189 191 192

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

Y	-cooch ₂ cn	-соин (сн ₂) ₃ соосн ₃	сн ₃ -соо-¢-соос ₂ н ₅ сн ₃	нооо-	-cooch ₂ -< H >-	-cooch ₂ -i	-соосн ₂ сн ₂ си
×	-сн- сн ₃	-сн- сн ₃		-CH ₂ -	-CH- CH ₃	-сн- сн ₃	-GH-
R6	Н	Н	н	н	æ	н	н
R5	Н	H	я	Н	H	н	н
R4	н	H	н	Н	н	Н	H
R ₃	Ħ	н	н	CI	н	н	Ħ
R ₂	Ħ	н	æ	Н	Н	н	Ħ
R	н	н	н	C1	н	н	π
Verbindung No.	195	196	197	198	199	200	201

-conh(ch₂)₁₇ch₃ -соосн, сн, осн -соосн3 -CH₂-× \$-£ ₽<u>₽</u>₽ 습 표 표 ### ### \$-£ H Ħ H H Ħ H R₅ Ħ H × Ħ R, H Ħ Ħ Ħ Ħ Ξ ж 3 Ω Ħ ប H Ħ H H $^{R}_{2}$ Ŧ Ξ Ħ Ħ H R₁ Ξ ဌ Ħ Ħ Ħ Ħ ប Verbindung No. 202 203 204 205 206 207 208

Tabelle 1 (Fortsetzung)

-conh(ch₂)₇ch₃ -соо(сн₂)₇сн₃ -соо(сн₂) 4сн₃ -cooc₂H₅ -CH₂--다. -₽-₽ -₽<u>₽</u> \$-5 . Б H H Ħ H Ħ ж 5 Ħ Ħ Ħ 田 . R 4 Ħ Ξ Ħ Ħ Ħ H В3 2 X Ξ Ħ Ħ \mathbb{R}_2 × H \blacksquare R, × I ដ H H H Verbindung No. 209 210 212 211 213 214 215

Tabelle 1 (Fortsetzung)

-CONHCH2CH2cooc3H7iso -conH₂ -C00H -CH₂-₽-₽ E 다. 다. 다. ₽<u>₽</u> R₆ Ħ Ħ H H I H H В 5 Ħ H H H Ħ Ħ × **R** Ħ Ħ H Ħ Ħ Ħ Ħ ж Э ប c_1 CI× Ŧ Ħ R2 Ħ Ħ Ħ H H Ħ Ħ $_{1}^{R}$ H Ħ ប I C_1 ដ Verbindung No. 219 218 220 222 216 221 217

Tabelle 1 (Fortsetzung)

 $-\cos \cot_2 \cot_2 (\cot_2 \cot_2)_3$ on -соосн₂сн₂sсн₂сн₂он -соосн₂сн₂осн₃ -cosch₂cocch₃ -соосн2-с≡сн × 유<mark>-</mark>윤 유-판 ₽<u>₽</u>₽ -CH-CH₃ ## ## E ₽₩ ₽₩ Ħ Ħ H H Ħ Ħ H × Ħ × H H Ħ H H R 4 Ŧ Ŧ Ħ Ξ H × H ಜ್ಜ ដ ဌ c_1 I X × H H R_2 X I Ħ × Ξ Ħ H H R₁ ¥ Ξ Ħ ប ဌ ប Verbindung No. 223 224 225 226 228 230 227 229

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

						 	
X	-S02-	-cocc ₃ H ₇ iso	-CONH	-соосн ₂ сс1 ₃	$-\cos c H_2 - c - c_2 H_5$ $-c \cos c H_2 - c_3$	-con ch ₃	-con ch ₃
X	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-сн- сн ₃	-di- ch ₃
R 6	Œ	H	щ	н	Ħ	н	H
R ₅	Ħ	Æ	Æ	н	я	ш	ב
R ₄	æ	Ħ	Æ	н	æ	щ	н
R ₃	æ	CI	Ħ	Ħ	Œ	æ	C1
R2	=	Ħ	×	H	Æ	Ħ	н
R ₁	æ	5	Æ	ж	Ħ	Æ	C1
Verbindung No.	231	232	233	234	235	236	237

Tabelle 1 (Fortsetzung)

		T	Т	,	 	,	,	, 	,
¥	H000-	-соон	-conhc ₂ H ₅	-cooch ₂ ch ₂ och ₃	-cooch ₂ ch ₂ och ₃	-conh ₂	-соосн	EH2002-	-cooc ₂ H ₅
x	-но-	^Е нр -но-	⁶ нр -нэ-	-th-	-сн- сн ₃		-дн- сн ₃	-dr- ch ₃	th CH3
R6	R	CH ₃	н	H	СНЗ	н	н	сн3	H
R ₅	æ	н	н	Н	Н	Н	Ħ	H	H
R4	Ħ	Н	Н	Н	н	н	Æ	Н	Н
ж ₃	ŋ	Br	C1	J	Вг	CI	D.	Br	J
R ₂	H	н	н	Н	Н	H	ж	ж	ж
R ₁	н	æ	<u></u>	н	Ħ	ij	æ	æ	H
Verbindung No.	238	239	240	241	242	243	244	245	246

Tabelle 1 (Fortsetzung)

H	-conhch ₃	-con CH ₃	-соон	-соосн ₂ сн ₂ осн ₃	-con CH ₃	-соосн ₃	-соосн ₃	-conh ₂	-cooc ₂ H ₅
×	-сн- сн ₃	-сн- -сн-	-н- -сн-	-нэ -нэ-	-сн- сн ₃	-сн- сн ₃	-CH ₂ -	-сн- сн ₃	-CH ₂ -
R ₆	Ħ	СНЭ	Н	н	Ħ	н	СН3	Ħ	CH ₃
R ₅	Ħ	н	Ħ	н	н	н	Н	Ħ	Н
R4	#	H	Ħ	н	Ħ	Н	H	н	H
ж 3	ם .	Br	Br	Br	J.	Br	CI	Br	C1
R ₂	Ħ	Ħ	н	н	Æ	Ħ	н	æ	Ħ
R	æ		æ	pa -	æ	Ħ	=	H	н
Verbindung No.	247	248	249	250	251	252	253	254	255

-cooch2cH2ocH3 -cooc3H7180 -connc₂n₅ -cooc₂H₅ -connch3 -coocH₃ -cooch₃ H000--COOH $-cH_2cH_2 -cH_2CH_2$ $-cH_2CH_2-$ -CH₂CH₂- $-cH_2cH_2-$ -CH₂-수 태₃ . Н . E CH₃ ж 6 CHJ Ħ Ħ I Ħ Ħ ¥ ^π2 Ħ Ħ R 4 Œ I Ħ Ħ X H H C_1 ប Ω C В3 Br ប C_1 Ħ Ħ H \mathbb{R}_2 Ξ Ħ Ħ Ħ H Ħ I H Ξ \equiv R H Ħ Ŧ Ħ H Ξ H Verbindung No. 259 260 261 262 264 258 263 265 256 257

Tabelle 1 (Fortsetzung)

_
٠.,
œ
_
=
_
× 1
tzung
u
41
w
se
(Fort
-
\sim
134
-
_
41
w
11e
_
abe]
~
•

¥	-cooc ₂ H ₅	-cooc ₂ H ₅	-cooc ₃ H ₇ n	-cooc ₃ H ₇ iso	-conhc h,iso	сомнсн ₃	-юинсн ₃	-con CH ₃	-con CH ₃
×	-сн ₂ сн ₂ -	-сн- сн ₃	-cH ₂ CH ₂ -	-сн- сн ₃	-CH ₂ CH ₂ -	-сн- сн ₃	-CH ₂ CH ₂ -	-cn- cn ₃	-CH ₂ CH ₂ -
R ₆	==	сн3	ж	сн ₃	н	сн3	н	CH ₃	Ħ
R ₅	ш	н	Н	н	н	Н	H	н	ж
R 4	н	н	Н	н	Н	н	н	н	Ħ
В3	H	C1	Н	C1	H	C1	C1	C1	Ħ
R2	ж	Ħ	н	Ħ	Ħ	#	Н	Ħ	Ħ
R	н	Ħ	н	Ħ	H	Ħ	H	æ	Ħ
Verbindung No.	266	267	268	269	270	27.1	272	273	274

Tabelle 1 (Fortsetzung)

	·	···-						
Physikal. Konstante								
Y	-con ch ₃	-CONHC, H ₅	-conhc, h _c	-CONH,	-con C ₂ H ₅	-соон	-00NH,	-cooch ₂ ch ₂ och ₃
×	-сн ₂ сн ₂ -	-CH2CH2-				\$ - #	1.0	
R ₆	#	Ħ	Ħ	Œ	æ	=	æ	æ
R ₅	æ	Ħ	H	Н	н	æ	=	H
R ₄	#	H	H	H	=	н	H	=
R ₃	C1	C1	æ	C1	æ	CI	H	C1
R ₂	æ	æ	Н	Н	æ	H	E	н
R ₁	Ħ	æ	×	æ	æ	æ	æ	н
Verbindung No.	275	276	27.7	278	279	280	281	282

Tabelle 1 (Fortsetzung)

Physikal. Konstante					Smp. 232-233°C		Smp. 97-98°C		Smp. 104-105,5°C
A	-соосн ₂ сн ₂ ос ₂ н ₅	-соосн ₃	-con CH ₃ CH ₂ CH ₂ OH	-соос ₂ н ₅	-соон	-cooc ₃ H ₇ n	-соосн ₂ сн ₂ осн ₃	-conech ₃	-соосн ³
×	-сн ₂ сн ₂ -	-сн- сн ₃	-сн ₂ сн ₂ -	-cH- CH ₃	-cH ₂ -	-сн- сн ₃	-CH ₂ -	-сн- сн ₃	-cH ₂ -
R6	Н	ш	H	Н	Н	н	Н	н	Ħ
R ₅	H	н	н	æ	Н	æ	H	H	н
R4	Н	щ	н	Ħ	н	Ħ	Ħ	Ħ	н
В3	н	CI	Ħ	C1	C1	C1	C1	C1	13
R ₂	Н	Ħ	н	н	Н	н	H	Н	н
R ₁	Ħ	Ħ	Ħ	H	H	H	Ħ	Н	H
Verbindung No.	283	284	285	286	287	288	289	290	291

Smp. 116-117°C Smp. 108-109°C Smp. 135-136°C Physikal. Konstante × $-\cos \cos \alpha_2 \cos_2 \alpha_5$ (-conec₂H₅ -000c3H7n -cooc2H5 -connch₃ -conh₂ -CH₂--CH₂--CH₂-후-품 ₽-E × ₽-E 습<mark>규</mark>요 유교 ₽<u>₽</u>₽ 8e X Ξ \equiv Ħ Ħ × H R₅ H H H H H Ħ R. I H Ħ Ħ H Ξ × Ħ 3 C1C c_1 c_1 C1ដ CI ជ c_1 $^{R}_{2}$ H Ħ H H Ħ H Ħ H $_{1}^{R}$ H Ħ I \blacksquare Ħ Verbindung No. 292 293 294 296 295 298 299 297 300

Tabelle 1 (Fortsetzung)

Smp. 58-66°C Physikal. Konstante $-\cos \cot_2 \cot_3 \cot_3$ $-\text{conh}(\text{CH}_2)_3^{\text{CH}_3}$ -cooch₂--Енэооэ--соосн -conh₂ -COOH -соон $-cH_2CH_2^ -c_{12}^{CH}$ $-CH_2CH_2^-$ -CH₂--CH2-유-판 ₽<u>₽</u> ## ## -H-H-× CH₃ СНЗ CH₃ X Ħ H **R** H Ħ Ħ Ħ H Ħ Ħ Ħ X Ħ R₅ I E Ħ H × Ħ Ħ Ħ × R4 H Ħ H CI C_1 ဌ $\mathbf{c}_{\mathbf{I}}$ C Ħ ប ಬ Ħ Ħ ₹. Œ H H 표 Ħ ≖. Ħ R_2 Ŧ H 耳 I **z** I H H Ħ $\mathbf{R}_{\mathbf{1}}$ × Œ Verbindung 310 309 308 306 307 303 305 302 304 301

Tabelle 1 (Fortsetzung)

-CONHCH₃ × Ė-8. # E ₽<u>₽</u>₽ ᄠ в 6 CII3 CH₃ ж 5 × Ξ × H H R 4 Ξ Ħ エ I H H ж С X H Ŧ H H R₂ Ħ H × H × H $^{R}_{1}$ Ē H Ħ Verbindung No. 312 311 313 314 315 316

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

				т —					1	1	· · ·	
H		=		.=	1	=			=	=	=	1
×	-CH ₂ -	-cr-	-CH ₂ -	-cH ₂ -	-cH ₂ CH ₂ -	-cH ₂ -	-cH ₂ CH ₂ -	-cH2CH2-	-сн- сн ₃	-CH ₂ -	-cн-	-CH ₂ CH ₂ -
R ₆	Н	Ж	н	GH 3	Ħ	CH ₃	Ħ	CH ₃	Ħ	н	Ħ	СН3
R ₅	н	Н	Н	Ħ	Ħ	н	H	Н	Ħ	H	Ħ	н
R4	н	Н	Н	Ħ	н	Н	н	н	н	н	Н	н
R ₃	Н	C1	Cl	н	C1	C1	н	Н	C1	C1	н	C1
R2	Н	H	H	Н	н	н	Н	н	н	Н	Н	н
R ₁	н	H	Br	Н	Br	C1	н	н	Br	Ħ	Œ	CI
Verbindung No.	317	318	319	320	321	322	323	324	325	326	327	328

Tabelle 1 (Fortsetzung)

Verbindung No.	a 1	R2	ж _.	R 4	Α _S	R ₆	×	¥
329	н	Ħ	æ	H	Ħ	CH ₃	-dil- dil	i de la companya de l
330	H	Н	Вг	Ħ	н	H	-cH ₂ -	
331	CI	H	ជ	æ	=	CH ₃	-g-	-
332	æ	н	C1	Н	æ	Ħ	-CH ₂ -CH ₂ -	=
333	=	н	Br	Ħ	Ħ	æ	-cH ₂ -cH ₂ -	
334	Œ.	H	C2H5	H	Ħ	=	-CH2-	=
335	ᆵ	н	Br	Ħ	н	H	-G-	=
336	Ħ	Ħ	$c_2^{\rm H_5}$	Ħ	Ħ	ш	-cH ₂ CH ₂ -	Ε.
337	ย	Œ	C1	æ	=	H	-CH ₂ -	=
338	ה	Ħ	ฮ	Ħ	Ħ	Ħ	-CH ₂ -	=
339	5	=	ដ	Ħ	#	E	-cH ₂ CH ₂ -	

Tabelle 1 (Fortsetzung)

Verbindung R ₁	R ₁	R ₂	R ₃ R ₄ R ₅	R ₄	R ₅	R ₆	×	¥
340	13	н	C1	Ħ	≕	Ħ	-сн ₂ сн ₂ -	}
341	Ħ	Ħ	c ₂ H ₅	Ħ	н	H	-GH- CH ₃	
342	CI	н	C1	ж	Æ	н	-сн- сн ₃	=
343	ŗ	Ħ	C1	E	Ħ	Н	-сн- сн ₃	=

Tabelle 1 (Fortsetzung)

Verbindung No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	X + Y	Physikalische Konstante °C
344	H	H	H	H	н	н	, i	
345	Н	н	Cl	Н	H	Н	11	140-141.5°C
346	Cl	H	C1	н	Н	н	11	
347	H	Н	Н	H	н	CH ₃	11	
348	Н	Н	Br	Н	н	Н	11	
349	Br	H	C1	H	Н	H	11	
350	Н	Ħ	Br	H	H	CH ₃	11	
351	н	H	C1	Ħ	H	CH ₃	11	· · · · · · · · · · · · · · · · · · ·
352	Н	H	J	H	H	H	11	
353	J	H	Cl	H	н	Н	11	
354	C1	н	Cl	н	н	CH ₃	"	
355	Н	Н	NO ₂	н	н	Н	11	·
356	н	Н	С ₂ Н ₅	Н	Н	H	11	
357	C1	Н	CH ₃	Н	Н	н	11	

Tabelle 1 (Fortsetzung)

358 H	Verbindung No.	R	R2	R ₃	R4	R _S	R6	X	X	Physikal. Konstante
H H C1 H H C1P ₂ -C00C ₄ H ₉ tert. -C0C ₄ H ₉ tert.	358	Ħ	Ħ	н	EE.	Ħ	сн3	-CH ₂ -	-cooc ₂ H ₅	nD 1,5762
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	359	H	н	C1	н	æ	æ	-CH ₂ -	-COOC ₄ Hgtert.	Smp. 63-69°C
H H H H H $-CH_2$ $-COOCH_2$ - $C=CH$ H H H H H H $-CH_2$ $-COOCH_2$ - I_3 so H H I H H H $-CH_2$ $-COOCH_2$ - I_3 H H I H H $-CH_2$ $-COOCH_2$ - I_3 H H H H $-CH_2$ $-COOCH_2$ - I_3 H H H H $-CH_2$ $-COOCH_2$ - I_3 H H H H $-CH_2$ $-COOCH_2$ - I_3 - I_3 H H H H H $-CH_2$ $-COOCH_2$ - I_3 - I_3	360	H	Н	н	Ħ	н	=	-CH2-	-COOC4Hgtert.	Smp. 68-70°C
H H H H -CH ₂ -C00C ₃ H ₇ iso H H H H H H H H H H H H H H -C00CH ₂ CH ₂ CO ₂ H ₅ -C00CH ₂ CH ₂ CO ₂ H ₅ -C00CH ₂ CH ₂ CH ₂ CO ₂ H ₅ -C00CH ₂ CH ₂	361	н	Н	C1	Ħ	Ħ	Ħ	-CH ₂ -	-соосн2-с≖сн	Smp. 115-116°C
H H	362	Н	н	CI	Ħ	Ħ	н	-CH ₂ -	-cooc3H,iso	Smp. 147-148°C
H H C1 H H C-CH ₂ COOCH ₂ COOCH ₂ COOCH ₂ CH-CH ₂ H H C1 H HCH ₂ COOCH ₂ -CH-CH ₂ H H C1 H H HCH ₂ COOCH ₄ -CH-CH ₃ H H C1 H H HCH ₂ COOCH ₄ -CH-GREA H H H H HCH ₂ COOCH ₄ -GREA H H H H H HCH ₂ COOCCH ₄ -GREA H H H H H H HCH ₂ COOCCH ₂) 7 CH ₃	363	Н	н	C1	Н	Н	н	-CH2-	-соосн ₂ сн ₂ ос ₂ н ₅	Smp. 102-104°C
H H C1 H H C-CH ₂	364	æ	Æ	C1	æ	æ	Ħ	-CH ₂ -	-cooch ₂	Smp. 110-112°C
H H C1 H H H -CH ₂ C00(CH ₂) ₁₁ CH ₃ H H C1 H H H -CH ₂ C00C ₄ H ₉ sek. H H H H H -CH ₂ C00C ₄ H ₉ sek.	365	Н	н	C1	н	. #	н	-cH ₂ -	-cooch ₂ -ch=ch ₂	
H H C1 H H H -CH ₂ C00C ₄ H ₉ sek. H H H H H H -CH ₂ C00(CH ₂) ₇ CH ₃	366	Н	н	CI	н	ш	Ħ	-CH ₂ -	-coo(cH ₂) ₁₁ CH ₃	Smp. 76-77°C
H H H H H — -CH ₂ C00(СH ₂) ₇ СH ₃	367	Н	н	C1	н	ш	н	-CH ₂ -	-cooc ₄ H ₉ sek.	Smp. 110-111°C
	368	Н	Н	Ħ	н	H	н	-CH ₂ -	-соо(сн ₂) ₇ сн ₃	n ²⁴ = 1,5419

Tabelle 1 (Fortsetzung)

T				<u> </u>	1		<u> </u>	1	
Physikal	Konstante	Smp. 90,5-92°C	n _D = 1,5600	n _D 1,5232	n _D = 1,5885	Smp. 57-58°C	Smp. 87-88°C	n _D = 1,5642	Oel (rot)
Y		-cooc, H ₉ n	-cooc ₂ H ₅	-coo(cH ₂) ₁₁ CH ₃	-C00CH ₂ -CH-CH ₂	-соос ₂ н ₅	-соо(сн ₂) ₇ сн ₃	-cooc ₄ H ₉ n	-C00C ₄ H ₉ sek.
×		-CH2-		-CH ₂ -	-CH ₂ -	E-4-E	-CH ₂ -	-CH2-	-CH2-
R		Н	н	Ħ	ж	; ;;	#	=	E
A.	1	Ħ	æ	Н	н	H	Æ	æ	E
7 ₄		H	Ħ	н	н	н	H	ж	н
200		5	Œ	H	н	C1	Cl	н	н
27		æ	н	Ħ	Ħ	=	Н	H	н
R		н	斑	н	æ	22	н	ш	Æ
Verbindung	.00	369	370	371	372	373	374	375	376

Tabelle 1 (Fortsetzung)

Verbindung No.	. L	R ₂	 	R.	R5	R	X	≱	Physikal. Konstante
377	Н	Ħ	C1	Н	н.	Н	-cH ₂ -	-cooch ₂ ch ₂ c1	Smp. 125-126°C
378	Ħ	æ	н	н	Н	н	-CH ₂ -	-cooch ₂	23,5 1,6099
379	н	æ	C1	H	Ħ	Ħ	-CH ² -	-соосн ₂ -т	Smp. 101-103°C
380	Ħ	Н	C1	H	H	æ	-CH ₂ -	-cos(cH ₂) ₇ cH ₃	Smp. 53-54°C
381	æ	Ξ	н	Н	Н	н	-cH ₂ -	-соосн ₂ сн ₂ с1	Smp. 109-110°C
382	Ţ	н	C1	н	н	н	-CH ₂ -	-COOC ₄ H ₉ tert.	Smp. 81-97°C
383	J	Н	C1	Н	н	н	-cH ₂ -	-cooc ₂ H ₅	Smp. 92~94°C
384	Ð	н	C1	Н	н	н	-CH ₂ -	-coo(cH ₂) ₁₁ CH ₃	Smp. 51-53°C
385	Ĵ	Н	C1	Н	H	н	-CH ₂ -	-соосн ₃	Smp. 121-126°C
386	ה	E	C1	H	Ħ	н	-cH ₂ -	-соосн2сн2с1	Smp. 44-45°C
·				+	1				

Tabelle 1 (Fortsetzung)

_							
Physikal. Konstante	Smp. 112-113°C	Smp. 71-73°C	Smp. 47-53°C	n _D ²² = 1,5632	n _D = 1,5391	$n_{\rm D}^{22} = 1,5342$	Smp. 56-61°C
λ	-cooch ₂	-cooc ₃ H ₇ n	-cooc ₂ H ₅	-C00C4H9iso	-сооснсн ₂ сн ₂ сн ₃ сн ₃ сн ₃	-соосн(сн ₂) ₅ сн ₃ сн ₃	-conh(ch ₂) ₁₁ ch ₃
×	-CH ₂ -	-CH ₂	CH -c- -C- CH 3	-сн2-	-CH ₂ -	-cH ₂ -	-CH ₂ -
R ₆	Æ	æ	сн3	H	н	H	H
R ₅	Ħ	Н	н	н	н	Ħ	Œ
R ₄	Ħ	н	Ħ	н	н	н	Ħ
R ₃	CI	CI	Ξ	н	æ	H	#
R ₂	н	Ħ	Ħ	Н	Ħ	H	Н
R ₁	J	J	н	Ħ	н	H.	н
Verbindung No.	387	388	389	390	391	392	393

•••

Tabelle 1 (Fortsetzung)

			1	l			1
Physikal. Konstante	Smp. 94-99°C	Smp. 138-139°C	Smp. 104-106°C	Smp. 99-103°C	n _D = 1,5686	Smp. 144-146°C	n _D = 1,5766
Ā	-CONHCH ₂ CH ₂ -N()	-conhch ₂ ch ₂ ch ₂ oh	-CONH	Q NOO-	$-\text{conhch}_2\text{ch}_2\text{N}$ $C_2^{\text{H}_5}$ $C_2^{\text{H}_5}$	-con ch ₂ ch ₂ on	-соин(сн ₂) ₃ и сн ₃
×	-cH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-CH ₂ -	-cH ₂
R6	н	н	æ	Ħ	H	н	æ
RS	Ħ	н	Ħ	H	H	H	н
R4	Ħ	н	н	ш	H	H	н
R ₃	æ	н	Ħ	н	Ħ	H	H
R ₂	æ	н	æ	н	Ħ	н	н
R ₁	Ħ	Ħ	æ	æ	æ	æ	Ħ
Verbindung No.	394	395	. 396	397	398	399	700

Smp. 70,5-73,5°C Smp. 150-151°C Smp. 105-106°C Smp. 109-110°C $n_{D}^{22} = 1,5840$ $n_{D}^{26} = 1,5821$ Physikal. Konstante -соин(сн₂)₃и сн₂сн₂он -conhchch₂ ch₃ ch₂ ch -CONHCH2CH2-N -сн₂--CH2- $-CH_2-$ -CH₂--CH₂--CH₂-H H H Ħ H H . З Ħ H H Ħ H H ۳ 4 Ħ H Ξ H I Ħ جر ً I H H Ħ H Ħ R₂ I Œ Ħ Ħ Ħ H ۳. ا Ħ I I H Ħ H Verbindung No. 401 402 403 404 405 406

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

1	1						*	
Physikal. Konstante	Smp. 71-75°C	Smp. 57-58°C	Smp. 51-61°C	Smp. 70-91°C	Smp. 85-88°C	Smp. 187-189°C	Smp. 177-179°C	Smp. 148-150°C
Ā	-conech ₂ -ch=ch ₂ • h ₂ 0	-CONHCH ₂ -i · H ₂ O	$-$ соин $($ сн $_2)_3$ ос $_2$ н $_5$	-conhch ₂ ch ₂ nhch ₂ ch ₂ oh	-соин(сн ₂) ₃ ос ₂ н ₅	CH ₃ CH ₂ CH ₂ OH	CH ₂ CH ₂ OH CH ₂ CH ₂ OH	< ` \too-
×	-CH ₂ -	-CH2-	-сн2-	-CH ₂ -	-cH ₂ -	-CH2-	-cH ₂ -	-CH2-
R ₆	H	H	н	н	н	н	н	н
R5	н	Ħ	H	Ħ	Ħ	Ħ	щ	н
R4	н	H	Ħ	Ħ	Ħ	Ħ	н	н
R ₃	н	н	H	Ħ	C1	C1	C1	CI
R2	Н	н	н	Ħ	æ	Ħ	Ħ	Ħ
R	Ħ	н	Ħ	ж	Ħ	缸	# .	#
Verbindung No.	407	408	409	410	411	412	413	414

Smp. 176-178 °C Smp. 157-160°C Smp. 140-142°C Smp. 146-149°C Smp. 121-124°C Smp. 193-196°C Smp. 87-90°C 94--98°C Smp. > 200°C Physikal. Konstante Sup. $-\text{CONHCH}_2$ -CONHCH2CH2CH2OH -coo ⊖ ⊕ -coo ∃ HN(CH₃)₃ $-conhnh_2 \cdot h_2o$ H₂0 $-\cos(K \cdot H_2)$ -conec₄H₉n -conhc₂H₅ -COONa • -conh₂ -CH₂--CH₂--CH₂- $-CH_2^-$ -CH₂--CH₂--CH₂--CH₂--CH₂-× **E** ж 6 Ħ H I Ħ H Ħ H Ħ چ 5 Ξ × Ħ Ħ H 田 Ħ **≃**7 X H Ħ Ħ Ħ Ħ H చ్ \Box C1 c_1 ដ H × H Ħ Ħ **≃**~ H × Ħ Ħ Ħ Ħ H Ħ Ħ æ__ Ħ H H H × Ħ Ħ H H Verbindung No. 415 419 416 418 417 420 421 422 423

Tabelle 1 (Fortsetzung)

Tabelle 1 (Fortsetzung)

Verbindung No.	R.	R2	R ₃	R4	R ₄ R ₅	R ₆	X	¥	Physikal. Konstante
424	н	Ħ	н	н	н	Н	-CH ₂ -	-c00 ⊕ (⊕ -c00 ⊕ HN (CH ₂ CH ₂ OH) ₃	Smp. 97-98°C
425	н	н	CI	Н	н	Н	-сн ₂ -	-соок • н ₂ о	Smp. > 260°C
426	н	H	CI	Н	н	н	-CH -	-соома • H ₂ O	Smp. ➤ 260°C
427	Ħ	н	Ħ	#	Ħ	Ħ	-cH ₂ -	$-\cos\Theta^{\bigoplus}_{\mathrm{HN}(\mathbf{C_2H_5})_3}$	Smp. 255-257°C (Z)
428	Æ	H	C1	ш	н	Ħ	-CH ₂ -	-coo ⊕ _{NH4}	Smp. 227-228°C (Z)
429	ж	H	CI	н	Ħ	н	-сн ₂	—соо [—] ни (сн ₂ сн ₂ он) ₃	Smp. 132-156°C (Z)

Formulierungsbeispiele für flüssige Wirkstoffe der Formel I (7 = Gewichtsprozent)

2. Emulsions-Konzentrate	a)	ъ)	c)
Wirkstoff aus Tabelle 1	25 %	40 %	50 %
Ca-Dodecylbenzolsulfonat	5 Z	8 %	6 %
Ricinusöl-polyäthylenglykoläther (36 Mol AeO)	5 %	-	-
Tributylphenol-polyäthylenglykoläther (30 Mol AeO)	- .	12 %	4 %
Cyclohexanon	-	15 %	20 Z
Xylolgemisch	65 %	25 %	20 %

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

3. Lösungen	a)	ъ)	· c)	d)
Wirkstoff aus Tabelle 1	80 %	10 %	5 %	95 %
Aethylenglykol-monomethyl-äther	20 %	-	-	-
Polyäthylenglykol M G 400	. .	70 %	-	
N-Methyl-2-pyrrolidon	-	20 %	-	-
Epoxydiertes Kokosnussöl	-	-	1 %	5 %
Benzin (Siedegrenzen 160-190°C)		_	94 %	_

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

4. Granulate	a)	ъ)
Wirkstoff aus Tabelle 1	5 %	10 %
Kaolin	94 %	-
Hochdisperse Kieselsäure	1 %	-
Attapulgit	-	90 %

Der Wirkstoff wird in Methylenchlorid gelöst, auf den Träger aufgesprüht und das Lösungsmittel anschliessend im Vakuum abgedampft.

5. Stäubemittel		a)	Ъ)
Wirkstoff aus Tabelle 1		2	7	5	7
Hochdisperse Kieselsäure	•	1	7	5	Z
Talkum		97	7	-	
Kaolin		-		90	7

Durch inniges Vermischen der Trägerstoffe mit dem Wirkstoff erhält man gebrauchsfertige Stäubemittel.

Formulierungsbeispiele für feste Wirkstoffe der Formel I

(% = Gewichtsprozent)

•				
6. Spritzpulver	a)	p)		c)
Wirkstoff aus Tabelle l	25 %	50	7	75 %
Na-Ligninsulfonat	5 %	5	Z	. =
Na-Laurylsulfat	3 %	-		5 %
Na-Diisobutylnaphthalinsulfonat	_	6	Z	10 %
Octylphenolpolyäthylenglykoläther (7-8 Mol AeO)	· -	2	7	-
Hochdisperse Kieselsäure	5 %	10	z	10 %
Kaolin	62 %	27	7	-

Der Wirkstoff wird mit den Zusatzstoffen gut vermischt und in einer geeigneten Mühle gut vermahlen. Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

7. Emulsions-Konzentrat

Wirkstoff aus Tabelle 1	10	Z
Octylphenolpolyäthylenglykoläther (4-5 Mol AeO)	· 3	Z
Ca-Dodecylbenzolsulfonat	3	Z
Ricinusölpolyglykoläther (35 Mol AeO)	4	z
Cyclohexanon	30	z
Xylolgemisch	50	z

Aus diesem Konzentrat können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

8. Stäubemittel	a)	ъ)
Wirkstoff aus Tabelle 1	5 %	8 %
Talkum	95 %	-
Kaolin	-	92 %

Man erhält anwendungsfertige Stäubemittel, indem der Wirkstoff mit den Trägerstoffen vermischt und auf einer geeigneten Mühle vermahlen wird.

9. Extruder Granulat

Wirkstoff aus Tabelle 1	10	Z
Na-Ligninsulfonat	2	Z
Carboxymethylcellulose	1	7
Kaolin	87	z

Der Wirkstoff wird mit den Zusatzstoffen vermischt, vermahlen und mit Wasser angefeuchtet. Dieses Gemisch wird extrudiert und anschliessend im Luftstrom getrocknet.

10. Umhüllungs-Granulat

Wirkstoff aus Tabelle 1	3	Z
Polyäthylenglykol (M G 200)	3	Z
Kaolin	94	Ż

Der fein gemahlene Wirkstoff wird in einem Mischer auf das mit Polyäthylenglykol angefeuchtete Kaolin gleichmässig aufgetragen. Auf diese Weise erhält man staubfreie Umhüllungs-Granulate.

11. Suspensions-Konzentrat

40 %
10 %
6 %
10 %
1 %
0,2 %
0,8 %
32 %

Der fein gemahlene Wirkstoff wird mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensions-Konzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

Biologische Beispiele

Beispiel 12: Versuch mit Antidot und Herbizid an Weizen

Weizensamen werden in Plastiktöpfe, die 0,5 1 Gartenerde enthalten, im Gewächshaus ausgesät. Nach dem Auflaufen der Pflanzen bis zum 2- bis 3-Blattstadium wird die als Antidot zu prüfende Substanz zusammen mit dem Herbizid 2-[4-(3,5-Dichlorpyridy1-2-oxy)-phenoxy]-propionsäure-2-propinylester als Tankmischung appliziert.

20 Tage nach der Applikation wird die Schutzwirkung des Antidots in Prozent bonitiert. Als Referenzen dienen dabei die mit dem Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Ergebnisse zeigen die folgenden Tabellen:

Tabelle 2

Aufwandmengen:

Herbizid 0,5 kg/ha

Antidot 0,5 kg/ha

relative Schutzwirkung in Prozent
50
50

Tabelle 3

Aufwandmengen:

Herbizid 0,75 kg/ha

Antidot 1,5 kg/ha

Verbindung Nr.	relative Schutz- wirkung in Prozent	Verbindung Nr.	relative Schutz- wirkung in Prozent
1	50	36	25
3	50	37	63
4	63	56	50
6 '	38	58	63
8	38	65	25
11	63	69	50
13	75	71	12,5
20	63	82	50
28	63	86	63

- 108 -

Fortsetzung	Tabelle :	3
-------------	-----------	---

Verbindung Nr.	relative Schutz- wirkung in Prozent	Verbindung Nr.	relative Schutz- wirkung in Prozent
91	50	377	63
132	75	378	: 63
155	12,5	379	63
287	50	380	50
289	63	381	63
291	50	383	75
293	63	384	75
295	50	385	63
299	63	386	63
307	12,5	387	63
. 345	25	388	63
358	12,5	393	38
359	75	394	12,5
360	63	395	25
361	75	396	12,5
362	65	397	25
. 363	25	398	38
364	38	399	50
365	25	400	25
366	25	401	38
367	12,5	402	63
368	50	403	12,5
369	50	404	50
370	63	405	12,5
371	63	406	12,5
372	63	407	25
373	63	409	50
374	63	410	63
375	63	411	50
376	75	412	65

Fortsetzung Tabelle 3

Verbindung	relative Schutz- wirkung in Prozent	Verbindung Nr.	relative Schutz- wirkung in Prozent
413 .	50	422	. 63
414	50	423	63
415	. 63 .	424	63
416	75	425	
417	25	426	50
418	63	427	63
420	25	428	75
421	63	429	75 75

Beispiel 13: Versuch mit Antidot und Herbizid an Gerste

Gerstensamen werden in Plastiktöpfe, die 0,5 1 Gartenerde enthalten, im Gewächshaus ausgesät. Nach dem Auflaufen der Pflanzen bis zum 2- bis 3-Blattstadium wird die als Antidot zu prüfende Substanz zusammen mit dem Herbizid 2-[4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy]-propionsäure-2-propinylester als Tankmischung appliziert.

20 Tage nach der Applikation wird die Schutzwirkung des Antidots in Prozent bonitiert. Als Referenzen dienen dabei die mit dem Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Ergebnisse zeigen die folgenden Tabellen:

Tabelle 4

Aufwandmengen:

Herbizid 0,25 kg/ha

Antidot 0,25 kg/ha

Verbindung Nr.	relative Schutzwirkung in Prozent
3	38

Tabelle 5

Aufwandmengen:

Herbizid 0,5 kg/ha

Antidot 0,5 kg/ha

Verbindung Nr.	relative Schutzwirkung in Prozent
8 .	88

Tabelle 6

Aufwandmengen:

Herbizid 0,5 kg/ha

Antidot 1,5 kg/ha

Verbindung Nr.	relative Schutz- wirkung in Prozent	Verbindung Nr.	relative Schutz- wirkung in Prozent
4	12,5	132	38
6	75	287	50
13	12,5	289	63
20	50	.291	25
28	88	293	75
58	50	295	38
86	25	359	63
91	12,5	360	63

Fortsetzung Tabelle 6

Verbindung Nr.	relative Schutz- wirkung in Prozent	Verbindung Nr.	relative Schutz- wirkung in Prozent
361	75	381	38
362	63	385	12,5
363	75	386	12,5
364	75	388	38
365	75	412	75
366	63	413	75
367	50	414	63
368	38	415	63
369	63	417	38
370	25	418	25
371	25	421	63
372	63 .	422	12,5
374 .	63	424	38
375	38	425	50
376	50	426	50
377 .	50	427	25
378	50	428	50
379	63	429	50
380	50		

Beispiel 14: Samenquellung Reis, Herbizid im Vorlaufverfahren

Reissamen werden 48 Stunden mit Lösungen der als Antidot zu prüfenden Substanz in einer Konzentration von 100 ppm getränkt. Man lässt die Samen dann etwa zwei Stunden trocknen, bis sie nicht mehr kleben.

Plastikbehälter (Länge x Breite x Höhe = 25 x 17 x 12 cm) werden bis 2 cm unter dem Rand mit sandigem Lehm gefüllt. Die verquollenen Samen

werden auf die Bodenoberfläche des Behälters gesät und nur ganz schwach mit Erde bedeckt. Die Erde wird in einem feuchten (nicht sumpfigen) Zustand gehalten. Nun wird das Herbizid 2-Chlor-2',6'-di-äthyl-N-[2"-(n-propoxy)-äthyl]-acetanilid in verdünnter Lösung auf die Bodenoberfläche versprüht. Der Wasserstand wird entsprechend dem Wachstum der Pflanzen sukzessive erhöht. 18 Tage nach der Herbizidapplikation wird die Schutzwirkung des Antidots in Prozent bonitiert. Als Referenz dienen dabei die mit dem Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Ergebnisse zeigt die folgende Tabelle:

Tabelle 7

!	ntidot erbindung Nr.	Antidot .	Herbizid kg AS∕ha	Relative Schutz- wirkung in %
•	8	100	0,25	50
:	404	100	0,25	38
	359	100	0,25	25
	381	100	0,25	63
	422	100	0,25	63

Beispiel 15: Saatbeizung Reis, Herbizid im Vorlaufverfahren

Reissamen werden mit der als Antidot zu prüfenden Substanz in einen Glasbehälter gegeben und durch Schütteln und Rotation gut durchgemischt. Behälter (Länge x Breite x Höhe = 47 x 29 x 24 cm) werden mit sandiger Lehmerde gefüllt und die gebeizten Samen eingesät. Nach dem Bedecken des Samens mit Erde wird das Herbizid 2-Chlor-6'-äthyl-N-(2"-methoxy-1"-methyläthyl)-acet-o-toluidid in einer verdünnten Lösung auf die Bodenoberfläche versprüht. 20 Tage nach der Aussaat, wenn die Pflanzen das 3-Blattstadium erreicht haben, wird die Bodenoberfläche mit Wasser 4 cm hoch überschichtet. 30 Tage nach der Herbizidapplikation wird die Schutzwirkung des Antidots in Prozent bonitient. Als Referenz dienen

dabei die mit Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Verbindungen der Formel I zeigen auch in diesem Test eine gute Wirkung.

Beispiel 16: Saatbeizung Reis, Herbizid im Vorlaufverfahren

Reissamen der Sorte IR-36 werden mit der als Antidot zu prüfenden Substanz in einen Glasbehälter gegeben und durch Schütteln und Rotation gut durchgemischt. Plastikbehälter (Länge x Breite x Höhe = 47 x 29 x 24 cm) werden mit sandiger Lehmerde gefüllt und die gebeizten Samen eingesät. Nach dem Bedecken des Samens mit Erde wird das Herbizid 2-Chlor-6'-äthyl-N-(2"-methoxy-1"-methyläthyl)-acet-o-toluidid auf die Bodenoberfläche versprüht. 18 Tage nach der Aussaat wird die Schutz-wirkung des Antidots in Prozent bonitiert. Als Referenzen dienen dabei die mit Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Auch in diesem Test zeigen die Verbindungen der Formel I eine gute Wirkung.

Beispiel 17: Tankmischung im Vorauflaufverfahren in Sorghum

Töpfe (oberer Durchmesser 6 cm) werden mit sandiger Lehmerde gefüllt und Sorghumsamen der Sorte 6522 eingesät. Nach dem Bedecken der Samen mit Erde wird die als Antidot zu prüfende Substanz zusammen mit dem Herbizid 2-Chlor-6'-äthyl-N-(2"-methoxy-1"-methyläthyl)-acet-o-toluidid in verdünnter Lösung als Tankmischung auf die Bodenoberfläche versprüht. 21 Tage nach der Herbizidapplikation wird die Schutzwirkung des Antidots in Prozent bonitiert. Als Referenzen dienen dabei die mit Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Ergebnisse zeigt die folgende Tabelle:

Tabelle 8

Aufwandmengen:

Herbizid 1,5 kg/ha

Antidot 1,5 kg/ha

Verbindung Nr.	relative Schutzwirkung in Prozent
402	50
405	50
409	38

Beispiel 18: Saatbeizung Reis, Herbizid im Vorauflaufverfahren

Reissamen werden mit der als Antidot zu prüfenden Substanz in einen

Glasbehälter gegeben und durch Schütteln und Rotation gut durchgemischt. Behälter (Länge x Breite x Höhe = 47 x 29 x 24 cm) werden mit

sandiger Lehmerde gefüllt und die gebeizten Samen eingesät. Nach dem

Bedecken des Samens mit Erde wird das Herbizid 2-[4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy]-propionsäure-2-propinylester in einer verdünnten Lösung auf die Bodenoberfläche versprüht. 20 Tage nach der

Aussaat, wenn die Pflanzen das 3-Blattstadium erreicht haben, wird

die Bodenoberfläche mit Wasser 4 cm hoch überschichtet. 30 Tage nach

der Herbizidapplikation wird die Schutzwirkung des Antidots in Prozent

bonitiert. Als Referenz dienen dabei die mit Herbizid allein behan
delten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die

Ergebnisse zeigt die folgende Tabelle:

Tabelle 9

Antidot Verbindung Nr.	Antidot g AS/kg Samen	Herbizid kg AS/ha	Raltive Schutz- wirkung in %
	0,6	0,25	50
3	0,4	0,25	63
	0,2	0,25	63

Beispiel 19: Saatbeizung Reis, Herbizid im Nachauflaufverfahren

Reissamen werden mit der als Antidot zu prüfenden Substanz in einen Glasbehälter gegeben und durch Schütteln und Rotation gut durchgemischt. Plastikbehälter (Länge x Breite x Höhe = 25 x 17 x 12 cm) werden mit sandiger Lehmerde gefüllt und die gebeizten Samen eingesät. Nach dem Bedecken des Samens mit Erde wird das Herbizid 2-[4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy]-propionsäure-2-propinylester im Nachauflaufverfahren appliziert. 21 Tage nach der Applikation wird die Schutzwirkung des Antidots in Prozent bonitiert. Als Referenz dienen dabei die mit Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Ergebnisse zeigt die folgende Tabelle:

Tabelle 10

Antidot Verbindung Nr.	Antidot g AS/kg Samen	Herbizid kg AS∕ha	Relative Schutz- wirkung in %
	1	0,25	25
3	0,8	0,25	25
	0,6	0,25	38

Beispiel 20: Saatbeizung Reis, Herbizid im Vorauflaufverfahren
Reissamen der Sorte IR-36 werden mit der als Antidot zu prüfenden
Substanz in einen Glasbehälter gegeben und durch Schütteln und
Rotation gut durchgemischt. Plastikbehälter (Länge x Breite x Höhe =
47 x 29 x 24 cm) werden mit sandiger Lehmerde gefüllt und die gebeizten
Samen eingesät. Nach dem Bedecken des Samens mit Erde wird das
Herbizid 2-[4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy]-propionsäure-2propinylester auf die Bodenoberfläche versprüht. 18 Tage nach der
Aussaat wird die Schutzwirkung des Antidots in Prozent bonitiert.
Als Referenzen dienen dabei die mit Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Ergebnisse
zeigt die folgende Tabelle:

Tabelle 11

Antidot Verbindung Nr.	Antidot g AS/kg Samen	Herbizid kg AS/ha	Relative Schutz- wirkung in %
	0,6	0,25	50
3	0,4	0,25	63
	0,2	0,25	63

Beispiel 21: Saatbeizung Weizen, Herbizid im Nachauflaufverfahren

Weizensamen werden mit der als Antidot zu prüfenden Substanz in einen Glasbehälter gegeben und durch Schütteln und Rotation gut durchgemischt. Plastikbehälter (Länge x Breite x Höhe = 25 x 17 x 12 cm) werden mit sandiger Lehmerde gefüllt und die gebeizten Samen eingesät. Nach dem Bedecken des Samens mit Erde wird das Herbizid N-[(2-(2-Chlor-äthoxy)-phenyl)-sulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff im Nachauflaufverfahren appliziert. 21 Tage nach der Applikation wird die Schutzwirkung des Antidots in Prozent bonitiert. Als Referenz dienen dabei die mit Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Ergebnisse zeigt die folgende Tabelle:

Tabelle 12

Antidot Verbindung Nr.	Antidot g AS∕kg Sæmen	Herbizid kg AS√ha	Relative Schutz- wirkung in %
8	0,25 0,125	1,0 1,0	25 25
	0,25 0,125	0,5 0,5	12,5 12,5

Beispiel 22: Saatbeizung in Weizen, Herbizid im Vorauflaufverfahren Weizensamen werden mit der als Antidot zu prüfenden Substanz in einen Glasbehälter gegeben und durch Schütteln und Rotation gut durchgemischt. Plastikbehälter (Länge x Breite x Höhe = 25 x 17 x 12 cm) werden mit sandiger Lehmerde gefüllt und die gebeizten Samen eingesät. Nach dem Bedecken des Samens mit Erde wird das Herbizid N-[(2-(2-Chloräthoxy)-phenyl)-sulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-harnstoff auf die Bodenoberfläche gesprüht. 21 Tage nach der Herbizidapplikation wird die Schutzwirkung des Antidots in Prozent bonitiert. Als Referenz dienen dabei die mit Herbizid allein behandelten Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Ergebnisse zeigt die nachfolgende Tabelle:

Tabelle 13

Antidot Verbindung Nr.	Antidot g AS/kg Sæmen	Herbizid kg AS/ha	Relative Schutz- wirkung in %
8	0,25 0,125	1,0	25 25
8	0,25	0,5	25
	0,125	0,5	25
8	0,25	0,25	12,5
	0,125	0,25	12,5

Beispiel 23: Ertragssteigerung durch Wachstumsregulierung bei Soja

In Kunststoffbehältern mit einem Erde-Torf-Sandgemisch im Verhältnis
6:3:1 werden Sojabohnen der Sorte "Hark" angesät und in einer Klimakammer unter otpimalen Bedingungen bezüglich Temperatur, Beleuchtung,
Düngung und Bewässerung gehalten. Die Pflanzen entwickeln sich so in
ca. 5 Wochen zum 5- bis 6-Trifolia-Blattstadium. In diesem Entwicklungsstadium werden die Pflanzen mit der wässrigen Brühe eines Wirkstoffes
der Formel I bis zur guten Benetzung besprüht. Die Wirkstoffkonzentra-

tion beträgt 500 ppm Aktivsubstanz. Die Auswertung erfolgt 5 Wochen nach Applikation des Wirkstoffs. Im Vergleich zu unbehandelten Kontrollpflanzen weisen die mit erfindungsgemässen Wirkstoffen der Formel I behandelten Pflanzen eine merkliche Erhöhung der Anzahl und des Gewichts der geernteten Schoten auf. Als besonders wirksam erweisen sich die Verbindungen Nr. 58, 295 und 378.

Beispiel 24: Förderung des Wurzelwachstums bei Weizen und Soja

Verbindungen der Formel I werden als wässrige Dispersion, erhalten
aus 25% igem Spritzpulver, angewendet. Der Versuch wird mit Samen durchgeführt, die in mit Erde gefüllte Plastikzylinder von 5 x 30 cm eingesät werden (10 Samen pro Zylinder), wobei a) die Samen vor der Einsaat in Aufwandmengen von 4-130 mg pro kg Saatgut behandelt werden
oder b) unbehandelte Samen eingesät und der Boden mit der Wirkstoffdispersion in Aufwandmengen von 0,3 bis 3 kg pro Hektar besprüht
wird. Die Zylinder werden in einer Klimakammer unter kontrollierten
Bedingungen gehalten. Nach 10 Tagen werden Keimlinge durch vorsichtiges Waschen mit Wasser von der Erde befreit und Länge und Trockengewicht der Wurzeln gemessen. Von den Verbindungen der Formel I zeigen
in diesem Test insbesondere die Verbindungen Nr. 364 und 369 eine
gute Wirkung.

Patentansprüche

1. Verfahren zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien, dadurch gekennzeichnet, dass man die Kulturpflanzen, Teile dieser Pflanzen oder Anbauflächen für Kulturpflanzen mit einer Verbindung der Formel I

worin

 $^{R}_{1}$, $^{R}_{2}$ und $^{R}_{3}$ unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyan, Alkyl oder Alkoxy,

R₄, R₅ und R₆ unabhängig voneinander Wasserstoff, Halogen oder Alkyl, X einen aliphatischen, acyclischen, gesättigten Kohlenwasserstoffrest mit 1 bis 3 Kohlenstoffatomen und

Y eine Carboxylgruppe oder ein Salz davon, eine Mercaptocarbonylgruppe oder ein Salz davon, eine Carbonsäureestergruppe, eine Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder substituiertes Derivat einer Carbonsäureamidgruppe oder eine Carbonsäurehydrazidgruppe oder X und Y zusammen einen unsubstituierten oder substituierten Tetrahydrofuran-2-on-Ring

bedeuten, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe, oder einem Mittel, welches eine dieser Verbindungen enthält, behandelt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in der Verbindung der Formel I R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, $-\text{COOR}_7$, $-\text{COSR}_8$ oder $-\text{CONR}_9R_{10}$ bedeutet, worin R.. R_5 und R_9 für Wasserstoff oder einen gegebenenfalls substituierten

Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Phenyl- oder Naphthylrest oder einen gegebenenfalls substituierten heterocyclischen Rest oder R₇ und R₈ auch für ein Kation oder R₉ auch für einen Alkoxyrest und worin R₁₀ für Wasserstoff, Amino, mono- oder disubstituiertes Amino oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Cycloalkyl- oder Phenyl-rest oder R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Rest stehen, oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe.

- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, -COOR₇, -COSR₈, oder -CONR₉R₁₀ bedeutet, worin R₇ und R₈ unabhängig voneinander
 - Wasserstoff oder ein Kation;

.....

- Alkyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Hydroxy, Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Alkylthio, Halogenalkoxy, Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Hydroxyalkylthio, Alkoxycarbonyl, Dialkylamino, Cycloalkyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy oder einen gegebenenfalls
 substituierten heterocyclischen Rest substituiert ist;
- Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- Cycloalkyl, welches unsubstituiert oder durch Halogen, Alkyl oder Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Alkyl, Alkoxy, Alkoxycarbonyl oder Halogenalkyl substituiert ist;

- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder Alkyl substituiert ist; oder
- einen gegebenenfalls substituierten heterocyclischen Rest;

Ro - Wasserstoff;

- Alkyl, welches unsubstituiert oder durch Halogen, Cyan, Hydroxy, Amino, Alkylamino, Dialkylamino, Hydroxyalkylamino, Di-(hydroxyalkyl)amino, Aminoalkylamino, Alkoxy, Alkoxycarbonyl, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Alkyl oder Alkoxy substituiert ist, Cycloalkyl oder einen gegebenenfalls substituierten heterocyclischen Rest substituiert ist;
- Alkoxy;
- Alkenyl;
- Cycloalkyl;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Alkyl, Alkoxy oder Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Nitro oder Alkyl substituiert ist; oder
- einen gegebenenfalls substituierten heterocyclischen Rest; und R_{10} Wasserstoff;
 - Amino;
 - Dialkylamino;
 - Alkyl, welches unsubstituiert oder durch Hydroxy, Cyan oder Alkoxy substituiert ist;
 - Alkenyl;
 - Cycloalkyl; oder
 - Phenyl.

oder R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten heterocyclischen Rest bedeuten, oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe.

- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y für -COOR₇ steht, worin
- R₇ Wasserstoff, ein Alkalimetall- oder ein quaternäres Ammoniumkation;
 - C₁-C₁₈-Alkyl;
 - C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
 - C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
 - C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
 - C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
 - C₃-C₈-Cycloalkyl, welches unsubstituiert oder durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist;
 - Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_2 -Halogenalkyl substituiert ist;
 - Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C₁-C₃-Alkyl substituiert ist; oder
 - einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S bedeutet.
- 5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in der Verbindung der Formel I R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel

I angegebenen Bedeutungen haben und Y für -COSRg steht, worin

R₈ - Wasserstoff;

- C₁-C₁₈-Alky1;
- C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
- C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
- C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- $^{\rm C}_3$ - $^{\rm C}_8$ -Cycloalkyl, welches unsubstituiert oder durch Halogen, $^{\rm C}_1$ - $^{\rm C}_3$ -Alkyl oder $^{\rm C}_1$ - $^{\rm C}_3$ -Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan,
 C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl oder C₁-C₂-Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C_1 - C_3 -Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S bedeutet.
- 6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in der Verbindung der Formel I R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -CONR $_9$ R $_{10}$ steht, worin

R₉ - Wasserstoff;

- C₁-C₁₈-Alkyl;
- C2-C8-Alkyl, welches durch Amino substituiert ist;
- C₂-C₆-Alkyl, welches durch Halogen, Hydroxy, C₁-C₆-Alkylamino, C₂-C₈-Dialkylamino, C₂-C₆-Hydroxyalkylamino, C₂-C₆-Di-(hydroxyalkyl)-amino, C₂-C₆-Aminoalkylamino oder C₁-C₄-Alkoxycarbonyl substituiert ist;
- C₁-C₄-Alkyl, welches durch Cyan, C₁-C₄-Alkoxy, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen 5-oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S substituiert ist;
- C1-C3-Alkoxy;
- C₃-C₆-Alkenyl;
- C₃-C₈-Cycloalkyl;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiert ist; oder
- Naphthyl, welches unsubstituiert oder durch Nitro oder Methyl substituiert ist; und

R₁₀ - Wasserstoff;

- Amino;
- C₂-C₄-Dialkylamino;
- C₁-C₆-Alkyl;
- C₁-C₄-Alkyl, welches durch Hydroxy oder Cyan substituiert ist;
- C2-C6-Alkoxyalkyl;
- C₃-C₆-Alkenyl;
- C3-C6-Cycloalkyl; oder
- Phenyl;

oder worin R_9 und R_{10} zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring, welcher noch 1 oder 2 weitere Heteroatome aus der Gruppe N, O und S enthalten kann, bedeuten.

- 7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y für einen gegebenenfalls substituierten Oxazolin-2-yl-Rest steht.
- 8. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅ und R₆ die für Formel I angegebenen Bedeutungen haben und X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden.
- 9. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y für -COOR₇ steht, worin
- R₇ Wasserstoff, ein Alkalimetallkation oder ein quaternäres Ammoniumkation ausgewählt aus der Gruppe Ammoniumkation, Trimethyl-, Triäthyl und Tri-(2-hydroxyäthylen)-ammoniumkation;
 - C₁-C₁₈-Alky1;
 - C₁-C₁₀-Alkyl, welches durch 1 oder 2 Hydroxygruppen substituiert ist;
 - C₁-C₄-Alkyl, welches durch 1 bis 3 Chlor- oder Bromatome, eine Nitrogruppe, eine Cyanogruppe, eine C₁-C₄-Alkoxygruppe, eine C₂-C₈-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine Hydroxy-C₁-C₄-Alkoxygruppe, eine Hydroxy-C₂-C₆-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine C₁-C₄-Alkoxycarbonylgruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, einen Phenylrest, welcher unsubstituiert oder durch Chlor oder Methoxy substituiert ist, einen Cyclohexylrest, einen Furan-, Tetrahydrofuran-, Tetrahydropyran-, Pyridino-, Piperidino- oder Morpholinorest substituiert ist;
 - C₃-C₁₀-Alkeny1;
 - C₂-C₄-Alkinyi, welches unsubstituiert oder durch eine Hydroxygruppe substituiert ist;
 - Cyclohexyl, welches unsubstituiert oder durch 1 oder 2 Methylgruppen substituiert ist;

- Phenyl, welches unsubstituiert oder durch 1 bis 2 Substituenten aus der Gruppe Chlor, Nitro, C₁-C₄-Alkyl oder Methoxy substituiert ist;
- Naphthyl; oder
- Pyridin

bedeutet.

10. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass in der Verbindung der Formel I R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COSR₈ steht, worin

 $R_8 - C_1 - C_{12} - Alkyl;$

- C₁-C₄-Alkyl, welches durch eine C₁-C₄-Alkoxycarbonylgruppe substituiert ist; oder
- Phenyl, welches unsubstituiert oder durch ein Chloratom substituiert ist,

bedeutet.

11. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y für -CONR₉R₁₀ steht, worin

R_Q - Wasserstoff;

- C₁-C₁₈-Alkyl;
- C2-C8-Alkyl, welches durch eine Aminogruppe substituiert ist;
- C₂-C₆-Alkyl, welches durch eine Hydroxygruppe substituiert ist;
- C₂-C₄-Alkyl, welches durch ein Chlor- oder Bromatom, eine C₁-C₄-Alkylaminogruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, eine C₁-C₄-Hydroxyalkylaminogruppe, eine Di-(C₁-C₃-Hydroxyalkyl)-aminogruppe, eine C₁-C₄-Alkoxygruppe oder eine C₁-C₄-Alkoxycarbonyl-gruppe substituiert ist;
- C₁-C₄-Alkyl, welches durch eine Cyanogruppe oder einen Phenylrest, welcher unsubstituiert oder durch Chlor substituiert ist, einen Furanyl-, Tetrahydrofuranyl-, Piperidino- oder Morpholinorest substituiert ist;
- C₁-C₃-Alkoxy;
- C₂-C₄-Alkenyl;

- Cyclohexyl, welches unsubstituiert oder durch eine Methylgruppe substituiert ist; oder
- Phenyl, welches unsubstituiert oder durch 1 oder 2 Substituenten aus der Gruppe Chlor, Nitro, Cyano, Methyl, Aethyl, Methoxy und Trifluormethyl substituiert ist;

R₁₀ - Wasserstoff:

- C_1 - C_6 -Alkyl;
- C₁-C₄-Alkyl, welches durch eine Hydroxygruppe oder eine Cyanogruppe substituiert ist;
- C₂-C₄-Alkoxyalkyl;
- C₂-C₄-Alkenyl;
- Cyclohexyl; oder
- Phenyl, oder

R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen unsubstituierten oder durch 1 oder 2 Methylgruppen substituierten Piperidino-, Tetrahydropyrimidino-, Morpholino- oder Imidazolylrest bedeuten.

- 12. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y für einen unsubstituierten Oxazolin-2-yl-Rest steht.
- 13. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅ und R₆ die für Formel I angegebenen Bedeutungen haben und X und Y zusammen einen unsubstituierten Tetrahydrofuran-2-on-Ring bilden.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂, R₃, R₄, R₅ und R₆ die für Formel I angegebenen Bedeutungen haben und X und Y zusammen einen unsubstituierten Tetrahydrofuran-2-on-3-yl-Ring bilden.

- 15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, Halogen, Nitro oder C₁-C₃-Alkyl und R₄, R₅ und R₆ unabhängig voneinander Wasserstoff oder C₁-C₃-Alkyl bedeuten, X die für Formel I angegebene Bedeutung hat und Y für einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, -COOR₇, -COSR₈ oder -CONR₉R₁₀ steht, worin
- R₇ Wasserstoff, ein Alkalimetall-oder ein quaternäres Ammoniumkation;
 - C₁-C₁₈-Alkyl;
 - C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
 - C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
 - C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
 - C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
 - C_3 - C_8 -Cycloalkyl, welches unsubstituiert oder durch Halogen, C_1 - C_3 -Alkyl oder C_1 - C_3 -Alkoxy substituiert ist;
 - Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, $C_1^{-C_4^{-Alkyl}}$, $C_1^{-C_4^{-Alkoxy}}$, $C_1^{-C_4^{-Alkoxy}}$, $C_1^{-C_4^{-Alkoxy}}$ oder $C_1^{-C_2^{-Alkoxy}}$. Halogenalkyl substituiert ist;
 - Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C₁-C₂-Alkyl substituiert ist; oder
 - einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3
 Heteroatomen aus der Gruppe N, O und S;

R₈ - Wasserstoff;

- C_1 - C_1 ;-Alkyl;
- C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
- C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
- C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- C₃-C₈-Cycloalkyl, welches unsubstituiert oder durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl oder C₁-C₂-Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder
 C₁-C₂-Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S,

R₉ - Wasserstoff;

- C₁-C₁₈-Alkyl;
- C2-C8-Alkyl, welches durch Amino substituiert ist;

- C₂-C₆-Alkyl, welches durch Halogen, Hydroxy, C₁-C₆-Alkylamino, C₂-C₈-Dialkylamino, C₂-C₆-Hydroxyalkylamino, C₂-C₆-Di-(hydroxyalkyl)-amino, C₂-C₆-Aminoalkylamino oder C₁-C₄-Alkoxycarbonyl substituiert ist;
- C₁-C₄-Alkyl, welches durch Cyan, C₁-C₄-Alkoxy, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen 5-oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S substituiert ist;
- C₁-C₃-Alkoxy;
- C₃-C₆-Alkenyl;
- C3-C8-Cycloalkyl;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan,
 C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiert ist; oder
- Naphthyl, welches unsubstituiert oder durch Nitro oder Methyl substituiert ist; und

R₁₀ - Wasserstoff;

- Amino;
- C₂-C₄-Dialkylamino;
- $C_1 C_6 A1ky1;$
- C,-C,-Alkyl, welches durch Hydroxy oder Cyan substituiert ist;
- C₂-C₆-Alkoxyalkyl;
- C₃-C₆-Alkenyl;
- C3-C6-Cycloalkyl; oder
- Phenyl;

oder worin R₉ und R₁₀ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring, welcher noch 1 oder 2 weitere Heteroatome aus der Gruppe N, O und S enthalten kann, bedeuten, oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden.

16. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in der Verbindung der Formel I R₁ Wasserstoff, Chlor, Jod oder Brom, R₂ Wasserstoff, R₃ Wasserstoff, Chlor, Jod, Brom, Nitro, Methyl oder Aethyl, R₄ Wasserstoff, R₅ Wasserstoff und R₆ Wasserstoff oder Methyl bedeuten, X die für Formel I angegebene Bedeutung hat und Y für einen umsubstituierten Oxazolin-2-yl-Rest, -COOR₇, -COSR₈ oder -CONR₉R₁₀ steht, worin

- R₇ Wasserstoff, ein Alkalimetallkation oder ein quaternäres Ammoniumkation ausgewählt aus der Gruppe Ammoniumkation, Trimethyl-, Triäthyl- und Tri-(2-hydroxyäthylen)-ammoniumkation;
 - C₁-C₁₈-Alkyl;
 - C₁-C₁₀-Alkyl, welches durch 1 oder 2 Hydroxygruppen substituiert ist:
 - C_1 - C_4 -Alkyl, welches durch 1 bis 3 Chlor- oder Bromatome, eine Nitrogruppe, eine Cyanogruppe, eine C_1 - C_4 -Alkoxygruppe, eine C_2 - C_8 -Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine Hydroxy- C_1 - C_4 -Alkoxygruppe, eine Hydroxy- C_2 - C_6 -Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine C_1 - C_4 -Alkoxycarbonylgruppe, eine Di- $(C_1$ - C_4 -Alkyl)-aminogruppe, einen Phenylrest, welcher unsubsti-

tuiert oder durch Chlor oder Methoxy substituiert ist, einen Cyclohexylrest, einen Furan-, Tetrahydrofuran-, Tetrahydro-pyran-, Pyridino-, Piperidino- oder Morpholinorest substituiert ist;

- C₃-C₁₀-Alkenyl;
- C₂-C₄-Alkinyl, welches unsubstituiert oder durch eine Hydroxygruppe substituiert ist;
- Cyclohexyl, welches unsubstituiert oder durch 1 oder 2 Methylgruppen substituiert ist;
- Phenyl, welches unsubstituiert oder durch 1 bis 2 Substituenten aus der Gruppe Chlor, Nitro, C₁-C₄-Alkyl oder Methoxy substituiert ist;
- Naphthyl; oder
- Pyridin,

 $R_8 - C_1 - C_{12} - A1ky1;$

- C₁-C₄-Alkyl, welches durch eine C₁-C₄-Alkoxycarbonylgruppe substituiert ist;
- Phenyl, welches unsubstituiert oder durch ein Chloratom substituiert ist,

R_q - Wasserstoff;

- C₁-C₁₈-Alkyl;
- C2-C8-Alkyl, welches durch eine Aminogruppe substituiert ist;
- C2-C6-Alkyl, welches durch eine Hydroxygruppe substituiert ist;
- C₂-C₄-Alky1, welches durch ein Chlor- oder Bromatom, eine C₁-C₄-Alky1aminogruppe, eine Di-(C₁-C₄-Alky1)-aminogruppe, eine C₁-C₄-Hydroxyalkylaminogruppe, eine Di-(C₁-C₃-Hydroxyalky1)-aminogruppe, eine C₁-C₄-Alkoxygruppe oder eine C₁-C₄-Alkoxy-carbonylgruppe substituiert ist;
- C₁-C₄-Alkyl, welches durch eine Cyanogruppe oder einen Phenylrest, welcher unsubstituiert oder durch Chlor substituiert ist,
 einen Furanyl-, Tetrahydrofuranyl-, Piperidino- oder Morpholinorest substituiert ist;
- C₁-C₃-Alkoxy;
- C₂-C₄-Alkenyl;
- Cyclohexyl, welches unsubstituiert oder durch eine Methylgruppe substituiert ist;
- Phenyl, welches unsubstituiert oder durch 1 oder 2 Substituenten aus der Gruppe Chlor, Nitro, Cyano, Methyl, Aethyl, Methoxy und Trifluormethyl substituiert ist, und

R₁₀ - Wasserstoff;

- C_1 - C_6 -Alkyl;
- C₁-C₄-Alkyl, welches durch eine Hydroxygruppe oder eine Cyanogruppe substituiert ist;
- C₂-C₄-Alkoxyalkyl;
- C2-C4-Alkenyl;
- Cyclohexyl; oder
- Phenyl, oder

R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen unsubstituierten oder durch 1 oder 2 Methylgruppen substituierten Piperidino-, Tetrahydropyrimidino-, Morpholino- oder Imidazolylrest bedeuten, oder X und Y zusammen einen unsubstituierten Tetrahydrofuran-2-on-3-yl-Ring bilden.

- 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass X für -CH $_2$ -steht, mit der Massgabe, dass, wenn gleichzeitig R $_1$ Wasserstoff, Chlor, Jod oder Brom, R $_2$ Wasserstoff, R $_3$ Wasserstoff, Chlor Brom, Nitro, Methyl oder Aethyl, R $_4$ und R $_5$ Wasserstoff, R $_6$ Wasserstoff oder Methyl und Y -COOR $_7$ oder -CONR $_9$ R $_{10}$ bedeuten,
- i) R_7 nicht Wasserstoff, unsubstituiertes oder durch Diäthylamino substituiertes C_1 - C_4 -Alkyl bedeutet und
- ii) R_g nicht für Wasserstoff, C_1 - C_4 -Alkyl, Allyl, unsubstituiertes oder p-Chlor-substituiertes Phenyl steht, wenn R_{10} Wasserstoff, C_1 - C_4 -Alkyl, Allyl oder Phenyl bedeutet und
- iii) R_9 und R_{10} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, nicht einen Morpholinring bilden.
- 18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass X für $-\text{CH}_2-\text{CH}_2$ steht, mit der Massgabe, dass, wenn R_1 , R_2 , R_3 , R_4 , R_5 und R_6 Wasserstoff und Y $-\text{COOR}_7$ bedeuten, R_7 nicht Wasserstoff ist.
- 19. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass X für -CH(CH $_3$)- steht, mit der Massgabe, dass, wenn gleichzeitig R $_1$ Wasserstoff oder Chlor, R $_2$ Wasserstoff, R $_3$ Wasserstoff oder Chlor, R $_4$ und R $_5$ Wasserstoff, R $_6$ Wasserstoff oder Methyl und Y -COOR $_7$ oder -CONR $_9$ R $_{10}$ bedeuten,
- i) R7 nicht für Aethyl steht und
- ii) R_9 nicht für Wasserstoff, Aethyl, sek.-Butyl oder Allyl steht, wenn R_{10} Wasserstoff, Aethyl, sek.-Butyl oder Allyl bedeutet.
- 20. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass X für -CH(A)-CH(E)- steht, worin eines der Symbole A und E Wasserstoff und das andere eine Methylgruppe bedeutet.

- 21. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass X für -CH₂-CH₂-CH₂-Steht, mit der Massgabe, dass, wenn gleichzeitig R₁,R₂, R₃, R₄,R₅ und R₆ Wasserstoff und Y -COOR₇ oder -CONR₉R₁₀ bedeuten, R₇ nicht Wasserstoff, Methyl oder Aethyl und R₉ und R₁₀ nicht beide Aethyl bedeuten.
- 22. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass X für $-CH(C_2H_5)$ steht.
- 23. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass X für -C(CH₃)₂-steht.
- 24. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-3-yl-Ring bilden.
- 25. Verfahren nach Anspruch 1 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Pflanzenschutzmitteln.
- 26. Verfahren nach Anspruch 25 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Herbiziden.
- 27. Verfahren nach Anspruch 26 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Diphenyläthern.
- 28. Verfahren nach Anspruch 26 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von substituierten Pyridyloxyphenoxypropion-säureestern.
- 29. Verfahren nach Anspruch 28 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von 2-[4-(3,5-Dichlorpyridy1-2-oxy)-phenoxy]-propionsäure-2-propinylester.
- 30. Verfahren nach Anspruch 26 zum Schützen von Getreide.

31. Verbindung der Formel I

worin

R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyan, Alkyl oder Alkoxy,

R₄, R₅ und R₆ unabhängig voneinander Wasserstoff, Halogen oder Alkyl, X einen aliphatischen, acyclischen, gesättigten Kohlenwasserstoffrest mit 1 bis 3 Kohlenstoffatomen und

Y eine Carboxylgruppe oder ein Salz davon, eine Mercaptocarbonylgruppe oder ein Salz davon, eine Carbonsäureestergruppe, eine Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder substituiertes Derivat einer Carbonsäureamidgruppe oder eine Carbonsäurehydrazidgruppe oder X und Y zusammen einen unsubstituierten oder substituierten Tetrahydrofuran-2-on-Ring

bedeuten, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe.

32. Verbindung nach Anspruch 31, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, -COOR $_7$, -COSR $_8$ oder -CONR $_9$ R $_{10}$ bedeutet, worin R_7 , R_8 und R_9 für Wasserstoff oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Phenyl- oder Naphthylrest oder einen gegebenenfalls substituierten heterocyclischen Rest oder R_7 und R_8 auch für ein Kation oder R_9 auch für einen Alkoxyrest und worin R_{10} für Wasserstoff, Amino, mono- oder disubstituiertes Amino oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Cycloalkyl- oder Phenylrest oder R_9 und R_{10}

gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Rest stehen, oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, unter Einschluss ihrer Säureadditionssalze und Metall-komplexe.

- 33. Verbindung nach Anspruch 32, dadurch gekennzeichnet, dass R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Y einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, -COOR₇, -COSR₈, oder -CONR₉R₁₀ bedeutet, worin R₇ und R₈ unabhängig voneinander
 - Wasserstoff oder ein Kation
 - Alkyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Hydroxy, Alkoxy, welches durch ein oder mehrere Sauerstoff- atome unterbrochen sein kann, Alkylthio, Halogenalkoxy, Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Hydroxyalkylthio, Alkoxycarbonyl, Dialkylamino, Cycloalkyl, gegebenenfalls substituiertes Phenoxy oder einen gegebenenfalls substituierten heterocyclischen Rest substituiert ist;
 - Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
 - Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
 - Cycloalkyl, welches unsubstituiert oder durch Halogen, Alkyl oder Alkoxy substituiert ist;
 - Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Alkyl, Alkoxy, Alkoxycarbonyl oder Halogenalkyl substituiert ist;
 - Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder Alkyl substituiert ist; oder
 - einen gegebenenfalls substituierten heterocyclischen Rest;
 - R Wasserstoff;
 - Alkyl, welches unsubstituiert oder durch Halogen, Cyan, Hydroxy,

- Amino, Alkylamino, Dialkylamino, Hydroxyalkylamino, Di-(hydroxyalkyl) amino, Aminoalkylamino, Alkoxy, Alkoxycarbonyl, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Alkyl oder Alkoxy substituiert ist, Cycloalkyl oder einen gegebenenfalls substituierten heterocyclischen Rest substituiert ist;
 - Alkoxy;
 - Alkeny1;
- Cycloalkyl:
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, Alkyl, Alkoxy oder Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Nitro oder Alkyl substituiert ist; oder
- einen gegebenenfalls substituierten heterocyclischen Rest; und R_{10} Wasserstoff;
 - Amino:
 - Dialkylamino;
 - Alkyl, welches unsubstituiert oder durch Hydroxy, Cyan oder Alkoxy substituiert ist:
 - Alkenyl:
 - Cycloalkyl; oder
 - Phenyl,

oder R₉ und R₁₀ gemeinsam mit dem Stickstollatom, an das sie gebunden sind, einen gegebenenfalls substituierten heterocyclischen Rest bedeuten, oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, unter Einschluss ihrer Säureadditions-salze und Metallkomplexe.

- 34. Verbindung nach Anspruch 33, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COOR $_7$ steht, worin
- R₇ Wasserstoff, ein Alkalimetall- oder ein quaternäres Ammoniumkation;
 - $C_{1} C_{18} A1ky1;$
 - C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy,

- C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
- C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
- C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- C_3 - C_8 -Cycloalkyl, welches unsubstituiert oder durch Halogen, C_1 - C_3 -Alkyl oder C_1 - C_3 -Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_2 -Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C₁-C₂-Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S bedeutet.
- 35. Verbindung nach Anspruch 33, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COSR $_8$ steht, worin

R_g - Wasserstoff;

- C₁-C₁₈-Alky1;
- C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls

substituiertes Phenoxy substituiert ist;

- C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
- C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- C₃-C₈-Cycloalkyl, welches unsubstituiert oder durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan,
 C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl oder C₁-C₂-Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder
 C₁-C₃-Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3...
 Heteroatomen aus der Gruppe N, O und S bedeutet.
- 36. Verbindung nach Anspruch 33, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -CONR₉ R_{10} steht, worin

R₉ - Wasserstoff;

- $-c_1-c_{18}-Alkyl;$
- C₂-C₈-Alkyl, welches durch Amino substituiert ist;
- C₂-C₆-Alkyl, welches durch Halogen, Hydroxy, C₁-C₆-Alkylamino, C₂-C₈-Dialkylamino, C₂-C₆-Hydroxyalkylamino, C₂-C₆-Di-(hydroxyalkyl)-amino, C₂-C₆-Aminoalkylamino oder C₁-C₄-Alkoxycarbonyl substituiert ist;
- C₁-C₄-Alkyl, welches durch Cyan, C₁-C₄-Alkoxy, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen 5-oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenen-

falls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S substituiert ist;

- C₁-C₃-Alkoxy;
- C₃-C₆-Alkenyl;
- C3-C8-Cycloalkyl;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan,
 C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiert ist; oder
- Naphthyl, welches unsubstituiert oder durch Nitro oder Methyl substituiert ist; und

R₁₀ - Wasserstoff;

- Amino:
- C₂-C₄-Dialkylamino;
- C_1 - C_6 -Alkyl;
- C₁-C₄-Alkyl, welches durch Hydroxy oder Cyan substituiert ist;
- C₂-C₆-Alkoxyalkyl;
- C₃-C₆-Alkenyl;
- C3-C6-Cycloalkyl; oder
- Phenyl;

oder worin R_9 und R_{10} zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring, welcher noch 1 oder 2 weitere Heteroatome aus der Gruppe N, O und S enthalten kann, bedeuten.

- 37. Verbindung nach Anspruch 33, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für einen gegebenenfalls substituierten Oxazolin-2-yl-Rest steht.
- 38. Verbindung nach Anspruch 33, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 und R_6 die für Formel I angegebenen Bedeutungen haben und X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden.

- 39. Verbindung nach Anspruch 34, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COOR, steht, worin
- R₇ Wasserstoff, ein Alkalimetallkation oder ein quaternäres Ammoniumkation ausgewählt aus der Gruppe Ammoniumkation, Trimethyl-, Triäthyl und Tri-(2-hydroxyäthylen)-ammoniumkation;
 - C1-C18-Alkyl;
 - C₁-C₁₀-Alkyl, welches durch 1 oder 2 Hydroxygruppen substituiert ist;
 - C₁-C₄-Alkyl, welches durch 1 bis 3 Chlor- oder Bromatome, eine Nitrogruppe, eine Cyanogruppe, eine C₁-C₄-Alkoxygruppe, eine C₂-C₈-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine Hydroxy-C₁-C₄-Alkoxygruppe, eine Hydroxy-C₂-C₆-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine C₁-C₄-Alkoxycarbonylgruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, einen Phenylrest, welcher unsubstituiert oder durch Chlor oder Methoxy substituiert ist, einen Cyclohexylrest, einen Furan-, Tetrahydrofuran-, Tetrahydropyran-, Pyridino-, Piperidino- oder Morpholinorest substituiert ist;
 - C₃-C₁₀-Alkenyl;
 - C₂-C₄-Alkinyl, welches unsubstituiert oder durch eine Hydroxygruppe substituiert ist;
 - Cyclohexyl, welches unsubstituiert oder durch 1 oder 2 Methylgruppen substituiert ist;
 - Phenyl, welches unsubstituiert oder durch 1 bis 2 Substituenten aus der Gruppe Chlor, Nitro, C₁-C₄-Alkyl oder Methoxy substituiert ist;
 - Naphthyl; oder
 - Pyridin

bedeutet.

40. Verbindung nach Anspruch 35, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -COSR₈ steht, worin

 $R_8 - C_1 - C_{12} - A1ky1;$

- C₁-C₄-Alkyl, welches durch eine C₁-C₄-Alkoxycarbonylgruppe substituiert ist; oder
- Phenyl, welches unsubstituiert oder durch ein Chloratom substituiert ist,

bedeutet.

41. Verbindung nach Anspruch 36, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für -CONR₉ R_{10} steht, worin

R_q - Wasserstoff;

- $-C_{1}-C_{18}-Alky1;$
- C₂-C₂-Alkyl, welches durch eine Aminogruppe substituiert ist;
- C2-C6-Alkyl, welches durch eine Hydroxygruppe substituiert ist;
- C₂-C₄-Alkyl, welches durch ein Chlor- oder Bromatom, eine C₁-C₄-Alkylaminogruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, eine C₁-C₄-Hydroxyalkylaminogruppe, eine Di-(C₁-C₃-Hydroxyalkyl)-aminogruppe, eine C₁-C₄-Alkoxygruppe oder eine C₁-C₄-Alkoxycarbonyl-gruppe substituiert ist;
- C₁-C₄-Alkyl, welches durch eine Cyanogruppe oder einen Phenylrest, welcher unsubstituiert oder durch Chlor substituiert ist, einen Furanyl-, Tetrahydrofuranyl-, Piperidino- oder Morpholinorest substituiert ist;
- C_1 - C_3 -Alkoxy;
- C₂-C₄-Alkenyl;
- Cyclohexyl, welches unsubstituiert oder durch eine Methylgruppe substituiert ist; oder
- Phenyl, welches unsubstituiert oder durch 1 oder 2 Substituenten aus der Gruppe Chlor, Nitro, Cyano, Methyl, Aethyl, Methoxy und Trifluormethyl substituiert ist;

R₁₀ - Wasserstoff:

- C_1 - C_6 -Alkyl;
- C₁-C₄-Alkyl, welches durch eine Hydroxygruppe oder eine Cyanogruppe substituiert ist;
- C₂-C₄-Alkoxyalkyl;
- C₂-C₄-Alkenyl;
- Cyclohexyl; oder
- Phenyl, oder

R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen unsubstituierten oder durch 1 oder 2 Methylgruppen substituierten Piperidino-, Tetrahydropyrimidino-, Morpholino- oder Imidazolylrest bedeuten.

- 42. Verbindung nach Anspruch 37, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und Y für einen unsubstituierten Oxazolin-2-yl-Rest steht.
- 43. Verbindung nach Anspruch 38, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 und R_6 die für Formel I angegebenen Bedeutungen haben und X und Y zusammen einen unsubstituierten Tetrahydrofuran-2-on-Ring bilden.
- 44. Verbindung nach Anspruch 43, dadurch gekennzeichnet, dass R_1 , R_2 , R_3 , R_4 , R_5 und R_6 die für Formel I angegebenen Bedeutungen haben und X und Y zusammen einen unsubstituierten Tetrahydrofuran-2-on-3-yl-Ring bilden.
- 45. Verbindung nach Anspruch 31, dadurch gekennzeichnet, dass R_1 , R_2 und R_3 unabhängig voneinander Wasserstoff, Halogen, Nitro, oder C_1 – C_3 –Alkyl und R_4 , R_5 und R_6 unabhängig voneinander Wasserstoff oder C_1 – C_3 –Alkyl bedeuten, X die für Formel I angegebene Bedeutung hat und Y für einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, -COOR $_7$, -COSR $_8$ oder -CONR $_9$ R $_{10}$ steht worin
- R₇ Wasserstoff, ein Alkalimetall-oder ein quaternäres Ammoniumkation;

- $-c_{1}-c_{18}-Alkyl;$
- C₁-C₁-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy, C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy, C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
- C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
- C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- C₃-C₈-Cycloalkyl, welches unsubstituiert oder durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, $C_1^{-C_4^{-Alkyl}}$, $C_1^{-C_4^{-Alkoxy}}$, $C_1^{-C_4^{-Alkoxy}}$, $C_1^{-C_4^{-Alkoxy}}$ oder $C_1^{-C_2^{-Alkoxy}}$ Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C_1 - C_3 -Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S;
- R₈ Wasserstoff;
 - C1-C18-Alkyl;
 - C₁-C₁₀-Alkyl, welches durch Halogen, Nitro, Cyan, Hydroxy,

 C₁-C₈-Alkoxy, welches durch ein oder mehrere Sauerstoffatome

 unterbrochen sein kann, C₁-C₄-Alkylthio, C₂-C₆-Halogenalkoxy,

 C₂-C₆-Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoff-

- atome unterbrochen sein kann, C₂-C₆-Hydroxyalkylthio, C₁-C₄-Alkoxycarbonyl, C₂-C₁₂-Dialkylamino oder durch gegebenenfalls substituiertes Phenoxy substituiert ist;
- C₁-C₆-Alkyl, welches durch Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen gegebenenfalls substituierten, gesättigten oder ungesättigten heterocyclischen Rest mit 1 bis 3 Heteroatomen substituiert ist;
- C₃-C₁₀-Alkenyl, welches unsubstituiert oder durch Halogen oder gegebenenfalls substituiertes Phenyl substituiert ist;
- C₃-C₆-Alkinyl, welches unsubstituiert oder durch Halogen oder Hydroxy substituiert ist;
- C₃-C₈-Cycloalkyl, welches unsubstituiert oder durch Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxycarbonyl oder C_1 - C_2 -Halogenalkyl substituiert ist;
- Naphthyl, welches unsubstituiert oder durch Halogen, Nitro oder C_1 - C_3 -Alkyl substituiert ist; oder
- einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S,

R₉ - Wasserstoff;

- c₁-c₁₈-Alkyl;
- C2-C8-Alkyl, welches durch Amino substituiert ist;
- C₂-C₆-Alkyl, welches durch Halogen, Hydroxy, C₁-C₆-Alkylamino, C₂-C₈-Dialkylamino, C₂-C₆-Hydroxyalkylamino, C₂-C₆-Di-(hydroxyalkyl)-amino, C₂-C₆-Aminoalkylamino oder C₁-C₄-Alkoxycarbonyl substituiert ist;
- C₁-C₄-Alkyl, welches durch Cyan, C₁-C₄-Alkoxy, Phenyl, welches unsubstituiert oder durch Halogen, Nitro, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl oder einen 5-oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring mit 1 bis 3 Hetero-

atomen aus der Gruppe N, O und S substituiert ist;

- C₁-C₃-Alkoxy;
- C₃-C₆-Alkenyl;
- C₃-C₈-Cycloalkyl;
- Phenyl, welches unsubstituiert oder durch Halogen, Nitro, Cyan, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder C_1 - C_2 -Halogenalkyl substituiert ist; oder
 - Naphthyl, welches unsubstituiert oder durch Nitro oder Methyl substituiert ist; und

R₁₀ - Wasserstoff;

- Amino;
- C₂-C₄-Dialkylamino;
 - $C_1 C_6 A1ky1;$
 - C₁-C₄-Alkyl, welches durch Hydroxy oder Cyan substituiert ist;
 - C₂-C₆-Alkoxyalkyl;
 - C₃-C₆-Alkenyl;
 - C₃-C₆-Cycloalkyl; oder
 - Phenyl;

oder worin R₉ und R₁₀ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen, gesättigten oder ungesättigten, gegebenenfalls substituierten heterocyclischen Ring, welcher noch 1 oder 2 weitere Heteroatome aus der Gruppe N, 0 und S enthalten kann, bedeuten, oder X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden.

- 46. Verbindung nach Anspruch 31, dadurch gekennzeichnet, dass R_1 Wasserstoff, Chlor, Jod oder Brom, R_2 Wasserstoff, R_3 Wasserstoff, Chlor, Jod, Brom, Nitro, Methyl oder Aethyl, R_4 Wasserstoff, R_5 Wasserstoff und R_6 Wasserstoff oder Methyl bedeuten, X die für Formel I angegebene Bedeutung hat und Y für einen unsubstituierten Oxazolin-2-yl-Rest, -COOR₇, -COSR₈ oder -CONR₉ R_{10} steht, worin
- R₇ Wasserstoff, ein Alkalimetallkation oder ein quaternäres Ammoniumkation, ausgewählt aus der Gruppe Ammoniumkation, Trimethyl-, Triäthyl- und Tri-(2-hydroxyäthylen)-ammoniumkation;

- C₁-C₁₈-Alkyl;
- C₁-C₁₀-Alkyl, welches durch 1 oder 2 Hydroxygruppen substituiert ist;
- C₁-C₄-Alkyl, welches durch 1 bis 3 Chlor- oder Bromatome, eine Nitrogruppe, eine Cyanogruppe, eine C₁-C₄-Alkoxygruppe, eine C₂-C₈-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine Hydroxy-C₁-C₄-Alkoxygruppe, eine Hydroxy-C₂-C₆-Alkoxygruppe, welche durch 1 oder 2 Sauerstoffatome unterbrochen ist, eine C₁-C₄-Alkoxycarbonylgruppe, eine Di-(C₁-C₄-Alkyl)-aminogruppe, einen Phenylrest, welcher unsubstituiert oder durch Chlor oder Methoxy substituiert ist, einen Cyclohexylrest, einen Furan-, Tetrahydrofuran-, Tetrahydropyran-, Pyridino-, Piperidino- oder Morpholinorest substituiert ist;
- C₃-C₁₀-Alkenyl;
- C₂-C₄-Alkinyl, welches unsubstituiert oder durch eine Hydroxygruppe substituiert ist;
- Cyclohexyl, welches unsubstituiert oder durch 1 oder 2 Methylgruppen substituiert ist;
- Phenyl, welches unsubstituiert oder durch 1 bis 2 Substituenten aus der Gruppe Chlor, Nitro, C₁-C₄-Alkyl oder Methoxy substituiert ist;
- Naphthyl; oder
- Pyridin,
- $R_8 C_1 C_{12} A1ky1;$
 - C₁-C₄-Alkyl, welches durch eine C₁-C₄-Alkoxycarbonylgruppe substituiert ist;
 - Phenyl, welches unsubstituiert oder durch ein Chloratom substituiert ist,
- R_o Wasserstoff;
 - $C_{1} C_{18} A1ky1;$
 - C₂-C₈-Alkyl, welches durch eine Aminogruppe substituiert ist;
 - C₂-C₆-Alkyl, welches durch eine Hydroxygruppe substituiert ist;

- C2-C4-Alkyl, welches durch ein Chlor- oder Bromatom, eine
 C1-C4-Alkylaminogruppe, eine Di-(C1-C4-Alkyl)-aminogruppe, eine
 C1-C4-Hydroxyalkylaminogruppe, eine Di-(C1-C3-Hydroxylalkyl)aminogruppe, eine C1-C4-Alkoxygruppe oder eine C1-C4-Alkoxycarbonylgruppe substituiert ist;
- C₁-C₄-Alkyl, welches durch eine Cyanogruppe oder einen Phenylrest, welcher unsubstituiert oder durch Chlor substituiert ist,
 einen Furanyl-, Tetrahydrofuranyl-, Piperidino- oder Morpholinorest substituiert ist;
- C_1 - C_3 -Alkoxy;
- C₂-C₄-Alkenyl;
- Cyclohexyl, welches unsubstituiert oder durch eine Methylgruppe substituiert ist;
- Phenyl, welches unsubstituiert oder durch 1 oder 2 Substituenten aus der Gruppe Chlor, Nitro, Cyano, Methyl, Aethyl, Methoxy und Trifluormethyl substituiert ist, und

R₁₀ - Wasserstoff;

- $C_1 C_6 Alkyl;$
- C₁-C₄-Alkyl, welches durch eine Hydroxygruppe oder eine Cyanogruppe substituiert ist;
- C2-C4-Alkoxyalkyl;
- C₂-C₄-Alkenyl;
- Cyclohexyl; oder
- Phenyl, oder

R₉ und R₁₀ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen unsubstituierten oder durch 1 oder 2 Methylgruppen substituierten Piperidino-, Tetrahydropyrimidino-, Morpholino- oder Imidazolylrest bedeuten, oder X und Y zusammen einen unsubstituierten Tetrahydrofuran-2-on-3-yl-Ring bilden.

47. Verbindung nach Anspruch 46, dadurch gekennzeichnet, dass X für $-CH_2$ - steht, mit der Massgabe, dass, wenn gleichzeitig R_1 Wasserstoff, Chlor, Jod oder Brom, R_2 Wasserstoff, R_3 Wasserstoff, Chlor, Brom, Nitro, Methyl oder Aethyl, R_4 und R_5 Wasserstoff, R_6 Wasserstoff oder

Methyl und Y -COOR₇ oder -CONR₉R₁₀ bedeuten,

- i) R_7 nicht Wasserstoff, unsubstituiertes oder durch Diäthylamino substituiertes C_1 - C_4 -Alkyl bedeutet und
- ii) R_9 nicht für Wasserstoff, C_1 - C_4 -Alkyl, Allyl, unsubstituiertes oder p-Chlor-substituiertes Phenyl steht, wenn R_{10} Wasserstoff, C_1 - C_4 -Alkyl, Allyl oder Phenyl bedeutet und
- iii) R_9 und R_{10} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind , nicht einen Morpholinring bilden.
- 48. Verbindung nach Anspruch 46, dadurch gekennzeichnet, dass X für $-\text{CH}_2-\text{CH}_2$ steht, mit der Massgabe, dass, wenn R₁, R₂, R₃, R₄, R₅ und R₆ Wasserstoff und Y $-\text{COOR}_7$ bedeuten, R₇ nicht Wasserstoff ist.
- 49. Verbindung nach Anspruch 46, dadurch gekennzeichnet, dass X für $-\text{CH}(\text{CH}_3)$ steht, mit der Massgabe, dass, wenn gleichzeitig R_1 Wasserstoff oder Chlor, R_2 Wasserstoff, R_3 Wasserstoff oder Chlor, R_4 und R_5 Wasserstoff, R_6 Wasserstoff oder Methyl und Y $-\text{COOR}_7$ oder $-\text{CONR}_9R_{10}$ bedeuten,
- i) R_7 nicht für Aethyl steht und
- ii) R_9 nicht für Wasserstoff, Aethyl, sek.-Butyl oder Allyl steht, wenn R_{10} Wasserstoff, Aethyl, sek.-Butyl oder Allyl bedeutet.
- 50. Verbindung nach Anspruch 46, dadurch gekennzeichnet, dass X für -CH(A)-CH(E)- steht, worin eines der Symbole A und E Wasserstoff und das andere eine Methylgruppe bedeutet.
- 51. Verbindung nach Anspruch 46, dadurch gekennzeichnet, dass X für $^{-\text{CH}_2-\text{CH}_2-\text{CH}_2}$ steht, mit der Massgabe, dass, wenn gleichzeitig R_1 , R_2 , R_3 , R_4 , R_5 und R_6 Wasserstoff und Y $^{-\text{COOR}_7}$ oder $^{-\text{CONR}_9}R_{10}$ bedeuten, R_7 nicht Wasserstoff, Methyl oder Aethyl und R_9 und R_{10} nicht beide Aethyl bedeuten.
- 52. Verbindung nach Anspruch 46, dadurch gekennzeichnet, dass X für -CH(${\rm C_2H_5}$)- steht.

المراقع المستعدد والمستعدد والمستعد والمستعدد والمستعدد

- 53. Verbindung nach Anspruch 46, dadurch gekennzeichnet, dass X für -C(CH₃)₂- steht.
- 54. Verbindung nach Anspruch 46, dadurch gekennzeichnet, dass X und Y zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden.
- 55. Mittel zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien, dadurch gekennzeichnet, dass es als aktive Komponente eine Verbindung der Formel I nach Anspruch 31 enthält.
- 56. Mittel nach Anspruch 55, dadurch gekennzeichnet, dass es die aktive Komponente zusammen mit Trägermaterial und/oder inerten Zuschlagstoffen enthält.
- 57. Mittel nach Anspruch 55, dadurch gekennzeichnet, dass es als aktive Komponente eine Verbindung der Formel I wie im Anspruch 1 definiert, zusammen mit einem Herbizid enthält.
- 58. Mittel nach Anspruch 57, dadurch gekennzeichnet, dass es als Herbizid einen Diphenyläther enthält.
- 59. Mittel nach Anspruch 57, dadurch gekennzeichnet, dass es als Herbizid einen substituierten Pyridyloxyphenoxypropionsäureester enthält.
- 60. Mittel nach Anspruch 59, dadurch gekennzeichnet, dass es als Herbizid 2-[4-(3,5-Dichlorpyridyl-2-oxy)-phenoxy]-propionsäure-2-propinylester enthält.
- 61. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, dadurch gekennzeichnet, dass man eine Verbindung der

Formel II

worin R₁, R₂, R₃, R₄, R₅ und R₆ die für Formel I angegebenen Bedeutungen haben und M für Wasserstoff, ein Alkali- oder Erdalkalimetallatom steht, mit einer Verbindung der Formel III

$$z - x - y$$
 (III),

worin X und Y die für Formel I angegebenen Bedeutungen haben und Z für einen abspaltbaren Rest steht, umsetzt.

62. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, in denen Y für -COOR, steht, dadurch gekennzeichnet, dass man ein Säurehalogenid der Formel IV

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Hal für ein Halogenatom steht, mit einer Verbindung der Formel V

$$M' - O - R_7$$
 (V),

worin R₇ die für Formel I angegebene Bedeutung hat und M' für Wasserstoff, ein Alkali- oder Erdalkalimetallatom steht, umsetzt.

63. Verfahren zur Herstellung von Verbindungen der Formel I nach-Anspruch 31, in denen Y für -COSR₈ steht, dadurch gekennzeichnet, dass man ein Säurehalogenid der Formel VI

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Hal für ein Halogenatom steht, mit einer Verbindung der Formel VII

$$M'' - S - R_{Q} \qquad (VII),$$

worin R₈ die für Formel I angegebene Bedeutung hat und M'' für Wasserstoff, ein Alkali- oder Erdalkalimetallatom steht, umsetzt.

64. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, in denen Y für -CONR₉R₁₀ steht, dadurch gekennzeichnet, dass man ein Säurehalogenid der Formel VIII

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Hal für ein Halogenatom steht, mit einer Verbindung der Formel IX

$$HNR_9R_{10}$$
 (IX),

worin R_9 und R_{10} die für Formel I angegebenen Bedeutungen haben, umsetzt.

65. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, in denen Y für -COOR, steht, dadurch gekennzeichnet, dass man eine Verbindung der Formel X

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Me für ein Alkalimetall-, Erdalkalimetall-, Bleioder Silberatom steht, mit einer Verbindung der Formel XI

$$Hal - R_7 \qquad (XI),$$

worin R_7 die für Formel I angegebene Bedeutung hat und Hal für ein Halogenatom steht, umsetzt.

66. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, in denen Y für -COSR₈ steht, dadurch gekennzeichnet, dass man eine Verbindung der Formel XII

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Me' für ein Alkalimetall-, Erdalkalimetall-, Bleioder Silberatom steht, mit einer Verbindung der Formel XIII

$$Hal - R_8$$
 (XIII)

worin R_8 die für Formel I angegebene Bedeutung hat und Hal für ein Halogenatom steht, umsetzt.

67. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, worin Y für -COOR, steht, dadurch gekennzeichnet, dass man

. eine Verbindung der Formel XIV

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben, mit einer Verbindung der Formel XV

$$HO - R_7$$
 (XV),

worin R7 die für Formel I angegebene Bedeutung hat, umsetzt.

68. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, worin Y für -COSR₈ steht, dadurch gekennzeichnet, dass man eine Verbindung der Formel XVI

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben, mit einer Verbindung der Formel XVII

$$HO - R_g$$
 (XVII),

worin R₈ die für Formel I angegebene Bedeutung hat, umsetzt.

69. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, in denen Y für -COOR, steht, dadurch gekennzeichnet, dass man eine Verbindung der Formel Ia

worin R_1 , R_2 , R_3 , R_4 , R_5 , R_6 und X die für Formel I angegebenen Bedeutungen haben und R_7 die für R_7 in Formel I angegebene Bedeutung hat, mit einer Verbindung der Formel XVIII

$$HO - R_7''$$
 (XVIII),

worin $R_7^{\prime\prime}$ die für R_7 in Formel I angegebene Bedeutung hat und nicht mit $R_7^{\prime\prime}$ identisch ist, umsetzt.

70. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, in denen Y für -COSR₈ steht, dadurch gekennzeichnet, dass man eine Verbindung der Formel Ib

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und R₈ die für R₈ in Formel I angegebene Bedeutung hat, mit einer Verbindung der Formel XIX

worin $R_8^{\prime\prime}$ die für R_8 in Formel I angegebene Bedeutung hat und nicht mit R_8^{\prime} identisch ist, umsetzt.

71. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, worin Y für -CONR₉R₁₀ steht, dadurch gekennzeichnet, dass

man eine Verbindung der Formel XX

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und R' für einen aliphatischen, acyclischen Kohlenwasserstoffrest steht, mit einer Verbindung der Formel XXI

worin R_9 und R_{10} die für Formel I angegebenenen Bedeutungen haben, umsetzt.

72. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, in denen X für -CH₂CH₂- steht, dadurch gekennzeichnet, dass man eine Verbindung der Formel XXII

worin R₁, R₂, R₃, R₄, R₅ und R₆ die für Formel I angegebenen Bedeutungen haben, mit einer Verbindung der Formel XXIII

$$CH_2 = CH - Y$$
 (XXIII),

worin Y die für Formel I angegebene Bedeutung hat, umsetzt.

73. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 31, in denen Y für einen gegebenenfalls substituierten Oxazolin-2-yl-Rest steht, dadurch gekennzeichnet, dass man eine Verbindung der Formel XXIV

worin R₁, R₂, R₃, R₄, R₅, R₆ und X die für Formel I angegebenen Bedeutungen haben und Hal für ein Halogenatom, insbesondere ein Chlor- oder Bromatom steht, in Gegenwart eines säurebindenden Mittels cyclisiert.

- 74. Verfahren zur Ertragssteigerung von Kulturpflanzen, dadurch gekennzeichnet, dass man Kulturpflanzen oder Samen dieser Pflanzen mit einer Verbindung der Formel I gemäss Anspruch 31 behandelt.
- 75. Verfahren zur Förderung des Wurzelwachstums von Kulturpflanzen, dadurch gekennzeichnet, dass man Samen der Kulturpflanzen mit einer Verbindung der Formel I gemäss Anspruch 31 behandelt.

FO 7.5/SES/mg*/we*

(1) Veröffentlichungsnummer:

0 094 349

A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 83810186.3

(6) Int. Cl.4: C 07 D 215/26 C 07 D 215/28, A 01 N 43/42

(22) Anmeldetag: 02.05.83

(30) Priorität: 07.05.82 CH 2841/82

(43) Veröffentlichungstag der Anmeldung: 16.11.83 Patentblatt 83/46

(88) Veröffentlichungstag des später veröffentlichten Recherchenberichts: 23.01.85

84) Benannte Vertragsstaaten: AT BE CH DE FR IT LI NL SE 71) Anmelder: CIBA-GEIGY AG Postfach CH-4002 Basel(CH)

(72) Erfinder: Hubele, Adolf, Dr. Obere Egg 9 CH-4312 Magden(CH)

(M) Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen.

(57) Beim Verfahren zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Agrarchemikalien werden Chinolinderivate der Formel

bedueten, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe, oder Mittel, welche solche Derivate enthalten, eingesetzt. Es werden auch neue Chinolinderivate und ihre Herstellung beschrieben.

worin

R₁, R₂ und R₃ unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyan, Alkyl oder Alkoxy,

R., R. und R. unabhängig voneinander Wasserstoff, halogen oder Alkyl, X einen aliphatischen, acyclischen, gesättigten Kohlenwasserstoffrest mit 1 bis 3 Kohlenstoffatomen und

Y eine Carboxylgruppe oder ein Salz davon, eine mercaptocarbonyigruppe oder ein Salz davon, eine carbonsäureestergruppe, eine Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder substituiertes Derivat einer Carbonsäureamidgruppe oder eine Carbonsäurehydrazidgruppe oder

X und Y zusammen einen unsubstituierten oder substituierten tetrahydrofuran-2-on-Ring

EUROPÄISCHER RECHERCHENBERICHT

83 81 0186 EP

EINSCHLÄGIGE DOKUMENTE								
ategorie	Kennzeichnung des Dokuments der maßge	s mit Angabe, soweit erforderlich. blichen Teile		etrifft spruch		SSIFIKA		
x	DE-A-2 546 845 * Ansprüche 1, 2	(BASF) ; Beispiel 1 *	1.	, 55	CCC	07 D 07 D 07 D 07 D 07 D	21 40 40	5/2 1/1 5/1
A	US-A-3 351 525 * Anspruch 1 *	(E. HODEL)	1			01 N		
A	Chemical Abstrac 9, 3 September 1 Ohio, USA; M. LE "Derivatives of 8-hydroxyquinoli 350, Spalte 2, A 53154r & Tr. Nau KhimFarm. Inst Seiten 135-145	973, Columbus, VI et al. ne III", Seite bstract Nr. chnoizsled.	1					
				-		RECHER CHGEBIE		
				Ì			,	
					0000	01 1 07 1 07 1 07 1 07 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15/2 15/2 01/1 05/1
D	er vorliegende Recherchenbericht wur	de für alle Patentansprüche erstellt.						
	Recherchenort BERLIN	Abschlußdatum der Recherche 03-10-1984		KNAA	CK M	Prüfer		
X : \ Y . \ A 1	KATEGORIE DER GENANNTEN Di von besonderer Bedeutung allein it von besonderer Bedeutung in Vert anderen Veröffentlichung derselbe lechnologischer Hintergrund nichtschriftliche Offenbarung Zwischenliteratur der Erfindung zugrunde liegende 1	petrachtet nac pindung mit einer D: in d en Kategorie L: aus	h dem A er Anm andern	entdokum Anmeldedi eldung an Gründen er gleicher es Dokume	atum ve igeführi angefü	roffentli tes Doki ihrtes D	icht w ument okum	orden ! ent

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

— BEACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.