Wu Zheyu (A0186111N) Shivam Bansal (A0186742W)

(a) Dickey-Fuller Tests

- (i) No, the ACF is not decaying that fast to zero
- (ii) Null hypothesis is the time series can be represented by a unit root, that it is not stationary. It cannot be rejected.(p-value=0.63) It is non-stationary

ADF Statistic: -0.146679

p-value: 0.633396 Critical Values: 1%: -2.569 5%: -1.941 10%: -1.616

(iv) We cannot reject the null hypothesis(p-value=0.63) which means it is not stationary

ADF Statistic: -1.289240

p-value: 0.634081 Critical Values:

> 1%: -3.440 5%: -2.866 10%: -2.569

(v) We will reject the null hypothesis (p-value=0) which means that it is stationary when we try the first differences.

ADF Statistic: -6.130658

p-value: 0.000000 Critical Values:

1%: -3.447 5%: -2.869 10%: -2.571

(b) ARIMA Modelling

1. Gold - ACF and PACF

2. DLOG - ACF and PACF

3. Estimations using Different Models :

RSS 0.4877778915736305

3.1 MA(1)

Model 1 : MAl			22012				
			ARMA Mo		ults ========		
Dep. Variable			Gold		Observations:		408
Model:		ARM			Likelihood		793.846
Method:					of innovations		0.035
Date:	Wed	. 13 1	Feb 2019				-1581.692
Time:			20:54:21				-1569.658
Sample:			0	HQIC			-1576.930
	coef	std e	====== err	z	P> z	[0.025	0.975]
const	0.0033	0.0	002	1.659	0.098	-0.001	0.007
					0.001		
			77	oots			
	Real		Imagi		Modulus		Frequency
	-5.8473		+0.0	000j	5.8473		0.5000
MA.1							
0.15 - 0.10 - 0.05 - 0.00 -							

3.2 ARMA (2,0)

		-2.92					
Real		Im	agina	ry	Modulus		Frequency
			Roo	ts			
-0.1104	0.	.049	-2	.241	0.026	-0.207	-0.014
0.1529	0.	.049	3	.100	0.002	0.056	0.250
0.0033	0	.002	1	.874	0.062	-0.000	0.007
coef	std	err		z	P> z	[0.025	0.975
	.====						
			0				-1576.390
nec							-1566.694
Was					1 innovations		-1582.739
							795.369
							408
	coef 0.0033 0.1529 -0.1104	Coef std 0.0033 0 0.1529 0 -0.1104 0	ARMA(2, css- Wed, 13 Feb 2 20:25 coef std err 0.0033 0.002 0.1529 0.049 -0.1104 0.049	ARMA(2, 0)	ARMA(2, 0) Log Li css-mle S.D. o Wed, 13 Feb 2019 AIC 20:25:08 BIC 0 HQIC coef std err z 0.0033 0.002 1.874 0.1529 0.049 3.100 -0.1104 0.049 -2.241 Roots	ARMA(2, 0) Log Likelihood css-mle S.D. of innovations Wed, 13 Feb 2019 AIC 20:25:08 BIC 0 HQIC coef std err z P> z 0.0033 0.002 1.874 0.062 0.1529 0.049 3.100 0.002 -0.1104 0.049 -2.241 0.026 Roots	ARMA(2, 0) Log Likelihood css-mle S.D. of innovations Wed, 13 Feb 2019 AIC 20:25:08 BIC 0 HQIC coef std err z P> z [0.025] 0.0033 0.002 1.874 0.062 -0.000 0.1529 0.049 3.100 0.002 0.056 -0.1104 0.049 -2.241 0.026 -0.207 Roots

Residual Plot

RSS 0.48414199711977257

3.3 ARMA (0,2)

Dep. Variabl	e:	G	old No.	Observations:		40
Model:		ARMA(0,	2) Log	Likelihood		795.25
Method:		css-	mle S.D.	of innovatio	ns	0.03
Date:	Wed	i, 13 Feb 2	019 AIC			-1582.51
Time:		20:25	:09 BIC			-1566.46
Sample:			0 HQIC			-1576.16
	0.0033 0.1533 -0.0809	0.002 0.049 0.048	1.824 3.102 -1.688	0.069 0.002 0.092	-0.000 0.056 -0.175	0.00 0.25 0.01
			Roots			
	Real	Im	aginary	Modul	us	Frequency
MA.1	-2.6942	+	0.0000j	2.69	42	0.5000
MA.2	4.5896	4	0.00005	4.58	96	0.0000

Residual Plot

RSS 0.4844080606887626

3.4 ARMA (1,0)

ARMA Model Results

Dep. Variable:	Gold	No. Observations:	408
Model:	ARMA(1, 0)	Log Likelihood	792.873
Method:	css-mle	S.D. of innovation	s 0.035
Date: Wed,	13 Feb 2019	AIC	-1579.746
Time:	20:25:09	BIC	-1567.712
Sample:	0	HQIC	-1574.984
coef	std err	z P> z	[0.025 0.975]
coef	std err	z P> z	[0.025 0.97

	coef	std err	z	P> z	[0.025	0.975]
const	0.0033	0.002	1.671	0.095	-0.001	0.007
ar.Ll.Gold	0.1378	0.049	2.803	0.005	0.041	0.234
			Roots			

	Real	Imaginary	Modulus	Frequency
AR.1	7.2568	+0.0000j	7.2568	0.0000

Residual Plot

RSS 0.4900916271131731

100

3.5 ARMA (1,1)

F			d No. Ob	No. Observations:			
Model:	ARMA(1, 1)					794.85	
Method:				S.D. of innovations			
Date:	Wed	i, 13 Feb 201	019 AIC			-1581.703	
lime:		20:25:1				-1565.65	
Sample:			0 HQIC			-1575.35	
		std err		P> z	[0.025	0.975	
const		0.002		0.083	-0.000	0.00	
ar.Ll.Gold							
na.Ll.Gold	0.4788	0.204	2.349	0.019	0.079	0.87	
			Roots				
	Real	Imag		Modulus	3	Frequency	
AR.1	-3.1599	+0.	0000j	3.1599		0.5000	
MA.1	-2.0885	+0.	0000j	2.0885	5	0.5000	
Residual Plot							
4A.1	-3.1599 -2.0885	Imag +0.	inary 0000j	3.1599	·	0.5	

RSS 0.4853739591685967

Comparisons

	RSS	AIC	HQ
ARMA(0, 1)	0.487	-1581.692	-1576.930
ARMA(2,0)	0.484	-1582.739	-1576.390
ARMA(0,2)	0.484	-1582.513	-1576.164
ARMA(1,0)	0.490	-1579.746	-1574.984
ARMA (1,1)	0.485	-1581.703	-1575.354

Static Forecasts

We expected the price to first fluctuate for a while then drop a little bit.

Dynamic Forecasts

Do you expect gold prices to go up or down in the next 12 months?

By looking at the forecasting results, gold prices are likely to go down in the next 12 months.

Static Forecasts does not take time effect in forecasting the next predictions. In dynamic forecasts, the predicted values for current months are used to predict the values for next month.