# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

# TECHNICAL NOTE

No. 1444

DEVELOPMENT OF CAST ALUMINUM ALLOYS FOR

ELEVATED-TEMPERATURE SERVICE

By Webster Hodge, L. W. Eastwood, C. H. Lorig, and H. C. Cross

Battelle Memorial Institute

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited



Washington

January 1948

Reproduced From Best Available Copy 20000807 192

AGM 00-11-3634

# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

#### TECHNICAL NOTE NO. 1444

# DEVELOPMENT OF CAST ALUMINUM ALLOYS FOR

#### ELEVATED-TEMPERATURE SERVICE

By Webster Hodge, L. W. Eastwood, C. H. Lorig, and H. C. Cross

#### SUMMARY

An experimental investigation was conducted to develop an aluminum alloy for service at elevated temperatures. The development work was divided into three parts to determine: (1) The effects of heat treatment and exposure to elevated temperatures on the tensile properties of the various alloys subsequently cooled to room temperature; (2) the effect of various alloy additions on the room-temperature and elevated-temperature properties of aluminum, 6-percent-magnesium alloys; and (3) the improvement in high-temperature creep properties of some of the optimum compositions.

From the results of the investigation an experimental alloy that appeared to be optimum was found. The composition of this alloy and an approximate comparison of its properties with two commercial alloys are presented in tabular form.

#### INTRODUCTION

This report contains a brief review of the work done and the results obtained on the investigations leading to the development of an aluminum alloy for service at elevated temperatures. At the start of the investigation it was known that the aluminum alloys containing a substantial amount of magnesium have good high-temperature strength, but their thermal conductivities are lower than that of Y alloy. Because it was believed that the intended applications were of such a nature that heat dissipation would be a relatively unimportant factor, the object of the investigation was directed toward the development of an aluminum-magnesium alloy having mechanical properties substantially superior to other aluminum alloys now employed for service at elevated temperature.

More specifically, the object of the investigation was to develop an aluminum alloy with about 6 percent magnesium which has substantially better tensile properties than Alcoa 142, otherwise known as Y alloy, and

having better resistance to creep at elevated temperatures than the existing commercial or known experimental aluminum-base alloys containing magnesium in substantial amounts.

This work was conducted at Battelle Memorial Institute under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics.

#### GENERAL PROCEDURE

An alloy of aluminum containing 6 percent magnesium was employed as a base material and the development work was divided into three major portions. The first portion of the alloy development was concerned with the effects of heat treatment and the effects of exposure to elevated temperatures on the tensile properties of the various alloys subsequently cooled to room temperature. This phase of the work was confined to aluminum alloys containing 6 percent magnesium with various combinations of manganese, nickel, and copper which were found to have fairly good room-temperature properties in preliminary investigations. The second portion of the experimental work dealt with investigations carried out in a systematic manner to determine the effect of various alloy additions on the room-temperature and elevated-temperature tensile properties of aluminum, 6-percent-magnesium alloys. This phase of the work was, of course, conducted simultaneously with the first portion, but a longer time was required. The second phase of the work resulted in the accumulation of a very large amount of data on the effects of the various alloy additions which led to the selection of certain optimum compositions.

With the information obtained in the second part of the investigation as a background, the third portion of the work was concerned with the improvement in the high-temperature creep properties of some of the optimum compositions as previously developed. Because of the large number of compositions for which creep data were desired, the creep tests were necessarily limited to durations of 100 to 150 hours. The use of such a short test period is not to be recommended except for a preliminary appraisal in order that the trend of effect of the various compositions on the creep properties may be indicated. The available time permitted a few tests for durations of about 500 hours on some alloys that were evidently the best among the many tested. In general, the longer tests did not change the indications obtained from the shorter tests, but tests of at least 500-hour duration for more of the alloys would make more certain the comparisons between the creep properties of the various compositions. In this phase of the program, it was necessary also to obtain tensile properties at room temperature and at 600° F in order to supplement the creep data.

#### EXPERIMENTAL WORK

One of the first difficulties encountered in the early development work with the 6-percent-magnesium alloys was the tendency of the alloy to react with the moisture in the green sand molds. The seriousness of this sand reaction varied from mold to mold but, in general, the surface unsoundness which resulted would entirely obviate any useful comparison of the properties of the sand-cast tensile bars of various compositions.

It was found that an addition of 0.005 percent beryllium, when added to the 6-percent-magnesium melt, would entirely eliminate this trouble from sand reaction. The amount of beryllium required is not critical, but it should not be much in excess of 0.005 percent. Otherwise, high beryllium content will produce a characteristic sand reaction with the green sand mold. These beryllium additions were made to all the melts by the employment of an aluminum-beryllium alloy containing 1 to 1.25 percent beryllium. When scrap was melted, no additional beryllium was required.

In order to avoid variations in grain size, a grain refiner was added to all the experimental compositions. It was found that titanium was very effective, and an addition of either 0.01 percent boron plus 0.02 percent titanium or 0.08 percent titanium alone was used for this purpose. Either of these additions resulted in consistently fine grain size, usually of the order of 0.01 to 0.02 inch.

In order to avoid variations in the cleanliness and gas content of the melt, all experimental melts were fluxed with chlorine for about 15 minutes, while the temperature was maintained between 1325° and 1350° F. This treatment invariably produced a high melt quality, and difficulties with pinhole porosity and variations attributable thereto were avoided. Furthermore, the aluminum-magnesium alloys have a tendency to contain dross. The treatment of the melt with chlorine facilitated removal of dross and also effected a good separation of the dross from the top of the melt before it was poured.

Although aluminum alloys containing 6 percent magnesium are not normally considered to be amenable to heat treatment, it was found that some of the compositions were very markedly improved by solution heat treatment. This was especially true of the aluminum, 6-percent-magnesium alloys containing copper without nickel. Furthermore, these benefits of the solution heat treatment were retained in the alloy after it was exposed for long periods at temperatures of 650° F. This effect is in contrast to the effect of exposure to high temperature on the room-temperature and elevated-temperature properties of Alcoa 142 alloy. It was also desirable to stabilize or substantially stabilize the castings prior to testing at 600° F. Consequently, shortly after the initial

phases of the investigation, all experimental compositions were solution heat-treated for 16 hours at  $810^{\circ}$  F, quenched in cold water, and stabilized or aged for 24 hours at  $650^{\circ}$  F before testing them at room temperature or at  $600^{\circ}$  F. Many of the alloys were also tested in the as-cast or as-cast and aged conditions.

Except when complete data were required throughout a temperature range, all high-temperature tensile tests and creep tests were conducted at  $600^{\circ}$  F.

#### Alloy Additions Investigated

A total of 23 different metallic elements was added to various aluminum, 6-percent-magnesium base alloys to determine their effect upon the room-temperature tensile properties, the tensile properties at 600° F, and the creep properties at 600° F. Both tensile and creep properties at 600° F were not obtained for some of the alloys. These 23 elements are as follows:

Antimony Magnesium Beryllium Manganese Boron Molybdenum Cadmium Nickel Calcium Silicon Cerium Silver Chromium Titanium Cobalt Tungsten Copper Uranium Iron Vanadium Lithium Zinc Zirconium

The range in composition of each of these elements investigated, the various combinations of elements employed, the optimum content of each of the elements, and the room-temperature tensile properties of the optimum composition of each are indicated in tables 1 to 11. Because all sand castings tend to vary somewhat in their tensile properties from melt to melt, and even from test to test from the same melt, the more promising combinations were repeatedly prepared in order to establish firmly their effects. A total of 524 room-temperature tensile tests were made; usually two bars of each composition and occasionally even a larger number were tested.

Since a four-bar test casting was employed, two bars were available for room-temperature tests and two for high-temperature tensile tests. Nearly all the compositions listed in tables 1 to 11 were also subjected to a stabilizing treatment consisting of 24 hours at 650° F; after this treatment tensile properties were obtained at 600° F. On the basis of these

NACA TN No. 1444

5

tensile tests at room temperature and at  $600^{\circ}$  F, the effects of the principal alloying elements may be summarized as follows:

Effect of magnesium content. Between the limits of 4 and 6 percent magnesium in the experimental alloys, very little difference was noted in the tensile strength at 600° F. In the heat-treated condition, the room-temperature properties are improved in alloys containing up to about 11 percent magnesium. In the heat-treated and stabilized condition, however, 6 percent magnesium is the optimum content for maximum room-temperature tensile properties. At concentrations above 6 percent magnesium, the tensile strength at 600° F decreased rapidly, and precipitated aluminum-magnesium compound could be noted at the grain boundaries.

Some tests were carried out with alloys containing 4, 5, and 6 percent magnesium; the alloys were otherwise similar since all contained 1.5 percent copper, 1 percent manganese, with grain refiner and beryllium additions. The effects of stabilization after 1, 4, and 10 days at 575° and 650° F were determined after solution heat treatment. The alloy with 4 percent magnesium showed no appreciable change in the room-temperature properties with increasing time at either of the stabilization temperatures. The 5-percent-magnesium alloy showed a slight gain in ultimate strength at room temperature after all stabilizing treatments extending beyond the 24-hour period, but the yield strength was not affected. On the other hand, the 6-percent-magnesium alloys showed a slight decrease in ultimate strength and hardness after all stabilizing treatments which were prolonged beyond the 24-hour period. This adverse effect of prolonged heating at 575° or 650° F was slight and it indicates that, in general, the alloys containing up to 6 percent magnesium are structurally stable in this temperature range. This is in marked contrast to heat-treated Alcoa 142 or Y composition which undergoes structural changes with exposures to these temperatures, with a consequent decrease in tensile, yield, and hardness values.

Effect of manganese content. Manganese up to 1.5 percent can be tolerated in the 6-percent-magnesium alloys, and the optimum content of approximately 1 percent is a very desirable addition. However, an aluminum alloy containing only 6 percent magnesium and 1 percent manganese has rather poor ductility at 600° F because of the large amount of cracking which occurs under tension with relatively little elongation.

Effect of copper content. - Copper added to an aluminum-base alloy containing 6 percent magnesium and 1 percent manganese improves the ductility at both room temperature and at high temperature, particularly since the cracking which occurs in tensile bars broken at 600° F is substantially eliminated by the copper addition. In place of the numerous small cracks, uniform elongation and considerable necking down at the fracture occur. The alloy containing the copper is also subject to marked improvement by a solution heat treatment, followed by an aging or stabilizing treatment consisting of 24 hours at 650° F. As a result, the

optimum copper addition of 1.5 percent produces a marked improvement in the room-temperature tensile properties of the solution heat-treated and stabilized alloy.

Effect of nickel content. Nickel may be substituted for copper either alone or combined with iron. About 2 percent nickel with 1 percent iron, or 1 percent nickel with normal iron content as an impurity, appears to be the optimum composition for the aluminum-magnesium-nickel alloys. The room-temperature tensile properties of these alloys are not improved by heat treatment, and are moderately low. The aluminum, 6-percent-magnesium, 1-percent-magnese, 2-percent-nickel, 1-percent-iron alloy, however, has good tensile properties at 600° F.

Effect of copper and nickel content. Copper and nickel together in most proportions appear inferior to either alone. The best proportions of copper and nickel were found to be 1.5 percent nickel and 0.5 percent copper, corresponding to Alcoa 254, or the reverse of these proportions. Both of these alloys, containing either 1.5 percent nickel and 0.5 percent copper, or 0.5 percent nickel and 1.5 percent copper, can be improved somewhat by a solution heat treatment, but to a much lesser extent than the experimental alloy with 1.5 percent copper without nickel.

Effect of titanium content. Titanium is a very potent grain refiner for the alloys of the type being investigated. Approximately 0.02 percent titanium is sufficient to obtain consistent grain refinement but the effectiveness increases with increasing titanium content up to about 0.15 percent. About 0.2 percent titanium appeared to be mildly beneficial to the room-temperature properties but amounts up to 0.4 percent titanium apparently have no additional beneficial effect on the tensile strength at room temperature or at 600° F.

Effect of boron content. Boron in conjunction with titanium is quite useful as a grain-refining constituent. Good grain refinement, however, can be obtained in the aluminum, 6-percent-magnesium alloys with titanium alone. Furthermore, probably no beneficial effects on conductivity would be obtained by using a low-boron, low-titanium combination in place of 0.10 percent titanium.

Effect of beryllium content. As pointed out earlier in this report, beryllium is an essential component of these alloys when they are to be cast in ordinary foundry green sand. The use of 0.005 percent beryllium apparently eliminates sand reaction entirely, thereby considerably improving the foundry characteristics of this type of alloy.

#### Optimum Compositions

On the basis of the tensile properties of the various compositions at room temperature and at 600° F, the following five alloys were selected as being worthy of consideration for further development:

| Alloy          | Mg<br>(per-<br>cent) | Mn<br>(per-<br>cent) | Cu<br>(per-<br>cent) | Ni<br>(per-<br>cent) | Ti<br>(per-<br>cent) | Be (per- | Fe<br>(per-<br>cent) |
|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------|----------------------|
| 1              | 6                    | 1                    | 1.5                  | 0                    | 0.08                 | 0 •005   |                      |
| 2              | 6                    | 1                    |                      | 1                    | <b>.</b> 08          | •005     |                      |
| 3              | 6                    | 1                    |                      | 2                    | •08                  | •005     | 1.0                  |
| 4              | 6                    | 1                    | 1.5                  | -5                   | •08                  | •005     |                      |
| <sup>1</sup> 5 | 6                    | 1                    | •5                   | 1.5                  | •08                  | •005     |                      |

Most of these alloys were prepared from 99.7 percent aluminum. The first of these was considered to have the greatest possibilities. After a solution heat treatment and a stabilization treatment consisting of 24 hours at 650° F, this alloy would consistently show the following mechanical properties:

| Property                                                                                                | Room<br>temperature           | 600° F                 |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|--|
| Tensile strength, psi<br>Yield strength, psi<br>Elongation, percent in 2 in.<br>Brinell hardness number | 35,000<br>24,500<br>2.5<br>80 | 13,000<br>10,000<br>20 |  |

After complete stabilization or, at least, after 480 hours at 650° F prior to testing at 600° F, the tensile strength and yield values obtained at 600° F would not drop more than 1000 pounds per square inch from the above values. As indicated later, substantial improvements have been made in this composition by suitable additions.

Alloy 2 did not respond to solution heat treatment and, as a result, the room-temperature tensile properties were substantially lower and the tensile properties at 600° F were slightly superior to those obtained on alloy 1.

Alloy 3 had relatively poor yield strength at room temperature but, nevertheless, had slightly the highest yield strength at 600° F of any of the other alloys. This composition did not respond to solution heat treatment and, as a result, the room-temperature tensile properties were relatively low.

The composition of alloy 4 is similar to Alcoa 254 composition, except that a grain refiner has been added and beryllium has been added to eliminate sand reaction, thereby improving the foundry characteristics when green sand molds are used. In general, then, the first of the five

alloys listed has the best room-temperature properties and the best properties at all temperatures up to and including 500° F. The other four alloys have similar properties at all temperatures and all five alloys have similar tensile properties at 600° F. Alloy 3, however, has slightly the lowest room-temperature properties and slightly the highest tensile properties at 600° F.

Because of the higher tensile properties obtained by alloy 1 at room temperature, the main emphasis on further development was placed on this composition. Some emphasis was also placed on alloy 2.

Improvement in Resistance to Creep at Elevated Temperatures

The existing data and the data obtained in the short-time creep tests performed on this project definitely indicate that the aluminum, 6-percent-magnesium alloys of the Alcoa 254 type have poor resistance to creep at 600° F. Of the five compositions listed which appeared to have some promise, alloys 1 and 2 were subjected to further development in order to improve their tensile properties at room temperature and at  $600^{\circ}$  F, as well as to improve considerably their resistance to creep at  $600^{\circ}$  F. Accordingly, the third phase of the experimental program, described previously, was initiated and the effects of many minor elements and combinations of minor elements were investigated in an effort to improve the creep properties.

The short-time creep tests, previously described, were made on experimental alloy compositions, and on Alcoa 142 and Alcoa 254, for purposes of comparison. These short-time tests were carried out at 600° F. using a load of 1300 pounds per square inch for periods generally up to 100 to 150 hours, though some tests were continued for longer periods. The bulk of this work was done by using as base materials alloy 1 containing 6 percent magnesium, 1 percent manganese, 1.5 percent copper, with added grain refiner and beryllium, and alloy 2 containing 6 percent magnesium, 1 percent nickel, and 1 percent manganese. It was, of course, necessary also to obtain tensile properties at room temperature and at 600° F. The entire series of experimental compositions prepared for creep testing is included in table 12. This table shows the heat number, the intended composition of the alloy, the tensile properties at room temperature, the maximum grain size, the tensile properties at 600° F, and some data on the creep properties at 600° F employing a load of 1300 pounds per square inch. A number of elements were found to have beneficial effects on the creep properties of the two base compositions.

Typical time-deformation curves for the creep tests run at 600° F and 1300 pounds per square inch are shown in figure 1. The relative merits of Alcoa 142, Alcoa 254, and an experimental alloy are graphically shown. This figure also shows the beneficial effects on the rate of

NACA TN No. 1444

deformation obtained by the use of various amounts of zirconium in a base alloy containing 6 percent magnesium, 1.5 percent copper, 1 percent manganese, with the usual amounts of grain refiner and beryllium. Figure 2 is a graphical representation of the more important creep data listed in table 12. This figure shows the minimum creep rate and the total deformation at 100 hours obtained on alloys of various compositions.

Zirconium in amounts from 0.05 to 0.25 percent increases the resistance of the base alloy to creep and tends to increase the room-temperature strength unless the grain size also increases. If a grain-size increase occurs with the addition of 0.02 percent titanium, grain refinement may often be restored by increasing the titanium content to 0.08 percent. Titanium, in conjunction with zirconium, appears to have a slight tendency to decrease the resistance to creep at 600° F. Vanadium additions of 0.1 percent in combination with 0.25 percent zirconium produce excellent room-temperature properties, good high-temperature properties, and excellent resistance to creep. Vanadium in greater amounts appeared to have a favorable effect on the high-temperature tensile strength but somewhat decreased the room-temperature tensile strength.

It is emphasized that limited time has not permitted so complete an evaluation of the creep properties of these alloys as may be desirable. Since the creep tests on the experimental alloys were run at one stress and one temperature only, additional tests of at least 500 hours on the better alloys should be run over a range of stresses at 600° F and possibly also at several other temperatures of interest.

#### Tensile Properties of Stabilized British

#### and Other Alloys

During the course of the high-temperature tensile testing, specimens of alloys for elevated-temperature service developed by the Royal Aircraft Establishment were received for testing. Two alloys were received, each in the wrought and chill-cast condition. Specimens of these four alloys, in addition to Alcoa 142, Alcoa 254, and an experimental alloy containing 6 percent magnesium, 1.5 percent copper, and 1 percent manganese, with grain refiners and beryllium, were stabilized as follows:

| For test at      | Stabilizing treatment |
|------------------|-----------------------|
| Room temperature | None                  |
| 400° F           | 480 hr at 575° F      |
| 500° F           | 480 hr at 575° F      |
| 600° F           | 480 hr at 650° F      |
| 700° F           | 96 hr at 700° F       |

Previous to these stabilization treatments, other specimens of the alloys were prepared as follows and tested in the indicated condition at room temperature:

| Alloy              | Condition                                   |
|--------------------|---------------------------------------------|
| RAE alloys         | As received                                 |
| Alcoa 142          | Heat-treated and aged                       |
| Alcoa 254          | Aged 8 hr at 400° F                         |
| Experimental alloy | Heat-treated and stabilized 24 hr at 650° F |

The compositions of the various alloys are listed in table 13. The results obtained on these compositions are listed in table 14 and are graphically represented by figures 3, 4, and 5.

It should be noted that the experimental cast alloy compared favorably with the other two sand-cast compositions, Alcoa 142 and 254, and even with the chill-cast British alloys. This experimental alloy, however, is not the optimum composition which was later developed, since the experimental composition did not contain zirconium or vanadium. If the experimental alloy had contained 0.1 percent vanadium and 0.25 percent zirconium, both the tensile properties at room temperature and at 600° F would be slightly superior to those shown in figures 3, 4, and 5.

#### SUMMARY OF RESULTS

On the basis of the experimental work conducted on an aluminum-base sand-cast alloy for elevated-temperature service, the following composition appears to be optimum:

| Element                 | Addition<br>(percent) |
|-------------------------|-----------------------|
| Magnesium               | 6                     |
| Manganese               | i                     |
| Copper                  | 1.5                   |
| Vanadium                | .í                    |
| Zirconium               | .25                   |
| Titanium                | •08                   |
| Beryllium               | •005                  |
| Aluminum (99.5 percent) | Balance               |

The following table shows the approximate comparative properties of this experimental alloy with Alcoa 142 (heat-treated and aged) and Alcoa 254 alloys which have been stabilized at  $650^{\circ}$  F for 20 days.

|                                                        | 1                  |                    |                                     |
|--------------------------------------------------------|--------------------|--------------------|-------------------------------------|
|                                                        |                    | Alloy              |                                     |
| Property                                               | Alcoa 142-HTA      | Alcoa 254-T2ª      | Experimental alloy-HTS <sup>a</sup> |
| Tensile strength at room temperature, psi              | 26,000             | 26,000             | <sup>b</sup> 35,000                 |
| Yield strength at room temperature, psi                | 15,600             | 25,000             | b25,000                             |
| Elongation at room temperature, percent in 2 in.       | 2.0                | 2.0                | °53•0                               |
| Brinell hardness number at room temperature            | 62                 | 84                 | <sup>b</sup> 86                     |
| Tensile strength at 600° F, psi                        | 8900               | 12,750             | b <sub>12,750</sub>                 |
| Yield strength at 600° F, 0.2 percent offset, psi      | 5800               | 10,000             | <sup>b</sup> 10,000                 |
| Elongation at 600° F, percent in 2 in.                 | 16                 | 20                 | .b40                                |
| Minimum creep rate at 600° F, 150-hr test <sup>c</sup> | 0.00014            | 0.00075            | 0.00005                             |
| Total deformation at end of 100 hr, percent            | d <sub>0.045</sub> | <sup>d</sup> 0•123 | <sup>d</sup> 0•045                  |
| Estimated thermal conductivity, C.G.S. units           | 0•33               | 0 •22              | 0.22                                |
| Resistance to corrosion <sup>e</sup>                   | Fair               | Good               | Good                                |
| General foundry<br>characteristics <sup>6</sup>        | Good               | Difficult          | Fair                                |

<sup>a</sup>Stabilized at 650° F, for 20 days prior to test at room temperature or at 600° F.

bEstimated properties after stabilizing 20 days at 650° F on the basis of properties after 24 hr at 650° F.

basis of properties after 24 hr at 650° F.

CStabilized only 24 hr at 650° F prior to test and load of

1300 psi employed at 600° F in short-time creep test.

d Includes elastic deformation.

Estimated, not measured on this project.

Battelle Memorial Institute Columbus, Ohio, May 1, 1946

TABLE 1.- RANGE IN ALLOY CONTENT INVESTIGATED, OPTIMUM VALUE,
AND ROOM-TEMPERATURE PROPERTIES OBTAINED ON BASE ALLOY OF
ALUMINUM CONTAINING 6 PERCENT MAGNESIUM

|                |              |                     | Optimum property    |                 |           |
|----------------|--------------|---------------------|---------------------|-----------------|-----------|
|                |              | ddition<br>percent) | Tensile<br>strength | Floretion       |           |
| Added element  | Maximum      | Minimum             | Optimum             | (psi)           | (percent) |
| None, ac       |              |                     |                     | 30,100          | 6.0       |
| Cerium, ac     | 5 <b>.</b> 0 | 0                   | 0                   |                 |           |
| Manganese, HTS | 1.5          | •05                 | 1.0                 | 33,800          | 3 •4      |
| Cobalt, ac     | •75          | 0                   | •25                 | 32,800          | 8.8       |
| Copper, ac     | 13.0         | 0                   | 12.0                | 37,000          | .6        |
| Copper, HTS    | 13.0         | 0                   | 6.0                 | 36 <b>,</b> 500 | 1.0       |
| Antimony, ac   | 2.0          | 0                   | •5                  | 33,000          | 8.8       |
| Nickel, ac     | 2.5          | 0                   | 0                   |                 |           |
| Zinc, ac       | 5•0          | 0                   | 0                   |                 |           |

lac, as cast; HTS, solution heat-treated and stabilized.

TABLE 2.- RANGE IN MAGNESIUM CONTENT INVESTIGATED, OPTIMUM VALUE,
AND ROOM-TEMPERATURE PROPERTIES OBTAINED ON ALUMINUM-BASE
ALLOY CONTAINING 1 PERCENT MANGANESE

|                 |                       |         |         | Optimum           | property             |
|-----------------|-----------------------|---------|---------|-------------------|----------------------|
|                 | Addition<br>(percent) |         |         | Tensile           | Florestion           |
| Added element   | Maximum               | Minimum | Optimum | strength<br>(psi) | Elongation (percent) |
| Magnesium, HTS1 | 10.0                  | 2.0     | 6.0     | 32,800            | 2.8                  |

<sup>&</sup>lt;sup>1</sup>After solution heat treatment and 6 hours stabilization at 650° F.

TABLE 3.- RANGE IN ALLOY CONTENT INVESTIGATED, OPTIMUM VALUE, AND ROOM-TEMPERATURE TENSILE PROPERTIES OBTAINED ON ALUMINUM-BASE,
6-PERCENT-MAGNESIUM, 1-PERCENT-MANGANESE ALLOY

|                          | Addition<br>(percent) |         |         | Optimum           | property                |
|--------------------------|-----------------------|---------|---------|-------------------|-------------------------|
|                          |                       |         |         | Tensile           | T7                      |
| Added element            | Maximum               | Minimum | Optimum | strength<br>(psi) | Elongation<br>(percent) |
| Titanium, ac             | 0.20                  | 0       | 0.20    | 34,700            | 5.0                     |
| Copper, ac               | 3•0                   | 0       | 0       |                   |                         |
| Copper, acS              | 3 •0                  | 0       | 2.5     | 31 <b>,6</b> 50   |                         |
| Copper, HTS <sup>2</sup> | 5.0                   | 0       | 1.5     | 37,000            | 2.8                     |
| Copper, HTA              | 3 •0                  | 0       | 1.5     | 38,700            | 2.0                     |
| Nickel, ac               | 3.0                   | 0       | 0       | 30,900            | 4.0                     |
| Silver, HTS              | 4.0                   | •5      | •5      | 28,100            | 2.0                     |

lac, as cast; acS, as cast and stabilized 24 hr at 650° F; HTS, solution heat-treated and stabilized 24 hr at 650° F; HTA, solution heat-treated and aged.

<sup>&</sup>lt;sup>2</sup>Average of 16 tensile bars from eight heats.

TABLE 4.- RANGE IN ALLOY CONTENT INVESTIGATED, OPTIMUM VALUE, AND ROOMTEMPERATURE TENSILE PROPERTIES OBTAINED ON ALUMINUM, 6-PERCENTMAGNESIUM ALLOY CONTAINING IRON, NICKEL, AND MANGANESE

|                                                                                            | Addition (percent) |                        |           | Optimum             | property    |  |
|--------------------------------------------------------------------------------------------|--------------------|------------------------|-----------|---------------------|-------------|--|
| ,                                                                                          |                    |                        |           | Tensile<br>strength | Elongation  |  |
| Added element                                                                              | Maximum            | Minimum                | Optimum   | (psi)               | (percent)   |  |
| Base alloy: 6 percent Mg, 2 percent Ni, plus gr                                            |                    |                        |           |                     | in refiners |  |
| None, ac                                                                                   |                    |                        |           | 27,900              | 2.0         |  |
| Iron, ac                                                                                   | 1.0                | 0                      | 1.0       | 29,750              | 1.5         |  |
| Base alloy:                                                                                | 6 percent          | Mg, 1 pe               | rcent Fe, | plus grain          | refiners    |  |
| Nickel, ac                                                                                 | 2.0                | 0 •5                   | 1.5       | 30 <b>,8</b> 00     | 2.5         |  |
| Base alloy                                                                                 |                    | nt Mg, 1.<br>lus grain |           |                     | cent Fe,    |  |
| Manganese, ac                                                                              | 0.75               | 0                      | 0.25      | 32,900              | 2.0         |  |
| Base alloy: 6 percent Mg, 2 percent Ni, 1 percent Fe,<br>1 percent Mn, plus grain refiners |                    |                        |           |                     |             |  |
| None, HTS                                                                                  |                    |                        |           | <b>29,</b> 900      | 1.4         |  |
| Zirconium, HTS                                                                             | 0.1                | 0.1                    |           | <b>26,</b> 900      | 1.7         |  |

 $<sup>^{1}\</sup>mathrm{ac}$  , as cast; HTS, solution heat-treated and stabilized 24 hr at 6500 F.

TABLE 5.- RANGE IN IRON AND NICKEL CONTENT INVESTIGATED, OPTIMUM

VALUE, AND ROOM-TEMPERATURE TENSILE PROPERTIES OF ALUMINUM
BASE ALLOY CONTAINING 5 PERCENT MAGNESIUM

|                                                                                                                                            |                    |         |          | Optimum          | property    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|----------|------------------|-------------|--|
|                                                                                                                                            | Addition (percent) |         |          | Tensile strength | Elongation  |  |
| Added element1                                                                                                                             | Maximum            | Minimum | Optimum  | (isq)            | (percent)   |  |
| Base alloy: 5.0 percent Mg, 0.1 percent Si, 0.03 percent Ti<br>0.01 percent B, 0.05 percent Mn, 0.005 percent Be,<br>balance Al            |                    |         |          |                  |             |  |
| Iron, ac                                                                                                                                   | 4.11               | 0.32    | 1.0      | 32 <b>,</b> 375  | 8.2         |  |
| Base alloy: 5.0 percent Mg, 2.5 percent Fe, 0.1 percent Si, 0.03 percent Ti, 0.01 percent B, 0.05 percent Mn, 0.005 percent Be, balance Al |                    |         |          |                  |             |  |
| Nickel, ac                                                                                                                                 | <b>4.</b> 0        | 0       | 0<br>5.0 | 28,400<br>28,000 | 1.75<br>3.5 |  |

lac, as cast.



TABLE 6.- RANGE IN ALLOY CONTENT INVESTIGATED, OPTIMUM VALUE, AND ROOMTEMPERATURE TENSILE PROPERTIES OBTAINED ON ALUMINUM-BASE ALLOY
CONTAINING 6 PERCENT MAGNESIUM, 1 PERCENT NICKEL,
1 PERCENT MANGANESE, PLUS GRAIN REFINERS

|                |         |                     |                     | Optimum p                          | roperty    |
|----------------|---------|---------------------|---------------------|------------------------------------|------------|
|                |         | ddition<br>percent) | Tensile<br>strength | Elongation                         |            |
| Added element  | Maximum | Minimum             | Optimum             | (pai)                              | (percent)  |
| None, HTS      |         | -                   |                     | 32,100                             | 2.7        |
| Copper, HTS    | 2.0     | 0                   | 1.5                 | 31,100                             | 1.3        |
| Iron, HTS      | 1.0     | 1.0                 |                     | 28,100                             | 1.9        |
| Cobalt, HTS    | •75     | o                   | { •25 •75           | 30 <b>,</b> 900<br>31 <b>,</b> 750 | 2.0        |
| Zirconium, HTS | •5      | 0                   | { ·5                | 31,700<br>31,000                   | 1.8<br>2.2 |
| Cerium, HTS    | 1.0     | 0                   | None                |                                    |            |
| Antimony, HTS  | 1.0     | 0                   | 0                   |                                    |            |
| Chromium, HTS  | •5      | •25                 | None                |                                    |            |
| Tungsten, HTS  | 1.0     | •12                 | .12                 | 29,400                             | 2.0        |
| Molybdenum     | 1.0     | •12                 | •12                 | 30 <b>,8</b> 50                    | 1.4        |

<sup>1</sup>HTS, solution heat-treated and stabilized 24 hr at 650° F.

TABLE 7.- EFFECT OF MINOR ADDITIONS OF TWO OR MORE ELEMENTS TO ALUMINUM-BASE ALLOY CONTAINING 6 PERCENT MAGNESIUM, 1 PERCENT NICKEL,

1 PERCENT MANGANESE, PLUS GRAIN REFINERS

|                 |                      |                          |                        | Optimum               | property             |  |  |  |  |  |  |  |
|-----------------|----------------------|--------------------------|------------------------|-----------------------|----------------------|--|--|--|--|--|--|--|
|                 | 1                    | ddition<br>(percent)     |                        | Tensile<br>strength   | Florente             |  |  |  |  |  |  |  |
| Added elements  | Maximum              | Minimum                  | Optimum                |                       | Elongation (percent) |  |  |  |  |  |  |  |
| Base alloy      | r: 6 percen          | cent Mg, 1<br>nt Zr, plu | percent<br>s grain r   | Ni, l perc            | ent Mn,              |  |  |  |  |  |  |  |
| Vanadium, HTS   | 0.4                  | 0.1                      | 0.1                    | 27,700                | 1.7                  |  |  |  |  |  |  |  |
| Base allo       | y: 6 per<br>5 percen | cent Mg,<br>it Sb, plu   | l percent<br>s grain r | Ni, l per<br>efiners  | cent Mn,             |  |  |  |  |  |  |  |
| Zirconium, HTS  | 0.1                  | 0.1                      |                        | 30,150                | 1.5                  |  |  |  |  |  |  |  |
| Tungsten, HTS   | •1                   | •1                       |                        | 30,525                | 1.8                  |  |  |  |  |  |  |  |
| Molybdenum, HTS | -1                   | .1 28,450 2.0            |                        |                       |                      |  |  |  |  |  |  |  |
| Calcium, HTS    | •1                   | •1                       |                        | 26,470                | 1.7                  |  |  |  |  |  |  |  |
| Base alloy      | : 6 percen           | ent Mg, 1<br>t Zr, plu   | percent l              | Ni, l perc<br>efiners | ent Mn,              |  |  |  |  |  |  |  |
| Calcium, HTS    | 0.1                  | 0.1                      |                        | 26,470                |                      |  |  |  |  |  |  |  |

<sup>1</sup>HTS, solution heat-treated and stabilized 24 hr at 650° F.

TABLE 8.- RANGE IN ALLOY CONTENT INVESTIGATED, OPTIMUM VALUE, AND ROOMTEMPERATURE TENSILE PROPERTIES OBTAINED ON ALUMINUM-BASE ALLOY CONTAINING
6 PERCENT MAGNESIUM, 1.5 PERCENT COPPER, 1.5 PERCENT NICKEL,
1 PERCENT MANGANESE, PLUS GRAIN REFINERS

|                |         |                     |         | Optimum             | property   |
|----------------|---------|---------------------|---------|---------------------|------------|
|                |         | ddition<br>percent) |         | Tensile<br>strength | Elongation |
| Added element1 | Maximum | Minimum             | Optimum | (psi)               | (percent)  |
| None, ac       |         |                     |         | 29,000              | 1.6        |
| None, acA      |         |                     |         | 28,000              | 1.8        |
| None, acS      |         |                     |         | 29,370              | 1.4        |
| None, HT       |         |                     |         | 30,550              | 1.2        |
| None, HTA      |         |                     |         | 32 <b>,6</b> 00     | 1.3        |
| None, HTS      |         |                     |         | 30,400              | 1.7        |
| Chromium, HTS  | 0.5     | 0.25                | None    |                     |            |
| Cobalt, HTS    | 1.0     | 0                   | •5      | 35,300              |            |
| Antimony, HTS  | •5      | 0                   | •25     | 29,850              | 1.2        |
| Titanium, HTS  | •4      | •1                  | •20     | 29,900              |            |

lac, as cast; acA, as cast and aged 8 hr at 400° F; acS, as cast
and stabilized 24 hr at 650° F; HT, solution heat-treated;
HTA, solution heat-treated and aged; HTS, solution heat-treated
and stabilized 24 hr at 650° F.

TABLE 9.- RANGE IN ALLOY CONTENT INVESTIGATED, OPTIMUM VALUE, AND ROOMTEMPERATURE TENSILE PROPERTIES OBTAINED ON ALUMINUM-BASE ALLOY

CONTAINING 6 PERCENT MAGNESIUM, 1.5 PERCENT COPPER,

0.5 PERCENT NICKEL, PLUS GRAIN REFINERS

|               |           |                     |                       | Optimum             | property   |
|---------------|-----------|---------------------|-----------------------|---------------------|------------|
|               |           | ddition<br>percent) |                       | Tensile<br>strength | Elongation |
| Added element | Maximum   | Minimum             | Optimum               | (psi)               | (percent)  |
| Silver, HTS   | 2.0       | 0.25                | 0.25                  | 30,600              | 1.3        |
| Zinc', HTS    | 1.0       | 0                   | •5                    | 32,700              | 2.0        |
| Silicon, HTS  | 1.0       | 0                   | <b>.2</b> 5           | 31,650              | 1.0        |
| Cobalt, HTS   | •5        | •5                  |                       | 29,150              | 1.5        |
| Antimony, HTS | •5        | •5                  |                       | 31,800              | 2.0        |
| Cerium        | •5        | •5                  |                       | 23,900              | •5         |
| Base alloy:   | 4 percent | Mg, 1.5<br>us grain | percent C<br>refiners | u, 0.5 per          | cent Ni,   |
| Zinc, HTS     | 2.0       | 0                   | 2.0                   | 27 <b>,</b> 250     | 1.5        |

lHTS, a solution heat treatment and stabilization for 24 hr at  $650^{\circ}$  F.



TABLE 10.- RANGE IN ALLOY CONTENT INVESTIGATED, OPTIMUM VALUE, AND ROOM-TEMPERATURE TENSILE PROPERTIES OBTAINED ON ALUMINUM-BASE

ALLOY CONTAINING 6 PERCENT MAGNESIUM, 1.5 PERCENT COPPER,

1 PERCENT MANGANESE

|                 |         |                     |         | Optimum                     | property     |
|-----------------|---------|---------------------|---------|-----------------------------|--------------|
| ·               |         | ddition<br>percent) |         | Tensile<br>strength         | Elongation   |
| Added element   | Maximum | Minimum             | Optimum | (psi)                       | (percent)    |
| Nickel, HTS     | 2.5     | 0                   | 0.5     | 35,000                      | 3 •0         |
| Nickel, ac      | 2.0     | 0                   | 0       |                             |              |
| Chromium, HTS   | •5      | •25                 | None    |                             |              |
| Chromium, ac    | .•5     | •25                 | None    |                             |              |
| Cobalt, HTS     | 1.0     | 0                   | 0       | and the state of the        |              |
| Cobalt, ac      | 1.0     | 0                   | 0       |                             |              |
| Cerium, HTS     | 3 •0    | 0                   | 0       | you can down down from that |              |
| Antimony, HTS   | •5      | 0                   | 0       |                             |              |
| Molybdenum, HTS | •5      | •25                 | .25     | 33,100                      | 2.1          |
| Zirconium, HTS  | •2      | .1                  | •1      | 39,200                      | 2.4          |
| Calcium, HTS    | •5      | •003                | •06     | 38,800                      | 2.9          |
| Cadmium, HTS    | 2.0     | .1                  | None    | per our bler but day day    | and the line |
| Zirconium, HTS  | •5      | 0                   | .1      | 39 <b>,8</b> 50             | 3 •4         |
| Lithium, HTS    | 1.0     | 0                   | 0       |                             |              |

 $l_{\rm ac}$  , as cast; HTS, solution heat-treated and stabilized 24 hr at  $650^{\circ}$  F.

TABLE 11.- EFFECTS OF MINOR ADDITIONS OF TWO OR MORE ELEMENTS TO ALUMINUM-BASE ALLOY CONTAINING 6 PERCENT MAGNESIUM,

# 1.5 PERCENT COPPER, 1 PERCENT MANGANESE,

# PLUS GRAIN REFINERS

|                                |                      |                          |                        | Optimum                 | property             |
|--------------------------------|----------------------|--------------------------|------------------------|-------------------------|----------------------|
|                                |                      | ddition percent)         |                        | Tensile<br>strength     | El en est de co      |
| Added element                  | Maximum              | Minimum                  | Optimum                | (psi)                   | Elongation (percent) |
| Base alloy                     | 6 perc               | ent Mg, 1<br>ent Zr, p   | •5 percen<br>lus grain | t Cu, 1 pe              | rcent Mn,            |
| Vanadium, HTS                  | 0 •4                 | 0.1                      | 0.1                    | 39,850                  | 3 • 5                |
| Chromium, HTS                  | .1                   | .1                       |                        | 33,700                  | 2.0                  |
| Base alloy                     | 6 perce              | ent Mg, 1<br>nt Zr, plu  | •5 percen<br>as grain  | t Cu, 1 per<br>refiners | rcent Mn,            |
| Antimony, HTS                  | 0.5                  | 0.5                      |                        | 30,450                  | 2.0                  |
| Tungsten, HTS                  | .1                   | •1                       |                        | 40,100                  | 3 <b>•</b> 7         |
| Molybdenum, HTS                | •1                   | .1                       |                        | 33,350                  | 2•3                  |
| Calcium, HTS                   | .1                   | .1                       |                        | 38,500                  | 3.1                  |
| Titanium, HTS                  | •15                  | •02                      | •02                    | 38,550                  | 4.0                  |
| Vanadium Calcium Cobalt Cerium | •05                  | •05                      |                        | 33 <b>,</b> 050         | 2.5                  |
| Base alloy:                    | 6 perce<br>05 percen | ent Mg, 1.<br>nt Ca, plu | 5 percen               | t Cu, 1 per<br>refiners | cent Mn,             |
| Lithium                        | 0.05                 | 0 •05                    |                        | 22,600                  | 2.7                  |

 $<sup>^{1}\</sup>mathrm{HTS}$ , solution heat treatment, followed by stabilization for 24 hr at  $650^{\circ}$  F.

| M ALLOZS        |
|-----------------|
| ALUMINU         |
| OF SAND-CAST AI |
| O.F.            |
| PROPERTIES      |
| - TENSILE       |
| 9               |
| TABLE 12        |

|                                |                        | on<br>test                                                 |        |                   |            |                       |          |                 |                                                                                                                 |        |                   |                   |         |                  |              |                      |            |                   |                                                                                      |                            |                      |        |                                         |                  | _        |
|--------------------------------|------------------------|------------------------------------------------------------|--------|-------------------|------------|-----------------------|----------|-----------------|-----------------------------------------------------------------------------------------------------------------|--------|-------------------|-------------------|---------|------------------|--------------|----------------------|------------|-------------------|--------------------------------------------------------------------------------------|----------------------------|----------------------|--------|-----------------------------------------|------------------|----------|
|                                | O pat                  | Total deformation<br>at completion of test<br>(percent)    |        | 0.051             |            | .165                  | .062     | 680.            | .052                                                                                                            | .107   | 890°              | 6½0°.             | 650.    | .051             | .078         | 450.                 | 0.052      | 037               | 070                                                                                  | .033                       |                      | .057   | 400.                                    | 121.             |          |
|                                | Creep tests - 1300 pei | Total deformation at 100 hours (percent)                   |        | 0.045<br>540.     |            | .123                  | .048     | 870.            | 8.8                                                                                                             | .074   | 090.              | .032              | .050    | .040             | 041.<br>840. | 4.00<br>4.00<br>5.00 | 040        | 0.00              | 90.                                                                                  | 0.00<br>0.00               |                      | .057   | 170.                                    | .035             | ;        |
| Properties at 600 F            | Cree                   | Minimum<br>oresprate<br>(percent/hr)                       |        | 0.00010<br>.00018 |            | ₹7 <b>000</b> .       | .00023   | 07000           | 00013                                                                                                           | 04000. | .00015<br>.000080 | .00013            | 91000.  | .00033<br>.00023 | 1,000035     | 90000                | 00000      | 0000              | 00018                                                                                | 90000                      |                      | .00025 | n.000022                                | 1,00021          |          |
| roperties                      |                        | Duration<br>(hr)                                           | ,      | 4 (142            |            | 186                   | 144      | 142             | 136                                                                                                             | 484    | , S &             | 9<br>7<br>7       | 174     | 168              | 144          | 95                   | 167        | 673               | 24                                                                                   | 140                        |                      | 39,5   | វុគ្គ ន                                 | \$ <del>\$</del> |          |
| "                              |                        | Elongs Reduction tion of area Duration (percent) (percent) |        | 31                | 9.2        | 8                     | 2.8      | 5.5             | 23<br>19.5                                                                                                      | 8      | 8 2               | 28.               | 1.0     | 8. t.            | 38.5         | 2,0                  | :<br>:= \$ | , s               | 5.5                                                                                  | 8. <b>%</b>                | 33 65                | 8 2    | 1.4.                                    | 153.7            |          |
|                                |                        | Elonga-<br>tion<br>(percent)                               |        | 21.5              | 12         | 90                    | %<br>€   | <i>(</i> 0)     | 2.88.5<br>7.7.7.                                                                                                | 38.5   | 25.5<br>72.5      | 8.8<br>v          | 47.5    | 8 &<br>5.        | 3 5          | 3.5                  | 186        | ×102              | 89.<br>5                                                                             | ۲.<br>ا                    | 36                   | 8      | 67.5                                    | 2,11             |          |
|                                |                        | <pre>field strength (pei) (c)</pre>                        |        | 7,570             | 0,0%       | 11,550                | क्ष्य, स | 86,01           | 3,1,5<br>8,8,8                                                                                                  | 10,80  | 10,250            | 9,960             |         | 11,160<br>048,01 |              |                      |            |                   |                                                                                      |                            |                      |        |                                         |                  |          |
|                                |                        | Teneille<br>(peil)<br>(b)                                  |        | 11,450            | 12,030     | 14,480                | 13,250   | 13,180          | 2<br>2<br>2<br>3<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>7<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 13,350 | 22,730            | 98.<br>3.4<br>4.4 | 13.250  | 98,58            | 13,460       | 13,610               | 8          | 02,51             | 8,5,51<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 | 13,510<br>08,61            | 13,220               | 12,800 | 25.5                                    | 2,52<br>8,68,    |          |
|                                | _                      | Grain<br>eire<br>(in.)                                     | 0.020  | ,020              | 9.9        | 010.                  | 010.     | 970             | .010.<br>-07015                                                                                                 | .015   | .015              | .0103             | 010     | 010              | 9.           | 8                    | 015        | 8.                | 80.0                                                                                 | .010                       | 010.                 | 210.   | 9 6                                     | 1,8              | <br>0.   |
| erature                        |                        | Brinell<br>hardness<br>mumber                              | 77     | 9                 | 11.7<br>62 | \$ £                  | 82       | 8 8             | <b>8</b> 24                                                                                                     | ž 55   | 833               | Y2-8              | 86      | 88 6             | 433          | 8                    | 181        | 5 E.              | රිස්                                                                                 | නී සි                      | <b>8</b> %           | 88     | ¥ <b>₽</b> -a                           | 186.             | P.       |
| Properties at room temperature |                        | Elough-<br>tion<br>(percent)                               | 1.1    | 3.2               | 9.5        | 2,0                   | 1.2      | 1.7             | 2,5                                                                                                             | 2.6    | 3,1               |                   | 1.7     | 4.6              | 0, 0         | . 0.                 | 101        | , ci              | 2.4                                                                                  | ω.<br>τ. <b>ο</b> :        | ω ω<br><b>⊬. છ</b> ; | F-0    | ,0,1                                    | 200              | 1.5      |
| arties at                      |                        | Tield<br>strength<br>(psi)                                 | 41,200 | 11,410            | 13,920     | %<br>%<br>%           | 19,930   | 23,180          | 21,500                                                                                                          | 24,550 | 25.050            |                   |         |                  | 300          | 000                  | 24,920     |                   |                                                                                      |                            |                      |        | 3                                       | 23,980           |          |
| Prope                          |                        | Teneile<br>strength<br>(pei)                               | 42,500 | 26,350            | 41,220     | 8.8<br>88             | 300,300  | 3,125<br>251,48 | 8, 4, 8<br>8, 4, 8                                                                                              | 35,300 | 38,000            | 33,600            | 33,100  | 8,8              | 38,100       | 325                  | 32,470     | 3,5               | 33,350                                                                               | 8<br>8<br>8<br>8<br>8<br>8 | 37,200               | 36,100 | 28                                      | 8,8              | 38,080   |
|                                |                        | Other                                                      |        |                   |            |                       |          |                 | 5 S S S S S S S S S S S S S S S S S S S                                                                         | 8      | 1 2r<br>1 2r      | .2 Zr             | 05 Zr   | 1 Zr<br>25 Zr    | 5 Zr 0.1 w   | ,                    |            | Ċ.                | 1 Zr .1 W                                                                            | 7:                         | 1 Zr                 | 003 Ca | 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 25 Ca            | 5 Ca     |
| g                              | (percent by weight)    | e e                                                        |        |                   |            | 0<br>0<br>0<br>0<br>0 | 500.     |                 | 888                                                                                                             |        |                   | 88                |         |                  |              |                      |            |                   |                                                                                      |                            |                      |        |                                         |                  |          |
| Composition                    | <b>5</b>               | Д                                                          |        |                   |            | 9.6                   | 9.       | <u>i</u> i      | 9 9 9                                                                                                           | 9.     | 2.9               | 2.2               | 9.9     | 9.6              | 9.5          | 14.                  | 12         | <u>i</u> <u>i</u> | 9. <b>6</b>                                                                          | 9.6                        | 9                    | ģ      | 96                                      | 9.0              | 6.       |
| Com                            | ercent                 | Ę                                                          | 0.10   | .1                | 3.5        | o. o.                 |          |                 | 888                                                                                                             |        |                   | 9, 9              |         |                  |              |                      |            |                   |                                                                                      |                            |                      |        |                                         |                  | _        |
| 1                              | 9                      | 五                                                          |        | -6                | 0.0        | 0.1                   |          |                 | 44.0                                                                                                            |        | 0,0               | 0.0               | 0.0     | 0.0              | 0.0          | 000                  | 0.0        | 90                | 0.0                                                                                  | 0.0                        | 0.0                  | 0.0    | 900                                     | 9.0              | ٦.<br>ص  |
|                                |                        | P. Co                                                      | .0 2.0 | 0,                | 0.0        |                       | 10       | Ů               | ir, ir, i                                                                                                       | 5 15   | ψū                | i i i             | (C) (C) | i i î i î        | nů n         | انانا                | Ů IÚ I     | ůů                | iù iù                                                                                | iù iù                      | iÚ iÚ                | N) H   | ) IV                                    | ŮÚ               | Ň        |
|                                |                        | \$                                                         | 1.5    | 1.5 4.            |            |                       | 0.0      | 17              | 000                                                                                                             | 1 7    | 0,0               | 0.0               | 0.0     | 0.0              | 0,0          | 000                  | 10         | 90                | 90                                                                                   | 00                         | 90                   | 0,0    | 100                                     | 90               | ٥.<br>تا |
| -                              |                        | Hoat<br>treatment<br>(a)                                   | BTA 1  | ETTAS 1           | BTAS 1     |                       |          |                 | 999                                                                                                             | +      |                   | STIE<br>6         |         |                  |              |                      |            |                   |                                                                                      |                            |                      |        |                                         |                  |          |
|                                |                        | Heat tre                                                   | 76 B   | 92                | 185        |                       | <u> </u> |                 | 1304                                                                                                            | +      |                   | 984 H             |         |                  |              |                      |            |                   |                                                                                      |                            |                      | _      |                                         |                  | -        |
| L                              |                        | н                                                          | L      |                   |            |                       | 1        |                 |                                                                                                                 |        |                   |                   |         |                  |              |                      |            |                   |                                                                                      |                            |                      |        |                                         |                  | _        |

\*TEX, best-created 6 hr at 960° F, quenched in bolling water, aged 8 hr at boo F;

TEXE, same as TEX, plus 24 hr at 650° F;

acd, sector best, aged 8 hr at tho F;

acd, sector best, good 8 hr at tho F;

TEX, best-created 16 hr at 800° F, quenched in cold water, plus 24 hr at 690° F.

TEX, best-created 16 hr at 800° F, quenched in cold water, plus 24 hr at 690° F.

All berr poiled at 0.01 in./in. good sector best for the cold water, plus 24 hr at 690° F.

All berr poiled at 0.2-percent offeet.

Creep tests run in duplicate.

Creep tests run in duplicate.

Creep tests run in duplicate.

Cold in creep rate up to 120 hr, 0.00000 percent/hr.

Maniama creep rate up to 130 hr, 0.00007 percent/hr.

Maniama creep rate up to 130 hr, 0.00007 percent/hr.

Miniama creep rate up to 130 hr, 0.00007 percent/hr.

Miniama creep rate up to 130 hr, 0.00007 percent/hr.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |           |                   |   | ٥     | 0     | Composition                            |                 |                                       |                            |                              |                                                                      |                                                                    |                                                             |                                          |                                        | Ā                                                 | Properties at 600°                       | at 600° F                                                                                                                                                                                   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------|-------------------|---|-------|-------|----------------------------------------|-----------------|---------------------------------------|----------------------------|------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. 1   Fig. 2   Fig. 3   Fig. 4   F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |           |                   | - | perce | nt by | weight)                                |                 | Prope                                 | Tties at                   | room temps                   | reture                                                               |                                                                    |                                                             |                                          |                                        |                                                   | Co                                       | esp tests - 1                                                                                                                                                                               | 300 pa1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fig.   6.0   1.0   1.0   0.0   0.0   0.1   1.0   0.0   0.1   1.0   0.0   0.1   1.0   0.0   0.1   1.0   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.1   0.0   0.0   0.1   0.0   0.1   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0 | Heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          | <i>కే</i> |                   |   |       | *     |                                        | ther            | Tensile<br>atrength<br>(psi)          | Yield<br>strength<br>(psi) | Elonga-<br>tion<br>(percent) | Brinell<br>hardness<br>number                                        | Grain<br>sire<br>(in.)                                             | (ps1)                                                       | strength<br>(ps1)                        | Elongs-<br>tion<br>(percent)           | Reduction<br>of area<br>(percent)                 | Duretion<br>(hr)                         | Minimum<br>creep rate<br>(percent/hr)                                                                                                                                                       | Total<br>deformation<br>at.100 hours<br>(percent)                     | Total deformation<br>at completion of test<br>(percent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fig.   6.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0 | 180A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | <b>6</b> | 1.5       | -                 | 9 | 0 0   | 0 0   | 005 01                                 | 0.05            |                                       |                            | 2.5                          |                                                                      | 0.050                                                              | 13,510                                                      | 11,750                                   | 17                                     | 8                                                 |                                          |                                                                                                                                                                                             |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.66<br>9.84<br>10.94<br>10.94<br>10.94<br>10.94<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10.98<br>10 |            |          | ν.<br>υ.  | 99999999999999999 |   |       |       | 00000000000000000000000000000000000000 | h . h . h h . h | % % % % % % % % % % % % % % % % % % % | 23,470                     | 044444400<br>                | <sub>කි</sub> සු උපද උදු පෙයන සු | 010<br>015<br>015<br>015<br>010<br>010<br>010<br>010<br>010<br>010 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 6.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | 321122-314234000 3000 3000 3000 3000 3000 3000 30 | 13 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.00053<br>0.0015<br>0.0015<br>0.0017<br>0.0018<br>0.0017<br>0.0017<br>0.0002<br>0.0015<br>0.0002<br>0.0015<br>0.0002<br>0.0015<br>0.0002<br>0.0015<br>0.0002<br>0.0015<br>0.0002<br>0.0015 | 0<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | 20011<br>20011<br>20011<br>20011<br>20011<br>20011<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>200001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>20001<br>200001<br>200001<br>20001<br>20001<br>20001<br>20001<br>20001<br>200001<br>20001<br>20001<br>20 |
| RTS         5-7         1.9 1.0         0.2         0.1         0.05 1.0 Fe and 1.0 Fe                                                                   | 102A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | o.<br>9  | -         | .5                |   | _     | -     | 11.1 200                               |                 | 26,450                                |                            | 1.6                          | <b>6</b> 8                                                           | -0503                                                              |                                                             | 000'ഗ⁺<                                  | 6.5                                    | 7.6                                               | 146                                      | 05000                                                                                                                                                                                       | ,611•                                                                 | -136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| #TS 6.0 -5 1-5 1.0 -02 -01   0.05 -1.2r   26,570   20,570   1.7   76   .4818.   12,790   10,600   15   16   170   .00018   .044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0.1<br>1.8.1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STE<br>STE | €.0°     | H (4)     | 9.0               |   |       | -     | 005 1.0 1                              | 7               | 28,900<br>26,910                      | 19,700                     | 1.4                          | නී සි                                                                | .00 <b>8</b>                                                       | 14,125<br>13,640                                            | 11,9 <b>8</b> 5<br>12,110                | 13<br>11.5                             | ងដ                                                | 1 <b>62</b><br>155                       | .00020                                                                                                                                                                                      | .058<br>.053                                                          | 070.<br>1 <b>3</b> 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 182A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STE        | ර<br>ර   | .5        | .51               |   |       | _     | 7                                      | 4.              | 26,570                                | 20,570                     | 1.7                          | _                                                                    | 1                                                                  | 12,790                                                      | 10,600                                   | IJ                                     | 10                                                | 170                                      | 81000-                                                                                                                                                                                      | 440.                                                                  | 450°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

TABLE 13.- COMPOSITION OF STABILIZED ALLOYS
[Pensile properties of these alloys given in table 14]

| ∞۰۲۲۸                                  |      |      |      | Element<br>(Percent by weight) | Element<br>nt by we | elght) |      |      |      |          |      |
|----------------------------------------|------|------|------|--------------------------------|---------------------|--------|------|------|------|----------|------|
|                                        | Cu   | Æ    | N    | Mg                             | ಕ್ರ                 | ŢŢ     | Д    | Be   | S1   | FB<br>FB | A1   |
| RAE 40C                                | 2.30 | 1.87 | 5.02 | 0.68                           | 0.68 0.51 0.07      | 70.0   |      | 0.34 | 0.18 | 0.32     | Bal. |
| RAE 55                                 | 1.75 | 1.75 | 2.85 | •73                            | .50                 | •05    |      |      | •13  | .20      | Bal. |
| Alcoa 142ª                             | 4.00 |      | 2.00 | 1.50                           |                     | 01.    |      |      | .10  | 14.      | Bal. |
| Alcoa 254ª                             | .50  | 1.05 | 1.50 | 5.99                           |                     | .02    | 0.01 | .005 | 60.  | .16      | Bal. |
| Experimental <sup>a</sup><br>(Heat 78) | 1.50 | 1.05 |      | 00.9                           |                     | .02    | .01  | -005 | 60.  | 41.      | Bal. |
| <b>CM</b> 62                           |      | 1.80 |      | Bal.                           | <u>Ce</u><br>6.0    |        |      |      |      |          |      |

\*Calculated or nominal compositions.



### TABLE 14.- TENSILE PROPERTIES OF RAE 40C, RAE 55, ALCOA 142, ALCOA 254, AND AN EXPERIMENTAL ALLOY AT ROOM TEMPERATURE, 400°, 500°, 600°, AND AT 700° F

| 433 3 2                              | Test         | Condition prior              | Tensile<br>strength | Proper-          |                       | strength<br>ps1)      | Elon-                        | Reduc-                              | Modulus of               |
|--------------------------------------|--------------|------------------------------|---------------------|------------------|-----------------------|-----------------------|------------------------------|-------------------------------------|--------------------------|
| Alloy and bar                        | (°F),        | to test                      | (psi)               | limit (psi)      | 0.1-percent<br>offset | 0.2-percent<br>offset | gation<br>(percent in 2 in.) | tion<br>of area<br>(percent)<br>(b) | elasticity<br>E          |
| RAE 400-3<br>RAE 400-3               | Room<br>-do- | Wrought as received          | 44,650<br>44,400    | 17,400<br>18,400 | 26,500<br>29,350      | 29,200<br>33,600      | 9.9<br>8.9                   |                                     | 12.2 × 10 <sup>6</sup>   |
|                                      |              |                              | av.44,525           | 17,900           | 27,925                | 31,400                | 9.4                          |                                     |                          |
| RAE 40C 4-1<br>RAE 40C 4-3           | -do-         | Chill cast as received       | 40,200<br>38,800    | 20,500<br>20,750 | 33,000<br>33,600      | 36,400<br>36,200      | 0.7<br>0.9                   |                                     | 10.5                     |
|                                      |              |                              | av.39,500           | 20,625           | 33,300                | 36,300                | 0.8                          |                                     |                          |
| RAE 55-3<br>RAE 55-3                 | -do-         | Wrought as received          | 48,400<br>48,450    | 27,800<br>23,400 | 31,550<br>35,250      | 38,600                | 7.3<br>8.5                   |                                     | 10.6                     |
|                                      |              |                              | av.48,425           | 25,600           | 33,400                |                       | 7.9                          |                                     |                          |
| RAE 55-6-2°<br>RAE 55-6-2°           | -do-         | Chill cast as received       | 31,300<br>24,800    | 13,640<br>12,530 | 23,050<br>22,550      | 26,650<br>24,800      | 1.0<br>1.2                   |                                     | 11.4                     |
|                                      |              |                              | av.28,050           | 13,085           | 22,800                | 27,725                | 1.1                          |                                     |                          |
| Alcon 142 (76-3)<br>Alcon 142 (76-4) | -do-         | Sand cast - HTA              | 39,500<br>45,550    | 26,700<br>27,200 | 38,900<br>39,600      | 39,500<br>42,850      | 1.0<br>1.2                   |                                     | 11.4                     |
|                                      |              |                              | av.42,520           | 26,950           | 38,250                | 41,175                | 1.1                          |                                     |                          |
| Alcoa 254 (74-2)<br>Alcoa 254 (74-4) | -do-         | Sand cast - acA <sup>0</sup> | 24,750<br>26,500    | 15,950<br>16,200 | 22,200<br>22,900      | 24,750<br>25,200      | 0.7<br>0.9                   |                                     | 10.6                     |
|                                      |              |                              | av.25,620           | 16,075           | 22,550                | 24,975                | 0.8                          |                                     |                          |
| Exper. (78-2)<br>Exper. (78-4)       | -do-         | Sand cast - HTS <sup>f</sup> | 36,500<br>34,150    | 13,500<br>16,000 | 22,000<br>21,800      | 25,050<br>24,050      | 2.7<br>2.5                   |                                     | 9.7                      |
|                                      |              |                              | av .35,325          | 14,750           | 21,900                | 24,500                | 2.6                          |                                     |                          |
| RAE 40C 4-4<br>RAE 40C 4-3           | 400<br>400   | Chill cast - S208            | 14,350<br>13,300    | 3,550<br>4,020   | 8,120<br>8,660        | 9,510<br>10,550       | 1.8<br>1.4                   | 0.5                                 | 9.5<br>11.6              |
|                                      |              |                              | av.13,825           | 3,785            | 8,390                 | 10,030                | 1.6                          | .75                                 | }                        |
| RAE 400-2<br>RAE 400-3               | 100<br>100   | Wrought - S20 <sup>g</sup>   | 17,500<br>18,300    | 5,010            | 8,520                 | 9,760                 | 28.0<br>31.0                 | 29<br>33                            | 10.0                     |
|                                      |              |                              | av.17,900           |                  |                       |                       | 29.5                         | 31                                  |                          |
| RAE 55-5-2<br>RAE 55-5-3             | 400<br>400   | Chill cast - S208            | 17,300              | 7,630<br>7,000   | 11,870<br>11,900      | 13,150<br>13,100      | 1.7<br>5.1                   | 1.0<br>5.5                          | 9.7<br>h <sub>17.6</sub> |
|                                      |              |                              | EV.20,250           | 7,315            | 11,885                | 13,125                | 3.4                          | 2.75                                |                          |
| RAE 55-2<br>RAE 55-3                 | 400<br>400   | Wrought - S208               | 18,100<br>18,800    | 5,250<br>4,260   | 8,750<br>8,120        | 10,100<br>9,370       | 26.0<br>49.0                 | 34<br>54                            | 10.5                     |
|                                      |              |                              | av.18,450           | 4,755            | 8,435                 | 9,735                 | 37.5                         | 44                                  |                          |
| Alcoa 254 (74-1)<br>Alcoa 254 (74-2) | 400<br>400   | Sand cast - acAS201          | 22,050<br>25,400    | 12,120           | 18,800                | 20,550                | 1.1                          | 1.0                                 | 10.0                     |
|                                      |              |                              | av.23,725           |                  |                       |                       | 1.05                         | 1.1                                 |                          |

<sup>\*\*</sup>Room-temperature tests pulled at 0.02 in./in. gage length/min until extensemeter was removed, then semewhat faster to rupture. All other bars were pulled at 0.01 in./in. gage length/min until 0.2—percent offset was reached, then rate was increased to 0.03 in./in. gage length/min to rupture.

\*\*Braduation of area in tests at room temperature is too small to measure accurately.

\*\*Cracture showed inclusion in bar. Specimen very unsound.

\*\*Braduation of area in 960° F, quenched in boiling water, aged 8 hr at 400° F.

\*\*As cast and aged 8 hr at 400° F, quenched in cold water, stabilized 24 hr at 650° F.

\*\*Braduation of area in the stabilized 480 hr at 575° F.

\*\*Modulus probably in error.

\*\*As cast and aged 8 hr at 400° F, stabilized 480 hr at 575° F.

TABLE 14.- TENSILE PROFERTIES CF RAE 40C, RAE 55, ALCOA 142, ALCOA 254, AND AN EXPERIMENTAL ALLOY AT ROOM TEMPERATURE,  $400^{\circ}$ ,  $500^{\circ}$ ,  $600^{\circ}$ , AND AT  $700^{\circ}$  F - Continued

| Alloy and bar                        | Test       | Condition prior                 | Tensile<br>strength | tional           |                       | strongth<br>(psi)     | El co-                       | Reduo-                      | Modulus of                                 |
|--------------------------------------|------------|---------------------------------|---------------------|------------------|-----------------------|-----------------------|------------------------------|-----------------------------|--------------------------------------------|
|                                      | (°F)       | to test                         | (psi)<br>(a)        | limit<br>(psi)   | 0.1-percent<br>offset | 0.2-percent<br>offset | gation<br>(percent in 2 in.) | of area<br>(percent)<br>(b) | elasticity,                                |
| Alcoa 142 (76-1)<br>Alcoa 142 (76-2) | 400<br>400 | Sand cast - HTAS20J             | 19,050<br>21,650    | 4,560<br>5,020   | 9,900<br>9,660        | 11,050<br>10,800      | 6.0<br>5.0                   | 6.6<br>3.1                  | <sup>h</sup> 17.0 × 10 <sup>6</sup><br>7.6 |
|                                      |            |                                 | av. 20,350          | 4,790            | 9,780                 | 10,925                | 5.5                          | 4.85                        |                                            |
| Exper. (78-1)<br>Exper. (78-2)       | 400<br>400 | Sand cast — HTS20 <sup>k</sup>  |                     | 14,500<br>12,750 | 20,700<br>18,500      | 23,050<br>20,100      | 6.8<br>3.2                   | 6.6                         | 9.3<br>9.4                                 |
|                                      |            | •                               | v. 27,450           | 13,625           | 19,600                | 21,575                | 5.0                          | 6.05                        |                                            |
| RAE 40C-4-4<br>RAE 40C-4-3           | 500<br>500 | Chill cast - S201               | 11,000              | 3,750<br>3,830   | 6,250<br>6,890        | 7,000<br>7,650        | 3.5<br>3.0                   | 2.5<br>3.0                  | 5.75<br>7.65                               |
|                                      |            |                                 | v. 11,050           | 3,790            | 6,570                 | 7,325                 | 3.25                         | 2.75                        |                                            |
| RAE 40C-2<br>RAE 40C-3               | 500<br>500 | Wrought - S20 <sup>1</sup>      | 10,925<br>10,840    | 5,000<br>4,870   | 7,350<br>7,160        | 8,050<br>7,840        | 46.0<br>67.0                 | 53.0<br>56.0                | 9.0<br>10.3                                |
|                                      |            |                                 | iv. 10,880          | 4,935            | 7,255                 | 7,945                 | 56.5                         | 54.5                        |                                            |
| RAE 55-5-2<br>RAE 55-5-3             | 500<br>500 | Chill cast - S20 <sup>1</sup>   | 14,520<br>13,520    | 7,400<br>7,270   | 10,650<br>10,300      | 11,320                | 5.0<br>6.0                   | 7.1                         | 8.1<br>12.2                                |
|                                      |            | •                               | v. 14,020           | 7,335            | 10,475                | 11,185                | 5.5                          | 5.75                        |                                            |
| RAK 55-3<br>RAE 55-2                 | 500<br>500 | Wrought - 820 <sup>1</sup>      | 12,350<br>15,300    | 5,300<br>5,100   | 8,050<br>8,930        | 8,900<br>10,700       | 6.0<br>4.0                   | 78<br>40                    | 8.85<br>115                                |
|                                      |            | •                               | v. 13,825           | 5,200            | 8,490                 | 9,800                 | 5.0                          | 59                          |                                            |
| Alcon 254 (74-3)<br>Alcon 254 (74-4) | 500<br>500 | Sand cast - acAS201             | 22,300<br>20,300    | 9,460<br>8,520   | 16,550                | 18,050                | 2.0<br>1.5                   | 1.75<br>2.25                | 10.1<br>7.9                                |
|                                      |            | •                               | v. 21,300           | 8,990            |                       |                       | 1.75                         | 2.0                         |                                            |
| Aloca 142 (76-3)<br>Aloca 142 (76-4) | 500<br>500 | Sand cast - HTAS20 <sup>3</sup> | 13,800<br>13,800    | 6,800<br>4,760   | 9,125<br>7,650        | 9,950<br>8,270        | 17.0<br>13.0                 | 22<br>23                    | 7.5<br>8.9                                 |
|                                      |            | •                               | v. 13,800           | 5,780            | 8,385                 | 9,110                 | 15.0                         | 22.5                        |                                            |
| Exper. (78-3)<br>Exper. (78-4)       | 500<br>500 | Sand cast - HTS 20k             | 21,300              | 12,000<br>11,500 | 18,000<br>16,500      | 19,000<br>18,200      | 10.5<br>18.0                 | 13.0<br>18.0                | 17.35<br>11.5                              |
|                                      | .          |                                 | v. 21,900           | 11,750           | 17,250                | 18,600                | 14.25                        | 15.5                        |                                            |
| RAE 400-3<br>RAE 400-3               | 600<br>600 | Wrought - 820                   | 7,950<br>8,360      | 3,480<br>4,380   | 5,230<br>6,510        | 5,770<br>6,920        | 53.0<br>41.3                 | 69.9<br>48.0                | 10.3                                       |
|                                      |            | •                               | v. 8,155            | 3,930            | 5,870                 | 6,345                 | 47.15                        | 58.9                        |                                            |
| RAE 40C-4-1<br>RAE 40C-4-1           | 600<br>600 | Chill cast - S20 <sup>M</sup>   | 8,110<br>6,900      | 3,530<br>3,610   | 5,570<br>n5,180       | 6,070<br>15,680       | 5.0<br>5.9                   | 4.3<br>3.85                 | 4.8<br>n7.3                                |
| ,                                    |            | a                               | v. 7,505            | 3,570            | 5,380                 | 5,875                 | 5.4                          | 4.07                        |                                            |
| RAE 55-3<br>RAE 55-3                 | 600<br>600 | Wrought - S20"                  | 7,670<br>8,130      | 3,800            | 5,470<br>6,040        | 5,800<br>6,460        | 85.0<br>53.0                 | 89.0<br>85.8                | 6.8 <del>5</del><br>7.8                    |
|                                      |            |                                 | 7,900               | 3,905            | 5,755                 | 6,130                 | 69.0                         | 87.4                        |                                            |
| RAE 55-4-1<br>RAE 55-4-3             | 600<br>600 | Chill cast - S20 <sup>M</sup>   | 10,200<br>9,550     | 5,200<br>4,000   | 7,620<br>7,350        | 8,100<br>7,850        | 25.0<br>12.5                 | 53.0<br>18.0                | 8.15<br>6.9                                |
|                                      |            |                                 | v. 9,875            | 4,600            | 7,485                 | 7,975                 | 18.7                         | 35.5                        | -                                          |

Room-temperature tests pulled at 0.02 in./in. gage length/min until extensemeter was removed, then somewhat faster to rupture. All other bars were pulled at 0.01 in./in. gage length/min until 0.2-percent offset was reached, then rate was increased to 0.03 in./in. gage length/min to rupture.

Modulus probably in error.

As cast and aged 8 hr at 400° F, stabilized 480 hr at 575° F.

Best-treated 6 hr at 950° F, quenched in boiling water, aged 8 hr at 400° F, stabilized 480 hr at 575° F.

Sest-treated 16 hr at 810° F, quenched in cold water, aged 24 hr at 650° F, stabilized 480 hr at 575° F.

As received, stabilized 480 hr at 575° F.

As received, stabilized 480 hr at 650° F.

Walues listed are questionable because of peculiarities of stress-strain curve.

TABLE 14.- TENSILE PROPERTIES OF RAE 40C, RAE 55, ALCOA 142, ALCOA 254, AND AN EXPERIMENTAL ALLOY AT ROOM TEMPERATURE, 400°, 500°, 600°, AND AT 700° F - Concluded

| Alloy and bar                         | Test<br>temperature<br>(°F) | Condition prior to test   | Tensile<br>strength<br>(psi)<br>(a) | Proportional<br>limit<br>(psi) | Yield strength (psi)    |                       | Elon-                        | Reduo-                              | Modulus o f           |
|---------------------------------------|-----------------------------|---------------------------|-------------------------------------|--------------------------------|-------------------------|-----------------------|------------------------------|-------------------------------------|-----------------------|
|                                       |                             |                           |                                     |                                | 0.1-percent<br>offset   | 0.2-percent<br>offset | gation<br>(percent in 2 in.) | tion<br>of area<br>(percent)<br>(b) | elesticity            |
| Aloom 142 (3Y-1)°<br>Aloom 142 (3Y-3) | 600<br>600                  | Sand cast - HTAS20P       | 8,600<br>9,310                      | 3360<br>3000                   | 5,330<br>5,625          | 5660<br>5925          | 12.0<br>20.5                 | 13.7                                | 4.9 × 10 <sup>6</sup> |
|                                       |                             | AY                        | 8,955                               | 3180                           | 5,475                   | 5790                  | 16.2                         | 17.0                                |                       |
| Alcom 254 (73-1)<br>Alcom 254 (73-3)  | 600<br>600                  | Sand cast - acAS209       | 12,830<br>12,720                    | 6810<br>6820                   | 10,230<br>9,450         | 9650                  | 20.0<br>19.0                 | 12.2<br>18.1                        | 8.0<br>7.7            |
|                                       |                             | av                        | 12,775                              | 6815                           | 9,840                   |                       | 19.5                         | 15.1                                | 101                   |
| Exper. (77-1)<br>Exper. (77-3)        | 600<br>600                  | Sand cast - HTS20"        | 12,200                              | 6960<br>5700                   | 9,480<br>8,720          | 9670<br>8850          | 28.6<br>26.4                 | 24.4<br>34.0                        | 6.5<br>6.85           |
|                                       |                             | av'.                      | 12,000                              | 6330                           | 9,100                   | 9260                  | 27.5                         | 29.2                                |                       |
| RAE 400-2<br>RAE 400-2                | 700<br>700                  | Wrought - S4 <sup>8</sup> | 4,840<br>5,110                      | 2710<br>2275                   | 3,460<br>3,525          | 3660<br>3800          | 46.0<br>88.0                 | 69.1<br>65.1                        | 3.8<br>3.8            |
|                                       |                             | av.                       | 4,975                               | 2490                           | 3,490                   | 3730                  | 67.0                         | 67.1                                |                       |
| RAE 40C-4-2<br>RAE 40C-4-6            | 700<br>700                  | Chill cast - S48          | 5,775<br>6,360                      | 2150<br>2590                   | 3,950<br>4,650          | 4350<br>4930          | 14.0<br>25.0                 | 34.0<br>13.7                        | 5.6<br>5.2            |
|                                       | !                           | av.                       | 6,070                               | 2370                           | 4,300                   | 4640                  | 19.5                         | 23.8                                |                       |
| RAE 55-2<br>RAE 55-2                  | 700<br>700                  | Wrought - Sh <sup>2</sup> | 5,100<br>6,200                      | 3310                           | 4,790                   | 5010                  | 61.0<br>46.0                 | 56.7<br>52.9                        | 5.9                   |
|                                       |                             | a.v.                      | 5,650                               |                                |                         |                       | 53.5                         | 54.8                                |                       |
| RAE 55-5                              | 700<br>700                  | Chill cast - Sks          | 7,260<br>8,050                      | 4310<br>4345                   | 6,090<br>6, <b>56</b> 0 | 6460<br>7025          | 23.5<br>27.0                 | 48.8<br>51.4                        | 5.6<br>5.15           |
|                                       |                             | AY.                       | 7,655                               | 4325                           | 6,325                   | 6740                  | 25.2                         | 50.1                                |                       |
| Alcoa 142 (76-1)<br>Alcoa 142 (76-3)  | 700<br>700                  | Sand cast - HTAS4t        | 5,325<br>5,900                      | 1635<br>2700                   | 3,120<br>3,900          | 3370<br>4175          | 49.5<br>59.0                 | 57.6<br>65.1                        | 3.9<br>5.0            |
|                                       |                             | av.                       | 5,610                               | 2165                           | 3,510                   | 3770                  | 54.2                         | 61.3                                |                       |
| Alcom 254 (74-2)<br>Alcom 254 (74-4)  | 700<br>700                  | Sand cast - acast         | 8,040<br>7,650                      | 3900<br>4000                   | 5,750<br>5,720          | 6050<br>5970          | 49.0<br>38.0                 | 37.8<br>44.2                        | 5.6<br>5.6            |
|                                       |                             | av'.                      | 7,845                               | 3950                           | 5,735                   | 6010                  | 43.5                         | 41.0                                |                       |
| Exper. (78-1)<br>Exper. (78-3)        |                             | Sand cast - HTS4"         | 7,650<br>8,420                      | 3765                           | 5,650                   | 5750                  | 83.0<br>55.0                 | 59.1<br>43.3                        | 7-3                   |
|                                       |                             | av.                       | 8,035                               |                                |                         |                       | 69.0                         | 51.2                                |                       |

Room-temperature tests pulled at 0.02 in./in. gage length/min until extensemeter was removed, then semewhat faster to rupture. All other bars were pulled at 0.01 in./in. gage length/min until 0.2-percent offset was reached, then rate was increased to 0.03 in./in. gage length/min to rupture.

Overheated during test; all values are low for this bar.

Pas in footnote j but stabilized 480 hr at 650° F.

As in footnote i but stabilized 480 hr at 650° F.

Tas in footnote k but stabilized 480 hr at 650° F.

As received, stabilized 96 hr at 700° F.

As in footnote j but stabilized 96 hr at 700° F.

As in footnote j but stabilized 96 hr at 700° F.

Was in footnote i but stabilized 96 hr at 700° F.

Was in footnote k but stabilized 96 hr at 700° F.







Figure 3.- Tensile strength of various alloys. All alloys stabilized prior to testing at elevated temperatures. See table 13 for compositions.



Figure 4.- Yield strength (0.2-percent offset) of various alloys. All alloys stabilized prior to testing at elevated temperatures. See table 13 for compositions.



Figure 5.- Elongation of various alloys. See table 13 for chemical compositions.