

Languages and Machines

L9: Variations of Turing machines

Jorge A. Pérez

Bernoulli Institute for Math, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Languages and Their Machines

Regular → Finite State Machines (FSMs)

Context-free ↔ Pushdown Machines

Context-sensitive
→ Linearly-bounded Machines

Decidable ↔ **Always-terminating Turing Machines**

 $\textbf{Semi-decidable} \quad \leftrightarrow \quad \textbf{Turing Machines}$

Outline

From Last Lecture

Variations of TMs
Multitrack TMs
The Example Revisited (I)
Multitape TMs
The Example Revisited (II)

Simulating Multitape with Multitrack

Non-Deterministic TMs (NTMs)

Closure Properties

Turing Machines (TMs)

A (simple) **Turing machine** M includes

- A set of states Q, with start state $q_0 \in Q$
- The tape alphabet Γ is such that $\Gamma \cap Q = \emptyset$. There is a blank symbol $B \in \Gamma \setminus \Sigma$
- The input alphabet Σ is such that $\Sigma \subseteq \Gamma \setminus \{B\}$

Graphically:

Turing Machines (TMs)

A (simple) **Turing machine** M includes

- A set of states Q, with start state $q_0 \in Q$
- The tape alphabet Γ is such that $\Gamma \cap Q = \emptyset$. There is a blank symbol $B \in \Gamma \setminus \Sigma$
- The **input alphabet** Σ is such that $\Sigma \subseteq \Gamma \setminus \{B\}$

Graphically:

A transition:

- changes the state
- writes a symbol on the square scanned by the head
- moves the head one square to the left or to the right

Turing Machines (TMs)

A (simple) **Turing machine** M is a quintuple $(Q, \Sigma, \Gamma, \delta, q_0)$ where

- Q is a set of states
- $q_0 \in Q$ is the start state
- Γ is the tape alphabet, a set of symbols disjoint from Q.
 Contains a blank symbol B, not in Σ
- $\Sigma \subseteq \Gamma \setminus \{\mathtt{B}\}$ is the input alphabet
- The transition function δ is a *partial* function such that

$$\delta: Q imes \Gamma o Q imes \Gamma imes \{L,R\}$$

If $\delta(q, X)$ is undefined then $\delta(q, X) = \bot$.

A set of accepting states $F \subseteq Q$ is convenient for defining acceptance, although it is not indispensable.

Terminology

A TM is always terminating if it terminates for every input.

Let L be a language.

- L is semi-decidable (or recursively enumerable, RE)
 if there exists a TM M such that L = L(M).
- L is decidable (or recursive)
 if there is an always terminating TM that accepts L by termination in an accepting state.
- If L is decidable, then it is also semi-decidable.
 The converse doesn't hold!

Outline

From Last Lecture

Variations of TMs
Multitrack TMs
The Example Revisited (I)
Multitape TMs
The Example Revisited (II)

Simulating Multitape with Multitrack

Non-Deterministic TMs (NTMs)

Closure Properties

Variations of TMs

- Extensions of TMs: multitrack, multitape, non-deterministic
- These generalized machines are convenient...

Variations of TMs

- Extensions of TMs: multitrack, multitape, non-deterministic
- These generalized machines are convenient...
- ...but don't add expressive power: the languages accepted by them are precisely those accepted by standard TMs

Variations of TMs

- Extensions of TMs: multitrack, multitape, non-deterministic
- These generalized machines are convenient...
- ...but don't add expressive power: the languages accepted by them are precisely those accepted by standard TMs

The extensions will be useful next lecture, when discussing Universal Turing machines.

Disclaimer

• The TMs discussed in the previous lecture are **two-way**: the tape extends indefinitely in both directions:

Disclaimer

 The TMs discussed in the previous lecture are two-way: the tape extends indefinitely in both directions:

But this is actually an extension of a simple TM in which there
is a left boundary: the tape extends indefinitely only in one
direction:

A simple TM can simulate the actions of a two-way TM.
 This can be proved by using a TM with two tracks.

Multitrack Turing Machines (TMs)

- A TM in which the tape is divided into tracks
- A tape position in an *n*-track tape contains *n* symbols from the tape alphabet. The TM reads an entire tape position.

Multitrack Turing Machines (TMs)

- A TM in which the tape is divided into tracks
- A tape position in an n-track tape contains n symbols from the tape alphabet. The TM reads an entire tape position.
- In the case of a two-track TM, we would have:

Track 2	 1	2	3	4	5	6	7	
Track 1	 a	b	С	d	e	f	g	
		\uparrow						
		q_i						

The machine simultaneously reads b and 2.

Multitrack Turing Machines (TMs)

- A TM in which the tape is divided into tracks
- A tape position in an n-track tape contains n symbols from the tape alphabet. The TM reads an entire tape position.
- In the case of a two-track TM, we would have:

Track 2	 1	2	3	4	5	6	7	
Track 1	 a	b	С	d	e	f	g	
		\uparrow						
		q_i						

The machine simultaneously reads b and 2.

 A multitrack TM can be represented as a one-track TM using tuples. In the case of two-track TMs, ordered pairs suffice:

 (a,1)	(b, 2)	(c, 3)	(d,4)	(e, 5)	(f, 6)	(g,7)	
	1			•			
	q_i						

Example 2

	q_0					
B [∞]	В	0	1	В	В	B [∞]
\mathbb{B}^{∞}	В	В	В	В	В	B [∞]

Example 2

		q_0				
B [∞]	В	0	1	В	В	B [∞]
B [∞]	В	В	В	В	В	B [∞]

$\begin{array}{ c c }\hline q_2\\ \downarrow\\ \end{array}$							
	B [∞]	В	0	1	0	В	B [∞]
	B [∞]	В	•	В	•	В	B [∞]

A multitrack TM that duplicates the input string $w \in \{0, 1\}^*$.

0

B

0

 B^{∞}

	q_4					
B [∞]	В	0	1	0	1	B [∞]
B [∞]	В	В	В	В	В	B [∞]

Multitape TMs

- A k-tape TM consists of k tapes and k independent tape heads
- The TM reads the tapes simultaneously, but has only one state
- A two tape machine:

A transition of a two-tape machine:

$$\delta(q_i, x_1, x_2) = [q_i; y_1, d_1; y_2, d_2]$$

- x_i and y_i are the old and new symbols on tape i;
- q_i and q_j are the old and new states;
- $d_i \in \{L, R, S\}$ is the direction of movement for tape head i, where S stands for "stationary" / "stand still"

Outline

From Last Lecture

Variations of TMs
Multitrack TMs
The Example Revisited (I)
Multitape TMs
The Example Revisited (II)

Simulating Multitape with Multitrack

Non-Deterministic TMs (NTMs)

Closure Properties

 It is possible to simulate a two-tape machine using a five-track machine.

 It is possible to simulate a two-tape machine using a five-track machine. Key idea:

Track 5	#					
Track 4				X		
Track 3	a	b	b	С	С	
Track 2			X			
Track 1		b	a	С		

 It is possible to simulate a two-tape machine using a five-track machine. Key idea:

 In general, a language accepted by a k-tape machine is accepted by a 2k + 1-track machine

Track 5	#					
Track 4				X		
Track 3	a	b	b	С	С	
Track 2			X			
Track 1		b	a	С		

Consider a transition $\delta(q_i, x_1, x_2) = [q_j; y_1, d_1; y_2, d_2]$. Its simulation in the multitrack machine involves:

- 1. Finding the x_1 and x_2 in T1 and T3, using the Xs in T2 and T4.
- 2. With x_1 and x_2 , the y_1 and y_2 to be printed and the directions d_1 and d_2 can be determined.
- 3. Printing y_1 and y_2 in T1 and T3, and moving the Xs in T2 and T4, according to d_1 and d_2 .

Outline

From Last Lecture

Variations of TMs
Multitrack TMs
The Example Revisited (I)
Multitape TMs
The Example Revisited (II)

Simulating Multitape with Multitrack

Non-Deterministic TMs (NTMs)

Closure Properties

Non-Deterministic TMs (NTMs)

- Just as the other machines. TMs can be non-deterministic
- This means that the transition function is defined as

$$\delta: Q imes \Gamma o \mathcal{P}(Q imes \Gamma imes \{L,R\})$$

- When more than one transition is possible, the computation chooses arbitrarily one of them
- Given an input string, an NTM may produce several computations

Example 3: An NTM

Example 3: An NTM

A TM that accepts strings whose last occurrence of c is preceded or followed by ab:

Non-Deterministic TMs (NTMs)

- Just as other machines we have seen, TMs can be non-deterministic
- This means that the transition function is defined as

$$\delta: Q imes \Gamma o \mathcal{P}(Q imes \Gamma imes \{L,R\})$$

- When more than one transition is possible, the computation chooses arbitrarily one of them
- Given an input string, an NTM may produce several computations
- The reader describes a breadth-first procedure to represent NTM computations using a (deterministic) two-tape TM
- Non-determinism + multitracks + multitape?
 Combinations are possible and handled as expected

Turing machines

The following are equivalent:

- Simple TMs
- Two-way TMs
- Multitrack TMs
- Multitape TMs
- Non-deterministic TMs (NTMs)
- Non-deterministic, multitrack TMs
- Non-deterministic, multitape TMs

Always Terminating NTMs

Given an NTM with a set of accepting states, there are three kinds of computations:

- 1. Terminating and accepting
- 2. Terminating and non-accepting
- 3. Non terminating (infinite!)

An input is accepted iff it has at least one accepting computation (it may also have non-accepting and non-terminating computations)

A TM is **always terminating** if for every input string every computation terminates

From Last Lecture

A TM is always terminating if it terminates for every input.

Let L be a language.

- L is semi-decidable (or recursively enumerable, RE) if there exists a TM M such that L = L(M).
- L is decidable (or recursive)
 if there is an always terminating TM that accepts L by termination in an accepting state.
- If L is decidable, then it is also semi-decidable.
 The converse doesn't hold!

Complexity classes

A (non)deterministic TM M has **time complexity** T(n) if M is guaranteed to terminate in at most T(n) steps for every input string w of length n (regardless of whether w is accepted).

Let L be a language and let T(n) be a **polynomial function**:

- L belongs to the class \mathcal{P} if there is a deterministic TM M with L = L(M) and with time complexity T(n).
- L belongs to the class \mathcal{NP} if there is an NTM M with L = L(M) and with time complexity T(n).
- Because every deterministic TM can be regarded as an NTM with the same time complexity, we have $\mathcal{P} \subseteq \mathcal{NP}$.
- Conjecture: $P \neq \mathcal{NP}$.

Computers, DTMs, and NTMs

- Everything that can be computed with a DTM, can be computed with an ordinary computer at least with the same efficiency, up-to memory extensions.
- Everything that can be computed with such an extendable computer, say in n steps, can be computed on a deterministic Turing machine in T(n) steps for some polynomial T(n).
- Ordinary computers are closer to the DTM than to the NTM.

Outline

From Last Lecture

Variations of TMs
Multitrack TMs
The Example Revisited (I)
Multitape TMs
The Example Revisited (II)

Simulating Multitape with Multitrack

Non-Deterministic TMs (NTMs)

Closure Properties

Closure Properties

We know:

$$L$$
 is decidable $\Rightarrow L$ is semi-decidable (*)

Furthermore:

- 1. L is decidable $\Rightarrow \overline{L}$ is decidable
- 2. L and \overline{L} are semi-decidable \Leftrightarrow L is decidable
- 3. L is semi-decidable $\Leftrightarrow L^*$ is semi-decidable
- 4. L_1 and L_2 are semi-decidable \Rightarrow $L_1L_2, L_1 \cup L_2$, and $L_1 \cap L_2$ are semi-decidable

Key ideas:

- 1. Use the complement of the set of accepting states.
- 2. \Rightarrow) Given M_1 and M_2 for L and \overline{L} , devise a two-tape TM that runs M_1 and M_2 in lockstep. \Leftarrow) Immediate from (1) and (*)
- 3. Exercise 5.13
- 4. These properties proven by building appropriate TMs.

Taking Stock

This lecture:

- Variants of Turing machines
- DTMs, NTMs, and their complexity classes
- Closure properties

Next Lecture: Thursday, May 25th

- Decision problems, in particular the halting problem
- Problems, languages, and (semi-)decidability
- Universal Turing machines