Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision Theory

Lecture 8

Michael Hartisch

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Data Science June 10, 2024

Organization

- decision theory only for Data Science specialization "optimization"
- evaluation

FAU M. Hartisch Decision Theory June 10, 2024 2/44

Recap: What did we do?

- Decision under uncertainty
- Methods:
 - Minimax/Maximin
 - Minimax Regret
 - Hurwicz
 - Average
- Properties

FAU M. Hartisch Decision Theory

Decision Under Uncertainty

- Any of the s_1, \ldots, s_n might happen
- We do not know any likelihoods
- Which a_i to choose?

Approach 1: Maximin/Minimax

- Maximisation problem: maximin
 - = maximise the smallest (worst) value
- Minimisation problem: minimax
 - = minimise the largest (worst) value
- Evaluate a row (decision) by its worst value
- Finds the best worst-case guarantee

FAU M. Hartisch Decision Theory June 10, 2024 5/44

Approach 2: Minimax Regret

- For each column (scenario) find the best value
- Consider the difference to the best in each column.
- Choose alternative that minimizes the largest difference

Example

Maximise:

$$\begin{array}{c|cccc} & s_1 & s_2 \\ a_1 & 3 & 7 \\ a_2 & 5 & 2 \end{array}$$

Regret:

- Max regret of a₁ is 2
- Max regret of a₂ is 5
- Choose a₁

Approach 3: Hurwicz's Pessimism-Optimism Index

- Given trade-off value $\alpha \in [0, 1]$
- For each alternative *i*:
 - Determine the worst outcome *m_i*
 - Determine the best outcome M_i
 - Calculate $\alpha m_i + (1 \alpha) M_i$
- Compromise between best and worst
- α = 1: optimise worst-case
- α = 0: optimise best-case

Approach 4: Laplace's Principle of Insufficient Reason (Average)

- Assumption:
 - If we don't know anything about probabilities, just assume all options are equally likely
- Optimise with respect to average value

FAU M. Hartisch Decision Theory June 10, 2024 8/44

Example

Maximise:

	S ₁	<i>S</i> ₂	<i>S</i> ₃	min	max	Hurwicz	regret	average
a_1	3	3	4					
a_2	2							
a_3	6	2	2					
a_4	5	2	3					

- Maximin:
- Hurwicz $\alpha = 1/2$:
- Regret:
- Average:

Example

Maximise:

	s_1	<i>S</i> ₂	<i>S</i> ₃	min	max	Hurwicz	regret	average
a_1	3	3	4	3	4	7/2	3	10/3
a_2	2	3	1	1	3	4/2	4	6/3
a_3	6	2	2	2	6	8/2	2	10/3
a_4	5	2	3	2	5	7/2	1	10/3
max	6	3	4					

• Maximin: a₁

• Hurwicz $\alpha = 1/2$: a_3

• Regret: *a*₄

• Average: a_1 , a_3 or a_4

Axioms

- Axiom 1: Complete ranking
- Axiom 2: Independence of labelling
- Axiom 3: Independence of value scale
- Axiom 4: Strong domination
- Axiom 5: Independence of irrelevant alternatives
- Axiom 6: Independence of addition of a constant to a column
- Axiom 7: Independence of row permutation
- Axiom 8: Independence of column duplication

Table of Results				
	Minimax	Hurwicz	Regret	Average
Ax 1	√	√	√	✓
Ax 2	✓	\checkmark	\checkmark	\checkmark
Ax 3	✓	\checkmark	\checkmark	\checkmark
Ax 4	✓	\checkmark	\checkmark	\checkmark
Ax 5	✓	√	X	1
Ax 6	X	X	\checkmark	✓
Ax 7	✓	√	X	1
Ax 8	√	✓	✓	X

FAU M. Hartisch Decision Theory June 10, 2024 11/44

No Free Lunch

- Any criterion that fulfils
 - Axiom 1: Complete ranking
 - Axiom 4: Strong domination
 - Axiom 5: Independence of irrelevant alternatives
 - Axiom 6: Independence of addition of a constant to a column
 - Axiom 7: Independence of row permutation
 - is equivalent to the average criterion
- The average criterion does not fulfil Axiom 8
- There is no criterion that fulfils all axioms

FAU M. Hartisch Decision Theory

Warm-Up

Find a counterexample to axiom 6: "adding a constant to a column does not change the solution"

- Minimax does not satisfy axiom 6
- Hurwicz does not satisfy axiom 6

FAU M. Hartisch Decision Theory June 10, 2024 13/44

Warm-Up

Minimize:

- Minimax: choose a₁
- The same for Hurwicz α = 1

$$\begin{array}{c|cccc}
s_1 & s_2 \\
\hline
a_1 & 1 & 3 \\
a_2 & 2 & 2
\end{array}$$

- Minimax: choose a₂
- The same for Hurwicz α = 1

Today

- Last session: Decision under Uncertainty
- Ordered Weighted Averaging (OWA)

FAU M. Hartisch Decision Theory June 10, 2024 15/44

OWA

• Let a weight vector w be given

$$W = (W_1, \ldots, W_n)$$

with
$$w_j \in [0, 1], \sum_{j \in [n]} w_j = 1$$

- For $A = (a_1, \ldots, a_n)$, let the vector $B = (b_1, \ldots, b_n)$ be all entries from a ordered by size (from large to small)
- A function $F: \mathbb{R}^n \to \mathbb{R}$ is called an Ordered Weighted Averaging (OWA) operator if

$$F(a_1, \ldots, a_n) = w_1b_1 + w_2b_2 + \ldots + w_nb_n$$

• Weights w_i are bound to the position, not the scenario

Example

- Let w = (0.2, 0.3, 0.1, 0.4)
- Find *F*(6, 10, 3, 5)
 - \circ Ordered: B = (10, 6, 5, 3)

$$F(6, 10, 3, 5)$$

=0.2 · 10 + 0.3 · 6 + 0.1 · 5 + 0.4 · 3
=5.5

- Find F(0, 7, 10, 2)
 - \circ Ordered: B = (10, 7, 2, 0)

$$F(0, 7, 10, 2)$$

=0.2 · 10 + 0.3 · 7 + 0.1 · 2 + 0.4 · 0
=4.3

Example

Maximize. Calculate OWA for each alternative with w = (1/2, 1/4, 0, 1/4)

- D(a₁)
- *D*(*a*₂)
- *D*(*a*₃)

Example

Maximize. Calculate OWA for each alternative with w = (1/2, 1/4, 0, 1/4)

- $D(a_1) = F(6, 3, 5, 2) = 0.5 \cdot 6 + 0.25 \cdot 5 + 0.25 \cdot 2 = 4.75$
- $D(a_2) = F(4, 8, 2, 0) = 0.5 \cdot 8 + 0.25 \cdot 4 + 0.25 \cdot 0 = 5$
- $D(a_3) = F(3, 2, 5, 6) = 0.5 \cdot 6 + 0.25 \cdot 5 + 0.25 \cdot 2 = 4.75$

Properties

- $0 \le F(A) \le 1$ if all values are in [0, 1]
- Why?

$$F(A) = \sum_{i \in [n]} w_i b_i \le \sum_{i \in [n]} w_i b_1 = b_1 \le 1$$

$$F(A) = \sum_{i \in [n]} w_i b_i \ge \sum_{i \in [n]} w_i b_n = b_n \ge 0$$

Properties

- Let $A = (a_1, ..., a_n)$
- Set $A' = (a'_1, ..., a'_n)$ with

$$a_j \geq a_j'$$
 for all $j \in [n]$

- Then $F(A) \geq F(A')$
- If each individual value improves, the result improves

Why?

- Let *B* and *B'* be the corresponding sorted vectors
- Then $b_j \geq b'_j$
- Thus, $\sum_{i \in [n]} w_i b_i \geq \sum_{i \in [n]} w_i b_i'$

Properties

- $F(a_1, \ldots, a_n) = F(a_{\pi(1)}, \ldots, a_{\pi(n)})$ for all permutations π
- Thus: order of scenarios doesn't matter

Why?

According to the definition of OWA, values are sorted anyway

FAU M. Hartisch Decision Theory June 10, 2024 21/44

Remark

- If we only assign weights w_i to each scenario j (not to positions), the property does not hold
- So:

$$G(a_1,\ldots,a_n)=\sum_{j\in[n]}w_ja_j$$

does not satisfy independence of column ordering

- Example: $G(a_1, a_2) = 0.7a_1 + 0.3a_2$
- $G(1,0) \neq G(0,1)$

Special Cases

- Reminder: w_1 is the weight for the highest outcome, w_n for the lowest outcome
- What if ... (how to maximize)
 - \circ $w_i = 1/n$ for all j?
 - $w_1 = 1, w_j = 0 \text{ for all } j \neq 1?$
 - \circ $w_n = 1$, $w_j = 0$ for all $j \neq n$?
 - \circ $w_n = \alpha$, $w_1 = 1 \alpha$, $w_j = 0$ for all $j \neq 0$, n?

FAU M. Hartisch Decision Theory

Special Cases

- Reminder: w_1 is the weight for the highest outcome, w_n for the lowest outcome
- What if ... (how to maximize)
 - \circ $w_j = 1/n$ for all j? Average
 - \circ $w_1 = 1$, $w_j = 0$ for all $j \neq 1$? Best case
 - \circ $w_n = 1$, $w_j = 0$ for all $j \neq n$? Worst case
 - \circ $w_n = \alpha$, $w_1 = 1 \alpha$, $w_j = 0$ for all $j \neq 0$, n? Hurwicz
- OWA generalizes Average, Minimax, Hurwicz

FAU M. Hartisch Decision Theory

Properties

- Let $\underline{w} = (0, 0, ..., 0, 1)$ and $\overline{w} = (1, 0, 0, ..., 0)$
- Let $F_w(a_1, \ldots, a_n)$ be the OWA operator with respect to weight w
- Then:
 - $\circ F_{\underline{w}}(a_1,\ldots,a_n) = \min_{j \in [n]} a_j$
 - $\circ F_{\overline{w}}(a_1,\ldots,a_n) = \max_{j \in [n]} a_j$
 - $\circ F_{\underline{w}}(a_1,\ldots,a_n) \leq F_w(a_1,\ldots,a_n) \leq F_{\overline{w}}(a_1,\ldots,a_n)$ for any w

How do I determine w? First Approach

- Let $S_k = \sum_{j=1}^k w_j$
- $S_n = 1$
- $S_0 := 0$
- Assuming we have a sorted vector B such that $b_i = 1$ for $j \le k$, and $b_i = 0$ otherwise
- Inquiry: How good do you find it if the best outcome is achieved in k out of n scenarios, and the remaining n − k are worst possible?
- It is $F(B) = \sum_{j \in [n]} w_j b_j = \sum_{j=1}^k w_j = S_k$

How do I determine w? First Approach

- S_k corresponds to the utility when k out of n scenarios are good
- $w_i = 1/n$: linear utility gain
- w: no satisfaction unless all scenarios are good
- \overline{w} : satisfaction even if one scenario is already good
- If S_k can be determined, then set

$$w_j = S_j - S_{j-1}$$

June 10, 2024 26/44

How do I determine w? Second Approach

- Given observations on how someone has decided
- Based on that, estimate weights
- Let $\mathcal{B} = (B^1, \dots, B^K)$ with $B^k = (b_1^k, \dots, b_n^k)$ be some alternatives we have observed so far
- Let $R \subseteq \mathcal{B} \times \mathcal{B}$ be pairs of alternatives where the decision-maker prefers the first alternative to the second alternative

FAU M. Hartisch Decision Theory June 10, 2024 27/44

How do I determine w? Second Approach

- OWA of B^k is $\sum_{j=1}^n w_j b_j^k$
- Problem: find w such that $F_w(B^i) \geq F_w(B^k)$ for all $(B^i, B^k) \in R$
- Might not be possible → Optimization problem

max z

s.t.
$$\sum_{j=1}^{n} w_j b_j^i - \sum_{j=1}^{n} w_j b_j^k \ge z$$
$$\sum_{j=1}^{n} w_j = 1$$
$$w_j \ge 0$$
$$\forall (B^i, B^k) \in R$$
$$\forall (B^i, B^k) \in R$$

"Andness" and "Orness"

- OWA can also be considered as a mixture of "And" (andness) and "Or" (orness)
- $w_n = 1$: each scenario must be good "and"
- $w_1 = 1$: one scenario must be good "or"
- Define "orness" as

$$orness(w) = \frac{1}{n-1} \sum_{j \in [n]} w_j(n-j)$$

• andness(w) = 1 - orness(w)

"Andness" and "Orness"

orness(w) =
$$\frac{1}{n-1} \sum_{j \in [n]} w_j(n-j)$$

•
$$\underline{w} = (0, 0, \dots, 0, 1),$$

$$orness(\underline{w}) = \frac{1}{n-1} \cdot 0 = 0$$

•
$$\overline{w} = (1, 0, ..., 0)$$

$$orness(\overline{w}) = \frac{1}{n-1} \cdot (n-1) = 1$$

"Andness" and "Orness"

$$orness(w) = \frac{1}{n-1} \sum_{j \in [n]} w_j(n-j)$$

•
$$w = (1/n, 1/n, ..., 1/n),$$

$$orness(w) = \frac{1}{n-1} \cdot \frac{1}{n} \cdot \sum_{j \in [n]} (n-j)$$
$$= \frac{1}{n-1} \cdot \frac{1}{n} \cdot \frac{n(n-1)}{2} = \frac{1}{2}$$

FAU M. Hartisch Decision Theory June 10, 2024 31/44

"Andness" and "Orness"

$$orness(w) = \frac{1}{n-1} \sum_{j \in [n]} w_j(n-j)$$

• What does this weight vector do?

$$W = (0, 0, 1, 0, 0)$$

FAU M. Hartisch Decision Theory June 10, 2024 32/44

"Andness" and "Orness"

$$orness(w) = \frac{1}{n-1} \sum_{j \in [n]} w_j(n-j)$$

• What does this weight vector do?

$$W = (0, 0, 1, 0, 0)$$

- Chooses the median (the moderately good scenario)
- What is its orness?

"Andness" and "Orness"

$$orness(w) = \frac{1}{n-1} \sum_{j \in [n]} w_j(n-j)$$

• What does this weight vector do?

$$W = (0, 0, 1, 0, 0)$$

- Chooses the median (the moderately good scenario)
- What is its orness?

orness(w) =
$$\frac{1}{4} \cdot (5-3) = \frac{1}{2}$$

OWA for Combinatorial Problems

- So far: OWA for a single alternative
- Approach possible for decision matrix and combinatorial problems
- So far only maximization problems, also possible for minimization problems
- If maximizing: w = (1, 0, ..., 0) chooses the largest best case
- If minimizing: w = (1, 0, ..., 0) chooses the smallest worst case

OWA for Combinatorial Problems

• Calculate minimal OWA solution with w = (1/2, 1/2, 0, 0), choose 2 out of 3 items

item	c^1	c^2	c^3	c^4
1	3	4	3	5
2	4	2	5	1
3	4	2	4	5

- {1,2}:
- {2,3}:
- {1,3}:

OWA for Combinatorial Problems

• Calculate minimal OWA solution with w = (1/2, 1/2, 0, 0), choose 2 out of 3 items

- $\{1,2\}$: A = (7,6,8,6), $OWA(\{1,2\}) = 7.5$
- $\{2,3\}$: A = (8,4,9,6), $OWA(\{2,3\}) = 8.5$
- $\{1,3\}$: A = (7,6,7,10), $OWA(\{1,3\}) = 8.5$

OWA for Combinatorial Problems

• Calculate minimal OWA solution with w = (2/3, 1/3, 0, 0), choose 2 out of 3 items

item	c^1	c^2	c^3	c^4
1	3	7	2	4
2	2	1	8	3
3	3	4	7	1

- {1,2}:
- {2,3}:
- {1,3}:

OWA for Combinatorial Problems

• Calculate minimal OWA solution with w = (2/3, 1/3, 0, 0), choose 2 out of 3 items

item	c^1	c^2	c^3	c^4
1	3	7	2	4
2	2	1	8	3
3	3	4	7	1

- $\{1,2\}$: A = (5,8,10,7), $OWA(\{1,2\}) = 9.3$
- $\{2,3\}$: A = (5,5,15,4), $OWA(\{2,3\}) = 11.7$
- $\{1,3\}$: A = (6,11,9,5), $OWA(\{1,3\}) = 10.3$

Approximation

• If minimizing, let the weights w_i be non-decreasing:

$$w_1 \geq w_2 \geq \ldots \geq w_n$$

- i.e., we are conservative / risk-averse: worse outcomes are always more important than better ones
- Worst-case with $w_1 = 1$ is a special case
- For item i, let $\hat{c}_{i1} \geq \hat{c}_{i2} \geq \dots \hat{c}_{in}$ be the sorted cost vector over all scenarios
- Set $\hat{c}_i = \sum_{j \in [n]} w_j \hat{c}_{ij}$

Approximation

- Solve with respect to scenario ĉ
- The solution is a $w_1 \cdot n$ -approximation for OWA
- Meaning, the objective function value is at most a factor of $w_1 n$ larger than the optimum
- Worst-case: *n*-approximation

FAU M. Hartisch Decision Theory June 10, 2024 37/44

Example

• Calculate minimal OWA solution with w = (2/3, 1/3, 0, 0), choose 2 out of 3 items

item

$$c^1$$
 c^2
 c^3
 c^4
 \hat{c}

 1
 3
 7
 2
 4
 6.0

 2
 2
 1
 8
 3
 6.3

 3
 3
 4
 7
 1
 6.0

•
$$\hat{c}_1 = w_1 c_1^2 + w_2 c_1^4 + w_3 c_1^1 + w_4 c_1^3 = (2/3) \cdot 7 + (1/3) \cdot 4 = 6$$

- Heuristic: include {1,3} (unfortunately not optimal)
- Approximation guarantee: $w_1 n = 2.7$

Extension: WOWA

- We have seen so far: OWA generalizes Maximin, Hurwicz, Average
- A weighting of scenarios of the form

$$F(a_1,\ldots,a_n) = p_1 a_1 + p_2 a_2 + \ldots + p_n a_n$$

is generally not possible

- Reminder: weights are bound to position and not to scenarios
- There is another generalization of OWA, called the Weighted Ordered Weighted Averaging (WOWA) Operator

WOWA: Definition

- Weight vector $w = (w_1, w_2, \dots, w_n)$
- w(x) is an interpolating function of the points $(i/n, \sum_{j \le i} w_j)$
- Example: w = (0.3, 0.2, 0.1, 0.4)

WOWA: Definition

- Given:
 - $\circ p_i \in [0, 1], \sum_{i \in [n]} p_i = 1$
 - $\circ w_i \in [0, 1], \sum_{i \in [n]} w_i = 1$
- Define

$$WOWA(a_1,\ldots,a_n)=\sum_{i\in[n]}\omega_ia_{\pi(i)}$$

with

- \circ π a permutation such that A is sorted in ascending order
- $\circ \omega_i = w(\sum_{j < i} p_{\pi(j)}) w(\sum_{j < i} p_{\pi(j)})$
- \circ w(x) is the interpolating function

WOWA: Properties

- Let $p_i = 1/n$ for all $i \in [n]$
- Intuitively: all scenarios are equally important
- Then:

$$\omega_i = w \left(\sum_{j \le i} p_{\pi(j)} \right) - w \left(\sum_{j < i} p_{\pi(j)} \right)$$
$$= w(i/n) - w((i-1)/n) = w_i$$

WOWA corresponds to the normal OWA

FAU M. Hartisch Decision Theory June 10, 2024 42/44

WOWA: Properties

- Let $w_i = 1/n$ for all $i \in [n]$
- Intuitively: all positions are equally important
- Then:

$$\omega_{i} = w \left(\sum_{j \leq i} p_{\pi(j)} \right) - w \left(\sum_{j < i} p_{\pi(j)} \right)$$
$$= \sum_{j \leq i} p_{\pi(j)} - \sum_{j < i} p_{\pi(j)} = p_{\pi(i)}$$

• And WOWA corresponds to the weighting $\sum_{i \in [n]} p_i a_i$

FAU M. Hartisch Decision Theory June 10, 2024 43/44

Quiz

Question 1

True or false?

OWA is a generalization of Maximin, Regret, Hurwicz, and Average.

Question 2

For A = (4, 8, 2, 6, 3, 0), what is OWA with W = (0, 0, 1/2, 1/2, 0, 0)?

Quiz

Question 1

True or false?

OWA is a generalization of Maximin, Regret, Hurwicz, and Average.

Solution

False: it is not a generalization of Regret.

Question 2

For A = (4, 8, 2, 6, 3, 0), what is OWA with w = (0, 0, 1/2, 1/2, 0, 0)?

Solution

It is the average of the two middle outcomes.

$$B = (8, 6, 4, 3, 2, 0)$$

$$F(A) = (1/2) \cdot 4 + (1/2) \cdot 3$$

$$= 3.5$$