

01-Representación de la información

Montaje y Mantenimiento de Equipos Coordinador: Juan Carlos Valero

Índice

1. Introducción

- ¿Cómo representan la información las máquinas?
- El sistema binario.
- Solamente los dígitos cero y uno (0 y 1).
- En computadores dos niveles de voltaje.
 - Encendido → 1
 - Apagado → 0

2. Representación de números

- Se define un sistema de numeración como:
 - El conjunto de símbolos utilizados para la representación de cantidades.
 - Las reglas que rigen dicha representación.

2. Representación de números

- Se define la base de un sistema de numeración:
 - El número de dígitos distintos que se utilizan en ese sistema.

2.1 Sistema decimal

- Base 10: Usa diez dígitos que son 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.
- ¿Por qué usamos este sistema?

2.1 Sistema decimal

- Sistema posicional
 - Cada dígito tiene un peso (un valor) en función de la posición que ocupa.

$$1234_{10} = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0 = 1234$$

$$325,24_{10} = 3 \times 10^2 + 2 \times 10^1 + 5 \times 10^0 + 2 \times 10^{-1} + 4 \times 10^{-2} = 325,24$$

- La forma más conveniente de representar la información en un computador es el sistema binario.
- Base 2: Utiliza sólo dos dígitos, el 0 y 1
- Cada dígito se le denomina BIT
 - Blnary digiT → dígito binario

Sistema posicional.

$$1011,01_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 8 + 0 + 2 + 1 + 0 + 0,25 = 11,25_{10}$$

- Convertir de decimal a binario. Método 1.
- Se realizan divisiones sucesivas por la base(2), hasta que el cociente sea menor que 2.
- La unión del último cociente y todos los restos escritos en orden inverso será el número expresado en binario.

Ejemplo de conversión del número decimal 28 a binario por el método 1:

Convertir a binario por el método 1 los números:

- **■**30 →
- **■**55 →
- 101 →

- Convertir de decimal a binario. Método 2.
- Parece más complicado pero realmente es más sencillo.
- Se hace una tabla partiendo desde el 1 y se van escribiendo a la izquierda sucesivamente el doble del anterior hasta llegar al que sea mayor que el número decimal buscado.

- Partiendo desde la izquierda.
- Se compara el número de la tabla con el que se quiere convertir.
- Si el número de la tabla es menor o igual que el buscado.
 - Se marca esa posición como un 1 y se restan los dos números. El resultado es el nuevo número a convertir.
- Si el número de la tabla es mayor que el buscado.
 - Se marca esa posición como un 0 y se pasa a la siguiente posición de la tabla
- Se acaba cuando el número buscado es 0.

Convertir a binario por el método 2 los números:

- **■**30 →
- **■**55 →
- 101 →

- Para convertir una cifra de binaria a decimal se utiliza el teorema fundamental de la numeración.
- El resultado es la suma de los productos de los resultados de multiplicar cada dígito por la base elevado a la posición que ocupa.

Ej.:
$$110,0011_2 = 6,1875_{10}$$

$$1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$

$$4 + 2 + 0 + 0 + 0 + 0 + 0,125 + 0,0625 = 6,1875$$

 Convertir a decimal los números obtenidos en los ejercicios anteriores.

DECIMAL	BINARIO
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010

Operaciones en binario

SUMA		RESTA		PRODUCTO	DIVISIÓN
0 + 0 = 0	0 – 0) = 0	C	0 * 0 = 0	0/0 = ERROR
0 + 1 = 1	0 – 1	= 11	C) * 1 = 0	0 / 1 = 0
1 + 0 = 1	1 – C) = 1	1	1 * 0 = 0	1 / 0 = ERROR
1 + 1 = 10	1 – 1	= 0	1	1 * 1 = 1	1 / 1 = 1

Sólo hay 10 tipos de personas

las que saben binario y las que no

- Representación de números enteros.
- Es necesario la representación del signo.
- Se suele emplear el dígito más a la izquierda posible.
- Si es 0 es positivo y si es 1 negativo.

- Signo y magnitud (SM)
- El signo se representa en el bit que está más a la izquierda del dato.
- En el resto de los bits se representa el valor del número en binario natural.
- Problemas:
 - Doble representación del 0. $(0000_2 \text{ y } 1000_2)$
 - Circuitos diferentes para sumas y restas.
- **►** +6=0110₂ -6=1110₂

- Complemento a 1 (Ca1)
- El complemento a 1 de un número binario se obtiene cambiando cada 0 por 1 y viceversa.
- Doble representación del cero.
- Las restas son sumas.
- ightharpoonup Ca1(-7)=INVERTIR(7)=INVERTIR(0111)=1000

Complemento a uno	Decimal
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1111	-0
1110	-1
1101	-2
1100	-3
1011	-4
1010	-5
1001	-6
1000	-7

- Complemento a 2 (Ca2)
- Se calcula sumando 1 al Ca1 del número positivo.
- Las restas son sumas.
- No hay doble representación del 0.

Complemento a dos	Decimal
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8

Se añaden tantos ceros hasta llegar al número de bits de la máquina

Si el número es positivo los tres son iguales

Convertir a binario en una máquina de cinco bits.

Decimal	Signo-Magnityd	Complemento a 1	Complemento a 2
+5	00101	00101	00101
-5	10101	11010	11011

Igual que el positivo cambiando el primer dígito de la izquierda por 1 Igual que el positivo cambiando todos los Os por 1s y viceversa

Se suma 1 al Ca1

110111 +1

111000 Como 1+1=10 Da 0 y me llevo 1

Convertir a binario en una máquina de seis bits.

Decimal	Signo-Magnitud	Complemento a 1	Complemento a 2
+8	001000	001000	001000
-8	101000	110111 -	111000
+21	010101	O 10101 —	010101
-21	110101	101010	101011
+33	Sería 0100001, pero son necesarios siete bits para representarlo. Se produce un error llamado overflow (desbordamiento)		

Convertir a binario en una máquina de seis bits.

Decimal	Signo-Magnitud	Complemento a 1	Complemento a 2
+9			
-9			
+22			
-23			
+35			

2.3 Sistema octal

Base 8: Utiliza ocho dígitos, el 0, 1, 2, 3, 4, 5, 6 y 7.

2.3 Sistema octal

- ¿Por qué es importante este sistema?
- Como 2³=8, significa que un dígito en base 8 se corresponde con 3 dígitos binarios.
- Es una manera más corta de trabajar con binarios.

Decimal	Octal	Binario
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

2.4 Sistema hexadecimal

- **Base 16:** Utiliza 16 dígitos.
- Se añaden letras de la A a la F.
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F.

2.4 Sistema hexadecimal

- Al igual que el sistema octal, hay una correspondencia entre el sistema binario y el hexadecimal.
- Como 2^4 = 16, cada dígito hexadecimal se puede representar en binario con 4 dígitos.

2.4 Sistema hexadecimal

Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Empezamos siempre por cero.

Decimal		Bina	ario		Octal	Hexadecimal
0	0 🛉	0 🛉	0 🛉	0 🛉	0	0
1	0	0	0	1	1	1
2	0	0	1	0	2	2
3	0	0	1 🕴	1	3	3
4	0	1	0	0	4	4
5	0	1	0	1	5	5
6	0	1	1	0	6	6
7	0	1 •	1	1	7	7
8	1	0	0	0	10	8
9	1	0	0	1	11	9
10	1	0	1	0	12	A
11	1	0	1	1	13	В
12	1	1	0	0	14	С
13	1	1	0	1	15	D
14	1	1	1	0	16	E
15	1	1	1	1	17	F

- Convertir de decimal a octal. Ej.: 1011000111
- Se toman grupos de tres dígitos partiendo por la derecha y se usa la tabla de conversión.

Binario	1	011	000	111
Octal	1	3	0	7

 $-1011000111_2 \rightarrow 1307_8$

Decimal	Octal	Binario
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

Convertir de octal a decimal. Ej.: 1234

Cada dígito se sustituye por su equivalente de la tabla

de conversión.

Octal	1	2	3	4
Binario	001	010	011	100

 $-1234_8 \rightarrow 1010011100_2$

Decimal	Octal	Binario
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

41

2.5 Conversión de sistemas

- Convertir de decimal a hexadecimal. Ej.: 10 1100 0111
- Se toman grupos de cuatro dígitos partiendo por la derecha y se usa la tabla de conversión.

Binario	0010	1100	0111
Hexadecimal	2	С	7

1011000111₂→2C7₁₆

Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

- Convertir de hexadecimala decimal. Ej.: BEBE
- Cada dígito se sustituye por su equivalente de la tabla de conversión.

Hexadecimal	В	Е	В	Е
Binario	1011	1110	1011	1110

 \blacksquare BEBE₁₆ \rightarrow 10111110101111110₂

Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Octal

Grupos de 3 desde la derecha usando la tabla.

Decimal

Hexadecimal

Binario

Grupos de 4 desde la derecha usando la tabla.

15610

Rellenar la siguiente tabla con todas las conversiones.

Binario	Octal	Hexadecimal	Decimal
			74
10100111			
	107		
		111	
			424
111101111			
	665		
		16F	

3. Representación alfanumérica

- La información que un usuario introduce en un ordenador está formado por letras, números y otros signos.
- Para representar esta información se usan los **estándares** de codificación.

- American Standard Code for Information Interchange
- Código Estadounidense Estándar para el Intercambio de Información.
- Utiliza grupos de **7 bits** por carácter, permitiendo 2^7 =**128** caracteres diferentes.

- Las primeras 32 combinaciones están reservadas a caracteres de control como:
 - Saltos de página, retorno de carro, borrado de pantalla, etc.
 - Desde ésta hasta la 128 están representadas todas las letras (mayúsculas y minúsculas), números y demás caracteres.

- ASCII era muy limitado.
- ASCII Extendido, usa 8 bits por carácter.
- \sim 2⁸= 256 caracteres.
- Añade símbolos latinos de idiomas diferentes del inglés y

algún símbolo gráfico.

En el bloc de notas aprieta la tecla ALT y sin soltar escribe 65. ¿Qué aparece? ¿Por qué?

3.2 UNICODE

- UNICODE (UNIversal CODE).
- Es un código de 16 bits.
- Es uno de los más modernos y usados.
- Es un estándar.
- Compatible con muchos SO y con todos los exploradores actuales.

3.2 UNICODE

- Dbjetivo: codificar cualquier idioma para el uso informático.
- Codifica distintos juegos de caracteres (árabe, cirílico, japonés, emojis, etc.).

3.2 UNICODE

■ En un editor de texto de Windows, aprieta la tecla WIN+.

¿Qué aparece? ¿Funciona? ¿Por qué es eso?

Prueba a cambiar un nombre de archivo con este

truco.

4. Representación multimedia 55

4. Representación multimedia

- Toda información multimedia se representa mediante código binario siguiendo normas propias.
 - Imagen: BMP, JPEG, GIF, PNG,...
 - Audio: WAV, MP3, OGG...
 - Vídeo: MPEG, AVI, MP4, MKV,...
 - Ofimática: DOCX, ODT, XLSX, OST,...
 - Otros: SVG, XML, HTML, CSS,....

4. Representación multimedia

- ¿Para qué se usan las siguientes extensiones?
 - PDF
 - CSV
 - EXE
 - DLL
 - **ZIP**
 - RAR
 - **I**SO

- Los ordenadores disponen de dispositivos para almacenar la información.
- Dichos dispositivos son elementos físicos con una capacidad determinada.
- Para medir dicha capacidad utilizamos una serie de medidas.

- La unidad mínima de información es el bit.
- Tiene dos valores posibles: 0 y 1.
- 8 bits son un byte.
- Antiguamente representaba a un único símbolo (ASCII).
- A partir del byte existen otras medidas múltiplos de ésta.

- Hay dos tipos de medidas.
- Las del Sistema Internacional que van de 1000 en 1000.
- Las de la ISO que van de 1024 en 1024.
- Aunque casi siempre se nombran las del SI, los equipos usan internamente las ISO.
- Por comodidad, usaremos las del SI.

Nombre	Símbolo	Factor y valor en el SI				
byte	В	$10^{\circ} = 1$				
kilobyte	kB	$10^3 = 1000$				
megabyte	MB	$10^6 = 1\ 000\ 000$				
gigabyte	GB	$10^9 = 1\ 000\ 000\ 000$				
terabyte	TB	$10^{12} = 1\ 000\ 000\ 000$				
petabyte	PB	$10^{15} = 1\ 000\ 000\ 000\ 000$				
exabyte	EB	$10^{18} = 1\ 000\ 000\ 000\ 000\ 000$				
zettabyte	ZB	$10^{21} = 1\ 000\ 000\ 000\ 000\ 000\ 000$				
yottabyte	YB	$10^{24} = 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000$				

Nombre	Símbolo	Factor y valor en el el ISO/IEC 80000-13
byte	В	$2^0 = 1$
kibibyte	KiB	$2^{10} = 1024$
mebibyte		$2^{20} = 1\ 048\ 576$
gibibyte	GiB	$2^{30} = 1\ 073\ 741\ 824$
tebibyte	TiB	$2^{40} = 1\ 099\ 511\ 627\ 776$
pebibyte	PiB	$2^{50} = 1\ 125\ 899\ 906\ 842\ 624$
exbibyte	EiB	2 ⁶⁰ = 1 152 921 504 606 846 976
zebibyte	ZiB	$2^{70} = 1\ 180\ 591\ 620\ 717\ 411\ 303\ 424$
yobibyte	YiB	280 = 1 208 925 819 614 629 174 706 176

Convertir al resto de unidades: 1 TB, 3.000 MB y 1.000.000 B

x8 x1000 en cada salto

b	В	KB	MB	GB	ТВ
8.000.000.000.000	1.000.000.000.000	1.000.000.000	1.000.000	1.000	1
24.000.000.000	3.000.000.000	3.000.000	3.000	3	0,003
8.000.000	1.000.000	1.000	1	0,001	0,000.001

Convertir al resto de unidades: 7 GB, 6.000.00 MB y 16.000.000 b

6. Ampliación

- Nate Gentile
 - Binario y puertas lógicas.
- Electrónica FP
 - Sistemas numéricos
 - Binario a decimal
 - Binario a hexadcimal
 - Binario a octal

