Übungsblatt 4 zu Modellkategorien

Aufgabe 1. Adjunktionen als Kan-Erweiterungen

Sei $G: \mathcal{M} \to \mathcal{C}$ ein Funktor (oder ein Morphismus in einer beliebigen 2-Kategorie). Zeige, dass G genau dann einen Linksadjungierten besitzt, wenn eine Rechts-Kan-Erweiterung von $\mathrm{Id}_{\mathcal{M}}$ längs G existiert und G diese bewahrt.

Aufgabe 2. Retrakte in Modulkategorien

Sei $i:U\hookrightarrow M$ die Inklusion eines Untermoduls. Zeige: Genau dann ist U ein direkter Summand von M, wenn i ein Linksinverses besitzt.

Aufgabe 3. Zellkomplexe und Koprodukte

Sei \mathcal{I} eine Menge von Morphismen in einer kovollständigen Kategorie. Sei X ein Objekt. Sei $f:A\to B$ ein relativer \mathcal{I} -Zellkomplex. Zeige: Der induzierte Morphismus $A\amalg X\to B\amalg X$ ist wieder ein relativer \mathcal{I} -Zellkomplex.

Aufgabe 4. Zylinder und Überlagerungen

Sei $E \xrightarrow{\pi} X$ eine Überlagerung. Sei pt $\xrightarrow{\iota} [0,1]$ die Inklusion eines Intervallendes. Zeige $\iota \boxtimes \pi$.

Aufgabe 5. Erste Schritte mit Modellstrukturen

- a) Zeige, dass die Kategorie der Mengen zusammen mit den Isomorphismen, Injektionen und Surjektionen eine Modellkategorie bildet.
- b) Zeige, dass in einer Modellkategorie je zwei der folgenden fünf Klassen (außer $(\mathcal{C}, \mathcal{F} \cap \mathcal{W})$ und $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$) die anderen eindeutig festlegen: $\mathcal{W}, \mathcal{C}, \mathcal{F}, \mathcal{C} \cap \mathcal{W}, \mathcal{F} \cap \mathcal{W}$.
- c) Sei \mathcal{M} eine Modellkategorie. Baue auf der Kategorie \mathcal{M}_{\star} der punktierten Objekte in \mathcal{M} eine Modellstruktur.

Aufgabe 6. Eindeutigkeit von Lifts

Sei in einer Modellkategorie ein Quadrat mit zwei Lifts h und k gegeben. Zeige, dass h und k zueinander sehr gut linkshomotop sind.

That cat won't mess with me anymore.