Industrielles de

Sciences

Chapitre 4 – Méthodologie : détermination des équations de mouvement

l'Ingénieur

Application 01

Chaîne ouverte - Wheeling moto

Équipe PT La Martinière Monplaisir

Savoirs et compétences :

Modélisation dynamique du comportement de la charge

Objectif Déterminer les équations du mouvement du conteneur de façon à en obtenir un modèle simple pour la synthèse de la commande.

En vue d'élaborer une commande automatisée du déchargement des conteneurs, une bonne compréhension de la dynamique du système est nécessaire. Cette partie vise à établir les équations du mouvement du conteneur. Seul le vérin 3 est libéré. La charge peut alors balancer selon le modèle figure ******9. Dans cette étude, le mouvement de levage est supposé arrêté et la vitesse de vent nulle. Les douze câbles supportant le conteneur sont assimilés à un seul câble indéformable, en liaison pivot à ses extrémités. Les liaisons entre les solides 0, 1, 2 et 3 sont supposées parfaites. Le portique support du chariot est noté 0, le chariot 1, le câble 2 et l'ensemble {spreader + conteneur} 3.

Paramétrage

- Le repère $\mathcal{R}_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est lié au portique fixe; il est supposé galiléen avec $\overrightarrow{z_0}$ l'axe vertical ascendant.
- La position du chariot telle que $\overrightarrow{OE} = y_{ch}(t)\overrightarrow{y_0}$ est notée $y_{ch}(t)$; l'angle $(\overrightarrow{z_0}, \overrightarrow{z_2})$ d'inclinaison du câble $\theta(t)$ et l'angle $(\overrightarrow{z_2}, \overrightarrow{z_3})$ d'inclinaison du conteneur par rapport au câble $\beta(t)$.

Données

- $\mathcal{R}_1 = (E; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ repère lié au chariot de levage 1.
- $\Re_2 = (E; \overrightarrow{x_0}, \overrightarrow{y_2}, \overrightarrow{z_2})$ repère lié au câble 2; $\ell_2 = 50$ m la longueur EF du câble; la masse est négligée.
- $\mathcal{R}_3 = (F; \overrightarrow{x_0}, \overrightarrow{y_3}, \overrightarrow{z_3})$ repère lié à l'ensemble {spreader + conteneur}; $m_3 = 50$ tonnes la masse du solide 3; G_3 le centre de gravité du solide 3, tel que $\overrightarrow{G_3F} = h_3 \overrightarrow{z_3}$ où $h_3 = 2.5 \,\mathrm{m}$; la matrice d'inertie du

solide 3 s'écrit
$$I_3(G_3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\left(\overrightarrow{x_0}, \overrightarrow{y_3}, \overrightarrow{z_3}\right)}$$
 où

$$A_3 = 52 \times 10^3 \text{ kg m}^2$$

 $B_3 = 600 \times 10^3 \text{ kg m}^2$
 $C_3 = 600 \times 10^3 \text{ kg m}^2$

- la motorisation M_D du mouvement de direction exerce, par l'intermédiaire de câbles, des actions mécaniques sur (1) qui se réduisent à un glisseur de la forme $\overrightarrow{R(M_D \to 1)} = F \overrightarrow{y_0}$;
- l'action mécanique du câble sur le spreader est notée $\overrightarrow{R(2 \to 3)} = F_{23} \overrightarrow{z_2}$.

Question 1 Déterminer le nombre de degrés de liberté et le nombre d'actionneurs du modèle proposé figure 9****. En déduire le nombre de degrés de liberté non motorisés. Expliquer pourquoi il est difficile de poser le conteneur sur un camion avec précision?

Question 2 Déterminer littéralement, dans la base \mathcal{B}_2 et au point G_3 , la vitesse $V(G \in 3/0)$ puis le torseur dynamique $\{\mathcal{D}(D/3)\}$ 0 de l'ensemble {conteneur + spreader} (3) dans son mouvement par rapport au repère galiléen \mathcal{R}_0 .

Question 3

Question 4

Question 5

1