Homework 2

Quantum Mechanics

August 29th, 2022

CLAYTON SEITZ

Problem 1. Problem 1.12 from Sakurai

Solution.

If we choose the representation such that $|1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $|2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ then we can use the definition of the outer product to show that

$$H = a \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

The energy eigenvalues are then found by

$$\det(H - \lambda I) = \det\begin{pmatrix} a - \lambda & a \\ a & -a - \lambda \end{pmatrix}$$
$$= (a - \lambda)(-a - \lambda) - a^{2}$$
$$= \lambda^{2} - 2a^{2} = 0$$

therefore $E_{\pm} = \pm \sqrt{2a}$. The + eigenvector $|\psi_1\rangle$ is given by the system

$$(\psi_1^1 + \psi_1^2) = \sqrt{\frac{2}{a}} \psi_1^1$$
$$(\psi_1^1 - \psi_1^2) = \sqrt{\frac{2}{a}} \psi_1^2$$

The – eigenvector $|\psi_2\rangle$ is given by the system

$$(\psi_2^1 + \psi_2^2) = -\sqrt{\frac{2}{a}}\psi_2^1$$
$$(\psi_2^1 - \psi_2^2) = -\sqrt{\frac{2}{a}}\psi_2^2$$

Problem 2. Problem 1.13 from Sakurai

Solution.

Writing H out in matrix form gives

$$H = H_{11} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + H_{12} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} + H_{22} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} H_{11} + H_{12} + H_{22} + 1 & H_{11} - H_{12} - H_{22} + 1 \\ H_{11} - H_{12} + H_{22} - 1 & H_{11} + H_{12} - H_{22} - 1 \end{pmatrix}$$

$$\det(H - \lambda I) = \det\begin{pmatrix} H_{11} + H_{12} + H_{22} + 1 - \lambda & H_{11} - H_{12} - H_{22} + 1 \\ H_{11} - H_{12} + H_{22} - 1 & H_{11} + H_{12} - H_{22} - 1 - \lambda \end{pmatrix}$$

Problem 3. Problem 1.15 from Sakurai

Solution. After the first measurement along $+\hat{z}$, all of our atoms are prepared in the $|+\rangle$ state in the S_z basis. At the next apparatus oriented along \hat{n} , more atoms will be filtered out since $|+\rangle$ is not an eigenket of the $\mathbf{S} \cdot \hat{n}$ operator. Recall that $|+\rangle_n$ is

$$|+\rangle_n = \cos\frac{\beta}{2}|+\rangle + \sin\frac{\beta}{2}|-\rangle$$

The probability the state $|+\rangle$ survives is given by the inner product

$$|\langle +|+\rangle_n|^2 = |\langle +|\cos\frac{\beta}{2}|+\rangle + \langle +|\sin\frac{\beta}{2}|-\rangle|^2$$
$$= \cos^2\frac{\beta}{2}$$

After this, all atoms are in the $|+\rangle_n$ state. We then filter the atoms one more time with an apparatus along $-\hat{z}$. The fraction that survive this one is given by

$$|\langle -|+\rangle_n|^2 = |\langle -|\cos\frac{\beta}{2}|+\rangle + \langle -|\sin\frac{\beta}{2}|-\rangle|^2$$
$$= \sin^2\frac{\beta}{2}$$

Therefore the fraction output is $\cos^2 \frac{\beta}{2} \sin^2 \frac{\beta}{2}$. We can maximize this function by setting $\beta = \pi/2$

Problem 4. Problem 1.16 from Sakurai

Solution.

We have the observable

$$O = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\det(O - \lambda I) = \det\begin{pmatrix} -\lambda & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & -\lambda & \frac{1}{\sqrt{2}}\\ 0 & \frac{1}{\sqrt{2}} & -\lambda \end{pmatrix}$$
$$= -\lambda \left(\lambda^2 - \frac{1}{2}\right) - \frac{1}{\sqrt{2}} \left(-\frac{\lambda}{\sqrt{2}}\right)$$
$$= -\lambda^3 + \lambda = 0$$

Clearly our eigenvalues are $\lambda = \pm 1$

Problem 5. Problem 1.23 from Sakurai

Solution.

Problem 6. Problem 1.24 from Sakurai

Solution.