Tvorba informačných systémov 2024/2025 Návrh Implementácie

Profilometria

Klára Senderáková

Matej Gornál

Lukáš Hajdúch

Viktória Terebová

Obsah

Obsah	2
1. Úvod	4
1.1. Účel dokumentu	4
1.2. Rozsah využitia systému	4
1.3. Prehľad nasledujúcich kapitol	4
2. Špecifikácia vonkajších interfejsov	5
Využité technológie:	5
3. Dátový model perzistentných údajov	6
3.1. Štruktúra priečinkov projektu vytvorený používateľom	6
3.2. Štruktúra priečinkov mimo projektu	6
3.3. Detaily priečinkov a súborov	6
4. Používateľské rozhranie	9
4.1. Návrh používateľského rozhrania pred implementáciou	9
4. 2. Dokumentácia GUI aplikácie LaserScan	9
4.2.1. Hlavné menu	9
4.2.2. Skenovanie obrazu	9
4.2.3. Zobrazenie skenov	12
4.2.4. 3D Model Viewer	14
5. Návrh implementácie	16
5.1 Využité technológie:	16
5.1.1 Grafické rozhranie:	16
5.1.2 Čítanie obrazu:	16
5.1.3 Distribúcia software-u:	16
6. UML diagramy	17
6.1 UML class diagram	17
6.2 UML component diagram	18
6.2.1 Kľúčové moduly systému	18
6.3 UML state diagram	20
7. Podrobný plán implementácie a rozdelenie požiadaviek	21
Fáza 1: Inicializácia a základné funkcie (20.11)	21

Fáza 2: Snímanie a spracovanie obrazu (27.11)	21
Fáza 3: Kalibrácia a spracovanie dát (4.12)	21
Fáza 4: 3D modelovanie a vizualizácia (11.12)	22
Fáza 5: Integrácia a finalizácia (18.12)	22
Detailné rozdelenie práce	22
Matej	22
Lukáš	22
Klára	22
Viktória	23
Časový harmonogram implementácie	23
8. Testovacie scenáre	24
8.1 Scenár 1 : Overenie získania skenov zo štandardej webkamery	24
8.2 Scenár 2 : Overenie výberu kamery v prípade nesprávnej detekcie a n kamery	
8.3 Scenár 3 : Overenie správnosti kalibrácie a tvorby nového projektu	
8.4 Scenár 4 : Overenie prehliadania skenov	27
8.5. Scenár 5 : Overenie zobrazenia 3D modelu	28

1. Úvod

1.1. Účel dokumentu

Tento dokument predstavuje detailný návrh projektu "Profilometria" pre firmu KVANT, vytvorený v rámci predmetu Tvorba informačných systémov pre akademický rok 2024/2025. Obsahuje všetky potrebné informácie na pochopenie funkcionality, implementácie a dizajnu informačného systému. Dokument je primárne určený pre vývojársky tím a pokrýva všetky požiadavky definované v katalógu požiadaviek.

1.2. Rozsah využitia systému

Na efektívne využitie tohto dokumentu je potrebné najskôr sa oboznámiť s obsahom katalógu požiadaviek. Tento dokument podrobne popisuje implementáciu všetkých požiadaviek uvedených v katalógu, definuje vonkajšie rozhrania, formáty súborov a komunikačné protokoly. Súčasťou je aj návrh používateľského prostredia vrátane vizualizácie, podporený diagramami, ako sú stavový diagram, sekvenčný diagram a class diagram.

1.3. Prehľad nasledujúcich kapitol

Nasledujúce kapitoly sa venujú vonkajším rozhraním, dátovému modelu, užívateľskému rozhraniu a jeho vizualizácií. Posledná kapitola opisuje detailný návrh implementácie systému.

2. Špecifikácia vonkajších interfejsov

Aplikácia je napísaná v jazyku Python a je určená na inštaláciu na lokálny počítač používateľa so systémom Windows. Komunikácia medzi aplikáciou a pripojenou kamerou profilometra sa uskutočňuje prostredníctvom rozhrania USB 2.0 s využitím príslušného ovládača. Kamera je ovládaná a dáta sú spracovávané prostredníctvom knižnice OpenCV.

Aplikácia spracováva dáta získané z kamery v podobe skenov profilov nasnímaných laserom. Tieto skeny sú zobrazované ako vizuálne obrázky alebo využívané ako vstupy na vytvorenie a vizualizáciu 3D modelu skenovaného objektu.

Kalibrácia kamery sa vykonáva s použitím kalibračného predmetu so známymi rozmermi, pričom sa analyzujú hodnoty hĺbky a šírky kalibračných skenov. Priemerné hodnoty z týchto skenov slúžia na konverziu pixelov na stotiny milimetra pre presnejšie spracovanie dát.

Využité technológie:

- **Python**: Programovací jazyk, v ktorom je aplikácia napísaná.
- **Tkinter**: Knižnica na tvorbu grafického užívateľského rozhrania (GUI).
- OpenCV (cv2): Knižnica na prácu s obrazom (skenovanie, detekcia čiar).
- **NumPy**: Knižnica na prácu s vektormi, maticami a viacrozmernými poľami, poskytujúca širokú škálu matematických funkcií.
- **Pillow (PIL)**: Knižnica na manipuláciu s obrázkami (načítanie, úpravy a ukladanie obrázkov).
- Matplotlib: Vizualizácia bodov a 3D modelov
- **Scipy**: Pre spracovanie 3D bodov a trianguláciu (Delaunay)
- **Trimesh**: Generovanie a export 3D objektov.
- Pygrabber: Na zisťovanie dostupných kamier.
- **os**: Modul na prácu s operačným systémom, ktorý poskytuje prístup k súborovému systému a ďalším systémovým funkciám.
- sys: Modul na interakciu s interpretorom Pythonu a manipuláciu so systémovými parametrami a vlastnosťami.
- **subprocess**: Modul na spúšťanie a spravovanie externých procesov z Python skriptov (napr. inštalácia balíkov).
- ensurepip: Modul používaný na inicializáciu a správu balíkov Pythonu (pip).
- **threading**: Knižnica na implementáciu paralelného spracovania pomocou vlákien. Umožňuje súbežné vykonávanie úloh, ako je spracovanie obrazu a obsluha GUI bez prerušenia hlavného vlákna aplikácie.

3. Dátový model perzistentných údajov

3.1. Štruktúra priečinkov projektu (vytvorený používateľom)

3.2. Štruktúra priečinkov mimo projektu

3.3. Detaily priečinkov a súborov

3.3.1. Hlavný priečinok projektu (<Názov projektu>/)

Hlavný priečinok obsahuje kompletnú štruktúru projektu:

- Skenov (nespracovaných a spracovaných obrázkov)
- Kalibračných údajov (napr. rozmery objektu, body a referenčné čiary)
- Parametrov posunu objektov medzi skenmi
- Exportovaných 3D modelov vo formátoch STL, OBJ a GLTF

3.3.2. Priečinok scans/

- Slúži ako hlavný adresár pre všetky skenovacie relácie objektu.
- Obrázky majú názov odvodený od:

1	_scan_	300	.png
Poradie skenu		Poloha objektu v čase skenu	Typ súboru

Podpriečinky a súbory v scans/:

1. raw/

• Obsahuje nespracované skenovacie obrázky zachytené z kamery.

i. 1_scan_300.png
 ii. 2_scan_350.png
 iii. ...
 Prvý sken.
 Druhý sken.

2. processed/

• Obsahuje obrázky po aplikácii algoritmu na spracovanie skenov.

i. 1_scan_300.png
ii. 2_scan_350.png
iii. ...
Prvý obrázok po spracovaní.
Druhý obrázok po spracovaní.

3.3.3. Priečinok calibration/

• Obsahuje údaje a obrázky na kalibráciu.

Podpriečinky a súbory v calibration/:

1. raw/

Nespracované kalibračné skeny.

i. 1.png Prvý sken.ii. 2.png Druhý sken.iii. ...

2. processed/

• Skeny kalibrácie po aplikácii algoritmu.

i. cal_scan1.pngii. cal_scan2.pngiii. cal_scan2.pngiiii. ...
Prvý obrázok po spracovaní.
Druhý obrázok po spracovaní.

2. calibration data.txt

• Obsahuje údaje o kalibrácii v nasledujúcom formáte:

```
width: <float> mm, height: <float> mm,
avg_distance: <float> mm
```

Príklad:

10.0, 20.0, 19.8

3.3.4. Priečinok movement parameters/

• Obsahuje informácie o začiatočnej pozícii objektu a o posune objektu medzi jednotlivými skenmi.

Podpriečinky a súbory v movement_parameters/:

- movement.txt
 - Obsahuje údaje o pohybe objektu v nasledujúcom formáte:

```
start: <int>, size: <int> (angle = °)
```

Príklad:

2,30

3.3.5. Priečinok objects/

• Obsahuje exportované 3D modely vo formátoch STL, OBJ a GLTF.

Súbory v objects/:

- model.stl
- model.obj
- model.gltf

3.3.6. Súbor points.txt

- Obsahuje zoznam bodov (x, y, z) naskenovaného objektu na tvorbu 3D modelov.
- Príklad:

```
120 30 70
125 31 24
111 32 54
```

3.3.7. Súbor last_project.txt

• Obsahuje údaje o poslednom otvorenom projekte v nasledujúcom formáte:

```
Absolute path: <str>
Project name: <str>
```

• Príklad:

C:\Example\Path\To\Project\Project_name

Project_name

4. Používateľské rozhranie

4.1. Návrh používateľského rozhrania pred implementáciou

https://app.moqups.com/JaLOkooyxn0fDB65WNaOg89yAQPt2xoB/view/page/a8db85771

4. 2. Dokumentácia GUI aplikácie LaserScan

4.2.1. Hlavné menu

Po spustení aplikácie sa zobrazí hlavné menu s tromi hlavnými tlačidlami:

- SCAN IMAGE Spustenie procesu skenovania
- VIEW SCANS Zobrazenie zoznamu naskenovaných snímkov
- SHOW 3D MODEL Vizualizácia 3D modelu

4.2.2. Skenovanie obrazu

Po kliknutí na **SCAN IMAGE** sa otvorí okno skenovania, kde sú k dispozícii tlačidlá:

- Scan Spraví sken aktuálneho obrazu
- Back Vratí používateľa do hlavného menu

V hornej ponuke **File** je možné:

- Start Camera Spustiť kameru
- Stop Camera Zastaviť kameru
- New Project Vytvoriť nový projekt
- Open Project Otvoriť existujúci projekt
- Back to Main Menu Vratí používateľa do hlavného menu
- Exit Ukončiť aplikáciu

V hornej ponuke **Settings** je možné:

- Choose a Camera Vybrať kameru
- Camera Settings Nastavenia kamery (jas, kontrast, gamma, vyváženie bielej...)
- Calibration Kalibrácia s možnosťou zadania šírky a výšky kalibračného objektu
- Object Shift Nastavenie počiatočnej pozície objektu a jeho posunu medzi skenmi
- Set Scan Key Bind Nastavenie klávesovej skratky pre skenovanie

4.2.3. Zobrazenie skenov

Po kliknutí na VIEW SCANS sa otvorí okno s:

- Zoznamom skenov Každý sken je označený poradovým číslom a hodnotou
- Náhľadom skenu Pôvodný a upravený sken

Funkcie dostupné v tomto okne:

- Back Vratí používateľa do hlavného menu
- Show 2D Zobrazenie skenov v 2D
- Delete Selected Vymazanie označených skenov
- **Delete Interval** Vymazanie skenov v zadanom intervale

V hornej ponuke File je možné:

- Open Project Otvoriť existujúci projekt
- Use Algorithm Použiť algoritmus na spracovanie skenov
- Exit Ukončiť aplikáciu

V hornej ponuke Main Menu je možné:

- Scan Profile Zobrazenie profilu skenu
- Show 3D Priamy prechod do 3D vizualizácie

4.2.4. 3D Model Viewer

Po kliknutí na SHOW 3D MODEL sa zobrazí okno vizualizácie:

- Back Vratí používateľa do hlavného menu
- 3D Points Zobrazenie bodového modelu
- 3D Object Zobrazenie plného 3D modelu

V ponuke File je možné:

- Open Project Otvoriť existujúci projekt
- Export Exportovať model v rôznych formátoch (STL, OBJ, GLTF)
- Exit Ukončiť aplikáciu

V ponuke Main Menu je možné:

- Scan Profile Zobrazenie profilu skenu
- View Scans Návrat do okna zobrazenia skenov

5. Návrh implementácie

Implementácia projektu Profilometria bude rozdelená do viacerých fáz, aby boli jednotlivé komponenty vyvinuté, otestované a integrované postupne. Tento návrh reflektuje požiadavky z Katalógu požiadaviek a definuje jasnú cestu implementácie všetkých potrebných funkcionalít vrátane voliteľných požiadaviek označených hviezdičkou.

5.1 Využité technológie:

Na náš software použijeme programovací jazyk **Python**, kvôli jeho vhodnosti a knižniciam, ktoré nám uľahčia prácu na projekte. Podrobnejšie sú popísané v tomto dokumente v kapitole 2.

5.1.1 Grafické rozhranie:

Na grafické rozhranie našej aplikácie použijeme vstavanú knižnicu **Tkinter**, ktorý ponúka jednoduché a efektívne nástroje na tvorbu GUI (grafického užívateľského rozhrania). **Tkinter** nám umožní vytvoriť základné komponenty rozhrania, ako sú tlačidlá, zobrazovanie kamery, navigácie.

5.1.2 Čítanie obrazu:

Na čítanie obrazu použijeme knižnicu **OpenCV**, ktorá nám umožňuje nie len zobrazovať obraz z kamery, ale obsahuje aj veľa funkcionality na prácu s obrázkami, ktoré sú pre nás veľmi dôležité, ako napríklad Houghová transformácia a úprava obrázku, a filtrovanie farieb z obrázku. Jednou z výhod OpenCV je schopnosť pracovať s rôznymi farebnými modelmi, ako sú RGB, HSV a BGR. Segmentácia na základe farieb je užitočná pri extrakcii špecifických častí obrazu, čo je dôležité pri detekcii objektov a ich sledovaní. OpenCV poskytuje funkcie na detekciu hrán a tvarov, napríklad cez **Cannyho detekciu hrán** a **Houghovu transformáciu**. Tieto techniky umožňujú presné rozpoznanie a sledovanie objektov, čo môže byť užitočné napríklad pri rozpoznávaní čiar, kruhov alebo iných geometrických tvarov. OpenCV je navrhnutá s dôrazom na efektívne spracovanie, vďaka čomu dokáže pracovať s obrazom a video dátami v reálnom čase aj pri vysokom rozlíšení.

5.1.3 Distribúcia software-u:

Na vytvorenie .exe súboru použijeme nástroj **Pyinstaller. PyInstaller** je nástroj pre jazyk Python, ktorý umožňuje zabaliť a distribuovať Python aplikácie vo forme samostatného spustiteľného súboru. Vytvára aplikácie, ktoré môžu byť spustené bez nutnosti mať nainštalované prostredie Python. **PyInstaller** dokáže vytvoriť spustiteľný súbor pre všetky hlavné operačné systémy vrátane Windows, macOS a Linuxu, čo ho robí mimoriadne flexibilným a užitočným pre distribúciu Python aplikácií.

6. UML diagramy

6.1 UML class diagram

6.2 UML component diagram

6.2.1 Kľúčové moduly systému

Implementácia bude rozdelená do modulov podľa požiadaviek:

Modul snímania profilu

- Manuálne snímanie: Používateľ manuálne posúva objekt pomocou skrutky a sníma profily objektu.
 - Vyžaduje presné zadanie vzdialenosti v milimetroch, ktoré systém uloží do parametrov pohybu.
 - o Použité nástroje: Tkinter na GUI, OpenCV na ovládanie kamery.
- *Automatické snímanie:
 - Krokový motor zabezpečí plynulý posun objektu a spustí skenovanie v preddefinovaných krokoch.
 - Systém automaticky generuje parametre pohybu a ukladá ich do movement_parameters.txt.

Modul kalibrácie

- Základná kalibrácia: Používateľ nastaví kameru, laser a referenčný objekt s jeho hodnotami. Kalibrácia mapuje vzdialenosti v pixeloch na milimetre.
 - o Systém ukladá výsledné parametre kalibrácie do calibration_data.txt.
- *Rozšírená kalibrácia:
 - Kompenzácia skreslení a deformácií: Implementácia geometrických transformácií pomocou OpenCV.
 - Kontrola správnosti kalibrácie: Pri spustení aplikácie sa porovná aktuálne nastavenie s uloženou konfiguráciou.

Modul spracovania obrazu

- Ovládanie expozície : Používateľ môže nastaviť expozičný čas a farebné filtre na zvýraznenie častí objektu.
- Systém používa farebné modely RGB a HSV na optimalizáciu výsledkov.

Modul 3D vizualizácie

- Generovanie 3D modelu:
 - Systém spracuje odchýlky medzi referenčnou a aktuálnou laserovou čiarou.
 - o Export vo formátoch STL, OBJ, GLTF.
 - Použité nástroje: NumPy na matematické výpočty, Open3D na vizualizáciu.
- *Kombinácia viacerých skenov:
 - Použitie algoritmov na zlúčenie viacerých matic pomocou Iterative Closest Point (ICP).

6.3 UML state diagram

7. Podrobný plán implementácie a rozdelenie požiadaviek

Fáza 1: Inicializácia a základné funkcie (20.11)

Implementované požiadavky:

3.1.1 Získavanie skenov objektov pomocou laserového profilometra

- 3.1.1.1 Získavanie informácií z webkamery
- 3.1.1.2 Spracovanie obrazu pre identifikáciu laserovej čiary
- 3.1.1.3 Automatické rozpoznanie webkamery
- *3.1.1.4 Výber z pripojených kamier

3.1.4 Kalibrácia profilometra

- 3.1.4.1 Modul na kalibráciu
- 3.1.4.2 Umiestnenie a natočenie komponentov
- 3.1.4.3 Meranie referenčného objektu

Fáza 2: Snímanie a spracovanie obrazu (27.11)

Implementované požiadavky:

3.1.2 Manuálne nasnímanie profilu objektu

- 3.1.2.1 Manuálny posun objektu
- 3.1.2.2 Definícia vzdialenosti posunov
- 3.1.2.3 Zobrazenie polohy pri skenovaní

3.1.5 Ovládanie expozície snímaného obrazu

- 3.1.5.1 Úprava expozičnej doby
- *3.1.5.2 Nastavenie farebných filtrov

Fáza 3: Kalibrácia a spracovanie dát (4.12)

Implementované požiadavky:

3.1.4 Kalibrácia profilometra (pokračovanie)

- 3.1.4.4 Snímanie referenčného objektu
- 3.1.4.5 Stanovenie parametrov pre výpočty
- *3.1.4.6 Kompenzácie skreslení
- 3.1.4.7 Nová kalibrácia pri zmene konfigurácie
- 3.1.4.8 Pamätanie nastavení kalibrácie
- *3.1.4.9 Kontrola správnosti kalibrácie
- 3.1.4.10 Podmienky opätovnej kalibrácie

Fáza 4: 3D modelovanie a vizualizácia (11.12)

Implementované požiadavky:

3.1.6 Generovanie a zobrazovanie objektu v trojrozmernom priestore

- 3.1.6.1 Analýza odchýlok
- 3.1.6.2 Prevod na reálne vzdialenosti
- 3.1.6.3 Zobrazenie profilov v 3D
- 3.1.6.4 Odstránenie šumu
- 3.1.6.5 Export do STL, OBJ, GLTF
- *3.1.6.6 Generovanie polygónovej siete
- *3.1.6.7 Kombinovanie 3D matíc

Fáza 5: Integrácia a finalizácia (18.12)

Implementované požiadavky:

GUI a používateľské rozhranie

- Implementácia hlavného menu
- Integrácia všetkých modulov
- Testovanie celkovej funkcionality

Detailné rozdelenie práce

Matei

- Vývoj algoritmov na detekciu čiar
- Spracovanie a filtrovanie obrazu
- Vytvorenie GUI pre VIEW SCANS
- Optimalizácia algoritmu
- Spracovanie bodov zo skenov

Lukáš

- Integrácia a ovládanie kamery
- Manuálne snímanie profilov
- Vytvorenie main menu GUI stránky
- Vytvorenie GUI pre SCAN IMAGES
- Algoritmus na automatické rozpoznávanie chýbajúcich skenov, ktoré treba doskenovať

Klára

- Algoritmus na prevod bodov na 3D model a vykreslenie 3D modelu
- Funkcia na uloženie 3D modelu
- Funkcia na načítanie bodov zo súboru
- Export do rôznych formátov

• Vytvorenie GUI pre SHOW 3D MODEL

Viktória

- Systém kalibrácie a nastavenia kamery
- Upravuje body pred ich spracovaním do 3D modelu (napr. odstránenie šumu, filtrovanie, alebo transformácia)
- Správa súborov a projektov
- Integrácia modulov
- Finálne testovanie a opravovanie nedostatkov

Časový harmonogram implementácie

- 1. 20.11 Algoritmus na hľadanie čiary
 - a. Základná detekcia laserovej čiary
 - b. Inicializácia kamery
 - c. Základné spracovanie obrazu
- 2. 27.11 GUI zobrazovač skenov
 - a. Implementácia používateľského rozhrania
 - b. Zobrazenie nasnímaných profilov
 - c. Základné ovládacie prvky
- 3. 4.12 GUI zobrazovač + skener
 - a. Načítanie kamery
 - b. Kalibračný systém
 - c. Spracovanie profilov
- 4. 11.12 GUI 3D zobrazenie skenu
 - a. 3D vizualizácia
 - b. Export modelov
- 5. 18.12 Celý funkčný softvér
 - a. Finálna integrácia
 - b. Testovanie
 - c. Dokumentácia
 - d. Odovzdanie projektU

8. Testovacie scenáre

8.1 Scenár 1 : Overenie získania skenov zo štandardej webkamery

Pokryté požiadavky: 3.1.1.1, 3.1.1.2, 3.1.1.3, 3.1.2.1, 3.1.2.2, 3.1.2.3, 3.1.4.2, 3.1.4.7, 3.1.4.8, 3.1.4.10

Kroky	Postup kroku	Očakávaný výsledok
1.	Používateľ otvorí aplikáciu.	Systém sa po chvíli spustí a zobrazí používateľovi hlavné menu s výberom hlavných funkcií.
2.	Používateľ stlačí tlačidlo Scan Image.	Systém zobrazí okno, cez ktoré môže používateľ zaznamenávať skeny a nastavovať parametre kamery, alebo kalibráciu.
3.	Používateľ otvorí menu na hornej lište cez tlačidlo File.	Systém zobrazí menu s viacerými možnosťami.
4.	Používateľ cez menu v hornej lište otvorí projekt.	Systém skontroluje, správnosť projektu, t.j. obsahuje všetky požadované priečinky a súbory. Správny projekt otvorí.
5.	Používateľ zapne a pripojí webkameru a laserový profilometer.	Systém automaticky rozpozná webkameru. Na ploche sa zobrazuje obraz snímaný kamerou.
6.	Používateľ skenuje objekt, ktorý použil na kalibráciu.	Systém rozpozná kalibračné údaje v projekte.
7.	Používateľ nastaví počiatočnú pozíciu objektu a hodnotu o ktorú bude posúvať objekt cez skrutku na podložke. Informácie potvrdí stlačením tlačidla apply.	Údaje sa uložia do priečinku movement_parameters do súboru movement.txt
8.	Používateľ začne skenovať objekt osvietený laserom.	Skeny sa uložia do priečinku scans/raw.
9.	Používateľ kontroluje presnú polohu objektu na podložke s mierkou resp. pravítkom.	Skeny sa ukladajú do priečinku scans/raw.
10.	Používateľ pokračuje v skenovaní a po každom jednom skenovaní posunie skrutkou.	Skeny sa ukladajú do priečinku scans/raw.
11.	Používateľ ukončí skenovanie.	Systém uchováva vŠetky skeny v priečinku scans-raw.
12.	Po ukončení skenovania sa používateľ vráti na hlavné menu pomocou stlačenia tlačidla back.	Systém zobrazí používateľovi hlavné menu s výberom hlavných funkcií.

8.2 Scenár 2 : Overenie výberu kamery v prípade nesprávnej detekcie a nastavenie kamery

Pokryté požiadavky: 3.1.1.2, 3.1.1.4, 3.1.5.1

Kroky	Postup kroku	Očakávaný výsledok
1.	Používateľ otvorí aplikáciu.	Systém sa po chvíli spustí a zobrazí používateľovi hlavné menu s výberom hlavných funkcií.
2.	Používateľ stlačí tlačidlo Scan Image.	Systém zobrazí okno, cez ktoré môže používateľ zaznamenávať skeny a nastavovať parametre kamery, alebo kalibráciu.
3.	Používateľ otvorí menu na hornej lište cez tlačidlo File.	Systém zobrazí menu s viacerými možnosťami.
4.	Používateľ cez menu v hornej lište vytvorí nový projekt.	Vytvorí sa nový projekt so zadaným menom a všetkými požadovanými priečinkami a súbormi.
5.	Používateľ zapne webkameru a laserový profilometer.	Systém automaticky nerozpozná webkameru.
6.	Používateľ otvorí menu na hornej lište cez tlačidlo Settings.	Systém zobrazí menu s viacerými možnosťami.
7.	Používateľ zvolí možnosť Choose a camera cez ktorú si vyberie inú kameru.	Systém zobrazí okno s výberom kamier pre používateľa.
8.	Používateľ zvolí kameru pomocou kliknutia na meno príslušnej kamery a potvrdí výber tlačidlom Select.	Systém rozpozná vybranú kameru a potvrdí používateľov výber cez upozornenie o vybratí kamery. Na ploche sa zobrazuje obraz snímaný kamerou.
9.	Používateľ otvorí menu na hornej lište cez tlačidlo Settings.	Systém zobrazí menu s viacerými možnosťami.
10.	Používateľ zvolí možnosť Camera Settings cez ktorú si môže nastaviť kameru podla potreby.	Systém zobrazí okno cez ktoré vie používateľ manipulovať s integrovanými vlastnosťmi kamery.
11.	Poživateľ si nastaví požadované parametre zadaním hodnoty alebo potiahnutím posuvnej lišty.	Systém uloží nové vlastnosti kamery.
12.	Používateľzvolí tlačidlo Camera Control, cez ktoré mu bude umožnené nastaviť expozičnú dobu kamery.	Systém zobrazí okno cez ktoré vie používateľ manipulovať s expozíciou a obrazom.
13.	Používateľ nastaví expozičné dobu pre kameru a svoj výber potvrdí stlačením tlačidla OK.	Systém uloží nové vlastnosti kamery.

8.3 Scenár 3 : Overenie správnosti kalibrácie a tvorby nového projektu

Pokryté požiadavky: 3.1.4.1, 3.1.4.3, 3.1.4.4, 3.1.4.5

Kroky	Postup kroku	Očakávaný výsledok
1.	Používateľ otvorí aplikáciu.	Systém sa po chvíli spustí a zobrazí používateľovi hlavné menu s výberom hlavných funkcií.
2.	Používateľ stlačí tlačidlo Scan Image.	Systém zobrazí okno, cez ktoré môže používateľ zaznamenávať skeny a nastavovať parametre kamery, alebo kalibráciu.
3.	Používateľ otvorí menu na hornej lište cez tlačidlo File.	Systém zobrazí menu s viacerými možnosťami.
4.	Používateľ stlačí tlačidlo New Project.	Systém dobrazí dialógové okno na vytvorenie projektu.
5.	Používateľ cez menu v hornej lište vytvorí nový projekt zadaním mena projektu.	Systém zaznamená meno nového projektu.
6.	Používateľ potvrdí svoju voľbu tlačidlom OK.	Systém vytvorí nový projekt so zadaným menom a vytvorí všetky požadované priečinky a súbory. Systém korektný projekt otvorí.
7.	Používateľ zapne a pripojí webkameru a laserový profilometer.	Systém automaticky rozpozná webkameru. Na ploche sa zobrazuje obraz snímaný kamerou.
8.	Používateľ zadá parametre kalibračného objektu (t.j. výšku a šírku v milimetroch).	Kalibračné údaje sa uložia do súboru calibration_data.txt
9.	Používateľ začne skenovať kalibračné skeny stlačením tlačidla Run calibration.	Kalibračné skeny sa budú ukladať do priečinka calibration/raw.
10.	Používateľ mení pred každým skenovaním polohu kalibračného objektu.	Kalibračné skeny sa ukladajú do priečinku calibration/raw.
11.	Používateľ sníma kalibračné skeny stlačením tlačidla Capture Image.	Kalibračné skeny sa ukladajú do priečinku calibration/raw.
12.	Používateľ ukončí skenovanie kalibračného obejktu.	Systém vypočíta kalibračné údaje z nasnímaných skenov. Skeny spracované algoritmom uloží do priečinku calibration/processed. Hodnota daná vzťahom medzi pixelmi a reálnymi vzdialenosťami v milimetroch sa uloží calibration_data.txt .

8.4 Scenár 4: Overenie prehliadania skenov

Pokryté požiadavky: 3.1.1.2, 3.1.2.3, 3.1.5.1, 3.1.6.1, 3.1.6.2, 3.1.6.4.

Kroky	Postup kroku	Očakávaný výsledok
1.	Používateľ otvorí aplikáciu.	Systém sa po chvíli spustí a zobrazí používateľovi hlavné menu s výberom hlavných funkcií.
2.	Používateľ stlačí tlačidlo View Scans.	Systém zobrazí okno, cez ktoré môže používateľ prezerať skeny a 2D model nasnímaného objektu.
3.	Používateľ otvorí menu na hornej lište cez tlačidlo File.	Systém zobrazí menu s viacerými možnosťami.
4.	Používateľ cez menu v hornej lište otvorí projekt stlačením na tlačidlo Open Project.	Systém skontroluje, správnosť projektu, t.j. obsahuje všetky požadované priečinky a súbory. Správny projekt otvorí. Ak súbor scans/raw ešte neprešiel algoritmom na detekciu čiar, systém vykoná detekciu čiar na skenoch v súbore scans-raw a výsledné skeny uloží do súboru scans/processed.
5.	Používateľ prezerá nasnímané skeny a sleduje polohu každého skenu zaznamenanú v názve.	Systém zobrazuje skeny vybraného projektu.
6.	Po stlačení ľavým tlačidlom na názov skenu , používateľ pozerá na zmenšenú verziu skenu.	Systém zobrazuje vybraný sken.
7.	Používateľ prezerá konkrétny sken stlačením na jeho obrázok.	Systém zobrazí okno s väčšou verziou obrázku vybraného skenu.
8.	Používateľ prezerá 2D model naskenovaného objektu stlačením na tlačidlo Show2D.	Systém zobrazí okno AllPoints s 2D modelom skenovaného objektu.
9.	Po stlačení pravým tlačidlom na názov skenu , používateľ označí jeden alebo viac skenov na vymazanie.	Systém zvýrazní názov vybraného skenu červenou farbou.
10.	Používateľ stlačením tlačidla Delete Selected vymaže zvolené skeny.	Systém zmaže zvolené skeny zo súborov projektu.
11.	Používateľ otvorí menu na hornej lište cez tlačidlo File.	Systém zobrazí menu s viacerými možnosťami.

12.	Používateľ zvolí možnosť Use Algorithm.	Systém zobrazí dialógové okno cez ktoré používateľ vie nastaviť mieru odstraňovania šumu.
13.	Používateľ nastaví mieru odstraňovania šumu pomocou dialógového okna.	Systém uloží nové hodnoty pre algoritmus na detekciu čiar.
14.	Používateľ potvrdí svoju voľbu stlačením tlačidla Apply.	Systém spustí algoritmus na detekciu čiar s novými parametrami a prepíše súbory v priečinku scans/processed. Následne zobrazí aktualizované spracované skeny v okne.

8.5 Scenár 5 : Overenie zobrazenia 3D modelu

Pokryté požiadavky: 3.1.6.3, 3.1.6.5.

Kroky	Postup kroku	Očakávaný výsledok
1.	Používateľ otvorí aplikáciu.	Systém sa po chvíli spustí a zobrazí používateľovi hlavné menu s výberom hlavných funkcií.
2.	Používateľ stlačí tlačidlo Scan Image.	Systém zobrazí okno, cez ktoré môže používateľ zaznamenávať skeny a nastavovať parametre kamery, alebo kalibráciu.
3.	Používateľ otvorí menu na hornej lište cez tlačidlo File.	Systém zobrazí menu s viacerými možnosťami.
4.	Používateľ cez menu v hornej lište otvorí projekt.	Systém skontroluje, správnosť projektu , t.j. obsahuje všetky požadované priečinky a súbory. Správny projekt otvorí.
5.	Používateľ prezerá 3D model v podobe zobrazenia 3D bodov.	Systém zobrazuje 3D body príslušného objektu v okne.
6.	Používateľ stlačí tlačidlo 3D Object.	Systém zobrazuje hladký 3D model príslušného objektu v okne.
7.	Používateľ posúvaním myše prezerá model z rôznych uhlov.	Systém zobrazuje hladký 3D model príslušného objektu v okne.
8.	Používateľ otvorí menu na hornej lište cez tlačidlo File.	Systém zobrazí menu s viacerými možnosťami.
9.	Používateľ zvolí možnosť Export.	Systém zobrazí možnosti na export objektu do fromátov .stl, .obj , .gltf.
10.	Používateľ zvolí formát podľa jeho preferencie, napríklad .obj.	Systém exportuje 3D model vo formáte .obj a výsledný model uloží v priečinku objects ako model.obj.

11.	Používateľ stlačí tlačidlo 3D Points.	Systém zobrazuje 3D body príslušného objektu v okne.
12.	Používateľ stlačí tlačidlo Back.	Systém zobrazí okno hlavného menu.