CSCI 303: Algorithms, HW 9

Due: 3:00 pm, Friday, 11/2

1. Problem 1

- (a) Adjacency Matrix 0 v_4 V5 v_3 v_5 v_5 (b) Adjacency List v_5 v_6 v_7 *V*7
- (c) The graph is a directed acyclic graph.

2. Problem 2

(14 points)(b) Is the topological ordering produced during your execution in problem 2a the unique topological ordering for this graph? If so, explain why. If not, explain why not (giving an alternative topological ordering suffices). (1 point) (c) Does the use of the adjacency list, augmented with a queue, enforce a consistent outcome for topological sort? If so, explain why. If not, explain why not. Again, think like a computer! (1 point)

	Indegree	Vertex	1	2	3	4	5	6	7
(a) Topological sort	0	v_1	0	0	0	1	1	0	1
	0	v_2	0	0	1	0	1	1	0
	1	v_3	0	0	0	1	1	0	0
	2	v_4	0	0	0	0	1	0	0
	4	v_5	0	0	0	0	0	1	1
	2	v_6	0	0	0	0	0	0	1
	3	<i>v</i> ₇	0	0	0	0	0	0	0

$$\begin{array}{c|c} \text{Queue} & \\ \hline 0 & v_1 & v_2 \\ \end{array}$$

3. Problem 3