Accueil / Mes cours / 2025 ING1 S6 LOFO / Sections / Examen Final de LOFO / Examen final / Final Exam				
Commencé le	Monday 17 April 2023, 11:15			
État	Terminé			
Terminé le	Monday 17 April 2023, 11:42			
Temps mis	26 min 58 s			
Note	29,00 sur 30,00 (96,67 %)			
Question 1				
Correct				
Note de 1,00 sur 1,00				

[FR] Le calcul à la Hilbert intuitionniste est :

[EN] Intuitionistic Hilbert calculus is:

- a. Cohérent et complet.Sound and complete.
- b. Cohérent mais incomplet. ✓Sound, but not complete.
- c. Complet mais pas cohérent. Complete but not sound.
- d. Ni cohérent, ni complet.Neither complete nor sound.

Votre réponse est correcte.

La réponse correcte est : Cohérent mais incomplet. Sound, but not complete.

20/23, 8:59	PM	Examen final / Final Exam : relecture de tentative
Question 2		
Correct		
Note de 1,0	0 sur 1,00	
[FR] La	déduction naturelle est :	
[EN] N	atural deduction is:	
a.	Cohérente et complète. ❖ Sound and complete.	
O b.	Cohérente mais incomplète. Sound, but not complete.	
О с.	Ni cohérente, ni complète. Neither complete nor sound.	
O d.	Complète mais pas cohérente. Complete but not sound.	
Votre re	éponse est correcte.	
	nse correcte est :	
	nte et complète.	
Sound	and complete.	
Question 3		
Correct	00 1 00	
Note de 1,0	0 Sul 1,00	
	ne coupure dans une preuve est :	
[EN] A	cut in a proof is:	
О а.	L'élimination d'un symbole. Eliminating a symbol.	
b.	L'insertion d'un symbole suivie de son éliminat The insertion of symbol followed by its immedia	
() c	L'arrêt inattendu d'une preuve.	

The unexpected end of a proof.

d. La division d'une preuve en deux sous-preuves. Splitting a proof into two sub-proofs.

Votre réponse est correcte.

La réponse correcte est :

L'insertion d'un symbole suivie de son élimination immédiate.

The insertion of symbol followed by its immediate elimination.

Question **4**Correct

Note de 1,00 sur 1,00

[FR] Quelle est la forme pleinement parenthésée de $\lambda u \cdot u \lambda v \cdot vvu$?

[EN] What is the fully parenthesised form of $\lambda u \cdot u \lambda v \cdot vvu$?

- \bigcirc a. $\lambda u \cdot (u(\lambda v \cdot (vv))u)$
- \bigcirc b. $\lambda u \cdot (u(\lambda v \cdot v(vu)))$
- \bigcirc c. $\lambda u \cdot (u(\lambda v \cdot (vv)u))$
- \bigcirc d. $\lambda u \cdot (u(\lambda v \cdot vv)))u$

Votre réponse est correcte.

La réponse correcte est :

 $\lambda u \cdot (u(\lambda v \cdot (vv)u))$

Question **5**

Correct

Note de 1,00 sur 1,00

[FR] Quel terme est α -congruent à $\lambda x \cdot xy$?

[EN] Which term is α -congruent to $\lambda x \cdot xy$?

- \bigcirc a. $\lambda x \cdot xz$
- \bigcirc b. $\lambda y \cdot yz$
- \bigcirc c. $\lambda xy \cdot xy$
- \bigcirc d. $\lambda z \cdot zy$

Votre réponse est correcte.

La réponse correcte est :

 $\lambda z \cdot zy$

Question **6**

Correct

Note de 1,00 sur 1,00

[FR] Quelle équivalence est fausse?

[EN] One of these equivalences is wrong; which one?

- lacksquare a. $x\lambda x\cdot xxx\equiv x\lambda y\cdot y(yy)$
- igcup b. $\lambda xy\cdot xy\equiv \lambda ab\cdot ab$
- \bigcirc c. $x\lambda x\cdot xx\equiv x(\lambda y\cdot yy)$
- \bigcirc d. $x\lambda x\cdot xxx\equiv x\lambda y\cdot (yy)y$

Votre réponse est correcte.

La réponse correcte est :

 $x\lambda x\cdot xxx\equiv x\lambda y\cdot y(yy)$

Question 7	
Correct	
Note de 7,00 sur 7,00	

[FR] Considérons les termes suivants :

[EN] Consider the following terms:

 $A = \lambda yuv \cdot u^2(yuv)$

 $B = \lambda a \cdot aA$

 $C = \lambda b \cdot b(Bb)$

[FR] Calculez la forme normale du terme $A \underline{5}$. Répondez avec l'entier de Church associé (par exemple, 0 si la réponse est $\underline{0}$).

Cette question vaut 2 points.

[EN] Compute the normal form of the term $A \underline{5}$. Answer with the matching Church integer (as an example, write 0 if the answer is $\underline{0}$).

This question is worth 2 points.

Réponse / Answer:

[FR] Calculez la forme normale du terme $B \ \underline{2} \ \underline{5}$. Répondez avec l'entier de Church associé (par exemple, 0 si la réponse est $\underline{0}$).

Cette question vaut 2 points.

[EN] Compute the normal form of the term $B \ge \underline{5}$. Answer with the matching Church integer (as an example, write 0 if the answer is $\underline{0}$).

This question is worth 2 points.

Réponse / Answer:

[FR] Calculez la forme normale du terme C $\underline{3}$ $\underline{5}$. Répondez avec l'entier de Church associé (par exemple, 0 si la réponse est $\underline{0}$).

Cette question vaut 3 points.

[EN] Compute the normal form of the term $C \ \underline{3} \ \underline{5}$. Answer with the matching Church integer (as an example, write 0 if the answer is $\underline{0}$).

This question is worth 3 points.

Réponse / Answer :

Description

[FR] La déduction naturelle contient les règles suivantes :

[EN] Natural deduction contains the following rules:

$$\begin{array}{c} [A] \\ \vdots \\ B \\ \hline A \Rightarrow B \end{array} \ [\mathbf{1}][\Rightarrow_I] \\ \hline \begin{array}{c} A \\ \hline A \Rightarrow B \end{array} \ [\mathbf{2}][\Rightarrow_E] \\ \hline \begin{array}{c} A \\ \hline A \Rightarrow B \end{array} \ [\mathbf{3}][\land_I] \\ \hline \begin{array}{c} A \\ \hline A \\ \hline \end{array} \ [\mathbf{4}][\land_E^l] \end{array} \ \begin{array}{c} A \land B \\ \hline A \\ \hline \end{array} \ [\mathbf{5}][\land_E^r] \\ \hline \begin{array}{c} [A] \\ \hline A \\ \hline \end{array} \ [\mathbf{5}][\land_E^r] \\ \hline \begin{array}{c} A \\ \hline A \\ \hline \end{array} \ [\mathbf{6}][\lor_I^l] \ \begin{array}{c} B \\ \hline A \lor B \end{array} \ [\mathbf{7}][\lor_I^r] \\ \hline \begin{array}{c} A \\ \hline C \\ \hline \end{array} \ \begin{array}{c} A \land B \\ \hline C \\ \hline C \\ \hline \end{array} \ [\mathbf{8}][\lor_E] \\ \hline \begin{array}{c} A \\ \hline A \\ \hline \end{array} \ \begin{bmatrix} A \\ \hline A \\ \hline \end{bmatrix} \ \begin{bmatrix} A \\ \hline A \\ \hline \end{bmatrix} \ \begin{bmatrix} A \\ \hline A \\ \hline \end{bmatrix} \ \begin{bmatrix} A \\ \hline$$

Description

[FR] Le système de typage étendu contient les règles suivantes :

[EN] The **extended type system** contains the following rules:

$$\begin{array}{c} [x:\sigma] \\ \vdots \\ \frac{M:\tau}{\lambda x \cdot M : \sigma \to \tau} \ [\mathbf{1}][\lambda] \\ \\ \frac{M:\sigma}{\langle M,N \rangle : \sigma \times \tau} \ [\mathbf{3}][\times_I] \\ \hline \frac{M:\sigma}{K_1(M) : \sigma \cup \tau} \ [\mathbf{6}][\cup_I^l] \ \frac{M:\tau}{K_2(M) : \sigma \cup \tau} \ [\mathbf{7}][\cup_I^r] \\ \hline \frac{M:\sigma}{\varepsilon(M) : \sigma} \ [\mathbf{9}][\emptyset_E] \\ \\ \end{array} \begin{array}{c} \frac{M:\sigma \to \tau}{MN:\tau} \ N:\sigma \\ \hline M:\sigma \to \tau \ M:\sigma \times \tau \\ \hline \Pi_1(M) : \sigma \ [\mathbf{4}][\times_E^l] \ \frac{M:\sigma \times \tau}{\Pi_2(M) : \tau} \ [\mathbf{5}][\times_E^r] \\ \hline \vdots \ \vdots \ \vdots \\ M:\sigma \cup \tau \ U:\mu \ V:\mu \\ \hline \oplus (\lambda u \cdot U, \lambda v \cdot V, M) : \mu \end{array}$$

Question 8	
Correct	
Note de 15,00 sur 15,00	

Partie 1

[FR] Prouvez $\vdash_{\mathcal{N}} (A\Rightarrow B) \land (A\lor B)\Rightarrow B$ en remplissant l'arbre de déduction suivant :

[EN] Prove that $\vdash_{\mathcal{N}} (A \Rightarrow B) \land (A \lor B) \Rightarrow B$ by filling in the blanks of the following deduction tree:

[FR] Quelle est la règle utilisée en X ? Entrez son numéro.

[EN] What is the rule used in location **X**? Type its numerical identifier.

Réponse / Answer:

[FR] Quelle est la règle utilisée en Y? Entrez son numéro.

[EN] What is the rule used in location Y? Type its numerical identifier.

Réponse / Answer :

[FR] Quelle est la règle utilisée en Z ? Entrez son numéro.

[EN] What is the rule used in location **Z**? Type its numerical identifier.

Réponse / Answer:

[FR] Quelle est la formule étiquetant le nœud P?

[EN] What is the formula labelling the node **P**?

[FR] Quelle est la formule étiquetant le nœud Q?

[EN] What is the formula labelling the node Q?

[FR] Quelle est la règle utilisée pour annuler U ? Entrez son exposant (à ne pas confondre avec l'index dans le nom de la règle).

[EN] What is the rule used to cancel U? Type its exponent (not to be mistaken with the index featured in the rule's name).

Réponse / Answer:

Partie 2

[FR] Trouvez un terme dans Λ_{ext} de type $(\sigma o au) imes (\sigma \cup au) o au$ en remplissant l'arbre de déduction suivant :

[EN] Then find a term in Λ_{ext} of type $(\sigma \to \tau) imes (\sigma \cup \tau) \to \tau$ by filling in the blanks of the following derivation tree:

[FR] Quelle est la règle utilisée en P? Entrez son numéro.

[EN] What is the rule used in location P? Type its numerical identifier.

Réponse / Answer :

[FR] Quelle est la règle utilisée en Q? Entrez son numéro.

[EN] What is the rule used in location **Q**? Type its numerical identifier.

Réponse / Answer:

[FR] Quel est le terme étiquetant le nœud A?

[EN] What is the term labelling the node **A**?

Réponse / Answer :
$$\Pi_1(x)$$

[FR] Quel est le terme étiquetant le nœud B?

[EN] What is the term labelling the node B?

[FR] Quel est le terme étiquetant le nœud C?

[EN] What is the term labelling the node **C**?

Réponse / Answer :
$$\oplus (\lambda y \cdot \Pi_1(x)y, \lambda z \cdot z, \Pi_2(x))$$

[FR] Quel est le terme étiquetant le nœud D?

[EN] What is the term labelling the node **D**?

Réponse / Answer :
$$\lambda x \cdot \oplus (\lambda y \cdot \Pi_1(x)y, \lambda z \cdot z, \Pi_2(x))$$

[FR] Quel est le type étiquetant le nœud u?

[EN] What is the type labelling the node **u**?

Réponse / Answer :
$$(\sigma \to \tau) \times (\sigma \cup \tau)$$

[FR] Quel est le type étiquetant le nœud v?

[EN] What is the type labelling the node \mathbf{v} ?

Réponse / Answer: $\sigma \rightarrow \tau$

[FR] Quel est le type étiquetant le nœud ${\bf w}$?

[EN] What is the type labelling the node **w**?

Réponse / Answer : τ

Question **9**

Correct

Note de 1,00 sur 1,00

[FR] Tout terme typable est :

[EN] Every typable term is:

- a. Faiblement normalisable. Weakly normalizable.
- b. Pas nécessairement normalisable.
 Not necessarily normalizable.
- c. Normalisable.
- d. Fortement normalisable. ✓Strongly normalizable.

Votre réponse est correcte.

La réponse correcte est : Fortement normalisable. Strongly normalizable.

Question 10

Incorrect

Note de 0,00 sur 1,00

[FR] Quel type ne peut **pas** être assigné au terme $\lambda xy \cdot xy$?

[EN] Which type **cannot** be assigned to the term $\lambda xy \cdot xy$?

- a. $(\sigma \to \sigma) \to \sigma \to \sigma$
- igcirc b. $(\sigma o (
 ho o
 ho)) o \sigma o (
 ho o
 ho)$
- \odot c. $\sigma
 ightarrow au
 ightarrow \sigma$
- \bigcirc d. $(\sigma o au) o \sigma o au$

Votre réponse est incorrecte.

La réponse correcte est : $\sigma
ightarrow au
ightarrow \sigma$

■ Examen de mi-parcours / Mid-term Exam

Aller à...