

(11) Publication number:

05-025186

(43) Date of publication of application: 02.02.1993

(51) Int. CI.

C07F 7/18 B01T 27/135 B01J 27/138 COSF 30/08 // C07B 61/00

(21) Application number: 03-204892

(71) Applicant: NIPPON OIL & FATS CO LTD

(22) Date of filing:

20. 07. 1991

(72) Inventor: MASUOKA SHIGERU

ITO MASAYASU

HONDA YOSHIHIRO

(54) PRODUCTION OF POLYMERIZABLE MONOMER

(57) Abstract:

PURPOSE: To simplify the reaction process, avoid disadvantages in production processes and simultaneously improve yield and purity of a polymerizable monomer composed of a silyl esterified substance of a maleic acid monoester in a method for producing the aforementioned polymerizable monomer.

CONSTITUTION: A monohydric alcohol, a triorganosilanol and a Lewis acid or a Lewis base are added to maleic anhydride to carry out esterifying reaction accompanied by dehydrating reaction. Thereby, the objective polymerizable monomer composed of a silyl esterified substance of a maleic acid monoester is produced.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出頗公開番号

特開平5-25186

(43)公開日 平成5年(1993)2月2日

(51)Int.CL ⁵ C 0 7 F		識別記号 K	庁内整理番号 8018-4H	FI			技術表示箇所
•	27/135 27/138						
C08F	30/08	MNU	7242-4 J				
# C 0 7 B	61/00	300		. :	審査請求 京都	青求	請求項の数1(全 9 頁)
(21)出願番号		特類平3-204992		(71)出愿人	000004341 日本油脂株式	 式会 を	t
(22)出頭日		平成3年(1991)7。	月20日		泉京都千代B	9区4	有美町1丁目10番1号
				(72)発明者	▲ます▼岡 兵庫県西宮市		5岡田町 6−11−203
				(72) 発明者	伊藤 雅康 兵庫県伊丹市	有千值	営2-86
				(72)発明者	本田 芳裕 兵庫県川西市	市向隊	為台 1 - 13 - 59
				(74)代理人	弁理士 祢▲	L ĕ¶	▼元 邦夫
				_			

(54)【発明の名称】 重合性モノマーの製造法

(57)【要約】

【目的】 マレイン酸モノエステルのシリルエステル化 物からなる重合性モノマーを製造する方法において、反 応工程を簡素化し、製造工程上の不利を回避するととも に、上記宣合性をノマーの収率および純度を向上させ る。

【構成】 無水マレイン酸に、一価アルコール、トリオ ルガノシラノールおよびルイス酸またはルイス塩基を加 えて、脱水反応を伴うエステル化反応を行わせることに より、マレイン酸モノエステルのシリルエステル化物か ちなる重合性モノマーを製造する。

(2)

特開平5-25186

【特許請求の範囲】

【請求項1】 無水マレイン酸に、一個アルコール、ト リオルガノシラフールおよびルイス酸またはルイス塩基 を加え、脱水反応を伴うエステル化反応を行わせて、マ レイン酸モノエステルのシリルエステル化物からなる重 台性モノマーを製造することを特徴とする重合性モノマ 一の製造法。

1

【発明の詳細な説明】

[0001]

ルのシリルエステル化物からなる重合性モノマーを製造 する方法に関する。

[0002]

【従来の技術】従来より、マレイン酸モノエステルのカ ルポキシル基をシリルエステル化して、分子内にシリル 基を導入した重合性モノマーは、たとえば、特開昭63 -215780号公報に示されているように、一般的に は、マレイン酸モノエステルとトリオルガノクロロシラ ンとを、トリエチルアミンなどの塩基の存在下で、脱塩 化水素する方法で製造されている。

[0003]

【発明が解決しようとする課題】しかるに、トリエチル アミンなどの塩基を用いた脱塩化水素による方法では、 一般に、まずマレイン酸モノエステルのアミン塩を中間 体として形成したのちに、トリオルガノクロロシランと 反応させることになるため、反応工程が多段階となり、 またトリエチルアミン塩酸塩などの結晶性の塩酸塩が副 生するため、この塩酸塩を取り除く工程が必要となるな と、製造工程上の不利を免れなかつた。また、目的とす るマレイン酸モノエステルのシリルエステル化物の収率 30 -および純度が低いという問題もあつた。

【①①①4】本発明は、上記従来の問題点に鑑み、マレ イン酸モノエステルのシリルエステル化物からなる重合 性をノマーを製造する方法において、反応工程を簡素化 し、製造工程上の不利を回避するとともに、上記重合性 モノマーの収率および純度を向上させることを目的とし ている。

[0005]

【課題を解決するための手段】本発明者らは、上記の目 的を達成するために、鋭意検討した結果、マレイン酸モ 49 アルコールを加え、つづいてトリオルガノシラノールを ノエステルのシリルエステル化が、特定の触媒を用いる ことによつて、カルボキシル基とトリオルガノシラノー ルとの脱水反応により達成でき、これによると、反応工 程の簡素化とともに、目的とするシリルエステル化物の 収率および純度を大きく向上できることを知り、本発明

テル化物からなる重合性モノマーを製造することを特徴 とする宣台性モノマーの製造法に係るものである。 100071

【発明の構成・作用】本発明に用いる一価アルコールと しては、炭素敷が通常1~12個である、直鎖状、分岐 状または環状のアルキルアルコールが挙げられ、その1 種を単独でまたは2種以上を混合して使用することがで

【①①08】本発明に用いるトリオルガノシラノール 【産業上の利用分野】本発明は、マレイン酸モノエステ 19 は、3個の有機基が互いに同一の基であつても異なる基 であつてもよい。有機基としては、炭素数が通常1~2 1個の直鎖状。分岐状または環状のアルキル基が挙げる れ、その他アリール基や置換アリール基であつてもよ

> 【①①①9】上記のアルキル基としては、たとえば、メ チル、エチル、nープロピル、nープチル、nーオクチ ル、イソプロピル、イソプチル、S-ブチル、t-ブチ ル、2-エチルヘキシル、シクロプロビル、シクロヘキ シルなどがあり、置換アリール基としては、ハロゲン、 20 炭素数が10程度までのアルキル基。アシル基。ニトロ 基またはアミノ基などで置換されたアリール基がある。 【0010】本発明に用いるルイス酸またはルイス塩基 としては、たとえば、ジブチル銀ジラウレート、ジブチ ル錫ジアセテート、ジブチル銀ジオクトエートなどの有 機錫化台物、四塩化チタン、テトラブトキシチタン、チ タノセンジクロライドなどのチタン化合物などのルイス 酸や、トリエチルアミン、イミダゾールなどのルイス塩 基が挙げられる。

【①①11】本発明においては、無水マレイン酸に、上 記の一価アルコール、トリオルガノシラノールおよびル イス酸またはルイス塩基を加えて、脱水反応を伴うエス テル化反応を行わせるが、このエステル化反応は、言う までもなく、無水マレイン酸と一価アルコールとのモノ エステル化反応と、さらにトリオルガノシラノールとの シリルエステル化反応との両反応を含むものである。

【0012】この両反応は、いずれを先に行つても、ま た同時に行つてもよく、したがつて無水マレイン酸に対 する一価アルコールおよびトリオルガノシラノールの添 加順序は特に限定されない。しかし、通常は、まず一価 加えるのが普通である。

[0013]上記の一価アルコールを加えるにあたり、 魚水マレイン酸は、固体(結晶)状態のままであつて も、加温により溶融させた状態であつてもよく、さらに **溶剤に溶解させた溶液状態とされていてもよい。反応の** レイン酸のカルボキシル基1当量に対し、通常1~3モ ルの割合で用いられる。

【0015】トリオルガノシラノールを加え、ルイス酸 またはルイス塩基の存在下で行わせる脱水反応は、通常 は-70~300℃、好ましくは-30~250℃の温 度で、行うことができる。トリオルガノシラノールは、 低水マレイン酸のカルボキシル基1当量に対し、通常1 ~5モルとするのがよい。

【①①16】上記の両反応において、反応中に生成する 水分を除去するために、脱水剤を用いてもよい。このよ 10 うな脱水剤としては、たとえば、無水硫酸マグネシウ ム、無水硫酸ナトリウム、無水塩化カルシウムなどの無 水無機塩、N・N′-ジシクロヘキシルカルボジイミド などのカルボジイミ下類。シリカゲル。モレキユラーシ 一プスなどが挙げられる。

【0017】また、上記の両反応において、無水マレイ ン酸を溶解したり、溶液反応に使用したりする溶剤とし ては、ベンゼン、トルエン、キシレンなどの芳香族炭化 水素系溶剤、酢酸エチル、酢酸ブチルなどのエステル系 |控制|| ジェチルエーテル、テトラヒドロフランなどのエ | 29 | 一テル系溶剤 ヘキサンなどの脂肪族炭化水素系溶剤な どがあり、一個アルコールやトリオルガノシラノールの 種類などに応じて適宜選択すればよい。

【0018】とのようにして得られる反応生成物は、マ レイン酸モノエステルのシリルエステル化物を主成分と したものであつて、これには、言うまでもなく、従来の ようなアミン塩酸塩の結晶などが全く含まれていない。 このため、この反応生成物の溶液より、溶剤を留去して から減圧蒸留することにより、目的とするマレイン酸モ ンエステルのシリルエステル化物からなる重合性モノマ 30 カラム:G-100 (化学品検査協会製) 一を、通常75重畳%以上、好適には80重畳%以上の 高収率で、かつ通常90重量%以上、好適には95重量 %以上の高純度で、得ることができる。

【0019】なお、上記シリルエステル化物であること の確認は、赤外線吸収スペクトル(IR)や核磁気共鳴 スペクトル(NMR)にて、容易に行える。また、上記 シリルエステル化物の純度は、ガスクロマトグラフィー にて測定できる。

【①020】本発明の方法にて得られるマレイン酸モノ エステルのシリルエステル化物は、重合性モノマーとし 49 -Si-C-て、既知のラジカル重合法などの任意の重合方法にて、 高分子ポリマーとされ、このポリマーは、側鎖にシリル 基を有するものとして、加水分解性プラスチック、水中 防汚被覆剤、医療用高分子材料などの各種の用途に、幅 広く使用することができる。

素化を図ることができ、またトリエテルアミン塩酸塩な との固体の副生成物を分解除去する工程も不要になる。 さらに、上記従来の方法に比べて、得られるマレイン酸 モノエステルのシリルエステル化物からなる重合性モノ マーの収率および純度を大きく向上できるなどの顕著な 効果が得られる。

[0022]

【実施例】以下、実施例により、本発明を具体的に説明

【0023】実施例1

緩拌機および加温冷却装置を付けた5 リットルの4つ口 フラスコに、酢酸プチル 1 リントルを入れ、その中に無 水マレイン酸1モルを加え、鴬温にて溶解させたのち、 さらにメチルアルコール1モルを加えた。その後、継続 して掤控し、トリエチルアミン10ミリモルを触えた。 つぎに、モーヘキシルジメチルシラノール1.5モルを 4.0分かけて滴下した。滴下終了後、反応液を8.0℃に 加熱し、さらに2時間鏝針を継続した。生成した水を還 流状態にして除去したのち、反応を終了した。

【0024】とのようにして得た反応生成物の溶液か ち ロータリーエバボレーターにて酢酸ブチルを留去し たのち、減圧蒸留に供した。圧力2.0mmHqにて141 ~143℃を本留として取り出した。得られた重合性モ ノマーの収率は79.8重量%、絶度は97.9重量%

【0025】なお、純度は、ガスクロマトグラフィーに より測定したものであるが、この測定条件は、下記のと おりである。

機種: 月P性 5890 SERIES II

カラム温度:230℃(固定)

インジェクション・デイジエクション温度:250℃

漆墨:19.8m/分

リテンションタイム:30分

【0026】また、上記の実施例1で得られた重合性モ フマーが、マレイン酸モノエステルのシリルエステル化 物であることについては、IRにより、下記の特性吸収 を調べることにより、確認した。

 $-C (= 0) - : 1700 \sim 1750 \text{ cm}^3$

 $=: 1400 \sim 1480 \, \mathrm{cm}^3$

 $=: 1120 \sim 1180 \, \text{cm}^{-2}$ -Si-Q-

1200~1260cm³

 $1370 \sim 1410 \, \text{cm}^3$

【0027】さらに、NMRにより、『H-NMR特性 吸収:S(ppm)を調べることによつても、上記のシリ

(4)

特開平5-25186

5		
δ	分解模式(水素数)	結合様式
0.38	s (6H)	CH: -O-Si- CH:
0.84~0.93	m (12H)	C CH ₃ CH ₃ -0-Si-C-C- C CH ₃ CH ₄
1.63~1.68	m (1H)	C C C - 0 - S i - C - C H - C C C
3.78	s (3H)	-C-O-CH;
6. 1 3 ~ 6. 2 7	m (2H)	-HC=CH-

【① 029】なお、参考のために、図1に実施例1で得た重合性モノマーのIRスペクトルを、図2に同重合性モノマーのNMRスペクトルを、それぞれ示す。

【0030】実施例2

緩絆機および加温冷却装置を付けた5リットルの4つ口 フラスコに、テトラヒドロフラン2リットルを入れ、そ の中に無水マレイン酸1モルを加え、常温にて溶解させ たのち、さらにメチルアルコール1モルを加えた。その 後、継続して捌拌し、ジブチル錫ジアセテート?ミリモ ルを加えた。つぎに、t - ブチルジメチルシラノール 1、1モルを20分かけて満下した。満下終了後、反応 被を80℃に加熱し、さらに2時間攪拌を継続した。生 成した水を還流状態にして除去したのち、反応を終了し た。 【①①31】とのようにして得た反応生成物の溶液から、ロータリーエバボレーターにてテトラヒドロフランを留去したのち、減圧蒸留に供した。圧力1. ①mHQにて68~70℃を本図として取り出した。得られた重合性をフマーの収率は91.1重置%、純度は98.1重置%であつた。

[0033]

【表2】

特開平5-25186

r		· ·
δ	分解樣式(水素数)	結合様式
0.31	s (6H)	CH: -0-\$1- CH:
0.94	s (9H)	C CH ₃ -O-Si-C-CH ₃ C CH ₃

s (3H)

s (2H)

【0034】実施例3

機2件機および加温冷却装置を付けた5 リントルの4つ口 マレイン酸1モルを加え、常温にて溶解させたのち、メ チルアルコール1モルを加えた。その後、継続して機枠 し、イミダゾール12ミリモルを加えた。つぎに、トリ イソプロピルシラノール1、1モルを40分かけて満下 した。適下終了後、反応波を80°Cに加熱し、さらに2 時間攪拌を継続した。生成した水を還流状態にして除去 したのち、反応を終了した。

3.75

6.19

【0035】とのようにして得た反応生成物の溶液か ち、ロータリーエバボレーターにてベンゼンを留去した*

*のち、減圧蒸留に供した。圧力1.5mmHqにて85~8 7°0を本図として取り出した。得られた重合性モノマー フラスコに、ベンゼン2リツトルを入れ、その中に無水 20 の収率は81.4重置%、純度は98.8重置%であつ

-HC=CH-

【10036】なお、この重合性モノマーが、マレイン酸 モノエステルのシリルエステル化物であることについて は、実施例1の場合と同様に、IRおよびNMRによ り、確認同定した。表3にこの宣合性モノマーのNMR の特性吸収を示す。

[0037] 【表3】

δ	分解樣式(水素数)	結 合 様 式
1.00~1.11	d (18H)	-O-Si (C-CH ₃) 3
1. 3 1~1. 3 7	m (3H)	-O-Si (CH-C) :
3.78	s (3H)	- C - O - C H₂ Ⅱ O
6. 1 8 ~ 6. 2 7	m (2H)	-HC=CH-

【0038】実施例4 緩拌機および加温冷却装置を付けた5 リントルの4つ口 モルを3(分かけて適下した。適下終了後、反応液を5 ①でに加熱し、さらに2時間機枠を継続した。生成した (6)

特開平5-25186

10

マーの収率は83.3重量%、純度は98.7重量%で あつた。

【①①40】なお、この重合性モノマーが、マレイン酸 モノエステルのシリルエステル化物であることについて *り、確認同定した。表4にこの宣合性モノマーのNMR の特性吸収を示す。

[0041] 【表4】

は、実施例1の場合と同様に、IRおよびNMRによ *

δ	分解様式(水素数)	結合機式
0.91~0.95	d (6H)	- C - C - C H в С Н в
1.09~1.12	d (18H)	-O-Si (C-CH ₃) a
1.31~1.36	m (3H)	-0-Si (CH-C) 0
1.53~1.57	m (2H)	-C-O-C-CH2 -C-C
1.67~1.72	m (1H)	O C -C-O-C-C-CH-C
3. 9 8~4.20	t (2H)	O C C C C C C C C C C C C C C C C C C C
6.20	s (2H)	-HC=CH-

【0042】実施例5

フラスコに、無水マレイン酸1モルを加え、さらにメチ ルアルコール1モルを加えて、鴬温にて1時間撹拌を続 けた。5℃に冷却し、継続して鏝拌しながら、四塩化チ タンちミリモルと無水硫酸マグネシウム(). 5モルを加 えた。つぎに、モーブチルジフエニルシラノール1モル を30分かけて滴下した。滴下終了後、トルエン1、5 リットルを加え、反応液を30℃に匍匐し、さらに2時 間攪拌を継続したのち、反応を終了した。反応中に生成 した水は、魚水流酸マグネシウムにてトランプした。

【0043】とのようにして得た反応生成物の溶液か

ち、ロータリーエバボレーターにてトルエンを留去した。 緩絆機ねよび匍温冷却装置を付けた5リットルの4つ \square 30 のち、減圧蒸留に供した。圧力1、0 mmHqにて141 \sim 144℃を本留として取り出した。得られた重合性モノ マーの収率は83.1重量%、純度は97.4重量%で

> 【①①44】なお、この重合性モノマーが、マレイン酸 モノエステルのシリルエステル化物であることについて は、実施例1の場合と同様に、IRおよびNMRによ り、確認同定した。表5にこの重合性モノマーのNMR の特性吸収を示す。

[0045]

46 【表5】

特開平5-25186

12

1	

<u></u>	_	A.
δ	分解様式(水素数)	結 合 様 式
1.14	s (9H)	φ CH; -0-Si-C-CH; -0-Si-C-CH; φ CH; (φ:フエニル基)
3.63	s (3H)	- C - O - C H s
6. 2 4 ~ 6. 3 7	m (2H)	- H C = C H -
7. 2 7 ~ 7. 7 3	m (10H)	H H H H -O-Si-C H H H H

【①①46】実施例6

機針機および加温冷却装置を付けた5 リントルの4つ口 フラスコに、無水マレイン酸1モルを加え、80℃に加 温して溶融させたのち、さらにカーアミルアルコール1 モルを加え、80℃に30分間保持した。その後、継続 して概控し、ジブチル錫ジアセテート10ミリモルおよ び無水硫酸マグネシウム()、5 モルを加えた。トルエン 30 モノエステルのシリルエステル化物であることについて 2 リツトルを加入後、トリイソプロビルシラノール1... 1 モルを40分かけて適下した。適下終了後、反応液を 5.0℃に加熱し、さらに2時間機控を継続した。生成し た水を還流状態にして除去したのち、反応を終了した。 【0047】このようにして得た反応生成物の溶液か

ち、ロータリーエバボレーターにてトルエンを留去した のち、減圧蒸留に供した。圧力2.0mHqにて141~ 143℃を本留として取り出した。得られた重合性モノ マーの収率は85.0重量%、純度は96.8重量%で あつた。

【①①48】なお、この重合性モノマーが、マレイン酸 は、実施例1の場合と同様に、IRおよびNMRによ り、確認同定した。表6にこの宣合性モノマーのNMR の特性吸収を示す。

[0049]

【表6】

ŧ	1

13	,	λ
ô	分解様式 (水素数)	結 合 様 式
0.89~1.00	m (3H)	-C-O-C-C-C-CH*
1.11~1.13	m (18H)	-0-Si (C-CH ₈) s CH ₈
1.30~1.38	m (7H)	-C-O-C-C-CH ₂ -CH ₂ -C O -O-Si(CH-C) _s C
1.63~1.69	m (2H)	-C-O-C-CH2 -C-C-C
4.16~4.19	m (2H)	O - -
6. 2 0	s (2H)	- H C = C H -

【0050】比較例1

緩維機 および 加温冷却装置を付けた 5 リントルの 4 つ口 **フラスコに、トルエン1リツトルを入れ、その中に無水** マレイン酸1を丸を加えて、溶解させたのち、さらにメ チルアルコール1モルを加えた。その後、反応液を5℃ にし、鏝搾しながら、トリエチルアミン1モルを1時間 30 かけて適下した。適下部は黄色するが、鏝拌することに より無色透明になつた。反応温度は20℃に維持した。 【0.051】つぎに、この適明液体を10℃に保ち、維 続して鏝搾しながら、モーブチルジメチルクロロシラン 1 モルを 1 5 分かけて適下した。適下直後からトリエチ ルアミンの塩酸塩の析出が観察された。適下終了後、萬 温にてさらに2時間鏝掉を続けた。

【0052】とのようにして得た反応生成物の溶液を、 ガラスフィルターにて吸引ろ過してトリエチルアミンの 塩酸塩を除去した。ろ過残渣はトルエン()、5リツトル 40 が低かつた。 にて洗浄し、この洗浄溶剤をる液に加えた。ついで、ロ ータリーエバポレーターにて、ろ液からトルエンを図去 したのち、減圧蒸留に供した。圧力8.0mmHaにて11 2~115℃を本圏として取り出した。蒸圏物中に一部 白色針状晶が認められた。得られた重合性モノマーの収

【0053】なお、この重合性モノマーが、マレイン酸 モノエステルのシリルエステル化物であることについて は、実施例1の場合と同様に、「RおよびNMRによ り、確認同定した。このIR特性吸収およびNMR特性 吸収は、前記の実施例2の結果とほぼ同じであつた。 - 【0054】以上の結果から明らかなように、実施例1 ~6においては、いずれも反応工程が簡素化されてお り、かつ反応中に副生成物の発生がみられず、目的とす る重合性モノマーの収率および純度も良好であつた。 【10055】これに対し、比較例1では、マレイン酸モ ノエステルのアミン塩からなる中間体を生成する工程が 必要であり、かつ反応中に副生成物であるトリエチルア ミンの塩酸塩の発生がみられ、反応後にこれを取り除く 工程が必要となるなど、製造工程上の不利を免れなかつ た。また、目的とする重合性モノマーの収率および純度

【図面の簡単な説明】

【図】】実施例】で得られた重合性モノマーの赤外線吸 収スペクトルを示す特性図である。

【図2】実施例1で得られた重合性モノマーの核磁気共 鳴スペクトルを示す特性図である。

(9)

特開平5-25186

[図2]