PSALTer results panel

Wave operator and propagator

	4		2, Τ"αβ	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- 'W _S " _{αβ}	- Ws αβ
$2^+ \mathcal{T}^{\parallel} +^{\alpha \beta}$		2-4(h; +;	$\frac{-2\kappa^4((h_{11}+h_{12})^2\!-\!4(h_1\!+\!h_1)(h_1\!-\!h_1))\!+\!8\kappa^2(h_1\!-\!h_1^2+\!h_1^2\!+\!h_1^2)a_0^2}{\kappa^2a_0^2(k^2(h_1\!-\!h_1^2)\!+\!a_0^2)}$	$-\frac{i \ k(k^2 \ ((n_{11} + n_{12})^2 - 4(n_{17} + n_{18}))}{\sqrt{3} \ a_0^2 \ (k^2 - n_{11} + n_{18})}$	$\frac{i \ k(k^2 \left((h_{11}^*,h_{12}^*)^2 - 4(h_1^* + h_2^*)(h_1^*,h_2^*)\right) + 4(h_1^*,h_2^*,h_2^* + h_3^*)}{\sqrt{3} \ a_0^2 \ \left(k^2 \left(h_1^*,h_2^*\right) + a_0^*\right)}$	$\frac{2i\sqrt{\frac{2}{3}} k (k^2 ((\mu_{11} + \mu_{12})^2 - 4(\mu_{7} + \mu_{8}) (h_{10} + h_{9})) - (2\mu_{10} - 3\mu_{11} - 3\mu_{12} + 4(\mu_{7} + h_{8}) + 2\mu_{9} a_{9}}{a_{1}^2 (k^2 (\mu_{12} + h_{9}) + a_{9})}$
$\frac{2^+}{4}\mathcal{W}_{\rm S}$ $+^{\alpha\beta}$		$\frac{1}{12}$ $\frac{1}{\sqrt{3}}$	$\frac{I\left(k^{3}\left((h_{11}+h_{12})^{2}-4\left(h_{17}+h_{1}\right)(h_{10}+h_{1})\right)+4k(h_{10},h_{7},h_{19})a_{0}}{\sqrt{3}a_{0}^{2}\left(k^{2}\left(h_{10}+h_{1}\right)+a_{0}\right)}$	$-\frac{k^4\left((h_{11}+h_{12})^2-4(h_{7}+h_{8})(h_{10}+h_{19})\right)-4k^2}{6a_0^2(k^2)}$	$\frac{k^4 ((h_{11} + h_{12})^2 - 4(h_{7} + h_{13})(h_{10} + h_{13})) - 4 k^2 (-2 h_{10} + h_{11} + h_{12} + h_{7} + h_{12} - 2 h_{13} a_{1} + 12 a_{10}^2}{6 a_{10}^2 (k^2 (h_{10} + h_{13}) + a_{10}^2)}$	$\frac{\sqrt{2}\ k^2\ (k^2\ ((h_{11}\ h_{12})^2-4(h_{7}\ h_{8})(h_{10}\ h_{11})^{1-2}-4(h_{7}\ h_{8})^{1-6}-2h_{10}\ h_{11}\ h_{12}}{3\ a_0^2\ (k^2\ (h_{7}\ h_{9})+a_0^2)}$
$^{2^{+}}\mathcal{W}_{\mathrm{S}}^{\perp} +^{\alpha\beta}$	$\beta = \frac{24\sqrt{\frac{2}{3}} \left(k^3 \left((h_{11} + h_{12})^2 - 4 (h_7 + h_8) (h_{10} + h_9) \right) + k \left(2 h_{10} \cdot 3 \right)_1}{a_0^2 \left(k^2 (h_{10} + h_9) + a_0 \right)}$	-4(1,+1	$a_{0}^{-1}(k_{1},k_{2},k_{3}) + (2k_{10},3k_{11}-3k_{2}+4(k_{7}+k_{3}+2k_{9})a_{0}) \\ a_{0}^{-2}(k^{2}(k_{10}+k_{3})+a_{0})$		$\frac{\sqrt{2} \ k^{2} (k^{2} ((h_{11} + h_{12})^{2} - 4(h_{7} + h_{8}))(h_{10} + h_{9})) + (2 h_{12} + h_{11} + h_{12} + 4(h_{7} + h_{8}) - 2 h_{9}) a_{0}}{3 a_{0}^{2} (k^{2} (h_{10} + h_{9}) + a_{0})} = \frac{4 k^{4} ((h_{11} + h_{12})^{2} - 4(h_{7} + h_{8}))(h_{12} + h_{13}) + h_{12} - 2(h_{7} + h_{13}) + h_{12} - 2(h_{7} + h_{13})) a_{0} + 112 a_{0}}{3 a_{0}^{2} (k^{2} (h_{10} + h_{13}) + a_{0})} = \frac{4 k^{4} ((h_{11} + h_{11})^{2} - 4(h_{7} + h_{13}))(h_{12} + h_{13}) + h_{12} - 2(h_{7} + h_{13})) a_{0} + 112 a_{0}}{3 a_{0}^{2} (k^{2} (h_{10} + h_{13}) + a_{0})}$	$\frac{-4k^4((n_{11}+n_{12})^2-4(n_7+n_8)(n_4+n_9))-8k^2(-2n_{10}+n_{11})}{3a_0^2(k^2(n_1+n_9)+a_0^2)}$
$2^{-1}\mathcal{W}_{S}$ $+^{\alpha\beta\chi}$	×		0		0	0
	$1.^+ \mathcal{A_S}^\perp_{\alpha\beta}$	$1.h^{\perp}_{\alpha}$	$^{1}\mathcal{A}_{S}^{Lt}{}_{\alpha}$	$^{1}\mathcal{A}_{S}^{\parallel l}{}^{\parallel t}$	$1^{-}\mathcal{A}_{S}^{\perph}{}_{\alpha}$	1. A _s III,
$^{1^{+}}\mathcal{A}_{S}^{^{\perp}} + ^{\alpha\beta}$	$^{1^{+}}\mathcal{A}_{s^{\perp}} +^{\alpha\beta} \frac{1}{4} (k^{2} (h_{10} - h_{9}) + a_{0})$	0	0	0	0	0
$^{1}h^{\perp}\uparrow^{\alpha}$	0 0		0	0	0	0
$^{1}\mathcal{A}_{\mathrm{s}^{\perp\mathrm{t}}}+^{^{\alpha}}$	0	0	$\frac{1}{6} \left(-k^2 \left(h_1 + h_1 + h_2 \right) - 2 a_1 \right)$	$\frac{1}{6}\sqrt{5}(k^2(h_1+h_2+h_3)+a_3)$	$\frac{2 k^2 (h_{11} + h_7 + h_9) + a_0}{12 \sqrt{2}}$	$\frac{1}{12} (k^2 (4 h_1 + h_1 - 2 h_3) + a_0)$
1-94 lt +α	0	0	$\frac{1}{6}\sqrt{5}(k^2(h_0+h_0+h_0+h_0)+a_0)$	$\frac{1}{6}$ (-5 k^2 (h_1 , + h_1 , + h_2) + 2 a_0 .)	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-2 k^2 (h_1 + h_1 + h_3) + \frac{1}{8} \right)$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-2 \lambda^2 (h_0 + h_1 + h_1 + h_2) + a_0 \right) \left \frac{1}{12} \sqrt{5} \left(- \lambda^2 (h_1 - 2 h_2 + 4 h_2) + a_0 \right) \right $
1-98 th +a	0	0	$\frac{2 k^2 (h_1 + h_7 + h_9) + a_0}{12 \sqrt{2}}$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-2 k^2 \left(h_1 + h_2 + h_3 \right) + a_0 \right)$	$\frac{1}{12} \left(-k^2 \left(h_{11} + h_7 + h_9 \right) + a_0 \right)$	$\frac{-k^2 (4 h_0 + h_1 - 2 h_1) - 4 a_0}{12 \sqrt{2}}$
1-94s lh +α	0	0	$\frac{1}{12} (k^2 (4h_1 + h_1 - 2h_1) + a_1)$	$\frac{1}{12} \left(k^2 \left(4h_{\cdot} + h_{\cdot} - 2h_{\cdot} \right) + a_{\cdot} \right) \frac{1}{12} \sqrt{5} \left(-k^2 \left(h_{\cdot} - 2h_{\cdot} + 4h_{\cdot} \right) + a_{\cdot} \right)$	$\frac{-k^2 (4 \frac{h}{10} + h \cdot -2 \frac{h}{3}) - 4 \frac{a}{0}}{12 \sqrt{2}}$	$\frac{1}{12} (k^2 (4h_1 - 2(h_7 + 4h_1)) - a_0)$
		I				

 $\frac{1}{12} \left(-k^2 \left(13h \, , \, -8 \, h \, , \, +7 \left(h \, , \, +h \, , \right) +13 \, h \, , \right) -3 \, a \, , \right.$

 $\frac{2}{3}k^{2}(h+h+h+h+h+h+h)$

4°10

0

 $(-2k^4(h_{10}-h_{11}-h_1+h_1+h_1+h_1)+k^2a_0)$

0

0

 $^{0^+}\mathcal{A}_{\mathrm{s}^{\perp\mathrm{t}}}\!\!\uparrow$

0

0

0+12 1+

0

0

 $(-k^2(h...+h...+h...+h..+h..+h.)-3 a.)$

 $^{2^{+}}\mathcal{A}_{S}^{\parallel}$

 $-\frac{1}{8}k^{2}(k^{2}(h_{.}-h_{.}-h_{.}-h_{.}+h_{.}+h_{.}+h_{.})+a_{.})$

 $^{2^{+}}h^{\parallel}+^{\alpha\beta}$

 $^{2^{+}}\mathcal{A}_{s}^{\parallel}\uparrow^{\alpha\beta}$

 $^{2^{+}}\mathcal{A}_{s^{\perp}}\uparrow^{\alpha\beta}$

 $2^{+}h^{\parallel}_{\alpha\beta}$

 $^{1+}\mathcal{A}_{s}^{\perp h} \downarrow 0$

0, As" + 0

0

 $\frac{1}{12} \left(-k^2 \left(h \right. - 2 h \right. - 2 h \right. + 4 \left(h + h \right) + h \right) + 3 a . \right)$

/
$\frac{1}{\sqrt{\mu}}\int_{\mathbb{R}^{n}} d\beta = \frac{1}{2}\int_{\mathbb{R}^{n}} d\beta = \frac{1}{2}\int_{\mathbb{R}^{$
$\frac{2}{3} \mathcal{M}_{s} + \frac{2}{3} \mathcal{M}_{s}$
Massless particle

Massive and massless spectra

Poleresidue:	$\frac{4}{hh.} > 0$
Square mass:	$-\frac{a_0}{h_0-h_0} > 0$
Spin:	1
Parity:	Even

Massive particle

Unitarity conditions

(Timeout after 20 seconds)