vOptSolver – Version 0.2

Software developed with the support of the ANR/DFG-14-CE35-0034-01

Université de Nantes

https://github.com/v0ptSolver https://voptsolver.github.io/v0ptSpecific/ https://voptsolver.github.io/v0ptGeneric/

July 5, 2017

Table of contents

- Introduction to vOptSolver
- Instructions for installing and running vOptSolver
- vOptSpecific problem by problem
- vOptGeneric problem by problem
- ► Technical overview
- History
- Taskforce
- Links and contact.

Convention: text in grey ⇒ functionality integrated in future releases

Introduction to vOptSolver

Multi-objective linear optimization problems targeted

- ► LP: Linear Program
- ► MILP: Mixed Integer Linear Program
- ► IP: Integer Linear program
- ► CO: Combinatorial Optimization
- ► LAP: Linear Assignment Problem
- ▶ OSP: One machine Scheduling Problem
- ► UKP: Unidimensional 01 Knapsack Problem
- ► MKP: Multidimensional 01 Knapsack Problem
- ► UFLP: Uncapacitated Facility Location Problem
- ► UDFLP: Discrete Uncapacitated Facility Location Problem
- ▶ UMFLP: Mixed Uncapacitated Facility Location Problem
- ► SSCFLP: Single Source Capacitated Facility Location Problem
- ► CFLP: Capacitated Facility Location Problem
- ► PATHS: shortest paths problem

Multi-objective linear optimization problems targeted

Solutions reached

For a given problem, the aim is to compute

Y_N, the set of nondominated "points"

corresponding to

X_E, a complete set of efficient solutions

More on definitions and notations, refer to this book:

Matthias Ehrgott. *Multicriteria Optimization.*Springer-Verlag New York, 2005.

Design of vOptSolver

Design of vOptSolver in details

Design of vOptSolver in details

vOptUtils:

a collection of algorithms for managing and analyzing outcome set

- \triangleright multidimensional datastructure for filtering and storing Y_N
- ightharpoonup primitives for ploting Y_N
- ightharpoonup primitives for analyzing Y_N

Integrated specific algorithms (1/2)

▶ 2-LAP [prz2008]; in C:

A. Przybylski, X. Gandibleux, and M. Ehrgott. Two phase algorithms for the bi-objective assignment problem. European Journal of Operational Research, 185(2):509–533, 2008.

output: $X_E \subseteq \mathbb{N}^n$, $Y_N \subseteq \mathbb{Z}^p$

▶ 2-OSP with here $1 \mid . \mid (\Sigma C_i, T_{max})$ [was1980]; in Julia:

L.N. Van Wassenhove and L.F. Gelders. Solving a bicriterion scheduling problem. European Journal of Operational Research, 4(1):42–48, 1980.

output: $X_E \subseteq \mathbb{N}^n$, $Y_N \subseteq \mathbb{Z}^p$

► 2-UKP [jor2010]; in Julia:

J. Jorge. Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires. Thèse de doctorat, Université de Nantes - France. 2010.

output: $X_E \subseteq \{0,1\}^n$, $Y_N \subseteq \mathbb{Z}^p$

Integrated specific algorithms (2/2)

▶ 2-UDFLP [gan2012]; in C++:

X. Gandibleux, A. Przybylski, S. Bourougaa, A. Derrien, A. Grimault. Computing the efficient frontier for the 0/1 biobjective uncapacitated facility location problem. 10th International Conference on Multiple Objective Programming and Goal Programming. June 11-13 2012, Niagara Falls, Canada.

output: $X_E \subseteq \{0,1\}^n$, $Y_N \subseteq \mathbb{Z}^p$

► 2-UMFLP [del2017]; in C++:

Q. Delmée, X. Gandibleux, A. Przybylski. Résolution exacte du problème de localisation de services bi-objectif sans contrainte de capacité en variables mixtes. ROADEF2017: 18ême congrés annuel de la Société Française de Recherche Opérationnelle et d'Aidie à la Décision, Feb 2017, Metz, Trance. 2017

output: $X_E \subseteq \{0,1\}^{n_1} \times \mathbb{R}^{n_2}, Y_N$

► PATHS [gan2004]; in C:

X. Gandibleux, Fr. Beugnies and S. Randriamasy: Martins' algorithm revisited for multi-objective shortest path problems with a MaxMin cost function. 40R: A Quarterly Journal of Operations Research. Volume 4, Number 1, pp. 47-59, 2006.

output: X_E , Y_N

Integrated generic algorithms (1/2)

▶ 2-IP/ ϵ -constraint method [hai1971]; in Julia:

Y.V. Haimes, L.S. Lasdon, D.A. Wismer: On a bicriterion formation of the problems of integrated system identification and system optimization. *IEEE Transactions on Systems, Man and Cybernetics*. Volume SMC-1, Issue 3, Pages 296-297, July 1971.

output: $X_E \subseteq \mathbb{Z}^n$, $Y_N \subseteq \mathbb{Z}^p$

► 2-IP/dichotomic method:

Aneja, Y. and K. Nair: Bicriteria transportation problem. Management Science 25 (1), 73?78. 1979.

output: $X_{SE} \subseteq \mathbb{Z}^n$, $Y_{SN} \subseteq \mathbb{Z}^p$

▶ 2-IP/Chalmet & al., 1986:

L.G. Chalmet, L. Lemonidis, and D.J. Elzinga. An algorithm for the bi-criterion integer programming problem. European Journal of Operational Research, 25:302-300, 1086

output: $X_E \subseteq \mathbb{Z}^n$, $Y_N \subseteq \mathbb{Z}^p$

Integrated generic algorithms (2/2)

► 2-MILP/Vincent & al., 2014:

Th. Vincent, F. Seipp, S. Ruzika, A. Przybylski, X. Gandibleux. Multiple objective branch and bound for mixed 0-1 linear programming: Corrections and improvements for the biobjective case. Computers & Operations Research, Volume 40, Issue 1, pp. 498–509, 2013.

Fl. Lucas. Multiobjective branch & cut. Master Thesis, University of Nantes, France. June 2017.

output: $X_E \subseteq \mathbb{R}^{n_1} \times \mathbb{Z}^{n_2}$, Y_N

► 2-LP/parametric simplex:

Description available in: Matthias Ehrgott. Multicriteria Optimization. Springer-Verlag New York, 2005.

output: $X_{SE} \subseteq \mathbb{R}^n$, $Y_{SN} \subseteq \mathbb{R}^p$

Selectable (MI)LP Engines

- open source:
 - GLPK (GNU Linear Programming Kit)
- commercial:
 - CPLEX
 - GUROBI

NB: CPLEX and GUROBI are currently not available on JuliaBox

Instructions for installing and running vOptSolver

Instructions for installing vOptSolver

vOptSolver has been tested with:

- ▶ Julia v0.6
- ► GLPK v4.62

Choose between:

- 1. a local use
 - on macOS (tested on v10.12.5)
 - on linux (tested on ubuntu 14.04 LTS)
 - on windows (perhaps later...)
- 2. a distant use
 - in the cloud with JuliaBox.

Instructions for a distant use in the cloud

- ► Local installation
 - 1. nothing to do
- ► Run Julia
 - 1. go to https://juliabox.com and sign in to open a session
 - 2. click on the icon "console"
 - when the prompt is ready, type in the console julia
- ▶ Before the first use of vOptSolver, add the following packages:
 - 1. when the prompt julia is ready, type in the terminal
 Pkg.add("GLPK"); Pkg.add("GLPKMathProgInterface")
 Pkg.clone("http://github.com/vOptSolver/vOptGeneric.jl")
 Pkg.clone("http://github.com/vOptSolver/vOptSpecific.jl")
 Pkg.build("vOptSpecific")

At this point, vOptSolver is properly installed

Instructions for a local use on your own computer

- ▶ Local installation
 - install Julia on your computer, instructions here: http://julialang.org/downloads/
 - 2. install (e.g.) GLPK on your computer, instructions here: http://jump.readthedocs.io/en/latest/installation.html NB: a standard C/C++ compiler must be installed (GCC is suggested)

At this point, Julia and GLPK are properly installed

- ► Run Julia
 - on linux: open a console on your computer; when the prompt is ready, type in the console julia
 - 2. on macOS: locate the application julia and click on the icon; julia console comes on the screen
- ▶ Before the first use of vOptSolver, add both following packages:
 - 1. when the prompt julia is ready, type in the console
 Pkg.add("GLPK"); Pkg.add("GLPKMathProgInterface")
 Pkg.clone("http://github.com/vOptSolver/vOptGeneric.jl")
 Pkg.clone("http://github.com/vOptSolver/vOptSpecific.jl")
 Pkg.build("vOptSpecific")

At this point, vOptSolver is properly installed

Instructions for running vOptSolver

When vOptSolver is properly installed, vOptSpecific and vOptGeneric are ready locally or in the cloud.

- ► Run Julia
 - 1. open a console on your computer or in the cloud
 - when the prompt is ready, type in the console julia
- when the prompt julia is ready, type in the terminal
 - using vOptSpecific
 - 2. using vOptGeneric
 - using GLPK ; using GLPKMathProgInterface

Remark 1: you may invoke only using vOptSpecific if you are only working with vOptSpecific. Same remark for vOptGeneric. Remark 2: you may invoke CPLEX or GUROBI in the place of GLPK (ps: in local mode, the MILP solver selected must be properly installed)

 vOptSpecific and vOptGeneric are ready. See examples for further informations

vOptSpecific problem by problem

definition (problem, inputs)
data (console, text file)
resolution (API, outputs, text file)

LAP | Definition | The linear assignment problem

$$\begin{bmatrix} & \min z^k & = & \sum_{i=1}^n \sum_{j=1}^n c^k_{ij} x_{ij} & k = 1, \dots, p \\ & s/c & & \sum_{i=1}^n x_{ij} = 1 & j = 1, \dots, n \\ & & & \sum_{j=1}^n x_{ij} = 1 & i = 1, \dots, n \\ & & & x_{ij} = (0, 1) & i = 1, \dots, n \\ & & & & j = 1, \dots, n \end{bmatrix}$$
 (p-LAP)

LAP | Definition | Inputs

Valid for 2-LAP.

- n (integer): number n of assignments task-resource
- ▶ C1 (matrix of $n \times n$ of integers): coefficients c_{ij}^1 of the objective 1
- C2 (matrix of n × n of integers): coefficients c²_{ii} of the objective 2

LAP | Data | Example (console)

```
n
C1 = [ 3
     16
        0 6 12 19;
        7
           11
              15
        11
           7
              16 3;
         5
C2 = [16]
        5
               19
                 12;
            6
     15
           13
        2
           13 2 3;
     14
           8 1 7;
           1
     10
        10
```

LAP | Data | Example (text file)

```
n
5
16
             12
                                    C1
         11
             15
          7
             16
    11
 2
     5
16
             19
15
         13
                                    C2
        13
14
         8
10
    10
         1
```

► load2LAP

Load an instance of a 2-LAP from the file fname
MOCO = load2LAP(fname)

LAP | Resolution | API

► set2LAP

Create a new instance of a 2-LAP and set up all required values MOCO = set2LAP(n, C1, C2)

► LAP_Przybylski2008

Set up the solver to use for the 2-LAP solver = LAP_Przybylski2008()

▶ vSolve

Solve the instance provided with the mentioned solver and return the results

```
z1, z2, \sigma = vSolve( MOCO , solver )
```

LAP | Resolution | Outputs (specification)

Valid for 2-LAP.

vSolve returns:

- ▶ z1: vector of $(1, ..., |Y_N|)$ of integers
- ▶ z2: vector of $(1, ..., |Y_N|)$ of integers
- σ : matrix of $(1, \ldots, |Y_N|; \sigma_1, \ldots, \sigma_n)$ of integers where
 - σ_i : a permutation coding $(x_{ij} = 1 \Leftrightarrow \sigma_i = j)$

OSP | Definition | One machine scheduling problem

The general one machine scheduling problem considered here is defined as:

$$1 \mid r_i \mid (f_1, f_2)$$
 (2-OSP)

and the specific OSP currently considered is:

$$1 \mid . \mid (\Sigma C_i, T_{max})$$

OSP | Definition | Inputs

Valid for 2-OSP.

- ▶ n (integer): number n of jobs, i = 1...n
- r (vector of n integers):
 r_i, the release date for job i
- p (vector of n integers):
 p_i, the processing time for job i
- d (vector of n integers):
 d_i, the due date for job i
- w (vector of n integers): w_i, the weight associated to job i

OSP | Data | Example (console)

OSP | Data | Example (text file)

► load2OSP

Load an instance of a 2-OSP from the file fname
id = load20SP(fname)

OSP | Resolution | API

▶ set2OSP

Create a new instance of a 2-OSP and set up all required values id = set20SP(n, P, D, R, W)

► OSP_vanwassenhove1980

Set up the solver to use for the 2-OSP solver = OSP_vanwassenhove1980()

▶ vSolve

Solve an instance of a 2OSP with the mentioned solver and return the results

```
status = vSolve( id , solver )
```

OSP | Resolution | Outputs (specification)

Valid for 2-OSP.

vSolve returns:

- ▶ z1: vector of $(1, ..., |Y_N|)$ of integers
- ▶ z2: vector of $(1, ..., |Y_N|)$ of integers
- σ : matrix of $(1, \ldots, |Y_N|; \sigma_1, \ldots, \sigma_n)$ of integers where
 - ▶ σ_i : a permutation coding $(\sigma_i = j \Leftrightarrow \text{ job } j \text{ in position } i)$

vOptGeneric problem by problem

definition (problem, inputs, JuMP) data (console, text file) resolution (solve, outputs, text file)

MOMILP-MOLP-MOIP | Definition

Three Multi Objective Linear Optimization Problems:

$$\begin{array}{llll} \min z(x) & = & Cx & \min z(x) & = & Cx & \min z(x) & = & Cx \\ s/t & Tx & \leqq & d & s/t & Tx & \leqq & d \\ x & \in & \mathbb{R}^{n_1} \times \mathbb{Z}^{n_2} & x & \in & \mathbb{R}^{n_1} & x & \in & \mathbb{Z}^{n_2} \end{array}$$

Multi Objective Mixed-Integer Linear Problem (MOMILP) Multi Objective Linear Problem (MOLP) Multi Objective Integer Problem (MOIP)

where:

$$\begin{array}{cccc} T\in\mathbb{Z}^{m\times n} &\longrightarrow & m \text{ constraints, } i=1,\ldots,m\\ C\in\mathbb{Z}^{n\times p} &\longrightarrow & \text{the objective matrix} \\ X=\{x\in\mathbb{R}^{n_1}\times\mathbb{Z}^{n_2}| Tx\leq d\}\subseteq\mathbb{R}^n &\longrightarrow & \text{the set of feasible solutions}\\ Y=z(X)\subseteq\mathbb{R}^p &\longrightarrow & \text{the set of images} \end{array}$$

MOMILP-MOLP-MOIP | Formulation

Following spectifications of JuMP for formulating a model, see:

http://jump.readthedocs.io/en/latest/quickstart.html# creating-a-model

Plus:

@addobjective(<model>, <opt>, <function>)

where

- model: id of the model concerned
- opt: function to Min imize or Max imize
- function: definition of the function

MOMILP-MOLP-MOIP | Example of formulation

$$\begin{array}{ll} \min & c_1^1 x_1 + c_2^1 x_2 \\ \min & c_1^2 x_1 + c_2^2 x_2 \\ \mathsf{s/t} & t_{11} x_1 + t_{12} x_2 \leq d_1 \\ & t_{21} x_1 + t_{22} x_2 \leq d_2 \\ & x_1 \in \mathbb{R}, x_2 \in \mathbb{Z} \end{array}$$

$$\begin{array}{ll} \min & c_1^1 x_1 + c_2^1 x_2 \\ \min & c_1^2 x_1 + c_2^2 x_2 \\ \mathsf{s/t} & t_{11} x_1 + t_{12} x_2 \leq d_1 \\ & t_{21} x_1 + t_{22} x_2 \leq d_2 \\ & x_1, x_2 \in \mathbb{R} \end{array}$$

$$\begin{array}{ll} \min & c_1^1 x_1 + c_2^1 x_2 \\ \min & c_1^2 x_1 + c_2^2 x_2 \\ \mathsf{s/t} & t_{11} x_1 + t_{12} x_2 \leq d_1 \\ & t_{21} x_1 + t_{22} x_2 \leq d_2 \\ & x_1, x_2 \in \mathbb{Z} \end{array}$$

```
# -- create a MOMILP and set the model ---
MOMILP = vModel(solver=working on it>)
@variable(MOMILP, x1 >= 0)
@variable(MOMILP, x2 >= 0, Int)
@addobjective(MOMILP, Min, c11*x1 + c12*x2)
@addobjective(MOMILP, Min, c21*x1 + c22*x2)
@constraint(MOMILP, t11*x1 + t12*x2 <= d1)
@constraint(MOMILP, t21*x1 + t22*x2 <= d2)</pre>
```

- # -- create a MOLP and set the model --MOLP = vModel(solver=<working on it>)
 @variable(MOMILP, x1 >= 0)
 @variable(MOMILP, x2 >= 0)
 @addobjective(MOLP, Min, c11*x1 + c12*x2)
 @addobjective(MOLP, Min, c21*x1 + c22*x2)
 @constraint(MOLP, t11*x1 + t12*x2 <= d1)
 @constraint(MOLP, t21*x1 + t22*x2 <= d2)</pre>
- # --- create a MOIP and set the model --MOIP = vModel(solver=GLPKSolverMIP())
 @variable(MOIP, x1 >= 0, Int)
 @variable(MOIP, x2 >= 0, Int)
 @addobjective(MOIP, Min, c11*x1 + c12*x2)
 @addobjective(MOIP, Min, c21*x1 + c22*x2)
 @constraint(MOIP, t11*x1 + t12*x2 <= d1)
 @constraint(MOIP, t21*x1 + t22*x2 <= d2)</pre>

MOMILP-MOLP-MOIP | Data | Example (console)

```
c11 = 3 ; c12 = 1
c21 = -1 ; c22 = -2
t11 = 0 ; t12 = 1 ; d1 = 3
t21 = 3 ; t22 = -1 ; d2 = 6
```

MOMILP-MOLP-MOIP | Data | Example (format MOP)

```
parseMOP
```

```
Load an instance (MOP format) from the file fname
jumpModel = parseMOP( fname , solver=<solver to invoke> )
```

writeMOP

```
Write a model according to the MOP format to a file fname writeMOP( vModel , fname )

NB: the MOP format is an extension of the MPS format (https://en.wikipedia.org/wiki/MPS_(format)) to multiple objectives (http://moplib.zib.de/format_desc/mop_format.pdf)
```

MOMILP-MOLP-MOIP | Example of resolution

MOMILP

Algorithm: branch&bound Solver: working on it

MOLP

Algorithm: parametric simplex Solver: working on it

MOIP

Algorithm: ϵ -constraint Solver: GLPK or CPLEX

```
# --- solve the model ---
  status = solve( MOMILP )
# --- Print the results ---
  print X E( MOMILP )
# --- solve the model ---
  status = solve( MOLP )
# --- Print the results ---
  print X E( MOLP )
```

```
# --- solve the model ---
    status = solve( MOIP , method =:epsilon , step = 0.5 )
# --- Print the results ---
    print_X_E( MOIP )
```

--- Get the results --getY N(MOIP)

MOMILP-MOLP-MOIP | Resolution | Outputs (specification)

Y_N of the 2-MOP is defined by

- ▶ 2-MILP: a mixed nondominated set (composed of edges that are either closed, half-open, open or reduced to a point)
- ▶ 2-LP: a continuous nondominated set (composed of edges)
- 2-IP: a discrete nondominated set (composed of points)

Technical overview

Technical overview

User application written in Julia		
Declare No-structured MOP IP/MIP/LP Structured MOP LAP 1 r _i (f ₁ , f ₂)	Solve $Specific$ $2 ext{-LAP} o Y_N$ $1 \mid . \mid (\Sigma C_i, T_{max}) o Y_N$ $Generic$ $2 ext{-ILP} o Y_{SN}$ $dicho$	Utils Input/Output read/write format MOP plot Y_N Misc maintain Y_N analyze Y_N
Interface: Library solvers C/C++ specifics	$2 ext{-ILP} o Y_N$ $Chalmet$ $2 ext{-MILP} o Y_N$ $B\&C$ $2 ext{-ILP} o Y_N$ $\epsilon ext{-cte}$	Interface: Library solvers MIP generics
Modules C	2-LP $\rightarrow Y_N$ simplex	Solvers MIP open source GLPK commercial CPLEX, GUROBI

History

History

- ▶ v1.0: July 2016; first prototype; not opened to the public
- ▶ v2.0: June 23, 2017; first stable version; released to the public with
 - a depot on github, webpages, and a tutorial
 - JuMP extended to multiple objectives (vOptGeneric)
 - primitives for loading/printing/writing a non-structured problem in std MOP format
 - ightharpoonup ϵ -constraint algorithm for bi-objective integer programming
 - backbone in Julia (vOptSpecific)
 - ► API and solver for bi-objective linear assignment problem
 - ► API and solver for bi-objective one machine scheduling problem
 - primitives for I/O of a 2LAP and 2OSP on files

Taskforce

Taskforce

Involved in the development of vOptSolver:

Currently:

- GANDIBLEUX Xavier (coordinator)
- SOLEILHAC Gauthier
- PRZYBYLSKI Anthony

Previously:

- CHATELLIER Pauline
- DUMEZ Dorian
- ▶ LUCAS Flavien

Links and contact

Follow/join us here

```
Homepage of vOptSolver:
http://voptsolver.github.io/vOptSolver/
  Repository of vOptSolver:
  http://github.com/vOptSolver
  Repository of vOptSpecific:
  http://github.com/vOptSolver/vOptSpecific.jl
  Repository of vOptGeneric:
  http://github.com/vOptSolver/vOptGeneric.jl
Contact concerning vOptSolver:
vopt@univ-nantes.fr
Homepage of the ANR/DFG research project "vOpt":
http://vopt-anr-dfg.univ-nantes.fr
```