MATEMÁTICA

Convenções: Considere o sistema de coordenadas cartesiano, a menos que haja indicação contrária.

 $\mathbb{N} = \{1, 2, 3, \dots\}$: denota o conjunto dos números naturais. \mathbb{R} : denota o conjunto dos números reais.

 $\mathbb C$: denota o conjunto dos números complexos.

i: denota a unidade imaginária, $i^2 = -1$.

 $M_n(\mathbb{R})$: denota o conjunto das matrizes $n \times n$ de entradas reais.

 \overline{AB} : denota o segmento de reta de extremidades nos pontos A e B.

 $A\hat{O}B$: denota o ângulo formado pelas semi-retas \overrightarrow{OA} e \overrightarrow{OB} , com vértice no ponto O.

 $m(\overline{AB})$: denota o comprimento do segmento \overline{AB} .

Questão 1. Sejam $a \in b$ números reais positivos. Considere o sistema linear nas incógnitas $x, y \in z$:

$$\begin{cases}
-ax + by + az = 0 \\
b^2x + a^3y + 4a^2z = 0 \\
4a^2x + a^3y + b^2z = 0
\end{cases}$$

Sabendo que esse sistema admite solução não trivial, determine b em função de a. Determine o conjunto solução do sistema para $a=\frac{1}{2}$.

Questão 2. Considere as seguintes matrizes:

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 6 \\ 6 & 0 \end{bmatrix} \quad \mathbf{e} \quad C = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}.$$

Determine os números $\alpha \in \mathbb{R}$ tais que a matriz $M = \alpha^2 A + \alpha B + C$ é invertível.

 ${\bf Quest\~{a}o}$ 3. Determine o conjunto solução da inequação

$$\log_{2^{-x}}(-\sqrt[3]{x^2+2x-3}) > \log_{2^{-x}}(\sqrt[3]{3}).$$

Questão 4. Considere o polinômio $p(x) = x^4 - x^3 + x^2 - x + 1$. Determine o quociente e o resto da divisão do polinômio $q(x) = x^{10} - 1$ por p(x) e encontre todas as raízes complexas de p(x).

Questão 5. Sejam $A = \cos(\alpha) + \cos(\beta)$ e $B = \sin(\alpha) - \sin(\beta)$ com $\alpha, \beta \in \mathbb{R}$. Calcule $\sin(\alpha - \beta)$ em função de A e B, sabendo que A e B não são ambos nulos.

Questão 6. Considere um triângulo ABC tal que $m(\overline{AB})=4,\ m(\overline{AC})=5$ e $B\hat{A}C=60^\circ$. Seja D um ponto no lado \overline{AB} tal que $m(\overline{AD})=1$. Encontre o raio do círculo inscrito no triângulo BCD.

Questão 7. Determine os pontos P pertencentes à elipse E definida pela equação $\frac{x^2}{4} + y^2 = 1$, tais que os segmentos de reta que ligam P aos focos de E formam um ângulo de 60° .

Questão 8. Um cilindro equilátero é apoiado sobre uma de suas bases e parcialmente preenchido com água. Quando uma esfera é colocada em seu interior, de modo a tocar o fundo, o nível de água atinge a altura do cilindro. Se o raio da esfera é igual ao raio da base do cilindro e o volume de água é $2000 \frac{\pi}{3} cm^3$, determine a área da superfície lateral do cilindro e o volume da esfera.

Questão 9. Um triângulo tem perímetro 20 e seus ângulos internos α, β e γ satisfazem a igualdade $\operatorname{sen}(\alpha) + \operatorname{sen}(\beta) + \operatorname{sen}(\gamma) = 2$. Sabendo que um dos lados desse triângulo mede 8, determine a medida dos outros dois lados.

