Organização e Arquitetura de Computadores Profa. Lucilena de Lima luma.delima@gmail.com

Compilado a partir de slides preparados por

Introdução

 As portas lógicas são os componentes básicos da eletrônica digital. Elas são usadas para criar circuitos digitais e até mesmo circuitos integrados complexos. Por exemplo, circuitos integrados complexos podem ser um circuito digital completo pronto para serem usados – processadores e microcontroladores são os melhores exemplos –, mas internamente estes circuitos integrados foram projetados usando várias portas lógicas.

Eletrônica Digital

- É o ramo da eletrônica em que os circuitos envolvidos operam apenas com sinais que só podem assumir um número finito de valores.
- A operação dos circuitos digitais pode ser descrita por um tipo especial de álgebra, que se chama álgebra de Boole ou álgebra Booleana.
- A implementação dos circuitos digitais é feita através de diversos tipos de portas lógicas, que constituem a base para a construção de circuitos digitais mais complexos.

Aplicações da Eletrônica Digital

- Os circuitos digitais desempenham um papel cada vez mais importante no mundo de hoje. Eles são empregados em quase tudo que utiliza eletrônica, incluindo comunicações, controle, instrumentação e é claro, na informática.
- O uso muito difundido deve-se a disponibilidade, a baixos custos, no mercado de uma infinidade de Cl's que contêm circuitos digitais extremamente poderosos. Hoje em dia, os microprocessadores mais poderosos, chegam a integrar centenas de milhões de portas lógicas, quase chegando ao fantástico número de bilhão de portas lógicas em uma única pastilha de silício.

Álgebra de Boole

- Uma grande parte do nosso pensamento e dos diversos tipos de processos desenvolvidos pelo homem consistem em encontrar respostas a perguntas que só podem Ter duas respostas. A lógica de dois estados teve uma maior influência sobre Aristóteles, que determinou métodos precisos de se encontrar a verdade. Esta lógica atraiu matemáticos, que intuitivamente sentiram algum tipo de processo algébrico dirigindo todo o pensamento.
- Augustus De Morgan chegou perto da descoberta do elo entre a matemática e a lógica. No entanto, foi George Boole (1854) que reuniu tudo. Ele inventou um novo tipo de álgebra, que substituiu os métodos verbais de Aristóteles. A álgebra booleana não teve entretanto um impacto na tecnologia até quase um século depois, em 1938, quando Shannon aplicou a nova álgebra aos circuitos de chaveamento de telefonia. Graças ao trabalho de Shannon, os engenheiros logo perceberam que a álgebra booleana poderia ser utilizada para projetar e analisar circuitos de computador.

Famílias lógicas

Os circuitos integrados digitais estão agrupados em famílias lógicas.

- Famílias lógicas bipolares:
- RTL Resistor Transistor Logic Lógica de transístor e resistência.
- **DTL D**íode **T**ransistor **L**ogic Lógica de transístor e díodo.
- TTL *Transistor Transistor Logic* Lógica transístor-transístor.
- HTL High Threshold Logic Lógica de transístor com alto limiar.
- ECL Emitter Coupled Logic Lógica de emissores ligados.
- I²L Integrated-Injection Logic Lógica de injecção integrada.
- Famílias lógicas MOS (Metal Óxido Semicondutor)
- CMOS Complementary MOS MOS de pares complementares NMOS/PMOS
- NMOS Utiliza só transístores MOS-FET canal N.
- PMOS Utiliza só transístores MOS-FET canal P.

Atualmente a família lógica TTL e a CMOS são as mais usadas.

Níveis de integração

Os níveis de integração referem-se ao número de portas lógicas que o CI contém.

SSI (Small Scale Integration) – Integração em pequena escala: São os CI com menos de 12 portas lógicas.

MSI (Medium Scale Integration) – Integração em média escala: Corresponde aos CI que têm entre 12 a 99 portas lógicas

LSI (Large Scale Integration) – Integração em grande escala: Corresponde aos CI que têm entre 100 a 9 999 portas lógicas.

VLSI (Very Large Scale Integration) – Integração em muito larga escala: Corresponde aos CI que têm entre 10 000 a 99 999 portas lógicas.

ULSI (**U**ltra **L**arge **S**cale **I**ntegration) – Integração em escala ultra larga: Corresponde aos CI que têm 100 000 ou mais portas lógicas.

Operação lógica AND

Conceito

 Produz um resultado verdade Se e somente Se todas a entradas forem verdade.

Entrada		Saída	
А В		X = AE	
0	o	0	
0	1	0	
1	0	0	
1 1		1	

- \circ Se A = 1 e B = 0, então: A · B = 0.
- \circ Se A = 0110 e B = 1101, então: A · B = 0100.

Operação lógica OR

Conceito

 Produz um resultado verdade se pelo menos umas das entradas for verdade.

- \circ Se A = 1 e B = 0, então: A + B = 1.
- Se A = 0110 e B = 1101, então: A + B = 1111.

Operação lógica NOT

Conceito

- o É a inversão (ou complemento) do sinal de entrada.
- Apresenta apenas um sinal de entrada.

Entrada	Saida
A	X = Ā
0	1
1	0

- Se A = 0, então: NOT A = 1.
- Se A = 0110, então: NOT A = 1001.

Operação lógica NAND

Conceito

o É o complemento da operação AND.

A saída será falsa somente se todas as entradas forem

verdadeiras.

Entrada		Saída
A	В	X = ĀB
0	0	1
0	1	1
1	0	1
1	1	0

- Se A = 1 e B = 1, então: A NAND B = 0
- Se A = 10110 e B = 00011, então: A NAND B = 11101

Operação lógica NOR

Conceito

o É o complemento da operação OR.

A saída será verdade somente se todas as entradas forem

falsas.

Entrada		Saída
Α	В	X = A+B
0	0	1
0	1	0
1	0	0
1	1	0

- \circ Se A = 1 e B = 0, então: A NOR B = 0.
- Se A = 10001 e B = 01010, então: A NOR B = 00100.

Operação lógica XOR

Conceito

- Produz um resultado verdade se somente uma de duas entradas for verdade
- A saída será verdade se os valores das entradas forem diferentes. XOR = EXCLUSIVE OR.

Entrada		Saída X = A⊕B	
А В			
0	0	0	
0	1	1	
1	0	1	
1	1	0	

- Se A = 1 e B = 0, então: $A \oplus B = 1$.
- O Se A = 11001 e B = 11110, então: A ⊕ B = 00111.

Operação lógica XNOR

Conceito

- Produz um resultado verdade apenas quando as entradas coincidem.
- A saída será verdade se os valores das entradas forem iguais. XNOR = COINCIDENCIA.

A	В	A XNOR B
0	0	1
0	1	0
1	0	0
1	1	1

Expressões lógicas

$$F = X + \overline{Y} \cdot Z$$

Expressões lógicas

- É uma expressão algébrica formada por:
 - o variáveis lógicas (binárias);
 - símbolos representativos de operações lógicas;
 - o parênteses; e
 - o sinal de igualdade.
- Pode ser representada pela fórmula ou por um diagrama interligando os símbolos correspondentes às operações.
- Prioridades
 - AND tem prioridade sobre OR

Expressões lógicas

$$F = X + \overline{Y} \cdot Z$$

(a) Expressão lógica da função F

Entrada		Saída	
x	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

(c) Tabela verdade da função F

Circuito Combinatório: Exemplo

$$Y = (A \cdot B) + (B \cdot C)$$

Circuitos integrados digitais

Para saber mais....

- Organização e Projeto de Computadores. 3a. Edição. David A.
 Patterson, John L. Hennessy. Editora Campus, 2005 Apêndice B
- Structured Computer Organization. Andrew S. Tanenbaum.
 Prentice Hall, 4^a edição, 2001 Capítulo 3
- Introdução à Organização de Computadores. Mário A. Monteiro.
 LTC, 4ª edição, 2002 Capítulo 4
- Computer Organization and Architecture: Designing for Performance. William Stallings. 7th Edition, Prentice Hall, 2005 – Apêndice B

Exemplo – Uso das Portas Lógicas Circuitos Combinacionais – Meio Somador

O **meio somador** é um circuito básico destinado a somar dois bits. A soma de dois bits A e B obedece as regras da tabela abaixo, onde S é a soma e C é o Carry ou "Vai 1".

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Da tabela, pode-se obter as expressões lógicas S e C, que são:

$$S = A \oplus B$$

$$C = A.B$$

Exemplo – Uso das Portas Lógicas Circuitos Combinacionais – Meio Somador

A partir destas expressões, obtém-se o circuito de um meio somador como na figura abaixo, e sua representação esquemática.

Circuitos Combinacionais – Meio Somador

A partir destas expressões, obtém-se o circuito de um meio somador como na figura abaixo, e sua representação esquemática.

