16. Гільбертові простори

Озн. 16.1. Дійсна лінійна система H називається дійсним передгільбертовим простором (або евклідовим, або унітарним), якщо кожній парі елементів x, y поставлено у відповідність дійсне число (x, y), що задовольняє умови (аксіоми скалярного добутку):

1.
$$(x,x) \ge 0$$
, до того ж $(x,x) = 0$ тільки при $x = 0$;

2.
$$(x,y)=(y,x)$$
;

3.
$$(x_1 + x_2, y) = (x_1, y) + (x_2, y);$$

4.
$$(\lambda x, y) = \lambda(x, y)$$
.

Лема 16.1. В дійсному передгільбертовому просторі має місце нерівність Коші-Буняковського

$$|(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)}$$
,

для довільних $x, y \in H$.

Доведення. Розглянемо вираз

$$(x + \lambda x, x + \lambda x) = (x, x) + 2\lambda(x, y) + \lambda^{2}(y, y) \ge 0$$

Це означає, що дискримінант цього квадратного трьохчлена ϵ недодатним:

$$(x,y)^2 - (x,x)(y,y) \le 0.$$

Отже,

$$|(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)}$$
.

За скалярним добутком в H можна ввести норму $\|x\| = \sqrt{(x,x)}$.

Лема 16.2. Відображення $\|\cdot\|: x \to \sqrt{(x,x)}$ є нормою.

Доведення. Перевіримо аксіоми норми.

1.
$$\forall x \in H ||x|| = 0 \Leftrightarrow x = \theta$$

$$\sqrt{(x,x)} = 0 \Leftrightarrow (x,x) = 0 \Leftrightarrow x = \theta$$
.

2.
$$\|\lambda x\| = |\lambda| \cdot \|x\| \quad \forall x \in H, \lambda \in R^1$$
.

$$\sqrt{\left(\lambda x, \lambda x\right)} = \sqrt{\lambda \left(x, \lambda x\right)} = \sqrt{\lambda^{2}\left(x, x\right)} = \left|\lambda\right| \cdot \sqrt{\left(x, x\right)} = \left|\lambda\right| \cdot \left\|x\right\|$$

3.
$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in H$$

$$||x + y||^2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y) =$$

$$\leq ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2 \Rightarrow ||x + y|| \leq ||x|| + ||y||.$$

Лема 16.3. Скалярний добуток ϵ неперервним відображенням, тобто

$$\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y \implies \lim_{n\to\infty} (x_n, y_n) = (x, y).$$

Доведення.

$$\begin{aligned} & |(x,y) - (x_n, y_n)| = |(x,y) - (x, y_n) + (x, y_n) - (x_n, y_n)| = \\ & = |(x,y-y_n) + (x-x_n, y_n)| \le |(x,y-y_n)| + |(x-x_n, y_n)| \le \\ & \le ||x|| \cdot ||y-y_n|| + ||x-x_n|| \cdot ||y_n|| \end{aligned}$$

$$\lim_{n \to \infty} y_n = y \implies \exists C > 0 : \forall n \ \|y_n\| \le C.$$

$$\lim_{n \to \infty} |(x, y) - (x_n, y_n)| \le 0 \implies \lim_{n \to \infty} (x_n, y_n) = (x, y). \blacksquare$$

Характеристична властивість передгільбертових просторів. Для того щоб нормований простір Е був передгильбертовим необхідно і достатньо, щоб для довільних елементів х і у виконувалась рівність

$$\forall x, y \in H \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2). \tag{1}$$

Доведення. Необхідність.

$$||x + y||^2 + ||x - y||^2 = (x + y, x + y) + (x - y, x - y) =$$

$$= (x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y) =$$

$$= 2(||x||^2 + ||y||^2).$$

Достатність. Нехай рівність (1) виконується. Покладемо

$$(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2).$$
 (2)

Покажемо, що рівність (2) виконується, то функція (2) задовольняє всім аксіомам скалярного добутку.

Оскільки при x = y маємо

$$(x,x) = \frac{1}{4} (\|x+x\|^2 + \|x-x\|^2) = \|x\|^2,$$

за допомогою такого скалярного добутку можна задати норму в просторі E.

Властивість 1 (невід'ємність). Оскільки

$$(x,x) = \frac{1}{4} (\|x+x\|^2 + \|x-x\|^2) = \|x\|^2 \ge 0.$$

Властивість 2 (симетричність). Ця аксіома виконана, оскільки

$$(x,y) = (y,x).$$

Властивість 3 (адитивність). Для перевірки цієї аксіоми розглянемо функцію, що залежить від трьох векторів.

$$\Phi(x,y,z) = 4\lceil (x+y,z) - (x,z) - (y,z) \rceil.$$

Покажемо, що ця функція тотожно дорівнює нулю.

$$\Phi(x, y, z) = ||x + y + z||^{2} - ||x + y - z||^{2} - ||x + z||^{2} + ||x - z||^{2} - ||y + z||^{2} + ||y - z||^{2}.$$
(3)

Із рівності (1) випливає, що

$$||x + y \pm z||^2 = 2||x \pm z||^2 + 2||y||^2 - ||x \pm z - y||^2.$$

Підставляючи цю рівність в (3), маємо

$$\Phi(x, y, z) = -\|x + y - z\|^2 + \|x - y - z\|^2 + \|x + z\|^2 - \|x - z\|^2 - \|y + z\|^2 + \|y - z\|^2.$$
(4)

Обчислимо напівсуму виразів (3) і (4).

$$\Phi(x, y, z) = \frac{1}{2} \|y + z + x\|^2 + \|y + z - x\|^2 + \frac{1}{2} \|y - z + x\|^2 + \|y - z - x\|^2 - \|y + z\|^2 + \|y - z\|^2.$$

Внаслідок (1) перший член дорівнює

$$||y+z||^2+||x||,$$

а другий —

$$-\|y-z\|^2-\|x\|$$
.

Отже,

$$\Phi(x,y,z) \equiv 0.$$

Властивість 4 (однорідність). Розглянемо функцію $\varphi(c) = (cx, y) - c(x, y)$.

Із рівності (2) випливає, що

$$\varphi(0) = \frac{1}{4} (\|g\|^2 - \|g\|^2) = 0,$$

а, оскільки (-x, y) = -(x, y), то

$$\varphi(-1)=0.$$

Отже, для довільного цілого числа n

$$(nx, y) = (\operatorname{sgn} n(x + x + ... + x), y) =$$

$$= \operatorname{sgn} n[(x, y) + (x, y) + ... + (x, y)] =$$

$$= |n| \operatorname{sgn} n(x, y) = n(x, y).$$

Таким чином,

$$\varphi(n) = 0.$$

При цілих p, q і $q \neq 0$ маємо

$$\left(\frac{p}{q}x,y\right) = p\left(\frac{1}{q}x,y\right) = \frac{p}{q}q\left(\frac{1}{q}x,y\right) = \frac{p}{q}(x,y).$$

Отже, $\varphi(c) = 0$ при всіх раціональних числах c. Оскільки функція φ є неперервною, з цього випливає, що

$$\varphi(c) \equiv 0$$
.

Озн. 16.2. Повний передгільбертів простір H називається гільбертовим.

Приклад 16.1. Простір l_2 із скалярним добутком $(x,y) = \sum_{i=1}^{\infty} x_i y_i$ і нормою $\|x\| = \sqrt{\sum_{i=1}^{\infty} x_i^2}$ є гільбертовим.

Приклад 16.2. Простір $C_2[a,b]$ із скалярним добутком

$$(x,y) = \int_a^b x(t)y(t)dt$$
 і нормою $||x|| = \sqrt{\int_a^b x(t)y(t)dt}$ є гільбертовим.

Приклад 16.3. Простір $C\left[0,\frac{\pi}{2}\right]$ з нормою

 $\|x\| = \max_{t \in \left[0, \frac{\pi}{2}\right]} |x(t)|$ не є передгільбертовим — в ньому не

виконується основна характеристична властивість. Нехай $x(t) = \sin t$ і $y(t) = \cos t$. Оскільки $\|x\| = \|y\| = 1$, $\|x + y\| = \sqrt{2}$, $\|x - y\| = 1$, то

$$||x + y||^2 + ||x - y||^2 = 1 + 2 \neq 2(||x||^2 + ||y||^2) = 2(1 + 1) = 4$$

Гільбертів простір ϵ банаховим. Отже, на нього переносяться всі попередні означення і факти.

Озн. 16.1. Елементи x і y гільбертова простору називаються **ортогональними**, якщо (x, y) = 0. Цей факт записується як $x \perp y$.

Озн. 16.2. Якщо фіксований елемент $x \in H$ ϵ ортогональним до кожного елемента деякої множини $E \subset H$, говорять, що елемент $x \in \text{ортогональним}$ множині E. Цей факт позначається як $x \perp E$.

Озн. 16.3. Сукупність усіх елементів, ортогональних до даної множини $E \subset H$ ϵ підпростором простору Н. Цей підпростір називається **ортогональним доповненням** множини E.

Теорема Релліха. Нехай H_1 — підпростір гільбертова простору H і H_2 — його ортогональне доповнення. Будьякий елемент $x \in H$ можна єдиним способом подати у вигляді

$$x = x' + x'', x' \in H_1, x'' \in H_2.$$
 (1)

До того ж елемент x' реалізує відстань від x до H_1 , тобто

$$||x - x'|| = \rho(x, H_1) = \inf_{y \in H_1} \rho(x, y).$$
 (2)

Доведення. Позначимо $d = \rho(x, H_1)$. За означенням точної нижньої грані $\inf_{y \in H_1} \rho(x, y)$ існують елементи $x_n \in H_1$ такі, що

$$||x - x_n||^2 < d^2 + \frac{1}{n^2}, n = 1, 2, ...$$
 (3)

Застосуємо лему 16.4 до елементів $x-x_n$ і $x-x_m$:

$$\|(x - x_n) + (x - x_m)\|^2 + \|x_n - x_m\|^2 = 2(\|x - x_n\|^2 + \|x - x_m\|^2)$$
(4)

Оскільки $\frac{1}{2}(x_n + x_m) \in H_1$,

$$\left\| \left(x - x_n \right) + \left(x - x_m \right) \right\|^2 = 4 \left\| x - \frac{x_n + x_m}{2} \right\|^2 \ge 4d^2.$$
 (5)

Отже

$$||x_n - x_m||^2 \le 2\left(d^2 + \frac{1}{n^2} + d^2 + \frac{1}{m^2}\right) - 4d^2 = \frac{2}{n^2} + \frac{2}{m^2}.$$

Таким чином, послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ є фундаментальною. Оскільки H — повний простір, $\exists x' = \lim_{n \to \infty} x_n$. В гільбертовому просторі будь-який підпростір є замкненою лінійною множиною, отже $x' \in H_1$.

Перейдемо до границі в нерівності (3). Отримаємо, що $\|x - x'\| \le d \ . \tag{6}$

3 іншого боку,

$$\forall y \in H_1 \ \|x - y\| \ge d \Rightarrow \|x - x'\| \ge d. \tag{7}$$

Порівнюючи нерівності (6) і (7), доходимо висновку, що $\|x-x'\|=d\;.$

Доведемо твердження:

$$x'' = x - x' \perp H_1 \Rightarrow x'' \in H_2$$
.

Візьмемо $y \in H_1$, $y \neq 0$. Тоді

$$\forall \lambda \in R^1 \ x' + \lambda y \in H_1 \Rightarrow \|x'' - \lambda y\|^2 = \|x - (x' + \lambda y)\|^2 \ge d^2 \Rightarrow$$

$$\Rightarrow (x'' - \lambda y, x'' - \lambda y) = (x'', x'') - \lambda(x'', y) - \lambda(y, x'') + \lambda^2(y, y) =$$

$$= d^{2} - \lambda(x'', y) - \lambda(y, x'') + \lambda^{2}(y, y) \ge d^{2} \Rightarrow$$

$$\Rightarrow -\lambda(x'', y) - \lambda(y, x'') + \lambda^2(y, y) \ge 0.$$

Покладемо
$$\lambda = \frac{(x'', y)}{(y, y)}$$
. Тоді

$$-\frac{(x'',y)^2}{(y,y)} - \frac{(x'',y)^2}{(y,y)} + \frac{(x'',y)^2}{(y,y)} \ge 0 \Longrightarrow (x'',y)^2 \le 0.$$

Це можливо лише тоді, коли

$$(x'', y) = 0 \Rightarrow x'' \perp y$$
.

Доведемо тепер єдиність подання (1). Припустимо, що існують два подання:

$$x = x' + x'', x' \in H_1, x'' \in H_2$$

$$x = x'_1 + x''_1, x'_1 \in H_1, x''_1 \in H_2.$$
i

З цього випливає, що

$$x' - x_1' = x_1'' - x'', \ x' - x_1' \in H_1, x_1'' - x'' \in H_2$$

 $\Rightarrow x' - x_1' \perp x_1'' - x'' \Rightarrow$
 $\Rightarrow x' - x_1' = x_1'' - x'' = 0. \blacksquare$

Озн. 16.4. Елементи x' і x'', які однозначно визначаються елементом x=x'+x'', називаються **проекціями** елемента x на підпростори H_1 і H_2 відповідно.

Теорема Рісса. Якщо $f \in H^*$, то існує єдиний елемент $y(f) \in H$, такий що f(x) = (x, y) для довільного $x \in H$, та $\|f\|_{H^*} = \|y\|_H$.

Доведення. Спочатку доведемо існування елемента y . Позначимо через $H_0 = Ker\ f$ множину тих елементів $x \in H$, які функціонал f відображає в нуль:

$$\forall x \in H_0 f(x) = 0.$$

Оскільки $f \in H^*$, він є лінійним і неперервним, отже, $H_0 = Ker\ f$ — підпростір, тобто замкнена лінійна множина. Якщо $H_0 = H$, покладемо y = 0.

Розглянемо випадок, коли $H_0 \neq H$. Нехай $y_0 \in H \setminus H_0$. За теоремою Релліха подамо його у вигляді

$$y_0 = y' + y'', y' \in H_0, y'' \perp H_0.$$

Якщо $y'' \neq 0$, то $f(y'') \neq 0$. Значить, можна покласти f(y'') = 1

(інакше ми могли б взяти замість y'' елемент $\frac{y''}{f(y'')}$).

Виберемо довільний елемент $x \in H$ і позначимо $f(x) = \alpha$. Розглянемо елемент $x' = x - \alpha y''$. Тоді

$$f(x') = f(x) - \alpha f(y'') = \alpha - \alpha = 0.$$

Отже.

$$x' \in H_0 \Rightarrow (x, y'') = (x' + \alpha y'', y'') = \alpha(y'', y'') \Rightarrow$$

$$\Rightarrow f(x) = \alpha = \left(x, \frac{y''}{(y'', y'')}\right) \Rightarrow y = \frac{y''}{(y'', y'')}.$$

Доведемо єдиність цього елемента. Дійсно, якщо $\forall x \in H \ \exists y, y_1 \in H \ (x, y) = (x, y_1),$

то

$$(x, y - y_1) = 0 \Rightarrow y - y_1 \perp H \Rightarrow y = y_1.$$

Оцінимо норму функціонала.

$$|f(y)| \le ||f|| ||y|| \Rightarrow ||f|| \ge f\left(\frac{y}{||y||}\right) = \frac{(y,y)}{||y||} = ||y||.$$

3 іншого боку,

$$|f(x)| = |(x, y)| \le ||x|| \cdot ||y|| \Rightarrow ||f|| \le ||y||.$$

Зауваження. З теореми Рісса випливає, що між гільбертовим простором H і спряженим простором H^* існує ізоморфізм, і скалярні добутки вичерпують весь запас функціоналів, які можна задати на просторі H.

Література

- 1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981. с. 143–147.
- 2. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: 1977. с. 160–167, 197–198.