Teoria da Computação Linguagens Regulares (Parte 2) Transdutores Finitos

Prof. Jefferson Magalhães de Morais

Transdutores finitos

- Transdutores são extensões da aplicabilidade dos autômatos finitos
- É associada uma cadeia de saída a cada sentença de entrada
- Um alfabeto próprio pode ser utilizado para escrever a cadeia de saída
- Os símbolos desse alfabeto de saída podem estar associados de duas formas
 - Sequência de estados percorridos (Máquinas de Moore)
 - 2 Sequência de transições percorridas (Máquinas de Mealy)

Máquina de Moore

A Máquina de Moore é definida como sendo uma sétupla

$$T_{Moore} = (Q, \Sigma, \Delta, \delta, \lambda, q_0, F)$$

sobre um autômato

$$M = (Q, \Sigma, \delta, q_0, F)$$

em que

- ullet Δ é o **alfabeto de saída** do transdutor e
- ullet $\lambda:Q o\Delta^*$ é a função de transdução de T_{Moore}
- No diagrama de estados, cada estado do autômato finito é rotulado com a identificação do símbolo do alfabeto de saída que deve ser gerado toda vez que o estados for atingido

Exemplo

Seja T um transdutor do tipo Máguina de Moore:

$$T = (Q, \Sigma, \Delta, \delta, \lambda, q_0, F)$$
$$Q = \{q_0, q_1\}$$

$$\Sigma = \{a, b, c\}$$

$$\Delta = \{1\}$$

$$\delta = \{ (q_0, a) \to q_1, (q_1, b) \to q_1, (q_1, c) \to q_0 \}$$

$$\lambda = \{q_0 \to 1, q_1 \to \varepsilon\}$$
$$F = \{q_1\}$$

A linguagem aceita é
$$ab^*(cab^*)^*$$
,

i.e., seguencia de uma ou mais

cadeias ab^* separados pelo símbolo $ar{c}$

Sentença aceita	Cadeia Gerada
abbcabbbcab	111
abbbcab	11
acacaca	1111
а	1

T funciona como um **contador** do número de subcadeias ab^*

Máquina de Mealy

A Máquina de Mealy é definida como sendo uma sétupla

$$T_{Mealy} = (Q, \Sigma, \Delta, \delta, \lambda, q_0, F)$$

sobre um autômato

$$M = (Q, \Sigma, \delta, q_0, F)$$

em que

- ullet Δ é o **alfabeto de saída** do transdutor e
- $\lambda: Q \times \Sigma \to \Delta^*$ é a função de transdução de T_{Mealy}
- Nesse caso, associam-se os símbolos do alfabeto de saída às transições, e não aos estados, como ocorre com as Máquinas de Moore

Exemplo

 $Q = \{q_0, q_1\}$

símbolo $\it c$

Seja T um transdutor do tipo Máquina de Mealy:

 $T = (Q, \Sigma, \Delta, \delta, \lambda, q_0, F)$

$$\Sigma = \{a, b, c\}$$

$$\Delta = \{a, b, c\}$$

$$\delta = \{(q_0, a) \to q_1, (q_1, b) \to q_1, (q_1, c) \to q_0\}$$

$$\lambda = \{(q_0, a) \to ab, (q_1, b) \to \varepsilon, (q_1, c) \to c\}$$

$$F = \{q_1\}$$

A linguagem aceita é $ab^*(cab^*)^*$, i.e., sequencia de uma ou mais cadeias ab^* separados pelo T mapeia subcadeias ab^{*} aceitas pelo AF em cadeias do tipo ab, mantendo c como separador

Sentença aceita	Cadeia Gerada
abbcabbbcab	abcabcab
abbbcab	abcab
acacaca	abcabcabcab
а	ab

Equivalência entre transdutores

 Teorema: "Toda Máquina de Mealy pode ser simuladas por uma Máquina de Moore, e vice-versa"

Exemplo:

- Considere a linguagem $L_1 = xx^*(-xx^*)^*$, definida sobre o alfabeto $\{x, -\}$. Considere L_2 , definida sobre o alfabeto de saída $\{x, y, \#\}$, de tal forma que as cadeias de L_2 reproduzam na saída as cadeias de L_1 , com as seguintes modificações:
 - As subcadeias de entrada xx^* que contiverem três ou menos símbolos x devem ser reproduzidas de forma idêntica na saída (com um, dois ou três símbolos x)
 - As subcadeias de entrada xx^* que contiverem quatro ou mais símbolos x devem ser reproduzidas na saída como xxxy
 - Todos os símbolos "-" da cadeia entrada devem ser substituídos pelo símbolo "#" na cadeia de saída

Equivalência entre transdutores

Sentença aceita	Cadeia Gerada
x - x	x#x
xxx - xxxx	xxx#xxxy
xxxxxx - xxx - xx	xxxy#xxx#xx
x - xx - xxx - xxxx - xxxxx	x#xx#xxx#xxxy#xxxy

 x/ε

Máquina de Mealy

As Máquinas de Moore e Mealy são equivalentes, pois reconhecem L_1 e geram a mesma L_2

Máquina de Moore