DPS Hiring Project

Travis Froberg

12/8/2021

```
library("readxl")
library(dplyr)
library(data.table)
library(kableExtra)
```

Data Preparation

```
# Set working directory so could import data
setwd("C:\\Users\\malin\\Documents\\DPS Project")
\# Imported StudentScores file and EducatorEffectivenessSnapshot file
scoreData <- read_excel("StudentScores.xlsx")</pre>
# View(scoreData)
snapData <- read_excel("EducatorEffectivenessSnapshot.xlsx")</pre>
# View(snapData)
# Removed first five rows from snapData
# because they were not a part of the dataset
snapData <- snapData[-(1:5),]</pre>
# View(snapData)
# searched school names in snapData to see if there were any
# names that were not schools. Removed obsevation 1 and 109 for this reason.
names(snapData) <- snapData[1,]</pre>
snapData <- snapData[-c(1, 109),]</pre>
# Explored the score data by checking the levels of some of the
# factor variables
# levels(factor(scoreData$ISDname))
# levels(factor(scoreData$ISDcode))
# levels(factor(scoreData$district_code))
# levels(factor(scoreData$school_year))
# levels(factor(scoreData$qrade))
# levels(factor(scoreData$building_name))
# Removed values in the score data for any proficiency scores less than 10
# class(scoreData$average scaled score)
scoreData2 <- subset(scoreData, scoreData$average_scaled_score != "< 10")</pre>
# View(scoreData2)
```

```
# nrow(scoreData2)
# Removed values in score data that corresponded with individual schools
# that were not in snap data
loc_vector <- c(snapData$location)</pre>
build_name_vector <- c(scoreData2$building_name)</pre>
build_name_vector2 <- unique(build_name_vector)</pre>
# build name vector2
mismatch_vector <- build_name_vector2[!(build_name_vector2 %in% loc_vector)]</pre>
# mismatch vector
remove <- which(scoreData2$building_name %in% mismatch_vector)</pre>
scoreData3 <- scoreData2[-remove,]</pre>
# nrow(scoreData3)
# View(scoreData3)
# Double checked the previous step
is.element("Burton International School", scoreData3$building_name)
## [1] TRUE
is.element("Pulaski Elementary-Middle School", scoreData3$building name)
## [1] FALSE
```

The following is the code corresponding to project question number 1

```
# Created a subset of the score data that included only the value "All Students" in
# the variable subgroup and "Mathematics" in the variable subject_name
tempData <- subset(scoreData3, subgroup == "All Students" & subject_name == "Mathematics")</pre>
# View(tempData)
# Created data frame of the average math proficiency scores per school
tempData2 <- aggregate(x = as.numeric(tempData$percent_proficient),</pre>
          by = list(tempData$building_name),
          FUN = mean)
# Arranged math proficiency percentages in descending order and created appropriate
# column names
mean.prof.df <- tempData2 %>% arrange(desc(tempData2$x))
colnames(mean.prof.df) <- c("School", "Average Math Proficiency Rate")</pre>
# Double checked to make sure the previous step was done correctly
# nrow(mean.prof.df)
# max(tempData2$x)
# nrow(tempData2)
# Created table of the top ten schools in terms of mean math proficiency scores
table.math.prof <- mean.prof.df[1:10,]
table.math.prof
```

```
Wright, Charles School
## 2
                     Chrysler Elementary School
                                                                     0.5633333
## 3
                                  Bates Academy
                                                                    0.4856667
## 4
               Davison Elementary-Middle School
                                                                    0.4661667
## 5
                        Dixon Elementary School
                                                                    0.3670000
## 6
                    Burton International School
                                                                    0.3541667
## 7
                      Pasteur Elementary School
                                                                    0.2557500
## 8 Greenfield Union Elementary-Middle School
                                                                    0.2406667
## 9
                     Thirkell Elementary School
                                                                    0.2327500
## 10
                        Cooke Elementary School
                                                                    0.2292500
# table.math.prof %>%
# kbl() %>%
# kable minimal() %>%
# add_header_above(c("Top Ten Schools in Math Proficiency for Grades 3-8 in Detroit # City School Dist
```

School Average Math Proficiency Rate

0.6215000

The following is the code corresponding to project question number $\mathbf{2}$

##

1

```
# Removed first two rows in snap data because they did not
# correspond to individual schools
snapData2 <- snapData[-c(1,2),]</pre>
# Removed all rows in snap data where there was not
# a matching school in score data. For example, if snap data included a
# school that was not in the score data set, this observation would be removed
# from snap data in the final data set.
snapData3 <- snapData2[match(mean.prof.df$School, snapData2$location, nomatch = 0),]</pre>
# Checked to make sure previous step was done correctly
# nrow(snapData3)
# nrow(mean.prof.df)
# View(snapData3)
# Ordered snap data by school (called location) and score data by school alphebetically
snapData3 <- snapData3[order(snapData3$location),]</pre>
scoreData4 <- mean.prof.df[order(mean.prof.df$School),]</pre>
# View(scoreData4)
# nrow(scoreData4)
# Checked to make sure schools all matched up between the two data sets, then merged
# the two datasets
snapData3$location == scoreData4$School
```

```
mergedData <- data.frame(snapData3, scoreData4)</pre>
# View(mergedData)
# Ordered the merged dataset by mean math proficiency rate to make plots easier to interpret
mergedData2 <- mergedData %>% arrange(desc(mergedData$Average.Math.Proficiency.Rate))
# View(mergedData2)
# Created scatterplot of mean proficiency rate and scatter plots of teacher effectiveness
# with mean proficiency rate on the y-axis
# Used scatter.smooth so a line would be added to the scatter plots. This line was not created
# from a sophisticated model, but is rather used to get a general glance at any trends
# in the data
scatter.smooth(mergedData2$highly_effective_percent, mergedData2$Average.Math.Proficiency.Rate,
               xlab = "Percent of Teachers Rated Highly Effective",
               ylab = "Average Math Proficiency Rate per School",
               main = "Average Math Proficiency Rates vs. Teacher
Effectivness Rates for Schools in Detroit
City School District for Grades 3-8 (2013-2014)")
```

Average Math Proficiency Rates vs. Teacher Effectivness Rates for Schools in Detroit City School District for Grades 3–8 (2013–2014)

Percent of Teachers Rated Highly Effective

Average Math Proficiency Rates vs. Teacher Effectivness Rates for Schools in Detroit City School District for Grades 3–8 (2013–2014)

Percent of Teachers Rated Effective or Highly Effective

Average Math Proficiency Rates vs. Teacher Effectivness Rates for Schools in Detroit City School District for Grades 3–8 (2013–2014)

Percent of Teachers Rated Ineffective

```
# plot(mergedData2$Average.Math.Proficiency.Rate)
# Performed hypothesis test to determine whether mean proficiency rate was
# correlated with the variable effective_or_more_percent
test <- cor.test(mergedData2$Average.Math.Proficiency.Rate,
                 as.numeric(mergedData2$effective_or_more_percent))
test
##
##
   Pearson's product-moment correlation
## data: mergedData2$Average.Math.Proficiency.Rate and as.numeric(mergedData2$effective_or_more_percen
## t = 1.9641, df = 64, p-value = 0.05386
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   -0.003816311 0.454254667
## sample estimates:
##
         cor
## 0.2384367
# Checked to see if previous step calculated the correct correlation coefficient by
# calculating it with a different function
cor(mergedData2$Average.Math.Proficiency.Rate, as.numeric(mergedData2$effective_or_more_percent))
```

The following is the code corresponding to project question number 3

Percent of Teachers per School with a Given Effectiveness Rating

Teacher Effectiveness Rating

Ine

Percent of Teachers per School with a Given Effectiveness Rating

Teacher Effectiveness Rating

```
# Created data frame containing statistics that measure spread
first_col <- c(var(as.numeric(mergedData2$highly_effective_percent)),</pre>
                                    var(as.numeric(mergedData2$effective_percent)),
                                    var(as.numeric(mergedData2$minimally_effective_percent)),
                                    var(as.numeric(mergedData2$ineffective_percent)),
                                    var(as.numeric(mergedData2$effective_or_more_percent)))
one.5_col <- c(sqrt(var(as.numeric(mergedData2$highly_effective_percent))),</pre>
                                    sqrt(var(as.numeric(mergedData2$effective_percent))),
                                    sqrt(var(as.numeric(mergedData2$minimally_effective_percent))),
                                    sqrt(var(as.numeric(mergedData2$ineffective_percent))),
                                    sqrt(var(as.numeric(mergedData2$effective_or_more_percent))))
second_col <- c(min(as.numeric(mergedData2$highly_effective_percent)),</pre>
                                  min(as.numeric(mergedData2$effective_percent)),
                                  min(as.numeric(mergedData2$minimally_effective_percent)),
                                  min(as.numeric(mergedData2$ineffective_percent)),
                                  min(as.numeric(mergedData2$effective_or_more_percent)))
third_col <- c(max(as.numeric(mergedData2$highly_effective_percent)),</pre>
                                    max(as.numeric(mergedData2$effective_percent)),
                                    max(as.numeric(mergedData2$minimally_effective_percent)),
                                    max(as.numeric(mergedData2$ineffective_percent)),
                                    max(as.numeric(mergedData2$effective_or_more_percent)))
four_col <- c(third_col-second_col)</pre>
row.names <- c("Highly Effective Percent", "Effective Percent", "Minimally Effective Percent", "Ineffective Percent", "All Percent", "Ineffective Percent", "Minimally Effective Percent", "Ineffective Percent Percen
spread.table <- data.frame(first_col, one.5_col, second_col, third_col, four_col, row.names = row.names
spread.table <- setNames(spread.table,c("Variance", "Standard Deviation", "Minimum", "Maximum", "Range"
```

spread.table

##		Variance	Standard Deviation	${\tt Minimum}$	Maximum
##	Highly Effective Percent	0.0338594172	0.18400929	0.08	1.00
##	Effective Percent	0.0317115152	0.17807727	0.00	0.92
##	Minimally Effective Percent	0.0008704196	0.02950287	0.00	0.14
##	Ineffective Percent	0.0005856410	0.02420002	0.00	0.13
##	Effective or More Percent	0.0014465501	0.03803354	0.83	1.00
##		Range			
##	Highly Effective Percent	0.92			
##	Effective Percent	0.92			
##	Minimally Effective Percent	0.14			
##	Ineffective Percent	0.13			
##	Effective or More Percent	0.17			