Automaton and $FO[\mathbb{N}^r, <, mod]$

Arthur MILCHIOR

Liafa Université Paris Diderot, France LACL, UPEC, Créteil, France

September 2013

Problem

```
Strong logic Weak Logic Weaker Logic FO[+, V_b] FO[+] FO[<, mod] | FO[<] Automata
```

Question

Decide if R definable in a strong logic is definable in a weak logic.

Automata reading r-tuple of integers

Example

Base
$$b = 3$$
, least digit first $\overline{17}^{10} = \overline{2210}^3, \overline{18}^{10} = \overline{0020}^3$.

Example

Arity
$$r = 2$$
 $\binom{17}{18} = \binom{2}{0} \binom{2}{0} \binom{1}{2} \binom{0}{0}$

Definition

$$A = (Q, [0, b-1]^r, \delta, q_0, F)$$

A read an r-tuple of base b integer least digit first.

- $|A| = \{w \in [0, b-1]^{r*} \mid \delta(q_0, w) \in F\}$ its accepted set of tuples of words.
- $|\overline{A}| \subseteq \mathbb{N}^r$ its accepted set of integers.

$$|\overline{A}| = \{(x, y) \mid x + 1 = y \lor y + 1 = x\}.$$

Theorem (Büchi 60)

Let $R \subseteq \mathbb{N}^r$, R is accepted by an automaton in base b iff it is definable in $FO[+, V_b]$.

 $V_b(n) = b^k$ when $n = b^k c$ and b does not divide c.

First easy solutions, two 3-EXP algorithms

Theorem

Deciding if an automaton accepts a FO[<, mod] set is decidable in time 3-EXP.

- Obtaining a polynomial-size FO[+]-formula by Leroux 06
- Checking if the formula could be stated in FO[<, mod] by Choffrut 08
- Stating ϕ in FO[+, R] "R is regular" by Milchior 13
- ullet Rewriting ϕ as an automaton as in Muchnik 03 of size 3-EXP
- Checking if the formula is true on the automaton.

Our polynomial time algorithm

Theorem (Decidability)

Let $R \in FO[+, V_b]$. There exists an algorithm in polynomial time that accepts iff R is in FO[<, mod].

Its complexity is $O(2^r|Q|^2(r^2b^r+2^r\log(|Q|)+8^r))$ when R is given as an automaton A.

Theorem (Computation of the formula)

There exists an algorithm that computes a FO[<, mod, +C, =C]-formula, if one exists, of polynomial size.

The size of the formula is $O(|Q|^2 r(b^r + |Q|^2 r \log(b) \log(|Q|)))$.

Open question:

- Is there a polynomial time algorithm for FO[<]?
- If the alphabet is $[0, b-1]^*$, is there a polynomial time algorithm ?

Remark

Everything still holds if $\mathbb Z$ replaces $\mathbb N$. The computation time is multiplied by 2^r .

The existence algorithm also works for FO[mod] and when $C \subseteq \mathbb{N}$, $X \subseteq \{+C, =C, <\}$ it works for $\Pi_0[X, \text{mod}]$.

Open question:

- Is there a polynomial time algorithm for FO[<]?
- If the alphabet is $[0, b-1]^*$, is there a polynomial time algorithm ?

Remark

Everything still holds if $\mathbb Z$ replaces $\mathbb N$. The computation time is multiplied by 2^r .

The existence algorithm also works for FO[mod] and when $C \subseteq \mathbb{N}$, $X \subseteq \{+C, =C, <\}$ it works for $\Pi_0[X, mod]$.

Thank you