3. Hyperfine Splittings

An isolated hydrogen atom has a hyperfine interaction between the spins $\vec{S_1}$ of the proton and $\vec{S_2}$ of the electron of the form $J\vec{S_1}\cdot\vec{S_2},\ J>0$. The two spins also have magnetic moments $\alpha\vec{S_1}$ and $\beta\vec{S_2}$, and a uniform static magnetic field \vec{B} is present. Assume that the electron is in its 1s orbital ground state, and ignore the effects of orbital motion.

- (a) Find the exact energy eigenvalues of this system and sketch the hyperfine-splitting spectrum as a function of magnetic field.
- (b) In the basis of states $|S_1^z, S_2^z\rangle$, find the eigenstates associated with each level.