Representación de Redes neuronales:

Hipótesis no lineales

Machine Learning Aplicado

.

Clasificación no lineal

$$x_1 = \text{size}$$

$$x_2$$
 = # bedrooms

$$x_3 = \#$$
 floors

$$x_4 = age$$

. .

$$x_{100}$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^3 x_2 + \theta_6 x_1 x_2^2 + \dots)$$

Machine Learning Aplicado

No todo es lo que parece

Si usted ve esto:

La cámara ve esto:											
194	210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
114	126	140	188	176	165	152	140	170	106	78	88
87	103	115	154	143	142	149	153	173	101	57	57
102	112	106	131	122	138	152	147	128	84	58	66
94	95	79	104	105	124	129	113	107	87	69	67
68	71	69	98	89	92	98	95	89	88	76	67
41	56	68	99	63	45	60	82	58	76	75	65
20	43	69	75	56	41	51	73	55	70	63	44
50	50	57	69	75	75	73	74	53	68	59	37
72	59	53	66	84	92	84	74	57	72	63	42
67	61	58	65	75	78	76	73	59	75	69	50

Machine Learning Aplicado

Computer Vision: Detección

Testeo:

¿Que es esto?

Representación de Redes Neuronales

Neuronas y el cerebro

Machine Learning Aplicado

(

Redes neuronales

Origenes: Algoritmos que tratan de imitar al cerebro.

Fue ampliamente usada en los 80s y en los 90s; su popularidad disminuyo a final de los 90s.

Contra-ataque: Estado de arte para muchas aplicaciones

Machine Learning Aplicado

Representación de redes neuronales

Modelo de representación I

Machine Learning Aplicado

 $x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_2 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \rho \end{bmatrix}$

13

Modelo neuronal: Unidad logistica

Función de activación logistica.

Machine Learning Aplicado

Red neuronal

Machine Learning Aplicado

15

Red neuronal

 $a_i^{(j)} \equiv ext{Activación de unidad I en capa j}$

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

Si red tiene s_(j+1) unidades en capa j+1 y s_(j) unidades en capa j ; luego $\Theta^{(j)}$ tendra dimensionalidad: $s_{j+1} \times (s_j+1)$

Machine Learning Aplicado

Machine Learning Aplicado 17

Representación de redes neuronales

Modelo de representación II

Forward propagation: Vectorización

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$z^{(2)} = \Theta^{(1)}x$$
$$a^{(2)} = g(z^{(2)})$$

Add
$$a_0^{(2)} = 1$$
.
$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$$

Machine Learning Aplicado

19

Otras arquitecturas de redes.

Representación de redes neuronales

Ejemplos e intuiciones I

Machine Learning Aplicado

Ejemplo de clasificación no lineal: XNOR

 x_1 , x_2 son binarios (0 o 1).

Ejemplo: AND

$$x_1, x_2 \in \{0, 1\}$$

 $y = x_1 \text{ AND } x_2$

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

Machine Learning Aplicado

Ejemplo: OR

x_1	x_2	$h_{\Theta}(x)$
0	0	
0	1	
1	0	
1	1	

Clasificación de números manuscritos

http://yann.lecun.com/exdb/lenet/index.html

[Yann LeCun] Machine Learning Aplicado 26

Representación de redes neuronales

Clasificación multiclase

Machine Learning Aplicado

27

Múltiples salidas: One-vs-all.

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)}$$
 es $egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}$, $egin{bmatrix} 0 \ 1 \ 0 \ 0 \end{bmatrix}$, $egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix}$, $egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix}$ Persona auto motocicleta bus