- **1.** Дан массив длины n, состоящий только из нулей и единиц. Предложите линейный алгоритм сортировки данного массива.
 - 1) Заводим переменные счетчики кол-ва нулей zcounter.
- 2) При встрече очередного 0 записываем в ячейку с индексом zcounter значение '0' и инкрементируем счетчик.
- 3) Когда прошлись по всему массиву, все ячейки, начиная с zcounter, заполняем единицами.
- **2.** На прямой задано n отрезков, причем известно, что они образуют систему строго вложенных отрезков (их можно упорядочить так, чтобы каждый строго содержался в следующем). Отрезки заданы координатами концов $[l_i, r_i]$ (и могут быть даны в неупорядоченном виде). Предложите асимптотически эффективный алгоритм (с точки зрения количества арифметических операций), который находит все точки прямой, которые покрыты ровно 2n/3 отрезками.
- 1) Находим порядковую статистику с номерами $\frac{2n}{3}$ и $\frac{2n}{3}+1$. Поиск такой порядковой статистики пройдет за линейное время
- 2) Найденные промежутки (с выколотыми ближе к центру точками) по сути и будут искомыми, то есть мы решили задачу за линейное время!
- **3.** Рассмотрим детерминированный алгоритм поиска порядковой статистики за линейное время из параграфа 9.3 Кормена. Какая асимптотика будет у алгоритма, если делить элементы массива на группы по семь, а не по пять?
 - 1) Разбиваем массив на блоки по 7 также за линейное время
 - 2) Чтобы найти медиану в массиве медиан, нам понадобится $T(\frac{n}{7})$ операций
- 3) Далее определяем место, где будет находиться медиана медиан: $\frac{2n}{7} \leqslant med \leqslant \frac{5n}{7}$
- 4) В таком случае сложность алгоритма будет похожа на ту, что была получена в википедии: $T(n)=T\frac{5n}{7}+T(\frac{n}{7})+cn$. Тогда $T(n)=\Theta(n)$
- **4.** На вход задачи подаётся число n и массив чисел $x_1, x_2, \ldots, x_{2n+1}$. Постройте линейный алгоритм, находящий число s, при котором достигается минимум суммы

$$\sum_{i=1}^{2n+1} |x_i - s|.$$

Чтобы найти это число s, необходимо найти "центр тяжести"всех точек, расположенных на прямой с координатами x_i .

В одной из задач выше мы находили медиану за линейное время. Здесь по сути нам тоже нужно воспользоваться алгоритмом поиска порядковой статистики за линейное время.

С помощью этого алгоритма мы найдем медиану, которая и будет являться искомой s.

5. Предложите полиномиальный от длины входа алгоритм решения сравнения $a \cdot x + b \equiv 0 \pmod{M}$ (На вход дают целые числа a, b, M в двоичной системе исчисления).

Раньше мы сталкивались с похожими уравнениями, поэтому знаем, что $ax+b\equiv 0 (modM)$ можно представить в виде $ax+b=M\cdot k$, где $k\in Z$ – какое-то целое число.

1	0	3	2	0	0	0	0
1	3	0	0	0	2	0	0
1	0	3	0	0	0	2	0
1	1	3	3	0	0	2	2
4	1+3i	-2	1-3i	2	2i	-2	-2i
6	$1+3i+\sqrt{2}(i-1)$	-2-2i	1-3i- $\sqrt{2}$ (i-1)	2	$1+3i-\sqrt{2}(i-1)$	-2+2i	$1-3i+\sqrt{2}(i-1)$

Таблица 1: Быстрое преобразование Фурье

С помощью расширенного алгоритма Евклида находим решения, которые будут равны $x=x_0+\frac{M}{\mathbf{HO}\overline{D}}q, q\in Z.$

Таким образом, сложность алгоритма будет зависеть исключительно от алгоритма Евклида, который работает за полиномиальное время.

6. Перемножьте многочлены $2x^3 + 3x^2 + 1$ и $2x^2 + x$ с помощью БПФ. В решении должны быть приведены вычисления всех используемых преобразований.

$$A(x) = 2x^3 + 3x^2 + 1$$

$$B(x) = 2x^2 + x$$

$$A(x)B(x) = P_5(n)$$

- 7. Решите с помощью преобразования Фурье задачу о поиске всех вхождений образца с джокерами в текст. Текст и образец это последовательности $t_0, t_1, \ldots, t_{n-1}$ и $p_0, p_1, \ldots, p_{m-1}, m < n$, где все t_i символы из алфавита, а p_j либо символ из алфавита, либо джокер. Образец входит в текст в позиции $i \in \{0, \ldots, n-m-1\}$, если $t_{i+j} = p_j$ при всех $j \in \{0, \ldots, m-1\}$, для которых p_j символ алфавита. Для решения этой (и более сложной задачи в домашнем задании) есть $O(n \log n)$ алгоритм, основанный на БПФ. Закодируем каждый символ алфавита уникальным положительным числом, а джокер нулём, и определим последовательность r_i : $r_i = \sum_{j=0}^{m-1} p_j t_{i+j} \left(p_j t_{i+j}\right)^2$
- 1. Докажите, что образец входит в текст в позиции i тогда и только тогда, когда $r_i=0$.
- 2. Постройте $O(n \log n)$ алгоритм, который находит все вхождения образца с джокерами в текст.

Заметка. Эта задача подготовлена на основе статьи P. Clifford, R. Clifford Simple deterministic wildcard matching, Information Processing Letters, Vol. 101, Is. 2, 2007, Pp. 53-54,

- 8 [ДПВ 2.30]. В данном упражнении показывается, как вычислять преобразование Фурье (ПФ) в арифметике сравнений, например, по модулю 7.
- 1. Существует такое ω , что все степени $\omega, \omega^2, \dots, \omega^6$ различны (по модулю 7). Найдите такое ω и покажите, что $\omega + \omega^2 + \dots + \omega^6 = 0$. (Отметим также, что такое число существует для любого простого модуля.)

Эта ω равна 3, т.к.

$$3^6 = 729 \equiv 1 \mod 7$$

$$3^2 = 9 \equiv 2mod7$$

$$3^1 = 3 \equiv 3 \mod 7$$

$$3^4 = 81 \equiv 4 \mod 7$$

$$3^5 = 243 \equiv 5 \mod 7$$

$$3^3=27\equiv 6mod7$$
 $\omega+\omega^2+\cdots+\omega^6\equiv 0mod7$ – это следует непосредственно из того, что сумма остатков (21) делится на 7.

2. Найдите преобразование Фурье вектора (0,1,1,1,5,2) по модулю 7, используя матричное представление, то есть умножьте данный вектор на $M_6(\omega)$ (для найденного ранее ω). Все промежуточные вычисления производите по модулю 7.

Это будет

- 3. Запишите матрицу обратного преобразования Фурье. Покажите, что при умножении на эту матрицу получается исходный вектор. (Как и прежде, все вычисления должны производиться по модулю 7.)
- 4. Перемножьте многочлены x^2+x+1 и x^3+2x-1 при помощи $\Pi\Phi$ по модулю 7.