

ROYAUME DU MAROC de la Formation Professionnelle, de l'Enseignement Supérieur

Concours d'accès en 1ère année des ENSA du MAROC 2019

Epreuve de Mathématiques

Durée: 1H30

Q1: Soient a, b > 0, on considère la suite :

$$\begin{cases} u_{n+1} = \frac{(b^2 + ab - a^2)u_n - a^2}{b^2 u_n + b^2 - ab - a^2} \\ u_0 = \frac{b}{a} \end{cases}$$

En remarquant que la suite $v_n = \frac{b}{bu_n - a}$ est une suite arithmétique, u_n est égal à :

 $A: \frac{an+b}{bn+a}$

 $B:\frac{n+b}{bn+a}$

 $C: \frac{an-b}{bn-a}$

 $D: \frac{an+b}{n+a}$

Q2: Pour $n \in \mathbb{N}^*$, on considère la suite :

$$u_n = \sum_{k=1}^n \frac{1}{2k+n}$$

On a $u_n \in I$ avec

 $A: I = \left[0, \frac{1}{3}\right]$

 $B: I = \left[\frac{1}{2}, 1\right]$

C: I = [2,3[

D: I = [1,2[

Q3: On considère toujours la suite de la question 2 ci-dessus, $\lim_{n \to +\infty} u_n$ est égale à :

 $A: \sqrt{3}$

B: ln(3)

 $C: \ln(\sqrt{3})$

D: 0

Q4: Sachant que $\left(\ln\left(x+\sqrt{4+x^2}\right)'=\frac{1}{\sqrt{4+x^2}}\right)$, la valeur de l'intégrale

$$\int_0^1 \sqrt{4+x^2} dx$$

 $A: \ln\left(\frac{3+\sqrt{5}}{2}\right) - \frac{\sqrt{5}}{2}$

 $\mathsf{B}: \ln\left(\frac{3+\sqrt{5}}{2}\right) - \ln(\frac{\sqrt{5}}{2}) \qquad \mathsf{C}: \ln\left(\frac{3+\sqrt{5}}{2}\right) - \frac{5}{2} \qquad \mathsf{D}: \ln\left(\frac{3+\sqrt{5}}{2}\right) + \frac{\sqrt{5}}{2}$

Q5: On considère l'équation trigonométrique suivante : (E): $cos^4(3x) + sin^4(3x) = 1$

Les solutions de (E) sont de la forme :

 $A: x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \qquad B: x = -\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z} \qquad C: x = \frac{k\pi}{3}, k \in \mathbb{Z} \qquad D: x = \frac{k\pi}{6}, k \in \mathbb{Z}$

Q6: Soit le réel $\lambda = \sqrt[4]{\frac{7+3\sqrt{5}}{2}} - \sqrt[4]{\frac{7-3\sqrt{5}}{2}}$ En calculant λ^4 , la valeur de λ est : $C:\lambda=2$ $D:\lambda=3$ $B:\lambda=1$ $A:\lambda=0$ **Q7**: Soit a > 0, la valeur de l'intégrale $\int_{0}^{a} \sqrt{a^2 - x^2} dx$ est: $D:\frac{\pi a^2}{4}$ $A:\frac{\pi a}{4}$ $C:\pi a^2$ $B:4\pi a$ Q8 : On jette 3 fois un dé à 6 faces numérotées de 1 à 6, et on note a, b et c les résultats successifs obtenus. On note $Q(x) = ax^2 + bx + c$. La probabilité pour que Q admet une seule racine double est : $D: \frac{9}{216}$ $B: \frac{7}{216}$ $C:\frac{5}{216}$ $A:\frac{11}{216}$ Q9: Une urne contient 4 boules jaunes, 3 boules rouges et 3 boules bleues. Les boules sont indiscernables au touché. L'expérience consiste à tirer au hasard successivement deux boules (une après l'autre) sans remise. La probabilité d'obtenir la deuxième boule tirée de couleur rouge est : $D:\frac{13}{90}$ $B:\frac{15}{90}$ $C:\frac{19}{90}$ $A:\frac{17}{90}$ Q10 : On considère toujours la même expérience. La probabilité d'obtenir la deuxième boule tirée rouge sachant que la première est jaune est :

 $C: \frac{8}{17}$

 $D:\frac{9}{17}$

 $B:\frac{5}{17}$

 $A:\frac{4}{17}$

Q11: Soit $z = -1 + \sqrt{2} + i$, arg(z) est égal à : $D:\frac{\pi}{8}$ $C:\frac{7\pi}{8}$ $B:\frac{5\pi}{8}$ $A:\frac{3\pi}{8}$ **Q12** : En relation avec la question précédente, la valeur de $\cos{(\frac{5\pi}{8})}$ est : $D:-\sqrt{\frac{2-\sqrt{2}}{2}}$ $B: -\frac{\sqrt{2-\sqrt{2}}}{2}$ $C:\frac{\sqrt{2-\sqrt{2}}}{2}$ $A:\sqrt{\frac{2-\sqrt{2}}{2}}$ Q13 : Soit $a = \cos\left(\frac{\pi}{5}\right)\cos\left(\frac{2\pi}{5}\right)$. En calculant $a\sin\left(\frac{\pi}{5}\right)$, la valeur de a est : $D:\frac{1}{5}$ $C:\frac{1}{4}$ $B: \frac{1}{3}$ $A:\frac{1}{2}$ Q14 : A partir de l'expression de la valeur de a (question précédente) la valeur de $b = \sin\left(\frac{\pi}{5}\right)\sin\left(\frac{2\pi}{5}\right)$ est : $D:\sqrt{\frac{5}{4}}$ $C:\frac{1}{4}$ $B:\frac{\sqrt{5}}{4}$ $A: \frac{5}{4}$ ${f Q15}$: Soient ${m A}, {m B}$ deux points distincts du plan. L'ensemble des points ${m M}$ tel que \overrightarrow{AM} . \overrightarrow{AM} - $4\overrightarrow{AM}$. \overrightarrow{BM} = 0 est :

B: Un cercle

A: Une droite

C: Une demi-droite

D: Un disque

Q16 : L'expression simplifiée de			
$u_n = \prod_{k=0}^n \frac{k^2 + 5k + 6}{k^2 + 5k + 4}$			
est:			
est.	2 x 0		
$A:\frac{6n+3}{n+4}$	$B:\frac{n+4}{3n+6}$	$C: \frac{n+4}{6n+3}$	$D: \frac{3n+6}{n+4}$
Q17 : Le concours d'entrée à la première année des ENSA pour l'année 2019-2020 se déroule le 23 Juillet 2019. Le nombre des unités de 23 ²⁰¹⁹ est :			
A: 3	B: 9	C: 1	D: 7
Q18 : La valeur du produit suivant			
$u_n = \prod_{k=1}^{n} (e^{2^k} + e^{-2^k})$			
est:			
A: $\frac{e^{2^{n+1}}-e^{-2^{n+1}}}{e^{-e^{-1}}}$	$B: \frac{e^{2^{n+1}} + e^{-2^{n+1}}}{e^{-e^{-1}}}$	C: $\frac{e^{2^{n+1}}-e^{-2^{n+1}}}{e^{-e^{-1}}}$	$D: \frac{e^{2^{n+1}} + e^{-2^{n+1}}}{e^{-e^{-1}}}$
Q19: Soient $f_n(x) = e^x + nx^2$ -3 et u_n la solution de $f_n(x) = 0$ $(x \ge 0, n > 0)$, u_n est:			
A : est croissante	B : est décroissante	C : est stationnaire	D : est périodique
Q20 : Suite à la question précédente, $\lim_{n o +\infty} u_n$ est égale à :			
$A:\frac{1}{2}$	B : 0	C:1	$D:\sqrt{\frac{1}{2}}$