051013 VO Theoretische Informatik

Prädikatenlogik: Normalformen, Resolutionskalkül

Ekaterina Fokina

Zusammenfassung & Ausblick

Bis jetzt haben wir Folgendes behandelt:

- Formale Definition der Prädikatenlogik:
 - Syntax

Heute in der Vorlesung:

- Semantik
- Fundamentale Begriffe & Sätze
- Formalisieren in Prädikatenlogik
- Normalformen in der Prädikatenlogik
- Unentscheidbarkeit der Prädikatenlogik
- Resolutionskalkül der Prädikatenlogik

Subsection 4

Formale Semantik

Semantik der Prädikatenlogik - Strukturen

Idee: Die Semantik wird mit Hilfe sogenannter Strukturen definiert.

Eine Struktur besteht aus

- eine Grundmenge von Objekten,
- konkrete Funktionen und Prädikate über diese Objekte
- eine Zuordnung zwischen diesen Funktionen/Prädikaten und den Funktionssymbolen/Prädikatensymbolen in der Formel
- Eine Funktion die jeder (freien) Variablen ein Objekt zuweist
- Atomare Formeln können in einer Struktur durch Einsetzen überprüft werden.
- Zusammengesetzte Formeln werden mit einem rekursiven Schema ausgewertet (ähnlich wie in der Aussagenlogik).
- Die Semantik einer Formel ergibt sich durch die Strukturen die Modell der Formel sind.

Semantik der Prädikatenlogik - Strukturen

Zuerst müssen wir Strukturen definieren:

Definition

Eine zu einer Formel F passende **Struktur** ist ein Tupel $\alpha = (U, \varphi, \psi, \xi)$

- *U* ist eine nicht leere Menge, das **Universum** oder die Grundmenge.
- φ eine Abbildung die jedem k-stelligen Funktionssymbol f in F eine Funktion $f^{\varphi}: U^k \to U$ zuordnet.
- ψ eine Abbildung die jedem k-stelligen Prädikatensymbol P in F ein Prädikat $P^{\psi} \subseteq U^k$ zuordnet.
- ξ eine Abbildung die jeder Variablen x ein Element $x^{\xi} \in U$ zuordnet.

 ξ gibt freien Variablen eine Bedeutung und hat keinen Einfluss auf die Semantik von geschlossenen Formeln.

Semantik der Prädikatenlogik - Strukturen

Beispiel

Betrachten wir die Formel:

$$\exists x \ Liebt(mutter(x), musik)$$

Eine passende Struktur wäre:

- $U = \{JoAnn, Mum, STS\}$
- $musik^{\varphi} = STS$ $mutter^{\varphi}$: $mutter^{\varphi}(JoAnn) = Mum$, $mutter^{\varphi}(Mum) = JoAnn$, $mutter^{\varphi}(STS) = STS$
- $Liebt^{\psi} = \{(Mum, STS), (JoAnn, Mum)\}$
- $x^{\xi} = Mum$

Semantik der Prädikatenlogik - Terme

Wir definieren zunächst den Wert eines Terms in einer Struktur α

Definition

Der Wert $\alpha(t)$ eines Terms t in der Struktur α ist wie folgt gegeben:

- Ist t eine Variable dann $\alpha(t) = t^{\xi}$
- Ist t von der Form $f(t_1,\ldots,t_k)$ dann $\alpha(t)=f^{\varphi}(\alpha(t_1),\ldots,\alpha(t_k))$

Beispiel

Gegeben α mit $joAnn^{\varphi} = Susi$, $mutter^{\varphi}(Susi) = Mum$

- $\alpha(joAnn) = joAnn^{\varphi} = Susi$
- $\alpha(mutter(joAnn)) = mutter^{\varphi}(\alpha(joAnn)) = mutter^{\varphi}(Susi) = Mum$

Beispiel

Gegeben α mit $mutter^{\varphi}(Mum) = JoAnn, x^{\xi} = Mum$

- $\alpha(x) = x^{\xi} = Mum$
- $\alpha(mutter(x)) = mutter^{\varphi}(\alpha(x)) = mutter^{\varphi}(Mum) = JoAnn$

Semantik der Prädikatenlogik - Atome

Definition

Der Wahrheitswert $\alpha(F)$ einer atomaren Formel $F = P(t_1, \dots, t_k)$ in einer Struktur α ist gegeben durch

$$lpha(F) = egin{cases} 1 & \mathsf{falls}\; (lpha(t_1), \dots, lpha(t_k)) \in P^\psi \ 0 & \mathsf{sonst} \end{cases}$$

Beispiel

Gegeben Struktur α mit

- $\alpha(\text{joAnn}) = \text{joAnn}^{\varphi} = \text{Susi}, \ \alpha(\text{musik}) = \text{musik}^{\varphi} = \text{STS}$
- $mutter^{\varphi}(Susi) = Mum$, $mutter^{\varphi}(Mum) = Susi$, $mutter^{\varphi}(STS) = STS$
- $Liebt^{\psi} = \{(Mum, STS), (Susi, Mum)\}$
- $x^{\xi} = Mum$

dann gilt

- \bullet $\alpha(Liebt(mutter(joAnn), musik)) = Liebt^{\psi}(Mum, STS) = 1$
- **2** $\alpha(Liebt(mutter(x), musik)) = Liebt^{\psi}(Susi, STS) = 0$

Semantik der Prädikatenlogik

Konstanten, 0-stellige Prädikate

Zwei Spezialfälle:

- Konstanten, als 0-stelligen Funktionen, wird von α immer ein Objekt $u \in U$ zugewiesen.
- ullet 0-stelligen Prädikatensymbolen wird von α ein Wahrheitswert zugewiesen.

Semantik der Prädikatenlogik – Boolesche Operatoren

Die Semantik der Operatoren \neg , \wedge , und \vee ist analog zur Aussagenlogik:

$$\alpha(F \land G) = \begin{cases} 1 & \text{Wenn } \alpha(F) = 1 \text{ und } \alpha(G) = 1 \\ 0 & \text{sonst} \end{cases}$$

$$\alpha(F \lor G) = \begin{cases} 1 & \text{Wenn } \alpha(F) = 1 \text{ oder } \alpha(G) = 1 \\ 0 & \text{sonst} \end{cases}$$

$$\alpha(\neg F) = \begin{cases} 1 & \text{Wenn } \alpha(F) = 0 \\ 0 & \text{sonst} \end{cases}$$

$$\alpha(F \to G) = \alpha(\neg F \lor G)$$

Semantik der Prädikatenlogik – Boolesche Operatoren

Beispiel

Gegeben Struktur α mit

- $\alpha(\text{joAnn}) = \text{Susi}, \ \alpha(\text{musik}) = \text{STS}$
- $\alpha(mutter(Susi)) = Mum$, $\alpha(mutter(Mum)) = Susi$, $\alpha(mutter(STS)) = STS$
- $Liebt^{\psi} = \{(Mum, STS), (Susi, Mum)\}$
- $x^{\xi} = Mum$

wir wissen schon

- $\alpha(\text{Liebt}(\text{mutter}(\text{joAnn}), \text{musik})) = \text{Liebt}^{\psi}(\text{Mum}, STS) = 1$
- **2** $\alpha(Liebt(mutter(x), musik)) = Liebt^{\psi}(Susi, STS) = 0$

Wir betrachten nun

```
\alpha (Liebt(mutter(joAnn), musik) \wedge Liebt(mutter(x), musik)) = \alpha (Liebt(mutter(joAnn), musik)) \wedge \alpha (Liebt(mutter(x), musik)) = 1 \wedge 0 = 0
```

Für die Semantik der **Quantoren** ∀,∃ benötigen wir zusätzliche Notation.

Definition

Für gegebene Struktur $\alpha=(U,\varphi,\psi,\xi)$, Variable x und $u\in U$ definieren wir die Struktur $\tilde{\alpha}^u_x=(U,\varphi,\psi,\tilde{\xi})$, sodass $x^{\tilde{\xi}}=u$ und $y^{\tilde{\xi}}=y^{\xi}$ für alle anderen Variablen y.

 $\tilde{\alpha}^u_{\mathbf{x}}$ setzt also $\tilde{\alpha}^u_{\mathbf{x}}(\mathbf{x}) = u$ und lässt α sonst unverändert.

Beispiel

Gegeben: $\alpha = (\{a, b, c\}, \varphi, \psi, \xi)$ mit $x^{\xi} = a, y^{\xi} = b$

- $\alpha(x) = a$, $\alpha(y) = b$
- $\tilde{\alpha}_{x}^{c}(x) = c$, $\tilde{\alpha}_{x}^{c}(y) = b$
- $\tilde{\alpha}_{y}^{c}(x) = a$, $\tilde{\alpha}_{y}^{c}(y) = c$
- $\tilde{\alpha}_{x,y}^{c,a}(x) = c$, $\tilde{\alpha}_{x,y}^{c,a}(y) = a$

Definition

Die Wahrheitswerte $\alpha(\forall x F)$, $\alpha(\exists x F)$ sind wie folgt definiert:

$$\alpha (\forall x F) = \begin{cases} 1 & \text{falls für alle } u \in U \text{ gilt } \tilde{\alpha}_{x}^{u}(F) = 1 \\ 0 & \text{sonst} \end{cases}$$

$$\alpha\left(\exists x\,F\right) = \begin{cases} 1 & \text{falls es ein } u \in U \text{ gibt sodass } \tilde{\alpha}_x^u(F) = 1 \\ 0 & \text{sonst} \end{cases}$$

Beispiel

Betrachte wieder die Struktur $\alpha = (U, \varphi, \psi, \xi)$:

```
• U = \{JoAnn, Mum, STS\}
```

•
$$musik^{\varphi} = STS$$

 $mutter^{\varphi}$: $mutter^{\varphi}(JoAnn) = Mum$,
 $mutter^{\varphi}(Mum) = JoAnn$,
 $mutter^{\varphi}(STS) = STS$

•
$$Liebt^{\psi} = \{(Mum, STS), (JoAnn, Mum)\}$$

• $x^{\xi} = Mum$

Uns interessiert:

$$\alpha$$
 ($\exists x \ Liebt(mutter(x), musik)$)

und

$$\alpha$$
 ($\forall x \ Liebt(mutter(x), musik)$)

Beispiel (cont.)

In beiden Fällen betrachte:

```
• \tilde{\alpha}_{\mathbf{x}}^{JoAnn} (Liebt(mutter(x), musik))=

Liebt^{\psi}(\tilde{\alpha}_{\mathbf{x}}^{JoAnn}(mutter(\mathbf{x})), \tilde{\alpha}_{\mathbf{x}}^{JoAnn}(musik))=

Liebt^{\psi}(mutter^{\varphi}(\tilde{\alpha}_{\mathbf{x}}^{JoAnn}(\mathbf{x})), musik^{\varphi})=

Liebt^{\psi}(mutter^{\varphi}(JoAnn), STS)=Liebt^{\psi}(Mum, STS)=1
```

- $\tilde{\alpha}_{x}^{Mum}$ (Liebt(mutter(x), musik))= ... = Liebt $^{\psi}$ (mutter $^{\varphi}$ (Mum), STS)=Liebt $^{\psi}$ (JoAnn, STS) = 0
- $\tilde{\alpha}_{x}^{STS}$ (Liebt(mutter(x), musik))= ... = Liebt $^{\psi}$ (mutter $^{\varphi}$ (STS), STS)=Liebt $^{\psi}$ (STS, STS) = 0

Wir erhalten

$$\alpha (\exists x \ Liebt(mutter(x), musik)) = 1$$

 $\alpha (\forall x \ Liebt(mutter(x), musik)) = 0$

Subsection 5

Fundamentale Begriffe & Sätze

Prädikatenlogik – Begriffe

Elementare Begriffe:

- Eine Struktur α heißt **Modell** für F, wenn $\alpha(F) = 1$. Wir schreiben $\alpha \models F$.
- Eine Formel F heißt allgemein gültig oder Tautologie wenn alle zu F passenden Strukturen α auch Modelle von F sind.
- Eine Formel F heißt erfüllbar wenn es ein Modell für F gibt, anderenfalls unerfüllbar.

Anmerkungen

- F ist unerfüllbar genau dann wenn ¬F eine Tautologie ist.
- Die Aussagenlogik ist ein Spezialfall der Prädikatenlogik: Aussagenlogik entspricht der Prädikatenlogik mit ausschließlich 0-stelligen Prädikaten und ohne Quantoren.

Prädikatenlogik – Begriffe

- Eine Struktur α heißt **Modell** für eine Menge von Formeln \mathcal{F} , wenn α eine Modell jeder Formel $G \in \mathcal{F}$ ist. Wir schreiben $\alpha \models \mathcal{F}$.
- Zwei (Mengen von) Formeln F, G sind **semantisch äquivalent** wenn Sie die gleichen Modelle haben. Wir schreiben $F \equiv G$.
- Eine Formel G **folgt** aus einer Formel / einer Menge von Formeln F/\mathcal{F} wenn jedes Modell von F/\mathcal{F} auch Modell von G ist. Wir schreiben $F \models G/\mathcal{F} \models G$.

Satz

Zwei Formeln F,G sind semantisch äquivalent ($F \equiv G$) genau dann wenn $F \models G$ und $G \models F$.

Satz (Ersetzungssatz)

Seien F_1 und F_2 zwei semantisch äquivalente Formeln und sei G eine Formel die F_1 als Teilformel enthält. Dann gilt $G \equiv G[F_1/F_2]$.

Erinnerung: $G[F_1/F_2]$ erhält man aus G indem man F_1 durch F_2 ersetzt.

Prädikatenlogik – Fundamentale Äquivalenzen

Es gelten die semantischen Äquivalenzen aus der Aussagenlogik und weiters gelten folgende Äquivalenzen für Quantoren:

Vertauschen von Negation und Quantoren

- $\neg \forall x F \equiv \exists x \neg F$
- $\neg \exists x F \equiv \forall x \neg F$

Reihenfolge von Quantoren

- $\forall x \forall y F \equiv \forall y \forall x F$
- $\exists x \exists y F \equiv \exists y \exists x F$

Vorsicht: $\forall x \exists y F \not\equiv \exists y \forall x F$

- "Zu jedem Schloss gibt es einen passenden Schlüssel." vs.
- "Es gibt einen Schlüssel der zu jedem Schloss passt."

Prädikatenlogik – Fundamentale Äquivalenzen

Quantoren und \wedge , \vee

- $\forall x F \land \forall x G \equiv \forall x (F \land G)$
- $\exists x \, F \vee \exists x \, G \equiv \exists x \, (F \vee G)$

Vorsicht:

- $\forall x \, F \vee \forall x \, G \not\equiv \forall x \, (F \vee G)$:
 - "Alle Hörer sind Frauen oder Alle Hörer sind Männer" vs.
 - "Alle Hörer sind Frauen oder Männer"
- $\exists x \ F \land \exists x \ G \not\equiv \exists x \ (F \land G)$
 - "Es gibt ein Auto mit Diesel-Motor und es gibt ein Auto mit Flektro-Motor" vs
 - "Es gibt ein Auto mit Diesel-Motor und Elektro-Motor"

Prädikatenlogik – Fundamentale Äquivalenzen

Quantoren und \wedge , \vee

Wenn die Formel G die Variable x nicht enthält gilt auch:

- $\forall x F \land G \equiv \forall x (F \land G)$
- $\forall x \, F \vee G \equiv \forall x \, (F \vee G)$
- $\exists x \, F \land G \equiv \exists x \, (F \land G)$
- $\exists x F \lor G \equiv \exists x (F \lor G)$

```
Struktur: \alpha = (\{2,3\}, \varphi, \psi, \xi) mit Invers^{\psi}(x,y) = \{(2,2), (3,3)\}.
Frage: Ist \alpha Modell von F?
Um \alpha(\forall x \exists y \; Invers(x, y)) zu berechnen betrachte:
    • \alpha_{\times}^2(\exists y \ Invers(x,y)):
            • \alpha_{x,y}^{2,2}(Invers(x,y)) = Invers^{\psi}(2,2) = 1
            • \alpha_{x,y}^{2,3}(Invers(x,y)) = Invers^{\psi}(2,3) = 0
        \alpha_{\nu}^{2}(\exists v \ Invers(x, v)) = 1
    • \alpha_{\times}^{3}(\exists y \ Invers(x,y)):
            • \alpha_{x,y}^{3,2}(Invers(x,y)) = Invers^{\psi}(3,2) = 0
            • \alpha_{x,y}^{3,3}(Invers(x,y)) = Invers^{\psi}(3,3) = 1
        \alpha^3(\exists v \ Invers(x,y)) = 1
\alpha(\forall x \exists y \; Invers(x, y)) = 1 \Rightarrow \alpha \; \text{ist Modell von } F.
```

Gegeben: Formel: $F = \forall x \exists y \ Invers(x, y)$

(zum Selbststudium)

Gegeben:

Formel
$$F = \forall x \forall y \; Gleich(plus(x,y),plus(y,x))$$

Struktur $\alpha = (\{0,1\},\varphi,\psi,\xi)$ mit $Gleich^{\psi}(x,y) = \{(0,0),(1,1)\}$ und $plus^{\varphi}$ wie in der folgenden Tabelle gegeben

X	y	$plus^{arphi}(x,y)$
0	0	0
0	1	0
1	0	1
1	1	0

Frage: Ist α Modell von F?

(zum Selbststudium)

Um $\alpha(\forall x \forall y \; Gleich(plus(x, y), plus(y, x)))$ zu berechnen betrachte:

- $\alpha_x^0(\forall y \; Gleich(plus(x,y), plus(y,x)))$:
 - $\alpha_{x,0}^{0,0}(Gleich(plus(x,y), plus(y,x))) = Gleich^{\psi}(plus^{\varphi}(0,0), plus^{\varphi}(0,0)) = Gleich^{\psi}(0,0) = 1$
 - $\alpha_{x,y}^{0,1}(Gleich(plus(x,y), plus(y,x))) = Gleich^{\psi}(plus^{\varphi}(0,1), plus^{\varphi}(1,0)) = Gleich^{\psi}(0,1) = 0$

$$\alpha_{\vee}^{0}(\forall y \; Gleich(plus(x,y), plus(y,x))) = 0$$

- $\alpha^1_{\vee}(\forall y \; Gleich(plus(x, y), plus(y, x)))$:
 - $\alpha_{x,y}^{1,0}(Gleich(plus(x,y),plus(y,x)))=Gleich^{\psi}(1,0)=0$
 - $\alpha_{x,y}^{1,1}(Gleich(plus(x,y),plus(y,x)))=Gleich^{\psi}(0,0)=1$
 - $\alpha_x^0(\forall y \; Gleich(plus(x,y), plus(y,x))) = 0$

 $\alpha(\forall x \forall y \; Gleich(plus(x, y), plus(y, x))) = 0 \Rightarrow \alpha \; \text{ist kein Modell von } F.$

 $^{^1}$ Wir könnten schon hier auf $\alpha(\forall x \forall y \; Gleich(plus(x,y), plus(y,x))) = 0 \; schließen. Der Vollständigkeit halber betrachten wir aber auch die zweite Substitution.$

Subsection 6

Formalisieren in Prädikatenlogik

Formalisieren in Prädikatenlogik - Faustregeln

- Zeitwörter bzw. Eigenschaften werden Prädikatensymbole
- Hauptwörter zu ihren Argumenten
- Konkrete Personen, Objekte werden Konstanten

Beispiel

 Sokrates ist sterblich 	Sterblich(sokrates)
--	---------------------

- Thomas läuft Laeuft(thomas)
- Alice spielt Ball

 SpieltBall(alice)
 Spielt(alice, ball)
- Alice spielt Schach
 Spielt(alice, schach)
- Thomas Mutter spielt Schach Spielt(mutter(thomas), schach)

Formalisieren in Prädikatenlogik - Faustregeln

Regeln: Für alle Objekte mit einer Eigenschaft P gilt, dass ...

$$\forall x (P(x) \rightarrow \dots)$$

Stichworte: Alle, Jede, ... manchmal aber auch nur "wenn ... dann"

Existenzaussagen: Es gibt ein Objekt mit der Eigenschaft P, dass ...

$$\exists x (P(x) \land \dots)$$

Stichworte: existiert, es gibt, (mindestens/hat/...) einen, ...

Beispiel

Aussage: Jeder Tennisspieler besitzt einen Tennisschläger.

$$\forall x \ (\mathit{TSpieler}(x) \to (\exists y (\mathit{Schlaeger}(y) \land \mathit{Besitzt}(x,y))))$$
 oder auch $\forall x \exists y \ (\mathit{TSpieler}(x) \to (\mathit{Schlaeger}(y) \land \mathit{Besitzt}(x,y))).$

Aussage: "Wenn zwei Zahlen negativ sind dann ist ihr Produkt positiv"

$$\forall x \forall y \ ((\textit{Negativ}(x) \land \textit{Negativ}(y)) \rightarrow \textit{Positiv}(\textit{produkt}(x,y)))$$

Ein Modell:

- $U = \{-1, 1\}$
- $produkt^{\varphi}$: $produkt^{\varphi}(1,1) = produkt^{\varphi}(-1,-1) = 1$, $produkt^{\varphi}(-1,1) = produkt^{\varphi}(1,-1) = -1$
- Negativ $^{\psi}=\{-1\}$, Positiv $^{\psi}=\{1\}$
- $x^{\xi} = 1$, $y^{\xi} = 1$

Ein anderes Modell wären die ganzen Zahlen \mathbb{Z} , wobei $\operatorname{produkt}^{\varphi}(.,.)$ die übliche Multiplikation ist und $\operatorname{Negativ}^{\psi}=\mathbb{Z}^{-}$, $\operatorname{Positiv}^{\psi}=\mathbb{Z}^{+}$.

Aussage: "Wenn es einen Weg von A nach B gibt und einen Weg von B nach C gibt dann gibt es auch einen Weg von A nach C."

$$\forall x \forall y \forall z ((Weg(x,y) \land Weg(y,z)) \rightarrow Weg(x,z))$$

oder semantisch äquivalent

$$\forall x \forall y \forall z (\neg Weg(x, y) \lor \neg Weg(y, z) \lor Weg(x, z))$$

Ein Modell:

- U = {Wien, Berlin, Dresden, Eisenstadt}
- keine Funktionen/Konstanten
- $Weg^{\psi} = \{(Wien, Eisenstadt)\},$
- $x^{\xi} = Wien, y^{\xi} = Berlin, z^{\xi} = Dresden$

Beispiel 3

Wir wollen mehrere Aussagen in Prädikatenlogik formalisieren:

- 1 Nicht alle Musiker sind berühmt.
- 2 Es gibt berühmte Personen die keine Musiker sind.
- 3 Ein Musiker ist genau dann berühmt wenn er gut ist.
- 4 Es existieren sowohl schlechte als auch gute Musiker.

Die "Objekte" sind in diesem Fall Personen.

Wir erkennen mehrere Eigenschaften: ist Musiker, ist berühmt, ist gut, ist schlecht.

- \hookrightarrow wir nutzen die folgenden Prädikate:
 - Musiker(x) . . . x ist Musiker
 - Beruehmt(x) . . . x ist berühmt
 - $Gut(x) \dots x$ ist gut
 - *Schlecht*(*x*) . . . *x* ist schlecht

Beispiel 3

Wir wollen mehrere Aussagen in Prädikatenlogik formalisieren:

- 1 Nicht alle Musiker sind berühmt.
- 2 Es gibt berühmte Personen die keine Musiker sind.
- 3 Ein Musiker ist genau dann berühmt wenn er gut ist.
- 4 Es existieren sowohl schlechte als auch gute Musiker.
- $\supseteq \exists x (Beruehmt(x) \land \neg Musiker(x))$
- $\exists \ \forall x (\textit{Musiker}(x) \rightarrow (\textit{Beruehmt}(x) \leftrightarrow \textit{Gut}(x)))$
- $\exists x (\textit{Musiker}(x) \land \textit{Gut}(x)) \land \exists y (\textit{Musiker}(y) \land \textit{Schlecht}(y))$

Beispiel 3

Wir wollen zeigen dass die Aussagen miteinander konsistent sind.

1
$$F_1 = \neg \forall x (Musiker(x) \rightarrow Beruehmt(x))$$

2
$$F_2 = \exists x (\neg Musiker(x) \land Beruehmt(x))$$

Um zu zeigen, dass $F_1 \wedge F_2 \wedge F_3 \wedge F_4$ erfüllbar ist geben wir ein Modell an.

Fin Modell:

$$\alpha = (\{Uli, Tom, Bob\}, \varphi, \psi, \xi)$$

- $Musiker^{\psi}(x) = \{Uli, Tom\}$
- Beruehmt $^{\psi}(x) = \{Uli, Bob\}$
- $Gut^{\psi}(x) = \{Uli\}$
- $Schlecht\psi(x) = \{Tom\}$
- $x^{\xi} = Tom, y^{\xi} = Tom$

Ein anderes Modell:

$$\alpha' = (\{0,1,2\}, \varphi, \psi, \xi)$$

- $Musiker^{\psi}(x) = \{0, 1\}$
- Beruehmt $^{\psi}(x) = \{0, 2\}$
- $Gut^{\psi}(x) = \{0\}$
- $Schlecht^{\psi}(x) = \{1\}$
- $x^{\xi} = 0, v^{\xi} = 0$

Subsection 7

Normalformen

Normalform

Eine Normalform

- ist eine Einschränkung auf der Syntax
- sodass jede beliebige Formel in eine semantisch äquivalente Formel in Normalform umgewandelt werden kann.
- vereinfacht die maschinelle Verarbeitung von logischen Formeln.
 (Viele Algorithmen verarbeiten nur eine bestimmte Normalform)

Umbenennen von Variablen

Es kann vorkommen, dass die gleiche Variable in einer Formel

- frei und gebunden vorkommt, oder
- von verschiedenen Quantoren gebunden wird.

Beides macht Verfahren / Algorithmen komplizierter.

Umbenennen von Variablen

Wie können eine semantisch äquivalente Formel ohne solche Variablen bekommen indem wir für jeden Quantor

- die nachfolgende Variable und
- alle durch den Quantor gebunden Vorkommen der Variablen durch eine neue Variable ersetzen.

Manchmal spricht man auch von der bereinigten Form wenn es keine solchen Variablen gibt.

Umbenennen von Variablen

Beispiel

$$P(x) \land \forall x (P(x) \rightarrow \exists x Q(x))$$

x ist

- 1x frei
- 1x durch den Allquantor gebunden, und
- 1x durch den Existenzquantor gebunden.

Durch Umbenennen erhalten wir die semantisch äquivalente Formel:

$$P(x) \land \forall y (P(y) \rightarrow \exists z Q(z))$$

Von jetzt an betrachten wir geschlossene Formeln bei denen jede Variable von genau einem Quantor gebunden ist.

Pränexform

Idee: Alle Quantoren sollen am Anfang der Formel stehen

Definition

Eine Formel F ist in Pränexform falls sie die Form

$$Q_1x_1Q_2x_2\dots Q_nx_nG$$

hat, wobei Q_i Quantoren sind, x_i Variablen sind, und G eine beliebige Formel die keine Quantoren enthält.

Beispiele:

•
$$\forall x \exists y \exists z (P(x) \rightarrow Q(z))$$
 (Pränexform)

•
$$\exists x \exists y \exists z (P(x) \land (Q(y) \rightarrow P(z)))$$
 (Pränexform)

•
$$\exists x \exists y (P(x) \land (Q(y) \rightarrow \exists z Q(z)))$$
 (keine Pränexform)

•
$$\exists x \exists y \, (\exists z \, P(x) \land (Q(y) \rightarrow Q(z)))$$
 (keine Pränexform)

Es gibt ein rekursives Verfahren um eine Formel F in eine semantisch äquivalente Pränexform zu transformieren.

Atomare Formel

Atomare Formeln habe keine Quantoren und sind daher in Pränexform

• Das Verfahren gibt die Formel selbst als Antwort

Negation

Wenn F von der Form $F = \neg G$ ist

- Wende das Verfahren auf G an $\hookrightarrow Q_1 x_1 Q_2 x_2 \dots Q_n x_n \widehat{G}$
- Gib $\bar{Q}_1 x_1 \bar{Q}_2 x_2 \dots \bar{Q}_n x_n \neg \widehat{G}$ aus.

 $\text{mit } \bar{Q} \text{ wie folgt } \bar{\forall} = \exists \text{, } \bar{\exists} = \forall.$

Beispiel: $\neg \forall x \exists y (P(x) \lor Q(y)) \equiv \exists x \forall y \neg (P(x) \lor Q(y))$

Konjunktion

Wenn F von der Form $F = G \wedge H$ ist

• Wende das Verfahren auf G und H an

$$\hookrightarrow Q_1 x_1 Q_2 x_2 \dots Q_n x_n \widehat{G}$$

$$\hookrightarrow R_1 y_1 R_2 y_2 \dots R_n y_n \widehat{H}$$

• Gib $Q_1x_1Q_2x_2\dots Q_nx_nR_1y_1R_2y_2\dots R_ny_n(\widehat{G}\wedge\widehat{H})$ als Antwort.

Anm: Eine Variable x in F

- ist in einer der Teilformeln G, H gebunden und kommt in der anderen nicht vor, oder
- ist in keiner der beidem Formeln gebunden.

Beispiel:

• $\forall x P(x) \land \exists y Q(y,z) \equiv \forall x \exists y (P(x) \land Q(y,z))$

Disjunktion

Wenn F von der Form $F = G \vee H$ ist

- Wende das Verfahren auf G und H an
 - $\hookrightarrow Q_1 x_1 Q_2 x_2 \dots Q_n x_n \widehat{G}$

$$\hookrightarrow R_1 y_1 R_2 y_2 \dots R_n y_n \widehat{H}$$

• Gib $Q_1x_1Q_2x_2...Q_nx_nR_1y_1R_2y_2...R_ny_n(\widehat{G}\vee\widehat{H})$ aus.

Beispiel:

• $\forall x P(x) \lor \exists y Q(y,z) \equiv \forall x \exists y (P(x) \lor Q(y,z))$

Quantoren

Wenn F von der Form Qx G ($\forall x G$ oder $\exists x G$) ist

- Wende das Verfahren auf G an $\hookrightarrow Q_1 x_1 Q_2 x_2 \dots Q_n x_n \widehat{G}$
- Gib $QxQ_1x_1Q_2x_2...Q_nx_n \widehat{G}$ aus.

Beispiel:

• $\exists z (\forall x P(x) \lor \exists y Q(y, z))) \equiv \exists z \forall x \exists y (P(x) \lor Q(y, z))$

Transformation in Pränexform - Beispiel

$$\forall x \ Q(x) \lor \forall z \ P(z,g(z)) \lor \exists u \ (\neg \exists y \ \neg P(f(u),y) \land Q(a))$$

Um die äußerste Disjunktion aufzulösen betrachten wir:

• (1)
$$\forall x \ Q(x)$$
, (2) $\forall z \ P(z, g(z))$ (3) $\exists u (\neg \exists y \neg P(f(u), y) \land Q(a))$

(1) und (2) sind schon in Pränexform.

Betrachte 3:
$$\exists u (\neg \exists y \neg P(f(u), y) \land Q(a))$$

- Betrachte $(\neg \exists y \neg P(f(u), y) \land Q(a))$
 - Um die Konjunktion aufzulösen betrachten wir:
 - (i) $\neg \exists y \neg P(f(u), y)$, (ii) Q(a)
 - (i) ist äquivalent zu $\forall y P(f(u), y)$, (ii) ist in Pränexform
 - Wir erhalten $\forall y (P(f(u), y) \land Q(a))$
- Wir erhalten $\exists u \forall y (P(f(u), y) \land Q(a))$

Wir kombinieren (1), (2) und (3) zur Pränexform:

$$\forall x \forall z \exists u \forall y \left(Q(x) \vee P(z, g(z)) \vee \left(P(f(u), y) \wedge Q(a) \right) \right)$$

Skolemform

Erfüllbarkeitsäguivalenz

Zwei Formeln F, G heißen erfüllbarkeitsäquivalent wenn F genau dann erfüllbar ist wenn G erfüllbar ist,

Skolemform

- Ziel: erfüllbarkeitsäquivalente Pränexform ohne Existenzquantoren
- Ersetzt Existenzquantoren in einer Formel F durch neue Funktionssymbole
- um eine erfüllbarkeitsäquivalente Formel G zu bekommen.

Skolemform

Verfahren

Input: Formel F in Pränexform

Solange F einen Existenzquantor hat, d.h. F ist von der Form

$$F = \forall x_1 \forall x_2 \dots \forall x_k \exists x_{k+1} Q_{k+2} x_{k+2} \dots Q_n x_n G$$

- Führe ein neues k-stelliges Funktionssymbol f ein
- Lösche $\exists x_{k+1}$
- Ersetze x_{k+1} durch $f(x_1, \ldots x_k)$

In einem Schritt machen wir aus der Formel

$$F = \forall x_1 \forall x_2 \dots \forall x_k \exists x_{k+1} Q_{k+2} x_{k+2} \dots Q_n x_n G$$

die Formel

$$\forall x_1 \forall x_2 \dots \forall x_k Q_{k+2} x_{k+2} \dots Q_n x_n G_{x_{k+1} \mapsto f(x_1, \dots, x_k)}$$

Skolemform - Beispiele

Beispiel

Wir betrachten

$$\forall x \forall z \exists u \forall y (Q(x) \lor P(x, g(z)) \lor (P(f(u), y) \land Q(a)))$$

Wir ersetzen die existenziell quantifizierte Variable u durch das neue Funktionssymbol h(x,z)

$$\forall x \forall z \forall y \left(Q(x) \vee P(x, g(z)) \vee \left(P(f(h(x, z)), y) \wedge Q(a) \right) \right)$$

Beispiel

$$\forall x \forall z \forall y \exists u (Q(x) \lor P(x, g(z)) \lor (P(f(u), y) \land Q(a)))$$

Wird zu

$$\forall x \forall z \forall y \left(Q(x) \lor P(x, g(z)) \lor \left(P(f(h(x, z, y)), y) \land Q(a) \right) \right)$$

Skolemform - Beispiele

Beispiel

Wir betrachten

$$\exists u \forall x \forall z \forall y (Q(x) \lor P(x, g(z)) \lor (P(f(u), y) \land Q(a)))$$

Wir ersetzen die existenziell quantifizierte Variable u durch die neue Konstante k

$$\forall x \forall z \forall y \left(Q(x) \vee P(x, g(z)) \vee \left(P(f(k), y) \wedge Q(a) \right) \right)$$

Beispiel

$$\exists x \forall z \forall y \exists u (Q(x) \lor P(x, g(z)) \lor (P(f(u), y) \land Q(a)))$$

Wird zu

$$\forall z \forall y (Q(k) \lor P(k, g(z)) \lor (P(f(h(z, y)), y) \land Q(a)))$$

Matrixklauselform

Wir betrachten

- geschlossene Formeln
- in Skolemform.

Beispiel: $\forall z \forall y (Q(b) \lor P(b, g(z)) \lor (P(f(h(z)), y) \land Q(a)))$

Matrixformel

Die Matrixformel einer Formel ist der Teil nach den Quantoren.

Beispiel: $Q(b) \vee P(b, g(z)) \vee (P(f(h(z)), y) \wedge Q(a))$

Matrixklauselform

Die Matrixklauselform ist die Klauselmenge die der Matrixformel entspricht.

Beispiel: $\{\{Q(b), P(b, g(z)), P(f(h(z)), y)\}, \{Q(b), P(b, g(z)), Q(a)\}\}$

Unentscheidbarkeit der Prädikatenlogik

Subsection 8

Unentscheidbarkeit der Prädikatenlogik

Aussagenlogik:

- Endlich viele mögliche Modelle (Belegungen)
- Erfüllbarkeit/Folgerung kann durch Testen aller Belegungen entschieden werden (Wahrheitstafel)

Prädikatenlogik:

- Unendlich viele passende Strukturen
- Unendlich große Strukturen
- Erfüllbarkeit kann nicht so einfach überprüft werden

Unentscheidbarkeit der Prädikatenlogik

Es gibt Prädikatenlogische Formeln die nur unendliche Modelle haben:

Beispiel

③
$$\forall y \exists z P(y,z)$$

1.Teil: Transitivität von P

2.Teil: Irreflexivität von P

3. Teil: Jedes Objekt hat einen "Nachfolger"

Es kann in der Relation keine Zyklen geben da sonst wegen der Transitivität P(x,x) für jedes Element des Zyklus gelten würde. Widerspruch zur Irreflexivität f

→ Jedes Model der Formel muss unendlich sein.

Modell: Die natürlichen Zahlen $\mathbb N$ und $P^{\psi} = \{(a,b) \mid a,b \in \mathbb N, a < b\}$

Church's Theorem

Satz (Church's Theorem)

Es gibt kein Verfahren, das für jede prädikatenlogische Formel F in endlich vielen Schritten entscheidet, ob F erfüllbar ist.

Dazu mehr im 3. Teil der Vorlesung.

Herbrand Universum

Ziel: Anzahl der zu betrachtenden Strukturen einschränken.

Definition

Für eine Formel F in Skolemform ist das **Herbrand Universum** D(F) induktiv wie folgt definiert.

- Alle in F enthaltenen Konstanten sind in D(F)
- Mindestens eine Konstante ist in D(F)
- Für k-stelliges Funktionssymbol f und $t_1, \ldots, t_k \in D(F)$ ist auch $f(t_1, \ldots, t_k) \in D(F)$

Das Herbrand-Universum ist die Menge aller variablenfreie Terme, die aus den Bestandteilen von F gebildet werden können.

Herbrand Struktur

Intuition:

- 1 Die Struktur verwendet das Herbrand Universum
- 2 Die variablenfreien Terme in der Formel werden durch das entsprechende Objekt des Herbrand Universums interpretiert.

Definition

Eine für eine Formel F in Skolemform passende Struktur $\alpha = (U, \varphi, \psi, \xi)$ heißt **Herbrand-Struktur** wenn

- 0 U = D(F) (verwendet das Herbrand Universum)
- **2** Für k-stelliges Funktionssymbol f und $t_1, \ldots, t_k \in D(F)$ ist auch $f^{\varphi}(\alpha(t_1), \ldots, \alpha(t_k)) = f(t_1, \ldots, t_k)$

Falls $\alpha \models F$ nennt man α **Herbrand-Modell**.

Beispiel

Formel:
$$F = \forall z \forall y (Q(b) \lor P(b, g(z)) \lor (P(f(h(z)), y) \land Q(a)))$$

Herbrand-Universum:

$$D(F) = \{a, b, g(a), f(a), h(a), g(b), f(b), h(b), g(f(a)), \dots\}$$

Herbrand-Struktur:

- 0 U = D(F)
 - ② Funktionen/Konstanten:
 - $a^{\varphi} = a$, $b^{\varphi} = b$
 - $f^{\varphi}: f^{\varphi}(a) = f(a), f^{\varphi}(f(b)) = f(f(b)), ...$
 - $g^{\varphi}: g^{\varphi}(a) = g(a), g^{\varphi}(f(b)) = g(f(b)), \dots$
 - $g^{\tau}: g^{\tau}(a) = g(a), g^{\tau}(f(b)) = g(f(b)), ...$ • $h^{\varphi}: h^{\varphi}(a) = h(a), h^{\varphi}(f(b)) = h(f(b)), ...$
 - h^{φ} : $h^{\varphi}(a) = h(a)$, $h^{\varphi}(f(b)) = h(f(b))$
 - 3 Prädikate
 - $Q^{\psi}=\{a,b\}$
 - $P^{\psi} = \{(a,b), (f(a),g(h(b)))\}$
- **4** $z^{\xi} = y^{\xi} = h(b)$

Teil 1 & 2 sind für Herbrand-Strukturen vorgegeben.

Satz von Löwenheim-Skolem

Satz (Löwenheim-Skolem)

Eine geschlossene prädikatenlogische Formel in Skolemform ist genau dann erfüllbar wenn sie ein Herbrand-Modell hat.

- Wir können uns also auf Herbrand-Modelle beschränken.
- Das Herbrand Universum ist aber im Allgemeinen unendlich groß.

Satz von Gödel-Herbrand-Skolem

Definition (Herbrand-Expansion)

Sei F eine prädikatenlogische Formel in Skolemform, d.h. F ist von der Form

$$F = \forall x_1 \forall x_2 \dots \forall x_n G.$$

Die **Herbrand Expansion** E(F) von F ist die Menge der prädikatenlogischen Formeln

$$E(F) = \{G_{x_1 \mapsto t_1, \dots, x_n \mapsto t_n} \mid t_1, \dots, t_n \in D(F)\}$$

wobei $G_{x_1 \mapsto t_1, ..., x_n \mapsto t_n}$ die Formel notiert bei der in G die Variablen x_i durch Elemente t_i des Herbrand Universums ersetzt werden.

Satz (Gödel-Herbrand-Skolem)

Eine geschlossene prädikatenlogische Formel F in Skolemform ist genau dann erfüllbar wenn die Herbrand-Expansion E(F) im aussagenlogischen Sinn erfüllbar ist.

Herbrand Expansion - Beispiel

Beispiel

Formel: $F = \forall x (P(f(x)) \land \neg G(x))$

- Matrixformel: $P(f(x)) \land \neg G(x)$
- Herbrand Universum: $D(F) = \{a, f(a), f(f(a)), f(f(f(a)), \dots \}\}$
- Herbrand Expansion:

$$E(F) = \{ P(f(a)) \land \neg G(a), P(f(f(a))) \land \neg G(f(a)), \dots \}$$

Achtung: $P(a) \land \neg G(a)$ ist nicht in der Herbrand Expansion von F.

Grundresolutions-Algorithmus

Basierend auf den Satz von Gödel-Herbrand-Skolem.

Grundresolutions-Algorithmus

Gegeben: Formel F in Matrixklauselform

- Initialisiere: $M = \{\}, i = 0$
- Iteriere bis M unerfüllbar
 - Erhöhe i um eins
 - Berechne das *i*-te Element H_i der Herbrand Expansion E(F)
 - Setze $M = \{H_1, ..., H_i\}$
 - Betrachte M als aussagenlogische Formeln und teste auf Erfüllbarkeit
- Ist F unerfüllbar hält das Verfahren nach endlich vielen Schritten (Kompaktheitssatz)
- Ist F erfüllbar endet das Verfahren nie (Endlosschleife)

Grundresolutions-Algorithmus - Beispiel

$$F = \forall x (P(f(x)) \land \neg P(x))$$

- Matrixformel: $P(f(x)) \land \neg P(x)$
- Matrixklauselform: $K = \{\{P(f(x))\}, \{\neg P(x)\}\}$
- **D(F):** $\{a, f(a), f(f(a)), \dots\}$
- **E(F)**: $\{P(f(a)) \land \neg P(a), P(f(f(a))) \land \neg P(f(a)), \dots\}$
- Wir können auch gleich mit der Klauselmenge arbeiten:

E(K):
$$\{\{P(f(a))\}, \{\neg P(a)\}, \{P(f(f(a)))\}, \{\neg P(f(a))\}, \dots\}$$

Grundresolutions-Algorithmus - Beispiel

```
1 Teste M = \{\{P(f(a))\}, \{\neg P(a)\}\}

\hookrightarrow erfüllbar

2 Teste M = \{\{P(f(a))\}, \{\neg P(a)\}, \{P(f(f(a)))\}, \{\neg P(f(a))\}\}

\{P(f(a))\} \{\neg P(f(a))\}
```

Im zweiten Schritt des Grundresolutions-Algorithmus ist M unerfüllbar, daher ist auch F unerfüllbar.

Semi-Entscheidbarkeit der Prädikatenlogik

Die Prädikatenlogik ist semi-entscheidbar:

- Ist F unerfüllbar hält das Verfahren nach endlich vielen Schritten. Aber wir haben keine Schranke für die Anzahl der Schritte.
- Wir können in endlich vielen Schritten zeigen das F eine Tautologie ist (wir testen ob ¬F unerfüllbar ist).
- Es gibt kein Verfahren das
 - Testet ob F erfüllbar ist und
 - das für alle erfüllbaren F nach endlich vielen Schritten hält.

Zusammenfassung & Ausblick

Bis jetzt haben wir Folgendes behandelt:

- Formale Logik in der Informatik
- Aussagenlogik
 - Hornlogik
- Prädikatenlogik: Syntax, Semantik, Grundresolution

Weiter geht es mit:

- Resolution der Prädikatenlogik Fortsetzung
- Logische Programmierung
 - Programmiersprache Prolog