Esercizio S9-L3

Per cominciare l'esercizio assegnato apriamo il file allegato con Wireshark sulla nostra macchina Kali e diamo un'occhiata generale per vedere di cosa si tratta.

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000000	192.168.200.150	192.168.200.255	BROWSER	 286 Host Announcement METASPLOITABLE, Workstation, Server, Print Queue Server, Xenix Server, NT Workstati
		192.168.200.100	192.168.200.150	TCP	74 53060 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810522427 TSecr=0 WS=128
_	3 23.764287789	192.168.200.100	192.168.200.150	TCP	74 33876 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810522428 TSecr=0 WS=128
	4 23.764777323	192.168.200.150	192.168.200.100	TCP	74 80 - 53060 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSval=4294951165 TSecr=810522427
		192.168.200.150	192.168.200.100	TCP	60 443 → 33876 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
		192.168.200.100	192.168.200.150	TCP	66 53060 - 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810522428 TSecr=4294951165
		192.168.200.100	192.168.200.150	TCP	66 53060 80 [RST, ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810522428 TSecr=4294951165
		PcsCompu_fd:87:1e	PcsCompu_39:7d:fe	ARP	60 Who has 192.168.200.100? Tell 192.168.200.150
	9 28.761644619	PcsCompu_39:7d:fe	PcsCompu_fd:87:1e	ARP	42 192.168.200.100 is at 08:00:27:39:7d:fe
		PcsCompu_39:7d:fe	PcsCompu_fd:87:1e	ARP	42 Who has 192.168.200.150? Tell 192.168.200.100
		PcsCompu_fd:87:1e	PcsCompu_39:7d:fe	ARP	60 192.168.200.150 is at 08:00:27:fd:87:1e
_		192.168.200.100	192.168.200.150	TCP	74 41304 - 23 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535437 TSecr=0 WS=128
_		192.168.200.100	192.168.200.150	TCP	74 56120 → 111 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535437 TSecr=0 WS=128
	14 36.774257841	192.168.200.100	192.168.200.150	TCP	74 33878 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535437 TSecr=0 WS=128
	15 36.774366305	192.168.200.100	192.168.200.150	TCP	74 58636 → 554 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	16 36.774405627	192.168.200.100	192.168.200.150	TCP	74 52358 → 135 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	17 36.774535534	192.168.200.100	192.168.200.150	TCP	74 46138 → 993 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	18 36.774614776	192.168.200.100	192.168.200.150	TCP	74 41182 → 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	19 36.774685505	192.168.200.150	192.168.200.100	TCP	74 23 - 41304 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSval=4294952466 TSecr=810535437
	20 36.774685652	192.168.200.150	192.168.200.100	TCP	74 111 - 56120 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSval=4294952466 TSecr=810535437
	21 36.774685696	192.168.200.150	192.168.200.100	TCP	60 443 → 33878 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	22 36.774685737	192.168.200.150	192.168.200.100	TCP	60 554 → 58636 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	23 36.774685776		192.168.200.100	TCP	60 135 → 52358 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	24 36.774700464	192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535438 TSecr=4294952466
	25 36.774711072	192.168.200.100	192.168.200.150	TCP	66 56120 → 111 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535438 TSecr=4294952466
	26 36.775141104	192.168.200.150	192.168.200.100	TCP	60 993 → 46138 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	27 36.775141273	192.168.200.150	192.168.200.100	TCP	74 21 41182 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSval=4294952466 TSecr=810535438
	28 36.775174048		192.168.200.150	TCP	66 41182 - 21 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535438 TSecr=4294952466
	29 36.775337800	192.168.200.100	192.168.200.150	TCP	74 59174 → 113 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	30 36.775386694	192.168.200.100	192.168.200.150	TCP	74 55656 - 22 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535439 TSecr=0 WS=128
	31 36.775524204	192.168.200.100	192.168.200.150	TCP	74 53062 - 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535439 TSecr=0 WS=128
	32 36.775589806	192.168.200.150	192.168.200.100	TCP	60 113 - 59174 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

Il primo pacchetto analizzato da Wireshark ci dice che la macchina Metasploitable ha indirizzo IP 192.168.200.150 mentre la gran parte dei pacchetti successivi sembrano essere tutti protocollo TCP e molti di questi sono inviati da una macchina con indirizzo IP 192.168.200.100 verso diverse porte della macchina Metasploitable. A primo impatto sembrerebbe che una macchina stia effettuando un port scan verso Meta, andiamo ad analizzare più in dettaglio la cattura per confermare questa ipotesi.

Seguiamo il path in alto Statistics > Protocol Hierarchy per vedere più in dettaglio le informazioni sui protocolli dei pacchetti inviati.

Da questa schermata possiamo vedere il totale dei pacchetti tracciati da Wireshark (2083) e possiamo vedere che il 99.8% di questi pacchetti sono di tipo TCP, mentre solo 4 sono di tipo ARP.

Proviamo adesso a passare ad un altra schermata seguendo il path Statistics > Conversations e premendo sul riquadro TCP ed in seguito una volta su Port B ed una volta su Packets A > B.

Protocol	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	End Bytes	End Bits/s	PDUs
▼ Frame	100.0	2083	100.0	139872	30 k	0	0	0	2083
▼ Ethernet	100.0	2083	25.2	35276	7652	0	0	0	2083
▼ Internet Protocol Version 4	99.8	2079	29.7	41580	9019	0	0	0	2079
 User Datagram Protocol 	0.0	1	0.0	8	1	0	0	0	1
 NetBIOS Datagram Service 	0.0	1	0.2	244	52	0	0	0	1
 SMB (Server Message Block Protocol) 	0.0	1	0.1	162	35	0	0	0	1
▼ SMB MailSlot Protocol	0.0	1	0.0	25	5	0	0	0	1
Microsoft Windows Browser Protoco	l 0.0	1	0.1	76	16	1	76	16	1
Transmission Control Protocol	99.8	2078	44.8	62652	13 k	2078	62652	13 k	2078
Address Resolution Protocol	0.2	4	0.1	148	32	4	148	32	4

Qui possiamo osservare i pacchetti TCP inviati da 192.168.200.100 a Meta e messi in ordine ascendente delle porte, come possiamo osservare la macchina sta inviando pacchetti TCP a tutte le porte di Meta fino alla 1024 confermando l'ipotesi di un port scan. Possiamo osservare la colonna Packets e vedere che è segnato il numero 2 su molte porte, ciò significa che il three-way-handshake non è stato completato e la porta era chiusa.

Ethernet · 2	Pv4 · 2	IPv6	TCP - 1026	UDP · 1									
Address A	Port	A Addr	ess B	Port B ▼	Packets	Bytes	Stream ID	Packets A → B	Bytes A → B	Packets B → A	Bytes B → A	Rel Start	Duration
192.168.200.100	3739	6 192.1	168.200.150	1	2 13	4 bytes	874	1	74 bytes	1	60 bytes	36.864770	0.0002
192.168.200.100	3474	8 192.1	168.200.150	2	2 13	4 bytes	292	1	74 bytes	1	60 bytes	36.806880	0.0002
192.168.200.100	5893	8 192.1	168.200.150	3	2 13	4 bytes	966	1	74 bytes	1	60 bytes	36.873582	0.0003
192.168.200.100	4305	6 192.1	168.200.150	4	2 13	4 bytes	557	1	74 bytes	1	60 bytes	36.832248	0.0003
192.168.200.100	5428	2 192.1	168.200.150	5	2 13	4 bytes	661	1	74 bytes	1	60 bytes	36.841442	0.0003
192.168.200.100	4087	4 192.1	168.200.150	6	2 13	4 bytes	212	1	74 bytes	1	60 bytes	36.798733	0.0003
192.168.200.100	5270	2 192.1	168.200.150	7	2 13	4 bytes	505	1	74 bytes	1	60 bytes	36.827912	0.0002
192.168.200.100	4772	0 192.1	168.200.150	8	2 13	4 bytes	124	1	74 bytes	1	60 bytes	36.790063	0.0001
192.168.200.100	4134	8 192.1	168.200.150	9	2 13	4 bytes	429	1	74 bytes	1	60 bytes	36.820242	0.0002
192.168.200.100	4601	4 192.1	168.200.150	10	2 13	4 bytes	216	1	74 bytes	1	60 bytes	36.799061	0.0002
192.168.200.100	3725	2 192.1	168.200.150	11	2 13	4 bytes	54	1	74 bytes	1	60 bytes	36.780326	0.0003
192.168.200.100	4170	0 192.1	168.200.150	12	2 13	4 bytes	793	1	74 bytes	1	60 bytes	36.854291	0.0002
192.168.200.100	5881	4 192.1	168.200.150	13	2 13	4 bytes	235	1	74 bytes	1	60 bytes	36.801464	0.0002
192.168.200.100	5364	8 192.1	168.200.150	14	2 13	4 bytes	382	1	74 bytes	1	60 bytes	36.815493	0.0003
192.168.200.100	4245	4 192.1	168.200.150	15	2 13	4 bytes	233	1	74 bytes	1	60 bytes	36.801319	0.0002

In fondo possiamo trovare tutte le porte con numero di pacchetti 4, queste sono le porte in cui il three-way-handshake è stato completato.

Possiamo dunque concludere con certezza che la cattura di Wireshark ha tracciato un tentativo riuscito di port scan eseguito dalla macchina 192.168.200.100 verso la macchina Metasploitable e ha individuato 12 porte aperte.

192.168.200.100	41182 192.168.200.150	21	4 280 bytes	8	3	206 bytes	1	74 bytes	36.774615	0.0012
192.168.200.100	55656 192.168.200.150	22	4 280 bytes	10	3	206 bytes	1	74 bytes	36.775387	0.0006
192.168.200.100	41304 192.168.200.150	23	4 280 bytes	2	3	206 bytes	1	74 bytes	36.774143	0.0015
192.168.200.100	60632 192.168.200.150	25	4 280 bytes	19	3	206 bytes	1	74 bytes	36.776512	0.0015
192.168.200.100	37282 192.168.200.150	53	4 280 bytes	21	3	206 bytes	1	74 bytes	36.776671	0.0014
192.168.200.100	53060 192.168.200.150	80	4 280 bytes	0	3	206 bytes	1	74 bytes	23.764215	0.0007
192.168.200.100	53062 192.168.200.150	80	4 280 bytes	11	3	206 bytes	1	74 bytes	36.775524	0.0005
192.168.200.100	56120 192.168.200.150	111	4 280 bytes	3	3	206 bytes	1	74 bytes	36.774218	0.0014
192.168.200.100	46990 192.168.200.150	139	4 280 bytes	17	3	206 bytes	1	74 bytes	36.776478	0.0014
192.168.200.100	33042 192.168.200.150	445	4 280 bytes	15	3	206 bytes	1	74 bytes	36.776386	0.0015
192.168.200.100	45648 192.168.200.150	512	4 280 bytes	68	3	206 bytes	1	74 bytes	36.781357	0.0006
192.168.200.100	42048 192.168.200.150	513	4 280 bytes	480	3	206 bytes	1	74 bytes	36.825398	0.0039
192.168.200.100	51396 192.168.200.150	514	4 280 bytes	118	3	206 bytes	1	74 bytes	36.788600	0.0011

Azioni di rimedio:

Per far in modo che la macchina Metasploitable sia meno vulnerabile a port scan futuri è consigliabile:

- Implementare un Firewall che rileva quando viene inviata una quantità elevata in poco tempo di richieste TCP e che blocchi le connessioni dalla macchina che sta inviando queste richieste.
- Spostare i servizi su porte non note: lo scan che abbiamo appena analizzato si è limitato a scansionare le prime 1024 porte, se i nostri servizi fossero stati spostati su porte meno note (ad esempio porte nel range 30.000-50.000) non sarebbero stati rilevati dallo scan.
- Eseguire port scan interni per essere sempre a conoscenza dello stato delle porte aperte e chiudere porte che non si usano più.