МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. И. И. ПОЛЗУНОВА»

Факультет информационных технологий

Кафедра Прикладная математика

А.В. Сорокин

ЗАДАНИЕ ДЛЯ УПРАЖНЕНИЯ ПО ТЕМЕ «РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ОБЫЧНЫМ СИМПЛЕКС-МЕТОДОМ»

Методические материалы к выполнению упражнения для решения задач линейного программирования

УДК 681.3

Сорокин А.В. Задание для упражнения по теме «Решение задачи линейного программирования обычным симплекс-методом». Алт. госуд. технич. ун-т им. И. И. Ползунова. - Барнаул, 2022. – 8 с.

В учебных материалах изложены некоторые ответы на вопросы по теме «Решение задачи линейного программирования обычным симплекс-методом». Специально созданные и подобранные примеры позволяют в полной мере изучить основные особенности построения математических моделей, используемых задачах линейного программирования. Учебные материалы предназначены для студентов, обучающихся по техническим и экономическим направлениям бакалавриата.

Содержание

1.	Задание к упражнению	. 4
	1. Изучение обычного симплекс-метода	. 4
	1.1. Выбор модели ЗЛП	. 4
	1.2. Разбор первоначального шага обычного симплекс-метода на числовом	
	примере и поиск его первого допустимого решения	. 4
	1.3. Применение вручную обычного симплекс-метода для определения	
	первого базисного решения	. 4
	1.4. Выбор свободной переменной для замены ею несвободной (базисной)	
	переменной	. 4
	2. Формирование отчета о проделанной работе.	. 5
2.	Варианты заданий	. 6
3.	Список вопросов по теме работы	. 7
4.	Список литературы.	. 8

1. Задание к упражнению

- **1. Изучение обычного симплекс-метода.** Используя материал раздела 2 темы 2 и возможно литературу, указанную в конце материала [2-8], изучить способ решения задачи линейного программирования (ЗЛП) обычным симплекс-методом.
 - 1.1. Выбор модели ЗЛП. В качестве задачи взять математическую модель задачи из упражнения 3 согласно варианту.
 - 1.2. Разбор первоначального шага обычного симплекс-метода на числовом примере и поиск его первого допустимого решения. Чтобы решить задачу симплекс-методом добавить к выбранной модели искусственные переменные (обычно их 3, но может быть и другое количество), чтобы система ограничений приняла систему уравнений. Например, имеем

$$F=2x_1 + 4x_2 \rightarrow \max$$
,
 $0.3x_1 + 0.4x_2 \le 170$,
 $0.2x_1 + 0.5x_2 \le 160$,
 $1.6x_1 + 1.0x_2 \le 800$,
 $x_1 \ge 0, x_2 \ge 0$.

Введем искусственные переменные $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$. Получим ЗЛП

$$F=2x_1 + 4x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 \longrightarrow \max,$$

$$0,3x_1 + 0,4x_2 + x_3 = 170,$$

$$0,2x_1 + 0,5x_2 + x_4 = 160,$$

$$1,6x_1 + 1,0x_2 + x_5 = 800,$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.$$

Цель дальнейшего применения симплекс-метода — избавление от искусственных (дополнительных) переменных x_3 , x_4 , x_5 выводом их из несвободных (базисных) переменных.

1.3. **Применение вручную обычного симплекс-метода для определения первого базисного решения.** Начнем применять «вручную» обычный симплекс-метод, описанный в разделе 2 темы 2, считая, что первоначальное допустимое решение основано на искусственных (дополнительных) переменных.

$$F=2x_1 + 4x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 \rightarrow \max,$$

$$x_3 = 170 - 0,3x_1 - 0,4x_2,$$

$$x_4 = 160 - 0,2x_1 - 0,5x_2,$$

$$x_5 = 800 - 1,6x_1 + 1,0x_2,$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.$$

В качестве начального допустимого решения принимается базисное решение $X = (x_1, x_2, x_3, x_4, x_5)^T = (0, 0, 170, 160, 800)^T$. Значение функции цели F при x_1 =0, x_2 =0 равно F = 0. И оно может быть улучшено, поскольку коэффициенты при свободных переменных x_1, x_2 у функции цели $F = 2x_1 + 4x_2$ положительны.

1.4. Выбор свободной переменной для замены ею несвободной (базисной) переменной. Попытаемся найти решение обычным симплекс-методом. Первоначально нужно ввести в несвободные (базисные) переменные, ту свободную переменную, которая имеет максимальный положительный коэффициент в функции цели $F = 2x_1 + 4x_2$. Значит это должна быть переменная x_2 . А из несвободных (базисных) x_3 , x_4 , x_5 вывести ту, которая при x_1 =0 дает минимум x_2 из соответствующих им неравенств ($170 \ge 0,4x_2$, $160 \ge 0,5x_2$, $800 \ge x_2$). Очевидно, что это эта выводимая переменная x_4 , поскольку x_2 достигает в нем минимального значения $x_2 = 160/0,5$ =320. Необходимо пересчитать функцию цели, избавившись в

ней от переменной x_2 путем ее замены, преобразовав соответствующим образом 2-ое уравнение для x_4 :

$$x_4 = 160 - 0.2x_1 - 0.5x_2 \Rightarrow 0.5x_2 = 160 - 0.2x_1 - x_4 \Rightarrow x_2 = 160/0.5 - 0.2/0.5x_1 - x_4/0.5 \Rightarrow x_2 = 320 - 0.4x_1 - 2x_4.$$

В итоге получим

$$F = 2x_1 + 4 \cdot (320 - 0.4x_1 - 2x_4) + 0.x_3 + 0.x_4 + 0.x_5 =$$

$$= 1280 + 2x_1 - 1.6x_1 - 8x_4 + 0.x_3 + 0.x_4 + 0.x_5 =$$

$$= 1280 + 0.4x_1 - 8x_4 + 0.x_2 + 0.x_3 + 0.x_5 \rightarrow \max,$$

и систему равенств:

$$x_{3} = 170 - 0.3x_{1} - 0.4 \cdot (320 - 0.4x_{1} - 2x_{4}),$$

$$x_{2} = 320 - 0.4x_{1} - 2x_{4},$$

$$x_{5} = 800 - 1.6x_{1} + 1.0 \cdot (320 - 0.4x_{1} - 2x_{4}), \implies$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0, x_{4} \ge 0, x_{5} \ge 0,$$

$$x_{3} = 170 - 0.4 \cdot 320 - 0.3x_{1} + 0.4 \cdot 0.4x_{1} + 0.4 \cdot 2x_{4},$$

$$x_{2} = 320 - 0.4x_{1} - 2x_{4},$$

$$x_{5} = 1120 - 1.6x_{1} - 0.4x_{1} - 2x_{4}, \implies$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0, x_{4} \ge 0, x_{5} \ge 0,$$

$$x_{3} = 298 - 0.14x_{1} + 0.8x_{4},$$

$$x_{2} = 320 - 0.4x_{1} - 2x_{4},$$

$$x_{5} = 1120 - 2x_{1} - 2x_{4},$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0, x_{4} \ge 0, x_{5} \ge 0.$$

Окончательно на первом шаге имеем функцию цели и систему равенств

$$F = 1280 + 0.4x_{1} - 8x_{4} + 0.x_{2} + 0.x_{3} + 0.x_{5} \rightarrow \text{max},$$

$$x_{3} = 298 - 0.14x_{1} + 0.8x_{4},$$

$$x_{2} = 320 - 0.4x_{1} - 2x_{4},$$

$$x_{5} = 1120 - 2x_{1} - 2x_{4},$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0, x_{4} \ge 0, x_{5} \ge 0.$$

Переходим ко 2-му шагу, поскольку функция цели может быть увеличена из-за положительного коэффициента 0,4 при свободной переменной x_1 .

Таким образом продолжаем процесс поиска решений.

2. Формирование отчета о проделанной работе. Необходимо написать отчет о проделанной работе в текстовом редакторе Microsoft Word (LibreOffice Writer). Отчет должен содержать титульный лист по форме, содержание, Постановку задачи, в виде математической модели, построенной в упражнении 3. Отразить процесс получения решения или показать, что его не существует. В отчете можно использовать скриншоты. В отчете должно быть Заключение, где рассказывается о решенной задаче, и способах преодоления трудностей, возникших при решении данной задачи. Должен быть список литературы, за основу которого можно взять список из данного учебного материала.

2. Варианты заданий

В качестве задачи взять построенную математическую модель задачи из упражнения 3 [1] согласно варианту.

3. Список вопросов по теме работы

- 1. В чем состоит суть задачи линейного программирования?
- 2. Какой вид имеет функция цели в задачи линейного программирования?
- 3. Что представляют собой ограничения в задаче линейного программирования?
- 4. Что такое область допустимых решений?
- 5. Как построить область допустимых решений?
- 6. Как задать первоначальное решение ЗЛП?
- 7. Что такое искусственные (дополнительные) переменные в ЗЛП?
- 8. Что такое несвободные (базисные) переменные ЗЛП?
- 9. Что такое свободные переменные ЗЛП?
- 10. Что такое текущее базисное решение ЗЛП?
- 11. Когда можно решать задачу линейного программирования обычным симплекс-методом?
- 12. Что такое недопустимое текущее базисное решение ЗЛП?
- 13. В чем состоит суть алгоритма поиска решения задачи линейного программирования обычным симплекс-методом?
- 14. При каких переменных анализируется коэффициенты в функции цели, для продолжения поиска решения ЗЛП?
- 15. Какими должны быть коэффициенты в функции цели для продолжения поиска решения ЗЛП, если необходимо найти ее максимум?
- 16. Какими должны быть коэффициенты в функции цели для продолжения поиска решения ЗЛП, если необходимо найти ее минимум?
- 17. Какая из несвободных (базисных) переменных выбирается для удаления путем введения новой несвободной (базисной) переменной?
- 18. Как определяется текущее базисное решение ЗЛП и соответствующее ему значение функции цели?
- 19. Что происходит в алгоритме обычного симплекс-метода, если решение ЗЛП представляет собой множество, образующееся на основе грани допустимого множества решений?
- 20. Что происходит в алгоритме обычного симплекс-метода, если решение ЗЛП представляет собой угловую точку симплекса, образующего границу допустимого множества решений?
- 21. Что происходит в алгоритме обычного симплекс-метода, если ЗЛП имеет бесконечно большое положительное решение?
- 22. Что происходит в алгоритме простого симплекс-метода, если ЗЛП имеет бесконечно большое отрицательное решение?

4. Список литературы

- 1. Сорокин А.В. Задание для упражнения по теме «Математические модели в задаче линейного программирования». Алт. госуд. технич. ун-т им. И. И. Ползунова. Барнаул, 2022. 21 с.
- 2. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: учеб. пособие, 2-е изд. перераб. и доп., М.: Финансы и статистика, 2006. 432 с.: ил.
- 3. Гладких Б.А. Методы оптимизации и исследование операций для бакалавров информатики. Ч.1. Введение в исследование операций. Линейное программирование: Учебное пособие. – Томск: Из-во НТЛ, 2009, 200 с.
- 4. Горлач Б.А. Исследование операций: Учебное пособие. СПб: Из-во «Лань», 2013, 448 с.
- 5. Есипов Б.А. Методы исследование операций: Учебное пособие. СПб: Изд-во «Лань», 2013, 304 с.
- 6. Мадера А.Г. Математические модели в управлении: Компьютерное моделирование в Microsoft Excel: Лабораторные работы. М.:РГГУ, 2007. 121 с.
- 7. Новиков, А.И. Экономико-математические методы и модели: учебник / А.И. Новиков. Москва: Издательско-торговая корпорация «Дашков и К°», 2017. 532 с.: ил. (Учебные издания для бакалавров). Библиогр. в кн. ISBN 978-5-394-02615-7; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=454090 (05.12.2020).
- 8. Ржевский С.В. Исследование операций: Учебное пособие. СПб: Изд-во «Лань», 2013, 480 с.