Ajit Jadhav S20160010034 Arvind Deshraj S20160010007 Junaid N Z S20160010036 Rohan S S20160010073

Code Search

By Stallions

What are the uses of code search?

Makes developer's life easier.

Find better implementations of existing codes. Able to find snippets of code inside large codebase

IR for the rescue

Lucene!

- Wildcard queries
- K-gram index
- Natural language queries

Procedure

- 1. Every query can be processed through different pipe lines. Either subjected to standard tokenization and send for search or ..
- 2. Queries may also be placed as wildcard queries.
- 3. The documents are indexed as a normal inverted posting list and also as an n-gram positional inverted posting list.

Indexing

- 1. We have 260 C-codes as our entire collection.(~400KB)
- 2. These documents are passed through our index builder codes(n-gram and normal).
- 3. These documents are then indexed depending on which function we chose as either a positional inverted index(~300KB) or as an n-gram positional inverted index.
- 4. We make use of the standard analyser to find stop words and index the documents.

Positional Inverted Index

► Figure 2.1 Positional index example. The word to has a document frequency 993,477, ctionary and occurs 6 times in document 1 at positions 7, 18, 33, etc.

K-gram Index

Bigram index example

A k-gram index is an index in which the dictionary consists of all k-grams that occur in any word in the lexicon

Each postings list point from the k-gram to all lexicon words containing that k-gram.

Hypothesis

K-grams will retrieve more documents as it will have lot of code snippets that match.

• Eg - if we search for "arrange all elements in an array" we will get results ranging from normal sorting algorithms to complex graph implementations which have sorting in them.

Query processing

Stop-word removal

 These are generally words that don't give value towards the search. This is because these set of words(only a small example is shown here) appear in almost all documents.

Stemming

- >>> print(stemmer.stem("running"))
 run
- Stemming follows different set of rules based on what algorithm we follow.
- For the purpose of the project we use the famous snowball stemmer

Few results of the CodeSearch

Query: Arrange elements in increasing order

Query: Code for string permutations.

Query: Check if a graph is connected or not

Query: Find longest common substring

Query: Find the longest palindromic substring

Query: b*search

Query: kr*l*

Query: *transform*

Query: dyn*c

Conclusions

- K-gram returns a lot more results (not all are relevant)
- Wildcard queries are performing relatively better.
- Basic natural language queries give reasonable outputs.