	T 6		
	Лабораторная работа «Исследование частотных характеристик элек	трических цепей»	>
Выполнил		МГТУ им.	Гр.
Проверил		Н.Э.Баумана	Стенд №

2. ПРЕДВАРИТЕЛЬНАЯ ПОДГОТОВКА К ЛАБОРАТОРНОЙ РАБОТЕ

Схемы, исследуемые в лабораторной работе, можно представить в виде Гобразных четырёхполюсников (рис. 3).

Рис. 3. Г-образный четырехполюсник.

Для R-L цепи рассчитать два варианта: Z_1 - активное сопротивление $R_{1}\left(Z_{1}=R_{1}\right),\ Z_{2}-$ катушка индуктивности с активным сопротивлением обмотки $R_{_{
m K}}\left(Z_2=R_{_{
m K}}+j\omega L_{_{
m K}}\right)$, и наоборот. Значения R_1 , $R_{_{
m K}}$ и $L_{_{
m K}}$ берутся из таблицы 1.

Для R-C цепи рассчитать два варианта: Z_1 - активное сопротивление $R_1(Z_1 = R_1), Z_2$ – емкость C $Z_2 = -j\frac{1}{\omega C}$ и наоборот. Значения R_1 и C берутся из таблицы 1.

Для каждого случая записать комплексную передаточную (комплексный коэффициент передачи по напряжению): $K_U(j\omega) = \frac{U_{\text{вых}}(j\omega)}{U_{\text{вх}}(j\omega)} = \frac{Z_2}{Z_1 + Z_2}$.

 $L_{\rm K}$, мГн $R_{\rm K}$, Ом R_1 , Om C, мк Φ № стенда 220 190 1 или 11 100 1.0 2 или 12 100 33 60 4.4 3 или 13 220 100 190 4.4 4 или 14 220 100 190 1.0 5 или 15 100 33 4,4 60 6 или 16 220 100 190 4,4 220 7 или 17 100 190 1.0 33 8 или 18 100 60 4,4 9 или 19 220 100 190 4,4 10 или 20 220 100 190 1.0

Таблица 1

Перейти к показательной форме записи (без умножения числителя и знаменателя на комплексно-сопряженное выражение C - jD):

$$\begin{split} K_{U}(j\omega) &= \frac{Z_{2}}{Z_{1} + Z_{2}} = \frac{A + jB}{C + jD} = \frac{\sqrt{A^{2} + B^{2}} \cdot e^{jarctgB/A}}{\sqrt{C^{2} + D^{2}} \cdot e^{jarctgD/C}} = \\ &= \frac{\sqrt{A^{2} + B^{2}}}{\sqrt{C^{2} + D^{2}}} \cdot e^{j(arctgB/A - arctgD/C)} = K_{U}(\omega) \cdot e^{j\varphi(\omega)}. \end{split}$$

По найденным выражениям $K_U(\omega)$ и $\varphi(\omega)$, построить графики АЧХ и ФЧХ.

В отчете должны быть приведены расчетные выражения и графики АЧХ и ФЧХ.

Методические рекомендации.

- 1. При построении графиков желательно использовать пакеты MatLab или MatCad.
- 2. Вычисляя $K_U(\omega)$ и $\varphi(\omega)$, значения $L_{\rm K}$, представленные в таблице 1, перевести в Генри, а C в Фарады.
 - 3. Частоту синусоидального сигнала изменять в диапазоне $100 \le \omega \le 100000$.
- 4. Для каждого из четырех случаев (R-L, L-R, R-C, C-R) АЧХ и ФЧХ строить на общей оси абсцисс в функции десятичного логарифма угловой частоты: $K_{IJ}(\omega) = f(\lg(\omega)); \varphi(\omega) = f(\lg(\omega))$. Каждый график должен быть подписан.

3. ЗАДАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

3.1. Изучите описание лабораторного стенда (Методические указания «Стенд и приборы для исследования электрических цепей»).

Электрические схемы исследуемых цепей приведены на рис. 4 а.

Рис. 4. Электрическая схема эксперимента: цепь R-L (а); цепь L-R (б); цепь R-C (в); цепь C-R (г).

3.2. Исследование частотных характеристик цепи *R-L*

На наборной панели смонтируйте схему в соответствии с рис. 5. Мини блок резистора R_1 и мини блок индуктивности $L_{\rm k}$ выбирайте в соответствии с номером стенда (таблица 1).

Активируйте левой кнопкой мыши иконку «ВП ТОЭ» на рабочем столе компьютера. В открывшейся вкладке **Приборы I**, рис. 6, установите приборы V0, V1 для измерения действующего значения. Нажмите указателем мыши на вкладку Меню, и в раскрывшемся списке последовательно активируйте **Приборы II**, **Осциллограф** и **Аналоговый прибор**. Во вкладке «Вход» Аналогового прибора установите значение 7.

Кнопкой «Форма» (рис. 5) установите синусоидальный выходной сигнал, ручкой регулировки частоты установите по индикатору частоту сигнала $100~\Gamma$ ц. Ручкой регулировки амплитуды установите по виртуальному вольтметру V0~ напряжение $8\pm0.1~B$, и в дальнейшем поддерживайте это значение неизменным.

- гибкая перемычка

Рис. 5. Монтажная схема (цепь R-L).

Рис. 6. Активация виртуальных приборов.

Для каждой рекомендованной частоты проведите измерения, занося их в таблицу 2.

Проведите вычисления для каждой строки: $K_U = \frac{U_2}{U_1}$.

Таблица 2 (цепь *R-L*)

$U_1 = 8 \pm 0,1 \mathrm{B}$	$R_1 =$	Oм; $L_{\rm K} =$	м Γ н; $R_{\rm K}$	= O _N	1.	
Измерено				Вычислено		
f, Гц	U_2 , B	φ , град	ω , рад/сек	$\lg \omega$	K_U	
20			125,6	2,1		
40			251,2	2,4		
80			502,4	2,7		
160			1004,8	3,0		
320			2009,6	3,3		
640			4019,2	3,6		
1280			8038,4	3,9		
1600			10048	4,0		
2000			12560	4,1		

3.3. Исследование частотных характеристик цепи L-R

Электрическая схема эксперимента приведена на рис. 4 б. Поменяйте местами на монтажной панели мини блоки резистора $R_{\rm l}$ и индуктивности $L_{\rm k}$. Проведите измерения и вычисления для тех же частот, отображая результаты в таблице 3.

По результатам измерений (таблицы 2 — 3) построить графики АЧХ $K_U(\omega) = f(\lg(\omega))$ и ФЧХ $\varphi(\omega) = f(\lg(\omega))$, используя заготовку (рис. 7 а). Каждый график должен быть подписан.

Таблица 3 (цепь *L-R*)

				1 000111124	а э (цепь в к
$U_1 = 8 \pm 0.11$	B; $R_1 =$	Oм; $L_{\kappa} =$	м Γ н; $R_{\rm K}$	= O _M	ſ.
Измерено			Вычислено		
f, Гц	U_2 , B	φ , град	ω , рад/сек	$\lg \omega$	K_U
20			125,6	2,1	
40			251,2	2,4	
80			502,4	2,7	
160			1004,8	3,0	
320			2009,6	3,3	
640			4019,2	3,6	
1280			8038,4	3,9	
1600			10048	4,0	
2000			12560	4,1	

3.4. Исследование частотных характеристик цепи С-R

Электрическая схема эксперимента приведена на рис. 4 г. Замените мини блок индуктивности $L_{\rm k}$ на мини блок конденсатора C. Для каждой рекомендованной частоты проведите измерения, занося их в таблицу 4.

Таблица 4 (цепь *C-R*)

$U_1 = 8 \pm 0.1 \mathrm{B} \; ; \; R_1 = \qquad \mathrm{Om} \; ; C = \qquad \mathrm{mk} \Phi.$						
Измерено			Вычислено			
f , Гц U_2 , В φ , град ω , рад/сек $\lg \omega$					K_U	
20			125,6	2,1		
40			251,2	2,4		
80			502,4	2,7		
160			1004,8	3,0		

320	2009,6	3,3	
640	4019,2	3,6	
1280	8038,4	3,9	
1600	10048	4,0	
2000	12560	4,1	

3.5. Исследование частотных характеристик цепи *R-C*

Электрическая схема эксперимента приведена на рис. 4 в. Поменяйте местами на монтажной панели мини блоки резистора R_1 и конденсатора C. Для каждой рекомендованной частоты проведите измерения, занося их в таблицу 5.

Таблица 5 (цепь *R-C*)

$U_1 = 8 \pm 0.1 \mathrm{B};\; R_1 = \mathrm{Om}; C = \mathrm{mk}\Phi.$					
Измерено			Вычислено		
f, Гц	U_2 , B	φ , град	ω , рад/сек	$\lg \omega$	K_U
20			125,6	2,1	
40			251,2	2,4	
80			502,4	2,7	
160			1004,8	3,0	
320			2009,6	3,3	
640			4019,2	3,6	
1280			8038,4	3,9	
1600			10048	4,0	
2000			12560	4,1	

По результатам измерений (таблицы 7.4 – 7.5) построить графики АЧХ $K_U(\omega) = f(\lg(\omega))$ и ФЧХ $\varphi(\omega) = f(\lg(\omega))$, используя заготовку (рис. 7 б). Каждый график должен быть подписан.

После выполнения всех расчетов результаты показать преподавателю и, получив его разрешение, выключить питание стенда.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какие напряжения (токи) называют гармоническими?
- 2. Как связаны частоты f, ω и период колебаний T?
- 3. Дайте определение амплитудного и действующего значения напряжения? Как они связаны?
- 4. Как зависят от частоты ω активные и реактивные сопротивления цепи? В чем разница понятий активного и реактивного сопротивления?
- 5. Как рассчитать в комплексной форме полное сопротивление участка цепи? Какова связь между полным комплексным сопротивлением и полным сопротивлением?
- 6. Дайте определение комплексной передаточной функции, какой смысл имеют её модуль и аргумент?
- 7. Дайте определение амплитудно-частотной и фазо-частотной характеристикам цепи?
- 8. Как строятся частотные характеристики цепи в декартовой системе координат?
- 9. Как строятся частотные характеристики в полярной системе координат?
- 10. Каков фазовый сдвиг между током и напряжением на пассивных элементах электрической цепи (r, L, C)?
- 11. Как качественно рассчитать передаточную характеристику цепи на малых частотах; что при этом понимают под понятием "малая" частота?
- 12. Как качественно рассчитать передаточную характеристику на больших частотах?

Рис. 7. Заготовки для графиков: R-L и L-R (a); R-C и C-R (б).