Harmonic Oscillator

-----

Motivation

Imprementatio

Summary

References

# Harmonic Oscillator with Path Integral Monte-Carlo on the Lattice

Benedikt Otto

physics760: Computational Physics

31st March 2020

#### Introduction

Harmonic Oscillator

Benedikt Ot

Motivation

.....

пприетиентаціс

Results

Summar

Reference

■ Path integral method method is the quantum mechanical generalisation of the Principle of stationary Action.

- Harmonic oscillator is well-understood
- Anharmonic oscillator serves as a toy model for the tunnelling effect
- Path-integral formalism used in more interesting systems as the QCD.

■ Transition probability is  $K(a,b) = \int_a^b e^{iS/\hbar} \mathcal{D}x(t)$ 

- $\blacksquare \mathcal{D}x(t)$  means integration over all paths starting at a and resulting in b.
  - Fast oscillations of the phase
  - Infinite dimensional integral over infinite boundaries ⇒ analytically generally not solvable
- **transition** into **Euclidean** time  $t \rightarrow it$ , called **Wick**-rotation

## Theory

Harmonic Oscillator

Renedikt Otto

Motiva

Theory

Implementation

resures

Summar

References

 $S = \tau \sum_{i} V(x_i) + T(x_i, x_{i+1})$ 

• only  $\Delta S$  is important  $\Rightarrow$  complete recalculation is not necessary

$$\Delta S = \tau(V(x_{i;new}) - V(x_{i;old}) + \\ + T(x_{i-1}, x_{i;new}) + T(x_{i;new}, x_{i+1}) - T(x_{i-1}, x_{i;old}) - T(x_{i;old}, x_{i+1}) )$$

- Potential energy:  $V(x) = \mu x^2 + \lambda x^4$
- Kinetic energy:  $T(x_1, x_2) = \frac{m}{2} \frac{(x_1 x_2)^2}{\tau^2}$

■ Metropolis-Hastings algorithm

- Initialisation of the (time) lattice with for example gaussian distributed random values
- Iterate repeatedly over all lattice sites
- Draw a new value for current lattice site
- Evaluate  $\Delta S < 0 \Rightarrow$  accept change
- Else: Accept if  $e^{-\Delta S/\hbar} > x$  for  $x \in [0,1]$  evenly distributed

### **Implementation**

Harmonic Oscillator

........................

Theor

Wicthods

Implementation

resuits

Summary

Reference

- Implemented in Python3
- Main loop implemented in C++ to improve performance drastically
- Plotting done in Python3

#### Verification: Harmonic oscillator

Harmonic Oscillator

Benedikt Ott

Methods

Implementation

Results

Summary

Reference



■ Condenses into classical minimum for  $\hbar \rightarrow 0$ 

Classical limit harmonic oscillator.

#### Verification: Anharmonic oscillator

Harmonic Oscillator

Benedikt Ott

Methods

**Implementatio** 

**Results**Summary

References



- Initially prepared in the left minimum
- Condenses into classical minimum for  $\hbar \rightarrow 0$
- For low ħ right minimum is not populated

Classical limit anharmonic oscillator.

## Verification: Gaussian shape

Harmonic Oscillator

Benedikt Ott

....

Methods

Implementatio

Results

Summar

D . C .....



Probability density with gaussian fits.

- Starting with a gaussian initial distribution
- Strong deviation from the gaussian shape after 20 iterations
- Thermalisation: resume to gaussian shape after 100 iterations

## Verification: Gaussian shape

Harmonic Oscillator

Deficulty Ott

Methods

Implementatio

Results

Summar



qq-plots: distribution after 1, 20 and 100 Metropolis iterations, compared with gaussian.

- Starting with a gaussian initial distribution
- Strong deviation from the gaussian shape after 20 iterations
- Thermalisation: resume to gaussian shape after 100 iterations

Harmonic Oscillator

-----

Motivatio

...

Implementation

Results

Summary

References

Verification: Results match the expectation ⇒ Code seems to be valid

#### Harmonic oscillator: Tracks

Harmonic Oscillator

Benedikt Otto

...

Methods

Implementation

....

Results
Summary

\_ .







(b) m = 10.0

Typical tracks of the harmonic oscillator.

#### Harmonic oscillator: Tracks

Harmonic Oscillator

Th.....

Methods

Implementation

Results

Summary

Reference



Typical track of the anharmonic oscillator.

- Transitions between minima (at ±2.5) occur
   ⇒ Tunnelling effect
- Transitions are very fast, as expected

## Measurements: linear energy-ħ-dependence

Harmonic Oscillator

Repedikt Otto

iviotiva

....

impiementat

Results

Summary

Reference







(b) Autocorrelation

■ Thermalisation of energy occurs after 50 iterations.

## Measurements: linear energy-ħ-dependence

Harmonic Oscillator

Benedikt Ott

...

Results

Summari

Poforono



0.50 0.75 1.00 1.25 1.50 1.75 2.00

Classical limit energy, harmonic oscillator.

- Linear relation between E and  $\hbar$  as expected from  $E = \hbar\omega\left(\frac{1}{2} + n\right)$ , for n = 0
- slope:  $\frac{\omega}{2} = 5268.8(124)$

### Measurements: tunnelling current

Harmonic Oscillator

Benedikt Ott

Methods

Implementatio

Results

Summar

Referenc



Tunnelling current depending on the distance of the classical minima

- Behaviour is different for distances d > 7 and d < 7</p>
- Tunnelling current decays exponentially with increased distance of minima for *d* > 7.

16

## Measurements: Probability distribution

Harmonic Oscillator

Demeant Of

**-**.

Method

Implementation

....

Results
Summary

Reference



- Initially prepared in the left minimum
- Distributions are centred around the classical limits
- Tunnelling occurs rarely for large distances of minima

#### Measurements: Virial theorem

Harmonic Oscillator

Motivatio

Methods

Implementatio

**Results**Summary

Deferen







(b) Using m = 0.25.

18

- Energy is not distributed evenly between kinetic and potential part
- Virial theorem does not hold for the produced data

## Summary

Harmonic Oscillator

Summary

- Classical limit confirmed validity of the code
- Metropolis-algorithm produces gaussian shaped distributions
- Linear relation between E and  $\hbar$  could be confirmed
- Tunnelling current could be measured depending on the difference of the minima
- The Virial theorem does not apply for the simulated data

Harmonic Oscillator

Oscillator

Motivatio

. ...co. y

Methods

Implementation

esults

Summary

References

Thank you for your attention!

#### References

#### Harmonic Oscillator

Repedikt Otto

IVIOLIVA

. . . .

Implementatio

Summary

References

- [1] C. M. Bender and T. T. Wu, Anharmonic oscillator, Phys. Rev. (2) 184, 1231-1260 (1969).
- [2] M. Rushka J. K. Freericks, A Completely Algebraic Solution of the Simple Harmonic Oscillator, arXiv:1912.08355 [quant-ph] (2019).
- [3] M. Creutz and B. Freedman, A statistical approach to quantum mechanics, Annals of Physics, 132, 427-462 (1981).
- [4] R. Rodgers and L. Raes, Monte Carlo simulations of harmonic and anharmonic oscillators in discrete Euclidean time, DESY Summer Student Programme (2014).
- [5] G. C. Wick, Properties of Bethe-Salpeter Wave Functions, Physical Review. 96 1124-1134 (1954).
- [6] J. F. Cariñena, F. Falceto and M. F. Rañada, A geometric approach to a generalized virial theorem, arXiv:1209.4584 [math-ph] (2012).
- [7] Public Github repository: Harmonic Oscillator, Benedikt Otto (s6beotto), https://github.com/s6beotto/Harmonic-Oscillator.
- [8] Public Github repository: latexrun, Austin Clements (aclements), https://github.com/aclements/latexrun.

#### Data generation

Harmonic Oscillator

Benedikt Otto

Directo

Data generation Report generation



Directory structure of the project for data generation.

## Report generation

Harmonic Oscillator

Benedikt Otto

Directory structure

Data generation Report generation



Directory structure of the project for report generation.

#### Harmonic oscillator: Tracks

Harmonic Oscillator

Benedikt Otto

Directory structure Data generation Report generation



Classical limit of the harmonic oscillator for different masses.