```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Load all sheet names
excel path = "Customer Churn Data Large.xlsx"
xls = pd.ExcelFile(excel path)
sheet names = xls.sheet names # List of all sheet names
print("Available sheets:", sheet_names)
# Load each sheet into a dictionary of DataFrames
dataframes = {sheet: xls.parse(sheet) for sheet in sheet names}
# Access example:
df main = dataframes['Customer Demographics'] # Replace with actual
sheet name
df main.head()
Available sheets: ['Customer Demographics', 'Transaction History',
'Customer_Service', 'Online_Activity', 'Churn_Status']
   CustomerID Age Gender MaritalStatus IncomeLevel
0
            1
                62
                       М
                                Sinale
            2
1
                65
                        М
                                Married
                                                Low
2
            3
                18
                        М
                                 Sinale
                                                Low
3
            4
                21
                        М
                                Widowed
                                                Low
4
            5
                21
                       М
                               Divorced
                                             Medium
def show all df info(dataframes):
    for name, df in dataframes.items():
        print(f"\n=== {name} ===")
        print(df.info())
show all df info(dataframes)
=== Customer Demographics ===
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 5 columns):
#
     Column
                   Non-Null Count
                                    Dtype
 0
    CustomerID
                    1000 non-null
                                    int64
1
                    1000 non-null
    Age
                                    int64
 2
     Gender
                   1000 non-null
                                    object
 3
     MaritalStatus 1000 non-null
                                    object
                    1000 non-null
4
     IncomeLevel
                                    object
dtypes: int64(2), object(3)
memory usage: 39.2+ KB
None
```

```
=== Transaction History ===
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5054 entries, 0 to 5053
Data columns (total 5 columns):
#
    Column
                     Non-Null Count
                                     Dtype
    CustomerID
                     5054 non-null
 0
                                     int64
    TransactionID 5054 non-null
 1
                                     int64
 2
    TransactionDate 5054 non-null
                                     datetime64[ns]
 3
    AmountSpent
                  5054 non-null
                                     float64
    ProductCategory 5054 non-null
4
                                     object
dtypes: datetime64[ns](1), float64(1), int64(2), object(1)
memory usage: 197.6+ KB
None
=== Customer_Service ===
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1002 entries, 0 to 1001
Data columns (total 5 columns):
#
    Column
                      Non-Null Count
                                      Dtype
    CustomerID
                      1002 non-null
                                      int64
    InteractionID
 1
                      1002 non-null
                                      int64
    InteractionDate 1002 non-null
 2
                                      datetime64[ns]
 3
    InteractionType
                      1002 non-null
                                      object
    ResolutionStatus 1002 non-null
4
                                      object
dtypes: datetime64[ns](1), int64(2), object(2)
memory usage: 39.3+ KB
None
=== Online Activity ===
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 4 columns):
#
    Column
                    Non-Null Count
                                    Dtype
     _ _ _ _ _ _
- - -
                                    - - - - -
 0
    CustomerID
                    1000 non-null
                                    int64
1
    LastLoginDate
                    1000 non-null
                                    datetime64[ns]
2
    LoginFrequency 1000 non-null int64
3
    ServiceUsage
                    1000 non-null
                                    obiect
dtypes: datetime64[ns](1), int64(2), object(1)
memory usage: 31.4+ KB
None
=== Churn Status ===
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
                Non-Null Count Dtype
    Column
                 -----
```

```
O CustomerID 1000 non-null int64
1 ChurnStatus 1000 non-null int64
```

dtypes: int64(2)

memory usage: 15.8 KB

None

☐ Join Strategy Explanation

To build a comprehensive dataset for churn prediction, we need to consolidate customer information from all available sources. Each of the provided sheets contributes a different dimension of behavioral, demographic, or outcome data. Here's the logic behind our join strategy:

Customer Demographics

This sheet provides static customer attributes such as age, gender, marital status, and income level. It serves as our **primary base table**, as each entry represents a unique customer (CustomerID).

2. Transaction_History

Each customer can have **multiple transactions**, making this a one-to-many relationship. Therefore, we **aggregate** this table by **CustomerID** to extract useful features such as:

- Total amount spent
- Average transaction value
- Number of transactions

3. Customer Service

Similar to transaction history, each customer can have **multiple interactions** with customer service. Thus, we also **aggregate** this table, capturing features such as:

- Number of interactions
- Most common resolution type

4. Online_Activity

This data contains one row per customer, showing their **most recent login**, **login frequency**, and **digital product usage**. It can be **joined directly** on **CustomerID** without aggregation.

5. Churn_Status

This is our **target variable**, indicating whether the customer has churned. Since it has a one-to-one mapping with CustomerID, it can also be **joined directly**.

By merging these tables using CustomerID as the key, we construct a unified dataset containing demographic, transactional, service, digital behavior, and churn outcome data—ideal for performing EDA and training a predictive model.

```
# 1. Aggregating Transaction History
agg trans =
dataframes['Transaction History'].groupby('CustomerID').agg({
    'AmountSpent': ['sum', 'mean', 'count'],
}).reset index()
agg trans.columns = ['CustomerID', 'TotalSpent', 'AvgSpent',
'NumTransactions']
# 2. Aggregating Customer Service
agg service =
dataframes['Customer Service'].groupby('CustomerID').agg({
    'InteractionID': 'count',
    'ResolutionStatus': lambda x: x.value counts().idxmax()
common resolution
}).reset index()
agg service.columns = ['CustomerID', 'NumInteractions',
'MostCommonResolution']
# 3. Merging all
df merged = dataframes['Customer Demographics'] \
    .merge(agg trans, on='CustomerID', how='left') \
    .merge(agg service, on='CustomerID', how='left') \
    .merge(dataframes['Online Activity'], on='CustomerID', how='left')
\
    .merge(dataframes['Churn Status'], on='CustomerID', how='left')
df merged.head()
   CustomerID Age Gender MaritalStatus IncomeLevel TotalSpent
AvgSpent
                62
                                 Single
                                                          416.50
            1
                        М
                                                 Low
416.50000
                65
                                Married
            2
                        М
                                                 Low
                                                         1547.42
221.06000
                18
                                 Single
                                                 Low
                                                         1702.98
283.83000
                21
                                Widowed
                                                 Low
                                                          917.29
183.45800
                21
                               Divorced
                                              Medium
                                                         2001.49
            5
                        М
250.18625
   NumTransactions NumInteractions MostCommonResolution LastLoginDate
/
                                1.0
                                                 Resolved
                                                             2023-10-21
1
                                1.0
                                                 Resolved
                                                             2023-12-05
```

```
2
                                 1.0
                                                  Resolved
                                                              2023-11-15
3
                                 2.0
                                                  Resolved
                                                              2023-08-25
4
                                 NaN
                                                       NaN
                                                              2023-10-27
   LoginFrequency ServiceUsage
                                 ChurnStatus
0
               34
                    Mobile App
1
                5
                                           1
                       Website
2
                3
                                           0
                       Website
3
                2
                                           0
                       Website
4
               41
                       Website
                                           0
df merged.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 14 columns):
                            Non-Null Count
     Column
                                            Dtype
 0
     CustomerID
                            1000 non-null
                                            int64
1
     Age
                            1000 non-null
                                            int64
 2
     Gender
                            1000 non-null
                                            object
 3
     MaritalStatus
                            1000 non-null
                                            object
 4
     IncomeLevel
                            1000 non-null
                                            object
 5
     TotalSpent
                            1000 non-null
                                            float64
 6
     AvgSpent
                            1000 non-null
                                            float64
 7
     NumTransactions
                            1000 non-null
                                            int64
 8
     NumInteractions
                            668 non-null
                                            float64
 9
     MostCommonResolution 668 non-null
                                            object
 10 LastLoginDate
                            1000 non-null
                                            datetime64[ns]
 11 LoginFrequency
                            1000 non-null
                                            int64
 12
     ServiceUsage
                            1000 non-null
                                            object
13 ChurnStatus
                            1000 non-null
                                            int64
dtypes: datetime64[ns](1), float64(3), int64(5), object(5)
memory usage: 109.5+ KB
```

Correlation Analysis

```
# Copy and convert categorical columns explicitly
df_corr = df_merged.copy()

# Map gender if it's still object dtype
if df_corr['Gender'].dtype == 'object':
    df_corr['Gender'] = df_corr['Gender'].map({'M': 0, 'F': 1})

# Also convert other categorical columns if you'd like to include them
```

```
df_corr['ServiceUsage'] =
df_corr['ServiceUsage'].astype('category').cat.codes
df_corr['MaritalStatus'] =
df_corr['MaritalStatus'].astype('category').cat.codes
df_corr['IncomeLevel'] =
df_corr['IncomeLevel'].astype('category').cat.codes

# Then plot again
plt.figure(figsize=(10, 8))
corr_matrix = df_corr.corr(numeric_only=True)
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Matrix of Numerical Features')
plt.show()
```



```
# Copy and encode if needed
df focus = df merged.copy()
df_focus['Gender'] = df_focus['Gender'].map({'M': 0, 'F': 1})
df focus['ServiceUsage'] =
df focus['ServiceUsage'].astype('category').cat.codes
df focus['MaritalStatus'] =
df focus['MaritalStatus'].astype('category').cat.codes
df focus['IncomeLevel'] =
df focus['IncomeLevel'].astype('category').cat.codes
# Compute correlations
correlations = df focus.corr(numeric only=True)
['ChurnStatus'].drop('ChurnStatus')
# Plot
plt.figure(figsize=(8, 6))
sns.barplot(x=correlations.values, y=correlations.index,
palette='coolwarm')
plt.title('Correlation of Features with ChurnStatus')
plt.xlabel('Correlation Coefficient')
plt.ylabel('Feature')
plt.grid(True, axis='x', linestyle='--', alpha=0.7)
plt.tight layout()
plt.show()
# Correlation with ChurnStatus (numerical output)
correlations = df focus.corr(numeric only=True)
['ChurnStatus'].drop('ChurnStatus')
correlations sorted = correlations.sort values(ascending=False)
print(correlations sorted)
C:\Users\Kasandika Andariefli\AppData\Local\Temp\
ipykernel 4548\1141302335.py:13: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `y` variable to `hue` and set
`legend=False` for the same effect.
  sns.barplot(x=correlations.values, y=correlations.index,
palette='coolwarm')
```


ServiceUsage -0 NumInteractions -0 LoginFrequency -0

[] Feature Correlation with ChurnStatus (Updated)

This visualization and summary highlight how each feature correlates with the target variable ChurnStatus, where a value of 1 represents a churned customer. Understanding this directionality is key:

- ☐ Positive correlation → associated with higher likelihood of churn
- ☐ Negative correlation → associated with lower likelihood of churn

Interpretation:

- **LoginFrequency (-0.0816)** shows the strongest inverse correlation with churn, suggesting customers who log in frequently are more likely to **stay**.
- NumInteractions (-0.0620) and ServiceUsage (-0.0532) follow a similar trend—highlighting that engagement and support usage reduce churn risk.
- **Gender (-0.0181)**, now correctly encoded, suggests that **males (0)** may churn slightly more than females (1), though the effect is weak.
- AvgSpent (+0.0448) and Age (+0.0294) have small positive correlations, hinting that higher spending and older age might slightly increase churn—but this could indicate dissatisfaction or changing needs.
- **TotalSpent**, **IncomeLevel**, and **MaritalStatus** show near-zero correlation and likely require cross-feature interaction analysis for deeper insight.

☐ Takeaway:

The top features negatively correlated with churn relate to **digital behavior and service usage**. These should be prioritized in model design and retention strategies. No single feature is dominant—supporting the use of a multivariate predictive model to capture subtle patterns.

Anomaly Detection

```
from scipy.stats import zscore
# Select numeric columns (excluding target)
plt.figure(figsize=(14, 6))
df merged[numeric cols].boxplot()
plt.title('Boxplot of Numerical Features (Anomaly Detection)')
plt.ylabel('Value Range')
plt.xticks(rotation=45)
plt.grid(True, axis='y', linestyle='--', alpha=0.7)
plt.tight layout()
plt.show()
# Compute z-scores
z scores = df merged[numeric cols].apply(zscore)
# Count outliers (Z-score > 3 or < -3)
outlier counts = (z scores.abs() > 3).sum()
print("\overline{0}utliers (|z| > 3) per feature:")
print(outlier counts)
```


To detect unusual values that may indicate **data quality issues** or **rare behavioral patterns**, we applied **Z-score based anomaly detection** and visualized the results using boxplots.

Z-Score Summary:

Only **AvgSpent** exhibits significant outliers — 6 customers had unusually high or low average spending patterns.

☐ Boxplot Insights:

- **AvgSpent** shows clear outliers and a fairly wide spread, suggesting variability in spending behavior. This may capture high-value or low-engagement customer extremes.
- **TotalSpent**, despite its large range, shows no statistical outliers by Z-score possibly due to its spread being normalized across the population.
- Other features like **Age**, **LoginFrequency**, and **NumTransactions** are tightly distributed with no significant anomalies.

• The outliers in AvgSpent should be reviewed carefully:

- Are they data entry errors?
- Or do they represent key behavioral patterns (e.g., high-value churn risks)?
- Since no other features show high-anomaly frequency, we do not recommend removing these outliers at this stage, but instead flagging them for potential stratified analysis or robust modeling.

```
plt.figure(figsize=(10, 6))
sns.histplot(df_merged['AvgSpent'], bins=30, kde=True,
color='steelblue')
plt.title('Distribution of Average Spending per Customer')
plt.xlabel('Average Spent')
plt.ylabel('Number of Customers')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.histplot(data=df_merged, x='AvgSpent', hue='ChurnStatus', bins=30,
kde=True, palette='Set2')
plt.title('AvgSpent Distribution by ChurnStatus')
plt.xlabel('Average Spent')
plt.ylabel('Customer Count')
plt.tight_layout()
plt.show()
```


<pre>high_spenders = df_merged[df_merged['AvgSpent'] > df_merged['AvgSpent'].quantile(0.95)] print("High spenders who churned:") print(high_spenders[high_spenders['ChurnStatus'] == 1])</pre>								
مام می می می مام								
High spende Custom AvgSpent \				ritalStatus	IncomeLevel	TotalSpent		
	137	21	F	Married	Цiаh	121 17		
136 431.470000	137	21	Г	Marrieu	High	431.47		
143	144	45	F	Married	Low	419.85		
419.850000			•					
236	237	61	М	Divorced	Low	398.99		
	231	01	М	prvorceu	LUW	390.99		
398.990000	261	27	M	Manadad	1	400 07		
260	261	27	М	Married	Low	489.07		
489.070000								
281	282	42	М	Single	High	2016.68		
403.336000								
487	488	28	F	Married	Medium	393.84		
393.840000								
497	498	45	F	Single	Low	763.91		
381.955000	130	.5	•	Single	2011	703131		
509	510	30	М	Single	Medium	392.10		
392.100000	210	30	11	Single	HEUTUIII	392.10		
	FGE	60	M	Cimal.	1	2426 25		
564	565	69	М	Single	Low	2436.25		
406.041667								
613	614	64	F	Married	High	1239.16		

413.0	53333											
629	20000	630 61		F Married		Me	Medium 94		942.44			
471.220000 826 386.321667 923 380.065000 924		827	42	M 1		rried		Low		317.93		
		924	23	M Singl		ingle		High 76		60.13		
		925	54	F Di		orced	Me	Medium		1930.41		
386.0 989	82000	990	37	F Widowed			High 483.5		183.50			
	483.500000							g				
	NumTra		ions	NumInt	eraction	s MostC	ommonR	esolut	ion			
LastL 136	.oginDa	te \	1		Na	N			NaN	2023-06-		
19		1										
143 18			1		1.	0		Resol	ved	2023-02-		
236			1		Na	N			NaN	2023-01-		
13 260			1		1.	0	U	nresol	ved	2023-05-		
29 281			5		1.	0		Resol	ved	2023-07-		
22			1		N-	N			NI - NI	2022 06		
487 14		1		1			Na	IV			NaN	2023-06-
497		2		2 NaN			NaN		2023-06-			
28 509		1		1.0		0	Unresolved		2023-07-			
04			_		2	0		D 1		2022 04		
564 22			6		2.	U		Resol	vea	2023-04-		
613			3		1.	0		Resol	ved	2023-03-		
25 629			2		1.	0	U	nresol	ved	2023-08-		
17 826			6		Na	M			NaN	2023 - 10 -		
09												
923 25			2		1.	0	U	nresol	ved	2023-03-		
924			5		Na	N			NaN	2023-01-		
20 989			1		2.	O.		Resol	ved	2023-06-		
989 07			1		۷.	O .		Nesut	veu	2023-00-		
	LoginF	requer	-		iceUsage	ChurnS	_					
136 143			38 39		Banking Banking		1 1					
236			16		Banking		1					

260 281 487 497 509 564 613 629 826 923 924 989	3 33 5 31 30 24 44	Online Banking Online Banking Mobile App Website Mobile App Website Mobile App Website Online Banking Website Mobile App Mobile App	1 1 1 1 1 1 1 1 1 1 1	
--	--------------------------------------	---	---	--

AvgSpent vs. ChurnStatus

The distribution of AvgSpent reveals a slightly right-skewed curve with a central cluster between \$150–\$300. When split by ChurnStatus, both churned and retained customers show similar spread, but a slightly higher proportion of churners exists in the upper-middle spend range.

□ Insight:

- High spend does **not guarantee loyalty**. A subset of churners are high spenders, potentially indicating dissatisfaction or lack of personalization despite high engagement.
- This segment should be considered for **targeted retention strategies**, such as loyalty rewards, concierge support, or exclusive financial products.