A.2 The ADP test

We want to show that if H_0 is false, then for an arbitrary fixed α , $\lim_{N\to\infty} Pr(S_{m\times m}^{ADP} > S_{1-\alpha}^{tab}) = 1$, where $S_{1-\alpha}^{tab}$ denotes the $1-\alpha$ quantile of the null distribution of $S_{m\times m}^{ADP}$. We use $\mathcal{A}, c, \mathcal{A}_1, \mathcal{A}_2, f_1, f_2$ as defined in the beginning of Appendix A of the main text.

For the ADP test, recall that the partitioning is based on selecting m-1 points from $1.5, \ldots, N-0.5$ for the partitions of the ranked x-values, and separately for the partitions of the ranked y-values. For a fixed rectangle, we say a grid point (i+0.5, j+0.5) is in the rectangle if the two x-values with ranks i and i+1, and the two y-values with ranks j and j+1, are in the rectangle, for $(i,j) \in \{1,\ldots,N\}^2$. Let $\Gamma\{(x_1,y_1),\ldots,(x_N,y_N)\}$ be the set of partitions of size m with at least one grid point in A_1 and at least one grid point in A_2 . Let N_{ix} be the number of x-coordinates of the grid points in A_i , $i \in \{1,2\}$, and N_{iy} be the number of y-coordinates of the grid points in A_i , $i \in \{1,2\}$.

Let $\mathcal{I} \in \Gamma\{(x_1, y_1), \dots, (x_N, y_N)\}$ define an (arbitrary fixed) ADP partition in Γ . There exist two x-values in \mathcal{A}_1 that are separated by a grid point in \mathcal{I} , and two x-values in \mathcal{A}_2 that are separated by a grid point in \mathcal{I} , denote the average of these two x-values by x_1^* and x_2^* . Let y_1^* and y_2^* be similarly defined for the y-values.

Let C be the cell defined by the points $(x_i^*, y_i^*), i = 1, 2$. The fraction of observed counts in the cell C is a linear combination of empirical cumulative distribution functions

$$\frac{o_C}{N} = \hat{F}_{XY}(x_1^*, y_1^*) + \hat{F}_{XY}(x_2^*, y_2^*) - \hat{F}_{XY}(x_1^*, y_2^*) - \hat{F}_{XY}(x_2^*, y_1^*),$$

and the expected fraction under the null, is a function of the cumulative marginal