CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 8 FEBBRAIO 2019

Svolgere i seguenti esercizi,

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. Chi usufruisce dell'esonero non deve rispondere ad esercizi e domande marcate con ★.

Non è necessario consegnare la traccia.

- ★ Esercizio 1. Date le applicazioni $f: n \in \mathbb{Z} \mapsto n^2 + 3 \in \mathbb{N}$ e $g: x \in \mathbb{N} \mapsto |\{0,1,2\} \cap \{x\}| \in \mathbb{N}$, si descriva esplicitamente $h:=g\circ f$ e si dica, di ciascuna tra f, g e h se è iniettiva e se è suriettiva. Si elenchino gli elementi di $\overrightarrow{f}(\{0,3,7\})$ e di $\overleftarrow{f}(\{n \in \mathbb{N} \mid n < 10\})$.
 - **Esercizio 2.** Si consideri l'anello commutativo unitario $A = (\mathbb{Z}_{48} \times \mathbb{Z}_{48}, +, \cdot)$ in cui le operazioni sono definite da (a,b) + (c,d) = (a+c,b+d) e $(a,b) \cdot (c,d) = (ac,bd)$ per ogni $a,b,c,d \in \mathbb{Z}_{48}$ e quindi $1_A = (\bar{1},\bar{1})$ e $0_A = (\bar{0},\bar{0})$.
 - \star (i) Determinare l'insieme $\mathcal{U}(A)$ degli elementi invertibili di A (rispetto a ·).
 - ★ (ii) Dimostrare che, per ogni $(a, b) \in A \setminus \{(\bar{0}, \bar{0})\}$, si ha: (a, b) è un divisore dello zero in $A \iff$ uno tra $a \in b$ è $\bar{0}$ oppure un divisore dello zero in \mathbb{Z}_{48} .
 - ★ (iii) $\mathcal{U}(A)$ è chiuso rispetto a · ? Nel caso, che tipo di struttura (semigruppo, monoide, gruppo) è $(\mathcal{U}(A), \cdot)$? $\mathcal{U}(A)$ è chiuso rispetto a +? Nel caso, che tipo di struttura è $(\mathcal{U}(A), +)$?
 - (iv) Determinare, se esiste, una coppia $(a,b) \in A$ tale che $(a,b) \cdot (\overline{19},\overline{43}) = (\overline{1},\overline{1})$.
 - (v) Determinare, se esiste, una coppia $(c,d) \in A$ tale che $(c,d) \cdot (\overline{19},\overline{6}) = (\overline{1},\overline{5})$.
 - (vi) Verificare che se n è un numero intero pari, $(\forall c \in \mathbb{Z})([n]_{48} = [c]_{48} \Rightarrow c$ è pari).

Esercizio 3. Dare la definizione di polinomio irriducibile (a coefficienti in un campo).

Sia $f = (x^6 - \bar{2}x^4 + x^2) - \bar{1} \in \mathbb{Z}_3[x]$.

- (i) Ricordando che in ogni anello commutativo si ha $a^2 b^2 = (a b)(a + b)$ per ogni scelta degli elementi a e b, decomporre f in prodotto di polinomi monici irriducibili in $\mathbb{Z}_3[x]$.
- (ii) Tenendo conto del teorema di fattorizzazione unica, scrivere tutte le fattorizzazioni di f in $\mathbb{Z}_3[x]$.
- (iii) Qual è il minimo grado possibile per un polinomio non nullo di $\mathbb{Z}_3[x]$ che sia multiplo di f ed ammetta come radici tutti gli elementi di \mathbb{Z}_3 ?

Esercizio 4. Sia $S = \mathcal{P}(A) \times \mathcal{P}(A)$, dove $A = \{n \in \mathbb{N} \mid n < 10\}$. Si consideri la relazione binaria \mathcal{R} definita in S da: $\forall X, Y, Z, T \in \mathcal{P}(A)$

$$(X,Y) \Re (Z,T) \iff |X \times Y| = |Z \times T|.$$

- (i) Provare che \mathcal{R} è di equivalenza.
- (ii) Esprimere (limitandosi a scrivere un'espressione senza eseguire i relativi calcoli) $|[(\varnothing, \{1\})]_{\mathcal{R}}|$ e $|[(\{1,2\}, \{1,2,3\})]_{\mathcal{R}}|$.
- (iii) Senza calcolare $|S/\mathcal{R}|$, spiegare perché $|S/\mathcal{R}| \leq 101$.
- (iv) Esiste $(X, Y) \in S$ tale che $|X \times Y| = 26$?

Sia σ la relazione d'ordine definita in S da: $\forall X, Y, Z, T \in \mathcal{P}(A)$

$$(X,Y) \sigma(Z,T) \iff ((X,Y) = (Z,T) \lor |X \times Y| < |Z \times T|).$$

- (v) Stabilire se σ è una relazione totale.
- (vi) Determinare in (S, σ) eventuali minimo, massimo, elementi minimali, elementi massimali.
- (vii) (S, σ) è un reticolo?
- (viii) Descrivere l'insieme M dei minoranti di $\{(\{1,2\},\{1,2\}),(\{1,2,3,4\},\{1\})\}$, senza elencarne esplicitamente gli elementi. Che ordine ha M (non eseguire calcoli)?
 - (ix) Determinare in (S, σ) due elementi non confrontabili (X, Y), (Z, T) tali che $\{(X, Y), (Z, T)\}$ abbia estremo superiore.
 - (x) Il diagramma a destra rappresenta un reticolo? Nel caso, un reticolo distributivo?, complementato?, booleano?
 - (xi) Se possibile, costruire una parte T di S tale che (T, σ) sia rappresentato dal diagramma di Hasse a destra; se non è possibile farlo spiegare perché.

