

Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação MÉTODOS DA ENGENHARIA ELÉTRICA Professor Anésio dos Santos Júnior

PROVA 03

Nome:	IGOR	UM	AGUIAR

Obtenha todas as raízes complexas que resolvem a equação $(2z-3)^4-81=0$.

Esboce o conjunto de pontos no plano complexo representados por |z-1|+|z+1|=2 $\frac{x}{2} + y = 1$ tes integral. estabeleça a respectiva relação entre x e y, $(x, y) \in \mathbb{R}^2$.

Calcule os valores das seguintes integrais sobre as curvas fechadas C orientadas no sentido anti-

$$\frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z - 2| = 1;$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

$$\lim_{z \to 1} \frac{\sin(z)}{\pi + 3z} dz \quad e \quad C: |z| = 2.$$

3) Obtenha:

- de convergência;
- A série de Laurent para a função $f(z) = \frac{-1}{(z-3)(z+2)}$ em torno do ponto $z_0 = -2$ e seu resíduo.

Calcule os resíduos da função
$$f(z) = \frac{1}{(z^2 + 4)}$$
 nos pontos $z_0 = -j2$ e $z_1 = j2$. $\frac{1}{16}$ \in $\frac{1}{16}$

Calcule a integral
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2 + 4)}$$
.

Considere a função
$$f(z) = \frac{1}{(1+z^2)(z+2)}$$
. Calcule o Res_{z=-2} $f(z)$.

b) Calcule o v.p.
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)(x+2)}$$
. The $\left(\frac{1}{-1+2i} + \frac{1}{5}\right)$