ЛАБОРАТОРНАЯ РАБОТА №49

ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

Поляков Даниил, Б07-Ф3

Цель работы: определить моменты инерции тел, имеющих простейшую геометрическую форму, методом крутильных колебаний; убедиться в применимости теоремы Гюйгенса-Штейнера.

Оборудование:

- Крутильный осциллятор;
- Металлический стержень;
- Два груза;
- Деревянный шар;
- Деревянный цилиндр;
- Деревянный диск;
- Металлический полый цилиндр;
- Подставка;
- Металлический диск с отверстиями;
- Секундомер;
- Линейка;
- Штангенциркуль;
- Электронные весы.

Расчётные формулы:

• Период собственных крутильных колебаний тела:

$$T = 2\pi \sqrt{\frac{J}{D}}$$

J — момент инерции относительно оси кручения;

D — модуль кручения спирали.

• Момент инерции колеблющегося тела:

$$J = D \frac{T^2}{4\pi^2}$$

Т – период собственных крутильных колебаний тела;

D — модуль кручения спирали.

• Период колебаний стержня с грузами:

$$T^2 = \frac{8m\pi^2}{D}r^2 + T_0^2$$

m – масса каждого из грузов;

r — расстояние от оси вращения до центра масс грузов;

D — модуль кручения спирали;

 T_0 – период колебаний стержня.

 Момент инерции тела на произвольном расстоянии от центра масс (теорема Гюйгенса-Штейнера):

$$J = J_c + md^2$$

 J_c – момент инерции тела относительно его центра масс;

m — масса тела;

d – расстояние от оси центра масс до произвольной оси.

• Момент инерции диска:

$$J_{\rm A} = \frac{m_{\rm A}R_{\rm A}^2}{2}$$

 $m_{_{\rm J}}$ – масса диска; $R_{_{\rm J}}$ – радиус диска.

• Момент инерции сплошного цилиндра:

$$J_{\rm cu} = \frac{m_{\rm cu}R_{\rm cu}^2}{2}$$

 $m_{
m cu}$ – масса цилиндра; $R_{
m cu}$ – радиус цилиндра.

• Момент инерции полого цилиндра:

$$J_{\Pi \Pi} = \frac{1}{2} m_{\Pi \Pi} \left(R_{\Pi \Pi 1}^2 + R_{\Pi \Pi 2}^2 \right)$$

 $m_{
m nц}$ – масса цилиндра;

 $R_{\scriptscriptstyle \Pi \amalg 1}$ – внешний радиус цилиндра;

 $R_{
m mil}$ – внутренний радиус цилиндра.

• Момент инерции сплошного шара:

$$J_{\mathbf{III}} = \frac{2}{5} m_{\mathbf{III}} R_{\mathbf{III}}^2$$

 $m_{\scriptscriptstyle
m III}$ – масса шара;

 $R_{
m m}$ – радиус шара.

• Период колебаний осциллятора

$$T = \frac{t}{N}$$

t — время, в течение которого произошло N колебаний;

- Формулы для вычисления погрешностей:
 - о Абсолютная погрешность прямых измерений:

$$\Delta x = \sqrt{t^2 \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)} + \Delta x_B^2}$$

n – количество измерений;

t – коэффициент Стьюдента;

 Δx_B – приборная погрешность.

о Абсолютная погрешность косвенных измерений:

$$\Delta f(x_1, x_2, \dots) = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta x_2\right)^2 + \dots}$$

2

Метод проведения измерений

- 1. Измерим массы грузов m_1 и m_2 на электронных весах. Закрепим стержень на оси установки и возбудим колебания. Измерим время t, за которое стержень совершает N колебаний. Повторим измерения 6 раз. Теперь установим два груза по обе стороны от стержня в прорези, которые ближе всего к центра стержня. Прорези располагаются через каждые 5 см на стержне, таким образом начальное расстояние от оси колебаний до грузов составляет 5 см. Измерим время t, за которое стержень с грузами совершает N колебаний. Повторим измерения 6 раз. Затем закрепим грузы в следующие прорези (т.е. сдвинем их на 5 см дальше от оси колебаний). Повторим ту же серию измерений. Повторим измерения для всех остальных положений грузов.
- 2. Измерим размеры и массу исследуемых тел. Затем измерим время, в течение которого совершается n колебаний, и повторим это измерение 6 раз, для следующих тел:
 - Деревянный шар;
 - Деревянный диск;
 - Сплошной деревянный цилиндр с подставкой;
 - Полый металлический цилиндр с подставкой;
 - Подставка отдельно.
- 3. Измерим массу металлического тонкого диска *m* на электронных весах. Закрепим диск на оси установки, проходящей через его центральное отверстие, и возбудим колебания. Измерим время *t*, за которое диск совершает *N* колебаний. Повторим измерения 6 раз. Отверстия в диске располагаются через каждые 2 см. Будем закреплять диск в этих отверстиях, таким образом меняя положение оси колебаний относительно центра масс диска. Повторим ту же серию измерений для всех положений диска *d*.

Таблицы и обработка данных

Погрешность длин, измеренных штангенциркулем, равна 0.05 мм (приборная погрешность, равная половине цены деления (0.025 мм) + погрешность отсчёта (0.025 мм)). Погрешность длин, измеренных большим штангенциркулем, равна 0.1 мм (приборная погрешность, равная половине цены деления (0.05 мм) + погрешность отсчёта (0.05 мм)). Погрешность длин, измеренных линейкой, равна 1 мм (приборная погрешность, равная половине цены деления (0.5 мм) + погрешность отсчёта (0.5 мм)).

Погрешность массы, измеренной весами, равна 0.03 г (указано на весах).

Приборная погрешность секундомера равна половине цены деления: $\Delta t_B = 0.05 \ \mathrm{c}$.

При каждом нахождении промежутка времени проводилось 6 измерений. Абсолютная погрешность находилась по формуле для погрешности прямых измерений, указанной в разделе «Расчётные формулы». Коэффициент Стьюдента при данном количестве равен 1.2.

Коэффициенты наклона графиков и их точки пересечения с осями (и их погрешности) каждой прямой зависимости найдём по методу наименьших квадратов.

1. Исследование крутильных колебаний тонкого стержня с грузами. Определение модуля кручения D.

Масса грузов, измеренная с помощью весов: $m_1=m_2=m=236.06\pm0.03~{
m r}.$ Период колебаний стержня без грузов:

N	t, c	\bar{t} , c	Δt , c	T_0 , c	T_0^2 , c^2
	11.8				
	11.8				
5	11.8	11.82	0.05	2 262 10 011	E E0+0 0E
3	11.8	11.02	0.05	2.363±0.011	3.39±0.03
	11.8				
	11.9				

Периоды колебаний стержня с грузами:

<i>r</i> , см	N	t, c	\bar{t} , c	Δt , c	<i>T</i> , c	r^2 , cm 2	T^2 , c^2
		13.4					
		13.5		0.07	2.687±0.014		
_	5	13.4	12.42			25	7 22 10 00
5	5	13.4	13.43	0.07		25	7.22±0.08
		13.6					
		13.3					
		17.2					
		17.2					
10	5	17.2	17.25	0.06	2 450+0 011	100	11 0010 00
10	5	17.3	17.25	0.06	3.450±0.011	100	11.90±0.08
		17.3					
		17.3					
		22.2					
		22.2		0.05	4.443±0.011	225	19.74±0.10
15	5	22.3	22.22				
15	5	22.2			4.443±0.011	225	19.74±0.10
		22.2					
		22.2					
		27.7		0.06	5.550±0.011	400	30.80±0.13
		27.8					
20	5	27.8	27.75				
20	3	27.7	27.73				
		27.7					
		27.8					
		33.4					
		33.5				625	
25	5	33.7	22 EE	0.00	6.710±0.016		45.0+0.2
25	5	33.7	33.55	0.08	6.710±0.016	625	45.0±0.2
		33.5					
		33.5					
		39.5					
		39.5					
20	_	39.5	20.55	0.00	7.010+0.014	900	62 5740 40
30	5	39.6	39.55	0.06	7.910±0.011		62.57±0.18
		39.6					
		39.6					

Формулы, по которым вычислялись погрешности:

$$\Delta t = \sqrt{1.2^2 \frac{\sum_{i=1}^n (t_i - \bar{t})^2}{n(n-1)} + \Delta t_B^2}$$
$$\Delta T = \frac{\Delta t}{N}$$
$$\Delta T^2 = \frac{\partial T^2}{\partial T} \cdot \Delta T = 2T \cdot \Delta T$$

Построим график зависимости $T^2(r^2)$. Теоретическая зависимость выражается формулой:

$$T^{2} = \alpha r^{2} + b = \frac{8m\pi^{2}}{D}r^{2} + T_{0}^{2} => \alpha = \frac{8m\pi^{2}}{D} => D = \frac{8m\pi^{2}}{\alpha}$$
$$b = T_{0}^{2} => T_{0} = \sqrt{b}$$

Экспериментальная зависимость $T^2(r^2)$ получилась линейной. Таким образом, теоретическая формула, приведённая выше, верна. Из графика найдём модуль кручения D и период колебаний стержня без грузов T_0 :

$$\alpha = 0.06324 \pm 0.00011 \frac{c^2}{cm^2}$$

$$\overline{D} = \frac{8m\pi^2}{\alpha} \approx 0.02947 \frac{\kappa \Gamma \cdot M^2}{c^2}$$

$$\Delta D = \sqrt{\left(\frac{\partial D}{\partial m} \cdot \Delta m\right)^2 + \left(\frac{\partial D}{\partial \alpha} \cdot \Delta \alpha\right)^2} =$$

$$= \sqrt{\left(\frac{8\pi^2}{\alpha} \cdot \Delta m\right)^2 + \left(\frac{8m\pi^2}{\alpha^2} \cdot \Delta \alpha\right)^2} \approx 0.00005 \frac{\kappa \Gamma \cdot M^2}{c^2}$$

$$D = 0.02947 \pm 0.00005 \frac{\kappa \Gamma \cdot M^2}{c^2}$$

$$b = 5.56 \pm 0.05 c^2$$

$$\overline{T}_0 = \sqrt{b} \approx 2.358 c$$

$$\Delta T_0 = \left|\frac{\partial T_0}{\partial b} \cdot \Delta b\right| = \frac{\Delta b}{2\sqrt{b}} \approx 0.012 c$$

$$T_0 = 2.358 \pm 0.012 c$$

Полученные двумя способами периоды колебаний стержня без грузов T_0 совпали в пределах погрешности.

2. Определение момента инерции различных твёрдых тел методом крутильных колебаний.

Измерим размеры и массу исследуемых тел и определим теоретические значения их моментов инерции. Затем измерим периоды их колебаний. Сплошной и полый цилиндр в данных опытах приходится ставить на подставку. Значит, необходимо отдельно измерить её период колебаний, чтобы найти её момент инерции и далее вычитать его для нахождения моментов инерции цилиндров.

Подставка

N	t, c	\bar{t} , c	Δt , c	T_{Π} , c	J_{Π} , кг · м 2					
10	5.4 5.4 5.4 5.4 5.4	5.40	0.05	0.540 ±0.005	$(0.218 \pm 0.004) \cdot 10^{-3}$					
$\overline{J_{\Pi}} = D \frac{T_{\Pi}^{2}}{4\pi^{2}} \approx 0.2177 \cdot 10^{-3} \text{K} \cdot \text{M}^{2}$ $\Delta J_{\Pi} = \sqrt{\left(\frac{\partial J_{\Pi}}{\partial D} \cdot \Delta D\right)^{2} + \left(\frac{\partial J_{\Pi}}{\partial T_{\Pi}} \cdot \Delta T_{\Pi}\right)^{2}} =$										
$= \sqrt{\left(\frac{T_{\Pi}^{2}}{4\pi^{2}} \cdot \Delta D\right)^{2} + \left(D\frac{T_{\Pi}}{2\pi^{2}} \cdot \Delta T_{\Pi}\right)^{2}} \approx 0.004 \cdot 10^{-3} \text{kg} \cdot \text{m}^{2}$										
		$J_{\pi} =$	(0.218	3 ± 0.004	$+) \cdot 10^{-3}$ кг · м 2					

Деревянный шар

$m_{\scriptscriptstyle m III}$, г	$d_{\scriptscriptstyle m III}$, мм	R_{III} , MM	$J_{\text{ш}_{\text{теор}}}$, кг · м 2	N	t, c	$ar{t}$, c	Δt , c	Тш, с	$J_{\text{шэкс}}$, кг · м 2
931.07 ±0.03	143.1 ±0.1	71.55 ±0.05	$(1.907 \pm 0.003) \cdot 10^{-3}$	5	8.0 8.1 8.0 8.0 8.0	8.02	0.05	1.603 ±0.011	$(1.92 \pm 0.03) \cdot 10^{-3}$

$$\overline{J_{\text{III}_{\text{Teop}}}} = \frac{2}{5} m_{\text{III}} R_{\text{III}}^2 \approx 1.9066 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\Delta J_{\text{III}_{\text{Teop}}} = \sqrt{\left(\frac{\partial J_{\text{III}_{\text{Teop}}}}{\partial m_{\text{III}}} \cdot \Delta m_{\text{III}}\right)^2 + \left(\frac{\partial J_{\text{III}_{\text{Teop}}}}{\partial R_{\text{III}}} \cdot \Delta R_{\text{III}}\right)^2} =$$

$$= \sqrt{\left(\frac{2}{5} R_{\text{III}}^2 \cdot \Delta m_{\text{III}}\right)^2 + \left(\frac{4}{5} m_{\text{III}} R_{\text{III}} \cdot \Delta R_{\text{III}}\right)^2} \approx 0.003 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$J_{\text{III}_{\text{Teop}}} = (1.907 \pm 0.003) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\overline{J_{\text{III}_{\text{JKC}}}} = D \frac{T_{\text{III}}^2}{4\pi^2} \approx 1.919 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\Delta J_{\text{III}_{\text{JKC}}} = \sqrt{\left(\frac{\partial J_{\text{III}_{\text{JKC}}}}{\partial D} \cdot \Delta D\right)^2 + \left(\frac{\partial J_{\text{III}_{\text{JKC}}}}{\partial T_{\text{III}}} \cdot \Delta T_{\text{III}}\right)^2} =$$

$$= \sqrt{\left(\frac{T_{\text{III}}^2}{4\pi^2} \cdot \Delta D\right)^2 + \left(D \frac{T_{\text{III}}}{2\pi^2} \cdot \Delta T_{\text{III}}\right)^2} \approx 0.03 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$J_{\text{III}_{\text{JKC}}} = (1.92 \pm 0.03) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Деревянный диск

$m_{\scriptscriptstyle oldsymbol{\mathcal{I}}}$, г	$R_{\rm д}$, мм	$J_{\rm Д_{\rm Teop}}$, кг · м ²	N	t, c	$ar{t}$, c	Δt , c	$T_{\rm Д}$, с	$J_{\mathrm{д}_{\mathrm{ЭКС}}}$, кг · м 2
311.82 ±0.03	110 ±1	(1.89 ± 0.03) $\cdot 10^{-3}$	5	8.0 8.1 8.0 8.1 8.0	8.03	0.05	1.607 ±0.011	(1.93 ± 0.03) $\cdot 10^{-3}$

$$\begin{split} \overline{J_{A_{\rm Teop}}} &= \frac{m_{\rm A}R_{\rm A}^2}{2} \approx 1.8865 \cdot 10^{-3} {\rm kr} \cdot {\rm m}^2 \\ \Delta J_{A_{\rm Teop}} &= \sqrt{\left(\frac{\partial J_{A_{\rm Teop}}}{\partial m_{\rm A}} \cdot \Delta m_{\rm A}\right)^2 + \left(\frac{\partial J_{A_{\rm Teop}}}{\partial R_{\rm A}} \cdot \Delta R_{\rm A}\right)^2} = \\ &= \sqrt{\left(\frac{R_{\rm A}^2}{2} \cdot \Delta m_{\rm A}\right)^2 + \left(m_{\rm A}R_{\rm A} \cdot \Delta R_{\rm A}\right)^2} \approx 0.03 \cdot 10^{-3} {\rm kr} \cdot {\rm m}^2 \\ J_{A_{\rm Teop}} &= (1.89 \pm 0.03) \cdot 10^{-3} {\rm kr} \cdot {\rm m}^2 \\ \overline{J_{A_{\rm SKC}}} &= D \frac{T_{\rm A}^2}{4\pi^2} \approx 1.927 \cdot 10^{-3} {\rm kr} \cdot {\rm m}^2 \\ \Delta J_{A_{\rm SKC}} &= \sqrt{\left(\frac{\partial J_{A_{\rm SKC}}}{\partial D} \cdot \Delta D\right)^2 + \left(\frac{\partial J_{A_{\rm SKC}}}{\partial T_{\rm A}} \cdot \Delta T_{\rm A}\right)^2} = \\ &= \sqrt{\left(\frac{T_{\rm A}^2}{4\pi^2} \cdot \Delta D\right)^2 + \left(D \frac{T_{\rm A}}{2\pi^2} \cdot \Delta T_{\rm A}\right)^2} \approx 0.03 \cdot 10^{-3} {\rm kr} \cdot {\rm m}^2 \\ J_{A_{\rm SKC}} &= (1.93 \pm 0.03) \cdot 10^{-3} {\rm kr} \cdot {\rm m}^2 \end{split}$$

Сплошной деревянный цилиндр

$m_{ m cu}$, г	$d_{ m cu}$, мм	$R_{\rm сц}$, мм	$J_{ m cц}_{ m Teop}$, кг $\cdot { m m}^2$	N	t, c	$ar{t}$, c	Δt , c	$T_{\text{сц+\pi}}, c$	$J_{\rm cц_{9KC}}$, кг ⋅ м ²
369.68 ±0.03	89.35 ±0.05	44.68 ±0.02	$(0.3689 \pm 0.0004) \cdot 10^{-3}$	10	8.9 8.9 8.9 8.8 8.8	8.83	0.06	0.883 ±0.006	$(0.365 \pm 0.009) \cdot 10^{-3}$

$$\overline{J_{\text{cu}_{\text{Teop}}}} = \frac{m_{\text{cu}}R_{\text{cu}}^2}{2} \approx 0.3689 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\Delta J_{\text{cu}_{\text{Teop}}} = \sqrt{\left(\frac{\partial J_{\text{cu}_{\text{Teop}}}}{\partial m_{\text{cu}}} \cdot \Delta m_{\text{cu}}\right)^2 + \left(\frac{\partial J_{\text{cu}_{\text{Teop}}}}{\partial R_{\text{cu}}} \cdot \Delta R_{\text{cu}}\right)^2} =$$

$$= \sqrt{\left(\frac{R_{\text{cu}}^2}{2} \cdot \Delta m_{\text{cu}}\right)^2 + \left(m_{\text{cu}}R_{\text{cu}} \cdot \Delta R_{\text{cu}}\right)^2} \approx 0.0004 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$J_{\text{cu}_{\text{Teop}}} = (0.3689 \pm 0.0004) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$J_{\text{cu}_{\text{Teop}}} = D \frac{T_{\text{cu}_{\text{t}} + \pi}^2}{4\pi^2} \approx 0.5825 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\Delta J_{\text{cu}_{\text{H}} - \text{gkc}}} = \sqrt{\left(\frac{\partial J_{\text{cu}_{\text{H}} - \text{gkc}}}{\partial D} \cdot \Delta D\right)^2 + \left(\frac{\partial J_{\text{cu}_{\text{H}} - \text{gkc}}}{\partial T_{\text{cu}}} \cdot \Delta T_{\text{cu}}\right)^2} =$$

$$= \sqrt{\left(\frac{T_{\text{cu}_{\text{H}} - \pi}^2}{4\pi^2} \cdot \Delta D\right)^2 + \left(D \frac{T_{\text{cu}_{\text{H}} - \pi}}{2\pi^2} \cdot \Delta T_{\text{cu}_{\text{H}} - \pi}\right)^2} \approx 0.009 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$J_{\text{cu}_{\text{H}} - \text{gkc}}} = (0.583 \pm 0.009) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$J_{\text{cu}_{\text{H}} - \text{gkc}}} = \overline{J_{\text{cu}_{\text{H}} - \text{gkc}}} - \overline{J_{\pi}} \approx 0.3648 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\Delta J_{\text{cu}_{\text{gkc}}}} = \sqrt{\left(\frac{\partial J_{\text{cu}_{\text{H}} - \text{gkc}}}{\partial J_{\text{cu}_{\text{H}} - \text{gkc}}} \cdot \Delta J_{\text{cu}_{\text{H}} - \text{gkc}}}\right)^2 + \left(\frac{\partial J_{\text{cu}_{\text{gkc}}}}{\partial J_{\text{u}}} \cdot \Delta J_{\text{u}}\right)^2} =$$

$$= \sqrt{\left(\Delta J_{\text{cu}_{\text{H}} - \text{gkc}}\right)^2 + \left(\Delta J_{\text{H}}\right)^2} \approx 0.009 \cdot 10^{-3} \text{kg} \cdot \text{m}^2}$$

$$J_{\text{cu}_{\text{gkc}}} = (0.365 \pm 0.009) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Полый металлический цилиндр

$m_{\scriptscriptstyle \Pi extsf{I}}$, г	d_{π ц $1}$, мм	R_{Π щ $1}$, мм	$d_{ ext{пц2}}$, мм	$R_{ m пц2}$, мм	$J_{\pi \mathfrak{u}_{ ext{Teop}}}$, кг \cdot м 2
400.49	90.05	45.02	87.95	43.98	$(0.7932 \pm 0.0006) \cdot 10^{-3}$
±0.03	±0.05	±0.02	±0.05	±0.02	

$$\overline{J_{\Pi \text{U}_{\text{Teop}}}} = \frac{1}{2} m_{\Pi \text{U}} (R_{\Pi \text{U}1}^2 + R_{\Pi \text{U}2}^2) \approx 0.7932 \cdot 10^{-3} \text{KT} \cdot \text{M}^2$$

$$\begin{split} \Delta J_{\text{пи}_{\text{теор}}} &= \sqrt{\left(\frac{\partial J_{\text{пи}_{\text{теор}}}}{\partial m_{\text{пц}}} \cdot \Delta m_{\text{пц}}\right)^2 + \left(\frac{\partial J_{\text{пи}_{\text{теор}}}}{\partial R_{\text{пц1}}} \cdot \Delta R_{\text{пц1}}\right)^2 + \left(\frac{\partial J_{\text{пи}_{\text{теор}}}}{\partial R_{\text{пц2}}} \cdot \Delta R_{\text{пц2}}\right)^2} = \\ &= \sqrt{\left(\frac{1}{2}\left(R_{\text{пц1}}^2 + R_{\text{пц2}}^2\right) \cdot \Delta m_{\text{пц}}\right)^2 + \left(m_{\text{пц}}R_{\text{пц1}} \cdot \Delta R_{\text{пц1}}\right)^2 + \left(m_{\text{пц}}R_{\text{пц2}} \cdot \Delta R_{\text{пц2}}\right)^2} \approx \\ &\approx 0.0006 \cdot 10^{-3} \text{kg} \cdot \text{m}^2 \\ J_{\text{пц}_{\text{теор}}} &= (0.7932 \pm 0.0006) \cdot 10^{-3} \text{kg} \cdot \text{m}^2 \\ \overline{J_{\text{пц}_{\text{1}} + \Pi_{\text{9KC}}}} &= D \frac{T_{\text{пц}_{\text{1}} + \Pi}^2}{4\pi^2} \approx 0.9873 \cdot 10^{-3} \text{kg} \cdot \text{m}^2 \\ \Delta J_{\text{пц}_{\text{1}} + \Pi_{\text{9KC}}} &= \sqrt{\left(\frac{\partial J_{\text{пц}_{\text{1}} + \Pi_{\text{9KC}}}}{\partial D} \cdot \Delta D\right)^2 + \left(\frac{\partial J_{\text{пц}_{\text{1}} + \Pi_{\text{9KC}}}}{\partial T_{\text{пц}}} \cdot \Delta T_{\text{пц}}\right)^2} = \\ &= \sqrt{\left(\frac{T_{\text{пц}_{\text{1}} + \Pi}^2}{4\pi^2} \cdot \Delta D\right)^2 + \left(D \frac{T_{\text{1}} + \Pi}}{2\pi^2} \cdot \Delta T_{\text{1}} + \Pi}\right)^2} \approx 0.012 \cdot 10^{-3} \text{kg} \cdot \text{m}^2} \\ J_{\text{1} + \Pi_{\text{9KC}}} &= (0.987 \pm 0.012) \cdot 10^{-3} \text{kg} \cdot \text{m}^2} \end{split}$$

$$\overline{J_{\Pi \mathfrak{U}_{3KC}}} = \overline{J_{\Pi \mathfrak{U} + \Pi_{3KC}}} - \overline{J_{\Pi}} \approx 0.7696 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$\Delta J_{\Pi \mathfrak{U}_{3KC}} = \sqrt{\left(\frac{\partial J_{\Pi \mathfrak{U}_{3KC}}}{\partial J_{\Pi \mathfrak{U} + \Pi_{3KC}}} \cdot \Delta J_{\Pi \mathfrak{U} + \Pi_{3KC}}\right)^2 + \left(\frac{\partial J_{\Pi \mathfrak{U}_{3KC}}}{\partial J_{\Pi}} \cdot \Delta J_{\Pi}\right)^2} =$$

$$= \sqrt{\left(\Delta J_{\Pi \mathfrak{U} + \Pi_{3KC}}\right)^2 + \left(\Delta J_{\Pi}\right)^2} \approx 0.012 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

$$J_{\Pi \mathfrak{U}_{3KC}} = (0.770 \pm 0.012) \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Обсуждение результатов

Теоретическое (найденное через параметры тела) значение момента инерции совпадает в пределах погрешности с экспериментальным (найденным динамическим способом) значением момента инерции для шара, диска, сплошного цилиндра. Теоретический и экспериментальный моменты инерции для полого цилиндра не вошли в пределы погрешности, но тем не менее достаточно близки. Наибольший вклад в погрешность вносит сложность измерения некоторых размеров тел.

Таким образом, верность теоретических формул для моментов инерции тел доказана.

3. Экспериментальная проверка теоремы Гюйгенса-Штейнера.

Масса исследуемого диска, измеренная с помощью весов: $m=685.18\pm0.03~\mathrm{r}$.

d, см	N	t, c	$ar{t}$, c	Δt , c	<i>T</i> , c	d^2 , cm 2	<i>J</i> , кг · м ²
		21.6					
		21.6					
0	5	21.6	21.55	0.06	4.310	0	0.01387
	J	21.5	21.33	0.00	±0.011	U	±0.00008
		21.5					
		21.5					
		21.8		0.08	4.327 ±0.016	4	
	5	21.5					0.01398 ±0.00010
2		21.6	21.63				
2		21.5					
		21.7					
		21.7					
		22.2					
		22.5					
4	Е	22.3	22.22	0.07	4.463	16	0.01487
4	5	22.3	22.32	0.07	±0.014	16	±0.00010
		22.3					
		22.3					

			1	T	Т	T	1
		22.9					
		23.0					
6	5	23.1	22.97	0.07	4.593 ±0.014	36	0.01575
U		22.8	22.37	0.07			±0.00010
		23.0					
		23.0					
		24.8					
		24.8					
8	5	24.7	24.85	0.08	4.970	64	0.01844
0	J	25.0	24.03	0.08	±0.016	04	±0.00012
		24.8					
		25.0					
		27.3					
		27.7		0.10	5.480 ±0.019	100	
10	5	27.4	27.40				0.02242
10	J	27.4					±0.00016
		27.4					
		27.2					
		28.7	28.87	0.09	5.773 ±0.018		
		28.8				144	
12	5	28.8					0.02488
12	J	28.8					±0.00016
		29.1					
		29.0					
		31.6					
		32.0				196	
14	5	31.8	31.52	0.18	6.30		0.0297
14	J	31.1	31.32	0.18	±0.04	190	±0.0003
		31.4					
		31.2					
		33.8					
16		34.4					
	5	34.0	24.45	0.12	6.83	256	0.0348
16	Э	34.3	34.15	0.13	±0.03	256	±0.0003
		34.0					
		34.4					
		1	1	t	1		1

Момент инерции и его погрешность вычислялись по следующим формулам:

$$\bar{J} = D \frac{T^2}{4\pi^2}$$

$$\Delta J = \sqrt{\left(\frac{\partial J}{\partial D} \cdot \Delta D\right)^2 + \left(\frac{\partial J}{\partial T} \cdot \Delta T\right)^2} = \sqrt{\left(\frac{T^2}{4\pi^2} \cdot \Delta D\right)^2 + \left(D\frac{T}{2\pi^2} \cdot \Delta T\right)^2}$$

Построим график зависимости $J(d^2)$. Теоретическая зависимость выражается формулой:

$$J = \alpha d^{2} + b = md^{2} + J_{c} \Rightarrow \alpha = m; \ b = J_{c}$$

$$0,040$$

$$0,035$$

$$0,025$$

$$0,015$$

$$0,010$$

$$0,005$$

$$0,000$$

$$0 \Rightarrow 50 \Rightarrow 100 \Rightarrow 150 \Rightarrow 200 \Rightarrow 250$$

$$d^{2} \text{ (cM}^{2})$$

Экспериментальная зависимость $J(d^2)$ получилась линейной. Из графика найдём массу диска m и момент инерции диска относительно оси через его центр масс J_c :

$$\alpha = (8.27 \pm 0.18) \cdot 10^{-5} \frac{\text{K}\Gamma \cdot \text{M}^2}{\text{cM}^2} = 827 \pm 18 \text{ }\Gamma$$

$$m = 827 \pm 18 \text{ }\Gamma$$

$$b = (1.34 \pm 0.02) \cdot 10^{-2} \text{ }\text{K}\Gamma \cdot \text{M}^2$$

$$J_c = 0.0134 \pm 0.0002 \text{ }\text{K}\Gamma \cdot \text{M}^2$$

Полученный из графика момент инерции J_c очень близок к измеренному значению. А вот масса диска m оказалась больше измеренной. Это может быть связано с наличием сил трения в осцилляторе и сопротивлением воздуха, которое диск испытывает из-за своих размеров.

В целом, зависимость получилась линейной, что подтверждает теорему Гюйгенса-Штейнера.

Выводы

- Подтверждена формула, выражающая зависимость периода вращательных колебаний от момента инерции и модуля кручения системы;
- Подтверждена аддитивность момента инерции;
- Подтверждены формулы моментов инерции для шара, диска, полого и сплошного цилиндров;
- Подтверждена теорема Гюйгенса-Штейнера.