Exercice 1.

- 1. f'(-1) = 0 (tangente horizontale) et f'(0) = -1.
- 2. $B(0\,;\,2)$ est le seul point d'inflexion de la courbe représentative de la fonction f:f change de convexité au point B. Par ailleurs, la courbe représentative de la fonction f est située en dessous de sa tangente en A d'abscisse -1: donc f est concave sur $]-\infty;0]$ et convexe sur $[0\,;\,+\infty[$, on en déduit que $f''\leqslant 0$ sur $]-\infty;0]$ et $f''\geqslant 0$ sur $[0\,;\,+\infty[$. On en déduit le tableau de variation de f' sur $\mathbb R$:

3. D'après la question précédente, f' est croissante sur] - ∞; 0] et décroissante sur [0; +∞[: la seule courbe qui satisfait ces critères est la courbe C₄.
Par ailleurs, f" ≤ 0 sur] - ∞; 0] et f" ≥ 0 sur [0; +∞[donc la courbe représentative de f" doit être située en dessous de l'axe des abscisses sur] - ∞; 0] et au dessus de l'axe des abscisses sur [0; +∞[: ainsi f" est représentée par C₂.

Exercice 2.

Partie A

1. La fonction p est dérivable sur [-3; 4].

$$\forall x \in [-3 ; 4], p'(x) = 3x^2 - 6x + 5$$

Ce trinôme du second degré n'admet aucune racine réelle ($\Delta = -24 < 0$) donc $\forall x \in [-3; 4]$, p'(x) > 0 car a = 3 > 0: la fonction p est strictement croissante sur [-3; 4].

On dresse le tableau de variation de p sur [-3; 4], avec p(-3) = -68 et p(4) = 37:

x	-3	α	4
Variation de p	-68 -	0	→ 37

- 2. p est continue car dérivable sur [-3; 4].
 - La fonction p est strictement croissante sur [-3; 4].

Or $0 \in [-68; 37] = f([-3; 4])$, donc d'après le corollaire du théorème des valeurs intermédiaires dans le cas des fonctions strictement croissantes, l'équation p(x) = 0 admet une unique solution, notée α , dans l'intervalle [-3; 4].

3. On localise α à l'unité : $-1 < \alpha < 0$ puis au dixième : $-0.2 < \alpha < -0.1$. Néanmoins, on veut une valeur approchée de α au dixième, on localise alors α au centième et il vient : $-0.18 < \alpha < -0.17$ donc par la méthode de balayage : $\alpha \approx -0.2$. 4. D'après les variations de la fonction p, et en utilisant le résultat précédent, on peut établir le tableau de signe de la fonction p sur [-3;4]:

x	-3	α	4
$ \text{signe} \\ \text{de } p(x) $		- 0 +	

Partie B

1. (a) f est dérivable sur [-3; 4].

$$\forall x \in [-3; 4], f'(x) = \frac{e^x \times (1+x^2) - e^x \times 2x}{(1+x^2)^2} = \frac{e^x (x^2 - 2x + 1)}{(1+x^2)^2} = \frac{(x-1)^2 e^x}{(1+x^2)^2}.$$

(b)
$$f'(x) = 0 \iff \frac{(x-1)^2 e^x}{(1+x^2)^2} = 0 \iff (x-1)^2 e^x \iff (x-1)^2 \iff x-1=0 \iff x=1.$$

Et $f(1) = \frac{e}{2}$. Donc au point d'abscisse 1, C_f admet une tangente horizontale d'équation $y = \frac{e}{2}$.

- 2. (a) Avec la précision permise par le graphique, on peut voir que la fonction f est :
 - convexe sur [-3; 0];
 - \bullet concave sur [0; 1];
 - convexe sur [1; 4].

Donc C_f admet deux points d'inflexion, aux abscisses x = 0 et x = 1.

Le toboggan semble donc assurer de bonnes sensations.

(b)
$$\forall x \in [-3; 4]: f''(x) = \frac{p(x)(x-1)e^x}{(1+x^2)^3}$$

Recherchons les points d'inflexion, c'est-à-dire les valeurs de $x \in [-3; 4]$ pour lesquelles f''(x) s'annule et change de signe.

 $\forall x \in [-3; 4], (1+x^2)^3 > 0$ et $e^x > 0$ donc f''(x) a le même signe que p(x)(x-1).

On construit alors le tableau de signe suivant :

x	-3		α		1		4
$ \begin{array}{c} \text{signe} \\ \text{de } p(x) \end{array} $		_	0	+		+	
signe de $x-1$		_		_	0	+	
signe de $f''(x)$		+	0	_	0	+	

f'' s'annule et change de signe en $x = \alpha$ et x = 1. Donc C_f admet deux points d'inflexion. Le toboggan assure donc de bonnes sensations.