

Machine Learning with Spark

Amir H. Payberah payberah@kth.se 30/10/2019

https://id2223kth.github.io

- ► Traditional platforms fail to show the expected performance.
- ▶ Need new systems to store and process large-scale data

Scale Up vs. Scale Out

- ► Scale up or scale vertically
- ► Scale out or scale horizontally

Spark

Spark Execution Model (1/3)

- ► Spark applications consist of
 - A driver process
 - A set of executor processes

[M. Zaharia et al., Spark: The Definitive Guide, O'Reilly Media, 2018]

Spark Execution Model (2/3)

- ► The driver process is the heart of a Spark application
- ► Sits on a node in the cluster
- ▶ Runs the main() function

Spark Execution Model (3/3)

► Executors execute codes assigned to them by the driver.

Spark Programming Model

- ▶ Job description based on directed acyclic graphs (DAG).
- ▶ There are two types of RDD operators: transformations and actions.

Resilient Distributed Datasets (RDD) (1/2)

- ► A distributed memory abstraction.
- ▶ Immutable collections of objects spread across a cluster.
 - Like a LinkedList <MyObjects>

Resilient Distributed Datasets (RDD) (2/2)

- ► An RDD is divided into a number of partitions, which are atomic pieces of information.
- ▶ Partitions of an RDD can be stored on different nodes of a cluster.

Creating RDDs

► Turn a collection into an RDD.

```
val a = sc.parallelize(Array(1, 2, 3))
```

► Turn a collection into an RDD.

```
val a = sc.parallelize(Array(1, 2, 3))
```

▶ Load text file from local FS, HDFS, or S3.

```
val a = sc.textFile("file.txt")
val b = sc.textFile("directory/*.txt")
val c = sc.textFile("hdfs://namenode:9000/path/file")
```

- ► Transformations: lazy operators that create new RDDs.
- ► Actions: lunch a computation and return a value to the program or write data to the external storage.

Spark and Spark SQL

- ▶ A DataFrame is a distributed collection of rows with a homogeneous schema.
- ▶ It is equivalent to a table in a relational database.
- ▶ It can also be manipulated in similar ways to RDDs.

Adding Schema to RDDs

- ► Spark + RDD: functional transformations on partitioned collections of opaque objects.
- ► SQL + DataFrame: declarative transformations on partitioned collections of tuples.

Creating a DataFrame - From an RDD

▶ You can use toDF to convert an RDD to DataFrame.

```
val tupleRDD = sc.parallelize(Array(("seif", 65, 0), ("amir", 40, 1)))
val tupleDF = tupleRDD.toDF("name", "age", "id")
```


Creating a DataFrame - From an RDD

▶ You can use toDF to convert an RDD to DataFrame.

```
val tupleRDD = sc.parallelize(Array(("seif", 65, 0), ("amir", 40, 1)))
val tupleDF = tupleRDD.toDF("name", "age", "id")
```

▶ If RDD contains case class instances, Spark infers the attributes from it.

```
case class Person(name: String, age: Int, id: Int)
val peopleRDD = sc.parallelize(Array(Person("seif", 65, 0), Person("amir", 40, 1)))
val peopleDF = peopleRDD.toDF
```


Creating a DataFrame - From Data Source

- Data sources supported by Spark.
 - CSV, JSON, Parquet, ORC, JDBC/ODBC connections, Plain-text files
 - Cassandra, HBase, MongoDB, AWS Redshift, XML, etc.

▶ Different ways to refer to a column.

```
val people = spark.read.format("json").load("people.json")
people.col("name")
col("name")

'name

$"name"
expr("name")
```


DataFrame Transformations (1/6)

select allows to do the DataFrame equivalent of SQL queries on a table of data.

```
people.select("name", "age", "id").show(2)
people.select(col("name"), expr("age + 3")).show()
people.select(expr("name AS username")).show(2)
```


DataFrame Transformations (1/6)

select allows to do the DataFrame equivalent of SQL queries on a table of data.

```
people.select("name", "age", "id").show(2)
people.select(col("name"), expr("age + 3")).show()
people.select(expr("name AS username")).show(2)
```

▶ filter and where both filter rows.

```
people.filter(col("age") < 20).show()
people.where("age < 20").show()</pre>
```


DataFrame Transformations (1/6)

► select allows to do the DataFrame equivalent of SQL queries on a table of data.

```
people.select("name", "age", "id").show(2)
people.select(col("name"), expr("age + 3")).show()
people.select(expr("name AS username")).show(2)
```

▶ filter and where both filter rows.

```
people.filter(col("age") < 20).show()
people.where("age < 20").show()</pre>
```

distinct can be used to extract unique rows.

```
people.select("name").distinct().count()
```


DataFrame Transformations (2/6)

▶ withColumn adds a new column to a DataFrame.

```
people.withColumn("teenager", expr("age < 20")).show()</pre>
```


DataFrame Transformations (2/6)

withColumn adds a new column to a DataFrame.

```
people.withColumn("teenager", expr("age < 20")).show()</pre>
```

▶ withColumnRenamed renames a column.

```
people.withColumnRenamed("name", "username").columns
```


DataFrame Transformations (2/6)

withColumn adds a new column to a DataFrame.

```
people.withColumn("teenager", expr("age < 20")).show()</pre>
```

▶ withColumnRenamed renames a column.

```
people.withColumnRenamed("name", "username").columns
```

► drop removes a column.

```
people.drop("name").columns
```


DataFrame Transformations (3/6)

▶ count returns the total number of values.

```
people.select(count("age")).show()
```


DataFrame Transformations (3/6)

count returns the total number of values.

```
people.select(count("age")).show()
```

▶ countDistinct returns the number of unique groups.

```
people.select(countDistinct("name")).show()
```


DataFrame Transformations (3/6)

count returns the total number of values.

```
people.select(count("age")).show()
```

countDistinct returns the number of unique groups.

```
people.select(countDistinct("name")).show()
```

▶ first and last return the first and last value of a DataFrame.

```
people.select(first("name"), last("age")).show()
```


DataFrame Transformations (4/6)

▶ min and max extract the minimum and maximum values from a DataFrame.

```
people.select(min("name"), max("age"), max("id")).show()
```


DataFrame Transformations (4/6)

▶ min and max extract the minimum and maximum values from a DataFrame.

```
people.select(min("name"), max("age"), max("id")).show()
```

sum adds all the values in a column.

```
people.select(sum("age")).show()
```


DataFrame Transformations (4/6)

▶ min and max extract the minimum and maximum values from a DataFrame.

```
people.select(min("name"), max("age"), max("id")).show()
```

▶ sum adds all the values in a column.

```
people.select(sum("age")).show()
```

avg calculates the average.

```
people.select(avg("age")).show()
```


DataFrame Transformations (5/6)

▶ groupBy and agg together perform aggregations on groups.

```
people.groupBy("name").agg(count("age")).show()
```


DataFrame Transformations (5/6)

groupBy and agg together perform aggregations on groups.

```
people.groupBy("name").agg(count("age")).show()
```

join performs the join operation between two tables.

DataFrame Transformations (6/6)

► You can use udf to define new column-based functions.

```
import org.apache.spark.sql.functions.udf
val df = spark.createDataFrame(Seq((0, "hello"), (1, "world"))).toDF("id", "text")
val upper: String => String = _.toUpperCase
val upperUDF = spark.udf.register("upper", upper)
df.withColumn("upper", upperUDF(col("text"))).show
```

- ▶ Like RDDs, DataFrames also have their own set of actions.
- collect: returns an array that contains all the rows in this DataFrame.
- ▶ count: returns the number of rows in this DataFrame.
- first and head: returns the first row of the DataFrame.
- ▶ show: displays the top 20 rows of the DataFrame in a tabular form.
- ▶ take: returns the first n rows of the DataFrame.

Machine Learning

Machine Learning with Spark

- ► Spark provides support for statistics and machine learning.
 - Supervised learning
 - Unsupervised engines
 - Deep learning

- ▶ Using labeled historical data and training a model to predict the values of those labels based on various features of the data points.
- Classification (categorical values)
 - E.g., predicting disease, classifying images, ...
- Regression (continuous values)
 - E.g., predicting sales, predicting height, ...

- ► No label to predict.
- ► Trying to find patterns or discover the underlying structure in a given set of data.
 - Clustering, anomaly detection, ...

The Advanced Analytic Process

- ▶ Data collection
- ► Data cleaning
- ► Feature engineering
- ► Training models
- Model tuning and evaluation

What is MLlib? (1/2)

- MLlib is a package built on Spark.
- ► It provides interfaces for:
 - Gathering and cleaning data
 - Feature engineering and feature selection
 - Training and tuning large-scale supervised and unsupervised machine learning models
 - Using those models in production

What is MLlib? (2/2)

► MLlib consists of two packages.

What is MLlib? (2/2)

- ► MLlib consists of two packages.
- ► org.apache.spark.mllib
 - Uses RDDs
 - It is in maintenance mode (only receives bug fixes, not new features)

What is MLlib? (2/2)

- MLlib consists of two packages.
- ▶ org.apache.spark.mllib
 - Uses RDDs
 - It is in maintenance mode (only receives bug fixes, not new features)
- ▶ org.apache.spark.ml
 - Uses DataFrames
 - Offers a high-level interface for building machine learning pipelines

▶ Many tools for performing machine learning on a single machine, e.g., scikit-learn and TensorFlow.

- ► Many tools for performing machine learning on a single machine, e.g., scikit-learn and TensorFlow.
- ► These single-machine tools are usually complementary to MLlib.

- ▶ Many tools for performing machine learning on a single machine, e.g., scikit-learn and TensorFlow.
- ► These single-machine tools are usually complementary to MLlib.
- ► Take advantage of Spark, when you hit scalability issues.
 - Use Spark for preprocessing and feature generation, before giving data to single-machine learning libraries.
 - Use Spark, when input data or model size become too difficult to put on one machine.

High-Level MLlib Concepts

- ► ML Pipelines (spark.ml) provide a uniform set of high-level APIs built on top of DataFrames to create machine learning pipelines.
- ► Main pipeline components: transformers and estimators

Transformers

- ► Transformers take a DataFrame as input and produce a new DataFrame as output.
- ► The class Transformer implements a method transform() that converts one DataFrame into another.

- Estimator is an abstraction of a learning algorithm that fits a model on a dataset.
- ► The class Estimator implements a method fit(), which accepts a DataFrame and produces a Model (Transformer).

```
// estimator: DataFrame =[fit]=> Model
fit(dataset: DataFrame): M
```


KTH Pipeline

▶ Pipeline is a sequence of algorithms to process and learn from data.

- ▶ Pipeline is a sequence of algorithms to process and learn from data.
- ► E.g., a text document processing workflow might include several stages:
 - Split each document's text into words.
 - Convert each document's words into a numerical feature vector.
 - Learn a prediction model using the feature vectors and labels.

- ▶ Pipeline is a sequence of algorithms to process and learn from data.
- ► E.g., a text document processing workflow might include several stages:
 - Split each document's text into words.
 - Convert each document's words into a numerical feature vector.
 - Learn a prediction model using the feature vectors and labels.
- ▶ MLlib represents such a workflow as a Pipeline, which is a sequence of stages.
 - Each stage is either a Transformer or an Estimator.

- Stages of a pipeline run in order.
- ► The input DataFrame is transformed as it passes through each stage.
 - Calls transform() for Transformer stages
 - Calls fit() for Estimator stages

- Stages of a pipeline run in order.
- ► The input DataFrame is transformed as it passes through each stage.
 - Calls transform() for Transformer stages
 - Calls fit() for Estimator stages
- ► E.g., a Pipeline with three stages: Tokenizer and HashingTF are Transformers, and LogisticRegression is an Estimator.

- ▶ Pipeline.fit(): is called on the original DataFrame
 - DataFrame with raw text documents and labels

- ▶ Pipeline.fit(): is called on the original DataFrame
 - DataFrame with raw text documents and labels
- ► Tokenizer.transform(): splits the raw text documents into words
 - Adds a new column with words to the DataFrame

- ▶ Pipeline.fit(): is called on the original DataFrame
 - DataFrame with raw text documents and labels
- ► Tokenizer.transform(): splits the raw text documents into words
 - Adds a new column with words to the DataFrame
- ► HashingTF.transform(): converts the words column into feature vectors
 - Adds new column with those vectors to the DataFrame

- ▶ Pipeline.fit(): is called on the original DataFrame
 - DataFrame with raw text documents and labels
- ► Tokenizer.transform(): splits the raw text documents into words
 - Adds a new column with words to the DataFrame
- ► HashingTF.transform(): converts the words column into feature vectors
 - Adds new column with those vectors to the DataFrame
- ► LogisticRegression.fit(): produces a model (LogisticRegressionModel).

► A Pipeline is an Estimator (DataFrame =[fit]=> Model).

- ► A Pipeline is an Estimator (DataFrame =[fit]=> Model).
- ► After a Pipeline's fit() runs, it produces a PipelineModel.

- ► A Pipeline is an Estimator (DataFrame =[fit] => Model).
- ▶ After a Pipeline's fit() runs, it produces a PipelineModel.
- ▶ PipelineModel is a Transformer (DataFrame = [transform] => DataFrame).

- ► A Pipeline is an Estimator (DataFrame =[fit]=> Model).
- ▶ After a Pipeline's fit() runs, it produces a PipelineModel.
- ▶ PipelineModel is a Transformer (DataFrame = [transform] => DataFrame).
- ► The PipelineModel is used at test time.

- ► A Pipeline is an Estimator (DataFrame =[fit]=> Model).
- ▶ After a Pipeline's fit() runs, it produces a PipelineModel.
- ▶ PipelineModel is a Transformer (DataFrame =[transform] => DataFrame).
- ► The PipelineModel is used at test time.
- ▶ The PipelineModel has the same number of stages as the original Pipeline.
 - All Estimators in the original Pipeline have become Transformers.

Example - Input DataFrame (1/2)

► Make a DataFrame of the type Article.

```
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.sql.Row
case class Article(id: Long, topic: String, text: String)
val articles = spark.createDataFrame(Seg(
    Article(0, "sci.math", "Hello, Math!").
    Article(1, "alt.religion", "Hello, Religion!"),
    Article(2, "sci.physics", "Hello, Physics!"),
    Article(3, "sci.math", "Hello, Math Revised!"),
    Article(4, "sci.math", "Better Math"),
    Article(5, "alt.religion", "TGIF"))).toDF
articles.show
```


Example - Input DataFrame (2/2)

- ▶ Add a new column label to the DataFrame.
- ▶ udf is a feature of Spark SQL to define new Column-based functions.

```
val topic2Label: Boolean => Double = x => if (x) 1 else 0
val toLabel = spark.udf.register("topic2Label", topic2Label)
val labelled = articles.withColumn("label", toLabel($"topic".like("sci%"))).cache
labelled.show
```


Example - Transformers (1/2)

▶ Break each sentence into individual terms (words).

```
import org.apache.spark.ml.feature.Tokenizer
import org.apache.spark.ml.feature.RegexTokenizer

val tokenizer = new RegexTokenizer().setInputCol("text").setOutputCol("words")

val tokenized = tokenizer.transform(labelled)

tokenized.show(false)
```


Example - Transformers (2/2)

- ► Takes a set of words and converts them into fixed-length feature vector.
 - 5000 in our example
- ▶ Uses a hash function to map each word into an index in the feature vector.
- ▶ Then computes the term frequencies based on the mapped indices.

```
val Array(trainDF, testDF) = hashed.randomSplit(Array(0.8, 0.2))
trainDF.show
testDF.show
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression().setMaxIter(20).setRegParam(0.01)
val model = lr.fit(trainDF)
val pred = model.transform(testDF).select("topic", "label", "prediction")
pred.show
```

```
val Array(trainDF2, testDF2) = labelled.randomSplit(Array(0.8, 0.2))
trainDF2.show
testDF2.show
import org.apache.spark.ml.{Pipeline, PipelineModel}
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, lr))
val model2 = pipeline.fit(trainDF2)
val pred = model2.transform(testDF2).select("topic", "label", "prediction")
pred.show
```

► MLlib Estimators and Transformers use a uniform API for specifying parameters.

Parameters

- ▶ MLlib Estimators and Transformers use a uniform API for specifying parameters.
- ► Param: a named parameter
- ► ParamMap: a set of (parameter, value) pairs

Parameters

- ► MLlib Estimators and Transformers use a uniform API for specifying parameters.
- ► Param: a named parameter
- ► ParamMap: a set of (parameter, value) pairs
- ► Two ways to pass parameters to an algorithm:
 - 1. Set parameters for an instance, e.g., lr.setMaxIter(10)
 - 2. Pass a ParamMap to fit() or transform().

Example - ParamMap

```
// set parameters using setter methods.
val lr = new LogisticRegression()
lr.setMaxIter(10).setRegParam(0.01)
// specify parameters using a ParamMap
val lr = new LogisticRegression()
val paramMap = ParamMap(lr.maxIter -> 20)
  .put(lr.maxIter, 30) // specify one Param
  .put(lr.regParam -> 0.1, lr.threshold -> 0.55) // specify multiple Params
val model = lr.fit(training, paramMap)
```


Low-Level Data Types - Local Vector

- ► Stored on a single machine
- ► Dense and sparse
 - Dense (1.0, 0.0, 3.0): [1.0, 0.0, 3.0]
 - Sparse (1.0, 0.0, 3.0): (3, [0, 2], [1.0, 3.0])

```
import org.apache.spark.mllib.linalg.{Vector, Vectors}

val dv: Vector = Vectors.dense(1.0, 0.0, 3.0)

val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0)))
```


Preprocessing and Feature Engineering

- ▶ In most of classification and regression algorithms, we want to get the data.
 - A column to represent the label (Double).
 - A column to represent the features (Vector)

Transformers and Estimators

Transformer

Estimator

Transformer Properties

- ► All transformers require you to specify the input and output columns.
- ► We can set these with setInputCol and setOutputCol.

```
val tokenizer = new RegexTokenizer().setInputCol("text").setOutputCol("words")
```

► Concatenate all your features into one vector.

MLlib Transformers

- ► Continuous features
- ► Categorical features
- ► Text data

- ► Continuous features
- ► Categorical features
- ► Text data

Continuous Features - Bucketing

► Convert continuous features into categorical features.

```
import org.apache.spark.ml.feature.Bucketizer

val contDF = spark.range(20).selectExpr("cast(id as double)")
val bucketBorders = Array(-1.0, 5.0, 10.0, 15.0, 20.0)

val bucketer = new Bucketizer().setSplits(bucketBorders).setInputCol("id")
bucketer.transform(contDF).show()
```


Continuous Features - Scaling and Normalization

▶ To scale and normalize continuous data.

```
import org.apache.spark.ml.feature.StandardScaler

val scaler = new StandardScaler().setInputCol("features").setOutputCol("scaled")
scaler.fit(nums).transform(nums).show()
```


Continuous Features - Maximum Absolute Scaler

► Scales the data by dividing each feature by the maximum absolute value in this feature (column).

```
import org.apache.spark.ml.feature.MaxAbsScaler
val maScaler = new MaxAbsScaler().setInputCol("features").setOutputCol("mas")
maScaler.fit(nums).transform(nums).show()
```


- ► Continuous features
- ► Categorical features
- ► Text data

Categorical Features - String Indexer

▶ Maps strings to different numerical IDs.

```
val simpleDF = spark.read.json("simple-ml.json")

import org.apache.spark.ml.feature.StringIndexer

val lblIndxr = new StringIndexer().setInputCol("lab").setOutputCol("labelInd")
val idxRes = lblIndxr.fit(simpleDF).transform(simpleDF)

idxRes.show()
```


Categorical Features - Converting Indexed Values Back to Text

► Maps back to the original values.

```
import org.apache.spark.ml.feature.IndexToString
val labelReverse = new IndexToString().setInputCol("labelInd").setOutputCol("original")
labelReverse.transform(idxRes).show()
```


Categorical Features - One-Hot Encoding

► Converts each distinct value to a boolean flag as a component in a vector.

```
val simpleDF = spark.read.json("simple-ml.json")
```

```
import org.apache.spark.ml.feature.OneHotEncoder

val lblIndxr = new StringIndexer().setInputCol("color").setOutputCol("colorInd")
val colorLab = lblIndxr.fit(simpleDF).transform(simpleDF.select("color"))
val ohe = new OneHotEncoder().setInputCol("colorInd").setOutputCol("one-hot")
ohe.transform(colorLab).show()

// Since there are three values, the vector is of length 2 and the mapping is as follows:
// 0 -> 10, (2,[0],[1.0])
// 1 -> 01, (2,[1],[1.0])
// 2 -> 00, (2,[1],[1])
// (2,[0],[1.0]) means a vector of length 2 with 1.0 at position 0 and 0 elsewhere.
```


- ► Continuous features
- ► Categorical features
- ► Text data

Text Data - Tokenizing Text

► Converting free-form text into a list of tokens or individual words.

```
val sales = spark.read.format("csv").option("header", "true").load("sales.csv")
    .where("Description IS NOT NULL")
sales.show(false)
```

```
import org.apache.spark.ml.feature.Tokenizer

val tkn = new Tokenizer().setInputCol("Description").setOutputCol("DescOut")
val tokenized = tkn.transform(sales.select("Description"))
tokenized.show(false)
```


Text Data - Removing Common Words

► Filters stop words, such as "the", "and", and "but".

Text Data - Converting Words into Numerical Representations

- ► Counts instances of words in word features.
- ► Treats every row as a document, every word as a term, and the total collection of all terms as the vocabulary.

Summary

Summary

► Spark: RDD

► Spark SQL: DataFrame

► MLlib

• Transformers and Estimators

• Pipeline

• Feature engineering

▶ Matei Zaharia et al., Spark - The Definitive Guide, (Ch. 24 and 25)

Questions?