Solutions to Presentation Exercises

(89) (c) For a fixed $m \in \mathbb{N}$, the curves $x^2 + y^2 = 1$ and $xy = \frac{1}{m}$ intersect in at most $y = \frac{1}{m}$ is countable by countable union theorem.

Solutions to Presentation Exercises $y = \frac{1}{m}$ intersect in at most $y = \frac{1}{m}$ is countable by countable union theorem.

The points because $y = \frac{1}{m}$ is countable union theorem.

At most 4 points, hence countable

(g) Since $A \cap B \subseteq A$, $Q \cap A \subseteq Q$, $B \cap Q \subseteq Q$ and A, Q are countable, so by the Countable Subset theorem, $A \cap B$, $Q \cap A$, $B \cap Q$ are Countable. For $x \in A \cap B$, $y \in Q \cap A$ and $z \in B \cap Q$, let $S_{x,y,z} = \{x^2y^2 + z^2\}$. Then $S_{x,y,z}$ is a one element set. So $S_{x,y,z}$ is countable.

Set. So $S_{x,y,z}$ is countable.

Finally, $S = \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (B \cap Q)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (A \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A) \times (A \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B) \times (Q \cap A)} \sum_{(x,y,z) \in (A \cap B)} \sum_{(x,y,z) \in (A \cap B)} \sum_{(x,y,z) \in (A \cap B)} \sum_{(x,y,z) \in (A$

(h) Let $y_0 \in A$ and $T = \{x - y_0 : x \in A\}$. Then $T \subseteq S$. Now $f : A \to T$ defined by $f(x) = x - y_0$ is bijective with $f'(t) = t + y_0$. By bijection theorem, A uncountable implies T uncountable. Finally since $T \subseteq S$, S must be uncountable by the contrapositive S tatement of the Countable subset theorem.

(9) Since $0 < \frac{\sqrt{z}}{m+n} + \frac{1}{k\sqrt{z}} \le \frac{\sqrt{z}}{1+1} + \frac{1}{\sqrt{z}} = \frac{\sqrt{z}}{z} + \frac{1}{\sqrt{z}} = \sqrt{z}$, S is bounded below by O and above by \sqrt{z} . Now every upper bound $M \ge \sqrt{z} \in S$, so $\sup S = \sqrt{z}$. Next considering $A = \frac{\sqrt{z}}{n+n} + \frac{\sqrt{z}}{n\sqrt{z}} \in S$, we have $\lim_{n \to \infty} a_n = 0$, which is a lower bound. So by the infimum limit theorem, inf S = 0.

 $\begin{array}{l} (h)S = [0,\frac{1}{2}) \vee [\frac{2}{3},\frac{3}{4}) \vee [\frac{4}{5},\frac{5}{6}) \vee \dots & \text{Since } 0 \leq 1-\frac{1}{2k-1} \text{ and } 1-\frac{1}{2k} < 1 \text{ for } \\ -k=1,2,3,\cdots, \text{ so } 0 \leq x < 1 \text{ for all } x \in S. \text{ So } S \text{ is bounded below by } 0 \text{ and } \\ \text{above by } 1. \text{ Since every lower bound } m \leq 0 \in S, \text{ so } \inf S = 0. \text{ Next } \\ \text{Since } 1-\frac{1}{2k-1} \in S \text{ and } \lim_{k \to \infty} (1-\frac{1}{2k-1}) = 1, \text{ so by the supremum limit fleorers, } \sup S = 1. \end{array}$

(h) Since $0 \le x + y \le 2$ for $x \in [0,1] \cap Q$, $y \in [0,1] \cap (R \setminus Q)$, S is bounded below by 0 and bounded above by 2. We will show in f : S = 0 and Sup : S = 2. Let $W_n = \frac{1}{n} + \frac{1}{n\sqrt{2}}$, then $W_n \in S$ and $\lim_{n \to \infty} w_n = 0$. So by infimum limit theorem, in f : S = 0. Let $V_n = \frac{N}{N+1} + \frac{1}{n\sqrt{2}}$, then $V_n \in S$ and $\lim_{n \to \infty} v_n = 2$, S_0 by Supremum limit theorem, $\sup_{n \to \infty} S = 2$.

(0) $0 \le x^2 + y^3 + z^4 \le 1 + 1 + 1 = 3$ for $x \in (-1,0) : Q$, $y \in (0,1) \land Q$, $z \in (-1,1)$. So 0 is a lower bound and 3 is an upper bound of S. Since $(-1,1)^2 + (-1,1)^4 = 1$ is in S and has limit 0, so inf S = 0. Since $(-1 + \frac{1}{h\sqrt{z}})^2 + (1 - \frac{1}{h+1})^4 = 1$ is in S and has limit 3, so Sup S = 3.

- (98) We have $x \in A$, $y \in A \Rightarrow x^2 + y^2 \le (\sup A)^2 + (\sup A)^2 = 2 (\sup A)^2$. So $2 (\sup A)^2$ is an upper bound for B.

 By supremum limit theorem, there is a sequence $\{x, n\}$ in A such that $\lim_{n \to \infty} x_n = \sup A$.

 Then $\{x_n^2 + x_n^2\}$ is a sequence in B and $\lim_{n \to \infty} \{x_n^2 + x_n^2\} = 2 (\sup A)^2$. So by the supremum limit theorem, $\sup B = 2 (\sup A)^2$.
- (3) For $x \in \mathcal{O}$ An, $x \in An$ for some $n \Rightarrow x \leq x_n = \sup A_n \leq \max(x_1, ..., x_{io})$.

 So $\max(x_1, ..., x_{io})$ is an upper bound of \mathcal{O} An. Let $x_i = \max(x_1, ..., x_{io})$, then since $x_i = \sup A_i$, there is $\{a_n\}_i$ in A_i such that $\lim_{n \to \infty} a_n = x_i$. Since $\{a_n\}_i \in \mathcal{O}$ An, so $x_i = \sup(\mathcal{O}_i A_i)$.

 Sup $(\mathcal{O}_i A_i) = \max(x_1, ..., x_{io})$.

 Alternative Solution

As in first solution, $x_i = \max(x_i, \dots, x_{i0})$ is an upper bound of $\bigcup_{i=1}^{n} A_n$. For any upper bound M of $\bigcup_{i=1}^{n} A_n$, $M \ge x$ for all $x \in \bigcup_{i=1}^{n} A_n$. Since $A_i \subseteq \bigcup_{i=1}^{n} A_n$, $M \ge x$ for every $x \in A_i$. So M is an upper bound of A_i , too. Then $M \ge x_i$. So $x_i = \max(x_i, \dots, x_{i0})$ is the least upper bound of $\bigcup_{i=1}^{n} A_n$.

Let T be the set of all circles on the Coordinate plane with Center $(x,y) \in \mathbb{Q} \times \mathbb{Q}$ and vadius $Y \in \mathbb{Q}^+$. Then $T = \bigcup \{C_{(x,y,r)}\}$ where $C_{(x,y,r)}$ is the circle $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let (x,y) and $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let (x,y) and $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let (x,y) and $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let $(x,y) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^+$ let $(x,y) \in \mathbb{Q} \times \mathbb{Q}$