```
In [85]: %pylab inline import pandas import seaborn
```

Populating the interactive namespace from numpy and matplotlib

## **Loading Dataset Into Memory**

```
In [3]: data = pandas.read_csv('Desktop/Anushka/Uber_data_analytics_Python/Ube
r-dataset.csv')
```

In [7]: data.tail()

Out[7]:

|        | Date/Time          | Lat     | Lon      | Base   |
|--------|--------------------|---------|----------|--------|
| 564511 | 4/30/2014 23:22:00 | 40.7640 | -73.9744 | B02764 |
| 564512 | 4/30/2014 23:26:00 | 40.7629 | -73.9672 | B02764 |
| 564513 | 4/30/2014 23:31:00 | 40.7443 | -73.9889 | B02764 |
| 564514 | 4/30/2014 23:32:00 | 40.6756 | -73.9405 | B02764 |
| 564515 | 4/30/2014 23:48:00 | 40.6880 | -73.9608 | B02764 |

# **Data Preparation**

#### Converting datetime and adding some useful columns

```
In [17]: data['Date/Time'] = data['Date/Time'].map(pandas.to_datetime)
```

In [18]: data.tail()

Out[18]:

|        | Date/Time           | Lat     | Lon      | Base   |
|--------|---------------------|---------|----------|--------|
| 564511 | 2014-04-30 23:22:00 | 40.7640 | -73.9744 | B02764 |
| 564512 | 2014-04-30 23:26:00 | 40.7629 | -73.9672 | B02764 |
| 564513 | 2014-04-30 23:31:00 | 40.7443 | -73.9889 | B02764 |
| 564514 | 2014-04-30 23:32:00 | 40.6756 | -73.9405 | B02764 |
| 564515 | 2014-04-30 23:48:00 | 40.6880 | -73.9608 | B02764 |

In [19]: def get\_dom(dt): #creating seperate column for day of the month i.e. D OM

return dt.day

data['dom']=data['Date/Time'].map(get\_dom) #getting the day of the mon

In [20]: data.tail()

Out[20]:

|        | Date/Time           | Lat     | Lon      | Base   | dom |
|--------|---------------------|---------|----------|--------|-----|
| 564511 | 2014-04-30 23:22:00 | 40.7640 | -73.9744 | B02764 | 30  |
| 564512 | 2014-04-30 23:26:00 | 40.7629 | -73.9672 | B02764 | 30  |
| 564513 | 2014-04-30 23:31:00 | 40.7443 | -73.9889 | B02764 | 30  |
| 564514 | 2014-04-30 23:32:00 | 40.6756 | -73.9405 | B02764 | 30  |
| 564515 | 2014-04-30 23:48:00 | 40.6880 | -73.9608 | B02764 | 30  |

Out[27]:

|        | Date/Time           | Lat     | Lon      | Base   | dom | weekday | hour |
|--------|---------------------|---------|----------|--------|-----|---------|------|
| 564511 | 2014-04-30 23:22:00 | 40.7640 | -73.9744 | B02764 | 30  | 2       | 23   |
| 564512 | 2014-04-30 23:26:00 | 40.7629 | -73.9672 | B02764 | 30  | 2       | 23   |
| 564513 | 2014-04-30 23:31:00 | 40.7443 | -73.9889 | B02764 | 30  | 2       | 23   |
| 564514 | 2014-04-30 23:32:00 | 40.6756 | -73.9405 | B02764 | 30  | 2       | 23   |
| 564515 | 2014-04-30 23:48:00 | 40.6880 | -73.9608 | B02764 | 30  | 2       | 23   |

# **Data Analysis**

#### **Analysing the Day of the Month Data (Histogram)**

```
In [33]: hist(data.dom, bins=30, rwidth=.8, range=(0.5, 30.5))
    xlabel('Date of the Month')
    ylabel('Frequency')
    title('Number of Uber Rides by DOM - April 2014')
```

Out[33]: <matplotlib.text.Text at 0x11dcbc390>



```
In [35]: #for k, rows in data.groupby('dom'):
    # print((k, len(rows)))

def count_rows(rows):
    return len(rows)

by_date = data.groupby('dom').apply(count_rows)
by_date
```

| Out[35]: | dom   |         |
|----------|-------|---------|
| ouc[33]: | 1     | 14546   |
|          | 2     | 17474   |
|          | 3     | 20701   |
|          | 4     | 26714   |
|          | 5     | 19521   |
|          | 6     | 13445   |
|          | 7     | 19550   |
|          | 8     | 16188   |
|          | 9     | 16843   |
|          | 10    | 20041   |
|          | 11    | 20420   |
|          | 12    | 18170   |
|          | 13    | 12112   |
|          | 14    | 12674   |
|          | 15    | 20641   |
|          | 16    | 17717   |
|          | 17    | 20973   |
|          | 18    | 18074   |
|          | 19    | 14602   |
|          | 20    | 11017   |
|          | 21    | 13162   |
|          | 22    | 16975   |
|          | 23    | 20346   |
|          | 24    | 23352   |
|          | 25    | 25095   |
|          | 26    | 24925   |
|          | 27    | 14677   |
|          | 28    | 15475   |
|          | 29    | 22835   |
|          | 30    | 36251   |
|          | dtype | : int64 |

#### In [40]: bar(range(1,31),(by\_date))

Out[40]: <Container object of 30 artists>



In [42]: by\_date\_sorted = by\_date.sort\_values()
 by\_date\_sorted

|          | _     |         |
|----------|-------|---------|
| Out[42]: | dom   |         |
|          | 20    | 11017   |
|          | 13    | 12112   |
|          | 14    | 12674   |
|          | 21    | 13162   |
|          | 6     | 13445   |
|          | 1     | 14546   |
|          | 19    | 14602   |
|          | 27    | 14677   |
|          | 28    | 15475   |
|          | 8     | 16188   |
|          | 9     | 16843   |
|          | 22    | 16975   |
|          | 2     | 17474   |
|          | 16    | 17717   |
|          | 18    | 18074   |
|          | 12    | 18170   |
|          | 5     | 19521   |
|          | 7     | 19550   |
|          | 10    | 20041   |
|          | 23    | 20346   |
|          | 11    | 20420   |
|          | 15    | 20641   |
|          | 3     | 20701   |
|          | 17    | 20973   |
|          | 29    | 22835   |
|          | 24    | 23352   |
|          | 26    | 24925   |
|          | 25    | 25095   |
|          | 4     | 26714   |
|          | 30    | 36251   |
|          | dtype | : int64 |

```
In [45]: bar(range(1, 31), by_date_sorted)
    xticks(range(1,31),by_date_sorted.index)
    xlabel('Date of the Month')
    ylabel('Frequency')
    title('Number of Uber Rides by DOM - April 2014 (SORTED)')
;
```

Out[45]: ''



### **Analyzing by Hour (Histogram)**

```
In [48]: hist(data.hour, bins=24, rwidth=.8, range=(.5, 24))
    xlabel('Hour of the Day')
    ylabel('Frequency')
    title('Number of Uber Rides by Hour - April 2014')
```

Out[48]: <matplotlib.text.Text at 0x11e1ee828>



### **Analyzing by Weekday (Histogram)**

```
In [59]: hist(data.weekday, bins=7, range=(-.5,6.5), rwidth=.8)
    xticks(range(7), 'Mon Tue Wed Thu Fri Sat Sun'.split())
    xlabel('Day of the Week')
    ylabel('Frequency')
    title('Number of Uber Rides Per Day - April 2014')
```

Out[59]: <matplotlib.text.Text at 0x11fd4eac8>



#### **Analysis of Hour and DOW (CROSS ANALYSIS)**

In [64]: by\_cross=data.groupby('weekday hour'.split()).apply(count\_rows).unstac
k()

In [65]: seaborn.heatmap(by\_cross)

Out[65]: <matplotlib.axes.\_subplots.AxesSubplot at 0x11fd89f98>



## **Analysis by Latitude and Longitude**

```
In [66]: hist(data['Lat'],bins=100, range = (40.5,41))
;
```

Out[66]: ''



```
In [68]: hist(data['Lon'],bins=100, range = (-74.1,-73.9))
;
```

Out[68]: '



```
In [79]: hist(data['Lon'],bins=100, range = (-74.1,-73.9), color='b', alpha=.5,
label='Longitude')
grid()
legend(loc='best')
twiny()
hist(data['Lat'],bins=100, range = (40.5,41), color='r', alpha=.5, lab
el='Latitude')
grid()
legend(loc='upper left')
;
```

#### Out[79]: ''



```
In [80]: plot(data['Lat'], '.', ms=20, color='green')
    xlim(0,100)
```

Out[80]: (0, 100)



```
In [84]: figure(figsize=(20,20))
    plot(data['Lon'], data['Lat'],'.', ms=1, alpha=.5)
    xlim(-74.2, -73.7)
    ylim(40.7, 41)
```

Out[84]: (40.7, 41)



In [ ]: