Project Report On

"Structural and Fatigue Life Evaluation of an Engine Mount through CAD and FEA"

Submitted By:

Ritesh gupta
Roll No.: 244103227
M.Tech (Manufacturing Science & Engineering)
Indian Institute of Technology, Guwahati

Submitted To:
Manufacturing Lab
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

1. Introduction

In any automobile, the engine mount is one of the most important parts that connects the engine with the chassis. Apart from holding the engine in place, it also absorbs vibrations and reduces the shocks transmitted to the vehicle body. Since the mount experiences continuous cyclic loads during operation, it is likely to fail due to fatigue if not designed properly.

In this project, I first designed an engine mount in SolidWorks to create the 3D model. The model was then imported into ANSYS Workbench, where I carried out both structural and fatigue analysis. The idea was to check whether the design can withstand real-world loading conditions and to estimate its life span under repeated loading.

2. CAD Modelling in SolidWorks

The geometry of the engine mount was created in SolidWorks. The design included proper fillets and mounting holes to resemble an actual component. The finished CAD model had the following parameters:

- X dimension: 67.6 mm - Y dimension: 108 mm - Z dimension: 34.4 mm - Volume: 1.21×10^{-5} m³

- Mass: 0.095 kg

After completing the design, the model was exported in a neutral format and imported into ANSYS for analysis.

3. Analysis in ANSYS

Material Properties

Structural Steel was chosen as the material:

- Density: 7850 kg/m³

- Young's Modulus: 200 GPa

- Poisson's Ratio: 0.3

Yield Strength: 250 MPaUltimate Strength: 460 MPa

Meshing

The part was meshed with quadratic elements:

- -~29,600 nodes
- ~14,600 elements
- Element size close to 6.6 mm

Boundary Conditions

- Mounting faces were fixed supports

- A force of 10,000 N was applied to simulate the load from the engine
- Analysis included both static stress and fatigue life prediction using the Stress-Life method

Here is the attached file of ansys final report

Project*

First Saved	Sunday, September 21, 2025
Last Saved	Sunday, September 21, 2025
Product Version	2025 R2
Save Project Before Solution	No
Save Project After Solution	No

Contents

- <u>Units</u>
- Model (A4)
 - o Geometry Imports
 - Geometry Import (A3)
 - o **Geometry**
 - Default\Default
 - Materials
 - o Coordinate Systems
 - o Connections
 - Contacts
 - o <u>Mesh</u>
 - Mesh Controls
 - Static Structural (A5)
 - Analysis Settings
 - Loads
 - Solution (A6)
 - Solution Information
 - Fatigue Tool
 - Results
 - Fatigue Sensitivity
- Material Data
 - o Structural Steel

Units

TABLE 1

Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (A4)

TABLE 2

woder (A4) > Geometry imports		
Object Name	Geometry Imports	
State	Solved	

TABLE 3
Model (A4) > Geometry Imports > Geometry Import (A3)

Object Name	Geometry Import (A3)	
State	Solved	
Definition		
Source	C:\Users\grite\Downloads\Engine mount fatigue_files\dp0\SYS\DM\SYS.dsco	
Туре	Discovery	
	Basic Geometry Options	
Solid Bodies	Yes	
Surface Bodies	Yes	
Line Bodies	Yes	
Parameters	Independent	
Parameter Key		
Attributes	Yes	
Attribute Key		
Named Selections	Yes	
Named Selection Key		
Material Properties	No	
	Advanced Geometry Options	
Use Associativity	Yes	
Coordinate Systems	Yes	
Coordinate System Key		
Reader Mode Saves Updated File	No	
Use Instances	Yes	
Smart CAD Update	Yes	
Compare Parts On Update	No	

Analysis Type	3-D
Mixed Import Resolution	None
Import Facet Quality	Source
Clean Bodies On Import	No
Stitch Surfaces On Import	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

Geometry

TABLE 4 Model (A4) > Geometry

wiodei (A+) > Geometry		
Object Name	Geometry	
State	Fully Defined	
	Definition	
Source	C:\Users\grite\Downloads\Engine mount fatigue_files\dp0\SYS\DM\SYS.dsco	
Туре	Discovery	
Length Unit	Meters	
Element Control	Program Controlled	
Display Style	Body Color	
Bounding Box		
Length X	6.7604e-002 m	
Length Y	0.10803 m	
Length Z	3.4408e-002 m	
Properties		
Volume	1.2123e-005 m³	

Mass	9.5169e-002 kg	
Scale Factor Value	1.	
Statistics		
Bodies	1	
Active Bodies	1	
Nodes	29636	
Elements	14667	
Mesh Metric	None	
Update Options		
Assign Default Material	No	
Basic Geometry Options		
Solid Bodies	Yes	
Surface Bodies	Yes	
Line Bodies	Yes	
Parameters	Independent	
Parameter Key		
Attributes	Yes	
Attribute Key		
Named Selections	Yes	
Named Selection Key		
Material Properties	No	
Advanced	Geometry Options	
Use Associativity	Yes	
Coordinate Systems	Yes	
Coordinate System Key		

Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D
Mixed Import Resolution	None
Import Facet Quality	Source
Clean Bodies On Import	No
Stitch Surfaces On Import	None
Decompose Disjoint Geometry	Yes
ID_GeometryPrefProcessPhysicsDefinition	No
Enclosure and Symmetry Processing	Yes

TABLE 5
Model (A4) > Geometry > Parts

	secilleti y > Fai ts		
Object Name	Default\Default		
State	Meshed		
Graphics	Graphics Properties		
Visible	Yes		
Transparency	1		
Definition			
Suppressed	No		
Stiffness Behavior	Flexible		
Coordinate System	Default Coordinate System		
Reference Temperature	By Environment		
Treatment	None		
Material			

Assignment	Structural Steel
Nonlinear Effects	Yes
Thermal Strain Effects	Yes
Bound	ding Box
Length X	6.7604e-002 m
Length Y	0.10803 m
Length Z	3.4408e-002 m
Proj	perties
Volume	1.2123e-005 m³
Mass	9.5169e-002 kg
Centroid X	-3.3279e-002 m
Centroid Y	-1.0204e-002 m
Centroid Z	-6.8375e-003 m
Moment of Inertia lp1	1.1031e-004 kg·m²
Moment of Inertia Ip2	5.0875e-005 kg·m²
Moment of Inertia lp3	1.5056e-004 kg·m²
Sta	tistics
Nodes	29636
Elements	14667
Mesh Metric	None
CAD A	ttributes
PartTolerance:	0.0000001
Color:143.149.175	

TABLE 6 Model (A4) > Materials

Object Name Materials

State	Fully Defined	
Statistics		
Materials	1	
Material Assignments	0	

Coordinate Systems

TABLE 7
Model (A4) > Coordinate Systems > Coordinate System

	Global Coordinate System	
State	Fully Defined	
Definition		
Туре	Cartesian	
Coordinate System ID	0.	
Origin		
Origin X	0. m	
Origin Y	0. m	
Origin Z	0. m	
Directional Vectors		
X Axis Data	[1. 0. 0.]	
Y Axis Data	[0. 1. 0.]	
Z Axis Data	[0. 0. 1.]	
Transfer Properties		
Source		
Read Only	No	

Connections

TABLE 8 Model (A4) > Connections

Object Name	Connections
State	Fully Defined
Auto Detection	
Generate Automatic Connection On Refresh	Yes
Transparency	
Enabled	Yes
Statistics	
Contacts	0
Active Contacts	0
Joints	0
Active Joints	0
Beams	0
Active Beams	0
Bearings	0
Active Bearings	0
Springs	0
Active Springs	0
Body Interactions	0
Active Body Interactions	0

TABLE 9
Model (A4) > Connections > Contacts

Woder (A4) > Connections > Contacts	
Object Name	Contacts
State	Fully Defined
Definition	n
Connection Type	Contact
Scope	

Scoping Method	Geometry Selection
Geometry	All Bodies
Auto Detec	tion
Tolerance Type	Slider
Tolerance Slider	0.
Tolerance Value	3.3001e-004 m
Use Range	No
Face/Face	Yes
Face-Face Angle Tolerance	75. °
Face Overlap Tolerance	Off
Cylindrical Faces	Include
Face/Edge	No
Edge/Edge	No
Priority	Include All
Group By	Bodies
Search Across	Bodies
Statistics	
Connections	0
Active Connections	0

Mesh

TABLE 10 Model (A4) > Mesh

Woder (A4) > Wes	Π
Object Name	Mesh
State	Solved
Display	
Display Style	Use Geometry Setting

Defaults		
Physics Preference	Mechanical	
Element Order	Program Controlled	
Element Size	Default (6.6002e-003 m)	
Sizing		
Use Adaptive Sizing	No	
Growth Rate	Default (1.85)	
Max Size	Default (1.32e-002 m)	
Mesh Defeaturing	Yes	
Defeature Size	Default (3.3001e-005 m)	
Capture Curvature	No	
Capture Proximity	No	
Bounding Box Diagonal	0.132 m	
Average Surface Area	1.7113e-004 m²	
Minimum Edge Length	9.8662e-004 m	
Quality		
Check Mesh Quality	Yes, Errors	
Error Limits	Aggressive Mechanical	
Target Element Quality	Default (5.e-002)	
Smoothing	Medium	
Mesh Metric	None	
Inflation		
Use Automatic Inflation	None	
Inflation Option	Smooth Transition	
Transition Ratio	0.272	

Maximum Layers	2	
Growth Rate	1.2	
Inflation Algorithm	Pre	
Inflation Element Type	Wedges	
View Advanced Options	No	
Advanced		
Number of CPUs for Parallel Part Meshing	Program Controlled	
Straight Sided Elements	No	
Rigid Body Behavior	Dimensionally Reduced	
Triangle Surface Mesher	Program Controlled	
Topology Checking	Yes	
Pinch Tolerance	Default (5.9401e-005 m)	
Generate Pinch on Refresh	No	
Auto-Map Fillets	No	
Automatic Methods		
Sheet Body Method	Prime Quad Dominant	
Sweepable Body Method	Sweep	
Statistics		
Nodes	29636	
Elements	14667	
Show Detailed Statistics	No	
	I	

TABLE 11
Model (A4) > Mesh > Mesh Controls

Model (A4) > Mesh > Mesh Oolidois			
Object Name	Body Sizing	Automatic Method	Refinement
State	Ful	ly Defined	
Scope			

Scoping Method	Geome	etry Selection	
Geometry	1 Body		18 Faces
	Definition		
Suppressed		No	
Туре	Element Size		
Element Size	Default (6.6002e-003 m)		
Method		Automatic	
Element Order		Quadratic	
Refinement			3
Advanced			
Defeature Size	Default (3.3001e-005 m)		
Behavior	Soft		
Growth Rate	Default (1.85)		
Capture Curvature	No		
Capture Proximity	No		

Static Structural (A5)

TABLE 12 Model (A4) > Analysis

Woder (A4) > Ariarysis		
Static Structural (A5)		
Solved		
Definition		
Structural		
Static Structural		
Mechanical APDL		
Options		
22. °C		

Generate Input Only	No

TABLE 13
Model (A4) > Static Structural (A5) > Analysis Settings

Model (A4) > Static Structural (A5) > Analysis Settings			
Object Name	Analysis Settings		
State	Fully Defined		
	Step Controls		
Number Of Steps	1.		
Current Step Number	1.		
Step End Time	1. s		
Auto Time Stepping	Program Controlled		
	Solver Controls		
Solver Type	Program Controlled		
Weak Springs	Off		
Solver Pivot Checking	Program Controlled		
Large Deflection	Off		
Inertia Relief	Off		
Quasi-Static Solution	Off		
Rotordynamics Controls			
Coriolis Effect	Off		
Restart Controls			
Generate Restart Points	Program Controlled		
Retain Files After Full Solve	No		
Combine Restart Files	Program Controlled		
Nonlinear Controls			
Newton-Raphson Option	Program Controlled		
Force Convergence	Program Controlled		

Moment Convergence	Program Controlled	
Displacement Convergence	Program Controlled	
	_	
Rotation Convergence	Program Controlled	
Line Search	Program Controlled	
Stabilization	Program Controlled	
	Advanced	
Inverse Option	No	
Contact Split (DMP)	Program Controlled	
	Output Controls	
Output Selection	None	
Stress	Yes	
Back Stress	No	
Strain	Yes	
Contact Data	Yes	
Nonlinear Data	No	
Nodal Forces	No	
Volume and Energy	Yes	
Euler Angles	Yes	
General Miscellaneous	No	
Contact Miscellaneous	No	
Store Results At	All Time Points	
Result File Compression	Program Controlled	
Analysis Data Management		
Solver Files Directory	C:\Users\grite\Downloads\Engine mount fatigue_files\dp0\SYS\MECH\	
Future Analysis	None	

Scratch Solver Files Directory	
Save MAPDL db	No
Contact Summary	Program Controlled
Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	mks

TABLE 14
Model (A4) > Static Structural (A5) > Loads

Model (A4) > Static Structural (A5) > Loads				
Object Name	Force	Fixed Support		
State	Fully Def	fined		
	Scope			
Scoping Method	Geometry S	election		
Geometry	2 Faces	4 Faces		
Definition				
Туре	Force	Fixed Support		
Define By	Vector			
Applied By	Surface Effect			
Magnitude	10000 N (ramped)			
Direction	Defined			
Suppressed	No			

FIGURE 1
Model (A4) > Static Structural (A5) > Force

Solution (A6)

TABLE 15
Model (A4) > Static Structural (A5) > Solution

dei (A4) > Static Structura	II (A5) > Solut	
Object Name	Solution (A6)	
State	Solved	
Adaptive Mesh Refi	nement	
Max Refinement Loops	1.	
Refinement Depth	2.	
Information		
Status	Done	
MAPDL Elapsed Time	22. s	
MAPDL Memory Used	300. MB	
MAPDL Result File Size	9.5625 MB	
Post Processi	ng	

Beam Section Results	No
On Demand Stress/Strain	No

TABLE 16 Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

Solution Information
Solved
ation
Solver Output
0
0
2.5 s
All
isibility
Yes
All FE Connectors
All Nodes
Connection Type
No
Single
Lines

TABLE 17
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tools

ATI POLICIO OLI GOLGICI (AO)	oolation (7 to) - 1 atigo		
Object Name	Fatigue Tool		
State	Solved		
Domain			
Domain Type	Time		

Materia	als	
Fatigue Strength Factor (Kf)	1.	
Loadir	ng	
Туре	Fully Reversed	
Scale Factor	1.	
Definiti	on	
Display Time	End Time	
Options		
Analysis Type	Stress Life	
Mean Stress Theory	Soderberg	
Stress Component	Equivalent (von-Mises)	
Life Units		
Units Name	cycles	
1 cycle is equal to	1. cycles	

FIGURE 2 Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool

FIGURE 3
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool

TABLE 18
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Results

Wodel (A4) >	Static Struct	urai (A5) > Soiu	ition (A6) > Fatigue Tool > F	Results
Object Name	Life	Safety Factor	Equivalent Alternating Stress	Damage
State		Solved		
		Scope		
Scoping Method		Ge	eometry Selection	
Geometry			All Bodies	
		Definitio	n	
Туре	Life	Safety Factor	Equivalent Alternating Stress	Damage
Identifier				
Suppressed	No			
Design Life		1.e+009 cycles		1.e+009 cycles
		Results	3	
Minimum	18.648 cycles	2.9266e-002	67768 Pa	
Minimum Occurs On	Default\Default			
Maximum			2.9454e+009 Pa	5.3626e+007
Average			1.7713e+008 Pa	
Maximum Occurs On			Default\Defau	lt

FIGURE 4
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Life

TABLE 19
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Life

Time [s]	Minimum	Maximum	Average
1.	18.648	1.e+006	5.0005e+005

FIGURE 5
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Safety Factor

TABLE 20
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Safety Factor

Time [s]	Minimum	Maximum	Average
1.	2.9266e-002	15.	2.2194

FIGURE 6
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Equivalent Alternating Stress

TABLE 21

Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Equivalent Alternating

Stress

Ouess				
Time [s]	Minimum [Pa]	Maximum [Pa]	Average [Pa]	
1.	67768	2.9454e+009	1.7713e+008	

FIGURE 7
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Damage

TABLE 22
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Damage

Time [s]	Minimum	Maximum	Average
1.	1000.	5.3626e+007	2.1657e+005

TABLE 23
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Result Charts

tructural (A5) > Solution (A6) > Fatigue				
Object Name	Fatigue Sensitivity			
State	Solved			
Scope				
Geometry	All Bodies			
Definition				
Sensitivity For	Life			
Suppressed	No			
Options				

Lower Variation	50. %
Upper Variation	150. %
Number of Fill Points	25
Chart Viewing Style	Linear

FIGURE 8
Model (A4) > Static Structural (A5) > Solution (A6) > Fatigue Tool > Fatigue Sensitivity

Material Data

Structural Steel

TABLE 24
Structural Steel > Constants

Ott dotardi Otoci -	Jonotanto
Density	7850 kg m^-3
Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat	434 J kg^-1 C^-1
Thermal Conductivity	60.5 W m^-1 C^-1

חחם	IC.	11 /	ıtı,
Res	151	ıv	Hν

1.7e-007 kg m^3 A^-2 s^-3

TABLE 25 Structural Steel > Color

Red	Green	Blue
132	139	179

TABLE 26

Structural Steel > Compressive Ultimate Strength

Compressive Ultimate Strength Pa
4.2e+008

TABLE 27

Structural Steel > Compressive Yield Strength

Compressive Yield Strength Pa
2.5e+008

TABLE 28

Structural Steel > Tensile Yield Strength

Tensile	Yield Strength Pa
	2.5e+008

TABLE 29

Structural Steel > Tensile Ultimate Strength

Tensile Ultimate Strength Pa
4.6e+008

TABLE 30

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C
22

TABLE 31
Structural Steel > S-N Curve

Otractarar Otecr > O 11 Our 10			
Alternating Stress Pa	Cycles	Mean Stress Pa	
3.999e+009	10	0	

2.827e+009	20	0
1.896e+009	50	0
1.413e+009	100	0
1.069e+009	200	0
4.41e+008	2000	0
2.62e+008	10000	0
2.14e+008	20000	0
1.38e+008	1.e+005	0
1.14e+008	2.e+005	0
8.62e+007	1.e+006	0

TABLE 32 Structural Steel > Strain-Life Parameters

Strength Coefficient Pa	J	Ductility Coefficient	Ductility Exponent	Cyclic Strength Coefficient Pa	Cyclic Strain Hardening Exponent
9.2e+008	-0.106	0.213	-0.47	1.e+009	0.2

TABLE 33 Structural Steel > Isotropic Elasticity

			,		
Young's Modulus Pa	Poisson's Ratio	Bulk Modulus Pa	Shear Modulus Pa	Temperature C	
2.e+011	0.3	1.6667e+011	7.6923e+010		

TABLE 34
Structural Steel > Isotropic Relative Permeability

Relative Permeability
10000

Simulation

CAD Model

4. Results

Structural Results

- Maximum stress: $\sim 2.94 \times 10^9$ Pa, concentrated near mounting holes and fillets.

Fatigue Life

Minimum life: 18–20 cycles
 Maximum life: ~1 million cycles
 Average life: ~5 × 10⁵ cycles

Fatigue Safety Factor
- Minimum: ~0.03
- Maximum: ~15
- Average: ~2.2

5. Discussion

The results show that while most of the mount can survive millions of cycles, the weak spots around holes and fillets reduce its reliability. Stress concentrations are the main issue here.

Possible improvements include:

- Increasing fillet radii to reduce stress
- Using higher-strength alloys or composites
- Adding damping inserts
- Redesigning geometry to distribute load better

6. Conclusion

- The engine mount was successfully designed in SolidWorks and analyzed in ANSYS
- High stresses were observed at mounting points
- Fatigue life is uneven, with critical regions failing quickly under cyclic loads
- The design needs optimization for better reliability

This project shows how CAD design and simulation together can validate a design virtually before manufacturing.

7. References

- 1. ANSYS Workbench Documentation
- 2. Dassault Systèmes, SolidWorks User Guide
- 3. Shigley, J. E. Mechanical Engineering Design
- 4. Juvinall, R. C. Fundamentals of Machine Component Design