

UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE INGENIERÍA EN SISTEMAS DE INFORMACIÓN Y CIENCIAS DE LA COMPUTACIÓN

Laboratorio 1 Picaxe Arquitectura de Computadoras I

Presenta:

Marcos Estuardo Franco Hernández 1190-22-5604

Ing. Mario Payes

Zacapa, viernes 28 de febrero de 2025

Introducción

En el ámbito de la electrónica digital y los sistemas embebidos, los contadores secuenciales son herramientas fundamentales en una gran variedad de aplicaciones, como el control de procesos industriales, la medición de tiempo y los sistemas de acceso automatizados.

Este proyecto implementa un contador secuencial basado en la plataforma PICAXE, que permite contar en un rango de 100 a 299 de manera ascendente y descendente. Además, el sistema ofrece funcionalidades adicionales como la pausa del conteo, la modificación de la velocidad de conteo entre 1Hz y 10Hz, y la capacidad de reiniciar la secuencia a través de la interacción con botones de entrada.

A lo largo de este documento, se detallará el diseño del circuito, su implementación en Proteus, la programación en PICAXE BASIC y el análisis de la lógica utilizada en el microcontrolador para realizar la gestión del sistema de conteo.

Código Fuente (PICAXE BASIC)

El siguiente código controla la lógica del sistema:

```
'Configuración de pines del LCD
//Aquí asigne a cada pin su respectivo configuración en base a como me serviría para el
//circuito
symbol RS = C.3
symbol E = C.4
symbol D4 = C.5
symbol D5 = C.6
symbol D6 = B.1
symbol D7 = B.2
'Configuración de botones
symbol btnPausa = pinC.0
symbol btnAcelerar = pinC.1
symbol btnReiniciar = pinC.2
'Variables de control
symbol contador = b0
symbol velocidad = b1
symbol pausa = b2
symbol sentido = b3 \cdot 1 = ascendente, 0 = descendente
'Inicialización del LCD
gosub inicializarLCD
contador = 100
                  'Inicia en 100
velocidad = 500
                   'Velocidad inicial (500ms)
pausa = 0
                '0 = corriendo, 1 = pausado
sentido = 1
                 'Inicia en modo ascendente
```

'Bucle principal // Este es el bucle encargado de que el contador reinicie, pause o avance Do

```
if btnReiniciar = 1 then
  contador = 100 'Reinicia a 100
  sentido = 1 'Reinicia en ascendente
  gosub mostrarNumero
                'Anti-rebote
  pause 300
endif
if btnPausa = 1 then
  pausa = 1 - pausa 'Alterna pausa (0 o 1)
  pause 300
                'Anti-rebote
endif
if btnAcelerar = 1 then
  if velocidad = 500 then
     velocidad = 100 'Acelera a 10Hz
  else
     velocidad = 1000 ' Ralentiza a 1Hz
  endif
  pause 300
endif
if pausa = 0 then
  gosub mostrarNumero
  if sentido = 1 then
     contador = contador + 1
```

Diagrama del Circuito

Lista de Componentes y Datasheets

Componente	Modelo/Referencia	Función	Datasheet
Microcontrolador	PICAXE-18M2	Controla el sistema y ejecuta la lógica del contador	Datasheet PICAXE-18M2
Pantalla LCD	LM016L	Muestra el conteo numérico en el sistema	Datasheet LM016L (16x2 LCD)
Batería	8V	Fuente de alimentación del circuito	-
Potenciómetro	10kΩ	Ajusta el contraste del LCD	Datasheet Potenciómetro 10kΩ
Cristal Oscilador	4MHz (X1)	Estabiliza la frecuencia del microcontrolador	Datasheet Cristal 4MHz
Capacitores	22pF (C1, C2)	Filtran ruido en la señal del oscilador	Datasheet Capacitor 22pF
Resistencias	330Ω, 10kΩ (R1 - R6)	Limitan corriente y establecen umbrales de señal	Datasheet Resistencias
Botones Pulsadores	SPST (Interruptores)	Permiten interacción con el usuario para pausar, acelerar o reiniciar el conteo	Datasheet Botón SPST

Lógica del Microcontrolador

El **PICAXE-20M2** se encarga de generar la secuencia numérica y gestionar la interacción con el usuario. A continuación, se describen sus funciones clave:

• Entradas:

- o C.0 (btnPausa): Recibe el estado del botón para pausar/reanudar el conteo.
- o C.1 (btnAcelerar): Controla la velocidad del reloj.
- o C.2 (btnReiniciar): Reinicia el contador a 100 y lo configura en ascendente.

Salidas:

- o B.0 B.2: Manejan la multiplexación de los **dígitos del display**.
- o C.3 C.6: Controlan los datos enviados al LCD.

• Pines digitales y analógicos:

- o Se usan **pines digitales** para controlar la salida de datos.
- o Se configura un **timer interno** para gestionar la velocidad de conteo.

El sistema cambia de **ascendente a descendente** cuando el valor llega a los extremos (100 o 299). La velocidad del reloj alterna entre 10Hz y 1Hz con el botón correspondiente.

Conclusión

Este proyecto proporciona una aplicación práctica del uso de PICAXE como controlador digital, integrando interacción con el usuario, multiplexación de display y control de reloj.

La implementación del sistema permitió comprender la **programación en PICAXE BASIC**, la conexión de dispositivos electrónicos y el manejo de interrupciones mediante botones físicos.

Además, este contador secuencial puede servir como base para otros sistemas más avanzados, como **cronómetros, medidores de producción y sistemas de acceso digital**, optimizando así diversos procesos automáticos en la electrónica digital.

En conclusión, la combinación de un **microcontrolador de bajo costo, circuitos de control y visualización digital**, permite desarrollar soluciones eficientes en el campo del procesamiento de datos numéricos y visualización de información en tiempo real.