

Portas Lógicas

"Em sistemas digitais, tais como computadores, as combinações de dois estados, denominadas códigos, são usadas para representar números, símbolos, caracteres alfabéticos e outros tipos de informações. O sistema de 13 numeração de dois estados é denominado de binário, e os seus dois dígitos são 0 e 1. Um dígito binário é denominado de bit." (TEIXEIRA; TAVARES; PEREIRA, 2017, p. 13)

Operações lógicas

Operações lógicas Apesar das incontáveis possibilidades de combinações, existem somente três operações lógicas elementares: a NOT (NÃO), a OR (OU) e a AND (E). Cada uma dessas operações lógicas primordiais possui uma porta lógica (símbolo gráfico) correspondente, que fisicamente tem o mesmo comportamento que o seu modelo matemático binário.

Operações lógicas

Método dos mintermos

A forma mais tradicional e direta de obter um circuito mediante uma tabela-verdade é usando mintermos, ou seja, fazendo uso do método dos mintermos. A aplicação desse método funciona da seguinte forma:

- 1. Cada saída verdadeira (igual a 1) da tabela-verdade corresponde a um mintermo.
- 2. Cada mintermo é formado pela operação AND entre todas as entradas do circuito.
- 3. As entradas que valem ZERO para cada mintermo ficam barradas nele.
- 4. A saída é o resultado de uma operação OR entre todos os mintermos.

Funções Booleanas Por Minitermo

В	В	С	S	$S = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C +$
0	0	0	0	
0	0	1	0	
1	1	0	1	→ 1º Minitermo=ĀB
1	1	1	1	→ 2º Minitermo= ĀBC
0	0	0	0	
0	0	1	1	→ 3º Minitermo= ABC
1	1	0	0	
1	1	1	1	→ 4º Minitermo= AB0

ABC

Operações lógicas

Método dos Maxtermos

Funciona de maneira inversa aos mintermos. Ao passo que nos mintermos a saída é uma soma dos produtos, nos maxtermos ela é um produto de somas. A aplicação desse método funciona da seguinte forma:

- 1. Cada saída falsa (igual a 0) da tabela-verdade corresponde a um maxtermo.
- 2. Cada maxtermo é formado pela operação OR entre todas as entradas do circuito.
- 3. As entradas que valem UM para cada mintermo ficam barradas nele.
- 4. A saída é o resultado de uma operação AND entre todos os maxtermos.

Funções Booleanas Por Maxtermo

$$S = (A+B+C).(A+B+\overline{C}).(\overline{A}+B+C).(\overline{A}+\overline{B}+C)$$

S	С	В	Α	
0	0	0	0	
0	1	0	0	
1	0	1	0	
1	1	1	0	
0	0	0	1	
1	1	0	1	
0	0	1	1	
1	1	1	1	
	0 0 1 1 0	 0 1 0 1 1 0 0 1 1 0 0 	0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0	0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0

Funções Booleanas

$$S = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + ABC$$

- 1. Para uma porta AND (E) com 3 entradas X,Y e Z.
- a)Determine a saída S.
- b)Aplique a função booleana sob o método de minitermo
- c) Desenvolva o diagrama lógico.

- 2. Para uma porta OR (OU) com 4 entradas X, Y, Z e K.
- a)Determine a saída S.
- b)Aplique a função booleana sob o método de maxtermo
- c)Desenvolva o diagrama lógico

3. Determine a equação booleana para o circuito e valide por meio da tabela da verdade.

4. Faça o diagrama das seguintes equações booleanas:

a.
$$S = \overline{B}.C + \overline{A}.\overline{C} + A.\overline{B}.C$$

b.
$$S = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

c.
$$S = \overline{A} \cdot \overline{B} + B \cdot \overline{C} + A \cdot B$$

d.
$$S = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B + A \cdot \overline{B} + A \cdot \overline{C}$$

e.
$$S = \overline{B} \cdot C \oplus B \cdot \overline{C}$$