	合 肥 工	业大	学 试	卷 (A)	
2012~2013 学年第 <u>2</u> 学期 课形式:开卷 、闭卷	程代码_1110052B 词	程名称离散数学	学分_2_	课程性质:必修 🗌 选修	□ 限修 □考证
专业班级(教学班)_2011 信管专 申批签名		日期 2013 年 4 月 2 主和 崇 讲 老 场	29日 命题教师	万_杨爱峰_系(月	所或教研室) 主任
一、单项选择题 (每小题 2 分, 合计 40 分) 、下列命题中, () 是复合命题。	请勿私自出	害和带进考场	$\forall x (C(x) \land \neg G(x))$	$B \neg \forall x (C(x) \to \neg G(x))$	
A 长江与黄河都流经安徽境内 I	3 美丽的黄山地处安徽 C 合肥是包公故里(禾) 白 出人		$\exists x (C(x) \rightarrow \neg G(x))$ 成为非负整数集,下列谓	D $\neg \exists x (C(x) \land \neg G(x))$ 词公式中,()的真值为真。	
、下列命题公式为重言式的是()。 $A(p \lor \neg p) \rightarrow q. B p \rightarrow (p \lor q) C q \land \neg q$	D(p→¬p)产力电自出	A ∀x∃ C∃x∀ 害和带进考场	ly(xy=1) 'y(xy=2) 蓝涵式中,() 不成立	B $\forall x \exists y (xy = 0)$ D $\forall x \forall y \exists z (x - y = z)$	
、设 p:天下大雨, q:小王乘公共汽车上班,班"的符号化形式为 ()。A p→q B q→p C p→¬	请勿私自出	公共汽车上	vP(x v 6)⇒∃vP(6 v 6)	B $\exists x \exists y P(x,y,6) \Rightarrow \exists y P(6,y,6)$ D $\forall x \exists y P(x,y,6) \Rightarrow \exists z \forall x \exists y P(6,y,6)$	
、命题"如果时间倒流,那么我们将长生不老 A 如果我们长生不老,那么时间将倒流				\∀yR(x,y))中变元 x ()。 B 是约束变元但不	是自由变元
	D 时间倒流并且我们不会长 (P(2,2) \ P(2,3)) \ (P(3,2) \ P(3,) P(2,2) \ P(2,3) \ P(3,2) \ P(3,3)	生不者	下是自由变元也不是约束 =Ø,B={Ø,{Ø}},则 F }} B{Ø}	B-A是()。 C{Ø, {Ø}} DØ (<10)} B { <x,y> (x,y∈</x,y>	是约束变元 =实数集)^(y= x)} y∈整数集)^(x=y mod
、设 C(x): x 是国家级运动员, G(x): x 是健* 健壮的"可符号化为 ()。	土的,则命题"没有一个国家级i		{1,2,3},A 上二元关	系 S={<1,1>,<1,2>,<3,2	▷, <3, 3>}, 则 S 是

合 月	巴工	业	大 学	试 着	》(A)			
2012~2013 学年第 2 学期 课程代码 111	10052B i	果程名称	質散数学 学	分_2_ 课	程性质	:必修	□选	修口限	修□考证
形式:开卷 、闭卷									
专业班级(教学班) 2011 信管专业	考证	式日期_2013	年4月29日	命题教师_	杨爱	峰	系	(所或教研	开室) 主日
审批签名	清初刊。1	自县售和借	讲考场						
			17、设 R 为实数集,	定义* 运算如	下: a*b=	a+b+ab	,则*;	运算满足().
A 自反关系 B 传递关系 C 对称关系 D 反自	反義勿私	自出售和借	A结合律	B幂等律	C 有	幺元	D 3	交换律	
13、设 A={a,b,c,d}, A 上的等价关系 R={ <a, b="">, <b, a="">, <c,< td=""><td>$d>, < d, c> \} \cup I_A$</td><td>,则对应于 R</td><td>18、下列运算中,(</td><td>)运算关于</td><td>整数集不</td><td>构成半</td><td>群。</td><td></td><td></td></c,<></b,></a,>	$d>, < d, c> \} \cup I_A$,则对应于 R	18、下列运算中,()运算关于	整数集不	构成半	群。		
的 A 的划分是 ()	请勿私	自出售和背	計进 Aa b=max(a,b))	Ba*b	=b			
$A \{\{a\}, \{b, c\}, \{d\}\}$ $B \{\{a, b\}, \{c\}, \{d\}\}$ $C \{\{a\}, \{d\}\}$	b},{c},{d}}	D {{a, b},	Ca*b=2ab		Da*b	= a-b			
{c,d}}	语勿私	自出售和背	19+ 设群 (16,+6>,() 不是其一	子群。				
14、设 A={1,2,3,4,5,6}, 下列关系中() 不是 A 上的:			A {0,2,4}		C {0,	3}	D	{0,1,2,3,4,5}	
$A~\{<1,2>,<1,3>,<2,1>,<2,3>,<3,1>,<3,2>\} \cup I_A$) 主カロギ/	自出售和代	20、设<{a,b,c}, *:	>为代数系统,	*运算如7	下:则零	元为(.).	
B {<2,5>,<2,6>,<4,2>,<4,6>,<6,2>,<6,4>} \cup I _A	目列和			*	a	b	С		
C {<1,3>,<1,5>,<3,1>,<3,5>,<5,1>,<5,3>} ∪ I _A	3-8-1 E - 18*2	L. H. He Tent	IF 144 -12-1-7	a	a	b	С		
D {<2,3>,<3,2>,<4,5>,<5,4>,<5,6>,<6,5>} UI _A	请勿私	自出售和青	门,灶~与.k勿	b	b	a	c		
15、设 R 为实数集,关系 h={ <x,y> x,y∈R, y=2x},关</x,y>				c	c	С	С		
3x}, 复合关系 h ⁻¹ og ⁻¹ 的值为 ()。	请勿私	自出售和情	特进A着场 Bb	Сc	D 没有	Î			
A $\{\langle x, y \rangle x, y \in \mathbb{R}, y = 6x\}$ B $\{\{\langle x, y \rangle x, y \in \mathbb{R}, y = 6x\}\}$	5x}								
$C \{\langle x, y \rangle x, y \in \mathbb{R}, y = \frac{x}{6}\}$ $D \{\langle x, y \rangle x, y \in \mathbb{R}, y = 0\}$	4x} `		二、(10分)如果我認	离散数学考试没	:通过,那	么我很什	伤心。如:	果我很伤心,	我要么哭泣,
6 16、设A={1,2,3,4,5},双射 f={<1,5>,<2,3>,<3,1>,<4,4>,<5		值为()。	要么不想说话。而我	现在笑容满面,	并且很想	想找人聊	天。因此	说明我的离情	效数学考试通
A {<1,3>,<2,5>,<3,2>,<4,4>,<5,1>} B {<1,5>,<2,3	>,<3,1>,<4,4>,<5	5,2>}	过了。 要求:(1)翻译上述	命题.					

D {<1,3>,<2,3>,<3,2>,<4,4>,<5,2>

C {<1,5>,<2,1>,<3,1>,<4,4>,<5,2>}

合肥工业大学试卷(A)

审批签名_____

造勿私自出售和带讲老场

(2) 用命题逻辑理论证明上述结论成立。

六、(10分)设R为实数集,+为普通加法,•为普通乘法,<R,*>是一个代数系统,*

请勿私自出售和带进是R上的一个二元运算,使得 $\forall x,y \in R$,都有x*y=x+y+x*y。

三、(10 分) 已知命题公式 $(P \lor Q) \to R$ 。

要求: (1) 证明<R, *>是独异点;

要求: (1) 用等值演算方法求上述命题公式的主合取范式和主析取范式: 出售和带进考场(2) 写出群的定义, <R, *>是否是群?为什么?

(2) 用真值表方法求上述命题公式的主合取范式和主析取范式。

请勿私自出售和带进考场

四、(10分)设集合 A={a, b, c, d}上的关系 R={<a,b>,<b,a>,<b,c>,<c,d>}。

要求: (1) 写出 R 的关系矩阵;

请勿私自出售和带讲考场

- (2) 画出 R 的关系图:
- (3) 求出 R 的自反闭包 r(R)、对称闭包 s(R)、传递闭包 t(R)。

请勿私自出售和带进考场

五、(20分)设S={1,2,3,4,6,8,12}, "≤"为S上整除关系。

要求: (1) 写出偏序的定义;

请勿私自出售和带进考场

- (2) 写出盖住关系 cov(S):
- (3) 画出偏序集<S,≤>的哈斯图;
- (4) 写出偏序集<S,≤>的极小元、最小元、极大元、最大元;
- (5) 写出 B={2,4,6}的最大元、最小元、上界、下界、上确界、下确界。

离散习题+14年真题

一、填空题	
1 设集合 A,B, 其中 A={1,2,3}, B= {1,2}, 则 A-B=;	$\rho(A) - \rho(B) =$
2. 设有限集合 A, A = n, 则 p(A×A) =	
3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是	HA DAE(A)
其中双射的是	ALID STO
4. 已知命题公式 G=¬(P→Q)/壳,则 G的重析取范表是和带进考场	\$5() .
5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为	点数为
6 设 A、B 为两个集合, A= {1,2,4}, B = {3,4}, 则从 A∩B=	; A∪B=
- 语列私自出售和带讲考场	
7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是	
8. 设命题公式 G=¬(P→(Q∧R)),则使公式 G为真的解释有一带进考场	OF OF STEAM
9. 设集合 A={1,2,3,4}, A 上的关系R={(1,4),(2,3),(3,2); R1={(2,1),(3,2),(4,3)},	则 R ₁ •R ₂ =
R_1 = R_1^2	
=	HE (SEL)=(DIE)
11 设 A,B,R 是三个集合,其中 R 是实数集,A = {x -1≤x≤1, x∈R}, B = {x 0≤x	x < 2, x∈R},则 A-B =
ANB= 请勿私自出售和带进考场	
3. 设集合 A={2,3,4,5,6}, R是 A上的整除,则R以集合形式(列举法)记为	terminal engin
 4. 设一阶逻辑公式 G = ∀xP(x)→∃xQ(x),则 G 的前束范式是	*********
5.设 G 是具有 8 个顶点的树,则 G 中增加条边才能把 G 变成完全图。	
6. 设谓词的定义域为 $\{a,b\}$,将表达式 $\forall xR(x)$ → $\exists xS(x)$ 中量词消除,写成与之对应的	
7. 设集合 A={1, 2, 3, 4},A上的二元关系 R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3	.,2)}。则 R·S=

```
二、选择题
```

1 设集合 A={2,{a},3,4}, B={{a},3,4,1}, E 为全集,则下列命题正确的是()。 $(A)\{2\}\in A$ $(B)\{a\}\subseteq A$ $(C)\emptyset\subseteq \{\{a\}\}\subseteq B\subseteq E$ $(D)\{\{a\},1,3,4\}\subseteq B$.

2 设集合 A={1,2,3},A 上的关系 R={(1,1),(2,2),(2,3),(3,2),(3,3)},则 R 不具备().

(A)自反性 (B)传递性 (C)对称性 (D)反对称性

3 设半序集(A,≤)关系≤的哈斯图如下所示, 若 A 的子集 B = {2,3,4.5},则元素 6 为 B 的()。 (A)下界 (B)上界 (C)最小上界 (D)以上答案都不对

4 下列语句中,()是命题。吉勿天,自 上 信和带进考场 (A)请把门关上 (B)地球外的星球上也有人

5 设 I 是如下一个解释: D={a,b}, P(a,a) P(a,b) P(b,a) P(b,b)

则在解释 I 下取真值为 1 的公式是().

 $(A)\exists x\forall yP(x,y) \quad (B)\forall x\forall yP(x,y) \quad (C)\forall xP(x,x) \quad (D)\forall x\exists yP(x,y).$

6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是(7)).

(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6).

7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=∃xP(x), H= \forall xP(x),则一阶逻辑公式 G→H 是((A)恒真的 (B)恒假的 (C)可满足的 (D)前束范式、

8 设命题公式 $G=\neg(P\to Q)$, $H=P\to(Q\to -P)$,则 G=H 的关系是(=)。 (A)G⇒H (B)H⇒G (C)G=H (D)以上都不是.

9 设 A, B 为集合, 当()时 A-B=B.

10 设集合 A = {1,2,3,4}, A 上的关系 R = {(1,1),(2,3),(2,4),(3,4)}, 则 R 具有()。

(A)自反性

(B)传递性 (C)对称性 (D)以上答案都不对

11 下列关于集合的表示中正确的为()。

 $(A)\{a\}\in\{a,b,c\}\qquad (B)\{a\}\subseteq\{a,b,c\}\neq (C)\varnothing\in\{a,b,c\}\neq (D)\{a,b\}\in\{a,b,c\}$

12 命题∀xG(x)取真值 1 的充分必要条件是(̄_______).

(A) 对任意 x, G(x)都取真值 1. (B)有一个 x₀, 使 G(x₀)取真值 1.

(C)有某些 x, 使 $G(x_0)$ 取真值 1. (D)以上答案都不对.

13. 设 G 是连通平面图, 有 5 个项点, 6 个面, 则 G 的边数是 (A) 9 条 (B) 5 条 (C) 6 条 (D) 11 条.

14. 设 G 是 5 个顶点的完全图,则从 G 中删去()条边可以得到树.

(A)6 (B)5 (C)10 (D)4.

0 1 1 1 1 1 1 0 1 1 ,则 G 的顶点数与边数分别为(). 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0

(A)4, 5 (B)5, 6 (C)4, 10 (D)5, 8.

三、计算证明题

1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12}, R 为整除关系。

(1) 画出半序集(A,R)的哈斯图;

- (2) 写出 A 的子集 B = {3,6,9,12}的上界,下界,最小上界,最大下界;
- (3) 写出 A 的最大元,最小元,极大元,极小元。
- 2. 设集合 A={1, 2, 3, 4}, A 上的关系 R={(x,y) | x, y∈A 且 x≥y}, 求
 - (1) 画出R的关系图;
 - (2) 写出 R 的关系矩阵.
- 3. 设 R 是实数集合, σ , τ , ϕ 是 R 上的三个映射, σ (x) = x+3, τ (x) = 2x, ϕ (x) = x/4,试求复合映射 σ • τ , σ • σ , σ•φ, φ•τ, σ•φ•τ.

(2) $\forall x \exists y P(y, x)$.

- 5. 设集合 A={1, 2, 4, 6, 8, 12}, R 为 A 上整除关系。
 - (1) 画出半序集(A,R)的哈斯图 / 私目出售和带进考场
 - (2) 写出 A 的最大元,最小元,极大元,极小元;
 - (3) 写出 A 的子集 B = {4, 6, 8, 12}的上界,下界,最小上界,最大下界.
- 7. (9 分)设一阶逻辑公式: $G = (\forall x P(x) \lor \exists y Q(y)) \rightarrow \forall x R(x)$, 把 G 化成前束范式.
- 9. 设 R 是集合 A = {a, b, c, d}. R 是 A 上的二元关系, R = {(a,b), (b,a), (b,c), (c,d)},
 - (1) 求出 r(R), s(R), t(R): 请勿私自出售和带进考场
 - (2) 画出 r(R), s(R), t(R)的关系图.
- 11. 通过求主析取范式判断下列命题公式是否等价:
 - (1) G=(P\Q)V(¬P\Q\P)为利自出售和带进考场(2) H=(P\(Q\R))\(Q\(\C)P\R))
- 13. 设 R 和 S 是集合 $A = \{a, b, c, d\}$ 上的关系,其中 $R = \{(a, a), (a, c), (b, c), (c, d)\}$,

请勿私自出售和带讲考场

- (1) 试写出 R和 S的关系矩阵:
- (2) 计算 R·S, R∪S, R⁻¹, S⁻¹•R⁻¹.

四、证明题

c),(b,d),(d,d).

- 1. 利用形式演绎法证明: $\{P \rightarrow Q, R \rightarrow S, P \lor R\}$ 蕴涵 $Q \lor S$ 。
- 2. 设 A,B 为任意集合,证明: (A-B)-C=A-(B∪C).
- 3. (本题 10 分)利用形式演绎法证明: {¬A∨B, ¬C→¬B, C→D}蕴涵 A→D。
- 4. (本题 10分)A, B 为两个任意集合, 求证:

 $A-(A\cap B)=(A\cup B)-B$.

 $S = \{(a, b), (b, b)\}$

参考答案

一、填空题

- 1. {3}; {{3},{1,3},{2,3},{1,2,3}}.
- 3. $\alpha_1 = \{(a,1), (b,1)\}, \alpha_2 = \{(a,2), (b,2)\}, \alpha_3 = \{(a,1), (b,2)\}, \alpha_4 = \{(a,2), (b,1)\}; \alpha_3, \alpha_4.$
- 4. $(P \land \neg Q \land R)$.
- 5. 12, 3.
- 6. {4}, {1,2,3,4}, {1,2}. 请勿私自出售和带进考场
- 7. 自反性; 对称性; 传递性,

- 10. 2m×n.
- 11. $\{x \mid -1 \le x < 0, x \in R\}; \{x \mid 1 < x < 2, x \in R\}; \{x \mid 0 \le x \le 1, x \in R\}.$

- 13. $\{(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)\}$.
- 14. $\exists x(\neg P(x) \lor Q(x))$.
- 15. 21.
- 16. (R(a) \ R(b)) + (S(a) \ S(b)) 请勿私自出信和带进考场
- 17. $\{(1,3),(2,2)\};\{(1,1),(1,2),(1,3)\}.$
- 二、选择题
- 5. C. 2. D. 3. D.
- 请勿私自出啥和带进考场 6. C. 7. C.
- 11. B. 12. C. 13. 15. D
- 三、计算证明题

1.

请勿私自出售和带进考场

- (2) B 无上界, 也无最小上界。下界 1, 3; 最大下界是 3.
- (3) A 无最大元,最小元是 1下极失元 8, 12, 90年 极东元是 带进考场 $\mathbf{2.R} = \{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)\}.$

$$(2)M_{R} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

```
3. (1)\sigma \cdot \tau = \sigma(\tau(x)) = \tau(x) + 3 = 2x + 3 = 2x + 3.
       (2)\sigma \circ \sigma = \sigma(\sigma(x)) = \sigma(x) + 3 = (x+3) + 3 = x+6,
       (3)\sigma \cdot \varphi = \sigma(\varphi(x)) = \varphi(x) + 3 = x/4 + 3,
       (4)\phi \circ \tau = \phi(\tau(x)) = \tau(x)/4 = 2x/4 = x/2,
       (5)\sigma \cdot \varphi \cdot \tau = \sigma \cdot (\varphi \cdot \tau) = \varphi \cdot \tau + 3 = 2x/4 + 3 = x/2 + 3.
 4. (1) P(a, f(a)) \land P(b, f(b)) = P(3, f(3)) \land P(2, f(2))
            = P(3,2) \land P(2,3)
            =1 \wedge 0
            = 0.
   (2) ∀x∃y P (y, x) = ∀x (P (2, x)) P (3, x) 自出售和带进考场
            = (P(2, 2) \lor P(3, 2)) \land (P(2, 3) \lor P(3, 3))
            =(0\lor1)\land(0\lor1)
                                     请勿私自出售和带进考场
            =1 \wedge 1
            = 1.
5. (1)
                                  请勿私自出售和带进考场
(2) 无最大元,最小元 1,极大元 8772、极小元是1. 信和带进考场
   (3) B 无上界, 无最小上界。下界 1, 2; 最大下界 2.
6. G = \neg (P \rightarrow Q) \lor (Q \land (\neg P \rightarrow R))
     = \neg (\neg P \lor Q) \lor (Q \land (P \lor R))
     = (P \land \neg Q) \lor (Q \land P) \lor (Q \land R)
```

- =(P^¬Q)V(Q^(PVR))请勿私自出售和带进考场 $= (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land Q \land R) \lor (\neg P \land Q \land R)$
 - $= (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (\neg P \land Q \land R)$ = m₃ V m₄ V m₅ V m₆ V m₇ = E(3, 4, 5, 6, 7) 出售和带进考场
- 7. $G = (\forall x P(x) \lor \exists y Q(y)) \rightarrow \forall x R(x)$
 - $= \neg(\forall x P(x) \lor \exists y Q(y)) \lor \forall x R(x)$

 - =(¬∀xP(x)∧¬∃yQ(y))∨∀xR(x) =(∃x¬P(x)∧∀y¬Q(y))∨∀xR(x)
 私自出售和带进考场
 - $= \exists x \forall y \forall z ((\neg P(x) \land \neg Q(y)) \lor R(z))$
- 9. (1) $r(R) = R \cup I_A = \{(a,b), (b,a), (b,c), (c,d), (a,a), (b,b), (c,c), (d,d)\},\$

 $s(R)=R\cup R^{-1}=\{(a,b), (b,a), (b,c), (c,b) (c,d), (d,c)\},\$

 $t(R) = R \cup R^2 \cup R^3 \cup R^4 = \{(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,d)\};$

(2)关系图:


```
= (P \land Q \land \neg R) \lor (P \land Q \land R) \lor (\neg P \land Q \land R)
       =m_6 \vee m_7 \vee m_3
       =\sum (3, 6, 7)
     H = (P \vee (Q \wedge R)) \wedge (Q \vee (\neg P \wedge R))
       =(P \land Q) \lor (Q \land R)) \lor (\neg P \land Q \land R)
       = (P \land Q \land \neg R) \lor (P \land Q \land R) \lor (\neg P \land Q \land R) \lor (P \land Q \land R) \lor (\neg P \land Q \land R)
       = (P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (P \land Q \land R)
       =m_6 \vee m_3 \vee m_7
       =\Sigma(3, 6, 7)
G,H 的主析取范式相同,所以查到私自出售和带进考场
13.
                                                 0 0 0 1
                  0 0 0 0
     RUS={(a, a),(a, b),(a, c),(b, c),(b, d),(c, d),(d, d)}, 信和带进考场
     R^{-1} = \{(a, a), (c, a), (c, b), (d, c)\},\
     S^{-1} \cdot R^{-1} = \{(b, a), (d, c)\}.
1. 证明: {P→Q, R→S, P∨R}蕴涵 Q∨S
     (1) P \vee R
                          P
     (2) \neg R \rightarrow P
                          Q(1)
     (3) P \rightarrow Q
                          Q(2)(3)
     (4) \neg R \rightarrow Q
                         Q(4)
     (5) \neg Q \rightarrow R
     (6) R \rightarrow S
                          Q(5)(6)请勿私自出售和带进考
     (7) \neg Q \rightarrow S
     (8) Q V S
                          Q(7)
2. 证明: (A-B)-C=(A∩~B)∩~C
          =A\cap(\sim B\cap\sim C)
                                 请勿私自出售和带进考
          =A \cap \sim (B \cup C)
          =A-(B\cup C)
   证明: {¬A∨B, ¬C→¬B, C→D}蕴涵 A→D
                         D(附加)
     (1)A
     (2) ¬A ∨B
     (3)B
                         Q(1)(2)
                         P
     (4) ¬C→¬B
     (5) B→C
                         Q(4)
    (6) C
                         Q(3)(5)
     (7) C→D
                         P
    (8) D
                         Q(6)(7)
    (9) A→D
                         D(1)(8)
```

所以 {¬A∨B, ¬C→¬B, C→D}蕴涵 A→D.

请勿私自出售和带进考场

请勿私自出售和带进考场

请勿私自出售和带进考场

请勿私自出售和带进考场

请勿私自出售和带进考场