

# Planung und Berechnung



# **Planung und Berechnung**

Auswahl der optimalen Produkte zur Druckhaltung, Entgasung und Nachspeisung





# Planung und Berechnung

Die zuverlässige Druckhaltung ist die Grundvoraussetzung für den schonenden, störungsfreien Betrieb von Heiz-, Solar- und Kühlwassersystemen. Unsere Planungs- und Berechnungs-Grundlagen unterstützen Sie bei der Auswahl der richtigen Produkte, deren Dimensionierung und Leistung.

| Inhalt                                                                                                                                                                                                                                                 |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Berechnung                                                                                                                                                                                                                                             | 4                                                  |
| Statico - Druckausdehnungsgefässe mit fester Gasfüllung<br>Schnellauswahl<br>Ausrüstung<br>Installationsbeispiele                                                                                                                                      | <b>8</b><br>8<br>9                                 |
| Compresso - Druckhaltungssysteme mit Kompressoren Schnellauswahl Ausrüstung Installationsbeispiele                                                                                                                                                     | <b>11</b><br>11<br>12<br>12                        |
| Transfero - Druckhaltesysteme mit Pumpen Schnellauswahl Ausrüstung Installationsbeispiele                                                                                                                                                              | <b>14</b><br>14<br>15<br>16                        |
| Aquapresso - Druckstabilisierung Trinkwasser  Aquapresso in Trinkwassererwärmungsanlagen Berechnung Schnellauswahl Aquapresso in Druckerhöhungsanlagen Zulassungen Aquapresso AF mit Bypass Berechnung Aquapresso Druckverluste Installationsbeispiele | 17<br>17<br>17<br>17<br>18<br>18<br>18<br>18<br>18 |
| Zeparo Cyclone - Automatische Schmutzabscheider mit Cyclone-Technologie<br>Schnellauswahl<br>Installationsbeispiele                                                                                                                                    | <b>20</b><br>20<br>22                              |
| Zeparo - Automatische Entlüfter und Separatoren Schnellauswahl Zeparo Collect Installationsbeispiele                                                                                                                                                   | <b>23</b> 23 24 24                                 |
| Sicherheitstechnik Installationsbeispiele                                                                                                                                                                                                              | <b>25</b> 25                                       |
| Lexikon                                                                                                                                                                                                                                                | 27                                                 |

# **Berechnung**

# Druckhaltung für Systeme TAZ ≤ 110°C

Berechnung nach EN 12828, SWKI 93-1 \*). Solarsystemen ENV 12977-1.

#### Gleichungen

| Vs        | Wasserinhalt der Anlage                         |              | Vs = vs · Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VS                 | Spezifischer Wasserinhalt, Tabelle 4.                               |
|-----------|-------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------|
|           |                                                 |              | Vs = bekannt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | Systemauslegung, Inhalts-Berechnung.                                |
|           |                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q                  | Installierte Heizleistung.                                          |
|           |                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| Ve        | Ausdehnungsvolumen                              | EN 12828     | Ve = e · Vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | е                  | Ausdehnungskoeffizient für ts <sub>max</sub> , Tabelle 1            |
|           | Heizung:                                        | SWKI 93-1    | $Ve = e \cdot Vs \cdot X^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | е                  | Ausdehnungskoeffizient für (ts <sub>max</sub> + tr)/2,<br>Tabelle 1 |
|           | Kühlung:                                        | SWKI 93-1    | Ve = e · Vs + Vwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | е                  | Ausdehnungskoeffizient für ts max, Tabelle 1                        |
|           |                                                 | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| Vwr       | Wasservorlage                                   | EN 12828     | Vwr ≥ 0,005 · Vs ≥ 3 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                     |
|           | Heizung:                                        | SWKI 93-1    | Vwr ist berücksichtigt in Ve mit dem Koef-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                     |
|           |                                                 |              | fizienten X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                     |
|           | Kühlung:                                        | SWKI 93-1    | Vwr ≥ 0,005 · Vs ≥ 3 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                     |
| p0        | Mindestdruck 2)                                 |              | p0 = Hst/10 + 0,3 bar ≥ pz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hst                | Statische Höhe                                                      |
| po        | Unterer Grenzwert für die                       |              | ρο = rist/10 + 0,3 bai ≥ p2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | Minimaler Zulaufdruck für Geräte z.B. Um-                           |
|           |                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pz                 |                                                                     |
|           | Druckhaltung                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | wälzpumpe oder Wärmeerzeuger                                        |
| pa        | Anfangsdruck                                    |              | pa ≥ p0 + 0,3 bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                     |
|           | Unterwert für eine opti-                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
|           | male Druckhaltung                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| 01-11     |                                                 | I            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| Statico   |                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| PF        | Druckfaktor                                     |              | PF = (pe + 1)/(pe - p0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                                                     |
|           | T =                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| pe        | Enddruck                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
|           | Oberwert für eine                               | EN 12828     | pe ≤ psv - dpsv <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | psvs               | Ansprechdruck Sicherheitsventil                                     |
|           | optimale Druckhaltung                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
|           | Heizung:                                        | SWKI 93-1    | pe ≤ psvs/1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dpsvs <sub>c</sub> | Schließdruckdifferenz des Sicherheitsventils                        |
|           | Kühlung:                                        |              | pe ≤ psv - dpsv <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dpsvs <sub>c</sub> | = 0,5 bar für psvs ≤ 5 bar <sup>4</sup>                             |
|           |                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dpsvs <sub>c</sub> | = 0,1 · psvs für psvs > 5 bar <sup>4)</sup>                         |
| VN        | Nennvolumen 5)                                  | EN 12828     | VN ≥ (Ve + Vwr + 1,1 · Vgsolar <sup>(3)</sup> + 5 <sup>(3)</sup> · PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vanalar            | Kollektorenvolumen 6)                                               |
| VIV       | Nennvolumen                                     | SWKI 93-1    | VN ≥ (Ve + 1.1 · Vgsolar ° + 5 °) · PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vgsolar            | Kollektorerivolumen                                                 |
|           |                                                 | OVVICE 30-1  | VIVE (VET 1.1 · VgSoldi · + 5 · ) · F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                     |
| Compres   | SSO                                             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| ре        | Enddruck                                        |              | pe=pa+0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                                                     |
|           | Oberwert für eine                               | EN 12828     | pe ≤ psvs - dpsvs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | psvs               | Ansprechdruck Sicherheitsventil                                     |
|           | optimale Druckhaltung                           | SWKI 93-1    | pe ≤ psvs/1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dpsvs              | Schließdruckdifferenz des Sicherheitsventils                        |
|           |                                                 | Kühlung:     | pe ≤ psvs - dpsvs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dpsvs              | = 0,5 bar für psvs ≤ 5 bar <sup>4)</sup>                            |
|           |                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dpsvs              | = 0,1 · psvs für psvs > 5 bar 4)                                    |
|           |                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| VN        | Nennvolumen des Aus-                            | EN 12828     | VN ≥ (Ve + Vwr + 1.1 · Vgsolar <sup>(i)</sup> + 5 <sup>(i)</sup> ) · 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                                     |
|           | dehnungsgefäßes 5)                              | SWKI 93-1    | VN ≥ (Ve + 1.1 · Vgsolar <sup>6)</sup> + 5 <sup>3)</sup> ) · 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                     |
|           |                                                 | 1            | T =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                  |                                                                     |
| TecBox    |                                                 |              | Q = f(Hst)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >> Schneli         | lauslegung Compresso                                                |
| Transfero | )                                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                     |
| pe        | Enddruck                                        |              | pe = pa + 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                                     |
| Po        | Oberwert für eine                               | EN 12828     | pe ≤ psvs - dpsvs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | psvs               | Ansprechdruck Sicherheitsventil                                     |
|           | optimale Druckhaltung                           | SWKI 93-1    | pe ≤ psvs/1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dpsvs              | Schließdruckdifferenz des Sicherheitsventils                        |
|           | optimate Drackhattang                           | Kühlung:     | pe ≤ psvs - dpsvs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dpsvs              | $= 0.5 \text{ bar für psvs} \le 5 \text{ bar}^{4}$                  |
|           |                                                 | raniang.     | pe a pava – upava <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dpsvs              | $= 0.1 \cdot \text{psvs für psvs} > 5 \text{ bar}^{-4}$             |
|           |                                                 | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | apovo <sub>c</sub> | 5,1 pore iai poro 2 0 bai                                           |
|           | Nennvolumen des Aus-                            | EN 12828     | VN ≥ (Ve + Vwr + 1.1 · Vgsolar <sup>()</sup> + 5 <sup>()</sup> ) · 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                     |
| VN        |                                                 | 014/1/1 00 4 | VN ≥ (Ve + 1.1 · Vgsolar <sup>(3)</sup> + 5 <sup>(3)</sup> ) · 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                                     |
| VN        | dehnungsgefäßes 5)                              | SWKI 93-1    | *** = (** * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                                                     |
| VN        | dehnungsgefäßes 5)                              | SWKI 93-1    | THE (TOTAL TOTAL T |                    |                                                                     |
| TecBox    | dehnungsgefäßes 5)                              | SWKI 93-1    | Q = f(Hst)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >> Schneli         | lauslegung Transfero                                                |
| ТесВох    |                                                 | SWKI 93-1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >> Schneli         | lauslegung Transfero                                                |
| ТесВох    | dehnungsgefäßes 5)  ngefässe 5)  Nennvolumen 5) | SWKI 93-1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | lauslegung Transfero $t_{\min}$ , Tabelle 3                         |

- 1)  $Q \le 30 \text{ kW}$ :  $X = 3 \mid 30 \text{ kW} < Q \le 150 \text{ kW}$ :  $X = 2 \mid Q > 150 \text{ kW}$ : X = 1,5
- 2) Die Formel für den Mindestdruck p0 gilt für den Einbau der Druckhaltung auf der Saugseite der Umwälzpumpe. Bei druckseitigem Einbau ist p0 um den Pumpendruck Δp zu erhöhen.
- 3) 5 Liter Zuschlag bei Einsatz von Vento Entgasungssystemen.
- 4) Die verwendeten Sicherheitsventile müssen diesen Anforderungen genügen.
- 5) Bitte wählen Sie ein Gefäß mit einem dementsprechenden oder höheren Nenninhalt aus.
- 6) In Solaranlagen gemäß ENV12977-1: Kollektorenvolumen VK, das verdampfen kann, wenn nicht in Betrieb; andernfalls VK=0.
- \*) SWKI 93-1: Gilt für die Schweiz

Unser Berechnungsprogramm HySelect berücksichtigt eine weitergehende Berechnungsmethodik und Datenbasis. Ergebnisabweichungen sind deshalb nicht ausgeschlossen.

#### Tabelle 1: e Ausdehnungskoeffizient

| t (TAZ, ts <sub>max</sub> , tr, ts <sub>min</sub> ), °C |           | 20     | 30     | 40     | 50     | 60     | 70     | 80     | 90     | 100    | 105    | 110    |
|---------------------------------------------------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| e Wasser                                                | = 0°C     | 0,0016 | 0,0041 | 0,0077 | 0,0119 | 0,0169 | 0,0226 | 0,0288 | 0,0357 | 0,0433 | 0,0472 | 0,0513 |
|                                                         |           |        |        |        |        |        |        |        |        |        |        |        |
| e % Gewicht MEG*                                        |           |        |        |        |        |        |        |        |        |        |        |        |
| 30%                                                     | = -14,5°C | 0,0093 | 0,0129 | 0,0169 | 0,0224 | 0,0286 | 0,0352 | 0,0422 | 0,0497 | 0,0577 | 0,0620 | 0,0663 |
| 40%                                                     | = -23,9°C | 0,0144 | 0,0189 | 0,0240 | 0,0300 | 0,0363 | 0,0432 | 0,0505 | 0,0582 | 0,0663 | 0,0706 | 0,0750 |
| 50%                                                     | = -35,6°C | 0,0198 | 0,0251 | 0,0307 | 0,0370 | 0,0437 | 0,0507 | 0,0581 | 0,0660 | 0,0742 | 0,0786 | 0,0830 |
| e % Gewicht MPG**                                       |           |        |        |        |        |        |        |        |        |        |        |        |
| 30%                                                     | = -12,9°C | 0,0151 | 0,0207 | 0,0267 | 0,0333 | 0,0401 | 0,0476 | 0,0554 | 0,0639 | 0,0727 | 0,0774 | 0,0823 |
| 40%                                                     | = -20,9°C | 0,0211 | 0,0272 | 0,0338 | 0,0408 | 0,0481 | 0,0561 | 0,0644 | 0,0731 | 0,0826 | 0,0873 | 0,0924 |
| 50%                                                     | = -33,2°C | 0,0288 | 0,0355 | 0,0425 | 0,0500 | 0,0577 | 0,0660 | 0,0747 | 0,0839 | 0,0935 | 0,0985 | 0,1036 |

#### Tabelle 2: pv Dampfüberdruck (bar)

| TAZ, °C            | 105    | 110    |
|--------------------|--------|--------|
| pv Wasser          | 0,1948 | 0,4196 |
|                    |        |        |
| pv % Gewicht MEG*  |        |        |
| 30%                | 0,1793 | 0,3864 |
| 40%                | 0,1671 | 0,3601 |
| 50%                | 0,1523 | 0,3284 |
| pv % Gewicht MPG** |        |        |
| 30%                | 0,1938 | 0,4176 |
| 40%                | 0,1938 | 0,4175 |
| 50%                | 0,1938 | 0,4174 |

#### Tabelle 3: Δe Ausdehnung (in Kühlwassersystemen, wenn tr < 5°C; in Heizungssystemen wenn tr > 70°C)

| tr, °C      |           | -35    | -30    | -25    | -20    | -15    | -10    | -5     | 0      |   | 80     | 90     | 100    | 105    | 110    |
|-------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|---|--------|--------|--------|--------|--------|
| Δe Wasser   | = 0°C     | -      | -      | -      | -      | -      | -      | -      | -      | - | 0,0062 | 0,0131 | 0,0207 | 0,0246 | 0,0287 |
|             |           |        |        |        |        |        |        |        |        |   |        |        |        |        |        |
| Δe % Gewich | t MEG*    |        |        |        |        |        |        |        |        |   |        |        |        |        |        |
| 30%         | = -14,5°C | -      | -      | -      | -      | -      | 0,0032 | 0,0023 | 0,0012 | - | 0,0070 | 0,0145 | 0,0226 | 0,0269 | 0,0312 |
| 40%         | = -23,9°C | -      | -      | -      | 0,0081 | 0,0069 | 0,0055 | 0,0038 | 0,0019 | - | 0,0073 | 0,0150 | 0,0231 | 0,0274 | 0,0318 |
| 50%         | = -35,6°C | 0,0131 | 0,0121 | 0,0109 | 0,0094 | 0,0076 | 0,0056 | 0,0038 | 0,0019 | - | 0,0075 | 0,0154 | 0,0236 | 0,0279 | 0,0324 |
| Δe % Gewich | t MPG**   |        |        |        |        |        |        |        |        |   |        |        |        |        |        |
| 30%         | = -12,9°C | -      | -      | -      | -      | -      | 0,0068 | 0,0045 | 0,0023 | - | 0,0078 | 0,0163 | 0,0252 | 0,0298 | 0,0347 |
| 40%         | = -20,9°C | -      | -      | -      | 0,0125 | 0,0099 | 0,0077 | 0,0052 | 0,0026 | - | 0,0083 | 0,0170 | 0,0265 | 0,0313 | 0,0363 |
| 50%         | = -33,2°C | -      | 0,0187 | 0,0162 | 0,0137 | 0,0111 | 0,0086 | 0,0058 | 0,0029 | - | 0,0088 | 0,0179 | 0,0276 | 0,0325 | 0,0376 |

#### Tabelle 4: vs ca. Wasserinhalt \*\*\* von Gebäudeheizungen bezogen auf die installierte Heizflächenleistung Q

| ts <sub>max</sub>   tr | °C          | 90   70 | 80   60 | 70   55 | 70   50 | 60   40 | 50   40 | 40   30 | 35  28 |
|------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|--------|
| Radiatoren             | vs Liter/kW | 14,0    | 16,5    | 20,1    | 20,6    | 27,9    | 36,6    | -       | -      |
| Plattenheizkörper      | vs Liter/kW | 9,0     | 10,1    | 12,1    | 11,9    | 15,1    | 20,1    | -       | -      |
| Konvektoren            | vs Liter/kW | 6,5     | 7,0     | 8,4     | 7,9     | 9,6     | 13,4    | -       | -      |
| Lüftung                | vs Liter/kW | 5,8     | 6,1     | 7,2     | 6,6     | 7,6     | 10,8    | -       | -      |
| Fussbodenheizung       | vs Liter/kW | 10,3    | 11,4    | 13,3    | 13,1    | 15,8    | 20,3    | 29,1    | 37,8   |

<sup>\*)</sup> MEG = Mono-Ethylene Glycol

<sup>\*\*)</sup> MPG = Mono-Propylene Glycol

<sup>\*\*\*)</sup> Wasserinhalt = Wärmeerzeuger + Hausverteilung + Heizflächen

# Tabelle 5: DNe Richtwerte für Ausdehnungsleitungen bei Statico und Compresso

| Länge bis ca. 30 m        | DNe    | 20   | 25   | 32   | 40   | 50   | 65    | 80    |
|---------------------------|--------|------|------|------|------|------|-------|-------|
| Heizung:                  |        |      |      |      |      |      |       |       |
| EN 12828                  | Q   kW | 1000 | 1700 | 3000 | 3900 | 6000 | 11000 | 15000 |
| SWKI 93-1                 | Q   kW | 300  | 600  | 900  | 1400 | 3000 | 6000  | 9000  |
| Kühlung :                 |        |      |      |      |      |      |       |       |
| ts <sub>max</sub> ≤ 50 °C | Q   kW | 1600 | 2700 | 4800 | 6300 | 9600 | 18100 | 24600 |

# Tabelle 6: DNe Richtwerte für Ausdehnungsleitungen bei Transfero T $_{-}$ \*

|                    |         | T_4.1 | T_6.1       | T_8.1       | T_10.1      | T_4.2       | T_6.2       | T_8.2       | T_10.2      | TPVP |
|--------------------|---------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|
| Länge bis ca. 10 m | DNe     | 32    | 32          | 32          | 32          | 50   40     | 50   40     | 50   40     | 50   40     | 50   |
|                    | Hst   m | alle  | alle        | alle        | alle        | < 20   ≥ 20 | < 25   ≥ 25 | < 35   ≥ 35 | < 50   ≥ 50 | alle |
| Länge bis ca. 30 m | DNe     | 32    | 40   32     | 40   32     | 40   32     | 50   40     | 50   40     | 50   40     | 50   40     | 65   |
|                    | Hst   m | alle  | < 25   ≥ 25 | < 30   ≥ 30 | < 45   ≥ 45 | < 25   ≥ 25 | < 35   ≥ 35 | < 48   ≥ 48 | < 65   ≥ 65 | alle |

<sup>\* 2</sup> Ausdehnungsleitungen DNe bei Transfero TV, TPV wegen Entgasung; 1 Ausdehnungsleitung bei Transfero T, TP

#### Tabelle 7: DNe Richtwerte für Ausdehnungsleitungen bei Transfero TI

|                    |     | TI0.2 | TI1.2 | TI2.2 | TI3.2 |
|--------------------|-----|-------|-------|-------|-------|
| Länge bis ca. 10 m | DNe | 50    | 65    | 80    | 100   |
| Länge bis ca. 30 m | DNe | 65    | 80    | 100   | 125   |

# Präzisionsdruckhaltung

Luftgesteuerte Compresso oder wassergesteuerte Transfero minimieren die Druckschwankungen zwischen pa und pe. Compresso  $\pm$  0,1 bar Transfero  $\pm$  0,2 bar



\*)

 $\geq$  psvs  $\cdot$  0.9  $\geq$  0.5

 $\geq$  psvs  $\cdot$  0.3/1.3 SWKI 93-1, Heizung

#### p0 Mindestdruck



#### **Statico**

p0 wird als Vordruck gasseitig eingestellt.



### Compresso

p0 und die Schaltpunkte werden von der BrainCube berechnet.



#### Transfero

p0 und die Schaltpunkte werden von der BrainCube berechnet.

#### pa Anfangsdruck



#### Statico

pa wird als Fülldruck über die Wasservorlage eingestellt: pa ≥ p0 + 0,3 bar; Nachspeisung «ein»: pa – 0,2 bar.



#### Compresso

Wenn Systemdruck < pa läuft der Kompressor an. pa = p0 + 0,3



#### Transfero

Wenn Systemdruck < pa läuft die Pumpe an. pa = p0 + 0,3

#### pe Enddruck



#### Statico

pe wird nach Aufheizen auf  $ts_{max}$  erreicht. pe  $\leq$  psvs - dpsvs $_{c}$ pe  $\leq$  psvs/1.3 (SWKI 93-1 heating)



### Compresso

pe durch Aufheizen überschritten, dann Magnetventil luftseitig «auf». pe = pa + 0,2



#### Transfero

Wenn Systemdruck > pe öffnet das Sicherheitsventil. pe = pa + 0,4

# Statico

# Druckausdehnungsgefässe mit fester Gasfüllung

### **Schnellauswahl**

#### Heizungsanlagen TAZ ≤ 100°C, ohne Frostschutzmittelzusatz, EN 12828

Für eine genaue Berechnung kann die Software HySelect verwendet werden.

|            |            | psv = <b>2,5</b> bar             |              |                        | psv = 3.0 bar             |              |            | psv = <b>3,0</b> bar |               |
|------------|------------|----------------------------------|--------------|------------------------|---------------------------|--------------|------------|----------------------|---------------|
|            | Hst ≤      | $7 \text{ m} \ge \text{p0} = 1,$ | <b>0</b> bar | Hst ≤                  | $7 \text{ m} \ge p0 = 1,$ | <b>0</b> bar | Hst ≤      | 12 m ≥ p0 = <b>1</b> | <b>,5</b> bar |
|            | Radiatoren | Plattenh                         | eizkörper    | Radiatoren             | Plattenhe                 | eizkörper    | Radiatoren | Plattenh             | eizkörper     |
|            | 90   70    | 90   70                          | 70   50      | 90   70                | 90   70                   | 70   50      | 90   70    | 90   70              | 70   50       |
| Q [kW]     | Nenr       | nvolumen VN                      | [Liter]      | Nennvolumen VN [Liter] |                           |              | Nenr       | volumen VN           | [Liter]       |
| 10         | 25         | 25                               | 18           | 25                     | 18                        | 18           | 35         | 25                   | 25            |
| 15         | 35         | 25                               | 25           | 25                     | 18                        | 18           | 35         | 35                   | 25            |
| 20         | 50         | 35                               | 25           | 35                     | 25                        | 25           | 50         | 35                   | 35            |
| 25         | 50         | 35                               | 35           | 50                     | 35                        | 25           | 80         | 50                   | 35            |
| 30         | 80         | 50                               | 35           | 50                     | 35                        | 35           | 80         | 50                   | 50            |
| 40         | 80         | 50                               | 50           | 80                     | 50                        | 35           | 80         | 80                   | 50            |
| 50         | 140        | 80                               | 50           | 80                     | 50                        | 50           | 140        | 80                   | 80            |
| 60         | 140        | 80                               | 80           | 80                     | 80                        | 50           | 140        | 80                   | 80            |
| 70         | 140        | 80                               | 80           | 140                    | 80                        | 80           | 140        | 140                  | 80            |
| 80         | 140        | 140                              | 80           | 140                    | 80                        | 80           | 200        | 140                  | 140           |
| 90         | 200        | 140                              | 140          | 140                    | 80                        | 80           | 200        | 140                  | 140           |
| 100        | 200        | 140                              | 140          | 140                    | 140                       | 80           | 200        | 140                  | 140           |
| 150        | 300        | 200                              | 200          | 200                    | 140                       | 140          | 300        | 200                  | 200           |
| <u>200</u> | 400        | 300                              | 200          | 300                    | 200                       | 200          | 400        | 300                  | 300           |
| 250        | 500        | 300                              | 300          | 400                    | 300                       | 300          | 500        | 400                  | 300           |
| 300        | 500        | 400                              | 300          | 400                    | 300                       | 300          | 600        | 400                  | 400           |
| 400        | 800        | 500                              | 400          | 600                    | 400                       | 300          | 800        | 500                  | 500           |
| 500        | 1000       | 600                              | 500          | 800                    | 500                       | 400          | 1000       | 800                  | 600           |
| 600        | 1000       | 800                              | 600          | 800                    | 500                       | 500          | 1500       | 800                  | 800           |
| 700        | 1500       | 800                              | 800          | 1000                   | 600                       | 600          | 1500       | 1000                 | 800           |
| 800        | 1500       | 1000                             | 800          | 1500                   | 800                       | 600          | 1500       | 1000                 | 1000          |
| 900        | 1500       | 1000                             | 1000         | 1500                   | 800                       | 800          | 2000       | 1500                 | 1000          |
| 1000       | 2000       | 1500                             | 1000         | 1500                   | 1000                      | 800          | 2000       | 1500                 | 1500          |
| 1500       | 3000       | 2000                             | 1500         | 2000                   | 1500                      | 1500         | 3000       | 2000                 | 2000          |

## Beispiel

Q = 200 kW

psv = 3 bar

Hst = 7 m

Radiatoren 90 | 70 °C

Gewählt:

Statico SU 300.3

p0 = 1 bar

Werksseitig eingestellten Vordruck von 1,5 bar auf 1 bar

reduzieren!

Technische Daten:

Datenblatt Statico

#### Beachte bei TAZ über 100 °C

Über 100 °C reduziert sich die statische Höhe Hst in der Schnellauswahltabelle.

 $TAZ = 105 \, ^{\circ}C$ : Hst  $-2 \, m$ 

TAZ = 110 °C: Hst - 4 m

#### Vordruckeinstellung p0

p0 = (Hst/10 + pv) + 0.3 barEmpfehlung:  $p0 \ge 1 bar$ 

#### Fülldruck, Anfangsdruck

pa ≥ p0 + 0,3 bei kalter und entlüfteter Anlage

# **Ausrüstung**

#### Kappenabsperrhahn DLV

Gesicherte Absperrung mit Entleerung für Ausdehnungsgefässe nach EN 12828, DLV 20 bis VN 800 Liter, DN 40 bauseits für VN 1000 – 5000 Liter.

#### Ausdehnungsleitung

Nach Tabelle 5

#### Pleno

Nachspeisung als Druckhalte-Überwachungseinrichtung nach EN 12828.

Bedingungen:

- Pleno Pl ohne Pumpe: erforderlicher Frischwasserdruck:  $pw \ge p0 + 1,5$ ,  $pw \le 10$  bar,
- Pleno PI 6, PI 9 mit Pumpe: pa Statico im Arbeitsdruckbereich dpu des Pleno.

#### Vento

Entgasung und zentrale Entlüftung. Bedingungen:

- pe, pa Statico im Arbeitsdruckbereich dpu des Vento,
- Vs Vento ≥ Vs Wasserinhalt der Anlage.

#### Zeparo

Schnellentlüfter Zeparo ZUT, ZUTX oder ZUP an jedem Hochpunkt zum Entlüften beim Füllen und Belüften beim Entleeren. Abscheider für Schlamm und Magnetit in jeder Anlage in den Hauptrücklauf zum Wärmeerzeuger. Falls keine zentrale Entgasung (z. B. Vento oder Compresso CPV) installiert wird, kann ein Mikroblasenabscheider im Hauptstrom, möglichst vor der Umwälzpumpe, eingebaut werden.

Die statische Höhe Hst<sub>m</sub> lt. Tabelle über dem Mikroblasenabscheider darf nicht überschritten werden.

| ts <sub>max</sub>   °C | 90   | 80   | 70   | 60   | 50  | 40  | 30  | 20  | 10  |
|------------------------|------|------|------|------|-----|-----|-----|-----|-----|
| Hst_   m               | 15,0 | 13,4 | 11,7 | 10,0 | 8,4 | 6,7 | 5,0 | 3,3 | 1,7 |

Weiteres Zubehör, Produkt- und Auswahldetails: siehe Datenblätter Pleon, Vento, Zeparo, ZE und Zubehör

## Installationsbeispiele

#### Statico SD

#### Für Heizungsanlagen bis ca. 100 kW

Anpassung an örtliche Verhältnisse erforderlich.



1) Anschluss Nachspeisung

Pleno PI Nachspeisung als Druckhalte-Überwachungseinrichtung nach EN 12828

Zeparo ZUVL zur zentralen Mikroblasenabscheidung

Zeparo Cyclone ZCD mit ZCHM zur zentralen Abscheidung von Schlamm, mit Magnetwirkung

Zeparo ZUT zur automatischen Entlüftung beim Füllen, Belüften bei Entleeren

Weiteres Zubehör, Produkt- und Auswahldetails: siehe Datenbätter Pleno, Zeparo und Zubehör

#### Statico SU

#### Für Heizungsanlagen bis ca. 700 kW

Anpassung an örtliche Verhältnisse erforderlich.



1) Anschluss Nachspeisung

**Vento VP...E** zur zentralen Entlüftung und Entgasung, mit Nachspeisung als Druckhalte-Überwachungseinrichtung nach EN 12828 **Zeparo ZIO...S** optional für Mikroblasen oder Schlammpartikel, hier konfiguriert als Schlammabscheider **Zeparo ZUT** zur automatischen Entlüftung beim Füllen, Belüften bei Entleeren

Weiteres Zubehör, Produkt- und Auswahldetails: siehe Datenblätter Vento, Zeparo und Zubehör

# Compresso

# Druckhaltungssysteme mit Kompressoren

#### **Schnellauswahl**

#### Heizungsanlagen TAZ ≤ 110°C, ohne Frostschutzmittelzusatz, EN 12828, SWKI 93-3

Für eine genaue Berechnung kann die Software HySelect verwendet werden.

|        |              | Tecl           | Вох          |                | Basisgefäß |           |               |           |  |  |
|--------|--------------|----------------|--------------|----------------|------------|-----------|---------------|-----------|--|--|
|        | 1 Kompressor | 2 Kompressoren | 1 Kompressor | 2 Kompressoren | Radia      | atoren    | Plattenhe     | eizkörper |  |  |
|        | C 10.1,      | C 10.2 *       | C 15.1 **    | C 15.2 *       | 90   70    | 70   50   | 90   70       | 70   50   |  |  |
|        | C 10.1 F     |                |              |                |            |           |               |           |  |  |
| Q [kW] |              | Statische H    | öhe Hst [m]  |                |            | Nennvolum | en VN [Liter] |           |  |  |
| ≤ 300  | 46,1         | 46,1           | 81,4         | 81,4           | 200        | 200       | 200           | 200       |  |  |
| 400    | 46,1         | 46,1           | 81,4         | 81,4           | 300        | 300       | 200           | 200       |  |  |
| 500    | 46,1         | 46,1           | 81,4         | 81,4           | 300        | 300       | 200           | 200       |  |  |
| 600    | 45,0         | 46,1           | 80,2         | 81,4           | 400        | 400       | 300           | 300       |  |  |
| 700    | 41,0         | 46,1           | 71,8         | 81,4           | 500        | 500       | 300           | 300       |  |  |
| 800    | 37,5         | 46,1           | 65,0         | 81,4           | 500        | 500       | 400           | 300       |  |  |
| 900    | 34,6         | 46,1           | 59,4         | 81,4           | 600        | 600       | 400           | 400       |  |  |
| 1000   | 32,0         | 46,1           | 54,7         | 81,4           | 600        | 600       | 400           | 400       |  |  |
| 1100   | 29,8         | 45,7           | 50,6         | 81,4           | 800        | 800       | 500           | 400       |  |  |
| 1200   | 27,7         | 43,3           | 47,0         | 81,4           | 800        | 800       | 500           | 500       |  |  |
| 1300   | 25,9         | 41,1           | 43,8         | 81,4           | 800        | 800       | 500           | 500       |  |  |
| 1400   | 24,2         | 39,2           | 41,0         | 77,1           | 1000       | 1000      | 600           | 500       |  |  |
| 1500   | 22,7         | 37,4           | 38,5         | 73,1           | 1000       | 1000      | 600           | 600       |  |  |
| 2000   | 16,6         | 30,3           | 28,7         | 58,0           | 1500       | 1500      | 800           | 800       |  |  |
| 2500   | 12,1         | 25,3           | 22,0         | 47,9           | 1500       | 1500      | 1000          | 1000      |  |  |
| 3000   | 8,6          | 21,4           | 17,0         | 40,5           | 2000       | 2000      | 1500          | 1500      |  |  |
| 3500   | -            | 18,3           | 13,1         | 34,7           | 3000       | 3000      | 1500          | 1500      |  |  |
| 4000   | -            | 15,7           | 9,9          | 30,1           | 3000       | 3000      | 2000          | 1500      |  |  |
| 4500   | -            | 13,5           | 7,2          | 26,3           | 3000       | 3000      | 2000          | 2000      |  |  |
| 5000   | -            | 11,6           | -            | 23,1           | 3000       | 3000      | 2000          | 2000      |  |  |
| 5500   | -            | 9,9            | -            | 20,3           | 4000       | 4000      | 3000          | 2000      |  |  |
| 6000   | -            | 8,4            | -            | 17,8           | 4000       | 4000      | 3000          | 3000      |  |  |
| 6500   | -            | 7,0            | -            | 15,7           | 4000       | 4000      | 3000          | 3000      |  |  |
| 7000   | -            | -              | -            | 13,7           | 5000       | 5000      | 3000          | 3000      |  |  |
| 8000   | -            | -              | -            | 10,4           | 5000       | 5000      | 4000          | 3000      |  |  |
| 9000   | -            | -              | -            | 7,6            |            |           | 4000          | 4000      |  |  |
| 10000  | -            | -              | -            | 5,3            |            |           | 4000          | 4000      |  |  |

#### **Beispiel**

Q = 800 kW Radiatoren 90 | 70 °C TAZ = 100 °C Hst = 35 m psvs = 6 bar

Gewählt:

TecBox C 10.1-6 Basisgefäß CU 600.6

Einstellung BrainCube: Hst = 35 m

 $TAZ = 100 \,^{\circ}C$ 

Überprüfung psvs:

für TAZ = 100 °C

EN 12828: psvs: 35/10 + 1,3 = 4,8 < 6 o.k. SWKI 93-1: psvs:  $(35/10 + 0,8) \cdot 1,3 = 5,59 < 6$  o.k.

\* Je Kompressor 50% Leistung, volle Redundanz im eingerahmten Bereich

\*\* Der Wert reduziert sich bei TAZ = 105°C um 2 m

 $TAZ = 110^{\circ}C \text{ um } 4 \text{ m}$ 

# **Ausrüstung**

#### Ausdehnungsleitung

Nach Tabelle 5. Bei mehreren Gefäßen je nach Leistung pro Gefäß zu ermitteln.

#### Kappenabsperrhahn DLV

Im Lieferumfang enthalten.

#### Zeparo

Schnellentlüfter Zeparo ZUT, ZUTX oder ZUP an jedem Hochpunkt zum Entlüften beim Füllen und Belüften beim Entleeren. Abscheider für Schlamm und Magnetit in jeder Anlage in den Hauptrücklauf zum Wärmeerzeuger. Falls keine zentrale Entgasung (z. B. Vento oder Compresso CPV) installiert wird, kann ein Mikroblasenabscheider im Hauptstrom, möglichst vor der Umwälzpumpe, eingebaut werden. Die statische Höhe Hst<sub>m</sub> It. Tabelle über dem

Mikroblasenabscheider darf nicht überschritten werden.

| ts <sub>max</sub>   °C | 90   | 80   | 70   | 60   | 50  | 40  | 30  | 20  | 10  |
|------------------------|------|------|------|------|-----|-----|-----|-----|-----|
| Hst <sub>m</sub>   mWs | 15,0 | 13,4 | 11,7 | 10,0 | 8,4 | 6,7 | 5,0 | 3,3 | 1,7 |

# Installationsbeispiele

#### Compresso C 10.1 F Connect

TecBox mit 1 Kompressor auf dem Basisgefäß, Präzisionsdruckhaltung ± 0,1 bar mit Pleno P Nachspeisung

#### Für Heizungsanlagen bis ca. 2.000 kW

Anpassung an örtliche Verhältnisse erforderlich.



- 1. Compresso Basisgefäß CU
- 2. Anschluss Nachspeisung, pw ≥ p0 + 1,7 bar, (max. 10 bar)

**Zeparo ZIO...S** im Vorlauf konfiguriert als Mikroblasenabscheider, im Rücklauf als Schlammabscheider **Zeparo ZUT** zur automatischen Entlüftung beim Füllen, Belüften beim Entleeren **Weiteres Zubehör, Produkt- und Auswahldetails:** siehe Datenblätter *Pleno, Zeparo* und Zubehör

#### Compresso C 10.1 Connect

TecBox mit 1 bodenstehendem Kompressor neben dem Basisgefäß, Präzisionsdruckhaltung ± 0,1 bar mit Pleno P Nachspeisung

#### Für Heizungsanlagen bis ca. 6.500 kW

Anpassung an örtliche Verhältnisse erforderlich.



- 1. Compresso Basisgefäß CU
- 2. Anschluss Nachspeisung, pw  $\geq$  p0 + 1,7 bar, (max. 10 bar)

**Zeparo ZIO...S** im Vorlauf konfiguriert als Mikroblasenabscheider, im Rücklauf als Schlammabscheider **Zeparo ZUT** zur automatischen Entlüftung beim Füllen, Belüften beim Entleeren **Weiteres Zubehör, Produkt- und Auswahldetails:** siehe Datenblätter *Pleno, Zeparo* und Zubehör

# Transfero

# Druckhaltesysteme mit pumpen

### **Schnellauswahl**

#### Heizungsanlagen TAZ ≤ 110°C, ohne Frostschutzmittelzusatz, EN 12828

Für eine genaue Berechnung kann die Software HySelect verwendet werden.

|        |      | Tec        | Вох       | ТесВох |      |            |           |                   | Basis  | gefäss  |           |             |         |
|--------|------|------------|-----------|--------|------|------------|-----------|-------------------|--------|---------|-----------|-------------|---------|
|        |      | 1 Pu       | mpe       |        |      | 2 Pumpen * |           |                   | Radia  | atoren  | Plattenhe | eizkörper   |         |
|        | T_   | T_         | T_        | T_     | T_   | T_         | T_        | T_                | TPV    | 90   70 | 70   50   | 90   70     | 70   50 |
|        | 4.1  | 6.1        | 8.1       | 10.1   | 4.2  | 6.2        | 8.2       | 10.2              | 19.2 P |         |           |             |         |
| Q [kW] | Sta  | atische Hö | he Hst [m | ] **   |      | Statiscl   | he Höhe F | <b>lst</b> [m] ** |        | N       | ennvolum  | en VN [Lite | er]     |
| ≤ 300  | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 200     | 200       | 200         | 200     |
| 400    | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 300     | 300       | 200         | 200     |
| 500    | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 300     | 300       | 200         | 200     |
| 600    | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 400     | 400       | 300         | 300     |
| 700    | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 500     | 500       | 300         | 300     |
| 800    | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 500     | 500       | 400         | 300     |
| 900    | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 600     | 600       | 400         | 400     |
| 1000   | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 600     | 600       | 400         | 400     |
| 1100   | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 800     | 800       | 500         | 400     |
| 1200   | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 800     | 800       | 500         | 500     |
| 1300   | 28,4 | 38,2       | 55,9      | 75,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 800     | 800       | 500         | 500     |
| 1400   | 28,4 | 38,2       | 55,9      | 74,7   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 1000    | 1000      | 600         | 500     |
| 1500   | 28,4 | 38,2       | 55,7      | 73,8   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 1000    | 1000      | 600         | 600     |
| 2000   | 28,4 | 38,2       | 51,2      | 68,6   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 1500    | 1500      | 800         | 600     |
| 2500   | 24,9 | 35,9       | 46,0      | 62,5   | 28,4 | 38,2       | 55,9      | 75,5              | 134,1  | 1500    | 1500      | 1000        | 1000    |
| 3000   | 20,6 | 31,4       | 40,0      | 55,6   | 28,4 | 38,2       | 55,6      | 73,6              | 134,1  | 2000    | 2000      | 1500        | 1500    |
| 3500   | 15,7 | 26,2       | 33,3      | 47,8   | 28,4 | 38,2       | 53,5      | 71,2              | 134,1  | 3000    | 3000      | 1500        | 1500    |
| 4000   | 10,2 | 20,2       | 25,8      | 39,1   | 28,4 | 38,2       | 51,2      | 68,5              | 134,1  | 3000    | 3000      | 2000        | 1500    |
| 4500   |      | 13,3       | 17,6      | 29,5   | 26,8 | 37,9       | 48,6      | 65,6              | 134,1  | 3000    | 3000      | 2000        | 2000    |
| 5000   |      |            |           | 19,0   | 24,9 | 35,9       | 45,9      | 62,5              | 134,1  | 3000    | 3000      | 2000        | 2000    |
| 5500   |      |            |           |        | 22,9 | 33,8       | 43,0      | 59,2              | 133,5  | 4000    | 4000      | 3000        | 2000    |
| 6000   |      |            |           |        | 20,6 | 31,4       | 39,9      | 55,8              | 124,4  | 4000    | 4000      | 3000        | 3000    |
| 6500   |      |            |           |        | 18,3 | 28,9       | 36,6      | 52,1              | 114,6  | 4000    | 4000      | 3000        | 3000    |
| 7000   |      |            |           |        | 15,7 | 26,2       | 33,1      | 48,2              | 104,1  | 5000    | 5000      | 3000        | 3000    |
| 8000   |      |            |           |        | 10,2 | 20,2       | 25,6      | 39,8              | 80,8   | 5000    | 5000      | 4000        | 3000    |
| 9000   |      |            |           |        |      | 13,6       | 17,3      | 30,7              |        |         |           | 4000        | 4000    |
| 10000  |      |            |           |        |      |            |           | 20,7              |        |         |           | 4000        | 4000    |

\*) Je Pumpe 50 % Leistung, volle Redundanz im eingerahmten Bereich. --> TAZ = 105 °C um 2 m

\*\*) Der Wert reduziert sich bei

#### Beispiel

Q = 1300 kWPlattenheizkörper 90 | 70 °C TAZ = 105 °C Hst = 30 mpsv = 5 bar

Gewählt: TexBox TPV 6.1 Basisgefäss TU 500

Einstellung BrainCube: Hst = 30 mTAZ = 105 °C

 $TAZ = 110 \, ^{\circ}C \, um \, 4 \, m$ 

Check pssv: für TAZ = 105 °C

psv: 30/10 + 1,7 = 4,7 < 5 o.k.

Check Hst: für TAZ = 105 °C

Hst: 38.2 - 2 = 36.2

Technische Daten: Datenblatt Transfero

#### Transfero

= TecBox + Basisgefäss + Erweiterungsgefäss (Option)

#### Erweiterungsgefässe

Das Nennvolumen kann auf mehrere gleich grosse Gefässe aufgeteilt werden.

> 30

#### **Ausrüstung TecBox**

|                                   | Т | TP | TV | TPV | TPVP | TI |
|-----------------------------------|---|----|----|-----|------|----|
| Präszisionsdruckhaltung ± 0,2 bar | • | •  | •  | •   | •*   | •  |
| + fillsafe-Nachspeisung           |   | •  |    | •   | •    |    |
| + oxystop-Entgasung               |   |    | •  | •   | •    |    |

<sup>\*</sup> Ausgestattet mit 2 Druckspeichergefässe für den optimalen Betrieb der Druckhaltung

#### Einstellwerte

für TAZ, Hst und psv im Menü «Parameter» der BrainCube.

|            |                 | TAZ = 100 °C                               | TAZ = 105 °C                               | TAZ = 110 °C                               |
|------------|-----------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| Check psv: | für psv ≤ 5 bar | psv ≥ 0,1 · Hst + 1,5                      | psv ≥ 0,1 · Hst + 1,7                      | psv ≥ 0,1 · Hst + 1,9                      |
|            | für psv > 5 bar | $psv \ge (0,1 \cdot Hst + 1,0) \cdot 1,11$ | $psv \ge (0,1 \cdot Hst + 1,2) \cdot 1,11$ | $psv \ge (0,1 \cdot Hst + 1,4) \cdot 1,11$ |

Die Schaltpunkte und den Mindestdruck p0 ermittelt die BrainCube selbst.

# **Ausrüstung**

#### Druckspeichergefässe

Mindestens ein Statico SD 35, bei T, TP, TV, TPV Berechnung erforderlich, for TPV...P, 2 Pufferspeicher vorinstalliert. Bei TI bitte Schnellauswahl der Bedienungsanleitung verwenden, weitere Informationen auch unter: www.imi-hydronic.de, www.imi-hydronic.at und www.imi-hydronic.ch. p0 des Pufferspeichers = p0 im BrainCube.

#### Ausdehnungsleitung

Transfero T\_: Tabelle 6
Transfero TI: Tabelle 7

# Kappenabsperrhahn DLV

Im Lieferumfang enthalten.

#### Pleno

Nachspeisung als Druckhalte-Überwachungseinrichtung nach EN 12828 in Kombination mit Transfero T oder TV. Die Ansteuerung erfolgt von der BrainCube der Transfero TecBox.

#### Zeparo

Schnellentlüfter Zeparo ZUT, ZUTX oder ZUP an jedem Hochpunkt zum Entlüften beim Füllen und Belüften beim Entleeren. Abscheider für Schlamm und Magnetit in jeder Anlage in den Hauptrücklauf zum Wärmeerzeuger. Für Mikroblasen, in den Anlagenvorlauf, möglichst vor der Umwälzpumpe. Nur sinnvoll, falls keine zentrale Entgasung (z.B. Vento, Transfero) installiert wird.

Die statische Höhe  ${\rm Hst}_{\rm m}$  It. Tabelle über dem Mikroblasenabscheider darf nicht überschritten werden.

| ts <sub>max</sub>   °C | 90   | 80   | 70   | 60   | 50  | 40  | 30  | 20  | 10  |
|------------------------|------|------|------|------|-----|-----|-----|-----|-----|
| Hst <sub>m</sub>   mWs | 15,0 | 13,4 | 11,7 | 10,0 | 8,4 | 6,7 | 5,0 | 3,3 | 1,7 |

#### Weiteres Zubehör, Produkt- und Auswahldetails:

siehe Datenblätter Pleno, Zeparo und Zubehör

## Installationsbeispiele

#### Transfero TPV .1

TecBox mit 1 Pumpe, Präzisionsdruckhaltung ± 0,2 bar mit Entgasung und Nachspeisung

#### Für Heizungsanlagen bis ca. 5.000 kW

Anpassung an örtliche Verhältnisse erforderlich.



1. Anschluss Nachspeisung, pw = min. 2 bar, max. 10 bar

Zeparo ZIO...F zur zentralen Abscheidung von Schlamm

Zeparo ZUT zur automatischen Entlüftung beim Füllen, Belüften beim Entleeren

Weiteres Zubehör, Produkt- und Auswahldetails: siehe Datenblätter Zeparo ZU, Zeparo ZI/ZE und Zubehör

#### Transfero TV .2

TecBox mit 2 Pumpen, Präzisionsdruckhaltung ± 0,2 bar mit Entgasung und Pleno P zur Nachspeisung

#### Für Heizungsanlagen bis ca. 10.000 kW

Anpassung an örtliche Verhältnisse erforderlich.



- 1. Basisgefäss
- 2. Erweiterungsgefäss
- 3. Anschluss Nachspeisung, pw  $\geq$  p0 + 1,9 bar (max. 10 bar)

#### Zeparo ZIO...S zur zentralen Abscheidung von Schlamm

Zeparo ZUT zur automatischen Entlüftung beim Füllen, Belüften beim Entleeren

Weiteres Zubehör, Produkt- und Auswahldetails: siehe Datenblätter Pleno, Zeparo ZU, Zeparo ZI/ZE und Zubehör

# Aquapresso Druckstabilisierung Trinkwasser

# Aquapresso in Trinkwassererwärmungsanlagen

Aquapresso sparen in Trinkwassererwärmungsanlagen wertvolles Trinkwasser. Das Ausdehnungswasser geht nicht mehr über das Sicherheitsventil verloren, sondern wird vom

Aquapresso aufgenommen. Wichtig für einen einwandfreien verschleissarmen Betrieb ist die richtige Einstellung des Vordruckes.

# **Berechnung**

Für eine genaue Berechnung kann die Software HySelect verwendet werden.

#### Vordruck

p0 = pa - 0.3 bar

Der Vordruck des Aquapresso wird mindestens 0,3 bar unter dem Anfangsdruck pa eingestellt.

#### **Anfangsdruck**

 $pa = p_{E}$ 

Der Anfangsdruck entspricht dem Fliessdruck  $p_{FL}$ . Er sollte durch Einbau eines Druckminderers in die Kaltwasserleitung konstant gehalten werden.

#### Sicherheitsventil

Der Ruhedruck pR im Trinkwassernetz darf 80% des Sicherheitsventil- Ansprechdruckes nicht überschreiten.

$$psv = \frac{pR}{0.8}$$

#### Nennvolumen

Vhs ist das Nennvolumen des Trinkwassererwärmers. e (60 °C, : Tabelle 1)

VN = Vhs · e 
$$\frac{(psv + 0.5) \cdot (p0 + 1.3)}{(p0 + 1) \cdot (psv - p0 - 0.8)}$$

### **Schnellauswahl**

#### Aufheizung von 10 °C auf 60 °C

|                  |     | p0 <b>4,0</b> bar | pa <b>4,3</b> bar |    |    | p0 <b>3,0</b> bar | pa <b>3,3</b> bar |    |
|------------------|-----|-------------------|-------------------|----|----|-------------------|-------------------|----|
| <b>psv</b> [bar] | 6   | 7                 | 8                 | 10 | 6  | 7                 | 8                 | 10 |
| Vhs [Liter]      |     | Nennvolum         | en VN [Liter]     |    |    | Nennvolum         | en VN [Liter]     |    |
| 50               | 8   | 8                 | 8                 | 8  | 8  | 8                 | 8                 | 8  |
| 80               | 8   | 8                 | 8                 | 8  | 8  | 8                 | 8                 | 8  |
| 100              | 12  | 8                 | 8                 | 8  | 8  | 8                 | 8                 | 8  |
| 150              | 18  | 12                | 8                 | 8  | 8  | 8                 | 8                 | 8  |
| 180              | 18  | 12                | 12                | 8  | 8  | 8                 | 8                 | 8  |
| 200              | 25  | 12                | 12                | 8  | 12 | 8                 | 8                 | 8  |
| 250              | 25  | 18                | 12                | 12 | 12 | 12                | 8                 | 8  |
| 300              | 35  | 18                | 18                | 12 | 18 | 12                | 12                | 12 |
| 400              | 50  | 25                | 25                | 18 | 18 | 18                | 12                | 18 |
| 500              | 50  | 35                | 25                | 25 | 25 | 18                | 18                | 25 |
| 600              | 80  | 50                | 35                | 25 | 35 | 25                | 18                | 25 |
| 700              | 80  | 50                | 35                | 35 | 35 | 25                | 25                | 25 |
| 800              | 80  | 50                | 50                | 35 | 35 | 35                | 25                | 25 |
| 900              | 140 | 80                | 50                | 35 | 50 | 35                | 35                | 35 |
| 1000             | 140 | 80                | 50                | 50 | 50 | 35                | 35                | 35 |

Beispiel

Vhs = 200 Liter pa = 3,3 bar psv = 10 bar

Gewählt:

Aquapresso ADF 8.10 mit Volldurchströmung p0 = 3 bar Werksseitig eingestellten Vordruck von 4 bar auf 3 bar reduzieren! Technische Daten: Datenblatt Aquapresso

# Aquapresso in Druckerhöhungsanlagen

Aquapresso in Druckerhöhungsanlagen stabilisieren das Trinkwassernetz und mindern die Schalthäufigkeit. Sie können sowohl auf der Vordruck- als auch Nachdruckseite einer Druckerhöhungsanlage eingebaut werden. Die Vordruckseite ist stets mit dem Wasserversorgungsunternehmen abzustimmen.

# Zulassungen

Aquapresso sind für Trinkwasserysteme konzipiert. Da es noch keine einheitlichen Normen gibt, beachten Sie bitte bei der Auswahl die Trinkwasserzulassungen für die einzelnen Länder. Diese sind entscheidend für den Einsatz von flowfresh volldurchströmten oder nicht durchströmten Aquapresso.

# **Aquapresso A...F mit Bypass**

Ist bei durchströmten Aquapresso A...F der max. Volumenstrom  $\mathbf{q}_{\text{max}}$  grösser als der Nenndurchfluss qN, so ist der Aquapresso mit Bypass zu installieren. Der Bypass ist für die

Differenzwassermenge bei einer Strömungsgeschwindigkeit von 2 m/s auszulegen. Siehe Installationsbeispiel oder Montage, Betrieb.

#### **Berechnung**

#### Aquapresso auf der Vordruckseite

Berechnung nach DIN 1988 T5

| q <sub>max</sub>   m³/h | VN   Liter | qN Nenndurchfluss |
|-------------------------|------------|-------------------|
| ≤ 7                     | ≥ 300      | Nach Datenblatt   |
| < 7 ≤ 15                | ≥ 500      |                   |
| > 15                    | ≥ 800      |                   |

| s Schalthäufigkeit 1/h | Pumpenleistung kW |
|------------------------|-------------------|
| 20                     | ≤ 4,0             |
| 15                     | ≤ 7,5             |
| 10                     | > 7,5             |
|                        |                   |

Berechnung VN nach Speichervolumen V zwischen Ein- und Ausschaltdruck

$$VN = q \cdot \frac{(pe + 1) \cdot (pa + 1)}{(p0 + 1) \cdot (pa - pe)}$$

n = Pumpenanzahl

pe = Einschaltdruck

pa = Ausschaltdruck

 $q_{max} = max$ . Volumenstrom Pumpe

# Aquapresso zur Druckstossdämpfung

Die Thematik ist sehr komplex und kompliziert. Wir empfehlen die Berechnung von einem spezialisierten Ingenieurbüro durchführen zu lassen.

#### Aquapresso auf der Nachdruckseite

Berechnung VN nach DIN 1988 T5 zur Begrenzung der Schalthäufigkeit

$$VN = 0.33 \cdot q_{max} \cdot \frac{pa + 1}{(pa - pe) \cdot s \cdot n}$$

# **Aquapresso Druckverluste**





# Installationsbeispiele

#### Aquapresso ADF

mit flowfresh-Volldurchströmung in einer Trinkwassererwärmungsanlage Anpassung an örtliche Verhältnisse erforderlich.



- 1. Hydrowatch
- 2. Bypass eingedrosselt, Handrad entfernen

#### Aquapresso AUF/AU

in Druckerhöhungsanlagen Anpassung an örtliche Verhältnisse erforderlich.



- 1. Bypass offen, Handrad entfernen
- 2. p0 mindestens 0,5 bar unter minimalen Versorgungsdruck
- 3. p0 = 0,9  $\cdot$  Einschaltdruck der Spitzenlastpumpe, mind. 0,5 bar unter Einschaltdruck

### **Aquapresso AUF**

auf der Vordruckseite; Durchströmung von oben nach unten

#### Aquapresso AU

auf der Nachdruckseite; nicht durchströmt

# Zeparo Cyclone

# Automatische Schmutzabscheider mit Cyclone-Technologie

### **Schnellauswahl**

#### Heizung

#### Beispiel:

Heizungssystem mit einer Leitung DN 25 mit 1000 l/h Durchflussmenge. Wenn eine Linie vom Punkt 1000 l/h zur erforderlichen Abmessung DN 20/25 gezogen wird, lässt sich an der Linie rechts der Druckverlust von 2,5 kPa ablesen.



Für eine genaue Berechnung kann die Software HySelect verwendet werden.

#### Kühlung

#### Beispiel:

Kühlsystem mit einer Leitung DN 32 mit 3,5 m³/h Durchflussmenge. Wenn eine Linie vom Punkt 3,5 m³/h zur erforderlichen Abmessung DN 32 gezogen wird, lässt sich an der Linie rechts der Druckverlust von 8 kPa ablesen.



Für eine genaue Berechnung kann die Software HySelect verwendet werden.

# Installationsbeispiele

### Anlage mit Wärmeerzeuger



Anlage mit Wärmetauscher



Der Schmutzabscheider Zeparo Cyclone ist im Rücklauf vor der zu schützenden Einheit bzw. der Energiequelle einzubauen. Es ist kein minimaler Abstand zu Rohrbögen, etc. vor oder nach dem Zeparo Cyclone notwendig.

# Zeparo

# Automatische Entlüfter und Separatoren

#### **Schnellauswahl**

#### Ca. Druckverlust $\Delta p$ - Abscheider

# Zeparo DN 20-40

ZUV, ZUVL, ZUD, ZUDL, ZUM, ZUML, ZUK, ZUKM, ZUR, ZUC, ZUCM



Zeparo DN 20-40 dürfen nur im angegebenen Bereich  $\leq$  qN betrieben werden.

\*) Lateral

DN 20-22 \*

- DN 20-22

——— DN25 \*

---- DN 32

----- DN 40

#### Zeparo ZIO, ZIK, ZEK

DN 50 - DN 125



Zeparo DN 50-300 dürfen nur im angegebenen Bereich betrieben werden: Dauerbetrieb  $\leq$  qN kurzzeitiger Betrieb  $\leq$  qN $_{max}$ 

#### Zeparo ZIO, ZIK, ZEK

DN 150 - DN 300



Zeparo DN 50-300 dürfen nur im angegebenen Bereich betrieben werden: Dauerbetrieb  $\leq$  qN kurzzeitiger Betrieb  $\leq$  qN $_{max}$ 

#### Zeparo ZIO, ZIK, ZEK

DN 350 - DN 600



A Zeparo DN 50 – DN 600 dürfen nur im angegebenen Bereich betrieben werden:

Dauerbetrieb ≤ qN,

kurzzeitiger Betrieb ≤ qN<sub>max</sub>

# **Zeparo Collect**

Geeignet für die hydraulische Entkoppelung von Erzeuger- und Verbraucherkreisen in Kombination mit Betriebsentlüftung und -entschlammung. Installation zwischen Erzeuger- und

Verbraucherkreis. Die integrierte Mikroblasenabscheidung ist nur gewährleistet, wenn die Werte für  $\mathsf{Hst}_{\mathsf{m}}$  nicht überschritten werden (siehe Tabelle).

| ts <sub>max</sub>   °C | 90   | 80   | 70   | 60   | 50  | 40  | 30  | 20  | 10  |
|------------------------|------|------|------|------|-----|-----|-----|-----|-----|
| Hst <sub>m</sub>   mWs | 15,0 | 13,4 | 11,7 | 10,0 | 8,4 | 6,7 | 5,0 | 3,3 | 1,7 |

Zur sicheren Funktion müssen die angegebenen Volumenstromverhältnisse zwischen V1 und V2 einreguliert werden.

# Installationsbeispiele

#### Fall A: Primärvolumenstrom q1 > Sekundärvolumenstrom q2

Anwendung dort wo durch Rücklaufbeimischung an den Verbraucherkreisen der Sekundärvolumenstrom q2 so reduziert wird, dass die Regelfähigkeit der Erzeuger nicht mehr gewährleistet ist. Nicht für Brennwertgeräte geeignet: Fall B.



#### Fall A: q1 > q2

| ZUC   ZUCM | q1   m³/h |
|------------|-----------|
| 20         | ≤ 1,25    |
| 22         | ≤ 1,25    |
| 25         | ≤ 2       |
| 32         | ≤ 3,7     |
| 40         | ≤ 5       |

#### Fall B:

#### Primärvolumenstrom q1 < Sekundärvolumenstrom q2

Anwendung vor allem bei Brennwertgeräten in Kombination mit Fussbodenheizungen. Der Sekundärvolumenstrom q2 der Fussbodenheizung ist grösser als der vom Brennwertkessel bereitgestellte Volumenstrom q1. Wassererwärmer sind kesselseitig vor der Weiche anzuschliessen.



Fall B: q1 < q2

| ZUC   ZUCM | q2   m³/h |
|------------|-----------|
| 20         | ≤ 1,25    |
| 22         | ≤ 1,25    |
| 25         | ≤ 2       |
| 32         | ≤ 3,7     |
| 40         | ≤ 5       |
|            |           |

# Sicherheitstechnik

#### Einrichtungen für geschlossene Heizungsanlagen nach EN 12828 mit TAZ ≤ 110°C

|                                                      | Direkt beheizt<br>mit Öl, Gas,<br>Elektroenergie,<br>feste Brennstoffe | Indirekt beheizt<br>Wärmeübertrager<br>mit Dampf oder<br>Flüssigkeiten | Datenblatt                      |
|------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|
| TI They we constant Appring hereigh > 000/ iiber TAZ | •                                                                      |                                                                        | Zubehör                         |
| TI Thermometer, Anzeigebereich ≥ 20% über TAZ        | •                                                                      | • 1)                                                                   |                                 |
| TAZ Temperaturbegrenzer nach EN 60730-2-9            | •                                                                      | • 1)                                                                   | Zubehör                         |
| TC Temperaturregler                                  | •                                                                      | •                                                                      |                                 |
| LAZ Wassermangelsicherung 2) bei Dachzentralen       | •                                                                      | _                                                                      | Zubehör                         |
| PI Manometer, Anzeigebereich ≥ 50% über PSV          | •                                                                      | •                                                                      | Zubehör                         |
| SV Sicherheitsventil, EN 4126 für Dampfausströmung   | •                                                                      | • 3)                                                                   | Zubehör                         |
| Druckhaltung, z. B. Statico, Compresso, Transfero    | •                                                                      | •                                                                      | Statico   Compresso   Transfero |
| Druckhalte-Überwachungseinrichtung 4), z. B. Pleno   | •                                                                      | •                                                                      | Pleno                           |
| Zusätzliche Forderungen bei Q > 300 kW/Wärmeerzei    | ıger                                                                   |                                                                        |                                 |
| LAZ Wassermangelsicherung 2)                         | •                                                                      | -                                                                      | Zubehör                         |
| ET Entspannungstopf 5)                               | •                                                                      | • 6)                                                                   | Zubehör                         |
| PAZ Druckbegrenzer                                   | •                                                                      | _                                                                      |                                 |
| Zusätzliche Forderungen bei träger Beheizung         |                                                                        |                                                                        |                                 |
| Notkühlung über thermische Ablaufsicherung oder      | •                                                                      | -                                                                      |                                 |
| Sicherheitswärmeverbraucher,                         |                                                                        |                                                                        |                                 |
| z. B. bei Festbrennstoffkesseln                      |                                                                        |                                                                        |                                 |

<sup>1)</sup> Temperaturwächter nach Norm ausreichend, aber nicht empfehlenswert.

### Installationsbeispiele

#### Sicherheitstechnische Ausrüstung nach EN 12828

Anpassung an örtliche Verhältnisse erforderlich.

Direkt beheizte Anlage Q > 300 kW



- 1. Druckhaltung z. B. Statico SU
- 2. Druckhalte Überwachungseinrichtung, Entgasung mit integrierter Nachspeisung, z. B. Vento VP...E
- 3. Anschluss Nachspeisung

<sup>&</sup>lt;sup>2)</sup> Alternativ sind Mindestdruck- oder Strömungsbegrenzer einsetzbar. Bei Dachzentralen über 300 kW nicht zusätzlich, es ist 1 Wassermangelsicherung ausreichend.

<sup>&</sup>lt;sup>3)</sup> Bemessung für Wasserausströmung mit 1 Liter/kWh möglich, falls die Primärtemperatur die Verdampfungstemperatur bei Sicherheitsventilansprechdruck psvnicht überschreitet.

<sup>&</sup>lt;sup>4)</sup> Automatische Nachspeiseeinrichtung (z. B. Pleno), oder Mindestdruckbegrenzer.

<sup>&</sup>lt;sup>5)</sup> Ersatz durch zusätzlichen TAZ und PAZ möglich. EN 12828 macht keine konstruktiven Angaben. Wir empfehlen, nach dem bekannten technischen Stand der Länder zu verfahren, z. B. Schweiz - SWKI 93-1 oder Deutschland - DIN 4751-2.

 $<sup>^{6)}</sup>$  Nur falls Verdampfungsdruck pv bei Primärtemperatur tpr $_{\max}$  grösser als der Sicherheitsventilansprechdruck psv.

# Lexikon

# Allgemeine Begriffe

| BrainCube      | Bezeichnung für die neuen Pneumatex Steuerungen in Compresso, Transfero, Pleno und Vento.               |
|----------------|---------------------------------------------------------------------------------------------------------|
| TecBox         | Bezeichnung für Pneumatex Kompakt-Steuereinheiten, bestehend aus Hydraulikteil und BrainCube-Steuerung. |
| Qualitätsmerk- | airproof, silentrun, dynaflex, oxystop, vacusplit, helistill, leakfree, fillsafe, secuguard, flowfresh  |
| male           |                                                                                                         |

### Geometrie

| D                | Durchmesser                                                                                                                 |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                  | Charakteristischer Durchmesser des Gerätes.                                                                                 |
| Н                | <b>Höhe</b> (H, H1, H2,)                                                                                                    |
|                  | Charakteristische Bauhöhe des Gerätes.                                                                                      |
| h                | Montagemasse (h, h1, h2,)                                                                                                   |
| В                | Breite                                                                                                                      |
|                  | Charakteristische Baubreite des Gerätes.                                                                                    |
| I                | Tiefe                                                                                                                       |
|                  | Charakteristische Bautiefe des Gerätes.                                                                                     |
| L                | Länge                                                                                                                       |
|                  | Charakteristische Baulänge des Gerätes oder der Armatur.                                                                    |
| si               | Dämmstärke                                                                                                                  |
| m                | Gewicht                                                                                                                     |
|                  | des Gerätes im Auslieferungszustand ohne Verpackung.                                                                        |
| S                | Anschluss                                                                                                                   |
|                  | Charakteristische Dimension für den Geräteanschluss.                                                                        |
| S <sub>in</sub>  | Anschluss ein                                                                                                               |
|                  | Charakteristische Dimension für den Geräteanschluss für einströmende Medien.                                                |
| S <sub>out</sub> | Anschluss aus                                                                                                               |
|                  | Charakteristische Dimension für den Geräteanschluss für ausströmende Medien.                                                |
| Sv               | Anschluss Gefäss                                                                                                            |
|                  | Charakteristische Dimension für den Geräteanschluss zum Gefäss.                                                             |
| Swm              | Anschluss Nachspeisung                                                                                                      |
|                  | Charakteristische Dimension für den Nachspeiseanschluss.                                                                    |
| Sw               | Anschluss Entwässerung                                                                                                      |
|                  | Charakteristische Dimension für Entleerungen, Entwässerungen.                                                               |
| R                | Kegliges Aussengewinde, ISO 7-1                                                                                             |
| Rp               | Zylindrisches Innengewinde, ISO 7-1                                                                                         |
| G                | Zylindrisches Innengewinde, Aussengewinde, ISO 228                                                                          |
| DN               | Nennweite                                                                                                                   |
|                  | Nach Druckgeräterichtlinie numerische Grössenangabe für Rohrdimensionen.                                                    |
| VPE              | Verpackungseinheit                                                                                                          |
|                  | Standard-Verpackungsmenge innerhalb eines Kartons oder einer Palette. Bei Artikeln mit Angabe der VPE bitte Bestellmen-     |
|                  | gen unterhalb der VPE mit der Verkaufsniederlassung abstimmen. Artikel innerhalb einer VPE besitzen stets eine funktionelle |
|                  | Einzelverpackung.                                                                                                           |

# Drücke

| Hst               | Statische Höhe                                                                                                                   |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                   | Wassersäule zwischen höchstem Punkt der Anlage und dem Anschlussstutzen des Ausdehnungsgefässes,                                 |
|                   | bei wassergesteuerten Druckhaltesystemen mit Pumpe (Transfero) bezogen auf den Saugstutzen der Pumpe.                            |
| Hst_              | Maximale statische Höhe für den Einsatz von Blasenabscheidern                                                                    |
|                   | Sie ist abhängig von den Temperaturverhältnissen am Einbauort des Abscheiders.                                                   |
| p0                | Mindestdruck                                                                                                                     |
| po                | Unterer Grenzwert für die Druckhaltung. Er wird massgeblich durch die statische Höhe Hst und dem Verdampfungsdruck pv            |
|                   | definiert. Bei Unterschreitung ist die Funktion der Druckhaltung nicht mehr gewährleistet. Bei Grossanlagen und Absicherung-     |
|                   | stemperaturen über 110°C sprechen die                                                                                            |
|                   | Druckbegrenzungseinrichtungen an.                                                                                                |
|                   | Statico, Aquapresso: Einzustellender gasseitiger Vordruck.                                                                       |
|                   | Achtung bei Aquapresso in Trinkwassersystemen! Unterschreitet der Trinkwasserdruck den Vordruck,                                 |
|                   | können Druckschläge entstehen und zu einem erhöhten Blasenverschleiss führen (pa Anfangsdruck).                                  |
|                   | Transfero, Compresso, Vento, Pleno: Der Mindestdruck p0 wird von der BrainCube-Steuerung aus                                     |
|                   | der statischen Höhe Hst und dem Verdampfungsdruck pv (TAZ) berechnet.                                                            |
|                   | Minimaler Zulaufdruck für Geräte                                                                                                 |
| pz <sub>min</sub> |                                                                                                                                  |
|                   | z. B. Umwälzpumpe oder Wärmeerzeuger                                                                                             |
| pv                | Verdampfungsdruck                                                                                                                |
|                   | Nach EN 12828 der Überdruck zur Atmosphäre, um Verdampfung zu vermeiden.                                                         |
| pa                | Anfangsdruck                                                                                                                     |
|                   | Unterwert für eine optimale Druckhaltung. Er muss im Betrieb stets über dem Mindestdruck liegen. Wir empfehlen mind-             |
|                   | estens 0,3 bar. Bei Anlagen mit Mindestdruckbegrenzern muss er so hoch gewählt werden, dass deren Ansprechen bei allen           |
|                   | Betriebszuständen vermieden wird. Bei Pneumatex                                                                                  |
|                   | Geräten mit BrainCube-Steuerung wird der Anfangsdruck von der Steuerung intern berechnet.                                        |
|                   | Statico: Druck bei minimaler Systemtemperatur nach Einbringen der Wasservorlage. Nachspeiseeinrichtungen                         |
|                   | im Sinne einer Druckhalte-Überwachungseinrichtungen nach EN 12828 müssen bei Unterschreitung                                     |
|                   | ansprechen. Ist die Fülltemperatur gleich der tiefsten Systemtemperatur, ist der Anfangsdruck                                    |
|                   | gleich dem Fülldruck, z. B. Heizungsanlagen: tiefste Systemtemperatur ~ Fülltemperatur ~ 10°C.                                   |
|                   | Compresso, Transfero: Druck, bei dem die Pumpe oder der Kompressor einschalten muss.                                             |
|                   | Aquapresso: Druck des Trinkwassernetzes vor dem Aquapresso. Er muss auch bei Fliessbedingungen                                   |
|                   | stets grösser sein als der Vordruck.                                                                                             |
| ре                | Enddruck                                                                                                                         |
|                   | Oberwert für eine optimale Druckhaltung. Er muss mindestens 0,5 bar unter dem Sicherheitsventilansprechdruck                     |
|                   | liegen. Bei Anlagen mit Maximaldruckbegrenzern muss er so gewählt werden,                                                        |
|                   | dass deren Ansprechen bei allen Betriebszuständen vermieden wird.                                                                |
|                   | Statico: Der höchste anzunehmende Druck nach Erreichen der max. Systemtemperatur.                                                |
|                   | Compresso, Transfero: Der Druck, bei dem die Überströmeinrichtung spätestens öffnen muss.                                        |
|                   | Aquapresso: Der höchste anzunehmende Druck nach Aufnahme des zu speichernden Trinkwassers.                                       |
| psv               | Ansprechdruck Sicherheitsventil                                                                                                  |
| •                 | Nach EN ISO 4126-0 der Druck, bei dem das Sicherheitsventil am Wärmeerzeuger zu öffnen beginnt.                                  |
| psv               | Schliessdruckdifferenz                                                                                                           |
| · c               | Differenz zwischen Ansprechdruck und Schliessdruck für Sicherheitsventile, EN ISO 4126-1.                                        |
| psv               | Öffnungsdruckdifferenz                                                                                                           |
| 0                 | Differenz zwischen Ansprechdruck und Öffnungsdruck für Sicherheitsventile, EN ISO 4126-1.                                        |
| PS                | Maximal zulässiger Druck                                                                                                         |
|                   | Nach Druckgeräterichtlinie der höchste Druck, für den das Druckgerät It. Herstellerangabe ausgelegt                              |
|                   | wurde.                                                                                                                           |
| DS                | Maximal zulässiger Druck Schweiz                                                                                                 |
| PS <sub>CH</sub>  | Druck, bis zu dem nach Schweizer Richtlinie SWKI 93-1 das Ausdehnungsgefäss nicht bewilligungspflichtig                          |
|                   | ist (PS · VN ≤ 3000 bar · Liter).                                                                                                |
| DE                |                                                                                                                                  |
| PF                | Druckfaktor                                                                                                                      |
|                   | Verhältnis des erforderlichen Nennvolumens VN zum Wasser-Aufnahmevolumen Ve + Vwr bei Druckausdehnungsgefässen                   |
| pw                | Frischwasserdruck                                                                                                                |
|                   | Fliessdruck des Frischwassernetzes, z.B. Trinkwassernetz, der vor der Nachspeiseeinrichtung zur Verfügung steht.                 |
| dpu               | Arbeitsdruckbereich                                                                                                              |
|                   | Druckbereich für den ein Gerät ausgelegt ist. Er muss auf den Arbeitsdruck der Anlage abgestimmt sein.                           |
|                   |                                                                                                                                  |
| dpqN              | Druckverlust bei Nenndurchfluss  Druckverlust bezogen auf die Nenndurchflussleistung eines Gerätes, z.B. Aquapresso oder Zeparo. |

### Volumina

| е   | Ausdehnungskoeffizient                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------|
|     | Nach EN 12828 der Faktor zur Berechnung des Ausdehnungsvolumens aus dem Wasserinhalt. Hier bezogen auf den Erstar-        |
|     | rungspunkt.                                                                                                               |
| Vs  | Wasserinhalt Anlage gesamt                                                                                                |
|     | Nach EN 12828 der Gesamtwasserinhalt des Heizsystems, der an der Volumenausdehnung beteiligt ist.                         |
| vs  | Spezifischer Wasserinhalt Anlage gesamt                                                                                   |
|     | Gesamtwasserinhalt des Heizsystems, der an der Volumenausdehnung beteiligt ist, bezogen auf die installierte Heizflächen- |
|     | leistung.                                                                                                                 |
| VN  | Nennvolumen                                                                                                               |
|     | Nach Druckgeräterichtlinie das gesamte innere Volumen des Druckraumes des Ausdehnungsgefässes.                            |
| VNd | Wasserinhalt, für den ein Gerät geeignet ist                                                                              |
|     | Charakteristische Leistungskenngrösse, die beschreibt, bis zu welchem Wasserinhalt das Gerät, z.B. Vento, einsetzbar ist. |
| Vg  | Wasserinhalt Kollektorgruppe                                                                                              |
|     | In Solaranlagen nach ENV 12977-1 der Wasserinhalt, der bei Stillstandstemperatur verdampfen                               |
|     | kann, zuzüglich des Wasserinhalts der Verbindungsleitungen zwischen den Kollektoren.                                      |
| Ve  | Ausdehnungsvolumen                                                                                                        |
|     | Nach EN 12828 die Volumenausdehnung des Wasserinhalts der Anlage zwischen der min. und max. Systemtemperatur.             |
| Vwr | Wasservorlage                                                                                                             |
|     | Nach EN 12828 die Wassermenge im Ausdehnungsgefäss zur Bevorratung von systembedingten                                    |
|     | Wasserverlusten.                                                                                                          |

### Temperaturen

| ts <sub>max</sub>        | Maximale Systemtemperatur                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|
| max                      | Maximale Temperatur zur Berechnung der Volumenausdehnung. Bei Heizungsanlagen die Auslegungs-                         |
|                          | Vorlauftemperatur, mit der eine Heizungsanlage bei der tiefsten anzunehmenden Aussentemperatur                        |
|                          | (Norm-Aussentemperatur nach EN 12828) betrieben werden muss. Bei Kühlsystemen                                         |
|                          | betriebs- oder stillstandsbedingte maximale Temperatur, bei Solarsystemen die Temperatur, bis zu der Verdampfung ver- |
|                          | mieden werden soll.                                                                                                   |
| ts <sub>min</sub>        | Minimale Systemtemperatur                                                                                             |
|                          | Temperatur zur Berechnung der Volumenausdehnung. Sie entspricht dem Erstarrungspunkt.                                 |
|                          | Die minimale Systemtemperatur wird in Abhängigkeit des prozentualen Anteils des Frostschutzmittels                    |
|                          | am Wasserinhalt ermittelt. Bei Wasser ohne Frostschutzmittel ist tsmin = 0.                                           |
| pr                       | Primärvorlauftemperatur                                                                                               |
| рі                       | Maximal anzunehmende Vorlauftemperatur auf der Primärseite von Wärmeübertragern bei indirekter                        |
|                          | Beheizung.                                                                                                            |
| t <sub>r</sub>           | Rücklauftemperatur                                                                                                    |
|                          | Rücklauftemperatur der Heizungsanlage bei der tiefsten anzunehmenden Aussentemperatur                                 |
|                          | (Norm-Aussentemperatur nach EN 12828).                                                                                |
| TV                       | Maximale Vorlauftemperatur                                                                                            |
|                          | Maximale Vorlauftemperatur, für die ein Gerät entsprechend der normativen, sicherheitstechnischen                     |
|                          | Anforderungen ausgerüstet ist. TV darf höher sein als TS, wenn das Gerät an einem Ort mit t ≤ TS                      |
|                          | eingebaut ist, z.B. im Anlagenrücklauf.                                                                               |
| TAZ                      | Sicherheitstemperaturbegrenzer , Sicherheitstemperaturwächter , Absicherungstemperatur                                |
|                          | Sicherheitseinrichtung nach EN 12828 zur Temperaturabsicherung von Wärmeerzeugern. Bei Überschreitung                 |
|                          | der eingestellten Absicherungstemperatur schaltet die Beheizung ab. Bei Begrenzern erfolgt                            |
|                          | eine Verriegelung, bei Wächtern wird die Wärmezufuhr bei Unterschreiten der eingestellten                             |
|                          | Temperatur selbsttätig wieder frei gegeben. Einstellwert für Anlagen nach EN 12828 ≤ 110°C.                           |
| TS                       | Maximal zulässige Temperatur                                                                                          |
|                          | Nach Druckgeräterichtlinie die höchste Temperatur, für die das Druckgerät oder die Armatur laut                       |
|                          | Herstellerangabe ausgelegt wurde.                                                                                     |
| TS <sub>min</sub>        | Minimal zulässige Temperatur                                                                                          |
|                          | Nach Druckgeräterichtlinie die tiefste Temperatur, für die das Druckgerät laut Herstellerangabe                       |
|                          | ausgelegt wurde.                                                                                                      |
| TWM                      | Maximal zulässige Temperatur der Nachspeisung                                                                         |
|                          | Die höchste Temperatur, für die eine Nachspeisung innerhalb eines Druckhalte- oder Entgasungssystems                  |
|                          | ausgelegt ist. Sie wird nur angegeben falls TWM < TS.                                                                 |
| ТВ                       | Maximal zulässige Blasentemperatur                                                                                    |
|                          | Höchste zulässige Dauertemperatur für die Butylblase.                                                                 |
| <b>TB</b> <sub>min</sub> | Minimal zulässige Blasentemperatur                                                                                    |
|                          | Tiefste zulässige Dauertemperatur für die Butylblase.                                                                 |
| TA                       | Maximal zulässige Umgebungstemperatur                                                                                 |
|                          | Maximale Umgebungstemperatur für die Aufstellung eines Gerätes.                                                       |

# Leistungen

| Q                 | Wärmeleistung                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|
|                   | Wärmeleistung zur Grössenbestimmung der Geräte. Bei Wärmeerzeugern zur Berechnung der Ausdehnungsgeschwindigkeit        |
| QNsv              | Wärmeleistung                                                                                                           |
|                   | Abblaseleistung eines Sicherheitsventiles bei Dampfausströmung entsprechend Bauteilprüfung, bezogen auf die Wärmeleis-  |
|                   | tung eines Wärmeerzeugers.                                                                                              |
| QNsv <sub>W</sub> | Wärmeleistung                                                                                                           |
|                   | Abblaseleistung eines Sicherheitsventiles bei Wasserausströmung entsprechend Bauteilprüfung, bezogen auf die Wärmeleis- |
|                   | tung eines Wärmeerzeugers, 1 kW = 1 l/h.                                                                                |
| qN                | Förderleistung, Nenndurchfluss                                                                                          |
|                   | Nenndurchflussleistung eines Gerätes, z. B. Aquapresso, Zeparo oder Nennförderleistung eines kompressors bzw. einer     |
|                   | Pumpe.                                                                                                                  |
| qN <sub>max</sub> | Maximaler Durchfluss                                                                                                    |
| - IIIdA           | Maximale Durchflussleistung eines Gerätes, z. B. Zeparo.                                                                |
| Kvs               | Durchflusskennwert                                                                                                      |
|                   | Durchflussleistung eines Gerätes bei einem Differenzdruck von 1 bar.                                                    |
| qNwm              | Nachspeiseleistung                                                                                                      |
| U                 | Elektrische Spannung                                                                                                    |
|                   | Nennspannung für ein Elektrogerät.                                                                                      |
| I                 | Elektrischer Strom                                                                                                      |
|                   | Zulässige Strombelastung für ein Gerät.                                                                                 |
| Pel               | Elektrische Anschlussleistung                                                                                           |
|                   | Schallldruckpegel dB(A) - bewertet.                                                                                     |
| SPL               | Schalldruckpegel                                                                                                        |
|                   | Schallldruckpegel dB(A) - bewertet.                                                                                     |
| IP                | Code für Schutzarten und Berührungsschutz                                                                               |
|                   | nach EN 60529                                                                                                           |

# **Weitere Informationen**

Anlagenplanung: Berechnungsprogramm HySelect

