Natural Language Processing and Large Language Models

Corso di Laurea Magistrale in Ingegneria Informatica

Lesson 10

Transformers II

Nicola Capuano and Antonio Greco

DIEM – University of Salerno

Outline

- Multi-Head Attention
- Encoder Output
- Decoder
- Masked Multi-Head Attention
- Encoder-Decoder Attention
- Output
- Transformer's pipeline

- By using different self attention heads it is possible to encode different meanings of the context:
 - Several scaled-dot product attention computations are performed in parallel (using different weight matrices)
 - The results are concatenated row-byrow forming a larger matrix (with the same number of rows m)
 - This matrix is finally multiplied by a final weight matrix
 - This scheme is called multi-head attention

one head two heads

• The outputs of the heads are concatenated and then are multiplied by an additional weight matrix to combine several representations at the same network level.

Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions. With a single attention head, averaging inhibits this possibility.

Multi Head Attention : Z

$$d_h = \frac{d_{model}}{h}$$

$$R^{T \times d_{model}}$$

Add (skip connections) & Norm

Add & Norm

Input

Normalization(Z)

- Mean 0, Std dev 1
- Stabilizes training
- Regularization effect

Norm(Z)

Add -> Residuals

- Avoid vanishing gradients
- Train deeper networks

Feed Forward

Feed Forward

Add & Norm

Feed Forward

- Non Linearity
- Complex Relationships
- Learn from each other

Feed Forward

Input Norm(Z)

Transformer's Encoder

Transformer's Encoder

- Used for computing a representation of the input sequence
- Uses an additive positional encoding to deal with the order-agnostic nature of the self-attention
- Uses residual connection to foster the gradients flow
- Adopts normalization layers to stabilize the network training
- Position-Wise Feed-Forward layer to add non-linearity
 - Applied to each sequence element independently

Transformer's Encoder

- Since each encoder produces an output whose dimensionality is the same of the input, it is possible to stack an arbitrary number of encoder's blocks.
- The output of the first block is fed to the second block (no word embeddings) and so on.

• The **Decoder** uses the information contained in the intermediate representation z_1, \ldots, z_t to generate the output sequence y_1, \ldots, y_m

• The Decoder works sequentially; at each step the decoder uses $z_1, ..., z_t$ and $y_1, ..., y_{i-1}$ to generate y_i

- The decoder is made of a sequence of decoder blocks having the same structure
 - The original paper used 6 decoder blocks
- The decoder blocks, in addition to the same modules used in the encoder block, add an attention module where the keys and values are taken from the encoder's intermediate representation z_1, \ldots, z_t
 - Also, the self-attention module is slightly modified so as to ensure that the query at position i only uses the values at positions 1,...,i

Output to next block

Output to next block

- On top of the last decoder block, the decoder adds an additional linear layer and a softmax activation function, for computing the probability of the next output element y_i
- Thus, the last layers has a number of neurons corresponding to the cardinality of the output set

Output embedding

Outputs at time T should only pay attention to outputs

until time T-1

Mask the available attention values?

Masked Multi Head Attention: Z'

Masked Multi Head Attention: Z'

Encoder **Self** Attention

- Queries from Encoder Inputs
- 2. Keys from Encoder Inputs
- 3. Values from Encoder Inputs

<u>Decoder Masked Self Attention</u>

- Queries from Decoder Inputs
- Keys from Decoder Inputs
- 3. Values from Decoder Inputs

Encoder Decoder Attention?

Encoder

Decoder

Keys from **Encoder Outputs**Values from **Encoder Outputs**

Queries from **Decoder Inputs**

NOTE: Every decoder block receives the same FINAL encoder output

Output

Linear

Softmax

https://poloclub.github.io/transformer-explainer/

Natural Language Processing and Large Language Models

Corso di Laurea Magistrale in Ingegneria Informatica

Lesson 10

Transformers II

Nicola Capuano and Antonio Greco

DIEM – University of Salerno

