

Introduction to Pattern Recognition Homework 4 announcement

TA: 楊証琨, Jimmy

Ph.D. student at National Taiwan Universitiy

d08922002@ntu.edu.tw

Homework 4

- Deadline: June. 12, Fri at 23:59.
 - 1. Code assignment (80%): Implement cross-validation and hyperparameter searching for SVM model training
 - 2. Short answer questions (20%)
- Submit your 1) code (.py/.ipynb) and 2) reports (.pdf) on <u>E3</u>
 - Sample Code
 - HW4 questions
- Please follow the file naming rules <STUDENT ID>_HW4.pdf, otherwise, you will get penalty of your scores

Coding

- Write beautiful Python codes with <u>PEP8 guidelines</u> for readability. Basic requirement: use whitespace correctly!
- PEP8 online checker

```
# Recommended
def function(default_parameter=5):
    # ...

# Not recommended
def function(default_parameter = 5):
    # ...
```


Reports

- Submit in PDF format
- Include the answers of coding part in the reports!
- Please see the sample submission file on E3

NCTU Pattern Recognition, Homework 1 Example

Part. 1, Coding (60%):

Q1: Your answer...

Q2: Your answer....

Q3: Your answer....

Q4: Your answer....

Q5: Your answer....

Part. 2, Questions (40%):

Q1: Your answer...

Q2: Your answer...

Support vector machines

 Support Vectors Classifier tries to find the best hyperplane to separate the different classes by maximizing the distance between sample points and the hyperplane

No need to implment SVM!

 Since SVM requires lots of difficult mathematical operations, we will not ask you to implement SVM in homework 4:)

Grid search and cross-validation

 There are lots of hyperparameters in SVM. In this homework, you will need to implement grid search and cross-validation to find the best hyperparameters of the SVM on the provided

dataset

Hyperparameter searching

- Suppose we want to find the best values of two hyperparameters for an RBF kernel SVM namely C and gamma. In RBF kernel, $\gamma = \frac{1}{2\sigma^2}$
 - Interactive demo
 - Explanation of C and gamma
- Given many hyperparameter combinations to be considered!

Hyperparameter searching: Grid search

- Grid search exhaustively considers all hyperparameter combinations and picks the best one based on the model that gives the best performance
- For the searching space of C and gamma,
 we recommend using geometric sequence

C = [0.1, 1, 10] #3 values gamma = [0.01, 0.1, 1, 10] #4 values # There are totally 12 combinations for tuning

C\gamma	0.01	0.1	1	10
0.1	[0.1, 0.01]	[0.1, 0.1]	[0.1, 1]	[0.1, 10]
1	[1, 0.01]	[1, 0.1]	[1, 1]	[1, 10]
10	[10, 0.01]	[10, 0.1]	[10, 1]	[10, 10]

Grid Search

Pseudocode
Hyperparameter_One = [a, b, c]
Hyperparameter Two = [x, y, z]

K-fold Cross-validation

- The main idea behind cross-validation is that each observation in our dataset has the opportunity of being tested
- Illustration of K-fold cross-validation when n=12 observations and K=3. After data is shuffled, a total of 3 models will be trained and tested.

K-fold Cross-validation

 We split the dataset into K parts: one part is used for validation, and the remaining K-1 parts are merged into a training subset. This process repeats K times, with each part used exactly once as the validation data

K-fold Cross-validation for hyperparameter searching

- We can experiment with 12 combinations of hyperparameters defined in page 9. For each combination, we apply the K-fold cross-validation and get the average performance
- Find the best combination which yield best performance

Combination 1: [0.1, 0.01] avgerage score=0.8

Combination 2: [0.1, 0.1] avgerage score=0.91

Combination **12**:[10, 10] avgerage score=0.75

K-fold Cross-validation for hyperparameter searching

 Then you train your model on the whole training set with the best hyperparameters and evaluate on the test set

Reference

- K-fold Cross-Validation & Grid Search
- SVM hyperparameter tuning

Late Policy

- We will deduct a late penalty of 20 points per additional late day
- For example, If you get 90 points of this HW but delay for two days, your will get only 90- (20 x 2) = 50 points!

Honor code

- We have found that some students develop their codes based on those by other classmates or on Internet in HW1
 - > It is NOT allowed

You should implement all algorithms by yourself

 If there is any plagiarism in your homework, you will get no points

Notice

- Submit your homework on <u>E3-system</u>!
- Check your email regularly, we will mail you if there are any updates or problems of the homework
- If you have any questions or comments for the homework, please mail Jimmy and Chung-Hsuan and cc Prof. Lin
 - > Prof. Lin: lin@cs.nctu.edu.tw
 - > TA, Jimmy: <u>d08922002@ntu.edu.tw</u>
 - > TA, Chung-Hsuan: scott19880525@gmail.com

Have fun!

Hewal Hewat

