TD Chapitre 1 : EDO - EDL :

Exercices supplémentaires

EDO à variables séparables :

Résoudre sur un intervalle I dans \mathbb{R} à définir :

1)
$$x^2y' = e^{-y}$$
 2) $y' = y^2$ 3) $y' = y^3$

2)
$$y' = y^2$$

3)
$$y' = y^3$$

EDL 1:

Résoudre sur un intervalle I dans $\mathbb R$ à définir :

1)
$$y' + 2y = 0$$

2)
$$y' + x \cdot y = 0$$

1)
$$y' + 2y = 0$$
 2) $y' + x \cdot y = 0$ 3) $y' + x \cdot y = e^{-x^2/2}$

4)
$$y'(x^2 + 1) - y + 1 = 0$$

4)
$$y'(x^2 + 1) - y + 1 = 0$$
 5) $x \cdot y' = y + x^3 + 3x^2 - 2x$ 6) $y' - y \cdot tan(x) = e^x$

6)
$$y' - y \cdot tan(x) = e^x$$

EDL 2:

Résoudre sur un intervalle I dans \mathbb{R} à définir :

1)
$$y'' + y = 0$$

1)
$$y'' + y = 0$$
 2) $y'' - 4y' + 4y = 4x^2 - 4x + 2 + e^{2x}$ 3) $y'' - y' = 0$

3)
$$y'' - y' = 0$$

4)
$$y'' - y' = \sin^2(x)$$

5)
$$y'' + 3y' = x + 4$$

4)
$$y'' - y' = \sin^2(x)$$
 5) $y'' + 3y' = x + 4$ 6) $y'' + 3y' = (-12x + 1) e^{-3x}$

$$7) \quad y'' + y = tan(x)$$

8)
$$(1+x^2)^2 \cdot y'' + 2x(1+x^2)y' + y = 0$$

8) $(1+x^2)^2 \cdot y'' + 2x(1+x^2)y' + y = 0$ via le changement de variable $t = \arctan(x)$.

9)
$$(1 + e^x)y'' + (2e^x + 1)y' + e^xy = 0$$

9) $(1 + e^x)y'' + (2e^x + 1)y' + e^xy = 0$ via le changement de fonction inconnue z = y' + y.