Answer Key: Assess of Treeformers.pdf

Final Calibrated Assessment Package
Student Version

Instructions for Students:

Welcome to your Treeformer assessment. This test is designed to evaluate your understanding of the key concepts presented. Please read each question carefully and choose the best answer.

- **Time Limit:** 1 hour
- **Total Points:** 50
- **Passing Score:** 35 points (70%)

Pre-assessment Preparation Tips:

- Review the main concepts and architecture of Treeformer.
- Focus on understanding hierarchical structures and their roles in Treeformer's functions.
- Practice analyzing and creating examples based on Treeformer's structure.

Multiple Choice Questions (1 point each, total 5 points)

- 1. **What is the primary inductive bias incorporated into the Treeformer architecture?**
- A) Sequential processing
- B) Hierarchical structure
- C) Randomized encoding
- D) Linear transformation
- 2. **Which algorithm inspired the Treeformer architecture for constructing hierarchical phrase encodings?**
- A) Backpropagation
- B) CKY algorithm
- C) Genetic algorithm
- D) Markov Chain Monte Carlo
- 3. **How does the Treeformer improve translation tasks according to the paper?**
- A) By increasing vocabulary size
- B) By enhancing random models
- C) By better understanding predicate-argument structures
- D) By decreasing model parameters
- 4. **Which specific downstream tasks showed improvement with Treeformer compared to a vanilla Transformer?**
- A) Image classification and regression

- B) Machine translation and abstractive summarization
- C) Graph traversal and sorting algorithms
- D) Text-to-speech conversion and speech recognition
- 5. **What does the term 'compositional generalization' refer to in the context of Treeformer?**
- A) The ability to generalize to specific instances learned during training
- B) The ability to generalize to novel compositions of known components
- C) The ability to generalize across different languages
- D) The ability to ignore hierarchical structures

Short Answer Questions (5 points each, total 15 points)

- 6. **Explain why Treeformer was specifically developed for general-purpose supervised learning rather than unsupervised parsing.**
- 7. **Discuss the significance of non-commutative composition functions in Treeformer's architecture.**
- 8. **How does the pooling function in Treeformer utilize the attention mechanism to improve representation of a phrase?**

Long Answer Questions (10 points each, total 30 points)

- 9. **Evaluate the impact of the maximum tree height limitation within the Treeformer on its operational efficiency and performance.**
- 10. **Create an argument for the inclusion of Treeformer's hierarchical approach in other types of neural network architectures not mentioned in the article.**

Instructor Version

Answer Key and Rubrics

Multiple Choice Questions:

- 1. **Correct Answer:** B
- **Explanation:** Treeformer architecture focuses on hierarchical structures, unlike sequential processing models.
- 2. **Correct Answer:** B
- **Explanation:** The CKY algorithm's parsing logic aligns with Treeformer's hierarchical encoding.
- 3. **Correct Answer:** C
- **Explanation:** Treeformer's ability to understand predicate-argument structures enhances translation tasks.
- 4. **Correct Answer:** B
- **Explanation:** These tasks benefit from Treeformer's understanding of language structure.

- 5. **Correct Answer:** B
- **Explanation:** Compositional generalization refers to applying known components in novel ways.

Short Answer Questions:

- 6. **Model Answer:** Treeformer was designed for supervised learning to utilize labeled datasets for learning structured hierarchical representations efficiently, guiding predictions with explicit data examples.
- **Rubric**
- 3 points for complete explanation and rationale.
- 7. **Model Answer:** Non-commutative composition functions in Treeformer maintain the order and significance of elements in hierarchical structures, enhancing nuanced representation.
- **Rubric**
- 3 points for in-depth discussion of its impact on representation quality.
- 8. **Model Answer:** Utilizing attention, Treeformer's pooling function focuses on semantically significant parts of a phrase, refining context sensitivity.
- **Rubric**
- 3 points for clear explanation of attention mechanisms improving phrase representation.

Essay/Long Answer Questions:

- **Question 9 Rubric:**
- Thesis Statement: 3 points
- Efficiency Analysis: 4 points
- Performance Evaluation: 3 points
- Conclusion: 2 pointsOrganization: 3 points
- **Question 10 Rubric:**
- Argument Quality: 4 points
- Examples and Applications: 4 points
- Impact Analysis: 4 points
- Conclusion: 3 points

Enhancements for Learning:

- **Self-check Before Submission:** Review your answers to ensure clarity and depth.
- **Post-assessment Reflection Prompts:** Reflect on areas of strength and growth needed with respect to understanding hierarchical architectures.
- **Follow-up Learning Activities:** Delve into practical applications of Treeformer's architecture on new language processing tasks, or explore integration into other neural network models like CNNs or GANs for a broader learning experience.

Metadata and Scoring:

- **Total Points Possible:** 50

- **Recommended Time Limit:** 1 hour
- **Passing Score Suggestion:** 35 points **Alignment with Learning Objectives:** Understanding Treeformer's architecture, its applications, and comparing its strengths with other models.

This complete package ensures intermediate level learners are challenged appropriately and provided a structured path from basic understanding to critical application and innovation.