

Этикетка

КСНЛ.431319.003 ЭТ

Микросхема 1564АП4У2ЭП

Микросхема интегральная 1564АП4У2ЭП

Функциональное назначение: Два 4 – х канальных формирователя с 3 – мя состояниями на выходе с прямым и инверсным управлением. Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно

Таблица назначения выводов

№	Обозначение	Назначение вывода	No	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	EZA	Вход управления	-	NC	Не подключен
2	A0	Вход	-	NC	Не подключен
3	QB3	Выход	11	В0	Вход
4	A1	Вход	12	QA3	Выход
5	QB2	Выход	13	B1	Вход
6	A2	Вход	14	QA2	Выход
7	QB1	Выход	15	B2	Вход
8	A3	Вход	16	QA1	Выход
9	QB0	Выход	17	В3	Вход
10	0V	Общий	18	QA0	Выход
-	NC	Не подключен	19	ENB	Вход управления
-	NC	Не подключен	20	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B} I_{O}=20 \text{ MKA}$	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 mkA		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 мкА		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 7,8 MA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
U_{CC} =2,0 B, U_{IH} =1,5 B, I_{O} = 20 мкА	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} = 20 мкА		4,4	-
U_{CC} =6,0 B, U_{IH} =4,2 B, I_{O} = 20 mkA		5,9	-
при:			
U_{CC} =4,5 B, U_{IH} =3,15 B, I_{O} = 6,0 mA		3,98	-
$U_{CC}=6.0 \text{ B}, U_{IH}=4.2 \text{ B}, I_{O}=7.8 \text{ mA}$		5,48	-

3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	${ m I}_{ m IL}$	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	${ m I}_{ m IH}$	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	4,0
6. Выходной ток низкого и высокого уровня в состоянии «Выключено»,			
мкА, при:	I_{OZL}		
U _{CC} =6,0 B, U _{IL} =1,2 B, U _{IH} =4,2 B	I_{OZH}	-	0,5
7. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, f} = 10 \text{ M} \Gamma \text{ц}$	I_{OCC}	-	
$U_{EZA} = U_{IH} = U_{CC}; U_{ENB} = U_{IL} = 0$			1,0
$U_{EZA} = U_{IL} = 0; U_{ENB} = U_{IH} = U_{CC}$			20,0
8. Время задержки распространения при включении и выключении нс,			
от входов A0A3, B0B3 к выходам QA0QA3, QB0QB3, нс, при:	$t_{\mathrm{PHL},}t_{\mathrm{PLH}}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	115
U_{CC} = 4,5 B, C_L = 50 пФ		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	20
при:	$t_{PHL,}$ t_{PLH}		
$U_{CC} = 2.0 \text{ B}, C_L = 150 \text{ m}\Phi$		-	165
$U_{CC} = 4,5 B, C_L = 150 п\Phi$		-	33
$U_{CC} = 6.0 \text{ B}, C_L = 150 \text{ m}\Phi$		-	28
9. Время задержки распространения при переходе из третьего состояния в			
состояние низкого и высокого уровня, нс, при:	$t_{PZL,} t_{PZH}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi, R_L = 1 \text{кOm}$		-	150
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ пФ}, R_L = 1 \text{ кОм}$		-	30
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ пФ}, R_L = 1 \text{ кОм}$		-	26
$U_{CC} = 2.0 \text{ B}, C_L = 150 \text{ n}\Phi, R_L = 1 \text{ kOm}$		-	200
$U_{CC} = 4.5 \text{ B}, C_L = 150 \text{ m}\Phi, R_L = 1 \text{ kOm}$		-	40
$U_{CC} = 6.0 \text{ B}, C_L = 150 \pi\Phi, R_L = 1 \kappa\text{Om}$		-	34
10. Время задержки распространения при переходе из состояния низкого и	$t_{PLZ,} t_{PHZ}$		
высокого уровня в третье состояние, нс, при:			150
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi, R_L = 1 \text{ kOm}$		-	150
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOm}$		-	30
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ пФ}, R_L = 1 \text{ кOm}$		-	26
11 Durana and and H 0 D	C		10
11. Входная емкость, п Φ , при: $U_{CC} = 0$ В	C_{I}	-	10
12 Выходнов омероть в состоянии «Выжновоно», пф. при	C_{OZ}		20
12. Выходная емкость в состоянии «Выключено», пФ, при:	Coz	-	20
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$			

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-17ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564АП4У2ЭП соответствуют техническим условиям АЕЯР.431200.424-17ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	
Приняты по от от (дата)	-
Место для штампа ОТК	Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): 2-10; 18-10; 4-16; 20-10.