دورة سنة 2009 العادية	امتحانات الشهادة الثانوية العامة الفرع: علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل : ست
الرقم:	المدة أربع ساعات	

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Écrire le numéro de chaque question et donner, *en justifiant*, la réponse qui lui correspond.

No	Overtions		Répoi	nses	
IN	Questions	a	b	С	d
1	t et m sont deux réels; $(d):\begin{cases} x = -5t \\ y = t - 1 \end{cases} \text{ et } (d'):\begin{cases} x = 10m \\ y = 8m \\ z = -7m + 8 \end{cases}$ Les droites (d) et (d') sont:	confondues	concourantes	parallèles	non coplanaires
2	La solution de l'équation différentielle : $Y'' + 4Y' + 4Y = 0$ vérifiant $Y'(0) = Y(0) = 1$ est :	$(2x+1)e^{2x}$	$(-3x+1)e^{-2x}$	$(3x+1)e^{-2x}$	$(-x+1)e^{2x}$
3	Une solution de l'équation $\cos (\arcsin \frac{1}{x}) = \frac{\sqrt{3}}{2}$ est :	$\frac{-2}{\sqrt{3}}$	1	2	– 1
4	$h(x) = \frac{1}{\sqrt{1 - x^2}} \text{ avec } -1 < x < 1.$ Une primitive H de h est :	arccos (x −1)	arcsin (1 – x)	arcsin(1-x ²)	$\arctan \frac{x}{\sqrt{1-x^2}}$
5	La partie imaginaire de z tel que : $\left \frac{z-2i}{z+i} \right = 1$ est :	$\frac{1}{2}$	$-\frac{3}{2}$	0	-2

II- (2 points)

L'espace est rapporté à un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

On considère les points A(4; 3; 2), B(-8; -1; 6) et le plan (P) d'équation x - y - z + 4 = 0.

- 1) a- Déterminer un système d'équations paramétriques de la droite (AB).
 - b-Déterminer les coordonnées du point d'intersection I de (AB) avec (P).
 - c- Montrer que A et B sont situés de part et d'autre du plan (P).
- 2) Soit (d) l'ensemble des points de (P) qui sont équidistants de A et B.
 - a-Trouver une équation du plan médiateur (Q) de [AB].
 - b- Montrer que (d) est la droite définie par le système d'équations paramétriques :

$$x=m-\frac{3}{2}$$
 ; $y=-m-1$; $z=2m+\frac{7}{2}$. (m est un réel)

3) Soit J le projeté orthogonal de A sur (d).

Calculer les coordonnées de J et montrer que (d) est perpendiculaire au plan (ABJ).

III- (3 points)

Une équipe de football propose, à ses supporters, des abonnements saisonniers pour 6, 8 ou 10 matchs.

Parmi les supporters qui ont pris un abonnement, on constate que :

- 45 % ont choisi l'abonnement pour 6 matchs,
- 35 % ont choisi l'abonnement pour 8 matchs,
- le reste a choisi l'abonnement pour 10 matchs.

On interroge au hasard un supporter ayant pris un abonnement.

1) L'abonnement pour 6 matchs coûte n LL, celui pour 8 matchs coûte (n + 4 000) LL, et celui pour 10 matchs coûte (n + 6 000) LL.

On désigne par Y la variable aléatoire égale à la somme dépensée par le supporter interrogé.

- a- Calculer n pour que l'espérance mathématique de Y soit égale à 22 600.
- b-Pour la valeur trouvée de n, représenter graphiquement la fonction de répartition de Y.
- 2) On sait que 85% des supporters qui ont pris un abonnement sont des garçons, et parmi ces garçons 40 % ont choisi l'abonnement pour 6 matchs.

On considère les évènements suivants :

G : « Le supporter interrogé est un garçon».

A : « Le supporter interrogé a choisi l'abonnement pour 6 matchs».

a- Vérifier que la probabilité $P(G \cap A)$ est égale à 0,34 puis calculer la probabilité $P(G \cap \overline{A})$.

b- Calculer P(G/A).

IV- (3 points)

Dans le plan complexe rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$, on associe à tout point M d'affixe z, le point M' d'affixe z' tel que $z'=f(z)=z^2-(4+5i)z+7i-1$.

- 1) a- Calculer les racines carrées du nombre complexe -5+12i. b- Résoudre l'équation f(z)=0.
- 2) On pose z = x + iy et z' = x' + iy'. Montrer que $x' = x^2 - y^2 - 4x + 5y - 1$ et y' = 2xy - 5x - 4y + 7.
- 3) Montrer que lorsque M varie sur la droite d'équation y = x, M' varie sur une parabole (P) dont on déterminera le paramètre, le foyer et la directrice.
- 4) a- Montrer que lorsque M' varie sur l'axe des ordonnées, le point M varie sur une hyperbole (H) dont on déterminera une équation, les asymptotes et les sommets. Tracer (H).
 b- Soit L(1;1) un point de (H). Ecrire une équation de la tangente en L à (H).

V- (3 points)

ABCD est un carré de côté 2 et de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}(2\pi)$. E et F sont les milieux respectifs de [AB] et [BC] et G est le milieu de [BF].

Soit S la similitude plane directe qui transforme A en B et D en E.

- 1) Calculer un angle et le rapport de S.
- 2) Vérifier que S(B) = F et déterminer S(E).
- 3) Soit h = SoS.
 - a- Montrer que h est une homothétie dont on précisera le rapport.
 - b-Démontrer que le centre I de S est le point d'intersection de (AF) et (DG).
 - c- Déterminer l'image par S du carré ABCD et en déduire la nature du triangle OIC.
- 4) Soit (A_n) la suite des points définie par : $A_0 = A$ et $A_{n+1} = S(A_n)$ pour tout entier naturel n.
 - a- On pose L_n = A_nA_{n+1} pour tout n. Prouver que (L_n) est une suite géométrique dont on déterminera le premier terme et la raison.

Calculer
$$S_n = L_0 + L_1 + \dots + L_n$$
 et $\lim_{n \to +\infty} S_n$.

b-Calculer $(\overrightarrow{IA}, \overrightarrow{IA_n})$ en fonction de n et démontrer que si n est pair, alors les points I, A et A_n sont alignés.

3

VI- (7 points)

On considère la fonction h définie sur IR par : $h(x) = e^{2x} + 2e^x - 2$.

A –

- 1) a- Résoudre l'équation h(x) = 0.
 - b- Calculer $\lim_{x\to +\infty} h(x)$ et $\lim_{x\to -\infty} h(x)$.
- 2) a- Dresser le tableau de variations de h.
 - b- Tracer la courbe représentative (H) de h dans un repère orthonormé.
 - c- Calculer l'aire du domaine limité par la courbe (H), l'axe des abscisses et les deux droites d'équations x=0 et x=1.

B –

Soit g la fonction définie sur IR par $g(x) = \frac{e^{2x} + 2}{e^x + 1}$ et f la fonction donnée par $f(x) = \ln(g(x))$.

On désigne par (C) la courbe représentative de f dans le plan rapporté à un nouveau repère orthonormé $(O; \vec{i}, \vec{j})$. (unité graphique : 2 cm)

- 1) a-Montrer que f est définie pour tout réel x.
 - b- Calculer $\lim_{x\to -\infty} f(x)$ et en déduire une asymptote (d) à (C).
- 2) a- Montrer que $f(x) = x + \ln\left(\frac{1 + 2e^{-2x}}{1 + e^{-x}}\right)$.
 - b- Calculer $\lim_{x \to +\infty} f(x)$ et démontrer que la droite (d') d'équation y = x est asymptote à (C).
 - c- Etudier suivant les valeurs de x la position relative de (C) et (d').
- 3) a- Montrer que $g'(x) = \frac{e^x (h(x))}{(e^x + 1)^2}$.
 - b- Montrer que f '(x) et h(x) ont même signe et dresser le tableau de variations de f.
 - c-Trouver l'abscisse du point de la courbe (C) où la tangente à (C) est parallèle à (d').
- 4) Tracer (d), (d') et (C).

\mathbf{C} –

On désigne par f $^{-1}$ la fonction réciproque de f sur l'intervalle [0 ; $+\infty$ [;

- (C') est la courbe représentative de \hat{f}^{-1} .
- 1) Tracer (C') dans le repère $(O; \vec{i}, \vec{j})$.
- 2) Ecrire une équation de la tangente à (C') au point d'abscisse ln2.

دورة سنة 2009 العادية	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
	مسابقة في مادة الرياضيات	مشروع معيار التصحيح

\mathbf{Q}_1	Corrigé		Note
1	(d) et (d') ne sont ni parallèles ni confondues Le système $-5t = 10m$; $t - 1 = 8m$ et $t + 1 = -7n + 8$ n'a pas de solution		1
	à savoir : $-5t = 10m$ et $t = 8m + 1$ donne $t = 1/5$ et $m = -1/10$ avec $t + 1 = 6/5$ et $-7m + 8 = 87/10$.	d	1
2	L'équation caractéristique est $(r + 2)^2 = 0$; $Y = (ax + b)e^{-2x}$ On a $Y(0) = Y'(0) = 1$ D'où $a = 3$ et $b = 1$.	c	0.5
3	$cos(arcsin \frac{1}{x}) = \frac{+\sqrt{3}}{2}$ est vérifiée uniquement pour x = 2.	c	1
4	Les dérivées des trois premières fonctions sont respectivement différentes de h(x).	d	1
5	$z_A = 2i$ et $z_B = -i$; $\left \frac{z - z_A}{z - z_B} \right = 1$.		0.5
	Par suite $AM = BM$ et M appartient à la médiatrice de $[AB]$: $y = \frac{1}{2}$. Donc $Im(z) = \frac{1}{2}$.	a	

Q_{II}	Corrigé	Note
1a	(AB): $x = 3t + 4$; $y = t + 3$; $z = -t + 2$.	0.5
1b	$(AB) \cap (P) = \{I(1; 2; 3)\}.$	0.5
1c	$\overrightarrow{IA}(3;1;-1)$ et $\overrightarrow{IB}(-9;-3;3)$; alors $\overrightarrow{IB}=-3\overrightarrow{IA}$; A et B sont de part et d'autre par rapport au plan (P) .	0.5
2a	$\mathbf{MA}^2 = \mathbf{MB}^2 \text{ \'equivaut \'a } 3\mathbf{x} + \mathbf{y} - \mathbf{z} + 9 = 0.$	0.5
2b	$(d) \subset (P) \text{ et } (d) \subset (Q) \text{ alors } (d) = (P) \cap (Q).$ $D'où (d) : x = m - \frac{3}{2} ; y = -m - 1; z = 2m + \frac{7}{2}.$ $OU: \text{ On montre que la droite donnée est respectivement incluse dans } (P) \text{ et } (Q).$	0.5
3	J est un point de (d); $J(m - \frac{3}{2}; -m-1; 2m + \frac{7}{2})$ $\overrightarrow{AJ} \cdot \overrightarrow{V}_d = 0 \text{ donne } m = -\frac{1}{4} \text{ et } J\left(-\frac{7}{4}, -\frac{3}{4}, 3\right)$ $\overrightarrow{AB} \wedge \overrightarrow{AJ} = 11\overrightarrow{i} - 11\overrightarrow{j} + 22\overrightarrow{k}$ il est parallèle à (d). par suite (d) est perpendiculaire à (ABJ). OU $(AB) \perp (Q) \text{ et } (d) \subset (Q);$ alors $(d) \perp (AB)$. De plus $(d) \perp (AJ)$. D'où $(d) \perp (ABJ)$	1.5

$\mathbf{Q}_{\mathbf{III}}$	Corrigé	Note
1a	E(Y) = 0.45n + 0.35(n + 4000) + 0.2(n + 6000) = 22600; $n = 20000$	1
1b	Pour tout réel a on a $F(a) = P(Y \le a)$ • $a < 20\ 000\ ; F(a) = 0$ • $20\ 000 \le a < 24\ 000\ ; F(a) = 0,45$ • $24\ 000 \le a < 26\ 000\ ; F(a) = 0,45 + 0,35 = 0,8$ • $26\ 000 \le a\ ; F(a) = 0,8 + 0,2 = 1$ F(a) O 20000 24000 26000	2
2a	$\begin{split} P(G \cap A) &= P(A/G) \times p(G) = 0.4 \times 0.85 = 0.34. \\ P(G) &= P(G \cap A) + P(G \cap \overline{A}) \; ; \; 0.85 = 0.34 + P(G \cap \overline{A}) \; ; \\ P(G \cap \overline{A}) &= 0.51. \end{split}$	2
2b	$P(G/A) = \frac{P(G \cap A)}{P(A)} = \frac{0.34}{0.45} = \frac{34}{45}$	1

Q_{IV}	Corrigé	Note
1a	$-5+12i = (2+3i)^2$; les racines carrées sont $2+3i$ et $-2-3i$.	0.5
1b	$\Delta = -5 + 12i$; $z' = 1 + i$ et $z'' = 3 + 4i$.	0.5
2	$x' = x^2 - y^2 - 4x + 5y - 1$, $y' = 2xy - 4y - 5x + 7$.	0.5
	$y = x$ donne $x' = x - 1$ et $y' = 2x^2 - 9x + 7$. D'où $y' = 2x'^2 - 5x'$.	
	Le point M ' varie sur la parabole (P) d'équation $y = 2(x - \frac{5}{4})^2 - \frac{25}{8}$.	1.5
3	Paramètre : $p = \frac{1}{4}$, Axe focal : $x = \frac{5}{4}$; Foyer $\left(\frac{5}{4}; -3\right)$, Directrice: $y = -\frac{13}{4}$.	
	$x'=0$ donne $x^2-y^2-4x+5y-1=0$.	
	Le point M' varie sur l'hyperbole (H) d'équation $\left(y - \frac{5}{2}\right)^2 - \left(x - 2\right)^2 = \frac{5}{4}$.	
	$A\left(2; \frac{\sqrt{5}}{2} + \frac{5}{2}\right) \qquad A'\left(2; -\frac{\sqrt{5}}{2} + \frac{5}{2}\right) \qquad y = x + \frac{1}{2} \qquad y = -x + \frac{9}{2}$	
		2
4a		

$\mathbf{Q}_{\mathbf{V}}$	Corrigé	Note
1	$S(A) = B$ et $S(D) = E$ donc l'angle de S est $(\overrightarrow{AD}, \overrightarrow{BE}) = (\overrightarrow{AD}, \overrightarrow{BA}) = \frac{\pi}{2}(2\pi)$ et le rapport de S est $\frac{EB}{AD} = \frac{1}{2}$	0.5
2	$S(B) = F \operatorname{car}\left(\overline{AB}, \overline{BF}\right) = \frac{\pi}{2} [2\pi] \text{ et } BF = \frac{1}{2} AB$ $S(A) = B \text{ et } S(B) = F \text{ et } E \text{ milieu de } [AB] \text{ donc}$ $S(E) \text{ est le milieu de } [BF] \text{ d'où } S(E) = G$	1
3a	h est la similitude de centre I , d'angle $\frac{\pi}{2} + \frac{\pi}{2} = \pi$ et de rapport $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$. C'est donc l'homothétie négative de centre I et de rapport $-\frac{1}{4}$	0.5
3b	h (A) = SoS(A) = S(B) = F donc I \in (AF) et h(D) = SoS(D) = S(E) = G donc I \in (DG) d'où I est l'intersection de (AF) et (DG).	0.5
3c	L'image par S du carré ABCD est le carré BFOE car $S(A) = B$, $S(B) = E$ et $S(D) = E$	1

	Donc l'image de C par S est O par suite $(\overrightarrow{IC}, \overrightarrow{IO}) = \frac{\pi}{2}(2\pi)$ et le triangle OIC est rectangle en I.	
4a	$\begin{split} L_{n\text{-}1} &= A_{n\text{-}1} A_n \text{ et } S(A_{n\text{-}1}) = A_n \text{ et } S(A_n) = A_{n+1} \text{d'où } A_n A_{n+1} = \frac{1}{2} A_{n\text{-}1} A_n \text{ donc } L_n = \frac{1}{2} L_{n\text{-}1} \\ &\text{et } (L_n) \text{ est une suite géométrique de raison } q = \frac{1}{2} \text{ et dont le premier terme est } L_0 = A_0 A_1 = AB = 2. \\ S_n &= l_0 \times \frac{1 - q^{n+1}}{1 - q} = 2 \times \frac{1 - (\frac{1}{2})}{\frac{1}{2}} = 4 \left[1 - \left(\frac{1}{2}\right)^{n+1} \right] \text{ or } \lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n+1} = 0 \text{ donc } \lim_{n \to +\infty} S_n = 4 \end{split}$	1.5
4b	$(\overrightarrow{IA}, \overrightarrow{IA_n}) = (\overrightarrow{IA}, \overrightarrow{IA_1}) + (\overrightarrow{IA_1}, \overrightarrow{IA_2}) + \dots + (\overrightarrow{IA_{n-1}}, \overrightarrow{IA_n}) = \frac{n\pi}{2} [2\pi].$ Si n est pair, alors $(\overrightarrow{IA}, \overrightarrow{IA_n}) = k \pi$ donc $A_n \in (IA)$.	1

Q_{VI}	Corrigé	Note
A1a	$e^{2x} + 2e^{x} - 2 = 0$ $e^{x} = -1 - \sqrt{3}$ ou $e^{x} = -1 + \sqrt{3}$; $x = \ln(-1 + \sqrt{3}) \square -0.312$	0.5
A1b	$\lim_{x \to +\infty} h(x) = +\infty \lim_{x \to -\infty} h(x) = -2$	0.5
A2a	$h'(x) = 2e^{2x} + 2e^{x}.$ $x - \infty + \infty$ $h'(x) + \cdots$ $h(x) - 2 + \infty$	1
A2b	La droite d'équation $y = -2$ est asymptote lorsque $x \to -\infty$. $\lim_{x \to +\infty} \frac{h(x)}{x} = +\infty \text{ d'où l'axe des ordonnées est une direction asymptotique.}$	1
A2c	$A = \int_{0}^{1} (e^{2x} + 2e^{x} - 2) dx = \left[\frac{1}{2}e^{2x} + 2e^{x} - 2x\right]_{0}^{1}$ $= \frac{1}{2}e^{2} + 2e - \frac{9}{2} = 4,63u^{2}.$	1
B1a	$g(x) = \frac{e^{2x} + 2}{e^x + 1} > 0$ quel que soit x; Alors f est définie, quel que soit x	0.5
B1b	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \ln(\frac{e^{2x} + 2}{e^x + 1}) = \ln 2 \ ; (d) : y = \ln 2 \ asymptote.$	1
B2a	$x + \ln \frac{1 + 2e^{-2x}}{1 + e^{-x}} = \ln e^{x} + \ln \frac{1 + 2e^{-2x}}{1 + e^{-x}} = \ln \frac{e^{x} (1 + 2e^{-2x})}{1 + e^{-x}}$ $= \ln(g(x)) = f(x)$	0.5
B2b	$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} [f(x) - x] = 0$ $D'où (d') : y = x \text{ est une asymptote à (C) lorsque x tend vers} + \infty$	1

	$1 + 2e^{-2x}$	
	$f(x) - x = \ln \frac{1 + 2e^{-2x}}{1 + e^{-x}}.$	
B2c	$\frac{1+2e^{-2x}}{1+e^{-x}} = 1 \Leftrightarrow x = \ln 2; (C) \text{ rencontre (d') au point (ln2; ln2)}.$	1
	$\frac{1+2e^{-2x}}{1+e^{-x}} > 1 \Leftrightarrow x < \ln 2 \ ; (C) \text{ est au-dessus de } (d').$	
ВЗа	$g'(x) = \frac{2e^{2x}(e^x + 1) - e^x(e^{2x} + 2)}{(e^x + 1)^2} = \frac{e^x h(x)}{(e^x + 1)^2}.$	0.5
B3b	$f'(x) = \frac{g'(x)}{g(x)} = \frac{e^x (h(x))}{(e^x + 1)(e^{2x} + 2)} \qquad \frac{x - \infty -0.31 + \infty}{f'(x) - 0 +}$	1.5
D 30	f '(x) a le même signe que h(x) * Le minimum : $\approx \ln(1,46) \approx 0,38$ $f(x) = \ln(1,46) \approx 0,38$	1.5
ВЗс	$f'(x) = 1$ équivaut à $e^{2x} - 4e^{x} - 2 = 0$; D'où : $x = \ln(\sqrt{6} + 2)$.	1
В4	1 ln2 ln2 2	1.5
C1	La courbe (C') est la symétrique de la partie de (C) correspondante à $0 \le x$; par rapport à la première bissectrice des axes. *** $Tracé$ ***	0.5
	(C') coupe (C) au point $(ln2; ln2)$.	
C2	$f^{-1}(\ln 2) = \frac{1}{f'(\ln 2)} = \frac{3}{2}.$	1
	$y = \frac{3}{2}x - \frac{\ln 2}{2}.$	