Decomposing labelled proof theory for intuitionistic modal logic

Sonia Marin* IT-Universitetet i København Denmark

Marianela Morales Universidad Nacional de Córdoba Argentina Lutz Straßburger Inria Saclay & LIX France

ACM Reference Format:

Sonia Marin, Marianela Morales, and Lutz Straßburger. 2018. Decomposing labelled proof theory for intuitionistic modal logic. In *Proceedings of* . ACM, New York, NY, USA, 1 page. https://doi.org/

Labelled deduction has been proposed by Gabbay [7] in the 80s as a unifying framework throughout proof theory in order to provide proof systems for a wide range of logics. For modal logics it can take for example the form of labelled natural deduction and labelled sequent systems, as used by Simpson [3], Viganò [4] and Negri [2].

These formalisms make explicit use not only of labels, but also of relational atoms referring to the accessibility relation of a Kripke model. In this short note we propose a system that represents both the *accessibility relation* (for modal logics) and the *preorder relation* (for intuitionistic logic), using the full power of the bi-relational semantics for intuitionistic modal logics, and developing fully the idea of [1].

A bi-relational frame [5, 6] \mathcal{B} is a triple $\langle W, R, \leq \rangle$ of a non-empty set of worlds W equipped with an accessibility relation R and a preorder \leq , satisfying:

- (F_1) For all worlds x, y, z, if xRy and $y \le z$, there exists a u such that $x \le u$ and uRz.
- (F_2) For all worlds x, y, z, if xRy and $x \le z$, there exists a u such that $y \le u$ and zRu.

Reflecting this definition, we define our two-sided intuitionistic labelled sequents to be of the form $\mathcal{B}, \mathcal{L} \Rightarrow \mathcal{R}$ where \mathcal{B} denotes a set of relational atoms xRy and preorder atoms $x \leq y$, and \mathcal{L} and \mathcal{R} are multi-sets of labelled formulas $x \colon A$ (for x and y taken from the set of labels and A an intuitionistic modal formula).

Furthermore, our system has to incorporate the two semantic conditions into deductive rules as follows:

$$\mathsf{F}_1 \frac{\mathcal{B}, xRy, y \leq z, x \leq u, uRz, \mathcal{L} \Rightarrow \mathcal{R}}{\mathcal{B}, xRy, y \leq z, \mathcal{L} \Rightarrow \mathcal{R}} \ u \text{ fresh}$$

$$\mathsf{F}_2 \frac{\mathcal{B}, xRy, x \leq z, y \leq u, zRu, \mathcal{L} \Rightarrow \mathcal{R}}{\mathcal{B}, xRy, x \leq z, \mathcal{L} \Rightarrow \mathcal{R}} \ u \text{ fresh}$$

In the intuitionistic setting, the validity of a modal formula has to be defined using both the R and the \leq relation as: $x \Vdash \Box A$ iff for all y and z s.t. $x \leq y$ and yRz, $z \vdash A$.

*Funded by the Qatar National Research Council project MetaCLF nb. xxx.

Again, our system reflects exactly this definition in the rules introducing the □-operator:

$$\Box_{\mathsf{L}} \frac{\mathcal{B}, x \leq y, yRz, \mathcal{L}, x \colon \Box A, z \colon A \Rightarrow \mathcal{R}}{\mathcal{B}, \mathcal{L}, x \leq y, yRz, x \colon \Box A \Rightarrow \mathcal{R}}$$

$$\square_{\mathsf{R}} \frac{\mathcal{B}, x \leq y, y R z, \mathcal{L} \Rightarrow \mathcal{R}, z \colon A}{\mathcal{B}, \mathcal{L} \Rightarrow \mathcal{R}, x \colon \square A} y, z \text{ fresh}$$

By complementing these rules with the standard labelled rules for intuitionistic modal logic of [3], we get a system that is sound and complete wrt. the birelational semantics.

In [6], Plotkin and Stirling give a correspondence result for intuitionistic modal logic extended with a family of axioms wrt. some classes of bi-relational frames. For example, the frames that validate the axiom $4_{\Diamond}: \Diamond \Diamond A \supset \Diamond A$ are exactly the ones satisfying the condition:

 (\blacklozenge_4) if wRv and vRu, there exists a u' s.t. $u \le u'$ and wRu'.

Incorporating the preorder symbol into the syntax of our sequents allows us to also obtain a sound and complete proof system for the intuitionistic modal logic extended with axiom 4_{\diamond} , by designing the following rule:

$$\oint_4 \frac{\mathcal{B}, wRv, vRu, u \leq u', wRu', \mathcal{L} \Rightarrow \mathcal{R}}{\mathcal{B}, wRv, vRu, \mathcal{L} \Rightarrow \mathcal{R}} u' \text{ fresh}$$

Therefore, we decompose further the formalism of labelled sequents and extend the reach of labelled deduction to the logics studied in [6]. These systems enjoy cut-elimination via usual arguments, the generality of the result is subject of ongoing study.

References

- Paolo Maffezioli, Alberto Naibo, and Sara Negri. The Church-Fitch knowability paradox in the light of structural proof theory. Synthese, 190(14):2677-2716, 2013.
- [2] Sara Negri. Proof analysis in modal logics. Journal of Philosophical Logic, 34:507-544, 2005.
- [3] Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh, 1994.
- [4] Luca Viganò. Labelled Non-Classical Logic. Kluwer Academic Publisher,
- [5] Gisèle Fischer-Servi. Axiomatizations for some intuitionistic modal logics. Rendiconti del Seminario Matematico della Università Politecnica di Torino, 42(3):179-194, 1984.
- [6] Gordon D. Plotkin and Colin P. Stirling. A framework for intuitionistic modal logic. In J. Y. Halpern, editor, 1st Conference on Theoretical Aspects of Reasoning About Knowledge. Morgan Kaufmann, 1986.
- [7] Dov M. Gabbay. Labelled Deductive Systems. Clarendon Press, 1996.