Soft Actor Critic

Oliver, Leon Büttinghaus, Thilo Röthemeyer

19. April 2021

Contents

- 1 Part 1
- 2 Soft Actor-Critic im kontinuierlichen Raum
 - SAC Grundprinzip
 - SAC Update Regeln
 - SAC Algorithmus
- 3 Ergebnisse
 - Vergleich mit anderen Algortihmen
 - Zusammenfassung
- 4 Literaturverzeichnis

Part 1

Kontinuierlicher Aktionsraum

- kontinuierliche Aktionsräume benötigen
 - \Rightarrow Approximation für Q-Funktion
 - ⇒ Approximation für Strategie
- Schritt von Tabellen zu DNNs
- Optimierung mittels gradient descent

Funktionen und deren Netzwerke

- State Value Funktion:
 - $V_{\psi}(s_t) \longrightarrow \mathsf{Skalar} \; \mathsf{als} \; \mathsf{Ausgabe}$
- Q-Funktion:
 - $Q_{\theta}(s_t, a_t) o$ Skalar als Ausgabe
- Strategie:
 - $\pi_\phi(s_t|a_t) \,\, o$ Mittelwert und Kovarianz als Ausgabe \Rightarrow Gauss

Mit Parametervektoren ψ , θ und ϕ

State Value Funktion

- eigenes Netzwetk nicht notwendig, aber
 - stabilisiert Training
 - macht simultanes Training aller Netzwerke möglich

Optimierung State Value Funktion

- Minimierung des Fehlers
- Fehler: Residuenquadratsumme aus state-value und Erwartungswert

$$J_V(\psi) = \mathbb{E}_{s_t \sim D} \left[\frac{1}{2} (V_{\psi}(s_t) - \mathbb{E}_{a_t \sim \pi_{\phi}} [Q_{\theta}(s_t, a_t) - \log \pi_{\phi}(s_t | a_t)])^2 \right]$$

$$\hat{\nabla}_{\psi} J_{V}(\psi) = \nabla_{\psi} V_{\psi}(s_{t}) (V_{\psi}(s_{t}) - Q_{\theta}(s_{t}, a_{t}) + log \pi_{\phi}(s_{t}|a_{t}))$$

Optimierung Q-Funktion

- Minimierung des Fehlers
- Fehler: soft Bellman Restwert

$$J_Q(\theta) = \mathbb{E}_{(s_t, a_t) \sim D} \left[\frac{1}{2} (Q_{\theta}(s_t, a_t) - \hat{Q}_{\theta}(s_t, a_t))^2 \right]$$

$$\mathsf{mit}\ \hat{Q}(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim p}[V_{\overline{\psi}}(s_{t+1})]$$

$$\hat{\nabla}_{\theta} J_{Q}(\theta) = \nabla_{\theta} Q_{\theta}(a_{t}, s_{t}) (Q_{\theta}(s_{t}, a_{t}) - r(s_{t}, a_{t}) - \gamma V_{\overline{\psi}}(s_{t+1}))$$

Optimierung der Strategie

- Minimierung des Fehlers
- Fehler: KL-Divergenz

$$J_{\pi}(\phi) = \mathbb{E}_{s_t \sim D} \left[D_{\mathit{KL}} \left(\pi_{\phi}(\cdot | s_t) || rac{exp(Q_{ heta}(s_t, \cdot))}{Z_{ heta}(s_t)}
ight)
ight]$$

der reparameterization trick wird angewandt

$$\begin{aligned} & a_t = f_\phi(\epsilon_t; s_t) \\ &\Rightarrow J_\pi(\phi) = \mathbb{E}_{s_t \sim D, \epsilon_t \sim N} \left[log \pi_\phi(f_\phi(\epsilon_t; s_t) | s_t) - Q_\theta(s_t, f_\phi(\epsilon_t; s_t)) \right] \end{aligned}$$

Algorithmus

Algorithm 1: Soft Actor-Critic

Initialize parameter vectors $\psi, \overline{\psi}, \theta, \phi$

for each iteration do

for each environment step do

$$a_{t} \sim \pi_{\phi}(a_{t}|s_{t})$$

$$s_{t+1} \sim p(s_{t+1}|s_{t}, a_{t})$$

$$D \leftarrow D \cup \{(s_{t}, a_{t}, r(s_{t}, a_{t}), s_{t+1})\}$$

end

for each gradient step do

$$\begin{aligned} \psi &\leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi) \\ \theta_i &\leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\} \\ \frac{\phi}{\psi} &\leftarrow \phi - \lambda_\pi \hat{\nabla}_{\phi} J_\pi(\phi) \\ \frac{\phi}{\psi} &\leftarrow \tau \psi + (1 - \tau) \psi \end{aligned}$$

end

end

Ziel der Experimente

- Stabilität und Sample Komplexität im Vergleich zu anderen Algorithmen
 - Kontinuierliche Aufgaben
 - Verschiedene Schwierigkeitgrade
- OpenAl gym und rllab

Vergleich zu anderen Algorithmen

- SAC
 - Durchschnittswert (mean action)
 - feste und variable Temperatur(Anpassung im neuen Paper)
- PPO, DDPG
 - kein Explorationsrauschen
- TD3
- SQL mit zwei Q Funktionen
 - Evaluation mit Explorationsrauschen

Vergleich zu anderen Algorithmen

- 5 Instanzen mit einer Evaluation alle 1000 Schritte
- Schattierter Verlauf zeigt min und max der fünf Durchläufe

Ergebnisse

Zusammenfassung

- soft actor critic vorgestellt
 - Off policy Algorithmus
 - Entropiemaximierung verbessert Stabilität
 - Besser als state-of-the-art Algorithmen
 - Gradientenbasiertes Temperatur Tuning

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.

CoRR, abs/1801.01290, 2018.