EFFECTIVENESS AND STRONG GRAPH INDIVISIBILITY

DAMIR DZHAFAROV, REED SOLOMON, AND ANDREA VOLPI

ABSTRACT. A relational structure is strongly indivisible if for every partition $M=X_0\sqcup X_1$, the induced substructure on X_0 or X_1 is isomorphic to \mathcal{M} . Cameron (1997) showed that a graph is strongly indivisible if and only if it is the complete graph, the completely disconnected graph, or the random graph. We analyze the strength of Cameron's theorem using tools from computability theory and reverse mathematics. We show that Cameron's theorem is is effective up to computable presentation, and give a partial result towards showing that the full theorem holds in the ω -model REC. We also establish that Cameron's original proof makes essential use of the stronger induction scheme $|\Sigma_2^0\rangle$.

1. Introduction

Versions of Ramsey's theorem have been a consistent source of important principles in computable combinatorics and reverse mathematics. In recent years, Weihrauch reducibility and its variants have given new tools and perspectives to study uniformity questions in these contexts and to make fine distinction between proof methods. The majority of this work considers subsets of size $n \geq 2$ with an emphasis on n = 2. However, even the n = 1 cases, or pigeonhole principles, often have subtle connections to uniformity and induction.

The canonical case is Ramsey's theorem for singletons: every finite coloring $c:\omega\to k$ has an infinite monochromatic set. On the reverse math side, for fixed k, RT^1_k is provable in RCA_0 , while Hirst [17] showed the full result RT^1 is equivalent to the induction scheme $\mathsf{B\Sigma}^0_2$. On the Weihrauch side, non-reductions were found for a variety of reducibilities by Dorais, Dzhafarov, Hirst, Mileti and Shafer [8], Brattka and Rakotoniaina [3], Hirschfeldt and Jockusch [15], Patey [19], and Dzhafarov, Patey, Solomon and Westrick [10].

Adding some structure, Chubb, Hirst and McNicholl [6] introduced a tree version of RT^1 : every coloring $c: 2^{<\omega} \to k$ has a monochromatic subset H isomorphic to $2^{<\omega}$ as a partial order. In reverse math, this principle is denoted TT^1 and was shown to lie strictly between the induction schemes $\mathsf{B}\Sigma^0_2$ and $\mathsf{I}\Sigma^0_2$ by Corduan, Groszek and Mileti [7] and Chong, Li, Wei and Yang [5]. Interestingly, Kołodziejczyck has a proof (reproduced in [11]) using results from [5] and [7] to show that TT^1 , unlike RT^1 , is not equivalent to any arithmetical statement. Dzhafarov, Solomon and Valenti [11] give a detailed account of the relationship between the singleton versions of Ramsey's theorem and the tree theorem in the Weihrauch degrees including a Weihrauch version of Kołodziejczyck's result.

1

Dzhafarov and Solomon were partially supported by a Focused Research Group grant from the National Science Foundation of the United States, DMS-1854355. Volpi was partially funded by PRIN2022 "Models, sets and classifications" 2022TECZIA CUP:G53D23001890006 - M4 C2 I1.1.

More generally, a relational structure \mathcal{M} is *indivisible* if for every finite coloring $c: M \to k$ of the domain of \mathcal{M} , there is a monochromatic subset H of M such that the induced substructure on H is isomorphic to \mathcal{M} . In this setting, Gill [12] considers a variety of Weihrauch problems related to indivisible structures such as the dense linear order (\mathbb{Q}, \leq) and the random graph \mathcal{R} .

There is a significant difference between, on one hand, Ramsey's theorem for singletons and the indivisibility of \mathcal{R} , and on the other hand, TT^1 and the indivisibility of (\mathbb{Q},\leq) . For a coloring $c:\omega\to k$, there is a color i such that $c^{-1}(i)$ is an infinite monochromatic set. That is, one of the colors is the desired subset for RT^1 . Similarly, for $c:\mathcal{R}\to k$, one of the colors is an isomorphic copy of \mathcal{R} , a fact first pointed out by Henson [13]. However, there are colorings of $2^{<\omega}$ and \mathbb{Q} such that no full color is isomorphic to $2^{<\omega}$ or \mathbb{Q} as a partial or linear order respectively. For example, the 2-coloring of $2^{<\omega}$ defined by $c(\sigma)=0$ if and only if $|\sigma|\geq 1$, and the 2-coloring of \mathbb{Q} given by c(q)=0 if and only if q<0 or q=1.

Our concern here is with the stronger property that requires the full set of some color to yield an isomorphic substructure. In the combinatorics literature, colorings are often replaced with partitions, and a relational structure \mathcal{M} is said to have the pigeonhole property if for any finite partition $M = X_0 \sqcup \cdots \sqcup X_{k-1}$, there is an i such that the induced substructure on X_i is isomorphic to \mathcal{M} . Setting aside induction issues, this definition is often equivalently stated with partitions into two pieces, i.e. $M = X_0 \sqcup X_1$.

Unfortunately, the term pigeonhole property is frequently used in computability theory and reverse math for a Ramsey style property that only requires a subset of a color to induce an isomorphic structure. Therefore, to avoid terminological conflict, we say \mathcal{M} is *strongly indivisible* if for every partition $M = X_0 \sqcup X_1$, the induced substructure on X_0 or X_1 is isomorphic to \mathcal{M} .

Strong indivisibility (under the name pigeonhole property) appears to have been introduced in Cameron [4] where he proved there are exactly three strongly indivisible countable graphs: the complete graph K_{ω} , the completely disconnected graph \overline{K}_{ω} and the random graph \mathcal{R} . There are similar classifications of the strongly indivisible tournaments, posets and linear orders in Bonato, Cameron and Delić [1] as well as a study of the connection between Fraïsse limits and strong divisibility by Bonato and Delić [2].

Our goal is to examine Cameron's classification of the strongly indivisible countable graphs from the point of view of reverse mathematics and computable combinatorics. In Section 2, we give a classical proof of the classification, showing it can be done in ACA_0 and pointing out where it uses arithmetic comprehension and induction axioms beyond $I\Sigma_1^0$.

In Section 3, we show the classification is effective up to computable presentation. That is, if G is a computable graph not isomorphic to K_{ω} , \overline{K}_{ω} or \mathcal{R} , then there is a computable copy H of G and a computable partition $H = X_0 \sqcup X_1$ such that neither the induced graph on X_0 nor the induced graph on X_1 is even classically isomorphic to G. We show the move from G to H is necessary to get this strong result by constructing a computable graph G that is not isomorphic to K_{ω} , \overline{K}_{ω} or \mathcal{R} , but for every computable partition $G = X_0 \sqcup X_1$, the induced subgraph on at least one of X_0 or X_1 is classically isomorphic to G.

In Section 4, we provide a partial result towards showing the classification theorem holds in the ω -model REC. If G is a computable graph that is not isomorphic

to K_{ω} , \overline{K}_{ω} or \mathcal{R} and for which the set of vertices of finite degree is c.e., then we show there is a computable partition $G = X_0 \sqcup X_1$ such that neither X_0 nor X_1 is computably isomorphic to G. However, the full question of whether REC satisfies the classification theorem remains open.

Finally, in Section 5, we return to Cameron's original proof of the classification. In second order arithmetic, the least number principle $\mathsf{L}\Sigma^0_2$ is the axiom scheme that asserts for each Σ^0_2 formula $\varphi(x)$, if there exists an x such that $\varphi(x)$, then there is a least such x. Over RCA_0 , $\mathsf{L}\Sigma^0_2$ is equivalent to $\mathsf{I}\Sigma^0_2$, the usual induction scheme for Σ^0_2 formulas, and hence is not provable in RCA_0 . The classical proof of the classification theorem applies $\mathsf{L}\Sigma^0_2$ to a graph $G \not\cong \mathcal{R}$ to obtain the smallest size counterexample in G to the extension property that characterizes the random graph. In Section 5, we show that the existence of a counterexample to the extension property of minimal size in every non-random graph is in fact equivalent to the full induction scheme $\mathsf{L}\Sigma^0_2$.

Our notation follows the standard references such as Dzhafarov and Mummert [9], Hirschfeldt [14], Simpson [20], and Soare [21]. We introduce the graph theory terminology in the next section.

2. The classical proof

In this section, we give Cameron's proof classifying the countable strongly indivisible graphs with an eye towards formalizing it in reverse mathematics. In the context of a model of a subsystem of second order arithmetic, we let $\mathbb N$ denote the first order part of the model, with the understanding that $\mathbb N$ is standard when we work outside a formal setting.

Formally, a graph G = (V, E) is a pair consisting of a nonempty set $V \subseteq \mathbb{N}$ of vertices and an irreflexive, symmetric edge relation E. For $X \subseteq V$, the *induced* subgraph is $(X, E \upharpoonright X \times X)$. We frequently abuse notation by equating a graph with its domain (e.g. writing $X \subseteq G$), by conflating a set of vertices with its induced subgraph, and by using subgraph to mean induced subgraph.

A vertex x is isolated if $\neg E(x,y)$ for all $y \in G$ and is universal if E(x,y) for all $y \neq x$ in G. A countable graph G = (V,E) is strongly indivisible if for every vertex partition $V = X_0 \sqcup X_1$, either $X_0 \cong G$ or $X_1 \cong G$.

For n>0, K_n denotes the complete graph on n vertices. K_{ω} denotes the complete graph with $V=\mathbb{N}$ and $E=\{\langle n,m\rangle: m\neq n\}$, and \overline{K}_{ω} denotes the completely disconnected graph with $V=\mathbb{N}$ and $E=\emptyset$. RCA₀ proves that each of these graphs is strongly indivisible.

Proposition 2.1 (RCA₀). K_{ω} and \overline{K}_{ω} are strongly indivisible.

Proof. Fix a partition of the vertices $\mathbb{N} = X_0 \sqcup X_1$. At least one of X_0 and X_1 is infinite, so the corresponding subgraph is isomorphic to K_{ω} or to \overline{K}_{ω} .

This symmetry between K_{ω} and \overline{K}_{ω} with respect to strong indivisibility extends more generally. For a graph G=(V,E), let \overline{G} denote the graph obtained by swapping the edges and non-edges, except along the diagonal. Formally, $\overline{G}=(V,\overline{E})$ with $\overline{E}=\{\langle m,n\rangle \notin E: m\neq n\}$.

Proposition 2.2 (RCA₀). G is strongly indivisible if and only if \overline{G} is strongly indivisible.

Proof. Let $V = X_0 \sqcup X_1$ be a partition of the vertices, and let H_i and \overline{H}_i denote the corresponding subgraphs in G and \overline{G} . Because a graph isomorphism preserves both edges and non-edges, a bijection $f: X_i \to V$ is an isomorphism from H_i to G if and only if it is an isomorphism from \overline{H}_i to \overline{G} .

The standard development of the random graph can be carried out in RCA_0 . Let $\varphi_{\mathcal{R}}$ denote the usual extension axiom stated in second order arithmetic.

$$\forall \, \text{finite} \, A, B \subseteq V \left(A \cap B = \emptyset \rightarrow \exists x \, \big[(\forall a \in A) \, E(x,a) \wedge (\forall b \in B) \, \neg E(x,b) \big] \right)$$

A countable graph satisfying $\varphi_{\mathcal{R}}$ is called a $random\ graph$. Although this axiomatization is standard, it is typical when working in a random graph to assume the existential witness x satisfies $x \notin A \cup B$. To see why this condition is admissible, apply $\varphi_{\mathcal{R}}$ to $A \cup B$ and \emptyset to get a vertex v connected to every node in $A \cup B$. Then apply $\varphi_{\mathcal{R}}$ to A and $B \cup \{v\}$ to get a node x connected to everything in A and nothing in $B \cup \{v\}$. It follows that $x \notin A$ because the edge relation is irreflexive and $x \notin B$ because everything in B is connected to v.

There are a number of places below where it is important that we require the existential witness x to be outside $A \cup B$. Therefore, going forward, we adopt the convention that the axiom $\varphi_{\mathcal{R}}$ includes the stipulation that $x \notin A \cup B$.

 RCA_0 suffices to show there is a random graph by, for example, letting $V = \mathbb{N}$ and putting a symmetric edge between x and y when x < y and the x-th bit of the binary representation of y is 1. Moreover, it is a folklore (and easily checked) result that the classical back-and-forth argument can be carried out in RCA_0 to show that there is a unique random graph up to isomorphism.

Proposition 2.3 (RCA₀). If G_0 and G_1 are random graphs, then $G_0 \cong G_1$.

We continue to use \mathcal{R} to denote a random graph, which by Proposition 2.3, is determined up to isomorphism in RCA_0 .

Proposition 2.4 (RCA₀). Let \mathcal{R} be a random graph.

- (1) Let A and B be disjoint finite sets of vertices in \mathbb{R} . The subgraph $G_{A,B}$ on $V_{A,B} = \{x \in \mathbb{R} \setminus (A \cup B) : (\forall a \in A)E(x,a) \land (\forall b \in B) \neg E(x,b)\}$ is a random graph.
- (2) \mathcal{R} is strongly indivisible.

Proof. For (1), to show $G_{A,B}$ is a random graph, consider disjoint finite sets $C, D \subseteq V_{A,B}$. Since \mathcal{R} is random, there is a node $x \notin A \cup B \cup C \cup D$ such that E(x,y) for all $y \in A \cup C$ and $\neg E(x,z)$ for all $z \in B \cup D$. It follows that $x \in V_{A,B}$ and that x witnesses the extension axiom for the finite sets C and D in $G_{A,B}$.

For (2), fix a partition $\mathcal{R} = X_0 \sqcup X_1$. Suppose for a contradiction that neither of the induced subgraphs are random. For i < 2, fix disjoint finite sets $A_i, B_i \subseteq X_i$ for which the extension axiom fails in the induced subgraph. Since \mathcal{R} is random, there is an $x \notin A_0 \cup A_1 \cup B_0 \cup B_1$ such that E(x,a) for all $a \in A_0 \cup A_1$ and $\neg E(x,b)$ for all $b \in B_0 \cup B_1$. Let j < 2 be such that $x \in X_j$ and notice that x witnesses the extension property for the pair A_j, B_j in X_j , contrary to assumption.

We turn to showing K_{ω} , \overline{K}_{ω} and \mathcal{R} are the only strongly indivisible countable graphs. Since every nontrivial partition of a finite graph witnesses that it is not strongly indivisible, we only need to consider infinite graphs.

Theorem 2.5 (Cameron [4]). If G is a countable strongly indivisible graph, then G is isomorphic to K_{ω} , \overline{K}_{ω} or \mathcal{R} .

Proof. Assume G is an infinite graph that is not isomorphic to K_{ω} , \overline{K}_{ω} or \mathcal{R} .

Case 1. Suppose G has isolated vertices. Let $X_0 = \{x \in G : x \text{ is isolated}\}$ and $X_1 = G \setminus X_0$. The induced subgraph on X_0 is $\overline{K}_{|X_0|}$, which is not isomorphic to G by assumption. If x were an isolated vertex in the induced subgraph X_1 , then, in fact, x would be an isolated vertex in G, and hence $x \in X_0$. Therefore, X_1 has no isolated vertices and so is not isomorphic to G.

Case 2. Suppose G has universal vertices. This case follows by letting X_0 be the set of universal vertices and reasoning as in Case 1.

Case 3. Suppose G has neither isolated nor universal vertices. Since G is not a random graph, let n be least such that there are disjoint sets A and B for which |A| + |B| = n and the extension axiom $\varphi_{\mathcal{R}}$ fails for A and B.

We claim that $n \geq 2$. We cannot have n = 0 because G is nonempty, so suppose n = 1. If $A = \emptyset$ and $B = \{b\}$, then the failure of the extension axiom for A, B means b is a universal vertex, contrary to our case assumption. On the other hand, if $A = \{a\}$ and $B = \emptyset$, then the failure of $\varphi_{\mathcal{R}}$ implies a is an isolated vertex, also contrary to our case assumption.

Since $n \geq 2$, we can partition $A \cup B = U_0 \sqcup U_1$ into nonempty sets U_0 and U_1 . We say a vertex x is not correctly joined to U_i if there is an $a \in U_i \cap A$ such that $\neg E(x,a)$ or there is a $b \in B \cap U_i$ such that E(x,b). Since the extension axiom does not hold for A and B, every vertex $x \notin A \cup B$ is not correctly joined to at least one of U_0 or U_1 .

Let $X_0 = U_0 \cup \{x \in G : x \notin U_1 \land x \text{ is not correctly joined to } U_0\}$ and let $X_1 = G \setminus X_0$. Note that $G = X_0 \sqcup X_1$, $U_1 \subseteq X_1$, and every node in $X_1 \setminus U_1$ is not correctly joined to U_1 . By construction, X_0 fails to satisfy the extension axiom with $A \cap U_0$ and $B \cap U_0$, while X_1 fails to satisfy the extension axiom with $A \cap U_1$ and $B \cap U_1$. Since U_0 and U_1 are nonempty, it follows that X_0 and X_1 fail to satisfy instances of the extension axiom for which the sum of the sizes of the witnessing sets is strictly less than n. Therefore, since n was chosen least for G, neither X_0 nor X_1 is isomorphic to G.

On its face, this proof uses axioms outside of RCA_0 in three places. In Cases 1 and 2, it uses arithmetic comprehension to form the sets of isolated and universal vertices. In Case 3, it uses the existence of the least n such that

$$\exists \, \text{finite disjoint} \, A, B \, \Big(|A| + |B| = n \, \wedge \, \forall x \, \big[(\exists a \in A) \, \neg E(x,a) \vee (\exists b \in B) \, E(x,b) \big] \Big)$$

Since the least number axiom schema $L\Sigma_2^0$ is equivalent to $I\Sigma_2^0$, which holds in ACA_0 , Theorem 2.5 is provable in ACA_0 .

The existence of the set of isolated or universal vertices is equivalent to ACA_0 . Similarly, $L\Sigma_2^0$ is equivalent to the least number principle restricted to formulas of the form above. We give the equivalence with ACA_0 here because it is short, but delay the $L\Sigma_2^0$ equivalence until Section 5. These equivalences do not give us lower bounds on the strength of Theorem 2.5, but they do tell us that the proof above cannot be carried out in a system weaker than ACA_0 .

Proposition 2.6 (RCA $_0$). The following are equivalent.

- (1) ACA_0 .
- (2) For every graph, the set of universal nodes exists.

(3) For every graph, the set of isolated nodes exists.

Proof. The implications from (1) to (2) and from (1) to (3) hold because these sets are arithmetically definable.

For the implication from (2) to (3), fix a graph G. The set of isolated nodes in G is the same as the set of universal nodes in \overline{G} , which exists by (2).

For the implication from (3) to (1), let $f: \mathbb{N} \to \mathbb{N}$ be an arbitrary one-to-one function. It suffices to show the range of f exists. Define G with $V = \mathbb{N}$ and a symmetric edge between x and y if and only if x = 2n, y = 2m + 1 and f(n) = m. The range of f is definable from the set of isolated nodes in G because an odd vertex 2m + 1 is isolated if and only if m is not in the range of f.

3. Effectiveness up to presentation

Our motivating question is whether the classification of strongly indivisible graphs is provable in RCA_0 , and in particular, whether it holds in the ω -model REC. In the previous section, we showed one direction holds in RCA_0 , which translates to REC as follows.

Theorem 3.1. Let G be a computable graph that is isomorphic to K_{ω} , \overline{K}_{ω} or \mathcal{R} . For every computable partition $G = X_0 \sqcup X_1$, either X_0 or X_1 is computably isomorphic to G.

Because the graphs K_{ω} , \overline{K}_{ω} and \mathcal{R} are computably categorical, it does not matter whether we use "isomorphic" or "computably isomorphic" in the statement of Theorem 3.1. However, in general, it is possible for the effectiveness properties to vary across computable presentations of a graph. We show that Theorem 2.5 is effective up to computable presentation in a strong form in which we consider the classical isomorphism types of the partition pieces.

Theorem 3.2. Let G be a computable graph that is not isomorphic to K_{ω} , \overline{K}_{ω} or \mathcal{R} . There is a computable presentation H of G and a computable partition $H = X_0 \sqcup X_1$ such that neither X_0 nor X_1 is classically isomorphic to G.

To prove Theorem 3.2, we use the following theorem and corollary to mimic the classical proof of Theorem 2.5.

Theorem 3.3. Every computable graph G has a computable copy in which the set of isolated vertices is computable.

Corollary 3.4. Every computable graph G has a computable copy in which the set of universal vertices is computable.

Corollary 3.4 follows immediately from Theorem 3.3 by shifting from G to \overline{G} . At the end of the section, we return to a proof of Theorem 3.3. For now, we use these results to prove Theorem 3.2.

Proof. We follow the classical proof of Theorem 2.5 given above. In Case 1, when G has isolated vertices, we apply Theorem 3.3 to get a computable copy H for which the partition $H = X_0 \sqcup X_1$ is computable, where X_0 is the set of isolated vertices. In Case 2, when G has universal vertices, we apply Corollary 3.4 to get a computable copy H for which the partition $H = X_0 \sqcup X_1$ is computable, where X_0 is the set of universal vertices. In either case, the proof that neither X_0 nor X_1 is classically isomorphic to G is the same as in Theorem 2.5.

For Case 3, when G has neither isolated nor universal vertices, we run the argument from Theorem 2.5 without changing the presentation of G. The least value n exists in the standard natural numbers, and the partition pieces X_0 and X_1 are computable because they are defined with bounded quantifiers.

Our next goal is to show the shift of computable presentations in Theorem 3.2 is necessary to get a strong effectiveness result that considers the partition pieces up to classical isomorphism.

Let $K_{<\omega}^{\infty}$ denote the graph consisting of infinity many disjoint copies of K_n for each $n \geq 1$. We say that a copy of K_n inside $K_{<\omega}^{\infty}$ is finished if it is not a subgraph of a larger K_m inside $K_{<\omega}^{\infty}$.

There is a nice computable copy H of $K^{\infty}_{<\omega}$ for which there is a computable function f such that each vertex x sits in a finished copy of $K_{f(x)}$. There are many computable partitions $H=X_0\sqcup X_1$ such that neither X_0 nor X_1 is classically isomorphic to $K^{\infty}_{<\omega}$. For example, let X_0 be the set of isolated nodes (i.e. those for which f(x)=1), or more generally, let X_0 be the set of all nodes for which f(x)=n for any fixed n.

However, $K_{<\omega}^{\infty}$ also has computable copies which are less uniformly constructed. In the next theorem, we build a computable $G \cong K_{<\omega}^{\infty}$ such that every computable partition $G = X_0 \sqcup X_1$ has at least one X_i classically isomorphic to $K_{<\omega}^{\infty}$.

The isomorphism type of $K_{<\omega}^{\infty}$ has several properties that make it suitable for this construction. Deleting finitely many vertices doesn't change its isomorphism type, and neither does adding countably many disjoint copies of finished graphs K_n for each $n \in \omega$. Moreover, a subgraph of K_n is isomorphic to K_m for some $m \leq n$. Therefore, if $K_{<\omega}^{\infty} = X_0 \sqcup X_1$, then each finished component of X_i is a copy of K_m for some m. It follows that X_i is isomorphic to $K_{<\omega}^{\infty}$ as long as it contains infinitely many finished copies of K_m for each m, i.e. we do not have to worry about what other finished components X_i contains.

In the proof of the following theorem, it is convenient to regard each Φ_e as $\{0,1\}$ -valued and to use K_0 to denote the empty set.

Theorem 3.5. There is a computable $G \cong K^{\infty}_{<\omega}$ such that for every computable partition $G = X_0 \sqcup X_1$, either X_0 or X_1 is classically isomorphic to $K^{\infty}_{<\omega}$.

Proof. We build G computably in stages with G_s denoting the graph at the end of stage s. The set of vertices in G_s will be a finite initial segment of ω . We neither add nor delete edges between vertices in G_s after stage s.

Let π_1 denote the projection function onto the first coordinate. As s goes to infinity, the values of $\pi_1(s)$ hit each natural number infinitely often. We use this property to ensure G is isomorphic to $K^{\infty}_{<\omega}$. At the start of stage s, we add $\pi_1(s)+1$ new vertices and put edges between them to form a finished copy of $K_{\pi_1(s)+1}$. This action ensures G has a subgraph isomorphic to $K^{\infty}_{<\omega}$. Therefore, as long as each additional finished component in G has the form K_n for some n, G will be isomorphic to $K^{\infty}_{<\omega}$.

For each index e, we let $X_0^e = \{x : \Phi_e(x) = 0\}$ and $X_1^e = \{x : \Phi_e(x) = 1\}$. If Φ_e is total, these sets partition G. We list our requirements as follows.

$$R_e: \text{If } \Phi_e \text{ is total, then } X_0^e \cong K_{<\omega}^{\infty} \text{ or } X_1^e \cong K_{<\omega}^{\infty}.$$

To satisfy this requirement, it suffices to ensure that at least one X_i contains infinitely many finished copies of K_n for each n.

The R_e module keeps three parameters: numbers m_0^e and m_1^e , and a finite set C^e . Each parameter will change during the construction. We typically suppress denoting the stage, but write $m_{i,s}^e$ and C_s^e (and later $C_{i,s}^e$) when we need to explicitly reference the stage. The numbers m_0^e and m_1^e track the finished graphs K_n we have seen in X_0 and X_1 respectively. For each $n < m_i^e$, we will already have forced a finished copy of $K_{\pi_1(n)+1}$ into X_i with separate copies when $n \neq n'$ and $\pi_1(n) = \pi_1(n')$. The current goal for R_e is to create a finished copy of $K_{\pi_1(m_0^e)+1}$ in X_0 or $K_{\pi_1(m_1^e)+1}$ in X_1 .

To meet this goal, add a new element y_0 to G_s with no edges, set $C^e = \{y_0\}$ and $C_i^e = \{y \in C^e : \Phi_e(y) = i\}$ for i < 2. Currently, C^e is a copy of K_1 and each C_i^e is a copy of K_0 (i.e. is empty). If $\Phi_e(y_0)$ halts at a future stage s_0 , one of the C_i^e sets becomes a copy of K_1 and the other remains a copy of K_0 . If $C_i^e \cong K_{\pi_1(m_i^e)+1}$ for an i < 2, then we have met our goal on the X_i side. In this case, set $m_i^e = m_i^e + 1$, empty C^e , leave m_{1-i}^e unchanged, and restart the R_e module with the new parameters.

Otherwise, we add a new element y_1 to G_{s_0} , connect it to y_0 , and expand $C^e = \{y_0, y_1\}$ to a copy of K_2 . If $\Phi_e(y_1)$ later halts at s_1 , one of the C_i^e sets grows by one element. If $C_i^e \cong K_{\pi_1(n_i)+1}$, then we have met our goal on the X_i side, and so we increment m_i^e , empty C^e , and restart the R_e module with the new parameters. If we have not met the goal on either side, add a new vertex y_2 to G_{s_1} , connect it to y_0 and y_1 , expand $C^e = \{y_0, y_1, y_2\}$ to a copy of K_3 , and repeat the process above.

We cannot cycle through this process infinitely often because when $\Phi_e(y_k)$ halts, we have $|C_0^e| + |C_1^e| = k + 1$. Therefore, before $|C^e| = \pi_1(m_0^e) + \pi_1(m_1^e) + 2$, one of the C_i^e sets must reach $|C_i^e| = \pi_1(m_i^e) + 1$, and so satisfies $C_i^e \cong K_{\pi_1(m_i^e)+1}$, meeting our goal on the X_i side.

When we restart the R_e module at a stage s, we empty C^e (i.e. set $C_s^e = \emptyset$) and begin again with C_s^e starting a new connected component. After this stage, we never add vertices to the old component C_{s-1}^e . Therefore, C_{s-1}^e is a finished component in G, each $C_{i,s-1}^e$ is finished in X_i , and so we have created a finished copy of $K_{\pi_1(m_{i,s-1}^e)+1}$ in X_i for the i < 2 such that $C_{i,s-1}^e \cong K_{\pi_1(m_{i,s-1}^e)+1}$.

Furthermore, each time we restart the R_e module, one of the m_i^e parameters is incremented. Therefore, if Φ_e is total, the values of at least one m_i^e go to infinity, causing $\pi_1(m_i^e)$ to cycle through each number infinitely often. It follows that X_i contains infinitely many finished copies of K_n for each $n \geq 1$ and hence is isomorphic to $K_{\leq \omega}^{\infty}$.

The formal construction proceeds as follows. At stage 0, set $G_0 = C^0 = \{0\}$, set $m_0^e = m_1^e = 0$ for all e, and set $C^e = \emptyset$ for e > 0.

At stage s>0, let $k=\pi_1(s)+2+|\{e< s: \Phi_{e,s}(\max C^e) \text{ halts}\}|$, $X_s=\{x_0,\cdots,x_{k-1}\}$ be the k least unused numbers, and $G_s=G_{s-1}\cup X_s$. Add edges between x_i and x_j for $i\neq j\leq \pi_1(s)$ to create a finished copy of $K_{\pi_1(s)+1}$. Set $C^s=\{x_{\pi_1(s)+1}\}$ and leave the remaining parameters for $e\geq s$ unchanged.

Consider the indices e < s in order. If $\Phi_{e,s}(\max C^e)$ does not halt, leave m_i^e and C^e unchanged and go to e+1. If $\Phi_{e,s}(\max C^e)$ halts, then check whether $C_i^e = \{z \in C^e : \Phi_{e,s} = i\} \cong K_{\pi_1(m_i^e)+1}$ for some i < 2. If not, set $C_s^e = C_{s-1}^e \cup \{x_\ell\}$ where x_ℓ is the least unused number from X_s . Connect x_ℓ to each element of C_{s-1}^e so that $C_s^e \cong K_{|C^e|}$. Leave m_0^e and m_1^e unchanged and go to e+1. Finally, if $C_i^e \cong K_{\pi_1(m_i^e)+1}$, then set $C_s^e = \{x_\ell\}$, $m_{i,s}^e = m_{i,s-1}^e + 1$, $m_{1-i,s}^e = m_{1-i,s-1}^e$, and go to e+1.

This completes the formal construction. The details of the verification are essentially contained in the informal description above as there is no interaction between the requirements with different indices. \Box

Recall that Theorem 3.3 says every computable graph has a computable copy in which the set of isolated nodes is computable. We end this section with its proof.

Proof. Fix a computable graph G and assume without loss of generality that the set of vertices is ω . Suppose the set of isolated nodes is not computable, and hence there are infinitely many isolated nodes as well as infinitely many non-isolated nodes. Let G_s denote the subgraph on $\{0, \ldots, s\}$.

We build a computable graph H and a Δ_2^0 isomorphism $f: G \to H$ in stages such that the isolated nodes in H are exactly the even numbers. At stage s, we define an injection f_s on G_s and let H_s denote the range of f_s with edge relation defined by $E_{H_s}(n,m)$ if and only if $E_{G_s}(f_s^{-1}(n),f_s^{-1}(m))$. Thus, by definition, f_s will be an isomorphism from G_s to H_s . To make the edge relation on H computable, we ensure that $E_{H_s}(n,m)$ holds if and only if $E_{H_t}(n,m)$ holds for all $t \geq s$ such that $n,m \in H_t$.

The domains of the graphs H_s will not necessarily be monotonic. Suppose x is isolated in G_s , so we set $f_s(x) = 2n$ to map x to an even number in H_s . If we discover x is not isolated in G_{s+1} by seeing $E_G(x,s+1)$, then we need to shift $f_{s+1}(x)$ to an odd number. We collect the nodes $x_0 < \cdots < x_\ell$ that were isolated in G_s but are connected to s+1, and we map these nodes to the least odd numbers not in H_s . Next, we collect the nodes $a_0 < \cdots < a_j$ (if any) that remain isolated in G_{s+1} and map these elements onto an initial segment of the even numbers. Since the number of isolated nodes has gone down from G_s to G_{s+1} , at least one even number in H_s is no longer in H_{s+1} . However, because G has infinitely many isolated nodes, each even number will eventually be permanently in the range of the f_s maps.

We now give the construction. At stage 0, set $f_0(0) = 0$, noting that 0 is isolated in G_0 . At stage s + 1, we define f_{s+1} as follows.

Case 1: s+1 is isolated in G_{s+1} . Let m be the least even number such that $m \notin H_s$. Define $f_{s+1}(x) = f_s(x)$ for $x \le s$ and $f_{s+1}(s+1) = m$.

Case 2: s+1 is not isolated in G_{s+1} but is not attached to any nodes which are isolated in G_s . Let k be the least odd number such that $k \notin H_s$. Define $f_{s+1}(x) = f_s(x)$ for $x \le s$ and $f_{s+1}(s+1) = k$.

Case 3: s+1 is not isolated in G_{s+1} and it is attached to at least one node which is isolated in G_s . Let $x_0 < \cdots < x_\ell$ denote the nodes which are isolated in G_s but are connected to s+1 in G_{s+1} . Let $a_0 < \ldots < a_j$ denote the nodes (if any) which are isolated in G_{s+1} . Let $k_0 < \cdots < k_{\ell+1}$ denote the least odd numbers not in H_s . For $x \le s+1$, define

$$f_{s+1}(x) = \begin{cases} 2i & \text{if } x = a_i \\ k_i & \text{if } x = x_i \\ k_{\ell+1} & \text{if } x = s+1 \\ f_s(x) & \text{otherwise} \end{cases}$$

This completes the construction. It is straightforward to check a number of properties by induction on s. First, each function f_s is injective. Second, H_s consists of the union of an initial segment of the even numbers and an initial segment of the odd numbers. Third, x is isolated in G_s if and only if $f_s(x)$ is even.

Therefore, if $n \in H_s$ is even, then $\neg E_{H_s}(n,m)$ for all $m \in H_s$. Fourth, if $m \in H_s$ and $m \notin H_{s+1}$, then m is even. Fifth, if m is odd and $f_s(x) = m$, then $f_t(x) = m$ for all $t \geq s$.

Lemma 3.6. For s < t and $m, n \in H_s \cap H_t$, $E_{H_s}(m, n)$ if and only if $E_{H_t}(m, n)$.

Proof. If m or n is even, then by the third property above, $\neg E_{H_s}(n,m)$ and $\neg E_{H_t}(n,m)$. Therefore, assume m and n are odd. Fix $x,y \in G_s$ with $f_s(x) = m$ and $f_s(y) = n$. By the fifth property, $f_t(x) = m$ and $f_t(y) = n$, and so by definition, $E_{H_s}(n,m)$ and $E_{H_t}(n,m)$ are each equivalent to $E_G(x,y)$.

Lemma 3.7. For each x, there is a stage s such that $f_t(x) = f_s(x)$ for all $t \ge s$.

Proof. Suppose x is not isolated and let y be the least node such that $E_G(x,y)$. If y < x, then x is not isolated in G_x and therefore $f_x(x)$ is odd. If x < y, then at stage y, the construction acts in Case 3 and the value $f_y(x)$ is odd. In either case, once x is mapped to an odd number, $f_s(x)$ has stabilized.

Suppose x is isolated and so $f_x(x)$ is even. For $s \ge x$, $f_{s+1}(x) \ne f_s(x)$ only if a node y < x is isolated in G_s but is connected to s+1. In this case, $f_{s+1}(y)$ becomes odd and $f_{s+1}(x) < f_s(x)$ is a smaller even number. This drop can happen at most finitely often before reaching a limiting value.

Lemma 3.8. For each n, there is an $x \in G$ and a stage s such that $f_t(x) = n$ for all $t \geq s$.

Proof. Suppose n is odd. Fix s such that G_s contains at least (n+1)/2 non-isolated nodes. Since f_s maps the non-isolated nodes of G_s onto an initial segment of the odd numbers, there is an $x \in G_s$ such that $f_s(x) = n$. Because n is odd, $f_t(x) = f_s(x) = n$ for all $t \ge s$.

Suppose n is even. Let $a_0 < \cdots < a_{n/2}$ be an initial segment of the isolated nodes in G. Fix s such that these nodes form an initial segment of the isolated nodes in G_s . For every $t \geq s$, f_t maps these nodes onto an initial segment of the even numbers, and therefore, $f_t(a_{n/2}) = n$ for all $t \geq s$.

Define $H = (\omega, E_H)$ with $E_H(n, m)$ holds if and only if $E_{H_s}(n, m)$ holds for the least s with $n, m \in H_s$. By Lemma 3.6, $E_H(n, m)$ holds if and only if $E_{H_s}(n, m)$ holds for some, or equivalently all, s with $n, m \in H_s$. It follows that n is isolated in H if and only if n is even.

By Lemmas 3.7 and 3.8, the function $f = \lim_s f_s$ is total and onto ω . It is injective because each f_s is injective, so $f : \omega \to \omega$ is a bijection. To finish the proof, we show that f is an isomorphism between G and H.

Lemma 3.9. $f: G \to H$ is an isomorphism.

Proof. Fix $x, y \in G$ and $s \ge \max\{x, y\}$ such that $f(x) = f_s(x)$ and $f(y) = f_s(y)$.

$$E_G(x,y) \Leftrightarrow E_{G_s}(x,y) \Leftrightarrow E_{H_s}(f_s(x),f_s(y)) \Leftrightarrow E_H(f(x),f(y)).$$

The first equivalence follows from $x, y \in G_s$, the second follows from the definition of E_{H_s} , and the third follows because $f(x) = f_s(x)$ and $f(y) = f_s(y)$.

This completes the proof of Theorem 3.3.

4. Towards an analysis in REC

Theorem 2.5 holds in REC if and only if for every computable graph G not isomorphic to K_{ω} , \overline{K}_{ω} or \mathcal{R} , there is a computable partition $G = X_0 \sqcup X_1$ such that neither X_0 nor X_1 is computably isomorphic to G. (Recall that we do not need to say "G is not computably isomorphic to K_{ω} , \overline{K}_{ω} and \mathcal{R} " because K_{ω} , \overline{K}_{ω} and \mathcal{R} are computably categorical.) While this full statement remains open, we handle a special case in this section.

If G has no isolated or universal vertices, then as noted in the proof of Theorem 3.2, there is a computable partition such that neither half is even classically isomorphic to G. Therefore, to study Theorem 2.5 in REC, we can restrict our attention to computable graphs that have isolated or universal vertices. Moreover, since isolated nodes in G correspond to universal nodes in \overline{G} , we can apply Proposition 2.2 to restrict to computable graphs that have isolated nodes. It follows that Theorem 2.5 holds in REC if and only if for every computable graph G that has isolated nodes but is not isomorphic to \overline{K}_{ω} , there is a computable partition $G = X_0 \sqcup X_1$ such that neither X_0 nor X_1 is computably isomorphic to G. We establish this statement under the additional hypothesis that the set of vertices of finite degree is computably enumerable.

Theorem 4.1. Let G be a computable graph that has isolated vertices but is not isomorphic to \overline{K}_{ω} . If the set of vertices with finite degree is c.e., then there is a computable partition $G = X_0 \sqcup X_1$ such that neither X_0 nor X_1 is computably isomorphic to G.

The corollary follows from Theorem 4.1 and Proposition 2.2.

Corollary 4.2. Let G be a computable graph that has universal vertices but is not isomorphic to K_{ω} . If the set of vertices with cofinite degree is c.e., then there is a computable partition $G = X_0 \sqcup X_1$ such that neither X_0 nor X_1 is computably isomorphic to G.

We now give the proof of Theorem 4.1.

Proof. Without loss of generality, assume the set of vertices of G is ω . If the set of isolated nodes is computable, then let X_0 be the set of isolated nodes and $X_1 = G \setminus X_0$ as in the proof of Theorem 2.5. In this case, neither X_0 nor X_1 is even classically isomorphic to G. Therefore, assume the set of isolated nodes is not computable, and so in particular, is infinite.

The construction proceeds in stages with G_s denoting the subgraph of G on $\{0,\ldots,s\}$. At stage s, we determine whether to put s in X_0 or X_1 . Following the usual use conventions, if $\Phi_{e,s}(x) = y$, then x, y < s, so $x \in G_s$ and y has already been placed in either X_0 or X_1 .

For each $e \in \omega$, we need the partition to satisfy the following requirement.

 $R_e:\Phi_e$ is not an isomorphism from G to X_0 or X_1 .

The strategy for R_e keeps five parameters: numbers i_e and x_e , finite sets D_e and S_e , and a binary string σ_e . The parameter i_e is defined when $\Phi_e(0)$ converges and is set such that $\Phi_e(0) \in X_{i_e}$, indicating we must work to prevent Φ_e from being an isomorphism onto X_{i_e} . Unlike the other parameters, i_e does not change values once it is defined.

The goal is to make Φ_e map an isolated node in G to a non-isolated node in X_{i_e} or vice versa. The parameter x_e marks the isolated node we are currently working with. As the value of x_e grows, we attempt to compute the set of isolated nodes in G, defining (and later extending) σ_e to be an initial segment of this computable function. Eventually, because the set of isolated vertices is not computable, σ_e must be wrong about some vertex, and this incorrect vertex will be a diagonalizing value for Φ_e . The sets D_e and S_e contain nodes related to commitments R_e makes about putting future vertices into X_{i_e} or X_{1-i_e} as we try to make specific nodes in X_{i_e} isolated or not

The construction for a single R_e works as follows. Suppose at stage s_0 we define i_e such that $\Phi_e(0) \in X_{i_e}$. We set x_e to be the least vertex that currently looks isolated in G. Since G_{s_0} might not contain any isolated vertices, we may need to look at vertices in G_t for $t \geq s_0$ to find a vertex that is isolated in G_t . At this point, we know the vertices $v < x_e$ are not isolated in G, but we are unsure whether x_e will be isolated or not. We record this information by defining σ_e with $|\sigma_e| = x_e$ and $\sigma_e(v) = 0$ for $v < x_e$.

We do nothing more until $\Phi_e(x_e)$ converges. Assume $\Phi_e(x_e) = y \in X_{i_e}$ else we win R_e trivially. Our goal is to use y to guess whether x_e will be isolated in G in such a way that if our guess is wrong, R_e will be met. Since we are defining X_0 and X_1 , we have some control over whether y will be isolated in X_{i_e} .

We split into three substrategies. First, if y already has a neighbor in X_{i_e} , then we know y is not isolated in X_{i_e} . We declare that x_e will not be isolated in G by setting $\sigma_e(x_e) = 0$. If σ_e turns out to be wrong about x_e , then we win R_e because $\Phi_e(x_e) = y$ with x_e isolated in G and Y not isolated in X_{i_e} .

Assume y does not currently have a neighbor in X_{i_e} . To determine whether to follow the second or third substrategy, we use the hypothesis that the nodes of finite degree form a c.e. set. In parallel, we enumerate the vertices of finite degree searching for y, and we look ahead in G to see if y gains a future neighbor which is not yet promised to be put in X_0 or X_1 . At least one of these searches must succeed as R_e (and later, even higher priority requirements) will only have made finitely many future commitments. The search that terminates first determines which substrategy we follow.

If we see y enumerated in the set of vertices with finite degree, we promise to put all of y's future neighbors into X_{1-i_e} to make y isolated in X_{i_e} . To keep track of this commitment, we place y in D_e . We declare x_e will be isolated by setting $\sigma_e(x_e) = 1$. As long as we keep our promise, if σ_e turns out to be wrong about x_e , then we win R_e because Φ_e maps a non-isolated node x_e in G to an isolated node y in X_{i_e} .

If we find a future uncommitted neighbor v of y, we promise to put v into X_{i_e} at stage v and we mark this commitment by putting v into S_e . We declare x_e will not be isolated by setting $\sigma_e(x_e) = 0$. As long as we keep our promise to put v in X_{i_e} , y will not be isolated in X_{i_e} . Therefore, again, we win R_e if σ_e is incorrect about x_e .

Once we have defined $\sigma_e(x_e)$, we repeat the process above. We define $x_{e,s}$ to be the next largest number that currently looks isolated, set $\sigma_e(v) = 0$ for $x_{e,s-1} < v < x_{e,s}$, wait for $\Phi_e(x_e)$ to converge, and employ the appropriate substrategy to define σ_e on the new value of x_e . This process cannot repeat infinitely because the

set of isolated nodes is not computable. Therefore, we must eventually see a true diagonalization that satisfies R_e .

The strategies for different R requirements interact in a standard finite injury way with the priority determined by the index on R_e . If more than one strategy has an opinion about whether to place the vertex s into X_0 or X_1 at stage s, we follow the higher priority strategy and initialize the lower priority one.

One feature to note is that when x_e is defined at stage s, it is currently isolated in G_s (or possibly in G_t for some t>s). By the time $\Phi_e(x_e)$ converges, x_e may not longer be isolated. However, that doesn't make any difference for our strategies. We use the definitions of X_0 and X_1 to force graph theoretic behavior on the image side with no regard to whether the vertex x_e has remained isolated after the stage at which the parameter is assigned.

We give the formal construction. A vertex v is claimed by R_e if $v \in S_e$ or v is connected to a vertex in D_e . When R_e is initialized, its parameters i_e , x_e and σ_e are undefined and the sets D_e and S_e are set to \emptyset . R_e looks satisfied at stage s if any of the following are true.

- (S1) $\Phi_{e,s}(0)$ diverges.
- $(S2) \ (\exists a \neq b < s) \ (\Phi_{e,s}(a) \downarrow = \Phi_{e,s}(b) \downarrow \lor (\Phi_{e,s}(a) \in X_0 \land \Phi_{e,s}(b) \in X_1)).$
- (S3) x_e is defined but $\Phi_{e,s}(x_e)$ diverges.
- (S4) $(\exists x < s)(\exists y \in D_e) (\Phi_{e,s}(x) = y \land x \text{ is not isolated}).$
- (S5) $(\exists x < s)(\exists y, z)$ (x is isolated $\land \Phi_{e,s}(x) = y \land E(y, z) \land z \in S_e$).

At stage 0, initialize all requirements and put 0 into X_0 . At stage s>0, let each R_e with e< s act in order as described in the R_e module below. When these requirements are done acting, check if there is an e< s such that s is claimed by R_e . If not, put s into X_0 . If so, let e be the least such index. If $s\in S_e$, put s into X_{i_e} and otherwise put s into X_{1-i_e} . Initialize all R_i with i>e and end the stage. For the R_e module, act in the first case below that applies.

Case 1. R_e looks satisfied at s. Do nothing and go to the next requirement.

Case 2. i_e is not defined. Since R_e does not look satisfied, $\Phi_{e,s}(0)$ must converge. By use conventions, $\Phi_{e,s}(0) < s$, so $\Phi_e(0)$ is already in X_0 or X_1 . Set i_e such that $\Phi_e(0) \in X_{i_e}$ and go to the next requirement.

Case 3. x_e is not defined. In this case, σ_e is also undefined. Set $x_{e,s}$ to be the least vertex that is isolated in some G_t for $t \geq s$. Define σ_e with $|\sigma_e| = x_e$ and $\sigma_e(v) = 0$ for all $v < x_e$. Go to the next requirement.

Case 4. x_e is defined. Since x_e is defined and R_e does not look satisfied, $\Phi_{e,s}(x_e)$ must converge. Let $y_e = \Phi_e(x_e)$ and note that $y_e \in X_{i_e}$.

- (4.1) If y_e has a neighbor in X_{i_e} , define $x_{e,s}$ and $\sigma_{e,s}$ as described after (4.2).
- (4.2) Otherwise, dovetail the enumerations of the finite degree vertices and of the neighbors of y_e until one of (4.2.1) or (4.2.2) occurs.
 - (4.2.1) y_e is enumerated as a vertex with finite degree.
 - (4.2.2) y_e gets a new neighbor that is not protected by a requirement R_i with i < e.

If (4.2.1) halts first, put y_e into D_e . If (4.2.2) halts first, put the neighbor into S_e . In either case, define $x_{e,s}$ and $\sigma_{e,s}$ as described below.

Set $x_{e,s}$ to be the least vertex $v > x_{e,s-1}$ that is isolated in G_t for some $t \ge s$. Define $\sigma_{e,s}$ to be an extension of $\sigma_{e,s-1}$ of length $x_{e,s}$. If we acted in (4.2.1), set

 $\sigma_{e,s}(x_{e,s-1}) = 1$, and if we acted in (4.1) or (4.2.2), set $\sigma_{e,s}(x_{e,s-1}) = 0$. In either case, set $\sigma_{e,s}(v) = 0$ for $x_{e,s-1} < v < x_{e,s}$.

This completes the construction. We note some properties that are clear by inspection and that we use implicitly below. First, for any index e and stage s, x_e is defined if and only if σ_e is defined. Second, if $y \in D_e$, then y has finite degree in G. Moreover, if y is placed in D_e at stage s, then y is isolated in G_s . Third, at any stage s, each requirement R_i has claimed only finitely many vertices. Therefore, in (4.2), if y_e has infinite degree, R_e will eventually see a vertex connected to y_e that is not claimed by any R_i with i < e.

Lemma 4.3. Consider an index e and a stage s such that $\sigma_{e,s}$ is defined. Let t < s be the last stage at which R_e was initialized. For a vertex $v < |\sigma_{e,s}|$, let $t_v > t$ be the least stage such that $|\sigma_{e,t_v}| > v$. If $v \neq x_{e,t_v-1}$, then v is not isolated in G and $\sigma_{e,t_v}(v) = 0$.

Proof. By the hypotheses, at stage t_v-1 , either σ_e is undefined or $|\sigma_{e,t_v-1}| \leq v$. In the former case, R_e acts in Case 3 at t_v to define σ_{e,t_v} , and in the latter case, R_e acts in Case 4 to extend σ_{e,t_v-1} to σ_{e,t_v} . The arguments in each case are essentially the same, so we assume that R_e acts in Case 4.

The parameter x_{e,t_v} is defined to be the least vertex greater than x_{e,t_v-1} that is isolated in G_t for some $t \geq t_v$. Fix the stage $t \geq t_v$ such that x_{e,t_v} is isolated in G_t . Since $v < x_{e,t_v}$ was not chosen as the value of the parameter, it follows that v is not isolated in G_t and hence is not isolated in G. Furthermore, since $x_{e,t_v-1} < v < x_{e,t_v}$, we set $\sigma_{e,t_v}(v) = 0$.

Lemma 4.4. For each e, the following properties hold.

- (P1) R_e is initialized only finitely often.
- (P2) There is a stage t such that for all $s \geq t$, R_e looks satisfied at s.

Proof. We prove the properties simultaneously by induction on e. First, consider (P1). This property holds trivially for R_0 . For e > 0, fix a stage t such that for all j < e, R_j is never initialized after t and R_j looks satisfied at s for all $s \ge t$. By construction, the parameters for R_j do not change after t. Since each $y \in D_j$ has finite degree, the sets D_j and S_j can cause a vertex s to be put into X_{ij} or X_{1-ij} only finitely often after stage t. In particular, each R_j can only initialize R_e finitely often and so (P1) holds for e.

For (P2), fix e. Let t be the last stage at which R_e is initialized. Suppose for a contradiction, there is no stage t as in (P2). By (S1)-(S3), we must have that $\Phi_e(0)$ converges, Φ_e is 1-to-1 and maps into X_{i_e} , and $\Phi_e(x_e)$ converges for each value of the parameter x_e after stage t. It follows that, after stage t, x_e takes on an infinite sequence of values $z_0 < z_1 < \ldots$

Let s_k be the stage at which R_e acts in Case 4 to set $x_{e,s_k} = z_k$ and define σ_{e,s_k} with length x_{e,s_k} . By construction, the sequences σ_{e,s_k} are nested and uniformly computable, so $g_e = \bigcup_k \sigma_{e,s_k}$ is a computable function. To finish the proof, it suffices to show that g_e is the characteristic function for the set of isolated nodes as this provides the desired contradiction.

By Lemma 4.3, if $v \neq z_k$ for all k, then v is not isolated in G and $g_e(v) = \sigma_{e,s_\ell}(v) = 0$, where ℓ is least such that $v < z_\ell$. Therefore, g_e is correct on all nodes not of the form z_k .

The value of $g_e(z_k)$ is set at stage s_{k+1} when R_e sees $\Phi_{e,s_{k+1}}(z_k)$ converge and defines $\sigma_{e,s_{k+1}}(z_k)$ in Case 4. Let $y_k = \Phi_e(z_k)$ and note that by (S2), $y_e \in X_{i_e}$. At

stage s_{k+1} , R_e either acts in (4.1), puts a neighbor v_k of y_k into S_e via (4.2.2), or puts y_k into D_e via (4.2.1).

Suppose R_e acts in (4.1) or puts v_k in S_e in (4.2.2). By construction, $g_e(z_k) = \sigma_{e,s_{k+1}}(z_k) = 0$, so we need to show z_k is not isolated in G. We claim that y_k will not be isolated in X_{i_e} . If R_e acts in (4.1), then y_k is already not isolated in $X_{i_e,s_{k+1}}$. Otherwise, R_e acts in (4.2.2), and because R_e is not initialized after stage t, the vertex v_k remains in S_e until it is placed in X_{i_e} at stage v_k making y_k not isolated in X_{i_e} . It now follows by (S5) that z_k must eventually get a neighbor in G.

Finally, suppose R_e puts y_k into D_e via (4.2.1). By construction, $g_e(z_k) = \sigma_{e,s_{k+1}}(z_k) = 1$, so we need to show z_k is isolated in G. Since R_e is not initialized again, y_k remains in D_e at all future stages. If z_k were to get a neighbor at a future stage s', then (S4) would be true at every $s \geq s'$, contradicting the assumption that there is no stage t as in (P2).

To complete the proof of Theorem 4.1, we show each R_e is satisfied. Fix e, let t_0 be the last stage at which R_e is initialized and let $t_1 \geq t_0$ be the stage from (P2). If R_e looks satisfied for all $s \geq t_1$ because of (S1), (S2) or (S3), then R_e is satisfied because Φ_e is either not total, not one-to-one, or doesn't map into a single X_i .

Suppose R_e looks satisfied for all $s \ge t_1$ because of (S4) with $\Phi_{e,t_1}(x) = y \in D_e$. The vertex y must have been placed in D_e after stage t_0 , so R_e is not initialized after y enters D_e . It follows that no higher priority requirement overrides the R_e commitment to put y's neighbors into X_{1-i_e} . Therefore, eventually all of y's (finitely many) neighbors are in X_{1-i_e} , so y is, in fact, isolated in X_{i_e} . R_e is won because x is not isolated in G but y is isolated in X_{i_e} .

Finally, suppose R_e looks satisfied because of (S5) with $\Phi_{e,t_1}(x) = y$ and an edge E(y,z) with $z \in S_e$. As in the previous paragraph, R_e keeps its commitment to put z into X_{i_e} . Therefore, y is not isolated in X_{i_e} , so R_e is won because x is isolated in G and g is not isolated in X_{i_e} .

5. Induction aspects

In the classical proof of Theorem 2.5, we used the least number principle $\mathsf{L}\Sigma^0_2$ to conclude that if G is not isomorphic to \mathcal{R} , then there is a least n such that there exist finite sets A and B with |A|+|B|=n for which the extension axiom $\varphi_{\mathcal{R}}$ fails. In this section, we show that the statement asserting the existence of a least such n is equivalent to $\mathsf{L}\Sigma^0_2$.

Let G be a graph. $\langle X_0, X_1 \rangle$ is an n-extension pair if X_0 and X_1 are disjoint subsets of G with $|X_0| + |X_1| = n$. The extension property holds for $\langle X_0, X_1 \rangle$ in G if there is a vertex $v \in G \setminus (X_0 \cup X_1)$ that is connected to every vertex in X_0 and to none of the vertices in X_1 . By definition, G is a random graph if, for all n, every n-extension pair in G has the extension property.

Keep in mind two properties of extension pairs during the construction. First, the only 0-extension pair is $\langle \emptyset, \emptyset \rangle$, which always has the extension property since G is nonempty. Therefore, if $G \ncong \mathcal{R}$, then the least n for which the extension property fails satisfies $n \ge 1$. Second, if G is infinite and has an m-extension pair $\langle X_0, X_1 \rangle$ without the extension property, then for every $n \ge m$, we can form an n-extension pair without the extension property by adding n-m many vertices from $G \setminus (X_0 \cup X_1)$ to X_0 .

Theorem 5.1. The following are equivalent over RCA_0 .

- (1) For every graph G not isomorphic to \mathcal{R} , there is a least n for which there is an n-extension pair $\langle X_0, X_1 \rangle$ that fails to have the extension property.
- (2) $L\Sigma_{2}^{0}$.

Proof. (2) implies (1) because the formula with free variable n saying "there is an n-extension pair that fails to have the extension property" is Σ_2^0 .

For (1) implies (2), fix a Σ_2^0 formula $\psi(n)$ of the form $\exists x \forall y \phi(n, x, y)$, where ϕ is Σ_0^0 , such that $\psi(n)$ holds for some n. Without loss of generality, we can assume $\neg \psi(0)$ by replacing $\psi(n)$ by $n > 0 \land \psi(n-1)$ if necessary. In addition, it suffices to construct G such that $(\exists m \leq n)\psi(m)$ holds if and only if for some $m \leq n$, there is an m-extension pair without the extension property.

We construct G in stages with G_s denoting the graph at stage s. For each $n \geq 1$, we have a strategy which tries to ensure that $\psi(n)$ holds if and only if the extension property fails for a pair $\langle F, \emptyset \rangle$ with |F| = n. The strategy for n keeps two parameters: x_n and F_n . The parameter x_n is the existential witness we are checking in the formula $\psi(n)$ and F_n is a set of size n. As long as $(\forall y \leq s)\phi(n, x_n, y)$ holds, we prevent any node in G_s from connecting to every vertex in F_n . However, if $(\exists y \leq s) \neg \phi(n, x_n, y)$, then we add new nodes to witness the extension property for every n-extension pair in G_s including $\langle F_n, \emptyset \rangle$. We increment x_n and add n new elements to form a new set F_n .

This strategy succeeds in isolation. If $\psi(n)$ holds, then x_n eventually reaches a value for which $\forall y \phi(n, x_n, y)$. We choose a final set F_n and prohibit any node from connecting to all of F_n , making the extension property fail for $\langle F_n, \emptyset \rangle$. On the other hand, if $\neg \psi(n)$ holds, then for every value of x_n , there is a stage s such that $(\exists y \leq s) \neg \phi(n, x_n, y)$, at which point we increase x_n and add witnesses for all n-extension pairs in G_s . Since each n-extension pair $\langle X_0, X_1 \rangle$ in G is contained in G_s for large enough s, the extension property holds for every n-extension pair.

Unfortunately, these strategies interfere with each other. Consider $n_0 < n_1$. When n_1 adds witnesses to realize the extension property for every n_1 -extension pair, it adds nodes connected to every point in F_{n_0} . To protect n_0 , we restrict n_1 from adding a witness for $\langle X_0, X_1 \rangle$ when $F_{n_0} \subseteq X_0$. When $\neg \psi(n_0)$ holds, this restriction has no effect in the limit because the parameter F_{n_0} never settles on a final set. However, when $\psi(n_0)$ holds, it prevents n_1 from realizing the extension property for sets extending the final value of $\langle F_{n_0}, \emptyset \rangle$. It also guarantees there will be n_1 -extension pairs without the extension property, a condition that is necessary considering the comments before Theorem 5.1.

We give the full construction of G. For each $n \ge 1$, we keep parameters $x_{n,s} \in \mathbb{N}$ and $F_{n,s}$ with $|F_{n,s}| = n$ defined by primitive recursion on s. We set default values $x_{n,s} = 0$ and $F_{n,s} = \{0, \ldots, n-1\}$ for n > s.

We define G_s and m_s by primitive recursion on s. $G_s = \langle V_s, E_s \rangle$ with vertex set $V_s = \{0, \ldots, m_s\}$ and edge relation $E_s \subseteq V_s \times V_s$. The values of m_s are strictly increasing and unbounded, so the vertex set of G is $\cup_s V_s = \mathbb{N}$. We maintain $E_{s+1} \upharpoonright V_s = E_s$ so $E_G = \cup_s E_s$ is definable with bounded quantifiers:

 $E_G(n,m)$ holds if and only if $E_{\max\{n,m\}}(n,m)$ holds.

For s=0, set $m_0=0$, $V_0=\{0\}$ and $E_0=\emptyset$ with the default parameters $x_{1,0}=0$ and $F_{1,0}=\{0\}$. (This is a throwaway stage because the strategies are only for $n\geq 1$.)

For s = 1, we set the initial real parameters for the n = 1 strategy. Set $x_{1,1} = 0$, $m_1 = 1$ (so $V_1 = \{0, 1\}$), $E_1 = \emptyset$ and $F_{1,1} = \{1\}$.

For s > 1, we determine which n < s need to act. Define

$$Y_s = \{n : 1 \le n < s \text{ and } (\exists y \le s) \neg \phi(n, x_{n,s-1}, y)\}.$$

If $Y_s = \emptyset$, then we do not act for any $1 \le n < s$. Set $m_s = m_{s-1} + s$ to add s new elements to G_s , but keep $E_s = E_{s-1}$ so there are no edges between the new vertices and the nodes in G_s . Set $x_{s,s} = 0$ and let $F_{s,s} = \{m_{s-1} + 1, \dots, m_s\}$ be the set of s many new elements. For $1 \le n < s$, leave the parameters unchanged: $x_{n,s} = x_{n,s-1}$ and $F_{n,s} = F_{n,s-1}$.

 $x_{n,s} = x_{n,s-1}$ and $F_{n,s} = F_{n,s-1}$. If $Y_s \neq \emptyset$, then we act for each $n \in Y_s$. For $n \in Y_s$, let k_n be the number of n-extension pairs $\langle X_0, X_1 \rangle$ in G_{s-1} such that there is no m < n with $m \notin Y_s$ and $F_{m,s-1} \subseteq X_0$. We refer to such a pair as an active n-extension pair.

Set $m_s = m_{s-1} + s + \sum_{n \in Y_s} (k_n + n)$. Use the first $\sum_{n \in Y_s} k_n$ new elements as follows. Order the active *n*-extension pairs $\langle X_0, X_1 \rangle$ for $n \in Y_s$ and, considering these pairs in order, put edges from the next new element in G_s to the nodes in X_0 (and to no other nodes). These are the only new edges added to G_s .

If $n \notin Y_s$, keep $x_{n,s} = x_{n,s-1}$ and $F_{n,s} = F_{n,s-1}$. If $n \in Y_s$, set $x_{n,s}$ to be the least $x \le s$ such that $(\forall y \le s)\phi(n,x,y)$ holds. If there is no such $x \le s$, then set $x_{n,s} = s+1$. Use the next $\sum_{n \in Y_s} n$ elements to define $F_{n,s}$ for $n \in Y_s$. Consider these n in order, setting $F_{n,s}$ to be the set of the next n many new elements in G_s . Finally, set $x_{s,s} = 0$ and $F_{s,s}$ to be the set of the remaining s many new elements in G_s . This completes the construction at stage s.

By Σ_0^0 induction on s, it follows that for all s and $1 \le n \le s$, $F_{n,s}$ is a set of size n with $x_{n,s} < \min F_{n,s}$ and there is no $z \in G_s$ connected to all the nodes in $F_{n,s}$. In addition, $x_{n,s} \le x_{n,s+1}$, and, by Σ_1^0 induction on s, with x as a parameter, we have that the condition $\forall y \phi(n, x, y)$ implies that $x_{n,s} \le x$.

Suppose $\psi(n)$ holds. By L Π_1^0 (which holds in RCA₀), there is a least x such that $\forall y \phi(n, x, y)$. Since x is chosen least, $(\forall u < x) \exists y \neg \phi(n, u, y)$ holds, and by B Σ_0^0 , there is a t such that $(\forall u < x) (\exists y < t) \neg \phi(n, u, y)$. Without loss of generality, t > n. We claim that $x_{n,t} = x$. If $x_{n,t-1} = x$, then we are done since $x_{n,t-1} \leq x_{n,t} \leq x$ by the previous paragraph. If $x_{n,t-1} < x$, then $n \in Y_t$ and we set $x_{n,t} = x$ because x is the least such that $(\forall y \leq t) \phi(n, x, y)$.

It follows from the claim that $x_{n,s}=x_{n,t}=x$ for every $s\geq t$. Therefore, $\lim_s x_{n,s}=x$. Moreover, setting $F_n=F_{n,t}$, we have $F_{n,s}=F_n$ for all $s\geq t$ and so $\lim_s F_{n,s}=F_n$.

Similarly, if $\neg \psi(n)$ holds, then the values of $x_{n,s}$ are unbounded as s goes to infinity, as are the values of the minimum elements of $F_{n,s}$.

To complete the proof, we show that for all n, $(\exists m \leq n)\psi(m)$ holds if and only if there is an $m \leq n$ and an m-extension pair $\langle X_0, X_1 \rangle$ that fails to have the extension property in G.

For the forward direction, fix $n \geq 1$ such that $(\exists m \leq n)\psi(m)$ holds and fix $m \leq n$ with $\psi(m)$. By $\mathsf{L}\Pi^0_1$, fix the least t such that $F_{m,s} = F_{m,t}$ for all $s \geq t$ and let $F_m = F_{m,t}$. We show the extension property fails in G for $\langle F_m, \emptyset \rangle$. It suffices to show by Σ^0_0 induction that for all $s \geq t$, there is no node in G_s connected to all the nodes in F_m .

For s=t, since t is chosen least, the set $F_{m,t} \neq F_{m,t-1}$ consists of m many new elements added to G_t none of which are connected to nodes in G_t . Therefore, the condition holds for s=t.

Assume the condition holds for a fixed $s \geq t$. A new node $v \in G_{s+1}$ is only connected to a node in G_s when v is used to witness the extension property for a k-extension pair $\langle X_0, X_1 \rangle$ with $k \in Y_{s+1}$. In this case, v is only connected to the nodes in X_0 . If k < m, then $|X_0| \leq k$, so v cannot be connected to every node in F_m . If k > m, then by construction, we have $F_{m,s} \not\subseteq X_0$ and hence v is not connected to every node in F_m .

For the backward direction, assume $(\forall m \leq n) \neg \psi(m)$. Fix $m \leq n$ and an m-extension pair $\langle X_0, X_1 \rangle$ in G. We need to show this pair has the extension property. Fix t_0 such that $X_0, X_1 \subseteq G_{t_0}$. Suppose $X_0 = \emptyset$. In this case, we need to show there is a node $v \in G$ which is not connected to any node in X_1 . However, at each stage s > 0, we add new elements to G_s that are not connected to any node in G_{s-1} .

Suppose $X_0 \neq \emptyset$ and let ℓ be the least element of X_0 . Since $(\forall k < m) \neg \psi(k)$, we have $(\forall k < m)(\forall x \leq \ell) \exists y \neg \phi(k, x, y)$. By $\mathsf{B}\Sigma^0_0$, we can fix $t > t_0$ such that $(\forall k < m)(\forall x \leq \ell)(\exists y < t) \neg \phi(k, x, y)$. It follows that $x_{k,t} > \ell$ for all k < m, and hence $\min F_{k,t} > \ell$ for all k < m. In particular, for all $s \geq t$ and k < m, $F_{k,s} \not\subseteq X_0$. Therefore, for any s > t at which we act for m, we add an extension witness for the pair $\langle X_0, X_1 \rangle$ as required.

References

- [1] Anthony Bonato, Peter Cameron and Dejan Delić, "Tournaments and orders with the pigeonhole property," Canadian Mathematical Bulletin **43**(4), 2000, 397–405.
- [2] Anthony Bonato and Dejan Delić, "A pigeonhole property for relational structures," Mathematical Logic Quarterly 45, 1999, 409–413.
- [3] Vasco Brattka and Tahina Rakotoniaina, "On the uniform computational content of Ramsey's Theorem," The Journal of Symbolic Logic 82(4), 2017, 1278–1316.
- [4] Peter J. Cameron, "The random graph," in Algorithms and Combinatorics 14, The mathematics of Paul Erdős. II, Ronald L. Graham and Jaroslav Nešetřil, editors, Springer-Verlag, Berlin, 1997, 333-351.
- [5] C.T. Chong, Wei Li, Wei Wang, and Yue Yang, "On the strength of Ramsey's theorem for trees," Advances in Mathematics 39 369:107180, 2020.
- [6] Jennifer Chubb, Jeffry L. Hirst and Timothy H. McNicholl, "Reverse mathematics, computability, and partitions of trees," The Journal of Symbolic Logic 74(1), 2009, 201–215.
- [7] Jared Corduan, Marcia J. Groszek and Joseph R. Mileti, "Reverse mathematics and Ramsey's property for trees," The Journal of Symbolic Logic 75(3), 2010, 945–954.
- [8] François Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, and Paul Shafer, "On uniform relationships between combinatorial problems," *Transactions of the American Mathematical Society* 368(2), 2016, 1321–1359.
- [9] Damir D. Dzhafarov and Carl Mummert, Reverse mathematics problems, reductions, and proofs, Springer Nature, 2022.
- [10] Damir D. Dzhafarov, Ludovic Patey, Reed Solomon and Linda Brown Westrick, "Ramsey's theorem for singletons and strong computable reducibility," *Proceedings of the American Mathematics Society* 145(3), 2017, 1343–1355.
- [11] Damir D. Dzhafarov, Reed Solomon and Manlio Valenti, "The tree pigeonhole principle in the Weihrauch degrees," arXiv:2312.10535.
- [12] Kenneth Gill, "Indivisibility and uniform computational strength," arXiv:2312.03919, 2023.
- [13] C. Ward Henson, "A family of countable homogeneous graphs," Pacific Journal of Mathematics 38(1), 1971, 69–83.
- [14] Denis R. Hirschfeldt, Slicing the Truth: On the Computational and Reverse Mathematics of Combinatorial Principles, World Scientific, 2014.
- [15] Denis R. Hirschfeldt and Carl G. Jockusch, Jr., "On notions of computable reduction between Π¹₂ principles," Journal of Mathematical Logic 16, 2016, article 1650002.

- [16] Denis R. Hirschfeldt and Richard A. Shore, "Combinatorial principles weaker than Ramey's Theorem for Pairs," *Journal of Symbolic Logic* **72**, 2007, 171–206.
- [17] Jeffry L. Hirst, Combinatorics in Subsystems of Second Order Arithmetic, PhD thesis, Pennsylvania State University, 1987.
- [18] Benoit Monin and Ludovic Patey, "Partition genericity and pigeonhole basis theorems," *The Journal of Symbolic Logic* **89** (2), 2024, 829–857.
- [19] Ludovic Patey, "The weakness of being cohesive, thin or free in reverse mathematics," Israeli Journal of Mathematics 216(2), 2016, 905–955.
- [20] Stephen G. Simpson, Subsystems of second order arithmetic, Springer-Verlag, Heidelberg, 1999.
- $[21]\ \ {\rm R.I.\ Soare},\ Recursively\ enumerable\ sets\ and\ degrees,\ {\rm Springer-Verlag},\ Heidelberg,\ 1987.$