Lezione 8 Geometria 2

Federico De Sisti 2025-03-18

0.1 Spazi topologici connessi

Esempio

 \mathbb{R} con topologia euclidea,

 $X = [0,1] \cup [2,3]$ sottospazio

intuitivamente è fatto da due "pezzi" gli intervalli [0, 1] e [2, 3]

Come distinguere i "pezzi di X da altri sottospazio ad esempio [0,1/3]?

[0,1/3] è chiuso in X.

anche [0,1] e [2,3] sono chiusi in X

[0,1/2] non è aperto in X.

Invece [0,1] è anche aperto in X in topologia di sottospazio, infatti [0,1] \in

 $X \cap]-1,3/2[$, dove il secondo è aperto in $\mathbb R$

Anche [2,3] è aperto in X

Definizione 1

Uno spazio topologico si dice connesso se gli unici sottospazi contemporaneamente aperti e chiusi sono solo \emptyset e X Se X non è connesso si dice sconnesso

Esempio

1) Se $X = \emptyset$

allora X è connesso

- 2) se |X| = 1 è connesso
- 3) Anche se X ha topologia banale (qualsiasi cardinalità) è connesso
- 4) Se $|X| \geq 2$ e la topologia discreta allora X è connesso
- 5) $X = [0,1] \cup [2,3]$ di prima, è sconnesso ([0,1] è contemporaneamente aperto e chiuso)
- 6) $X = \mathbb{R} \setminus \{0\}$ (topologia di sottospazio da \mathbb{R} con topologia euclidea) è sconnesso ad esempio $]-\infty,0[$ è aperto e chiuso in X.

$$]-\infty,0[=\begin{cases} X\cap]-\infty,0[& (\text{aperto di }\mathbb{R})\\ X\cap]-\infty,0] & (\text{chiuso di }\mathbb{R}) \end{cases}$$

7) $\mathbb{Q} = X$ (con topologia di sottospazio da \mathbb{R} con topologia euclidea)

è sconnesso, ad esempio $\mathbb{Q}\cap]-\infty,\sqrt{2}[$ è contemporaneamente aperto in \mathbb{Q}

è aperto ovviamente in topologia di sottospazio

ed è ance
h chiuso $\mathbb{Q}\cap]-\infty,\sqrt{2}[=\mathbb{Q}\cap]-\infty,\sqrt{2}]$ chiuso in \mathbb{R}

Lemma 1

Sia X spazio topologico allora sono equivalenti:

- 1. X sconnesso
- 2. esistono aperti disgiunti non vuoti A_1, A_2 tali che $X = A_1 \cup A_2$
- 3. Esistono chiusi disgiunti non vuoti tali che $X = C_1 \cup C_2$

Dimostrazione

1) \Rightarrow 2) Sia $A \subseteq X$ aperto e chiuso $A \notin \{\emptyset, X\}$, basta porre $A_1 = A$, $A_2 = X \setminus A$

 $(2) \Rightarrow 3)$ Poniamo $C = A_1, C_2 = A_2$

3) \Rightarrow 1) Basta prendere $A=C_1$ è anche aperto, non vuoto $\neq X$ perché $C_2\neq 0$

Nota

D'ora in poi, per i sottoinsiemi di \mathbb{R}^n daremo per scontata la topologia di sottospazio indotta dalla topologia euclidea su \mathbb{R}^n

Teorema 1

[0,1] è connesso

Dimostrazione

Suppongo per assurdo [0,1] sconnesso, usiamo il 3) del lemma, quindi esistono chiusi non vuoti disgiunti C, D tale che $[0,1] = C \cup D$

Possiamo assumere che $0 \in C$ (altrimenti scambio i nomi)

Consideriamo $d = \inf D$, allora $d \in \mathbb{R}$ perché D è limitato

 $Visto\ che\ D\ \ \dot{e}\ chiuso\ d=\min D$

Inoltre $d \neq 0$ poiché $C \cap D = \emptyset$

Segue $[0,d]\subseteq C$ ma C è chiuso e d è aderente a [0,d] poiché $d\in C$ assurdo \square

Lemma 2

Sia X spazio topologico, sia $Y\subseteq X$ sottospazio connesso, sia $A\subseteq X$ sottoinsieme aperto e chiuso.

Allora $Y \subseteq A$ oppure $Y \cap A = \emptyset$

Dimostrazione

 $A\cap Y$ è contemporaneamente aperto e chiuso in topologia di sottospazio quindi $A\cap Y=Y$ oppure $A\cap Y=\emptyset$

Definizione 2

 $Uno\ spazio\ topologico\ X\ si\ dice\ connesso\ per\ archi\ se$

 $\forall p,q \in X \exists \alpha: [0,1] \to X$ continua tale che $\alpha(0)=p,\alpha(1)=q$ Una tale α è detto cammino da p a q

Esempio

1) $X = \mathbb{R}^n$ è connesso per archi, ad esempio.

$$\alpha(t) = tq + (1-t)p$$

percorre il segmento da p a q

2) $S^n = \{ p \in \mathbb{R}^{n+1} \mid ||p|| = 1 \}$

sfera n-dimensionale

$$S^{-1} = \emptyset \subseteq \mathbb{R}^0 = \{0\}$$

$$S^0 = \{1, -1\} \subseteq \mathbb{R}$$
 sconnesso

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

Ogni S^n è connesso per archi per ogni $n\geq 1$

Un cammino da p a q è dato ad esempio da $\alpha(t) = (\cos(t \cdot s + (1-t)))$ DA COMPLETARE

Suppongo $n \geq 2$, dimostro che S^n connesso per archi

Scegliamo $V\subseteq\mathbb{R}^{n+1}$ sottospazio vettoriale di dimensione 2 contenente p e q. Esiste un isomorfismo di spazi vettoriali $\varphi:V\to\mathbb{R}^2$ che preserva il prodotto scalare (quindi la norma) allora $\varphi(V\cap S^n)=S^1$

Scelgo β cammino tra $\varphi(p)$ e $\varphi(q)$ allora $\alpha = \varphi^{-1} \circ \beta$ è camino tra $p \in q$

3) Sia $X \subseteq \mathbb{R}^n$ sottoinsieme connesso, allora è connesso per archi

Teorema 2

 $Sia\ f: C \rightarrow Y\ applicazione\ continua\ fra\ spazi\ topologici$

- 1. Se X è connesso allora f(X) è connesso
- 2. Se X è connesso per archi allora f(X) è connesso per archi

Dimostrazione

Supponiamo per assurdo f(x) sconnesso, quindi esistono aperti non vuoti disgiunti $A, B \subseteq f(X)$ tale che $f(X) = A \cup B$

Supponiamo che la restrizione $\tilde{f}: X \to f(X)$ è continua

Allora $f^{-1}(A)$ e $f^{-1}(B)$ sono aperti in X, non vuoti e disgiunti

$$f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B).$$

Assurdo perché X è connesso.

2) Siano $p,q \in f(X)$ scegliamo $x \in f^{-1}(p), z \in f^{-1}(q)$ e $\beta : [0,1] \to X$ un cammino da x a z allora $f \circ \beta : [0,1] \to f(X)$ è un cammino da p a q

Corollario 1

 $Sia~X~spazio~topologico.~Se~X~\grave{e}~connesso~per~archi~allora~\grave{e}~connesso.$

Dimostrazione

Suppongo per assurdo X sconnesso, esistono quindi disgiunti A, B non vuoti tali che $X=A\cup B$

Scegliamo $p \in A, q \in B$ e α cammino in X da p a q. $\alpha : [0,1] \to X$

Per il teorema precedente $\alpha([0,1])$ è connesso di X (e [0,1] è connesso)

Osserviamo A è contemporaneamente aperto e chiuso, segue $\alpha([0,1]) \subseteq A$ assurdo perché $\alpha(1) = q \in B$ oppure $\alpha([0,1]) \cap A = \emptyset$ assurdo perché $\alpha(0) = p$

Proposizione 1

 $Sia\ I \subseteq \mathbb{R}$

 $Sono\ equivalenti$

- 1. I è un intervallo
- 2. I è connesso per archi
- 3. I è connesso

Nota

In $\mathbb R$ definiamo un intervallo se $\forall a,b \in I \ a < b$ e $\forall c \in \mathbb R$ tale che a < c < babbiamo $c \in I$

Dimostrazione

- 1) \Rightarrow 2) Se I è intervallo allora è convesso, allora è connesso per archi
- $2) \Rightarrow 3)$

Segue dal corollario precedente.

 $3) \Rightarrow 1)$

Supponiamo per assurdo che $I \subseteq \mathbb{R}$ sia connesso ma non intervallo

Allora $\exists a, b \in I, c \in \mathbb{R} \ con \ a < c < b, \ c \notin I$

Definisco $A := I \cap]-\infty, c[e B := I \cap]c, +\infty[$

aperti in I disgiunti non vuoti e $I = A \cup B$, assurdo.

Osservazione

La connessione e la connessione per archi si usano per dimostrare che spazi topologici <u>non</u> sono omeomorfi.

Ad esempio [0, 1] e [0, 1] non sono omeomorfi (fogli di esercizi)

Lemma 3

Sia $f: S^n \to \mathbb{R}$ continua, $n \ge 1$ Allora esiste $p_0 \in S^n$ tale che $f(p_0) = f(-p_0)$

Dimostrazione

 $\begin{array}{c} Consideriamo \\ g:S^n \to \mathbb{R} \end{array}$

$$p \to f(p) - f(-p)$$

è continua e vale g(-p) = -g(p) l'immagine di g è connessa ed è sottoinsieme simmetrico di \mathbb{R} . Allora l'immagine di g contiene $0 \in \mathbb{R}$