

Motivação

 Aplicações em biologia, criptografia, química,computação gráfica e comunicações

 Algoritmos quânticos podem ter desempenho melhor que computadores clássicos em certas tarefas com fatoração de números inteiros, simulação de reações químicas e etc

Algoritmo de Grover: circuito

Qubits no Computador quântico

$$\ket{\Psi} = a\ket{0} + b\ket{1} = egin{bmatrix} a \ b \end{bmatrix} \ a,b \in \mathbb{C} \ \ket{0} = egin{bmatrix} 1 \ 0 \end{bmatrix} \ \ket{1} = egin{bmatrix} 0 \ 1 \end{bmatrix} \ p_0 = \ket{a}^2 \ p_1 = \ket{b}^2 \ \ket{a}^2 + \ket{b}^2 = 1 \end{bmatrix}$$

Portas Quânticas

Gate	Notation	Matrix
NOT (Pauli-X)	<u>-X</u>	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Z	$-\overline{Z}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard	-H	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
CNOT (Controlled NOT)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Portas Quânticas

Exemplo:

$$\langle H|\Psi
angle = rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}egin{bmatrix} a \ b \end{bmatrix} = rac{1}{\sqrt{2}}egin{bmatrix} a+b \ a-b \end{bmatrix}.$$

Circuito Real de Grover

Medida real de Grover

