Lateral Geniculate Nucleus

Belle, Joyce, William, Sean, Xinyi

Lateral Geniculate Nucleus

Projection at the end of the optic tract

Relay center in the Thalamus

 Connects optic nerve to primary visual cortex (V1)

We have two LGNs (left and right)

LGN Left Right Graphic EyE EYE overview ipsilateral Contra-lateral Right LGN Left LGN

M, P, K Cells

Туре	Size	Type of Info	Location	Response
M (Magnocellular)	Large	Rods; perception of movement, depth, small differences in brightness	Layers 1 and 2	Rapid and Transient
P (Parvocellular)	Small	Cones; red-green colour, perception of shape/ form	Layers 3 to 6	Slow and sustained
K (Koniocellular)	Very small cell bodies	Blue colour	Between M and P layers	

Source: Wikipedia

Six Layers of LGN E.g. Left LGN: 3 layers receive Congruent Layer 3-6 (P layer): input from the receptive fields Input from P Dorsal left eye (ipsi) ganglion cells (redgreen colour) -6. Contra 3 layers receive input from the 5. Ipsi Parvocellullar right eye layer 4. Contra (contra) Layer 1-2 (M layer): Input from M 3. lpsi____ ganglion cells (motion and flicker) 2. Ipsi

Ventral

Magnocellullar

layer

1. Contra

Retinotopic Mapping

Adjacency in ganglion cells preserved in LGN cells

LGN has **6 half-maps of the world**, one in each layer

Provides **temporal and spatial** decorrelation (distinguishing) of signals

New Findings on LGN

Presence of **K-cells** found primarily between M and P layers

- Information relayed from short-wave cones (blue colour)
- Hypothesised to play a role in blindsight

90% of input to the LGN comes **from the cortex and brainstem**

 LGN could be **filtering** what types of information the brain wants

