Sheaves on Manifolds Exercise I.15 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise I.15, KS02] の解答です。

I Homological Algebra

問題 I.15. C を圏とする。 $c \in C$ に対して、 $h_c^C : \stackrel{\text{def}}{=} \operatorname{Hom}_{\mathcal{C}}(-,c)$ を米田埋め込み $C \to \operatorname{Set}^{C^{\operatorname{op}}}$ による $c \in C$ の像とする (C が明らかな場合は上付き添字の C を省略してたんに h_c と表す)。 $\operatorname{Ind}(C)$ を $\operatorname{Set}^{C^{\operatorname{op}}}$ の充満部分圏であって、ある filtered diagram $F: \mathcal{I} \to C$ に対する $\operatorname{colim}_{i \in \mathcal{I}} h_{F(i)}$ と同型な対象たちからなるものとする。 C をさらにアーベル圏であるとして、 S_X を over category $C_{X/}$ の充満部分圏であって、擬同型 $X \to X'$ た ちからなるものとする。

- (1) $\sigma(X) : \stackrel{\text{def}}{=} \operatorname{colim}_{X' \in S_X} h_{X'}$ によって函手 $\sigma : \mathsf{D}^+(\mathcal{C}) \to \operatorname{Ind}(\mathsf{K}^+(\mathcal{C}))$ が well-defined に定まることを示し、 σ が忠実充満であることを示せ。
- (2) $F: \mathcal{C} \to \mathcal{C}'$ をアーベル圏の間の左完全函手とする。 $T(X): \stackrel{\mathrm{def}}{=} \operatorname{colim}_{X' \in S_X} h_{F(X')}^{\mathcal{C}'}$ と定める。これ によって函手 $T: \mathsf{D}^+(\mathcal{C}) \to \operatorname{Ind}(\mathsf{K}^+(\mathcal{C}'))$ が well-defined に定まることを示せ。F が $X \in \mathsf{D}^+(\mathcal{C})$ で **derivable** であるということを、ある対象 $Y \in \mathsf{D}^+(\mathcal{C}')$ が存在して $T(X) \cong \sigma(Y)$ となることとして定義する。このような Y が (up to isom で) 一意的であることを示せ。また、F がすべての $X \in \mathsf{D}^+(\mathcal{C})$ で derivable であるときに、函手 $RF: \mathsf{D}^+(\mathcal{C}) \to \mathsf{D}^+(\mathcal{C}')$ で $\sigma \circ RF \cong T$ となるものが (up to isom で) 一意的に存在することを示せ(すなわち、F は右導来函手 RF を admits する)。

証明. (1) の函手 σ の well-defined 性は (2) の函手 T の well-defined 性の特別な場合 ($F=\mathrm{id}_{\mathcal{C}}$ の場合) であるので、まず (2) の函手 T が well-defined に定まることを示す。T は函手 $\mathsf{K}^+(\mathcal{C}) \to \mathrm{Ind}(\mathsf{K}^+(\mathcal{C}'))$ としては well-defined に定まっている。 $X \in \mathsf{K}^+(\mathcal{C})$ を 0 と擬同型な対象とする。このとき 0-射 $X \to 0$ は圏 S_X の終対象であるので、

$$T(X) = \operatorname{colim}_{X' \in S_X} h_{F(X)} = h_{F(0)} = h_0 \cong 0$$

となる。よって $\operatorname{Ind}(\mathsf{K}^+(\mathcal{C}'))$ において $T(X) \cong 0$ である。従って、本文 [Proposition1.6.9 (iii), KS02] より、函手 $T:\mathsf{D}^+(\mathcal{C})\to\operatorname{Ind}(\mathsf{K}^+(\mathcal{C}'))$ が well-defined に定まる。以上で T が (よって、 σ も) well-defined に定まることがわかった。

函手 σ が忠実であることを示す。 X,Y を $\mathsf{D}^+(\mathcal{C})$ の対象、 $f:X\to Y$ を $\mathsf{D}^+(\mathcal{C})$ の射であって、 $\sigma(f)=0$ であるとする。 f は $\mathsf{K}^+(\mathcal{C})$ の図式 $X\xrightarrow{f'}Y'\xleftarrow{t}Y$ によって代表される。ここで t は擬同型である。 $\sigma(f)=0$ であることと、 $\sigma(t)$ が同型射であることから、 $\sigma(f')$ は 0-射である。 $\mathrm{id}_X\in h_X(X)$ により代表される元 $[\mathrm{id}_X]\in\sigma(X)(X)=\mathrm{colim}_{X'\in S_X}h_{X'}(X)$ の $\sigma(f')(X):\sigma(X)(X)\to\sigma(Y')(X)$ での行き先は $f':X\to Y'$ により代表される元 $[f']\in\sigma(Y')(X)=\mathrm{colim}_{Y''\in S_Y},h_{Y'}(X)$ であるが、 $\sigma(f')=0$ であるから、[f']=0 で

ある。これは、ある $[t':Y'\to Y'']\in S_{Y'}$ が存在して $t'\circ f'=0$ となることを意味する。さらに $t'\circ f'=0$ は f' が $D^+(\mathcal{C})$ において 0-射であることを意味する。よって f は $D^+(\mathcal{C})$ において 0-射であることが従う。以上より σ は忠実である。

函手 σ が充満であることを示す。 $f:\sigma(X)\to\sigma(Y)$ を $\operatorname{Ind}(\mathsf{K}^+(\mathcal{C}))$ の射とする。 $\operatorname{id}_X:X\to X$ で代表される元 $[\operatorname{id}_X]\in\sigma(X)(X)=\operatorname{colim}_{X'\in S_X}(h_{X'}(X))$ の $f(X):\sigma(X)(X)\to\sigma(Y)(X)$ での行き先を $[f]\in\sigma(Y)(X)=\operatorname{colim}_{Y'\in S_Y}(h_{Y'}(X))$ と置く。 S_Y は filtered であるから、ある $[t:Y\to Y']\in S_Y$ とある 射 $f':X\to Y'$ が存在して、[f] は f' によって代表される。 $\mathsf{K}^+(\mathcal{C})$ の図式 $X\xrightarrow{f'}Y'\xleftarrow{t}Y$ によって代表される $\mathsf{D}^+(\mathcal{C})$ の射を g と置くと、f' が [f] を代表することから、 $\sigma(g)([\operatorname{id}_X])=[f]\in\sigma(Y)(X)$ がわかる。これは $\sigma(g)=f$ を意味する。以上より σ は充満であり、 $\sigma(g)$ 0 の証明を完了する。

(2) を証明する。T が well-defined に定義されることは既に示している。Y の (up to isom での) 一意性は σ が忠実であることから従う。すべての $X \in D^+(\mathcal{C})$ で F が derivable であれば、 $F:D^+(\mathcal{C}) \to \operatorname{Ind}(K^+(\mathcal{C}'))$ は $\sigma:D^+(\mathcal{C}') \to \operatorname{Ind}(K^+(\mathcal{C}'))$ の本質的像を一意的に経由するため、 σ が忠実充満であることから、右導来函 手 $RF:D^+(\mathcal{C}) \to D^+(\mathcal{C}')$ であって $\sigma \circ RF \cong T$ となるものが (up to isom で) 一意的に存在する。以上で問題 I.15 の解答を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.