METHODS FOR DETECTING AND ISOLATING NUCLEAR TRANSPORT PROTEINS [Kakuikō Tanpakushitsu no Kenshutsu Oyobi Tanri Hōhō]

Nobuhide UEKI et al.

UNITED STATES PATENT AND TRADEMARK OFFICE Washington, D.C. September 2001

Translated by: Schreiber Translations, Inc.

Country : World Intellectual Property

Organization

Document No. : WO98/49284

<u>Document Type</u> : International Application

Published Pursuant to Patent

Cooperation Treaty

<u>Language</u> : Japanese

Inventor : Nobuhide UEKI, Teruhisa NOGUCHI

<u>Applicant</u>: Helix Research Institute

 \underline{IPC}^6 : C12N 15/09, C12Q 1/68

<u>Filing Date</u> : April 27, 1998

<u>Publication Date</u>: November 5, 1998

Priority Information : Tokugan Hei 9/124795 April 28,

1997

Tokugan Hei 9/309686 October 24,

1997

Foreign Language Title : Kakuikō Tanpakushitsu no

Kenshutsu Oyobi Tanri Hōhō

English Title : METHODS FOR DETECTING AND

ISOLATING NUCLEAR TRANSPORT

PROTEINS

/2

Specification

Methods For Detecting and Isolating Nuclear Transport Proteins Technical Field

The present invention relates to methods of detecting and isolating nuclear transport proteins, and falls into the field of genetic engineering, more particularly gene cloning.

Prior Art

Various transcription factors, nuclear receptors, signal transfer factors, chromatin receptors, and the like are known as nuclear transport proteins. These proteins interact directly or indirectly with specific DNA regions in the vicinity of the end of intracellular signal transfer cascades to control gene expression, replication of DNA, and the like, and as a result, determine the behavior of cells. Accordingly, the isolation of the genes of these nuclear transport proteins and analysis of their functions is thought to be highly important from the viewpoints of elucidating various vital phenomena and developing new drugs.

However, no specific method of comprehensively cloning cDNA coding for nuclear transport proteins has been developed; the general methods that have been applied in cloning techniques thus far are used. That is, when there is some information relating to a protein the cloning of which is being attempted — for example, when there is a sequence that is stored at the amino acid level (Lichtsteiner, S., Proc. Natl. Acad. Sci., 1993, 90: 9673-9677), an interacting DNA sequence is already known (Sanz, L., Mol. Cell. Biol., 1995, 15: 3164-3170; made by Clontech Co., Matchmaker One-Hybrid System), or an interacting protein is already known — a cDNA library is cloned based on that information in these methods. However, in such cases, screening is possible only within an extremely limited range.

It is known, for example, that the "Two-Hybrid System" (Gyuris, J., Cell, 1993, 75: 791-803; Golemis, E.A., Current Protocols in Molecular Biology (John Wiley & Sons, Inc.), 1996, Ch. 20.0 and 20.1) developed in recent years as a method of isolating interacting proteins can be employed by using as bait a protein already known to be present in the nucleus and thereby indirectly screen for cDNA coding proteins that interact with that protein (Jordan, K.L., Biochemistry, 1996, 35: 12,320-12,328). However, it cannot be directly employed as a method of screening cDNA coding for proteins that have transport activity into the nucleus. Further, even when employing bait in the form

¹ Numbers in the margin indicate pagination in the original.

of a protein known to be present in the nucleus, since it is not known whether transport into the nucleus occurs through interaction in the cytoplasm or through actual interaction in the nucleus, there is also the possibility that cDNA coding for proteins other than nucleoproteins will also end up being isolated. Thus, an arduous confirmation operation is necessary to determine whether or not the isolated cDNA codes for a nuclear transport protein. Further, since the "Two-Hybrid System" indicates interaction between proteins, there is also a problem in that the proteins obtained by screening end up being limited to just proteins capable of interacting with the protein employed as bait.

When it is impossible to obtain information relating to the targeted protein in the manner described above, it is necessary to extract nuclear fractions from the cell, refine the targeted protein therefrom by a method employing functions such as specific biological activity possessed by that protein as indicators, and screen a cDNA library based on sequence information relating to the protein obtained (Ostrowski, J., J. Biol. Chem., 1994, 269: 17,626-17,634). However, some nuclear transport proteins have extremely low expression levels, often necessitating the expenditure of considerable time and effort to refine, with some of them being nearly impossible to refine.

Disclosure of the Invention

The present invention has as its object to provide methods of readily and efficiently detecting and isolating DNA coding for peptides having nuclear transport capability.

/3

One example of a nuclear transport protein is transcription The transcription factor of eukaryotic organisms has the functions of migrating into the nucleus and inducing the expression of a specific gene by interacting with the promoter region of that specific gene. The nuclear migration ability of transcription factor is attributed to a nuclear migration signal present in the transcription factor. The present inventors focused on the two characteristics of transcription factor having the ability to migrate into the nucleus and the ability to activate transcription in a specific gene and conducted extensive research into resolving this issue. As a result, they discovered that when the region having the nuclear transportability in transcription factor was eliminated, an unknown peptide was introduced in place thereof, and the protein thus obtained was expressed within the cell, if the unknown peptide in the fused protein had the ability to migrate into the nucleus, it was transported with the fused protein into the nucleus, acted on a

particular promoter region, and was thought to induce the expression of a specific gene downstream therefrom. Further, if the unknown peptide in the fused protein did not have the ability to migrate into the nucleus, the fused protein did not migrate into the nucleus and was thought not to induce the expression of a specific gene in a downstream region of the promoter. That is, by means of a protein in which an unknown peptide had been fused into transcription factor not having the ability to migrate into the nucleus, it was thought to be possible to determine whether or not the unknown peptide in the fused protein had the ability to migrate into a nucleus based on indication in the form of inducement of the expression of a particular gene downstream from the promoter.

Accordingly, based on this idea, the present inventors actually prepared fused DNA of test DNA and DNA coding for transcription factor from which the region having the ability to migrate into the nucleus had been removed, introduced into a eukaryotic host maintaining in the nucleus a promoter region activated by the binding of transcription factor and a reporter gene the expression of which was induced by activation of that promoter region, and detected the expression of the reporter gene. As a result, they discovered that when DNA coding for a peptide having the ability to migrate into the nucleus was employed as test DNA, expression of the reporter gene was induced, and when DNA coding for a peptide not having the ability to migrate into the nucleus was employed as test DNA, expression of the report gene was not induced.

The present inventors further prepared a library of cDNA coding for fused proteins of transcription factor from which the region having the ability to migrate into nucleuses had been removed and other peptides, and introduced these into cells to screen cDNA coding for peptides having nuclear transportability employing the expression of the reporter as indicator. As a result, the present inventors discovered that most of the known cDNA isolated from the cDNA library coded for proteins thought to have nuclear transportability.

/4

That is, the present invention relates to methods of readily and efficiently detecting and isolating DNA coding for peptides having nuclear transportability using the properties of transcription factor, and more particularly, relates to:

(1) A method of detecting the nuclear transportability of a peptide coded for by test DNA, characterized in that fused DNA of DNA coding for transcription factor not having nuclear transportability and test DNA is introduced into a eukaryotic

host having in its nucleus a promoter region that is activated by binding of the transcription factor and a reporter gene connected downstream from the promoter region, and detecting expression of the reporter gene;

- (2) The method described in (1) wherein the transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, a DNA bonding domain, and a transcription activation domain;
- (3) The method described in (1) wherein the transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, LexA protein, and a GAL4 transcription activation domain, and wherein the promoter region that is activated by binding of the transcription factor is the promoter region of a GAL1 gene in which the operator sequence has been replaced with the LexA operator sequence;
- (4) The method described in (3) wherein the nuclear export signal is a peptide comprising the amino acid sequence described in sequence number 5;
- (5) The method described in any of (1)-(4) wherein the reporter gene is the LEU2 and/or β -galactosidase gene;

<u>/5</u>

- (6) A method of isolating DNA coding for a peptide having nuclear transportability characterized in that fused DNA of DNA coding for transcription factor not having nuclear transportability and test DNA is introduced into a eukaryotic host having in its nucleus a promoter region that is activated by the binding of transcription factor and a reporter gene connected downstream from the promoter region; expression of the reporter gene is detected; and test DNA is isolated from a eukaryotic host in which expression has been detected;
- (7) The method described in (6) wherein the transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, a DNA binding domain, and a transcription activation domain;
- (8) The method described in (6) wherein the transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, LexA protein, and a GAL4 transcription activation domain, and wherein the promoter region that is activated by binding of the transcription factor is the promoter region of a GAL1 gene in which the operator sequence has been replaced with the LexA operator sequence;
- (9) The method described in (8) wherein the nuclear export signal is a peptide comprising the amino acid sequence described in sequence number 5;
 - (10) The method described in any of (6)-(9) wherein the

reporter gene is the LEU2 and/or β -galactosidase gene;

- (11) A vector having an incorporation site of test DNA adjacent to DNA coding for transcription factor not having nuclear transportability;
- (12) The vector described in (11) wherein the transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, a DNA binding domain, and a transcription activation domain;
- (13) The vector described in (11) wherein the transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, LexA protein, and the GAL4 transcription activation domain;
- (14) The vector described in (13) wherein the nuclear export signal is a peptide comprising the amino acid sequence described in sequence number 5;

<u>/6</u>

- (15) A kit comprising: (1) a vector having an incorporation site for test DNA adjacent to DNA coding for transcription factor not having nuclear transportability; and (2) a eukaryotic host having in its nucleus an expression unit comprising a promoter region activated by binding of the transcription factor and a reporter gene connected downstream from the promoter region;
- (16) The kit described in (15) wherein the transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, a DNA binding domain, and a transcription activation domain;
- (17) The kit described in (15) wherein the transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, LexA protein, and a GAL4 transcription activation domain; wherein the promoter region that is activated by binding of the transcription factor is the promoter region of a GAL1 gene in which the operator sequence has been replaced with the LexA operator sequence; and wherein the eukaryotic host is yeast;
- (18) The kit described in (17) wherein the nuclear export signal is a peptide comprising the amino acid sequence described in sequence number 5; and
- (19) The kit described in any of (15)-(18) wherein the reporter gene is the LEU2 and/or β -galactosidase gene.

In the present invention, the term "transcription factor" means a protein having a DNA binding domain and a transcription activation domain that activates the transcription of a specific gene, regardless of whether or not it occurs naturally. Further, in the present invention, the term "peptide" includes, in addition to proteins, partial peptides of proteins, synthetic

peptides, and the like.

The present invention relates first to a method of detecting the nuclear transportability of a peptide coded for by test DNA characterized in that fused DNA of DNA coding for transcription factor not having nuclear transportability and test DNA is introduced into a eukaryotic host having in its nucleus a promoter region that is activated by binding of the transcription factor and a reporter gene the expression of which is induced by activation of the promoter region, and detecting expression of the reporter gene.

/7

In the present invention, the transcription factor employed in the preparation of "transcription factor not having nuclear transportability" is not specifically limited other than that it be capable of specifically controlling the expression of a gene in a eukaryotic organism; examples of transcription factor suitable for use are GAL4 (Giniger, E., Cell, 1985, 40: 767-774), p53 (Chumakov, P. M., Genetika, 1988, 24: 602-612), GCN4 (Hinnenbusch, A. G., Proc. Natl. Acad. Sci., 1984, 81: 6,442-6,446), VP16 (Triezeneberg, S. J., Genes. Dev., 1988, 2: 718-729), RelA (Nolan, G. P., Cell, 1991, 64: 961-969), Oct-1 (Strum, R. A., Genes. Dev., 1988, 2: 1,582-1,599), c-Myc (Watt, R., Nature, 1983, 303: 725-728), c-Jun (Angel, P., Cell, 1988, 55: 875-885), MyoD (Write, W. E., Cell, 1989, 56: 607-617), and the like.

The "transcription factor not having nuclear transportability" of the present invention is not particularly limited other than that it be transcription factor not having nuclear transportability (or having extremely low nuclear transportability) and having transcription activation ability and DNA binding ability. Examples are transcription factors in which the nuclear transport signal has been eliminated or replaced with other amino acids, transcription genes that are fused proteins comprising DNA binding domains and transcription activation regions, and the like.

Substances of low molecular weight (molecular weights not greater than 40,000 daltons) are generally thought to move by diffusion into nuclear holes other than by specific active transport systems. Even when the active nuclear transportability of transcription factor is eliminated due to loss or substitution of the nuclear transport signal, the movement of the substance into the nucleus by diffusion still occurs. In such cases, a signal can be added by localization of a protein in the cell outside the nucleus, thereby permitting complete or minimal control of substance movement into the nucleus by diffusion. The

"transcription factor not having nuclear transportability" of the present invention includes transcription factor to which is added in this manner a localized signal inside the cell but outside the nucleus. Examples of localized signals inside the cell but outside the nucleus are nuclear export signals (Gorlich, D., Science, 1996, 271: 1,513-1,518), secretion signals, peroxysome transport signals, rough-surfaced endoplasmic reticuli transport signals, mitochondria movement signals (Nakai, K., Genomics, 1992, 14: 897-911; Nakai, K., PSORT WWW server, http://psort.nibb.ac.jp/), and the like; the present invention is not limited thereto.

/8

Further, there are transcription factors having multiple nuclear transport signals and transcription factors in which it is entirely impossible to specify the position of a nuclear transport signal within the molecule despite the observation of nuclear transportability (GAL4, p. 53, and the like (TANAKA, Mahito, Cell Science (Japanese), 1991, 7: 265-272)). there are transcription factors in which nuclear transport signals overlap with DNA binding domains or transcription activation domains, so that the loss or replacement of the nuclear transport signal may result in the loss of even DNA binding ability or transcription activation ability. When employing such transcription factors, even when it is impossible to completely specify the nuclear transport signal sequence, it suffices to specify the region required for eliminating nuclear transportability and remove or replace this region to prepare transcription regulating factor not having nuclear transportability. Further, an artificial hybrid transcription factor in which the DNA binding domain of a protein derived from a eukaryotic or prokaryotic organism that is known not to contain a nuclear transport signal and a transcription activation domain that is known not to contain a nuclear transport signal can be created to prepare transcription factor. The "transcription factor not having nuclear transportability" in the present invention includes transcription factor thus prepared.

The transcription activation domain employed in the preparation of the transcription factor not having nuclear transportability of the present invention includes, but is not limited to, the GAL4 transcription activation domain (Brent, R., Cell, 1985, 43: 729-736), Bicoid, c-Fos, c-Myc, v-Myc, B6, B7, B42 (Golemis, A. E., Mol. Cell. Biol., 1992, 12: 3,006-3,014), GCN4 (Hope, I. A., Cell, 1986, 46: 885-894), and VP16 (Clontech Co., Mammalian MATCHMAKER Two-Hybrid Assay Kit). The DNA binding domain includes, but is not limited to, GAL4 (Giniger, E., Cell,

1985, 40: 767-774), p53 (Chumakov, P. M., Genetika, 1988, 24: 602-612), GCN4 (Hinnenbusch, A. G., Proc. Natl. Acad. Sci., 1984, 81: 6,442-6,446), VP16 (Triezeneberg, S. J., Genes Dev., 1988, 2: 718-729), RelA (Nolan, G. P., Cell, 1991, 64: 961-969), Oct-1 (Strum, R. A., Genes. Dev., 1988, 2: 1,582-1,599), c-Myc (Watt, R., Nature, 1983, 303: 725-728), c-Jun (Angel, P., Cell, 1988, 55: 875-885), MyoD (Write, W. E., Cell, 1989, 56: 607-617), and other DNA binding domains that have been identified in transcription factor.

/9

"DNA coding for transcription factor not having nuclear transportability" can be prepared, for example, by the method of partially or completely removing the DNA sequence coding for nuclear transport signals from the DNA coding for transcription factor, the method of replacing the sequence within the nuclear transport signal by the incorporation of a site-specific variation, the method of adding a localized signal outside the nucleus but inside the cell, the method of fusing the transcription activation domain with the DNA binding domain, and suitable combinations of these methods. The general genetic operations in these methods are described in the literature (Sambrook, J., Molecular Cloning: A Laboratory Manual, 1989, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).

The "test DNA" employed in the method of the present invention includes cDNA, genome DNA, synthetic DNA, and the like that is not specifically limited beyond that it be DNA coding for a protein or a component peptide thereof. DNA coding for transcription factor not having nuclear transportability can be fused with test DNA by the usual methods (Sambrook, J., Molecular Cloning: A Laboratory Manual, 1989, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).

The fused DNA of DNA coding for transcription factor not having nuclear transportability and test DNA is usually inserted into a suitable expression vector and introduced into an eukaryotic host. The expression vector is not particularly limited other than that it be capable of stably expressing a protein coded for by the fused DNA of DNA coding for specific transcription factor from which the nuclear transportability has been eliminated and test DNA; however, an expression vector functioning as a shuttle vector stably maintained by both the host and *E. coli* is preferred. For example, when baker's yeast is employed as

/10

the host, a unit for the expression of the protein (where the

expression unit comprises a promoter region functioning within yeast (the promoter region of ADH1, GAL1, or the like), an expressed protein code region, a multicloning site, and a terminator region (the terminator region ADH1 or the like)) can be incorporated for use into an embedded vector that is embedded in a yeast chromosome not having a replication starting point within the vector, a plasmid vector (centromea vector (low copy), 2µ vector (high copy), and the like are commercially available) present as a plasmid and having a replication starting point Specifically, embedded vectors and centromea within the vector. vectors are commercially available from Stratagene Co. as "pRS vectors" having various nutritional requirement marker genes (LEU2, HIS3, URA3, TRP1, and the like) for complementing the nutritional requirements of the host. Variant host strains corresponding to the respective marker genes are included as kits. Various commercially available vectors (Stratagene Co.'s HybriZapII, GAL4 Two-Hybrid Phagemid vector, Clontech Co.'s Matchmaker vector, and the like) employed in "Two-Hybrid systems" having nutritional requirement marker genes (LEU2, HIS3, URA3, TRP1, and the like) for complementing the nutritional requirements of the host, and the variant host strains corresponding to the respective vectors, can be employed as 2µ vectors. When employing animal cells as host, commercially available common mammal expression vectors in the form of vectors embedded in chromosomes (such as pMAM, pMAM-neo, and the like from Clontech Co.) or vectors maintained as episome (λ DR2, pDR2 vector systems and the like from Clontech Co.) may be combined with suitable host animal cells (CHO, Mouse Fibroblast, Hela, U937, BHK, and the like) for use. The vector pMT2 and the like for transient expression using COS cells or the like (Sambrook, J., Molecular Cloning: A Laboratory Manual, 1989, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) may also be employed. The insertion of the above-described fused DNA into the expression vector may be conducted by the usual methods (Sambrook, J., Molecular Cloning: A Laboratory Manual, 1989, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).

Further, the "eukaryotic host" into which the above-described fused DNA is incorporated in the present invention is not specifically limited other than that it be a eukaryotic host capable of stably expressing proteins coded

/11

for by the above-described fused DNA. However, from the perspectives of convenience of handling, ease of incorporation and recovery of genes, safety, and the like, yeast and animal

cultured cells are particularly desirable. The eukaryotic host employed in the present invention has within its nucleus a promoter region that is activated by the binding of a specific transcription factor and a reporter gene connected downstream from this promoter region.

The "promoter region that is activated by the binding of a specific transcription factor" includes an upstream activating sequence (UAS) for binding of transcription factor or a cys control region called an operator sequence and a TATA sequence and is not particularly limited other than that it be a promoter region that is activated to specific transcription when transcription factor binds to the UAS. For example, in the case of baker's yeast, an example of a cys control region is natural GAL1 UAS (comprising four GAL4 binding sequences), artificial GAL1 UAS (comprising three GAL4 binding sequences), LexA UAS (comprising 1-8 LexA binding sequences) (Estojak, J., Mole. Cell. 5,820-5,829). Further, examples of TATA Biol., 1995, 15: sequences are GAL1 TATA, CYC1 (cytochrome C1) TATA, LEU2 TATA, and HIS3 TATA. These cys control regions and TATA sequences can be combined to construct various promoter regions of differing expression levels and inducement conditions (Clontech Co., Yeast Protocols Handbook, PT3024-1: 5-8). That is, a promoter region in which a transcription factor binding sequence is present in the cys control region and the activity of the promoter is controlled by the transcription factor suffices.

Further, in baker's yeast, the genetic analysis of which is quite advanced, the use as reporter gene of a gene relating to the nutritional requirements of the host (LEU2, HIS3, TRP1, URA3, or the like), a gene (such as GAL1) relating to the exploitation of required nutritional sources, or a gene compensating for the loss or damage of some other gene required for survival makes it possible to readily detect the expression of the gene through the survival or death of the host. It is also possible to employ a generally known reporter gene that can be detected by the activity of an enzyme such as β -galactosidase, chloramphenicol acetyltransferase, or luciferase, or green fluorescent protein (from Clontech Co.) permitting the

direct detection of fluorescent light while [the transformants are] alive. Further, the above-described general-use reporter genes as well as drug-resistance genes may be employed in animal cells.

The above-described promoter region and reporter gene may be spliced by the usual methods (Sambrook, J., Molecular Cloning: A Laboratory Manual, 1989, 2^{nd} Ed., Cold Spring Harbor Laboratory

Press, Cold Spring Harbor, NY).

For example, when employing baker's yeast as host, the usual methods, such as the lithium acetate method (Clontech Co., Yeast Protocols Handbook, PT3024-1: 17-20), can be used for the genetic introduction of the promoter region activated by the binding of transcription factor and the reporter gene that is spliced downstream from this promoter region. Based on differences in the vector employed (either the above-described embedded vector or a plasmid vector), the target gene may be selectively incorporated onto a chromosome or placed within the nucleus as a plasmid. Gene introduction is also possible by the usual methods, such as the ribosome method (Sambrook, J., Molecular Cloning: A Laboratory Manual, 1989, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), in animal cells. Based on differences in the vector employed (either the above-described embedded vector or an episome vector), the target gene may be selectively incorporated onto a chromosome or placed within the nucleus as an episome.

Further, a commercially available eukaryotic host organism may be employed as the eukaryotic host organism having the above-described promoter region and reporter gene within the cell. For example, when employing LexA as the transcription factor DNA binding domain, the yeast EGY48[p80P-lacZ] (available from Clontech Co.) characterized by comprising a promoter region having the LexA operator sequence, LEU2, which is the downstream reporter gene thereof, and $\beta\text{-galactosidase}$ on the chromosome and on plasmids, respectively, can be employed.

For example, when employing baker's yeast as host, the vector containing the fused DNA of DNA coding for specific transcription factor the nuclear transportability of which has been eliminated and test DNA can be incorporated into the eukaryotic host by the usual methods, such as the lithium acetate method (Clontech Co., Yeast Protocols

/13

Handbook, PT3024-1: 17-20). Based on differences in the vector employed (either the above-described embedded vector or a plasmid vector), the target gene may be selectively incorporated onto a chromosome or placed within the nucleus as a plasmid. Gene introduction is also possible by the usual methods, such as the ribosome method (Sambrook, J., Molecular Cloning: A Laboratory Manual, 1989, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), in animal cells. Based on differences in the vector employed (either the above-described embedded vector or an episome vector), the target gene may be selectively incorporated onto a chromosome or placed within the nucleus as an episome.

For example, in baker's yeast, the genetic analysis of which is quite advanced, the use as reporter gene of a gene relating to the nutritional requirements of the host (LEU2, HIS3, TRP1, URA3, or the like), a gene (such as GAL1) relating to the exploitation of required nutritional sources, or a gene compensating for the loss or damage of some other gene required for survival makes it possible to readily detect the expression of the reporter gene in the transformant thus obtained through the survival or death of the host. It is also possible to employ a generally known reporter gene that can be detected by the activity of an enzyme such as β -galactosidase, chloramphenicol acetyltransferase, or luciferase, or green fluorescent protein (from Clontech Co.) permitting the direct detection of fluorescent light emitted by living cells. Further, the above-described general-use reporter genes as well as drug-resistance genes may be employed in animal cells to detect expression. As a result, if expression of the reporter gene is detected, it may be concluded that the test DNA codes for a peptide having nuclear transportability, and if expression of the reporter gene is not detected, it may be concluded that the test DNA does not code for a peptide having nuclear transportability.

/14

Second, the present invention relates to a method of isolating test DNA coding for a peptide having nuclear transportability, characterized in that fused DNA of DNA coding for transcription factor not having nuclear transportability and test DNA is introduced into a eukaryotic host having in its nucleus a promoter region that is activated by the binding of transcription factor and a reporter gene connected downstream from the promoter region; expression of the reporter gene is detected; and test DNA is isolated from a eukaryotic host in which expression has been detected. The test DNA can be isolated from a eukaryotic host in which expression of the reporter gene has been detected by, for example, in the case of baker's yeast when the test DNA is present on a plasmid (yeast-E. coli shuttle vector), refining plasmid from a single colony, using the plasmid obtained to transform E. coli, and further refining plasmid from the transformant. Alternatively, complete DNA from a single colony can be refined, and the refined DNA used as a template to amplify and refine the test DNA by PCR (Clontech Co., Yeast Protocols Handbook, PT3024-1: 29-37). As regards animal cells, as well, complete DNA is basically refined from a single colony and employed as a template to amplify and isolate the test DNA by PCR.

The present invention further relates to a kit comprising: a

vector having an incorporation site for test DNA adjacent to DNA coding for transcription factor not having nuclear transportability; and a eukaryotic host having in its nucleus an expression unit comprising the vector, a promoter region binding transcription factor, and a reporter gene spliced downstream from the promoter region. Test DNA is introduced at a test DNA introduction site in the vector of the present invention, and the vector is introduced into a eukaryotic host having in its nucleus an expression unit comprising a promoter region binding the transcription factor and a reporter gene spliced downstream from The test DNA introduction site is usually the promoter region. the only site on the vector that can be cleaved by a specific control enzyme. When expression of the reporter gene in the eukaryotic host is detected as a result of the introduction of the vector into the eukaryotic host, it is concluded that the test DNA that has been introduced into the vector codes for a peptide having nuclear transportability, and when expression of the reporter gene is not detected, it is concluded that the test DNA that has been introduced into the vector does not code for a peptide having nuclear transportability. Thus, it is readily possible to determine whether or not the test DNA codes for a peptide having nuclear transportability, and the isolation of DNA coding for peptides having nuclear transportability

is readily accomplished. Specifically, a DNA library can be built with the above-described vectors, this library can be introduced into the above-described eukaryotic hosts, and the expression of reporter genes can be detected to efficiently and comprehensively isolate DNA coding for peptides having nuclear transportability from within the library.

/15

Brief Description of the Figures

Fig. 1 shows the plasmid "pLexAD".

Fig. 2 shows the plasmid "pLexADrev".

Fig. 3 shows the plasmid "pRS1F".

Fig. 4 shows the plasmid "pRS3F".

Fig. 5 shows an assay for nuclear transportability in transcription factor by fusion with a test peptide.

Fig. 6 shows an assay for nuclear transportability in transcription factor fused to a test peptide.

Fig. 7 shows the plasmid "pNS".

Fig. 8 shows an assay for nuclear transportability in various peptides using the plasmid "pNS".

Best Mode of Implementing the Invention

Embodiments of the present invention are specifically described below; however, the present invention is not limited to these embodiments. In the embodiments set forth below, except where specifically stated otherwise, the basic genetic engineering methods employed were those described in the literature (Sambrook, J., Molecular Cloning: A Laboratory Manual, 1989, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Restriction enzymes, other modifying enzymes, and other genetic engineering products were purchased from Hōshuzō and the use conditions of the respective accompanying manuals were adhered to. Further, a "QIAprep Kit" (from Qiagen Co.) was employed to refine the plasmids from E. coli. An "ABI Prism 377" (from Perkin Elmer Co.) was employed to verify base sequences. Reagents

/16

from that company were employed to prepare samples for analysis and the methods employed conformed to the product manuals. Handling of the yeast (culture media, host, shuttle vectors, gene introduction methods, reporter gene assay method, gene isolation, and the like) was conducted with a "Matchmaker LexA Two-Hybrid System" (from Clontech Co.) according to the accompanying "Yeast Protocols Handbook". Synthesis of custom oligonucleotide was farmed out to Tōa Gōsei Co.

[Embodiment 1] Preparation of DNA sequences coding for GAL4 transcription activation domain by PCR

(1) Amplification by PCR of DNA sequences coding for the GAL4 transcription activation domain

A DNA fragment comprising the GAL4 transcription activation domain (the base sequence of which is given by sequence number 3) was amplified with the "GeneAmp PCR System 2400" (Perkin Elmer Co.) using a template in the form of "Plasmid pACT2" (Clontech Co.) and primers in the form of "Primer NU13" (sequence number 1) with an add-in EcoRI site designed into the 5' end and "Matchmaker 3' AD LD-Insert Screening Amplimer" (sequence number 2) (Clontech Co.). "TaKaRa Ex Taq" (TaKaRa Co.) was employed as the Taq polymerase and the product manual was adhered to for the reaction conditions and the like. The DNA fragment that had been amplified in this manner was refined by precipitation from ethanol and digested with the restriction enzymes EcoRI and NcoI. Six percent polyacrylamide gel electrophoresis was conducted and the targeted DNA fragment was cut out of the gel and recovered by electroelution.

(2) Preparation of the vector "pLexAD" expressing a fused protein of the LexA protein and GAL4 transcription activation

domain

The DNA fragment of (1) above coding for the GAL4 transcription activation domain was inserted between the EcoRI site and the NcoI site in the multicloning sites of the plasmid "pLexA" (Clontech Co.) to build "pLexAD" (Fig. 1). The base sequence was determined to verify that the targeted segment had indeed been inserted. The base sequence of the LexA gene is given by sequence number 4.

(3) Preparation of the vector "pLexADrev" in which the nuclear export signal (NES) is inserted on the N end of LexA

/17

A nuclear export signal (sequence number 5) having the Rev protein of HIV was synthesized in the following manner and inserted at the HpaI site near the N end of the LexA protein coded for by "pLexAD". "NU9" (sequence number 6) was synthesized as the sense chain and "NU10" (sequence number 7) as the antisense chain, the two were phosphorylated on the 5' end with T4 polynucleotide kinase, and the two were annealed. The DNA fragment was inserted into "pLexAD" that had been predigested with HPaI and dephosphorylated with alkali phosphatase to construct "pLexADrev" (Fig. 2). The base sequence was determined to verify that the targeted segment had indeed been inserted.

(4) Construction of the plasmid "pRS1F" having a CEN/ARS region at a replication starting point for the expression of a fused protein of LexA protein and a GAL4 transcription activation domain and construction of the plasmid "PRS3F" having a CEN/ARS region at a replication starting point for the expression of a fused protein of LexA protein with an inserted NES and a GAL4 transcription activation domain

The minimum unit required for the expression in yeast of a fused protein of common LexA protein not having an inserted nuclear export signal (NES) and a GAL4 transcription activation domain, and a fused protein of LexA protein with an NES inserted at the N end and a GAL4 transcription activation domain (the base sequence in which the amino acid sequence of this fused protein is recorded in combined form is given in sequence number 8), is a DNA fragment of about 1.7 kb obtained by digesting "pLexAD" with SphI for the former, and digesting "pLexADrev" with SphI for the latter. This expression unit comprises an ADH1 promoter region, an expression protein coding region, a multicloning site, and an ADH1 terminator region. After refining the DNA fragments of these respective expression units, the portion of a PvuII digested fragment comprising in advance the multicloning site of the plasmid "pRS413" (Stratagene Co.) (yeast shuttle vector, CEN/ARS origin) was inserted at the SphI site of the vector

"pRSF" that had been substituted with PvuII digested fragment comprising the multicloning site of the widely used plasmid pUC19 to construct "pRS1F" and "pRS3F" (Figs. 3 and 4, respectively). The base sequence was determined to verify that the targeted segment had indeed been inserted. Since

<u>/18</u>

a pLexA-derived multicloning site was present immediately following the fused protein functioning as a transcription factor in the "pRS1F" (positive control) and "pRS3F" constructed in this manner, a targeted DNA fragment such as cDNA could be readily fused by the usual methods and expressed.

[Embodiment 2] Validation of the effectiveness of the nuclear transport protein trap vector "pRS3F" by fusion of artificial nuclear transport protein cDNA

(1) Fusion of a known cDNA fragment

A cDNA fragment coding for the branch strand amino acid binding protein ('BraC) of Pseudomonas aeruginosa from which the secretion signal observed to be locally present in the cytoplasm had been removed (a base sequence in which the amino acid sequence of this protein is recorded in combination is shown in sequence number 9) (TANAKA, Mahito, New Biochemistry Experiment Lecture 6 (Ed. by the Japan Biochemistry Society), Biomembranes and Membrane Transport (2/2), 1992, Tokyo Chemistry Club, 9 15) and an artificial nuclear transport protein with SV40 large T antigen-derived nuclear transport signal fused onto its N end was fused in-frame onto the C end of the GAL4 transcription activation domain of "pRS3F" as a known cDNA fragment. precisely, "pRS3F'BraC" was constructed by inserting the DNA fragment (NcoI-DraI) coding for "'BraC" into "pRS3F" that had been refined by digestion with XhoI, Klenow treatment to smooth off the ends, and digestion with NcoI. "pRS3FN'BraC" was then constructed by inserting a synthetic DNA fragment coding for a nuclear transport signal (sequence number 10) derived from SV40 large T antigen, that is, synthesizing "NU17" as sense strand (sequence number 11) and "NU18" as antisense strand (sequence number 12), phosphorylating the 5' ends thereof with T4 polynucleotide kinase, and annealing the two, into a vector obtained by refining this "pRS3F'BraC" by digestion with NheI and NcoI. Further, as a control test, "pRS3FN" having only a nuclear transport signal and no "'BraC" fragment was constructed in the same manner. Correct insertion of the targeted fragment was confirmed by determining the base sequence.

(2) Nuclear transport capability assay based on reporter gene expression]

<u>/19</u>

The three plasmids "pRS3F'BraC", "pRS3FN'BraC", and pRS3FN" described in (1) above and the "pRS1F" and "pRS3F" constructed in Embodiment 1 were used to transform host yeast EGY48[p80P-lacZ] (obtained from Clontech Co.) having a promoter region (sequence number 13) having the LexA operator sequence (Estojak, J., Mole. Cell. Biol., 1995, 15: 5,820-5,829), the LEU2 reporter gene downstream therefrom, and β -galactosidase on chromosomes and on Introduction into the host of the plasmid, respectively. targeted plasmids was confirmed by complementation of HIS, a nutritional requirement marker. Next, the respective transformants were replicated in culture media (SD/-LEU, -HIS, -URA, X-gal) to assay expression of the reporter gene and cultured for 2-3 days at 30°C. As a result, both the reporter gene β galactosidase and LEU2 were expressed, and blue coloration and normal development were confirmed, in the transformants into which had been introduced "pRS3FN'BraC" fused with artificial nuclear transport protein, "pRS3FN" fused with only nuclear transport signal, and "pRS1F" as a positive control (Figs. 5 and By contrast, almost no reporter gene was expressed and neither blue coloration nor growth was observed in the transformants into which had been introduced "pRS3F'BraC" fused with a protein having no nuclear transport signal and "pRS3F" that had not been fused with anything (Figs. 5 and 6).

From these results, the in-frame fusion of a DNA fragment coding for a certain peptide onto the C end of transcription factor coding for "pRS3F" and the expression thereof in yeast permitted the detection of the presence or absence of nuclear transportability by using the expression of the reporter gene as indicator.

[Embodiment 3] Construction of the vector pNS for creating a cDNA library

"pRS3F" was improved. The improvement consisted of the following three points: (1) elimination of the EcoRI sites in the LexA and GAL4AD binding portions, (2) the introduction of an EcoRI site at the multicloning site, and (3) the elimination of unneeded regions derived from "pRS413" to achieve the smallest size possible.

First, a synthesis linker, "NU31" as sense strand (sequence number 14), and "NU30" as antisense strand (sequence number 15), were inserted at the EcoRI site of "pLexADrev" to obtain the plasmid "pLexADrev-dE".

/20

A DNA fragment comprising an about $1.7~\rm kb$ ADH1 expression unit obtained by digestion of "pLexADrev-dE" with the restriction enzyme SphI was subcloned at the SphI site of the widely employed

plasmid pUC19 to obtain the plasmid "pULexADrev-dE". Next, a synthesis linker having an EcoRI site, a sense strand in the form of "NU28" (sequence number 16), and an antisense strand in the form of "NU29" (sequence number 17) were inserted between the NheI site and the NcoI site of the "pULexADrev-dE" to obtain the plasmid "pULexADrev-E". Further, "pRS413" was digested with DraIII and PvuII to remove a DNA fragment comprising a 757 bp multicloning site, and a synthesis linker having an SpHI site, a sense strand in the form of "NU25" (sequence number 18), and an antisense strand in the form of "NU26" (sequence number 19) were inserted at the removal site to obtain the plasmid "pRS-S". A DNA fragment comprising an about 1.7 kb ADH1 expression unit obtained by digesting the above-described "pULexADrev-E" with SphI was inserted at the SphI site of the "pRS-S" to construct the vector pNS (fig. 7) for use in creating a cDNA library (the transcription direction of ADH1 is identical to that of HIS3).

[Embodiment 4] Creation of a fused protein expression library (derived from precursor cells of the cultured human cell NT2) and a nuclear transport assay

(1) Creation of a fused protein expression library mRNA was prepared by culturing precursor cells (Stratagene Co.) of the cultured human cell NT2 according to the supplemental protocol (Catalog #204101, Revision #036002a) and using the a commercial total RNA extraction kit and an mRNA extraction kit (Pharmacia Co.). Using a portion thereof (3 µg), a cDNA library was created using a commercial cDNA synthesis kit (Pharmacia Specifically, cDNA synthesis was conducted using oligo(dT)12-18 primer and inserted at the EcoRI/NotI site of the pNS vector. The cDNA was unidirectionally introduced using a Directional Cloning Toolbox (Pharmacia Co.). Subsequently, a portion of the cDNA library was employed to transform commercial E. coli (ElectroMAX DH10B Cells from GibcoBRL Co.) by electroporation (Gene Pulser from BIO RAD Co.) conducted in the usual manner (New Cytoengineering Test Protocol, Hidemasu Co., 114-115). The transformants

/21

obtained were cultured for 16 hr at 30°C in an LB agar medium comprising ampicillin (100 $\mu m/mL$), and after collecting the bacteria, plasmid was prepared (Qiagen Maxi kit from Qiagen Co.).

(2) Nuclear transport assay employing yeast

Using 60 µg of the plasmid of the fused protein expression library that had been prepared, EGY48 strain was transformed by the usual methods (Clontech Co., Yeast Protocols Handbook, PT3024-1: 17-20). When the transformants were cultured for 3-7 days at 30°C in SD agar medium (-His/-Leu) to select the clones

based on expression of the reporter gene LEU2, about 1,000 positive clones were obtained.

(3) Determination of base sequences

The base sequences of the cDNA fragments inserted into the vector were determined for some (12) of the positive clones thus To determine the base sequence, colony PCR was first employed to prepare template DNA from each of the clones. small quantity of bacteria scraped from each clone was added to 20 µL of PCR reaction solution (0.5 unit of heat-resistant DNA polymerase (Ex Tag from TaKaRa Co.), 4 nmol of dNTP mixture, 0.4 pmol each of "primer NU15" (sequence number 20) and "primer NU36" (sequence number 21), 2 µL of supplemental buffer, and sterilized water) and the inserted cDNA fragments were subjected to 40 cycles of amplification using a "GeneAmp PCR System 2400" (Perkin Elmer Co.) at a denaturation [temperature] of 94°C, an annealing [temperature] of 60°C, and an expansion [temperature] of 72°C. Each PCR product was subjected to desalting with a Microcon-100 (Millipore Co.) and unreacted primer was removed to obtain template DNA. A portion (100-200 ng) of the template thus obtained was used to determine the base sequence by the method described in a product manual from ABI Co.

(4) Database analysis of the clones obtained

The base sequence of each clone was searched for in the Basic BLAST (http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-blast?Jform=0) of the National Center for Biotechnology Information (NCBI), a public database. As a result, all 12 clones matched previously known genes. Of those, there were reports or suggestions that ten might function within the

/22

nucleus. Of the ten, five of the clones were: NP220 having nuclear transport signal-like sequences of the SV40 large T antigen type, rich in basic amino acids (Inagaki, H., J. Biol. Chem., 1996, 271: 12,525-12,531), PC4 (Ge, H., Cell, 1994, 78: 513-523), ERC-55 (Imai, T., Biochem. Biophys. Res. Commun., 1997, 233: 765-769), histone-binding protein (O'Rand, M. G., Dev. Biol., 1992, 154: 37-44), and prothymocin α 1 (Manrow, R. E., J. Biol. Chem., 1991, 266: 3,916-3,924). One clone was hnRNPA1, which has an M9 sequence performing round trip movement into and out of the nucleus (Michael, W. M., Cell, 1995, 83: 415-422). Four more of the clones were ferritin H chain not having known nuclear transport signals (Cai, C. X., J. Biol. Chem. 1997, 272: 12,831-12,839), Shaperonin 10 (Bonardi, M. A., Biochem. Biophys. Res. Commun., 1995, 206: 260-265), protein kinase C inhibitor-I (Brzoska, P. M., Proc. Natl. Acad. Sci., 1995, 92: 7,824-7,828), and steroid receptor coactivater-1 (Onate, S. A., Science, 1995,

270: 1,354-1,357). No known nuclear transport signal was found in the two remaining clones, for which no function within the nucleus has yet been reported: tropomyocin (Lin, C. S., Mol. Cell. Biol., 1988, 8: 160-168) and G-rich sequence factor-1 (Qian, Z., Nucleic Acids Res., 1994, 22: 2,334-2,343);

[Embodiment 5] Creation of a fused protein expression library (derived from human fetal brain [cells]) and a nuclear transport assay

(1) First, a commercial human fetal brain cDNA library (Superscript library from GibcoBRL Co.) was amplified according to the protocol provided by the manufacturer. Plasmids comprising the cDNA fragments as inserts were then prepared using a plasmid manufacturing kit from Qiagen Co. Next, cDNA fragments cut out from a portion (30 μg) thereof using the two restriction enzymes EcoRI and NotI were sorted to obtain cDNA 0.7-4 kb in length by 0.8 percent agarose electrophoresis. The cDNA fragments thus obtained were inserted at the EcoRI/NotI site of the above-described pNS

/23

vector to prepare a fused protein expression library. A portion thereof was employed to transform commercial $\it E.~coli$ (ElectroMAX DH10B Cells from GibcoBRL Co.) by electroporation (Gene Pulser from Biorad) using the usual method (New Cytoengineering Test Protocol, Hidemasu Co., 114-115). The transformants obtained were cultured for 16 hr at 30°C in an LB agar medium comprising ampicillin (100 $\mu m/mL)$, the bacteria were collected, and plasmid was prepared (Qiagen Maxi Kit from Qiagen).

(2) Nuclear Transport Assay Employing Yeast EGY48 strain was transformed by the usual method (Clontech Co., Yeast Protocols Handbook, PT3024-1: 17-20) using 60 µg of plasmid from the fused protein expression library that had been prepared. When cultivated for 3-7 days at 30°C in SD agar

medium (-His/-Leu) to select clones based on expression of the reporter gene LEU2, about 1,000 positive clones were obtained.

(3) Base sequencing\$

The base sequences of the cDNA fragments inserted into the vector were determined for some (489 clones) of the positive clones thus obtained. To conduct sequencing, template DNA was prepared from each clone by colony PCR. A small quantity of bacterial matter scraped from each clone was added to 20 mL of PCR reaction solution (0.5 unit of heat-resistant DNA polymerase (Ex Taq from TaKaRa Co.), 4 nmol of dNTP mixture each, 0.4 pmol each of "primer NU15" (sequence number 22) and "primer NU36" (sequence number 23), 2 μL of supplemental buffer, and sterilized water) and the inserted cDNA fragments were subjected

to 40 cycles of amplification using a "GeneAmp PCR System 9600" (Perkin Elmer Co.) at a denaturation [temperature] of 94°C, an annealing [temperature] of 60°C, and an expansion [temperature] of 72°C. Each PCR product was subjected to desalting with a Microcon-100 (Millipore Co.) and unreacted primer was removed to obtain template DNA. A portion (100-200 ng) of the template thus obtained was used to determine the base sequence by the method described in a product manual from ABI Co.

(4) Database analysis of the clones obtained

<u>/24</u>

The base sequence of each of the 489 clones was searched for in the Basic BLAST (http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-blast?Jform=0) of the National Center for Biotechnology Information (NCBI), a public database. As a result, 250 of the clones matched genes coding for 97 known proteins (Tables 1 and 2), 220 of the clones were either new sequences that were candidates for genes coding for new nuclear transport proteins or matched 172 genes coding for known expressed sequence tags (EST). Another 19 of the clones were either derived from nontranslation regions of known genes or had shifted codon read frames.

Table 1 shows those of the genes isolated by the method of the present invention that code for proteins that have been reported to have functions within the nucleus, and Table 2 shows those for which no function within the nucleus has been reported.

Table 1

Gene	GenBank	Function	Starting	Structural	Length	Medline
*	Accession		position	character-	(kb) of	Ul ⁴
	ł		of region	istics of	region	01
			where	region	where	
			obtained*	where	obtained	•
				obtained		
1		RNA binding protein				
2		Synapse/nuclear protein				
3		Saccharolytic enzyme				
4		Bacteria [illeg.]/Signal				
		transmitting gene	l			
5		Transcription factor			1	
6		Calcium binding protein	1			
7		Transcription factor				1
8		Cyclosporin binding]			
		protein				
9		Steroid receptor				
		conjugate factor				l
10		Transcription factor				
11		Gu and p53 interaction				
	<u> </u>	nuclear protein	l			
12		Centromere region				
		interaction protein				
13		Transcription regulating				
		factor				
14	<u> </u>	Transcription factor				
15		DNA cleaving/modifying				
	<u> </u>	complex				

16	Managemention regulating		· ·		1
16	Transcription regulating factor				
17			+	 	ļ
	Ribonucleic protein				
18	Ribonucleic protein Heterochromatin protein		1	 	ļ
			<u> </u>		
20	Transcription regulating factor				
21	NLS dependent nuclear			<u> </u>	
	transport receptor				
22	NLS dependent nuclear			į –	<u> </u>
	transport receptor			,	
23	Nuclear autoantigen				
24	DNA binding protein				
25	Metabolic enzyme				
26	Assumed transcription				
	regulating factor				
27	M-phase phosphoprotein			1	
28	Major nuclear matrix				
	protein				
29	Transcription factor				
30	DNA binding protein				
31	DNA binding protein				
32	Contributes to inducing				
	cell proliferation				
33	Transcription regulating				
	protein				
34	Protein interacting with				
	homeotic protein BM11				
35	Assumed transcription		1		
	regulating factor				
36	Protein interacting with				
	kinesin-related proteins				
37	US snRNP subunit protein complex				
38	Transcription regulating				
30	factor				
39	Assumed transcription				
	regulating factor			1	
40	Transcription factor			 	
41	Transcription factor				
42	Transcription factor				
43	DNA cleaving/modifying				
	enzyme]
44	Nuclear membrane complex				
	interacting protein				
45	Assumed transcription				
	regulating factor				

<u>/25</u> .

Table 2

Gene	GenBank	Function	Starting	Structural	Length	Medline
*	Accessio		position	characteristics	(kb) of	Ul ⁴
	n		of region	of region where	region	01
			where	obtained	where	
			obtained*		obtained	
1		Contributes to				
		purine synthesis				
		path				
2		Saccharolytic				
		enzyme				
3		Actin binding				
		protein				
4		Pituitary protein				
5		MAPKKK Mammal				
		homolog				

6	Similar to				
	ME491/CD63				
	superfamily				
7	Contributes to		 		·
′	1				
	intracellular				
	protein transport				<u> </u>
8	Assumed colorectal				
	cancer suppressing				
	gene product				
9	Actin binding				
9					
	protein				
10	Metabolic enzyme				L
11	Metabolic enzyme				
12	Contributes to				
	signal				
	transmission				
13	Endoplasmic		 	- 	
13		ĺ			
	reticulum calcium				
	binding protein		<u> </u>		
14	Actin binding				
	protein	1			
15	Intermediate			1	
-	filament				
16	Testes/brain		 	 	
10					
	specific GST				
17	Assumed Golgi				
	complex protein				
18	Similar to yeast				
	CDC10				1
19	Cyclin G		 		
1	interacting kinase				j
20	Homolog of				
	drosophila sina				
21	Function unknown				
22	Function unknown				
23	Function unknown		† · · · · · · · · · · · · · · · · · · ·	 	
24	Function unknown		 		
25	Function unknown			+	ļ
			<u> </u>		
26	Function unknown		ļ		
27	Function unknown		i .		
28	Function unknown			Ī	
29	Assumed kinesin			-	
	receptor			1	
30	Kinesin motor		+		
30				1	
	protein super]	
	family				
31	G alpha 2		•		
ŀ	interacting				
	protein				
32	Metabolic enzyme				
33	Kinesin motor		† · · · · · · · · · · · · · · · · · · ·	 	
"	protein super		•		
	family		 	 	
34	Contributes to				
	[illeg.] transport				
35	Similar to nel				
	protein				
36	aglycon sugar		<u> </u>	1	
	protein family			,	
37	Intermediate		<u> </u>	+	
31					
	filament	<u> </u>	ļ		_
38	Actin binding				
1	1	í	I	1	
	protein				
39	Phosphoglycarate				

	protein			
41	Effector protein	İ		ļ
-	of small GTPase		Į	
	Rab5			
42	Small GTPase Rab5			
-	interacting			
	protein			
43	Intermediate			į
	filament			
	interacting		ì	
ļ	protein			
44	Ribosome protein			
45	Assumed			
1	transcription	ľ	!	1
	factor			
46	Contributes to			
ì	[illeg.] transport			
47	Similar to Grb-2	İ		
Į.	having an SH3	!		
ĺ	domain			
48	Signal	1		
	transmission		ļ	
1	adapter molecule			
49	Assumed			
Į.	transcription			
	control factor			ļ
50	Contributes to			
	thyroid cancer			
51	Cell adhesion			1
	factor			
52	Intermediate			
	filament			

		GenBank		取得領域の	取得領域の	-	
	读伝子*	Accession	機能	開始即位 *	推造的特征	85(FP)	Ul*
-	9GB apicing factor	L22253	RNA 核合タンパク質	FOSPSRSRSR-	S/R nch	1.8	94283389
,	AD arryloid NACP (synuclain)	L08850	シナブス/狂 タンパク質	ILEDMPVOPD-		1.8	92182008
ì	aldolese A	X05236	灯链耐泵	•			97047308
i	beta caterin	Z19054	級砲技者ノシグナル伝達分子	VELTSSLFRT→		1.9	#3221560
3	c-fos	V01512	经等因子		NLS. bZIP	2.0	96114780
ī	calmodulin	045887	//// / / The B / / / / / / / / / / / / / / / / / /	PTEAELODHI -		1.4	92279218
7	CREB-2	M85842	低写图子	GLYSPSHHSK→	NLS, bZIP	1.8	95394146
À	syclophilin A	Y00052	サイクロスポリン結合タンパク質	•		C.8	95291002
	F-SRC-1	U59302	ステロイドレセプター共役因子	AINOSKSEDO→		2.5	
10	GADDIS3 (CHOP)	540708	经本因子	•	NLS. ZIP	1.0	93015930
11	Gu binding protein	U78524	Gu および o53 相互作用様タンパク質	L KOHVHSLRV→		2.4	97320420
12	hCENP-B	X55039	動原体領域相互作用タンパク質	EDE0D000EE→		1.7	91372020
	hCREM-2	D14826	紅字牌家因子		NLS, bZIP	2.0	94266757
14	heat shock factor I (TCF5)	M84873	拉莱因子	LEHVHGSGPY →	ZIP	1.9	91334378
15	HHR23A protein	D21235	DNA切断/補機複合体	IPGSPEPEHG→		1.8	98292259
	HIRA	X77633	紅本雄都因子	GDFSTAFFHS→	NLS	2.4	95359996
17	MIRNPC	M16342	リポセタンパク質	•		1.9	87257872
	MRNPK	S74678	リポ技タンパク質	YDPNFYDETY-	KNS	1.5	97361839
15	MP1Hs-gamma	U26312	ヘテロクロマチンタンパク質	KKKRDAADKP	NLS	1.8	96278941
19	ASNF2b	D26156	松写如意因子	VEEKILAAAK-	NLS	0.7	94768902
20	importin alpha 3	U93240	NLS依存的技格行レセプター	ICL SAVQAAR→	arm	2.4	96270582
21	tanyopherin sipha 3	D89518	NLS佐存的技格行レセプター	SAQTQAVVQS-	arm	1.9	96270582
22		U11292	は自己状態		NLS	2.4	86141726
23	Ki nuclear autoantigen	M32865	DNA結合タンパク質	DSFENPVLOO-	NLS	0.8	89174787
24		Y00711	代別経常	NK I TVVGVGQ→		2.0	87053963
25	lectate dehydrogenase leugine zipper protein (hDIP)	250781	推定の転写講館因子	•	ZIP	2.0	97136879
26		X98263	M期りん酸化タンパク質	KK11SEEHWY→	NLS	1.7	97039887
27	· · · · · · · · · · · · · · · · · · ·	M63483	主要なマトリックスタンパク質	DGQSDENKOD→	NLS	1.9	91238771
28		M62399	紅本田子	ODRHRIEEKR-	NLS	2.0	91173312
29		D83032	DNA組合タンパク質	IPTGDEKTVD-	NLS	2.5	95218174
30		M96824	DNA組合タンパク質	OADLKEVWEE-	ZIP, EF-hand	1.9	92392352
31		M86557	絶物境発酵薬に関与	IPEFWLTVFK-	NLS	2.0	94128073
32		U12979	紅字與數因子	1	NLS	2.0	94340740
33		U89277	ホメオティックタンパク賞BMII相互作用タンパク	'HGERDLGNPH-		2.4	9722002
34		S88431	作室の紅字は前田子	LLEVSLDETO-	NLS	1.9	9402084
35		U39919	キネシン関連タンパク質相互作用タンパク質	GL KHLMKRAL -	arm	1.9	9817591.
36			UZ pnRNPサブユニットタンパク質複合体	ETALKEKKPG-	NLS	1.7	9615404
37		U68618	社事業の因子	RYDFONPSRM-	NLS, ZIP	2.5	9639741
35		U74667	技士の近写旗数因子		NLS	1.9	9618293
35		U44059	技工団子	YMDLDEFLLE→	NLS. bZIP	2.5	9621963
40		X51330	经本签子	IDELELOADI -	NLS	2.0	9024972
41	TFEB	M33782	12年87	EL TDAESRAL -	NLS, MHLHZIP		9031840
		U\$4831	DNA 切断/存在酵类	-HADDDDDGGG	NLS	1.8	9812279
4		U59668	祖籍複合体相互作用タンパク質	IOHTRROSVG-		2.8	#717713
	5 TSC-22	U35048	技定の転字換節因子	MYAVREEVEV-	ZIP	18	9624458

表 2

	遗信子	GenBank Accession	機能	取得協議の 開始部位	取得領域の 推造的特徴	B # B # B
1	ADE2H1	X53793	ブリン生合成経路に関与	4	12.00/17.20	2.0
2	aldolase C	X07292	料理研索	YPAL SAEOKK-		1.8
3	alpha-actinin	X15804	アクチン総合タンパク質	EQVEKGYEEW-	coiled-coil, Ef-hand	2.5
4	antisecretory factor-1	U24704	下垂体タンパク質	2	NLS	1.8
Ś	ASKI	D84476	MAPKKK 哺乳類ホモログ	IRTLFLGIPD→	nLo	2.0
6	cell surface glycoprotein	D10653	ME491/CD63 スーパーファミリーに延ば	TRICICULIA D-		2.0
,	coatomer protein (COPA)	U24105	細胞内タンパク質輸送に関与	GHYONAL YLG-	WD-40	
À	colorectal mutant cancer protein	M62397	推定の大腿癌抑制遺伝子産物	EISSIGVSSS-	NLS	2.3 4.2
9	cytoskeletal tropomyosin TM30	X04588	アクチン結合タンパク質	£122101222-		
10	cytosoiic malate dehydrogenase	D55654	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	coiled-coil	2.0
11	dihydrolipoamide dehydrogenase	J03620	1、100 mm			1.8
				IPVNTRFQTK-		1.9
12	epsilon 14-3-3 protein	U28936	シグナル伝達に関与	OHVETELKL I→		1.8
13		X78669	小胞体カルシウム結合タンパク質	LXDXKRFEKA→	NLS, EF-hand	1.9
14	fibroblast tropomyosin TM30	X05276	アクチン結合タンパク質	YEEE1KLLSD→	corled-coil	1.8
15	gkal fibrillary acidic protein (GFAP)	J04569	中間フィラメント	QYEAHASSH M	coiled-cail	2.4
16	glutathione S-transferase M3 (GSTM3)	J05459	粮类/运特具的CST	ESSMVLGYWD→		0.7
17	golgin-95	L05147	推定のゴルジ復合体タンパク賞	DYVAXYOOL T-	coiles-cail	2.5
18	hCDC10=CDC10 homolog	\$72008	製母のCDC10に額位	REHVAKHKKH +	NLS, ZIP	1.8
9	HsGAK	D88435	サイクリンG相互作用キナーゼ	OGPPEDLLSE-		2.0
20	hSIAH2	U76248	ショウショウバエ sina のホモログ	EHEDICEYRP-		1.9
21	KIAA0116	D29958	機能未知	YTL SEAEKVY-		0.9
22	KIAAD135	D50926	祖姓未知	OLLLYTEEKE-		2.5
23	KIAA0171	D79993	祖能未知	OATHTSSOSH-		2.2
24	KIAA0181	D80003	機能素鉛	CHLVSKETST-	NLS	0.8
25	KIAA0332	AB002330	機能未知			
	KIAAQ365	AB002363	祖配来知	IPIDATPIDD-	NLS	1.7
27	KIAA0373	AB002371	機能未知	SGCPLQVKKA-	NLS	2.0
28		AB007892	位を未知	IISATSOKEA-	NLS	0.6
29	kinectin	L25616		SAPIINFSAQ-		2.3
20	kinesin-2 (HK2)	Y08319	推定のカイネシンレセプター	OKLOALANEO-	coiled-coil	2.8
31	LGN protain	U54999	カイネシンモータータンパク賞スーパーファミリー		lias-belias	2.4
32	maiate dehydrogenase		G alpha i2 相互作用タンパク質	IPHSQRKISA→		1.9
13	mitatic kinesin-like protein 1	U20352	代謝酵素	1		1.8
34		X67155	カイネシンモータータンパク質スーパーファミリー		NLS, coiled-coil	2.6
•	N-ethyimaleimice-sensitive factor	U03985	意物法に加え	LASLENDIKP→		2.5
35	nei-related protein (NRP1)	D83017	ネルタンパク質に低促	RNOKHGL FKG→	EGF-like	2.3
36	neurocan (CSPG3)	AF026547	アグリカン種タンパク質ファミリー	PAOVHKAEHS→	NLS	2.0
37		S78296	中間フィラメント	LAFVRQVHDE→	coiled-coil	2.5
18	non-muscle myosin heavy chain-B	M69181	アクチン結合タンパク質	KKLKSLEAEI→	coled-coil	2.5
39	phosphoglycerate mutase (PGAM-B)	J04173	ホスホグリセリン酸ムターゼファミリー			2.4
40	por1	X97567	Racl相互作用タンパク質	FGRGSRRTVD→	cailed-cail	1.8
41	Rabaptin-5	X91141	small GTPase Rab5のニフェクタータンパク質	IQIQEAETRD-	coiled-coil	2.0
42	Rap2 interacting protein 8 (RPIP8)	U93871	small GTPase Rap2相互作用タンパク管	KFRIYYAQXG→		1.8
43		X64838	中間フィラメント相互作用タンパク質	KF IKDADEEK-	NLS, coilea-coil	2.3
44		AF034208	リボソームタンパク質	DNORDCOPGL →		1.8
45	RING zinc finger protein (RZF)	AF037204	推定の転写因子	KTKKTCPVCK-		1.9
46	secretogramm (chromogramin B)	Y00064	连续进门型车	PEYGEEIKGY-	NLS	1.7
47	SH3GL2	X99657	SH3ドメインを持つGrb-2に類似	LHOKOL RETO-	NLS. SH3	2.1
48	STAM	U43899	シグナル伝達アダプター分子	OPNWWKGETH-	ITAM	2.4
49	tax1-binding protein TXBP151	U33821	推定の転写制御因子	SKEDTCFLKE-	II OM	1.9
50	TFG protein	Y07968	甲状腺癌に関与	LRRELIELRN-	coiled-coil	1.9
51	trophinin	U04811	中心は他に関う	PSNS IGFGAA-	C0:186~C0!1	
			40 JO 12 40 (CI T	LOUZINL NAVA		1.9

The symbols in the tables have the following meanings:

- a: Indicates that the protein obtained represents the shortest inserted fragment in the group to which assigned.
- b: Indicates 10 amino acid residues from the amino terminus of the protein coded for by the inserted gene fragment.
- c: Medline Unique Identifier of the document reporting a function in the nucleus.
 - *: A clone comprising the entire translation region.

S/R rich: A serin/alginin rich region.

NLS: Assumed nuclear transport signal rich in basic residues.

<u>/26</u>

ZIP: Leucin zipper

bZIP: Basic leucin zipper

KNS: hnRNP K nuclear transport signal

arm: Armaggio repeat

bHLHZIP: Basic helix loop helix leucin zipper

SH3: Src homology domain 3

ITAM: Immunoreceptor tyrosine-based activation motif

As shown in Tables 1 and 2, about half of the 97 known proteins were proteins reported to have functions within the nucleus. The ratio of transcription control factors and DNA/RNA splicing proteins was particularly high. Accordingly, even as regards the new genes, it may be readily anticipated that genes coding for unknown proteins functioning within the nucleus will be efficiently and specifically obtained. Further, with regard to the hnRNPK protein among the isolated clones, the KNS sequence (Matthew, W., EMBO J., 1997, 16: 3,587-3,598) responsible for back and forth movement into and out of the nucleus was found. The finding of the M9 sequence and the KNS sequence that are responsible for movement into and out of the nucleus among the clones isolated by the method of the present invention demonstrates that the method of the present invention is not only capable of specifically selecting with high efficiency just nuclear transport proteins, but can also be expanded to the general selection of proteins moving into and out of the nucleus (outside the nucleus -> inside the nucleus, inside the nucleus -> outside the nucleus).

[Embodiment 6] Demonstration of the efficacy of the nuclear transport protein trap vector "pNS" based on the fusion of cDNA coding for known nuclear transport proteins

(1) Construction of fused plasmids of known cDNA fragments cDNA in the form of "'BraC" (TANAKA, Mahito, New Biochemistry Experiment Lecture 6 (Ed. by the Japan Biochemistry

Society), Biomembranes and Membrane Transport (2/2), 1992, Tokyo Chemistry Club, 9 15) and calcium/calmodulin dependent protein kinase kinase "CaMKK" (Tokumitsu, H., J. Biol. Chem., 1995, 270 (33): 19,320-19,324; Tokumitsu, Hiroshi, "Localization of CaMKK in Cells", unreleased data) were employed as representative proteins localized in cytoplasm. cDNA in the form of SV40 "NLS", "NLS-'BraC" obtained by artificially fusing SV40 "NLS" and "'BraC", the transcription factor NF-kappa-B

<u>/27</u>

p65 subunit "NFKBp65" (Ganchi, P. A., Mol. Biol. Cell, 1992, 3(12): 1,339-1,352), and the transcription factor "c-Fos" (Tratner, I., Oncogene, 1991, 6(11): 2,049-2,053) was employed as representative proteins localized in the nucleus and having conventional nuclear transport signals. The plasmid "pRS1F" was employed for "LexAD", "pNS" for "NES-LexAD", "pRS3FN" for "NES-LexAD-NLS", "pRS3F'BraC" for "NES-LexAD-'BraC", and "pRS3FN'BraC" $\,$ for "NES-LexAD-NFKBp65", respectively. "NES-LexAD-NFKBp65" was prepared by amplifying "NFKBp65" by PCR employing the primers "NU32" (sequence number 24) and "NU24" (sequence number 25) and employing "PME18S(N)-p65" (Tsuboi, A., Biochem. Biophys. Res. Commun., 1994, 199(2): 1,064-1,072) as template, refining the fragments by digestion with the restriction enzymes MunI and NotI, and inserting the fragments into the EcoRi/NotI site of "pNS". Similarly, "NES-LexAD-cFOS" was prepared by amplifying "c-FOS" by PCR employing the primers "NU34" (sequence number 26) and "NU24" and employing "PME18S(N)-cFos" (Tsuboi, A., Biochem. Biophys. Res. Commun., 1994, 199(2): 1,064-1,072) as template followed by insertion into the EcoRI/NotI site of "pNS". "NES-LexAD-CaMKK" was prepared by digesting "pET-CaMKK" (provided by Mr. Hiroshi TOKUMITSU) with the restriction enzyme NcoI to obtain a "CaMKK" cDNA fragment, which was then inserted at the NcoI site of "pNS".

(2) These plasmids were each introduced into EGY48 strain and expression of the reporter gene LEU2 was observed. Following transformation with the various plasmids described above in (1), direct plating on SD culture (-HIS, -LEU) was conducted. "LexAD" not having NES was thought to form colonies because of passive diffusion into the nucleus. The formation of colonies in "NES-LexAD" into which NES had been introduced was completely inhibited. However, in "NES-LexAD-NLS" into which NLS had been additionally incorporated, colony formation was again observed. Similarly, in "NES-LexAD-NLS-'BraC", "NES-LexAD-NFKBp65", and "NES-LexAD-cFos", all of which comprised conventional NES, colony formation was observed. In "NES-LexAD-'BraC" and "NES-LexAD-CAMKK" which did not have nuclear transportability, colony

formation was completely inhibited. These results demonstrate that the specific detection of cDNA fragments having nuclear transportability is possible in systems employing "pNS" vector.

<u>/28</u>

Potential For Industrial Use

Based on the present invention, it is possible to conveniently detect whether or not a peptide coded for by test DNA has nuclear transportability by employing as indicator the expression of a reporter gene. Further, it is possible to rapidly, efficiently, and comprehensively clone DNA coding for a protein having nuclear transportability by employing as indicator the expression of a reporter gene. Based on the present invention, not only is the obtaining of DNA coding for new intranuclear proteins of biological importance advanced, but extremely useful gene expression information (time, place, expression frequency, and the like) with regard to research into the functioning of proteins in the nucleus can be provided. Further, the use of this information is expected to contribute to the development of epoch-marking drugs.

<u>/29</u>

Sequence Table

- (1) Name or designation of applicant: Helix Research Institute
- (2) Title of Invention: METHODS FOR DETECTING AND ISOLATING NUCLEAR TRANSPORT PROTEINS
- (3) Filing Number: H1-804DP1PCT
- (4) Application Number:
- (5) Filing Date:
- (6) Name of Country and Numbers of Applications Relied on for Priority:

Japan Patent Application No. Hei 9-124795 Japan Patent Application No. Hei 9-309686

- (7) Priority Date: April 28, 1998 October 24, 1998
- (8) Number of Sequences: 26

Sequence number: 1 Length of sequence: 30

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Another nucleic acid Synthetic DNA

Sequence:

TTTGAATTCG CCAATTTTAA TCAAAGTGGG 30

Sequence number: 2 Length of sequence: 32

Form of sequence: Nucleic acid

<u>/30</u>

Number of strands: One Topology: Straight chain

Type of Sequence: Another nucleic acid Synthetic DNA

Sequence:

TAGCATCTAT GACTTTTGG GGCGTTCAAG TG 32

Sequence number: 3 Length of sequence: 342

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: cDNA to mRNA

Sequence characteristics:

Code denoting characteristics: domain

Position where present: 1..342

Method of determining characteristic: S

Sequence:

GCC AAT TIT AAT CAA AGT GGG AAT ATT GCT GAT AGC TCA TTG TCC TTC 48 Ala Asn Phe Asn Gln Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe 10 15 1 ACT TTC ACT AAC AGT AGC AAC GGT CCG AAC CTC ATA ACA ACT CAA ACA 96 Thr Phe Thr Asn Ser Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr 20 25 30 AAT TCT CAA GCG CTT TCA CAA CCA ATT GCC TCC TCT AAC GTT CAT GAT 144 Asn Ser Gln Ala Leu Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp 35 40 45

AAC	TTC	ATG	AAT	AAT	GAA	ATC	ACG	GCT	AGT	AAA	ATT	GAT	GAT	GGT	AAT	192
Asn	Phe	Met	Asn	Asn	Glu	Ile	Thr	Ala	Ser	Lys	Ile	Asp	Asp	Gly	Asn	
	50					55					60		٠			
AAT	TCA	AAA	CCA	CTG	TCA	CCT	GGT	TGG	ACG	GAC	CAA	ACT	GCG	TAT	AAC	240
Asn	Ser	Lys	Pro	Leu	Ser	Pro	Gly	Trp	Thr	Asp	Gln	Thr	Ala	Tyr	Asn	
65					70					75					80	
GCG	TTT	GGA	ATC	ACT	ACA	GGG	ATG	TTT	AAT	ACC	ACT	ACA	ATG	GAT	GAT	288
Ala	Phe	Gly	Ile	Thr	Thr	Gly	Met	Phe	Asn	Thr	Thr	Thr	Met	Asp	Asp	
				85					90					95		
GTA	TAT	AAC	TAT	CTA	TTC	GAT	GAT	GAA	GAT	ACC	CCA	CCA	AAC	CCA	AAA	336
Val	Tyr	Asn	Tyr	Leu	Phe	Asp	Asp	Glu	Asp	Thr	Pro	Pro	Asn	Pro	Lys	
			100					105					110			
AAA	GAG															342
Lys	Glu															

Sequence number: 4
Length of sequence: 609

Form of sequence: Nucleic acid

Number of strands: Two Topology: Straight chain

Type of Sequence: cDNA to mRNA

Sequence characteristics:

Code denoting characteristics: CDS

Position where present: 1..606

Method of determining characteristic: S

Sequence:

ATG	AAA	GCG	TTA	ACG	GCC	AGG	CAA	CAA	GAG	GTG	TTT	GAT	CTC	ATC	CGT	48
Met	Lys	Ala	Leu	Thr	Ala	Arg	Gln	Gln	Glu	Val	Phe	Asp	Leu	Ile	Arg	
1				5					10					15		
GAT	CAC	ATC	AGC	CAG	ACA	GGT	ATG	CCG	CCG	ACG	CGT	GCG	GAA	ATC	GCG	96
Asp	His	Ile	Ser	Gln	Thr	Gly	Met	Pro	Pro	Thr	Arg	Ala	Glu	Ile	Ala	
			20					25					30			
CAG	CGT	TTG	GGG	TTC	CGT	TCC	CCA	AAC	GCG	GCT	GAA	GAA	CAT	CTG	AAG	144
Gln	Arg	Leu	Gly	Phe	Arg	Ser	Pro	Asn	Ala	Ala	Glu	Glu	His	Leu	Lys	
		35					40					45				
GCG	CTG	GCA	CGC	AAA	GGC	GTT	ATT	GAA	ATT	GTT	TCC	GGC	GCA	TCA	CGC	192
Ala	Leu	Ala	Arg	Lys	Gly	Val	Ile	Glu	Ile	Val	Ser	Gly	Ala	Ser	Arg	
	50					55					60					
GGG	ATT	CGT	CTG	TTG	CAG	GAA	GAG	GAA	GAA	GGG	TTG	CCG	CTG	GTA	GGT	240
Gly	lle	Arg	Leu	Leu	Gln	Glu	Glu	Glu	Glu	Gly	Leu	Pro	Leu	Val	Gly	
65					70					75					80	
CGT	GTG	GCT	GCC	GGT	' GAA	CCA	CTT	CTG	GCG	CAA	CAG	CAT	ATT	' GAA	GGT	288
Arg	Val	Ala	Aľa	Gly	Glu	Pro	Leu	Leu	Ala	Gln	Gln	His	Ile	Glu	Gly	
				85					90					95		
CAT	TAT	CAG	GTC	GAT	CCT	TCC	TTA	TTC	AAG	CCG	AAT	GCT	GAT	TTC	CTG	336
His	Tyr	Glr	Val	Asp	Pro	Ser	Leu	Phe	Lys	Pro	Asn	Ala	Asp	Phe	Leu	
	<u>.</u>		100)				105					110)		
CTG	CGC	GTC	AGC	GGG	ATG	TCG	ATO	AAA	GAT	ATO	GGC	TTA:	`ATO	G GAT	GGT	384
Let	ı Arg	(Val	Ser	Gly	Met	Ser	Met	Lys	Asp	Ile	Gly	lle	Met	: Ası	Gly	
		115	5				120)				125	j			
GAC	CTTG	CT(G GCA	GT(G CAT	C AAA	ACT	CAC	GA7	GT/	A CGT	AA(C GGT	CA(GTC	432
Acr	La	. Tai	. 41-	. Val	uia	1 170	Th.	. 61.	Acr	Val	1 4 20			, G1,	. Va 1	

	130					135					140					
GTT	GTC	GCA	CGT	ATT	GAT	GAC	GAA	GTT	ACC	GTT	AAG	CGC	CTG	AAA	AAA	480
Val	Val	Ala	Arg	Ile	Asp	Asp	Glu	Val	Thr	Val	Lys	Arg	Leu	Lys	Lys	
145					150					155					160	
CAG	GGC	AAT	AAA	GTC	GAA	CTG	TTG	CCA	GAA	AAT	AGC	GAG	TTT	AAA	CCA	528
Gln	Gly	Asn	Lys	Val	Glu	Leu	Leu	Pro	Glu	Asņ	Ser	Glu	Phe	Lys	Pro	
				165					170					175		
ATT	GTC	GTT	GAC	CTT	CGT	CAG	CAG	AGC	TTC	ACC	ATT	GAA	GGG	CTG	GCG	576
Ile	Val	Val	Asp	Leu	Arg	Gln	Gln	Ser	Phe	Thr	Ile	Glu	Gly	Leu	Ala	
			180					185					190			
GTT	GGG	GTT	ATT	CGC	AAC	GGC	GAC	TGG	CTG	TAA						609
Val	Gly	Val	Ile	Arg	Asn	Gly	Asp	Trp	Leu							
		195					200									

Sequence number: 5
Length of sequence: 10

Form of sequence: Amino acid

Topology: Straight chain
Type of Sequence: Peptide

Sequence

Gln Leu Pro Pro Leu Glu Arg Leu Thr Leu 1 5 10

Sequence number: 6 Length of sequence: 30

Form of sequence: Nucleic acid

<u>/34</u>

Number of strands: One Topology: Straight chain

Type of Sequence: synthetic DNA

Sequence

ACAGCTGCCA CCGATTGAGA GACTTACGTT 30

Sequence number: 7
Length of sequence: 30

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

TGTCGACGGT GGCTAACTCT CTGAATGCAA 30

Sequence number: 8

Form of sequence: Nucleic acid

Number of strands: Two Topology: Straight chain

Type of Sequence: cDNA to mRNA

Sequence characteristics:

Code denoting characteristics: CDS

Position where present: 1..1077

Method of determining characteristic: E

Sequence:

ATG AAA GCG TTA CAG CTG CCA CCG ATT GAG AGA CTT ACG TTA ACG GCC 48

Met	Lys	Ala	Leu	Gln	Leu	Pro	Pro	lle	Glu	Arg	Leu	Thr	Leu	Thr	Ala	
1				5					10					15		
AGG	CAA	CAA	GAG	GTG	TTT	GAT	CTC	ATC	CGT	GAT	CAC	ATC	AGC	CAG	ACA	96
Arg	Gln	Gln	Glu	Val	Phe	Asp	Leu	lle	Arg	Asp	His	Ile	Ser	Gln	Thr	
			20					25					30			
GGT	ATG	CCG	CCG	ACG	CGT	GCG	GAA	ATC	GCG	CAG	CGT	TTG	GGG	TTC	CGT	144
Gly	Met	Pro	Pro	Thr	Arg	Ala	Glu	Ile	Ala	Gln	Arg	Leu	Gly	Phe	Arg	
		35					40					45				
TCC	CCA	AAC	GCG	GCT	GAA	GAA	CAT	CTG	AAG	GCG	CTG	GCA	CGC	AAA	GGC	192
Ser	Pro	Asn	Ala	Ala	Glu	Glu	His	Leu	Lys	Ala	Leu	Ala	Arg	Lys	Gly	
	50					55					60					
GTT	ATT	GAA	ATT	GTT	TCC	GGC	GCA	TCA	CGC	GGG	ATT	CGT	CTG	TTG	CAG	240
Val	He	Glu	Ile	Val	Ser	Gly	Ala	Ser	Arg	Gly	lle	Arg	Leu	Leu	Gln	
65					70					75					80	
														GGT		288
Glu	Glu	Glu	Glu	Gly	Leu	Pro	Leu	Val	Gly	Arg	Val	Ala	Ala	Gly	Glu	
			1	85					90					95		
														GAT		336
Pro	Leu	Leu	Ala	Gln	Gln	His	Ile	Glu	Gly	His	Tyr	Gln	Val	Asp	Pro	
			100					105					110			
	•													GGG		384
Ser	Leu		Lys	Pro	Asn	Ala	Asp	Phe	Leu	Leu	Arg	Val	Ser	Gly	Met	
		115					120					125				
														GTG		432
Ser		Lys	Asp	Ile	Gly		Met	Asp	Gly	Asp		Leu	Ala	Val	His	
	130					135					140					

AAA	ACT	CAG	GAT	GTA	CGT	AAC	GGT	CAG	GTC	GTT	GTC	GCA	CGT	ATT	GAT	480
Lys	Thr	Gln	Asp	Val	Arg	Asn	Gly	Gln	Val	Val	Val	Ala	Arg	lle	Asp	
145					150					155					160	
GAC	GAA	GTT	ACC	GTT	AAG	CGC	CTG	AAA	AAA	CAG	GGC	AAT	AAA	GTC	GAA	528
Asp	Glu	Val	Thr	Val	Lys	Arg	Leu	Lys	Lys	Gln	Gly	Asn	Lys	Val	Glu	
				165					170					175		
CTG	TTG	CCA	GAA	AAT	AGC	GAG	TTT	AAA	CCA	ATT	GTC	GTT	GAC	CTT	CGT	576
Leu	Leu	Pro	Glu	Asn	Ser	Glu	Phe	Lys	Pro	Ile	Val	Val	Asp	Leu	Arg	
			180					185					190			
CAG	CAG	AGC	TTC	ACC	ATT	GAA	GGG	CTG	GCG	GTT	GGG	GTT	ATT	CGC	AAC	624
Gln	Gln	Ser	Phe	Thr	Ile	Glu	Gly	Leu	Ala	Val	Gly	Val	Ile	Arg	Asn	
		195					200					205				
GGC	GAC	TGG	CTG	GAA	TTC	GCC	AAT	TTT	AAT	CAA	AGT	GGG	AAT	ATT	GCT	672
Gly	Asp	Тгр	Leu	Glu	Phe	Ala	Asn	Phe	Asn	Gln	Ser	Gly	Asn	Ile	Ala	
•	210					215					220					
GAT	AGC	TCA	TTG	TCC	TTC	ACT	TTC	ACT	AAC	AGT	AGC	AAC	GGT	CCG	AAC	720
Asp	Ser	Ser	Leu	Ser	Phe	Thr	Phe	Thr	Asn	Ser	Ser	Asn	Gly	Pro	Asn	
225					230					235					240	
CTC	ATA	ACA	ACT	CAA	ACA	AAT	TCT	CAA	GCG	CTT	TCA	CAA	CCA	ATT	GCC	768
Leu	·Ile	Thr	Thr	Gln	Thr	Asn	Ser	Gln	Ala	Leu	Ser	Gln	Pro	Ile	Ala	
				245					250					255		
TCC	TCT	AAC	GTT	CAT	GAT	AAC	TTC	ATG	AAT	AAT	GAA	ATC	ACG	GCT	AGT	816
Ser	Ser	Asn	Val	His	Asp	Asn	Phe	Met	Asn	Asn	Glu	Ile	Thr	Ala	Ser	
			260					265					270			
															ACG	864
Lys	He	Asp	Asp	Gly	Asn	Asn	Ser	Lys	Pro	Leu	Ser	Pro	Gly	Trp	Thr	

		275					280					285				
GAC	CAA	ACT	GCG	TAT	AAC	GCG	TTT	GGA	ATC	ACT	ACA	GGG	ATG	TTT	AAT	912
Asp	Gln	Thr	Ala	Tyr	Asn	Ala	Phe	Gly	Ile	Thr	Thr	Gly	Met	Phe	Asn	
	290					295					300					
ACC	ACT	ACA	ATG	GAT	GAT	GTA	TAT	AAC	TAT	CTA	TTC	GAT	GAT	GAA	GAT	960
Thr	Thr	Thr	Met	Asp	Asp	Val	Tyr	Asn	Tyr	Leu	Phe	Asp	Asp	Glu	Asp	
305					310					315					320	
ACC	CCA	CCA	AAC	CCA	AAA	AAA	GAG	ATC	TCT	ATG	GCT	TAC	CCA	TAC	GAT	1008
Thr	Pro	Pro	Asn	Pro	Lys	Lys	Glu	lle	Ser	Met	Ala	Tyr	Pro	Tyr	Asp	
				325					330					335		
GTT	CCA	GAT	TAC	GCT	AGC	TTG	GGT	GGT	CAT	ATG	GCC	ATG	GCG	GCC	GCT	1056
Val	Pro	Asp	Tyr	Ala	Ser	Leu	Gly	Gly	His	Met	Ala	Met	Ala	Ala	Ala	
			340					345					350			
CGA	GTC	GAC	CTG	CAG	CCA	AGC	TAA									1080
Arg	Val	Asp _.	Leu	Gln	Pro	Ser										
		355														

Sequence number: 9

Form of sequence: Nucleic acid

Number of strands: Two Topology: Straight chain

Type of Sequence: cDNA to mRNA

Sequence characteristics:

Code denoting characteristics: CDS

Position where present: 1..1149

Method of determining characteristic: S

<u>/38</u>

Sequence:

ATG	GCT	AAG	ATC	TCT	CCC	GGG	CTC	GAG	CTC	ATG	AAG	AAG	GGT	ACT	CAG	48
Met	Ala	Lys	Ile	Ser	Pro	Gly	Leu	Glu	Leu	Met	Lys	Lys	Gly	Thr	Gln	
1				5					10					15		
CGT	CTA	TCC	CGC	CTG	TTC	GCC	GCG	ATG	GCC	ATT	GCC	GGG	TTC	GCC	AGC	96
Arg	Leu	Ser	Arg	Leu	Phe	Ala	Ala	Met	Ala	Ile	Ala	Gly	Phe	Ala	Ser	
			20					25					30			
TAC	TCC	ATG	GCC	GCC	GAC	ACC	ATC	AAG	ATC	GCC	CTG	GCT	GGC	CCG	GTC	144
Tyr	Ser	Met	Ala	Ala	Asp	Thr	Ile	Lys	Ile	Ala	Leu	Ala	Gly	Pro	Val	
		35					40					45				
ACC	GGT	CCG	GTA	GCC	CAG	TAC	GGC	GAC	ATG	CAG	CGC	GCC	GGT	GCG	CTG	192
Thr	Gly	Pro	Val	Ala	Gln	Tyr	Gly	Asp	Met	Gln	Arg	Ala	Gly	Ala	Leu	
	50					55					60					
ATG	GCA	ATC	GAA	CAG	ATC	AAC	AAG	GCA	GGC	GGC	GTG	AAC	GGC	GCG	CAA	240
Met	Ala	lle	Glu	Gln	Ile	Asn	Lys	Ala	Gly	Gly	Val	Asn	Gly	Ala	Gln	
65			,		70					75					80	
													CAG			288
Leu	Glu	Gly	Val	lle	Tyr	Asp	Asp	Ala	Cys	Asp	Pro	Lys	Gln	Ala	Val	
				85					90					95		
GCG	GTC	GCC	AAC	AAG	GTG	GTC	AAC	GAC	GGC	GTC	AAG	TTC	GTG	GTC	GGT	336
Ala	Val	Ala	Asn	Lys	Val	Val	Asn	Asp	Gly	Val	Lys	Phe	Val	Val	Gly	
			100					105					110			
													TAC			384
His	Val	Cys	Ser	Ser	Ser	Thr	Gln	Pro	Ala	Thr	Asp	Ile	Tyr	Glu	Asp	
		115					120					125				

GAA	GGC	GTG	CTG	ATG	ATC	ACC	CCG	TCG	GCC	ACC	GCC	CCG	GAA	ATC	ACC	432
Glu	Gly	Val	Leu	Met	Ile	Thr	Pro	Ser	Ala	Thr	Ala	Pro	Glu	Ile	Thr	
	130					135					140					
TCG	CGC	GGC	TAC	AAG	CTG	ATC	TTC	CGC	ACC	ATC	GGC	CTG	GAC	AAC	ATG	480
Ser	Arg	Gly	Tyr	Lys	Leu	Ile	Phe	Arg	Thr	Ile	Gly	Leu	Asp	Asn	Met	
145					150					155					160	
CAG	GGC	CCG	GTG	GCC	GGC	AAG	TTC	ATC	GCC	GAA	CGC	TAC	AAG	GAC	AAG	528
Gln	Gly	Pro	Val	Ala	Gly	Lys	Phe	Ile	Ala	Glu	Arg	Tyr	Lys	Asp	Lys	
				165					170					175		
ACC	ATC	GCG	GTA	CTG	CAC	GAC	AAG	CAG	CAG	TAC	GGC	GAA	GGC	ATC	GCC	576
Thr	Ile	Ala	Val	Leu	His	Asp	Lys	Gln	Gln	Tyr	Gly	Glu	Gly	Ile	Ala	
			180					185					190			
ACC	GAG	GTG	AAG	AAG	ACC	GTG	GAA	GAC	GCC	GGC	ATC	AAG	GTT	GCC	GTC	624
Thr	Glu	Val	Lys	Lys	Thr	Val	Glu	Asp	Ala	Gly	Ile	Lys	Val	Ala	Val	
		195					200					205				
TTC	GAA	GGC	CTG	AAC	GCC	GGC	GAC	AAG	GAC	TTC	AAC	GCG	CTG	ATC	AGC	672
Phe	Glu	Gly	Leu	Asn	Ala	Gly	Asp	Lys	Asp	Phe	Asn	Ala	Leu	Ile	Ser	
	210					215					220					
AAG	CTG	AAG	AAA	GCC	GGC	GTG	CAG	TTC	GTC	TAC	TTC	GGC	GGC	TAC	CAC	720
Lys	Leu	Lys	Lys	Ala	Gly	Val	Gln	Phe	Val	Tyr	Phe	Gly	Gly	Tyr	His	
225					230					235					240	
CCA	GAA	ATG	GGC	CTG	CTG	CTG	CGC	CAG	GCC	AAG	CAG	GCC	GGG	CTG	GAC	768
Pro	Glu	Met	Gly	Leu	Leu	Leu	Arg	Gln	Ala	Lys	Gln	Ala	Gly	Leu	Asp	
				245					250	· ·				255		
GCG	CGC	TTC	ATG	GGC	CCG	GAA	GGG	GTC	GGC	AAC	AGC	GAA	ATC	ACC	GCG	816
Ala	Arg	Phe	Met	Glv	Pro	Glu	Glv	Val	Glv	Acn	Sen	Glii	ء ١١ -	Thr	Ala	

			260					265					270			
ATC	GCC	GGC	GAC	GCT	TCG	GAA	GGC	ATG	CTG	GCG	ACC	CTG	CCG	CGC	GCC	864
Ile	Ala	Gly	Asp	Ala	Ser	Glu	Gly	Met	Leu	Ala	Thr	Leu	Pro	Arg	Ala	
		275					280					285				
TTC	GAG	CAG	GAT	CCG	AAG	AAC	AAG	GCC	CTG	ATC	GAC	GCC	TTC	AAG	GCG	912
Phe	Glu	Gln	Asp	Pro	Lys	Asn	Lys	Ala	Leu	Ile	Asp	Ala	Phe	Lys	Ala	
	290					295					300					
AAG	AAC	CAG	GAT	CCG	AGC	GGC	ATC	TTC	GTC	CTG	CCC	GCC	TAC	TCC	GCG	960
Lys	Asn	Gln	Asp	Pro	Ser	Gly	Ile	Phe	Val	Leu	Pro	Ala	Tyr	Ser	Ala	
305					310					315					320	
GTC	ACA	GTG	ATC	GCC	AAG	GGC	ATC	GAG	AAA	GCC	GGC	GAG	GCC	GAT	CCG	1008
Val	Thr	Val	Ile	Ala	Lys	Gly	Ile	Glu	Lys	Ala	Gly	Glu	Ala	Asp	Pro	
				325					330					335		
														CCC		1056
Glu	Lys	Val	Ala	Glu	Ala	Leu	Arg	Ala	Asn	Thr	Phe	Glu	Thr	Pro	Thr	
			340					345					350			
														GAC		1104
Gly	Asn		Gly	Phe	Asp	Glu	Lys	Gly	Asp	Leu	Lys	Asn	Phe	Asp	Phe	
		355				•	360					365				
														AAG		1149
lhr		Tyr	Glu	Trp			Asp	Ala	Thr	Arg	Thr	Glu	Val	Lys		
T. 4	370					375					380					
TAA																1152

Sequence number: 10 Length of sequence: 12

/41

Form of sequence: Amino acid

Topology: Straight chain
Type of Sequence: Peptide

Sequence

Ser Glu Pro Pro Lys Lys Arg Lys Val Glu Thr

1 5 10

Sequence number: 11 Length of sequence: 37

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

CTAGCGAGCC TCCAAAAAG AAGAGAAAGG TCGAAAC 37

Sequence number: 12 Length of sequence: 37

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

GCTCGGAGGT TTTTTCTTCT CTTTCCAGCT TTGGTAC 37

/42

Sequence number: 13

Length of sequence: 419

Form of sequence: Nucleic acid

Number of strands: Two Topology: Straight chain

Type of Sequence: Genomic DNA

Sequence

TCGACTGCTG	TATATAAAAC	CAGTGGTTAT	ATGTACAGTA	CTGCTGTATA	TAAAACCAGT	60
GGTTATATGT	ACAGTACGTC	GAGGGAATCA	AATTAACAAC	CATAGGATGA	TAATGCGATT	120
AGTTTTTTAG	CCTTATTTCT	GGGGTAATTA	ATCAGCGAAG	CGATGATTTT	TGATCTATTA	180
ACAGATATAT	AAATGCAAAA	ACTGCATAAC	CACTTTAACT	AATACTTTCA	ACATTTTCGG	240
TTTGTATTAC	TTCTTATTCA	AATGTAATAA	AAGTATCAAC	AAAAATTGT	TAATATACCT	300
CTATACTTTA	ACGTCAAGGA	GAAAAAACTA	TAATGACTAA	ATCTCATTCA	GAAGAAGTGA	360
TTGTACCTGA	GTTCAATTCT	AGCGCAAAGG	AATTACCAAG	ACCATTGGCC	GAAAAGTGC	419

Sequence number: 14 Length of sequence: 12

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

AATTGACCAC CC 12

Sequence number: 15 Length of sequence: 12

Form of sequence: Nucleic acid

Number of strands: One

Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

CTGGTGGGTT AA 12

Sequence number: 16 Length of sequence: 25

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

CTAGCTTGGG TGGAATTCAT ATGGC 25

Sequence number: 17 Length of sequence: 24

Form of sequence: Nucleic acid

/43

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

GAACCCACCT TAAGTATACG GTAC 24

Sequence number: 18 Length of sequence: 11

<u>/44</u>

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

CTGCATGCAC C 11

Sequence number: 19 Length of sequence: 14

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

ATGGACGTAC GTGG 14

Sequence number: 20 Length of sequence: 32

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

CTATTCGATG ATGAAGATAC CCCACCAAAC CC 32

Sequence number: 21

<u>/45</u>

Length of sequence: 30

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

GAAATTCGCC CGGAATTAGC TTGGCTGCAG 30

Sequence number: 22

Length of sequence: 32

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

CTATTCGATG ATGAAGATAC CCCACCAAAC CC 32

Sequence number: 23 Length of sequence: 30

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

GAAATTCGCC CGGAATTAGC TTGGCTGCAG 30

<u>/46</u>

Sequence number: 24 Length of sequence: 32

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

TTTCAATTGG AATGGACGAA CTGTTCCCCC TC 32

Sequence number: 25 Length of sequence: 35

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

GCGCAGCGAG TCAGTGAGCG AGGAAGCGGA AGAGG 35

Sequence number: 26 Length of sequence: 35

Form of sequence: Nucleic acid

Number of strands: One Topology: Straight chain

Type of Sequence: Other nucleic acid synthetic DNA

Sequence

TTTGAATTCT AATGATGTTC TCGGGTTTCA ACGCG 35

<u>/47</u>

Claims

- (1) A method of detecting the nuclear transportability of a peptide coded for by test DNA, characterized in that fused DNA of DNA coding for transcription factor not having nuclear transportability and test DNA is introduced into a eukaryotic host having in the nucleus thereof a promoter region that is activated by the binding of transcription factor and a reporter gene connected downstream from said promoter region, and in that expression of the reporter gene is detected.
- (2) The method of claim (1) wherein said transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, a DNA bonding domain, and a transcription activation domain.
- (3) The method of claim (1) wherein said transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, LexA protein, and a GAL4 transcription activation domain, and wherein the promoter region that is activated by binding of the transcription factor is the promoter region of a GAL1 gene in which the operator sequence has been replaced with the LexA operator sequence.
- (4) The method of claim (3) wherein said nuclear export signal is a peptide comprising the amino acid sequence described in sequence number 5.
- (5) The method of any of claims (1)-(4) wherein said reporter gene is the LEU2 and/or β -galactosidase gene.
- (6) A method of isolating DNA coding for a peptide having nuclear transportability characterized in that fused DNA of DNA coding for transcription factor not having nuclear transportability and test DNA is introduced into a eukaryotic host having in its nucleus a promoter region that is activated by binding of said transcription factor and a reporter gene connected downstream from said promoter region, in that expression of the reporter gene is detected, and in that test DNA is isolated from a eukaryotic host in which said expression has been detected.
- (7) The method of claim (6) wherein said transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, a DNA binding domain, and a transcription activation domain.
- (8) The method of claim (6) wherein said transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, LexA protein, and a GAL4 transcription activation domain, and wherein said promoter region that is activated by binding of the transcription factor is the

promoter region of a GAL1 gene in which the operator sequence has been replaced with the LexA operator sequence.

- (9) The method of claim (8) wherein said nuclear export signal is a peptide comprising the amino acid sequence described in sequence number 5.
- (10) The method of any of claims (6)-(9) wherein said reporter gene is the LEU2 and/or β -galactosidase gene.
- (11) A vector having an incorporation site of test DNA adjacent to DNA coding for transcription factor not having nuclear transportability.
- (12) The vector of claim (11) wherein said transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, a DNA binding domain, and a transcription activation domain.
- (13) The vector of claim (11) wherein said transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, LexA protein, and the GAL4 transcription activation domain.
- (14) The vector of claim (13) wherein said nuclear export signal is a peptide comprising the amino acid sequence described in sequence number 5.
 - (15) A kit comprising:
 - (1) a vector having an incorporation site for test DNA adjacent to DNA coding for transcription factor not having nuclear transportability; and
 - (2) a eukaryotic host having in its nucleus an expression unit comprising a promoter region activated by binding of said transcription factor and a reporter gene connected downstream from said promoter region.
- (16) The kit of claim (15) wherein said transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, a DNA binding domain, and a transcription activation domain.
 - /49
- (17) The kit of claim (15) wherein said transcription factor not having nuclear transportability is a fused protein comprising a nuclear export signal, LexA protein, and a GAL4 transcription activation domain; wherein said promoter region that is activated by binding of said transcription factor is the promoter region of a GAL1 gene in which the operator sequence has been replaced with the LexA operator sequence; and wherein said eukaryotic host is yeast.
- (18) The kit of claim (17) wherein said nuclear export signal is a peptide comprising the amino acid sequence described in sequence number 5.

(19) The kit of any of claims (15)-(18) wherein said reporter gene is the LEU2 and/or β -galactosidase gene.	1 /0
<pre>Keys to Fig. 1: (1) Ampicillin</pre>	1/8
<pre>Keys to Fig. 2: (1) Ampicillin</pre>	2/8
<pre>Keys to Fig. 3: (1) Ampicillin</pre>	3/8
<pre>Keys to Fig. 4: (1) Ampicillin</pre>	4/8
<pre>Keys to Fig. 7: (1) Ampicillin</pre>	<u>5/8</u>

1/8

2/8

3/8

4/8

5/8

PCT/JP98/01936

6/8

7/8

