Seminar 9 - 08.12, 2021

Ex. 1: Determinate elementele inversabile ple monoidului ($\mathbb{Z}(m)$.). $\mathbb{Z}(m) = \{\hat{a} \in \mathbb{Z}(m) \mid (\alpha, m) = 1\}$

Rey:

Th: Fie as b \in 1N \s (\as b) = d. Alumci existà Ksl \in Z/ a. i d = \a. K + b \cdot R (Algorithmul lui Euclid)

1,2° Fie â∈Zm cu (a,m)=1. ±h/2) JK,l∈Z/a.î.

10.K+m. e=1-

"="Fie à EU(Zm) =>] beU(Zm) = Zn a.i. à.b.i.

Moi virem sà soratam ca (a, m) = 1.

Pp. co (a, m) = d>1. = s a = d.a, s m-d.m, (a, m1)=1.

 $\hat{a} \cdot \hat{b} = \hat{1} - \lambda \hat{d} \cdot \hat{a}_1 \cdot \hat{b} = \hat{1} - \hat{m}_1 - \lambda \hat{a}_1 \cdot \hat{a}_1 \cdot \hat{b} = \hat{m}_1 \cdot \cdot \hat{b} = \hat{m}_1 \cdot \hat{a}_1 \cdot \hat{b} = \hat{m}_1 \cdot \hat{a}_1 \cdot \hat{b} = \hat{m}_1 \cdot \hat{b} = \hat{m}_$

m/m1 (=) d.m1/m1 (=) d/1 a6.

Ex. 2: Scrieti tabbele grupoirles (74, +) si (72, x 72, +). Sunt cle ijomonfe? Justificati. Z_{2}^{2} Z_{2}^{2} Z_{2}^{2} Z_{3}^{2} Z_{4}^{2} Z_{4}^{2} Z_{5}^{2} Z_{5 Gie (G,+) un grup s e elem. mentre, x e G ord (2e) = / mim s KEIN* | K.X=e3, daco JKEN° of. K.X=e 00, daca KX Le, Y KEIN* (Gs.) ~ x = e $\tilde{J}_{m} \mathbb{Z}_{4}$: end $(\hat{o}) = 1$, end $(\hat{i}) = 4$, end $(\hat{a}) = 2$, end $(\hat{a}) = 4$ $\sqrt{m} \ 22x \ 2z : end(\hat{o},\hat{o}) = 1$, end(\hat{o},\hat{o}) = 2, end(\hat{o},\hat{o}) = 2, ord (î, î) = 2. Zn & Z2 x Z/2

obs.: Un grup en u elemente este izoment fie en Zu, fie en Zz x Zz.

Terma: Hie multimite: $G_1 = \{ \exists a, A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \}$

 $G_2 = \{1, -1, 1, 1, -1\}$

 $G_3 = \{e_5 G = \{2 \times 3 \times 3 \times 1 \}, \nabla = \{1 \times 3 \times 4 \}, \nabla = \{1 \times 3 \times 4 \}\}$

Gu = 21(2/12).

a. Anatata ca (Graso), (Gz, o), (Gz, o), (Gu, o) sunt grupui

6 Décideta core gruperi sount i je cu Un là corre en Z2 x Z2

Obs.: [Zm)=m, MLZm)= }a & Zm (a,m)-1}.

/ ULZLm) (= 4 cm)

(Zms.) monoid -> (U(Zm), .) grup

Ex. 3: T.e (G, ·) un grup, a, b ∈ G de ordin finit, endla]: m end(b): m, Ariotati că dacă (ab = ba b (m, m) = 1, phunci d (ab) = m·m.

Ref: ord (ab) = m·m < (ab) m·m = e

mm minime en accordi prop. end (ab) = m.m. $(\alpha p)_{u,u} = \alpha_{u,u} \cdot p_{u,u} = (\alpha_u)_{u} \cdot (\alpha_u)_{u} \cdot \epsilon_{u} \cdot \epsilon_{u} \cdot \epsilon_{u} = 6$ ab=ba
endia)=m) Obs.: Daca xx-e pt. un anumit KEIN*, atunci (P. co and (ab) = K. Cum (ab) = e = > K/mm. $(ab)^{k} = e^{-3} a^{k} - b^{k} = e^{-3} a^{k} = b^{-k}$

$$a^{k} = b^{-k} |_{m=0}^{m} = b^{-mk} = b^{-mk} = e = m |_{mk}$$
 $(m,n)=1$
 $= m |_{k}$
 $= m |$

$$S = 300 = (1 2 3)$$

and $(300) = 2$

exercise (Cr.,) un grup, xeG de endin fimit,

exect de endin fimit,

exect de endin fimit, (m, K) = cmmdc (m, K).

Ref: end
$$(x^{k}) = \frac{m}{(m, k)} = m_{1}$$
 $(x^{k})^{m_{1}} = e$

$$x_{\kappa m_1} = x_{\kappa' \cdot q \cdot m_1} = x_{\kappa' \cdot m} = (x_m)_{\kappa_1} = 6 \left(\operatorname{and} (x) = w \right)$$

$$\left[(x_{\kappa})_{(\underline{w},\kappa)} = x_{(\underline{w},\kappa)} - x_{(\underline{w},\kappa)} - x_{(\underline{w},\kappa)} \right] = 6 \left(w \right) \left[w' \kappa \right]$$

Obs: Putern Presuperne co 0 = K < m. 8im T.T.R: K=m.c+K, 0818cm $\mathcal{X}_{K} = \mathcal{X}_{W,C14d} = \mathcal{X}_{W,C} \cdot \mathcal{X}_{K} = \mathcal{X}_{S}$ $(x^k)^{n-1} = e = sod(x^k) | m_1$ Fie ord(xx)=m = m/m1 $ag(s) = \omega$ = supreme = $=) m_1 | m_1 \rangle =) m_2 = m_1.$ Dbs.: Fie (G,0) un grup finit, 1G/=m, xeG. Atumai ord(x) < 00 si mai mult ord(x) | m. In particular, zn=e, + xeC.

H=<2=>= }xx| K=Z3 = 6. = 1 1H| 5m.

Exemply: (2/6, ·) monoid (NLZ6),·) grup, N(Z6)= {1, 5 } end(\hat{i})=1, end($\hat{5}$)=2. $\hat{2}' = \hat{2}$ $\hat{2}' = 4$ $\hat{2}' = 4$ $2^{k} \in 32, 43$ $4 \in N^{k}$ $a^{k} \mod M = a^{k}$ $a^{k} \mod M = a^{k}$ $(a,m)=\Lambda$, $a^{\ell(m)}=\Lambda$, $a^{b}=R$ med $\ell(m)$ (asm) >1 ~~ a1, a2, a3, ... (Beamorna cu pb.cu ultima