FISE QP2016, grup 52-5 Informe práctica 3

Àlex Eslava Xavier Mendez 3 d'abril de 2017

Resposta frequencial del filtre passiu

Es realitza un anàlisi de la resposta freqüencial del filtre passiu, que es pot veure a la figura 1.

Qüestió 1.1. La freqüència central de filtre és de $0.9954\,\mathrm{kHz} \simeq 1\,\mathrm{kHz}$. El circuit té un guany de 1/3 = Q a la freqüència central, just com s'esperava.

Figura 1: Resposta freqüencial del filtre passiu.

Comparació de les respostes frequencials del filtre passiu i el realimentat

Es realitza un anàlisi simultani de la resposta freqüencial d'ambdós circuits, que es pot veure a la figura 2. Per tal que el factor de qualitat sigui 5, triem $R_a = R_f (2 - 1/Q) = 18 \,\mathrm{k}\Omega$.

Qüestió 2.1. La freqüència central per a la segona etapa es manté igual que en la primera, la qual cosa és esperada perquè només depen d'R i C, que no han canviat. El guany en la segona etapa és $9 = Q^{R_a/R_f}$. S'observa com els pols complexes conjugats han reduït considerablement l'ample de banda en la segona etapa.

Es repeteix la simulació de la segona etapa però ara establint el valor de *C* a 10 nF, 1 nF i 0.1 nF. Les funcions de transferència corresponents (mòdul i fase) es poden veure a la figura 3.

Qüestió 2.2. S'observa com efectivament la freqüència central varia amb C ($\omega_0 = 1/RC$). Amb el valor més petit el filtre assoleix una freqüència central propera a $100\,\mathrm{kHz}$.

Figura 2: Resposta frequencial d'ambdós filtres.

Figura 3: Resposta frequencial de l'etapa realimentada variant la capacitat.

Aquest cop establim el valor de R_f a $18 \,\mathrm{k}\Omega$ i $19 \,\mathrm{k}\Omega$ (per a obtenir Q = 5 i Q = 10 respectivament). Les funcions de transferència corresponents (mòdul i fase) es poden veure a la figura 4.

Qüestió 2.3. S'obtenen guanys de 9 V i 19 V respectivament, a la freqüència central.

Figura 4: Resposta frequencial de l'etapa realimentada variant R_f .

Filtratge d'un senyal quadrat

Es fa entrar un senyal quadrat a l'entrada d'ambdues etapes. Es simulen molts períodes i es fa la FFT de la sortida; el resultat es pot veure a la figura 5.

Qüestió 3.1. En l'etapa passiva no s'aprecia transitori. En l'etapa realimentada s'aprecia un transitori que es fa despreciable a partir dels 8 ms. En la FFT es pot veure com, per l'etapa passiva, hi ha una diferència d'aproximadament mitja dècada entre l'harmònic principal i el tercer harmònic. Per l'etapa realimentada, per contra, hi ha una diferència d'aproximadament una dècada i mitja. Per tant, la segona etapa filtra deu vegades millor.

Figura 5: FFT de la sortida d'ambdues etapes en processar un senyal quadrat.

A continuació es canvia R_f a $19 \, \mathrm{k}\Omega$ per a aconseguir $Q=10 \, \mathrm{i}$ es torna a simular (veure fig. 6).

Qüestió 3.2. Ara el transitori s'aprecia de la mateixa durada, potser un 10 % més llarg però podria ser soroll. En la FFT confirmem que ara l'etapa està amplificant el primer harmònic uns 3 dB més que abans. El quocient entre primer i tercer harmònic ha augmentat una mica. Per tant, el filtre és més selectiu que abans.

Figura 6: FFT de la sortida d'ambdues etapes en processar un senyal quadrat (Q = 10).

Limitacions del filtre actiu

De nou amb Q = 5, es canvia l'amplitud del senyal quadrat a 2 V pic a pic. El resultat de la simulació temporal dels primers períodes de sortida (superposada amb l'entrada negada, per apreciar millor l'efecte) es pot veure a la figura 7.

Qüestió 4.1. L'amplitud de la sortida en la qüestió 3.1 era de 2.1 V; per tant, l'amplitud teòrica del senyal de sortida ara hauria de ser deu cops més gran, 21 V. En canvi, la sortida presenta molta distorsió i no arriba als 12 V pic a pic. Es pot apreciar que l'AO és incapaç de seguir l'alta derivada de la sortida (probablement a causa de l'slew-rate).

Figura 7: Simulació temporal de la sortida per a un senyal quadrat de gran amplitud.

Ara es representa també la sortida de l'AO (fig. 8).

Qüestió 4.2. Aquest senyal ha de presentar distorsió perquè és la sortida de l'AO i està arribant al límit de l'slew-rate.

Disseny d'un circuit oscil·lador

Es canvia R_f a 21 k Ω per tornar el circuit inestable segons la teoria. Els resultats de la simulació AC es poden veure a la figura 9.

Qüestió 5.1. S'obté un resultat on el guany és similar, però abans la fase canviava de -90° a 90° passant per 180° en la freqüència central; ara ho fa en sentit contrari, passant per 0° en la freqüència central. Això es deu al canvi de signe en Q, i per tant en el terme de primer ordre del denominador a H(s).

Es fa entrar un senyal quadrat de 200 mV i freqüència 1 kHz a l'entrada de l'etapa. La simulació temporal dels primers períodes de la sortida de l'etapa i la de l'AO es poden veure a la figura 10.

Qüestió 5.2. S'obté una sortida sinusoidal de la mateixa freqüència que va augmentant en amplitud fins que l'AO se satura i comença a distorsionar, llavors s'estabilitza en una amplitud d'aproximadament 5.1 V.

Ara es canvia la freqüència del senyal d'entrada a 10 kHz i es torna a simular (fig. 11).

Qüestió 5.3. S'obté la mateixa sortida que en la qüestió anterior, una sinusoide a 1 kHz (per tant, de freqüència diferent a l'entrada) que va augmentant en amplitud fins que s'estabilitza a causa de la saturació de l'AO. En aquest cas triga aproximadament el doble en estabilitzar-se, però.

Finalment, es suprimeix l'entrada ($V_i = 0$) i es torna a simular fins que s'arriba al règim permanent (fig. 12).

Qüestió 5.4. S'obté una frequència d'oscil·lació de 1 kHz. Com ja hem comentat, l'amplitud s'estabilitza a causa de la saturació de l'AO.

Figura 8: Simulació temporal de la sortida intermitja per a un senyal quadrat de gran amplitud.

Figura 9: Resposta frequencial de l'etapa realimentada amb valors inestables.

Figura 10: Simulació temporal d'ambdues sortides de l'etapa realimentada inestable, amb senyal quadrat a l'entrada.

Figura 11: Simulació temporal d'ambdues sortides de l'etapa realimentada inestable, amb senyal quadrat d'alta freqüència a l'entrada.

Figura 12: Simulació temporal d'ambdues sortides de l'etapa realimentada inestable, sense entrada.

Amplificador no lineal

Es construeix el circuit demanat, que utilitza un sistema no lineal per a l'estabilització de l'amplitud.

Qüestió 6.1. Quan ambdós díodes estan en tall, suposant l'AO com a ideal, tenim $V_i = V_0 \frac{R_a}{R_a + R_f} \Leftrightarrow G = V_0 / V_i = 1 + R_f / R_a$. Per als valors concrets, G = 3.2.

Quan un dels díodes condueix, R_{ajust} s'afegeix en paral·lel a R_f i en resulta que $G \simeq 2.53$.

A continuació es realitza una simulació d'escombrat DC amb els paràmetres demanats.

Qüestió 6.2. La tensió de sortida i la relació entrada-sortida en funció de l'entrada es poden veure a la figura 13. La relació entrada-sortida creua el 3 per a una entrada de 196 mV (quan $R_{adjust} = 50 \text{ k}\Omega$), 239 mV (quan $R_{adjust} = 75 \text{ k}\Omega$) i 300 mV (quan $R_{adjust} = 100 \,\mathrm{k}\Omega$).

Quan $V_i
ightarrow 0$, la relació tendeix a infinit, la qual cosa hauria de portar a una arrencada ràpida de l'oscil·lador.

Estabilització d'amplitud

Ara s'introdueix i es simula el circuit oscil·lador juntament amb l'etapa no lineal d'estabilització de l'amplitud.

Es realitzen simulacions temporals dels primers períodes d'entrada i sortida, per a cada valor de R_{adjust} , que es poden veure a les figures 14 i 15.

Qüestió 7.1. Els valors d'amplitud de l'entrada no coincideixen del tot amb els punts de tall obtinguts en la questió anterior però s'hi apropen: 226 mV (quan $R_{adjust} = 50 \,\mathrm{k}\Omega$), 276 mV (quan $R_{adjust} = 75 \,\mathrm{k}\Omega$) i 343 mV (quan $R_{adjust} = 100 \,\mathrm{k}\Omega$).

La tensió de sortida que s'aconsegueix és de 667.5 mV (quan $R_{adjust} = 50 \text{ k}\Omega$), 822.8 mV (quan $R_{adjust} = 75 \text{ k}\Omega$) i 1037.7 mV (quan $R_{adjust} = 100 \,\mathrm{k}\Omega$).

A continuació es simulen molts més períodes i es calcula la DFT. Els resultats es poden veure a la figura 16.

Qüestió 7.2. Es pot apreciar com la distorsió harmònica és molt menor que en l'oscil·lador sense l'etapa estabilitzadora.

Muntatge i mesura del filtre actiu

Es munta el circuit demanat en la placa i s'aplica una entrada sinusoïdal de 4 kHz i 500 mV pic a pic.

Figura 13: Relació entradasortida en contínua, per a l'etapa d'amplificació no lineal.

Figura 14: Sortida de l'oscil·lador amb etapa estabilitzadora d'amplitud no lineal.

Figura 15: Sortida i entrada de l'oscil·lador amb etapa estabilitzadora d'amplitud no lineal.

Qüestió 8.1. La nova freqüència central resulta $\omega_0=723.3\,\mathrm{Hz}.$

Es visualitza V_x a l'oscil·loscopi i es canvia el cursor del potenciòmetre.

Qüestió 8.2. El circuit comença a oscil·lar al voltant de $R_{ajust} \simeq$

Es varia progressivament la freqüència de l'entrada entre 100 Hz i 10 kHz.

Qüestió 8.3. A la figura 17 es pot veure l'evolució de l'amplitud de sortida. S'observa que la freqüència central del filtre es situa al voltant de 700 Hz com s'esperava.

Figura 16: DFT de la sortida de l'oscil·lador amb etapa estabilitzadora d'amplitud no lineal.

Figura 17: Resposta freqüencial del filtre actiu.

Muntatge i mesura de l'oscil·lador

Figura 18: Captura de l'oscil·loscopi amb la sortida de l'oscil·lador sense estabilització.

Qüestió 9.1. La tensió a la sortida es pot veure a la figura 18. S'observa una sinusoide de freqüència 710 Hz i 17.6 V pic a pic, però tallada per la saturació de l'AO com s'espera ja que no hi ha estabilització encara.

Figura 19: Captura de l'oscil·loscopi amb la sortida de l'oscil·lador amb estabilització.

Qüestió 9.2. La tensió a la sortida es pot veure a la figura 19. S'observa una sinusoide de freqüència 721 Hz, estabilitzada correctament a una tensió de 1.88 V pic a pic.