DATA 240 Predict Default of Credit Card Payment

TEAM 5: Lakshmi Naga Meghana Polisetty Sakshi Jain Sakshi Tongia Snehal Dashrath Karad Vaibhav Yalla

Motivation

- According to the GOBanking Rates survey, about 6%, that is 14 million Americans have credit card debt over \$10,000
- 33% of Americans believe that it would take more than two years to clear their credit card debt
- Increase in credit-card debt acts negatively for the customer and also reduces the bottom line for the lenders
- Using Machine Learning to predict credit card default will save the lenders from issuing credit card to risky customers or to identify if a customer is going to default a payment in future and thereby can reduce their credit limit

Feature Information

There are 25 variables:

- ID: ID of each client
- LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
- SEX: Gender (1=male, 2=female)
- EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)
- MARRIAGE: Marital status (1=married, 2=single, 3=others)
- AGE: Age in years
- PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight months, 9=payment delay for nine months and above)
- PAY 2: Repayment status in August, 2005 (scale same as above)
- PAY 3: Repayment status in July, 2005 (scale same as above)
- PAY 4: Repayment status in June, 2005 (scale same as above)
- PAY_5: Repayment status in May, 2005 (scale same as above)
- PAY_6: Repayment status in April, 2005 (scale same as above)
- BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar)
- BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar)
- BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar)
- BILL AMT4: Amount of bill statement in June, 2005 (NT dollar)
- BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar)
- BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar)
- PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar)
- PAY AMT2: Amount of previous payment in August, 2005 (NT dollar)
- PAY AMT3: Amount of previous payment in July, 2005 (NT dollar)
- PAY AMT4: Amount of previous payment in June, 2005 (NT dollar)
- PAY AMT5: Amount of previous payment in May, 2005 (NT dollar)
- PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)
- default.payment.next.month: Default payment (1=yes, 0=no)

Raw Data

ID	LIMIT_BAL	SEX	EDUCATION	MARRIAGE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	 BILL_AMT4	BILL_AMT5	BILL_AMT6	PAY_AMT1	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6	default payment next month
1	20000	2	2	1	24	2	2	-1	-1	 0	0	0	0	689	0	0	0	0	1
2	120000	2	2	2	26	-1	2	0	0	 3272	3455	3261	0	1000	1000	1000	0	2000	1
3	90000	2	2	2	34	0	0	0	0	 14331	14948	15549	1518	1500	1000	1000	1000	5000	0
4	50000	2	2	1	37	0	0	0	0	 28314	28959	29547	2000	2019	1200	1100	1069	1000	0
5	50000	1	2	1	57	-1	0	-1	0	 20940	19146	19131	2000	36681	10000	9000	689	679	0

29996	220000	1	3	1	39	0	0	0	0	 88004	31237	15980	8500	20000	5003	3047	5000	1000	0
29997	150000	1	3	2	43	-1	-1	-1	-1	 8979	5190	0	1837	3526	8998	129	0	0	0
29998	30000	1	2	2	37	4	3	2	-1	 20878	20582	19357	0	0	22000	4200	2000	3100	1
29999	80000	1	3	1	41	1	-1	0	0	 52774	11855	48944	85900	3409	1178	1926	52964	1804	1
30000	50000	1	2	1	46	0	0	0	0	 36535	32428	15313	2078	1800	1430	1000	1000	1000	1

30000 rows x 25 columns

Exploratory Data Analysis

ratio of about 78:22 percent

Exploratory Data Analysis

- As age increases to 30, the probability of default increases.
- Meanwhile, when clients are over 30, the probability decreases when aging.

Data Summary

Distributions for all Features:

- 1. The average value for the amount of credit card limit is 167K NT dollars. The standard deviation is 129K NT dollars, ranging from 10K to 1M NT dollars.
- 2. Education level is mostly Graduate school (1) and University (2).
- 3. Most of the clients are either married or single (less frequent in the other status).
- 4. Average age is 35.5 years, with a standard deviation of 9.2 years.

Data Transformation

Applying the MinMax Scaler:

Transformation to normalize values

(If the distribution is not Gaussian or the standard deviation is very small, the min-max scaler works better.)

Applying SMOTE to Balance the Dataset:

Data Transformation

ROC_AUC_Score of train set is 0.9572243636763337.
ROC_AUC_Score of test set is 0.5428839352738338.
F1 of train set is 0.8831.
F1 of test set is 0.3742.

	precision	recall	f1-score	support
0	0.85	0.21	0.33	4665
1	0.24	0.87	0.37	1335
accuracy			0.35	6000
macro avg	0.54	0.54	0.35	6000
weighted avg	0.71	0.35	0.34	6000

ROC_AUC_Score of train set is 0.9997951309391232.
ROC_AUC_Score of test set is 0.5915151880085585.
Fl of train set is 0.9948.
Fl of test set is 0.2696.

	precision	recall	f1-score	support
0	0.80	0.85	0.82	4665
1	0.31	0.24	0.27	1335
accuracy			0.71	6000
macro avg	0.55	0.54	0.55	6000
weighted avg	0.69	0.71	0.70	6000

ROC_AUC_Score of train set is 0.7614349850067325.
ROC_AUC_Score of test set is 0.7713328596489115.
F1 of train set is 0.648.
F1 of test set is 0.5405.

precision recall f1-score support

	precision	recall	f1-score	support
0	0.87	0.84	0.86	4665
1	0.51	0.57	0.54	1335
accuracy			0.78	6000
macro avg	0.69	0.71	0.70	6000
weighted avg	0.79	0.78	0.79	6000

Test Set

Test Set

Random Forest

Logistic Regression

XGBoost

Models on Transformed Dataset

Data Transformation

ROC_AUC_Score of train set is 0.9547819608526235.
ROC_AUC_Score of test set is 0.6653638739357154.
F1 of train set is 0.8725.
F1 of test set is 0.4295.

11 01 0050	500	precision	recall	f1-score	support
	0	0.85	0.66	0.75	4665
	1	0.34	0.59	0.43	1335
accurac	су			0.65	6000
macro av	7g	0.59	0.63	0.59	6000

0.65

0.68

6000

Test Set

0.74

weighted avg

K-Nearest Neighbour

ROC_AUC_Score of train set is 0.7667199464076059.
ROC_AUC_Score of test set is 0.7228431502422614.
F1 of train set is 0.6461.

F1 of test set is 0.5216.

	precision	recall	f1-score	support
0	0.87	0.84	0.85	4665
1	0.49	0.56	0.52	1335
accuracy			0.77	6000
macro avg	0.68	0.70	0.69	6000
weighted avg	0.78	0.77	0.78	6000

Test Set

Decision Tree Classifier

Models on Transformed Dataset

Reference

- 1. Length: 10-minute presentation.
- 2. Contents:
- i. Motivation and Data summary (2-3 min)
- ii. Results with different metrics (Tables) (1-2 min)
- (example) (Please color the best and the worst)
- iii. Explanation: why some features are important (based on your domain knowledge)? Why is a certain method better than other methods based on your data (not a general one)? What is the extracted knowledge from this data?

Feature Selection

- Technique used to reduce the number of dependent variables
- Exhaustive dataset can be reduced in size by pruning away the redundant features that reduce the model's accuracy
- Helps reduce the computational expense by discarding the redundant features that reduce model's accuracy

Feature Selection: Correlation

*

Linear relation between variables

- Some features show high correlations with each other
- BILL_AMT1 and BILL_AMT2 have 0.95
- BILL AMT2 and BILL AMT3 have 0.93
- BILL_AMT4 and BILL_AMT5 have 0.94
- Not meaningful to keep all highly correlated features, so we kept BILL_AMT1 and removed rest highly correlated features

Feature Selection: Hypothesis Test

"There are two possible outcomes: if the result confirms the hypothesis, then you've made a measurement.

If the result is contrary to the hypothesis, then you've made a discovery — Enrico Fermi"

Our Hypothesis: Our Null Hypothesis states that;

HO -> No difference between features and target variable, so we should remove them

H1 -> Difference between features and target variable, so we should keep them

if p>0.01, can't reject null hypothesis | if p<0.01, can reject null hypothesis

How?

We apply T-Test between two classes for each feature. The features rejecting our null hypothesis will be kept, as they are most different.

Why?

- 1) T-test works best when samples are greater than 30 (Z-Test and T-Test have negligible difference).
- 2) It works with features that have numerical data.
- 3) It is a good measure of evaluation of relation in a classification problem to define yes or no.
- 4) Using paired t-test because comparison is done between saame iems of the sample on a unique condition.

Feature Selection: Chi-square

```
Relationship Between default
                                 EDUCATION
chi-square statistic:- 130.36289614432826
critical value: 3.841458820694124
p-value: 0.0
Significance level: 0.05
Degree of Freedom: 1
Reject H0, There is a relationship between the 2 categorical variables
Reject H0, There is a relationship between the 2 categorical variables
Relationship Between default
chi-square statistic:- 117.26473121793711
critical value: 3.841458820694124
p-value: 0.0
Significance level: 0.05
Degree of Freedom: 1
Reject H0, There is a relationship between the 2 categorical variables
Reject H0, There is a relationship between the 2 categorical variables
Relationship Between default
                                 MARRIAGE
chi-square statistic:- 24.449204617239992
critical value: 3.841458820694124
p-value: 7.629500311523429e-07
Significance level: 0.05
Degree of Freedom: 1
Reject H0, There is a relationship between the 2 categorical variables
Reject H0, There is a relationship between the 2 categorical variables
```

- \blacktriangleright Chi-square test(X^2) is used to test the independence of two events.
- It can be used to interpret correlation between two categorical variables.
- The null hypothesis assumes there is no difference between observed and expected frequencies. So if we accept the null hypothesis (e.g. p-value > 0.05) then we say the variables are not dependent on one other.

Why?

- There are categorical features in the dataset, having 2 or more categories each.
- It works best when the data is being sampled randomly.
- We have independent features in dataset
- Dataset contains categorical features that are nominal in nature.

Feature Selection:Logistic Regression

Itera	tions 7	D1+-				
			s: Logit 			
Model: Dependent Vari Date: No. Observation Df Model: Df Residuals: Converged: No. Iterations	Log able: y 202 ons: 373 22 373	git 22-12-01 (Pse AIC 07:02 BIC Log LL-	udo R-so : : -Likelil Null: p-value	quared: 0 4 4 hood: - -	
	Coef.	Std.Err.	z	P> z	[0.025	0.975]
LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_1 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 BILL_AMT1 BILL_AMT2 BILL_AMT2 BILL_AMT3 BILL_AMT4 BILL_AMT5 BILL_AMT5 BILL_AMT5 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2	-1.2120 -0.1623 -0.1468 -0.2670 0.2912 7.3809 0.3836 1.0749 0.8766 0.4853 1.1587 -3.9374 4.1835 0.8612 0.6282 -1.6181 0.8187 -18.0359 -9.9243	0.0239 0.0507 0.0490 0.0769 0.1720 0.1722 0.1801 0.2020 0.2312 0.2000 0.6751 0.7994 1.6182 0.8612 0.6548 0.4944	5.9683 4.3394 2.0993 5.7925 -5.8319 5.2336 0.5322 0.7295 -2.4712 1.6559	0.0000 0.0038 0.0000 0.0002 0.0000 0.0259 0.0000 0.0358 0.0000 0.0000 0.5946 0.4657 0.0135 0.0977	-0.2090 -0.2461 -0.3630 0.1405 7.0438 0.0460 0.7219 0.4807 0.0322 0.7666 -5.2607 2.6168 -2.3105 -1.0598 -2.9015	-0.1155 -0.0474 -0.1709 0.4419 7.7180 0.7212 1.4279 1.2725 0.9384 1.5507 -2.6141 5.7502 4.0328 2.3162 -0.3347 1.7878 -14.8392
PAY_AMT3 PAY_AMT4 PAY_AMT5 PAY_AMT6 ===========	-3.0292 -3.0234 -2.7005 -1.9629	1.1296 0.8583 0.5469 0.4772	-3.5224 -4.9378 -4.1134	0.0004 0.0000 0.0000	-4.7057 -3.7724 -2.8982	-1.3411 -1.6286 -1.0276

How?

- This is the Logistic regression-based model where the amount of variation between features is interpreted by computing p-value.
- It is an iterative process where if the initial p-value for a feature exceeds the threshold for exclusion, it is removed from dataset, else we add and move on the next feature, till we meet convergence.
- The features with p-value less than 0.05 are considered to be the more relevant feature

Why?

- Although this method is computationally expensive on a large dataset , it works well for the current dataset as its a moderately sized dataset.
- It is one of the fastest automatic feature selection methods and is capable of managing high number of variable features.

***But, keeping this in mine, it has its disadvantages too. It is based on a greedy algorithm so this might not be an optimum choice. Results will be compared in accuracy of models.

Feature Selection:Random Forest

HOW?

A measure of impurity (Gini impurity) is computed and a decrease is noted on this value after each tree. Lower impurity means that the feature is important.

In random forest, an average is calculated for each accuracy decrease for tree is calculated classification, we used impurity gini impurity to determine the the importance of a feature variable.

Features on the top of the list are chosen as important features.

A recall chart can be referred to choose the top n features to be selected.

WHY?

This method provides relative values of the computed importances. The advantage in this
method is a speed of computation, all the needed values are computed during the Random
Forest training.

Feature Selection Methods/Results

Feature Selection Method	Selected Features	Removed Features
T-Test	Limit_BAL, AGE, PAY_1, PAY_2, PAY_3, PAY_4, PAY_5, PAY_6, BILL_AMT1, PAY_AMT1, PAY_AMT2, PAY_AMT3, PAY_AMT4, PAY_AMT5, PAY_AMT6	BILL_AMT2, BILL_AMT3, BILL_AMT4, BILL_AMT5, BILL_AMT6
Correlation	PAY_1, PAY_2, PAY_3, PAY_4, PAY_5, PAY_6, BILL_AMT1, PAY_AMT1, PAY_AMT2, PAY_AMT3, PAY_AMT4, PAY_AMT5, PAY_AMT6	BILL_AMT2, BILL_AMT3, BILL_AMT4, BILL_AMT5, BILL_AMT6
CHI-Square	SEX, EDUCATION, MARRIAGE	None
Logistic Regression	Limit_BAL, SEX, EDUCATION, MARRIAGE, AGE, PAY_1, PAY_3, PAY_4, PAY_5, PAY_6, BILL_AMT1, BILL_AMT6, , PAY_AMT1, , PAY_AMT2	BILL_AMT3, BILL_AMT4, BILL_AMT6
Random Forest Feature Importance	PAY_1, PAY_2, PAY_3, PAY_4, PAY_5, PAY_AMT1, PAY_6, Limit_BAL, BILL_AMT1, PAY_AMT3	PAY_6, PAY_AMT6, BILL_AMT1, PAY_AMT3, PAY_AMT5, PAY_AMT4, BILL_AMT2, BILL_AMT6, BILL_AMT5, BILL_AMT4, AGE, EDUCATION, SEX, MARRIAGE

Model Comparison (Accuracy)

Method	Logistic Regression	KNN	Decision Tree	Random Forest	XGBoost
Without Feature Selection	78%	69%	77 %	71%	65%
T-Test, Chi-square	78%	67%	77%	67%	65%
Correlation, Chi-square	77%	70%	78%		78%
Feature Selection by Feature Importance (Logistic Regression)	78%, 55 %	70%, 65%	77%,	79%, 77%	66%, 76 %
Feature Selection by Feature Importance (Random Forest)	78%	51%	77%	76%	63%

Model Comparison (F1)

Method	Logistic Regression	KNN	Decision Tree	Random Forest	XGBoost
Without Feature Selection					0.45
T-Test, Chi-Square	0.54	0.37	0.52	0.28	0.45
Correlation, Chi-Square	0.54	0.37	0.52		0.44
Feature Selection by Feature Importance (Logistic Regression)	0.54	0.39	0.52	0.49	0.45, 0.
Feature Selection by Feature Importance (Random Forest)	0.53	0.39	0.52	0.52	0.46

Model Comparison (AUC score)

Method	Logistic Regression	KNN	Decision Tree	Random Forest	XGBoost
Without Feature Selection	0.77	0.60	0.72	0.59	0.69
T-Test, Chi-Square	0.77	0.58	0.72	0.55	0.69
Correlation, Chi-Square	0.77	0.59	0.74	0.75	0.73
Feature Selection by Feature Importance (Logistic Regression)	0.77	0.60	0.72	0.75	0.69
Feature Selection by Feature Importance (Random Forest)	0.76	0.58	0.73	0.76	0.73

False Positive Rate

Hypothesis test ->

Correlation Method ->

Chi-square -

Random Forest ->

Logistic Regression ->

Pros and Cons Feature Selection Methods

Method	Pros	Cons
T-Test, Chi-Square		
Correlation, Chi-Square		
Feature Selection by Feature Importance (Logistic Regression)		
Feature Selection by Feature Importance (Random Forest)	Speed of computation, all the needed values are computed during the Random Forest training.	They are completely useless if your model is weak Strongly Influenced by correlation features They are biased towards numerical and high cardinality features

Conclusion

Final Feature selected method-

Final selected features -

Final best model