

Learning Linguistic Association Towards Efficient Text-Video Retrieval

Sheng Fang^{1,2}, Shuhui Wang^{1,3*}, Junbao Zhuo¹, Xinzhe Han^{2,1} and Qingming Huang^{2,1,3}

¹Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS,

²University of Chinese Academy of Sciences, ³Peng Cheng Laboratory

Imbalance Problem in TVR

> Video delivers richer content than text

- Nature Side
 - Video \rightarrow a consecutive photometric record of events in a physical world.
 - Text \rightarrow the abstract description of the events that a person sees or experiences.
- Language Side
 - Video → describe an event without missing details of actions, attributes and objects.
 - Text → depicted by different individuals and may have different focuses and language habits.

> Imbalance makes it difficult to align text and video

Contributions

We propose a general framework, LINguistic ASsociation (LINAS), which encourages the model to learn the ability of semantics enrichment for better aligning two modalities.

A new car advertisement for release

A video tour of the audi a8

Advertisement for a car

- We introduce Knowledge Distillation and further propose Adaptive Distillation strategy for suppressing the spurious correlation in the teacher model.
- Extensive experiments demonstrate the effectiveness, efficiency, and generalization ability of LINAS. Our code is now available.

Code Release

Experiments

> Comparison

> Visualization

A car driving through an open field

kicking up dirt

A car flipping over

A car is being flipped ov

A truck rolls over itself and boys

Experiments on benchmark dataset MSR-VTT.

Method	Text2Video						SumR				
	R@1	R@5	R@10	MedR	mAP	R@1	R@5	R@10	MedR	mAP	~ G1212
VSE++[11]	5.7	17.1	24.8	65	-	10.2	25.4	35.1	25	-	118.3
Mithun $et \ al.[29]$	7.0	20.9	29.7	38	-	12.5	32.1	42.4	16	-	144.6
W2VV[8]	6.1	18.7	27.5	45	-	11.8	28.9	39.1	21	-	132.1
CE[23]	10.0	29.0	41.2	16	-	15.6	40.9	55.2	8.3	-	191.9
HGR[5]	9.2	26.2	36.5	24	-	15.0	36.7	48.8	11	-	172.4
Dual Encoding[9]	11.0	29.3	39.9	19	20.3	19.7	43.6	55.6	8	9.3	199.0
LINAS - Dual Encoding	11.9	31.0	42.1	17	21.6	22.0	46.9	59.2	6	10.4	213.1
Hybrid Space[10]	11.6	30.3	41.3	17	21.2	22.5	47.1	58.9	7	10.5	211.7
LINAS - Hybrid Space	12.3	31.6	42.8	16	22.1	22.3	47.8	60.4	6	10.6	217.2
	14.4	37.4	50.2	10	_	22.7	52.6	66.3	5	_	243.6
TeachText - CE+[7]	14.9	38.3	51.5	10	-	24.9	54.1	67.6	5	-	251.3
LINAS - CE+	15.2	38.9	52.0	10	-	24.7	55.2	68.0	4	-	254. 0

Text-video pairs and the attention weights of support set captions.

man is preparing for doing some

> Ablation Study

Experiments about distillation strategy.

	Distillation Loss			${ m Text 2Video}$				${ m Video 2 Text}$				SumR			
	$\overline{\mathcal{L}_{D_{text}}}$	$\mathcal{L}_{D_{video}}$	$\mathcal{L}_{D_{rel}}$	$\mathcal{L}'_{D_{rel}}$	R@1	R@5	R@10	MedR	mAP	R@1	R@5	R@10	MedR	mAP	
1					10.9	29.3	39.8	20	20.2	19.5	42.8	55.8	8	9.3	199.0
2	\checkmark				11.3	30.0	40.8	18	20.8	21.1	44.6	56.7	7	10.1	204.4
3			\checkmark		11.3	30.1	41.1	18	20.9	20.8	44.5	58.2	7	9.8	205.9
4	\checkmark	\checkmark			11.7	30.6	41.6	17	21.3	21.9	45.2	58.3	7	10.2	209.3
5	\checkmark		\checkmark		11.5	30.2	41.1	18	21.0	20.4	45.8	57.7	7	10.2	206.7
6	\checkmark	\checkmark		\checkmark	11.5	30.2	41.1	18	21.0	21.8	45.5	58.2	7	10.0	208.3
7	\checkmark	\checkmark	\checkmark		11.9	31.0	42.1	17	21.6	22.0	46.9	59.2	6	10.4	213.1
	Tea	cher Mo	del		19.0	44.6	57.7	7	31.3	23.7	39.0	46.9	13	18.9	231.0

> General Applicability

Experiments on different pretraining baseline methods.

Method	Dataset		Text	2Vide	0		SumR			
1/10/110 Q		R@1	R@5	R@10	MedR	R@1	R@5	R@10	MedR	
ClipBERT[17]		22.0	46.8	59.9	6	-	-	-	-	-
MMT[13]	MSR-VTT 1k-A	25.8	57.3	69.3	4	26.1	57.8	68.5	4	304.8
LINAS - MMT		27.1	59.8	71.7	4	28.3	60.3	72.0	3	319.2
Frozen in time[2]		33.7	64.7	76.3	3	-	-	-	-	-
${ m CLIP4Clip}[24]$	MSVD	46.2	76.1	84.6	2	-	-	-	-	-
LINAS - CLIP4Clip		46.7	76.8	85.6	2	47.3	75.0	83.2	2	414.6

Comparable results with 3× speed-up efficiency.

Teacher Model	Student Model		Text	2Video)		Vide	eo2Tex	t	SumR	
	2000000	R@1	R@5	R@10	MedR	R@1	R@5	R@10			
-	Base	9.7	26.8	37.0	23	17.7	40.0	51.7	10	182.9	
Base	Base	10.3	27.9	38.9	19	19.3	42.9	54.1	8	193.4	
Dual Encoding[9]	Base	10.7	28.9	39.9	19	20.0	43.9	56.4	8	199.8	
-	Dual Encoding[9]	10.9	29.3	39.8	20	19.5	42.8	55.8	8	199.0	

Method

> Teacher Model

- Support Set Construction. (1) Descriptions belonging to the same video with the query caption; (2) Captions of semantically similar videos.
- Attentional Aggregation Module. Combine the complementary semantics to the query caption.

$$x_i^t = q_i + \sum_{n=1}^N \frac{\exp(Q(q_i)^T K(k_i^n))}{\sum_{l=1}^N \exp(Q(q_i)^T K(k_i^l))} k_i^n,$$

• Training. Requires additional support captions as input.

> Student Model

• Training with Knowledge Distillation. (1) Feature-level distillation; (2) Relational distillation.

$$\mathcal{L}_{D_{text}} = \sum_{i=1}^{B} (||x_i^t - x_i^s||_2^2), \quad \mathcal{L}_{D_{video}} = \sum_{i=1}^{B} (||y_i^t - y_i^s||_2^2), \quad \mathcal{L}_{D_{rel}} = \sum_{i=1}^{B} \sum_{j=1}^{B} m(i,j) L_{\delta}(S^t(i,j), S^s(i,j)),$$

• Inference. Brings no extra computation cost.

> Adaptive Distillation

model parameters θ from scratch.

- Spurious Correlation. Not all the correlations from the teacher model are reliable.
- **Algorithm.** Adopt EM (Expectation-Maximization) Algorithm to iteratively optimize m and θ .

from the teacher model

Algorithm 1: Adaptive Distillation Create a mask m which is uniformly initialized. θ represents the model	$\mathcal{L}_{val}(heta,m) = \sum_{i=1}^{B} \sum_{j=1}^{B} rac{1}{S^t(i,j)} ag{5}$	$n(i,j)L_{\delta}(S^t(i,j),S^s(i,j)).$
parameters. while not converged do $ \theta \leftarrow \theta - \eta_{\theta} \nabla_{\theta} \mathcal{L}_{train}(\theta, m); $ $ m \leftarrow m - \eta_{m} \nabla_{m} \mathcal{L}_{val}(\theta, m); $ end Based on the learned mask m , retrain the	Learning Process. Model tends to transfer the relational knowledge of the diagonal elements	1.0 diag non-diag 0.8 0.6 0.4 0.2