IC for System Reset (battery backup)

Monolithic IC MM1134

Outline

This IC protects SRAM data by setting SRAM in backup mode (setting the CE pin of SRAM low and $\overline{\text{CE}}$ pin high with CS signal) when supply voltage falls below a predetermined voltage (detection voltage 3.5V, 4.2V typ.). Then, when supply voltage is getting lower, the main power supply is switched to a battery (switching voltage 3.3V typ.) to enter backup mode with the battery. Meanwhile, when the power supply rises, first it switches to the main power supply (switching voltage 3.3V typ.) from the battey backup mode, then switches SRAM from backup mode to normal mode (by setting the CE pin of SRAM high and $\overline{\text{CE}}$ pin low). Data damage can be reliably prevented by this signal processing.

Features

1. Power supply switching circuit (switching between the main power supply and a battery)

2. CS control for SRAM

Normal mode: Enables access to SRAM

Backup mode: Disables access to SRAM, low current consumption mode

3. With CS signal gate circuit

Characteristics

1. Battery back-up		
1. Low IC current consumption (loss current)	0.3µA typ.	
2. Drop voltage inside IC (input/output voltage difference)	Io=100μA	0.3V typ.
3. Reverse current (reverse leak current)		0.1µA max.
2. Normal operation		
1. Drop voltage inside IC (input/output voltage difference)	Io=50μA	0.2V typ.
2. Output voltage Vcc=5V	Io=50mA	4.8V typ.
3. Battery-Vcc switching voltage		3.3V typ.
4. Detection voltage (CS, CS, reset output)	A : 3.5V typ.	
	B: 4.2V typ.	

Package

SOP-8C (MM1134 ☐ F)

* The box represents a rank of detection voltage.

Applications

- 1. Memory cards (SRAM cards)
- 2. PCs, word processors
- 3. Fax machines, photocopiers, other OA equipment
- 4. Sequence controllers, other FA equipment
- 5. SRAM-mounted devices such as video game devices

Pin Assignment

Pin no.	Pin name
1	GND
2	RESET
3	CS
4	VBATT
5	CS
6	Vout
7	$\overline{\mathrm{Y}}$
8	Vcc

Block Diagram

Back-up IC inside dotted lines C1,C2: Power supply bypass capacitor R1 : Lithium battery protection resistor

Equivalent Circuit Diagram

Absolute Maximum Ratings (Ta=25℃)

Item	Symbol	Rating	Units
Storage temperature	Tstg	-40~+125	$^{\circ}$ C
Operating temperature	Topr	-20~+75	$^{\circ}$ C
Power supply voltage	Vcc max.	-0.3~7	V
Operating voltage	Vccop	-0.3~7	V
Allowable loss	Pd	300	mW
Output current	Io1	80	mA
Output current	Io2	200	μA

Note: Io1 expresses Vcc output current value, and Io2 expresses VBATT output current value.

Electrical Characteristics Typical model: MM1134B(Except where noted otherwise, Ta=25°C, Vcc=VRs=5V, RRs=10kΩ)

Item	Symbol	Measuring circuit	Measurement conditions	Min.	Тур.	Max.	Units
Consumption current	Icc	1	Vcc=5V, Vbatt=3V, Io1=0mA		1.4	2.2	mA
I/O voltage difference 1	VSAT1	1	Vcc=5V, Vbatt=3V, Io1=1mA		0.03	0.05	V
Output voltage 1	Vo1	1	Vcc=5V, Vbatt=3V, Io1=1mA	4.95	4.97		V
Output voltage 2	Vo2	1	Vcc=5V, Vbatt=3V, Io1=15mA	4.75	4.90		V
Output voltage 3	Vo3	1	Vcc=5V, Vbatt=3V, Io1=50mA	4.70	4.80		V
Detection voltage	Vs	1	Vcc=H→L	4.00	4.20	4.40	V
Hysteresis voltage	$\triangle V_S$	1	Vcc=L→H	50	100	200	mV
Reset output voltage L	Vrsl	1	Vcc=3.7V		0.2	0.4	V
Reset leakage current H	Irsh	1	Vcc=5V, Vrs=7.0V		±0.01	±0.1	μA
Reset operation limit voltage	V_{OPL}	1	Vrsl≤0.4V, Vcc=H→L		0.8	1.2	V
CS output voltage L	Vcsl	1	V_{CC} =3.7 V , V_{BATT} =3 V , I_{CS} =1 μA			0.1	V
CS output voltage H	Vcsh	1	Vcc=5V, Vbatt=3V, Ics= $-1\mu A$	4.90			V
CS output voltage L	$V\overline{c}_{SL}$	1	$V_{CC}=5V$, $V_{BATT}=3V$, $I_{\overline{CS}}=1\mu A$, $V_{\overline{Y}}=0V$			0.2	V
CS output voltage H	Vcsh	1	V_{CC} =3.7 V , V_{BATT} =3 V , $I_{\overline{\text{CS}}}$ =-1 μ A, $V_{\overline{\text{Y}}}$ =0 V	Vo-0.1			V
oo output voitage ii			V_{CC} =5 V , V_{BATT} =3 V , $I_{\overline{\text{CS}}}$ =-1 μA , $V_{\overline{\text{Y}}}$ =5 V	V0-0.1			
Detection voltage temperature characteristic	Vs/⊿T	1				±0.05	%/°C
Power supply switching voltage	V_{B}	1	Vcc=H→L	3.15	3.30	3.45	V
Hysteresis voltage	$\triangle V_B$	1	Vcc=L→H	50	100	200	mV
Switching voltage temperature characteristic	Vв/⊿Т	1				±0.05	%/°C
Loss current	${f I}_{ m BL}$	1	Vcc=0V, Vbatt=3V, $Io2=0\mu A$		0.3	0.5	μA
I/O voltage difference 2	Vsat2	1	Vcc=0V, Vbatt=3V, $Io2=1\mu A$		0.2	0.3	V
Output voltage 4	Vo4	1	Vcc=0V, Vbatt=3V, $Io2=1\mu A$	2.7	2.8		V
Output voltage 5	Vo5	1	Vcc=0V, Vbatt=3V, $Io2=100\mu A$	2.6	2.7		V
Reverse current	Iorev	1	$V_{CC}=5V$, $V_{BATT}=0V$			0.1	μA
Y pin Lo level current	Ῑγιο	1	$V_{CC}=5V$, $V_{BATT}=3V$, $V_{\overline{Y}}=0V$		150	400	μA
Ȳ pin	tр _L H	2	$V_Y=L\rightarrow H$, $C_L=15pF$ *		8	20	ns
Pin transmission delay time	tрнL	2	$V_Y=H\rightarrow L$, $C_L=15pF$ *		8	20	ns
Reference voltage (typical)	V_{REF}				1.25		V

Note: When input pulse rise and fall time is less than 6Nsec.

Measuring circuit 1

Measuring circuit 2

Timing Chart

★ Use \overline{Y} pin input voltage at less than 5V when Vcc \leq Vs.

Characteristics

Current consumption-Temperature characteristics

Output voltage 3, 4-Temperature

■ Reverse current-Temperature

Output voltage 1, 2-Temperature characteristics

Loss current-Temperature

