Unit:2 DERIVATES

Perivatives:

The rate of change of a function is called derivative.

OR,

The slope of the tangent line at a particular point on a function is called derivative.

from first principle, $d f(n) = f'(x) = \lim_{h \to 0} f(n+h) - f(n)$ $d\alpha \qquad h \to 0 \qquad h$

or, 1/m f(No) - f(m) x+No No-2

P (aif(n))

o (ath, for th)

The derivatives of a function at point x= no is defined as

f'(nv) = lim f(no+h) - f(no)
how h

provided that limit exists.

Eg: f(n) = n, check if find f'(n).

Date | Page |

Now, Let 'h' he the small change in value of h.

 $f(\alpha) = \lim_{h \to 0} f(\alpha + h) - f(\alpha)$

 $\frac{a+h}{-1} = \frac{a}{n-1}$ $\frac{1}{h+0} = \frac{a+h-1}{h}$

= $\lim_{h\to 0} \frac{(x+h)(n-1) - (y_{\ell}(x+h-1))}{h(x+h-1)(n-1)}$

= $\lim_{h \to 0} \frac{x^{2} - x + xh - h - x^{2} - xh + x}{h(x+h-1)(x-1)}$

= $\lim_{h\to 0} \frac{-M}{K(x+h-1)(x-1)}$

(7-1)2

! f'(n) = - (n-1)-2

One- Sided Perivative

[a,b] if it is differentiable on (a,b) and exists at end point.

Date	
Page	,

Right hand derivative of a function f(x) at x=a is

 $R f'(a) = \lim_{h \to 0^+} f(a+h) - f(a)$

Left hand desirative of a function f(m) at n = a is f'(a) = lim = f(a-h) - f(a) $h \to 0$

A function is said to differentiable at n=a if

If Rf'(a) & Lf'(a), then derivative doesn't exist at x=a.

Theorem: Every differentiable function are continuous and

If f has a derivative at n=c, then f'is continuous at n=c. But converse may not always be true.

Proof!

Since $f'(\alpha)$ exists at $\alpha = c$ and taking h > 0, we have $f(c+h) - f(c) = (f(c+h) - f(c)) \times h$

Taking him on both sides, on both sides,

lim += f(c+h) - f(c)

Hence, $\lim_{h \to 0} f(c+h) = \lim_{h \to 0} f(c-h) = f(c)$ $\lim_{h \to 0} f(c+h) = f(c)$ $\lim_{h \to 0} f(c+h) = f(c)$

For converse part; Let us consider f(x) = |x| at x = 0For continuity at x = 0,

LHL = lim f(n) = lim (-n) = 0
n+0- n+0-

RHL = $\lim_{n\to 0^+} f(n) = \lim_{n\to 0^+} n = 0$

i.f(0)=0.

f is continuous at n=0.

 $RHD = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$ = h = 1 h $Here, LHD \neq RHD.$

f'(0) doan't exist

$$\langle Q \rangle$$
: $f(n) = \int_{\mathbb{R}^2} n^2 \sin \frac{1}{2}n$ $n \neq 0$
Find $f'(n)$ exists.
 $Su(Q)$:

$$LHD = \lim_{h \to 0} (0-h)^2 \sin \left(\frac{1}{0-h}\right)$$

$$= \lim_{h \to 0} (-h)^2 \times \sin \left(\frac{1}{0-h}\right) = 0$$

$$h \to 0$$

$$\begin{cases} n & \text{for } .0 < n < 1 \\ (a)! & \text{f(n)} = 2 2 - n & \text{for } 1 \leq n \leq 2 \\ n - n^2 / 2 & \text{for } n \neq 2 \end{cases}$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$n - n^2 / 2 & \text{for } n \neq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 - n & \text{for } 1 \leq n \leq 2$$

$$2 -$$

At n=1, f(m)= 2-x.

LHO = $\lim_{h \to \infty} f(1-h) - f(1)$ $h \to \infty$ $h \to \infty$

 $\frac{2+0}{h+0} = \lim_{n \to \infty} \frac{2-(1-h)}{(1-h)}$

RHD = 1im 2 - (1+h) h+0= 2-1=1

Here, LHD = RHD80, f'(n) exists at n=1.

At n=2, f(n)=2-n.

 $LHD = \lim_{h \to 0} 2 - (2 - h)$ = 0

RMD = $\lim_{h\to 0} q(2+h) - (2+h)^2$ $= 2 - \frac{4}{2} = 0$

Here, LHO=RHO
So, f'/n) exists at x=2.

Derivative formulae:

(i):
$$de^{ax} = ae^{ax}$$
 (ii) $de^{x} = e^{x}$

(ii):
$$\frac{d}{dx} = a^{\alpha} \cdot \ln \alpha$$

(iv)
$$\frac{d}{dx} \ln(x) = \frac{1}{x}$$
 (v): $\frac{d}{dx} \log x = \frac{1}{x}$

$$(vi)$$
 of $(sinh\pi) = cosh\pi$ (vii) of $(cosh\pi) = sinh\pi$ on

$$(xiv) d (tan^{-1}x) = 1$$
 $(xv) d (cotts^{-1}x) = -1$ dx $1+x^2$

$$\begin{array}{cccccc} (xvi) & d & (cosec^{-1}x) = -1 & (xvii) & d & (sec^{-1}x) = 1 \\ dx & 1x1\sqrt{x^2-1} & dx & 7x1\sqrt{x^2-1} \end{array}$$

$$(xviii)$$
 d $(sinh^{-1}x) = 1$

$$dx \qquad \sqrt{x^2 + 1}$$

$$(xix)$$
 $d(ash^{-1}x) = -1$ $d(x719)$

$$(xx) d (tanh^{-1}x) = 1$$
 $d (1x) < 13$

$$(xxi) \frac{d}{dx} \left(\frac{\cot h^{-1}x}{1-x^2} \right) = \frac{1}{1-x^2}$$

$$\frac{(xxii)}{dx} \frac{d(ceach^{-1}x) = -1}{|x|\sqrt{x^2+1}}$$

$$\frac{(xxiii)}{dx} \frac{d}{dx} \frac{(sech^{-1}x)}{a\sqrt{1-x^2}} = \frac{-1}{a\sqrt{1-x^2}} \frac{d}{dx} \frac{d$$

(a):
$$y = \ln x + \sqrt{1-2^2 - \sinh^{-1}x}$$
.

So
$$f^{n}$$
:

Let $u = \ln n$ and $v = \sqrt{1 - n^2 \cdot \sinh^{-1} n}$
 $\int a y = u + v = \int dy/dn = \frac{du}{dn} + \frac{dv}{dn}$
 $du = \ln n$
 dn

- dv (VI-n2) x 8inh-1x)

 $= \sqrt{1-x^{2}} \cdot d \sin h^{-1} x + \sin h^{-1} x \cdot d \sqrt{1-x^{2}} \times (d \cdot 1 - d x^{2})$ $= d n \qquad d (1-x^{2}) \qquad d n \qquad 2$ $= \sqrt{1-x^{2}} \times 1 \qquad + \sin h^{-1} x \cdot 1 \qquad x - 2x$ $= \sqrt{1-x^{2}} \qquad \sqrt{1+x^{2}} \qquad \sqrt{1-x^{2}}$ $= \sqrt{1-x^{2}} - x \sin h^{-1} x - (iii)$ $= \sqrt{1+x^{2}} \qquad \sqrt{1-x^{2}}$

Su egnii) heromes,

 $\frac{dy}{dx} = \frac{1}{2} + \sqrt{1-x^2} - \frac{2 \sin h^{-1} x}{\sqrt{1-x^2}}$

(b): $y = \sinh^{-1}(x^2)$

Diffrantiating both sides wr-t n,

 $\frac{dy}{dn} = \frac{d \sinh^{-1}(n^2)}{dn^2} \times \frac{dn^2}{dn}$ $\frac{1}{\sqrt{n^2 + 1}} \times 2\pi$ $\frac{1}{\sqrt{n^2 + 1}}$ $\frac{1}{\sqrt{n^2 + 1}} \times \frac{2\pi}{\sqrt{n^2 + 1}}$

(a):
$$y = 2\sqrt{t} \cdot tanh\sqrt{t}$$

Sol²:

Differentiating both sides out at

 $dy = d \left(2\sqrt{t} \cdot tanh\sqrt{t}\right)$

dat dat

=
$$2\sqrt{t} \times \sec^2 h^2 \sqrt{t} \times 1 + 2\sqrt{t}$$
 and $\sqrt{t} \times 1$
 $2\sqrt{t}$ $2\sqrt{t}$
 $dy = \operatorname{sech}^2 \sqrt{t} + \operatorname{tanh} \sqrt{t}$

$$\frac{dy}{dx} = \frac{\operatorname{Sech}^2 \sqrt{t}}{\sqrt{t}} + \frac{t}{\tanh \sqrt{t}}$$

(d):
$$y = log(cos(e^{sinh}))$$

Solo:

Differentiating both sides corret 5h,

$$\frac{d \log \left(\cos \left(e^{\sqrt{\sinh}} \right) \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{\sqrt{\sinh}} \right)}{d \log \left(e^{\sqrt{\sinh}} \right)} \times \frac{d \log \left(e^{$$

	Page
	Cor. Co renz
	(e): y= (dnx) lnx 8012:
	Taking lug on buth sides,
	logy = ln x log/lnx)
	Differentiating both sides writ 1, 1/2 / land wallen) x die
	logy = ln n log/lnm) Differentiating both sides wrt n, dlogy x dy = dnx x d log (lnn) x dlnn + log (lnn) x dln dy dn dn dn
	y dy = lanx 1 x 1 + lug.(lan)x 1 y dy = lanx x x x x x
	y dr from 2
	$\frac{\partial r}{\partial x} = \frac{1 + \log(\ln x)}{x}$
	i-dy = (dn a) In a S 1 + log (ln a) } da
	dn L n
-1-	# Tangent and Normal lines
	Dellegenshighten party with the service of the serv
	Egf for a tangent at point (n_1, y_1) $y-y_1 = m(n-n_1)$
4	$y-y_1 = m(m-n_1)$
1 34	Olam 1 OC A- and all time (M.11)
er m	Normal & for normal at point (M_1, Y_1) $y-y_1 = -1 (M-M_1)$ m
	m
	CHAMISINEX TOURS AND - IL
	(day a day c

Date

$$M = \lim_{\alpha \to \alpha_0} f(\alpha_0) - f(\alpha)$$

(Q): Find the tangent line of y=3/2 at [3,1]

Here $a_0 = 3$. f(n) = y = 3

We know, $M = 15m \quad f(\alpha_0) - f(\alpha)$ $\alpha \rightarrow \alpha_0 \quad \alpha_0 - \alpha$ $= 1im \quad \frac{3}{3} - \frac{3}{2}n$ $\alpha \rightarrow 3 \quad 3 - \alpha$

 $= \lim_{n \to \infty} \frac{1 - 3/n}{3 - n}$

= lim -(x-3) n+3 x(x-3)

 $m = -\frac{1}{3}$

The eq² of tangent be, $y-y_1 = m(n-n_1)$ y-1 = -1(x-3)

on 3y-3=-n+3or, n+3y-6=0which is the regular of tangent.

Angle between Two Curves

having slope 'm,' and 'm2'.

 $\frac{\tan \theta = \left| m_1 - m_2 \right|}{\left| 1 + m_1 m_2 \right|}$

 $\frac{1}{2} \theta = \tan^{-1} \left(\frac{m_1 - m_2}{1 + m_1 m_2} \right)$

Related Rates

LQ?: A spherical ballon is inflated with helium at a rate of 100 π ft³/min. How fast is the balloon radius increasing at the instant radius is 5 ft?

How fast is the surface area increasing?

Sol?:

Given, $\frac{dV}{dt} = 100 \pi f t^3 / min$

radiu at in pance (r) = 5 ft.

We know, $V = \frac{4\pi r^3}{3}$ or, $dV = d(\frac{4\pi r^3}{3})/dt$

Date	
Page	

or, 25 100 R = YXr2 x dr

or dr = 25 = 1. dr = 1 ft sec dt 25 dt

We also now,

SA = UTT2

 $\frac{dSA}{dt} = \frac{d(4\pi r^2) \times dr}{dt}$ on $\frac{dSA}{dt} = \frac{8\pi r \times 1}{dt}$

on dSA = 40TL ft2/sec. dt

\(\text{Q7: When a circular plate in metal heated in an oven, its radius increases at a rate of 0.01 cm/min. At what rate is the plate's area increasing when radius of is 50 cm?

\(\text{SOUR?} \)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR?}
\)

\(\text{SOUR.}
\)

\(

We know Given,

dr = 0.01 cm/min.

radius at instance (r) = 50 cm.

P. T-O.

Page We know, $SA = 9\pi r^2$ $a_1 \quad dSA = d (9\pi r^2) \times dr$ $dt \quad dr \quad dt$ or dsA = 2TTr x dr on dSA = 2xTX 50 x 0.01 $\frac{1}{dsA} = \pi cm^2/min$. A?: A particle moves along the parabular $y=n^2$ in the first quadrant in such a way that its a-coordinate increases at steady 10 m/sec. How fast is the angle of inclination joining the particle to the origin changing when n=3m. 1et a. Given, du = 10 m/sec a at instance = 3 m We know $y = n^2$ on $dy = dx d(n^2) \times dx$ dat dn dton dy = 2nx dn
dt dt 1-dy = 2x3x10 ! dy = 60 m/s.

Atton dy = tant on (dy/dt) = tant (dn/dt)

If n=3, y=9. [:'y=n2]

From figure, $tan\theta = y$ $tan\theta = \frac{9}{3}$ $tan\theta = \frac{10}{56}$ $tan\theta = \frac{10}{56}$ $tan\theta = \frac{10}{56}$ $tan\theta = \frac{10}{56}$

or $\tan \theta = 2^2$ or $\tan \theta = 2$

Diffrentiating both side wirt at,

 $\frac{d \tan \theta \times d\theta}{d\theta} = \frac{d\pi}{dt}$ or, •sec²0 × dθ = 10. dt

on $d\theta = 10$ $dt sec^{2}(71.56)$

 $\frac{1-d\theta}{dt} = 1 \text{ rad/sec}$

Date | Page |

Linearization 4 Diffrentiation

If is differentiable at n=a then

the approximating function is L(n) = f(a) + f'(a) (n-a) is a Isnearization

of f at a.

\[
\text{Q7: Find linearization } g \quad f(n) \quad at \quad f(n) = \sqrt{1+\pi} \quad \quad at \quad n=0.
 \]

Given, $f(n) = \sqrt{1+n}$ f(0) = 0

 $f'(n) = d(\sqrt{1+n})$ dn f'(n) = 1 $2\sqrt{1+n}$

Thus, the linearization of f(n) at n=0 is L(n) = f(a) + f(a) (n-a) $= 1 + 1 \times (n-0)$ = 2

 $\frac{1}{2}L(x)=1+\frac{x}{2}$

 $\langle Q \rangle$: find linearization of $f(\alpha)$ at $n=0^+$ $f(\alpha)=\cos \alpha$ at $n=\pi/2$.

8012:

Given,
f(x) = cos x

 $f(\Pi/2) = \cos \Pi/2 = 0$

 $f(n) = \cos n$ $f'(n) = -\sin n$

1: f'(11/2) = -1

Thus, the linearization of f(n) at $n = \pi I_2$ is L(n) = f(a) + f(a) (n-a) $= 0 + -1 (n - \pi I_2)$

:L(x) = IT -x.