Numer indeksu:	

Logika dla informatyków

Egzamin poprawkowy (pierwsza część)

	20 lutego 2015	
Zadanie 1 (2 punkty). Jeśli formuły (p = poniżej wpisz słowo "RÓWNOWAŻNE". W formuły mają różne wartości.	$\Rightarrow q) \Rightarrow r \text{ i } p \Rightarrow (q)$ przeciwnym przypa	$q \Rightarrow r$) są równoważne to w prostokąt dku wpisz wartościowanie, w którym te
Zadanie 2 (2 punkty). W prostokąty pon odpowiednio w koniunkcyjnej oraz dysjunkcy		
CNF	DNF	
Zadanie 3 (2 punkty). Jeśli formuła ((p zdań to w prostokąt poniżej wpisz dowód te przypadku wpisz wartościowanie, dla którego	j tautologii w syster	nie naturalnej dedukcji. W przeciwnym
Zadanie 4 (2 punkty). Mówimy, że formu jeśli jest postaci $Q_1x_1Q_nx_n\psi$, gdzie x_i są $i=1,,n$), a formuła ψ nie zawiera kwa normalnej równoważna formule $\forall n \Big((\exists d \ nd \ dowolną taką formułę. W przeciwnym przyp$	y zmiennymi, Q_i są antyfikatorów. Jeśli $= x \wedge \exists d \ nd = y) = 0$	kwantyfikatorami (czyli $Q_i \in \{\forall, \exists\}$ dla istnieje formuła w preneksowej postaci $\Rightarrow n \leq z$), to w prostokąt poniżej wpisz

Wskazówka: ta formuła interpretowana w zbiorze liczb naturalnych mówi, że liczba z jest nie nie mniejsza od największego wspólnego dzielnika liczb x i y.

Zadanie 5 (2 punkty). Różnicę symetryczną $$ zbiorów A i B definiujemy następująco: $A B = (A \backslash B) \cup (B \backslash A)$. Jeśli dla wszystkich zbiorów A, B, C zachodzi równość $A (B \cap C) = (A B) \cap (A C)$ to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 6 (2 punkty). Jeśli inkluzja $\bigcup_{t \in T} (A_t \cap B_t) \supseteq \bigcup_{t \in T} A_t \cap \bigcup_{t \in T} B_t$ zachodzi dla wszystkich zbiorów indeksów T oraz wszystkich indeksowanych rodzin zbiorów $\{A_t\}_{t \in T}$ oraz $\{B_t\}_{t \in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 7 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor q \lor \neg r, \ p \lor \neg r, \ q \lor r, \ \neg q\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.
Zadanie 8 (2 punkty). Rozważmy zbiory osób O , kin K i filmów F oraz relacje $Bywa \subseteq O \times K$, $Obejrzal \subseteq O \times F$ i $Wyświetla \subseteq K \times F$ informujące odpowiednio o tym jakie osoby bywają w jakich kinach, jakie osoby obejrzały jakie filmy oraz jakie kina wyświetlają jakie filmy. W prostokąt poniżej wpisz taką formułę φ , że $\{x \in O \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz osób, które bywają tylko w kinach wyświetlających (niekoniecznie wszystkie) filmy, które te osoby już obejrzały.
Zadanie 9 (2 punkty). Jeśli istnieje najmniejsza (ze względu na inkluzję \subseteq) relacja równoważności na zbiorze $\{0,1,2\}$, która zawiera parę $\langle 1,2\rangle$, to w prostokąt poniżej wpisz tę relację. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

pełnij poniżs	• - • • • • • • • • • • • • • • • • • •	prawny dowód nast	go (czyli używając jedynie formuł) u tępującego twierdzenia: Dla dowoln
Dowód. Dow	ód przeprowadzimy wprost. Roz	ważmy dowolne zb	iory A i B i załóżmy, że
Weźmy dowo	olny element x ze zbioru		. Wtedy
	. Rozpatrzmy teraz dwa p	orzypadki.	
(i)	. Wtedy	oraz	, zatem w szczególności
(ii)	. Wtedy z założenia	dosta	ojemy, że
W obu przy	padkach otrzymaliśmy, że x na	ależy do zbioru	, co kończy dowód inkl
$f(X,n) = \langle n$	(2 punkty). Rozważmy funkcj $\{\frac{x}{2} \mid x \in X\}$). Jeśli istnieje funktym przypadku wpisz uzasadnienie	cja odwrotna do f	$\times \mathbb{N} \to \mathbb{N} \times \mathcal{P}(\mathbb{Q} \cap [0,1])$ daną wzo to w prostokąt poniżej wpisz tę funkodwrotna nie istnieje.
zbiór \mathcal{F} ma $F: \mathcal{F} \to \mathbb{N}$.	moc nie większą niż \aleph_0 to w projeśli zbiór \mathcal{F} ma moc co najmniej	rostokąt poniżej w j continuum, to w p	unkcji z N w N, które <i>nie są</i> "na" pisz dowolną funkcję różnowartości prostokąt poniżej wpisz dowolną fun ów nie zachodzi, wpisz słowo "NIE"

$\mathbb{R}^{\mathbb{Q}/\mathbb{N}}$	$\{1,2,3\}\times\mathbb{Q}$	$\bigcup_{n=1}^{\infty} \mathbb{Q}^n$	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\{1,2,3\})$	$(\{1,2,3\} \times \{1,2\})^{\{1,2\}}$	$\mathbb{Q}\setminus\mathbb{Z}$	$\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\mathbb{R})$

Zadanie 15 (2 punkty). W zbiorze $\mathbb{N}^{\mathbb{N}}$ wsz $f \leq g \iff f = g \vee \exists n \ (f(n) < g(n) \wedge \forall i < n$	f(i) = g(i).	
Niech $f_i(n) = \begin{cases} n & \text{dla } n = i \\ 0 & \text{dla } n \neq i \end{cases}$ i niech X odpowiednio najmniejszym i największym ele	$= \{f_i \mid i \in \mathbb{N}\}.$ Wpisz w promentem zbioru. X w tym p	stokąty poniżej funkcje będące
odpowiednie element nie istnieje.	mentem zoloru A w tym p	512quku lub slowo "IVIE", Jesli
$\min X$	$\max X$	
Zadanie 16 (2 punkty). Rozważmy funkcję poniżej wpisz odpowiednio obrazy i przeciwob		
f[[1,2]] =	$f\big[[-5,4]\big] =$	
$f^{-1}[[1,2]] =$	$f^{-1} [[-5, 4]] =$	
Zadanie 17 (2 punkty). W prostokącie por $\langle \{0,1\} \times \{2,3\}, \leq_{lex} \rangle$.	niżej narysuj diagram Hasse	go dla porządku
Zadanie 18 (2 punkty). W prostokąt poniż ków.	ej wpisz przykład trzech pa	ami nieizomorficznych porząd-
Zadanie 19 (2 punkty). Jeśli porządek lek	sykograficzny na skończon	ych ciągach zero-jedynkowych
$\langle \{0,1\}^*, \leq_{lex} \rangle$ jest regularny, to w prostokąt po padku wpisz uzasadnienie, dlaczego ten porzą	oniżej wpisz słowo "REGUI	
Zadanie 20 (2 punkty). W tym zadaniu f natomiast x, y i z są zmiennymi. W prostol unifikowalne, wpisz najogólniejsze unifikatory unifikowalne, wpisz słowo "NIE".	kąty obok tych spośród po	danych par termów, które są
$f(g(y),a) \stackrel{?}{=} f(z,z)$	$f(g(y), g(x)) \stackrel{?}{=} f(z, z)$	
$f(x,g(y)) \stackrel{?}{=} f(z,z)$		