Geometría Moderna 1 2019-1

EXAMEN PARCIAL 04

INSTRUCCIONES: Justificar y argumentar todos los resultados que se realicen. Resolver únicamente cuatro ejercicios, de entregar más de cuatro ejercicios se anulará el ejercicio de mayor puntaje.

- 1. Sea $\triangle ABC$. Demostrar que si $P \in \overline{AB}$, $Q \in \overline{AC}$, \overline{PQ} es paralela a \overline{BC} y $\overline{BQ} \cap \overline{CP} = \{O\}$ entonces \overline{AO} es una mediana del $\triangle ABC$.
- 2. Sea {A,B,C,D} cuatro puntos que por tercias no están en la misma recta. Demostrar que si \overline{AB} , \overline{BC} , \overline{CD} y \overline{DA} son cuatro rectas no concurrentes y son cortadas por una recta l con la propiedad de que $\{A,B,C,D\} \cap l = \emptyset$ en los puntos $\overline{AB} \cap l = \{P\}$, $\overline{BC} \cap l = \{Q\}$, $\overline{CD} \cap l = \{R\}$ y $\overline{DA} \cap l = \{S\}$ entonces

$$\frac{AP}{PB}.\frac{BQ}{QC}.\frac{CR}{RD}.\frac{DS}{SA}=1$$

- 3. Demostrar que si $\mathcal{C}(I,r)$ es la circunferencia inscrita del $\triangle ABC$ y $\mathcal{C} \cap \overline{BC} = \{P\}$, $\mathcal{C} \cap \overline{CA} = \{Q\}$ y $\mathcal{C} \cap \overline{AB} = \{R\}$ entonces \overline{AP} , \overline{BQ} y \overline{CR} son concurrentes.
- 4. Sea $\mathcal C$ una circunferencia y $\{B,C,D,E,F\}\subset \mathcal C$ ordenados (levogiramente o dextrogiramente). Demostrar que la interseccion de los lados opuestos de henagono inscrito son tres puntos colineales. Sugerencia: Considerar a $\overline{AB}\cap \overline{CD}=\{P\}$, $\overline{CD}\cap \overline{EF}=\{Q\}$ y $\overline{EF}\cap \overline{AB}=\{R\}$.
- 5. Usando unicamente regla, encontrar la recta que une a un punto P del plano con la interseccion de dos rectas dadas sin usar el punto de interseccion.

Examen 04 Noviembre 2018