This is the $(p+q+1) \times 2(p+q)$ matrix A given by

$$A = \begin{pmatrix} \mathbf{1}_{p}^{\top} & -\mathbf{1}_{q}^{\top} & 0_{p}^{\top} & 0_{q}^{\top} \\ I_{p} & 0_{p,q} & I_{p} & 0_{p,q} \\ 0_{q,p} & I_{q} & 0_{q,p} & I_{q} \end{pmatrix}.$$

We leave it as an exercise to prove that A has rank p + q + 1. The right-hand side is

$$c = \begin{pmatrix} 0 \\ K \mathbf{1}_{p+q} \end{pmatrix}.$$

The symmetric positive semidefinite $(p+q)\times(p+q)$ matrix P defining the quadratic functional is

$$P = X^{\top} X$$
, with $X = \begin{pmatrix} -u_1 & \cdots & -u_p & v_1 & \cdots & v_q \end{pmatrix}$,

and

$$q = -\mathbf{1}_{p+q}.$$

Since there are 2(p+q) Lagrange multipliers $(\lambda, \mu, \alpha, \beta)$, the $(p+q) \times (p+q)$ matrix $X^{\top}X$ must be augmented with zero's to make it a $2(p+q) \times 2(p+q)$ matrix P_a given by

$$P_a = \begin{pmatrix} X^\top X & 0_{p+q,p+q} \\ 0_{p+q,p+q} & 0_{p+q,p+q} \end{pmatrix},$$

and similarly q is augmented with zeros as the vector

$$q_a = \begin{pmatrix} -\mathbf{1}_{p+q} \\ 0_{p+q} \end{pmatrix}$$

54.5 Soft Margin Support Vector Machines; $(SVM_{s2'})$

In this section we consider a generalization of Problem (SVM_{s2}) for a version of the soft margin SVM coming from Problem (SVM_{h2}) by adding an extra degree of freedom, namely instead of the margin $\delta = 1/\|w\|$, we use the margin $\delta = \eta/\|w\|$ where η is some positive constant that we wish to maximize. To do so, we add a term $-K_m\eta$ to the objective function $(1/2)w^{\top}w$ as well as the "regularizing term" $K_s\left(\sum_{i=1}^p \epsilon_i + \sum_{j=1}^q \xi_j\right)$ whose purpose is to make ϵ and ξ sparse, where $K_m > 0$ (m refers to margin) and $K_s > 0$ (s refers to sparse) are fixed constants that can be adjusted to determine the influence of η and the regularizing term.