CS2105 Introduction to Computer Networks

Lecture 10 Local Area Network

29 October 2018

PREVIOUS LECTURE

Link Layer

- Link layer transmits data over a single link
- Possible services by link layer protocols:
 - Framing (basic)
 - IP datagrams are encapsulated in link layer frames for transmission
 - Error Checking (optional)
 - Parity check (single, 2D); CRC
 - May also optionally perform Error Correction
 - Multiple Access Control (optional)
 - Determine in which manner multiple nodes share a broadcast channel
 - Be Nice!

PREVIOUS LECTURE

Multiple Access Protocols

- Channel partitioning protocols:
 - Divide channel into slots by time, frequency, or code
 - Channel is shared fairly and efficiently if most nodes have data to send
- Random access protocols:
 - Efficient at low load: single node can fully utilize channel
 - High collision rate at high load: wasted channel time
- Taking turns protocols:
 - Polling from master node or token passing
 - Efficient at both low and high load
 - Single point of failure

Learning Outcomes

After this class, you are expected to understand:

- the role MAC address.
- the role a switch in interconnecting subnets in a LAN.
- how switching table is built and how it is used to forward link-layer frames.
- how ARP allows a host to discover the MAC address of other nodes in the same subnet.
- the link properties of a wireless link.
- how CSMA/CA works and how it addresses the hidden node problem

Application

Transport

Network

Link

Physical

You are still here

Chapter 5

- 5.1 Introduction to the Link Layer
- 5.2 Error detecting and correction
- 5.3 Multiple access protocols
 - 5.3.1 Channel Partitioning Protocols
 - 5.3.2 Random Access Protocols
 - 5.3.3 Taking-Turns Protocols
- 5.4 Switched Local Area Networks
 - 5.4.1 Link layer addressing and ARP
 - 5.4.2 Ethernet
 - 5.4.3 Link layer switches

Discussed Last week

Kurose Textbook, Chapter 5 (Some slides are taken from the book)

Local Area Network

How to inter-connect a large number of hosts in a subnet?

Router	Switches
Check IP address	Check MAC address
Store-and-forward	Store-and-forward
Compute routes to destination	Forward frame to outgoing link or broadcast

MAC Address (1/2)

Every adapter (NIC) has a MAC address

- Used to send & receive link layer frames
- On receive of frame, checks destination MAC address
 - Match self MAC address: extracts datagram and passes up the protocol stack
 - Does not match: discard

MAC Address (2/2)

• 6-bytes (48-bits) burned in NIC ROM

• Example: Properties

IPv4 address: 172.26.184.138

IPv4 DNS servers: 192.168.140.2

Primary DNS suffix: comp.nus.edu.sg

Manufacturer: Intel Corporation

Description: Intel(R) Ethernet Connection (5) I219-LM

Driver version: 12.15.22.6

Physical address (MAC): 8C-EC-4B-50-F3-59

- Allocation administered by IEEE
 - First 3 bytes identifies the vendor
 - http://www.coffer.com/mac_find

MAC Address vs. IP Address

MAC Address	IP Address
Permanent	Dynamic
Hardware Assigned	Network Assigned
Node-to-node	Host-to-host
Flat	Hierarchical
Analogy: NRIC number	Analogy: Postal address

- Each IP node (e.g., host, router) has an ARP table
 - Stores mapping of IP address to MAC address of other nodes in the same subnet
 - Format: <IP address> <MAC address> <TTL>

- Sending frame in the same subnet (e.g., A to B)
 - Assume A knows B's MAC address from its ARP table
 - Construct frame with B's MAC address as destination address
 - Only B will process the frame

• Others will ignore

ARP Table of A

IP address	MAC address	TTL
IP_{B}	MAC_B	60
IP _C	MAC_{C}	60
IP _D	MAC_D	60

Sending frame in the same subnet (e.g., A to B)

What if A does not know B's MAC address?

Broadcast ARP query packet with B's IP address

Broadcast Address: FF:FF:FF:FF:FF

B replies with MAC address

• A caches it in ARP table

ARP Table of A

IP address	MAC address	TTL
IP _C	MAC_{C}	60
IP _D	MAC_D	60

MAC

MAC_A

 IP_B

- Sending frame to different subnet (e.g., A to X)
 - Attempt 1:
 - Problem?
 - Nobody has MAC_X in the subnet!

- Sending frame to different subnet (e.g., A to X)
 - Attempt 2:
 - A deeper look into the router
 - Send to router! Router will forward to X!

Chapter 5

- 5.1 Introduction to the Link Layer
- 5.2 Error detecting and correction
- 5.3 Multiple access protocols
 - 5.3.1 Channel Partitioning Protocols
 - 5.3.2 Random Access Protocols
 - 5.3.3 Taking-Turns Protocols
- 5.4 Switched Local Area Networks
 - 5.4.1 Link layer addressing and ARP
 - 5.4.2 Ethernet
 - 5.4.3 Link layer switches

Discussed Last week

Kurose Textbook, Chapter 5 (Some slides are taken from the book)

Local Area Network (LAN)

• LAN is a computer network that interconnects computers within a geographical area (e.g., office building or campus)

- LAN technologies:
 - IBM Token Ring: IEEE 802.5 standard
 - Ethernet: IEEE 802.3 standard
 - Wi-Fi: IEEE 802.11 standard
 - Others

- "Dominant" wired LAN technology:
 - Developed in mid 1970s
 - Standardized by Xerox, DEC, and Intel in 1978
 - Simpler and cheaper than token ring and ATM

Ethernet connection (Source: Wikipedia)

Metcalfe's Ethernet sketch

802.3 Ethernet Standards

- Different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps, 100 Gbps
- Different physical layer media: Cable, Fiber optics
- MAC protocol and frame format <u>remains unchanged</u>

Physical Topology

- Bus topology: popular in mid 90s
 - All nodes can collide with each other

Ethernet with bus topology

- Star topology: prevails today
 - Switch in center
 - Nodes do not collide with each other

Ethernet with star topology

Physical Topology

- Bus topology: popular in mid 90s
 - All nodes can collide with each other
 - Example:
 - A sends a frame at time t
 - A's frame reached D at time t+d
 - D begins transmission at time t + d 1
 - Collision!

Data Delivery Service

- Connectionless: no handshaking between sending and receiving NICs.
- Unreliable: receiving NIC doesn't send ACK or NAK to sending NIC.
 - Data in dropped frames will be recovered only if initial sender uses higher layer RDT (e.g., TCP)
 - Otherwise, data is lost
- MAC: CSMA/CD with binary (exponential) backoff

Ethernet CSMA/CD Algorithm

Chapter 5

- 5.1 Introduction to the Link Layer
- 5.2 Error detecting and correction
- 5.3 Multiple access protocols
 - 5.3.1 Channel Partitioning Protocols
 - 5.3.2 Random Access Protocols
 - 5.3.3 Taking-Turns Protocols
- 5.4 Switched Local Area Networks
 - 5.4.1 Link layer addressing and ARP
 - 5.4.2 Ethernet
 - 5.4.3 Link layer switches

Discussed Last week

Kurose Textbook, Chapter 5 (Some slides are taken from the book)

Ethernet Switch

Properties:

- Store and forward Ethernet frames
 - Examine incoming frame's MAC address
 - Selectively forward frame to one-or-more outgoing links
- Transparent to hosts
 - No IP address
- Star topology
 - Each host has dedicated link to switch
- Full duplex
- Buffered

a 50-port Ethernet switch (Source: Wikipedia)

A switch with 4 interfaces (1, 2, 3, 4)

Switch Forwarding Table

- Recall: switch does not "broadcast" like a hub
- Question: how does a switch know which interface to forward the frame to?

Switch Forwarding Table

- Format of entry:
 - <MAC address> <interface> <TTL>

- Self-learning:
 - Switch learns which hosts can be reached through which interface
 - 1. Broadcast
 - 2. Forwarding
 - 3. Filtering

MAC Address	Interface	TTL
FA:CE:BD:0C:11:FD	1	60
66:23:C6:1D:FE:32	2	60
15:00:2A:F1:CE:A1	3	60

Switch Forwarding Table

Interconnecting Switches

• Switches can be connected in hierarchy

Chapter 5

- 5.1 Introduction to the Link Layer
- 5.2 Error detecting and correction
- 5.3 Multiple access protocols
 - 5.3.1 Channel Partitioning Protocols
 - 5.3.2 Random Access Protocols
 - 5.3.3 Taking-Turns Protocols
- 5.4 Switched Local Area Networks
 - 5.4.1 Link layer addressing and ARP
 - 5.4.2 Ethernet
 - 5.4.3 Link layer switches

More on Wireless LAN

Kurose Textbook, Chapter 5 (Some slides are taken from the book)

Terminology

• BSS: Basic Service Set

AP: Access Point

SSID: Service Set Identifier

• RSSI: Received Signal Strength Indicator

- Implications of wireless
 - Limited Range
 - Broadcast
 - High Error Rate
 - Multipath Propagation

Recap

Use link-layer ACK to detect collision

Recap

- Wireless LAN uses CSMA/CA
 - Why not collision detection? Channel busy
 - RSSI_{rcv} < RSSI_{snd}
 - Hidden Node problem

Recap

- Wireless LAN uses RTS/CTS
 - Hidden Node problem
 - RTS before sending
 - On CTS, send
 - Wait for ACK
 - Other nodes wait until ACK

Summary

- ARP protocol to resolve IP ←→ MAC mapping
- Ethernet (IEEE 802.3)
 - CSMA/CD protocol with binary (exponential) back-off
 - Self-learning Ethernet switch table
 - Broadcasting
 - Forwarding
 - Filtering
- Wireless LAN (IEEE 802.11)
 - CSMA/CA with RTS/CTS ACK/NAK
 - Hidden node problem