

SIGNAL INTERPRETATION

Lecture 2: Estimation Theory

January 15, 2016

Heikki Huttunen

heikki.huttunen@tut.fi

Department of Signal Processing Tampere University of Technology

Classical Estimation and Detection Theory

- Before the machine learning part, we will take a look at classical estimation theory.
- Estimation theory has many connections to the foundations of modern machine learning.
- Outline of the next few hours:
 - Estimation theory: Fundamentals
 - Estimation theory: Maximum likelihood
 - Estimation theory: Examples
 - Detection theory: Fundamentals
 - · Detection theory: Error metrics
 - · Estimation theory: Examples

Introduction - estimation

- Our goal is to estimate the values of a group of parameters from data.
- Examples: radar, sonar, speech, image analysis, biomedicine, communications, control, seismology, etc.
- Parameter estimation: Given an N-point data set $\mathbf{x} = \{x[0], x[1], \dots, x[N-1]\}$ which depends on the unknown parameter $\theta \in \mathbb{R}$, we wish to design an estimator for θ

$$\hat{\theta} = g(x[0], x[1], \dots, x[N-1]).$$

 The question is how to determine a good model and its parameters.

Introductory Example – Straight line

- Suppose we have the illustrated time series and would like to approximate the relationship of the two coordinates.
- The relationship looks linear, so we could assume the following model:

$$y[n] = ax[n] + b + w[n],$$

with $a \in \mathbb{R}$ and $b \in \mathbb{R}$ unknown and $w[n] \sim \mathcal{N}(0, \sigma^2)$

• $\mathcal{N}(0, \sigma^2)$ is the normal distribution with mean 0 and variance σ^2 .

Introductory Example – Straight line

- Each pair of a and b represent one line.
- Which line of the three would best describe the data set? Or some other line?

Introductory Example - Straight line

• It can be shown that the best solution (in the *maximum likelihood* sense; to be defined later) is given by

$$\hat{a} = -\frac{6}{N(N+1)} \sum_{n=0}^{N-1} y(n) + \frac{12}{N(N^2-1)} \sum_{n=0}^{N-1} x(n)y(n)$$

$$\hat{b} = \frac{2(2N-1)}{N(N+1)} \sum_{n=0}^{N-1} y(n) - \frac{6}{N(N+1)} \sum_{n=0}^{N-1} x(n)y(n).$$

• Or, as we will later learn, in an easy matrix form:

$$\hat{\boldsymbol{\theta}} = \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Introductory Example – Straight line

• In this case, $\hat{a}=0.07401$ and $\hat{b}=0.49319$, which produces the line shown on the right.

Consider transmitting the sinusoid below.

 When the data is received, it is corrupted by noise and the received samples look like below.

Can we recover the parameters of the sinusoid?

• In this case, the problem is to find good values for A, f_0 and ϕ in the following model:

$$x[n] = A\cos(2\pi f_0 n + \phi) + w[n],$$

with $w[n] \sim \mathcal{N}(0, \sigma^2)$.

• We will learn that the maximum likelihood estimator; MLE for parameters A, f_0 and ϕ are given by

$$\hat{f}_{0} = \text{value of } f \text{ that maximizes } \left| \sum_{n=0}^{N-1} x(n) e^{-2\pi i \hat{f}_{0} n} \right|,$$

$$\hat{A} = \frac{2}{N} \left| \sum_{n=0}^{N-1} x(n) e^{-2\pi i \hat{f}_{0} n} \right|$$

$$\hat{\phi} = \arctan \frac{-\sum_{n=0}^{N-1} x(n) \sin(2\pi \hat{f}_{0} n)}{\sum_{n=0}^{N-1} x(n) \cos(2\pi \hat{f}_{0} n)}.$$

 It turns out that the sinusoidal parameter estimation is very successful:

- The blue curve is the original sinusoid, and the red curve is the one estimated from the green circles.
- The estimates are shown in the figure (true values in parentheses).

• However, the results are different for each *realization* of the noise w[n].

- Thus, we're not very interested in an individual case, but rather on the distributions of estimates
 - What are the expectations: $E[\hat{f}_0]$, $E[\hat{\phi}]$ and $E[\hat{A}]$?
 - What are their respective variances?
 - Could there be a better formula that would yield smaller variance?
 - If yes, how to discover the better estimators?

 Consider the estimation of the mean of the following measurement data:

• Now we're searching for the estimator \hat{A} in the model

$$x[n] = A + w[n],$$

with $w[n] \sim \mathcal{N}(0, \sigma^2)$ where σ^2 is also unknown.

A natural estimator of A is the sample mean:

$$\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n].$$

 Alternatively, one might propose to use only the first sample as such:

$$\check{A} = x[0].$$

How to justify that the first one is better?

- Method 1: estimate variances empirically.
- Histograms of the estimates over 100 data realizations are shown on the right.
- In other words, we synthesized 100 versions of the data with the same statistics.
- Each synthetic sample produces one estimate of the mean for both estimators.


```
mean estimates 1 = [1]
mean estimates 2 = [1]
for iteration in range(100):
   # Create a random sample of data from N(0,1)
   x = np.random.randn(numSamples)
    # Compute the estimate of the mean using
    # the sample mean
   aHat_1 = x.mean() # or np.mean(x)
    # Compute the "first sample estimator"
   aHat_2 = x[0]
    # Append the computed values to our lists:
   mean_estimates_1.append(aHat_1)
   mean_estimates_2.append(aHat_2)
# Plot the empirical distributions
plt.figure()
subfig_1 = plt.subplot(211)
subfig_1.hist(mean_estimates_1, normed = True)
subfig_2 = plt.subplot(212)
subfig_2.hist(mean_estimates_2, normed = True)
plt.show()
```

- Attached is the code for the experiment of previous slide.
- Requires the following imports:

```
import numpy as np
import matplotlib.pyplot as plt
```

- Method 2: estimate variances analytically.
- Namely, it is easy to compute variances in a closed form:

Estimator 1:
$$\operatorname{var}(\hat{A}) = \operatorname{var}\left(\frac{1}{N} \sum_{n=0}^{N-1} x[n]\right)$$

$$= \frac{1}{N^2} \sum_{n=0}^{N-1} \operatorname{var}(x[n])$$

$$= \frac{1}{N^2} N \sigma^2 = \frac{\sigma^2}{N}.$$
Estimator 2: $\operatorname{var}(\hat{A}) = \operatorname{var}(x[0]) = \sigma^2.$

Estimator 2: $var(\check{A}) = var(x[0]) = \sigma^2$.

- Compared to the "First sample estimator" $\check{A} = x[0]$, the estimator variance of \hat{A} is one N'th.
- The analytical approach is clearly the desired one whenever possible:
 - Faster, more elegant and less prone to random effects.
 - Often also provides proof that there exists no estimator that would be more efficient.
- Usually can be done for easy cases.
- More complicated scenarios can only be studied empirically.

Estimator Design

- There are a few well established approaches for estimator design:
 - Minimum Variance Unbiased Estimator (MVU):
 Analytically discover the estimator that minimizes the output variance among all unbiased estimators.
 - Maximum Likelihood Estimator (ML): Analytically discover the estimator that maximizes the likelihood of observing the measured data.
 - Others: Method of Moments (MoM) and Least Squares (LS).
- Our emphasis will be on Maximum Likelihood, as it appears in the machine learning part as well.
- Note, that different methods often (not always) result in the same estimator.
- For example, the MVU, ML, MoM and LS estimators for the mean parameter all end up at the same formula: $\hat{A} = \frac{1}{N} \sum x_n$.

Minimum Variance Unbiased Estimator

- Commonly the MVU estimator is considered optimal.
- However, finding the MVU estimator may be difficult. The MVUE may not even exist.
- We will not concentrate on this estimator design approach. Interested reader may consult, e.g., S. Kay: Fundamentals of Statistical Signal Processing: Volume 1 (1993).
- For an overview, read Wikipedia articles on Minimum-variance unbiased estimator and Lehmann-Scheffé theorem.

	Small Bias	Large Bias
Small Variance		
Large Variance		x x x x x x x x x x x x x x x x x x x

Maximum Likelihood Estimation

- Maximum likelihood (ML) is the most popular estimation approach due to its applicability in complicated estimation problems.
- Maximization of likelihood also appears often as the optimality criterion in machine learning.
- The method was proposed by Fisher in 1922, though he published the basic principle already in 1912 as a third year undergraduate.
- The basic principle is simple: find the parameter θ that is the most probable to have generated the data \mathbf{x} .
- The ML estimator may or may not be optimal in the minimum variance sense. It is not necessarily unbiased, either.

- Consider again the problem of estimating the mean level A of noisy data.
- Assume that the data originates from the following model:

$$x[n] = A + w[n],$$

where $w[n] \sim \mathcal{N}(0, \sigma^2)$: Constant plus Gaussian random noise with zero mean and variance σ^2 .

- For simplicity, consider the first sample estimator for estimating A.
- We assume normally distributed w[n], i.e., the following probability density function (PDF):

$$p(w[n]) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(w[n])^2\right]$$

• Since x[n] = A + w[n], we can substitute w[n] = x[n] - A above to describe the PDF of $x[n]^1$:

$$p(x[n];A) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x[n]-A)^2\right]$$

¹We denote p(x[n];A) to emphasize that p depends on A.

Thus, our first sample estimator has the PDF

$$p(x[0];A) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x[0]-A)^2\right]$$

- Now, suppose we have observed x[0], say x[0] = 3.
- Then some values of A are more likely than others and we can derive the complete PDF of A easily.

 Actually, the PDF of A has the same form as the PDF of x[0]:

pdf of
$$A = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(3-A)^2\right]$$

• This function is called *the likelihood function* of *A*, and its maximum the *maximum likelihood estimate*.

- In summary: If the PDF of the data is viewed as a function of the unknown parameter (with fixed data), it is called the likelihood function.
- Often the likelihood function has an exponential form.
 Then it's usual to take the natural logarithm to get rid of the exponential. Note that the maximum of the new log-likelihood function does not change.

 Consider the familiar example of estimating the mean of a signal:

$$X[n] = A + w[n], \qquad n = 0, 1, ..., N-1,$$

with $w[n] \sim \mathcal{N}(0, \sigma^2)$.

The noise samples w[n] are assumed independent, so the distribution of the whole batch of samples
 Y = (Y[0] | Y[N] = 1]) is obtained by multiplication:

$$\mathbf{x} = (x[0], \dots, x[N-1])$$
 is obtained by multiplication:

$$p(\mathbf{x};A) = \prod_{n=0}^{N-1} p(x[n];A) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n]-A)^2\right]$$

- When we have observed the data x, we can turn the problem around and consider what is the most likely parameter A that generated the data.
- Some authors emphasize this by turning the order around: $p(A; \mathbf{x})$ or give the function a different name such as $L(A; \mathbf{x})$ or $\ell(A; \mathbf{x})$.
- So, consider $p(\mathbf{x}; A)$ as a function of A and try to maximize it.

- The picture below shows the likelihood function and the log-likelihood function for one possible realization of data.
- The data consists of 50 points, with true A = 5.
- The likelihood function gives the probability of observing these particular points with different values of A.

- Instead of finding the maximum from the plot, we wish to have a closed form solution.
- Closed form is faster, more elegant, accurate and numerically more stable.
- Just for the sake of an example, below is the code for the stupid version.

```
# The samples are in array called x0

x = np.linspace(2, 8, 200)  
likelihood = []  

for A in x:  
    likelihood.append(gaussian(x0, A, 1).prod())  
    log_likelihood.append(gaussian_log(x0, A, 1).sum())

print ("Max likelihood is at %.2f" % (x[np.argmax(log_likelihood)]))
```

• Maximization of $p(\mathbf{x}; A)$ directly is nontrivial. Therefore, we take the logarithm, and maximize it instead:

$$p(\mathbf{x};A) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

$$\ln p(\mathbf{x};A) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

The maximum is found via differentiation:

$$\frac{\partial \ln p(\mathbf{x}; A)}{\partial A} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)$$

Setting this equal to zero gives

$$\frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A) = 0$$

$$\sum_{n=0}^{N-1} (x[n] - A) = 0$$

$$\sum_{n=0}^{N-1} x[n] - \sum_{n=0}^{N-1} A = 0$$

$$\sum_{n=0}^{N-1} x[n] - NA = 0$$

$$\sum_{n=0}^{N-1} x[n] = NA$$

$$A = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$

Conclusion

- What did we actually do?
 - We proved that the sample mean is the maximum likelihood estimator for the distribution mean.
- But I could have guessed this result from the beginning. What's the point?
 - We can do the same thing for cases where you can not guess.

Example: Sinusoidal Parameter Estimation

Consider the model

$$x[n] = A\cos(2\pi f_0 n + \phi) + w[n]$$

with $w[n] \sim \mathcal{N}(0, \sigma^2)$. It is possible to find the MLE for all three parameters: $\boldsymbol{\theta} = [A, f_0, \phi]^T$.

The PDF is given as

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp \left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (\underbrace{x[n] - A\cos(2\pi f_0 n + \phi)}_{w[n]})^2 \right]$$

Example: Sinusoidal Parameter Estimation

 Instead of proceeding directly through the log-likelihood function, we note that the above function is maximized when

$$J(A, f_0, \phi) = \sum_{n=0}^{N-1} (x[n] - A\cos(2\pi f_0 n + \phi))^2$$

is minimized.

- The minimum of this function can be found although it is a nontrivial task (about 10 slides).
- We skip the derivation, but for details, see Kay et al.
 "Statistical Signal Processing: Estimation Theory," 1993.

Sinusoidal Parameter Estimation

• The MLE of frequency f_0 is obtained by maximizing the periodogram over f_0 :

$$\hat{f}_0 = \arg\max_{f} \left| \sum_{n=0}^{N-1} x[n] \exp(-j2\pi f n) \right|$$

• Once \hat{f}_0 is available, proceed by calculating the other parameters:

$$\hat{A} = \frac{2}{N} \left| \sum_{n=0}^{N-1} x[n] \exp(-j2\pi \hat{f}_0 n) \right|$$

$$\hat{\phi} = \arctan \left(\sum_{n=0}^{N-1} x[n] \sin 2\pi \hat{f}_0 n - \sum_{n=0}^{N-1} x[n] \cos 2\pi \hat{f}_0 n \right)$$

Sinusoidal Parameter Estimation—Experiments

- Four example runs of the estimation algorithm are illustrated in the figures.
- The algorithm was also tested for 10000 realizations of a sinusoid with fixed θ and N = 160, σ² = 1.2.
- Note that the estimator is not unbiased.

Estimation Theory—Summary

- We have seen a brief overview of estimation theory with particular focus on Maximum Likelihood.
- If your problem is simple enough to be modeled by an equation, the estimation theory is the answer.
 - Estimating the frequency of a sinusoid is completely solved by classical theory.
 - Estimating the age of the person in picture can not possibly be modeled this simply and classical theory has no answer.
- Model based estimation is the best answer when a model exists.
- Machine learning can be understood as a data driven approach.