

Autho	r (You) These N.	Signature: W.N.	
I declar	e that this assignment is original and has not been sub	nitted for assessment elsewhere, and acknowledge	that the
assessor	of this assignment may, for the purpose of assessing	his assignment: (1) reproduce this assignment and μ	provide a copy
	er member of faculty; and/or (2) communicate a copy		(which may
then ret	ain a copy of this assignment on its database for the p	rpose of future plagiarism checking).	
	V . \$1.000		
Lab Pa	artner(s) Katheire		
		11 lm 10	
Date F	Performed 10/04 / 1094	Date Submitted 16/04 /001	14
Lab (e	uch as #1: UNC) 46 SHM		
Lab (s	uch as #1. Olve)	_	
TT 4	Phillip		
TA: _	1 000	_	
	GRADE (to be filled in by your	TA) See your TA for detailed feedback.	
	An 'x' next to a subcategory means yo	need to improve this aspect of your work.	
	2 3	1 1 2	
Dana	r Subtotals (points)		
1 upe	(Pomes)	() Discussion & Conclusion	me (6)
		Numerical comparison of results	
()	General (6)	Logical conclusions	
	Sig. figs.	Discussion of pos. errors	
	Units Clarity of Presentation	Suggestions to reduce errors	
	Format		
		() Paper Total (60 points)	
()	Abstract (4)	(30 points for CME or 1	
()	Quantity or principle	() Notebook (10 points)	
	How measurement was made	Format (proper style, following	na divactione)
	Numerical Results	Apparatus (brief description of	,
	Conclusion	including sketches)	g equipment,
		Data (including computer file	names and
()	Intro & Theory (9)	manually recorded data)	
	Basic principle	Experimental Technique (des	cribing your
	Main equations to be used	procedures; stating & justifyi	
	Apparatus	Analysis (results and errors)	
	What will be plotted Fitting parameters related		
	Titting parameters related	() Worksheet(s)/Fill-in-the	-Blank-
()	E B (45)	Report (30 points) if applicable	
()	Exp. Procedures (15)	report (e o pomis) y approvers	
	Description Stating and justifying uncertainties	() Adimeter onto late subset	
	Data Record	() Adjustments – late submi	
	Quality of Lab Work	improper procedures, etc. – or	t bonus points
		for exceptional work.	
()	Analysis & Error Analysis (20)		
, ,	Discussion	() Total Grade	
	Equations & Calculations	, 2000.	
	Presentation inc. Graphs, Tables	- · · · · · · · · · · · · · · · · · · ·	
	Results Reported & Reasonable	Graded by(TA	's initial)
	Underlined items addressed		

1 Abstract

The purpose of this lab is to determine if the current theory for harmonic motion within linear springs and oscillating torsion forces is consistent with experimental data.

n		Copper	
$(4.10\pm0.09) imes10^{10}$	Nm^2	$4.24 imes10^{10}$	
k_s	ω_2		ω_{2e}
$0.3068 \pm 0.0003 rac{kg}{s^2}$	5.285	$\pm~0.001~s^{-1}$	$5.282 \pm 0.004~s^{-1}$

Our estimated ω_2 value was accurate to less than 1 SD of the experimental value and our n value was accurate to around 2.5 SD from what we would expect from theory.

We believe our variance would be due to the human factor in the releasing of both weights, leading to inconsistencies across trials. Other reasons for variance would include air resistance of the masses, and the dampening force both within the spring and the rod.

Thus we fail to reject the current theory on simple harmonic motion within linear springs and oscillating restoring torsion forces

2 Theory

2.1 Variables

2.1.1 Constants

$L = 0.9850 \pm 0.0005~m$	Length of the rod
$d_p = 0.2685 \pm 0.0005~m$	Diameter of the plate
$d_r = 0.0045 \pm 0.0002~m$	Diameter of the rod
$m=4.7\pm0.1~kg$	Mass of the plate
$m_1 = 0.100 \pm 0.0001~kg$	Mass of first oscilating weight
$m_2 = 0.110 \pm 0.0001~kg$	Mass of second oscilating weight

2.1.2 Measurable Values

T Period of Oscillation m, θ_m Amplitude of Oscillation

2.2 Formulae

2.2.1 Finding the position vs. time relation for a spring

$$F = -k(\Delta x)$$
 Force of a spring (2.2.1a)

$$a = -\frac{k\Delta x}{m_1}$$
 Definition of acceleration (2.2.1b)

$$-k\Delta x=m_1\ddot{x}$$
 (2.2.1c)

$$-k\Delta x = m_1\ddot{x}$$
 (2.2.1c) $\begin{cases} x = x_m \sin(\omega t + \phi) + x_0 \ \omega = \sqrt{\frac{k_s}{m_1}} \end{cases}$ The solution is well known (2.2.1)

2.2.2 Finding the position vs. time relation for torqued bar

$$au = -k_t heta$$
 Force of restoring Torque (2.2.2a)

$$au = I \alpha$$
 Definition of Torque (2.2.2b)

$$-k_t heta = I lpha$$
 (2.2.2c)

$$\omega = rac{2\pi}{T}$$
 (2.2.2d)

$$k_t = \frac{nA^2}{2\pi L}$$
 Definition of torsion constant (2.2.2e)

$$\left\{egin{aligned} heta &= heta_m \sin(\omega t + \phi) \ \omega &= \sqrt{rac{k_t}{I}} \end{aligned}
ight. \qquad ext{The solution is well known}$$

2.2.3 Finding the torsion modulus

$$I=rac{1}{2}m\left(rac{d_p}{2}
ight)^2$$
 Inertia of a disk $(2.2.3a)$ $rac{2\pi}{T}=\sqrt{rac{k_t}{I}}$ $(2.2.2d,\,2.2.2)$ $(2.2.3b)$ $I4\pi^2=T^2k_t$ $(2.2.3c)$

$$\frac{2\pi}{T} = \sqrt{\frac{k_t}{I}}$$
 (2.2.2d, 2.2.2) (2.2.3b)

$$I4\pi^2 = T^2 k_t \tag{2.2.3c}$$

$$\frac{md_p^2\pi^2}{2T^2} = k_t (2.2.3a)$$

$$\frac{md_p^2\pi^2}{2T^2} = \frac{n\left(\frac{d_r}{2}\right)^4\pi^2}{2\pi L}$$
 (2.2.2e)

$$n = \frac{16md_p^2\pi L}{d_\pi^4 T^2} \tag{2.2.3}$$

2.2.4 Error in torsion modulus

$$\delta_n = \sqrt{\delta_{nm}^2 + \delta_{nd_p}^2 + \delta_{nL}^2 + \delta_{nd_r}^2 + \delta_{dT}^2}$$
 (2.2.4a)

$$\delta_n = \sqrt{\delta_{nm}^2 + \delta_{nd_p}^2 + \delta_{nL}^2 + \delta_{nd_r}^2 + \delta_{dT}^2}$$
 (2.2.4a)
$$\delta_n = n\sqrt{\left(\frac{\delta_m}{m}\right)^2 + \left(\frac{2\delta_{d_p}}{d_p}\right)^2 + \left(\frac{\delta_L}{L}\right)^2 + \left(\frac{4\delta_{d_r}}{d_r}\right)^2 + \left(\frac{2\delta_T}{T}\right)^2}$$
 (2.2.4)

2.2.5 Finding the spring constant

$$k_s = \omega^2 m_1 \qquad (3.2.2) \tag{2.2.5}$$

2.2.6 Error in spring constant

$$\delta_{k_s} = \sqrt{\delta_{k_s\omega}^2 + \delta_{k_sm_1}^2} \hspace{0.5cm} ext{Combination of errors} \hspace{0.5cm} (2.2.6 ext{a})$$

$$\delta_{k_s} = \sqrt{\delta_{k_s\omega}^2 + \delta_{k_sm_1}^2}$$
 Combination of errors (2.2.6a)
 $\delta_{k_s} = k_s \sqrt{\left(rac{2\delta_{\omega}}{\omega}
ight)^2 + \left(rac{\delta_{m_1}}{m_1}
ight)^2}$ (2.2.6)

2.2.7 Prediction of ω_{2e} for m_2

$$\omega_{2e} = \sqrt{\frac{k_s}{m_2}}$$
 (2.2.1)

2.2.8 Error in ω_{2e}

$$\delta_{\omega_{2e}} = \sqrt{\delta_{\omega_{2e}k_s}^2 + \delta_{\omega_{2e}m_2}^2}$$
 Combination of errors (2.2.8a)

$$\delta_{\omega_{2e}} = \sqrt{\delta_{\omega_{2e}k_s}^2 + \delta_{\omega_{2e}m_2}^2} \qquad ext{Combination of errors} \qquad (2.2.8a)$$
 $\delta_{\omega_{2e}} = \omega_{2e}\sqrt{\left(rac{\delta_{k_s}}{2k_s}
ight)^2 + \left(rac{\delta_{m_2}}{2m_2}
ight)^2} \qquad (2.2.8)$

3 Procedure

3.1 Spring Constant

- 1. Set up a linear spring secured and hung by one end hanging downwards
- 2. Place a distance sensor directly below the spring
- 3. Hang a mass with m_1 from the bottom of the spring such that the distance to the sensor is measurable
- 4. Ensure that if the mass bobs on the spring, the sensor is able to capture its distance accurately
- Lift the mass enough that the mass can bob consistently for over 25 cycles
- Record the distance over time as the mass bobs
- 7. Regress the data match that of Eq. (2.2.1)
- 8. Calculate k_s from the regressed value of ω with Eq. (2.2.5) and its error with Eq. (2.2.6)
- 9. Now experiment with a higher drop distance
- 10. Now swap out the mass with one that is heavier (mass m_2) and repeat the experiment
- 11. Estimate ω_2 for m_2 and compare it with the experimental data with Eq. (2.2.7) and its error with Eq. (2.2.8)

3.2 Torsion Modulus

- 1. Secure a thin metal rod hanging from end
- 2. Record its length as L and its diameter as d_r
- 3. Attach a cylindrical mass at the bottom of the rod, with their centers lining up
- 4. Record its mass and diameter as m and d_n
- 5. Set up a photogate and negligible mass light blocking prong vertically on the plate such that it would block the photogate when the system is at rest

- 6. Twist the plate vertically such that the rod stays in place
- 7. Record the times between each cycle of movement with the photogate
- 8. Calculate the Torsion modulus of the rod with Eq. (2.2.3) and its Error with Eq. (2.2.4)

4 Analysis

4.1 Measured and Calculated values Values

4.1.1 Torsion

4.1.1.1 Raw Data

Trial	T (s)
1	1.0013676
2	0.9993538
3	0.9991016
4	0.9974852
5	0.9991
6	1.0002148
7	1.0027448
8	1.0042864
9	1.0019008
10	1.0000696
11	0.9964816
12	0.9945008
13	0.9956008
14	0.9975616
15	1.0007008
16	1.00344
17	1.0012672
18	0.9980848
19	0.9942208
20	0.9912816
21	0.9916992
22	0.9951184
23	0.9993328
24	1.0030688

Trial	T (s)
25	1.002736
26	0.9977488
27	0.9926528
28	0.9892992
29	0.9879008
μ	0.998 ± 0.003

Distribution of Period of oscilation of torsion Pendulum - Katherine and Trevor

4.1.1.2 Calculated Data

n
$(4.10 \pm 0.09) imes 10^{10} \ Nm^2$

4.1.2 Spring

4.1.2.1 Raw Data after fitting

Trial	x_m (m)	ω (s^-1)	ϕ	x_0 (m)	RMSE (r Cor
1	0.1133 ± 0.0004	5.536 ± 0.001	5.277 ± 0.006	0.4321 ± 0.0003	0.003622	0.9990

Trial	x_m (m)	ω (s^-1)	ϕ	x_0 (m)	RMSE (r Cor
2	0.0977 ± 0.0002	5.541 ± 0.0008	5.623 ± 0.004	0.4316 ± 0.0002	0.002326	0.9994
31	0.1118 ± 0.0002	5.539 ± 0.0006	5.291 ± 0.003	0.4301 ± 0.0001	0.001916	0.9997
4	0.1354 ± 0.0003	5.538 ± 0.0006	4.778 ± 0.004	0.4303 ± 0.0002	0.002528	0.9997
5	0.1580 ± 0.0003	5.538 ± 0.0007	4.124 ± 0.004	0.4303 ± 0.0002	0.003212	0.9996
10cm	0.2240 ± 0.0006	5.536 ± 0.0009	3.156 ± 0.005	0.4303 ± 0.0004	0.005793	0.9994
m_2	0.2144 ± 0.0008	5.285 ± 0.001	2.431 ± 0.008	0.4032 ± 0.0006	0.008438	0.9985
μ		5.539 ± 0.0006				
SE		0.0009				
σ		0.0019				

¹Best sample

Manual Fit Curve

Estimated values

x_{max}	x_m	T	ϕ
0.557	0.1225	1.3625	0.1599375

Auto Fit curve

4.1.2.2 Calculated Data

k_s	ω_2	ω_{2e}
$0.3068 \pm 0.0003 rac{kg}{s^2}$	$5.285 \pm 0.001~s^{-1}$	$5.282 \pm 0.004~s^{-1}$

4.2 Process

4.2.1 Torsion

Once we took an average value for one period of oscillation, we used Eq. (2.2.3, 2.2.4) to calculate the torsion modulus.

Using a table of commonly accepted torsion moduli,

Material	Torsion Modulus (Nm^2)
Lead	$0.54 imes10^{10}$
Magnesium	$1.67 imes10^{10}$
Aluminium	$2.37 imes10^{10}$
Brass	$3.53 imes10^{10}$
Copper	4.24×10^{10}

Material	Torsion Modulus (Nm^2)
Iron	$7.0 imes10^{10}$
Nickel	$7.0-7.6\times 10^{10}$
Steel	$7.8 imes10^{10}$
Molybdenum	14.7×10^{10}
Tungsten	$14.8 imes10^{10}$

We found that our n would strongly match Copper's within 2 SD, which is the correct material

n	Copper
$(4.10\pm0.09)\times10^{10}~Nm^2$	4.24×10^{10}

4.2.2 Spring

Once we fit the data either automatically or manually to Eq. (2.2.1), we calculated our final values using Eq. (2.2.5, 2.2.6)

k_s	
0.3068 ± 0.0003	$\frac{kg}{s^2}$

We recognize that our estimated value for ω_2 was within 1 SD of the actual value measured using Eq. (2.2.7, 2.2.8)

ω_2	ω_{2e}
$5.285 \pm 0.001~s^{-1}$	$5.282 \pm 0.004~s^{-1}$

5 Conclusion

We concluded that our experimental data is consistent with the current theory for the torsion restoring force and the linear spring restoring force. Our estimated parameters based on the theory was consistent with experimental data in both variance in spring weight and amplitude. For the torsion force, we found that our experimental value of the torsion modulus was consistent with that of the commonly accepted value for Copper, which was accurate.

n		Copper	
$(4.10 \pm 0.09) \times 10^{10}$	Nm^2	4.24×10^{10}	
k_s	ω_2		ω_{2e}
$0.3068 \pm 0.0003 rac{kg}{s^2}$	5.285	$\pm~0.001~s^{-1}$	$5.282 \pm 0.004~s^{-1}$

Our estimated ω_2 value was accurate to less than 1 SD and our n value was accurate to around 2.5 SD.

We believe our variance would be due to the human factor in the releasing of both weights, leading to inconsistencies across trials. Other reasons for variance would include air resistance of the masses, and the dampening force both within the spring and the rod.

Thus we fail to reject the current theory on simple harmonic motion within linear springs and oscillating restoring torsion forces

6 Acknowledgements and Info

Lab #6 SHM

• 10/04/2024

Station 15+16 Rockefeller 404

PHYS 121-118

Lab Partner: Katherine Chen

Lab Manual: Lab 6 SHM PHYS 121