Innovative Data Strategies in Climate and Health:

Transforming Research into Action

Presenter: Craig Parker

Data Scientist

Wits RHI

September 5th 2023

The NASA climate spiral 1880-2022

Visualization of temperature anomalies in latitude zones (90N-64N to 64S-90S), calculated against the 1951-1980 baseline

The change in the distribution of land temperature anomalies over the years 1962 to 2022

'The Heat will kill you first'

Non-uniform heating of the planet

Parks, open land, and bodies of water can create cooler areas within a city. Temperatures are typically lower at suburban-rural borders than in downtown areas. Credit: EPA

Strong evidence of an Urban Heat Island in Johannesburg

(b) Nighttime UHI

Souverijns, N., E

Memela, W., & J

South Africa: A r

(c) T_a

Souverijns, N., De Ridder, K., Veldeman, N., Lefebre, F., Kusambiza-Kiingi, F., Memela, W., & Jones, N. K. (2022). Urban heat in Johannesburg and Ekurhuleni, South Africa: A meter-scale assessment and vulnerability analysis. *Urban Climate*, *46*, 101331. https://doi.org/10.1016/j.uclim.2022.101331

Heat impacts on health: example of South Africa

EISEVIED

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

The association between ambient temperature and mortality in South Africa: A time-series analysis

Noah Scovronick^{a,*}, Francesco Sera^b, Fiorella Acquaotta^c, Diego Garzena^c, Simona Fratianni^c, Caradee Y. Wright^d, Antonio Gasparrini^b

Gates et al. Environmental Health (2019) 18:10 https://doi.org/10.1186/s12940-019-0549-4

Environmental Health

RESEARCH

Open Acce

Short-term association between ambient temperature and homicide in South Africa: a case-crossover study

Abigail Gates^{1*}, Mitchel Klein¹, Fiorella Acquaotta², Rebecca M. Garland^{3,45} and Noah Scovronick¹

'Flattening the Heat Curve'

Innovative Data Utilization

Heat Impacts: Quantifying effects on pregnant women, neonates; utilizing existing African data, Swedish birth cohort; historical, global insights

- •Large Language Model: Develop codebook; streamline data harmonisation.
- •Heat Vulnerability Mapping: Multi-level framework; Principal component analysis.
- •Data Integration: Satellites, weather, pollution, health outcome data.
- •Geolocation Analysis: Measure exposure to heat.
- •Machine Learning: Early Warning System; risk-stratified warnings.
- •Risk Communication: Smartphone applications.
- •Data Analytics: Optimize climate & health projects; prototype Early Warning Systems.

Approach: Natural solutions; greening, solar-powered cooling.

- •Modelling: Thermal, Carbon Emissions, Cost-Effectiveness.
- •Heat Stress Warnings: Smartphone App; time-series, machine learning.
- •Monitoring: Indoor Climate, Wellbeing.
- •Predictive Modelling: Utilizing Existing Health Records

- •Comprehensive Approach: Heat adaptation in Southern Africa.
- •Innovation: Co-Production; behavioral changes, environment modifications, policy shifts.
- •Multi-Level Intervention: Individual, household, community, facility, policy levels.
- •Action-Research: Continuous Improvement.
- Capacity Building: Networking.
 Impact Assessment: Measurable;
 Feasibility.
- •Timely Response: Urban South Africa, rural Zimbabwe; heatrelated health risks.

-

Innovative Data Utilization

Heat Impacts: Quantifying effects on pregnant women, neonates; utilizing existing African data, Swedish birth cohort; historical, global insights

- •Large Language Model: Develop codebook; streamline data harmonisation.
- •Heat Vulnerability Mapping: Multi-level framework; Principal component analysis.
- •Data Integration: Satellites, weather, pollution, health outcome data.
- •Geolocation Analysis: Measure exposure to heat.
- •Machine Learning: Early Warning System; risk-stratified warnings.
- •Risk Communication: Smartphone applications.
- •Data Analytics: Optimize climate & health projects; prototype Early Warning Systems.

Approach: Natural solutions; greening, solar-powered cooling.

- •Modelling: Thermal, Carbon Emissions, Cost-Effectiveness.
- •Heat Stress Warnings: Smartphone App; time-series, machine learning.
- •Monitoring: Indoor Climate, Wellbeing.
- •Predictive Modelling: Utilizing Existing Health Records

- •Comprehensive Approach: Heat adaptation in Southern Africa.
- •Innovation: Co-Production; behavioral changes, environment modifications, policy shifts.
- •Multi-Level Intervention: Individual, household, community, facility, policy levels.
- •Action-Research: Continuous Improvement.
- Capacity Building: Networking.
 Impact Assessment: Measurable;
 Feasibility.
- •Timely Response: Urban South Africa, rural Zimbabwe; heatrelated health risks.

-

Applying LLMs to developing a codebook

Map intra-urban heat vulnerability and exposure

Minxuan Zheng 1,20, Jiahua Zhang 1,2,*0, Lamei Shi 1,2, Da Zhang 1,2, Til Prasad Pangali Sharma 1,200 and Fovez Ahmed Prodhan 1,2,300

- Key Laboratory of Digital Earth Sciences, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China; zhengminxuan19@mails.ucas.ac.cn (M.Z.); lameis@126.com (L.S.); einsteinzhang@foxmail.com (D.Z.); tilsharma@radi.ac.cn (T.P.P.S.); foyez@bsmrau.edu.bd (F.A.P.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Agricultural Extension and Rural Development, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
- Correspondence: zhangjh@radi.ac.cn

International Journal of Environmental Research

and Public Health

Received: 24 July 2020; Accepted: 3 September 2020; Published: 10 September 2020

MDPI

Research

A Section 508-conformant HTML version of this article is available at https://doi.org/10.1289/EHP4030.

Mapping Human Vulnerability to Extreme Heat: A Critical Assessment of Heat **Vulnerability Indices Created Using Principal Components Analysis**

Kathryn C. Conlon,1.2 Evan Mallen,3.4 Carina J. Gronlund,1.5 Veronica J. Berrocal,6 Larissa Larsen,3 and Marie S. O'Neill1

- ¹University of Michigan School of Public Health, Ann Arbor, Michigan, USA ²School of Medicine, University of California Davis, Davis, California, USA
- ³University of Michigan Taubman College of Architecture and Urban Planning, Ann Arbor, Michigan, USA
- Georgia Institute of Technology School of City and Regional Planning, Atlanta, Georgia, USA
- ⁵University of Michigan Institute for Social Research, Ann Arbor, Michigan, USA
- 6School of Information and Computer Science, University of California Irvine, Irvine, California, USA

Mapping Community Determinants of Heat Vulnerability

Colleen E. Reid, 1,* Marie S. O'Neill,2 Carina J. Gronlund,2 Shannon J. Brines,3 Daniel G. Brown,3 Ana V. Diez-Roux,2 and Joel Schwartz4

¹Environmental Health Sciences Division, School of Public Health, University of California at Berkeley, California, USA; ²School of Public Health, and ³School of Natural Resources and the Environment, University of Michigan, Ann Arbor, Michigan, USA; ⁴Harvard University School of Public Health, Boston, Massachusetts, USA

Methods used to create heat vulnerability maps in the literature

Method	Description
Heat Vulnerability Index (HVI)	Utilizes factors like poverty, nonwhite population, social isolation, elderly population, and poor health to determine vulnerability at county level.
Social Vulnerability Index (SoVI)	Constructed from county-level socioeconomic and demographic data to identify social vulnerability to environmental hazards.
Raster-Based Modeling	Integrates heat exposure and vulnerability data to reduce spatial scale issues, enabling fine to coarse spatial mapping.
GIS-Based Spatial Information System	Utilizes remote sensing data and socio-economic information through PCA to create a heat vulnerability index for specific urban areas.
Vehicle-Traverse Collection Method	Records temperature data during heat waves to determine heat exposure at the census block group level. Assesses socio-demographic factors.
Spatial Generalized Linear and Mixed Models	Addresses spatial autocorrelation and determines the importance of exposure, built environment, and socioeconomic vulnerability for heat mortality or distress.

Heat Vulnerability Indicators

Health Status

Exposure

Sensitivity

Adaptive Capacity

Vulnerability

Hot/heatwave days
Consecutive hot days
Min/Mean/Max temp
Impervious surfaces
Vegetation
Urban density
Land cover
Land use
Homes without AC

Population density

Older adults
Infants, young age
Sex
Diabetes
Cardiopulmonary
Renal Respiratory
Obesity

Air conditioning
Living alone
Inome/wealth
Rental/homeowner
Unhoused
Education
Ethnicity
Language
Cognitive impairment
Mobility/transportati
on

Our approach so far

Insert GEO-den images here (create process map)

Heat Health Hypotheses

Variable	Hypothesis
Creatinine Clearance	Heat exposure may adversely affect renal function, with an increase in creatinine indicating potential kidney dysfunction.
C-Reactive Protein Measurement, IL-6, D- dimers	Increased levels may be observed following heat exposure, indicating an inflammatory response to heat stress.
Sodium Measurement, Potassium Measurement	Abnormal electrolyte levels may reflect dehydration associated with heat exposure.
Glucose Level	Heat exposure may negatively impact blood sugar control in individuals with diabetes.
Systolic Blood Pressure, Diastolic Blood Pressure	Decreases in blood pressure may be associated with increasing temperatures.
Hypertension	Individuals with hypertension may experience exacerbated symptoms during high heat.
Alanine Aminotransferase Measurement	Elevated levels may indicate liver stress related to heat exposure.
Cholesterol Measurement	Changes may be observed in response to heat exposure, reflecting potential impacts on lipid metabolism.
CD4 Cell Count	CD4 cell count levels may reduce at higher temperatures.
Total AEs	Heat exposure may increase the risk of adverse events.

Expected Direction of Correlation with Heat Exposure

Statistical and Machine Learning Methods to explore and model he and health associations

Model performance comparison

Spatially/demographically stratified heathealth outcome forecast model Model fitting and parameter tuning Man temperature (°C) Data integration

Model Performance Comparison

Early warning system

Acknowledgments

