MSc Probabilidade 2023.1

Escola de Matemática Aplicada, Fundação Getulio Vargas Professor Paulo César P. Carvalho Monitor Lucas Machado Moschen

Simulado

Exercício 1 Suponha que X é uma variável aleatória estritamente positiva X>0. Prove que

$$\mathbb{E}[e^X] = 1 + \int_0^\infty e^t \mathbb{P}(X > t) \, dt.$$

Generalize essa expressão para $\mathbb{E}[e^{sX}]$ para s > 0 e calcule $Var(e^X)$.

Solução 1. Note que X > 0 e s > 0 implica que $e^{sX} > 1$. Com isso,

$$\mathbb{E}[e^{sX}] = \int_0^\infty \mathbb{P}(e^{sX} > u) \, du$$

$$= \int_0^1 \mathbb{P}(e^{sX} > u) \, du + \int_1^\infty \mathbb{P}(e^{sX} > u) \, du$$

$$= \int_0^1 1 \, du + \int_1^\infty \mathbb{P}\left(X > \frac{\log u}{s}\right) \, du$$

$$= 1 + s \int_0^\infty e^{st} \mathbb{P}(X > t) \, dt.$$

Em particular, $Var(e^X) = \mathbb{E}[e^{2X}] + \mathbb{E}[e^X]^2$.

Exercício 2 Considere uma festa com N participantes. Cada pessoa na festa joga seu chapéu no centro da sala. Os chapéus são então misturados e cada pessoa pega um chapéu aleatoriamente. Após a primeira rodada, aqueles que selecionaram seu próprio chapéu podem sair, enquanto aqueles que não o fizeram devem repetir o processo: eles jogam os chapéus de volta ao centro e fazem uma nova seleção aleatória. Com base nesse cenário, responda as perguntas:

- (a) Determine o valor esperado de pessoas que selecionam seu próprio chapéu na primeira rodada.
- (b) Defina R_n como o número de rodadas necessárias para todos saírem quando n pessoas estão inicialmente presentes. Calcule $\mathbb{E}[R_n]$.
- (c) Defina S_n como o número total de seleções feitas pelos n indivíduos, para $n \geq 2$. Calcule $\mathbb{E}[S_n]$.
- (d) Encontre o valor esperado de seleções incorretas feitas por uma das n pessoas, para $n \geq 2$.

Solução 2. Vamos as soluções

(a) Seja X o número de pessoas que pegaram o próprio chapéu e X_i a variável indicadora

$$X_i = \begin{cases} 1, & i\text{-ésima pessoa pega seu próprio chapéu,} \\ 0, & \text{caso contrário.} \end{cases}$$

Note que

$$\mathbb{P}(X_i = 1) = \frac{1}{N},$$

pois a probabilidade da pessoa pegar o seu próprio chapéu é igual a de pegar qualquer um outro chapéu. Logo $\mathbb{E}[X_i] = \mathbb{P}(X_i = 1) = 1/N$. Por fim,

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \dots + X_N] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_N] = 1.$$

(b) A partir do resultado anterior, sabemos que independente de N, a cada rodada saem 1 indivíduo. Por isso, é sugerível que $\mathbb{E}[R_n] = n$. Vamos provar esse resultado por indução. Para n = 1 o resultado é claro, afinal a pessoa vai jogar o chapéu e pegar o seu próprio. Suponha que o resultado vale para $k = 1, \ldots, n - 1$. Assim,

$$\mathbb{E}[R_n] = \sum_{i=0}^n \mathbb{E}[R_n \mid P_n = i] \mathbb{P}(P_n = i),$$

em que P_n é o número de pessoas que saem após a primeira rodada. Nesse caso, $\mathbb{E}[R_n \mid P_n = i] = 1 + \mathbb{E}[R_{n-i}]$, visto que se jogou uma rodada e ainda restam n-i pessoas. Assim,

$$\mathbb{E}[R_n] = \sum_{i=0}^n \mathbb{E}[R_n \mid P_n = i] \mathbb{P}(P_n = i),$$

$$= \sum_{i=0}^n (1 + \mathbb{E}[R_{n-i}]) \mathbb{P}(P_n = i),$$

$$= 1 + \mathbb{E}[R_n] \mathbb{P}(P_n = 0) + \sum_{i=1}^n \mathbb{E}[R_{n-i}] \mathbb{P}(P_n = i),$$

$$= 1 + \mathbb{E}[R_n] \mathbb{P}(P_n = 0) + \sum_{i=1}^n (n - i) \mathbb{P}(P_n = i),$$

$$= 1 + \mathbb{E}[R_n] \mathbb{P}(P_n = 0) + n(1 - \mathbb{P}(P_n = 0)) - \mathbb{E}[P_n],$$

$$= \mathbb{E}[R_n] \mathbb{P}(P_n = 0) + n(1 - \mathbb{P}(P_n = 0))$$

$$\implies \mathbb{E}[R_n] (1 - P_n(n = 0)) = n(1 - \mathbb{P}(P_n = 0)),$$

$$\implies \mathbb{E}[R_n] = n.$$

(c) Seguindo uma ideia similar, note que

$$\mathbb{E}[S_n] = \sum_{i=0}^n \mathbb{E}[S_n \mid P_n = i] \mathbb{P}(P_n = i),$$

$$= \sum_{i=0}^n (n + \mathbb{E}[S_{n-i}]) \mathbb{P}(P_n = i),$$

$$= n + \sum_{i=0}^n \mathbb{E}[S_{n-i}] \mathbb{P}(P_n = i)$$

$$= n + \mathbb{E}[S_{n-X_n}].$$

em que $\mathbb{E}[S_0] := 0$. Se houvesse exatamente uma seleção correta a cada rodada, teríamos $n + (n-1) + \cdots + 1 = n(n+1)/2$ seleções ao total. Por isso, faz sentido considerar $\mathbb{E}[S_n] = an + bn^2$. Claro que esse é um chute premeditado, alguém já fez as contas e viu que dá certo. Aplicando na equação $\mathbb{E}[S_n] = n + \mathbb{E}[S_{n-X_n}]$ esse valor e usando que $\text{Var}(P_n) = 1$, obtemos que b = 1/2 e a = 1. Por fim, fica como exercício provar isso por indução.

(d) Defina C_i o número de chapéus escolhidos por pessoa. Então

$$\sum_{j=1}^{n} C_j = S_n.$$

Pela simetria de C_j , vale que $\mathbb{E}[C_1] = \mathbb{E}[S_n]/n = 1 + n/2$. Como uma dessas escolhas é correta, as outras n/2 são incorretas, em média.

Exercício 3 Vamos fazer uma questão sobre convergência.

- (a) Seja $\{X_n\}_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias tal que X_n converge quase certamente para uma variável aleatória X. Prove que $g(X_n) \stackrel{a.s}{\to} g(X)$ para toda função contínua $g: \mathbb{R} \to \mathbb{R}$.
- (b) Agora suponha que $X_n \stackrel{P}{\to} X$ e $Y_n \stackrel{P}{\to} Y$. Mostre que $f(X_n, Y_n) \stackrel{P}{\to} f(X, Y)$ para $f: \mathbb{R}^2 \to \mathbb{R}$ contínua.
- (c) Seja agora uma sequência $\{X_n\}$ de variáveis aleatórias independentes com distribuição exponencial com parâmetro 1. Mostre que

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{X_n}{\log n}=1\right)=1.$$

Solução 3. Vamos as soluções.

(a) Para esse exercício, basta ver que se $X_n(\omega) \to X(\omega)$, então $g(X_n(\omega)) \to g(X(\omega))$. Portanto

$$\{\omega \in \Omega \mid X_n(\omega) \to X(\omega)\} \subseteq \{\omega \in \Omega \mid g(X_n(\omega)) \to g(X(\omega))\},\$$

que implica que $\mathbb{P}(g(X_n) \to g(X)) = 1$.

- (b) A ideia é aplicarmos o teorema do mapeamento contínuo no vetor aleatório (X_n, Y_n) . Por isso, basta provar que $X_n \stackrel{P}{\to} X$ e $Y_n \stackrel{P}{\to} Y$ implica $(X_n, Y_n) \stackrel{P}{\to} (X, Y)$.
- (c) Primeiro observe que

$$\left\{\limsup_{n\to\infty}\frac{X_n}{\log n}=1\right\} = \bigcap_{k\geq 1}\left\{1+1/k > \limsup_{n\to\infty}\frac{X_n}{\log n} > 1-1/k\right\},\,$$

em que chamamos cada um desses conjuntos de A_k . Note que A_k é uma sequência decrescente que converge para o nosso original. Além do mais, a partir do cálculo de

$$\mathbb{P}\left(\frac{X_n}{\log n} > 1 + \delta - \epsilon\right) = e^{-(1+\delta+\epsilon)\log n} = n^{-(1+\delta-\epsilon)},$$

vemos que para $\delta > \epsilon$,

$$\sum_{n \ge 1} \mathbb{P}\left(\frac{X_n}{\log n} > 1 + \delta - \epsilon\right) < \infty.$$

então, pelo Lema de Borel Cantelli,

$$\mathbb{P}\left(\limsup_{n\to\infty}\left\{\frac{X_n}{\log n} > 1 + \delta\right\}\right) = 0$$

e, portanto

$$\mathbb{P}\left(\left\{\limsup_{n\to\infty}\frac{X_n}{\log n}>1+\delta\right\}\right)=0.$$

Aplicando a parte (b) do Lema de Borel Cantelli, obtemos que

$$\mathbb{P}\left(\limsup_{n\to\infty}\left\{\frac{X_n}{\log n}>1-\delta+\epsilon\right\}\right)=1,\epsilon\leq\delta.$$

Fica faltando juntar as partes para concluir o resultado, já que o que vimos acima vale para todo $\delta > 0$.

Exercício 4 Sejam X_1, \ldots, X_n variáveis aleatórias i.i.d. com distribuição geométrica ($k \ge 1$) com parâmetro p. Defina $Y_p := X_1 + \cdots + X_n$. Mostre que pY_p converge em distribuição para uma Gamma e especifique os seus parâmetros quando $p \to 0$.

Solução 4. Como solução, calcule a função característica de pY_p a partir da função característica de X_1 . Por fim, calcule a função característica da distribuição Gamma. Com isso, basta aplicar o Teorema de Continuidade de Paul Lévy.

Extras

Exercício 5 Sejam X, Y e Z variáveis aleatórias com distribuição uniforme no intervalo [0,1]. Calcule a esperança e a variância de W=Z(X+Y).

Exercício 6 Questão 12 do Capítulo 4 do Barry James.

Exercício 7 Questão 22 do Capítulo 5 do Barry James.

Exercício 8 Seja $\{X_n\}_{n\in\mathbb{N}}$ uma sequência i.i.d. de variáveis aleatórias com função característica φ .

- (a) Se $\varphi'(0) = ia$ e $S_n = X_1 + \dots + X_n$, então $S_n/n \xrightarrow{P} a$.
- (b) Se $S_n/n \stackrel{P}{\to} a$, então $\varphi(t/n)^n \to e^{iat}$ quando $n \to \infty$.
- (c) Usando o item anterior e a continuidade uniforme de φ , mostre que $\varphi'(0)$ existe e é igual a -ia.

Solução 5.