Branch: CSE & IT

Database Management System

Query Language

DPP 03

[MCQ]

1. Consider the following relational algebra query on relations A (p, q, r) and B (q, r):

$$\pi_{p}(A) - \pi_{p}((\pi_{p}(A) \times \pi_{q,r}(B) - \pi_{p,q,r}(A))$$

The above query is equivalent to?

- (a) $A \cap B$
- (b) $A \cup B$
- (c) A B
- (d) $A \div B$

[MCQ]

2. Consider the following SQL query.

SELECT DISITNCT P₁, P₂, P₃.... P_n

FROM R_1 , R_2 , R_3 R_m

WHERE Q

Which of the following relational algebra query is equivalent to above SQL query?

- (a) $\pi_{P1, P2, P3...Pn}(\sigma_Q(R_1 \bowtie R_2 \bowtie R_3 \bowtie\bowtie R_m))$
- (b) $\pi_{P1, P2, P3...Pn}((R_1 \times R_2 \times R_3 \times ... \times R_m)$
- (c) $\sigma_{P1, P2, P3...Pn}(\pi_Q (R_1 \bowtie R_2 \bowtie R_3 \bowtie\bowtie R_m))$
- (d) $\pi_{P1, P2, P3...Pn}(\sigma_Q(R_1 \times R_2 \times R_3 \times \times R_m))$

[MCQ]

- **3.** Consider the following equivalencies between expressions of relational algebra, each involving relations A (P, Q) and B (R, S). Assume that there is no foreign key, A attribute to table can be NULL, all attributes are of integer types which of the following equivalencies is/are TRUE?
 - (a) $\pi_{P,Q}(A \times B) = A$
 - (b) $A \rho_{T(P,Q)}(B) = \rho_{T(P,Q)}(B (\rho_{T(R,S)}(A)))$
 - (c) $\pi_{P, Q, S}(A \bowtie_{Q=R} B) = A \bowtie (\rho_{T(Q, S)}(B))$
 - (d) None of the above

[MCQ]

4. Let A = (P, Q, R) and a₁ and a₂ both be relations on schema A. Give on expression in the domain relation calculus List- I, match the List-I expression to its equivalent relational algebra query in List-II.

List-I	List-II
$1.a_1 \cup a_2$	(a) $\{ \langle p, q, r \rangle \langle p, q, r \rangle \in a_1 v \langle p, q, r \rangle \in a_2 v \langle p, q, r \rangle \in a_1 v \langle p, q, r \rangle $
	a_2 }
$2.a_1 \cap a_2$	(b) $\{ \langle p, q, r \rangle \langle p, q, r \rangle \in a_1 \land \langle p, q, r \rangle \in a_1 \land a_1 \land a_2 \land a_2 \land a_3 \land a_4 $
	a_2 }
$3.a_1 - a_2$	(c) $\{ \langle p, q, r \rangle \langle p, q, r, \rangle \in a_1 \land \langle p, q, r \rangle$
	∉ a ₂ }

Batch: Hinglish

- (a) 1-(a), 2-(b), 3-(c)
- (b) 1-(b), 2-(c), 3-(a)
- (c) 1-(a), 2-(c), 3-(b)
- (d) 1-(b), 2-(a), 3-(c)

[NAT]

5. Consider the table which contains the data shown below.

Sailors (SailID, SailName, Rating, Age)

Reserves (SailID, BoatID, Date)

Boats (BoatID, BoatName, Color)

Sailors

SailID	SailName	Rating	Age
1	Ram	5	35
2	Shaym	9	22
3	Ramesh	10	19
4	Suresh	3	NULL
5	Akhil	NULL	35

Reserves

SailID	BoatID	Date
1	4	2017-03-15
1	5	2017-04-15
3	2	2014-04-15
4	4	2018-01-01
5	1	2017-12-25

Boats

BoatID	BoatName	Color
1	Lake	Red
2	Fish	Yellow
3	Clipper	Green
4	Yatch	Green
5	Fish	Yellow
6	Clipper	red

and the following relational algebra query.

 π_{BoatID} ($\sigma_{Age = 35 \land rating \ge 5}$ (sailors) \bowtie Reserves) $\cap \pi_{BoatID}$ ($\sigma_{Rating < 5}$ (Sailors) \bowtie Reserves)

The number of rows returned by the above query is_____.

[MCQ]

6. Consider the relation schemas w(P, Q, R), x(S, P, T) y(P, Q, R, S, T) and z(R, S, T). A query that uses additional operators of relational algebra:

$$((w\times x)\cap y)\div z.$$

What will be the result set if we write this query using only the basic operators of relational algebra?

- (a) Result set of the basic operator's query will be greater than the result set of given query.
- (b) Result set will only consist of attributes P and Q.
- (c) Some of the operations in query cannot be performed due to incompatible relation schemas
- (d) Query cannot be written by only using basic operations.

[MSQ]

7. Consider the following relational table A

		A		
P	Q	R	S	T
p_1	q_1	\mathbf{r}_1	s_1	t_1
p_2	q_2	\mathbf{r}_2	s_2	t_2

Also, consider the decomposition of the relation A into relations $A_1 = (P, Q, R)$ and $A_2 = (R, S, T)$ which of the following is/are correct based on the above relations.

- (a) $\pi_{A1}(A) \bowtie \pi_{A2}(A) = A$
- (b) $\pi_{A1}(A) \bowtie \pi_{A2}(A) \neq A$
- (c) PQ \rightarrow T is true in the table $\pi_{A1}(A) \bowtie \pi_{A2}(A)$
- (d) None of the above

[MSQ]

- **8.** Which of the following relational algebra expression is/are always holds correct?
 - (a) $(X \bowtie Y) \bowtie Z = (Z \bowtie X) \bowtie Y$
 - (b) $\sigma_A(\sigma_B(X)) = \sigma_B(\sigma_A(X))$
 - (c) $\pi_A(\pi_B(X)) = \pi_B(\pi_A(X))$
 - (d) None of the above

[MSQ]

9. Consider the following Database

Tool (TooID, Brand, Price)

Jobsite (Location, compensation, Task)

ToolBox(ToolBoxID, location)→location is a foreign key to jobsite.

Holds(ToolBoxID, ToolID) →ToolBoxID is a foreign key to ToolBox. ToolID is a foreign key to Tool.

And consider the following SQL query.

SELECT DISTINCT T. ToolID

FROM Tool T, Holds H, ToolBox B, Jobsite J WHERE T. ToolID = H.ToolId AND H.ToolBoxID =

B. ToolBoxID AND B. location = J. location AND J. Task = 'welding'

Which of the following would be an equivalent relational algebra query?

- (a) π_{ToolID} (Tool \bowtie Holds \bowtie ToolBox \bowtie $\sigma_{\text{task}} = \text{`welding'}(\text{jobsite})$)
- (b) $\pi_{\text{ToolID}}(\sigma_{\text{task} = \text{`welding'}}(\text{Tool} \bowtie (\text{Holds} \bowtie \text{Tool Box}) \bowtie \text{Iobsite})$
- (c) $\sigma_{task = 'welding'} (\pi_{ToolID} (Tool) \bowtie Holds \bowtie Tool Box \bowtie Jobsite)$
- (d) None of the above

[MSQ]

- **10.** Consider the following two relations A (P, Q) and B (R, S). Which of the following statement is/are TRUE?
 - (a) The cardinality of $(A \bowtie_{P = R} B)$ is always larger than or equal to the size of $(A \bowtie_{P = R \text{ and } 0 = S} B)$.
 - (b) The cardinality of $(A\bowtie_{P=R \text{ and } Q \neq S} B)$ is always larger than or equal to the size of $(A\bowtie_{P=R \text{ and } Q=S} B)$.
 - (c) These two-expression $(\sigma_{P=5}(A\bowtie_{Q=R}B))$ and $(\sigma_{P=5}(A)\bowtie_{Q=R}B)$ are always equivalent.
 - (d) These two expressions $(A \times B) (A \bowtie_{Q=R} B)$ and $(A\bowtie_{Q\neq R} B)$ are always equivalent.

Answer Key

- 1. (d)
- 2. (d)
- 3. (c)
- **4.** (a)
- **5.** (1)
- **6.** (c)

- 7. (a, c)
- 8. (a, b)
- 9. (a, b)
- 10. (a, c, d)

Hints & Solutions

1. (d)

In relational algebra $A \div B$ is defined as $\pi_P(A) - \pi_P$ $((\pi_P(A) \times \pi_{qr}(B) - \pi_{p,q,r}(A))$

A÷ B is used when we wish to express queries with "all".

2. (d)

SELECT DISTINCT P_1 , P_2 , P_3 P_n

FROM R_1 , R_2 , R_3 R_m

WHERE Q

So, from R_1 , R_2 , R_3 R_m

Here, there is no join condition, so it will perform cartesian product, then select σ_Q and perform projection.

 $\pi_{P1, P2, P3...Pn}(\sigma_Q(R_1 \times R_2 \times R_3 \times ... \times R_m))$

3. (c)

- (a) When $B = \phi$, then result of $A \times B = \phi$ then it is not equivalent to A. So, this equivalence is false.
- (b) It is clearly seen that it is false / not equivalence as difference is not commutative.
- (c) Both expressions are equivalent. In expression $A\bowtie_{\rho T(Q, S)}(B)$, first we are performing rename operation on attribute of relation B and then performing natural join on common column Q.

4. (a)

$$\begin{aligned} a_1 & \cup a_2 = \{ < p, q, r > | < p, q, r > \in a_1 \lor < p, q, r > \in a_2 \} \\ a_1 & \cap a_2 = \{ < p, q, r > | < p, q, r > \in a_1 \land < p, q, r > \in a_2 \} \\ a_1 & -a_2 = \{ < p, q, r > | < p, q, r > \in a_1 \land < p, q, r > \notin a_2 \} \end{aligned}$$

5. (1)

Let $\sigma_{\text{age} = 35 \land \text{rating} > 5}$ (sailors) as T

T:	1	Ram	5	35

is selected.

(5, Akhil, Null, 35) is not selected as rating contains NULL value and NULL cannot be compared to '5'.

NOTE: Null compared with value result will be undefined.

S: T ⋈ Reserves

Sail	Sail	Rating	Age	Boat ID	Date
ID	Name				
1	Ram	5	35	4	2017-03-15
2	Ram	5	35	5	2017-04-15

U: σ rating<5 (Sailors) ⋈ Reserves

	4	Suresh	3	NULL	4	2018-01-01
--	---	--------	---	------	---	------------

 $\pi_{\text{BoatID}}(S) \cap \pi_{\text{BoatID}}(u) = \{4, 5\} \cap \{4\} = \{4\}$

6. (c)

Given:

w (P, Q, R), x (S, P, T) y(P, Q, R, S, T) and z (R, S, T) (w × x) contains 6 attributes whereas y contains 5 attributes. So, they aren't union-compatible. Hence intersection operation can't be performed.

NOTE: If number of attributes in Relation A is n and number of attributes in relation B is m then number of attributes "A x B" will be "n + m".

7. (a, c)

(a) TRUE

A						
P	Q	R	S	T		
p_1	q_1	\mathbf{r}_1	S ₁	t_1		
p_2	q_2	\mathbf{r}_2	s_2	t_2		

$\pi_{A1}(A)$				$\pi_{A2}(A)$	
P	Q	R	R	S	T
p_1	q_1	\mathbf{r}_1	\mathbf{r}_1	S ₁	\mathbf{t}_1
p_2	q_2	\mathbf{r}_2	\mathbf{r}_2	s_2	t_2

$\pi_{A1}(A) \bowtie \pi_{A2}(A)$						
P	P Q R S T					
p_1	q_1	\mathbf{r}_1	s_1	t_1		
p_2	q_2	\mathbf{r}_2	S ₂	t_2		

 $\therefore \pi_{A1}(A) \bowtie \pi_{A2}(A) = A$

- (b) FALSE since $\pi_{A1}(A) \bowtie \pi_{A2}(A) = A$
- (c) TRUE. PQ \rightarrow T holds in $\pi_{A1}(A) \bowtie \pi_{A2}(A)$. An FD PQ \rightarrow T holds if and only iff- for same values of PQ, the T value must be same.

8. (a, b)

- (a) Natural join is commutative and Associative so it is always true.
- (b) Selection is commutative.
- (c) Projection is not commutative. Hence, a and b are correct.

9. (a, b)

(a) $\sigma_{Task} =$ 'welding' (Jobsite)

From this we will get all row of jobsite having task welding.

Tool \bowtie holds \bowtie Tool Box \bowtie Jobsite Natural join is done and with $\pi_{ToolID} \rightarrow$ ToolID column gets displayed.

- (b) same explanation as (A)
- (c) incorrect because after projecting ToolID we cannot apply condition on task.

 Hence corrects option is a and b.

10. (a, c, d)

(a) True, because $(A \bowtie_{P=R \text{ and } Q=S} B)$ is more restrictive than $(A \bowtie_{P=R} B)$, it will also filter out the row in which Q is not equal to S therefore the cardinality (Number of rows) of $(A \bowtie_{P=R} B)$ is always larger than or equal to the size of $(A \bowtie_{P=R \text{ and } Q=S} B)$.

- (b) False, the cardinality of $(A \bowtie_{P = R \text{ and } Q \neq S} B)$ is always larger than or equal to the size of $(A \bowtie_{P = R} and Q = S B)$.
- (c) True, because the results of both $(\sigma_{P=5} (A \bowtie_{Q=R} B))$ and $(\sigma_{P=5} (A) \bowtie_{Q=R} B)$ are always equivalent.
- (d) True because the result $(A \times B) (A \bowtie_{Q = R} B)$ and $(A \bowtie_{Q \neq R} B)$ are always equivalent.

Hence, correct answer is a, c and d.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

