Stoch. modele układów oddziuałujących 2024

lista 3: procesy i półgrupy Fellera

1. Niech (P, F) będzie procesem Fellera. Pokaż, że odwzorowanie

$$x \mapsto \mathbf{E}_x \left[\prod_{j=1}^n f_j(X_{t_j}) \right]$$
 (1)

jest ciągłe dla dowolnego n, dowolnych $t_1, \ldots, t_n \in \mathbb{R}$ oraz dowolnych $f_1, \ldots, f_n \in C_0(S)$.

2. Niech $S = \mathbb{Z}$. Pokaż, że łańcuch Markowa w czasie ciągłym (\mathbf{P}, \mathbb{F}) jest procesem Fellera wtedy i tylko wtedy, gdy dla każdego $y \in S$ i każdego $t \in \mathbb{R}_+$,

$$\lim_{|x| \to \infty} \mathbf{P}_x[X_t = y] = 0.$$

- 3. Niech $T = (T_t)_{t \in \mathbb{R}_+}$ będzie półgrupą Fellera. Pokaż, że $||T(t)f|| \leq ||f||$ dla wszystkich $f \in C_0(S)$.
- 4. Niech $T = (T_t)_{t \in \mathbb{R}_+}$ będzie półgrupą Fellera. Pokaż, że że funkcja $t \mapsto T(t)f$ z $[0, \infty)$ do $C_0(S)$ jest ciągła.
- 5. Niech $S=\mathbb{R}$ i $B=(B_t)_{t\in\mathbb{R}_+}$ będzie ruchem Browna.
 - (a) Pokaż, że T_t zdefiniowane przez

$$T_t f(x) = \mathbb{E}[f(B_t + x)]$$

jest półgrupą Fellera.

- (b) Wyjaśnij, dlaczego T nie jest mocno ciągła jako półgrupa operatorów na C(S).
- 6. Niech $U(\alpha)$ będzie rezolwentą półgrupy Fellera $T=(T_t)_{t\in\mathbb{R}_+}$. Pokaż, że dla każdego $f\in C_0(S)$,

$$\lim_{\alpha \to \infty} \alpha U(\alpha) f = f.$$

7. Niech $U(\alpha)$ będzie rezolwentą półgrupy Feller
a $T=(T_t)_{t\in\mathbb{R}_+}.$ Pokaż, że

$$T_t U(\alpha) f(x) = \int_0^\infty e^{-\alpha s} T_{t+s} f(x) ds$$