รายวิชา 09131201 ระเบียบวิธีเชิงตัวเลขทางด้านคอมพิวเตอร์ (Numerical Methods for Computers) บทที่ 2 รากของสมการ (Root Finding)

ผศ.ดร.วงศ์วิศรุต เขื่องสตุ่ง

สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

July 11, 2022

Outline

- บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- \bigcirc บทที่ 2 รากของสมการ (Root Finding)

- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)

- บทที่ 4 ระบบสมการไม่เชิงเส้น

2/85

Table of Contents

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น
- 📵 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 🕠 บทที่ 6 อนพันธ์และปริพันธ์เชิงตัวเลข
- 🕜 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ

Table of Contents

- 🕕 บทที่ 1 ความร้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- \bigcirc บทที 2 รากของสมการ (Root Finding)
- 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2.4 ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2

Outline

- (2) บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2
- บทที่ 4 ระบบสมการไม่เชิงเส้น

บทน้ำ

พิจารณาฟังก์ชันหนึ่งตัวแปร y=f(x) การหาค่ารากของสมการ หรือคำตอบ(ผล เฉลย) ของสมการ คือค่าของ x ที่ทำให้ y=f(x)=0เช่น สมการของฟังก์ $f(x)=ax^2+bx+c=0$ โดยที่ a,b และ c เป็นค่าคงที่ ดัง

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

บทนำ

วิธีการหาค่ารากของสมการ สามารถแบ่งเป็นกลุ่มใหญ่ๆ ได้ดังนี้

ระเบียบวิธีแบบกำหนดขอบเขต (Bracketing method)

ระเบียบวิธีแบบกำหนดขอบเขต (Bracketing method) เป็นวีธีที่รู้ว่า คำตอบ จะต้องอยู่ในช่วงใดช่วงหนึ่งของค่า x จึงทำการกำหนดค่าเริ่มต้นสองค่า คร่อมรากใด รากหนึ่งของสมการ ซึ่งจะเป็นขอบเขตของช่วงที่จะหารากของสมการ วิธีแบบกำหนด ขอบเขต จะกล่าวถึงในหัวข้อนี้คือ

- ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- 2 ระเบียบวิธีการวางตัวผิดที่ (False position method)

ระเบียบวิธีแบบเปิด (Open method)

ระเบียบวิธีแบบเปิด (Open method) การหาค่ารากของวิธีนี้ต้อง กำหนดค่าเดา เริ่มต้นในการคำนวณ 1 ค่าหรือ มากกว่า 1 ค่า โดยไม่จำเป็นต้องคร่อมรากใดราก หนึ่งของสมการ วิธีแบบเปิด จะกล่าวถึงในหัวข้อนี้คือ

- 💿 ระเบียบวิธีทำซ้ำด้วยจุดตรึง (Fixed Point Iteration Method)
- 2 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- วิธีเซแคนต์ (Secant Method)

Outline

- (2) บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2
- บทที่ 4 ระบบสมการไม่เชิงเส้น

การหาค่ารากของสมการด้วยระเบียบวิธีเชิงกราฟ เป็นการเขียนกราฟของฟังก์ชัน y=f(x) ที่ต้องการหาคำตอบ โดยกราฟของฟังก์ชันตัดกับแกน x ที่จุดใด จุดนั้น คือ รากของสมการ

ตัวอย่างที่ 2.1

จงหาค่ารากของสมการ $\sin(10x) + \cos(3x) = 0$ ในช่วง [0,5] โดยระเบียบวิธีเชิง กราฟ (Graphical Method)

4 D F 4 D F 4 D F 5000

(c)

Outline

- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทน้ำ
 - 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- ระเบียบวิธีการวางตัวผิดที่ (False position method)
- ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2

กำหนดให้ f(x) เป็นฟังก์ชันต่อเนื่องในช่วง x_l ถึง x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มี เครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_u)<0$ แล้วจะมีค่ารากของสมการอย่าง น้อยที่สุด 1 ค่า อยู่ระหว่าง x_l ถึง x_u

ขั้นตอนวิธีของระเบียบวิธีการแบ่งครึ่งช่วง

- 📵 เลือก x_l และ x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มีเครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_u) < 0$
- $oldsymbol{0}$ ประมาณค่ารากของสมการ x_r โดย

$$x_r = \frac{x_l + x_u}{2}$$

- ตรวจสอบเงื่อนไข ต่อไปนี้
 - ถ้า $f(x_l)f(x_r) < 0$ แล้ว รากอยู่ในช่วง (x_l,x_r) ดังนั้น กำหนดให้ $x_u = x_r$ และ กลับไปยังขั้นตอนที่ 2
 - ullet ถ้า $f(x_l)f(x_r)>0$ แล้ว รากอยู่ในช่วง (x_r,x_u) ดังนั้น กำหนดให้ $x_l=x_r$ และ กลับไปยังขั้นตอนที่ 2
 - ถ้า $f(x_l)f(x_r)=0$ แล้ว x_r เป็นรากของสมการ และออกจากการคำนวณ

ตัวอย่างที่ 2.2

จงหารากของสมการ $x^5 + x^3 + x^2 - 1 = 0$ ในช่วง [0,1] โดยระเบียบวิธีการแบ่ง ครึ่งช่วง (Bisection method) กำหนดความคลาดเคลื่อนน้อยกว่า 0.1

ตัวอย่างที่ 2.3

จงหารากของสมการ $x^2 + 3x - 9 = 0$ ในช่วง [-1,7] โดยระเบียบวิธีการแบ่งครึ่ง ช่วง (Bisection method) กำหนดความคลาดเคลื่อนสัมพัทธ์น้อยกว่า 5%

Outline

- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทน้ำ
 - 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2
- บทที่ 4 ระบบสมการไม่เชิงเส้น

ระเบียบวิธีการวางตัวผิดที่ (False position method) จะคำนวณรากของสมการ จากความสัมพันธ์ทางเรขาคณิตของรูปสามเหลี่ยมที่เกิดขึ้นจากการลากเส้นตรงเชื่อม ระหว่างจุด $(x_l, \mathit{f}(x_l))$ และ $(x_u, \mathit{f}(x_u))$ กับแกน x แทนการแบ่งครึ่งช่วงปิด [a, b] ดัง รปที่ 5

รูปที่ 1: False position method

พิจารณาจากรูปที่ 5 และใช้กฎของสามเหลี่ยมคล้าย จะได้

$$\frac{f(x_l)}{x_r - x_l} = \frac{f(x_u)}{x_r - x_u}$$

จัดรปสมการใหม่ จะได้

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

ขั้นตอนวิธีของระเบียบวิธีการวางตัวผิดที่ (False position method)

- $oldsymbol{0}$ เลือก x_l และ x_u โดยที่ $f(x_l)$ และ $f(x_u)$ มีเครื่องหมายตรงกันข้าม หรือเมื่อ $f(x_l)f(x_u) < 0$
- $oldsymbol{2}$ ประมาณค่ารากของสมการ x_r โดย

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

- ตรวจสอบเงื่อนไข ต่อไปนี้
 - ullet ถ้า $f(x_l)f(x_r)<0$ แล้ว รากอยู่ในช่วง (x_l,x_r) ดังนั้น กำหนดให้ $x_u=x_r$ และ กลับไปยังขั้นตอนที่ 2
 - ถ้า $f(x_l)f(x_r)>0$ แล้ว รากอยู่ในช่วง (x_r,x_u) ดังนั้น กำหนดให้ $x_l=x_r$ และ กลับไปยังขั้นตอนที่ 2
 - ถ้า $f(x_l)f(x_r)=0$ แล้ว x_r เป็นรากของสมการ และออกจากการคำนวณ

ตัวอย่างที่ 2.4

จงหารากของสมการ $x^5+x^3+x^2-1=0$ ในช่วง [0,1] โดยระเบียบวิธีการวางตัว ผิดที่ (False position method) กำหนดความคลาดเคลื่อนน้อยกว่า 0.1

์ ตัวอย่างที่ 2.5

จงหารากของสมการ $x^2+3x-9=0$ ในช่วง [-1,5] โดยระเบียบวิธีการวางตัวผิด ที่ (False position method)กำหนดความคลาดเคลื่อนสัมพัทธ์น้อยกว่า 5%

ฐปที่ 2: Comparison of the relative errors of the bisection and the false-position methods.

ข้อผิดผลาดของระเบียบวิธีการวางตัวผิดที่ (Pitfalls of the False-Position Method)

ตัวอย่างที่ 2.6

จงหารากของสมการ $\mathit{f}(x) = x^{10} - 1$ ในช่วง [0, 1.3] โดยระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method) และระเบียบวิธีการวางตัวผิดที่ (False position method)

ข้อผิดผลาดของระเบียบวิธีการวางตัวผิดที่ (Pitfalls of the False-Position Method)

Iteration	x_l	\boldsymbol{x}_{u}	\mathbf{x}_r	ε_a (%)	ε _t (%)
1	0	1.3	0.65	100.0	35
2	0.65	1.3	0.975	33.3	2.5
3	0.975	1.3	1.1375	14.3	13.8
4	0.975	1.1375	1.05625	7.7	5.6
5	0.975	1.05625	1.015625	4.0	1.6

รูปที่ 3: bisection methods.

ข้อผิดผลาดของระเบียบวิธีการวางตัวผิดที่ (Pitfalls of the False-Position Method)

Iteration	\mathbf{x}_{l}	Χυ	$\boldsymbol{x_r}$	ε_a (%)	ε_t (%)
1	0	1.3	0.09430		90.6
2	0.09430	1.3	0.18176	48.1	81.8
3	0.18176	1.3	0.26287	30.9	73.7
4	0.26287	1.3	0.33811	22.3	66.2
5	0.33811	1.3	0.40788	17.1	59.2

รูปที่ 4: False position method

ข้อผิดผลาดของระเบียบวิธีการวางตัวผิดที่ (Pitfalls of the False-Position Method)

รูปที่ 5: Plot of $f(x) = x^{10} - 1$, illustrating slow convergence of the false-position method

Outline

- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทน้ำ
 - 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- ระเบียบวิธีการวางตัวผิดที่ (False position method)
- ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2

ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)

ในการหาคำตอบของสมการ $\mathit{f}(x) = 0$ โดยระเบียบวิธีนี้อันดับแรกจะต้องแปลง สมการดังกล่าวให้อยู่ในรูป

$$x = g(x) \tag{2.1}$$

โดยมีสมบัติว่า สำหรับค่า x ใดๆ ถ้า x=g(x) แล้วจะต้องได้ว่า f(x)=0ตัวอย่างเช่น

$$x^2 - 2x + 3 = 0$$

สามารถเขียนในรูปแบบ ได้ดังนี้

$$x = \frac{x^2 + 3}{2}$$

์ ซึ่งสามารถหาค่ารากของสมการได้

รูปแบบทั่วไปของระเบียบวิธีทำซ้ำแบบจุดตรึง คือ

$$x_{i+1} = g(x_i) (2.2)$$

สำหรับ i=1,2,3,...และค่าคลาดเคลื่อน จะพิจารณาจาก

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

โดยที่ $|arepsilon_a|<arepsilon_s$

- 4 ロ b 4 個 b 4 差 b 4 差 b 9 9 0 0 0

ขั้นตอนระเบียบวิธีทำซ้ำแบบจุดตรึง

- 💶 แปลงสมการ f(x) = 0 ให้อยู่ในรูป x = g(x)
- $oldsymbol{ ilde{Q}}$ เลือกค่าเริ่มต้น x_0
- $oldsymbol{3}$ คำนวณหาค่า $x_{i+1} = g(x_i)$
- lacktriangle นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|arepsilon_a|<arepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไปทำขั้น ตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|arepsilon_a|<arepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่าราก ของสมการที่ต้องการ

ตัวอย่างที่ 2.7

จงหารากของสมการ $e^{-x}-x=0$ โดยระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method) ต้องการความถูกต้องอย่างน้อยที่สุดในตำแหน่งที่ 3 และ กำหนดให้ค่าเริ่มต้น $x_0=0$

i	$\boldsymbol{x_i}$	ε_a (%)	ε_t (%)
0	0		100.0
1	1.000000	100.0	76.3
2	0.367879	1 <i>7</i> 1.8	35.1
3	0.692201	46.9	22.1
4	0.500473	38.3	11.8
5	0.606244	17.4	6.89
6	0.545396	11.2	3.83
7	0.579612	5.90	2.20
8	0.560115	3.48	1.24
9	0.571143	1.93	0.705
10	0.564879	1.11	0.399

รูปที่ 6: ตัวอย่างที่ 2.7

ข้อสังเกต 2.1

ระเบียบวิธีทำซ้ำแบบจุดตรึงเป็นการจัดสมการให้อยู่ในรูป x=g(x) โดยทั่วไป สามารถจัดสมการ x=g(x) ได้หลายรูป เช่น $x=\frac{x^2+3}{2}$ หรือ $x=\sqrt{2x-3}$ และ พบว่า g(x) มีหลายฟังก์ชัน ซึ่งจะพิจารณาได้อย่างไรว่าจะเลือกฟังก์ชันไหนในการหา ค่ารากของสมการด้วยวิธีทำซ้ำอย่างง่ายที่จะให้ค่าผลลัพธ์ลู่เข้า เงื่อนไขที่จะให้ค่า ผลลัพธ์ลู่เข้า คือ |g'(x)|<1 ดังนั้นจะสามารถเลือกฟังก์ชันใดก็ได้ที่จะให้ค่าผลลัพธ์ลู่ เข้าเสมอ เมื่อ |g'(x)|<1

วิธีเชิงกราฟสองเส้น (Two Curve Graphical Method) เป็นวิธีการเขียนกราฟโดย นำการเขียนกราฟของสองฟังก์ชันมาพิจารณา โดยที่จากการหาค่ารากของสมการ ด้วยวิธีการทำซ้ำอย่างง่ายสมการที่ใช้คือ x=g(x) ดังนั้นในการพิจารณากราฟจะมี 2 สมการ คือ y=x และ y=g(x) โดยอาศัยหลักการที่กราฟสองเส้นตัดกัน ตรง บริเวณจุดตัดกันของกราฟ คือค่ารากของสมการนั่นเอง

จาก ตัวอย่างที่ 2.7 จะได้ $e^{-x}-x=0$ นั่นคือ $x=e^{-x}$ กำหนดให้ $y=f_1(x)=x$ และ $y=f_2(x)=e^{-x}$ เมื่อนำทั้ง 2 สมการมาเขียนกราฟ ค่าของสมการคือ ค่า x ที่ ทำให้ $y=f_1(x)=f_2(x)$ หรือค่า x ที่จุดตัดกันของกราฟ 2 เส้น ดังรูป

รูปที่ 7: กราฟแสดงการหาค่ารากของสมการ $e^{-x}-x=0$ ด้วยวิธีเชิงกราฟ

รูปที่ 8: กราฟแสดงลักษณะการลู่เข้าและลู่ออก

Outline

- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทน้ำ
 - 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- ระเบียบวิธีการวางตัวผิดที่ (False position method)
- ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2
- บทที่ 4 ระบบสมการไม่เชิงเส้น

รูปที่ 9: กราฟแสดงการประมาณค่ารากของสมการโดยอาศัยความชั้น

จากรปที่ 9 พิจารณาความชั้น ของฟังก์ชั้นที่จด $(x_i, f(x_i))$ จะได้

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

เพราะฉะนั้น รูปแบบทั่วไปคือ

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{2.3}$$

ซึ่งสมการ (2.3) เรียกว่า **สูตรนิวตันราฟสัน (Newton-Raphson formula)**

ขั้นตอนระเบียบวิธีนิวตันราฟสัน

- lacktriangle หาฟังก์ชันที่ต้องการหาค่ารากของสมการจาก f(x)=0
- $oldsymbol{2}$ เลือกค่าเริ่มต้น x_0
- \bullet คำนวณหาค่า $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$
- 🐠 นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|arepsilon_a|<arepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไปทำขั้น ตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|arepsilon_a|<arepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่าราก ของสมการที่ต้องการ

์ ตัวอย่างที่ 2.8

จงหารากของสมการ $f(x)=e^{-x}-x$ โดยระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method) ต้องการความถูกต้องอย่างน้อยที่สุดในตำแหน่งที่ 3 และ กำหนดให้ค่าเริ่มต้น $x_0=0$

i	\boldsymbol{x}_i	ε_t (%)
0	0	100
1	0.50000000	11.8
2	0.566311003	0.147
3	0.567143165	0.0000220
4	0.567143290	$< 10^{-8}$

รูปที่ 10

์ ตัวอย่างที่ 2.9

จงหารากของสมการ $e^x \sin(x) - 1 = 0$ โดยระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method) กำหนดให้ค่าเริ่มต้น $x_0 = 0.5$ และความคลาดเคลื่อนสัมพัทธ์ น้อยกว่า 1%

Outline

- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทน้ำ
 - 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- ระเบียบวิธีการวางตัวผิดที่ (False position method)
- ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2

จากระเบียบวิธีนิวตันราฟสัน นั่นคือ

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{2.4}$$

จะเห็นได้ว่า ระเบียบวิธีนิวตันราฟสันต้องมีการหาอนุพันธ์ของฟังก์ชัน ซึ่งในบาง ฟังก์ชันมีรูปแบบที่ซับซ้อนและหาอนุพันธ์ได้ลำบาก ทำให้การหาค่ารากของสมการจะ ยุ่งยากมากขึ้น เพื่อหลีกเลี่ยงปัญหาดังกล่าว ระเบียบวิธีเซแคนต์ (Secant Method) จะแทนค่า $f'(x_i)$ ในสมการ (2.4) โดยการประมาณค่าที่สามารถคำนวณได้ง่ายขึ้น

เนื่องจาก อนุพันธ์ของฟังก์ชันนิยามโดย

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

สำหรับ h มีค่าน้อยมากๆ จะได้

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

โดยเฉพาะอย่างยิ่ง ถ้า $x=x_i$ และ $h=x_{i-1}-x_i$ จะได้

$$f'(x_i) \approx \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$
 (2.5)

แทนค่า (2.5) ใน (2.4) จะได้

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$
(2.6)

ซึ่งสมการ (2.6) เรียกว่า **สูตรเซแคนต์ (Secant formula)**

11: กราฟแสดงการประมาณค่ารากของสมการโดยวิธีเซแคนต์ (Secant Method) 🗬

ขั้นตอนระเบียบวิธีเซแคนต์ (Secant Method)

- $oldsymbol{0}$ หาฟังก์ชันที่ต้องการหาค่ารากของสมการจาก $\mathit{f}(x)=0$
- $oldsymbol{arrho}$ เลือกค่าเริ่มต้น x_0
- \bullet คำนวณหาค่า $x_{i+1} = x_i \frac{f(x_i)(x_{i-1} x_i)}{f(x_{i-1}) f(x_i)}$
- lacktriangle นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไปทำขั้น ตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่าราก ของสมการที่ต้องการ

ตัวอย่างที่ 2.10

จงหารากของสมการ $f(x)=e^{-x}-x$ โดยระเบียบระเบียบวิธีเซแคนต์ (Secant Method) กำหนดให้ค่าเริ่มต้น $x_{-1}=0$ และ $x_0=1$ ต้องการความคลาดเคลื่อน สัมพัทธ์น้อยกว่า 5%

ฐปที่ 12: Comparison of the true percent relative errors ϵ_t for the methods to determine the roots of $f(x) = e^{-x} - x$

62 / 85

Comparison of Convergence of the Secant and False-Position Techniques

ตัวอย่างที่ 2.11

จงหารากของสมการ $f(x) = \ln x$ โดยระเบียบวิธีเซแคนต์ และระเบียบวิธีวางตัวผิดที่ กำหนดให้ค่าเริ่มต้น $x_l = x_{l-1} = 0.5$ และ $x_u = x_l = 5$

Comparison of Convergence of the Secant and False-Position Techniques

Iteration	Χį	Χu	X _r
1	0.5	5.0	1.8546
2	0.5	1.8546	1.2163
3	0.5	1.2163	1.0585

รูปที่ 13: the false-position method

Iteration	x_{i-1}	x i	X _{i+1}
1 2	0.5	5.0	1.8546
	5.0	1.8546	-0.10438

รูปที่ 14: the secant method

Comparison of Convergence of the Secant and False-Position Techniques

รูปที่ 15: Comparison of the false-position and the secant methods. The first iterations (a) and (b) for both techniques are identical. However, for the second iterations (c) and (d), the points used differ. As a consequence, the secant method can diverge, as indicated in (d).

Outline

- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
 - 2.1 บทน้ำ
- 2.2 ระเบียบวิธีเชิงกราฟ (Graphical Method)
- 2.3 ระเบียบวิธีการแบ่งครึ่งช่วง (Bisection method)
- ระเบียบวิธีการวางตัวผิดที่ (False position method)
- 2.5 ระเบียบวิธีทำซ้ำแบบจุดตรึง (Fixed point Iteration Method)
- 2.6 ระเบียบวิธีนิวตันราฟสัน (Newton Raphson Method)
- ระเบียบวิธีเซแคนต์ (Secant Method)
- 2.8 ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)
- 2.9 แบบฝึกหัด 2

ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)

ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Mrthod)

พิจารณาฟังก์ชัน

$$f(x) = (x-3)(x-1)(x-1)$$
(2.7)

ถ้า $\mathit{f}(x) = 0$ จะได้ว่า สมการ (2.7) มีค่ารากของสมการ 2 ค่า คือ 3 และ 1 โดยค่า 1 จะมีค่าซ้ำกัน 2 ครั้ง (Double Roots) พิจารณาฟังก์ชัน

$$f(x) = (x-3)(x-1)(x-1)(x-1)$$
(2.8)

สมการ (2.8) มีค่ารากของสมการ 4 ราก และจะมีค่า 1 ซ้ำกันจำนวน 3 ครั้ง (Triple Roots) ซึ่งแสดงได้ดังรูปต่อไปนี้

ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)

รูปที่ 16: กราฟแสดงการค่ารากของสมการที่มีค่ารากซ้ำกันหลายค่า

ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)

เนื่องจากการหาค่ารากของสมการด้วยวิธีเชิงตัวเลขด้วยวิธีนิวตันราฟสัน เป็นวิธีที่ นิยมใช้มากที่สุด ดังนั้นการหาค่ารากของสมการที่ซ้ำกันหลายครั้ง จะนำวิธีนิวตันราฟ สันมาปรับปรุง

ในปี 1978 Ralston and Rabinowitz ได้นิยามฟังก์ชัน u(x) ซึ่งเป็นอัตราส่วนของ ฟังก์ชันต่ออนุพันธ์ของฟังก์ชัน แสดงได้ดังนี้

$$u(x) = \frac{f(x)}{f'(x)}$$

จะได้ว่า

$$u'(x) = \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$$

จากนิวตันราฟสัน นั่นคือ

$$x_{i+1} = x_i - \frac{u(x_i)}{u'(x_i)}$$

◆ロト ◆団ト ◆量ト ◆量ト ■ からぐ

ระเบียบวิธีการหาค่ารากของสมการที่มีหลายค่า (Multiple Roots Method)

ดังนั้น

$$x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$
(2.9)

ซึ่งสมการ (2.9) เรียกว่า ระเบียบวิธีนิวตันราฟสันปรับปรุง (Modified Newton-Raphson Method)

ระเบียบวิธีนิวตันราฟสันปรับปรุง (Modified Newton-Raphson Method

ขั้นตอนระเบียบวิธีนิวตันราฟสันปรับปรุง

- lacktriangle หาฟังก์ชันที่ต้องการหาค่ารากของสมการจาก $\mathit{f}(x)=0$
- $oldsymbol{2}$ เลือกค่าเริ่มต้น x_0
- \bullet คำนวณหาค่า $x_{i+1} = x_i \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 f(x_i)f''(x_i)}$
- **1** นำค่า x_{i+1} ที่ได้ในขั้นตอนที่ 2 มาคำนวณหาค่า

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

และตรวจสอบกับเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ ถ้าไม่เป็นไปตามเงื่อนไขให้กลับไปทำขั้น ตอน 3 ใหม่ แต่ถ้าเป็นไปตามเงื่อนไข $|\varepsilon_a|<\varepsilon_s$ สรุปได้ว่าค่า x_{i+1} คือค่าราก

ระเบียบวิธีนิวตันราฟสันปรับปรุง (Modified Newton-Raphson Method

ตัวอย่างที่ 2.12

จงหารากของสมการ $f(x)=x^3-5x^2+7x-3$ โดยระเบียบวิธีนิวตันราฟสัน และ ระเบียบวิธีนิวตันราฟสันปรับปรุง 1) เมื่อกำหนดค่าเริ่มต้น $x_0=0$ และ 2) เมื่อ กำหนดค่าเริ่มต้น $x_0=0$

ระเบียบวิธีนิวตันราฟสันปรับปรุง (Modified Newton-Raphson Method

i	\boldsymbol{x}_i	ε _t (%)
0	0	100
1	0.4285714	57
2	0.6857143	31
3	0.8328654	1 <i>7</i>
4	0.9133290	8.7
5	0.9557833	4.4
6	0.9776551	2.2

รูปที่ 17: Newton-Raphson Method

i	x i	ε, (%)
0	0	100
1	1.105263	11
2	1.003082	0.31
3	1.000002	0.00024

ฐปที่ 18: Modified Newton-Raphson Method

ระเบียบวิธีนิวตันราฟสันปรับปรุง (Modified Newton-Raphson Method

Using an initial guess of $x_0 = 4$ gives the following results:

i	Standard	ε _t (%)	Modified	ε_t (%)
0	4	33	4	33
1	3.4	13	2.636364	12
2	3.1	3.3	2.820225	6.0
3	3.008696	0.29	2.961728	1.3
4	3.000075	0.0025	2.998479	0.051
5	3.000000	2×10^{-7}	2.999998	7.7×10^{-5}

รูปที่ 19

1. กำหนดฟังก์ชัน

$$f(x) = x^3 - 6x^2 + 11x - 5.9$$

(ค่าจริง คือ 0.953503) จงหาค่ารากของสมการ

- 1.1 โดยวิธีเชิงกราฟ
- $1.2\,$ โดยใช้วิธีแบ่งครึ่งช่วง กำหนดค่าเริ่มต้น $x_l=2.5$ และ $x_u=3.5$ โดย $\epsilon_s=1\%$
- 1.3 โดยใช้วิธีวางผิดที่ กำหนดค่าเริ่มต้น $x_l=2.5$ และ $x_u=3.5$ โดย $\epsilon_s=1\%$
- 1.4 โดยใช้นิวตันราฟสัน กำหนดค่าเริ่มต้น $x_0=3.5$ โดย $\epsilon_s=1\%$
- $1.5\,$ โดยใช้วิธีเซแคนต์ กำหนดค่าเริ่มต้น $x_{i-1}=2.5\,$ และ $x_i=3.5\,$ โดย $\epsilon_s=1\%$

2. กำหนดฟังก์ชัน

$$\ln x = 0.6$$

จงหาค่ารากของสมการ

- 2.1 โดยวิธีเชิงกราฟ
- 2.2 โดยใช้วิธีแบ่งครึ่งช่วง โดยทำซ้ำ 3 ครั้ง กำหนดค่าเริ่มต้น $x_l=1$ และ $x_u=2$ โดย $\epsilon_s=1\%$
- 2.3 โดยใช้วิธีวางผิดที่ โดยทำซ้ำ 3 ครั้ง กำหนดค่าเริ่มต้น $x_l=1$ และ $x_n=2$ โดย $\epsilon_{\circ} = 1\%$
- 2 4 จงหาว่าวิสีใดจะให้ค่าคลาดเคลื่อบลดลงได้เร็วกว่า

- 3. จงหาค่า square root ของ 11 (เฉพาะค่าบวก)
 - 3.1 โดยใช้วิธีวางผิดที่ กำหนดค่าเริ่มต้น $x_l=3$ และ $x_u=3.4$ โดย $\epsilon_s=0.5\%$
 - 3.2 โดยใช้นิวตันราฟสัน กำหนดค่าเริ่มต้น $x_0=3$ โดย $\epsilon_s=0.5\%$
 - 3.3 โดยใช้วิธีเซแคนต์ กำหนดค่าเริ่มต้น $x_{i-1}=3$ และ $x_i=4$ โดย $\epsilon_s=0.5\%$

4. จงหารากของสมการ $f(x) = x^3 - 3x - 2$ จงหาค่ารากของสมการโดยใช้วิธีนิ้ว ต้นราฟสัน และวิธีนิวตันราฟสันปรับปรุง โดยกำหนดความถูกต้องในทศนิยม ตำแหน่งที่ 2 และให้กำหนดค่าเริ่มต้นตามต้องการ

Assignment

จงหารากของสมการ $f(x)=e^{-x}-x$ ด้วย Python Program โดยใช้วิธีต่อไปนี้

- 1.1 วิธีแบ่งครึ่งช่วง กำหนดค่าเริ่มต้น $x_l=0$ และ $x_u=1$ โดยต้องการความคลาด เคลื่อนสัมพัทธ์น้อยกว่า 1%
- 1.2 วิธีวางผิดที่ กำหนดค่าเริ่มต้น $x_l=0$ และ $x_n=1$ โดยต้องการความคลาด เคลื่อนสัมพัทธ์น้อยกว่า 1%
- 1.3 วิธีนิวตันราฟสัน กำหนดค่าเริ่มต้น $x_0=1$ โดยต้องการความคลาดเคลื่อน สัมพัทธ์น้อยกว่า 1%
- $1.4\,$ วิธีเซแคนต์ กำหนดค่าเริ่มต้น $x_{i-1}=0$ และ $x_i=1\,$ โดยต้องการความคลาด เคลื่อนสัมพัทธ์น้อยกว่า 1%
- 1.5 จุงเปรียบเทียบผลเฉลยทั้ง 4 วิธี โดยการวาดกราฟ พร้อมทั้งวิเคราะห์หาวิธีที่ดี ที่สด

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น
- 1 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕜 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น
- 🐠 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕜 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- \bigcirc บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น
- 🐠 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น
- 1 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 6 บทที่ 6 อนุพันธ์และปริพันธ์เชิงตัวเลข
- 🕜 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ

- 🕕 บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับการคำนวณเชิงตัวเลข
- 2 บทที่ 2 รากของสมการ (Root Finding)
- 📵 บทที่ 3 ระบบสมการเชิงเส้น
- 📵 บทที่ 4 ระบบสมการไม่เชิงเส้น
- 🕠 บทที่ 5 การประมาณค่าในช่วง
- 🕠 บทที่ 6 อนพันธ์และปริพันธ์เชิงตัวเลข
- 🕜 บทที่ 7 ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธ์สามัญ