Calculus Study Guide

Chapter 1: Introduction to Derivatives

A derivative represents the rate of change of a function with respect to a variable. In calculus, the derivative of a function f(x) is denoted as f'(x) or df/dx.

Key Concepts:

- The derivative measures instantaneous rate of change
- Geometrically, it represents the slope of the tangent line
- Derivatives are fundamental to optimization problems

The Power Rule:

If
$$f(x) = x^n$$
, then $f'(x) = n * x^n$

Example:

$$f(x) = x^3$$

$$f'(x) = 3x^2$$

Chapter 2: Chain Rule

The chain rule is used to differentiate composite functions.

If
$$y = f(g(x))$$
, then $dy/dx = f'(g(x)) * g'(x)$

Steps:

- 1. Identify the outer function f and inner function g
- 2. Find the derivative of the outer function f'(g(x))
- 3. Find the derivative of the inner function g'(x)
- 4. Multiply the results

Example:

Let
$$y = (x^2 + 1)^3$$

Outer function:
$$f(u) = u^3$$
, where $u = x^2 + 1$

Inner function: $g(x) = x^2 + 1$

$$f'(u) = 3u^2$$

$$g'(x) = 2x$$

$$dy/dx = 3(x^2 + 1)^2 * 2x = 6x(x^2 + 1)^2$$

Practice Problems

1. Find the derivative of $f(x) = 5x \cdot - 3x^2 + 7$

Solution: $f'(x) = 20x^3 - 6x$

2. Find the derivative of g(x) = (2x + 1).

Solution: Using chain rule, $g'(x) = 5(2x + 1) \cdot *2 = 10(2x + 1) \cdot$

3. Find the derivative of $h(x) = x^2 * \sin(x)$

Solution: Using product rule, $h'(x) = 2x*sin(x) + x^2*cos(x)$

Tips for Success:

- Practice regularly
- Understand the concepts, don't just memorize
- Draw graphs to visualize derivatives
- Check your work by taking derivatives of simple functions