7 (a) Express $4(\sqrt{3}-i)$ in the form $re^{i\theta}$ where r>0 and $-\pi<\theta\leq\pi$. [3]

(b) Given that $x_1=1+2i$ is a root of the equation $x^4-4x^3-6x^2+20x-75=0$, find the other three roots. [5]

(c) Express $\sin 5\theta$ in terms of powers of $\sin \theta$ and hence show that $\sin 5\theta - 5\sin \theta = 16\sin^5\theta - 20\sin^3\theta$.

Find $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (16\sin^5\theta - 20\sin^3\theta d\theta)$, giving your answer in exact form. [9]

JUNE 2004

7a). Use de Moivre's theorem to express $\sin 5\theta$ in terms of powers of $\sin \theta$. (5)

- b). Given $Z4 = 8 8\sqrt{3}i$, find all possible values of Z, giving the answers in the form a + bi with a and b correct to two decimal places. (7)
- c). Sketch on an Argand diagram the locus of Z, where Z + 4 = Z 4i (2) Hence or otherwise state the Cartesian equation of the locus. (1)

JUE 2007

3 (a) Illustrate on an Argand diagram the set of points representing the complex number z satisfying both

$$|z-1-2i| \le 3 \text{ and } \arg(z-2-i) = \frac{3\pi}{4}.$$
 [3]

(b) Given that
$$z = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$
 and $w = \sqrt{3}\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$,

find the modulus and argument of

(i)
$$zw$$
, [2]

(ii)
$$\frac{z}{w}$$
. [2]

(c) Given that
$$z = 1 + i\sqrt{3}$$
, prove that $z^{11} = 2^{10}(1 - i\sqrt{3})$. [3]

NOV 2003

Sketch the following locus on an Argand diagram:

$$Arg (z-1) = \Pi$$

$$(z-41) \quad 3$$

- [4]
- (b) Express $\cos \theta$ in terms of cosines of multiple angles. [7]
- (c) Show that 2 + 31 is a root of the equation $z' 3z_2 + 9z + 13 = 0$.

Hence find the other two roots. [6]

- 6. (a) The complex number z = a + bi where a and b are positive real numbers.
- (i) Given that w = iz, write down w in terms of a and b and

explain the geometrical relationship between z and w.[2]

(ii) Another complex number $v = \frac{1}{2}z + w$.

Represent clearly on the same Argand diagram the complex numbers z, w and v. Find v if the complex number z = 3 + 2i. [6]

(b) Use De Moivre's theorem to find the 4 roots of unity giving your answers in exponential form. [5]

NOV 2004

A complex number Z has modulus 8 and argument $\frac{\pi}{4}$. Another complex number

W has modulus $\frac{1}{2}$ and argument $\frac{\pi}{8}$.

- (a) Write each of the following complex numbers in the form a + ib.
 - (i) ZW^4 [6]
 - (ii) $\frac{Z^2}{W^2}$ [6]
- (b) Find the smallest value of n such that $|W^n| < 0.01$. [3]

JUNE 2012

6 (a) It is given that the complex number a whose conjugate is \overline{a} . satisfies the equation $4a\overline{a} + 12i = 8a + 16$.

Find the two possible values of a, giving your answer in the form p + iq where p and q are real.

[6]

NOV 2008

1. A complex number z has modulus 8 and argument $3\pi/4$. State the modulus and argument of z_2 . [2] Using these values show the number z_2 on an Argand diagram, and hence express z_2 in the form a + bi. [2]

- (a) (i)
- Show by using de Moivre's theorem that $\cos 4\theta = 8\cos^4 \theta 8\cos^2 \theta + 1$.

- Deduce that $\cos \frac{\pi}{8}$ is a root of the equation $8x^4 8x^2 + 1 = 0$. (ii)
- Write down the other three roots in a similar form. (iii)

Express in the form a + bi(b)

$$\frac{e^{\frac{3}{4}\pi i}}{e^{\frac{\pi}{2}i}}.$$

[3]

- On the same axes, draw a diagram showing the locus of z in each (c) of the following
 - 1. |z| < 2
 - $2. \qquad \frac{\pi}{6} < \arg(z) < \frac{\pi}{3}$

Shade the region which is common to both loci in (i).

[3]

SPECIMEN 2003

- Use De Moivre's Theorem to express $\cos 4\theta$ in terms of $\cos \theta$. (i)

[4]

Find all the roots of $z^4 = -16$ in the form a + ib, where a and b are real. () (ii)

REPRESENT THESE ROOTS ON AN ARGAND DIAGRAM

[8]

4	Given that $f(x) = x^5 - 3x^4 - 16x + 48$,		
	(i)	show that $2i$ is a root of $f(x) = 0$,	[2]
	(ii)	state another complex root of $f(x) = 0$,	[2]
	(iii)	find the quadratic factor of $f(x)$,	[2]
	(iv)	factorise $f(x)$ completely and hence solve the equation $f(x) = 0$.	[1]

8 (a) Express in exponential form
$$\left(\frac{3}{5} + \frac{4i}{5}\right)^{20} - \left(\frac{3}{5} - \frac{4i}{5}\right)^{20}$$
. [5]

- (b) (i) Prove that $\tan 4\theta = \frac{4\tan \theta 4\tan^3 \theta}{1 6\tan^2 \theta + \tan^4 \theta}$ based on de Moivres theorem.
 - (ii) Hence find the first four exact values of θ for which $\tan^4 \theta 4 \tan^3 \theta 6 \tan^2 \theta 4 \tan \theta + 1 = 0$. [10]

5 The complex numbers z and w are given by z = -3 + 2i and w = 5 + 4i.

Find

(i)
$$|z|$$
, [1]

(ii)
$$\arg z$$
, [2]

(iii)
$$\frac{z}{w}$$
 in the form $a + ib$ where a and b are exact.
Hence represent $\frac{z}{w}$ in an Argand diagram. [3]

- 7 (a) The equation $3z^3 10z^2 + 20z 16 = 0$ has $1 \sqrt{3}i$ as one of its roots.
 - (i) Find the other roots. [5]
 - (ii) Sketch the roots in an Argand diagram. [2]
 - (b) Express $3\sqrt{3} 3i$ in the form $re^{\theta i}$. [3]
 - Hence find the 4^{th} root of $3\sqrt{3} 3i$ giving your answers correct to 2 decimal places. [5]

6 (a) By using the substitution z = x + y, show that the Cartesian equation of the circle representing the complex number z, where

$$|z+1|=2|z-1|$$
, can be expressed in the form $Ax^2 + Bx + Cy^2 + D = 0$,
where A, B, C and D are integers. [3]

- (b) Use De Moivre's theorem to express $\cos 6\theta$ in terms of powers of $\cos \theta$. [6]
- (c) Solve the equation $z^4 + 8 + i8\sqrt{3} = 0$ giving your roots in the form $r(\cos\theta + i\sin\theta)$. [8]