

Sistemas Operacionais

Interação entre tarefas - comunicação

Prof. Carlos Maziero

DInf UFPR, Curitiba PR

Julho de 2020

Conteúdo

- 1 Cooperação entre tarefas
- 2 Comunicação direta ou indireta
- 3 Sincronismo
- 4 Formato de envio
- Capacidade dos canais
- 6 Confiabilidade dos canais
- 7 Número de participantes

Cooperação entre tarefas

Cooperar: trabalhar em conjunto para atingir um objetivo.

Por que construir sistemas com tarefas cooperantes?

- Atender usuários simultâneos: servidor de banco de dados ou de e-mail.
- Computadores multicore: acelerar a execução.
- Modularidade: dividir sistema em módulos autônomos.
- Aplicações interativas: navegadores Web e editores usam threads para melhorar interatividade.

Cooperação entre tarefas

$$\textbf{Cooperação} = \begin{cases} \textbf{Comunicação} \\ + \\ \textbf{Coordenação} \end{cases}$$

Comunicação: troca de informações entre tarefas

Coordenação: ordem e dependência das ações das tarefas

Escopo da comunicação

Genericamente se usa "IPC - Inter-Process Communication"

Aspectos da comunicação

A comunicação pode ser:

- Direta ou indireta
- Síncrona ou assíncrona
- Por mensagens ou por fluxos
- Capacidade dos canais
- Confiável ou não-confiável
- Número de participantes

Comunicação direta ou indireta

Comunicação direta: Pouco utilizada

- Emissor e receptor são identificados
- Enviar dados a uma tarefa: enviar (destino, dados)
- Receber dados de uma tarefa: receber (origem, dados)

Comunicação indireta: Mais frequente

Porta TCP/UDP

- Emissor e receptor comunicam através de um canal
- Enviar dados ao canal: enviar (canal, dados)
- Receber dados do canal: receber (canal, dados)

Comunicação direta ou indireta

Comunicação síncrona (bloqueante)

Sincronização

As operações de envio/recepção **podem bloquear** as tarefas

Comunicação assíncrona (não-bloqueante)

As operações de envio/recepção não bloqueiam as tarefas

Comunicação semi-síncrona (semi-bloqueante)

Muito utilizada em sistemas envolvendo rede

As operações são bloqueantes durante um prazo predefinido

Formato da informação: mensagens

Mensagem: pacote de dados recebido pelo destino na íntegra.

Formato da informação: fluxo de dados

O canal de comunicação é visto como um arquivo. Arquivo de texto

O emissor "escreve" dados no canal e o receptor os "lê" do canal.

Capacidade dos canais

Capacidade do canal armazenar dados em trânsito:

- Capacidade nula (n = 0): a comunicação é feita por transferência direta entre emissor e receptor.
- Capacidade infinita $(n = \infty)$: o emissor sempre pode enviar dados, que serão armazenados no buffer do canal enquanto o receptor não os consumir. Não existe na prática
- Capacidade finita $(0 < n < \infty)$: o canal pode armazenar uma quantidade finita de dados. Na prática isso ocorre. Por exemplo, 4Kb.

Canal de capacidade finita

Comunicação **bloqueante** usando um canal com capacidade 2:

Confiabilidade dos canais

Um canal de comunicação pode ser:

- Confiável: transporta ao destino todos os dados, mantendo a integridade e ordem de envio.
- Não-Confiável: podem ocorrer perdas:
 - **De dados**: dados enviados podem não ser recebidos
 - **De integridade**: dados podem chegar alterados
 - **De ordem**: os dados podem chegar fora de ordem

Confiabilidade dos canais

Perda de dados, integridade e ordem podem ocorrer intersistemas. Protocolo de rede tem que garantir que as perdas serão consertadas.

Número de participantes

1:1 : um emissor e um receptor interagem através do canal de comunicação.

M:N : um ou mais emissores enviam mensagens para um ou mais receptores.

- Cada mensagem é recebida por apenas um receptor (mailbox)
- Cada mensagem é recebida por todos os receptores (canal de eventos).

Mailbox

Cada mensagem tem um só receptor.

Modelo conhecido como message queue. Filas de mensagem.

Canal de eventos

Cada mensagem pode ter vários receptores.

Aplicações em nuvem.

Modelo também conhecido com publish/subscribe.