Содержание

BE	ВЕДЕ	НИЕ		2		
1	Основная часть					
	1.1	МОБД	Д по ЭКБ КП	3		
	1.2	Техно	логический стек ПАК МОБД по ЭКБ КП	4		
		1.2.1	Версионирование и поддержка CUBA	4		
		1.2.2	Sonatype Nexus	5		
	1.3	Набор	о клиентских средств для развертывания ПАК			
		1.3.1	Компоненты Docker, используемые при развертывании			
	1.4	Проце	есс развертывания программного продукта			
		1.4.1	Окружение, необходимое для сборки артефактов	8		
		1.4.2	Сборка подсистем отраслевой БД по ЭКБ КП	Ö		
ЗА	КЛЬ	ОЧЕНІ	иЕ	10		
СГ	исс	ОК ЛИ	ТЕРАТУРЫ	11		

ВВЕДЕНИЕ

Модернизированная отраслевая база данных электронной компонентной (МОБД ЭКБ базы космического применения $K\Pi$) позволяет разработчикам радиоэлектронной аппаратуры получить информацию о результатах испытаний компонентов ЭКБ на радиационную стойкость. отраслевой информационно-справочной связана Госкорпорации «Роскосмос» стойкости ЭКБ. Программный ПО комплекс, предназначенный для обеспечения доступа разработчиков к модернизируемой отраслевой БД включает обширный комплекс ресурсов, которые должны взаимодействовать в рабочем окружении.

Цель производственной, эксплуатационной практики — развертывание программного обеспечения ПАК МОБД ЭКБ в рабочем окружении. Для достижения поставленной цели необходимо выполнить следующие задачи:

- изучить хранилище данных МОБД ЭКБ КП;
- изучить программные средства, с помощью которых реализован программный комплекс;
- обеспечить набор клиентских средств, позволяющий произвести развертывание всех элементов программного комплекса в рабочем окружении;
- произвести упаковку зависимостей программного комплекса в локальном рабочем окружении.

1. ОСНОВНАЯ ЧАСТЬ

1.1 МОБД по ЭКБ КП

Модернизируемая отраслевая БД по ЭКБ КП состоит из следующих модулей(подсистем):

- хранилища данных;
- подсистемы сбора и учета данных;
- подсистемы формирования выходных отчетов;
- подсистемы информационной безопасности;
- подсистемы администрирования.

Хранилище данных предназначено для накопления и хранения данных элементов ЭКБ; реализовано в виде базы данных. Базой данных является представленная в объективной форме совокупность самостоятельных материалов, систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины [1].

Подсистема сбора и учета данных предназначена для сбора и загрузки в Модернизированную отраслевую БД по ЭКБ КП, а также выгрузки из нее информации, необходимой для автоматизации процесса оценки и выбора элементов ЭКБ КП.

Подсистема информационной безопасности предназначена для более обширного спектра задач. Пользователь имеет возможность аутентификации с помощью программных средств. Также подсистема информационной безопасности обеспечивает защиту ПАК от несанкционированного доступа к БД по ЭКБ КП.

Подсистема администрирования обеспечивает контроль за действиями пользователей в системе, создание и удаление пользователей, возможность разграничения доступа пользователей к данным.

1.2 ТЕХНОЛОГИЧЕСКИЙ СТЕК ПАК МОБД ПО ЭКБ КП

Подсистемы сбора и учета данных, формирования выходных отчетов, информационной безопасности и администрирования реализованы на языке программирования Java, используя платформу для разработки бизнесприложений CUBA [2]. Платформа имеет возможность нативной поддержки PostgreSQL [3], которая используется в качестве системы управления базами данных для базы данных элементов ЭКБ.

Хранилище данных МОБД по ЭКБ КП реализовано посредством технологии «клиент-сервер».

1.2.1 ВЕРСИОНИРОВАНИЕ И ПОДДЕРЖКА CUBA

Нумерация стабильных версий CUBA Platform формируется в соответствии с традиционным семантическим версионированием [4]:

major.minor.maintenance,

где:

- maintenance обновление устранения неполадок. Обеспечивает обратную совместимость. Включает незначительные дополнительные возможности или улучшения, исправление дефектов, незначительные обновления, критические обновления для производительности и безопасности. Такие обновления не несут существенных изменений.
- *minor* обновление, в основном совместимое с предыдущими версиями, однако может привносить существенные изменения на уровне основных возможностей. Предназначение *minor*-релиза введение новых возможностей при быстром процессе обновления.
- *major* основное обновление. Включает в себя несовместимые изменения базовой архитектуры, функциональных возможностей, изменения на уровне программного интерфейса приложения, лежащего в

основе библиотек и их версий. Для основных обновлений обратная совместимость необязательна.

ПАК МОБД по ЭКБ КП – проект с длительным циклом обновления. Исходя из этого, подсистемы реализованы с использованием версии, для которой осуществляется только корпоративная поддержка. Для того чтобы компоненты приложения могли функционировать в системе, необходим приватный репозиторий артефактов.

1.2.2 Sonatype Nexus

Sonatype Nexus – интегрированная платформа, с помощью которой разработчики могут хранить и управлять локальными зависимостями Java (Maven) [5]. Выбор платформы обусловлен тем, что локальные артефакты, хранимые в репозитории, недоступны из внешних репозиториев.

1.3 НАБОР КЛИЕНТСКИХ СРЕДСТВ ДЛЯ РАЗВЕРТЫВАНИЯ ПАК

Конфигурация среды разработки зависит от платформы, поэтому решено использовать механизм контейнеризации. Это позволит абстрагироваться от имеющегося окружения и работать с неизменной и защищенной средой внутри контейнера.

Docker — это платформа контейнеризации с открытым исходным кодом, с помощью которой можно автоматизировать создание приложений, их доставку и управление [6].

1.3.1 Компоненты Docker, используемые при развертывании

В таблице 1.1 даны определения основных компонентов Docker, использованных при развертывании.

Таблица 1.1 – Компоненты Docker, используемые в развертывании

Имя компонента	Описание	Применение
Dockerfile	Текстовый файл с последовательно расположенными инструкциями для создания образа Docker	Развертывание окружения, необходимого для сборки артефактов
image	Неизменяемый файл (образ), из которого можно неограниченное количество раз развернуть контейнер	Использованы образы окружения сборки, репозитория Nexus
docker-compose.yml	Определение служб для централизованного запуска при сборке многоконтейнерного приложения Docker	Централизованный запуск служб Nexus, СУБД Postgres и окружения сборки
docker volumes	Тома для постоянного хранения информации	Хранение изменяемых данных после остановки службы

1.4 ПРОЦЕСС РАЗВЕРТЫВАНИЯ ПРОГРАММНО-ГО ПРОДУКТА

На листинге 1.1 приведено определение служб в файле docker-compose для централизованного запуска при сборке многоконтейнерного приложения Docker.

Листинг 1.1 – файл docker-compose.yml

```
version: '3.7'
3 services:
    nexus:
      build: nexus
      container_name: nexus
      ports:
         - '8081:8081'
      volumes:
         - ./nexus/data:/nexus-data
10
    database:
11
      image: postgres:10-alpine
12
      container_name: database
13
      ports:
14
         - '5432:5432'
15
      volumes:
         - ./database/data:/var/lib/postgresql/data
17
      environment:
18
         - POSTGRES_PASSWORD=postgres
    builder:
20
      build: builder
21
      container_name: builder
22
      network_mode: host
23
      volumes:
24
         - ./sources:/home/gradle
25
      depends_on:
26
         - nexus
27
         - database
```

Корневой ключ в этом файле – services. Под ним определяются службы, которые требуется развернуть и запустить. В данном случае в файле docker-compose.yml определено несколько служб, как показано в таблице 1.2.

Таблица 1.2 – Назначение служб

Имя службы	Описание		
	Организация локального хранилища пакетов		
nexus	и артефактов CUBA, а также управление		
IICAUS	запросами и перенаправление их на		
	специальные датацентры РКС		
database	Развертывание реляционной СУБД		
database	PostgreSQL		
builder	Окружение, необходимое для корректной		
Dunder	сборки артефактов системы		

1.4.1 Окружение, необходимое для сборки артефактов

На листинге 1.2 приведено содержание файла Dockerfile для развертывания окружения, необходимого для сборки артефактов.

Листинг 1.2 – Dockerfile для для службы builder

```
FROM eclipse-temurin:8-jdk-jammy
  CMD ["bash"]
  ENV GRADLE_HOME /opt/gradle
  RUN set -o errexit -o nounset \
      && echo "Adding gradle user and group" \
      && groupadd --system --gid 1000 gradle \
      && useradd --system --gid gradle --uid 1000 ... \
      && mkdir /home/gradle/.gradle \
11
      && chown --recursive gradle:gradle /home/gradle \
12
13
      && echo "Symlinking root Gradle cache to gradle Gradle cache" \
14
      && ln --symbolic /home/gradle/.gradle /root/.gradle
15
  VOLUME /home/gradle/.gradle
17
18
  WORKDIR /home/gradle
20
  RUN set -o errexit -o nounset \
21
      && apt-get update \
22
      && apt-get install --yes --no-install-recommends \
          unzip \
24
          wget \
25
26
          bzr \
27
          git \
28
          git-lfs \
          mercurial \
30
          openssh-client \
31
          subversion \
      && rm --recursive --force /var/lib/apt/lists/* \
33
34
      && echo "Testing VCSes" \
      && which bzr \
36
      && which git \
37
      && which git-lfs \
```

```
&& which hg \
39
      && which svn
40
42 ENV GRADLE_VERSION 4.3.1
43 ARG GRADLE_DOWNLOAD_SHA256=15ebe098ce0392a2d06...
  RUN set -o errexit -o nounset \
      && echo "Downloading Gradle" \
45
      && wget --no-verbose --output-document=gradle.zip ... \
46
47
      && echo "Checking download hash" \
48
      && echo "${GRADLE_DOWNLOAD_SHA256} *gradle.zip" | sha256sum --check -
49
      && echo "Installing Gradle" \
51
      && unzip gradle.zip \
52
      && rm gradle.zip \
      && mv "gradle - ${GRADLE_VERSION}" "${GRADLE_HOME}/" \
54
      && ln --symbolic "${GRADLE_HOME}/bin/gradle" /usr/bin/gradle \
55
56
      && echo "Testing Gradle installation" \
57
      && gradle --version
```

1.4.2 Сборка подсистем отраслевой БД по ЭКБ КП

После успешного запуска всех необходимых служб с помощью задач в системе автоматической сборки «Gradle» [7] осуществляется сборка подсистем в строгом порядке, поскольку на каждом этапе определенная подсистема отправляет в удаленный репозиторий Nexus артефакты, требуемые для дальнейшего развертывания.

Основной модуль запускается с помощью «Apache Tomcat» – программы, представляющая собой сервер, который занимается системной поддержкой сервлетов и обеспечивает их жизненный цикл в соответствии с правилами, определёнными в спецификациях [8].

Развертывание программного комплекса на данном этапе завершена и программное обеспечение ПАК МОБД ЭКБ доступно по адресу, указанному в файле docker-compose для централизованного запуска служб приложения (листинг 1.1).

ЗАКЛЮЧЕНИЕ

Модернизируемая отраслевая БД по ЭКБ КП обеспечивает перевод бумажного документооборота в электронный вид. Поскольку стандарты документов меняются, а электронная компонентная база космического применения стремительно развивается, задачи модернизации, развития и поддержки программного обеспечения ЭКБ КП остаются актуальными. Автоматизация выкладки элементов программного комплекса значительно упростит процессы, связанные с перечисленными задачами.

Цель производственной, эксплуатационной практики достигнута – произведено развертывание программного обеспечения ПАК МОБД ЭКБ в рабочем окружении. Поставленные во введении задачи были достигнуты.

- 1. Изучено хранилище данных МОБД ЭКБ КП, выделены основные компоненты системы.
- 2. Изучены программные средства, с помощью которых реализован программный комплекс.
- 3. Обеспечен набор клиентских средств, позволивший произвести выкладку элементов программного комплекса в рабочем окружении.
- 4. Произведена упаковка зависимостей программного комплекса в локальном рабочем окружении.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гражданский кодекс РФ, ст. 1260.
- 2. CUBA Platform. Developer's Manual. URL: https://doc.cuba-platform.com/manual-latest/ (дата обр. 14.07.2022).
- 3. PostgreSQL: The World's Most Advanced Open Source Relational Database. URL: https://www.postgresql.org/ (дата обр. 14.07.2022).
- 4. Навигация по стабильным версиям. URL: https://www.jmix.ru/cuba-platform/framework/versioning/ (дата обр. 14.07.2022).
- 5. Sonatype documentation. URL: https://help.sonatype.com/docs (дата обр. 14.07.2022).
- 6. Docker docs. URL: https://docs.docker.com/ (дата обр. 14.07.2022).
- 7. Gradle User Manual. URL: https://docs.gradle.org/current/userguide/userguide.html (дата обр. 14.07.2022).
- 8. Apache Tomcat®. URL: https://tomcat.apache.org/ (дата обр. 14.07.2022).