

Parallel Programming Tutorial -Dependency Analysis

M.Sc. Andreas Wilhelm Technichal University Munich June 19, 2017

Solution for Assignment 5

Solution for Assignment 5 - Sections

- Parallelize the companytree algorithm with OpenMP sections
- Set the correct number of threads
 - use the runtime function omp_set_num_threads
- Enable nested parallelism
 - use the runtime function omp_set_nested
- Avoid oversubscription
 - Option 1: Use conditional parallelism by utilizing omp get level
 - Option 2: Use omp_set_max_active_levels

```
#define MAX NESTING LEVEL 8
void parallel traverse(tree *node) {
  if (node != NULL) {
    node->work hours = compute workHours(node->data);
    top work hours[node->id] = node->work_hours;
    #pragma omp parallel sections {
      #pragma omp section
      parallel traverse(node->right);
      #pragma omp section
      parallel traverse(node->left);
void traverse(tree *node, int numThreads) {
  omp set num threads( numThreads );
  omp_set_nested( 1 );
  omp_set_max_active_levels( MAX_NESTING_LEVEL );
  parallel_traverse(node);
```


Solution for Assignment 5 - Tasks

- Parallelize the companytree algorithm with OpenMP tasks
- Set the correct number of threads
 - use the clause num_threads
- Use a single thread to start the algorithm
- Optimization: Create only one task per recursion

```
void parallel traverse(tree *node) {
        if (node != NULL) {
          #pragma omp task
          parallel traverse(node->right);
          parallel_traverse(node->left);
          node->work hours = compute workHours(node->data);
          top work hours[node->id] = node->work hours;
void traverse(tree *node, int numThreads) {
        #pragma omp parallel num_threads( numThreads )
                #pragma omp single
                parallel traverse(node);
```


(Data) Dependency Analysis

Dependence Notation

• S1 and S2 are statements

Type	Meaning	Symbol	Alternative Symbols	Example
True dependence	RAW	S1 δ^t S2	δ , δ^f	S1: x=1
True dependence				S2: y=x
Antidependence	WAR	S1 δ^a S2	δ^{-1}	S1: y=x
				S2: x=1
Output dependence	WAW	S1 δ° S2		S1: x=1
Output dependence	V V /~\V V	310 32		S2: x=2

- RAW = "read after write"
- WAR = "write after read"
- WAW = "write after write"

Iteration Vector

- The iteration vector for a statement S in the loop is given by $\overrightarrow{i} = (i_1, i_2, \dots, i_n)$ where i_k , $(1 \le k \le n)$, represents the iteration number for the loop at nesting level k.
- The set of all possible iteration vectors for S is called *iteration space*.

Iteration Vector - Example

```
for (i = 1; i < 3; i++) {
   for (j = 1; j < 4; j++) {
     S: ...
}</pre>
```

• The iteration space of statement S is $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$

Data Dependence

Informal Definition

There is a data dependence from statement S_1 to statement S_2 (S_2 dependes on S_1), if and only if (1) both statements access the same memory location and at least one of them writes to it, and (2) there is a feasible run-time execution path from S_1 to S_2 .

Formal Definition

$$\exists M, S_1, S_2, \overrightarrow{i}, \overrightarrow{j}$$
:

- 1. $(\overrightarrow{i} < \overrightarrow{j})^1$ or $(\overrightarrow{i} = \overrightarrow{j})$ and there is a path from S_1 to S_2) ²³
- 2. S_1 and S_2 access M on \overrightarrow{i} and \overrightarrow{j} , respectively
- 3. One of these accesses is a write

¹called *loop-carried dependence*

²called *loop-independent dependence*

 $^{^{3}}$ The operations < and = are defined componentwise from left to right.

Distance Vector

Definition

- Suppose there is a dependence from statement S_1 on iteration \overrightarrow{i} of a loop nest to statement S_2 on iteration \overrightarrow{j}
- The distance vector is defined as $d(\overrightarrow{i}, \overrightarrow{j})_k = \left[d(\overrightarrow{i}, \overrightarrow{j})_1, \dots, d(\overrightarrow{i}, \overrightarrow{j})_N\right]$, where $d(\overrightarrow{i}, \overrightarrow{j})_k = j_k i_k$.

Example

```
The distance vector for the dependence S[(2,2,2)] \delta^t S[(3,1,2)] of the following loop nest is (1,-1,0). for (i = 1; i < N; i++) { for (j = 1; j < M; j++) { for (k = 1; k < L; k++) { S: A(i + 1, j - 1, k) = A(i,j,k) } }
```


Direction Vector

Definition

• Suppose there is a dependence from statement S_1 on iteration \overrightarrow{i} of a loop nest to statement S_2 on iteration \overrightarrow{j}

```
• Direction vector D(\overrightarrow{i}, \overrightarrow{j})_k = \begin{cases} \text{"<"}, & d(i,j)_k > 0 \\ \text{"="}, & d(i,j)_k = 0 \\ \text{">"}, & d(i,j)_k < 0 \end{cases}
```

Example

```
The direction vector for the dependence S[(2,2,2)] \delta^t S[(3,1,2)] of the following example is (<,>,=).
```

```
for (i = 1; i < N; i++) {
   for (j = 1; j < M; j++) {
     for (k = 1; k < L; k++) {
        S: A(i + 1,j - 1,k) = A(i,j,k)
     }
   }
}</pre>
```

The **level** of a loop-carried dependence is the index of the leftmost non-"=" of D(i,j).

Dependence Graphs

- Nodes: The statements of a program
- Edges: The dependences between the statements from the first executed statement to the following one
- Each edge is labeled with the dependence type and the nesting level

Example

```
for (i = 1; i < N; i++) {
   for (j = 1; j < M; j++) {
     S1:     A(i + 1,j) = B(i,j + 1)
     S2:     B(i,j) = A(i,j)
   }
}</pre>
```


Example 1

• Give the dependence graph for the following loop.

```
for (i = 0; i < N; i++) {
   S1: B(i) = A(i)
   S2: A(i) = A(i) + B(i + 1)
   S3: C(i) = 2 * B(i)
}</pre>
```

• Give the distance and direction vectors for the loop-carried dependencies.

Source	Sink	Dep.Type	Dist. Vector	Dir. Vector	

- Source, Sink: Specify the references in the form S1:B(i)
- Type: Loop-independent (I-i) or loop-carried dependence (I-c)
- Dep.Type: True-, Anti-, or Output-Dependence
- Vectors: n-Tuples where n is the depth of the loop nest

Solution for Example 1

```
for (i = 0; i < N; i++) {
   S1: B(i) = A(i)
   S2: A(i) = A(i) + B(i + 1)
   S3: C(i) = 2 * B(i)
}</pre>
```

Source	Sink	Dep.Type	Dist. Vector	Dir. Vector
S2: B(i + 1)	S1: B(i)	а	(1)	(<)

Example 2

• Give the dependence graph for the following loop.

```
for (i = 1; i < N; i++) {
   for (j = 1; j < M; j++) {
     S1: A(i) = B(i,j)
     S2: B(i,j) = B(i - 1,2 * j)
   }
}</pre>
```

• Give the distance and direction vectors for the dependencies.

Solution for Example 2

```
for (i = 1; i < N; i++) {
  for (j = 1; j < M; j++) {
    S1: A(i) = B(i,j)
    S2: B(i,j) = B(i - 1,2 * j)
  }
}</pre>
```

Source	Sink	Dep.Type	Dist. Vector	Dir. Vector
S1: A(i)	S1: A(i)	0	(0,*)	(=, *)
S2: B(i, j)	S2: B(i-1, 2*j)	t	(1,-j)	(<, >)

Example 3

• Give the dependence graph for the following loop.

```
for (i = 0; i < N; i++) {
   for (j = 0; j < M; j++) {
     S1: B(i - 1,j) = C(i,j - 2)
     S2: C(i,j) = 2 * B(i,j + 1)
   }
}</pre>
```

• Give the distance and direction vectors for the loop-carried dependencies.

Solution for Example 3

```
for (i = 0; i < N; i++) {
  for (j = 0; j < M; j++) {
    S1: B(i - 1,j) = C(i,j - 2)
    S2: C(i,j) = 2 * B(i,j + 1)
  }
}</pre>
```

Source	Sink	Dep.Type	Dist. Vector	Dir. Vector
S2: B(i, j+1)	S1: B(i-1, j)	а	(1,1)	(<, <)
S2: C(i, j)	S1: C(i, j-2)	t	(0,2)	(=, <)

Assignment 6

Assignment 6: Dependence Analysis

- 1. Download the exercise sheet in libreoffice calc format (.ods)
- 2. Open the exercise sheet (with enabled macros)
- 3. Find all dependences of the exercises and fill out the sheet
 - This time: fill out information about all dependences, not only the loop-carried dependences
- 4. Press the "Save as CSV" button to save the information to a .csv file on the same directry
- 5. Upload this .csv file at the submission page