#### 臺大醫學院研發分處 第一共同研究室顯微影像核心

零基礎的學生也能掌握基本顯微影像分析能力





2025 3.3-4.28 周一 13:30-14:30 共7堂 影像前處理、AI應用、自動化分析

#### 課程資訊 及 授課教師

2025/3/3(一) 【生物影像分析概論】 温榮崑 中央研究院 生化所 生物影像核心設施

2025/3/10(-) 【生物影像流程與小組討論編組】 許紹君 臺灣大學分子影像重點技術平台 助研究專家

> 2025/3/17(一) 【影像分析自動化】 日本理化學研究所

2025/3/24(一) 【互動式影像分析流程建立】 朱韋臣 中央研究院 細生所 公共儀器室影像組 專案研發學者

2025/3/31(一) 【物件追蹤分析】 黃紀穎 中央研究院 植微所 細胞核心實驗室光學顯微鏡組

2025/4/7(一) 【AI: 機器學習與深度學習工具介紹】 羅安琦 臺灣大學分子影像重點技術平台

2025/4/28(一) 小組發表 臺灣大學分子影像重點技術平台 助研究專家 朱韋臣 中央研究院 細生所共儀影像組 專案研發學者

協辦單位: 中央研究院 生物化學研究所 地點: 基務大樓講堂區 5 樓 未來教室 (原508教室)

#### 課程簡介

本課程將介紹生物影像的基本元素、如何利用FIJI 推行影像前處理、影像切割、特徵萃取、程式設 計與編程、互動式影像分析流程與GPU加速、 AI(機器學習與深度學習工具)、物件追蹤、常用的 資料庫以及如何分享自己的作品。將視報名人數 進行小組發表與討論,利用工作中學習的方式提

#### 課程目標

希望零基礎的學生參與課程後,都能具備基本分 析顯微影像的能力。

#### 上課須知

- 即日起開放報名,報名方式如下:
- 提供姓名, EMAIL, 任職/就學單位. 實驗室主
- 以一張A4篇幅文字說明實驗目的與欲解決的問 題,並以一張投影片頁面作為輔助材料。
- 課程會同步紀錄影音並於課後上傳至教學影音平台 每堂課皆會點名,上課出勤不得缺課超過一堂。
- 雲自備筆電。

招生人數:實體招收24人,線上30人。 報名截止日:額滿為止,恕不開放現場候補。



#### 上課注意事項:

- 1. 教室內禁止攜帶食物飲料入內,僅允許"白開水",請 大家將食物飲料放置於教室外的桌上。
- 2. 請實體與線上學員掃描以下QR code進行線上簽到。
- 3. 請線上學員於課程開始前關閉自己的麥克風。
- 4. 線上學員若有問題,請先按下"舉手",或於聊天室寫 下問題,將於課程結束後在場地時間允許下,安排QA 時間。
- 5. 現場學員發問時請使用麥克風才可進行收音。







線上簽到



分子影像重點技術平台



# AI機器學習與深度學習介紹



2025/4/11 An-Chi, Luo 羅安琦



### **Outline**

- About the Machine Learning (ML) & Deep Learning (DL)
  - Definitions and key differences
  - How models learn
- Relevance to Bio-Image Analysis (BIA)
  - Overview of commonly used tools
  - Platforms of ML and DL tools
- Three useful segmentation tools
  - Overview of Labkit, StarDist, and Cellpose

# What is Artificial Intelligence(AI)?



### **Definition of ML-Machine Learning**

#### What is the Machine Learning...

- ML uses algorithms to learn patterns from data for making predictions or decisions.
- ML allows systems to improve performance from experience without explicit programming.
- Feature extraction and classification are two independent steps.
- Feature extraction requires human participation.





### **Definition of ML-Machine Learning**

**How Machine Learning actually works...** 



Machine learning is a great tool, but feature extraction heavily relies on domain expertise, making it less flexible for complex or large-scale data...

### **Definition of DL-Deep Learning**

- DL is a subset of ML employing multiple layers of artificial neural networks (ANNs) to learn complex patterns from data and make predictions.
- Feature extraction is automatic and simultaneous with classification.



# **How Convolutional Neural Networks Work(CNN)?**



### **Definition of AI, ML, and DL-Deep Learning**

### **Supervised Learning**



#### Classification

- SVM
- k-NN
- Random Forest
- CNN



#### Regression

- Liner
- Polynomial
- SVR
- CNN



### **Unsupervised Learning**



#### **Dimensionality Reduction**

- PCA/SVD
- t-SNE
- UMAP
- Autoencoders

#### Clustering

- K-means
- Hierarchical
- DBSCAN
- OPTICS

#### **Anomaly Detection**

- One-class SVM
- GMM
- Isolation Forest
- Autoencoders

### Relevance to BIA

From the Perspective of Bioimage Analysis workflow

### **Raw Image**

**Image Preprocessing** 

| midge i representig        |                                           |                        |        |  |  |
|----------------------------|-------------------------------------------|------------------------|--------|--|--|
| Purpose                    | Tool                                      | Type / Platforms       | Images |  |  |
|                            | Content-Aware Image Restoration (CARE)    | DL / Fiji & ZeroCost.  | Any    |  |  |
| Denoising                  | Noise2Void                                | DL / Fiji & ZeroCost.  | Any    |  |  |
|                            | DenoiSeg                                  | DL/ Fiji               | Any    |  |  |
| Remove out-of-focus images | Microscope Image Focus Quality Classifier | DL/ Fiji & CellProfier | FL     |  |  |
| Super-resolution           | DeepSTORM                                 | DL/ ZeroCost.          | FL     |  |  |

Segmentation

|  | Purpose                    | Tool                        | Type / Platforms                                                           | Images          |
|--|----------------------------|-----------------------------|----------------------------------------------------------------------------|-----------------|
|  | Pixel level classification | Trainable WEKA segmentation | ML / Fiji                                                                  | BF, FL, TEM, LS |
|  |                            | Labkit                      | ML / Fiji                                                                  | Any             |
|  |                            | StarDist                    | DL/ Fiji & CellProfier & ZeroCost. & CellProfier & QuPath                  | BF, FL          |
|  | segmentation               | CellPose                    | DL/ Fiji & CellProfier & ZeroCost. & CellProfier & QuPath & GUI for Python | BF, FL          |
|  |                            | CDeep3M                     | DL/ ZeroCost. & Web GUI                                                    | ET, FL, SEM     |

### Relevance to BIA

**DATA** 

| Feature | Extraction | & | Data | Mining |
|---------|------------|---|------|--------|
|         |            |   |      |        |

| Purpose                                                 | Tool                             | Type / Platforms             | Images                    |
|---------------------------------------------------------|----------------------------------|------------------------------|---------------------------|
|                                                         | Trainable WEKA segmentation      | ML / Fiji                    | BF, FL, TEM, LS           |
| T an although take a marked                             | llastik                          | ML / Ilastik & Fiji          | BF, DIC, FL, PC, SEM, TEM |
| Turn objects into numerical data for clustering and     | CellProfiler Analyst             | ML/ CellProfiler             | Any                       |
| classification to capture explicit and latent features. | Orange                           | ML & DL / Orange             | FL                        |
| explicit and laterit reatures.                          | Svetlana                         | DL/ Python-Napari            | Any                       |
|                                                         | YAPiC                            | DL / Python & Fiji & Ilastik | Any                       |
| Object tracking                                         | TrackMate + Cellpose or StarDist | DL / Fiji                    | Any                       |
| Object tracking                                         | DeepTrack2                       | DL / Python                  | FL, BF                    |

### Other

| Purpose                              | Tool                            | Type / Platforms | Images      |
|--------------------------------------|---------------------------------|------------------|-------------|
| Image Cross-<br>modality translation | Label-free prediction (fnet) 3D | DL / ZeroCost.   | BF, EM      |
|                                      | CycleGAN                        | DL / ZeroCost    | BF(H&E), Ph |

ZeroCost: ZeroCostDL4Mic; BF: bright-field; FL: fluorescence; LS: light sheet; PC: phase contrast; SEM: scanning electron microscopy; TEM: transmission electron microscopy; Ph: phase contrast; DIC: differential interference contrast

### **User-friendly Platforms for ML and DL**



# **Powerful Segmentation Tools**

- LabKit
- StarDist
- CellPose







(c) Instance Segmentation



Encord. (2023, Month Day). *The ultimate guide to instance segmentation in computer vision*. Retrieved March 29, 2025, from <a href="https://encord.com/blog/instance-segmentation-guide-computer-vision/">https://encord.com/blog/instance-segmentation-guide-computer-vision/</a>

### Powerful Segmentation tool-LABKIT

### A Machine learning-based segmentation tool

- Labkit's labeling toolkit trains a random forest classifier with minimal annotation
- Suitable for visualization and interaction with big-volume data
- Easy to manual labeling and Macro recordable





### How to run LabKit



### **StarDist: Better Segmentation for Crowded Cells**

### A deep learning-based tool

- Work for fluorescence and H&E stain images
- Excel at segmenting crowded cells where traditional methods(e.g., Mask R-CNN) struggle
- Core Technology: Detection cell with Star-convex Polygons



#### Potential segmentation errors for Mask R-CNN





Merging of touching cells



Loss of valid cells



StarDist can do a better job!!

### The concepts behind StarDist

> Core Technology: Detection object with Star-convex Polygons



#### How does it work?

- StarDist predicts the Object probability(OP) and Radial distance map ...
- Object probability shows how likely a pixel is part of an object. (The higher values mean it closing to the center)
- Radial distance: the distance from each pixel to the edge of the target

Based on the local maxima of OP maps, StarDist predicts polygons for each object







### **How NMS refines predictions**





#### 目標: 去除重疊物件(NMS處理):

- 物件相鄰,重疊或過大可能導致模型不確定性,最終 產生重疊的多邊形(overlapping polygons)。
- 非極大值抑制(NMS) 依據 重疊率(IoU) 的閾值 來篩選 overlapping polygons · 保留置信度(mean object probability) 最高的 polygon · 並移除其他 polygon。



#### Non-Maximum-Suppression (NMS)





Remove all with Intersection over Union > Threshold





Threshold = 0.5

### **Segmentation Image with StarDist**

### **How to Open StarDist**



#### Step1. 選擇預訓練模型

- · Versatile (fluorescent nuclei)
- DSB 2018 (from StarDist 2D paper)



Versatile (H&E nuclei)





#### Step2. 調整NMS Postprocessing parameters

- Probability- Higher values lead to fewer segmented objects but will likely avoid false positives.
- Overlap Threshold- Higher values allow segmented objects to overlap substantially.
- -Manually adjust or click the button to load the default setting...



Outputs

### Things you need to remember...

- 1. Probability and Overlap Threshold control number and position of objects.
- 2. The size and shape of objects cannot be controlled by probability and overlap threshold.
- 3. StarDist doesn't work out on non-star-convex objects.
- 4. Cite the paper, if you are using the plugin in your research.

Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell Detection with Star-Convex Polygons. In *Lecture Notes in Computer Science* (pp. 265–273). Springer International Publishing. doi:10.1007/978-3-030-00934-2\_30

#### Star-Convex



#### Not Star-Convex



### Powerful Segmentation tool-Cellpose3.0

### A deep learning-based generalist segmentation tool

- Suitable for various image types (brightfield, fluorescence images, etc.)
- Full built-in models and other built-in models for different cell types
- Easy to do custom training: Fine-tune model with your own data
- Image restoration model for improving cellular segmentation
- Core Technology: Flow-based segmentation







### The concepts behind CellPose

### Core Technology: Flow-based segmentation

#### What is the Flow?

The flow is a vector that describes the direction and magnitude of each pixel's movement toward the cell center.

#### How does it work?

Cellpose predicts the cell probability map and flow fields, then traces back to the cell center to reconstruct the cell contours and generate a segmented cell mask.

**Training stage** 



Inference stage



### **How to run CellPose**



- Model Output: Cell probability(CP) & Flow Field(FF) map
  - The model predicts Flow Field and Cell Probability.
  - The segmented Mask is generated based on these outputs.
- Before Adjusting Parameters: Check FF& CP Maps!
  - If cells are missing in both FF & CP maps, parameter tuning won't help!!
  - Preprocess your images or retrain the model.
- Fine-tuning with Flow & Cellprob Threshold(FT amd CT)
  - Adjusting FT & CT can improve segmentation.



CP map



What is the Flow threshold(FT)?

- A parameter can be used to filter out unreliable cell contours after segmentation.
- It evaluates the reliability of the segmentation results through Root Mean Square Error(RMSE)
- Higher RMS indicates a mismatch between the cell outline and predicted Flow Field, allowing removal with Flow\_threshold(FT).





Range: 0.1to 3(Default: 0.4)

- FT 改變不太影響細胞輪廓,但是影響選到的細胞數。
- FT 越高,留下越多不穩定細胞,可能也保留部分錯誤偵測。
- FT 越低,僅保留高置信度的細胞,可能濾掉邊界模糊的真實細胞。

What is the Cellprob threshold(CT)?

- Cell Probability is a value that indicates the possibility of a pixel belonging to a cell.
- Cellprob threshold is a standard. Only pixels with cell probability higher than this threshold will be considered as part of the cell.





- CT 改變會影響細胞面積與數量。
- CT 越高,面積越小,可能會導致部分細胞無法被識別。
- CT 越低,面積越大,可能會選到更多背景,導致過度偵測。

#### What is the Norm percentile?

- Low contrast and High-intensity noise often cause problems for Cellpose.
- Norm percentile improves this issue by scaling the intensity values of the raw image to a specific range based on percentile thresholds.
- It improves the contrast and makes the segmented target area more obvious



### **Troubleshooting Cell Segmentation Errors**

#### 分割結果異常



### **Embedding CellPose on your ImageJ analysis pipeline**

"BIOP: A plugin that integrates various tools into the Java environment."



### Reference

#### Part I & II

Al ML DL in Bioimage Analysis webinar:

https://www.youtube.com/watch?v=TJXNMIWtdac&t=120s

Machine Learning for Pixel and Object Classification:

https://www.youtube.com/watch?v=dstjhCPBDOY&t=181s

• 【機器學習2021】卷積神經網路 (Convolutional Neural Networks, CNN):

https://www.youtube.com/watch?v=OP5HcXJg2Aw&t=2899s

- Jan M, Spangaro A, Lenartowicz M, Mattiazzi Usaj M. From pixels to insights: Machine learning and deep learning for bioimage analysis. *Bioessays*. 2024;46(2):e2300114. doi:10.1002/bies.202300114
- Ali M, Benfante V, Basirinia G, et al. Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues. *J Imaging*. 2025;11(2):59. Published 2025 Feb 15. doi:10.3390/jimaging11020059

### Reference

#### Part III -LabKit

• Labkit: Labeling and Segmentation Toolkit for Big Image Data:

https://www.youtube.com/watch?v=UZjZtmm7adU

• Arzt, M., Deschamps, J., Schmied, C., Pietzsch, T., Schmidt, D., Tomancak, P., ... Jug, F. (2022). LABKIT: Labeling and Segmentation Toolkit for Big Image Data. Frontiers in Computer Science, 4. doi:10.3389/fcomp.2022.777728

#### Part III-StarDist

Introduction to nuclei segmentation with StarDist - [NEUBIASAcademy@Home] Webinar:

https://www.youtube.com/watch?v=Amn\_eHRGX5M&t=2030s

• Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell Detection with Star-Convex Polygons. In Lecture Notes in Computer Science (pp. 265–273). Springer International Publishing. <a href="https://doi.org/10.1007/978-3-030-00934-2">doi:10.1007/978-3-030-00934-2</a> 30

#### Part III-CellPose

- Stringer C, Pachitariu M. Cellpose3: one-click image restoration for improved cellular segmentation. Nat Methods. 2025;22(3):592-599. doi:10.1038/s41592-025-02595-5
- Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18(1):100-106. doi:10.1038/s41592-020-01018-x

# Reference

- **→** Part III-CellPose
- Cellpose2: human-in-the-loop model training (2x speed)

https://www.youtube.com/watch?v=3Y1VKcxjNy4



課後意見調查









层 附錄:Segmentation 更深的理解(選讀)

### When Segmentation Cannot Be Fixed by Tuning....(1/2)

#### 情境

- 因為影像本身對比度太差,導致一顆細胞被過度分割成許多小片段
- 直徑大小(Diameter)和影像強度縮放範圍(Normalization Percentile)都已經設定合理
- 在 CellPose 中,單靠調參數也無法修復分割( Segmentation)

#### <u>狀況 1 - Over-segmentation</u>

☆ CellPose 無法「重新合併」分散的細胞碎片

- 原因:
  - 1. 細胞內部 flow 混亂,被預測出多個中心,導致分割破碎。
  - 2. FT 只能進行輪廓,也就是細胞層級篩選;而 CT 只能進行像素層級篩選。
  - 3. flow 無法透過 FT 與CT 改變, CellPose 亦無全局輪廓推理能力。

#### • 解法:

- 1. 提升影像品質(調整局部對比、去噪)
- 2. 後處理合併小片段
- 3. 換用更強的模型(如Omnipose)
- 4. 接受影像的自然限制
- 5. 模型再訓練

## When Segmentation Cannot Be Fixed by Tuning....(2/2)

#### 狀況 2 - Under-segmentation

☆ CellPose 無法「正確分開」連在一起的細胞。

#### • 原因:

- 1. 細胞內部 flow 混亂,兩顆顆細胞內部的 flow 無法形成清楚分開的收斂中心。
- 2. FT 主要篩選不穩定 segmentation ,無法新增正確邊界;而 CT 只能調整那些像素被保留。
- 3. flow 結構無法改變,預測錯誤是根本問題, CellPose 無法事後幫助兩顆細胞分離。

#### • 解法:

- 1. 提升影像品質(調整局部對比、去噪,讓模型能預測出兩個清楚中心)
- 2. 換用更強的模型(如Omnipose)
- 3. 後處理手動切割(針對少數錯誤合併物件)
- 4. 接受影像的自然限制
- 5. 模型再訓練

#### **ॐ** 總結:

- 大部分 segmentation 問題,都是「預測錯誤」+「參數篩選失當」雙重造成。
- 明確區分 pixel 層級錯誤 與 細胞層級篩選錯誤,是理解和改善結果的關鍵。
- 熟悉原理,才能真正理解模型的極限與可能。不只是調參,而是能夠自主判斷問題與選擇最佳解法。