CSCI 2210: Theory of Computation

Problem Set 1 (due 09/16)

Student: Rafael Almeida

Collaborators:

 \Diamond

 \Diamond

 \Diamond

This is a read-only document but overleaf gives you an option to create your own copy or download the source. Note the following key parts of the template that you must include: you must fill in your name and **your collaborators** in the "homework" command right after begin{document}.

Problem 1. Let A be the set $\{a, b, c\}$ and B be the set $\{a, c\}$.

(a) Is A a subset of B, that is, is $A \subseteq B$? Is $B \subseteq A$?

No, element it in A is not in B

Yer, all elements of B are in A.

(b) What is $A \cup B$ and $A \cap B$?

AUB: fa, b, c}

An B: {a,c}

(c) What is the power set of B?

{ {a,c}, {a}, {c}, {c}, \$

(d) What is $A \times B$? How many elements are in $A \times B$?

 $A \times B = \{ \{a, a\}, \{a, c\}, \{b, a\}, \{b\}, c\} \}$ $\{c, a\}, \{c, c\} \}$

 $1 A \times B1 = 6$

(e) In general, if a set A had n elements and B had m elements, how many elements would be in $A \times B$? Explain your answer.

1 A x B 1 = m · m clerause ony element in A former m tupler with elements from set B. Problem Set 1 2

 \Diamond

Problem 2. Determine the type (one-one, onto, or bijection) of the following functions. Briefly explain your answer.

Not injective because if (3):12 and if (-3):12 and (-3):12 and (-3):12 and (a) $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2 + 3$

Not surjective clucaure the x that satisfies $0 = x^2 + 3$ is not in R \Diamond

(b) $f: \mathbb{R} \to \mathbb{R}$ where f(x) = 3x + 5

Injective decoure if you draw a horizontal cline on the graph of of (x), it will only over intersed & (x) once.

Luyeitre devaure for a de in R, $\frac{16-5}{3}$ is in RBy intime because it is injective and surgetive (c) $f: \mathbb{N} \to \mathbb{R}$ where $f(x) = \frac{1}{x+5}$

byective because of (x) only outputs one answer for each input

Not surjetive clarause no natural number injusted to of (x) outputs

 \Diamond

 \Diamond

Problem 3. Consider the following proof that 2=1. Find the error in this proof, i.e., find the invalid step that leads to a conclusion that is not true.

Consider numbers a and b and the equation a = b. Multiply both sides by a to obtain $a^2 = ab$. Subtract b^2 from both sides to get $a^2 - b^2 = ab - b^2$. Now factor each side, (a+b)(a-b) = b(a-b), and divide each side by (a-b) to get a+b=b. Finally, let a and b equal 1, which shows that 2 = 1.

(f a, le = 1 then (a-le) = 0. The step where you divide ele (a - b) er involed.

Problem Set 1 3

Problem 4. List each string of length 3 or less that is accepted by the following DFA:

 \Diamond

 \Diamond

Problem 5. Consider the DFAs M_1 and M_2 in Figure 1.

Figure 1: DFAs for Problem 5

(a) Are the following strings accepted or rejected by each M_1 and M_2 ? [ε] aabb; babaa, ababba M_1 M_2 M_3 M_4 M_5 M_5 M_6 M_1 and M_2 .

(b) Describe in English the languages of M_1 and M_2 . M_1 : Ends in an odd # of consecutive A_1 : M_1 : M_2 : M_3 M_4 : M_5 M_6 M_6 M_7 M_8 M_8

Problem Set 1

 \Diamond

 \Diamond

 \Diamond

 \Diamond

4

Problem 6. Design a finite state machine to recognize each of the following languages. In all cases the alphabet is $\Sigma = \{a, b\}$.

(a) $L_a = \{ w \mid w \text{ contains exactly three } b$'s $\}$.

(b) $L_b = \{w \mid w \text{ starts with } a \text{ and has odd length, or starts with } b \text{ and has even length}\}.$

(c) $L_c = \{ w \mid w \text{ does not contain the substring } bab \}.$

(d) $L_d = \{w \mid w \text{ contains at least two } a$'s that are not immediately followed by $b\}$.

Problem Set 1 5

