PROBABILITY

Analytics Primer

BASICS

Probability

 The probability that an event happens is a numerical measure of the likelihood of that event's occurrence.

Probability

- The probability that an event happens is a numerical measure of the likelihood of that event's occurrence.
 - Probabilities are numbers between 0 and 1.
 - Percentages are numbers between 0 and 100.
- Sample space: the collection of all possible outcomes in a random process.
 - Sum of all probabilities for an experiment must sum to
 1.

Events

- An event is a collection of one or more outcomes from a process whose result cannot be predicted with certainty.
- The probability of an event A is denoted, P(A).
- Example: When rolling a fair dice, what is the probability of rolling a 6?

BASIC PROBABILITY RULES

Basic Relationships

- There are some basic probability relationships that still can be used to calculate the probability of an event occurring:
 - Complement of an Event
 - Union of Two Events
 - Intersection of Two Events
 - Mutually Exclusive Events

Complement of an Event

- The **complement** of an event *A* is defined to be the event consisting of all sample points that are not in *A*.
- The complement of A is denoted by either A^c or \bar{A} .

Union of Two Events

- The union of an event A and an event B is the event containing all sample points that are in A or B or both.
- The union of A and B is denoted by $A \cup B$.

Union of Two Events

- The union of an event A and an event B is the event containing all sample points that are in A or B or both.
- The union of A and B is denoted by $A \cup B$.

Intersection of Two Events

- The intersection of an event A and an event B is the event containing all sample points that are in both A and B.
- The intersection of A and B is denoted by $A \cap B$.

Addition Law

 The addition law provides a way to compute the union of events A and B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$OR$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Mutually Exclusive Events

- Two events are mutually exclusive if the events have no sample points in common – do not intersect.
- This also means that the events cannot both occur. If one event occurs, the other cannot.

Addition Law – Mutually Exclusive Events

 The addition law provides a way to compute the union of events A and B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If two events are mutually exclusive they do not intersect.

$$P(A \cup B) = P(A) + P(B)$$

Conditional Probabilities

- The probability of an event given that another event has occurred is called a conditional (or joint) probability.
- The conditional probability of A given that B has already occurred is denoted by P(A|B).

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication Law

 The multiplication law provides a way to compute the probability of the intersection of two events as long as you know the conditional probabilities:

$$P(A \cap B) = P(A|B) \times P(B)$$
OR

$$P(A \cap B) = P(B|A) \times P(A)$$

Independent vs. Dependent

- Independent event two events are independent if the occurrence of one event doesn't influence the probability of the occurrence of the other event
- Dependent event two events are dependent if the occurrence of one event impacts the probability of the occurrence of the other event.

Independent vs. Dependent

- Independent event two events are independent if the occurrence of one event doesn't influence the probability of the occurrence of the other event
- Dependent event two events are dependent if the occurrence of one event impacts the probability of the occurrence of the other event.
 - Mutually Exclusive Special case of dependent events; Two events are mutually exclusive if the occurrence of one event precludes the occurrence of a second event.

Independent Events

 If the probability of an event A is not changed by the existence of event B, then the two events are called independent.

$$P(A|B) = P(A)$$
 OR $P(B|A) = P(B)$

Multiplication Law – Independent Events

 The multiplication law provides a way to compute the probability of the intersection of two events as long as you know the conditional probabilities:

- Marginal probabilities can be thought of as unconditional probabilities – just probabilities of events without any condition.
- For example, let's look at promotion of people at a company with advanced degrees vs. those who don't have them.

	Adv. Degree - YES	Adv. Degree - NO	Total
Promoted	288	36	324
Not Promoted	672	204	876
Total	960	240	1200

- Marginal probabilities can be thought of as unconditional probabilities – just probabilities of events without any condition.
- For example, let's look at promotion of people at a company with advanced degrees vs. those who don't have them.

	Adv. Degree - YES	Adv. Degree - NO	Total	
Promoted	288	36	324	
Not Promoted	672	204	876	
Total	960	240	1200	

$$P(Adv.Degree) = \frac{960}{1200} = 0.8$$

- Marginal probabilities can be thought of as unconditional probabilities – just probabilities of events without any condition.
- For example, let's look at promotion of people at a company with advanced degrees vs. those who don't have them.

	Adv. Degree - YES	Adv. Degree - NO	Total	
Promoted	288	36	324	
Not Promoted	672	204	876	
Total	960	240	1200	

$$P(Promotion) = \frac{324}{1200} = 0.27$$

- Marginal probabilities can be thought of as unconditional probabilities – just probabilities of events without any condition.
- For example, let's look at promotion of people at a company with advanced degrees vs. those who don't have them.

	Adv. Degree - YES	Adv. Degree - NO	Total
Promoted	288	36	324
Not Promoted	672	204	876
Total	960	240	1200

$$P(Promotion|No\ Adv.Degree) = \frac{36}{240} = 0.15$$

- Marginal probabilities can be thought of as unconditional probabilities – just probabilities of events without any condition.
- For example, let's look at promotion of people at a company with advanced degrees vs. those who don't have them.

	Adv. Degree - YES	Adv. Degree - NO	Total	
Promoted	288	36	324	
Not Promoted	672	204	876	
Total	960	240	1200	

$$P(Promotion|Adv.Degree) = \frac{288}{960} = 0.30$$

Number of Credit Cards Per Age Group

	Age Group				
Credit Cards	20 - 29	30 - 39	40 - 49	50+	Total
0	56	24	33	97	21 0
1 - 2	182	273	187	387	1029
3 - 4	147	358	413	212	1130
5 - 6	65	195	154	157	571
7 - 8	32	101	98	88	319
9+	10	67	123	11	211
Total	492	1018	1008	952	3470

- Determine the probability of the following:
 - Person is between the age of 20-29 and owns 3-4 credit cards

2. Person is between the age of 20-29 or owns 3-4 credit cards

- Determine the probability of the following:
 - 1. Person is between the age of 20-29 and owns 3-4 credit cards

$$\frac{147}{492} \times \frac{492}{3470} = \frac{147}{3470} = 0.0424$$

2. Person is between the age of 20-29 or owns 3-4 credit cards

$$\frac{492}{3470} + \frac{1130}{3470} - \frac{147}{3470} = \frac{1475}{3470} = 0.4251$$

- Determine the probability of the following:
 - 3. Person owns 5-6 credit cards

4. Person owns at least one credit card

- Determine the probability of the following:
 - 3. Person owns 5-6 credit cards

$$\frac{571}{3470} = 0.1646$$

4. Person owns at least one credit card

$$1 - \frac{210}{3470} = \frac{3260}{3470} = 0.9395$$

- Determine the probability of the following:
 - 5. Person owns 1-2 credit cards given they are between the age of 30-39

6. Person is above the age of 40 given they own 9 or more credit cards

- Determine the probability of the following:
 - 5. Person owns 1-2 credit cards given they are between the age of 30-39

$$\frac{273}{1018} = 0.2682$$
 OR $\frac{\left(\frac{273}{3470}\right)}{\left(\frac{1018}{3470}\right)} = 0.2682$

6. Person is above the age of 40 given they own 9 or more credit cards

$$\frac{123 + 11}{211} = 0.635$$