第一周作业提示

1. 如果按以下做法, 可以不必讨论等号成立的条件.

证明. n=1 时显然成立.

如果 $x_i = 0$, 则 $(1 + x_i) = 1$, 且对任意 j, 都有 $x_i x_j = 0$, 而原不等式左右两边变成了

$$(1+x_1)\cdots(1+x_{i-1})(1+x_{i+1})\cdots(1+x_n) \ge 1+x_1+\cdots+x_{i-1}+x_{i+1}+\cdots+x_n$$

相当于少了一个变量. 所以只需证明以下命题即可: 设 $n \geq 2, x_1, \ldots, x_n \in (-1,0) \cup (0,\infty)$, 且 $\forall i,j, x_i x_j > 0$, 则有

$$(1+x_1)\cdots(1+x_n) > 1+x_1+\cdots+x_n.$$

对 n 归纳证明.

假设命题对 n 成立. 对 n+1, 根据归纳假设, 我们有:

$$(1+x_1)\cdots(1+x_n)(1+x_{n+1}) > (1+x_1+\cdots+x_n)(1+x_{n+1})$$

$$= 1+x_1+\cdots+x_n+x_{n+1}+x_{n+1}x_1+\cdots+x_{n+1}x_n$$

$$> 1+x_1+\cdots+x_n+x_{n+1}.$$

于是原命题得证.

令 $x_1 = \cdots = x_n = x$, 则可以得到经典 Bernoulli 不等式.

如果没有按上述方法, 而是先用归纳法证明了"≥", 再讨论等号成立的条件, 就需要仔细写清楚, 分类讨论各种情况.

- 2. (1) 在 Bernoulli 不等式中令 $x = \frac{a-b}{b(k+1)}, n = k+1$ 即可.
- (2) 第一个不等号,在第一小问里令 $a=1,\,b=1+\frac{1}{n}$ 即可. 第二个不等号显然. 第三个不等号,令 $a=1,\,b=\frac{n}{n+1}$,幂指数取 k=n+1 即可.

注意,不要使用求导. 只能用已学过的知识进行证明, 否则容易造成循环论证.

- 3. 归纳证明. n=1 时显然, 假设对 n 成立, 则对 n+1, 在给定不等式里令 $a=x_{n+1}, b=\frac{x_1+\cdots+x_n}{n}$ 即可完成证明.
- 4. 注意不要跳步. 按已知的定义和定理进行证明. 以下是示范:

证明. 必要性:

假设 α 是 A 的上确界. 则 α 是 A 的上界, 所以任意实数 $r > \alpha$ 都是 A 的上界, 特别地, 任意有理数 $q > \alpha$ 也都是 A 的上界.

另外,根据上确界的定义, α 是 A 的最小上界,即任意实数 $r < \alpha$ 都不是 A 的上界.特别地,任意有理数 $q < \alpha$ 都不是 A 的上界.

充分性:

假设 $\alpha \in \mathbb{R}$ 满足: (1) 任意大于 α 的有理数都是集合 A 的上界; (2) 任意小于 α 的有理数都不是集合 A 的上界.

先证明 α 是 A 的上界. 不然, 存在实数 $a \in A$, 使得 $a > \alpha$. 根据有理数的稠密性, 存在 $q \in \mathbb{Q}$ 使得 $\alpha < q < a$, 故 q 不是 A 的上界, 但这与 (1) 相矛盾! 所以假设不成立, α 是 A 的上界.

再证明 α 是 A 的上确界. 不然, 存在 A 的上界 $u \in \mathbb{R}$, 使得 $u < \alpha$. 根据有理数的稠密性, 存在 $q \in \mathbb{Q}$ 使得 $u < q < \alpha$, 因此 q 也是 A 的上界, 但这与 (2) 相矛盾! 所以假设不成立, α 的确是 A 的上确界.

5. 请按定义证明.

注意到

$$\frac{(1+x)^2 - 1}{x} = 2 + x.$$

对任意 $\varepsilon > 0$, 取 $\delta = \varepsilon$, 则对任意 $x \in (-\delta, 0) \cup (0, \delta)$, 都有

$$\left| \frac{(1+x)^2 - 1}{x} - 2 \right| = |x| < \varepsilon,$$

故

$$\lim_{x \to 0} \frac{(1+x)^2 - 1}{x} = 2.$$

6. 与上一题同理. 注意到

$$\frac{(1+x)^m - 1}{x} \frac{1}{x} \sum_{k=1}^m C_m^k x^k = m + \sum_{k=1}^{m-1} C_m^{k+1} x^k.$$

对任意 $\varepsilon > 0$, 取

$$\delta = \min \left\{ \sqrt[k]{\frac{\varepsilon}{(m-1)C_m^{k+1}}} : k = 1, \dots, m-1 \right\},\,$$

则对 $k=1,\cdots,m-1$, 以及 $x\in (-\delta,0)\cup (0,\delta)$, 都有

$$|C_m^{k+1}x^k| \le \frac{\varepsilon}{m-1},$$

故

$$\left| \frac{(1+x)^m - 1}{x} - m \right| \le \sum_{k=1}^{m-1} |C_m^{k-1} x^k| \le \varepsilon.$$

所以

$$\lim_{x \to 0} \frac{(1+x)^m - 1}{x} = m.$$

(或者用极限的四则运算法则也可以,因为要求极限的项是一个多项式,说明每一个单项式的极限后将其累加起来.)

7. 上下同除 $(1+x)^m$, 再利用极限的四则运算法则和上一题的结论. 答案为 m.

9. 与上题相同.

10. 任取 $\varepsilon > 0$. 根据有理数的稠密性, 一定存在有理数 q_1, q_2 , 使得

$$\alpha - \frac{\varepsilon}{2} < q_1 < \alpha < q_2 < \alpha + \frac{\varepsilon}{2}.$$

先考虑 x > 0 的情况. 此时 $r \mapsto (1+x)^r$ 严格单调增, 故

$$\frac{(1+x)^{q_1}-1}{x} < \frac{(1+x)^{\alpha}-1}{x} < \frac{(1+x)^{q_2}-1}{x}.$$

我们已经证明了对任意 $q \in \mathbb{Q}$, 都有

$$\lim_{x \to 0} \frac{(1+x)^q - 1}{x} = q,$$

因此存在 $\delta_1 > 0$, 使得对于任意 $x \in (0, \delta_1)$, 都有

$$\left|\frac{(1+x)^{q_i}-1}{x}-q_i\right|<\frac{\varepsilon}{2},\quad i=1,2,$$

因此

$$-\varepsilon < \frac{(1+x)^{q_1} - 1}{x} - (q_1 + \frac{\varepsilon}{2}) < \frac{(1+x)^{\alpha} - 1}{x} - \alpha < \frac{(1+x)^{q_2} - 1}{x} - (q_2 - \frac{\varepsilon}{2}) < \varepsilon.$$

同理, 考虑 x < 0 的情况时, 根据映射 $r \mapsto (1+x)^r$ 在 $(-\infty,0)$ 上的单调减性, 我们可以找到 $\delta_2 > 0$, 使得对任意 $x \in (-\delta_2,0)$, 都有

$$-\varepsilon < \frac{(1+x)^{\alpha}-1}{r} - \alpha < \varepsilon.$$

取 $\delta = \min\{\delta_1, \delta_2\}$, 则对任意 $0 < |x| < \delta$, 都有

$$\left| \frac{(1+x)^{\alpha} - 1}{x} - \alpha \right| < \varepsilon,$$

所以

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha.$$

选做题:

证明. 由假设, 存在 $a_0 \in A$, $b_0 \in B$, 且 $a_0 > 0$, $b_0 > 0$. 根据定义, $a_0b_0 \in AB$, 所以 AB 非空. 注意到 $\sup A > 0$, $\sup B > 0$. 根据确界的刻画, 对任意 $\varepsilon > 0$, 存在 $a \in A$, $b \in B$ 使得 $a > \sup A - \varepsilon$, $b > \sup B - \varepsilon$. 取 ε 充分小, 使得 a > 0, b > 0, 则 $ab \in AB$, 且

$$\sup AB \ge ab > (\sup A - \varepsilon)(\sup B - \varepsilon) = \sup A \sup B - \varepsilon(\sup A + \sup B - \varepsilon).$$

由于 $\varepsilon(\sup A \sup B - \varepsilon)$ 可以取任意小, 所以

$$\sup AB \ge \sup A \sup B.$$

另一方面, 对任意 $c \in AB$, 都存在 $a \in A$, $b \in B$, a > 0, b > 0, 使得 $c \le ab$, 所以 $c \le \sup A \sup B$. 由于 c 是在 AB 中任取的, 所以

$$\sup AB \le \sup A \sup B.$$

综上,

$$\sup AB = \sup A \sup B.$$

以上证明使用了如下两个基本事实:

- (1) 如果对任意 $\varepsilon > 0$, 都有 $a < \varepsilon$, 则 $a \le 0$;
- (2) 如果 $a \le b, b \le a,$ 那么 a = b.

前一条命题告诉大家如何得到一个估计 (不等式); 后一条告诉大家如何从充分的估计中得到一个等式. 这两条是分析学最基础的思想,可以说微积分里几乎所有概念和想法 (包括大家刚学的极限定义) 都是这两条的延伸和变形.