Du capteur à la mesure : rapport de projet

Introduction

À venir. GitHub repo ici

Analyse de la datasheet du capteur OP599

Le capteur OP599 est un phototransistor qui est sensible aux longueurs d'onde infrarouges. L'avantage du phototransistor par rapport à la photodiode est qu'il est facilement possible de récupérer une tension en sortie sans composants actifs additionnels. Nous disposons de la variante OP599A.

Caractéristiques mécaniques

- Package T-1¾ avec base TO-18 (2 fils).

 Le package est l'apparence physique du composant, permettant de prévoir son montage dans le circuit. Ici, les deux fils du capteur sont espacés de 2.54mm, ce qui est l'espacement de pins standard sur une breadboard ou une Arduino.
- Angle de réception directif de 20 degrés (10 degrés de chaque côté du centre).
 - Il sera nécessaire de placer la partie bombée du capteur bien en face de l'émetteur.
- Le schéma et la photo montrent que le package est asymétrique et que le fil le plus long, du côté du rebord saillant, sera l'émetteur (pin 1) et l'autre le collecteur (pin 2) du phototransistor.

Information indispensable pour monter le capteur dans le bon sens.

Caractéristiques électroniques

- Valeurs limites de voltage :
 - Collecteur-émetteur : 30V.
 Collecteur vers la tension d'alimentation, émetteur vers la masse.
 Nous utiliserons ce montage.
 - Émetteur-collecteur : 5V. Émetteur vers la tension d'alimentation, collecteur vers la masse.
- Ampérage consommé par le transistor en condition d'éclairage maximal :

$$I_{C(on)} \begin{cases} min = 2.35 \text{ mA} \\ max = 3.85 \text{ mA} \end{cases}$$

Sera utile pour dimentionner la résistance à utiliser dans le circuit

du capteur. Nous pourrons aussi utiliser le graphique 2 de la partie performance de la datasheet (voir en annexe).

- Ampérage consommé par le transistor en condition d'éclairage minimal : $I_{CEO}=100~\mathrm{nA}$
 - Ne consomme presque aucun courant dans le noir
- Réponse spectrale typique : plus de 80% de réponse relative entre 750 et 950 nm.
 - L'émetteur produit justement un pic vers 850 nm, là ou la réponse est idéale (c'est donc un capteur adapté).
- Voltage de saturation minimal : $V_{CE(SAT)}=0.40~{\rm V}$ Nous utiliserons une alimentation 3.3V ou 5V donc suffisante pour saturer le transistor

Figure 1: Montage de type 1

Figure 2: Montage de type 2

Le transistor intégré est un NPN et il sera passant quant le capteur sera éclairé en infrarouge. Si l'on veut que la tension perçue en sortie monte quand le capteur est éclairé il faudra utiliser le montage de type 1, si l'on veut qu'elle baisse, on utilisera le type 2.

NPN Silicon Phototransistor

OP599 Series

Features:

- Dark blue injection-molded plastic package
- · Variety of sensitivity ranges
- T-1¾ package style with TO-18 base
- Excellent optical lens surface
- Excellent chip placement

Description:

Each device in this series consists of a NPN silicon phototransistor mounted in a dark blue plastic injection molded shell package, with a narrow receiving angle that provides excellent on-axis coupling and optical/mechanical axis alignment. The shell also provides excellent optical lens surface, control of chip placement and consistency of the outside package dimensions.

The OP599 series sensors are 100% production tested for close correlation with OPTEK GaAIAs emitters.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:

- Applications requiring a narrow receiving angle
- Applications that are space-limited

Ordering Information								
Part Number	Sensor	Viewing Angle	Lead Length					
OP599A								
ОР599В	Transistor	20°	0.75"					
OP599C								

DIMENSIONS ARE IN: $\frac{[MILLIMETERS]}{INCHES}$

Pin #	Sensor
1	Emitter
2	Collector

CONTAINS POLYSULFONE

To avoid stress cracking, we suggest using ND Industries' **Vibra-Tite** for thread-locking. **Vibra-Tite** evaporates fast without causing structural failure in OPTEK'S molded plastics.

NPN Silicon Phototransistor

OP599 Series

Electrical Specifications

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)		
Storage and Operating Temperature Range	-40° C to +100° C	
Collector-Emitter Voltage	30 V	
Emitter-Collector Voltage	5 V	
Continuous Collector Current	50 mA	
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ⁽¹⁾	
Power Dissipation	100 mW ⁽²⁾	

Electrical Characteristics (T _A = 25° C unless otherwise noted)							
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
	On-State Collector Current						
	OP599A	2.35	-	3.85	mA	See Note (3).	
I _{C(ON)}	OP599B	1.20	-	1.95	mA	see Note (5).	
	OP599C	0.40	-	-	mA		
I _{CEO}	Collector-Dark Current	-	-	100	nA	V _{CE} = 10.0 V, E _E = 0	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	30	-	-	V	Ι _C = 100 μΑ	
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0	-	-	V	I _E = 100 μA	
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	-	-	0.40	V	$I_C = 100 \mu A, E_E = 0.25 \text{ mW/cm}^{2(3)}$	

Notes:

- 1. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum 20 grams force may be applied to the leads when soldering.
- 2. Derate linearly 1.33 mW/° C above 25° C.
- 3. $V_{CE} = 5 \text{ V}$. Light source is an unfiltered GaAlAs emitting diode operating at peak emission wavelength of 890 nm and $E_{E(APT)}$ of 0.25 mW/cm².
- 4. This dimension is held to within ±0.005" on the flange edge and may vary up to ±0.020" in the area of the leads.

Issue A 08/2016 Page 2

NPN Silicon Phototransistor

OP599 Series

Performance

Typical Spectral Response

