Адверсариальный подход к дистилляции моделей глубинного обучения при помощи их весов

Колесов Александр, Бахтеев Олег

Московский физико-технический институт(ГУ)

Москва 2021 май

Формальная постановка задачи

Задача: Рассматривается задача многоклассовой классификации.

1. Моделью глубокого обучения будем называть дифференцируемую по параметрам w функцию f(w,x) из множества признаковых описаний объекта во множество меток:

$$f: \mathbb{W} \times \mathbb{X} \to \mathbb{Y}$$

Где $\mathbb W$ - это пространство параметров функции f

2. Модели глубокого обучения f и g называются **неоднородными** , если число скрытых слоев этих моделей или число нейронов в них не эквивалентны друг другу.

Имеются две неоднородные модели глубокого обучения $f(w_t, x)$ и $g(w_s, x)$, именуемые "модель учитель пространство параметров которой является заранее оптимизированным, и "модель студент"с неоптимальным элементом s из пространства собственных параметров соответсвенно.

Формальная постановка задачи

- 1. Задано параметрическое распределение \mathbf{q}_t , моделирующеее выходы промежуточных слоев или их скрытые представления "модели учителя включая логиты данной сети
- 2. Задано параметрическое распределение ${f q}_s$, моделирующее выходы промежуточных слоев или их скрытые представления "модели студента включая логиты данной сети
- 3. Задана параметрическая модель классификации D_{θ} , где θ это элемент пространства параметров дискриминатора, призванного разделять скрытые представления двух заданных неоднородных моделей (в частности, логиты этих сетей).

Двухуровневая задача оптмизации

Ставится задача двухуровневая задача оптмизации:

$$\theta^* = \arg\min_{\theta} (\mathbb{E}_{t \sim q_t(x, w_t)} \log \mathbb{D}_{\theta}(t(x, w_t)) + \mathbb{E}_{s \sim q_s(x, w_s)} \log(1 - \mathbb{D}_{\theta}(s(x, w_s))))$$

$$w_s^* = \arg \max_{w_s} \mathbb{E}_{s \sim q_s(x, w_s)} \mathbb{D}_{\theta^*}(s(x, w_s)) - \sum_k \mathcal{L}(y_k | g(w_s, x_k))$$

Где $\mathcal{L}(y_k|g(w_s,x_k))$ - это ошибка модели на объекте x_k .

Рис.: Вероятность логитов "студента"и "учителя"при адверсариальном обучении

Результаты экспериментов на CIFAR-10

Рис.: Точность студента на валидации, обученного при помощи нашего метода и при помощи кросс-энтропии

Модель Хинтона

Рис.: Сравнение модели Хинтона и адверсариальной моделей