EECS 545: Machine Learning Lecture 5. Classification 2

Honglak Lee 1/27/2025

Outline

- Probabilistic Discriminative models
 - Objective: maximize conditional likelihood over training data

$$\prod_{i} P(y^{(i)}|\mathbf{x}^{(i)},\mathbf{w})$$

- Logistic Regression (covered in previous lecture)
- Softmax Regression: Multiclass extension of logistic regression
- Probabilistic Generative models
 - Objective: maximize joint likelihood over training data

$$\prod_{i} P(\mathbf{x}^{(i)}, y^{(i)}|\mathbf{w})$$

- Gaussian Discriminant Analysis
- Naive Bayes (part 1)

2

Softmax regression for multiclass classification

- For multiclass case, we can use softmax regression.
 - Softmax regression can be viewed as a generalization of logistic regression
- Recall that, logistic regression (binary classification) models class conditional probability as:

$$p(y = 1 \mid \mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}^{\top} \phi(\mathbf{x}))}{1 + \exp(\mathbf{w}^{\top} \phi(\mathbf{x}))}$$
$$p(y = 0 \mid \mathbf{x}; \mathbf{w}) = \frac{1}{1 + \exp(\mathbf{w}^{\top} \phi(\mathbf{x}))}$$

- Note that these probability sum to 1.
- For multiclass classification (with K classes), we use the following model

$$p(y = k \mid \mathbf{x}; \mathbf{w}) = \frac{\exp(\mathbf{w}_k^\top \phi(\mathbf{x}))}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^\top \phi(\mathbf{x}))}$$
$$p(y = K \mid \mathbf{x}; \mathbf{w}) = \frac{1}{1 + \sum_{k=1}^{K-1} \exp(\mathbf{w}_k^\top \phi(\mathbf{x}))}$$

for
$$k = \{1, \dots, K - 1\}$$

Note that these probability sum to 1

Last updated: 2/5/2025 12pm

Softmax regression: Log-likelihood (objective function) and learning

• Defining $\mathbf{w}_K = 0$, we can write as:

$$p(y = k \mid \mathbf{x}; \mathbf{w}) = \frac{\exp\left(\mathbf{w}_k^{\top} \phi(\mathbf{x})\right)}{\sum_{j=1}^{K} \exp\left(\mathbf{w}_j^{\top} \phi(\mathbf{x})\right)}$$
or
$$p(y \mid \mathbf{x}; \mathbf{w}) = \prod_{k=1}^{K} \left[\frac{\exp\left(\mathbf{w}_k^{\top} \phi(\mathbf{x})\right)}{\sum_{j=1}^{K} \exp\left(\mathbf{w}_j^{\top} \phi(\mathbf{x})\right)} \right]^{\mathbb{I}(y=k)}$$

· Log-Likelihood

$$\begin{split} \log p(D|\mathbf{w}) &= \sum_{i} \log p(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w}) \\ &= \sum_{i} \log \prod_{k=1}^{K} \left[\frac{\exp \left(\mathbf{w}_{k}^{\top} \phi(\mathbf{x}^{(i)})\right)}{\sum_{j=1}^{K} \exp \left(\mathbf{w}_{j}^{\top} \phi(\mathbf{x}^{(i)})\right)} \right]^{\mathbb{I}(y^{(i)} = k)} \end{split}$$

 We can learn w by gradient ascent for maximizing the log-likelihood or iterative Newton's method (IRLS).

Probabilistic Generative Models

Learning the Classifier

- For classification, we want to compute $p(C_k \mid \mathbf{x})$
 - (a) **Discriminative** models: Directly model $p(C_k \mid \mathbf{x})$ and learn parameters from the training set.
 - · Logistic regression
 - · Softmax regression
 - (b) **Generative** models: Learn joint densities $p(\mathbf{x}, C_k)$ by learning $p(\mathbf{x} \mid C_k)$ and $p(C_k)$, and then use Bayes rule for predicting the class C_k given \mathbf{x} :
 - Gaussian Discriminant Analysis
 - Naive Bayes

Probabilistic Generative Models

• Bayes' theorem reduces the classification problem $p(C_k \mid \mathbf{x})$ to estimating the distribution of the data:

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_{k'} p(\mathbf{x}|C_{k'})p(C_{k'})}$$

- Density estimation can be decomposed into learning distributions from training data.
 - $-p(C_k)$
 - $-p(\mathbf{x} \mid C_k)$
- Maximum likelihood estimation for $p(\mathbf{x}, C_k)$

Probabilistic Generative Models

• For two classes, Bayes' theorem says:

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}$$

• Use log odds (i.e., logit "score"):

$$a = \log \frac{p(C_1|\mathbf{x})}{p(C_2|\mathbf{x})} = \log \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_2)p(C_2)}$$

• Then we can define the posterior via the sigmoid:

$$p(C_1|\mathbf{x}) = \frac{1}{1 + \exp(-a)} = \sigma(a)$$

Gaussian Discriminant Analysis

Gaussian Discriminant Analysis

- · Probability of class label
 - $-p(C_k)$: Constant (e.g., Bernoulli)
- · Conditional probability of data given a class
 - $-p(\mathbf{x} \mid C_k)$: Gaussian distribution

$$p(\mathbf{x} \mid C_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_k)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu_k)\right\}$$

• Classification: use Bayes rule (previous slide)

9

Examples of Gaussian Distributions

Probability density p(x) for 2 dimensional case

Gaussian Discriminant Analysis

- Basic GDA assumes the same covariance for all classes
 - The figure below shows class-specific density and decision boundary. Note the linear decision boundary for any types of covariance matrices!

1

Prediction: Class-Conditional Densities

• Suppose we model $p(x \mid C_k)$ as Gaussians with the <u>same covariance</u> matrix.

$$p(\mathbf{x} \mid C_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mu_k)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu_k)\right\}$$

• This gives us $p(C_1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + w_0)$ - where $\mathbf{w} = \mathbf{\Sigma}^{-1}(\mu_1 - \mu_2)$ and $w_0 = -\frac{1}{2}\mu_1^{\top}\mathbf{\Sigma}^{-1}\mu_1 + \frac{1}{2}\mu_2^{\top}\mathbf{\Sigma}^{-1}\mu_2 + \log\frac{p(C_1)}{p(C_2)}$ Derivation

$$\begin{split} P\left(x,C_{1}\right) &= P\left(x\mid C_{1}\right) P\left(C_{1}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x-\mu_{1}\right)^{\top} \Sigma^{-1}\left(x-\mu_{1}\right)\right\} P\left(C_{1}\right) \\ P\left(x,C_{2}\right) &= P\left(x\mid C_{2}\right) P\left(C_{2}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x-\mu_{2}\right)^{\top} \Sigma^{-1}\left(x-\mu_{2}\right)\right\} P\left(C_{2}\right) \end{split}$$

13

Derivation

$$\begin{split} P\left(x,C_{1}\right) &= P\left(x \mid C_{1}\right) P\left(C_{1}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x - \mu_{1}\right)^{\top} \Sigma^{-1}\left(x - \mu_{1}\right)\right\} P\left(C_{1}\right) \\ P\left(x,C_{2}\right) &= P\left(x \mid C_{2}\right) P\left(C_{2}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x - \mu_{2}\right)^{\top} \Sigma^{-1}\left(x - \mu_{2}\right)\right\} P\left(C_{2}\right) \\ \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{P\left(C_{2} \mid \mathbf{x}\right)} &= \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{1 - P\left(C_{1} \mid \mathbf{x}\right)} \qquad \text{"Log-odds"} \end{split}$$

Derivation

$$\begin{split} P\left(x,C_{1}\right) &= P\left(x \mid C_{1}\right) P\left(C_{1}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x - \mu_{1}\right)^{\top} \Sigma^{-1}\left(x - \mu_{1}\right)\right\} P\left(C_{1}\right) \\ P\left(x,C_{2}\right) &= P\left(x \mid C_{2}\right) P\left(C_{2}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x - \mu_{2}\right)^{\top} \Sigma^{-1}\left(x - \mu_{2}\right)\right\} P\left(C_{2}\right) \\ \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{P\left(C_{2} \mid \mathbf{x}\right)} &= \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{1 - P\left(C_{1} \mid \mathbf{x}\right)} \quad \text{"Log-odds"} \\ &= \log \frac{\exp\left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{1}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{1}\right)\right\}}{\exp\left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{2}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{2}\right)\right\}} + \log \frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \end{split}$$

15

16

Derivation

$$\begin{split} P\left(x,C_{1}\right) &= P\left(x \mid C_{1}\right) P\left(C_{1}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x - \mu_{1}\right)^{\top} \Sigma^{-1}\left(x - \mu_{1}\right)\right\} P\left(C_{1}\right) \\ P\left(x,C_{2}\right) &= P\left(x \mid C_{2}\right) P\left(C_{2}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x - \mu_{2}\right)^{\top} \Sigma^{-1}\left(x - \mu_{2}\right)\right\} P\left(C_{2}\right) \\ \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{P\left(C_{2} \mid \mathbf{x}\right)} &= \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{1 - P\left(C_{1} \mid \mathbf{x}\right)} &\text{"Log-odds"} \\ &= \log \frac{\exp\left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{1}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{1}\right)\right\}}{\exp\left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{2}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{2}\right)\right\}} + \log \frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \\ &= \left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{1}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{1}\right)\right\} - \left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{2}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{2}\right)\right\} + \log \frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \end{split}$$

Derivation

$$\begin{split} P\left(x,C_{1}\right) &= P\left(x \mid C_{1}\right) P\left(C_{1}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x - \mu_{1}\right)^{\top} \Sigma^{-1}\left(x - \mu_{1}\right)\right\} P\left(C_{1}\right) \\ P\left(x,C_{2}\right) &= P\left(x \mid C_{2}\right) P\left(C_{2}\right) \\ &= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}\left(x - \mu_{2}\right)^{\top} \Sigma^{-1}\left(x - \mu_{2}\right)\right\} P\left(C_{2}\right) \\ \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{P\left(C_{2} \mid \mathbf{x}\right)} &= \log \frac{P\left(C_{1} \mid \mathbf{x}\right)}{1 - P\left(C_{1} \mid \mathbf{x}\right)} \quad \text{"Log-odds"} \\ &= \log \frac{\exp\left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{1}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{1}\right)\right\}}{\exp\left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{2}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{2}\right)\right\}} + \log \frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \\ &= \left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{1}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{1}\right)\right\} - \left\{-\frac{1}{2}\left(\mathbf{x} - \mu_{2}\right)^{\top} \Sigma^{-1}\left(\mathbf{x} - \mu_{2}\right)\right\} + \log \frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \\ &= \left(\mu_{1} - \mu_{2}\right)^{\top} \Sigma^{-1}\mathbf{x} - \frac{1}{2}\mu_{1}^{\top} \Sigma^{-1}\mu_{1} + \frac{1}{2}\mu_{2}^{\top} \Sigma^{-1}\mu_{2} + \log \frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \end{split}$$

1/

Derivation

$$\begin{split} P\left(x,C_{1}\right) &= P\left(x\mid C_{1}\right)P\left(C_{1}\right) \\ &= \frac{1}{(2\pi)^{D/2}}\frac{1}{|\Sigma|^{1/2}}\exp\left\{-\frac{1}{2}\left(x-\mu_{1}\right)^{\top}\Sigma^{-1}\left(x-\mu_{1}\right)\right\}P\left(C_{1}\right) \\ P\left(x,C_{2}\right) &= P\left(x\mid C_{2}\right)P\left(C_{2}\right) \\ &= \frac{1}{(2\pi)^{D/2}}\frac{1}{|\Sigma|^{1/2}}\exp\left\{-\frac{1}{2}\left(x-\mu_{2}\right)^{\top}\Sigma^{-1}\left(x-\mu_{2}\right)\right\}P\left(C_{2}\right) \\ \log \frac{P\left(C_{1}\mid\mathbf{x}\right)}{P\left(C_{2}\mid\mathbf{x}\right)} &= \log\frac{P\left(C_{1}\mid\mathbf{x}\right)}{1-P\left(C_{1}\mid\mathbf{x}\right)} \quad \text{"Log-odds"} \\ &= \log\frac{\exp\left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{\top}\Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)\right\}}{\exp\left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{\top}\Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)\right\}} + \log\frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \\ &= \left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{1}\right)^{\top}\Sigma^{-1}\left(\mathbf{x}-\mu_{1}\right)\right\} - \left\{-\frac{1}{2}\left(\mathbf{x}-\mu_{2}\right)^{\top}\Sigma^{-1}\left(\mathbf{x}-\mu_{2}\right)\right\} + \log\frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \\ &= \left(\mu_{1}-\mu_{2}\right)^{\top}\Sigma^{-1}\mathbf{x} - \frac{1}{2}\mu_{1}^{\top}\Sigma^{-1}\mu_{1} + \frac{1}{2}\mu_{2}^{\top}\Sigma^{-1}\mu_{2} + \log\frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \\ &= \left(\Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)\right)^{\top}\mathbf{x} + w_{0} \\ \qquad \qquad \text{where } w_{0} = -\frac{1}{2}\mu_{1}^{\top}\Sigma^{-1}\mu_{1} + \frac{1}{2}\mu_{2}^{\top}\Sigma^{-1}\mu_{2} + \log\frac{P\left(C_{1}\right)}{P\left(C_{2}\right)} \end{split}$$

Prediction: Class-Conditional Densities for shared covariances

• $p(C_k | \mathbf{x})$ is a sigmoid function:

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

0.5

– with log-odds (*logit* function):

$$a = \log\left(\frac{\sigma}{1-\sigma}\right) = \left(\boldsymbol{\Sigma}^{-1}(\mu_1 - \mu_2)\right)^{\top} \mathbf{x} + w_0$$
 where $w_0 = -\frac{1}{2}\mu_1^{\top} \boldsymbol{\Sigma}^{-1} \mu_1 + \frac{1}{2}\mu_2^{\top} \boldsymbol{\Sigma}^{-1} \mu_2 + \log\frac{p(C_1)}{p(C_2)}$

• Generalizes to normalized exponential, or softmax :

$$p_i = \frac{\exp(q_i)}{\sum_j \exp(q_j)}$$

Prediction: Linear Decision Boundaries

- At decision boundary, we have $p(C_1|\mathbf{x}) = p(C_2|\mathbf{x})$
- With the same covariance matrices, the boundary $p(C_1|\mathbf{x}) = p(C_2|\mathbf{x})$ is linear.
 - Different class $p(C_1)$, $p(C_2)$ just shift it around.

Likelihood function of generative models

• The likelihood of Data $\{(\mathbf{x}^{(n)}, y^{(n)})\}$

$$P(D|\mathbf{w}) = \prod_{i=1}^{N} P(\mathbf{x}^{(i)}, y^{(i)}|\mathbf{w}) \xrightarrow{P(\mathbf{X}, \mathbf{y}|\mathbf{w})} P(\mathbf{X}, \mathbf{y}|\mathbf{w})$$
Decomposition of the joint probability
$$= \prod_{i=1}^{N} P(\mathbf{x}^{(i)}|y^{(i)}, \mathbf{w}) P(y^{(i)}|\mathbf{w})$$

21

Learning parameters via maximum likelihood

• Given training data $\{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$ and a generative model ("shared covariance")

$$p(y) = \phi^{y} (1 - \phi)^{1-y}$$

$$p(\mathbf{x}|y=0) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu_0)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_0)\right)$$

$$p(\mathbf{x}|y=1) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu_1)^{\top} \Sigma^{-1} (\mathbf{x} - \mu_1)\right)$$

Learning via maximum likelihood

• Maximum likelihood estimation (HW2):

$$\begin{split} \phi &= \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 1\} \\ \mu_0 &= \frac{\sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 0\} \mathbf{x}^{(i)}}{\sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 0\}} \\ \mu_1 &= \frac{\sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 1\} \mathbf{x}^{(i)}}{\sum_{i=1}^{N} \mathbb{I}\{y^{(i)} = 1\}} \\ \Sigma &= \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \mu_{y^{(i)}}) (\mathbf{x}^{(i)} - \mu_{y_{(i)}})^{\top} \end{split}$$

Different Covariance

 Decision boundaries between some classes can be quadratic when they have different covariances.

Different Covariance

 Decision boundaries between some classes can be quadratic when they have different covariances.

25

Comparison between GDA and Logistic regression (or softmax regression)

- · Logistic regression:
 - For an M-dimensional feature space, this model has M parameters to fit.
- · Gaussian Discriminative Analysis
 - 2M parameters for the means of $p(\mathbf{x} \mid C_1)$ and $p(\mathbf{x} \mid C_2)$
 - -M(M+1)/2 parameters for the shared covariance matrix
- Logistic regression has less parameters and is more flexible about data distribution.
- GDA has a stronger modeling assumption, and works well when the distribution follows the assumption.

Naive Bayes Classifier

(Brief Intro: to be continued in the next lecture)

27

Naive Bayes classifier

• Probability of class label:

- $p(C_k)$: Constant (e.g., Bernoulli)

- Conditional probability of data given the class
 - Naive Bayes assumption: $p(\mathbf{x} \mid C_k)$ is factorized (Each coordinate of \mathbf{x} is conditionally independent of other coordinates given the class label)

$$P(x_1, ..., x_M | C_k) = P(x_1 | C_k) \cdots P(x_M | C_k) = \prod_{k=1}^{M} P(x_j | C_k)$$

• Classification: use Bayes rule

(binary)
$$P(C_1|\mathbf{x}) = \frac{P(C_1,\mathbf{x})}{P(\mathbf{x})} = \frac{P(C_1,\mathbf{x})}{P(C_1,\mathbf{x}) + P(C_2,\mathbf{x})}$$

Naive Bayes classifier

• When classifying, we can simply find the class C_k that maximizes $P(C_k|\mathbf{x})$ using the Bayes rule:

$$\arg\max_{k} P(C_k|\mathbf{x}) = \arg\max_{k} P(C_k, \mathbf{x})$$

29

Naive Bayes classifier

• When classifying, we can simply find the class C_k that maximizes $P(C_k|\mathbf{x})$ using the Bayes rule:

$$\arg \max_{k} P(C_k | \mathbf{x}) = \arg \max_{k} P(C_k, \mathbf{x})$$
$$= \arg \max_{k} P(C_k) P(\mathbf{x} | C_k)$$

Naive Bayes classifier

• When classifying, we can simply find the class C_k that maximizes $P(C_k|\mathbf{x})$ using the Bayes rule:

$$\arg\max_k P(C_k|\mathbf{x}) = \arg\max_k P(C_k,\mathbf{x})$$

$$= \arg\max_k P(C_k)P(\mathbf{x}|C_k)$$
 Naive Bayes assumption
$$= \arg\max_k P(C_k)\prod_{j=1}^M P(x_j|C_k)$$

28

32

Example: Naive Bayes for real-valued inputs

- Probability of class label:
 - $-p(C_{\nu})$: Constant (e.g., Bernoulli)
- Conditional probability of data given the class
 - Naive Bayes assumption: $P(\mathbf{x} | C_{\nu})$ is factorized (e.g., 1D Gaussian)

$$\begin{split} P(x_1, \dots, x_M | C_k) &= P(x_1 | C_k) \cdots P(x_M | C_k) \\ &= \prod_{j=1}^M P(x_j | C_k) \\ &= \prod_{j=1}^M \frac{1}{\sqrt{2\pi\sigma_j^2}} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right) \end{split}$$

- Note: this is equivalent to GDA with diagonal covariance!!

Comparison: Discriminative vs. Generative

- The *generative* approach is typically model-based, and it can generate synthetic data from $p(\mathbf{x} \mid C_t)$.
 - By comparing the synthetic data and real data, we get a sense of how good the generative model is.
- The discriminative approach will typically have fewer parameters to estimate and have less assumptions about data distribution.
 - Linear (e.g. logistic regression) v/s quadratic (e.g., Gaussian discriminant analysis) in the dimension of the input.
 - Less generative assumptions about the data (however, constructing the features may require domain knowledge)

_ .

Any feedback (about lecture, slide, homework, project, etc.)?

(via anonymous google form: https://forms.gle/fpYmiBtG9Me5qbP37

Change Log of lecture slides:

https://docs.google.com/document/d/e/2PACX-1vSSIHJiklypK7rKFSR1-5GYXyBCEW8UPtpSfCR9AR6M1l7K9ZOEmxfFwaWaW7kLDxusthsF8WlCyZJ-/pub