Intersections

Code considerations

class Ray:

Vector3f Q // Starting point

Vector3f D // Direction - should be scaled to a unit length vector

Consider a method **eval(t)** returning Q + tD

class **Shape**:

virtual method: **void intersect(Ray, Intersection&))**:

returns true (and fills Intersection structure) if ray intersects shape

classes Sphere, Box, Cylinder, Triangle, ... (derived from Shape)

Each Shape's **intersect** returns a boolean and fills in an **Intersection** object

class Intersection

This records the intersection of a ray with any Shape object

t: Parameter value on ray of the point of intersection

object*: A pointer to the Shape intersected

P: Point of intersection (in world coordinates)

N: Normal of surface at intersection point (in world coordinates)

other: for instance 2D or 3D texture coordinates

class Interval

Represents an interval along a ray, useful for several later intersection calculations

t0, t1: beginning and ending point along a ray

N0, N1: Surface normals at t0 and t1 respectively.

Methods:

Constructor () initializes (t0, t1) to (0, INFINITY)

Constructor (t0,t1,N0,N1): Reorders t0,t1 (and N0,N1) so $t0 \le t1$, then stores all 4.

empty() Sets t0,t1 to 0,-1 to represent an empty interval

intersect(other): Modifies this* with intersection of this* and other.

Modifies N0,N1 in sync with t0 and t1.

A general (easy) form of intersections

Surface in implicit form: F(P) = 0

Ray in parametric form: P = Q + tD

Substitute to get F(Q+tD) = 0 and solve for t (i.e., find roots).

There are many techniques for finding roots of such equations:

If F is a polynomial of degree n, so is F(Q+tD)=0

Linear and quadratic have simple solutions.

Higher degree polynomials and non-polynomials can be solved

numerically with iterative techniques (Newton's method and so on ...)

Sphere

Parameters: center C, and radius r

Bounding box: from two points $C \pm (r, r, r)$.

Intersection:

The plan:

A point P is on a sphere if length(P-C)=r or better $(P-C)\cdot (P-C)=r^2$

In implicit form: $F(P) = (P-C)\cdot(P-C) - r^2 = 0$

Substitute for P any point on the ray P = Q + tD.

Solve F(Q + tD) = 0 for the t of the intersection point.

Substitute ray: $F(Q + tD) = (Q + tD - C) \cdot (Q + tD - C) - r^2 = 0$

Simplify with $\bar{Q} = Q - C$: $(\bar{Q} + t D) \cdot (\bar{Q} + t D) - r^2 = 0$

Expand: $(D \cdot D)t^2 + 2(\bar{Q} \cdot D)t + (\bar{Q} \cdot \bar{Q} - r^2) = 0$

This is a quadratic of form $at^2 + bt + c = 0$ for $a = D \cdot D$, $b = 2(\bar{Q} \cdot D)$, $c = \bar{Q} \cdot \bar{Q} - r^2$

Solutions via quadratic eq: $t_{\pm} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Interpretation:

If discriminant<0 => No intersections

Calculate both roots: $t_{-} = -b - ...$ and $t_{+} = -b + ...$

If both are negative => No intersections

Otherwise return the smallest positive value of the two t_{-} and t_{+}

The two roots can be calculated more efficiently than shown above:

Assume ray has been normalized to unit length (i.e., $D \cdot D = 1$)

Then a = 1

SO
$$t = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$
$$= -\frac{b}{2} \pm \sqrt{\frac{b^2 - 4c}{4}}$$
$$= -(\bar{Q} \cdot D) \pm \sqrt{(\bar{Q} \cdot D)^2 - \bar{Q} \cdot \bar{Q} + r^2}$$

Other values:

Point: P = Q + tD (That is, eval ray at t)

Normal: N = P - C, normalized to unit length

 $\theta = atan 2(N.Y, N.X)$

 $UV: \quad \phi = a\cos(N.Z)$

 $(u, v) = (\theta/2\pi, \phi/\pi)$

Plane equations:

Usually ax+by+cz+d=0 for plane defined by coefficients a,b,c,d and a point P=(x,y,z).

An equivalent but shorter notation: Let N = (a,b,c)

So the plane is represented by N,d, and the plane eugation is $N \cdot P + d = 0$.

Generalized shapes as intersections of slabs

slab: infinite volume bounded by two parallel planes

represented by two plane equations N, d_0 and N, d_1 sharing a normal

Intersection a ray with a collection of n slabs: broken into three steps:

- 1: Calculate the **interval** of a ray's intersection with each slab
- 2: Calculate intersection along the ray of n such intervals
- 3: Return the first (if any) positive endpoint of the resulting interval

Details:

1: Intersection of ray Q + tD and slab N, d_0 , d_1 returns an interval t_0 , t_1

if $N \cdot D \neq 0$: (Ray intersects both slab planes)

Plane 0: $t_0 = -(d_0 + N \cdot Q)/N \cdot D$

Plane 1: $t_1 = -(d_1 + N \cdot Q)/N \cdot D$

Reorder (if needed) so that $t_0 \le t_1$

Return interval $[t_0, t_1]$

else (ray is parallel to slab planes) so test if ray is inside the slab or not:

Calculate which side of each plane is the ray's starting point Q

$$s_0 = N \cdot Q + d_0$$

$$s_1 = N \cdot Q + d_1$$

If signs of s_0 and s_1 differ:

Q (and full ray) is between planes: return interval $\left[0,\infty\right]$ else

Q (and full ray) is outside planes: return empty interval [1,0]

2: Intersecting a list of slabs with a ray:

Initialize starting interval $[t_0, t_1] = [0, \infty]$ (indicating full ray)

for each slab N^i , d_0^i , d_1^i (with superscript i indexing through the list of slabs):

if intersection of ray with slab i returns an interval $[t_0^i, t_1^i]$:

$$[t_0, t_1] = [max(t_0, t_0^i), min(t_1, t_1^i)]$$

3: Analyze final accumulated interval

If $t_0 > t_1$, then **NO-INTERSECTION** // This catches "off the corner" reversal Else, return the smallest positive value of t_0 , t_1 if any, or **NO-INTERSECTION**

AAB

Parameters: (x_0, y_0, z_0) and (dx, dy, dz) (corner and diagonal vector).

Bounding box: from two points (x_0, y_0, z_0) and (x_0+dx, y_0+dy, z_0+dz)

Intersection: Box is described as the intersection of three axis-aligned SLABS

The three slabs are

$$(1,0,0), -x_0, -x_0-dx$$

$$(0,1,0), -y_0, -y_0-dy$$

 $(0,0,1), -z_0, -z_0-dz$

Other values:

Point: P = Q + tD (That is, eval ray at t)

Normal: Easiest way: Attach to each t (as it is calculated), an associated normal. If you ensure that $d_0 > d_1$ (as these notes do), then t_0 's normal is -N and t_1 's normal is N.

UV: Not supported in generalized slab intersections, but you could rig up something reasonable for boxes.

```
Triangle
```

```
Parameters: Vertices V_0, V_1, and V_2, possibly with normals N_0, N_1, and N_2
   Bounding box: From the three vertices V_0, V_1, and V_2.
   Intersection:
   Ray Q + tD
   Let E_1 = V_1 - V_0, E_2 = V_2 - V_0, and S = Q - V_0
         (That is, translate everything so V_0 goes to the origin.)
   Parameterize triangle as V_0 + uE_1 + vE_2 (for u \ge 0, v \ge 0, 1 - v - u \ge 0)
   Equating a point on ray Q + tD with a point on triangle V_0 + uE_1 + vE_2
         gives a 3x3 system of equations: 1 equation from each XYZ coordinate, variables u,v,t
         Q + tD = V_0 + uE_1 + vE_2, or
         -tD + uE_1 + vE_2 = S
   Cramer's rule can solve for each variable, t, u, v (using 4 3x3 determinants):
          d = det(-D, E_1, E_2)
          t = det(S, E_1, E_2)/d
         u = det(-D,S,E_2)/d
          v = det(-D, E_1, S)/d
   Each of the determinants can be calculated with one cross and one dot product
         (sometimes called the triple product)
         (reordered to remove - on D, and reuse some cross-products)
              det(-D, E_1, E_2) = (D \times E_2) \cdot E_1
              det(S, E_1, E_2) = (S \times E_1) \cdot E_2
              det(-D,S,E_2) = (D\times E_2)\cdot S
              det(-D, E_1, S) = (S \times E_1) \cdot D
   Algorithm:
     E_1 = V_1 - V_0
     E_{2} = V_{2} - V_{0}
     p = D \times E_2
     d = p \cdot E_1
    if d=0 return NoIntersection // Ray is parallel to triangle
     S = Q - V_0
     u = (p \cdot S)/d
    if u < 0 or u > 1 return NoIntersection // Ray intersects plane, but outside E2 edge
     q = S \times E_1
     v = (D \cdot a)/d
    if v < 0 or (u+v) > 1 return NoIntersection // Ray intersects plane, but outside other edges
     t = (E_2 \cdot q)/d
    if t < 0 return NoIntersection // Ray's negative half intersects triangle
    return Intersection, t
Other values:
    Point : P = Q + tD (That is, eval ray at t)
    Normal:
         If vertex normals are known: (1-u-v)N_0 + uN_1 + vN_2
         else use triangle normal: N = E_2 \times E_1
    UV: (1-u-v)T_0 + uT_1 + vT_2, if vertices texture coordinates T_0, T_1, T_2 are known
```


Cylinder

Parameters: Base B, axis A, radius r (Cylinder goes from B to B+A.)

Bounding box: From 4 points (a sphere at each endpoint): $B\pm(r,r,r)$ and $A+B\pm(r,r,r)$

Plan:

Transform the problem to an easier space:

Translate $B \rightarrow (0,0,0)$

Rotate $A \rightarrow Z$

Applied to the ray:

 $\bar{Q}=R_{A o Z}(Q-B)$ (See separate document for derivation of $R_{A o Z}$.)

 $\bar{D} = R_{A \to Z}(D)$

Solve for intersection in this easy orientation

Back-transform the solution into the original space

Intersection with ray Q,D:

Transformed ray is: $(Q_x, Q_y, Q_z) = \bar{Q}$

 $(D_x, D_y, D_z) = \bar{D}$

Algorithm:

Intersect two **intervals** on the ray

• First interval:

 $[a_0, a_1]$ = the ray's intersection with the end plate slab N = (0,0,1), $d_0 = 0$, $d_1 = -\|A\|$ (Ray-intersect-slab is on a previous page.)

Second interval: The ray's intersection with this z-aligned infinite cylinder: $\chi^2 + \chi^2 = r^2$

Substitute transformed ray $(Q_x, Q_y, Q_z) + t(D_x, D_y, D_z)$ into $x^2 + y^2 - r^2 = 0$ to get $t^2(D_xD_x + D_yD_y) + t2(D_xQ_x + D_yQ_y) + (Q_xQ_x + Q_yQ_y - r^2) = 0$

Which is in standard quadratic form $at^2 + bt + c = 0$

If discriminant $(b^2-4ac) < 0$, **return NO-INTERSECTION**

Calculate two roots with quadratic equation: $t_{\pm} = \left(-b \pm \sqrt{b^2 - 4ac}\right) I(2a)$

Which gives interval: $[b_0, b_1] = [t_-, t_+]$

• Calculate intersection of two intervals

$$[t_0, t_1] = [\max(a_0, b_0), \min(a_1, b_1)]$$

- If $t_0 > t_1$, then **NO-INTERSECTION** // The "off the corner" case
- Return smallest positive of t_0 or t_1 if any, or **return NO-INTERSECTION**

Other values:

Point: P = Q + tD // Evaluate ray at t. (Note: The **ORIGINAL** not the **transformed** ray.) Normal: Using the interval class, calculate normals (an z-aligned space) along with intervals:

- 1st interval: No normals at $[a_0, a_1] = [0, \infty]$
- 2nd interval: Normals are $\bar{N} = (0,0,\pm 1)$
- 3rd interval: For each intersection t,

$$\bar{N} = (Q_X + t D_X, Q_Y + t D_Y, 0)$$

Rotate \bar{N} back to world with inverse rotation:

quaternion: conj(q)

matrix: $R^{-1} = R^{T}$

UV:
$$\theta = a \tan 2(\bar{N}_y, \bar{N}_x)$$
$$(u, v) = (\theta/2\pi, \bar{N}_z/||A||)$$