ОБЩАЯ ЭЛЕКТРОТЕХНИКА

Расчет цепей постоянного тока методом контурных токов и методом узловых напряжений

Никитина Мария Владимировна mvnikitina@itmo.ru

Кононова Мария Евгеньевна maria.kononova@itmo.ru

Санкт-Петербург – 2021

Дано:
$$E_1$$
=20 [B], E_2 =5 [B], J =0,5 [A], R_1 = R_2 = R_3 = R_4 = R_6 =1 [OM], R_5 =4 [OM], R_7 =5 [OM].

Найти: все неизвестные токи МКТ

Алгоритм и решение:

1. Определить топологию цепи

 p^* =6 (общее количество ветвей), $p_{\text{ит}}$ =1 (количество ветвей с ист. тока), $p=p^*-p_{\text{ит}}$ =6-1=5 (количество неизвестных токов), q=4 (количество узлов), n=p-(q-1)=5-(4-1)=2 (количество

n=p-(q-1)=5-(4-1)=2 (количество неизвестных контурных токов),

 $m=p_{\text{ит}}=1$ (количество известных контурных токов).

Произвольно обозначить p неизвестных токов и s=n+m контурных токов.

$$I_{33} = -J = -0.5$$
 [A].

2. Составить и решить систему вида

$$R_{11}I_{11} + R_{12}I_{22} + \ldots + R_{1n}I_{nn} + \ldots + R_{1s}I_{ss} = E_{11}$$

 $R_{21}I_{11} + R_{22}I_{22} + \ldots + R_{2n}I_{nn} + \ldots + R_{2s}I_{ss} = E_{22}$
 \vdots

$$R_{n1}I_{11} + R_{n2}I_{22} + \ldots + R_{nn}I_{nn} + \ldots + R_{ns}I_{ss} = E_{nn}$$

 $R_{kl} = R_{lk}$ (для k = 1...s, l = 1...s, $k \neq l$) — общие сопротивления — сумма всех сопротивлений, охватываемых одновременно контурными токами I_{kk} и I_{ll} . Перед $R_{kl} = R_{lk}$ ставится знак «минус», если контурные токи протекают через него в разные стороны, в противном случае — знак «плюс».

 R_{kk} (для k=1...n) — собственные сопротивления — сумма всех сопротивлений, охватываемых контурным током I_{kk} .

 E_{kk} (для k=1...n) — контурная ЭДС — алгебраическая сумма ЭДС, охватываемых контурным током I_{kk} . Если направление контурного тока и ЭДС совпадают, то в E_{kk} такая ЭДС пишется со знаком «плюс», в противном случае «минус».

Итак, для рассматриваемой схемы необходимо составить систему вида

$$egin{array}{ll} R_{11}I_{11}+R_{12}I_{22}+R_{13}I_{33}=E_{11} \\ R_{21}I_{11}+R_{22}I_{22}+R_{23}I_{33}=E_{22} \\ R_{3} & \text{ИЛИ} \\ \end{bmatrix} & (R_{1}+R_{2}+R_{7}+R_{6})I_{11}-(R_{2}+R_{7})I_{22}-(R_{6}+R_{7})I_{33}=\\ &=E_{1}-E_{2} \\ R_{4} & -(R_{2}+R_{7})I_{11}+(R_{2}+R_{3}+R_{4}+R_{7})I_{22}+R_{7}I_{33}=\\ &=-E_{1}+E_{2} \\ \end{bmatrix} & =-E_{1}+E_{2} \end{array}$$

Подставив численные значения $8I_{11}$ – $6I_{22}$ +3= 15– $6I_{11}$ + $8I_{22}$ –2,5= -15 и решая систему уравнений, получим I_{11} =0,75 [A], I_{22} =-1 [A].

3. Найти искомые токи через контурные токи

В общем случае ток в ветви является алгебраической суммой контурных токов, т.е. $I_x = \sum \pm I_{kk}$ (k = 1...s). Если контурный ток совпадает по направлению с направлением искомого тока, то в \sum перед ним ставится знак «плюс», в противном случае — знак «минус».

$$I_1 = -I_{11} = -0.75$$
 [A],
 $I_2 = I_{11} - I_{22} = 0.75 - (-1) = 1.75$ [A],
 $I_3 = -I_{22} = -(-1) = 1$ [A],
 $I_4 = -I_{11} + I_{33} = -0.75 + (-0.5) = -1.25$ [A],
 $I_5 = I_{11} - I_{22} - I_{33} = 0.75 - (-1) - (-0.5) = 2.25$ [A].

Ответ: $I_1 = -0.75$ [A], $I_2 = 1.75$ [A], $I_3 = 1$ [A], $I_4 = -1.25$ [A], $I_5 = 2.25$ [A].

Дано:
$$E_1$$
=20 [B], E_2 =5 [B], J =0,5 [A],
$$R_1$$
= R_2 = R_3 = R_4 = R_6 =1 [OM],
$$R_5$$
=4 [OM], R_7 =5 [OM].

Найти: все неизвестные токи МУН

Алгоритм и решение:

1. Определить топологию цепи

 p^* =6 (общее количество ветвей), $p_{\text{ит}}$ =1 (количество ветвей с ист. тока), p= p^* - $p_{\text{ит}}$ =6-1=5 (количество неизвестных токов),

q=4 (количество узлов),

l=q-1=4-1=3 (количество узловых напряжений).

Произвольно обозначить р неизвестных токов и *l* узловых напряжений (любой схемы заземляется (порядковый «0»), оставшихся номер OT **УЗЛОВ** незаземленных В сторону направляются узловые заземленного напряжения).

2. Составить и решить систему уравнений вида

$$\begin{split} g_{11}U_{10} - g_{12}U_{20} - \dots - g_{1l}U_{l0} &= J_{11} \\ - g_{21}U_{10} + g_{22}U_{20} - \dots - g_{2l}U_{l0} &= J_{22} \\ \vdots \end{split}$$

$$-g_{l1}U_{10} - g_{l2}U_{20} - \dots + g_{ll}U_{l0} = J_{ll}$$

- $g_{km} = g_{mk}$ (для k = 1...l, m = 1...l, $k \neq m$) общие проводимости сумма проводимостей всех ветвей, расположенных между узлами k и m ($\kappa pome npoводимости ветви с источником тока).$
- g_{kk} (для k=1...l) собственные проводимости сумма проводимостей всех ветвей, сходящихся в узле k (<u>кроме проводимости ветви с источником тока</u>).
- $J_{kk} = \Sigma(\pm J) + \Sigma(\pm E/R)$ (для k=1...l) «узловые токи», обусловленные наличием источников энергии в ветвях узла k алгебраическая сумма токов от источников энергии, находящихся в ветвях узла k.

Итак, для рассматриваемой схемы необходимо составить систему вида

$$\begin{split} g_{11}U_{10} - g_{12}U_{20} - g_{13}U_{30} &= J_{11} \\ - g_{21}U_{10} + g_{22}U_{20} - g_{23}U_{30} &= J_{22} \\ - g_{31}U_{10} - g_{32}U_{20} + g_{33}U_{30} &= J_{33} \\ \text{или} \\ (1/R_1 + 1/R_2 + 1/(R_3 + R_4))U_{10} - (1/R_2)U_{20} - \\ - (1/(R_3 + R_4))U_{30} &= -E_1/R_2 \\ - (1/R_2)U_{10} + (1/R_2 + 1/R_7)U_{20} - (1/R_7)U_{30} &= \\ &= E_1/R_2 + J + E_2/R_7 \\ - (1/(R_3 + R_4))U_{10} - (1/R_7)U_{20} + \\ + (1/R_6 + 1/R_7 + 1/(R_3 + R_4))U_{30} &= -E_2/R_7 \end{split}$$

Подставив численные значения, получим

$$2,5U_{10} - U_{20} - 0,5U_{30} = -20$$

$$-U_{10} + 1.2U_{20} - 0.2U_{30} = 21.5$$

$$-0.5U_{10} - 0.2U_{20} + 1.7U_{30} = -1$$

Решение системы уравнений:

$$U_{10} = -0.75$$
 [B], $U_{20} = 17.5$ [B],

$$U_{30} = 1,25$$
 [B].

3. Определить искомые токи через узловые напряжения

Ток в ветви определяется с использованием расширенного закона Ома, т.е. $I=(\Sigma(\pm U)+\Sigma(\pm E))/\Sigma R$, где «+» у U и E в Σ ставится в случае совпадения направления искомого тока и соответствующих U и E, в противном случае — «—».

Для рассматриваемой схемы искомые токи будут определяться как:

$$I_1 = U_{10}/R_1 = -0.75/1 = -0.75 \text{ [A]},$$

 $I_2 = (U_{10}-U_{20}+E_1)/R_2 =$
 $= (-0.75-17.5+20)/1 = 1.75 \text{ [A]},$

$$I_{3} = (-U_{10} + U_{30})/(R_{3} + R_{4}) =$$

$$= (-(-0.75) + 1.25)/(1+1) = 1 \text{ [A]},$$

$$I_{4} = -U_{30}/R_{6} = -1.25/1 = -1.25 \text{ [A]},$$

$$I_{5} = (U_{20} - U_{30} - E_{2})/R_{7} =$$

$$= (17.5 - 1.25 - 5)/5 = 2.25 \text{ [A]}.$$

Ответ: $I_1 = -0.75$ [A], $I_2 = 1.75$ [A], $I_3 = 1$ [A], $I_4 = -1.25$ [A], $I_5 = 2.25$ [A].

СПАСИБО ЗА ВНИМАНИЕ!