# k-NN, DECISION TREES, AND RANDOM FOREST FOR REGRESSION AND CLASSIFICATION

RESMI SURESH ASSISTANT PROFESSOR, IIT GUWAHATI

# k-NEAREST NEIGHBORS

REGRESSION



# FUNCTIONAL APPROXIMATION USING k-NEAREST NEIGHBOUR

- k-NN is a non-parametric supervised learning method
- Philosophy: If you want to know someone, understand the neighbors
- It is also called 'Lazy algorithm' as there's no training phase, just holding on to x,y data. No model is built during training phase
- A distance metric (usually Euclidean) is needed to identify the nearest neighbours
- A tunable parameter 'k' is chosen to get the best performance
- For a new point  $x_{new}$ , the k-NN algorithm finds the k nearest neighbours and predicts the output  $\hat{y} = \bar{y}$ , where the average is done over the identified k neighbours
- While k-NN method is super-easy to implement, it can be susceptible to noise, as each & every distance need to be calculated



#### PRACTICE EXAMPLE OF k-NN

Example: Consider the following dataset.

| Height (h)        | 1.5  | 1.7   | 1.6   | 1.5   | 1.4   | 1.6   | 1.4   | 1.9   | 2     | 1.4   | 1.8   | 1.5   |
|-------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Weight (w)        | 71.1 | 103.3 | 26.4  | 27.8  | 21.8  | 94.9  | 90    | 98.3  | 108.1 | 91.9  | 61.5  | 90.2  |
| $BMI (y = w/h^2)$ | 31.6 | 35.74 | 10.31 | 12.36 | 11.12 | 37.07 | 45.92 | 27.23 | 27.23 | 46.89 | 18.98 | 40.09 |

If we use K-NN for predicting BMI from height and weight assuming the true model ( $y = w/h^2$ ) is unknown, find BMI for a person with height 1.3m and weight 32kg. Use K-NN with 4 neighbours and Euclidean distance as the metric for choosing neighbours.

# PRACTICE EXAMPLE OF k-NN

- Euclidian distance of point (1.3,32) from all points are-
- d = [39.1, 71.3, 5.61, 4.2, 10.2, 62.9, 58, 66.3, 76.1, 59.9, 29.5, 58.2]
- The 4 neighbours would be samples 4,3,5 and 11
- Now the predicted BMI for the given test sample would be the average BMI of the 4 neighbours
- i.e.  $\hat{y} = 13.1924$
- True BMI = 18.94
- Squared error prediction = 33.035

#### OPTIMAL VALUE OF K

- No structured way to find best k
  - Trial and error approach
  - Compare the models based on cross-validation performance
- Small value of k noise will have high impact on the predictions, high SSE
- High value of k Computationally more expensive
- A general practice: choose  $k = \sqrt{n}$  where n is the number of samples in the training set

#### DISTANCE METRICS

- Continuous variables
  - Euclidean distance:  $\sqrt{\sum (x^i x_{test})^2}$
  - Manhattan distance:  $\sum |x^i x_{test}|$
- Strings of equal length
  - Hamming distance: Number of positions in which two strings differ. Example: Hamming distance between 'A23D' and 'A13E' is 2
- Strings of unequal length (eg: categories like lion, dog, cheetah etc.)
  - Reformulate features using
    - Integer encoding

Each category is given a number, like lion - 1, dog - 2, cheetah - 3 etc.

• One-hot encoding

The concerned feature is converted into multiple binary features

For the above example, if we keep a separate binary variable for lion, dog, and cheetah

# k-NEAREST NEIGHBORS CLASSIFICATION

## CLASSIFICATION USING k-NN

- The procedure of Classification using k-NN is quite similar to Functional Approximation using k-NN
- However, to predict an output for X(new) a majority vote of k neighbours is used
- It is useful for binary and multiclass classification problems
- As the number of data points are increased, using k-NN becomes computationally hard
- Odd numbers preferred for k in case of binary classification

#### EXAMPLE

- Question: Find the species for a new sample with (x1,x2,x3,x4) = (6.3,2.5,4.9,1.5)
- Let k = 3
- Nearest neighbors based on Euclidean distance

| SI<br>No. | Nearest training data samples | Distance | Class<br>Label |
|-----------|-------------------------------|----------|----------------|
| 1         | (6.8,2.8,4.8,1.4)             | 0.6      | 1              |
| 2         | (5.7,2.8,4.5,1.3)             | 0.806    | 1              |
| 3         | (5.6,3,4.5,1.5)               | 0.95     | 1              |

• Predicted class: 1

#### Dataset

| Sepal<br>length<br>(x1) | Sepal<br>width<br>(x2) | Petal<br>length<br>(x3) | Petal<br>width<br>(x4) | Species<br>Class<br>(y) |
|-------------------------|------------------------|-------------------------|------------------------|-------------------------|
| 7.4                     | 2.8                    | 6.1                     | 3                      | 2                       |
| 5.5                     | 2.4                    | 3.8                     | 1.9                    | 1                       |
| 5.6                     | 3                      | 4.5                     | 1.5                    | 1                       |
| 4.8                     | 3                      | 1.4                     | 0.1                    | 0                       |
| 5                       | 3.4                    | 1.5                     | 0.2                    | 0                       |
| 6.2                     | 3.4                    | 5.4                     | 2.3                    | 2                       |
| 7.9                     | 3.8                    | 6.4                     | 2                      | 2                       |
| 6.4                     | 2.8                    | 5.6                     | 2.2                    | 2                       |
| 5.4                     | 3.9                    | 1.7                     | 0.4                    | 0                       |
| 4.9                     | 3.6                    | 1.4                     | 0.1                    | 0                       |
| 5.7                     | 2.8                    | 4.5                     | 1.3                    | 1                       |
| 5.1                     | 3.5                    | 1.4                     | 0.3                    | 0                       |
| 6.5                     | 3                      | 5.8                     | 2.2                    | 2                       |
| 6.8                     | 2.8                    | 4.8                     | 1.4                    | 1                       |
| 5.5                     | 4.2                    | 1.4                     | 0.2                    | 0                       |
| 5.8                     | 2.7                    | 5.1                     | 1.9                    | 2                       |
| 4.8                     | 3                      | 1.4                     | 0.3                    | 0                       |

REGRESSION

- Mimic the manner in which decisions are made by most of us
- Every decision point is represented as a node
- At each node, one variable is chosen from all the input variables and a decision is made based on the value of the variable
- Can be used for function approximation and classification
- Choice of variable and splitting value at each node have to be chosen based on our objective function:
  - Minimum prediction error for function approximation
  - Minimum classification error for classification



Input features:  $x_1$  and  $x_2$  Output feature: y





- Each end-node has a subset of samples given data is split into multiple subsets
- Partitions happen only in the input space
- Outputs are used in computing the predicted value for each of the regions that is generated
- Output for a new test sample depends on the end-node to which the new point would fall
- One can keep growing the tree to a large number of nodes
  - Although performance on training set improves, may result in over-fitting
  - Size of tree might become computationally unwieldy
- Make choices that limit tree complexity
  - Tree depth
  - Number of end-nodes
  - Minimum size of each node (cardinality)
- Growing a tree is continued until a certain accuracy requirement is met and/or until the complexity becomes too much

## DECISION TREES FOR REGRESSION

#### ONE INPUT FEATURE







#### DECISION TREES FOR REGRESSION

#### GENERAL CASE

- $\square$  For regression, to predict the output for a new test sample ' $x_{new}$ ',
  - $\square$  identify the set (or rectangle)  $R_j$  corresponding to sample  $x_{new}$  and
  - $\Box$   $\hat{y}_{new}$  would be the average of the output values of all samples in set  $R_i$
- ☐ Example: consider the new point marked by '\*'

$$\hat{y}_{new} = \text{mean}\left(y(x^i)\right)$$
 such that  $x^i \in R_1$ 

- $\square$  Same prediction for any point within the rectangle  $R_1$
- ☐ How do we find the optimal split point?
  - $\square$  Based on minimum squared error,  $\sum (y^i \hat{y}^i)^2$



#### DECISION TREES FOR REGRESSION

- Consider the data relating weight to BMI
- If a single node decision tree is used, let us see how to find the best split point
- If 's' is split point, let the decision be w < s.

| Sample No                                              | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9    | 10    |
|--------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|
| $egin{aligned} 	ext{Weight} \ 	ext{(w)} \end{aligned}$ | 91.3  | 67.6  | 71.1  | 103.3 | 26.4  | 27.8  | 21.8  | 94.9  | 90   | 98.3  |
| BMI<br>(y)                                             | 40.58 | 23.39 | 27.77 | 45.91 | 13.47 | 10.86 | 11.12 | 26.29 | 22.5 | 50.15 |

| Split point | Samples in         | Samples in           | _               | _               | COL      |
|-------------|--------------------|----------------------|-----------------|-----------------|----------|
| (w)         | $R_1$              | $R_2$                | $\bar{y}_{R_1}$ | $\bar{y}_{R_2}$ | SSE      |
| 91.3        | 2,3,5,6,7,9        | 1,4,8,10             | 18.185          | 40.7325         | 587.49   |
| 67.6        | 5,6,7              | 1,2,3,4,8,9,10       | 11.8167         | 33.7986         | 792.9    |
| 71.1        | 2,5,6,7            | 1,3,4,8,9,10         | 14.71           | 35.5333         | 766.96   |
| 103.3       | 1,2,3,5,6,7,8,9,10 | 4                    | 25.1256         | 45.91           | 1418.83  |
| 26.4        | 7                  | 1,2,3,4,5,6,8,9,10   | 11.12           | 28.9911         | 1520.18  |
| 27.8        | 5,7                | 1,2,3,4,6,8,9,10     | 12.295          | 30.9313         | 1251.9   |
| 21.8        | -                  | 1,2,3,4,5,6,7,8,9,10 | -               | 27.204          | 1807.6   |
| 94.9        | 1,2,3,5,6,7,9      | 4,8,10               | 21.3843         | 40.7833         | 1017.3   |
| 90          | 2,3,5,6,7          | 1,4,8,9,10           | 17.322          | 37.086          | 831.0856 |
| 98.3        | 1,2,3,5,6,7,8,9    | 4,10                 | 21.9975         | 48.03           | 723.3192 |



CLASSIFICATION

- ☐ Similar to function approximation, except for
  - how we find the best choice of split variable and split point
    - Minimization of error for function approximation while other metrics like maximization of Gini split index for classification
  - how we make predictions
    - Average of output values for function approximation while majority voting for classification
- $\square$  Consider  $j^{th}$  node at the  $k^{th}$  level of the tree. Let the set of points in the node be  $\{S_j^k\}$ . Assume that n samples are present in set  $\{S_j^k\}$ . Let there be p classes in the data.
- $\Box$   $f_i(j,k)$  fraction of data points in  $\{S_i^k\}$  that belong to class i
- ☐ Gini impurity

$$GI(j, k) = 1 - \sum_{i=1}^{p} f_i(j, k)^2$$

 $\square$  When a node has data from only one class,  $GI = 0 \rightarrow pure node$ 

- ☐ When choosing the variable to branch on and split point, aim is to get pure or close to pure child nodes
- $\square$  Let child nodes be  $S_l^{k+1}$  (with  $n_l$  samples) and  $S_m^{k+1}$  (with  $n_m$  samples)
- ☐ Gini split index

$$GSI = GI(j,k) - \frac{n_l}{n}GI(l,k+1) - \frac{n_m}{n}GI(m,k+1)$$

- $\square$  If both child nodes are pure, GSI = GI(j, k)
- $\square$  For any other split, GSI would be less than GI(j, k)
- ☐ Since the best case scenario is to get pure nodes on splitting, variable and split point that maximizes GSI is selected



$$n = n_l + n_m$$

Consider the data relating hours studied to result

| Sample No.                | 1    | 2   | 3  | 4   | 5    | 6 | 7   | 8    |
|---------------------------|------|-----|----|-----|------|---|-----|------|
| Hours studied             | 10.5 | 2.5 | 14 | 8.2 | 10.4 | 5 | 6.7 | 14.7 |
| Pass $(1)/\text{Fail}(0)$ | 1    | 0   | 1  | 1   | 1    | 0 | 0   | 1    |

- If a single node decision tree is used, let us see how to find the best split point
- Gini impurity (GI) for the given data:

$$GI = 1 - f_0^2 - f_1^2 = 1 - \left(\frac{3}{8}\right)^2 - \left(\frac{5}{8}\right)^2 = 0.4688$$

| Sample No.       | 1    | 2   | 3  | 4   | 5    | 6 | 7   | 8    |
|------------------|------|-----|----|-----|------|---|-----|------|
| Hours studied    | 10.5 | 2.5 | 14 | 8.2 | 10.4 | 5 | 6.7 | 14.7 |
| Pass (1)/Fail(0) | 1    | 0   | 1  | 1   | 1    | 0 | 0   | 1    |

- Let 's' be a split point such that set  $R_1$  contains all points such that  $x \le s$  and set  $R_2$  contains all points such that x > s
- Let x = 10.4 be the split point, then  $R_1$  contains samples  $\{2, 4, 5, 6, 7\}$ , and  $R_2$  contains samples  $\{1, 3, 8\}$
- Since 3 out of 5 samples in  $R_1$  have label 0 and the remaining 2 have label 1.

$$f_0 \text{ for } R_1 = 0.6$$

$$f_1 \text{ for } R_1 = 0.4$$

$$GI \text{ for } R_1 = 1 - 0.6^2 - 0.4^2 = 0.48$$

- $R_2$  is a pure node, implies GI = 0 for  $R_2$
- GSI for split point  $10.4 = 0.4688 \left(\frac{5}{8}\right)0.48 0 = 0.1688$



| Sample No.       | 1    | 2   | 3  | 4   | 5    | 6 | 7   | 8    |
|------------------|------|-----|----|-----|------|---|-----|------|
| Hours studied    | 10.5 | 2.5 | 14 | 8.2 | 10.4 | 5 | 6.7 | 14.7 |
| Pass (1)/Fail(0) | 1    | 0   | 1  | 1   | 1    | 0 | 0   | 1    |

|                 | Split point (s) | Samples in R1   | Samples in R2 | GI for R1 | GI for R2 | GSI   |
|-----------------|-----------------|-----------------|---------------|-----------|-----------|-------|
| _               | 10.5            | 1,2,4,5,6,7     | 3,8           | 0.5       | 0         | 0.094 |
|                 | 2.5             | 2               | 1,3,4,5,6,7,8 | 0         | 0.408     | 0.112 |
|                 | 14              | 1,2,3,4,5,6,7   | 8             | 0.49      | 0         | 0.04  |
|                 | 8.2             | 2,4,6,7         | 1,3,5,8       | 0.375     | 0         | 0.28  |
|                 | 10.4            | 2,4,5,6,7       | 1,3,8         | 0.48      | 0         | 0.169 |
| <b>«</b>        | 5               | 2,6             | 1,3,4,5,7,8   | 0         | 0.28      | 0.26  |
| Best split poir | nt 6.7          | 2,6,7           | 1,3,4,5,8     | 0         | 0         | 0.469 |
| _               | 14.7            | 1,2,3,4,5,6,7,8 | -             | 0.469     | -         | 0     |



# RANDOM FOREST

REGRESSION AND CLASSIFICATION

#### RANDOM FORESTS

- ☐ Simple extension of decision trees
- ☐ Forest comprise of many trees; equivalently, random forests consists of many decision trees
- ☐ Decision tree may give considerably different results for minor changes in the data or construction procedure
- ☐ Random forests help to avoid this by building multiple trees
- ☐ Each tree is realized by choosing a subset of datapoints or variables and building a decision for each sub-selected data matrix



#### RANDOM FORESTS

#### o Predictions

- Average of predictions from multiple trees for function approximation
- Majority voting (or other metrics) for classification

#### o Advantages of random forest

Stochasticity is included in various forms

- O Splitting on the basis of random subsets of samples
- O Splitting on the basis of random features
- Bagging (Bootstrap aggregating) decision trees –
   random samples with replacement



Other approaches for introducing stochasticity: Boosting decision trees – trees added sequentially

# PERFORMANCE MEASURES FOR CLASSIFICATION

#### CONFUSION MATRIX



- TP Correct identification of positive labels
- TN Correct identification of negative labels
- FP Incorrect identification of positive labels
- FN Incorrect identification of negative labels

- Accuracy: Overall effectiveness of a classifier
- Total number of actual positive samples TP+FN
- Total number of actual negative samples TN+FP
- Sensitivity/Recall Effectiveness of a classifier to identify positive labels

$$S_e = \frac{TP}{TP + FN}$$

Specificity – Effectiveness of a classifier to identify negative labels

$$S_p = \frac{TN}{FP + TN}$$

- Accuracy, specificity and sensitivity maximum value is 1
- Balanced accuracy = 0.5(Specificity+Sensitivity)
- Maximizing recall may adversely affect precision and vice versa

■ F1-score F1 - score = 
$$\frac{2(\text{Precision} \times \text{Recall})}{\text{Precision} + \text{Recall}}$$

#### PERFORMANCE MEASURES





#### Best case scenario



#### High precision and recall, low specificity



#### High precision, low recall and specificity



#### **CONCLUSIONS**

- ☐ Decision trees for both function approximation and classification
- ☐ Random forests for both function approximation and classification
- ☐ Performance measures for classification (using any algorithm)







```
peration == "MIRROR_X":
             object ___
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
lrror_mod.use_y = True
mirror_mod.use_z = False
  operation == "MIRROR_Z":
  rror_mod.use_x = False
  rror mod.use y = False
  Irror mod.use z = True
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.active
  "Selected" + str(modifie
   ata.objects[one.name].sel
  Int("please select exactle
```

#### THANKYOU