

V602: Röntgenemission und -absorption

Felix Geyer

Rune Dominik $felix.geyer@tu-dortmund.de \qquad rune.dominik@tu-dortmund.de \\$

> Durchführung: 04. Juli 2017 Abgabe: 11. Juli 2017

TU Dortmund - Fakultät Physik

Inhaltsverzeichnis

1	The	orie	1
	1.1	Entstehung von Röntgenstrahlung	1
	1.2	Absorption von Röntgenstrahlung	
	1.3	Die Bragg-Gleichung	
2	Dur	chführung	3
	2.1	Versuchsaufbau	3
	2.2	Versuchsdurchführung	3
3	Aus	wertung	4
	3.1	Überprüfen der Bragg-Bedingung	4
	3.2	Emissionspektrum für Kupfer	
	3.3	Absorptionsspektren von leichten Elementen	9
	3.4	Absorptionsspektren von Wismut.	9
4	Disk	kussion	11
Lit	teratı	ur	12

1 Theorie

Ziel des Versuchs ist die expermentelle Betrachtung des Röntgenemissionsspektrums von Kupfer sowie verschiedener Absorptionsspektren.

1.1 Entstehung von Röntgenstrahlung

Röntgenstrahlung entsteht bei der Wechselwirkung von beschleunigten Elektronen mit Materie. Die Elektronen werden dabei in einer evakuiertien Röhre (der sogenannten Röntgenröhre) unter Zuhilfenahme des glühelektrischen Effekts aus einer Kathode ausgelöst und zu einer Anode hin beschleunigt. Beim Auftreffen auf das Anodenmaterial führen zwei Prozesse zur Entstehung von Röntgenstrahlung:

1. Bremsstrahlung: Die Elektronen treten hierbei in Wechselwirkung mit den Coulombfeldern der Atomkerne des Anodenmaterials. Die durch den dabei folgenden Abbremsvorgang verloren gegangene Energie wird in Form eines Photons emittiert. Das resultierende Spektrum ist kontinuierlich. Es weist eine Grenzwellenlänge auf, unter der keine Röntgenstrahlung gemessen werden kann. Sie berechnet sich zu

$$\lambda_{\min} = \frac{hc}{e_0 U} \tag{1}$$

(mit Plankschem Wirkungsquantum h, Vakuumlichtgeschwindigkeit c und Elektronenruhemasse e_0) und entspricht der vollständigen Abbremsung des Elektrons, bei dem die aus der Beschleunigung gewonnene gesamte kinetische Energie umgewandelt wird. Dieses Spektrum ist kontinuierlich, es wird daher oft als kontinuierliches Bremsspektrum oder auch als Bremsberg bezeichnet.

2. Charakteristisches Spektrum Das charakteristische Spektrum der Röntgenstrahlung resultiert aus der Ionisation der Anodenatome durch die einfallenden Elektronen. Die von der Kathode emittierten Elektronen schlagen dabei Elektronen aus den inneren Schalen der Atome. Elektronen aus höheren Schalen fallen in die entstandenen Löcher und emittieren dabei Röntgenquenten. Die Energie der Röntgenquanten entspricht dabei der Differenz zwischen dem Ursprungsniveau und dem Zielniveau des Elektrons. Aus der Beziehung

$$E_n = -E_{\text{Ryd}} z_{\text{eff}}^2 \cdot \frac{1}{n^2} \tag{2}$$

mit Rydberg-Energie $E_{\rm Ryd}\approx 13.6\,{\rm eV}$ lässt sich die Bindungsenergie einer Elektronenschale ermitteln. Die Konstante $z_{\rm eff}=z-\sigma$ gibt hierbei die effektive Kernladung berechnet aus der tatsächlichen Kernladung und der Abschirmkonstante σ an. Die beim Abfall entstehenden scharfen Linien im Röntgenspektrum werden als K_α , K_β , L_α etc. bezeichnet. Der Großbuchstabe gibt dabei an, auf welche Schale das Elektron fällt, der griechische Buchstabe wie viele Schalen darüber es sich ursprünglich befand. Da die Abschrimkonstante dabei für jedes Elektron der äußeren Schale unterschiedlich ist, unterscheiden sich auch die Bindungsenergien innerhalb

der äußeren Schale. Dies führt dazu, dass eine Linie des charakteristischen Spektrums aus mehreren nah beieinanderliegenden Einzellinien besteht. Diese lassen sich mit eingem Aufwand auflösen, diese Linien werden als Feinstruktur bezeichnet. Diese Linien sind dem Bremsspektrum aufgesetzt siehe Abbildung 1a.

1.2 Absorption von Röntgenstrahlung

Bei der Wechselwirkung von Röntgenstrahlung unter 1 MeV mit Materie spielen im wesentlichen zwei Effekte eine Rolle. Zum einen die Comptonstreuung, die nur in Absorbern mit wenigen Elektronen nennenswerte Auswirkungen hat und zum anderen den inneren Photoeffekt. Die einstrahlenden Röntgenquanten treffen dabei auf die Hüllenenelektronen der Absorberatome, wobei sie mit einer gewissen Wahrscheinlichkeit absorbiert werden. Die Absorptionswahrscheinlichkeit ist dabei antiproportional zur Energie der einfallenden Röntgenstrahlung. Erreichen die Röntgenquanten jedoch die Bindungsenergie der Elektronen einer Schale können sie diese ionisieren. Dabei steigt die Absorptionsrate extrem an, es bildet sich eine sogenannte Absorptionskante die mit dem Buchstaben der ionisierten Schale bezeichnet wird (siehe Abbildung 1b). Auch hierbei muss die Feinstruktur beachtet werden. Die Bindungsenergie eines Elektrons in einer Schale, die diese Feinstruktur aufweist, berechnet sich dabei nach der SOMMERFELDSCHEN- Feinstrukturformel

$$E_{n,j} = -E_{\text{Ryd}} \left(z_{\text{eff},1}^2 \cdot \frac{1}{n^2} + \alpha^2 z_{\text{eff},2}^4 \cdot \frac{1}{n^3} \left(\frac{1}{j+1/2} - \frac{3}{4n} \right) \right)$$
(3)

mit Hauptquentenzahl n, Gesamtdrehimpulsquantenzahl j und Feinstrukturkonstante α . Die Bestimmung der Abschrimkonstante σ aus dieser Beziehung ist jedoch extrem kompliziert und kann auch aus der Energiedifferenz zwischen zwei Feinstrukturkanten erfolgen.

Abbildung 1: Emissions- und Absorptionsspektrum von Röntengenstrahlung.

1.3 Die Bragg-Gleichung

Für Messungen an Röntgenstrahlung ist abschließend noch die BRAGG-Gleichung hilfreich. Die Röntgenquanten fallen dabei auf ein Gitter ein (beispielsweise ein Einkristall) und werden dort in Abhängigkeit des Einfallswinkels gebeugt. Aus der Beziehung

$$2d\sin\theta = n\lambda\tag{4}$$

folgt dann mit der Gitterkonstante d zu jedem Winkel die Wellenlänge, die unter diesem Winkel konstruktiv interferiert. n gibt hierbei die Beugungsordnung an. Dies ist in Abbildung 2 dargestellt.

Abbildung 2: Veranschaulichung der Beugung nach BRAGG am Kristallgitter [Dor17].

2 Durchführung

2.1 Versuchsaufbau

Der Aufbau besteht aus einer Vorgefertigten Apparatur. In ihr befindet sich eine Röntgenröhre mit Cu-Anode, ein drehbar gelagertes Geiger-Müller-Zählrohr sowie ein LiF-Kristall. Auf dem Sensor des Geiger-Müller-Zählrohrs befindet sich eine Blende, damit nur das erste Beugungsmaximum gemessen wird. Die Apparatur ist mit einem Computer verbunden, an dem ein Programm die Messung automatisiert durchführen kann. An der Röntgenröhre sind Beschleunigungsspannung und Emissionsstrom einstellbar. Der Versuchsaufbau findet sich in Abbildung 3.

2.2 Versuchsdurchführung

Der Versuch besteht aus drei Teilen:

- 1. In einem ersten Versuchsteil wird die Bragg-Bedingung untersucht. Der Winkel des LiF-Kristalls wird dabei fest auf einen Winkel von 14° eingestellt und ein Winkelbereich von 26 bis 30° in 0.1°-Schritten mit dem Geiger-Müller-Zählrohr abgefahren. Das dabei bestimmte Maximum wird mit dem aus (4) bestimmten Theoriewert verglichen.
- 2. Im zweiten Versuchsteil wird im 2:1 Koppelmodus der Kristall von 4 bis 26° umfahren und in 0.2° Schritten für mindestens 5 s die Intensität gemessen. Mit der Bragg-Bedingung lässt sich hieraus das Emissionsspektrum der Röntgenröhre ermitteln.

Abbildung 3: Versuchsaufbau [Dor17].

3. Im letzten Versuchsteil werden für 6 verschiedene Absorbermaterialen die Absorptionsspektren aufgenommen. Die Absorber werden dabei vor dem Geiger-Müller-Zählrohr eingespannt und der Kristall in 0.1°-Schritten umfahren. Für jeden Winkel wird dabei ca. 20 s die Intensität gemessen. Aus den Messwerten lassen sich die Absorptionsspektren bestimmen.

3 Auswertung

3.1 Überprüfen der Bragg-Bedingung

In Abbildung 4 ist der Graph zur Überprüfung der Bragg-Bedingung zu finden. Das Maximum liegt bei $\alpha_{GM}=28.5^\circ$. Der Sollwinkel liegt bei 28°, somit ist die Bragg-Bedingung erfüllt.

Abbildung 4: Messung zur Überprüfung der Bragg-Bedingung.

(a) Graphische Darstellung des Emissionspektrums.

E/keV	$I/1/\mathrm{s}$	E/keV	$I/1/\mathrm{s}$	E/keV	$I/1/\mathrm{s}$	E/keV	I/1/s
44.126	47	18.457	272	11.740	213	8.688	207
42.028	44	18.084	277	11.591	232	8.589	199
40.121	35	17.726	274	11.446	202	8.512	185
38.380	34	17.382	294	11.305	216	8.436	187
36.785	41	17.051	300	11.167	199	8.361	186
35.317	54	16.733	297	11.033	206	8.288	186
33.962	66	16.427	296	10.902	204	8.217	285
32.708	91	16.132	314	10.774	194	8.146	2915
31.543	98	15.847	284	10.650	190	8.077	5724
30.459	110	15.573	308	10.528	197	8.010	4243
29.447	118	15.308	298	10.409	183	7.960	584
28.501	127	15.052	293	10.293	177	7.878	187
27.614	136	14.805	297	10.180	177	7.813	144
26.780	150	14.566	299	10.096	184	7.750	125
25.996	154	14.334	287	9.961	179	7.688	131
25.257	159	14.110	316	9.855	185	7.628	115
24.559	180	13.893	291	9.752	167	7.568	109
23.899	185	13.683	289	9.650	178	7.509	109
23.273	198	13.480	265	9.576	170	7.451	103
22.680	219	13.282	253	9.454	153	7.394	95
22.117	225	13.090	237	9.360	156	7.338	97
21.581	228	12.904	226	9.267	150	7.283	94
21.196	233	12.723	228	9.176	154	7.229	95
20.584	239	12.548	222	9.109	212	7.176	80
20.120	256	12.377	209	9.000	1769	7.124	86
19.676	243	12.211	213	8.914	1538	7.072	81
19.252	260	12.050	211	8.830	658	7.022	73
18.846	259	11.893	224	8.748	245		

(b) Messwerte zum Emissionspektrum.

Abbildung 5: Das Emissionspektrum von Kupfer.

3.2 Emissionspektrum für Kupfer

In Abbildung 5a ist das Emissionspektrum von Kupfer zu sehen. Unser Ausschnitt des Emissionsspektrum zeigt den Bremsberg von etwa 45 keV bis ca. 9 keV. Tatsächlich ist er dort noch nicht zu Ende, da nur ein Ausschnitt aufgenommen wurde. Bei $E_{\beta}=9$ keV befindet sich die K_{β} -Linie und bei $E_{\alpha}=8.077$ keV die K_{α} -Linie. Bei einem Grenzwinkel von 10° ergibt sich nach (4) mit der Beziehung

$$E = c \cdot 1/\lambda \tag{5}$$

die Gleichung

$$E = c \cdot \frac{h}{2 d \sin(\theta)} \,. \tag{6}$$

Mit $d=201.4\,\mathrm{pm}$ ergibt sich die maximale Energie zu $E_{\mathrm{Grenz}}=35.32\,\mathrm{keV}$. Für die Abschirmkonstanten σ_K und σ_L wird ausgenutzt, dass E_β ungefähr der Bindungsenergie E_k aus (2) entspricht. Damit ergeben sich folgenden Formeln

$$\sigma_K = z_{Cu} - \sqrt{\frac{E_\beta}{E_{\rm Ryd}}} \tag{7}$$

$$\sigma_L = z_{Cu} - \sqrt{\frac{4(E_\beta - E_\alpha)}{E_{\text{Ryd}}}}.$$
 (8)

Für die oben angegebenen Energien ergeben sich für die Abschirmkonstanten

$$\begin{split} \sigma_K &= 3.28 \\ \sigma_L &= 12.52 \,. \end{split}$$

Die Halbwertsbreiten lassen sich aus Abbildung 5b ablesen. Die Untergrundstrahlung wird für K_{β} bei 9.176 keV und bei 8.688 keV und für K_{α} bei 8.288 keV und bei 7.878 keV angenommen. Die Breiten der Linien betragen 0.488 keV bzw. 0.410 keV. Daraus ergeben sich für die Halbwertsbreiten $\Delta_{1/2}$

$$\begin{split} &\Delta_{1/2} K_\beta = 244\,\mathrm{eV} \\ &\Delta_{1/2} K_\alpha = 205\,\mathrm{eV} \,. \end{split}$$

Das Auflösungsvermögen beschreibt in der Physik das Maß für den geringsten Abstand zweier Messobjekte, die von der Messapparatur mit Sicherheit noch getrennt aufgelöst bzw. gemessen werden können. In der Optik ist zum Beispiel das Maß für den geringste Abstand, der aufgelöst werden kann, wenn das Intensitätsmaximum eines Objektes auf dem ersten Intensitätsminimum des anderen Objektes liegt. Wird dieser Abstand geringer, lassen sich beide Objekte nicht mehr sauber voneinander trennen.

Tabelle 1: Messwerte der Absorptionsspektren leichter Absorbermaterialen. Die Absorbermaterialien sind mit ihren Elementsymbolen abgekürzt.

(a) Ge		(b) Br		(c) Sr		(d) Zn		(e) Zr	
E/keV	I/1/s	E/keV	I/1/s	E/keV	$I/1/\mathrm{s}$	E/keV	I/1/s	E/keV	I/1/s
12.7	40	16.1	21	19.7	53	10.5	64	22.1	110
12.6	37	16.0	19	19.5	49	10.5	65	21.8	105
12.5	37	15.8	19	19.3	45	10.4	65	21.6	106
12.5	36	15.7	18	19.0	42	10.4	64	21.3	108
12.4	36	15.6	19	18.8	44	10.3	66	21.2	106
12.3	34	15.4	18	18.6	44	10.2	60	20.8	104
12.2	34	15.3	19	18.5	44	10.2	59	20.6	103
12.1	34	15.2	17	18.3	42	10.1	64	20.3	103
12.0	35	15.1	17	18.1	39	10.1	59	20.1	99
12.0	32	14.9	17	17.9	36	10.0	60	20.0	99
11.9	32	14.8	15	17.7	37	10.0	57	19.7	96
11.8	35	14.7	16	17.6	39	9.9	60	19.5	90
11.7	33	14.6	15	17.4	37	9.9	56	19.3	89
11.7	31	14.4	15	17.2	34	9.8	58	19.0	91
11.6	33	14.3	16	17.1	34	9.8	59	18.8	89
11.5	31	14.2	16	16.9	35	9.7	64	18.6	90
11.4	31	14.1	17	16.7	36	9.7	75	18.5	91
11.4	31	14.0	17	16.6	38	9.6	87	18.3	107
11.3	36	13.9	18	16.4	45	9.6	96	18.1	147
11.2	48	13.8	21	16.4	63	9.5	103	17.9	178
11.2	57	13.7	31	16.1	107	9.5	107	17.7	216
11.1	64	13.6	43	16.0	140	9.4	106	17.6	232
11.0	70	13.5	46	15.8	158	9.4	101	17.4	231
11.0	64	13.4	47	15.7	163	9.3	103	17.2	230
10.9	68	13.3	46	15.6	165	9.3	97	17.1	241
10.8	68	13.2	42	15.4	159	9.2	95	16.9	235
10.8	68	13.1	39	15.3	156	9.2	97	16.7	234
10.7	62	13.0	39	15.2	149	9.1	97	16.6	225
10.6	63	12.9	40	15.1	147	9.1	99	16.4	234
10.6	59	12.8	38	14.9	140	9.0	119	16.4	234
10.5	56	12.7	38	14.8	140	9.0	182	16.1	232
10.5	56	12.6	36	14.7	137	9.0	700	16.0	237
10.4	57	12.5	36	14.6	137	8.9	1037	15.8	234
10.4	50	12.5	33	14.4	131	8.9	1195	15.7	231
10.3	53	12.4	35	14.3	132	8.8	973	15.6	231
10.2	53	12.3	30	14.2	128	8.8	825	15.4	222
10.2	52	12.2	30	14.1	130	8.7	295	15.3	218
10.1	51	12.1	31	14.0	124	8.7	152	15.2	216
10.1	51	12.0	27	13.9	128	8.7	137	15.1	213
10.0	50	12.0	28	13.8	120	8.6	121	14.9	206
10.0	49	11.9	24	13.7	122			14.8	208

Abbildung 6: Graphische Darstellung der Absorptionsspektren leichter Absorbermaterialien aus den in Tabelle 1 eingetragenen Messwerten.

3.3 Absorptionsspektren von leichten Elementen.

Für die verschiedenen Materialien ergeben sich die Absorptionsenergien aus den Plots 6a bis 6e und aus der Formel

$$\sigma_K = z - \sqrt{\frac{E_k}{E_{\text{Ryd}}} - \frac{\alpha^2 z^4}{4}} \tag{9}$$

die Abschirmkonstanten. Nach dem Moseleyschen Gesetz ist $\sqrt{E_k} \propto z$. In Abbildung 7b

	$E_K/{\rm keV}$	σ_K			
Germanium	11.17	3.59			
Strontium	16.20	3.89			
Brom	13.63	3.66			
Zink	9.60	3.63			
Zirkonium	17.99	4.10			
(a)					

Abbildung 7: In Tabelle 7a finden sich die berechneten Energien der K-Kanten und die resultierenden σ_K . In Abbildung 7b findet sich die zugehörige graphische Darstellung des Moseleyschen Gesetzes mit eben diesen Energien der K-Kanten und linearer Regression.

ist dieser Zusammenhang graphisch dargestellt. Die Steigung zum Quadrat sollte laut (2) genau der Rydbergenergie entsprechen. Die Fitparameter sind

$$m = (3.61 \pm 0.04) \sqrt{\text{eV}} \text{ und}$$

 $b = (-10.1 \pm 1.5) \sqrt{\text{eV}}$.

Es ergibt sich $m^2 = (13.05 \pm 0.31) \,\text{eV}.$

3.4 Absorptionsspektren von Wismut.

In Abbildung 8 befindet sich das Absorptionsspektrum von Wismut. Für die Abschirmkonstante ergibt sich mit

$$\sigma_L = z - \left(\frac{4}{\alpha} \sqrt{\frac{\Delta E_L}{E_{\rm Ryd}}} - \frac{5\Delta E_L}{E_{\rm Ryd}}\right)^{1/2} \left(1 + \frac{19}{32} \alpha^2 \frac{\Delta E_L}{E_{\rm Ryd}}\right)^{1/2} \tag{10}$$

der Wert $\sigma_L=5.51.$ Dabei ist ΔE_L die Differenz zwischen den Energien der L_{II} - und der L_{III} - Kante.

E/keV	$I/1/\mathrm{s}$	E/keV	$I/1/\mathrm{s}$
19.7	117	14.7	107
19.5	114	14.6	109
19.3	110	14.4	103
19.0	106	14.3	104
18.8	111	14.2	99
18.6	107	14.1	99
18.5	105	14.0	92
18.3	101	13.9	99
18.1	104	13.8	96
17.9	102	13.7	93
17.7	96	13.6	95
17.6	97	13.5	109
17.4	94	13.4	128
17.2	94	13.3	140
17.1	95	13.2	140
16.9	94	13.1	138
16.7	94	13.0	131
16.6	94	12.9	130
16.4	93	12.8	127
16.4	100	12.7	124
16.1	102	12.6	118
16.0	108	12.5	120
15.8	111	12.5	113
15.7	117	12.4	117
15.6	121	12.3	110
15.4	123	12.2	112
15.3	128	12.1	107
15.2	120	12.0	107
15.1	116	12.0	102
14.9	107	11.9	103
14.8	109		

(a) Graphische Darstellung der Messwerte. (b) Messwerte.

 ${\bf Abbildung~8:~Absorptions spektrum~von~Wismut.}$

4 Diskussion

Alle nachfolgenden Literaturwerte sind zitiert aus [Wis17]. Zum Emissionsspektrum von

Tabelle 2: Literaturwerte für die gemessenen Größen.

	$E_K/{\rm keV}$	σ_K
Germanium	11.11	3.68
Strontium	16.12	4.00
Brom	13.48	3.85
Zink	9.65	3.56
Zirkonium	17.99	4.10

Kupfer lässt sich sagen, dass die maximale Energie des Bremsspektrums mit $\approx 35.32\,\mathrm{keV}$ nahe an dem zu erwartenden Wert 35 keV liegt. Die prozentuale Abweichung ist mit unter einem Prozent sehr gering. Erklären lässt sich die Abweichung damit, dass aufgrund der Fermi-Dirac-Statistik nicht alle Elektronen vor Anlegen der Beschleunigungsspannung die Energie 0 haben, sondern einige auch bereits eine Energie über 0 haben können. Somit folgt, dass die maximale Energie etwas über der angelegten Beschleunigungsspannung $35\,\mathrm{kV}$ liegt, was ja hier auch der Fall ist.

Die Abschirmkonstanten $\sigma_K=3.28$ und $\sigma_L=12.52$ weichen ebenfalls nur geringfügig von den Literaturwerten 3.41 bzw. 13.03 ab. Die Abweichungen entstehen von den Abweichungen der Energien der K_{α} - und der K_{β} - Linie.

Die K-Kanten Energien befinden sich in guter Näherung zum Literaturwert. Im Falle von Strontium stimmen sie sogar genau überein. Die größte Abweichung liegt bei Brom mit ungefähr 1.1%. Die Abweichungen bei den Abschirmkonstanten sind etwas größer, im Schnitt 5%, aber im vertretbaren Bereich. Mögliche Abweichungen sind bedingt durch eine Abweichung vom Sollwinkel der Bragg-Bedingung.

Die aus dem Moseleyschen Gesetz erhaltene Regression sieht sehr linear aus, die aus der Steigung gewonnene Rydberg-Energie weicht um etwa $4\,\%$ ab. Diese Abweichung kommt daher, dass die Formel, die in der Regression verwendet wurde, nur eine Näherungsformel ist.

Die Abschirmkonstante für Wismut weicht mit 35% relativ stark ab vom Literaturwert 3.60. Die Abweichung könnte mit Ablesefehlern und der allgemeinen Abweichung vom Sollwinkel zusammenhängen.

Literatur

- [Dor17] TU Dortmund. V602: Röntgenemission und -absorbtion. 23. Mai 2017. URL: $\label{eq:http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V602.}$ pdf.
- [Köp14] Jan Köppen. Röntgenstrahlung. 23. Nov. 2014. URL: https://prezi.com/beqlml_qdcga/rontgenstrahlung/.
- [Wis17] Steffens's Wissensblog. Wellenlängen und Anregungsenergien von K- und L- Absorptionskanten.
 9. Juli 2017. URL: https://wissen.science-and-fun.de/tabellen-fur-spektroskopiker/wellenlaengen-und-anregungsenergien-von-k-und-l-absorptionskanten/.