

E32-400T20S 用户手册

SX1278 433/470MHz TTL LoRa 无线模块

成都亿佰特电子科技有限公司

Chengdu Ebyte Electronic Technology Co.,Ltd.

1	第一章 产品概述	2
	1.1 产品简介	2
	1.2 特点功能	2
	1.3 应用场景	2
1	第二章 规格参数	3
	2.1 极限参数	3
	2.2 工作参数	3
1	第三章 机械尺寸与引脚定义	. 4
1	第四章 推荐连线图	5
1	第五章 功能详解	6
	5.1 定点发射(16 进制)	. 6
	5.2 广播发射(16 进制)	. 6
	5.3 广播地址	7
	5.4 监听地址	7
	5.5 模块复位	7
	5.6 AUX 详解	. 7
	5.6.1 串口数据输出指示	. 7
	5.6.2 无线发射指示	. 7
	5.6.3 模块正在配置过程中	. 8
	5. 6. 4 AUX 注意事项	8
1	第六章 工作模式	9
	6.1 模式切换	9
	6.2 一般模式(模式0)	10
	6.3 唤醒模式(模式1)	10
	6.4 省电模式(模式2)	10
	6.5 休眠模式(模式3)	10
1	第七章 指令格式	11
	7.1 出厂默认参数	11
	7.2 工作参数读取	11
	7.3 版本号读取	11
	7.4 复位指令	11
	7.5 参数设置指令	12
1	第八章 硬件设计	13
1	第九章 常见问题	14
	9.1 传输距离不理想	14
	9.2 模块易损坏	14
	9.3 误码率太高	14
1	第十章 焊接作业指导	15
	10.1 回流焊温度	15
	10.2 回流焊曲线图	15
1	第十一章 相关型号	16
1	第十二章 天线指南	16
1	第十三章 批量包装方式	17

第一章 产品概述

1.1 产品简介

1. E32-400T20S 是亿佰特针对无线抄表行业研发的一款无线串口模块, LoRa 扩频方案,拥有空中唤醒功能(低功耗),出厂默认 470MHz 抄 表频段,长分包模式(197字节每包),可以满足抄表行业的应用。

SX1278 支持 LoRa™扩频技术,LoRa™直序扩频技术具有更远的通讯距离,抗干扰能力强的优势,同时有极强的保密性,在低速通信领域 SX1278 具有里程碑意义,并受到业内人士的青睐。该系列默认空中速率为 2. 4kbps,发射功率为 20dBm ,采用工业级晶振,保证其稳定性、一致性,精度均小于业内普遍采用的 10ppm。目前已经稳定量产,已经大量应用三表行业、物联网改造、智能家具等领域。

1.2 特点功能

- 支持先进的 LoRa 调制方式,具有远距离抗干扰的优点;
- 理想条件下通信距离可达 3km, 传输距离优于传统 GFSK 等;
- 支持定点传输、广播传输、信道监听;
- 支持空中唤醒(超低功耗),适用于电池应用方案;
- 支持长分包模式,每包197字节;
- 最大发射功率 1W, 软件多级可调;
- 支持全球免许可 ISM 433/470MHz 频段;
- 支持 0.3k~19.2kbps 的数据传输速率;
- 支持 2.3~5.5V 供电,大于 3.3V 供电均可保证最佳性能;
- 采用有源温补晶振,工业级标准设计,支持-40~+85℃下长时间使用;
- 双天线可选(IPEX/邮票孔),用户可根据需求使用。

1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 智能智能农业、油田方案;
- 医疗保健产品;
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

十冊	性	能	A7 334
主要参数	最小值	最大值	备注
电源电压 (V)	0	5. 2	超过 5. 2V 永久烧毁模块
阻塞功率 (dBm)	_	-10	近距离使用烧毁概率较小
工作温度(℃)	-40	+85	工业级

2.2 工作参数

主要参数		性能			备注
	土安参数		最小值 典型值		任 在
	工作电压 (V)	2.6	5.0	5. 2	≥3.3V 可保证输出功率
	通信电平 (V)		3.3		使用 5V TTL 有风险烧毁
	工作温度(℃)	-40	_	+85	工业级设计
	工作频段 (MHz)	410	_	525	支持 ISM 频段
功	发射电流 (mA)		106		瞬时功耗
邦耗	接收电流(mA)		15		
杜	休眠电流 (µA)		4		软件关断
	最大发射功率 (dBm)	19.0	19.5	20.0	
	接收灵敏度 (dBm)	-144	-146	-147	空中速率为 2. 4kbps
	空中速率(bps)	0. 3k	2. 4k	19. 2k	用户自行配置

主要参数	描述	备注
参考距离	3000m	晴朗空旷环境,天线增益 5dBi, 天线高度 2.5米, 空中速率 2.4kbps
分包方式	197 Btye	单包最大容量,超出后自动分包。
缓存容量	512 Btye	
调制方式	LoRa™	
通信接口	UART 串口	TTL 电平
封装方式	贴片式	
接口方式	1.27mm	
外形尺寸	16 * 26mm	
天线接口	IPEX/邮票孔	特性阻抗约 50 欧姆

第三章 机械尺寸与引脚定义

引脚序号	引脚名称	引脚方向	引脚用途
1	NC	-	空脚
2	GND	_	模块地线
3	NC	_	空脚
4	NC	_	空脚
5	NC	_	空脚
6	NC	_	空脚
7	NC	_	空脚
8	GND	_	模块地线
11	GND	_	模块地线
12	ANT	-	天线
13	GND	-	模块地线
14	GND	-	模块地线
15	GND	-	模块地线
16	GND	_	模块地线
19	GND	-	模块地线
20	MO	输入(极弱上拉)	和 M1 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)
21	M1	输入(极弱上拉)	和 MO 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)
22	RXD	输入	TTL 串口输入,连接到外部 TXD 输出引脚;
23	TXD	输出	TTL 串口输出,连接到外部 RXD 输入引脚;

24	AUX	输出	用于指示模块工作状态; 用户唤醒外部 MCU,上电自检初始化期间输出低电平; (可以悬空)
25	VCC	_	模块电源正参考, 电压范围: 2.6~5.2V DC
26	GND	_	模块地线

第四章 推荐连线图

序号	模块与单片机简要连接说明(上图以 STM8L 单片机为例)				
1	无线串口模块为 TTL 电平,请与 TTL 电平的 MCU 连接。				
2	某些 5V 单片机,可能需要在模块的 TXD 和 AUX 脚加 4~10K 上拉电阻。				

第五章 功能详解

5.1 定点发射 (16 进制)

5.2 广播发射 (16 进制)

5.3 广播地址

- 举例:将模块 A 地址设置为 0xFFFF,信道设置为 0x04。
- 当模块 A 作为发射时(相同模式,透明传输方式),0x04 信道下所有的接收模块都可以收到数据,达到广播的目的。

5.4 监听地址

- 举例:将模块 A 地址设置为 0xFFFF, 信道设置为 0x04。
- 当模块 A 作为接收时,可以接收到 0x04 信道下所有的数据,达到监听的目的。

5.5 模块复位

● 模块上电后,AUX 将立即输出低电平,并进行硬件自检,以及按照用户参数进行工作方式设置。在此过程中,AUX 保持低电平,完毕后 AUX 输出高电平,并按照 M1、M0 组合而成的工作模式开始正常工作。所以,用户需要等待 AUX 上升沿,作为模块正常工作的起点。

5.6 AUX 详解

- AUX 用于无线收发缓冲指示和自检指示。
- 它指示模块是否有数据尚未通过无线发射出去,或已经收到无线数据是否尚未通过串口全部发出,或模块正在初始化自 检过程中。

5.6.1 串口数据输出指示

● 用于唤醒休眠中的外部 MCU;

•

模块串口外发数据时, AUX引脚时序图

5.6.2 无线发射指示

● 缓冲区空:内部 512 字节缓冲区的数据,都被写入到无线芯片(自动分包);

- 当 AUX=1 时用户连续发起小于 512 字节的数据,不会溢出;
- 当 AUX=0 时缓冲区不为空:内部 512 字节缓冲区的数据,尚未全部写入到无线芯片并开启发射,此时模块有可能在等待用户数据结束超时,或正在进行无线分包发射;
- 【注意】: AUX=1 时并不代表模块全部串口数据均通过无线发射完毕,也可能最后一包数据正在发射中。

分包发射:最后一包数据已 写入RF芯片并启动发射,用户 可以继续输入512字节. (实质 是暖冲区为空) # × 0- RXD T1: ### <u>T2</u>: ### # × 1- TXD |T1-T2|: ### 章 李 2- AUX

模块接收串口数据时, AUX引脚时序图

5.6.3 模块正在配置过程中

● 仅在复位和退出休眠模式的时候;

自检期间,AUX引脚时序图

5.6.4 AUX 注意事项

- 上述功能 1 和功能 2,输出低电平优先,即:满足任何一个输出低电平条件,AUX 就输出低电平;当所有低电平条件均不满足时,AUX 输出高电平。
- 当 AUX 输出低电平时,表示模块繁忙,此时不会进行工作模式检测;当模块 AUX 输出高电平后 1ms 内,将完成模式切换工作。
- 用户切换到新的工作模式后,至少需要在 AUX 上升沿 2ms 后,模块才会真正进入该模式;如果 AUX 一直处于高电平,那么模式切换将立即生效。
- 用户从模式 3 (休眠模式) 进入到其他模式或在复位过程中,模块会重新设置用户参数,期间 AUX 输出低电平。
- 因 LoRa 调制方式的特点,信息传输时延相较于 FSK 要长很多,如在 1.2kbps 空速下,100 字节传输时延在 1.5 秒左右,建议客户不要在低空速下进行大数据量传输,以免因数据堆积造成数据丢失引发通信异常。

第六章 工作模式

模块有四种工作模式,由引脚 MO、M1 设置;详细情况如下表所示:

模式 (0-3)	МО	M1	模式介绍	备注
0 一般模式	0	0	串口打开,无线打开,透明传输	接收方必须是模式 0、1
1 唤醒模式	1	0	串口打开,无线打开; 和模式0唯一区别:数据包发射前,自动增加唤醒码, 这样才能唤醒工作在模式2的接收方	接收方可以是模式 0 接收方可以是模式 1 接收方可以是模式 2
2 省电模式	0	1	串口接收关闭,无线处于空中唤醒模式,收到无线数据后,打开串口发出数据。	发射方必须模式 1 该模式下不能发射
3 休眠模式	1	1	模块进入休眠,可以接收参数设置命令	详见工作参数详解

6.1 模式切换

- 用户可以将 MO、M1 进行高低电平组合,确定模块工作模式。可使用 MCU 的 2 个 GPIO 来控制模式切换;当改变 MO、M1 后:模块空闲,1ms 后,即可按照新的模式开始工作;若模块有串口数据尚未通过无线发射完毕,则发射完毕后,才能进入新的工作模式;若模块收到无线数据后并通过串口向外发出数据,则需要发完后才能进入新的工作模式;所以模式切换只能在 AUX 输出 1 的时候有效,否则会延迟切换。
- 例如:在模式 0 或模式 1 下,用户连续输入大量数据,并同时进行模式切换,此时的切换模式操作是无效的;模块会将 所有用户数据处理完毕后,才进行新的模式检测;所以一般建议为:检测 AUX 引脚输出状态,等待 AUX 输出高电平后 2ms 再进行切换。
- 当模块从其他模式被切换到休眠模式时,如果有数据尚未处理完毕;模块会将这些数据(包括收和发)处理完毕后,才能进入休眠模式。这个特征可以用于快速休眠,从而节省功耗;例如:发射模块工作在模式 0,用户发起串口数据"12345",然后不必等待 AUX 引脚空闲(高电平),可以直接切换到休眠模式,并将用户主 MCU 立即休眠,模块会自动将用户数据全部通过无线发出后,1ms 内自动进入休眠;从而节省 MCU 的工作时间,降低功耗。
- 同理,任何模式切换,都可以利用这个特征,模块处理完当前模式事件后,在 1ms 内,会自动进入新的模式;从而省去了用户查询 AUX 的工作,且能达到快速切换的目的;例如从发射模式切换到接收模式;用户 MCU 也可以在模式切换前提前进入休眠,使用外部中断功能来获取 AUX 变化,从而进行模式切换。
- 此操作方式是非常灵活而高效的,完全按照用户 MCU 的操作方便性而设计,并可以尽可能降低整个系统的工作负荷,提高系统效率,降低功耗。

6.2 一般模式 (模式 0)

类型	当 MO = 0, M1 = 0 时,模块工作在模式 0
发射	模块接收来自串口的用户数据,模块发射无线数据包长度为 58 字节,当用户输入数据量达到 58 字节时,模块将启动无线发射,此时用户可以继续输入需要发射的数据; 当用户需要传输的字节小于 58 字节时,模块等待 3 字节时间,若无用户数据继续输入,则认为数据终止,此时模块将所有数据包经过无线发出; 当模块收到第一个用户数据后,将 AUX 输出低电平,当模块把所有数据都放入到 RF 芯片并启动发射后,AUX 输出高电平; 此时,表明最后一包无线数据已经启动发射,用户可以继续输入长达 512 字节的数据; 通过模式 0 发出的数据包,只能被处于模式 0、模式 1 的接收模块收到。
接收	模块一直打开无线接收功能,可以接收来自模式 0、模式 1 发出的数据包; 收到数据包后,模块 AUX 输出低电平,并延迟 5ms 后,开始将无线数据通过串口 TXD 引脚发出, 所有无线数据都通过串口输出后,模块将 AUX 输出高电平。

6.3 唤醒模式 (模式 1)

类型	当 MO = 1, M1 = 0 时,模块工作在模式 1
发射	模块启动数据包发射的条件与 AUX 功能都等同于模式 0; 唯一不同的是:模块会在每个数据包前自动添加唤醒码,唤醒码的长度取决于用户参数中设置的唤醒时间; 唤醒码的目的是用于唤醒工作在模式 2 的接收模块; 所以,模式 1 发射的数据可以被模式 0、1、2 收到。
接收	等同于模式 0。

6.4 省电模式 (模式 2)

类型	当 MO = 0, M1 = 1 时,模块工作在模式 2
发射	模块处于休眠状态,串口被关闭,无法接收来自外部 MCU 的串口数据,所以该模式不具有无线发射功能。
接收	在模式 2 下,要求发射方必须工作在模式 1; 定时监听唤醒码,一旦收到有效的唤醒码后,模块将持续处于接收状态,并等待整个有效数据包接收完毕; 然后 AUX 输出低电平,延迟 5ms 后,打开串口将收到的无线数据通过 TXD 发出,完毕后将 AUX 输出高电平; 无线模块继续进入"休眠 - 监听"的工作状态(polling); 通过设置不同的唤醒时间,模块具有不同的接收响应延迟(最长 2s)和平均功耗(最小 30uA); 用户需要在通讯延迟时间和平均功耗之间取得一个平衡点。

6.5 休眠模式 (模式3)

类型	当 MO = 1, M1 = 1 时,模块工作在模式 3
发射	无法发射无线数据。
接收	无法接收无线数据。
配置	休眠模式可以用于模块参数设置,使用串口9600、8N1,通过特定指令格式设置模块工作参数。
注意	当从休眠模式进入到其他模式,模块会重新配置参数,配置过程中,AUX 保持低电平; 完毕后输出高电平,所以建议用户检测 AUX 上升沿。

第七章 指令格式

休眠模式(模式3: M0=1, M1=1)下,支持的指令列表如下(设置时,只支持9600,8N1格式):

序号	指令格式	详细说明
1	C0+工作参数	16 进制格式发送 C0+5 字节工作参数,共 6 字节,必须连续发送(掉电保存)
2	C1+C1+C1	16 进制格式发送三个 C1,模块返回已保存的参数,必须连续发送。
3	C2+工作参数	16 进制格式发送 C2+5 字节工作参数,共 6 字节,必须连续发送(掉电不保存)
4	C3+C3+C3	16 进制格式发送三个 C3,模块返回版本信息,必须连续发送。
5	C4+C4+C4	16 进制格式发送三个 C4,模块将产生一次复位,必须连续发送。

7.1 出厂默认参数

型号	出厂默认参数值: CO 00 00 1A 3C 40									
模块型号	频率	频率 地址 信道 空中速率 波特率 串口格式 发射功								
E32-400T20S	470MHz	0x0000	0x3C	2.4kbps	9600	8N1	20dBm			

7.2 工作参数读取

指令格式	详细说明
C1+C1+C1	在休眠模式下(M0=1, M1=1),向模块串口发出命令(HEX格式):C1 C1 C1,模块会返回当前的配置参数,比如:C0 00 00 1A 17 44。

7.3 版本号读取

指令格式	详细说明
C3+C3+C3	在休眠模式下(M0=1, M1=1),向模块串口发出命令(HEX 格式): C3 C3 C3,模块会返回当前的配置参数,比如: C3 32 xx yy; 第二字节处代表频率,若为 32,则是 433MHz 适用频率; 若为 38,则是 470MHz 适用频率; 若为 45,则是 868MHz 适用频率; 若为 44,则是 915MHz 适用频率; 若为 46,则是 170MHz 适用频率; xx 就是版本号,yy 代指模块其他特性。

7.4 复位指令

指令格式	详细说明
C4+C4+C4	在休眠模式下(MO=1, M1=1),向模块串口发出命令(HEX 格式): C4 C4 C4,模块将产生一次复位;复位过程中,模块进行自检,AUX 输出低电平,复位完毕后,AUX 输出高电平,模块开始正常工作。此时,可以进行模式切换或发起下一条指令。

7.5 参数设置指令

	名称				描述	备注
0	HEAD	固定 0x0	0 或 0xC	2,表示」	比帧数据为控制命令	必须为 0xC0 或 C2: C0: 所设置的参数会掉电保存; C2: 所设置的参数不会掉电保存。
1	ADDH	模块地址	L高字节	(默认 00	OH)	OOH-FFH
2	ADDL	模块地址	比低字节	(默认 00	OH)	OOH-FFH
		7	6	串口校	医验位	
		0	0	8N1 (默认)	
		0	1	801		通信双方串口模式可以不同。
		1	0	8E1		
		1	1	8N1 (4	等同 00)	
		5	4	3	TTL 串口速率(bps)	
		0	0	0	串口波特率为 1200	
		0	0	1	串口波特率为 2400	
		0	1	0	串口波特率为 4800	通信双方波特率可以不同;
		0	1	1	串口波特率为9600(默认)	─_ ─ 串口波特率和无线传输参数无关,不影响无
		1	0	0	串口波特率为 19200	一 申口放行举和无线传制参数无关,不影响无 _ 线收发特性。
3	SPED	1	0	1	串口波特率为 38400	
		1	1	0	串口波特率为 57600	
		1	1	1	串口波特率为 115200	
		2	1	0	通用无线空中速率(bps)	
		0	0	0	空中速率为 0.3k	
		0	0	1	空中速率为 1.2k	
		0	1	0	空中速率为 2.4k (默认)	空中速率越低,距离越远,抗干扰性能越强,
		0	1	1	空中速率为 4.8k	一 发送时间越长;
		1	0	0	空中速率为 9.6k	──
		1	0	1	空中速率为 19. 2k	返旧从万工十九级尺桶还十岁次相同。
		1	1	0	空中速率为 19. 2k (同 101)	
		1	1	1	空中速率为 19.2k (同 101)	
4	CHAN				CHAN * 1MHz),默认 3CH(470MHz)	00H-73H, 对应 410~525MHz
		7			位(类 MODBUS)	→ 为1时,每个用户数据帧的前3个字节作为 高、低地址、信道。发射时,模块改变自身
		0		· 输模式 · 输模式		一 尚、低地址、信坦。友射时,模块改变自身 地址和信道,完毕后,恢复原有设置。
		6				
		1			输出,RXD 上拉输入	— 该位用于使能模块内部上拉电阻;
		0			输出,RXD 开路输入	可能需要外部上拉电阻。
5	OPTION	5	4	3	无线唤醒时间	── ── ── ── ── ── ── ── ── ──
		0	0	0	250ms (默认) 500ms	一 效,可以任意值;
		0	1	0	750ms	发射方工作在模式 1,将持续发射相应时间
		0	1	1	1000ms	一 的唤码;
		1	0	0	1250ms	接收方工作在模式 2,此时间是指接收方的
		1	0	1	1500ms	── 监听间隔时间(无线唤醒),只能收到工作 ── 在模式1下发射方的数据;
		1	1	0	1750ms	── 在模式 I 下反射 万 的 数 掂; ── 唤醒时间越长,功耗越低。
		1	1	1	2000ms	> 1 1 1/2 1-1 / / / / / / / / / / / / / / / / / /

		2	FEC 开	关					关闭 FEC 后,数据实际传输速率提升,但抗				
		0	关闭 FI	关闭 FEC 纠错 (默认)					干扰能力减弱,距离稍近,请根据实际应用				
		1	打开 FI	F FEC 纠错					选择; 通信双方必须都开启或都关闭。				
		1	0	发射功率	区(大约值)				外部目	 电源必须提供	き 250mA 以上	上电流输出能	
		0	0	20dBm (默认)						4保证电源线			
		0	1	17dBm	17dBm								
		1	0	14dBm					不推荐使用较小功率发送,其电源利用效率 不高。				
		1	1	10dBm									
				举例	说明(序号	号 3 "SPED"	字节的含	义):					
ù	亥字节的二章	进制位		7	6	5	4		3	2	1	0	
具	具体值(用户配置)			0	0	0	1		1	0	1	0	
代表意义				串口校验位 8N1 串口波特率为 9600			空中速率为 2. 4k						
	对应的十六进制			1			A						

第八章 硬件设计

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的, 会在不同程度影响模块的杂散以 及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可 以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强 度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平, 必须串联 1k-5.1k 电阻 (不推荐, 仍有损坏风险);
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议,例如: USB3.0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露且最好垂直向上;
- 当模块安装于机壳内部时,可使用优质的天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

第九章 常见问题

9.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力,故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值,电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

9.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

9.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。

第十章 焊接作业指导

10.1 回流焊温度

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235℃	230−250℃
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6°C/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

10.2 回流焊曲线图

第十一章 相关型号

产品型号	载波频率	发射功率	测试距离	空中速率	封装形式	产品尺寸	天线形式
广加空写	Hz	dBm	km	bps	到表形式	mm	人线形式
E32-170T30D	170M	30	8	0. 3k∼9. 6k	直插	24*43	SMA-K
<u>E32-433T20DC</u>	433M	20	3	0. 3k∼19. 2k	直插	21*36	SMA-K
<u>E32-433T20S1</u>	433M	20	3	0. 3k∼19. 2k	贴片	17*25.5	邮票孔
<u>E32-433T20S2T</u>	433M	20	3	0. 3k∼19. 2k	贴片	17*30	IPEX/邮票孔
<u>E32-400T20S</u>	433/470M	20	3	0. 3k∼19. 2k	贴片	16*26	IPEX/邮票孔
<u>E32-433T30D</u>	433M	30	8	0. 3k∼19. 2k	直插	24*43	SMA-K
<u>E32-433T30S</u>	433M	30	8	0. 3k∼19. 2k	贴片	25*40.3	IPEX/邮票孔
E32-868T20D	868M	20	3	0. 3k∼19. 2k	直插	21*36	SMA-K
E32-868T20S	868M	20	3	0. 3k∼19. 2k	贴片	16*26	IPEX/邮票孔
<u>E32-868T30D</u>	868M	30	8	0. 3k∼19. 2k	直插	24*43	SMA-K
<u>E32-868T30S</u>	868M	30	8	0. 3k∼19. 2k	贴片	25 * 40. 3	IPEX/邮票孔
E32-915T20D	915M	20	3	0. 3k∼19. 2k	直插	21*36	SMA-K
<u>E32-915T20S</u>	915M	20	3	0. 3k∼19. 2k	贴片	16*26	IPEX/邮票孔
<u>E32-915T30D</u>	915M	30	8	0. 3k∼19. 2k	直插	24*43	SMA-K
E32-915T30S	915M	30	8	0. 3k∼19. 2k	贴片	25*40.3	IPEX/邮票孔

第十二章 天线指南

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模 块且性能较为优秀且价格合理的天线。

产品型号	类型	频段	接口	増益	高度	馈线	功能特点
) 加至与	关 垒	Hz	Ŋ N	dBi	mm	cm	为此 物点
TX433-NP-4310	柔性天线	433M	焊接	2.0	43. 8*9. 5	_	内置柔性, FPC 软天线
<u>TX433-JZ-5</u>	胶棒天线	433M	SMA-J	2.0	52	_	超短直式,全向天线
<u>TX433-JZG-6</u>	胶棒天线	433M	SMA-J	2.5	62	_	超短直式,全向天线
<u>TX433-JW-5</u>	胶棒天线	433M	SMA-J	2.0	50	-	弯折胶棒,全向天线
<u>TX433-JWG-7</u>	胶棒天线	433M	SMA-J	2.5	75	_	弯折胶棒,全向天线
TX433-JK-11	胶棒天线	433M	SMA-J	2.5	110	-	可弯折胶棒,全向天线
<u>TX433-JK-20</u>	胶棒天线	433M	SMA-J	3.0	210	_	可弯折胶棒,全向天线
TX433-XPL-100	吸盘天线	433M	SMA-J	3.5	185	100	小型吸盘天线, 性价比
TX433-XP-200	吸盘天线	433M	SMA-J	4.0	190	200	中性吸盘天线,低损耗
<u>TX433-XPH-300</u>	吸盘天线	433M	SMA-J	6.0	965	300	大型吸盘天线, 高增益
<u>TX490-JZ-5</u>	胶棒天线	470/490M	SMA-J	2.0	50	-	超短直式,全向天线
TX490-XPL-100	吸盘天线	470/490M	SMA-J	3.5	120	100	小型吸盘天线, 性价比

第十三章 批量包装方式

修订历史

版本	修订日期	修订说明	维护人
1.0	2017-11-10	初始版本	huaa
1. 1	2018-01-11	新增型号	huaa
1. 2	2018-01-15	新增型号	huaa
1. 3	2018-01-22	新增型号	huaa
1.4	2018-05-24	新增天线选择	huaa
1. 5	2018-10-11	手册拆分	huaa
1. 6	2019-03-15	内容修正	Ray
1.8	2019-10-24	内容修正	Ren
1. 9	2020-04-13	内容修正	Ren
1.10	2020-07-08	内容修正	Ren
2. 0	2023-2-10	内容修正	Yan

关于我们

销售热线: 4000-330-990 公司电话: 028- 61543675

技术支持: <u>support@cdebyte.com</u> 官方网站: www.ebyte.com

公司地址:四川省成都市高新西区西区大道 199 号 B5 栋

