ma5209 assignment 1

Nguyen Ngoc Khanh - A0275047B

March 2024

1 Problem 1

Define a category Ho(Top) in the following way. For objects, take the class of topological spaces. A morphism from X to Y is a homotopy class of continuous maps from X to Y. Show that there are unique notions of composition and identity for which the evident "function" from objects and morphisms in Top to those of Ho(Top) constitute a functor. What is an isomorphism in Ho(Top)? If A is a set and for each $\alpha \in A$ we are given a space X_{α} , construct the product of X_{α} 's and coproduct of X_{α} 's in Ho(Top).

Similarly, let Ch be the category of chain complexes and chain maps. Define Ho(Ch) and the functor $Ch \to Ho(Ch)$. Explain why the singular chain complex functor and the n-th homology functor define functors on $Ho(Top) \to Ho(Ch) \to Ab$ where Ab is the category of abelian groups and homomorphisms.

1.1 Definition of Ho(Top)

As being homotopic is an equivalence relation, define the identity and composition in Ho(Top) as follows:

- identity: the identity map of an object X in Ho(Top) is defined as the homotopy class of $1: X \to X$, namely [1]
- composition: let $[f]: X \to Y, [g]: Y \to Z$ be two morphisms in Ho(Top) with representatives $f: X \to Y, g: Y \to Z$ that are two morphisms in Top. Then the composition is defined by

$$[g][f] = [gf]$$

where [gf] denotes the homotopy class of the composition gf in Top

We will prove that Ho(Top), identity, and composition form a category by verifying the following:

- 1. composition is well-defined
- 2. [1] is the identity of X in Ho(Top)
- 3. composition satisfies associativity

Proof.

1. composition is well-defined:

Let $f_1: X \to Y, g_1: Y \to Z$ be two other representatives of [f], [g], we will show that g_1f_1 are homotopic to gf. Let $F: X \times I \to Y$ be the homotopy from f to $f_1, G: Y \times I \to Z$ be the homotopy from g to g_1 , define $H: X \times I \to Z$ by

$$H(x,t) = GF_1(x,t) = G(F(x,t),t)$$

where $F_1: X \times I \to Y \times I$ is defined by $F_1(x,t) = (F(x,t),t)$. Now, H is continuous because both G and F_1 are continuous. The continuity of F_1 is as follows: as any open set in $Y \times I$ is generated by the pair $O_Y \times O_I$ where $O_Y \subseteq Y$ and $O_I \subseteq I$ are two open subsets. We have $F_1^{-1}(O_Y \times O_I) = F_1^{-1}(O_Y \times I) \cap F_1^{-1}(Y \times O_I) = F^{-1}(O_Y) \cap X \times O_I$

2. [1] is the identity of X in Ho(Top):

Given $[f]: X \to Y$, then $[f][1_Y] = [f1_Y] = [f]$ and $[1_X][f] = [1_X f] = [f]$. The equality is due to $1_X, 1_Y$ being the identity in Top

3. composition satisfies associativity:

This is due to associativity of composition in Top

$$[h]([g][f]) = [h][gf] = [h(gf)] = [(hg)f] = [hg][f] = ([h][g])[f]$$

Define the evident "functor" $F: \text{Top} \to \text{Ho}(\text{Top})$ as follows

- on objects: $X \mapsto X$
- on morphisms: $f \mapsto [f]$ where $f: X \to Y$ is a continuous map from X to Y and [f] is the homotopy class of f

We will prove that F is indeed a functor by verifying the following

- 1. $F(1_X) = 1_{F(X)}$ where $1_X : X \to X$ is the identity map of X in Top and $1_{F(X)}$ is the identity map of F(X) in Ho(Top)
- 2. F(gf) = F(g)F(f) where $f: X \to Y, g: Y \to Z$ are morphisms in Top

Proof.

1. $F(1_X) = 1_{F(X)}$:

This is true by definition of identity in Ho(Top)

2. F(gf) = F(g)F(f):

This is true by definition of composition in Ho(Top)

$$F(gf) = [gf] = [g][f] = F(g)F(f)$$

1.2 Isomorphism in Ho(Top)

An isomorphism $[f]: X \to Y$ in Ho(Top) is a morphism such that there exists $[g]: Y \to X$ such that [f][g] = 1 and [g][f] = 1. That is, f is a homotopy equivalence.

1.3 Product in Ho(Top)

The product space $\prod_{\alpha} X_{\alpha}$ (Cartesian product of sets with product topology) is the product in Top. Define the following objects and morphisms

Given any $F(W) \in \text{Ho}(\text{Top})$, there is a F(h) such that the diagram commutes. We will prove the uniqueness of F(h). Suppose there is another map $F(h_1)$ that makes the diagram commutes, we will prove that $F(h) = F(h_1)$. Indeed, for every $\alpha \in A$.

$$F(p_{\alpha}h) = F(p_{\alpha})F(h) = F(f_{\alpha}) = F(p_{\alpha})F(h_1) = F(p_{\alpha}h_1)$$

That is, $p_{\alpha}h$ is homotopic to $p_{\alpha}h_1$ for every $\alpha \in A$ then there exists a continuous map $H_{\alpha}: W \times I \to X_{\alpha}$ for every $\alpha \in A$ such that $H_{\alpha}(w,0) = p_{\alpha}h(w)$, $H_{\alpha}(w,1) = p_{\alpha}h_1(w)$. Construct $H: W \times I \to \prod_{\alpha} X_{\alpha}$ as follows: (evaluation map)

$$H(w,t) = \prod_{\alpha} H_{\alpha}(w,t) = (H_{\alpha}(w,t))_{\alpha}$$

This is a homotopy from h to h_1 , hence $F(h) = F(h_1)$, that is, F(h) is unique

$$\prod_{\alpha \in A} F(X_{\alpha}) = F\left(\prod_{\alpha \in A} X_{\alpha}\right)$$

1.4 Coproduct in Ho(Top)

The disjoint union space $\coprod_{\alpha} X_{\alpha}$ (disjoint union of sets with disjoint union topology) is the coproduct in Top. Define the following objects and morphisms

Given any $F(W) \in \text{Ho}(\text{Top})$, there is a F(h) such that the diagram commutes. We will prove the uniqueness of F(h). Suppose there is another map $F(h_1)$ that makes the diagram commutes, we will prove that $F(h) = F(h_1)$. Indeed, for every $\alpha \in A$

$$F(hi_{\alpha}) = F(h)F(i_{\alpha}) = F(f_{\alpha}) = F(h_1)F(i_{\alpha}) = F(h_1i_{\alpha})$$

That is hi_{α} is homotopic to h_1i_{α} for every $\alpha \in A$ then there exists a continuous map $H_{\alpha}: X_{\alpha} \times I \to W$ for every $\alpha \in A$ such that $H_{\alpha}(x_{\alpha}, 0) = hi_{\alpha}(x_{\alpha})$, $H_{\alpha}(x_{\alpha}, 1) = h_1i_{\alpha}(x_{\alpha})$. Construct $H: \coprod_{\alpha} X_{\alpha} \times I \to W$ as follows:

$$H(x,t) = H_{\alpha}(x,t)$$
 if $x \in X_{\alpha}$

This is a homotopy from h to h_1 , hence $F(h) = F(h_1)$. That is, F(h) is unique

$$\coprod_{\alpha \in A} F(X_{\alpha}) = F\left(\coprod_{\alpha \in A} X_{\alpha}\right)$$

1.5 Definition of Ho(Ch)

Define the objects and morphisms in Ho(Ch)

- objects: chain complexes
- morphisms: chain maps

As being chain homotopic is an equivalence relation, define the identity and composition in Ho(Ch)

- identity: the identity map of a chain complex X in Ho(Top) is defined as the chain homotopy class of the identity chain map $1: X \to X$, namely [1]
- composition: let $[f]: X \to Y, [g]: Y \to Z$ be two morphisms in Ho(Ch) with representatives $f: X \to Y, g: Y \to Z$ that are two morphisms in Ch. Then the composition is defined as

$$[g][f] = [gf]$$

where [gf] denotes the chain homotopy class of gf in Ch

We will prove that Ho(Ch), identity, and composition form a category by verifying the following:

- 1. composition is well-defined
- 2. [1] is the identity of X in Ho(Ch)
- 3. composition satisfies associativity

Proof.

1. composition is well-defined:

Let $f_1: X \to Y, g_1: Y \to Z$ be two other representatives of [f], [g], we will show that g_1f_1 is chain homotopic to gf.

$$gf = (g_1 + \partial h_g + h_g \partial)(f_1 + \partial h_f + h_f \partial)$$

$$= g_1(f_1 + \partial h_f + h_f \partial) + (\partial h_g + h_g \partial)(f_1 + \partial h_f + h_f \partial)$$

$$= g_1f_1 + g_1\partial h_f + g_1h_f \partial + (\partial h_g + h_g \partial)(f_1 + \partial h_f + h_f \partial)$$

$$= g_1f_1 + \partial g_1h_f + g_1h_f \partial + (\partial h_g + h_g \partial)(f_1 + \partial h_f + h_f \partial)$$

$$= g_1f_1 + \partial g_1h_f + g_1h_f \partial + (\partial h_g + h_g \partial)(f_1 + \partial h_f + h_f \partial)$$

$$(\partial g_1 = g_1\partial)$$

$$\begin{split} (\partial h_g + h_g \partial)(f_1 + \partial h_f + h_f \partial) &= \partial h_g f_1 + \partial h_g \partial h_f + \partial h_g h_f \partial + h_g \partial f_1 + h_g \partial \partial h_f + h_g \partial h_f \partial \\ &= \partial h_g f_1 + \partial h_g \partial h_f + \partial h_g h_f \partial + h_g \partial f_1 + h_g \partial h_f \partial \\ &= (\partial h_g f_1 + \partial h_g h_f \partial + h_g \partial f_1) + (\partial h_g \partial h_f + h_g \partial h_f \partial) \\ &= [\partial h_g (f_1 + h_f \partial) + h_g (f_1 + h_f \partial) \partial] + (\partial h_g \partial h_f + h_g \partial h_f \partial) \end{split}$$
 (+ is commutative, associative)
$$(\partial f_1 = f_1 \partial)$$

Therefore, let $h_{gf} = g_1 h_f + h_g (f_1 + h_f \partial) + h_g \partial h_f$, then

$$gf = g_1 f_1 + \partial h_{af} + h_{af} \partial$$

2. [1] is the identity of X in Ho(Ch):

Given $[f]: X \to Y$, then $[f][1_Y] = [f1_Y] = [f]$ and $[1_X][f] = [1_X f] = [f]$. The equality is due to $1_X, 1_Y$ being the identity in Ch

3. composition satisfies associativity:

This is due to associativity of composition in Ch

$$[h]([g][f]) = [h][gf] = [h(gf)] = [(hg)f] = [hg][f] = ([h][g])[f]$$

Define the "functor" $F: \mathrm{Ch} \to \mathrm{Ho}(\mathrm{Ch})$ as follows

- on objects: $X \mapsto X$
- on morphisms: $f \mapsto [f]$ where $f: X \to Y$ is a chain map from X to Y and [f] is the chain homotopy class of f. We will prove that F is indeed a functor by verifying the following
- 1. $F(1_X) = 1_{F(X)}$ where $1_X : X \to X$ is the identity map of X in Ch and $1_{F(X)}$ is the identity map of F(X) in Ho(Ch)
- 2. F(gf) = F(g)F(f) where $f: X \to Y, g: Y \to Z$ are morphisms in Ch

Proof.

1. $F(1_X) = 1_{F(X)}$:

This is true by definition of identity in Ch

2. F(gf) = F(g)F(f):

$$F(gf) = [gf] = [g][f] = F(g)F(f)$$

1.6 Singular chain complex functor and singular homology functor on Ho(Top), Ho(Ch)

Define the "functor" $C_{\bullet}: \text{Ho}(\text{Top}) \to \text{Ho}(\text{Ch})$ as follows

- on objects: same with C_{\bullet} : Top \rightarrow Ch
- on morphisms: $[f] \mapsto f \mapsto C_{\bullet}(f) \mapsto [C_{\bullet}(f)]$ where [f] is the homotopy class of a morphism f in Top, $[C_{\bullet}(f)]$ is the chain homotopy class of a morphism $C_{\bullet}(f)$ in Ch.

We will prove that $C_{\bullet}: \text{Ho}(\text{Top}) \to \text{Ho}(\text{Ch})$ is indeed a functor by verifying the following

- 1. $C_{\bullet}([1]) = [1]$
- 2. $C_{\bullet}([g][f]) = C_{\bullet}([g])C_{\bullet}([f])$ where $f: X \to Y, g: Y \to Z$ are morphisms in Top

Proof.

1. $C_{\bullet}([1]) = [1]$:

This is true by the definition of C_{\bullet}

2. $C_{\bullet}([g][f]) = C_{\bullet}([g])C_{\bullet}([f])$:

$$C_{\bullet}([g][f]) = C_{\bullet}([gf]) \qquad \text{(composition in Ho(Top))}$$

$$= [C_{\bullet}(gf)] \qquad (C_{\bullet} : \text{Ho(Top)} \to \text{Ho(Ch) on morphisms } [gf])$$

$$= [C_{\bullet}(g)C_{\bullet}(f)] \qquad \text{(functor } C_{\bullet} : \text{Top} \to \text{Ch})$$

$$= [C_{\bullet}(g)][C_{\bullet}(f)] \qquad \text{(composition in Ho(Ch))}$$

$$= C_{\bullet}([g])C_{\bullet}([f]) \qquad (C_{\bullet} : \text{Ho(Top)} \to \text{Ho(Ch) on morphisms } [f] \text{ and } [g])$$

Define the "functor" $H_n: Ho(Ch) \to Ab$ as follows

- on objects: same with $H_n: \mathrm{Ch} \to \mathrm{Ab}$
- on morphisms: $[C_{\bullet}(f)] \mapsto C_{\bullet}(f) \mapsto H_n(f)$

We will prove that $H_n: Ho(Ch) \to Ab$ is indeed a functor by verifying the following

- 1. $H_n([1]) = 1$
- 2. $H_n([C_{\bullet}(g)][C_{\bullet}(f)]) = H_n([C_{\bullet}(g)])H_n([C_{\bullet}(f)])$ where where $C_{\bullet}(f): X \to Y, C_{\bullet}(g): Y \to Z$ are morphisms in Ch

Proof.

1. $H_n([1]) = 1$:

This is true by the definition of H_n

2. $H_n([C_{\bullet}(g)][C_{\bullet}(f)]) = H_n([C_{\bullet}(g)])H_n([C_{\bullet}(f)])$:

$$\begin{split} H_n([C_\bullet(g)][C_\bullet(f)]) &= H_n([C_\bullet(g)C_\bullet(f)]) & (\text{composition in Ho(Ch)}) \\ &= H_n([C_\bullet(gf)]) & (\text{functor } C_\bullet : \text{Top} \to \text{Ch}) \\ &= H_n(gf) & (H_n : \text{Ho(Ch)} \to \text{Ab on morphism } [C_\bullet(gf)]) \\ &= H_n(g)H_n(f) & (\text{functor } H_n : \text{Top} \to \text{Ab}) \\ &= H_n([C_\bullet(g)])H_n([C_\bullet(f)]) & (H_n : \text{Ho(Ch)} \to \text{Ab on morphism } [C_\bullet(f)] \text{ and } [C_\bullet(g)]) \end{split}$$

2 Problem 2

- Put a CW structure on the product two finite CW complexes.
- Show that the composite of two cofibrations is a cofibration.

2.1 CW structure on the product two finite CW complexes

Given two cell complexes X,Y. We define a CW structure on Z as follows

where $C_n = \coprod_{i+j=n} A_i \times B_j$ be the disjoint union of $A_i \times B_j$.

Some notes on CW structure:

 a_n is the attaching map, $\overline{a_n}$ is the characteristic map. Note that, attaching map is a restriction of characteristic map on the boundary of $\coprod D^n$. In the interior of $\coprod D^n$, characteristic map is a homeomorphism. X_n is the quotient of $\coprod_{\alpha \in A_n} D^n$ under the equivalence class defined by a_n (or $\overline{a_n}$). Let $a_n^{\alpha}: \partial D^n \to X_{n-1}, \overline{a_n^{\alpha}}: D^n \to X_n$ are attaching map and characteristic map corresponding to $\alpha \in A_n$. Similar notations for Y and Z.

If D^n is a n-dimensional cube, we can show that

$$D^{i+j} = D^i \times D^j$$
$$\partial D^{i+j} = \partial D^i \times D^j \cup D^i \times \partial D^j$$

For $\gamma = (\alpha, \beta) \in A_i \times B_j$, define attaching map

$$c_n^{\gamma}: \partial D^{i+j} \to X_{i-1} \times Y_j \cup X_i \times Y_{j-1} \subseteq Z_{n-1}$$

that maps $\partial D^i \times D^j$ to $X_{i-1} \times Y_j$, maps $D^i \times \partial D^j$ to $X_i \times Y_{j-1}$ as follows:

$$c_n^{\gamma}(x,y) = \left(\overline{a_i^{\alpha}}(x), \overline{b_j^{\beta}}(y)\right)$$

where $(x,y) \in \partial D^i \times D^j \cup D^i \times \partial D^j$. We are left to prove that $Z = X \times Y$ by verifying $Z_n = \bigcup_{i+j=n} X_i \times Y_j$, that is, $\bigcup_{i+j=n} X_i \times Y_j$ is the pushout of Z_n 's diagram and finish the proof by the argument on finiteness of X, Y, Z

Proof.

Consider one of the pair (i, j), we show that $W_{ij} = X_i \times Y_j$ is the pushout of the diagram below:

$$\coprod_{\gamma \in A_i \times B_j} \partial D^{i+j} \longrightarrow \coprod_{\gamma \in A_i \times B_j} D^{i+j}$$

$$\downarrow^{c_n} \qquad \qquad \downarrow^{\overline{c}_n}$$

$$X_{i-1} \times Y_j \cup X_i \times Y_{j-1} \longrightarrow W_{ij}$$

Let $(x, y), (x_1, y_1) \in \coprod_{\gamma \in A_i \times B_j} D^i \times D^j$.

 $(x,y),(x_1,y_1)$ are in the same equivalence class (under $\overline{c_n}$) if and only if $\overline{a_i^{\alpha}}(x)=\overline{a_i^{\alpha}}(x_1)$ and $\overline{b_j^{\beta}}(y)=\overline{b_j^{\beta}}(y_1)$ if and only if x,x_1 be in the same equivalence class of $\overline{a_n}$ and y,y_1 be in the same equivalence class of $\overline{b_n}$, that is, x,x_1 identify the same point on X_i and y,y_1 identify the same point on Y_i . Therefore, the pushout of the diagram is exactly $W_{ij}=X_i\times Y_j$

Hence, $Z_n = \bigcup_{i+j=n} X_i \times Y_j$ is the pushout of the diagram consists of disjoint union over the finite collection of pairs (i,j)

As X, Y are finite, let $X = X_m, Y = Y_n$, as $X_0 \subseteq X_1 \subseteq ... \subseteq X, Y_0 \subseteq Y_1 \subseteq ... \subseteq Y$, we have

$$Z = Z_{m+n} = X_m \times Y_n = X \times Y$$

2.2 Composite of cofibrations

Suppose $f: X \to Y, g: Y \to Z$ are cofibrations, there is a homotopy $H_X: X \times I \to W$ and a map $h_Z: Z \to W$. If $gf: X \to Z$ is a cofibration, homotopy extension property states that there exists $H_Z: Z \times I \to W$ such that that diagram commutes.

Indeed, let $h_Y: Y \to W$ be defined by $h_Y = h_Z g$. Since $f: X \to Y$ is a cofibration, given $H_X: X \times I \to W$ and $h_Y: Y \to W$, there exists $H_Y: Y \times I \to W$ such that the diagram commutes. Since $g: Y \to Z$ is a cofibration, given $H_Y: Y \times I \to W$ and $h_Z: Z \to W$, there exists $H_Z: Z \times I \to W$ such that the diagram commutes

3 Problem 3

For an invertible linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$, show that the induced map on $H_n(\mathbb{R}^n, \mathbb{R}^n - \{0\}) \approx \tilde{H}_{n-1}(\mathbb{R}^n - \{0\}) \approx \mathbb{Z}$ is 1 or -1 according to whether the determinant of f is positive or negative.

3.1 Preliminaries

We adopt the definition of reduced homology in Hatcher.

Definition 1 (reduced homology). Let X be a non-empty topological spaces and C_{\bullet} : Top \to Ab be singular chain functor. Reduced homology is the homology of the chain complex

$$0 \longleftarrow \mathbb{Z} \stackrel{\epsilon}{\longleftarrow} C_0(X) \stackrel{\partial}{\longleftarrow} C_1(X) \stackrel{\partial}{\longleftarrow} \dots$$

where $\epsilon: C_0(X) \to \mathbb{Z}$ is the augmentation map. The augmented chain complex is denoted by $\tilde{C}_{\bullet}(X)$ and the reduced homology is denoted by $\tilde{H}_{\bullet}(X)$

Remark 1 (relationship with singular homology).

$$H_0(X) = \tilde{H}_0(X) \oplus \mathbb{Z}$$

 $H_n(X) = \tilde{H}_n(X) \text{ for } n \ge 1$

Remark 2 (reduced homology of common spaces). Reduced homology of common spaces

- $\tilde{H}_n(*) = 0$: homology of a contractible space is the trivial group
- $\tilde{H}_0(X) = \bigoplus_{i=1}^{n-1} \mathbb{Z}$: if X has n path-components

Remark 3 (relative homology on reduced homology). Short exact sequence of chains

$$0 \longrightarrow \tilde{C}_n(A) \hookrightarrow \tilde{C}_n(X) \longrightarrow \tilde{C}_n(X) \longrightarrow \tilde{C}_n(X)/\tilde{C}_n(A) \longrightarrow 0$$

$$\downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow \tilde{C}_{n-1}(A) \hookrightarrow \tilde{C}_{n-1}(X) \longrightarrow \tilde{C}_{n-1}(X)/\tilde{C}_{n-1}(A) \longrightarrow 0$$

Note that, this is identical to the short exact sequence of chains for singular homology except $\tilde{C}_{-1}(A)$ and $\tilde{C}_{-1}(X)$. The induced long exact sequence

$$\tilde{H}_{n}(A) \xrightarrow{i} \tilde{H}_{n}(X) \xrightarrow{p} H_{n}(X, A)$$

$$\tilde{H}_{n-1}(A) \xrightarrow{i} \tilde{H}_{n-1}(X) \xrightarrow{p} H_{n-1}(X, A)$$

$$0$$
...

Definition 2 $(\partial: H_{n+1}(C) \to H_n(A))$. Definition of the connecting homomorphism $\partial: H_{n+1}(C) \to H_n(A)$

Given $[c] \in H_{n+1}(C)$, (1) take any representative $c \in Z_{n+1}(C)$. As $p: B_{n+1} \to C_{n+1}$ is surjective, (2) take any $b \in B_{n+1}$ such that pb = c. As $p\partial b = \partial pb = \partial c = 0$ and $\ker(p: B_n \to C_n) = \operatorname{im}(i: A_n \to B_n)$, take $a \in A_n$ such that $ia = \partial b$, this choice is unique as i is injective. $i\partial a = \partial ia = \partial^2 b = 0$, as i is an injective homomorphism, $\partial a = 0$, then $a \in Z_n(A)$. The construction is done by $[c] \mapsto [a]$

Another result from Hatcher:

Lemma 1. Given two short exact sequences of chain complexes with chain maps $\alpha: A_n \to A'_n, \beta: B_n \to B'_n, \gamma: C_n \to C'_n,$ such that the diagram below commutes

$$0 \longrightarrow A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{p} C_{\bullet} \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A'_{\bullet} \xrightarrow{i'} B'_{\bullet} \xrightarrow{p'} C'_{\bullet} \longrightarrow 0$$

Then the induced long exact sequence diagram commutes

$$\dots \longrightarrow H_{n+1}(A_{\bullet}) \xrightarrow{i_*} H_{n+1}(B_{\bullet}) \xrightarrow{p_*} H_{n+1}(C_{\bullet}) \xrightarrow{\partial} H_n(A_{\bullet}) \longrightarrow \dots$$

$$\downarrow^{\alpha_*} \qquad \qquad \downarrow^{\beta_*} \qquad \qquad \downarrow^{\gamma_*} \qquad \qquad \downarrow^{\alpha_*}$$

$$\dots \longrightarrow H_{n+1}(A'_{\bullet}) \xrightarrow{i'_*} H_{n+1}(B'_{\bullet}) \xrightarrow{p'_*} H_{n+1}(C'_{\bullet}) \xrightarrow{\partial'} H_n(A'_{\bullet}) \longrightarrow \dots$$

where $H_n: \mathrm{Ch} \to \mathrm{Ab}$ is a functor

Proof.

The first two squares commute since H_n is a functor. For the third square, recall the definition of $\partial: H_n(C) \to H_{n-1}(A)$

$$\partial[c] = [a]$$

where c = pb and $ia = \partial b$. We have

$$\gamma c = \gamma pb = p'\beta b$$
$$i'\alpha a = \beta ia = \beta \partial b = \partial \beta b$$

then by the definition of connecting homomorphism $\partial: H_n(C') \to H_{n-1}(A')$, we have

$$\partial[\gamma c] = [\alpha a]$$

Again, H_n is a functor,

$$[\gamma c] = H_n(\gamma)[c] = \gamma_*[c]$$

$$[\alpha a] = H_n(\alpha)[a] = \alpha_*[a] = \alpha_*\partial[c]$$

That is, the last third square commutes

Definition 3 (degree). For n > 0, let $f: S^n \to S^n$, then $f_*: \tilde{H}_n(S^n) \to \tilde{H}_n(S^n)$ is a multiplication $\mathbb{Z} \to \mathbb{Z}$ of m. m is called the degree of f

Lemma 2. Degree of a refection is -1

3.2 Main Proof

Let's denote $X = \mathbb{R}^n$, $A = \mathbb{R}^n - \{0\}$. Any linear map f in $GL(\mathbb{R}^n)$ can by transformed into either the identity 1 or a reflection r by Gaussian elimination, each row operation is either row-swap, row-scale, row-sum which can be written as a smooth map of time t, that is, any linear map is homotopic to either 1 (if det f > 0) or r (if det f < 0). Moreover, the homotopy applies for the case of pair of spaces (X, A)

Long exact sequence of (X, A) implies the connecting homomorphism $\partial: H_n(X, A) \to \tilde{H}_{n-1}(A)$ is an isomorphism.

$$\tilde{H}_n(X) = 0 \xrightarrow{p_*} H_n(X, A)$$

$$\tilde{H}_{n-1}(A) \xrightarrow{\tilde{\iota}_*} \tilde{H}_{n-1}(X) = 0$$

The diagram below commutes

where $f_{\#}$ is induced from f in the level of chain. By Lemma 1 the diagram below commutes, , f_* is induced from f_* in the level of homology

$$\begin{array}{cccc} C_n(X,A) & & H_n(X,A) & \xrightarrow{\partial} \tilde{H}_{n-1}(A) & & \tilde{C}_{n-1}(A) \\ f_\# \downarrow & & f_* \downarrow & & \downarrow f_* & & \downarrow f_\# \\ C_n(X,A) & & H_n(X,A) & \xrightarrow{\partial} \tilde{H}_{n-1}(A) & & \tilde{C}_{n-1}(A) \end{array}$$

As ∂ is an isomorphism between \mathbb{Z} and \mathbb{Z} (isomorphism sends 1 to either 1 or -1), it suffices to show for the case of reduced homology $\tilde{H}_{n-1}(A)$

Proof.

If f is homotopic to the identity 1, the induced map in $\tilde{H}_{n-1}(A)$ is the identity map 1 If f is homotopic to a reflection r, let $g: S^{n-1} \to S^{n-1}$ be the restriction of r (g is a reflection on S^{n-1} , $\tilde{H}_{n-1}(g) = -1$), $i: S^{n-1} \to A$ be the inclusion map, $p: A \to S^{n-1}$ be the deformation retraction of A into S^{n-1} .

Since the left diagram (diagram in Top) commutes, \tilde{H}_{n-1} : Top \to Ab is a functor, the right diagram (diagram in Ab) commutes. As i and p are homotopy equivalence $(pi \simeq 1, ip \simeq 1)$, $\tilde{H}_{n-1}(i) = \tilde{H}_{n-1}(p) = 1$, then

$$\tilde{H}_{n-1}(f) = \tilde{H}_{n-1}(i)\tilde{H}_{n-1}(g)\tilde{H}_{n-1}(p) = 1(-1)1 = -1$$

the induced map in $H_{n-1}(A)$ is -1.

Problem 4 4

A polynomial f(z) with complex coefficients, viewed as a map $\mathbb{C} \to \mathbb{C}$ can always be extended to a continuous map of one-point compactifications $\hat{f}: S^2 \to S^2$. Show that the degree of \hat{f} equals the degree of f as a polynomial. Show also that the local degree of \hat{f} at a root of f is the multiplicity of the root.

4.1 **Preliminaries**

Lemma 3. On S^1 (unit circle in \mathbb{C}), $\deg z^n = n$

Lemma 4 (Hatcher proposition 2.33). $\deg \Sigma f = \deg f$ where $\Sigma f : \Sigma S^n \to \Sigma S^n$ is the suspension of $f : S^n \to S^n$ and $\Sigma S^n \cong S^{n+1}$ is the suspension of S^n

4.2 Degree of \hat{f}

By lemma 3 and 4, in S^2 , deg $\Sigma z^n = \deg z^n = n$. Moreover, there exists a homotopy from Σz^n to z^n (write z^n in polar coordinate). Hence, in S^2 , deg $z^n = n$

Let $f(z) = a_n z^n + ... + a_1 z + a_0$ defined on S^2 , there exist two maps $H_1: S^2 \times I \to S^2$ and $H_2: S^2 \times I \to S^2$ as follows

$$H_1(z,t) = a_n^t z^n$$

 $H_2(z,t) = t a_n z^n + (1-t)f(z)$

Both maps are continuous on $\mathbb{C} \times I$ and $\{\infty\} \times I$, hence they are homotopies $z^n \to a_n z^n$, $a_n z^n \to \hat{f}(z)$. Therefore, in S^2 , $\deg \hat{f} = \deg z^n = n$

4.3 Local degree of \hat{f}

Let $\{x_1,...,x_n\}$ be the roots of f(z). Let disjoint path-connected open sets $\{U_1,...,U_n\}$ such that $x_i \in U_i$ and $V = \hat{f}(\bigcup_{i=1}^n U_i)$, hence, V is also path-connected. By definition, local degree of \hat{f} at x_i is the induced function \hat{f}_*

$$H_2(U_i, U_i - \{x_i\}) = \mathbb{Z} \xrightarrow{\hat{f}_*} H_2(V, V - \{0\}) = \mathbb{Z}$$

Given the commutative diagram below

$$0 \longrightarrow C_{\bullet}(U_{i} - \{x_{i}\}) \xrightarrow{i} C_{\bullet}(U_{i}) \xrightarrow{p} C_{\bullet}(U_{i}, U_{i} - \{x_{i}\}) \longrightarrow 0$$

$$\downarrow f_{\#} \qquad \qquad \downarrow f_{\#} \qquad \qquad \downarrow f_{\#}$$

$$0 \longrightarrow C_{\bullet}(V - \{0\}) \xrightarrow{i'} C_{\bullet}(V) \xrightarrow{p'} C_{\bullet}(V, V - \{0\}) \longrightarrow 0$$

By Lemma 1 and exactness, ∂ , ∂' are isomorphisms, the square is commutative, the induced maps are the same.

$$H_2(U_i) = 0 \xrightarrow{p_*} H_2(U_i, U_i - \{x_i\}) = \mathbb{Z} \xrightarrow{\partial} H_1(U_i - \{x_i\}) = \mathbb{Z} \xrightarrow{i_*} H_1(U_i) = 0$$

$$\downarrow \hat{f}_* \qquad \qquad \downarrow \hat{f}_$$

Hence, local degree of \hat{f} at x_i is the degree of \hat{f} restricted to $U_i - \{x_i\} \to V - \{0\}$. Now write $f(z) = (z - x_i)^{m_i} g(z)$ where $g(z) \neq 0$ on U_i and m_i is the multiplicity of root x_i . There exists a map $H_3: (U_i - \{x_i\}) \times I \to V - \{0\}$ as follows

$$H_3(z,t) = t(z-x_i)^{m_i} + (1-t)f(z)$$

As H_3 is continuous on its domain, hence it is a homotopy from $(z - x_i)^{m_i}$ to f(z). Therefore, $\deg \hat{f}$ restricted to $U_i - \{x_i\} \to V - \{0\}$ is m_i

5 Problem 5

Let X be the quotient space of S^2 under identifications $x \sim -x$ for x in the equator S^1 . Compute the homology groups $H_i(X)$. Do the same for S^3 with antipodal points of equatorial $S^2 \subset S^3$ identified.

Proposition 1 (cellular boundary formula). $d_n(e^n_\alpha) = \sum_\beta d_{\alpha\beta} e^{n-1}_\beta$ where $d_{\alpha\beta}$ is the degree of the map $S^{n-1}_\alpha \to X^{n-1} \to S^{n-1}_\beta$ that is the composition of the attaching map of e^n_α with the quotient map collapsing $X^{n-1} - e^{n-1}_\beta$ to a point.

5.1 S^2 with antipodal points of equatorial identified

Define the CW structure $X_0 \subseteq X_1 \subseteq X_2 = X_3 = \dots = X$ as follows

- X_0 is a single point
- $X_1 \cong S^1$, $a_1^{(1)}: S_1^0 \to X_0$ maps two points of S_1^0 to X_0
- $X_2 = X$, $a_1^{(2)}$ and $a_2^{(2)}$ wind around X_1 twice in opposite directions and D_1^2 and D_2^2 are the northern hemisphere and southern hemisphere

The pushout diagrams are as follows (subscripts are used to distinguish between multiple copies)

$$S_1^0 \longrightarrow D_1^1 \qquad S_1^1 \coprod S_1^1 \longrightarrow D_2^2 \coprod D_2^2$$

$$\downarrow^{a_{\bullet}^{(1)}} \qquad \downarrow^{c_{\bullet}^{(1)}} \qquad \downarrow^{a_{\bullet}^{(2)}} \qquad \downarrow^{c_{\bullet}^{(2)}}$$

$$X_0 \longrightarrow X_1 \cong S^1 \qquad X_1 \cong S^1 \longrightarrow X_2$$

We have the cellular chain complex

$$0 \xleftarrow{d_0} C_0^{CW}(X) = \mathbb{Z} \xleftarrow{d_1} C_1^{CW}(X) = \mathbb{Z} \xleftarrow{d_2} C_2^{CW}(X) = \mathbb{Z}^2 \xleftarrow{d_3} 0 \longleftarrow \dots$$

We have

$$\mathbb{Z} = H_0(X) = H_0^{CW}(X) = \frac{\ker d_0}{\operatorname{im} d_1} = \frac{\mathbb{Z}}{\operatorname{im} d_1}$$

then, the map $d_1 = 0$ and $H_0(X) = \mathbb{Z}$ since im $d_1 = k\mathbb{Z}$ for $k \in \mathbb{Z}$ implies k = 0. As $a_1^{(2)}, a_2^{(2)}$ composed with the quotient map collapsing $X_1 - e_1^1$ are maps $S^1 \to S^1$ that wind around S^1 twice in opposite directions, then $d_{11} = +2, d_{12} = -2$, and

$$d_2(e_1^2) = d_{11}e_1^1 = +2e_1^1$$
$$d_2(e_2^2) = d_{12}e_1^1 = -2e_1^1$$

That is, im $d_2 = 2\mathbb{Z}$ and ker $d_2 = \text{span}(1,1)$. Hence,

$$H_1(X) = \frac{\ker d_1}{\operatorname{im} d_2} = \frac{\mathbb{Z}}{2\mathbb{Z}}$$

 $C_3^{CW}(X) = C_4^{CW}(X) = \dots = 0$ as $A_3 = A_4 = \dots = \emptyset$, then $d_3 = d_4 = \dots = 0$. Hence,

$$H_2(X) = \frac{\ker d_2}{\operatorname{im} d_3} \cong \frac{\mathbb{Z}}{0} = \mathbb{Z}$$

$$H_3(X) = H_4(X) = \dots = 0$$

5.2 S^3 with antipodal points of equatorial identified

Define the CW structure $X_0 \subseteq X_1 \subseteq X_2 \subseteq X_3 = X_4 = \dots = X$ as follows

- X_0 is a single point
- $X_1 \cong S^1$, $a_1^{(1)}$ maps two points of S_1^0 to X_0
- $X_2 \cong \mathbb{R}P^2$, $a_1^{(2)}$ winds around X_1 twice.
- $X_3 = X$, $a_1^{(3)}$, $a_2^{(3)}$ are maps from S^2 to $X_2 \cong \mathbb{R}P^2$ identifying antipodal points on S^2 to the same point on $\mathbb{R}P^2$ and D_1^3 , D_2^3 are northern hemisphere and southern hemisphere.

The pushout diagrams are as follows (subscripts are used to distinguish between multiple copies)

$$S_1^0 \longrightarrow D_1^1 \qquad S_1^1 \longrightarrow D_1^2 \qquad S_1^2 \coprod S_2^2 \longrightarrow D_1^3 \coprod D_2^2$$

$$\downarrow^{a_{\bullet}^{(1)}} \qquad \downarrow^{c_{\bullet}^{(1)}} \qquad \downarrow^{a_{\bullet}^{(2)}} \qquad \downarrow^{a_{\bullet}^{(2)}} \qquad \downarrow^{a_{\bullet}^{(3)}} \qquad \downarrow^{c_{\bullet}^{(3)}}$$

$$X_0 \longrightarrow X_1 \cong S^1 \qquad X_1 \cong S^1 \longrightarrow X_2 \cong \mathbb{R}P^2 \qquad X_2 \cong \mathbb{R}P^2 \longrightarrow X_3$$

We have the cellular chain complex

$$0 \xleftarrow{d_0} C_0^{CW}(X) = \mathbb{Z} \xleftarrow{d_1} C_1^{CW}(X) = \mathbb{Z} \xleftarrow{d_2} C_2^{CW}(X) = \mathbb{Z} \xleftarrow{d_3} C_3^{CW}(X) = \mathbb{Z}^2 \xleftarrow{d_4} 0 \xleftarrow{\dots} \dots$$

Similar to previous part, $d_1 = 0$ and $H_0(X) = \mathbb{Z}$. As $a_1^{(2)}$ composed with the quotient map collapsing $X_1 - e_1^1$ is map $S^1 \to S^1$ that wind around S^1 twice, then $d_{11} = +2$, and

$$d_2(e_1^2) = d_{11}e_1^1 = +2e_1^1$$

That is, im $d_2 = 2\mathbb{Z}$ and ker $d_2 = 0$. Hence

$$H_1(X) = \frac{\ker d_1}{\operatorname{im} d_2} = \frac{\mathbb{Z}}{2\mathbb{Z}}$$

As $\ker d_2 = 0$, then $d_3 = 0$ because $\operatorname{im} d_3 \subseteq \ker d_2$, then $\ker d_3 = \mathbb{Z}^2$. Hence,

$$H_2(X) = \frac{\ker d_2}{\operatorname{im} d_3} = \frac{0}{0} = 0$$

 $C_4^{CW}(X) = C_5^{CW}(X) = \dots = 0$ as $A_4 = A_5 = \dots = \emptyset$, then $d_4 = d_5 = \dots = 0$. Hence,

$$H_3(X) = \frac{\ker d_3}{\operatorname{im} d_4} \cong \frac{\mathbb{Z}^2}{0} = \mathbb{Z}^2$$

$$H_4(X) = H_5(X) = \dots = 0$$