1. THE ANELASTIC EQUATIONS

We write the anelastic equations under a constant dynamic diffusivity formulation ($\mu = \rho \nu = \text{const}$, $\kappa = \rho \chi = \text{const}$) as in Lecoanet et al. (2014), eqns. 27-29,

$$\nabla \cdot \boldsymbol{u} = -w\partial_z \ln \rho = \frac{w}{H_o(z)} \tag{1}$$

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{\omega} = -\boldsymbol{g} \frac{S_1}{c_P} + \frac{\mu}{\rho_0} \left[\nabla^2 \boldsymbol{u} + \frac{1}{3} \nabla (\nabla \cdot \boldsymbol{u}) \right]$$
 (2)

$$\partial_t S_1 + \boldsymbol{u} \cdot \nabla S_1 = +\frac{\kappa}{\rho c_V} \left[\nabla^2 S_1 + \partial_z \ln T_0 \cdot \partial_z S_1 \right] + \frac{\mu}{\rho T} \sigma_{ij} \partial_{x_i} u_j, \tag{3}$$

with the modified stress tensor

$$\sigma_{ij} = \left(\partial_{x_i} u_j + \partial_{x_j} u_i - \frac{2}{3} \delta_{ij} \nabla \cdot \boldsymbol{u}\right). \tag{4}$$

Here, the c_V^{-1} shows up in the diffusion term because we're aiming for as close of a one-to-one comparison with the FC temperature equation as possible. There, we had $F = -\kappa \nabla T_1 \approx -\kappa c_v^{-1} T_0 \nabla S_1$ in the anelastic limit.

1.1. Nondimensional anelastic equations

We then nondimensionalize as in Lecoanet & Jeevanjee (2018), (where all of the terms from the previous, dimensionful equations now have \sim over them):

$$\tilde{\nabla} \to (\tilde{L}_{th}^{-1})\nabla, \qquad \tilde{S}_1 \to (\Delta \tilde{S})S_1,$$

$$\tilde{\boldsymbol{u}} \to (\tilde{u}_{th})\boldsymbol{u}, \qquad \tilde{\varpi} \to (\tilde{u}_{th}^2)\varpi,$$

$$\partial_{\tilde{t}} \to (\tilde{u}_{th}/\tilde{L}_{th})\partial_t,$$
(5)

with

$$\tilde{u}_{th}^2 = \frac{g\tilde{L}_{th}\Delta\tilde{s}}{c_P}, \quad \text{Re}_{\text{ff}} = \frac{\tilde{u}_{th}\tilde{L}_{th}}{\nu}, \quad \text{Pr}_{\text{ff}} = \frac{\tilde{u}_{th}\tilde{L}_{th}}{\gamma}.$$
 (6)

Here we acknowledge that $\mu = \nu$ and $\chi = \kappa$ when $\rho = 1$ (at the top of the domain), so these values are specified at the upper boundary, but will increase with depth.

Under these assumptions, eqns. 2 & 3 become (with $\mathbf{g} = -g\hat{z}$),

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla \boldsymbol{\omega} = S_1 \hat{z} + \frac{1}{\text{Reff}} \left[\nabla^2 \boldsymbol{u} + \frac{1}{3} \nabla (\nabla \cdot \boldsymbol{u}) \right]$$
 (7)

$$\partial_t S_1 + \boldsymbol{u} \cdot \nabla S_1 = \frac{1}{\operatorname{Re}_{ff}} \left(\frac{1}{\operatorname{Pr}_{ff} \rho_0 c_V} [\nabla^2 S_1 + \partial_z \ln T_0 \cdot \partial_z S_1] + \frac{g \tilde{L}_{th}}{\rho_0 T_0 c_P} \sigma_{ij} \partial_{x_i} u_j \right), \tag{8}$$

The viscous heating term is a bit ugly, but it's truly not too bad. This formulation is great in that we can set up experiments in boxes which are exactly the same size as in Lecoanet & Jeevanjee (2018) (e.g., 10 x 20), with a thermal whose diameter is 1 length unit, and then we can evolve for some tens of time units to get it to the bottom of the domain.

1.2. Nondimensional atmosphere

In order to make these equations work, it's important that the atmosphere also be scaled appropriately. In a normal polytrope, we have

$$T_0 = (1 + \tilde{L}_z - \tilde{z}),\tag{9}$$

$$\rho_0 = T^m, \tag{10}$$

with $\tilde{L}_z=e^{n_\rho/m}-1$ and the adiabatic temperature gradient $\partial_{\tilde{z}}T_{ad}=-g/c_P=-1$, so $g=c_P$. We want to maintain the stratification of these fields, as that's already nondimensionalized ($\rho_0=T_0=1$ at the top of the atmosphere), but we need to rescale the length scales. Thus, let's acknowledge that the true stratification here is $T_0=1+(\partial_{\tilde{z}}T_{ad})(\tilde{z}-\tilde{L}_z)$. If we take out the dimensionality of $\tilde{z}=\tilde{L}_{th}z$ and $\tilde{L}_z=\tilde{L}_{th}L_z$, then we get $T_0=1+(\tilde{L}_{th}\partial_{\tilde{z}}T_{ad})(z-Lz)$. Thus, in these domains, $\partial_z T_{ad}=(\tilde{L}_{th}\partial_{\tilde{z}}T_{ad})$.

So, what is \tilde{L}_{th} ? Well, if we have a dimensional polytrope whose depth is $\tilde{L}_z = (e^{n_\rho/m} - 1)$, and we want 20 thermals to fit in that depth, then $\tilde{L}_{th} = \tilde{L}_z/20$, or since 20 is the nondimensional L_z , $\tilde{L}_{th} = ((e^{n_\rho/m} - 1))/L_z$.

The resulting stratification is just a more careful specification of where we started,

$$T_0 = 1 + \partial_z T_{ad}(z - L_{exp}) \tag{11}$$

$$\rho_0 = T^m, \tag{12}$$

with $\partial_z T_{ad} = (\tilde{L}_{th} \partial_{\tilde{z}} T_{ad})$ and $\tilde{L}_{th} = ((e^{n_\rho/m} - 1))/L_z$. These stratified terms enter the equations mostly in log form,

$$\partial_z \ln T_0 = \frac{\partial_z T_{ad}}{T}$$

$$\partial_z \ln \rho_0 = \frac{m \partial_z T_{ad}}{T}$$
(13)

In the case of low stratification, $\tilde{L}_{th} \to 0$, so $\partial_z T_{ad} \to 0$ meanwhile $\rho_0 \to T_0 \to 1$, and our equations take on their boussinesq form.

REFERENCES

Lecoanet, D., Brown, B. P., Zweibel, E. G., et al. 2014, ApJ, 797, 94 Lecoanet, D., & Jeevanjee, N. 2018, arXiv e-prints, arXiv:1804.09326