Model Selection, Validation, https://powcoder.com/andaRegularization

Lecture 10

Last Time

- The no-free-lunch theorem tells us that there is no universal learning algorithm that will work best on all problems. Assignment Project Exam Help
- Further, for every algorithm, there is a problem it fails on, even though another succeeds https://powcoder.com
- Instead, for every learning problem we must balance the bias-complexity tradeoff using prior knowledge
- Textbook: chapter 5

This Class

- How do we balance the bias-complexity tradeoff in practice?
- Textbook: chapters 11.0, 11.2, 11.3, 13.0, 13.1, 13.4

https://powcoder.com

Motivating Example

Let's determine the popularity of Jo's as a function of time:

Let's Model It

Polynomial regression of varying degrees:

Which one would you choose and why?

Assignment Project Exam Help

Model Serection and Validation

The Need for Validation

- As we increase polynomial order, we lower empirical risk
- Assignment Project Exam Help
 But seems like overfitting!
- Q: How do we formalize this intuition and apply it to high-dimensional data?
- A: Find balance between approximation and estimation errors via validation

Previous Set Up

So far we've held out a test set to get an unbiased estimate of $L_{\mathcal{D}}(h)$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Training

Testing

No Peeking!

• If we evaluate multiple hypotheses on the test set, and then pick the best one, then it is no longer an unbiased estimate of $Exa^{(h)}$ Help

https://powcoder.com

Training-Validation-Test Split

Use training data to train, validation data to select the best model, and testing data for a estimation of true error Assignment Project Exam Help

https://powcoder.com

Training Validation Testing

Model Selection with Validation

- Train different algorithms (or the same algorithm with different hyperparameters) on a given training set Assignment Project Exam Help
- Now, to choose a single hypothesis from H we choose the one that minimizes the error over the validation set
- Error on the validation set approximates the true error

Model Selection Curves

*Understanding Machine Learning.*Shalev-Shwartz and Ben-David, 2014.

Bounding the Loss via Validation

Any hypothesis, maybe one from ERM

 $\ell(h,(\mathbf{x},y))$

Assignment Project Exam Help

THEOREM 11.1 Let h be some predictor and assume that the loss function is in

[0,1]. Then, for every δ fit 0, we have

Add WeChat powcoder $|L_V(h) - L_D(h)| \le \sqrt{\frac{\log(2/\delta)}{2 m_v}}$.

$$\frac{1}{m_v} \sum_{i=1}^{m_v} \ell(h, (\mathbf{x}_i^v, y_i^v))$$

Proof

- Recall Hoeffding's Inequality: $\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta-\mu\right|>\epsilon\right]\leq 2\exp\left(\frac{-2m\epsilon^2}{(b-a)^2}\right)$ Assignment Project Exam Help
- Define $\delta = 2 \exp(-2m_{\rm to}\epsilon^2)$://powcoder.com
- Solve for ϵ : $\epsilon = \sqrt{\frac{2 e^{2}}{2m_{v}}}$ eChat powcoder

• Substitute ϵ and δ into Hoeffding's Inequality, where b = 1 and a = 0

Rearranging to Upper Bound on Loss

$$|L_{V}(h) - L_{P}(h)| \leq \sqrt{\frac{\log(2/\delta)}{\operatorname{an2/Help}}}$$
 Assignment Project by $\sqrt{\frac{\log(2/\delta)}{\operatorname{an2/Help}}}$

implies

https://powcoder.com

$$L_{\mathcal{D}}(h) \leq L_{V}(h) + \sqrt{\frac{\log(2^{r}/\delta)}{2m_{v}}}$$

Comparison with UC Upper Bound

Validation Upper Bound:

Assignment Project Exam(
$$L_{\mathcal{D}}(h) \leq L_{V}(h) + \sqrt{\frac{2m_{v}}{2m_{v}}}$$
 https://powcodev.com/

Uniform Convergence Upper Bound WeChat powcoder

$$L_{\mathcal{D}}(h_S) \le L_S(h_S) + \sqrt{\frac{\log |\mathcal{H}| + \log(2/\delta)}{2m}}$$

Assignment Project Exam Help

https://powsquer.com

What Went Wrong?

Steve plots a model selection curve for predicting the popularity of Andrew's. He considers polynomial regimentine with palmieximum degreted to 10 (inclusive). Using a validation set of size $m_v=100$ he sees that degree 4 (h_4) has the best validation error of 0.1. Using the upper bound $L_{\mathcal{D}}(h) \leq L_V(h) + \sqrt{\frac{\log(2/\delta)}{2m_v}}$ he concludes

Add WeChat powcoder that with probability $\geq 95\%$, $L_{\mathcal{D}}(h_4) \leq L_V(h_4) + \sqrt{\frac{\log(2/0.05)}{200}} \leq 0.24$. However, when he (somehow magically) evaluates $L_{\mathcal{D}}(h_4)$, it is 0.26. What went wrong?

B: Wrong value for δ Nothing, it happens with <5% chance

Wrong value for m_v C: He didn't meet the bound's assumptions

Assignment Project Exam Help

https://govygoder.com

Answer: He didn't meet the bound's assumptions (C)

Tricky mistake!

Assignment Project Exam Help

- He evaluated $L_V(h)$ for all ten hypotheses in \mathcal{H}_S (best of each kind on S) https://powcoder.com
- Just like the bound on the empirical risk minimizer, we have to account for how many hypotheses we evaluated on the validation data to pick h:

$$L_{\mathcal{D}}(h) \le L_V(h) + \sqrt{\frac{\log |\mathcal{H}_S| + \log(2/\delta)}{2m_v}}$$

k-fold Cross Validation

Previous methods work great when you have a ton of data What if you don't want to "waste data" on those? Assignment Project Exam Help

Assignment Project Exam Help

What Pif Learning Pails?

What if Learning Fails?

Plenty of options:

- Get a larger sample Assignment Project Exam Help
- Change the hypothesis class by:
 - Enlarging it
 - https://powcoder.com Reducing it
 - Completely changing it
 - Change the feature representation of the Catalat powcoder
- Change the optimization algorithm used to apply your learning rule

Need to smartly choose what is the issue: Approximation or Estimation error

Error Decomposition Using Validation

Using validation to see what is wrong (two types of error)

Recall: Assignment Project Exam Help

$$\epsilon_{appetps:/powboder.Lp}(h)$$

$$\epsilon_{est}$$
 dd WeDhat sowcodarpp

What do these depend on?

Types of Error and their Dependencies

Approximation Error Depends on:

Estimation error Depends on:

- Underlying distassing nument Project Examples tribution D
- Hypothesis class H

Hypothesis class H

https://powcoder.come Size

Improving Approximation Arthu WeChat proving Estimation error:

- Increase size of *H* or change it
- Change featurization of data

- Obtain more training samples
- Reduce H

Learning Curves

Train the algorithm on prefixes of the data of increasing sizes, and plot:

Understanding Machine Learning. Shalev-Shwartz and Ben-David, 2014.

Learning Curves

- If approximation error is greater than 0 expect training error to grow and validation error to decrease as sample size increases. Assignment Project Exam Help
- If class is agnostic PAC learnable, they converge on the approximation error.
 This can be extrapolated from the curves as well.
 Add WeChat powcoder

Assignment Project Exam Help

httegularization

Fine-Tuning the Bias-Complexity Tradeoff

- Two types of error: approximation and estimation
- What tools do we have to adjust the spectrum? Help
 - Change the model, Change the representation.
 https://powcoder.com
- What if we don't want to throw all of our hard work away? Can we keep our representation (training data with possessed and adjust the tradeoff?

Regularization

A regularizer balances between empirical risk and simpler hypotheses:

Assignment Project Exam Help

https://powcoder.com
Regularized Loss Minimization: Combines both empirical risk and regularizer minimization: Add WeChat powcoder

$$\underset{w}{\operatorname{argmin}}(L_S(w) + R(w))$$

Simple(?) Regularizer

$$h_w(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + ... + w_k x^k$$

$$R(w) = \lambda \max(\begin{cases} Assignment Project Exam Help \\ k & where w_k \neq 0 \end{cases}$$

$$https://powcoder.com$$
In words? Advantages? Challenges?

Tikhonov Regularization

Also known as L2 regularization or weight decay

Assignment Project Exam Help
$$R(w) = \lambda ||w||_2$$
 $||w||_2 = \sqrt{\sum_{i=1}^{w_i^2} w_i^2}$ https://powcoder.com

Ridge regression = linear/polynomial regression + Tikhonov regularization: Add WeChat powcoder

$$\underset{\mathbf{w} \in \mathbb{R}^d}{\operatorname{argmin}} \left(\lambda \|\mathbf{w}\|_2^2 + \frac{1}{m} \sum_{i=1}^m \frac{1}{2} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 \right)$$

Ridge Regression Demo (degree=10)

ERM for Ridge Regression

Gradient of the empirical risk is $(2\lambda mI + A)\mathbf{w} - \mathbf{b}$ where

Assignment Project Exam Help

$$A = h \underbrace{\lim_{i=1}^{m} x_i}_{i=1} \mathbf{x}_i$$

Add WeChat powcoder

Setting equal to 0 and solving for w gives

$$\mathbf{w} = (2\lambda mI + A)^{-1}\mathbf{b}$$

Tikhonov Regularization for other Models

- We can add Tikhonov regularization to any risk function
- Assignment Project Exam Help Gradient is a linear operator so we just add the gradient of ${\it R}$ to the usual one
- https://powcoder.com
 For example, to use Tikhonov regularization for multiclass logistic regression:

$$\frac{\text{Add WeChat powcoder}}{\partial L_S(h_{\mathbf{w}}) + R(h_{\mathbf{w}})} = \frac{1}{m} \sum_{i=1}^m (h_{\mathbf{w}}(\mathbf{x}_i)_s - \mathbf{1}[y_i = s]) x_{it} + 2\lambda w_{st}$$

Review

- A held-out validation set is a critical tool for model selection
- It helps assess where on the bias-complexity tradeoff a hypothesis is
- Regularizers like Tikhonov regularization give us a knob λ to adjust bias-complexity tradeoff for a fixed hypothesis class Add WeChat powcoder
- Textbook: chapters 11.0, 11.2, 11.3, 13.0, 13.1, 13.4

Next Class

- Our final tool of learning theory: what makes a hypothesis class learnable?
 Can infinite hypothesis classes ever be learnable?
 Assignment Project Exam Help
- Textbook: chapters 6, 9, 1.3 //powcoder.com