$11a_{58} (K11a_{58})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{25} - 9u^{23} + \dots + b + u, -u^{28} - u^{27} + \dots + a - 3, u^{29} + 2u^{28} + \dots + 3u + 1 \rangle$$

$$I_2^u = \langle u^2 + b, a - 1, u^{12} - 4u^{10} + u^9 + 6u^8 - 3u^7 - u^6 + 3u^5 - 5u^4 + u^3 + 3u^2 - 2u + 1 \rangle$$

$$I_3^u = \langle b + 1, a - 1, u - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{25} - 9u^{23} + \dots + b + u, -u^{28} - u^{27} + \dots + a - 3, u^{29} + 2u^{28} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} (-u^{2} + 1) \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{28} + u^{27} + \dots - 5u + 3 \\ -u^{25} + 9u^{23} + \dots + 4u^{2} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{28} + 11u^{26} + \dots - 8u + 1 \\ u^{28} + u^{27} + \dots + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{27} + 11u^{25} + \dots + 6u - 2 \\ -u^{28} - u^{27} + \dots - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{9} + 4u^{7} - 5u^{5} + 3u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{9} + 4u^{7} - 5u^{5} + 3u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4u^{28} - 6u^{27} + 40u^{26} + 58u^{25} - 176u^{24} - 236u^{23} + 428u^{22} + 482u^{21} - 568u^{20} - 370u^{19} + 236u^{18} - 414u^{17} + 460u^{16} + 1092u^{15} - 788u^{14} - 532u^{13} + 356u^{12} - 584u^{11} + 236u^{10} + 608u^9 - 308u^8 + 84u^7 + 40u^6 - 178u^5 + 60u^4 - 26u^3 + 8u^2 + 6u - 8$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{29} - 2u^{28} + \dots - u + 1$
c_2	$u^{29} + 16u^{28} + \dots + 7u + 1$
c_{3}, c_{8}	$u^{29} + 2u^{28} + \dots + 2u + 2$
c_5, c_{10}, c_{11}	$u^{29} + 2u^{28} + \dots + 3u + 1$
c_6, c_7, c_9	$u^{29} - 6u^{28} + \dots + 8u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{29} - 16y^{28} + \dots + 7y - 1$
c_2	$y^{29} - 4y^{28} + \dots - 17y - 1$
c_{3}, c_{8}	$y^{29} + 6y^{28} + \dots + 8y - 4$
c_5, c_{10}, c_{11}	$y^{29} - 24y^{28} + \dots + 23y - 1$
c_6, c_7, c_9	$y^{29} + 30y^{28} + \dots + 504y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.050913 + 0.910185I		
a = -0.45193 - 1.39576I	-10.46170 + 8.03356I	-4.76249 - 5.59744I
b = 0.00992 - 2.35228I		
u = 0.050913 - 0.910185I		
a = -0.45193 + 1.39576I	-10.46170 - 8.03356I	-4.76249 + 5.59744I
b = 0.00992 + 2.35228I		
u = -0.008721 + 0.887960I		
a = -0.49123 + 1.42056I	-10.71030 - 1.52343I	-5.35413 + 0.68771I
b = 0.14380 + 2.36020I		
u = -0.008721 - 0.887960I		
a = -0.49123 - 1.42056I	-10.71030 + 1.52343I	-5.35413 - 0.68771I
b = 0.14380 - 2.36020I		
u = 1.189730 + 0.056062I		
a = -0.370086 - 0.255115I	2.39907 + 0.12369I	3.50407 + 1.07759I
b = -1.23899 - 0.69502I		
u = 1.189730 - 0.056062I		
a = -0.370086 + 0.255115I	2.39907 - 0.12369I	3.50407 - 1.07759I
b = -1.23899 + 0.69502I		
u = 1.242320 + 0.189774I		
a = -0.715591 + 0.438399I	0.91595 + 3.56420I	0.67873 - 4.99863I
b = 0.20240 + 2.88734I		
u = 1.242320 - 0.189774I		
a = -0.715591 - 0.438399I	0.91595 - 3.56420I	0.67873 + 4.99863I
b = 0.20240 - 2.88734I		
u = 0.230236 + 0.672244I		
a = -0.11327 - 1.56979I	-1.85869 + 5.19499I	-2.04173 - 8.30480I
b = -0.07670 - 1.55700I		
u = 0.230236 - 0.672244I		
a = -0.11327 + 1.56979I	-1.85869 - 5.19499I	-2.04173 + 8.30480I
b = -0.07670 + 1.55700I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.249690 + 0.417811I		
a = -0.215564 - 0.608911I	-3.02235 + 1.47420I	1.47993 - 0.60903I
b = -0.927812 - 0.165212I		
u = 1.249690 - 0.417811I		
a = -0.215564 + 0.608911I	-3.02235 - 1.47420I	1.47993 + 0.60903I
b = -0.927812 + 0.165212I		
u = -1.311940 + 0.179476I		
a = -0.339083 + 0.475947I	4.98921 - 3.78682I	7.27007 + 4.16727I
b = -0.644137 + 0.471467I		
u = -1.311940 - 0.179476I		
a = -0.339083 - 0.475947I	4.98921 + 3.78682I	7.27007 - 4.16727I
b = -0.644137 - 0.471467I		
u = -1.342150 + 0.040293I		
a = -0.537408 - 0.444706I	6.61715 - 2.27209I	8.89752 + 3.80982I
b = -0.23164 - 1.41782I		
u = -1.342150 - 0.040293I		
a = -0.537408 + 0.444706I	6.61715 + 2.27209I	8.89752 - 3.80982I
b = -0.23164 + 1.41782I		
u = 1.286000 + 0.418935I		
a = -0.762208 + 0.613998I	-6.68464 + 6.20004I	-1.73580 - 3.81481I
b = 1.69138 + 2.74611I		
u = 1.286000 - 0.418935I		
a = -0.762208 - 0.613998I	-6.68464 - 6.20004I	-1.73580 + 3.81481I
b = 1.69138 - 2.74611I		
u = -1.333980 + 0.244603I		
a = -0.683762 - 0.524847I	3.04589 - 8.42692I	3.52830 + 8.66921I
b = 0.83387 - 2.33932I		
u = -1.333980 - 0.244603I		
a = -0.683762 + 0.524847I	3.04589 + 8.42692I	3.52830 - 8.66921I
b = 0.83387 + 2.33932I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.301320 + 0.407588I		
a = -0.248387 + 0.609615I	-2.63518 - 7.77071I	2.10858 + 5.30383I
b = -0.872384 + 0.107277I		
u = -1.301320 - 0.407588I		
a = -0.248387 - 0.609615I	-2.63518 + 7.77071I	2.10858 - 5.30383I
b = -0.872384 - 0.107277I		
u = 0.529946 + 0.329108I		
a = 0.667313 - 0.986592I	0.93542 + 1.41053I	5.39446 - 5.74020I
b = -0.347726 - 0.588274I		
u = 0.529946 - 0.329108I		
a = 0.667313 + 0.986592I	0.93542 - 1.41053I	5.39446 + 5.74020I
b = -0.347726 + 0.588274I		
u = -1.320520 + 0.424615I		
a = -0.743481 - 0.622059I	-6.1783 - 12.8069I	-0.92308 + 8.12569I
b = 1.72687 - 2.60904I		
u = -1.320520 - 0.424615I		
a = -0.743481 + 0.622059I	-6.1783 + 12.8069I	-0.92308 - 8.12569I
b = 1.72687 + 2.60904I		
u = -0.063245 + 0.516212I		
a = -0.28684 + 2.09363I	-3.02142 - 1.01433I	-6.77496 + 0.83339I
b = 0.49644 + 1.38676I		
u = -0.063245 - 0.516212I		
a = -0.28684 - 2.09363I	-3.02142 + 1.01433I	-6.77496 - 0.83339I
b = 0.49644 - 1.38676I		
u = -0.193938		
a = 4.58305	-1.29813	-8.53890
b = 0.469396		
	·	

II.
$$I_2^u = \langle u^2 + b, a - 1, u^{12} - 4u^{10} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{9} + 4u^{7} - 5u^{5} + 3u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{9} + 4u^{7} - 5u^{5} + 3u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^9 12u^7 + 4u^6 + 12u^5 8u^4 + 8u^3 + 4u^2 12u + 6u^4 + 8u^3 + 4u^4 + 8u^4 +$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
$c_1, c_4, c_5 \\ c_{10}, c_{11}$	$u^{12} - 4u^{10} + u^9 + 6u^8 - 3u^7 - u^6 + 3u^5 - 5u^4 + u^3 + 3u^2 - 2u + 1$		
c_2	$u^{12} + 8u^{11} + \dots - 2u + 1$		
c_3,c_8	$(u^4 - u^3 + u^2 + 1)^3$		
c_6, c_7, c_9	$(u^4 - u^3 + 3u^2 - 2u + 1)^3$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_{10}, c_{11}	$y^{12} - 8y^{11} + \dots + 2y + 1$
c_2	$y^{12} - 8y^{11} + \dots + 2y + 1$
c_{3}, c_{8}	$(y^4 + y^3 + 3y^2 + 2y + 1)^3$
c_6, c_7, c_9	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.944825 + 0.321917I		
a = 1.00000	0.21101 - 1.41510I	1.82674 + 4.90874I
b = -0.789064 - 0.608311I		
u = 0.944825 - 0.321917I		
a = 1.00000	0.21101 + 1.41510I	1.82674 - 4.90874I
b = -0.789064 + 0.608311I		
u = 0.031664 + 0.878090I		
a = 1.00000	-6.79074 + 3.16396I	-1.82674 - 2.56480I
b = 0.770039 - 0.055609I		
u = 0.031664 - 0.878090I		
a = 1.00000	-6.79074 - 3.16396I	-1.82674 + 2.56480I
b = 0.770039 + 0.055609I		
u = -1.186690 + 0.158407I		
a = 1.00000	0.21101 - 1.41510I	1.82674 + 4.90874I
b = -1.38315 + 0.37596I		
u = -1.186690 - 0.158407I		
a = 1.00000	0.21101 + 1.41510I	1.82674 - 4.90874I
b = -1.38315 - 0.37596I		
u = 1.240280 + 0.455646I		
a = 1.00000	-6.79074 - 3.16396I	-1.82674 + 2.56480I
b = -1.33067 - 1.13025I		
u = 1.240280 - 0.455646I		
a = 1.00000	-6.79074 + 3.16396I	-1.82674 - 2.56480I
b = -1.33067 + 1.13025I		
u = -1.271940 + 0.422443I		
a = 1.00000	-6.79074 - 3.16396I	-1.82674 + 2.56480I
b = -1.43937 + 1.07464I		
u = -1.271940 - 0.422443I		
a = 1.00000	-6.79074 + 3.16396I	-1.82674 - 2.56480I
b = -1.43937 - 1.07464I		

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.241868 + 0.480324I		
a =	1.00000	0.21101 + 1.41510I	1.82674 - 4.90874I
b =	0.172212 - 0.232350I		
u =	0.241868 - 0.480324I		
a =	1.00000	0.21101 - 1.41510I	1.82674 + 4.90874I
b =	0.172212 + 0.232350I		

III.
$$I_3^u = \langle b+1, a-1, u-1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11}	u-1
c_2, c_4, c_5	u+1
c_3, c_6, c_7 c_8, c_9	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_4 c_5, c_{10}, c_{11}	y-1		
c_3, c_6, c_7 c_8, c_9	y		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	0	0
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u^{12} - 4u^{10} + \dots - 2u + 1)$ $\cdot (u^{29} - 2u^{28} + \dots - u + 1)$
c_2	$(u+1)(u^{12}+8u^{11}+\cdots-2u+1)(u^{29}+16u^{28}+\cdots+7u+1)$
c_3, c_8	$u(u^4 - u^3 + u^2 + 1)^3(u^{29} + 2u^{28} + \dots + 2u + 2)$
c_4	$(u+1)(u^{12} - 4u^{10} + \dots - 2u + 1)$ $\cdot (u^{29} - 2u^{28} + \dots - u + 1)$
c_5	$(u+1)(u^{12} - 4u^{10} + \dots - 2u + 1)$ $\cdot (u^{29} + 2u^{28} + \dots + 3u + 1)$
c_6, c_7, c_9	$u(u^4 - u^3 + 3u^2 - 2u + 1)^3(u^{29} - 6u^{28} + \dots + 8u + 4)$
c_{10}, c_{11}	$(u-1)(u^{12} - 4u^{10} + \dots - 2u + 1)$ $\cdot (u^{29} + 2u^{28} + \dots + 3u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y-1)(y^{12}-8y^{11}+\cdots+2y+1)(y^{29}-16y^{28}+\cdots+7y-1)$
c_2	$(y-1)(y^{12}-8y^{11}+\cdots+2y+1)(y^{29}-4y^{28}+\cdots-17y-1)$
c_3, c_8	$y(y^4 + y^3 + 3y^2 + 2y + 1)^3(y^{29} + 6y^{28} + \dots + 8y - 4)$
c_5, c_{10}, c_{11}	$(y-1)(y^{12}-8y^{11}+\cdots+2y+1)(y^{29}-24y^{28}+\cdots+23y-1)$
c_6, c_7, c_9	$y(y^4 + 5y^3 + \dots + 2y + 1)^3(y^{29} + 30y^{28} + \dots + 504y - 16)$