GigaDevice Semiconductor Inc.

GD32E23x Arm® Cortex®-M23 32-bit MCU

固件库 使用指南

1.2 版本

(2023年7月)

目录

目录		
图索引		4
表索引		5
1.1. 义 1.1.1.	. 台州回行/年 观则	
1.1.2.	命名规则	
2. 固件固	车概述	
	C件组织结构	
2.1.1.		
2.1.2.	Firmware 文件夹	
2.1.3.	Template 文件夹	
2.1.4.	Utilities 文件夹	
2.2.]件库文件描述	24
3. 外设图	固件库	25
	······ ト设固件库概述	
3.2. AI	DC	25
3.2.1.		
3.2.2.	外设库函数说明	
3.3. CI	MP	49
3.3.1.	外设寄存器说明	
3.3.2.	外设库函数说明	49
3.4. CF	RC	55
3.4.1.	外设寄存器说明	55
3.4.2.	外设库函数说明	56
3.5. DI	BG	63
3.5.1.	外设寄存器说明	63
3.5.2.	外设库函数说明	63
3.6. DI	MA	68
3.6.1.	外设寄存器说明	68
3.6.2.	外设库函数说明	68
3.7. EX	хті	85
3.7.1.	外设寄存器说明	85

3.7.2.	外设库函数说明	86
3.8. FN	ис	94
3.8.1.	外设寄存器说明	94
3.8.2.	外设库函数说明	94
3.9. FV	NDGT	111
3.9.1.	外设寄存器说明	111
3.9.2.	外设库函数说明	112
3.10.	GPIO	117
3.10.1.	外设寄存器说明	117
3.10.2.	外设库函数说明	118
3.11.	I2C	128
	外设寄存器说明	
3.11.2.	外设库函数说明	129
3.12.	MISC	
	外设寄存器说明	
	外设库函数说明	
3.13.	PMU	
	外设寄存器说明	
	外设库函数说明	
3.14.	RCU	167
3.14.1.	外设寄存器说明	167
3.14.2.	外设库函数说明	168
3.15.	RTC	197
3.15.1.	外设寄存器描述	197
3.15.2.	外设库函数描述	198
3.16.	SPI	218
3.16.1.		
3.16.2.	外设库函数说明	
3.17.	SYSCFG	248
	外设寄存器说明	
3.17.2.	外设库函数说明	248
3.18.	TIMER	254
3.18.1.		
	外设库函数说明	
3.19.	USART	314
3.19.1.		
	外设库函数说明	
3.20.	WWDGT	363
	外设寄存器说明	

5-			ODOZLZOX	国门产区/1111日
	3.20.2.	外设库函数说明		363
4.	版本历	史		368

图索引

图 2-1.	GD32E23x 固件库文件组织结构	20
图 2-2.	选择外设例程文件	22
图 2-3.	拷贝外设例程文件	22
图 2-4.	打开工程文件	23
图 2-5.	配置工程文件	23
图 2-6.	编译调试下载	24

表索引

表 1-1. 外设缩写	18
表 2-1. 固件函数库文件描述	24
表 3-1. 外设固件库函数描述格式	25
表 3-2. ADC 寄存器	25
表 3-3. ADC 库函数	26
表 3-4. 函数 adc_deinit	27
表 3-5. 函数 adc_enable	27
表 3-6. 函数 adc_disable	28
表 3-7. 函数 adc_calibration_enable	28
表 3-8. 函数 adc_dma_mode_enable	29
表 3-9. 函数 adc_dma_mode_disable	29
表 3-10. 函数 adc_tempsensor_vrefint_enable	30
表 3-11. 函数 adc_tempsensor_vrefint_disable	30
表 3-12. 函数 adc_discontinuous_mode_config	31
表 3-13. 函数 adc_special_function_config	31
表 3-14. 函数 adc_data_alignment_config	32
表 3-15. 函数 adc_channel_length_config	33
表 3-16. 函数 adc_regular_channel_config	33
表 3-17. 函数 adc_inserted_channel_config	34
表 3-18. 函数 adc_inserted_channel_offset_config	35
表 3-19. 函数 adc_external_trigger_config	36
表 3-20. 函数 adc_external_trigger_source_config	37
表 3-21. 函数 adc_software_trigger_enable	38
表 3-22. 函数 adc_regular_data_read	38
表 3-23. 函数 adc_inserted_data_read	39
表 3-24. 函数 adc_flag_get	40
表 3-25. 函数 adc_flag_clear	40
表 3-26. 函数 adc_interrupt_flag_get	41
表 3-27. 函数 adc_interrupt_flag_clear	41
表 3-28. 函数 adc_interrupt_enable	42
表 3-29. 函数 adc_interrupt_disable	43
表 3-30. 函数 adc_watchdog_single_channel_enable	43
表 3-31. 函数 adc_watchdog_group_channel_enable	44
表 3-32. 函数 adc_watchdog_disable	44
表 3-33. 函数 adc_watchdog_threshold_config	45
表 3-34. 函数 adc_resolution_config	45
表 3-35. 函数 adc_oversample_mode_config	46
表 3-36. 函数 adc_oversample_mode_enable	48
表 3-37. 函数 adc_oversample_mode_disable	48
表 3-38. CMP 寄存器	49

•	CMP 库函数	
表 3-40.	函数 cmp_deinit	50
表 3-41.	函数 cmp_mode_init	50
表 3-42.	函数 cmp_output_init	51
表 3-43.	函数 cmp_enable	52
表 3-44.	函数 cmp_disable	53
表 3-45.	函数 cmp_switch_enable	53
表 3-46.	函数 cmp_switch_disable	54
表 3-47.	函数 cmp_output_level_get	54
表 3-48.	函数 cmp_lock_enable	55
表 3-49.	CRC 寄存器	55
表 3-50.	CRC 库函数	56
表 3-51.	函数 crc_deinit	56
表 3-52.	函数 crc_reverse_output_data_enable	57
表 3-53.	函数 crc_reverse_output_data_disable	57
表 3-54.	函数 crc_data_register_reset	58
表 3-55.	函数 crc_data_register_read	58
表 3-56.	函数 crc_ free_data_register_read	59
表 3-57.	函数 crc_ free_data_register_write	59
表 3-58.	函数 crc_init_data_register_write	60
表 3-59.	函数 crc_input_data_reverse_config	60
表 3-60.	函数 crc_polynomial_size_set	61
	函数 crc_polynomial_set	
表 3-62.	函数 crc_single_data_calculate	62
表 3-63.	函数 crc_block_data_calculate	62
表 3-64.	DBG 寄存器	63
表 3-65.	DBG 库函数	63
表 3-66.	枚举类型 dbg_periph_enum	64
表 3-67.	函数 dbg_deinit	64
	函数 dbg_id_get	
表 3-69.	函数 dbg_low_power_enable	65
表 3-70.	函数 dbg_low_power_disable	66
表 3-71.	函数 dbg_periph_enable	66
表 3-72.	函数 dbg_periph_disable	67
表 3-73.	DMA 寄存器	68
表 3-74.	DMA 库函数	68
表 3-75.	结构体 dma_parameter_struct	69
表 3-76.	函数 dma_deinit	69
	函数 dma_struct_para_init	
表 3-78.	函数 dma_init	70
表 3-79.	函数 dma_circulation_enable	71
表 3-80.	函数 dma_circulation_disable	72
表 3-81.	函数 dma_memory_to_memory_enable	72
	函数 dma_memory_to_memory_disable	
		_

表 3-83.	函数 dma_channel_enable	73
表 3-84.	函数 dma_channel_disable	74
表 3-85.	函数 dma_periph_address_config	74
表 3-86.	函数 dma_memory_address_config	75
表 3-87.	函数 dma_transfer_number_config	75
表 3-88.	函数 dma_transfer_number_get	76
	函数 dma_priority_config	
表 3-90.	函数 dma_memory_width_config	77
	函数 dma_periph_width_config	
	函数 dma_memory_increase_enable	
表 3-93.	函数 dma_memory_increase_disable	79
	函数 dma_periph_increase_enable	
表 3-95.	函数 dma_periph_increase_disable	80
表 3-96.	函数 dma_transfer_direction_config	81
表 3-97.	函数 dma_flag_get	81
表 3-98.	函数 dma_flag_clear	82
	函数 dma_interrupt_flag_get	
表 3-100	.函数 dma_interrupt_flag_clear	83
表 3-101	.函数 dma_interrupt_enable	84
表 3-102	.函数 dma_interrupt_disable	85
表 3-103	. EXTI 寄存器	86
	. EXTI 库函数	
表 3-105	.枚举类型 exti_line_enum	86
	6. 枚举类型 exti_mode_enum	
	.枚举类型 exti_trig_type_enum	
表 3-108	.函数 exti_deinit	87
	.函数 exti_init	
•	.函数 exti_interrupt_enable	
	.函数 exti_interrupt_disable	
	.函数 exti_event_enable	
	.函数 exti_event_disable	
	.函数 exti_software_interrupt_enable	
	.函数 exti_software_interrupt_disable	
	.函数 exti_flag_get	
	.函数 exti_flag_clear	
表 3-118	.函数 exti_interrupt_flag_get	93
	.函数 exti_interrupt_flag_clear	
	D. FMC 寄存器	
	. FMC 固件库函数	
	. 枚举类型 fmc_state_enum	
	.函数 fmc_unlock	
	.函数 Function fmc_lock	
	.函数 fmc_wscnt_set	
表 3-126	.函数 fmc_prefetch_enable	97

表 3-127.	函数 fmc_prefetch_disable	97
表 3-128.	函数 fmc_page_erase	98
表 3-129.	函数 fmc_mass_erase	98
表 3-130.	函数 fmc_doubleword_program	99
表 3-131.	函数 fmc_word_program	99
表 3-132.	函数 ob_unlock	100
•	函数 ob_lock	
	函数 ob_reset	
表 3-135.	函数 option_byte_value_get	101
表 3-136.	函数 ob_erase	102
表 3-137.	函数 ob_write_protection_enable	102
	函数 ob_security_protection_config	
表 3-139.	函数 ob_user_write	103
表 3-140.	函数 ob_data_program	104
表 3-141.	函数 ob_user_get	105
表 3-142.	函数 ob_data_get	105
表 3-143.	函数 ob_write_protection_get	106
表 3-144.	函数 ob_obstat_plevel_get	106
表 3-145.	函数 fmc_interrupt_enable	107
表 3-146.	函数 fmc_interrupt_disable	107
表 3-147.	函数 fmc_flag_get	108
表 3-148.	函数 fmc_flag_clear	108
表 3-149.	函数 fmc_interrupt_flag_get	109
表 3-150.	函数 fmc_interrupt_flag_clear	110
表 3-151.	函数 fmc_state_get	110
表 3-152.	函数 fmc_ready_wait	111
表 3-153.	FWDGT 寄存器	111
表 3-154.	FWDGT 库函数	112
表 3-155.	函数 fwdgt_write_enable	112
表 3-156.	函数 fwdgt_write_disable	113
表 3-157.	函数 fwdgt_enable	113
表 3-158.	函数 fwdgt_prescaler_value_config	114
表 3-159.	函数 fwdgt_reload_value_config	114
表 3-160.	函数 fwdgt_window_value_config	115
表 3-161.	函数 fwdgt_counter_reload	115
表 3-162.	函数 fwdgt_config	116
表 3-163.	函数 fwdgt_flag_get	116
表 3-164.	GPIO 寄存器	117
表 3-165.	GPIO 库函数	118
	函数 gpio_deinit	
表 3-167.	函数 gpio_mode_set	119
	函数 gpio_output_options_set	
	函数 gpio_bit_set	
	函数 gpio_bit_reset	

表 3-171.	函数 gpio_bit_write	122
表 3-172.	函数 gpio_port_write	123
表 3-173.	函数 gpio_input_bit_get	123
表 3-174.	函数 gpio_input_port_get	124
表 3-175.	函数 gpio_output_bit_get	124
表 3-176.	函数 gpio_output_port_get	125
	函数 gpio_af_set	
表 3-178.	函数 gpio_pin_lock	126
表 3-179.	函数 gpio_bit_toggle	127
表 3-180.	函数 gpio_port_toggle	128
表 3-181.	I2C 寄存器	128
表 3-182.	I2C 库函数	129
表 3-183.	函数 i2c_deinit	130
	函数 i2c_clock_config	
表 3-185.	函数 i2c_mode_addr_config	131
表 3-186.	函数 i2c_smbus_type_config	132
表 3-187.	函数 i2c_ack_config	132
表 3-188.	函数 i2c_ackpos_config	133
表 3-189.	函数 i2c_master_addressing	134
表 3-190.	函数 i2c_dualaddr_enable	134
表 3-191.	函数 i2c_dualaddr_disable	135
表 3-192.	函数 i2c_enable	135
表 3-193.	函数 i2c_disable	136
表 3-194.	函数 i2c_start_on_bus	136
表 3-195.	函数 i2c_stop_on_bus	137
表 3-196.	函数 i2c_data_transmit	137
表 3-197.	函数 i2c_data_receive	138
表 3-198.	函数 i2c_dma_config	138
表 3-199.	函数 i2c_dma_last_transfer_config	139
表 3-200.	函数 i2c_stretch_scl_low_config	140
表 3-201.	函数 i2c_slave_response_to_gcall_config	140
表 3-202.	函数 i2c_software_reset_config	141
表 3-203.	函数 i2c_pec_config	142
表 3-204.	函数 i2c_pec_transfer_config	142
表 3-205.	函数 i2c_pec_value_get	143
表 3-206.	函数 i2c_smbus_alert_config	143
表 3-207.	函数 i2c_smbus_arp_config	144
表 3-208.	函数 i2c_sam_enable	145
表 3-209.	函数 i2c_sam_disable	145
	函数 i2c_sam_timeout_enable	
表 3-211.	函数 i2c_sam_timeout_disable	146
	函数 i2c_flag_clear	
表 3-214.	函数 i2c_interrupt_enable	149

表 3-215.	函数 i2c_interrupt_disable	150
表 3-216.	函数 i2c_interrupt_flag_get	150
表 3-217.	函数 i2c_interrupt_flag_clear	152
表 3-218.	NVIC 寄存器	153
表 3-219.	Systick 寄存器	154
表 3-220.	枚举类型 IRQn_Type	154
表 3-221.	MISC 库函数	155
表 3-222.	函数 nvic_irq_enable	155
	函数 nvic_irq_disable	
	函数 nvic_system_reset	
表 3-225.	函数 nvic_vector_table_set	156
	函数 system_lowpower_set	
表 3-227.	函数 system_lowpower_reset	158
表 3-228.	函数 systick_clksource_set	158
表 3-229.	PMU 寄存器	159
表 3-230.	PMU 库函数	159
表 3-231.	函数 pmu_deinit	160
表 3-232.	函数 pmu_lvd_select	160
表 3-233.	函数 pmu_ldo_output_select	161
表 3-234.	函数 pmu_lvd_disable	161
表 3-235.	函数 pmu_to_sleepmode	162
表 3-236.	函数 pmu_to_deepsleepmode	162
表 3-237.	函数 pmu_to_standbymode	163
表 3-238.	函数 pmu_wakeup_pin_enable	164
表 3-239.	函数 pmu_wakeup_pin_disable	164
表 3-240.	函数 pmu_backup_write_enable	165
表 3-241.	函数 pmu_backup_write_disable	165
表 3-242.	函数 pmu_flag_clear	166
表 3-243.	函数 pmu_flag_get	167
表 3-244.	RCU 寄存器	167
表 3-245.	RCU 库函数	168
表 3-246.	枚举类型 rcu_periph_enum	169
表 3-247.	枚举类型 rcu_periph_ sleep_enum	170
表 3-248.	枚举类型 rcu_periph_reset _enum	170
表 3-249.	枚举类型 rcu_flag _enum	170
表 3-250.	枚举类型 rcu_int_flag _enum	171
表 3-251.	枚举类型 rcu_int_flag_clear_enum	171
表 3-252.	枚举类型 rcu_int_enum	172
表 3-253.	枚举类型 rcu_adc_clock_enum	172
	枚举类型 rcu_osci_type_enum	
	枚举类型 rcu_clock_freq_enum	
	函数 rcu_deinit	
	函数 rcu_periph_clock_enable	
	函数 rcu_periph_clock_disable	

表 3-259.	函数 rcu_periph_clock_sleep_enable	175
表 3-260.	函数 rcu_periph_clock_sleep_disable	175
表 3-261.	函数 rcu_periph_reset_enable	176
表 3-262.	函数 rcu_periph_reset_disable	177
表 3-263.	函数 rcu_bkp_reset_enable	177
表 3-264.	函数 rcu_bkp_reset_disable	178
表 3-265.	函数 rcu_system_clock_source_config	178
表 3-266.	函数 rcu_system_clock_source_get	179
表 3-267.	函数 rcu_ahb_clock_config	179
表 3-268.	函数 rcu_apb1_clock_config	180
表 3-269.	函数 rcu_apb2_clock_config	180
表 3-270.	函数 rcu_adc_clock_config	181
表 3-271.	函数 rcu_ckout_config	182
表 3-272.	函数 rcu_pll_config	183
表 3-273.	函数 rcu_usart_clock_config	183
表 3-274.	函数 rcu_rtc_clock_config	184
表 3-275.	函数 rcu_hxtal_prediv_config	185
表 3-276.	函数 rcu_lxtal_drive_capability_config	185
表 3-277.	函数 rcu_flag_get	186
表 3-278.	函数 rcu_all_reset_flag_clear	187
表 3-279.	函数 rcu_interrupt_flag_get	187
表 3-280.	函数 rcu_interrupt_flag_clear	188
表 3-281.	函数 rcu_interrupt_enable	189
表 3-282.	函数 rcu_interrupt_disable	190
表 3-283.	函数 rcu_osci_stab_wait	191
表 3-284.	函数 rcu_osci_on	191
表 3-285.	函数 rcu_osci_off	192
表 3-286.	函数 rcu_osci_bypass_mode_enable	192
表 3-287.	函数 rcu_osci_bypass_mode_disable	193
表 3-288.	函数 rcu_hxtal_clock_monitor_enable	194
表 3-289.	函数 rcu_hxtal_clock_monitor_disable	194
表 3-290.	函数 rcu_irc8m_adjust_value_set	195
表 3-291.	函数 rcu_irc28m_adjust_value_set	195
表 3-292.	函数 rcu_voltage_key_unlock	196
表 3-293.	函数 rcu_deepsleep_voltage_set	196
表 3-294.	函数 rcu_clock_freq_get	197
表 3-295.	RTC 寄存器	198
表 3-296.	RTC 库函数	198
表 3-297.	结构体 rtc_parameter_struct	199
表 3-298.	结构体 rtc_alarm_struct	199
表 3-299.	结构体 rtc_timestamp_struct	200
表 3-300.	结构体 rtc_tamper_struct	200
表 3-301.	函数 rtc_deinit	201
表 3-302.	函数 rtc_init	201

表 3-303	函数 rtc_init_mode_enter	202
	函数 rtc_init_mode_exit	
	函数 rtc_register_sync_wait	
	函数 rtc_current_time_get	
	函数 rtc_subsecond_get	
	函数 rtc_alarm_config	
	函数 rtc_alarm_subsecond_config	
	函数 rtc_alarm_enable	
	函数 rtc_alarm_disable	
	函数 rtc_alarm_get	
	函数 rtc_alarm_subsecond_get	
	函数 rtc_timestamp_enable	
	函数 rtc_timestamp_disable	
	函数 rtc_timestamp_get	
	函数 rtc_timestamp_subsecond_get	
	函数 rtc_timestamp_enable	
表 3-319.	函数 rtc_tamper_disable	210
表 3-320.	函数 rtc_interrupt_enable	211
表 3-321.	函数 rtc_interrupt_disable	211
表 3-322.	函数 rtc_flag_get	212
表 3-323.	函数 rtc_flag_clear	213
表 3-324.	函数 rtc_alter_output_config	214
表 3-325.	函数 rtc_calibration_config	214
表 3-326.	函数 rtc_hour_adjust	215
表 3-327.	函数 rtc_second_adjust	216
表 3-328.	函数 rtc_bypass_shadow_enable	216
表 3-329.	函数 rtc_bypass_shadow_disable	217
表 3-330.	函数 rtc_refclock_detection_enable	217
表 3-331.	函数 rtc_refclock_detection_disable	218
表 3-332.	SPI/I2S 寄存器	219
表 3-333.	SPI/I2S 库函数	219
表 3-334.	结构体 spi_parameter_struct	220
表 3-335.	函数 spi_i2s_deinit	221
表 3-336.	函数 spi_struct_para_init	221
表 3-337.	函数 spi_init	222
表 3-338.	函数 spi_enable	222
表 3-339.	函数 spi_disable	223
表 3-340.	函数 i2s_init	224
表 3-341.	函数 i2s_psc_config	225
表 3-342.	函数 i2s_enable	226
表 3-343.	函数 i2s_disable	227
表 3-344.	函数 spi_nss_output_enable	227
表 3-345.	函数 spi_nss_output_disable	228
表 3-346.	函数 spi_nss_internal_high	228

表 3-347.	函数 spi_nss_internal_low	229
表 3-348.	函数 spi_dma_enable	229
表 3-349.	函数 spi_dma_disable	230
表 3-350.	函数 spi_transmit_odd_config	230
表 3-351.	函数 spi_receive_odd_config	231
表 3-352.	函数 spi_i2s_data_frame_format_config	232
表 3-353.	函数 spi_fifo_access_size_config	232
表 3-354.	函数 spi_bidirectional_transfer_config	233
表 3-355.	函数 spi_i2s_data_transmit	234
表 3-356.	函数 spi_i2s_data_receive	234
表 3-357.	函数 spi_crc_polynomial_set	235
表 3-358.	函数 spi_crc_polynomial_get	235
表 3-359.	函数 spi_crc_length_set	236
表 3-360.	函数 spi_crc_on	236
表 3-361.	函数 spi_crc_off	237
表 3-362.	函数 spi_crc_next	237
表 3-363.	函数 spi_crc_get	238
表 3-364.	函数 spi_ti_mode_enable	238
表 3-365.	函数 spi_ti_mode_disable	239
表 3-366.	函数 spi_nssp_mode_enable	239
表 3-367.	函数 spi_nssp_mode_disable	240
表 3-368.	函数 qspi_enable	241
表 3-369.	函数 qspi_disable	241
表 3-370.	函数 qspi_write_enable	242
表 3-371.	函数 qspi_read_enable	242
表 3-372.	函数 qspi_io23_output_enable	243
表 3-373.	函数 qspi_io23_output_disable	243
表 3-374.	函数 spi_i2s_flag_get	244
表 3-375.	函数 spi_i2s_interrupt_enable	245
表 3-376.	函数 spi_i2s_interrupt_disable	246
表 3-377.	函数 spi_i2s_interrupt_flag_get	246
表 3-378.	函数 spi_crc_error_clear	247
表 3-379.	SYSCFG 寄存器	248
表 3-380.	SYSCFG 库函数	248
表 3-381.	函数 syscfg_deinit	249
表 3-382.	函数 syscfg_dma_remap_enable	249
表 3-383.	函数 syscfg_dma_remap_disable	250
表 3-384.	函数 syscfg_high_current_enable	251
表 3-385.	函数 syscfg_high_current_disable	251
表 3-386.	函数 syscfg_exti_line_config	252
	函数 syscfg_lock_config	
	函数 irq_latency_set	
	函数 syscfg_flag_get	
	函数 syscfg_flag_clear	

表 3-391.	TIMER 寄存器	255
表 3-392.	TIMER 库函数	255
表 3-393.	结构体 timer_parameter_struct	258
表 3-394.	结构体 timer_break_parameter_struct	258
表 3-395.	结构体 timer_oc_parameter_struct	258
表 3-396.	结构体 timer_ic_parameter_struct	259
表 3-397.	函数 timer_deinit	259
表 3-398.	函数 timer_struct_para_init	260
表 3-399.	函数 timer_init	260
表 3-400.	函数 timer_enable	261
表 3-401.	函数 timer_disable	262
表 3-402.	函数 timer_auto_reload_shadow_enable	262
表 3-403.	函数 timer_auto_reload_shadow_disable	263
表 3-404.	函数 timer_update_event_enable	263
表 3-405.	函数 timer_update_event_disable	264
表 3-406.	函数 timer_counter_alignment	264
表 3-407.	函数 timer_counter_up_direction	265
表 3-408.	函数 timer_counter_down_direction	266
表 3-409.	函数 timer_prescaler_config	266
表 3-410.	函数 timer_repetition_value_config	267
表 3-411.	函数 timer_autoreload_value_config	267
	函数 timer_counter_value_config	
表 3-413.	函数 timer_counter_read	269
表 3-414.	函数 timer_prescaler_read	269
表 3-415.	函数 timer_single_pulse_mode_config	270
	函数 timer_update_source_config	
	函数 t timer_ocpre_clear_source_config	
	函数 timer_interrupt_enable	
	函数 timer_interrupt_disable	
	函数 timer_interrupt_flag_get	
表 3-421.	函数 timer_interrupt_flag_clear	274
	函数 timer_flag_get	
	函数 timer_flag_clear	
	函数 timer_dma_enable	
	函数 timer_dma_disable	
	函数 timer_channel_dma_request_source_select	
	函数 timer_dma_transfer_config	
	函数 timer_event_software_generate	
	函数 timer_break_struct_para_init	
	函数 timer_break_config	
	函数 timer_break_enable	
	函数 timer_break_disable	
	函数 timer_automatic_output_enable	
	函数 timer_automatic_output_disable	
- ₁ , 0 -10-1.	=3	

表 3-435.	函数 timer_primary_output_config	286
表 3-436.	函数 timer_channel_control_shadow_config	286
表 3-437.	函数 timer_channel_control_shadow_update_config	287
表 3-438.	函数 timer_channel_output_struct_para_init	288
表 3-439.	函数 timer_channel_output_config	288
表 3-440.	函数 timer_channel_output_mode_config	289
表 3-441.	函数 timer_channel_output_pulse_value_config	290
表 3-442.	函数 timer_channel_output_shadow_config	291
表 3-443.	函数 timer_channel_output_fast_config	292
表 3-444.	函数 timer_channel_output_clear_config	293
表 3-445.	函数 timer_channel_output_polarity_config	293
表 3-446.	函数 timer_channel_complementary_output_polarity_config	294
表 3-447.	函数 timer_channel_output_state_config	295
表 3-448.	函数 timer_channel_complementary_output_state_config	296
表 3-449.	函数 timer_channel_input_struct_para_init	297
表 3-450.	函数 timer_input_capture_config	297
表 3-451.	函数 timer_channel_input_capture_prescaler_config	298
表 3-452.	函数 timer_channel_capture_value_register_read	299
表 3-453.	函数 timer_input_pwm_capture_config	300
表 3-454.	函数 timer_hall_mode_config	301
表 3-455.	函数 timer_input_trigger_source_select	301
表 3-456.	函数 timer_master_output_trigger_source_select	302
表 3-457.	函数 timer_slave_mode_select	303
表 3-458.	函数 timer_master_slave_mode_config	304
表 3-459.	函数 timer_external_trigger_config	305
表 3-460.	函数 timer_quadrature_decoder_mode_config	306
表 3-461.	函数 timer_internal_clock_config	307
表 3-462.	函数 timer_internal_trigger_as_external_clock_config	307
表 3-463.	函数 timer_external_trigger_as_external_clock_config	308
表 3-464.	函数 timer_external_clock_mode0_config	309
表 3-465.	函数 timer_external_clock_mode1_config	310
表 3-466.	函数 timer_external_clock_mode1_disable	311
表 3-467.	函数 timer_channel_remap_config	312
表 3-468.	函数 timer_write_chxval_register_config	312
表 3-469.	函数 timer_output_value_selection_config	313
表 3-470.	USART 寄存器	314
表 3-471.	USART 库函数	314
表 3-472.	枚举类型 usart_flag_enum	316
表 3-473.	枚举类型 usart_interrupt_flag_enum	317
	枚举类型 usart_interrupt_enum	
	枚举类型 usart_invert_enum	
	函数 usart_deinit	
	函数 usart_baudrate_set	
	函数 usart_parity_config	
	-	

-		
	函数 usart_word_length_set	
	函数 usart_stop_bit_set	
	函数 usart_enable	
	函数 usart_disable	
	函数 usart_transmit_config	
	函数 usart_receive_config	
表 3-485.	函数 usart_data_first_config	324
	函数 usart_invert_config	
	函数 usart_ overrun_enable	
表 3-488.	函数 usart_ overrun_disable	326
表 3-489.	函数 usart_oversample_config	326
表 3-490.	函数 usart_sample_bit_config	327
表 3-491.	函数 usart_ receiver_timeout_enable	327
	函数 usart_receiver_timeout_disable	
	函数 usart_receiver_timeout_threshold_config	
表 3-494.	函数 usart_data_transmit	329
表 3-495.	函数 usart_data_receive	330
表 3-496.	函数 usart_address_config	330
表 3-497.	函数 usart_address_detection_mode_config	331
表 3-498.	函数 usart_mute_mode_enable	331
表 3-499.	函数 usart_mute_mode_disable	332
表 3-500.	函数 usart_mute_mode_wakeup_config	332
表 3-501.	函数 usart_lin_mode_enable	333
表 3-502.	函数 usart_lin_mode_disable	334
表 3-503.	函数 usart_lin_break_dection_length_config	334
表 3-504.	函数 usart_halfduplex_enable	335
表 3-505.	函数 usart_halfduplex_disable	335
表 3-506.	函数 usart_clock_enable	336
表 3-507.	函数 usart_clock_disable	336
表 3-508.	函数 usart_synchronous_clock_config	337
表 3-509.	函数 usart_guard_time_config	338
表 3-510.	函数 usart_smartcard_mode_enable	338
表 3-511.	函数 usart_smartcard_mode_disable	339
表 3-512.	函数 usart_smartcard_mode_nack_enable	339
表 3-513.	函数 usart_smartcard_mode_nack_disable	340
表 3-514.	函数 usart_smartcard_mode_early_nack_enable	340
表 3-515.	函数 usart_smartcard_mode_early_nack_disable	341
表 3-516.	函数 usart_smartcard_autoretry_config	341
	函数 usart_block_length_config	
表 3-518.	函数 usart_irda_mode_enable	342
表 3-519.	函数 usart_irda_mode_disable	343
	函数 usart_prescaler_config	
	函数 usart_irda_lowpower_config	
	函数 usart_hardware_flow_rts_config	

表 3-523.	函数 usart_hardware_flow_cts_config	345
表 3-524.	函数 usart_hardware_flow_coherence_config	346
表 3-525.	函数 usart_rs485_driver_enable	347
表 3-526.	函数 usart_rs485_driver_disable	347
表 3-527.	函数 usart_driver_assertime_config	348
表 3-528.	函数 usart_driver_deassertime_config	348
表 3-529.	函数 usart_depolarity_config	349
表 3-530.	函数 usart_dma_receive_config	349
表 3-531.	函数 usart_dma_transmit_config	350
表 3-532.	函数 usart_reception_error_dma_disable	351
表 3-533.	函数 usart_reception_error_dma_enable	351
表 3-534.	函数 usart_wakeup_enable	352
表 3-535.	函数 usart_wakeup_disable	352
表 3-536.	函数 usart_wakeup_mode_config	353
表 3-537.	函数 usart_receive_fifo_enable	353
表 3-538.	函数 usart_receive_fifo_disable	354
表 3-539.	函数 usart_receive_fifo_counter_number	354
表 3-540.	函数 usart_flag_get	355
表 3-541.	函数 usart_flag_clear	356
表 3-542.	函数 usart_interrupt_enable	357
表 3-543.	函数 usart_interrupt_disable	358
表 3-544.	函数 usart_command_enable	359
表 3-545.	函数 usart_interrupt_flag_get	360
表 3-546.	函数 usart_interrupt_flag_clear	361
表 3-547.	WWDGT 寄存器	363
表 3-548.	WWDGT 库函数	363
	函数 wwdgt_deinit	
表 3-550.	函数 wwdgt_enable	364
表 3-551.	函数 wwdgt_counter_update	364
表 3-552.	函数 wwdgt_config	365
表 3-553.	函数 wwdgt_interrupt_enable	366
表 3-554.	函数 wwdgt_flag_get	366
表 3-555.	函数 wwdgt_flag_clear	367
表 4-1. 版	本历史	368

1. 介绍

本手册介绍了32位基于ARM微控制器GD32E23x固件库。

该固件库是一个固件函数包,它由程序、数据结构和宏组成,包括了GD32E23x所有外设的性能特征。该固件库还包括每一个外设的驱动描述和基于评估板的固件库使用例程。通过使用本固件库,用户无需深入掌握细节,也可以轻松应用每一个外设。使用本固件库可以大大减少用户的编程时间,从而降低开发成本。

每个外设驱动都由一组函数组成,这组函数覆盖了该外设所有功能。可以通过调用一组通用API(application programming interface应用编程界面)来实现对外设的驱动,这些API的结构、函数名称和参数名称都进行了标准化规范。

所有的驱动源代码都符合"MISRA-C:2004"标准(例程文件符合扩充ANSI-C标准),不会受到来自开发环境差异带来的影响。仅有启动文件取决于开发环境。

因为该固件库是通用的,并且包括了所有外设的功能,所以应用程序代码的大小和执行速度可能不是最优的。对大多数应用程序来说,用户可以直接使用之,对于那些在代码大小和执行速度方面有严格要求的应用程序,该固件库可以作为如何设置外设的一份参考资料,可以根据实际需求对其进行调整。

此份固件库使用手册的整体架构如下:

- 文档和固件库规则;
- 固件库概述;
- 外设固件库具体描述,外设固件库例程使用说明。

1.1. 文档和固件库规则

1.1.1. 外设缩写

表 1-1. 外设缩写

外设缩写	说明
ADC	模数转换器
CMP	比较器
CRC	循环冗余校验计算单元
DBG	调试模块
DMA	直接存储器访问控制器
EXTI	外部中断事件控制器
FMC	闪存控制器
FWDGT	独立看门狗
GPIO/AFIO	通用和备用输入/输出接口

外设缩写	说明
I2C	内部集成电路总线接口
MISC	嵌套中断向量列表控制器
PMU	电源管理单元
RCU	复位和时钟单元
RTC	实时时钟
SPI/I2S	串行外设接口/片上音频接口
SYSCFG	系统配置
TIMER	定时器
USART	通用同步异步收发器
WWDGT	窗口看门狗

1.1.2. 命名规则

固件库遵从以下命名规则:

- XXX表示任一外设缩写,例如: ADC。更多缩写相关信息参阅<u>外设缩写</u>; <u>外设缩写</u>
- 源文件和头文件命名都以"gd32e23x_"作为开头,例如: gd32e23x_adc.h;
- 常量仅被应用于一个文件的,定义于该文件中;被应用于多个文件的,在对应头文件中定义。所有常量都由英文字母大写书写;
- 寄存器作为常量处理。他们的命名都由英文字母大写书写。在大多数情况下,寄存器缩写 规范与本用户手册一致;
- 变量名采用全部小写,有多个单词组成的,在单词之间以下划线分隔;
- 外设函数的命名以该外设的缩写加下划线为开头,有多个单词组成的,在单词之间以下划 线分隔,所有外设函数都由英文字母小写书写。

2. 固件库概述

2.1. 文件组织结构

GD32E23x_Firmware_Library, 文件组织结构见下图:

图 2-1. GD32E23x 固件库文件组织结构

2.1.1. Examples 文件夹

文件夹Examples,对应每一个GD32外设均包含一个子文件夹。每个子文件夹包含了关于本外设的一个或多个例程,来示范如何使用对应外设。每个例程子文件夹包含如下文件:

- readme.txt: 关于本例程的简单描述和使用说明;
- gd32e23x_libopt.h: 该头文件可以设置例程所使用到的外设,由不同的"DEFINE"语句组成(默认情况下,所有外设均打开);
- gd32e23x_it.c: 该源文件包含了所有的中断处理程序(如果未使用到中断,则所有的函数体都为空):
- gd32e23x.it.h: 该头文件包含了所有的中断处理程序的原形;
- systick.c: 该源文件包含了使用systick的精准延时程序;
- systick.h: 该头文件包含了使用systick的精准延时程序的原形;
- main.c: 例程代码注: 所有的例程的使用,都不受不同软件开发环境的影响。

2.1.2. Firmware 文件夹

Firmware文件夹包含组成固件库核心的所有子文件夹和文件:

- CMSIS子文件夹包含有Cortex M23内核的支持文件、基于Cortex M23内核处理器的启动 代码和库引导文件以及基于GD32E23x的全局头文件和系统配置文件;
- GD32E23x_standard_peripheral子文件夹;
- Include子文件夹包含了固件函数库所需的头文件,用户无需修改该文件夹;
- Source子文件夹包含了固件函数库所需的源文件,用户无需修改该文件夹;

注: 所有代码都按照MISRA-C:2004标准书写,都不受不同软件开发环境的影响。

2.1.3. Template 文件夹

Template文件夹包含一个关于使用LED、USART打印、按键控制的简单例程,(IAR_project用于IAR编译环境,Keil_project用于Keil5编译环境)。用户可以使用该工程模板进行固件库例程的移植编译,具体使用方法见下:

选择文件

打开"Examples"文件夹,选择需要测试的模块,如SPI,打开"SPI"文件夹,选择SPI的一个例程,如"SPI_master_transmit_slave_receive_interrupt",如下图所示:

图 2-2. 选择外设例程文件

拷贝文件

打开"Template"文件夹,将"IAR_project"和"Keil_project"两个文件夹保留,其他文件都删除,然后将"SPI_master_transmit_slave_receive_interrupt"文件夹中的所有文件拷到"Template"文件夹子目录下,如下图所示:

图 2-3. 拷贝外设例程文件

打开工程

GD提供Keil和IAR两种版本的工程,根据客户所安装的软件,打开不同的project,如"Keil_project",打开\Template\Keil_project\Project.uvprojx,如下图所示:

图 2-4. 打开工程文件

由于不同的模块、不同的功能,会使用到不同的文件,需要根据客户选择拷贝的文件,对工程 里的文件进行增加或删除,如下图所示:

图 2-5. 配置工程文件

编译调试下载

首先编译整个工程,如果无错误,按照readme中的介绍,选择正确的跳线及连线,然后再将程序下载到目标板上,则会有如readme中描述的现象。IDE的具体使用,请参考相应的软件使用说明。如客户使用的是Keil,可见下图所示:

图 2-6. 编译调试下载

2.1.4. Utilities 文件夹

Utilities文件夹包含运行固件库例程评估板的文件:

- gd32e230c_eval.h文件是运行固件库例程所需关于评估板的头文件;
- gd32e230c_eval.c文件是运行固件库例程所需关于评估板的源文件。

注: 所有代码都按照MISRA-C:2004标准书写,都不受不同软件开发环境的影响。

2.2. 固件库文件描述

下表列举和描述了固件库使用的主要文件。

表 2-1. 固件函数库文件描述

文件名	描述		
gd32e23x_libopt.h	包含了所有外设的头文件的头文件。它是唯一一个用户需要包括在自己应用中		
guszezsx_iibopt.ii	的文件,起到应用和库之间界面的作用。		
main.c	主函数体示例。		
gd32e23x_it.h 头文件,包含所有中断处理函数原形。			
	外设中断函数文件。用户可以加入自己的中断程序代码。对于指向同一个中断		
gd32e23x_it.c	向量的多个不同中断请求,可以利用函数通过判断外设的中断标志位来确定准		
	确的中断源。固件库提供了这些函数的名称。		
gd32e23x_xxx.h 外设PPP的头文件。包含外设PPP函数的定义,以及这些函数使用的			
gd32e23x_xxx.c 由C语言编写的外设PPP的驱动源程序文件。			
systick.h	systick.c的头文件。包含systick配置函数的定义,以及外部用延时函数的定义。		
systick.c	systick配置与延时函数源文件。		
readme.txt	固件库例程使用及配置说明文档。		

3. 外设固件库

3.1. 外设固件库概述

外设固件库函数的描述格式如下表:

表 3-1. 外设固件库函数描述格式

NO // AMII/ MAKINGII/			
函数名称	外设函数的名称		
函数原型	原型声明		
功能描述	简要解释函数是如何执行的		
先决条件	调用函数前应满足的要求		
被调用函数	其他被该函数调用的库函数		
输入参数{in}			
XXX	输入参数描述		
Xx	输入参数可选宏描述		
	输出参数{out}		
XXX	输出参数描述		
返回值			
XXX	函数的返回值		

3.2. ADC

12位ADC是一种采用逐次逼近方式的模拟数字转换器。章节<u>3.2.1</u>描述了ADC的寄存器列表,章节<u>3.2.2</u>对ADC库函数进行说明。

3.2.1. 外设寄存器描述

ADC寄存器列表如下表所示:

表 3-2. ADC 寄存器

寄存器名称	寄存器描述
ADC_STAT	状态寄存器
ADC_CTL0	控制寄存器0
ADC_CTL1	控制寄存器1
ADC_SAMPT0	采样时间寄存器0
ADC_SAMPT1	采样时间寄存器1
ADC_IOFFx	注入通道数据偏移寄存器x(x=03)
ADC_WDHT	看门狗高阈值寄存器
ADC_WDLT	看门狗低阈值寄存器
ADC_RSQ0	规则序列寄存器0
ADC_RSQ1	规则序列寄存器1

寄存器名称	寄存器描述
ADC_RSQ2	规则序列寄存器2
ADC_ISQ	注入序列寄存器
ADC_IDATAx	注入数据寄存器x(x=03)
ADC_RDATA	规则数据寄存器
ADC_OVSAMPCTL	过采样控制寄存器

3.2.2. 外设库函数说明

ADC库函数列表如下表所示:

表 3-3. ADC 库函数

库函数名称	库函数描述
adc_deinit	复位ADC外设
adc_enable	使能ADC外设
adc_disable	禁能ADC外设
adc_calibration_enable	ADC校准复位
adc_dma_mode_enable	ADC DMA请求使能
adc_dma_mode_disable	ADC DMA请求禁能
adc_tempsensor_vrefint_enable	温度传感器和Vrefint通道使能
adc_tempsensor_vrefint_disable	温度传感器和Vrefint通道禁能
adc_discontinuous_mode_config	配置ADC间断模式
adc_special_function_config	使能或禁能ADC特殊功能
adc_data_alignment_config	配置ADC数据对齐方式
adc_channel_length_config	配置规则通道组或注入通道组的长度
adc_regular_channel_config	配置ADC规则通道组
adc_inserted_channel_config	配置ADC注入通道组
adc_inserted_channel_offset_config	配置ADC注入通道组数据偏移值
adc_external_trigger_config	配置ADC外部触发
adc_external_trigger_source_config	配置ADC外部触发源
adc_software_trigger_enable	ADC软件触发使能
adc_regular_data_read	读ADC规则组数据寄存器
adc_inserted_data_read	读ADC注入组数据寄存器
adc_flag_get	获取ADC标志位
adc_flag_clear	清除ADC标志位
adc_interrupt_flag_get	获取ADC中断标志位
adc_interrupt_flag_clear	清除ADC中断标志位
adc_interrupt_enable	ADC中断使能
adc_interrupt_disable	ADC中断禁能
adc_watchdog_single_channel_enabl	配置ADC模拟看门狗单通道有效
е	14.直 パレ (探)が有口物子処足行双
adc_watchdog_group_channel_enabl	配置ADC模拟看门狗在通道组有效
е	161月700円が日1757年過程2月以

库函数名称	库函数描述
adc_watchdog_disable	ADC模拟看门狗禁能
adc_watchdog_threshold_config	配置ADC模拟看门狗阈值
adc_resolution_config	配置ADC分辨率
adc_oversample_mode_config	配置ADC过采样模式
adc_oversample_mode_enable	使能ADC过采样
adc_oversample_mode_disable	禁能ADC过采样

函数 adc_deinit

函数adc_deinit描述见下表:

表 3-4. 函数 adc deinit

大 O 4. 图		
函数名称	adc_deinit	
函数原形	<pre>void adc_deinit(void);</pre>	
功能描述	复位ADC外设	
先决条件	-	
被调用函数	rcu_periph_reset_enable / rcu_periph_reset_disable	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* reset ADC*/

adc_deinit ();

函数 adc_enable

函数adc_enable描述见下表:

表 3-5. 函数 adc_enable

函数名称	adc_enable
函数原形	void adc_enable(void);
功能描述	使能ADC外设
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	

-

例如:

/* enable ADC */

adc_enable();

函数 adc_disable

函数adc_disable描述见下表:

表 3-6. 函数 adc_disable

-	
函数名称	adc_disable
函数原形	void adc_disable(void);
功能描述	禁能ADC外设
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	
-	-

例如:

/* disable ADC */

adc_disable();

函数 adc_calibration_enable

函数adc_calibration_enable描述见下表:

表 3-7. 函数 adc_calibration_enable

函数名称	adc_calibration_enable
函数原形	void adc_calibration_enable(void);
功能描述	ADC校准复位
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	
-	-

例如:

/* ADC calibration and reset calibration */

adc_calibration_enable();

函数 adc_dma_mode_enable

函数 adc_dma_mode_enable 描述见下表:

表 3-8. 函数 adc_dma_mode_enable

函数名称	adc_dma_mode_enable	
函数原形	void adc_dma_mode_enable(void);	
功能描述	ADC DMA请求使能	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* enable ADC DMA request */

adc_dma_mode_enable();

函数 adc_dma_mode_disable

函数 adc_dma_mode_disable 描述见下表:

表 3-9. 函数 adc_dma_mode_disable

函数名称	adc_dma_mode_disable	
函数原形	void adc_dma_mode_disable(void);	
功能描述	ADC DMA请求禁能	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* disable ADC DMA request */

adc_dma_mode_disable();

函数 adc_tempsensor_vrefint_enable

函数 adc_tempsensor_vrefint_enable 描述见下表:

表 3-10. 函数 adc_tempsensor_vrefint_enable

	· · · — — — — — — — — — — — — — — — — —
函数名称	adc_tempsensor_vrefint_enable
函数原形	void adc_tempsensor_vrefint_enable(void);
功能描述	温度传感器和Vrefint通道使能
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	
-	-

例如:

/* enable the temperature sensor and Vrefint channel */

adc_tempsensor_vrefint_enable();

函数 adc_tempsensor_vrefint_disable

函数 adc_tempsensor_vrefint_disable 描述见下表:

表 3-11. 函数 adc_tempsensor_vrefint_disable

	<u> </u>
函数名称	adc_tempsensor_vrefint_disable
函数原形	<pre>void adc_tempsensor_vrefint_disable(void);</pre>
功能描述	温度传感器和Vrefint通道禁能
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	
-	-

例如:

/* disable the temperature sensor and Vrefint channel */

adc_tempsensor_vrefint_disable();

函数 adc_discontinuous_mode_config

函数 adc_discontinuous_mode_config 描述见下表:

表 3-12. 函数 adc_discontinuous_mode_config

函数名称	adc_discontinuous_mode_config		
函数原形	void adc_discontinuous_mode_config(uint8_t channel_group, uint8_t length);		
功能描述	配置ADC间断模式		
先决条件	-		
被调用函数	-		
	输入参数{in}		
adc_channel_grou	没济也 计私		
р	通道组选择		
ADC_REGULAR_C	+6 60 × × × × × × × × × × × × × × × × × ×		
HANNEL	规则通道组		
ADC_INSERTED_C	分) 透染阳		
HANNEL	注入通道组		
ADC_CHANNEL_DI			
SCON_DISABLE	规则通道组和注入通道组间断模式禁能		
输入参数{in}			
length	间断模式下的转换数目,规则通道组取值为18,注入通道组取值无意义		
输出参数{out}			
-	-		
返回值			
-	-		

例如:

/* configure ADC discontinuous mode */

adc_discontinuous_mode_config(ADC_REGULAR_CHANNEL, 6);

函数 adc_special_function_config

函数 adc_special_function_config 描述见下表:

表 3-13. 函数 adc_special_function_config

函数名称	adc_special_function_config
函数原形	void adc_special_function_config(uint32_t function, ControlStatus newvalue);
功能描述	使能或禁能ADC特殊功能
先决条件	-
被调用函数	-
function	功能配置

GD32E23x 固件库使用指南

ADC_SCAN_MODE	扫描模式选择	
ADC_INSERTED_C	注入组自动转换	
HANNEL_AUTO	往八组目列表快	
ADC_CONTINUOU	连续模式选择	
S_MODE	连续模式 选择	
输入参数{in}		
newvalue	功能使能禁能	
ENABLE	使能	
DISABLE	禁能	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* enable ADC scan mode */

adc_special_function_config(ADC_SCAN_MODE, ENABLE);

函数 adc_data_alignment_config

函数 adc_alignment_config 描述见下表:

表 3-14. 函数 adc_data_alignment_config

	.uuta_ungont_oomig
函数名称	adc_data_alignment_config
函数原形	void adc_data_alignment_config(uint32_t data_alignment);
功能描述	配置ADC数据对齐方式
先决条件	-
被调用函数	-
输入参数{in}	
data_alignment	数据对齐方式选择
ADC_DATAALIGN_	I CD △+·❖
RIGHT	LSB 对齐
ADC_DATAALIGN_	MSB 对齐
LEFT	
输出参数{out}	
-	-
返回值	
-	-

例如:

/* configure ADC data alignment */

 $adc_data_alignment_config(ADC_DATAALIGN_RIGHT);\\$

函数 adc_channel_length_config

函数 adc_channel_length_config 描述见下表:

表 3-15. 函数 adc_channel_length_config

函数名称	adc_channel_length_config	
函数原形	void adc_channel_length_config(uint8_t channel_group, uint32_t length);	
功能描述	配置规则通道组或注入通道组的长度	
先决条件	-	
被调用函数	-	
输入参数{in}		
channel_group	通道组选择	
ADC_REGULAR_C	扣叫水水	
HANNEL	规则通道组	
ADC_INSERTED_C	テノ 送送机	
HANNEL	注入通道组	
输入参数{in}		
length	通道长度,规则通道组为1-16,注入通道组为1-4	
输出参数{out}		
-		
返回值		
-	•	

例如:

/* configure the length of ADC regular channel */

 $adc_channel_length_config(ADC_REGULAR_CHANNEL,\,4);\\$

函数 adc_regular_channel_config

函数 adc_regular_channel_config 描述见下表:

表 3-16. 函数 adc_regular_channel_config

函数名称	adc_regular_channel_config	
函数原形	void adc_regular_channel_config(uint8_t rank, uint8_t channel, uint32_t	
	sample_time);	
功能描述	配置ADC规则通道组	
先决条件	-	
被调用函数	-	
输入参数{in}		
rank	规则组通道序列,取值范围为0~15	
输入参数{in}		
channel	ADC通道选择	
ADC_CHANNEL_x	ADC通道x (x=09,16,17)	
输入参数{in}		

sample_time	采样时间	
ADC_SAMPLETIME	1.5 周期	
_1POINT5		
ADC_SAMPLETIME	7.5 田田	
_7POINT5	7.5 周期	
ADC_SAMPLETIME	12.5 田田	
_13POINT5	13.5 周期	
ADC_SAMPLETIME	00.5 EH#	
_28POINT5	28.5 周期	
ADC_SAMPLETIME	44 F E HI	
_41POINT5	41.5 周期	
ADC_SAMPLETIME	55.5 周期	
_55POINT5	55.5 归荆	
ADC_SAMPLETIME	7.1.5 田田	
_71POINT5	71.5 周期	
ADC_SAMPLETIME	239.5 周期	
_239POINT5	239.3 /可列	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* configure ADC regular channel */

 $adc_regular_channel_config(1, ADC_CHANNEL_0, ADC_SAMPLETIME_7POINT5);\\$

函数 adc_inserted_channel_config

函数 adc_inserted_channel_config 描述见下表:

表 3-17. 函数 adc_inserted_channel_config

函数名称	adc_inserted_channel_config	
函数原形	void adc_inserted_channel_config(uint8_t rank, uint8_t channel, uint32_t	
	sample_time);	
功能描述	配置ADC注入通道组	
先决条件	-	
被调用函数	-	
输入参数{in}		
rank	注入组通道序列,取值范围为0~3	
输入参数{in}		
channel	ADC通道选择	
ADC_CHANNEL_x	ADC 通道x (x=09,16,17)	
输入参数{in}		

sample_time	采样时间	
ADC_SAMPLETIME	1.5周期	
_1POINT5		
ADC_SAMPLETIME	7.5周期	
_7POINT5	7.3/回 翙	
ADC_SAMPLETIME	42 CH #I	
_13POINT5	13.5周期	
ADC_SAMPLETIME	28.5周期	
_28POINT5	20.3/可 約	
ADC_SAMPLETIME	41.5周期	
_41POINT5	41.3/可列	
ADC_SAMPLETIME	55.5周期	
_55POINT5	33.3/可 <i>列</i>	
ADC_SAMPLETIME	71.5周期	
_71POINT5	7 1 . 3/可 約	
ADC_SAMPLETIME	239.5周期	
_239POINT5	239.3/刊 州	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* configure ADC inserted channel */

 $adc_inserted_channel_config (1, ADC_CHANNEL_0, ADC_SAMPLETIME_7POINT5); \\$

函数 adc_inserted_channel_offset_config

函数 adc_inserted_channel_offset_config 描述见下表:

表 3-18. 函数 adc_inserted_channel_offset_config

adc_inserted_channel_offset_config	
void adc_inserted_channel_offset_config(uint8_t inserted_channel, uint16_t	
offset);	
配置ADC注入通道组数据偏移值	
-	
-	
输入参数{in}	
注入通道选择	
分入通道 v_0122	
注入通道,x=0,1,2,3	
输入参数{in}	
数据偏移值,取值范围为0~4095	

输出参数{out}	
-	-
返回值	
-	

/* configure ADC inserted channel offset */

adc_inserted_channel_offset_config(ADC_INSERTED_CHANNEL_0, 100);

函数 adc_external_trigger_config

函数 adc_external_trigger_config 描述见下表:

表 3-19. 函数 adc_external_trigger_config

函数名称	adc_external_trigger_config
函数原形	void adc_external_trigger_config(uint8_t channel_group, ControlStatus
四蚁原心	newvalue);
功能描述	配置ADC外部触发
先决条件	-
被调用函数	-
	输入参数{in}
channel_group	通道组选择
ADC_REGULAR_C	规则通道组
HANNEL	
ADC_INSERTED_C	注入通道组
HANNEL	在八 週度组
	输入参数{in}
newvalue	通道使能禁能
ENABLE	使能
DISABLE	禁能
	输出参数{out}
-	-
	返回值
-	-

例如:

/* enable ADC inserted channel group external trigger */

adc_external_trigger_config(ADC_INSERTED_CHANNEL_0, ENABLE);

函数 adc_external_trigger_source_config

函数 adc_external_trigger_source_config 描述见下表:

表 3-20. 函数 adc_external_trigger_source_config

函数名称	external_trigger_source_config adc_external_trigger_ source_config
	void adc_external_trigger_source_config(uint8_t channel_group, uint32_t
函数原形	external_trigger_source);
功能描述	配置ADC外部触发源
先决条件	-
被调用函数	-
channel_group	通道组选择
ADC_REGULAR_C	和叫罗茨加
HANNEL	规则通道组
ADC_INSERTED_C	分为海沿
HANNEL	注入通道组
	输入参数{in}
external_trigger_s	规则通道组或注入通道组触发源
ource	/加州也是纽洪任八地也组雕及柳
ADC_EXTTRIG_RE	TIMER0 CH0事件(规则组)
GULAR_T0_CH0	THEIRO OHO事件(成例组)
ADC_EXTTRIG_RE	TIMER0 CH1事件(规则组)
GULAR_T0_CH1	TIMENO OTT 事目(M.对起)
ADC_EXTTRIG_RE	TIMER0 CH2事件(规则组)
GULAR_T0_CH2	TIMENO ONZ事目(M.对红)
ADC_EXTTRIG_RE	TIMER2 TRGO事件(规则组)
GULAR_T2_TRGO	TIMENZ THOO FIT (MANAEL)
ADC_EXTTRIG_RE	TIMER14 CH0事件(规则组)
GULAR_T14_CH0	TIMENTI CHO 4 \mathred{7}
ADC_EXTTRIG_RE	外部中断线11(规则组)
GULAR_EXTI_11	71 HP 15124 1 (700A)2117
ADC_EXTTRIG_RE	软件触发(规则组)
GULAR_NONE	יארון ווארא אין אין אין אין אין אין אין אין אין אי
ADC_EXTTRIG_IN	
SERTED_T0_TRG	TIMER0 TRGO事件(注入组)
0	
ADC_EXTTRIG_IN	TIMER0 CH3事件(注入组)
SERTED_T0_CH3	
ADC_EXTTRIG_IN	TIMER2 CH3事件(注入组)
SERTED_T2_CH3	
ADC_EXTTRIG_IN	
SERTED_T14_TRG	TIMER14 TRGO事件(注入组)
0	
ADC_EXTTRIG_IN	外部中断线15 (注入组)
SERTED_EXTI_15	ALBEL BLOOM (TTV (TTV
ADC_EXTTRIG_IN	软件触发(注入组)

SERTED_NONE		
输出参数{out}		
-	-	
返回值		
-	-	

/* configure ADC regular channel external trigger source */

adc_external_trigger_source_config(ADC_REGULAR_CHANNEL,
ADC_EXTTRIG_REGULAR_T0_CH0);

函数 adc_software_trigger_enable

函数 adc_software_trigger_enable 描述见下表:

表 3-21. 函数 adc_software_trigger_enable

函数名称	adc_software_trigger_enable		
函数原形	void adc_software_trigger_enable(uint8_t channel_group);		
功能描述	ADC软件触发使能		
先决条件	-		
被调用函数	-		
	输入参数{in}		
channel_group	通道组选择		
ADC_REGULAR_C	和 11		
HANNEL	规则通道组		
ADC_INSERTED_C	分 罗罗特加		
HANNEL	注入通道组		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* enable ADC regular channel group software trigger */

adc_software_trigger_enable(ADC_REGULAR_CHANNEL);

函数 adc_regular_data_read

函数 adc_inserted_regular_data_read 描述见下表:

表 3-22. 函数 adc_regular_data_read

函数名称	adc_regular_data_read
函数原形	uint16_t adc_regular_data_read(void);

功能描述	读ADC规则组数据寄存器	
先决条件	-	
被调用函数	-	
输出参数{out}		
-	-	
	返回值	
uint16_t	ADC转换值 (0-0xFFFF)	

/* read ADC regular group data register */
uint16_t adc_value = 0;
adc_value = adc_regular_data_read();

函数 adc_inserted_data_read

函数 adc_inserted_regular_data_read 描述见下表:

表 3-23. 函数 adc_inserted_data_read

·· ———		
函数名称	adc_inserted_data_read	
函数原形	uint16_t adc_inserted_data_read(uint8_t inserted_channel);	
功能描述	读ADC注入组数据寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
inserted_channel	注入通道选择	
ADC_INSERTED_C	分。 分。 分。 分。 分。 分。 分。 分。 分。 分。 分。 分。 分。 分	
HANNEL_x	注入通道x,x=0,1,2,3	
	输出参数{out}	
-	-	
	返回值	
uint16_t	ADC转换值(0-0xFFFF)	

例如:

/* read ADC inserted group data register */
uint16_t adc_value = 0;
adc_value = adc_inserted_data_read (ADC_INSERTED_CHANNEL_0);

函数 adc_flag_get

函数 adc_flag_get 描述见下表:

表 3-24. 函数 adc_flag_get

函数名称	adc_flag_get
函数原形	FlagStatus adc_flag_get(uint32_t flag);
功能描述	获取ADC标志位
先决条件	-
被调用函数	-
	输入参数{in}
flag	ADC标志位
ADC_FLAG_WDE	模拟看门狗事件标志位
ADC_FLAG_EOC	组转换结束标志位
ADC_FLAG_EOIC	注入通道组转换结束标志位
ADC_FLAG_STIC	注入通道组转换开始标志位
ADC_FLAG_STRC	规则通道组转换开始标志位
	输出参数{out}
-	-
	返回值
FlagStatus	SET 或 RESET

例如:

/* get the ADC analog watchdog flag bits*/

FlagStatus flag_value;

flag_value = adc_flag_get(ADC_FLAG_WDE);

函数 adc_flag_clear

函数 adc_flag_clear 描述见下表:

表 3-25. 函数 adc_flag_clear

_	· · · U _ · · · ·
函数名称	adc_flag_clear
函数原形	void adc_flag_clear(uint32_t flag);
功能描述	清除ADC标志位
先决条件	-
被调用函数	-
	·····································
adc_flag	ADC标志位
ADC_FLAG_WDE	模拟看门狗事件标志位
ADC_FLAG_EOC	组转换结束标志位
ADC_FLAG_EOIC	注入通道组转换结束标志位
ADC_FLAG_STIC	注入通道组转换开始标志位
ADC_FLAG_STRC	规则通道组转换开始标志位
输出参数{out}	
-	-

返回值	
-	•

/* clear the ADC analog watchdog flag bits*/

adc_flag_clear(ADC_FLAG_WDE);

函数 adc_interrupt_flag_get

函数 adc_interrupt_flag_get 描述见下表:

表 3-26. 函数 adc_interrupt_flag_get

函数名称	adc_interrupt_flag_get
函数原形	FlagStatus adc_interrupt_flag_get(uint32_t flag);
功能描述	获取ADC中断标志位
先决条件	-
被调用函数	-
	输入参数{in}
flag	ADC中断标志位
ADC_INT_FLAG_W	增加季门构山蛇坛土份
DE	模拟看门狗中断标志位
ADC_INT_FLAG_E	组转换结束中断标志位
OC	组拉铁组术中剧协心也
ADC_INT_FLAG_E	注入通道组转换结束中断标志位
OIC	在八旭旭组拉快纳木中朝你心也
	输出参数{out}
-	-
	返回值
FlagStatus	SET 或 RESET

例如:

/* get the ADC analog watchdog interrupt bits*/

FlagStatus flag_value;

flag_value = adc_interrupt_flag_get(ADC_INT_FLAG_WDE);

函数 adc_interrupt_flag_clear

函数 adc_interrupt_flag_clear 描述见下表:

表 3-27. 函数 adc_interrupt_flag_clear

函数名称	adc_interrupt_flag_clear
函数原形	void adc_interrupt_flag_clear(uint32_t flag);
功能描述	清除ADC中断标志位

先决条件	-	
被调用函数	-	
	输入参数{in}	
flag	ADC中断标志位	
ADC_INT_FLAG_W	模拟看门狗中断标志位	
DE	快1以有117四中例 你心包	
ADC_INT_FLAG_E	妇枕松 丛古山岖七十尺	
oc	组转换结束中断标志位	
ADC_INT_FLAG_E	分》通 光阳杜林 林市山 <u></u> 斯仁士片	
OIC	注入通道组转换结束中断标志位	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* clear the ADC analog watchdog interrupt bits*/

adc_interrupt_flag_clear(ADC_INT_FLAG_WDE);

函数 adc_interrupt_enable

函数 adc_interrupt_enable 描述见下表:

表 3-28. 函数 adc interrupt enable

表 3-26. 函数 auc_interrupt_enable		
函数名称	adc_interrupt_enable	
函数原形	void adc_interrupt_enable(uint32_t interrupt);	
功能描述	ADC中断使能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
interrupt	ADC中断标志位	
ADC_INT_WDE	模拟看门狗中断标志位	
ADC_INT_EOC	组转换结束中断标志位	
ADC_INT_EOIC	注入通道组转换结束中断标志位	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* enable ADC analog watchdog interrupt */

adc_interrupt_enable(ADC_INT_WDE);

函数 adc_interrupt_disable

函数 adc_interrupt_disable 描述见下表:

表 3-29. 函数 adc_interrupt_disable

函数名称	adc_interrupt_disable
函数原形	void adc_interrupt_enable(uint32_t interrupt);
功能描述	ADC中断禁能
先决条件	-
被调用函数	-
	输入参数{in}
interrupt	ADC中断标志位
ADC_INT_WDE	模拟看门狗中断标志位
ADC_INT_EOC	组转换结束中断标志位
ADC_INT_EOIC	注入通道组转换结束中断标志位
	输出参数{out}
-	-
	返回值
-	-

例如:

/* disable ADC interrupt */

adc_interrupt_disable(ADC_INT_WDE);

函数 adc_watchdog_single_channel_enable

函数 adc_watchdog_single_channel_enable 描述见下表:

表 3-30. 函数 adc_watchdog_single_channel_enable

- W. L1.	
函数名称	adc_watchdog_single_channel_enable
函数原形	void adc_watchdog_single_channel_enable(uint8_t channel);
功能描述	配置ADC模拟看门狗单通道有效
先决条件	-
被调用函数	-
	输入参数{in}
adc_channel	选择ADC通道
ADC_CHANNEL_x	ADC Channelx(x=09,16,17)
	输出参数{out}
-	-
	返回值
-	-

例如:

/* configure ADC analog watchdog single channel */

adc_watchdog_single_channel_enable(ADC_CHANNEL_1);

函数 adc_watchdog_group_channel_enable

函数 adc_watchdog_group_channel_enable 描述见下表:

表 3-31. 函数 adc_watchdog_group_channel_enable

函数名称	adc_watchdog_group_channel_enable
函数原形	<pre>void adc_watchdog_group_channel_enable(uint8_t channel_group);</pre>
功能描述	配置ADC模拟看门狗在通道组有效
先决条件	-
被调用函数	-
	输入参数{in}
channel_group	通道组使用模拟看门狗
ADC_REGULAR_C	规则通道组
HANNEL	观 则
ADC_INSERTED_C	分 7 短 涡 恒
HANNEL	注入通道组
ADC_REGULAR_IN	
SERTED_CHANNE	规则和注入通道组
L	
	输出参数{out}
-	-
	返回值
-	-
1	

例如:

/* configure ADC analog watchdog group channel */

 $adc_watchdog_group_channel_enable(ADC_REGULAR_CHANNEL);\\$

函数 adc_watchdog_disable

函数 adc_watchdog_disable 描述见下表:

表 3-32. 函数 adc_watchdog_disable

函数名称	adc_watchdog_disable	
函数原形	<pre>void adc_watchdog_disable(void);</pre>	
功能描述	ADC模拟看门狗禁能	
先决条件	-	
被调用函数	-	
	·····································	
-	-	
输出参数{out}		
-	-	

返回值	
-	-

/* disable ADC analog watchdog */

adc_watchdog_disable();

函数 adc_watchdog_threshold_config

函数 adc_watchdog_threshold_config 描述见下表:

表 3-33. 函数 adc_watchdog_threshold_config

函数名称	adc_watchdog_threshold_config	
必 券 臣	void adc_watchdog_threshold_config(uint16_t low_threshold, uint16_t	
函数原形	high_threshold);	
功能描述	配置ADC模拟看门狗阈值	
先决条件	-	
被调用函数	-	
	输入参数{in}	
low_threshold	模拟看门狗低阈值,04095	
	输入参数{in}	
high_threshold	模拟看门狗高阈值,04095	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* configure ADC analog watchdog threshold */

adc_watchdog_threshold_config(0x0400, 0x0A00);

函数 adc_resolution_config

函数 adc_resolution_config 描述见下表:

表 3-34. 函数 adc_resolution_config

函数名称	adc_resolution_config
函数原形	<pre>void adc_resolution_config(uint32_t resolution);</pre>
功能描述	配置ADC分辨率
先决条件	-
被调用函数	-
resolution	ADC分辨率

ADC_RESOLUTION	12 位分辨率	
_12B	12世分析学	
ADC_RESOLUTION	40片八並立	
_10B	10位分辨率	
ADC_RESOLUTION	8位分辨率	
_8B	0 世分辨學	
ADC_RESOLUTION	6位分辨率	
_6B	0世分辨率	
	输出参数{out}	
-	-	
	返回值	
-	-	

Example:

/* configure ADC resolution */

 ${\tt adc_resolution_config(\ ADC_RESOLUTION_12B);}$

函数 adc_oversample_mode_config

函数 adc_oversample_mode_config 描述见下表:

表 3-35. 函数 adc oversample mode config

衣 3-35. 函剱 adc_oversample_mode_config		
函数名称	adc_oversample_mode_config	
函数原形	void adc_oversample_mode_config(uint32_t mode, uint16_t shift, uint8_t ratio);	
功能描述	配置ADC过采样模式	
先决条件	-	
被调用函数	-	
	输入参数{in}	
mode	ADC过采样触发模式	
ADC_OVERSA		
MPLING_ALL_C	在一个触发之后,对一个通道连续进行过采样转换	
ONVERT		
ADC_OVERSA		
MPLING_ONE_	在一个触发之后,对一个通道只进行一次过采样转换	
CONVERT		
	输入参数{in}	
shift	ADC过滤采样移位	
ADC_OVERSA		
MPLING_SHIFT	不移位	
_NONE		
ADC_OVERSA		
MPLING_SHIFT	移1位	
_1B		

	OD02C20X 国门/千仪/11目用
ADC_OVERSA	
MPLING_SHIFT	移2位
_2B	
ADC_OVERSA	
MPLING_SHIFT	移3位
_3B	
ADC_OVERSA	
MPLING_SHIFT	移4位
_4B	
ADC_OVERSA	
MPLING_SHIFT	移5位
_5B	
ADC_OVERSA	
MPLING_SHIFT	移6位
_6B	<u> </u>
ADC_OVERSA	
MPLING_SHIFT	移7位
_7B	
ADC_OVERSA	
MPLING_SHIFT	移8位
_8B	15 C E
_02	输入参数{in}
ratio	ADC过采样率
ADC_OVERSA	ADORAH T
MPLING_RATIO	2x
_MUL2	27
ADC_OVERSA	
MPLING_RATIO	4x
_MUL4	47.
ADC_OVERSA	
MPLING_RATIO	Ov
	8x
_MUL8	
ADC_OVERSA	40
ADC_OVERSA MPLING_RATIO	16x
ADC_OVERSA MPLING_RATIO _MUL16	16x
ADC_OVERSA MPLING_RATIO _MUL16 ADC_OVERSA	
ADC_OVERSA MPLING_RATIO _MUL16 ADC_OVERSA MPLING_RATIO	16x 32x
ADC_OVERSA MPLING_RATIO _MUL16 ADC_OVERSA MPLING_RATIO _MUL32	
ADC_OVERSA MPLING_RATIO _MUL16 ADC_OVERSA MPLING_RATIO _MUL32 ADC_OVERSA	32x
ADC_OVERSA MPLING_RATIO _MUL16 ADC_OVERSA MPLING_RATIO _MUL32 ADC_OVERSA MPLING_RATIO	
ADC_OVERSA MPLING_RATIO _MUL16 ADC_OVERSA MPLING_RATIO _MUL32 ADC_OVERSA MPLING_RATIO _MUL64	32x
ADC_OVERSA MPLING_RATIO _MUL16 ADC_OVERSA MPLING_RATIO _MUL32 ADC_OVERSA MPLING_RATIO	32x

_MUL128		
ADC_OVERSA		
MPLING_RATIO	256x	
_MUL256		
输出参数{out}		
-	-	
返回值		
-	-	

Example:

/* configure ADC oversample mode: 16 times sample, 4 bits shift */

adc_oversample_mode_config(ADC_OVERSAMPLING_ALL_CONVERT, ADC_OVERSAMPLING_SHIFT_4B, ADC_OVERSAMPLING_RATIO_MUL16);

函数 adc_oversample_mode_enable

函数 adc_oversample_mode_enable 描述见下表:

表 3-36. 函数 adc_oversample_mode_enable

函数名称	adc_oversample_mode_enable	
函数原形 void adc_oversample_mode_enable(void);		
功能描述	使能ADC过采样	
先决条件	-	
被调用函数	-	
输入参数{in}		
输出参数{out}		
-		
	返回值	
-	-	

Example:

/* enable ADC oversample mode */

adc_oversample_mode_enable ();

函数 adc_oversample_mode_disable

函数 adc_oversample_mode_disable 描述见下表:

表 3-37. 函数 adc_oversample_mode_disable

函数名称	adc_oversample_mode_disable
函数原形	void adc_oversample_mode_disable(void);
功能描述	禁能ADC过采样

先决条件	-
被调用函数	-
输入参数{in}	
输出参数{out}	
-	-
返回值	
-	-

Example:

/* disable ADC oversample mode */

adc_oversample_mode_disable ();

3.3. CMP

CMP通用比较器可独立工作,其输出端口可用于I/O口,也可和定时器结合使用。比较器可通过模拟信号将MCU从低功耗模式中唤醒,在一定的条件下,可将模拟信号作为触发源,结合定时器的PWM输出,可以实现电流控制。章节<u>3.3.1</u>描述了CMP的寄存器列表,章节<u>3.3.2</u>对CMP库函数进行说明

3.3.1. 外设寄存器说明

CMP寄存器列表如下表所示:

表 3-38. CMP 寄存器

寄存器名称	寄存器描述
CMP_CS	控制状态寄存器

3.3.2. 外设库函数说明

CMP库函数列表如下表所示:

表 3-39. CMP 库函数

库函数名称	库函数描述
cmp_deinit	复位CMP
cmp_mode_init	CMP工作模式初始化
cmp_output_init	CMP输出初始化
cmp_enable	使能CMP
cmp_disable	除能CMP
cmp_switch_enable	使能CMP开关
cmp_switch_disable	除能CMP开关
cmp_output_level_get	获取CMP输出状态
cmp_lock_enable	锁定CMP

函数 cmp_deinit

函数cmp_deinit描述见下表:

表 3-40. 函数 cmp_deinit

cmp_deinit		
ob_ao		
void cmp_deinit(void);		
复位CMP		
-		
-		
输入参数{in}		
-		
输出参数{out}		
-		
返回值		
-		

例如:

/* CMP deinitialize*/

cmp_deinit ();

函数 cmp_mode_init

函数cmp_mode_init描述见下表:

表 3-41. 函数 cmp_mode_init

cmp_mode_init	
void cmp_mode_init(operating_mode_enum operating_mode,	
inverting_input_enum inverting_input, cmp_hysteresis_enum	
output_hysteresis)	
CMP工作模式初始化	
-	
-	
输入参数{in}	
CMP模式,具体参考operating_mode_enum	
高速/全功耗	
L /t /L -1 +4	
中速/中功耗	
低速/低功耗	
超低速/超低功耗	
CMP_IM输入选择,具体参考inverting_input_enum	
选择1/4VREFINT作为输入源	

CMP_1_2VREFINT	选择1/2V _{REFINT} 作为输入源	
CMP_3_4VREFINT	选择3/4VREFINT作为输入源	
CMP_VREFINT	选择VREFINT作为输入源	
CMP_PA4	选择PA4作为输入源	
CMP_PA5	选择PA5作为输入源	
CMP_PA0	选择PAO作为输入源	
CMP_PA2	选择PA2作为输入源	
	输入参数{in}	
output_hysteresis	CMP输出迟滞,具体参考cmp_hysteresis_enum	
CMP_HYSTERESIS	无迟滞	
_NO	九	
CMP_HYSTERESIS	低迟滞	
_LOW	以 <i>处</i> 神	
CMP_HYSTERESIS	中记类	
_MIDDLE	中迟滞	
CMP_HYSTERESIS	高迟滞	
_HIGH	同心体	
输出参数{out}		
-	-	
	返回值	
-	-	

/* CMP mode initialize*/

 $cmp_mode_init(CMP_HIGHSPEED,CMP_1_4VREFINT,CMP_HYSTERESIS_NO);$

函数 cmp_output_init

函数cmp_output_init描述见下表:

表 3-42. 函数 cmp_output_init

函数名称	cmp_output_init		
函数原型	void cmp_output_init(cmp_output_enum output_slection, uint32_t		
函数原生	output_polarity);		
功能描述	CMP输出初始化		
先决条件	-		
被调用函数	-		
output_selction	CMP输出选择,具体参考cmp_output_enum		
CMP_OUTPUT_NO	无选择		
NE			
CMP_OUTPUT_TI	TIMER0中止输入		
MER0BKIN			

CMP_OUTPUT_TI	TIMEDO 1 10t/A) 42-44		
MER0IC0	TIMER0 channel0输入捕获		
CMP_OUTPUT_TI	TIMEDO CODDE OLDEA)		
MER00CPRECLR	TIMER0 OCPRE_CLR输入		
CMP_OUTPUT_TI	TIMEDO channalo於) 技术		
MER2IC0	TIMER2 channel0输入捕获		
CMP_OUTPUT_TI	TIMED2 OCDDE OLDAS)		
MER20CPRECLR	TIMER2 OCPRE_CLR输入		
	输入参数{in}		
output_polarity	输出极性		
CMP_OUTPUT_PO	后: 和於山		
LARITY_INVERTED	反相输出		
CMP_OUTPUT_PO			
LARITY_NOINVER	正相输出		
TED			
	输出参数{out}		
-	-		
	返回值		
-	-		

/* CMP output initialize*/

cmp_output_init(CMP_OUTPUT_TIMER0BKIN,
CMP_OUTPUT_POLARITY_NOINVERTED);

函数 cmp_enable

函数cmp_enable描述见下表:

表 3-43. 函数 cmp_enable

函数名称	cmp_enable	
函数原型	void cmp_enable(void);	
功能描述	使能CMP	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* enable CMP*/

cmp_enable();

函数 cmp_disable

函数cmp_disable描述见下表:

表 3-44. 函数 cmp_disable

•		
cmp_disable		
void cmp_disable(void);		
除能CMP		
-		
-		
输入参数{in}		
-		
输出参数{out}		
-		
返回值		
-		

例如:

/* disable CMP */

cmp_disable();

函数 cmp_switch_enable

函数cmp_switch_enable描述见下表:

表 3-45. 函数 cmp_switch_enable

蒸粉 5 5 5		
函数名称	cmp_switch_enable	
函数原型	void cmp_switch_enable(void);	
功能描述	使能CMP开关	
先决条件	-	
被调用函数	-	
输入参数{in}		
-		
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* enable CMP switch */

cmp_switch_enable();

函数 cmp_switch_disable

函数cmp_switch_disable描述见下表:

表 3-46. 函数 cmp_switch_disable

函数名称	cmp_switch_disable	
函数原型	void cmp_switch_disable(void);	
功能描述	除能CMP开关	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* disable CMP switch */

cmp_switch_disable();

函数 cmp_output_level_get

函数cmp_output_level_get描述见下表:

表 3-47. 函数 cmp_output_level_get

	_ ·	
函数名称	cmp_output_level_get	
函数原型	uint32_t cmp_output_level_get(void);	
功能描述	获取CMP输出状态	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
uint32_t	CMP_OUTPUTLEVEL_HIGH / CMP_OUTPUTLEVEL_LOW	

例如:

/* get CMP output level */

cmp_output_level_get ();

函数 cmp_lock_enable

函数cmp_lock_enable描述见下表:

表 3-48. 函数 cmp_lock_enable

函数名称	cmp_lock_enable	
函数原型	void cmp_lock_enable(void);	
功能描述	锁定CMP	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
-	-	

例如:

/* lock CMP register */

cmp_lock_enable ();

3.4. CRC

循环冗余校验码是一种用在数字网络和存储设备上的差错校验码,可以校验原始数据的偶然误差。章节<u>3.4.1</u>描述了CRC的寄存器列表,章节<u>3.4.2</u>对CRC库函数进行说明。

3.4.1. 外设寄存器说明

CRC寄存器列表如下表所示:

表 3-49. CRC 寄存器

寄存器名称	寄存器描述
CRC_DATA	CRC数据寄存器
CRC_FDATA	CRC独立数据寄存器
CRC_CTL	CRC控制寄存器
CRC_IDATA	CRC初值寄存器
CRC_POLY	CRC多项式寄存器

3.4.2. 外设库函数说明

CRC库函数列表如下表所示:

表 3-50. CRC 库函数

库函数名称	库函数描述
crc_deinit	复位CRC计算单元
crc_reverse_output_data_enable	使能输出数据翻转功能
crc_reverse_output_data_disable	失能输出数据翻转功能
crc_data_register_reset	根据数据寄存器的复位值(0xFFFFFFF)复位数据寄存器
crc_data_register_read	读数据寄存器
crc_free_data_register_read	读独立数据寄存器
crc_free_data_register_write	写独立数据寄存器
crc_init_data_register_write	写初值寄存器
crc_input_data_reverse_config	配置输入数据翻转功能
crc_polynomial_size_set	配置多项式长度
crc_polynomial_set	设置多项式寄存器数据
crc_single_data_calculate	CRC计算一个32位数据
crc_block_data_calculate	CRC计算一个32位数组

函数 crc_deinit

函数crc_deinit描述见下表:

表 3-51. 函数 crc deinit

农 5-51. 函数 CIC_definit		
函数名称	crc_deinit	
函数原形	void crc_deinit(void);	
功能描述	复位CRC计算单元	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* reset crc */

crc_deinit();

函数 crc_reverse_output_data_enable

函数crc_reverse_output_data_enable描述见下表:

表 3-52. 函数 crc_reverse_output_data_enable

函数名称	crc_reverse_output_data_enable	
函数原形	void crc_reverse_output_data_enable (void);	
功能描述	使能输出数据翻转功能	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* enable CRC reverse operation of output data */

crc_reverse_output_data_enable ();

函数 crc_reverse_output_data_disable

函数crc_reverse_output_data_disable描述见下表:

表 3-53. 函数 crc_reverse_output_data_disable

函数名称	crc_reverse_output_data_disable	
函数原形	<pre>void crc_reverse_output_data_disable (void);</pre>	
功能描述	失能输出数据翻转功能	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* disable crc reverse operation of output data */

crc_reverse_output_data_disable ();

函数 crc_data_register_reset

函数crc_data_register_reset描述见下表:

表 3-54. 函数 crc_data_register_reset

函数名称	crc_data_register_reset	
函数原形	void crc_data_register_reset(void);	
功能描述	根据数据寄存器的复位值(OxFFFFFFF)复位数据寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* reset crc data register */

crc_data_register_reset ();

函数 crc_data_register_read

函数crc_data_register_read描述见下表:

表 3-55. 函数 crc_data_register_read

函数名称	crc_data_register_read		
函数原形	uint32_t crc_data_register_read(void);		
功能描述	读数据寄存器		
先决条件	-		
被调用函数	-		
输入参数{in}			
-			
	输出参数{out}		
-			
返回值			
uint32_t	从数据寄存器读取的32位数据 (0-0xFFFFFFF)		

例如:

/* read crc data register */

uint32_t crc_value = 0;

crc_value = crc_data_register_read();

函数 crc_free_data_register_read

函数crc_free_data_register_read描述见下表:

表 3-56. 函数 crc_free_data_register_read

函数名称	crc_free_data_register_read	
函数原形	uint8_t crc_free_data_register_read(void);	
功能描述	读独立数据寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
返回值		
uint8_t	从独立数据寄存器读取的8位数据 (0-0xFF)	

例如:

/* read crc free data register */

uint8_t crc_value = 0;

crc_value = crc_free_data_register_read();

函数 crc_free_data_register_write

函数crc_free_data_register_write描述见下表:

表 3-57. 函数 crc_free_data_register_write

函数名称	crc_free_data_register_write	
函数原形	void crc_free_data_register_write(uint8_t free_data);	
功能描述	写独立数据寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
free_data	设定的8位数据	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* write the free data register */

crc_free_data_register_write(0x11);

函数 crc_init_data_register_write

函数crc_init_data_register_write描述见下表:

表 3-58. 函数 crc_init_data_register_write

函数名称	crc_init_data_register_write	
函数原形	void crc_init_data_register_write(uint32_t init_data)	
功能描述	写初值寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
init_data	设定的32位数据	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* write crc initializaiton data register */

crc_init_data_register_write (0x11223344);

函数 crc_input_data_reverse_config

函数crc_input_data_reverse_config描述见下表:

表 3-59. 函数 crc_input_data_reverse_config

函数名称	crc_input_data_reverse_config	
函数原形	void crc_input_data_reverse_config(uint32_t data_reverse)	
功能描述	配置输入数据翻转功能	
先决条件	-	
被调用函数	-	
	· · · · · · · · · · · · · · · · · · ·	
data_reverse	设定的输入数据翻转功能	
CRC_INPUT_DATA	松入	
_NOT	输入数据不翻转	
CRC_INPUT_DATA	检) 新银拉宁共和 <i>柱</i>	
_BYTE	输入数据按字节翻转	
CRC_INPUT_DATA	输入数据按半字翻转	
_HALFWORD	棚八剱加1女十寸 鮒々	
CRC_INPUT_DATA	公)粉 捉饮今颗妹	
_WORD	输入数据按字翻转	
输出参数{out}		
返回值		
-	-	

例如:

/* configure the crc input data */

crc_input_data_reverse_config (CRC_INPUT_DATA_WORD);

函数 crc_polynomial_size_set

函数crc_polynomial_size_set描述见下表:

表 3-60. 函数 crc_polynomial_size_set

运粉 夕粉	are nelynamial size act	
函数名称	crc_polynomial_size_set	
函数原形	void crc_polynomial_size_set(uint32_t poly_size)	
功能描述	配置多项式长度	
先决条件	-	
被调用函数	-	
输入参数{in}		
poly_size	多项式的长度	
CRC_CTL_PS_32	32位多项式值用于CRC计算	
CRC_CTL_PS_16	16位多项式值用于CRC计算	
CRC_CTL_PS_8	8位多项式值用于CRC计算	
CRC_CTL_PS_7	7位多项式值用于CRC计算	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* configure the CRC polynomial size*/

crc_polynomial_size_set (CRC_CTL_PS_7);

函数 crc_polynomial_set

函数crc_polynomial_set描述见下表:

表 3-61. 函数 crc_polynomial_set

	· • -	
函数名称	crc_polynomial_set	
函数原形	void crc_polynomial_set(uint32_t poly)	
功能描述	设置多项式寄存器值	
先决条件	-	
被调用函数	-	
输入参数{in}		
poly	poly 设置多项式长度寄存器值	
输出参数{out}		
-	-	
返回值		

-

例如:

 $^{\prime *}$ configure the CRC polynomial value $^{*\prime}$

crc_polynomial_set (0x11223344);

函数 crc_single_data_calculate

函数crc_single_data_calculate描述见下表:

表 3-62. 函数 crc_single_data_calculate

函数名称	crc_single_data_calculate	
函数原形	uint32_t crc_single_data_calculate(uint32_t sdata);	
功能描述	CRC计算一个32位数据	
先决条件	-	
被调用函数	-	
输入参数{in}		
sdata	sdata 设定的32位数据	
输出参数{out}		
-		
返回值		
uint32_t	32位CRC计算结果 (0-0xFFFFFFF)	

例如:

/* CRC calculate a 32-bit data */

uint32_t val = 0, valcrc = 0;

val = (uint32_t) 0xabcd1234;

valcrc = crc_single_data_calculate(val);

函数 crc_block_data_calculate

函数crc_block_data_calculate描述见下表:

表 3-63. 函数 crc_block_data_calculate

函数名称	crc_block_data_calculate	
函数原形	uint32_t crc_block_data_calculate(uint32_t array[], uint32_t size);	
功能描述	CRC计算一个32位数组	
先决条件	-	
被调用函数	-	
输入参数{in}		
array	array 32位数据数组的指针	
输入参数{in}		

size	数据长度	
输出参数{out}		
-	-	
返回值		
uint32_t	uint32_t 32位CRC计算结果 (0-0xFFFFFFF)	

/* CRC calculate a 32-bit data array */

#define BUFFER_SIZE 6

uint32_t valcrc = 0;

static const uint32_t data_buffer[BUFFER_SIZE] = {

0x00001111, 0x00002222, 0x00003333, 0x00004444, 0x00005555, 0x00006666};

valcrc = crc_block_data_calculate((uint32_t *) data_buffer, BUFFER_SIZE);

3.5. DBG

调试系统帮助调试者在低功耗模式下调试或者进行一些外设调试。章节<u>3.5.1</u>描述了DBG的寄存器列表,章节<u>3.5.2</u>对DBG库函数进行说明。

3.5.1. 外设寄存器说明

DBG寄存器列表如下表所示:

表 3-64. DBG 寄存器

寄存器名称	寄存器描述
DBG_ID	DBG ID寄存器
DBG_CTL0	DBG控制寄存器0
DBG_CTL1	DBG控制寄存器1

3.5.2. 外设库函数说明

DBG库函数列表如下表所示:

表 3-65. DBG 库函数

库函数名称	库函数描述
dbg_deinit	复位DBG寄存器
dbg_id_get	读DBG_ID寄存器
dbg_low_power_enable	使能低功耗模式的MCU调试保持功能
dbg_low_power_disable	禁能低功耗模式的MCU调试保持功能
dbg_periph_enable	使能外设的MCU调试保持功能
dbg_periph_disable	禁能外设的MCU调试保持功能

枚举类型 dbg_periph_enum

表 3-66. 枚举类型 dbg_periph_enum

成员名称	功能描述
DBG_FWDGT_HOLD	当内核停止时,保持FWDGT计数器时钟
DBG_WWDGT_HOLD	当内核停止时,保持WWDGT计数器时钟
DBG_TIMER0_HOLD	当内核停止时,保持TIMER0计数器计数值不变
DBG_TIMER2_HOLD	当内核停止时,保持TIMER2计数器计数值不变
DBG_TIMER5_HOLD	当内核停止时,保持TIMER5计数器计数值不变
DBG_TIMER13_HOLD	当内核停止时,保持TIMER13计数器计数值不变
DBG_TIMER14_HOLD	当内核停止时,保持TIMER14计数器计数值不变
DBG_TIMER15_HOLD	当内核停止时,保持TIMER15计数器计数值不变
DBG_TIMER16_HOLD	当内核停止时,保持TIMER16计数器计数值不变
DBG_I2C0_HOLD	当内核停止时,保持I2C0的SMBUS状态不变,用于调试
DBG_I2C1_HOLD	当内核停止时,保持I2C1的SMBUS状态不变,用于调试
DBG_RTC_HOLD	当内核停止时,保持RTC计数器,用于调试

函数 dbg_deinit

函数dbg_deinit描述见下表:

表 3-67. 函数 dbg deinit

农 3-07. 函数 ubg_ueiiiit		
函数名称	dbg_deinit	
函数原形	<pre>void dbg_deinit(void);</pre>	
功能描述	复位DBG寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	
输入参数{in} 物出参数{out} - 返回値		

例如:

/* reset DBG register */

dbg_deinit();

函数 dbg_id_get

函数dbg_id_get描述见下表:

表 3-68. 函数 dbg_id_get

		
函数名称	dbg_id_get	
函数原形	uint32_t dbg_id_get(void);	
功能描述	读DBG_ID寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
uint32_t	DBG ID (0-0xFFFFFFF)	

例如:

/* read DBG_ID code register */
uint32_t id_value = 0;
id_value = dbg_id_get();

函数 dbg_low_power_enable

函数dbg_low_power_enable描述见下表:

表 3-69. 函数 dbg_low_power_enable

函数名称	dbg_low_power_enable		
函数原形	void dbg_low_power_enable(uint32_t dbg_low_power);		
功能描述	使能低功耗模式的MCU调试保持功能		
先决条件	-		
被调用函数	-		
	输入参数{in}		
dbg_low_power	低功耗模式调试保持		
DBG_LOW_POWE	大阪眼楼平下,但在温汗鬼冻掉,可进得温汗		
R_SLEEP	在睡眠模式下,保持调试器连接,可进行调试		
DBG_LOW_POWE	在深度睡眠模式下,保持调试器连接,可进行调试		
R_DEEPSLEEP	在		
DBG_LOW_POWE	大侠打棋子下。 // / / / / / / / / / / / / / / / / /		
R_STANDBY	在待机模式下,保持调试器连接,可进行调试		
输出参数{out}			
-	-		
返回值			
-	-		

例如:

/* enable low power behavior when the mcu is in debug mode */

dbg_low_power_enable(DBG_LOW_POWER_SLEEP);

函数 dbg_low_power_disable

函数dbg_low_power_disable描述见下表:

表 3-70. 函数 dbg_low_power_disable

函数名称	dbg_low_power_disable	
函数原形	<pre>void dbg_low_power_disable(uint32_t dbg_low_power);</pre>	
功能描述	禁能低功耗模式的MCU调试保持功能	
先决条件	-	
被调用函数	-	
输入参数{in}		
dbg_low_power	低功耗模式调试保持	
DBG_LOW_POWE	大睡眼横坐下,但长温迷鬼冻掉,可进得温光	
R_SLEEP	在睡眠模式下,保持调试器连接,可进行调试	
DBG_LOW_POWE	大次的睡时借予工 伊拉油污鬼达拉 可进行油污	
R_DEEPSLEEP	在深度睡眠模式下,保持调试器连接,可进行调试	
DBG_LOW_POWE	在待机模式下,保持调试器连接,可进行调试	
R_STANDBY	在付机候八下, 体持 炯 风	
输出参数{out}		
-	•	
-	-	

例如:

/* disable low power behavior when the mcu is in debug mode */

dbg_low_power_disable(DBG_LOW_POWER_SLEEP);

函数 dbg_periph_enable

函数dbg_periph_enable描述见下表:

表 3-71. 函数 dbg_periph_enable

函数名称	dbg_periph_enable
函数原形	void dbg_periph_enable(dbg_periph_enum dbg_periph);
功能描述	使能外设的MCU调试保持功能
先决条件	-
被调用函数	-
输入参数{in}	
dbg_periph	参考枚举变量 <u>表3-66. 枚举类型dbg periph enum</u>

DBG_FWDGT_HOL	当内核停止时,保持FWDGT计数器时钟	
D	当内仅行业时, 体持FWDGT II 数确时针	
DBG_WWDGT_HO		
LD	当内核停止时,保持WWDGT计数器时钟	
DBG_TIMERx_HOL	火中校度,4时,但在TIMED、让粉喂让粉度了亦(v. 0.2.5.42.44.45.46)	
D	当内核停止时,保持TIMERx计数器计数值不变(x=0,2,5,13,14,15,16)	
DBG_I2Cx_HOLD	当内核停止时,保持I2Cx(x=0,1)的SMBUS状态不变,用于调试	
DBG_RTC_HOLD	当内核停止时,保持RTC计数器,用于调试	
输出参数{out}		
返回值		
-	-	

/* enable peripheral behavior when the mcu is in debug mode */
dbg_periph_enable(DBG_TIMER0_HOLD);

函数 dbg_periph_disable

函数dbg_periph_disable描述见下表:

表 3-72. 函数 dbg_periph_disable

	-	
函数名称	dbg_periph_disable	
函数原形	<pre>void dbg_periph_disable(dbg_periph_enum dbg_periph);</pre>	
功能描述	禁能外设的MCU调试保持功能	
先决条件	-	
被调用函数	-	
输入参数{in}		
dbg_periph	参考枚举变量 <u>表3-66. 枚举类型dbg periph enum</u>	
DBG_FWDGT_HOL		
D	当内核停止时,保持FWDGT计数器时钟	
DBG_WWDGT_HO	ツ. rt が.fg .L rt 、/口.tz.vava/DOTご.L 粉. ซ. rt たti	
LD	当内核停止时,保持WWDGT计数器时钟	
DBG_TIMERx_HOL	火中校度,4时,但在TIMED、让粉喂儿粉体无恋(v. 0.0.5.42.44.45.4C)	
D	当内核停止时,保持TIMERx计数器计数值不变(x=0,2,5,13,14,15,16)	
DBG_I2Cx_HOLD	当内核停止时,保持I2Cx(x=0,1)的SMBUS状态不变,用于调试	
DBG_RTC_HOLD	当内核停止时,保持RTC计数器,用于调试	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable peripheral behavior when the mcu is in debug mode */

dbg_periph_disable(DBG_TIMER0_HOLD);

3.6. DMA

DMA控制器提供了一种硬件的方式在外设和存储器之间或者存储器和存储器之间传输数据,而无需CPU的介入,从而使CPU可以专注在处理其他系统功能上。章节<u>3.6.1</u>描述了DMA的寄存器列表,章节<u>3.6.2</u>对DMA库函数进行说明。

3.6.1. 外设寄存器说明

DMA寄存器列表如下表所示:

表 3-73. DMA 寄存器

**	
寄存器名称	寄存器描述
DMA_INTF	中断标志位寄存器
DMA_INTC	中断标志位清除寄存器
DMA_CHxCTL	运送、炒 即家
(x=04)	通道x控制寄存器
DMA_CHxCNT	通道x计数寄存器
(x=04)	迪坦XⅡ 蚁可付船
DMA_CHxPADDR	通道x外设基地址寄存器
(x=04)	
DMA_CHxMADDR	通道x存储器基地址寄存器
(x=04)	

3.6.2. 外设库函数说明

DMA库函数列表如下表所示:

表 3-74. DMA 库函数

库函数名称	库函数描述
dma_deinit	复位外设DMA通道x的所有寄存器
dma_struct_para_init	将DMA结构体中所有参数初始化为默认值
dma_init	初始化外设DMA的通道x
dma_circulation_enable	DMA循环模式使能
dma_circulation_disable	DMA循环模式禁能
dma_memory_to_memory_enable	存储器到存储器DMA传输使能
dma_memory_to_memory_disable	存储器到存储器DMA传输禁能
dma_channel_enable	DMA通道x传输使能
dma_channel_disable	DMA通道x传输禁能
dma_periph_address_config	DMA通道x传输的外设基地址配置
dma_memory_address_config	DMA通道x传输的存储器基地址配置

库函数名称	库函数描述
dma_transfer_number_config	配置DMA通道x还有多少数据要传输
dma_transfer_number_get	获取DMA通道x还有多少数据要传输
dma_priority_config	DMA通道x的传输软件优先级配置
dma_memory_width_config	DMA通道x传输的存储器数据宽度配置
dma_periph_width_config	DMA通道x传输的外设数据宽度配置
dma_memory_increase_enable	DMA通道x传输的存储器地址生成算法增量模式使能
dma_memory_increase_disable	DMA通道x传输的存储器地址生成算法增量模式禁能
dma_periph_increase_enable	DMA通道x传输的外设地址生成算法增量模式使能
dma_periph_increase_disable	DMA通道x传输的外设地址生成算法增量模式禁能
dma_transfer_direction_config	DMA通道x的传输方向配置
dma_flag_get	获取DMA通道x标志位状态
dma_flag_clear	清除DMA通道x标志位状态
dma_interrupt_flag_get	获取DMA通道x中断标志位状态
dma_interrupt_flag_clear	清除DMA通道x中断标志位状态
dma_interrupt_enable	DMA通道x中断使能
dma_interrupt_disable	DMA通道x中断禁能

结构体 dma_parameter_struct

表 3-75. 结构体 dma_parameter_struct

成员名称	功能描述
periph_addr	外设基地址
periph_width	外设数据传输宽度
memory_addr	存储器基地址
memory_width	存储器数据传输宽度
number	DMA通道数据传输数量
priority	DMA通道传输软件优先级
periph_inc	外设地址生成算法模式
memory_inc	存储器地址生成算法模式
direction	DMA通道数据传输方向

函数 dma_deinit

函数 dma_deinit 描述见下表:

表 3-76. 函数 dma_deinit

函数名称	dma_deinit	
函数原型	void dma_deinit(dma_channel_enum channelx);	
功能描述	复位DMA通道x的所有寄存器	
先决条件	无	
被调用函数	无	
输入参数{in}		
channelx	DMA通道	

DMA_CHx(x=04)	DMA通道选择	
输出参数{out}		
-	-	
返回值		
-	-	

/* deinitialize DMA channel0 registers */
dma_deinit(DMA_CH0);

函数 dma_struct_para_init

函数 dma_struct_para_init 描述见下表:

表 3-77. 函数 dma_struct_para_init

-		
函数名称	dma_struct_para_init	
函数原型	void dma_struct_para_init(dma_parameter_struct* init_struct);	
功能描述	将DMA结构体中所有参数初始化为默认值	
先决条件	无	
被调用函数	无	
输入参数{in}		
init_struct	一个已经定义的dma_parameter_struct结构体变量地址	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* initialize the parameters of DMA */
dma_parameter_struct dma_init_struct;
dma_struct_para_init(&dma_init_struct);

函数 dma_init

函数 dma_init 描述见下表:

表 3-78. 函数 dma_init

函数名称	dma_init	
函数原型	void dma_init(dma_channel_enum channelx, dma_parameter_struct*	
	init_struct);	
功能描述	初始化DMA通道x	
先决条件	无	
被调用函数	无	
输入参数{in}		

channelx	DMA通道	
DMA_CHx(x=04)	DMA通道选择	
输入参数{in}		
init_struct	初始化结构体,结构体成员参考 <u>表3-75. 结构体dma_parameter_struct</u>	
输出参数{out}		
-	-	
返回值		
-	-	

```
/* DMA channel0 initialize */
dma_parameter_struct dma_init_struct;

dma_struct_para_init(&dma_init_struct);
dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_struct.memory_addr = (uint32_t)g_destbuf;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = TRANSFER_NUM;
dma_init_struct.periph_addr = (uint32_t)BANKO_WRITE_START_ADDR;
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_ENABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_init(DMA_CH0, &dma_init_struct);
```

函数 dma_circulation_enable

函数 dma_circulation_enable 描述见下表:

表 3-79. 函数 dma_circulation_enable

函数名称	dma_circulation_enable	
函数原型	void dma_circulation_enable(dma_channel_enum channelx);	
功能描述	DMA循环模式使能	
先决条件	相应通道使能位CHEN需为0	
被调用函数	无	
输入参数{in}		
channelx	DMA通道	
DMA_CHx(x=04)	DMA通道选择	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* enable DMA channel0 circulation mode */
dma_circulation_enable(DMA_CH0);

函数 dma_circulation_disable

函数 dma_circulation_disable 描述见下表:

表 3-80. 函数 dma_circulation_disable

	-		
函数名称	dma_circulation_disable		
函数原型	void dma_circulation_disable(dma_channel_enum channelx);		
功能描述	DMA循环模式禁能		
先决条件	相应通道使能位CHEN需为0		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输出参数{out}		
-			
-	-		

例如:

/* disable DMA channel0 circulation mode */
dma_circulation_disable(DMA_CH0);

函数 dma_memory_to_memory_enable

函数 dma_memory_to_memory_enable 描述见下表:

表 3-81. 函数 dma_memory_to_memory_enable

函数名称	dma_memory_to_memory_enable
四双石仰	uma_memory_to_memory_enable
函数原型	void dma_memory_to_memory_enable(dma_channel_enum channelx);
功能描述	存储器到存储器DMA传输使能
先决条件	相应通道使能位CHEN需为0
被调用函数	无
	输入参数{in}
channelx	DMA通道
DMA_CHx(x=04)	DMA通道选择
	输出参数{out}
-	-
-	-

例如:

/* enable DMA channel0 memory to memory mode */

dma_memory_to_memory_enable(DMA_CH0);

函数 dma_memory_to_memory_disable

函数 dma_memory_to_memory_disable 描述见下表:

表 3-82. 函数 dma_memory_to_memory_disable

函数名称	dma_memory_to_memory_disable	
函数原形	void dma_memory_to_memory_disable(dma_channel_enum channelx);	
功能描述	存储器到存储器DMA传输禁能	
先决条件	相应通道使能位CHEN需为0	
被调用函数	无	
	输入参数{in}	
channelx	DMA通道	
DMA_CHx(x=04)	DMA通道选择	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable DMA channel0 memory to memory mode */ dma_memory_to_memory_disable(DMA_CH0);

函数 dma_channel_enable

函数 dma_channel_enable 描述见下表:

表 3-83. 函数 dma_channel_enable

函数名称	dma_channel_enable	
函数原型	void dma_channel_enable(dma_channel_enum channelx);	
功能描述	DMA通道x传输使能	
先决条件	无	
被调用函数	无	
	输入参数{in}	
channelx	DMA通道	
DMA_CHx(x=04)	DMA通道选择	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* enable DMA channel0 */
dma_channel_enable(DMA_CH0)

函数 dma_channel_disable

函数 dma_channel_disable 描述见下表:

表 3-84. 函数 dma_channel_disable

-	
函数名称	dma_channel_disable
函数原型	void dma_channel_disable(dma_channel_enum channelx);
功能描述	DMA通道x传输禁能
先决条件	无
被调用函数	无
	输入参数{in}
channelx	DMA通道
DMA_CHx(x=04)	DMA通道选择
	输出参数{out}
-	-
-	-

例如:

/* disable DMA channel0 */
dma_channel_disable(DMA_CH0);

函数 dma_periph_address_config

函数 dma_periph_address_config 描述见下表:

表 3-85. 函数 dma_periph_address_config

函数名称	dma_periph_address_config		
函数原型	void dma_periph_address_config(dma_channel_enum channelx, uint32_t		
	address);		
功能描述	DMA通道x传输的外设基地址配置		
先决条件	相应通道使能位CHEN需为0		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
输入参数{in}			
address	外设基地址		
	输出参数{out}		
-	•		
返回值			
-	•		

例如:

/* configure DMA channel0 periph address */

#define BANK0_WRITE_START_ADDR (

((uint32_t)0x08004000)

dma_periph_address_config(DMA_CH0, BANK0_WRITE_START_ADDR);

函数 dma_memory_address_config

函数 dma_memory_address_config 描述见下表:

表 3-86. 函数 dma_memory_address_config

函数名称	dma_memory_address_config		
运搬店 刑	void dma_memory_address_config(dma_channel_enum channelx, uint32_t		
函数原型	address);		
功能描述	DMA通道x传输的存储器基地址配置		
先决条件	相应通道使能位CHEN需为0		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输入参数{in}		
address	存储器基地址		
	输出参数{out}		
-	-		
-	-		

例如:

/* configure DMA channel0 memory address */

uint8_t g_destbuf[TRANSFER_NUM];

dma_memory_address_config(DMA_CH0, (uint32_t) g_destbuf);

函数 dma_transfer_number_config

函数 dma_transfer_number_config 描述见下表:

表 3-87. 函数 dma_transfer_number_config

函数名称	dma_transfer_number_config
函数原型	void dma_transfer_number_config(dma_channel_enum channelx, uint32_t
	number);
功能描述	配置DMA通道x还有多少数据要传输
先决条件	相应通道使能位CHEN需为0
被调用函数	无
输入参数{in}	

channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输入参数{in}		
number	数据传输数量(0x0 – 0xFFFF)		
输出参数{out}			
-	-		
返回值			
-	-		

/* configure DMA channel0 transfer number */

#define TRANSFER_NUM

0x400

dma_transfer_number_config(DMA_CH0, TRANSFER_NUM);

函数 dma_transfer_number_get

函数 dma_transfer_number_get 描述见下表:

表 3-88. 函数 dma_transfer_number_get

函数名称	dma_transfer_number_get	
函数原型	uint32_t dma_transfer_number_get(dma_channel_enum channelx);	
功能描述	获取DMA通道x还有多少数据要传输	
先决条件	相应通道使能位CHEN需为0	
被调用函数	无	
	输入参数{in}	
channelx	DMA通道	
DMA_CHx(x=04)	DMA通道选择	
	输出参数{out}	
-		
返回值		
uint32_t	DMA数据传输剩余数量(0x0 – 0xFFFF)	

例如:

/* get DMA channel0 transfer number */

uint32_t number = 0;

number = dma_transfer_number_get(DMA_CH0);

函数 dma_priority_config

函数 dma_priority_config 描述见下表:

表 3-89. 函数 dma_priority_config

函数名称	dma_priority_config
函数原型	void dma_priority_config(dma_channel_enum channelx, uint32_t priority);
功能描述	DMA通道x的传输软件优先级配置
先决条件	相应通道使能位CHEN需为0
被调用函数	无
	输入参数{in}
channelx	DMA通道
DMA_CHx(x=04)	DMA通道选择
	输入参数{in}
priority	DMA通道软件优先级
DMA_PRIORITY_L	/T. 44: 47.
OW	低优先级
DMA_PRIORITY_M	中优先级
EDIUM	中ル元級
DMA_PRIORITY_HI	高优先级
GH	同化元级
DMA_PRIORITY_U	极高优先级
LTRA_HIGH	似向优先级
输出参数{out}	
-	•
返回值	
-	-

例如:

/* configure DMA channel0 priority */

 $dma_priority_config(DMA_CH0,\,DMA_PRIORITY_ULTRA_HIGH);$

函数 dma_memory_width_config

函数 dma_memory_width_config 描述见下表:

表 3-90. 函数 dma_memory_width_config

	- 7= = 0	
函数名称	dma_memory_width_config	
函数原型	void dma_memory_width_config(dma_channel_enum channelx, uint32_t	
	mwidth);	
功能描述	DMA通道x传输的存储器数据宽度配置	
先决条件	相应通道使能位CHEN需为0	
被调用函数	无	
输入参数{in}		
channelx	DMA通道	
DMA_CHx(x=04)	DMA通道选择	
输入参数{in}		

GD32E23x 固件库使用指南

mwidth	存储器数据传输宽度		
DMA_MEMORY_WI	8位数据传输宽度		
DTH_8BIT	O世 数指 包 相 见 及		
DMA_MEMORY_WI	16位新祖化於帝帝		
DTH_16BIT	16位数据传输宽度		
DMA_MEMORY_WI	20分析程件检查库		
DTH_32BIT	32位数据传输宽度		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* configure DMA channel0 memory width */

dma_memory_width_config(DMA_CH0, DMA_MEMORY_WIDTH_8BIT);

函数 dma_periph_width_config

函数 dma_periph_width_config 描述见下表:

表 3-91. 函数 dma_periph_width_config

函数名称	dma_periph_width_config
函数原型	void dma_periph_width_config(dma_channel_enum channelx, uint32_t pwidth);
功能描述	DMA通道x传输的外设数据宽度配置
先决条件	相应通道使能位CHEN需为0
被调用函数	无
	输入参数{in}
pwidth	外设数据传输宽度
DMA_PERIPHERAL	8位数据传输宽度
_WIDTH_8BIT	O位数指令相见/支
DMA_PERIPHERAL	16位数据传输宽度
_WIDTH_16BIT	10世 数 衛 [
DMA_PERIPHERAL	32位数据传输宽度
_WIDTH_32BIT	32位数循行制见反
输出参数{out}	
-	-
返回值	
-	-

例如:

/* configure DMA channel0 periph width */

dma_periph_width_config(DMA_CH0, DMA_PERIPHERAL_WIDTH_8BIT);

函数 dma_memory_increase_enable

函数 dma_memory_increase_enable 描述见下表:

表 3-92. 函数 dma_memory_increase_enable

			
函数名称	dma_memory_increase_enable		
函数原型	void dma_memory_increase_enable(dma_channel_enum channelx);		
功能描述	DMA通道x传输的存储器地址生成算法增量模式使能		
先决条件	相应通道使能位CHEN需为0		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输出参数{out}		
-	-		
-	-		

例如:

/* enable DMA channel0 memory increase */

dma_memory_increase_enable(DMA_CH0);

函数 dma_memory_increase_disable

函数 dma_memory_increase_disable 描述见下表:

表 3-93. 函数 dma_memory_increase_disable

_			
函数名称	dma_memory_increase_disable		
函数原型	void dma_memory_increase_disable(dma_channel_enum channelx);		
功能描述	DMA通道x传输的存储器地址生成算法增量模式禁能		
先决条件	相应通道使能位CHEN需为0		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* disable DMA channel0 memory increase */

dma_memory_increase_disable(DMA_CH0);

函数 dma_periph_increase_enable

函数 dma_periph_increase_enable 描述见下表:

表 3-94. 函数 dma_periph_increase_enable

函数名称	dma_periph_increase_enable		
函数原型	void dma_periph_increase_enable(dma_channel_enum channelx);		
功能描述	DMA通道x传输的外设地址生成算法增量模式使能		
先决条件	相应通道使能位CHEN需为0		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* enable DMA channel0 periph increase*/

dma_periph_increase_enable(DMA_CH0);

函数 dma_periph_increase_disable

函数 dma_periph_increase_disable 描述见下表:

表 3-95. 函数 dma_periph_increase_disable

函数名称	dma_periph_increase_disable		
函数原型	void dma_periph_increase_disable(dma_channel_enum channelx);		
功能描述	DMA通道x传输的外设地址生成算法增量模式禁能		
先决条件	相应通道使能位CHEN需为0		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* disable DMA channel0 periph increase*/

dma_periph_increase_disable(DMA_CH0);

函数 dma_transfer_direction_config

函数 dma_transfer_direction_config 描述见下表:

表 3-96. 函数 dma_transfer_direction_config

函数名称	dma_transfer_direction_config		
函数原型	void dma_transfer_direction_config(dma_channel_enum channelx, uint32_t		
	direction);		
功能描述	DMA通道x的传输方向配置		
先决条件	相应通道使能位CHEN需为0		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输入参数{in}		
direction	数据传输方向		
DMA_PERIPHERAL	读取外设中数据,写入存储器		
_TO_MEMORY	实 以 介以中		
DMA_MEMORY_T	读取存储器中数据,写入外设		
O_PERIPHERAL	医软件间益于 数值, 当八年 区		
	输出参数{out}		
-	•		
返回值			
-	-		

例如:

/* configure DMA channel0 transfer direction*/

dma_transfer_direction_config(DMA_CH0, DMA_PERIPHERAL_TO_MEMORY);

函数 dma_flag_get

函数 dma_flag_get 描述见下表:

表 3-97. 函数 dma_flag_get

TO OIL BIJ JA GILLON	ドゥゥ:: 岡次 uu.g_got	
函数名称	dma_flag_get	
函数原型	FlagStatus dma_flag_get(dma_channel_enum channelx, uint32_t flag);	
功能描述	获取DMA通道x标志位状态	
先决条件	无	
被调用函数	无	
输入参数{in}		
channelx	DMA通道	
DMA_CHx(x=04)	DMA通道选择	
输入参数{in}		
flag	DMA标志	

GD32E23x 固件库使用指南

DMA_FLAG_G	DMA通道全局中断标志	
DMA_FLAG_FTF	DMA通道传输完成标志	
DMA_FLAG_HTF	DMA通道半传输完成标志	
DMA_FLAG_ERR	DMA通道错误标志	
-	-	
	返回值	
FlagStatus	SET或RESET	

例如:

/* get DMA channel0 flag*/

FlagStatus flag = RESET;

flag = dma_flag_get(DMA_CH0, DMA_FLAG_FTF);

函数 dma_flag_clear

函数 dma_flag_clear 描述见下表:

表 3-98. 函数 dma_flag_clear

函数名称	dma_flag_clear		
函数原型	void dma_flag_clear(dma_channel_enum channelx, uint32_t flag);		
功能描述	清除DMA通道x标志位状态		
先决条件	无		
被调用函数	无		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输入参数{in}		
flag	DMA标志		
DMA_FLAG_G	DMA通道全局中断标志		
DMA_FLAG_FTF	DMA通道传输完成标志		
DMA_FLAG_HTF	DMA通道半传输完成标志		
DMA_FLAG_ERR	DMA通道错误标志		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* clear DMA channel0 flag*/

dma_flag_clear(DMA_CH0, DMA_FLAG_FTF);

函数 dma_interrupt_flag_get

函数 dma_interrupt_flag_get 描述见下表:

表 3-99. 函数 dma_interrupt_flag_get

函数名称	dma_interrupt_flag_get		
函数原型	FlagStatus dma_interrupt_flag_get(dma_channel_enum channelx, uint32_t		
	flag);		
功能描述	获取DMA通道x中断标志位状态		
先决条件	无		
被调用函数	无		
	输入参数{in}		
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输入参数{in}		
flag	DMA标志		
DMA_INT_FLAG_F	DMA通道传输完成中断标志		
TF	DNIA.也是包制无风干的你心		
DMA_INT_FLAG_H	DMA通道半传输完成中断标志		
TF	DIMA思想干得制儿放牛奶你心		
DMA_INT_FLAG_E	DMA通道错误中断标志		
RR	DIMIA通過由於中國你必		
输出参数{out}			
-	-		
返回值			
FlagStatus	SET或RESET		

例如:

```
/* get DMA interrupt flag*/
if(dma_interrupt_flag_get(DMA_CH3, DMA_INT_FLAG_FTF)){
    dma_interrupt_flag_clear(DMA_CH3, DMA_INT_FLAG_G);
}
```

函数 dma_interrupt_flag_clear

函数 dma_interrupt_flag_clear 描述见下表:

表 3-100. 函数 dma_interrupt_flag_clear

函数名称	dma_interrupt_flag_clear
函数原型	void dma_interrupt_flag_clear(dma_channel_enum channelx, uint32_t flag);
功能描述	清除DMA通道x中断标志位状态
先决条件	无
被调用函数	无
输入参数{in}	

channelx	DMA通道	
DMA_CHx(x=04)	DMA通道选择	
	输入参数{in}	
flag	DMA标志	
DMA_INT_FLAG_G	DMA通道全局中断标志	
DMA_INT_FLAG_FTF	DMA通道传输完成中断标志	
DMA_INT_FLAG_HT	DMANA送火 化松宁 代中枢七十	
F	DMA通道半传输完成中断标志	
DMA_INT_FLAG_ER	DMAX3G等件,只有配行工士	
R	DMA通道错误中断标志	
输出参数{out}		
-	-	
返回值		
-	-	

```
/* clear DMA interrupt flag*/
if(dma_interrupt_flag_get(DMA_CH3, DMA_INT_FLAG_FTF)){
     dma_interrupt_flag_clear(DMA_CH3, DMA_INT_FLAG_G);
}
```

函数 dma_interrupt_enable

函数 dma_interrupt_enable 描述见下表:

表 3-101. 函数 dma_interrupt_enable

函数名称	dma_interrupt_enable		
函数原型	void dma_interrupt_enable(dma_channel_enum channelx, uint32_t source);		
功能描述	DMA通道x中断使能		
先决条件	无		
被调用函数	无		
输入参数{in}			
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
	输入参数{in}		
source	DMA中断源		
DMA_INT_FTF	DMA通道传输完成中断		
DMA_INT_HTF	DMA通道半传输完成中断		
DMA_INT_ERR	DMA通道错误中断		
输出参数{out}			
-	-		
	返回值		
-	-		

/* enable DMA channel0 interrupt */

dma_interrupt_enable(DMA_CH0, DMA_INT_FTF);

函数 dma_interrupt_disable

函数 dma_interrupt_disable 描述见下表:

表 3-102. 函数 dma_interrupt_disable

函数名称	dma_interrupt_disable		
函数原型	void dma_interrupt_disable(dma_channel_enum channelx, uint32_t source);		
功能描述	DMA通道x中断禁能		
先决条件	无		
被调用函数	无		
输入参数{in}			
channelx	DMA通道		
DMA_CHx(x=04)	DMA通道选择		
输入参数{in}			
source	DMA中断源		
DMA_INT_FTF	DMA通道传输完成中断		
DMA_INT_HTF	DMA通道半传输完成中断		
DMA_INT_ERR	DMA通道错误中断		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* disable DMA channel0 interrupt */

dma_interrupt_ disable(DMA_CH0, DMA_INT_FTF);

3.7. EXTI

EXTI是MCU中的中断/事件控制器,包括21个相互独立的边沿检测电路并且能够向处理器内核产生中断请求或唤醒事件。章节<u>3.7.1</u>描述了EXTI的寄存器列表,章节<u>3.7.2</u>对EXTI库函数进行说明。

3.7.1. 外设寄存器说明

EXTI寄存器列表如下表所示:

表 3-103. EXTI 寄存器

寄存器名称	寄存器描述
EXTI_INTEN	中断使能寄存器
EXTI_EVEN	事件使能寄存器
EXTI_RTEN	上升沿触发使能寄存器
EXTI_FTEN	下降沿触发使能寄存器
EXTI_SWIEV	软件中断事件寄存器
EXTI_PD	挂起寄存器

3.7.2. 外设库函数说明

EXTI库函数列表如下表所示:

表 3-104. EXTI 库函数

X 5-104. EXII 产函数		
库函数名称	库函数描述	
exti_deinit	复位EXTI,将EXTI的所有寄存器恢复成初始值	
exti_init	初始化EXTI线x	
exti_interrupt_enable	EXTI线x中断使能	
exti_event_enable	EXTI线x事件使能	
exti_interrupt_disable	EXTI线x中断禁能	
exti_event_disable	EXTI线x事件禁能	
exti_flag_get	获取EXTI线x标志位	
exti_flag_clear	清除EXTI线x标志位	
exti_interrupt_flag_get	获取EXTI线x中断标志位	
exti_interrupt_flag_clear	清除EXTI线x中断标志位	
exti_software_interrupt_enable	使能EXTI线x软件中断	
exti_software_interrupt_disable	禁能EXTI线x软件中断	

枚举类型 exti_line_enum

表 3-105. 枚举类型 exti_line_enum

枚举名称	枚举描述
EXTI_0	EXTI线0
EXTI_1	EXTI线1
EXTI_2	EXTI线2
EXTI_3	EXTI线3
EXTI_4	EXTI线4
EXTI_5	EXTI线5
EXTI_6	EXTI线6
EXTI_7	EXTI线7
EXTI_8	EXTI线8
EXTI_9	EXTI线9

	, , , , , , , , , , , , , , , , , , , ,
枚举名称	枚举描述
EXTI_10	EXTI线10
EXTI_11	EXTI线11
EXTI_12	EXTI线12
EXTI_13	EXTI线13
EXTI_14	EXTI线14
EXTI_15	EXTI线15
EXTI_16	EXTI线16
EXTI_17	EXTI线17
EXTI_19	EXTI线19
EXTI_25	EXTI线25
EXTI_26	EXTI线26
EXTI_27	EXTI线27

枚举类型 exti_mode_enum

表 3-106. 枚举类型 exti_mode_enum

枚举名称	枚举描述
EXTI_INTERRUPT	EXTI中断模式
EXTI_EVENT	EXTI事件模式

枚举类型 exti_trig_type_enum

表 3-107. 枚举类型 exti_trig_type_enum

枚举名称	枚举描述
EXTI_TRIG_RISING	EXTI上升沿触发
EXTI_TRIG_FALLING	EXTI下降沿触发
EXTI_TRIG_BOTH	EXTI双边沿触发

函数 exti_deinit

函数exti_deinit描述见下表:

表 3-108. 函数 exti_deinit

A to the Max extra Laborate		
函数名称	exti_deinit	
函数原形	void exti_deinit(void);	
功能描述	复位EXTI,将EXTI的所有寄存器恢复成初始值	
先决条件	-	
被调用函数	-	
输入参数{in}		
输出参数{out}		
-	-	
返回值		

-

例如:

/* deinitialize the EXTI */

exti_deinit();

函数 exti_init

函数exti_init描述见下表:

表 3-109. 函数 exti_init

衣 3-103. 函数 exti_mit		
函数名称	exti_init	
函数原形	void exti_init(exti_line_enum linex, exti_mode_enum mode,	
	exti_trig_type_enum trig_type);	
功能描述	初始化EXTI线x	
先决条件	-	
被调用函数	-	
	输入参数{in}	
linex	EXTI线x	
EXTI_x	x=017,19,21	
输入参数{in}		
mode	EXTI模式	
EXTI_INTERRUPT	中断模式	
EXTI_EVENT	事件模式	
输入参数{in}		
trig_type	触发类型	
EXTI_TRIG_RISING	上升沿触发	
EXTI_TRIG_FALLIN	下降沿触发	
G	下)年行服·及	
EXTI_TRIG_BOTH	上升沿和下降沿均触发	
输出参数{out}		
-	-	
	返回值	
-	-	
·		

例如:

/* configure EXTI_0 */

exti_init(EXTI_0, EXTI_INTERRUPT, EXTI_TRIG_BOTH);

函数 exti_interrupt_enable

函数exti_interrupt_enable描述见下表:

表 3-110. 函数 exti_interrupt_enable

函数名称	exti_interrupt_enable		
函数原形	void exti_interrupt_enable(exti_line_enum linex);		
功能描述	EXTI线x中断使能		
先决条件	-		
被调用函数	-		
输入参数{in}			
linex	EXTI线x		
EXTI_x	x=0,1,227		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* enable the interrupts from EXTI line 0 */

exti_interrupt_enable(EXTI_0);

函数 exti_interrupt_disable

函数exti_interrupt_disable描述见下表:

表 3-111. 函数 exti interrupt disable

表 V T T M M M M M M M M M M M M M M M M M		
函数名称	exti_interrupt_disable	
函数原形	void exti_interrupt_disable(exti_line_enum linex);	
功能描述	EXTI线x中断禁能	
先决条件	-	
被调用函数	-	
输入参数{in}		
linex	EXTI线x	
EXTI_x	x=0,1,227	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* disable the interrupts from EXTI line 0 */

exti_interrupt_disable(EXTI_0);

函数 exti_event_enable

函数exti_event_enable描述见下表:

表 3-112. 函数 exti_event_enable

函数名称	exti_event_enable	
函数原形	void exti_event_enable(exti_line_enum linex);	
功能描述	EXTI线x事件使能	
先决条件	-	
被调用函数	-	
输入参数{in}		
linex	EXTI线x	
EXTI_x	x=0,1,227	
输出参数{out}		
-	-	
返回值		

例如:

/* enable the events from EXTI line 0 */

exti_event_enable(EXTI_0);

函数 exti_event_disable

函数exti_event_disable描述见下表:

表 3-113. 函数 exti_event_disable

We then Max extraordate		
函数名称	exti_event_disable	
函数原形	void exti_event_disable(exti_line_enum linex);	
功能描述	EXTI线x事件禁能	
先决条件	-	
被调用函数	-	
输入参数{in}		
linex	EXTI线x	
EXTI_x	x=0,1,227	
输出参数{out}		
返回值		
-	-	

例如:

/* disable the events from EXTI line 0 */

exti_event_disable(EXTI_0);

函数 exti_software_interrupt_enable

函数exti_software_interrupt_enable描述见下表:

表 3-114. 函数 exti_software_interrupt_enable

函数名称	exti_software_interrupt_enable	
函数原形	void exti_software_interrupt_enable(exti_line_enum linex);	
功能描述	使能EXTI线x软件中断	
先决条件	-	
被调用函数	-	
输入参数{in}		
linex	EXTI线x	
EXTI_x	x=0,1,217, 19, 21	
输出参数{out}		
-	-	
	返回值	

例如:

/* enable EXTI line 0 software interrupt */

exti_software_interrupt_enable(EXTI_0);

函数 exti_software_interrupt_disable

函数exti_software_interrupt_disable描述见下表:

表 3-115. 函数 exti_software_interrupt_disable

表 o rioi 国家 oxii_ooriinaio_intorrapi_arodario		
函数名称	exti_software_interrupt_disable	
函数原形	void exti_software_interrupt_disable(exti_line_enum linex);	
功能描述	禁能EXTI线x软件中断	
先决条件	-	
被调用函数	-	
输入参数{in}		
linex	EXTI线x	
EXTI_x	x=0,1,217, 19, 21	
输出参数{out}		
-	-	
-	- 返回值	
-	- 返回值 -	

例如:

/* disable EXTI line 0 software interrupt */

exti_software_interrupt_disable(EXTI_0);

函数 exti_flag_get

函数exti_flag_get描述见下表:

表 3-116. 函数 exti_flag_get

函数名称	exti_flag_get	
函数原形	FlagStatus exti_flag_get(exti_line_enum linex);	
功能描述	获取EXTI线x标志位	
先决条件	-	
被调用函数	-	
输入参数{in}		
linex EXTI线x		
EXTI_x	x=0,1,217, 19, 21	
输出参数{out}		
返回值		
FlagStatus	SET或RESET	

例如:

/* get EXTI line 0 flag status */

FlagStatus state = exti_flag_get(EXTI_0);

函数 exti_flag_clear

函数exti_flag_clear描述见下表:

表 3-117. 函数 exti flag clear

表 O TITE 國家 OXII_IIIIg_OIOII		
函数名称	exti_flag_clear	
函数原形	void exti_flag_clear(exti_line_enum linex);	
功能描述	清除EXTI线x标志位	
先决条件	-	
被调用函数	-	
输入参数{in}		
linex	EXTI线x	
EXTI_x	x=0,1,217, 19, 21	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* clear EXTI line 0 flag status */

exti_flag_clear(EXTI_0);

函数 exti_interrupt_flag_get

函数exti_interrupt_flag_get描述见下表:

表 3-118. 函数 exti_interrupt_flag_get

函数名称	exti_interrupt_flag_get	
函数原形	FlagStatus exti_interrupt_flag_get(exti_line_enum linex);	
功能描述	获取EXTI线x中断标志位	
先决条件	-	
被调用函数	-	
输入参数{in}		
linex EXTI线x		
EXTI_x	x=0,1,217, 19, 21	
输出参数{out}		
返回值		
FlagStatus	SET或RESET	

例如:

/* get EXTI line 0 interrupt flag status */

FlagStatus state = exti_interrupt_flag_get(EXTI_0);

函数 exti_interrupt_flag_clear

函数exti_interrupt_flag_clear描述见下表:

表 3-119. 函数 exti_interrupt_flag_clear

函数名称 exti_interrupt_flag_clear 函数原形 void exti_interrupt_flag_clear(exti_line_enum linex); 功能描述 清除EXTI线x中断标志位 先决条件 - 被调用函数 - 输入参数{in} linex EXTI线x EXTI_X x=0,1,217, 19, 21 输出参数{out}	7. c		
功能描述 清除EXTI线x中断标志位 先决条件 - 被调用函数 - 输入参数{in} EXTI线x EXTI_x x=0,1,217, 19, 21	函数名称	exti_interrupt_flag_clear	
先决条件 - 被调用函数 - 输入参数{in} EXTI线x EXTI_X x=0,1,217, 19, 21	函数原形	void exti_interrupt_flag_clear(exti_line_enum linex);	
被调用函数 - 输入参数{in} linex EXTI线x EXTI_x x=0,1,217, 19, 21	功能描述	清除EXTI线x中断标志位	
输入参数{in} linex EXTI线x EXTI_x x=0,1,217, 19, 21	先决条件	-	
Iinex EXTI线x EXTI_x x=0,1,217, 19, 21	被调用函数	-	
<i>EXTI_x</i> x=0,1,217, 19, 21	输入参数{in}		
	linex	EXTI线x	
输出参数(out)	EXTI_x	x=0,1,217, 19, 21	
기間山 多 妖 (Out)			
	-	-	
返回值			
	-	-	

例如:

/* clear EXTI line 0 interrupt flag status */

exti_interrupt_flag_clear(EXTI_0);

3.8. FMC

FMC是MCU中的Flash控制器,其中包括存储数据的主编程块和选项字节。章节<u>3.8.1</u>描述了FMC的寄存器列表,章节<u>3.8.2</u>对FMC库函数进行说明。

3.8.1. 外设寄存器说明

FMC寄存器列表如下:

表 3-120. FMC 寄存器

寄存器	描述
FMC_WS	等待状态寄存器
FMC_KEY	解锁寄存器
FMC_OBKEY	选项字节解锁寄存器
FMC_STAT	状态寄存器
FMC_CTL	控制寄存器
FMC_ADDR	地址寄存器
FMC_OBSTAT	选项字节状态寄存器
FMC_WP	写保护寄存器
FMC_PID	产品ID寄存器

3.8.2. 外设库函数说明

FMC固件库函数列举如下表:

表 3-121. FMC 固件库函数

函数名称	函数描述
fmc_unlock	解锁FMC主编程块操作
fmc_lock	锁定FMC主编程块操作
fmc_wscnt_set	设置FMC等待状态计数值
fmc_prefetch_enable	使能pre-fetch
fmc_prefetch_disable	失能pre-fetch
fmc_page_erase	FMC 页擦除
fmc_mass_erase	FMC 全片擦除
fmc_doubleword_program	在相应地址双字编程
fmc_word_program	在相应地址全字编程
ob_unlock	解锁选项字节操作
ob_lock	锁定选项字节操作
ob_reset	重装载选项字节,并产生一次系统复位
option_byte_value_get	获取选项字节值
ob_erase	擦除选项字节
ob_write_protection_enable	使能写保护
ob_security_protection_config	配置安全保护

函数名称	函数描述
ob_user_write	写用户选项字节
ob_data_program	写数据选项字节
ob_user_get	获取用户选项字节
ob_data_get	获取数据选项字节
ob_write_protection_get	获取写保护选项字节
ob obstat playel get	在FMC_OBSTAT寄存器中获取FMC可选字节块的安全保护级
ob_obstat_plevel_get	别值
fmc_interrupt_enable	使能FMC中断
fmc_interrupt_disable	除能FMC中断
fmc_flag_get	检查标志位是否置位
fmc_flag_clear	清除FMC标志
fmc_interrupt_flag_get	获取FMC中断标志状态
fmc_interrupt_flag_clear	清除FMC中断标志状态
fmc_state_get	获取FMC状态
fmc_ready_wait	检查FMC是否准备好

枚举类型 fmc_state_enum

表 3-122. 枚举类型 fmc_state_enum

枚举名称	枚举描述
FMC_READY	操作完成
FMC_BUSY	操作进行中
FMC_PGERR	编程错误
FMC_PGAERR	编程对齐错误
FMC_WPERR	写保护错误
FMC_TOERR	超时错误
FMC_OB_HSPC	可选字节块高安全保护级别

函数 fmc_unlock

函数fmc_unlock描述见下表:

表 3-123. 函数 fmc_unlock

函数名称	fmc_unlock
函数原型	void fmc_unlock (void);
功能描述	解锁FMC主编程块操作
先决条件	-
被调用函数	-
输入参数{in}	
-	-
	输出参数{out}
-	-

	返回值	
-	-	

/* unlock the main FMC operation */

fmc_unlock ();

函数 fmc_lock

函数fmc_lock描述见下表:

表 3-124. 函数 Function fmc_lock

函数名称	fmc_lock
函数原型	void fmc_lock(void);
功能描述	锁定FMC主编程块操作
先决条件	-
被调用函数	-
输入参数{in}	
-	-
	输出参数{out}
-	-
	返回值
-	-

例如:

/* lock the main FMC operation */

fmc_lock();

函数 fmc_wscnt_set

函数fmc_wscnt_set描述见下表:

表 3-125. 函数 fmc_wscnt_set

函数名称	fmc_wscnt_set
函数原型	<pre>void fmc_wscnt_set(uint32_t wscnt);</pre>
功能描述	设置等待状态计数值
先决条件	-
被调用函数	-
	输入参数{in}
wscnt	等待状态计数值
WS_WSCNT_0	FMC 0个等待状态
WS_WSCNT_1	FMC 1个等待状态
WS_WSCNT_2	FMC 2个等待状态

输出参数{out}		
-	-	
	返回值	
-	-	

/* set the wait state counter value */

fmc_wscnt_set (WS_WSCNT_1);

函数 fmc_prefetch_enable

函数fmc_prefetch_enable描述见下表:

表 3-126. 函数 fmc_prefetch_enable

);	
输入参数{in}	

例如:

/* enable pre-fetch */

fmc_prefetch_enable();

函数 fmc_prefetch_disable

函数fmc_prefetch_disable描述见下表:

表 3-127. 函数 fmc_prefetch_disable

函数名称	fmc_prefetch_disable	
函数原型	void fmc_prefetch_disable (void);	
功能描述	失能pre-fetch	
先决条件	-	
被调用函数	-	
	输入参数{in}	
-	-	
输出参数{out}		

-	-
返回值	
-	-

/* disable pre-fetch */

fmc_prefetch_disable();

函数 fmc_page_erase

函数fmc_page_erase描述见下表:

表 3-128. 函数 fmc_page_erase

大 c i i i i i i i i i i i i i i i i i i		
函数名称	函数名称 fmc_page_erase	
函数原型	函数原型 fmc_state_enum fmc_page_erase(uint32_t page_address);	
功能描述	功能描述 页擦除	
先决条件	先决条件 fmc_unlock	
被调用函数	被调用函数 fmc_ready_wait	
输入参数{in}		
page_address	page_address 页擦除首地址	
	输出参数{out}	
-		
	返回值	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>	

例如:

/* erase page */

fmc_state_enum state = fmc_page_erase (0x08004000);

函数 fmc_mass_erase

函数fmc_mass_erase描述见下表:

表 3-129. 函数 fmc_mass_erase

函数名称	fmc_mass_erase
函数原型	fmc_state_enum fmc_mass_erase(void);
功能描述	全片擦除
先决条件	fmc_unlock
被调用函数	fmc_ready_wait
输入参数{in}	
-	-
输出参数{out}	
-	-

返回值	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc_state_enum</u>

/* erase whole chip */

fmc_state_enum state = fmc_mass_erase ();

函数 fmc_doubleword_program

函数fmc_doubleword_program描述见下表:

表 3-130. 函数 fmc_doubleword_program

函数名称	fmc_doubleword_program	
函数原型	fmc_state_enum fmc_doubleword_program(uint32_t address, uint64_t data);	
功能描述	对相应地址双字编程	
先决条件	fmc_unlock	
被调用函数	fmc_ready_wait	
	输入参数{in}	
address	编程地址	
	输入参数{in}	
data	编程数据	
	输出参数{out}	
-	-	
	返回值	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>	

例如:

/* program double word at the corresponding address */

fmc_state_enum state = fmc_word_program(0x08004000, 0xaabbccddeeff0055);

函数 fmc_word_program

函数fmc_word_program描述见下表:

表 3-131. 函数 fmc_word_program

函数名称	fmc_word_program	
函数原型	fmc_state_enum fmc_word_program(uint32_t address, uint32_t data);	
功能描述	对相应地址全字编程	
先决条件	fmc_unlock	
被调用函数	fmc_ready_wait	
address	编程地址	
输入参数{in}		

data	编程数据	
	输出参数{out}	
-	-	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>	

/* program a word at the corresponding address */

fmc_state_enum state = fmc_word_program (0x08004000, 0xaabbccdd);

函数 ob_unlock

函数ob_unlock描述见下表:

表 3-132. 函数 ob unlock

大 5-102. 函数 CD_ulliock		
函数名称	ob_unlock	
函数原型	void ob_unlock(void);	
功能描述	解锁选项字节	
先决条件	fmc_unlock	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* unlock the option byte operation */

ob_unlock ();

函数 ob_lock

函数ob_lock描述见下表:

表 3-133. 函数 ob_lock

	•
函数名称	ob_lock
函数原型	void ob_lock(void);
功能描述	锁定选项字节操作
先决条件	fmc_lock
被调用函数	-
-	-

输出参数{out}	
-	-
返回值	
-	

/* lock the option byte operation */

ob_lock();

函数 ob_reset

函数ob_reset描述见下表:

表 3-134. 函数 ob_reset

函数名称	ob_reset	
函数原型	void ob_reset (void);	
功能描述	重装载选项字节,并产生一次系统复位	
先决条件	-	
被调用函数	-	
	输入参数{in}	
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* reload the option byte and generate a system reset */

ob_reset();

函数 option_byte_value_get

函数option_byte_value_get描述见下表:

表 3-135. 函数 option_byte_value_get

函数名称	option_byte_value_get	
函数原型	uint32_t option_byte_value_get(uint32_t addr);	
功能描述	获取选项字节值	
先决条件	-	
被调用函数	-	
	输入参数{in}	
-	-	
输出参数{out}		

-	-	
返回值		
uint32_t	uint32_t 目标选项字节的值	

/* get option byte value */

uint32_t temp;

temp = option_byte_value_get(0x1fff f800);

函数 ob_erase

函数ob_erase描述见下表:

表 3-136. 函数 ob_erase

函数名称	ob_erase	
函数原型	void ob_erase(void);	
功能描述	擦除选项字节	
先决条件	ob_unlock	
被调用函数	fmc_ready_wait	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>	

例如:

/* erase the FMC option byte */

fmc_state_enum fmc_state = ob_ erase ();

函数 ob_write_protection_enable

函数ob_write_protection_enable描述见下表:

表 3-137. 函数 ob_write_protection_enable

函数名称	ob_write_protection_enable	
函数原型	fmc_state_enum ob_write_protection_enable(uint32_t ob_wp);	
功能描述	使能写保护	
先决条件	ob_unlock	
被调用函数	fmc_ready_wait	
	· 输入参数{in}	
ob_wp	写保护单元	
输出参数{out}		

-	-
返回值	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>

/* enable write protection */

fmc_state_enum state = ob_write_protection_enable (0x01);

函数 ob_security_protection_config

函数ob_security_protection_config描述见下表:

表 3-138. 函数 ob_security_protection_config

函数名称	ob_security_protection_config
函数原型	fmc_state_enum ob_security_protection_config (uint16_t ob_spc);
功能描述	配置安全保护
先决条件	ob_unlock
被调用函数	fmc_ready_wait
· 输入参数{in}	
ob_spc	安全保护
FMC_NSPC	无安全保护
FMC_LSPC	低保护级别
FMC_HSPC	高保护级别
输出参数{out}	
-	-
返回值	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>

例如:

/* enable security protection */

fmc_state_enum state = ob_security_protection_config (FMC_USPC);

函数 ob_user_write

函数ob_user_write描述见下表:

表 3-139. 函数 ob_user_write

函数名称	ob_user_write
函数原型	fmc_state_enum ob_user_write(uint8_t ob_user);
功能描述	编辑用户选项字节
先决条件	ob_unlock
被调用函数	fmc_ready_wait
输入参数{in}	

GD32E23x 固件库使用指南

ob_user	用户定义的选项字节
OB_FWDGT_HW	硬件看门狗
OB_DEEPSLEEP_	进入资度睡眠时不复冶
RST	进入深度睡眠时不复位
OB_STDBY_RST	进入深度睡眠时产生复位
OB_BOOT1_SET_1	BOOT1位是1
OB_VDDA_DISABL	1. / Abre 11- Mil III
E	去使能 V_{DDA} 监视器
OB_SRAM_PARITY	使能SRAM奇偶校验
_ENABLE	
输出参数{out}	
-	-
返回值	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>

例如:

/* configure user option byte */

fmc_state_enum state = ob_user_write(OB_FWDGT_HW,OB_DEEPSLEEP_RST,
 OB_STDBY_RST);

函数 ob_data_program

函数ob_data_program描述见下表:

表 3-140. 函数 ob_data_program

<u> </u>	, · · · · _ · · · J · ·	
函数名称	ob_data_program	
函数原型	fmc_state_enum ob_data_program(uint16_t data);	
功能描述	编程数字选项字节	
先决条件	ob_unlock	
被调用函数	fmc_ready_wait	
输入参数{in}		
address	编程数字选项字节地址	
OB_DATA_ADDR0	编程数字选项字节地址0	
OB_DATA_ADDR1	编程数字选项字节地址1	
	输入参数{in}	
data	所编程数值	
	输出参数{out}	
-	-	
返回值		
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>	

例如:

^{/*} program option bytes data */

fmc_state_enum state = ob_data_program (0x56);

函数 ob_user_get

函数ob_user_get描述见下表:

表 3-141. 函数 ob_user_get

NO 6 1.		
函数名称	ob_user_get	
函数原型	uint8_t ob_user_get(void);	
功能描述	获取FMC_OBSTAT寄存器中的用户选项字节	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
uint8_t	选项字节用户数值(0x00 - 0xFF)	

例如:

/* get the FMC user option byte */

uint8_t user = ob_user_get ();

函数 ob_data_get

函数ob_data_get描述见下表:

表 3-142. 函数 ob_data_get

函数名称	ob_data_get	
函数原型	uint16_t ob_data_get(void);	
功能描述	获取FMC_OBSTAT寄存器中的数据选项字节	
先决条件	-	
被调用函数	-	
	输入参数{in}	
-	-	
	输出参数{out}	
-	-	
返回值		
uint16_t	选项字节数据值(0x0 – 0xFFFF)	

例如:

/* get the FMC data option byte */

Uint16_t data = ob_data_get ();

函数 ob_write_protection_get

函数ob_write_protection_get描述见下表:

表 3-143. 函数 ob_write_protection_get

函数名称	ob_write_protection_get	
函数原型	uint16_t ob_write_protection_get(void);	
功能描述	在FMC_WP寄存器中获取FMC可选字节块的擦/写保护位的值	
先决条件	-	
被调用函数	-	
-	-	
	输出参数{out}	
-	-	
返回值		
Uint16_t	选项字节写保护数值(0x0 – 0XFFFF)	

例如:

/* get the FMC option byte write protection */

uint32_t wp = ob_write_protection_get ();

函数 ob_obstat_plevel_get

函数ob_security_protection_flag_get描述见下表:

表 3-144. 函数 ob_obstat_plevel_get

函数名称	ob_obstat_plevel_get	
函数原型	uint32_t ob_obstat_plevel_get(void);	
功能描述	在FMC_OBSTAT寄存器中获取FMC可选字节块的安全保护级别值	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
uint8_t	the value of PLEVEL(0x0,0x01,0x03)	

例如:

/* get the FMC option byte security protection */

uint32_t obstat_plevel = ob_obstat_plevel_get ();

函数 fmc_interrupt_enable

函数fmc_interrupt_enable描述见下表:

表 3-145. 函数 fmc_interrupt_enable

fmc_interrupt_enable	
void fmc_interrupt_enable(uint32_t interrupt);	
使能FMC中断	
-	
-	
输入参数{in}	
FMC中断	
FMC编程完成中断	
FMC错误中断	
输出参数{out}	
-	
返回值	
-	

例如:

/* enable FMC interrupt */

fmc_interrupt_enable(FMC_INT_END);

函数 fmc_interrupt_disable

函数fmc_interrupt_disable描述见下表:

表 3-146. 函数 fmc_interrupt_disable

一	
函数名称	fmc_interrupt_disable
函数原型	<pre>void fmc_interrupt_disable(uint32_t interrupt);</pre>
功能描述	除能FMC中断
先决条件	•
被调用函数	•
输入参数{in}	
interrupt	FMC中断
FMC_INT_END	FMC编程完成中断
FMC_INT_ERR	FMC错误中断
输出参数{out}	
-	•
返回值	
-	-

例如:

/* disable FMC interrupt */

fmc_interrupt_disable(FMC_INT_END);

函数 fmc_flag_get

函数fmc_flag_get描述见下表:

表 3-147. 函数 fmc_flag_get

函数名称	fmc_flag_get
函数原型	FlagStatus fmc_flag_get(uint32_t flag);
功能描述	检查标志是否置位
先决条件	-
被调用函数	-
	输入参数{in}
flag	检查FMC标志
FMC_FLAG_BUSY	FMC忙碌标志
FMC_FLAG_PGER	FMC操作错误标志
R	FMO採作组庆协心
FMC_FLAG_PGAE	FMC给扣对文件指标士
RR	FMC编程对齐错误标志
FMC_FLAG_WPER	FMC写保护错误标志
R	FMU与依护相 医协心
FMC_FLAG_END	FMC操作完成标志
输出参数{out}	
-	-
	返回值
FlagStatus	SET 或 RESET

例如:

/* get FMC flag */

FlagStatus flag = fmc_flag_get(FMC_FLAG_END);

函数 fmc_flag_clear

函数fmc_flag_clear描述见下表:

表 3-148. 函数 fmc_flag_clear

函数名称	fmc_flag_clear
函数原型	<pre>void fmc_flag_clear(uint32_t flag);</pre>
功能描述	写1清除FMC标志
先决条件	-
被调用函数	-
输入参数{in}	
flag	清除FMC标志
FMC_FLAG_PGER	FMC操作错误标志

R		
FMC_FLAG_PGAE	FMC编程对齐错误标志	
RR	FINIC编作列介帕庆你心	
FMC_FLAG_WPER	FMC写保护错误标志	
R	FINIC与床护钳灰你心	
FMC_FLAG_END	FMC操作完成标志	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* clear FMC flag */

FlagStatus flag = fmc_flag_clear(FMC_FLAG_END);

函数 fmc_interrupt_flag_get

函数fmc_interrupt_flag_get描述见下表:

表 3-149. 函数 fmc_interrupt_flag_get

	_	
函数名称	fmc_interrupt_flag_get	
函数原型	FlagStatus fmc_interrupt_flag_get(fmc_interrupt_flag_enum flag);	
功能描述	获取FMC中断标志状态	
先决条件	-	
被调用函数	-	
	输入参数{in}	
flag	中断标志	
FMC_INT_FLAG_P	FMC操作错误标志	
GERR	FINIO探目相 灰体心	
FMC_INT_FLAG_P	FMC编程对齐错误标志	
GAERR	FIMIO编任列 7F铂 庆协心	
FMC_INT_FLAG_W	FMC写保护错误标志	
PERR	FINIO与床》相块你心	
FMC_INT_FLAG_E	FMC操作完成标志	
ND	FINIO狭汗元灰体心	
输出参数{out}		
-		
	返回值	
FlagStatus	SET 或 RESET	

例如:

/* get FMC interrupt flag */

FlagStatus flag = fmc_interrupt_flag_get (FMC_INT_FLAG_PGERR);

函数 fmc_interrupt_flag_clear

函数fmc_interrupt_flag_clear描述见下表:

表 3-150. 函数 fmc_interrupt_flag_clear

函数名称	fmc_interrupt_flag_clear
函数原型	void fmc_interrupt_flag_clear (uint32_t int_flag);
功能描述	通过写1清除FMC中断标志
先决条件	-
被调用函数	-
	输入参数{in}
flag	清除FMC中断标志
FMC_INT_FLAG_P	FMCH/左供出行士
GERR	FMC操作错误标志
FMC_INT_FLAG_P	FMC给扣对文件记行士
GAERR	FMC编程对齐错误标志
FMC_INT_FLAG_W	FMC写伊拉佛温标士
PERR	FMC写保护错误标志
FMC_INT_FLAG_E	FMC操作完成标志
ND	FINIO採什元双物心
输出参数{out}	
-	•
返回值	
-	-

例如:

/* clear FMC interrupt flag */

FlagStatus flag = fmc_interrupt_flag_clear (FMC_INT_FLAG_BANK0_PGERR);

函数 fmc_state_get

函数fmc_state_get描述见下表:

表 3-151. 函数 fmc_state_get

函数名称	fmc_state_get	
函数原型	fmc_state_enum fmc_state_get(void);	
功能描述	获取FMC状态	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
返回值		

fmc_state_enum

FMC状态值,详情参考枚举变量表3-122. 枚举类型fmc state enum

例如:

/* get the FMC state */

fmc_state_enum state = fmc_state_get();

函数 fmc_ready_wait

函数 fmc_ready_wait描述见下表:

表 3-152. 函数 fmc_ready_wait

函数名称	fmc_ready_wait	
函数原型	fmc_state_enum fmc_ready_wait(uint32_t timeout);	
功能描述	检查FMC是否准备好	
先决条件	先决条件 -	
被调用函数	fmc_state_get();	
	输入参数{in}	
timeout	timeout 循环计数次数	
	输出参数{out}	
-		
	返回值	
fmc_state_enum	FMC状态值,详情参考枚举变量 <u>表3-122. 枚举类型fmc state enum</u>	

例如:

/* check whether FMC is ready or not */

fmc_state_enum state = fmc_ready_wait (0x00001000);

3.9. **FWDGT**

独立看门狗定时器(FWDGT)是一个硬件计时电路,用来监测由软件故障导致的系统故障。适合于需要独立环境且对计时精度要求不高的场合。章节<u>3.9.1</u>描述了FWDGT的寄存器列表,章节<u>3.9.2</u>对FWDGT库函数进行说明。

3.9.1. 外设寄存器说明

FWDGT寄存器列表如下表所示:

表 3-153. FWDGT 寄存器

寄存器名称	寄存器描述
FWDGT_CTL	控制寄存器
FWDGT_PSC	预分频寄存器
FWDGT_RLD	重装载寄存器
FWDGT_STAT	状态寄存器

寄存器名称	寄存器描述
FWDGT_WND	窗口寄存器

3.9.2. 外设库函数说明

FWDGT库函数列表如下表所示:

表 3-154. FWDGT 库函数

库函数名称	库函数描述
fudgt write enable	使能对寄存器FWDGT_PSC, FWDGT_RLD和FWDGT_WND
fwdgt_write_enable	的写操作
fundat vurita diaabla	失能对寄存器FWDGT_PSC, FWDGT_RLD和FWDGT_WND
fwdgt_write_disable	的写操作
fwdgt_enable	使能FWDGT
fwdgt_prescaler_value_config	配置独立看门狗定时器时钟预分频数
fwdgt_reload_value_config	配置独立看门狗定时器计数器重装载值
fwdgt_window_value_config	配置独立看门狗定时器计数窗口值
fwdgt_counter_reload	按照FWDGT_RLD寄存器的值重装载FWDG计数器
fwdgt_config	设置FWDGT重装载值、预分频值
fwdgt_flag_get	获取FWDGT标志位状态

函数 fwdgt_write_enable

函数fwdgt_write_enable描述见下表:

表 3-155. 函数 fwdgt_write_enable

77		
函数名称	fwdgt_write_enable	
函数原型 void fwdgt_write_enable(void);		
功能描述	使能对寄存器FWDGT_PSC, FWDGT_RLD和FWDGT_WND的写操作	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-		
返回值		
	-	

例如:

/* enable write access to FWDGT_PSC and FWDGT_RLD and FWDGT_WND */ fwdgt_write_enable ();

函数 fwdgt_write_disable

函数fwdgt_write_disable描述见下表:

表 3-156. 函数 fwdgt_write_disable

函数名称	fwdgt_write_disable		
函数原型	void fwdgt_write_disable(void);		
功能描述	除能对寄存器FWDGT_PSC, FWDGT_RLD和FWDGT_WND的写操作		
先决条件	-		
被调用函数	-		
	输入参数{in}		
-	-		
	输出参数{out}		
返回值			
-			

例如:

/* disable write access to FWDGT_PSC,FWDGT_RLD and FWDGT_WND */

fwdgt_write_disable ();

函数 fwdgt_enable

函数fwdgt_enable描述见下表:

表 3-157. 函数 fwdgt enable

次 0 101. Max Iwagi_chable		
函数名称	fwdgt_enable	
函数原型	void fwdgt_enable(void);	
功能描述	使能FWDGT	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* start the FWDGT counter */

fwdgt_enable ();

函数 fwdgt_prescaler_value_config

函数fwdgt_prescaler_value_config描述见下表:

表 3-158. 函数 fwdgt_prescaler_value_config

-			
函数名称	fwdgt_prescaler_value_config		
函数原型	ErrStatus fwdgt_prescaler_value_config(uint16_t prescaler_value);		
功能描述	配置独立看门狗定时器时钟预分频数		
先决条件	-		
被调用函数	-		
	输入参数{in}		
prescaler_value	预分频值		
FWDGT_PSC_DIVx	FWDGT预分频值设为x(x=4,8,16,32,64,128,256)		
	输出参数{out}		
-			
	返回值		
ErrStatus	ERROR / SUCCESS		

例如:

/* set FWDGT prescaler to 4 */

ErrStatus flag;

flag = fwdgt_prescaler_value_config (FWDGT_PSC_DIV4);

函数 fwdgt_reload_value_config

函数fwdgt_reload_value_config描述见下表:

表 3-159. 函数 fwdgt_reload_value_config

表 o roo. 因象 rinage_roioaa_valuo_comig		
函数名称	fwdgt_reload_value_config	
函数原型	i数原型 ErrStatus fwdgt_reload_value_config(uint16_t reload_value);	
功能描述	配置独立看门狗定时器计数器重装载值	
先决条件	-	
被调用函数	-	
输入参数{in}		
reload_value	重装载值,数值范围为0x0000 - 0x0FFF	
输出参数{out}		
-	-	
返回值		
ErrStatus	ERROR / SUCCESS	

例如:

/* set FWDGT reload value to 0xFFF */

ErrStatus flag;

flag = fwdgt_reloadr_value_config (0xFFF);

函数 fwdgt_window_value_reload

函数fwdgt_window_value_config描述见下表:

表 3-160. 函数 fwdgt_window_value_config

→ 水は、たってし		
函数名称	fwdgt_window_value_config	
函数原型	ErrStatus fwdgt_window_value_config(uint16_t window_value);	
功能描述	配置独立看门狗定时器计数器窗口值	
先决条件	-	
被调用函数	-	
输入参数{in}		
window_value	窗口值,数值范围为 0x0000 – 0x0FFF	
输出参数{out}		
-	-	
ErrStatus	ERROR / SUCCESS	

例如:

/* set FWDGT window value to 0xFFF */

ErrStatus flag;

flag = fwdgt_window_value_config (0xFFF);

函数 fwdgt_counter_reload

函数fwdgt_counter_reload描述见下表:

表 3-161. 函数 fwdgt_counter_reload

函数名称	fwdgt_counter_reload	
函数原型	void fwdgt_counter_reload(void);	
功能描述	按照FWDGT_RLD寄存器的值重装载FWDG计数器	
先决条件	-	
被调用函数	-	
	输入参数{in}	
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* reload FWDGT counter */

fwdgt_counter_reload ();

函数 fwdgt_config

函数fwdgt_config描述见下表:

表 3-162. 函数 fwdgt_config

函数名称	fwdgt_config
函数原型	ErrStatus fwdgt_config(uint16_t reload_value, uint8_t prescaler_div);
功能描述	设置FWDGT重装载值、预分频值
先决条件	-
被调用函数	-
	输入参数{in}
reload_value	重装载值(0x0000 - 0x0FFF)
	输入参数{in}
prescaler_div	FWDGT预分频值
FWDGT_PSC_DIV4	FWDGT预分频值设为4
FWDGT_PSC_DIV8	FWDGT预分频值设为8
FWDGT_PSC_DIV1	FWDGT预分频值设为16
6	FWDGTI灰为频值设为TO
FWDGT_PSC_DIV3	FWDGT预分频值设为32
2	1 WDOTIX7/然直及/302
FWDGT_PSC_DIV6	FWDGT预分频值设为64
4	T WEST IN TO SEE A STATE OF THE SECOND SECON
FWDGT_PSC_DIV1	FWDGT预分频值设为128
28	
FWDGT_PSC_DIV2	FWDGT预分频值设为256
56	
	输出参数{out}
-	-
	返回值
ErrStatus	ERROR or SUCCESS-

例如:

/* confiure FWDGT counter clock: 40KHz(IRC40K) / 64 = 0.625 KHz */

fwdgt_config(2*500, FWDGT_PSC_DIV64);

函数 fwdgt_flag_get

函数fwdgt_flag_get描述见下表:

表 3-163. 函数 fwdgt_flag_get

函数名称	fwdgt_flag_get
函数原型	FlagStatus fwdgt_flag_get(uint16_t flag);

功能描述	获取FWDGT标志位状态	
先决条件	-	
被调用函数	-	
	输入参数{in}	
flag	需要获取状态的FWDGT标志位	
FWDGT_FLAG_PUD	预分频值更新进行中	
FWDGT_FLAG_RU	重装载值更新进行中	
D	里农致徂史初 <i>过</i> 17 中	
FWDGT_FLAG_WU	空口店再实进气中	
D	窗口值更新进行中	
	输出参数{out}	
-	-	
	返回值	
FlagStatus	SET / RESET	

/* test if a prescaler value update is on going */

FlagStatus status;

status = fwdgt_flag_get (FWDGT_FLAG_PUD);

3.10. GPIO

GPIO用来实现各片上设备的逻辑输入/输出功能。章节<u>3.10.1</u>描述了GPIO的寄存器列表,章节<u>3.10.2</u>对GPIO库函数进行说明。

3.10.1. 外设寄存器说明

GPIO寄存器列表如下表所示:

表 3-164. GPIO 寄存器

寄存器名称	寄存器描述
GPIOx_CTL	端口控制寄存器
GPIOx_OMODE	端口输出模式寄存器
GPIOx_OSPD0	端口输出速度寄存器0
GPIOx_PUD	端口上拉/下拉寄存器
GPIOx_ISTAT	端口输入状态寄存器
GPIOx_OCTL	端口输出控制寄存器
GPIOx_BOP	端口位操作寄存器
GPIOx_LOCK	端口配置锁定寄存器
GPIOx_AFSEL0	备用功能选择寄存器0
GPIOx_AFSEL1	备用功能选择寄存器1

寄存器名称	寄存器描述
GPIOx_BC	位清除寄存器
GPIOx_TG	端口位翻转寄存器

3.10.2. 外设库函数说明

GPIO库函数列表如下表所示:

表 3-165. GPIO 库函数

库函数名称	库函数描述
gpio_deinit	复位外设GPIOx
gpio_mode_set	设置GPIO模式
gpio_output_options_set	设置GPIO输出模式和速度
gpio_bit_set	置位引脚值
gpio_bit_reset	复位引脚值
gpio_bit_write	将特定的值写入引脚
gpio_port_write	将特定的值写入一组端口
gpio_input_bit_get	获取引脚的输入值
gpio_input_port_get	获取一组端口的输入值
gpio_output_bit_get	获取引脚的输出值
gpio_output_port_get	获取一组端口的输出值
gpio_af_set	设置GPIO复用功能
gpio_pin_lock	相应的引脚配置被锁定
gpio_bit_toggle	翻转GPIO引脚状态
gpio_port_toggle	翻转一组GPIO状态

函数 gpio_deinit

函数gpio_deinit描述见下表:

表 3-166. 函数 gpio_deinit

* o ree. HX Shio-reemit			
函数名称	gpio_deinit		
函数原型	void gpio_deinit(uint32_t gpio_periph);		
功能描述	复位外设GPIOx		
先决条件	-		
被调用函数	rcu_periph_reset_enable / rcu_periph_reset_disable		
gpio_periph	GPIO端口		
GPIOx	端口选择(x = A,B,C,F)		
输出参数{out}			
-	-		
	返回值		
-	-		

/* reset GPIOA */

gpio_deinit (GPIOA);

函数 gpio_mode_set

函数gpio_mode_set描述见下表:

表 3-167. 函数 gpio_mode_set

表 3-16/. 函数 gpio_mode_set			
函数名称	gpio_mode_set		
函数原型	void gpio_mode_set(uint32_t gpio_periph, uint32_t mode, uint32_t		
因奴从主	pull_up_down, uint32_t pin);		
功能描述	设置GPIO模式		
先决条件	-		
被调用函数	rcu_periph_reset_enable / rcu_periph_reset_disable		
	输入参数{in}		
gpio_periph	GPIO端口		
GPIOx	GPIOx(x = A,B,C,F)		
	输入参数{in}		
mode	GPIO引脚模式		
GPIO_MODE_INPU	输入模式		
GPIO_MODE_OUTP	Ŷ U		
Т	加山灰八		
GPIO_MODE_AF	备用功能模式		
GPIO_MODE_ANAL	·O 模拟模式		
G	MANA		
	输入参数{in}		
pull_up_down	GPIO引脚上拉下拉电阻设置		
GPIO_PUPD_NON	是 悬空模式,无上拉和下拉		
GPIO_PUPD_PULLU	#上拉电阻		
GPIO_PUPD_PULLE	DO 帯下拉电阻		
WN	16 1 757 (177		
	输入参数{in}		
pin	GPIO pin		
GPIO_PIN_x	引脚选择(x=015) (GD32E231上不存在PB9/PC13)		
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)		
输出参数{out}			
-	-		
	返回值		
-	-		

例如:

gpio_mode_set (GPIOA, GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, GPIO_PIN_0);

函数 gpio_output_options_set

函数gpio_output_options_set描述见下表:

表 3-168. 函数 gpio_output_options_set

函数名称	gpio_output_options_set	
्र थे स्ट को	void gpio_output_options_set(uint32_t gpio_periph, uint8_t otype, uint32_t	
函数原型	speed, uint32_t pin);	
功能描述	设置GPIO输出模式和速度	
先决条件	-	
被调用函数	-	
	输入参数{in}	
gpio_periph	GPIO端口	
GPIOx	端口选择(x = A,B,C,F)	
	输入参数{in}	
otype	GPIO引脚输出模式	
GPIO_OTYPE_PP	推挽输出模式	
GPIO_OTYPE_OD	开漏输出模式	
	输入参数{in}	
speed	GPIO引脚输出最大速度	
GPIO_OSPEED_2M	最大输出速度为2MHz	
HZ	取入制凸坯/及 <i>內ZI</i> IIIIZ	
GPIO_OSPEED_10	目上4人山生成火40441	
MHZ	最大输出速度为10MHz	
GPIO_OSPEED_50	最大输出速度为 50MHz	
MHZ	取入側山还及 为Joivii i Z	
	输入参数{in}	
pin	GPIO引脚	
GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9/PC13)	
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* 配置PA0工作于推挽输出模式 */

gpio_output_options_set (GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN_0);

函数 gpio_bit_set

函数gpio_bit_set描述见下表:

表 3-169. 函数 gpio_bit_set

函数名称	gpio_bit_set		
函数原型	void gpio_bit_set(uint32_t gpio_periph,uint32_t pin);		
功能描述	置位引脚值		
先决条件	-		
被调用函数	-		
	输入参数{in}		
gpio_periph	GPIO端口		
GPIOx	端口选择(x = A,B,C,F)		
	输入参数{in}		
pin	GPIO引脚		
GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9/PC13)		
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)		
	输出参数{out}		
-	- -		
	返回值		
-	-		

例如:

/* set PA0*/

gpio_bit_set (GPIOA, GPIO_PIN_0);

函数 gpio_bit_reset

函数gpio_bit_reset描述见下表:

表 3-170. 函数 gpio_bit_reset

次 0-170. My gpio_bit_icaet		
函数名称	gpio_bit_reset	
函数原型	void gpio_bit_reset(uint32_t gpio_periph,uint32_t pin);	
功能描述	复位引脚值	
先决条件	-	
被调用函数	-	
输入参数{in}		
gpio_periph	GPIO端口	
GPIOx	端口选择(x = A,B,C,F)	
输入参数{in}		
pin	GPIO引脚	
GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9/PC13)	
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)	
输出参数{out}		

-	-
返回值	
-	-

/* reset PA0*/

gpio_bit_set (GPIOA, GPIO_PIN_0);

函数 gpio_bit_write

函数gpio_bit_write描述见下表:

表 3-171. 函数 gpio_bit_write

<u> </u>	ス・ハ・		
函数名称	gpio_bit_write		
函数原型	void gpio_bit_write(uint32_t gpio_periph,uint32_t pin,bit_status bit_value);		
功能描述	将特定的值写入引脚		
先决条件	-		
被调用函数	-		
	输入参数{in}		
gpio_periph	GPIO端口		
GPIOx	端口选择(x = A,B,C,F)		
	输入参数{in}		
pin	GPIO引脚		
GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9/PC13)		
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)		
	输入参数{in}		
bit_value	设置或清除		
RESET	清除引脚值		
SET	设置引脚值		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* write 1 to PA0*/

gpio_bit_write (GPIOA, GPIO_PIN_0, SET);

函数 gpio_port_write

函数gpio_port_write描述见下表:

表 3-172. 函数 gpio_port_write

函数名称	gpio_port_write	
函数原型	void gpio_port_write(uint32_t gpio_periph,uint16_t data);	
功能描述	将特定的值写入端口	
先决条件	-	
被调用函数	-	
	输入参数{in}	
gpio_periph	GPIO端口	
GPIOx	端口选择(x = A,B,C,F)	
输入参数{in}		
data	将要写入的具体值	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* write 1010 0101 1010 0101 to Port A */

gpio_port_write (GPIOA, 0xA5A5);

函数 gpio_input_bit_get

函数gpio_input_bit_get描述见下表:

表 3-173. 函数 gpio_input_bit_get

	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
函数名称	gpio_input_bit_get
函数原型	FlagStatus gpio_input_bit_get(uint32_t gpio_periph,uint32_t pin);
功能描述	获取引脚的输入值
先决条件	-
被调用函数	-
	输入参数{in}
gpio_periph	GPIO端口
GPIOx	端口选择(x = A,B,C,F)
	输入参数{in}
pin	GPIO引脚
GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9/PC13)
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)
	输出参数{out}
-	-
返回值	
FlagStatus	SET / RESET
	•

例如:

/* get status of PA0*/

FlagStatus bit_state;

bit_state = gpio_input_bit_get (GPIOA, GPIO_PIN_0);

函数 gpio_input_port_get

函数gpio_input_port_get描述见下表:

表 3-174. 函数 gpio_input_port_get

	_ 1 _ 1 _ 20	
函数名称	gpio_input_port_get	
函数原型	uint16_t gpio_input_port_get(uint32_t gpio_periph);	
功能描述	获取端口的输入值	
先决条件	-	
被调用函数	-	
	输入参数{in}	
gpio_periph	GPIO端口	
GPIOx	端口选择(x = A,B,C,F)	
	输出参数{out}	
-	-	
	返回值	
uint16_t	0x0000-0xFFFF	

例如:

/* get input value of Port A */

uint16_t port_state;

port_state = gpio_input_bit_get (GPIOA);

函数 gpio_output_bit_get

函数gpio_output_bit_get描述见下表:

表 3-175. 函数 gpio_output_bit_get

函数名称	gpio_output_bit_get
函数原型	FlagStatus gpio_output_bit_get(uint32_t gpio_periph,uint32_t pin);
功能描述	获取引脚的输出值
先决条件	-
被调用函数	-
输入参数{in}	
gpio_periph	GPIO端口
GPIOx	端口选择(x = A,B,C,F)
输入参数{in}	
pin	GPIO引脚

GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9/PC13)
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)
输出参数{out}	
-	-
返回值	
FlagStatus	SET / RESET

/* get output status of PA0 */

FlagStatus bit_state;

bit_state = gpio_output_bit_get (GPIOA, GPIO_PIN_0);

函数 gpio_output_port_get

函数gpio_output_port_get描述见下表:

表 3-176. 函数 gpio_output_port_get

农 5-176. 函数 gpio_output_port_get			
函数名称	gpio_output_port_get		
函数原型	uint16_t gpio_output_port_get(uint32_t gpio_periph);		
功能描述	获取引脚的输出值		
先决条件	-		
被调用函数	-		
	输入参数{in}		
gpio_periph	GPIO端口		
GPIOx	端口选择(x = A,B,C,F)		
输出参数{out}			
-	-		
返回值			
uint16_t	0x0000-0xFFFF		
	·		

例如:

/* get output value of Port A */

uint16_t port_state;

port_state = gpio_output_port_get (GPIOA);

函数 gpio_af_set

函数gpio_af_set描述见下表:

表 3-177. 函数 gpio_af_set

函数名称	gpio_af_set
函数原型	void gpio_af_set(uint32_t gpio_periph, uint32_t alt_func_num, uint32_t pin);

功能描述	设置GPIO的备用功能	
先决条件	-	
被调用函数	-	
输入参数{in}		
gpio_periph	GPIO 端口	
GPIOx	GPIOx(x = A,B,C)	
	输入参数{in}	
alt_func_num	GPIO 引脚备用功能, 请参见特定设备的数据手册	
GPIO AF 0	TIMER13, TIMER14, TIMER16, SPI0, SPI1, I2S0, CK_OUT, USART0,	
01 10_A1 _0	I2C0, I2C1, SWDIO, SWCLK	
GPIO_AF_1	USARTO, USART1, TIMER2, TIMER14, I2C0, I2C1	
GPIO_AF_2	TIMER0, TIMER1, TIMER15, TIMER16, I2S0	
GPIO_AF_3	I2C0, TIMER14	
GPIO_AF_4 (port A,E	USART1, I2C0, I2C1, TIMER13	
only)	ODAINT I, IZOU, IZOT, TIMEINTO	
GPIO_AF_5 (port A,E	TIMER15, TIMER16, I2S0	
only)	THWERTO, THWERTO, 1200	
GPIO_AF_6 (port A,E	SPI1	
only)	G	
GPIO_AF_7 (port A,E	S CMP	
only)	C.III	
	输入参数{in}	
pin	GPIO引脚	
GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9/PC13)	
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)	
输出参数{out}		
-	-	
	返回值	
-	-	

/*set PA0 alternate function 0*/

gpio_af_set(GPIOA, GPIO_AF_0, GPIO_PIN_0);

函数 gpio_pin_lock

函数gpio_pin_lock描述见下表:

表 3-178. 函数 gpio_pin_lock

函数名称	gpio_pin_lock
函数原型	void gpio_pin_lock(uint32_t gpio_periph,uint32_t pin);
功能描述	相应的引脚配置被锁定
 先决条件	-

被调用函数	-	
输入参数{in}		
gpio_periph	GPIO端口	
GPIOx	端口选择(x = A,B)	
输入参数{in}		
pin	GPIO引脚	
GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9)	
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9)	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* lock PA0 */

gpio_pin_lock (GPIOA, GPIO_PIN_0);

函数 gpio_bit_toggle

函数gpio_bit_toggle描述见下表:

表 3-179. 函数 gpio_bit_toggle

те не дж эрн		
函数名称	gpio_bit_toggle	
函数原型	void gpio_bit_toggle(uint32_t gpio_periph, uint32_t pin);	
功能描述	翻转GPIO引脚状态	
先决条件	-	
被调用函数	-	
输入参数{in}		
gpio_periph	GPIOx(x = A,B,C,F)	
GPIOx	GPIOx(x = A,B,C,F)	
	输入参数{in}	
pin	GPIO引脚	
GPIO_PIN_x	引脚选择 (x=015) (GD32E231上不存在PB9/PC13)	
GPIO_PIN_ALL	所有引脚(GD32E231上不存在PB9/PC13)	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* 翻转PA0 */

gpio_bit_toggle (GPIOA, GPIO_ PIN_0);

函数 gpio_port_toggle

函数gpio_port_toggle描述见下表:

表 3-180. 函数 gpio_port_toggle

函数名称	gpio_port_toggle	
函数原型	void gpio_port_toggle(uint32_t gpio_periph);	
功能描述	翻转一组GPIO状态	
先决条件	-	
被调用函数	-	
gpio_periph	GPIO端口	
GPIOx	GPIOx(x = A,B,C,F)	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* toggle GPIOA*/

gpio_port_toggle (GPIOA);

3.11. I2C

I2C (内部集成电路总线) 模块提供了符合工业标准的两线串行制接口,可用于MCU和外部I2C 设备的通讯。章节<u>3.11.1</u>描述了I2C的寄存器列表,章节<u>3.11.2</u>对I2C库函数进行说明。

3.11.1. 外设寄存器说明

I2C寄存器列表如下表所示:

表 3-181. I2C 寄存器

寄存器名称	寄存器描述
I2C_CTL0	控制寄存器0
I2C_CTL1	控制寄存器1
I2C_SADDR0	从机地址寄存器0
I2C_SADDR1	从机地址寄存器1
I2C_DATA	传输缓冲区寄存器
I2C_STAT0	传输状态寄存器0
I2C_STAT1	传输状态寄存器1
I2C_CKCFG	时钟配置寄存器
I2C_RT	上升时间寄存器
I2C_SAMCS	SAM控制状态寄存器

寄存器名称	寄存器描述
I2C_FMPCFG	快速+ 模式配置寄存器

3.11.2. 外设库函数说明

I2C库函数列表如下表所示:

表 3-182. I2C 库函数

库函数名称	库函数描述
i2c_deinit	复位外设I2C
i2c_clock_config	配置12C时钟
i2c_mode_addr_config	配置I2C地址
i2c_smbus_type_config	SMBus类型选择
i2c_ack_config	是否发送ACK
i2c_ackpos_config	ACK位置配置
i2c_master_addressing	主机发送从机地址
i2c_dualaddr_enable	双地址模式使能
i2c_dualaddr_disable	双地址模式禁能
i2c_enable	使能I2C模块
i2c_disable	关闭 I2C 模块
i2c_start_on_bus	在I2C总线上生成起始位
i2c_stop_on_bus	在I2C总线上生成停止位
i2c_data_transmit	发送数据
i2c_data_receive	接收数据
i2c_dma_config	配置I2C DMA模式
i2c_dma_last_transfer_config	配置下一个DMA EOT是否最后一次传输
i2c_stretch_scl_low_config	当从机数据没有准备好时是否拉低SCL
i2c_slave_response_to_gcall_config	从机是否响应广播呼叫
i2c_software_reset_config	配置12C软件复位
i2c_pec_config	配置报文错误校验
i2c_pec_transfer_config	配置传输PEC值
i2c_pec_value_get	获取报文错误校验值
i2c_smbus_alert_config	配置通过SMBA引脚发送警告
i2c_smbus_arp_config	配置SMBus下ARP协议
i2c_sam_enable	使能SAM_V接口
i2c_sam_disable	关闭SAM_V接口
i2c_sam_timeout_enable	使能SAM_V接口超时检测
i2c_sam_timeout_disable	关闭SAM_V接口超时检测
i2c_flag_get	获取I2C标志位
i2c_flag_clear	清除I2C标志位
i2c_interrupt_enable	使能I2C中断
<u>-</u>	
i2c_interrupt_disable	禁能I2C中断

库函数名称	库函数描述
i2c_interrupt_flag_clear	清除I2C中断标志位

函数 i2c_deinit

函数i2c_deinit描述见下表:

表 3-183. 函数 i2c_deinit

i2c_deinit		
<pre>void i2c_deinit(uint32_t i2c_periph);</pre>		
复位外设I2C		
-		
rcu_periph_reset_enable / rcu_periph_reset_disable		
输入参数{in}		
I2C外设		
(x=0,1)		
·····································		
-		
返回值		
-		

例如:

/* reset I2C0 */

i2c_deinit (I2C0);

函数 i2c_clock_config

函数i2c_clock_config描述见下表:

表 3-184. 函数 i2c_clock_config

K to it		
i2c_clock_config		
void i2c_clock_config(uint32_t i2c_periph, uint32_t clkspeed, uint32_t dutycyc);		
配置12C时钟		
-		
rcu_clock_freq_get		
输入参数{in}		
I2C外设		
(x=0,1)		
输入参数{in}		
i2c时钟速率		
输入参数{in}		
快速模式下占空比		
T_low/T_high=2		
T_low/T_high=16/9		

输出参数{out}	
-	-
返回值	
-	-

/* configure I2C0 clock speed as 100KHz*/

i2c_clock_config(I2C0, 100000, I2C_DTCY_2);

函数 i2c_mode_addr_config

函数i2c_mode_addr_config描述见下表:

表 3-185. 函数 i2c mode addr config

衣 3-185. 函数 IZC_	inode_addr_comig		
函数名称	i2c_mode_addr_config		
≅₩ 百	void i2c_mode_addr_config(uint32_t i2c_periph, uint32_t mode, uint32_t		
函数原型	addformat, uint32_t addr);		
功能描述	配置I2C地址		
先决条件	-		
被调用函数	-		
	输入参数{in}		
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
	输入参数{in}		
i2cmod	模式选择		
I2C_I2CMODE_EN	100 to 4		
ABLE	I2C 模式		
I2C_SMBUSMODE	SMBus 模式		
_ENABLE	SMBUS 悮八		
	输入参数{in}		
addformat	7bits 或 10bits		
I2C_ADDFORMAT_	니네 네 수선 수는 사고 가고 : 4.~		
7BITS	地址格式为7bits		
I2C_ADDFORMAT_	地址格式为10bits		
10BITS	地址恰式为TODIIS		
	输入参数{in}		
addr	I2C地址:		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* configure I2C0 address as 0x82, using 7 bits */

i2c_mode_addr_config(I2C0, I2C_I2CMODE_ENABLE, I2C_ADDFORMAT_7BITS, 0x82);

函数 i2c_smbus_type_config

函数i2c_smbus_type_config描述见下表:

表 3-186. 函数 i2c_smbus_type_config

函数名称	i2c_smbus_type_config	
函数原型	void i2c_smbus_type_config(uint32_t i2c_periph, uint32_t type);	
功能描述	SMBus类型选择	
先决条件	-	
被调用函数	-	
	输入参数{in}	
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
	输入参数{in}	
type	主机或从机	
I2C_SMBUS_DEVI	从机	
CE	MIL	
I2C_SMBUS_HOST	主机	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* config I2C0 as SMBUS host type */

i2c_smbus_type_config (I2C0, I2C_SMBUS_HOST);

函数 i2c_ack_config

函数i2c_ack_config描述见下表:

表 3-187. 函数 i2c_ack_config

函数名称	i2c_ack_config
函数原型	void i2c_ack_config(uint32_t i2c_periph, uint32_t ack);
功能描述	是否发送ACK
先决条件	-
被调用函数	-
输入参数{in}	
i2c_periph	I2C外设
I2Cx	(x=0,1)

输入参数{in}			
ack	是否发送ACK		
I2C_ACK_ENABLE	ACK会被发送		
I2C_ACK_DISABLE	ACK不会发送		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* I2C0 will sent ACK */

i2c_ack_config (I2C0, I2C_ACK_ENABLE);

函数 i2c_ackpos_config

函数i2c_ackpos_config描述见下表:

表 3-188. 函数 i2c_ackpos_config

从 0-100. 函数 120_	.uopoo_oog		
函数名称	i2c_ackpos_config		
函数原型	void i2c_ackpos_config(uint32_t i2c_periph, uint32_t pos);		
功能描述	ACK位置配置		
先决条件	-		
被调用函数	-		
	输入参数{in}		
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
	输入参数{in}		
pos	ACK位置		
I2C_ACKPOS_CUR RENT	当前正在接收的字节是否发送ACK		
I2C_ACKPOS_NEX T	下一个接收的字节是否发送ACK		
输出参数{out}			
-	-		
	返回值		
-	-		

例如:

/*The ACK of I2C0 is send for the current frame */

i2c_ackpos_config (I2C0, I2C_ACKPOS_CURRENT);

函数 i2c_master_addressing

函数i2c_master_addressing描述见下表:

表 3-189. 函数 i2c_master_addressing

函数名称	i2c_master_addressing	
函数原型	void i2c_master_addressing (uint32_t i2c_periph, uint32_t addr)	
功能描述	主机发送从机地址	
先决条件	-	
被调用函数	-	
	输入参数{in}	
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
输入参数{in}		
addr	从机地址	
	输入参数{in}	
trandirection	发送或接收	
I2C_TRANSMITTE	发送	
R	及达	
I2C_RECEIVER	接收	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* send slave address to I2C bus and I2C0 act as receiver */

i2c_master_addressing(I2C0, 0x82, I2C_RECEIVER);

函数 i2c_dualaddr_enable

函数i2c_dualaddr_enable描述见下表:

表 3-190. 函数 i2c_dualaddr_enable

函数名称	i2c_dualaddr_enable	
函数原型	void i2c_dualaddr_enable(uint32_t i2c_periph, uint32_t addr);	
功能描述	双地址模式使能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
输入参数{in}		
addr	双地址模式下第二个地址	

输出参数{out}	
-	-
返回值	
-	-

/* enable I2C0 dual-address */

i2c_dualaddr_enable (I2C0, 0x80);

函数 i2c_dualaddr_disable

函数i2c_dualaddr_disable描述见下表:

表 3-191. 函数 i2c dualaddr disable

i2c_dualaddr_disable		
void i2c_dualaddr_disable(uint32_t i2c_periph)		
双地址模式禁能		
-		
-		
输入参数{in}		
I2C外设		
(x=0,1)		
输出参数{out}		
-		
返回值		
-		

例如:

/* disable dual-address mode */

i2c_dualaddr_disable (I2C0);

函数 i2c_enable

函数i2c_enable描述见下表:

表 3-192. 函数 i2c_enable

••• • • • • • • • • • • • • • • • • •	
函数名称	i2c_enable
函数原型	void i2c_enable(uint32_t i2c_periph);
功能描述	使能 I2C 模块
先决条件	-
被调用函数	-
输入参数{in}	
i2c_periph	I2C外设

I2Cx	(x=0,1)	
输出参数{out}		
-	-	
返回值		
-	-	

/* enable I2C0 */

i2c_enable (I2C0);

函数 i2c_disable

函数i2c_disable描述见下表:

表 3-193. 函数 i2c_disable

74 - 1001 A A A A A B	_	
函数名称	i2c_disable	
函数原型	void i2c_disable(uint32_t i2c_periph);	
功能描述	禁能I2C模块	
先决条件	-	
被调用函数	-	
输入参数{in}		
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* disable I2C0 */

i2c_disable (I2C0);

函数 i2c_start_on_bus

函数i2c_start_on_bus描述见下表:

表 3-194. 函数 i2c_start_on_bus

函数名称	i2c_start_on_bus
函数原型	void i2c_start_on_bus(uint32_t i2c_periph);
功能描述	在I2C总线上生成起始位
先决条件	-
被调用函数	-
输入参数{in}	

i2c_periph	I2C外设
I2Cx	(x=0,1)
输出参数{out}	
-	-
返回值	
-	-

/* I2C0 send a start condition to I2C bus */

i2c_start_on_bus (I2C0);

函数 i2c_stop_on_bus

函数i2c_stop_on_bus描述见下表:

表 3-195. 函数 i2c_stop_on_bus

火 0 :00: 因		
函数名称	i2c_stop_on_bus	
函数原型	void i2c_stop_on_bus(uint32_t i2c_periph);	
功能描述	在I2C总线上生成停止位	
先决条件	-	
被调用函数	-	
输入参数{in}		
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* I2C0 generate a STOP condition to I2C bus */

i2c_stop_on_bus (I2C0);

函数 i2c_data_transmit

函数i2c_data_transmit描述见下表:

表 3-196. 函数 i2c_data_transmit

函数名称	i2c_data_transmit
函数原型	void i2c_data_transmit(uint32_t i2c_periph, uint8_t data);
功能描述	发送数据
先决条件	-
被调用函数	-

	输入参数{in}	
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
data	传输的数据	
	·····································	
-	-	
返回值		
-	-	

/* I2C0 transmit data */

i2c_data_transmit (I2C0, 0x80);

函数 i2c_data_receive

函数i2c_data_receive描述见下表:

表 3-197. 函数 i2c_data_receive

函数名称	i2c_data_receive	
函数原型	uint8_t i2c_data_receive(uint32_t i2c_periph);	
功能描述	接收数据	
先决条件	-	
被调用函数	-	
输入参数{in}		
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
	输出参数{out}	
-	-	
返回值		
uint8_t	0x000xFF	

例如:

/* I2C0 receive data */

uint8_t i2c_receiver;

i2c_receiver = i2c_data_receive (I2C0);

函数 i2c_dma_config

函数i2c_dma_config描述见下表:

表 3-198. 函数 i2c_dma_config

函数原型	void i2c_dma_config(uint32_t i2c_periph, uint32_t dmastate);
功能描述	配置I2C DMA模式
先决条件	-
被调用函数	-
输入参数{in}	
i2c_periph	I2C外设
I2Cx	(x=0,1)
输入参数{in}	
dmastate	开启或关闭
I2C_DMA_ON	DMA模式开启
I2C_DMA_OFF	DMA模式关闭
输出参数{out}	
-	-
返回值	
-	-

/* I2C0 DMA mode enable */

i2c_dma_config (I2C0, I2C_DMA_ON);

函数 i2c_dma_last_transfer_congig

函数i2c_dma_last_transfer_config描述见下表:

表 3-199. 函数 i2c_dma_last_transfer_config

i2c_dma_last_transfer_config	
void i2c_dma_last_transfer_config(uint32_t i2c_periph, uint32_t dmalast);	
配置下一个DMA EOT是否是DMA最后一次传输	
-	
-	
I2C外设	
(x=0,1)	
输入参数{in}	
下一个DMA EOT是否是DMA最后一次传输	
下一个DMA EOT是DMA最后一次传输	
下一个DMA EOT不是DMA最后一次传输	
输出参数{out}	
-	
返回值	
-	

例如:

/* next DMA EOT is the last transfer */

i2c_dma_last_transfer_config (I2C0, I2C_DMALST_ON);

函数 i2c_stretch_scl_low_config

函数i2c_stretch_scl_low_config描述见下表:

表 3-200. 函数 i2c_stretch_scl_low_config

函数名称	i2c_stretch_scl_low_config	
函数原型	void i2c_stretch_scl_low_config(uint32_t i2c_periph, uint32_t stretchpara);	
功能描述	在从机模式下数据没有准备好时是否拉低SCL	
先决条件	-	
被调用函数	-	
	输入参数{in}	
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
	输入参数{in}	
stretchpara	是否拉低SCL	
I2C_SCLSTRETCH	拉低SCL	
_ENABLE	1½ IKSOL	
I2C_SCLSTRETCH	不拉低SCL	
_DISABLE		
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* stretch SCL low when data is not ready in slave mode */

i2c_stretch_scl_low_config (I2C0, I2C_SCLSTRETCH_ENABLE);

函数 i2c_slave_response_to_gcall_config

函数i2c_slave_response_to_gcall_config描述见下表:

表 3-201. 函数 i2c_slave_response_to_gcall_config

函数名称	i2c_slave_response_to_gcall_config
函数原型	void i2c_slave_response_to_gcall_config(uint32_t i2c_periph, uint32_t
	gcallpara);
功能描述	从机是否响应广播呼叫
先决条件	-
被调用函数	-
输入参数{in}	

GD32E23x 固件库使用指南

I2C外设				
(x=0,1)				
输入参数{in}				
是否响应广播呼叫				
从机响应广播呼叫				
	U to Z mi 본 은 포마하마			
从机不响应广播呼叫				
输出参数{out}				
-				
返回值				
-				

例如:

/* I2C0 will response to a general call */

i2c_slave_response_to_gcall_config (I2C0, I2C_GCEN_ENABLE);

函数 i2c_software_reset_config

函数i2c_software_reset_config描述见下表:

表 3-202. 函数 i2c_software_reset_config

i2c_software_reset_config			
void i2c_software_reset_config(uint32_t i2c_periph, uint32_t sreset);			
配置I2C软件复位			
-			
-			
输入参数{in}			
I2C外设			
(x=0,1)			
输入参数{in}			
是否复位			
复位			
没有复位			
仅有友位			
输出参数{out}			
•			
返回值			
-			

例如:

/* software reset I2C0*/

i2c_software_reset_config (I2C0, I2C_SRESET_SET);

函数 i2c_pec_config

函数i2c_pec_config描述见下表:

表 3-203. 函数 i2c_pec_config

函数名称	i2c_pec_config			
函数原型	void i2c_pec_config (uint32_t i2c_periph, uint32_t pecstate);			
功能描述	配置报文错误校验			
先决条件	-			
被调用函数	-			
输入参数{in}				
i2c_periph	I2C外设			
I2Cx	(x=0,1)			
输入参数{in}				
pecpara	开启或关闭			
I2C_PEC_ENABLE	报文错误校验使能			
I2C_PEC_DISABLE	报文错误校验关闭			
输出参数{out}				
-	-			
返回值				
-	-			

例如:

/* enable I2C PEC calculation */

i2c_pec_config (I2C0, I2C_PEC_ENABLE);

函数 i2c_pec_transfer_config

函数i2c_pec_transfer_config描述见下表:

表 3-204. 函数 i2c_pec_transfer_config

_			
函数名称	i2c_pec_transfer_config		
函数原型	void i2c_pec_transfer_config (uint32_t i2c_periph, uint32_t pecpara);		
功能描述	配置传输PEC值		
先决条件	-		
被调用函数	-		
输入参数{in}			
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
输入参数{in}			
pecpara	是否传输PEC		
I2C_PECTRANS_E	传输PEC		
NABLE			
I2C_PECTRANS_DI	不传输PEC		

SABLE				
输出参数{out}				
-	-			
返回值				
-	-			

/* I2C0 transfer PEC */

i2c_pec_transfer_config (I2C0, I2C_PECTRANS_ENABLE);

函数 i2c_pec_value_get

函数i2c_pec_value_get描述见下表:

表 3-205. 函数 i2c_pec_value_get

₹ 0 200. 函数 120	次 5-200. 函数 I2C_pec_value_get		
函数名称	i2c_pec_value_get		
函数原型	uint8_t i2c_pec_value_get(uint32_t i2c_periph);		
功能描述	获取报文错误校验值		
先决条件	-		
被调用函数	-		
输入参数{in}			
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
输出参数{out}			
-	-		
uint8_t	PEC值		

例如:

/* I2C0 get packet error checking value */

uint8_t pec_value;

pec_value = i2c_pec_value_get (I2C0);

函数 i2c_smbus_alert_config

函数i2c_smbus_alert_config描述见下表:

表 3-206. 函数 i2c_smbus_alert_config

函数名称	i2c_smbus_alert_config
函数原型	void i2c_smbus_alert_config (uint32_t i2c_periph, uint32_t smbuspara);
功能描述	配置通过SMBA引脚发送警告
先决条件	-
被调用函数	-

	输入参数{in}		
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
	输入参数{in}		
smbuspara	是否通过SMBA引脚发送警告		
I2C_SALTSEND_E	通过SMBA引脚发送警告		
NABLE	地とSIMDA 分 脚 及 医 音 日		
I2C_SALTSEND_DI	不通过SMBA引脚发送警告		
SABLE	小旭度SMDA分胸及医育苷		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* I2C0 issue alert through SMBA pin enable */

i2c_smbus_alert_config (I2C0, I2C_SALTSEND_ENABLE);

函数 i2c_smbus_arp_config

函数i2c_smbus_arp_config描述见下表:

表 3-207. 函数 i2c smbus arp config

₹ 5-201. 函数 120_	表 3-207. 函数 12c_smbus_arp_comig	
函数名称	i2c_smbus_arp_config	
函数原型	void i2c_smbus_arp_config (uint32_t i2c_periph, uint32_t arpstate);	
功能描述	配置SMBus下ARP协议	
先决条件	-	
被调用函数	-	
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
	输入参数{in}	
arpstate	SMBus下ARP协议是否开启	
I2C_ARP_ENABLE	使能ARP	
I2C_ARP_DISABLE	关闭ARP	
	输出参数{out}	
-	-	
-	-	

例如:

/* enable I2C0 ARP protocol in SMBus switch */

i2c_smbus_arp_config (I2C0, I2C_ARP_ENABLE);

函数 i2c_sam_enable

函数i2c_sam_enable描述见下表:

表 3-208. 函数 i2c_sam_enable

-			
函数名称	i2c_sam_enable		
函数原型	void i2c_sam_enable(uint32_t i2c_periph);		
功能描述	使能SAM_V接口		
先决条件	-		
被调用函数	-		
	输入参数{in}		
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* enable I2C0 SAM_V interface*/

i2c_sam_enable (I2C0);

函数 i2c_sam_disable

函数i2c_sam_disable描述见下表:

表 3-209. 函数 i2c_sam_disable

函数名称	i2c_sam_disable		
函数原型	void i2c_sam_disable (uint32_t i2c_periph);		
功能描述	关闭SAM_V接口		
先决条件	-		
被调用函数	-		
	输入参数{in}		
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* disable I2C0 SAM_V interface*/

i2c_sam_disable (I2C0);

函数 i2c_sam_timeout_enable

函数i2c_sam_timeout_enable描述见下表:

表 3-210. 函数 i2c_sam_timeout_enable

-	-		
函数名称	i2c_sam_timeout_enable		
函数原型	void i2c_sam_timeout_enable (uint32_t i2c_periph);		
功能描述	使能SAM_V接口超时检测		
先决条件	-		
被调用函数	-		
	输入参数{in}		
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* enable I2C0 SAM_V interface timeout detect */

i2c_sam_timeout_enable (I2C0);

函数 i2c_sam_timeout_disable

函数i2c_sam_timeout_disable描述见下表:

表 3-211. 函数 i2c_sam_timeout_disable

函数名称	i2c_sam_timeout_disable	
函数原型	void i2c_sam_timeout_disable (uint32_t i2c_periph);	
功能描述	关闭SAM_V接口超时检测	
先决条件	-	
被调用函数	-	
输入参数{in}		
i2c_periph	I2C外设	
10.00	(0.1)	
I2Cx	(x=0,1)	
12CX	(X=0,1) 输出参数{out}	
- 12CX		
	输出参数{out} -	

例如:

/* disable I2C0 SAM_V interface timeout detect */

i2c_sam_timeout_disable (I2C0);

函数 i2c_flag_get

函数i2c_flag_get描述见下表:

表 3-212. 函数 i2c_flag_get

衣 3-212. 函数 I2C_	nay_yer
函数名称	i2c_flag_get
函数原型	FlagStatus i2c_flag_get(uint32_t i2c_periph, i2c_flag_enum flag);
功能描述	获取I2C标志位
先决条件	-
被调用函数	-
	输入参数{in}
i2c_periph	I2C外设
I2Cx	(x=0,1)
	输入参数{in}
flag	需要获取的标志位
I2C_FLAG_SBSEN	起始位是否发送
D	起知世走百及达
I2C_FLAG_ADDSE	主机模式下地址是否发送/从机模式下地址是否匹配
ND	主机侯八下地址走百及达/水机侯八下地址走百匹癿
I2C_FLAG_BTC	字节传输完成
I2C_FLAG_ADD10	主机模式下10位地址地址头发送完成
SEND	工机模式 [10世地址地址天及达儿城
I2C_FLAG_STPDE	从机模式下监测到STOP结束位
T	从他换入 I 血热到 O T 知来也
I2C_FLAG_RBNE	接收期间I2C_DATA非空
I2C_FLAG_TBE	发送期间I2C_DATA为空
I2C_FLAG_BERR	总线错误,表示I2C总线上发生了预料之外的START起始位或STOP结束位
I2C_FLAG_LOSTA	主机模式下仲裁丢失
RB	工机铁料工用效益八
I2C_FLAG_AERR	应答错误
I2C_FLAG_OUERR	当禁用SCL拉低功能后,在从机模式下发生了过载或欠载事件
I2C_FLAG_PECER	接收数据时发生PEC错误
R	1X 1X 3X 341 11 1
I2C_FLAG_SMBTO	SMBus模式下超时信号
I2C_FLAG_SMBAL	SMBus警报状态
T	OWNERS TO MAKE
I2C_FLAG_MASTE	表明I2C时钟在主机模式还是从机模式的标志位
R	A Air Ord M IF 工事的区域化区/White Milliang II
I2C_FLAG_I2CBSY	忙标志
I2C_FLAG_TR	I2C作发送端还是接收端
I2C_FLAG_RXGC	是否接收到广播地址(00h)
i I	
I2C_FLAG_DEFSM	从机模式下SMBus主机地址头

I2C_FLAG_HSTSM B	从机模式下监测到SMBus主机地址头	
I2C_FLAG_DUMOD	从机模式下双标志位表明哪个地址和双地址模式匹配	
I2C_FLAG_TFF	发送帧下降沿标志	
I2C_FLAG_TFR	发送帧上升沿标志	
I2C_FLAG_RFF	接收帧下降沿标志	
I2C_FLAG_RFR	接收帧上升沿标志	
输出参数{out}		
-	-	
	返回值	
FlagStatus	SET / RESET	

/* check whether start condition send out */

FlagStatus flag_state = RESET;

flag_state = i2c_flag_get (I2C0, I2C_FLAG_SBSEND);

函数 i2c_flag_clear

函数i2c_flag_clear描述见下表:

表 3-213. 函数 i2c_flag_clear

本数分数		
函数名称	i2c_flag_clear	
函数原型	void i2c_flag_clear(uint32_t i2c_periph, i2c_flag_enum flag)	
功能描述	清除标志位	
先决条件	-	
被调用函数	-	
输入参数{in}		
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
输入参数{in}		
flag	标志位类型	
I2C_FLAG_SMBAL	SMBus警报状态	
T	SIMIDUS音顶仈心	
I2C_FLAG_SMBTO	SMBus模式下超时信号	
I2C_FLAG_PECER	按股份 H H D F O C C C C C C C C C C C C C C C C C C	
R	接收数据时PEC错误	
I2C_FLAG_OUERR	当禁用SCL拉低功能后,在从机模式下发生了过载或欠载事件	
I2C_FLAG_AERR	应答错误	
I2C_FLAG_LOSTA		
RB	主机模式下仲裁丢失	
I2C_FLAG_BERR	总线错误	

GD32E23x 固件库使用指南

I2C_FLAG_ADDSE	主机模式下地址是否发送/从机模式下地址是否匹配,通过读I2C_STAT0和	
ND	I2C_STAT1来清除	
I2C_FLAG_TFF	发送帧下降沿标志	
I2C_FLAG_TFR	发送帧上升沿标志	
I2C_FLAG_RFF	接收帧下降沿标志	
I2C_FLAG_RFR	接收帧上升沿标志	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* clear a bus error flag*/

i2c_flag_clear (I2C0, I2C_FLAG_BERR);

函数 i2c_interrupt_enable

函数i2c_interrupt_enable描述见下表:

表 3-214. 函数 i2c_interrupt_enable

函数名称	i2c_interrupt_enable	
函数原型	void i2c_interrupt_enable(uint32_t i2c_periph, i2c_interrupt_enum interrupt);	
功能描述	使能I2C中断	
先决条件	-	
被调用函数	-	
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
interrupt	中断类型	
I2C_INT_ERR	错误中断使能	
I2C_INT_EV	事件中断使能	
I2C_INT_BUF	缓冲区中断使能	
I2C_INT_TFF	发送帧下降沿中断使能	
I2C_INT_TFR	发送帧上升沿中断使能	
I2C_INT_RFF	接收帧下降沿中断使能	
I2C_INT_RFR	接收帧上升沿中断使能	
输出参数{out}		
-	-	
-	-	

例如:

/* enable I2C0 event interrupt */

i2c_interrupt_enable (I2C0, I2C_INT_EV);

函数 i2c_interrupt_disable

函数i2c_interrupt_disable描述见下表:

表 3-215. 函数 i2c_interrupt_disable

函数名称	i2c_interrupt_disable		
函数原型	void i2c_interrupt_disable(uint32_t i2c_periph, i2c_interrupt_enum interrupt);		
功能描述	禁能I2C中断		
先决条件	-		
被调用函数	-		
i2c_periph	I2C外设		
I2Cx	(x=0,1)		
interrupt	中断类型		
I2C_INT_ERR	错误中断使能		
I2C_INT_EV	事件中断使能		
I2C_INT_BUF	缓冲区中断使能		
I2C_INT_TFF	发送帧下降沿中断使能		
I2C_INT_TFR	发送帧上升沿中断使能		
I2C_INT_RFF	接收帧下降沿中断使能		
I2C_INT_RFR	接收帧上升沿中断使能		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* disable I2C0 event interrupt */

i2c_interrupt_disable (I2C0, I2C_INT_EV);

函数 i2c_interrupt_flag_get

函数i2c_interrupt_flag_get描述见下表:

表 3-216. 函数 i2c_interrupt_flag_get

	函数名称	i2c_interrupt_flag_get
	函数原型	FlagStatus i2c_interrupt_flag_get(uint32_t i2c_periph, i2c_interrupt_flag_enum
		int_flag)
	功能描述	获取I2C中断标志位

先决条件	-
被调用函数	-
	· 输入参数{in}
i2c_periph	I2C外设
I2Cx	(x=0,1)
	· 输入参数{in}
int_flag	中断标志
I2C_INT_FLAG_SB	主机模式下发送START起始位
SEND	主机模式下及及START起始也
I2C_INT_FLAG_AD	 主机模式下成功发送了地址 / 从机模式下接收到了地址并且和自身的地址匹配
DSEND	工机模式下成为及应了地址 7 从机模式下坡模划了地址开五和自为的地址四癿
I2C_INT_FLAG_BT	字节发送结束
С	1 PARAIN
I2C_INT_FLAG_AD	主机模式下10位地址地址头被发送
D10SEND	
I2C_INT_FLAG_ST	从机模式下监测到STOP结束位
PDET	
I2C_INT_FLAG_RB	接收期间I2C_DATA非空
NE	
I2C_INT_FLAG_TB	发送期间I2C_DATA为空
E	
I2C_INT_FLAG_BE	总线错误
RR	
I2C_INT_FLAG_LO STARB	主机模式下仲裁丢失
I2C_INT_FLAG_AE	
RR	应答错误
I2C_INT_FLAG_OU	
ERR	当禁用SCL拉低功能后,在从机模式下发生了过载或欠载事件
I2C_INT_FLAG_PE	
CERR	接收数据时PEC错误
I2C_INT_FLAG_SM	
ВТО	SMBus模式下超时信号
I2C_INT_FLAG_SM	CMD 数中以上十
BALT	SMBus警报状态
I2C_INT_FLAG_TF	发送帧下降沿中断标志位
F	
I2C_INT_FLAG_TF	发送帧上升沿中断标志位
R	ングロンエンコロ 1 ALMADIA
I2C_INT_FLAG_RF	接收帧下降沿中断标志位
F	SOM LINE LAIMOR
I2C_INT_FLAG_RF	接收帧上升沿中断标志位
R	↑ NAIN 1 1 1 2114 - □

输出参数{out}	
-	-
返回值	
FlagStatus SET / RESET	

/* check the byte transmission finishes interrupt flag is set or not */

FlagStatus flag_state = RESET;

flag_state = i2c_interrupt_flag_get (I2C0, I2C_INT_FLAG_BTC);

函数 i2c_interrupt_flag_clear

函数i2c_interrupt_flag_clear描述见下表:

表 3-217. 函数 i2c interrupt flag clear

表 3-217. 函数 I2C_	_interrupt_flag_clear	
函数名称	i2c_interrupt_flag_clear	
函数原型	void i2c_interrupt_flag_clear(uint32_t i2c_periph, i2c_interrupt_flag_enum	
	int_flag);	
功能描述	清除I2C中断标志位	
先决条件	-	
被调用函数	-	
	·····································	
i2c_periph	I2C外设	
I2Cx	(x=0,1)	
	·····································	
int_flag	中断标志	
I2C_INT_FLAG_AD	之也每少工序对65%之时间 / 11和每少工校收到之时间 光口和互互的时间 mmi	
DSEND	主机模式下成功发送了地址 / 从机模式下接收到了地址并且和自身的地址匹配	
I2C_INT_FLAG_BE	总线错误	
RR	心线相伏	
I2C_INT_FLAG_LO	主机模式下仲裁丢失	
STARB	土机侯八十件极云人	
I2C_INT_FLAG_AE	应答错误	
RR	应 占证 厌	
I2C_INT_FLAG_OU	当禁用SCL 拉低功能后,在从机模式下发生了过载或欠载事件	
ERR	□示/IJOCE 垃帐为能用,任从机快八千次工1及款级八款事目	
I2C_INT_FLAG_PE	接收粉据时 PEC 结误	
CERR	接收数据时PEC错误	
I2C_INT_FLAG_SM	SMBus模式下超时信号	
вто	SIMIDUS 侯八下赶的 信亏	
I2C_INT_FLAG_SM	SMBus警报状态	
BALT	OINIDUS E 1KW/N/N	
I2C_INT_FLAG_TF	发送帧下降沿中断标志位	

F	
I2C_INT_FLAG_TF	发送帧上升沿中断标志位
R	及及"以工 <u>力</u> 147" 動
I2C_INT_FLAG_RF	接收帧下降沿中断标志位
F	及状状上种山上 引物心区
I2C_INT_FLAG_RF	接收帧上升沿中断标志位
R	及状状工/11日上朝初心区
	输出参数{out}
-	-
	返回值
-	-

/* clear the acknowledge error interrupt flag */

i2c_interrupt_flag_clear (I2C0, I2C_INT_FLAG_AERR);

3.12. MISC

MISC 是对嵌套向量中断控制器 (NVIC) 和系统定时器 (SysTick) 操作的软件包。章节 <u>3.12.1</u> 描述了 NVIC 和 SysTick 的寄存器列表,章节 <u>3.12.2</u>对 MISC 库函数进行说明。

3.12.1. 外设寄存器说明

表 3-218. NVIC 寄存器

寄存器名称	寄存器描述
ISER ⁽¹⁾	中断使能寄存器
ICER ⁽¹⁾	中断禁能寄存器
ISPR ⁽¹⁾	中断挂起寄存器
ICPR ⁽¹⁾	中断清除寄存器
IABR ⁽¹⁾	中断活动状态寄存器
ITNS (1)	中断不安全状态寄存器
IPR ⁽¹⁾	中断优先级寄存器
CPUID ⁽²⁾	CPUID寄存器
ICSR ⁽²⁾	中断控制及状态寄存器
VTOR ⁽²⁾	向量表偏移量寄存器
AIRCR ⁽²⁾	应用程序中断及复位控制寄存器
SCR ⁽²⁾	系统控制寄存器
CCR ⁽²⁾	配置与控制寄存器
SHPR ⁽²⁾	系统异常优先级寄存器
SHCSR ⁽²⁾	系统异常控制及状态寄存器

1. 参考 core_cm23.h 文件中定义的结构体类型 NVIC_Type

2. 参考 core_cm23.h 文件中定义的结构体类型 SCB_Type

表 3-219. Systick 寄存器

寄存器名称	寄存器描述
CTRL ⁽¹⁾	Systick控制和状态寄存器
LOAD ⁽¹⁾	Systick重载值寄存器
VAL ⁽¹⁾	Systick当前值寄存器
CALIB ⁽¹⁾	Systick校准寄存器

^{1.} 参考 core_cm23.h 文件中定义的结构体类型 SysTick_Type

3.12.2. 外设库函数说明

枚举类型 IRQn_Type

表 3-220. 枚举类型 IRQn_Type

衣 3-220. 枚半尖型	
成员名称	功能描述
WWDGT_IRQn	窗口看门狗中断
LVD_IRQn	连接到 EXTI 线的 LVD 中断
RTC_IRQn	RTC 全局中断
FMC_IRQn	FMC 全局中断
RCU_IRQn	RCU 全局中断
EXTI0_1_IRQn	EXTI 线 0 中断
EXTI2_3_IRQn	EXTI 线 1 中断
EXTI4_15_IRQn	EXTI 线 2 中断
DMA_Channel0_IR	DMV6 凌涛 6 V 日中帆
Qn	DMA0 通道 0 全局中断
DMA_Channel1_2_I	DMAO 通送 4 人里由岷
RQn	DMA0 通道 1 全局中断
DMA_Channel3_4_I	DMAO 通送 2 人日中町
RQn	DMA0 通道 2 全局中断
ADC_CMP_IRQn	ADC0 和 ADC1 全局中断
TIMER0_BRK_UP_	TIMEDO DA L. TOT SHEEP TO SHEE
TRG_COM_IRQn	TIMERO 中止,更新,触发与通道换相中断
TIMER0_Channel_I	TIME DO 14 # II 166 d W
RQn	TIMERO 捕获比较中断
TIMER2_IRQn	TIMER2 全局中断
TIMER5_IRQn	TIMER5 全局中断
TIMER13_IRQn	TIMER13 全局中断
TIMER14_IRQn	TIMER14 全局中断
TIMER15_IRQn	TIMER15 全局中断
TIMER16_IRQn	TIMER16 全局中断
I2C0_EV_IRQn	I2C0 事件中断
I2C1_EV_IRQn	I2C1 事件中断

GD32E23x 固件库使用指南

SPI0_IRQn	SPI0 全局中断
SPI1_IRQn	SPI1 全局中断
USART0_IRQn	USARTO 全局中断
USART1_IRQn	USART1 全局中断
I2C0_ER_IRQn	I2C0 错误中断
I2C1_ER_IRQn	I2C1 错误中断

MISC库函数列表如下表所示:

表 3-221. MISC 库函数

库函数名称	库函数描述
nvic_irq_enable	使能NVIC的中断
nvic_irq_disable	禁能NVIC的中断
nvic_system_reset	复位
nvic_vector_table_set	设置向量表地址
system_lowpower_set	设置系统低功耗模式状态
system_lowpower_reset	复位系统低功耗模式状态
systick_clksource_set	设置系统定时器时钟源

函数 nvic_irq_enable

函数nvic_irq_enable描述见下表:

表 3-222. 函数 nvic irq enable

农 3-222. 函数 IIVic_irq_enable			
函数名称	nvic_irq_enable		
函数原形	<pre>void nvic_irq_enable(uint8_t nvic_irq, uint8_t nvic_irq _priority);</pre>		
功能描述	使能中断,配置中断的优先级		
先决条件	-		
被调用函数	被调用函数 NVIC_SetPriority、NVIC_EnableIRQ		
输入参数{in}			
nvic_irq	NVIC中断,参考枚举类型 <u>表3-220. 枚举类型IRQn_Type</u>		
	输入参数{in}		
nvic_irq _priority	优先级(0~3)		
输出参数{out}			
-			
	返回值		
-	-		

例如:

/* enable window watchDog timer interrupt , priority is 1 */

nvic_irq_enable(WWDGT_IRQn,1);

函数 nvic_irq_disable

函数nvic_irq_disable描述见下表:

表 3-223. 函数 nvic_irq_disable

		
函数名称	nvic_irq_disable	
函数原形	void nvic_irq_disable (uint8_t nvic_irq);	
功能描述	禁能中断	
先决条件	-	
被调用函数	NVIC_DisableIRQ	
输入参数{in}		
nvic_irq	NVIC中断,参考枚举类型 <u>表3-220. 枚举类型IRQn_Type</u>	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable window watchDog timer interrupt */

nvic_irq_disable(WWDGT_IRQn);

表 3-224. 函数 nvic_system_reset

以 o == 四次o_o, oto			
函数名称	nvic_system_reset		
函数原形	void nvic_system_reset(void);		
功能描述	复位MCU		
先决条件	-		
被调用函数	NVIC_SystemReset		
输入参数{in}			
-	-		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* reset the MCU*/

nvic_system_reset();

函数 nvic_vector_table_set

函数nvic_vector_table_set描述见下表:

表 3-225. 函数 nvic_vector_table_set

函数名称	nvic_vector_table_set
------	-----------------------

GD32E23x 固件库使用指南

函数原形	void nvic_vector_table_set(uint32_t nvic_vict_tab, uint32_t offset);		
功能描述	设置向量表地址		
先决条件	-		
被调用函数	-		
输入参数{in}			
nvic_vict_tab	RAM 或者 FLASH基地址		
NVIC_VECTTAB_R	RAM 基地址		
AM	KAWI 委地址		
NVIC_VECTTAB_F	FLASH基地址		
LASH	FLAOFI整地址		
offset	向量表偏移量(向量表地址=基地址+偏移量)		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* set vector table address = NVIC_VECTTAB_FLASH +0x200 */
nvic_vector_table_set (NVIC_VECTTAB_FLASH,0x200);

函数 system_lowpower_set

函数system_lowpower_set描述见下表:

表 3-226. 函数 system_lowpower_set

火で上で、 函数 cyc	tem_lowpower_set
函数名称	system_lowpower_set
函数原形	<pre>void system_lowpower_set(uint8_t lowpower_mode);</pre>
功能描述	系统低功耗模式状态的管理
先决条件	-
被调用函数	-
	输入参数{in}
lowpower_mode	系统低功耗模式的状态
SCB_LPM_SLEEP_	该位为1时,退出ISR时一直处于低功耗模式
EXIT_ISR	
SCB_LPM_DEEPSL	该位为1时,系统处于deep sleep模式
EEP	
SCB_LPM_WAKE_	该位为1时,低功耗模式可以被所有中断唤醒(无论中断是否被使能)
BY_ALL_INT	
	输出参数{out}
-	-
	返回值
-	-

/* the system always enter low power mode by exiting from ISR */

system_lowpower_set (SCB_LPM_SLEEP_EXIT_ISR);

函数 system_lowpower_reset

函数system_lowpower_reset描述见下表:

表 3-227. 函数 system_lowpower_reset

•			
函数名称	system_lowpower_reset		
函数原形	<pre>void system_lowpower_reset(uint8_t lowpower_mode);</pre>		
功能描述	复位系统低功耗模式状态		
先决条件	-		
被调用函数	-		
	输入参数{in}		
lowpower_mode	系统低功耗模式的状态		
SCB_LPM_SLEEP_	之处处图计用山(CD)用山(CT) 拉松拱-P		
EXIT_ISR	系统将通过退出ISR退出低功耗模式		
SCB_LPM_DEEPSL	では、 サ) along 性 中		
EEP	系统进入sleep模式		
SCB_LPM_WAKE_	系统只能被使能的中断唤醒		
BY_ALL_INT	尔 ·尔克·拉克·克克·克克·克克·克克·克克·克克·克克·克克·克克·克克·克克·克克		
输出参数{out}			
-	-		

例如:

/* the system will exit low power mode by exiting from ISR */

system_lowpower_reset (SCB_LPM_SLEEP_EXIT_ISR);

函数 systick_clksource_set

函数systick_clksource_set描述见下表:

表 3-228. 函数 systick_clksource_set

·	
函数名称	systick_clksource_set
函数原形	void systick_clksource_set(uint32_t systick_clksource);
功能描述	设置SysTick时钟源
先决条件	-
被调用函数	-
·····································	
systick_clksource	SysTick时钟源

SYSTICK_CLKSOU	Court of the Mark And I Drief for
RCE_HCLK	SysTick时钟源为AHB时钟
SYSTICK_CLKSOU	SysTick时钟源为AHB时钟的8分频
RCE_HCLK_DIV8	Systick的种源为And的种的O分例
输出参数{out}	
-	-
	返回值
-	-

/* systick clock source is HCLK/8 */

systick_clksource_set (SYSTICK_CLKSOURCE_HCLK_DIV8);

3.13. PMU

电源管理单元提供了三种省电模式,包括睡眠模式,深度睡眠模式和待机模式。章节 $\underline{3.13.1}$ 描述了 PMU 的寄存器列表,章节 $\underline{3.13.2}$ 对 PMU 库函数进行说明。

3.13.1. 外设寄存器说明

PMU 寄存器列表如下表所示:

表 3-229. PMU 寄存器

寄存器名称	寄存器描述
PMU_CTL	PMU控制寄存器
PMU_CS	PMU控制和状态寄存器

3.13.2. 外设库函数说明

PMU 库函数列表如下表所示:

表 3-230. PMU 库函数

库函数名称	库函数描述
pmu_deinit	复位外设PMU
pmu_lvd_select	选择低压检测阈值
pmu_ldo_output_select	LDO输出电压选择
pmu_lvd_disable	关闭低压检测器
pmu_to_sleepmode	进入睡眠模式
pmu_to_deepsleepmode	进入深度睡眠模式
pmu_to_standbymode	进入待机模式
pmu_wakeup_pin_enable	WKUP引脚唤醒使能
pmu_wakeup_pin_disable	WKUP引脚唤醒失能
pmu_backup_write_enable	备份域写使能

库函数名称	库函数描述
pmu_backup_write_disable	备份域写失能
pmu_flag_clear	清除标志位
pmu_flag_get	获取标志位

函数 pmu_deinit

函数 pmu_deinit 描述见下表:

表 3-231. 函数 pmu_deinit

函数名称	pmu_deinit	
函数原型	void pmu_deinit(void);	
功能描述	复位外设PMU	
先决条件	-	
被调用函数	rcu_periph_reset_enable / rcu_periph_reset_disable	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* reset PMU */

pmu_deinit ();

函数 pmu_lvd_select

函数 pmu_lvd_select 描述见下表:

表 3-232. 函数 pmu_lvd_select

pmu_lvd_select
void pmu_lvd_select(uint32_t lvdt_n);
选择低压检测阈值
-
-
输入参数{in}
电压阈值
电压阈值为2.1V
电压阈值为2.3V
电压阈值为2.4V
电压阈值为2.6V
电压阈值为2.7V
电压阈值为2.9V

PMU_LVDT_6	电压阈值为3.0V	
PMU_LVDT_7	电压阈值为3.1V	
输出参数{out}		
-	-	
返回值		
-	-	

/* select low voltage detector threshold as 3.1V */

pmu_lvd_select (PMU_LVDT_7);

函数 pmu_ldo_output_select

函数 pmu_ldo_output_select 描述见下表:

表 3-233. 函数 pmu_ldo_output_select

•	- · · - · · · · · · · · · · · · · · · ·
函数名称	pmu_ldo_output_select
函数原型	void pmu_ldo_output_select(uint32_t ldo_output);
功能描述	内部电压调节器(LDO)输出电压选择
先决条件	-
被调用函数	-
	输入参数{in}
ldo_output	输出电压模式
PMU_LDOVS_LOW	输出低电压模式
PMU_LDOVS_HIG	松山方山厂楼子
Н	输出高电压模式
	输出参数{out}
-	-
	返回值
-	-
,	

例如:

/* select output low voltage mode */

pmu_ldo_output_select (PMU_LDOVS_LOW);

函数 pmu_lvd_disable

函数 pmu_lvd_disable 描述见下表:

表 3-234. 函数 pmu_lvd_disable

函数名称	pmu_lvd_disable
函数原型	void pmu_lvd_disable (void);
功能描述	关闭低压检测器

先决条件	-		
被调用函数	-		
-	-		
	输出参数{out}		
-	-		
返回值			
-	-		

/* disable PMU lvd */

pmu_lvd_disable ();

函数 pmu_to_sleepmode

函数 pmu_to_sleepmode 描述见下表:

表 3-235. 函数 pmu_to_sleepmode

函数名称	pmu_to_sleepmode	
函数原型	void pmu_to_sleepmode(uint8_t sleepmodecmd);	
功能描述	进入睡眠模式	
先决条件	-	
被调用函数	-	
输入参数{in}		
sleepmodecmd	进入睡眠模式命令	
WFI_CMD	WFI命令	
WFE_CMD	WFE命令	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* PMU work at sleep mode */

pmu_to_sleepmode (WFI_CMD);

函数 pmu_to_deepsleepmode

函数 pmu_to_deepsleepmode 描述见下表:

表 3-236. 函数 pmu_to_deepsleepmode

函数名称	pmu_to_deepsleepmode
函数原型	void pmu_to_deepsleepmode(uint32_t ldo,uint8_t deepsleepmodecmd);

GD32E23x 固件库使用指南

功能描述	进入深度睡眠模式	
先决条件	-	
被调用函数	-	
	输入参数{in}	
ldo	LDO工作模式	
PMU_LDO_NORMA	当系统进入深度睡眠模式时,LDO仍正常工作	
L	当系统近八体及睡眠模式的,LDO//J正书工作	
PMU_LDO_LOWPO	少 2 次 升 2 次 序 胚 配 档 式 叶 → 1 D O 升 2 代 寸 5 模 式	
WER	当系统进入深度睡眠模式时,LDO进入低功耗模式	
	输入参数{in}	
deepsleepmodecm	进入深度睡眠模式命令	
d	近八休反睡帆侠八帅マ	
WFI_CMD	WFI命令	
WFE_CMD	WFE命令	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* PMU work at deepsleep mode */

pmu_to_deepsleepmode (PMU_LDO_NORMAL, WFI_CMD);

函数 pmu_to_standbymode

函数 pmu_to_standbymode 描述见下表:

表 3-237. 函数 pmu_to_standbymode

d);		
输入参数{in}		
输出参数{out}		
返回值		

例如:

/* PMU work at standby mode */

pmu_to_standby ();

函数 pmu_wakeup_pin_enable

函数 pmu_wakeup_pin_enable 描述见下表:

表 3-238. 函数 pmu_wakeup_pin_enable

до того при рим _ manoup_piii_onabio		
函数名称	pmu_wakeup_pin_enable	
函数原型	void pmu_wakeup_pin_enable(uint32_t wakeup_pin);	
功能描述	WKUP引脚唤醒使能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
wakeup_pin	Wakeup pin	
PMU_WAKEUP_PI	WIZED Die O (DAO)	
NO	WKUP Pin 0 (PA0)	
PMU_WAKEUP_PI	W// ID B:= 4 (BO42)	
N1	WKUP Pin 1 (PC13)	
PMU_WAKEUP_PI	WIZED Die 5 (DD5)	
N5	WKUP Pin 5 (PB5)	
PMU_WAKEUP_PI	MIZUD Din 6 (DD45)	
N6	WKUP Pin 6 (PB15)	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* enable wakeup pin6 */

pmu_wakeup_pin_enable (PMU_WAKEUP_PIN6);

函数 pmu_wakeup_pin_disable

函数 pmu_wakeup_pin_disable 描述见下表:

表 3-239. 函数 pmu_wakeup_pin_disable

N. o. zoo. W. ba.Zamonb.ZhZmonn.o.		
函数名称	pmu_wakeup_pin_disable	
函数原型	<pre>void pmu_wakeup_pin_disable(uint32_t wakeup_pin);</pre>	
功能描述	WKUP引脚唤醒失能	
先决条件	-	
被调用函数	-	
wakeup_pin	Wakeup pin	
PMU_WAKEUP_PI	WKUP Pin 0 (PA0)	
NO	WNOF FILLO (PAU)	
PMU_WAKEUP_PI	WKUP Pin 1 (PC13)	

N1		
PMU_WAKEUP_PI	WILLID Dio 5 (DD5)	
N5	WKUP Pin 5 (PB5)	
PMU_WAKEUP_PI	MIZUD Die C (DD45)	
N6	WKUP Pin 6 (PB15)	
	输出参数{out}	
-	-	
返回值		
-	-	

/* disable wakeup pin6 */

pmu_wakeup_pin_disable (PMU_WAKEUP_PIN6);

函数 pmu_backup_write_enable

函数 pmu_backup_write_enable 描述见下表:

表 3-240. 函数 pmu_backup_write_enable

函数名称	pmu_backup_write_enable	
函数原型	void pmu_backup_write_enable (void);	
功能描述	备份域写使能	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* enable backup domain write */

pmu_backup_write_enable ();

函数 pmu_backup_write_disable

函数 pmu_backup_write_disable 描述见下表:

表 3-241. 函数 pmu_backup_write_disable

函数名称	pmu_backup_write_disable
函数原型	void pmu_backup_write_disable (void);
功能描述	备份域写失能

先决条件	-		
被调用函数	-		
	输入参数{in}		
-	-		
	输出参数{out}		
-	-		
返回值			
-	-		

/* disable backup domain write */

pmu_backup_write_disable ();

函数 pmu_flag_clear

函数 pmu_flag_clear 描述见下表:

表 3-242. 函数 pmu_flag_clear

- ДЖР	大 O 2-12. 四		
函数名称	pmu_flag_clear		
函数原型	void pmu_flag_clear(uint32_t flag_clear);		
功能描述	清除标志位		
先决条件	-		
被调用函数	-		
输入参数{in}			
flag_ clear	标志位		
PMU_FLAG_RESE	ン主でいれた。東日トニーナー		
T_WAKEUP	清除唤醒标志		
PMU_FLAG_RESE	法10.4.4π 七十		
T_STANDBY	清除待机标志		
输出参数{out}			
-			
返回值			
-			

例如:

/* clear flag bit */

pmu_flag_clear (PMU_FLAG_RESET_WAKEUP);

函数 pmu_flag_get

函数 pmu_flag_get 描述见下表:

表 3-243. 函数 pmu_flag_get

	0_0		
函数名称	pmu_flag_get		
函数原型	FlagStatus pmu_flag_get(uint32_t flag);		
功能描述	获取标志位		
先决条件	-		
被调用函数	-		
	输入参数{in}		
flag_clear	标志位		
PMU_FLAG_WAKE	n/x === + +-		
UP	唤醒标志		
PMU_FLAG_STAN	4.tn		
DBY	待机标志 		
PMU_FLAG_LVD	低电压状态标志		
输出参数{out}			
-	-		
	返回值		
FlagStatus	SET或RESET		

例如:

/* get flag state */

FlagStatus status;

status = pmu_flag_get (PMU_FLAG_WAKEUP);

3.14. RCU

RCU 是复位和时钟单元,复位控制包括三种控制方式:电源复位、系统复位和备份域复位。时钟控制单元提供了一系列频率的时钟功能。章节 <u>3.14.1</u>描述了 RCU 的寄存器列表,章节 <u>3.14.2</u>对 RCU 库函数进行说明。

3.14.1. 外设寄存器说明

RCU寄存器列表如下表所示:

表 3-244. RCU 寄存器

寄存器名称	寄存器描述
RCU_CTL0	控制寄存器0
RCU_CFG0	配置寄存器0
RCU_INT	中断寄存器
RCU_APB2RST	APB2复位寄存器
RCU_APB1RST	APB1复位寄存器
RCU_AHBEN	AHB使能寄存器

寄存器名称	寄存器描述
RCU_APB2EN	APB2使能寄存器
RCU_APB1EN	APB1使能寄存器
RCU_BDCTL	备份域控制寄存器
RCU_RSTSCK	复位源/时钟寄存器
RCU_AHBRST	AHB复位寄存器
RCU_CFG1	配置寄存器1
RCU_CFG2	配置寄存器2
RCU_CTL1	控制寄存器1
RCU_VKEY	电源解锁寄存器
RCU_DSV	深度睡眠模式电压寄存器

3.14.2. 外设库函数说明

RCU库函数列表如下表所示:

表 3-245. RCU 库函数

库函数名称	库函数描述
rcu_deinit	复位RCU
rcu_periph_clock_enable	使能外设时钟
rcu_periph_clock_disable	禁能外设时钟
rcu_periph_clock_sleep_enable	在睡眠模式下,使能外设时钟
rcu_periph_clock_sleep_disable	在睡眠模式下,禁能外设时钟
rcu_periph_reset_enable	外设时钟复位使能
rcu_periph_reset_disable	外设时钟复位除能
rcu_bkp_reset_enable	备份域时钟复位使能
rcu_bkp_reset_disable	备份域时钟复位除能
rcu_system_clock_source_config	配置选择系统时钟源
rcu_system_clock_source_get	获取系统时钟源选择状态
rcu_ahb_clock_config	配置AHB时钟预分频选择
rcu_apb1_clock_config	配置APB1时钟预分频选择
rcu_apb2_clock_config	配置APB2时钟预分频选择
rcu_adc_clock_config	配置ADC时钟预分频选择
rcu_ckout_config	配置CKOUT时钟源选择及分频系数
rcu_pll_config	配置主PLL时钟
rcu_usart_clock_config	配置串口时钟
rcu_rtc_clock_config	配置RTC时钟
rcu_hxtal_prediv_config	配置HXTAL作为PLL输入源分频因子
rcu_lxtal_drive_capability_config	配置LXTAL的驱动力
rcu_flag_get	获取时钟稳定状态和外设复位标志
rcu_all_reset_flag_clear	清除复位标志
rcu_interrupt_flag_get	获取时钟中断和CKM中断标志

库函数名称	库函数描述
rcu_interrupt_flag_clear	清除中断标志
rcu_interrupt_enable	时钟稳定中断使能
rcu_interrupt_disable	时钟稳定中断除能
rcu_osci_stab_wait	等待振荡器稳定标志位置位或振荡器起振超时
rcu_osci_on	打开振荡器
rcu_osci_off	关闭振荡器
rcu_osci_bypass_mode_enable	使能时钟旁路模式
rcu_osci_bypass_mode_disable	除能时钟旁路模式
rcu_hxtal_clock_monitor_enable	使能HXTAL时钟监视器
rcu_hxtal_clock_monitor_disable	禁能HXTAL时钟监视器
rcu_irc8m_adjust_value_set	设置内部8MHz RC振荡器时钟调整值
rcu_irc28m_adjust_value_set	设置内部28MHz RC振荡器时钟调整值
rcu_voltage_key_unlock	解锁电压锁定
rcu_deepsleep_voltage_set	设置深度睡眠模式内核电压值
rcu_clock_freq_get	获取系统、总线或外设时钟频率

枚举类型 rcu_periph_enum

表 3-246. 枚举类型 rcu_periph_enum

成员名称	功能描述
RCU_DMA	DMA时钟
RCU_CRC	CRC时钟
RCU_GPIOA	GPIOA时钟
RCU_GPIOB	GPIOB时钟
RCU_GPIOC	GPIOC时钟
RCU_GPIOF	GPIOF时钟
RCU_CFGCMP	CFGCMP时钟
RCU_ADC	ADC时钟
RCU_TIMER0	TIMER0时钟
RCU_SPI0	SPIO时钟
RCU_USART0	USART0时钟
RCU_TIMER14	TIMER14时钟
RCU_TIMER15	TIMER15时钟
RCU_TIMER16	TIMER16时钟
RCU_DBGMCU	DBGMCU时钟
RCU_TIMER2	TIMER2时钟
RCU_TIMER5	TIMER5时钟
RCU_TIMER13	TIMER13时钟
RCU_WWDGT	WWDGT时钟
RCU_SPI1	SPI1时钟
RCU_USART1	USART1时钟
RCU_I2C0	I2C0时钟

成员名称	功能描述
RCU_I2C1	I2C1时钟
RCU_PMU	PMU时钟
RCU_RTC	RTC时钟

枚举类型 rcu_periph_sleep_enum

表 3-247. 枚举类型 rcu_periph_ sleep_enum

成员名称	功能描述
RCU_SRAM_SLP	SRAM时钟
RCU_FMC_SLP	FMC时钟

枚举类型 rcu_periph_reset_enum

表 3-248. 枚举类型 rcu_periph_reset _enum

成员名称	功能描述
RCU_GPIOARST	复位GPIOA时钟
RCU_GPIOBRST	复位GPIOB时钟
RCU_GPIOCRST	复位GPIOC时钟
RCU_GPIOFRST	复位GPIOF时钟
RCU_CFGCMPRST	复位CFGCMP时钟
RCU_ADCRST	复位ADC时钟
RCU_TIMER0RST	复位TIMER0时钟
RCU_SPI0RST	复位SPI0时钟
RCU_USART0RST	复位USART0时钟
RCU_TIMER14RST	复位TIMER14时钟
RCU_TIMER15RST	复位TIMER15时钟
RCU_TIMER16RST	复位TIMER16时钟
RCU_TIMER2RST	复位TIMER2时钟
RCU_TIMER5RST	复位TIMER5时钟
RCU_TIMER13RST	复位TIMER13时钟
RCU_WWDGTRST	复位WWDGT时钟
RCU_SPI1RST	复位SPI1时钟
RCU_USART1RST	复位USART1时钟
RCU_I2C0RST	复位I2C0时钟
RCU_I2C1RST	复位I2C1时钟
RCU_PMURST	复位PMU时钟

枚举类型 rcu_flag_enum

表 3-249. 枚举类型 rcu_flag _enum

成员名称	功能描述
RCU_FLAG_IRC40KSTB	IRC40K稳定标志

GD32E23x 固件库使用指南

成员名称	功能描述
RCU_FLAG_LXTALSTB	LXTAL稳定标志
RCU_FLAG_IRC8MSTB	IRC8M稳定标志
RCU_FLAG_HXTALSTB	HXTAL稳定标志
RCU_FLAG_PLLSTB	PLL稳定标志
RCU_FLAG_IRC28MSTB	IRC28M稳定标志
RCU_FLAG_V12RST	V12复位标志
RCU_FLAG_OBLRST	OBL复位标志
RCU_FLAG_EPRST	外部引脚复位标志
RCU_FLAG_PORRST	电源复位标志
RCU_FLAG_SWRST	软件复位标志
RCU_FLAG_FWDGTRST	独立看门狗复位标志
RCU_FLAG_WWDGTRST	窗口看门狗复位标志
RCU_FLAG_LPRST	低功耗复位标志

枚举类型 rcu_int_flag_enum

表 3-250. 枚举类型 rcu_int_flag _enum

成员名称	功能描述
RCU_INT_FLAG_IRC40KSTB	IRC40K稳定中断标志
RCU_INT_FLAG_LXTALSTB	LXTAL稳定中断标志
RCU_INT_FLAG_IRC8MSTB	IRC8M稳定中断标志
RCU_INT_FLAG_HXTALSTB	HXTAL稳定中断标志
RCU_INT_FLAG_PLLSTB	PLL稳定中断标志
RCU_INT_FLAG_IRC28MSTB	IRC28M稳定中断标志
RCU_INT_FLAG_CKM	CKM中断标志

枚举类型 rcu_int_flag_clear_enum

表 3-251. 枚举类型 rcu_int_flag_clear_enum

成员名称	功能描述
RCU_INT_FLAG_IRC40KSTB	IRC40K稳定中断清除标志
RCU_INT_FLAG_LXTALSTB	LXTAL稳定中断清除标志
RCU_INT_FLAG_IRC8MSTB	IRC8M稳定中断清除标志
RCU_INT_FLAG_HXTALSTB	HXTAL稳定中断清除标志
RCU_INT_FLAG_PLLSTB	PLL稳定中断清除标志
RCU_INT_FLAG_IRC28MSTB	IRC28M稳定中断清除标志
RCU_INT_FLAG_CKM	CKM中断清除标志

枚举类型 rcu_int_enum

表 3-252. 枚举类型 rcu_int_enum

成员名称	功能描述
RCU_INT_IRC40KSTB	IRC40K时钟稳定中断
RCU_INT_LXTALSTB	外部低速晶振时钟稳定中断
RCU_INT_IRC8MSTB	IRC8M时钟稳定中断
RCU_INT_HXTALSTB	外部高速晶振时钟稳定中断
RCU_INT_PLLSTB	PLL时钟稳定中断
RCU_INT_IRC28MSTB	IRC28M时钟稳定中断

枚举类型 rcu_adc_clock_enum

表 3-253. 枚举类型 rcu_adc_clock_enum

成员名称	功能描述
RCU_ADCCK_IRC28M_DIV2	ADC时钟选择IRC28M/2
RCU_ADCCK_IRC28M	ADC时钟选择IRC28M
RCU_ADCCK_APB2_DIV2	ADC时钟选择APB2/2
RCU_ADCCK_AHB_DIV3	ADC时钟选择APB2/2
RCU_ADCCK_APB2_DIV4	ADC时钟选择APB2/4
RCU_ADCCK_AHB_DIV5	ADC时钟选择AHB/5
RCU_ADCCK_APB2_DIV6	ADC时钟选择APB2/6
RCU_ADCCK_AHB_DIV7	ADC时钟选择AHB/7
RCU_ADCCK_APB2_DIV8	ADC时钟选择APB2/8
RCU_ADCCK_AHB_DIV9	ADC时钟选择AHB/9

枚举类型 rcu_osci_type_enum

表 3-254. 枚举类型 rcu_osci_type_enum

成员名称	功能描述
RCU_HXTAL	外部高速振荡器
RCU_LXTAL	外部低速振荡器
RCU_IRC8M	IRC8M振荡器
RCU_IRC28M	IRC48M振荡器
RCU_IRC40K	IRC40K振荡器
RCU_PLL_CK	锁相环时钟

枚举类型 rcu_clock_freq_enum

表 3-255. 枚举类型 rcu_clock_freq_enum

成员名称	功能描述
CK_SYS	系统时钟
CK_AHB	AHB时钟
CK_APB1	APB1时钟

成员名称	功能描述
CK_APB2	APB2时钟
CK_ADC	ADC时钟
CK_USART	USART时钟

函数 rcu_deinit

函数rcu_deinit描述见下表:

表 3-256. 函数 rcu_deinit

K o root HW ton-Fronting		
函数名称	rcu_deinit	
函数原形	void rcu_deinit(void);	
功能描述	复位RCU,将RCU所有寄存器的值复位成初始值	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
-	-	

例如:

/* deinitialize the RCU */

rcu_deinit();

函数 rcu_periph_clock_enable

函数rcu_periph_clock_enable描述见下表:

表 3-257. 函数 rcu_periph_clock_enable

函数名称	rcu_periph_clock_enable	
函数原形	void rcu_periph_clock_enable(rcu_periph_enum periph);	
功能描述	使能外设时钟	
先决条件	-	
被调用函数	-	
输入参数{in}		
periph	RCU外设,具体参考rcu_periph_enum	
RCU_GPIOx	GPIOx时钟(x=A,B,C,F)	
RCU_DMA	DMA时钟	
RCU_CRC	CRC时钟	
RCU_CFGCMP	CFGCMP时钟	
RCU_ADC	ADC时钟	
RCU_TIMERx	TIMERx时钟(x=0,2,5,13,14,15,16)	

GD32E23x 固件库使用指南

RCU_SPIx	SPIx时钟(x=0,1)	
RCU_USARTx	USARTx时钟(x=0,1)	
RCU_WWDGT	WWDGT时钟	
RCU_I2Cx	I2Cx时钟(x=0,1)	
RCU_PMU	PMU时钟	
RCU_RTC	RTC时钟	
RCU_DBGMCU	DBGMCU时钟	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* enable the USART0 clock */

rcu_periph_clock_enable(RCU_USART0);

函数 rcu_periph_clock_disable

函数rcu_periph_clock_disable描述见下表:

表 3-258. 函数 rcu_periph_clock_disable

函数名称	rcu_periph_clock_disable
函数原形	void rcu_periph_clock_disable(rcu_periph_enum periph);
功能描述	禁能外设时钟
先决条件	-
被调用函数	-
	输入参数{in}
periph	RCU外设,具体参考rcu_periph_enum
RCU_GPIOx	GPIOx时钟(x=A,B,C,F)
RCU_DMA	DMA时钟
RCU_CRC	CRC时钟
RCU_CFGCMP	CFGCMP时钟
RCU_ADC	ADC时钟
RCU_TIMERx	TIMERx时钟(x=0,2,5,13,14,15,16)
RCU_SPIx	SPIx时钟(x=0,1)
RCU_USARTx	USARTx时钟(x=0,1)
RCU_WWDGT	WWDGT时钟
RCU_l2Cx	I2Cx时钟(x=0,1)
RCU_PMU	PMU时钟
RCU_RTC	RTC时钟
RCU_DBGMCU	DBGMCU时钟
输出参数{out}	
-	-

返回值	
-	-

/* disable the USART0 clock */

rcu_periph_clock_disable(RCU_USART0);

函数 rcu_periph_clock_sleep_enable

函数rcu_periph_clock_sleep_enable描述见下表:

表 3-259. 函数 rcu_periph_clock_sleep_enable

函数名称	rcu_periph_clock_sleep_enable		
函数原形	void rcu_periph_clock_sleep_enable(rcu_periph_sleep_enum periph);		
功能描述	在睡眠模式下,使能外设时钟		
先决条件	-		
被调用函数	-		
	输入参数{in}		
periph	RCU外设,参考rcu_periph_sleep_enum		
RCU_FMC_SLP	FMC时钟		
RCU_SRAM_SLP	SRAM时钟		
输出参数{out}			
-	-		
	返回值		
-	-		

例如:

/* enable the FMC clock when in sleep mode */

rcu_periph_clock_sleep_enable(RCU_FMC_SLP);

函数 rcu_periph_clock_sleep_disable

函数rcu_periph_clock_sleep_disable描述见下表:

表 3-260. 函数 rcu_periph_clock_sleep_disable

函数名称	rcu_periph_clock_sleep_disable
函数原形	void rcu_periph_clock_sleep_disable(rcu_periph_sleep_enum periph);
功能描述	在睡眠模式下,禁能外设时钟
先决条件	-
被调用函数	-
输入参数{in}	
periph	RCU外设,参考rcu_periph_sleep_enum
RCU_FMC_SLP	FMC时钟

RCU_SRAM_SLP	SRAM时钟	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* disable the FMC clock when in sleep mode */

rcu_periph_clock_sleep_disable(RCU_FMC_SLP);

函数 rcu_periph_reset_enable

函数rcu_periph_reset_enable描述见下表:

表 3-261. 函数 rcu_periph_reset_enable

	- ·
函数名称	rcu_periph_reset_enable
函数原形	void rcu_periph_reset_enable(rcu_periph_reset_enum periph_reset);
功能描述	使能外设复位
先决条件	-
被调用函数	-
	输入参数{in}
periph_reset	RCU外设复位,参考rcu_periph_reset_enum
RCU_GPIOxRST	复位GPIOx时钟(x=A,B,C,F)
RCU_CFGCMPRST	复位CFGCMP时钟
RCU_ADCRST	复位ADC时钟
RCU_TIMERxRST	复位TIMERx时钟(x=0,2,5,13,14,15,16)
RCU_SPIxRST	复位SPIx时钟(x=0,1)
RCU_USARTxRST	复位USARTx时钟(x=0,1)
RCU_WWDGTRST	复位WWDGT时钟
RCU_I2CxRST	复位I2Cx时钟(x=0,1)
RCU_PMURST	复位PMU时钟
输出参数{out}	
-	-
返回值	
-	-

例如:

/* enable SPI0 reset */

rcu_periph_reset_enable(RCU_SPI0RST);

函数 rcu_periph_reset_disable

函数rcu_periph_reset_disable描述见下表:

表 3-262. 函数 rcu_periph_reset_disable

函数名称	rcu_periph_reset_disable
函数原形	void rcu_periph_reset_disable(rcu_periph_reset_enum periph_reset);
功能描述	禁能外设复位
先决条件	-
被调用函数	-
	输入参数{in}
periph_reset	RCU外设复位,参考rcu_periph_reset_enum
RCU_GPI0xRST	除能复位GPIOx时钟(x=A,B,C,F)
RCU_CFGCMPRST	除能复位CFGCMP时钟
RCU_ADCRST	除能复位ADC时钟
RCU_TIMERxRST	除能复位TIMERx时钟(x=0,2,5,13,14,15,16)
RCU_SPIxRST	除能复位SPIx时钟(x=0,1)
RCU_USARTxRST	除能复位USARTx时钟(x=0,1)
RCU_WWDGTRST	除能复位WWDGT时钟
RCU_I2CxRST	除能复位I2Cx时钟(x=0,1)
RCU_PMURST	除能复位PMU时钟
输出参数{out}	
-	-
	返回值
-	-

例如:

/* disable SPI0 reset */

rcu_periph_reset_disable(RCU_SPI0RST);

函数 rcu_bkp_reset_enable

函数rcu_bkp_reset_enable描述见下表:

表 3-263. 函数 rcu_bkp_reset_enable

函数名称	rcu_bkp_reset_enable	
函数原形	void rcu_bkp_reset_enable(void);	
功能描述	使能BKP复位	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

/* reset the BKP domain */

rcu_bkp_reset_enable();

函数 rcu_bkp_reset_disable

函数rcu_bkp_reset_disable描述见下表:

表 3-264. 函数 rcu_bkp_reset_disable

No new May real managements		
函数名称	rcu_bkp_reset_disable	
函数原形	<pre>void rcu_bkp_reset_disable(void);</pre>	
功能描述	禁能BKP复位	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* disable the BKP domain reset */

rcu_bkp_reset_disable();

函数 rcu_system_clock_source_config

函数rcu_system_clock_source_config描述见下表:

表 3-265. 函数 rcu_system_clock_source_config

函数名称	rcu_system_clock_source_config
函数原形	<pre>void rcu_system_clock_source_config(uint32_t ck_sys);</pre>
功能描述	配置选择系统时钟源
先决条件	-
被调用函数	-
	输入参数{in}
ck_sys	系统时钟源选择
RCU_CKSYSSRC_I	本权CV IDCOMHたかたもCV CVC叶をが近
RC8M	选择CK_IRC8M时钟作为CK_SYS时钟源
RCU_CKSYSSRC_	选择CK HALVI 时钟作力CK CAC时钟旭
HXTAL	选择CK_HXTAL时钟作为CK_SYS时钟源
RCU_CKSYSSRC_	选择CK_PLL时钟作为CK_SYS时钟源
PLL	选择ON_FLE的 打下为ON_STS的 针像

输出参数{out}		
-	-	
	返回值	
-	-	

/* configure the CK_HXTAL as the CK_SYS source */

rcu_system_clock_source_config(RCU_CKSYSSRC_HXTAL);

函数 rcu_system_clock_source_get

函数rcu_system_clock_source_get描述见下表:

表 3-266. 函数 rcu_system_clock_source_get

<u> </u>		
函数名称	rcu_system_clock_source_get	
函数原形	uint32_t rcu_system_clock_source_get(void);	
功能描述	获取系统时钟源选择状态	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
uint32_t	RCU_SCSS_IRC8M/RCU_SCSS_HXTAL/RCU_SCSS_PLL	

例如:

uint32_t temp_cksys_status;

/* get the CK_SYS source */

temp_cksys_status = rcu_system_clock_source_get();

函数 rcu_ahb_clock_config

函数rcu_ahb_clock_config描述见下表:

表 3-267. 函数 rcu_ahb_clock_config

函数名称	rcu_ahb_clock_config
函数原形	void rcu_ahb_clock_config(uint32_t ck_ahb);
功能描述	配置AHB时钟预分频选择
先决条件	-
被调用函数	-
输入参数{in}	
ck_ahb	AHB预分频选择

RCU_AHB_CKSYS _DIVx	选择CK_SYS时钟x分频(x=1, 2, 4, 8, 16, 64, 128, 256, 512)
输出参数{out}	
-	-
返回值	
-	-

/* configure CK_SYS/128 */

rcu_ahb_clock_config(RCU_AHB_CKSYS_DIV128);

函数 rcu_apb1_clock_config

函数rcu_apb1_clock_config描述见下表:

表 3-268. 函数 rcu apb1 clock config

rcu_apb1_clock_config	
unidana anh A alash ann fin (uin 100 tala anh 4).	
<pre>void rcu_apb1_clock_config(uint32_t ck_apb1);</pre>	
配置APB1时钟预分频选择	
-	
-	
输入参数{in}	
APB1预分频选择	
出来CK AUDITHMV/) 類析 サCK ADD4ITHM (v. 4.2.4.9.46.)	
选择CK_AHB时钟x分频作为CK_APB1时钟(x=1,2,4,8,16)	
输出参数{out}	
-	
-	

例如:

/* configure CK_AHB/16 as CK_APB1 */

rcu_apb1_clock_config(RCU_APB1_CKAHB_DIV16);

函数 rcu_apb2_clock_config

函数rcu_apb2_clock_config描述见下表:

表 3-269. 函数 rcu_apb2_clock_config

函数名称	rcu_apb2_clock_config
函数原形	<pre>void rcu_apb2_clock_config(uint32_t ck_apb2);</pre>
功能描述	配置APB2时钟预分频选择
先决条件	-

被调用函数	-		
	·····································		
ck_apb2	APB2预分频选择		
RCU_APB2_CKAH	选择CK_AHB时钟x分频作为CK_APB2时钟(x=1,2,4,8,16)		
B_DIVx	近拝CN_And的 研究分 例下分CN_Ardz的 研(X=1,2,4,0,10)		
	输出参数{out}		
-	-		
返回值			
-	-		

/* configure CK_AHB/8 as CK_APB2 */

rcu_apb2_clock_config(RCU_APB2_CKAHB_DIV8);

函数 rcu_adc_clock_config

函数rcu_adc_clock_config描述见下表:

表 3-270. 函数 rcu_adc_clock_config

函数名称	rcu_adc_clock_config
函数原形	<pre>void rcu_adc_clock_config(rcu_adc_clock_enum ck_adc);</pre>
功能描述	配置adc时钟预分频选择
先决条件	-
被调用函数	-
	输入参数{in}
ck_adc	ADC预分频选择,具体参考rcu_adc_clock_enum
RCU_ADCCK_IRC2	选择(IRC28M / 2)作为CK_ADC时钟
8M_DIV2	选择(INC20M172)作为CN_ADC的研
RCU_ADCCK_IRC2	选择内部28M RC振荡器时钟作为CK_ADC时钟
8M	远洋的 即20W NO旅物 奋时 竹下/9CN_ADC时 竹
RCU_ADCCK_AHB	选择AHB时钟的x分频作为CK_ADC时钟(x=3,5,7,9)
_DIVx	
RCU_ADCCK_APB	选择APB2时钟的x分频作为CK_ADC时钟(x=2,4,6,8)
2_DIVx	処理AFDZ的特別X万例下力UN_ADU的特(X=Z,4,6,8)
输出参数{out}	
-	-
	返回值
-	-

例如:

/* configure the ADC prescaler factor */

rcu_adc_clock_config(RCU_ADCCK_IRC28M);

函数 rcu_ckout_config

函数rcu_ckout_config描述见下表:

表 3-271. 函数 rcu_ckout_config

及 3-271. 函数 ICu_ 函数名称	rcu_ckout_config	
函数原形	void rcu_ckout_config(uint32_t ckout_src, uint32_t ckout_div);	
功能描述	配置CKOUT时钟源选择及分频系数	
先决条件	-	
被调用函数	-	
211111111111111111111111111111111111111	输入参数{in}	
ckout_src	CKOUT时钟源选择	
RCU_CKOUTSRC_	T = 1 fol 46 als	
NONE	无时钟输出	
RCU_CKOUTSRC_) 4. LV -124.0044 D.O.LV -14. HILL 1.6.1.	
IRC28M	选择内部28M RC振荡器时钟	
RCU_CKOUTSRC_	为 拉 中 如 AOV DO 标 英 昭 叶 th	
IRC40K	选择内部40K RC振荡器时钟	
RCU_CKOUTSRC_	选择处动低速且体振荡器时钟(I VTAI)	
LXTAL	选择外部低速晶体振荡器时钟(LXTAL)	
RCU_CKOUTSRC_	选择系统时钟CK_SYS	
CKSYS	选择系统时 州UN_STS	
RCU_CKOUTSRC_	选择内部8M RC振荡器时钟	
IRC8M	处评的 IPOW NOW 初 部 可	
RCU_CKOUTSRC_	选择外部高速晶体振荡器时钟(HXTAL)	
HXTAL	边开月时间还田P派初带917(IIATAL)	
RCU_CKOUTSRC_	选择CK_PLL时钟	
CKPLL_DIV1	ZGIT OTC., ELEMINI	
RCU_CKOUTSRC_	选择 (CK_PLL / 2) 时钟	
CKPLL_DIV2	231 (OIC) EE/27 1371	
	输入参数{in}	
ckout_div	CKOUT分频系数	
RCU_CKOUT_DIVx		
-	输出参数{out}	
-	-	
,	返回值	
-	-	

例如:

/* configure the HXTAL as CK_OUT clock source */

 $rcu_ckout_config(RCU_CKOUTSRC_HXTAL,\ RCU_CKOUT_DIV1);\\$

函数 rcu_pll_config

函数rcu_pll_config描述见下表:

表 3-272. 函数 rcu_pll_config

函数名称	rcu_pll_config	
函数原形	void rcu_pll_config(uint32_t pll_src, uint32_t pll_mul);	
功能描述	配置主PLL时钟	
先决条件	-	
被调用函数	-	
	输入参数{in}	
pll_src	PLL时钟源选择	
RCU_PLLSRC_IRC	(IDCOM / 2)被选择为DLL时始的时始源	
8M_DIV2	(IRC8M / 2)被选择为PLL时钟的时钟源	
RCU_PLLSRC_HXT	UVTAI 时结束连接为DII 时轴的时轴循	
AL	HXTAL时钟被选择为PLL时钟的时钟源	
	输入参数{in}	
pll_mul	PLL时钟倍频因子	
RCU_PLL_MULx	PLL源时钟 * x (x = 232)	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* configure the PLL */

 $rcu_pll_config(RCU_PLLSRC_HXTAL,\,RCU_PLL_MUL10);$

函数 rcu_usart_clock_config

函数rcu_usart_clock_config描述见下表:

表 3-273. 函数 rcu_usart_clock_config

函数名称	rcu_usart_clock_config		
函数原形	void rcu_usart_clock_config(uint32_t ck_usart);		
功能描述	配置串口时钟		
先决条件	-		
被调用函数	-		
	输入参数{in}		
ck_usart	USARTO输入时钟源		
RCU_USART0SRC	本权CV ADDOITH たかた もCV LICADTOITH た		
_CKAPB2	选择CK_APB2时钟作为CK_USART0时钟		
RCU_USART0SRC	选择CK SYS时钟作为CK USART0时钟		
_CKSYS	及近年ON_OTOP1 FF F / YON_OOAN TOP1 FF		

GD32E23x 固件库使用指南

RCU_USART0SRC	选择CK_LXTAL时钟作为CK_USART0时钟		
_LXTAL	选择ON_EXTACH) 好作为ON_USANTUH 好		
RCU_USART0SRC	选择CK_IRC8M时钟作为CK_USART0时钟		
_IRC8M	选择ON_INCOMES 好作为ON_USANTUES 好		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* configure the USART */

rcu_usart_clock_config(RCU_USART0SRC_CKAPB2);

函数 rcu_rtc_clock_config

函数rcu_rtc_clock_config描述见下表:

表 3-274. 函数 rcu_rtc_clock_config

函数名称	rcu_rtc_clock_config	
函数原形	void rcu_rtc_clock_config(uint32_t rtc_clock_source);	
功能描述	配置RTC时钟	
先决条件	-	
被调用函数	-	
	输入参数{in}	
rtc_clock_source	RTC时钟源选择	
RCU_RTCSRC_NO	土. 24. 4又 叶 6亩	
NE	未选择时钟	
RCU_RTCSRC_LX	选择CK_LXTAL作为RTC时钟源	
TAL	处排OK_LXTALT⊢/JKTO的 种源	
RCU_RTCSRC_IRC	选择内部40K RC振荡器时钟作为RTC时钟源	
40K	近洋內印40K KU旅物船叫针下/XKTU叫 针版	
RCU_RTCSRC_HX	选择外部高速晶振32分频作为RTC时钟源	
TAL_DIV32	远拜介丽应图1版32分列F/XKTO时程像	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* configure the RTC clock source selection */

rcu_rtc_clock_config(RCU_RTCSRC_IRC40K);

函数 rcu_hxtal_prediv_config

函数rcu_hxtal_prediv_config描述见下表:

表 3-275. 函数 rcu_hxtal_prediv_config

函数名称	rcu_hxtal_prediv_config	
函数原形	<pre>void rcu_hxtal_prediv_config(uint32_t hxtal_prediv);</pre>	
功能描述	配置HXTAL作为PLL输入源分频因子	
先决条件	-	
被调用函数	-	
	输入参数{in}	
hxtal_prediv	PLL时钟源分频因子选择	
RCU_PLL_PREDVx	HXTAL的x分频作为PLL时钟(x=116)	
	输出参数{out}	
-	-	
	返回值	
-	•	

例如:

/* configure the PLL clock source selection */

rcu_hxtal_prediv_config(RCU_PLL_PREDIV2);

函数 rcu_lxtal_drive_capability_config

函数rcu_lxtal_drive_capability_config描述见下表:

表 3-276. 函数 rcu_lxtal_drive_capability_config

	;
函数名称	rcu_lxtal_drive_capability_config
函数原形	void rcu_lxtal_drive_capability_config(uint32_t lxtal_dricap);
功能描述	配置LXTAL驱动能力
先决条件	-
被调用函数	-
	输入参数{in}
lxtal_dricap	LXTAL驱动能力
RCU_LXTAL_LOW	低驱动力
DRI	1以他列刀
RCU_LXTAL_MED_	中低驱动力
LOWDRI	T 1以他约刀
RCU_LXTAL_MED_	中高驱动力
HIGHDRI	个 向
RCU_LXTAL_HIGH	高驱动力
DRI	同心外刀
输出参数{out}	
-	-
DRI -	

返回值		
	-	-

/* configure the LXTAL drive capability */

rcu_lxtal_drive_capability_config(RCU_LAXTAL_LOWDRI);

函数 rcu_flag_get

函数rcu_flag_get描述见下表:

表 3-277. 函数 rcu flag get

函数名称	rcu_flag_get	
函数原形	FlagStatus rcu_flag_get (rcu_flag_enum flag);	
功能描述	获取时钟稳定和外设复位标志	
先决条件	-	
被调用函数	-	
	输入参数{in}	
flag	时钟稳定和外设复位标志,参考rcu_flag_enum	
RCU_FLAG_IRC40	IDO 401/14 C-1-+	
KSTB	IRC40K稳定标志	
RCU_FLAG_LXTAL	LVTAL 集合标子	
STB	LXTAL稳定标志	
RCU_FLAG_IRC8M		
STB	IRC8M稳定标志	
RCU_FLAG_HXTAL	11VTA1 th c-1-+	
STB	HXTAL稳定标志	
RCU_FLAG_PLLST		
В	PLL时钟稳定标志	
RCU_FLAG_IRC28		
MSTB	IRC28M稳定标志	
RCU_FLAG_V12RS		
Т	1.2V电压域复位标志	
RCU_FLAG_OBLR	外宿心中有心 上十	
ST	选项字节复位标志	
RCU_FLAG_EPRS	사했리배(# 남도구	
Τ	外部引脚复位标志	
RCU_FLAG_PORR	472 <i>=</i> 12.12. +	
ST	电源复位标志	
RCU_FLAG_SWRS	+L/IL & D. I L	
Т	软件复位标志	
RCU_FLAG_FWDG	独立看门狗复位标志	
TRST		

RCU_FLAG_\	WWD	
GTRST		窗口看门狗复位标志
077107		
RCU_FLAG_L	.PRST	低电压复位标志
输出参数{out}		
-		-
	返回值	
- SET或RESET		SET或RESET

```
/* get the clock stabilization flag */
if(RESET != rcu_flag_get(RCU_FLAG_LXTALSTB)){
}
```

函数 rcu_all_reset_flag_clear

函数rcu_all_reset_flag_clear描述见下表:

表 3-278. 函数 rcu_all_reset_flag_clear

70 a _ a a	
函数名称	rcu_all_reset_flag_clear
函数原形	void rcu_all_reset_flag_clear(void);
功能描述	清除所有复位标志位
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	
-	-

例如:

/* clear all the reset flag */
rcu_all_reset_flag_clear();

函数 rcu_interrupt_flag_get

函数rcu_interrupt_flag_get描述见下表:

表 3-279. 函数 rcu_interrupt_flag_get

函数名称	rcu_interrupt_flag_get
函数原形	FlagStatus rcu_interrupt_flag_get(rcu_int_flag_enum int_flag);
功能描述	获取时钟稳定中断和时钟阻塞中断标志
先决条件	-

被调用函数	-
输入参数{in}	
Int_flag	中断以及CKM标志,参考rcu_int_flag_enum
RCU_INT_FLAG_IR	IRC40K稳定中断标志
C40KSTB	IRO40R总是中例你心
RCU_INT_FLAG_L	LXTAL稳定中断标志
XTALSTB	LATAL 怎定中的你心
RCU_INT_FLAG_IR	IRC8M稳定中断标志
C8MSTB	IRCOMI标准中的协心
RCU_INT_FLAG_H	HXTAL稳定中断标志
XTALSTB	IIATAL 信足中 剔 你心
RCU_INT_FLAG_P	PLL稳定中断标志
LLSTB	FLL紀史中例你心
RCU_INT_FLAG_IR	IRC28M稳定中断标志
C28MSTB	IROZOM信及中國称心
RCU_INT_FLAG_C	HXTAL时钟阻塞中断标志
KM	TATAL的 竹阻差中断你心
输出参数{out}	
-	-
	返回值
FlagStatus	SET 或 RESET

```
/* get the clock stabilization interrupt flag */
if(SET == rcu_interrupt_flag_get(RCU_INT_FLAG_HXTALSTB)){
}
```

函数 rcu_interrupt_flag_clear

函数rcu_interrupt_flag_clear描述见下表:

表 3-280. 函数 rcu_interrupt_flag_clear

函数名称	rcu_interrupt_flag_clear	
函数原形	void rcu_interrupt_flag_clear (rcu_int_flag_clear_enum int_flag_clear);	
功能描述	清除中断标志和时钟阻塞中断标志	
先决条件	-	
被调用函数	-	
int_flag_clear	时钟稳定和阻塞中断标志清除,参考rcu_int_flag_clear_enum	
RCU_INT_FLAG_IR	清除IRC40K稳定中断标志	
C40KSTB_CLR		
RCU_INT_FLAG_L) + 1/\ - \ - \	
XTALSTB_CLR	清除LXTAL稳定中断标志	

RCU_INT_FLAG_IR	清除IRC8M稳定中断标志	
C8MSTB_CLR	有陈IRCOMI总足中例你忘	
RCU_INT_FLAG_H	注MTAL 经合由帐上十	
XTALSTB_CLR	清除HXTAL稳定中断标志	
RCU_INT_FLAG_P	注1人 DII 44 户中断于于	
LLSTB_CLR	清除PLL稳定中断标志	
RCU_INT_FLAG_IR	连险IDC20MAA ch 账标士	
C28MSTB_CLR	清除IRC28M稳定中断标志	
RCU_INT_FLAG_C	清除HXTAL时钟阻塞中断标志	
KM_CLR	何你 TA L 内 护阻塞中则你心	
输出参数{out}		
-	-	
	返回值	
-	-	

/* clear the interrupt HXTAL stabilization interrupt flag */
rcu_interrupt_flag_clear(RCU_INT_FLAG_HXTALSTB_CLR);

函数 rcu_interrupt_enable

函数rcu_interrupt_enable描述见下表:

表 3-281. 函数 rcu_interrupt_enable

函数名称rcu_interrupt_enable函数原形void rcu_interrupt_enable (rcu_int_enur功能描述使能时钟稳定中断	m stab_int);
	m stab_int);
功能描述 使能时钟稳定中断	
先决条件 -	
被调用函数 -	
输入参数{in}	
stb_int 时钟稳定中断,具体参考rcu_int_e	enum
RCU_INT_IRC40KS 使能IRC40K稳定中断	
TB 使形成分配稳定中例	
RCU_INT_LXTALS 使能LXTAL稳定中断	
TB	
RCU_INT_IRC8MS 使能IRC8M稳定中断	
TB 使能KCoWi标定中断	
RCU_INT_HXTALS 使能HXTAL稳定中断	法公山又工工工名之中,断
TB 使配环和C稳定中断	
RCU_INT_PLLSTB 使能PLL稳定中断	
RCU_INT_IRC28M 使能IRC28M稳定中断	
STB 使形成28M稳定中断	
输出参数{out}	

返回值	

/* enable the HXTAL stabilization interrupt */
rcu_interrupt_enable(RCU_INT_HXTALSTB);

函数 rcu_interrupt_disable

函数rcu_interrupt_disable描述见下表:

表 3-282. 函数 rcu interrupt disable

表 3-202. 函数 icu_iiiterrupt_uisable		
函数名称	rcu_interrupt_disable	
函数原形	<pre>void rcu_interrupt_disable (rcu_int_enum stab_int);</pre>	
功能描述	除能时钟稳定中断	
先决条件	-	
被调用函数	-	
	输入参数{in}	
stb_int	时钟稳定中断,具体参考rcu_int_enum	
RCU_INT_IRC40KS	除能IRC40K稳定中断	
TB	体形RO40K億足中例	
RCU_INT_LXTALS	Post VTAL Aschie	
TB	除能LXTAL稳定中断	
RCU_INT_IRC8MS	PASE ID COM AA CA 市 NE	
TB	除能IRC8M稳定中断	
RCU_INT_HXTALS	7公公LIVTAL 45. 户 中枢	
TB	除能HXTAL稳定中断	
RCU_INT_PLLSTB	除能PLL稳定中断	
RCU_INT_IRC28M	IA AND COOM A 中枢	
STB	除能IRC28M稳定中断	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* disable the HXTAL stabilization interrupt */
rcu_interrupt_disable(RCU_INT_HXTALSTB);

函数 rcu_osci_stab_wait

函数rcu_osci_stab_wait描述见下表:

表 3-283. 函数 rcu_osci_stab_wait

函数名称	rcu_osci_stab_wait	
函数原形	ErrStatus rcu_osci_stab_wait(rcu_osci_type_enum osci);	
功能描述	等待振荡器稳定标志位置位或振荡器起振超时	
先决条件	-	
被调用函数	rcu_flag_get	
	输入参数{in}	
osci	振荡器类型,参考rcu_osci_type_enum	
RCU_HXTAL	高速晶体振荡器	
RCU_LXTAL	低速晶体振荡器	
RCU_IRC8M	内部8M RC振荡器	
RCU_IRC28M	内部28M RC振荡器	
RCU_IRC40K	内部40K RC振荡器	
RCU_PLL_CK	锁相环	
输出参数{out}		
-	-	
	返回值	
ErrStatus	SUCCESS 或 ERROR	

例如:

```
/* wait for oscillator stabilization flag */
if(SUCCESS == rcu_osci_stab_wait(RCU_HXTAL)){
}
```

函数 rcu_osci_on

函数rcu_osci_on描述见下表:

表 3-284. 函数 rcu_osci_on

人 0 20-11 图		
函数名称	rcu_osci_on	
函数原形	<pre>void rcu_osci_on(rcu_osci_type_enum osci);</pre>	
功能描述	打开振荡器	
先决条件	-	
被调用函数	-	
osci	振荡器类型,参考rcu_osci_type_enum	
RCU_HXTAL	高速晶体振荡器	
RCU_LXTAL	低速晶体振荡器	
RCU_IRC8M	内部8M RC振荡器	
RCU_IRC28M	内部28M RC振荡器	
RCU_IRC40K	内部40K RC振荡器	
RCU_PLL_CK	锁相环	

输出参数{out}		
-	-	
-	-	

/* turn on the high speed crystal oscillator */

rcu_osci_on(RCU_HXTAL);

函数 rcu_osci_off

函数rcu_osci_off描述见下表:

表 3-285. 函数 rcu osci off

衣 3-205. 函数 ICu_	_000,_011	
函数名称	rcu_osci_off	
函数原形	<pre>void rcu_osci_off(rcu_osci_type_enum osci);</pre>	
功能描述	关闭振荡器	
先决条件	-	
被调用函数	-	
	·····································	
osci	振荡器类型,参考rcu_osci_type_enum	
RCU_HXTAL	高速晶体振荡器	
RCU_LXTAL	低速晶体振荡器	
RCU_IRC8M	内部8M RC振荡器	
RCU_IRC28M	内部28M RC振荡器	
RCU_IRC40K	内部40K RC振荡器	
RCU_PLL_CK	锁相环	
	输出参数{out}	
-	-	
-	-	

例如:

/* turn off the high speed crystal oscillator */

rcu_osci_off(RCU_HXTAL);

函数 rcu_osci_bypass_mode_enable

函数rcu_osci_bypass_mode_enable描述见下表:

表 3-286. 函数 rcu_osci_bypass_mode_enable

函数名称	rcu_osci_bypass_mode_enable
函数原形	<pre>void rcu_osci_bypass_mode_enable(rcu_osci_type_enum osci);</pre>

GD32E23x 固件库使用指南

功能描述	使能振荡器时钟旁路模式	
先决条件	HXTALEN或LXTALEN应在使能振荡器时钟旁路模式前先复位	
被调用函数	-	
	输入参数{in}	
osci	振荡器类型,参考rcu_osci_type_enum	
RCU_HXTAL	高速晶体振荡器	
RCU_LXTAL	低速晶体振荡器	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* enable the high speed crystal oscillator bypass mode */

rcu_osci_bypass_mode_enable(RCU_HXTAL);

函数 rcu_osci_bypass_mode_disable

函数rcu_osci_bypass_mode_disable描述见下表:

表 3-287. 函数 rcu_osci_bypass_mode_disable

函数名称	rcu_osci_bypass_mode_disable	
函数原形	void rcu_osci_bypass_mode_disable(rcu_osci_type_enum osci);	
功能描述	除能振荡器时钟旁路模式	
先决条件	HXTALEN或LXTALEN应在使能振荡器时钟旁路模式前先复位	
被调用函数	-	
	输入参数{in}	
osci	振荡器类型,参考rcu_osci_type_enum	
RCU_HXTAL	高速晶体振荡器	
RCU_LXTAL	低速晶体振荡器	
	输出参数{out}	
-	-	
-	-	

例如:

/* disable the HXTAL clock monitor */

rcu_hxtal_clock_monitor_disable();

函数 rcu_hxtal_clock_monitor_enable

函数rcu_hxtal_clock_monitor_enable描述见下表:

表 3-288. 函数 rcu_hxtal_clock_monitor_enable

函数名称	rcu_hxtal_clock_monitor_enable	
函数原形	void rcu_hxtal_clock_monitor_enable(void);	
功能描述	使能HXTAL时钟监视器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* enable the HXTAL clock monitor */

rcu_hxtal_clock_monitor_enable();

函数 rcu_hxtal_clock_monitor_disable

函数rcu_hxtal_clock_monitor_disable描述见下表:

表 3-289. 函数 rcu_hxtal_clock_monitor_disable

函数名称	rcu_hxtal_clock_monitor_disable	
函数原形	void rcu_hxtal_clock_monitor_disable(void);	
功能描述	除能HXTAL时钟监视器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable the HXTAL clock monitor */

rcu_hxtal_clock_monitor_disable();

函数 rcu_irc8m_adjust_value_set

函数rcu_irc8m_adjust_value_set描述见下表:

表 3-290. 函数 rcu_irc8m_adjust_value_set

函数名称	rcu_irc8m_adjust_value_set	
函数原形	void rcu_irc8m_adjust_value_set(uint32_t irc8m_adjval);	
功能描述	设置内部8MHz RC振荡器时钟调整值	
先决条件	-	
被调用函数	-	
输入参数{in}		
irc8m_adjval	IRC8M调整值(0到0x1F之间)	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* set the IRC8M adjust value */

rcu_irc8m_adjust_value_set(0x10);

函数 rcu_irc28m_adjust_value_set

函数rcu_irc28m_adjust_value_set描述见下表:

表 3-291. 函数 rcu_irc28m_adjust_value_set

函数名称	rcu_irc28m_adjust_value_set	
函数原形	void rcu_irc28m_adjust_value_set(uint32_t irc28m_adjval);	
功能描述	设置内部28MHz RC振荡器时钟调整值	
先决条件	•	
被调用函数	-	
输入参数{in}		
irc28m_adjval	IRC28M调整值(0到0x1F之间)	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* set the IRC28M adjust value */

rcu_irc28m_adjust_value_set(0x10);

函数 rcu_voltage_key_unlock

函数rcu_voltage_key_unlock描述见下表:

表 3-292. 函数 rcu_voltage_key_unlock

函数名称	rcu_voltage_key_unlock	
函数原形	void rcu_voltage_key_unlock(void);	
功能描述	解锁电压寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* unlock the voltage key*/

rcu_voltage_key_unlock();

函数 rcu_deepsleep_voltage_set

函数rcu_deepsleep_voltage_set描述见下表:

表 3-293. 函数 rcu_deepsleep_voltage_set

函数名称	rcu_deepsleep_voltage_set
函数原形	void rcu_deepsleep_voltage_set(uint32_t dsvol);
功能描述	设置深度睡眠模式电压值
先决条件	-
被调用函数	-
	输入参数{in}
dsvol	深度睡眠模式电压值
RCU_DEEPSLEEP	大淡度睡眠模式下丸核丸压为4 OV
_V_1_0	在深度睡眠模式下内核电压为1.0V
RCU_DEEPSLEEP	在深度睡眠模式下内核电压为0.9V
_V_0_9	仁林发睡眠侯八下內核电压內0.30
RCU_DEEPSLEEP	在深度睡眠模式下内核电压为0.8V
_V_0_8	仁孙/文唑叭侯八下的核电压/90.0V
RCU_DEEPSLEEP	在深度睡眠模式下内核电压为1.2V
_V_1_2	仁孙/文唑叭侯八下的核电压/y1.2v
输出参数{out}	
-	-
返回值	
-	-

例如:

/* set the deep-sleep mode voltage */

rcu_deepsleep_voltage_set(RCU_DEEPSLEEP_V_1_0);

函数 rcu_clock_freq_get

函数rcu_clock_freq_get描述见下表:

表 3-294. 函数 rcu_clock_freq_get

函数名称	rcu_clock_freq_get	
函数原形	uint32_t rcu_clock_freq_get(rcu_clock_freq_enum clock);	
功能描述	获取系统、总线以及外设时钟频率	
先决条件	-	
被调用函数	-	
	输入参数{in}	
clock	要获取的时钟频率,具体参考rcu_clock_freq_enum	
CK_SYS	系统时钟频率	
CK_AHB	AHB时钟频率	
CK_APB1	APB1时钟频率	
CK_APB2	APB2时钟频率	
CK_ADC	ADC时钟频率	
CK_USART	USART时钟频率	
	输出参数{out}	
-	-	
	返回值	
uint32_t	系统时钟/AHB时钟/APB1时钟/APB2时钟/ADC时钟/USART时钟频率	

例如:

uint32_t temp_freq;

/* get the system clock frequency */

temp_freq = rcu_clock_freq_get(CK_SYS);

3.15. RTC

实时时钟RTC通常被用作时钟日历。位于备份域中的RTC电路,包含一个32位的累加计数器、一个闹钟、一个预分频器、一个分频器以及RTC时钟配置寄存器。章节<u>3.15.1</u>描述了RTC的寄存器列表,章节<u>3.15.2</u>对RTC库函数进行说明。

3.15.1. 外设寄存器描述

RTC寄存器列表如下表所示:

表 3-295. RTC 寄存器

寄存器名称	寄存器描述
RTC_TIME	RTC时间寄存器
RTC_DATE	RTC日期寄存器
RTC_CTL	RTC控制寄存器
RTC_STAT	RTC状态寄存器
RTC_PSC	RTC预分频寄存器
RTC_ALRM0TD	RTC闹钟0时间日期寄存器
RTC_WPK	RTC写保护钥匙寄存器
RTC_SS	RTC亚秒寄存器
RTC_SHIFTCTL	RTC移位控制寄存器
RTC_TTS	RTC时间戳时间寄存器
RTC_DTS	RTC时间戳日期寄存器
RTC_SSTS	RTC时间戳亚秒寄存器
RTC_HRFC	RTC高精度频率补偿寄存器
RTC_TAMP	RTC侵入寄存器
RTC_ALRM0SS	RTC闹钟0亚秒寄存器
RTC_BKP0	RTC备份域寄存器0
RTC_BKP1	RTC备份域寄存器1
RTC_BKP2	RTC备份域寄存器2
RTC_BKP3	RTC备份域寄存器3
RTC_BKP4	RTC备份域寄存器4

3.15.2. 外设库函数描述

RTC库函数列表如下表所示:

表 3-296. RTC 库函数

库函数名称	库函数描述
rtc_deinit	复位大多数RTC寄存器
rtc_init	初始化RTC寄存器
rtc_init_mode_enter	进入RTC初始化模式
rtc_init_mode_exit	退出RTC初始化模式
rte register even weit	等待直到RTC_TIME和RTC_DATE寄存器与APB时钟同步,并
rtc_register_sync_wait	且阴影寄存器被更新
rtc_current_time_get	获取当前的时间和日期
rtc_subsecond_get	获取当前的亚秒值
rtc_alarm_config	配置RTC闹钟
rtc_alarm_subsecond_config	配置RTC闹钟的亚秒值
rtc_alarm_get	获取RTC闹钟
rtc_alarm_subsecond_get	获取RTC闹钟亚秒值
rtc_alarm_enable	使能RTC 闹钟
rtc_alarm_disable	失能RTC 闹钟

库函数名称	库函数描述
rtc_timestamp_enable	使能RTC 时间戳
rtc_timestamp_disable	失能RTC时间戳
rtc_timestamp_get	获取RTC时间戳时间和日期
rtc_timestamp_subsecond_get	获取RTC时间戳亚秒值
rtc_tamper_enable	使能RTC侵入检测
rtc_tamper_disable	失能RTC侵入检测
rtc_interrupt_enable	使能RTC指定的中断
rtc_interrupt_disable	失能RTC指定中断
rtc_flag_get	获取指定中断标志位
rtc_flag_clear	清除指定中断标志位
rtc_alter_output_config	配置RTC备用输出源
rtc_calibration_config	配置RTC校准寄存器
rto hour adjust	通过在当前时间上增加或者减少一个小时来适应夏令时和冬令
rtc_hour_adjust	时
rtc_second_adjust	调整RTC当前时间的秒或亚秒值
rtc_bypass_shadow_enable	使能RTC影子寄存器
rtc_bypass_shadow_disable	失能RTC影子寄存器
rtc_refclock_detection_enable	使能RTC参考时钟检测功能
rtc_refclock_detection_disable	失能RTC参考时钟检测功能

结构体 rtc_parameter_struct

表 3-297. 结构体 rtc_parameter_struct

Member name	Function description
rtc_year	RTC年份值: 0x0 - 0x99(BCD 格式)
rtc_month	RTC月份值(BCD 格式)
rtc_date	RTC日期值: 0x1 - 0x31(BCD 格式)
rtc_day_of_week	RTC星期值(BCD 格式)
rtc_hour	RTC 小时值: 0x1 - 0x12(BCD 格式) or 0x0 - 0x23(BCD 格式)
rtc_minute	RTC分钟值: 0x0 - 0x59(BCD 格式)
rtc_second	RTC秒值: 0x0 - 0x59(BCD 格式)
rtc_factor_asyn	RTC一步分频值: 0x0 - 0x7F
rtc_factor_syn	RTC同步分频值: 0x0 - 0x7FFF
rtc_am_pm	RTC AM/PM 值
rtc_display_format	RTC时间格式

结构体 rtc_alarm_struct

表 3-298. 结构体 rtc_alarm_struct

Member name	Function description
rtc_alarm_mask	RTC闹钟屏蔽

rtc_weekday_or_dat	指定RTC闹钟是日期还是星期几
е	1日比KIO阿什定日别处定生别/L
rtc_alarm_day	RTC闹钟日期或者星期几的值(BCD 格式)
rtc_alarm_hour	RTC闹钟小时值: 0x1 - 0x12(BCD 格式) or 0x0 - 0x23(BCD 格式)
rtc_alarm_minute	RTC闹钟分钟值: 0x0 - 0x59(BCD 格式)
rtc_alarm_second	RTC闹钟秒数值: 0x0 - 0x59(BCD 格式)
rtc_am_pm	RTC闹钟AM/PM数值

结构体 rtc_timestamp_struct

表 3-299. 结构体 rtc_timestamp_struct

Member name	Function description
rtc_timestamp_mont	PTC 叶问题 日 八店
h	RTC时间戳月份值
rtc_timestamp_date	RTC 时间戳日期值: 0x1 - 0x31(BCD 格式)
rtc_timestamp_day	RTC时间戳星期值(BCD 格式)
rtc_timestamp_hour	RTC 时间戳小时值: 0x1 - 0x12(BCD 格式) or 0x0 - 0x23(BCD 格式)
rtc_timestamp_minu	PTO叶问题//与h/ft, Ovo OvEO/PCD 校士/
te	RTC时间戳分钟值: 0x0 - 0x59(BCD 格式)
rtc_timestamp_seco	RTC时间戳秒数值: 0x0 - 0x59(BCD 格式)
nd	
rtc_am_pm	RTC时间戳AM/PM数值

结构体 rtc_tamper_struct

表 3-300. 结构体 rtc_tamper_struct

Member name	Function description
rtc_tamper_source	RTC侵入检测源
rtc_tamper_trigger	RTC侵入事件检测触发沿
rtc_tamper_filter	RTC 侵入事件检测在电平检测期间需要的连续采样次数
rtc_tamper_sample_	RTC侵入事件电平模式检测的采样频率
frequency	
rtc_tamper_prechar	RTC在电压电平检测期间的预充电功能
ge_enable	NIO在电压电上位侧别问的现在电功能
rtc_tamper_prechar	RTC侵入事件电平检测采样预充电时间,如果预充电功能使能
ge_time	
rtc_tamper_with_tim	RTC侵入事件触发时间戳
estamp	

函数 rtc_deinit

函数rtc_deinit描述见下表:

表 3-301. 函数 rtc_deinit

-		
函数名称	rtc_deinit	
函数原型	ErrStatus rtc_deinit(void);	
功能描述	复位大多数RTC寄存器	
先决条件	-	
被调用函数	rcu_periph_reset_enable/ rcu_periph_reset_disable	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
返回值		
ErrStatus	ERROR或SUCCESS	

例如:

/* reset most of the RTC registers*/

ErrStatus error_status = rtc_deinit();

函数 rtc_init

函数rtc_init描述见下表:

表 3-302. 函数 rtc_init

函数名称rtc_init函数原型ErrStatus rtc_init(rtc_parameter_struct* rtc_initpara_struct*)功能描述初始化RTC寄存器	-	
功能描述 初始化RTC寄存器	ct);	
先决条件 -		
被调用函数 -		
输入参数{in}		
rtc_initpara_struct 初始化结构体,结构体成员参考 <u>表3-297. 结构体rtc_paramet</u> e	er_struct	
输出参数{out}		
返回值		
ErrStatus ERROR或SUCCESS		

例如:

/* reset most of the RTC registers*/

ErrStatus error_status = rtc_init ();

函数 rtc_init_mode_enter

函数rtc_init_mode_enter描述见下表:

表 3-303. 函数 rtc_init_mode_enter

函数名称	rtc_init_mode_enter	
函数原型	ErrStatus rtc_init_mode_enter(void);	
功能描述	进入RTC初始化模式	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
返回值		
ErrStatus	ERROR或 SUCCESS	

例如:

/*enter RTC init mode*/

ErrStatus error_status = rtc_init_mode_enter ();

函数 rtc_init_mode_exit

函数rtc_init_mode_exit描述见下表:

表 3-304. 函数 rtc_init_mode_exit

函数名称	rtc_init_mode_exit	
函数原型	void rtc_init_mode_exit(void);	
功能描述	退出RTC初始化模式	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/*exit RTC init mode*/

rtc_init_mode_exit ();

函数 rtc_register_sync_wait

函数rtc_register_sync_wait描述见下表:

表 3-305. 函数 rtc_register_sync_wait

函数名称	rtc_register_sync_wait		
函数原型	ErrStatus rtc_register_sync_wait(void);		
	等待直到RTC_TIME和RTC_DATE寄存器与APB时钟同步,并且阴影寄存器		
功能描述	被更新		
先决条件	-		
被调用函数	-		
	输入参数{in}		
-	-		
	输入参数{in}		
-	-		
返回值			
ErrStatus	ERROR或SUCCESS		

例如:

/*wait until RTC_TIME and RTC_DATE registers are synchronized with APB clock, and the shadow registers are updated*/

ErrStatus error_status = rtc_register_sync_wait ();

函数 rtc_current_time_get

函数rtc_current_time_get描述见下表:

表 3-306. 函数 rtc_current_time_get

函数名称	rtc_current_time_get	
函数原型	void rtc_current_time_get(rtc_parameter_struct* rtc_initpara_struct);	
功能描述	获取当前的时间和日期	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
rtc_initpara_struct	初始化结构体,结构体成员参考 <i>表3-297. 结构体rtc_parameter_struct</i>	
返回值		
-	-	

例如:

/*get current time and date*/

rtc_parameter_struct rtc_initpara_struct;

rtc_current_time_get (&rtc_initpara_struct);

函数 rtc_subsecond_get

函数rtc_subsecond_get描述见下表:

表 3-307. 函数 rtc_subsecond_get

函数名称	rtc_subsecond_get	
函数原型	uint32_t rtc_subsecond_get(void);	
功能描述	获取当前的亚秒值	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
uint32_t	当前的亚秒值(0x00-0xFFFF)	

例如:

/*get current subsecond value*/

uint32_t sub_second = rtc_subsecond_get();

函数 rtc_alarm_config

函数rtc_alarm_config描述见下表:

表 3-308. 函数 rtc_alarm_config

函数名称	rtc_alarm_config	
函数原型	void rtc_alarm_config(rtc_alarm_struct* rtc_alarm_time);	
功能描述	配置RTC闹钟	
先决条件	-	
被调用函数	-	
输入参数{in}		
rtc_alarm_time	闹钟结构体,结构体成员参考 <u>表3-298. 结构体rtc_alarm_struct</u>	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/*rtc_alarm_config*/

rtc_alarm_struct rtc_alarm_time;

rtc_alarm_config (&rtc_alarm_time);

函数 rtc_alarm_subsecond_config

函数rtc_alarm_subsecond_config描述见下表:

表 3-309. 函数 rtc_alarm_subsecond_config

函数名称	rtc_alarm_subsecond_config
	void rtc_alarm_subsecond_config(uint32_t mask_subsecond, uint32_t
函数原型	subsecond);
功能描述	配置RTC闹钟的亚秒值
先决条件	-
被调用函数	F
	输入参数{in}
mask_subsecond	闹钟亚秒屏蔽位
RTC_MASKSSC_0_14	屏蔽闹钟亚秒设置
RTC_MASKSSC_1_14	屏蔽RTC_ALRM0SS_SSC[14:1],SSC[0]位用于时间匹配
RTC_MASKSSC_2_14	屏蔽RTC_ALRM0SS_SSC[14:2],SSC[1:0]位用于时间匹配
RTC_MASKSSC_3_14	屏蔽RTC_ALRM0SS_SSC[14:3],SSC[2:0]位用于时间匹配
RTC_MASKSSC_4_14	屏蔽RTC_ALRM0SS_SSC[14:4],SSC[3:0]位用于时间匹配
RTC_MASKSSC_5_14	屏蔽RTC_ALRM0SS_SSC[14:5],SSC[4:0]位用于时间匹配
RTC_MASKSSC_6_14	屏蔽RTC_ALRM0SS_SSC[14:6],SSC[5:0]位用于时间匹配
RTC_MASKSSC_7_14	屏蔽RTC_ALRM0SS_SSC[14:7],SSC[6:0]位用于时间匹配
RTC_MASKSSC_8_14	屏蔽RTC_ALRM0SS_SSC[14:8],SSC[7:0]位用于时间匹配
RTC_MASKSSC_9_14	屏蔽RTC_ALRM0SS_SSC[14:9],SSC[8:0]位用于时间匹配
RTC_MASKSSC_10_1	屏蔽RTC_ALRM0SS_SSC[14:10],SSC[9:0]位用于时间匹配
4 RTC_MASKSSC_11_1	
4	屏蔽RTC_ALRM0SS_SSC[14:11],SSC[10:0]位用于时间匹配
RTC_MASKSSC_12_1 4	屏蔽RTC_ALRM0SS_SSC[14:12],SSC[11:0]位用于时间匹配
RTC_MASKSSC_13_1 4	屏蔽RTC_ALRM0SS_SSC[14:13],SSC[12:0]位用于时间匹配
RTC_MASKSSC_14	屏蔽RTC_ALRM0SS_SSC[14], SSC[13:0]位用于时间匹配
RTC_MASKSSC_NON E	无屏蔽,SSC[14:0]位用于时间匹配
输入参数{in}	
subsecond	闹钟亚秒值(0x000 - 0x7FFF)
输出参数{out}	
-	-
返回值	
-	-

例如:

rtc_subsecond_config(RTC_MASKSSC_9_14, 0x7FFF);

函数 rtc_alarm_enable

函数rtc_alarm_enable描述见下表:

表 3-310. 函数 rtc_alarm_enable

函数名称	rtc_alarm_enable	
函数原型	void rtc_alarm_enable(void);	
功能描述	使能RTC闹钟	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/*enable RTC alarm*/

rtc_alarm_enable();

函数 rtc_alarm_disable

函数rtc_alarm_disable描述见下表:

表 3-311. 函数 rtc_alarm_disable

函数名称	rtc_alarm_disable
函数原型	ErrStatus rtc_alarm_disable(void);
功能描述	失能RTC闹钟
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	
ErrStatus	ERROR或SUCCESS

例如:

/*disable RTC alarm*/

ErrStatus error_status = rtc_alarm_disable();

函数 rtc_alarm_get

函数rtc_alarm_get描述见下表:

表 3-312. 函数 rtc_alarm_get

函数名称	rtc_alarm_get	
函数原型	void rtc_alarm_get(rtc_alarm_struct* rtc_alarm_time);	
功能描述	获取RTC闹钟	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
rtc_alarm_time	闹钟结构体,结构体成员参考 <u>表3-298. 结构体rtc_alarm_struct</u>	
返回值		
-	-	

例如:

/*disable RTC alarm*/

rtc_alarm_struct rtc_alarm_time;

rtc_alarm_get (&rtc_alarm_time);

函数 rtc_alarm_subsecond_get

函数rtc_alarm_subsecond_get描述见下表:

表 3-313. 函数 rtc_alarm_subsecond_get

函数名称	rtc_alarm_subsecond_get	
函数原型	uint32_t rtc_alarm_subsecond_get(void);	
功能描述	获取RTC闹钟亚秒值	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
返回值		
uint32_t	RTC 闹钟亚秒值(0x0-0x3FFF)	

例如:

/*get RTC alarm subsecond*/

uint32_t subsecond = rtc_alarm_subsecond_get();

函数 rtc_timestamp_enable

函数can_init描述见下表:

表 3-314. 函数 rtc_timestamp_enable

一种 	'-	
函数名称	rtc_timestamp_enable	
函数原型	void rtc_timestamp_enable(uint32_t edge);	
功能描述	使能RTC时间戳	
先决条件	-	
被调用函数	-	
输入参数{in}		
edge	选定哪种边沿触发时间戳检测	
RTC_TIMESTAMP_RIS		
ING_EDGE	上升沿是时间戳事件有效检测沿	
RTC_TIMESTAMP_FA	工及汎目叶同型事化右海经测汎	
LLING_EDGE	下降沿是时间戳事件有效检测沿	
输出参数{out}		
-	-	
返回值		
-	-	
	·	

例如:

/*enable RTC time-stamp*/

rtc_timestamp_enable (RTC_TIMESTAMP_RISING_EDGE);

函数 rtc_timestamp_disable

函数rtc_timestamp_disable描述见下表:

表 3-315. 函数 rtc_timestamp_disable

函数名称	rtc_timestamp_disable	
函数原型	<pre>void rtc_timestamp_disable(void);</pre>	
功能描述	失能RTC时间戳	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
输出参数{out}		
-	•	

返回值		
-	-	

/*disable RTC time-stamp*/

rtc_timestamp_disable ();

函数 rtc_timestamp_get

函数rtc_timestamp_get描述见下表:

表 3-316. 函数 rtc_timestamp_get

	. ==	
函数名称	rtc_timestamp_get	
函数原型	<pre>void rtc_timestamp_get(rtc_timestamp_struct* rtc_timestamp);</pre>	
功能描述	获取RTC时间戳时间和日期	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
rtc_timestamp	时间戳结构体,结构体成员参考 <u>表3-299. 结构体 rtc_timestamp_struct</u>	
返回值		
-	•	

例如:

/* get RTC timestamp time and date */

rtc_timestamp_struct rtc_timestamp;

rtc_timestamp_get(& rtc_timestamp);

函数 rtc_timestamp_subsecond_get

函数rtc_timestamp_subsecond_get描述见下表:

表 3-317. 函数 rtc_timestamp_subsecond_get

函数名称	rtc_timestamp_subsecond_get
函数原型	uint32_t rtc_timestamp_subsecond_get(void);
功能描述	获取RTC时间戳亚秒值
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	

-	-
返回值	
uint32_t RTC时间戳亚秒值	

/* get RTC time-stamp subsecond */

uint32_t subsecond = rtc_timestamp_subsecond_get();

函数 rtc_tamper_enable

函数rtc_tamper_enable描述见下表:

表 3-318. 函数 rtc_timestamp_enable

× • • • • — — — — — — — — — — — — — — —		
函数名称	rtc_tamper_enable	
函数原型	void rtc_tamper_enable(rtc_tamper_struct* rtc_tamper);	
功能描述	使能RTC侵入检测	
先决条件	-	
被调用函数	-	
输入参数{in}		
rtc_tamper	tamper化结构体,结构体成员参考 <u>表3-300. 结构体rtc_tamper_struct</u>	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* enable RTC tamper */

rtc_tamper_struct rtc_tamper

rtc_tamper_enable(& rtc_tamper);

函数 rtc_tamper_disable

函数rtc_tamper_disable描述见下表:

表 3-319. 函数 rtc_tamper_disable

函数名称	rtc_tamper_disable
函数原型	void rtc_tamper_disable(uint32_t source);
功能描述	失能RTC侵入检测
先决条件	-
被调用函数	-
输入参数{in}	
source	选定被失能的侵入检测来源

RTC_TAMPER0	RTC tamper0
RTC_TAMPER1	RTC tamper1
输出参数{out}	
-	-
返回值	
-	-

/* disable RTC tamper */

rtc_tamper_disable(RTC_TAMPER0);

函数 rtc_interrupt_enable

函数rtc_interrupt_enable描述见下表:

表 3-320. 函数 rtc_interrupt_enable

rtc_interrupt_enable	
<pre>void rtc_interrupt_enable(uint32_t interrupt);</pre>	
使能RTC指定的中断	
-	
-	
输入参数{in}	
选定被使能的中断源	
时间戳中断	
闹钟中断	
侵入检测中断	
输出参数{out}	
-	
返回值	
-	

例如:

/* enable specified RTC interrupt*/

rtc_interrupt_enable(RTC_INT_TAMP);

函数 rtc_interrupt_disable

函数rtc_interrupt_disable描述见下表:

表 3-321. 函数 rtc_interrupt_disable

函数名称	rtc_interrupt_disable
函数原型	void rtc_interrupt_disable(uint32_t interrupt);

功能描述	失能RTC指定中断	
先决条件	-	
被调用函数	-	
	输入参数{in}	
interrupt	选定被失能的RTC中断	
RTC_INT_TIMESTAMP	时间戳中断	
RTC_INT_ALARM	闹钟中断	
RTC_INT_TAMP	侵入检测中断	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* disble RTC ALARM interrupt */

rtc_interrupt_disable(RTC_INT_TAMP);

函数 rtc_flag_get

函数rtc_flag_get描述见下表:

表 3-322. 函数 rtc_flag_get

农 O OZZ. 函数 Ito_IIu	5_0 - 1
函数名称	rtc_flag_get
函数原型	FlagStatus rtc_flag_get(uint32_t flag);
功能描述	获取指定中断标志位
先决条件	-
被调用函数	-
	输入参数{in}
flag	选定被获取的中断标志
RTC_FLAG_RECALI_B	亚温松冰井扫石土
RATION	平滑校准挂起标志
RTC_FLAG_TAMP1	tamper 1事件标志
RTC_FLAG_TAMP0	tamper 0事件标志
RTC_FLAG_TIMESTA	叶沟刺毒体光山仁士
MP_OVERFLOW	时间戳事件溢出标志
RTC_FLAG_TIMESTA	叶问题审件提士
MP	时间戳事件标志
RTC_FLAG_ALARM0	Alarm0发生标志
RTC_FLAG_INIT	进入初始化模式
RTC_FLAG_RSYN	寄存器同步标志
RTC_FLAG_YCM	年份配置标志
RTC_FLAG_SHIFT	移位功能操作挂起标志

RTC_FLAG_ALARM0_ WRITTEN	Alarm0配置可写标志
	输出参数{out}
-	-
返回值	
FlagStatus	SET 或 RESET

/* check time-stamp event flag */

FlagStatus = rtc_flag_get(RTC_FLAG_TIMESTAMP)

函数 rtc_flag_clear

函数rtc_flag_clear描述见下表:

表 3-323. 函数 rtc_flag_clear

rtc_flag_clear			
void rtc_flag_clear(uint32_t flag);			
清除指定中断标志位			
-			
-			
输入参数{in}			
要清除的中断标志位			
tamper 1事件标志			
tamper 0事件标志			
时间戳事件溢出标志			
时间戳事件标志			
	Alarm0发生标志		
寄存器同步标志			
输出参数{out}			
-			
返回值			
-			

例如:

/* cleartime-stamp event flag */

rtc_flag_clear (RTC_FLAG_TIMESTAMP);

函数 rtc_alter_output_config

函数rtc_alter_output_config描述见下表:

表 3-324. 函数 rtc_alter_output_config

函数名称	rtc_alter_output_config			
函数原型	void rtc_alter_output_config(uint32_t source, uint32_t mode);			
功能描述	配置RTC备用输出源			
先决条件	-			
被调用函数	-			
输入参数{in}				
source	指定输出信号			
RTC_CALIBRATION_5	当LSE时钟频率为32768Hz并且RTC_PSC			
12HZ	为默认值,输出512Hz 信号			
RTC_CALIBRATION_1	当LSE时钟频率为32768Hz并且RTC_PSC			
HZ	为默认值,输出1Hz 信号			
RTC_ALARM_HIGH	当设置了闹钟标志置位,输出引脚为高电平			
RTC_ALARM_LOW	当设置了闹钟标志置位,输出引脚为低电平			
输入参数{in}				
mode	当输出闹钟信号时指定输出引脚(PC13)的模式			
RTC_ALARM_OUTPU	T 沿龙山			
T_OD	开漏输出			
RTC_ALARM_OUTPU	₩ ₩ ₩ ₩			
T_PP	推挽输出			
输出参数{out}				
-	- -			
返回值				
-	-			

例如:

/* configure rtc alternate output source */

rtc_alter_output_config(RTC_ALARM_LOW, RTC_ALARM_OUTPUT_PP);

函数 rtc_calibration_config

函数rtc_calibration_config描述见下表:

表 3-325. 函数 rtc_calibration_config

Function name	rtc_calibration_config
Function prototype	ErrStatus rtc_calibration_config(uint32_t window, uint32_t plus, uint32_t
	minus);
Function descriptions	配置RTC校准寄存器

Precondition	-		
The called functions	-		
输入参数{in}			
window	选择校准窗口		
RTC_CALIBRATION_	## 用 D T O O I I - 本 O O M 校 V 交 M ## O O O D T O O I V 目 ##		
WINDOW_32S	如果RTCCLK = 32768 Hz在32秒校准窗增加2exp20 RTCCLK 周期		
RTC_CALIBRATION_	加用DTCCLV 22769 U- 左46孙於維密機加20va40 DTCCLV用期		
WINDOW_16S	如果RTCCLK = 32768 Hz在16秒校准窗增加2exp19 RTCCLK周期		
RTC_CALIBRATION_	加用DTCCLV _ 22769 H→左0孙於准容增加20vo10 DTCCLV用期		
WINDOW_8S	如果RTCCLK = 32768 Hz在8秒校准窗增加2exp18 RTCCLK周期		
输入参数{in}			
plus	增加或者不增加RTC脉冲		
RTC_CALIBRATION_P	每2048个RTC脉冲增加一个RTC脉冲		
LUS_SET	母2040 KTOM作用加一 KTOM作		
RTC_CALIBRATION_P	无影响		
LUS_RESET	工影 啊		
输入参数{in}			
minus	在校准窗口期间RTC减少的时钟(0x0 - 0x1FF)		
Output parameter{out}			
-	-		
Return value			
ErrStatus	ERROR或SUCCESS		

/* configure RTC calibration register*/

ErrStatus error_status = rtc_calibration_config(RTC_CALIBRATION_WINDOW_32S, RTC_CALIBRATION_PLUS_SET, 0x1FF);

函数 rtc_hour_adjust

函数rtc_hour_adjust描述见下表:

表 3-326. 函数 rtc_hour_adjust

函数名称	rtc_hour_adjust	
函数原型	void rtc_hour_adjust(uint32_t operation);	
功能描述	通过在当前时间上增加或者减少一个小时来适应夏令时和冬令时	
先决条件	-	
被调用函数	-	
输入参数{in}		
operation	小时调整操作	
RTC_CTL_A1H	增加一个小时	
RTC_CTL_S1H	减少一个小时	

输出参数{out}		
-		
返回值		
-	-	

/* adjust the daylight saving time by adding one hour from the current time */

rtc_hour_adjust(RTC_CTL_A1H);

函数 rtc_second_adjust

函数rtc_second_adjust描述见下表:

表 3-327. 函数 rtc second adjust

农 3-327. 函数 rtc_second_adjust		
rtc_second_adjust		
ErrStatus rtc_second_adjust(uint32_t add, uint32_t minus);		
调整RTC当前时间的秒或亚秒值		
-		
-		
在当前时间上增加1S或者不增加		
工具和位		
无影响		
在当前时间增加1秒		
任当期时间增加7岁		
输入参数{in}		
在当前是时间上减少的亚秒值(0x0 - 0x7FFF)		
输出参数{out}		
返回值		
•		

例如:

/* adjust RTC second or subsecond value of current time */

ErrStatus error_status = rtc_second_adjust(RTC_SHIFT_ADD1S_SET, 0);

函数 rtc_bypass_shadow_enable

函数rtc_bypass_shadow_enable描述见下表:

表 3-328. 函数 rtc_bypass_shadow_enable

函数名称	rtc_bypass_shadow_enable
函数原型	void rtc_bypass_shadow_enable(void);

功能描述	使能RTC影子寄存器
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	
-	-

/* enable RTC bypass shadow registers function*/

rtc_bypass_shadow_enable();

函数 rtc_bypass_shadow_disable

函数rtc_bypass_shadow_disable描述见下表:

表 3-329. 函数 rtc_bypass_shadow_disable

. с отог д		
函数名称	rtc_bypass_shadow_disable	
函数原型	void rtc_bypass_shadow_disable (void);	
功能描述	失能RTC影子寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable RTC bypass shadow registers function*/

rtc_bypass_shadow_disable ();

函数 rtc_refclock_detection_enable

函数rtc_refclock_detection_enable描述见下表:

表 3-330. 函数 rtc_refclock_detection_enable

函数名称	rtc_refclock_detection_enable
函数原型	ErrStatus rtc_refclock_detection_enable(void);
功能描述	使能RTC参考时钟检测功能

先决条件	-	
被调用函数	rtc_init_mode_enter/rtc_init_mode_exit	
输入参数{in}		
-	-	
输出参数{out}		
-	-	
	返回值	
ErrStatus	ERROR 或 SUCCESS	

/* enable RTC reference clock detection function*/

ErrStatus error_status = rtc_refclock_detection_enable();

函数 rtc_refclock_detection_disable

函数rtc_refclock_detection_disable描述见下表:

表 3-331. 函数 rtc_refclock_detection_disable

7. • • • • • — — — — • • • • • • • • • • • • • • • • • • •		
函数名称	rtc_refclock_detection_disable	
函数原型	ErrStatus rtc_refclock_detection_disable(void);	
功能描述	失能RTC参考时钟检测功能	
先决条件	-	
被调用函数	rtc_init_mode_enter/rtc_init_mode_exit	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
ErrStatus	ERROR or SUCCESS	

例如:

/* disableRTC reference clock detection function*/

ErrStatus error_status = rtc_refclock_detection_disable ();

3.16. SPI

SPI/I2S模块可以通过SPI协议或I2S音频协议与外部设备进行通信。章节<u>3.16.1</u>描述了SPI/I2S的寄存器列表,章节<u>3.16.2</u>对SPI/I2S库函数进行说明。

3.16.1. 外设寄存器说明

SPI/I2S寄存器列表如下表所示:

表 3-332. SPI/I2S 寄存器

寄存器名称	寄存器描述
SPI_CTL0	控制寄存器0
SPI_CTL1	控制寄存器1
SPI_STAT	状态寄存器
SPI_DATA	数据寄存器
SPI_CRCPOLY	CRC多项式寄存器
SPI_RCRC	接收CRC寄存器
SPI_TCRC	发送CRC寄存器
SPI_I2SCTL	I2S控制寄存器
SPI_I2SPSC	I2S时钟分频寄存器
SPI_QCTL	四路SPI控制寄存器

3.16.2. 外设库函数说明

SPI/I2S库函数列表如下表所示:

表 3-333. SPI/I2S 库函数

库函数名称	库函数描述
spi_i2s_deinit	复位SPI/I2S
spi_struct_para_init	将SPI结构体中所有参数初始化为默认值
spi_init	初始化SPI
spi_enable	使能SPI
spi_disable	禁能SPI
i2s_init	初始化I2S
i2s_psc_config	配置I2S预分频器
i2s_enable	使能I2S
i2s_disable	禁能I2S
spi_nss_output_enable	使能PI NSS输出
spi_nss_output_disable	禁能SPI NSS输出
spi_nss_internal_high	NSS软件模式下NSS引脚拉高
spi_nss_internal_low	NSS软件模式下NSS引脚拉低
spi_dma_enable	使能SPI DMA功能
spi_dma_disable	禁能SPI DMA功能
spi_transmit_odd_config	配置SPI通过DMA发送的数据总数是否是奇数
spi_receive_odd_config	配置SPI通过DMA接收到的数据总数是否是奇数
spi_i2s_data_frame_format_config	配置SPI数据帧格式
spi_fifo_access_size_config	配置SPI FIFO访问大小
spi_bidirectional_transfer_config	配置SPI的数据传输方向
spi_i2s_data_transmit	发送数据
spi_i2s_data_receive	接收数据
spi_crc_polynomial_set	设置SPI的CRC多项式值
spi_crc_polynomial_get	获取SPI的CRC多项式值

库函数名称	库函数描述
spi_crc_length_set	设置SPI CRC长度
spi_crc_on	打开SPI的CRC功能
spi_crc_off	关闭SPI的CRC功能
spi_crc_next	设置SPI下一次传输数据为CRC值
spi_crc_get	SPI获取CRC值
spi_ti_mode_enable	使能SPI TI模式
spi_ti_mode_disable	禁能SPI TI模式
spi_nssp_mode_enable	使能SPI NSS脉冲模式
spi_nssp_mode_disable	禁能SPI NSS脉冲模式
qspi_enable	使能四线SPI模式
qspi_disable	禁能四线SPI模式
qspi_write_enable	使能四线SPI写
qspi_read_enable	使能四线SPI读
qspi_io23_output_enable	使能SPI_IO2和SPI_IO3输出
qspi_io23_output_disable	禁能SPI_IO2和SPI_IO3输出
spi_i2s_flag_get	获取SPI/I2S标志状态
spi_i2s_interrupt_enable	使能SPI/I2S中断
spi_i2s_interrupt_disable	禁能SPI/I2S中断
spi_i2s_interrupt_flag_get	获取SPI/I2S中断状态
spi_crc_error_clear	清除SPI CRC错误标志状态

结构体 spi_parameter_struct

表 3-334. 结构体 spi_parameter_struct

成员名称	功能描述
device_mode	主机或设备模式配置
	(SPI_MASTER, SPI_SLAVE)
	传输模式
trans_mode	(SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY,
	SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT)
fromo pizo	数据帧格式配置
frame_size	(SPI_FRAMESIZE_xBIT, x=4,5,16)
200	NSS由软件或硬件控制配置
nss	(SPI_NSS_SOFT, SPI_NSS_HARD)
andian	大端或小端模式配置
endian	(SPI_ENDIAN_MSB, SPI_ENDIAN_LSB)
alaak nalaritu nhaa	相位和极性配置
clock_polarity_phas e	(SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE,
	SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE)
procedo	预分频器配置
prescale	(SPI_PSC_n (n=2,4,8,16,32,64,128,256))

函数 spi_i2s_deinit

函数spi_i2s_deinit描述见下表:

表 3-335. 函数 spi_i2s_deinit

· · · · · · · · · · · · · · · · · · ·		
函数名称	spi_i2s_deinit	
函数原形	void spi_i2s_deinit(uint32_t spi_periph);	
功能描述	复位SPI/I2S	
先决条件	-	
被调用函数	rcu_periph_reset_enable / rcu_periph_reset_disable	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=0,1	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* reset SPI0 */

spi_i2s_deinit(SPI0);

函数 spi_struct_para_init

函数spi_struct_para_init描述见下表:

表 3-336. 函数 spi_struct_para_init

函数名称	spi_struct_para_init	
函数原形	void spi_struct_para_init(spi_parameter_struct* spi_struct);	
功能描述	将SPI结构体参数初始化为默认值	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
spi_struct	SPI初始化结构体,结构体成员参考 <u>表3-334. 结构体spi parameter struct</u>	
	返回值	
-	-	

例如:

/* initialize the parameters of SPI */

spi_parameter_struct spi_init_struct;

spi_struct_para_init(&spi_init_struct);

函数 spi_init

函数spi_init描述见下表:

表 3-337. 函数 spi_init

Manager High abilities		
函数名称	spi_init	
函数原形	ErrStatus spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct);	
功能描述	初始化SPI	
先决条件	-	
被调用函数	-	
spi_periph	外设SPIx	
SPIx	x=0,1	
spi_struct	初始化结构体,结构体成员参考 <u>表3-334. 结构体spi_parameter_struct</u>	
	输出参数{out}	
-	-	
	返回值	
ErrStatus	ERROR或者SUCCESS	

例如:

/* initialize SPI0 */

spi_parameter_struct spi_init_struct;

ErrStatus errstatus = ERROR;

spi_init_struct.trans_mode = SPI_TRANSMODE_BDTRANSMIT;

spi_init_struct.device_mode = SPI_MASTER;

spi_init_struct.frame_size = SPI_FRAMESIZE_8BIT;

spi_init_struct.clock_polarity_phase = SPI_CK_PL_HIGH_PH_2EDGE;

spi_init_struct.nss = SPI_NSS_SOFT;

spi_init_struct.prescale = SPI_PSC_8;

spi_init_struct.endian = SPI_ENDIAN_MSB;

errorstatus = spi_init(SPI0, &spi_init_struct);

函数 spi_enable

函数spi_enable描述见下表:

表 3-338. 函数 spi_enable

	函数名称	spi_enable
--	------	------------

GD32E23x 固件库使用指南

函数原形	void spi_enable(uint32_t spi_periph);	
功能描述	使能SPI	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0,1	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* enable SPI0 */

spi_enable(SPI0);

函数 spi_disable

函数spi_disable描述见下表:

表 3-339. 函数 spi_disable

K o occ. Max opi_diodolo		
函数名称	spi_disable	
函数原形	void spi_disable(uint32_t spi_periph);	
功能描述	禁能SPI	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=0,1	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable SPI0 */

spi_disable(SPI0);

函数 i2s_init

函数i2s_init描述见下表:

表 3-340. 函数 i2s_init

衣 3-340. 函数 I2S_	iiiit
函数名称	i2s_init
函数原形	void i2s_init(uint32_t spi_periph,uint32_t mode, uint32_t standard, uint32_t
ELJ XX//N/IV	ckpl);
功能描述	初始化 I2S
先决条件	-
被调用函数	-
	输入参数{in}
spi_periph	外设SPIx
SPIx	x=0
	输入参数{in}
mode	I2S运行模式
I2S_MODE_SLAVE	I2S从机发送模式
TX	120 州机及迈快工
I2S_MODE_SLAVE	I2S从机接收模式
RX	123
I2S_MODE_MASTE	12S 主机发送模式
RTX	120 工机及处保八
I2S_MODE_MASTE	I2S主机接收模式
RRX	120工机按収偿八
	输入参数{in}
standard	I2S标准选择
I2S_STD_PHILLIPS	I2S飞利浦标准
I2S_STD_MSB	I2S MSB对齐标准
I2S_STD_LSB	I2S LSB对齐标准
I2S_STD_PCMSHO	I2S PCM短帧标准
RT	1231 〇四紀 四次 1711 日
I2S_STD_PCMLON	I2S PCM长帧标准
G	123 1 OW 区物和性
	输入参数{in}
ckpl	I2S空闲状态时钟极性
I2S_CKPL_LOW	I2S_CK空闲状态为低电平
I2S_CKPL_HIGH	I2S_CK空闲状态为高电平
	输出参数{out}
-	-
	返回值
-	-

例如:

/* initialize I2S0 */

 $i2s_init(SPI0, I2S_MODE_MASTERTX, I2S_STD_PHILLIPS, I2S_CKPL_LOW);\\$

函数 i2s_psc_config

函数i2s_psc_config描述见下表:

表 3-341. 函数 i2s_psc_config

函数名称	
四致石柳	i2s_psc_config
函数原形	void i2s_psc_config(uint32_t spi_periph, uint32_t audiosample, uint32_t
函数原形	frameformat, uint32_t mckout);
功能描述	配置I2S预分频器
先决条件	-
被调用函数	rcu_clock_freq_get
	输入参数{in}
spi_periph	外设SPIx
SPIx	x=0
	输入参数{in}
audiosample	I2S音频采样频率
I2S_AUDIOSAMPL	交幅立长限空升0MT-
E_8K	音频采样频率为8KHz
I2S_AUDIOSAMPL	音频采样频率为11KHz
E_11K	目例本件例至力ITKIIZ
I2S_AUDIOSAMPL	音頻采样频率为16KHz
E_16K	目频术件频率为TONTIZ
I2S_AUDIOSAMPL	音频采样频率为22KHz
E_22K	日
I2S_AUDIOSAMPL	音频采样频率为32KHz
E_32K	日外水杆坝十月321112
I2S_AUDIOSAMPL	音频采样频率为44KHz
E_44K	日 <i>外</i> 八八十 <i>八</i> 3 干 1 U IZ
I2S_AUDIOSAMPL	音频采样频率为48KHz
E_48K	EDANNI DATA TOTALE
I2S_AUDIOSAMPL	音频采样频率为96KHz
E_96K	H ZAZINII ZA TZJOONIE
I2S_AUDIOSAMPL	音频采样频率为192KHz
E_192K	199911991731021412
	输入参数{in}
frameformat	I2S数据长度和通道长度
I2S_FRAMEFORMA	I2S数据长度为16位,通道长度为16位
T_DT16B_CH16B	
I2S_FRAMEFORMA	I2S数据长度为16位,通道长度为32位
T_DT16B_CH32B	
I2S_FRAMEFORMA	12S数据长度为24位,通道长度为32位
T_DT24B_CH32B	
I2S_FRAMEFORMA	I2S数据长度为32位,通道长度为32位

T_DT32B_CH32B		
	输入参数{in}	
mckout	I2S_MCK输出使能	
I2S_MCKOUT_ENA	I2S_MCK输出使能	
BLE	12S_WCK抽齿便能	
I2S_MCKOUT_DIS	I2S_MCK输出禁止	
ABLE	I2S_MCK和田亲止	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* configure I2S0 prescaler */

i2s_psc_config(SPI0, I2S_AUDIOSAMPLE_44K, I2S_FRAMEFORMAT_DT16B_CH16B, I2S_MCKOUT_DISABLE);

函数 i2s_enable

函数i2s_enable描述见下表:

表 3-342. 函数 i2s_enable

函数名称	i2s_enable	
函数原形	void i2s_enable(uint32_t spi_periph);	
功能描述	使能 I2S	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0	
	输出参数{out}	
-		
	返回值	
	· — · · —	
-	-	

例如:

/* enable I2S0 */

i2s_enable(SPI0);

函数 i2s_disable

函数i2s_disable描述见下表:

表 3-343. 函数 i2s_disable

函数名称	i2s_disable	
函数原形	void i2s_disable(uint32_t spi_periph);	
功能描述	禁能I2S	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable I2S0 */

i2s_disable(SPI0);

函数 spi_nss_output_enable

函数spi_nss_output_enable描述见下表:

表 3-344. 函数 spi_nss_output_enable

Mark and Hall and Land and Andreas		
函数名称	spi_nss_output_enable	
函数原形	void spi_nss_output_enable(uint32_t spi_periph);	
功能描述	使能 SPI NSS 输出	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0,1	
	输出参数{out}	
-		
	返回值	
-	-	

例如:

/* enable SPI0 NSS output */

spi_nss_output_enable(SPI0);

函数 spi_nss_output_disable

函数spi_nss_output_disable描述见下表:

表 3-345. 函数 spi_nss_output_disable

函数名称	spi_nss_output_disable	
函数原形	void spi_nss_output_disable(uint32_t spi_periph);	
功能描述	禁能SPI NSS输出	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=0,1	
	输出参数{out}	
-	-	
返回值		
-	•	

例如:

/* disable SPI0 NSS output */

spi_nss_output_disable(SPI0);

函数 spi_nss_internal_high

函数spi_nss_internal_high描述见下表:

表 3-346. 函数 spi_nss_internal_high

	M a a ray (2007) 2 (2	
函数名称	spi_nss_internal_high	
函数原形	void spi_nss_internal_high(uint32_t spi_periph);	
功能描述	NSS软件模式下NSS引脚拉高	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=0,1	
	输出参数{out}	
-	-	
-	-	

例如:

/* SPI0 NSS pin is pulled high level in software mode */

spi_nss_internal_high(SPI0);

函数 spi_nss_internal_low

函数spi_nss_internal_low描述见下表:

表 3-347. 函数 spi_nss_internal_low

函数名称	spi_nss_internal_low	
函数原形	void spi_nss_internal_low(uint32_t spi_periph);	
功能描述	NSS软件模式下NSS引脚拉低	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=0,1	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* SPI0 NSS pin is pulled low level in software mode */

spi_nss_internal_low(SPI0);

函数 spi_dma_enable

函数spi_dma_enable描述见下表:

表 3-348. 函数 spi_dma_enable

水 0-0-0. 函数 3pi_	_dina_enable	
函数名称	spi_dma_enable	
函数原形	void spi_dma_enable(uint32_t spi_periph, uint8_t dma);	
功能描述	使能SPI DMA功能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0,1	
输入参数{in}		
dma	SPI DMA模式	
SPI_DMA_TRANSM IT	SPI发送缓冲区DMA使能	
SPI_DMA_RECEIV E	SPI接收缓冲区DMA使能	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* enable SPI0 transmit data DMA function */

spi_dma_enable(SPI0, SPI_DMA_TRANSMIT);

函数 spi_dma_disable

函数spi_dma_disable描述见下表:

表 3-349. 函数 spi_dma_disable

	· -	
函数名称	spi_dma_disable	
函数原形	void spi_dma_disable(uint32_t spi_periph, uint8_t dma);	
功能描述	禁能SPI DMA功能	
先决条件	-	
被调用函数	-	
spi_periph	外设SPIx	
SPIx	x=0,1	
输入参数{in}		
dma	SPI DMA模式	
SPI_DMA_TRANSM IT	SPI发送缓冲区DMA使能	
SPI_DMA_RECEIV E	SPI接收缓冲区DMA使能	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* disable SPI0 transmit data DMA function */

spi_dma_disable(SPI0, SPI_DMA_TRANSMIT);

函数 spi_transmit_odd_config

函数spi_transmit_odd_config描述见下表:

表 3-350. 函数 spi_transmit_odd_config

函数名称	spi_transmit_odd_config
函数原形	void spi_ transmit_odd _config(uint32_t spi_periph, uint16_t odd);
功能描述	配置SPI通过DMA发送的数据总数是否为奇数
先决条件	-
被调用函数	-
输入参数{in}	
spi_periph	外设SPIx

SPIx	x=1		
	输入参数{in}		
odd	DMA通道发送的字节数是奇数还是偶数		
SPI_TXDMA_EVEN	DMA发送的字节数是偶数		
SPI_TXDMA_ODD	DMA发送的字节数是奇数		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* configure SPI1 total number of data to transmit by DMA is odd */

spi_transmit_odd _config(SPI1, SPI_TXDMA_ODD);

函数 spi_receive_odd_config

函数spi_receive_odd_config描述见下表:

表 3-351. 函数 spi_receive_odd_config

秋 0-001. 函数 3PI_	receive_odd_comig		
函数名称	spi_receive_odd_config		
函数原形	void spi_ receive_odd _config(uint32_t spi_periph, uint16_t odd);		
功能描述	配置SPI通过DMA接收到的数据总数是否为奇数		
先决条件	-		
被调用函数	-		
	输入参数{in}		
spi_periph	外设SPIx		
SPIx	x=1		
	输入参数{in}		
odd	DMA通道接收的字节数时奇数还是偶数		
SPI_RXDMA_EVEN	DMA接收的字节数是偶数		
SPI_RXDMA_ODD	DMA接收的字节数是奇数		
输出参数{out}			
-	-		
返回值			
-	-		

例如:

/* configure SPI1 total number of data to receive by DMA is odd */

spi_receive_odd _config(SPI1, SPI_RXDMA_ODD);

函数 spi_i2s_data_frame_format_config

函数spi_i2s_data_frame_format_config描述见下表:

表 3-352. 函数 spi_i2s_data_frame_format_config

函数名称	spi_i2s_data_frame_format_config		
函数原形	ErrStatus spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t		
	frame_format);		
功能描述	配置SPI数据帧格式		
先决条件	-		
被调用函数	-		
输入参数{in}			
spi_periph	外设SPIx		
SPIx	x=0,1		
	输入参数{in}		
frame_format	SPI帧大小		
SPI_FRAMESIZE_x			
BIT	SPI x位数据帧格式,x=4,5,16		
输出参数{out}			
-	-		
返回值			
ErrStatus	ERROR或者SUCCESS-		

例如:

/* configure SPI0/I2S0 data frame format size is 16 bits */

spi_i2s_data_frame_format_config(SPI1, SPI_FRAMESIZE_16BIT);

函数 spi_fifo_access_size_config

函数spi_fifo_access_size_config描述见下表:

表 3-353. 函数 spi_fifo_access_size_config

K o ooo. 函数 opi_mo_doocoo_oizo_comig			
函数名称	spi_fifo_access_size_config		
函数原形	void spi_fifo_access_size_config (uint32_t spi_periph, uint16_t		
	fifo_access_size);		
功能描述	配置SPI的FIFO访问大小		
先决条件	-		
被调用函数	-		
输入参数{in}			
spi_periph	外设SPIx		
SPIx	x=1		
	输入参数{in}		
fifo_access_size	FIFO访问大小		
SPI_HALFWORD_A	٠. جا بابار ۱۲ ما بابار		
CCESS	半字访问		
SPI_BYTE_ACCES	今 英许问		
S	字节访问		

输出参数{out}		
-	-	
	返回值	
-	-	

/* configure SPI1 access size half word */

spi_fifo_access_size_config(SPI1, SPI_HALFWORD_ACCESS);

函数 spi_bidirectional_transfer_config

函数spi_bidirectional_transfer_config描述见下表:

表 3-354. 函数 spi_bidirectional_transfer_config

函数名称	spi_bidirectional_transfer_config		
函数原形	void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t		
	transfer_direction);		
	配置SPI的数据传输方向		
—————————————————————————————————————	-		
被调用函数	-		
	输入参数{in}		
spi_periph	外设SPIx		
SPIx	x=0,1		
	输入参数{in}		
transfer_direction	SPI双向传输输出使能		
SPI_BIDIRECTION	SPI工作在只发送模式		
AL_TRANSMIT	SFI工作任众及达侯式		
SPI_BIDIRECTION	SPI工作在只接收模式		
AL_RECEIVE	SFI工作任バ按収佚式		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* SPI0 works in transmit-only mode */

spi_bidirectional_transfer_config(SPI0, SPI_BIDIRECTIONAL_TRANSMIT);

函数 spi_i2s_data_transmit

函数spi_i2s_data_transmit描述见下表:

表 3-355. 函数 spi_i2s_data_transmit

函数名称	spi_i2s_data_transmit	
函数原形	void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data);	
功能描述	发送数据	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0,1	
	输入参数{in}	
data	16位数据	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* SPI0 transmit data */

spi_i2s_data_transmit(SPI0, spi0_send_array[send_n]);

函数 spi_i2s_data_receive

函数spi_i2s_data_receive描述见下表:

表 3-356. 函数 spi_i2s_data_receive

tr c ccc max ch.	
函数名称	spi_i2s_data_receive
函数原形	uint16_t spi_i2s_data_receive(uint32_t spi_periph);
功能描述	接收数据
先决条件	-
被调用函数	-
	· 输入参数{in}
spi_periph	外设SPIx
SPIx	x=0,1
	输出参数{out}
-	-
	返回值
uint16_t	16位数据

例如:

/* SPI0 receive data */

spi0_receive_array[receive_n] = spi_i2s_data_receive(SPI0);

函数 spi_crc_polynomial_set

函数spi_crc_polynomial_set描述见下表:

表 3-357. 函数 spi_crc_polynomial_set

函数名称	spi_crc_polynomial_set
函数原形	void spi_crc_polynomial_set(uint32_t spi_periph, uint16_t crc_poly);
功能描述	设置SPI的CRC多项式值
先决条件	-
被调用函数	-
	输入参数{in}
spi_periph	外设SPIx
SPIx	x=0,1
	输入参数{in}
crc_poly	CRC多项式值
	输出参数{out}
-	-
	返回值
-	-

例如:

/* set SPI0 CRC polynomial */

spi_crc_polynomial_set(SPI0,CRC_VALUE);

函数 spi_crc_polynomial_get

函数spi_crc_polynomial_get描述见下表:

表 3-358. 函数 spi_crc_polynomial_get

函数名称	spi_crc_polynomial_get
函数原形	uint16_t spi_crc_polynomial_get(uint32_t spi_periph);
功能描述	获取SPI的CRC多项式值
先决条件	-
被调用函数	-
	输入参数{in}
spi_periph	外设SPIx
SPIx	x=0,1
	输出参数{out}
-	-
	返回值
uint16_t	16位CRC多项式值(0-0xFFFF)

例如:

/* get SPI0 CRC polynomial */

uint16_t crc_val;

crc_val = spi_crc_polynomial_get(SPI0);

函数 spi_crc_length_set

函数spi_crc_length_set描述见下表:

表 3-359. 函数 spi_crc_length_set

函数名称	spi_crc_length_set
函数原形	void spi_crc_length_set(uint32_t spi_periph, uint16_t crc_length);
功能描述	设置CRC长度
先决条件	-
被调用函数	-
	输入参数{in}
spi_periph	外设SPIx
SPIx	x=1
	输入参数{in}
crc_length	CRC长度
SPI_CRC_8BIT	CRC长度为8位数据
SPI_CRC_16BIT	CRC长度为16位数据
	输出参数{out}
-	-
	返回值
-	-

例如:

/*set SPI1 CRC length 16 bits */

spi_crc_length_set(SPI1,SPI_CRC_16BIT);

函数 spi_crc_on

函数spi_crc_on描述见下表:

表 3-360. 函数 spi_crc_on

K • ••• B & • P - E • • E • • E	
函数名称	spi_crc_on
函数原形	void spi_crc_on(uint32_t spi_periph);
功能描述	打开SPI的CRC功能
先决条件	-
被调用函数	-
	输入参数{in}
spi_periph	外设SPIx
SPIx	x=0,1
	输出参数{out}

-	-
返回值	
-	-

/* turn on SPI0 CRC function */

spi_crc_on(SPI0);

函数 spi_crc_off

函数spi_crc_off描述见下表:

表 3-361. 函数 spi crc off

spi_crc_off
<pre>void spi_crc_off(uint32_t spi_periph);</pre>
关闭SPI的CRC功能
-
-
输入参数{in}
外设SPIx
x=0,1
输出参数{out}
-
返回值
-

例如:

/* turn off SPI0 CRC function */

spi_crc_off(SPI0);

函数 spi_crc_next

函数spi_crc_next描述见下表:

表 3-362. 函数 spi_crc_next

函数名称	spi_crc_next	
函数原形	<pre>void spi_crc_next(uint32_t spi_periph);</pre>	
功能描述	设置SPI下一次传输数据为CRC值	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0,1	

输出参数{out}		
-	-	
	返回值	
-	-	

/* SPI0 next data is CRC value */

spi_crc_next(SPI0);

函数 spi_crc_get

函数spi_crc_get描述见下表:

表 3-363. 函数 spi crc get

衣 3-303. 函数 spi_	<u>-</u> 9
函数名称	spi_crc_get
函数原形	uint16_t spi_crc_get(uint32_t spi_periph, uint8_t crc);
功能描述	SPI获取CRC值
先决条件	-
被调用函数	-
	输入参数{in}
spi_periph	外设SPIx
SPIx	x=0,1
	输入参数{in}
crc	SPI CRC值
SPI_CRC_TX	获取发送CRC寄存器值
SPI_CRC_RX	获取接收CRC寄存器值
	输出参数{out}
-	-
	返回值
uint16_t	16位CRC值(0-0xFFFF)

例如:

/* get SPI0 CRC send value */

uint16_t crc_val;

crc_val = spi_crc_get(SPI0, SPI_CRC_TX);

函数 spi_ti_mode_enable

函数spi_ti_mode_enable描述见下表:

表 3-364. 函数 spi_ti_mode_enable

函数名称	spi_ti_mode_enable
函数原形	void spi_ti_mode_enable(uint32_t spi_periph);

功能描述	使能SPI TI模式
先决条件	-
被调用函数	-
输入参数{in}	
spi_periph	外设SPIx
SPIx	x=0,1
输出参数{out}	
-	-
返回值	
-	-

/* enable SPI0 TI mode */

spi_ti_mode_enable(SPI0);

函数 spi_ti_mode_disable

函数spi_ti_mode_disable描述见下表:

表 3-365. 函数 spi_ti_mode_disable

大 0 000. 四	
函数名称	spi_ti_mode_disable
函数原形	void spi_ti_mode_disable(uint32_t spi_periph);
功能描述	禁能SPI TI模式
先决条件	-
被调用函数	-
输入参数{in}	
spi_periph	外设SPIx
SPIx	x=0,1
输出参数{out}	
-	-
返回值	
-	-

例如:

/* disable SPI0 TI mode */

spi_ti_mode_disable(SPI0);

函数 spi_nssp_mode_enable

函数spi_nssp_mode_enable描述见下表:

表 3-366. 函数 spi_nssp_mode_enable

函数原形	void spi_nssp_mode_enable(uint32_t spi_periph);
功能描述	使能SPI NSS脉冲模式
先决条件	-
被调用函数	-
输入参数{in}	
spi_periph	外设SPIx
SPIx	x=0,1
输出参数{out}	
-	-
返回值	
-	-

/* enable SPI0 NSS pulse mode */

spi_nssp_mode_enable(SPI0);

函数 spi_nssp_mode_disable

函数spi_nssp_mode_disable描述见下表:

表 3-367. 函数 spi_nssp_mode_disable

大 o don	
函数名称	spi_nssp_mode_disable
函数原形	void spi_nssp_mode_disable(uint32_t spi_periph);
功能描述	禁能SPI NSS脉冲模式
先决条件	-
被调用函数	-
输入参数{in}	
spi_periph	外设SPIx
SPIx	x=0,1
输出参数{out}	
-	-
返回值	
-	-

例如:

/* disable SPI0 NSS pulse mode */

spi_nssp_mode_disable(SPI0);

函数 qspi_enable

函数qspi_enable描述见下表:

表 3-368. 函数 qspi_enable

	-	
函数名称	qspi_enable	
函数原形	void qspi_enable(uint32_t spi_periph);	
功能描述	使能四线SPI模式	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=1	
	输出参数{out}	
返回值		
-	-	

例如:

/* enable SPI1 quad wire mode */

qspi_enable(SPI1);

函数 qspi_disable

函数qspi_disable描述见下表:

表 3-369. 函数 qspi_disable

が a gao: 四次 debi_monoio		
函数名称	qspi_disable	
函数原形	void qspi_disable(uint32_t spi_periph);	
功能描述	禁能四线SPI模式	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=1	
	输出参数{out}	
-		
	返回值	
-	-	

例如:

/* disable SPI1 quad wire mode */

qspi_disable(SPI1);

函数 qspi_write_enable

函数qspi_write_enable描述见下表:

表 3-370. 函数 qspi_write_enable

函数名称	qspi_write_enable	
函数原形	void qspi_write_enable(uint32_t spi_periph);	
功能描述	使能四线SPI写	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=1	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* enable SPI1 quad wire write */

qspi_write_enable(SPI1);

函数 qspi_read_enable

函数qspi_read_enable描述见下表:

表 3-371. 函数 qspi_read_enable

М		
函数名称	qspi_read_enable	
函数原形	void qspi_read_enable(uint32_t spi_periph);	
功能描述	使能四线SPI读	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=1	
	输出参数{out}	
-		
	返回值	
-	-	

例如:

/* enable SPI1 quad wire read */

qspi_read_enable(SPI1);

函数 qspi_io23_output_enable

函数qspi_io23_output_enable描述见下表:

表 3-372. 函数 qspi_io23_output_enable

函数名称	qspi_io23_output_enable	
函数原形	void qspi_io23_output_enable(uint32_t spi_periph);	
功能描述	使能SPI_IO2和SPI_IO3输出	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=1	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* enable SPI1 SPI_IO2 and SPI_IO3 pin output */

qspi_io23_output_enable(SPI1);

函数 qspi_io23_output_disable

函数qspi_io23_output_disable描述见下表:

表 3-373. 函数 qspi_io23_output_disable

***	秋 o o. o. 因	
函数名称	qspi_io23_output_disable	
函数原形	void qspi_io23_output_disable(uint32_t spi_periph);	
功能描述	禁能SPI_IO2和SPI_IO3输出	
先决条件	-	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=1	
	输出参数{out}	
-		
	返回值	
-	-	

例如:

/* disable SPI1 SPI_IO2 and SPI_IO3 pin output */

qspi_io23_output_disable(SPI1);

函数 spi_i2s_flag_get

函数spi_i2s_flag_get描述见下表:

表 3-374. 函数 spi_i2s_flag_get

函数名称	spi_i2s_flag_get	
函数原形	FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t flag);	
功能描述		
先决条件	<u> </u>	
被调用函数	-	
输入参数{in}		
spi_periph	外设SPIx	
SPIx	x=0,1	
	输入参数{in}	
flag	SPI/I2S标志状态	
SPI_FLAG_TBE	SPI发送缓冲区空标志	
SPI_FLAG_RBNE	SPI接收缓冲区非空标志	
SPI_FLAG_TRANS	SPI通信进行中标志	
SPI_FLAG_RXORE RR	SPI接收过载错误标志	
SPI_FLAG_CONFE RR	SPI配置错误标志	
SPI_FLAG_CRCER R	SPI CRC错误标志	
SPI_FLAG_FERR	SPI格式错误标志	
I2S_FLAG_TBE	I2S发送缓冲区空标志	
I2S_FLAG_RBNE	I2S接收缓冲区非空标志	
I2S_FLAG_TRANS	I2S通信进行中标志	
I2S_FLAG_RXORE RR	I2S接收过载错误标志	
I2S_FLAG_TXURE RR	I2S发送欠载错误标志	
I2S_FLAG_CH	I2S通道标志	
I2S_FLAG_FERR	I2S格式错误标志	
	以下参数只适用于SPI1	
SPI_TXLVL_EMPT Y	SPI TXFIFO空	
SPI_TXLVL_QUAR TER_FULL	SPI TXFIFO四分之一满	
SPI_TXLVL_HAIF_F ULL	SPI TXFIFO半满	
SPI_TXLVL_FULL	TXFIFO全满	
SPI_RXLVL_EMPT Y	SPI RXFIFO空	
SPI_RXLVL_QUAR TER_FULL	SPI RXFIFO四分之一满	

SPI_RXLVL_HAIF_	SPI RXFIFO半满	
FULL		
SPI_RXLVL_FULL	RXFIFO全满	
	输出参数{out}	
-	-	
返回值		
FlagStatus	SET 或 RESET	

/* get SPI0 transmit buffer empty flag status */
while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_TBE));
spi_i2s_data_transmit(SPI0, spi0_send_array[send_n++]);

函数 spi_i2s_interrupt_enable

函数spi_i2s_interrupt_enable描述见下表:

表 3-375. 函数 spi_i2s_interrupt_enable

水 o o r o : 国		
函数名称	spi_i2s_interrupt_enable	
函数原形	<pre>void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t interrupt);</pre>	
功能描述	使能SPI/I2S中断	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0,1	
输入参数{in}		
interrupt	SPI/I2S中断	
SPI_I2S_INT_TBE	发送缓冲区空中断使能	
SPI_I2S_INT_RBNE	接收缓冲区非空中断使能	
SPI_I2S_INT_ERR	错误中断使能	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* enable SPI0 transmit buffer empty interrupt */
spi_i2s_interrupt_enable(SPI0, SPI_I2S_INT_TBE);

函数 spi_i2s_interrupt_disable

函数spi_i2s_interrupt_disable描述见下表:

表 3-376. 函数 spi_i2s_interrupt_disable

函数名称	spi_i2s_interrupt_disable	
函数原形	void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t interrupt);	
功能描述	禁能SPI/I2S中断	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0,1	
	输入参数{in}	
interrupt	SPI/I2S中断	
SPI_I2S_INT_TBE	发送缓冲区空中断使能	
SPI_I2S_INT_RBNE	接收缓冲区非空中断使能	
SPI_I2S_INT_ERR	错误中断使能	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable SPI0 transmit buffer empty interrupt */

spi_i2s_interrupt_disable(SPI0, SPI_I2S_INT_TBE);

函数 spi_i2s_interrupt_flag_get

函数spi_i2s_interrupt_flag_get描述见下表:

表 3-377. 函数 spi_i2s_interrupt_flag_get

	<u></u>	
函数名称	spi_i2s_interrupt_flag_get	
函数原形	FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t interrupt);	
功能描述	获取SPI/I2S中断状态	
先决条件	-	
被调用函数	-	
	输入参数{in}	
spi_periph	外设SPIx	
SPIx	x=0,1	
	输入参数{in}	
interrupt	SPI/I2S中断状态	
SPI_I2S_INT_FLAG	发送缓冲区空中断	
_TBE	_TBE	

SPI_I2S_INT_FLAG	接收缓冲区非空中断
_RBNE	18.仅须自色非工主的
SPI_I2S_INT_FLAG	接收过载错误中断
_RXORERR	按拟趋纵相伏中则
SPI_INT_FLAG_CO	配置错误中断
NFERR	11.直拍 庆中剧
SPI_INT_FLAG_CR	CRC错误中断
CERR	CKO _{钼 医牛奶}
I2S_INT_FLAG_TX	少 送
URERR	发送欠载错误中断
SPI_I2S_INT_FLAG	妆 子纽 ·吕·山蛇
_FERR	格式错误中断
输出参数{out}	
	返回值
FlagStatus	SET 或 RESET

```
/* get SPI0 transmit buffer empty interrupt status */
if(RESET != spi_i2s_interrupt_flag_get(SPI0, SPI_I2S_INT_FLAG_TBE)){
    while(RESET == spi_i2s_flag_get(SPI0, SPI_FLAG_TBE));
    spi_i2s_data_transmit(SPI0, spi0_send_array[send_n++]);
}
```

函数 spi_crc_error_clear

函数spi_crc_error_clear描述见下表:

表 3-378. 函数 spi_crc_error_clear

77 1 1 1 4 37 1 1 2 1 2 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1			
函数名称	spi_crc_error_clear		
函数原形	void spi_crc_error_clear(uint32_t spi_periph);		
功能描述	清除SPI CRC错误标志状态		
先决条件	-		
被调用函数	-		
	输入参数{in}		
spi_periph	外设SPIx		
SPIx	x=0,1		
	输出参数{out}		
	返回值		
-	-		

/* clear SPI0 CRC error flag status */

spi_crc_error_clear(SPI0);

3.17. **SYSCFG**

章节<u>3.17.1</u>描述了SYSCFG的寄存器列表,章节<u>3.17.2</u>对SYSCFG库函数进行说明。

3.17.1. 外设寄存器说明

SYSCFG寄存器列表如下表所示:

表 3-379. SYSCFG 寄存器

寄存器名称	寄存器描述
SYSCFG_CFG0	配置寄存器0
SYSCFG_EXTISS0	EXTI源选择寄存器0
SYSCFG_EXTISS1	EXTI源选择寄存器1
SYSCFG_EXTISS2	EXTI源选择寄存器2
SYSCFG_EXTISS3	EXTI源选择寄存器3
SYSCFG_CFG2	系统配置寄存器2
SYSCFG_CPU_IRQ	IDO紅汨安方思
_LAT	IRQ延迟寄存器

3.17.2. 外设库函数说明

SYSCFG库函数列表如下表所示:

表 3-380. SYSCFG 库函数

库函数名称	库函数描述
syscfg_deinit	复位SYSCFG寄存器
syscfg_dma_remap_enable	使能DMA通道重映射
syscfg_dma_remap_disable	失能DMA通道重映射
syscfg_high_current_enable	使能PB9引脚大电流能力
syscfg_high_current_disable	失能PB9引脚大电流能力
syscfg_exti_line_config	配置GPIO引脚作为EXTI
syscfg_lock_config	将timer0/14/15/16中断输入连接到所选参数
irq_latency_set	设置延迟值
syscfg_flag_get	得到SYSCFG_CFG2的标志位
syscfg_flag_clear	清除SYSCFG_CFG2的标志位

函数 syscfg_deinit

函数syscfg_deinit描述见下表:

表 3-381. 函数 syscfg_deinit

函数名称	syscfg_deinit	
函数原形	void syscfg_deinit(void);	
功能描述	复位SYSCFG寄存器	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* reset SYSCFG registers */

syscfg_deinit();

函数 syscfg_dma_remap_enable

函数syscfg_dma_remap_enable描述见下表:

表 3-382. 函数 syscfg_dma_remap_enable

	<u> </u>
函数名称	syscfg_dma_remap_enable
函数原形	<pre>void syscfg_dma_remap_enable(uint32_t syscfg_dma_remap);</pre>
功能描述	使能DMA通道重映射
先决条件	-
被调用函数	-
	· 输入参数{in}
syscfg_dma_rema	指定要重新映射的DMA通道
р	相定安里剔吸剂的 DMA 通道
SYSCFG_DMA_RE	重新映射Time16通道0和向通道1发送DMA请求
MAP_TIMER16	里利联剂 TIME TO 地 但 O 仲 问 地 但 T 及 达 D M A 请 求
SYSCFG_DMA_RE	重新映射Time15通道5和向通道3发送DMA请求
MAP_TIMER15	里利 吹剂 TIMETS 通过5种问通过5次及DWA请求
SYSCFG_DMA_RE	将AUARTARO RX DMA请求重新映射到通道4
MAP_USART0RX	行AUAKTAKU KA DIMA情水重剔吹剂到超超4
SYSCFG_DMA_RE	将AUARTAR0 TX DMA请求重新映射到通道3
MAP_USART0TX	行AUAKTAKU TA DIMA情水重剔吹剂到超起3
SYSCFG_DMA_RE	从通道0重新映射ADC DMA请求到通道1
MAP_ADC	外地坦U里州 映別 ADC DIVIA দ 水 判 地 担 I
SYSCFG_PA11_RE	DA44年DA40至如此40户
MAP_PA12	PA11和PA12重新映射位
输出参数{out}	

返回值	

/* enable DMA channel remap*/

syscfg_dma_remap_enable(SYSCFG_DMA_REMAP_TIMER16);

函数 syscfg_dma_remap_disable

函数syscfg_dma_remap_disable描述见下表:

表 3-383. 函数 syscfg_dma_remap_disable

大 o coo. 四次 oyoong_umu_romap_urousio		
函数名称	syscfg_dma_remap_disable	
函数原形	<pre>void syscfg_dma_remap_disable(uint32_t syscfg_dma_remap);</pre>	
功能描述	失能DMA通道重映射	
先决条件	-	
被调用函数	-	
	输入参数{in}	
syscfg_dma_rema	指定要重新映射的DMA通道	
р	1日化安里剂 吹剂 的 DIVIA 通过	
SYSCFG_DMA_RE	重新映射Time16通道0和向通道1发送DMA请求	
MAP_TIMER16	至别吠剂 TIITIE TO通道O仲间通道 T 及应DIMA 用水	
SYSCFG_DMA_RE	重新映射Time15通道5和向通道3发送DMA请求	
MAP_TIMER15	里利·吠州 Time TS通道S和问通道S及及DMA请求	
SYSCFG_DMA_RE	将AUARTARO RX DMA请求重新映射到通道4	
MAP_USART0RX	行AUANTANU NA DIMAH 水 里 初 庆 初	
SYSCFG_DMA_RE	将AUARTAR0 TX DMA请求重新映射到通道3	
MAP_USART0TX	行AUANTANU TA DIVIA 请水里 新 灰 剂	
SYSCFG_DMA_RE	从通道0重新映射ADC DMA请求到通道1	
MAP_ADC	// 通过0至新庆剂ADC DIVIA 请求到通过 I	
SYSCFG_PA11_RE	PA11和PA12重新映射位	
MAP_PA12	「ATTTAT2里 羽中穴が口。	
输出参数{out}		
-	-	
	返回值	
-	-	
	·	

例如:

/* disable DMA channel remap*/

syscfg_dma_remap_disable(SYSCFG_DMA_REMAP_TIMER16);

函数 syscfg_high_current_enable

函数syscfg_high_current_enable描述见下表:

表 3-384. 函数 syscfg_high_current_enable

	
函数名称	syscfg_high_current_enable
函数原形	<pre>void syscfg_high_current_enable(void);</pre>
功能描述	使能PB9引脚大电流能力
先决条件	-
被调用函数	-
输入参数{in}	
	-
输出参数{out}	
-	-
返回值	
-	-

例如:

/* enable PB9 high current capability */

syscfg_high_current_enable();

函数 syscfg_high_current_disable

函数syscfg_high_current_disable描述见下表:

表 3-385. 函数 syscfg_high_current_disable

函数名称	syscfg_high_current_disable
函数原形	<pre>void syscfg_high_current_disable(void);</pre>
功能描述	失能PB9引脚大电流能力
先决条件	-
被调用函数	-
输入参数{in}	
-	-
输出参数{out}	
-	-
返回值	
-	-

例如:

/* disable PB9 high current capability */

syscfg_high_current_disable();

函数 syscfg_exti_line_config

函数syscfg_exti_line_config描述见下表:

表 3-386. 函数 syscfg_exti_line_config

	0 0	
函数名称	syscfg_exti_line_config	
函数原形	void syscfg_exti_line_config(uint8_t exti_port, uint8_t exti_pin);	
功能描述	配置GPIO引脚作为EXTI	
先决条件	-	
被调用函数	-	
输入参数{in}		
exti_port	指定EXTI使用的GPIO端口	
EXTI_SOURCE_GP	A D C F	
IOx	x=A,B,C,F	
输入参数{in}		
exti_pin	EXTI引脚	
EXTI_SOURCE_PI	V=0.15(CDIOA CDIOD) V=13.15(CDIOC) V=0.1.6.7 (CDIOE)	
Nx	x=015(GPIOA, GPIOB), x=1315(GPIOC), x = 0.1.6.7 (GPIOF)	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* configure the GPIO pin as EXTI Line */

syscfg_exti_line_config(EXTI_SOURCE_GPIOA, EXTI_SOURCE_PIN0);

函数 syscfg_lock_config

函数syscfg_lock_config描述见下表:

表 3-387. 函数 syscfg lock config

农 0-007. 函数 3y3cig_lock_colling		
函数名称	syscfg_lock_config	
函数原形	<pre>void syscfg_lock_config(uint32_t syscfg_lock);</pre>	
功能描述	将timer0/14/15/16中断输入连接到所选参数	
先决条件	-	
被调用函数	-	
输入参数{in}		
exti_port	指定EXTI使用的GPIO端口	
SYSCFG_LOCK_L	Cortex-M23锁定输出连接到断开输入	
OCKUP	COITEX-M23 锁定制	
SYSCFG_LOCK_S		
RAM_PARITY_ERR	SRAM_PARITY校验错误连接到断开输入	
OR		

SYSCFG_LOCK_LV	LVD中断连接到断开输入	
D	とりが、一切と放列的月間八	
输出参数{out}		
-	-	
返回值		
-	-	

/* configure syscfg lock*/

 $syscfg_lock_config(SYSCFG_LOCK_LOCKUP);$

函数 irq_latency_set

函数irq_latency_set描述见下表:

表 3-388. 函数 irq_latency_set

函数名称		
函数原形		
功能描述		
先决条件		
被调用函数		
输入参数{in}		
irq_latency		
0x00-0xFF		
-		
返回值		
-		
-		

例如:

/* set the wait state counter value */

Irq_latency_set (0xFF);

函数 syscfg_flag_get

函数syscfg_flag_get描述见下表:

表 3-389. 函数 syscfg_flag_get

函数名称	syscfg_flag_get
函数原形	FlagStatus syscfg_flag_get(uint32_t syscfg_flag);
功能描述	校验SYSCFG_CFG2寄存器中指定的标志位是否置位
先决条件	-
被调用函数	-

输入参数{in}		
syscfg_flag	中断标志	
SYSCFG_SRAM_P	CDAMA / H KATA / H L L L L	
CEF	SRAM奇偶校验错误标志	
输出参数{out}		
-	-	
返回值		
FlagStatus	SET或者RESET	

/* get syscfg flag */

FlagStatus status;

status = syscfg_flag_get(SYSCFG_SRAM_PCEF);

函数 syscfg_flag_clear

函数syscfg flag cleart描述见下表:

表 3-390. 函数 syscfg_flag_clear

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0_ 0_	
函数名称	syscfg_flag_gclear	
函数原形	<pre>void syscfg_flag_clear(uint32_t syscfg_flag);</pre>	
功能描述	清除SYSCFG_CFG2的标志位	
先决条件	-	
被调用函数	-	
输入参数{in}		
syscfg_flag	中断标志	
SYSCFG_SRAM_P	SRAM奇偶校验错误标志	
CEF	SRAM可怕仪验相 医你心	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* clear syscfg flag */

syscfg_flag_clear(SYSCFG_SRAM_PCEF);

3.18. TIMER

定时器含有可编程的一个无符号计数器,支持输入捕获和输出比较,分为五种类型:高级定时器(TIMER0),通用定时器L0(TIMER2),通用定时器L2(TIMER13),通用定时器L3(TIMER14),通用定时器L4(TIMERx, x=15, 16),基本定时器(TIMER5),不同类型的定时器具体功能有所差

别。章节<u>**3.18.1**</u>描述了TIMER的寄存器列表,章节<u>**3.18.2**</u>对TIMER库函数进行说明。

3.18.1. 外设寄存器说明

TIMER寄存器列表如下表所示:

表 3-391. TIMER 寄存器

寄存器名称	寄存器描述
TIMER_CTL0(timerx, x=0, 2, 5, 13, 14, 15, 16)	控制寄存器0
TIMERx_CTL1(timerx, x=0, 2, 5, 13, 14, 15, 16)	控制寄存器1
TIMERx_SMCFG(timerx, x=0, 2, 14)	从模式配置寄存器
TIMERx_DMAINTEN(timerx, x=0, 2, 5, 13, 14, 15, 16)	DMA和中断使能寄存器
TIMERx_INTF(timerx, x=0, 2, 5, 13, 14, 15, 16)	中断标志寄存器
TIMERx_SWEVG(timerx, x=0, 2, 5, 13, 14, 15, 16)	软件事件产生寄存器
TIMERx_CHCTL0(timerx, x=0, 2, 13, 14, 15, 16)	通道控制寄存器0
TIMERx_CHCTL1(timerx, x=0, 2)	通道控制寄存器1
TIMERx_CHCTL2(timerx, x=0, 2, 13, 14, 15, 16)	通道控制寄存器2
TIMERx_CNT(timerx, x=0, 2, 5, 13, 14, 15, 16)	计数器寄存器
TIMERx_PSC(timerx, x=0, 2, 5, 13, 14, 15, 16)	预分频寄存器
TIMERx_CAR(timerx, x=0, 2, 5, 13, 14, 15, 16)	计数器自动重载寄存器
TIMERx_CREP(timerx, x=0, 5, 14, 15, 16)	重复计数寄存器
TIMERx_CH0CV(timerx, x=0, 2, 13, 14, 15, 16)	通道0捕获/比较寄存器
TIMERx_CH1CV(timerx, x=0, 2, 14)	通道1捕获/比较寄存器
TIMERx_CH2CV(timerx, x=0 ,2)	通道2捕获/比较寄存器
TIMERx_CH3CV(timerx, x=0, 2)	通道3捕获/比较寄存器
TIMERx_IRMP(timerx, x=13)	通道输入重映射寄存器
TIMERx_CCHP(timerx, x=0, 2, 14, 15, 16)	互补通道保护寄存器
TIMERx_DMACFG(timerx, x=0, 2, 14, 15, 16)	DMA配置寄存器
TIMERx_DMATB(timerx, x=0, 2, 14, 15, 16)	DMA发送缓冲区寄存器
TIMERx_CFG(timerx, x=0, 2, 13, 14, 15, 16)	配置寄存器

3.18.2. 外设库函数说明

TIMER库函数列表如下表所示:

表 3-392. TIMER 库函数

库函数名称	库函数描述
timer_deinit	复位外设TIMERx
timer_struct_para_init	将TIMER初始化结构体中所有参数初始化为默认值

GD32E23x 固件库使用指南

	ODOZEZON 国门/+ 区/11月
库函数名称	库函数描述
timer_init	初始化外设TIMERx
timer_enable	使能外设TIMERx
timer_disable	禁能外设TIMERx
timer_auto_reload_shadow_enable	TIMERx自动重载影子使能
timer_auto_reload_shadow_disable	TIMERx自动重载影子禁能
timer_update_event_enable	TIMERx更新事件使能
timer_update_event_disable	TIMERx更新事件禁能
timer_counter_alignment	设置外设TIMERx的对齐模式
timer_counter_up_direction	设置外设TIMERx向上计数
timer_counter_down_direction	设置外设TIMERx向下计数
timer_prescaler_config	配置外设TIMERx预分频器
timer_repetition_value_config	配置外设TIMERx的重复计数器
timer_autoreload_value_config	配置外设TIMERx的自动重载寄存器
timer_counter_value_config	配置外设TIMERx的计数器值
timer_counter_read	读取外设TIMERx的计数器值
timer_prescaler_read	读取外设TIMERx的预分频器值
timer_single_pulse_mode_config	配置外设TIMERx的单脉冲模式
timer_update_source_config	配置外设TIMERx的更新源
timer_ocpre_clear_source_config	配置TIMERx的OCPRE清除源选择
timer_interrupt_enable	外设TIMERx的中断使能
timer_interrupt_disable	外设TIMERx的中断禁能
timer_interrupt_flag_get	外设TIMERx中断标志获取
timer_interrupt_flag_clear	外设TIMERx中断标志清除
timer_flag_get	外设TIMERx标志位获取
timer_flag_clear	外设TIMERx标志位清除
timer_dma_enable	使能 TIMERx 的 DMA 功能
timer_dma_disable	禁能TIMERx的DMA功能
timer_channel_dma_request_sourc e_select	外设TIMERx的通道DMA请求源选择
timer_dma_transfer_config	配置外设TIMERx的DMA模式
timer_event_software_generate	软件产生事件
timer_event_software_generate timer_break_struct_para_init	将TIMER中止功能参数结构体中所有参数初始化为默认值
timer_break_struct_para_init	村 I I I I I I I I I I I I I I I I I I I
timer_break_coning timer_break_enable	电量中止功能 使能TIMERx的中止功能
timer_break_disable	禁能TIMERX的中止功能
timer_automatic_output_enable	宗能TIMERX的中亚功能 自动输出使能
timer_automatic_output_disable	自动输出禁能
timer_automatic_output_disable timer_primary_output_config	所有的通道输出使能
timer_channel_control_shadow_	771年117世紀制山世北
config	通道换相控制影子寄存器配置
timer_channel_control_shadow_	通道换相控制影子寄存器更新控制

GD32E23x 固件库使用指南

GD32L23X 四个年文用18日		
库函数名称	库函数描述	
update_config		
timer_channel_output_struct_para_i	将TIMER通道输出参数结构体中所有参数初始化为默认值	
nit		
timer_channel_output_config	外设TIMERx的通道输出配置	
timer_channel_output_mode_config	配置外设TIMERx通道输出比较模式	
timer_channel_output_pulse_value_	配置外设TIMERx的通道输出比较值	
config	癿重介 议 TIWIE TX 的 应 担 棚 山	
timer_channel_output_shadow	配置TIMERx通道输出比较影子寄存器功能	
_config	配直 IIWEIXA 短棚田比衣於 J 可存留为比	
timer_channel_output_fast_config	配置TIMERx通道输出比较快速功能	
timer_channel_output_clear_config	配置TIMERx的通道输出比较清0功能	
timer_channel_output_polarity_confi	通道输出极性配置	
g		
timer_channel_complementary_out	互补通道输出极性配置	
put_polarity_config	<u> </u>	
timer_channel_output_state_config	配置通道状态	
timer_channel_complementary_out	配置互补通道输出状态	
put_state_config		
timer_channel_input_struct	牧TIMED通送於》 会数体物体由底方会数初始化为雕红店	
_para_init	将TIMER通道输入参数结构体中所有参数初始化为默认值	
timer_input_capture_config	配置TIMERx输入捕获参数	
timer_channel_input_capture_	配置TIMERx通道输入捕获预分频值	
prescaler_config		
timer_channel_capture_value_	读取通道输入捕获值	
register_read		
timer_input_pwm_capture_config	配置TIMERx捕获PWM输入参数	
timer_hall_mode_config	配置TIMERx的HALL接口功能	
timer_input_trigger_source_select	TIMERx的输入触发源选择	
timer_master_output_trigger_source	选择TIMERx主模式输出触发源	
_select	处评 I IIVICNX土铁八栅 山 熈 久 源	
timer_slave_mode_select	TIMERx从模式配置	
timer_master_slave_mode_config	TIMERx主从模式配置	
timer_external_trigger_config	配置TIMERx外部触发输入	
timer_quadrature_decoder_mode_c	TIMED、和罗马工六汉和思维中	
onfig	TIMERx配置为正交译码器模式	
timer_internal_clock_config	TIMERx配置为内部时钟模式	
timer_internal_trigger_as_external_	新三 昭 TIME D. お, 占, さか か. 42 ユ r.ユ と . Vic	
clock_config	配置TIMERx的内部触发为时钟源	
timer_external_trigger_as_external_	TI BETILIED AL LI SONT IN ILLIANT	
clock_config	配置TIMERx的外部触发作为时钟源	
timer_external_clock_mode0_config	配置TIMERx外部时钟模式0,ETI作为时钟源	

库函数名称	库函数描述
timer_external_clock_mode1_config	配置TIMERx外部时钟模式1
timer_external_clock_mode1_disabl	禁能TIMERx外部时钟模式1
е	
timer_channel_remap_config	配置TIMERx通道重映射功能
timer_write_chxval_register_config	配置TIMERx写CHxVAL选择位
timer_output_value_selection_confi	配置定时器输出值选择
g	

结构体 timer_parameter_struct

表 3-393. 结构体 timer_parameter_struct

成员名称	功能描述
prescaler	预分频值(0~65535)
alignadmada	对齐模式(TIMER_COUNTER_EDGE, TIMER_COUNTER_CENTER_DOWN,
alignedmode	TIMER_COUNTER_CENTER_UP, TIMER_COUNTER_CENTER_BOTH)
counterdirection	计数方向(TIMER_COUNTER_UP, TIMER_COUNTER_DOWN)
period	周期(0~65535)
clockdivision	时钟分频因子(TIMER_CKDIV_DIV1, TIMER_CKDIV_DIV2,
CIOCKUIVISION	TIMER_CKDIV_DIV4)
repetitioncounter	重复计数器值(0~255)

结构体 timer_break_parameter_struct

表 3-394. 结构体 timer_break_parameter_struct

成员名称	功能描述
runoffstate	运行模式下"关闭状态"配置 (TIMER_ROS_STATE_ENABLE,
runonsiale	TIMER_ROS_STATE_DISABLE)
ideloffstate	空闲模式下"关闭状态"配置(TIMER_IOS_STATE_ENABLE,
lueionstate	TIMER_IOS_STATE_DISABLE)
deadtime	死区时间(0~255)
brooks alority	中止信号极性(TIMER_BREAK_POLARITY_LOW,
breakpolarity	TIMER_BREAK_POLARITY_HIGH)
outputoutostata	自动输出使能 (TIMER_OUTAUTO_ENABLE,
outputautostate	TIMER_OUTAUTO_DISABLE)
protostmodo	互补寄存器保护控制(TIMER_CCHP_PROT_OFF, TIMER_CCHP_PROT_0,
protectmode	TIMER_CCHP_PROT_1, TIMER_CCHP_PROT_2)
breakstate	中止使能(TIMER_BREAK_ENABLE, TIMER_BREAK_DISABLE)

结构体 timer_oc_parameter_struct

表 3-395. 结构体 timer_oc_parameter_struct

	
成员名称	功能描述
outputstate	通道输出状态(TIMER_CCX_ENABLE, TIMER_CCX_DISABLE)

成员名称	功能描述
outputnstate	互补通道输出状态(TIMER_CCXN_ENABLE, TIMER_CCXN_DISABLE)
oon olority	通道输出极性(TIMER_OC_POLARITY_HIGH,
ocpolarity	TIMER_OC_POLARITY_LOW)
o o o o o o o o o o o o o o o o o o o	互补通道输出极性(TIMER_OCN_POLARITY_HIGH,
ocnpolarity	TIMER_OCN_POLARITY_LOW)
acidlantata	空闲状态下通道输出(TIMER_OC_IDLE_STATE_LOW,
ocidlestate	TIMER_OC_IDLE_STATE_HIGH)
ocnidlestate	空闲状态下互补通道输出(TIMER_OCN_IDLE_STATE_LOW,
ochialestate	TIMER_OCN_IDLE_STATE_HIGH)

结构体 timer_ic_parameter_struct

表 3-396. 结构体 timer_ic_parameter_struct

成员名称	功能描述
ionolority	通道输入极性(TIMER_IC_POLARITY_RISING,
icpolarity	TIMER_IC_POLARITY_FALLING, TIMER_IC_POLARITY_BOTH_EDGE)
icselection	通道输入模式选择(TIMER_IC_SELECTION_DIRECTTI,
icselection	TIMER_IC_SELECTION_INDIRECTTI, TIMER_IC_SELECTION_ITS)
ionropolor	通道输入捕获预分频(TIMER_IC_PSC_DIV1, TIMER_IC_PSC_DIV2,
icprescaler	TIMER_IC_PSC_DIV4, TIMER_IC_PSC_DIV8)
icfilter	通道输入捕获滤波(0~15)

函数 timer_deinit

函数timer_deinit描述见下表:

表 3-397. 函数 timer_deinit

人工	–
函数名称	timer_deinit
函数原型	void timer_deinit(uint32_t timer_periph);
功能描述	复位外设TIMERx
先决条件	-
被调用函数	rcu_periph_reset_enable / rcu_periph_reset_disable
	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0, 2, 5,	TIMED机设体权
1316)	TIMER外设选择
	输出参数{out}
-	-
	返回值
-	-

例如:

/* reset TIMER0 */

timer_deinit (TIMER0);

函数 timer_struct_para_init

函数timer_struct_para_init描述见下表:

表 3-398. 函数 timer_struct_para_init

函数名称	timer_struct_para_init
四双石柳	tilliel_struct_para_iriit
函数原型	<pre>void timer_struct_para_init(timer_parameter_struct* initpara);</pre>
功能描述	将TIMER初始化参数结构体中所有参数初始化为默认值
先决条件	-
被调用函数	-
	输入参数{in}
initnoro	TIMER初始化结构体,结构体成员参考 <i>表</i> 3-393. 结构体
initpara	timer_parameter_struct
	输出参数{out}
-	-
	返回值
-	-

例如:

/* initialize TIMER init parameter struct with a default value */

timer_parameter_struct timer_initpara;

timer_struct_para_init(timer_initpara);

函数 timer_init

函数timer_init描述见下表:

表 3-399. 函数 timer_init

ж о ооо. _М ж иии	*· = ·····•
函数名称	timer_init
函数原型	void timer_init(uint32_t timer_periph, timer_parameter_struct* initpara);
功能描述	初始化外设TIMERx
先决条件	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0, 2, 5,	TIMER外设选择
1316)	TIWIER介以选择
	输入参数{in}
initnara	TIMER初始化结构体,结构体成员参考 <i>表</i> 3-393. 结构体
initpara	<u>timer_parameter_struct</u>
	输出参数{out}

	-	-
返回值		返回值
	-	-

/* initialize TIMER0 */

timer_parameter_struct timer_initpara;

timer_initpara.prescaler = 107;

timer_initpara.alignedmode = TIMER_COUNTER_EDGE;

timer_initpara.counterdirection = TIMER_COUNTER_UP;

timer_initpara.period = 999;

timer_initpara.clockdivision = TIMER_CKDIV_DIV1;

timer_initpara.repetitioncounter = 1;

timer_init(TIMER0, &timer_initpara);

函数 timer_enable

函数timer_enable描述见下表:

表 3-400. 函数 timer_enable

., с с с с д ж с с с	
函数名称	timer_enable
函数原型	void timer_enable(uint32_t timer_periph);
功能描述	使能外设TIMERx
先决条件	-
被调用函数	-
	· 输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0, 2, 5,	TIMER外设选择
1316)	TIMEK外设选择
	输出参数{out}
-	-
	返回值
-	-

例如:

/* enable TIMER0 */

timer_enable (TIMER0);

函数 timer_disable

函数timer_disable描述见下表:

表 3-401. 函数 timer_disable

函数名称	timer_disable
函数原型	void timer_disable(uint32_t timer_periph);
功能描述	禁能外设TIMERx
先决条件	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0, 2, 5,	TIMER外设选择
1316)	TIMER外以选择
	输出参数{out}
-	-
	返回值
-	-

例如:

/* disable TIMER0 */

timer_disable (TIMER0);

函数 timer_auto_reload_shadow_enable

函数timer_auto_reload_shadow_enable描述见下表:

表 3-402. 函数 timer_auto_reload_shadow_enable

例如:

/* enable the TIMER0 auto reload shadow function */

timer_auto_reload_shadow_enable (TIMER0);

函数 timer_auto_reload_shadow_disable

函数timer_auto_reload_shadow_disable描述见下表:

表 3-403. 函数 timer_auto_reload_shadow_disable

函数名称	timer_auto_reload_shadow_ disable	
函数原型	void timer_auto_reload_shadow_ disable (uint32_t timer_periph);	
功能描述	TIMERx自动重载影子禁能	
先决条件	-	
被调用函数	-	
timer_periph	TIMER外设	
TIMERx(x=0, 2, 5,	TIMED机设生权	
1316)	TIMER外设选择	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* disable the TIMER0 auto reload shadow function */

timer_auto_reload_shadow_disable (TIMER0);

函数 timer_update_event_enable

函数timer_update_event_enable描述见下表:

表 3-404. 函数 timer_update_event_enable

函数名称	timer_update_event_enable	
函数原型	void timer_update_event_enable(uint32_t timer_periph);	
功能描述	TIMERx更新事件使能	
先决条件	-	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx(x=0, 2, 5,	TIMER外设选择	
1316)		
	输出参数{out}	
-	-	
返回值		
-	-	

/* enable TIMER0 the update event */

timer_update_event_enable (TIMER0);

函数 timer_update_event_disable

函数timer_update_event_disable描述见下表:

表 3-405. 函数 timer_update_event_disable

timer_update_event_ disable	
<pre>void timer_update_event_ disable (uint32_t timer_periph);</pre>	
TIMERx更新事件禁能	
-	
-	
输入参数{in}	
TIMER外设	
TIMER外设选择	
	输出参数{out}
•	
返回值	
-	

例如:

/* disable TIMER0 the update event */

timer_update_event_disable (TIMER0);

函数 timer_counter_alignment

函数timer_counter_alignment描述见下表:

表 3-406. 函数 timer_counter_alignment

函数名称	timer_counter_alignment
函数原型	void timer_counter_alignment(uint32_t timer_periph, uint16_t aligned);
功能描述	设置外设TIMERx的对齐模式
先决条件	•
被调用函数	-
输入参数{in}	
timer_periph	TIMER外设
TIMERx(x=0, 2)	TIMER外设选择
输入参数{in}	
aligned	对齐模式
TIMER_COUNTER	无中央对齐计数模式(边沿对齐模式),DIR位指定了计数方向

_EDGE	
TIMER_COUNTER _CENTER_DOWN	中央对齐向下计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),只有在向下计数时,通道的比较中断标志置1
TIMER_COUNTER _CENTER_UP	中央对齐向上计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),只有在向上计数时,通道的比较中断标志置1
TIMER_COUNTER _CENTER_BOTH	中央对齐上下计数置1模式。计数器在中央计数模式计数,通道被配置在输出模式(TIMERx_CHCTL0寄存器中CHxMS=00),在向上和向下计数时,通道的比较中断标志都会置1
输出参数{out}	
-	-
返回值	
-	-

/* set TIMER0 counter center-aligned and counting up assert mode */

timer_counter_alignment (TIMER0, TIMER_COUNTER_CENTER_UP);

函数 timer_counter_up_direction

函数timer_counter_up_direction描述见下表:

表 3-407. 函数 timer_counter_up_direction

函数名称	timer_counter_up_direction	
函数原型	void timer_counter_up_direction(uint32_t timer_periph);	
功能描述	设置外设TIMERx向上计数	
先决条件	计数器设置为无中央对齐计数模式(边沿对齐模式)	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx(x=0, 2)	TIMER外设选择	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* set TIMER0 counter up direction */

timer_counter_up_direction (TIMER0);

函数 timer_counter_down_direction

函数timer_counter_down_direction描述见下表:

表 3-408. 函数 timer_counter_down_direction

函数名称	timer_counter_ down _direction		
函数原型	void timer_counter_ down _direction(uint32_t timer_periph);		
功能描述	设置外设TIMERx向下计数		
先决条件	计数器设置为无中央对齐计数模式(边沿对齐模式)		
被调用函数	-		
	输入参数{in}		
timer_periph	TIMER外设		
TIMERx(x=0, 2)	TIMER外设选择		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* set TIMER0 counter down direction */

timer_counter_down_direction (TIMER0);

函数 timer_prescaler_config

函数timer_prescaler_config描述见下表:

表 3-409. 函数 timer_prescaler_config

正 举 力转			
函数名称	timer_prescaler_config		
函数原型	void timer_prescaler_config(uint32_t timer_periph, uint16_t prescaler, uint8_t		
	pscreload);		
功能描述	配置外设TIMERx预分频器		
先决条件	-		
被调用函数	-		
输入参数{in}			
timer_periph	TIMER外设		
TIMERx(x=0, 2, 5,	TIMEDAL识地权		
1316)	TIMER外设选择		
	输入参数{in}		
prescaler	预分频值,0~65535		
	输入参数{in}		
pscreload	预分频值加载模式		
TIMER_PSC_RELO	预分频值立即加载		
AD_NOW			
TIMER_PSC_RELO	预分频值在下次更新事件发生时加载		

AD_UPDATE		
输出参数{out}		
-	-	
返回值		
-	-	

/* configure TIMER0 prescaler */

timer_prescaler_config (TIMER0, 3000, TIMER_PSC_RELOAD_NOW);

函数 timer_repetition_value_config

函数timer_repetition_value_config描述见下表:

表 3-410. 函数 timer_repetition_value_config

• • • • •	open	
函数名称	timer_repetition_value_config	
函数原型	void timer_repetition_value_config(uint32_t timer_periph, uint16_t repetition);	
功能描述	配置外设TIMERx的重复计数器	
先决条件	-	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx(x=0,15,16)	TIMER外设选择	
输入参数{in}		
repetition	重复计数器值,取值范围0~255	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* configure TIMER0 repetition register value */

timer_repetition_value_config (TIMER0, 98);

函数 timer_autoreload_value_config

函数timer_autoreload_value_config描述见下表:

表 3-411. 函数 timer_autoreload_value_config

函数名称	timer_autoreload_value_config
函数原型	void timer_autoreload_value_config(uint32_t timer_periph, uint16_t autoreload);
功能描述	配置外设TIMERx的自动重载寄存器
先决条件	-

被调用函数	-	
timer_periph	TIMER外设	
TIMERx(x=0, 2, 5,	TIMER外设选择	
1316)	TIMER介收延押	
输入参数{in}		
autoreload	计数器自动重载值(0-65535)	
	输出参数{out}	
-	-	
返回值		
-	-	

/* configure TIMER autoreload register value */

timer_autoreload_value_config (TIMER0, 3000);

函数 timer_counter_value_config

函数timer_counter_value_config描述见下表:

表 3-412. 函数 timer_counter_value_config

и при	si_counter_value_comig		
函数名称	timer_counter_value_config		
函数原型	void timer_counter_value_config(uint32_t timer_periph, uint16_t counter);		
功能描述	配置外设TIMERx的计数器值		
先决条件	-		
被调用函数	-		
timer_periph	TIMER外设		
TIMERx(x=0, 2, 5,	TIMEDAL沙丛板		
1316)	TIMER外设选择		
	输入参数{in}		
counter	计数器值(0-65535)		
输出参数{out}			
-	-		
返回值			
-	-		

例如:

/* configure TIMER0 counter register value */

timer_counter_value_config (TIMER0, 3000);

函数 timer_counter_read

函数timer_counter_read描述见下表:

表 3-413. 函数 timer_counter_read

timer_counter_read	
uint32_t timer_counter_read(uint32_t timer_periph);	
读取外设TIMERx的计数器值	
-	
-	
输入参数{in}	
TIMER外设	
TIMER外设选择	
TIMER外反処律	
输出参数{out}	
返回值	
外设TIMERx的计数器值(0~65535)	

例如:

/* read TIMER0 counter value */

 $uint32_t i = 0;$

i = timer_counter_read (TIMER0);

函数 timer_prescaler_read

函数timer_prescaler_read描述见下表:

表 3-414. 函数 timer_prescaler_read

		
函数名称	timer_prescaler_read	
函数原型	uint16_t timer_prescaler_read(uint32_t timer_periph);	
功能描述	读取外设TIMERx的预分频器值	
先决条件	-	
被调用函数	-	
	· 输入参数{in}	
timer_periph	TIMER外设	
TIMERx(x=0, 2, 5,	TIMED机识处权	
1316)	TIMER外设选择	
	输出参数{out}	
-	-	
	返回值	
uint16_t	外设TIMERx的预分频器值(0~65535)	

例如:

/* read TIMER0 prescaler value */

 $uint16_t i = 0;$

i = timer_prescaler_read (TIMER0);

函数 timer_single_pulse_mode_config

函数timer_single_pulse_mode_config描述见下表:

表 3-415. 函数 timer_single_pulse_mode_config

函数名称	timer_single_pulse_mode_config	
函数原型	void timer_single_pulse_mode_config(uint32_t timer_periph, uint8_t spmode);	
功能描述	配置外设TIMERx的单脉冲模式	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx(x=0, 2, 5,	TIMER外设选择	
1416)	TIMER外 反还律	
	输入参数{in}	
spmode	脉冲模式	
TIMER_SP_MODE	单脉冲模式计数	
_SINGLE	平脉件铁八月 奴	
TIMER_SP_MODE_	重复模式计数	
REPETITIVE	里友快八川奴	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* configure TIMER0 single pulse mode */

timer_single_pulse_mode_config (TIMER0, TIMER_SP_MODE_SINGLE);

函数 timer_update_source_config

函数timer_update_source_config描述见下表:

表 3-416. 函数 timer_update_source_config

函数名称	timer_update_source_config
函数原型	void timer_update_source_config(uint32_t timer_periph, uint32_t update);
功能描述	配置外设TIMERx的更新源
先决条件	-
被调用函数	-

	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0, 2, 5,	TIMED ALLUM AV
1316)	TIMER外设选择
	输入参数{in}
update	更新源
	下述任一事件产生更新中断或DMA请求:
TIMER_UPDATE_S	– UPG位被置1
RC_GLOBAL	- 计数器溢出/下溢
	- 从模式控制器产生的更新
TIMER_UPDATE_S	口专注整型深山广工深土支井市郊市岷忠DMA注土
RC_REGULAR	只有计数器溢出/ 下溢才产生更新中断或DMA请求
	输出参数{out}
-	-
	返回值
-	-

/* configure TIMER update only by counter overflow/underflow */

timer_update_source_config (TIMER0, TIMER_UPDATE_SRC_REGULAR);

函数 timer_ocpre_clear_source_config

函数timer_ocpre_clear_source_config描述见下表:

表 3-417. 函数 t timer_ocpre_clear_source_config

函数名称	timer_ocpre_clear_source_config	
函数原型	void timer_ocpre_clear_source_config (uint32_t timer_periph, uint8_t	
函数原空	ocpreclear);	
功能描述	配置外设TIMERx的OCPRE清除源选择	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx(x=0, 2)	TIMER外设选择	
	输入参数{in}	
ocpreclear	清除源	
TIMER_OCPRE_CL		
EAR_SOURCE_CL	OCPRE_CLR_INT连接到OCPRE_CLR输入	
R		
TIMER_OCPRE_CL		
EAR_SOURCE_ETI	OCPRE_CLR_INT连接到ETIF	
F		

	输出参数{out}	
	-	-
	返回值	
Ī	-	-

/* configure TIMER0 OCPRE_CLR_INT is connected to the OCPRE_CLR input */
timer_ocpre_clear_source_config(TIMER0, TIMER_OCPRE_CLEAR_SOURCE_CLR);

函数 timer_interrupt_enable

函数timer_interrupt_enable描述见下表:

表 3-418. 函数 timer interrupt enable

表 3-416. 函数 timer_interrupt_enable		
函数名称	timer_interrupt_enable	
函数原型	void timer_interrupt_enable(uint32_t timer_periph, uint32_t interrupt);	
功能描述	外设TIMERx中断使能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx	参考具体参数	
	输入参数{in}	
interrupt	中断源	
TIMER_INT_UP	更新中断,TIMERx (x=0, 2, 5, 1316)	
TIMER_INT_CH0	通道0比较/捕获中断,TIMERx(x=0, 2, 1316)	
TIMER_INT_CH1	通道1比较/捕获中断,TIMERx(x=0, 2, 14)	
TIMER_INT_CH2	通道2比较/捕获中断,TIMERx(x=0, 2)	
TIMER_INT_CH3	通道3比较/捕获中断,TIMERx(x=0, 2)	
TIMER_INT_CMT	换相更新中断, TIMERx (x=0, 1416)	
TIMER_INT_TRG	触发中断,TIMERx(x=0, 2, 14)	
TIMER_INT_BRK	中止中断,TIMERx(x=0, 1416)	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* enable the TIMER0 update interrupt */

timer_interrupt_enable (TIMER0, TIMER_INT_UP);

函数 timer_interrupt_disable

函数timer_interrupt_disable描述见下表:

表 3-419. 函数 timer_interrupt_disable

衣 3-419. 函数 timer_interrupt_disable		
函数名称	timer_interrupt_ disable	
函数原型	void timer_interrupt_ disable (uint32_t timer_periph, uint32_t interrupt);	
功能描述	外设TIMERx中断禁能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx	参考具体参数	
	输入参数{in}	
interrupt	中断源	
TIMER_INT_UP	更新中断,TIMERx (x=0, 2, 5, 1316)	
TIMER_INT_CH0	通道0比较/捕获中断,TIMERx(x=0, 2, 1316)	
TIMER_INT_CH1	通道1比较/捕获中断,TIMERx(x=0, 2, 14)	
TIMER_INT_CH2	通道2比较/捕获中断,TIMERx(x=0, 2)	
TIMER_INT_CH3	通道3比较/捕获中断,TIMERx(x=0, 2)	
TIMER_INT_CMT	换相更新中断,TIMERx (x=0, 1416)	
TIMER_INT_TRG	触发中断,TIMERx(x=0, 2, 14)	
TIMER_INT_BRK	中止中断,TIMERx(x=0, 1416)	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* disable the TIMER0 update interrupt */

timer_interrupt_disable (TIMER0, TIMER_INT_UP);

函数 timer_interrupt_flag_get

函数timer_interrupt_flag_get描述见下表:

表 3-420. 函数 timer_interrupt_flag_get

函数名称	timer_interrupt_flag_get
函数原型	FlagStatus timer_interrupt_flag_get(uint32_t timer_periph, uint32_t interrupt);
功能描述	获取外设TIMERx中断标志
先决条件	-
被调用函数	-
输入参数{in}	
timer_periph	TIMER外设

TIMERx	参考具体参数	
	输入参数{in}	
interrupt	中断源	
TIMER_INT_FLAG_	更新中断,TIMERx (x=0, 2, 5, 1316)	
UP	文 树 (下町), TIWIETXX (X=0, 2, 3, 1010)	
TIMER_INT_FLAG	通道0比较/捕获中断,TIMERx(x=0, 2, 1316)	
_CH0	過過の過去が開かい上間が上げる(X=0, 2, 1010)	
TIMER_INT_FLAG	通道1比较/捕获中断,TIMERx(x=0, 2, 14)	
_CH1	2010000 mg/ gi) 11112100(A-0, 2, 11)	
TIMER_INT_FLAG	通道2比较/捕获中断,TIMERx(x=0, 2)	
_CH2	(X = X = X = X = X = X = X = X = X = X =	
TIMER_INT_FLAG	通道3比较/捕获中断,TIMERx(x=0, 2)	
_CH3	(X 0, 1)	
TIMER_INT_FLAG	换相更新中断,TIMERx (x=0, 1416)	
_CMT	(· · · · · · · · · · · · · · · · · · ·	
TIMER_INT_FLAG	触发中断,TIMERx(x=0, 2, 14)	
_TRG	74000 1 410	
TIMER_INT_FLAG	中止中断,TIMERx(x=0, 1416)	
_BRK	「TILLYPEDI)、TIMILITA(A=0, 1410)	
	输出参数{out}	
-	-	
	返回值	
FlagStatus	SET或者RESET	

/* get TIMER0 update interrupt flag */

FlagStatus Flag_ interrupt = RESET;

Flag_interrupt = timer_interrupt_flag_get (TIMER0, TIMER_INT_FLAG_UP);

函数 timer_interrupt_flag_clear

函数timer_interrupt_flag_clear描述见下表:

表 3-421. 函数 timer_interrupt_flag_clear

函数名称	timer_interrupt_flag_clear	
函数原型	void timer_interrupt_flag_clear(uint32_t timer_periph, uint32_t interrupt);	
功能描述	清除外设TIMERx的中断标志	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx	参考具体参数	

	输入参数{in}
interrupt	中断源
TIMER_INT_FLAG_	更新中断,TIMERx (x=0, 2, 5, 1316)
UP	(x=0, 2, 0, 1010)
TIMER_INT_FLAG	通道0比较/捕获中断,TIMERx(x=0, 2, 1316)
_CH0	ALZEO CLI (X / LD)
TIMER_INT_FLAG	通道1比较/捕获中断,TIMERx(x=0, 2, 14)
_CH1	20010000 1317 1101010(N-0, 2, 11)
TIMER_INT_FLAG	通道2比较/捕获中断,TIMERx(x=0, 2)
_CH2	是是名词表示。 Tiwich(x=0, 2)
TIMER_INT_FLAG	通道3比较/捕获中断,TIMERx(x=0, 2)
_CH3	是是OUAXIII 3X 中國,TIMETX(X=0, 2)
TIMER_INT_FLAG	换相更新中断,TIMERx (x=0, 1416)
_CMT	жи <u>х. а., г го</u>
TIMER_INT_FLAG	触发中断,TIMERx(x=0, 2, 14)
_TRG	//LX/X LY19 1111/11/(X-V, 2, 11)
TIMER_INT_FLAG	中止中断,TIMERx(x=0, 1416)
_BRK	正 四
	输出参数{out}
-	-
	返回值
-	-

/* clear TIMER0 update interrupt flag */

timer_interrupt_flag_clear (TIMER0, TIMER_INT_FLAG_UP);

函数 timer_flag_get

函数timer_flag_get描述见下表:

表 3-422. 函数 timer_flag_get

函数名称	timer_flag_get
函数原型	FlagStatus timer_flag_get(uint32_t timer_periph, uint32_t flag);
功能描述	获取外设TIMERx的状态标志
先决条件	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx	参考具体参数
输入参数{in}	
flag	状态标志
TIMER_FLAG_UP	更新标志,TIMERx(x=0, 2, 5, 1316)

FlagStatus	SET或者RESET
	返回值
-	-
	输出参数{out}
0	通道3捕获溢出标志,TIMERx(x=0, 2)
TIMER_FLAG_CH3	通送2株本※山村十 TIMEDV(v O 2)
0	通道2捕获溢出标志,TIMERx(x=0, 2)
TIMER_FLAG_CH2	海港2块本类山村士 TIMEDV(v. 0. 2)
О	通道1捕获溢出标志,TIMERx(x=0, 2, 14)
TIMER_FLAG_CH1	SWALL TIMED. (CO. A.A.)
О	通道0捕获溢出标志,TIMERx(x=0, 2, 316)
TIMER_FLAG_CH0	
TIMER_FLAG_BRK	中止标志位,TIMERx(x=0, 1416)
TIMER_FLAG_TRG	触发标志,TIMERx(x=0, 2, 14)
TIMER_FLAG_CMT	通道换相更新标志,TIMERx(x=0, 1416)
TIMER_FLAG_CH3	通道3比较/捕获标志,TIMERx(x=0, 2)
TIMER_FLAG_CH2	通道2比较/捕获标志,TIMERx(x=0, 2)
TIMER_FLAG_CH1	通道1比较/捕获标志,TIMERx(x=0, 2, 14)
TIMER_FLAG_CH0	通道0比较/捕获标志,TIMERx(x=0, 2, 1316)

/* get TIMER0 update flags */

FlagStatus Flag_status = RESET;

Flag_status = timer_flag_get (TIMER0, TIMER_FLAG_UP);

函数 timer_flag_clear

函数timer_flag_clear描述见下表:

表 3-423. 函数 timer_flag_clear

	**		
函数名称	timer_flag_clear		
函数原型	void timer_flag_clear(uint32_t timer_periph, uint32_t flag);		
功能描述	清除外设TIMERx状态标志		
先决条件	-		
被调用函数	-		
timer_periph	TIMER外设		
TIMERx	参考具体参数		
	输入参数{in}		
flag	状态标志		
TIMER_FLAG_UP	更新标志,TIMERx(x=0, 2, 5, 1316)		
TIMER_FLAG_CH0	通道0比较/捕获标志,TIMERx(x=0, 2, 1316)		

通道1比较/捕获标志,TIMERx(x=0, 2, 14)		
通道2比较/捕获标志,TIMERx(x=0, 2)		
通道3比较/捕获标志,TIMERx(x=0, 2)		
通道换相更新标志,TIMERx(x=0, 1416)		
触发标志,TIMERx(x=0, 2, 14)		
中止标志位,TIMERx(x=0, 1416)		
通道0捕获溢出标志,TIMERx(x=0, 2, 1316)		
旭坦U用 尔温山怀心, □WERX(X=U, Z, T310)		
通 送4 株本送山長士 TIMED v(v 0 2 44)		
通道1捕获溢出标志,TIMERx(x=0, 2, 14)		
通道2捕获溢出标志,TIMERx(x=0, 2)		
应担Z油次価山你心, IIIVIERX(X=U, Z)		
通道3捕获溢出标志,TIMERx(x=0, 2)		
应担S油次価山你心,IIVIERX(X=U, Z)		
输出参数{out}		
返回值		
-		

/* clear TIMER0 update flags */

timer_flag_clear (TIMER0, TIMER_FLAG_UP);

函数 timer_dma_enable

函数timer_dma_enable描述见下表:

表 3-424. 函数 timer_dma_enable

农 0-424. 函数 timer_time_chable		
函数名称	timer_dma_enable	
函数原型	void timer_dma_enable(uint32_t timer_periph, uint16_t dma);	
功能描述	外设TIMERx的DMA使能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx	参考具体参数	
	输入参数{in}	
dma	DMA源	
TIMER_DMA_UPD	更新DMA请求,TIMERx(x=0, 2, 5, 1416)	
TIMER_DMA_CH0	通送0比较/kt求 DMA法书 TIMEDy(v, 0, 2, 14, 16)	
D	通道0比较/捕获 DMA请求,TIMERx(x=0, 2, 1416)	
TIMER_DMA_CH1	通道1比较/捕获 DMA请求,TIMERx(x=02, 4)	
D	应足T比较/拥获 DIMA请求,IIIVIERX(X=U∠, 4)	

TIMER_DMA_CH2	通道2比较/捕获 DMA请求,TIMERx(x=0, 2)	
TIMER_DMA_CH3	通送OLFA/持井 DMA 法书 TIMED.((c. 0. 2)	
D	通道3比较/捕获 DMA请求,TIMERx(x=0, 2)	
TIMER_DMA_CMT	th Indian Extra Times (o 44)	
D	换相DMA更新请求,TIMERx(x=0, 14)	
TIMER_DMA_TRG	ALPONA FACTOR TIMED. (1. 0. 0. 4.4)	
D	触发DMA请求使能,TIMERx(x=02, 14)	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* enable the TIMER0 update DMA */

 $timer_dma_enable\ (TIMER0,\ TIMER_DMA_UPD);$

函数 timer_dma_disable

函数timer_dma_disable描述见下表:

表 3-425. 函数 timer dma disable

农 3-425. 函数 tiller_ullia_ulsable		
函数名称	timer_dma_disable	
函数原型	void timer_dma_disable (uint32_t timer_periph, uint16_t dma);	
功能描述	外设TIMERx的DMA禁能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx	参考具体参数	
	输入参数{in}	
dma	DMA源	
TIMER_DMA_UPD	更新DMA请求,TIMERx(x=0, 2, 5, 1416)	
TIMER_DMA_CH0	通道0比较/捕获 DMA请求,TIMERx(x=0, 2, 1416)	
D	应是0记权/抽须 DWA相须,HWENX(A=0, 2, 1410)	
TIMER_DMA_CH1	通道1比较/捕获 DMA请求,TIMERx(x=02, 14)	
D	是是T记载用数 DWIA情况,TIWETA(A=02, 14)	
TIMER_DMA_CH2	通道2比较/捕获 DMA请求,TIMERx(x=0, 2)	
D	通過2回初 BWINA スト TIMETO(A=0, 2)	
TIMER_DMA_CH3	通道3比较/捕获 DMA请求,TIMERx(x=0, 2)	
D	довонахишах омилиялх, тичетхх(х−v, z)	
TIMER_DMA_CMT	换相DMA更新请求,TIMERx(x=0, 14)	
D	1人相 DW / 文が旧れて、11WETA(A=0, 14)	

TIMER_DMA_TRG D	触发DMA请求使能,TIMERx(x=02, 14)
输出参数{out}	
-	-
返回值	
-	-

/* disablethe TIMER0 update DMA */

timer_dma_disable (TIMER0, TIMER_DMA_UPD);

函数 timer_channel_dma_request_source_select

函数timer_channel_dma_request_source_select描述见下表:

表 3-426. 函数 timer_channel_dma_request_source_select

函数名称	timer_channel_dma_request_source_select
	void timer_channel_dma_request_source_select(uint32_t timer_periph,
函数原型	uint32_t dma_request);
	外设TIMERx的通道DMA请求源选择
—————————————————————————————————————	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0, 2,	TIME D. H. VILVE 4V
14,16)	TIMER外设选择
	输入参数{in}
dma_request	通道的DMA请求源选择
TIMER_DMAREQU	
EST_CHANNELEV	当通道捕获/比较事件发生时,发送通道n的DMA请求
ENT	
TIMER_DMAREQU	
EST_UPDATEEVE	当更新事件发生,发送通道n的DMA请求
NT	
	输出参数{out}
-	-
	返回值
-	-

例如:

/* TIMER0 channel DMA request of channel n is sent when channel y event occurs */

timer_channel_dma_request_source_select (TIMER0, TIMER_DMAREQUEST_CHANNELEVENT);

函数 timer_dma_transfer_config

函数timer_dma_transfer_config描述见下表:

表 3-427. 函数 timer_dma_transfer_config

函数名称	timer_dma_transfer_config
→ भ्रां, उद्धे को	void timer_dma_transfer_config(uint32_t timer_periph, uint32_t dma_baseaddr,
函数原型	uint32_t dma_lenth);
功能描述	配置外设TIMERx的DMA模式
先决条件	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0, 2,	定时器外设选择
14,16)	定 凹 奋介 以 边 往
	输入参数{in}
dma_baseaddr	DMA传输起始地址
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CTL0,TIMERx(x=0, 2,
DMATA_CTL0	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CTL1,TIMERx(x=0, 2,
DMATA_CTL1	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_SMCFG, TIMERx(x=0, 2, 14)
DMATA_SMCFG	DWM(で間)を対応性に、TWER(上の)と、「中)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_DMAINTEN,TIMERx(x=0, 2,
DMATA_DMAINTE	1416)
N	
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_INTF, TIMERx(x=0, 2,
DMATA_INTF	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_SWEVG, TIMERx(x=0, 2,
DMATA_SWEVG	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CHCTL0,TIMERx(x=0, 2,
DMATA_CHCTL0	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CHCTL1, TIMERx(x=0, 2)
DMATA_CHCTL1	
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CHCTL2, TIMERx (x=0, 2,
DMATA_CHCTL2	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CNT, TIMERx (x=0, 2,
DMATA_CNT	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_PSC, TIMERx (x=0, 2,
DMATA_PSC	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CAR, TIMERx (x=0, 2,
DMATA_CAR	1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CREP, TIMERx (x=0, 1416)

DMATA_CREP	
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_CH0CV,TIMERx (x=0, 2,
DMATA_CH0CV	1416)
TIMER_DMACFG_	DMA # \$\frac{1}{2} \tau \tau \tau \tau \tau \tau \tau \tau
DMATA_CH1CV	DMA传输起始地址: TIMER_DMACFG_DMATA_CH1CV, TIMERx(x=0, 2, 14)
TIMER_DMACFG_	DAMA (+ to ta to but by the Line DAMA CEC DAMA TA CHICCA TIMEDAMA CON
DMATA_CH2CV	DMA传输起始地址: TIMER_DMACFG_DMATA_CH2CV,TIMERx(x=0, 2)
TIMER_DMACFG_	DMA (t. th) TIMED DMACEC DMATA CURCLY TIMEDWY 0. 2)
DMATA_CH3CV	DMA传输起始地址: TIMER_DMACFG_DMATA_CH3CV,TIMERx(x=0, 2)
TIMER_DMACFG_	DMA (+ \$\delta \sim \sim \sim \sim \sim \sim \sim \sim
DMATA_CCHP	DMA传输起始地址: TIMER_DMACFG_DMATA_CCHP, TIMERx (x=0, 1416)
TIMER_DMACFG_	DMA传输起始地址: TIMER_DMACFG_DMATA_DMACFG,TIMERx (x=0, 2,
DMATA_DMACFG	1416)
	输入参数{in}
dma_lenth	DMA传输长度
TIMER_DMACFG_	
DMATC_xTRANSF	x=118,DMA传输 x 次
ER	
输出参数{out}	
-	-
	返回值
-	-

/* configure the TIMER0 DMA transfer */

timer_dma_transfer_config (TIMER0, TIMER_DMACFG_DMATA_CTL0, TIMER_DMACFG_DMATC_5TRANSFER);

函数 timer_event_software_generate

函数timer_event_software_generate描述见下表:

表 3-428. 函数 timer_event_software_generate

函数名称 timer_event_software_generate 函数原型 void timer_event_software_generate(uint32_t timer_periph, uint16_t event); 功能描述 软件产生事件 先决条件 - 被调用函数 - 输入参数{in} timer_periph TIMER外设 TIMERx 参考具体参数		
功能描述 软件产生事件 先决条件 - 被调用函数 - 输入参数{in} TIMER外设	函数名称	timer_event_software_generate
先决条件 - 被调用函数 - 输入参数{in} TIMER外设	函数原型	void timer_event_software_generate(uint32_t timer_periph, uint16_t event);
被调用函数 - 输入参数{in} timer_periph TIMER外设	功能描述	软件产生事件
输入参数{in} timer_periph TIMER外设	先决条件	-
timer_periph TIMER外设	被调用函数	-
The second secon	输入参数{in}	
TIMERx 参考具体参数	timer_periph	TIMER外设
	TIMERx	参考具体参数
输入参数{in}		
event 事件源	event	事件源

TIMER_EVENT_SR	再英事 <u></u>
C_UPG	更新事件产生,TIMERx(x=0, 2, 5, 1316)
TIMER_EVENT_SR	通送0桂基式比较更供供用 TIMEDV(v. 0. 2. 42. 46)
C_CH0G	通道0捕获或比较事件发生,TIMERx(x=0, 2, 1316)
TIMER_EVENT_SR	通送4据本式比较重 <i>件</i>
C_CH1G	通道1捕获或比较事件发生,TIMERx(x=0, 2, 14)
TIMER_EVENT_SR	通道2捕获或比较事件发生,TIMERx(x=0, 2)
C_CH2G	应坦2加狄埃比权争行及土, I IWIEKX(X=0, 2)
TIMER_EVENT_SR	通道2梯基或比较更供长件 TIMEPv(v=0.2)
C_CH3G	通道3捕获或比较事件发生,TIMERx(x=0, 2)
TIMER_EVENT_SR	通道换相更新事件发生,TIMERx(x=0, 1416)
C_CMTG	. 通色沃相文别事什及工, IIIVILIXA(X=0, 1410)
TIMER_EVENT_SR	触发事件产生,TIMERx(x=0, 2, 14)
C_TRGG	應及事件)工,ⅢIIIII(A(A=0, 2, 14)
TIMER_EVENT_SR	产生中止事件,TIMERx(x=0, 1416)
C_BRKG) 工业事件,THVIERX(X=0, 1410)
输出参数{out}	
返回值	
-	-

/* software generate update event*/

timer_event_software_generate (TIMER0, TIMER_EVENT_SRC_UPG);

函数 timer_break_struct_para_init

函数timer_break_struct_para_init描述见下表:

表 3-429. 函数 timer_break_struct_para_init

函数名称	timer_break_struct_para_init
函数原型	void timer_break_struct_para_init(timer_break_parameter_struct* breakpara);
功能描述	将TIMER中止功能参数结构体中所有参数初始化为默认值
先决条件	-
被调用函数	-
输入参数{in}	
breakpara	中止功能配置结构体,详见 <u>表3-394. 结构体</u>
Бісакрага	timer_break_parameter_struct
输出参数{out}	
-	-
返回值	
-	-

例如:

/* initialize TIMER break parameter struct with a default value */

timer_break_parameter_struct timer_breakpara;

timer_break_struct_para_init(timer_breakpara);

函数 timer_break_config

函数timer_break_config描述见下表:

表 3-430. 函数 timer_break_config

函数名称	timer_break_config	
→ Mr. 1== mil	void timer_break_config(uint32_t timer_periph, timer_break_parameter_struct*	
函数原型	breakpara);	
功能描述	配置中止功能	
先决条件	-	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx(x=0,	TIMER外设选择	
1416)	TIMER外以选择	
输入参数{in}		
breakpara	中止功能配置结构体,详见 <u>表3-394. 结构体</u>	
ыеакрага	timer_break_parameter_struct	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* configure TIMER0 break function */

timer_break_parameter_struct timer_breakpara;

timer_breakpara.runoffstate = TIMER_ROS_STATE_DISABLE;

timer_breakpara.ideloffstate = TIMER_IOS_STATE_DISABLE;

timer_breakpara.deadtime = 255;

timer_breakpara.breakpolarity = TIMER_BREAK_POLARITY_LOW;

timer_breakpara.outputautostate = TIMER_OUTAUTO_ENABLE;

timer_breakpara.protectmode = TIMER_CCHP_PROT_0;

timer_breakpara.breakstate = TIMER_BREAK_ENABLE;

timer_break_config(TIMER0,&timer_breakpara);

函数 timer_break_enable

函数timer_break_enable描述见下表:

表 3-431. 函数 timer_break_enable

函数名称	timer_break_enable	
函数原型	void timer_break_enable(uint32_t timer_periph);	
功能描述	使能TIMERx的中止功能	
先决条件	只有在TIMERx_CCHP寄存器的PROT [1:0] =00 时,才可修改	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx(x=0,	TIMER外设选择	
1416)	TIMER介收处律	
输出参数{out}		
返回值		
-		

例如:

/* enable TIMER0 break function*/

timer_break_enable (TIMER0);

函数 timer_break_disable

函数timer_break_disable描述见下表:

表 3-432. 函数 timer_break_disable

函数名称	timer_break_disable
函数原型	void timer_break_disable (uint32_t timer_periph);
功能描述	禁能TIMERx的中止功能
先决条件	只有在TIMERx_CCHP寄存器的PROT [1:0] =00 时,才可修改
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0,	TIMER外设选择
1416)	TIMER外及选择
输出参数{out}	
-	

例如:

/* disable TIMER0 break function*/

timer_break_ disable (TIMER0);

函数 timer_automatic_output_enable

函数timer_automatic_output_enable描述见下表:

表 3-433. 函数 timer_automatic_output_enable

函数名称	timer_automatic_output_enable
函数原型	void timer_automatic_output_enable(uint32_t timer_periph);
功能描述	自动输出使能
先决条件	只有在TIMERx_CCHP寄存器的PROT [1:0] =00 时,才可修改
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0,	TIMED机设体权
1416)	TIMER外设选择
输出参数{out}	
返回值	
-	-
l	

例如:

/* enable TIMER0 output automatic function */

timer_automatic_output_enable (TIMER0);

函数 timer_automatic_output_disable

函数timer_automatic_output_disable描述见下表:

表 3-434. 函数 timer automatic output disable

大 0 1011 图象 timor_datomatio_output_diodolo	
函数名称	timer_automatic_output_ disable
函数原型	void timer_automatic_output_ disable (uint32_t timer_periph);
功能描述	自动输出禁能
先决条件	只有在TIMERx_CCHP寄存器的PROT [1:0] = 00时,才可修改
被调用函数	-
输入参数{in}	
timer_periph	TIMER外设
TIMERx(x=0,	TIMED从设体权
1416)	TIMER外设选择
输出参数{out}	
-	

/* disable TIMER0 output automatic function */

timer_automatic_output_disable (TIMER0);

函数 timer_primary_output_config

函数timer_primary_output_config描述见下表:

表 3-435. 函数 timer_primary_output_config

函数名称	timer_primary_output_config
□ ※ 百刑	void timer_primary_output_config(uint32_t timer_periph, ControlStatus
函数原型	newvalue);
功能描述	所有的通道输出使能
先决条件	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx(x=0,1416)	TIMER外设选择
输入参数{in}	
newvalue	控制状态
ENABLE	使能
DISABLE	禁能
输出参数{out}	
-	-
返回值	
-	-

例如:

/* enable TIMER0 primary output function */

timer_primary_output_config (TIMER0, ENABLE);

函数 timer_channel_control_shadow_config

函数timer_channel_control_shadow_config描述见下表:

表 3-436. 函数 timer_channel_control_shadow_config

•••••••••••••••••••••••••••••••••••••••	
函数名称	timer_channel_control_shadow_config
函数原型	void timer_channel_control_shadow_config(uint32_t timer_periph,
	ControlStatus newvalue);
功能描述	通道换相控制影子配置
先决条件	-
被调用函数	-
输入参数{in}	

GD32E23x 固件库使用指南

timer_periph	TIMER外设
TIMERx(x=0,	TIMER外设选择
1416)	TIMER介权选择
	输入参数{in}
newvalue	控制状态
ENABLE	使能
DISABLE	禁能
输出参数{out}	
返回值	
-	-

例如:

/* channel capture/compare control shadow register enable */

timer_channel_control_shadow_config (TIMER0, ENABLE);

函数 timer_channel_control_shadow_update_config

函数timer_channel_control_shadow_update_config描述见下表:

表 3-437. 函数 timer_channel_control_shadow_update_config

水 5-457. 函数 timel_channel_control_shadow_update_coning	
函数名称	timer_channel_control_shadow_update_config
函数原型	void timer_channel_control_shadow_update_config(uint32_t timer_periph,
	uint8_t ccuctl);
功能描述	通道换相控制影子寄存器更新控制
先决条件	-
被调用函数	-
输入参数{in}	
timer_periph	TIMER外设
TIMERx(x=0,	TIMER外设选择
1 <i>4.</i> .16)	
输入参数{in}	
ccuctl	通道换相控制影子寄存器更新控制
TIMER_UPDATECT	CMTG位被置1时更新影子寄存器
L_CCU	
TIMER_UPDATECT	当CMTG位被置1或检测到TRIGI上升沿时,影子寄存器更新
L_CCUTRI	
输出参数{out}	
-	-
返回值	
-	

例如:

/* configure TIMER0 channel control shadow register update when CMTG bit is set */

timer_channel_control_shadow_update_config (TIMER0, TIMER_UPDATECTL_CCU);

函数 timer_channel_output_struct_para_init

函数timer_channel_output_struct_para_init描述见下表:

表 3-438. 函数 timer_channel_output_struct_para_init

函数名称	timer_channel_output_struct_para_init
函数原型	void timer_channel_output_struct_para_init(timer_oc_parameter_struct*
四数原生	ocpara);
功能描述	将TIMER通道输出参数结构体中所有参数初始化为默认值
先决条件	-
被调用函数	-
	输入参数{in}
ocpara	输出通道结构体,详见 <u>表3-395. 结构体timer_oc_parameter_struct</u> .
	输出参数{out}
-	-
	返回值
-	-

例如:

/* initialize TIMER channel output parameter struct with a default value */

timer_oc_parameter_struct timer_ocinitpara;

timer_channel_output_struct_para_init(timer_ocinitpara);

函数 timer_channel_output_config

函数timer_channel_output_config描述见下表:

表 3-439. 函数 timer_channel_output_config

函数名称	timer_channel_output_config
函数原型	void timer_channel_output_config(uint32_t timer_periph, uint16_t channel,
凶蚁原尘	timer_oc_parameter_struct* ocpara);
功能描述	外设TIMERx的通道输出配置
先决条件	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx	参考具体参数
channel	待配置通道
TIMER_CH_0	通道0,TIMERx(x=0, 2, 1316)

TIMER_CH_1	通道1,TIMERx(x=0, 2, 14)
TIMER_CH_2	通道2,TIMERx(x=0, 2)
TIMER_CH_3	通道3,TIMERx(x=0, 2)
输入参数{in}	
ocpara	输出通道结构体,详见 <u>表3-395. 结构体timer_oc_parameter_struct</u>
	输出参数{out}
-	-
	返回值
-	-

/* configure TIMER0 channel 0 output function */

timer_oc_parameter_struct timer_ocintpara;

timer_ocintpara.outputstate = TIMER_CCX_ENABLE;

timer_ocintpara.outputnstate = TIMER_CCXN_ENABLE;

timer_ocintpara.ocpolarity = TIMER_OC_POLARITY_HIGH;

timer_ocintpara.ocnpolarity = TIMER_OCN_POLARITY_HIGH;

timer_ocintpara.ocidlestate = TIMER_OC_IDLE_STATE_HIGH;

timer_ocintpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;

timer_channel_output_config(TIMER0, TIMER_CH_0, &timer_ocintpara);

函数 timer_channel_output_mode_config

函数timer_channel_output_mode_config描述见下表:

表 3-440. 函数 timer_channel_output_mode_config

函数名称	timer_channel_output_mode_config
函数原型	void timer_channel_output_mode_config(uint32_t timer_periph, uint16_t
函数原生	channel, uint16_t ocmode);
功能描述	配置外设TIMERx通道输出比较模式
先决条件	-
被调用函数	-
输入参数{in}	
timer_periph	TIMER外设
TIMERx	参考具体参数
	输入参数{in}
channel	待配置通道
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)
TIMER_CH_1	通道1,TIMERx (x=0, 2, 14)
TIMER_CH_2	通道2,TIMERx (x=0, 2)

TIMER_CH_3	通道3,TIMERx (x=0, 2)
	输入参数{in}
ocmode	通道输出比较模式
TIMER_OC_MODE _TIMING	冻结模式
TIMER_OC_MODE _ACTIVE	匹配时设置为高
TIMER_OC_MODE _INACTIVE	匹配时设置为低
TIMER_OC_MODE _TOGGLE	匹配时翻转
TIMER_OC_MODE _LOW	强制为低
TIMER_OC_MODE _HIGH	强制为高
TIMER_OC_MODE _PWM0	PWM模式0
TIMER_OC_MODE _PWM1	PWM模式1
	输出参数{out}
-	-
	返回值
-	-

/* configure TIMER0 channel PWM 0 mode */

timer_channel_output_mode_config(TIMER0, TIMER_CH_0, TIMER_OC_MODE_PWM0);

函数 timer_channel_output_pulse_value_config

函数timer_channel_output_pulse_value_config描述见下表:

表 3-441. 函数 timer_channel_output_pulse_value_config

函数名称	timer_channel_output_pulse_value_config
高型条 态	void timer_channel_output_pulse_value_config(uint32_t timer_periph, uint16_t
函数原型	channel, uint32_t pulse);
功能描述	配置外设TIMERx的通道输出比较值
先决条件	-
被调用函数	-
timer_periph	TIMER外设
TIMERx	参考具体参数
	输入参数{in}

channel	待配置通道
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)
TIMER_CH_1	通道1,TIMERx TIMERx(x=0, 2, 14)
TIMER_CH_2	通道2,TIMERx (x=0, 2)
TIMER_CH_3	通道3,TIMERx (x=0, 2)
	输入参数{in}
pulse	通道输出比较值(0~65535)
	输出参数{out}
-	-
	返回值
-	-

/* configure TIMER0 channel 0 output pulse value */

 $timer_channel_output_pulse_value_config(TIMER0,\,TIMER_CH_0,\,399);$

函数 timer_channel_output_shadow_config

函数timer_channel_output_shadow_config描述见下表:

表 3-442. 函数 timer_channel_output_shadow_config

函数名称	timer_channel_output_shadow_config
函数原型	void timer_channel_output_shadow_config(uint32_t timer_periph, uint16_t
函数原型	channel, uint16_t ocshadow);
功能描述	配置TIMERx通道输出比较影子寄存器功能
先决条件	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx	参考具体参数
	输入参数{in}
channel	待配置通道
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)
TIMER_CH_1	通道1,TIMERx (x=0, 2, 14)
TIMER_CH_2	通道2,TIMERx (x=0, 2)
TIMER_CH_3	通道3,TIMERx (x=0, 2)
	输入参数{in}
ocshadow	输出比较影子寄存器功能状态
TIMER_OC_SHAD	体化检查证证
OW_ENABLE	使能输出比较影子寄存器
TIMER_OC_SHAD	林纶松山比杭蚁乙安寿现
OW_DISABLE	禁能输出比较影子寄存器
	输出参数{out}

	-	-
返回值		
	-	-

/*configure TIMER0 channel 0 output shadow function */

timer_channel_output_shadow_config (TIMER0, TIMER_CH_0, TIMER_OC_SHADOW_ENABLE);

函数 timer_channel_output_fast_config

函数timer_channel_output_fast_config描述见下表:

表 3-443. 函数 timer_channel_output_fast_config

表 5-4-5. 函数 timer_chainer_output_last_comig		
函数名称	timer_channel_output_fast_config	
函数原型	void timer_channel_output_fast_config(uint32_t timer_periph, uint16_t channel,	
函数原空	uint16_t ocfast);	
功能描述	配置TIMERx通道输出比较快速功能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx	参考具体参数	
	输入参数{in}	
channel	待配置通道	
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)	
TIMER_CH_1	通道1,TIMERx (x=0, 2, 14)	
TIMER_CH_2	通道2,TIMERx (x=0, 2)	
TIMER_CH_3	通道3,TIMERx (x=0, 2)	
	输入参数{in}	
ocfast	通道输出比较快速功能状态	
TIMER_OC_FAST_	通道输出比较快速功能使能	
ENABLE	<u></u> 超起制出比较厌 还 切能使能	
TIMER_OC_FAST_	通道输出比较快速功能禁能	
DISABLE	世担制山 <u>比</u> 汉	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* configure TIMER0 channel 0 output fast function */

timer_channel_output_fast_config (TIMER0, TIMER_CH_0, TIMER_OC_FAST_ENABLE);

函数 timer_channel_output_clear_config

函数timer_channel_output_clear_config描述见下表:

表 3-444. 函数 timer_channel_output_clear_config

函数名称	timer_channel_output_clear_config
云 米 西 和	void timer_channel_output_clear_config(uint32_t timer_periph, uint16_t
函数原型	channel, uint16_t occlear);
功能描述	配置TIMERx的通道输出比较清0功能
先决条件	-
被调用函数	-
	输入参数{in}
timer_periph	TIMER外设
TIMERx	参考具体参数
	输入参数{in}
channel	待配置通道
TIMER_CH_0	通道0,TIMERx (x=0, 2)
TIMER_CH_1	通道1,TIMERx (x=0, 2)
TIMER_CH_2	通道2,TIMERx (x=0, 2)
TIMER_CH_3	通道3,TIMERx (x=0, 2)
	输入参数{in}
occlear	通道比较输出清0功能状态
TIMER_OC_CLEAR	通道比较输出清0功能使能
_ENABLE	迪坦比 权側山有 0 切能使能
TIMER_OC_CLEAR	通道比较输出清0功能禁能
_DISABLE	迪坦比 权側山 有0 切
	输出参数{out}
-	-
	返回值
-	-

例如:

/* configure TIMER0 channel 0 output clear function */

timer_channel_output_clear_config (TIMER0, TIMER_CH_0, TIMER_OC_CLEAR_ENABLE);

函数 timer_channel_output_polarity_config

函数timer_channel_output_polarity_config描述见下表:

表 3-445. 函数 timer_channel_output_polarity_config

		,
	函数名称	timer_channel_output_polarity_config
	函数原型	void timer_channel_output_polarity_config(uint32_t timer_periph, uint16_t
		channel, uint16_t ocpolarity);

功能描述	通道输出极性配置		
先决条件	-		
被调用函数	-		
	输入参数{in}		
timer_periph	TIMER外设		
TIMERx	参考具体参数		
	输入参数{in}		
channel	待配置通道		
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)		
TIMER_CH_1	通道1,TIMERx (x=0, 2, 14)		
TIMER_CH_2	通道2,TIMERx(x=0, 2)		
TIMER_CH_3	通道3,TIMERx (x=0, 2)		
	输入参数{in}		
ocpolarity	通道输出极性		
TIMER_OC_POLAR	通道输出极性高电平有效		
ITY_HIGH			
TIMER_OC_POLAR	通道输出极性低电平有效		
ITY_LOW			
	输出参数{out}		
-	-		
	返回值		
-	-		

/* configure TIMER0 channel 0 output polarity */

 $timer_channel_output_polarity_config \ (TIMER0, TIMER_CH_0, TIMER_OC_POLARITY_HIGH);$

函数 timer_channel_complementary_output_polarity_config

函数timer_channel_complementary_output_polarity_config描述见下表:

表 3-446. 函数 timer_channel_complementary_output_polarity_config

ре с тог. щух с	As a rear Tall was removed and the remove and the r	
函数名称	timer_channel_complementary_output_polarity_config	
函数原型	void timer_channel_complementary_output_polarity_config(uint32_t	
	timer_periph, uint16_t channel, uint16_t ocnpolarity);	
功能描述	互补通道输出极性配置	
先决条件	-	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx	参考具体参数	
输入参数{in}		

channel	待配置通道		
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)		
TIMER_CH_1	通道1,TIMERx (x=0, 2, 14)		
TIMER_CH_2	通道2,TIMERx (x=0, 2)		
TIMER_CH_3	通道2,TIMERx (x=0, 2)		
	输入参数{in}		
ocpolarity	互补通道输出极性		
TIMER_OCN_POLA	互补通道输出极性高电平有效		
RITY_HIGH	5. Y 超起制造做性同电 1 有效		
TIMER_OCN_POLA	互补通道输出极性低电平有效	专为资源处山极极优重亚专效	五头通送校山枢州低市亚右州
RITY_LOW			
输出参数{out}			
-	-		
	返回值		
-	-		

/* configure TIMER0 channel 0 complementary output polarity */

timer_channel_complementary_output_polarity_config (TIMER0, TIMER_CH_0, TIMER_OCN_POLARITY_HIGH);

函数 timer_channel_output_state_config

函数timer_channel_output_state_config描述见下表:

表 3-447. 函数 timer_channel_output_state_config

timer_channel_output_state_config		
void timer_channel_output_state_config(uint32_t timer_periph, uint16_t		
channel, uint32_t state);		
配置通道状态		
-		
-		
输入参数{in}		
TIMER外设		
参考具体参数		
输入参数{in}		
待配置通道		
通道0,TIMERx (x=0, 2, 1316)		
通道1,TIMERx (x=0, 2, 14)		
通道2,TIMERx (x=0, 2)		
通道3,TIMERx (x=0, 2)		
输入参数{in}		
通道状态		

TIMER_CCX_ENAB	通道使能	
LE	地是	
TIMER_CCX_DISA	通道禁能	
BLE	地 坦示化	
输出参数{out}		
-	-	
返回值		
-	-	

/* configure TIMER0 channel 0 enable state */

 $timer_channel_output_state_config~(TIMER0,~TIMER_CH_0,~TIMER_CCX_ENABLE);$

函数 timer_channel_complementary_output_state_config

函数timer_channel_complementary_output_state_config描述见下表:

表 3-448. 函数 timer channel complementary output state config

表 3-448. 函数 time	er_cnannel_complementary_output_state_config		
函数名称	timer_channel_complementary_output_state_config		
函数原型	void timer_channel_complementary_output_state_config(uint32_t timer_periph,		
	uint16_t channel, uint16_t ocnstate);		
功能描述	配置互补通道输出状态		
先决条件	-		
被调用函数	-		
timer_periph	TIMER外设		
TIMERx	参考具体参数		
	输入参数{in}		
channel	待配置通道		
TIMER_CH_0	通道0, <i>TIMERx (x=0, 1416)</i>		
TIMER_CH_1	通道1, <i>TIMERx (x=0)</i>		
TIMER_CH_2	通道2, <i>TIMERx (x=0)</i>		
	输入参数{in}		
state	互补通道状态		
TIMER_CCXN_ENA	互补通道使能		
BLE	五 个超起		
TIMER_CCXN_DIS	互补通道禁能		
ABLE	<u> </u>		
输出参数{out}			
-	-		
	返回值		
-	-		

/* configure TIMER0 channel 0 complementary output enable state */

timer_channel_complementary_output_state_config (TIMER0, TIMER_CH_0, TIMER_CCXN_ENABLE);

函数 timer_channel_input_struct_para_init

函数timer_channel_input_struct_para_init描述见下表:

表 3-449. 函数 timer_channel_input_struct_para_init

函数名称	timer_channel_input_struct_para_init	
函数原型	void timer_channel_input_struct_para_init(timer_ic_parameter_struct* icpara);	
功能描述	将TIMER通道输入参数结构体中所有参数初始化为默认值	
先决条件	-	
被调用函数	-	
	输入参数{in}	
icpara	通道输入结构体,详见 <u>表3-396. 结构体timer_ic_parameter_struct</u> 。	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* initialize TIMER channel input parameter struct with a default value */

timer_ic_parameter_struct timer_icinitpara;

timer_channel_input_struct_para_init(&timer_icinitpara);

函数 timer_input_capture_config

函数timer_input_capture_config描述见下表:

表 3-450. 函数 timer_input_capture_config

函数名称	timer_input_capture_config
函数原型	void timer_input_capture_config(uint32_t timer_periph, uint16_t channel,
	timer_ic_parameter_struct* icpara);
功能描述	配置TIMERx输入捕获参数
先决条件	-
被调用函数	timer_channel_input_capture_prescaler_config
输入参数{in}	
timer_periph	TIMER外设
TIMERx	参考具体参数
输入参数{in}	

channel	待配置通道		
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)		
TIMER_CH_1	通道1,TIMERx (x=0, 2, 14)		
TIMER_CH_2	通道2,TIMERx (x=0, 2)		
TIMER_CH_3	通道3,TIMERx (x=0, 2)		
	输入参数{in}		
icpara	输入捕获结构体,详见 <u>表3-396. <i>结构体timer_ic_parameter_struct</i></u> 。		
	输出参数{out}		
-	-		
	返回值		
-	-		

 $^{\prime *}$ configure TIMER0 input capture parameter $^{*\prime}$

timer_ic_parameter_struct timer_icinitpara;

timer_icinitpara.icpolarity = TIMER_IC_POLARITY_RISING;

timer_icinitpara.icselection = TIMER_IC_SELECTION_DIRECTTI;

timer_icinitpara.icprescaler = TIMER_IC_PSC_DIV1;

timer_icinitpara.icfilter = 0x0;

timer_input_capture_config(TIMER0, TIMER_CH_0, &timer_icinitpara);

函数 timer_channel_input_capture_prescaler_config

函数timer_channel_input_capture_prescaler_config描述见下表:

表 3-451. 函数 timer_channel_input_capture_prescaler_config

函数名称	timer_channel_input_capture_prescaler_config	
函数原型	void timer_channel_input_capture_prescaler_config(uint32_t timer_periph,	
	uint16_t channel, uint16_t prescaler);	
功能描述	配置TIMERx通道输入捕获预分频值	
先决条件	-	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx	参考具体参数	
输入参数{in}		
channel	待配置通道	
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)	
TIMER_CH_1	通道1,TIMERx (x=0, 2, 14)	
TIMER_CH_2	通道2,TIMERx (x=0, 2)	

TIMER_CH_3	通道3,TIMERx (x=0, 2)		
	输入参数{in}		
prescaler	通道输入捕获预分频值		
TIMER_IC_PSC_DI	不分频		
V1	小万		
TIMER_IC_PSC_DI	2分频		
V2	2		
TIMER_IC_PSC_DI	4 分频		
V4	4 刀 <i>例</i>		
TIMER_IC_PSC_DI	8分频		
V8	O 刀 <i>例</i>		
输出参数{out}			
-	-		
返回值			
-			

/* configure TIMER0 channel 0 input capture prescaler value */

timer_channel_input_capture_prescaler_config (TIMER0, TIMER_CH_0, TIMER_IC_PSC_DIV2);

函数 timer_channel_capture_value_register_read

函数timer_channel_capture_value_register_read描述见下表:

表 3-452. 函数 timer_channel_capture_value_register_read

函数名称	timer_channel_capture_value_register_read		
函数原型	uint32_t timer_channel_capture_value_register_read(uint32_t timer_periph,		
	uint16_t channel);		
功能描述	读取通道捕获值		
先决条件	-		
被调用函数	-		
输入参数{in}			
timer_periph	TIMER外设		
TIMERx	参考具体参数		
	输入参数{in}		
channel	待配置通道		
TIMER_CH_0	通道0,TIMERx (x=0, 2, 1316)		
TIMER_CH_1	通道1,TIMERx (x=0, 2, 14)		
TIMER_CH_2	通道2,TIMERx (x=0, 2)		
TIMER_CH_3	通道3,TIMERx (x=0, 2)		
	输出参数{out}		
-	-		

	返回值
uint32_t	通道输入捕获值,(0~65535)

/* read TIMER0 channel 0 capture compare register value */

uint32_t ch0_value = 0;

ch0_value = timer_channel_capture_value_register_read (TIMER0, TIMER_CH_0);

函数 timer_input_pwm_capture_config

函数timer_input_pwm_capture_config描述见下表:

表 3-453. 函数 timer_input_pwm_capture_config

函数名称	timer_input_pwm_capture_config		
函数原型	void timer_input_pwm_capture_config(uint32_t timer_periph, uint16_t channel,		
	timer_ic_parameter_struct* icpwm);		
功能描述	配置TIMERx捕获PWM输入参数		
先决条件	-		
被调用函数	timer_channel_input_capture_prescaler_config		
输入参数{in}			
timer_periph	TIMER外设		
TIMERx(x=0, 2, 14)	TIMER外设选择		
	输入参数{in}		
channel	待配置通道		
TIMER_CH_0	通道0		
TIMER_CH_1	通道1		
	输入参数{in}		
icpwm	输入捕获结构体,详见 <u>表3-396. 结构体timer_ic_parameter_struct</u>		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* configure TIMER0 input pwm capture parameter */

timer_ic_parameter_struct timer_icinitpara;

timer_icinitpara.icpolarity = TIMER_IC_POLARITY_RISING;

timer_icinitpara.icselection = TIMER_IC_SELECTION_DIRECTTI;

timer_icinitpara.icprescaler = TIMER_IC_PSC_DIV1;

 $timer_icinitpara.icfilter = 0x0;$

timer_input_pwm_capture_config (TIMER0, TIMER_CH_0, &timer_icinitpara);

函数 timer_hall_mode_config

函数timer_hall_mode_config描述见下表:

表 3-454. 函数 timer_hall_mode_config

e i i i e		
timer_hall_mode_config		
void timer_hall_mode_config(uint32_t timer_periph, uint8_t hallmode);		
配置TIMERx的HALL接口功能		
-		
-		
输入参数{in}		
TIMER外设		
TIMER外设选择		
输入参数{in}		
HALL接口功能状态		
HALL接口使能		
TALL 按口使能		
山紅上拉口林纶		
HALL接口禁能		
输出参数{out}		
-		
返回值		
-		

例如:

/* configure TIMER0 hall sensor mode */

timer_hall_mode_config (TIMER0, TIMER_HALLINTERFACE_ENABLE);

函数 timer_input_trigger_source_select

函数timer_input_trigger_source_select描述见下表:

表 3-455. 函数 timer_input_trigger_source_select

函数名称	timer_input_trigger_source_select	
函数原型	void timer_input_trigger_source_select(uint32_t timer_periph, uint32_t	
	intrigger);	
功能描述	TIMERx的输入触发源选择	
先决条件	SMC[2:0] = 000	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx(x=0, 2, 14)	TIMER外设选择	

输入参数{in}		
intrigger	待选择的触发源	
TIMER_SMCFG_T	内部触发输入0(ITI0,TIMERx(x=0, 2, 14))	
RGSEL_ITI0	內 in me 次 in 八 (i i i i i i i i i i i i i i i i i i	
TIMER_SMCFG_T	内部触发输入1(ITI1,TIMERx(x=0, 2, 14))	
RGSEL_ITI1	内 市地 久 相 八 T(ITIT, THVIE CX(X=0, 2, 14))	
TIMER_SMCFG_T	内部触发输入2(ITI2,TIMERx(x=0, 2))	
RGSEL_ITI2	內印無及抽入Z(IIIZ,IIIVIERX(X=U, Z))	
TIMER_SMCFG_T	中型無學給) 2/ITI2 TIMEDv/v_0 2 14))	
RGSEL_ITI3	内部触发输入3(ITI3,TIMERx(x=0, 2, 14))	
TIMER_SMCFG_T	Cl0的边沿标志位 (Cl0F_ED,TIMERx(x=0, 2, 14))	
RGSEL_CI0F_ED	CIO的边宿标志位(CIOF_ED,TIMERX(X=0, 2, 14))	
TIMER_SMCFG_T	滤波后的通道0输入 (CI0FE0,TIMERx(x=0, 2, 14))	
RGSEL_CI0FE0	施伙用的通道U相八 (CIOFEU,IIWENX(X=U, Z, 14))	
TIMER_SMCFG_T	滤波后的通道1输入(Cl1FE1,TIMERx(x=0, 2, 14))	
RGSEL_CI1FE1	您放用的通用相入(OHFET,HIMEKX(X=0, 2, 14))	
TIMER_SMCFG_T	滤波后的外部触发输入(ETIFP, TIMERx(x=0, 2))	
RGSEL_ETIFP	がが火/ロロリクドロP/地域火/相D/へ(ピコドア , THVIERX(X=U, Z))	
输出参数{out}		
-	-	
返回值		
-	-	

/* select TIMER0 input trigger source */

timer_input_trigger_source_select (TIMER0, TIMER_SMCFG_TRGSEL_ITI0);

函数 timer_master_output_trigger_source_select

函数timer_master_output_trigger_source_select描述见下表:

表 3-456. 函数 timer_master_output_trigger_source_select

***	10 c . c c c 12 2 c		
函数名称	timer_master_output_trigger_source_select		
函数原型	void timer_master_output_trigger_source_select(uint32_t timer_periph, uint32_t		
	outrigger);		
功能描述	选择TIMERx主模式输出触发		
先决条件	-		
被调用函数	-		
	输入参数{in}		
timer_periph	TIMER外设		
TIMERx(x=0, 2, 5,	TIMER外设选择		
14)	TIMIEK外权选择		
输入参数{in}			

outrigger	主模式输出触发
TIMER_TRI_OUT_	复位。TIMERx_SWEVG寄存器的UPG位被置1或从模式控制器产生复位触发一
SRC_RESET	次TRGO脉冲,后一种情况下,TRGO上的信号相对实际的复位会有一个延迟。
TIMER_TRI_OUT_ SRC_ENABLE	使能。此模式可用于同时启动多个定时器或控制在一段时间内使能从定时器。主模式控制器选择计数器使能信号作为触发输出TRGO。当CEN控制位被置1或者暂停模式下触发输入为高电平时,计数器使能信号被置1。在暂停模式下,计数器使能信号受控于触发输入,在触发输入和TRGO上会有一个延迟,除非选择了主/从模式。
TIMER_TRI_OUT_	更新。主模式控制器选择更新事件作为TRGO。
SRC_UPDATE	2.0/1° - 2.0/2 (12.4/3 till 2.1/2.0/13.4/11/3.1/100°)
TIMER_TRI_OUT_	捕获/比较脉冲.通道0在发生一次捕获或一次比较成功时,主模式控制器产生一个
SRC_CH0	TRGO脉冲
TIMER_TRI_OUT_ SRC_00CPRE	比较。在这种模式下主模式控制器选择O0CPRE信号被用于作为触发输出TRGO
TIMER_TRI_OUT_ SRC_01CPRE	比较。在这种模式下主模式控制器选择O1CPRE信号被用于作为触发输出TRGO
TIMER_TRI_OUT_ SRC_02CPRE	比较。在这种模式下主模式控制器选择O2CPRE信号被用于作为触发输出TRGO
TIMER_TRI_OUT_ SRC_03CPRE	比较。在这种模式下主模式控制器选择O3CPRE信号被用于作为触发输出TRGO
输出参数{out}	
-	-
	返回值
-	-

/* select TIMER0 master mode output trigger source */

 $timer_master_output_trigger_source_select~(TIMER0,~TIMER_TRI_OUT_SRC_RESET);$

函数 timer_slave_mode_select

函数timer_slave_mode_select描述见下表:

表 3-457. 函数 timer_slave_mode_select

函数名称	timer_slave_mode_select	
函数原型	void timer_slave_mode_select(uint32_t timer_periph, uint32_t slavemode);	
功能描述	TIMERx从模式配置	
先决条件	-	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx(x=0, 2, 14)	TIMER外设选择	
输入参数{in}		

slavemode	从模式
TIMER_SLAVE_MO	关闭从模式,TIMERx(x=0, 2, 14)
DE_DISABLE	大闭外模式, TIME RX(X=0 , 2, 14)
TIMER_QUAD_DE	正交译码器模式0, TIMERx(x=0, 2)
CODER_MODE0	正文件问备侠八U, TIIVIETX(X=U, 2)
TIMER_QUAD_DE	正交译码器模式1, TIMERx(x=0, 2)
CODER_MODE1	正义许问备侠八1, TIIVIETX(X=U, 2)
TIMER_QUAD_DE	正交译码器模式2, TIMERx(x=0, 2)
CODER_MODE2	正文片内研佚八Z, TIIVILITA(A=U, Z)
TIMER_SLAVE_MO	复位模式, TIMERx(x=0, 2, 14)
DE_RESTART	交世失政, TIMETA(A=0, 2, 14)
TIMER_SLAVE_MO	暂停模式, TIMERx(x=0, 2, 14)
DE_PAUSE	百万失义, TIWILITA(A=0, 2, 14)
TIMER_SLAVE_MO	事件模式, TIMERx(x=0, 2, 14)
DE_EVENT	ず川快攻, TIIVILITA(A-0, 2, 1 4)
TIMER_SLAVE_MO	外部时钟模式0, TIMERx(x=0, 2, 14)
DE_EXTERNAL0	7年時間が長期の TIMILITA(X=0, 2, 14)
	输出参数{out}
-	<u>-</u>
	返回值
-	-

/* select TIMER0 slave mode */

timer_slave_mode_select (TIMER0, TIMER_QUAD_DECODER_MODE0);

函数 timer_master_slave_mode_config

函数timer_master_slave_mode_config描述见下表:

表 3-458. 函数 timer_master_slave_mode_config

函数名称	timer_master_slave_mode_config	
函数原型	void timer_master_slave_mode_config(uint32_t timer_periph, uint8_t	
	masterslave);	
功能描述	TIMERx主从模式配置	
先决条件	-	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx(x=0, 2, 14)	TIMER外设选择	
输入参数{in}		
masterslave	主从模式使能状态	
TIMER_MASTER_S	主从模式使能	

LAVE_MODE_ENA		
BLE		
TIMER_MASTER_S		
LAVE_MODE_DISA	主从模式禁能	
BLE		
	输出参数{out}	
-	-	
返回值		
-	-	

/* configure TIMER0 master slave mode */

timer_master_slave_mode_config (TIMER0, TIMER_MASTER_SLAVE_MODE_ENABLE);

函数 timer_external_trigger_config

函数timer_external_trigger_config描述见下表:

表 3-459. 函数 timer external trigger config

次 3-433. 函数 time	er_external_trigger_config		
函数名称	timer_external_trigger_config		
函数原型	void timer_external_trigger_config(uint32_t timer_periph, uint32_t extprescaler,		
	uint32_t expolarity, uint32_t extfilter);		
功能描述	配置TIMERx外部触发输入		
先决条件	-		
被调用函数	-		
	输入参数{in}		
timer_periph	TIMER外设		
TIMERx(x=0, 2)	TIMER外设选择		
输入参数{in}			
extprescaler	外部触发预分频		
TIMER_EXT_TRI_P	不分频		
SC_OFF	イトカ 90人		
TIMER_EXT_TRI_P	2分频		
SC_DIV2	之 力 例		
TIMER_EXT_TRI_P	4 分频		
SC_DIV4	中 刀 <i>例</i> 以		
TIMER_EXT_TRI_P	8分频		
SC_DIV8	3 万 例		
输入参数{in}			
expolarity	外部触发输入极性		
TIMER_ETP_FALLI	低电平或者下降沿有效		
NG			
TIMER_ETP_RISIN	高电平或者上升沿有效		

G		
	输入参数{in}	
extfilter	外部触发滤波控制(0~15)	
输出参数{out}		
-	-	
返回值		
-	-	

/* configure TIMER0 external trigger input */

timer_external_trigger_config (TIMER0, TIMER_EXT_TRI_PSC_DIV2, TIMER_ETP_FALLING, 10);

函数 timer_quadrature_decoder_mode_config

函数timer_quadrature_decoder_mode_config描述见下表:

表 3-460. 函数 timer quadrature decoder mode config

表 3-460. 函数 timer_quadrature_decoder_mode_config			
函数名称	timer_quadrature_decoder_mode_config		
函数原型	void timer_quadrature_decoder_mode_config(uint32_t timer_periph, uint32_t		
	<pre>decomode,uint16_t ic0polarity, uint16_t ic1polarity);</pre>		
功能描述	TIMERx配置为正交译码器模式		
先决条件	-		
被调用函数	-		
	输入参数{in}		
timer_periph	TIMER外设		
TIMERx(x=0, 2)	TIMER外设选择		
	输入参数{in}		
decomode	正交译码器模式		
TIMER_QUAD_DE	担据CIOFFO的中亚。		
CODER_MODE0	根据Cl0FE0的电平,计数器在Cl1FE1的边沿向上/下计数		
TIMER_QUAD_DE	根据Cl1FE1的电平,计数器在Cl0FE0的边沿向上/下计数		
CODER_MODE1	旅游OIII ETII)电干,扩致储在OI0I E0II)是有国工/下扩致		
TIMER_QUAD_DE	根据另一个信号的输入电平,计数器在Cl0FE0和Cl1FE1的		
CODER_MODE2	边沿向上/ 下计数		
输入参数{in}			
ic0polarity	IC0极性		
TIMER_IC_POLARI	 		
TY_RISING	捕获上升边沿		
TIMER_IC_POLARI			
TY_FALLING	捕获下降边沿		
输入参数{in}			
ic1polarity	IC1极性		

TIMER_IC_POLARI	捕获上升边沿
TY_RISING	拥状工月辺石
TIMER_IC_POLARI	捕获下降边沿
TY_FALLING	加
输出参数{out}	
-	-
返回值	
-	-

/* configure TIMER0 quadrature decoder mode */

timer_quadrature_decoder_mode_config (TIMER0, TIMER_QUAD_DECODER_MODE0, TIMER_IC_POLARITY_RISING, TIMER_IC_POLARITY_RISING);

函数 timer_internal_clock_config

函数timer_internal_clock_config描述见下表:

表 3-461. 函数 timer_internal_clock_config

<u> </u>			
函数名称	timer_internal_clock_config		
函数原型	<pre>void timer_internal_clock_config(uint32_t timer_periph);</pre>		
功能描述	TIMERx配置为内部时钟模式		
先决条件	-		
被调用函数	-		
	输入参数{in}		
timer_periph	TIMER外设		
TIMERx(x=0, 2, 14)	TIMER外设选择		
输出参数{out}			
-	-		
	返回值		
-	-		

例如:

/* configure TIMER0 internal clock mode */

timer_internal_clock_config (TIMER0);

函数 timer_internal_trigger_as_external_clock_config

函数timer_internal_trigger_as_external_clock_config描述见下表:

表 3-462. 函数 timer_internal_trigger_as_external_clock_config

函数名称	timer_internal_trigger_as_external_clock_config	
函数原型	void timer_internal_trigger_as_external_clock_config(uint32_t timer_periph,	

	uint32_t intrigger);	
功能描述	配置TIMERx的内部触发为时钟源	
先决条件	-	
被调用函数	timer_input_trigger_source_select	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx(x=0, 2, 14)	TIMER外设选择	
intrigger	被选择的内部触发源	
TIMER_SMCFG_T	生权中如种40 (ITIO) 生叶色质 TIMED.(4, 0, 2, 44)	
RGSEL_ITI0	选择内部触发0 (ITI0)为时钟源,TIMERx(x=0, 2, 14)	
TIMER_SMCFG_T	生权中如 <u>种</u> 华4 /ITI4)	
RGSEL_ITI1	选择内部触发1 (ITI1)为时钟源,TIMERx(x=0, 2, 14)	
TIMER_SMCFG_T	华	
RGSEL_ITI2	选择内部触发2 (ITI2)为时钟源,TIMERx(x=0, 2)	
输出参数{out}		
-	-	
返回值		
-	-	

/* configure TIMER0 the internal trigger ITI0 as external clock input */

timer_internal_trigger_as_external_clock_config (TIMER0, TIMER_SMCFG_TRGSEL_ITI0);

函数 timer_external_trigger_as_external_clock_config

函数timer_external_trigger_as_external_clock_config描述见下表:

表 3-463. 函数 timer_external_trigger_as_external_clock_config

函数名称	timer_external_trigger_as_external_clock_config	
	void timer external trigger as external clock config(uint32 t timer periph,	
函数原型	uint32_t extrigger, uint16_t expolarity, uint32_t extfilter);	
功能描述 配置TIMERx的外部触发作为时钟源		
先决条件 -		
被调用函数		
输入参数{in}		
timer_periph	TIMER外设	
TIMERx(x=0, 2, 14)	TIMER外设选择	
输入参数{in}		
extrigger	外部触发源	
TIMER_SMCFG_T	CIO的边沿标志(CIOF_ED)	
RGSEL_CI0F_ED		
TIMER_SMCFG_T	滤波后的通道0输入(Cl0FE0)	

RGSEL_CI0FE0		
TIMER_SMCFG_T	滤波后的通道1输入(Cl1FE1)	
RGSEL_CI1FE1		
	输入参数{in}	
expolarity	外部触发源极性	
TIMER_IC_POLARI	D. 如軸华属宣山亚武老上11.近右被	
TY_RISING	外部触发源高电平或者上升沿有效	
TIMER_IC_POLARI	瓦如軸坐派压由亚肃老工阪瓜右袖	
TY_FALLING	外部触发源低电平或者下降沿有效	
TIMER_IC_POLARI	工阪机式之上八机方为	
TY_BOTH_EDGE	下降沿或者上升沿有效	
输入参数{in}		
extfilter	滤波参数(0~15)	
输出参数{out}		
-		
返回值		
-	-	

/* configure TIMER0 the external trigger CI0FE0 as external clock input */

timer_external_trigger_as_external_clock_config (TIMER0, TIMER_SMCFG_TRGSEL_Cl0FE0, TIMER_IC_POLARITY_RISING, 0);

函数 timer_external_clock_mode0_config

函数timer_external_clock_mode0_config描述见下表:

表 3-464. 函数 timer_external_clock_mode0_config

	<u> </u>	
函数名称	timer_external_clock_mode0_config	
函数原型	void timer_external_clock_mode0_config(uint32_t timer_periph, uint32_t	
	extprescaler, uint32_t expolarity, uint32_t extfilter);	
功能描述 配置TIMERx外部时钟模式0,ETI作为时钟源		
先决条件 -		
被调用函数	timer_external_trigger_config	
输入参数{in}		
timer_periph	TIMER外设	
<i>TIMERx(</i> x=0, 2)	TIMER外设选择	
输入参数{in}		
extprescaler	ETI触发源预分频值	
TIMER_EXT_TRI_P	不分频	
SC_OFF		
TIMER_EXT_TRI_P	2分频	
SC_DIV2	2 / J / が以	

TIMER_EXT_TRI_P SC_DIV4	4分频	
TIMER_EXT_TRI_P	8分频	
SC_DIV8		
	输入参数{in}	
expolarity	ETI触发源极性	
TIMER_ETP_FALLI	工队机式老低市亚方效	
NG	下降沿或者低电平有效	
TIMER_ETP_RISIN	L 11.汎式老宣由亚 <i>与协</i>	
G	上升沿或者高电平有效	
	输入参数{in}	
extfilter	ETI触发源滤波参数(0~15)	
输出参数{out}		
-	-	
	返回值	
-	-	

/* configure TIMER0 the external clock mode0 */

timer_external_clock_mode0_config (TIMER0, TIMER_EXT_TRI_PSC_DIV2, TIMER_ETP_FALLING, 0);

函数 timer_external_clock_mode1_config

函数timer_external_clock_mode1_config描述见下表:

表 3-465. 函数 timer_external_clock_mode1_config

void timer_external_clock 函数原型	external_clock_mode1_config k_mode1_config(uint32_t timer_periph, uint32_t	
函数原型	k_mode1_config(uint32_t timer_periph, uint32_t	
国数原型 extprescaler, U		
1	uint32_t expolarity, uint32_t extfilter);	
功能描述 配置TIMERx外部时钟模式1		
先决条件 -		
被调用函数 time	er_external_trigger_config	
输入参数{in}		
timer_periph	TIMER外设	
TIMERx(x=0, 2)	TIMER外设选择	
输入参数{in}		
extprescaler	ETI触发源预分频值	
TIMER_EXT_TRI_P	不公韬	
SC_OFF	不分频	
TIMER_EXT_TRI_P	2八版	
SC_DIV2	2分频	
TIMER_EXT_TRI_P	4分频	

SC_DIV4		
TIMER_EXT_TRI_P SC_DIV8	8分频	
	输入参数{in}	
expolarity	ETI触发源极性	
TIMER_ETP_FALLI NG	下降沿或者低电平有效	
TIMER_ETP_RISIN G	上升沿或者高电平有效	
	输入参数{in}	
extfilter	ETI触发源滤波参数(0~15)	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* configure TIMER0 the external clock mode1 */

timer_external_clock_mode1_config (TIMER0, TIMER_EXT_TRI_PSC_DIV2, TIMER_ETP_FALLING, 0);

函数 timer_external_clock_mode1_disable

函数timer_external_clock_mode1_disable描述见下表:

表 3-466. 函数 timer_external_clock_mode1_disable

-		
函数名称	timer_external_clock_mode1_disable	
函数原型	void timer_external_clock_mode1_disable(uint32_t timer_periph);	
功能描述	TIMERx外部时钟模式1禁能	
先决条件	-	
被调用函数	-	
timer_periph	TIMER外设	
TIMERx(x=0, 2)	TIMER外设选择	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* disable TIMER0 the external clock mode1 */

timer_external_clock_mode1_disable (TIMER0);

函数 timer_channel_remap_config

函数timer_channel_remap_config描述见下表:

表 3-467. 函数 timer_channel_remap_config

函数名称	timer_channel_remap_config	
函数原型	void timer_channel_remap_config (uint32_t timer_periph, uint32_t remap);	
功能描述	配置TIMERxt通道重映射功能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
timer_periph	TIMER外设	
TIMERx(x=13)	TIMER外设选择	
输入参数{in}		
remap	重映射功能选择	
TIMER13_CI0_RMP	通道 0 连接到 GPIO	
_GPIO	进度 U E按判 GFI O	
TIMER13_CI0_RMP	通道0连接到RTCCLK	
_RTCCLK	超超0足按判RTCCLR	
TIMER13_CI0_RMP	通道0连接到HXTAL/32	
_HXTAL_DIV32	通足U足按判IIATAL/32	
TIMER13_CI0_RMP	通道0连接到CKOUTSEL	
_CKOUTSEL	通担U足按到GNOUTSEL	
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* configure TIMER13 channel 0 input is connected to GPIO */

timer_channel_remap_config (TIMER13, TIMER13_CI0_RMP_GPIO);

函数 timer_write_chxval_register_config

函数timer_write_chxval_register_config描述见下表:

表 3-468. 函数 timer_write_chxval_register_config

函数名称	timer_write_chxval_register_config	
函数原型	void timer_write_chxval_register_config(uint32_t timer_periph, uint16_t ccsel);	
功能描述	配置TIMERx写CHxVAL选择位	
先决条件	-	
被调用函数	-	
输入参数{in}		
timer_periph	TIMER外设	

GD32E23x 固件库使用指南

TIMERx(x=0, 2, 1316)	TIMER外设选择		
ccsel	写CHxVAL寄存器选择位		
TIMER_CHVSEL_D	丁 艮/ 四勺		
ISABLE	无影响		
TIMER_CHVSEL_E	当写入捕获比较寄存器的值与寄存器当前值相等时,写入操作无效。		
NABLE	<u> </u>		
输出参数{out}			
-	-		
返回值			
-	-		

例如:

/* configure TIMER0 write CHxVAL register selection */

timer_write_chxval_register_config(TIMER0, TIMER_CHVSEL_ENABLE);

函数 timer_output_value_selection_config

函数timer_output_value_selection_config描述见下表:

表 3-469. 函数 timer_output_value_selection_config

	n_oatpat_valuo_colociion_colling		
函数名称	timer_output_value_selection_config		
函数原型	void timer_output_value_selection_config(uint32_t timer_periph, uint16_t		
	outsel);		
功能描述	配置TIMER输出值选择位		
先决条件	-		
被调用函数	-		
timer_periph	TIMER外设		
TIMERx(x=0,	TIMER外设选择		
1 <i>4</i> 16)	TIMER外权选择		
	输入参数{in}		
ccsel	输出值选择位		
TIMER_OUTSEL_D	工泉流		
ISABLE	无影响		
TIMER_OUTSEL_E	加用DOEN位 FIOS位物为O 则绘山玉效		
NABLE	如果POEN位与IOS位均为0,则输出无效。		
输出参数{out}			
-	-		
返回值			
-	-		
-	<u>返回值</u> -		

例如:

/* configure TIMER output value selection */

timer_output_value_selection_config(TIMER0, TIMER_OUTSEL_ENABLE);

3.19. **USART**

通用同步异步收发器(USART)提供了一个灵活方便的串行数据交换接口,章节<u>3.19.1</u>描述了USART的寄存器列表,章节<u>3.19.2</u>对USART库函数进行说明。

3.19.1. 外设寄存器说明

USART寄存器列表如下表所示:

表 3-470. USART 寄存器

寄存器名称	寄存器描述
USART_CTL0	控制寄存器0
USART_CTL1	控制寄存器1
USART_CTL2	控制寄存器2
USART_BAUD	波特率寄存器
USART_GP	保护时间和预分频器寄存器
USART_RT	接收超时寄存器
USART_CMD	请求寄存器
USART_STAT	状态寄存器
USART_INTC	中断标志清除寄存器
USART_RDATA	数据接收寄存器
USART_TDATA	数据发送寄存器
USART_CHC	兼容性控制寄存器
USART_RFCS	接收FIFO控制和状态寄存器

3.19.2. 外设库函数说明

USART库函数列表如下表所示:

表 3-471. USART 库函数

库函数名称	库函数描述
usart_deinit	复位外设USART
usart_baudrate_set	配置USART波特率
usart_parity_config	配置USART奇偶校验
usart_word_length_set	配置USART字长
usart_stop_bit_set	配置USART停止位
usart_enable	使能USART
usart_disable	失能USART
usart_transmit_config	USART发送配置

	OD02[20X 国门/干队/11]目
库函数名称	库函数描述
usart_receive_config	USART接收配置
usart_data_first_config	配置数据传输时低位在前或高位在前
usart_invert_config	配置USART反转功能
usart_overrun_enable	使能USART溢出禁止功能
usart_overrun_disable	失能USART溢出禁止功能
usart_oversample_config	配置USART过采样模式
usart_sample_bit_config	配置USART单次采样方式
usart_receiver_timeout_enable	使能USART接收超时
usart_receiver_timeout_disable	失能USART接收超时
usart_receiver_timeout_threshold_con fig	设置USART接收超时阈值
usart_data_transmit	USART发送数据功能
usart_data_receive	USART接收数据功能
usart_address_config	在地址掩码唤醒模式下配置USART地址
usart_address_detection_mode_confi	配置USART地址检测模式
usart_mute_mode_enable	使能USART静默模式
usart_mute_mode_disable	失能USART静默模式
usart_mute_mode_wakeup_config	配置USART静默模式唤醒方式
usart_lin_mode_enable	使能USART LIN模式
usart_lin_mode_disable	失能USART LIN模式
usart_lin_break_detection_length_con fig	配置USART LIN模式中断帧长度
usart_halfduplex_enable	使能USART半双工模式
usart_halfduplex_disable	失能USART半双工模式
usart_clock_enable	使能USART CK引脚
usart_clock_disable	失能USART CK引脚
usart_synchronous_clock_config	配置USART同步通讯模式参数
usart_guard_time_config	在USART智能卡模式下配置保护时间值
usart_smartcard_mode_enable	使能USART智能卡模式
usart_smartcard_mode_disable	失能USART智能卡模式
usart_smartcard_mode_nack_enable	在USART智能卡模式下使能NACK
usart_smartcard_mode_nack_disable	在USART智能卡模式下失能NACK
usart_smartcard_mode_early_nack_e nable	使能USART智能卡模式提前NACK
usart_smartcard_mode_early_nack_di sable	失能USART智能卡模式提前NACK
usart_smartcard_autoretry_config	配置智能卡自动重试次数
usart_block_length_config	配置智能卡T=1的接收时块的长度
usart_irda_mode_enable	使能USART串行红外编解码功能模块
usart_irda_mode_disable	失能USART串行红外编解码功能模块

库函数名称	库函数描述
usart_prescaler_config	在USART IrDA低功耗模式下配置外设时钟分频系数
usart_irda_lowpower_config	配置USART IrDA低功耗模式
usart_hardware_flow_rts_config	配置USART RTS硬件控制流
usart_hardware_flow_cts_config	配置USART CTS硬件控制流
usart_hardware_flow_coherence_conf	配置硬件流控兼容模式
ig	11.11.11.11.11.11.11.11.11.11.11.11.11.
usart_rs485_driver_enable	使能USART rs485驱动
usart_rs485_driver_disable	失能USART rs485驱动
usart_driver_assertime_config	配置USART驱动使能置位时间
usart_driver_deassertime_config	配置USART驱动使能置低时间
usart_depolarity_config	配置USART驱动使能极性模式
usart_dma_receive_config	配置USART DMA接收
usart_dma_transmit_config	配置USART DMA发送
usart_reception_error_dma_disable	USART接收错误时禁能DMA
usart_reception_error_dma_enable	USART接收错误时使能DMA
usart_wakeup_enable	使能USART唤醒
usart_wakeup_disable	失能USART唤醒
usart_wakeup_mode_config	配置USART唤醒模式
usart_receive_fifo_enable	使能接收FIFO
usart_receive_fifo_disable	失能接收FIFO
usart_receive_fifo_counter_number	读取接收FIFO计数器的值
usart_flag_get	得到STAT/RFCS寄存器中的标志
usart_flag_clear	清除USART状态
usart_interrupt_enable	使能USART中断
usart_interrupt_disable	失能USART中断
usart_command_enable	使能USART请求
usart_interrupt_flag_get	得到USART中断和标志状态
usart_interrupt_flag_clear	清除USART中断标志位
-	

枚举类型 usart_flag_enum

表 3-472. 枚举类型 usart_flag_enum

成员名称	功能描述
USART_FLAG_REA	接收使能通知标志
USART_FLAG_TEA	发送使能通知标志
USART_FLAG_WU	从深度睡眠模式唤醒标志
USART_FLAG_RWU	接收器从静默模式唤醒
USART_FLAG_SB	断开信号发送标志
USART_FLAG_AM	地址匹配标志
USART_FLAG_BSY	忙标志
USART_FLAG_EB	块结束标志
USART_FLAG_RT	接收超时标志

成员名称	功能描述
USART_FLAG_CTS	CTS电平
USART_FLAG_CTSF	CTS变化标志
USART_FLAG_LBD	LIN断开检测标志
USART_FLAG_TBE	发送数据寄存器空
USART_FLAG_TC	发送完成
USART_FLAG_RBNE	读数据缓冲区非空
USART_FLAG_IDLE	空闲线检测标志
USART_FLAG_ORERR	溢出错误
USART_FLAG_NERR	噪声错误标志
USART_FLAG_FERR	帧错误
USART_FLAG_PERR	校验错误
USART_FLAG_EPERR	校验错误超前检测标志
USART_FLAG_RFFINT	接收FIFO满中断标志
USART_FLAG_RFF	接收FIFO满标志
USART_FLAG_RFE	接收FIFO空标志

枚举类型 usart_interrupt_flag_enum

表 3-473. 枚举类型 usart_interrupt_flag_enum

成员名称	功能描述
USART_INT_FLAG_EB	块结束中断标志
USART_INT_FLAG_RT	接收超时中断标志
USART_INT_FLAG_AM	地址匹配中断标志
USART_INT_FLAG_PERR	奇偶校验错误中断标志
USART_INT_FLAG_TBE	发送寄存器空中断标志
USART_INT_FLAG_TC	发送完成中断标志
USART_INT_FLAG_RBNE	读缓冲区非空中断标志
USART_INT_FLAG_RBNE_ORE	读缓冲区非空和溢出中断标志
RR	以
USART_INT_FLAG_IDLE	空闲线检测中断标志
USART_INT_FLAG_LBD	LIN断开检测中断标志
USART_INT_FLAG_WU	从深度睡眠模式唤醒中断标志
USART_INT_FLAG_CTS	CTS中断标志
USART_INT_FLAG_ERR_NERR	噪声错误中断标志
USART_INT_FLAG_ERR_ORER	兴山供温山斯坛士
R	溢出错误中断标志
USART_INT_FLAG_ERR_FERR	帧错误中断标志
USART_INT_FLAG_RFF	接收FIFO满中断标志

枚举类型 usart_interrupt_enum

表 3-474. 枚举类型 usart_interrupt_enum

成员名称	功能描述
USART_INT_EB	块结束中断使能
USART_INT_RT	接收超时中断使能
USART_INT_AM	地址匹配中断使能
USART_INT_PERR	奇偶校验错误中断使能
USART_INT_TBE	发送寄存器空中断使能
USART_INT_TC	发送完成中断使能
USART_INT_RBNE	读缓冲区非空中断和溢出错误中断使能
USART_INT_IDLE	空闲线检测中断使能
USART_INT_LBD	LIN断开检测中断使能
USART_INT_WU	从深度睡眠模式唤醒中断使能
USART_INT_CTS	CTS中断使能
USART_INT_ERR	错误中断使能
USART_INT_RFF	接收FIFO满中断使能

枚举类型 usart_invert_enum

表 3-475. 枚举类型 usart_invert_enum

成员名称	功能描述
USART_DINV_ENABLE	数据位反转
USART_DINV_DISABLE	数据位不反转
USART_TXPIN_ENABLE	TX管脚电平反转
USART_TXPIN_DISABLE	TX管脚电平不反转
USART_RXPIN_ENABLE	RX管脚电平反转
USART_RXPIN_DISABLE	RX管脚电平不反转
USART_SWAP_ENABLE	交换TX/RX管脚
USART_SWAP_DISABLE	不交换TX/RX管脚

函数 usart_deinit

函数usart_deinit描述见下表:

表 3-476. 函数 usart_deinit

函数名称	usart_deinit
函数原型	void usart_deinit(uint32_t usart_periph);
功能描述	复位外设USARTx
先决条件	-
被调用函数	rcu_periph_reset_enable / rcu_periph_reset_disable
输入参数{in}	
usart_periph	外设USARTx
USARTx	x=0,1

输出参数{out}		
-	-	
	返回值	
-	-	

/* reset USART0 */

usart_deinit(USART0);

函数 usart_baudrate_set

函数usart_baudrate_set描述见下表:

表 3-477. 函数 usart_baudrate_set

函数名称	usart_baudrate_set		
函数原型	void usart_baudrate_set(uint32_t usart_periph, uint32_t baudval);		
功能描述	配置USART波特率		
先决条件	-		
被调用函数	rcu_clock_freq_get		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
baudval	波特率值		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* configure USART0 baud rate value */

usart_baudrate_set(USART0, 115200);

函数 usart_parity_config

函数usart_parity_config描述见下表:

表 3-478. 函数 usart_parity_config

函数名称	usart_parity_config
函数原型	void usart_parity_config(uint32_t usart_periph, uint32_t paritycfg);
功能描述	配置USART奇偶校验
先决条件	-
被调用函数	-

	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
paritycfg	配置USART奇偶校验		
USART_PM_NONE	无校验		
USART_PM_ODD	奇校验		
USART_PM_EVEN	偶校验		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* configure USART0 parity */

usart_parity_config(USART0, USART_PM_EVEN);

函数 usart_word_length_set

函数usart_word_length_set描述见下表:

表 3-479. 函数 usart_word_length_set

函数名称	usart_word_length_set		
函数原型	void usart_word_length_set(uint32_t usart_periph, uint32_t wlen);		
功能描述	配置USART字长		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
wlen	配置USART字长		
USART_WL_8BIT	8 bits		
USART_WL_9BIT	9 bits		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* configure USART0 word length */

usart_word_length_set(USART0, USART_WL_9BIT);

函数 usart_stop_bit_set

函数usart_stop_bit_set描述见下表:

表 3-480. 函数 usart_stop_bit_set

火 0 1001 			
函数名称	usart_stop_bit_set		
函数原型	void usart_stop_bit_set(uint32_t usart_periph, uint32_t stblen);		
功能描述	配置USART停止位		
先决条件	-		
被调用函数	-		
usart_periph	外设USARTx		
USARTx	x=0,1		
输入参数{in}			
stblen	配置USART停止位		
USART_STB_1BIT	1 bit		
USART_STB_0_5BI	0.5 bit		
T USART_STB_2BIT	2 bit		
USART_STB_1_5BI T	1.5 bit		
输出参数{out}			
-	-		
返回值			
-	-		

例如:

/* configure USART0 stop bit length */

usart_stop_bit_set(USART0, USART_STB_1_5BIT);

函数 usart_enable

函数usart_enable描述见下表:

表 3-481. 函数 usart_enable

函数名称	usart_enable
函数原型	void usart_enable(uint32_t usart_periph);
功能描述	使能USART
先决条件	-
被调用函数	-
输入参数{in}	
usart_periph	外设USARTx
USARTx	x=0,1

输出参数{out}		
-	-	
	返回值	
-	-	

/* enable USART0 */

usart_enable(USART0);

函数 usart_disable

函数usart_disable描述见下表:

表 3-482. 函数 usart_disable

. ре с . о	_	
函数名称	usart_disable	
函数原型	void usart_disable(uint32_t usart_periph);	
功能描述	失能USART	
先决条件	-	
被调用函数	-	
输入参数{in}		
usart_periph	外设USARTx	
USARTx	x=0,1	
	输出参数{out}	
-		
返回值		
-	-	

例如:

/* disable USART0 */

usart_disable(USART0);

函数 usart_transmit_config

函数usart_transmit_config描述见下表:

表 3-483. 函数 usart_transmit_config

函数名称	usart_transmit_config	
函数原型	void usart_transmit_config(uint32_t usart_periph, uint32_t txconfig);	
功能描述	USART发送器配置	
先决条件	-	
被调用函数	-	
输入参数{in}		
usart_periph	外设USARTx	

USARTx	x=0,1	
输入参数{in}		
txconfig	使能/失能USART发送器	
USART_TRANSMIT	使能USART发送	
_ENABLE		
USART_TRANSMIT	失能USART发送	
_DISABLE		
输出参数{out}		
-	•	
返回值		
-	•	

/* configure USART0 transmitter */

usart_transmit_config(USART0,USART_TRANSMIT_ENABLE);

函数 usart_receive_config

函数usart_receive_config描述见下表:

表 3-484. 函数 usart_receive_config

函数名称	usart_receive_config	
函数原型	void usart_receive_config(uint32_t usart_periph, uint32_t rxconfig);	
功能描述	USART接收器配置	
先决条件	-	
被调用函数	-	
输入参数{in}		
usart_periph	外设USARTx	
USARTx	x=0,1	
输入参数{in}		
rxconfig	使能/失能USART接收器	
USART_RECEIVE_	使能USART接收	
ENABLE		
USART_RECEIVE_	失能 USART 接收	
DISABLE		
输出参数{out}		
-	-	
返回值		
-	-	

例如:

/* configure USART0 receiver */

usart_receive_config(USART0, USART_RECEIVE_ENABLE);

函数 usart_data_first_config

函数usart_data_first_config描述见下表:

表 3-485. 函数 usart_data_first_config

	<u> </u>		
函数名称	usart_data_first_config		
函数原型	void usart_data_first_config(uint32_t usart_periph, uint32_t msbf);		
功能描述	配置数据传输时低位在前或高位在前		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
msbf	数据传输时低位在前/高位在前		
USART_MSBF_LS	数据传输时低位在前		
В	数指行列制的 1以位在制		
USART_MSBF_MS	数据传输时高位在前		
В	奴 婚权制的同位任刑		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* configure LSB of data first */

usart_data_first_config(USART0, USART_MSBF_LSB);

函数 usart_invert_config

函数usart_invert_config描述见下表:

表 3-486. 函数 usart_invert_config

×		
函数名称	usart_invert_config	
函数原型	void usart_invert_config(uint32_t usart_periph, usart_invert_enum invertpara);	
功能描述	配置USART反转功能	
先决条件	-	
被调用函数	-	
· 输入参数{in}		
usart_periph	外设USARTx	
USARTx	x=0,1	
	输入参数{in}	
invertpara	参考 <u>表3-475. 枚举类型usart invert enum</u>	
USART_DINV_ENA	数据位电平反转	

BLE	
USART_DINV_DIS	数据位电平不反转
ABLE	数 指世电 1
USART_TXPIN_EN	TX引脚电平反转
ABLE	1人引, 似也 1 / 父 校
USART_TXPIN_DIS	TX引脚电平不反转
ABLE	1人引牌电工小文技
USART_RXPIN_EN	RX引脚电平反转
ABLE	KA 引放电子 汉将
USART_RXPIN_DI	RX引脚电平不反转
SABLE	KA 引牌电十个文章
USART_SWAP_EN	TX和RX管脚功能被交换
ABLE	1.444人目 种切比似义换
USART_SWAP_DIS	TX和RX管脚功能不被交换
ABLE	1人和人自即为此个攸文块
输出参数{out}	
-	-
返回值	
-	-

/* configure USART0 inversion */

usart_invert_config(USART0, USART_DINV_ENABLE);

函数 usart_overrun_enable

函数usart_overrun_enable描述见下表:

表 3-487. 函数 usart_ overrun_enable

函数名称	usart_overrun_enable	
函数原型	void usart_overrun_enable (uint32_t usart_periph);	
功能描述	使能USART溢出禁止功能	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0,1	
	输出参数{out}	
-		
	返回值	
-	-	

例如:

/* enable USART0 overrun */

usart_overrun_enable (USART0);

函数 usart_overrun_disable

函数usart_overrun_disable描述见下表:

表 3-488. 函数 usart_ overrun_disable

	-	
函数名称	usart_overrun_disable	
函数原型	void usart_overrun_disable (uint32_t usart_periph);	
功能描述	失能USART溢出禁止功能	
先决条件	-	
被调用函数	-	
输入参数{in}		
usart_periph	外设USARTx	
USARTx	x=0,1	
	输出参数{out}	
-	-	
-	-	

例如:

/* disable USART0 overrun */

usart_overrun_disable (USART0);

函数 usart_oversample_config

函数usart_oversample_config描述见下表:

表 3-489. 函数 usart_oversample_config

函数名称	usart_oversample_config
函数原型	void usart_oversample_config(uint32_t usart_periph,uint32_t oversamp);
功能描述	配置USART过采样模式
先决条件	-
被调用函数	-
输入参数{in}	
usart_periph	外设USARTx
USARTx	x=0,1
	输入参数{in}
oversamp	过采样值
USART_OVSMOD_	0位计亚ゼ
8	8倍过采样
USART_OVSMOD_	16倍过采样

16	
	输出参数{out}
-	-
返回值	
-	-

/* config USART0 oversampling by 8 */

usart_oversample_config(USART0,USART_OVSMOD_8);

函数 usart_sample_bit_config

函数usart_sample_bit_config描述见下表:

表 3-490. 函数 usart_sample_bit_config

函数名称	usart_sample_bit_config		
函数原型	void usart_sample_bit_config(uint32_t usart_periph,uint32_t osb);		
功能描述	配置USART单次采样方式		
先决条件	-		
被调用函数	-		
输入参数{in}			
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
osb	单次采样方式		
USART_OSB_1BIT	1次采样方法		
USART_OSB_3BIT	3次采样方法		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* config USART0 1 bit sample mode */

 $usart_sample_bit_config(USART0, USART_OSB_1BIT);$

函数 usart_receiver_timeout_enable

函数usart_receiver_timeout_enable描述见下表:

表 3-491. 函数 usart_receiver_timeout_enable

函数名称	usart_receiver_timeout_enable
函数原型	<pre>void usart_receiver_timeout_enable(uint32_t usart_periph);</pre>

功能描述	使能USART接收超时	
先决条件	-	
被调用函数	-	
输入参数{in}		
usart_periph	外设USARTx	
USARTx	x=0	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* enable USART0 receiver timeout */

usart_receiver_timeout_enable(USART0);

函数 usart_receiver_timeout_disable

函数usart_receiver_timeout_disable描述见下表:

表 3-492. 函数 usart_receiver_timeout_disable

д с .с=. ддж.	
函数名称	usart_receiver_timeout_disable
函数原型	void usart_receiver_timeout_disable(uint32_t usart_periph);
功能描述	失能USART接收超时
先决条件	-
被调用函数	-
输入参数{in}	
usart_periph	外设USARTx
USARTx	x=0
	输出参数{out}
-	-
返回值	
-	-

例如:

/* disable USART0 receiver timeout */

usart_receiver_timeout_disable(USART0);

函数 usart_receiver_timeout_threshold_config

函数usart_receiver_timeout_threshold_config描述见下表:

表 3-493. 函数 usart_receiver_timeout_threshold_config

函数名称	usart_receiver_timeout_threshold_config
------	---

GD32E23x 固件库使用指南

函数原型	void usart_receiver_timeout_threshold_config(uint32_t usart_periph, uint32_t
四效原生	rtimeout);
功能描述	设置USART接收超时阈值
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0
	输入参数{in}
rtimeout	超时时间(0x00000000-0x00FFFFF)
	输出参数{out}
-	-
	返回值
-	-

例如:

/* set the receiver timeout threshold of USART0*/

usart_receiver_timeout_threshold_config(USART0,115200*3);

函数 usart_data_transmit

函数usart_data_transmit描述见下表:

表 3-494. 函数 usart_data_transmit

	<u>, </u>
函数名称	usart_data_transmit
函数原型	void usart_data_transmit(uint32_t usart_periph, uint32_t data);
功能描述	USART发送数据功能
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
	输入参数{in}
data	发送的数据(0-0x1FF)
	输出参数{out}
-	-
	返回值
-	-
•	

例如:

/* USART0 transmit data */

usart_data_transmit(USART0, 0xAA);

函数 usart_data_receive

函数usart_data_receive描述见下表:

表 3-495. 函数 usart_data_receive

函数名称	usart_data_receive
函数原型	void usart_data_receive(uint32_t usart_periph);
功能描述	USART接收数据功能
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
	输出参数{out}
-	-
	返回值
uint32_t	接收到的数据(0-0x1FF)

例如:

/* USART0 receive data */

uin16_t temp;

temp = usart_data_receive(USART0);

函数 usart_address_config

函数usart_address_config描述见下表:

表 3-496. 函数 usart_address_config

函数名称	usart_address_config
函数原型	void usart_address_config(uint32_t usart_periph, uint8_t addr);
功能描述	在地址掩码唤醒模式下配置USART地址
先决条件	-
被调用函数	-
	· 输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
	输入参数{in}
addr	USART地址(<i>0-0xFF</i>)
	输出参数{out}
-	-
	返回值

-

例如:

/* configure address of the USART0 */

usart_address_config(USART0, 0x00);

函数 usart_address_detection_mode_config

函数usart_address_detection_mode_config描述见下表:

表 3-497. 函数 usart_address_detection_mode_config

**	t_uuu.ses_ueteetiseus_eeting		
函数名称	usart_address_detection_mode_config		
函数原型	void usart_address_detection_mode_config(uint32_t usart_periph, uint32_t		
函数原空	addmod);		
功能描述	配置USART地址检测模式		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
addmod	地址检测模式		
USART_ADDM_4BI	4位地址检测		
T	41年7月11年11日		
USART_ADDM_FU			
LLBIT	全位地址检测		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/*configure address detection mode */

usart_address_config(USART0, USART_ADDM_4BIT);

函数 usart_mute_mode_enable

函数usart_mute_mode_enable描述见下表:

表 3-498. 函数 usart_mute_mode_enable

函数名称	usart_mute_mode_enable
函数原型	void usart_mute_mode_enable(uint32_t usart_periph);
功能描述	使能USART静默模式

先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
	输出参数{out}
-	-
	返回值
-	-

/* enable USART0 receiver in mute mode */

usart_mute_mode_enable(USART0);

函数 usart_mute_mode_disable

函数usart_mute_mode_disable描述见下表:

表 3-499. 函数 usart_mute_mode_disable

函数名称	usart_mute_mode_disable
函数原型	<pre>void usart_mute_mode_disable(uint32_t usart_periph);</pre>
功能描述	失能USART静默模式
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
-	-
	返回值
-	-

例如:

/* disable USART0 receiver in mute mode */

usart_mute_mode_disable(USART0);

函数 usart_mute_mode_wakeup_config

函数usart_mute_mode_wakeup_config描述见下表:

表 3-500. 函数 usart_mute_mode_wakeup_config

函数名称	usart_mute_mode_wakeup_config
函数原型	void usart_mute_mode_wakeup_config(uint32_t usart_periph, uint32_t
四数床至	wmethod);

功能描述	配置USART静默模式唤醒方式
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
	输入参数{in}
wmethod	两种方法用于进入或退出静默模式
USART_WM_IDLE	空闲线唤醒
USART_WM_ADDR	地址掩码唤醒
	输出参数{out}
-	-
	返回值
-	-

/* configure USART0 wakeup method in mute mode */

usart_mute_mode_wakeup_config(USART0, USART_WM_IDLE);

函数 usart_lin_mode_enable

函数usart_lin_mode_enable描述见下表:

表 3-501. 函数 usart_lin_mode_enable

тре с с с дуж и с и	
函数名称	usart_lin_mode_enable
函数原型	void usart_lin_mode_enable(uint32_t usart_periph);
功能描述	使能USART LIN模式
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0
	输出参数{out}
-	-
	返回值
-	-

例如:

/* USART0 LIN mode enable */

usart_lin_mode_enable(USART0);

函数 usart_lin_mode_disable

函数usart_lin_mode_disable描述见下表:

表 3-502. 函数 usart_lin_mode_disable

函数名称	usart_lin_mode_disable
函数原型	void usart_lin_mode_disable(uint32_t usart_periph);
功能描述	失能 USART LIN 模式
先决条件	-
被调用函数	-
	输入参数{in}
	AL VILLOADT.
usart_periph	外设USARTx
USARTx	外设USARTX x=0
	x=0
	x=0
	x=0 输出参数{out} -

例如:

/* USART0 LIN mode disable */

usart_lin_mode_disable(USART0);

函数 usart_lin_break_dection_length_config

函数usart_lin_break_dection_length_config描述见下表:

表 3-503. 函数 usart_lin_break_dection_length_config

& 3-303. 函数 usart_iiii_break_dection_lengtii_comig		
函数名称	usart_lin_break_dection_length_config	
函数原型	void usart_lin_break_dection_length_config(uint32_t usart_periph, uint32_t	
	lblen);	
功能描述	配置USART LIN模式中断帧长度	
先决条件	-	
被调用函数	-	
	·····································	
usart_periph	外设USARTx	
USARTx	x=0	
	输入参数{in}	
Iblen	LIN模式中断帧长度	
USART_LBLEN_10	断开帧长度为10 bits	
В	例月帜区度为TO DIIS	
USART_LBLEN_11	断开帧长度为11 bits	
В	例月豐 区及为II DIIS	
输出参数{out}		
-	-	

	返回值
-	-

/* configure LIN break frame length */

usart_lin_break_dection_length_config(USART0, USART_LBLEN_10B);

函数 usart_halfduplex_enable

函数usart_halfduplex_enable描述见下表:

表 3-504. 函数 usart_halfduplex_enable

函数名称	usart_halfduplex_enable
函数原型	void usart_halfduplex_enable(uint32_t usart_periph);
功能描述	使能USART半双工模式
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
	输出参数{out}
-	-
	返回值
-	-

例如:

/* enable USART0 half duplex mode*/

usart_halfduplex_enable(USART0);

函数 usart_halfduplex_disable

函数usart_halfduplex_disable描述见下表:

表 3-505. 函数 usart_halfduplex_disable

*** *** — — — — *** — — *** — — *** — — *** — **	
函数名称	usart_halfduplex_disable
函数原型	void usart_halfduplex_disable(uint32_t usart_periph);
功能描述	失能USART半双工模式
先决条件	-
被调用函数	-
输入参数{in}	
usart_periph	外设USARTx
USARTx	x=0,1
输出参数{out}	

返回值	
-	

/* disable USART0 half duplex mode*/

usart_halfduplex_disable(USART0);

函数 usart_clock_enable

函数usart_clock_enable描述见下表:

表 3-506. 函数 usart_clock_enable

函数名称	usart _clock_enable	
函数原型	void usart _clock_enable(uint32_t usart_periph);	
功能描述	使能USART CK引脚	
 先决条件	-	
被调用函数	-	
	· 输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0, 1	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* enable USART0 CK pin */

usart_synchronous_clock_enable(USART0);

函数 usart_clock_disable

函数usart_clock_disable描述见下表:

表 3-507. 函数 usart_clock_disable

- W. 5-7L	
函数名称	usart_clock_disable
函数原型	void usart_clock_disable(uint32_t usart_periph);
功能描述	失能USART CK引脚
先决条件	-
被调用函数	-
输入参数{in}	
usart_periph	外设USARTx
USARTx	x=0, 1

	输出参数{out}	
	-	-
	返回值	
Ī	-	

/* disable USART0 CK pin */

usart_clock_disable(USART0);

函数 usart_synchronous_clock_config

函数usart_synchronous_clock_config描述见下表:

表 3-508. 函数 usart_synchronous_clock_config

函数名称	usart_synchronous_clock_config
云樂居到	void usart_synchronous_clock_config(uint32_t usart_periph, uint32_t clen,
函数原型	uint32_t cph, uint32_t cpl);
功能描述	配置USART同步通讯模式参数
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
	输入参数{in}
clen	CK信号长度
USART_CLEN_NO	
NE	8位数据帧中有7个CK脉冲,9位数据帧中有8个CK脉冲
USART_CLEN_EN	8位数据帧中有8个CK脉冲,9位数据帧中有9个CK脉冲
	输入参数{in}
cph	时钟相位
USART_CPH_1CK	在首个时钟边沿采样第一个数据
USART_CPH_2CK	在第二个时钟边沿采样第一个数据
	输入参数{in}
cpl	时钟极性
USART_CPL_LOW	CK引脚不对外发送时保持为低电平
USART_CPL_HIGH	CK引脚不对外发送时保持为高电平
输出参数{out}	
-	-
	返回值
-	-

例如:

/* configure USART0 synchronous mode parameters */

 $usart_synchronous_clock_config(USART0, USART_CLEN_EN, USART_CPH_2CK, USART_CPL_HIGH);$

函数 usart_guard_time_config

函数usart_guard_time_config描述见下表:

表 3-509. 函数 usart_guard_time_config

函数名称	usart_guard_time_config	
函数原型	void usart_guard_time_config(uint32_t usart_periph,uint32_t guat);	
功能描述	在USART智能卡模式下配置保护时间值	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0	
	输入参数{in}	
guat	保护时间值(<i>0-0x000000FF</i>)	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* configure USART0 guard time value in smartcard mode */
usart_guard_time_config(USART0, 0x0000 0055);

函数 usart_smartcard_mode_enable

函数usart_smartcard_mode_enable描述见下表:

表 3-510. 函数 usart_smartcard_mode_enable

函数名称	usart_smartcard_mode_enable	
函数原型	void usart_smartcard_mode_enable(uint32_t usart_periph);	
功能描述	使能USART智能卡模式	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* USART0 smartcard mode enable */

usart_smartcard_mode_enable(USART0);

函数 usart_smartcard_mode_disable

函数usart_smartcard_mode_disable描述见下表:

表 3-511. 函数 usart_smartcard_mode_disable

函数名称	usart_smartcard_mode_disable	
函数原型	void usart_smartcard_mode_disable(uint32_t usart_periph);	
功能描述	失能USART智能卡模式	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* USART0 smartcard mode disable */

usart_smartcard_mode_disable(USART0);

函数 usart_smartcard_mode_nack_enable

函数usart_smartcard_mode_nack_enable描述见下表:

表 3-512. 函数 usart_smartcard_mode_nack_enable

函数名称	usart_smartcard_mode_nack_enable
函数原型	void usart_smartcard_mode_nack_enable(uint32_t usart_periph);
功能描述	在USART智能卡模式下使能NACK
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0
	输出参数{out}
-	-
	返回值
-	-

/* enable USART0 NACK in smartcard mode */

usart_smartcard_mode_nack_enable(USART0);

函数 usart_smartcard_mode_nack_disable

函数usart_smartcard_mode_nack_disable描述见下表:

表 3-513. 函数 usart_smartcard_mode_nack_disable

函数名称	usart_smartcard_mode_nack_disable
函数原型	void usart_smartcard_mode_nack_disable(uint32_t usart_periph);
功能描述	在USART智能卡模式下失能NACK
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0
	输出参数{out}
-	-
	返回值
-	-

例如:

/* disable USART0 NACK in smartcard mode */

usart_smartcard_mode_nack_disable(USART0);

函数 usart_smartcard_mode_early_nack_enable

函数usart_smartcard_mode_early_nack_enable描述见下表:

表 3-514. 函数 usart_smartcard_mode_early_nack_enable

次 0 01年 国家 dourt_omartourd_modo_odriy_ndok_ondolo		
函数名称	usart_smartcard_mode_early_nack_enable	
函数原型	void usart_smartcard_mode_early_nack_enable (uint32_t usart_periph);	
功能描述	使能USART智能卡模式提前NACK	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* enable USART0 early NACK in smartcard mode */
usart_smartcard_mode_early_nack_enable (USART0);

函数 usart_smartcard_mode_early_nack_disable

函数usart_smartcard_mode_early_nack_disable描述见下表:

表 3-515. 函数 usart_smartcard_mode_early_nack_disable

亚紫灯	
函数名称	usart_smartcard_mode_early_nack_disable
函数原型	void usart_smartcard_mode_early_nack_disable (uint32_t usart_periph);
功能描述	失能USART智能卡模式提前NACK
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0
	输出参数{out}
-	-
	返回值
-	-

例如:

/* disable USART0 early NACK in smartcard mode */
usart_smartcard_mode_early_nack_disable(USART0);

函数 usart_smartcard_autoretry_config

函数usart_smartcard_autoretry_config描述见下表:

表 3-516. 函数 usart_smartcard_autoretry_config

77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	No o con Tal management and a contract of the	
函数名称	usart_smartcard_autoretry_config	
函数原型	void usart_smartcard_autoretry_config(uint32_t usart_periph, uint32_t	
国 国	scrtnum);	
功能描述	配置智能卡自动重试次数	
先决条件	-	
被调用函数	-	
usart_periph	外设USARTx	
USARTx	x=0	
输入参数{in}		
scrtnum	智能卡自动重试次数(0-0x00000007)	
输出参数{out}		

-	-
返回值	

/* configure smartcard auto-retry number */

usart_smartcard_autoretry_config (USART0, 0x00000007);

函数 usart_block_length_config

函数usart_block_length_config描述见下表:

表 3-517. 函数 usart_block_length_config

	Ke and Elementical Surface and All Surface and	
函数名称	usart_block_length_config	
函数原型	void usart_block_length_config(uint32_t usart_periph, uint32_t bl);	
功能描述	配置智能卡T=1的接收时块的长度	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0	
	输入参数{in}	
bl	块长度(<i>0-0x000000FF</i>)	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* configure block length in Smartcard T=1 reception */
usart_block_length_config(USART0, 0x000000FF);

函数 usart_irda_mode_enable

函数usart_irda_mode_enable描述见下表:

表 3-518. 函数 usart irda mode enable

来でする。 国家 dodit_iidd_iiiddo_oiidolo	
函数名称	usart_irda_mode_enable
函数原型	void usart_irda_mode_enable(uint32_t usart_periph);
功能描述	使能USART串行红外编解码功能模块
先决条件	-
被调用函数	-

usart_periph	外设USARTx
USARTx	x=0
输出参数{out}	
-	-
返回值	
-	-

/* enable USART0 IrDA mode */

usart_irda_mode_enable(USART0);

函数 usart_irda_mode_disable

函数usart_irda_mode_disable描述见下表:

表 3-519. 函数 usart_irda_mode_disable

We are my manifestation and ma	
usart_irda_mode_disable	
void usart_irda_mode_disable(uint32_t usart_periph);	
失能USART串行红外编解码功能模块	
-	
-	
输入参数{in}	
外设USARTx	
x=0	
输出参数{out}	
-	
返回值	
-	

例如:

/* disable USART0 IrDA mode */

usart_irda_mode_disable(USART0);

函数 usart_prescaler_config

函数usart_prescaler_config描述见下表:

表 3-520. 函数 usart_prescaler_config

函数名称	usart_prescaler_config
函数原型	void usart_prescaler_config(uint32_t usart_periph, uint32_t psc);
功能描述	在USART IrDA低功耗模式下配置外设时钟分频系数
先决条件	-
被调用函数	-

	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0	
	输入参数{in}	
psc	时钟分频系数(0x00-0xFF)	
	输出参数{out}	
-	-	
	返回值	
-	-	

/* configure the USART0 peripheral clock prescaler in USART IrDA low-power mode */ usart_prescaler_config(USART0, 0x00);

函数 usart_irda_lowpower_config

函数usart_irda_lowpower_config描述见下表:

表 3-521. 函数 usart_irda_lowpower_config

次 3-321. 函数 usart_irua_lowpower_coning			
函数名称	usart_irda_lowpower_config		
函数原型	void usart_irda_lowpower_config(uint32_t usart_periph, uint32_t irlp);		
功能描述	配置USART IrDA低功耗模式		
先决条件	-		
被调用函数	-		
usart_periph	外设USARTx		
USARTx	x=0		
	输入参数{in}		
irlp	IrDA低功耗模式或正常模式		
USART_IRLP_LOW	低功耗模式		
USART_IRLP_NOR MAL	正常模式		
	输出参数{out}		
-	-		
返回值			

_	-

/* configure USART0 IrDA low-power */

usart_irda_lowpower_config(USART0, USART_IRLP_LOW);

函数 usart_hardware_flow_rts_config

函数usart_hardware_flow_rts_config描述见下表:

表 3-522. 函数 usart_hardware_flow_rts_config

77.	次 0 022. 四次 dodit_ndraware_now_rto_coming		
函数名称	usart_hardware_flow_rts_config		
函数原型	void usart_hardware_flow_rts_config(uint32_t usart_periph, uint32_t rtsconfig);		
功能描述	配置USART RTS硬件控制流		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
rtsconfig	使能/失能RTS		
USART_RTS_ENA	使能RTS		
BLE	文化入り		
USART_RTS_DISA	失能RTS		
BLE	人能 NT3		
输出参数{out}			
-	-		
返回值			
-	-		

例如:

/* configure USART0 hardware flow control RTS */

usart_hardware_flow_rts_config(USART0, USART_RTS_ENABLE);

函数 usart_hardware_flow_cts_config

函数usart_hardware_flow_cts_config描述见下表:

表 3-523. 函数 usart_hardware_flow_cts_config

函数名称	usart_hardware_flow_cts_config
函数原型	void usart_hardware_flow_cts_config(uint32_t usart_periph, uint32_t ctsconfig);
功能描述	配置USART CTS硬件控制流
先决条件	-

被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
ctsconfig	使能/失能CTS		
USART_CTS_ENA	使能CTS		
BLE	実形して		
USART_CTS_DISA	失能CTS		
BLE	大能UIS		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* configure USART0 hardware flow control CTS */

usart_hardware_flow_cts_config(USART0, USART_CTS_ENABLE);

函数 usart_hardware_flow_coherence_config

函数usart_hardware_flow_coherence_config描述见下表:

表 3-524. 函数 usart_hardware_flow_coherence_config

77	次 5-524. 函数 usart_nardware_now_conference_coning		
函数名称	usart_hardware_flow_coherence_config		
云 华 压 迎	void usart_hardware_flow_coherence_config(uint32_t usart_periph, uint32_t		
函数原型	hcm);		
功能描述	配置硬件流控兼容模式		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
hcm	硬件流控制兼容模式		
USART_HCM_NON	nRTS信号与USART_STAT0寄存器中RBNE位相同		
E	IIKTO信号与USAKT_STATU前行奋个KDINE位相问		
USART_HCM_EN	nRTS信号在最后一个数据位被采样后被置位		
输出参数{out}			
-	-		
返回值			
-	-		

/* configure hardware flow control coherence mode */

usart_hardware_flow_coherence_config(USART0, USART_HCM_NONE);

函数 usart_rs485_driver_enable

函数usart_rs485_driver_enable描述见下表:

表 3-525. 函数 usart_rs485_driver_enable

函数名称	usart_rs485_driver_enable		
函数原型	void usart_rs485_driver_enable (uint32_t usart_periph);		
功能描述	使能USART rs485驱动		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输出参数{out}		
-	-		
	返回值		
-	-		

例如:

/* enable USART0 RS485 driver */

usart_rs485_driver_enable(USART0);

函数 usart_rs485_driver_disable

函数usart_rs485_driver_disable描述见下表:

表 3-526. 函数 usart_rs485_driver_disable

秋 0 020. 函数 dount_10+00_differ_disable			
函数名称	usart_rs485_driver_disable		
函数原型	void usart_rs485_driver_disable(uint32_t usart_periph);		
功能描述	失能USART rs485驱动		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* disable USART0 RS485 driver */

usart_rs485_driver_disable(USART0);

函数 usart_driver_assertime_config

函数usart_driver_assertime_config描述见下表:

表 3-527. 函数 usart_driver_assertime_config

函数名称	usart_driver_assertime_config	
函数原型	void usart_driver_assertime_config(uint32_t usart_periph, uint32_t deatime);	
功能描述	配置USART驱动使能置位时间	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0,1	
	输入参数{in}	
deatime	驱动使能置位时间(<i>0-0x0000001F</i>)	
输出参数{out}		
-	-	
	返回值	
-	-	

例如:

/* set USART0 driver assertime */

usart_driver_assertime_config(USART0,0x0000001F);

函数 usart_driver_deassertime_config

函数usart_driver_deassertime_config描述见下表:

表 3-528. 函数 usart_driver_deassertime_config

函数名称	usart_driver_deassertime_config
函数原型	void usart_driver_deassertime_config(uint32_t usart_periph, uint32_t dedtime);
功能描述	配置USART驱动使能置低时间
先决条件	-
被调用函数	-
输入参数{in}	
usart_periph	外设USARTx
USARTx	x=0,1
输入参数{in}	
dedtime	驱动使能置低时间(0-0x0000001F)

输出参数{out}	
-	-
返回值	
-	-

/* set USART0 driver deassertime */

usart_driver_deassertime_config(USART0,0x0000001F);

函数 usart_depolarity_config

函数usart_depolarity_config描述见下表:

表 3-529. 函数 usart_depolarity_config

	200000 9200 9		
函数名称	usart_depolarity_config		
函数原型	void usart_depolarity_config(uint32_t usart_periph, uint32_t dep);		
功能描述	配置USART驱动使能极性模式		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
dep	驱动使能的极性选择模式		
USART_DEP_HIGH	DE信号高有效		
USART_DEP_LOW	DE信号低有效		
输出参数{out}			
-	-		
-	-		

例如:

/* configure driver enable polarity mode */

usart_driver_depolarity_config(USART0, USART_DEP_HIGH);

函数 usart_dma_receive_config

函数usart_dma_receive_config描述见下表:

表 3-530. 函数 usart_dma_receive_config

函数名称	usart_dma_receive_config
函数原型	void usart_dma_receive_config(uint32_t usart_periph, uint32_t dmacmd);
功能描述	配置USART DMA接收功能

先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
dmacmd	DMA使能/失能DMA接收功能		
USART_DENR_EN	使能DMA接收功能		
ABLE	使能DWA按权功能		
USART_DENR_DIS	失能DMA接收功能		
ABLE	大能DIVIA按权功能		
输出参数{out}			
-	-		
返回值			
-	-		

/* USART0 DMA enable for reception */

usart_dma_receive_config(USART0, USART_DENR_ENABLE);

函数 usart_dma_transmit_config

函数usart_dma_transmit_config描述见下表:

表 3-531. 函数 usart_dma_transmit_config

тре с с с	it_dina_transmit_comig
函数名称	usart_dma_transmit_config
函数原型	void usart_dma_transmit_config(uint32_t usart_periph, uint32_t dmacmd);
功能描述	配置 USART DMA发送功能
先决条件	-
被调用函数	-
	输入参数{in}
usart_periph	外设USARTx
USARTx	x=0,1
	输入参数{in}
dmacmd	使能/失能DMA发送功能
USART_DENT_EN	使能DMA发送功能
ABLE	文化 DIVIA 及应为能
USART_DENT_DIS	失能DMA发送功能
ABLE	人能 DIVIA 及应列能
输出参数{out}	
-	•
返回值	
-	-

/* USART0 DMA enable for transmission */

usart_dma_transmit_config(USART0, USART_DENT_ENABLE);

函数 usart_reception_error_dma_disable

函数usart_reception_error_dma_disable描述见下表:

表 3-532. 函数 usart_reception_error_dma_disable

	_ ·	
函数名称	usart_reception_error_dma_disable	
函数原型	void usart_reception_error_dma_disable (uint32_t usart_periph);	
功能描述	USART接收错误时失能DMA	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0,1	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* disable DMA on reception error */

usart_reception_error_dma_disable (USART0);

函数 usart_reception_error_dma_enable

函数usart_reception_error_dma_enable描述见下表:

表 3-533. 函数 usart_reception_error_dma_enable

ре с ссе. <u>—</u> , ж. иси	表 0 000. 图象 usurt_reception_error_ama_errable		
函数名称	usart_reception_error_dma_enable		
函数原型	void usart_reception_error_dma_enable(uint32_t usart_periph);		
功能描述	USART接收错误时使能DMA		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输出参数{out}		
-	-		
返回值			
-	-		

/* enable DMA on reception error */

usart_reception_error_dma_enable(USART0);

函数 usart_wakeup_enable

函数usart_reception_wakeup_enable描述见下表:

表 3-534. 函数 usart_wakeup_enable

	- '-		
函数名称	usart_wakeup_enable		
函数原型	void usart_wakeup_enable(uint32_t usart_periph);		
功能描述	使能USART唤醒		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0		
	输出参数{out}		
-	-		
返回值			
-	-		

例如:

/* USART0 wake up enable */

usart_wakeup_enable(USART0);

函数 usart_wakeup_disable

函数usart_reception_wakeup_disable描述见下表:

表 3-535. 函数 usart_wakeup_disable

те с ссе. щужие	大 0 000. 因		
函数名称	usart_wakeup_disable		
函数原型	void usart_wakeup_disable(uint32_t usart_periph);		
功能描述	失能USART唤醒		
先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0		
	输出参数{out}		
-	-		
返回值			
-	-		

/* USART0 wake up disable */

usart_wakeup_disable(USART0);

函数 usart_wakeup_mode_config

函数usart_reception_mode_config描述见下表:

表 3-536. 函数 usart_wakeup_mode_config

usart_wakeup_mode_config		
void usart_wakeup_mode_config(uint32_t usart_periph, uint32_t wum);		
配置USART唤醒模式		
-		
-		
输入参数{in}		
外设USARTx		
x=0		
输入参数{in}		
唤醒模式		
WUF在地址匹配时置位		
WOF在地址四龍四直也		
WUF在检测到起始位时置位		
VVOF在極勢到起射性的直匝		
WUF在检测到RBNE时置位		
WOF 红極侧對RDINE的直拉		
输出参数{out}		
-		
返回值		
-		

例如:

/* configure USART0 wake up mode */

usart_wakeup_mode_config(USART0, USART_WUM_ADDR);

函数 usart_receive_fifo_enable

函数usart_receive_fifo_enable描述见下表:

表 3-537. 函数 usart_receive_fifo_enable

函数名称	usart_ receive_fifo_enable
函数原型	void usart_receive_fifo_enable(uint32_t usart_periph);
功能描述	使能接收FIFO
先决条件	-

被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
	输出参数{out}		
-	-		
返回值			
-	-		

/* enable receive FIFO */

usart_receive_fifo_enable (USART0);

函数 usart_receive_fifo_disable

函数usart_receive_fifo_disable描述见下表:

表 3-538. 函数 usart_receive_fifo_disable

函数名称	usart_receive_fifo_disable	
函数原型	void usart_receive_fifo_disable(uint32_t usart_periph);	
功能描述	失能接收FIFO	
先决条件	-	
被调用函数	-	
输入参数{in}		
usart_periph	外设USARTx	
USARTx	x=0,1	
	输出参数{out}	
•	-	
返回值		
<u>-</u>	-	

例如:

/* disable receive FIFO */

usart_receive_fifo_disable(USART0);

函数 usart_receive_fifo_counter_number

函数usart_receive_fifo_counter_number描述见下表:

表 3-539. 函数 usart_receive_fifo_counter_number

函数名称	usart_receive_fifo_counter_number
函数原型	uint8_t usart_receive_fifo_counter_number(uint32_t usart_periph);
功能描述	读取接收FIFO计数器的值

先决条件	-		
被调用函数	-		
	输入参数{in}		
usart_periph	外设USARTx		
USARTx	x=0,1		
输出参数{out}			
-	-		
	返回值		
uint8_t	接收FIFO计数器的值		

/* read receive FIFO counter number */

uint8_t temp;

temp = usart_receive_fifo_counter_number(USART0);

函数 usart_flag_get

函数usart_flag_get描述见下表:

表 3-540. 函数 usart_flag_get

衣 3-540. 函数 usa		
函数名称	usart_flag_get	
函数原型	FlagStatus usart_flag_get(uint32_t usart_periph, usart_flag_enum flag);	
功能描述	获取USART STAT/CHC/RFCS寄存器标志位	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0,1	
输入参数{in}		
floor	USART标志位,参考 <u>表3-472. 枚举类型usart flag enum</u>	
flag	只能选择一个参数	
USART_FLAG_PE	校验错误标志	
RR	权逊相 医外心	
USART_FLAG_FER	帕供是技士	
R	帧错误标志	
USART_FLAG_NE	噪声错误标志	
RR		
USART_FLAG_OR	—————————————————————————————————————	
ERR	溢出错误标志	
USART_FLAG_IDL	空闲线检测标志	
E		
USART_FLAG_RB	读数据缓冲区非空标志	

NE		
USART_FLAG_TC	发送完成标志	
USART_FLAG_TBE	发送数据缓冲区空标志	
USART_FLAG_LBD	LIN断开检测标志	
USART_FLAG_CTS	CTS变化标志	
F	CIO文化标心	
USART_FLAG_CTS	CTS电平	
USART_FLAG_RT	接收超时标志	
USART_FLAG_EB	块结束标志	
USART_FLAG_BSY	忙状态标志	
USART_FLAG_AM	ADDR匹配标志	
USART_FLAG_SB	断开信号发送标识	
USART_FLAG_RW	接收器从静默模式唤醒	
U	1女1人前7八时3八侠八°大胜	
USART_FLAG_WU	从深度睡眠模式唤醒标志	
USART_FLAG_TEA	发送使能通知标志	
USART_FLAG_RE	接收使能通知标志	
Α	按权	
USART_FLAG_EPE	校验错误超前检测标志	
RR	仪短笛庆超則恒测怀志	
USART_FLAG_RFE	接收FIFO空标志	
USART_FLAG_RFF	接收FIFO满标志	
USART_FLAG_RFF	接收FIFO满中断标志	
INT	1女代III Off例 [1] 切的心心	
输出参数{out}		
-	-	
	返回值	
FlagStatus	SET或RESET	

/* get flag USART0 state */

FlagStatus status;

status = usart_flag_get(USART0,USART_FLAG_TBE);

函数 usart_flag_clear

函数usart_flag_clear描述见下表:

表 3-541. 函数 usart_flag_clear

函数名称	usart_flag_clear
函数原型	void usart_flag_clear(uint32_t usart_periph, usart_flag_enum flag);
功能描述	清除USART状态寄存器标志位

先决条件	-		
被调用函数	-		
输入参数{in}			
usart_periph	外设USARTx		
USARTx	x=0,1		
	输入参数{in}		
flag	USART标志位,参考 <u>表3-472. 枚举类型usart_flag_enum</u>		
nag	只能选择一个参数		
USART_FLAG_PE	校验错误标志		
RR	1又现 旧 灰羽心		
USART_FLAG_FER	帧错误标志		
R	双语 风仰心		
USART_FLAG_NE	噪声错误标志		
RR	*** 田 火物心		
USART_FLAG_OR	溢出错误标志		
ERR	TITE THE NY MANON.		
USART_FLAG_IDL	空闲线检测标志		
Е			
USART_FLAG_TC	发送完成标志		
USART_FLAG_LBD	LIN断开检测标志		
USART_FLAG_CTS	CTS变化标志		
F	OTO & FUNDA		
USART_FLAG_RT	接收超时标志		
USART_FLAG_EB	块结束标志		
USART_FLAG_AM	ADDR匹配标志		
USART_FLAG_WU	从深度睡眠模式唤醒标志		
USART_FLAG_EPE	校验错误超前检测标志		
RR	1人92. 归 医尾目 担 经投票公司		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* clear USART0 flag */

usart_flag_clear(USART0,USART_FLAG_TC);

函数 usart_interrupt_enable

函数usart_interrupt_enable描述见下表:

表 3-542. 函数 usart_interrupt_enable

函数名称 usart_interrupt_e

函数原型	void usart_interrupt_enable	e(uint32_t usart_periph, usart_interrupt_enum	
		interrupt);	
功能描述	使能USART中断		
先决条件		-	
被调用函数		-	
输入参数{in}			
usart_periph		外设USARTx	
USARTx	x=0,1		
	输入参数	枚{in}	
intorrunt	USART中断USART标志位,	参考 <u>表3-474. 枚举类型usart interrupt enum</u>	
interrupt		只能选择一个参数	
USART_INT_IDLE	IDLE线检测中断		
USART_INT_RBNE	读数据缓冲区非空中断和过载错误中断		
USART_INT_TC	发送完成中断		
USART_INT_TBE	发送缓冲区空中断		
USART_INT_PERR	校验错误中断		
USART_INT_AM		ADDR匹配中断	
USART_INT_RT		接收超时事件中断	
USART_INT_EB	块结束事件中断		
USART_INT_LBD	LIN断开信号检测中断		
USART_INT_ERR	错误中断		
USART_INT_CTS	CTS中断		
USART_INT_WU	从深度睡眠模式唤醒中断		
USART_INT_RFF	接收FIFO满中断		
	输出参数	({out}	
-		-	
	返回	值	
		-	

/* enable USART0 TBE interrupt */

usart_interrupt_enable(USART0, USART_INT_TBE);

函数 usart_interrupt_disable

函数usart_interrupt_disable描述见下表:

表 3-543. 函数 usart_interrupt_disable

函数名称	usart_interrupt_disable	
函数原型	void usart_interrupt_disable(uint32_t usart_periph, usart_interrupt_enum interrupt);	
功能描述	失能USART中断	
先决条件	-	

被调用函数	-		
输入参数{in}			
usart_periph	外设USARTx		
USARTx	x=0,1		
输入参数{in}			
interrupt	USART中断USART标志位,参考 <u>表3-474. 枚举类型usart_interrupt_enum</u>		
interrupt	只能选择一个参数		
USART_INT_IDLE	IDLE线检测中断		
USART_INT_RBNE	读数据缓冲区非空中断和过载错误中断		
USART_INT_TC	发送完成中断		
USART_INT_TBE	发送缓冲区空中断		
USART_INT_PERR	校验错误中断		
USART_INT_AM	ADDR匹配中断		
USART_INT_RT	接收超时事件中断		
USART_INT_EB	块结束事件中断		
USART_INT_LBD	LIN断开信号检测中断		
USART_INT_ERR	错误中断		
USART_INT_CTS	CTS中断		
USART_INT_WU	从深度睡眠模式唤醒中断		
USART_INT_RFF	接收FIFO满中断		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* disable USART0 TBE interrupt */

usart_interrupt_disable(USART0, USART_INT_TBE);

函数 usart_command_enable

函数usart_command_enable描述见下表:

表 3-544. 函数 usart_command_enable

*** · · · · · · · · · · · · · · · · · ·		
函数名称	usart_command_enable	
函数原型	void usart_command_enable(uint32_t usart_periph, uint32_t cmdtype);	
功能描述	使能USART请求	
先决条件	-	
被调用函数	-	
输入参数{in}		
usart_periph	外设USARTx	
USARTx	x=0,1	

cmdtype	请求类型		
USART_CMD_SBK	发送断开帧请求		
CMD	及达 <u>例</u> 月 製		
USART_CMD_MM	拉件		
CMD	静模式请求		
USART_CMD_RXF	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)		
CMD	接收数据清空请求		
USART_CMD_TXF	华光新根连穴注北		
CMD	发送数据清空请求		
	输出参数{out}		
-	-		
	返回值		
-	-		

/* enable USART0 command */

usart_command_enable(USART0, USART_CMD_SBKCMD);

函数 usart_interrupt_flag_get

函数usart_interrupt_flag_get描述见下表:

表 3-545. 函数 usart_interrupt_flag_get

秋 0-040. 函数 dourt_interrupt_nag_get		
函数名称	usart_interrupt_flag_get	
函数原型	FlagStatus usart_interrupt_flag_get(uint32_t usart_periph,	
	usart_interrupt_flag_enum int_flag);	
功能描述	获取USART中断标志位状态	
先决条件	-	
被调用函数	-	
	输入参数{in}	
usart_periph	外设USARTx	
USARTx	x=0,1	
输入参数{in}		
int_flag	USART中断标志,参考 <u>表3-473. 枚举类型usart interrupt flag enum</u>	
int_nag	只能选择一个参数	
USART_INT_FLAG	块结束事件中断标志	
_EB		
USART_INT_FLAG	超时事件中断标志	
_RT		
USART_INT_FLAG	ADDR匹配中断标志	
_AM		
USART_INT_FLAG	校验错误中断标志	
_PERR		

USART_INT_FLAG	发送缓冲区空中断标志
_TBE	<u> </u>
USART_INT_FLAG	发送完成中断标志
_TC	及込元成中對你心
USART_INT_FLAG	读数据缓冲区非空中断标志
_RBNE	以 数始级件区十工中则你心
USART_INT_FLAG	读数据缓冲区非空中断和溢出错误中断标志
_RBNE_ORERR	医
USART_INT_FLAG	IDLE线检测中断标志
_IDLE	IDLE线位侧中断协心
USART_INT_FLAG	LIN断开检测中断标志
_LBD	LIN的月便奶中的你心
USART_INT_FLAG	从深度睡眠模式唤醒中断标志
_WU	<u> </u>
USART_INT_FLAG	CTS中断标志
_CTS	013中間 (水心
USART_INT_FLAG	噪声错误中断标志
_ERR_NERR	***
USART_INT_FLAG	过载错误中断标志
_ERR_ORERR	过
USART_INT_FLAG	帧错误中断标志
_ERR_FERR	ツ田 大 丁 <u> </u>
USART_INT_FLAG	接收FIFO满中断标志
_RFF	按以FIF Of例 T 专门的心
	输出参数{out}
-	-
	返回值
FlagStatus	SET或RESET

/* get the USART0 interrupt flag status */

FlagStatus status;

status = usart_interrupt_flag_get(USART0, USART_INT_FLAG_RBNE);

函数 usart_interrupt_flag_clear

函数usart_interrupt_flag_clear描述见下表:

表 3-546. 函数 usart_interrupt_flag_clear

函数名称	usart_interrupt_flag_clear
函数原型	void usart_interrupt_flag_clear(uint32_t usart_periph,
四数原生	usart_interrupt_flag_enum flag);
功能描述	清除USART中断标志位状态

先决条件	
被调用函数	
10人州/万四致	
usart_periph	外设USARTx
USARTx	x=0,1
	· 输入参数{in}
	USART中断标志,参考 <u>表3-473. 枚举类型usart_interrupt_flag_enum</u>
flag	只能选择一个参数
USART_INT_FLAG	校验错误中断标志
_PERR	仅短相 医中例 协心
USART_INT_FLAG	帧错误中断标志
_ERR_FERR	TX II 以 I 可PM心
USART_INT_FLAG	噪声错误中断标志
_ERR_NERR	707 M 70. 1 31 M.C.
USART_INT_FLAG	读数据缓冲区非空中断和溢出错误中断标志
_RBNE_ORERR	
USART_INT_FLAG	过载错误中断标志
_ERR_ORERR	
USART_INT_FLAG	IDLE线检测中断标志
_IDLE USART_INT_FLAG	
_TC	发送完成中断标志
USART_INT_FLAG	
LBD	LIN断开检测中断标志
USART_INT_FLAG	
_CTS	CTS变化中断标志
USART_INT_FLAG	14 17 17 1 1 1 1 1 1 1
_RT	接收超时事件中断标志
USART_INT_FLAG	块结束事件中断标志
_EB	· · · · · · · · · · · · · · · · · · ·
USART_INT_FLAG	ADDR匹配中断标志
_AM	보다 다 되다. 다. 회사사 다
USART_INT_FLAG	从深度睡眠模式唤醒中断标志
_WU	//VE/XETHALX PV/VET 1 BILING
USART_INT_FLAG	接收FIFO满中断标志
_RFF	
I	输出参数{out}
-	-)도 더 분·
	返回值
-	<u> </u>

usart_interrupt_flag_clear(USART0, USART_INT_FLAG_TC);

3.20. WWDGT

窗口看门狗定时器(WWDGT)用来监测由软件故障导致的系统故障。章节<u>3.20.1</u>描述了WWDGT的寄存器列表,章节<u>3.20.2</u>对WWDGT库函数进行说明。

3.20.1. 外设寄存器说明

WWDGT寄存器列表如下表所示:

表 3-547. WWDGT 寄存器

寄存器名称	寄存器描述
WWDGT_CTL	控制寄存器
WWDGT_CFG	配置寄存器
WWDGT_STAT	状态寄存器

3.20.2. 外设库函数说明

WWDGT库函数列表如下表所示:

表 3-548. WWDGT 库函数

库函数名称	库函数说明
wwdgt_deinit	将WWDGT寄存器重设为缺省值
wwdgt_enable	使能WWDGT
wwdgt_counter_update	设置WWDGT计数器更新值
wwdgt_config	设置WWDGT计数器值、窗口值和预分频值
wwdgt_interrupt_enable	使能WWDGT提前唤醒中断
wwdgt_flag_get	检查WWDGT提前唤醒中断标志位是否置位
wwdgt_flag_clear	清除WWDGT提前唤醒中断标志位状态

函数 wwdgt_deinit

函数wwdgt_deinit描述见下表:

表 3-549. 函数 wwdgt_deinit

函数名称	wwdgt_deinit	
函数原型	void wwdgt_deinit(void);	
功能描述	将WWDGT寄存器重设为缺省值	
先决条件	-	
被调用函数	-	
	输入参数{in}	
-	-	
输出参数{out}		

-	-
返回值	
-	

/* reset the WWDGT configuration */

wwdgt_deinit ();

函数 wwdgt_enable

函数wwdgt_enable描述见下表:

表 3-550. 函数 wwdgt enable

水 o ooo. 四次 mindgi_ondoio		
函数名称	wwdgt_enable	
函数原型	void wwdgt_enable (void);	
功能描述	使能WWDGT	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
返回值		
-	-	

例如:

/* start the WWDGT counter */

wwdgt_enable ();

函数 wwdgt_counter_update

函数wwdgt_counter_update描述见下表:

表 3-551. 函数 wwdgt counter update

Me oo HW Ai-Too mure. Tahanas	
函数名称	wwdgt_counter_update
函数原型	void wwdgt_counter_update(uint16_t counter_value);
功能描述	设置WWDGT计数器更新值
先决条件	-
被调用函数	-
counter_value	计数器值,数值范围为0x00000000 - 0x0000007F
输出参数{out}	
-	-

	返回值
-	-

/* update WWDGT counter to 0x7F */

wwdgt_counter_update(127);

函数 wwdgt_config

函数wwdgt_config描述见下表:

表 3-552. 函数 wwdgt_config

函数名称	wwdgt_config	
函数原型	void wwdgt_config(uint16_t counter, uint16_t window, uint32_t prescaler);	
	设置WWDGT计数器值、窗口值和预分频值	
功能描述	反直WWDGTII	
<u> </u>	-	
被调用函数	-	
	输入参数{in}	
counter	定时器计数值,数值范围0x00000000 - 0x0000007F	
	输入参数{in}	
window	窗口值,数值范围0x00000000 - 0x0000007F	
	输入参数{in}	
prescaler	WWDGT预分频值	
WWDGT_CFG_PSC	MAND OT 1 W HILLEY / DOLLY (1999) //	
_DIV1	WWDGT计数器时钟为(PCLK/4096)/1	
WWDGT_CFG_PSC		
_DIV2	WWDGT计数器时钟为(PCLK/4096)/2	
WWDGT_CFG_PSC		
_DIV4	WWDGT计数器时钟为(PCLK/4096)/4	
WWDGT_CFG_PSC		
 _DIV8	WWDGT计数器时钟为(PCLK/4096)/8	
輸出参数{out}		
_	- Ind rri ~ W (~ ~ .)	
_		
	Return value	
-	•	

例如:

/* confiure WWDGT counter value to 0x7F, window value to 0x50, prescaler divider value to 8 * /

wwdgt_config(127, 80, WWDGT_CFG_PSC_DIV8);

函数 wwdgt_interrupt_enable

函数wwdgt_interrupt_enable描述见下表:

表 3-553. 函数 wwdgt_interrupt_enable

函数名称	wwdgt_interrupt_enable	
函数原型	void wwdgt_interrupt_enable(void);	
功能描述	使能WWDGT提前唤醒中断	
先决条件	-	
被调用函数	-	
输入参数{in}		
-	-	
	输出参数{out}	
-	-	
	返回值	
-	-	

例如:

/* enable early wakeup interrupt of WWDGT */

wwdgt_interrupt_enable ();

函数 wwdgt_flag_get

函数wwdgt_flag_get描述见下表:

表 3-554. 函数 wwdgt_flag_get

函数名称	wwdgt_flag_get		
函数原型	FlagStatus wwdgt_flag_get(void);		
功能描述	检查WWDGT提前唤醒中断标志位是否置位		
先决条件	-		
被调用函数	-		
输入参数{in}			
-	-		
输出参数{out}			
-	-		
返回值			
FlagStatus	SET or RESET		

例如:

/* test if the counter value update has reached the 0x40 */

FlagStatus status;

status = wwdgt_flag_get ();

if(status == RESET)

函数 wwdgt_flag_clear

函数wwdgt_flag_clear描述见下表:

表 3-555. 函数 wwdgt_flag_clear

函数名称	wwdgt_flag_clear		
函数原型	void wwdgt_flag_clear(void);		
功能描述	清除WWDGT提前唤醒中断标志位状态		
先决条件	-		
被调用函数	-		
输入参数{in}			
-	-		
输出参数{out}			
-	-		
返回值			
-	-		

例如:

/* clear early wakeup interrupt state of WWDGT */

wwdgt_flag_clear();

4. 版本历史

表 4-1. 版本历史

版本号.	说明	日期
1.0	初稿发布	2020年12月7日
1.1	 SPI 章节一致性更新; IZC 章节一致性更新; RCU 章节一致性更新。 	2022年6月8日
1.2	1. <u>FMC</u> 章节更新 ob_write_protection_enable 函数	2023年7月13日

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.