

## Comparison



#### **Priority Queue ADT**

- A priority queue (PQ) stores
   a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the PriorityQueue ADT
  - insert(e) inserts an entry e
  - removeMin()removes the entry with smallest key

- Additional methods
  - min(), size(), empty()
- Applications:
  - Standby flyers
  - Auctions
  - Stock market

#### PQ Sorting

- We use a priority queue
  - Insert the elements with a series of insert operations
  - Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
  - Unsorted sequence using selection sort: O(n²) time
  - Sorted sequence using insertion sort: O(n²) time
- Can we do better?

```
Algorithm PQ-Sort(S, C)
    Input sequence S, comparator C
     for the elements of S
     Output sequence S sorted in
     increasing order according to C
    P \leftarrow priority queue with
         comparator C
     while \neg S.empty ()
         e \leftarrow S.front(); S.eraseFront()
         P.insert (e, \emptyset)
    while \neg P.empty()
         e \leftarrow P.removeMin()
         S.insertBack(e)
```

#### Two Paradigms of PQ Sorting

(8,9)

#### PQ via selection sort PQ via insertion sort

|         |     | List L          | Priority Queue P |
|---------|-----|-----------------|------------------|
| Input   |     | (7,4,8,2,5,3,9) | ()               |
| Phase 1 | (a) | (4,8,2,5,3,9)   | (7)              |
|         | (b) | (8,2,5,3,9)     | (7,4)            |
|         | :   | :               | :                |
|         | (g) | ()              | (7,4,8,2,5,3,9)  |
| Phase 2 | (a) | (2)             | (7,4,8,5,3,9)    |
|         | (b) | (2,3)           | (7,4,8,5,9)      |
|         | (c) | (2,3,4)         | (7,8,5,9)        |
|         | (d) | (2,3,4,5)       | (7,8,9)          |
| I       |     | /               | />               |

|         |     | List L          | Priority Queue P |
|---------|-----|-----------------|------------------|
| Input   |     | (7,4,8,2,5,3,9) | ()               |
| Phase 1 | (a) | (4,8,2,5,3,9)   | (7)              |
|         | (b) | (8,2,5,3,9)     | (4,7)            |
|         | (c) | (2,5,3,9)       | (4,7,8)          |
|         | (d) | (5,3,9)         | (2,4,7,8)        |
|         | (e) | (3,9)           | (2,4,5,7,8)      |
|         | (f) | (9)             | (2,3,4,5,7,8)    |
|         | (g) | ()              | (2,3,4,5,7,8,9)  |
| Phase 2 | (a) | (2)             | (3,4,5,7,8,9)    |
|         | (b) | (2,3)           | (4,5,7,8,9)      |
|         | :   | :               | :                |
|         | (g) | (2,3,4,5,7,8,9) | ()               |

**Figure 8.1:** Execution of selection-sort on list L = (7,4,8,2,5,3,9).

(2,3,4,5,7)

(2,3,4,5,7,8)(2,3,4,5,7,8,9)

Time complexity

(e)

| Operation      | Unsorted List | Sorted List |
|----------------|---------------|-------------|
| size, empty    | O(1)          | O(1)        |
| insert         | O(1)          | O(n)        |
| min, removeMin | O(n)          | O(1)        |

#### Heaps

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
- Heap order: for every internal node v other than the root,
   key(v) ≥ key(parent(v))
- Complete binary tree: let h be the height of the heap
  - for i = 0, ..., h-1, there are  $2^i$  nodes of depth i
  - at depth h-1, the internal nodes are to the left of the external nodes

 The last node of a heap is the rightmost node of maximum depth



#### Height of a Heap

- Theorem: A heap storing n keys has height  $O(\log n)$  Proof: (we apply the complete binary tree property)
  - Let h be the height of a heap storing n keys
  - There are  $2^i$  keys at depth i = 0, ..., h 1 and at least one key at depth  $h \rightarrow n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1 = 2^h \rightarrow h \le \log n$

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{h-1} + 1 \le n \le 2^{0} + 2^{1} + 2^{2} + \dots + 2^{h}$$

$$\Rightarrow 2^{h} \le n \le 2^{h+1} - 1$$

$$\Rightarrow \log_{2}(n+1) - 1 \le h \le \log_{2}(n)$$

Quiz!

depth keys



## Heaps and Priority Queues

- We can use a heap to implement a priority queue
- □ We store a (key, element) item at each internal node
- We keep track of the position of the last node



#### Insertion into a Heap

- Three steps to insert an item of key k to the heap:
  - Find the insertion node z
     (the new last node)
  - Store k at z
  - Restore the heap-order property (discussed next)





#### Upheap

- After insertion, the heap-order property may be violated
- ullet Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- ullet Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- $\square$  Since a heap has height  $O(\log n)$ , upheap runs in  $O(\log n)$  time





#### Upheap: More Example

Quiz!



#### Removal from a Heap (§ 7.3.3)

- Three steps to remove the minimum from a heap:
  - Replace the root key with the key of the last node w
  - Remove w
  - Restore the heap-order property (discussed next)





#### Downheap

- ullet After replacing the root key with the key k of the last node, the heap-order property may be violated
- floor Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- floor Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- □ Since a heap has height  $O(\log n)$ , downheap runs in  $O(\log n)$  time



| Operation   | Time        |
|-------------|-------------|
| size, empty | O(1)        |
| min         | O(1)        |
| insert      | $O(\log n)$ |
| removeMin   | $O(\log n)$ |



#### Downheap: More Example

Quiz!



#### Summary of Basic Principle

- For both "insertion" and "remove min"
  - Keep heap as complete binary tree
  - Restore heap order

#### Quiz

- Draw the min-heap tree after each operations:
  - 1. insert 7
  - 2. insert 4
  - 3. insert 1
  - 4. insert 5
  - 5. delete-min
  - 6. insert 9
  - 7. insert 2
  - 8. insert 3
  - 9. delete-min
  - 10. delete-min

#### Locating the Node to Insert

- □ For linked list based implementation of trees, the inserted node can be found by traversing a path of  $O(\log n)$  nodes
  - Go up until a left child or the root is reached
  - If a left child is reached, go to the right child
  - Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal



This is easy for vector-based heaps!

#### **Heap Sort**

- Consider a priority
   queue with n items
   implemented by a heap
  - the space used is O(n)
  - methods insert and removeMin take O(log n) time
  - methods size, empty,
     and min take time O(1)
     time



- Heap-sort
  - Sort a sequence of n
     elements in O(n log n) time
     using a heap-based PQ
  - Much faster than quadratic sorting algorithms, such as insertion-sort and selectionsort

#### Vector-based Heap Implementation

- □ We can represent a heap with n keys by means of a vector of length n + 1
- $\Box$  For the node at index i
  - the left child is at index 2i
  - the right child is at index 2i + 1
- Links between nodes are not explicitly stored
- The cell of at index 0 is not used
- Operation insert corresponds to inserting at index n+1
- Operation removeMin corresponds to removing at index 1
- Yields in-place heap-sort





#### In-place Heap Sort

(e)

Quiz!

Sorted

Sorted

Sorted

Sorted

(1)



In heap

3 7 2 1 4

Stage 2: output

Trick: It's easier to draw the tree first!

Heaps

Max heap

#### Quiz

How to perform in-place heap sort for a given vector x=[3 8 5 1 9]

#### Heap Sort Demo

- Interactive demo of heap sort
  - http://algoviz.org/OpenDSA/Books/OpenDS A/html/Heapsort.html#

## How to Merge Two Heaps

- Given two heaps and a key k
- Create a new heap
   with the root node
   storing k and the two
   heaps as subtrees
- Perform downheap to restore the heap-order property







# Bottom-up Heap Construction

- Goal: Construct a heap
   of n keys using a
   bottom-up method with
   O(n) complexity
- □ In phase *i*, pairs of heaps with  $2^i-1$  keys are merged into heaps with  $2^{i+1}-1$  keys



## Example



# Example (contd.)



# Example (contd.)





# Example (end)







- Cost of combining two heaps = Length of the path from the new root to its inorder successor (which goes first right and then repeatedly goes left until the bottom of the heap)
- The path to inorder successor may differ from the downheap path.
- Each node is traversed by at most two such paths  $\rightarrow$  Total number of nodes of the paths is  $2(2^h-1)-h = O(n) \rightarrow$  Bottom-up heap construction runs in O(n) time

  No. of internal nodes =  $2^{h-1}$

Faster than n successive insertions and speeds up the first phase of heap-sort



#### Analysis via Math



d=0

d=1

d=2

d=h-1

d=h

$$T = 2^{h-1} \cdot 1 + 2^{h-2} \cdot 2 + 2^{h-3} \cdot 3 + \dots + 2^{0} \cdot h$$

$$2T = 2^{h} \cdot 1 + 2^{h-1} \cdot 2 + 2^{h-2} \cdot 3 + \dots + 2^{1} \cdot h$$

$$2T - T = 2^{h} + 2^{h-1} + 2^{h-2} + \dots + 2^{1} - h$$

$$T = 2(2^{h} - 1) - h = 2^{h+1} - 2 - h = n - \log_{2}(n+1)$$

$$T \Rightarrow O(n)$$

 $n=2^{h+1}-1$  $h=log_2(n+1)-1$ 

#### Adaptable Priority Queues

- New functions for
  - Delete an arbitrary node
    - Replace with the last one in heap
    - Bubble down
  - Update the key of an arbitrary node
    - Bubble down or up depending on
      - Difference in keys
      - Min or max heaps

#### Practical App of Priority Queues

- Transactions in stock market
- Event-driven simulation
  - Molecular dynamics simulation

#### **Exercises**

- □ How to build a heap in O(n)?
  - 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14
- How many different possible insertion sequences can be use to generate the following min heap?