

PLY-THICKNESS EFFECT ON FIBER-MATRIX INTERFACE CRACK GROWTH

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden

² EEIGM & IJL, Université de Lorraine, Nancy, France

9th International Conference on Composite Testing and Model Identification Luleå (SE), May 27-29, 2019

Outline

- Initiation of Transverse Cracks in Thin-plies
- Modeling the Fiber-Matrix Interface Crack
- Debond Energy Release Rate
- Conclusions

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion
The Thin-ply "Advantage" Micromechanics of Initiation Objective of the Study

INITIATION OF TRANSVERSE CRACKS IN THIN-PLIES

Initiation of Transverse Cracks in Thin-plies | Modeling the Fiber-Matrix Interface Crack | Debond Energy Release Rate | Conclusions |
The Thin-ply "Advantage" | Micromechanics of Initiation | Objective of the Study

The Thin-ply "Advantage"

Bailev et al., P. Rov. Soc. A-Math. Phy. 366 (1727), 1979.

Cugnoni et al., Compos. Sci. Technol. 168, 2018, p. 467-477.

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions
The Thin-ply "Advantage" Micromechanics of Initiation Objective of the Study

Microscopic Observations

Left:

front view of $[0, 90_2]_S$, visual inspection.

Center:

edge view of [0, 90]_S, optical microscope.

Right:

edge view of $[0, 90]_S$, optical microscope.

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion The Thin-ply "Advantage" Micromechanics of Initiation Objective of the Study

Micromechanics of Initiation

Stage 1: isolated debonds

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion The Thin-ply "Advantage" Micromechanics of Initiation Objective of the Study

Micromechanics of Initiation

Stage 2: consecutive debonds

Initiation of Transverse Cracks in Thin-plies | Modeling the Fiber-Matrix Interface Crack | Debond Energy Release Rate | Conclusions |
The Thin-ply "Advantage" | Micromechanics of Initiation | Objective of the Study

Micromechanics of Initiation

Stage 3: kinking

Initiation of Transverse Cracks in Thin-plies | Modeling the Fiber-Matrix Interface Crack | Debond Energy Release Rate | Conclusions |
The Thin-ply "Advantage" | Micromechanics of Initiation | Objective of the Study

Micromechanics of Initiation

Stage 4: coalescence

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion The Thin-ply "Advantage" Micromechanics of Initiation Objective of the Study

Objective of the Study

Stage 2: consecutive debonds

- → Effect of debond-fiber interaction?
- Effect of debond-debond interaction?
- → Effect of relative debond position on consecutive fibers: same or opposite sides?

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

MODELING THE FIBER-MATRIX INTERFACE CRACK

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Geometry

- L, W >> t
- \rightarrow L, $W \rightarrow \infty$
 - Square packing
- \rightarrow $L_d >> \Delta \theta_d$
- → 2D RVE

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions
Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Representative Volume Elements

$$n \times k$$
 – coupling

 $n \times k$ – asymm

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Equivalent Boundary Conditions

$$u_z(x,h)=u_z^{\nu}$$

Anti-symmetric Coupling

$$u_z(x,h) - u_z(0,h) = -(u_z(-x,h) - u_z(0,h))$$

 $u_x(x,h) = -u_x(-x,h)$

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Assumptions

$$R_f = 1 \ [\mu m] \quad L = \frac{R_f}{2} \sqrt{\frac{\pi}{V_f}}$$

Material	E	ν
glass fiber	70.0	0.2
ероху	3.5	0.4

- Linear elastic, homogeneous and isotropic materials
- → Plane strain
- → Frictionless contact interaction
- → Symmetric w.r.t. x-axis
- → Coupling of x-displacements on left and right side (repeating unit cell)
- → Applied uniaxial tensile strain $\bar{\varepsilon}_x = 1\%$
- → $V_f = 60\%$

Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Solution

in Ω_f , Ω_m :

$$\begin{split} &\frac{\partial^{2}\varepsilon_{xx}}{\partial z^{2}} + \frac{\partial^{2}\varepsilon_{zz}}{\partial x^{2}} = \frac{\partial^{2}\gamma_{zx}}{\partial x \partial z} & \text{ for } 0^{\circ} \leq \alpha \leq \Delta\theta: \\ &\varepsilon_{y} = \gamma_{xy} = \gamma_{yz} = 0 & \text{ for } \Delta\theta \leq \alpha \leq 180^{\circ}: \\ &\frac{\partial\sigma_{xx}}{\partial x} + \frac{\partial\tau_{zx}}{\partial z} = 0 & \overrightarrow{w}_{i}(R_{f}, \alpha) - \overrightarrow{w}_{f}(R_{f}, \alpha) = 0 \\ &\frac{\partial\tau_{zx}}{\partial x} + \frac{\partial\sigma_{zz}}{\partial z} = 0 & \sigma_{ij} = E_{ijkl}\varepsilon_{kl} \\ &\frac{\partial\sigma_{zx}}{\partial x} + \frac{\partial\sigma_{zz}}{\partial z} = 0 & +BC \end{split}$$

$$\sigma_{yy} = \nu \left(\sigma_{xx} + \sigma_{zz} \right)$$

$$\overrightarrow{U}_{m}(R_{f}, \alpha) - \overrightarrow{U}_{f}(R_{f}, \alpha) = 0$$

$$\sigma_{ij} = E_{ijkl}\varepsilon_{kl}$$

$$+ BC$$

Oscillating singularity

$$\begin{split} \sigma &\sim r^{-\frac{1}{2}} \sin \left(\varepsilon \log r\right), \quad V_f \to 0 \\ \varepsilon &= \frac{1}{2\pi} \log \left(\frac{1-\beta}{1+\beta}\right) \\ \beta &= \frac{\mu_2 \left(\kappa_1 - 1\right) - \mu_1 \left(\kappa_2 - 1\right)}{\mu_2 \left(\kappa_1 + 1\right) + \mu_1 \left(\kappa_2 + 1\right)} \end{split}$$

- Finite Element Method (FEM) in AbaqusTM
- 2nd order shape functions
- 6-nodes triangles & 8-nodes quadrilaterals
- regular mesh of quadrilaterals at the crack tip:
 - AR ~ 1
 - $-\delta = 0.05^{\circ}$

≥ Debond Energy Release Rate

Strain Magnification

Strain Magnification

 $11\times 1-asymm$

Strain Magnification

-

Strain Magnification

Crack Shielding

-

Crack Shielding

Crack Shielding

-

Crack Shielding

-

-

Consecutive Debonds: Mode I

Consecutive Debonds: Mode II

Consecutive Debonds: Mode II

Consecutive Debonds: Mode II

Non-Consecutive Debonds

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusions

Initiation of Transverse Cracks in Thin-plies Modeling the Fiber-Matrix Interface Crack Debond Energy Release Rate Conclusion

Conclusions

- → Debond-debond interaction in the through-the-thickness direction is extremely localized: with only a couple of undamaged fibers in between, no effect can be seen!
- → For debonds on consecutive vertically-aligned fibers, G_I is higher and contact zone onset delayed if debonds are on the same side of their respective fiber.
- → No significant difference in G_{II} observed, except in the range $80^{\circ} 100^{\circ}$.
- → In the range 80° 100°, G_{II} is higher when debonds are located on opposite sides of consecutive vertically-aligned fibers.

