國立臺北大學 112 學年度第 National Taipei University

2 學期期 中 考試試卷 Student's Answer Paper

是/Department & Grade 电機系2年級 科哥/Course Title 工程數學

 $A_{\bullet}(a)$ 寫出非週期輸入信號 $x(t) = A\Pi \left(\frac{t + \tau/2}{\tau} \right)$ 的傳利茶轉換,(b)畫出X(f)振幅頻譜及相位頻譜,(c)透過反傳利

葉轉換算出一階 RC 低通滤波器的脈衝響應 h(t),(d)求輸出響應 y(t),(e)畫出 x(t)及 y(t)波形。(f)如果輸入

 $f(t) = 10\cos 3t , \text{ whith } z(t) \text{ is for? (30\%)}$ $A \pi(\frac{t-\frac{1}{L}}{L}) = A(x(\frac{1}{L}) - u(\frac{t-\frac{1}{L}}{L}))$ $A \int_{0}^{\infty} \chi(t) \cdot e^{-jut} dt$ $= A\left(\int_{\frac{1}{L}}^{\infty} e^{-jut} dt - \int_{\frac{t}{L}}^{\infty} e^{-jut} dc\right)$ $= A\left(-\int_{\frac{1}{L}}^{\infty} e^{-jut} dc\right) - \left(\cos \frac{tu}{L} - \lambda \sin \frac{tu}{L}\right)$

(b) f(t) = locor3t $Z(t) = \frac{h(t)}{fwc} + f(t)$

5. (a). $F=4\cos\phi a_r+6ra_\phi+9a_z$,以直角座標表示F?,(b)畫出球座標 (r,θ,ϕ) 示意圖,寫出 (r,θ,ϕ) V.S. (x,y,z)

關係式,(c) 球座標 $\overrightarrow{a_0}dS$ 如何由 $\overrightarrow{a_r}$, $\overrightarrow{a_s}$ 之單位長度來計算?(d) $\overrightarrow{A}=2\overrightarrow{a_x}-6\overrightarrow{a_y}-3\overrightarrow{a_z}$, $\overrightarrow{B}=4\overrightarrow{a_x}+3\overrightarrow{a_y}-\overrightarrow{a_z}$,垂直A及

B的單位向量為?(20%)

(A) = (4005\$, 61,9)

(d) A=(z,-6,-7) B(4,3,-1)

$$\frac{|\overrightarrow{A} \times \overrightarrow{B}|}{|\overrightarrow{A} \times \overrightarrow{B}|} = \frac{(15, -10, 20)}{3}$$

$$= \left(\frac{3}{7}, \frac{7}{7}, \frac{7}{7}\right)$$

 $\phi(x,y) = \int \frac{1}{(x+y)^2} dx = \int \frac{1}{(x+y)^3} dy$ $= -\frac{1}{x+y} + C$

w sydx

 $\overrightarrow{A} = (a_{r}, a_{\theta}, a_{\theta})$

 $(\frac{1}{12} \frac{1}{12} \frac{1}{12}) \quad \nabla_{A} \vec{A} = (\frac{1}{12} \frac{1}{12} \frac{1}{12}$

= 0 #

+7 B

