Modelling and Control of WEDM Process for Cutting of Si-Ingots

Akshay Khadse

Roll No. 153079011

Guide: Prof. S. V. Kulkarni

October 24, 2017

Table of contents

- 1. Introduction
- 2. Literature Survey
- 3. Power Supply Design
- 4. Converter Modelling
- 5. Controller Design
- 6. Practical Considerations
- 7. Summary and Future Plan

Introduction

Introduction

- Solar energy: prominent source of renewable energy
- Extracting silicon wafers accounts for 20% of total energy consumption throughout process [1]
- Popular methods for silicon cutting:
 - i) Wire loose slurry method
 - ii) Diamond saw cutting method
- ullet Abrasive nature lead to micro-fractures up to 20 μ m deep
- Wafer size gets limited to 180 μ m [2]
- 50% of ingot material is lost as kerf losses [3]
- Contamination of wafers due to slurry, etc. [4]

Wire Electro-Discharge Machining

Figure 1: Diagrammatic representation of WEDM

Wire Electro-Discharge Machining

- Non contact micro-drilling process
- Cuts free form contours from large solid metal workpieces
- No force exerted on workpiece Thinner wires can be used
- Reduced kerf width [5]
 250 μm Abrasive saw cutting
 μm WEDM
- Net material saving of 200 300% [5]
- WEDM: A promising alternative for silicon wafer manufacturing
- Goal: Optimise WEDM process for silicon wafers

Wire Electro-Discharge Machining

- WEDM is not as well established for silicon
- Electrical characterisation of metal-semiconductor-dielectric sparks
- VI characteristics of silicon are very different from that of steel [6]
- Settings on commercial WEDM machines are only applicable for steel [7]
- Available machines have discrete setting ranges
- Indigenously designed power supply required
- Completed: Design, modelling and control of such power supply

Literature Survey

Research areas

Process Modelling	
Spur and Schönbeck [8]	Influence of work-piece material and pulse type
Han et al. [9]	Simulated discharge phenomena of WEDM, de-
	veloped adaptive control system
Fuzzy Control Systems	
Kinoshita et al. [10]	Investigated effects of wire feed rate, winding
	speed, tension and electrical parameters
De Bruyn et al. [11]	Classified EDM pulses as open, spark, arc, off
	or, short on basis of ignition delay
Wire Breakage Avoidance	2
Kinoshita et al. [12]	Rapid rise in pulse frequency of voltage before
	wire breakage, developed a monitoring system
	that switches off pulse generator
N. Kinoshita, M. Fukui,	Increase in localised temperature at certain
and G. Gamo [13]	points of wire leads to its breakage, system for
	detection of spark location

Research areas

Wire lag and wire vibration	
Duaw and Beltrami [14]	Used optical sensor for monitoring and control
	of wire position
N. Mohri et al. [15]	Several mathematical models – transient re-
	sponse of wire vibration – force acting on tool
Adaptive control systems	
Kinoshita et al. [12]	Change in work-piece thickness – increase in wire
	thermal density
Rajurkar et al. [16]	Adaptive control & multiple input model – mon-
	itors & controls sparking frequency according to
	on-line identified work-piece height

Power Supply Design

Figure 2: Representative diagram of ideal WEDM power supply

Converter Topology

Figure 3: Converter topology for WEDM power supply [17]

Converter Modelling

Voltage Source Modelling

Figure 4: Simplified circuit of two quadrant converter used as voltage source

Voltage Source Modelling

- 1. State variables: $i_{L_2} \rightarrow x_1$, $v_{c_2} \rightarrow x_2$
- 2. Switch ON state \rightarrow State equations (E1)
- 3. Switch OFF state \rightarrow State equations (E2)
- 4. Time averaging (E1) and (E2)

$$\dot{x} = [dA_1 + (1-d)A_2]x + [dB_1 + (1-d)B_2]V_d
V_o = [dC_1 + (1-d)C_2]x$$
(1)

- 5. Small signal perturbation in $\it d$
- 6. Get $\frac{\hat{v}_o(s)}{\hat{d}(s)}$

Voltage Source Modelling

Figure 5: Bode plot of uncompensated transfer function of voltage source; $Gm=\infty$, $Pm=0.0166^{\circ}$ (at 2.85e+05 rad/s)

Current Source Modelling

Figure 6: Simplified circuit of single quadrant converter used as current source

- 1. State variable: $i_{L_1} \to x$
- 2. Same steps as voltage source

$$\dot{x} = [dA_1 + (1-d)A_2]x + [dB_1 + (1-d)B_2]V_d$$

$$I_o = [dC_1 + (1-d)C_2]x$$
(2)

- 3. Small signal perturbation in d
- 4. Get $\frac{i_o(s)}{\hat{d}(s)}$

Current Source Modelling

Figure 7: Bode plot of uncompensated current source transfer function; $Gm = \infty$, $Pm = 90.5^{\circ}$ (at 6.05e+04 rad/s)

Controller Design

Direct Duty Ratio Control

Figure 8: Direct duty ratio control of single quadrant converter

Direct Duty Ratio Control

- 1. Design lead compensator s.t.
 - 1.1 Gain crossover freq high, less than F_s
 - 1.2 Phase margin between 45° to 60°
- 2. Check steady state error
- 3. Design lag compensator s.t.
 - 3.1 Max phase lag frequency << gain crossover frequency
 - 3.2 Sufficient gain is added at lower frequency
- 4. Balance loop gain at gain crossover

Direct Duty Ratio Control

Figure 9: Bode plot of compensated transfer function of voltage source Gm $=\infty,$ Pm $=54.3^\circ$ (at 1.02e+05~rad/s)

Figure 10: Load voltage and current - direct duty ratio control

Alternatives

Disadvantages of direct duty ratio control

- Separate protection circuit required
- Current sensors not utilized for control

Advantages of current mode control

- Inherent protection against over current
- First order model for voltage control

Disadvantages of current mode control

• Susceptible to noise

Current Mode Control

Figure 11: Current mode control of single quadrant converter

$$\frac{m_2}{m_1} = \frac{d}{1-d} \tag{3}$$

mode control

Figure 13: Inductor current in current mode control

Figure 14: Inductor current in presence of disturbance

Figure 15: Inductor current with artificial ramp in presence of disturbance

Voltage control using current mode control

Figure 16: Controlled voltage source using current mode control

Modelling of voltage source

Assumption

Current mode controller operates ideally i.e average inductor current i_L to be identical to control i_c

Figure 17: Current mode control replaced as current source in buck converter

$$\frac{\hat{v}(s)}{\hat{i}_c(s)} = \frac{R}{1 + sRC} \tag{4}$$

Current mode control

Figure 18: Load voltage and current - current mode control

Practical Considerations

Selection of inductors and capacitor

1. Inductor for current source \rightarrow Output current ripple

$$\Delta I_L = \frac{V_{o1}}{L_1} (1 - D) T_s \tag{5}$$

2. Inductor for voltage source \rightarrow Maintaining continuous conduction mode

$$L_2 \ge 2.5 \frac{DT_s}{I_{L_2}} (V_d - V_{\text{ref}})$$
 (6)

3. Capacitor for voltage source → Output voltage ripple

$$C_2 \ge \frac{\Delta I_{L_2} T_s}{8\Delta V_{o2}} \tag{7}$$

Required device ratings

Device	$V_{\sf max}$	$I_{\sf max}$	$P_{\sf max}$
Q_d	80 V	11 A	880 W
D	83 V	0.8 A	66.4 W
Q_1	110 V	11 A	1210 W
D_1	110 V	11 A	1210 W
Q_2	110 V	21 A	2310 W
D_2	110 V	4.5 A	495 W
Q_3	110 V	4.5 A	495 W
D_1	110 V	21 A	2310 W

Summary and Future Plan

Work Done

- Power supply topology fixed
- Converter modelled using time averaging
- Controller designed using
 - Direct duty ratio control PI controller, lead-lag compensator
 - Current mode control
- Ratings passive components determined
- ullet Snubber circuit designed for Q_d
- Simulated power supply
- Approximate ratings of switches determined

Future plan

Fabrication of Power Supply

- Designing gate drivers
- Designing and PCBs
- Fabricating power supply
- Testing of power supply metal, silicon

Load Modelling

- Electrical characterisation of spark gap load
- Physical model R, L and C elements
- Fitting mathematical model

B. Sopori, S. Devayajanam, S. Shet, D. Guhabiswas, P. Basnyat, H. Moutinho, L. Gedvilas, K. Jones, J. Binns, and J. Appel, "Characterizing damage on Si wafer surfaces cut by slurry and diamond wire sawing," in *39th Photovoltaic Specialists Conference (PVSC)*. IEEE, 2013, pp. 0945–0950.

G. G. Dongre, C. Vesvikar, R. K. Singh, and S. S. Joshi, "Efficient dicing of silicon ingots for photovoltaic applications," in *35th IEEE Photovoltaic Specialists Conference*, June 2010, pp. 3629–3634.

H. J. Moeller, "Chapter two-wafering of silicon," *Semiconductors and Semimetals*, vol. 92, pp. 63–109, 2015.

G. Dongre, S. Zaware, U. Dabade, and S. S. Joshi, "Multi-objective optimization for silicon wafer slicing using wire-edm process," Materials Science in Semiconductor Processing, vol. 39, pp. 793-806, 2015.

M. Kane, "Annual progress seminar report," Indian Institute of Technology Bombay, August 2017.

G. Levy and F. Maggi, "Wed machinability comparison of different steel grades," CIRP Annals-Manufacturing Technology, vol. 39, no. 1, pp. 183-185, 1990.

G. Spur and J. Schönbeck, "Anode erosion in wire-edm—a theoretical model," CIRP Annals-Manufacturing Technology, vol. 42, no. 1, pp. 253-256, 1993.

F. Han, M. Kunieda, T. Sendai, and Y. Imai, "High precision simulation of wedm using parametric programming," CIRP Annals-Manufacturing Technology, vol. 51, no. 1, pp. 165–168, 2002.

- N. Kinoshita, M. Fukui, H. Shichida, and G. Gamo, "Study of edm with wire electrode–gap phenomena," in *CIRP Annales*, vol. 25, no. 1, 1976, pp. 141–145.
- H. De Bruyn and A. Pekelharing, "Has the delay time influence on the edm-process?" *CIRP Annals-Manufacturing Technology*, vol. 31, no. 1, pp. 103–106, 1982.
- N. Kinoshita, M. Fukui, and G. Gamo, "Control of wire-edm preventing electrode from breaking," *CIRP Annals-Manufacturing Technology*, vol. 31, no. 1, pp. 111–114, 1982.
- M. Kunieda, H. Kojima, and N. Kinoshita, "On-line detection of edm spark locations by multiple connection of branched electric wires," *CIRP Annals-Manufacturing Technology*, vol. 39, no. 1, pp. 171–174, 1990.

- D. Dauw and I. Beltrami, "High-precision wire-edm by online wire positioning control," *CIRP Annals-Manufacturing Technology*, vol. 43, no. 1, pp. 193–197, 1994.
- N. Mohri, H. Yamada, K. Furutani, T. Narikiyo, and T. Magara, "System identification of wire electrical discharge machining," *CIRP Annals-Manufacturing Technology*, vol. 47, no. 1, pp. 173–176, 1998.
- K. Rajurkar, W. Wang, and W. Zhao, "Wedm-adaptive control with a multiple input model for indentification of workpiece height," *CIRP Annals-Manufacturing Technology*, vol. 46, no. 1, pp. 147–150, 1997.
- D. Tastekin, H. Krotz, C. Gerlach, and J. Roth-Stielow, "A novel electrical power supply for electrothermal and electrochemical removal machining methods," in *Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE.* IEEE, 2009, pp. 2682–2688.

N. Mohan, T. M. Undeland, and W. P. Robbins, *Power Electronics: Converters, Applications, and Design*, 3rd ed. John Wiley & Sons, Inc., 2002.

Small signal transfer function of voltage source

Small signal transfer function of current source

$$\frac{\hat{i}_o(s)}{\hat{d}(s)} = C[sI - A]^{-1}[(A_1 - A_2)X + (B_1 - B_2)V_d] + (C_1 - C_2)X$$
 (9)

 $\frac{\hat{v}_o(s)}{\hat{d}(s)} = C[sI - A]^{-1}[(A_1 - A_2)X + (B_1 - B_2)V_d] + (C_1 - C_2)X$

Figure 19: Expanded view of perturbed inductor current

$$i_L(nT_s) = i_L(0) \left(-\frac{D}{1-D}\right)^n \tag{10}$$

Figure 20: Expanded view of inductor current with artificial ramp in presence of disturbance

$$\hat{i}_L(nT_s) = \hat{i}_L(0) \left(-\frac{m_2 - m_a}{m_1 + m_a} \right)^n \tag{11}$$

$$\alpha = -\frac{1 - \frac{m_a}{m_2}}{\frac{1 - D}{D} + \frac{m_a}{m_2}} \tag{12}$$