CSCI-GA.1170-003/004 Fundamental Algorithms

February 6, 2019

Problem Set 2

Lecturer: Yevqeniy Dodis Due: Thursday, February 14

Problem 2-1 (Sort recurrences)

8 Points

Sort the following recurrences in increasing order of growth of the corresponding functions. Justify (very) briefly.¹

- (a) T(n) = 16T(n/4) + n;
- (b) T(n) = 2T(n/4) + n;
- (c) $T(n) = 3T(n/5) + \log n$;
- (d) $T(n) = 9T(n/3) + n^2$;
- (e) T(n) = T(n/3) + 10;
- (f) $T(n) = 9T(n/3) + n^3$;
- (g) $T(n) = 8T(n/2) + n^3$.

Problem 2-2 (Methods for Solving Recurrences)

12 points

Consider the recurrence $T(n) = T(\lceil n/4 \rceil) + T(\lceil n/3 \rceil) + n$ with T(1) = 1.

- (a) (4 Points) Using a recursion tree, determine a tight asymptotic upper bound on T(n).
- (b) (4 Points) Prove your upper bound using induction.
- (c) (4 Points) Using a suitable variable change, solve the recurrence $U(n)=3U(\lceil n^{1/3}\rceil)+7$ with U(2)=1.

Problem 2-3 (The Same Outcome in Different Ways) 15 Points

Consider the following recurrence $T(n) = 4T(n/2) + n^2 \log n$, T(1) = 1.

- (a) (2 points) Can the master's theorem, as stated in the book, be applied to solve this recurrence? If yes, apply it. If not, formally explain the reason why.
- (b) (4 points) Solve the above recurrence using the recursion tree method.
- (c) (4 points) Formally verify that your answer from part (b) is correct using induction.
- (d) (5 points) Solve the above recurrence exactly using domain range substitution.

¹For this entire homework assignment, you may ignore the fact that the argument to T may not be an integer.

Problem 2-4 (Faster Mergesort)

10 points

- (a) (6 points) Suppose you have some procedure FASTMERGE that given two sorted lists of length m each, merges them into one sorted list using m^c steps for some constant c > 0. Write a recursive algorithm using FASTMERGE to sort a list of length n and also calculate the run-time of this algorithm as a function of c. For what values of c does the algorithm perform better than $O(n \log n)$.
- (b) (4 points) Let A[1...n] be an array such that the first $n \sqrt{n}$ elements are already in sorted order. Write an algorithm that will sort A in substantially better than $O(n \log n)$ steps.