Towards a Zero-One Law for Column Subset Selection

Zhao Song*, David P. Woodruff[†], Peilin Zhong‡

*University of Washington, †Carnegie Mellon University, ‡Columbia University

Problem Formulation

Given : $A \in \mathbb{R}^{n \times n}$, $k \ge 1$, $\alpha \ge 1$

Output : a rank-k matrix $\hat{A} \in \mathbb{R}^{n imes n}$ such that

$$\|\hat{A} - A\|_g \le \alpha \cdot \min_{\text{rank} - k} \|A' - A\|_g,$$

where

$$||A||_g = \sum_{i,j} g(A_{i,j}).$$

Question: For what kind of g, there could be a fast provable algorithm?

Generalized Low Rank Models

- g(x) = |x| is the maximum likelihood estimator (MLE) for i.i.d. Laplacian noise.
- $g(x) = x^2$ is the MLE for i.i.d. Gaussian noise.
- Huber loss is the MLE for i.i.d. random variables with the Huber density.
- In general, the loss is g(x) when the noise has density $c \cdot e^{-g(t)}$.

Example of functions, Huber and Reverse Huber

- Huber : L2 (when |x| is small) + L1 (when |x| is large)
- Reverse Huber : L1 (when |x| is large) + L2 (when |x| is small)

Column Subset Selection

Given : $A \in \mathbb{R}^{n \times n}$, $k \ge 1$, $\alpha \ge 1$

Output: a subset of k' columns C of A such that

$$\min_{X} \|CX - A\|_g \le \alpha \cdot \min_{\text{rank} = k} \|A' - A\|_g.$$

Want k' as small as possible. Column subset selection gives a bicriteria solution for low rank approximation.

Towards a Zero-One Law

- Property 1: approximate triangle inequality
- Property 2: monotonicity
- Property 3: a fast regression algorithm

Approximate Triangle Inequality

For an integer k, we say a function $g(x): \mathbb{R} \to \mathbb{R}_{\geq 0}$ satisfies the ati_{g^-} approximate triangle inequality if for any $x_1, x_2, \cdots, x_k \in \mathbb{R}$ we have

$$g\left(\sum_{i=1}^k x_i\right) \leq \operatorname{ati}_{g,k} \cdot \sum_{i=1}^k g(x_i)$$

We allow $ati_{q,k}$ to depend on k, n.

Monotone Property

For any parameter $\operatorname{mon}_g \geq 1$, we say function $g(x): \mathbb{R} \to \mathbb{R}_{\geq 0}$ is $\operatorname{monotone}$ if for any $x,y \in \mathbb{R}$ with $0 \leq |x| \leq |y|$, we have

$$g(x) \leq \mathsf{mon}_g \cdot g(y)$$

Regression Property

We say function $g(x): \mathbb{R} \to \mathbb{R}_{\geq 0}$ has the $(\operatorname{reg}_{g,d}, T_{g,n,d})$ -regression property if given $A \in \mathbb{R}^{n \times d}$ and $B \in \mathbb{R}^{n \times m}$ (where $m \leq n$), for each $i \in [m]$, let OPT_i denote $\min_{x \in \mathbb{R}^d} \|Ax - B_i\|_g$. There is an algorithm that runs in $T_{g,n,d}$ time and outputs a matrix $X' \in \mathbb{R}^{d \times m}$ with

$$||AX_i' - B_i||_q \le \operatorname{reg}_{q,d} \cdot \operatorname{OPT}_i, \quad \forall i \in [m]$$

with high probability.

Nessecity of the First Two Properties

- Approximate triangle inequality:
 - The "jumping function": $g_{\tau}(x) = |x|$ if $|x| \ge \tau$, and $g_{\tau}(x) = 0$ otherwise.
 - It has monotone property but not approximate triangle inequality.
 - For the identity matrix I and any $k = \Omega(\log n)$, the Johnson-Lindenstrauss lemma implies one can find a rank-k matrix B for which $\|I B\|_{\infty} < 1/2$.
- If we set $\tau = 1/2$, then $||I B||_{g_{\tau}} = 0$.
- But for any subset I_S of columns of the identity matrix we choose, necessarily $||I I_S X||_{\infty} \ge 1$.
- Monotone property:
 - ReLU function satisfies approximate triangle inequality but not monotone property.
 - The optimal rank-k approximation for any matrix A is 0.
 - Notice though, that there are no good column subset selection algorithms for some matrices A, such as the $n \times n$ identity matrix.

Algorithmic Result

Given $A \in \mathbb{R}^{n \times n}$, let $k \geq 1$, and let $g : \mathbb{R} \to \mathbb{R}_{\geq 0}$ be a function satisfying the $\operatorname{ati}_{g,k}$ -approximate triangle inequality, the mon_g -monotone property, and the $(\operatorname{reg}_{g,d}, T_{g,n,d})$ -regression property. Let $\operatorname{OPT} = \min_{\operatorname{rank} - k} \frac{1}{A'} \|A' - A\|_g$.

There is an $O(T_{g,n,k})$ time algorithm for outputting a set $S\subseteq [n]$ with $|S|=O(k\log n)$ for which

$$\min_{X\in\mathbb{R}^{|S|\times n}}\|A_SX-A\|_g\leq \mathsf{ati}_{g,k}\cdot\mathsf{mon}_g\cdot\mathsf{reg}_{g,k}\cdot O(k\log k)\cdot\mathsf{OPT},$$
 with high probability.

Hardness for Column Subset Selection

Let H(x) denote the Huber function with $\tau=1$, i.e.,

$$H(x) = \begin{cases} x^2/\tau, & \text{if } |x| < \tau; \\ |x|, & \text{if } |x| \ge \tau. \end{cases}$$

For k=1, there is a matrix $A \in \mathbb{R}^{n \times n}$ such that, if we select $o(\sqrt{\log n})$ columns to fit the entire matrix, there is no O(1)-approximation, i.e., for any subset $S \subseteq [n]$ with $|S| = o(\sqrt{\log n})$,

$$\min_{X \in \mathbb{R}^{|S| \times n}} ||A_S X - A||_F \ge \omega(1) \cdot \min_{\text{rank} - 1} ||A' - A||_H.$$

Algorithm

Algorithm 1 Column Subset Selection

- 1: $r \leftarrow O(\log n)$
- 2: $T_0 \leftarrow [n]$
- 3: for $i=1 \rightarrow r$ do
- 4: $m \leftarrow |T_{i-1}|$
- 5: for $j = 1 \rightarrow \log n$ do
- 6: Sample $S^{(j)}$ from $\binom{T_{i-1}}{2k}$ uniformly at random
- 7: $m \leftarrow |T_{i-1} \backslash S^{(j)}|, d \leftarrow 2k$
- 8: $\{ \mathsf{cost}_t \}_{t \in T_{i-1} \setminus S^{(j)}} \leftarrow \mathsf{MULTIPLEREGRESSION}(g, n, d, m, A_{S^{(j)}}, A_{T_{i-1} \setminus S^{(j)}})$
- 9: $R^{(j)} \leftarrow \text{BOTTOMK}(\text{SORT}(\text{cost}), m/20)$
- 10: $v_j \leftarrow \sum_{t \in R^{(j)}} \mathsf{cost}_t$
- 11: end for
- 12: $j^* \leftarrow \min_{j \in [\log n]} \{v_j\}$, $T_i \leftarrow T_{i-1} \setminus (S^{(j^*)} \cup R^{(j^*)})$, $S_i \leftarrow S^{(j^*)}$
- 13: end for
- 14: $S \leftarrow \cup_i S_i$
- 15: Return S

Analysis

- Decompose $A=A^*+\Delta$, where A^* is the optimal rank-k matrix and Δ is the optimal residual matrix, so $\|\Delta\|_g=\mathrm{OPT}$
- Suppose we sample 2k+1 column indices i_1,i_2,\cdots,i_{2k+1} uniformly at random and consider the submatrix V_S^* which only contains these columns from V^* , where $A^*=U^*\cdot V^*$
- The k-by-k submatrix of V_S^* with max determinant does not intersect column $V_{i_{2k+1}}^*$ with probability at least 1/2
- By Cramer's rule, $V_{i_{2k+1}}^* = \sum_{l=1}^{2k} \alpha_l \cdot V_{i_l}^*$ and $|\alpha_l| \leq 1$, $\forall l \in [2k]$.
- Can argue $A_{i_{2k+1}}^* = \sum_{l=1}^{2k} \alpha_l \cdot A_{i_l}^*$ and $|\alpha_l| \leq 1$, $\forall l \in [2k]$.
- If we sample 2k columns from A^{*} uniformly at random, a constant fraction of columns of A^{*} can be interpolated with fitting coefficients of absolute value at most 1
- Suppose the sampled columns have indices i_1, \cdots, i_{2k} and $A_i^* = \sum_{l=1}^{2k} \alpha_l A_{i_l}^*$ where $|\alpha_l| \leq 1$, $\forall l \in [2k]$
- The optimal cost of using $A_{i_1}, \cdots, A_{i_{2k}}$ to fit A_j is at most

$$\begin{split} \|A_j - \sum_{l \in [2k]} \alpha_l \cdot A_{i_l}\|_g &= \|\Delta_j - \sum_{l \in [2k]} \alpha_l \cdot \Delta_{i_l}\|_g \\ &\leq \mathsf{ati}_g \cdot (\|\Delta_j\|_g + \sum_{l \in [2k]} \|\alpha_l \cdot \Delta_{i_l}\|_g) \\ &\leq \mathsf{ati}_g \cdot \mathsf{mon}_g \cdot (\|\Delta_j\|_g + \sum_{l \in [2k]} \|\Delta_{i_l}\|_g) \end{split}$$

- Notice that $\mathbf{E}[\sum_{l=1}^{2k} \|\Delta_{i_l}\|_g] = (2k/n) \cdot \mathrm{OPT}$
- Since each time we can fit a constant fraction of the remaining columns with small cost, we can recurse $\log n$ times to fit all columns
- To improve the analysis of the approximation ratio from $k\log n$ to $k\log k$, we condition on each time not sampling the n/k columns with the largest cost