Examen parcial de Física - CORRENT CONTINU 7 d'octubre de 2019

Model A

Qüestions: 50% de l'examen

A cada güestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) En un cumulonimbus de tempesta de 2 km d'alçada es produeix una descàrrega de 30 kA durant 100 μ s. Sabent que el camp elèctric mig a l'interior del núvol és de 15000 N/C, quina haurà estat l'energia potencial electrostàtica alliberada?
 - a) 180 kJ
- b) 200 MJ
- c) 90 MJ
- d) 20 kJ
- T2) Una bateria defectuosa de camió, de força electromotriu 12 V i resistència interna desconeguda anormalment alta, s'utilitza per a alimentar un sistema de llums de 10 W a 12 V. Quan es connecta la bateria resulta que la potència d'iluminació no és el valor esperat de 10 W sino només de 7.5 W. Es pot deduir que la resistència interna de la bateria val aproximadament:
 - a) 2.2Ω
- b) $19.2\,\Omega$
- c) 1.2Ω
- d) 9.6Ω
- **T3)** En el circuit de la figura, $\epsilon = 6V$, $C = 10 \mu F$, $R=6\Omega$: Quin dels següents elements hauríem de connectar entre A i B per tal que la càrrega del condensador en estat estacionari sigui de 30 μ C?

- a) Una resistència de 5.5 Ω .
- b) Una pila de fem 4.5 V i resistència interna 4.5 Ω amb el born positiu al punt B.
- c) Una pila de fem 1.5 V i resistència interna 3 Ω amb el born negatiu al punt B.
- d) Una pila de fem 4.5 V i resistència interna 4.5 Ω amb el born negatiu al punt A.
- **T4**) Un conjunt de 8 resistències de 25 Ω cadascuna estan associades de forma desconeguda. Si apliquem una diferència de potencial de 10 V als extrems de la combinació, resulta que per cada resistència hi circula una intensitat de 0.2 A. Com estan associades?
 - a) Quatre conjunts de 2 resistències en paral·lel, connectats en sèrie.
 - b) Totes en sèrie.
 - c) Totes en paral·lel.
 - d) Quatre conjunts de 2 resistències en sèrie, connectats en paral·lel.
- **T5)** En el circuit de la figura, $\epsilon_1 = 20 \text{ V}$ i $\epsilon_2 = 10 \text{ V}$. Quant han de valer R_1 i R_2 per tal que l'equivalent Thévenin entre A i B sigui $\epsilon_{Th} = 5$ V i $R_{Th} =$ 12Ω ?

- c) $R_1 = R_2 = 24 \Omega$
- d) $R_1 = R_2 = 6 \Omega$

Examen parcial de Física - CORRENT CONTINU 7 d'octubre de 2019

Model B

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) En el circuit de la figura, $\epsilon = 6V$, $C = 10 \mu F$, $R=6\Omega$: Quin dels següents elements hauríem de connectar entre A i B per tal que la càrrega del condensador en estat estacionari sigui de 30 μ C?

- a) Una resistència de 5.5 Ω .
- b) Una pila de fem 4.5 V i resistència interna 4.5 Ω amb el born positiu al punt B.
- c) Una pila de fem 4.5 V i resistència interna 4.5 Ω amb el born negatiu al punt A.
- d) Una pila de fem 1.5 V i resistència interna 3 Ω amb el born negatiu al punt B.
- T2) En un cumulonimbus de tempesta de 2 km d'alçada es produeix una descàrrega de 30 kA durant 100 μ s. Sabent que el camp elèctric mig a l'interior del núvol és de 15000 N/C, quina haurà estat l'energia potencial electrostàtica alliberada?
 - a) 90 MJ
- b) 200 MJ
- c) 180 kJ
- d) 20 kJ
- **T3**) Un conjunt de 8 resistències de 25 Ω cadascuna estan associades de forma desconeguda. Si apliquem una diferència de potencial de 10 V als extrems de la combinació, resulta que per cada resistència hi circula una intensitat de 0.2 A. Com estan associades?
 - a) Totes en paral·lel.
 - b) Quatre conjunts de 2 resistències en sèrie, connectats en paral·lel.
 - c) Totes en sèrie.
 - d) Quatre conjunts de 2 resistències en paral·lel, connectats en sèrie.
- **T4)** En el circuit de la figura, $\epsilon_1 = 20 \text{ V}$ i $\epsilon_2 = 10 \text{ V}$. Quant han de valer R_1 i R_2 per tal que l'equivalent Thévenin entre A i B sigui $\epsilon_{Th} = 5$ V i $R_{Th} =$ 12Ω ?

- a) $R_1 = R_2 = 6 \Omega$ b) $R_1 = 18 \Omega, R_2 = 4 \Omega$
- c) $R_1 = 12 \Omega$, $R_2 = 6 \Omega$ d) $R_1 = R_2 = 24 \Omega$
- T5) Una bateria defectuosa de camió, de força electromotriu 12 V i resistència interna desconeguda anormalment alta, s'utilitza per a alimentar un sistema de llums de 10 W a 12 V. Quan es connecta la bateria resulta que la potència d'iluminació no és el valor esperat de 10 W sino només de 7.5 W. Es pot deduir que la resistència interna de la bateria val aproximadament:
 - a) 9.6Ω
- b) $19.2\,\Omega$
- c) 1.2Ω
- d) $2.2~\Omega$

Examen de Física - CORRENT CONTINU 7 d'octubre de 2019

Problema: 50% de l'examen

En el circuit de la figura sabem que el potencial del punt C és $V_C=-4$ V. Totes les fonts de tensió tenen resistència interna negligible. Determineu:

- a) Els valors de les intensitats que circulen per les branques I_1 , I_2 i I_3 , així com el potencial al punt B.
- b) La $fem \epsilon$ de la font de tensió que hi ha a la branca entre els punts B i A.
- c) El circuit equivalent Thévenin entre els punts C i A. Si situem un condensador d'1 mF de capacitat entre aquests punts, determineu l'energia acumulada quan estigui totalment carregat.

d) Si substituim el condensador de l'apartat anterior per una resistència $R=10\,\Omega,$ determineu la diferència de potencial V_{AC} i la potència que es dissiparà en aquesta resistència.

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	С	d
T2)	a	a
T3)	c	b
T4)	d	d
T5)	c	d

Resolució del Model A

- **T1)** Sabent que la càrrega és la intensitat multiplicada pel temps de descàrrega, tenim $\Delta q = 3$ C. La diferència de potencial entre els extrems del núvol val $\Delta V = E \Delta y = 30$ MV. Finalment, $\Delta U = \Delta q \Delta V = 90$ MJ.
- T2) La resistència del sistema de llums de 10 W a 12 V és $R = (\Delta V)^2/P = 12^2/10 = 14.4 \Omega$. Quan el connectem a una bateria de força electromotriu 12 V i resistència interna r la intensitat valdrà $I = 12V/(r + 14.4 \Omega)$. Si la potència és $P_{diss} = I^2R = 7.5$ W, tenim que $(12V/(r + 14.4 \Omega))^2 14.4 \Omega = 7.5$ W, d'on trobem que $r = 2.2 \Omega$.
- T3) Donat que la branca amb el condensador no transporta corrent en estat estacionari, cal que la tensió entre A i B sigui de $V_{AB} = Q/C = 3$ V per tal que la càrrega del condensador sigui de 30 μ C. Això indica que l'única intensitat que circularà pel sistema haurà de ser de 0.5 A d'A cap a B, donat que 3 = 6 6I per la branca del generador. Això només serà possible si hi posem entre A i B una pila de fem 1.5 V i resistència interna 3 Ω amb el born negatiu al punt B. La resta d'opcions no són consistents amb $V_{AB} = 3$ V.
- **T4)** La diferència de potencial de cada resistència val $V = IR = 0.2A \, 25\Omega = 5$ V. Per tant, la diferència de potencial total de les diferents combinacions serien: 20 V per al cas a), 40 V per al cas b), 5 V per al cas c), 10 V per al cas d).
- **T5)** La resistència equivalent Thévenin entre A i B ve donada per l'eqüació: $R_{Th.} = 12 \Omega = \frac{R_1 R_2}{R_1 + R_2}$ (i sabent que el resultat és menor que qualsevol de les R_1 o R_2 , sabem que $R_1 \ge 12 \Omega$ i $R_2 \ge 12 \Omega$). Només el cas c) satisfà aquesta condició.

A més, la tensió equivalent Thévenin entre A i B ve donada per: $\epsilon_{Th.} = 5 V = \frac{R_1}{R_1 + R_2} (20 - 10) V$. D'aquesta segona eqüació tenim $R_1 = R_2$, la qual cosa ens dóna, substituint en la primera: $R_1 = R_2 = 24 \Omega$.

Resolució del Problema

- a) Expressant la diferència de potencial entre els punts C i A $(V_C V_A = -4 \text{ V})$ en termes de la fem de la font de 10 V i la caiguda de tensió a la resistència $R_5 = 10 \Omega$, podrem determinar la intensitat I_3 . És a dir: $-4 = -10 + 10I_3$. Per tant: $I_3 = 0.6 \text{ A}$. El potencial del punt B es calcula a partir del corresponent al punt C i a la caiguda de tensió a la resistència $R_4 = 10 \Omega$. És a dir: $V_B = V_C + (V_B V_C) = -4 + 10I_3 = 2 \text{ V}$. Formulant la diferència de potencial entre els punts B i A $(V_B V_A = 2 \text{ V})$ en termes de la fem de la font de 15 V i la caiguda de tensió a les dues resistències $R_1 = R_2 = 5 \Omega$, determinarem la intensitat I_1 . És a dir: $2 = 15 (5 + 5) \cdot I_1$. Per tant: $I_1 = 1.3 \text{ A}$.
 - Finalment, aplicant la primera llei de Kirchhoff al nus B, calculem I_2 . És a dir: $I_2 = I_1 I_3 = 0.7$ A.
- b) Expressant la diferència de potencial entre els punts B i A ($V_B V_A = 2$ V) en termes de la fem de la pila ϵ i la caiguda de tensió a la resistència $R_3 = 10~\Omega$, podrem determinar ϵ . És a dir: $2 = 10I_2 \epsilon$. Per tant: $\epsilon = 5$ V.
- c) El circuit equivalent Thévenin és una font de tensió amb una $fem \ \epsilon_{Th}$ en sèrie amb una resistència R_{Th} . ϵ_{Th} és la diferència de potencial entre C i A: $V_C V_A = -4$ V. Per tant, $\epsilon_{Th} = 4$ V amb una polaritat de la font equivalent tal que C està a menys potencial que A. R_{Th} és la resistència equivalent entre C i A quan totes les fem de les fonts són nul·les. A més, en aquest cas particular, la resistència interna de cada font és nul·la. La resistència equivalent és el resultat de l'associació en paral·lel de les resistències $R_{1234} = R_{123} + R_4 = 15 \ \Omega$ i $R_5 = 10 \ \Omega$. El resultat és $R_{Th} = \frac{10.15}{10+15} = 6 \ \Omega$. A la vegada R_{123} és el resultat de fer l'associació en paral·lel de les resistències R_3 i R_{12} . Aquesta última es calcula tenint en compte que R_1 i R_2 es combinen en sèrie. Si entre C i A posem un condensador de capacitat C = 1mF, la diferència de potencial entre les seves plaques és la ϵ_{Th} . Per tant, l'energia acumulada quan estigui totalment carregat és: $U = \frac{1}{2}C\epsilon_{Th}^2 = 8mJ$.
- d) Si connectem una resistència $R=10\,\Omega$ entre els punts A i C, la intensitat que circularà per aquesta (tenint en compte el circuit equivalent de Thévenin) és $I=\epsilon_{Th}/(R+R_{Th})=0.25\,\mathrm{A}$ circulant de A cap a C, la diferència de potencial V_{AC} es $V_{AC}=0.25\,A\,10\,\Omega=2.5\,\mathrm{V}$ i la potència dissipada serà $P_{diss}=I^2R=0.625\,\mathrm{W}$.