Metody inteligencji obliczeniowej w analizie danych Autoenkodery, zastosowania sieci neuronowych

Adam Żychowski

Wydział Matematyki i Nauk Informacyjnych PW

1 kwietnia 2021

Politechnika Warszawska

Zadanie 10 pn. "Modyfikacja programów studiów na kierunkach prowadzonych przez Wydział Matematyki i Nauk Informacyjnych" realizowane jest w ramach projektu "NERW 2 PW. Nauka – Edukacja – Rozwój – Współpraca" współfinansowanego ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Autoenkodery

- szczególny rodzaj sieci neuronowej z jednakowym wejściem i wyjściem (na wyjściu oczekiwana jest kopia danych wejściowych)
- warstwa ukryta mniejsza niż wejściowa (w przeciwnym przypadku problem trywialny)

źródło: https://www.sciencedirect.com/science/article/pii/S0888327017303394

Autoenkodery - zastosowania

- najczęściej stosowane do kompresji danych lub ekstrakcji istotnych cech z informacji wejściowych
- traktowane jako rodzaj hasha (np. w wyszukiwaniu obrazów)
- odpowiedni dobór parametrów (liniowa funkcja aktywacji i błąd średniokwadratowy jako funkcja straty) powoduje zbieżność reprezentacji uzyskanej przez autoencoder w procesie nauki z metodą Principal Component Analysis (PCA)

źródło: https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

Autoenkodery - odszumianie

 $\'{x}\'{r}\'{o}d\'{l}o: \ https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras$

Autoenkodery - generowanie

zbiór treningowy

nowe obrazki wygenerowane przez autoenkoder

 $\'{x}\'{r}\'{o}\'{d}\'{l}o: \ https://mlexplained.wordpress.com/2017/05/06/pixel-art-generation-using-vae$

Zastosowania sieci neuronowych

- predykcja
- klasyfikacja
- kompresja danych
- ekstrakcja istotnych cech

ograniczamy się tylko do zastosowań perceptronów wielowarstwowych, zastosowań innych architektur jest o wiele więcej

Przykład - testy na inteligencję

Matryce Ravena

- najpopularniejszy rodzaj testów na inteligencję
- niezależny od wieku, narodowości, języka, stanu wiedzy
- gruntownie przebadana i opisana przez psychologów metoda pomiaru inteligencji (używana np. w testach kwalifikacyjnych Mensy)

Testy na inteligencję - architektura

Mańdziuk and Żychowski 2019a

Trzy główne komponenty:

- głęboki autoenkoder służący do kompresji poszczególnych obrazków
- 4 wielowarstwowe sieci neuronowe rozpoznające różnice w cechach obrazów
- moduł oceny rozwiązań

Testy na inteligencję - autoenkoder

Architektura autoenkodera. Ostatnia warstwa tworzy skompresowaną (do 16 liczb) reprezentację wejściowych obrazków.

Testy na inteligencję - perceptrony

Rysunek: Architektura perceptronów wielowarstwowych rozpoznających różnice cech obrazków. Przykładowe obrazki na rysunku posiadają ten sam kształt i wielkość, różnią się "nieznacznie" zacienieniem oraz "wyraźnie" obrotem.

Testy na inteligencję - ocena odpowiedzi

$$egin{aligned} s_{a_i} &:= 0 \ ext{if} \ f^k(x_{11}, x_{12}) = f^k(x_{12}, x_{13}) \ ext{and} \ f^k(x_{21}, x_{22}) = f^k(x_{22}, x_{23}) \ ext{then} \ ext{if} \ f^k(x_{31}, x_{32}) = f^k(x_{32}, x_{33}) \ ext{then} \ s_{a_i} &:= s_{a_i} + 1 \ ext{else} \ s_{a_i} &:= s_{a_i} - 1 \end{aligned}$$

 $f^k(x_{i_1j_1},x_{i_2j_2})$ - neuron z najwyższą wartością aktywacji w k-tej sieci ($k \in \{\text{kształt}, \text{obrót, rozmiar, zacienienie}\}$) dla podanych na wejściu obrazków na pozycjach (i_1,j_1) and (i_2,j_2). Wartość f^k może być interpretowana jako różnica wartości cechy k pomiędzy dwoma obrazkami.

Testy na inteligencję - wyniki

	$TR \rightarrow TS$	1 relation	2 relations	3 relations
DeepIQ	$G \to G$	$73.3\% \pm .7\%$	$74.1\% \pm .5\%$	$76.0\% \pm .6\%$
DeepIQ	$G \rightarrow S$	$70.2\% \pm .4\%$	$71.9\% \pm .6\%$	$73.2\% \pm .2\%$
Humans	\rightarrow S	87.0%	72.0%	55.0%

Przykład - klasyfikacja wielokryterialna

Multilabel classification

$$X\subseteq \mathbb{R}^d$$
 - zbiór obiektów $Y=\{y_1,y_2,\ldots,y_Q\}$ - zbiór kategorii C el: funkcja $h:X\longrightarrow 2^Y$

Każdy z obiektów może należeć do więcej niż jednej kategorii.

Przykładowe zastosowania:

- kategoryzacja tekstów (tagowanie artykułów, e-maili)
- multimedia (obrazy, filmy, muzyka)
- biologia (odkrywanie funkcji genomów, rozpoznawanie chorób na podstawie symptomów)

Klasyfikacja wielokryterialna - rozwiązanie

- perceptron wielowarstwowy jedna warstwa ukryta (40 neuronów)
- wejście: cechy obiektu
- Q wyjść: każde odpowiadające jednej kategorii

$$E = \sum_{p=1}^{m} \frac{\sum\limits_{(r,s)\in Y_p \times \overline{Y_p}} e^{-(c_r^p - c_s^p)}}{|Y_p||\overline{Y_p}|}$$

m - liczba obiektów w zbiorze uczącym

 $Y_p \subseteq Y$ - zbiór kategorii, do których należy p-ty obiekt

 $\overline{Y_p}$ - zbiór kategorii, do których nie należy p-ty obiekt $(\overline{Y_p} = Y \setminus Y_p)$

 c_q^p - aktualna wartość wyjścia neuronu odpowiadającego q-tej kategorii dla p-tego neuronu

Grodzicki, Mańdziuk, and Wang 2008

Klasyfikacjia wielokryterialna - usuwanie cech

Mańdziuk and Żychowski 2019b

Podsumowanie

- szerokie praktyczne zastosowania sieci neuronowych
- ciekawe architektury (autoenkoder, niepełne połączenia) lub modyfikacja błędu mogą pomóc
- nie wszędzie potrzeba uczenia głębokiego

Bibliografia I

- Rafał Grodzicki, Jacek Mańdziuk, and Lipo Wang. "Improved multilabel classification with neural networks". In: *International Conference on Parallel Problem Solving from Nature*. Springer. 2008, pp. 409–416.
- Jacek Mańdziuk and Adam Żychowski. "DeeplQ: A Human-Inspired Al System for Solving IQ Test Problems". In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE. 2019, pp. 1–8.
- Jacek Mańdziuk and Adam Żychowski. "Dimensionality Reduction in Multilabel Classification with Neural Networks". In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE. 2019, pp. 1–8.