

- ★ Super Low Gate Charge
- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID
-100V	70mΩ	-25A

Description

The XR20P10FÁis the high cell density trenched P-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR20P10F meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

PDFN5060-8L Pin Configuration

Absolute Maximum Ratings (T_A = 25°C, unless otherwise noted)

Parameter		Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	-100	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current	T _C = 25°C		-20	A	
	T _C = 100°C	l _D	-11		
Pulsed Drain Current ¹		Ірм	-72	А	
Single Pulse Avalanche Energy ²		EAS	42	mJ	
Total Power Dissipation	T _C = 25°C	P _D	102	W	
Operating Junction and Storage Temperature Range		Тл, Тята	-55 to 150	°C	

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Ambient ³	Reja	91	°C/W
Thermal Resistance from Junction-to-Case	Rejc	1.22	°C/W

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static Characteristics								
Drain-Source Breakdown Voltage		V _{(BR)DSS}	$V_{GS} = 0V, I_D = -250\mu A$	-100	-	-	V	
Gate-body Leakage curren	t	I _{GSS}	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
Zero Gate Voltage Drain	T _J = 25°C		4001/1/	-	-	-1	μА	
Current	T _J = 100°C	IDSS	$V_{DS} = -100V, V_{GS} = 0V$	-	-	-20		
Gate-Threshold Voltage		V _{GS(th)}	V _{DS} = V _{GS} , I _D = -250μA	-1.5	-2	-2.5	V	
Dunin Course On Braintan	1	R _{DS(on)}	V _{GS} = -10V, I _D = -10A	-	70	88		
Drain-Source On-Resistan	Drain-Source On-Resistance ⁴		V _{GS} = -4.5V, I _D = -6A		77	97	mΩ	
Forward Transconductance	e ⁴	G fs	V _{DS} = -10V, I _D = -10A	-	28	-	S	
Dynamic Characteristi	CS ⁵							
Input Capacitance		C _{iss}		-	2859	-		
Output Capacitance	Output Capacitance		$V_{DS} = -50V, V_{GS} = 0V,$ f = 1MHz	-	93	-	pF	
Reverse Transfer Capacitance		C _{rss}		-	68	-		
Gate Resistance		Rg	f = 1MHz	-	4.3	-	Ω	
Switching Characterist	ics ⁵							
Total Gate Charge		\mathbf{Q}_{g}		-	53	-	nC	
Gate-Source Charge		Qgs	$V_{GS} = -10V, V_{DS} = -50V,$ $I_{D} = -10A$	-	12	-		
Gate-Drain Charge		\mathbf{Q}_{gd}		-	10	-		
Turn-On Delay Time		t _{d(on)}		-	8	-		
Rise Time	Rise Time		$V_{GS} = -10V, V_{DD} = -50V,$	-	27	-	. ns	
Turn-Off Delay Time		t _{d(off)}	$R_G = 3\Omega$, $I_D = -10A$	-	155	-		
Fall Time		t _f		-	77	-		
Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge		t _{rr}		-	36	-	ns	
		Qrr	- I _F = -10A,dI/dt= 100A/μs	-	40	-	nC	
Drain-Source Body Diode Characteristics								
Diode Forward Voltage ⁴		V _{SD}	I _S = -10A, V _{GS} = 0V	-	-0.9	-1.3	V	
Continuous Source Curren	Continuous Source Current T _C = 25°C Is		-	-	-	20	Α	

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2. The EAS data shows Max. rating . The test condition is V_{DD} = -35V, V_{GS} = -10V, L= 0.5mH, I_{AS} = -23A
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%.$
- 5. This value is guaranteed by design hence it is not included in the production test..

Typical Performance Characteristics

Fig 2: Transfer Characteristics 50 $V_{DS} = -5V$ 40 30 € ⊕ 20 150°C 10 25°C 0 2 5 6 1 3 $-V_{GS}(V)$

3

Fig 8: Body-diode Forward
Characteristics

1000

100

150°C

150°

Fig 9: Power Dissipation

120
100
80
40
20
0 25 50 75 100 125 150
Tc - Case Temperature (°C)

1000
Limited by Rds(on)

100 Single pulse Tc=25°C

0.1

100 Single pulse Tc=25°C

100 To 100

 $-V_{DS}(V)$

Fig 11: Safe Operating Area

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Package Mechanical Data-PDFN5060-8L-Single

Symbol	Common	Common					
	mm	mm		Inch			
	Mim	Max	Min	Max			
Α	1.03	1.17	0.0406	0.0461			
b	0.34	0.48	0.0134	0.0189			
С	0.824	0.0970	0.0324	0.082			
D	4.80	5.40	0.1890	0.2126			
D1	4.11	4.31	0.1618	0.1697			
D2	4.80	5.00	0.1890	0.1969			
E	5.95	6.15	0.2343	0.2421			
E1	5.65	5.85	0.2224	0.2303			
E2	1.60	/	0.0630	/			
е	1.27 BSC	1.27 BSC					
L	0.05	0.25	0.0020	0.0098			
L1	0.38	0.50	0.0150	0.0197			
L2	0.38	0.50	0.0150	0.0197			
Н	3.30	3.50	0.1299	0.1378			
1	/	0.18	/	0.0070			