Assignment 11

PRABHAV SINGH (BT21BTECH11004)

Question: We have shown that if X is a random variable with distribution F(x), then the random variable y = F(x) is uniform in the interval (0,1). The following is a generalization.

Given n arbitrary random variables x_i ; we form the random variables $y_1 = F(x_1), y_2 = F(x_2|x_1),, y_n = F(x_n|x_{n-1},, x_1)$. We shall show that these random variables are independent and each is uniform in the interval (0,1).

Solution:

The random variables y_1 are functions of the random variables x_i as assumed in initial stage of the problem ,For $0 \le y \le 1$, the system

$$y_1 = F(x_1), y_2 = F(x_2|x_1), \dots, y_n = F(x_n|x_{n-1}, \dots, x_1)$$

has a unique solution $x_1, x_2, x_3, ..., x_n$ and its jacobian equals

$$J = \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & 0 & 0.... & 0 \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & 0.... & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_n} & \vdots & \dots & \frac{\partial y_1}{\partial x_1} \end{vmatrix}$$
This determinant is trigger

This determinant is triangular; hence it equals the product of its diagonal elements

$$\frac{\partial y_k}{\partial x_k} = f(x_k | x_{k-1}, \dots, x_1)$$

But we know by definition of conditional probability,

$$f(x_1,, x_k) = f(x_k | x_{k-1},, x_1).....f(x_2 | x_1).f(x_1)$$
(1)

So we have

$$f(y_1,, y_n) = \frac{f(y_1,, y_n)}{f(x_n | x_{n-1},, x_1) f(x_2 | x_1) . f(x_1)} = 1$$
(2)

Hence it is proved that in the n-dimensional cube $0 \le y_i \le 1$, and 0 otherwise.