Name:		
1.	Write the following numbers in scientific notation:	
	212,000	
	0.0031300	
2.	Write the following numbers in standard (non-scientific) notation:	
	6.440×10^3	
	9.58×10^{-2}	
3.	Find the number of significant figures in the answer to this calculation:	
	2000.0 - 1999.0	
4.	Name what the following units measure:	
	Kilograms	
	Liters	
	Meters	
	$rac{g}{mL}$	
5.	Write whether the following properties are chemical or physical:	
	The malleability of aluminum foil	
	The melting point of ice cream	
	The combustion of paper	

6.	Write whether the following are homogenous mixtures, heterogeneous mixtures, or pure substances:
	Gasoline
	Copper
	Air
	Salt water
	A stream with gravel at the bottom

7. Using the formula for specific heat, calculate the amount of energy needed to raise the temperature of 1.6g of gold (specific heat $0.13 \frac{J}{g^{\circ}C}$) from $23^{\circ}C$ to $41^{\circ}C$: