矩阵的概念

由 $m \times n$ 个数 a_{ij} 排成的 m 行 n 列的数表

称为 m 行 n 列矩阵, 简称 $m \times n$ 矩阵, 为表示一个整体, 总是加一个括弧, 并用大写黑体字母表示它, 记为

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

这 $m \times n$ 个数称为矩阵 \boldsymbol{A} 的元素, a_{ij} 称为矩阵 \boldsymbol{A} 的第 i 行第 j 列的元素,一个 $m \times n$ 矩阵 \boldsymbol{A} 也可简记为

$$\mathbf{A} = \mathbf{A}_{m \times n} = (a_{ij})_{m \times n} \text{ or } \mathbf{A} = (a_{ij})$$

如果矩阵 A = B 的行数及列数均相同,且对应元素相等,则称矩阵 A 与矩阵 B 相等,记为 A = B

几种特殊矩阵

• 实矩阵

元素均为实数的矩阵

• 复矩阵

元素为复数的矩阵

非负矩阵

元素均为非负数的矩阵

n 阶方阵

若矩阵 A 的行数与列数都等于 n, 则称 A 为 n 阶方阵, 记为 A_n

• 同型矩阵

如果两个矩阵具有相同的行数与相同的列数,则称这两个矩阵为同型矩阵

零矩阵

所有元素均为零的矩阵,记为O

• n 阶单位矩阵

$$n$$
 阶方阵
$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
, 记为 $\boldsymbol{E} = \boldsymbol{E}_n$ or $\boldsymbol{I} = \boldsymbol{I}_n$

• 行矩阵 & 行向量

只有一行的矩阵 $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$,为避免元素混淆,也记为 $\begin{bmatrix} a_1, & a_2, & \cdots, & a_n \end{bmatrix}$

列矩阵 & 列向量

只有一列的矩阵
$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

• n 阶对角矩阵

$$n$$
 阶方阵
$$\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$
, 也可记为 $\mathbf{A} = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$

• n 阶数量矩阵

当一个 n 阶对角矩阵 \mathbf{A} 的对角元素全部等于某一数 a 是,即 $\mathbf{A} = \operatorname{diag}(a, a, \dots, a) = a\mathbf{I}$

矩阵的运算

取负

设矩阵 $\mathbf{A} = (a_{ij})$,记 $-\mathbf{A} = (-a_{ij})$,称 $-\mathbf{A}$ 为矩阵 \mathbf{A} 的负矩阵

加法

设有两 $m \times n$ 的同型矩阵 $\mathbf{A} = (a_{ij})$ 和 $\mathbf{B} = (b_{ij})$,矩阵 $\mathbf{A} = \mathbf{B}$ 的和记作 $\mathbf{A} + \mathbf{B}$,规定为

$$\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij}) = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

• 减法

由于 A + (-A) = O, 则可定义减法 A - B = A + (-B)

• 数乘运算

数 $k 与 m \times n$ 矩阵 **A** 的乘积记作 k**A** 或 **A**k,定义为

$$k\mathbf{A} = \mathbf{A}k = (ka_{ij}) = \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{bmatrix}$$

• 线性运算

矩阵的加法与数乘两种运算统称为矩阵的线性运算,它们满足规律

$$> A + B = B + A$$

$$> (A + B) + C = A + (B + C)$$

 $> A + O = A$
 $> A + (-A) = O$
 $> 1A = A$
 $> k(lA) = (kl)A$
 $> (k + l)A = kA + lA$
 $> k(A + B) = kA + kB$

• 乘法

设

$$\mathbf{A} = (a_{ij})_{m \times s} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ms} \end{bmatrix} \quad \mathbf{B} = (b_{ij})_{s \times n} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{s1} & b_{s2} & \cdots & b_{sn} \end{bmatrix}$$

矩阵 A 与矩阵 B 的乘积记作 AB, 定义为

$$\mathbf{AB} = (c_{ij})_{m \times n} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix} \quad \left(c_{ij} = \sum_{k=1}^{s} a_{ik} b_{kj} \right)$$

若 $m{C} = m{A}m{B}$,则矩阵 $m{C}$ 的元素 c_{ij} 即为矩阵 $m{A}$ 第 i 行元素与矩阵 $m{B}$ 第 j 行元素对应元素乘积之和,即

$$c_{ij} = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{is} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{sj} \end{bmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{is}b_{sj} = \sum_{k=1}^{s} a_{ik}b_{kj}$$

显然 $AB \neq BA$ (有时两者中只有一个有定义)

两非零矩阵的乘积可能为零矩阵,故不能从 AB = O 得出 A or B = O 矩阵乘法一般也不满足消去律,即不能从 AC = BC 得出 A = B

矩阵乘法满足运算规则(若有定义)

$$> (AB)C = A(BC)$$

 $> (A+B)C = AC + BC$
 $> C(A+B) = CA + CB$
 $> k(AB) = (kA)B = A(kB)$

可交换

如果两矩阵相乘,有 AB = BA,则称矩阵 A 与矩阵 B 可交换,简称 A 与 B 可换 (对于单位矩阵有 $I_mA_{m\times n} = A_{m\times n}I_n = A_{m\times n}$)

• 转置

把矩阵 \boldsymbol{A} 的行换成同序数的列所得到的新矩阵称为 \boldsymbol{A} 的转置矩阵,记作 \boldsymbol{A}^T or \boldsymbol{A}'

即若
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, 则 $\mathbf{A}^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$

矩阵的转置满足运算规则(若有定义)

$$> (\mathbf{A}^T)^T = \mathbf{A}$$
 $> (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
 $> (k\mathbf{A})^T = k\mathbf{A}^t$
 $> (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$

• 方阵的幂

设方阵 $\mathbf{A} = (a_{ij})_{n \times n}$, 规定

$$oldsymbol{A}^0 = oldsymbol{I}, \, oldsymbol{A}^k = \overbrace{oldsymbol{A} \cdot oldsymbol{A} \cdot oldsymbol{A}}^{k \, ext{of} \, oldsymbol{A}}$$

矩阵的幂满足运算规则

$$> A^m A^n = A^{m+n}$$

 $> (A^m)^n = A^{mn}$

• 方阵的行列式

由 n 阶方阵 A 的元素所构成的行列式 (各元素的位置不变), 称为方阵 A 的行列式, 记作

$$|A|$$
 or $\det A$

矩阵 A 的行列式 $\det A$ 满足运算规则 (其中 A 与 B 同为 n 阶方阵)

$$> \det \mathbf{A}^T = \det \mathbf{A}$$

 $> \det(k\mathbf{A}) = k^n \det \mathbf{A}$
 $> \det(\mathbf{A}\mathbf{B}) = \det \mathbf{A} \det \mathbf{B}$
 $> \det(\mathbf{A}\mathbf{B}) = \det(\mathbf{B}\mathbf{A})$

• 对称矩阵

设 \mathbf{A} 为 n 阶方阵,如果 $\mathbf{A}^T = \mathbf{A}$,即 $a_{ij} = a_{ji}$,则称 \mathbf{A} 为对称矩阵

• 反对称矩阵

设 \boldsymbol{A} 为 n 阶方阵,如果 $\boldsymbol{A}^T = -\boldsymbol{A}$,即 $a_{ij} = -a_{ji}$,则称 \boldsymbol{A} 为反对称矩阵

• 共轭矩阵

设 $\mathbf{A} = (a_{ij})$ 为复矩阵,记 $\overline{\mathbf{A}} = (\overline{a_{ij}})$,其中 $\overline{a_{ij}}$ 为 a_{ij} 的共轭复数,称 $\overline{\mathbf{A}}$ 为 \mathbf{A} 的共轭矩阵

$$> \overline{A + B} = \overline{A} + \overline{B}$$

$$> \overline{\lambda A} = \overline{\lambda A}$$

$$> \overline{AB} = \overline{AB}$$

$$> \overline{(A^T)} = (\overline{A})^T$$

逆矩阵

对于一个 n 阶方阵 \boldsymbol{A} ,如果存在一个 n 阶方阵 \boldsymbol{B} ,使得 $\boldsymbol{A}\boldsymbol{B}=\boldsymbol{B}\boldsymbol{A}=\boldsymbol{I}$,则称方阵 \boldsymbol{A} 为可逆矩阵,而方阵 \boldsymbol{B} 称为 \boldsymbol{A} 的逆矩阵

若矩阵 A 是可逆的,则 A 的逆矩阵是唯一的,记为 A^{-1}

如果 n 阶方阵 \boldsymbol{A} 的行列式 $\det \boldsymbol{A} \neq 0$,则称 \boldsymbol{A} 为非奇异的,否则称 \boldsymbol{A} 为奇异的

线性方程组的矩阵表示

对于线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

若记
$$m{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, $m{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $m{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$, 则利用矩阵的乘法,线性方程组可表示为

其中 A 称为方程组的系数矩阵,方程 Ax = b 称为矩阵方程

如果 $x_j=c_j$ 是方程组的解,记列矩阵 $\pmb{\eta}=\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix}$,则 $\pmb{A}\pmb{\eta}=\pmb{b}$ 这是也称 $\pmb{\eta}$ 是矩阵方程的解;反之如果 $\pmb{\eta}$ 是矩阵方程

的解,既有矩阵等式 $A\eta = b$ 成立,则 $x = \eta$,即 $x_j = c_j$ 也是线性方程组的解

线性变换

变量 x_1, x_2, \cdots, x_n 与变量 y_1, y_2, \cdots, y_m 之间的关系式

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{cases}$$

称为从变量 x_1, x_2, \dots, x_n 到变量 y_1, y_2, \dots, y_m 的线性变换,其中 a_{ij} 为常数; 线性变换的系数 a_{ij} 构成的矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$ 称为线性变换的系数矩阵

若记
$$m{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, $m{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $m{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$,则线性变换关系是可表示为矩阵形式 $m{y} = m{A} m{x}$

当一线性变换的系数矩阵为单位矩阵 I 式,线性变换 y=Ix 称为恒等变换,因为 x=Ix 线性变换实际上构建了一种从矩阵 x 到矩阵 Ax 的矩阵变换关系 $x\to Ax$