Amendments to the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claim 1 (currently amended): A compound according to formula (I):

$$R_2$$
 R_3
 R_9
 R_9
 R_9

wherein R_6 is H, OH, C_4 - C_{25} alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both H or halogen;

R₉ is halogen;

Z is independently selected from R_{67} , OH, alkoxy, halogen, OC(O) R_{67} , =O, amine, azide, thiol, mercaptoalkyl, alkenyloxy, mercaptoalkenyl, aryloxy, mercaptoaryl, arylalkyloxy, mercaptoarylalkyl, SC(O) R_{6} , OS(O) R_{6} , OS(O) R_{6} , OS(O) R_{6} , OS(O) R_{6} , NHC(O) R_{6} , NHC(O) R_{6} , or NHR₄;

R₄ is OH, alkyl, alkoxy, poly(ethylene glycol), alkenyl, aryl or arylalkyl;

R₁₀ is H, OH, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl; and

wherein each substituent can be substituted or unsubstituted, straight chain or branched chain, and either hydrophobic, or hydrophilic or fluorophilic;

provided that:

when R₆ is propyl, R₂ is Br, R₃ is H or Br and R₉ is Br, then Z is other than H, OC(O)CH₃ or OH;

when R_6 is propyl, R_2 is Br, R_3 is H and R R_9 is I, then Z is other than $OC(O)CH_3$ or OH; when R_6 is propyl, R_2 is Br, R_3 is H and R R_9 is CI, then Z is other than OH; when R_6 is propyl, R_2 is H, R_3 and R R_9 are Br, then Z is other than H; and

Page 3

when R₆ is propyl, R₂ is Br, R₉ is Cl and Z is H, then R₃ is other than Cl.

Claim 2 (currently amended): A compound according to formula (Ia):

$$R_2$$
 R_3
 R_9
(Ia)

wherein R_1 is hydrogen, C_4 - C_{25} alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

X is a halogen, OH, OC(O) R_1 R_{11} or =O;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen;

R₁₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl; and

wherein each substituent can be substituted or unsubstituted, straight chain or branched chain, and either hydrophobic, or hydrophilic or fluorophilic;

provided that:

when R₁ is propyl, R₂ is Br, R₃ is H or Br and R₉ is Br, then X is other than OC(O)CH₃ or OH;

when R₁ is propyl, R₂ is Br, R₃ is H and R₉ is I, then X is other than OC(O)CH, or OH; and

when R₁ is propyl, R₂ is Br, R₃ is H, R₉ is Cl, then X is other than OH.

Claim 3 (canceled)

Claim 4 (currently amended): A compound according to formula (III):

$$R_{3}$$
 R_{9}
(III)

wherein R₂ and R₃ are independently or both hydrogen or halogen;

 R_5 is OH or the same as R_1 ;

R₉ is halogen;

R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl; and wherein each substituent can be substituted or unsubstituted, straight chain or branched chain, and either hydrophobic, or hydrophilic or fluorophilic.

Claim 5 (currently amended): A compound according to formula (IV) or (V):

$$R_{3}$$
 R_{9}
 R_{9}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{9}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5

wherein R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen;

R₈ is OH, NHR₁, NHC(X)NH₂, NHC(X)NHR₁ or R₁ where X is O, S or NR₁; and wherein each substituent can be substituted or unsubstituted, straight chain or branched

chain, and either hydrophobic, or hydrophilic or fluorophilic.

Claim 6 (currently amended): A method for forming a compound of formula (Ia), comprising reacting a fimbrolide with a halogenating agent and/or an oxygenating agent to form the compound of formula (Ia):

$$R_{2}$$
 R_{3}
 R_{9}
 R_{9}
 R_{1}
 R_{2}
 R_{3}

wherein R_1 is hydrogen, C_4 - C_{25} alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

X is a halogen, OH, OC(O) R_1R_{11} or =O;

R₂ and R₃ are independently or both hydrogen or halogen; and

R₉ is halogen; and

R₁₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl.

Claim 7 (original): A method according to claim 6 wherein the halogenating agent is selected from the group N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, bromine, cupric bromide, and phenyltrimethylammonium perbromide.

Claim 8 (original): A method according to claim 6 wherein the oxygenating agent is selected from lead tetraacetate, Rose Bengal/oxygen gas, hydrogen peroxide/vanadium pentoxide, selenium dioxide, and 3-chloroperoxybenzoic acid.

Claim 9 (currently amended) A method for forming a compound of formula II, comprising displacing and/or functionalizing a halogen or oxygen substituent in the side chain of a fimbrolide compound by treating the fimbrolide compound with a nucleophile or an electrophile to form the compound of formula (II):

Application No.: 09/673,305

Page 6

$$R_3$$
 R_9
(II)

wherein R_1 is hydrogen, C_4 - C_{25} alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen; and

wherein each substituent can be substituted or unsubstituted, straight chain or branched chain, and either hydrophobic, or hydrophilic or fluorophilic;

provided that when R₄ is propyl, R₂ is Br, R₃ and R₉ are Cl, then R₁ is other than H.

Claim 10 (original): A method according to claim 9 wherein the nucleophile is selected from metal halides, water, organic metal carboxylate, organic alcohols, dimethyl sulfoxide, and organonitrile/acid catalyst, and silver triflate.

Claim 11 (original): A method according to claim 9 wherein the electrophile is selected from organic acids, isocyanates, acid halides or active acylating agents such as carbonyl imidazoles or anhydrides (including activated hydrophilic PEG acids, PEG acid chlorides, PEG-oxycarbonylimidazoles and PEG-isocyanates) organic sulfonyl chlorides, and diethylaminosulfur trifluoride.

Claim 12 (currently amended): A method for forming a compound of formula (III), comprising reacting an hydroxyl substituent in the side chain of a fimbrolide with an oxidising

agent to form the compound in accordance with formula (III):

$$R_2$$
 R_3
 R_9
(III)

wherein R₂ and R₃ are independently or both hydrogen or halogen;

 R_5 is OH or the same as R_1 ;

R₉ is halogen;

R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl; and

wherein each constituent substituent can be substituted or unsubstituted, straight chain or branched chain, and either hydrophobic, or hydrophilic or fluorophilic.

Claim 13 (original): A method according to claim 12 wherein the oxidising agents is selected from the group consisting of acid dichromate reagents in any form which may be free or polymer supported, chromium trioxide, manganese dioxide, potassium permanganate, selenium dioxide, ceric ammonium nitrate, ruthenium tetraoxide, and hot nitric acid.

Claim 14 (previously presented): A method according to claim 13, wherein the acid dichromate agent is selected from the group consisting of a Jones reagent, pyridinium chlorochromate, and pyridinium dichromate.

Claim 15 (currently amended): A method for forming a compound of formula (IV) or (V), comprising reacting an aldehyde or ketone substituent in the side chain $-C(O)R_5$ of compound (III) with an amine to form a compound of formula (IV) or (V),

wherein formula (IV) and (V) are represented by:

$$R_{3}$$
 R_{9}
 (IV)
 R_{8}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{9}
 (V)

wherein R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen;

R₈ is OH, NHR₁, NHC(X)NH₂, NHC(X)NHR₁ or R₁ where X is O, S or NR₁; and wherein each substituent can be substituted or unsubstituted, straight chain or branched chain, and either hydrophobic, or hydrophilic or fluorophilic;

and wherein formula (III) is represented by:

$$R_2$$
 R_3
 R_9
(III)

wherein R₂ and R₃ are independently or both hydrogen or halogen;

 R_5 is OH or the same as R_1 ; and

R₉ is halogen.

Claim 16 (previously presented): A method according to claim 15, wherein the amine is selected from hydroxyl amine hydrochloride, alkyl and aryl hydrazines, alkyl or aryl amine, optionally in the presence of a reducing agent.

Claims 17-21 (canceled)

Claim 22 (currently amended): An antimicrobial, antiseptic and/or microbacterial static composition including at least one compound in accordance with claim 1 and a carrier with the proviso that the compound is not selected from (1'RS, 5Z)-3-(1'bromohexyl)-4-bromo-5-(bromomethylidene)-2(5H)-furanone, (1'RS) 3-(1'-bromohexyl)-5-(bromomethylidene)-2(5H)-furanone or combinations thereof.

Claim 23 (currently amended): An antifouling composition including at least one compound in accordance with claim 1 and a carrier with the proviso that the compound is not selected from (1'RS, 5Z)-3-(1'bromohexyl)-4-bromo-5-(bromomethylidene)-2(5H)-furanone, (1'RS) 3-(1'-bromohexyl)-5-(bromomethylidene)-2(5H)-furanone or combinations thereof.

Claim 24 (canceled)

Claim 25 (currently amended): A compound of formula (VI):

$$R_3$$
 R_9
 VI

wherein R_1 is alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen; and

wherein each substituent can be substituted or unsubstituted, straight chain or branched chain, and either hydrophobic, or hydrophilic or fluorophilic;

Claim 26 (original): A compound according to claim 25 which is 4-Bromo-5-(bromomethylene)-3-(1-butenyl)-2(5H)-furanone.

Claims 27-49 (canceled)

Claim 50 (currently amended): A compound according to formula (II):

$$R_{2}$$
 R_{3}
 R_{9}
(II)

wherein R_1 is hydrogen, C_4 - C_{25} alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

 R_2 and R_3 are independently or both hydrogen or halogen;

R₉ is halogen;

 R_4 is selected from halogen, amine, azide, hydroxyl, thiol, or hydrophobic, hydrophilic or fluorophilic alkyl, alkoxy, mercaptoalkylalkenyloxy, mercaptoalkenyl, aryloxy, mercaptoaryl, arylalkyloxy, mercaptoarylalkyl, $OC(O)R_{1\underline{1}}$, $SC(O)R_{1\underline{1}}$, $OS(O)R_{1\underline{1}}$, $OS(O)_2R_{1\underline{1}}$, $OS(O)_2R_{1\underline{1}}$, $OS(O)_2R_{1\underline{1}}$, $OS(O)_3R_{1\underline{1}}$, $OS(O)_3R_{$

R11 is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl; and

wherein each substituent can be substituted or unsubstituted, straight chain or branched chain, and either hydrophobic, or hydrophilic or fluorophilic;

provided that:

when R_4 is propyl, R_2 is Br, R_3 is H or Br, and R is Br, then R_1 is other than H, $OC(O)CH_3$ or OH;

when R_4 is propyl, R_2 is Br, R_3 is H, R_9 is I, then R_1 is other than OC(O)CH, or OH; when R_4 is propyl, R_2 is Br, R_3 is H, R_9 is Cl, then R_1 is other that OH; when R_4 is propyl, R_2 is H, R_3 and R_9 are Br, then R_1 is other than H; and when R_4 is propyl, R_2 is Br, R_3 and R_9 are Cl, then R_1 is other than H.