

EAFIT

Escuela de Ciencias - Departamento de Matemáticas Taller Cálculo en Varias Variables, 01-2020

Integrales en coordenadas esféricas

1. Determine el volumen del sólido que está encima del cono $x^2+y^2=3z^2$ y debajo de la esfera $x^2+y^2+z^2=4z$. Suponiendo que la densidad de masa es constante $\sigma(x,y,z)=C$, encuentre el centro de masa del sólido.

2. Halle el volumen del sólido en el primer octante limitado por las esferas $x^2+y^2+z^2=1$, $x^2+y^2+z^2=4$, el cono $x^2+y^2=z^2$ y el plano xy.

3. Evalúe

$$\iiint_E \frac{e^{x^2 + y^2 + z^2}}{\sqrt{x^2 + y^2 + z^2}} \, dV,$$

donde E es la región comprendida entre las esferas $x^2+y^2+z^2=1,$ $x^2+y^2+z^2=4$ y encima del cono $z=\sqrt{x^2+y^2}$ (ver figura).

4. Identifique y dibuje la región de integración de la siguiente integral. Además, use coordenadas esféricas para calcular su valor.

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{\sqrt{9-x^2-y^2}} z \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx.$$

5. Evalúe

$$\iiint_{E} \frac{1}{x^2 + y^2 + z^2} \, dV,$$

donde E es la región que está por fuera de la esfera $x^2+y^2+z^2=1$ y es interior a la esfera $x^2+y^2+z^2=2z$ (ver figura).

Integral de linea Escalar

6. Sea C la curva de intersección del paraboloide $z=2x^2+y^2$ y el plano $y=\sqrt{2}x$, que se encuentra debajo de z=4. Halle la longitud de arco de C.

7. Un alambre se enrolla sobre el cilindro $x^2 + y^2 = 4$ con punto inicial (2,0,0), de manera que la altura z de cada punto del alambre es una función lineal del ángulo t de enrollamiento hasta el punto. Suponga que en una vuelta el alambre alcanza una altura de 2π . Calcule la masa de la primera vuelta del alambre, si en cada punto la densidad lineal de masa es igual a la altura z del punto.

8. Una circunferencia inicialmente en la posición $x^2 + (y-1)^2 = 1$, se hace rodar sobre el eje x con velocidad angular de 1rad/seg. El punto P que inicialmente se halla en el origen describe una curva llamada cicloide. Parametrice la cicloide tomando el tiempo t como parámetro y halle la longitud de la curva descrita en un giro de la circunferencia.

9. Escriba la integral que da la longitud de arco de la curva de intersección del cilindro $x^2+(y-1)^2=1$ y el paraboloide $z=4-x^2-y^2.$

10. Empareje cada campo vectorial \vec{F} en \mathbb{R}^2 con su diagrama respectivo (etiquetados como I-IV). Explique los motivos.

Campo Vectorial	$\vec{F}(x,y) = \langle x, y \rangle$	$\vec{F}(x,y) = \langle -x, -y \rangle$	$\vec{F}(x,y) = \langle y, -x \rangle$	$\vec{F}(x,y) = \langle y, x \rangle$
Gráfica				

11. Empareje cada campo vectorial \vec{F} en \mathbb{R}^3 con su diagrama correspondiente (etiquetados como I-IV). Explique los motivos.

Campo Vectorial	Gráfica
$\vec{F}(x,y,z) = \langle x,y,z \rangle$	
$\vec{F}(x,y,z) = \langle -x, -y, -z \rangle$	
$\vec{F}(x,y,z) = \langle x,0,0 \rangle$	
$\vec{F}(x,y,z) = \langle 1,2,3 \rangle$	

12. Empareje cada campo vectorial gradiente con su diagrama respectivo (etiquetados como I-IV). Explique los motivos.

Campo Gradiente de	$f(x,y) = -x^2 - y^2$	$f(x,y) = \sqrt{x^2 + y^2}$	f(x,y) = xy	$f(x,y) = x^2 - y^2$
Gráfica				
(T)	(***)	(****)		(****)

Teorema Fundamental de las integrales de Linea

- 13. Sean C la recta que une a (1,1,1) con (2,3,1) y $\vec{F}(x,y,z)=xy\vec{i}+y^2\vec{j}+e^z\vec{k}$. Halle $\int_C \vec{F} \cdot d\vec{r}$.
- 14. Sean $\vec{F}(x,y,z) = (2xy^2 + z, 2x^2y + 2y, x)$ y C la curva con parametrización

$$\vec{r}(t) = \left(\sin^8\left(\frac{\pi}{2}t\right) + 1, t^3, t^8\right),$$

con
$$t \in [0,1]$$
. Halle $\int_C \vec{F} \cdot d\vec{r}$.

- 15. Calcule la integral de línea $\int_C (3+2xy) dx + (x^2-3y^2) dy$, donde C es cualquier curva suave que va de (0,1) a $(0,-e^{\pi})$.
- 16. Sea C la curva con parametrización $\vec{r}(t) = (t, \sin t, t^2 \cos t)$, para $0 \le t \le \pi$. Sean $f(x, y, z) = z^2 e^{x^2 y} + x^2$ y $\vec{F} = \nabla f$. Halle $\int_C \vec{F} \cdot d\vec{r}$.
- 17. Encuentre la integral de línea del campo vectorial $\vec{F}(x,y,z) = \left(\cos(x+y), 2yze^{y^2z} + \cos(x+y), y^2e^{y^2z}\right)$ a lo largo de la curva slinky $\vec{r}(t) = (\sin(40t), (2+\cos(40t))\cos(t), (2+\cos(40t))\sin(t)), \cos(0 \le t \le \pi$.

18. ¿Cuál de los siguientes es un campo vectorial conservativo?

(a)
$$\overrightarrow{F}(x,y) = \left(e^x \sin y - \frac{1}{x^2+1} + y, \ e^x \cos y + 2x - 3y^2\right)$$

(b)
$$\overrightarrow{F}(x,y) = \left(e^x \sin y - \frac{1}{x^2+1} + y, \ e^x \cos y - 3y^2\right)$$

(c)
$$\overrightarrow{F}(x,y) = (e^x \operatorname{sen} y + y, e^x \operatorname{cos} y + 2x)$$

$$(d) \overrightarrow{F}(x,y) = \left(e^x \operatorname{sen} y - \frac{1}{x^2 + 1}, \ e^x \cos y - 3y^2\right).$$

19. Considere el campo vectorial

$$\vec{F}(x,y,z) = \left(\frac{ye^{xy}}{1 + e^{2xy}}, \frac{xe^{xy}}{1 + e^{2xy}} + z^3, 3yz^2\right)$$

y la curva ${\cal C}$ con parametrización

$$\vec{r}(t) = ((2 + \cos(8t))\cos t, (2 + \cos(8t))\sin t, \sin(8t)),$$

con $0 \le t \le 2\pi$. Halle la integral de línea $\int_C \vec{F} \cdot d\vec{r}$.

20. Halle el trabajo realizado por el campo de fuerzas $\overrightarrow{F}(x,y) = \frac{y^2}{1+x^2}\overrightarrow{i} + 2y\tan^{-1}x\overrightarrow{j}$, al mover una partícula a lo largo de la curva C dada por $\overrightarrow{r}(t) = 2t\overrightarrow{i} + t^2\overrightarrow{j}$, $0 \le t \le 1$.

21. Sea $C=\left\{(x,y)\in\mathbb{R}^2:4y^2=x;\;x\leq 4\right\}$ orientada en sentido horario. Calcule la integral de línea

$$\int_C \left(\tan^{-1} y\right) dx + \left(\frac{x}{1+y^2} + 2ye^{y^2}\right) dy.$$

22. Halle el trabajo realizado por el campo de fuerzas $\overrightarrow{F}(x,y) = x^2y\overrightarrow{i} + (x^4 + y^2)\overrightarrow{j}$, al mover una partícula a lo largo del arco de parábola $y = x^2$ que va de (0,0) a (1,1).