Correction DM n°3: Circuits du deuxième ordre

I Étude d'un régime transitoire

1. Aux temps t>0, les interrupteurs K_1 et K_2 étant ouverts, on étudie un circuit RLC série en régime libre :

Loi des mailles : $u_L + u_R + u_C = 0$. Relations courant-tension : $u_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$, $u_R = Ri$ et $i = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$. En dérivant la loi des mailles, on obtient :

$$\frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{i}{LC} = 0$$

Par identification à l'équation canonique, on en déduit $\boxed{\omega_0 = \frac{1}{\sqrt{LC}}}$ et $Q = \omega_0 \frac{L}{R}$ soit $\boxed{Q = \frac{1}{R} \sqrt{\frac{L}{C}}}$

2. (i) Au cours du régime permanent correspondant aux temps t < 0, on peut assimiler la bobine à un fil et le condensateur à un interrupteur ouvert, d'où le circuit équivalent :

Loi des noeuds : $i = i_2 - i_1$. Lois des mailles : $E + Ri_2 = 0$, $E + Ri_1 = 0$ et $u_C = -E$. En particulier, juste avant fermeture de l'interrupteur, on a ainsi $i(0^-) = 0$ et $u_C(0^-) = -E$.

- (ii) Par continuité de l'intensité du courant traversant une bobine et de la tension aux bornes d'un condensateur, on en déduit : $i(0^+) = 0$ et $u_C(0^+) = -E$.
- (iii) Aux temps t>0, on déduit de la question précédente la relation $L\frac{\mathrm{d}i}{\mathrm{d}t}+Ri+u_C=0$. En particulier, juste après fermeture des interrupteurs : $L\frac{\mathrm{d}i}{\mathrm{d}t}(0^+)+Ri(0^+)+u_C(0^+)=0$ d'où $\frac{\mathrm{d}i}{\mathrm{d}t}(0^+)=\frac{E}{L}$.
- 3. (a) La présence d'oscillations est caractéristique d'un régime pseudo-périodique tel que $Q > \frac{1}{2}$.
 - (b) On cherche une solution sous la forme $i(t) = \exp\left(-\frac{\omega_0 t}{2Q}\right) (A\cos(\Omega t) + B\sin(\Omega t))$ avec A, B des constantes à déterminer à partir des conditions initiales et $\Omega = \omega_0 \sqrt{1 \frac{1}{4Q^2}}$ la pseudo-pulsation. Ainsi $i(0^+) = A = 0$

0. En outre,
$$\frac{\mathrm{d}i}{\mathrm{d}t}(t) = B \exp\left(-\frac{\omega_0 t}{2Q}\right) \left(\Omega \cos\left(\Omega t\right) - \frac{\omega_0}{2Q} \sin\left(\Omega t\right)\right)$$
d'où $\frac{\mathrm{d}i}{\mathrm{d}t}(0^+) = \frac{E}{L} = B\Omega$, soit $B = \frac{E}{L\Omega}$. Finalement : $i(t) = \frac{E}{L\Omega} \exp\left(-\frac{\omega_0 t}{2Q}\right) \sin\left(\Omega t\right)$.

- (c) La trajectoire de phase doit être orientée dans le sens des aiguilles d'une montre pour avoir i croissant quand $\frac{di}{dt}$ positif.
- (d) Les fonctions $\cos(\Omega t)$ et $\sin(\Omega t)$ sont $T = \frac{2\pi}{\Omega}$ périodiques. De A à B, on passe de l'instant $t_{\rm A} = 0$ à l'instant $t_{\rm B} = t_{\rm A} + T = T$. En utilisant $\frac{{\rm d}i}{{\rm d}t}(t) = \frac{E}{L\Omega} \exp\left(-\frac{\omega_0 t}{2Q}\right) \left(\Omega\cos\left(\Omega t\right) \frac{\omega_0}{2Q}\sin\left(\Omega t\right)\right)$, on en déduit $\alpha/\beta = \exp\left(\frac{\omega_0 T}{2Q}\right)$. Comme $\frac{\omega_0 T}{2Q} = \frac{\omega_0}{2Q} \frac{2\pi}{\Omega} = \frac{\pi}{Q\sqrt{1-\frac{1}{4\Omega^2}}} = \frac{\pi}{\sqrt{Q^2-\frac{1}{4}}}$, on trouve $Q = \frac{\sqrt{4\pi^2 + (\ln\left(\alpha/\beta\right))^2}}{2\ln\left(\alpha/\beta\right)}$.

Par lecture graphique, $\alpha/\beta = 4/0, 8$ d'où Q = 2: cette valeur correspond bien à l'ordre de grandeur du nombre d'oscillations d'amplitude non négligeable sur le chronogramme.

(e) Le chronogramme présente une pseudo-période T=0,8 ms. En utilisant l'expression de la pseudo-pulstation $\omega_0=\frac{2\pi}{T}\frac{1}{\sqrt{1-\frac{1}{4Q^2}}}$, on obtient $\omega_0=8\times 10^3~{\rm rad\cdot s^{-1}}$. De plus, $C=\frac{1}{L\omega_0^2}$ d'où $C=1,5\times 10^{-7}~{\rm F}$. En utilisant la valeur $\frac{{\rm d}i}{{\rm d}t}(0^+)=40~{\rm A\cdot s^{-1}}$ de la trajectoire de phase, on peut calculer $E=L\frac{{\rm d}i}{{\rm d}t}(0^+)$, soit

 $E = 4 \text{ V}. \text{ Enfin, } R = \frac{1}{Q} \sqrt{\frac{L}{C}} \text{ d'où } R = 4 \times 10^2 \text{ }\Omega.$