1 | Complex Number Review

Notes taken on (12/7/21)

Complex numbers were invented so that we can represent $\sqrt{-1}$.

A complex number is an ordered pair of numbers (a,b), and is represented as a+bi. The set of all complex numbers is $C=\{a+bi:a,b\in\mathbb{R}\}$.

Addition and subtraction works pretty standardly; (a + bi) + (c + di) = (a + c) + (b + d)i.

There's also the powers of i, but this is trivial.

Complex number properties:

Commulative $\alpha + \beta = \beta + \alpha$

Associative $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$; $(\alpha\beta)\lambda = \alpha(\beta\lambda)$

Identities $\alpha + 0 = \alpha$; $\alpha \cdot 1 = \alpha$

Multiplicative Inverse $\forall \alpha \exists \beta : \alpha \beta = 1$

Distributive $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$

The book goes into proving this but I won't do that here. Also, in Axler, $\mathbb F$ will mean either $\mathbb C$ or $\mathbb R$. Theorems that work for $\mathbb F$ will work for both $\mathbb C$ and $\mathbb R$.

If $\alpha \in \mathbb{F}$, then α is a scalar. Definition of a scalar. Axler rambles about powers of numbers now, but it's pretty self-evident so I won't cover this here.

Then he talks about \mathbb{R}^n and \mathbb{C}^n . The formal definition for a particular n (e.g. 2) is $\mathbb{R}^2 = \{(a,b) : a,b \in \mathbb{R}\}$. To abstract this for any n, we go over lists. The notation for lists is $(x_1,...,x_n)$. Lists are always finite in length. We can have an empty list: (). Lists care about their order and repetitions. Using lists, we can define \mathbb{F}^n as

$$\mathbb{F}^n = \{(x_1, ..., x_n) : x_j \in \mathbb{F} \text{ for } j = 1, ..., n\}$$

Most of the content following this is redundant review that doesn't introduce anything new so I will skip it. Also, sometimes when we add 0, we actually mean a list full of zeroes.

2 | Vector Space Definition

Notes taken on (12/7/21)

A vector space is a *set* such that **addition** and **scalar multiplication** are defined like in \mathbb{F}^n . That is, for a vector space V

$$u+v\in V$$
 given $u,v\in V$
$$\lambda v\in V \text{ given } \lambda\in \mathbb{F} \ v\in V$$

Formally, a vector space is a set that follows the rules above, as well as holds the following properties:

- Commulative
- Associative
- Identities
- · Additive Inverse

· Distributive Property

Elements of a vector space are called **Vectors** or **Points**. Also, when you need to be precise about what type of scalar you multiply by for scalar multiplication, you can say that V is a **vector space over** \mathbb{F} , for example. Usually it's implied in the vector space definition.

The notation \mathbb{F}^S denotes the set of functions from S to \mathbb{F} .

- $f+g\in\mathbb{F}^S$ means that (f+g)(x)=f(x)+g(x).
- $\lambda f \in \mathbb{F}^S$

Also, for the rest of the book, V will notate a vector space over \mathbb{F} .

3 | Subspaces

Notes taken on (12/7/21)

The definition of a subspace is as follows:

If $U \subset V$ and U is a vector space, then U is a subspace.

Note that U has to follow the same addition and multiplication as V.