

Organismo Público Descentralizado del Gobierno del Estado de Coahuila

MICROCONTROLADORES

Práctica No. 7. Contador con Display de 7 segmentos.

1. Objetivo

Utilizar un Display de 7 segmentos.

2. Material y Equipo.

- Computador o laptop con el STM32CubeIDE.
- Un Display de 7 Segmentos de cátodo común.
- Siete resistencias de 330 Ω o 220 Ω .

3. Marco de Referencia

Los displays de 7 segmentos son dispositivos muy utilizados para desplegar valores numéricos. Hay dos versiones de este dispositivo el de cátodo común (enciende con 1's) y el de ánodo común (enciende con 0's). La siguiente figura muestra el diagrama de un display de cátodo común y ánodo común.

Display de 7 segmentos

Organismo Público Descentralizado del Gobierno del Estado de Coahuila

Para usar este dispositivo necesitamos 7 salidas del microcontrolador para controlar cada uno de sus segmentos. Para desplegar los numero del 0 al 9 usamos la siguiente tabla.

CÁTODO COMUN		
Numero	Codigo 7 seg. (HEX)	
0	0x3F	
1	0x06	
2	0x5B	
3	0x4F	
4	0x66	
5	0x6D	
6	0x7D	
7	0x47	
8	0x7F	
9	0x6F	

ÁNODO COMUN	
Numero	Codigo 7 seg. (HEX)
0	0x40
1	0x79
2	0x24
3	0x30
4	0x19
5	0x12
6	0x02
7	0x38
8	0x00
9	0x10

4. Desarrollo y Procedimiento.

Se creará un proyecto en el STM32CubeIDE como se indicó anteriormente. La configuración queda como se indica en la siguiente figura.

Universidad Tecnológica de Torreón Organismo Público Descentralizado del Gobierno del Estado de Coahuila

La configuración de cada pin de salida es como se muestra a continuación.

PA0-WKUP Configuration : —	
CDIOtt	[
GPIO output level	Low
GPIO mode	Output Push Pull
GPIO Pull-up/Pull-down	No pull-up and no pull-down
Maximum output speed	Low
User Label	

Organismo Público Descentralizado del Gobierno del Estado de Coahuila

El código de la práctica es el siguiente. Recuerde que el siguiente código debe estar entre los comentarios "USER CODE BEGIN" y "USER CODE END".

```
1 #include "main.h"
3 #define RETARDO
                      500
5 uint8_t conta;
7 void SystemClock_Config(void);
8 static void MX_GPIO_Init(void);
100 uint8_t desplegar(uint8_t dato){
      uint8_t valor;
13
      switch(dato){
14
         case 0:
                                 110
15
              valor = 0x3F;
16
              break;
17
          case 1:
                                 // 1
18
              valor = 0x06;
19
              break;
20
          case 2:
                                 // 2
              valor = 0x5B;
21
22
              break;
23
          case 3:
              valor = 0x4F;
                                 // 3
25
              break;
26
          case 4:
              valor = 0x66;
                                 1/4
27
              break;
28
29
          case 5:
              valor = 0x6D;
                                 // 5
30
31
              break;
32
          case 6:
                                 1/6
33
              valor = 0x7D;
34
              break;
35
          case 7:
                                 1/7
              valor = 0x47;
36
37
              break;
38
          case 8:
39
              valor = 0x7F;
                                 // 8
40
              break;
41
          case 9:
              valor = 0x6F;
42
                                 1/9
43
44
45
       return valor;
46 }
```


Organismo Público Descentralizado del Gobierno del Estado de Coahuila

```
480 int main(void)
49 {
       HAL_Init();
50
51
52
       SystemClock_Config();
53
54
       MX_GPIO_Init();
55
       GPIOA->ODR = desplegar(conta);
       HAL_Delay(RETARDO);
56
57
58
       while (1)
59
           conta++;
60
61
           if(conta > 9)
62
               conta = 0;
63
           GPIOA->ODR = desplegar(conta);
64
           HAL_Delay(RETARDO);
65
       }
66 }
```

5. Esquemático del circuito.

El circuito de la práctica se muestra a continuación.

Universidad Tecnológica de Torreón Organismo Público Descentralizado del Gobierno del Estado de Coahuila

6. Mejora

Cambie la practica para que sea un contador ascendente y descendente.

7. Observaciones.

Esta sección es para que el alumno anote sus observaciones.

8. Conclusiones.

Esta sección es para que el alumno anote sus conclusiones.

9. Importante.

La práctica deberá ser validad en el salón de clases antes de anexar el reporte al manual de prácticas. Una vez validad realizar el reporte de practica como se anteriormente y anexar al manual de prácticas que se entregara a final del curso.