Danny Abraham

CMPS 351

Assignment 3

Minimal Surface

Surface Area

```
In [2]:
             def surface_area(x, n = 20, r0 = 1, l = 0.75):
          2
                 # compute the distance between radii h
          3
                 h = 1 / (n + 1)
          4
          5
                 # initialize the vectors used
          6
                 a = np.append(x, r0)
          7
                 b = np.append(r0, x)
          8
                 c = np.append(x[0], x)
          9
                 f = 2*np.pi*h*c*(1 + ((a - b) / h)**2)**0.5
         10
                 return np.sum(f)
         11
```

Gradient

```
In [3]:
             def surface_area_gradient(x, n = 20, r0 = 1, l = 0.75):
                 # compute the distance between radii h
          2
                 h = 1 / (n + 1)
          3
          4
          5
                 # initialize the vectors used
          6
                 a = np.append(r0, x[:-1])
          7
                 c = np.append(x[1:], r0)
          8
                 t1 = 2*np.pi*h*a*(((x - a) / h**2) / ((1 + ((x - a) / h)**2)**0.5))
          9
         10
                 t2 = 2*np.pi*h*((1 + ((c - x) / h)**2)**0.5)
         11
                 t3 = 2*np.pi*h*x*(((c - x) / h**2) / ((1 + ((c - x) / h)**2)**0.5))
         12
                 t = t1 + t2 - t3
         13
         14
                 t[0] += 2*h*np.pi*((r0 - x[0])**2/h**2 + 1)**(1/2)
         15
                 return t
```

Hessian

```
# compute the distance between radii h
 2
 3
        h = 1 / (n + 1)
 4
        # initialize the vectors used
 5
        k = np.append(x[0],x[0:-1])
 6
 7
        y = np.append(x[1:],r0)
 8
        z = np.append(r0,x[0:-1])
 9
10
        diag = 4*np.pi*(x - y)/(h*(((x-y)/h)**2+1)**0.5)
        diag += 2*np.pi*k/(h*(((z-x)/h)**2+1)**0.5)
11
12
        diag += 2*np.pi*x/(h*(((x-y)/h)**2+1)**0.5)
        diag -= 2*np.pi*k*(z-x)**2/(h**3*(((z-x)/h)**2+1)**1.5)
13
        diag -= 2*np.pi*x*(x-y)**2/(h**3*(((x-y)/h)**2+1)**1.5)
14
15
        diag[0] += 4*np.pi*(x[0]-r0)/(h*(1+((x[0]-r0)/h)**2)**0.5)
16
17
        temp = 2*np.pi*x[0:-1]*(x[0:-1]-y[0:-1])**2/(h**3*(((x[0:-1]-y[0:-1])/h)*)*
18
        temp -= 2*np.pi*x[0:-1]/(h*(((x[0:-1]-y[0:-1])/h)**2+1)**0.5)
        temp += 2*np.pi*(y[0:-1]-x[0:-1])/(h*(((x[0:-1]-y[0:-1])/h)**2+1)**0.5)
19
20
21
        hess = tridiag(temp, diag, temp)
22
        return hess
```

Backtrack Line Search

Newton Backtrack

```
In [7]:
             def newton_backtrack(f, grad, hess, x0, tol = 1e-5):
          1
          2
                 x = x0
                 history = np.array([x0])
          3
          4
                 while (la.norm(grad(x)) > tol):
          5
                     #print(la.norm(grad(x)))
          6
                     p = la.solve(hess(x), -grad(x))
          7
                     t = backtrack_linesearch(f, grad(x), p, x)
          8
                     x += t * p
          9
                     history = np.vstack((history, x))
         10
                 return x, history
```

Plotting the Performance

```
In [9]:
             nsteps = history.shape[0]
          1
          2
             fhist = np.zeros(nsteps)
          3
             fstar = surface_area(xstar)
          4
          5
             for i in range(nsteps):
                 fhist[i] = surface_area(history[i,:])
          6
          7
           plt.figure()
          8
          9
             plt.autoscale(enable=True, axis='x', tight=True)
         10 plt.semilogy(np.arange(0, nsteps), abs(fhist - fstar), linewidth=1)
            plt.xlabel('Iterations')
         11
            plt.ylabel(r'$|f^k - f^|$')
         12
             plt.show()
         13
```


Gauss-Newton

Visualizing the distribution

Phi function

Residual function

Sum of Squares

```
In [13]: 1 def sum_squares(a, t, y):
    r = residual_function(a, t, y)
    return 0.5*r@r
```

Jacobian of Objective function

Gradient of Objective function

Hessian Approximation

Newton Gauss approximation of Hessian

Backrack Line Search

Newton Backtrack

```
In [18]:
              def newton_backtrack(f, grad, hess, a0, t, y, tol = 1e-5):
           2
                  a = a0
           3
                  history = np.array([a0])
           4
                  while (la.norm(grad(a, t, y)) > tol):
           5
                      p = la.solve(hess(a, t), -grad(a, t, y))
                      t2 = backtrack_linesearch(f, grad(a, t, y), p, a, t, y)
           6
           7
                      a += t2 * p
           8
                      history = np.vstack((history, a))
           9
                  return a, history
```

Plotting the Performance

```
In [20]:
             nsteps = history.shape[0]
           1
           2
             fhist = np.zeros(nsteps)
             fstar = sum_squares(astar, t, y)
           4
           5
             for i in range(nsteps):
           6
                  fhist[i] = sum_squares(history[i,:], t, y)
           7
                  #print(fhist[i])
           9
             plt.figure()
             plt.autoscale(enable=True, axis='x', tight=True)
         10
         plt.semilogy(np.arange(0, nsteps), abs(fhist - fstar), linewidth=1)
         12
             plt.xlabel('Iterations')
         13
             plt.ylabel(r'$|f^k - f^|$')
             plt.show()
         14
```


Quasi-Newton Methods

The objective of this formula is to mitigate the drawbacks of Newton's method. The largest computation cost of Newton's method is the decomposition of the Hessian. With the BFGS method, the hessian is computed once, and then low cost updates are made to it using the information gained about the hessian from the variations of the gradients.

Rosenbrock

Rosenbrock Gradient

Rosenbrock Hessian

Backtrack Line Search

Quasi Newton Backtrack

```
In [26]:
              def bfgs(B, sk, yk):
           1
                  B new = B + (np.dot(sk, yk) + np.dot(np.dot(yk, B), yk))*np.outer(sk, sk)
           2
           3
                  B new -= ( B@np.outer(yk, sk)+np.outer(sk, yk)@B ) / (sk@yk)
           4
                  return B new
In [27]:
              def quasi_newton_backtrack(f, grad, hess, x0, tol = 1e-5):
           1
                  x = x0
           2
           3
                  gk = grad(x)
           4
                  Bk_{inv} = la.inv(hess(x0))
           5
                  history = np.array([x0])
                  while (la.norm(grad(x)) > tol):
           6
                      g = grad(x)
           7
                      #print(Bk inv)
           8
                      p = np.dot(Bk_inv, -g)
           9
          10
                      t = backtrack_linesearch(f, g, p, x)
          11
                      Bk_{inv} = bfgs(Bk_{inv}, t*p, grad(x + t*p) - g)
                      x += t * p
          12
                      history = np.vstack((history, x))
          13
                  return x, history
          14
```

Plotting the Performance

```
In [28]:
           1
              x0 = np.array([-1.2, 1.0])
              xstar, history = quasi_newton_backtrack(rosenbrock, rosenbrock_gradient, rose
           2
           3
              nsteps = history.shape[0]
           4
              fhist = np.zeros(nsteps)
           5
           6
              for i in range(nsteps):
           7
                  fhist[i] = rosenbrock(history[i,:])
           8
           9
              plt.figure()
          10
          11
              plt.autoscale(enable=True, axis='x', tight=True)
          12
              plt.semilogy(np.arange(0, nsteps), fhist, linewidth=1)
              plt.xlabel('Iterations')
          13
              plt.ylabel(r'$|f^k - f^|$')
          14
              plt.show()
          15
```


This Quasi-Newton BFGS method converged in just under 20 iterations. This is far closer to the Newton method's 10 than it is to the Steepest Descent's 1000. As expected getting the exact hessian is not critical to the convergence of the algorithm