

COMP7640 Database Systems & Administration

Query Optimization

Processing a High-Level Query

In Query Evaluation

- Various access paths for relational operators
 - Selection
 - Sorted file
 - Index (B+ tree/ hash index)
 - Projection
 - Sort-based projection
 - Join
 - Simple nested-loop join
 - Page-oriented nested-loop join
- Only evaluate the cost of a <u>single</u> relational operator

SQL Queries In Practice

SELECT S.sname **FROM** Students S, CourseEnrolled E **WHERE** S.sid= E.sid **AND** E.cid = 3220 **AND** S.gpa > 3.0

$$\pi_{\text{sname}}\left(\sigma_{\text{gpa}>3.0 \land \text{cid}=3220}(S \bowtie_{\text{S.sid}=\text{E.sid}} E)\right)$$

- * A query is basically a *relational algebra expression* (a set of ordered *relational operators*)
- * A query can be represented by <u>multiple</u> <u>relational algebra</u> <u>expressions</u> (relational operators in different orders)
- * A query can involve <u>multiple</u> <u>relational operators</u> in its <u>relational</u> algebra expression
- Each relational operator can be implemented via <u>multiple</u> <u>access paths</u>

Query Evaluation Plan (QEP)

- ❖ A <u>query evaluation plan</u> (or <u>query execution plan</u>, QEP) tells the DBMS how to execute the SQL query. It specifies
 - A relational algebra expression
 - What operations we need to execute
 - What execution orders of these operations are
 - Access paths for each relational operator in the relational algebra expression

Query Optimization

- * The goal of *query optimization* is to find the QEP with *lest* I/O cost before execution
- * For a given query, how to choose a *good query evaluation plan* (or *query execution plan*, QEP)
 - Enumerate alternative QEPs
 - Estimate cost (I/O cost) of each enumerated QEP
 - Choose the QEP with least cost

- Transform the relational algebra expression to its equivalent forms (with different orders of operators)
 - Equivalent rules (ensure that the results of the alternative plan are correct)
 - Different (equivalent) expressions can significantly affect the I/O cost
- Choose <u>appropriate access paths</u> for each relational operator in the relational algebra expression

Decomposition Rule for Selection Operations

- ❖ Decompose the selection operation to multiple selection operations
- * Consider the selection operation with conditions θ_1 and θ_2 for the relation R. We have:

$$\sigma_{\theta_1 \wedge \theta_2}(R) = \sigma_{\theta_1}(\sigma_{\theta_2}(R))$$

* Example: Let the relation be R(a, b, c). We have:

$$\sigma_{a>20 \ \land \ b\leq 20}(R) = \sigma_{a>20}(\sigma_{b\leq 20}(R))$$

Commutative Rule for Selection Operations

- * Reverse the order of consecutive selection operations
- * Consider the selection operation with conditions θ_1 and θ_2 for the relation R. We have:

$$\sigma_{\theta_1}(\sigma_{\theta_2}(R)) = \sigma_{\theta_2}(\sigma_{\theta_1}(R))$$

* Example: Let the relation be R(a, b, c). We have:

$$\sigma_{a>20}(\sigma_{b\leq 20}(R)) = \sigma_{b\leq 20}(\sigma_{a>20}(R))$$

Omission Rule for Projection Operations

- * Given *multiple* projection operations, only the *final* one should be retained.
- ❖ Consider the projection operations with the sets of attributes $L_1, L_2, ..., L_n$, where $L_1 \subseteq L_2 \subseteq ... \subseteq L_n$, for the relation R.

$$\pi_{L_1}\left(\pi_{L_2}\left(\cdots\left(\pi_{L_n}(R)\right)\cdots\right)\right) = \pi_{L_1}(R)$$

- * Reverse the order of consecutive selection and projection operations with specific condition
- * Consider the <u>projection</u> operation with the set of attributes L and the <u>selection</u> operation with condition θ . If the *condition* θ *only involves those attributes in* L. We have:

$$\pi_L(\sigma_{\theta}(R)) = \sigma_{\theta}(\pi_L(R))$$

Commutative Rule for Selection and Projection Operations

* **Example**: Let the relation be R(a, b, c). We have:

$$\pi_{a,b}(\sigma_{a>20}(R)) = \sigma_{a>20}(\pi_{a,b}(R))$$

$$\pi_{a,b}(\sigma_{a>10 \land b \le 30}(R)) = \sigma_{a>10 \land b \le 30}(\pi_{a,b}(R))$$

$$\pi_{a,b}(\sigma_{c>10 \land b \le 30}(R)) \neq \sigma_{c>10 \land b \le 30}(\pi_{a,b}(R))$$

Distributive Rule 1 for Selection and Join Operations

- Distribute the <u>selection</u> operation in the <u>join</u> operation with specific condition
- * Consider the <u>selection</u> operation with condition θ_1 and the <u>join</u> operation with condition θ for two relations R and S. If all the attributes in θ_1 only involve the attributes of the relation R.

$$\sigma_{\theta_1}(R \bowtie_{\theta} S) = \sigma_{\theta_1}(R) \bowtie_{\theta} S$$

Distributive Rule 1 for Selection and Join Operations

* Example:

Table S

sid	sname	gpa	age
22	simon	3.6	20
31	kelvin	3.5	21
58	karen	3.5	18

Table E

sid	cid	<u>day</u>
22	2440	10/01/04
22	3220	10/12/03
58	3820	11/01/04

$$\sigma_{S.gpa>3.5}(S \bowtie_{S.sid=E.sid} E) \Leftrightarrow \sigma_{S.gpa>3.5}(S) \bowtie_{S.sid=E.sid} E$$

$$\sigma_{\text{E.cid}>2440}(S \bowtie_{\text{S.sid}=\text{E.sid}} E) \iff \sigma_{\text{E.cid}>2440}(S) \bowtie_{\text{S.sid}=\text{E.sid}} E$$

Distributive Rule 2 for Selection and Join Operations

- Distribute the <u>selection</u> operation in the <u>join</u> operation with specific condition
- * Consider the <u>selection</u> operation with conditions θ_1 and θ_2 and the <u>join</u> operation with condition θ for two relations R and S. If all the attributes in θ_1 and θ_2 <u>only</u> involve the attributes of the relations R and S, respectively.

$$\sigma_{\theta_1 \wedge \theta_2}(R \bowtie_{\theta} S) = \sigma_{\theta_1}(R) \bowtie_{\theta} \sigma_{\theta_2}(S)$$

Distributive Rule 2 for Selection and Join Operations

* Example:

Table S

sid	sname	gpa	age
22	simon	3.6	20
31	kelvin	3.5	21
58	karen	3.5	18

Table E

sid	cid	<u>day</u>
22	2440	10/01/04
22	3220	10/12/03
58	3820	11/01/04

$$\sigma_{\text{S.gpa}>3.5 \land \text{E.cid}=2440}(S \bowtie_{\text{S.sid}=\text{E.sid}} E)$$

$$\sigma_{\text{S.gpa}>3.5}(S) \bowtie_{\text{S.sid}=\text{E.sid}} \sigma_{\text{E.cid}=2440}(E)$$

Summary

Relational Operator	Rules	
Selection σ	$\sigma_{\theta_1 \wedge \theta_2}(R) \Leftrightarrow \sigma_{\theta_1}(\sigma_{\theta_2}(R))$ Decomposition Rule	
Selection o	$\sigma_{\theta_1}(\sigma_{\theta_2}(R)) \Leftrightarrow \sigma_{\theta_2}(\sigma_{\theta_1}(R))$ Commutative Rule	
Projection π	$\pi_{L_1}\left(\pi_{L_2}\left(\cdots\left(\pi_{L_n}(R)\right)\cdots\right)\right) \Longleftrightarrow \pi_{L_1}(R), L_1 \subseteq L_2 \subseteq \cdots \subseteq L_n$ Omission Rule	
Selection & Projection σ & π	$\pi_L(\sigma_{\theta}(R)) \Leftrightarrow \sigma_{\theta}(\pi_L(R)), \theta \subseteq L$ Commutative Rule	
Selection & Join σ &⋈	$\sigma_{\theta_1}(R \bowtie_{\theta} S) \Longleftrightarrow \sigma_{\theta_1}(R) \bowtie_{\theta} S, \theta_1 \subseteq R$ Distributive Rule 1	
	$\sigma_{\theta_1 \land \theta_2}(R \bowtie_{\theta} S) \Longleftrightarrow \sigma_{\theta_1}(R) \bowtie_{\theta} \sigma_{\theta_2}(S) , \theta_1 \subseteq R, \theta_2 \subseteq S$ Distributive Rule 2	

Given a relational algebra expression

 $\pi_{\text{sname,gpa,cid}}\left(\sigma_{\text{gpa>3.0 } \land \text{ cid=3220}}(S \bowtie_{\text{S.sid=E.sid}} E)\right)$ List its two equivalent relational algebra expressions.

How to Enumerate Alternative QEPs?

- Enumerate alternative relational algebra expressions based on the rules (Slides 9-18)
- Specify access paths for each relational operator (Lecture 10: Query Evaluation)
- For each enumerated QEP, we represent it by
 - The relational algebra tree of its relational algebra expression
 - Annotating at each node to indicate the access path for each relational operator

Example Instances

Students S (sid: integer, sname: string, gpa: real, age: integer)
CourseEnrolled E (sid: integer, cid: string, day: date)

Table S

20000			
sid	sname	gpa	age
22	simon	3.6	20
31	kelvin	3.5	21
58	karen	3.5	18

of records: 100,000

of pages: 1,000

Table E

sid	cid	<u>day</u>
22	2440	10/01/04
22	3220	10/12/03
58	3820	11/01/04

of records: 200,000

of pages: 500

Assumption 1: The gpa attribute follows the *uniform distribution* in the <u>range 0 to 4</u>. **Assumption 2**: There are <u>50 courses</u> (i.e., 50 cids) in the Table E and these cids are *uniformly distributed* in this relation.

Example

Example SQL query

SELECT S.sname

FROM Students S, CourseEnrolled E

WHERE S.sid= E.sid AND E.cid = 3220 AND S.gpa > 3.0

Relational algebra expression

$$\pi_{\text{sname}}\left(\sigma_{\text{gpa}>3.0 \land \text{cid}=3220}(S \bowtie_{\text{S.sid}=\text{E.sid}} E)\right)$$

* Represent this *relational algebra expression* as a *relational algebra tree* with *access paths*

Pipelined Evaluation

- Result of one operator pipelined to another operator without creating a temporary relation to hold intermediate result
 - Each record produced by an operator in the memory will be directly sent to the next operators in the memory without writing it to or reading it from the disk. The subsequent operations are done in the memory and entail no costs.

Lower overhead

- Avoid the cost of writing out intermediate results
- Avoid reading those results to the main memory

Pipelined Evaluation

Pipelined Evaluation

Cost of Evaluating the Plan

sname

simon

kelvin

karen

gpa

3.5

(1000 Pages)

- * No cost for <u>selection</u> and <u>projection</u> operations (pipelined evaluation, done in the memory)
- \star The cost is: 500 + 1000 * 500 = 500,500 I/Os

(**500 Pages**)

Alternative Plan 1

Table S

<u>sid</u>	sname	gpa	age
22	simon	3.6	20
31	kelvin	3.5	21
58	karen	3.5	18

Table E

sid	cid	<u>day</u>
22	2440	10/01/04
22	3220	10/12/03
58	3820	11/01/04

• Using distributive rule 2, we can move $\sigma_{gpa>3.0}$ to S and $\sigma_{cid=3220}$ to E

$$\pi_{\text{sname}}\left(\sigma_{\text{gpa}>3.0 \, \land \, \text{cid}=3220}(S \bowtie_{\text{S.sid}=\text{E.sid}} E)\right)$$

$$= \pi_{\text{sname}} \left(\sigma_{\text{gpa}>3.0}(S) \bowtie_{\text{S.sid}=\text{E.sid}} \sigma_{\text{cid}=3220}(E) \right)$$

Alternative Plan 1

$$\pi_{\text{sname}}\left(\sigma_{\text{gpa}>3.0}(S)\bowtie_{\text{S.sid}=\text{E.sid}}\sigma_{\text{cid}=3220}(E)\right)$$

The relational algebra tree is:

Cost of Evaluating the Alternative Plan 1

Cost of $\sigma_{\text{gpa} > 3.0}(S) = \text{Cost to scan } S + \text{Cost to write T1}$ = 1000 pages + size(T1)

Since the gpa attribute follows the uniform distribution in the range 0 to 4 (Assumption 1), we have:

size(T1) = 250 pages

Cost of Evaluating the Alternative Plan 1

Cost of $\sigma_{cid=3220}$ (E)= Cost to scan E + Cost to write T2 = 500 pages + size(T2)

Since there are 50 courses (i.e., 50 cids) in the Table E and these cids are uniformly distributed in this table (Assumption 2), we have: size(T2) = 500/50 = 10 pages

Cost of Evaluating the Alternative Plan 1

- Cost of page-oriented nested loop join of T1 and T2
 - Cost = $10 + 10 \times 250 = 2510 \text{ I/Os}$
- * Total cost of Alternative Plan 1
 - = cost of selection operations + cost of join operation
 - = (1250 + 510) + 2510
 - = 1760 + 2510
 - = 4270 I/Os (better than that of the original QEP)

* Consider the relations $A(\underline{a}, b, c)$ and $B(\underline{a}, x, y)$ and the following SQL query.

```
SELECT *
FROM A, B
WHERE b > 20 AND A.a = B.a
```

- a) Write down the QEP for this SQL query.
- b) Write down another QEP for this SQL query.

Given a relational algebra expression:

- $\pi_{\text{sid, sname}}(S) \bowtie_{\text{S.sid}=\text{E.sid}} \sigma_{\text{cid}=3220}(E)$
- 1) What is its equivalent relational algebra expression?
- 2) Draw the QEPs for these two relational algebra expressions.

 Given three relations Students(SID, Name, Email, GPA), Courses(CID, Name, Day), and EnrolledCourses(SID, CID, Date) without indexes, and the following SQL query,

SELECT Students.Name, Students.Email
FROM Students, Courses, EnrolledCourses
WHERE Students.SID=EnrolledCourses.SID
AND Courses.CID=EnrolledCourses.CID
AND Courses.CID=7640
AND Students.GPA>3.4

draw three possible query evaluation plans for solving this query. (Use S, C, and E to denote relations Students, Courses, and EnrolledCourses, respectively)

Using distributive rule 2 for selection & join

$$\sigma_{\theta_{1} \wedge \theta_{2}}(R \bowtie_{\theta} S) \Leftrightarrow \sigma_{\theta_{1}}(R) \bowtie_{\theta} \sigma_{\theta_{2}}(S), \theta_{1} \subseteq S, \theta_{2} \subseteq R$$

$$\pi_{\text{sname,gpa,cid}}\left(\sigma_{\text{gpa}>3.0 \wedge \text{cid}=3220}(S \bowtie_{\text{S.sid}=\text{E.sid}} E)\right)$$

$$\pi_{\text{sname,gpa,cid}}\left(\sigma_{\text{gpa}>3.0}(S) \bowtie_{\text{S.sid}=\text{E.sid}} \sigma_{\text{cid}>3220}(E)\right)$$

* Using commutative rule for selection & projection $\pi_L(\sigma_{\theta}(R)) \Leftrightarrow \sigma_{\theta}(\pi_L(R)), \theta \subseteq L$

$$\pi_{\text{sname,gpa,cid}}\left(\sigma_{\text{gpa}>3.0 \, \land \, \text{cid}=3220}(S \bowtie_{\text{S.sid}=\text{E.sid}} E)\right)$$

$$\sigma_{\text{gpa}>3.0 \, \land \, \text{cid}=3220} \left(\pi_{\text{sname,gpa,cid}} (S \bowtie_{\text{S.sid}=\text{E.sid}} E) \right)$$

a)
$$\sigma_{b>20}(A \bowtie_{A.a=B.a} B)$$
 b) $\sigma_{b>20}(A) \bowtie_{A.a=B.a} B$

b)
$$\sigma_{b>20}(A) \bowtie_{A.a=B.a} B$$

* By Distributive Rule 1 $\sigma_{\text{cid}=3220}(\pi_{\text{sid, sname}}(S) \bowtie_{\text{S.sid}=\text{E.sid}} E)$

$$\star \pi_{\text{sid, sname}}(S) \bowtie_{\text{S.sid}=\text{E.sid}} \sigma_{\text{cid}=3220}(E)$$

$$\star \sigma_{\text{CID}=3220}(\pi_{\text{SID}, \text{Name}}(S) \bowtie_{\text{S.SID}=\text{E.SID}} E)$$

Relational algebra expression

$$\pi_{\text{S.Name, S.Email}}(\sigma_{\text{S.GPA}>3.4 \land \text{C.CID}=7640}(S \bowtie_{\text{S.SID}=\text{E.SID}} (C \bowtie_{\text{C.CID}=\text{E.CID}} E)))$$

$$\mathbf{Or} \ \pi_{\text{S.Name, S.Email}}(\sigma_{\text{S.GPA}>3.4 \land \text{C.CID}=7640}((S \bowtie_{\text{S.SID}=\text{E.SID}} E) \bowtie_{\text{C.CID}=\text{E.CID}} C))$$

❖ Enumerate alternative relational algebra expressions based on the 1st one

Distributive Rule 1

$$\pi_{\text{S.Name, S.Email}}(\sigma_{\text{C.CID}=7640}(\sigma_{\text{S.GPA}>3.4}(S) \bowtie_{\text{S.SID}=\text{E.SID}} (C \bowtie_{\text{C.CID}=\text{E.CID}} E)))$$
 $\pi_{\text{S.Name, S.Email}}(\sigma_{\text{S.GPA}>3.4}(S \bowtie_{\text{S.SID}=\text{E.SID}} \sigma_{\text{C.CID}=7640}(C \bowtie_{\text{C.CID}=\text{E.CID}} E)))$

Can further apply Distributive Rules

Distributive Rule 2

 $\pi_{\text{S.Name, S.Email}}(\sigma_{\text{S.GPA}>3.4}(S) \bowtie_{\text{S.SID}=\text{E.SID}} \sigma_{\text{C.CID}=7640}(C \bowtie_{\text{C.CID}=\text{E.CID}} E))$ Can further apply Distributive Rules

***** QEP 1

```
\pi_{\text{S.Name, S.Email}}(\sigma_{\text{S.GPA}>3.4 \land \text{C.CID}=7640}(S \bowtie_{\text{S.SID}=\text{E.SID}} (C \bowtie_{\text{C.CID}=\text{E.CID}} E)))
                                                          (On the fly)
                             \piS.Name, S.Email
                      \sigma_{\text{S.GPA}>3.4} C.CID=7640 (On the fly)
                                                         (Page-oriented
                                                         nested-loop join)
                                                                              (Page-oriented
                                                      C.CID=E.CID
                                                                             nested-loop join)
```


***** QEP 2

 $\pi_{\text{S.Name, S.Email}}(\sigma_{\text{C.CID}=7640}(\sigma_{\text{S.GPA}>3.4}(S) \bowtie_{\text{S.SID}=\text{E.SID}} (C \bowtie_{\text{C.CID}=\text{E.CID}} E)))$ π S.Name, S.Email (On the fly) $\sigma_{\text{C.CID}=7640}$ (On the fly) (Page-oriented nested-loop join) (Scan; write (Page-oriented C.CID=E.CID $\sigma_{\text{S.GPA}>3.4}$ to temp T1) nested-loop join)

***** QEP 3 $\pi_{\text{S.Name, S.Email}}(\sigma_{\text{S.GPA}>3.4}(S \bowtie_{\text{S.SID}=\text{E.SID}} \sigma_{\text{C.CID}=7640}(C \bowtie_{\text{C.CID}=\text{E.CID}} E)))$ (On the fly) π S.Name, S.Email $\sigma_{\text{S.GPA}>3.4}$ (On the fly) (Page-oriented nested-loop join) (Scan; write $\sigma_{\text{C.CID}=7640}$ to temp T1) (Page-oriented C.CID=E.CID nested-loop join)

***** QEP 4

 $\pi_{\text{S.Name, S.Email}}(\sigma_{\text{S.GPA}>3.4}(S) \bowtie_{\text{S.SID}=\text{E.SID}} \sigma_{\text{C.CID}=7640}(C \bowtie_{\text{C.CID}=\text{E.CID}} E))$

