DSC 640 – Week 7 & 8 Michael Ersevim

Power BI: Scatter graph and bubble graph

Power BI: Density graph - Bar Graph proxy

I know this isn't a PDF however, I couldn't figure it out in Power BI so a 25 bin histogram is a proxy to the shape of the PDF or PMF graph.

Python: Scatter and Bubble graphs

Python: PDF graph of birth rates from 2008: Countries around the world


```
## DSCC640 - Michael Ersevim - Week 7&8 assignment
```

```
In [20]: # Call in libraries
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    from statsmodels.distributions.empirical_distribution import ECDF
```

```
In [3]: # read in birth rate ddata
dfbr = pd.read_excel('C:\\Users\\Kate\\Documents\\Bellevue DS classes\\DSC640\\birth-rate.xlsx')
dfbr.head()
```

Out[3]:

	Country	1960	1961	1962	1963	1964	1965	1966	1967	1968	 1999	2000	2001	2002	2003	2004	2005	2006	2007
0	Aruba	36.400	35.179	33.863	32.459	30.994	29.513	28.069	26.721	25.518	 15.024	14.528	14.041	13.579	13.153	12.772	12.441	12.159	11.919
1	Afghanistan	52.201	52.206	52.208	52.204	52.192	52.168	52.130	52.076	52.006	 51.229	50.903	50.486	49.984	49.416	48.803	48.177	47.575	47.023
2	Angola	54.432	54.394	54.317	54.199	54.040	53.836	53.585	53.296	52.984	 48.662	48.355	48.005	47.545	46.936	46.184	45.330	44.444	43.607
3	Albania	40.886	40.312	39.604	38.792	37.913	37.008	36.112	35.245	34.421	 17.713	16.850	16.081	15.444	14.962	14.644	14.485	14.464	14.534
4	Netherlands Antilles	32.321	30.987	29.618	28.229	26.849	25.518	24.280	23.173	22.230	 15.809	15.412	15.096	14.824	14.565	14.309	14.051	13.790	13.532

5 rows × 50 columns

```
In [4]: # read in crime rate file
          dfcr = pd.read excel('C:\\Users\\Kate\\Documents\\Bellevue DS classes\\DSC640\\crimeRatesByState2005.xlsx')
          dfcr.head()
 Out[4]:
                    state murder forcible_rape robbery aggravated_assault burglary larceny_theft motor_vehicle_theft population
           0 United States
                             5.6
                                        31.7
                                               140.7
                                                                 291.1
                                                                          726.7
                                                                                     2286.3
                                                                                                        416.7 295753151
                                        34.3
                                               141.4
                                                                         953.8
                                                                                     2650.0
                                                                                                        288.3
                                                                                                                4545049
                 Alabama
                             8.2
                                                                 247.8
           2
                  Alaska
                             4.8
                                        81.1
                                                80.9
                                                                 465.1
                                                                         622.5
                                                                                     2599.1
                                                                                                        391.0
                                                                                                                 669488
           3
                  Arizona
                             7.5
                                        33.8
                                               144.4
                                                                 327.4
                                                                          948.4
                                                                                     2965.2
                                                                                                        924.4
                                                                                                                5974834
                                                                                     2711.2
                                                                                                                2776221
                Arkansas
                             6.7
                                        42.9
                                                91.1
                                                                 386.8
                                                                         1084.6
                                                                                                        262.1
In [18]: # define x, y and bubble size for bubblegraph
          x = dfcr['murder']
          y = dfcr['burglary']
          size = dfcr['population']**0.5*.1 # Square root tule AND scale factor for reasonable size
          # Make scatter plot
In [16]:
          plt.scatter(x, y)
          plt.title('Murder rate vs Burglary rates per 100,000 people')
          plt.xlabel('Murder rate')
          plt.ylabel('Burglary rate')
          plt.xlim(xmax=10)
          plt.show()
```



```
In [19]: # Make bubblegraph plot
  plt.scatter(x, y, s=size)
  plt.title('Murder rate vs Burglary rates per 100,000 people')
  plt.xlabel('Murder rate')
  plt.ylabel('Burglary rate')
  plt.xlim(xmax=10)
  plt.show()
```



```
In [23]: # define points for PDF

ecdf = ECDF(dfbr[2008])

# plot the cdf
plt.plot(ecdf.x, ecdf.y)
plt.show()
#Got a CDF...next, use KDE to get the PMF
```

```
In [24]: import seaborn as sns
          # Plotting the KDE Plot
          sns.kdeplot(dfbr[2008]) # Uses the values from 2008 to create the PDF
Out[24]: <AxesSubplot:xlabel='2008', ylabel='Density'>
             0.040
             0.035
             0.030
           0.025
0.020
             0.015
             0.010
             0.005
             0.000
                           10
                                  20
                                        30
                                               40
                                                     50
                                                            60
```

2008

R-graphs

Scattergraph of the murder rate plotted against burglary rate to check for correlation (both per 100,000 people)

Bubble graph of murder vs burglary rate. Area of bubble should be proportional to population of state, but sqrt of radius function seems not to be working...

R: Probability Density graph of birth rates (per 1,000 people) across countries from around the world

R: Code for prior graphs Based upon code supplied with 'Visualize This (N. Yau)', with a few additions as directed by the text in the book

```
setwd("C:/Users/Kate/Documents/Bellevue DS classes/DSC640")
# Load the data
crime <- read.csv('crimeRatesByState2005.csv', sep=",", header=TRUE)</pre>
# Remove US total and DC
crime2 <- crime[crime$state != "District of Columbia",]
crime2 <- crime2[crime2$state != "United States",]</pre>
# Scatterplot for murder and burglary
plot(crime$murder, crime$burglary)
plot(crime2$murder, crime2$burglary)
plot(crime2$murder, crime2$burglary, xlim=c(0,10), ylim=c(0, 1200))
# make bubble chart
radius <- sqrt( crime$population/ pi )
symbols(crime$murder, crime$burglary, circles=radius, inches=0.35,
    fg='white', bg='red', xlab='Murder Rate', ylab='Burglary Rate', xlim = c(0,10))
# Scatterplot matrix
plot(crime2[,2:9])
```