[6.2] Suppose that $|A\rangle = \alpha_u |u\rangle + \alpha_d |d\rangle$ and $|b\rangle = \beta_u |u\rangle + \beta_d |d\rangle$. Show that if $|A\rangle$ and $|B\rangle$ are normalized then so is $|A\rangle \otimes |B\rangle$.

Solution. The basis for S_A is $\{|a'\}, |a\}\}$ and for S_B it is $\{|b'\rangle, |b\rangle\}$. So a basis for S_{AB} is $\{|a'b'\rangle, |a'b\rangle, |ab'\rangle, |ab\rangle\}$.

Alice's basis is orthonormal \Leftrightarrow $\langle a' | a \rangle = \delta_{a'a}$. Bob's basis is orthonormal \Leftrightarrow $\langle b' | b \rangle = \delta_{b'b}$.

Hence

Note that $\langle a'|a\rangle$ and $\langle b'|b\rangle$ are complex numbers so we drop the tensor sign.

Therefore $\langle a'b' | ab \rangle = \delta_{a'a} \delta_{b'b}$