

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta082

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Mili$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

- (4p) SUBIECTUL I (20p)

 (3 Să se calculeze modulul numărului complex $\frac{3+2i}{3-2i}$.
- (4p) b) Să se calculeze distanța de la punctul D(1, 2, 4) la punctul E(2, 3, 9)
- (4p) c) Să se calculeze $\sin 45^\circ + \cos 45^\circ$.
- (4p) d) Să se calculeze coordonatele punctelor de intersecție dintre elipsa de ecuație $\frac{x^2}{4} + \frac{y^2}{9} = 1$ și dreapta de ecuație x + y = 0.
- (2p) e) Să se calculeze volumul tetraedrului cu vârfurile în punctele A(1, -1, 2), B(-1, 2, 1), C(2, 1, -1) și D(1, 2, 4).
- (2p) f) Să se determine $a,b \in \mathbf{R}$, astfel încât să avem egalitatea de numere complexe $\left(\cos 1^{\circ} + i \sin 1^{\circ}\right)^{360} = a + bi$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se arate că $\log_2 3 > 1.5$.
- (3p) b) Să se calculeze probabilitatea ca un număr $n \in \{0, 1, 2, 3, 4\}$ să verifice relația $3^n + 4^n \ge 7^n$.
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, f(x) = 3x + 5, are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(8).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $x^3 + 5x 6 = 0$.
- (3p) e) Să se calculeze suma pătratelor rădăcinilor polinomului $f = X^4 X 8$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 2x \operatorname{arctg} x$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f'(x) dx$.
- (3p) c) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x\to 0} \frac{f(x)}{x}$.
- (3p) e) Să se calculeze $\int_0^1 \frac{2x^2}{x^3 + 1} dx.$

1

SUBIECTUL III (20p)

În mulțimea $\mathbf{M}_2(\mathbf{Z_5})$ se consideră submulțimea $G = \left\{ \begin{pmatrix} \hat{x} & \hat{y} \\ \hat{2}\hat{y} & \hat{x} \end{pmatrix} \middle| \hat{x}, \hat{y} \in \mathbf{Z_5} \right\}$.

(4p) a) Să se verifice că
$$I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix} \in G$$
 și $O_2 = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix} \in G$.

(4p) b) Să se arate că, dacă
$$\hat{x}, \hat{y} \in \mathbf{Z_5}$$
 şi $\hat{x}^2 - \hat{2}\hat{y}^2 = \hat{0}$, atunci $\hat{x} = \hat{y} = \hat{0}$.

(4p) c) Să se arate că, dacă
$$A, B \in G$$
, atunci $A + B \in G$ și $A \cdot B \in G$.

(2p) d) Să se determine numărul de elemente din mulțimea
$$G$$
.

(2p) e) Să se arate că dacă
$$A \in G$$
 și $A \neq O_2$, atunci există $B \in G$, astfel încât $A \cdot B = I_2$.

(2p) g) Să se dea un exemplu de structură de corp cu 9 elemente.

SUBIECTUL IV (20p)

Se consideră șirurile $(a_n)_{n \in \mathbb{N}^*}$ și $(b_n)_{n \in \mathbb{N}^*}$, cu $a_n = \frac{1}{3^{1^2}} + \frac{1}{3^{2^2}} + ... + \frac{1}{3^{n^2}}$ și

$$b_n = a_n + \frac{1}{3n \cdot 3^{n^2}}, \ \forall n \in \mathbf{N}^*.$$

(4p) a) Să se verifice că șirul
$$(a_n)_{n \in \mathbb{N}^*}$$
 este strict crescător.

(4p) b) Să se arate că șirul
$$(b_n)_{n \in \mathbb{N}^*}$$
 este strict descrescător.

(4p) c) Să se arate că șirurile
$$(a_n)_{n\in\mathbb{N}^*}$$
 și $(b_n)_{n\in\mathbb{N}^*}$ sunt mărginite.

(2p) d) Să se arate că șirurile
$$(a_n)_{n\in\mathbb{N}^*}$$
 și $(b_n)_{n\in\mathbb{N}^*}$ sunt convergente și au aceeași limită.

(2p) e) Notăm cu
$$a \in \mathbb{R}$$
 limita șirului $(a_n)_{n \in \mathbb{N}^*}$. Să se arate că numărul a este irațional.

(2p) Să se arate că
$$\lim_{n\to\infty} \frac{n^{2007}}{3^{n^2}} = 0$$
.

(2p) g) Să se arate că nu există polinoame nenule
$$f, g \in \mathbf{R}[\mathbf{X}]$$
, cu proprietatea că $a_n = \frac{f(n)}{g(n)}, \ \forall n \in \mathbf{N}^*$.