QoE-aware Machine Learning: An Optimization Approach

Two Problems Trying To Solve

- Why do we use machine learning instead of other methods?
- Optimization in terms of configurations

Background: Quality of Experience (QoE)

- Definition
 - customer-focused performance measurement of experience
 - impact of network behavior on end user
- Different from QoS: network characteristics/behavior measured by network provider

Background: Quality of Experience (QoE)

- Key considerations
 - Application specific
 - a 5% packet loss could be invisible if it affects background
 - a missed target due to a 100ms delay can affect game outcome
 - Measurement
 - Every paper has its own metric for QoE
 - Some papers use Mean Opinion Score(MOS): ITU-R has spec
 - Others use QoS-like metrics

Collecting QoE Information

- Video
 - YouTube player reports to Google servers summary statistics at the end of each video playback.[1]
 - If the video successfully loaded
 - # of stalls and how long each one lasts
 - Rebuffering, wait component monitors[4]
 - Startup delay[2]
- Skype video conference
 - Peak signal-to-noise ratio(RSNR)[2]
 - o rate, delay and jitter.[3]
- Web browsing
 - Facebook: upload post UI wait time
 - Pull-to-Update time
 - Webpage loading time

Background: Machine Learning.Regression

Polynomial Regression

Background: Ensemble methods

Average prediction (0.23 + 0.19 + 0.34 + 0.22 + 0.26 + ... + 0.31) / # Trees = 0.24

Why is it good from a network perspective

Evaluating the network performance for a given configuration requires a dynamic system-level simulation, which requires high computational time

Index

- An important pipeline that summarizes all the papers I have seen
- Using regression and searching to detect underperforming sectors
- Configuration: A comparative approach for applying Genetic Algorithms

QoE-Aware Pipeline

Evaluation

Regression based

- configuration/kpi -> QoE
- Methods

Artificial Neural Network(ANN), Bagged SVM, Random Forest LSTM/RNN

Optimization

Greedy Search based

- Searching for optimal parameter set
- Methods

Particle Swarm Optimization(PSO) Genetic Algorithm(GA) Reinforced Learning(RL) The good, the bad, and the KPIs: how to combine performance metrics to better capture underperforming sectors in mobile networks

ICDE 17

Problem Setting

- Goal: bridging sector KPIs and per customer QoE for the whole network at scale
- Limitation: rigid, static and empirical
 - It is unknown whether current scoring function really reflects QoE
 - Lacks flexibility for user's need
 - Whether they need Voice more than LTE, weight should be different

Example of traditional KPI Thresholds

- Conventional Approach (where state of art is based on): Hotspot Score
 - Combines different KPI
 - The higher the score, the more problematic the sector is

$$s_b = S(\mathbf{k}_b, \mathbf{w}, \mathbf{t}) = \sum_{i=1}^n w_i \cdot H(k_{b,i} - t_i),$$

H is threshold that outputs 1 if > 0

KPI	Thres.	Category	
Failed RRC/RAB requests ratio	> 5%	Signaling	
Signaling failure	> 1%	Signamig	
Call setup failure rate	> 2%	Voice	
Call drop rate	> 5%	voice	
HSDPA/HSUPA session setup success %	< 90%		
Average Users Queuing	> 2	Data	
Time Slots Transmitting	> 80%		
Noise Rise	> 10db	Radio	

Metric for score function

Spearman Correlation of scoring function s and ground truth g

$$\rho(\mathbf{s}, \mathbf{g})$$

- Not differentiable but computationally cheap
- Solution
 - Use Machine Learning to establish relationship
 - Linear
 - Non-linear
 - Use Particle Swarm Optimization train the relationship

Approach	Configuration	Delay	Thput	Stalls
1 Baseline	All KPIs	0.15	-0.14	0.07
2 Baseline	Only data KPIs	0.19	-0.17	0.09
\bigcirc PSO on S	Only weights	0.29	-0.26	0.17
\bigcirc PSO on S	Only thresholds	0.30	-0.29	0.19
\bigcirc PSO on S	Weights and thresholds	0.41	-0.36	0.22
$\widehat{6}$ PSO on \widehat{S}	weights	0.46	-0.42	0.23
7 Non-linear	Random forest regression	0.40	-0.32	0.23

Representation of Relationships of KPIs

- Linear Representation
 - Normalize all KPI
 - Use Linear Combination

$$\hat{S}_b(\mathbf{k}_b, \mathbf{w}) = \sum_{i=1}^n w_i \cdot k_{b,i}.$$

- Random Forest
 - Higher expressive power

Particle Swarm Optimization(PSO)

For each particle, it has two property: velocity and position

For each step, each particle update by finding the best known position among neighbors and adding a velocity to there iteratively.

$$\mathbf{v}_{i,d} \leftarrow \omega \ \mathbf{v}_{i,d} + \phi_p \ r_p \ (\mathbf{p}_{i,d} - \mathbf{x}_{i,d}) + \phi_g \ r_g \ (\mathbf{g}_d - \mathbf{x}_{i,d})$$

QoE-Aware Pipeline

Evaluation

Regression based

Sector kpi -> QoE

Random Forest

Optimization

Greedy Search based

Searching for optimal parameter set

Particle Swarm Optimization(PSO)

Comparing Two papers in Parallel: One set of algorithms, two distinct contexts

- QoE-aware Optimization of Video Stream Downlink Scheduling over LTE Networks using ANNs and Genetic Algorithm
 - Procedia Computer Science 16
- Conflict Resolution in Mobile Networks: A Self-Coordination Framework Based on Non-Dominated Solutions and Machine Learning for Data Analytics
 - May 2018 IEEE Computational intelligence magazine

Background: Genetic Algorithm

Genetic Algorithm

Selection(roulette wheel selection)

Chromosome	Fitness Value
Α	8.2
В	3.2
С	1.4
D	1.2
E	4.2
F	0.3

Genetic Algorithm

Crossover

Mutation

Background: Genetic Algorithm

Advantages of Genetic Algorithm

- good for finding an approximate solution
- More scalable than Reinforcement Learning
 - Another class of algorithms that solve in term of reward/cost
 - Formulating solution by backtracking(e.g. DP)
 - RL requires a **huge state and action space**.
 - High variance on actions

Flowchart for Q-learn

In our case, QoE & Config!

QoE-aware Optimization of **Video Stream Downlink Scheduling** over LTE Networks using ANNs and
Genetic Algorithm

Procedia Computer Science 16

Context

- video content as one of the highest services enabled by LTE with the most revenue generating potential
- Using a scheduling scheme to obtain best QoE
 - By maximizing Mean Opinion Score(MOS)
 - The standard of their experiment is ITU-R, Subjective Video
 Quality Assessment Methods for Multimedia Applications, P.910

Artificial Neural Network(ANN)

$$\overline{p}(i) = (p(i) - p_{offset}(i)) \cdot p_{gain}(i) - 1;$$

$$n1=W1\cdot\overline{p}+b1;$$

$$a1(i) = \frac{2}{1 + e^{-2 \cdot n1(i)}} - 1;$$

$$n2 = W2 \cdot a1 + b2;$$

$$\widehat{MOS}_{ANN} = a2 = \frac{n2+1}{n2_{gain}} + n2_{offset};$$

The rest directly follows GA...

Fig. 2. Roulette wheel selection.

Fig. 3. Two-point crossover.

Fig. 4. Binary chromosomes mutation.

Conflict Resolution in Mobile Networks: A Self-Coordination Framework Based on Non-Dominated Solutions and Machine Learning for Data Analytics

May 2018 IEEE Computational intelligence magazine

Background: HO triggering procedure

Handover triggers when

$$RSRP_{nc} > RSRP_{sc} + \text{offset}$$

+ Hysteresis – CIO

(offsets are added to prevent ping-pong effect)

Background: MLB and MRO

- Both of them aim at adjusting CIO, hysteresis
- mobility load balancing(MLB):
 - Transfer users to less loaded neighboring cells
 - Optimize QoS by evenly distributing
- mobility robustness optimization(MRO):
 - minimize radio link failure and unnecessary handover

Context: Handover Coordinations

- Self-organizing network(SON): self-configure, self-optimize and self-healing
- when two or more SON functions aim at adjusting the same output parameter with opposite values
 - mobility load balancing(MLB): transfer to less loaded neighboring cells
 - mobility robustness optimization(MRO): minimize radio link failure and unnecessary handover
- When multi-objectives are dealt, configurations may cancel each other
 - Making decision in real time
 - Need self-coordination

Multi-objective optimization

We feed in n SON configuration set functions, and we are trying to minimize **Pareto front**

$$\begin{bmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \\ \vdots \\ \mathbf{s}_n \end{bmatrix} \rightarrow \begin{bmatrix} SON_1 \\ SON_2 \\ \vdots \\ SON_N \end{bmatrix} \rightarrow \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_K \end{bmatrix}$$

Then our objective is

Solution:

• Regression: Bagged SVM

Multi-objective optimization by genetic algorithm

Other papers also follow exactly the same pipeline

- 1. Cellular Network Traffic Scheduling with Deep Reinforcement Learning.
 - a. AAAI 2018
- 2. Online Learning for Interference Coordination in Heterogeneous Networks
 - a. ICC 2017
- 3. An Advanced SOM Algorithm Applied to Handover Management Within LTE
 - a. IEEE Transaction on Vehicular Technology
- 4. A Cooperative Online Learning Scheme for Resource Allocation in 5G Systems
 - a. ICC 2016
- 5. Traffic Prediction Based Power Saving in Cellular Networks: A Machine Learning Method
 - a. SIGSPATIAL 2017

And So on...

- 7. APP-SON: Application characteristics-driven SON to optimize 4G/5G network performance and quality of experience
 - a. IEEE BIG Data 2017
- 8. ExBox: Experience Management Middlebox for Wireless Networks.
 - a. CoNEXT 2016
- 9. A joint multicast/D2D learning-based approach to LTE traffic offloading
 - a. Computer Communications Dec 2015

Evaluation

Regression:

Fast,

Pre-trained: scalable

Online: adaptive,

Optimization

Searching:

Non-differentiable, sometimes multi-objective

Only need to find a solution that is good

enough

Potential

Evaluation

Better regression scheme for QoE

Optimization

Methods with faster convergence rate and less complexity

New Scenarios/contexts to be explored "We have a hammer and we are looking for a nail"

Conclusion: Two Problems I have Solved

- Why do we use machine learning instead of other methods?
 - Dynamic and plug-and-play: Determining underperforming sectors by kpi
 - Versatile and agnostic: Comparison
- Optimization in terms of configurations

Machine Learning: It generalizes. It is flexible. It is agnostic.

Questions? Comments?

QoE-Aware Pipeline

Evaluation

Regression based

- configuration/kpi -> QoE
- Methods

Artificial Neural Network(ANN), Bagged SVM, Random Forest LSTM/RNN

Optimization

Greedy Search based

- Searching for optimal parameter set
- Methods

Particle Swarm Optimization(PSO)
Genetic Algorithm(GA)
Reinforced Learning(RL)