עבורה Vol $_n:\mathcal{P}\left(\mathbb{R}^n
ight)
ightarrow [0,\infty]$ עבורה אזי לא קיימת $n\in\mathbb{N}$ יהי

- $.Vol_n([0,1]^n) = 1 \bullet$
- . $\operatorname{Vol}_n\left(\biguplus_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{n}\operatorname{Vol}_n\left(A_i\right)$ אזי $\left\{A_i
 ight\}_{i=1}^{\infty}\subseteq\mathcal{P}\left(\mathbb{R}^n
 ight)$ תהיינה
- . $\mathrm{Vol}_n\left(arphi\left(A
 ight)
 ight)=\mathrm{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ תהא

קבוצות חופפות בחלקים: $X,Y\subseteq\mathbb{R}^n$ עבורן קיים $X,Y\subseteq\mathbb{R}^n$ קיימות עבורן איזומטריות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות $X,Y\subseteq\mathbb{H}^n$ וכן $X,Y\subseteq\mathbb{H}^n$ איזומטריות המקיימות $X,Y\subseteq\mathbb{H}^n$ וכן $X,Y\subseteq\mathbb{H}^n$ איזומטריות א

 $X \equiv Y$ אזי בחלקים חופפות $X,Y \subseteq \mathbb{R}^n$ סימון: תהיינה

 $X \equiv Y$ אזי $(Y) \neq \varnothing$ וכן $(X) \neq \varnothing$ וחסומות עבורן אוינה $X,Y \subseteq \mathbb{R}^n$ ותהיינה ווהיינה $n \in \mathbb{N} \setminus \{0,1,2\}$ יהי היי $(Y) \neq \emptyset$ ותהיינה ווהיינה $(Y) \neq \emptyset$ ותהיינה אזי לא קיימת $(Y) \neq \emptyset$ ווהיינה אזי לא קיימת $(Y) \neq \emptyset$ ווהיינה אזי לא קיימת ווהיינה ווהיינה ווהיינה $(Y) \neq \emptyset$ אזי לא קיימת ווהיינה וו

- $.Vol_n([0,1]^n)=1 \bullet$
- . $\mathrm{Vol}_n\left(A \uplus B\right) = \mathrm{Vol}_n\left(A\right) + \mathrm{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- . $\mathrm{Vol}_n\left(\varphi\left(A\right)\right)=\mathrm{Vol}_n\left(A\right)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $\varphi:\mathbb{R}^n o\mathbb{R}^n$ ההא

עבורה $\operatorname{Vol}_n:\mathcal{P}\left(\mathbb{R}^n
ight) o [0,\infty]$ אזי קיימת $n\in\{1,2\}$ יהי יהי

- $.Vol_n([0,1]^n)=1 \bullet$
- $\operatorname{Vol}_n\left(A \uplus B\right) = \operatorname{Vol}_n\left(A\right) + \operatorname{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- . $\mathrm{Vol}_n\left(arphi\left(A
 ight)
 ight)=\mathrm{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ אהא

אלגברה: תהא א קבוצה אזי תהא אלגברה: אלגברה אלגברה

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . | או סופית מתקיים בכל $E\subseteq\mathcal{A}$

 $A\cap B\in\mathcal{A}$ אזי א $A,B\in\mathcal{A}$ טענה: תהא

אידיאל: תהא X קבוצה אזי $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ המקיימת

- $X \notin \mathcal{I} \bullet$
- $\forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $\bigcup E \in \mathcal{A}$ סופית מתקיים $E \subseteq \mathcal{A}$ לכל •

המקיימת $\mathcal{A}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה X המקיימת σ

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . (אבת בת מניים מתקיים $E\subseteq\mathcal{A}$ לכל •

מסקנה: תהא $\mathcal A$ אלגברה אזי σ אלגברה.

המקיימת $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה אזי תהא X המקיימת σ

- $X \notin \mathcal{I} \bullet$
- $\forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $\bigcup E \in \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

טענה: תהיינה $G \cap_{\alpha \in I} A_{\alpha}$ אזי אזי $\sigma \in A_{\alpha}$ אלגברה $G \cap_{\alpha \in I} G \cap_{\alpha \in I} G$

אזי A אזי מעל X המכילות מעל כל ה σ ־אלגברה נוצרת: תהא א ותהיינה ותהיינה $A\subseteq\mathcal{P}\left(X\right)$ המכילות את א אזי $A\subseteq\mathcal{P}\left(X\right)$ המכילות את $A\subseteq\mathcal{P}\left(X\right)$ המכילות את $A\subseteq\mathcal{P}\left(X\right)$ המכילות את א אזי $A\subseteq\mathcal{P}\left(X\right)$ המכילות את א אזי המכילות את א וערכה א ותהיינה ווצרת: חברה אוני המכילות את א אזי המכילות את א ווערכה א וו

 $\mathcal{B}\left(X
ight)=\sigma\left(\left\{\mathcal{O}\in\mathcal{P}\left(X
ight)\mid$ פתוחה $\mathcal{O}
ight\}$ פתרי אזי מרחב מטרי אזי יהי מרחב מטרי אזי מרחב מטרי אזי

טענה: יהי X מרחב מטרי אזי הקבוצות הבאות שוות

- .X אלגברה בורל על σ
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r>0\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r\in\mathbb{Q}_+\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\left\{B_{r}\left(a
 ight)\mid\left(r\in\mathbb{Q}_{+}
 ight)\wedge\left(a\in Y
 ight)
 ight\}
 ight)$ צפופה אזי $Y\subseteq X$ תהא ullet

 $A=igcap_{i=1}^\infty \mathcal{O}_i$ עבורה קיימות פתוחות פתוחות איימות $\{\mathcal{O}_i\}_{i=1}^\infty$ עבורה קיימות עבורה איימות $A\subseteq X:G_\delta$

```
A=igcup_{i=1}^\infty \mathcal{O}_i סגורות המקיימות \{\mathcal{O}_i\}_{i=1}^\infty עבורה קיימות A\subseteq X:F_\delta אזי מסקנה: תהא A קבוצה G_\delta ותהא B קבוצה B אזי B ותהא B קבוצה הקבוצות הבאות שוות \mathbb{R}^n טענה: הקבוצות הבאות שוות \sigma \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) משפט: תהא \{f:\mathbb{R}\to\mathbb{R}\} ותהא \{f:\mathbb{R}\to\mathbb{R}\} אזי \mathcal{O}(f)\in G_\delta \bullet \mathcal{O}(f) אזי \mathcal{O}(f)=\{f\in \mathcal{O}(f)\}
```

.int $(\overline{A})=\varnothing$ המקיימת $A\subseteq X$ המקיימת מרחב מטרי אזי $A\subseteq X$ המקיימת מרחב מטרי אזי $A=\bigcup_{i=1}^\infty B_i$ דלילות עבורן $\{B_i\}_{i=1}^\infty$ דלילות עבורן מטרי אזי $A\subseteq X$ עבורה קיימות מקטגוריה ראשונה. קבוצה מקטגוריה שנייה: יהי A מרחב מטרי אזי $A\subseteq X$ שאינה מקטגוריה ראשונה. $A^{\mathcal{C}}$ מקטגוריה ראשונה אזי $A\subseteq X$ מקטגוריה ראשונה אזי $A^{\mathcal{C}}$

למה: יהיX מרחב מטרי אזי

- . דלילה $B \subseteq A$ אזי $A \subseteq X$ דלילה תהא $A \subseteq X$
- . דלילה $\bigcup_{i=1}^n A_i$ אזי דלילות אזי $A_1 \ldots A_n \subseteq X$ דלילה.
 - . דלילה אזי \overline{A} דלילה אזי $A\subseteq X$ תהא

מסקנה: קבוצות דלילות מהוות אידיאל.

 $\operatorname{cint}(A)=arnothing$ משפט בייר: יהי X מרחב מטרי שלם ותהא ותהא $A\subseteq X$ משפט בייר: יהי מרחב מטרי משפט הייר

מסקנה: קבוצות דלילות מהוות σ ־אידיאל.

 $\mathbb{Q} \notin G_{\delta}$:מסקנה

 $A=F\uplus N$ אזי קיימת איים וקיימת איימת משפט: תהא אזי קיימת הקטגוריה מקטגוריה אזי קיימת אזי קיימת אזי קיימת משפט

משפט בנך: במרחב המטרי $\{f\in C\left([0,1]\right)\mid\exists x\in\left(0,1\right).f\in\mathcal{D}\left(x\right)\}$ היא מקטגוריה מקסימום הקבוצה $C\left([0,1]\right)$ היא מקטגוריה במרחב המטרי ראשונה.

הערה: "רוב" הפונקציות הרציפות לא גזירות באף נקודה.

קבורה עבורה עבורה עבורה קיימת $Q\subseteq X$ פתוחה וקיימת עבורה אזי איז מרחב מטרי אזי מרחב מטרי אזי עבורה קיימת $A\subseteq X$ מקטגוריה ראשונה עבורה $A=G\triangle Q$

משפט: תהא $A\subseteq X$ מקטגוריה ראשונה עבורה $F\subseteq X$ סגורה בייר) \Longleftrightarrow (קיימת בייר) אזי (ל-A אזי ל-A אזי ל-A אזי אזי (ל- $A\subseteq X$).

מסקנה: תהא $A \subseteq X$ בעלת תכונת בייר אזי $A \subseteq X$ בעלת תכונת בייר.

נסמן lpha+1 נסמן, $\mathcal{F}_0=\mathcal{T}\cup\{\varnothing,\Omega\}$ נסמן $\mathcal{T}\subseteq\mathcal{P}\left(X
ight)$ נסמן $\mathcal{T}\subseteq\mathcal{T}$, לכל סודר עוקב משפט:

באשר $\sigma\left(\mathcal{T}\right)=\mathcal{F}_{\omega_{1}}$ אזי $\mathcal{F}_{\lambda}=\bigcup_{\alpha<\lambda}\mathcal{F}_{\alpha}$ נסמן λ נסמן $\mathcal{F}_{\alpha+1}=\mathcal{F}_{\alpha}\cup\left\{A^{\mathcal{C}}\mid A\in\mathcal{F}_{\alpha}\right\}\cup\left\{\bigcap_{n=1}^{\infty}A_{n}\mid A_{n}\in\mathcal{F}_{\alpha}\right\}$ באשר ... הסודר הגבולי הקטן ביותר שאינו בן מניה.

 $|\sigma\left(X
ight)|=\aleph$ אזי אין אורה עבורה עבורה א קבוצה עבורה א

 $.(X,\Sigma)$ אזי אזי ס אלגברה σ $\Sigma\subseteq\mathcal{P}\left(X\right)$ ותהא ותהא קבוצה אזי תהא מדיד: תהא

המקיימת $\mu:\Sigma \to [0,\infty]$ אזי מרחב מדיד הה
 (X,Σ) יהי יהי פונקציית מידה: המקיימת

- $.\mu(\varnothing) = 0 \bullet$
- $.\mu\left(\biguplus_{i=1}^{\infty}B_i\right)=\sum_{i=1}^{\infty}\mu\left(B_i\right)$ אזי לרות בזוגות אזי ורות ב $\left\{B_i\right\}_{i=1}^{\infty}\subseteq\Sigma$ הדטיביות: תהיינה ס

 (X,Σ,μ) יהי מידה פונקציית מדיה מדיד מרחב מרחב מרחב ($X,\Sigma)$ יהי יהי מרחב מרחב מרחב

 $.\mu\left(X\right) <\infty$ חמקיימת μ מידה פונקציית פונקציית מידה סופית:

 $. orall i \in \mathbb{N}_+. \mu\left(B_i
ight) < \infty$ וכן $X = igcup_{i=1}^\infty B_i$ המקיימים $\{B_i\}_{i=1}^\infty \subseteq \Sigma$ וכן μ בורה קיימים מידה μ וכן μ בורה קיימים מידה μ המקיימת μ בורה הסתברות: פונקציית מידה μ המקיימת μ

טענה: יהי (X,Σ,μ) מרחב מידה אזי

- $.\mu\left(A\right)\leq\mu\left(B\right)$ אזי $A\subseteq B$ באשר $A,B\in\Sigma$ יהיו מונוטוניות: יהיו
- $\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}\right)$ אזי $\left\{A_{i}\right\}_{i=1}^{\infty}\subseteq\Sigma$ התראדיטיביות: תהיינה σ
- $.\mu\left(igcup_{i=1}^{\infty}A_{i}
 ight)=\lim_{n o\infty}\mu\left(A_{n}
 ight)$ אזי $orall i\in\mathbb{N}_{+}.A_{i}\subseteq A_{i+1}$ באשר באשר $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$ מלעיל: תהיינה •
- $\mu\left(\bigcap_{i=1}^{\infty}A_{i}
 ight)=\lim_{n\to\infty}\mu\left(A_{n}
 ight)$ אזי $\mu\left(A_{1}
 ight)<\infty$ וכן $\forall i\in\mathbb{N}_{+}.A_{i}\supseteq A_{i+1}$ באשר $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$ באשר פידת בורל: תהא X קבוצה אזי מידה μ על $\mu\left(X,\mathcal{B}\left(X
 ight)\right)$.

 $\mu\left(E
ight)=0$ המקיימת $E\in\Sigma$ אפס/זניחה:

 $\mathcal{N}=\{E\in\Sigma\mid\mu\left(E
ight)=0\}$ סימון: יהי (X,Σ,μ) מרחב מידה אזי

. אניחה $\bigcup_{i=1}^{\infty} E_i$ אזי אניחות אזי $\{E_i\}_{i=1}^{\infty} \subseteq \Sigma$ אניחה: תהיינה

 μ כמעט בכל מקום (כ.ב.מ.): יהי ψ פרידיקט עבורו קיימת $E\in\mathcal{N}$ המקיים כי ψ מתקיים לכל Xackslash E אזי נאמר כי ψ נכונה בכל מקום..

 $F\in\mathcal{N}$ מתקיים $F\subseteq E$ ולכל ולכל לכל עבורה מידה מידה מידה פונקציית מידה לכל

 $.\overline{\Sigma}=\{E\cup F\mid (E\in\Sigma)\wedge (\exists N\in\mathcal{N}.F\subseteq N)\}$ השלמה של σ ־אלגברה: יהי (X,Σ,μ) מרחב מידה אזי

טענה: יהי $\overline{\Sigma}$ יהי מידה מידה ($X,\Sigma,\mu)$ יהי טענה:

 $u_{
ho_{\Sigma}} = \mu$ עבורה על $\overline{\Sigma}$ עבורה מידה מידה אזי קיימת ויחידה מידה אל מרחב מרחב מידה אזי קיימת ויחידה מידה שלמה על (X,Σ,μ)

 $.\overline{\mu}_{1_{\Sigma}}=\mu$ עבורה על $\overline{\Sigma}$ עבורה השלמה המידה מידה מידה מידה מרחב מרחב (X,Σ,μ) השלמה של מידה: יהי

טענה: יהי $(X,\overline{\Sigma},\overline{\mu})$ מרחב מידה אזי (X,Σ,μ) מרחב מידה.

מחלקת דינקין: תהא $X
eq \varnothing$ אזי $\mathcal{D} \subseteq \mathcal{P}\left(X
ight)$ אזי איזי תהא

- $X \in \mathcal{D} \bullet$
- $.B \backslash A \in \mathcal{D}$ אזי $A \subseteq B$ באשר $A, B \in \mathcal{D}$ יהיי •
- $\bigcup_{i=1}^\infty A_i\in\mathcal{D}$ אזי $orall i\in\mathbb{N}_+.A_i\subseteq A_{i+1}$ באשר $\{A_i\}_{i=1}^\infty\subseteq\mathcal{D}$ ההיינה ullet

 $\bigcap_{i=1}^{n}A_{i}\in\Pi$ מתקיים $A_{1}\ldots A_{n}\in\Pi$ עבורה לכל עבורה אזי אזי אזי אזי $\Pi\subseteq\mathcal{P}\left(X
ight)$ אזי אזי $X
eq\varnothing$

. מחלקת חלקת $\bigcap_{\alpha\in I}\mathcal{D}_{\alpha}$ אזי אינקין מחלקת אולקות $\{\mathcal{D}_{\alpha}\}_{\alpha\in I}\subseteq\mathcal{P}\left(X\right)$ מענה: תהיינה

 $d(A)=igcap_{lpha\in I}\mathcal{D}_lpha$ אזי אזי A אזי אזי מחלקת דינקין מעל A המכילות את A אזי $A\subseteq\mathcal{P}(X)$ מחלקת דינקין נוצרת: תהא $A\subseteq\mathcal{P}(X)$ אזי $A\subseteq\mathcal{P}(X)$ הינה המחלקת דינקין הקטנה ביותר המכילה את $A\subseteq\mathcal{P}(X)$

למה: תהא A אלגברה על X עבורה לכל A עבורה לכל A באשר $A_i \in \mathbb{N}_+$ מתקיים $A_i \in \mathcal{A}$ מתקיים $A_i \in \mathcal{A}$ אזי A האלגברה על מה: תהא A אלגברה על עבורה לכל $A_i \in \mathcal{A}$ באשר $A_i \in \mathbb{N}_+$ מתקיים $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ מתקיים $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ משפט הלמה של דינקין: תהא $A_i \in \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ משפט הלמה של דינקין: תהא $A_i \in \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$

עבורן Σ עבורן סופיות סופיות μ, ν מידות $\Sigma = \sigma\left(\Pi\right)$ עבורה מטקנה: יהי $\Pi \subseteq \mathcal{P}\left(X\right)$ מרחב מדיד תהא על $\Pi \subseteq \mathcal{P}\left(X\right)$ מרחב מדיד תהא $\mu = \mu$ אזי $\mu \in \mathcal{P}\left(X\right)$ וכן $\mu \in \mathcal{P}\left(X\right)$ אזי $\mu \in \mathcal{P}\left(X\right)$

 $\forall i\in\mathbb{N}_+.A_i\subseteq A_{i+1}$ באשר $\{A_i\}_{i=1}^\infty\subseteq\Pi$ מסקנה: יהי $\Sigma=\sigma(\Pi)$ מערכת π עבורה $\Pi\subseteq\mathcal{P}(X)$ מרחב מדיד תהא $\mu=\nu$ מיר וכן $\mu=\nu$ וכן $\mu=\nu$ וכן $\mu=\nu$ מידות על $\mu=\nu$ עבורן $\mu=\nu$ עבורן $\mu=\nu$ וכן $\mu=\nu$ וכן $\mu=\nu$ ווכן $\mu=\nu$ מידות על $\mu=\nu$ עבורן $\mu=\nu$ עבורן $\mu=\nu$ ווכן $\mu=\nu$ ווב

חוג למחצה: תהא $\mathcal{E}\subseteq\mathcal{P}\left(X\right)$ אזי קבוצה X המקיימת

- $\mathscr{A} \in \mathcal{E} \bullet$
- $A \cap B \in \mathcal{E}$ אזי $A, B \in \mathcal{E}$ יהיי
- $A \setminus B = \biguplus_{i=1}^n C_i$ עבורם $C_1 \dots C_n \in \mathcal{E}$ אזי קיימים $A, B \in \mathcal{E}$ יהיי

 $A_1 \ldots A_n \in \mathcal{E}$ טענה: יהי $\mathcal{E} \subseteq \mathcal{P}\left(X
ight)$ חוג למחצה ויהיו

- $.Packslash\bigcup_{i=1}^nA_i=\biguplus_{i=1}^mB_i$ יהי $P\in\mathcal{E}$ אזי קיימים יהי אז $P\in\mathcal{E}$ יהי •
- $.\bigcup_{i=1}^nA_i=\biguplus_{i=1}^m\biguplus_{j=1}^mB_{i,j}$ עבורם $\{B_{i,j}\mid (i\in[n])\wedge (j\in[m_i])\}\subseteq\mathcal{E}$ קיימים •
- $.\bigcup_{i=1}^nA_i=\biguplus_{i=1}^\infty\biguplus_{j=1}^mB_{i,j}$ עבורם $\{B_{i,j}\mid (i\in\mathbb{N}_+)\wedge (j\in[m_i])\}\subseteq\mathcal{E}$ קיימים •

מידה אלמנטרית: יהי $\mu:\mathcal{E} o [0,\infty]$ חוג למחצה אזי חוג למרית: יהי יהי

- $.\mu(\varnothing) = 0 \bullet$
- $.\mu\left(A\uplus B
 ight)=\mu\left(A
 ight)+\mu\left(B
 ight)$ אזי $A\uplus B\in\mathcal{E}$ עבורם $A,B\in\mathcal{E}$ אדיטיביות: תהיינה •

- $.\mu\left(A
 ight) \leq \mu\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\mathcal{E}$ מונוטוניות: תהיינה
- $\mu\left(igcup_{i=1}^\infty A_i
 ight) \le \sum_{i=1}^\infty \mu\left(A_i
 ight)$ איי ווינה $\{A_i\}_{i=1}^\infty \subseteq \mathcal{E}$ התראדטיביות: תהיינה σ

מידה חיצונית: יהי X
eqarnothing אזי $[0,\infty]$ אזי X
eqarnothing המקיימת

- $.\mu^*(\varnothing) = 0 \bullet$
- $.\mu^{st}\left(A
 ight)\leq\mu^{st}\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\mathcal{P}\left(X
 ight)$ מונוטוניות: תהיינה
- $\mu\left(\bigcup_{i=1}^{\infty}A_{i}
 ight)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}
 ight)$ איי $\left\{A_{i}
 ight\}_{i=1}^{\infty}\subseteq\mathcal{P}\left(X
 ight)$ היינה σ •

 $ho\left(\varnothing
ight)=0$ אבורה $ho:\mathcal{E} o [0,\infty]$ אתהא $arphi,X\in\mathcal{E}$ באשר $\mathcal{E}\subseteq\mathcal{P}\left(X
ight)$ יהי יהי $ho:
ho^*\left(A
ight)=\inf\left\{\sum_{i=1}^\infty
ho\left(E_i
ight)\mid\left(\left\{E_i\right\}_{i=1}^\infty\subseteq\mathcal{E}\right)\wedge\left(A\subseteq\bigcup_{i=1}^\infty E_i
ight)
ight\}$ כגדיר $ho^*:\mathcal{P}\left(X
ight) o [0,\infty]$

. טענה: ho^* אזי $ho(\varnothing)=0$ אזי $ho:\mathcal{E} o[0,\infty]$ ותהא מידה חיצונית. באשר $\mathcal{E}\subseteq\mathcal{P}(X)$ אזי יהי

 $.m_{{\scriptscriptstyle \mathsf{LM}}}^* = m$ אזי אלמנטרית מידה מידה m מידה למחצה חוג למחצה שענה: יהי

 $.\Gamma_{0}=\{E\in\mathcal{A}\mid\lambda$ אזי $E\}$ אזי $\lambda\left(arnothing
ight)=0$ עבורה $\lambda:\mathcal{A} o\left[0,\infty
ight]$ אלגברה ותהא אלגברה ותהא $\lambda:\mathcal{A} o\left[0,\infty
ight]$

טענה: תהא $\lambda\left(arnothing
ight)=0$ אזי $\lambda:\mathcal{A} o\left[0,\infty
ight]$ אלגברה ותהא אלגברה לגברה אזי $\lambda:\mathcal{A} o\left[0,\infty
ight]$

- .אלגברה Γ_0
- $.\Gamma_0$ אדיטיבית על λ

 $.\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$

 $\lambda\left(\biguplus_{i=1}^{n}\left(E_{k}\cap F\right)\right)=\sum_{i=1}^{n}\lambda\left(E_{n}\cap F\right)$ אזי $F\in\mathcal{A}$ ויהי $E_{1}\ldots E_{n}\in\Gamma_{0}$ תהיינה

מתקיים לכל לכל עבורה אזי אזי אזי חיצונית מידה מידה תהא $E\subseteq X$ לכל למידה אזי אזי על אזי מידה מידה מהידה מהידה מהידה מידה תהא μ^*

 $\Sigma_{\mu^*}=\{A\subseteq X\mid \mu^*$ מדידה $A\}$ אזי X איזי על מידה חיצונית על מדידה μ^*

 $\mathcal{M}\subseteq \Sigma_{m^*}$ אזי אלמנטרית מידה m מידה ותהא חוג למחצה יהי \mathcal{M}

משפט הלמה של קרתאודורי: תהא μ^* מידה חיצונית על X אזי

- . אלגברה σ Σ_{μ^*}
- . מידה שלמה $\mu^*_{\restriction_{\Sigma_{..*}}}$

משפט: יהי $\mathcal M$ חוג למחצה תהא m מידה אלמנטרית ותהא (X,Σ',μ) המשכת קרתיאודורי נוספת של מידה m אזי

- $\mu\left(A\right) \leq m^{*}\left(A\right)$ מתקיים $A \in \Sigma' \cap \Sigma_{m^{*}}$ •
- $.\mu\left(A
 ight)=m^{st}\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{st}}$ לכל אזי לכל $m^{st}\left(X
 ight)<\infty$.
 - $\mu\left(A
 ight)=m^{st}\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{st}}$ לכל אזי לכל σ m נניח כי

. מסקנה: יהי ${\mathcal M}$ חוג למחצה ותהא m מידה אלמנטרית σ ־סופית אזי המשכת קרתיאודורי יחידה מסקנה:

מתקיים $d\left(A,B\right)>0$ באשר $A,B\subseteq X$ מתקיים μ^* מידה מטרי ותהא ווהא μ^* מידה מטרי מידה (X,d) מתקיים $\mathcal{B}\left(X\right)\subseteq\Sigma_{\mu^*}$ אזי $\mu^*\left(A\cup B\right)=\mu^*\left(A\right)+\mu^*\left(B\right)$

 $.\mu\left(A\right)=\sup\left\{ \mu\left(K\right)\mid\left(K\subseteq A\right)\wedge\left($ קומפקטית הפועה אבורה $A\in\Sigma$ קבוצה קבוצה רגולרית: קבוצה אבורה אבורה אבורה אבורה אבורה האבוצה האבוצה האבוצה אבורה אבורה אבורה אבורה אבורה האבוצה האבוצה האבוצה אבורה אב

. תולרית. אזי μ אזי אוי μ אזי μ אזי μ משפט אולם: יהי א מרחב מטרי שלם וספירבילי ותהא ותהא אוי משפט אולם: יהי אוי שלח מטרי שלח ו

עבורה $\{\prod_{i=1}^n (a_i,b_i) \mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}$ עבורה מידה אלמנטרית: מידה אלמנטרית:

 $.m(\prod_{i=1}^{n} (a_i, b_i)) = \prod_{i=1}^{n} (b_i - a_i)$

 $\mathcal{L}\left(\mathbb{R}^n
ight)=\sigma\left(\{A\subseteq\mathbb{R}^n\mid ($ מתוחה A)ee (מירת הנפח האלמנטרית פי מידת על פי מידת אניחה על פי מידת הנפח האלמנטרית)

 $\mathcal{B}\left(\mathbb{R}^d
ight)\subseteq\mathcal{L}\left(\mathbb{R}^d
ight)$:מסקנה

 $\mathcal{L}\left(\mathbb{R}^n
ight)=\Sigma_{m^*}$ אזי אזי הנפח האלמנטרית מידת מידת מידת מידת מידת מידת הנפח

מסקנה: תהא $u \left(\prod_{i=1}^n (a_i,b_i)\right) = \prod_{i=1}^n (b_i-a_i)$ מידה אלמנטרית מידה אלמנטרית מידה אלמנטרית עבורה $u : \mathcal{L}\left(\mathbb{R}^n\right) \to [0,\infty]$ אזי א הינה מידת הנפח האלמנטרית.

טענה: תהא λ מידת לבג אזי

```
.\lambda\left(E
ight)=\lim_{n	o\infty}\lambda\left(E\cap\left[-n,n
ight]^{d}
ight) אזי E\in\mathcal{L}\left(\mathbb{R}^{d}
ight) תהא
```

- $A\left(\mathcal{O}\backslash E
 ight)<arepsilon$ פתוחה עבורה $E\subseteq\mathcal{O}$ אזי קיימת arepsilon>0 אזי ויהי ויהי $E\in\mathcal{L}\left(\mathbb{R}^{d}
 ight)$
- $\lambda\left(Eackslash F
 ight)<arepsilon$ סגורה עבורה אזי קיימת $E\in\mathcal{L}\left(\mathbb{R}^d
 ight)$ תהא \bullet
- $.\lambda\left(E\backslash F\right)<\varepsilon$ עבורה עבורה $F\subseteq E$ אזי קיימת יהי ויהי $\mu\left(E\right)<\infty$ עבורה עבורה תהא \bullet
- .($\lambda\left(A\right)=\lambda\left(B\right)$ וכן $A\subseteq E\subseteq B$ המקיימות $A,B\in\mathcal{B}\left(\mathbb{R}^{d}\right)$ פֿיימות לאזי ($E\in\mathcal{L}\left(\mathbb{R}^{d}\right)$) אזי וכן $E\subseteq\mathbb{R}^{d}$

טענה: תהא $A\subseteq\mathbb{R}^d$ מידת לבג ותהא μ התב"ש

- $A \in \mathcal{L}\left(\mathbb{R}^d\right)$ •
- A=Gackslash E עבורן $E\in\mathcal{N}$ וקיימת וקיימת $G\in G_\delta$
- $A=F\cup E$ עבורן איימת $E\in\mathcal{N}$ וקיימת וקיימת $F\in F_{\sigma}$

 $(\mathcal{B}\left(\mathbb{R}^d
ight),m)$ מסקנה: תהא λ מידת לבג אזי ($\mathcal{L}\left(\mathbb{R}^d
ight),\lambda$) השלמה אזי מסקנה:

משפט: תהא $A\subseteq\mathcal{O}$ מידת לבג תהא $f:\mathcal{O} o\mathbb{R}^d$ פתוחה תהא פתוחה לבג תהא מידת לבג תהא לבג תהא משפט

- $f\left(A
 ight)\in\mathcal{L}\left(\mathbb{R}^{d}
 ight)$ אזי $A\in\mathcal{L}\left(\mathbb{R}^{d}
 ight)$ נניח כי
 - $\lambda\left(f\left(A\right)\right)=0$ נניח כי $\lambda\left(A\right)=0$ אזי •

 $A(A)=\lambda\left(A+x
ight)$ אזי $X\in\mathbb{R}^n$ ויהי $A\in\mathcal{L}\left(\mathbb{R}^n
ight)$ משפט אינווריאנטיות להזזות: תהא

מסקנה: תהא $\nu\left(E\right)<\infty$ חבומה מתקיים בע וכן לכל לכל לכל $E\in\mathcal{L}\left(\mathbb{R}^d\right)$ מידה אינווריאנטית מידה אינווריאנטית מידה אינווריאנטית האינווריאנטית מידה אינווריאנטית $u:\mathcal{L}\left(\mathbb{R}^n\right)\to\left[0,\infty\right]$ איי קיים $\lambda=\kappa \nu$ אוי עבורו $\kappa\in\left[0,\infty\right)$

 $\lambda\left(T\left(E
ight)
ight)=\left|\det\left(T
ight)
ight|\lambda\left(E
ight)$ אזי $E\in\mathcal{L}\left(\mathbb{R}^{d}
ight)$ ותהא $T\in\operatorname{Hom}\left(\mathbb{R}^{d}
ight)$ משפט: תהא

 $A=\prod_{i=1}^n{(a_i,b_i)}$ המקיימים $a_1,b_1\dots a_n,b_n\in\mathbb{R}$ עבורה קיימים עבורה $A\subseteq\mathbb{R}^d$ המדרה: תהא $E\subseteq\mathbb{R}^d$ חסומה ותהא $A\subseteq\mathbb{R}^d$ מידת לבג אזי

- $\lambda_{*,I}(E) = \sup \{\lambda(A) \mid (\lambda(A) \subseteq E)\}$ מידת ז'ורדן פנימית:
- $.\lambda_{I}^{st}(E)=\inf\left\{ \lambda\left(A
 ight) \mid$ (פשוטה) איורדן חיצונית: A

 $\lambda_{J}\left(E
ight)=\lambda_{J}^{*}\left(E
ight)$ אזי א $\lambda_{*,J}\left(E
ight)=\lambda_{J}^{*}\left(E
ight)$ חסומה עבורה $E\subseteq\mathbb{R}^{d}$ אזי אוירדן: תהא

 $.\lambda_{J}^{*}\left(E
ight)=\lambda\left(\overline{E}
ight)$ וכן $\lambda_{*,J}\left(E
ight)=\lambda\left(\mathrm{int}\left(E
ight)
ight)$ חסומה אזי וכן וכן

טענה: תהא λ מידת לבג אזי $E\subseteq \mathbb{R}^d$ מידת לבג אזי

- .מדידה ז'ורדן Eullet
- $A(B\backslash A)<arepsilon$ וכן $A\subseteq E\subseteq B$ פשוטות עבורן A,B אזי קיימות arepsilon>0
 - $.\lambda_I^*(\partial E) = 0 \bullet$
 - $.\lambda^* \left(\partial E \right) = 0 \bullet$

 $(x-y)\in\mathbb{Z}^dackslash\{0\}$ עבורם $x,y\in E$ אזי קיימים א $\lambda\left(E
ight)>1$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$

 $V\cap \left(\mathbb{Z}^dackslash\{0\}
ight)
eq arnothing$ אזי א $V\subseteq \mathbb{R}^d$ משפט מינקובסקי: יהי $V\subseteq \mathbb{R}^d$ גוף קמור סימטרי סביב $V\cap \left(\mathbb{Z}^d\setminus\{0\}
ight)$

 $\lambda\left(E\cap Q
ight)> heta\cdot\lambda\left(Q
ight)$ עבורה $Q\subseteq\mathbb{R}^d$ אזי קיימת קוביה $\theta\in(0,1)$ ותהא $\lambda\left(E
ight)\in(0,\infty)$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$ משפט שטיינהאוס: תהא $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$ אזי $E\in\mathcal{L}\left(\mathbb{R}^d\right)$

 $(x-y)\in\mathbb{Q}\setminus\{0\}$ עבורם $x,y\in E$ אזי קיימים א ל(E)>0 עבורה $E\in\mathcal{L}\left(\mathbb{R}
ight)$ מסקנה: תהא

 $\mathcal{O}=(\biguplus_{i=1}^\infty B_i)\cup E$ עבורם $E\in\mathcal{N}$ עבורים וקיימת למה: תהא $\mathcal{O}=\{B_i\}_{i=1}^\infty\subseteq\mathcal{P}\left(\mathbb{R}^d
ight)$ פתוחה אזי קיימים

. פונקציית התפלגות: $F:\mathbb{R} o\mathbb{R}_{>0}$ מונוטונית עולה ורציפה מימין

טענה: תהא μ מידת בורל סופית על \mathbb{R} אזי $F:\mathbb{R} \to \mathbb{R}$ המוגדרת $F(x)=\mu$ הינה פונקציית התפלגות. μ מידת בורל סופית על μ אזי $\mu:\mathcal{A} \to [0,\infty]$ אלגברה אזי $\mu:\mathcal{A} \to [0,\infty]$ אלגברה אזי

- $.\mu(\varnothing) = 0 \bullet$
- $\mu(iguplus_{i=1}^\infty B_i) = \sum_{i=1}^\infty \mu(B_i)$ ארות בזוגות אזי ורות ב $\{B_i\}_{i=1}^\infty \subseteq \Sigma$ אדטיביות: תהיינה σ

 $.m_{\uparrow_{\mathcal{A}}}^*=m$ אזי קדם־מידה אזי האגברה ותהא אלגברה אלגברה אלגברה שלגברה ותהא

 $\mathcal{A} \subseteq \Sigma_{m^*}$ אזי קדם־מידה אזי תהא אלגברה ותהא אלגברה ותהא

 Σ_{m^*} מידה מעל m^* מידה המשכת קרתיאודורי: תהא אלגברה ותהא M

משפט: תהא Aאלגברה תהא m קדם־מידה ותהא (X,Σ',μ) המשכת קרתיאודורי נוספת של

- $\mu\left(A\right) < m^{*}\left(A\right)$ מתקיים $A \in \Sigma' \cap \Sigma_{m^{*}}$ •
- $\mu\left(A
 ight)=m^{st}\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{st}}$ אזי לכל $m^{st}\left(X
 ight)<\infty$ פניח כי
 - $.\mu\left(A
 ight)=m^{st}\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{st}}$ לכל אזי לכל יניח כי σ ת

. מסקנה: תהא \mathcal{A} אלגברה ותהא m קדם־מידה σ ־סופית אזי המשכת קרתיאודורי יחידה.

 $\{[a,b)\mid a\leq b\}$ פענה: תהא $\mathbb{R}\to\mathbb{R}$ שמנה: $\mu\left([a,b)\right)=F\left(b\right)-F\left(a\right)$ שמידה אלמנטרית מעל החוג למחצה $F:\mathbb{R}\to\mathbb{R}$ פונקציית התפלגות אזי $\mu\left(\biguplus_{i=1}^n\left[a_i,b_i\right)\right)=\sum_{i=1}^n\left(F\left(b_i\right)-F\left(a_i\right)\right)$ אזי התפלגות אזי $\pi\left(\biguplus_{i=1}^n\left[a_i,b_i\right)\right)=\sum_{i=1}^n\left(F\left(b_i\right)-F\left(a_i\right)\right)$ פונקציית התפלגות אזי $\pi\left(\biguplus_{i=1}^n\left[a_i,b_i\right]\right)=\sum_{i=1}^n\left(F\left(b_i\right)-F\left(a_i\right)\right)$ פונקציית התפלגות אזי $\pi\left(\biguplus_{i=1}^n\left[a_i,b_i\right]\right)=\sum_{i=1}^n\left(F\left(b_i\right)-F\left(a_i\right)\right)$ פונקציית התפלגות אזי $\pi\left(\biguplus_{i=1}^n\left[a_i,b_i\right]\right)=\sum_{i=1}^n\left(F\left(b_i\right)-F\left(a_i\right)\right)$

 $\mu_F\left([a,b)
ight)=F\left(b
ight)-F\left(a
ight)$ עבורה בורל μ_F עבורה אזי קיימת אזי קיימת אזי קיימת פונקציית התפלגות התפלגות אזי $F:\mathbb{R} \to \mathbb{R}$ ענה: תהיינה $F:\mathbb{R} \to \mathbb{R}$ פונקציות התפלגות אזי $F:\mathbb{R} \to \mathbb{R}$

 $. orall a,b \in \mathbb{R}.\mu\left([a,b]
ight) < \infty$ מידה סופית מקומית: מידת בורל מעל מעל מידה מידה מקומית:

 $\mu=\mu_F$ עבורה $F:\mathbb{R} o\mathbb{R}$ מסקנה: תהא μ מידת בורל סופית מקומית על \mathbb{R} אזי קיימת פונקציית התפלגות μ

 $\overline{\mu_F}$ אזי התפלגות איזי פונקציית התפלגות איזי מידת לבג־סטילטייס: תהא

 $\mu_F = \overline{\mu_F}$ פונקציית התפלגות נסמן $F: \mathbb{R} o \mathbb{R}$ סימון: תהא

 $\mu_F\left(E
ight)=\inf\left\{\sum_{i=1}^n\left(F\left(b_i
ight)-F\left(a_i
ight)
ight)\mid E\subseteq\bigcup_{i=1}^n\left[a_i,b_i
ight)
ight\}$ אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ פונקציית התפלגות ותהא $F:\mathbb{R}\to\mathbb{R}$ אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ פונקציית התפלגות ותהא $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ פונקציית התפלגות ותהא $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ פונקציית התפלגות אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ אזי $E\in\Sigma_{\mu_F}$ פונקציית התפלגות אזי $E\in\Sigma_{\mu_F}$ רגולרית.

משפט: תהא $E\subseteq\mathbb{R}$ התב"ש התפלגות פונקציית $F:\mathbb{R} o\mathbb{R}$ התב"ש

- $.E \in \Sigma_{\mu_E} \bullet$
- E=Gackslash N עבורן $N\in\mathcal{N}$ וכן $G\in G_\delta$ קיימת
- $E=F\uplus N$ עבורן $N\in\mathcal{N}$ וכן וכן $F\in F_{\sigma}$

.($\mu_F\left(A
ight)=\mu_F\left(B
ight)$ וכן $A\subseteq E\subseteq B$ וכן $A,B\in \mathcal{B}\left(\mathbb{R}
ight)$ אזי ($E\in \Sigma_{\mu_F}$) אזי ($E\in \Sigma_{\mu_F}$)

טענה העיקרון הראשון של ליטלווד: תהא $F:\mathbb{R} o \mathbb{R}$ פונקציית התפלגות תהא ב $E\in \Sigma_{\mu_F}$ עבורה $F:\mathbb{R} o \mathbb{R}$ ותהא ותהא $\mu_F(E)<\infty$ קיימים $\mu_F(E\triangle(\bigcup_{i=1}^n(a_i,b_i)))<\varepsilon$ עבורם $\mu_F(E)<\infty$

 $\mathcal{C}=[0,1]\setminus igcup_{n=0}^\infty igcup_{k=0}^{3^n-1}\left(rac{3k+1}{3^{n+1}},rac{3k+2}{3^{n+1}}
ight)$ קבוצת קנטור:

 $\mathcal{C} \in \mathcal{N}$ טענה: תהא λ מידת לבג אזי

 $\mathcal{C} = \left\{\sum_{i=1}^\infty rac{x_i}{3^i} \;\middle|\; x \in \mathbb{N}^{\{0,2\}}
ight\}$:טענה

. בבודה מבודדות מבילה לא מכילה לחלוטין קשירה בלתי קבוצה בלתי קבוצה בלתי קבוצה בלתי קבוצה בלתי קשירה לחלוטין אשר לא בלתי הבוצה בלתי הבודדות בלתי הב

:טענה

- $|\mathcal{C}| = \aleph \bullet$
- .קומפקטית \mathcal{C}
 - .מושלמת \mathcal{C}

קבוצת קנטור מוכללת: תהיינה C_{n-1} אוין C_{n-1} וכן את היינה (δ_n) נגדיר (δ_n) נגדיר (δ_n) נגדיר היינה (δ_n) אוי δ_n אוי δ_n אוי δ_n אוי δ_n קטע באורך δ_n קטע באורך (δ_n) אוי δ_n אוי δ_n אוי δ_n אוי δ_n

. $\forall n \in \mathbb{N}_+.\delta_n = rac{1}{3}$ קנטור מוכללת באשר קנטור הינה קבוצת אינה קנטור הינה קבוצת אינה

 $(\sum_{i=1}^\infty \delta_i = \infty)$ איי (קבוצת קנטור המוכללת זניחה על פי מידת לבג) איי איי (קבוצת קנטור המוכללת איינה $\{\delta_n\}_{n=1}^\infty\subseteq\mathcal{P}\left((0,1)
ight)$

 $.arphi^\star(x)=\sum_{i=1}^\inftyrac{a_i}{3^i}$ אזי $a_i\in\{0,1\}$ אזי $x=\sum_{i=1}^\inftyrac{2a_i}{3^i}$ הגדרה: נגדיר כך שאם $arphi^\star:\mathcal{C} o[0,1]$ אזי $x\in\mathcal{C}$

. $arphi\left(x
ight)=\sup\left\{ arphi^{\star}\left(t
ight)\mid\left(t\in\mathcal{C}
ight)\wedge\left(t\leq x
ight)
ight\}$ כך $arphi:\left[0,1
ight]
ightarrow\left[0,1
ight]$ כד נגדיר

 $oldsymbol{arphi}$ טענה: תהא [0,1]
ightarrow [0,1]
ightarrow [0,1] פונקציית קנטור אזי

- עולה. arphi ullet
 - רציפה. φ
 - $.\varphi(C) = [0,1] \bullet$
- $arphi\left(E
 ight)
 otin\mathcal{L}\left(\mathbb{R}
 ight)$ עבורה $E\subseteq\mathcal{C}$ קיימת •

. $\operatorname{diam}\left(A\right)=\sup\left\{d\left(x,y\right)\mid x,y\in A\right\}$ אזי אזי $A\subseteq X$ מרחב מטרי ותהא מרחב מטרי יהי (X,d) אזי

```
אזי E\subseteq X יהי \delta>0 יהי יהי מטרי מטרי מרחב (X,d) אזי הגדרה: יהי
                                      \mathcal{H}_{s,\delta}\left(E\right)=\inf\left\{ \sum_{i=1}^{n}\operatorname{diam}\left(A_{i}\right)^{s}\mid\left(E\subseteq\bigcup_{i=1}^{n}A_{i}\right)\wedge\left(\operatorname{diam}\left(A_{i}\right)<\delta
ight) 
ight\}
\mathcal{H}_{s}\left(E
ight)=\lim_{\delta\downarrow0}\mathcal{H}_{s,\delta}\left(E
ight) אזי אזי E\subseteq X ויהי ויהי s\geq0 מידת האוסדורף: יהי יהי יהי
                                                                       טענה: יהי \delta>0 ויהי s\geq 0 מרחב מטרי יהי s\geq 0 אזי
```

- יורדת. $f(\delta) = \mathcal{H}_{s,\delta}(E)$ המוגדרת $f:(0,\infty) \to [0,\infty]$ יורדת. •
- יורדת. $f\left(s
 ight)=\mathcal{H}_{s,\delta}\left(E
 ight)$ המוגדרת $f:\left[0,\infty
 ight)
 ightarrow\left[0,\infty
 ight]$ יורדת. \bullet
- יורדת. $f\left(s
 ight)=\mathcal{H}_{s}\left(E
 ight)$ המוגדרת $f\left(s
 ight)=\left(0,\infty
 ight)
 ightarrow \left(0,\infty
 ight)$ יורדת. \bullet
 - $\mathcal{H}_s(\varnothing) = 0 \bullet$
 - . מידות חיצוניות $\mathcal{H}_s, \mathcal{H}_{s,\delta}$

טענה: יהי $d\left(A,B
ight)>\delta$ עבורן $A,B\subseteq X$ ותהיינה $\delta>0$ יהי יהי מטרי מטרי מרחב מטרי יהי $s\geq 0$

 $\mathcal{H}_{s,\delta}(A \cup B) = \mathcal{H}_{s,\delta}(A) + \mathcal{H}_{s,\delta}(B)$

 $\mathcal{H}_s\left(A\cup B
ight)=\mathcal{H}_s\left(A
ight)+\mathcal{H}_s\left(B
ight)$ אזי $d\left(A,B
ight)>0$ מסקנה: יהי (X,d) מרחב מטרי יהי $s\geq 0$ ותהיינה $s\geq 0$ ותהיינה \mathcal{H}_{s} מדידה $E\in\mathcal{B}\left(X
ight)$ אזי אוי $s\geq0$ מסקנה: יהי

 $\mathcal{H}_{s}\left(f\left(E
ight)
ight)\leq L^{s}\cdot\mathcal{H}_{s}\left(E
ight)$ אזי $E\subseteq X$ ותהא $E\subseteq X$ ליפשיץ ליפשיץ f:X o Y

 $\mathcal{H}_{s}\left(f\left(E
ight)
ight)=\mathcal{H}_{s}\left(E
ight)$ אזי $E\subseteq X$ איזומטריה ותהא f:X o X מסקנה: תהא

 $E \subseteq X$ אזי אינ s > 0 מרחב מטרי יהי (X,d) אזי

- $\mathcal{H}_{t}\left(E
 ight)=0$ מתקיים t>s אזי לכל $\mathcal{H}_{s}\left(E
 ight)<\infty$ אם •
- $\mathcal{H}_{t}\left(E
 ight)=\infty$ מתקיים t< s אזי לכל $\mathcal{H}_{s}\left(E
 ight)>0$ אם \bullet

 $\mathcal{H}_s\left(E
ight) = 0$ אזי n < s ויהי $E \subseteq \mathbb{R}^n$ מסקנה: תהא

 $\dim_{\mathcal{H}}(E)=\inf\{s\geq 0\mid \mathcal{H}_s\left(E
ight)=0\}$ מימד האוסדורף: יהי (X,d) מרחב מטרי ותהא

 $\dim_{\mathcal{H}}\left(\mathbb{R}^{n}
ight)=n$ אזי $n\in\mathbb{N}_{+}$ מסקנה: יהי

 $\dim_{\mathcal{H}}\left(\mathcal{C}\right)=\log_{3}\left(2\right)$ משפט:

 $\mathcal{H}_n = rac{2^n}{\lambda(\{|x| \le 1\})} \cdot \lambda$ אזי איזי λ משפט: תהא λ מידת לבג מעל

 $0<\mathcal{H}_n\left(\left[0,1
ight]^n
ight)<\infty$ אזי $n\in\mathbb{N}_+$ יהי יהי $n\in\mathbb{N}_+$