MATA31 - Assignment #5

Satyajit Datta 1012033336

October 14, 2025

1 Textbook Questions

1.3.62

Prove.

$$\lim_{x \to -2^-} \frac{1}{x+2} = -\infty$$

Want to show:

$$\forall M < 0 \exists \delta > 0 \quad \text{s.t.} \quad 0 < -2 - x < \delta \Longrightarrow \frac{1}{x+2} < M$$

Proof.

 $\overline{\text{Let }M}$ < 0 be arbitrary.

<u>Choose</u> $\delta = -\frac{1}{M}$. Note $\delta > 0$.

Assume $0 < -2 - x < \delta$. Then,

$$0 < -2 - x < \delta \implies -2 - x < -\frac{1}{M}$$

(by our choice of δ)

$$\implies x+2 > \frac{1}{M}$$

(because x < -2)

$$\implies \frac{1}{x+2} < M$$

(by properties of inequalities)

As required to prove. ■

1.3.64

Prove.

$$\lim_{x \to -\infty} \frac{2x - 1}{x} = 2$$

Want to show:

$$\forall \varepsilon > 0 \,\exists \, N < 0 \quad \text{s.t.} \quad x < N \Longrightarrow \left| \frac{2x - 1}{x} - 2 \right| < \varepsilon$$

Proof.

<u>Let</u> $\varepsilon > 0$ be arbitrary.

Choose $N = -\frac{1}{\varepsilon}$. Note N < 0.

Assume x < N. Then,

$$\left|\frac{2x-1}{x}-2\right| = \left|\frac{2x-1-2x}{x}\right| \qquad \text{(by algebra)}$$

$$= \left|\frac{-1}{x}\right| \qquad \text{(by algebra)}$$

$$= \frac{1}{|x|} \qquad \text{(by properties of } |\cdot|)$$

$$= \frac{1}{-x} \qquad \text{(since } x < 0)$$

$$\frac{1}{-x} < \frac{1}{-N} \qquad \text{(since } x < N < 0 \Longrightarrow -x > -N > 0)$$

$$= \frac{1}{-\left(\frac{-1}{\varepsilon}\right)} \qquad \text{(by our choice of } N)$$

$$= \frac{1}{\frac{1}{\varepsilon}} \qquad \text{(by algebra)}$$

$$= \varepsilon \qquad \text{(by algebra)}$$

As required to prove. ■

1.3.66

Prove.

$$\lim_{x\to -\infty} (3x-5) = -\infty$$

Want to show:

$$\forall M < 0 \exists N < 0 \quad \text{s.t.} \quad x < N \Longrightarrow 3x - 5 < M$$

Proof.

Let M < 0 be arbitrary.

Choose $N = \frac{M}{3}$. Note N < 0.

Assume x < N. Then,

$$x < N \implies x < \frac{M}{3}$$
 (by our choice of N)

$$\implies 3x < M$$
 (by algebra)

$$\implies 3x - 5 < M - 5$$
 (by algebra)

$$\implies 3x - 5 < M - 5 < M$$
 (by algebra)

$$\implies 3x - 5 < M$$
 (by algebra)

$$\implies 3x - 5 < M$$
 (by properties of inequalities)

As required to prove. ■

1.3.70

Prove.

$$\lim_{x \to 1} \left(x^2 - 6x + 7 \right) = 2$$

Want to show:

$$\forall \varepsilon > 0 \,\exists \, \delta > 0$$
 s.t $0 < |x - 1| < \delta \Longrightarrow \left| \left(x^2 - 6x + 7 \right) - 2 \right| < \varepsilon$

Proof.

Let $\varepsilon > 0$ be arbitrary

<u>Choose</u> $\delta = \min\{5, \frac{\epsilon}{9}\}$. Note that $\delta > 0$.

Assume $0 < |x-1| < \delta$.

Since $x^2 - 6x + 7 - 2 = (x - 1)(x - 5)$ and $x - 1 < \delta$, we first need to obtain a bound on |x - 5|. Then

$$|x-1| < \delta \Longrightarrow |x-1| < 5 \qquad \qquad \text{(since } \delta = \min\left\{5, \frac{\varepsilon}{9}\right\} \le 5)$$

$$\Longrightarrow -5 < x - 1 < 5 \qquad \qquad \text{(by properties of } |\cdot|)$$

$$\Longrightarrow -9 < x - 5 < 1 \qquad \qquad \text{(by algebra)}$$

$$\Longrightarrow -9 < x - 5 < 9 \qquad \qquad \text{(by properties of inequalities)}$$

$$\Longrightarrow |x-5| < 9 \qquad \qquad \text{(by properties of } |\cdot|)$$

Therefore, $|x-5| < 9 \ (\star)$.

It now follows that:

$$|x^2 - 6x + 5| = |(x - 5)(x - 1)|$$
 (by algebra)
$$= |x - 5| |x - 1|$$
 (by properties of $|\cdot|$)
$$< |x - 5| \delta$$
 (by assumption)
$$< 9\delta$$
 (by (\star))
$$= 9\frac{\varepsilon}{9}$$
 (by our choice of δ)
$$= \varepsilon$$
 (by algebra).

As required to prove. ■

1.4.48

Use graphs to determine if f is continuous at the given point x = c.

$$f(x) = \begin{cases} x^2 - 3, & \text{if } x \text{ rational} \\ 3x + 1, & \text{if } x \text{ irrational} \end{cases}$$

c = 4.

The informal definition of continuity is:

- (1) f(c) exists.
- (2) $\lim_{x\to c} f(x)$ exists.

(3)
$$\lim_{x \to c} f(x) = f(c)$$

Since $c = 4 \implies c \in \mathbb{Q}$, then $f(4) = 4^2 - 3 = 16 - 3 = 13$. Therefore, f(c) exists, meaning (1) holds.

There are infinite irrational numbers between every rational number, therefore we check if the limit of both pieces of the function are equal to each other.

$$\lim_{x \to 4} (x^2 - 3) = 16 - 3 = 13.$$

$$\lim_{x \to 4} (3(4) - 1) = 12 + 1 = 13$$

Note that we can simply substitute c into these equations because they are both polynomials with non-negative exponents.

Therfore, since $\lim_{x\to c} f(x)$ exists. and $\lim_{x\to c} f(x) = f(c)$, the function is continuous at x=4.

2 Assignment Questions

D

Find the supremum and infimum of the following sets, if they exist.

(a)
$$A = \left\{ \frac{1}{n} : n \in \mathbb{Z} \text{ and } n \neq 0 \right\}$$

(b)
$$B = \{x \in \mathbb{Q} : 0 \le x \le \sqrt{2}\}$$

(c)
$$C = \{x \in \mathbb{R} : x^2 + x + 1 \ge 0\}$$

(a).
$$A = \left\{ \frac{1}{n} : n \in \mathbb{Z} \text{ and } n \neq 0 \right\}$$

As $n \to -\infty$, $\frac{1}{n} \to 0^-$ As $n \to \infty$, $\frac{1}{n} \to 0^+$ Since $n \in \mathbb{Z}$ the biggest positive and biggest negative numbers we can obtain are -1 and 1. Therefore, the highest number we can achieve is 1, the lowest is -1.

Therefore, the supremum is 1, and the infimum is -1.

(b).
$$B = \{x \in \mathbb{Q} : 0 \le x \le \sqrt{2}\}$$

The lowest number in this set is 0, making it the infimum. There are infinitely many rational numbers in $[0,\sqrt{2}]$, meaning that there is no biggest rational number in this set. Therefore, the infimum is $\sqrt{2}$.

(c).
$$C = \{x \in \mathbb{R} : x^2 + x + 1 \ge 0\}$$

$$\Delta = 1^2 - 4(1)(1) = -3$$

Since the discriminant < 0, the function does not touch the x-axis. Also, since a > 0, the parabola is entirely above the x-axis, making this set contain all real numbers. Therefore, there is no upper or lower bound, which in turn means there is no supremum or infimum.

Ε

Let S be a non-empty subset of \mathbb{R} , and let $\alpha \in \mathbb{R}$ be an upper bound for S. Prove that α is the supremum of S if and only if for every $\varepsilon > 0$, there exists $x \in S$ such that $x > \alpha - \varepsilon$.

Formulate an analogous characterisation of the infimum.

Want to show:

$$\alpha = \sup(S) \iff \forall \varepsilon > 0, \exists x \in S \quad \text{s.t.} \quad x > \alpha - \varepsilon$$

Proof.

 (\Rightarrow) Assume $\alpha = \sup(S)$.

Then, by definition, α is the smallest possible upper bound of S.

Assume $\varepsilon > 0$. Then $\alpha - \varepsilon < \alpha$.

However, since α is the smallest possible upper bound, then $\alpha - \varepsilon$ is not an upper bound. In turn, this means that $\exists x \in S$ s.t $x > \alpha - \varepsilon$

(⇐) Solve by contradiction.

Suppose that $\forall \varepsilon > 0, \exists x \in S$ s.t $x > \alpha - \varepsilon$,

For sake of contradiction, assume that $\alpha \neq \sup(S)$

Then, there exists a *b* such that b is also an upper bound of *S*, and $b \le \alpha$.

Choose $\varepsilon = \alpha - b$

Then,

$$\exists x \in S \quad \text{s.t} \quad x > \alpha - \varepsilon$$

$$\Longrightarrow \exists x \in S \quad \text{s.t} \quad x > \alpha - (\alpha - b)$$

$$\Longrightarrow \exists x \in S \quad \text{s.t} \quad x > b$$

However, we stated that b is an upper bound of S, meaning that there cannot be an element in S that is greater than b. Therefore, our assumption is wrong, and $x = \sup(S)$.

Therefore, $\alpha = \sup(S) \iff \forall \varepsilon > 0, \exists x \in S : x > \alpha - \varepsilon$.

Analogous characterisation of the infimum.

$$\alpha = \sup(S) \iff (\forall \varepsilon > 0, \exists x \in S \quad \text{s.t.} \quad x < \alpha + \varepsilon)$$

F

Let f be a function defined on an open interval containing a, and suppose that f is continuous at a with f(a) > 0. Using the precise definition of the limit, show that there exists an open interval centred at a such that f(x) > 0 for all x in that interval.

If f(x) is continuous at a, then:

$$\lim_{x \to a} f(x) = f(a)$$

Therefore, with the definition of a limit, we get:

$$\forall \varepsilon > 0, \exists \delta > 0$$
 s.t $0 < |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon$

Choose $\varepsilon = f(a)$. (Note $\varepsilon > 0$) Then:

$$\begin{split} &\exists \delta > 0 \quad \text{s.t.} \quad 0 < |x - a| < \delta \Longrightarrow |f(x) - f(a)| < f(a) \\ &\Longrightarrow \exists \delta > 0 \quad \text{s.t.} \quad 0 < |x - a| < \delta \Longrightarrow -f(a) < f(x) - f(a) < f(a) \\ &\Longrightarrow \exists \delta > 0 \quad \text{s.t.} \quad 0 < |x - a| < \delta \Longrightarrow 0 < f(x) < 2f(a) \\ &\Longrightarrow \exists \delta > 0 \quad \text{s.t.} \quad 0 < |x - a| < \delta \Longrightarrow f(x) \in (0, 2f(a)) \end{split}$$

Since f(x) is continuous at a, then x can equal a. Therefore:

$$\begin{split} &\exists \delta > 0 \quad \text{s.t.} \quad |x-a| < \delta \Longrightarrow f(x) \in (0,2fa) \\ &\Longrightarrow \exists \delta > 0 \quad \text{s.t.} \quad -\delta < x - a < \delta \Longrightarrow f(x) \in (0,2f(a)) \\ &\Longrightarrow \exists \delta > 0 \quad \text{s.t.} \quad a - \delta < x < a + \delta \Longrightarrow f(x) \in (0,2f(a)) \\ &\Longrightarrow \exists \delta > 0 \quad \text{s.t.} \quad x \in (a - \delta, a + \delta) \Longrightarrow f(x) \in (0,2f(a)) \end{split}$$

Since f(a) > 0, then $(\forall y \in (0, 2f(a)), y > 0)$. Therefore, there exists an open interval centered around a, such that f(x) > 0 for all x in that interval.