Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

PATIENT	
Identifier: 林顯春	Patient ID: 45612235
Date of Birth: Feb 17, 1957	Gender: Male
Diagnosis: GIST	
ORDERING PHYSICIAN	
Name: 顏厥全醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11172142A Collection site: Liver	Type: FFPE tissue
Date received: Jan 04, 2023 Lab ID: AA-23-00046	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Probable Effects in Patient's Cancer Type		Probable Sensitive in
Genomic Alterations/Biomarkers	Sensitive	Resistant	Other Cancer Types
KIT D579_H580insQHPTQLPYD (Exon 11 mutations)	Imatinib	-	Nilotinib, Sunitinib

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
KIT V654A	Ponatinib, Ripretinib, Sunitinib	Avapritinib, Imatinib, Regorafenib

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
KIT	D579_H580insQHPTQLPYD (Exon 11 mutations)	45.0%
KIT	V654A	5.7%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr5	RAD50	Heterozygous deletion	1
Chr9	CDKN2A	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	3.2 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 40% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 2 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations Therapies		Effect	
Level 1			
KIT D579_H580insQHPTQLPYD	lun akin ila		
(Exon 11 mutations)	Imatinib	sensitive	
Level 3A	Level 3A		
KIT D579_H580insQHPTQLPYD	Nillatinile Comittinile		
(Exon 11 mutations)	Nilotinib, Sunitinib	sensitive	
Level 3B			
<i>KIT</i> V654A	Ponatinib, Ripretinib, Sunitinib	sensitive	
Level 4			
<i>KIT</i> V654A	Avapritinib, Imatinib, Regorafenib	resistant	

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 3 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
	Not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 4 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046 ONC

Date Reported: Jan 16, 2023

VARIANT INTERPRETATION

KIT D579_H580insQHPTQLPYD (Exon 11 mutations), V654A

Biological Impact

KIT is a proto-oncogene that encodes a type 3 transmembrane receptor tyrosine kinase. Activation of KIT through dimerization and autophosphorylation upon binding by its ligand results in increased intracellular PI3K/AKT/mTOR, MAPK/ERK and JAK/STAT signaling pathways to promote cell proliferation and survival[1]. KIT activating mutations are frequently found in 80 - 90% of gastrointestinal stromal tumors (GISTs) which distributed over multiple exons with different frequencies (exons 11 (66.1%), exon 9 (13%), exon 13 (1.2%), and exon 17 (0.6%) $[^{2}]^{3}$.

KIT D579_H580insQHPTQLPYD lies within the juxtamembrane domain (exon 11) of the KIT protein, resulting in an insertion of 9 amino acids between codons 579 to 580. This mutation has not been characterized in the scientific literature. Therefore, its effect on the KIT protein function remains unknown.

KIT V654A lies within the protein kinase domain of the KIT protein (UniProtKB). V654A is known as an activating mutation which can enhance ligand-induced cell proliferation^{[4][5]}.

Therapeutic and prognostic relevance

The NCCN guidelines for cutaneous melanoma suggested KIT hotspots mutations which located in exon 11 and exon 13 (eg. W557, V559, L576P, K642E) have a high level of sensitivity to KIT inhibitors (imatinib, sunitinib, nilotinib)[6][7][8]. However, KIT exon 17 mutations (eg. D816H) and KIT amplification appeared to be resistant to KIT inhibitors in patients with melanoma.

The efficacies of several U.S. FDA-approved KIT-targeting tyrosine kinase inhibitors (TKIs) such as imatinib, sunitinib, regorafenib, and ripretinib are strongly dependent on the location of the activating KIT mutations [9][10][11][12][13][14][15][16][17] [18]. Patients with GIST harboring KIT exon 9 mutations showed intermediate sensitivity to imatinib and had better relapse-free survival and overall survival (OS) compared with patients carrying KIT exon 11 mutations[10].

Ponatinib and dasatinib yielded a disease control rate and partial control rate of 67% and 32%, respectively, in GIST patients harboring KIT exon 11 mutations (DOI: 10.1200/jco.2015.33.15_suppl.10535, 10.1200/jco.2011.29.15 suppl.10006). Results from a Phase II trial involving melanoma showed 38.5% response rate to nilotinib in patients harboring KIT exon 11 mutations^[19].

Both KIT and PDGFRA overexpression were associated with high tumor grade, high proliferation index, and poor outcome in patients with the serous type of ovarian carcinoma^[20].

The newly developing agents such as avapritinib (BLU-285) and investigational AZD3229 all showed the potential to be better inhibitors for clinically relevant KIT/PDGFRA mutations in GIST[21].

KIT mutations have been determined as an inclusion criterion for the trials evaluating dasatinib, avapritinib, sunitinib, nilotinib, ponatinib, regorafenib, and ripretinib efficacies in melanoma, solid tumors, GIST, systemic mastocytosis (AdvSM), and relapsed or refractory myeloid malignancies (NCT00700882, NCT04771520, NCT03465722, NCT02693535, NCT02561988, NCT01028222, NCT01099514, NCT03171389, NCT02272998, NCT02501551, and NCT02571036).

The KIT V654A mutation is one of the secondary mutation frequently identified in patients with imatinib-resistant GIST[22][23][4][5]. A functional study demonstrated that V654A mutant confers resistance to imatinib by interfering the imatinib-binding site[24].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 5 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046 ONC

Date Reported: Jan 16, 2023

ACTOnco® + Report

In a phase I trial (NAVIGATOR, NCT02508523), patients with GIST harboring either V654A or T670I were resistant to avapritinib, as demonstrated by decreased ORR (0% v.s. 26%) and increased rate of PD (72% v.s. 23%) compared to those without either KIT mutation[25]. In another phase I trial (NCT02571036), ripretinib treatment to a GIST patient harboring primary KIT exon 11 deletion V559_G565del and two acquired resistant mutations, V654V and A829P, resulted in decreased ctDNA and a stable disease lasting more than 26 months[26].

In preclinical studies, cells expressing KIT V654A was sensitive to ponatinib and sunitinib^{[27][28]}but was resistant to regorafenib in vitro^[21].

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[29][30][31]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions[32]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation[33][34].

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors[35][36]. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments[37][38][39]. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/ CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients[40][41][42]. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

The phase II TAPUR trial demonstrated clinical benefits to palbociclib monotherapy in advanced NSCLC or head and neck cancer harboring a CDKN2A mutation or copy number loss. However, pancreatic and biliary cancer patients harboring a CDKN2A mutation or copy number loss did not demonstrate an objective response or stable disease when treated with palbociclib monotherapy for 16 weeks (DOI: 10.1200/JCO.2021.39.15 suppl.6043)[43][44].

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[36][45][46]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib[38]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models[47].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with nonsmall cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment[48].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 6 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

RAD50 Heterozygous deletion

Biological Impact

The RAD50 gene encodes a highly-conserved DNA double-strand break (DSB) repair factor. It forms MRN complex with NBS1 and MRE11 protein and is involved in sensing and early processing of DSB, cell cycle checkpoints, DNA recombination and maintenance of telomeres^{[49][50]}. Mutations in the components of the MRN complex could increase susceptibility to familial breast cancer^{[51][52]}, gastric cancer^[53], colorectal cancer^[54], and urothelial cancer^[55]. RAD50 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[56]. Besides, RAD50 deletion was also suggested as a marker of BRCAness, a phenotype shared between non-BRCA1/2-mutated ovarian cancers and BRCA1/2-mutated ovarian cancers^[57].

Therapeutic and prognostic relevance

Preclinical data showed that knockdown of the RAD50 gene in ovarian cancer cell lines was significantly associated with better responses to two PARP inhibitors, olaparib and rucaparib^[57]. RAD50 has been selected as an inclusion criterion for the trials examining talazoparib efficacy in HER2-negative breast cancer, olaparib efficacy in breast cancer, rucaparib efficacy in metastatic prostate cancer and niraparib efficacy in any malignancy (except prostate) (NCT02401347, NCT03207347, NCT03344965, NCT03413995).

AG4-QP4001-02(07)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

page **7** of **28**

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)
MONARCH E	HR+/HER2-
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36
	months(%): 86.1 vs. 79.0]
MONARCH 3 ^[58]	Breast cancer (Approved on 2018/02/26)
NCT02246621	HR+/HER2-
NC102240021	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.8]
MONARCH 2 ^[46]	Breast cancer (Approved on 2017/09/28)
NCT02107703	HR+/HER2-
NC102107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]
MONAPOLI 4[50]	Breast cancer (Approved on 2017/09/28)
MONARCH 1 ^[59]	HR+/HER2-
NCT02102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]

Imatinib (GLEEVEC)

Imatinib is an oral, small molecule inhibitor of tyrosine kinase enzymes, namely, the Abelson proto-oncogene (ABL), c-KIT, and platelet-derived growth factor receptor (PDGFR). Imatinib is developed and marketed by Novartis under the trade name GLEEVEC.

- FDA Approval Summary of Imatinib (GLEEVEC)

[60]	Acute lymphocytic leukemia (Approved on 2013/01/25)
NCT00022737	
NC100022737	Imatinib [EFS(%): 70]
	Gastrointestinal stromal tumor (Approved on 2012/01/31)
	KIT positive
	Imatinib [RFS(%): 42 (imatinib for 12) 25 (imatinib for 36)]
	Gastrointestinal stromal tumor (Approved on 2009/02/10)
	KIT+
	Imatinib vs. Placebo [RFS(%): 21 vs. 28]
	Myelodysplastic myeloproliferative cancer (Approved on 2006/10/19)
	-
	Imatinib [MCyR(%): 39, CHR(%): 45]
[61]	Acute lymphocytic leukemia (Approved on 2006/10/19)
[5.7]	Ph+
	Imatinib [MCyR(%): 35, CHR(%): 19]
	Dermatofibrosarcoma protuberans (Approved on 2006/10/19)
	Imatinib [ORR(%): 83.0]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 8 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046 ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

	Systemic mastocytosis (Approved on 2006/10/19)		
	•		
	Imatinib [CHR(%): 29]		
	Chronic eosinophilic leukemia (Approved on 2006/10/19)		
	-		
	Imatinib [CHR(%): 61]		
[62]	Chronic myeloid leukemia (Approved on 2003/05/20)		
NCT00471497	Ph+		
NC100471497	Imatinib vs. Nilotinib [MMR(%): 22 vs. 44]		
[63]	Chronic myeloid leukemia (Approved on 2003/04/18)		
NCT00333840	•		
NC100333040	Imatinib vs. Interferon-α+ cytarabine [PFS(%): 81.2 vs. 60.6]		
[64]	Gastrointestinal stromal tumor (Approved on 2002/02/01)		
NCT00009906	. /		
140100009900	Imatinib [PFS(M): 18.9 (imatinib 400 mg) 23.2 (imatinib 800 mg)]		

Nilotinib (TASIGNA)

Nilotinib is an inhibitor of the BCR-ABL kinase. Nilotinib binds to and stabilizes the inactive conformation ofthe kinase domain of ABL protein. Nilotinib is developed and marketed by Novartis under the trade name TASIGNA.

- FDA Approval Summary of Nilotinib (TASIGNA)

ENEOT - 4[62]	Chronic myeloid leukemia (Approved on 2010/06/17)				
	ENESTnd ^[62]	-			
	NCT00471497	Nilotinib vs. Imatinib [ORR(%): 26.0 vs. 1.00]			

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

DDUM	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
PRIMA	-
NCT02655016	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
NOVA[65]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
NOVA ^[65]	-
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 9 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OhmaniA	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)			
OlympiA NCT02032823	HER2-/gBRCA mutation			
NC102032023	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]			
DDO(Prostate cancer (Approved on 2020/05/19)			
PROfound ^[66] NCT02987543	HRR genes mutation			
NC102907543	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]			
DAGLA 4[67]	Ovarian cancer (Approved on 2020/05/08)			
PAOLA-1 ^[67]	HRD+			
NCT02477644	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]			
DOI 0[68]	Pancreatic adenocarcinoma (Approved on 2019/12/27)			
POLO ^[68]	gBRCA mutation			
NCT02184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]			
SOLO-1 ^[69]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)			
NCT01844986	gBRCA mutation or sBRCA mutation			
NC101044900	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]			
Ola : A D [70]	Breast cancer (Approved on 2018/02/06)			
OlympiAD ^[70] NCT02000622	HER2-/gBRCA mutation			
NC102000022	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]			
SOLO-2/ENGOT-Ov21 ^[71]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)			
NCT01874353	gBRCA mutation			
NC101074353	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]			
C4d40[72]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)			
Study19 ^[72] NCT00753545				
NC100753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]			

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

PALOMA-2 ^[73]	Breast cancer (Approved on 2017/03/31)
NCT01740427	ER+/HER2-
NC101740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]
DAL ONA 0[74]	Breast cancer (Approved on 2016/02/19)
PALOMA-3 ^[74]	ER+/HER2-
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **10** of **28**

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

Ponatinib (ICLUSIG)

Ponatinib is an oral, small molecule, multi-kinase inhibitor designed to inhibit the activity of the tyrosine kinase ABL, including the T315I mutated ABL as well. Ponatinib is developed and marketed by ARIAD under the trade name ICLUSIG.

- FDA Approval Summary of Ponatinib (ICLUSIG)

PACE ^[75] NCT01207440	Chronic phase chronic myeloid leukemia (Approved on 2014/03/12)
NC101207440	Ponatinib [MCyR(%): 55]
PACE ^[75]	Accelerated phase chronic myeloid leukemia (Approved on 2014/03/12)
NCT01207440	
NC101207440	Ponatinib [MaHR(%): 57]
D. 0=[75]	Blast phase chronic myeloid leukemia (Approved on 2014/03/12)
PACE ^[75]	- (
NCT01207440	Ponatinib [MaHR(%): 31]
DA OF[75]	Philadelphia-positive acute lymphoblastic leukemia (Approved on 2014/03/12)
PACE ^[75]	
NCT01207440	Ponatinib [MaHR(%): 41]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONALEESA-2 ^[45] NCT01958021	Breast cancer (Approved on 2017/03/13)
	HR+/HER2-
	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

Ripretinib (QINLOCK)

Ripretinib is a tyrosine kinase inhibitor that inhibits KIT proto-oncogene receptor tyrosine kinase (KIT) and platelet derived growth factor receptor A (PDGFRA) kinase, including wild type, primary, and secondary mutations. Ripretinib is developed and marketed by Decipera Pharmaceuticals under the trade name QINLOCK.

- FDA Approval Summary of Ripretinib (QINLOCK)

IND/IOTUO	Gastrointestinal stromal tumor (Approved on 2020/05/15)
INVICTUS	-
NCT03353753	Ripretinib vs. Placebo [PFS(M): 6.3 vs. 1]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONS	Prostate cancer (Approved on 2020/05/15)
TRITON2 NCT02952534	gBRCA mutation or sBRCA mutation
NC102952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 [76]	
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS (tBRCA)(M): 16.6 vs. 5.4]

Sunitinib (SUTENT)

Sunitinib is an oral, small molecule, multi-kinase inhibitor that targets receptor tyrosine kinase including platelet-derived growth factor receptor- α , - β (PDGFR- α , - β), vascular endothelial growth factor receptors-1, -2, -3 (VEGFR-1, -2, -3), c-kit, Fms-like tyrosine kinase-3 (FLT3), colony stimulating factor receptor type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET), thereby inhibiting angiogenesis. Sunitinib is developed and marketed by Pfizer under the trade name SUTENT.

- FDA Approval Summary of Sunitinib (SUTENT)

[77][78][79]	Pancreatic cancer (Approved on 2011/05/20)
	-
NCT00428597	Sunitinib vs. Placebo [PFS(M): 10.2 vs. 5.4]
[80][81]	Renal cell carcinoma (Approved on 2007/02/02)
NCT00083889	
NC100003009	Sunitinib vs. Ifn-α [PFS(W): 47.3 vs. 22]
[82][83][81]	Renal cell carcinoma (Approved on 2007/02/02)
NCT00077974	-
NC100077974	Sunitinib [ORR(%): 34.0]
[83][81]	Renal cell carcinoma (Approved on 2007/02/02)
NCT00054886	-
NC100034660	Sunitinib [ORR(%): 36.5]
[84]	Gastrointestinal stromal tumor (Approved on 2006/01/26)
NCT00075218	Sunitinib vs. Placebo [TTP(W): 27.3 vs. 6.4]

AG4-QP4001-02(07)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

page **12** of **28**

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[85]	Breast cancer (Approved on 2018/10/16)
NCT01945775	HER2-/gBRCA mutation
NC101945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **28**

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
KIT	D579_H580insQHP TQLPYD (Exon 11 mutations)	11	c.1739_1740insACA CCCAACACAACTT CCTTATGATCA	NM_000222	-	45.0%	2990
KIT	V654A	13	c.1961T>C	NM_000222	COSM12706	5.7%	2074

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **15** of **28**

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ADAMTS16	S657R	13	c.1971C>G	NM_139056	COSM3994342	62.8%	1303
APC	E129Q	4	c.385G>C	NM_000038	COSM9111347	18.5%	1104
ATM	Splice region	-	c.2466+7A>G	NM_000051	-	61.9%	42
CARD11	S694L	16	c.2081C>T	NM_032415	COSM5505215	50.1%	751
CD58	Splice region	-	c.365-5T>C	NM_001779	-	48.7%	593
CSF1R	W550R	12	c.1648T>C	NM_005211	-	78.0%	651
EPHA3	T912I	16	c.2735C>T	NM_005233	-	49.2%	1056
ETV4	P433L	13	c.1298C>T	NM_001079675	-	54.9%	1398
FGF23	V16I	1	c.46G>A	NM_020638	-	36.5%	1360
KMT2A	S3705T	31	c.11113T>A	NM_001197104	-	62.4%	1269
KMT2C	Q356R	8	c.1067A>G	NM_170606	-	7.6%	3998
KMT2C	L732F	14	c.2194C>T	NM_170606	COSM6109527	45.4%	1982
MUC16	Q11913P	5	c.35738A>C	NM_024690	-	36.4%	1114
MUC16	I5861V	3	c.17581A>G	NM_024690	-	35.9%	1115
PIK3C2B	G1123S	23	c.3367G>A	NM_002646	COSM7808348	52.2%	563
PRKCG	R16Q	1	c.47G>A	NM_002739	-	38.4%	1377
SRC	A517G	14	c.1550C>G	NM_198291	-	38.1%	708
SYNE1	M3369V	63	c.10105A>G	NM_182961	-	58.3%	1546
VEGFB	V150L	6	c.448G>C	NM_003377	-	39.3%	1675

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

AG4-QP4001-02(07)

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

Collection date: Dec 28, 2022Facility retrieved: 臺北榮總

- H&E-stained section No.: S11172142A

Collection site: Liver

- Examined by: Dr. Chien-Ta Chiang

- 1. The percentage of viable tumor cells in total cells in the whole slide (%): 15%
- 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 40%
- 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
- 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
- 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

Mean Depth: 1259x

Target Base Coverage at 100x: 96%

RNA test

- Average unique RNA Start Sites per control GSP2: 151

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046 ONC Date Reported: Jan 16, 2023

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師黃靖婷 博士 Ching-Ting Huang Ph.D. 檢字第 016511 號 CTHUANG

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(07) page 19 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
ЕРНА2	ЕРНА3	EPHA5	ЕРНА7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA1
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	кмт2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРКЗ
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	митун	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCO	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217	CDNO	5571A1	03/12A	VDI
VEGFA	VEGFB	VIIL	VVII	AIAP	APUI	ANCCZ	ZIVI'ZI/				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Gene Therapies			
CDKN2A	Abemaciclib, Palbociclib, Ribociclib	sensitive		
RAD50	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive		

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Abemaciclib, Palbociclib, Ribociclib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **21** of **28**

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

Receptor Tyrosine Kinase/Growth Factor Signalling

1: Ponatinib; 2: Imatinib, Sunitinib, Ponatinib, Ripretinib; 3: Sunitinib, Ponatinib; 4: Sunitinib, Ponatinib; 5: Sunitinib, Nilotinib; 6: Imatinib, Sunitinib, Nilotinib, Ponatinib, Ripretinib

1: Olaparib, Niraparib, Rucaparib, Talazoparib; 2: Nilotinib, Ponatinib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-501

AG4-QP4001-02(07) page 22 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 23 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

REFERENCE

- PMID: 17546049; 2007, Oncogene;26(54):7560-8
 KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway.
- PMID: 15365079; 2004, J Clin Oncol;22(18):3813-25 Biology of gastrointestinal stromal tumors.
- PMID: 22089421; 2011, Nat Rev Cancer;11(12):865-78
 Gastrointestinal stromal tumours: origin and molecular oncology.
- PMID: 17363509; 2007, Mol Cancer Ther;6(3):1159-66
 Resistance to c-KIT kinase inhibitors conferred by V654A mutation.
- PMID: 18623623; 2008, J Pathol;216(1):64-74
 Heterogeneity of kinase inhibitor resistance mechanisms in GIST.
- PMID: 21690468; 2011, J Clin Oncol;29(21):2904-9
 Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification.
- 7. PMID: 21642685; 2011, JAMA;305(22):2327-34
 KIT as a therapeutic target in metastatic melanoma.
- PMID: 23775962; 2013, J Clin Oncol;31(26):3182-90
 Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin.
- PMID: 12181401; 2002, N Engl J Med;347(7):472-80
 Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors.
- PMID: 18955458; 2008, J Clin Oncol;26(33):5352-9
 Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor.
- PMID: 19164557; 2009, Proc Natl Acad Sci U S A;106(5):1542-7
 KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients.
- 12. PMID: 18235121; 2008, J Clin Oncol;26(4):620-5
 Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT.
- PMID: 16098458; 2005, Eur J Cancer;41(12):1751-7
 Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on
- PMID: 15451219; 2004, Lancet;364(9440):1127-34
 Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial.
- 15. PMID: 23177515; 2013, Lancet;381(9863):295-302
 Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial.
- 16. PMID: 25641662; 2015, Cancer;121(9):1405-13
 Clinical outcomes of patients with advanced gastrointestinal stromal tumors: safety and efficacy in a worldwide treatment-use trial of sunitinib.
- 17. PMID: 19282169; 2009, Eur J Cancer;45(11):1959-68

 Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure.
- 18. PMID: 32511981; 2020, Lancet Oncol;21(7):923-934
 Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): a double-blind, randomised, placebo-controlled, phase 3

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 24 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

trial.

19. PMID: 28327988; 2017, Ann Oncol;28(6):1380-1387

Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial.

PMID: 15583695; 2004, Br J Cancer;91(12):2048-55
 Genetic alterations and protein expression of KIT and PDGFRA in serous ovarian carcinoma.

21. PMID: 32350132; 2020, Sci Transl Med;12(541):

 $Discovery\ and\ pharmacological\ characterization\ of\ AZD3229,\ a\ potent\ KIT/PDGFR\alpha\ inhibitor\ for\ treatment\ of\ gastrointestinal\ stromal\ tumors.$

22. PMID: 15342366; 2004, Cancer Res;64(17):5913-9

A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors.

23. PMID: 15930355; 2005, Clin Cancer Res;11(11):4182-90

Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation.

24. PMID: 16751810; 2006, Oncogene; 25(45):6140-6

Functional analyses and molecular modeling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients.

25. PMID: 31270078: 2019. Cancer Res:79(16):4283-4292

ATP-Competitive Inhibitors Midostaurin and Avapritinib Have Distinct Resistance Profiles in Exon 17-Mutant KIT.

26. PMID: 31085175; 2019, Cancer Cell;35(5):738-751.e9

Ripretinib (DCC-2618) Is a Switch Control Kinase Inhibitor of a Broad Spectrum of Oncogenic and Drug-Resistant KIT and PDGFRA Variants.

27. PMID: 25239608; 2014, Clin Cancer Res;20(22):5745-5755

Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients.

28. PMID: 31205508; 2019, Ther Adv Med Oncol;11():1758835919849757

Axitinib overcomes multiple imatinib resistant cKIT mutations including the gatekeeper mutation T670I in gastrointestinal stromal tumors.

29. PMID: 17055429; 2006, Cell;127(2):265-75

The regulation of INK4/ARF in cancer and aging.

30. PMID: 8521522; 1995, Cell;83(6):993-1000

Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.

31. PMID: 9529249; 1998, Cell;92(6):725-34

ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.

32. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7

Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.

33. PMID: 7550353; 1995, Nat Genet;11(2):210-2

Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.

34. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8

The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.

35. PMID: 27849562; 2017, Gut;66(7):1286-1296

Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.

36. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35

The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 25 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

- 37. PMID: 28283584; 2017, Oncologist;22(4):416-421
 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 38. PMID: 27217383; 2016, Cancer Discov;6(7):740-53
 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- PMID: 26715889; 2015, Curr Oncol;22(6):e498-501
 Does CDKN2A loss predict palbociclib benefit?
- 40. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 41. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- 42. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- 43. PMID: 35050752; 2020, JCO Precis Oncol;4():757-766
 Palbociclib in Patients With Non-Small-Cell Lung Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- 44. PMID: 35100714; 2019, JCO Precis Oncol;3():1-8
 Palbociclib in Patients With Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 46. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 47. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33

 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 48. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431
 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- 49. PMID: 9315668; 1997, Mol Cell Biol;17(10):6087-96 hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks.
- PMID: 16467875; 2006, Cell Res;16(1):45-54
 The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control.
- 51. PMID: 16385572; 2006, Int J Cancer;118(11):2911-6
 Evaluation of RAD50 in familial breast cancer predisposition.
- 52. PMID: 24894818; 2014, Breast Cancer Res;16(3):R58
 Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study.
- 53. PMID: 18440592; 2008, Hum Pathol;39(6):925-32
 Gastric cancer with high-level microsatellite instability: target gene mutations, clinicopathologic features, and long-term survival.
- 54. PMID: 11196187; 2001, Cancer Res;61(1):36-8 Frameshift mutations at coding mononucleotide repeats of the hRAD50 gene in gastrointestinal carcinomas with microsatellite instability.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 26 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

- PMID: 24934408; 2014, Cancer Discov;4(9):1014-21
 Synthetic lethality in ATM-deficient RAD50-mutant tumors underlies outlier response to cancer therapy.
- PMID: 16474176; 2006, Carcinogenesis;27(8):1593-9
 RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability.
- 57. PMID: 27016230; 2016, Gynecol Oncol;141(1):57-64
 Copy number deletion of RAD50 as predictive marker of BRCAness and PARP inhibitor response in BRCA wild type ovarian cancer.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 59. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224
 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- 60. PMID: 19805687; 2009, J Clin Oncol;27(31):5175-81 Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study.
- 61. PMID: 12200353; 2002, Blood;100(6):1965-71
 A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias.
- 62. PMID: 21856226; 2011, Lancet Oncol;12(9):841-51
 Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial.
- 63. PMID: 18256322; 2008, Blood;111(8):4022-8
 Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study.
- 64. PMID: 28196207; 2017, JAMA Oncol;3(7):944-952 Correlation of Long-term Results of Imatinib in Advanced Gastrointestinal Stromal Tumors With Next-Generation Sequencing Results: Analysis of Phase 3 SWOG Intergroup Trial S0033.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 67. PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 71. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284

 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 72. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated

AG4-QP4001-02(07) page 27 of 28

Project ID: C22-M001-03984 Report No.: AA-23-00046_ONC Date Reported: Jan 16, 2023

ACTOnco® + Report

analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.

- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- PMID: 24180494; 2013, N Engl J Med;369(19):1783-96
 A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias.
- 76. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 77. PMID: 27924459; 2016, Target Oncol;11(6):815-824
 Patient-Reported Outcomes and Quality of Life with Sunitinib Versus Placebo for Pancreatic Neuroendocrine Tumors: Results From an International Phase III Trial.
- 78. PMID: 27836885; 2017, Ann Oncol;28(2):339-343
 Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study.
- PMID: 21306237; 2011, N Engl J Med;364(6):501-13
 Sunitinib malate for the treatment of pancreatic neuroendocrine tumors.
- 80. PMID: 17227905; 2007, Oncologist;12(1):107-13
 Food and Drug Administration drug approval summary: Sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma.
- PMID: 27238653; 2016, Eur Urol;70(6):1006-1015
 Early Tumour Shrinkage: A Tool for the Detection of Early Clinical Activity in Metastatic Renal Cell Carcinoma.
- 82. PMID: 16757724; 2006, JAMA;295(21):2516-24 Sunitinib in patients with metastatic renal cell carcinoma.
- PMID: 25577718; 2015, Eur Urol;67(5):952-8
 Depth of remission is a prognostic factor for survival in patients with metastatic renal cell carcinoma.
- 84. PMID: 17046465; 2006, Lancet;368(9544):1329-38
 Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial.
- PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 28 of 28