Web Scraping e Análise Exploratória das Taxas de Mortalidade por COVID-19

Maria José García Montes

UFPE - Tópicos Especiais em Estatística Computacional

Septembro 2025

Resumo

Este trabalho apresenta uma análise exploratória de web scraping aplicada ao site *Statista*, onde foram coletados dados sobre as taxas de mortalidade por COVID-19 em diferentes países. A análise foi realizada no Google Colab utilizando o pacote **rvest**, e os dados foram examinados por meio de uma abordagem exploratória que inclui medidas descritivas e visualizações.

1 Introdução

A pandemia de COVID-19 teve um impacto significativo na saúde e na economia global, tendo surgido no final de 2019. Trata-se de uma doença respiratória altamente contagiosa, cujos sintomas podem variar de leves a muito graves, podendo inclusive levar à morte. Essa situação evidenciou a importância de dispor de dados confiáveis e atualizados para compreender seu impacto em escala mundial. Uma das plataformas que disponibiliza informações estatísticas é o *Statista*, que reúne dados provenientes de organismos internacionais e nacionais. Neste trabalho, foram aplicadas técnicas de web scraping para extrair informações do site Statista, especificamente da página sobre taxas de mortalidade por COVID-19 (Statista, 2025). Em seguida, foi realizada uma análise exploratória com o objetivo de observar o comportamento das variáveis, seguindo as diretrizes metodológicas sugeridas por Shilees (Ferreira, 2025).

2 Marco Teórico

O web scraping é uma técnica que permite extrair dados de sites da internet de forma automatizada por meio de código. Essa abordagem tornou-se fundamental para obter informações atualizadas em tempo real *rvest*.

A análise exploratória de dados (EDA, na sigla em inglês) é uma etapa inicial do processo estatístico que tem como objetivo identificar padrões, tendências e possíveis anomalias nas informações coletadas. Según (Tukey, 1977), o EDA é fundamental para compreender a natureza dos dados.

No caso da COVID-19, diversos organismos coletaram dados em tempo real, porém, a disponibilidade, qualidade e comparabilidade dessas estatísticas variam conforme a fonte. Por esse motivo, ferramentas como o Statista tornaram-se repositórios úteis para apresentar indicadores de interesse, como as taxas de mortalidade (Statista, 2025).

3 Metodología

O presente trabalho foi desenvolvido utilizando o **Google Colab**, com o uso da linguagem R e do pacote **rvest**. Os dados foram obtidos da plataforma *Statista*, especificamente sobre as taxas de mortalidade por COVID-19 (Statista, 2025).

Foram aplicadas técnicas de web scraping utilizando a linguagem R para extração de informações de interesse, seguidas por um processo de limpeza dos dados. Posteriormente, realizou-se uma análise exploratória por meio de estatísticas descritivas e visualizações gráficas, seguindo as recomendações metodológicas propostas por (Ferreira, 2025).

A Tabela 1 apresenta os nomes das variáveis incluídas na análise, juntamente com uma breve descrição de seus significados.

Nome da variável	Descrição			
Characteristic	Nome do país			
Confirmed	Casos confirmados			
Last7Days	Casos reportados nos últimos 7 dias			
DailyCases	Casos diários			
Deaths	Total de mortes			
DailyDeaths	Mortes diárias			
DeathRate	Taxa de mortalidade (%)			

Tabela 1: variáveis analisadas e descrições

4 Resultados

Este conjunto de dados é composto por 221 linhas e 7 colunas. Na Tabela 2, observa-se que a variável Confirmed apresenta os valores mais elevados, pois representa o número de casos confirmados de COVID-19, com um intervalo entre 2641 y 80 442 894, o que reflete uma magnitude considerável.

Variable	Mínimo	1er Cuartil	Mediana	Media	3er Cuartil	Máximo
Confirmed	2641	30752	200990	2303078	1101968	80442894
Last7Days	0	17	250	18657	2892	679183
DailyCases	0	0	13	2593	215	136798
Deaths	1	233	2201	28123	14059	986896
DailyDeaths	0.00	0.00	0.00	10.91	1.00	341.00
DeathRate (%)	0.02	0.55	0.99	1.49	1.95	19.11

Tabela 2: Resumo estatístico das variáveis relacionadas à COVID-19

Figura 1 representa os casos confirmados de COVID-19, na qual se observa a presença de numerosos valores atípicos, correspondentes a países com alta incidência da doença. Esses valores exercem uma influência significativa sobre a distribuição geral. Como evidenciado na Tabela 2, o valor mínimo registrado é de apenas 2,641 casos, enquanto o máximo alcança 80,442,894, refletindo uma enorme dispersão.

Casos confirmados

Figura 1: Casos Confirmados de Covid-19

A Figura 2 apresenta uma comparação entre os países com maior e menor número de mortes registradas por COVID-19. Observa-se que os Estados Unidos lideram a lista com 986,896 óbitos, seguidos pelo Brasil 662,964, Índia 522,223, Rússia 367,521 e México 324,134. Esses países concentram um número expressivo de mortes, o que reflete a magnitude do impacto da pandemia em nações com elevada densidade populacional.

Em contraste, países como Nova Zelândia, Saint Pierre e Miquelon, Palau, Saint-Barthélemy e Anguila registraram números mínimos de mortes (entre 1 e 9 casos), o que evidencia uma gestão mais eficaz no controle da propagação do vírus.

A comparação evidencia a grande diferença no impacto da pandemia: enquanto em alguns países o número de mortes ultrapassou centenas de milhares, em outros foram registrados apenas alguns óbitos. Isso reforça a ideia de que as características próprias de cada nação — como o tamanho da população, a capacidade do sistema de saúde e a aplicação de medidas preventivas — desempenharam um papel fundamental na evolução da crise sanitária.

Figura 2: Países com mais e menos mortes por COVID-19

A Figura 3 compara o número absoluto de mortes com a taxa de mortalidade. Observase que países como Reunion e Yemen apresentam uma taxa de mortalidade elevada, embora não estejam entre aqueles que registram o maior número total de óbitos. Por outro lado, Estados Unidos apresentam o maior número de mortes, mas não exibem uma taxa de mortalidade elevada.

Figura 3: Comparação entre mortes absolutas e taxa de mortalidade por COVID-19

A Figura 6 analisa o aumento diário de casos de COVID-19. Observa-se que a Alemanha apresentou o maior crescimento diário, seguida pela Coreia, enquanto a Tailândia registrou o menor incremento.

Figura 4: Casos diários confirmados de COVID-19 por país

A Figura 5 mostra a relação entre os casos confirmados e as mortes por COVID-19 em diferentes países, com ambos os eixos representados em escala logarítmica. Observa-se uma tendência positiva clara: à medida que aumenta o número de casos confirmados, também cresce o número de mortes. No entanto, a dispersão dos pontos indica que alguns países apresentam mais mortes do que o esperado em relação ao número de casos, enquanto outros registram menos. O uso da escala logarítmica permite visualizar adequadamente tanto os países com poucos casos quanto aqueles com números extremamente elevados.

Figura 5: Casos confirmados de COVID-19 vs. mortes por COVID-19

A Figura 6 mostra a correlação existente entre as variáveis, destacando-se que Confirmed e Deaths apresentam uma correlação próxima de 1, o que indica que os países com maior número de casos confirmados tendem a registrar também um número proporcionalmente elevado de mortes. Em seguida, observa-se uma correlação igualmente alta entre Last7Days e DailyCases, o que é esperado, uma vez que Last7Days representa a soma dos casos diários registrados nos últimos sete dias.

Figura 6: Correlação de variáveis

5 Conclusão

Este trabalho evidenciou a utilidade do web scraping como método para coletar informações atualizadas de forma automatizada a partir de plataformas estatísticas online, neste caso, o site Statista. A análise exploratória permitiu identificar diferenças significativas entre os países quanto ao impacto da COVID-19, refletidas no número de casos, óbitos e taxas de mortalidade. Além disso, ficou evidente a importância do web scraping, aliado à análise exploratória de dados, como ferramenta valiosa para a detecção de padrões globais.

Referências

Ferreira, J. (2025). Material de apoyo de la asignatura: Tópicos especiais em estatística computacional. Disponible en: https://jodavid.github.io/computationalstatisticstopics/.

Statista (2025). Coronavirus death rates worldwide. Disponible en: https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.