

Nptel Online Certification Course Indian Institute of Technology Kharagpur Computer Vision Assignment - Week 9

Number of questions: 10	Total marks: 10x2=20

QUESTION 1: Type: MCQ

Consider a hyperbolic paraboloid represented as parametric surface x(u, v) = (u, v, uv) with $u = t^2$ and v = 2t, compute all of the first fundamental form coefficients at t = 5.

a)
$$E = 128, F = 65, G = 257$$

b)
$$E = 65, F = 257, G = 128$$

c)
$$E = 65, F = 128, G = 257$$

d) None of these

Correct Answer: d

Detailed Solution: $E = x_u.x_u, F = x_u.x_v$ and $G = x_v.x_v$

QUESTION 2: Type: MSQ Which of the following does not use laser radar (LADAR) sensors

a) Time-of-flight sensors

- b) Triangulation-based sensors
- c) Stereo imaging
- d) Structured Light

Correct Answer: b,c,d

2

QUESTION 3: For peak surface, what is the signs of their curvature k_1 ?	Type: MCQ
a) Positive	
b) Negative	
c) 0	
d) My be positive or negative	
Correct Answer: b)	

QUESTION 4: Type: MCQ

Consider the coefficients of first fundamental form are given by E = 3, F = 1, G = 2 and the coefficients of second fundamental form as e = 2, f = 3, g = 2. Compute the Gaussian curvature K.

- a) -23/7
- b) -23/6
- c) -8/8
- d) 23/4

Correct Answer: c

Detailed Solution: Gaussian curvature is the determinant of the matrix $\begin{bmatrix} e & f \\ f & g \end{bmatrix} \begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1}$

QUESTION 5:
Which of the following is not active image sensing

a) Time-of-flight sensors

b) Triangulation-based sensors

c) Stereo imaging

d) Structured Light

Correct Answer: c

QUESTION 6: Type: True or False

Find the tangent to the 2D curve represented by the parametric equations $x = 2t^3 + 4t$ and $y = 2t^3 + t$ at t = 3.

- a) None of these
- b) (16,60)
- c) (6,9)
- d) (58, 55)

Correct Answer: d

Detailed Solution: Perform single derivative operation on x and y to compute the tangent at t = 3 and the vector is given by (x', y')

QUESTION 7: What is the dimension of range image **Type: Numeric**

Correct Answer: 2.5

Detailed Solution: Only surface of the 3^{rd} dimension is recorded. So, it is considered 2.5D

QUESTION 8: Step edge points are detected from one crossings of Gaussian curvature	Type: True or False
a) True	
b) False	
Correct Answer: False	

QUESTION 9: Type: Numeric

Consider the coefficients of first fundamental form are given by E = 4, F = 1, G = 3 and the coefficients of second fundamental form as e = 5, f = 1, g = 2. Compute the mean curvature H. (Answer upto 4 decimal places)

Correct Answer: 0.9545

Detailed Solution: Mean curvature is given by $H = (Eg + Ge - 2Ff)/2(EG - F^2)$.

QUESTION 10: Type: MSQ

For Ridge surface, what are the signs/values of their curvatures k_1 and k_2 ?

a) k_1 is 0 and k_2 is negetive

b) k_1 is positive and k_2 is negetive

c) k_1 is negetive and k_2 is 0

d) Both k_1 and k_2 are negetive

Correct Answer: a), c)
