

Introduction to ML strategy

Why ML Strategy?

Motivating example

90%

say u get 90% accurency but this is not good enough for you application what u can do is:

Ideas:

- Collect more data
- Collect more diverse training set
- Train algorithm longer with gradient descent
- Try Adam instead of gradient descent
- Try bigger network
- Try smaller network

- Try dropout
- Add L_2 regularization
- Network architecture
 - Activation functions
 - # hidden units

··· Andrew Ng

There are a lot of ideas of what to change so u have to be carefull in what u choose to change, it could take months to make these changes and then realize they are usles

Introduction to ML strategy

Orthogonalization

what to tune to achive one effect, this is a process we call orthogonalization.

TV tuning example

Chain of assumptions in ML

> Performs well in real world or Chye den it or (Hoppy at pie off was.)

Setting up your goal

Single number evaluation metric

Using a single number evaluation metric

Another example

	2	Ľ	V	Z	
Algorithm	US	China	India	Other	Average
A	3%	7%	5%	9%	6%
В	5%	6%	5%	10%	6.5%
C	2%	3%	4%	5%	3.5%
D	5%	8%	7%	2%	5.25%
E	4%	5%	2%	4%	3.75%
F	7%	11%	8%	12%	9.5%

Setting up your goal

Satisficing and optimizing metrics

Another cat classification example

optimizing		Southsfie	ing (
Classifier	Accuracy	Running time	Wakewords Trigger words
A	90%	<u>80ms</u>	Alexa, Ok Googh.
В	92%	<u>95m</u> s ←	Hey Siri, nihoobaiden
\mathbf{C}	95%	$1,500 \mathrm{ms}$	你好百度
Cost = accur Maximize Sugger to No metrico:	Accuracy. # False positive Maxinize cecury. S.t. \le 1 false positive every 24 hours.		

Andrew Ng

Setting up your goal

Train/dev/test distributions

Cat classification dev/test sets

- Lovelopmit sot, hold out cross voludation com

Regions:

- US
- UK
- Other Europe
- South America
- India
- China
- Other Asia
- Australia

der set t metric

True story (details changed)

Optimizing on dev set on loan approvals for medium income zip codes

A y (repay loan?)

Tested on low income zip codes

Guideline

Choose a dev set and test set to reflect data you expect to get in the future and consider important to do well on.

Setting up your goal

Size of dev and test sets

Old way of splitting data

Size of dev set

Set your dev set to be big enough to detect differences in algorithm/models you're trying out.

Size of test set

→ Set your test set to be big enough to give high confidence in the overall performance of your system.

Setting up your goal

When to change dev/test sets and metrics

Cat dataset examples

Motric + Der: Prefu A Youlusers: Prefu B.

Metric: classification error

Algorithm A: 3% error

Pornographic

/ Algorithm B: 5% error

Orthogonalization for cat pictures: anti-porn

- → 1. So far we've only discussed how to define a metric to evaluate classifiers. Place together.
- \rightarrow 2. Worry separately about how to do well on this metric.

Another example

Algorithm A: 3% error

✓ Algorithm B: 5% error ←

→ User images

If doing well on your metric + dev/test set does not correspond to doing well on your application, change your metric and/or dev/test set.

Comparing to human-level performance

Why human-level performance?

Comparing to human-level performance

Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- → Get labeled data from humans. (x, y)
- Gain insight from manual error analysis:
 Why did a person get this right?
- Better analysis of bias/variance.

Comparing to human-level performance

Avoidable bias

Bias and Variance

Bias and Variance

Cat classification

Training set error:

Dev set error:

high votone high bios high bios low bios

Cat classification example

Comparing to human-level performance

Understanding human-level performance

Human-level error as a proxy for Bayes error

Medical image classification example:

Suppose:

(a) Typical human 3 % error

(c) Experienced doctor 0.7 % error

(d) Team of experienced doctors .. 0.5 % error

Baye error \(\overline{0.50/s}

What is "human-level" error?

Error analysis example

Human (parky for Bayes Avoidable bis

Training error

Dev error

Summary of bias/variance with human-level performance

Human-level error

Training error

Dev error

Comparing to human-level performance

Surpassing humanlevel performance

Surpassing human-level performance

Team of humans

0.5%

One human

0.1

Training error

63 1 6.6%

Dev error

0.8%

Problems where ML significantly surpasses human-level performance

- -> Online advertising
- Product recommendations
- → Logistics (predicting transit time)
- → Loan approvals

- Speech recognition
- Some inoge recognition
- Medul
- ECG, Skin cener,...

Comparing to human-level performance

Improving your model performance

The two fundamental assumptions of supervised learning

1. You can fit the training set pretty well.

n Aroidable bios

2. The training set performance generalizes pretty well to the dev/test set.

Reducing (avoidable) bias and variance

