Discrete Structures and Theory of Logic Lecture-34

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj October 2, 2023

Let (G,o) be a group and H is a subset of G. (H,o) is said to be a subgroup of (G,o) if (H,o) is also a group by itself.

Note: (G,o) and $(\{e\},o)$ are the improper subgroups or trivial subgroups of (G,o).

1

Example: Is the subset $\{1,-1\}$ a subgroup of multiplicative group $\{1,-1,i,-i\}$?

Solution: We have to check all the properties of group is satisfied with in set $\{1,-1\}$ under multiplication operation.

Now, 1*1=1, 1*-1=-1, and -1*(-1)=1. Clearly the results of these operation are 1 and -1. And both elements belong in to given subset $\{1,-1\}$. Therefore closure property is satisfied. Since $\{1,-1\}$ is subset of set $\{1,-1,i,-i\}$, therefore associative property is satisfied with in $\{1,-1\}$. Clearly 1 is identity element and it is belong into $\{1,-1\}$, therefore existence of identity property is also satisfied.

Now, 1*1 = 1, and -1*(-1) = 1. Therefore, inverse of 1 is 1 and inverse of -1 is -1. Since each element has its inverse, therefore subset $\{1,-1\}$ is satisfied inverse property.

Clearly, this subset satisfies all the property, therefore this is group. And it will also be subgroup of $\{1,-1,i,-i\}$.

Example: Is the set of even integers a subgroup of additive group of integers?

Solution: Let I be the set of integers and H be the set of even integers.

If we add any two even integers, then we get also an integer. Therefore, addition operation satisfies closure property with in H.

Since H is a subset of I, therefore associative property is also satisfied in H.

Clearly 0 is an identity element and it also belong into H, therefore, identity property is also satisfied in H.

Consider an element $a \in H$. Clearly, a+(-a)=0, therefore -a is the inverse of a. And -a is also belong into H. Therefore, inverse property is satisfied in H.

Clearly, this subset satisfies all the property, therefore this subset H is group. And it will also be subgroup of I.

Theorem: The identity of a subgroup is the same as that of the group.

Proof: Let H be the subgroup of G and e and e' are the identity elements of G and H respectively.

```
Let a \in H. Then aoe' = a ......(1)

Since a \in H \Rightarrow a \in G, therefore aoe = a ......(2)

from (1) and (2), aoe' = aoe

\Rightarrow e' = e (using left cancellation law)
```

Therefore, the identity of a subgroup is the same as that of the group.

Theorem: The inverse of an element of a subgroup is the same as the inverse of the same regarded as an element of the group.

Proof: Let H be a subgroup of G..

Let a \in H. Let b and c are the inverses of element a in H and g respectively. Therefore,

$$aob = e'$$
(1) and $aoc = e$ (2)

From previous theorem, e' = e

Therefore, aob = aoc

 \Rightarrow b = c (using left cancellation law)

Therefore, the inverse of an element of a subgroup is the same as the inverse of the same regarded as an element of the group.

Theorem: A non-empty subset H of a group G is a subgroup of G iff

- (a) $a \in H$, $b \in H \Rightarrow aob \in H$.
- (b) $a \in H \Rightarrow a^{-1} \in H$, where a^{-1} is the inverse of a in G.

Proof:

Necessary part:

Suppose H is a subgroup of G.

Since H is a subgroup of G, therefore closure property is satisfied within H.

So, $a \in H$, $b \in H \Rightarrow aob \in H$. Clearly part (a) is proved.

Let $a \in H$. Since $H \subseteq G$, therefore $a \in G$. Let a^{-1} is the inverse of a in G. Since the inverse of an element in subgroup and group is same, therefore $a^{-1} \in H$. Clearly, part (b) is also proved.

Sufficient part:

Suppose given two statements (a) and (b) are true.

Using statement (a), closure property is satisfied within H.

Since H is a subset of G and G is a group, therefore associative property is also satisfied within H.

Using statement (b), if $a \in H$ then $a^{-1} \in H$. therefore inverse property is also satisfied within H.

Now, consider $a \in H \Rightarrow a \in H$ and $a^{-1} \in H$ (since inesr property is satisfied)

$$\Rightarrow$$
 ao $a^{-1} \in \mathsf{H}$ (using statement (a))

$$\Rightarrow$$
 e \in H, where e is an identity element.

Therefore, identity property is also satisfied within H. Clearly, all the four properties of group is satisfied within H. Therefore, H is a subgroup of G.

Theorem: The necessary and sufficient condition for a non-empty subset H of a group (G,o) to be a subgroup is

$$a \in H, b \in H \Rightarrow aob^{-1} \in H$$

Where b^{-1} is the inverse of b in G.

Proof:

Necessary part:

Suppose H is a subgroup of G.

Let $a \in H$ and $b \in H$. Since H is subgroup, therefore $b^{-1} \in H$ using inverse property.

Now, $a \in H$ and $b^{-1} \in H$. By using closure property, $aob^{-1} \in H$. Therefore the given statement is proved.

Sufficient part:

Suppose $a \in H$, $b \in H \Rightarrow aob^{-1} \in H$ (1)

Now, we have to show that H is a subgroup of G.

Identity property:

$$a \in H$$
 , $a \in H \Rightarrow aoa^{-1} \in H$ (using statement (1)) $\Rightarrow e \in H$

Here, e is the identity element. Therefore, identity property is satisfied within H.

Inverse property:

Now,
$$e \in H$$
, $a \in H \Rightarrow eoa^{-1} \in H$ (using statement (1))
 $\Rightarrow a^{-1} \in H$

Therefore, inverse property is satisfied within H.

Associative property:

Since $H\subseteq G$, therefore associative property is also satisfied within H, because G is a group.

Closure property:

consider
$$a \in H$$
, $b \in H \Rightarrow a \in H$, $b^{-1} \in H$
 $\Rightarrow ao(b^{-1})^{-1} \in H$ (using statement (1))
 $\Rightarrow aob \in H$

Therefore, closure property is satisfied within H.

Clearly all the four properties are satisfied within H, therefore H is a subgroup of G.

It is proved.

Example: Let $G = \{, 3^{-2}, 3^{-1}, 1, 3, 3^2, 3^3, \}$ be the multiplicative group. Let $H = \{1, 3, 3^2, 3^3, \}$. Is H a subgroup of G.

Solution: Clearly H is a subset of G, therefore it may be subgroup. If $a \in H$, $b \in H \Rightarrow aob^{-1} \in H$ is satisfied for each elements $a,b \in H$, then H will be subgroup.

Consider a = 3 and $b = 3^3$.

Now,
$$aob^{-1} = 3o(3^3)^{-1}$$

= $3o3^{-3}$
= 3^{-2}

Clearly this element i.e. $3^{-2} \notin H$, therefore H is not subgroup of G.