Prof. Dr. G. Plonka-Hoch

M.Sc. Y. Riebe

Mathematik für Studierende der Informatik I

Übungen zur Vorlesung im WS 2023/2024 - Blatt 7

Abgabe: Donnerstag, den 14. Dezember 2023, bis 10.15h.

Bitte schreiben Sie auf Ihre Lösungen jeweils Ihren Namen, den Namen Ihres Übungsgruppenleiters sowie ihre Übungsgruppennummer!

1. Aufgabe 25 (Normen, \mathbb{R}^n)

2+2 Punkte

Es sei $n \in \mathbb{N}$. Zeigen Sie, dass in den folgenden Fällen Normen auf dem \mathbb{R}^n definiert sind.

(a)
$$||x||_1 := \sum_{k=1}^n |x_k|, \quad x = (x_1, \dots, x_n)^T \in \mathbb{R}^n,$$

(b)
$$||x||_{\infty} := \max\{|x_1|, |x_2|, \dots, |x_n|\}, \quad x = (x_1, \dots, x_n)^{\mathrm{T}} \in \mathbb{R}^n.$$

Beweisen Sie also für die in (a) und (b) definierten Abbildungen die Normeigenschaften (N1) - (N4). Die in (a) definierte Abbildung heißt "Betragssummennorm" und die in (b) definierte Abbildung heißt "Maximumsnorm".

 $2. \ \mathbf{Aufgabe} \ \mathbf{26} \ (\mathit{Komplexe} \ \mathit{Zahlen}, \ \mathit{Rechnen})$

2+2 Punkte

Schreiben sie folgende komplexe Zahlen in der Form $z=x+\mathrm{i}\,y$ mit $x,y\in\mathbb{R}$ und berechnen Sie jeweils den Realteil, den Imaginärteil und den Betrag.

(a)
$$z = (3+4i)(2-i)^2 - (5-i) + 27$$

(b)
$$z = \frac{7-3i}{6i-4}$$

3. Aufgabe 27 (Komplexe Zahlen, Rechenregeln)

0.5+0.5+0.5+0.5+1 Punkte

Zeigen Sie, dass für alle $z, w \in \mathbb{C}$ die folgenden Regeln gelten:

(a)
$$\overline{z+w} = \overline{z} + \overline{w}$$
,

(d) $z - \overline{z} = 2 i \cdot \text{Im}(z)$,

(b)
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$
,

(e) $z\overline{z}\geq 0$ (d. h. $z\overline{z}$ ist insbesondere reell)

(c)
$$z + \overline{z} = 2 \operatorname{Re}(z)$$
, und $(z\overline{z} = 0 \Leftrightarrow z = 0)$.

Hierbei ist $\operatorname{Re}(z) := x$ der $\operatorname{Realteil}$ und $\operatorname{Im}(z) := y$ der $\operatorname{Imagin\"{a}rteil}$ von $z = x + \mathrm{i}\, y \in \mathbb{C}$ (mit $x,y \in \mathbb{R}$) und $\overline{z} := x - \mathrm{i}\, y$ die zu z komplex konjugierte Zahl.

4. Aufgabe 28 (Einheitswurzeln)

2+1+2 Punkte

Sei $n \in \mathbb{N}$ und

$$z_{k,n} := \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$$
 für $k \in \{0,\dots,n-1\}$.

(a) Zeigen Sie die folgenden Aussagen:

i.
$$z^n = |z|^n(\cos(n\varphi) + i\sin(n\varphi))$$
 für alle $z = |z|(\cos(\varphi) + i\sin(\varphi)) \in \mathbb{C}$

ii.
$$z_{k,n}^n=1$$
 für alle $k\in\{0,\dots,n-1\}$

(b) Berechnen Sie für n=4 die Punkte $z_{k,4}$ für alle $k\in\{0,\dots,n-1\}.$ Skizzieren Sie die Menge

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

und die Punkte $z_{0,4}, z_{1,4}, z_{2,4}$ und $z_{3,4}$ in einem gemeinsamen Koordinatensystem.