Unital Commutative Quantales

João Paixão and Lucas Rufino

October 24, 2020

1 Definitions

1.1 Preorder

Definition 1.1 (Reflexivity). $A \leq A$

Definition 1.2 (Transitivity). $A \leq B$ and $B \leq C \implies A \leq C$

Definition 1.3 (Isomorphic). $A \simeq B \iff A \leq B$ and $B \leq A$

Lemma 1.1. $A \simeq B \iff (A \leq B \iff TRUE \implies B \leq A)$

1.2 Yoneda

Definition 1.4 (Yoneda \leq). $A \leq B \iff \forall X(X \leq A \implies X \leq B)$

Lemma 1.2 (Yoneda 1 \simeq). $A \simeq B \iff \forall X(X \le A \iff X \le B)$

Lemma 1.3 (Yoneda 2 \simeq). $A \simeq B \iff \forall X (A \leq X \iff B \leq X)$

1.3 Initial and Terminal Object (\perp and \top)

Definition 1.5 (Initial). $\perp \leq A$

Definition 1.6 (Terminal). $A \leq \top$

1.4 Meets $(A \wedge B)$

Definition 1.7 (Meet). $A \leq B \wedge C \iff A \leq B \text{ and } A \leq C$

Lemma 1.4 (Zero Element). $A \wedge \top \simeq A$

Proof.

$$X \leq A \wedge \top$$

$$\iff \{ \text{ Meet } \}$$

$$X \leq A \text{ and } X \leq \top$$

$$\iff \{ \text{ Terminal } \}$$

$$X \leq A \text{ and } TRUE \\ \iff \quad \{ \text{ A and } TRUE = A \ \} \\ X \leq A$$

Lemma 1.5 (Absolute Element). $A \land \bot \simeq \bot$

Proof.

Lemma 1.6 (Associativity). $A \wedge (B \wedge C) \simeq (A \wedge B) \wedge C$

Proof.

$$X \leq A \wedge (B \wedge C)$$

$$= \{ \text{Meet } \}$$

$$X \leq A \text{ and } X \leq B \wedge C$$

$$= \{ \text{Meet } \}$$

$$X \leq A \text{ and } (X \leq B \text{ and } X \leq C)$$

$$= \{ \text{Associativity of And } \}$$

$$(X \leq A \text{ and } X \leq B) \text{ and } X \leq C$$

$$= \{ \text{Meet } \}$$

$$X \leq A \wedge B \text{ and } X \leq C$$

$$= \{ \text{Meet } \}$$

$$X \leq (A \wedge B) \wedge C$$

Lemma 1.7 (Commutativity). $A \wedge B \simeq B \wedge A$

Proof.

$$X \leq A \wedge B$$

$$= \{ \text{Meet } \}$$

$$X \leq A \text{ and } X \leq B$$

$$= \{ \text{Commutativity of And } \}$$

$$X \leq B \text{ and } X \leq A$$

$$= \{ \text{Meet } \}$$

$$X \leq B \wedge A$$

1.5 Joins $(A \lor B)$

Definition 1.8 (Join). $A \lor B \le C \iff A \le C$ and $B \le C$ **Lemma 1.8** (Zero Element). $A \lor \bot \simeq A$ *Proof.*

$$A \lor \bot \le X$$

$$\iff \{ \text{ Join } \}$$

$$A \le X \text{ and } \bot \le X$$

$$\iff \{ \text{ Initial } \}$$

$$A \le X \text{ and } TRUE$$

$$\iff \{ \text{ A and } TRUE = A \}$$

$$A \le X$$

Lemma 1.9 (Absolute Element). $\top \lor A \simeq \top$

Proof.

Lemma 1.10 (Associativity). $A \lor (B \lor C) \simeq (A \lor B) \lor C$ Proof.

$$A \lor (B \lor C) \le X$$

$$\iff \{ \text{ Join } \}$$

$$A \le X \text{ and } B \lor C \le X$$

$$\iff \{ \text{ Join } \}$$

$$A \le X \text{ and } (B \le X \text{ and } C \le X)$$

$$\iff \{ \text{ Associativity of And } \}$$

$$(A \le X \text{ and } B \le X) \text{ and } C \le X$$

$$\iff \{ \text{ Join } \}$$

$$A \lor B \le X \text{ and } C \le X$$

$$\iff \{ \text{ Join } \}$$

$$(A \lor B) \lor C \le X$$

Lemma 1.11 (Commutativity). $A \lor B \simeq B \lor A$

Proof.

$$A \lor B \le X$$

$$= \left\{ \begin{array}{l} \text{Join } \right\} \\ A \le X \text{ and } B \le X \end{array}$$

$$= \left\{ \begin{array}{l} \text{Commutativity of And } \right\} \\ B \le X \text{ and } A \le X \end{array}$$

$$= \left\{ \begin{array}{l} \text{Join } \right\} \\ B \lor A \le X \end{array}$$

Lemma 1.12 (Golden Rule). $A \leq A \wedge B \iff B \vee A \leq B$ *Proof.*

$$A \leq A \wedge B$$

$$\iff \{ \text{ Meet } \}$$

$$A \leq A \text{ and } A \leq B$$

$$\iff \{ \text{ Reflexivity } \}$$

$$TRUE \text{ and } A \leq B$$

$$\iff \{ \text{ Reflexivity } \}$$

$$B \leq B \text{ and } A \leq B$$

$$\iff \{ \text{ Join } \}$$

$$B\vee A\leq B$$

1.6 Adjoints (+ and -)

Definition 1.9 (Adjoint). $A + B \le C \iff A \le C - B$

Definition 1.10 (Associativity of +). $A + (B + C) \simeq (A + B) + C$

Definition 1.11 (Commutativity of +). $A + B \simeq B + A$

Lemma 1.13 (+ distributes over Joins). $(A \lor B) + C \simeq (A + C) \lor (B + C)$ *Proof.*

$$(A \lor B) + C \le X$$

$$\iff \{ \text{ Adjoint } \}$$

$$A \lor B \le X - C$$

$$\iff \{ \text{ Join } \}$$

$$A \le X - C \text{ and } B \le X - C$$

$$\iff \{ \text{ Adjoint } \}$$

$$A + C \le X \text{ and } B + C \le X$$

$$\iff \{ \text{ Join } \}$$

$$(A + C) \lor (B + C) \le X$$

Lemma 1.14 (- distributes over Meets). $(A \wedge B) - C \simeq (A - C) \wedge (B - C)$ *Proof.*

$$X \leq (A \wedge B) - C$$

$$\iff \{ \text{ Adjoint } \}$$

$$X + C \leq A \wedge B$$

$$\iff \{ \text{ Meet } \}$$

$$X + C \leq A \text{ and } X + C \leq B$$

$$\iff \{ \text{ Adjoint } \}$$

$$X \leq A - C \text{ and } X \leq B - C$$

$$\iff \{ \text{ Meet } \}$$

$$X \leq (A - C) \wedge (B - C)$$

Lemma 1.15 (Preservation of infima). $\bot +A \simeq \bot$

Proof.

$$\begin{array}{ccc} & \bot + A \leq X \\ \iff & \{ \text{ Adjoint } \} \\ & \bot \leq X - A \\ \iff & \{ \text{ Initial } \} \\ & TRUE \\ \iff & \{ \text{ Initial } \} \\ & \bot \leq X \end{array}$$

Lemma 1.16 (Preservation of suprema). $\top - A \simeq \top$ *Proof.*

$$\begin{array}{c} X \leq \top - A \\ \iff \quad \{ \text{ Adjoint } \} \\ X + A \leq \top \\ \iff \quad \{ \text{ Terminal } \} \\ TRUE \\ \iff \quad \{ \text{ Terminal } \} \\ X \leq \top \\ \end{array}$$

Lemma 1.17 (Left cancellation law). $(A - B) + B \le A$ *Proof.*

$$(A-B)+B \le A$$

$$\iff \{ \text{ Adjoint } \}$$

$$A-B \le A-B$$

$$\iff \{ \text{ Reflexivity } \}$$

$$TRUE$$

Lemma 1.18 (Right Cancelation law). $A \leq (A+B) - B$ *Proof.*

$$A \le (A+B) - B \\ \iff \quad \{ \text{ Adjoint } \} \\ A+B \le A+B \\ \iff \quad \{ \text{ Reflexivity } \}$$

TRUE

Lemma 1.19 (Monotonicity of +). $A \leq B \implies A + C \leq B + C$ Proof.

 $A \leq B$ $\iff \{ \text{ A and TRUE} = \text{A } \}$ $A \leq B \text{ and } TRUE$ $\iff \{ \text{ Right Cancellation Law } \}$ $A \leq B \text{ and } B \leq (B+C) - C$ $\iff \{ \text{ Transitivity of } \leq \}$ $A \leq (B+C) - C$ $\iff \{ \text{ Adjoint } \}$ $A+C \leq B+C$

Lemma 1.20 (Monotonicity of -). $A \leq B \implies A - C \leq B - C$ *Proof.*

$$A \leq B$$

$$\iff \{ \text{ TRUE and A} = A \}$$

$$TRUE \text{ and } A \leq B$$

$$\iff \{ \text{ Left Cancellation Law } \}$$

$$(A - C) + C \leq A \text{ and } A \leq B$$

$$\iff \{ \text{ Transitivity of } \leq \}$$

$$(A - C) + C \leq B$$

$$\iff \{ \text{ Adjoint } \}$$

$$A - C < B - C$$

Lemma 1.21 (Weak-inverse +). $A + B \simeq ((A + B) - B) + B$ *Proof.*

$$((A+B)-B)+B \le A+B$$

$$\iff \{ \text{ Left Cancellation Law } \}$$

$$TRUE$$

$$\iff \{ \text{ Right Cancellation Law } \}$$

$$A \le (A+B) - B$$

$$\iff \{ \text{ Monotonicity of } + \}$$

$$A+B \le ((A+B)-B) + B$$

Lemma 1.22 (Weak-inverse –). $A - B \simeq ((A - B) + B) - B$

Proof.

$$A - B \le ((A - B) + B) - B$$

$$\iff \{ \text{ Right Cancellation Law } \}$$

$$TRUE$$

$$\iff \{ \text{ Left Cancellation Law } \}$$

$$(A - B) + B \le A$$

$$\iff \{ \text{ Monotonicity of } - \}$$

$$((A - B) + B) - B \le A - B$$

Lemma 1.23 (- distributes over +). $A - (B + C) \simeq (A - B) - C$ Proof.

$$X \le (A - B) - C$$

$$\iff \{ \text{ Adjoint } \}$$

$$X + C \le A - B$$

$$\iff \{ \text{ Adjoint } \}$$

$$(X + C) + B \le A$$

$$\iff \{ \text{ Associativity of } + \}$$

$$X + (C + B) \le A$$

$$\iff \{ \text{ Adjoint } \}$$

$$X < A - (C + B)$$

Lemma 1.24 (Duality). $A \wedge B \leq (A+B) - (B \vee A)$

Proof.

$$X \le A \wedge B$$

$$\iff \{ \text{ Meet } \}$$

$$X \le A \text{ and } X \le B$$

$$\iff \{ \text{ Monotonicity of } + \}$$

$$X + B \le A + B \text{ and } X + A \le B + A$$

$$\iff \{ \text{ Commutativity of } + \}$$

$$B + X \le A + B \text{ and } A + X \le A + B$$

$$\iff \{ \text{ Adjoint } \}$$

$$B \le (A + B) - X \text{ and } A \le (A + B) - X$$

$$\iff \{ \text{ Join } \}$$

$$B \lor A \le (A + B) - X$$

$$\iff \{ \text{ Adjoint } \}$$

$$(B \lor A) + X \le A + B$$

$$\iff \{ \text{ Commutativity of } + \}$$

$$X + (B \lor A) \le A + B$$

$$\iff \{ \text{ Adjoint } \}$$

$$X \le (A + B) - (B \lor A)$$

2 Exercises

- 1. (Weakening) $A \leq A \vee B$
- 2. (Projection) $A \wedge B \leq A$
- 3. (Idempotency) $A \vee A \simeq A$
- 4. (Meet \leq Join) $A \wedge B \leq A \vee B$
- 5. (Monotonicity of \vee) $A \leq B$ and $C \leq D \implies A \vee C \leq B \vee D$
- 6. $A + A A \simeq A$
- 7. (Self-Distributivity) $A \wedge (B \wedge C) \simeq (A \wedge B) \wedge (A \wedge C)$
- 8. (Absorption) $A \wedge (A \vee B) \simeq A$