

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/23

Paper 2 Structured Questions AS Core

May/June 2013

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
Total	

This document consists of 11 printed pages and 1 blank page.

[3]

Answer **all** the questions in the spaces provided.

For Examiner's Use

1	Carb volca		disulfide, CS_2 , is a volatile, flammable liquid which is produced in small quantities es.	s in
	(a)	The	sequence of atoms in the CS ₂ molecule is sulfur to carbon to sulfur.	
	(Draw a 'dot-and-cross' diagram of the carbon disulfide molecule. Show outer electrons only.	
	(i	ii)	Suggest the shape of the molecule and state the bond angle.	
			shape	
			bond angle	[3]
				[O]
	(b) (Carl	bon disulfide is readily combusted to give CO ₂ and SO ₂ .	
	((i)	Construct a balanced equation for the complete combustion of CS ₂ .	
	(i	ii)	Define the term standard enthalpy change of combustion, $\Delta H_{\rm c}^{\rm e}$.	

For

(c)	Calculate the standard enthalpy change of formation of ${\rm CS}_2$ from the following Include a sign in your answer.	data. For Examiner's Use
	standard enthalpy change of combustion of $CS_2 = -1110 \mathrm{kJ} \mathrm{mol}^{-1}$	
	standard enthalpy change of formation of $CO_2 = -395 \mathrm{kJ}\mathrm{mol}^{-1}$	
	standard enthalpy change of formation of $SO_2 = -298 \mathrm{kJ}\mathrm{mol}^{-1}$	
		[3]
(d)	Carbon disulfide reacts with nitrogen monoxide, NO, in a 1:2 molar ratio. A yellow solid and two colourless gases are produced.	
	(i) Construct a balanced equation for the reaction.	
	(ii) What is the change in the oxidation number of sulfur in this reaction?	
	from to	
		[3]
	[Tota	al: 12]

[Turn over © UCLES 2013 9701/23/M/J/13

2	Methanol, CH ₃ OH,	can be	produced	industrially	by	reacting	carbon	monoxide,	CO,	with
	hydrogen, H ₂ .									

For Examiner's Use

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = -91 \text{ kJ mol}^{-1}$

The process is carried out at $4\times10^3\,\text{kPa}$ (40 atmospheres) and 1150 K.

(a)	(i)	State Le Chatelier's Principle.
		[2]
	(ii)	From your understanding of Le Chatelier's Principle, state the conditions of temperature and pressure that could be used in order to produce an increased yield of methanol in this process. In each case, explain why the yield would increase.
		temperature
		explanation
		pressure
		explanation
		[4]

(b) The carbon monoxide for use in the production of methanol may be formed by reacting carbon dioxide with hydrogen.

For Examiner's Use

$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$$
 $K_c = 1.44 \text{ at } 1200 \text{ K}$

A mixture containing 0.70 mol of CO_2 , 0.70 mol of H_2 , 0.30 mol of CO and 0.30 mol of H_2O was placed in a 1 dm³ flask and allowed to come to equilibrium at 1200 K.

Calculate the amount, in moles, of each substance present in the equilibrium mixture at 1200 K.

[4]

[Total: 10]

For

Examiner's Use

3

Thi	s que	estion refers to the elements in the section of the	ne Pe	riodic	Table	showr	n belo	W.		
		Н						He		
Li	Ве	е	В	С	N	0	F	Ne		
Na	M	g	Αl	Si	Р	S	Cl	Ar		
K	Ca	a transition elements	Ga	Ge	As	Se	Br	Kr		
(a)	(a) From this list of elements, identify in each case one element that has the property described. Give the symbol of the element.									
	(i)	An element that has molecules which consist	of sin	gle ato	oms.					
	(ii) An element that has a molecule which contains exactly four atoms.									
	(iii)	The element that is a liquid at room temperatu	ire an	d pres	sure.					
	(iv)	The element in Period 3 (Na to Ar) that has the	e larg	est at	omic r	adius.				
	(v)	The element in Period 3 (Na to Ar) that has the	e high	nest m	elting	point.				
	(vi)	The element in Period 3 (Na to Ar) that forms	the la	rgest a	anion.					
(vii)	An element that reacts with water to give a sol agent.	lution	that c	an be	have a	as an	oxidising		
							[7]			

(b) The formulae and melting points of some of the oxides of the elements in Period 3, Na to C*l*, are given in the table.

For Examiner's Use

formula of oxide	Na ₂ O	MgO	Al_2O_3	SiO ₂	P ₄ O ₆	SO ₂	Cl ₂ O ₇
m.p./°C	1132	2830	2054	1710	24	-73	-92

(i)	Give the formulae of two of these oxides that have simple molecular structures.								
		and							
(ii)		ormula of one for a long tir		e oxides	that will	give no r	eaction with	ı water	when
(iii)	Give the fo	rmula of the	product f	ormed w	hen MgC) is reacte	ed with SO ₂		
									[4]
									[,]
(c) The	e melting poi	nts of the ele	ements S	i to C <i>l</i> ar	e given ii	n the tabl	e.		
		element	Si	Р	S	Cl			
		m.p./°C	1414	44	115	-102			
(i)	Explain why elements.	y the melting	point of S	Si is very	much gr	eater tha	n those of th	e other	⁻ three
(ii)	Suggest voorder S > F	vhy the me P > C <i>l</i> .	elting po	ints of	the oth	er three	elements	are i	n the
									[4]
								[Tot	al: 15]

© UCLES 2013 9701/23/M/J/13 **[Turn over**

4 Compound **Q**, heptan-2-one, is found in some blue cheeses.

For Examiner's Use

compound Q

- (a) Compound Q may be reduced to R.Compound R may be dehydrated to give two different products, S and T.
 - (i) In the boxes below, draw the **structural formulae** of **R**, **S**, and **T**.

(ii)	State the reagents t college laboratory.	that would	be us	ed for	each	of these	reactions	in a	school	or
	reduction									

dehydration

[5]

For Examiner's Use

(b)	Q is reacted separately with	ne structural formula of the organic compound formed th each reagent under suitable conditions. curs, write 'NO REACTION' in the box.	d when				
	Tollens' reagent						
	HCN						
	K ₂ Cr ₂ O ₇ /H ⁺						
			[3]				
(c)	The first stage of cheese milk.	naking is to produce 2-hydroxypropanoic acid (lactic acid	d) from				
CH ₃ CH(OH)CO ₂ H							
		lactic acid					
Other than the use of a pH indicator, what reagent could you use to confirm the present some lactic acid in a sample of heptan-2-one? State what observation you would make.							

reagent

[Total: 10]

For

5

onio	ons a	unds containing the allyl group, $\mathrm{CH_2=CHCH_2-}$, have pungent smells and are found cont and cont are found cont and cont are found cont and cont are found and cont are found and cont and cont are found and cont and cont are found and cont are found and cont are found and cont and cont are found and cont are formula and cont are found and cont are found and cont are found and cont are found and cont and cont are found and	ound in	Examiner's Use
(a)	Ally	l alcohol behaves as a primary alcohol and as an alkene.		
		e the structural formula of the organic compound formed when allyl alcohol is retarately with each of the following reagents.	eacted	
	(i)	acidified potassium dichromate(VI), heating under reflux		
	(ii)	bromine in an inert organic solvent		
	(iii)	cold, dilute, acidified potassium manganate(VII)		
	(iv)	hot, concentrated, acidified potassium manganate(VII)		
			[5]	
(b)	Ally	alcohol undergoes the following reactions.		
	(i)	When reacted with concentrated HCl at 100 °C, CH ₂ =CHCH ₂ Cl is formed.		
		State as fully as you can what type of reaction this is.		
	(ii)	When reacted with MnO_2 at room temperature, CH_2 =CHCHO is formed. What <i>type of reaction</i> is this?		
			[2]	

For Examiner's Use

c)	Allyl alcohol can be converted into propanal in two steps.	
		$CH_2 = CHCH_2OH \xrightarrow{\text{step I}} CH_3CH_2CH_2OH \xrightarrow{\text{step II}} CH_3CH_2CHO$
	(i)	What reagents and conditions would be used for each step?
		step I
		reagent(s)
		condition(s)
		step II
		reagent(s)
		condition(s)
	(ii)	Allyl alcohol and propanal are isomers.
		What form of isomerism do they display?
		[5]
d)	Allyl alcohol may also be converted into propanal by using a ruthenium (IV) catalyst in water.	
		ruthenium(IV) catalyst
		CH₂=CHCH₂OH → CH₃CH₂CHO
	Suggest what is unusual about this single step reaction.	
		[1]
		[Total: 13]

12

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.