

(1) Publication number:

0 183 271

A2

12

EUROPEAN PATENT APPLICATION

(21) Application number: 85115142,3

(22) Date of filing: 29.11.85

(5) Int. Cl.4; C 07 C 143/78

C 07 C 143/80, C 07 K 5/06 C 07 K 5/08, C 07 D 211/16 C 07 D 211/42, C 07 D 213/34 C 07 D 213/40, C 07 D 215/06 C 07 D 215/36, C 07 D 215/08

30 Priority: 30.11.84 JP 251985/84

15.02.85 JP 26556/85 22.03.85 JP 56153/85 02.07.85 JP 143852/85

- Date of publication of application: 04.06.86 Bulletin 86/23
- Designated Contracting States: CH DE FR GB LI SE
- (1) Applicant: Okamoto, Shosuke 15-18, Asahigaoka 3-chome Tarumi-ku Kobe-shi Hyogo(JP)
- (1) Applicant: SHOWA DENKO K.K. 13-9, Shiba Dalmon 1-chome Minato-ku, Tokyo 105(JP)
- (72) Inventor: Okamoto, Shosuke 15-18, Asahigaoka 3-chome Tarumi-ku Kobe-shi Hyogo(JP)
- (72) Inventor: Okada, Yoshio 542-1, Aza Shimizu Okuradani Akashi-shi Hyogo(JP)
- (72) Inventor: Okunomiya, Akiko 13-2, Nakayamatedori 7-chome Chuo-ku Kobe-shi Hyogo(JP)

- Inventor: Naito, Taketoshi SHOWA DENKO K.K. Selkagakukenkyusho 24-25, Tamagawa 2-chome Ota-ku Tokyo(JP)
- Inventor: Yamada, Morihiko SHOWA DENKO K.K. Seikagakukenkyusho 24-25, Tamagawa 2-chome Ota-ku Tokyo(JP)
- (72) Inventor: Kimura, Yoshio SHOWA DENKO K.K. Seikagakukenkyusho 24-25, Tamagawa 2-chome Ota-ku Tokyo(JP)
- (72) Inventor: Katsuura, Yasuhiro SHOWA DENKO K.K. Seikagakukenkyusho 24-25, Tamagawa 2-chome Ota-ku Tokyo(JP)
- 12 Inventor: Suzuki, Hiroshi SHOWA DENKO K.K. Seikagakukenkyusho 24-25, Tamagawa 2-chome Ota-ku Tokyo(JP)
- Inventor: Ohno, Norio SHOWA DENKO K.K. Selkagakukenkyusho 24-25, Tamagawa 2-chome Ota-ku Tokyo(JP)
- 12 Inventor: Seki, Yumi SHOWA DENKO K.K. Seikagakukenkyusho 24-25, Tamagawa 2-chome Ota-ku Tokyo(JP)
- 74 Representative: Strehl, Schübel-Hopf, Schulz Widenmayerstrasse 17 Postfach 22 03 45 D-8000 München 22(DE)

Lysin derivative and proteinase inhibitor.

(57) A lysine derivative having the general formula: A-Y-Lys-B (L-form) (A)

wherein A represents

wherein X and X' independently represent hydrogen, halogen, alkyl, cycloalkyl, alkoxy, aryloxy, dialkylamino, alkylcarbonyl amino, arylcarbonyl amino, and n_1 is an integer of 3 to 6, n_2 is an integer of 1 to 3, and n_3 is an integer of 0 to 3;

B represents NR¹R², NZW, or tetrahydroquinolyl, wherein R¹ and R² independently represents hydrogen provided that both R¹ and R² cannot be hydrogen at the same time; alkyl substituted with carboxyl, alkoxycarbonyl, phenyl, hydroxyphenyl, or benzoyl; cycloalkyl which may be substituted with arylcarbonyl; cycloalkyl-alkyl which may be substituted with carboxyl, arylcarbonyl, or aralkyloxycarbonyl; phenyl which may be substituted with halogen, nitro, cyano, trifluoromethyl, alkyl, alkoxy, alkoxycarbonyl, alkoxy-

carbonylalkyl, phenylalkyl which may be further substituted with dialkylamino, alkylcarbonyl, phenylalkenyl which may be further substituted with dialkylamino, phenoxy, phenylcarbonyl which may be further substituted with an amino, dialkylamino, alkoxycarbonyl, or nitro group, pyridylmethyl, phenyl hydroxyalkyl, alkylsulfonyl, or alkoxycarbonyl alkylcarbonyl, coumaryl which may be substituted with alkyl; quinolyl; adamantyl; norbornyl; or tetrahydronaphthyl; and

Z is
$$-(CH_2)_{\overline{m}_1}$$
 CH(CH₂) $_{\overline{m}_2}$ or $-(CH_2)_{\overline{m}_1}$ -N-(CH₂) $_{\overline{m}_2}$;

W is hydrogen; hydroxyl; carboxyl; aminocarbonyl; alkyl; alkoxy carbonyl; phenyl; phenylalkyl which may be substituted with dialkylamino; or phenylcarbonyl which may be substituted with alkoxycarbonyl; or tetrahydroquinolyl; and

$$m_1 + m_2 = 3 \text{ or } 4$$

or the pharmaceutically acceptable salt thereof.

This lysine derivative is effective as a proteinase inhibitor.

LYSIN DERIVATIVE AND PROTEINASE INHIBITOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a novel lysine derivative or the pharmaceutically acceptable salt thereof. More specifically, it relates to an L-lysine derivative having a proteinase inhibition activity (e.g., plasmin inhibition activity) or the pharmaceutical acceptable salt thereof and a proteinase inhibitor containing the same as an essential component.

2. Description of the Related Art

10

15

20

25

30

It is well-known in the art that various proteinases are present in human organisms. Examples of such proteinases are plasmin, thrombin, trypsin, kallikrein, and urokinase. As is known, when these proteinases are abnormally activated, various diseases are caused. For example, when abnormally activated plasmin is present in a relatively large amount in the blood, hemorrhagic disorder or inflammatory disorder are caused. For this reason, a substance capable of exhibiting a proteinase inhibition activity is useful as a clinical remedy or medicine.

It has been reported in, for example, J. Biol. Chem. 208, 85 (1954) and J. Biochem., 57, 450 (1965) that certain derivatives of lysine and arginine have an inhibition activity against plasmin, which is a proteinase specific to fibrin and fibrinogen in blood. However, the plasmin inhibition activity of the reported substances is low and, therefore, practical use of those substances as a medicine is not acceptable in the art.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a novel compound having an effective proteinase inhibition activity suitable for use as a proteinase inhibitor such as plasmin inhibitor.

Other objects and advantages of the present inven-

tion will be apparent from the following description.

In accordance with the present invention, there is provided a lysine derivative having the general formula:

wherein X and X' independently represent
hydrogen, halogen, alkyl preferably having 1 to 5 carbon
atoms, cycloalkyl preferably having 5 to 8 carbon atoms,
alkoxy preferably having 1 to 5 carbon atoms, aryloxy
preferably having 6 to 10 carbon atoms, dialkylamino
preferably having a C₁ to C₅ alkyl group, alkylcarbonylamino preferably having a C₁ to C₅ alkyl group, arylcarbonylamino preferably having a C₆ to C₁₀ aryl group,
and n₁ is an integer of 3 to 6, n₂ is an integer of
1 to 3, and n₃ is an integer of 0 to 3;
Y represents SO₂ or CO;

30

 $(CH_2)_4$ -NH₂ -Lys- represents -NH-CH-CO-B represents NR¹R², NZ W, or tetrahydroguinolyl wherein R¹ and R² independently represents hydrogen 5 provided that both R¹ and R² cannot be hydrogen at the same time; alkyl preferably having 1 to 6 carbon atoms substituted with carboxyl, alkoxycarbonyl preferably having 2 to 6 carbon atoms, phenyl, hydroxyphenyl, or benzoyl; cycloalkyl preferably having 5 to 8 carbon atoms, which may be substituted with arylcarbonyl preferably having a C_6 to C_{10} aryl group; cycloalkyl--alkyl preferably having 6 to 11 carbon atoms, which may be substituted with carboxyl, arylcarbonyl preferably having a C₆ to C₁₀ aryl_group, or aralkyloxycarbonyl preferably having a C₇ to C₁₁ aralkyl group; phenyl which may be substituted with halogen, nitro, cyano, trifluoromethyl, alkyl preferably having 1 to 5 carbon atoms, alkoxy preferably having 1 to 5 carbon atoms, alkoxycarbonyl preferably having 2 to 10 carbon atoms, alkoxycarbonylalkyl preferably having 3 to 10 carbon atoms, phenylalkyl preferably having 7 to 10 carbon atoms which may be further substituted with dialkylamino preferably having a C1 to C3 alkyl group, alkylcarbonyl preferably having a C_1 to C_{10} alkyl group, phenylalkenyl preferably having 8 to 10 carbon atoms which may be further substituted with dialkylamino preferably having a C₁ to C₃ alkyl group, phenoxy, phenylcarbonyl which may be further substituted with amino, dialkylamino preferably having a C1 to C3 alkyl group, alkoxycarbonyl 30 preferably having 2 to 6 carbon atoms, or nitro, pyridylmethyl, phenyl hydroxyalkyl preferably having a ${f C}_1$ to ${f C}_3$ alkyl group, alkylsulfonyl preferably having a C₁ to C₂₀ alkyl group, or alkoxycarbonyl alkylaminocarbonyl preferably having 4 to 6 carbon atoms; coumaryl 35 which may be substituted with alkyl preferably having 1 to 5 carbon atoms; quinolyl; adamantyl; norbornyl; or

tetrahydronaphthyl; and

Z is $-(CH_2)\frac{1}{m_1}CH(CH_2)\frac{1}{m_2}-or-(CH_2)\frac{1}{m_1}-N-(CH_2)\frac{1}{m_2}$;
W is hydrogen; hydroxyl; carboxyl; aminocarbonyl; alkyl preferably having 1 to 10 carbon atoms;
alkoxycarbonyl preferably having 2 to 10 carbon atoms;
phenyl; phenylalkyl preferably having 7 to 12 carbon atoms which may be substituted with dialkylamino preferably having a C₁ to C₃ alkyl group; or phenyl-carbonyl which may be substituted with alkoxycarbonyl preferably having 7 to 11 carbon atoms; and

Examples of the phamaceutically acceptable salts are inorganic acid salts such as hydrochloride,

15 hydrobromide, sulfate, nitrate, and phosphate and organic acid salts such as oxalate, succinate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.

In accordance with the present invention, there
is also provided a proteinase inhibitor containing as
an essential component the above-mentioned L-lysine
derivatives or the pharmaceutically acceptable salts
thereof.

Typical examples of the L-lysine derivatives
according to the present invention are summarized in
Table I, wherein (D) indicated under the carbon atom
of the compound Nos. 12, 15, and 22 denotes that the
carbon atom is in the D-form and Lys, Phe, and Pro in
the formula of the compounds represent L-lysine,
phenylalanine, and proline, respectively. In the
physical properties shown in Table I, NMR represents a
nuclear magnetic resonance spectrum indicated by 6 (i.e.,
delta) (ppm) representing the chemical shifts. The
determination was carried out by using as a solvent
CDCl₃ (i.e., heavy chloroform), (CD₃)₂SO (i.e.,
d⁶- dimethylsulfoxide), or CD₃OD (i.e., heavy

methanol) alone or in any mixture thereof and by using as an internal standard TMS (i.e., tetramethylsilane). In the parenthesis after the δ number, the number of the hydrogen atom and the symbols s, d, t, q, m, and broad thereafter means singlet, doublet, triplet, quartet, multiplet, and broad absorbance, respectively. The absorbance based on the solvent is deleted from the Table.

IR represents an infrared absorption spectrum

in which a potassium bromide tablet is used in the determination unless otherwise noted. When a solution is used in the determination, the kind of the solvent is listed in parenthesis. The number listed in the Table represents a wave number in units of cm⁻¹ and only the main absorption peaks are listed in the Table.

MS represents a mass spectrum, and the results are shown as M/e (i.e., the mass of the cation fragment divided by the charge) of the main peaks.

Table I (List of Compounds of Present Invention)

Compound No.	Compound	Physical Properties
1 E	13 — SO ₂ -1y _{19-N}	CDCl ₃ , TMS 6 1.5 (10H, m) 2.3 (3H, m) 2.4 (1H, m) 2.5 - 4.5 (11H, m) 7.1 - 7.9 (9H, m)
8	$\text{CH}_3 - \left(\sum_{i} - 50_2 - i_{ij} \text{78-NBIC}_3 \text{11}_{\xi} \cos_2 \text{C}_2 \text{11}_5 \right)$	M/e 413, 395, 368, 356, 326, 312, 255, 241, 238
₽	$CH_3 - \left\{ - SO_2 - LyB - WI - \left\{ - NO_2 \cdot IKI \right\} \right\}$	IR ₁ 1690, 1600, 1310

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Physic	Physical Properties
$ \begin{array}{c} $	MS: M/e 541, 399, 318, 267, 240, 207, 176, 160 148, 128	IR: 3400, 1680, 1580, 1150
CH_3 C_2 C_2 C_4	MSi M/e 356, 312, 283, 255, 238, 226, 183, 171, 155	IR: 1640, 1340, 1160
CH_3 \longrightarrow SO_2 $\operatorname{Lyg-MII}$ \longrightarrow CCH_3	IR: 1680, 1600, 1320, 1160	
$CH_3 - CO_2 - L_2/8 - NH - CO_3 - C$	IR: 1720, 1700, 1660, 1615, 1575, 1520, 1420, 1380, 1320, 1160	
$\alpha_{3}-\left\langle -\right\rangle -so_{2}-L_{J/3}-M!-\left\langle -\right\rangle \\ 0.2C_{2}^{1/5}$	MS: M/e 518, 500, 464, 455, 374, 359, 345, 342	IR: 1720, 1670, 1660, 1600, 1540, 1450, 1365, 1320, 1240, 1180, 1160

Table I (List of Compounds of Present Invention) (Continued)

Compound Compound No.	Physic	Physical Properties
9 CO2-11/8-N - CI12-C	MS: M/e 284, 339	CCCl ₃ , TMS 6 7.58 - 6.96 (8H, m) 2.0 - 3.0 (13H, m) 3.3 - 3.6 (1H, t) 0.8 - 1.8 (10H, broad)
$ \begin{array}{c} 10 \\ $	IR: 1695, 1600, 1310, 1160	
$ \begin{array}{c} $	IR: 1700, 1630, 1540, 1450, 1320, 1240, 1160, 1130	CDCl ₃ , TMS 6 0.70 - 2.35 (1ZH, m) 2.50 - 3.00 (ZH, m) 4.0 - 5.20 (4H, m) 7.40 - 9.0 (10H, m)

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Canpound	Physica	Physical Properties
21 B	$CH_3 - $	M/e 475, 303, 256, 120, 84	ODC13, TMS 6 1.08 - 1.80 (9H, m) 2.42 (3H, s) 2.60 - 3.20 (4H, m) 4.15 (2H, q) 7.05 - 7.98 (9H, m)
	$ > s_2 - iy_9 - NH - $	IRt 1660, 1600, 1310, 1160 1	
₽ 8 9	$\left\langle \begin{array}{c} \alpha_1 \\ \alpha_2 \end{array} \right\rangle = s_2 - t_{yB-NICH} \left\langle \begin{array}{c} \alpha_{12} \\ \alpha_{2} \end{array} \right\rangle \left\langle \begin{array}{c} \alpha_{13} \\ \alpha_{2} \end{array} \right\rangle$	M/e 441, 426, 398, 396, 368, 269, 255	
115 CH ₃ -	$\frac{1}{3} - \sum_{\substack{C_2 - Lyg-WiCij\\ (D) \ \infty_2 C_2 H_5}} - Oil$	MSi M/e 477, 432, 378, 350, 333, 305, 303, 283, 255, 231, 179, 171, 155, 127, 91	IR: 1730, 1650, 1325, 1160

Table I (List of Compounds of Present Invention) (Continued)

8	outpours.		
16.	$GI_3 - CO_2 - I_2 VB - NI - GI_2 - CO_2 - GI_3 COII$	IR: 1650, 1600, 1320, 1160	
7.1	α_{13} $\left\langle - \infty_{2}$ $^{-1}y^{8}$ $^{+11}x^{1}_{2}$ α_{1}_{2} α_{2} $^{2}c_{2}^{11}$ 5	MS: M/e 354, 255, 227, 155, 84	IR: 1635, 1320, 1160
18	$GI_3 - CI_2 - SO_2 - I_2/8 - VII - CI_3$	M/e 255, 237, 155, 127, 84	(D ₃ OD, TMS 6 1.08 - 1.95 (6H, broad) 2.12 (3H, 8) 2.80 - 3.15 (2H, broad) 7.05 - 7.90 (13H, broad)
19		M/e 358, 247, 231, 200, 183, 168, 157, 127, 84	IR: 3400, 1710, 1640, 1160

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Compound	Physical 1	Physical Properties
	$c_{13} - c_{2} - c_{2} - c_{149} - c_{11} - c_{12} - c_{13} - c_$	IR (CHCL ₃) 1690, 1600, 1320, 1160	
	$GI_3 - CI_2 - SO_2 - I_4 B - N$ -IIC1	M/e 457, 339, 385, 285, 283, 255, 238, 202, 174, 84	Free CDCl ₃ , TWS 6 1.2 - 2.0 (10H, broad) 2.06 - 3.18 (11H, m) 3.8 - 4.2 (ZH, broad)
	$\text{CH}_3 - \bigcirc \qquad \text{SO}_2^{-Ly_{\text{S-MHCI}}} $	MS: M/e 461, 416, 388, 290, 255, 171, 127, 106, 84	6.80 - 7.88 (9H, m) IR: 1740, 1660, 1160
	$(CH_3)_{2^N}$ (CH ₃) $_2^N$ (CH ₃) (CH ₃	IR: 1700, 1600, 1320, 1160	

Table I (List of Compounds of Present Invention) (Continued)

Oanpound No.	Compound	Physical Properties	roperties
24 ————————————————————————————————————		M/e 479, 407, 291, 271, 191, 127, 84	ODC1 ₃ -CD ₃ OD, TMS § 1.35 - 1.90 (1011, broad) 2.35 - 3.00 (211, broad) 3.05 - 4.40 (411, m) 6.80 - 8.80 (12H, m)
25 , Gl ₃ -C)-80 ₂ -Ly8-NI	Lyb-Wi	M/e 375, 248, 203, 155, 93, 84	CDC1 ₃ , TWS 6 1.20 - 2.0 (6H, broad) 2.20 (3H, s) 2.50 - 2.95 (1H, broad) 3.47 (6H, broad) 6.90 - 8.0 (9H, m)
$Cl_3 - Cl_3 - SO_2 - I$	$- SO_2$ -I y 8-NH \longrightarrow \longrightarrow \bigcirc	MS: M/e 278, 255, 246, 227, 156 139, 123, 118, 84	CDCl ₃ , TMS \$ 1.20 - 1.95 (6H, broad) 2.30 (3H, s) 2.45 - 3.02 (2H, broad) 3.25 - 4.20 (2H, broad) 7.10 - 7.90 (8H, broad)
27 CH ₃ — CH ₃ — 50 ₂ -Lyrs-N	Lyrs-N — cooc ₂ 11 ₅ ·14C1	IR: 1721, 1620, 1600, 1300, 1140	

Table I (List of Compounds of Present Invention) (Continued)

	Physical Properties	ties
$CH_3 - CO_2 - L_F B - N $	'e 389, 255, 238, 217, 155, 107, 84	3300, 3250, 1665, 1315, 1140
$CH_3 - CO_2 - I_4 VB - VMI - CM$	MS: M/e_ 400, 382, 343, 317, 278, 255, 246, 238, 227	
CH_3 $ SO_2$ $-Ly_8$ $-N$ $ -$	IR (CRC1 ₃) 1700, 1640, 1360, 1160	
OH_3	MS: M/e 467, 312, 293, 255, 185, 1680 155, 127, 84	.R: 1680, 1220, 1155
$CH_3 - C_2 - I_2 r_2 - H_1 - C_3$	MR: M/e 425, 427, 333, 271, 255, CDC1, 209, 161, 84 2.09, 161, 84 4.	CDCl ₃ , TMS 6 0.90 - 2.0 (6H, broad) 2.10 - 2.95 (5H, m) 4.40 - 5.05 (2H, broad) 6.90 - 8.10 (8H, m)

Table I (List of Compounds of Present Invention) (Continued)

Physical Properties	M/e 274, 255, 209, 165, 127, 120, 110, 84	MS1 M/e 435, 263, 231, 153, 84 CDC ¹ 3	3.12 - 4.56 (8H, m) 6.56 - 7.84 (7H, m)	1 M/e 443, 271, 255, 161, 155 1680, 1590, 1160, .Cl 127, 84	IR: COC1 ₃ , TMS 1660, 1600, 1315, 1160 COC1 ₃ , TMS 6 1.10 - 1.82 (611, broad) 2.21 (311, 8) 2.50 - 2.75 (211, m) 3.90 - 4.05 (211, m)
Острошк	CH3-CD-502-L478-NII	$GI_3 - \left(-\frac{CO_2}{1} - \frac{1}{2} \sqrt{3} - \frac{CO_1}{3} \right)$		CI CI CI CI CI CI CI CI	α_1 \longrightarrow ∞_2 $-iy_8$ $-w_1$
Ompound No.	ន	¥ .		35	36

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Carpound	Physica	Mysical Properties
G S N N N N N N N N N N N N N N N N N N	- 50 ₂ -Lys-N	IR: (CHCl ₃) 1640, 1600, 1340, 1160	
ai ₃ —{So ₂ -1	-80 $_2$ -Lys-Ni $\dot{ m Cl}_2$ $\omega_2 c_5$ ll $_{11}$ -180	MSt M/e 255, 238, 226	IR: 1745, 1640, 1160
СП ₃ -{	, ic.	Free CDCl ₃ , TMS 6 1.10 - 1.80 (6H, broad) 2.40 (3H, s) 2.72 (3H, s) 2.60 - 2.85 (2H, broad) 6.90 - 7.85 (9H, m)	
CII3	$\omega_{S^{-NI}}$ $\omega_{2}c_{2}^{-1}i_{5}^{i}$ ω_{13}	MS: M/e 475, 430, 320, 303, 255 193, 155, 148, 84	IR: 1710, 1640, 1160

Table I (List of Compounds of Present Invention) (Continuod)

Oznpound No.	Controlled	Physical	Physical Properties
45 CB ₃ CB ₃	- SO ₂ -1yB-N		IR: 1640, 1600, 1330, 1160
df d	$\cdot s_{0_2-IyB-N} = 0$	MS: M/e 403, 358, 356, 283, 171, 163, 155	IR: 1720, 1630, 1430, 1280, 1160
Qi ³	- 50 ₂ -Lys-N N-CII ₂ CII ₂	MS: M/a 472, 407, 381, 362, 255, 155, 84	MMR: CDCl ₃ , TMS 6 1.30 - 2.05 (8H, m) 2.15 (3H, s) 2.30 - 3.65 (15H, m) 6.20 - 6.90 (9H, m)
(CH ₃) ₂ N — (CH ₃) ₂ N —	$\left\langle SO_2^{-L_2/32-1}\right\rangle - CI_2 - \left\langle CI_2 - \left\langle CI_2 - CI_2 $	M/e 536, 463, 361, 334, 316, 285, 251, 234, 174, 170, 84	IR: Free 1630, 1320, 1140
49 G S S S S S S S S S S S S S S S S S S	$- s_{2^{-L} y^{n-1}} \bigvee_{\infty \infty i} \cdot i_{i \in I}$	IR (CIKI ₃) 1710, 1640, 1335, 1160	

Table I (List of Corpounds of Present Invention) (Continued)

Compound No.	Conpound	Physical 1	Physical Properties
05	$OH_3 - OH_2 - SO_2 - I_{WB} - NO_N - OH_3$	M/e 444, 326, 312, 272, 255, 189, 161, 145, 132, 119, 84	IR: 1640, 1590, 1310, 1140
13	$(CI_3)_{2^N}$ $\stackrel{\circ}{\longleftrightarrow}$ $(CI_3)_{2^N}$	MS: M/e 317, 250, 235, 197, 171, 127, 80	IR: 1690, 1640, 1590, 1140
Z,		HS: M/e 422, 292, 285, 209, 192, 174, 129, 84	IR: 1635, 1335, 1170, 1145
ß	$G_{13} - G_{2} - I_{J/8} - N$ $G_{13} - G_{2} - I_{J/8} - N$ $G_{13} - G_{2} - I_{J/8} - N$	IR (CRC1 ₃) 1724, 1644, 1340, 1160	
بر بر	$\bigcirc \bigcirc $	MS: M/e 358, 331, 247, 231, 200, 168, 127, 91, 84	IR: 3400, 1720, 1660, 1150

Table I (List of Compounds of Present Invention) (Continued)

Physical Properties	M/e 466, 293, 282, 255, 211, 1670, 1600, 1155 184, 127, 106, 84	M/e 521, 449, 401, 319, 285, 1630, 1150 235, 219, 174, 155, 84	IR: 1722, 1645, 4600, 1335, 1160	M/e 335, 321, 239, 212, 171, 156, 139, 124, 120, 92, 91	M/e 544, 374, 235, 197, 188, 1690, 1585, 1150
Carpound Carpound	55 CI ₃ -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\operatorname{CH}_3 + \left\langle \bigcap_{SO_2-I_2/8-N} - \sum_{SO_2-I_3} \right\rangle$. If $C1 = 0$	58. $CH_3 - CD_2 - Ly_S - NH1 - CD_c - C - CD_c - NH1_2$	CI_3 CI_3 CI_3 CI_3

Table I (List of Compounds of Present Invention) (Continued)

Physical Properties	IR: , 247, 1680, 1620, 1160		IR: , 80 1720, 1150	NAR: 428, (CD ₃ O) ₂ SO, TNS 198, 6 1.0 - 1.80 (10ff, broad) 2.14 (3H, s) 2.20 - 3.88 (8H, broad) 7.80 - 8.20 (9H, m)
Phy	нS: М/в 533, 413, 331, 285, 247, 231, 174, 167, 84	IR; 1650, 1600, 1330, 1160	M/e 345, 237, 231, 168, 80	MS: M/e 527, 482, 456, 440, 428, 386, 340, 298, 256, 198, 174, 126, 93, 84
Compound	SO ₂ -Lym-H \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$3 - \sum_{2^{-L_{M}}S-N} - \sum_{\alpha i} \cdot iic1$	$\begin{array}{c} \omega_2^{C_2H_5} \\ \\ \end{array}$	$\text{CH}_3\text{CONH} - \left(\bigcap_{i} \text{SO}_2 - \text{Liftg-N} \right) - \text{CH}_2 - \left(\bigcap_{i} \text{CH}_2 - \bigcap_{i} \text{CH}_2 \right)$
Ocupound No.	09	ថ	62	ទ

Table I (List of Compounds of Present Invention) (Continued)

nd Physical Properties	M/e 446, 354, 285, 240, 208 - CI ₂ -	IR: 1670, 1630, 1598, 1320, 1160	MS: M/8 396, 318, 223, 207, 197, CDCl ₃ , 1PKS 192, 176, 160, 128 6 1.0 - 1.88 (6H, m) 2.60 (2H, brown) 3.00 - 4.10 (3H, m) 6.96 - 9.04 (16H, m)	$\begin{cases} 0 \\ \text{M/e} \\ \text{291, 247, 231, 200, 168,} \end{cases}$ IR: $\frac{1}{3} - C - C - C - C - C - C - C - C - C - $	MS: IR: M/e 350, 246, 171, 155, 120, 1690, 1650, 1590, 1525,
Ompound No.	0 so ₂ -Lys-N	$CH_3 - CD_2 - Lyrs - N $	66 C C 2-Lys-NH C C C) IN-9/5-205-14/8-NI	$\begin{array}{c} 0 \\ \text{CII}_3 \longrightarrow \\ \text{CO}_2 \text{-} \text{Ly/3-N/I} - \\ \text{CII}_3 \longrightarrow \\ \text{CII}_4 \longrightarrow \\ \text{CII}_4 \longrightarrow \\ \text{CII}_5 \longrightarrow \\ CI$

Table I (List of Compounds of Present Invention) (Continued)

Corpound No.	Canpound	Physical	Physical Properties
es Grander	$-50_2\text{-Lys-NH}- \bigcirc C1$	MSi M/e 340, 231, 154	ODC13 , TWS 6 1.20 - 1.92 (6H, broad) 2.36 (3H, 8) 2.70 (3H, d) 3.04 - 3.84 (3H, broad) 3.96 (1H, m) 7.16 - 8.84 (1ZH, m)
Ę	SO ₂ -L ₂ /3-MI	M/e 314, 291, 247, 232, 216, 200, 197, 183, 168, 80	IR: 1690, 1650, 1585, 1310, 1150
r.	$-80_2^{-1/19-WI} - \bigcirc C - \bigcirc $. MS: M/e 291, 274, 207, 197, 160, 128, 80	IR: 1680, 1640, 1585, 1150

ABUSE A (WANT OF LONGOWING OF PTEBENT INVENTION) (Continued)

Campound Campound	physical proceeding	Present foe
	Thoras Company	יישקר הייפי
$Gl_3 - \bigcirc - SO_2 - LyB - NH - \bigcirc - Gl_2 - \bigcirc$	M/e 367, 292, 263, 201, 183, 155, 106, 91, 83	OCC13, TMS 6 1.15 - 1.08 (6H, m) 2.28 (3H, s) 2.48 - 3.24 (2H, m) 3.90 (3H, m) 6.88 - 8.68 (13H, m)
O_{13} O_{13} O_{2} $O_$	MS: M/e 503, 347, 264, 238, 223, 222, 171, 155, 139, 91	ODC1 ₃ , TMS 6 1.16 - 1.84 (6H, broad) 1.84 - 2.44 (3H, broad) 2.50 - 3.10 (2H, m) 2.96 (6H, s) 6.60 - 6.95 (ZH, m) 7.0 - 7.88 (1ZH, m)
$CH_3O \longrightarrow CO_2^{-1}V^{3-1}H^{1} \longrightarrow C \longrightarrow C$	1R4 3400, 1685, 1640, 1590, 1150	CDCl ₃ , TPS 6 1.10 - 1.84 (6H, broad) 2.60 - 2.84 (2H, broad) 3.88 (3H, 8) 6.80 - 8.70 (15H, m)

Table I (List of Conpounds of Present Invention) (Continued)

Compound No.	Compound	i Physical Properties	Properties
٣	$\bigcirc \qquad 60_2 - Lyrs - N \qquad \longrightarrow \qquad CH_2 - \bigcirc \bigcirc$	M/e 493, 475, 421, 291, 285, 274, 191, 174, 127	OCC13, TWS 6 0.68 - 2.04 (10H, m) 2.06 - 2.80 (3H, m) 3.0 - 4.32 (6H, m) 6.72 - 8.60 (12H, m)
£ £	SO2-Lyrs-Nil-O-Cl ₂ -O	M/e 444, 374, 346, 302, 292, 235, 220, 209, 204, 188, 156, 106, 83	OC13-CD3OD, TWS 6 1.12 - 1.88 (6H, m) 2.12 - 2.92 (8H, m) 3.84 (3H, broad) 6.72 - 8.40 (14H, m)
₹. , €. ,	$\bigcirc - so_2 - t_2 vs - vui - \bigcirc - \stackrel{ii}{\bigcirc} - \bigcirc $ vui_2	M/e 323, 255, 246, 238, 171, 156, 139, 124, 108, 92, 84	
82.		MS: M/e 291, 211, 197, 196, 183, 164, 131, 84	IR: 1680, 1650, 1590, 1150

Table I (List of Compounds of Present Invention) (Continued)

HS: HS: We 255, 238, 226, 173, 156, 3320, 2940, 2900, 2840, 91, 84 1670, 1630, 1440, 1320, 1155	MAR: M/e 493, 336, 309, 285, 225, CDCl ₃ , TMS 209, 175, 146, 118, 84 6 1.20 - 2.16 (10ff, m) 2.24 - 3.08 (6ff, m) 3.40 - 3.60 (1H, broad) 13.96 - 4.36 (1H, broad) 6.40 - 8.20 (10H, m)	HS: M/e 298, 287, 240, 208, 180, 1675, 1635, 1585, 1440, 152, 1440, 152, 1440, 152, 1440, 152, 1440, 152, 1440, 152, 1440, 1440, 155, 1150	HS: H/e 304, 195, 127, 110, 99, CCCl ₃ , TAS 91, 83 2.28 (3H, m) 2.40 - 3.0 (6H, broad)
No. 79 CH ₃ CH_3	02-Iye-N — 012-002	0 SO ₂ -I ₂ /r ₈ -N C	013-{\bigs_2-12/8-181-{\bigs_2-12/9-181-

Table I (List of Compounds of Present Invention) (Continued)

	1690, 1645, 1600, 1160	, 1155			
roperties	IR: 1690, 1645,	IR; 1670, 1600, 1155			
Physical Properties	308, 291, 241, 225, 197, 194, 162, 127	347, 287, 264, 254, 238, 208, 194, 120, 84	343, 321, 297, 188, 171, 155, 91, 84	347, 264, 238, 223, 211, 196, 179, 164, 131, 105, 91, 84	, 283, 255, 240, 226, 156, 134, 84
	MS1 M/e		MS: M/e	MSt M/e	M/e
Conpound	CI	$\bigcirc \qquad \qquad$	$\alpha_{13} = \sum_{i=1}^{0} - \sum_{i=1}^{i} \alpha_{i1} - \alpha_{i2} = \alpha_{i2} - \alpha_{i3} = \alpha_{i2} = \alpha_{i3} = \alpha_$	$(H) \longrightarrow SO_2 - Lys - NI - (C) - CI - (C) - N (CI)_3)_2$	CH_3 $\left\{\right\}$
Octroound No.	8	2	88	98	84

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Conpound	Plysical	Physical Properties
88	()-ID-ID-()-CI-CO3-FKI1	MS: M/e 398, 358, 304, 200, 195,	
&	$\bigcirc \bigcirc $	M/e 288, 230, 198, 197, 165, 120, 80	IR: 1690, 1640, 1150
8	SO ₂ -Lys-NI — II	MS: H/e 457, 358, 331, 247, 231, 209, 167, 127, 84	IR: 3400, 1640, 1150
16		MS: M/e 497, 425, 295, 285, 195, 174, 131, 84	MAR: (DCl ₃ , TMS 6 1.16 - 2.0 (14H, m) 2.0 - 2.96 (7H, m) 3.40 - 3.72 (1H, broad) 3.80 - 4.36 (4H, m) 6.88 - 7.84 (8H, m)
	$\bigcirc \qquad \qquad \bigcirc \qquad \qquad \bigcirc \qquad$	MS: W/e 446, 417, 413, 389, 341, 306, 287, 240, 223, 208, 197, 120	1670, 1640, 1580, 1520, 1320, 1280, 1175, 1145

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Conpound	Physical Properties	roperties
Ř	- SO ₂ -Lys-NII -	MS: M/e 358, 331, 314, 247, 231, 215, 202, 200, 183, 168, 93, 83	NP.R: (CD ₃) ₂ SO, TWS 6 0.96 - 1.84 (6H, m) 2.10 - 3.08 (3H, m) 6.68 - 8.64 (12H, m)
7 6	()- 0-()- 50 ₂ -1478-4()- CH ₂ -() ·HCI	MS: M/e 535, 517, 463, 360, 333, 285, 233, 174	OCCL ₃ , TMS 6 0.90 - 1.80 (10H, broad) 2.40 - 3.0 (2H, m) 3.0 - 4.40 (6H, m) 6.60 - 7.92 (14H, m)
8	$\left\langle H \right\rangle - \left\langle -SO_2 - I_2 y s^{-1} \right\rangle - C H_2 - \left\langle -C \right\rangle - HC1$	M/e 525, 507, 453, 323, 285, 202, 174, 159	NWR: $ \cot_3 - (\varpi_3)_2 \cos_3 \text{ TMS} $ 6 0.84 - 2.04 (2011, m) 2.25 - 2.80 (411, m) 3.24 - 4.36 (414, m) 6.88 - 8.64 (914, m)
	•		

Table I (List of Compounds of Present Invention) (Continued)

Physical Properties	223, CD ₃ CD, TMS 160, 6 0.84 - 1.88 (2011, m) 2.12 - 2.44 (111, m) 2.64 - 3.10 (21, m) 3.76 - 4.10 (111, m) 7.06 - 8.28 (1311, m)	247,	п9,
Phy	MS: M/e 382, 306, 291, 239, 223, 208, 197, 192, 183, 160, 149, 136, 80	MS: M/e 398, 366, 349, 266, 247, 240, 200, 168, 148, 139	MS: H/G 446, 287, 240, 208, 119, 93, 84, 80
Corpound	$\left\langle H \right\rangle - \left\langle C \right\rangle - \left\langle C$	$ \begin{array}{c c} \hline & & \\ \hline $	0 - SO ₂ -1 ₂ /8-181 - SO ₃
Obnipound No.	96	. 66	-86 :

Table I (List of Compounds of Present Invention) (Continued)

Oorpound No.	Compound	Physica	Physical Properties
66	$ \begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	M/e 389, 288, 270, 215 201, 179, 106, 84	
100		M/6 498, 323, 304, 285, 175, 132, 84	OCC13, TWS 6 0.88 - 2.00 (13H, m) 2.02 - 2.88 (10H, m) 3.16 - 3.58 (4H, m) 3.68 - 3.96 (1H, m) 4.24 (1H, t) 5.84 (1H, s)
101	$N \longrightarrow (GH_2)_2 SO_2 - Lyrs - NII - \bigcirc - C - CII_3 - 2HCI$ 0	IR: 3440, 1680, 1600	2.00
102.	II_2NCH_2 — II_2 — $\text{CO-L}_y\text{S-NII}$ — SO_2 (CII ₂) IS^{CII}_3	IR: 3440, 1650, 1150	

Table I (List of Compounds of Present Invention) (Continued)

Ozmpound No.	Conpound	Physical Properties	
103		Nest	
II NCH2 -	H > CO-1yg-Nil-	യൂത, 1148	
ľ		6 0.8 - 2.0 (17H, m)	
		2.2 - 2.3 (III, broad)	
		2.5 ~ 2.6 (2H, m)	
		2.7 - 2.8 (211, m)	
		2.85 - 3.2 (411, broad)	
		4.4 - 4.12 (III, m)	
		7,04 - 7,92 (511, m)	
104			
H ₂ NCII ₂ —	$H_2NGI_2 - \langle II \rangle \cdot \cdot CO - I_4S - 4II - \langle \rangle - CII_2CO_2C_2II_5$	ango, ins	
		6 0.8 - 2.0 (2411, m)	
		2.20 (2H, 8)	
		2.44 (2II, m)	
		2.62 (211, m)	
		2.92 - 3.0 (ZH, m)	
		3.04 - 3.12 (2H, m)	
		4.04 - 4.28 (5H, m)	
		4.30 - 4.48 (1H, m)	
	,100	7.20 - 7.60 (411, m)	
105	•= (IRs	
N ₂ NCH ₂	}-IIN-8-₹1-∞√II	1640, 1600	į

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Сапроила	. Physical Properties	ertles
106	$H_2NCH_2 \longrightarrow H \longrightarrow\infty - L_{J/8} - NH \longrightarrow C_2^{C_2}H_5$ $C_2^{H_5}O_2^{C} \longrightarrow C_3^{H_5}$	IR: 532, 503, 487, 328, 265, 220, 191, 128, 84	
107.	-CI1 ₂ CO-Lys-NII	MS: M/e 354, 336, 261, 230, 222, 221, 203, 128, 93, 84	
108	II,ZN C C C C C C C C C C C C C C C C C C C	IR: 3600 - 2400, 1680, 1600, CD ₃ 1520, 1490, 1445, 1300 6	GD ₃ OD, TMS 6 1.40 - 1.70 (6H, broad, 8) 3.16 (2H, 8) 7.0 - 8.08 (9H, m)
700	H_2NCH_2 \longrightarrow H_2 \cdots CO-L ₂ /3-NH \longrightarrow H_2 \longrightarrow C-NHCH $_2$ CO $_2$ C2 $_1$ $_5$ \bigcirc	M/8 443, 250, 191, 177, 177, 136, 128, 120, 83	

Table I (List of Conjounds of Present Invention) (Continued)

Carpound No. Carpound	Physical Properties
110 $H_2NCH_2 \leftarrow H$ $CO-I_4NS-NII$ $-COCOII_3$	IR: 1640, 1590, 1700
$\frac{111}{12^{NGI_2}-\frac{1}{12^{NGI_2}-NGI_2}} - \frac{111}{12^{NGI_2}-NGI_2}$	1R1 1640, 1590, 1700, 1690
$\begin{array}{c} \alpha \alpha \alpha i_3 \\ \\ 112 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	JR: 1640, 1600

Table I (List of Conyounds of Prosent Invention) (Continued)

Compound No.	Compound	Physical Properties
a	$H_2NCH_2 \longrightarrow H \longrightarrow \infty -I_{d/S-NI} - \{H\}_{g}$	IR: 1640, 1600, 1720
Ä	$H_2NCH_2 - \left(H \right) - \cdot $	IR: 1640, 1600, 1710
115	$H_2NCH_2 \longrightarrow H \longrightarrow \infty -L_J v_B - N^{H} \longrightarrow \infty \times M_2 \times M_3 \longrightarrow \infty \times M_3 \times M_3 $	IR: 1640, 1600, 1720
116	$H_{\underline{Z}}NCH_{\underline{Z}}$ $\longrightarrow II$ $\longrightarrow CO-L_{\underline{J}}VB-NH$ $\longrightarrow IVO_{\underline{Z}}$	IR: 1640, 1600, 1480, 1340
117	$H_2NCH_2 \longrightarrow (1)$ $CO-I_{J/R}-Phs-CCH_3$	IR: 1740, 1640, 1600

Table I (List of Compounds of Present Invention) (Continued)

118 $H_2NGH_2 - \left\{H\right\}$. CO-Lys-NH $\left\{G\right\}$ - GOC_2H_5	IR: 1640, 1600, 1490, 1720	
119 \omega_2C_2''_5	KSi	NATE:
$\langle \rangle$ - $ \rangle$ - $ \rangle$ - $ \rangle$ - $ $	М/в. 483, 465, 346, 237, 246	$ \cos_3, \text{ TMS} $ $ \delta = 1.33 (61, t) $
$\infty_2 c_2 \mu_5$		2.3 (311, 8)
		2.6 - 3.2 (311, broad)
	-	4.35 (411, q)
		4.6 - 5.4 (411, broad)
		7.1 - 7.9 (4ff, m)
		8.3 (111, 8)
		8.5 (2H, s)
120 . 0	254	
70	COCI, , THE	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6 1.4 - 2.0 (6H, broad)	
Cl ₃ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2.38 (бн, в)	
-E.	2.2 - 3.0 (311, broad)	
	4.7 - 5.2 (4H, broad)	
	7.0 - 8.0 (8H, m)	

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Conpound	Physica	Physical Properties
zi	G_{i_3} - C_{i_3}	MS: M/e 382, 364, 346, 263, 246, 136, 119	
ri ri	G_{13} \longrightarrow $- \infty$ - $L_{y/8}$ $- N$ \longrightarrow $- G_{12}$ \longrightarrow	M/e 421, 246, 219, 176 119, 84	CDCl ₃ , TMS 6 0.95 - 1.95 (1111, broad) 2.38 (31, s) 2.20 - 3.10 (71, m) 3.85 - 5.20 (21, m)
123	$\bigcirc - \bigcirc -$	MAR: (CCCL ₃ , TMS 6 1.30 - 2.20 (6H, broad) 2.50 - 2.70 (2H, m) 3.20 - 3.30 (1H, broad) 4.10 - 5.10 (3H, m) 6.50 - 7.98 (14H, m)	IR: 3400, 1660, 1600
124	$\bigcap_{i} C_{i} - \bigcap_{i \neq i} - \bigcap_{i \neq j} C_{i}$	CDCl ₃ , TMS & 1.20 - 2.10 (6H, broad) 2.36 - 2.72 (2H, m). 4.96 - 5.24 (1H, m) 6.81 - 8.40 (10H, m)	

Table I (List of Compounds of Present Invention) (Continued)

Campound No.	Compound	Physi	Physical Properties
	$ \bigcup_{N=N}^{N-N} -\infty - 1 y_{S-N} $	IR: 1640, 1600, 1510, 1450, 1480 - 1490	
	H_2NGH_2 — II — $\cdots \infty - I_2NGH_2$ — GH_2 — GH_2	IR: 1640, 1630, 1600, 1510, 1490, 1450	
	H_2NCH_2 \longrightarrow II \longrightarrow $CO-Ly/B-N$ \longrightarrow CH_2 \longrightarrow $N(CH_3)_2$	M/e 485, 357, 351 268, 240, 219, 134, 84	OD ₃ OD, TWS 6 0.80 - 2.00 (15H, m) 2.20 - 3.20 (11H, m) 2.88 (6H, 8) 3.30 - 4.50 (5H, m) 6.70 - 7.40 (4H, m)
	$ _{2} \text{MZI}_{2} - _{2} - _{2} - _{2} + _{2} - _{2} - _{2} + _{2} - _{2} + _{2} - _{2} + _{2} - _{2} +$	CDCL ₃ , TMS 6 0.85 - 2.05 (15H, m) 2.20 - 2.75 (11H, m) 3.30 - 3.80 (4H, m) 4.20 7.00 - 7.50 (5H, m)	

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Carpound	Physics	Physical Properties
129	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	MS: M/e 326, 223, 188	IR: 3375, 2900, 1670, 1600, 1440, 1250, 1205
130	H_2NCH_2 — H_2 - $CO-L_2yg-N$ COC_2H_5	IR: 1680 - 1690, 1640, 1430	
131	H_2NCH_2 — H_2 — $CO-L_2/B-NH$ — H_3 — $CO-L_2/B-NH$	M/e 470, 441, 412, 313, 267, 241, 204, 187, 157, 105, 84	IR: 3270, 2920, 1680, 1660, 1640, 1630, 1550
132	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	M/e 470, 441, 412, 313, 267, 241, 204, 187, 157, 105, 84	ın: 3275, 2925, 1670, 1660, 1630, 1550
133	H ₂ NCH ₂ — H ₁ > CO-L ₂ y3-NH ₂	IR: 1640, 1510, 1450	

Table I (List of Compounds of Present Invention) (Continued)

Compound Properties	СН ₂ ————————————————————————————————————	ICH_2 \longrightarrow ICH_2 \longrightarrow ICH_2 \longrightarrow ICH_3 ICH_4	IR: :0-0C ₂ H ₅ 1740, 1640, 1510, 1450	$ (Gl_2)_5 - C$ $ (Gl$
Carpound No.	H ₂ NCH ₂ $-\left\langle H \right\rangle \cdots \infty$ -Lys-NIKH ₂	135	136 II ₂ NCH ₂ $-\left\langle \text{II} \right\rangle \cdot $	$137 \qquad \text{II}_2^{\text{NCH}_2} \longrightarrow \text{II}_2^{\text{NCH}_2}$

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Carpound	Physica	Physical Properties
138	$H_2NGI_2 - \left(\frac{H}{H} \right) - \cdot \cdot CO^{-L_2/38-NI} \left(\frac{CO}{H} \right)$	IR: 1640, 1510, 1450	
139	$H_2^{NCH_2} - H \longrightarrow COD^{-L_{4/35}-NM1} - H$	IR: 1640, 1510, 1450	
140	$H_2MCH_2 \longrightarrow M_1 \longrightarrow 0.00-L_2/8-NH$ $0.000_2/H_5$	IR: 1720 - 1730, 1640, 1600, 1490	•
141	$ _2$ MCI ₂ \longrightarrow $ _2$ \longrightarrow $ _$	IR: 1690, 1680, 1640, 1600, 1490	(2) (2) (15), m) (2) (2) (15), m) (3) (2) (2) (11), m) (4) (2) (2) (2) (2) (5) (2) (4) (6) (4) (5) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)
142	H_2NCH_2 $H_1 \rightarrow CO-L_2/B-NH$	M/e 308, 279, 267, 140, 128, 84	IR: 3350, 1630

Table I (List of Compounds of Present Invention) (Continual)

	Compound	Plysic	Physical Properties
₽ 2	$H_2^{NCH}_2 - \left(H\right) \cdots \infty - L_{J/B} - NH$	IR: 1690, 1640, 1510, 1450	
D.	$H_2^{NGI_2}$ H_2^{-1} H_2^{-	IR: 3300, 2810, 1610, 1540, 1390	ωνκ: σ ₃ σο, τως δ 0.8 = 2.0 (15ii, m)
		-	2.00 ~ 2.4 (111, m) 2.50 (211, d) 2.64 (211, t) 4.12 - 4.48 (111, m) 5.72 (111, s) 7.16 - 7.92 (911, m)
ři –	H_2NCH_2 — $\begin{pmatrix} II \\ II \end{pmatrix}$ — $CO-L_2/B-NII$ — $\begin{pmatrix} 0 \\ II \end{pmatrix}$	MS: M/e 402, 267, 251, 238, 135, 120, 110	IR: 3280, 2920, 1680, 1660, 1600, 1540, 1280, 860

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Carpound	Physica	Physical Properties
146	II_AKCH2 — H - CO-LJ/18-NII - CI-CII-CII-CII	MS: M/e 462, 267, 195, 140, 128, 84	IR: 3360, 1650, 1510
147	$H_2NCH_2 \stackrel{H}{\longleftrightarrow} CO^{-Lysp-NH} \stackrel{C}{\longleftrightarrow} \frac{C}{0}$	IR: 1690, 1640, 1600, 1490	
148		IR: 1690, 1640, 1600, 1510, 1490, 1450	
149	$\left\langle \prod_{i \in \mathcal{N}} -co^{-L_{i}/g-N(i)} - \bigcap_{i \in \mathcal{N}} -c - \bigcap_{i \in \mathcal$	IR; 1690, 1640, 1600, 1490	
150	$ \prod_{12}^{O} (CH_2) \frac{1}{5} \infty^{-1} y^{-1} + VH (CH_2) \frac{1}{5} - C - C $	M/e 433, 415, 375, 329, 286, 243, 106, 84	IR: 2845, 1670, 1650, 1610, 1540, 1390, 1010

Table I (List of Compounds of Present Invention) (Continued)

Compound No.	Corpound	Physica	Physical Properties
151	$\lim_{Z^{N}(G_{1_{2}})} \int_{S^{\infty}} \operatorname{Ly_{B-MiG1_{2}}} \left\langle \prod_{i} \right\rangle \cdots \int_{i}^{0} \left\langle \prod_{j} \right\rangle$	MS: M/e 458, 442, 429, 400, 371, 327, 216, 131, 105, 84	CDCl ₃ , TNS 6 0.70 - 3.50 (281, m) 4.40 (211, broad) 7.34 - 7.60 (311, m) 7.84 - 8.00 (211, d)
152	11.2N(CI1.2) 500-LyB-NI1 — C-CI1.3	1Rt 3250, 2900, 1642, 1600, 1540, 1310, 1262, 1185, 858 t	CO ₃ CO-COCl ₃ , TVS 6 0.70 - 2.78 (14!1, m) 2.58 (3H, s) 3.05 - 3.60 (5H, m) 4.50 (2!i, broad) 7.50 - 8.00 (5H, m)
153	$m_2^{\alpha_2^{\alpha_2^{\alpha_1}}}$ $m_2^{\alpha_2^{\alpha_2^{\alpha_1}}}$ $m_2^{\alpha_2^{\alpha_2^{\alpha_1}}}$	MS: M/e 265, 237	IR ₁ 3350, 1690, 1625, 1550, 1400, 1325, 1240
154	$H_2^N(CI_2) \frac{0}{5^{CO-1}y^{B-NH}} \left(\bigcap_{i=1}^{N} C_i \right)$	MS: M/6 362, 307, 195	JR: 3350, 2900, 2830, 1630, 1585, 1520, 1305, 1275

Table I (List of Compounds of Present Invention) (Continued)

প্র	H ₂ N(Cl ₂) ₅ CO-1 _{2/2} -NII - CH ₂ -CH ₂	MS: H/e 241, 183, 292	IR: 3320, 1640, 1620, 1550, 1400, 1300
331	$H_{2}N(\Omega I_{2})_{4}\Omega - I_{2/3}-NU $	M/e 306, 197	IR: 3200, 2980, 2870, 2800, 1620, 1580, 1510, 1430, 1395, 1300, 1265, 1240
157	$H_2^{N(GH_2)_2}$ \longrightarrow $-\infty$ - $L_{J/3}$ - NH \longrightarrow $\stackrel{0}{ \cdot }$ $\stackrel{0}{ \cdot }$	MS1 M/a 306, 246, 197	IRi 3350, 1620, 1560, 1480, 1400, 1320
3	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	(D) (20), THS 6 1.24 - 1.62 (6H, m) 2.48 - 2.70 (2H, m) 3.82 (2H, m) 4.36 - 4.52 (1H, m) 7.22 - 7.96 (13H, m)	

Table I (List of Compounds of Present Invention) (Continued)

Mysical Properties		
Мув	IR; 1690, 1650, 1600, 1500	MS1 H/e 407, 378, 349, 336 271
Compound		00-1 ₁ / ₁₈ -N
Compound No.	159 II ₂ N	160 GH 3

The lysine derivatives according to the present invention can be synthesized by various combinations of the so-called peptide synthesis methods. The synthesis routes can be typically divided into the following two routes.

The terms "N terminal" and "C terminal" of lysine used herein mean as follows.

A) The N terminal group of lysine is first introduced into the starting commercially available N^6 -benzyloxycarbonyl-L-lysine

CBZ

10

(i.e., H-Lys-OH wherein-CBZ=-COOCH₂-\$\phi\$) and the C termi: \$1 group of lysine is then introduced thereinto, followed by removing the protective group CBZ.

B) The C terminal group of lysine is first introduced into the starting commercially available N^2 -t-butyloxycarbonyl- N^6 -

CBZ

benzyloxycarbonyl-L-lysine (i.e., BOC-Lys-OH wherein BOC=-COO-C(CH₃)₃), the BOC group is then selectively removed therefrom in a known manner, and the N termina group of lysine is further introduced, followed by removing the CBZ group.

Furthermore, in the practice of the introduction of the N terminal group and the C terminal group, the following methods can be utilized:

- (a) The introduction of the N terminal grow 30 can be introduced by using aromatic sulfonyl chlorides (i.e., ArSO₂Cl) or aromatic carbonyl chlorides (i.e., ArCOCl)
 - (b) The introduction of the C terminal group can be introduced by the following known methods
- 35 (i) Mixed acid anhydride method [Ann, Chem., 572, 190 (1951)]
 - (ii) Acid chloride method Biochemistry.

4, 2219 (1960)]

(iii) Phosphazo method [Chem. Ber., 93, 2387 (1960)]

(iv) N,N'-dicyclohexylcarbodiimide

5 method [J. Am. Chem. Soc., <u>77</u>, 1067 (1955)]

(v) Active ester method using, for

- example, N-hydroxysuccinimide [J. Am. Chem. Soc., 85,
3039 (1963)]

It should be noted, however, that the desired synthesis methods must be selected by appropriately combining the above-mentioned methods. Typical routes for synthesizing the lysine derivatives are exemplified as follows. In the following routes, the amine

15 portion represented by HN $= \frac{R^2}{R^2}$ may be substitued with

HN Z-W.

Route ①

N,N'-dicyclohexylcarbodiimide/N-hydroxysuccinimide

(3)

(4)

$$\begin{array}{c}
\text{HBr/AcOH} \\
\hline
\text{or H}_2\text{-Pd}
\end{array}$$
Ar-Y-Lys-N
R²

The synthesis of the compound (2) from the compound (1) can be carried out by using the so-called Schotten-Baumann reaction. That is, the starting compound (1) is 10 dissolved or suspended in a suitable solvent system (e.g., ethyl ether-water, toluene-water, 1,4-dioxanewater, acetone-water and a suitable base (e.g., NaOH, $NaHCO_3$, K_2CO_3) is added in an amount of, for example, 1 to 5 equivalent, preferably 2 to 3 equivalent, to the 15 compound (1). To the resultant mixture, an aromatic sulfonyl or an aromatic carbonyl chloride (i.e., Arso,Cl or ArCOCl) is added alone or as a solution in an organic solvent used in the reaction medium. The addition may be carried out all at once or in several portions. 20 reaction is generally carried out at a temperature of -10°C to 30°C, preferably 5°C to 10°C for 1 to 50 hours, preferably 5 to 20 hours. The compound (2) can be recovered from the reaction mixture in any conventional manner.

The synthesis of the compound (3) from the compound (2) can be carried out by the method (b)-(v) set forth above.

The compound (4) can be prepared from the compound (3) as follows. That is, the compound (3) is dissolved in a suitable organic solvent (e.g., ethers, hydrocarbons, halogenated hydrocarbons, N,N'-dialkylformamides, nitriles) and a 1 to 3 equivalent amount of

35 HN is added thereto. The reaction is generally \mathbb{R}^2

carried out at a temperature of -10°C to 30°C, preferably

0°C to 20°C for 1 to 50 hours, preferably 5 to 20 hours. After completing the reaction, the compound (4) can be recovered in any conventional manner.

The synthesis of the compound (5) from the compound (4) can be carried out by the so-called HBr/AcOH method [see J. Am. Chem. Soc., 81, 5688 (1959)] or the so-called H₂-Pd catalytic hydrogenation method [see Chem. Ber., 65, 1192 (1932)].

Route 2

CBZ PC1₅ CBZ HN
$$\stackrel{R^1}{\longrightarrow}$$
 Ar-Y-Lys-C1 $\stackrel{R^2}{\longrightarrow}$ (1) (2)

$$\begin{array}{c|c}
\text{CBZ} & & \\
 & & \\
\text{Ar-Y-Lys-N} & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

The compound (1) is dissolved in a suitable dried solvent (e.g., ethers, halogenated hydrocarbons) and,

while the reaction temperature is maintained at -10°C to 30°C, preferably 0°C to 5°C, a 1.0 to 5.0 equivalent, preferably 1.0 to 1.5 equivalent, amount of phosphorus pentachloride is added all at once or over a period of 10 minutes to 1 hour, preferably 10 to 20 minutes,

with stirring. After the addition, the reaction mixture is further stirred for 30 minutes to 1 hour while maintaining the above-mentioned temperature range.

Thereafter, the reaction mixture is allowed to stand with stirring at room temperature for 10 minutes to 2 hours, preferably for 10 minutes to 1 hour. The solvents and the other volatile substances are distilled off in vacuo at a temperature of 10°C to 70°C, preferably 30°C to 50°C. Thus, the compound (2) can be obtained.

Since the compound (2) is unstable, the synthesis of the compound (3) from the compound (2) is preferably carried out immediately. That is, the compound (2) is dissolved in a suitable dried solvent (e.g., ethers, halogenated hydrocarbons, hydrocarbons)

and a 1 to 3 equivalent amount of HN $\stackrel{R^2}{\underset{R^2}{\longrightarrow}}$ is added

10

thereto. In this case, tertially organic amines such as triethylamine may be used. The reaction is generally carried out at a temperature of 0°C to 50°C, preferably 10°C to 20°C for 1 to 50 hours, preferably 5 to 20 hours. After completing the reaction, the compound (3) can be recovered in any conventional post-treatment method.

The synthesis of the compound (4) from the compound (3) can be carried out in the same manner as in the above-mentioned route (1).

(3)

ļ

Route 3

(2)

CBZ O HN CBZ

| | |
$$R^2$$
 | R^1

BOC-Lys-O-C-O-C₂H₅ (or- ϕ) \longrightarrow BOC-Lys-N \longrightarrow R^2

$$\begin{array}{c|c}
 & \text{CBZ} \\
 & | \\
 & | \\
 & \text{Ar-Y-Lys-N} \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 &$$

(4)

In the route 3, the starting commercially available compound (1) is first dissolved in a suitable dried solvent (e.g., ethyl acetate, 1,4-dioxane, tetrahydrofuran) and a 1 to 5 equivalent amount,

preferably a 1 to 2 equivalent amount, of a suitable tertially organic amine (e.g., triethylamine) is added thereto in an amount of 1 to 5 equivalent, preferably 1 to 2 equivalent, to the compound (1). The resultant solution is cooled to a temperature of -20°C to 10°C, preferably -15°C to 0°C. Then, a 1 to 3 equivalent, preferably 1 to 1.5 equivalent amount of ethyl chlorocarbonate (or phenyl chlorocarbonate) is added to the cooled solution and the reaction is carried out for 5 minutes to one hour with stirring. After completing the reaction, a solution containing the compound (2) can be obtained in any conventional post-treatment method.

To the solution obtained above, a 1 to 3 equivalent of

HN is added at a temperature of 15°C to 0°C. After

the addition, the mixture is allowed to react at the same temperature for 10 minutes to 5 hours, and at a temperature of 5°C to 30°C, preferably 10°C to 20°C for 10 to 50 hours. After completing the reaction, the compound (3) can be recovered in any conventional post-treatment method.

The synthesis of the compound (4) from the compound (3) can be carried out by a known method as disclosed in, for example, Proc. Natl. Acad. Sci., 58, 1806 (1967).

25

35

The synthesis of the compound (5) from the compound (4) can be carried out either by using the so-called Schotten-Baumann reaction set forth in the abovementioned route (1) or by using a suitable organic solvent (e.g., ethers, N,N-dialkylformamide, N,N-dialkylacetamide, halogenated hydrocarbons) in combination with a suitable tertially organic base (e.g., trialkylamines, dialkylanilines, pyridine).

The synthesis of the compound (6) from the compound (1) can be carried out in the same manner as in the abovementioned route (1).

Furthermore, in the case where the amino group is contained as a terminal group of the N terminal of lysine, the lysine derivative according to the present invention can be similarly prepkred in the following routes 4 and 5.

The L-lysine derivatives obtained above can be converted to the pharmaceutically acceptable salts thereof in any conventional manner.

wherein Q is a residue of the group A define above from which a group NH₂ is removed.

CBZ

R

HBr/CH₃CO₂H

R

$$R^2$$

or

 R^2

or

 R^2

or

 R^2
 R^2

The L-lysine derivatives or the pharmaceutically acceptable salts thereof according to the present invention, which are an effective component of the proteinase inhibitor of the present invention 5 have remarkable inhibition activities against proteinases such as plasmin, kallikrein, trypsin, and urokinase as shown in the below-mentioned test results shown in Tables IV and V. It has not been reported that the low-molecular weight compounds 10 exhibiting no substantial inhibition activities against thrombin exhibit the above-mentioned unique enzyme inhibition pattern. Furthermore, &-aminocaproic acid, tranexamic acid and other compounds, which are heretofore widely used as plasmin inhibitors, have an 15 activity capable of selectively inhibiting the fibrin dissolving action of plasmin and, therefore, are used as useful hemostatics. This pharmacological action is believed to be effected by the fact that these compounds are bonded to the so-called lysine binding 20 sites (i.e., LBS) of plasminogen and plasmin, whereby the binding of fibrin to the plasminogen and plasmin is prevented as reported in, for example, Chem. Rev., 81, 431 (1981), Biochem. J., 163, 389 (1977), and Eur. J. Biochem., 84, 573 (1978). These compounds have no 25 substantial activities to prevent the decomposition of synthetic substrates (e.g., S-2251 available from Kabi Co., Ltd.) and fibrinogen caused by plasmin. This means that, although various substrates (e.g., fibrinogen), other than fibrin, are present in the 30 human organisms for plasmin the above-mentioned compounds are not effective for preventing the decomposition of these substrates.

Contrary to the above, the proteinase inhibitors according to the present invention have remarkable inhibition activities against the decomposition of the synthetic substrates and fibrinogen as well as the decomposition of fibrin

by plasmin and, therefore, are novel antiplasmins suitable for use as a hemostatic agent against hemorrhagic disorders and inflammatory disorders.

5

30

35

On the other hand, known compound Nos. 4, 5, 7, and 8 listed in Table II having a structure similar to those of the present compounds has only a very low inhibition activity against the action of plasmin as shown in Table III. It is clear from 10 the comparison of the results in Tables III and IV that the inhibition activities of the present compounds shown in Table IV are far superior to that of said compounds.

Furthermore, as shown in Table V, some L-lysine 15 derivatives according to the present invention have inhibition activities against urokinase, which is a plasminogen activating enzyme. This means that the present L-lysine derivatives provide favorable results as a hemostatic agent. In addition, some 20 L-lysine derivatives according to the present invention exhibit inhibition activities against kallikrein and trypsin. This means that these inhibition activities can provide, together with the antiplasmin activity, a strong anti-inflammatory 25 agent.

When the L-lysine derivatives or the pharmaceutically acceptable salts thereof are used as a medicine, there are no critical limitations to the administration methods. The present proteinase inhibitor can be formulated by any conventional method. For example, the present proteinase inhibitor may be applied in any conventional manner including intravenous injection, intramuscular injection, subcutaneous injection, intravenous drip, and oral administration. Although there are no critical limitations to the administration dosage, the suitable dosage is 100 to 1000 mg/day/person.

EXAMPLES

The present invention will now be further illustrated by, but is by no means limited to, the following Examples illustrating the synthesis of the present 5 compounds as well as the pharmacological test data for the evaluation thereof.

Example 1

35

Synthesis of N²-(p-toluenesulfonyl)-L-lysine-4-benzylpiperidinamide (i.e., Compound No. 1)

A 5 g amount of N⁶-benzyloxycarbonyl lysine (I) 10 was dissolved in 100 ml of 1,4-dioxane, 150 ml of water, and 4.92 g of K₂CO₃. A solution of 3.74 g of ptoluenesulfonyl chloride in 15 ml of 1,4-dioxane was dropwise added to the solution for 1.5 hours. The resultant mixture was allowed to stand with stirring for one night, while maintaining the temperature at 15°C. Thereafter, the 1,4-dioxane and water were distilled off in vacuo.

Water was charged to the residue and the resultant mixture was then washed with ethyl ether. The resultant two phases were separated and the aqueous phase was extracted with ethyl acetate after acidifying the aqueous phase by the addition of hydrochloric acid.

The extract was treated in a conventional manner, followed by crystallizing from ethanol-n-hexane to 25 obtain 5.0 g of N²-(p-toluenesulfonyl)-N⁶-benzyloxycarbonyl-L-lysine (II).

A 2.2 g amount of the compound (II) and 580 mg of N-hydroxysuccinimide were dissolved in 20 ml of 1,4dioxane. Then, 1.05 g of N,N'-dicyclohexylcarbodiimide 30 (DCC) was added and the mixture was allowed to stand for one night at a temperature of 5°C to 10°C. Thereafter, the mixture was treated in a conventional manner to obtain 2.6 g of N²-(p-toluenesulfonyl)-N⁶-(benzyloxycarbonyl)-L-lysine N-hydroxysuccinimide ester (III).

A 1.06 g amount of the compound (III) was dissolved in 15 ml of 1,4-dioxane and 350 mg of 4-benzylpiperidine

was then added. The mixture was allowed to react at a temperature of $10\,^{\circ}\text{C}$ for 10 hours, while stirring. The reaction mixture was then treated in a conventional manner to obtain 820 mg of N^2 -(p-toluene sulfonyl)- N^6 -benzyloxycarbonyl-L-lysine 4-benzylpiperidinamide (IV).

A 1.5 ml amount of a 30% hydrogen bromide in acetic acid solution was added to 820 mg of the compound (IV). After the mixture was agitated at room temperature for 20 minutes, diethyl ether was added to precipitate the desired N²-(p-toluenesulfonyl)-L-lysine 4-benzyl-piperidinamide hydrobromide (V). The other was removed by decantation. After the ether washing was repeated several times, an aqueous sodium bicarbonate solution was added to the washed precipitate so that the resultant mixture became alkaline. The alkaline mixture was extracted with chloroform, followed by a conventional treatment. Thus, 650 mg of the desired compound (V) was obtained.

Example 2

10

15

25

Synthesis of N²-(dibenzofuran-2-sulfonyl)-L-lysine-3-benzoylanilide (i.e., Compound No. 70)

A 980 mg amount of N^2 -(dibenzofuran-2-sulfonyl)- N^6 -(benzyloxycarbonyl)-L-lysine (I) prepared in the same manner as in Example 1 was dissolved in 5 ml of 1,4-dioxane and 5 ml of tetrahydrofuran. Then, 800 mg of phosphorus pentachloride was dropwise added to the solution under ice cooling for 10 minutes with stirring. The stirring was continued for a further 10 minutes.

perature for 30 minutes and the mixture was then distilled in vacuo at a temperature of 45°C in a water bath to remove 1,4-dioxane and other elements. Then, 10 ml of 1,4-dioxane was charged to the residue and 380 mg of 3-benzoylaniline was added thereto. The mixture was allowed to stand at room temperature for one night. The resultant mixture was then treated in a conventional manner to obtain 890 mg of N²-(dibenzofuran-2-sulfony1)-

N⁶-(benzyloxycarbonyl)-L-lysine 3-benzoylanilide (II).

A 890 mg amount of the compound (II) was treated with 2.0 ml of a 30% hydrogen bromide in acetic acid solution to obtain 130 mg of the desired N²-(dibenzofuran-2-sulfonyl)-L-lysine 3-benzoylanilide.

Example 3

5

Synthesis of N^2 -(coumarin-6-sulfonyl)-L-lysine-4-benzylpiperidinamide (i.e., Compound No. 80) A 1.0 g amount of N^2 -(t-butyloxycarbonyl)- N^6 -

- (benzyloxycarbonyl)-L-lysine and 320 mg of triethylamine were dissolved in 10 ml of tetrahydrofuran. While the solution was cooled in an ice-salt bath, 330 mg of ethyl chlorocarbonate was added with stirring. About 20 minutes later 460 mg of-4-benzylpiperidine was added.
- After stirring for 2 hours, the mixture was allowed to stand at room temperature for one night. The mixture was then treated in a conventional manner to obtain 1.1 g of N²-(t-butyloxycarbonyl)-N⁶-(benzyloxycarbonyl)-L-lysine 4-benzylpiperidinamide (I).
- A 1.1 g amount of the compound (I) was dissolved in 3.5 ml of 6N-hydrogen chloride-1,4-dioxane and the mixture was stirred at room temperature for about 5 minutes. A 3.5 ml amount of 1,4-dioxane was further added and the mixture was allowed to stand at room temperature for one hour. Then, 20 ml of ethyl ether was added to settle oily N⁶-benzyloxycarbonyl-L-lysine
- was repeated several times, an aqueous sodium bicarbonate solution was added and the compound (II) was then extracted with chloroform. The extract was dried over sodium sulfate and the chloroform was distilled off in vacuo.

4-benzylpiperidin amide hydrochloride (II). The ethyl ether was separated by decantation. After this procedure

A 500 mg amount of the compound (II) was dissolved in a solution of 630 mg of potassium carbonate dissolved in 6 ml of water and 20 ml of 1,4-dioxane and 280 mg of coumarin-6-sulfonyl chloride was added thereto. The

mixture was treated in the same manner as in Example 1 to obtain 350 mg of N²-(coumarin-6-sulfonyl)-N⁶-(benzyloxycarbonyl)-L-lysine 4-benzylpiperidine (III).

A 260 mg amount of the compound (III) was treated 5 with 0.5 ml of a 30% hydrobromic acid in acetic acid solution to obtain 50 mg of the desired N^2 -(coumarin-6-sulfonyl)-L-lysine 4-benzylpiperidin amide.

Example 4

Synthesis of N²-(p-toluene sulfonyl)-L-lysine 10 p-nitroanilide hydrochloride (i.e., Compound No. 3) A 1.4 g amount of p-nitroaniline was dissolved in 20 ml of pyridine and, while cooling in an ice-salt bath, 0.71 g of phosphorus trichloride was added thereto, followed by stirring for 15 minutes.

After the temperature of the mixture had returned 15 to room temperature, 4.3 g of N²-(p-toluenesulfonyl)-N⁶-(benzyloxycarbonyl)-L-lysine was added thereto and the resultant mixture was stirred at a temperature of 60°C for 3 hours. The resultant mixture was then treated in a conventional manner to obtain 3.5 g of N²-(p-toluenesulfonyl)-N⁶-(benzyloxycarbonyl)-L-lysine p-nitroanilide (I).

The benzyloxycarbonyl group at N⁶ position was removed from 1.2 g of the compound (I) in the same 25 manner as in Example 1 to obtain 380 mg of N2-(ptoluenesulfonyl)-L-lysine p-nitroanilide hydrochloride.

Example 5

30

Synthesis of N²-(p-toluenesulfonyl)-L-lysine 4-cyanoanilide (i.e., Compound No. 26)

A 1.0 g amount of N^2 -(p-toluenesulfonyl)- N^6 -(benzyloxycarbonyl)-L-lysine and 270 mg of p-cyanoaniline were added to 15 ml of toluene and, while stirring, 200 mg of phosphorus trichloride was added at room temperature over 5 minutes. The resultant reaction 35 mixture was allowed to react under reflux in an oil bath at a temperature of 120°C for 3.5 hours while stirring.

The resultant reaction mixture was then treated in

a conventional manner to obtain 980 mg of N^2 -(p-toluene-sulfonyl)- N^6 -(benzyloxycarbonyl)-L-lysine 4-cyanoanilide (I). The benzyloxycarbonyl group at N^6 position of the compound (I) was removed from the compound (I) in the same manner as in Example 1 to obtain 510 mg of the desired N^2 -(p-toluenesulfonyl)-L-lysine 4-cyanoanilide.

Example 6

10

15

20

25

30

35

Synthesis of N²-(p-toluenesulfonyl)-L-lysine 4-nitrobenzylamide acetate (i.e., Compound No. 16)

A 4.3 g amount of N^2 -(p-toluenesulfonyl)- N^6 (benzyloxycarbonyl)-L-lysine and 1.55 g of p-nitrobenzylamine were dissolved in 5 ml of N,N-dimethylformamide and 5 ml of acetonitrile and, while cooling in
an ice-salt bath, 2.5 g-of N,N'-dicyclohexylcarbodiimide
was added thereto. The resultant mixture was allowed to
react for one hour and was then allowed to stand at room
temperature for one night. The reaction mixture was
treated in a conventional manner to obtain 2.9 g of N^2 -(p-toluene sulfonyl)- N^6 -(benzyloxycarbonyl)L-lysine 4-nitrobenzylamide (I).

The benzyloxycarbonyl group at N^6 position was removed from 430 mg of the compound (I) in the same manner as in Example 1 to obtain 340 mg of the desired N^2 -(p-toluenesulfonyl)-L-lysine 4-nitrobenzylamide acetate.

Example 7

Synthesis of N²-(trans-4-aminomethylcyclohexyl-carbonyl)-L-lysine 4-isopropyloxycarbonylanilide (i.e., Compound No. 115)

A 0.54 g amount of 4-isopropyloxycarbonylaniline was dissolved in 20 ml of N,N-dimethylformamide and the mixture was stirred under ice cooling. On the other hand, 1.14 g of N²-(t-butyloxycarbonyl)-N⁶-(benzyloxycarbonyl)-L-lysine (I) was dissolved in 40 ml of dry tetrahydrofuran and, while ice cooling, 300 mg of triethylamine was added. Then, while ice-salt cooling, 330 mg of ethyl chlorocarbonate was added, followed by

stirring for 15 minutes. This solution was added to the above-prepared solution and the mixture was allowed to stand at a temperature of 4°C for one night. The reaction mixture was then treated in a conventional manner to obtain 1.2 g of N^2 -(t-butyloxycarbonyl)- N^6 -(benzyloxycarbonyl)-L-lysine 4-isopropyloxycarbonyl-anilide (II).

A 1.2 ml amount of a 6N-hydrogen chloride in dioxane solution was added to 360 mg of the compound (II) while ice cooling. Ten minutes later, 1.2 ml of dioxane was added thereto and the mixture was stirred at room temperature for 30 minutes. Twenty minutes later, 50 ml of N,N-dimethylformamide was added to the resultant reaction solution while-ice cooling, followed by adding 0.9 ml of triethylamine.

15

35

On the other hand, 0.2 g of trans-4-benzyloxy-carbonyl aminomethylcyclohexanecarboxylic acid was dissolved in 5 ml of chloroform and 0.18 ml of thionyl chloride was added under room temperature. After the mixture was allowed to stand for 5 hours, the mixture was added to the above-prepared reaction solution and the mixture was allowed to stand at room temperature for 12 hours. The resultant reaction mixture was treated in a conventional manner to obtain 150 mg of N²-(trans-4-benzyloxycarbonylaminomethylcyclohexylcarbonyl)-L-lysine 4-isopropyloxycarbonyl anilide (III).

A 84 mg amount of the compound (III) was suspended in ethanol and 10 mg of palladium black was added thereto. Thus, the reaction was carried out at room temperature for 9 hours with stirring under a hydrogen gas flow. As a result, 33 mg of the desired N²-(trans-4-aminomethylcyclohexylcarbonyl)-L-lysine 4-isopropyloxycarbonylanilide (IV) was obtained from a ether-petroleum ether solvent.

Example 8

Synthesis of N²-(trans-4-aminomethylcyclohexyl-carbonyl)-L-lysine 4-(ethoxycarbonylmethyl)

carbamoyl anilide (i.e., Compound No. 109)

A 744 mg amount of trans-4-aminomethylcyclohexane-carboxylic acid and 574 mg of triethylamine were dissolved in 16 ml of tetrahydrofuran and, while cooling in an ice-salt bath, 282 mg of ethyl chlorocarbonate was added thereto with stirring. After stirring for 20 minutes, 1.0 g of N⁶-benzyloxycarbonyl-L-lysine 4-(ethoxycarbonylmethyl) carbamoyl anilide hydrochloride (I) prepared in a conventional manner was added. The mixture was stirred for about 2 hours under cooling and was then allowed to stand at room temperature for one night.

Example 9

15

Synthesis of N²-(p-toluoy1)-L-lysine

3,5-diethoxycarbonylanilide (i.e., Compound
No. 119)

A 5 g amount of N⁶-benzyloxycarbonyl-L-lysine (I) was dissolved in 100 ml of 1,4-dioxane, 150 ml of water, and 4.92 g of potassium carbonate. While maintaining 20 the solution at a temperature of 10°C, a solution of 4.17 g of p-toluenecarbonyl chloride dissolved in 15 ml of 1,4-dioxane was dropwise added thereto with stirring for 2 hours. After the resultant mixture was further maintained at a temperature of 10°C for 3 hours, the mixture was allowed to stand for one night at 4°C. 25 The 1,4-dioxane and water were distilled off and, after adding water thereto, the mixture was washed with ethyl ether. The resultant two phases were separated and, after acidifying the aqueous phase by adding hydrochloric acid, the aqueous phase was extracted with ethyl acetate. The extract was treated in a conventional manner. The product was crystallized from acetone to obtain 4.3 g of N²-(p-toluoyl)-N⁶-benzyloxycarbonyl-Llysine (II).

A 796 mg amount of the compound (II) and 474 mg of 3,5-diethoxycarbonylaniline were added to 15 ml of toluene and 200 mg of phosphorus trichloride was added

thereto at room temperature for 5 minutes with stirring. The reaction mixture was refluxed upon heating with stirring for 2.5 hours. The reaction mixture was treated in a conventional manner to obtain 910 mg of N^2 -(p-toluoyl)- N^6 -(benzyloxycarbonyl)-L-lysine 3,5-diethoxycarbonylanilide (III).

A 1.5 ml amount of a 30% hydrogen bromide in acetic acid solution was added to 800 mg of the compound (III) and the mixture was stirred at room temperature for 15 minutes. Then, diethyl ether was added to precipitate the desired N²-(p-toluoyl)-L-lysine 3,5-diethoxycarbonylanilide (IV) in the form of a hydrobromide salt. After the ether was removed by decantation and the ether washing was repeated several times, an aqueous sodium bicarbonate solution was added thereto and the resultant alkaline mixture was extracted with chloroform. The extract was treated in a conventional manner to obtain 230 mg of the desired compound (IV).

20 Example 10

25

Synthesis of N²-(p-toluoyl)-L-lysine 4-methyl-7-coumarinyl amide (i.e., Compound No. 120)

A 774 mg amount of N^2 -(p-toluoy1)- N^6 -(benzyloxy-carbony1)-L-lysine (I) and 343 mg of 7-amino-4-methyl coumarin were added to 15 ml of toluene and 200 mg of phosphorus trichloride was added thereto at room temperature for 5 minutes with stirring. The reaction mixture was refluxed upon heating for 3 hours with stirring. The resultant mixture was treated in a conventional manner to obtain 765 mg of N^2 -(p-toluoy1)- N^6 -(benzyl-oxycarbony1)-L-lysine 4-methyl-7-coumarinyl amide (II).

A 720 mg amount of the compound (II) was treated with 1.5 ml of a 30% hydrogen bromide in acetic acid solution to obtain 210 mg of the desired N^2 -(p-toluoyl)-L-lysine 4-methyl-7-coumarinylamide.

Example 11

Synthesis of N²-(1-naphthalenecarbonyl)-L-lysine

3,4-dichloroanilide (i.e., Compound No. 124)
A 500 mg amount of N²-(1-naphthalene carbony1)-N⁶(benzyloxycarbony1)-L-lysine (I) was dissolved in 10 ml
of 1,4-dioxane and, while cooling in an ice bath, 280 mg
of phosphorus pentachloride was added and the mixture
was stirred for about 10 minutes.

After the temperature of the mixture had returned to room temperature, the mixture was stirred for 30 minutes and the solvent and the other evaporating components were distilled off in a water bath at a temperature of 40°C to 50°C.

Thereafter, 10 ml of 1,4-dioxane was again added to the resultant residue and 370 mg of 3,4-dichloroaniline was added at room temperature with stirring. The reaction was completed in one hour. The reaction mixture was then treated in a conventional manner to obtain 380 mg of N^2 -(1-naphthalenecarbonyl)- N^6 -(benzyl-oxycarbonyl)-L-lysine 3,4-dichloroanilide (II) in the form of a powder.

A 200 mg amount of the compound (II) was treated with 1.0 ml of a 30% hydrogen bromide in acetic acid solution to obtain 120 mg of the desired N^2 -(l-naphthalenecarbonyl)-L-lysine 3,4-dichloroanilide.

Example 12

10

15

20

25

30

35

Synthesis of N²-benzoyl-L-lysine 4-benzoylanilide (i.e., Compound No. 123)

A 1.83 g amount of N²-(t-butyloxycarbonyl)-N⁶(benzyloxycarbonyl)-L-lysine and 590 mg of triethylamine
were dissolved in 15 ml of tetrahydrofuran. While
cooling in an ice-salt bath, 530 mg of ethyl chlorocarbonate was added thereto with stirring and, about
20 minutes later, 950 mg of 4-benzoylaniline was added.

After stirring for 2 hours, the mixture was allowed to stand at room temperature for one night. The mixture was then treated in a conventional manner to obtain 2.4 g of N²-(t-butyloxycarbonyl)-N⁶-(benzyloxycarbonyl)-L-lysine 4-benzoylanilide (I).

A 600 mg amount of the compound (I) was dissolved in a 6N-hydrogen chloride in 2 ml of 1,4-dioxane solution and the mixture was stirred at room temperature for about 5 minutes. Then, 2 ml of 1,4-dioxane was added thereto and the mixture was allowed to stand at room temperature for one hour. Thereafter, 10 ml of ethyl ether was added, N⁶-(benzyloxycarbonyl)-L-lysine 4-benzoylanilide (hydrochloride) (II) was precipitated. The ethyl ether was separated by decantation. After 10 this procedure was repeated several times, the product was recovered by filtration. The compound (II) was dissolved in 6 ml of N,N-dimethylformamide and 340 mg triethylamine was added. The mixture was stirred at room temperature for 5 minutes and 150 mg of benzoyl 15 chloride was added thereto. The mixture was then stirred at room temperature for 5 hours. The resultant mixture was treated in a conventional manner to obtain 400 mg of N²-benzoyl-N⁶-(benzyloxycarbonyl)-L-lysine 4-benzoylanilide (III).

A 400 mg amount of the compound (III) was treated with 1.0 ml of a 30% hydrogen bromide in acetic acid solution to obtain 180 mg of the desired N²-benzovl-L-lysine 4-benzoylanilide.

Example 13

20

25

Synthesis of N²-(p-toluoy1)-L-lysine 4-benzylpiperidin amide (i.e., Compound No. 122) A 800 mg amount of N²-(p-toluoyl)-N⁶-(benzyloxycarbonyl)-L-lysine (I) and 250 mg of N-hydroxy succinimide were dissolved in 15 ml of 1,4-dioxane and, 30 after adding 440 mg of N,N'-dicyclohexyl carbodiimide (DCC) thereto, the mixture was allowed to stand at a temperature of 5°C to 10°C for one night. The insoluble matter was filtered off. To the filtrate, 350 mg of 4-benzylpiperidine was added and the mixture was allowed 35 to react at a temperature of 10°C for 10 hours with stirring. The resultant reaction mixture was then treated in a conventional manner to obtain 910 mg of

N²-(p-toluoy1)-N⁶-(benzyloxycarbony1)-L-lysine 4-benzylpiperidinamide (II).

A 910 mg amount of the compound (II) was treated with 2.0 ml of a 30% hydrogen bromide in acetic acid solution to obtain 400 mg of the desired N²-(p-toluoyl)-L-lysine 4-benzylpiperidin amide.

Example 14

30

Synthesis of N²-(6-amino-l-oxo-hexyl)-L-lysine 4-benzylanilide (i.e., Compound No. 112)

10 A 2.45 g amount of N'-(t-butyloxycarbonyl)-N⁶(benzyloxycarbonyl)-L-lysine (I) was dissolved in 10 ml
of tetrahydrofuran and 800 mg of triethylamine was then
added thereto. While cooling in an ice bath, 800 mg of
ethyl chlorocarbonate was added and the mixture was
15 stirred for about 20 minutes. The mixture was suction
filtered by using, as a receiver, 790 mg of 4-benzylaniline dissolved in a small amount of tetrahydrofuran.
After allowing the stand for one night, the resultant
mixture was extracted with ethyl acetate. The extract
20 was treated in a conventional manner to obtain 3.04 g of
N²-(t-butyloxycarbonyl)-N⁶-(benzyloxycarbonyl)-L-lysine
4-benzylanilide (II).

A 2 g amount of 6-benzyloxycarbonyl aminocaproic acid was dissolved in 30 ml of chloroform and, after adding 1.1 g of thionyl chloride, the mixture was stirred for 30 minutes. The resultant mixture was distilled in vacuo. Then, n-hexane was added to the residue and 2.2 g of 6-benzyloxycarbonyl aminocaproyl chloride (III) was recovered therefrom by filtration.

A 10 ml amount of a 6N-hydrogen chloride in dioxane solution was added to 3.04 g of the compound (II) and the mixture was stirred at room temperature for one hour. After adding 10 ml of 1,4-dioxane, the mixture was allowed to stand at room temperature. One hour later, diethyl ether was added to the mixture. The decantation was repeated several times and 30 ml of N,N-dimethylformamide was added. To the mixture, 2.3 g

of triethylamine and 2.2 g of the compound (III) were added and the mixture was warmed at a temperature of 40°C. After allowing to stand for one night, the triethylamine hydrochloride was filtered off and the solvent was distilled off. The residue was then extracted with chloroform. The extract was then treated in a conventional manner to obtain 1.8 g of N²-(6-benzyloxycarbonyl amino-1-oxo-hexyl)-N⁶-(benzyloxycarbonyl)-L-lysine 4-benzylanilide (IV).

A 500 mg amount of the compound (IV) was treated with 1.5 ml of a 30% hydrogen bromide in acetic acid solution to obtain 280 mg of the desired N²-(6-amino-hexylcarbonyl)-L-lysine 4-benzylanilide.

Example 15

20

Synthesis of N'-(4-aminobenzenecarbonyl)-L-lysine 4-benzoyl-anilide (i.e., Compound No. 159)

A 5 g amount of 4-aminobenzoic acid was dissolved in 55 ml of a 2N aqueous sodium hydroxide solution and, while cooling in an ice bath, 6.8 g of benzyloxycarbonyl chloride was added thereto, followed by stirring under ice cooling for 3 hours. The resultant mixture was treated in a conventional manner and to obtain 4.8 g of 4-benzyloxycarbonylaminobenzoic acid (I) by crystallizing from ethyl acetate.

25 A 0.5 g amount of N²-(t-butyloxycarbonyl)-N²(benzyloxycarboxyl)-L-lysine 4-benzoylanilide (II) was
dissolved in a 6N hydrogen chloride in 1,4-dioxane
solution while cooling in an ice bath and 0.4 g of
N²-(benzyloxycarbonyl)-L-lysine 4-benzoylanilide

30 hydrochloride was obtained therefrom in the same manner
as in Example 14. This product was dissolved in 15 ml
of N,N-dimethylformamide and, while cooling in an ice
bath, 0.27 ml of triethylamine was added thereto. A
0.39 g amount of the compound (I) was dissolved in
35 chloroform and 0.4 ml of thionyl chloride was added
thereto at room temperature. After 5 hours, the chloroform and the other evaporating materials were distilled

off. To the residue, 15 ml of N,N-dimethylformamide was added to prepare the solution and this solution was then added to the previously prepared solution.

The N,N-dimethylformamide and the other evaporating components were distilled off and the residue was extracted with ethyl acetate. The extract was treated in a conventional manner to obtain 0.51 g of N^2 -(4-benzyloxycarbonylamino benzenecarbonyl)- N^6 -(benzyloxycarbonyl)-L-lysine 4-benzoylanilide (III).

A 83.7 mg amount of the compound (III) was dissolved in 8 ml of water-ethanol and the mixture was subjected to a catalytic reduction. After 14 hours, palladium was filtered off and the filtrate was treated with ethyl ether in a conventional-manner to crystallize 39.3 mg of N^2 -(4-aminobenzenecarbonyl)-L-lysine 4-benzoylanilide (IV).

Example 16

10

20

25

30

35

Synthesis of N²-(trans-4-aminomethylcyclohexyl-carbonyl)-L-lysine 4-styrylanilide (i.e., Compound No. 146)

A 4.35 g amount of N²-(t-butyloxycarbonyl)-N⁶(benzyloxycarbonyl)-L-lysine and 1.39 g of triethylamine
were dissolved in 50 ml of tetrahydrofuran. While
cooling in an ice-salt bath, 1.24 g of ethyl chlorocarbonate was added with stirring. After about 20
minutes, 2.23 g of 4-aminostylbene was added. After the
mixture was stirred for about 2 hours, the resultant
mixture was allowed to stand at room temperature for one
night. The mixture was then treated in a conventional
manner to obtain 4.7 g of N²- (t-butyloxycarbonyl)-N⁶(benzyloxycarbonyl)-L-lysine 4-styrylanilide (I).

A 2.0 g amount of the compound (I) was dissolved in 4.8 ml of a 6N-hydrogen chloride in 1,4-dioxane solution and the mixture was stirred at room temperature for about 5 minutes. Furthermore, 4,8 ml of 1,4-dioxane was added thereto and the mixture was allowed to stand at room temperature for one night. Then, 20 ml of ethyl

ether was added, N⁶-(benzyloxycarbonyl)-L-lysine 4styrylanilide hydrochloride (II) was precipitated.
The ethyl ether was removed by decantation. This
procedure was repeated several times. The compound (II)

was dissolved in 10 ml of N,N-dimethylformamide and
460 mg of triethylamine was added thereto. After the
mixture was stirred at room temperature for 5 minutes,
700 mg of trans-4-benzyloxycarbonylaminomethylcyclohexylcarbonyl chloride was added and the mixture was
stirred at room temperature for 5 hours. The resultant
mixture was treated in a conventional manner to obtain
500 mg of N²-(trans-4-benzyloxycarbonyl cyclohexylcarbonyl)-N⁶-(benzyloxycarbonyl)-L-lysine 4-styrylanilide
(III).

A 500 mg amount of the compound (III) was treated with 1.5 ml of a 30% hydrogene bromide in acetic acid solution to obtain 220 mg of the desired N'-(trans-4-aminomethylcyclohexylcarbonyl)-L-lysine 4-styrylanilide.

Example 17

15

20

30

Synthesis of N²-(trans-4-aminomethylcyclohexyl-carbonyl)-L-lysine 4-acetylanilide (i.e., Compound No., 145)

To 5 ml of a solution of 718 mg of N^2 -(t-butyloxy-carbonyl)- N^6 -(benzyloxycarbonyl)-L-lysine and 223 mg of tetrahydrofuran dissolved in tetrahydrofuran, 2 ml of a solution of 224 mg of ethyl chlorocarbonate in tetrahydrofuran was added with stirring while cooling in an ice bath. After about 30 minutes, 280 mg of 4-amino-acetophenone was added. After the ice bath was removed, the mixture was stirred at room temperature and was then allowed to stand for one night. Ice water was added to the reaction mixture and the resultant mixture was extracted with ethyl acetate. The extract was then treated in a conventional manner to obtain 592 mg of N^2 -(t-butyloxycarbonyl)- N^6 -(benzyloxycarbonyl)-L-lysine 4-acetylanilide (I).

Then, 3.0 ml of 6N hydrogen chloride in 1,4-dioxane

solution was added to 448 mg of the compound (I). After the mixture was stirred at room temperature for 2 hours, the mixture was concentrated in vacuo. Furthermore, toluene was added to the residue and the mixture was concentrated in vacuo. Thus, N⁶-(benzyloxycarbonyl)-Llysine-4-acetylanilide hydrochloride (II) was obtained. To this compound (II), 10 ml of a tetrahydrofuran solution containing the mixed acid anhydride of the previously prepared trans-4-(benzyloxycarbonylaminomethyl) cyclohexanecarboxylic acid (III) with ethyl chlorocarbonate and, further, 112 mg of triethylamine were added. The mixture was stirred at room temperature for 4 hours and ice water was then added thereto. precipitated crystalline substance was recovered by filtration and was thoroughly washed with water. After drying, 328 mg of N^2 -(trans-4-benzyloxycarbonylaminomethylcyclohexylcarbonyl) -N⁶ - (benzyloxycarbonyl) -L-lysine 4- acetylanilide (IV) was obtained.

10

20

25

30

35

A 200 mg amount of the compound (IV), 100 mg of 10% Pd-carbon powder, and 4 ml of cyclohexene were dissolved in 20 ml of ethanol and the resultant solution was vigorously stirred for 2 hours. The 10% Pd-carbon powder was filtered off and the filtrate was concentrated in vacuo. The residue was crystallized from ethyl acetate to obtain 57 mg of the desired N²-(trans-4-aminomethylcyclohexylcarbonyl)-L-lysine 4-acetyl-anilide.

The inhibition activities of the present compounds and the control compounds are evaluated as follows.

(1) Evaluation of Antiplasmin Activity

(i) Determination of prevention activity for fibrin decomposition

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 600 μ l. To this buffer solution, 200 μ l of a 0.2% bovine fibrinogen, 100 μ l of a 0.3 casein unit/ml human plasmin solution, and 100 μ l

of a 50 unit/ml bovine thrombin solution, all dissolved in the above-mentioned buffer, are added at a temperature of 37°C in a constant temperature bath. Then, the dissolution time of the fibrin mass formed above is determined. Thus, the concentration I₅₀ of the inhibitor sample (i.e., 50% inhibition concentration), at which the dissolution time obtained in the absence of the inhibitor (i.e., about 5 minutes) is extended twice, is determined.

(ii) Determination of prevention activity for S-2251 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.4) to make the total volume to 400 µl. To this solution, 15 50 µl of a 3 mM S-225l solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 µl of a 0.2 casein unit/ml human plasmin is added and the mixture is incubated at a temperature of 37°C for 4 minutes.

20 Thereafter, the reaction is stopped by adding 50 µl of 50% acetic acid.

10

The absorbance of p-nitroaniline formed in the reaction mixture is determined at 405 nm. Thus, the concentration I₅₀ of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor, is determined.

(iii) Determination of prevention activity for fibringen

An inhibitor sample is dissolved in a

30 0.18 M borate-physiological salt buffer solution (pH =

7.4) to make the total volume to 400 µl. To this
solution, 500 µl of a 0.4% bovine fibrinogen solution
and 100 µl of a l casein unit/ml human plasmin solution,
all dissolved in the above-mentioned buffer are added at

35 a temperature of 37°C in a constant temperature bath.
After the mixture is allowed to stand at a temperature
of 37°C for 10 minutes, 3800 µl of the above-mentioned

buffer containing (3.2 mM of tranexamic acid and 200 μl of a 50 unit/ml bovine thrombin solution are added to terminate the reaction. The mixture is incubated at a temperature of 37°C for 15 minutes to precipitate the The fibrin mass thus precipitated is adhered to or wound around a glass rod and is then washed with water. The amount of the remaining fibrinogen is determined according to a tyrosine coloring method using a phenol reagent (see J. Biol. Chem., 73, 627 (1927) . From the amount of the remaining fibrinogen thus deter-10 mined, the amount of decomposed fibrinogen is calculated. Thus, the concentration I_{50} of the inhibitor sample, at which the amount of decomposed fibrinogen is one half (i.e., 1/2) of that obtained in the absence of the 15 inhibitor sample, is determined.

(2) Evaluation of Antithrombin Activity

(i) Determination of inhibition activity against fibrin formation

An inhibitor sample is dissolved in a

0.18 M borate-physiological salt buffer solution (pH =

7.4) to make the total volume to 500 µl. To this
solution, 400 µl of a 0.2% bovine fibrinogen solution
and 100 µl of a 4 unit/ml bovine thrombin solution are
added at a temperature of 37°C in a constant temperature

bath. Thus, a coagulation time is determined. The
inhibitor concentration I₅₀, at which the coagulation
time obtained in the absence of the inhibitor is extended
twice, is determined.

30

(ii) Determination of prevention activity for S-2238 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.3) to make a total volume of 400 μ l. To this solution, 50 μ l of a 0.2 mM S-2238 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.2 unit/ml bovine thrombin solution is added

thereto and the absorbance, at 405 nm, of the p-nitro-aniline formed per minute is determined at a temperature of 37°C by using the so-called initial velocity method. Thus, the concentration I_{50} of the inhibitor sample at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(3) Evaluation of Antitrypsin Activity Determination of inhibition activity against S-2238 decomposition

10

25

An inhibitor sample is dissolved in a 0.05 M Tris-imidazole buffer solution (pH = 8.1) and 125 µl of a 1 mM S-2238 solution is added to make the total volume to 1.20 ml. The mixture is incubated at a 15 temperature of 37°C for 5 minutes in a constant temperature bath. To this mixture, 0.05 ml of bovine trypsin is added and the absorbance, at 405 nm, of the p-nitroaniline formed per minute is determined at a temperature of 37°C by using the so-called initial velocity method. Thus, the concentration I₅₀ of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(4) Evaluation of Anti-Plasma Kallikrein Activity Determination of prevention activity for S-2302 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.8) to make the total volume to 400 μ l. To this solution, 50 μ l of a 2 mM S-2302 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.12 unit/ml human plasma kallikrein is added and the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 μ l of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured

at 405 nm. Thus, the concentration I₅₀ of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(5) Evaluation of Antiurokinase Activity Determination of prevention activity

for S-2444 decomposition

5

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.8) to make the total volume to 400 µl. To this solution, 50 µl of a 1 mM S-2444 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 µl of a 500 unit/ml human urokinase is added and the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 µl of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration I₅₀ of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

The results are shown in Tables II to V.

Table II (List of Known Compounds)

Compound No.

Compound

$$1 \quad \text{H}_2\text{NCH}_2 \quad \boxed{\text{H}} \quad \cdots \quad \text{CO}_2\text{H} \quad (\text{t-AMCHA})$$

2 $H_2N(CH_2)_5\infty_2H$

(EACA)

3 H-Lys-OH

6
$$CH_3 - SO_2 - Arg - OCH_3$$
 (TAME)

Table III (Evaluation Results of Known Compounds)

brinoding		Plasmin		Thro	Thrombin	Trypsin	Plasma Kallikrein	Urokinase
. Š	S-2251	Fibrin	Fibrinogen	S-2238	Fibrinogen	S-2238	S-2302	S-2444
1	75,000	09	9,500	1,000*1	1,000*1	1,000*1	1,000*1	1,000*1
7	180,000	200	ı	ı	ı	ı	1	1
е	50,000	000'6	•	1	ı	1	,	•
•	1,000*1	1,000*1	1	1,000*1	1,000*1	150*1	1,000*1	1,000*1
ស	1,400	1,000	ı	ı	ı	ı	١.	1
9	3,100	1,000	ı	ı	1	1	ı	1
7	1,000*1	1,000*2	1	1,000*1	1,000*1	200*1	1,000*1	1,000,1
60	1,000*1	1,000*1	ı	1,000,1	1,000*1	300	1,000,1	1,000*1

*1: 0% Inhibition *2: 19% Inhibition

Table IV (Evaluation Results of Present Compounds)

Compound		I ₅₀ (M)	
No.	S-2251	Fibrin	Fibrinogen
3	7.0×10^{-4}	7.8×10^{-4}	9.0×10^{-4}
7	3.5×10^{-4}	3.0×10^{-4}	-
8	2.5×10^{-4}	1.4×10^{-4}	
10	1.7×10^{-3}	3.1×10^{-4}	-
11	3.9×10^{-4}	7.5 \times 10 ⁻⁵	8.0×10^{-5}
18	6×10^{-4}	3.1×10^{-4}	-
20	2×10^{-3}	$. \times 10^{-3}$	-
21	3×10^{-4}	1.3×10^{-4}	-
22	6.5×10^{-4}	6.) $\times 10^{-4}$	-
29	4.8×10^{-4}	3.1×10^{-4}	-
31	7.8×10^{-4}	$1 \cdot \times 10^{-4}$	-
32	6×10^{-4}	4.1×10^{-4}	-
33	6.5×10^{-4}	5.4×10^{-4}	-
35	3.7×10^{-4}	$1. \times 10^{-4}$	-
36	1.4×10^{-4}	1.7×10^{-4}	$2.\vec{0} \times 10^{-4}$
37	2.0×10^{-3}	7.3×10^{-4}	-
40	5.9×10^{-4}	4.4×10^{-4}	-
42	2.3×10^{-4}	1.4×10^{-4}	-
48	1.3×10^{-4}	7.4×10^{-5}	-
53	6.5×10^{-4}	4.5×10^{-4}	-
54	2×10^{-4}	1×10^{-4}	-
56	2×10^{-4}	1.5×10^{-5}	-
59	6.9×10^{-5}	$.1 \times 10^{-5}$	-

Table IV (Continued)

Compound		I ₅₀ (M)	
No.	S-2251	Fibrin	Fibrinogen
60	1.5 x 10 ⁻⁴	3.4×10^{-5}	-
62	1.6×10^{-4}	2.7×10^{-5}	-
64	3.3×10^{-5}	5.0×10^{-5}	
65	1.5×10^{-3}	8.5×10^{-4}	-
67	5.2×10^{-5}	5.5×10^{-5}	-
68	4.4×10^{-4}	2.2×10^{-4}	· _
69	1.6×10^{-4}	1.2×10^{-4}	-
70	7.3×10^{-5}	3.4×10^{-5}	-
72	2.0×10^{-4}	2.3×10^{-4}	-
73	4.4×10^{-5}	-	-
74	7×10^{-5}	1.0×10^{-4}	-
75	3.7×10^{-5}	7.5×10^{-5}	5.0×10^{-5}
76	4.3×10^{-5}	1.2×10^{-4}	-
77	4.6×10^{-4}	1.6×10^{-4}	-
78	3.8×10^{-5}	1.9×10^{-4}	~ _
80	4.2×10^{-5}	5.1×10^{-5}	8.0×10^{-5}
82	1.3×10^{-4}	1.0×10^{-4}	
83	8.8×10^{-5}	1.1×10^{-4}	-
85	4.5×10^{-4}	1.7×10^{-4}	-
89	3.2×10^{-5}	2.9×10^{-5}	-
90	2.7×10^{-4}	2.5×10^{-4}	•
91	2.5×10^{-4}	6.1×10^{-5}	-
93	6.8×10^{-4}	3.5×10^{-4}	-

Table IV (Continued)

Compound		I ₅₀ (M)	
No.	S-2251	Fibrin	Fibrinogen
94	2.0×10^{-4}	3.2×10^{-5}	-
95	1.5×10^{-4}	4×10^{-5}	-
97	3×10^{-4}	5×10^{-4}	-
104	1.0×10^{-4}	3.1×10^{-5}	4.0×10^{-5}
108	4.1×10^{-5}	2.0×10^{-5}	4.0×10^{-5}
109	1.2×10^{-4}	6.8×10^{-6}	-
111	2.0 x 10 ⁻⁴ (0% Inhi- bition)	2.0 x 10 ⁻⁴ (0% Inhi- bition)	-
116	5.0 x 10 ⁻⁴ (41% Inhi- bition)	5.3×10^{-4}	-
119	5.5×10^{-4}	5.0×10^{-4}	-
120	8.0×10^{-4}	7.5×10^{-4}	-
121	6.7×10^{-4}	1.2×10^{-3}	•••
124	1.6×10^{-4}	1.9×10^{-4}	_
128	1.6×10^{-4}	5.0×10^{-4}	o Tilo Care
132	2.4×10^{-5}	7.5×10^{-5}	-
141	1.5×10^{-5}	6.1×10^{-6}	1.3×10^{-5}
142	2.8×10^{-4}	9.3×10^{-5}	-
145	3.9×10^{-5}	9.3×10^{-6}	1.9×10^{-5}
146	1.8 x 10 ⁻⁴	3.1×10^{-4}	-
154	1.2 x 10 ⁻⁵		-
156	1.6×10^{-5}		3.6×10^{-5}
158	1.0×10^{-4}	1.6×10^{-4}	-

Table V (Evaluation Results of Present Compounds)

Compound	Thr	Thronbin	Trypsin	Plasmo Kallikrein	Urokinase
ş	S-2238	Fibrinogen	S-2238	S-2302	8-2444
62	5.0 x 10 ⁻⁵ (0% Inhibi tion)	5.0 x 10 ⁻⁵ (0% Inhi tion)	1.5 × 10 ⁻⁴	t	ı
08	1.0 x 10 ⁻⁴ (24% Inhi bition)	1.0 x 10 ⁻⁴ (0% Indi bition)	3.3 x 10 ⁻⁴	ŧ	1
68	2.0 x 10 ⁻⁵ (22% Inhi bition)	4.0 x 10 ⁻⁵ (0% Inhibi tion)	3.5 x 10 ⁻⁴ (0% Inhibition)	ı	ı
104	1.0 x 10 ⁻⁴ (0% Inhibi-tion)	1.0 x 10 ⁻⁴ (0% Inhibit-tion)	2.4 × 10 ⁻⁵	7.6 x 10 ⁻⁵	1.1 x 10 ⁻⁴
108	1.0 x 10 ⁻³ (23% Inhibition)	1.0 x 10 ⁻³ (0% Inhibi-tion)	6.4 × 10 ⁻⁶	1.5 x 10 ⁻⁵	8.5 x 10 ⁻⁶
109	4.0 x 10 ⁻⁴ (0% Inhibi-tion)	3.0 x 10 ⁻⁴ (0% Inhibi-tion)	1.2 × 10 ⁻⁵	2.9 x 10 ⁻⁵	4.5 × 10 ⁻⁵
11	•	ı	1	2.0 x 10 ⁻⁴ (0% Inhibi-tion)	1
116	5.0 x 10 ⁻⁵ (0% Inhibi- tion)	1.0 x 10 ⁻³ (0% Inhibi- tion)	5.0 × 10 ⁻⁵	5.0 x 10 ⁻⁵	1.3 x 10 ⁻⁴
141	5.0 × 10 ⁻⁴ (Ot Inhi bition)	1.0 × 10 ⁻⁴ (0% Inhi- bition)	1.5 × 10 ⁻⁶	8.5 x 10 ⁻⁵	1.7 × 10 ⁻⁵

CLAIMS

wherein X and X' independently represent hydrogen, halogen, alkyl, cycloalkyl, alkoxy, aryloxy, dialkylamino, alkylcarbonylamino, arylcarbonylamino, and n₁ is an integer of 3 to 6, n₂ is an integer of 1 to 3, and n₃ is an integer of 0 to 3;

Y represents SO₂ or CO;

25

30

35

CH₂)₄-NH₂
-Lys- represents -NH-CH-CO
B represents NR¹R², NZ W, or

tetrahydroquinolyl, wherein R^1 and R^2 independently represents hydrogen provided that both R^1 and R^2 cannot be hydrogen at the same time; alkyl substituted

with carboxyl, alkoxycarbonyl, phenyl, hydroxyphenyl, or benzoyl; cycloalkyl which may be substituted with arylcarbonyl; cycloalkyl-alkyl which may be substituted with carboxyl, arylcarbonyl, or aralkyloxycarbonyl;

- phenyl which may be substituted with halogen, nitro, cyano, trifluoromethyl, alkyl, alkoxy, alkoxycarbonyl, alkoxycarbonylalkyl, phenylalkyl which may be further substituted with dialkylamino, alkylcarbonyl, phenylalkenyl which may be further substituted with
- dialkylamino, phenoxy, phenylcarbonyl which may be further substituted with an amino, dialkylamino, alkoxycarbonyl, or nitro group, pyridylmethyl, phenyl hydroxyalkyl, alkylsulfonyl, or alkoxycarbonyl alkylaminocarbonyl; coumaryl which may be substituted
- with alkyl; quinolyl; adamantyl; norbornyl; or tetrahydronaphthyl; and

Z is $-(CH_2)_{\overline{m}_1}$ CH(CH₂)_{\overline{m}_2} or $-(CH_2)_{\overline{m}_1}$ -N-(CH₂)_{\overline{m}_2}; W is hydrogen; hydroxyl; carboxyl;

aminocarbonyl; alkyl; alkoxycarbonyl; phenyl;

20 phenylalkyl which may be substituted with dialkylamino; or phenyl-carbonyl which may be substituted with alkoxycarbonyl or tetrahydroquinolyl; and

> $m_1 + m_2 = 3$ or 4; or the pharmaceutically acceptable salt

25 thereof.

- A lysine derivative as claimed in claim 1, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, sulfate, nitrate, phosphate,
 oxalate, succinate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.
 - 3. A proteinase inhibitor comprising as an essential component the lysine derivative of claim 1 or the pharmaceutically acceptable salt thereof.
- 35 4. A proteinase inhibitor as claimed in claim 3, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of

hydrochloride, hydrobromide, sulfate, nitrate, phosphate, oxalate, succinate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.