20.4

Note that

$$3^{47} = 3^{2 \cdot 22 + 3} = \left(3^{23 - 1}\right)^2 \cdot 3^3.$$

By Fermat's Little Theorem, $3^{23-1} \equiv 1 \pmod{23}$ and therefore $\left(3^{23-1}\right)^2 \equiv 1 \pmod{23}$. Since $3^3 = 27 \equiv 4 \pmod{23}$ it follows

$$3^{47} \equiv 1 \cdot 4 \equiv 4 \pmod{23}.$$

20.6

First note that

$$2^{17} \equiv (2^4)^4 \cdot 2 \equiv (-2)^4 \cdot 2 \equiv 16 \cdot 2 \equiv 14 \pmod{18}.$$

Therefore $2^17 = 18m + 14$ for some $m \in \mathbb{Z}$. Hence

$$2^{2^{17}} = 2^{18m+14} = (2^{18})^m \cdot 2^{14} = (2^{19-1})^m \cdot 2^{14}.$$

Since 19 is prime, then

$$2^{18} \equiv 2^{19-1} \equiv 1 \pmod{19}$$

meaning

$$2^{2^{17}} \equiv \left(2^{19-1}\right)^m \cdot 2^{14} \equiv 1^m \cdot 2^{14} \equiv 2^{14} \equiv \left(2^7\right)^2 \equiv (-5)^2 \equiv 6 \pmod{19}$$

which adding one gives the final result 7 (mod 19).

20.12

The congruence relation reduces to

$$7x \equiv 5 \pmod{15}$$
.

Since gcd(7,15) = 1 which divides 5, there exists solutions. Since $7 \cdot 5 = 5 \pmod{15}$ the solutions are

$$x = 5m + 15, m \in \mathbb{Z}.$$

20.14

The congruence relation reduces to

$$21x \equiv 15 \pmod{24}.$$

Since gcd(21, 24) = 3 which divides 15, there exists solutions. Consider the congruence relation

$$7x \equiv 5 \pmod{8}$$
.

This has a solution x = 3 meaning the solutions to the original are the elements of $3 + 8\mathbb{Z}$.

20.27

Proof. Let $a \in \mathbb{Z}_p$. Then $a^2 - 1 = (a - 1)(a + 1) = 0$. Since \mathbb{Z}_p is a field, it has no zero divisors meaning a - 1 or a + 1 are zero and hence a = 1 or a = p - 1.

20.28

Proof. Note that

$$(p-1)! = (p-1)(p-2)(p-3)\cdots(3)(2)(1).$$

For $p \ge 3$, the elements exclusively between p-1 and 1 will have their multiplicative inverse in this factorial expansion meaning

$$(p-1)! = (p-1)(1)\cdots(1)(1) = p-1 \equiv -1 \pmod{p}$$
.

In the case that p=2, $(p-1)!=(2-1)!=1\equiv -1\pmod 2$ and for p=1, $(p-1)!=0!=1\equiv -1\pmod 1$.

20.29

Consider each prime factor individually. Note that only the cases where n isnt divisible by a prime factor need to be considered since otherwise if n is divisible by all prime factors, $n^{37} - n = n(n^{36} - 1)$ is as well.

- 37) Since $n^{37} \equiv n \pmod{37}$ it follows $n^{37} n = 0 \equiv \pmod{37}$ so 37 dividies
- 19) Assume that 19 doesn't divide n. Then $n^{36} 1 \equiv (n^{18})^2 1 \equiv 1^2 1 \equiv 0 \pmod{19}$ therefore 19 divides
- 13 Assume 13 doesnt divide n. Then $n^{36} 1 \equiv (n^{12})^3 1 \equiv 1^3 1 \equiv 0 \pmod{13}$ therefore 13 divides
- 7) Assume 7 doesnt divide n. Then $n^{36} 1 \equiv (n^6)^6 1 \equiv 1^6 1 \equiv 0 \pmod{7}$ therefore 7 divides
- 3) Assume 3 doesnt divide n. Then $n^{36}-1\equiv \left(n^2\right)^{18}-1\equiv 1^{18}-1\equiv 0\pmod 3$ therefore 3 divides
- 2) Assume 2 doesnt divide n. Then $n^{36} 1 \equiv (n^1)^{36} 1 \equiv 1^{36} 1 \equiv 0 \pmod{2}$ therefore 2 divides

21.2

The field of quotients for D are $\{q + p\sqrt{2} : p, q \in \mathbb{Q}\}$ since the multiplicative inverse of an element in D would look like

$$\frac{1}{a+b\sqrt{2}} = \frac{a}{a^2 - 2b^2} + \frac{-b}{a^2 - 2b^2}\sqrt{2}$$

of which $\frac{a}{a^2-2b^2}$ and $\frac{-b}{a^2-2b^2}$ are rational numbers.

21.6

Proof. Let $[(a_1,b_1)]$, $[(a_2,b_2)]$ and $[(a_3,b_3)]$ be elements of F. Then

$$\begin{split} \Big(\big[(a_1,b_1) \big] + \big[(a_2,b_2) \big] \Big) + \big[(a_3,b_3) \big] &= \big[(a_1b_2 + a_2b_1,b_1b_2) \big] + \big[(a_3,b_3) \big] \\ &= \big[(a_1b_2b_3 + a_2b_1b_3 + a_3b_1b_2,b_1b_2b_3) \big] \end{split}$$

and

$$\begin{split} \left[(a_1,b_1) \right] + \left(\left[(a_2,b_2) \right] + \left[(a_3,b_3) \right] \right) &= \left[(a_1,b_1) \right] + \left[(a_2b_3 + a_3b_2,b_2b_3) \right] \\ &= \left[(a_1b_1b_2 + a_2b_1b_3 + a_3b_1b_2,b_3b_2b_1) \right]. \end{split}$$

Since addition and multiplication for D is associative and abelian, these can be rearranged to equal each other and hence addition on F is associative.

21.7

Proof. Let $[(a,b)] \in F$. Then

$$[(0,1)] + [(a,b)] = [(0b+1a,1b)] = [(a,b)].$$

Since addition on F is commutative, it follows [(0,1)] is an additive identity in F.

21.8

Proof. Let $[(a,b)] \in F$. Note that

[
$$(a,b)$$
] + [$(-a,b)$] = [$(ab+b(-a),b^2)$] = [$(ab-ab,b^2)$] = [$(0,b^2)$] = [$(0,1)$].

Since addition is commutative, it follows [(-a, b)] is the additive inverse for any element in F.

21.9

Proof. Let $[(a_1,b_1)],[(a_2,b_2)]$ and $[(a_3,b_3)]$ be elements of F. Then

$$\Big([(a_1,b_1)][(a_2,b_2)]\Big)[(a_3,b_3)] = [(a_1a_2,b_1b_2)][(a_3,b_3)] = [(a_1a_2a_3,b_1b_2b_3)]$$

and

$$[(a_1,b_1)]\Big([(a_2,b_2)][(a_3,b_3)]\Big) = [(a_1,b_1)][(a_2a_3,b_2b_3)] = [(a_1a_2a_3,b_1b_2b_3)]$$

which are equal. Therefore multiplication on ${\cal F}$ is associative.

21.10

Proof. Let $[(a_1, b_1)], [(a_2, b_2)] \in F$. Then

$$[(a_1,b_1)][(a_2,b_2)] = [(a_1a_2,b_1b_2)] = [(a_2a_1,b_2b_1)] = [(a_2,b_2)][(a_1,b_1)]$$

since multiplication on D is commutative. Therefore multiplication on F is commutative.

21.11

Proof. Let $[(a_1,b_1)]$, $[(a_2,b_2)]$ and $[(a_3,b_3)]$ be elements of F. Then

$$\begin{aligned} [(a_1,b_1)]\Big([(a_2,b_2)]+[(a_3,b_3)]\Big) &= [(a_1,b_1)][(a_2b_3+a_3b_2,b_2b_3)] \\ &= [(a_1a_2b_3+a_1b_3b_2,b_1b_2b_3)] \end{aligned}$$

and

$$\begin{aligned} [(a_1,b_1)][(a_2,b_2)] + [(a_1,b_1)][(a_3,b_3)] &= [(a_1a_2,b_1b_2)] + [(a_1a_3,b_1b_3)] \\ &= [(a_1a_2b_1b_3 + a_1a_3b_1b_2,b_1^2b_2b_3)] \end{aligned}$$

which are equal since by the definition of the equivalence for F

$$\big[(a_1a_2b_1b_3+a_1a_3b_1b_2,b_1^2b_2b_3)\big]=\big[(a_1a_2b_3+a_1a_3b_2,b_1b_2b_3)\big].$$

Since multiplication is commutative on F, the right distributive law also holds. Hence both laws hold on F.