SEMICONDUCTOR LASER DEVICE AND OPTICAL DISK APPARATUS USING THE SAME

Patent number:

JP2004039747°

Publication date:

2004-02-05

Inventor:

YAMAMOTO KEI; OBAYASHI TAKESHI

Applicant:

SHARP CORP

Classification:

- international:

H01S5/343; G11B7/125

- european:

Application number:

JP20020192387 20020701

Priority number(s):

Abstract of JP2004039747

PROBLEM TO BE SOLVED: To improve a characteristic not depending on a value of &utri Eg free of aluminum.

SOLUTION: An active region is formed in a DQW structure, a P composition is larger than 0.2 but smaller than 0.75, a barrier layer is structured with GaAsP or InGaAsP in which a difference from the distortion of a well layer (= distortion of substrate) is larger than -0.65%, and the well layer is formed of the InGaAsP which is aligned in a lattice with the GaAs substrate. In comparison with the InGaP barrier layer of a prior art, a difference &utri Ev0 of Ev for the GaAs substrate can be set to a small value. Therefore, &utri Ec between the barrier layer and the well layer can be set to 0.12eV or higher, and the overflow of electron from the well layer can be controlled. Accordingly, even when &utri Eg of the well layer and barrier layer is rather small, an element characteristic can be improved remarkably in comparison with the InGaP barrier layer.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

THIS PAGE BLANK (USPTO)

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11) 特許出願公開番号

テーマコード (参考)

特開2004-39747 (P2004-39747A)

(43) 公開日 平成16年2月5日(2004.2.5)

(51) Int.C1.7		F I		
H01S	5/343	HO1S	5/343	
G11B	7/125	G11B	7/125	

5D119 5D789 5F073

審査請求 未請求 請求項の数 14 OL (全 25 頁)

(21) 出願番号	特願2002-192387 (P2002-192387)	(71) 出願人	000005049
(22) 出願日	平成14年7月1日 (2002.7.1)		シャープ株式会社
			大阪府大阪市阿倍野区長池町22番22号
		(74) 代理人	100062144
		1	弁理士 青山 葆
		(74) 代理人	100086405
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	弁理士 河宮 治
		(74) 代理人	100084146
		() ()	弁理士 山崎 宏
		(72) 発明者	山本 圭
		(-),/2,/1	大阪府大阪市阿倍野区長池町22番22号
			シャープ株式会社内
		(72) 発明者	大林 健
		(, =, , , , , , , , ,	大阪府大阪市阿倍野区長池町22番22号
			シャープ株式会社内
			最終質に続く

(54) 【発明の名称】半導体レーザ装置およびそれを用いた光ディスク装置

(57)【要約】

【課題】A1フリーで且つ Δ Egの大きさに因らずに特性を向上させる。

【解決手段】活性領域をDQW構造とし、P組成が0. 2よりも大きく且つ0. 75よりも小さく、井戸層の歪量(=基板の歪量)との差が-0. 65%よりも大きい GaAsPあるいは InGaAsPでバリア層を構成し、GaAs 基板と格子整合した InGaAsPで井戸層を構成する。従来の場合の InGaPバリア層に比べ、GaAs 基板に対する EvO = EvO

【選択図】 図2

【特許請求の範囲】

【請求項1】

GaAs基板上に、少なくとも、下部クラッド層と、1つまたは複数の井戸層とバリア層とが積層されて成る量子井戸を含む活性領域と、上部クラッド層が形成された発振波長が760nmより大きく且つ800nmより小さい半導体レーザ装置において、

上記バリア層を、上記井戸層よりもバンドギャップエネルギーが大きい I n₁₋ Ga , As₁₋ P, で構成すると共に、

上記井戸層の格子定数をa1とする一方、上記バリア層の格子定数をa2とした場合に、 $0 < x \le 1$

0.2 < y < 0.75

 $| (a 2 - a 1) / a 1 | \times 100 > 0.65$

の関係が成立することを特徴とする半導体レーザ装置。

【請求項2】

請求項1に記載の半導体レーザ装置において、

上記GaAs基板の格子定数ea0とした場合に、(a1-a0)/a0の値が正の値であること特徴とする半導体レーザ装置。

【請求項3】

請求項1あるいは請求項2に記載の半導体レーザ装置において、

上記井戸層にA1元素が含まれていないことを特徴とする半導体レーザ装置。

【請求項4】

請求項3に記載の半導体レーザ装置において、

上記井戸層がInGaAsPで構成されていることを特徴とする半導体レーザ装置。

【請求項5】

請求項1乃至請求項4の何れか一つに記載の半導体レーザ装置において、

上記バリア層のうちの何れかあるいは総てが、上記井戸層側とは反対側の面においてAIGaAs層に接触していることを特徴とする半導体レーザ装置。

【請求項6】

請求項5に記載の半導体レーザ装置において、

上記AIGaAs層に接触しているバリア層は、上記活性領域における最外に位置していることを特徴とする半導体レーザ装置。

【請求項7】

請求項5あるいは請求項6に記載の半導体レーザ装置において、

上記AlGaAs層に接触しているバリア層の層厚は4nmより大きいことを特徴とする 半導体レーザ装置。

【請求項8】

請求項1乃至請求項7の何れか一つに記載の半導体レーザ装置において、

上記バリア層の I I I 族元素中における G a の組成比を表す上記 x の値は 1 より小さいことを特徴とする半導体レーザ装置。

【請求項9】

請求項1乃至請求項8の何れか一つに記載の半導体レーザ装置において、

上記活性領域とクラッド層との間に、AIGaAsで構成されたガイド層を備えたことを 特徴とする半導体レーザ装置。

【請求項10】

請求項1乃至請求項9の何れか一つに記載の半導体レーザ装置において、

上記クラッド層はA1GaAsで構成されていることを特徴とする半導体レーザ装置。

【請求項11】

請求項1乃至請求項8の何れか一つに記載の半導体レーザ装置において、

上記活性領域とクラッド層との間にInGaPまたはInGaAsPで構成されたガイド層を備えると共に、

上記クラッド層はA1GaInPまたはInGaPで構成されていることを特徴とする半 50

10

20

導体レーザ装置。

【請求項12】

請求項1乃至請求項11の何れか一つに記載の半導体レーザ装置において、

上記バリア層のV族元素中におけるPの組成比を表わす上記yの値は0.25よりも大きいことを特徴とする半導体レーザ装置。

【請求項13】

請求項1乃至請求項12の何れか一つに記載の半導体レーザ装置において、

上記バリア層のV族元素中におけるPの組成比を表わす上記 yの値は0.6よりも小さいことを特徴とする半導体レーザ装置。

【請求項14】

請求項1乃至請求項13の何れか一つに記載の半導体レーザ装置を、発光装置として用いたことを特徴とする光ディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、活性領域にAlを含まない発振波長780nm帯(760nmより大きく800mより小さい)の半導体レーザ装置、および、その半導体レーザ装置を用いた光ディスク装置に関する。

[0002]

【従来の技術】

20

10

CD (コンパクトディスク) やMD (ミニディスク) 等のディスクを再生するための半導体レーザ装置として、780 n m帯の半導体レーザ装置が広く使用されている。その中でも、高速書き込み可能なCD-R (CDrecordable) 用の半導体レーザ装置として、120 mW以上の高出力でも信頼性の高い半導体レーザ装置が強く望まれている。

【0003】 レンスで #

ところで、井戸層/バリア層にALが入っている従来のALGaAs量子井戸構造の場合には、特に高温,高出力時における信頼性が低下するという問題がある。これは、ALが活性な物質であるために酸素等の微量の不純物とも反応してしまい、材料の劣化を増幅してしまう為と考えられている。それに対抗する1つの方法として、上記井戸層/バリア層にALが入っていない構造にすることによって、高出力,高信頼性を実現することが考え 30 られる。しかしながら、実際には、780nm帯において、120mW以上の高出力で十分な信頼性を有する半導体レーザ装置は未だ出現していない。

[0004]

上記井戸層/バリア層にAIが入っていない構造の発振波長810nmの半導体レーザ装置として、特開平11-220244号公報、および、Japanese Journalof Applied Physics Vol. 38 (1999) pp. L387-L389に開示されているようなものが提案されている。そこで、この従来の技術に基づいて、780nmで発振する半導体レーザ装置を作成してみた。

[0005]

図13は、上記井戸層/バリア層にA1が入っていないInGaAsP系量子井戸構造の 40 半導体レーザ装置を示す構造図である。また、図14は、図13に示す半導体レーザ装置における活性領域近傍のエネルギーバンドギャップ (Eg) のダイアグラムを示す。

[0006]

図13において、1はn型GaAs基板、2はn型Alo..6 g Gao..g As下部クラッド層、3はIno..4 g 4 Gao..5 1 6 P下部ガイド層、4は活性領域である。ここで、活性領域4は、バリア層5と井戸層6とから成る単一量子井戸(SQW)構造を有している。また、7はIno..4 g 4 Gao..5 1 6 P上部ガイド層、8はp型のAlo..6 g Gao..g 7 As上部クラッド層、9はp型のGaAs保護層、10はSiO2電流ブロック層、11はn側電極、12はp側電極である。バリア層5は、Ino..4 Gao..6 Pで構成され、歪は引張歪-0.62%で、層厚は5a及び5b共に5nmである 50

。尚、Ino. 4 Gao. 6 PoEgは、歪を考慮しない場合には 2.02 eV程度と算出されるが、引張歪による影響によって 1.93 $eV\sim1$.96 eV程度になるものと考えられる。井戸層 6 は、Ino. 162 Gao. 83 Aso. 67 1 Po. 32 9 で構成され、Egは1.57 eVで、基板と格子整合しており、層厚は 5nmである。【0007】

従来の井戸層/バリア層にA1が入っていない半導体レーザ装置では、I10.484 G20.516 Pガイド層(E1.89eV)とI10G2AsP井戸層の間にI10.40 G20.6 Pバリア層を挿入して、井戸層に隣接する層(つまり、ガイド層3,7)とのE20をG37eV~0.40eVと、井戸層/バリア層にG41が入っている半導体レーザ装置よりも大きくしている。例えば、G41G2As系の半導体レーザ 10の量子井戸構造では、通常G4E20.25eV程度である。このように、上記従来の井戸層/バリア層にG41が入っていない半導体レーザ装置では、バリア層5に用いるG417リーの材料としてG4E26できるだけ大きくとれる材料を選び、確実なキャリアの閉じ込めを図っているのである。

[0008]

【発明が解決しようとする課題】

しかしながら、上記従来の井戸層/バリア層にAlが入っていないInGaAsP系量子井戸構造の半導体レーザ装置においては、以下のような問題がある。すなわち、上記半導体レーザ装置の特性を測定したところ、閾値電流は100mAと高く、且つ、微分効率は0.6W/Aとなって、良好な特性が得られない。また、温度特性も非常に悪く、80℃20以上では発振しないのである。尚、上記井戸層/バリア層にAlが入っているAlGaAs系の780nmm帯の半導体レーザ装置の場合は、閾値電流が35mA、微分効率が0.9W/A、温度特性が110K程度である。したがって、上記AlGaAs系の半導体レーザ装置と比較した場合には、逆に特性が悪化しているのである。

[0009]

そこで、この発明の目的は、ΔEgの大きさに拘らず特性を著しく向上させることができるAlフリーの半導体レーザ装置、および、その半導体レーザ装置を用いた光ディスク装置を提供することにある。

[0010]

【課題を解決するための手段】

上記目的を達成するため、第1の発明は、GaAs基板上に、少なくとも、下部クラッド層と、1つまたは複数の井戸層とバリア層とが積層されて成る量子井戸を含む活性領域と、上部クラッド層が形成された発振波長が760nmより大きく且つ800nmより小さい半導体レーザ装置において、上記バリア層を、上記井戸層よりもバンドギャップエネルギーが大きい $In_{1-x}Ga_xAs_{1-x}P_x$ で構成すると共に、上記井戸層の格子定数をa1とする一方、上記バリア層の格子定数をa2とした場合に、以下の関係が成立することを特徴としている。

$0 < x \le 1$

0.2 < y < 0.75

 $| (a2-a1) / a1 | \times 100 > 0.65$

[0011]

後に詳述するように、780nm帯の半導体レーザ装置にInGaPバリア層を用いた従来の場合には、

- 1) バリア層のEvの広がりによるホールの井戸層への注入効率の低下
- 2) | ΔΕ c | 小による電子のオーバーフロー

が生じ、特性不良の原因となっている。

[0012]

ところで、InGaAsPは、組成を変えると、同じEgであってもコンダクションバンドのエネルギー(Ec)とバレンスバンドのエネルギー(Ev)の値は変わってくる。バリア層にInGaAsPを用いた場合、同じEgでは、InGaP組成に近づけるとEg 50

はバレンスバンド側に広がり、井戸層とバリア層との $|\Delta Ev|$ は大きくなる一方、 $|\Delta Ec|$ は小さくなる。逆に、GaAsP組成に近づけるとEgはコンダクションバンド側に広がり、井戸層とバリア層との $|\Delta Ev|$ が小さくなる一方、 $|\Delta Ec|$ は大きくなる。そして、Evの変化は特にInGaAsP中のP元素の組成に関係し、Ecの変化は特に井戸層との歪量の差に関係する。

[0013]

上記構成によれば、上記バリア層をGaAsPまたはInGaAsPとし、P元素の組成比を 0. 2よりも大きく且つ 0. 75よりも小さくしているので、従来の場合の<math>InGaPバリア層に比べ、GaAs 基板に対するEv の差 $|\Delta Ev| 0$ |を小さく設定できる。したがって、ガイド層からの井戸層へのホールの注入の効率が大幅に改善される。

[0014]

さらに、上記バリア層の井戸層に対する歪量を0.65%以上にしている。したがって、上記バリア層と井戸層とのΔΕcが、0.12eV程度以上に設定される。この0.12eV程度とは、A1GaAs系半導体レーザの量子井戸構造において、バリア層としてII族のA1組成が0.27程度のA1GaAsを用いた場合の、バリア層と井戸層とのΔΕcに相当する。したがって、上記井戸層からの電子のオーバーフローが抑制される。【0015】

こうして、上記InGaPバリア層を用いた従来の半導体レーザ装置における特性不良の原因が解消され、Egが小さいため効果が得られないと考えられていたGaAsPまたはGaAsPに近い組成のInGaAsPを用いた780nm帯の半導体レーザ装置の特性 ²⁰が、著しく向上されるのである。

[0016]

また、1 実施例では、上記第1の発明の半導体レーザ装置において、上記G a A s 基板の格子定数を a 0 とした場合に、(a 1 - a 0) / a 0 の値は正の値である。

[0017]

この実施例によれば、上記井戸層のGaAs基板に対する歪は圧縮歪となっている。したがって、例えば、上記バリア層の格子定数a2を上記GaAs基板の格子定数a0より小さい引張歪にした場合であっても、活性領域全体としての平均的な歪量を抑制することができる。したがって、結晶内の欠陥の量を減らして信頼性の向上を図ることができ、上記活性領域全体としての臨界膜厚が増大するため上記バリア層の層厚を厚くできる。また、上記井戸層は圧縮歪であるため、偏光モードがTEモードの半導体レーザ装置が得られる

[0018]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記井戸層にA1元素は含まれていない。

[0019]

この実施例によれば、上記井戸層およびバリア層には、活性な物質であるために酸素等の 微量の不純物とも反応するAl元素は含まれていない。したがって、高温,高出力時にお いても高い信頼性が得られる。

[0020]

また、1 実施例では、上記第1の発明の半導体レーザ装置において、上記井戸層が InGaAsPで構成されている。

[0021]

この実施例によれば、InGaAsP井戸層は、GaAs 基板に比較してEgがバレンスバンド側に広がって $|\Delta Ec0| < |\Delta Ev0|$ となる。逆に、AIGaAs を井戸層とした場合は井戸層のEgはコンダクションバンド側に広がって $|\Delta Ec0| > |\Delta Ev0|$ | となる。したがって、上記InGaAsP井戸層とバリア層とを組み合せた場合は、AIGaAs を井戸層とした場合に比較して、井戸層とバリア層との $|\Delta Ec|$ がより大きく、 $|\Delta Ev|$ がより小さくなる。したがって、井戸層とバリア層との $|\Delta Ec|$ が大きくなって電子のオーバーフローが抑制され、さらに低閾値電流化、高微分効率化、高温度 50

特性化が図られる。

[0022]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記バリア層のうちの何れかあるいは総でが、上記井戸層側とは反対側の面においてA1GaAs層に接触している。

[0023]

この実施例によれば、上記バリア層はAIGaAs層に接触することによって、上記コンダクションバンド側において、上記AIGaAs層との間で大きなバリアが形成される。したがって、上記AIGaAs層を井戸層側とは反対側に位置させることによって、上記井戸層からバリア層にオーバーフローした一部の電子が更に上記AIGaAs層へオーバ 10-フローすることが抑制される。こうして、上記井戸層への電子の閉じ込め効果が更に増加されて、特性が更に向上される。

[0024]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記AIGaAs層に接触しているバリア層は上記活性領域における最外に位置している。

[0025]

この実施例によれば、上記バリア層に接触しているAIGaAs層は上記活性領域における最外に位置している。したがって、一部の電子が活性領域外にまでオーバーフローすることが抑制され、上記電子の閉じ込め効果がより増加される。

[0026]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記AIGaAs層に接触しているバリア層の層厚は4nmよりも大きくなっている。

[0027]

この実施例によれば、上記AlGaAs層に接触しているバリア層の層厚が4nmよりも大きいので、上記AlGaAs層におけるAlの影響が大幅に抑制されて、高温、高出力時においても高い信頼性が得られる。

[0028]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記バリア層のII I族元素中におけるGaの組成比を表す上記xの値は1より小さくなっている。

[0029]

この実施例によれば、InGaAsPバリア層のIn元素によって転位の増殖が抑えられ、更に高い信頼性が得られる。

[0030]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記活性領域とクラッド層との間に、A1GaAsで構成されたガイド層を備えている。

[0031]

この実施例によれば、上記コンダクションバンド側において、上記活性領域とAIGaAsガイド層との間に大きなバリアが形成される。したがって、上記活性領域外であるガイド層までの電子のオーバーフローが抑制されて、InGaAsPガイド層を用いた場合に比べて、閾値電流および特性温度に対して顕著な向上が図られる。さらに、上記GaAs 40基板に対する格子整合も図られる。

[0032]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記クラッド層はAlGaAsで構成されている。

[0033]

[0034]

50

20

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記活性領域とクラッド層との間にはInGaPまたはInGaAsPで構成されたガイド層を備えると共に、上記クラッド層はAlGaInPまたはInGaPで構成されている。

[0035]

この実施例によれば、上記ガイド層をInGaPあるいはInGaAsPとしているが、 上記コンダクションバンド側においては、上記第1の発明におけるInGaAsPバリア 層が、井戸層とガイド層の間のバリアとして機能することになる。したがって、上記バリ ア層の層厚を最適に選ぶことによって、電子が上記井戸層内に充分に留められて良好な素 子特性が得られる。

[0036]

さらに、上記クラッド層を $A \mid G \mid a \mid n$ Pまたは $I \mid n \mid G \mid a \mid P$ としている。このように、上記 $G \mid a \mid A \mid s \mid a \mid b \mid b$ を $A \mid G \mid a \mid a \mid b \mid b$ といの差 $\mid \Delta \mid E \mid v \mid 0 \mid b$ 上記ガイド層である $I \mid n \mid G \mid a \mid P \mid b$ を上記クラッド層として用いることによって、上記クラッド層の $\mid \Delta \mid E \mid v \mid 0 \mid b$ がガイド層よりも大きいバンド構造が得られる。したがって、上記井戸層へのホールの注入が問題なく行われるのである。

[0037]

さらに、上記井戸層およびバリア層は元より、上記活性領域外のガイド層にもAIは含まれていない。したがって、高温、高出力動作時においても更に高い信頼性を得ることができる。

[0038]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記バリア層のV族元素中におけるPの組成比を表わす上記yの値は、0.25よりも大きくなっている。

[0039]

この実施例によれば、上記バリア層の $|\Delta E \vee 0|$ を上記井戸層の $|\Delta E \vee 0|$ よりも確実に大きくすることで、注入されたホールが上記井戸層により確実に閉じ込められる。

[0040]

また、1実施例では、上記第1の発明の半導体レーザ装置において、上記バリア層のV族元素中におけるPの組成比を表わす上記yの値は、0.6よりも小さくなっている。

[0041]

この実施例によれば、上記バリア層の $| \Delta \mathbf{E} \mathbf{v} 0 |$ をより確実に小さくできる。したがっ 30 て、上記ガイド層からのバリア層へのホールの注入がより確実に行われる。

[0042]

また、第2の発明の光ディスク装置は、上記第1の発明の半導体レーザ装置を発光装置として用いたことを特徴としている。

[0043]

上記構成によれば、CD/MD用の光ディスク装置の発光装置として、従来よりも高い光出力で安定に動作する半導体レーザ装置が用いられている。したがって、光ディスクの回転数を従来よりも高速にしてもデータの読み書きが可能となり、特にCD-R,CD-RW(CDrewritable)等への書き込み時に問題となっていた光ディスクへのアクセス時間が格段に短くなる。

[0044]

【発明の実施の形態】

以下、この発明を図示の実施の形態により詳細に説明する。

[0045]

<第1実施の形態>

図1は、本実施の形態の半導体レーザ装置における構成を示す図である。本実施の形態は、InGaAsP井戸層/GaAsPバリア層の量子井戸活性領域を有する発振波長が780nmの半導体レーザ装置に関する。

 $[0\ 0\ 4\ 6\]$

図1において、21はn型GaAs基板、22はn型GaAsバッファ層(層厚0.5μ 50

10

20

m)、2 3 は n型A 1。. $_5$ G a。. $_5$ A s 下部クラッド層(層厚 1. $7\,\mu$ m)、2 4 は A 1。. $_3$ $_5$ G a。. $_6$ $_5$ A s 下部ガイド層(層厚 4 5 n m)、2 5 は活性領域である。ここで、活性領域 2 5 は、バリア層 2 6 と井戸層 2 7 とから成る二重量子井戸(D Q W)構造を有している。また、2 8 は A 1。. $_3$ $_5$ G a。. $_6$ $_5$ A s 上部ガイド層(層厚 4 5 n m)、2 9 a は p型 A 1。. $_5$ G a。. $_5$ A s 上部第 1 クラッド層(層厚 0. 2 $_\mu$ m)、3 0 は p型 G a A s エッチングストップ層(層厚 3 n m)、2 9 b は リッジストライプ形状の p型 A 1。. $_5$ G a。. $_5$ A s 上部第 2 クラッド層(層厚 1. 2 8 $_\mu$ m)、3 1 は p型 G a A s 保護層(層厚 0. 7 $_\mu$ m)、3 2 は n型 A 1。. $_7$ G a。. $_5$ A s 第 1 電流プロック層(層厚 0. 6 $_\mu$ m)、3 3 は n型 G a A s 第 2 電流ブロック層(層厚 0. 7 $_\mu$ m)、3 4 は p型 G a A s 埋込み保護層(層厚 0. 6 $_\mu$ m)、3 5 は p型 G a A s キャッ 10 プ層(層厚 2 $_\mu$ m)、3 6 は n 側電極、3 7 は p 側電極である。

[0047]

[0048]

ところで、従来のAIGaAs系の量子井戸構造の半導体レーザ装置では、通常 Δ Egは0.25 e V程度であり、本実施の形態のごとく Δ Egが0.20 e V程度になるとキャリアがオーバーフローして特性の劣化が見られるようになる。

[0049]

上記構成のInGaAsP井戸層/GaAsPバリア層半導体レーザ装置は、以下の様にして作成することができる。すなわち、先ず、(100)面を有するGaAs基板21上に、GaAsバッファ層22、AlGaAs下部クラッド層23、AlGaAs下部ガイド層24、3層のバリア層26と2層の井戸層27を交互に配置して成るDQW構造の活性領域25、AlGaAs上部ガイド層28、AlGaAs上部第1クラッド層29a、GaAsエッチングストップ層30、AlGaAs上部第2クラッド層29b、GaAs保護層31を、有機金属気相成長法によって順次結晶成長させる。さらに、GaAs保護層31上におけるリッジストライプ部を形成する部分に、ストライプ方向が(011)方向であるようなレジストマスクを写真工程によって形成する。

[0050]

次に、上記レジストマスク以外の部分におけるGaAs保護層31およびA1GaAs上部第2クラッド層29bのみをエッチング除去して、リッジストライプ部を形成する。そして、このリッジストライプ部の上側及び両側を含む全体に、A1GaAs第1電流ブロック層32、GaAs第2電流ブロック層33、GaAs埋込み保護層34を、有機金属気相成長法によって順次結晶成長させる。その際に、上記リッジストライプ部上には、リッジストライプ部の形状を反映して電流ブロック層32,33および埋込み保護層34が40凸状に形成される。

[0051]

20

50

[0052]

 $[0\ 0\ 5\ 3]$

尚、比較のため、図1におけるバリア層26のみを、図13に示すInGaAsP系量子井戸構造の半導体レーザ装置におけるバリア層5と同じIn。。Ga。GPとしたInGaAsP井戸層/InGaPバリア層の半導体レーザ装置も同様に形成して、GaAsPバリア層とInGaPバリア層との違いによる素子特性の比較を行った。尚、InGaPバリア層を用いた比較用の半導体レーザ装置の場合には、井戸層とバリア層との Δ Egは0.36eV \sim 0.39eVとなる。

両半導体レーザ装置とも、共振器長800 μ mで壁開し、端面反射コーティングを施し、ステムにマウントした後、素子特性の測定を行った。その結果、GaAsPバリア層を用いた本実施の形態の半導体レーザ装置では、閾値電流 Ith=25mA、微分効率 η d=1.0W/A、温度特性T0=140Kを呈した。これに対して、InGaPバリア層を用いた上記比較用の半導体レーザ装置では、閾値電流 Ith=38mA、微分効率 η d=0.52W/A、温度特性T0=108Kを呈した。このように、InGaPバリア層を用いた比較用の半導体レーザ装置は、上述したように、井戸層とバリア層との ΔE g は大きいにも拘らず、良好な特性は得られない。一方、GaAsPバリア層を用いた本実施の形態の半導体レーザ装置では、上記 ΔE g は 0.20eV と非常に小さいにも拘らず、InGaPバリア層と比べて素子特性を著しく向上できるのである。以下、その理由に付いて検証してみる。

[0054]

(Ec, Evの机上検討)

半導体のEgは、コンダクションバンドのエネルギー(Ec)およびバレンスバンドのエネルギー(Ev)の差である。しかしながら、例え同じEgであっても、EcおよびEvは材料系や組成等によって相違する。一般に、AlGaAs系はEc,Evが高いのに対して、InGaAsP系ではEc,Evが低いと言われている。異なる半導体層間のヘテロ界面においては、両層間のEc同士の差及びEv同士の差(Δ Ec, Δ Ev)が電子やキャリアの振る舞いに影響を与える。そこで、本実施の形態の半導体レーザ装置および比較用の半導体レーザ装置において井戸層およびバリア層に用いているInGaAsPに対するEc,Evについて着目し、その関係について検討を行ってみる。

[0055]

[0056]

そうすると、比較例に相当する I n G a P の $| \Delta E c 0 | / | \Delta E g 0 |$ については $| \Delta E c 0 | / | \Delta E g 0 | = 0$. 18

という数値がAppl. Phys. Lett. 66, pl785 (1995) に開示されており、これを検討に使用する。一方、本実施の形態に相当するGaAsPの $|\Delta Ec0|$ / $|\Delta Eg0|$ については、上記InGaPより大であることは一般に知られてはいるが、具体的な数値は不明である。そこで、GaAsPの $|\Delta Ec0|$ / $|\Delta Eg0|$ として幾つかの値を設定し、更にInGaPとGaAsPとの間の組成であるInGaAsPについては、組成に応じてInGaPの値とGaAsPの値との間で変化すると仮定し、各組成におけるInGaAsPの $|\Delta Eg0|$, $|\Delta Ec0|$, $|\Delta Ev0|$ がどのようになるかを検討してみる。ここでは、実際のGaAsP特性に最も合った例として、GaAsPの $|\Delta Ec0|$ / $|\Delta Eg0|$ を0. 60とした場合を示す。尚、InGaAsP系のEg自体についても、実験結果に基づいて組成との関係を推定した。これは、InGaAsP系のEgについて、組成との関係式が幾つか提示されてはいるが、互いに相違しており明確になっていないためである。

[0057]

図4は、横軸×をIII族のGa組成とする一方、縦軸yをV族のP組成とした平面上に、同じEgとなる(x,y)を結んで等Eg曲線を描いた図である。図5は、横軸×をIII族のGa組成とする一方、縦軸yをV族のP組成とした平面上に、同じEcとなる(x,y)を結んで等Ec曲線を描いた図である。尚、 $|\Delta$ Ec0|を50meV毎の等間隔で描いている。また、図6は、同様に、横軸×をIII族のGa組成とする一方、縦軸yをV族のP組成とした平面上に、同じEvとなる(x,y)を結んで等Ev曲線を描いた図である。尚、 $|\Delta$ Ev0|を50meV毎の等間隔で描いている。また、図7は、横軸×をIII族のGa組成とする一方、縦軸yをV族のP組成とした平面上に、GaAsに対する歪量が同じになる(x,y)を結んで等歪曲線(等格子定数曲線)を描いた図である。

[0058]

[0059]

(机上検討図と本実施の形態の比較、図4~図7から判る効果)

図4~図7に、本実施の形態半導体レーザ装置におけるInGaAsP井戸層27および ²⁰ GaAsPバリア層26の各組成(x, y)点を、夫々○, ●で示している。図5より | ΔEc0 | を読み取り、図6より | ΔEv0 | を読み取り、GaAs基板21, InGaAsP井戸層27およびGaAsPバリア層26のエネルギーバンドの関係を描くと図3に示すようになる。さらに、素子構造の活性領域近傍のエネルギーバンドを描くと図2(a)に示すようになる。尚、図2(b)に、InGaPバリア層を用いた比較用の半導体レーザ装置の場合を示している。

[0060]

図2において、本実施の形態の半導体レーザ装置と比較用の半導体レーザ装置とを比較すると、先ず第1に明確に判ることは、図2(b)に示すように、InGaPバリア層の半導体レーザ装置では、Ev側に、ガイド層から流れ込むホールに対して非常に大きなバリアが形成されていることである。このバリアの影響によって井戸層にホールが注入され難くなり、閾値電流の上昇や微分効率の低下が発生したと推測される。これに対して、GaAsPバリア層の半導体レーザ装置の場合には、図2(a)に示すように、Ev側にバリアが存在せず、電子およびホール共にキャリアの注入が効率よく行われて、閾値電流の低減および微分効率の増大に繋がったと推定される。

[0061]

第2に、上記G a A s Pバリア層の半導体レーザ装置は、I n G a Pバリア層の半導体レーザ装置よりもE g は小さいが、井戸層とバリア層とのE c 同士の差である | Δ E c | は逆に大きくなっていることが判る。このように、バリア層を G a A s P とすることによって | Δ E c | が大きくなるため、電子のオーバーフローがより抑制されて、更なる閾値電 40流の低減および微分効率の増大、また、温度特性の向上に繋がったと推定される。

[0062]

(組成および歪量の有効な範囲の決定)

図5および図6は、上述したようにGaAsPの | ΔEc0 | / | ΔEg0 | を0.60 と仮定した場合のものであり、真の曲線は不明である。しかしながら、本実施の形態の半 導体レーザ装置と比較用の半導体レーザ装置とから得られた素子特性が、上述したように 、図5および図6による推定に対して大きな齟齬がないために、図4~図7に示す曲線が 有する傾向は、大まかには実態を表わしていると判断される。

[0063]

以下、この判断に基づいて、InGaAsP組成がバリア層として有効に機能する | ΔΕ 50

c0 |および | △E v0 | の上限と下限とについて述べる。

[0064]

井戸層へのキャリア注入についてはホールが支配的と考え、 | Δ E v 0 | を不必要に大き くしないように設定する。また、井戸層からのキャリアのオーバーフローについては電子 が支配的と考え、 | △Ec0 | を不必要に小さくしないように設定することにする。尚、 発振波長が780nmの半導体レーザ装置におけるInGaAsP井戸層においては、| ΔEc0 | =約0.03 e V であり、 | ΔE v 0 | =約0.12 e V であると推定される 。但し、この値は、井戸層の歪量等によって変動するので厳密ではない。

[0065]

先ず、 | Δ E v 0 | の最小値については、バリア層と井戸層との Δ E v は少なくとも正の 10 値になる必要がある。したがって、 | ΔΕνΟ | >約0.12 e Vであり、図6からP組 成 0 . 15~ 0 . 3 0 付近に | Δ E v 0 | の境界が存在すると言える。

[0066]

次に、 | Δ E v 0 | の最大値については、ガイド層からのホールの注入を疎外しない程度 に抑える必要がある。ガイド層やクラッド層として、InGaPやAlGaAs等のGa As基板に格子整合する種々の材料や組成が用いられるが、少なくとも最も | ΔE v 0 | の大きい I n G a Pが用いられた場合よりも | Δ E v 0 | を小さくする必要があり、 | Δ Ev0 | <約0.38eV(図6におけるGaAsに対する歪量が0の破線とInGaP の線との交点での | ΔΕν0 | の値)となる。したがって、図6から、P組成が0.60 ~0.80である付近に | ΔE v 0 | の境界が存在すると言える。

[0067]

また、 | Δ E c 0 | の最小値については、井戸層からの電子のオーバーフローを防ぐため に、バリア層と井戸層のAEcが0.12eV程度以上になるように設定する必要がある 。この0.12eVは、AIGaAs系の半導体レーザ装置では、バリア層にIII族の A 1 組成が 0. 2 7 程度の A 1 G a A s を用いた場合に相当する。したがって、バリア層 の | ΔE c 0 | は、井戸層の | ΔE c 0 | が約 0 . 0 3 e V であるから、 | ΔE c 0 | > 約0.15eV(約0.03eV+0.12eV)となる。図5及び図7から判るように 等Ec線が等格子定数線と平行に近いことから、 | ΔEc0 | に関しては井戸層のGaA sに対する歪量からの歪量の差の値で境界を設定することができる。すなわち、井戸層の 歪量との歪量の差が-0.65%~-0.85%の付近に | ΔΕc0 | の境界が存在する 30 と言える。

[0068]

次に、 | Δ E c 0 | の最大値については、電子の注入は相当大きなバリアでなければあま り影響はないと考え、特に考慮しないものとする。

[0069]

以上、大まかに推定したP組成および歪量の境界に基づいて、実際に幾種類かのバリア層 の半導体レーザ装置を作成して特性を測定した結果によると、P組成を 0. 2以下および 0.75以上に設定すると、素子特性が大幅に低下する。したがって、P組成については 、0.2よりも大きく且つ0.75よりも小さい範囲が有効なのである。更には、0.2 5よりも大きく且つ0.6よりも小さい範囲で、極めて有効な素子特性を得ることができ るのである。また、井戸層の歪量との歪量の差を-0.65%以下に設定すると、素子特 性が低下する。したがって、井戸層の歪量との歪量の差については、一0.65%よりも 大きい範囲が有効なのである。

[0070]

尚、上述した | Δ Ε g 0 | , | Δ Ε c 0 | , | Δ Ε v 0 | の推定値は、歪によるバンド構 造の変化については明確なデータが無いために考慮しておらず、真の値を示しているとは 限らない。しかしながら、本実施の形態において得られた範囲は、飽くまでもこれらの推 定を参考にして実際に半導体レーザ装置を作成し、その特性を検討した結果に基づいて得 たものである。したがって、上記推定値の真偽によって、上記範囲が左右されるものでは ない。

[0071]

(電子オーバーフローに対するAIGaAsガイド層の利点)

上記コンダクションバンド側においては、AIGaAsをガイド層として用いることによって、GaAsPバリア層26a,26cとAIGaAsガイド層24,28との間でも大きなバリアが形成される。したがって、例え電子の一部がバリア層26a,26cにオーバーフローしたとしても、ガイド層24,28へのオーバーフローを抑制することができ、井戸層27への電子の閉じ込め効果が更に増加して、素子特性の向上に非常に効果がある。これは、図13に示す従来のInGaAsP系半導体レーザ装置と上記比較用のInGaPバリア層の半導体レーザ装置とを比較した場合に顕著に現れる。両者は、井戸層がInGaAsPでありバリア層がInGaPであり略同じ材料であるのに対して、ガイ10ド層に前者がInGaPで後者がAIGaAsでの違いがあるだけである。しかしながら、素子特性には、閾値電流は前者が100mAで後者が38mAであり、温度特性は前者が80℃では発振せず評価できないほど非常に悪いのに対し、後者が108Kであり、大きな差が現れている。以上のことから、AIGaAsをガイド層として用いる効果が判る

[0072]

(A 1 フリーによる高信頼性)

本実施の形態においては、井戸層27および井戸層27に接するバリア層26にA1を含んでいないために、高温,高出力時においても、高い信頼性を得ることが可能である。また、バリア層26にInを添加してInGaAsPバリア層とすることによって、更に高 20い信頼性を得ることが可能になる。これは、Inが転位の増殖を抑えているためと考えられる。

[0073]

また、本実施の形態においては、上記活性領域における最外のバリア層 2 6 a, 2 6 cの外側がA 1 G a A s のガイド層 2 4, 2 8 となっている。そのため、G a A s P バリア層 2 6 の層厚を4 n m以下にすると、高温、高出力時での信頼性が低下する。これは、ガイド層 2 4, 2 8 の A 1 の影響と考えられる。したがって、G a A s P バリア層 2 6 の層厚を4 n m より大きくすることによって、ガイド層 2 4, 2 8 の A 1 の影響を大幅に抑制することができ、高温、高出力時においても高い信頼性を得ることができる。

[0074]

(InGaAsP井戸層によるEc, Evに関する利点)

図3から判るように、上記InGaAsP井戸層27は、GaAs基板21に比較して、Egはバレンスバンド側に広がって $|\Delta Ec0| < |\Delta Ev0|$ となる。これとは逆に、GaAsPバリア層26は、Egはコンダクションバンド側に広がって $|\Delta Ec0| > |\Delta Ev0|$ となる。したがって、InGaAsP井戸層27とGaAsPバリア層26との組み合わせは、例えばA1GaAsを井戸層とした場合に比較して、井戸層27とバリア層26との ΔEc および ΔEv を考えると、 $|\Delta Ec|$ をより大きく、 $|\Delta Ev|$ をより小さくできる。すなわち、本実施の形態によれば、小さなEgのバリア層で $|\Delta Ev|$ を小さいままに $|\Delta Ec|$ を大きくすることが可能になる。その結果、井戸層27とバリア層26との $|\Delta Ec|$ を大きくして電子のオーバーフローを抑制し、より低閾値電流化40,高微分効率化,高温度特性化が可能になるのである。

[0075]

(無歪井戸層への引張歪バリア層の影響による効果)

本実施の形態においては、上記井戸層27としてGaAs基板21に格子整合したInGaAsPを用いたが、両側に在るバリア層26の引張歪の影響によって井戸層27も歪の影響を受けている。したがって、通常は、井戸層に歪を導入するのであるが、本実施の形態においては、井戸層27に歪を導入することなく歪の効果を得ることができ、低閾値電流化および高出力化が可能になるのである。

[0076]

また、本実施の形態における半導体レーザ装置は、TMモード発振を行う。引張歪層の発 50

光は、ライトホールバンドが発光に寄与してTMモードとなることが知られている。本実施の形態におけるInGaAsP井戸層27には、格子定数がGaAs基板21と一致しているにも拘らず、GaAsPバリア層26の引張歪の影響を受けて引張歪のエネルギーが加えられてTMモードとなるのである。通常、井戸層に引張歪を入れてTMモードとする場合、バリア層も引張歪であると、活性領域全体としての歪量が非常に大きくなって信頼性が低下してしまう。ところが、本実施の形態の場合には、無歪の井戸層を用いているために活性領域全体としての歪量を抑制することができ、高い素子特性と高い信頼性の両立が可能なTMモードの半導体レーザ装置が得られるのである。

[0077]

尚、上述のように、本実施の形態においてはTMモードを選択しているが、バリア層の引 10 張歪量を下げることや井戸層を圧縮歪とすること等によって、TEモードを選択すること も可能である。

[0078]

以上のごとく、本実施の形態においては、半導体レーザ装置における活性領域 25 を、バリア層 26 と井戸層 27 とから成るDQW構造とし、バリア層 26 を歪量 -1%のGaA $s_{0...,2}$ $P_{0...,2}$ ® で構成し、井戸層 27 を GaAs 基板 21 と格子整合した $In_{0...,1}$ 6 2 $Ga_{0...,3}$ 8 $As_{0...,4}$ $P_{0...,3}$ $P_{0...,3}$ $P_{0...,4}$ で構成している。このように、バリア層 26 を、0... 2 よりも大きく且つ 0... 75 よりも小さい P 組成であって、-0... 65 % よりも大きい井戸層の歪量(=基板の歪量)との歪量の差を有する GaAs P とし、 $In_{0...,4}$ GaAs P 井戸層 27 と組み合せることによって、バリア層 26 と井戸層 27 とガイド層 24 28 の |AEvO| を、井戸層 27 の |AEvO| |AEvO|

[0079]

したがって、井戸層 2 7 とバリア層 2 6 との Δ E g は 0 . 2 0 e V と小さいにも拘わらず、閾値電流 I t h=2 5 m A 、微分効率 η d=1 . 0 W \not \not A 、温度特性 T 0=1 4 0 K と、 I n G a P バリア層と比べて素子特性を著しく向上させることができるのである。

[0800]

その際に、上記GaAsPバリア層26の層厚を4nmより大きくしているので、AlGaAsガイド層24,28のAlの影響を大幅に抑制することができ、高温,高出力時に高い信頼性を得ることができる。

[0081]

また、上記GaAsPバリア層26にInを添加してInGaAsPバリア層とすることによって、転位の増殖を抑えることができ、更に高い信頼性を得ることができるのである

[0082]

(種々の構成の自由度)

本実施の形態においては、上記InGaAsP井戸層27をGaAs基板21と同じ格子 40 定数としたが、InGaAsP井戸層27に歪を加えてもGaAsPバリア層26は有効であり、素子特性の向上に繋がる。また、本実施の形態における井戸数は2層であるが、これに限るものではなく、任意の井戸数で同様の効果が得られる。また、本実施の形態においては埋込リッジ構造としたがこれに限定されるものではなく、リッジ構造、内部ストライプ構造,埋込へテロ構造等のあらゆる構造に対して同様の効果を得ることができる。【0083】

また、本実施の形態においては、上記基板としてn型基板を用いたが、p型基板を用いると共に各層のn型とp型とを入れ換えても同様の効果を得ることができる。また、波長を780nmとしたがこれに限るものではなく、760nmよりも大きく且つ800nmよりも小さい所謂 780nm帯であれば同様の効果を得ることができるのである。

[0084]

<第2実施の形態>

図8は、本実施の形態の半導体レーザ装置における構成を示す図である。本実施の形態は、InGaAsP圧縮歪井戸層/InGaAsPバリア層の量子井戸活性領域を有する波長780nmの半導体レーザ装置に関する。

[0085]

図8において、41はn型GaAs基板、42はn型GaAsバッファ層(層厚0.5 μ m)、43aはn型Alo.4 Gao.6 As下部第2クラッド層(層厚3.0 μ m)、43bはn型Alo.5 Gao.5 As下部第1クラッド層(層厚0.2 μ m)、44は Alo.4 Gao.5 As下部第1クラッド層(層厚0.2 μ m)、44は Alo.4 Gao.5 As下部ガイド層(層厚0.1 μ m)、45は活性領域である 10。ここで、活性領域45は、バリア層46と井戸層47とから成るDQW構造を有している。また、48はAlo.4 Gao.5 As上部第1クラッド層(層厚0.1 μ m)、49aは p型Alo.5 Gao.5 As上部第1クラッド層(層厚0.2 μ m)、50は p型 GaAsエッチングストップ層(層厚3 n m)、49bは リッジストライプ形状の p型Alo.5 Gao.5 As上部第2クラッド層(層厚1.28 μ m)、51は p型GaAs保護層(層厚0.7 μ m)、52は n型Alo.7 Gao.3 As第1電流ブロック層(層厚0.6 μ m)、53は n型 GaAs第2電流ブロック層(層厚0.7 μ m)、54は p型 GaAs埋込み保護層(層厚0.6 μ m)、55は p型 GaAsキャップ層(層厚2 μ m)、56は n側電極、57は p側電極である。

[0086]

[0087]

尚、歪によるバリア層46および井戸層47のEgへの影響については、本材料組成付近でも明確ではないので、本実施の形態でも考慮しないものとする。

[0088]

上記構成の I n G a A s P 圧縮歪井戸層 / I n G a A s P バリア層半導体レーザ装置は、上記第1 実施の形態の場合と同様の成長,プロセスの手法によってストライプ幅 2μ mの埋込リッジ構造を形成することによって作成することができる。そして、得られた半導体レーザ素子を共振器長 800μ m で壁開し、端面反射コーティングを施し、ステムにマウントした後に、素子特性の測定を行った。その結果、閾値電流 I t h = $29\,\mathrm{mA}$ 、微分効率 $100\,\mathrm{mag}$ d = $100\,\mathrm{mag}$ s $100\,\mathrm{mag}$ m d = $100\,\mathrm{mag}$ n d = $100\,\mathrm{mag}$ s $100\,\mathrm{mag}$ m d = $100\,\mathrm{mag}$ m d = $100\,\mathrm{mag}$ s $100\,\mathrm{mag}$ m d = $100\,\mathrm{mag}$ s $100\,\mathrm{mag}$ m d = $100\,\mathrm{mag}$ s $100\,\mathrm{mag}$ m d = $100\,\mathrm{mag$

[0089]

図9に、本実施の形態の半導体レーザ装置における活性領域近傍のエネルギーバンドを示 40 す。本半導体レーザ装置の場合にも、上記第1実施の形態における半導体レーザ装置の場合と同様に、バリア層46をP組成が0.6よりも小さいInGaAsPで構成しているため、バリア層にInGaPを用いた従来の半導体レーザ装置に比較して、井戸層47とバリア層46との間の | ΔEv | は小さいままに | ΔEc | を大きくすることができる。【0090】

図5および図6から判るように、本半導体レーザ装置におけるバリア層46の組成付近では等Ec線と等Ev線との組成に対する変化の仕方が大きく異なっており、適切な組成を選ぶことでバリア層46の | ΔEc0 | と | ΔEv0 | とをある程度独立に制御することが可能である。例えば、等Ec線が等格子定数線に略平行なことから、バリア層46のEcと歪量とを殆ど変えずにEvを変化させることも可能である。本実施の形態においては50

、上記第1実施の形態の半導体レーザ装置に比較して井戸層47とバリア層46との | Δ Ev丨が大きくなるようにIn組成およびP組成を調整している。これによって、井戸層 47へのホールの閉じ込めをも向上することが可能になる。

[0091]

尚、本実施の形態においては、図9と図2(b)との比較から判るように、バリア層にI nGaPを用いた従来の半導体レーザに比べて、バレンスバンドのバリアが小さく設定さ れている。したがって、本実施の形態においても電子およびホール共にキャリアの注入の 効率が大幅に改善されて、素子特性の向上に効果があるのである。さらに、井戸層47お よびこれに接するバリア層46にA1を含んでいないために、高温,高出力時においても 高い信頼性を得ることができる。

[0092]

また、本実施の形態においては、上記InGaAsPバリア層46は、GaAs基板41 から格子定数がずれて、ー1.45%の引張歪になっている。しかしながら、井戸層47 に圧縮歪を導入することによって活性領域全体としての平均的な歪量を抑制することがで き、井戸層を基板に格子整合させる場合に比較して、結晶内の欠陥の量を減らし、更なる 信頼性の向上を図ることができる。また、平均的な歪量を小さくしたことによって、活性 領域全体としての臨界膜厚も増大し、バリア層46a,46bの層厚を10nmと厚く設 定することができる。本実施の形態においても、活性領域における最外のバリア層 4 6 a ,46cの外側がA1GaAsから成るガイド層44,48となっているが、井戸層47 からAIGaAsガイド層44,48までの距離を10nmと大きくしているので、ガイ ド層44、48から活性領域へのAlの影響を更に小さくすることができ、高温、高出力 時においても高い信頼性を得ることができる。また、本実施の形態においては、上記バリ ア層46にInを添加してInGaAsP層としているため、Inによって転位の増殖を 抑えることによって、更に高い信頼性を得ることができるのである。

[0093]

本実施の形態においては、上記井戸層47として0.35%の圧縮歪を有するInGaA s Pを用いており、歪の効果を得ることができる。したがって、低閾値電流化および高出 力化が可能になる。尚、圧縮歪層の発光にはヘビーホールバンドが寄与するために、偏光 モードはTEモードとなることが知られている。本実施の形態における半導体レーザ装置 の偏光モードもTEモードであり、井戸層47を圧縮歪とすることによって、TEモード 30 の半導体レーザ装置を形成することができるのである。

[0094]

尚、本実施の形態においては、上記活性領域をInGaAsP圧縮歪井戸層/InGaA sP引張歪バリア層としたが、この組み合わせに限定されるものではない。InGaAs P無歪井戸層/InGaAsP引張歪バリア層あるいはInGaAsP圧縮歪井戸層/G aAsPバリア層の組み合わせも可能である。また、本実施の形態における井戸数は2層 であるが、これに限定されるものではなく、任意の井戸数で同様の効果を得ることができ る。また、本実施の形態においては、埋込リッジ構造としたがこれに限定されるものでは なく、リッジ構造、内部ストライプ構造、埋込ヘテロ構造等のあらゆる構造に対して同様 の効果を得ることができる。

[0095]

また、本実施の形態においては、上記基板としてn型基板を用いたが、p型基板を用いる と共に各層のn型とp型とを入れ換えても同様の効果を得ることができる。また、波長を 780nmとしたがこれに限定されるものではなく、760nmよりも大きく且つ800 nmよりも小さい所謂780nm帯であれば同様の効果を得ることができるのである。

[0096]

<第3実施の形態>

図10は、本実施の形態の半導体レーザ装置における構成を示す図である。本実施の形態 は、InGaAsP井戸層/GaAsPバリア層の量子井戸活性領域を有する波長780 nmの半導体レーザ装置に関する。

10

[0097]

図10において、61はn型GaAs基板、62はn型GaAsバッファ層(層厚0.5μm)、63はn型(Alo.sGao.s)。.s1。Ino.4s4 P下部クラッド層(層厚1.7μm)、64はGao.51をIno.4s4 P下部ガイド層(層厚50nm)、65は活性領域である。ここで、上記活性領域65は、バリア層66と井戸層67とからなるSQW構造を有している。また、68はGao.51をIno.4s4 P上部ガイド層(層厚50nm)、69aはp型(Alo.sGao.5)。.51をIno.4s4 P上部第1クラッド層(層厚0.2μm)、70はp型GaAsエッチングストップ層(層厚3nm)、69bはリッジストライプ形状のp型(Alo.sGao.5)。.51をIno.4s4 P上部第2クラッド層(層厚1.28μm)、71はp型Ga 10As保護層(層厚1.0μm)、72はSiN、電流プロック層、73はn側電極、74はp側電極である。

[0098]

尚、上記バリア層 66 は、 $GaAs_{0.75}$ $P_{0.25}$ で構成され、Eg は 1.73e V、歪は引張歪-0.89%で、層厚は 66a, 66b 共に 5nm である。また、井戸層 67 は、 $In_{0.27}$ $Ga_{0.73}$ $As_{0.55}$ $P_{0.45}$ で構成され、Eg は 1.55e Vで、歪は圧縮歪 0.35%で、層厚は 8nm である。尚、井戸層 67 とバリア層 66 との 65 と 65

[0099]

上記構成のInGaAsP井戸層/GaAsPバリア層半導体レーザ装置は、次のようにして作成される。すなわち、先ず、上記第1実施の形態の場合と同様の成長,プロセスの手法によってリッジストライプ部を形成する。そして、上記リッジストライプ部の上側及び両側を含む全体に、 SiN_* 電流ブロック層 72をプラズマ気相成長法によって成長させる。その際に、上記リッジストライプ部上には、リッジストライプ部の形状を反映して電流ブロック層 72が凸状に形成される。

[0100]

次に、上記電流ブロック層72上における上記凸状部の保護層71を除く領域にレジストマスクを形成する。そして、上記凸状部における保護層71の周囲の電流ブロック層72 30 をエッチングによって除去し、リッジストライプ部の頂部を露出させる。そして最後に、基板61の表面に n 側電極73を形成し、電流ブロック層72および保護層71の表面に p 側電極74を形成する。以上のようにして、ストライプ幅3μmのリッジ導波路構造を有するInGaAsP井戸層/GaAsPバリア層の半導体レーザ装置が形成される。

【0 1 0 1】 そして、得られた半導体レーザ素子を共振器長 8 0 0 μ mで壁開し、端面反射コーティングを施し、ステムにマウントした後、素子特性の測定を行った。その結果、閾値電流 I t h = 3 0 m A、微分効率 η d = 0. 9 W / A、温度特性 T 0 = 1 3 0 K であった。このように、リッジ導波路構造を有する G a A s P / リア層を用いた半導体レーザ装置では、 Δ E g / 0. 1 8 e V と非常に小さいにも拘らず、良好な素子特性を得ることができるので 40 ある。

[0102]

図11に、本実施の形態の半導体レーザ装置における活性層近傍のエネルギーバンドを示す。本半導体レーザ装置の場合にも、上記第1実施の形態における半導体レーザ装置の場合と同様に、バリア層66をP組成が0.60よりも小さいGaAsPで構成しているため、バリア層にInGaPを用いた従来の半導体レーザ装置に比較して、井戸層67とバリア層66との間の | △Ev | は小さいままに | △Ec | を大きくすることができる。したがって、特に、電子のオーバーフローを抑制することができ、低閾値電流、高微分効率、高温度特性等の良好な素子特性を得ることができる。尚、バリア層にInを添加したInGaAsPを用いても、P組成が0.75よりも小さければ、図5および図6から判る50

ように、井戸層とバリア層との間の $-\Delta E v - i$ は小さいままに $-\Delta E c - i$ を大きくすることができ、良好な素子特性を得ることができるのである。また、本実施の形態においては、 InGaAsP井戸層 6 7 の In組成およびP組成を上記第1実施の形態の場合よりも増やしており、井戸層 6 7 とバリア層 6 6 との間の $-\Delta Ec - i$ の増大を図っている。

[0103]

[0104]

さらに、本実施の形態においては、上記ガイド層64,68にInGaPを用いると共に、クラッド層63,69にAIGaInPを用いている。クラッド層がAIGaAsである場合には、上記第1実施の形態における比較例において図2(b)に示すように、In~0 GaPであるバリア層の | △Ev0 | がクラッド層よりも大きいために、ホールの井戸層への注入が阻害される。ところが、本実施の形態の場合には、InGaPよりも | △Ev0 | の大きいAIGaInPをクラッド層63,69に用いているために、図11に示すように、クラッド層63,69の | △Ev0 | がInGaPであるガイド層64,68よりも大きいバンド構造となって、井戸層67へのホールの注入が問題なく行われるのである。さらに、このバンド構造の場合には、井戸層67とこれに接するバリア層66a,66bとは元より、バリア層66a,66bの外側のInGaPガイド層64,68にもAlは含まれてはいない。そのために、高温,高出力動作時においても高い信頼性を得ることができるのである。

[0105]

尚、上述した井戸層67へのホール注入の効果および高温,高出力時での高信頼性の効果は、ガイド層としてInGaAsPを用いると共に、クラッド層としてInGaPを用いても同様に得ることができる。

[0106]

また、本実施の形態においては、上記 I n G a A s P 井戸層 6 7 を 0. 3 5 %の圧縮歪としているので、偏光モードがTEモードの半導体レーザ装置を得ることができる。

[0107]

尚、本実施の形態においては、上記活性領域をInGaAsP圧縮歪井戸層/GaAsP引張歪バリア層としたが、この組み合わせに限定されるものではない。InGaAsP無歪井戸層/GaAsP無歪井戸層/GaAsP引張歪バリア層、InGaAsP無歪井戸層/InGaAsP引張歪バリア層、あるいは、InGaAsP圧縮歪井戸層/InGaAsP引張歪バリア層の組み合わせも可能である。また、本実施の形態における井戸数は1層であるが、これに限定されるものではなく、任意の井戸数で同様の効果を得ることができる。また、本実施の形態においては、リッジ導波路構造としたがこれに限定されるものではなく、埋込リッジ構造、内部ストライプ構造、埋込へテロ構造等のあらゆる構造に対して同様の効果が得ることができる。

[0108]

また、本実施の形態においては、上記基板としてn型基板を用いたが、p型基板を用いると共に各層のn型とp型とを入れ換えても同様の効果を得ることができる。また、波長を780nmとしたがこれに限定されるものではなく、760nmよりも大きく且つ800 50

nmよりも小さい所謂780nm帯で同様の効果を得ることができるのである。

[0109]

<第4実施の形態>

本実施の形態は、上記各実施の形態における半導体レーザ装置を用いた光ディスク装置に関する。図12は、本実施の形態における光ディスク装置の構成図である。この光ディスク装置は、光ディスク81にデータを書き込んだり、光ディスク81に書き込まれたデータを再生したりするものであり、その際に用いる発光装置として、上記各実施の形態の何れか一つにおける半導体レーザ装置82を備えている。

[0 1 1 0]

以下、本光ディスク装置の構成および動作について説明する。本光ディスク装置は、書き込みの際には、半導体レーザ装置 8 2 から出射された信号光(データ信号が重畳されたレーザ光)はコリメートレンズ 8 3 を通過して平行光となり、ビームスプリッタ 8 4 を透過する。そして、 λ / 4 偏光板 8 5 によって偏光状態が調節された後に、レーザ光照射用対物レンズ 8 6 によって集光されて光ディスク 8 1 を照射する。こうして、データ信号が重畳されたレーザ光によって、光ディスク 8 1 にデータが書き込まれる。

[0111]

一方、読み出しの際には、上記半導体レーザ装置82から出射されたデータ信号が重畳されていないレーザ光が、上記書き込みの場合と同じ経路を辿って光ディスク81を照射する。そして、データが記録された光ディスク81の表面で反射されたレーザ光は、レーザ光照射用対物レンズ86およびλ/4偏光板85を経た後、ビームスプリッタ84で反射 20 されて進行方向が90°変更される。その後、再生光用対物レンズ87によって集光され、信号検出用受光素子88に入射される。そして、こうして信号検出用受光素子88内で、入射したレーザ光の強弱に応じて光ディスク81から読み出されたデータ信号が電気信号に変換され、信号光再生回路89によって元の情報信号に再生されるのである。

[0112]

本実施の形態における光ディスク装置においては、上述したように、従来よりも高い光出力で動作する半導体レーザ装置82を用いている。そのために、光ディスク81の回転数を従来よりも高速化しても、データの読み書きを行うことが可能である。したがって、従来、特にCD-R,CD-RW等への書き込み時に問題となっていた光ディスクへのアクセス時間を格段に短くすることができ、より快適な操作を実現した光ディスク装置を提供 30 することが可能になるのである。

[0113]

尚、本実施の形態においては、上記各実施の形態における半導体レーザ装置を記録再生型の光ディスク装置に適用した例について説明した。しかしながら、この発明はこれに限定される物ではなく、波長780nm帯の半導体レーザ装置を発光装置として用いる光ディスク記録装置や光ディスク再生装置にも適用可能であることは言うまでもない。

[0114]

また、上記第1および第2実施の形態においては、井戸層をバリア層で挟んで構成された 活性領域を更にA1GaAsガイド層で挟んだものを用いているが、この発明はこれに限 定されるものではない。例えば、バリア層自体の層内部にA1GaAs層の薄い層を設け 40 た構造を含む活性領域であっても差し支えない。

[0115]

【発明の効果】

以上より明らかなように、第1の発明の発振波長が780nm帯の半導体レーザ装置は、井戸層よりもバンドギャップエネルギーが大きいIn $_1$ 、 $_2$ 、 $_3$ 、 $_4$ 、 $_5$ でバリア層を構成すると共に、 $_5$ く $_4$ ≤ 1, $_5$ 、 $_5$ く $_5$ く $_5$ の関係が成立するようにしたので、従来の場合のInGaPバリア層に比べ、GaAs基板に対するEvの差 $_5$ 人Ev0 | を小さく設定できる。したがって、ガイド層からの井戸層へのホールの注入の効率が大幅に改善される。

[0116]

さらに、上記井戸層の格子定数をa1とする一方、上記バリア層の格子定数をa2とした場合、|(a2-a1)/a1|×100>0.65の関係が成立するようにしたので、上記バリア層と井戸層のコンダクションバンドエネルギーの差 Δ Ecを、0.12eV程度以上に設定できる。この0.12eV程度とは、AlGaAs系半導体レーザの量子井戸構造において、バリア層としてIII族のAl組成を0.27程度のAlGaAsを用いた場合の、バリア層と井戸層との Δ Ecに相当する。したがって、上記井戸層から電子がオーバーフローすることを抑制できる。

[0117]

すなわち、この発明によれば、InGaPバリア層を用いた半導体レーザ装置における特性不良の原因を解消することができ、従来は、Egが小さいため効果が得られないと考え ¹⁰られていたGaAsPあるいはInGaAsPを用いた780nm帯の半導体レーザ装置について、閾値電流の低減,微分効率の向上および温度特性の向上等、著しい特性の向上を図ることができるのである。

[0118]

また、1 実施例の半導体レーザ装置は、上記井戸層のGaAs基板に対する歪を圧縮歪としたので、上記バリア層の格子定数をGaAs基板の格子定数より小さい引張歪に設定した場合にも、活性領域全体としての平均的な歪量を抑制することができる。したがって、結晶内の欠陥の量を減らして信頼性の向上を図ることができ、上記活性領域全体としての臨界膜厚が増大するため上記バリア層の層厚を厚くすることができる。また、上記井戸層は圧縮歪であるため、偏光モードをTEモードにできる。

[0119]

また、1実施例の半導体レーザ装置は、上記井戸層およびバリア層に、活性な物質であるために酸素等の微量の不純物とも反応するA1元素を含んでいないので高温,高出力時においても高い信頼性を得ることができる。

[0120]

また、1 実施例の半導体レーザ装置は、上記井戸層を InGaAsPで構成したので、AIGaAsP 中戸層とした場合に比較して、井戸層とバリア層の Iodeta Lound Iodeta Iodeta

[0121]

また、1実施例の半導体レーザ装置は、上記バリア層のうちの何れかあるいは総てを、上記井戸層側とは反対側の面においてAlGaAs層に接触させているので、上記コンダクションバンド側において、上記AlGaAs層との間に大きなバリアを形成できる。したがって、上記AlGaAs層を井戸層側とは反対側に位置させることによって、電子の一部が上記AlGaAs層へオーバーフローすることを抑制できる。すなわち、上記井戸層への電子の閉じ込め効果を更に増加でき、特性を更に向上することができる。

[0122]

また、1実施例の半導体レーザ装置は、上記AIGaAs層に接触しているバリア層を上記活性領域における最外に位置させたので、電子の一部が活性領域外にまでオーバーフロ 40ーすることを抑制でき、上記電子の閉じ込め効果をより効果的に増加できる。

[0123]

また、1実施例の半導体レーザ装置は、上記AIGaAs層に接触しているバリア層の層厚を4nmよりも大きくしたので、上記AIGaAs層におけるAIの影響を大幅に抑制して、高温,高出力時においても高い信頼性を得ることができる。

[0124]

また、1実施例の半導体レーザ装置は、上記バリア層のIII族元素中におけるGaの組成比を表す上記xの値を1より小さくしたので、InGaAsPバリア層のIn元素によって転位の増殖を抑えて、更に高い信頼性を得ることができる。

[0125]

50

また、1 実施例の半導体レーザ装置は、上記活性領域とクラッド層との間に、A 1 G a A s で構成されたガイド層を備えたので、上記コンダクションバンド側において、上記活性領域とA 1 G a A s ガイド層との間に大きなバリアを形成することができる。したがって、上記活性領域外であるガイド層まで電子がオーバーフローするのを抑制できる。その結果、I n G a A s P ガイド層を用いた場合に比べて、閾値電流及び特性温度に対し顕著な向上を図ることができる。さらに、G a A s 基板に対する格子整合を図ることもできる。【0 1 2 6】

また、1 実施例の半導体レーザ装置は、上記クラッド層をAIGaAsで構成したので、バリア層あるいはガイド層からの電子のオーバーフローをさらに抑制することができる。また、AIGaAsはIII族組成の揺らぎが発生してもGaAs基板への格子整合性が 10 維持されることから、1 μ m以上の厚さを有する上記クラッド層全体が確実に上記GaAs基板に対する格子整合を図ることできる。

[0127]

また、1 実施例の半導体レーザ装置は、上記活性領域とクラッド層との間には I n G a P または I n G a A s P で構成されたガイド層を有しているが、上記コンダクションバンド側においては、上記第 1 の発明における I n G a A s P バリア層が井戸層とバリア層との間のバリアとして機能している。したがって、上記バリア層の層厚を最適に選ぶことによって、電子を上記井戸層内に充分に溜めることができ、良好な素子特性を得ることができる。

[0128]

さらに、 $|\Delta E \vee 0|$ が上記ガイド層である InGaPまたは InGaAsPよりも大き vAlGaInPまたは InGaPを上記クラッド層として用いるので、上記クラッド層 $o|\Delta E \vee 0|$ をガイド層よりも大きくして、上記井戸層へのホールの注入を問題なく行うことができる。

[0129]

さらに、上記井戸層およびバリア層は元より、上記活性領域外のガイド層にもAIを含まないようにして、高温、高出力動作時において更に高い信頼性を得ることができる。

[0130]

また、1 実施例の半導体レーザ装置は、上記 yの値を 0. 25 よりも大きくしたので、上記バリア層の $|\Delta E v 0|$ を上記井戸層の $|\Delta E v 0|$ よりも確実に大きくすることで、 $|\Delta E v 0|$ されたホールが上記井戸層により確実に閉じ込めることができる。

[0131]

また、1 実施例の半導体レーザ装置は、上記 yの値を 0. 6 よりも小さくしたので、上記バリア層の $|\Delta E v 0|$ をより確実に小さくして、上記ガイド層からのバリア層へのホールの注入をより確実に行うことができる。

[0132]

また、第2の発明の光ディスク装置は、従来よりも高い光出力で安定に動作する上記第1の発明の半導体レーザ装置を発光装置として用いたので、光ディスクの回転数を従来よりも高速にしてもデータの読み書きを行うことができる。特にCD-R, CD-RW等への書き込み時に問題となっていた光ディスクへのアクセス時間を、格段に短くすることがで 40 きる。

【図面の簡単な説明】

- 【図1】この発明の半導体レーザ装置における構成を示す図である。
- 【図2】図1に示す半導体レーザ装置および比較用の半導体レーザ装置における活性領域 近傍のエネルギーバンドを示す図である。
- 【図3】図1におけるGaAs基板、InGaAsP井戸層およびGaAsPバリア層のエネルギーバンドの関係を示す図である。
- 【図4】 InGaAsPの等Eg線図である。
- 【図 5】 In GaAs Pの等Ec線図である。
- 【図6】 In GaAs Pの等E v線図である。

50

- 【図7】InGaAsPの等格子定数線図である。
- 【図8】図1とは異なる半導体レーザ装置における構成を示す図である。
- 【図9】図8に示す半導体レーザ装置における活性領域近傍のエネルギーバンドを示す図である。
- 【図10】図1および図8とは異なる半導体レーザ装置における構成を示す図である。
- 【図11】図10に示す半導体レーザ装置における活性領域近傍のエネルギーバンドを示す図である。
- 【図12】この発明の光ディスク装置の構成図である。
- 【図13】井戸層/バリア層にAIが入っていない従来のInGaAsP量子井戸半導体レーザ装置の構造を示す図である。
- 【図14】図13に示す半導体レーザ装置における活性領域近傍のエネルギーバンドギャップ(Eg)を示す図である。

【符号の説明】

- 21, 41, 61…GaAs基板、
- 22, 42, 62…GaAsバッファ層、
- 23…A1GaAs下部クラッド層、
- 24.44 ··· A 1 G a A s 下部ガイド層、
- 25, 45, 65…活性領域、
- 26,66…GaAsPバリア層、
- 27, 47, 67…InGaAsP井戸層、28, 48…AlGaAs上部ガイド層、
- 29a, 49a…A1GaAs上部第1クラッド層、
- 29b, 49b…A1GaAs上部第2クラッド層、
- 30,50,70…GaAsエッチングストップ層、
- 31, 51, 71…GaAs保護層、
- 32,52…A1GaAs第1電流ブロック層、
- 33,53…GaAs第2電流ブロック層、
- 34,54…GaAs埋込み保護層、
- 35,55…GaAsキャップ層、
- 36, 56, 73…n側電極、
- 37, 57, 74…p側電極、
- 43a…AIGaAs下部第2クラッド層、
- 43b…AlGaAs下部第1クラッド層、
- 46…InGaAsPバリア層、
- 63…AlGaInP下部クラッド層、
- 64…GaInP下部ガイド層、
- 68…GaInP上部ガイド層、
- 69a…AlGaInP上部第1クラッド層、
- 69b…AlGaInP上部第2クラッド層、
- 72…SiN. 電流プロック層、
- 81…光ディスク、
- 82…半導体レーザ装置、
- 83…コリメートレンズ、
- 84…ビームスプリッタ、
- 85…λ/4偏光板、
- 86…レーザ光照射用対物レンズ、
- 87…再生光用対物レンズ、
- 88…信号検出用受光素子、
- 89…信号光再生回路。

30

10

20

【図1】

【図2】

【図3】

【図5】

【図12】

【図14】

E8 A1 0.63 Ga 0.37 Aa クラッド層 in 0.162 Ga 0.838 Aa 0.671 P 0.329 井戸層 in 0.4 Ga 0.6 P パンア層 in 0.484 Ga 0.516 P カイド層

フロントページの続き

F ターム (参考) 5D119 AA24 BA01 FA05 FA17 5D789 AA24 BA01 FA05 FA17 5F073 AA13 AA45 AA53 AA74 BA06 CA13 CB02 EA05 EA23 EA24

EA28 EA29

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (IISDTO