IT/PC/B/T/411

Machine Learning

Deep Learning Basics Lecture 04: Regularization II

Dr. Pawan Kumar Singh

Department of Information Technology

Jadavpur University

pawankrsingh.cse@gmail.com +91-6291555693

Review

Regularization as hard constraint

Constrained optimization

$$\min_{\theta} \mathcal{P}_{\theta} = \frac{1}{2} \ln_{\theta} l(\theta, x, y)$$

$$= \frac{1}{2} \ln_{\theta} l(\theta, x, y)$$

$$= \frac{1}{2} \ln_{\theta} l(\theta, x, y)$$

$$= \frac{1}{2} \ln_{\theta} l(\theta, x, y)$$
subject to: $R(\theta) \leq r$

Regularization as soft constraint

Unconstrained optimization

$$\min_{\theta} \mathbb{R}(\theta) = \frac{1}{n} \mathbb{R}(\theta) = \frac{1}{n} (\theta, x_i, y_i) + \lambda R(\theta)$$

for some regularization parameter $\lambda > 0$

Regularization as Bayesian prior

Bayesian rule:

$$p(\theta | \{x_i, y_i\}) = \frac{p(\theta)p(\{x_i, y_i\} | \theta)}{p(\{x_i, y_i\})}$$

Maximum A Posteriori (MAP):

$$\max_{\theta} \log p(\theta \mid \{x_i, y_i) = \max_{\theta} \log p(\theta) + \log p(\{x_i, y_i\} \mid \theta)$$

Regularization

MLE loss

Classical regularizations

- Norm penalty
 - *l*₂ regularization
 - l_1 regularization

More examples

Other types of regularizations

- Robustness to noise
 - Noise to the input
 - Noise to the weights
 - Noise to the output
- Data augmentation
- Early stopping
- Drepout

Add noise to the input Class +1 Class -1 Prefer w_2 (higher confidence)

Equivalence to weight decay

- Suppose the hypothesis is $f(x) = w^T x$, noise is $\epsilon \sim N(0, \lambda I)$
- After adding noise, the loss is

$$L(f) = \mathbb{E}_{x,y,\epsilon}[f(x+\epsilon) - y]^2 = \mathbb{E}_{x,y,\epsilon}[f(x) + w^T \epsilon - y]^2$$

$$L(f) = \mathbb{E}_{x,y,\epsilon}[f(x) - y]^2 + 2\mathbb{E}_{x,y,\epsilon}[w^T \epsilon (f(x) - y)] + \mathbb{E}_{x,y,\epsilon}[w^T \epsilon]^2$$

$$L(f) = \mathbb{E}_{x,y,\epsilon}[f(x) - y]^2 + \lambda ||w||^2$$

Add noise to the weights

 For the loss on each data point, add a noise term to the weights before computing the prediction

$$\epsilon \sim N(0, \eta I), w' = w + \epsilon$$

- Prediction: $f_{w'}(x)$ instead of $f_w(x)$
- Loss becomes

$$L(f) = \mathbb{E}_{x,y,\epsilon}[f_{w+}(x) - y]^2$$

Add noise to the weights

Loss becomes

$$L(f) = \mathbb{E}_{x,y,\epsilon}[f_{w+}(x) - y]^2$$

To simplify, use Taylor expansion

•
$$f_{w+\epsilon}(x) \approx f_w(x) + \epsilon^T \nabla f(x) + \frac{\epsilon^T \nabla^2 f(x)}{\epsilon}$$

Plug in

•
$$L(f) \approx \mathbb{E}[f_w(x) - y]^2 + \eta \mathbb{E}[(f_w(x) - y)\nabla^2 f_w(x)] + \eta \mathbb{E}[|\nabla f_w(x)||^2$$

Small so can be ignored

Regularization term

Data augmentation

Figure from *Image Classification with Pyramid Representation* and Rotated Data Augmentation on Torch 7, by Keven Wang

Data augmentation

Adding noise to the input: a special kind of augmentation

- Be careful about the transformation applied:
 - Example: classifying 'b' and 'd'
 - Example: classifying '6' and '9'

• Idea: don't train the network to too small training error

Recall overfitting: Larger the hypothesis class, easier to find a hypothesis that fits the difference between the two

 Prevent overfitting: do not push the hypothesis too much; use validation error to decide when to stop

Goodfellow, Bengio and Courville

- When training, also output validation error
- Every time validation error improved, store a copy of the weights
- hen validation error not improved for some time, stop
- Return the copy of the weights stored

hyperparameter selection: training step is the hyperparameter

LAdvantage

Efficient: along with training; only store an extra copy of weights

Simple: no change to the model/algo

Disadvantage: need validation data

- Strategy to get rid of the disadvantage
 - After early stopping of the first run, train a second run and reuse validation data
 - How to reuse validation data
 - Start fresh, train with both training data and validation data up to the
 previous number of epochs
 - Start from the weights in the first run, train with both training data and validation data util the validation loss < the training loss at the early stopping point

Figure from *Deep Learning*, Goodfellow, Bengio and Courville

low val on p = overlything
high val of p = Molerlitting

Randomly select weights to update

- More precisely, in each update step
 - Randomly sample a different binary mask to all the input and hidden units
 - Multiple the mask bits with the units and do the update as usual
- Typical dropout probability: 0.2 for input and 0.5 for hidden units

1 m f

Figure from *Deep Learning*,
Goodfellow, Bengio and Courville

Figure from *Deep Learning*,
Goodfellow, Bengio and Courville

What regularizations are frequently used?

- regularization
 - **Early stopping**
 - Propout
 - Data augmentation if the transformations known/easy to implement