2020 年普通高等学校招生全国统一考试 理科综合能力测试 化学

可能用到的相对原子质量: H 1 C 12 N 14 O 16 Mg 24 S 32 Fe 56 Cu 64

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1.宋代《千里江山图》描绘了山清水秀的美丽景色,历经千年色彩依然,其中绿色来自孔雀石颜料(主要成分为Cu(OH)₂·CuCO₃),青色来自蓝铜矿颜料(主要成分为Cu(OH)₂·2CuCO₃)。下列说法错误的是

- A. 保存《千里江山图》需控制温度和湿度
- B. 孔雀石、蓝铜矿颜料不易被空气氧化
- C. 孔雀石、蓝铜矿颜料耐酸耐碱
- D. Cu(OH)2·CuCO3 中铜的质量分数高于 Cu(OH)2·2CuCO3

【答案】C

【解析】

【详解】A. 字画主要由纸张和绢、绫、锦等织物构成,为防止受潮和氧化,保存古代字画时要特别注意控制适宜的温度和湿度,A 说法正确;

- B. 由孔雀石和蓝铜矿的化学成分可知,其中的铜元素、碳元素和氢元素均处于最高价,其均为自然界较稳定的 化学物质,因此,用其所制作的颜料不易被空气氧化,B 说法正确;
- C. 孔雀石和蓝铜矿的主要成分均可与酸反应生成相应的铜盐,因此,用其制作的颜料不耐酸腐蚀,C 说法错误:
- D. 因为氢氧化铜中铜元素的质量分数高于碳酸铜,所以 Cu(OH)₂·CuCO₃ 中铜的质量分数高于Cu(OH)₂·2CuCO₃, D 说法正确。

综上所述,相关说法错误的是C,故本题答案为C。

2.金丝桃苷是从中药材中提取的一种具有抗病毒作用的黄酮类化合物,结构式如下:

下列关于金丝桃苷的叙述, 错误的是

A. 可与氢气发生加成反应

B. 分子含 21 个碳原子

C. 能与乙酸发生酯化反应

D. 不能与金属钠反应

【答案】D

【解析】

【详解】A. 该物质含有苯环和碳碳双键,一定条件下可以与氢气发生加成反应,故 A 正确;

- B. 根据该物质的结构简式可知该分子含有 21 个碳原子, 故 B 正确;
- C. 该物质含有羟基,可以与乙酸发生酯化反应,故C正确;
- D. 该物质含有普通羟基和酚羟基,可以与金属钠反应放出氢气,故 D 错误; 故答案为 D。
- 3.N_A 是阿伏加德罗常数的值。下列说法正确的是
- A. 22.4 L(标准状况)氮气中含有 7N_A 个中子
- B 1 mol 重水比 1 mol 水多 N_A 个质子
- C. 12g 石墨烯和 12g 金刚石均含有 N_A 个碳原子
- D. 1 L 1 mol·L⁻¹ NaCl 溶液含有 28N_A 个电子

【答案】C

【解析】

【详解】A. 标准状况下 22.4L 氮气的物质的量为 1mol,若该氮气分子中的氮原子全部为 14 N,则每个 14 N,则有个 14 N,则有一个 14 N,则有一个 14 N,则有一个 14 N,则有一个 14 N,则有个 14 N,则有不同的。 14 N,则有的。 14 N,则有的。

B. 重水分子和水分子都是两个氢原子和一个氧原子构成的,所含质子数相同,故 B 错误;

- C. 石墨烯和金刚石均为碳单质,12g 石墨烯和 12g 金刚石均相当于 12g 碳原子,即 $\frac{12g}{12g/mol}$ = 1molC 原子,所含碳原子数目为 N_A 个,故 C 正确;
- D. 1molNaCl 中含有 $28N_A$ 个电子,但该溶液中除 NaCl 外,水分子中也含有电子,故 D 错误; 故答案为 C。
- 4.喷泉实验装置如图所示。应用下列各组气体—溶液,能出现喷泉现象的是

	气体	溶液
A.	H_2S	稀盐酸
В.	HC1	稀氨水
C.	NO	稀 H ₂ SO ₄
D.	CO ₂	饱和 NaHCO3 溶液

A. A

В. В

C. C

D. D

【答案】B

【解析】

【分析】

能够发生喷泉实验,需要烧瓶内外产生明显的压强差;产生压强差可以通过气体溶于水的方法,也可以通过发生反应消耗气体产生压强差,据此分析。

【详解】A. 由于硫化氢气体和盐酸不发生反应且硫化氢在水中的溶解度较小,烧瓶内外压强差变化不大,不会出现喷泉现象,A错误;

- B. 氯化氢可以和稀氨水中的一水合氨发生反应, 使烧瓶内外产生较大压强差, 能够出现喷泉实验, B 正确;
- C. 一氧化氮不与硫酸发生反应且不溶于水,烧瓶内外不会产生压强差,不能发生喷泉现象, C 错误;
- D. 二氧化碳不会溶于饱和碳酸氢钠溶液中,烧瓶内外不会产生压强差,不能发生喷泉实验,D 错误; 故选 B。
- 5.对于下列实验,能正确描述其反应的离子方程式是
- A. 用 Na₂SO₃溶液吸收少量 Cl₂: 3SO₃²⁻+Cl₂+H₂O =2HSO₃⁻+2Cl⁻+SO₄²⁻
- B. 向 CaCl₂ 溶液中通入 CO₂: Ca²⁺+H₂O+CO₂=CaCO₃ ↓+2H⁺
- C. 向 H₂O₂溶液中滴加少量 FeCl₃: 2Fe³⁺+H₂O₂=O₂↑+2H⁺+2Fe²⁺
- D. 同浓度同体积 NH₄HSO₄溶液与 NaOH 溶液混合: NH₄ +OH⁻=NH₃·H₂O

【答案】A

【解析】

- 【详解】A. 用 Na_2SO_3 溶液吸收少量的 Cl_2 , Cl_2 具有强氧化性,可将部分 SO_3^{2-} 氧化为 SO_4^{2-} ,同时产生的氢离子与剩余部分 SO_3^{2-} 结合生成 HSO_3^{-} , Cl_2 被还原为 Cl_3 ,反应的离子反应方程式为: $3SO_3^{2-}+Cl_2+H_2O=2$ $HSO_3^{-}+2Cl_3+SO_4^{2-}$,A 选项正确;
- B. 向 CaCl₂溶液中通入 CO₂, H₂CO₃是弱酸, HCl 是强酸, 弱酸不能制强酸, 故不发生反应, B 选项错误;
- C. 向 H_2O_2 中滴加少量的 $FeCl_3$, Fe^{3+} 的氧化性弱于 H_2O_2 ,不能氧化 H_2O_2 ,但 Fe^{3+} 能催化 H_2O_2 的分解,正确的离子方程式应为 $2H_2O_2$ $\frac{Fe^{3+}}{2}$ $2H_2O+O_2\uparrow$,C 选项错误;
- D. NH_4HSO_4 电离出的 H^+ 优先和 NaOH 溶液反应,同浓度同体积的 NH_4HSO_4 溶液与 NaOH 溶液混合,氢离子和氢氧根恰好完全反应,正确的离子反应方程式应为: $H^++OH^-=H_2O$,D 选项错误;答案选 A。
- 【点睛】B 选项为易错点,在解答时容易忽略 H₂CO₃ 是弱酸, HCl 是强酸,弱酸不能制强酸这一知识点。
- 6.一种高性能的碱性硼化钒 (VB_2) —空气电池如下图所示,其中在 VB_2 电极发生反应:
- VB₂+16OH⁻-11e⁻=VO₄³+2B(OH)₄+4H₂O 该电池工作时,下列说法错误的是

- A. 负载通过 0.04 mol 电子时,有 0.224 L(标准状况)O₂ 参与反应
- B. 正极区溶液的 pH 降低、负极区溶液的 pH 升高
- C. 电池总反应为4VB₂+11O₂+20OH⁻+6H₂O=8B(OH)₄+4VO₄³⁻
- D. 电流由复合碳电极经负载、VB₂电极、KOH溶液回到复合碳电极

【答案】B

【解析】

【分析】

根据图示的电池结构,左侧 VB_2 发生失电子的反应生成 VO_4^{3-} 和 $B(OH)_4^{7-}$,反应的电极方程式如题干所示,右侧空气中的氧气发生得电子的反应生成 OH ,反应的电极方程式为 O_2 + 4e + 2H $_2O$ = 4OH ,电池的总反应方程式为 $4VB_2$ + $11O_2$ + 20OH + $6H_2O$ = $8B(OH)_4^{7-}$ + $4VO_4^{3-}$,据此分析。

【详解】A. 当负极通过 0.04mol 电子时,正极也通过 0.04mol 电子,根据正极的电极方程式,通过 0.04mol 电子消耗 0.01mol 氧气,在标况下为 0.224L,A 正确;

- B. 反应过程中正极生成大量的 OH-使正极区 pH 升高,负极消耗 OH-使负极区 OH-浓度减小 pH 降低,B 错误:
- C. 根据分析, 电池的总反应为 4VB₂+11O₂+20OH-+6H₂O=8 B(OH)₄+4 VO₄³-, C 正确;
- D. 电池中,电子由 VB_2 电极经负载流向复合碳电极,电流流向与电子流向相反,则电流流向为复合碳电极 \to 负载 \to VB_2 电极 \to KOH 溶液 \to 复合碳电极,D 正确;

故选 B。

【点睛】本题在解答时应注意正极的电极方程式的书写,电解质溶液为碱性,则空气中的氧气得电子生成氢氧根;在判断电池中电流流向时,电流流向与电子流向相反。

7.W、X、Y、Z 为原子序数依次增大的短周期元素,四种元素的核外电子总数满足 X+Y=W+Z; 化合物 XW_3 与

WZ相遇会产生白烟。下列叙述正确的是

A. 非金属性: W> X>Y> Z

B. 原子半径: Z>Y>X>W

C. 元素 X 的含氧酸均为强酸

D. Y 的氧化物水化物为强碱

【答案】D

【解析】

【分析】

根据题干信息可知,W、X、Y、Z为原子序数依次增大的短周期元素,化合物 XW_3 与 WZ 相遇会产生白烟,则 WX₃为 NH₃,WZ 为 HCl,所以 W 为 H 元素,X 为 N 元素,Z 为 Cl 元素,又四种元素的核外电子总数满足 X+Y=W+Z,则 Y 的核外电子总数为 11,Y 为 Na 元素,据此分析解答。

【详解】根据上述分析可知,W为H元素,X为N元素,Y为Na元素,Z为Cl元素,则

- A. Na 为金属元素,非金属性最弱,非金属性 Y < Z, A 选项错误;
- B. 同周期元素从左至右原子半径依次减小,同主族元素至上而下原子半径依次增大,则原子半径: Na>Cl>N >H, B 选项错误;
- C. N 元素的含氧酸不一定全是强酸,如 HNO_2 为弱酸,C 选项错误;
- D. Y 的氧化物水化物为 NaOH,属于强碱,D 选项正确;

答案选 D。

二、非选择题

(一)必考题

8.氯可形成多种含氧酸盐,广泛应用于杀菌、消毒及化工领域。实验室中利用下图装置(部分装置省略)制备 KClO₃ 和 NaClO,探究其氧化还原性质。

回答下列问题:

(1)盛放 MnO₂粉末的仪器名称是, a 中的试剂为。。

(2)b 中采用的加热方式是 , c 中化学反应的离子方程式是 , 采用冰水浴冷却的目的

是。 (3)d 的作用是 , 可选用试剂 (填标号)。 A. Na₂S B. NaCl C. Ca(OH)₂ D. H₂SO₄

(4)反应结束后,取出 b 中试管,经冷却结晶, ,干燥,得到 KClO₃ 晶体。

(5)取少量 KClO₃ 和 NaClO 溶液分别置于 1 号和 2 号试管中,滴加中性 KI 溶液。1 号试管溶液颜色不变。2 号试 管溶液变为棕色,加入 CCl₄ 振荡,静置后 CCl₄ 层显 色。可知该条件下 KClO₃ 的氧化能力 NaClO(填"大

于"或"小于")。

【答案】

(1). 圆底烧瓶

免生成 NaClO₃ (6). 吸收尾气(Cl₂)

(2). 饱和食盐水

(7). AC

(3). 水浴加热

(8). 过滤

(4). $Cl_2+2OH^-=ClO^-+Cl^-+H_2O$

(9). 少量(冷)水洗涤 (10). 紫 (11). 小

(5). 避

干

【解析】

【分析】

本实验目的是制备 KClO₃ 和 NaClO,并探究其氧化还原性质;首先利用浓盐酸和 MnO₂ 粉末共热制取氯气,生 成的氯气中混有 HCl 气体,可在装置 a 中盛放饱和食盐水中将 HCl 气体除去;之后氯气与 KOH 溶液在水浴加 热的条件发生反应制备 KClO₃,再与 NaOH 溶液在冰水浴中反应制备 NaClO; 氯气有毒会污染空气,所以需要 d装置吸收未反应的氯气。

【详解】(1)根据盛放 MnO₂ 粉末的仪器结构可知该仪器为圆底烧瓶; a 中盛放饱和食盐水除去氯气中混有的 HCl 气体;

(2)根据装置图可知盛有 KOH 溶液的试管放在盛有水的大烧杯中加热,该加热方式为水浴加热; c 中氯气在 NaOH 溶液中发生歧化反应生成氯化钠和次氯酸钠,结合元素守恒可得离子方程式为

Cl₂+2OH⁻=ClO⁻+Cl⁻+H₂O; 根据氯气与 KOH 溶液的反应可知,加热条件下氯气可以和强碱溶液反应生成氯酸 盐, 所以冰水浴的目的是避免生成 NaClO3;

- (3)氯气有毒, 所以 d 装置的作用是吸收尾气(Cl₂);
- A. Na₂S 可以将氯气还原成氯离子,可以吸收氯气,故 A 可选;
- B. 氯气在 NaCl 溶液中溶解度很小,无法吸收氯气,故 B 不可选;
- C. 氯气可以 Ca(OH)。或浊液反应生成氯化钙和次氯酸钙, 故 C 可选;
- D. 氯气与硫酸不反应, 且硫酸溶液中存在大量氢离子会降低氯气的溶解度, 故 D 不可选; 综上所述可选用试剂 AC;

- (4)b 中试管为 KClO₃ 和 KCl 的混合溶液, KClO₃ 的溶解度受温度影响更大, 所以将试管 b 中混合溶液冷却结 晶、过滤、少量(冷)水洗涤、干燥,得到 KClO;晶体;
- (5)1号试管溶液颜色不变,2号试管溶液变为棕色,说明1号试管中氯酸钾没有将碘离子氧化,2号试管中次氯 酸钠将碘离子氧化成碘单质,即该条件下KClO3的氧化能力小于NaClO;碘单质更易溶于CCl4,所以加入 CCl₄振荡,静置后 CCl₄层显紫色。
- 【点睛】第3小题为本题易错点,要注意氯气除了可以用碱液吸收之外,氯气还具有氧化性,可以用还原性的 物质吸收。
- 9.某油脂厂废弃的油脂加氢镍催化剂主要含金属 Ni、Al、Fe 及其氧化物,还有少量其他不溶性物质。采用如下 工艺流程回收其中的镍制备硫酸镍晶体(NiSO₄·7H₂O):

溶液中金属离子开始沉淀和完全沉淀的 pH 如下表所示:

金属离子	Ni ²⁺	Al ³⁺	Fe ³⁺	Fe ²⁺
开始沉淀时(c=0.01 mol·L ⁻¹)的 pH	7.2	3.7	2.2	7.5
沉淀完全时(c=1.0×10 ⁻⁵ mol·L ⁻¹)的 pH	8.7	4.7	3.2	9.0

回答下列问题:

- (1)"碱浸"中 NaOH 的两个作用分别是 。为回收金属,用稀硫酸将"滤液①"调为中性,生成沉
- 淀。写出该反应的离子方程式
- (2)"滤液②"中含有的金属离子是
- (3)"转化"中可替代 H₂O₂ 的物质是 。若工艺流程改为先"调 pH"后"转化",即

"滤液③"中可能含有的采灰离丁为。
(4)利用上述表格数据,计算 $Ni(OH)_2$ 的 K_{sp} =(列出计算式)。如果"转化"后的溶液中 Ni^{2+} 浓度为
1.0 mol·L ⁻¹ ,则"调 pH"应控制的 pH 范围是。
(5)硫酸镍在强碱溶液中用 NaClO 氧化,可沉淀出能用作镍镉电池正极材料的 NiOOH。写出该反应的离子方程
式。
(6)将分离出硫酸镍晶体后的母液收集、循环使用,其意义是。
【答案】 (1). 除去油脂、溶解铝及其氧化物 (2). AlO ₂ +H++H ₂ O=Al(OH) ₃ ↓或 Al(OH
$+H^{+}=Al(OH)_{3}\downarrow +H_{2}O$ (3). Ni^{2+} 、 Fe^{2+} 、 Fe^{3+} (4). O_{2} 或 空 气 (5). Fe^{3+}
0.01×(10 ^{7.2-14}) ² 或10 ⁻⁵ ×(10 ^{8.7-14}) ² (7). 3.2~6.2 (8). 2Ni ²⁺ +ClO ⁺ +4OH ⁺ =2NiOOH↓+Cl ⁺ +H ₂ O (9). 提高 ⁻¹
回收率

【解析】

【分析】

由工艺流程分析可得,向废镍催化剂中加入 NaOH 溶液进行碱浸,可除去油脂,并发生反应 $2AI+2NaOH+2H_2O=2NaAIO_2+3H_2\uparrow$ 、 $2AI_2O_3+4NaOH=4NaAIO_2+2H_2O$ 将 AI 及其氧化物溶解,得到的滤液①含有 $NaAIO_2$,滤饼①为 Ni、Fe 及其氧化物和少量其他不溶性杂质,加稀 H_2SO_4 酸浸后得到含有 Ni^{2+} 、 Fe^{2+} 、 Fe^{3+} 的 滤液②, Fe^{2+} 经 H_2O_2 氧化为 Fe^{3+} 后,加入 NaOH 调节 pH 使 Fe^{3+} 转化为 $Fe(OH)_3$ 沉淀除去,再控制 pH 浓缩结晶 得到硫酸镍的晶体,据此分析解答问题。

【详解】(1)根据分析可知,向废镍催化剂中加入 NaOH 溶液进行碱浸,可除去油脂,并将 Al 及其氧化物溶解,滤液①中含有 NaAlO₂(或 Na[Al(OH)₄]),加入稀硫酸可发生反应 AlO₂ +H++H₂O=Al(OH)₃↓或 Al(OH)₄+H+=Al(OH)₃↓+H₂O,故答案为:除去油脂、溶解铝及其氧化物; AlO₂ +H++H₂O=Al(OH)₃↓或 Al(OH)₄+H+=Al(OH)₃↓+H₂O;

(2)加入稀硫酸酸浸,Ni、Fe 及其氧化物溶解,所以"滤液②"中含有的金属离子是 Ni²⁺、Fe²⁺、Fe³⁺,故答案为: Ni²⁺、Fe²⁺、Fe³⁺:

(3)"转化"在 H_2O_2 的作用是将 Fe^{2+} 氧化为 Fe^{3+} ,可用 O_2 或空气替代;若将工艺流程改为先"调 pH"后"转化",会使调 pH 过滤后的溶液中含有 Fe^{2+} ,则滤液③中可能含有转化生成的 Fe^{3+} ,故答案为: O_2 或空气; Fe^{3+} ; (4)由上述表格可知, Ni^{2+} 完全沉淀时的 pH=8.7,此时 $c(Ni^{2+})=1.0\times10^{-5}$ mol·L⁻¹, $c(H^+)=1.0\times10^{-8.7}$ mol·L⁻¹,则

$$c(OH^-) = \frac{K_w}{c(H^+)} = \frac{10^{-14}}{1.0 \times 10^{-8.7}} = 10^{8.7-14}$$
,则 Ni(OH)₂ 的 $K_{sp} = c(Ni^{2+}) \cdot c^2(OH^-) = 10^{-5} \times (10^{8.7-14})^2$; 或者当 Ni²⁺开始沉

淀时 pH=7.2,此时
$$c(\text{Ni}^{2+})=0.01\text{mol}\cdot\text{L}^{-1}$$
, $c(\text{H}^{+})=1.0\times10^{-7.2}\text{mol}\cdot\text{L}^{-1}$,则 $c(\text{OH}^{-})=\frac{K_{\text{w}}}{c\left(\text{H}^{+}\right)}=\frac{10^{-14}}{1.0\times10^{-7.2}}=10^{7.2-14}$,则

 $Ni(OH)_2$ 的 $K_{sp} = c(Ni^{2+}) \cdot c^2(OH^-) = 0.01 \times (10^{7.2-14})^2$; 如果"转化"后的溶液中 Ni^{2+} 浓度为 $1.0 \text{mol} \cdot L^{-1}$,为避免镍离

子沉淀,此时
$$c(OH^-) = \sqrt{\frac{K_{\text{sp}}}{c(Ni^{2+})}} = \sqrt{\frac{0.01 \times \left(10^{7.2-14}\right)^2}{1.0}} = 10^{-7.8} \text{mol} \cdot L^{-1}$$
,则 $c(H^+) = \frac{K_{\text{w}}}{c(OH^-)} = \frac{10^{-14}}{10^{-7.8}} = 10^{-6.2}$,即

pH=6.2; Fe³⁺完全沉淀的 pH 为 3.2, 因此"调节 pH"应控制的 pH 范围是 3.2~6.2, 故答案为:

$$0.01 \times (10^{7.2-14})^2$$
 或 $10^{-5} \times (10^{8.7-14})^2$; $3.2 \sim 6.2$;

(5)由题干信息,硫酸镍在强碱中被 NaClO 氧化得到 NiOOH 沉淀,即反应中 Ni²⁺被氧化为 NiOOH 沉淀,ClO¯被还原为 Cl¯,则根据氧化还原得失电子守恒可得离子方程式为 2Ni²⁺+ClO¯+4OH¯=2NiOOH↓+Cl¯+H₂O,故答案为: 2Ni²⁺+ClO¯+4OH¯=2NiOOH↓+Cl¯+H₂O;

(6)分离出硫酸镍晶体后的母液中还含有 Ni²⁺,可将其收集、循环使用,从而提高镍的回收率,故答案为:提高镍的回收率。

【点睛】本题主要考查金属及其化合物的性质、沉淀溶解平衡常数 Ksp 的计算、氧化还原离子反应方程式的书写等知识点,需要学生具有很好的综合迁移能力,解答关键在于正确分析出工艺流程原理,难点在于 Ksp 的计算及"调 pH"时 pH 的范围确定。

10.二氧化碳催化加氢合成乙烯是综合利用 CO₂ 的热点研究领域。回答下列问题:

(1)CO₂ 催化加氢生成乙烯和水的反应中,产物的物质的量之比 $n(C_2H_4): n(H_2O) = _______。$ 当反应达到平衡时,若增大压强,则 $n(C_2H_4)$ (填"变大""变小"或"不变")。

(2)理论计算表明,原料初始组成 $n(CO_2)$: $n(H_2)=1$:3,在体系压强为 0.1MPa,反应达到平衡时,四种组分的物质的量分数 x 随温度 T 的变化如图所示。

图中,表示 C_2H_4 、 CO_2 变化的曲线分别是 。 。 CO_2 催化加氢合成 C_3H_4 反应的 ΔH 0(填"大 于"或"小于")。

(3)根据图中点 A(440K, 0.39), 计算该温度时反应的平衡常数 K_p = (MPa)⁻³(列出计算式。以分压表示, 分压=总压×物质的量分数)。

(4)二氧化碳催化加氢合成乙烯反应往往伴随副反应,生成 C_3H_6 、 C_3H_8 、 C_4H_8 等低碳烃。一定温度和压强条件 下,为了提高反应速率和乙烯选择性,应当

【答案】

- (3). d (4). c (5). 小于 (6). $\frac{9}{4} \times \frac{1}{0.039^3}$ 或

$$\frac{0.39^4 \times \frac{0.39}{4}}{0.39^6 \times (\frac{0.39}{3})^2} \times \frac{1}{0.1^3}$$
等 (7). 选择合适催化剂等

【解析】

【分析】

根据质量守恒定律配平化学方程式,可以确定产物的物质的量之比。根据可逆反应的特点分析增大压强对化学 平衡的影响。根据物质的量之比等于化学计量数之比,从图中找到关键数据确定代表各组分的曲线,并计算出 平衡常数。根据催化剂对化反应速率的影响和对主反应的选择性,工业上通常要选择合适的催化剂以提高化学 反应速率、减少副反应的发生。

【详解】(1)CO₂催化加氢生成乙烯和水,该反应的化学方程式可表示为2CO₂+6H₂ ⇌ CH₂ = CH₂+4H₂O,因此, 该反应中产物的物质的量之比 $n(C_2H_4)$: $n(H_2O)=1$: 4。由于该反应是气体分子数减少的反应,当反应达到平衡 状态时,若增大压强,则化学平衡向正反应方向移动,n(C2H4)变大。

(2) 由题中信息可知,两反应物的初始投料之比等于化学计量数之比:由图中曲线的起点坐标可知,c和a所表 示的物质的物质的量分数之比为 1:3、d 和 b 表示的物质的物质的量分数之比为 1:4,则结合化学计量数之比可

以判断,表示乙烯变化的曲线是 d,表示二氧化碳变化曲线的是 c。由图中曲线的变化趋势可知,升高温度,乙 烯的物质的量分数减小,则化学平衡向逆反应方向移动,则该反应为放热反应, ΔH 小干0。

(3) 原料初始组成 $n(CO_2)$: $n(H_2)=1$:3,在体系压强为 0.1Mpa 建立平衡。由 A 点坐标可知,该温度下,氢气和 水的物质的量分数均为 0.39,则乙烯的物质的量分数为水的四分之一,即 $\frac{0.39}{4}$,二氧化碳的物质的量分数为氢

气的三分之一,即
$$\frac{0.39}{3}$$
,因此,该温度下反应的平衡常数 $K_p = \frac{0.39^4 \times \frac{0.39}{4}}{0.39^6 \times \left(\frac{0.39}{3}\right)^2} \times \frac{1}{0.1^3} \text{(MPa)}^{-3} = \frac{9}{4} \times \frac{1}{0.039^3}$

 $(MPa)^{-3}$ \circ

(4)工业上通常通过选择合适的催化剂,以加快化学反应速率,同时还可以提高目标产品的选择性,减少副反应 的发生。因此,一定温度和压强下,为了提高反应速率和乙烯的选择性,应当选择合适的催化剂。

【点睛】本题确定图中曲线所代表的化学物质是难点,其关键在于明确物质的量的分数之比等于各组分的物质 的量之比, 也等于化学计量数之比(在初始投料之比等于化学计量数之比的前提下, 否则不成立)。

(二) 选考题

[化学——选修3:物质结构与性质]

11.氨硼烷(NH₃BH₃)含氢量高、热稳定性好,是一种具有潜力的固体储氢材料。回答下列问题:

(1)H、B、N中,原子半径最大的是。根据对角线规则,B的一些化学性质与元素____

(2)NH₃BH₃分子中, N—B 化学键称为 键, 其电子对由 提供。氨硼烷在催化剂作用下水解释放氢气: 3NH₃BH₃+6H₂O=3NH₃+B₃O₆³⁻+9H₂, B₃O₆³⁻ 的结构如图所示:

在该反应中,B原子的杂化轨道类型由____变为___。

(3)NH₃BH₃分子中,与 N 原子相连的 H 呈正电性 $(H^{\delta+})$,与 B 原子相连的 H 呈负电性 $(H^{\delta-})$,电负性大小顺序是 。与 NH₃BH₃ 原子总数相等的等电子体是 (写分子式), 其熔点比 NH₃BH₃ "高"或"低"), 原因是在 NH₃BH₃分子之间, 存在_____, 也称"双氢键"。

(4)研究发现,氦硼烷在低温高压条件下为正交晶系结构,晶胞参数分别为 $a \text{ pm} \cdot b \text{ pm} \cdot c \text{ pm}$, $\alpha = \beta = \gamma = 90^{\circ}$ 。氦 硼烷的 2×2×2 超晶胞结构如图所示。

氨硼烷晶体的密度 $\rho=$ g·cm⁻³(列出计算式,设 N_A 为阿伏加德罗常数的值)。

【答案】

- (1). B
- (2). Si(硅)
- (3). 配位
- $(5). sp^3$
- 2 (7). N>H>B

 CH_3CH_3 (9). 低 (10). $H^{\delta+}$ 与 $H^{\delta-}$ 的静电引力 (11). $\frac{62}{N_a abc \times 10^{-3}}$

【解析】

【分析】

根据元素在周期表中的位置比较和判断元素的相关性质;根据中心原子的价层电子对数确定其杂化轨道的类型;运用等量代换的方法寻找等电子体;根据电负性对化合价的影响比较不同元素的电负性;根据晶胞的质量和体积求晶体的密度。

【详解】(1)在所有元素中,H原子的半径是最小的,同一周期从左到右,原子半径依次减小,所以,H、B、N中原子半径最大是 B。B 与 Si 在元素周期表中处于对角张的位置,根据对角线规则,B 的一些化学性质与 Si 元素相似。

(2)B 原子最外层有 3 个电子,其与 3 个 H 原子形成共价键后,其价层电子对只有 3 对,还有一个空轨道;在 NH_3 中,N 原子有一对孤对电子,故在 NH_3BH_3 分子中, N_-B 键为配位键,其电子对由 N 原子提供。 NH_3BH_3 分子中,B 原子的价层电子对数为 4,故其杂化方式为 sp^3 。 NH_3BH_3 在催化剂的作用下水解生成氢气和 $B_3O_6^{3-}$,由图中信息可知, $B_3O_6^{3-}$ 中每个 B 原子只形成 3 个 σ 键,其中的 B 原子的杂化方式为 sp^2 ,因此,B 原子的杂化轨道类型由 sp^3 变为 sp^2 。

(3) NH_3BH_3 分子中,与 N 原子相连的 H 呈正电性,说明 N 的电负性大于 H;与 B 原子相连的 H 呈负电性,说明 H 的电负性大于 B,因此 3 种元素电负性由大到小的顺序为 N>H>B。NH₃BH₃ 分子中有 8 个原子,其价电子总数为 14,N 和 B 的价电子数的平均值为 4,依据等量代换的原则,可以找到其等电子体为 CH_3CH_3 。由于 NH_3BH_3 分子属于极性分子,而 CH_3CH_3 属于非极性分子,两者相对分子质量接近,但是极性分子的分子间作用力较大,故 CH_3CH_3 熔点比 NH_3BH_3 低。 NH_3BH_3 分子间存在"双氢键",类比氢键的形成原理,说明其分子间存在 $H^{\delta+}$ 与 H^{δ} 的静电引力。

(4)在氨硼烷的 $2\times 2\times 2$ 的超晶胞结构中,共有 16 个氨硼烷分子,晶胞的长、宽、高分别为 2apm、2bpm、2cpm,若将其平均分为 8 份可以得到 8 个小长方体,则平均每个小长方体中占有 2 个氨硼烷分子,小长方体的长、宽、高分别为 apm、bpm、cpm,则小长方体的质量为 $\frac{31\times 2g}{N_4}$,小长方体的体积为 abc $\times 10^{-30}$ cm 3 ,因

此,氨硼烷晶体的密度为
$$\frac{\frac{31 \times 2g}{N_A}}{abc \times 10^{-30} cm^3} = \frac{62}{N_A abc \times 10^{-30}} g \cdot cm^{-3}.$$

【点睛】本题最后有关晶体密度的计算是难点,要求考生能读懂题意,通过观察晶胞结构,确定超晶胞结构中的分子数,并能合理分成 8 份,从而简化计算。

[化学——选修 5: 有机化学基础]

12.苯基环丁烯酮(PCBO)是一种十分活泼的反应物,可利用它的开环反应合成一系列多官能团化合物。近期我国科学家报道用 PCBO 与醛或酮发生[4+2]环加成反应,合成了具有生物活性的多官能团化合物(E),部分合成路线如下:

$$\begin{array}{c|c} CHO \\ \hline OH \\ A \end{array} \xrightarrow{CH_3CHO} \begin{array}{c} B \\ \hline (C_9H_9O_3Na) \end{array} \xrightarrow{1)KMnO_4/OH^-} \begin{array}{c} O \\ \hline 2)H^+ \end{array} \xrightarrow{COOH} \\ \hline OH \\ C \end{array}$$

已知如下信息:

回答下列问题:

(1)A 的化学名称是。

(2)B 的结构简式为。
(3)由 C 生成 D 所用的试别和反应条件为; 该步反应中,若反应温度过高, C 易发生脱羧反应,生
成分子式为 $C_8H_8O_2$ 的副产物,该副产物的结构简式为。
(4)写出化合物 E 中含氧官能团的名称; E 中手性碳(注:连有四个不同的原子或基团的碳)的个数为
(5)M 为 C的一种同分异构体。已知: 1 mol M 与饱和碳酸氢钠溶液充分反应能放出 2 mol 二氧化碳; M 与酸性
高锰酸钾溶液反应生成对苯二甲酸。M 的结构简式为。

R'对产率的影响见下表:

R'	—СН ₃	—C ₂ H ₅	—CH ₂ CH ₂ C ₆ H ₅
产率/%	91	80	63

请找出规律,并解释原因。。

【答案】

(1). 2-羟基苯甲醛(水杨醇

(3). 乙醇、浓硫酸/加热 (4).

5). 羟基、酯基 (6

(7). НООС — СН₂СООН

(8). 随着 R'体积增

大,产率降低;原因是R'体积增大,位阻增大

【解析】

【分析】

根据合成路线分析可知,A(OH)与 CH₃CHO 在 NaOH 的水溶液中发生已知反应生成 B,则 B 的结构简

酸 加 热 的 条 件 下 发 生 酯 化 反 应 得 到 D(COOC₂H₅), D 再 反 应 得 到 E(

CHO CHO OH, 其名称为 2-羟基苯甲醛(或水杨醛), 故答案为: 2-羟基苯甲醛(或水杨

醛);

(3)C 与 CH_3CH_2OH 在浓硫酸加热的条件下发生酯化反应得到 D(OH

醇、浓硫酸,反应条件为加热;在该步反应中,若反应温度过高,根据副产物的分子式可知,C发生脱羧反应

(5)M 为 C 的一种同分异构体,1molM 与饱和 NaHCO $_3$ 溶液反应能放出 2mol 二氧化碳,则 M 中含有两个羧基 (—COOH),又 M 与酸性高锰酸钾溶液溶液反应生成对二苯甲酸,则 M 分子苯环上只有两个取代基且处于对

位,则 M 的结构简式为 HOOC — CH₂COOH,故答案为: HOOC — CH₂COOH:

(6)由表格数据分析可得到规律,随着取代基 R'体积的增大,产物的产率降低,出现此规律的原因可能是因为 R'体积增大,从而位阻增大,导致产率降低,故答案为:随着 R'体积增大,产率降低;原因是 R'体积增大,位阻增大。