Partition de Markov

Dorian

22 décembre 2024

1.

Introduction

Considérons $f: M \longrightarrow M$ un difféomorphisme d'une variété compacte M

Définition 1. Soit $\Lambda \subseteq X$ un sous-ensemble stable par f de M. Une partition de Markov \mathcal{R} de Λ est une famille d'ensembles $(R_i)_{i \in [\![1,n]\!]}$ appelés rectangles, vérifiant les propriétés suivantes pour tout $i,j,k \leq n$:

- 1. $\overline{\operatorname{Int} R_i} = R_i$,
- 2. Si $i \neq j$, alors Int $R_i \cap \operatorname{Int} R_j = \emptyset$,
- 3. Les (R_i) recouvrent $\Lambda : \Lambda \subseteq \bigcup_i R_i$,
- 4. Si $f^m(\operatorname{Int} R_i) \cap \operatorname{Int} R_j \cap \Lambda \neq \emptyset$ et $f^n(\operatorname{Int} R_j) \cap \operatorname{Int} R_k \cap \Lambda \neq \emptyset$ pour $m, n \in \mathbf{Z}$, alors $f^{m+n}(\operatorname{Int} R_i) \cap \operatorname{Int} R_k \cap \Lambda \neq \emptyset$.

Pour une partition de Markov $\mathcal{R} = (R_i)_{1 \leq i \leq n}$, on associe une matrice A à coefficients dans $\{0,1\}$, appelé matrice d'incidence, définie par

$$\forall i, j \in [1, n], \quad A_{i,j} = 1 \iff f(\operatorname{Int} R_i) \cap \operatorname{Int} R_j \neq \emptyset.$$

Théoreme 2. Soit $\mathcal{R} = (R_i)_{1 \leq i \leq n}$ une partition de Markov de $\Lambda \subseteq M$ et (Σ_A, σ) l'espace de Bernoulli associé à la matrice d'incidence de la partition \mathcal{R} . Alors, ...