primitives et calcul intégral

Table des matières

1	<u>intr</u>	$\underline{\mathrm{oduction}}$	2
2	prin	mitives d'une fonction	4
	2.1	activités	4
	2.2	corrigés activités	5
	2.3	à retenir	Ö
	2.4	exercices	11
	2.5	corrigés exercices	12
3	inté	egrale d'une fonction	13
	3.1	activités	13
	3.2	corrigés activités	15
	3.3	à retenir	18
	3.4	exercices	19
	3.5	corrigés exercices	24
	3.6	travaux pratiques	32
		3.6.1 algorithme et calcul d'aire	32
	3.7	évaluations	36
	3.8	corrigé devoir maison	47
		3.8.1 corrigé devoir maison 1	48
		3.8.2 corrigé devoir maison 2	51

1 introduction

1. en un certain lieu, soit f(x) = x + 1 la valeur de la température en degrés mesurée à l'heure x ou $x \in [0, 7]$

- par exemple : $\left\{ \begin{array}{l} \text{à la date } x=1 \text{ il fait } f(1)=1+1=2 \text{ degr\'es} \\ \text{à la date } x=6 \text{ il fait } f(6)=6+1=7 \text{ degr\'es} \end{array} \right.$
- 2. on cherche à déterminer la valeur de $(V_m(f))$, (température moyenne entre les heures x=1 et x=6)

- graphiquement on peut estimer que la valeur moyenne vaut $(V_m(f) \simeq 4)$
- 3. par définition, la valeur moyenne cherchée est telle que

l'aire sous la courbe entre x=1 et x=6 notée $A=\int_1^6 f(x)dx$ ("intégrale de 1 à 6 de f de x, dx") est égale à

l'aire du rectangle ABCD de même largeur (entre x=1 et x=6) soit $largeur \times hauteur = (6-1) \times V_m(f)$

ce qui donne
$$\int_1^6 f(x)dx = (6-1) \times V_m(f)$$

donc : $V_m(f) = \frac{1}{6-1} \times \int_1^6 f(x) dx$, il reste à déterminer $\int_1^6 f(x) dx$ ("intégrale de 1 à 6 de f de x, dx")

4. pour cela on utilise le théorème $\underbrace{\int_a^b f(x)dx = F(b) - F(a)}_{\text{sachant que}}$ où $\underbrace{F \text{ est une primitive de } f}_{\text{sachant que}}$

il suffit alors de trouver une primitive de f où f(x) = x + 1

or
$$F(x) = \frac{1}{2}x^2 + x$$

est telle que $F'(x) = \frac{1}{2} \times 2x + 1 = x + 1 = f(x)$

donc $F(x) = \frac{1}{2}x^2 + x$ est une primitive de f(x) = x + 1

on a donc :
$$\int_{1}^{6} f(x)dx = F(6) - F(1)$$
 avec
$$\begin{cases} F(6) = \frac{1}{2} \times 6^{2} + 6 = 18 + 6 = \boxed{24} \\ F(1) = \frac{1}{2} \times 1^{2} + 1 = 0, 5 + 1 = \boxed{1,5} \end{cases}$$

soit :
$$\int_{1}^{6} f(x)dx = 24 - 1, 5 = (22, 5)$$

ce qui signifie que l'aire sous la courbe de f pour x allant de 1 à 6 est de (22,5) unités d'aires f (on peut dénombrer 22,5 carrés d'une unité d'aire sous la courbe) finalement

$$V_m(f) = \frac{1}{6-1} \times \int_1^6 f(x)dx = \frac{1}{5} \times 22, 5 = 4, 5$$

la valeur moyenne de f pour allant de 1 à 5 est donc d'exactement (4,5)

ce qui est cohérent avec le résultat évalué graphiquement

graphiquement $V_m(f) \simeq 4$ et algébriquement $V_m(f) = 4,5$

5. synthèse : (sous certaines conditions vues dans le cours)

valeur moyenne de f pour x compris entre a et $b = V_m(f) = \frac{1}{b-a} \int_a^b f(x) dx$

(intégrale de f pour x compris entre a et $b = I = \int_a^b f(x)dx = F(b) - F(a)$)

F est une primitive de $f \iff F'(x) = f(x)$

2 primitives d'une fonction

2.1 activités

activité 1

soient F_1 et f les fonctions respectivement définies sur \mathbb{R} par : $\begin{cases} F_1(x) = 5x^3 + 10x^2 - 5x \\ f(x) = 15x^2 + 20x - 5 \end{cases}$

- 1. montrer que $F'_1(x) = f(x)$ (on dit sous cette condition que F_1 est une primitive de f)
- 2. montrer que F_2 définie sur \mathbb{R} par $F_2(x) = 5x^3 + 10x^2 5x + 1$ est aussi une primitive de f
- 3. que dire de F définie par $F(x) = 5x^3 + 10x^2 5x + k$ où $k \in \mathbb{R}$ est un réel quelconque?
- 4. combien la fonction f admet-elle de primitives?
- 5. soit G une primitive quelconque de f, on cherche à quoi ressemble nécessairement G. pour cela, on considère la fonction H définie par $H(x) = G(x) F_1(x)$
 - (a) montrer que H'(x) = 0
 - (b) en déduire que $H(x) = k = \text{constante pour tout } x \in \mathbb{R}$
 - (c) en déduire que $G(x) = F_1(x) + k$ pour tout $x \in \mathbb{R}$
 - (d) quelle est nécessairement la forme d'une primitive de f?
 - (e) en déduire la seule et unique primitive F de f telle que F(0) = 10

activité 2

soit la fonction f telle $f(x) = 1 + x + e^x - \frac{1}{x^2} + \frac{1}{x}$ définie sur \mathbb{R}^*

- 1. montrer que F_1 telle que $F_1(x) = x + \frac{x^2}{2} + e^x + \frac{1}{x} + \ln x$ est une primitive de f
- 2. trouver une autre primitive F_2 de f
- 3. trouver la primitive F de f qui vaut 0 pour x = 1

activité 3

donner une primitive dans chaque cas en utilisant le tableau des dérivées

- 1. f(x) = 0 a par exemple pour primitive : ...
- 2. f(x) = 10 a par exemple pour primitive : ...
- 3. f(x) = x a par exemple pour primitive : ...
- 4. $f(x) = x^2$ a par exemple pour primitive : ...
- 5. $f(x) = x^3$ a par exemple pour primitive : ...
- 6. $f(x) = \frac{1}{x}$ a par exemple pour primitive : ...
- 7. $f(x) = \frac{1}{x^2}$ a par exemple pour primitive : ...
- 8. $f(x) = \frac{1}{x^3}$ a par exemple pour primitive : ...
- 9. $f(x) = e^x$ a par exemple pour primitive : ...

activité 4

démontrer chaque proposition

- 1. si F et G sont des primitives respectives de f et g alors H = F + G est une primitive de h = f + g
- 2. si F est une primitive de f et $k \in \mathbb{R}$ est un réel alors H = kF est une primitive de h = kf

corrigés activités 2.2

corrigé activité 1

soient F_1 et f les fonctions respectivement définies sur \mathbb{R} par : $\left\{ \begin{array}{l} F_1(x) = 5x^3 + 10x^2 - 5x \\ f(x) = 15x^2 + 20x - 5 \end{array} \right.$

1.
$$F'_1(x) = 15x^2 + 20x - 5$$
 et $f(x) = 15x^2 + 20x - 5$

$$F_1'(x) = f(x)$$

 F_1 est donc une primitive de f

2.
$$F_2'(x) = 15x^2 + 20x - 5$$
 et $f(x) = 15x^2 + 20x - 5$

$$F_2'(x) = f(x)$$

$$\begin{split} F_2'(x) &= f(x) \\ F_2 \text{ est donc aussi une primitive de } f \end{split}$$

3.
$$F$$
 définie par $F(x) = 5x^3 + 10x^2 - 5x + k$ où $k \in \mathbb{R}$ est aussi une primitive de f car $F'(x) = f(x)$

4. la fonction f admet alors une infinité de primitives

5. soit G une primitive quelconque de f, on cherche à quoi ressemble nécessairement G. pour cela, on considère la fonction H définie par $H(x) = G(x) - F_1(x)$

a.
$$H(x) = G(x) - F_1(x)$$

$$H'(x) = G'(x) - F_1'(x)$$

$$H(x) = f(x) - f(x) = 0$$

$$H'(x) = 0$$

b. H est une fonction constante car sa dérivée est nulle pour tout $x \in \mathbb{R}$ $H(x) = k = \text{constante pour tout } x \in \mathbb{R}$

c.
$$H(x) = G(x) - F_1(x) = k$$
 pour tout $x \in \mathbb{R}$

$$G(x) = F_1(x) + k$$
 pour tout $x \in \mathbb{R}$

d. une primitive de f est nécessairement la forme $F(x) = F_1(x) + k$

e. la seule et unique primitive F de f telle que F(0) = 10 est telle que

$$F(x) = F_1(x) + k \text{ avec } F(0) = 10$$

$$F(x) = 15x^2 + 20x - 5 + k \text{ avec } F(0) = 10$$

$$F(0) = 15 \times 0^2 + 20 \times 0 - 5 + k = 10$$

$$-5 + k = 10 \iff k = 15$$

$$F(x) = 15x^2 + 20x - 5 + 15$$

$$F(x) = 15x^2 + 20x - 10$$

soit la fonction f telle $f(x) = 1 + x + e^x - \frac{1}{x^2}$ définie sur \mathbb{R}^*

1. F_1 telle que $F_1(x) = x + \frac{x^2}{2} + e^x + \frac{1}{x}$ est une primitive de f, en effet :

$$F_1'(x) = 1 + \frac{1}{2} \times 2x + e^x + \frac{-1}{x^2}$$

$$F_1'(x) = 1 + x + e^x - \frac{1}{x^2} = f(x)$$

- 2. une autre primitive F_2 de f est : $F_2(x) = x + \frac{x^2}{2} + \ln x + \frac{1}{x} + k$ où $k \in \mathbb{R}$
- 3. primitive F de f qui vaut 0 pour x=1

$$F(1) = 0$$
 et $F(x) = x + \frac{x^2}{2} + e^x + \frac{1}{x} + k$

$$F(1) = 1 + \frac{1^2}{2} + e^1 + \frac{1}{1} + k = 0$$

$$1 + \frac{1}{2} + e + 1 + k = 0$$

$$k = -\frac{5}{2} - e$$

$$F(x) = x + \frac{x^2}{2} + \ln x + \frac{1}{x} - \frac{5}{2} - e$$

donner une primitive dans chaque cas en utilisant le tableau des dérivées

- (a) f(x) = 0 a par exemple pour primitive : F(x) = k
- (b) f(x) = 10 a par exemple pour primitive : F(x) = 10x + k
- (c) f(x) = x a par exemple pour primitive : F(x) = x + k
- (d) $f(x) = x^2$ a par exemple pour primitive : $F(x) = \frac{x^3}{3} + k$
- (e) $f(x) = x^3$ a par exemple pour primitive : $F(x) = \frac{x^4}{4} + k$
- (f) $f(x) = \frac{1}{x}$ a par exemple pour primitive : $F(x) = \ln(x) + k$
- (g) $f(x) = \frac{1}{x^2}$ a par exemple pour primitive : $F(x) = \frac{-1}{x} + k$
- (h) $f(x) = \frac{1}{x^3}$ a par exemple pour primitive : $F(x) = \frac{-1}{2x^2} + k$
- (i) $f(x) = e^x$ a par exemple pour primitive : $F(x) = e^x + k$

corrigé activité $4\,$

démontrons chaque proposition

1. si F et G sont des primitives respectives de f et g alors H = F + G est une primitive de h = f + g

$$H = F + G$$

$$H' = F' + G'$$

$$H' = f + g$$

$$H' = h$$

$$H = F + G$$
 est une primitive de $h = f + g$

2. si F est une primitive de f et $k \in \mathbb{R}$ est un réel alors H = kF est une primitive de h = kf H = kF

$$H' = kF'$$

$$H' = kf$$

$$H'=h$$

$$H=kF$$
 est une primitive de $h=kf$

2.3 à retenir

<u>définition 1</u> (primitive d'une fonction)

Soient
$$f$$
 et F deux fonctions définies sur un intervalle I
$$(F \text{ est une primitive de } f \text{ sur } I) \iff (F'(x) = f(x)) \text{ pour tout } x \in I$$

exemple : avec $F(x) = x^2 + 3x$ et f(x) = 2x + 3 on a F'(x) = f(x) donc F est une primitive de f remarque : "F est une primitive de f" équivaut à "f est la dérivée de F"

propriété 1 (forme générale des primitives)

(1) toute fonction continue sur un intervalle
$$I$$
 de \mathbb{R} admet des primitives sur cet intervalle (2) Soient f et F deux fonctions définies sur un intervalle I
$$\begin{cases} \text{si } [F \text{ est une primitive de } f] \text{ sur } I \\ \text{alors} \\ \text{toutes les primitives de } f \text{ sont de la forme } (F+k) \text{ où } k \in \mathbb{R} \end{cases}$$

exemple : avec $F(x) = x^2 + 3x$ et f(x) = 2x + 3, toutes les primitives de f sont de la forme $F(x) = x^2 + 3x + k$ où k est un nombre réel quelconque

remarque : si on connaît une primitive de f alors on en connaît une infinité

propriété 2 (tableau des primitives usuelles)

F(x)	f(x)
$k \in \mathbb{R}$	0
x + k	1
2x + k	2
-3x + k	-3
ax + k	$a \in \mathbb{R}$
$\frac{1}{2}x^2 + k$	x
$\frac{1}{3}x^3 + k$	x^2
$\frac{1}{4}x^4 + k$	x^3
$\frac{1}{\alpha+1}x^{\alpha+1} + k$	x^α où $\alpha \in \mathbb{R} - \{-1\}$
$2\sqrt{x} + k$	$\frac{1}{\sqrt{x}}$
ln(x) + k	$\frac{1}{x}$
ln(ax+b)+k	$\frac{a}{ax+b}$
$\frac{-1}{x} + k$	$\frac{1}{x^2}$
$\frac{-1}{2x^2} + k$	$\frac{1}{x^3}$
$\frac{-1}{(n-1)x^{n-1}} + k$	$\frac{1}{x^n} \text{ où } n \in N\text{et } n > 1$
e^x	e^x
$\frac{1}{a}e^{ax+b}$	e^{ax+b}

- (1) si F et G sont des primitives respectives de f et g sur I alors (F+G) est une primitive de f+g sur I
- (2) si F est une primitive de f sur I et $k \in \mathbb{R}$ alors (kF) est une primitive de kf sur I

exemple : une primitive de $f(x) = x^2 + 5x^3$ est $F(x) = \frac{1}{3}x^3 + 5 \times \frac{1}{4}x^4 = \frac{1}{3}x^3 + \frac{5}{4}x^4$

propriété 4 (primitives des formes usuelles)

soit u une fonction dérivable sur un intervalle I et u' sa dérivée.

quand cela est possible, on utilise le tableau suivant pour trouver une primitive F d'une fonction f connue.

$\Gamma(n)$	f(x)	conditions
F(x)	f(x)	Conditions
$\frac{1}{2}u^2$	u'u	
$\frac{1}{3}u^3$	$u'u^2$	
$\frac{1}{4}u^4$	$u'u^3$	
$\frac{1}{n+1}u^{n+1}$	$u'u^n$	$n \in N$
$\frac{-1}{u}$	$\frac{u'}{u^2}$	$u \neq 0$
$ \frac{-1}{u} $ $ \frac{-1}{2u^2} $	$\frac{u'}{u^3}$	$u \neq 0$
$\frac{-1}{(n-1)u^{n-1}}$	$\frac{u'}{u^n}$	$n \in \mathbb{N}, n > 1 \text{ et } u \neq 0$
lnu	$\frac{u'}{u}$	u > 0
e^u	$u'e^u$	

exemples:

(a)
$$f(x) = (2x+3)e^{x^2+3x+10}$$

 $f = u'e^u \text{ donc } F = e^u$
avec $\begin{cases} u(x) = x^2 + 3x + 10 \\ u'(x) = 2x + 3 \end{cases}$
donc $F(x) = e^{x^2+3x+10}$

(b)
$$f(x) = \frac{2x+3}{x^2+3x+10}$$
$$f = \frac{u'}{u} \text{ donc } F = \ln u$$
$$\text{avec } \begin{cases} u(x) = x^2 + 3x + 10\\ u'(x) = 2x + 3 \end{cases}$$
$$\text{donc } F(x) = \ln(x^2 + 3x + 10)$$

(c)
$$f(x) = (2x+3)(x^2+3x+10)$$
$$f = u'u \text{ donc } F = \frac{1}{2}u^2$$
$$\text{avec } \begin{cases} u(x) = x^2 + 3x + 10\\ u'(x) = 2x + 3 \end{cases}$$
$$\text{donc } F(x) = \frac{1}{2}(x^2 + 3x + 10)^2$$

(d)
$$f(x) = \frac{2x+3}{(x^2+3x+10)^3}$$
$$f = \frac{u'}{u^3} \text{ donc } F = \frac{-1}{2u^2}$$
$$\text{avec } \begin{cases} u(x) = x^2 + 3x + 10\\ u'(x) = 2x + 3 \end{cases}$$
$$\text{donc } F(x) = \frac{-1}{2(x^2+3x+10)^2}$$

exercices 2.4

exercice 1:

Trouver une primitive de f sur D_f dans chaque cas. puis déterminer la primitive de f qui vaut 0 en 1 pour au moins 2 exemples

1.
$$f(x) = x - 10$$

6.
$$f(x) = e^x + \frac{1}{x}$$

10.
$$f(x) = \frac{8}{8x + 10}$$

2.
$$f(x) = 4x + 3$$

3.
$$f(x) = x^3 - x^2 + 5x + 2$$

7.
$$f(x) = 10e^x + \frac{8}{x}$$

11.
$$f(x) = \frac{2x+8}{x^2+8x+12}$$

4.
$$f(x) = 4x^2 - 6x + 9$$

8.
$$f(x) = e^{0.2x}$$

2.
$$f(x) = 4x + 3$$

3. $f(x) = x^3 - x^2 + 5x + 2$
4. $f(x) = 4x^2 - 6x + 9$
5. $f(x) = 12x^3 + 7x^2 - 8x + 10$
7. $f(x) = 10e^x + \frac{8}{x}$
8. $f(x) = e^{0.2x}$
9. $f(x) = 10e^{0.05x}$

9.
$$f(x) = 10e^{0.05x}$$

12.
$$f(x) = (6x - 10)e^{3x^2 - 10x + 4}$$

exercice 2:

Démontrer dans chaque cas que F est une primitive de f

(a)
$$\begin{cases} f(x) = 10 - 2e^{-0.2x+1} \\ F(x) = 10x + 10e^{-0.2x+1} \end{cases}$$
(b)
$$\begin{cases} f(x) = \frac{e^{0.36x}}{99 + e^{0.36x}} \\ F(x) = \frac{1}{0.36}ln(99 + e^{0.36x}) \end{cases}$$
(c)
$$\begin{cases} f(x) = 200 + 0.02(x - 7)e^x \\ F(x) = 200x + 0.02(x - 8)e^x \end{cases}$$

(d)
$$\begin{cases} f(x) = e^{-x}(x-3)^2 \\ F(x) = -e^{-x}(x^2 - 4x + 5) \end{cases}$$

(d)
$$\begin{cases} f(x) = e^{-x}(x-3)^2 \\ F(x) = -e^{-x}(x^2 - 4x + 5) \end{cases}$$
(e)
$$\begin{cases} f(x) = 6x + 28 - 24ln(x) \\ F(x) = 3x^2 + 52x - 24xln(x) \end{cases}$$

(f)
$$\begin{cases} f(x) = 9, 3 - 0,048x - \frac{2,8e^{2x}}{e^{2x} + 160000} \\ F(x) = 9,3x - 0,024x^2 - 1,4ln(e^{2x} + 160000) \end{cases}$$

2.5	corrigés	exercices

3 intégrale d'une fonction

3.1 activités

activité 1 : aire sous la courbe, valeur moyenne, aire entre deux courbes et primitives

1. soit la fonction f définie sur \mathbb{R} par f(x) = 4

(b) donner une primitive
$$F$$
 de f

(c) calculer
$$\int_{-4}^{3} f(x)dx = F(3) - F(-4)$$
 comparer les deux résultats

(e) en déduire la valeur moyenne
$$m$$
 de f sur $[-4;3]$ sachant que $m=\frac{1}{3-(-4)}\int_{-4}^3 f(x)dx$

2. soit
$$f$$
 définie sur \mathbb{R} par $f(x) = \frac{1}{2}x + 2$

(a) calculer l'aire du trapèze hachuré
$$(\text{rappel}: \text{Aire} = \frac{b+B}{2} \times h \)$$

(b) donner une primitive
$$F$$
 de f

(c) calculer
$$\int_{-2}^{4} f(x)dx = F(4) - F(-2)$$
 comparer les deux résultats

(d) en déduire la valeur moyenne m de f sur [-2;4] sachant que $m = \frac{1}{4 - (-2)} \int_{-2}^{4} f(x) dx$

3. soit
$$f$$
 définie sur \mathbb{R} par $f(x) = -\frac{1}{2}x^2 + 3x$

- (a) encadrer l'aire parabolique hachurée par deux entiers.
- (b) donner une primitive F de f

(c) calculer
$$\int_0^6 f(x)dx = F(6) - F(0)$$
 comparer les deux résultats

(d) en déduire la valeur moyenne m de f sur [0;6]

- 4. soit f définie sur \mathbb{R} par $f(x) = -\frac{1}{2}x^2 + 3x$ soit g définie sur \mathbb{R} par $g(x) = \frac{1}{2}x + 2$
 - (a) encadrer l'aire hachurée par deux entiers.
 - (b) donner F et G des primitives respectives de f et g
 - (c) calculer $\int_{1}^{4} f(x)dx \int_{1}^{4} g(x)dx$ comme ci dessus. comparer les résultats du a. et du c.

activité 2 : Terminales ES - Sujet Callédonie 2005

On considère la fonction f définie sur l'intervalle [0; 6] par $f(x) = \frac{3}{4}x^2 - 3x + 6$

La courbe (C_f) ci-dessous est représentative de f dans un repère orthonormal du plan d'origine O. La partie hachurée ci-contre est limitée par la courbe (C_f) , l'axe des abscisses, l'axe des ordonnées et la droite d'équation x = 6.

- 1. Calculer, en unités d'aire, l'aire S de la partie hachurée. En déduire l'aire en cm^2 sachant que 1 unité a pour mesure 2cm en abscisses et 0,75cm en ordonnées
- 2. Calculer la valeur moyenne de f sur $[0\ ;\ 6]$ et la représenter sur le graphique.
- 3. On considère un point M appartenant à la courbe (\mathcal{C}_f) d'abscisse x avec $x \in [0 \ ; \ 6]$. La parallè le à l'axe des ordonnées passant par M coupe l'axe des abscisses en un point H. La parallè le à l'axe des abscisses passant par M coupe l'axe des ordonnées en un point K. On appelle R(x) l'aire, en unités d'aire, du rectangle OHMK. Prouver que, pour tout x appartenant à l'intervalle $[0 \ ; \ 6]$, $R(x) = 0,75x^3 3x^2 + 6x$.
- 4. On se propose de rechercher toutes les valeurs possibles de x de l'intervalle [0; 6] telles que l'aire R(x) du rectangle OHMK soit égale à l'aire hachurée S.
 - (a) Montrer que le problème précédent revient à résoudre l'équation g(x)=0 où g est la fonction définie sur l'intervalle $[0\ ;\ 6]$ par :

$$g(x) = 0,75x^3 - 3x^2 + 6x - 36.$$

(b) Étudier les variations de g sur l'intervalle [0; 6] et dresser le tableau de variation de g. En déduire que l'équation g(x) = 0 admet sur l'intervalle [0; 6] une solution unique α .

Donner une valeur approchée de α au centième et placer alors le point M sur le graphique

3.2 corrigés activités

corrigé activité 1 : aire sous la courbe, valeur moyenne, aire entre deux courbes et primitives

- 1. soit la fonction f définie sur \mathbb{R} par f(x) = 4
 - (a) aire du rectangle hachuré : Aire = longueur × largeur = $7 \times 4 = \boxed{28 \text{ U.A.}}$
 - (b) une primitive F de f(F(x) = 4x)

- (c) $\int_{-4}^{3} f(x)dx = F(3) F(-4) = 4 \times 3 4 \times (-4) -5 -4 -3 -2 -1$ $\int_{-4}^{3} f(x)dx = 12 + 16 = \boxed{28}$ $\boxed{\int_{-4}^{3} f(x)dx = \text{aire du rectangle}}$
- (d) il aura fabriqué (28 objets)
- (e) valeur moyenne m de f sur [-4; 3]: $m = \frac{1}{3 (-4)} \int_{-4}^{3} f(x) dx = \frac{1}{7} \times 28 = \boxed{4}$
- soit f définie sur \mathbb{R} par $f(x) = \frac{1}{2}x + 2$
 - 1. aire du trapèze hachuré :

aire = aire du rectangle + aire du triangle

aire =
$$6 \times 1 + \frac{6 \times 3}{2} = 6 + 9 = \boxed{15 \text{ U.A.}}$$

- 2. une primitive F de f $F(x) = \frac{1}{2} \times \frac{1}{2}x^{2} + 2x = \left(\frac{1}{4}x^{2} + 2x\right)$
- 3. $\int_{-2}^{4} f(x)dx = F(4) F(-2) = (\frac{1}{4} \times 4^{2} + 2 \times 4) (\frac{1}{4} \times (-2)^{2} + 2 \times (-2))$ $\int_{-2}^{4} f(x)dx = F(4) F(-2) = 12 (-3) = \boxed{15}$ $\boxed{\int_{-2}^{4} f(x)dx = \text{aire du trapèze}}$
- 4. valeur moyenne m de f sur [-2;4]: $m = \frac{1}{4 (-2)} \int_{-2}^{4} f(x) dx = \frac{1}{6} \times 15 = \frac{5}{2} = (2,5)$

- soit f définie sur \mathbb{R} par $f(x) = -\frac{1}{2}x^2 + 3x$
 - 1. $17 \le \text{aire parabolique hachurée} \le 18$
 - 2. une primitive F de f $F(x) = -\frac{1}{2} \times \frac{1}{3}x^3 + 3 \times \frac{1}{2}x^2 = \left[-\frac{1}{6}x^3 + \frac{3}{2}x^2 \right]$

- 4. valeur moyenne m de f sur [0;6]: $m = \frac{1}{6-0} \int_0^6 f(x) dx = \frac{1}{6} \times 18 = \boxed{3}$
- soit f définie sur $\mathbb R$ par $f(x) = -\frac{1}{2}x^2 + 3x$ soit g définie sur $\mathbb R$ par $g(x) = \frac{1}{2}x + 2$
 - 1. $(2 \le \text{aire hachur\'ee} \le 3)$
 - 2. F et G des primitives respectives de f et g

$$F(x) = -\frac{1}{6}x^3 + \frac{3}{2}x^2$$
 et $G(x) = \frac{1}{4}x^2 + 2x$

 C_f

3.
$$\int_{1}^{4} f(x)dx - \int_{1}^{4} g(x)dx$$

$$\int_{1}^{4} f(x)dx - \int_{1}^{4} g(x)dx = F(4) - F(1) - ((G(4) - G(1)))$$

$$\int_{1}^{4} f(x)dx - \int_{1}^{4} g(x)dx = F(4) - F(1) - ((G(4) - G(1)))$$

$$F(4) = -\frac{1}{6} \times 4^{3} + \frac{3}{2} \times 4^{2} = -\frac{32}{3} + 24 = \frac{40}{3}$$

$$F(1) = -\frac{1}{6} \times 1^{3} + \frac{3}{2} \times 1^{2} = \frac{4}{3}$$

$$G(4) = \frac{1}{4} \times 4^{2} + 2 \times 4 = 12$$

$$G(1) = \frac{1}{4} \times 1^{2} + 2 \times 1 = \frac{3}{2}$$

$$\int_{1}^{4} f(x)dx - \int_{1}^{4} g(x)dx = \frac{40}{3} - \frac{4}{3} - (12 - \frac{9}{4}) = 2,25$$

ce résultat est cohérent avec celui du a.

corrigé activité 2 : Terminales ES - Sujet Callédonie 2005 : ex 103 page 199

1. en unités d'aire, l'aire S de la partie hachurée est $S = \int_0^6 f(x)dx$

$$S = \int_0^6 (\frac{3}{4}x^2 - 3x + 6)dx = [F(x)]_0^6 = [0, 25x^3 - 1, 5x^2 + 6x]_0^6$$

$$S = F(6) - F(0) = (0, 25 \times 6^3 - 1, 5 \times 6^2 + 6 \times 6) - 0 = 36$$
 unités d'aires

or une unité d'aire vaut $2 \times 0,75 = 1,5cm^2$ ce qui donne en pour S : $36 \times 1,5 = \boxed{54cm^2}$

2. la valeur moyenne de
$$f$$
 sur $[0; 6]$ est : $m = \frac{1}{6-0} \int_0^6 f(x) dx = \frac{36}{6} = \boxed{6}$

3.
$$R(x)$$
 l'aire, en unités d'aire, du rectangle $OHMK = longueur \times largeur = x \times f(x) = \sqrt{0.75x^3 - 3x^2 + 6x}$

4. (a) aire
$$R(x)$$
 du rectangle $OHMK$ =aire hachurée $S \iff 0,75x^3 - 3x^2 + 6x = 36 \iff 0,75x^3 - 3x^2 + 6x - 36 = 0 \iff g(x) = 0$

(b) variations de g sur l'intervalle [0; 6] et tableau de variation de g.

• Calcul de
$$g'(x) : g'(x) = 2,25x^2 - 6x + 6$$

• Annulation et signe de g'(x):

g'(x) est un polynôme de degré 2 de la forme $ax^2 + bx + c$, on utilise la règle du signe de $ax^2 + bx + c$. et pour g'(x) = 0 on utilise le discriminant :

 $\Delta = -18 < 0$ donc aucune annulation et on a le tableau de signes suivant.

x	0		6
g'(x)		+	

 \bullet variations de g:

x	0		6
g'(x)		+	
			54
g(x)		7	
	-36		
g((0) = 0	-36	

$$\bullet \left\{ \begin{array}{l} g(0) = -36 \text{ et } -36 < 0 \\ g(6) = 54 \text{ et } 54 > 0 \\ g \text{ est continue sur } [0;6] \text{ en tant que fonction polynômiale de degré 3} \\ g \text{ est strictement croissante sur } [0;6] \end{array} \right.$$

d'après le théorème des valeurs intermédiaires l'équation g(x)=0 possède alors une solution unique α dans [0;6]

 \bullet La calculatrice permet de voir que 4,55 < $\alpha < 4,56$ car :

$$\begin{cases} f(4,55) \simeq -0,16 < 0 \\ f(4,56) \simeq 0,093 > 0 \end{cases} \quad \mathrm{donc} \left(\underline{\alpha = 4,55 \text{ ou } 4,56} \right) \land 10^{-2} \text{ près.}$$

• conclusion : pour que le rectangle ait la même aire que la surface hachurée, il faut que $(x = \alpha \simeq 4, 55)$

3.3 à retenir

définition 2 (de l'intégrale)

Soit f une fonction continue sur un intervalle I; F une primitive de f; a et b deux réels de I.

L'intégrale de a à b de f est le nombre noté : $\left(\int_a^b f(x)dx\right)$ avec $\left(\int_a^b f(x)dx = F(b) - F(a)\right)$

Remarques:

- (1) on lit aussi : "intégrale de a à b de f de x dx"
- (2) on note aussi : $F(b) F(a) = [F(x)]_a^b$
- (3) le choix de la primitive de f n'a pas d'effet sur la valeur de l'intégrale.

propriété 5

f et g sont deux fonctions continues sur un intervalle I, a et b sont deux réels de I, $\alpha \in \mathbb{R}$

(P1) : (bornes identiques) :
$$\int_{a}^{a} f(x)dx = 0$$

(P2) : (inversion des bornes) :
$$(\int_b^a f(x)dx = -\int_a^b f(x)dx)$$

(P3) : (relation de Chasles) :
$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$$

$$(P4): (\mathit{lin\'earit\'e}): \overbrace{\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx} \underbrace{\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx}$$

(P5) :
$$(intégrale\ et\ positivité)$$
 : $(si\ f \ge 0\ sur\ I\ alors\ \int_a^b f(x)dx \ge 0)$

(P6) :
$$(int\'{e}grale\ et\ ordre)$$
 : $(si\ f \ge g\ sur\ I\ alors\ \int_a^b f(x)dx \ge \int_a^b g(x)dx)$

propriété 6 (de l'aire "sous" la courbe d'une fonction positive)

$$\int_{a}^{b} f(x)dx = \text{Aire entre} \begin{cases} \bullet \text{ la courbe } C_{f} \text{ de } f \\ \bullet \text{ l'axe des abscisses} \\ \bullet \text{ la droite verticale d'équation } x = a \end{cases}$$

- la droite verticale d'équation x = b

où f est positive et continue sur I avec a < b deux réels de I

remarque : l'aire trouvée est exprimée en unités d'aires (U.A.)

définition 3 (valeur moyenne d'une fonction)

la valeur moyenne de f sur [a; b] est le nombre m tel que :

$$\boxed{m = \frac{1}{b-a} \int_{a}^{b} f(x) dx}$$

Remarque : C'est la hauteur m du rectangle de largeur b-aqui une aire égale à à l'intégrale.

3.4 exercices

exercice 3:

- 1. calculer $A = \int_0^2 x^3 dx$ en utilisant deux primitives distinctes et comparer les résultats
- 2. démontrer la remarque (3) de la définition 2

exercice 4:

- 1. démontrer la propriété (P1)
- 2. déterminer $A = \int_{10}^{10} x^2 dx + \int_{-4}^{-4} x^3 dx$ sans aucun calculs

exercice 5:

- 1. démontrer la propriété (P2)
- 2. on sait que $A = \int_2^{10} f(x)dx = 12$ que vaut alors $B = \int_{10}^2 f(x)dx$?

exercice 6:

- 1. démontrer la propriété (P3)
- 2. on sait que $A = \int_{2}^{10} f(x)dx = 12$ et que $B = \int_{10}^{15} f(x)dx = 8$ que vaut alors $C = \int_{2}^{15} f(x)dx$?

exercice 7:

- 1. démontrer la propriété (P4)
- 2. on sait que $\int_{2}^{10} f(x)dx = 12$ et que $\int_{2}^{10} g(x)dx = 18$
 - a. que vaut alors $\int_2^{10} 5f(x)dx$?
 - b. que vaut alors $\int_2^{10} (f(x) + g(x))dx$?
 - c. que vaut alors $\int_{2}^{10} (5f(x) 3g(x)) dx$?

exercice 8:

- 1. on sait que f(x) < 10 sur [1; 5] démontrer que $\int_1^5 f(x) dx < 40$
- 2. on sait que $x^2 < g(x) < x$ sur [0 ; 1] en déduire un encadrement de $\int_0^1 g(x) dx$

exercice 9:

- 1. calculer l'aire sous la courbe de la fonction cube entre -2 et 2 et faire une figure
- 2. calculer l'aire sous la courbe de la fonction carrée entre -2 et 2 et faire une figure

exercice 10:

- 1. calculer la valeur moyenne la fonction cube entre -2 et 2 et faire une figure
- 2. calculer la valeur moyenne de la fonction carrée entre -2 et 2 et faire une figure

exercice 11:

soit la courbe de la fonction f avec $f(x) = -x + 5 - \frac{4}{x}$ pour $1 \le x \le 4$

- a. calcular $\int_{1}^{4} (-x+5-\frac{4}{x})dx$
- b. interpréter le résultat en termes d'aire
- c. calculer la valeur moyenne de f pour x compris entre 1 et 4

exercice 12:

calculer les intégrales suivantes et en déduire les valeurs moyennes associées

a.
$$\int_0^3 (x-4)dx$$

b. $\int_1^2 (t-\frac{1}{t^2})dt$
c. $\int_0^2 4q^3dq$

d.
$$\int_{-1}^{1} (x^2 - 1) dx$$

e.
$$\int_{-1}^{2} \frac{3}{x+2} dx$$

exercice 13:

1. on sait que
$$\begin{cases} f(x) = \frac{e^{0,36x}}{99 + e^{0,36x}} \\ F(x) = \frac{1}{0,36} ln(99 + e^{0,36x}) \end{cases}$$

calculer la valeur moyenne exacte puis approchée à 0.01 près de f sur [30;40]

2. on sait que
$$\begin{cases} f(x) = 200 + 0,02(x - 7)e^x \\ F(x) = 200x + 0,02(x - 8)e^x \end{cases}$$

- (a) calculer la valeur exacte puis approchée à 0,01 près de $\int_1^7 f(x) dx$
- (b) en déduire la valeur moyenne exacte puis approchée à 0.01 près de f sur [1;7]
- 3. on sait que $f(t) = 10e^{0.05t}$ calculer la valeur moyenne exacte puis approchée à 0,01 près de f sur [-20;30]

4.
$$\begin{cases} f(x) = e^{-x}(x-3)^2 \\ F(x) = -e^{-x}(x^2 - 4x + 5) \end{cases}$$

calculer la valeur moyenne exacte puis approchée à 0,01 près de f sur [0;10]

5.
$$\begin{cases} f(x) = 10 - 2e^{-0.2x+1} \\ F(x) = 10x + 10e^{-0.2x+1} \end{cases}$$

calculer la valeur moyenne exacte puis approchée à 0,01 près de f sur $\left[1;20\right]$

6.
$$\begin{cases} f(x) = 6x + 28 - 24ln(x) \\ F(x) = 3x^2 + 52x - 24xln(x) \end{cases}$$

- (a) calculer la valeur exacte de $\int_{1}^{12} f(x)dx$
- (b) en déduire la valeur moyenne exacte puis approchée à 0,01 près de f sur [1;12]

7.
$$\begin{cases} f(x) = 9, 3 - 0,048x - \frac{2,8e^{2x}}{e^{2x} + 160000} \\ F(x) = 9,3x - 0,024x^2 - 1,4ln(e^{2x} + 160000) \end{cases}$$

calculer la valeur moyenne exacte puis approchée à 0,01 près de f sur $\left[0;12\right]$

f est définie sur] -1 ; $+\infty$ [par $f(x)=x-\frac{4}{(x+1)^2}$

1. calculer $\int_{2}^{4} f(x)dx$ interpréter graphiquement le résultat (définir la surface par un système d'inéquations)

2

1U.A.

- 2. calculer $\int_0^4 f(x)dx$ cette intégrale est-elle une aire?
- 3. calculer la valeur moyenne de f entre 2 et 4

exercice 15:

$$f$$
 est définie sur]2 ;10 [par $f(x)=\frac{30(lnx-1)^2}{x}$

- a. calculer la dérivée de la fonction g définie sur]2 ;10 [par $g(x)=(\ln x-1)^3$
- b. en déduire une primitive de f sur $]2\ ;10\ [$
- c. en déduire la valeur moyenne de f sur]2 ;10 [
- d. étudier les variations de f sur]2 ;10 [

exercice 16:

$$\begin{cases} f(x) = -\frac{1}{4}x^2 + 2x + 5 \\ g(x) = \frac{32}{x^2} \end{cases}$$

1. soient les aires hachurées suivantes

- a. calculer l'aire correspondant à f
- b. calculer la valeur moyenne de f sur $[\ 0\ ;\ 10\]$
- c. calculer $\int_0^4 f(x)dx$ en déduire $\int_0^8 f(x)dx$
- 2. a. calculer l'aire correspondant au système : $\left\{\begin{array}{l} 2 \leq x \leq 8 \\ \\ 0 \leq y \leq \frac{32}{x^2} \end{array}\right.$
 - b. calculer la valeur moyenne de : $x \longmapsto \frac{32}{x^2}$ sur [2 ; 8]

exercice 17:

la capacité pulmonaire d'un humain exprimée en litres dépend de son âge x on peut la modéliser par la fonction f telle que : $f(x) = \frac{110(lnx-2)}{r}$ pour $x \in [10; 90]$

- 1. étudier les variations de f sur [10 ; 90]
- 2. a. tracer la courbe de f avec 1cm pour 10 ans et 2cm pour 1 litre.
 - b. déterminer graphiquement l'intervalle d'âges durant lequel la capacité reste supérieure à 4,5 L
- 3. a. calculer la dérivée de g avec $g(x) = (\ln x 2)^2$ et en déduire une primitive de f
 - b. en déduire la valeur moyenne de la capacité pulmonaire entre 20 et 70 ans à 0,1 L par défaut

exercice 18: (calcul de surplus)

soit x la quantité (en milliers) d'un certain article disponible sur le marché. le prix unitaire (en euros) de la demande (des consommateurs) est donné par f(x) = -9x + 75le prix unitaire (en euros) de l'offre (des producteurs) est donné par $g(x) = -x^2 + 16x + 9$

Définition 1 : le prix d'équilibre du marché p_e , est le prix associé à la quantité q_e pour laquelle le prix de la demande est égale au prix de l'offre .

Définition 2 : le surplus des consommateurs est égal à : $S_c = \int_0^{q_e} (f(x) - p_e) dx$

(correspond à l'économie réalisée par les consommateurs qui étaient près à payer plus cher jusqu'àu prix d'équilibre)

Définition 3 : le surplus des producteurs est égal à : $S_p = \int_0^{q_e} (p_e - g(x)) dx$

(correspond à l'économie réalisée par les producteurs qui étaient près à vendre moins cher jusqu'àu prix d'équilibre)

- 1. déterminer graphiquement le prix d'équilibre ainsi que la quantité à l'équilibre grâce à une des définitions et vérifier par calcul.
- 2. a. calculer grâce à une des définitions, le surplus des consommateurs à 0,1 mililers d'euros près et interpréter le résultat
 - b. écrire S_c sous la forme d'une différence entre deux intégrales et en déduire une interprétation graphique de S_c en termes d'aire (colorier la surface associée).
- 3. a. calculer grâce à une des définitions, le surplus des producteurs à 0,1 mililers d'euros près.
 - b. écrire S_p sous la forme d'une différence entre deux intégrales et en déduire une interprétation graphique de S_p en terme d'aire (colorier la surface associée)

exercice 19: (aire de la surface entre deux courbes)

- 1. estimer graphiquement un encadrement de l'aire de la surface hachurée I par deux entiers 5
- $f(x) = -\frac{1}{2}x^{2} + 4x \frac{5}{2}$ g(x) = x2. sachant que : déterminer la valeur exacte de I(considérer deux surfaces)

exercice 20 : (Courbe de Lorentz et Indice de Gini) (bac 2004)

- x est la proportion cumulée de la population du pays (entre 0 = 0% et 1 = 100%).
- la proportion cumulée des richesses d'un pays F est donnée en fonction de x par $f(x) = 0,9x^3 + 0,1x$ de courbe C_f ci dessous. (par exemple : dans ce pays, 40% de la population détient 10% de la richesse)
- la proportion cumulée des richesses d'un pays G est donnée en fonction de x par $g(x) = 0,9x^6 + 0,1x^2$ de courbe C_q
- la droite D d'équation y = x représente la distribution parfaitement égalitaire (pour tout t avec $0 \le t \le 1$ on a: t% de la population détient t% de la richesse)

Définition 1 : L'indice de Gini associé à une courbe de Lorentz C_f est le nombre $\left(I=2\int_0^1(x-f(x))dx\right)$

si I=0 on dit qu'il y a absence d'inégalité

- 1. Quelle proportion des richesses du pays G est détenue par 80% de la population? (graphiquement)
- 2. a. Lequel des deux pays semble le plus inégalitaire?
 - b. Vérifier que l'indice de Gini vaut 0 dans le cas d'un pays parfaitement égalitaire.
 - c. i. Calculer l'indice de Gini du pays F à 0,1 près.
 - ii. Ecrire I sous la forme du produit par 2 d'une différence entre deux intégrales et en déduire une interprétation graphique de I en termes d'aire (colorier la surface associée).
 - d. Calculer l'indice de Gini du pays G à 0,1 près.
 - e. Comparer les deux pays
- 3. Représenter ci dessus une courbe de pays extrèmement inégalitaire.

3.5 corrigés exercices

corrigé exercice 1:

soit la courbe de la fonction f avec $f(x) = -x + 5 - \frac{4}{x}$ pour $1 \le x \le 4$

a.
$$\int_{1}^{4} (-x+5-\frac{4}{x})dx$$

$$\int_{1}^{4} (-x+5-\frac{4}{x})dx = \left[-\frac{x^{2}}{2}+5x-4lnx\right]_{1}^{4} = \left(-\frac{4^{2}}{2}+5\times4-4ln4\right) - \left(-\frac{1^{2}}{2}+5\times1-4ln1\right) = \underbrace{\left(\frac{15}{2}-4ln4\right)}_{1}^{4}$$

b. interprétation du résultat en termes d'aire :

l'aire du domaine compris entre la courbe de f et l'axe des abscisses pour x compris entre 1 et 4 vaut $\simeq 2$ unités d'aires

c. valeur moyenne de f pour x compris entre 1 et 4

$$m = \frac{1}{4-1} \int_{1}^{4} (-x+5-\frac{4}{x}) dx = \frac{1}{3} (\frac{15}{2} - 4\ln 4) = \underbrace{\left(\frac{5}{2} - \frac{4}{3}\ln 4\right)}_{1}$$

corrigé exercice 2 :

calculer les intégrales suivantes et en déduire les valeurs moyennes associées

a.
$$\int_0^3 (x-4)dx$$
$$\int_0^3 (x-4)dx = \left[\frac{x^2}{2} - 4x\right]_0^3 = \left(\frac{3^2}{2} - 4 \times 3\right) - \left(\frac{0^2}{2} - 4 \times 0\right) = \frac{9}{2} - 12 = \boxed{\frac{15}{2}}$$
valeur moyenne de f sur $[0;3]: m = \frac{1}{3-0} \int_0^3 (x-4)dx = \frac{1}{3} \times \frac{15}{2} = \boxed{\frac{5}{2}}$

b.
$$\int_{1}^{2} (t - \frac{1}{t^{2}}) dt$$
$$\int_{1}^{2} (t - \frac{1}{t^{2}}) dt = \left[\frac{t^{2}}{2} - \frac{-1}{t} \right]_{1}^{2} = \left[\frac{t^{2}}{2} + \frac{1}{t} \right]_{1}^{2} = \left(\frac{2^{2}}{2} + \frac{1}{2} \right) - \left(\frac{1^{2}}{2} + \frac{1}{1} \right) = \boxed{1}$$
valeur moyenne de f sur $[1; 2]: m = \frac{1}{2 - 1} \int_{1}^{2} (t - \frac{1}{t^{2}}) dt = \boxed{1}$

c.
$$\int_{-2}^{0} 4q^3 dq$$

$$\int_{-2}^{0} 4q^3 dq = [q^4]_0^3 = (0^4) - (-2)^4 = \boxed{-16}$$
 valeur moyenne de f sur $[-2;0]: m = \frac{1}{0 - (-2)} \int_{-2}^{0} 4q^3 dq = \frac{1}{2} \times (-16) = \boxed{-8}$

d.
$$\int_{-1}^{1} (x^2 - 1) dx$$
$$\int_{-1}^{1} (x^2 - 1) dx = \left[\frac{x^3}{3} - x \right]_{-1}^{1} = \left(\frac{1^3}{3} - 1 \right) - \left(\frac{(-1)^3}{3} - (-1) \right) = \frac{1}{3} - 1 + \frac{1}{3} - 1 = \boxed{\frac{-4}{3}}$$
valeur moyenne de f sur $[-1;1]: m = \frac{1}{1 - (-1)} \int_{-1}^{1} (x^2 - 1) dx = \frac{1}{2} \times \left(-\frac{4}{3} \right) = \boxed{\frac{2}{3}}$

e.
$$\int_{-1}^{2} \frac{3}{x+2} dx$$
$$\int_{-1}^{2} \frac{3}{x+2} dx = [3ln(x+2)]_{-1}^{2} = 3ln(2+2) - (3ln(-1+2)) = 3ln4 - 3ln1 = (3ln4)$$
valeur moyenne de f sur $[-1;2]$: $m = \frac{1}{3-0} \int_{-1}^{2} \frac{3}{x+2} dx = \frac{1}{2-(-1)} \times 3ln4 = (ln4)$

corrigé exercice 3:

f est définie sur] -1 ; $+\infty$ [par $f(x)=x-\frac{4}{(x+1)^2}$

 $1. \int_2^4 f(x)dx$

interprétation graphique du résultat :

l'aire du domaine définit par le système d'inéquation : $\begin{cases} 2 \le x \le 4 \\ 0 \le y \le f(x) \end{cases}$ vaut environs (5,5) unités d'aires

2.
$$\int_{0}^{4} f(x)dx$$
$$\int_{0}^{4} f(x)dx = \left[\frac{x^{2}}{2} + \frac{4}{x+1}\right]_{0}^{4}$$
$$\int_{0}^{4} f(x)dx = \left(\frac{4^{2}}{2} + \frac{4}{4+1}\right) - \left(\frac{0^{2}}{2} + \frac{4}{0+1}\right)$$
$$\int_{0}^{4} f(x)dx = 8 + \frac{4}{5} - 4$$
$$\int_{0}^{4} f(x)dx = \frac{40}{5} + \frac{4}{5} - \frac{20}{5} = \left(\frac{24}{5}\right)$$

cette intégrale n'est pas une aire car la fonction change de signe entre 2 et 4

3. valeur moyenne de f entre 2 et 4

$$m = \frac{1}{4-2} \int_{2}^{4} f(x)dx = \frac{1}{2} \times \frac{24}{5} = \boxed{\frac{12}{5}}$$

corrigé exercice 4 :

$$f$$
 est définie sur]2 ;10 [par $f(x)=\frac{30(lnx-1)^2}{x}$

a. dérivée de la fonction g définie sur]2 ;10 [par $g(x)=(\ln x-1)^3$

$$g = u^3 \Longrightarrow g' = 3u^2u' \text{ avec } u = lnx - 1 \Longrightarrow u' = \frac{1}{x}$$

$$g'(x) = 3(\ln x - 1)^2 \times \frac{1}{x} = \left(\frac{3(\ln x - 1)^2}{x}\right)$$

b. une primitive de f sur]2;10[

$$g'(x) = \frac{3(\ln x - 1)^2}{r}$$

$$10g'(x) = \frac{30(\ln x - 1)^2}{x} = f(x)$$

10g est une primitive de f

$$\overline{\left[F(x)=10g(x)=10(lnx-1)^3\right]}$$
 est une primitive de f sur]2 ;10 [

c. valeur moyenne de f sur]2; 10 [

$$\int_{2}^{10} f(x)dx = [10(\ln x - 1)^{3}]_{2}^{10}$$
$$\int_{2}^{10} f(x)dx = 10(\ln 10 - 1)^{3} - 10(\ln 2 - 1)^{3}$$
$$\int_{2}^{10} f(x)dx \approx 22,39$$

$$m = \frac{1}{10 - 2} \int_{2}^{10} f(x) dx$$

$$m \simeq \frac{1}{8} \times 22,39$$

$$m \simeq (2,8)$$

d. étude des variations de f sur]2 ;10 [

<u>dérivée</u>:

$$f = \frac{u}{v} \Longrightarrow f' = \frac{u'v - uv'}{v^2} \text{ avec} \begin{cases} u = 30(\ln x - 1)^2 \Longrightarrow u' = 30 \times 2 \times (\ln x - 1) \times \frac{1}{x} \\ v = x \Longrightarrow v' = 1 \end{cases}$$
 (*)

$$(*): (u^2)' = 2uu'$$

$$f'(x) = \frac{(30 \times 2 \times (lnx - 1) \times \frac{1}{x}) \times x - (30(lnx - 1)^2) \times 1}{x^2}$$
$$f'(x) = \frac{60(lnx - 1) - 30(lnx - 1)^2}{x^2} = \frac{30(lnx - 1)(2 - (lnx - 1))}{x^2} = \frac{30(lnx - 1)(3 - lnx)}{x^2}$$

annulation et signe de la dérivée et variations de f sur $]2\ ;10\ [$:

$$f'(x) = \frac{30(\ln x - 1)(3 - \ln x)}{x^2}$$
 est du signe de $(\ln x - 1)(3 - \ln x)$ car 30 et x^2 sont positifs

il reste à étudier les signes de (lnx - 1) et (3 - lnx) :

$$lnx - 1 \ge 0 \Longleftrightarrow lnx \ge 1 \Longleftrightarrow x \ge e^1 \Longleftrightarrow x \ge e$$
 avec $e \simeq 2,718$

$$3-lnx\geq 0 \Longleftrightarrow -lnx\geq -3 \Longleftrightarrow lnx\leq 3 \Longleftrightarrow x\leq e^3 \quad \text{ avec } e^3\simeq 20,1 \text{ (hors tableau car } x\in]2\ ;10\ [)$$

x	2		e		10	
lnx-1		-	0	+		
3-lnx		+		+		
f'(x)		-	0	+		f(e) =
	$\simeq 1,41$				$\simeq 5,09$	
f(x)		\searrow		7		
			0			

$$f(e) = \frac{30(lne - 1)^2}{e} = 0$$

corrigé exercice 5

$$\begin{cases} f(x) = -\frac{1}{4}x^2 + 2x + 5 \\ g(x) = \frac{32}{x^2} \end{cases}$$

1. soient les aires hachurées suivantes

a. aire correspondant à f:

$$f(x) = -\frac{1}{4}x^2 + 2x + 5$$
$$F(x) = -\frac{1}{12}x^3 + x^2 + 5x$$

$$S_1 = \int_0^{10} f(x)dx = [F(x)]_0^{10} = \left[-\frac{1}{12}x^3 + x^2 + 5x \right]_0^{10} = F(10) - F(0)$$

$$S_1 = \left(-\frac{1}{12} \times 10^3 + 10^2 + 5 \times 10 \right) - 0 = \frac{800}{12} = \boxed{\frac{200}{3} \text{ U.A.}} \simeq 66,7$$

b. valeur moyenne de f sur [0; 10]:

$$\frac{1}{10-0} \int_0^{10} f(x)dx = \frac{1}{10} \times \frac{200}{3} = \boxed{\frac{20}{3}} \simeq 6,7$$

c.
$$\int_0^4 f(x)dx = F(4) - F(0) = (-\frac{1}{12} \times 4^3 + 4^2 + 5 \times 4) - 0 = \frac{368}{12} = \boxed{\frac{92}{3} \text{ U.A.}} \simeq 30,7$$
 on en déduit par symétrie de la courbe que $\int_0^8 f(x)dx = 2 \times \frac{92}{3} = \boxed{\frac{184}{3} \text{ U.A.}}$

2. a. aire correspondant au système : $\begin{cases} 2 \le x \le 8 \\ 0 \le y \le \frac{32}{x^2} \end{cases}$

$$g(x) = \frac{32}{x^2}$$

$$G(x) = -\frac{32}{x}$$

$$S_2 = \int_2^8 g(x)dx = [G(x)]_2^8 = [-\frac{32}{x}]_2^8 = G(8) - G(2)$$

$$S_2 = (-\frac{32}{8}) - (-\frac{32}{2}) = 12 = \boxed{12 \text{ U.A.}}$$

b. valeur moyenne de : $x \mapsto \frac{32}{x^2}$ sur $\begin{bmatrix} 2 \\ \vdots \\ 8 \end{bmatrix}$: $m = \frac{1}{8-2} \int_2^8 g(x) dx = \frac{1}{6} \times 12 = \boxed{2}$

corrigé exercice 6:

la capacité pulmonaire d'un humain exprimée en litres dépend de son âge xon peut la modéliser par la fonction f telle que : $f(x) = \frac{110(\ln x - 2)}{x}$ pour $x \in [10; 90]$

- 1. variations de f sur [10; 90]
 - dérivée :

$$f(x) = \frac{110(\ln x - 2)}{x} = \frac{110\ln x - 220}{x}$$
$$f'(x) = \frac{(110 \times \frac{1}{x}) \times x - (110\ln x - 220) \times 1}{x^2} = \left(\frac{330 - 110\ln x}{x^2}\right)$$

• annulation et signe de f'(x), varations de f:

f'(x) est du signe du numérateur car un carré est positif

$$f'(x)$$
 est du signe du numerateur car un carre est positif $f'(x) = 0 \iff 330 - 110 lnx = 0 \iff lnx = \frac{330}{110} \iff x = e^3$
 $f'(x) < 0 \iff 330 - 110 lnx < 0 \iff lnx > \frac{330}{110} \iff x > e^3$
 $f'(x) > 0 \iff 330 - 110 lnx > 0 \iff lnx < \frac{330}{110} \iff x < e^3$

	x	10		$e^3 \simeq 20$		90	
	f'(x)		+	0	-		$\begin{cases} f(10) = \frac{110(ln10-2)}{2} \approx 3.3 \end{cases}$
d'où :				$\simeq 5, 5$			$f(10) = \frac{110(in10-2)}{10} \approx 3.3$
	f(x)		7		\searrow		10
		$\simeq 3,3$				$\simeq 3, 1$	

5

a. courbe de f avec 1cm pour 10 ans et 2cm pour 1 litre.

x									
f(x)	3.3	5.5	5.1	4.6	4.2	3.8	3.5	3.3	3.1

b. graphiquement:

$$f(x) > 4, 5 \Longleftrightarrow x \in] 12 ; 42 [$$

b. valeur moyenne de la capacité pulmonaire entre 20 et 70 ans à 0,1 L par défaut.

$$m = \frac{1}{70 - 20} \int_{20}^{70} f(x)dx$$
$$m = \frac{1}{50} (F(20) - F(70))$$
$$m \simeq \boxed{4.5 \text{ L}}$$

corrigé exercice 7 : (Courbe de Lorentz et Indice de Gini) (bac 2004)

- x est la proportion cumulée de la population du pays (entre $\theta = 0\%$ et 1 = 100%).
- la proportion cumulée des richesses d'un pays F est donnée en fonction de x par $f(x) = 0.9x^3 + 0.1x$ de courbe C_f ci dessous. (par exemple : dans ce pays, 40% de la population détient 10% de la richesse)
- la proportion cumulée des richesses d'un pays G est donnée en fonction de x par $g(x)=0,9x^6+0,1x^2$ de courbe C_q
- la droite D d'équation y = x représente la distribution parfaitement égalitaire (pour tout t avec $0 \le t \le 1$ on a: t% de la population détient t% de la richesse)

Définition 1 : L'indice de Gini associé à une courbe de Lorentz C_f est le nombre $\left(I=2\int_0^1(x-f(x))dx\right)$

$$e^{\int I = 2 \int_0^1 (x - f(x)) dx}$$

Définition 2 : $\left\{ \begin{array}{l} \text{ si } I=0 \text{ on dit qu'il y a absence d'inégalité} \\ \text{ plus } I \text{ est proche de 1 et plus l'inégalité est grande} \\ \text{ si } I=1 \text{ on dit qu'il y a inégalité extrème} \end{array} \right.$

- 1. |30%| des richesses du pays G est détenue par 80% de la population (graphiquement)
- a. le pays G semble le plus inégalitaire :

car : $\begin{cases} \boxed{30\%} \text{ des richesses du pays } G \text{ est détenue par } 80\% \text{ de la population} \\ \boxed{\simeq 55\%} \text{ des richesses du pays } F \text{ est détenue par } 80\% \text{ de la population} \end{cases}$

b. Indice de Gini dans le cas d'un pays parfaitement égalitaire.

$$I = 2 \int_0^1 (x - h(x)) dx \text{ avec } h(x) = x$$
$$I = 2 \int_0^1 (x - x) dx = 2 \int_0^1 0 dx = [k]_0^1 = k - k = \boxed{0}$$

c. i. Indice de Gini du pays F à 0,1 près.

$$I = 2 \int_0^1 (x - f(x)) dx$$

$$I = 2 \int_0^1 (x - (0, 9x^3 + 0, 1x)) dx$$

$$I = 2 \int_0^1 (-0, 9x^3 + 0, 9x) dx$$

$$I = 2 \times [-0, 9 \times \frac{1}{4}x^4 + 0, 9 \times \frac{1}{2}x^2]_0^1 = 2 \times ((-0, 9 \times \frac{1^4}{4} + 0, 9 \times \frac{1^2}{2}) - (0)) = \boxed{0, 45}$$

ii. Ecrire I sous la forme du produit par 2 d'une différence entre deux intégrales et en déduire une interprétation graphique de I en termes d'aire (colorier la surface associée).

$$I = 2\int_0^1 (x - f(x))dx = 2(\int_0^1 x dx - \int_0^1 f(x)dx)$$

I = 2(aire du triangle - aire sous la courbe de f)

I = 2(aire entre la droite D et la courbe de f)

d. Calculer l'indice de Gini du pays G à 0,1 près.

$$\begin{split} I &= 2 \int_0^1 (x - g(x)) dx \\ I &= 2 \int_0^1 (x - (0, 9x^6 + 0, 1x^2)) dx \\ I &= 2 \int_0^1 (-0, 9x^6 - 0, 1x^2 + x) dx \\ I &= 2 \times [-0, 9 \times \frac{1}{7}x^7 - 0, 1 \times \frac{1}{3}x^3 + \frac{1}{2}x^2]_0^1 = 2 \times ((-0, 9 \times \frac{1^7}{7} - 0, 1 \times \frac{1^3}{3} + \frac{1^2}{2}) - (0) = \\ \hline{0, 68} \end{split}$$

e. Comparer les deux pays

Selon l'indice de Gini :

le pays G est beaucoup plus inégalitaire que le pays F car 0,68 > 0,45

3. Représenter ci dessus une courbe de pays extrêmement inégalitaire, voir $\overline{(C_h)}$

- 3.6 travaux pratiques
- 3.6.1 algorithme et calcul d'aire

Algorithme et calcul d'aire

Pour une fonction f continue et positive sur un intervalle [a;b]

On veut obtenir une la valeur approchée de : $I = \int_a^b f(x)dx$ quand on entre les valeurs de a et b ainsi que la formule de la fonction

1. approximation de l'aire par la méthode des rectangles

$$\int_a^b f(x)dx = aire sous la courbe entre a et $b$$$

M = somme des aires des rectangles supérieurs

m = somme des aires des rectangles inférieurs

$$I \simeq \frac{M+m}{2}$$
 (moyenne)

d'autant plus précis que le nombre de rectangles est grand

$$m = \underbrace{\frac{b-a}{4} \times f(x_0)}_{aire\ 1er\ rect\ inf} + \underbrace{\frac{b-a}{4} \times f(x_1)}_{aire\ 2nd\ rect\ inf} + \underbrace{\frac{b-a}{4} \times f(x_2)}_{4} + \underbrace{\frac{b-a}{4} \times f(x_3)}_{4}$$

$$m = \frac{b-a}{4}[f(x_0) + f(x_1) + f(x_2) + f(x_3)]$$

$$M = \underbrace{\frac{b-a}{4} \times f(x_1)}_{aire\ 1er\ rect\ sup} + \underbrace{\frac{b-a}{4} \times f(x_2)}_{aire\ 2nd\ rect\ sup} + \underbrace{\frac{b-a}{4} \times f(x_3)}_{4} + \underbrace{\frac{b-a}{4} \times f(x_4)}_{4}$$

$$M = \frac{b-a}{4}[f(x_1) + f(x_2) + f(x_3) + f(x_4)]$$

pour l'algorithme, on utilise ce principe en prenant une valeur de n supérieure à 4 pour améliorer la précision

pour un entier naturel n>1 on a $x_i=a+i imes \frac{b-a}{n}$ pour i allant de 0 à n

$$\underbrace{m = \frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i)} \underbrace{M = \frac{b-a}{n} \sum_{i=1}^{n} f(x_i)} \underbrace{I \simeq \frac{m+M}{2}}$$

- 2. algorithme et programmes :
 - (a) recopier un des programmes suivants dans votre calculatrice

```
algorithme
Début
//Variables
                                                          programme pour TI
                                                          disp "A"
    a,b,n, larg, inf, sup, L, x, i, fi, fj, I
                                                          input A
                                                                                          programme pour Casio
                                                          disp "B"
    demander à l'utilisateur la valeur de a
                                                                                          "A" : ? \longrightarrow A
    demander à l'utilisateur la valeur de b
                                                          input B
                                                                                          "B" : ? \longrightarrow B
                                                          disp "N"
    demander à l'utilisateur la valeur de n
                                                                                          "N":?{\longrightarrow}\ N
//Initialisations
                                                          input N
                                                                                          (B-A)/N \longrightarrow L
                                                          (B-A)/N \longrightarrow L
   affecter à larg la valeur (b-a)/n
                                                                                          0\longrightarrow F
    affecter à inf la valeur 0
                                                          0 \longrightarrow F
                                                                                          0 \longrightarrow S
                                                          0 \longrightarrow S
    affecter à sup la valeur 0
                                                                                          0 \longrightarrow I
    affecter à i la valeur 0
                                                          0 \longrightarrow I
                                                                                          While I < N
//Traitements
                                                          While I < N
                                                                                          A+I*L\longrightarrow X
   TANS QUE i < n FAIRE
                                                          A+I*L\longrightarrow X
                                                                                          F+Y_1 \longrightarrow F
                                                          F+Y_1 \longrightarrow F
     affecter à x la valeur a + i*larg
                                                                                          A+(I+1)*L\longrightarrow X
                                                          A+(I+1)*L\longrightarrow X
     affecter à fi la valeur f(x)
                                                                                          S+Y_1 \longrightarrow S
     affecter à inf la valeur inf + fi
                                                          S+Y_1 \longrightarrow S
                                                                                          I+1\longrightarrow I
                                                          I+1\longrightarrow I
     affecter à x la valeur a + (i+1)*larg
                                                                                          WhileEnd
     affecter à fj la valeur f(x)
                                                          End
                                                                                          F*L \longrightarrow F
                                                          F*L \longrightarrow F
     affecter à sup la valeur sup + fj
                                                                                          S*L \longrightarrow S
                                                          S*L \longrightarrow S
     affecter à i la valeur i+1
                                                                                          (F+S)/2 \longrightarrow T
    fin TANS QUE
                                                          (F+S)/2 \longrightarrow T
                                                                                          F \blacktriangle
    affecter à inf la valeur L * inf
                                                          Disp F
                                                                                          S \blacktriangle
    affecter à sup la valeur L * sup
                                                          Disp S
                                                                                          T \blacktriangle
    affecter à I la valeur (inf+sup)/2
                                                          Disp T
                                                                                           (pour\ Y1: VAR\overline{S,\ F4,\ F1})
                                                          (pour Y1:
//Sortie
                                                          Y-VARS.
    afficher inf
    afficher sup
                                                          Function )
    afficher I
Fin
```

- 3. utiliser le programme de la calculatrice pour trouver une valeur approchée des intégrales suivantes à 0,01 près et vérifier par calcul
 - (a) $I = \int_0^1 x dx \simeq$ calcul:
 - (b) $I = \int_0^1 x^2 dx \simeq$ calcul:
 - (c) $I = \int_0^1 x^3 dx \simeq$
 - (d) $I = \int_0^{10} 10 x dx \simeq$ calcul:
 - (e) $I = \int_{-1}^{1} x^2 dx \simeq$

évaluation primitives

nom, prénom : ...

exercice 1 (cours)

1. F est une primitive de $f \iff ...$

2. si F est une primitive de f su run intervalle I alors toute autre primitive de f est de la forme : ...

3. a. compléter le tableau ci dessous :

b. donner une primitive F de la fonction f définie par $f(x) = x^2 + x + 10 + \frac{1}{x} + \frac{1}{x^2}$ pour x > 0

F(x)	f(x)
	0
	10
	$a \in \mathbb{R}$
	x
	x^2
	x^3
	$\frac{1}{x}$
	1
	$\frac{\overline{x^2}}{\frac{1}{x^3}}$

4. soient F et f les fonctions respectivement définies sur $\mathbb R$ par : $\begin{cases} F(x) = 5x^3 + 10x^2 - 5x + 10 \\ f(x) = 15x^2 + 20x - 5 \end{cases}$

a. démontrer que F est une primitive de f

b. déterminer la primitive de f qui vaut 0 en x=1

5. Démontrer que
$$F$$
 est une primitive de f avec :
$$\begin{cases} F(x) = \frac{2x-3}{x^2+4} \\ f(x) = \frac{2(x+1)(4-x)}{(x^2+2)^2} \end{cases}$$

$$x^{2} + 4$$

$$f(x) = \frac{2(x+1)(4-x)}{(x^{2}+2)^{2}}$$

	$\frac{1}{3}u^3$	$u'u^2$	
	$\frac{1}{4}u^4$	$u'u^3$	
1	$-u^{n+1}$	$u'u^n$	

6. trouver une primitive de f dans chacun des cas en utilisant la tableau ci contre :

1.
$$f(x) = 3(3x+5)^2$$

$\frac{1}{4}u^4$	$u'u^3$
$\frac{1}{n+1}u^{n+1}$	$u'u^n$
$\frac{-1}{u}$	$\frac{u'}{u^2}$
$ \begin{array}{r} $	$ \begin{array}{c} \frac{u'}{u^2} \\ \frac{u'}{u'} \\ \frac{u'}{u'} \end{array} $
$\frac{-1}{(n-1)u^{n-1}}$	$\overline{u^n}$
lnu	$\frac{u'}{u}$
e^u	$u'e^u$

u'u

$$2. \ f(x) = \frac{1}{x} lnx$$

3.
$$f(x) = \frac{3}{(3x+5)^2}$$

4.
$$f(x) = \frac{10}{3x+5}$$

exercice 1 : (compléter les résultats de cours)

1.
$$\int_a^b f(x)dx = \dots$$
 où ... est une ... de f

2. pour une fonction f positive sur [a; b]:

$$\int_{a}^{b} f(x)dx = \text{aire de la surface comprise entre}: \begin{cases} \\ \\ \end{cases}$$
(faire un dessin)

3. la valeur moyenne m de f entre a et b est : m = ...

exercice 2:

1. calculer les intégrales suivantes

a.
$$\int_0^6 (x^2 + x - 4) dx$$

b.
$$\int_{1}^{2} \left(\frac{1}{t} - \frac{1}{t^2}\right) dt$$

c.
$$\int_{-2}^{0} 2q^3 dq$$

2. calculer la valeur moyenne de f entrer 0 et 6 pour $f(x) = x^2 + x - 4$ (utiliser le résultat du 1.a.)

1. estimer graphiquement la valeur de $I=\int_1^5 f(x)dx$

à une unité d'aire près : $I \simeq \dots$

- a. montrer que F telle que F(x) = 4x + 6ln(x+1) est une primitive de f pour x>0
- b. en déduire la valeur exacte de I écrite sous la forme 0 1 2 3 n+lnp où n et p sont deux entiers puis donner une valeur approchée de I à 0,1 près.
- c. en déduire la valeur moyenne de f sur $[1\ ;\ 5]$ à 0,1 près et représenter cette valeur sur le graphique.

exercice 1 : (compléter les résultats de cours)

1.
$$\int_a^b f(x)dx = \underbrace{F(b) - F(a)}$$
 où F est une primitive de f

2. pour une fonction f positive sur [a; b]:

$$\int_{a}^{b} f(x)dx = \text{aire de la surface comprise entre}$$

pour une ionction f positive sur [x, x]. $\int_a^b f(x)dx = \text{aire de la surface comprise entre} : \begin{cases} \text{la courbe de } F \\ \text{l'axe des abscisses} \\ \text{pour x comprise entre } a \text{ et } b \end{cases}$

3. la valeur moyenne m de f entre a et b est : $\left(m = \frac{1}{b-a} \int_a^b f(x) dx\right)$

$\underline{\text{exercice } 2}$:

1. calculer les intégrales suivantes

a.
$$\int_0^6 (x^2 + x - 4) dx$$
$$\int_0^6 (x^2 + x - 4) dx = \left[\frac{x^3}{3} + \frac{x^2}{2} - 4x \right]_0^6 = \left(\frac{6^3}{3} + \frac{6^2}{2} - 4 \times 6 \right) - (0) = \boxed{66}$$

b.
$$\int_{1}^{2} \left(\frac{1}{t} - \frac{1}{t^{2}}\right) dt$$
$$\int_{1}^{2} \left(\frac{1}{t} - \frac{1}{t^{2}}\right) dt = \left[\ln t - \frac{-1}{t}\right]_{1}^{2} = \left[\ln t + \frac{1}{t}\right]_{1}^{2} = \left(\ln 2 + \frac{1}{2}\right) - \left(\ln 1 + \frac{1}{1}\right) = \left(\ln 2 - \frac{1}{2}\right)$$

c.
$$\int_{-2}^{0} 2q^{3} dq$$
$$\int_{-2}^{0} 2q^{3} dq = \left[2 \times \frac{1}{4}q^{4}\right]_{-2}^{0} = \left[\frac{1}{2}q^{4}\right]_{-2}^{0} = \left(\frac{1}{2} \times 0^{4}\right) - \left(\frac{1}{2} \times (-2)^{4}\right) = \boxed{-8}$$

2. calculer la valeur moyenne de f entrer 0 et 6 pour $f(x) = x^2 + x - 4$

$$m = \frac{1}{6-0} \int_0^6 (x^2 + x - 4) dx = \frac{1}{6} \times 66 = \boxed{11}$$

1. estimer graphiquement la valeur de $I = \int_1^5 f(x) dx$

à une unité d'aire près : $I \simeq 23$

a. montrer que F telle que F(x) = 4x + 6ln(x+1) est une primitive de f pour x > 0:

$$F(x) = 4x + 6ln(x+1)$$

$$F'(x) = 4 + 6 \times \frac{1}{x+1} = 4 + \frac{6}{x+1} = f(x)$$
 C.Q.F.D.

b. en déduire la valeur exacte de I écrite sous la forme n + lnp où n et p sont deux entiers puis donner une valeur approchée de I à 0,1 près.

$$I = F(5) - F(1) = (4 \times 5 + 6ln(5+1)) - (4 \times 1 + 6ln(1+1))$$

$$I = 20 + 6ln(6) - 4 - 6ln(2)$$

$$I = 16 + ln(6^6) - ln(2^6)$$

$$I = 16 + \ln(\frac{6^6}{2^6})$$

$$I = 16 + ln((\frac{6}{2})^6)$$

$$I = 16 + ln((3)^6)$$

$$I = 16 + ln(729)$$

$$(\overline{I \simeq 22, 6})$$

c. en déduire la valeur moyenne de f sur $[1\ ;\ 5]$ à 0,1 près et représenter cette valeur sur le graphique.

$$m = \frac{1}{5-1} \int_{1}^{5} f(x)dx = \frac{1}{4} \times (16 + \ln(729)) \simeq (5,7)$$

corrigé devoir maison

exercice 1:(31p187)

a.
$$g_1'(0) = 4 = \frac{7-3}{1-0}$$
 coefficient directeur de la tangente (AD) avec $A(0;3)$ et $D(1;7)$
$$g_2'(0) = 2 = \frac{1-(-1)}{1-0}$$
 coefficient directeur de la tangente (BE) avec $B(0;-1)$ et $E(1;1)$

$$g_3'(0) = 2$$
 = $\frac{-3 - (-1)}{1 - 0}$ coefficient directeur de la tangente (CF) avec $C(0; -1)$ et $D(1; -3)$

F est une primitive de f donc F' = f b. f donc F' est négative puis positive donc F est décroissante puis croissante seule $\boxed{C_3}$ convient $f(-1) = F'(-1) \simeq 2,75$ (le coefficient directeur de la tangente à C_3 en x = -1 est $\simeq 2,75$, ce qui n'est pas le cas pour C_2)

On peut tracer $\underbrace{\text{une infinit\'e}}$ de courbes représentant une autre primitive de f car f admet une infinit\'e de primitives

 $\underline{\text{exercice } 2}: (107\text{p}201)$

1.
$$f(x) = \frac{3x^2}{4} - 2x + 3 + ln(x+1) \text{ sur } [0; 6]$$

$$f'(x) = \frac{3x}{2} - 2 + \frac{1}{x+1} = \frac{3x(x+1) - 4(x+1) + 2}{2(x+1)} = \underbrace{\left(\frac{3x^2 - x - 2}{2(x+1)}\right)}$$

$$f'(x) = 0 \iff 3x^2 - x - 2 = 0$$
 et $2(x+1) \neq 0 \iff x \in \{-\frac{2}{3}; 1\}$ en utilisant le discriminant

d'où le tableau de variations :

x	0		1		6
$3x^2 - x - 2$		-	0	+	_
2(x+1)		+		+	_
f'(x)		-	0	+	
	3				$\simeq 20$
f(x)		\searrow		7	
			$\simeq 2,4$		

- 2. le coût marginal est minimal quand f est minimale, c'est à dire pour x = 1 millier d'objets (d'après les variations de f)
- 3. F(x) = (x+1)ln(x+1) x

a.
$$F'(x) = 1 \times ln(x+1) + (x+1) \times \frac{1}{x+1} - 1 = ln(x+1)$$

donc F est une primitive de $x \longmapsto ln(x+1)$

b. le coût total de production C_T est une primitive du coût marginal f

donc
$$C_T(x) = \frac{3}{4} \times \frac{1}{3}x^3 - 2 \times \frac{1}{2}x^2 + 3x + (x+1)ln(x+1) - x + k$$

soit : $C_T(x) = \frac{1}{4}x^3 - x^2 + 2x + (x+1)ln(x+1) + k$

de plus $C_T(0) = 10$ car les coûts fixes sont de 10 milliers d'euros

donc:
$$C_T(0) = \frac{1}{4} \times 0^3 - 0^2 + 2 \times 0 + (0+1)ln(0+1) + k = 10$$

soit k = 10 conclusion : $C_T(x) = \frac{1}{4}x^3 - x^2 + 2x + (x+1)ln(x+1) + 10$

exercice 1 : (aire de la surface entre deux courbes)

1. estimer graphiquement un encadrement de l'aire de la surface hachurée I par deux entiers

où I est en unités d'aires : ... $\leq I \leq ...$

a. calculer la valeur exacte de $\int_1^5 f(x)dx$

b. calculer la valeur exacte de $\int_1^5 g(x)dx$

c. en déduire la valeur exacte de l'aire hachurée I et vérifier la cohérence avec le résultat graphique

corrigé evaluation

exercice 1 : (aire de la surface entre deux courbes)

1. on estime graphiquement un encadrement de l'aire de la surface hachurée I par deux entiers

où I est en unités d'aires : $\boxed{4 \leq I \leq 5}$

a.
$$\int_{1}^{5} f(x)dx = \left[\frac{-1}{2} \times \frac{x^{3}}{3} + 4 \times \frac{x^{2}}{2} - \frac{5}{2}x\right]_{1}^{5} = \left[-\frac{1}{6}x^{3} + 2x^{2} - \frac{5}{2}x\right]_{1}^{5}$$
$$\int_{1}^{5} f(x)dx = \left(-\frac{1}{6} \times 5^{3} + 2 \times 5^{2} - \frac{5}{2} \times 5\right) - \left(-\frac{1}{6} \times 1^{3} + 2 \times 1^{2} - \frac{5}{2} \times 1\right)$$
$$\int_{1}^{5} f(x)dx = \frac{52}{3} \simeq \underbrace{\left(17,33\right)}$$

b.
$$\int_{1}^{5} g(x)dx = \left[\frac{x^{2}}{2}\right]_{1}^{5}$$
$$\int_{1}^{5} g(x)dx = \frac{5^{2}}{2} - \frac{1^{2}}{2}$$
$$\int_{1}^{5} f(x)dx = \boxed{12}$$

c. valeur exacte de l'aire hachurée $I=\int_1^5 f(x)dx-\int_1^5 g(x)dx=\frac{52}{3}-12=\frac{16}{3}\simeq (\overline{5,33})$ ce qui est cohérent avec le résultat graphique de la question 1.

corrigé devoir maison

exercice 1 : (96 page 197)

1. a.
$$\begin{cases} f(x) = ax^2 + bx \\ C_f \text{ passe par } A(1;1) \\ C_f \text{ passe par } C(0,5 \; ; \; 0,3) \end{cases} \implies \begin{cases} f(1) = a \times 1^2 + b \times 1 = 1 \\ f(0,5) = a \times 0, 5^2 + b \times 0, 5 = 0, 3 \end{cases} \implies \begin{cases} a+b=1 \\ 0,25a+0,5b=0, 3 \end{cases}$$

$$\Longrightarrow \left\{ \begin{array}{l} a+b=1 \\ a+2b=1,2 \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} a+b=1 \\ b=0,2 \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} a=0,8 \\ b=0,2 \end{array} \right. \Longrightarrow \underbrace{f(x)=0,8x^2+0,2x} \right.$$

b. la courbe C_f est un relativement bon ajustement du nuage car elle passe par l'ensemble des points du nuage sauf le point de coordonnées (90; 83)

x	0	10	25	50	75	90	100
y	0	2,8	10	30	60	83	100
f(x)	0	2,8	10	30	60	82,8	100

$$2. \int_0^1 f(x)dx = \left[0.8 \times \frac{x^3}{3} + 0.2 \times \frac{x^2}{2}\right]_0^1 = \left[\frac{8}{30}x^3 + \frac{1}{10}x^2\right]_0^1 = \left(\frac{8}{30} \times 1^3 + \frac{1}{10} \times 1^2\right) - (0) = \frac{11}{30} \simeq \boxed{0.37}$$

L'aire sous la courbe pour x compris entre 0 et 1 vaut environs 0,37 unités d'aires

3. indice de Gini =
$$I=2\times$$
 Aire entre la courbe et la droite = $2\times(0,5-\int_0^1f(x)dx)$

$$I=2\times(0,5-\frac{11}{30})=1-\frac{22}{30}=\frac{8}{30}\simeq \boxed{0,27}$$

<u>exercice 2</u>: (99 page 197)

- 1. a. la quantité d'équilibre est de 100(e-1) tonnes soit environs $\boxed{172 \text{ tonnes}}$ à une tonne près le prix d'équilibre est de $\boxed{1 \text{ euro le kilo}}$
 - b. chiffre d'affaire = $100(e-1) \times 1000 \simeq \boxed{172000 \text{ euros}}$
- 2. a. C_{f_1} est une droite d'équation y = ax + b qui passe par A(0; e) et E(e 1; 1)

donc:
$$a = \frac{y_E - y_A}{x_E - x_A} = \frac{1 - e}{e - 1} = \frac{-(e - 1)}{e - 1} = -1$$
 soit $y = -x + b$

avec A(0;e) on a de plus : e = -0 + b donc b = e donc $f_1(x) = -x + e$

- b. surplus des consommateurs = aire du triangle = $\frac{(e-1)(e-1)}{2} = \frac{(e-1)^2}{2} \simeq \boxed{1476 \text{ euros}}$
- 3. a. d'après la courbe C_2 , la fonction f_2 est positive sur [0; 3] donc sa primitive F est croissante sur [0; 3]
 - b. $f_2(0)=0$ donc $F'(0)=f_2(0)=0$ donc la courbe C de la fonction F admet une tangente horizontale en x=0
 - c. la courbe Γ_2 est la courbe de F car Γ_1 n'a pas de tangente horizontale en x=0 et Γ_3 ne passe par P(0;1)

d.
$$\int_0^{e-1} f_2(x)dx = [F(x)]_0^1 = F(e-1) - F(0) = 2 - 1 = \boxed{1}$$

e. le surplus des producteurs vaut donc
$$(e-1) \times 1 - \int_0^{e-1} f_2(x) dx = e - 2 \simeq \boxed{718 \text{ euros}}$$

3.8	corrigé	devoir	maison
	~~		

3.8.1 corrigé devoir maison 1

corrigé devoir maison

Exercice 1:

(a) sachant que la courbe de f est C_2 on voit que f croît strictement sur [-5; -2] donc f' est strictement positive sur [-5; -2] donc la courbe de f' est au dessus de l'axe (Ox) sur [-5; -2] le courbe de f' est donc la courbe C_1 C_3 est donc la courbe de F

(b)
$$f(0) = 0$$
 $f'(0) = -1$
 $F(0) = -2$ $F'(0) = f(0) = 0$

(c)
$$f(3,5) \simeq 0$$
 $f'(3,5) \simeq 2$
 $F(3,5) \simeq -5$ $F'(3,5) = f(3,5) \simeq 0$

Exercice 2

Partie A : aucune justification n'est demandée

1. On note f'(0) le nombre dérivé de la fonction f en 0. Quelle est sa valeur?

a.
$$f'(0) = 1$$

b.
$$f'(0) = 2$$

c.
$$f'(0) = 0$$

f'(0) est le coefficient directeur de la droite T tangente à la courbe de f en x=0

(T) passe par
$$A(0;2)$$
 et $D(-2;0)$ donc $f'(0) = \frac{0-2}{-2-0} = 1$

2. Quel est le signe de f'(2)?

$$\mathbf{c}$$
. nul

f est strictement décroissante en x=2 donc f'(2)<0

3. Quel est l'ensemble des solutions de l'équation f'(x) = 0?

a.
$$S = \{-5; 2\}$$

b.
$$S = \{1\}$$

c.
$$S = \{2\}$$

 $f'(x) = 0 \Longleftrightarrow$ la tangente à la courbe est horizontale $\Longleftrightarrow x = 1$

4. Soit F une primitive de f, quelle est la valeur de F'(0)?

a.
$$F'(0) = 1$$

b.
$$F'(0) = 2$$

c.
$$F'(0) = 0$$

F est une primitive de f donc $F^{\prime}(x)=f(x)$ sur I donc $F^{\prime}(0)=f(0)=2$

5. quelle est la valeur de F'(1)?

a.
$$F'(1) = 0$$

b.
$$F'(1) = 1$$

$$\mathbf{c.} \quad \widehat{F'(1) = e}$$

$$F'(1) = f(1) = e$$

6. Quel est le signe de F'(-5)?

F'(-5) = f(-5) est positif strict

7. Quel est l'ensemble des solutions de l'équation F'(x) = 0?

a.
$$S = \{-5, 2\}$$

b.
$$S = \{1\}$$

c.
$$S = \{2\}$$

$$F'(x) = 0 \iff f(x) = 0 \iff x = 2$$

Partie B : chaque réponse doit être justifiée

- 1. Parmi les trois courbes ci dessous, l'une est la représentation graphique de la fonction dérivée f' de la fonction f. Laquelle?
 - **a.** La courbe (C_1)
- **b.** La courbe (C_2)
- c. $\overline{\text{La courbe } (\mathcal{C}_3)}$

la fonction f est croissante sur $[\textbf{-}5\,;\!1]$ puis décroissante sur $[1\,;\!2,\!5]$ donc

la fonction f' est positive sur [-5;1] puis négative sur [1;2,5] seule la courbe (C_3) convient

- 2. Parmi les trois courbes ci dessous, l'une est la représentation graphique d'une primitive F de la fonction $f,\ F$ étant définie sur l'intervalle $\left[-5\ ;\ \frac{5}{2}\right]$. Laquelle ?
 - **a.** La courbe (C_1)
- **b.** La courbe (C_2)
- **c.** La courbe (C_3)

la fonction f est la dérivée de la fonction F or la fonction f est positive sur [-5;2] puis négative sur [2;2,5] donc la fonction F est croissante sur [-5;2] puis décroissante sur [2;2,5] seule la courbe (\mathcal{C}_1) convient

Exercice 3:

(a) en unités d'aire, l'aire S de la partie hachurée est $S = \int_0^6 f(x) dx$

$$S = \int_0^6 (\frac{3}{4}x^2 - 3x + 6)dx = [F(x)]_0^6 = [0, 25x^3 - 1, 5x^2 + 6x]_0^6$$

$$S = F(6) - F(0) = (0.25 \times 6^3 - 1.5 \times 6^2 + 6 \times 6) - 0 = 36$$
 unités d'aires

or une unité d'aire vaut $2\times 0,75=1,5cm^2$ ce qui donne en pour S : $36\times 1,5=\boxed{54cm^2}$

- (b) la valeur moyenne de f sur $[0\; ;\; 6]$ est : $m = \frac{1}{6-0} \int_0^6 f(x) dx = \frac{36}{6} = \boxed{6}$
- (c) R(x) l'aire, en unités d'aire, du rectangle $OHMK = longueur \times largeur = x \times f(x) = 0,75x^3 3x^2 + 6x$
- (d) i. aire R(x) du rectangle OHMK =aire hachurée S $\iff 0,75x^3-3x^2+6x=36 \iff 0,75x^3-3x^2+6x-36=0 \iff g(x)=0$

ii. variations de g sur l'intervalle [0; 6] et tableau de variation de g.

• Calcul de
$$g'(x) : g'(x) = 2,25x^2 - 6x + 6$$

• Annulation et signe de g'(x):

g'(x) est un polynôme de degré 2 de la forme ax^2+bx+c , on utilise la règle du signe de ax^2+bx+c . et pour g'(x)=0 on utilise le discriminant :

 $\Delta = -18 < 0$ donc aucune annulation et on a le tableau de signes suivant.

x	0		6
g'(x)		+	

 \bullet variations de g:

$$\begin{array}{c|cccc}
x & 0 & 6 \\
g'(x) & + & \\
\hline
g(x) & \nearrow & \\
-36 & \\
g(0) = -36 & \\
\end{array}$$

$$\bullet \left\{ \begin{array}{l} g(0) = -36 \text{ et } -36 < 0 \\ g(6) = 54 \text{ et } 54 > 0 \\ g \text{ est continue sur } [0;6] \text{ en tant que fonction polynômiale de degré 3} \\ g \text{ est strictement croissante sur } [0;6] \end{array} \right.$$

d'après le théorème des valeurs intermédiaires l'équation g(x)=0 possède alors une solution unique α dans [0;6]

 \bullet La calculatrice permet de voir que 4,55 < $\alpha < 4,56$ car :

$$\begin{cases} f(4,55) \simeq -0.16 < 0 \\ f(4,56) \simeq 0.093 > 0 \end{cases} \text{ donc } (\alpha = 4,55 \text{ ou } 4,56) \text{ à } 10^{-2} \text{ près.}$$

• conclusion : pour que le rectangle ait la même aire que la surface hachurée, il faut que $(x = \alpha \simeq 4, 55)$

3.8.2	corrigé	devoir	maison	2

Exercice 1 : (121 page 160)

- 1. (a) on détermine graphiquement que : $prix \ d'équilibre = \boxed{p_0 = 3} \ centaines \ d'euros$ quantité d'équilibre = $\boxed{q_0 = 5}$ milliers
 - (b) chiffre d'affaire = $(p_0 \times q_0 = 15)$ centaines de milliers d'euros

2. (a)
$$\int_0^5 f(x)dx \simeq 6$$
 U.A. graphiquement

(b)
$$\int_0^5 e^{0,4x} dx = \left[\frac{0,4}{0,4}e^{0,4x}\right]_0^5 = \left[e^{0,4x}\right]_0^5$$
$$\int_0^5 f(x) dx = e^{0,4\times 5} - e^{0,4\times 0} = \boxed{e^2 - 1 \simeq 6,39}$$

(c)
$$S_p = p_0 \times q_0 - \int_0^5 f(x)dx = 15 - 6{,}39 \simeq \underbrace{8,61}$$

3. on estime graphiquement que le surplus des consommateurs est d'environs 13 U.A. donc Jeanne à raison

Exercice 2: (122 page 161)

Partie A:

1.
$$f(x) = \frac{3}{2}x + \frac{1}{x+1} - 1$$
 sur $[0; 1]$

(a) i.
$$f'(x) = \frac{3}{2} + \frac{-1}{(x+1)^2} = \frac{3(x+1)^2 - 2}{2(x+1)^2} = \frac{3x^2 + 6x + 1}{2(x+1)^2}$$

ii. f'(x) est du signe du trinôme $3x^2 + 6x + 1$ car $2(x+1)^2$ est positif strict sur [0;1]

iii. f est dons strictement croissante sur [0;1]

(b)
$$x - f(x) = x - (\frac{3}{2}x + \frac{1}{x+1} - 1) = -0.5x + 1 - \frac{1}{x+1} = \frac{(-0.5x+1)(x+1) - 1}{x+1}$$

 $x - f(x) = \frac{-0.5x^2 - 0.5x + x + 1 - 1}{x+1} = \frac{-0.5x^2 + 0.5x}{x+1} = \frac{0.5x(-x+1)}{x+1}$

sur [0;1], x - f(x) est du signe de -x + 1 car 0,5x est positif ainsi que x + 1 or -x + 1 s'annule en x = 1 et est positif sur [0;1]

(c) conclusion :
$$x - f(x) \ge 0$$
 sur [0; 1]
donc $f(x) \le x$ sur [0; 1]
donc C_f est une courbe de Lorentz

2.
$$g(x) = e^x - (e-2)x - 1$$

(a) i.
$$g'(x) = e^x - (e-2)$$

ii. $g'(x) > 0 \iff e^x - (e-2) > 0$
 $\iff e^x > e-2$
 $\iff ln(e^x) > ln(e-2)$
 $\iff x > ln(e-2)$
 $(de\ m\hat{e}me\ pour > ou =)$

(de meme pour
$$> ou = f$$
)

iii. d'où le tableau $x = 0$ $x = 1$
 $y'(x) = 0$ $y'(x) = 0$

(b)
$$g(0) = e^0 - (e-2) - 1 = -(e-2)$$

 $g(1) = e^1 - (e-2) - 1 = 1$

3.
$$h(x) = -e^x + (e-1)x + 1$$

	x	0		ln(e-1)		1	
	h'(x)		+	0	-		
(a)				$\simeq 0,2$			$h(ln(e-1) \simeq 0, 2$
	h(x)		7		\searrow		
		0				0	

(b)
$$x - g(x) = x - (e^x - (e - 2)x - 1) = -e^x + (e - 1)x + 1 = h(x)$$

(c)
$$h(x) \ge 0 \text{ sur } [0; 1]$$

 $\text{donc } x - g(x) \ge 0 \text{ sur } [0; 1]$
 $\text{donc } x \ge g(x) \text{ sur } [0; 1]$

donc C_g est une courbe de Lorentz

Partie B

1. $g(0,5) \simeq 30\%$

50% des exploitations les plus petites représentent au total $\simeq 30\%$ de la superficie des exploitations du pays G

2. (a)
$$A = \int_0^1 x - g(x)dx = \int_0^1 h(x)dx$$

$$\int_0^1 h(x)dx = [-e^x + (e-1)\frac{x^2}{2} + x]_0^1 = -e + (e-1) \times 0, 5 + 1 - (-1) = 1, 5 - 0, 5e$$

(b)
$$\gamma_G = 2A = 3 - e \simeq 0,282$$

3.
$$\gamma_F = 2 \times \int_0^1 x - f(x) dx = 2 \times \left[\frac{x^2}{2} - \frac{3}{4} x^2 - \ln(x+1) + x \right]_0^1 = 2 \times \left[-\frac{1}{4} x^2 - \ln(x+1) + x \right]_0^1 = 2 \left(\frac{3}{4} - \ln(2) \right) \simeq 0.14$$

- le pays F est plus égalitaire car $\gamma_F < \gamma_G, \, 0, 14 < 0, 282)$ oui, car l'aire comprise entre la première bissectrice et la courbe est plus petite pour f que pour g pour $x \in [0;1]$