EXAMPLE 37

ICR-CDI mice (Male, five weeks old, Body weight: 20 g) were abstained from food for 18 hours, and then used as test subjects.

The phenylalanine derivative of the present invention was suspended in 0.5% CMC-0.14M sodium chloride buffer solution (pH 7.4). The solution thus obtained was administered orally in fixed volume amounts to the test subjects. After a predetermined time, the percentage decrease of the blood glucose against the control group was determined. The results are shown in the following Table.

Decrease in blood giucose

	140.	migy E8 godd weight	after 60 minutes (%)
	21	25	26
	22	100	43
	23	••	35
	24		30
TIROX	25	"	32
HOW	26	**	0
	27	**	0
	23	6.25	24
	29	**	31
	30	"	30
	31	1.5	30
	32	6.25	37
	33	100	23
	34	"	14

25 100

Amounts used of sample

It is clear from the foregoing that the D-phenylalanine derivatives as described above can be used as an antidiabetic drug for oral administration as well as the more usual parenteral administration.

We claim:

Example

1. A D-phenylalanine derivative of the formula

R4-CO-NR3-CH(COOR1)-CH2-C6H5

or a salt thereof or a precursor which can be converted into said D-phenylalanine derivative in vivo, wherein: R1 is hydrogen or C1-5 alkyl,

 R^3 is hydrogen or $C_{1.5}$ alkyl; and

R4 is cyclohexane substituted at the 4- or 5-position by methyl, ethyl, ispropyl, tert-butyl, ethene, or isopropene or cyclohexene substituted at the 4- or 5-position by methyl, ethyl, isopropyl, tert-butyl, ethene, or isopropene.

2. The D-phenylalanine derivative of claim 1. wherein R4 is said substituted cyclohexane.

3. The D-phenylalanine derivative of claim 1. wherein R4 is said substituted cyclohexane.

4. The D-phenylalanine derivative of claim 1. wherein the said derivative is N-(4-isopropylcyclohexylcarbonyl)-D-phenylalanine.

5. The D-phenylalanine derivative of claim 1. wherein the said derivative is N-(4-isopropylcyclohex-10 ylcarbonyl)-D-phenylalanine: N-[(S)-perilloyl]-Dphenylalanine; N-(4-methylcyclohexylcarbonyl)-Dphenylalanine; N-(4-ethylcyclohexylcarbonyl)-Dphenylalanine; or N-(4-t-butylcyclohexylcarbonyl)-Dphenylalanine.

6. The D-phenylalanine derivataive of claim 1. wherein the said derivative is N-[(s)-perilloyl]-Dphenylalanine; N-(trans-4-methylcyclohexylcarbonyl)-D-phenylalanine; N-(trans-4-ethylcyclohexylcarbonyl)-D-phenylalanine; N-(trans-4-isopropyicyclohexylcar-20 bonyi)-D-phenyialanine; or N-(trans-4-t-butyicyclohex-

ylcarbonyl)-D-phenylalanine.

7. The D-phenyialanine derivative of ciaim' 1. wherein R1 is hydrogen and R3 is hydrogen.

8. The D-phenylalanine derivative of claim 1,

25 wherein R4 is perilloyl.

9. The D-phenylalanine derivative of claim 1. wherein said substituted cyclonexane is substituted at the 4-position.

10. The D-phenylalanine derivative of claim 1. 30 wherein said substituted cyclohexane is substituted at the 5-position.

11. The D-phenylalanine derivative of claim 1. wherein said substituted cyclonexene is substituted at the 4-position.

12. The D-phenylalanine derivative of claim 1. wherein said substituted cyclohexene is substituted at the 5-positon.

13. The D-phenvialanine derivative of claim 1. wherein said substituted cyclohexane or said substituted 40 cyclohexene is substituted with methyl, ethyl, isopropyl or tert-butyl.

14. The D-phenylalanine derivative of claim 1. wherein said substituted cyclonexane or said substituted cyclohexene is substituted by ethene, or isopropene.

15. A pharmaceutical composition, comprising a Dphenylalanine derivative of claim 1 and a pharmaceuticai excipient.

The compound N-(trans-4isopropylcyclohexylcarbonyl)-Dphenylalanine.

60