

Subject Code: 12014 Model Answer (Applied Science - Physics) Page No: 01/14					
Que.	Sub.	, <u> </u>		Total	
No.	Que.	Stepwise Solution	Marks	Marks	
	_~	Important Instructions to examiners:			
		•			
		1) The answers should be examined by key words and not			
		as word-to-word as given in the model answer scheme.			
		2) The model answer and the answer written by candidate			
		may vary but the examiner may try to assess the			
		understanding level of the candidate.			
		3) The language errors such as grammatical, spelling errors			
		should not be given more Importance (Not applicable for subject English and Communication Skills).			
		4) While assessing figures, examiner may give credit for			
		principal components indicated in the figure. The figures			
		drawn by candidate and model answer may vary. The			
		examiner may give credit for any equivalent figure drawn.			
		5) Credits may be given step wise for numerical problems.			
		In some cases, the assumed constant values may vary and			
		there may be some difference in the candidate's answers and model answer.			
		6) In case of some questions credit may be given by			
		judgment on part of examiner of relevant answer based on			
		candidate's understanding.			
		7) For programming language papers, credit may be			
		given to any other program based on equivalent concept.			

Subject Code: 12014 Model Answer Page No: 02					
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks	
1)	a)	Attempt any nine of the following State any two equations of angular motion in kinematics with meaning of symbols. Equation Meaning $\omega = \omega_0 + \alpha t$	1 1	18	
		$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ ω_0 – initial angular velocity ω - Final angular velocity t – time required θ – Angular displacement α - Angular acceleration			
	b)	A car starts from rest and accelerates for 15 second at the rate of 0.6 m/s^2 . Find the final velocity of a car. Formula & substitution Answer with unit Given: $u = 0$ $a = 0.6 \text{ m/s}^2$ $t = 15s$ $v = ?$ Formula: $v = u + at$ $= 0 + (0.6 \times 15)$ $= 9.0 \text{ m/s}$	1 1	2	
	c)	Write definitions of angular velocity and angular acceleration. Each definition Angular velocity: The rate of change of angular displacement with respect to time is called angular velocity. Angular acceleration: The rate of change of angular velocity with respect to time is called angular acceleration	1	2	

Summer - 2013 EXAMINATION Subject Code: 12014 Model Answer Page No: 03/14					
Subje	Sub	e. 12014 <u>Model Aliswel</u> Fa	ge 1 10. 03) 1 4	Ī
Que. No.	Qu e.	Stepwise Solution	Marks	Total Marks	
1)	d)	State the formula for displacement of a body in SHM starting from rest with the meaning of symbols. Formula Meaning y=asin \omega t Where, y= Displacement of the particle from mean position	1	2	
	e)	 a = amplitude of S. H. M. ω = Angular velocity t = time Write definition of impulse and state its SI unit. Definition Unit Impulse: It is defined as change in momentum. OR It is defined as product of large force on a body and very small time for which force acts. 	1	2	
	f)	Unit of impulse in kg.m/s OR N-s State magnetostriction effect. Statement Magnetostriction effect When a magnetic field is applied across a rod of ferromagnetic material such as iron, cobalt, etc. then its length changes.		2	
	g)	State two limitations of NDT methods. Any two limitations Limitation of NDT: i. For complete examination of the material minimum 2 methods required. ii. Trained & certified person are required iii. Cost of equipment is high & thus testing charge are more. iv. Qualitative testing is possible, however quantitative testing is difficult. v. NDT interpretations are relative one should know the standard results first.	2	2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

CHANGED 2042 EVANGELONI

Subject Cod	ubject Code: 12014 <u>Model Answer</u>			
Que. Sub. No. Que	Stenwise Solution	Marks	Total Marks	
1) h)	State any two criterion for selection of NDT methods Any two criteria 1) Codes or standard requirements. 2) Specification of material to be tested. 3) Types of disorder to be detected, nature of disorder. 4) Manufacturing process of materials. 5) Total cost required for testing the materials.	2	2	
i)	State two properties of penetrants. Any two properties Properties of penetrates: i. It should possess less surface tension ii. It should possess low viscosity. iii. It should wet specimen in large scale iv. It should have high sensitivity to light, v. It should be good solvent. vi. It should be insert towards specimen vii. It should be easily removable viii. It should be economical & easily available ix. OR any relevant property	2	2	
j)	Name the factors to be considered while controlling reverberation time in an auditorium. Any two factors i) Total volume of auditorium. ii) Total absorption of sound in auditorium. iii) Coefficient of absorption iv) Total surface area of auditorium	2	2	
k)	Luminous flux obtained by 40 watt bulb is 320lumen. Calculate luminous efficiency of the bulb. Formula with substitution Answer with unit Given: Luminous intensity = 320 lumen Electric power = 40 watt Luminous efficiency=? Formula: $Luminous efficiency=\frac{Luminous intensity}{Electric power}$ Luminous efficiency= $\frac{320}{40}$ = 80 Lumen/watt	1 1	2	

Subject Code: 12014 Subject Code: 12014 Page No: 05/14						
Que.	Sub.			Total		
No.	Que.	Stepwise Solution	Marks	Marks		
1)	1)	Write definitions of nanometer and nanoparticle. Each definition Nanometer:	1	2		
		Nanometer is 10 ⁻⁹ m or one Billionth of meter i.e.				
		OR $1 \text{nm} = 10^{-9} \text{ m}$				
		Nanoparticle:				
		Nanoparticle is a particle having its one of the dimensions of the order of less than 100 nm.				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subje	ct Code	e: 12014 <u>Model Answer</u>	Page No: (06/14
Que.	Sub.	Stepwise Solution	Marks	Total
No.	Que.	-	IVIGINS	Marks
2)	a)	Attempt any four of the following A vehicle started from rest attains a speed of 30 m/s in 10 second. Then it moves with same speed for 20 seconds and comes to rest after 10 seconds. Calculate the total distance covered using velocity time diagram. Diagram Formula & substitution Answer with unit	1 2 1	4
	b)	Velocity in m/s Distance covered = Area of \triangle OAP + Area of \triangle BQC $= (\frac{1}{2} \times OP \times AP) + (AP \times AB) + (\frac{1}{2} \times QC \times BQ)$ $= \frac{1}{2} \times 10 \times 30 + 30 \times 20 + \frac{1}{2} \times 30 \times 10$ $= 150 + 600 + 150$ $= 900 \text{ m}$		
	6)	i) Newton's Second of motion. Also give suitable example. ii) Law of action and reaction with suitable example. Each law Each Example Newton's second law of motion: It states that the rate of change of momentum of a body is proportional to the applied force and takes place in the direction of force. Example- In a high jump athletic event, the athletes are made to fall on a sand bed. OR (Any other relevant example)	1 1	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subje	ct Code	e: 12014 <u>Model Answer</u>	Page No: (07/14
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
				Total
		$= \frac{94.2}{300}$ $\alpha = 0.314 \text{rad /s}^2$ Angular displacement: $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ $\theta = 2\pi n t + \frac{1}{2} \alpha t^2$ $\theta = \frac{2 \times 3.14 \times 300 \times 5 \times 60}{60} + \frac{1}{2} 0.314 \times 25 \times 3600$ $\theta = 23550 \text{ rad}.$		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER - 2013 EXAMINATION

Subject Code: 12014 Model Answer Page No: 08/14

Subje	ct Code	e: 12014 <u>Model Answer</u> Page No	o: 08/14	
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
Que. No. 2)	Sub. Que. d)	Show graphical representation of velocity and acceleration of a particle in SHM for a particle starting from extreme position. Each graph with label	Marks 2	Total Marks
		$a \omega^2$ Logical Label 1/4 1/2 37/4 1/4 1/2 37/4 1/4		

SUMMER - 2013 EXAMINATION

Subject Code: 12014 Page No: 09/14 **Model Answer**

<u> </u>	et Cour	i i i i i i i i i i i i i i i i i i i	10.09/14	<u>.</u>
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	e)	An elevator (lift) of mass 200 kg starts moving upward with constant acceleration and acquires a velocity of 3 min after travelling a distance of 6 m. Find the tension in the supporting cable. Two formulae and substitution Two answer with unit Given: $g = 9.81 \text{ m/s}^2$	2 2	4
	f)	u= 0 m= 200 kg v= 3 m/s s= 6m T=? v² = u² + 2 as (3)² = 0+2xax6 9 = 12a a= $\frac{9}{12}$ a= 0.75 m/s² Upward tension T= m(g+ a) T= 200 (9.81 + 0.75) T= 200(10.56) T= 2112 N How ultrasonic waves are produced by piezoelectric method? Describe Diagram with label Principle Working Electric oscillator circuit Chip of piezoelectric (Quartzerystal) Principle: When the electric field is applied across the crystal its dimensions changes and when alternating PD is applied across crystal then the crystal sets into elastic vibrations.	1 1 2	4

Subject Co	de: 12014	Model Answer	Page No: 1	0/14

Que. Sub. Stepwise Solution Marks Total Marks	No. Que. 1	Subject C	_oae:	: 12014 <u>Model Answer</u> I	Page No: 1	10/14
2) f) Working: A chip of piezo-electric crystal like quartz is placed between two plates as shown in figure. A suitable oscillator is connected across it. The electric oscillations along the electric axis produce mechanical vibrations along the mechanical axis. The frequency of oscillator is increased. At a particular frequency of oscillator, the oscillator frequency becomes equal to natural frequency of vibration of crystal. Then the crystal sets into resonance vibration and ultrasonic	2) f) Working: A chip of piezo-electric crystal like quartz is placed between two plates as shown in figure. A suitable oscillator is connected across it. The electric oscillations along the electric axis produce mechanical vibrations along the mechanical axis. The frequency of oscillator is increased. At a particular frequency of oscillator, the oscillator frequency becomes equal to natural frequency of vibration of crystal. Then the crystal sets into resonance vibration and ultrasonic	_		Stepwise Solution	Marks	
				Working: A chip of piezo-electric crystal like quartz is placed between two plates as shown in figure. A suitable oscillator is connected across it. The electric oscillations along the electric axis produce mechanical vibrations along the mechanical axis. The frequency of oscillator is increased. At a particular frequency of oscillator, the oscillator frequency becomes equal to natural frequency of vibration of crystal. Then the crystal sets into resonance vibration and ultrasonic		Marks

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER - 2013 EXAMINATION Model Answer

Subject Code		e: 12014 <u>Model Answer</u>	Page No:	11/14
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
No. 3)	Que.	Attempt any FOUR State advantages of NDT methods over the conventional testing methods. Any four advantages The advantages of non-destructive testing over conventional testing method 1. Rapid inspection of each & every component is possible. 2. 100 % examination of material or production is possible. 3. NDT methods can be automated to lower their costs. 4. Testing is possible on shop, floor because of portable equipments; this controls the equality of further production. 5. Permanent record of testing can be made during the testing process. 6. The destructed parts can be separated in the early stages of manufacturing. This saves the time & production cost. 7. Higher accuracy, reliability & repeatability in the test result can be obtained. 8. Any other relevant advantage	4	Marks 16 4
	b)	 i) Write definitions of intensity of sound and loudness of sound? ii) State conditions for good acoustics. Each definition Any two conditions Intensity of sound: The intensity of sound at a point is defined as the sound energy passing normally at a point through the unit area of the medium in unit time. Loudness of sound: Loudness is defined as observers auditory impression of the strength of sound. Conditions for good acoustics: i) The sound produced should be uniformly distributed through out the hall ii) The sound should be clearly heard at all points in the hall 	1 2	4

Subje	ct Code	e: 12014 <u>Model Answer</u> Pa	age No: 1	12/14
Que.	Sub.		Marks	Total
No.	Que.	Stepwise Solution	Marks	Marks
3)	b)	 iii) No overlapping of musical notes of spoken words in the hall iv) The reverberation of time of the hall should be between 1.25 to 2.5sec for music and 1 to 2 sec for speech v) The echelon effect should be absent vi) No concentration of sound at particular point in the hall as in case of whispering galleries vii) The external sound should not be allowed to enter in the hall. 		
	c)	The volume of auditorium is $6525m^3$ has reverberation time of 2 seconds. If the total absorbing area in the hall is 4980 m², find the coefficient of absorption. Formula with substitution Answer with unit Given: $V=6525 m^3$ $t=2 sec$ $\Sigma S = 4980 m^2$ $a=?$ Formula: $t = \frac{0.164 V}{\Sigma as}$ $a = \frac{0.164 \times V}{t \Sigma s}$ $a = \frac{0.164 \times 6525}{2 \times 4980}$ $a = \frac{1070.1}{9960}$ $a=0.107 0.W.U$	2 2	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subjec	ct Code	e: 12014 <u>Model Answer</u> P	age No: 1	13/14
Que.	Sub.	Stepwise Solution	Marks	Total
No.	Que.	-	WILLIAM	Marks
3)	d)	State different lighting schemes. State the factors the factors to be considered while selecting lighting scheme.		
		Any two lighting schemes	2	
		Any two factors	2	4
		Lighting scheme i) Direct lighting system ii) Indirect lighting system iii) Semi indirect lighting system		
		Factors: i) Efficiency of source ii) Utilizations factor or coefficient of utilization iii) Maintenance factor iv) Space to height ratio v) Glare effect		
	e)	An unknown lamp placed 80 cm from a photometer screen gives the same illumination as a standard lamp of 36 cd placed 60 cm from that photometer screen. Compute the luminous intensity of the lamp under test. Formula with Substitution Answer with unit Given: $r_1 = 80cm$ $r_2 = 60cm$ $I_1 = ?$ $I_2 = 36cd$ $\frac{I_1}{I_2} = \frac{r_1^2}{r_2^2} = \frac{80^2}{60^2}$ $I_1 = \frac{r_1^2}{r_2^2} = \frac{80^2}{60^2} \times I_2$ $I_1 = \frac{r_1^2}{r_2^2} = \frac{6400}{3600} \times 36$ $I_1 = 64cd$	2 2	4

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

SUMMER - 2013EXAMINATION

Subject Code: 12014 Model Answer Page No: 14/14

Subjec	Ci Code	e: 12014 <u>Model Answer</u> Page No	. 14/ 14	
Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	f)	State two applications each of nanotechnology in electronic industry and chemical industry. Any two applications in electronic industry Any two applications in chemical industry Two applications in electronic industry	2 2	4
		 The flat panel television or computer monitors are products of nanotechnology. The coating used on screens of TV or monitors can be of nanoparticles, which have better properties in terms of colour quality and resolution. Single electron transitor (SET) and magnetic tunnel junction (MTJ) are new devices based on nanotechnology; such devices are faster, compact and cheaper. Or any other relevant factor 		
		 Two applications in chemical industry Catalyst can be used to unable chemical reaction at low temperature more efficiently it is made using nanoparticles have greater surface area. Nanostructure membrane are under development to separated co₂ from industrial plant Or any other relevant factor 		