Problème: Pseudo-inversibilité

Les parties A et B de ce problème sont indépendantes.

Dans tout ce problème, n est un entier naturel non nul.

Partie A. Matrices pseudo-inversibles.

On dit d'une matrice A de $M_n(\mathbb{R})$ qu'elle est **pseudo-inversible** si

$$\exists B \in M_n(\mathbb{R}) : \begin{cases} AB = BA & (i) \\ ABA = A & (ii) \\ BAB = B & (iii) \end{cases}$$

On dit alors que B est une **pseudo-inverse** de A.

- 1. Unicité de la pseudo-inverse. Considérons A une matrice de $M_n(\mathbb{R})$, pseudo-inversible ainsi que B_1 et B_2 deux pseudo-inverses de A.
 - (a) En calculant AB_1AB_2 de deux façons différentes, montrer que $AB_1 = AB_2$.
 - (b) En déduire que $B_1 = B_2$.

Notation : lorsque A est pseudo-inversible, la pseudo-inverse de A sera désormais notée A^* .

- 2. Pseudo-inversibilité et inversibilité.
 - (a) Montrer que toute matrice inversible de $M_n(\mathbb{R})$ est pseudo-inversible et que sa pseudo-inverse est son inverse.
 - (b) Montrer que la matrice nulle 0_n est pseudo-inversible et donner 0_n^* . Que dire en lien avec la question (a)?
- 3. Pseudo-inversibilité des matrices diagonales.

Soit $M = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$. Montrer que M est pseudo-inversible et donner M^* .

Généraliser : montrer que tout matrice diagonale est pseudo-inversible.

4. Pseudo-inversibilité et nilpotence.

Montrer que dans $M_n(\mathbb{R})$, la matrice nulle est la seule nilpotente pseudo-inversible. Indication: on pourra commencer par montrer que si N est pseudo-inversible, alors pour tout entier $k \geq 2$, on a $N^*N^k = N^{k-1}$. Partie B. Matrices semblables.

Soient A et B deux matrices de $M_n(\mathbb{R})$. On dit que A est **semblable** à B si

$$\exists P \in GL_n(\mathbb{R}) \quad A = P^{-1}BP.$$

Notons $A \sim B$ pour « A est semblable à B ».

- 1. Démontrer que \sim est une relation d'équivalence sur $M_n(\mathbb{R})$.
- 2. Quelle est la classe d'équivalence de la matrice nulle?

 Justifier que la classe d'équivalence d'une matrice inversible ne contient que des matrices inversibles.
- 3. Démontrer que deux matrices semblables ont nécessairement la même trace.
- 4. Donner deux matrices non semblables et ayant la même trace.

Partie C. Une diagonalisation.

Soient

$$A = \begin{pmatrix} 2 & -2 & 2 \\ -1 & 1 & 1 \\ 1 & -1 & 3 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

- 1. Montrer que P est inversible et calculer P^{-1} .
- 2. Calculer PAP^{-1} et en déduire que A est semblable à une matrice diagonale.
- 3. Démontrer que A est pseudo-inversible et donner A^* .

Partie D. (*) Pseudo-inversibles... dans un anneau quelconque!

Soit $(A, +, \times)$ un anneau. On dit d'un élément $a \in A$ qu'il est **pseudo-inversible** si

$$\exists b \in A \quad ab = ba, \quad aba = a, \quad bab = b.$$

1. Montrer qu'un élément $a \in A$ est pseudo-inversible si et seulement si

$$\exists (p, u) \in A^2$$
: $p^2 = p$ (p est "idempotent"), $u \in U(A)$, $pu = up$, $a = pu$.

2. Montrer qu'un élément de A est pseudo-inversible si et seulement si c'est l'élément d'une partie de A qui est un groupe pour le produit (sans être forcément un sous-groupe de U(A)).

Exercice 1 Groupe où tous les éléments sont d'ordre 2.

On considère un groupe (G, \star) de neutre e.

On suppose de surcroît que tous les éléments de G sont « d'ordre 2 », c'est-à-dire que

$$\forall g \in G \quad g \star g = e.$$

- 1. Démontrer que G est abélien. Indication : on pourra calculer $(g \star g')^2$ pour g et g' deux éléments de G.
- 2. Soit H un sous-groupe strict de G $(H \neq G)$ et soit $g \in G \setminus H$. On pose $gH = \{g \star h \mid h \in H\}$.
 - (a) Montrer que $H \cup gH$ est un sous-groupe de G. Il y a un peu de travail!
 - (b) Supposons que H est fini. Montrer que $|H \cup gH|$ a pour cardinal $2 \times |H|$.
- 3. (*) Démontrer que si G est un groupe fini, alors son cardinal est une puissance de 2. On pourra raisonner sur un sous-groupe dont le cardinal est une puissance de 2 maximale.

Exercice 2. Tirage sans entiers consécutifs.

Dans cet exercice de dénombrement, n et p désignent des entiers naturels non nuls. Pour $k \in \mathbb{N}^*$, on notera E_k l'ensemble $\{1, 2, \dots, k\}$.

- On notera aussi
 - $\mathcal{P}_p(E_k)$ l'ensemble des parties de E_k ayant p éléments.
 - $Q_p(E_k)$ l'ensemble des parties de E_k ayant p éléments et ne contenant pas de paire d'entiers consécutifs.
 - 1. Donner un exemple d'élément dans $\mathcal{Q}_3(E_8)$ et un dans $\mathcal{P}_3(E_8) \setminus \mathcal{Q}_3(E_8)$.
 - 2. Soit $\{x_1, \ldots, x_p\}$ un élément de $Q_p(E_n)$, où on a écrit les x_i dans l'ordre : $\forall i \in [1, p-1]$ $x_i < x_{i+1}$. Pour $1 \le i \le p$, on note $y_i = x_i + 1 i$. Prouver que

$$1 \le y_1 < y_2 < \dots < y_p \le n + 1 - p.$$

3. Que vaut le cardinal de $Q_p(E_n)$ lorsque 2p > n + 1?

On supposera jusqu'à la fin de l'énoncé que $2p \le n+1$.

- 4. Construire une bijection de $Q_p(E_n)$ dans $\mathcal{P}_p(E_{n+1-p})$.
- 5. En déduire le cardinal de $\mathcal{Q}_p(E_n)$.
- 6. Lors du Loto de la Française des jeux, 5 numéros sont tirés au sort parmi les entiers entre 1 et 49. Combien de tirages ne contiennent pas de paire d'entiers consécutifs?
- 7. Décomposer l'entier obtenu à la question précédente comme un produit de facteurs premiers.