AlMer Signature Scheme

Principal Submitter: Seongkwang Kim

HSU TING YU

Supervisor: Wakaha Ogata, Fukang Liu

Summary

• Explain the basic knowledge of MPC-in-the-head, Fiat-Shamir Transform and BN++ proof system.

• Illustrate the AlMer signature scheme and how to accomplish the algorithm with MPCitH and BN++ proof system.

Overview

- Overview of AlMer Signature Scheme
- Background
 - MPC-in-the-head
 - Fiat-Shamir Transform
 - BN++ Proof System
- AlMer Signature Scheme
 - Key Generation
 - Signing Algorithm
 - Verification Algorithm

Overview of AlMer Signature Scheme

- AIMer Signature Scheme is a post-quantum cryptography(PQC), which is a candidate
 of NIST competition now.
- Key Generation
 - Key pair: sk=pt, pk=(iv,ct)
 - A tweak iv and a plaintext pt are sampled uniformly at random.
 - ct = AIM(iv,pt)
 - AIM is a "tweakable" one-way function.
- Signing Algorithm
 - The signer prove that it knows the secret pt that satisfied ct=AIM(iv,pt) without revealing the secret to verifier.
- Verification Algorithm
 - The verifier verify the signer knows the secret pt by non-interactive proof.

AIM

(ct, iv)

Background

- MPC-in-the-head
 - Zero-knowledge from Secure Multiparty Computation [IKOS07]
- Fiat-Shamir Transform
- BN++ Proof System
 - Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures [KZ22]
 - Amortized Complexity of Information-Theoretically Secure MPC Revisited [CCXY18]

Background

MPC-in-the-head

MPC-in-the-head (MPCitH) [IKOS07]

 Consider one to construct a zero-knowledge proof(ZKP) from a multi-party computation (MPC) protocol.

Multi-party Computation (MPC)

Definition

 P_n : party n

 $rand_n$: random tape

x: secret

 x_n : secret input share

 m_n : communicated messages

from and to each party

$$x = x_1 + x_2 + x_3$$
 \Rightarrow Additive share of x

Concrete example of MPC

MPC-in-the-head

Change party into view in MPCitH

MPC vs. MPCitH

MPC: Operate in actual parties.

MPCitH: virtually done only in prover's head.

MPC-in-the-Head

Step1. The prover simulates MPC.

Step2. Operate Σ -protocol between the verifier and the prover.

MPC-in-the-head (MPCitH) [IKOS07]

Prover

Σ -protocol

- ① Commit
 After committing, the prover cannot change the values.
- 2 Challenge The verifier will send the requirement for the key of the randomly party.
- 3 Decommit
 The verifier can make sure the prover is not cheating based on the known information.

 \bigcirc Commit

 $H_1 = Hash(P_1)$

 $H_2 = Hash(P_2)$

 $H_3 = Hash(P_3)$

Verifier

- 2 Challenge
- "Please open all the views without $\bar{\iota} = 1$ party"

 \bigcirc Decommit (P_2, P_3)

Fiat-Shamir Transform

Fiat-Shamir Transform

• The technique for taking an interactive proof of knowledge and creating a non-interactive counterpart.

BN++ Proof System

BN++ Proof System

- In the signature scheme, the signer want to show they know the secret that satisfying an equation. $\Rightarrow z_i = x_i \cdot y_i$
- In order to check, we need two triples to verify, the multiplication triple $(x_j, y_j, z_j = x_j \cdot y_j)_{j=1}^C$ and the helping triples $((a_j, b_j)_{j=1}^C, c)$, which $b_j = y_j$, $c = \sum_{j=1}^C a_j \cdot b_j$. Additionally, each party holds secret share of the multiplication triples and the helping triples.
- BN++ Protocol Overview:
 - The *i*-th party locally sets $\alpha_j^{(i)} = \epsilon_j \cdot x_j^{(i)} + a_j^{(i)}$, which ϵ_j is random challenge given by the prover.
 - The parties open the $\alpha_1, \ldots, \alpha_c$ by broadcasting their shares.
 - The *i*-th party locally sets $v^{(i)} = \sum_{j=1}^c \epsilon_j \cdot z_j^{(i)} \sum_{j=1}^c \alpha_j \cdot b_j^{(i)} + c^{(i)}$.
 - The parties open v by broadcasting their shares and output **Accept** if v=0.

Improvement of BN to BN++ [KZ22]

- BN protocol overview
 - The parties locally set $\alpha_j^{(i)} = \epsilon_j \cdot x_j^{(i)} + a_j^{(i)}$, $\beta_j^{(i)} = \epsilon_j \cdot y_j^{(i)} + b_j^{(i)}$, which ϵ_j is random challenge given by the prover.
 - The parties open α and β by broadcasting their shares.
 - The parties locally set $v^{(i)} = \epsilon \cdot z^{(i)} c^{(i)} + \alpha \cdot b^{(i)} + \beta \cdot a^{(i)} \alpha \cdot \beta$.
 - The parties open v by broadcasting their shares and output **Accept** if v=0.
- Goal
 - To optimize proof size from $5C \log_2(|\mathbb{F}|)$ to $(2C + 1) \log_2(|\mathbb{F}|)$
 - BN: $\left(\Delta c_{e,l}, \Delta z_{e,l}, \alpha_{e,l}^{(\overline{\iota}_e)}, \beta_{e,l}^{(\overline{\iota}_e)}, \nu_{e,l}^{(\overline{\iota}_e)}\right)$
 - BN++: $\left(\Delta c_{e,l}, \Delta z_{e,l}, \alpha_{e,l}^{(\overline{\iota}_e)}, \beta_{e,l}^{(\overline{\iota}_e)}, \nu_{e,l}^{(\overline{\iota}_e)}\right) \rightarrow \left(\Delta z_{e,l}, \alpha_{e,l}^{(\overline{\iota})}\right)$ and one Δc_e per repetition

BN++ Proof System

- Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures [KZ22]
 - Improvement of BN to BN++
 - Handling Small Fields Efficiently
 - Reverse Multiplication Friendly Embedding(RMFE)
- Amortized Complexity of Information-Theoretically Secure MPC Revisited [CCXY18]
 - Concrete Example of RMFE

Handling Small Fields Efficiently [KZ22]

Problem

- The BN++ protocol performs well for circuits defined over large fields, for example, AlMer implements in $\mathbb{F}_{2^{128}}$, which is no need for considering this problem, but we have to check several multiplications in small fields, such as \mathbb{F}_{2^8} , to maintain the soundness.
- The soundness possibility is $1/|\mathbb{F}|$, which indicates the probability the verifier is cheated.

Solution for small fields inefficiency [KZ22]

Simple Lifting

• This method provides a small improvement to the next smallest field for example, $\mathbb{F}_{2^8} \to \mathbb{F}_{2^{16}}$.

• Multiple Checks Per Repetition

• Instead of simple lifting $\mathbb{F}_2 \to \mathbb{F}_{2^M}(M)$: Checking protocol times per repetition, but checking M times on \mathbb{F}_2 .

• Lifting with RMFEs

- Reverse Multiplication Friendly Embedding (RMFE) allows us to encode multiple bits into a field extension with better rate.
- Use a circuit defined in \mathbb{F}_{2^M}

Reverse Multiplication Friendly Embedding(RMFE) [KZ22]

• RMFE is a pair of linear maps (ϕ, ψ) which allows to perform coordinate-wise multiplication over small fields by operating overextension fields.

• For example, $(3,5)_2$, with rate is 5/3=1.6

$$(x_1,x_2,x_3) \quad * \quad (y_1,y_2,y_3) = \qquad (x_1 \cdot y_1,x_2 \cdot y_2,x_3 \cdot y_3)$$

$$\in \mathbb{F}_2^3 \qquad \in \mathbb{F}_2^3$$
Encoded by ϕ Encoded by ϕ Decoded by ϕ

$$\phi(x) \quad \cdot \quad \phi(y) = \qquad \phi(x) \cdot \phi(y)$$

$$\in \mathbb{F}_2^5 \qquad \in \mathbb{F}_2^5$$

$$\in \mathbb{F}_2^5$$

Concrete Example of RMFE [CCXY18]

AlMer Signature Scheme

AlMer Signature Scheme

- Key Generation
- Signing Algorithm
- Verification Algorithm

Key Generation

Key Generation

Public Key: (*iv*, *ct*)

Secret Key: pt

ct = AIM(iv, pt)

All calculations for AIM are over a finite field

 \mathbb{F} where $\mathbb{F} \in {\mathbb{F}_{2^{128}}, \mathbb{F}_{2^{192}}, \mathbb{F}_{2^{256}}}.$

Feature of the AIM function

• S-box

 S-boxes are exponentiation by Mersenne numbers over a large field.

$$Mer[e](x) = x^{2^e - 1}$$

Linear Components

- Random binary matrix $A_{iv} = \begin{bmatrix} A_{iv,1} \mid ... \mid A_{iv,l} \end{bmatrix} \in (\mathbb{F}_2^{n \times n})^l$
- Random constant vector b_{iv} .
- The matrix A_{iv} and the vector b_{iv} are generated by an extendable-output function (XOF) with the initial vector iv.

Feature of the AIM function

Take j = 3 as an example,

①
$$pt^{2^{e_{j-1}}} = t_j \iff t_j \cdot pt = pt^{2^{e_j}}, j = 1,2,3$$

Blue: Known by the verifier,

hence, not share in MPC, which can be seen as constant.

Red: Calculate as the secret share of MPC.

Signing Algorithm

Signing Algorithm

Signing Algorithm – MPCitH

Change the value into share by **Random Seed**

$$(x_1, pt, z_1)$$

1. Generate every share by random:

2. Adjust first share:

$$\Delta pt_k^{(i)} \leftarrow pt - \sum_i pt_k^{(i)}, pt_k^{(1)} \leftarrow pt_k^{(1)} + \Delta pt_k.$$

Definition

$$\forall k: \sum_{i=1}^{N} x_{k,j}^{(i)} = x_j$$

$$\forall k: \sum_{i=1}^{N} pt_k^{(i)} = pt$$

$$\forall k: \sum_{i=1}^{N} z_{k,j}^{(i)} = z_j$$

$$k = 1,2,3,..., \tau$$

$$i = 1,2,3,..., N$$

$$(x_{k,1}^{(i)}, pt_k^{(i)}, z_{k,1}^{(i)})$$

$$(x_{k,2}^{(i)}, pt_k^{(i)}, z_{k,2}^{(i)})$$

$$(x_{k,3}^{(i)}, pt_k^{(i)}, z_{k,3}^{(i)})$$

The k —th iteration

Signing Algorithm – AIM

Set $x_{k,j}^{(i)}$, $z_{k,j}^{(i)}$

	$x_{k,j}^{(i)}$	$Z_{k,j}^{(i)}$
$j \leq l$	$t_{k,j}^{(i)}$	$((pt)_k^{(i)})^{2^{e_j}}$
j = l + 1	$Lin_{iv}(t_1, t_2, t_3)$	$ct \cdot x_{k,j}^{(i)} + (x_{k,j}^{(i)})^{2^{e_j}}$

Feature of AIM $x_{j} \cdot y_{j} = z_{j}$ $t_{j} \cdot pt = pt^{2^{e_{j}}}$ $x \cdot pt = x \cdot ct + x^{2^{e_{*}}}$

Signing Algorithm – BN++

Multiplication Triple $(x_{k,j}^{(i)}, pt_k^{(i)}, z_{k,j}^{(i)})$

Helping
Triple $(a_k^{(i)}, b_k^{(i)}, c_k^{(i)})$

Using a multiplication triple to generate a helping triple that results in v=0

BN++ Protocol Overview

- Goal: verify $x_i \cdot y_i = z_i$ for $1 \le i \le C$, for secret triples (x_i, y_i, z_i)
- Generate helping triple (a_i, b_i, c) such that $b_i = y_i$, a_i is randomly chosen from \mathbb{F} , and $c = \sum_{i=1}^{C} a_i \cdot b_i$ for $1 \le i \le C$.
- The *i*-th party locally sets $\alpha_j^{(i)} = \epsilon_j \cdot x_j^{(i)} + a_j^{(i)}$, ϵ_j is a random challenge from the verifier.
- The parties open the $\alpha_1, \ldots, \alpha_c$ by broadcasting their shares.
- The *i*-th party locally sets $v^{(i)} = \sum_{j=1}^c \epsilon_j \cdot z_i^{(i)} \sum_{j=1}^c \alpha_j \cdot b_i^{(i)} + c^{(i)}$.
- The parties open v by broadcasting their shares and output **Accept** if v = 0.

Locally calculating $(\alpha_i^{(i)}, v^{(i)})$

Conclusion

If the triples satisfy that $x_i \cdot y_i = z_i$ and $c = \sum_{i=1}^{C} a_i \cdot b_i$, then v must be 0. Otherwise, v = 0 with a negligible probability $1/|\mathbb{F}|$, where $|\mathbb{F}|$ denotes the field size.

Signing Algorithm – Hash

② Generate the Challenge: $\bar{\iota}_k$ party

① Hash
$$h_1 = H\big(\alpha^{(1)}, v^{(1)}, \alpha^{(2)}, v^{(2)}, \dots\big)$$

Connected $\alpha^{(i)}$, $v^{(i)}$ from every party and hashed as an element of output.

 $\bar{\iota}_k$ is the only party verifier will not get the multiplication triple and the helping triple, instead of that, the signature need to includes α from $\bar{\iota}_k$ party.

 Σ -protocol

- ① Commit
- 2 Challenge
- 3 Decommit

Verification Algorithm

Verification Algorithm

Output $m{Accept}$ if $m{h}_{i}=m{h}_{i}$ otherwise **Reject**

Accept if $h_1 = h_1$, otherwise **Reject**

Verification Algorithm

Signature
$$\sigma = (..., h_1, \alpha_k^{(\bar{\iota}_k)}, (x_{k,j}^{(i)}, pt_k^{(i)}, z_{k,j}^{(i)})_{i=N\setminus\{\bar{\iota}_k\}}, (a_k^{(i)}, b_k^{(i)}, c_k^{(i)})_{i=N\setminus\{\bar{\iota}_k\}}...)$$

Verification Algorithm - BN++

without $ar{i_k}$ party

Locally calculating $(\alpha_i^{(i)}, v^{(i)})$

Verification Algorithm - Verify

Compute
$$v_k^{(\overline{i_k})}$$

$$v_k^{(\overline{i_k})} = 0 - \sum_{i \neq \overline{l_k}} v_k^{(i)}$$

We know $\alpha_k^{(\bar{\iota}_k)}$ from the signature and calculate $v_k^{(\bar{\iota}_k)}$ by assuming v=0, which indicates that the equation is correct.

Output

Accept if $h_1 = h_1$, otherwise **Reject**

The End

Presenter: HSU TING YU, National Cheng Kung University

Date: 09/2024 at Ogata Lab, Tokyo Tech

Reference

[1] Kim, S., Cho, J., Cho, M., Ha, J., Kwon, J., Lee, B., Lee, J., Lee, J., Lee, S., Moon, D., & Yoon, H. (n.d.). The AlMer Signature Scheme Submission to the NIST PQC project Version 1.0. Retrieved September 17, 2024, from https://aimer-signature.org/docs/AlMer-NIST-Document.pdf

[2] Yuval Ishai, Eyal Kushilevitz, Ostrovsky, R., & Sahai, A. (2007). Zero-knowledge from secure multiparty computation. Symposium on the Theory of Computing. https://doi.org/10.1145/1250790.1250794

[3] Kales, D., & Zaverucha, G. (2022). Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures. Cryptology EPrint Archive. https://eprint.iacr.org/2022/588

[4] Cascudo, I., Cramer, R., Xing, C., & Yuan, C. (2018). Amortized Complexity of Information-Theoretically Secure MPC Revisited. Cryptology EPrint Archive.

https://eprint.iacr.org/2018/429