Library Declaration Form

University of Otago Library

Author's full name and year of birth:	Simon Thomas Kelly,
(for cataloguing purposes)	24 February 1992

Title of thesis: A Bioinformatics Approach to Synthetic Lethal Interactions in Breast Cancer with Gene Expression Data

Degree: Doctor of Philosophy

Department: Department of Biochemistry

Permanent Address: 710 Cumberland Street, Dunedin, NZ

I agree that this thesis may be consulted for research and study purposes and that reasonable quotation may be made from it, provided that proper acknowledgement of its use is made.

I consent to this thesis being copied in part or in whole for

- i) a library
- ii) an individual

at the discretion of the University of Otago.

Signature:

Date:

A Bioinformatics Approach to Synthetic Lethal Interactions in Breast Cancer with Gene Expression Data

S. Thomas Kelly

a thesis submitted for the degree of Doctor of Philosophy at the University of Otago, Dunedin, New Zealand.

31 March 2017

Abstract

Background

Synthetic lethal genetic interactions are re-emerging the post-genomics era due to their potential for precision medicine against cancers. Synthetic lethality exploits functional redundancy with genes disrupted in cancers (including tumour suppressors) to develop specific treatments. E-cadherin, encoded by *CDH1*, is a tumour supressor gene with loss of function in breast and btomach cancers. Experimental screens have identified candidate synthetic lethal interactions for drug target triage which can be further supported with bioinformatics analysis. Furthermore, gene expression data is amenable to Investigations of the pathway composition and structure of synthetic lethal candidates.

Approach

A computational methodology, the Synthetic Lethal Prediction Tool (SLIPT) was developed to detect synthetic lethal interactions in gene expression data. This methodology was demonstrated on interactions with *CDH1* in breast and stomach cancer data from The Cancer Genome Atlas (TCGA) project. Synthetic lethal genes and pathways were further investigated with unsupervised clustering, gene set over-representation analysis, metagenes, and permutation resampling. In particular, analyses focused on comparing SLIPT gene candidates to an experimental siRNA screen Telford *et al.* (2015). Graph theory methods were also applied to the most supported pathways to test for pathway structure among between synthetic lethal candidates. Simulation and modelling was used to assess the statistical performance of SLIPT, including simulated data with correlation structures derived from graph stuctures.

Findings

Many candidate synthetic lethal partners of CDH1 were detected in both TCGA breast cancer. These genes clustered into several distinct groups, with distinct biological functions and elevated expression in different clinical subtypes. While the number of genes detected by both approaches was not significant, these contained significantly enriched pathways. In particular $G_{\alpha i}$ signalling, cytoplasmic microfibres, and extracelluar fibrin clotting were robustly supported by both approaches which is consistent with the known cytoskeletal and cell signalling roles of E-cadherin and validation of GPCRs performed by Telford $et\ al.\ (2015)$. Many of these pathways were replicated in stomach cancer. The pathways supported only by SLIPT included regulation of immune signalling and translational elongation which were unlikely to be detected in an isogenic cell line model but are are still candidates for further investigation.

Synthetic lethal candidates detected by SLIPT and siRNA were compared within graph structures of the candidate synthetic lethal pathways. These genes did not differ by network measures of importance or connectivity in the pathway. There was also little support for SLIPT gene candidates being upstream or downstream of siRNA gene candidates within a pathway, consistently across pathways.

A model of synthetic lethality used to simulate gene expression datasets with synthetic lethal partners of a gene. The SLIPT methology had high statistical performance detecting few synthetic lethal partners, although this diminishes with more synthetic lethal parners or lower sample size. The SLIPT methology performs better than Pearson's correlation or the χ^2 -test. In particular, it performs well with high specificity for dassets containing thousands of genes or genes positively correlated with the query gene (as expected in human expression data). It was also robust across correlation structures, including those derived from complex pathway structures and often distinguished synthetic lethal genes from those positively or negatively correlated with them. Therefore SLIPT is appropriate to identify synthetic lethal genes within pathways and use candidate synthetic lethal genes (and their correlates) to identify synthetic lethal pathways.

Summary

Thus my thesis has developed, evaluated and refined a bioinformatics approach to discovery of synthetic lethal genes solely from gene expression data. This approach has been demonstrated to detect biologically informative and clinically relevant candidate partners for *CDH1* in breast and stomach cancers. These investigations have also involved the development of network analysis and simulation procedures which may be more widely applicable.

Research Contributions During Candidature

Publications

Kelly, S. T. and Spencer, H. G. (2017) Population-Genetics Models of Sex-Limited Genomic Imprinting. *Theoretical Population Biology* **115**:35-44 doi:10.1016/j.tpb.2017.03.004

Manuscripts Submitted

Kelly, S. T., Single, A. B., Telford, B. J., Beetham, H. G, Godwin, T. D., Chen, A., Black, M., A., and Guilford, P. J. (2017) Towards HDGC chemoprevention: vulnerabilities in E-cadherin-negative cells identified by genomic interrogation of isogenic cell lines and whole tumors. Submitted to *Cancer Prevention Research*.

Kelly, S. T., Chen, A., Guilford, P. J., and Black, M. A. (2017) Synthetic lethal interaction prediction of target pathways in E-cadherin deficient breast cancers. Submitted to *BMC Genomics*.

Conference Presentations

Consortium of Biological Sciences 2017 (Kobe) December TBC

eResearch 2017 (Queenstown) February 20th-22nd

Research Bazaar 2016 (Dunedin) February 2nd-4th

eResearch 2016 (Queenstown) February 9th-11th

Genetics Otago Symposium 2016 (Dunedin) March 7th-8th

DunDead: Zombie Science and Culture Festival 2014 (Dunedin) August 16th-17th eResearch 2014 (Hamilton) June 30th-July 2nd (Supported by Google)

Poster Presentations

Next Generation Sequencing Asia 2016 (Singapore) October 11th-12th (Supported by the University of Otago Division of Health Sciences; Maurice and Phyllis Paykel Trust)

Research Bazaar 2015 (Melbourne, Australia) February 16th-18th (Supported by the New Zealand eScience Infrastructure)

Otago School of Medical Sciences Postgraduate Symposium 2015 (Dunedin, New Zealand) April $28^{\rm th}$ - $29^{\rm th}$

QMB Cancer Drugs Satellite 2014 (Queenstown, New Zealand) August 24th-25th

Seminar Presentations

University of Otago Department of Biochemistry 2017 (Dunedin) November TBC Tohoku University 2016 (Sendai) November 11th

Okinawa Institute of Science and Technology 2016 (Onna) November $1^{\rm st}$

Sokendai Graduate University 2016 (Hayama) October 25th

Tokyo University Institute of Medical Science 2016 (Shirokanedai) October 24th
National Institute of Genetics 2016 (Mishima) October 21st

RIKEN Division of Genomic Technologies 2016 (Yokohama) October 20th

Software Packages

Software packages in the R language have been released. Please refer to the appropriate GitHub repository for more information (including documentation, vignettes, and installation instructions), on the following account: https://github.com/TomKellyGenetics

- slipt to accompany the synthetic lethal publication above and release SLIPT (Synthetic Lethal Interaction Prediction Tool)
- vioplotx to provide enhanced violin plots
- heatmap.2x to provide annotated heatmaps
- igraph.extensions metapackage for the packages for iGraph objects:
 - plot.igraph to provide plotting for directed graphs
 - info.centrality to compute network analysis metrics
 - pathway.structure.permutation for resampling within pathways
 - graphsim to simulate expression (mvtnorm) from pathway structures

The slipt-app GitHub repository also hosts an application for Synthetic Lethal Interaction Prediction Tool (SLIPT) developed in the R shiny environment as part of a related project. There is also a digital copy of this thesis, including high resolution full-colour figures, hosted at:

https://github.com/TomKellyGenetics/thesis/blob/master/thesis.pdf

Acknowledgements

I thank my supervisors A/Prof. Mik Black and Prof. Parry Guilford for their support and guidance throughout this my postgraduate studies. It has been a great experience, I look forward to seeing what your research groups produce in the future, may this not be the end.

I am also thankful for the guidance and mentorship of Prof. Hamish Spencer for career advice throughout my studies and time in his research group.

I am also grateful to the past and current members of these research groups, and my peers at the laboratory benches and computers across campus. The peer support, comraderie, and guidance to newer students has been an incredible part of my time at Otago and has made my thesis studies not just easier but possible at all. The postgraduate community is very special here and have truly made some lifelong friends from all over the world, you are talented researchers and amazing people. May we meet again some day. Whereever you may end up, there's always time to catch up and I'd be delighted to host some visits while working abroad.

I cannot thank my friends, flatmates and family enough for their patience and support during such as massive, challenging, and (I'm sure you've heard too many times) stressful undertaking during both my PhD and the study leading up to it. There are too many of you to name everyone here without leaving someone out, so thank you all for everything you've done, both the good times and the tough. Thank you for at least pretending to understand complex math oft brough up at the wrong moment. Thank you for checking my writing or slides, even when sprung on you last minute. Thank for your time when what I really needed was a chat over a walk or a drink and a moment to think clearly.

I thank the various organisations that supported this research project:

- This thesis was supported by the Postgraduate Tassell Scholarship in Cancer Research, a University of Otago Doctoral Scholarship.
- The New Zealand eScience Infrastucture (NeSI) provided access to the Intel Pan high-performance computing cluster, support, and training to use it effectively. Various aspects of this thesis would not have been possible without access to such a resource.
- The Health Research Council (HRC) of New Zealand provided funding for experimental research in the Cancer Genetics Laboratory. Again some aspects of this project would not have been possible without access to the data and findings funded by this grant.
- The Allan Wilson Centre and Otago School of Biomedical Sciences provided funding for summer research placements which was a valuable opportunity to gain experience and training used in this thesis project.

I thank the following organisations for support towards presenting findings in this thesis at conference and seminars:

- Google (eResearch 2014 conference, Hamilton)
- NeSI (Software Carpentry training and Research Bazaar 2015, Melbourne)
- REANNZ, NZGL, and NeSI (eResearch 2016 conference, Queenstown)
- Otago Division of Health Sciences, Oxford Global, and Maurice and Phyllis Paykel Trust (NGS Asia 2016, Singapore)
- RIKEN Division of Genomics Technologies and the Okinawa Institue of Science and Technology (funding seminar visits in Japan)

Thanks most of all to my fianceé, Dr Yui Kawagishi, you've been an inspiration. Thank you for your support and encouragement, every day, even from afar: it has always made a difference. It's been incredible to see you flourish in your career and I look forward to joining you again soon. May the next chapter of our adventures involve a bit less Skype across timezones.

どうもありがとう由ちゃん。また来月。頑張った!行きます!

Contents

1	Intr	oducti	ion	1
	1.1		r Research in the Post-Genomic Era	1
		1.1.1	Cancer as a Global Health Concern	1
			1.1.1.1 The Genetics and Molecular Biology of Cancers	3
		1.1.2	The Human Genome Revolution	6
			1.1.2.1 The First Human Genome Sequence	6
			1.1.2.2 Impact of Genomics	7
		1.1.3	Technologies to Enable Genetics Research	7
			1.1.3.1 DNA Sequencing and Genotyping Technologies	7
			1.1.3.2 Microarrays and Quantitative Technologies	8
			1.1.3.3 Massively Parallel "Next Generation" Sequencing	9
			1.1.3.3.1 Molecular Profiling with Genomics Technology .	10
			1.1.3.3.2 Sequencing Technologies	11
			1.1.3.4 Bioinformatics as Interdisciplinary Genomic Analysis .	12
		1.1.4	Follow-up Large-Scale Genomics Projects	12
		1.1.5	Cancer Genomes	13
			1.1.5.1 The Cancer Genome Atlas Project	14
			1.1.5.1.1 Findings from Cancer Genomes	15
			1.1.5.1.2 Genomic Comparisons Across Cancer Tissues .	16
			1.1.5.1.3 Cancer Genomic Data Resources	17
		1.1.6	Genomic Cancer Medicine	18
			1.1.6.1 Cancer Genes and Driver Mutations	18
			1.1.6.2 Personalised or Precision Cancer Medicine	19
			1.1.6.2.1 Molecular Diagnostics and Pan-Cancer Medicine	20
			1.1.6.3 Targeted Therapeutics and Pharmacogenomics	20
			1.1.6.3.1 Targeting Oncogenic Driver Mutations	21
			1.1.6.4 Systems and Network Biology	21
			1.1.6.4.1 Network Medicine, and Polypharmacology	24
	1.2	-	thetic Lethal Approach to Cancer Medicine	25
		1.2.1	Synthetic Lethal Genetic Interactions	25
		1.2.2	Synthetic Lethal Concepts in Genetics	26
		1.2.3	Studies of Synthetic Lethality	27
			1.2.3.1 Synthetic Lethal Pathways and Networks	27
			1.2.3.1.1 Evolution of Synthetic Lethality	28
		$1\ 2\ 4$	Synthetic Lethal Concepts in Cancer	29

		1.2.5	Clinical Impact of Synthetic Lethality in Cancer
		1.2.6	High-throughput Screening for Synthetic Lethality
			1.2.6.1 Synthetic Lethal Screens
		1.2.7	Computational Prediction of Synthetic Lethality
			1.2.7.1 Bioinformatics Approaches to Genetic Interactions 37
			1.2.7.2 Comparative Genomics
			1.2.7.3 Analysis and Modelling of Protein Data 41
			1.2.7.4 Differential Gene Expression
			1.2.7.5 Data Mining and Machine Learning
			1.2.7.6 Bimodality
			1.2.7.7 Rationale for Further Development
	1.3	E-cadl	herin as a Synthetic Lethal Target
		1.3.1	The <i>CDH1</i> gene and it's Biological Functions
			1.3.1.1 Cytoskeleton
			1.3.1.2 Extracellular and Tumour Micro-Environment 48
			1.3.1.3 Cell-Cell Adhesion and Signalling
		1.3.2	CDH1 as a Tumour (and Invasion) Suppressor
		1.0.2	1.3.2.1 Breast Cancers and Invasion
		1.3.3	Hereditary Diffuse Gastric Cancer and Lobular Breast Cancer . 50
		1.3.4	Models of <i>CDH1</i> loss in cell lines
	1.4		ary and Research Direction of Thesis
	1.1	1.4.1	Thesis Aims
		1.7.1	
2	Met	thods a	and Resources 55
	2.1	Bioinf	ormatics Resources for Genomics Research
		2.1.1	Public Data and Software Packages
			2.1.1.1 Cancer Genome Atlas Data
			2.1.1.2 Reactome and Annotation Data
	2.2	Data 1	Handling
		2.2.1	Normalisation
		2.2.2	Sample Triage
		2.2.3	Metagenes and the Singular Value Decomposition 60
			2.2.3.1 Candidate Triage and Integration with Screen Data 60
	2.3	Techn	iques
		2.3.1	Statistical Procedures and Tests 61
		2.3.2	Gene Set Over-representation Analysis
		2.3.3	Clustering
		2.3.4	Heatmap
		2.3.5	Modeling and Simulations
			2.3.5.1 Receiver Operating Characteristic (Performance) 64
		2.3.6	Resampling Analysis
	2.4		ray Structure Methods
		2.4.1	Network and Graph Analysis
		2.4.2	Sourcing Graph Structure Data
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			~ -
		2.4.3 2.4.4	Constructing Pathway Subgraphs

	2.5	Imple	mentation	68
		2.5.1	Computational Resources and Linux Utilities	68
		2.5.2	R Language and Packages	69
		2.5.3	High Performance and Parallel Computing	72
3	Met	thods l	Developed During Thesis	74
_	3.1		thetic Lethal Detection Methodology	74
	3.2		etic Lethal Simulation and Modelling	77
		3.2.1	A Model of Synthetic Lethality in Expression Data	77
		3.2.2	Simulation Procedure	81
	3.3		ting Simulated Synthetic Lethal Partners	84
		3.3.1	Binomial Simulation of Synthetic lethality	84
		3.3.2	Multivariate Normal Simulation of Synthetic lethality	86
			3.3.2.1 Multivariate Normal Simulation with Correlated Genes	89
			3.3.2.2 Specificity with Query-Correlated Pathways	96
			3.3.2.3 Importance of Directional Testing	96
	3.4	Graph	Structure Methods	98
		3.4.1	Upstream and Downstream Gene Detection	98
			3.4.1.1 Permutation Analysis for Statistical Significance	99
			3.4.1.2 Hierarchy Based on Biological Context	100
		3.4.2	Simulating Gene Expression from Graph Structures	101
	3.5	Custo	mised Functions and Packages Developed	105
		3.5.1	Synthetic Lethal Interaction Prediction Tool	105
		3.5.2	Data Visualisation	106
		3.5.3	Extensions to the iGraph Package	109
			3.5.3.1 Sampling Simulated Data from Graph Structures	109
			3.5.3.2 Plotting Directed Graph Structures	109
			3.5.3.3 Computing Information Centrality	110
			3.5.3.4 Testing Pathway Structure with Permutation Testing .	110
			3.5.3.5 Metapackage to Install iGraph Functions	111
4	Syn	thetic	Lethal Analysis of Gene Expression Data	112
	4.1	Synthe	etic Lethal Genes in Breast Cancer	113
		4.1.1	Synthetic Lethal Pathways in Breast Cancer	115
		4.1.2	Expression Profiles of Synthetic Lethal Partners	116
			4.1.2.1 Subgroup Pathway Analysis	119
	4.2	Compa	aring Synthetic Lethal Gene Candidates	122
		4.2.1	Primary siRNA Screen Candidates	122
		4.2.2	Comparison with Correlation	123
		4.2.3	Comparison with Primary Screen Viability	125
		4.2.4	Comparison with Secondary siRNA Screen Validation	126
		4.2.5	Comparison to Primary Screen at Pathway Level	128
			4.2.5.1 Resampling Genes for Pathway Enrichment	130
		4.2.6	Integrating Synthetic Lethal Pathways and Screens	133
	4.3		gene Analysis	135
		4.3.1	Pathway Expression	136

		4.3.2	Somatic Mutation
		4.3.3	Synthetic Lethal Pathway Metagenes
		4.3.4	Synthetic Lethality in Breast Cancer
	4.4	Replic	eation in Stomach Cancer
	4.5	Discus	ssion
		4.5.1	Strengths of the SLIPT Methodology
		4.5.2	Synthetic Lethal Pathways for E-cadherin
		4.5.3	Replication and Validation
			4.5.3.1 Integration with siRNA Screening
			4.5.3.2 Replication across Tissues
	4.6	Summ	ary 149
5	Syn	thetic	Lethal Pathway Structure 151
J	5.1		etic Lethal Genes in Reactome Pathways
	0.1	5.1.1	The PI3K/AKT Pathway
		5.1.2	The Extracellular Matrix
		5.1.3	G Protein Coupled Receptors
		5.1.4	Gene Regulation and Translation
	5.2		ork Analysis of Synthetic Lethal Genes
	0.2	5.2.1	Gene Connectivity and Vertex Degree
		5.2.1 $5.2.2$	Gene Importance and Centrality
		0.2.2	5.2.2.1 Information Centrality
			5.2.2.2 PageRank Centrality
	5.3	Relati	onships between Synthetic Lethal Genes
	0.0	5.3.1	Hierarchical Pathway Structure
		0.0.1	5.3.1.1 Contextual Hierarchy of PI3K
			5.3.1.2 Testing Contextual Hierarchy of Synthetic Lethal Genes 164
		5.3.2	Upstream or Downstream Synthetic Lethality 168
		0.0.2	5.3.2.1 Measuring Structure of Candidates within PI3K 168
			5.3.2.2 Resampling for Synthetic Lethal Pathway Structure 170
	5.4	Discus	ssion
	5.5		eary
6			n and Modeling of Synthetic Lethal Pathways 176
	6.1		aring Synthetic Lethal Detection Methods
		6.1.1	Performance of SLIPT and $\chi^2$ across Quantiles
			6.1.1.1 Correlated Query Genes affects Specificity 181
		6.1.2	Alternative Synthetic Lethal Detection Strategies
			6.1.2.1 Correlation for Synthetic Lethal Detection 184
			6.1.2.2 Testing for Bimodality with BiSEp 185
	6.2		ations with Graph Structures
		6.2.1	Performance over a Graph Structure
			6.2.1.1 Simple Graph Structures
			6.2.1.2 Constructed Graph Structures
		6.2.2	Performance with Inhibitions
		6.2.3	Synthetic Lethality across Graph Structures

		6.2.4	Performance within a Simulated Human Genome	. 20	1
	6.3	Simula	tions in More Complex Graph Structures		ô
		6.3.1	Simulations over Pathway-based Graphs	. 20'	7
		6.3.2	Pathway Structures in a Simulated Human Genome		
	6.4	Discus	sion		
		6.4.1	Simulation Procedure		
		6.4.2	Comparing Methods with Simulated Data		
		6.4.3	Design and Performance of SLIPT		
		6.4.4	Simulations from Graph Structures		
	6.5	Summ	ary	. 218	3
7	Disc	cussion		220	J
	7.1	Synthe	etic Lethality and <i>CDH1</i> Biology		0
		7.1.1	Established Functions of CDH1		1
		7.1.2	The Molecular Role of <i>CDH1</i> in Cancer	. 22	1
	7.2	Signific	cance	. 222	2
		7.2.1	Synthetic Lethality in the Genomic Era	. 222	2
		7.2.2	Clinical Interventions based on Synthetic Lethality		4
	7.3	Evalua	ting the Synthetic Lethality Prediction Tool	. 225	j
		7.3.1	Strength of the Synthetic Lethality Prediction Tool	. 225	j
		7.3.2	Limitations of the Synthetic Lethality Prediction Tool	. 225	j
		7.3.3	Comparisons to Alternative Methods		
			7.3.3.1 Combined with Experimental Screening		
			7.3.3.2 Differences to Computational Methods		
	7.4		Directions		
		7.4.1	Refinements Synthetic Lethality Prediction Methods		
			7.4.1.1 Wider Use of Synthetic Lethality Prediction		
		7.4.2	Validation of Synthetic Lethal Genes and Pathways		
			7.4.2.1 Pre-clinical and Clinical Testing		
		7.4.3	Application to Further Genes and Pathways	. 22'	7
8	Con	clusion	1	228	3
	Refe	erences	S	232	2
A	San	iple Co	orrelation	<b>5</b> 1	1
В	Rep	olicate	Samples in TCGA Breast	53	3
	-		-		
			Jsed for Thesis	57	
D	Seco	ondary	Screen Data	66	3
E	Mu	tation	Analysis in Breast Cancer	68	3
F	Exp	ression	Analysis in Stomach Cancer	77	7

# List of Tables

1.1 1.2 1.3	Methods for Predicting Genetic Interactions	37 38 40
2.1 2.2 2.3 2.4 2.5 2.6	Excluded Samples by Batch and Clinical Characteristics.  Computers used during Thesis	58 69 69 70 70
4.1 4.2 4.3 4.4	Pathways for <i>CDH1</i> partners from SLIPT	l 14 l 16 l 20
4.5 4.6 4.7 4.8 4.9	Comparing SLIPT genes against secondary siRNA screen in breast cancer 1 Pathway composition for <i>CDH1</i> partners from SLIPT and siRNA screening	
5.1 5.2 5.3 5.4 5.5	ANOVA for Synthetic Lethality and Information Centrality	160 162 164 167
C.1	R Packages used during Thesis	57
D.1 D.2	Comparing mtSLIPT genes against Secondary siRNA Screen in breast	66
D.3	cancer	67 67
E.1	Candidate synthetic lethal genes against E-cadherin from mtSLIPT	68

E.2	Pathways for <i>CDH1</i> partners from mtSLIPT	69
E.3	Pathway composition for clusters of $\mathit{CDH1}$ partners from mtSLIPT	71
E.4	Pathway composition for $CDH1$ partners from mtSLIPT and siRNA	73
E.5	Pathways for <i>CDH1</i> partners from mtSLIPT	74
E.6	Pathways for CDH1 partners from mtSLIPT and siRNA primary screen	75
E.7	Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from mtSLIPT	76
G.1	Candidate synthetic lethal genes against E-cadherin from mtSLIPT in	
	stomach cancer	78
G.2	Pathways for CDH1 partners from mtSLIPT in stomach cancer	79
G.3	Pathway composition for clusters of CDH1 partners in stomach mtSLIPT	81
G.4	Pathway composition for $CDH1$ partners from mtSLIPT and siRNA	83
G.5	Pathways for CDH1 partners from mtSLIPT in stomach cancer	84
G.6	Pathways for CDH1 partners from mtSLIPT in stomach and siRNA screen	85
G.7	Candidate synthetic lethal metagenes against CDH1 from mtSLIPT in	
	stomach cancer	86

# List of Figures

1.1	Synthetic genetic interactions	26
1.2		30
o 1	Dood count density	59
2.1	V	9 59
2.2	Read count sample mean	19
3.1	Framework for synthetic lethal prediction	75
3.2	Synthetic lethal prediction adapted for mutation	76
3.3	A model of synthetic lethal gene expression	78
3.4	Modeling synthetic lethal gene expression	79
3.5	Synthetic lethality with multiple genes	30
3.6		32
3.7	Simulating synthetic lethal gene function	32
3.8	Simulating synthetic lethal gene expression	33
3.9		35
3.10		35
3.11	Performance of multivariate normal simulations	37
3.12	Simulating expression with correlated gene blocks	90
3.13	Simulating expression with correlated gene blocks	)1
3.14	Synthetic lethal prediction across simulations	92
3.15	Performance with correlations	93
3.16	Comparison of statistical performance with correlation structure 9	)4
3.17	Performance with query correlations	95
3.18	Statistical evaluation of directional criteria	96
3.19	Performance of directional criteria	7
	Simulated graph structures	)1
	Simulating expression from a graph structure	)3
3.22	Simulating expression from graph structure with inhibitions 10	)4
	Demonstration of violin plots with custom features	)7
	Demonstration of annotated heatmap	)7
3.25	Simulating graph structures	.0
4.1	Synthetic lethal expression profiles of analysed samples	8
4.2	Comparison of SLIPT to siRNA	
4.3	Compare SLIPT and siRNA genes with correlation	
4.4	Compare SLIPT and siRNA genes with correlation	
4.5	Compare SLIPT and siRNA genes with viability	
1.0	Compare serie i and siturit series with viasinty	J

4.6	Compare SLIPT genes with siRNA viability	126
4.7	Resampled intersection of SLIPT and siRNA candidates	130
4.8	Pathway metagene expression profiles	137
4.9	Expression profiles for constituent genes of PI3K	139
4.10	Expression profiles for estrogen receptor related genes	140
4.11	Somatic mutation against the PI3K metagene	141
5.1	Synthetic Lethality in the PI3K Cascade	153
5.2	Synthetic Lethality in the Elastic Fibre Formation Pathway	155
5.3	Synthetic Lethality in the Fibrin Clot Formation	156
5.4	Synthetic Lethality and Vertex Degree	159
5.5	Synthetic Lethality and Centrality	162
5.6	Synthetic Lethality and PageRank	163
5.7	Hierarchical Structure of PI3K	165
5.8	Hierarchy Score in PI3K against Synthetic Lethality in PI3K	166
5.9	Structure of Synthetic Lethality in PI3K	168
5.10	Structure of Synthetic Lethality Resampling in PI3K	169
6.1	Performance of $\chi^2$ and SLIPT across quantiles	179
6.2	Performance of $\chi^2$ and SLIPT across quantiles with more genes	180
6.3	Performance of $\chi^2$ and SLIPT across quantiles with query correlation .	181
6.4	Performance of $\chi^2$ and SLIPT across quantiles with query correlation	
	and more genes	183
6.5	Performance of negative correlation and SLIPT	185
6.6	Simple graph structures	188
6.7	Performance of simulations on a simple graph	189
6.8 6.9	Performance of simulations is similar in simple graphs	190 191
6.10	Performance of simulations on a simple graph with inhibition	191
	Performance is higher on a simple inhibiting graph	195
	Performance of simulations on a constructed graph with inhibition	196
6.13	Performance is affected by inhibition in graphs	197
	Detection of Synthetic Lethality within a Graph Structure with Inhibitions	
	Performance of simulations including a simple graph	203
	Performance on a simple graph improves with more genes	204
	Performance on an inhibiting graph improves with more genes	205
	Performance of simulations on the PI3K cascade	209
6.19	Performance of simulations including the PI3K cascade	211
	Performance on pathways improves with more genes	212
A.1	Correlation profiles of removed samples	51
A.2	Correlation analysis and sample removal	52
B.1	Replicate excluded samples	53
B.2	Replicate samples with all remaining	54
	(a) Remaining triplet	54
	(b) Remaining triplet	54

	(c)	Remaining triplet
	(d)	Remaining paired samples
	(e)	Remaining paired samples
	(f)	Remaining paired samples
В.3	Replic	ate samples with some excluded
	(a)	Remaining
	(b)	Compare with excluded
	(c)	Compare with excluded
	(d)	Remaining
	(e)	Compare with excluded
	(f)	Compare with excluded
	(g)	Remaining
	(h)	Compare with excluded
	(i)	Compare with excluded
В.3	· /	ate samples with some excluded
	(j)	Remaining
	(k)	Compare with excluded
	(1)	Compare with excluded
	(m)	Compare with excluded
	(n)	Compare with excluded
	(11)	compare with cheracoa
E.1	Synthe	etic lethal expression profiles of analysed samples
E.2	Comp	arison of mtSLIPT to siRNA
~	_	
G.1		etic lethal expression profiles of stomach samples
G.2	Comp	arison of mtSLIPT in stomach to siRNA

## References

- Aarts, M., Bajrami, I., Herrera-Abreu, M.T., Elliott, R., Brough, R., Ashworth, A., Lord, C.J., and Turner, N.C. (2015) Functional genetic screen identifies increased sensitivity to weel inhibition in cells with defects in fanconi anemia and hr pathways. Mol Cancer Ther, 14(4): 865–76.
- Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Amin, S., Andry, C.D., Annala, M., Aprikian, A., Armenia, J., Arora, A., et al. (2015) The Molecular Taxonomy of Primary Prostate Cancer. Cell, 163(4): 1011–1025.
- Adamski, M.G., Gumann, P., and Baird, A.E. (2014) A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity. *PLoS ONE*, **9**(8): e103917.
- Adler, D. (2005) vioplot: Violin plot. R package version 0.2.
- Agarwal, S., Deane, C.M., Porter, M.A., and Jones, N.S. (2010) Revisiting date and party hubs: Novel approaches to role assignment in protein interaction networks. *PLoS Comput Biol*, **6**(6): e1000817.
- Agrawal, N., Akbani, R., Aksoy, B.A., Ally, A., Arachchi, H., Asa, S.L., Auman, J.T., Balasundaram, M., Balu, S., Baylin, S.B., et al. (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell, 159(3): 676–690.
- Akbani, R., Akdemir, K.C., Aksoy, B.A., Albert, M., Ally, A., Amin, S.B., Arachchi, H., Arora, A., Auman, J.T., Ayala, B., et al. (2015) Genomic Classification of Cutaneous Melanoma. Cell, 161(7): 1681–1696.
- Akobeng, A.K. (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. *Acta Pædiatrica*, **96**(5): 644–647.
- American Cancer Society (2017) Genetics and cancer. https://www.cancer.org/cancer/cancer-causes/genetics.html. Accessed: 22/03/2017.
- American Society for Clinical Oncology (ASCO) (2017) The genetics of cancer. http://www.cancer.net/navigating-cancer-care/cancer-basics/genetics/genetics-cancer. Accessed: 22/03/2017.
- Anjomshoaa, A., Lin, Y.H., Black, M.A., McCall, J.L., Humar, B., Song, S., Fukuzawa, R., Yoon, H.S., Holzmann, B., Friederichs, J., et al. (2008) Reduced expression of a

- gene proliferation signature is associated with enhanced malignancy in colon cancer.  $Br\ J\ Cancer,\ 99(6)$ : 966–973.
- Araki, H., Knapp, C., Tsai, P., and Print, C. (2012) GeneSetDB: A comprehensive meta-database, statistical and visualisation framework for gene set analysis. *FEBS Open Bio*, **2**: 76–82.
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25(1): 25–29.
- Ashworth, A. (2008) A synthetic lethal therapeutic approach: poly(adp) ribose polymerase inhibitors for the treatment of cancers deficient in dna double-strand break repair. J Clin Oncol, 26(22): 3785–90.
- Audeh, M.W., Carmichael, J., Penson, R.T., Friedlander, M., Powell, B., Bell-McGuinn, K.M., Scott, C., Weitzel, J.N., Oaknin, A., Loman, N., et al. (2010) Oral poly(adp-ribose) polymerase inhibitor olaparib in patients with *BRCA1* or *BRCA2* mutations and recurrent ovarian cancer: a proof-of-concept trial. *Lancet*, **376**(9737): 245–51.
- Babyak, M.A. (2004) What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. *Psychosom Med*, **66**(3): 411–21.
- Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., Flanagan, A., Teague, J., Futreal, P.A., Stratton, M.R., et al. (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer, 91(2): 355–358.
- Barabási, A.L. and Albert, R. (1999) Emergence of scaling in random networks. *Science*, **286**(5439): 509–12.
- Barabási, A.L., Gulbahce, N., and Loscalzo, J. (2011) Network medicine: a network-based approach to human disease. *Nat Rev Genet*, **12**(1): 56–68.
- Barabási, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. *Nat Rev Genet*, **5**(2): 101–13.
- Barrat, A. and Weigt, M. (2000) On the properties of small-world network models. The European Physical Journal B - Condensed Matter and Complex Systems, 13(3): 547–560.
- Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. *Nature*, **483**(7391): 603–607.
- Barry, W.T. (2016) safe: Significance Analysis of Function and Expression. R package version 3.14.0.

- Baryshnikova, A., Costanzo, M., Dixon, S., Vizeacoumar, F.J., Myers, C.L., Andrews, B., and Boone, C. (2010a) Synthetic genetic array (sga) analysis in saccharomyces cerevisiae and schizosaccharomyces pombe. *Methods Enzymol*, **470**: 145–79.
- Baryshnikova, A., Costanzo, M., Kim, Y., Ding, H., Koh, J., Toufighi, K., Youn, J.Y., Ou, J., San Luis, B.J., Bandyopadhyay, S., et al. (2010b) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Meth, 7(12): 1017–1024.
- Bass, A.J., Thorsson, V., Shmulevich, I., Reynolds, S.M., Miller, M., Bernard, B., Hinoue, T., Laird, P.W., Curtis, C., Shen, H., et al. (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513(7517): 202–209.
- Bates, D. and Maechler, M. (2016) Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.2-7.1.
- Bateson, W. and Mendel, G. (1909) Mendel's principles of heredity, by W. Bateson. University Press, Cambridge [Eng.].
- Beck, T.F., Mullikin, J.C., and Biesecker, L.G. (2016) Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants. *Clin Chem*, **62**(4): 647–654.
- Becker, K.F., Atkinson, M.J., Reich, U., Becker, I., Nekarda, H., Siewert, J.R., and Höfler, H. (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. *Cancer Research*, **54**(14): 3845–3852.
- Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353): 609–615.
- Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B (Methodological)*, **57**(1): 289–300.
- Berx, G., Cleton-Jansen, A.M., Nollet, F., de Leeuw, W.J., van de Vijver, M., Cornelisse, C., and van Roy, F. (1995) E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. *EMBO J*, **14**(24): 6107–15.
- Berx, G., Cleton-Jansen, A.M., Strumane, K., de Leeuw, W.J., Nollet, F., van Roy, F., and Cornelisse, C. (1996) E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. *Oncogene*, **13**(9): 1919–25.
- Berx, G. and van Roy, F. (2009) Involvement of members of the cadherin superfamily in cancer. *Cold Spring Harb Perspect Biol*, 1: a003129.
- Bitler, B.G., Aird, K.M., Garipov, A., Li, H., Amatangelo, M., Kossenkov, A.V., Schultz, D.C., Liu, Q., Shih Ie, M., Conejo-Garcia, J.R., et al. (2015) Synthetic lethality by targeting ezh2 methyltransferase activity in arid1a-mutated cancers. Nat Med, 21(3): 231–8.

- Blake, J.A., Christie, K.R., Dolan, M.E., Drabkin, H.J., Hill, D.P., Ni, L., Sitnikov, D., Burgess, S., Buza, T., Gresham, C., et al. (2015) Gene Ontology Consortium: going forward. *Nucleic Acids Res*, **43**(Database issue): D1049–1056.
- Boettcher, M., Lawson, A., Ladenburger, V., Fredebohm, J., Wolf, J., Hoheisel, J.D., Frezza, C., and Shlomi, T. (2014) High throughput synthetic lethality screen reveals a tumorigenic role of adenylate cyclase in fumarate hydratase-deficient cancer cells. *BMC Genomics*, **15**: 158.
- Boone, C., Bussey, H., and Andrews, B.J. (2007) Exploring genetic interactions and networks with yeast. *Nat Rev Genet*, **8**(6): 437–49.
- Borgatti, S.P. (2005) Centrality and network flow. Social Networks, 27(1): 55 71.
- Boucher, B. and Jenna, S. (2013) Genetic interaction networks: better understand to better predict. *Front Genet*, 4: 290.
- Breiman, L. (2001) Random forests. *Machine Learning*, **45**(1): 5–32.
- Brin, S. and Page, L. (1998) The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1): 107 117.
- Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. (2005) Specific killing of *BRCA2*-deficient tumours with inhibitors of poly*adpribose* polymerase. *Nature*, **434**(7035): 913–7.
- Burk, R.D., Chen, Z., Saller, C., Tarvin, K., Carvalho, A.L., Scapulatempo-Neto, C., Silveira, H.C., Fregnani, J.H., Creighton, C.J., Anderson, M.L., et al. (2017) Integrated genomic and molecular characterization of cervical cancer. Nature, **543**(7645): 378–384.
- Bussey, H., Andrews, B., and Boone, C. (2006) From worm genetic networks to complex human diseases. *Nat Genet*, **38**(8): 862–3.
- Butland, G., Babu, M., Diaz-Mejia, J.J., Bohdana, F., Phanse, S., Gold, B., Yang, W., Li, J., Gagarinova, A.G., Pogoutse, O., et al. (2008) esga: E. coli synthetic genetic array analysis. Nat Methods, 5(9): 789–95.
- Cancer Research UK (2017) Family history and cancer genes. http://www.cancerresearchuk.org/about-cancer/causes-of-cancer/inherited-cancer-genes-and-increased-cancer-risk/family-history-and-inherited-cancer-genes. Accessed: 22/03/2017.
- cBioPortal for Cancer Genomics (cBioPortal) (2017) cBioPortal for Cancer Genomics. http://www.cbioportal.org/. Accessed: 26/03/2017.
- Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., Schultz, N., Bader, G.D., and Sander, C. (2011) Pathway Commons, a web resource for biological pathway data. *Nucleic Acids Res*, 39(Database issue): D685–690.

- Chen, A., Beetham, H., Black, M.A., Priya, R., Telford, B.J., Guest, J., Wiggins, G.A.R., Godwin, T.D., Yap, A.S., and Guilford, P.J. (2014) E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. *BMC Cancer*, **14**(1): 552.
- Chen, S. and Parmigiani, G. (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol, 25(11): 1329–1333.
- Chen, X. and Tompa, M. (2010) Comparative assessment of methods for aligning multiple genome sequences. *Nat Biotechnol*, **28**(6): 567–572.
- Cherniack, A.D., Shen, H., Walter, V., Stewart, C., Murray, B.A., Bowlby, R., Hu, X., Ling, S., Soslow, R.A., Broaddus, R.R., et al. (2017) Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 31(3): 411–423.
- Chipman, K. and Singh, A. (2009) Predicting genetic interactions with random walks on biological networks. BMC Bioinformatics,  $\mathbf{10}(1)$ : 17.
- Christofori, G. and Semb, H. (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends in Biochemical Sciences, 24(2): 73 76.
- Ciriello, G., Gatza, M.L., Beck, A.H., Wilkerson, M.D., Rhie, S.K., Pastore, A., Zhang, H., McLellan, M., Yau, C., Kandoth, C., et al. (2015) Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 163(2): 506–519.
- Clark, M.J. (2004) Endogenous Regulator of G Protein Signaling Proteins Suppress G o-Dependent -Opioid Agonist-Mediated Adenylyl Cyclase Supersensitization. Journal of Pharmacology and Experimental Therapeutics, 310(1): 215–222.
- Clough, E. and Barrett, T. (2016) The Gene Expression Omnibus Database. *Methods Mol Biol*, **1418**: 93–110.
- Collingridge, D.S. (2013) A primer on quantitized data analysis and permutation testing. *Journal of Mixed Methods Research*, **7**(1): 81–97.
- Collins, F.S. and Barker, A.D. (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. *Sci Am*, **296**(3): 50–57.
- Collins, F.S., Morgan, M., and Patrinos, A. (2003) The Human Genome Project: lessons from large-scale biology. *Science*, **300**(5617): 286–290.
- Collisson, E., Campbell, J., Brooks, A., Berger, A., Lee, W., Chmielecki, J., Beer, D., Cope, L., Creighton, C., Danilova, L., et al. (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511(7511): 543–550.
- Corcoran, R.B., Ebi, H., Turke, A.B., Coffee, E.M., Nishino, M., Cogdill, A.P., Brown, R.D., Della Pelle, P., Dias-Santagata, D., Hung, K.E., et al. (2012) Egfr-mediated reactivation of mapk signaling contributes to insensitivity of BRAF-mutant colorectal cancers to raf inhibition with vemurafenib. Cancer Discovery, 2(3): 227–235.

- Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. (2010) The genetic landscape of a cell. *Science*, **327**(5964): 425–31.
- Costanzo, M., Baryshnikova, A., Myers, C.L., Andrews, B., and Boone, C. (2011) Charting the genetic interaction map of a cell. *Curr Opin Biotechnol*, **22**(1): 66–74.
- Courtney, K.D., Corcoran, R.B., and Engelman, J.A. (2010) The PI3K pathway as drug target in human cancer. *J Clin Oncol*, **28**(6): 1075–1083.
- Creighton, C.J., Morgan, M., Gunaratne, P.H., Wheeler, D.A., Gibbs, R.A., Robertson, A., Chu, A., Beroukhim, R., Cibulskis, K., Signoretti, S., et al. (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456): 43–49.
- Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M.R., et al. (2014) The Reactome pathway knowledge-base. Nucleic Acids Res, 42(database issue): D472–D477.
- Crunkhorn, S. (2014) Cancer: Predicting synthetic lethal interactions. *Nat Rev Drug Discov*, **13**(11): 812.
- Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. *InterJournal*, **Complex Systems**: 1695.
- Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403): 346–352.
- Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., and Shi, B. (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. *Am J Cancer Res*, 5(10): 2929–2943.
- Davierwala, A.P., Haynes, J., Li, Z., Brost, R.L., Robinson, M.D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H., Chen, Y., et al. (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet, 37(10): 1147–1152.
- De Leeuw, W.J., Berx, G., Vos, C.B., Peterse, J.L., Van de Vijver, M.J., Litvinov, S., Van Roy, F., Cornelisse, C.J., and Cleton-Jansen, A.M. (1997) Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. *J Pathol*, **183**(4): 404–11.
- Demir, E., Babur, O., Rodchenkov, I., Aksoy, B.A., Fukuda, K.I., Gross, B., Sumer, O.S., Bader, G.D., and Sander, C. (2013) Using biological pathway data with Paxtools. *PLoS Comput Biol*, **9**(9): e1003194.
- Deshpande, R., Asiedu, M.K., Klebig, M., Sutor, S., Kuzmin, E., Nelson, J., Piotrowski, J., Shin, S.H., Yoshida, M., Costanzo, M., et al. (2013) A comparative genomic approach for identifying synthetic lethal interactions in human cancer. Cancer Res, 73(20): 6128–36.

- Dickson, D. (1999) Wellcome funds cancer database. Nature, 401(6755): 729.
- Dienstmann, R. and Tabernero, J. (2011) *BRAF* as a target for cancer therapy. *Anti-*cancer Agents Med Chem, **11**(3): 285–95.
- Dijkstra, E.W. (1959) A note on two problems in connexion with graphs. *Numerische Mathematik*, **1**(1): 269–271.
- Dixon, S.J., Andrews, B.J., and Boone, C. (2009) Exploring the conservation of synthetic lethal genetic interaction networks. *Commun Integr Biol*, **2**(2): 78–81.
- Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G., Toufighi, K., Baryshnikova, A., Hayles, J., Hoe, K.L., et al. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A, 105(43): 16653–8.
- Dorogovtsev, S.N. and Mendes, J.F. (2003) Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, USA.
- Dorsam, R.T. and Gutkind, J.S. (2007) G-protein-coupled receptors and cancer. *Nat Rev Cancer*, **7**(2): 79–94.
- Erdős, P. and Rényi, A. (1959) On random graphs I. Publ Math Debrecen, 6: 290–297.
- Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. In *Publ. Math. Inst. Hung. Acad. Sci.*, volume 5, 17–61.
- Eroles, P., Bosch, A., Perez-Fidalgo, J.A., and Lluch, A. (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. *Cancer Treat Rev*, **38**(6): 698–707.
- Ezkurdia, I., Juan, D., Rodriguez, J.M., Frankish, A., Diekhans, M., Harrow, J., Vazquez, J., Valencia, A., and Tress, M.L. (2014) Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. *Human Molecular Genetics*, **23**(22): 5866.
- Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. (2005) Targeting the dna repair defect in BRCA mutant cells as a therapeutic strategy. *Nature*, **434**(7035): 917–21.
- Fawcett, T. (2006) An introduction to ROC analysis. *Pattern Recognition Letters*, **27**(8): 861 874. {ROC} Analysis in Pattern Recognition.
- Fece de la Cruz, F., Gapp, B.V., and Nijman, S.M. (2015) Synthetic lethal vulnerabilities of cancer. *Annu Rev Pharmacol Toxicol*, **55**: 513–531.
- Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer*, **136**(5): E359–386.

- Fisher, R.A. (1919) Xv.—the correlation between relatives on the supposition of mendelian inheritance. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh*, **52**(02): 399–433.
- Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O'Connor, M.J., et al. (2009) Inhibition of poly(adpribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med, 361(2): 123–34.
- Fong, P.C., Yap, T.A., Boss, D.S., Carden, C.P., Mergui-Roelvink, M., Gourley, C., De Greve, J., Lubinski, J., Shanley, S., Messiou, C., et al. (2010) Poly(adp)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol, 28(15): 2512–9.
- Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., et al. (2015) COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res, 43(Database issue): D805–811.
- Fraser, A. (2004) Towards full employment: using RNAi to find roles for the redundant. *Oncogene*, **23**(51): 8346–52.
- Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton, M.R. (2004) A census of human cancer genes. *Nat Rev Cancer*, 4(3): 177–183.
- Futreal, P.A., Kasprzyk, A., Birney, E., Mullikin, J.C., Wooster, R., and Stratton, M.R. (2001) Cancer and genomics. *Nature*, **409**(6822): 850–852.
- Gao, B. and Roux, P.P. (2015) Translational control by oncogenic signaling pathways. *Biochimica et Biophysica Acta*, **1849**(7): 753–65.
- Gatza, M.L., Kung, H.N., Blackwell, K.L., Dewhirst, M.W., Marks, J.R., and Chi, J.T. (2011) Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes. *Breast Cancer Res*, 13(3): R62.
- Gatza, M.L., Lucas, J.E., Barry, W.T., Kim, J.W., Wang, Q., Crawford, M.D., Datto, M.B., Kelley, M., Mathey-Prevot, B., Potti, A., et al. (2010) A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA, 107(15): 6994–6999.
- Gatza, M.L., Silva, G.O., Parker, J.S., Fan, C., and Perou, C.M. (2014) An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. *Nat Genet*, **46**(10): 1051–1059.
- Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 5(10): R80.

- Genz, A. and Bretz, F. (2009) Computation of multivariate normal and t probabilities. In *Lecture Notes in Statistics*, volume 195. Springer-Verlag, Heidelberg.
- Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn, T. (2016) *mvtnorm: Multivariate Normal and t Distributions.* R package version 1.0-5. URL.
- Gilbert, W. and Maxam, A. (1973) The nucleotide sequence of the lac operator. *Proceedings of the National Academy of Sciences*, **70**(12): 3581–3584.
- Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., Bertone, P., and Caldas, C. (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. *RNA*, **16**(5): 991–1006.
- Globus (Globus) (2017) Research data management simplified. https://www.globus.org/. Accessed: 25/03/2017.
- Graziano, F., Humar, B., and Guilford, P. (2003) The role of the E-cadherin gene (*CDH1*) in diffuse gastric cancer susceptibility: from the laboratory to clinical practice. *Annals of Oncology*, **14**(12): 1705–1713.
- Güell, O., Sagués, F., and Serrano, M. (2014) Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. *PLoS Comput Biol*, **10**(5): e1003637.
- Guilford, P. (1999) E-cadherin downregulation in cancer: fuel on the fire? *Molecular Medicine Today*, **5**(4): 172 177.
- Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., Taite, H., Scoular, R., Miller, A., and Reeve, A.E. (1998) E-cadherin germline mutations in familial gastric cancer. *Nature*, **392**(6674): 402–5.
- Guilford, P., Humar, B., and Blair, V. (2010) Hereditary diffuse gastric cancer: translation of *CDH1* germline mutations into clinical practice. *Gastric Cancer*, **13**(1): 1–10.
- Guilford, P.J., Hopkins, J.B., Grady, W.M., Markowitz, S.D., Willis, J., Lynch, H., Rajput, A., Wiesner, G.L., Lindor, N.M., Burgart, L.J., *et al.* (1999) E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. *Hum Mutat*, **14**(3): 249–55.
- Guo, J., Liu, H., and Zheng, J. (2016) SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. *Nucleic Acids Res*, **44**(D1): D1011–1017.
- Hajian-Tilaki, K. (2013) Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. *Caspian J Intern Med*, 4(2): 627–635.
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. (2009) The weka data mining software: an update. *SIGKDD Explor Newsl*, **11**(1): 10–18.

- Hammerman, P.S., Lawrence, M.S., Voet, D., Jing, R., Cibulskis, K., Sivachenko, A., Stojanov, P., McKenna, A., Lander, E.S., Gabriel, S., et al. (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489(7417): 519–525.
- Han, J.D.J., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A.J.M., Cusick, M.E., Roth, F.P., et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 430(6995): 88–93.
- Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100(1): 57–70.
- Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. *Cell*, **144**(5): 646–674.
- Hanna, S. (2003) Cancer incidence in new zealand (2003-2007). In D. Forman, D. Bray F Brewster, C. Gombe Mbalawa, B. Kohler, M. Piñeros, E. Steliarova-Foucher, R. Swaminathan, and J. Ferlay (editors), Cancer Incidence in Five Continents, volume X, 902-907. International Agency for Research on Cancer, Lyon, France. Electronic version http://ci5.iarc.fr Accessed 22/03/2017.
- Heiskanen, M., Bian, X., Swan, D., and Basu, A. (2014) caArray microarray database in the cancer biomedical informatics gridTM (caBIGTM). Cancer Research, **67**(9 Supplement): 3712–3712.
- Heiskanen, M.A. and Aittokallio, T. (2012) Mining high-throughput screens for cancer drug targets-lessons from yeast chemical-genomic profiling and synthetic lethality. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(3): 263–272.
- Hell, P. (1976) Graphs with given neighbourhoods i. problémes combinatorics at theorie des graphes. *Proc Coil Int CNRS*, *Orsay*, **260**: 219–223.
- Herschkowitz, J.I., Simin, K., Weigman, V.J., Mikaelian, I., Usary, J., Hu, Z., Rasmussen, K.E., Jones, L.P., Assefnia, S., Chandrasekharan, S., et al. (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol, 8(5): R76.
- Hillenmeyer, M.E. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. *Science*, **320**: 362–365.
- Hoadley, K.A., Yau, C., Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S., Leiserson, M.D., Niu, B., McLellan, M.D., Uzunangelov, V., et al. (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 158(4): 929–944.
- Hoehndorf, R., Hardy, N.W., Osumi-Sutherland, D., Tweedie, S., Schofield, P.N., and Gkoutos, G.V. (2013) Systematic analysis of experimental phenotype data reveals gene functions. *PLoS ONE*, **8**(4): e60847.

- Holm, S. (1979) A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics*, **6**(2): 65–70.
- Holme, P. and Kim, B.J. (2002) Growing scale-free networks with tunable clustering. *Physical Review E*, **65**(2): 026107.
- Hopkins, A.L. (2008) Network pharmacology: the next paradigm in drug discovery. *Nat Chem Biol*, **4**(11): 682–690.
- Hu, Z., Fan, C., Oh, D.S., Marron, J.S., He, X., Qaqish, B.F., Livasy, C., Carey, L.A., Reynolds, E., Dressler, L., et al. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. *BMC Genomics*, 7: 96.
- Huang, E., Cheng, S., Dressman, H., Pittman, J., Tsou, M., Horng, C., Bild, A., Iversen, E., Liao, M., Chen, C., et al. (2003) Gene expression predictors of breast cancer outcomes. *Lancet*, **361**: 1590–1596.
- Illumina, Inc (Illumina) (2017) Sequencing and array-based solutions for genetic research. https://www.illumina.com/. Accessed: 26/03/2017.
- International HapMap 3 Consortium (HapMap) (2003) The International HapMap Project. *Nature*, **426**(6968): 789–796.
- Internation Human Genome Sequencing Consortium (IHGSC) (2004) Finishing the euchromatic sequence of the human genome. *Nature*, **431**(7011): 931–945.
- Jerby-Arnon, L., Pfetzer, N., Waldman, Y., McGarry, L., James, D., Shanks, E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P., et al. (2014) Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell, 158(5): 1199–1209.
- Joachims, T. (1999) Making large-scale support vector machine learning practical. In S. Bernhard, lkopf, J.C.B. Christopher, and J.S. Alexander (editors), Advances in kernel methods, 169–184. MIT Press.
- Ju, Z., Liu, W., Roebuck, P.L., Siwak, D.R., Zhang, N., Lu, Y., Davies, M.A., Akbani, R., Weinstein, J.N., Mills, G.B., et al. (2015) Development of a robust classifier for quality control of reverse-phase protein arrays. Bioinformatics, 31(6): 912.
- Kaelin, Jr, W. (2005) The concept of synthetic lethality in the context of anticancer therapy. *Nat Rev Cancer*, **5**(9): 689–98.
- Kaelin, Jr, W. (2009) Synthetic lethality: a framework for the development of wiser cancer therapeutics. *Genome Med*, 1: 99.
- Kamada, T. and Kawai, S. (1989) An algorithm for drawing general undirected graphs. *Information Processing Letters*, **31**(1): 7–15.
- Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., Benz, C.C., et al. (2013) Integrated genomic characterization of endometrial carcinoma. Nature, 497(7447): 67–73.

- Kawai, J., Shinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishii, Y., Arakawa, T., Hara, A., Fukunishi, Y., Konno, H., et al. (2001) Functional annotation of a full-length mouse cDNA collection. Nature, 409(6821): 685–690.
- Kelley, R. and Ideker, T. (2005) Systematic interpretation of genetic interactions using protein networks. *Nat Biotech*, **23**(5): 561–566.
- Kelly, S.T. (2013) Statistical Predictions of Synthetic Lethal Interactions in Cancer. Dissertation, University of Otago.
- Kelly, S.T., Single, A.B., Telford, B.J., Beetham, H.G., Godwin, T.D., Chen, A., Black, M.A., and Guilford, P.J. (2017) Towards HDGC chemoprevention: vulnerabilities in E-cadherin-negative cells identified by genome-wide interrogation of isogenic cell lines and whole tumors. Submitted to *Cancer Prev Res*.
- Kozlov, K.N., Gursky, V.V., Kulakovskiy, I.V., and Samsonova, M.G. (2015) Sequence-based model of gap gene regulation network. *BMC Genomics*, **15**(Suppl 12): S6.
- Kranthi, S., Rao, S., and Manimaran, P. (2013) Identification of synthetic lethal pairs in biological systems through network information centrality. *Mol BioSyst*, **9**(8): 2163–2167.
- Lander, E.S. (2011) Initial impact of the sequencing of the human genome. *Nature*, **470**(7333): 187–197.
- Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001) Initial sequencing and analysis of the human genome. Nature, 409(6822): 860–921.
- Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol*, **10**(3): R25.
- Latora, V. and Marchiori, M. (2001) Efficient behavior of small-world networks. *Phys Rev Lett*, **87**: 198701.
- Laufer, C., Fischer, B., Billmann, M., Huber, W., and Boutros, M. (2013) Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. *Nat Methods*, **10**(5): 427–31.
- Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. *Genome Biol*, **15**(2): R29.
- Lawrence, M.S., Sougnez, C., Lichtenstein, L., Cibulskis, K., Lander, E., Gabriel, S.B., Getz, G., Ally, A., Balasundaram, M., Birol, I., et al. (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517(7536): 576–582.
- Le Meur, N. and Gentleman, R. (2008) Modeling synthetic lethality. *Genome Biol*, **9**(9): R135.

- Le Meur, N., Jiang, Z., Liu, T., Mar, J., and Gentleman, R.C. (2014) Slgi: Synthetic lethal genetic interaction. r package version 1.26.0.
- Lee, A.Y., Perreault, R., Harel, S., Boulier, E.L., Suderman, M., Hallett, M., and Jenna, S. (2010a) Searching for signaling balance through the identification of genetic interactors of the rab guanine-nucleotide dissociation inhibitor gdi-1. *PLoS ONE*, **5**(5): e10624.
- Lee, I., Lehner, B., Vavouri, T., Shin, J., Fraser, A.G., and Marcotte, E.M. (2010b) Predicting genetic modifier loci using functional gene networks. *Genome Research*, **20**(8): 1143–1153.
- Lee, I. and Marcotte, E.M. (2009) Effects of functional bias on supervised learning of a gene network model. *Methods Mol Biol*, **541**: 463–75.
- Lee, M.J., Ye, A.S., Gardino, A.K., Heijink, A.M., Sorger, P.K., MacBeath, G., and Yaffe, M.B. (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. *Cell*, **149**(4): 780–94.
- Lehner, B., Crombie, C., Tischler, J., Fortunato, A., and Fraser, A.G. (2006) Systematic mapping of genetic interactions in caenorhabditis elegans identifies common modifiers of diverse signaling pathways. *Nat Genet*, **38**(8): 896–903.
- Li, X.J., Mishra, S.K., Wu, M., Zhang, F., and Zheng, J. (2014) Syn-lethality: An integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies. *Biomed Res Int*, **2014**: 196034.
- Linehan, W.M., Spellman, P.T., Ricketts, C.J., Creighton, C.J., Fei, S.S., Davis, C., Wheeler, D.A., Murray, B.A., Schmidt, L., Vocke, C.D., et al. (2016) Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med, 374(2): 135–145.
- Lokody, I. (2014) Computational modelling: A computational crystal ball. *Nature Reviews Cancer*, **14**(10): 649–649.
- Lord, C.J., Tutt, A.N., and Ashworth, A. (2015) Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. *Annu Rev Med*, **66**: 455–470.
- Lu, X., Kensche, P.R., Huynen, M.A., and Notebaart, R.A. (2013) Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets. *Nat Commun*, 4: 2124.
- Lu, X., Megchelenbrink, W., Notebaart, R.A., and Huynen, M.A. (2015) Predicting human genetic interactions from cancer genome evolution. *PLoS One*, **10**(5): e0125795.
- Lum, P.Y., Armour, C.D., Stepaniants, S.B., Cavet, G., Wolf, M.K., Butler, J.S., Hinshaw, J.C., Garnier, P., Prestwich, G.D., Leonardson, A., *et al.* (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. *Cell*, **116**(1): 121–137.

- Luo, J., Solimini, N.L., and Elledge, S.J. (2009) Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction. *Cell*, **136**(5): 823–837.
- Machado, J., Olivera, C., Carvalh, R., Soares, P., Berx, G., Caldas, C., Sercuca, R., Carneiro, F., and Sorbrinho-Simoes, M. (2001) E-cadherin gene (*CDH1*) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. *Oncogene*, **20**: 1525–1528.
- Masciari, S., Larsson, N., Senz, J., Boyd, N., Kaurah, P., Kandel, M.J., Harris, L.N., Pinheiro, H.C., Troussard, A., Miron, P., et al. (2007) Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet, 44(11): 726–31.
- Mattison, J., van der Weyden, L., Hubbard, T., and Adams, D.J. (2009) Cancer gene discovery in mouse and man. *Biochim Biophys Acta*, **1796**(2): 140–161.
- Maxam, A.M. and Gilbert, W. (1977) A new method for sequencing DNA. *Proceedings* of the National Academy of Science, **74**(2): 560–564.
- McCourt, C.M., McArt, D.G., Mills, K., Catherwood, M.A., Maxwell, P., Waugh, D.J., Hamilton, P., O'Sullivan, J.M., and Salto-Tellez, M. (2013) Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. *PLoS ONE*, 8(7): e69604.
- McLachlan, J., George, A., and Banerjee, S. (2016) The current status of parp inhibitors in ovarian cancer. *Tumori*, **102**(5): 433–440.
- McLendon, R., Friedman, A., Bigner, D., Van Meir, E.G., Brat, D.J., Mastrogianakis, G.M., Olson, J.J., Mikkelsen, T., Lehman, N., Aldape, K., et al. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216): 1061–1068.
- Miles, D.W. (2001) Update on HER-2 as a target for cancer therapy: herceptin in the clinical setting. *Breast Cancer Res*, **3**(6): 380–384.
- Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods*, **5**(7): 621–628.
- Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al. (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407): 330–337.
- Nagalla, S., Chou, J.W., Willingham, M.C., Ruiz, J., Vaughn, J.P., Dubey, P., Lash, T.L., Hamilton-Dutoit, S.J., Bergh, J., Sotiriou, C., et al. (2013) Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol, 14(4): R34.
- Neeley, E.S., Kornblau, S.M., Coombes, K.R., and Baggerly, K.A. (2009) Variable slope normalization of reverse phase protein arrays. *Bioinformatics*, **25**(11): 1384.

- Novomestky, F. (2012) matrixcalc: Collection of functions for matrix calculations. R package version 1.0-3.
- Oliveira, C., Senz, J., Kaurah, P., Pinheiro, H., Sanges, R., Haegert, A., Corso, G., Schouten, J., Fitzgerald, R., Vogelsang, H., et al. (2009) Germline *CDH1* deletions in hereditary diffuse gastric cancer families. *Human Molecular Genetics*, **18**(9): 1545–1555.
- Oliveira, C., Seruca, R., Hoogerbrugge, N., Ligtenberg, M., and Carneiro, F. (2013) Clinical utility gene card for: Hereditary diffuse gastric cancer (HDGC). Eur J Hum Genet, 21(8).
- Pandey, G., Zhang, B., Chang, A.N., Myers, C.L., Zhu, J., Kumar, V., and Schadt, E.E. (2010) An integrative multi-network and multi-classifier approach to predict genetic interactions. *PLoS Comput Biol*, **6**(9).
- Parker, J., Mullins, M., Cheung, M., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z., et al. (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. *Journal of Clinical Oncology*, 27(8): 1160–1167.
- Peltonen, L. and McKusick, V.A. (2001) Genomics and medicine. Dissecting human disease in the postgenomic era. *Science*, **291**(5507): 1224–1229.
- Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K., Provenzano, E., Bardwell, H.A., Pugh, M., Jones, L., Russell, R., Sammut, S.J., et al. (2016) Erratum: The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun, 7: 11908.
- Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000) Molecular portraits of human breast tumours. Nature, 406(6797): 747–752.
- Polyak, K. and Weinberg, R.A. (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. *Nat Rev Cancer*, **9**(4): 265–73.
- Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R., Zecchin, D., Beijersbergen, R.L., Bardelli, A., and Bernards, R. (2012) Unresponsiveness of colon cancer to *BRAF* (v600e) inhibition through feedback activation of egfr. *Nature*, **483**(7387): 100–3.
- R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.3.2.
- Ravnan, M.C. and Matalka, M.S. (2012) Vemurafenib in patients with *BRAF* v600e mutation-positive advanced melanoma. *Clin Ther*, **34**(7): 1474–86.
- Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Research*, **43**(7): e47.

- Robin, J.D., Ludlow, A.T., LaRanger, R., Wright, W.E., and Shay, J.W. (2016) Comparison of DNA Quantification Methods for Next Generation Sequencing. *Sci Rep*, **6**: 24067.
- Robinson, M.D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biol*, **11**(3): R25.
- Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., Qu, H., Shales, M., Park, H.O., Hayles, J., *et al.* (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. *Science*, **322**(5900): 405–10.
- Rung, J. and Brazma, A. (2013) Reuse of public genome-wide gene expression data. *Nat Rev Genet*, **14**(2): 89–99.
- Rustici, G., Kolesnikov, N., Brandizi, M., Burdett, T., Dylag, M., Emam, I., Farne, A., Hastings, E., Ison, J., Keays, M., et al. (2013) ArrayExpress update—trends in database growth and links to data analysis tools. Nucleic Acids Res, 41(Database issue): D987–990.
- Ryan, C., Lord, C., and Ashworth, A. (2014) Daisy: Picking synthetic lethals from cancer genomes. *Cancer Cell*, **26**(3): 306–308.
- Sander, J.D. and Joung, J.K. (2014) Crispr-cas systems for editing, regulating and targeting genomes. *Nat Biotechnol*, **32**(4): 347–55.
- Sanger, F. and Coulson, A. (1975) A rapid method for determining sequences in dna by primed synthesis with dna polymerase. *Journal of Molecular Biology*, **94**(3): 441 448.
- Scheuer, L., Kauff, N., Robson, M., Kelly, B., Barakat, R., Satagopan, J., Ellis, N., Hensley, M., Boyd, J., Borgen, P., et al. (2002) Outcome of preventive surgery and screening for breast and ovarian cancer in BRCA mutation carriers. *J Clin Oncol*, **20**(5): 1260–1268.
- Semb, H. and Christofori, G. (1998) The tumor-suppressor function of E-cadherin. *Am J Hum Genet*, **63**(6): 1588–93.
- Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005) Rocr: visualizing classifier performance in r. *Bioinformatics*, **21**(20): 7881.
- Slurm development team (Slurm) (2017) Slurm workload manager. https://slurm.schedmd.com/. Accessed: 25/03/2017.
- Sørlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA, 98(19): 10869–10874.

- Stajich, J.E. and Lapp, H. (2006) Open source tools and toolkits for bioinformatics: significance, and where are we? *Brief Bioinformatics*, **7**(3): 287–296.
- Stratton, M.R., Campbell, P.J., and Futreal, P.A. (2009) The cancer genome. *Nature*, **458**(7239): 719–724.
- Ström, C. and Helleday, T. (2012) Strategies for the use of poly(adenosine diphosphate ribose) polymerase (parp) inhibitors in cancer therapy. *Biomolecules*, **2**(4): 635–649.
- Sun, C., Wang, L., Huang, S., Heynen, G.J.J.E., Prahallad, A., Robert, C., Haanen, J., Blank, C., Wesseling, J., Willems, S.M., et al. (2014) Reversible and adaptive resistance to BRAF(v600e) inhibition in melanoma. Nature, **508**(7494): 118–122.
- Taylor, I.W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., Bull, S., Pawson, T., Morris, Q., and Wrana, J.L. (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. *Nat Biotechnol*, 27(2): 199–204.
- Telford, B.J., Chen, A., Beetham, H., Frick, J., Brew, T.P., Gould, C.M., Single, A., Godwin, T., Simpson, K.J., and Guilford, P. (2015) Synthetic lethal screens identify vulnerabilities in gpcr signalling and cytoskeletal organization in E-cadherin-deficient cells. *Mol Cancer Ther*, **14**(5): 1213–1223.
- The 1000 Genomes Project Consortium (1000 Genomes) (2010) A map of human genome variation from population-scale sequencing. *Nature*, **467**(7319): 1061–1073.
- The Cancer Genome Atlas Research Network (TCGA) (2012) Comprehensive molecular portraits of human breast tumours. *Nature*, **490**(7418): 61–70.
- The Cancer Genome Atlas Research Network (TCGA) (2017) The Cancer Genome Atlas Project. https://cancergenome.nih.gov/. Accessed: 26/03/2017.
- The Cancer Society of New Zealand (Cancer Society of NZ) (2017) What is cancer? https://otago-southland.cancernz.org.nz/en/cancer-information/other-links/what-is-cancer-3/. Accessed: 22/03/2017.
- The Catalogue Of Somatic Mutations In Cancer (COSMIC) (2016) Cosmic: The catalogue of somatic mutations in cancer. http://cancer.sanger.ac.uk/cosmic. Release 79 (23/08/2016), Accessed: 05/02/2017.
- The Comprehensive R Archive Network (CRAN) (2017) Cran. https://cran.r-project.org/. Accessed: 24/03/2017.
- The ENCODE Project Consortium (ENCODE) (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. *Science*, **306**(5696): 636–640.
- The National Cancer Institute (NCI) (2015) The genetics of cancer. https://www.cancer.gov/about-cancer/causes-prevention/genetics. Published: 22/04/2015, Accessed: 22/03/2017.

- The New Zealand eScience Infrastructure (NeSI) (2017) NeSI. https://www.nesi.org.nz/. Accessed: 25/03/2017.
- The Pharmaceutical Management Agency (PHARMAC) (2016) Approval of multiproduct funding proposal with roche.
- Tierney, L., Rossini, A.J., Li, N., and Sevcikova, H. (2015) snow: Simple Network of Workstations. R package version 0.4-2.
- Tiong, K.L., Chang, K.C., Yeh, K.T., Liu, T.Y., Wu, J.H., Hsieh, P.H., Lin, S.H., Lai, W.Y., Hsu, Y.C., Chen, J.Y., et al. (2014) Csnk1e/ctnnb1 are synthetic lethal to tp53 in colorectal cancer and are markers for prognosis. Neoplasia, 16(5): 441–50.
- Tischler, J., Lehner, B., and Fraser, A.G. (2008) Evolutionary plasticity of genetic interaction networks. *Nat Genet*, **40**(4): 390–391.
- Tomasetti, C. and Vogelstein, B. (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. *Science*, **347**(6217): 78–81.
- Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science, 294(5550): 2364–8.
- Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., et al. (2004) Global mapping of the yeast genetic interaction network. *Science*, **303**(5659): 808–13.
- Travers, J. and Milgram, S. (1969) An experimental study of the small world problem. Sociometry, **32**(4): 425–443.
- Tsai, H.C., Li, H., Van Neste, L., Cai, Y., Robert, C., Rassool, F.V., Shin, J.J., Harbom, K.M., Beaty, R., Pappou, E., et al. (2012) Transient low doses of dnademethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell, 21(3): 430–46.
- Tutt, A., Robson, M., Garber, J.E., Domchek, S.M., Audeh, M.W., Weitzel, J.N., Friedlander, M., Arun, B., Loman, N., Schmutzler, R.K., et al. (2010) Oral poly(adpribose) polymerase inhibitor olaparib in patients with *BRCA1* or *BRCA2* mutations and advanced breast cancer: a proof-of-concept trial. *Lancet*, **376**(9737): 235–44.
- van der Meer, R., Song, H.Y., Park, S.H., Abdulkadir, S.A., and Roh, M. (2014) RNAi screen identifies a synthetic lethal interaction between PIM1 overexpression and PLK1 inhibition. *Clinical Cancer Research*, **20**(12): 3211–3221.
- van Steen, K. (2012) Travelling the world of gene-gene interactions. *Briefings in Bioinformatics*, **13**(1): 1–19.
- van Steen, M. (2010) Graph Theory and Complex Networks: An Introduction. Maarten van Steen, VU Amsterdam.

- Vapnik, V.N. (1995) The nature of statistical learning theory. Springer-Verlag New York, Inc.
- Vargas, J.J., Gusella, G., Najfeld, V., Klotman, M., and Cara, A. (2004) Novel integrase-defective lentiviral episomal vectors for gene transfer. *Hum Gene Ther*, 15: 361–372.
- Vizeacoumar, F.J., Arnold, R., Vizeacoumar, F.S., Chandrashekhar, M., Buzina, A., Young, J.T., Kwan, J.H., Sayad, A., Mero, P., Lawo, S., et al. (2013) A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol Syst Biol, 9: 696.
- Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., and Kinzler, K.W. (2013) Cancer genome landscapes. *Science*, **339**(6127): 1546–1558.
- Vos, C.B., Cleton-Jansen, A.M., Berx, G., de Leeuw, W.J., ter Haar, N.T., van Roy, F., Cornelisse, C.J., Peterse, J.L., and van de Vijver, M.J. (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer, 76(9): 1131–3.
- Wang, K., Singh, D., Zeng, Z., Coleman, S.J., Huang, Y., Savich, G.L., He, X., Mieczkowski, P., Grimm, S.A., Perou, C.M., et al. (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res, 38(18): e178.
- Wang, X. and Simon, R. (2013) Identification of potential synthetic lethal genes to p53 using a computational biology approach. *BMC Medical Genomics*, **6**(1): 30.
- Wappett, M. (2014) Bisep: Toolkit to identify candidate synthetic lethality. r package version 2.0.
- Wappett, M., Dulak, A., Yang, Z.R., Al-Watban, A., Bradford, J.R., and Dry, J.R. (2016) Multi-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs. BMC Genomics, 17: 65.
- Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W.H.A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., et al. (2015) gplots: Various R Programming Tools for Plotting Data. R package version 2.17.0.
- Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of 'small-world' networks. *Nature*, **393**(6684): 440–2.
- Weinstein, I.B. (2000) Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. *Carcinogenesis*, **21**(5): 857–864.
- Weinstein, J.N., Akbani, R., Broom, B.M., Wang, W., Verhaak, R.G., McConkey, D., Lerner, S., Morgan, M., Creighton, C.J., Smith, C., et al. (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 507(7492): 315–322.

- Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M., Chang, K., et al. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 45(10): 1113–1120.
- Wickham, H. and Chang, W. (2016) devtools: Tools to Make Developing R Packages Easier. R package version 1.12.0.
- Wickham, H., Danenberg, P., and Eugster, M. (2017) roxygen2: In-Line Documentation for R. R package version 6.0.1.
- Wong, S.L., Zhang, L.V., Tong, A.H.Y., Li, Z., Goldberg, D.S., King, O.D., Lesage, G., Vidal, M., Andrews, B., Bussey, H., et al. (2004) Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 101(44): 15682–15687.
- World Health Organization (WHO) (2017) Fact sheet: Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/. Updated February 2017, Accessed: 22/03/2017.
- Wu, M., Li, X., Zhang, F., Li, X., Kwoh, C.K., and Zheng, J. (2014) In silico prediction of synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer. *Cancer Inform*, **13**(Suppl 3): 71–80.
- Yu, H. (2002) Rmpi: Parallel statistical computing in r. R News, 2(2): 10–14.
- Zhang, F., Wu, M., Li, X.J., Li, X.L., Kwoh, C.K., and Zheng, J. (2015) Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates. *J Bioinform Comput Biol*, **13**(3): 1541002.
- Zhang, J., Baran, J., Cros, A., Guberman, J.M., Haider, S., Hsu, J., Liang, Y., Rivkin, E., Wang, J., Whitty, B., et al. (2011) International cancer genome consortium data portal—a one-stop shop for cancer genomics data. Database: The Journal of Biological Databases and Curation, 2011: bar026.
- Zhong, W. and Sternberg, P.W. (2006) Genome-wide prediction of c. elegans genetic interactions. *Science*, **311**(5766): 1481–1484.
- Zweig, M.H. and Campbell, G. (1993) Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. *Clinical Chemistry*, **39**(4): 561–577.