AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (currently amended) A method for the conversion of organic waste, wherein the waste is introduced into a cell in which a pair of electrodes is present, which pair of electrodes comprises at least one anode and at least one cathode, the anode and cathode being separated by a porous, electronically non-conductive, non-ion-selective partition wall, while an oxidizer is introduced into the portion of the cell around the cathode, and wherein a potential difference is formed across said pair of electrodes such that at the anode CO₂ is produced and that electricity is produced, and the porous, electronically non-conductive, non-ion-selective partition wall is partitioned so as to form at least one anaerobic compartment and at least one aerobic compartment,

wherein the cell is a bipolar fuel cell in which two or more pairs of electrodes are located, each pair of electrodes comprising one anode and one cathode, the anode and cathode of each pair of electrodes being interconnected by an electronically conductive and non-ionic conductive wall, while the porous, electronically non-conductive, non-ion-selective partition wall of a at least two types of compartments provides at least two

types of channels, the open space of the first type of channel being in electrically conductive contact with the cathode and the open space of the second type of channel being in electronically conductive contact with the anode.

2. (cancelled)

- 3. (currently amended) The method according to claim [[2]] $\underline{1}$, wherein also partitions are present from the same material as the porous, electronically nonconductive, non-ion-selective partition wall, which partitions, are placed transverse to said electrodes.
- 4. (previously presented) The method according to claim 1, wherein the organic waste comprises animal manure, waste water, waste water purification sludge, kitchen and garden waste (KGW), roadside grass, residual flows from industrial processes (such as molasses, whey, draff) and/or dredgings.
- (previously presented) The method according to claim 1, wherein said oxidizer is oxygen.
- (previously presented) The method according to claim 5, wherein the oxygen is introduced in the form of air and/or dissolved in water.

Docket No. 2004-1037 Appln. No. 10/519,548

7. (previously presented) The method according to claim 1, wherein said separator is a porous, electronically non-conductive, preferably non-ion-selective partition wall, preferably comprising non-woven plastic fibers or glass fibers.

8. (cancelled)

- (previously presented) The method according to claim 1, wherein one or more electrodes are three-dimensional electrodes.
- 10. (previously presented) The method according to claim 1, wherein one or more electrodes comprise carbon.
- (previously presented) The method according to claim 1, wherein one or more electrodes comprise active carbon.
- 12. (previously presented) The method according to claim 1, wherein one or more electrodes are provided with a catalyst.
- 13. (previously presented) The method according to claim 1, wherein one or more electrodes are provided with humic acid and/or anthraguinone-disulfonic acid.

Docket No. 2004-1037 Appln. No. 10/519,548

- 14. (previously presented) The method according to claim 1, wherein the cell is used as biosensor for the determination and quantification of biological activity.
- . 15. (previously presented) The method according to claim 1, which is carried out at a temperature of 30-100 $^{\circ}$ C.
- 16. (previously presented) The method according to claim 1, wherein Fe-ions are introduced in the space around the cathode.
- 17. (previously presented) The method according to claim 1, wherein the waste is supplied in the space around the anode where it is partially decomposed under anaerobic conditions, whereby an effluent comprising organic decomposition products is formed, which effluent is then led to the space around the cathode where it is further decomposed under aerobic conditions.
- 18. (previously presented) A device for processing organic waste, comprising a cell which is divided by a fiberglass mat into at least two compartments, while at least two of the compartments are each provided with at least one electrode, which electrodes are arranged such that they can form an electrical

Docket No. 2004-1037 Appln, No. 10/519,548

circuit, further provided with means for discharging or storing electricity and provided with supply means for an oxidizer.

19. (previously presented) A device, comprising:
a cell in which a pair of electrodes is present,

the pair of electrodes comprising at least one anode and at least one cathode;

the anode and cathode being separated by a porous, electronically non-conductive, non ion-selective partition wall, the porous, electronically non-conductive, non ion-selective partition wall being partitioned so as to form at least one anaerobic compartment and at least one aerobic compartment; and

an oxidizer being introduced into the portion of the

cell around the cathode, wherein,

a potential difference is formed across said pair of electrodes such that at the anode ${\tt CO_2}$ is produced and that electricity is produced,

Fe-ions are introduced in the space around the cathode, and

at least one electrode is a three-dimensional electrode.

20. (currently amended) A device, comprising:
comprising:

a cell in which a pair of electrodes is present,

Docket No. 2004-1037 Appln. No. 10/519,548

the pair of electrodes comprising at least one anode and at least one cathode;

the anode and cathode being separated by a porous, electronically non-conductive, non ion-selective partition wall, the porous, electronically non-conductive, non ion-selective partition wall being partitioned so as to form at least one anaerobic compartment and at least one aerobic compartment; and

an oxidizer being introduced into the portion of the cell around the cathode, wherein,

a potential difference is formed across said pair of electrodes such that at the anode CO_2 is produced and that electricity is produced,

Fe-ions are introduced in the space around the cathode, and

at least one electrode comprises carbon.

- 21. (previously presented) A kit for processing organic waste, comprising a pair of electrodes comprising at least two three-dimensional electrodes and a fiberglass mat.
- 22. (previously presented) A kit for processing organic waste, comprising a pair of electrodes comprising at least two three-dimensional electrodes and a partition wall of polyurethane foam, the partition wall being partitioned into at least two compartments.