Un exemple de dérivation logarithmique pour le jeudi 8 septembre

On se propose de faire l'étude des variations d'une famille de fonctions (une suite de fonctions).

Approche directe

Pour $n \ge 1$ un entier, on définit la fonction : $f_n : \left| \begin{array}{ccc} [0; +\infty[& \to & \mathbb{R} \\ & x & \mapsto & x^n e^{-x} \end{array} \right|$

- 1. Valeurs de f_n
 - a) Calculer $f_n(0)$.
 - b) En appliquant le théorème des croissances comparées, calculer $\lim_{\infty} f_n$
 - c) Étudier le signe de f_n sur son domaine de définition.
- **2.** Dérivation de f_n
 - a) Montrer que la fonction f_n est continue et dérivable sur $[0; +\infty[$.
 - b) Calculer la dérivée f'_n de f_n . (on en donnera une écriture factorisée)
- **3.** En déduire le tableau de signes de f'_n et le tableau de variations de f_n .
- 4. Compléter le programme Scilab suivant pour qu'il trace la représentation graphique de f_1 .

```
1 XMAX = 5
2 x = linspace(0,XMAX)
3 y = ___ // <- Compléter cette ligne (sans recopier les autres sur la copie)
4 plot(x,y)</pre>
```

Approche logarithmique

On définit maintenant, pour $n \ge 1$ entier, la fonction : $\varphi_n : |0; +\infty[\rightarrow \mathbb{R}$ $x \mapsto \varphi_n(x) = \ln(f_n(x))$

- 5. Justifier que la fonction φ_n est bien définie sur $]0; +\infty[$, et qu'elle aussi est continue et dérivable.
- **6.** Vérifier l'expression suivante : $\forall x > 0, \ \varphi_n(x) = n \ln(x) x$.
- 7. En déduire une écriture simple de la dérivée $\varphi'_n(x)$.
- 8. En déduire le tableau de signes de φ'_n et le tableau de variations de φ_n .
- 9. Conclusion
 - a) Exprimer f_n en fonction de φ_n .
 - b) Retrouver le tableau de variations de f_n obtenu à la question 3.

Complément

Pour $n \ge 1$ entier, on considère $g_n : \begin{bmatrix} 0 ; +\infty[\to \mathbb{R} \\ x \mapsto x^n e^{-\frac{x^2}{2}}, \end{bmatrix}$ et on pose $\psi_n = \ln \circ g_n$ sur \mathbb{R}_+^* .

10. En étudiant ψ_n , trouver en quel point la fonction g_n atteint son maximum sur $[0; +\infty[$. (en quelques lignes!)