V.S.B. ENGINEERING COLLEGE, KARUR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

IBM NALAIYA THIRAN

PROJECT PLANNING PHASE

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	18 October 2022
Team ID	PNT2022TMID33383
Project Name	Fertilizers Recommendation Systemfor Disease
	Prediction
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data collection and preprocessing	USN-1	Collecting plant disease dataset	2	Low	Narmatha N
Sprint-1		USN-2	Labelling the dataset according to class	3	Medium	Nandhini M
Sprint-1		USN-3	38 types of plant diseases is labeled accordingly	2	Medium	Dharshini R

Sprint-1		USN-4	Data set Will contain both healthy and diseased data	1	Low	Dharani S
	Preprocessing	USN-5	To prepare raw data in a format that the network can accept	2	High	Nandhini M
Sprint-1		USN-6	Scaling is used for making data points generalized	1	Low	Narmatha N Nandhini M
Sprint-1		USN-7	Shear range image will be distorted along an axis, mostly to create or rectify the perception angle	3	High	Dharshini R Narmatha N
Sprint-1		USN-8	Zoom Augmentation will randomly zoom the image and adds new pixels for the image	3	High	Nandhini M Dharani S
Sprint-1		USN-9	Flipping the entire pixels of an image horizontally	3	High	Dharshini R Dharani S
Sprint-2	Training, Testing and Creating a model	USN-10	Start initiating the model	3	Medium	Nandhini M Dharshini R
Sprint-2		USN-11	Adding different layers of cnn (convolution, pooling dense, flatten)	2	Medium	Dharani S
Sprint-2		USN-12	Creating/compiling with adam optimizer	1	Medium	Narmatha N

Sprint-2		USN-13	Keras - Categorical Cross Entropy Loss Function for multi-class classification		Medium	Dharshini R
Sprint-2		USN-14	creating metrics	2	Medium	Nandhini M
Sprint-2		USN-15	train the data with 20 epoch	3	High	Narmatha N Dharshini R
Sprint-2		USN-16	testing the model	5	High	Dharani S Dharshini R Nandhini M
Sprint-2		USN-17	save the model	2	Medium	Narmatha N
Sprint-3	Flask and Frame work design	USN-18	Creating backend framework with flask	8	High	Dharani S Dharshini R Nandhini M
Sprint-3		USN-19	importing the model file	3	Medium	Dharshini R
Sprint-3		USN-20	Create route to link HTML Routes and View Functions in Flask Framework index file	5	High	Nandhini M Dharani S
Sprint-3		USN-21	Server Startup, requests and services in a loop	4	Medium	Narmatha N Dharshini R
Sprint-4	Front end web application development	USN-22	creating a html template with css file	8	High	Narmatha N Dharani S Dharshini R Nandhini M

Sprint-4	USN-23	user can import diseased plant leaf in web page	2	Medium	Narmatha N Dharani S Dharshini R Nandhini M
Sprint-4	USN-24	predicting what is the type of disease occurred for the given input	2	Medium	Dharshini R Dharani S
Sprint-4	USN-25	User can classify as healthy or diseased	2	Medium	Narmatha N Nandhini M
Sprint-4	USN-26	if plant has disease then suggest fertilizer and pesticides	3	Medium	Dharshini R Nandhini M
Sprint-4	USN-27	alert the admin about the prediction with the gmail	3	Medium	Narmatha N

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

VELOCITY:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Sprint 1

average velocity: Average velocity = 20 / 6 = 3.2

Sprint 2

average velocity: Average velocity = 20 / 6 = 3.2

Sprint 3

average velocity: Average velocity = 20 / 6 = 3.2

Sprint 4

average velocity: Average velocity = 20 / 6 = 3.2

VELOCITY CHART:

BURNDOWN CHART:

'A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

