

Algorithms 演算法

Graphs (2) Minimum Spanning Tree

Professor Chien-Mo James Li 李建模 Graduate Institute of Electronics Engineering National Taiwan University

Algorithms NTUEE 1

Outline

- Elementary Graph Algorithms, CH22
- Minimum Spanning Trees, CH23
- Single Source Shortest Paths, CH24
- All-pairs Shortest Paths, CH25
- Maximum Flow, CH26

Minimum Spanning Tree (MST)

- Input: Given an connected, undirected graph G = (V,E), and weight function w(u,v) on each edge $(u,v) \in E$
- Output: Find T⊆ E such that
 - 1. T connects all vertices (T is a spanning tree), and
 - 2. summation of weight is minimum

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

- Example: Fig 23.1
 - edges in T are highlighted
 - minimum weight = 37

Algorithms

NTUEE

3

MST (2)

- Properties of MST
 - MST has |V| 1 edges
 - MST has no cycles
 - MST might not be unique
 - * Example: (b,c) can be replaced by (a,h)
- Applications of MST
 - construction of networks such as rail way, circuit interconnects

Growing MST

- Grow MST by adding one safe edge at a time
 - If A is a subset of some MST, an edge (u, v) is safe for A if and only if $A \cup \{(u, v)\}$ is also a subset of some MST

GENERIC-MST(G, w)1 $A \leftarrow \emptyset$ 2 while A does not form a spanning tree

3 do find an edge (u, v) that is safe for A4 $A \leftarrow A \cup \{(u, v)\}$ 5 return A

- Loop invariant: Prior to each iteration, A is a subset of some MST
 - Initialization: The empty set trivially satisfies the loop invariant.
 - Maintenance: Since we add only safe edges, A remains a subset of some MST
 - Termination: All edges added to A are in an MST, so when we stop, A is a spanning tree that is also an MST

Algorithms NTUEE 5

Cut

- Let $S \subset V$ and $A \subseteq E$
- A cut (S, V-S) is a partition of vertices into disjoint sets V and S-V
 - A cut respects A if and only if no edge in A crosses the cut
 - (u,v) crosses the cut if u is in S and v is in V-S
 - light edge crossing a cut is the minimum-weighted edge over all edges crossing the cut
 - * not unique
- Figure 23.2
 - light edge is (c, d)

Light Edge is Safe

- (Theorem 23.1)Let A be a subset of some MST, (S, V-S) be a cut that respects A, and (u,v) be a light edge crossing (S, V-S). Then (u,v) is safe for A
 - Proof: "cut and paste" method
 - Let T be an MST that includes A but does not contain (u,v)
 - Since T is an MST, it contains a unique path p between u and v
 - * Path p must cross the cut (S, V-S) at least once.

Algorithms

Light Edge is Safe (cont'd)

- construct a different MST T' that contains (u,v)
 - $T' = T \{(x,y)\} \cup \{(u,v)\}$ w(T') = w(T) - w(x, y) + w(u,v)≤ w(T)
- Since T' is a spanning tree, $w(T') \le w(T)$, and T is an MST
 - then T' must also be an MST
- (u,v) is safe for A, why?
 - $A \subseteq T$ and $(x,y) \notin A$
 - $A \subseteq T'$, $A \cup \{(u,v)\} \subseteq T'$
 - Since T' is an MST
 - * (u,v) is safe for A
- So, greedy algorithm can be applied!

Corollary 23.2

- (Corollary 23.2) If $C = (V_C, E_C)$ is a connected component (tree) in the forest $G_A = (V,A)$. If (u,v) is a light edge connecting C to some other component in G_A , then (u,v) is safe for A
 - Proof:
 - * Set $S = V_C$ in the theorem
 - * (u,v) is a light edge crossing the cut $(V_C, V-V_C)$

Algorithms NTUEE 9

Kruskal's Algorithm

- Initially, every vertex is a tree
- Repeatedly, add a safe edge to the growing forest
 - by finding an edge of least weight
 - new edge connects two different trees in the forest
- Is this a greedy algorithm?

```
MST-KRUSKAL(G,w)

1 A=0

2 for each vertex v \in G.V

3 MAKE-SET(v) // CH21

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u,v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u)\neq FIND-SET(v) //different trees (CH21)

7 A=A\cup{(u,v)}

8 UNION (u,v)

9 return A
```


Time Complexity

- line 2-3: O(V)
- line 4: O(E lg E)
- line 5-8: O((V+E) $\alpha(V)$), α is a slow growing function, see CH21
 - =O($E \alpha(V)$), because graph is connected, $|E| \ge |V|-1$
 - =O(E Ig V), because $\alpha(V)$ = O(Ig V)
 - =O($E \lg E$), because $E < |V^2|$

```
MST-KRUSKAL(G, w)
  A=0
1
2 for each vertex v \in G.V
3
      MAKE-SET(v)
 sort the edges of G.E into nondecreasing order by weight w
5
  for each edge (u,v) \in G.E, taken in nondecreasing order by weight
6
      if FIND-SET(u)\neq FIND-SET(v)
7
        A=A\cup\{(u,v)\}
8
        UNION (u,v)
9 return A
```

Prim's Algorithm

- Q=priority queue for vertices NOT in the tree A, sorted by their keys
 - edges in A always form a single tree $A = \{(v, v, \pi) : v \in V \{r\} Q\}$
 - v.key=min weight of edge connecting to vertex v
 - $v.\pi$ = parent of vertex v in the tree
- At each step, the minimum edge connecting a vertex in A to a vertex in V-A is added to the tree

```
MST-PRIM(G, w, r)
1 for each u \in G.V
      u.kev = \infty
      u.\pi = NIL
4 r.key = 0
5 Q = G.V
6 while Q \neq \emptyset
      u = \text{EXTRACT-MIN}(Q)
8
         for each v \in G.Adi[u]
9
            if v \in Q and w(u,v) < v.key
10
              v.\pi = u
              v.key = w(u,v)
11
```

Algorithms

13

Example

- Fig 23.5
- (a) b.key = 4, $b.\pi = a$; b.key = 8, $b.\pi = a$
 - select b
- (b) c.key = 8, c. π = b; h.key = 8, h. π = a
 - select c (select h is also fine)
- (c) d.key = ?, $d.\pi = ?$; i.key = ?, $i.\pi = ?$; f.key = ?, $f.\pi = ?$
 - select?
- (d) $h.key = ?, h.\pi = ?$

14

Loop Invariant

- prior to each iteration of while loop
 - **1.** $A = \{(v, v.\pi) : v \in V \{r\} Q\}$
 - 2. vertices in MST are in V-Q
 - 3. for all vertices $v \in Q$, if $v.\pi \neq NIL$, then $v.key < \infty$ and v.key is the weight of a light edge $(v, v.\pi)$ connecting to some vertex already in the MST

Algorithms NTUEE 15

Time Complexity

```
MST-PRIM(G, w, r)
1 for each u \in G.V
2
     u.key = \infty
3
     u.\pi = NIL
4 r.key = 0
5 Q = G.V
6 while Q \neq \emptyset
7
     u = \text{EXTRACT-MIN}(Q)
8
        for each v \in G.Adj[u]
9
           if v \in Q and w(u,v) < v.key
10
              v.\pi = u
11
              v.key = w(u,v)
```

	Binary Heap	Fibonacci heap
Line1-5	O(<i>V</i>)	O(<i>V</i>)
Line6-7 While	O(<i>V</i> lg <i>V</i>)	O(<i>V</i> lg <i>V</i>)
Line8-11 For	O(<i>E</i> lg <i>V</i>)	O(<i>E</i>)*
Total	O(VgV+ElgV) =O(ElgV)	O(<i>E</i> + Иg <i>V</i>)

Mergeable Heaps* not in exam

- CH19, P.506
- In theory, Fibonacci heap is fast to decrease-key (good for MST)
 - but Fibonacci heap needs too much work so not very practical

	Binary heap	Fibonacci Heap
MAKE-HEAP	Θ(1)	Θ(1)
INSERT	Θ(lg n)	Θ(1)
MINIMUM	Θ(1)	Θ(1)
EXTRACT-MIN	Θ(lg n)	O(lg n)
UNION	Θ(n)	Θ(1)
DECREASE-KEY	Θ(lg n)	Θ(1)
DELETE	Θ(lg n)	O(lg n)

Algorithms NTUEE 17

Fibonacci Heap

- A collection of rooted trees that are min-heap ordered
 - key of a node is greater than or equal to key of its parent
- *H.min* points to the root of a tree with minimum key
- Fig. 19.3

Fig. source: Prof. SC Tsai, NCTU

INSERT

- insert 21
- O(1)

Algorithms NTUEE 19

DECREASE-KEY

• Fig 19.5 decrease 46→15

20

Reading

• CH 23

Algorithms NTUEE 21