Multi-Factor Adaptive Market-Making (MFAMM) Strategy Rulebook

Quant Research Team

March 18, 2025

1 Strategy Overview

Stratégie hybride haute/moyenne fréquence combinant :

- Market-making prédictif avec contrôle optimal stochastique
- Arbitrage cross-asset par cointégration fractale
- Allocation méta-dynamique via apprentissage par renforcement

Notation Glossary

- δ_t^{\pm} : Bid/Ask spreads (control variables)
- \mathcal{A} : Admissible control space (spreads $\in [\delta_{\min}, \delta_{\max}]$)
- N_t^{\pm} : Counting processes for filled orders (bid/ask)
- q_t : Inventory position (shares held)
- γ : Risk aversion coefficient (PnL vs. inventory risk tradeoff)
- σ_t : Volatility process (filtered realized volatility)
- λ_t^{\pm} : Order arrival intensities (probabilistic execution rates)
- Θ_t^{L3} : Order book state features matrix
- \bullet VPIN_t: Volume-synchronized informed trading probability

- DOI_t: Deep Order Book Imbalance (CNN output $\in [-1,1]$)
- κ : VPIN smoothing factor (time-volume normalization)
- V: Number of volume buckets for VPIN calculation
- $\mathcal{B}_i/\mathcal{S}_i$: Buy/Sell volumes in i^{th} VPIN bucket
- p_k : Price at k^{th} order book level
- p_{mid} : Mid-price $(p_{\text{best bid}} + p_{\text{best ask}})/2$
- $v_k^{\text{bid/ask}}$: Volume at k^{th} bid/ask level
- $\mathcal{H}(q,t)$: Value function (Hamilton-Jacobi-Bellman PDE solution)
- α : Terminal inventory penalty coefficient
- $\beta_{0:3}$: Intensity model coefficients (XGBoost survival analysis)
- $\phi(\cdot)$: CNN embedding function for DOI calculation
- a/p/n: Anchor/positive/negative samples in triplet loss
- ϵ : Triplet loss margin (typically 0.2-0.5)
- \mathcal{F}_t : Market filtration (adapted σ -algebra)

Key Relationships

- Spread-Intensity Relationship: $\delta^{\pm} \propto 1/\lambda^{\pm}$ (nonlinear via XGBoost)
- Inventory Risk: $\gamma \sigma^2 q^2$ penalizes directional exposure
- VPIN Thresholding: VPIN > 0.7 triggers reduced quoting activity
- DOI Interpretation: DOI > 0.3 = buying pressure, DOI < -0.3 = selling pressure

2 Core Models

2.1 Predictive Market-Making

The model combines stochastic optimal control with machine learning-based order flow prediction to maximize expected profits while controlling inventory risk.

$$\sup_{\delta_t^{\pm} \in \mathcal{A}} \mathbb{E} \left[\int_0^T \left(\delta_t^+ dN_t^+ + \delta_t^- dN_t^- \right) - \gamma \sigma_t^2 q_t^2 dt \, \middle| \, \mathcal{F}_t \right]$$
 (1)

System Dynamics

$$dq_t = dN_t^- - dN_t^+ \quad \text{(Inventory evolution)} \tag{2}$$

$$\lambda_t^{\pm} = \exp\left(\beta_0 + \beta_1 \Theta_t^{L3} + \beta_2 VPIN_t + \beta_3 DOI_t\right)$$
 (3)

$$\mathbb{P}(dN_t^{\pm} = 1) = \lambda_t^{\pm} dt + o(dt) \quad \text{(Counting process)} \tag{4}$$

Feature Engineering

• VPIN (Volume-Synchronized Probability of Informed Trading):

$$VPIN_t = \frac{1}{\kappa V} \sum_{i=1}^{V} |\mathcal{B}_i - \mathcal{S}_i|$$
 (5)

where $\mathcal{B}_i = \text{Buy volume in } i^{th} \text{ volume bucket}$

 $S_i = \text{Sell volume in } i^{th} \text{ volume bucket}$

 $\kappa = \text{Smoothing parameter (typically 0.1 to 0.5)}$

• DOI (Deep Order Book Imbalance):

$$DOI_{t} = CNN \left(\left\{ \frac{p_{k} - p_{mid}}{p_{mid}}, \frac{v_{k}^{bid} - v_{k}^{ask}}{\max(v_{k}^{bid}, v_{k}^{ask})} \right\}_{k=1}^{K} \right)$$
 (6)

where K order book levels are encoded as a normalized 10×10 grid.

• L3 Features Θ_t^{L3} :

$$\Theta_t^{\text{L3}} = \begin{bmatrix} \sum_{k=1}^5 v_k^{\text{bid}} & \sum_{k=1}^5 v_k^{\text{ask}} \\ \frac{\partial^2 p}{\partial v^2} \big|_{\text{best ask}} & \text{Mean book slope} \\ \mathbb{I}_{\{\text{Fat finger}\}} & \text{Volume entropy} \end{bmatrix}$$
(7)

Numerical Optimization

Solution via adaptive Han-Wong algorithm:

$$\mathcal{H}(q,t) = \sup_{\delta^{\pm}} \left\{ \lambda^{+}(\delta^{+})\delta^{+} + \lambda^{-}(\delta^{-})\delta^{-} - \gamma \sigma^{2} q^{2} + \frac{\partial \mathcal{H}}{\partial t} + (\lambda^{-} - \lambda^{+}) \frac{\partial \mathcal{H}}{\partial q} \right\}$$
(8)

Finite difference approximation with boundary conditions:

$$\mathcal{H}(q,T) = -\alpha q^2$$
 (Terminal penalty) (9)

$$\left. \frac{\partial \mathcal{H}}{\partial \delta^{\pm}} \right|_{\delta^{\pm} = \delta_{\text{opt}}^{\pm}} = 0 \tag{10}$$

Parameter Calibration

• β estimation in (3) via censored maximum likelihood:

$$\mathcal{L}(\beta) = \prod_{i=1}^{n} \left(\lambda(t_i)^{\Delta N_i} \exp\left(-\int_{t_{i-1}}^{t_i} \lambda(s) ds\right) \right)$$
 (11)

• CNN training for DOI using triplet loss:

$$\mathcal{L}_{\text{triplet}} = \max(0, \|\phi(a) - \phi(p)\|_2 - \|\phi(a) - \phi(n)\|_2 + \epsilon)$$
 (12)

where a=anchor, p=positive, n=negative examples.

Key Parameters

$$\gamma = 0.1$$
 (risk aversion)
 $\sigma_t = \text{Rolling volatility (5min, 99\% corse filter)}$
 $\kappa = 0.25$ (VPIN smoothing)
 $\alpha = 10^{-4}$ (Terminal penalty)

2.2 Cross-Asset Arbitrage

2.2.1 Cointegration Fractale

Décomposition en ondelettes des spreads :

$$W_{\psi}[s](a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} s(t)\psi\left(\frac{t-b}{a}\right) dt \tag{13}$$

Relation de cointégration multi-échelle :

$$\exists \beta_{a_1,\dots,a_k} : \sum_{k=1}^K \|W_{\psi}[\sum_{i=1}^n \beta_i^{(k)} X_i](a_k, b)\|_2^2 < \epsilon$$
 (14)

2.2.2 Exécution Optimale

Problème d'optimal transport :

$$\min_{\pi \in \Pi(\mu,\nu)} \sum_{i,j} C_{ij} \pi_{ij} + \lambda \text{KL}(\pi || \mu \otimes \nu)$$
 (15)

Où C_{ij} encode l'impact croisé entre actifs.

2.3 Meta-Allocation

Réseau de neurones hyperboliques :

$$h_i^{(l+1)} = \exp_{\mathbf{0}}^{\mathbb{D}^d} \left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij} \log_{\mathbf{0}}^{\mathbb{D}^d} (h_j^{(l)}) \right)$$
 (16)

Fonction de reward RL :

$$r_{t} = \underbrace{\sum_{k=1}^{K} \pi_{t}^{k} - \lambda \sqrt{\operatorname{tr}(\Omega \Sigma_{t} \Omega^{\top})} + \mu \mathcal{D}_{JS}(p_{t}||p_{t-1})}_{\text{PnL}}$$
(17)

3 Risk Management

3.1 Dynamic CVaR

Estimation par normalizing flows :

$$CVaR_{\alpha} = \mathbb{E}[L|L > F^{-1}(\alpha)] \approx \frac{1}{N(1-\alpha)} \sum_{i=1}^{N} l_i \prod_{k=1}^{K} \phi_k^{-1}(z_{i,k})$$
 (18)

Contrainte de drawdown:

$$\mathbb{P}\left(\exists t \in [0, T] : \mathrm{PnL}_t < -\eta \mathrm{VaR}_t\right) \le \epsilon \tag{19}$$

4 Execution Policy

4.1 Market Impact Model

Noyau non-linéaire :

$$\Delta S_t = \int_{-\infty}^t f(t - s)g(\theta_s)ds + \text{HFT}_{\text{adversaire}}(X_t)$$
 (20)

Solution via réseaux de neurones à retard :

$$\hat{g}(\theta) = \text{LiNet}(\{\theta_{t-k\delta}\}_{k=0}^K)$$
(21)

4.2 Quantum-Inspired Routing

Formulation QAOA:

$$H_C = \sum_{(i,j)\in E} w_{ij} Z_i Z_j \tag{22}$$

$$H_B = \sum_i X_i \tag{23}$$

$$\min_{\beta,\gamma} \langle \psi(\beta,\gamma) | H_C | \psi(\beta,\gamma) \rangle \tag{24}$$

Appendix

- ullet Infrastructure requirements (FPGA, colocation)
- Calibration procedure (CMA-ES algorithm)
- \bullet Adversarial testing framework