Домашна работа №1

Зад.1 (3т.) Да се докаже, че $n! < n^n$ за $n \ge 2$

Зад.2 (2т.)

А) Намерете обратната функция на:

$$f(x) = \frac{1}{1+25x^2}$$
 3a $x \ge 0$

Б) Известно е че функцията, която превръща дадена температура от Фаренхайт в Целзий е следната: $f(x)=\frac{5(x-32)}{9}$. Да се намери функцията, която превръща температурата от Целзий във Фаренхайт.

Зад.3 (5т.)

$$\lim_{n \to \infty} \left(\frac{n^3 + 5n^2}{n^2 + 1} - n \right)$$

$$\lim_{n \to \infty} \frac{(n^{12} + 7n^5 + 1)^3}{(n^4 + n^3 - n^2 - n)^{10}}$$

$$\lim_{n \to \infty} \left(\frac{2^n + 4}{2^n + 2} \right)^n$$

$$\lim_{n \to \infty} \left(\frac{n^2 + 3n + 5}{n^2 + 10n} \right)^{6n + 42}$$

$$\lim_{n \to \infty} \frac{9n^2 + \pi n 3^n + 9n!}{e4^n + 12\ln(n) + 6n^3}$$

Зад.4 (5т.) Намерете границата и я докажете чрез дефиницията за граница на Коши. (a е последната цифра от факултетния ви номер, ако тя е 0 използвайте 10 вместо това, а b = 10 – a)

$$\lim_{x \to b} ax + 6$$