Count Triplets in C++

```
#include <iostream>
#include <algorithm>
using namespace std;
class\ CountTheTriplets\ \{
public:
  static int countTriplets(int arr∏, int n)
     // Sort the array
     sort(arr, arr + n);
     int count = 0:
     // Traverse the array from the end to
find triplets
     for (int i = n - 1; i \ge 2; i - 1) {
       int left = 0, right = i - 1;
       // Two pointers technique to find
triplets
       while (left < right) {
          if (arr[left] + arr[right] ==
arr[i]) {
             // If valid triplet is found
             count++;
             left++;
             right--;
          } else if (arr[left] + arr[right] <</pre>
arr[i]) {
             // Move left pointer to
increase the sum
             left++;
          } else {
            // Move right pointer to
decrease the sum
            right--;
     return count;
};
int main() {
  // Hardcoded input
  int n = 6;
  int arr[] = \{1, 3, 5, 2, 7, 4\};
  // Call the countTriplets method to
count triplets
  int result =
CountTheTriplets::countTriplets(arr, n);
  // Print the result
  cout << "Number of triplets: " << result
<< endl;
  return 0;
}
```

$$arr[i] + arr[j] == arr[k]$$

Where i, j, and k are **distinct indices**.

Count the number of triplets (i, j, k) in the array such that:

♥ Input Array:

$$arr[] = \{1, 3, 5, 2, 7, 4\}$$

 $n = 6$

After Sorting:

$$arr[] = \{1, 2, 3, 4, 5, 7\}$$

$$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$$

$$0 1 2 3 4 5 (indexes)$$

Dry Run Table:

i (arr[i])	left	right	arr[left] + arr[right]	Comparison	Action	Count
5 (7)	0	4	1 + 5 = 6	< 7	$\begin{array}{c} \text{left++} \rightarrow \\ \text{left=1} \end{array}$	0
	1	4	2 + 5 = 7	$== 7 \rightarrow$ Triplet found!	count++, left++, right	1
	2	3	3 + 4 = 7	== 7 → Triplet found!	count++, left++, right	2
4 (5)	0	3	1 + 4 = 5	$==5 \rightarrow$ Triplet found!	count++, left++, right	3
	1	2	2 + 3 = 5	$==5 \rightarrow$ Triplet found!	count++, left++, right	4
3 (4)	0	2	1 + 3 = 4	$==4 \rightarrow$ Triplet found!	count++, left++, right	5
	1	1	loop ends			
2 (3)	0	1	1 + 2 = 3	$== 3 \rightarrow$ Triplet found!	count++, left++, right	6

Final Output:

Number of triplets: 6

♥ Triplets Found:

• $(2, 5) \rightarrow 2 + 5 = 7$

	• $(3, 4) \rightarrow 3 + 4 = 7$ • $(1, 4) \rightarrow 1 + 4 = 5$ • $(2, 3) \rightarrow 2 + 3 = 5$ • $(1, 3) \rightarrow 1 + 3 = 4$ • $(1, 2) \rightarrow 1 + 2 = 3$
Number of triplets: 6	

Number of triplets: 6