Filtro de Moda

De entre todos los valores en el entorno de una vecindad se elige el valor más frecuente. A veces los valores de intensidad son todos diferentes con lo cual:

- Se elige cualquier valor entre ellos, o
- Se contabilizan aquellos pixeles que no difieran entre sí a través de un umbral y se promedia el rango.

Ejemplos:

Si tenemos

10	10	10
10	40	8
8	8	10

El resultado sería

10	10	10
10	10	8
8	8	10

Si tenemos

20	21	22
23	80	30
31	40	35

El resultado podría ser (aleatorio)

20	21	22
23	23	30
31	40	35

O bien

Podría ser

$$[20\ 23] \rightarrow \frac{20+23}{2} = 21.5$$

20	21	22
23	21	30
31	40	35

Filtros Máximos y Mínimos

El filtro máximo selecciona el mayor valor dentro de una ventana ordenada de valores de los pixeles.

El filtro mínimo selecciona el valor más pequeño dentro de una ventana ordenada.

El filtro de máximo trabaja cuando el ruido es exclusivamente pimienta (valores pequeños) mientras que el mínimo lo hace cuando el ruido es sal (valor alto).

Ejemplos:

Si tenemos

10	10	10
10	40	8
8	8	10

Ordenamos [8 8 8 10 10 10 10 10 40] elegimos el mínimo 8

El resultado sería

10	10	10
10	8	8
8	8	10

Si tenemos

40	40	40
40	8	30
30	30	40

Ordenamos [8 30 30 30 40 40 40 40 40] elegimos el máximo 40

El resultado sería

40	40	40
40	40	30
30	30	40

Filtro Punto Medio

Es la media del valor máximo y mínimo de intensidad dentro de la ventana, se defino como:

Conjunto ordenado $\rightarrow f_1 \le f_2 \le f_3 \le \cdots \le f_n$

El punto medio se obtiene a través de:

$$punto\ medio = \frac{f_1 + f_n}{2}$$

Ejemplo

Si tenemos

10	10	10
10	40	8
8	8	10

Ordenamos [8 8 8 10 10 10 10 10 40]

$$punto\ medio = \frac{8+40}{2} = 24$$

El resultado sería

10	10	10
10	24	8
8	8	10

Filtro Adaptativo

Este filtro tiene la capacidad de adaptarse a las características locales de la imagen, entendiéndose por

característica local la relacionada con la ventana de vecindad relativa al punto donde se está aplicando el filtrado. Una ecuación para este tipo de filtro viene dado por la siguiente expresión:

Filtro Adapatativo =
$$f(x, y) - \frac{\sigma_n^2}{\sigma_l^2} [f(x, y) - m_l]$$

Donde σ_n^2 es la varianza del ruido relativa a toda la imagen, σ_l^2 la varianza local en la ventana bajo consideración y m_l es la media local, también en la ventana considerada.

Ejemplo

Si tenemos

0	1	2	2	1
2	3	4	5	2
3	3	15	4	5
6	5	4	3	5
6	5	4	3	2

Calculamos

g	n(g)	p(g)	
0	1	0.04	
1	2	0.08	
2	5	0.2	
3	5	0.2	
4	4	0.16	
5	5	0.2	
6	2	0.08	
15	1	0.04	

Varianza σ^2 global

$$\sigma^2 = \sum_{g=0}^{L-1} (g - \bar{g})^2 p(g)$$

Resultando $\sigma^2 = 7.68$

Media $ar{g}$ local

$$\bar{g} = \sum_{g=0}^{L-1} gp(g)$$

Resultando $\bar{g} = 4.7333$

Varianza σ^2 local

Resultando $\sigma^2 = 8.1956$

Aplicando la ec al punto f(2,2) = 15 tenemos

Filtro Adapatativo =
$$15 - \frac{7.68}{8.1956} [15 - 4.7333] \approx 5$$

El resultado sería

0	1	2	2	1
2	3	4	5	2
3	3	5	4	5
6	5	4	3	5
6	5	4	3	2