

ÖSTERREICHISCHES PATENTAMT

10/517962

A-1200 Wien, Dresdner Straße 87

Kanzleigebühr € 36,00 Gebührenfrei gem. § 14, TP 1. Abs. 3 Geb. Ges. 1957 idgF.

EPO-BERLIN 0 7 -07- 2003

Aktenzeichen A 904/2002

Das Österreichische Patentamt bestätigt, dass

die Firma Agrolinz Melamin GmbH in A-4021 Linz, St.-Peter-Straße 25 (Oberösterreich),

am 14. Juni 2002 eine Patentanmeldung betreffend

"Zusammensetzungen zur Herstellung von Amionplasterzeugnissen",

überreicht hat und dass die beigeheftete Beschreibung mit der ursprünglichen, zugleich mit dieser Patentanmeldung überreichten Beschreibung übereinstimmt.

> Österreichisches Patentamt Wien, am 6. Juni 2003

> > Der Präsident:

i. A.

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

HRNCIR Fachoberinspektor

BEST AVAILABLE COPY

Urtext

51 Int. Cl. :

AT PATENTSCHRIFT

11 Nr.

(73) Patentinhaber:

Agrolinz Melamin GmbH

A-4021 Linz, AT

(54) Gegenstand:

Zusammensetzungen zur Herstellung von

Aminoplasterzeugnissen

(61) Zusatz zu Patent Nr.

(66) Umwandlung aus GM

(62) Ausscheidung aus:

(22) (21) Angemeldet am:

(30) Priorität:

(42) Beginn der Patentdauer:

Längste mögliche Dauer:

(45) Ausgegeben am:

(72) Erfinder:

(60) Abhängigkeit:

(56) Entgegenhaltungen, die für die Beurteilung der Patentierbarkeit in Betracht gezogen wurden:

Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen

Die Erfindung betrifft Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sowie durch Schmelzeverarbeitung daraus hergestellte Erzeugnisse.

Halbzeuge und Formstoffe aus Aminoplasten wie Melamin-Formaldehyd-Harze oder Melamin-Harnstoff-Formaldehyd-Harze [Ullmanns Encyclopedia of Industrial Chemistry (1987), Vol. A2, 130-131] sind bekannt. Von Nachteil bei der Herstellung von Erzeugnissen aus Melaminharzen ist die schwierige Verarbeitbarkeit nach üblichen thermoplastischen Verarbeitungsverfahren wie Extrusion, Spritzguss oder Blasformen.

Niedermolekulare Melaminharz-Vorkondensate besitzen eine zu geringe Schmelzviscosität für diese Verarbeitungsverfahren und können lediglich als hochgefüllte Formmassen bei langen Zykluszeiten unter Härtung der Erzeugnisse verarbeitet werden (Woebcken, W., Kunststoff-Handbuch Bd. 10 "Duroplaste", Carl Hanser Verl. München 1988, S. 266-274). Fasern, Schäume oder Beschichtungen aus Melaminharzen können auf Grund der niedrigen Schmelzviscosität der Melaminharzvorkondensate nur ausgehend von Lösun-gen der Melaminharzvorkondensate unter Aushärtung während der Formgebung hergestellt werden.

Übliche Härter für Aminoplaste sind starke Säuren wie Salzsäure, Schwefelsäure, p-Toluolsulfonsäure und Ameisensäure sowie Ammoniumchlorid (EP 0 657 496 A2; EP 0 523 485 A1, EP 0 799 260). Von Nachteil bei diesen Härtern ist die zu geringe Härtungsgeschwindigkeit in Zusammensetzungen mit Melaminharzvorkondensaten mit Molmassen von 300 bis 5000 bei kurzen Verweilzeiten während der Schmelzeverarbeitung der Zusammensetzungen zu Halbzeugen und Formstoffen, was zu unbefriedigenden Werkstoffeigenschaften führt.

Aufgabe der Erfindung sind Zusammensetzungen aus Melaminharzvorkondensaten und Härtern, die für die Schmelzeverarbeitung zu Aminoplasterzeugnissen geeignet sind.

Die Aufgabe wurde durch Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen durch Schmelzeverarbeitung gelöst, wobei die Zusammensetzungen erfindungsgemäss aus

- A) 95 bis 99,9 Masse% lösungsmittelfreien schmelzbaren Polykondensaten von Mela-minharzen mit Molmassen von 300 bis 300000,
- B) 0,1 bis 5 Masse% schwachen Säuren als thermoinduzierbare Härter, bestehend aus
 - B1) Säurebildnern vom Typ blockierte Sulfonsäure der allgemeinen Formel (I) R₁— SO₂—O— R₂ (I)

R₁ = unsubstituiertes oder substituiertes Aryl oder Biphenyl

y CO-R₃

 $R_2 = 4$ -Nitrobenzyl, Pentafluorbenzyl oder $\sqrt{N} = C$ Substituenten

 $N(R_4)(R_5)$

wobei

 R_3 = nichtsubstituiertes oder substituiertes Alkyl oder Aryl,

 $R_4 = H$, C_1 - C_{12} -Alkyl, Phenyl, C_2 - C_9 -Alkanoyl oder Benzyl,

 $R_5 = H$, C_1 - C_{12} -Alkyl oder Cyclohexyl,

oder R_3 und R_4 oder R_5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann,

- B2) C₄-C₁₈-aliphatischen und/oder C₇-C₁₈-aromatischen Carbonsäuren,
- B3) Alkalisalzen oder Ammoniumsalzen der Phosphorsäure,
- B4) C₁-C₁₂-Alkylestern oder C₂-C₈-Hydroxyalkylestern von C₇-C₁₄-aromatischen Carbonsäuren oder anorganischen Säuren,
- B5) Salzen von Melamin oder Guanaminen mit $C_{1^{-1}8}$ -aliphatischen Carbonsäuren,
- B6) Anhydriden, Halbestern oder Halbamiden von C₄-C₂₀-Dicarbonsäuren,

- B7) Halbestern oder Halbamiden von Copolymeren aus ethylenisch ungesättigten C_4 - C_{20} -Dicarbonsäureanhydriden und ethylenisch ungesättigten Monomeren vom Typ C_2 - C_{20} -Olefine und/oder C_8 - C_{20} -Vinylaromaten, und/oder
- B8) Salzen von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₁₈-aliphatischen, C₇-C₁₄-aromatischen oder alkylaromatischen Carbonsäuren sowie anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure,

und

C) gegebenenfalls bis zu 400 Masse% Füllstoffen und/oder Verstärkungsfasern, bis zu 30 Masse% weiteren reaktiven Polymeren vom Typ Ethylen-Copolymere, Malein-säureanhydrid-Copolymere, modifizierte Maleinsäureanhydrid-Copolymere, Poly-(meth)acrylate, Polyamide, Polyester und/oder Polyurethane, sowie bis zu 4 Masse%, jeweils bezogen auf die Polykondensate von Melaminharzen, Stabilisatoren, UV-Absorbern und/oder Hilfsstoffen,

bestehen.

Beispiele für übliche Verfahren der Schmelzeverarbeitung sind Extrusion, Spritzguss oder Blasformen.

Beispiele für Aminoplasterzeugnisse, die durch Schmelzeverarbeitung hergestellt werden können, sind Platten, Rohre, Profile, Beschichtungen, Schaumstoffe, Fasern, Spritzgussteile und Hohlkörper.

Die Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen können in Form von zylindrischen, linsenförmigen, pastillenförmigen oder kugelförmigen Partikeln mit einem mittleren Durchmesser von 0,5 bis 8 mm vorliegen.

Die Polykondensate von Melaminharzen mit Molmassen von 300 bis 300000 können Polykondensate sein, in denen die Triazinsequenzen durch Brückenglieder Alta Altalen erknüpft sind.

Als Melaminharze werden in den erfindungsgemässen Zusammensetzungen Polykondensate aus Melamin bzw. Melaminderivaten und C1-C8-Aldehyden mit einem Molverhältnis Melamin bzw. Melaminderivat / C₁-C₈-Aldehyden 1: 1,5 bis 1: 5 sowie deren Veretherungsprodukte partielle bevorzugt, wobei die C2-C4-alkyl)1-5-gruppen und/oder durch Amino-C1-C12-alkylgruppen substituierte Melamine, Ammelin, Melem, Melon, Melam, Ammelid, Benzoguanamin, Acetoguanamin. Tetramethoxymethylbenzoguanamin, Caprinoguanamin, und/oder Butyroguanamin sein können, und die C1-C8-Aldehyde insbesondere Formaldehyd, Acetaldehyd, Trimethylolacetaldehyd, Acrolein, Furfurol, Glyoxal und/oder Glutaraldehyd, besonders bevorzugt Formaldehyd, sind.

Die Melaminharze können ebenfalls 0,1 bis 10 Masse%, bezogen auf die Summe von Melamin und Melaminderivaten, eingebaute Phenole und/oder Harnstoff enthalten. Als Phenolkomponenten sind dabei Phenol, C_1 - C_9 -Alkylphenole, Hydroxyphenole und/oder Bisphenole geeignet.

Bevorzugt sind die Vorkondensate von Melaminharzen mit Molmassen von 300 bis 300000 Mischungen aus schmelzbaren 4- bis 1000-Kern-Oligotriazinethern,

wobei in den Polytriazinethern die Triazinsegmente

 $R_1 = -NH_2$, $-NH-CHR_2-O-R_3$,- $NH-CHR_2-O-R_4-OH$, $-CH_3$, $-C_3H_7$, $-C_6H_{5,}$ -OH, Phthalimido-.

Succinimido-, -NH-CO-C5-C18-Alkyl,

-NH-C₅-C₁₈-Alkylen-OH,

-NH-CHR $_2$ -O-C $_5$ -C $_{18}$ -Alkylen-NH $_2$, -NH-C $_5$ -C $_{18}$ -Alkylen-NH $_2$,

-NH-CHR $_2$ -O-R $_4$ -O-CHR $_2$ -NH-, -NH-CHR $_2$ -NH-, -NH-CHR $_2$ -O-C $_5$ -C $_{18}$ -Alkylen-NH-,

-NH-C₅-C₁₈-Alkylen-NH-, -NH-CHR₂-O-CHR₂-NH-,

 $R_2 = H$, C_1 - C_7 - Alkyl;

 $R_3 = C_1 - C_{18} - Alkyl, H;$

 $R_4 = C_2 - C_{18} - Alkylen$, $-CH(CH_3) - CH_2 - O_{-C2-C12} - Alkylen - O_{-CH_2} - CH(CH_3) - CH_2 -$

-CH(CH $_3$)-CH $_2$ -O-C2-C12-Arylen-O-CH $_2$ -CH(CH $_3$)-,

-[(CH₂)₂₋₈-O-CO-_{C6-C14}.Arylen-CO-O-(CH₂)₂₋₈-]_n-,

-[(CH_2)₂₋₈-O-CO- $_{C2-C12}$ -Alkylen-CO-O-(CH_2)₂₋₈-]_n -,

wobei n = 1 bis 200;

- Siloxangruppen enthaltende Sequenzen des Typs

$$\begin{array}{c|cccc} C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \\ & & | & | & | \\ -& & C_{1}\text{-}C_{18}\text{-}&Alkyl - O - Si - O - [Si-]_{1-4}\text{-}& O - _{C_{1}\text{-}C_{18}}\text{-}&Alkyl - \\ & & & | & | & | \\ & & & C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \end{array}$$

- Siloxangruppen enthaltende Polyestersequenzen des Typs -[(X),-O-CO-(Y),s-CO-O-(X),r]- ,

bei denen

$$\begin{split} X &= \{(CH_2)_{2\text{-8}}\text{-O-CO-}_{C6\text{-C14}}\text{-Arylen-CO-O-}(CH_2)_{2\text{-8}}\} \text{ oder } \\ &- \{(CH_2)_{2\text{-8}}\text{-O-CO-}_{C2\text{-C12}}\text{-Alkylen-CO-O-}(CH_2)_{2\text{-8}}\}; \end{split}$$

oder

r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;

- Siloxangruppen enthaltende Polyethersequenzen des Typs

$$\begin{array}{c|cccc} C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \\ & & | & | & | \\ \text{-}CH_{2}\text{-}CHR_{2}\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_{y}\text{-}CHR_{2}\text{-}CH_{2}\text{-} \\ & & | & | & | \\ C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \\ \end{array}$$

wobei $R_2 = H$; C_1 - C_4 -Alkyl und y = 3 bis 50 bedeuten;

- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-_{C2-C4-}alkylenamino-1,3,5-triazin Sequenzen:
- Phenolethersequenzen auf Basis zweiwertiger Phenole und $C_2\text{-}C_8\text{-}\text{Diolen}$ vom Typ

-c2-C8-Alkylen-O-C6-C18-Arylen-O-C2-C8-Alkylen- Sequenzen;

durch Brückenglieder -NH-CHR $_2$ -NH- oder -NH-CHR $_2$ -O-CHR $_2$ -NH- und -NH-CHR $_2$ -NH- sowie gegebenenfalls -NH-CHR $_2$ -O-CHR $_2$ -NH-, -NH-CHR $_2$ -

O- C_5 - C_{18} -Alkylen-NH- bzw. -NH- C_5 - C_{18} -Alkylen-NH- zu 4- bis 1000-Kern-Polytriazinethern mit linearer und/oder verzweigter Struktur verknüpft sind, wobei in den Polytriazinethern das Molverhältnis der Substituenten R_3 : R_4 = 20 : 1 bis 1 : 20 beträgt, der Anteil der Verknüpfungen der Triazinsegmente durch Brücken-glieder -NH-CHR $_3$ -O-R $_4$ -O-CHR $_3$ -NH- 5 bis 95 Mol% beträgt, und die Polytriazinether bis zu 20 Masse% Diole vom Typ HO - R_4 - OH enthalten können.

Die endständigen Trinzinsegmente in den Polytriazinethern sind Triazinsegmente der Struktur

Y= -NH-CHR₂-O-R₃ ,-NH-CHR₂-O-R₄-OH sowie gegebenenfalls -NH-CHR₂-O-C₅-C₁₈-Alkylen-NH₂,

-NH-C₅-C₁₈-Alkylen-NH₂, -NH-C₅-C₁₈-Alkylen-OH,

 $R_1 = -NH_2$, $-NH-CHR_2-O-R_3$,- $NH-CHR_2-O-R_4-OH$, $-CH_3$, $-C_3H_7$, $-C_6H_5$, -OH, Phthalimido-.

Succinimido-, -NH-CO-R₃, -NH-C₅-C₁₈-Alkylen-OH, -NH-C₅-C₁₈-Alkylen-NH₂,

-NH-CHR₂-O-C₅-C₁₈-Alkylen-NH₂,

 $R_2 = H, C_1-C_7 - Alkyl;$

 $R_3 = C_1 - C_{18} - Alkyl, H;$

 $R_3 = C_2 - C_{10} - Alkylen, -CH(CH_3) - CH_2 - O_{-C2-C12} - Alkylen - O_{-CH_2} - CH(CH_3) - CH_2 - CH$

- an object of the statement of the object of the control of the c

-[(CH₂)₂₋₈-O-CO-_{C6-C14-}Arylen-CO-O-(CH₂)₂₋₈-]_n-,

 $-[(CH_2)_{2-8}-O-CO-C_{2-C_{12}}-Alkylen-CO-O-(CH_2)_{2-8}-]_n$ -,

wobei n = 1 bis 200;

- Siloxangruppen enthaltende Sequenzen des Typs

- Siloxangruppen enthaltende Polyestersequenzen des Typs -[(X),-O-CO-(Y),s-CO-O-(X),-]- ,

bei denen

$$X = \{(CH_2)_{2-8} - O - CO - _{C6-C14} - Arylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - (CH_2)_{2-8} - O - CO - _{C2-C12} - Alkylen - CO - O - _{C2-C12} - Alkylen - _{C2-C12} - O - _{C2-C12}$$

r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;

- Siloxangruppen enthaltende Polyethersequenzen des Typs

$$\begin{array}{c|cccc} C_1\text{-}C_4\text{-}Alkyl & C_1\text{-}C_4\text{-}Alkyl \\ & & | & | \\ \text{-}CH_2\text{-}CHR_2\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_y\text{-}CHR_2\text{-}CH_2\text{-} \\ & & | & | \\ C_1\text{-}C_4\text{-}Alkyl & C_1\text{-}C_4\text{-}Alkyl \\ \end{array}$$

wobei $R_2 = H$; C_1 - C_4 -Alkyl und y = 3 bis 50 bedeuten;

- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-_{C2-C4-}alkylenamino-1,3,5-triazin Sequenzen:
- Phenolethersequenzen auf Basis zweiwertiger Phenole und $C_2\text{-}C_8\text{-}\text{Diolen}$ vom Typ

-C2-C8-Alkylen-O-C6-C18-Arylen-O-C2-C8-Alkylen- Sequenzen;

bilden.

Die bei den erfindunsgemässen Zusammensetzungen eingesetzten 4- bis 1000-Kern-Polytriazinether können durch Veretherung von Melaminharzvorkondensaten mit C1-C4-Alkoholen, gegebenenfalls unter nachfolgender partieller Umetherung mit C₄-C₁₈-Alkoholen, C₂-C₁₈-Diolen, mehrwertigen Alkoholen vom Typ Glycerin Polyalkylenglycolen, oder Pentaerythrit, C₅-C₁₈-Aminoal-koholen, Siloxan-polyestern, enthaltenden Polyestern, Hydroxyendgruppen Siloxanpolyethern, Melamin-Alkylenoxid-Addukten und/oder Zweikernphenol-Alkylenoxidaddukten und/oder Umsetzung mit C5-C18-Diaminen und/oder Bisepoxiden, und nachfolgende thermische Kondensation der modifizierten Melaminharzkondensate in der Schmelze im kontinuierlichen Kneter bei Temperaturen von 140 bis 220°C hergestellt werden.

Die Melaminharzvorkondensate, die bei der Herstellung der 4- bis 1000-Kern-Oligotri-azinether eingesetzt werden, sind bevorzugt Vorkondensate, die als C₁-C₈-Aldehyd-Komponenten Formaldehyd, Acetaldehyd und/oder Trimethylolacetaldehyd und als Melaminkomponente neben Melamin ebenfalls

bevorzugt werden Vorkondensate aus Melamin und Formaldehyd mit einem Molverhältnis Melamin/Formaldehyd 1:1,5 bis 1:3.

Bevorzugt sind die in den Zusammensetzungen enthaltenen Polykondensate von Melaminharzen Mischungen aus schmelzbaren 4- bis 300-Kern-Polytriazinethern.

Die thermoinduzierbaren Härter vom Typ blockierte Sulfonsäure der allgemeinen Formel

$$R_1 - SO_2 - O - R_2$$
 (1)

in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind bevorzugt blockierte Sulfonsäuren, in denen die Substituenten

 $R_1=$ unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, $C_1\text{-}C_4\text{-}Halogenalkyl}, C_1\text{-}C_{16}\text{-}Alkyl}, C_1\text{-}C_4\text{-}Alkoxy}, C_1\text{-}C_4\text{-}Alkyl\text{-}CO\text{-}NH\text{-}},$ Phenyl-CO-NH-, Benzoyl- oder Nitro- substituiertes $C_6\text{-}C_{10}\text{-}Aryl$ oder $C_7\text{-}C_{12}\text{-}Arylalkyl}$,

$$R_2 = \text{4-Nitrobenzyl, Pentafluorbenzyl,} \qquad \begin{array}{c} \text{CO - R}_3 \\ \text{- N = C} \\ \text{N(R}_4)(R_5), \end{array}$$

R₃ = C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₆-Alkenyl, C₅-C₁₂-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C₁-C₄-Halogenalkyl, C₁-C₁₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C₆-C₁₀-Aryl und/oder C₇-C₁₂-Arylalkyl, C₁-C₈-Alkoxy, C₅-C₈-Cycloalkoxy, Phenoxy oder H₂N-CO-NH-,-CN, C₂-C₅-Alkyloyl, Benzoyl, C₂-C₅-Alkoxycarbonyl, Phenoxycarbonyl, Morpholino-, Piperidino-, C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₆-Alkenyl, C₅-C₁₂-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C₁-C₄-Halogenalkyl, C₁-C₁₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C₆-C₁₀-Aryl, C₇-C₁₂-Arylalkyl, C₁-C₈-Alkoxy, C₅-C₈-Cycloalk-oxy-, Phenoxy-, oder H₂N-CO-NH-,

 $R_4 = H$, C_1 - C_{12} -Alkyl, Phenyl, C_2 - C_9 -Alkanoyl oder Benzyl

R₅= H, C₁-C₁₂-Alkyl oder Cyclohexyl,

sind,

oder R_3 und R_4 oder R_5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann.

Beispiele für bevorzugte blockierte Sulfonsäuren sind Benzilmonoxim-tosylat, 4-Nitroacetophenonoximtosylat, Benzil-monoxim-p-dodecylbenzolsulfonat, α-Cyclohexylsulfonyloxyimino-Tosyloxyiminocapronsäureethylester, α-(4-Chlorphenylsulfonyloxyiimino)capronsäurephenylessigsäureethylester, 4,4-Dimethylbenzilmonoxim-tosy-lat, Dibenzylketonoxim-tosylat, phenylester, α-Tetralonoxim-tosylat, Acetonoxim-p-benzoylbenzolsulfonat, Anthrachinonmonoxim-tosylat, Thioxanthonoxim-tosylat, α -(p-Toluolsulfonyloxy- α -(4-Nitrobenzolsulfonyloxyimino)benzylcyanid, αimino)benzylcyanid, (Benzolsulfonyl-oxyimino)-4-chlorbenzylcyanid, α-(Benzolsulfoxyimino)-2,6- α -(2-Chlorbenzolsulfonyloxyimino)-4-methoxybenzylcyanid, dichlorbenzylcyanid, 4-Chlor- α -trifluor-acetophenon-oxim-benzolsulfonat, Fluorenoxim-tosylat, α-(Benzolsulfonyloxyimino)ureidocarbonyl-ace-tonitril, α -(p-Toluolsulfonyloxyimino)-2,3-Dihydro-1,4-naphthochinon-monoxim-tosylat, benzovlacetonitril, 2,6-2-Nitrobenzylsulfonat, Acetophenonoximtosylat, Chromanoximtosylat, Dinitrobenzylbenzolsulfonat, 4-Nitrobenzyl-9,10-dimethoxyanthracen-2-sulfonat, 2-4-Cyclohex-1-enyl-2-Methylsulfonyloxyimino-4-phenyl-but-3-ennitril, methylsulfonyl-oxyi-mino-but-3-ennitril, 4-Furan-2-yl-isopropylsulfonyloxyimino-but-3-ennitril und 2-Penta-fluorophenylsulfonyloxyimino-4-phenyl-but-3-ennitril.

Beispiele für aliphatische C_4 - C_{18} -Carbonsäuren, die in den erfindungsgemässen Rezep-turen als thermoinduzierbare Härter enthalten sein können, sind Buttersäure, Capronsäure, Palmitinsäure, Stearinsäure und Ölsäure.

Beispiele für aromatische C₇-C₁₈-Carbonsäuren, die in den erfindungsgemässen Rezepturen als thermoinduzierbare Härter enthalten sein können, sind Benzoesäure, Phthal-säure oder Naphthalindicarbonsäure.

Beispiele für Alkalisalze oder Ammoniumsalze der Phosphorsäure, die in den erfin-dungsgemässen Zusammensetzungen als thermoinduzierbare Härter enthalten sein können, sind Ammoniumhydrogenphosphat, Natriumpolyphosphat und Kaliumhydrogenphosphat.

Die C_1 - C_{12} -Alkylester bzw. C_2 - C_8 -Hydroxyalkylester von C_7 - C_{14} -aromatischen Carbonsäuren in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind bevorzugt Dibutylphthalat, Phthalsäurediglycolester und/oder Trimellithsäureglycolester.

In den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind die Salze von Melamin bzw. Guanaminen mit C_{1^-18} -aliphatischen Carbonsäuren bevorzugt Melamin-formiat, Melamincitrat, Melaminmaleat, Melaminfumarat und/oder Acetoguanaminbutyrat.

In den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind die als thermoinduzierbare Härter eingesetzten Anhydride, Halbester oder Halbamide von C_4 - C_{20} -Dicarbonsäuren bevorzugt Maleinsäureanhydrid, Bernsteinsäureanhydrid, Phthalsäureanhydrid, Mono- C_1 - C_{18} -alkylmaleate, Maleinsäuremonoamid oder Maleinsäuremono- C_1 - C_{18} -alkyl-amide.

Beispiele für Mono-C₁-C₁₈-alkylmaleate sind Maleinsäuremonobutylester, Maleinsäure-monoethylhexylester oder Monostearylmaleat.

Beispiele für Maleinsäuremono-C₁-C₁₈-alkyl-amide sind Maleinsäuremonoethylamid, Maleinsäuremonooctylamid oder Maleinsäuremonostearvlamid.

In den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind die als thermoinduzierbare Härter eingesetzten Halbester oder Halbamide von Copolymeren aus ethylenisch ungesättigten C₄-C₂₀-Dicarbonsäureanhydriden und ethylenisch ungesättigten Monomeren vom Typ C2-C20-Olefine und/oder C8-C20-Vinylaromaten bevorzugt Halbester oder Halbamide von Copolymeren aus Maleinsäureanhydrid und C_3 - C_8 - α -Olefinen vom Typ Isobuten, Diisobuten Molverhältnis Styren mit einem und/oder 4-Methylpenten und/oder entsprechender bzw. Styren bzw. Maleinsäureanhydrid/C₃-C₈-α-Olefin Monomermischungen von 1:1 bis 1:5.

In den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind die Salze von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₈-aliphatischen, C₇-C₁₂-aromatischen bzw. alkylaromatischen Carbonsäuren oder anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure bevorzugt Ethanolammmoniumchlorid,

Triethylammoniummaleat,
Diethanolammoniumphosphat und/oder Isopropylammonium-p-toluolsulfonat.

Beispiele für geeignete Füllstoffe, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 400 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind Al₂O₃, Al(OH)₃, Bariumsulfat, Calciumcarbonat, Glaskugeln, Kieselerde, Glimmer, Quarzmehl, Schiefermehl, Mikrohohlkugeln, Russ, Talkum, Gesteinsmehl, Holzmehl, Cellulosepulver und/oder Schalen- und Kernmehle wie Erdnussschalenmehl oder Olivenkernmehl. Bevorzugt werden als Füllstoffe Schichtsilikate vom Typ Montmorillonit, Bentonit, Kaolinit, Muskovit, Hectorit, Fluorhectorit, Kanemit, Revdit, Grumantit, Ilerit, Saponit, Beidelit, Nontronit, Stevensit, Laponit, Taneolit, Vermiculit, Halloysit, Volkonskoit, Magadit, Rectorit, Kenyait, Sauconit, Borfluorphlogopite und/oder synthetische Smectite.

Beispiele für geeignete Verstärkungsfasern, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 400 Masse%, bezogen auf die Montiondensabe von Melaminhermen anthalien bein Lönnen, sind anordanische

Fasern, insbesondere Glasfasern und/oder Kohlenstofffasern, Naturfasern, insbesondere Cellulosefasern wie Flachs, Jute, Kenaf und Holzfasern, und/oder Kunststofffasern, insbesondere Fasern aus Polyacrylnitril, Polyvinylalkohol, Polyvinylacetat, Polypropylen, Polyestern und/oder Polyamiden.

Beispiele für reaktive Polymere vom Typ Ethylen-Copolymere, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind teilverseifte Ethylen-Vinylacetat-Copolymere, Ethylen-Butylacrylat-Acrylsäure-Copolymere, Ethylen-Hydroxy-ethylacrylat-Copolymere oder Ethylen-Butylacrylat-Glycidylmethacrylat-Copolymere.

Beispiele für reaktive Polymere vom Typ Maleinsäureanhydrid-Copolymere, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind C_2 - C_{20} -Olefin - Maleinsäureanhydrid-Copolymere oder Copolymere aus Maleinsäureanhydrid und C_8 - C_{20} -Vinylaromaten.

Beispiele für die C₂-C₂₀-Olefin - Komponenten, die in den Maleinsäureanhydrid-Copolyme-ren enthaltenen sein können, sind Ethylen, Propylen, Buten-1, Isobuten, Diisobuten, Hexen-1, Octen-1, Hepten-1, Penten-1, 3-Methylbuten-1, 4-Methylpenten-1, Methylethylpenten-1, Ethylpenten-1, Ethylpenten-1, Octadecen-1 und 5,6-Dimethylnorbornen.

Beispiele für die C_8 - C_{20} -Vinylaromaten - Komponenten, die in den Maleinsäureanhydrid-Copolymeren enthaltenen sein können, sind Styren, α -Methylstyren, Dimethylstyren, Iso-propenylstyren, p-Methylstyren und Vinylbiphenyl.

Die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen gegebenenfalls enthaltenen modifizierten Maleinsäureanhydrid-Copolymere sind

bevorzugt partiell oder vollständig veresterte, amidierte bzw. imidierte Maleinsäureanhydrid-Copolymere.

Besonders geeignet sind modifizierten Copolymere aus Maleinsäureanhydrid und C₂-C₂₀-Olefinen bzw. C₈-C₂₀-Vinylaromaten mit einem Molverhältnis von 1:1 bis 1 : 9 und Mol-massen-Gewichtsmitteln von 5000 bis 500000, die mit Ammoniak, C₁-C₆-C₁₈-aromatischen Monoaminen, C₂-C₁₈-C₁₈-Monoalkylaminen, monoaminier-ten Poly(C₂-C₄-alkylen)oxiden einer Monoaminoalkoholen, monover-etherten Poly(C₂-C₄-Molmasse von 400 bis 3000, und/oder alkylen)oxiden einer Molmasse von 100 bis 10000 umgesetzt worden sind, wobei das Molverhältnis Anhydridgruppen Copolymer / Ammoniak, Aminogruppen C₁-C₁₈-Monoalkylamine, C₆-C₁₈-aromatische Monoamine, C₂-C₁₈-Monoaminoalkohole bzw. monoaminiertes Poly-(C2-C4-alkylen)oxid und/oder Hydroxygruppen Poly(C2-C₄-alky-len)oxid 1 : 1 bis 20 : 1 beträgt.

Beispiele für reaktive Polymere vom Typ Poly(meth)acrylate, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein funktionellen ungesättigten sind Copolymere auf Basis von können, (Meth)acrylatmonomeren wie Acrylsäure, Hydroxyethylacrylat, Glycidylacrylat, Glycidylmethacrylat Hydroxybutylmethacrylat, oder Methacrylsäure, (Meth)acrylatmonomeren wie Ethylacrylat, nichtfunktionellen ungesättigten Ethylacrylat Butylacrylat, Ethylhexylacrylat, Methylmethacrylat, Butylmethacrylat und/oder C₈-C₂₀-Vinylaromaten. Bevorzugt werden Copolymere auf Basis Methacrylsäure, Hydroxyethylacrylat, Methylmethacrylat und Styren.

die in den für reaktive Polymere Typ Polyamide, Beispiele vom Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein Polyamid-12, Polyamid-6,6, Polyamid-11, können, sind Polyamid-6, Polyaminoamide aus Polycarbonsäuren und Polyalkylen-aminen sowie die entsprechenden methoralienen Polyamide.

Beispiele für reaktive Polymere vom Typ Polyester. die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind Polyester mit Molmassen von 2000 bis 15000 aus gesättigten Dicarbonsäuren wie Phthalsäure, Isophthalsäure, Adipinsäure Bernsteinsäure, ungesättigten Dicarbonsäuren wie Maleinsäure, Fumarsäure und/oder Itakonsäure und Diolen wie Ethylenglycol, Butandiol, Neopentylglycol und/oder Hexandiol. Bevorzugt werden verzweigte Polyester auf Basis von Neopentylglycol, Trimethylolpropan, Isophthalsäure und Azelainsäure.

Beispiele für reaktive Polymere vom Typ Polyurethane, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind unvernetzte Polyurethane auf Basis von Toluylendiisocyanat, Diphenylmethandiisocyanat, Butandiisocyanat und/oder Hexandiisocyanat als Diisocyanatkomponenten und Butandiol, Hexandiol und/oder Polyalkylenglycolen als Diolkomponenten mit Molmassen von 2000 bis 30000.

Beispiele für geeignete Stabilisatoren und UV-Absorber, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 2 Masse%, bezogen auf die Vorkonden-sate von Melaminharzen, enthalten sein können, sind Piperidinderivate, Benzophenon-derivate, Benzotriazolderivate, Triazinderivate und/oder Benzofuranonderivate.

Beispiele für geeignete Hilfsstoffe, die in den Zusammensetzungen zur Herstellung von Aminoplast-erzeugnissen bis zu 4 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind Verarbeitungshilfsmittel wie Calciumstearat, Magnesiumstearat und/oder Wachse.

Erfindungsgemäss sind weiterhin Erzeugnisse aus den vorbeschriebenen Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen, hergestellt

durch Schmelzeverarbeitung, wobei die Zusammensetzungen in kontinuierlichen Knetern bei Massetemperaturen von 105 bis 220 °C und Verweilzeiten von 2 bis 12 min aufgeschmolzen werden und unter Aushärtung der schmelzbaren Polykondensate von Melaminharzen nach üblichen Verarbeitungsverfahren für thermoplastische Polymere

A) als Schmelze auf einen Glättwerk aufgegeben und als Platte über Transportbänder abgezogen und geschnitten oder auf Flächenbahnen aus Metallfolien, Kunststoffolien, Papierbahnen oder Textilbahnen aufgesiegelt und als Mehrkomponentenverbunde abgezogen und konfektioniert werden,

oder

B) über eine Profildüse ausgetragen und als Profil oder Plattenmaterial abgezogen, geschnitten und konfektioniert werden,

oder

C) über eine Ringdüse ausgetragen, unter Einpressen von Luft als Rohr abgezogen, geschnitten und konfektioniert werden,

oder

D) nach Eindosierung von Treibmitteln über eine Breitschlitzdüse ausgetragen und als geschäumtes Plattenmaterial abgezogen werden,

oder

E) über die Breitschlitzdüse einer Rohrbeschichtungsanlage ausgetragen und schmelz-flüssig auf das rotierende Rohr aufgesiegelt werden,

oder

- F) in Spritzgussmaschinen, bevorzugt mit Dreizonenschnecken einer Schneckenlänge von 18 bis 24 D, hohen Einspritzgeschwindigkeiten und bei Werkzeugtemperaturen von 5 bis 70°C, zu Spritzgussformteilen verarbeitet werden, oder
- G) in Schmelzespinnanlagen mittels Schmelzepumpe durch das Kapillarwerkzeug in den Blasschacht extrudiert und als Fäden abgezogen oder nach dem Melt-Blow-Verfahren als Fasern abgetrennt, oder als Schmelze nach dem Rotationsspinnverfahren in eine Scherfeldkammer mit organischen Dispergiermitteln unter Bildung von Faserfibriden ausgetragen, und in

oder

- H) nach dem Harzinfusionsverfahren in eine offene Form mit dem Faserhalbzeug dosiert und nach der Vacuumsacktechnologie zu Laminaten ausgeformt werden, oder
- I) nach dem Harzinjektionsverfahren in eine verriegelbare Form, in dem sich Preforms aus textilem Material befinden, injiziert werden und zu Bauteilen ausgeformt und ausgehärtet werden,

oder

K) zur Schmelzeimprägnierung von nach dem Wickelverfahren, Flechtverfahren oder Pultrusionsverfahren hergestellter Bauteilrohlinge eingesetzt werden, und die Erzeugnisse gegebenenfalls zur vollständigen Aushärtung einer thermischen Nachbehandlung bei Temperaturen von 180 bis 220°C und Verweilzeiten von 30 bis 120 min unterzogen werden.

Für die Herstellung von Erzeugnissen aus den erfindungsgemässen Zusammensetzungen, die Füllstoffe, Verstärkungsfasern, weitere reaktive Polymere, Stabilisatoren, UV-Absorber und/oder Hilfsstoffe enthalten, können Zusammensetzungen eingesetzt werden, in denen diese Komponenten bereits enthalten sind, oder die Komponenten werden bei der Verarbeitung der Zusammensetzungen zugesetzt.

Für das Aufschmelzen der erfindungsgemässen Zusammensetzungen sind als kontinuierliche Kneter Extruder mit Kurzkompressionsschnecken Dreizonenschnecken mit L/D = 20-40 geeignet. Bevorzugt werden 5-Zonen-Schnecken mit Einzugszone, Kompressionszone, Dekompressionszone und Homogenisierungszone. Schnecken mit Schnitttiefen von 1 : 2,5 bis 1 : 3,5 sind bevorzugt geeignet. Besonders günstig ist die Zwischenschaltung von statischen Mischern oder Schmelzepumpen zwischen Zylinder und Düse.

Günstige Massetemperaturen für die aufgeschmolzenen Zusammensetzungen bei der Verarbeitung nach der Glättwerktechnologie zu Platten oder Beschichtungen oder bei der Herstellung von Platten, Profilen oder Rohren durch Austrag aus einer Profildüse liegen im Bereich von 110 bis 150°C.

Bei der Herstellung von geschäumtem Plattenmaterial durch Austrag über eine Zusammensetzungen eingesetzt Breitschlitzdüse können gasabspaltende Treibmittel wie Natriumhydrogencarbonat, Azodicarbonamid, und/oder Cyanursäuretrihydrazid Zitronensäure/Bicarbonat-Treibsysteme enthalten, oder in die Schmelze werden vor dem Austrag leichtflüchtige Kohlenwasserstoffe wie Pentan, Isopentan, Propan und/oder Isobutan, oder Gase wie Stickstoff, Argon und/oder Kohlendioxid dosiert. Günstige Düsentem-peraturen für den Austrag der Treibmittel-enthaltenden Schmelze sind 110 bis 175°C. der Schäume aus den erfindungsgemässen Bevorzugte Schaumdichten Zusammensetzungen liegen im Bereich von 10 bis 500 kg/m².

Für die Extrusionsbeschichtung von Metallrohren sind Massetemperaturen der Schmelzen der Zusammensetzungen von 135°C bis 220°C und eine Vorwärmung des Rohrmaterials auf 100 bis 160°C erforderlich.

Vorzugsweise werden bei der Herstellung von Spritzgusserzeugnissen aus den erfindungsgemässen Zusammensetzungen Spritzgussmaschinen mit Spritzeinheiten eingesetzt, die Dreizonenschnecken mit einer Schneckenlänge von 18 bis 24 D besitzen. Die Einspritzgeschwindigkeit bei der Herstellung der durch Spritzgiessen erzeugten Formteile soll möglichst hoch eingestellt werden, um Einfallstellen und schlechte Bindenähte auszuschliessen.

Bei der Herstellung von Fasererzeugnissen aus den erfindungsgemässen Zusammensetzungen werden zur gleichmässigen Schmelzedosierung der im Plastifizierextruder aufgeschmolzenen Zusammensetzungen über den Schmelzeverteiler zum Kapillarwerkzeug bevorzugt Diphenyl-beheizte Schmelzenungen für die auf 130-2 10°C erhitzten Schmelzen eingesetzt.

Die Herstellung von Filamentgarnen aus den erfindungsgemässen Zusammensetzungen kann in Kurzspinnanlagen durch Abzug der Fäden mit Hilfe schnelllaufender Galetten und Weiterverarbeitung in Nachfolgeeinrichtungen aus Nachhärtungskammer, Reckeinrichtung und Wickler erfolgen.

Fasern oder Vliese als Erzeugnisse aus den erfindungsgemässen Zusammensetzungen können ebenfalls nach dem Melt-Blow-Verfahren durch Applizierung eines hocherhitzten Luftstroms um die Kapillardüsenöffnungen bei der Extrusion der Fäden aus dem Kapillarwerkzeug in den Blasschacht hergestellt werden. Der Luftstrom verstreckt den geschmolzenen Faden unter gleichzeitiger Zerteilung in viele Einzelfäserchen mit Faserdurchmessern von 0,5 bis 12 μm. Eine Weiterverarbeitung der auf dem Siebtransportband abgelegten Fasern zu Vliesen kann durch **Applikation** von Thermobondieroder Vernadelungsprozessen zur Erzielung der erforderlichen **Festigkeit** und Dimensionsstabilität erfolgen.

Faserverstärkte Kunststoffe nach dem Harzinfusionsverfahren können durch Impräg-nierung der Faserhalbzeuge durch die unter Umgebungsdruck stehende Schmelze der erfindungsgemässen Zusammensetzung, die in den evakuierten Vakuumsack gedrückt wird, unter Einsatz einer offenen Form hergestellt werden.

Flächige oder komplex geformte Bauteile nach dem Harzinjektionsverfahren werden durch Einlegen von Preforms aus nichtimprägnierten Textilien in eine verriegelbare Form, Injizierung der Schmelze der erfindungsgemässen Zusammensetzung, und Aushärtung hergestellt.

Rotationssymmetrische Bauteile nach dem Wickelverfahren, komplexe Bauteile nach der Rundflechttechnik oder Profile nach der Pultrusionstechnik lassen sich durch Tränkung der Faserrohlinge in Form von Rohren, Fittings, Behältern oder Profilen mit der Schmelze der erfindungsgemässen Zusammensetzung herstellen.

Die Erfindung wird durch folgende Beispiele erläutert:

Beispiel 1

Als schmelzbares Melaminharz-Polykondensat in der Zusammensetzung wird ein Polytriazinether aus Melamin und Formaldehyd mit einem Verhältnis Melamin/Formaldehyd von 1:3 verwendet. Die Methylolgruppen sind überwiegend durch Methanol verethert, so dass der Gehalt des Harzes an Methoxygruppen 20 Masse% beträgt. Die Molmasse des Poly-triazinethers beträgt rund 2000 g/mol.

Das schmelzbare Melaminharz-Polykondensat wird mit 1 Masse% Maleinsäure, bezogen auf das Melaminharz-Polykondensat, als thermoinduzierbarer Härter versetzt, und der Härtungsverlauf der Zusammensetzung mittels Dynamisch-Mechanischer-Analyse charakterisiert. Die Analysen wurden an einem RDS-Gerät der Firma Rheometric Scientific durchgeführt. Die Zusammensetzungen wurden von 60°C auf 300°C mit einer Heizrate von 10 K/min aufgeheizt und der Viskositätsverlauf bestimmt. Als Onset wurde die Temperatur bestimmt, ab der ein starker Anstieg der Viskosität zu beobachten ist (Abbildung 1).

Die Onsettemperatur der Zusammensetzung beträgt 135°C. Im Vergleichsversuch ohne thermo-induzierbaren Härter beträgt die Onsettemperatur 200°C.

Beispiele 2 bis 9:

Versuchsdurchführung analog Beispiel 1, anstelle Maleinsäureanhydrid als thermoinduzierbarer Härter wurden die in Tabelle 1 angegebenen Härter verwendet:

Beispiel	Härter	Onsettemperatur
		(°C)
2	Phthalsäure	155
3	Maleinsäureanhydrid	110
4	Phthalsäureanhydrid	126
5	Maleinaguromonobutviester	130

6	Maleinsäuremonoamid	140
7	Melaminmaleat	145 .
8	p-Toluolsulfonsäure	200
9	ohne	200

Im Vergleichsversuch 8 wurde p-Toluolsulfonsäure als starke Säure als thermoinduzierbarer Härter eingesetzt. Die Zusammensetzung mit der starken Säure ergibt eine um 45 bis 90°C höhere Onsettemperatur gegenüber den erfindungsgemässen Zusammensetzungen bzw. die gleiche Onsettemperatur wie in Zusammensetzungen ohne thermoinduzierbaren Härter (Vergleichsversuch 9).

Beispiel 10

Als Melaminharz wird ein mit einem Ethylenglycol-Diether von Bisphenol A (Simulsol BPLE, Seppic S.A., Frankreich) umgeethertes Melamin-Formaldehyd-Vorkondensat auf Basis 2,4,6-Tris-methoxymethylamino-1,3,5-triazin eingesetzt. Die durch GPC ermittelte Molmasse beträgt 1800, der Gehalt an nichtumgesetztem Simulsol BPLE nach HPLC-Analyse (Lösung in THF, UV-Detektion mit externem Standard) beträgt 14 Masse%. Der Anteil der –OCH₃-Gruppen im umgeetherten Melaminharz (Ermittlung durch GC-Analyse nach Spaltung des Polytriazinethers mit Mineralsäure) beträgt 14,5 Masse%. Die Viskosität bei 140°C liegt bei 800 Pas.

Die Umetherung des Melamin-Formaldehyd-Vorkondensats auf Basis 2,4,6-Trismethoxymethylamino-1,3,5-triazin und weitere Kondensation findet bei 220°C im Laborextruder GL 27 D44 mit Vakuumentgasung (Leistritz) bei einem Temperaturprofil von 100°C/130°C/200°C/200°C/200°C/200°C/200°C/200°C/100°C/100°C und einer durchschnittlichen Verweilzeit von 2,5 min statt. Die Extruderdrehzahl beträgt 150

min⁻¹. In die Einzugszone des Extruders werden 2,4,6-Tris-methoxymethylamino-1,3,5-triazin mit 1,38 kg/h und der Ethylenglykol-Diether von Bisphenol A mit 1,13 kg/h mittels Seitenstromdosierung gravimetrisch dosiert. Der aus dem Extruder austretende Strang des Polytriazinethers wird in einem Granulator geschnitten.

Das umgeetherte Harz wird mit 1 Masse% Maleinsäure compoundiert und von

diesem Compound der Härtungsverlauf mittels <u>Dynamisch-Mechanischer-Analyse</u> analog Beispiel 1 bestimmt. Die Onsettemperatur beträgt in diesem Beispiel 125°C.

Beispiel 11-14:

Versuchsdurchführung analog Beispiel 10, es wurden die in Tabelle 2 angsgebenen Hämer verwendet:

Beispiel	Härter	10
20.00101	Taitei	Onsettemperatur
		°C
10	Maleinsäure	125
		125
11	Maleinsäureanhydrid	116
12	Phthalsäureanhydrid	121
13	n Telveter II	
13	p-Toluolsulfonsäure	170
14	ohne	180
L		100

Abbildung 1

Härtungsverläufe in den Zusammensetzungen nach Beispiel 1 ohne thermoinduzierbaren Härter und mit 1 Masse% Maleinsäure, bezogen auf das Melaminharz-Polykondensat, als thermoinduzierbaren Härter

Viscosität

Patentansprüche

- Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen durch Schmelzeverarbeitung, dadurch gekennzeichnet, dass die Zusammensetzungen aus
 - A) 95 bis 99,9 Masse% lösungsmittelfreien schmelzbaren Polykondensaten von Melaminharzen mit Molmassen von 300 bis 300000,
 - B) 0,1 bis 5 Masse% schwachen Säuren als thermoinduzierbare Härter, bestehend aus

R₁ = unsubstituiertes oder substituiertes Aryl oder Biphenyl

 $R_2 = 4$ -Nitrobenzyl, Pentafluorbenzyl oder $\sqrt{N} = C$ Substituenten

 $N(R_4)(R_5)$

wobei

R₃ = nichtsubstituiertes oder substituiertes Alkyl oder Aryl,

 $R_4 = H$, C_1 - C_{12} -Alkyl, Phenyl, C_2 - C_9 -Alkanoyl oder Benzyl,

 $R_5 = H$, C_1 - C_{12} -Alkyl oder Cyclohexyl,

oder R_3 und R_4 oder R_5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann,

- B2) C₄-C₁₈-aliphatischen und/oder C₇-C₁₈-aromatischen Carbonsäuren,
- B3) Alkalisalzen oder Ammoniumsalzen der Phosphorsäure,
- B4) C₁-C₁₂-Alkylestern oder C₂-C₈-Hydroxyalkylestern von C₇-C₁₄-aromatischen Carbonsäuren oder anorganischen Säuren,
- B5) Salzen von Melamin oder Guanaminen mit $C_{1^{-18}}$ -aliphatischen Carbonsäuren,
- B6) Anhydriden, Halbestern oder Halbamiden von C₄-C₂₀-Dicarbonsäuren,
- B7) Halbestern oder Halbamiden von Copolymeren aus ethylenisch ungesättigten C₄-C₂₀-Dicarbonsäureanhydriden und ethylenisch

ungesättigten Monomeren vom Typ C_2 - C_{20} -Olefine und/oder C_8 - C_{20} -Vinylaromaten, und/oder

- B8) Salzen von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₁₈-aliphatischen, C₇-C₁₄-aromatischen oder alkylaromatischen Carbonsäuren sowie anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure, und
- C) gegebenenfalls bis zu 400 Masse% Füllstoffen und/oder Verstärkungsfasern, bis zu 30 Masse% weiteren reaktiven Polymeren vom Typ Ethylen-Copolymere, Maleinsäureanhydrid-Copolymere, modifizierte Maleinsäureanhydrid-Copolymere, Poly(meth)acrylate, Polyamide, Polyester und/oder Polyurethane, sowie bis zu 4 Masse%, jeweils bezogen auf die Polykondensate von Melaminharzen, Stabilisatoren, UV-Absorbern und/oder Hilfsstoffen,

bestehen.

 Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Polykondensate von Melaminharzen Mischungen aus schmelzbaren 4- bis 1000-Kern-Polytriazinethern sind, wobei in den Polytriazinethern die Triazinsegmente

 $R_1 = -NH_2$, $-NH-CHR_2-O-R_3$, $-NH-CHR_2-O-R_4-OH$, $-CH_3$, $-C_3H_7$, $-C_6H_5$, -OH, Phthalimido-.

Succinimido-, -NH-CO-C5-C18-Alkyl, -NH-C5-C18-Alkylen-OH,

-NH-CHR₂-O-C₅-C₁₈-Alkylen-NH₂, -NH-C₅-C₁₈-Alkylen-NH₂,

-NH-CHR2-O-R4-O-CHR2-NH-, -NH-CHR2-NH-, -NH-CHR2-O-C5-C18-Alkylen-

-NH-C₅-C₁₈-Alkylen-NH-, -NH-CHR₂-O-CHR₂-NH-,

 $R_2 = H$, $C_1 - C_7 - Alkyl$;

 $R_3 = C_1 - C_{18} - Alkyl, H$;

 $R_4 = C_2 - C_{18} - Alkylen$, $-CH(CH_3) - CH_2 - O_{-C2-C12} - Alkylen - O_{-CH_2} - CH(CH_3)$ -,

-CH(CH₃)-CH₂-O-_{C2-C12}-Arylen-O-CH₂-CH(CH₃)-,

 $-[(CH_2)_{2-8}-O-CO-_{C6-C14}-Arylen-CO-O-(CH_2)_{2-8}-]_n$ -,

 $-[(CH_2)_{2-8}-O-CO-_{C2-C12}-Alkylen-CO-O-(CH_2)_{2-8}-]_n$ -,

wobei n = 1 bis 200;

- Siloxangruppen enthaltende Sequenzen des Typs

$$C_1$$
- C_4 -Alkyl C_1 - C_4 -Alkyl C_1 - C_4 -Alkyl C_1 - C_1

- Siloxangruppen enthaltende Polyestersequenzen des Typs -[(X)_r-O-CO-(Y)_s-CO-O-(X)_r]- ,

bei denen

$$C_{1}\text{-}C_{4}\text{-}Alkyl \qquad C_{1}\text{-}C_{4}\text{-}Alkyl \\ Y = -\{c_{6}\text{-}c_{14}\text{-}Arylen\text{-}CO\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_{y}\text{-}CO\text{-}c_{6}\text{-}c_{14}\text{-}Arylen\text{-}}\} \\ \qquad \qquad C_{1}\text{-}C_{4}\text{-}Alkyl \qquad C_{1}\text{-}C_{4}\text{-}Alkyl \qquad oder$$

r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;

- Siloxangruppen enthaltende Polyethersequenzen des Typs

$$\begin{array}{c|cccc} C_1\text{-}C_4\text{-}Alkyl & C_1\text{-}C_4\text{-}Alkyl \\ & | & | & | \\ \text{-}CH_2\text{-}CHR_2\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_y\text{-}CHR_2\text{-}CH_2\text{-} \\ & | & | \\ C_1\text{-}C_4\text{-}Alkyl & C_1\text{-}C_4\text{-}Alkyl \\ \end{array}$$

wobei $R_2 = H$; C_1 - C_4 -Alkyl und y = 3 bis 50 bedeuten;

- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-_{C2-C4-}alkylenamino-1,3,5-triazin Sequenzen:
- Phenolethersequenzen auf Basis zweiwertiger Phenole und $C_2\text{-}C_8\text{-}Diolen$ vom Typ

-C2-C8-Alkylen-O-C6-C18-Arylen-O-C2-C8-Alkylen- Sequenzen;

durch Brückenglieder -NH-CHR $_2$ -NH- oder -NH-CHR $_2$ -O-R $_4$ -O-CHR $_2$ -NH- und -NH-CHR $_2$ -NH- sowie gegebenenfalls -NH-CHR $_2$ -O-CHR $_2$ -NH-, -NH-CHR $_2$ -O-C $_5$ -C $_{18}$ -Alkylen-NH- bzw. -NH-C $_5$ -C $_{18}$ -Alkylen-NH- zu 4- bis 1000-Kern-Polytriazinethern mit linearer und/oder verzweigter Struktur verknüpft sind,

wobei in den Polytriazinethern das Molverhältnis der Substituenten R_3 : R_4 = 20 : 1 bis 1 : 20 beträgt, der Anteil der Verknüpfungen der Triazinsegmente durch Brückenglieder -NH-CHR₃-O-R₄-O-CHR₃-NH- 5 bis 95 Mol% beträgt, und die Polytriazinether bis zu 20 Masse% Diole des Typs HO - R₄ - OH enthalten können.

 Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Polykondensate von Melaminharzen Mischungen aus schmelzbaren 4- bis 300-Kern-Polytriazinethern sind.

$$R_1$$
— SO_2 — O — R_2 (1)

blockierte Sulfonsäuren sind, in denen die Substituenten

 R_1 = unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C_1 - C_4 -Halogenalkyl, C_1 - C_{16} -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl- oder Nitro- substituiertes C_6 - C_{10} -Aryl oder C_7 - C_{12} -Arylalkyl,

$$R_2 = 4$$
-Nitrobenzyl, Pentafluorbenzyl, $-N = C$
 $N(R_4)(R_5)$,

R₃ = C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₆-Alkenyl, C₅-C₁₂-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C₁-C₄-Halogenalkyl, C₁-C₁₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C₆-C₁₀-Aryl und/oder C₇-C₁₂-Arylalkyl, C₁-C₈-Alkoxy, C₅-C₈-Cycloalkoxy, Phenoxy oder H₂N-CO-NH-,-CN, C₂-C₅-Alkyloyl, Benzoyl, C₂-C₅-Alkoxycarbonyl, Phenoxycarbonyl, Morpholino-, Piperidino-, C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₆-Alkenyl, C₅-C₁₂-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C₁-C₄-Halogenalkyl, C₁-C₁₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C₆-C₁₀-Aryl, C₇-C₁₂-Arylalkyl, C₁-C₈-Alkoxy, C₅-C₈-Cycloalk-oxy-, Phenoxy-, oder H₂N-CO-NH-,

 $R_4 = H$, C_1 - C_{12} -Alkyl, Phenyl, C_2 - C_9 -Alkanoyl oder Benzyl

R₅= H, C₁-C₁₂-Alkyl oder Cyclohexyl,

oder R_3 und R_4 oder R_5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann.

- Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Salze von Melamin bzw. Guanaminen mit C₁₋₁₆-aliphatischen Carbonsäuren Melaminformiat, Melamincitrat, Melaminmaleat, Melaminfumarat und/oder Acetoguanaminbutyrat sind.
- 7. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Anhydride, Halbester oder Halbamide von C₄-C₂₀-Dicarbonsäuren Maleinsäureanhydrid, Bernsteinsäureanhydrid, Phthalsäureanhydrid, Mono-C₁-C₁₈-alkyl-maleate, Maleinsäuremonoamid oder Maleinsäuremono-C₁-C₁₈-alkyl-amide sind.
- 8. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Halbester oder Halbamide von Copolymeren aus ethylenisch ungesättigten C₄-C₂₀-Dicarbonsäureanhy-driden und ethylenisch ungesättigten Monomeren vom Typ C₂-C₂₀-Olefine und/oder C₈-C₂₀-Vinylaromaten Halbester oder Halbamide von Copolymeren aus Maleinsäureanhydrid und C₃-C₈-α-Olefinen vom Typ Isobuten, Diisobuten und/oder 4-Methylpenten und/ oder Styren mit einem Molverhältnis Maleinsäureanhydrid/C₃-C₈-α-Olefin bzw. Styren bzw. entsprechender Monomermischungen von 1 : 1 bis 1 : 5 sind.
- Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Salze von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₁₈-aliphatischen, C₇-C₁₄-aromatischen bzw. alkylaromatischen Carbonsäuren oder anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure Ethanolammmoniumchlorid,

Diethanolammoniumphosphat und/oder Isopropylammonium-p-toluolsulfonat sind.

- 10. Erzeugnisse aus den Zusammensetzungen nach einem oder mehreren der Ansprüche 1 bis 9, hergestellt durch Schmelzeverarbeitung, wobei die Zusammensetzungen in kontinuierlichen Knetern bei Massetemperaturen von 105 bis 220°C und Verweilzeiten von 2 bis 12 min aufgeschmolzen werden und unter Aushärtung der schmelzbaren Polykondensate von Melaminharzen nach üblichen Verarbeitungsverfahren für thermoplastische Polymere
 - A) als Schmelze auf einen Glättwerk aufgegeben und als Platte über Transportbänder abgezogen und geschnitten oder auf Flächenbahnen aus Metallfolien, Kunststoffolien, Papierbahnen oder Textilbahnen aufgesiegelt und als Mehrkomponentenverbunde abgezogen und konfektioniert werden,

oder

B) über eine Profildüse ausgetragen und als Profil oder Plattenmaterial abgezogen, geschnitten und konfektioniert werden,

oder

C) über eine Ringdüse ausgetragen, unter Einpressen von Luft als Rohr abgezogen, geschnitten und konfektioniert werden,

oder

D) nach Eindosierung von Treibmitteln über eine Breitschlitzdüse ausgetragen und als geschäumtes Plattenmaterial abgezogen werden,

oder

E) über die Breitschlitzdüse einer Rohrbeschichtungsanlage ausgetragen und schmelz-flüssig auf das rotierende Rohr aufgesiegelt werden,

oder

- F) in Spritzgussmaschinen, bevorzugt mit Dreizonenschnecken einer Schneckenlänge von 18 bis 24 D, hohen Einspritzgeschwindigkeiten und bei Werkzeugtemperaturen von 5 bis 70°C, zu Spritzgussformteilen verarbeitet werden, oder
- G) in Schmelzespinnanlagen mittels Schmelzepumpe durch das Kapillarwerkzeug in den Blasschacht extrudiert und als Fäden abgezogen oder

nach dem Melt-Blow-Verfahren als Fasern abgetrennt, oder als Schmelze nach dem Rotationsspinnverfahren in eine Scherfeldkammer mit organischen Dispergiermitteln unter Bildung von Faserfibriden ausgetragen, und in Nachfolgeeinrichtungen weiterverarbeitet werden,

oder

- H) nach dem Harzinfusionsverfahren in eine offene Form mit dem Faserhalbzeug dosiert und nach der Vacuumsacktechnologie zu Laminaten ausgeformt werden, oder
- I) nach dem Harzinjektionsverfahren in eine verriegelbare Form, in dem sich Preforms aus textilem Material befinden, injiziert werden und zu Bauteilen ausgeformt und ausgehärtet werden,

oder

J) zur Schmelzeimprägnierung von nach dem Wickelverfahren, Flechtverfahren oder Pultrusionsverfahren hergestellter Bauteilrohlinge eingesetzt werden, und die Erzeugnisse gegebenenfalls zur vollständigen Aushärtung einer thermischen Nachbehandlung bei Temperaturen von 180 bis 220°C und Verweilzeiten von 30 bis 120 min unterzogen werden.

Zusammenfassung

Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen durch Schmelzeverarbeitung bestehen aus

- A) 95 bis 99,9 Masse% lösungsmittelfreien schmelzbaren Polykondensaten von Melaminharzen mit Molmassen von 300 bis 300000,
- A) 0,1 bis 5 Masse% schwachen Säuren als thermoinduzierbare Härter, bestehend aus

Säurebildnern vom Typ blockierte Sulfonsäure; aliphatischen C₄-C₁₈-Carbonsäuren; aromatischen C₇-C₁₈-Carbonsäuren: Alkalisalzen oder Ammoniumsalzen der Phosphorsäure; C₁-C₁₂-Alkylestern oder C2-C8-Hydroxyalkylestern von C₇-C₁₄-aromatischen Carbonsäuren oder anorganischen Säuren; Salzen von Melamin oder Guanaminen mit C₁₋₁₈aliphatischen Carbonsäuren; Anhydriden, Halbestern oder Halbamiden von C4-C20-Dicarbonsäuren; Halbestern oder Halbamiden von Copolymeren aus ethylenisch ungesättigten C₄-C₂₀-Dicarbonsäureanhydriden und ethylenisch ungesättigten Monomeren vom Typ C2-C20-Olefine und/oder C8-C20-Vinylaromaten; und/oder Salzen von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen C₁-C₁₈-aliphatischen. C₇-C₁₄-aromatischen oder alkylaromatischen Carbonsäuren sowie anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure, und

B) gegebenenfalls bis zu 400 Masse% Füllstoffen und/oder Verstärkungsfasern, bis zu 30 Masse% weiteren reaktiven Polymeren vom Typ Ethylen-Copolymere, Maleinsäureanhydrid-Copolymere, modifizierte Maleinsäureanhydrid-Copolymere, Poly-(meth)acrylate, Polyamide, Polyester und/oder Polyurethane, sowie bis zu 4 Masse%, jeweils bezogen auf die Polykondensate von Melaminharzen, Stabilisatoren, UV-Absorbern und/oder Hilfsstoffen.

Die Zusammensetzungen können durch Schmelzeverarbeitung zu Erzeugnissen wie Platten, beschichtete Trägermaterialien, Profilen, Rohren, Spritzgussartikeln, Fasererzeugnissen und Laminaten verarbeitet werden.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.