

Teaching Large Language Models to Reason with Reinforcement Learning

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy

Meta

Georgia Institute of Technology

Background

- The reasoning abilities of large language models (LLMs)
 - Math, science, and code benchmarks...
- > Technique routine
 - Prompting strategies: CoT, ToT...
 - Fine-tuning: SFT, <u>RL-based fine-tuning</u>

Proximal Policy Optimization (PPO)

Expert iteration (EI)

Return-Conditioned RL (RCRL)

How to improve the reasoning capabilities across a variety of <u>reward schemes</u> and model initializations.

Policy gradient

- > Agent accomplishes the task step by step and interact with environment
 - A trajectory: $au = \{s_1, a_1, s_2, a_2, \cdots, s_t, a_t\}$
 - Agent- p_{θ} , env.-p

$$egin{aligned} p_{ heta}(au) &= p\left(s_1
ight) p_{ heta}\left(a_1|s_1
ight) p\left(s_2|s_1,a_1
ight) p_{ heta}\left(a_2|s_2
ight) p\left(s_3|s_2,a_2
ight) \cdots \ &= p\left(s_1
ight) \prod_{t=1}^T p_{ heta}\left(a_t|s_t
ight) p\left(s_{t+1}|s_t,a_t
ight) \end{aligned}$$

Maximize reward

Gradient ascent:

$$ar{R}_{ heta} = \sum_{ au} R(au) p_{ heta}(au) = \mathbb{E}_{ au \sim p_{ heta}(au)}[R(au)] \hspace{1cm} loop ar{R}_{ heta} = \sum_{ au} R(au)
abla p_{ heta}(au)$$

Policy gradient

$$egin{aligned} ar{R}_{ heta} &= \sum_{ au} R(au) p_{ heta}(au) = \mathbb{E}_{ au \sim p_{ heta}(au)}[R(au)] \qquad \qquad egin{aligned} ar{
abla} ar{R}_{ heta} &= \sum_{ au} R(au)
abla p_{ heta}(au) \end{aligned} \ \ rac{
abla p_{ heta}(au)}{p_{ heta}(au)} &=
abla \log p_{ heta}(au) \end{aligned} egin{aligned} ar{
abla} f(x) &= f(x)
abla \log f(x) \end{aligned}$$

$$\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau)$$

$$= \sum_{\tau} R(\tau) p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)}$$

$$= \sum_{\tau} R(\tau) p_{\theta}(\tau) \nabla \log p_{\theta}(\tau)$$

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[R(\tau) \nabla \log p_{\theta}(\tau) \right] \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla \log p_{\theta}(\tau^{n})$$

$$= \frac{1}{N} \sum_{t=1}^{N} \sum_{t=1}^{T_{t}} R(\tau^{n}) \nabla \log p_{\theta}(a_{t}^{n} \mid s_{t}^{n})$$

$$abla ar{R}_{ heta} = \mathbb{E}_{ au \sim p_{ heta}(au)} \left[R(au)
abla \log p_{ heta}(au)
ight]$$

PPO

On policy

$$abla ar{R}_{ heta} = \mathbb{E}_{ au \sim p_{ heta'(au)}} \left[rac{p_{ heta}(au)}{p_{ heta'}(au)} R(au)
abla \log p_{ heta}(au)
ight]$$

Advantage

$$\mathbb{E}_{\left(s_{t},a_{t}
ight)\sim\pi_{ heta}}\left[A^{ heta}\left(s_{t},a_{t}
ight)
abla\log p_{ heta}\left(a_{t}^{n}|s_{t}^{n}
ight)
ight]$$

$$\mathbb{E}_{(s_t,a_t) \sim \pi_{ heta'}} \left[rac{p_{ heta}\left(s_t,a_t
ight)}{p_{ heta'}\left(s_t,a_t
ight)} A^{ heta}\left(s_t,a_t
ight)
abla \log p_{ heta}\left(a_t^n | s_t^n
ight)
ight]$$

PPO

$$\mathbb{E}_{\left(s_{t},a_{t}
ight)\sim\pi_{ heta'}}\left[rac{p_{ heta}\left(s_{t},a_{t}
ight)}{p_{ heta'}\left(s_{t},a_{t}
ight)}A^{ heta}\left(s_{t},a_{t}
ight)
abla\log p_{ heta}\left(a_{t}^{n}|s_{t}^{n}
ight)
ight]$$

$$\mathbb{E}_{(s_t,a_t)\sim\pi_{ heta'}}\left[rac{p_{ heta}\left(a_t|s_t
ight)}{p_{ heta'}\left(a_t|s_t
ight)}rac{p_{ heta}\left(s_t
ight)}{p_{ heta'}\left(s_t
ight)}A^{ heta'}\left(s_t,a_t
ight)
abla\log p_{ heta}\left(a_t^n|s_t^n
ight)
ight]$$

$$\mathbb{E}_{(s_t,a_t) \sim \pi_{ heta'}} \left[rac{p_{ heta}\left(a_t|s_t
ight)}{p_{ heta'}\left(a_t|s_t
ight)} A^{ heta'}\left(s_t,a_t
ight)
abla \log p_{ heta}\left(a_t^n|s_t^n
ight)
ight]$$

$$\nabla f(x) = f(x) \nabla \log f(x)$$

$$J^{ heta'}(heta) = \mathbb{E}_{(s_t,a_t) \sim \pi_{ heta'}} \left[rac{p_{ heta}\left(a_t|s_t
ight)}{p_{ heta'}\left(a_t|s_t
ight)} A^{ heta'}\left(s_t,a_t
ight)
ight]$$

PPO

$$J^{ heta'}(heta) = \mathbb{E}_{(s_t,a_t) \sim \pi_{ heta'}} \left[rac{p_{ heta}\left(a_t|s_t
ight)}{p_{ heta'}\left(a_t|s_t
ight)} A^{ heta'}\left(s_t,a_t
ight)
ight]$$

$$\operatorname{clip}\left(rac{p_{ heta}\left(a_{t}|s_{t}
ight)}{p_{ heta^{k}}\left(a_{t}|s_{t}
ight)},1-arepsilon,1+arepsilon
ight)A^{ heta^{k}}\left(s_{t},a_{t}
ight)
ight)$$

Expert iteration (EI)

- ightharpoonup Expert policy approximation $\widehat{\pi}_0^*$
 - Generate K rollouts and **filter out** incorrect solutions and duplicates to construct D_1
- \triangleright Distilled back into a policy π_1

$$\sum_{\tau \in D} \sum_{t=1}^{H} -\log \left(\pi_{\theta} \left(a_{t} \mid s_{t} \right) \right)$$

- Repeated fine-tuning
 - This process can be repeated to construct policy π_i fine-tuned on dataset $D_i = R_i \cup D_{i-1}$ where R_i corresponds to exploration done by π_{i-1} .

Return-Conditioned RL (RCRL)

 \triangleright Train policies conditioned on both the current state s and desired return R

$$\sum_{\tau \in D} \sum_{t=1}^{H} -\log \left(\pi_{\theta} \left(a_{t} \mid s_{t}, \underline{g_{t}}\right)\right)$$

- Data construction
 - Best EI policy sample K many times from $\{s_1, s_2, ..., s_i\}$, and $\{l_1, l_2, ..., l_K\}$ evaluating the correctness of the generated final answers.
 - s_i is labeled as "[GOOD]" if $\frac{1}{K}\sum_{k=1}^K l_k \geq T$.

Experiments

➤ GSM8K [w/sft]

		ma	maj@1		maj@96		$rerank@96^{\dagger}$		pass@96	
		7B	13B	7B	13B	7B	13B	7B	13B	
	SFT	0.41	0.48	0.47	0.53	0.54	0.68	0.72	0.84	
	EI_n	0.48	0.53	0.55	0.59	0.64	0.71	0.8	0.88	
From pre-train model	ORM EI_n	0.48	0.53	0.54	0.58	0.65	0.71	0.81	0.87	
	ORM RCRL	0.45	0.51	0.5	0.56	0.54	0.69	0.73	0.83	
	Sparse PPO	0.44	0.51	0.49	0.55	0.58	0.67	0.77	0.85	

From sft model

GPT-4***		0.91		N/A		N/A		N/A	
	GPT-3**	0.2	0.31	N/		0.39	0.55	0.71	NA
	WizardMath	0.55	0.64	N/A		N/A		N/A	
	RFT	0.47	0.54			N/A		N/A	
	Llema*	0.40	0.62			N/A		N/A	
	Dense ORM PPO	0.46	0.51	0.52	0.55	0.59	0.67	0.76	0.83
	Sparse ORM PPO	0.46	0.51	0.51	0.55	0.59	0.67	0.79	0.83
	Dense PPO	0.43	0.50	0.47	0.54	0.53	0.65	0.71	0.81
	Sparse PPO	0.44	0.51	0.49	0.55	0.58	0.67	0.77	0.85
	ORM RCRL	0.45	0.51	0.5	0.56	0.54	0.69	0.73	0.83

Experiments

> Analysis experiment

Figure 1 Sample complexities of SFT initialized models on GSM8K. EI achieves better performance than PPO with the same order of magnitude of samples.

Figure 2 Accuracy of EI models on GSM8K test vs. number of iterations. Performance seems plateaus for SFT initialized models after two iterations. The pretrained checkpoints converge after four iterations.

Experiments

GSM8K [w/o sft]

	maj@1		maj@n		$rerank@n^{\dagger}$		pass@n	
	7B	13B	7B	13B	7B	13B	7B	13B
Prompted	0.05	0.03	0.14	0.18	0.17	0.24	0.22	0.27
EI_n	0.31	0.4	0.35	0.47	0.39	0.63	0.45	0.83
ORM EI	0.28	0.37	0.33	0.43	0.37	0.59	0.42	0.76
Sparse PPO	0.32	0.41	0.37	0.48	0.41	0.65	0.5	0.83
Sparse ORM PPO	0.29	0.38	0.34	0.44	0.4	0.62	0.49	0.81
Dense ORM PPO	0.29	0.39	0.35	0.45	0.41	0.64	0.5	0.82

Conclusion

- ➤ A comprehensive study of PPO fine-tuning of LLMs on reasoning tasks using different types of rewards
- ➤ A comparison to expert iteration and return-conditioned RL from which we find expert iteration reliably attains the best performance and competitive sample complexity across the board..

