

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

Tebruary 1981

(12)20

(Received January 20, 1981)

(T) (D) (1981)

A

Approved for public release Distribution unlimited

Sponsored by

DING FILE COPY

U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709

81 5 27 010

221000

UNIVERSITY OF WISCONSIN-MADISON MATHEMATICS RESEARCH CENTER

 L_{∞} -Lower Bound of L_2 -Projections onto Splines on a Geometric Mesh

Y. Y. Feng and J. Kozak **

Technical Summary Report #2178

February 1981

ABSTRACT

Acces	sion For	
NTIS	GRA&I	Z
DTIC	TAB	f 5
Unann	ounced	
Justi	fication_	
	ibution/ lability	
	Avail and	•
list	Special	•
Λ		
4		
11	}	

In [1], we gave another proof of the boundedness of L_2 -projections onto splines on a geometric mesh. In this paper, we obtain the sharp lower bound for the inverse of the corresponding B-spline Gram matrix. I.e.

$$\|G_{\mathbf{r}}^{-1}\|_{\infty} = \left|\frac{\Pi_{2k-1}(q^{\mathbf{r}};q)}{\Pi_{2k-1}(-q^{\mathbf{r}};q)}\right| > 2k-1, \text{ for } r=k, k-1.$$

AMS (MOS) Subject Classification: 41A15

Key Words: Euler-Frobenius polynomial, splines, sharp lower bound, Least-squares approximation

Work Unit Number 3 - Numerical Analysis and Computer Science

Department of Mathematics, Chinese University of Science and Technology, China.

Matematika in Mehanika, Univerza Edvarda, Kardelja, Yugoslavia.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

SIGNIFICANCE AND EXPLANATION

Least-squares approximation by polynomial splines is a very effective means of approximation, particularly when the knots are appropriately nonuniformly spaced to adapt to the particular behaviour of the function being approximated. Unfortunately, the stability of this process has been established only for nearly uniform knot sequences. The stability can be linked to the norm of the inverse of the Gram matrix of a (appropriately scaled) B-spline basis. In an earlier report [2], we studied an important special case, that of a geometric knot sequence and there showed the norm of the inverse of that Gramian to be bounded independent of the mesh ratio.

In the present report, we continue these investigations and show, in particular, the surprising fact that the norm of the inverse of the Gramian is least (i.e., the stability is greatest) when the mesh is most nonuniform.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report.

 $L_{\underline{\omega}}$ -Lower Bound of L_2 -Projections onto Splines

on a Geometric Mesh

Y. Y. Feng and J. Kozak **

1. Introduction

We begin with the explanation of some notations.

 $\mathbb{I}_{n}(\lambda_{i}q):=\frac{1}{n!t^{n}}\sum_{i=0}^{n}(-)^{n-i}\binom{n}{i}\mathbb{I}_{n}^{n}(q^{j}-\lambda), \text{ the generalized Euler-Probenius polynomial of }j=0$

order n. t: = in q

 $\binom{n}{r}$: = $\frac{n!}{r!(n-r)!}$, a binomial coefficient.

 $a_{n,i}(q)$ (i = 0,1,...n-1): = the coefficients of the polynomial defined by

$$\sum_{i=0}^{n-1} a_{n,i}(q) \lambda^{i} := \frac{1}{\gamma_{n}(q-1)^{n}} \prod_{n} (\lambda_{i}q) \cdot \gamma_{n} := \frac{1}{n!t^{n}}$$

 $a_{n,i}^{(j)}$ (i = 0,1,...n-1, j = 0,...i(n-1-i)): = the coefficients of polynomial defined by

$$a_{n,i}(q) = i q^{(n-i)(n-1-i)/2} \int_{j=0}^{i(n-1-i)} a_{n,i}^{(j)} q^{j}$$
.

Given a biinfinite geometric knot sequence t: = $(q^{i})^{+\infty}_{-\infty}$ for some $q \in (0,\infty)$ with

$$t_{\pm \infty} := \lim_{i \to \pm \infty} t_{i}, I := (t_{-\infty}, t_{+\infty})$$
 .

we denote by

$$N_{n,i} := (t_{i+n}^{-}t_i) [t_{i},t_{i+1},...t_{i+n}] (\cdot-x)_{+}^{n-1}$$

the corresponding B-splines normalized so that

Department of Mathematics, Chinese University of Science and Technology, China.

Matematika in Mehanika, Univerza Edvarda, Kardelja, Yugoslavia.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

$$\sum_{i} N_{n,i}(x) = 1$$

and by $S_{n,t}:=\mathrm{span}\{N_{n,i}\}$, the space of splines of degree n-1 with knots t. We can consider the projectors $P_{k,r}:C(I)+S_{2k-r,t}$ defined by the condition that

$$P_{k,r}f = \sum_{i} a_{i} (f)N_{2k-r,i}$$
$$\sum_{j} (N_{r,i}, N_{2k-r,j})a_{j}(f) = (N_{r,i}, f)$$

with $(f,g) := \int_{a}^{b} f(x)g(x)dx$.

Then $P_{k,0}$ is the interpolation projector and $P_{k,k}$ the usual L_2 -projector onto $S_{k,t}$.

This paper is a continuation of [1]. In [1] the uniform boundedness of

$$\|\mathbf{G}_{\mathbf{r}}^{-1}\|_{\infty} = \left\| \frac{\|\mathbf{g}_{2k-1}(\mathbf{q}^{\mathbf{r}},\mathbf{q})\|}{\|\mathbf{g}_{2k-1}(-\mathbf{q}^{\mathbf{r}},\mathbf{q})\|} \right\|$$

for $q \in (0,\infty)$ with r = k, k-1 was proved. Here, G_r^{-1} is the inverse of corresponding B-spline Gram matrix. In this paper we obtain the sharp lower bound for $\|G_r^{-1}\|_{\infty}$. I.e. we prove that for any $q \in (0,\infty)$ and r = k, k-1, the inequality

$$\|G_{\mathbf{r}}^{-1}\|_{\infty} = \left| \frac{\|\mathbf{r}_{2k-1}(\mathbf{q}^{\mathbf{r}},\mathbf{q})\|}{\|\mathbf{r}_{2k-1}(\mathbf{q}^{\mathbf{r}},\mathbf{q})\|} \right| > 2k - 1$$

holds.

In order to prove this, we need some properties of $\Pi_n(\lambda;q)$ which were studied in [1] and [2]. For the reader's convenience we copy some of them as follows.

Proposition 1 [2] $\Pi_{n}(\lambda)q$ satisfies a "difference-delay" equation

$$\Pi_0(\lambda_2 \mathbf{q}) := 1$$

$$\Pi_{n+1}(\lambda_{1}\mathbf{q}) = \frac{1}{(n+1)t} \left((1-\lambda)\mathbf{q}^{n}\Pi_{n}(\mathbf{q}^{-1}\lambda_{1}\mathbf{q}) - (\mathbf{q}^{n+1}-\lambda)\Pi_{n}(\lambda_{1}\mathbf{q}) \right), \ n = 0, 1, \dots$$

Proposition 2 [1] The polynomial $\Pi_n(\lambda_i q)$ satisfies

$$\Pi_{n}(\lambda_{I}q) = \lambda^{n-1}q^{-n(n-1)/2}\Pi_{n}(q^{n}\lambda^{-1}_{I}q) . \qquad (1.1)$$

The coefficients $a_{n,i}(q)$ can be computed recursively by

$$a_{n+1,i}(q) = (q-1)^{-1}((q^{n+1}-q^{n-i})a_{n,i}(q) + (q^{n+1-i}-1)a_{n,i-1}(q)), \qquad (1.2)$$

where

$$a_{n,0}(q) := 1, a_{n,-1}(q) = a_{n,n}(q) := 0$$
.

Proposition 3 [1] The coefficients $a_{n,i}(q)$ satisfy

$$a_{n,i}(q) = q^{n(n-2i-1)/2} a_{n,n-1-i}(q)$$
 (1.3)

and for $n \ge 2$ the integer coefficients $a_{n,i}^{(j)}$ are symmetric

$$a_{n,i}^{(j)} = a_{n,i}^{(i(n-1-i)-j)}, \text{ all } j$$
 (1.4)

In particular

$$a_{n,i}^{(0)} = {n-1 \choose i}$$
 , (1.5)

$$a_{n,i}^{(1)} = (n-2) {n-1 \choose i} - {n-2 \choose i+1} - {n-2 \choose i-2}$$
 (1.6)

2. The sharp lower bound for $IG_r^{-1}I_{\infty}$

Before proving the theorem we need to do some preparation.

Lemma 2.1 The following equalities hold

$$\frac{\pi_{2k-1}(-q^k,q)}{\gamma_{2k-1}(q-1)^{2k-1}} = (-)^{k-1}q^{\frac{3}{2}(k(k-1))(k-1)^2} \sum_{j=0}^{(k-1)^2} (\alpha_{2k-1,j} - \beta_{2k-1,j})q^j$$

with

$$\alpha_{2k-1,j} := a_{2k-1,k-1}^{(j)} + \sum_{i=1}^{\infty} \left(a_{2k-1,k-1-2i}^{(j-i(2i-1))} + a_{2k-1,k-1-2i}^{(j-i(2i+1))} \right)$$

$$\beta_{2k-1,j} := a_{2k-1,k-2}^{(j)} + \sum_{i=1}^{\infty} \left(a_{2k-1,k-2i}^{(j-i(2i-1))} + a_{2k-1,k-2-2i}^{(j-i(2i+1))} \right) . \tag{2.1}$$

For convenience, here and below we use

$$a_{n,i}^{(r)} := 0$$
, if $r < 0$ or $r > i(n-1-i)$ as well as $i < 0$. (2.2)

In particular

$$\alpha_{2k-1,0} = {2k-2 \choose k-1}$$

$$\beta_{2k-1,0} = {2k-2 \choose k-2} . \qquad (2.3)$$

Similarly

$$\frac{\prod_{2k-2} (-q^{k-1})_{q}}{Y_{2k-2} (q-1)^{2k-2}} = (-)^{k-1} q^{\frac{1}{2}} (k-1)(3k-4) (k-1)(k-2) \sum_{j=0}^{k-1} (\alpha_{2k-2,j} - \beta_{2k-2,j}) q^{j} (2.4)$$

with

$$\alpha_{2k-2,j} = \beta_{2k-2,j} := a_{2k-2,k-2}^{(j)} + \sum_{i=1}^{\infty} (a_{2k-2,k-1-2i}^{(j-i(2i-1))} + a_{2k-2,k-2-2i}^{(j-i(2i+1))})$$

$$= \sum_{i=0}^{\infty} a_{2k-2,k-2-i}^{(j-\frac{1}{2}i(i+1))} \cdot$$

$$\frac{\pi_{2k-1}(-q^k;q)}{\gamma_{2k-1}(q-1)^{2k-1}} = \sum_{i=0}^{2k-2} a_{2k-1,i}(q)(-q^k)^i$$

$$= \sum_{i=0}^{2k-2} \sum_{j=0}^{i(2k-2-i)} (-)^i q^{0} a_{2k-1,i}^{(j)}$$

with

$$\phi_{i}$$
: = $\frac{1}{2}$ (2k-1-i)(2k-2-i) + ik

$$\min_{0 \le i \le 2k-2} \Phi_{i} = q^{\frac{3}{2}k(k-1)}$$

Let

$$\varphi_{i}$$
 : = Φ_{i} - $\frac{3}{2}$ k(k-1) = $\frac{1}{2}$ (k-1-i)(k-2-i)

then

$$\begin{split} \frac{\prod_{2k-1}(-q^k)_{1}q)}{\gamma_{2k-1}(q-1)^{2k-1}} &= q^{\frac{3}{2}} \frac{k(k-1)}{\sum_{i=0}^{2k-2} \sum_{j=0}^{i(2k-2-i)}} (-)^{i} a_{2k-1,i}^{(j)} q^{i+j} \\ &= q^{\frac{3}{2}} \frac{k(k-1)}{\sum_{i=0}^{k-1} \sum_{j=0}^{(k-1)^{2}-i^{2}}} (-)^{k-1-i} q^{\frac{1}{2}} \frac{i(i-1)+j}{a_{2k-1,k-1-i}} \\ &+ \sum_{i=1}^{k-1} \sum_{j=0}^{(k-1)^{2}-i^{2}} (-)^{k-1+i} q^{\frac{1}{2}} \frac{i(i+1)+j}{a_{2k-1,k-1-i}} \\ &= (-)^{k-1} q^{\frac{3}{2}} \frac{k(k-1)}{\sum_{j=0}^{(k-1)^{2}} a_{2k-1,k-1}^{(j)} q^{j} + \sum_{i=1}^{k-1} \sum_{j=0}^{(k-1)^{2}-i^{2}} \\ &(-)^{i} (q^{\frac{1}{2}} \frac{i(i-1)+j}{a_{2k-1,k-1-i}} + q^{\frac{1}{2}} \frac{i(i+1)+j}{a_{2k-1,k-1-i}}) \\ &= (-)^{k-1} q^{\frac{3}{2}} \frac{k(k-1)}{\sum_{j=0}^{(k-1)^{2}} (a_{2k-1,k-1}^{(j)} - a_{2k-1,k-1-i}^{(j)} + a_{2k-1,k-1-2i}^{(j)}) \\ &= (-)^{k-1} q^{\frac{3}{2}} \frac{k(k-1)}{\sum_{j=0}^{(k-1)^{2}}} (a_{2k-1,k-1}^{(j)} - a_{2k-1,k-2}^{(j)} + a_{2k-1,k-2i}^{(j)} + a_{2k-1,k-1-2i}^{(j-i(2i+1))} \\ &+ a_{2k-1,k-1-2i}^{(j-i(2i+1))} - \sum_{i=1}^{\infty} (a_{2k-1,k-2i}^{(j-i(2i-1))} + a_{2k-1,k-2-2i}^{(j-i(2i+1))}) q^{j} \end{cases}, \end{split}$$

and (2.1) follows.

By (2.1) and (1.5) we get

$$\alpha_{2k-1,0} = a_{2k-1,k-1}^{(0)} = {2k-2 \choose k-1}$$

$$\beta_{2k-1,0} = a_{2k-1,k-2}^{(0)} = {2k-2 \choose k-2}.$$

The same kind of argument proves (2.4).

An analogous argument gives

$$\frac{\pi_{2k-1}(q^{k};q)}{\Upsilon_{2k-1}(q-1)^{2k-1}} = \frac{\frac{3}{2}}{q^{2k}} k(k-1) \frac{(k-1)^{2}}{\sum_{j=0}^{2k} (\alpha_{2k-1,j} + \beta_{2k-1,j})q^{j}}, \qquad (2.5)$$

$$\frac{\prod_{2k-2}(q^{k-1};q)}{\sum_{2k-2}(q-1)^{2k-2}} = q^{\frac{1}{2}(k-1)(3k-4)(k-1)(k-2)} \sum_{j=0}^{(\alpha_{2k-2,j}+\beta_{2k-2,j})q^{j}} . \quad (2.6)$$

A straightforward calculation starting with the formula defining $\Pi_{n}(\lambda_{f}q)$ leads to the expressions

$$\frac{\prod_{2k-1}(q^k rq)}{\gamma_{2k-1}(q-1)^{2k-1}} = {2k-1 \choose k} q^{\frac{3}{2}} \frac{k(k-1)}{\prod_{i=1}^{k-2}} (1 + q + \cdots + q^{\frac{1}{2}})^2 (1 + q + \cdots + q^{k-1})$$

$$=: {2k-1 \choose k} q^{\frac{3}{2}k(k-1)} {(k-1)^2 \choose j=0} d_{2k-1,j} q^{j}$$
 (2.7)

$$\frac{\prod_{2k-2} (q^{k-1}, q)}{\gamma_{2k-2} (q-1)^{2k-2}} = {\binom{2k-2}{k-1}} q^{\frac{1}{2}} {\binom{(k-1)(3k-4)}{3k-4}} {\binom{k-2}{1}} {\binom{1+q+\cdots+q^1}{2}}^2$$

$$=: {2k-2 \choose k-1} q^{\frac{1}{2}(k-1)(3k-4)(k-1)(k-2)} \sum_{j=0}^{d} d_{2k-2,j}q^{j} . \qquad (2.8)$$

From (2.5), (2.6), (2.7), (2.8) it is easy to find the following relations

$${\binom{2k-1}{k}}^{d}_{2k-1,i} = \alpha_{2k-1,i} + \beta_{2k-1,i}$$
 (2.9)

$${2k-2 \choose k-1} d_{2k-2,i} = \alpha_{2k-2,i} + \beta_{2k-2,i} = 2\alpha_{2k-2,i}$$
 (2.10)

$$d_{2k-1,i} = \sum_{j=0}^{k-1} d_{2k-2,i-j}$$
 (2.11)

$$d_{2k-2,i} = \sum_{j=0}^{k-2} d_{2k-3,i-j}$$
 (2.12)

and

$$d_{2k-1,i} = d$$

$$2k-1,(k-1)^{2}-i$$
(2.13)

$$d_{2k-2,i} = d_{2k-2,(k-1)(k-2)-i}$$
 (2.14)

where

$$d_{n,i} : = \alpha_{n,i} : = 0 \text{ if } i < 0$$
.

Lemma 2.2 The following equality holds

$$a_{n,i}^{(\ell)} = \sum_{r=\ell-i}^{\ell} a_{n-1,i}^{(r)} + \sum_{r=\ell+i-n+1}^{\ell} a_{n-1,i-1}^{(r)}.$$
 (2.15)

(i)

<u>Proof</u> By (1.2) and the definitin of $a_{n,i}^{(i)}$

$$a_{n,i}(q) = q^{(n-i)(n-1-i)/2} \sum_{\ell=0}^{i(n-1-i)} a_{n,i}^{(\ell)} q^{\ell}$$
 (*)

and

$$a_{n,i}(q) = q^{n-1-i}(1 + q+\cdots+q^{i})a_{n-1,i}(q) + (1 + q+\cdots+q^{n-i-1}) a_{n-1,i-1}(q)$$

$$= q^{(n-i)(n-1-i)/2} \sum_{j=0}^{i(n-1-i)} \left(\sum_{r=j-i}^{j} a_{n-1,i}^{(r)} + \sum_{r=j+i-n+1}^{j} a_{n-1,i-1}^{(r)}\right)q^{j} .$$
(2.16)

Comparing with (*), (2.15) follows.

Corollary 2.1 The following inequalities

$$a_{n,i}^{(\ell)} > a_{n,i}^{(\ell-1)}$$
 for $\ell \le [\frac{1}{2} i(n-i-1)], 0 \le i \le n-1$ (2.17)

and

$$a_{n,i}^{(\ell)} > a_{n,i-1}^{(\ell)}$$
 for $0 < \ell < i (n-1-i), i < [\frac{n-1}{2}]$ (2.18)

hold.

Proof We use mathematical induction to prove (2.17), (2.18). Suppose for n-1 (2.17),
(2.18) hold. Using (2.15),

$$a_{n,i}^{(\ell)} - a_{n,i}^{(\ell-1)} = (a_{n-1,i}^{(\ell)} - a_{n-1,i}^{(\ell-i-1)}) + (a_{n-1,i-1}^{(\ell)} - a_{n-1,i-1}^{(\ell+i-n)}) .$$

Since (1.4)

$$a_{n,i}^{(\ell)} = a_{n,i}^{(i(n-1-i)-\ell)}$$

and

$$\ell \leqslant \frac{1}{2}$$
 i(n-1-i) as well as $0 \leqslant \iota \leqslant n-1$.

We get

$$a_{n-1,i}^{(\ell)} > a_{n-1,i}^{(\ell-i-1)}, \quad \text{if} \quad \ell < \frac{1}{2} i(n-2-i)$$

$$a_{n-1,i}^{(\ell)} > a_{n-1,i}^{\left[\frac{1}{2} i(n-2-i) - \frac{i}{2}\right]} > a_{n-1,i}^{(\ell-i-1)}, \quad \text{if} \quad \frac{1}{2} i(n-2-i) < \ell < \frac{1}{2} i(n-1-i) .$$

However

$$a_{n-1,i}^{(\ell)} \ge a_{n-1,i}^{(\ell-i-1)}$$
 for $0 \le \ell \le \frac{1}{2} i(n-1-i)$.

The same kind of argument shows

$$a_{n-1,i-1}^{(l)} > a_{n-1,i-1}^{(l+i-n)}$$
.

Now, we bring the induction hypothesis to the next level and (2.17) is proved since it obviously holds for n=2.

In order to prove (2.18), it is enough to prove (2.18), only for $0 \le \ell \le \frac{1}{2}$ (i-1)(n-i) because of (2.17) and (1.4). By (2.15)

$$a_{n,i}^{(\ell)} - a_{n,i-1}^{(\ell)} = \sum_{r=\ell-i+1}^{\ell} \left(a_{n-1,i}^{(r)} - a_{n-1,i-1}^{(r)} \right) + \sum_{r=\ell+i-n+1}^{\ell} \left(a_{r-1,i-1}^{(r)} - a_{n-1,i-2}^{(r)} \right) + \left(a_{n-1,i}^{(\ell-i)} - a_{n-1,i-2}^{(\ell+i-n)} \right).$$

By induction hypthesis and (2.17), we know

$$a_{n-1,i-1}^{(r)} > a_{n-1,i-2}^{(r)}$$

and

$$a_{n-1,i}^{(r)} - a_{n-1,i-1}^{(r)} > 0$$

as well as

$$a_{n-1,i}^{(\ell-i)} > a_{n-1,i-1}^{(\ell-i)} > a_{n-1,i-1}^{(\ell+i-n)} > a_{n-1,i-2}^{(\ell+i-n)}$$

Therefore (2.18) holds for $\, n \,$ and so (2.18) is proved, since it is obviously right for $\, n \, = \, 2 \, . \,$

Lemma 2.3 The following equalities

$$\alpha_{2k-1,j} = 2 \int_{r=j-k+1}^{j} a_{2k-2,k-1}^{(r)} + \int_{i=1}^{\infty} \left(\sum_{r=j-k+1-i(2i-3)}^{j-i(2i-1)} a_{2k-2,k-1-2i}^{(r)} + \sum_{r=j-k+1-i(2i+1)}^{j-i(2i-1)} a_{2k-2,k-2-2i}^{(r)} + \sum_{r=j-k+1-i(2i-1)}^{j-i(2i+1)} a_{2k-2,k-1-2i}^{(r)} + \sum_{r=j-k+1-i(2i-1)}^{j-i(2i+1)} a_{2k-2,k-2-2i}^{(r)} \right)$$

$$\frac{1}{i=j-k+1} \alpha_{2k-2,i} = \int_{r=j-k+1}^{j} a_{2k-2,k-2}^{(r)} + \int_{i=1}^{\infty} \left(\sum_{r=j-k+1-i(2i-1)}^{j-i(2i-1)} a_{2k-2,k-2-2i}^{(r)} \right)$$

$$+ \int_{r=j-k+1-i(2i+1)}^{j-i(2i+1)} a_{2k-2,k-2-2i}^{(r)}$$

$$+ \int_{r=j-k+1-i(2i+1)}^{j-i(2i+1)} a_{2k-2,k-2-2i}^{(r)}$$

$$(2.20)$$

hold.

Proof From (2.1), (2.4) and Lemma 2.2, by straightforward calculations, (2.19) and (2.20) can be proved.

<u>Lemma 2.4</u> For $j \le \left[\frac{1}{2}(k-1)^2\right]$, the inequality

$$\alpha_{2k-1,j} \le \alpha_{2k-1,0} \cdot \alpha_{2k-1,j}$$

holds.

Proof Since

$$a_{2k-1,0} \cdot a_{2k-1,j} = {2k-2 \choose k-1} \sum_{\ell=j-k+1}^{j} a_{2k-2,\ell}$$

$$= 2 \sum_{\ell=j-k+1}^{j} a_{2k-2,\ell} . \qquad (2.21)$$

In order to prove Lemma 2.4 it is enough to show

$$\alpha_{2k-1,j} \le 2 \sum_{\ell=j-k+1}^{j} \alpha_{2k-2,\ell}$$
 (2.22)

From (2.19) and (2.20)

$$2 \sum_{k=j-k+1}^{j} \alpha_{2k-2,k} - \alpha_{2k-1,j}$$

$$= \sum_{i=1}^{\infty} \left(\sum_{r=j-k+1-i(2i-3)}^{j-k-i(2i-3)} a_{2k-2,k-1-2i}^{(r)} + \sum_{r=j+1-i(2i+1)}^{j-i(2i-1)} a_{2k-2,k-1-2i}^{(r)} - \sum_{r=j+1-i(2i+1)}^{j-i(2i-1)} a_{2k-2,k-2-2i}^{(r)} - \sum_{r=j-k+1-i(2i+3)}^{j-k-i(2i+1)} a_{2k-2,k-2-2i}^{(r)} \right)$$

$$= \sum_{i=1}^{\infty} \left(\sum_{r=j+1-i(2i+1)}^{j-i(2i-1)} \left(a_{2k-2,k-1-2i}^{(r)} - a_{2k-2,k-2-2i}^{(r)} \right) + \sum_{r=j-k+1-i(2i+1)}^{j-k-i(2i-3)} \left(a_{2k-2,k-1-2i}^{(r)} - a_{2k-2,k-2-2i}^{(r-4i)} \right) \right) .$$

Because of (2.17), (2.18) and (1.4), Lemma 2.4 is verified.

After the preceding preparations now it is time to prove the following theorem. Theorem For any $q \epsilon (0,\infty)$ and r=k-1,k, the inequality

$$\|\mathbf{G}_{\mathbf{r}}^{-1}\| = \left| \frac{\pi_{2k-1}(\mathbf{q}^{\mathbf{r}}_{1}\mathbf{q})}{\pi_{2k-1}(-\mathbf{q}^{\mathbf{r}}_{1}\mathbf{q})} \right| > 2k-1$$
 (3.0)

holds, and $\lim_{q\to\infty} |G_{\mathbf{r}}^{-1}| = 2k-1$.

<u>Proof</u> Because of the symmetry of $\Pi_n(\lambda;q)$, we can restrict our discussin to the case $q \in [1,\infty)$.

Since (2.1), (2.3), (2.7), Lemma 2.4 and (1.1), we know

$$\frac{\left|\frac{\pi_{2k-1}(q^{k-1};q)}{\pi_{2k-1}(-q^{k-1};q)}\right|}{\left|\frac{\pi_{2k-1}(q^{k};q)}{\pi_{2k-1}(-q^{k};q)}\right|} = \frac{\left|\frac{\pi_{2k-1}(q^{k};q)}{\pi_{2k-1}(-q^{k};q)}\right|}{\left|\frac{\pi_{2k-1}(q^{k};q)}{\pi_{2k-1}(q^{k};q)}\right|} = \frac{\left(\frac{2k-1}{k}\right)^{2} \sum_{i=0}^{k-1} (2\alpha_{2k-1,i} - {2k-1 \choose k}) d_{2k-1,i}q^{i}}{\left(\frac{2k-1}{k}\right)^{2} \sum_{i=0}^{k-1} (2\alpha_{2k-1,i} - {2k-1 \choose k}) d_{2k-1,i}q^{i}}$$

$$\Rightarrow \frac{\left(\frac{2k-1}{k}\right)^{2} \sum_{i=0}^{k-1} d_{2k-1,i}q^{i}}{\left(\frac{2k-1}{k}\right)^{2} \left(2\alpha_{2k-1,0} \cdot d_{2k-1,i} - {2k-1 \choose k}\right) d_{2k-1,i}q^{i}}$$

$$= 2k-1 ,$$

and refer to [1] for equality.

The proof of the theorem relies on Lemma 2.4 mainly. In order to prove the monotonicity of

$$\left| \frac{\prod_{2k-1} (q^k, q)}{\prod_{2k-1} (-q^k, q)} \right| \text{ for } q \in (0, \infty) ,$$

it is sufficient to prove the stronger inequality

$$\frac{\alpha_{2k-1,j}}{\alpha_{2k-1,j+1}} > \frac{d_{2k-1,j}}{d_{2k-1,j+1}} \text{ for } 0 < j < \left[\frac{1}{2} (k-1)^2\right],$$

we fail to prove this inequality. But numerical results (see appendix) show the inequality is true at least for $n \le 9$.

Acknowledgement

We would like to thank Professor Carl de Boor for his valuable help.

REFERENCES

- 1. Y. Y. Feng and J. Kozak, On the generalized Euler-Probenius polynomial, MRC Technical Summary Report #2088.
- 2. A. Micchelli, Cardinal L-splines, in "Studies in Spline Functions and Approximation
 Theory", Academic Press, 1976, 203-250.

YYP/JK/jvs

3. Appendix. The table of $a_{n,i}$, $\beta_{n,i}$, $a_{n,i}$, $a_{n,i}$ for $n \le 9$

A. Table of $a_{n,i}$, $b_{n,i}$, $d_{n,i}$ for $4 \le n \le 9$, $i = 0,1, \cdots \left(\frac{n-1}{2}\right) \cdot \left(\frac{n}{2}\right)$

16					! !								20	95	1
z													476	406	7
7													1728	1548	26
13													4449	4119	89
12											35	1	\$006	8509	139
11											210	9	15073	14411	234
10											599	19	21448	20636	334
6								20	15	ι	1470	42	26354	25432	411
8								96	62	5	2485	11	28202	27238	440
7								242	213	13	3360	8	26354	25432	411
9						10	1	422	383	23	3710	106	21448	20636	334
5						40	4	548	502	30	3360	%	15073	14411	234
4			9	4	1	80	8	548	502	30	2485	11	9005	8509	139
-			17	13	3	100	10	422	283	23	1470	42	4449	4119	68
2	3	1	22	18	4	80	8	242	213	13	999	19	1728	1548	26
-1	9	2	17	13	3	04	4	96	79	\$	210	9	9/2	406	7
0	3	1	9	4	1	10	1	20	15	1	35	1	70	56	-
B L	g=v	ק	8	83	ъ	a=8	q	ಶ	8 0.	q	a=6	Q	8	6 2	٥
0		•		'n		٠	,				a	,		6	

-	-	-	-	- 1	-	-												
3 4 5	1 2 3 4	2 3 4	3	*		s		9	7	8	6	10	11	12	13	14	15	16
0 1	1						\vdash											
1 3 5 3	2		3				$\overline{}$											
0 1	τ						\vdash											ŀ
1 4 9 9 4	6 6	6		4			Н											
2 6 16 22 16 6	16 22 16	22 16	2 16		9												! !	
0 1	τ						\vdash											
1 5 14 19 14 5	14 19 14	19 14	14		5		- 1											
2 10 35 66 80 66 35	35 66 80 66	99 08 99	99 08	99		35	\vdash	10										
0 1	τ																	L
1 6 20 34 34 20 6	20 34 34 20	34 34 20	34 20	20		9	\vdash											<u>L</u> .
2 15 64 149 233 269 233	64 149 233 269	149 233 269	9 233 269	269		233		149	64	15							_	
3 20 90 222 382 494 494	90 222 382 494	222 382 494	2 382 494	494	_	494	-	382	222	06	20							
0 1																		
1 7 27 55 69 55 27	27 55 69 55	55 69 55	5 69 55	55		27		7										<u>L</u> _
2 21 105 288 540 765 855	105 288 540 765	288 540 765	3 540 765	765	_	855		765	540	288	105	21						L.
3 35 189 560 1175 1918 2540	189 560 1175 1918	560 1175 1918	0 1175 1918	1918	_	2540		2785	2540	1918	1175	560	189	35				
0 1	1																	
1 8 35 83 125 125 83	35 83 125 125	83 125 125	125 125	125		83		35	8									
2 28 160 503 1091 1806 2400	160 503 1091 1806	503 1091 1806	3 1091 1806	1806		2400		2632	2400	1806	1001	503	160	28				
3 56 350 1198 2913 5561 8767	350 1198 2913 5561	1198 2913 5561	2913 5561	5561		876	$\overline{}$	11736	13536	13536	11736	8767	5561	2913	1198	350	8	
4 70 448 1568 3918 7754 12764	448 1568 3918 7754	1568 3918 7754	8 3918 7754	7754	-	12764		17956	21916	23402	21916	17956	12764	7754	3918	1568 448	448	2

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO #2178 Y AP-A09956	3. RECIPIENT'S CATALOG NOVER O
L. TITLE (and Substite) $L_{\infty}\text{-Lower Bound of} L_{2}\text{-Projections onto Splines}$ on a Geometric Mesh	5. Type of Report a period covered Summary Report - no specific reporting period 6. PERFORMING ORG. REPORT NUMBER
7. Author(*) Y. Y. Feng and J. Kozak	B. CONTRACT OR GRANT NUMBER(#) DAAG29-80-C-0041
Mathematics Research Center, University of 610 Walnut Street Wisconsin Madison. Wisconsin 53706 Controlling office Name and Address U. S. Army Research Office	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS Work Unit Number 3 - Numerical Analysis and Computer Science 12. REPORT DATE February 1981
P.O. Box 12211 Research Triangle Park, North Carolina 27709 14. MONITORING IGENCY NAME & ADDRESS(II dillerent from Controlling Office)	13. NUMBER OF PAGES 16 15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited.

- 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)
- 18. SUPPLEMENTARY NOTES
- 19. KEY WORDS (Continue on teverse side if necessary and identify by block number)

Euler-Frobenius polynomial, splines, sharp lower bound, Least-squares approximation

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

In [1], we gave another proof of the boundedness of L_2 -projections onto splines on a geometric mesh. In this paper, we obtain the sharp lower bound for the inverse of the corresponding B-spline Gram matrix. I.e.

$$\|G_{\mathbf{r}}^{-1}\|_{\infty} = \left|\frac{\Pi_{2k-1}(q^{r};q)}{\Pi_{2k-1}(-q^{r};q)}\right| \ge 2k-1, \text{ for } r=k, k-1.$$

