邯郸市 2024 高二第二学期期末考试 数学试卷参考答案

- 1. D 因为 i(3+5i)=-5+3i, i(3-5i)=5+3i, 所以这 4 个复数中只有 i(3-5i)的实部大于虚部.
- 2. A f(-4) = -f(4) = -(16-7) = -9
- 3. B 由捆绑法可得,甲、乙、丙站在一起的概率为 $\frac{A_3^3 A_8^8}{A_1^{10}} = \frac{A_3^3}{10 \times 9} = \frac{1}{15}$.
- 4. B 如图,由题可知 $\angle PAB$ = 45° , $\angle PBC$ = 15° , $\angle APB$ = 90° - 45° + 15° = 60° ,在 $\triangle ABP$ 中,由正弦定理可得 $\frac{AB}{\sin\angle APB}$ = $\frac{PB}{\sin\angle PAB}$,则 PB= $\frac{AB\sin\angle PAB}{\sin\angle APB}$ = $\frac{10\sqrt{6}}{3}$ cm.

- 5. D 因为正六边形的中心到每个顶点的距离等于该正六边形的边长,且正六棱台 $ABCDEF-A_1B_1C_1D_1E_1F_1$ 的侧棱与底面所成的角为 $\frac{\pi}{4}$,所以该正六棱台的高 $h=(6-2)\tan 45^\circ=4$. 依 题意可得底面 ABCDEF 的面积 $S_1=\frac{\sqrt{3}}{4}\times 2^2\times 6=6\sqrt{3}$,底面 $A_1B_1C_1D_1E_1F_1$ 的面积 $S_2=\frac{\sqrt{3}}{4}\times 6^2\times 6=54\sqrt{3}$,所以该正六棱台的体积 $V=\frac{1}{3}\times 4\times (6\sqrt{3}+54\sqrt{3}+\sqrt{6\sqrt{3}\times54\sqrt{3}})=104\sqrt{3}$.
- 6. C 依题意可得 $|PC| = \sqrt{1^2 + (2\sqrt{6})^2} = 5$,设 P(x,y),则 $\sqrt{(x-4)^2 + y^2} = \sqrt{(x-4)^2 + 8x} = \sqrt{x^2 + 16} = 5$,解得 $x = \pm 3$,因为 $y^2 = 8x \ge 0$,所以 x = 3. 因为 M 的准线方程为 x = -2,所以 点 P 到 M 的准线的距离为 3 (-2) = 5.
- 7. A 如图,依题意可得点 E 在线段 AB (不含端点)上,点 F 在线段 AC (不含端点)上, DE_AB ,设 BD=x(0< x<2),则 $BE=BD\cos\angle ABC=\frac{1}{2}x$,CD=2-x. 因为 DF//AB, $\triangle ABC$ 为正三角形,所以 $\triangle CDF$ 为正三角形,所以 BE=CD=2-x,所以 BE=CD=2-x ,所以 BE=CD=2-x ,可以 B

- $\left(\frac{7}{4}\right)^2 + \frac{15}{16}$,因为 0 < x < 2,所以当 $x = \frac{7}{4}$ 时, $|\overrightarrow{BE}| + |\overrightarrow{DF}|^2$ 取得最小值,且最小值为 $\frac{15}{16}$.
- 8. C 由二项式定理,得 $a = C_{16}^0 \times 5^{16} \times (-1)^0 + C_{16}^1 \times 5^{15} \times (-1)^1 + \cdots + C_{16}^{15} \times 5 \times (-1)^{15} + C_{16}^{16} \times 5^0 \times (-1)^{16} 3 = (5-1)^{16} 3 = 4^{16} 3 = (14+2)^8 3 = C_8^0 \times 14^8 \times 2^0 + C_8^1 \times 14^7 \times 2^1 + \cdots + C_8^7 \times 14^1 \times 2^7 + C_8^8 \times 14^0 \times 2^8 3.$

因为能够被 7 整除, $C_8^8 \times 14^0 \times 2^8 - 3 = 253$ 被 7 除余 1,所以 $a \equiv 1 \pmod{7}$. 因为 2024 除以 7 余 1,2025 除以 7 余 2,2026 除以 7 余 3,2027 除以 7 余 4,所以 $a \equiv 2024 \pmod{7}$.

9. ACD $f(x) = \sqrt{2} \sin(x - \frac{\pi}{4}) + 2$,则 f(x)的最小正周期为 2π ,f(x)的最大值为 $2 + \sqrt{2}$,f(x)的图象关于点 $\left(\frac{\pi}{4}, 2\right)$ 对称,f(x)的图象关于直线 $x = -\frac{\pi}{4}$ 对称.

10. BCD 依题意可得 $\frac{\sqrt{3}}{2} = \sqrt{1 - \frac{m}{8}}$,解得 m = 2,则 C 的短轴长为 $m = 2\sqrt{2}$,A 错误. 若 P 为短轴上的端点,O 为坐标原点,则 $\tan \angle F_1 PO = \frac{\sqrt{6}}{\sqrt{2}} = \sqrt{3}$, $\angle F_1 PO = \frac{\pi}{3}$, $\angle F_1 PF_2 = \frac{2\pi}{3} > \frac{\pi}{2}$,所以 C 上存在点 P,使得 $PF_1 \perp PF_2$,B 正确. 设 $P(x,y)(-2\sqrt{2} \leqslant x \leqslant 2\sqrt{2})$, $F_1(-\sqrt{6},0)$,

 $\frac{3x^2}{4}$ −4 ∈ [−4,2], C 正确. 设 P(x,y) 为椭圆 C 上任意一点, 因为 $|PF_1| + |PF_2| = 2a = 2a$

 $4\sqrt{2}$,所以 $\sqrt{(x+\sqrt{6})^2+y^2}+\sqrt{(x-\sqrt{6})^2+y^2}=4\sqrt{2}$,D正确.

- 11. BC $f'(x) = \frac{1}{(x-1)\ln a} + \frac{1}{(x+1)\ln(a+2)} = \frac{x[\ln a + \ln(a+2)] + \ln(a+2) \ln a}{(x^2-1)\ln a \cdot \ln(a+2)}$. 当 0 < a < 1, x > 1 时, $(x^2-1)\ln a \cdot \ln(a+2) < 0$,所以 $x[\ln a + \ln(a+2)] + \ln(a+2) - \ln a$ ≥ 0 对 $x \in (1, +\infty)$ 恒成立,设 $g(x) = x[\ln a + \ln(a+2)] + \ln(a+2) - \ln a$,则 $\ln a + \ln(a+2) = \ln(a^2 + 2a) \ge 0$ 且 $g(1) = 2\ln(a+2) \ge 0$,则 $\begin{cases} a^2 + 2a \ge 1 \\ 0 < a < 1 \end{cases}$,解得 $a \in [\sqrt{2} - 1, 1)$.
- 12.7 依题意可得 $A = \{0,1,2,3,4,5,6,7,8,9\}$, $B = \{x \mid -2 < x < 7\}$, 则 $A \cap B = \{0,1,2,3,4,5,6\}$, 故 $A \cap B$ 中元素的个数为 7.
- 13. 10. 8 $: 6 \times 60\% = 3.6, : m = 5, : E(X) = 2 \times 0.3 + 5 \times 0.6 + 14 \times 0.1 = 5, : D(X) = (2 5)^2 \times 0.3 + (5 5)^2 \times 0.6 + (14 5)^2 \times 0.1 = 10.8.$
- 14. 34π 连接 BD 交 AC 于点 O, 连接 OE, 因为 PE, OE 共面,且 PB // 平面 EAC, 所以 PB // OE, 易知 O 为 BD 的中点,所以 E 为 PD 的中点. 设四面体 ABCE 外接球的球心为 Q, 则 OQ \bot 平面 ABC, 设 OQ = h,则 $OQ^2 + OC^2 = QE^2$,所以 $h^2 + (2\sqrt{2})^2 = (h \sqrt{2})^2 + (2\sqrt{2})^2$,解得 $h = \frac{\sqrt{2}}{2}$,故四面体 ABCE 外接球的表面积为 $4\pi(h^2 + B) = 34\pi$.

15. 解:(1)设 $b_n = \frac{a_n}{n^2}$,则 $b_1 = \frac{a_1}{1^2} = \frac{1}{4}$, $b_2 = \frac{a_2}{2^2} = \frac{1}{16}$,则 $\frac{b_2}{b_1} = \frac{1}{4}$, 2 分 所以 $\left\{\frac{a_n}{n^2}\right\}$ 是首项为 $\frac{1}{4}$,公比也为 $\frac{1}{4}$ 的等比数列, 3 分 所以 $\frac{a_n}{n^2} = \left(\frac{1}{4}\right)^n$, 5 分 则 $a_n = \frac{n^2}{4^n}$. 6 分 (2) $\sqrt{a_n} = \frac{n}{2^n}$, 7 分

则 $S_n = \frac{1}{2} + \frac{2}{2^2} + \dots + \frac{n}{2^n}$, 8 分 则 $\frac{1}{2}S_n = \frac{1}{2^2} + \frac{2}{2^3} + \dots + \frac{n}{2^{n+1}}$, 9 分

所以
$$S_n - \frac{1}{2}S_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} - \frac{n}{2^{n+1}} = \frac{\frac{1}{2}\left[1 - \left(\frac{1}{2}\right)^n\right]}{1 - \frac{1}{2}} - \frac{n}{2^{n+1}} = 1 - \frac{n+2}{2^{n+1}}, \dots 12$$
 分

故
$$S_n = 2 - \frac{n+2}{2^n}$$
. 13 分

16. 解:(1)列联表如下:

	对民航招飞有意向	对民航招飞没有意向	合计
男生	100	500	600
女生	100	300	400
合计	200	800	1000

200 | 800 | 1000 | 3分 | 零假设为 H_0 : 该校高三学生是否有民航招飞意向与学生性别无关联. 4分 | 因为 $\chi^2 = \frac{1000 \times 20000 \times 20000}{200 \times 800 \times 600 \times 400} = \frac{125}{12} \approx 10.417 > 6.635$, 7分 所以根据小概率值 $\alpha = 0.01$ 的独立性检验,推断 H_0 不成立,即认为该校高三学生是否有民航招飞意向与学生性别有关. 8分 (2)因为每名报名学生通过前 3 项流程的概率依次为 $\frac{3}{4}$, $\frac{2}{3}$, $\frac{1}{3}$, 所以每名报名学生通过前 3 项流程的概率为 $P_0 = \frac{3}{4} \times \frac{2}{3} \times \frac{1}{3} = \frac{1}{6}$. 10分

又 PA上底面 ABC,所以 $PA\perp AB$,所以 $BP=\sqrt{AB^2+AP^2}=2\sqrt{3}$,由等面积法得 AQ=

(2)以 A 为原点建立空间直角坐标系,如图所示,则 A(0,0,0),C(0,4, P

	设平面 ACQ 的法向量为 $\mathbf{n}_1 = (x, y, z)$,则 $\left\{ \overrightarrow{AQ} \cdot \mathbf{n}_1 = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}}_{\mathbf{q}} \right\} \left\{ \frac{2}{3} (x + y + 2z) = 0, \underbrace{\mathbb{Q}_$
	令 $x=2$,得 $\mathbf{n}_1=(2,0,-1)$.
	则 $\cos\langle \mathbf{n}_1, \mathbf{n}_2 \rangle = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{ \mathbf{n}_1 \mathbf{n}_2 } = -\frac{\sqrt{5}}{5}.$ 14 分
	由图可知,二面角 Q - AC - B 为锐角,所以二面角 Q - AC - B 的余弦值为 $\frac{\sqrt{5}}{5}$ 15 分
18.	(1)解:依题意可得 $\begin{cases} 64m-7n=1, \\ 16m-n=1, \end{cases}$
	$m=\frac{1}{8}$, $m=\frac{1}{8}$, $m=1$,
	所以 Ω 的方程为 $\frac{x^2}{8}$ — y^2 = 1. 4 分 (2)证明:由(1)知 Ω 的右焦点为(3,0), 5 分
	(2)证明:由(1)知 Ω 的右焦点为(3,0), 5分
	联立 $\left\{\frac{y=k(x-3)}{x^2}, \frac{4(1-8k^2)x^2+48k^2x-72k^2-8=0}{8-y^2=1}, \frac{4(1-8k^2)x^2+48k^2x-72k^2-8=0}{8-y^2=1}, \frac{6}{9}\right\}$
	设 $M(x_1, y_1), N(x_2, y_2),$ 则 $\begin{cases} x_1 + x_2 = \frac{48k^2}{8k^2 - 1}, \\ x_1 x_2 = \frac{72k^2 + 8}{8k^2 - 1}, \end{cases}$
	$1-8k^2 \neq 0$,即 $k^2 \neq \frac{1}{8}$.
	因为点 N 关于 x 轴的对称点为 P ,所以 $P(x_2,-y_2)$, 9 分
	则直线 PM 的方程为 $y-y_1 = \frac{y_1+y_2}{x_1-x_2}(x-x_1)$,
	根据对称性可知,直线 PM 经过的定点必在 x 轴上, ···································
	令 $y=0$,得 $x=-y_1 \frac{x_1-x_2}{y_1+y_2}+x_1=\frac{y_1x_2+x_1y_2}{y_1+y_2}$
	$=\frac{k(x_1-3)x_2+x_1k(x_2-3)}{k(x_1-3)+k(x_2-3)} = \frac{2kx_1x_2-3k(x_1+x_2)}{k(x_1+x_2)-6k} = \frac{2k\frac{72k^2+8}{8k^2-1}-3k\frac{48k^2}{8k^2-1}}{k\frac{48k^2}{8k^2-1}-6k}. \cdots 14 $
	当 $k \neq 0$ 且 $k^2 \neq \frac{1}{8}$ 时, $x = \frac{2 \times \frac{72k^2 + 8}{8k^2 - 1} - 3 \times \frac{48k^2}{8k^2 - 1}}{\frac{48k^2}{8k^2 - 1} - 6} = \frac{144k^2 + 16 - 144k^2}{48k^2 - (48k^2 - 6)} = \frac{8}{3}$, … 16 分
	所以直线 PM 过定点 $\left(\frac{8}{3},0\right)$
19.	解: $(1) f(x)$ 的定义域为 $(0,+\infty)$, $f'(x) = -4x^3 + \frac{4}{x} = \frac{-4(x^4 - 1)}{x}$

当 $x \in (0,1)$ 时, $f'(x) > 0$, $f(x)$ 在 $(0,1)$ 上单调递增;
当 $x \in (1, +\infty)$ 时, $f'(x) < 0$, $f(x)$ 在 $(1, +\infty)$ 上单调递减 3 分
$(2)g(x) = -x^4 + 8(x > 0), g'(x) = -4x^3.$
切线 l 的方程为 $y+t^4-8=-4t^3(x-t)(t>0)$.
令 $x=0$,得 $y=3t^4+8>0$;令 $y=0$,得 $x=\frac{3t^4+8}{4t^3}>0$. 5 分
所以 l 与坐标轴围成的三角形面积 $S = \frac{1}{2} \times (3t^4 + 8) \times \frac{3t^4 + 8}{4t^3} = \frac{(3t^4 + 8)^2}{8t^3}$, 6 分
$S' = \frac{3(3t^4 + 8)(5t^4 - 8)}{8t^4}.$
当 $t \in (0, \sqrt[4]{\frac{8}{5}})$ 时, $S' < 0$, S 单调递减;当 $t \in (\sqrt[4]{\frac{8}{5}}, +\infty)$ 时, $S' > 0$, S 单调递增 8分
故当 $t = \sqrt[4]{\frac{8}{5}}$ 时, S 取得最小值, 且最小值为 $\frac{64\sqrt[4]{1000}}{25}$
(3)不妨设 $x_1 < x_2$,由(1)可知 0 $< x_1 < 1 < x_2$,则 $2-x_1 > 1$ 10 分
令 $h(x) = f(2-x) - f(x)$,则 $h'(x) = 4(2-x)^3 - \frac{4}{2-x} + 4x^3 - \frac{4}{x}$
$=4(2-x)^{3}+4x^{3}-\left(\frac{4}{2-x}+\frac{4}{x}\right)=8\left[(2-x)^{2}-x(2-x)+x^{2}\right]-\frac{8}{(2-x)x}$
$=8(3x^2-6x+4)-\frac{8}{x(2-x)}.$ 11
当 $x \in (0,1)$ 时,设 $t=x(2-x)\in (0,1)$,则 $h'(t)=-24t-\frac{8}{t}+32$.
当 $t \in (0, \frac{1}{3})$ 时, $h'(t) < 0$, $h(t)$ 单调递减;当 $t \in (\frac{1}{3}, 1)$ 时, $h'(t) > 0$, $h(t)$ 单调递增. 因为 t
=x(2-x)在 $(0,1)$ 上是增函数,所以 $h(x)$ 在 $(0,1)$ 上先减后增
因为 $f\left(\frac{1}{8}\right) = -\left(\frac{1}{8}\right)^4 + 4\ln\frac{1}{8} + 8 < 8 - 4\ln 8 = 4(2 - \ln 8) < 0$,所以 $x_1 \in \left(\frac{1}{8}, 1\right)$
·····································
$\overrightarrow{\text{mi}}\;h\!\left(\frac{1}{8}\right)\!=\!-\!\left(2\!-\!\frac{1}{8}\right)^4+4\ln\!\left(2\!-\!\frac{1}{8}\right)+\left(\frac{1}{8}\right)^4-4\ln\frac{1}{8}\!=\!\frac{(1\!-\!15^2)\!\times\!(1\!+\!15^2)}{8^4}+4\ln15\!<\!$
-12+4 ln 15=4 (ln 15-3) < 0.
又因为 $h(1)=0$,所以 $h(x_1)<0$,即 $f(2-x_1)< f(x_1)=f(x_2)$,所以 $2-x_1>x_2$,即 x_1+x_2
<2