BIO 3 GENERAL BOTANY LECTURE MANUAL

Sections 1102 & 1150, Spring 2018

Instructor- Dr. Jeffery R. Hughey

BIO 3 GENERAL BOTANY LECTURE MANUAL

Sections 1102 & 1150, Spring 2018

TABLE OF CONTENTS

Course Syllabus		03
Why Study Plants?		10
The Molecular Composition of Plant (Cells	12
Systematics#1: The Science of Biologic	cal Diversity	18
Dichotomous Key Handout		22
Systematics#2: The Science of Biologic	cal Diversity	24
Cladistics Handout		27
Photosynthetic Prokaryotes		33
Fungi		36
Kingdom 'Protista' Part 1		41
Kingdom 'Protista' Part 2		44
Bryophytes		48
Seedless Vascular Plants		53
Gymnosperms		59
Introduction to the Angiosperms		62
Evolution of Angiosperms		65
Early Development of the Plant Body		68
Cells and Tissues of the Plant Body		71
The Root: Structure and Developmen	t	74
The Shoot: Primary Structure and De	evelopment	77
Secondary Growth in Stems		80
Ecology		83
Regulating Growth and Development		85
External Factors and Plant Growth		88
Plant Nutrition, Soils, and Disease		89
Genetics		92
Arabidopsis Handout		95
Fungi Field Trip	••••••	97
Seaweed Field Trip	••••••	98
Gymnosperm Field Trip	•••••	99
Angiosperm Field Trip		100
Lecture Study Guide		102
Laboratory Study Guide		129

General Botany- Biology 3

Lecture and Laboratory Schedule- Section 1102

Dr. Jeffery R. Hughey T/F Lecture- 2:00-3:15 PM, S201 Spring 2018, Hartnell College T/F Lab- 3:30-6:20 PM, S113

Date	Lecture and Laboratory	Readings/Lab Topic
January 16	Introduction to the course, Why Study Plants? Introduction to Lab, Scientific Method	Chapter 1, 2, 21 Topic 2
January 19	Photosynthesis/Why Study Plants	Chapters 1, 2, 7, 21
j	Dissection and Compound Microscopes	Topic 1
January 23	Why Study Plants? Plant Chemistry	Chapters 1, 2, 7, 21
	Primary and Secondary Metabolites	Handout
January 26	Systematics: The Science of Biological Diversity	Chapter 12
	Herbarium and Dichotomous Keys	Handout
January 30	Systematics: The Science of Biological Diversity	Chapter 12
	Phylogeny exercise	Handout
February 2	Prokaryotes: the Cyanobacteria	Chapter 13
	Cyanobacteria	Topic 11
February 6	Fungi	Chapter 14
	Fungi	Topic 12
February 9	Fungi	Chapter 14
	Fungi	Topic 12
February 13	Heterotrophic Protista	Chapter 15
	Protista I	Topics 13, 14
February 16	Lincoln's Day Observed, College Closed	
February 20	Photosynthetic Protista	Chapter 15
	Protista II	Topics 13, 14
February 23	FIRST EXAMINATION	
February 27	Field trip to Monterey to collect Marine Algae: Lov	v tide 2:54 PM, -0.99
March 2	Plant Genomics Class Research Project	Website links
March 6	Plant Genomics Class Research Project	Website links

March 9	Bryophytes Bryophytes	Chapter 16 Topic 15
March 13	Seedless Vascular Plants Seedless Vascular Plants	Chapter 17 Topic 16
March 16	Seedless Vascular Plants Seedless Vascular Plants	Chapter 17 Topic 16
March 20	Gymnosperms Campus walk and Seed Plants: The Gymnosperms	Chapter 18 Topic 17
March 23	Gymnosperms Seed Plants: The Gymnosperms Plant Genomics Report Due	Chapter 18 Topic 17
March 26-March 31	Spring Recess, College Closed	
April 3	Introduction to the Angiosperms Campus walk and Seed Plants: The Angiosperms	Chapter 19 Topic 18
April 6	Introduction and Evolution of the Angiosperms Seed Plants: The Angiosperms and Fruits	Chapters 19, 20 Topics 18, 19
April 10	Early Development of Angiosperms Early Development of Angiosperms	Chapter 22 Topic 20
April 13	Cells and Tissues of Angiosperms Cells and Tissues of the Plant Body	Chapter 23 Topic 21
April 17	SECOND EXAMINATION	
April 20	Roots The Root	Chapter 24 Topic 22
April 24	Shoots Primary Structure of the Stem and Leaf	Chapter 25 Topics 23, 24
April 27	Secondary Growth in Stems Woody Stems and Secondary Xylem	Chapter 26 Topics 25, 26
May 1	Ecology Transects and Quadrats	Chapters 31, 32 Handout
May 4	Field trip to UCSC Fort Ord Natural Reserve, Mar	ina

May 8	Plant Hormones, External Factors and Grov Plant Hormones, External Factors and Grov HERBARIA DUE	1
May 11	Plant Nutrition and Soils Plant Nutrients and Soils Lab	Chapter 29 Topic 29
May 15	Plant Genetics Genetics	Chapter 8 Topic 10
May 18	FINAL LABORATORY EXAMINATION	ON (2:00-5:00 PM)
May 22	FINAL LECTURE EXAMINATION (3:	:00-5:50 PM)

COURSE DESCRIPTION

Introduction to the principles of plant biology with an emphasis on cytology, energetics, structure, function, reproduction, genetics, systematics, and plant growth. Detailed morphological study of cyanobacteria, fungi, photosynthetic and heterotrophic protists, bryophytes, and vascular plants.

STUDENT LEARNING OUTCOME

Given any plant phylum, the student will be able to identify, describe, and list the functions of the structures that define the phylum, as well as discuss the ecology, evolution, physiology, life history, and biochemistry of a representative taxon from that phylum.

COURSE OBJECTIVES

- 1. Develop an appreciation for the botanical contributions of early explorers.
- 2. Investigate the commercial and ethnobotanical applications of plants.
- 3. Compare and contrast cellular plant diversity.
- 4. Identify the basic features of all plant cells.
- 5. Investigate the vital relationship between plants and the flow of energy.
- 6. Compare and contrast the photosynthetic pathways.
- 7. Examine the chromosomal basis for Mendelian genetics.
- 8. Investigate the structure of macromolecules and their role in plant function.
- 9. Isolate genetic material and analyze DNA sequences from lower and higher plants.
- 10. Investigate natural selection and its affects on populations.
- 11. Infer hypotheses by analyzing morphological and molecular phylogenetic data.
- 12. Investigate life histories of photosynthetic eukaryotes.
- 13. Identify diagnostic morphological characteristics of the major plant phyla.
- 14. Collect and curate botanical specimens from aquatic and terrestrial habitats.
- 15. Develop microscopy skills necessary for the examination of plant structures.
- 16. Investigate the affects of hormones on plant processes.
- 17. Examine the affects of macro and micronutrients on plant growth.
- 18. Investigate the interactions between plants and other organisms.
- 19. Investigate plant community and ecosystem development.
- 20. Investigate the adaptations plants have evolved to particular biomes.
- 21. Analyze the role of agriculture on human history and predict its role in the future.

INSTRUCTOR INFORMATION

Instructor- Dr. Jeffery R. Hughey

Office- S229

Office Telephone- (831) 770-7054 Email- jhughey@hartnell.edu

Web Address- http://www.hartnell.edu/dr-jeffery-hughey-biology-instructor Office Hours- Monday 1:00-2:00, Tuesday 1:00-2:00, Wednesday 1:00-2:00

REQUIRED TEXTBOOKS

Evert, R.F. and Eichhorn, S.E. *Raven Biology of Plants:* 8th Ed. W.H. Freeman, New York, 2013. Evert, R.F. and Eichhorn, S.E. *Laboratory Topics in Botany:* 8th Ed. W.H. Freeman, New York, 2013. Hughey, J. Bio 3- General Botany Lecture Manual: Sections 1102 and 1150, Spring 2018.

STRONGLY RECOMMENDED

Rushforth et al. A Photographic Atlas for the 7th Edition of Botany Laboratory. Morton Publishing, Englewood, 2012.

GRADING

Determination of grades in this course will be based on your performance on the following:

First Examination	100 pts. (50 pts. Lecture/50 pts. Laboratory)
Second Examination	100 pts. (50 pts. Lecture/50 pts. Laboratory)
Final Laboratory Examination	100 pts.
Final Lecture Examination	150 pts.
Herbarium	100 pts.
Plant Genomics Project	100 pts.
Total	650 pts.

Grade	Total Points Earned (Percentage)	Definition	Grade Points
A	568-650 pts. (87.5-100%)	Excellent	4
В	487-567 pts. (75.0-87.4%)	Good	3
C	406-486 pts. (62.5-74.9%)	Satisfactory	2
D	325-405 pts. (50.0-62.4%)	Barely Passing	1
F	324 or fewer (49.9% or less)	Failing	0

EXAMINATIONS

The <u>Lecture</u> portion of the examinations will consist of a combination of multiple choice, true or false, matching, short answer, and essay questions. Questions will come mainly from the lecture material, but will also be derived from assigned readings. Supply your own Scantron 882-E form and a number 2 pencil. The <u>Laboratory</u> portion of the examinations will focus on material in the lab manual and information from lab exercises and field trips. Laboratory questions generally require you to 1) identify plant structures and 2) name plant specimens.

MAKE UP EXAMINATION POLICY

If you are unable to attend an examination please notify me by telephone, email, or in person <u>prior</u> to the test. If you fail to contact me in advance and you miss the examination, submit a written letter signed by the authority involved (doctor, policeman) that includes their phone number and an explanation. If you have a valid excuse, I will schedule an intellectually comparable make up <u>oral or essay</u> examination. *No make ups will be granted for the final examination without prior approval from Dr. Hughey*.

HERBARIUM

A herbarium is a collection of pressed, boxed, or enveloped plant specimens. During scheduled field trips you will have the opportunity to collect plant specimens. All students are required to collect and assemble their own herbarium of representative specimens of the major phyla. Herbarium grades will be based on comprehensiveness, identification accuracy, label correctness (Including: Family, Genus and species, date of collection, locality, and collector), aesthetics, and effort in comparison to your peers.

PLANT GENOMICS CLASS RESEARCH PROJECT

All students will participate in the class research project. During two regular class meetings, students will work work with whole genome sequencing data with the objectives of: 1) assembling a mitogenome; 2) annotating the mitogenome; and 3) analyzing the mitogenome of a plant. Using data and files that students generate, the results will be used to write a paper. This project is worth 100 points.

Arriving to class on March 2 with fully functional genomics software Arriving to class on March 2 with the downloaded genomic data Assembling the mitogenome Annotating the mitogenome Submitting a completed draft of the mitogenome paper	5 points 5 points 10 points 40 points 40 points
Submitting a completed draft of the mitogenome paper	40 points

The paper will follow the author instructions for the scientific journal *Mitochondrial DNA Part B: Resources*. It will contain an abstract, as well as a short introduction, methods, results paragraphs, 1 figure, and references. The report is due on March 23, 2017 at the beginning of class. I do not accept late work. We will submit a single, collaborative scientific paper to the above journal for publication.

ATTENDANCE POLICY

Regular attendance and consistent study are your responsibility and the two factors that contribute most to a successful college experience. I expect you to attend all class sessions. Absences in excess of two weeks (consecutive or non-consecutive) will result in dismissal. What does that mean? IF YOU MISS FIVE CLASSES, YOU WILL BE DROPPED FROM THE COURSE.

DROPPING THE COURSE

It is your responsibility to drop the course. Do not assume that I will submit the drop for you if you decide to stop coming to class. Students that do not officially drop the course by April 27, 2018 will receive a letter grade based on their total earned points.

CLASSROOM VISITORS

No one is permitted to attend this class unless he or she is a registered student.

CONDUCT

Please show respect for your peers and your instructor. If I observe any student performing or aiding in any of the types of misconduct listed under "Codes of Student Conduct" on page 31 of the Hartnell Catalog, that student will be dropped from the course. Disruptive behavior will not be tolerated (this includes text messaging during class).

SUGGESTIONS FOR PERFORMING WELL ON EXAMINATIONS IN BIOLOGY 3

- 1) Review your lecture and laboratory notes before coming to class
- 2) Study for examinations with a partner or in a group
- 3) Attend class and take complete notes
- 4) Outside of class study at least 15 hours per week
- 5) Attend Supplemental Instruction study sessions
- 6) Study the practice questions

IN CASE OF EMERGENCY

- In the event of a life threatening emergency call 911.
- To report a non-life threatening incident, safety hazard, or a suspicious activity please contact campus security at 755-6888.
- To obtain campus status information, call the campus safety and facilities emergency status bulletin telephone number: 831-796-6222. From a campus line, simply dial 6222.

Please visit Hartnell's emergency reporting link here: http://www.hartnell.edu/reporting-emergencies

Students: If you receive an emergency notification, please tell your instructor immediately.

During a campus emergency, you will generally be told to do one of two options, SHELTER IN PLACE or EVACUATE. When either of these are given, vehicle traffic coming onto campus will likely be turned away. Students are required to obey the directions of staff in a timely fashion.

EVACUATION

Please note the exit(s) in the room. In the event of an alarm or safety threat, uniformed Hartnell personnel equipped with two-way radios--including security, and maintenance staff--have up-to-date information; they also have the authority to order either shelter-in-place or immediate building evacuation. For evacuation, immediately heed their directions by proceeding calmly and quickly to an exterior assembly area as indicated by trained staff. Please stay back at least 200 feet from any building until the "all clear" command is issued.

SHELTER IN PLACE

In the event of a safety threat, instructors and staff will lock classroom doors and direct occupants to stay clear of windows. Occupants are requested to remain quiet. During this time, DO NOT access any exits unless directed by first responders or staff. A shelter in place order is also used for severe environmental threats like a thunderstorm.

RUN, HIDE, FIGHT- ACTIVE SHOOTER RESPONSE

In the event of an Active Shooter Event, there are three things you need to know in order to survive: Run, Hide, Fight.

If you see suspicious behavior on campus, please tell someone. Our campus safety officers are trained to investigate suspicious incidents.

EMERGENCY PREPAREDNESS

The first 72 hours of a disaster are often the most difficult, but this period can be less stressful if everyone has extra supplies on hand. The college has a limited amount of emergency supplies, so students and staff should have on campus their own portable emergency kit including snacks, water, and prescription medication; this is especially important for those who may need to shelter on campus. For more information go to http://72hours.org/

STUDENTS

If you have knowledge of an emergency on campus, share it immediately. If you see something suspicious or potentially hazardous, let someone know.

Why Study Plants?- Chapters 1, 2, 7, 21	
•Why not? "To be,, and is sufficient recommend of a science to make it pleasing to me." (181)	mendation
of a science to make it pleasing to me." (181)	1-1800)
How do humans use plants?	
Agricultural product as fodder	
• <u>Fodder-</u> food that is fed to	
• (Zea mays) is the most important crop in the United States.	
—% of this crop is consumed by animals.	

How do animals use plants?

Primary Producers (Food webs and food chains)

Phytoremediati	ion					
•The	of pollutan	ts or waste by the	use of	to break	down undesi	rable substances
	1					
• <u>Lemna gibba-</u>						
	sipes- water hyac Sioethanol from					
Plants in Space	:					
•	a unicellula	r green alga.				
_		8				
—Proces	SS	(urine)	·			
		(urme).				
Life St	apport system,		<u>-</u> ·			
Medicine in An	cient Times					
•	(3,350-3,140 BC	<u>')-</u> frozen in ice, fo	ound in the	Alps on the Ita	alian-Austria	n border.
		used as a la	xative and	as a natural ar	ntibiotic.	
		usec				
-Anise,	black hellebore,	cassia, cucumber, nander, lettuce, w	wild root o	f (squirting cu		
				_	, F - F F J , F	
Hippocrates (40	60-380 BC)	0	f medicine			
•Ancient Greek	physician for the	Medical School a	t			
Medicine in Mo	odern Times					
•	of the		on the mark	et is derived d	lirectly from	plants.
Drugs made fro	om	prevent the rejecti	on of transp	planted hearts	and other or	gans.
The active ingr	edient in	was originate was originated with the Pacific yew tr	ginally deriv	ved from		_bark.
Paclitaxel, a co	mpound found in	the Pacific yew tr	ee, assists i	n the treatmer	nt of some _	·
•The rosy periw	inkle helps treat _		·			
•	<u> </u>	emory, ringing of	Ginkgo bil	<u>oba</u> is prescri	bed for depre	ession, mental
weakness or con	itusion, loss of m	emory, ringing of	the ears.			

Egyptian Papyrus

The Molecular Composition of Plant Cells - Chapter 2	
Chemical Elements	
Metabolites Metabolites- molecules	
Metabolites- molecules	in their distribution, both
within the plant and among different plants; important for Macromolecule Synthesis and Splitting	and
Carbohydrates	

Lipids

Proteins

Nucleic Acids

Alkaloids	
Terpenoids	
Phenolics	
What is the role of the photosynthetic organism in the carbon cycle?	

Global	O ₂ from photosynthesis
•	% comes from marine cyanobacteria.
	- <u>Synechococcus</u>
	- <u>Synechocystis</u>
•	% comes from terrestrial systems.
	 % of this comes from tropical rainforests.
	ynthetic organisms evolved 3.4 BYA and are responsible for the biological revolution uses in O ₂ from photosynthesis had 2 consequences:
•Increa	* *
	-1) O ₂ molecules in atmosphere converted to ozone (O ₃).
	•2.5 BYA
	- 2)
	•Respiration- break down of molecules by oxidation.
	•Eukaryotic cells- appearance and proliferation of cells.
	-2.1 BYA

Photosynthesis

15

Photosynthesis

Nitrogen Cycle

Phosphorus Cycle

Systematics- The Science of Biological Diversity Chapter 12

• <u>Systematics</u> - the scientific stud	y of biological	and its evolutionary history
Theophrastus (370-285 B.C.)		
•Father of, stud	ent of Aristotle.	
•Classified plants based on form.		
-		
_		
_		
Carol von Linné (1707-1778)		
•Swedish naturalist.		
•	·	
—Plant descriptions.		
— Plant	- a two-term system of	nomenclature.
•	and	(specific epithet).
•Example- catnip		
	cataria L. floribus interrupte spicatus pe	odunculatis"
– Ivepetu	jiorious inierrupie spiculus pe	auncutuus
Taxonomy		
• <u>Taxonomy</u> - (gr. <i>taxis</i> -	, nomos) the science of the
classification of organisms.		
-Identifying, naming, cla	ssifying organisms.	
•Domain		
•Kingdom	14.	
•	pnyta phyceae	
•Order- ales	pnyceae	
	aceae	
•Genus		
•		

Prokaryotes and Eukaryotes

3 Domains and 6 Kingdoms	
Eukaryote Lineages	
Origin of Cells	

Origin of Eukaryotic Cells

Species Concepts	
Morphological Species Concept-	
Biological Species Concept-	
Phylogenetic Species Concept-	
Thylogenetic Species Concept-	
	_
•International Code of Nomenclature for,	, and
. Aim- to provide a	_ method of naming taxonomic groups.
Principle I- botanical nomenclature is	of zoological and
bacteriological nomenclature.	
-Principle II- names of taxonomic groups are determined by	by means of nomenclatural
——Principle III- nomenclature of a taxonomic group is based	d upon of publication.
•Naming- the purpose of giving a name to a taxonomic group is no	ot to indicate its characters or history,
but to and to indicate it	•

Taxonomic Term			
•	a taxonomic group of any	rank (plural: taxa).	
•	two or more names that a	pply to the same taxe	on.
•	- a taxonomic group of any - two or more names that a - the original name of a tax	ion.	
Author/s- the	person or pe	rsons to	a taxon.
 Revisionary author 	or/s- the person or persons that	ıt	
•	the derivation, origin, or	history of a word.	
	a specimen designated to serv		
–Holotype	?- 		·
-Lectotyp	e		·
	exasperatus (Harvey et Bai		
<u>Gigartina</u>	<u>exasperata</u> Harvey et Baile	y 1851	
	rioides (Bory) Fredericq et	Hommersand 1993	
	minarioides Bory 1828	1 / 10 / 0	
	ornucopiae Postels et Rupre		
<u>iridaea</u> <u>bo</u>	oryanum Setchell et Gardne	er 1930	
Mazzaella narksii	<u>i</u> (Setchell et Gardner) Hugl	hev Silva et Homm	persand 2001
	cus parksii Setchell et Gardi		ici sand 2001
пиорпус	<u>us parasir</u> secencii et cara	101 170 /	
Taxonomic Name	es		
Snecies names co	onsist of the genus name, plus	the specific enithet	
-	•		
Members of a spe	ecies may be grouped into	or	·
How do you ident	tify plants?		
•	· .		
	·		
•Compare plant w	ith a written	·	
Use books to pict	ture I.D. specimens.		
-Photogra	aphs and		
		·	
Dichotomous Key	'S		
•A method employ	yed for		
	ey is constructed of a series of		
separate statement		*	, ••••••••••••••••••••••••••••••••
•			
1. Flowers	or	2	
2. Petals re	ed	Plant B	
2	yellow	Plant C	

Dr. Jeffery Hughey

Biology 3- General Botany Hartnell College

Writing Dichotomous Keys

1) Start each statement with a subject.

<u>Correct</u> <u>Wrong</u>

Leaves opposite.
 Deposite leaves.
 Alternate leaves.

2) Avoid unnecessary words.

Correct Wrong

Leaves opposite.
 Plants with opposite leaves.
 Plants with alternate leaves.

3) Avoid negatives.

<u>Correct</u> <u>Wrong</u>

Flowers purple.
 Flowers purple.
 Flowers not purple.

- 4) Use absent in place of "not present." Use "without" in place of "not with."
- 5) Use measurements rather than "large", "small", "tall", "short", "big", "small."
- 6) Use features that are constant in preference to variable or overlapping features.

Good Bad

Flowers purple.
 Leaves 8-12 cm long.
 Flowers white.
 Leaves 6-10 cm long.

7) No trichotomies!

Correct	<u>Wrong</u>
1. Flowers white Plant A	1. Flowers white Plant A
1. Flowers red or yellow 2	1. Flowers red Plant B
2. Petals red Plant B	1. Flowers yellow Plant C
2. Petals vellow Plant C	

8) Use different words to start successive pairs of key statements. See above #7 use of Flowers and Petals.

Using Dichotomous Keys

- 1. Always read both choices.
- 2. Be sure you understand the meaning of the terms involved, do not guess.
- 3. When measurements are given, use a calibrated scale, do not guess.
- 4. Do not base your conclusion on a single observation, if possible examine other specimens.
- 5. If you get stuck, try both divisions and see which one makes sense.
- 6. After arriving at an answer in a key, read the description to see if your plant is in agreement.

Write a dichotomous key based on the following 10 species. Once you complete your dichotomous key show it to Dr. Hughey. The following terms will help you construct your key, if you do not know the definition of these terms ask the instructor or use your textbook glossary: leaves, roots, tap root, tuber, rhizome, elongate, lanceolate, simple, compound, stem, sepals, petals, dichotomous, umbel.

Systematics#2- The Science of Biological Diversity Chapter 12

Phylogeny		
• <u>Phylogeny</u> - the evolutionary relation	onships among organisms.	
—Natural classification.		
• <u>Phylogenetic tree</u> - a	diagram that represents a	of the
	of a species or group of related organi	isms.
Hominid Evolutionary Tree		
T		
Tree of Homo sapiens L.		
Tree Terminology		
Root-		
Branch-		
Outgroup-		
Ingroup-		
Taxon		
Node-		
Phylogenetic Groups		
Monophyletic	Paraphyletic Polyph	yletic

Phylo	genetic trees		
•Clade	<u>ogram</u>		
	_		
•	- shows diverge	nce distances between	taxa
Cladis	stics		
•Cladi	stics- a method of characters.	organisms on th	e basis of
	characters.		
	- <u>Characters</u> -	chemical, developmen	tal, and .
	•Homologous characters-	0	of different species that are similar
	because they were inherited from —Outgroup- a closely related taxon — the branchi	om a	·
	–Outgroup- a closely related taxon		_ the group that is being analyzed.
	– - the branchi	ng point on a tree.	
Endos	symbiotic Theory and the Evolution of	Chloroplasts	0
•Photo	osynthetic eukaryotes and their of a of a A phagocytotic protozoan took up a c	1	from the
	OI a	by a	·
	 A phagocytotic protozoan took up a cyanoba Instead of being digested, the cyanoba The protozoan provided the alga with The cyanobacterium produced carboh The cell wall of the cyanobacterium was 	acterium was retained a protection, a stable envydrates for the protozo	s an endosymbiont. vironment, and mineral nutrients. an.
	- <u>Food vesicle membrane</u> = outer chloro		
	-Plasma membrane of cyanobacterium	= inner chloroplast me	nbrane.

Support for the Endosymbi	otic Theory	
•Chloroplasts are about the _		as cyanobacteria.
•Evolve	in photosynthesis.	
•S ribosomes.		
•	is the primary photosynthetic pi	gment in cyanobacteria and plants
•Circular prokaryotic DNA w	vithout histones.	
•		
Endosymbiosis in	and	
The current plant classifi	cation suggests that red algae a	are placed in Kingdom

Cladistics

This laboratory provides a brief introduction to the philosophy, methodology, and implications of cladistic analysis. Cladistics is a method of organizing organisms on the basis of synapomorphic characters.

Cladistics is a method used to hypothesize relationships among organisms. Like other methods, it has its own set of assumptions, procedures, and limitations. The idea behind cladistics is that members of a group share a common evolutionary history, and are "closely related", more so to members of the same group, than to other organisms. These groups are recognized by sharing unique features (anatomical, chemical, molecular traits) which were not present in distant ancestors. These shared derived characteristics (traits) are called synapomorphies.

Note that it is not enough for organisms to share characteristics; in fact two organisms may share a great many characteristics and not be considered members of the same group. For example, consider a jellyfish, starfish, and a human; which two are most closely related? The jellyfish and starfish live in the water, have radial symmetry, and are invertebrates, so you might guess that they belong together in a group. This would be incorrect because this arrangement does not reflect evolutionary relationships. The starfish and human are deuterostomes (they have radial, indeterminate cleavage) and coelomates (they have true coeloms). Jellyfish are cnidarians.

It is not just the presence of shared characteristics that is important, but the presence of shared derived characteristics. In the example above, all three characteristics are believed to have been present in the common ancestor of all animals, and so are trivial in determining relationships, since all three organisms in question belong to the group "animals." While humans are different from the other two organisms, they differ only in characteristics which arose newly in an ancestor which is not shared with the other two. As you shall see, choosing the right characters is one of the most important steps in a cladistic analysis.

There are three basic assumptions in cladistics:

- 1. Groups of organisms are related by descent from a **common ancestor** (= organism at node).
- 2. There is a **bifurcating** pattern of cladogenesis.
- 3. Change in characteristics occurs in lineages over time.

The <u>first</u> assumption is a general assumption made for all evolutionary biology. It suggests life arose on earth only once, and therefore all organisms are related. We can take any collection of organisms and determine a pattern of relationships, provided we have the right kind of information. Again, the assumption states that all the diversity of life on earth has been produced through the reproduction of existing organisms.

The <u>second</u> assumption is perhaps the most controversial; that is, that new kinds of organisms may arise when existing species or populations divide into exactly two groups. There are many biologists who hold that multiple new lineages can arise from a single originating population at the same time, or near enough in time to be indistinguishable from such an event. The other objection raised against this assumption is the possibility of hybridization (interbreeding) between distinct groups. This, however, is a general problem of reconstructing evolutionary history, and although it cannot currently be handled well by cladistic methods, no other system has yet been devised which accounts for it.

27

The <u>third</u> assumption that characteristics of organisms change over time is the most important assumption in cladistics. When characteristics change we are able to recognize different lineages or groups. The convention is to call the "original" state of the characteristic plesiomorphic and the "changed" state apomorphic. The terms "primitive" and "derived" have also been used for these states.

HOW TO CONSTRUCT CLADOGRAMS

Imagine four species, A, B, C, and D. These four species are related to each other, but we are not sure how. Perhaps A and B are more closely related to each other than A and C, A and D, B and C, B and D, or C and D. Maybe all four are equally related.

Outline of the steps necessary for completing a cladistic analysis.

- 1. List the taxa. The taxa (species) in this example will be A, B, C, and D.
- 2. Determine the characters. Chlorophyll A, Starch stored in the chloroplasts, and roots.
- 3. Determine the character states for your taxa. Construct a data matrix, like the one shown below.

		<u>Characters</u>		
Taxon	Chlorophyll A	Starch in chloroplast	Roots	
A	-	<u>-</u>	-	
В	+	-	-	
C	+	+	-	
D	+	+	+	

⁺ indicates presence of a trait

- indicates absence of a trait
- 4. Determine the polarity of characters (whether each character state is original or derived in each taxon). The best technique for determining polarity is to use an outgroup (which in this example is taxon A).
- 5. Group taxa by synapomorphies (shared derived characteristics) not plesiomorphies (original or "primitive" characteristics) or autapomorphies (traits unique to a single taxon).
- 6. Work out conflicts that arise by some clearly stated method, usually parsimony (minimizing the number of conflicts).

Construct a cladogram given the following morphological data:

	<u>Characters</u>					
Taxon	Xylem/Phloem	Wood	Seeds	Flowers		
Mosses	-	-	-	-		
Ferns	+	-	-	-		
Gymnosperms	+	+	+	-		
Angiosperms	+	+	+	+		

⁺ indicates presence of a trait - indicates absence of a trait

Construct a cladogram given the following DNA sequences:

	<u>Characters</u>									
Taxon	1	2	3	4	5	6	7	8	9	10
A	A	T	T	G	C	C	C	G	T	Α
В	A	A	T	\mathbf{C}	C	\mathbf{G}	C	\mathbf{C}	T	Α
C	A	T	T	G	C	C	C	G	T	A
D	A	T	T	G	C	C	C	\mathbf{C}	T	Α
Outgroup	A	\mathbf{A}	T	\mathbf{C}	C	\mathbf{G}	C	\mathbf{C}	T	A

Construct a cladogram given the following data:

	<u>Characters</u>							
Taxon	Vessel Elements	Motile Sperm	Pollen Tube	2nd Fertilization				
Cycads	-	+	-	-				
Ginkgos	-	+	-	-				
Conifers	-	-	+	-				
Gnetophytes	+	-	+	+				
Angiosperms	+	-	+	+				

Construct a cladogram given the following distance matrix. Use Taxon 3 as your outgroup:

	Taxon1	Taxon2	Taxon3	Taxon4	Taxon5
Taxon1	0.00000				
Taxon2	0.01045	0.00000			
Taxon3	0.12744	0.06768	0.00000		
Taxon4	0.09867	0.08679	0.00401	0.00000	
Taxon5	0.00498	0.00978	0.09542	0.09392	0.00000

Search Methods

- 1. Maximum likelihood evaluates a hypothesis about evolutionary history in terms of the probability that the proposed model and the hypothesized history would give rise to the observed data set. The supposition is that a history with a higher probability of reaching the observed state is preferred to a history with a lower probability. The method searches for the tree with the highest probability or likelihood.
- 2. Bayesian analysis attempts to assess the probability of a model, bipartition or range of a parameter value, which is in contrast to ML, which assesses the probability of the data given a model. Under some conditions the biased sampling of tree and parameter space converges on the posterior probability. The approach most often used in recent months is Markov Chain Monte Carlo (MCMC) sampling.
- 3. Maximum parsimony is character-based and uses information itself rather than distance information. The information content used by this method is not necessarily larger than for the distance matrix methods, since there are only a limited number of informative (synapomorphic) sites. Calculates for all possible trees the tree that represents the minimum number of substitutions at each informative site. Does not assume an evolutionary model.
- 4. Distance matrix uses distance values and a sequential clustering algorithm. This method of tree construction is sensitive to differences in branch length or unequal rates of evolution. Therefore, it should only be used with closely related taxa, or when there is constancy of evolutionary rate. The method is often used in combination with isoenzyme or restriction site data or with morphological criteria. It assumes an evolutionary model.

 $Extra-credit, due\ at\ the\ next\ laboratory\ meeting.\ Group\ the\ following\ plant\ species\ into\ clades\ based\ on\ the\ parsimony\ method.$

Photosynthetic Prokaryotes- Chapter 13

•Kingdom- Bacteria		
—Phylum		
Cyanobacteria- Gram	Bacteria	
• Gram positive- peptidoglycan layer; stains with crystal		
• Gram negative- peptidoglycan layer sandwiched by		i
layers; does not stain with		
Cyanobacteria		
•Characteristics		
-Chlorophyll		
-Thylakoids occur		
-70s ribosomes		
–DNA microfibrils		
-Polyhedral bodies		
– <u>Habitat</u> -		
-Examples, <u>Nostoc</u> , <u>Synechococcus</u> , <u>Synechocystis</u> .		
Synechococcus, Synechocystis.		
II al. i.e.		
Habits		
• <u>Unicells</u>		
<u>Synechocystis</u>		
– of unicells- <u>Aphanothec</u>	<u>e</u>	
•Rows of cells		
	(trichome)- Oscillatoria	

	–Many	in 1 large sheath- Microcoleu	<u>1S</u>
	fil:	aments with sheath- Lyngbya	
	bra	anched filaments- Mastigocladus	
	bra	anched filaments- Stigonema	
	bı	ranched filaments- Scytonema	
Asexua	- filament l - short sect - resting sp	division of the protoplast results in breaks into 2 parts, each of which cions of a trichome detach and for pores; cells that are resistant to unof a single-celled individual into the contraction.	n forms a new thallus.
Hetero	•		
• <u>Hetero</u>	ocyst- a	walled large cell that	atmospheric
	——————————————————————————————————————		
	-	related to nitroge	en concentration.
	- <u> </u>	ytoplasmic connections that trans	sfer metabolites and ammonium.
M			
	nent in the Cyanobacteria	evement of an organism in contact	t with a galid substrate
		s layer of microfibrils generates	
•		evement of an organism without of	
	-Mechanism- unknown.	venient of an organism without	contact with a substrate.
•Why?			
<u>,,,,,,,</u> ;			
	-Positively chemotactic-		·

- cyanobacteria occur in about 8% of the species the water fern; contains Anabaena in the dorsal lobe of its leaf. Colonial ascidian- sea squirt. Amoeba, protozoa, diatoms, green algae, mosses, liverworts, water molds, and Prochlorophyceae Characteristics - Chlorophylls & phycobilisomes - Thylakoids in stacks of DNA microfibrils Habitat - 1) Obligate symbionts, live within; 2) Planktonic filaments in lakes Example Stromatolites - Iike deposition of and trapped - ; formed by and diatoms. Age growth-deposition shaped in growth= year Bahamas,
- the water fern; contains Anabaena in the dorsal lobe of its leaf. Colonial ascidian- sea squirt. Amoeba, protozoa, diatoms, green algae, mosses, liverworts, water molds, and Prochlorophyceae Characteristics - Chlorophylls & phycobilisomes - Thylakoids in stacks of DNA microfibrils Habitat 1) Obligate symbionts, live within ; 2) Planktonic filaments in lakes. -Example Stromatolites Stromatolitelike deposition of and trapped ; formed by and diatoms. Agegrowth-deposition. -shaped in growth= year.
• Colonial ascidian- sea squirt. • Amoeba, protozoa, diatoms, green algae, mosses, liverworts, water molds, and
• Amoeba, protozoa, diatoms, green algae, mosses, liverworts, water molds, and
Prochlorophyceae Characteristics -Chlorophylls & phycobilisomes -Thylakoids in stacks ofDNA microfibrils -Habitat •1) Obligate symbionts, live within; 2) Planktonic filaments in lakes. -Example Stromatolites Stromatolitelike deposition of and trapped; formed by and diatoms. Age growth-deposition. -shaped in growth= year.
Characteristics -Chlorophylls &
-Chlorophylls &
phycobilisomes -Thylakoids in stacks ofDNA microfibrilsHabitat •1) Obligate symbionts, live within; 2) Planktonic filaments in lakesExample Stromatolites •Stromatolitelike deposition of and trapped; formed by and diatoms. •Agegrowth-deposition. •shaped in growth= year.
-Thylakoids in stacks of
-DNA microfibrils -Habitat •1) Obligate symbionts, live within
-Habitat •1) Obligate symbionts, live within
•1) Obligate symbionts, live within
filaments inlakes. -Examplelakes. Stromatolites Stromatolitelike deposition of and trapped; formed by and diatoms. Age
Stromatolites Stromatolites Stromatolitelike deposition of and trapped; formed by and diatoms. Agegrowth-deposition. -shaped in growth= year.
Stromatolites Stromatolite-
• Stromatolitelike deposition of and trapped; formed by and diatoms. • Age growth-deposition. •shaped in growth= year.
• Stromatolitelike deposition of and trapped; formed by and diatoms. • Age growth-deposition. •shaped in growth= year.
• <u>Age</u>
• <u>Age</u>
egrowth-deposition. eshaped in growth= year.
egrowth-deposition. eshaped in growth= year.
shaped in growth= year.
Cyanobacteria Produce Cyanotoxins
•
-Anatoxin and saxitoxin.
staggering, muscle twitching, gasping, and convulsions.
-Anabaena, Aphanizomenon, Oscillatoria.
• large compounds that target the liver.
-Microcystins and nodularins.
weakness, vomiting, diarrhea.
-Anabaena, Microcystis, Oscillatoria, Nodularia, Nostoc.

Fungi- Chapter 14

Fungi		
•Eukaryotic		
•	and	
Most are composed of	·	(fungal filaments)
Nuclei occur in continu	uous	
•Heterotrophic		
•Cell wall	and predomi	nantly made of
•Reproduction is	and se	exual
•Life cycles are	 	
	species described	
• <u>Habitat-</u> ubiquitous, bu	ut	
• <u>Size</u> -	scopic and	scopic.
•Storage product-		
Phylum Cryptomycota 		
•~1000 species	•	
_		, and .
•Example-	·	
Phylum Chytridiomyc •	ota	
•~	_ species.	
• <u>Habitat</u>		
		and streams, rumen of large mammals
		with a single whiplash flagellum.
•Example-		
 Sexual reproduction in Asexual by zoospores. 	volves the formation of a	·

Life Histories

Allomyces life history

Phylum Microspor	idia		
•Spore forming	cellular		.
•~	species.		
•Lack	,	, and perox	kisomes.
•Reproduce by form	ing	that shoot	into host cells
•Example-			

•Arbuscular species so far. •Occur in about % of vascular plants • ,	Phylum Glomero	mycota	
 species so far. Occur in about % of vascular plants ,	•Arbuscular	·	
•Occur in about% of vascular plants •,	•~	species so far.	
•Asexual, large •Example Phylum Zygomycota •Aseptate			
•Example Phylum Zygomycota •Aseptate	•	,	
•Example Phylum Zygomycota •Aseptate			
•Aseptate			
•	Phylum Zygomyc	ota	
•~ species.	•Aseptate		
	•~	species.	
• <u>Habitat</u>			
-Plant and animal tissue in soil, some are on plants, insects, and small soil animal	–Plant and	l animal tissue in soil, some are	on plants, insects, and small soil animals.
•	•	.	
•Examplestolonifer (commonmold).	•Example-	stolonifer (commo	n mold).
•Sexual reproduction involves the formation of a			
•Asexual by nonmotile spores.			

Rhizopus life history

Phylum Ascomycota		
2~32,000 species.	_	
PHabitat		
		nlant
•	,	, piant
Evamples Neurospars (neuros	—· Jary milday) Marakalla (r	norel), <u>Saccharomyces</u> (yeast).
Sexual reproduction involves	the formation of	on an
Asexual by budding,	,	
• • •		
Phylum Basidiomycota		
•		
22,000 species.	_	
Habitat		
	litter.	
Examples-	(mushroom).	Puccinia (rusts), <u>Ustilago</u> (smuts).
Sexual reproduction involves		on an
Asexual by budding, conidios		
Ascaula by budding, comulos	pores, magmentation.	

Gilled mushroom life history

Lichens			
biont	and	biont.	
Mycobiont= part Ascomycot	a & Basidiomycota.		
~13,000 species.			
<u>Habitat</u>			
-From the desert to the	ne poles.		
•			
Examples- <u>Caloplaca</u> (), <u>Parmelia</u> ((), <u>Usnea</u> ().
Reproduction is by			

Kingdom 'Protista' Part 1- Chapter 15

Heterotrophic Phyla •Oomycota-		
•Myxomycota-		
• <u>Dictyosteliomycota</u> -		
Oommooto water malde		
Oomycota- water molds •Characteristics		
cellular,	and	filamentous
condidit,		mamentous.
–Food reserve-	and parasitie.	
 karyotic nucleus. 	 '	
–Zoospores- 1	and 1	
–Cell wall	/cellulose-like.	
• Habitat - marine, freshwater, terrestrial		
•species.		
•Examples-	and	
Phytophthora- sudden	disease, Ireland	famine, crop destruction.

Myxomycota- plasmodial slime molds	
• <u>Characteristics</u>	
-Streaming	
-Streaming	bacteria, yeast, fungal spores.
-Food reserve-	
karyotic nucleus.	
-Gametes- 2 unequal, apical,	
cell wall.	
• <u>Habitat</u> -	<u>.</u> .
•700 species.	
•Examples-	
	
Physarum life cycle	
Dictyosteliomycota- cellular slime mold	S
•Characteristics	
like cells that	
	bacteria.
–Food reserve-	
karyotic nucleus.	
-Flagella-	
–Cell wall	·
• <u>Habitat</u> - terrestrial.	
•50 species.	
•	
•Examples-	<u>·</u>

Dictyostelium- cellular slime mold

Dictyostelium

Photosynthetic Phyla (the algae)		
• <u>Myzozoa</u> -		
• <u>Euglenozoa</u> -		
•Cryptophyta-		
• <u>Haptophyta</u> -		
• <u>Chlorophyta</u> -		
•Rhodophyta-		
•Heterokontophyta- heterokont algae.	urgue.	
—Phaeophyceae-	algae	
-Chrysophyceae-		
-Bacillariophyceae-		
		
Myzozoa- dinoflagellates		
• <u>Characteristics</u>		
	olonial.	
–Chlorophylls and,	·	
-Food reserve-	in cytoplasm.	
Thylakoids inkaryotic nucleus.		
– <u>Flagella</u> - 1	and 1	
-Cell wall with	in thecal plates.	·
•Habitat- marine and freshwater.		
•4,000 species.		
•	2	, Dinophysis,
•Examples- 		
Euglenozoa- euglenoids		
•Characteristics		
-Chlorophylls and	<i></i>	
– <u>Food reserve</u> -	in cytoplasm.	
-Chlorophylls and - <u>Food reserve</u> - -Thylakoids3.		
 karyotic nucleus. unequal flagella, long one with 		
-2 unequal flagella, long one with _	·	
–No cell wall,		·
• <u>Habitat</u> - marine and	. modalna diestra	a atronoma lales
• nautat- marine and	, puddies, ditches, pond	s, streams, takes, fivers
•1,000 species.		
• <u>Example</u>		

Kingdom 'Protista' Part 2- Chapter 15

Cryptophyta- cryptomonads		
•Characteristics		
– cellular.		
-Chlorophylls A & C,		
-Food reserve-	within 2 chloroplast men	nbranes.
-Thylakoids in	-	
-Eukaryotic nucleus.		
−2 flagella,		(dbl. & single).
	, proteinaceous periplas	t plates.
• <u>Habitat</u> - marine & freshwater.		
•200 species.		
•Examples-		
	·	
Haptophyta- haptophytes		
• <u>Characteristics</u>		
–Unicellular.		
-Chlorophylls A & C,	in vesicles.	
– <u>Food reserve</u> -	in vesicles.	
–Thylakoids in 3.		
-Eukaryotic nucleus.		
–2 whiplash flagella and 1 _	, covered with scales of cellule	-· <u>, , , , , , , , , , , , , , , , , , ,</u>
	, covered with scales of cellule	ose or calcium carbonate.
• <u>Habitat</u> - marine & freshwater.		
•300 species.		
•Examples-	<u>& Phaeocystis.</u>	
Chlorophyta groop algae		
Chlorophyta- green algae		
• <u>Characteristics</u>		
cellular and	cellular.	
-Chlorophylls A &		
-Food reserve-	in chloroplast.	
–Thylakoids in 3-6.		
–Eukaryotic nucleus.		
–Highly variable;,	,fla	agellated; whiplash when present.
-Cell wall cellulosic.		
• <u>Habitat</u> - marine &	·	
•17,000 species.		
•Examples- <u>Ulva</u> ,	. Chlorella, Volvox, Chara	, Closterium

<u>Ulva</u> life history

Charales-Coleochaete

Rhodophyta- red algae

• <u>Characteristics</u>		
– cellula:	г.	
-Chlorophylls A &	, phycobilins.	
-Food reserve-	in cytoplasm.	
-Thylakoids occur		
-Eukaryotic nucleus.		
– flagella.		
_		
-Cell wall with cellulose & ga	lactans.	
• <u>Habitat</u> - & fres	hwater.	
•6,000 species.		
•Examples- Polysiphonia,	, Batrachospermum,	

Heterokontophyta- heterok	conts
Phaeophyceae-	algae
• <u>Characteristics</u>	
_ <u></u>	cellular.
-Chlorophylls A & 0	C,
- <u>Food reserve</u> - man	nitol & laminarin in
-Thylakoids in 3.	
Eukaryotic nucleus	
−2 flagella, 1 tinsel d	& 1 whiplash.
-Cell wall cellulosic	with
• <u>Habitat</u> -	
•2,000 species.	
•Examples- <u>Fucus</u> ,	, Laminaria, Nereocystis, Ectocarpus,
-2 flagella, 1 tinsel & -Cell wall cellulosic •Habitat- •2,000 species.	& 1 whiplash. with

Fucus life history

Chrysophyceae- golden-brown algae
• <u>Characteristics</u>
cellular, colonial.
-Chlorophylls A & C, - <u>Food reserve</u> - chrysolaminarin in
— <u>Food reserve</u> - chrysolaminarin in
-Thylakoids in 3.
–Eukaryotic nucleus.
-Most= 2 flagella, 1 tinsel & 1 whiplash.
-Cell wall cellulosic, silica, or none.
• <u>Habitat</u> - marine and
•1,000 species.
•Examples- <u>Dinobryon</u> ,
Bacillariophyceae
• <u>Characteristics</u>
cellular,
 cellular, _Chlorophylls A & C, _Food reserve- chrysolaminarin in
– <u>Food reserve</u> - chrysolaminarin in
-Thylakoids in 3.
–Eukaryotic nucleus.
-No flagella, 1 tinsel on male gamete.
-Cell wall is silica and made of
• <u>Habitat</u> and freshwater.
•100,000 species.
•Examples- <u>Acnanthes</u> , <u>Bacillaria</u> , <u>Licmophora</u> ,,

Frustule Morphology

Bryophytes- Chapter 16

•What is the name of the group we are studying today and tomorrow?
–A) flowering plants
–B) fungi
–C) bacteria
–D) mosses
–E) don't care, where are the snacks?
• <u>True or false</u> .
Bryophytes are plants.
Bryophytes grow only in the water, but not on land.
•Which of the following is not true of plants?
—A) they are mostly autotrophic
−B) they are primarily terrestrial
—C) they have the same photosynthetic pigments as brown and red algae
–D) they are multicellular
–E) still don't care, where is the popcorn?
Kingdom Plantae-
• trophic (mostly).
• with advanced tissue differentiation.
• alternation of generations, where the
-Diploid phase (phyte) includes an embryo.
-Haploid phase (phyte) produces gametes by mitosis.
•Chlorophylls &, carotenoids.
•Starch stored inside chloroplasts.
• <u>Habitat</u> - primarily • present.
•Male and female gametangia present.
•Photosynthetic tissues produced by an meristem.
•Sporangia with a
•present. •~330,000 species.
•True or false.
'Bryo' is greek for moss.
Liverworts and hornworts are bryophytes.
The moss sporophyte is nutritionally dependent on the female gametophyte.
Water is not required for fertilization in mosses.

Bryophytes	
	.
•Bryo- <i>gr</i> •Liverworts, hornworts, and more	sses.
•	dominant.
•Sporophyte matrotrophic and _	dominant. (6-16 weeks). required for fertilizationand
•	required for fertilization.
•Sexual reproduction involves _	and
*Dinagenated Sperm.	
•Asexual reproduction by	and
•Plasmodesmata present.	
•Rhizoids in most.	
•	in most (not the hornworts).
•	or stomata-like structures present.
•~16,000 species.	
•True or false.	
Liverworts because the	ey are shaped like a liver and look glandular were used to treat liver
disease in earlier times	S.
The specimen marked	'A' is a leafy liverwort and the one marked 'B' a thalloid liverwort.
	•
Marchantiophyta-	
•Sporophytes	stomata, but have pores.
•Specialized conducting tissue	
•Gametophytes thalloid or leafy	
•Rhizoids	celled
·	of all living plants
•Sporangium with	celled. of all living plants. capsule, elaters present in some to disperse spores chloroplasts.
•Most cells contain	chloroplasts.
-Wost cens contain	, some aquatic, temperate and tropical.
•6,000 species.	, some aquatic, temperate and tropical.
•Examples- Marchantia and	 '
Marchantia Antheridia	

Marchantia Antheridia

Marchantia Archegonia

Below you can see male gametophytes.
Life history of <u>Marchantia-</u> Heteromorphic, heterothallic, homosporous, sporic alternation of generations. You will study the life history stages of this plant in the lab.
And become described
•Anthocerotophyta, keras- gr
•Sporophytesstomata.
•Specialized conducting tissue
•Gametophytes
•Rhizoidscelled.
•Sporangia dehisce to disperse spores, elater-like structures present.
•Most cells contain a chloroplast.
•Sporophyte with basal intercalary
• <u>Habitat</u> - moist temperate and tropical.
•100 species.
•Example-
•Hornwort sporophytes
-A) are nutritionally dependent on the female gametophyte
–B) are primarily terrestrial
-C) lack stomata
–D) contain a sporangium
−E) all of the above

• True or false.

Phylum Bryophyta).
_
ta.
and nonlignified
oroplasts.
, temperate and tropical, some aquatic.
:
olytrichum.
of cells with slanted cross walls
or come with similor cross wars.
olytrichum of cells with slanted cross walls. budlike structures.
budlike structures. s, <u>Sphagnum</u> .
s, <u>Sphagnum</u> of cells that is one layer thick.
s, <u>Sphagnum</u> of cells that is one layer thick. per node.
s, <u>Sphagnum</u> of cells that is one layer thick. per node. perculum.
s, <u>Sphagnum</u> of cells that is one layer thick. per node. perculum. es, <u>Andreaea</u> .
s, <u>Sphagnum</u> of cells that is one layer thick. per node. perculum.
s, <u>Sphagnum</u> of cells that is one layer thick. per node. perculum. es, <u>Andreaea</u> .

Moss life history

•Moss sporophytes
-A) are nutritionally dependent on the female gametophyt
−B) are aquatic and terrestrial
-C) have multicellular rhizoids
–D) include Polytrichum, Sphagnum, and Mnium
−E) all of the above
•True or false.
Moss sporophytes contain stomata.

Moss gametophytes are thalloid and leafy.

Seedless Vascular Plants- Chapter 17

• <u>True or False</u> .
-Nonvascular plants include the algae and bryophytes.
-Vascular plants include lycophytes, ferns, gymnosperms, and flowering plants.
—Xylem and phloem are the names of musical instruments from Istanbul.
Vascular Tissue System
• plant tissue that conducts water and minerals.
— <u>Tracheary elements</u>
•
•
• plant tissue that conducts food (mainly)
<u>elements</u>
Vascular Plant Terminology #1
• <u>Leaves</u> - photosynthetic, principal of the stem small leaves that contain a single strand of vascular tissue.
- large leaves that contain multiple strands of vascular tissue.
ge
Vascular Plant Terminology #2
• <u>Homosporous</u> - production of one type of spore from kind of sporangium.
• <u>Heterosporous</u> - production of two types of spores from different kinds of sporangia.
Vascular Plant Terminology #3
• a modified leaf that bears sporangia.
 - a structure that produces spores.
Vascular Plant Terminology #4
• a modified leaf that bears microsporangia.
— <u>Microsporangia</u> - a modified real that bears interosporangia.
• a modified leaf that bears megasporangia.
- <u>Megasporangia</u> - a sporangium that produces
Vascular Plant Terminology #5
• a reproductive structure consisting of nonphotosynthetic sporophylls; a
a microsporangiate cone.
a megasporangiate cone.
Coodless Vescular Plants
Seedless Vascular Plants
•Representatives (425-370 MYA)

Seed	less Vascular Plants		
•Phyla (Living today)			
_ <u></u>	- club mosses, resurrection plant, quillworts.		
	- ferns and the fern allies (whisk ferns and horsetails		
Lycopodiophyta- lycophytes			
•Lykos- <i>gr</i>	, pous- <i>gr</i>		
•pres			
•Plants + or -	branched.		
•Sporangia on or in the	of sporophylls on strobili.		
•sporous &	sporous.		
• <u>Distribution-</u> global.			
• <u>Habitat-</u>	, deserts, aquatic.		
•~1,200 species.			
•Examples- Lycopodium,	·		

 $\label{linear_$

Selaginella- the resurrection plant (Se	elaginellaceae) is	sporous.	
<u>Isoetes</u> - the quillwort (Isoetaceae) is _		_sporous.	
• Motah anara tuma an tha might to learn	hyta family on the left		
Match spore type on the right to lycop1. Lycopodiaceae (Lycopodium)	a. Homosporous		
2. Selaginellaceae (Selaginella) 3. Isoetaceae (Isoetes)	b. Heterosporous		

Monilophyta- ferns and	fern allies.	
•Monilo- gr		
• <u>Leaves</u> -	phylls, scalelike, &	phyll-like.
•brar		
•Sporangia in	, lateral, or on sporar	ngiophores in strobili.
•Heterosporous & homos	•	
• <u>Distribution-</u> global,	·	
• <u>Habitat-</u> all habitats, > s	pecies in	
•~11,000 species.		
•Examples- Polypodium,		·
Spore development- two	o types	
		
Class Psilotopsida Order Psilotales-		
•Psilos- gr		
	-like or	-like.
•Eusporangiate.		
•Sporangia lateral.		
•		branched.
•Homosporous.		
•roots, b	out they have aerial stems.	
• <u>Distribution-</u>		
		, Florida, Louisiana.
• Habitat- epiphytic or on	rich soils.	
•Example-	(2 spp.), and	(13 spp.).
<u>Tmesipteris</u>		
Class Psilotopsida Order Ophioglossale	·s	
•Ophio- <i>gr</i>	Gloss- gr	
• <u>Leaves</u> -	phylls.	
•	in 2 rows.	
•Sporangia on	or	
•	or branched.	
•		
•Roots, stems, and leaves		
	d	<u>_</u> :
• <u>Habitat</u> - epiphytic or		

•~ species.	
	and
Class Marattiopsida	
Marattio- gr	·
• <u>Leaves</u> -	phylls, complex, pinnately branched.
	orangiate,
	of
•~species.	
•Example-	
Class Polypodiosida- fern	
•Poly- <i>L</i>	podio- <i>gr</i>
• <u>Leaves</u> -	phylls, fronds.
•Sporangia	sporangiate, homosporous and heterosporous.
•Sporangia usually in	.
	branching, but not dichotomous.
•Roots, stems, and	
• <u>Distribution-</u> global,	
	cies in
•~_	
•Examples- Polypodium.	

Polypodium (Typical Fern) life history

Class Equisetopsida	a- horsetails	
•Equus- <i>L</i>	, saeta- <i>L</i>	
•Leaves- microphyll	-like, scaly.	
•Homosporous.		
•Sporangia on spora	ngiophores in a strobilus.	
•	leaves, but not dichotomous.	
•Roots and stems (ri	bbed and jointed).	
• <u>Distribution-</u> global	l.	
• <u>Habitat</u> - along strea	ims in moist sites.	
•~spec	cies.	
•Example-		

Gymnosperms- Chapter 18

Naked versus Enclosed Seed Plan	ts	
•Gymnosperms		
—Gymno- <i>gr</i>	·	
—Sperma- <i>gr</i>		
•Angiosperms		
-Angeion- gr	.	
- <u> </u>		
Extant Gymnosperms		
•Match the common name on the ri	ght to the phylum on the left.	
−1) Cycadophyta	a. ginkgo	
−2) Ginkgophyta	b. conifers	
-3) Coniferophyta	c. cycads	
-4) Gnetophyta	d. gnetophytes	
Cycadophyta		
• <u>Cycas</u> - <i>gr</i>		
•, but		
•Sperm present,		
• leav	res.	
•Pollen tube	with the egg cell.	
•Ovulate (megasporangiate) & micr	rosporangiate cones simple & on	plants.
•11 genera & 140 species.		
•Examples-	&	<u>-</u> •
Ginkgophyta		
	, <u>hing</u> - <i>ch</i>	
	outvessel elements.	
•Sperm present,		
•le		
•Pollen tube		
	s on plants;	seeds
• genus & species.	1 /	
•Examples-	= maidenhair tree.	
Coniferophyta		
~ *	fer- I	
•	, <u>fer</u> - L.	<u>—·</u>
• 1	ke orlike le	Pavec
•Pollen tube		.αν CS.
1 Official tube	with egg cell.	

Ovulate & microsporangiate cones on		plant; ovulate cones compound.
•70 genera & 630 species.		
•Examples-	, <u>Picea</u> , _	, Abies, Cupressus.
D: ' (D:) lie liid		

Metasequoia-		·
Wollemia nobilis-		
Gnetophyta		
•Gneto- Malay gnenom.		
•	and	elements.
•Sperm	motile.	
		_ leaves.
•Pollen tube	with egg cell.	
•Ovulate & microsporangiate of	cones compound & mostly born	e on separate plants.
•3 genera & 70 species.		
• <u>Examples</u> -	,	, Welwitschia.
Gnetum		
<u>Ephedra</u>		

Introduction to the Angiosperms- Chapter 19

Angiosperms- Anthophyta		
	, but parasitic and saprophytic representatives.	
	· · · · · · · · · · · · · · · · · · ·	***
•Ovule- the structure in seed p	plants that contains the	, with
	in seeds.	
	(microsporophylls) &	
(megasporophylls).		
•Species- 300,000-450,000		
Class Monocotyledonae		
• <u>Flower parts</u> s.		
• <u>Pollen</u> -		
•Cotyledons-		
• <u>Leaf venation</u> -	<u> </u>	
•1° vascular bundles in stem-	·	
•2° growth	vascular cambium.	
• <u>Examples</u> -	, lilies, irises,	, cattails, palms.
Class Eudicotyledonae		
• <u>Flower parts</u> s	&s.	
• <u>Pollen</u> apertur	rate.	
• <u>Cotyledons</u> -		
• <u>Leaf venation</u> -		
•1° vascular bundles in stem-	·	
•2° growth	vascular cambium.	
• <u>Examples</u> -	,	·
Flower Anatomy Sepals-		
Petals-		
Pedicel-		
Stigma-		
Style-		
Ovary-		
Receptacle-		
Anther and filament-		

Ovary Position	
•	whorls attached below the ovary.
•	stamens and petals adnate to the calyx, forming a tube (hypanthium) at the
	base of the ovary.
•	whorls attached above the ovary.
Epigyny in Malus (apple	e) flower
1 50 V \ 11	
Mature Anther with 4 M	l icrosporangia
Mature Embryo Sac- 8 i	auclei, 7 celled structure
Double Fertilization	

Glycine- soybean lifecyc	le.			
or after maturation of th	- tissue that contains ne seed.	stored food that is	s digested by the s	porophyte before

Evolution of Angiosperms- Chapter 20

and the _____.

Rafflesia arnoldii •Flower- the reproductive structure of angiosperms; a shoot that bears sporophylls. **Evolutionary Trends Among Flowers** •Flowers have gone from _____ indefinite parts to having ____ parts that are definite in number. •Floral _____ have _____ over time. •Floral parts have become . •Floral _____ has become ____ •Carpels have gone from _____ and incompletely closed to pistil-shaped and sealed. •Ovary has gone from to •Perianth has gone from having indistinct sepals and petals to having a distinct calyx and corolla. •Flowers have gone from _____ (actinomorphic) to _____ (zygomorphic) symmetry. Floral Evolution • _____ and _____ have coevolved. <u>Coevolution</u>- the _____ of adaptations in 2 or more interacting populations. •Insect pollination is ______ efficient than passive pollination. _____, flies, _____. • are the most important group of visiting insects. Bird and bat-pollinated flowers •Produce copious _____. •Usually bright and in color. -Birds have a good sense of color. •Flowers usually have very _____ —Smell not developed in birds. Flavonoids • soluble phenolic compounds with two six-carbon rings linked by a three-carbon unit. •Occur in the of plant cells. •The most important pigments in floral coloration are the _____ (red, violet, and blue) and the ______. Wind pollinated flowers produce nectar. •Water soluble compounds with two six-carbon rings linked by a three-carbon unit. •Occur in the _____ of plant cells. •The most important pigments in floral coloration are the _____ (red, violet, and blue)

Asteraceae ar	and Orchidaceae	
•Asteraceae		
<u> </u>	have flowers closely bunched together in a head.	
	• species. •Ovary with ovule • and flowers.	
	•Ovary with ovule	
	• and flowers.	
•Orchidaceae		
–Orch	chid flowers are showy and zygomorphic.	
	• species. •Ovary with of ovules. •Cuplike lower petal.	
	•Cunlike lower netal	
	captike lower petal.	
E 4/B1/1		
	ed Terminology	
• <u>Fruit</u> - a	·	
•	- the enlarged basal portion of a carpel.- the vessel that encloses the ovule/s; forms the gynoecium.	
•	- the vessel that encloses the ovule/s; forms the gynoecium.	
•	- the structure that contains the female gametophyte with egg c	ell, including
	and integuments.	
•	- a mature ovule.	
•	- chambers in the ovary that contain the ovules.	
3 types of Pla	lacentation	
o types of fin	accitation	
Fruit Classifi	fication	
• Fruit derived		
<u> </u>	<u>fruit</u> - develop from a cluster of mature ovaries produc	ed by a cluster
of mat	nature flowers.	ca by a cluster
OI IIIu		

<u>fruit</u>- develop from several separate carpels of a single flower.

	•Raspberry, strawberry,
Simp	ple Fruit Types- fruit derived from pistil
•	
	-Berries- fleshy inner layer. Tomatoes, banana, grapes.
	• a berry with a thick, leathery, inseparable rind.
	Cucurbitaceae.
	• a berry with a thick, leathery, separable rind. Citrus.
	fleshy hypanthium. Pear, apple.
	- stony endocarp. Peach, cherry, olive.
•	
	- tissue of the mature ovary wall splits open, freeing the seeds.
	• <u>Legume</u> - dehisces along 2 sutures.
	tissue of the mature ovary wall remains sealed with seeds remaining
	in the fruit.
	•Nut- hard pericarp, usually one-seeded.
	• <u>Achene</u> - small. dandelion.
Frui	ts and seeds have evolved in relation to their dispersal agents
•Wi	nd-borne fruits & seeds.
•	
•Fle	shy for animal dispersal.
•Att	achment to

Early Development of the Plant Body- Chapter 22

True or False	
Embryogenesis is the for	mation of an embryo.
The developing embryo	in angiosperms is photosynthetic.
Embryogenesis	
Embryogenesis- formation of an	embryo.
•The first two divisions are	and establish embryo
_	- chalazal pole.
•Consists of an	that gives rise to an
	that gives rise to an, which will eventually give rise to the mature embryo.
_	- micropylar pole.
•Consists of a	that gives rise to a
Embryo Proper and the Primar	
•The embryo proper is tissue that	differentiates to form primary meristems.
Primary Meristems	
- <u></u>	- forms the epidermis of the plant by periclinal divisions of the
outer cells of embryo prop	per.
	forms the vascular tissue of the plant by vertical divisions.
_	- forms the ground tissue of the plant by vertical divisions.

The anical merist	em in angiosnerms		
A) is a region of ti	em in angiospermsssue at the tip of shoots and roots that is responsible for programmed cell death		
	ssue at the tip of shoots and roots that forms new cells.		
C) coordinates hormone production much like the brain in mammals			
D) produces the ba			
E) none of the abo	ve		
Apical Meristems			
•Apical Meristem-			
•As the embryo matures no	ew cell formation gradually becomes restricted to the apical meristems.		
•Shoot Apical Meristem-p	oositioned the two embryonic leaves in in		
•	- embryonic root.		
Seed Terms			
• <u>Hypocotyl</u> -			
• <u>Hypocotyl-root axis</u> - an u			
•	stemlike axis above the cotyledons.		
•	the first bud of an embryonic shoot.		
•	- the fruit wall, which develops from the wall of the ovary.		
Castor Bean- food is store	ed in		
Onion and Maize- food is	stored in		
A) water B) oxygen	d temperature nes		

-External (•Dependent on	and	factors
•Water •Oxygen •Temperature •Light - <u>Internal (</u> •Hormones- gibberellins. - cotyledon/s are carried above ground level cotyledon/s remain underground.			
•Temperature •Light —Internal (•Hormones- gibberellins. • cotyledon/s are carried above ground level. • cotyledon/s remain underground.	•Water		
•Light —Internal () •Hormones- gibberellins. • cotyledon/s are carried above ground level. • cotyledon/s remain underground.	•Oxygen		
 Internal (Hormones- gibberellins. cotyledon/s are carried above ground level. cotyledon/s remain underground. 		are	
•Hormones- gibberellins. • cotyledon/s are carried above ground level. • cotyledon/s remain underground.	_		
 cotyledon/s are carried above ground level. cotyledon/s remain underground. 	– <u>Internal (</u>)	
• cotyledon/s remain underground.	•Hormones	- gibberellins.	
• cotyledon/s remain underground.	•	cotyledon/s are carried above ground	level.
Examples-			
	Examples-		

True or False
_____ The onion has an epigeous type of seed germination.

Cells and Tissues of the Plant Body- Chapter 23

Origin of Primary Tissues	
• Primary growth- formation o	f
—Primary plant body.	
Growth and Development	
•	the sum total of events that lead to the formation of the plant body.
•Growth- an	in size.
-Cell	
-Cell	
-Meristematic tissue.	- regions of tissue at the tips of shoots and roots that forms new cells.
	unlimited or prolonged growth of the apical meristems=
Truen of the plant andergoes	
Morphogenesis and Differen	tiation
• Morphogenesis- the	
•	- a process by which a relatively unspecialized cell undergoes a
progressive change to form a r	morecell.

Internal Organization of the Plant Body	
• <u>Tissue</u> - a group of	organized into a structural and functional unit.
• <u>Tissue System</u> - a tissue or	
and functional unit; larger units of the plant body.	
•There are Tissue Systems	
<u> </u>	
<u> </u>	
Ground Tissue	
—Polyhedral to round in shape.	
Occur throughout the plant body.	
Photosynthesis, storage, and secretion.	
•	
-Elongate in shape.	
-Occur beneath the epidermis in young stems.	
-Support young growing tissues.	
• fibers and sclereids.	
-Long or stellate in shape.	
-Occur throughout the plant body.	
-Support (strengthen) and storage.	
Vascular Tissue #1	
	in vascular plants; at maturity; lignified
• <u>Tracheary Elements</u>	
	tapering; pits, but no perforations; seedless
vascular plants, gymnosperms, and some angiosp	
element- elongate; pits and	periorations, angiosperms.

Vascular Tissue #2			
Phloem- principal	tissue in vascular p	lants; living at maturity	; not lignified.
Gymnosperm Sieve Elements			
- <u>Sieve cell-</u> elongate & taperi	ng; with sieve areas.		
- <u> </u>	cell- elongate & tapering;	delivers substances to s	ieve cells.
Angiosperm Sieve Elements			
-Sieve-tube element- elongate	e & tapering; with a sieve plat	e.	
_ <u></u>	<u>cell-</u> variable; delivers sub	ostances to sieve-tube el	ements.
,			
Dermal Tissue			
- out	ermost cell layer of the		plant body.
-Variable in shape; guard cell	•		
		of plant body.	
-Protective (cuticle and water	loss) and aeration (stomata).	·	
·		protective tissues.	
-Rectangular in shape; cork co		1	
_	epidermis.		
-Protective and aeration (lenti	cels); replaces epidermis.		

The Root: Structure and Development- Chapter 24

Roots	
• <u>Root</u> - the	, normally occurs below ground.
•Root Functions	
	·
-	of water, minerals, inorganic ions.
•Two types of root systems	·
* *	a stout, tapering main root from which smaller lateral roots arise;
deep; gymnosperms & di	
1,63	arise from stem similar to lateral roots; shallow; monocots.
Root Penetration	
•Root depth and distance depend	on:
<u> </u>	
• 6.1	those involved in uptake of water and minerals occur usually in the
upper 1 meter of the soil.	
•P (41: 11 11 (
Rootcap- a thimble like mass of	cells that covers the root and
	mucigei.
•The	in young roots absorbs and
•Root Hairs-	of epidermal hairs that facilitate absorption.
Primary Development of the Re	oot Tip
•Region of cell_	
-~1 mm in length.	
–Apical meristem.	
•Region of cell_	
$-\sim$ 2 mm in length.	
-Cells elongate, function	nal xylem starts to develop and phloem is mature.
•Region of	
-~2 mm-variable in leng	
 Root hairs are produced 	d, functional xylem and phloem are present.

Name the 3 primary meristems scene on this slide:,,
Eudicot versus Monocot Roots
• <u>Eudicots</u>
-Vascular cylinder
—Cortical cells sometimes retained for life, but some shed due to secondary growth.
• Monocots
-Vascular cylinder in with
—Cortical cells retained for life, because they lack secondary growth.

Cortex and Vascular Cylinder

Match the following cortical and vascular terminology to their definitions.

1. Cortex a. 1 or more layers of nonvascular cells surrounding the vascular tissue of the root.

2. Vascular cylinder b. empty spaces among cortical cells; essential for aeration of the root cells.

3. Pericycle c. a region of the primary wall containing suberin that is impermeable to water and ions.

4. Intercellular spaces d. the innermost layer of the cortex.

5. Epidermis e. contains xylem, phloem, and pericycle.

6. Exodermis f. consists mostly of ground tissue that occupies the greatest area of the root.

7. Endodermis g. the outermost layer of cells.

8. Casparian Strip h. the outermost layer of the cortex that is one or more cell layers in depth.

Lateral Roots Arise from the
Effects of Secondary Growth on the Primary Body of the Root
Secondary Growth in roots consists of:
-1) Secondary vascular tissues (secondary xylem and phloem) from
-2) Periderm, mostly cork tissue from
Root Modifications
- roots produced from aboveground structures.
- negatively gravitropic roots that aerate the root system.
- specialized storage organs consisting of parenchyma and vascular
issue. Carrot, sweet potato, sugarbeet.

The Shoot: Primary Structure and Development- Chapter 25

The Shoot		
•Shoot- the		, consisting of stem and leaves.
– <u>Stem</u> - the	above ground of vascular plan	ts.
– <u>Leaf</u> - the p	orinciple	of the stem.
	- the part of the stem where one or mo	
	- the region of the stem between two	
•	an embryonic shoot protected by young l	eaves.
Primordium-		
Dtd		
Pith		
Modified Stems		
•	- modified leaves that spirally coil and aid	in stem support.
•	- runners; stems that grow horizontally on	* *
	plants at the nodes.	, <u> </u>
•	hard, woody, sharp-pointed modified ster	ms, arise from the axils of leaves.
•	hard, woody, sharp-pointed modified lea	ves or leaf-parts.
•	a small non-woody, sharp-pointed outgro	•

Underground Sten	18
•	- a horizontal stem that grows at or below the soil surface.
•	an enlarged, short, fleshy underground stem, forms at the tip of a rhizome. i.e. Potat
•a shorter	ned underground stem covered by enlarged fleshy storage leaves. i.e. Onion and garl
•	_ a thickened underground stem with small papery leaves. i.e. Gladiolus and Crocu
Leaf Arrangement	
•	- the arrangement of leaves on a stem.
	leaves are attached to an underground stem or rhizome.
	2 leaves attached at each node, borne on opposite sides of the stem.
	- 3 or more leaves at each node.
Leaf Morphology	
•Blade-	
•Petiole-	portion.
•	- scalelike or leaflike appendages at the base of leaves.
•	vs. <u>Leaves</u>
-Simple- b	lades
-	d- blades into leaflets.
•	compound- leaflets arising from both sides of the axis.
	compound- leaflets diverge from the tip of the petiole

Leaf Histology		
•	the	tissue of the leaf specialized for photosynthesis.
<u> </u>		parenchyma- upper cells.
		parenchyma- lower cells.
		 -
Leaf Abscission		
•Abscission-		
		nanges result in the formation of an abscission zone:
		layer
•Magnesium ions, sug		

Secondary Growth in Stems- Chapter 26

Seasonal Growth Cycles	
• a plant whose life cycle is com	pleted in a single growing season.
• a plant whose life cycle is com	pleted in two growing seasons; flowering and
• a plant whose life cycle is comfruiting occurs in the second year.	
• a plant whose vegetative portion	on of the life cycle lives year after year.
Constant County	
Secondary Growth	
• At the beginning of each growing season primary grow	• ————
•Secondary Growth- an in thic result of the activity of lateral meristems:	ekness () to the plant body as a
Cambium	
Cambium	
Cumorum	
Vascular Cambium	
• Vascular cambium- a cylindrical sheath of	cells that produces secondary xylem & phloem
•Consists of two forms of highly vacuolated cells:	
initials	
initials	
•Vegavler rove	
V ascillar ravs	
• <u>Vascular rays</u> —Pathways for the movement of	substances and water.

Wood	Secondary Xylem
•Woo	uses- shelter, fire, weapons, furniture, tools, paper, boats, wheels.
•Woo	is classified as:
	— <u>wood</u> - magnoliids and eudicots.
	wood
Conif	rs- softwoods
• <u>Trac</u>	eary elements only.
Magn	liids and Eudicots- hardwoods
• <u>Trac</u>	eary elements- tracheids and
Perid	m
• <u>Perio</u>	rm- outer tissue that replaces the epidermis as the protective covering of the plant. — meristem that produces the periderm. — (phellem)- secondary tissue that cuts toward the outside of the cork cambium; dead at maturity; suberin; impermeable to water and gases. — secondary tissue that is cut towards the inside of the cork cambium living at maturity; no suberin; permeable.
• <u>Lenti</u> that al	el- spongy regions on the cork surfaces of stems,, and other plant parts w for exchange.
• <u>Bark</u>	collective term for all tissues outside the cambium. — phloem

External Features of Woody Stems

Heartwood vs. Sapwood		
•Heartwood- the part of the wood in a living tree that of	contains	cells; nonconducting wood.
• <u>Sapwood</u> - the part of the wood in a living tree that conwood.	ntains	cells and reserve materials
Growth Rings Result from the Periodic Activity of t		
• <u>rings</u> - a layer of growth in seconda	ary xylem or phloe	m.
• <u>rings</u> - a growth layer that represen	ts one season's gro	owth.
• <u>Early wood</u>		
-Less dense than late wood.		
Produced during period of rapid growth.		
–Wide cells with thin walls.		
•wood		
Produced during periods of	growth.	
cells with	walls	S.
Bristlecone Pine (<u>Pinus longaeva</u>)		
• Oldest living tree		
– years in age- oldest living.		
– years in age- oldest.		
•Native to the White Mountains of eastern California.		
•The bristlecone pine is a sensitive	_ gauge.	
-3,500 B.C 1,300 B.C. warm summers.		
-1,300 B.C 200 B.C. cold summers.		
• the study of grow	wth rings and histo	orical time.

Ecology- Chapters 31 and 32

Environmental Science-

Ecological Definitions			
• Ecology- the study of th	e	between	and the
-Interactions (or) determine the abunca the size, shape, and lo	lance and distribution of organisms. ocation that a population occupies. duals in a given area and their density.
Quadrat-			
Transect-			
GIS and GPS			
Ecology Deals with 4 Le	vels		
•		nism.	
			es occupying a given area.
• all th	e organisms inh	ahiting a common environ	ment and interacting with one another.
an un	t organishis iiii		ment and interacting with one another.
<u> </u>	a community	and its physical environ	ment.
Population Distribution	ons		
		How many in Ca	
Ü	`	nmer heat), 12-25 inches of	
-Summer fog/ov drop to 27-30°F.	ercast is commo	on. Summer temperatures	from 80-100°F. Winter temperatures
-Common Plants	<u> </u>		
Manzanita	(Arctostaphylos		California Lilac (<i>Ceanothus</i> spp.), <i>acus</i> spp., the drought tolerant types), <i>echaris</i> spp.).
-Soil and climate		11//	** /
•A mixtur			n (Manzanita country) to alkaline clays

•Ecosystem-	
• the major regional ecosyst	tems.
Abiotic and Biotic Factors	
• Abiotic- characterized by the absence of life;	
	·
–	
ph, text	ure, gas exchange, salinity, leaching.
• <u>Biotic</u> - of or relating to life; space, s	
	substrate, light, nutrients.
Latitude	
Elevation	
Lievation	
Principle of Competitive Exclusion	
Plant-Herbivore Interactions	
Trant-fier broof e finter actions	
Succession	
•Succession-	·
succession	the initial of
or bedrock by pionee	er species (lichens, mosses, terns, herbaceous plants).
- succession	in the plants and initial colonization.
animals that live in a community after the	initial colonization.
Opportunistic vs. Late Successional Forms	
•r-selected	•K-selected
—Colonizers on newly-cleared surfaces.	——————————————————————————————————————
	predicatable basis.
– <u>Life history</u> - ephemerals, annuals,	- <u>Life History</u> - complex, perennials, seasonal
simple veg. life history.	reproduction.
- <u>Size</u>	- <u>Size</u>
-Growth- -Reproduction- high output,	-GrowthReproduction- low output,
offspring, low cost/unit.	offspring, high cost/unit.
- <u>Energy storage</u> - uniform throughout.	– <u>Energy storage</u> distributed
<u></u>	
Population Growth	Population Explosions

Regulating Growth and Development- Chapter 27

Hormones		
•Hormone- gr. to	·	substances produced in
amounts that regulate and coordinate i	metabolism, growth, and morp	phogenesis.
Darwin and Darwin		Boysen-Jensen
Major Class	ses of Plant Hormones	
-Leaf primordia, young leave	s develoning seeds	
-Polarly (unidirectionally) and		
•	1	
–Root tips.		
–From roots to shoots via xyle	em.	
-Most tissues in response to s	tress	
-Diffusion from site of synthe		
• <u>acid</u>		
-Mature leaves and roots, see		
–From leaves in phloem and f	rom the roots in the xylem.	
-Young tissues of the shoot ar	nd developing seeds.	
-Xylem and phloem.	The Contract of Co	
•		
-Young tissues and throughou	it the plant.	
-They act locally.		
• is the only	nlant hormone known to be tr	ransported polarly
•Polar transport is		ansported polarry.
- Potat transport is	(toward the base).	
Auxin Provides Chemical Signals T	hat Communicate Informat	ion Over Long Distances
•	- inhibitory influence	e of the apical bud upon lateral buds.
		1 1
A ' DI DI' 4	•	637 1 77
Auxin Plays a Role in the	and	of Vascular Tissue
Auxin	Develop	ment

Auxin	the Formation of Lateral and	Adventitious
Auxin	Abscission	
Auxin Ethylene Plays a Role in	s Kill Weeds- Herbicides	
Ethylene May	or	Cell Expansion
Cytokinins	Cell Division	
Cytokinins	Leaf Senescence	
Cytokinins	the Growth of Later	al Buds
Abscisic Acid (ABA)	Seed Ge	rmination
Abscisic Acid Plays a Role as a	nto	Signal
Abscisic Acid is Responsible fo	or	
•Gibberellin (GA) causes		
•Gibberellin causeselongation.	of	by stimulating cell division and

Gibberellin Plays Mu	ltiple Roles in
1) Breaking _	
2) In	
Gibberellin Can Cau	se
Gibberellin Affects _	Development
Brassinosteroids	
Additional Chemical	Signals
•	- signal in defense responses to plant pathogens.
•	- plant growth regulation and defense.
•	growth and development; mitosis and meiosis.
•	- long-distance signal that activates chemical defenses against herbivores
•	signal in hormonal and defense responses.

External Factors and Plant Growth- Chapter 28

• <u>Tropism</u> -			
• <u>Phototropism</u> - the curving	g of a growing shoo	t	
	2.4		
• <u>Gravitropism</u> - the respons			,
-1st			
— 2nd			
• <u>Thigmotropism</u> - the respo	onse to	with a	solid object
<u>imgmotropism</u> the respe		WILLIU	sona object.
• <u>Heliotropism</u> - the orienta	tion of	and	to the
Turgor pressure c	hanges of the		·
• <u>Pulvinus</u> -	thialranir	og at the base of the n	atiala ar natialula
Growth response unrelated	to the direction of t	ig at the base of the p the external stimulus	etiole of petiolitie.
• <u>M</u>			
		1	
_			
•	<u>morphogene</u>	esis esis	
• Nyctinasty- the	and	movem	ent of leaves in response to
daily rhythms (night and d	ay).		
• <u>Thigmomorphogenesis</u> - th	ne		in
response to mechanical stime	muli.		

Plant Nutrition, Soils, and Disease- Chapters 13 and 29

Plant Nutrition		
Plant Nutrition-	from	of all raw materials
required for essential bioche	emical processes.	
	have b	
•1880s- ten chemical eleme	nts were designated as	for plant growth.
-Carbon, hydrogen	, oxygen, potassium, calcium,	magnesium, nitrogen, phosphorus, sulfur, iron.
• •	opper, chlorine, boron, molybo	
<u> </u>	-FF - ,	,
Essential Elements		
Three criteria are used to ju-	dge essentiality	
1) If it is needed for th	e plant to	
2) If it is part of	or co	onstituent of the plant that is itself essential.
a. Magnesium	in chlorophyll molecule.	
b. Nitrogen in		
3) If		appear in the absence of the element.
•		
2 Types of Essential Elemo		
•	required in large an	nounts.
100 mg/kg of dry m	ng/kg or > of dry matter.	
•	(trace elements)- requ	uired in very small amounts.
100 mg/kg of dry m	natter.	
Certain plants contain unus	ually high and low amounts of	specific elements.
-		
Macronutrient Functions		
Sulfur	a. ATP, nucleic acids, pho	ospholipids.
Phosphorus Magnesium Calcium	b. chlorophyll molecule.	
Magnesium	c. amino acids and coenzy	
Calcium	d. cell walls, cofactors, ce	
Potassium	e. almost all chemical mo	
Nitrogen		nucleotides, nucleic acids, chlorophylls.
Oxygen, Carbon,	g. osmosis and ionic balan	nce, stomatal activity.
and Hydrogen		
N.E		
Micronutrient Functions		docation.
	nitrogen fixation and nitrate re-	
	enzyme functioning in nitroger	
	involved in some REDOX read	
	activator or component of man	• •
	-	ntegrity, oxygen release in PSN.
	Ca ²⁺ utilization, nucleic acid sy	ynthesis, membrane integrity.
	chlorophyll synthesis.	
•	osmosis and ionic balance.	

Sulfur

Phosphorus

Magnesium			
Calcium			
Potassium			
Nitrogen			
Molybdenum			
Copper			
Chlorine			
Zinc			
Manganese			
Boron			
Iron			
Global Nitrogen and Phosphorus	s Use		
Nitrogen Losses			
Eutrophication			
Sail			
Soil	(::-:-:- \	4 11	
Soil- primary, and	_ (inorganic ions),	_, suitable 	for plants.
Provides a chemical and	physical environment for plant grow ring inorganic compounds that are us	th.	

Soil Layers (Horizons)		
•Soils consists of at least 3	(layers)	
A Horizon=	soil.	
B Horizon=	soil.	
<u>C Horizon</u> =	·	
	= below the horizon	on layers
•Soils Are Composed of Solid Ma •Solid Matter- fragments of rock a 1. Coarse Sand 2. Fine Sand 3. Silt 4. Clay	•	
• <u>Pore Space-</u> the space around the	soil particles.	

Genetics- Chapter 8

Mendel's Dihybrid Cross

•315:108:101:32 =

Mendel Studied 7 Characters i	n the Garden Pea (<u>Pisum sativum</u>)	
•Flower	Pod	
•Flower		
•Seed		
•Seed		
Mendel's Methods		
• <u>Cross-pollination</u> - the transfer of —Self-pollination —Artificial cross-pollination	of from one plant to the	of another.
•	mental cross between individuals that	
•First () and second	ond () generations.	
Mendel's F ₁ Observations		
•One of the traits could be seen i	in the F ₁ generation=	
	ten in the F_1 generation=	
Genetic Terminology		
•		
	an organisms genetic makeup.	
•	-	
•	two different alleles for a gene.	
Genetic Terminology #2		
•	one of 2 or more alternative forms of the same gene.	
•	a sequence of DNA that codes for a protein.	
	the position on a chromosome occupied by a gene.	
Mendel's F ₂ Observations • Flower color —Purple: white 705:224		

•Alternative versions of genes (different		r variations in inherited characters
•For each character an organism inherits		
•If two alleles differ, then one, the		
•The two alleles for each character		
•Alleles of a gene segregate		
		S
Punnett Squares and the Testcross		
Punnett square- a		·
• <u>Testcross</u> - a genetic experiment used to determ	nine an organisms geno	type.
Codominance		
• <u>Codominance</u> - the effects of both alleles are a	pparent.	
Incomplete Dominance		
• <u>Incomplete dominance</u> - type of inheritance in	which the F ₁ is	in phenotype
between the parents.		
Neither allele is dominant.		
•Self-pollination of the F ₁ yields a	F ₂ popu	lation.
Continuous Variation		
• Continuous variation - a	in nhenotyne: in	dicates that a trait is controlled by
or more genes.		areates that a trust is controlled by
Linkage		
• <u>Linkage</u> - the tendency for certain genes to be owing to the fact that they are located on the sai	ne chromosome	
• <u>Linked genes</u> - genes that are inherited		
		_ -
Genetically Engineered Rice- what does it co	ntain?	

Genetic Engineering	
• Genetic Engineering- the technique of,	, or
genes to a DNA molecule.	
— <u>Improvements in crops</u>	
•	
•Resistance to	
•Resistance to	
Transgenic Plants	
•Tomato with and without.	
•Transgenic tomatoes with and without	
•Petunia with and without	
•Tobacco with and without a	
Transfer of Genes	
Tissue Culture	
Agrobacterium tumaefaciens	
•Genomics- a field of genetics that attempts to understand the	
, function, and	of genetic information in a
whole organism.	
Arabidopsis thaliana	
Why is it an ideal model organism?	

 ${\color{red} \bullet} \underline{\textbf{Genome}} {\color{black} -}$ all of the genetic information of an organism.

94

Dr. Jeffery R. Hughey Mutant *Arabidopsis* Laboratory

Arabidopsis thaliana (L.) Heynh. is a flowering plant in the mustard family Brassicaceae and is native to Europe, Asia, and northwestern Africa. It is an annual that typically grows to 20–25 cm in height. The leaves form a rosette at the base of the plant, with a few leaves also on the flowering stem. The basal leaves are green to slightly purplish in color, 1.5–5.0 cm long and 2–10 mm broad, with an entire to coarsely serrated margin; the stem leaves are smaller, unstalked, usually with an entire margin. Leaves are covered with small unicellular trichomes. The flowers are 3 mm in diameter, arranged in a corymbose fashion; their structure is that of the typical Brassicaceae. The fruit is a siliqua 5–20 mm long, containing 20–30 seeds. Roots are simple in structure, with a single primary root, and smaller lateral roots. Arabidopsis completes its life cycle in six weeks. The central stem that produces flowers grows after about three weeks, and the flowers naturally self-pollinate. In the lab Arabidopsis may be grown in petri dishes or pots, under fluorescent lights or in a greenhouse.

Use as a model organism

By the beginning of 1900s, *A. thaliana* had begun to be used in developmental studies. The first collection of its mutants was made around 1945. The species is now widely used for studying plant sciences, including genetics, evolution, population genetics, and plant development. *Arabidopsis* plays the role for agricultural sciences that mice and fruit flies (*Drosophila*) play in animal biology. Although *A. thaliana* has little direct significance for agriculture, it has several traits that make it a useful model for understanding the genetic, cellular, and molecular biology of flowering plants.

The small size of its genome makes *A. thaliana* useful for genetic mapping and sequencing, with 125 million base pairs and 5 chromosomes, *Arabidopsis* has one of the smallest genomes among plants. It was the first plant genome to be sequenced, completed in 2000 by the *Arabidopsis* Genome Initiative. The current version of the genome is maintained by The *Arabidopsis* Information Resource (TAIR). Much work has been done to assign functions to its 25,498 genes and the 35,000 proteins they encode.

The plant's small size and rapid life cycle are also advantageous for research. Having specialized as a spring ephemeral, it has been used to found several laboratory strains that take about six weeks from germination to mature seed. The small size of the plant is convenient for cultivation in a small space and it produces many seeds. Further, the selfing nature of this plant assists genetic experiments. Individual plants produce several thousand seeds.

Plant transformation in *Arabidopsis* is routine, using *Agrobacterium tumefaciens* to transfer DNA to the plant genome. The current protocol, termed "floral-dip", involves simply dipping a flower into a solution containing *Agrobacterium*, the DNA of interest, and a detergent. This method avoids the need for tissue culture or plant regeneration.

The *Arabidopsis* gene knockout (a technique in which one of an organism's gene is made inoperative) collections are a unique resource for plant biology made possible by the availability of high-throughput transformations. The site of T-DNA insertions has been determined for over 300,000 independent transgenic lines, with the information and seeds accessible through online T-DNA databases. Through these collections, insertional mutants are available for most genes in *Arabidopsis*.

Finally, the plant is well suited for light microscopy analysis. Young seedlings on the whole, and their roots in particular, are relatively translucent. This, together with their small size, facilitates live cell imaging using both fluorescence and confocal laser scanning microscopy. By mounting seedlings in water or in culture media, plants may be imaged uninvasively, eliminating the need for fixation and sectioning and allowing time-lapse measurements. Fluorescent protein constructs can be introduced through transformation as well. The developmental stage of each cell can be inferred from its location in the plant or by using fluorescent protein markers, allowing detailed developmental analysis.

TAIR and NASC (Nottingham *Arabidopsis* Stock Centre) are curated sources for diverse *Arabidopsis* genetic and molecular information, and also provide numerous links, for example, to databases that store the results of hundreds of genome-wide gene expression profile experiments. Seed and DNA stocks can be obtained from NASC or the *Arabidopsis* Biological Resource Center.

History of Arabidopsis research

The first mutant in Arabidopsis was documented in 1873 by Alexander Braun, describing a double flower phenotype (the mutated gene was likely *Agamous* (*without stamens or carpels*), cloned and characterized in 1990). However, it was not until 1943 that Friedrich Laibach (who had published the chromosome number in earlier proposed *Arabidopsis* as a model organism. His student Erna Reinholz published her thesis on *Arabidopsis* in 1945, describing the first collection of *Arabidopsis* mutants that they generated using x-ray mutagenesis. Laibach continued his research by collecting a large number of ecotypes. With the help of Albert Kranz, these were organized into the current ecotype collection of 750 natural accessions of *A. thaliana* from around the world.

In the 1950s and 1960s John Langridge and George Rédei played an important role in establishing *Arabidopsis* as a useful organism for biological laboratory experiments. Rédei wrote several scholarly reviews introducing this model to the scientific community. The start of the *Arabidopsis* research community dates to a newsletter called *Arabidopsis* Information Service (AIS), established in 1964. The first International *Arabidopsis* Conference was held in 1965, in Göttingen, Germany.

In the 1980s *Arabidopsis* started to become widely used in plant research laboratories around the world. It was one of several candidates that included maize, petunia, and tobacco. The latter two were attractive since they were easily transformable with current technologies, while maize was a well established genetic model for plant biology. The breakthrough year for *Arabidopsis* as the preferred model plant came in 1986 when T-DNA mediated transformation was first published and this coincided with the first gene to be cloned and published.

Characterized ecotypes and mutant lines of *Arabidopsis* serve as experimental material in laboratory studies. The most commonly used background lines are Ler, or Landsberg erecta, and Col, or Columbia. Series of mutants, named Ler-x, Col-x, have been obtained and characterized; mutant lines are generally available through stock centers, of which best known are the NASC and the *Arabidopsis* Biological Resource Center in Ohio, USA. The Col or Columbia ecotype was selected, as an agronomically performant line, by Rédei, within a (nonirradiated) population of seeds named Landsberg he received from Laibach. Columbia is the ecotype sequenced in the *Arabidopsis* Genome Initiative. The Ler or Landsberg erecta line was selected by Rédei from within a Landsberg population on which he had performed some X-ray mutagenesis experiments.

Curiosity Kit with five known Arabidopsis mutants

Today you will be identifying five *Arabidopsis* mutants based on your examination or comparison with the wild type (Ler, Landsberg erecta). The mutants include the following:

- 1) brevipedicellus- short, downward-pointing flowers and a compact inflorescence architecture
- 2) eceriferum- brighter green stems and siliques
- 3) chlorina- pale green in color, plant does not produce Chlorophyll b
- 4) <u>clavata</u>- excess undifferentiated cells in the shoot and floral meristem, bigger shoot meristems
- 5) glabra-trichomes absent

Identify the mutants above and present your answers to Hughey for confirmation that you matched them accurately.

Most of the above text was taken verbatim from the following resource: http://en.wikipedia.org/wiki/Arabidopsis thaliana, accessioned online 2011 April 5.

Washington Park Fungi

Kingdom Fungi

Phylum- Basidiomycota

Class- Basidiomycetes (Hymenomycetes)

Order- Agaricales

Agaricus hondensis

Amanita ocreata- death angel, or destroying angel.

Amanita phalloides- death cap.

Boletus zelleri

Chroogomphus vinicolor

Clitocybe nuda

Cortinarius sp.

Dermocybe phoenicea

Dermocybe sanguinea

Gymnopilus ventricosus

Hebeloma crustuliniforme- poison pie.

Hygrophoropsis aurantiaca

Hygrophorus subalpinus

Lactarius fragilis

Lactarius xanthogalactus

Naematoloma fasciculare- sulfur tuft.

Russula albidula- white cap.

Russula emetica- red cap.

Suillus caerulescens

Suillus granulatus

Suillus tomentosus

Order- Aphyllophorales

Crytoporus volvatus- cryptic globe fungus.

Laetiporus sulphureus

Stereum hirsutum

Trametes versicolor- turkey tail.

Trichaptum abietinus- violet-pored bracket fungus.

Order- Tremellales

Tremella mesenterica

Phylum- Ascomycota

Class- Ascomvcetes

Order-Pezizales

Helvella lacunosa

<u>Lichens</u>- symbiotic fungi that contain a fungal component, mycobiont (basidomycete and ascomycete) and a photosynthetic component, the photobiont (green algae or cyanobacterium). They are photosynthetic.

<u>Fruticose</u>- Ramalina farinacea, R. menziesii, Usnea arizonica, U. rubicunda, Hypogymnia imshaugii, Evernia prunastri.

Foliose-Peltigera canina, Xanthoparmelia, Parmotrema chinense.

Crustose-Xanthoria elegans, Caloplaca, Rhizocarpon, Chrysothrix candelaris, Xanthoria tenax.

Checklist of some seaweeds from Monterey, California

Kingdom Plantae

Phylum Anthophyta- flowering plants.

Class Monocotyledones- monocots.

Phyllospadix scouleri- surf grass.

Kingdom Protista

Phylum Chlorophyta- green algae.

Grass green in color.

Chaetomorpha linum- no common name.

<u>Cladophora columbiana</u>- no common name.

Codium fragile- dead man's fingers.

Enteromorpha intestinalis- no common name.

Ulva lactuca- sea lettuce.

Phylum Heterokontophyta- heterokonts.

Class Phaeophyceae- brown algae.

Yellow, brown, to black in color due to carotenoid (fucoxanthin) and tannins.

Costaria costata- no common name.

Egregia menziesii- feather boa.

Fucus gardneri- rock weed.

Laminaria setchellii- no common name.

Macrocystis pyrifera- kelp.

Nereocystis luetkeana- bull-whip kelp.

Pelvetiopsis limitata & P. arborescens- no common names.

Silvetia compressa- no common name.

Phylum Rhodophyta- red algae.

Green, brown, black, blue, and red in color.

Calliarthron cheilosporioides- coralline algae.

<u>Calliarthron tuberculosum</u>- coralline algae.

Chondracanthus corymbiferus- turkish towel.

<u>Chondracanthus</u> <u>exasperatus</u>- turkish towel.

Corallina officinalis- no common name.

Corallina vancouveriensis- coral weed.

Endocladia muricata- sea moss.

Mastocarpus jardinii- no common name.

Mastocarpus papillatus- turkish washcloth.

Mazzaella flaccida- no common name.

Mazzaella oregona- no common name.

Mazzaella splendens- no common name.

Microcladia coulteri- no common name.

Palmaria mollis- dulse.

Pyropia perforata- nori.

Prionitis andersonii- bleach weed.

Prionitis lyallii- bleach weed.

Prionitis sternbergii- bleach weed.

How To Press Marine Algae

blotter paper

cardboard

wax paper

seaweed

herbarium paper

blotter paper

cardboard

Gymnosperms of Hartnell College

Kingdom Plantae-ginkgos, conifers, gnethophytes, cycads.

Phylum- Coniferophyta

Family-Podocarpaceae

Species- Afrocarpus gracilior

Common name- fern pine.

Family- Taxaceae

Species- Taxus brevifolia

Common name- yew tree.

Family- Cupressaceae

Species- <u>Cupressus</u> <u>macrocarpa</u>

Common name- monterey cypress.

Species- <u>Juniperus chinensis</u>

Common name- chinese juniper.

Species- Thuja occidentalis

Common name- american arborvitae or eastern white cedar.

Species- <u>Sequoia</u> <u>sempervirens</u>

Common name- redwood.

Family-Pinaceae

Species-Pinus densiflora

Common name- japanese red pine.

Species- Pinus densiflora 'umbraculifera'

Common name- tanyosho pine.

Species- Pinus canariensis

Common name- canary islands pine.

Species- Pinus radiata

Common name- monterey pine.

Species- Picea pungens

Common name- colorado blue spruce.

Species- Larix decidua

Common name- larch.

Species- Abies alba

Common name- European silver fir.

Phylum- Ginkgophyta

Family- Ginkgoaceae

Species- Ginkgo biloba

Common name- maidenhair tree.

Phylum- Cycadophyta

Family- Cycadaceae

Species- Cycas revoluta

Common name- sago palm.

Respresentative Angiosperms of Hartnell College

Kingdom Plantae

Phylum- Anthophyta

Class- Eudicotyledones

Family- Hamamelidaceae

Species- Liquidambar styraciflua

Common name- sweetgum tree

Family- Betulaceae

Species- Alnus rhombifolia

Common name- white alder

Family- Sterculiaceae (chocolate family)

Species- Brachychiton diversifolius

Common name- bottle tree

Family- Apocyanaceae

Species- <u>Trachelospermum jasminoides</u>

Common name- star jasmine

Family- Fabaceae (Leguminosae)

Species-Robinia ambigua

Common name- purple locust

Family-Oleaceae

Species- Olea europea

Common name- olive tree

Family- Myrtaceae

Species- Melaleuca quinquenervia

Common name- paperbark tree

Species- Eucalyptus polyanthemos

Common name- silver dollar gum

Family- Celestraceae

Species- Maytenus boaria

Common name- mayten tree

Family-Rosaceae

Species- Prunus serrulata

Common name- flowering cherry

Species- Prunus blireana

Common name- purple leaf plum

Species- Pyrus kawakamii

Common name- evergreen pear

Species- Rosa sp.

Common name- rose

Species- Rhaphiolepis indica

Common name- India Hawthorn

Species-Photinia serrulata

Common name- red tips

Family- Magnoliaceae

Species- Magnolia grandiflora

Common name- southern magnolia.

Family- Fagaceae

Species- Quercus ilex

Common name- holly oak

Family-Berberidaceae

Species- Nandina domestica

Common name- heavenly bamboo.

Family- Lauraceae

Species- Cinnamomum camphora

Common name- camphor tree

Family- Solanaceae

Species- Solanum aviculare

Common name- kangaroo apple

Family- Malvaceae

Species- Zauschneria californica

Common name- California fuchsia.

Family-Pittosporaceae

Species-Pittosporum undulatum

Common name- sweet Pittosporum

Family- Araceae

Species- Philodendron selloum

Common name- lacy Philodendron

Family- Araliaceae

Species- Fatsia japonica

Common name- fatsi

Family- Elaeagnaceae

Species- Elaeagnus pungens

Common name- silverthorn

Family- Asteraceae

Species- Senecio cineraria

Common name- dusty miller

Family-Salicaceae

Species- Xylosma congestum

Common name- shiny Xylosma

Family- Caprifoliaceae

Species- Abelia grandiflora

Common name- glossy Abelia

Family- Theaceae

Species- Camellia japonica

Common name- Japanese Camellia

Family-Lamiaceae

Species- Salvia leucantha

Common name- Mexican sage

Family Geraniaceae

Species- Pelargonium hortorum

Common name- geranium

Family Verbenaceae

Species- Lantana montevidensis

Common name- trailing Lantana

Class- Monocotyledones

Family-Liliaceae

Species- Cordyline australis

Common name- cabbage palm

Family- Arecaceae

Species- <u>Trachycarpus</u> <u>fortunei</u>

Common name- windmill palm

Family- Strelitziaceae

Species- Strelitzia reginae

Common name- bird of paradise

Family- Agapanthaceae

Species- Agapanthus africanus

Common name- lily of the nile

Family- Asparagaceae

Species- <u>Asparagus</u> <u>densiflorus</u>

Common name- asparagus fern

Family- Araceae

Species- Zantedeschia aethiopica

Common name- calla lily

Family-Strelitziaceae

Species- Strelitzia reginae

Common name- bird of paradise

Family- Alliaceae

Species- Tulbaghia violacea

Common name- society garlic

Name		
Name		

Lecture Examination

1-20. Multiple Choice. Select the single best possible answer for each question.
1. Global oxygen production from photosynthesis
a. comes mainly from marine cyanobacteria, namely <u>Synechococcus</u> and <u>Synechocystis</u>
b. comes mostly from terrestrial systems
c. comes mainly from the rainforest
d. comes mainly from the pine trees in North America
e. comes mainly from a singing bush from Soledad named 'Fredericq'
2. Which of the following is <u>not true</u> of Euglenozoa?
a. they contain chlorophylls A and B, plus carotenoids
b. about ½ of the species are autotrophic and about ½ of the species are heterotrophic
c. they are unicellular
d. they have a eukaryotic nucleus
e. they have a proteinaceous pellicle
3. The increase in oxygen from photosynthesis
a. led to the formation of ozone about 2.5 billion years ago
b. led to the formation of an aerobic atmosphere
c. led to the appearance and proliferation of eukaryotic cells about 2.1 billion years ago
d. is responsible for the biological revolution
e. all of the above
4. Phytoremediation is
a. an intervening agency that solves disputes between arguing plant species
b. a plant structure that produces spermatia
c. the treatment of pollutants or waste by the use of plants to break down undesirable substances
d. the substrate or foundation to which an organism is attached
e. a bundle of microtubules that extends from kinetochores of cells
5. Which of the following is <u>not true</u> of medicine and plants?
a. 80% of the medicine on the market is derived directly from plants
b. drugs made from fungi prevent the rejection of transplanted hearts and other organs
c. the active ingredient in aspirin was originally derived from willow bark
d. a compound found in the Pacific yew tree assists in the treatment of some cancers
e. Ginkgo biloba is prescribed for depression, mental weakness, memory loss, and other ailments
6. A mutualistic association between the roots of plants and fungi is termed
a. haustoriosis
b. plasmodesmata
c. parasitism
d. endosymbiosis
e. mycorrhizae
7. Which of the following is <u>not true</u> of Carol von Linné?
a. he is Swedish
b. he wrote 'Systema Naturae' and 'Species plantarum'
c. he is considered the father of classification

d. he studied under his mentor Aristotle e. he used a binomial naming system

b. they function as decomposersc. they have a cell wall that is predominantly made of chitind. they reproduce sexually and asexuallye. they are photosynthetic
9. Which of the following was <u>not</u> one of Theophrastus's four classifications of plants? a. herb b. shrub c. undershrub
10. What is a stromatolite? a. pigments in the stroma of green algae that catalyze the dark reaction b. the floating structure in cyanobacteria c. a resting spore in cyanobacteria d. a rock-like deposition of carbonates and trapped sediments e. a thick-walled large cell that fixes atmospheric nitrogen
11. Which of the following is <u>not true</u> of Basidiomycota? a. they include <u>Agaricus</u> , <u>Puccinia</u> , and <u>Ustilago</u> b. they include the bread molds c. they reproduce by forming basidia d. they asexually reproduce by budding, conidiospores, and fragmentation e. they are nonmotile throughout their life history
12. Cryptophytes a. are multicellular b. have chlorophylls A and C, as well as phycobilins c. have a mesokaryotic nucleus d. lack flagella e. occur only in freshwater systems
13. Which of the following is <u>not true</u> of Rhodophyta? a. they are multicellular b. they store floridean starch in the cytoplasm c. they have 2 whiplash flagella d. they form pit connections e. they are predominantly marine
14. The Chrysophyceae a. lack flagellated cells b. include <u>Acnanthes, Bacillaria</u> , and <u>Navicula</u> c. have chlorophylls A and B, and fucoxanthin d. are dinoflagellates e. are predominantly freshwater and include the genus <u>Dinobryon</u>
a. being arbuscular endomycorrhizae b. aseptate, endophytic organisms, example- Glomus c. fungi that reproduce by forming basidiospores d. spore forming unicellular animal parasites that shoot polar tubes into host cells e. fungi that reproduce by forming ascospores

8. Which of the following <u>is false</u> in regards to fungi? a. most are composed of hyphae

16. Cladistics	
a. requires designating an outgroup and ingrou	ıp
b. is a method of organizing organisms on the basis of synapomorphic characters	
c. compares homologous characters	
d. uses morphological, chemical, developmental, and molecular characters	
e. all of the above	,
17. The brown algae	
a. are predominantly freshwater organisms	
b. use pheromones to attract heterokont male g	
c. have thylakoids that occur in stacks of two	···········
d. are plants	
e. gave rise to the green algae	
e. gave rise to the green argue	
18. Lichens	_
a. contain a mycobiont	d. contain a phycobiont
b. reproduce by fragmentation	e. all of the above
c. consist predominantly (90%) of fungal cells	
(× · / ·) = - · · · · · · · · · · · · · · · · · ·	
19. The Cryptomycota	
a. lack chitin	
b. are unikonts	
c. are ubiquitous	
d. are a newly described fungal phylum	
e. all of the above	
20. Some Rhodophyta have a	type of life cycle.
a. triphasic	_ 31
b. monophasic	
c. bimodal	
d. heterokontal	
a. notoronan	

21-40. True or False. Mark A on your answer sheet if the statement is true, Mark B if it is false.

- 21. Identifying, naming, and classifying are all part of the field of taxonomy.
- 22. Mycology is the study of mosses.
- 23. All fungi are multicellular and eukaryotic.
- 24. Fodder is food that is fed to domestic animals.
- 25. Endospores are asexual spores that result from an internal division of the protoplast.
- 26. Phylogenetic trees are diagrams that represent a hypothesis of the evolutionary history of a species.
- 27. Konstantin Mereschkowski and later Lynn Margulis proposed the theory of endosymbiosis.
- 28. Cyanobacteria are gram negative bacteria.
- 29. Red algae deposit alginate and cellulose in their cell walls.
- 30. Dinoflagellates have 2 longitudinal flagella and 1 transverse flagellum.
- 31. The food reserve in oomycetes, myxomycetes, and dictyosteliomycetes is glycogen.
- 32. Zooxanthellae are symbiotic dinoflagellates found in some sponges, anemones, and corals.
- 33. Secondary metabolites are molecules found in all plant cells.
- 34. Macromolecules are made through a process called dehydration synthesis.
- 35. Triglycerides consist of a phosphate group, glycerol, and two fatty acid tails.
- 36. Cryptophyta contain chlorophylls A and B, and carotenoids.
- 37. The outer shell of a haptophyte is termed the 'amphisema'.
- 38. Phytophthora is a plant pathogen that causes sudden oak death and attacks potatoes.
- 39. Dictyosteliomycota form slugs that aggregate through attraction of the biomolecule cyclic AMP.
- 40. Algae are currently being studied for their potential use as a source for biodiesel.

41-45. Match the definitions on the right to the terms on the left.

- a. a taxonomic group of any rank 41. Taxon b. the original name of a taxon 42. Synonym
- 43. Etymology c. the derivation, origin, or history of a word 44. Basionym d. two or more names that apply to the same taxon e. the original collection from which a species is based 45. Type specimen

46-53. Match the phyla on the right to the traits on the left.

- 46. Form slugs a. Myxomycota
- 47. Streaming protoplasm, no cell wall b. Dictyosteliomycota
- c. Oomycota 48. Physarum
- 49. No flagella
- 50. Causes sudden oak disease
- 51. Caused the Irish potato famine of 1846-47
- 52. Form sclerotia
- 53. The main body is called a plasmodium

54-60. Match the taxonomic group on the right to the characteristics or genera on the left.

- 54. Sporic meiosis, isomorphic, aseptate a. Chytridiomycota
- 55. Forms an ascus b. Zvgomycota 56. Agaricus, gilled or pored mushrooms c. Basidiomycota
- 57. Rhizopus d. Ascomycota
- 58. Soft molds, found on bread and fruits
- 59. Perforated septae
- 60. Dolipore septae

61-69. Match the phylum or class on the right to the characteristics on the left.

- 61. Causes most red tides, peridinin pigment present a. Euglenozoa
- 62. Paramylon, chlorophylls A & B, mesokaryotic nucleus b. Cryptophyta c. Haptophyta
- 63. Prymnesium, CaCO₃ scales, coccoliths
- 64. Chlorophylls A & C, silica cell wall, frustules d. Bacillariophyceae
- 65. No cell wall, phycobilins, both flagella with hairs, nucleomorph e. Myzozoa
- 66. Proteinaceous pellicle with S-shaped, overlapping segments
- 67. Haptonema
- 68. Paraflagellar swelling and eyespot (=stigma) used to detect light
- 69. Bioluminescent, Noctiluca

70-78. Match the phylum or class on the right to the characteristics or names on the left.

- 70. Synura and Dinobryon a. Rhodophyta
- 71. Coleochaete, Ulva, diverse flagella, 17,000 species b. Chlorophyta 72. Kelps, rockweeds c. Phaeophyceae
- 73. Chlorophylls A & D, phycobilins
- 74. Chlorophylls A & B, carotenoids
- 75. Gave rise evolutionarily to land plants (bryophytes)
- 76. Alginate in cell walls, predominantly marine, multicellular
- 77. Non-motile (no flagella) and pit connections present
- 78. Golden brown algae

79-85. Match the type of meiosis on the right to the organism on the left.

- 79. Allomyces, chytrid
- 80. Rhizopus, bread mold b. heteromorphic, sporic
- 81. Coprinus, basidiomycete mushroom c. gametic 82. Saprolegnia, oomycete water mold
- 83. Physarum, typical plasmodial slime mold
- 84. Ulva, see lettuce
- 85. Fucus, rockweed

a. isomorphic, sporic

d. Chrysophyceae

- d. zygotic

86-150. Short and long answer questions. 86. What is an Egyptian papyrus? 87-88. What are 4 diagnostic differences between eukaryotes and prokaryotes? 89-90. What are 3 diagnostic differences between Domains Bacteria and Archaea?

91-93. Illustrate (draw), name, and give an example of the four diatom forms.

118-123. In as much detail as Jeff's lecture or your textbook, illustrate and label the life history of *Agaricus* (=a typical basidiomycete), *Saprolegnia* (= water mold) or *Ulva* (= sea lettuce). <u>Select only one</u>.

124-128. For the <u>Allomyces</u> life cycle below, label <u>all</u> of the processes, structures, and generations.

129-132. Illustrate and label the current hypotheses that explains how the first prokaryotic cells formed	d.
133-138. Illustrate and label the primary endosymbiotic event that gave rise to the type of chloroplast found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
133-138. Illustrate and label the primary endosymbiotic event that gave rise to the type of chloroplast found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data that support the endosymbiotic hypothesis.	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a
found in Chlorophyta, Rhodophyta, and land plants. Below that, list three pieces of information or data	a

139-142. Construct a phylogeny of the superkingdoms, as outlined in the lecture. <u>Include the names of the organisms that that we discussed, that fit into each of these superkingdoms</u>:

Alveolata, Amoebozoa, Archaeplastida, Excavata, Hacrobia, Opisthokonta, Rhizaria, Stramenopila

143-146. Illustrate and label the light dependent reaction (Z-scheme). Include in your illustration water photolysis and the location of this series of reactions.

147-150. Below is the C3 carbon fixation reaction. Label the 4 molecules and/or enzymes on the lines below as well as fill-in the missing atoms in the molecules.

Lecture Examination

1-25. Multiple Choice. Select the single best possible answer for each question.
1. In vascular plants the dominates the life history and produces .
a. gametophyte, gametes
b. gametophyte, spores
c. sporophyte, gametophytes
d. sporophyte, spores
e. none of the above
2. Microsporophylls
a. are modified leaves that bear microsporangia
b. are modified leaves that bear megasporangia
c. are modified roots that bear microsporangia
d. are modified roots that bear megasporangia e. are modified stems that bear microsporangia
e. are mourned stems that bear inicrosporangia
3. The Equisetopsida .
a. includes horsetails
b. are homosporous
c. have whorled leaves
d. have ribbed and jointed stems
e. all of the above
4. Which of the following is not true of the angiosperm life history?
a. it involves a dominant gametophyte generation
b. it involves a megagametophyte and microgametophyte
c. it includes an embryo with polar nuclei, antipodals, egg cell, and synergids d. it involves double fertilization
e. it involves double lettrization
e. it involves politication
5. Cycadophyta .
a. contain vessel elements
b. lack motile sperm
c. have needlelike and scalelike leaves
d. germinate a pollen tube that does not fuse with the egg cell
e. are the most diverse gymnosperms (contain the most species)
6. Gnetophyta
a. contain tracheids and vessel elements
b. lack motile sperm
c. germinate a pollen tube that fuses directly with the egg cell d. are considered the most evolutionarily advanced gymnosperm group
e. all of the above
e. an of the above
7. The apical meristem in angiosperms
a. is a region at the tip of shoots and roots that is responsible for programmed cell death
b. is a region at the tip of shoots and roots that forms new cells
c. is a region at the tip of shoots and roots that is responsible for ethylene synthesis
d. is a region at the tip of shoots and roots that is used to sense circadian rhythms
e. is a region at the tip of shoots and roots that detects photonic energy

8. Which of the following is not a fleshy fruit? a. berry b. pepo c. pome
d. nut e. drupe
9. Seed germination is dependent on a. temperature b. light c. water d. hormones e. all of the above
10. Which of the following is not an evolutionary trend among flowers? a. flowers have gone from radial (actinomorphic) to bilateral (zygomorphic) symmetry b. floral parts have become fused c. floral axes have become shortened d. carpels have gone from pistil-shaped and sealed to leaflike and incompletely closed e. ovaries have gone from superior to inferior in position
a. is heterosporous b. has a dominant sporophytic and short lived gametophyte generation c. requires water for fertilization to be successful d. is classified in the phylum Lycopodiophyta e. all of the above
12. Which of the following is not true of the Pinus life cycle? a. pine trees contain megastrobili and microstrobili b. meiosis yields 4 megaspores of which only 1 is functional c. fertilization occurs shortly after the pollen grain embeds within the micropyle d. microsporangia are found on microsporophylls e. the pollen tube fuses with the egg cell
13. Which of the following is not involved in flower pollination? a. bees b. bats c. beetles d. birds e. reptiles
a. is the fruit wall, which develops from the wall of the ovary b. is the first bud of an embryonic shoot c. is the stemlike axis above the cotyledons d. is a stemlike axis below the cotyledons e. is an undistinguished radicle
15. With reference to seed germination, epigeous is used to describe a. cotyledons that are carried above ground level b. cotyledons that remain underground c. cotyledons that are fleshy d. cotyledons that are photosynthetic e. cotyledons that wither away below ground level

16.	Eusporangia a. develop from more than one superficial initial
	b. develop from one superficial initial c. are protected by an annulus
	d. catapult their spores when the lip cells of the wall crack
	e. none of the above
17.	The evolution of large leaves with many veins involves a transformation from microphylls to megaphylls. This hypothesis is known as the theory. a. stele d. tracheary b. telome e. branch c. systems
18	Heterosporous is defined as
10.	a. a plant that produces two types of spores from two different types of sporangia b. a plant that produces two types of spores from one kind of sporangium c. a plant that produces three types of spores from two different kinds of sporangia d. a plant that produces one type of spore from one kind of sporangium e. none of the above
19.	Which of the following is not extinct?
	a. Rhyniophyta
	b. Bennettitales
	c. Trimerophytophyta d. Zosterophyllophyta
	e. Monilophyta
20.	Plant seed dispersal is aided by
	a. the wind
	b. attaching to animalsc. floating on water
	d. being fleshy and thus eaten by animals
	e. all of the above
21.	Which of the following is <u>not true</u> of plants?
	a. they are mostly autotrophic
	b. they are primarily terrestrial
	c. they have the same photosynthetic pigments as the green algae d. they are multicellular
	e. they store starch reserves outside the chloroplast
22.	Marchantiophyta
	a. require water for fertilization
	b. lack specialized conducting tissue
	c. have rhizoids that are single celledd. includes <u>Marchantia</u> and <u>Riccia</u>
	e. all of the above
23.	Which of the following is <u>not true</u> of the granite mosses (<u>Adreaeidae</u>)?
	a. they grow in mountainous or arctic regions on rocks
	b. their capsules dehisce in rows of two
	c. protonema have two or more rows of cells d. the rhizoids have two rows of cells
	e. they are classified in the phylum Bryophyta

24. The moss life cycle

a. is a sporic meiosis
b. includes archegonia and antheridia
c. includes protonemata
d. requires karyogamy and plasmogamy
e. all of the above

25. The sporophyte generation in bryophytes

a. is matrotrophic and short lived (6-16 weeks)
b. has rhizoids
c. produces biflagellated spores
d. consists of haploid tissue

26-43. True or False. Mark A on your answer sheet if the statement is true, Mark B if it is false.

26. Xylem conducts water and minerals.

e. is dominant

- 27. Sporophylls are modified roots that contain sporangia.
- 28. Bird pollinated flowers produce copious nectar.
- 29. Bird pollinated flowers are usually bright red and yellow in color.
- 30. Flowers are the reproductive structures of gynosperms.
- 31. Flowers are determinate shoots that bear sporophylls.
- 32. Coevolution is the simultaneous evolution of adaptations in 2 or more interacting populations.
- 33. Insect pollination is more efficient than passive pollination.
- 34. Bird pollinated flowers are aromatic (they produce lots of odor).
- 35. Ovules are structures in seed plants that contain the male gametophyte.
- 36. There are an estimated 9,000-9,500 species of angiosperms on the planet.
- 37. Primary growth is defined as the formation of secondary tissues.
- 38. The radicle is the embryonic leaf.
- 39. Endosperm is tissue that contains stored food.
- 40. Corn seeds are exalbuminous.
- 41. Mosses are classified in the kingdom Plantae.
- 42. Water is required for fertilization in liverworts.
- 43. The moss sporophyte is nutritionally dependent on the female gametophyte.

44-49. Match the phylum or class on the right to the characteristics or names on the left.

- 44. Rhizoids multicellular
- 45. Thalloid thallus, intercalary meristem, single chloroplast
- 46. Thalloid and leafy, elaters present
- 47. Leptoids and hydroids
- 48. Gemmae present
- 49. Pores for gas exchange

- a. Anthocerotophyta
- b. Marchantiophyta
- c. Bryophyta

50-57. Match the tissue type on the right to the cells on the left.

- 50. Sieve cells

- 51. Parenchyma cells

- a. Ground tissueb. Vascular tissue
- 52. Sclerenchyma cells
- c. Dermal tissue

- 53. Companion cells
- 54. Periderm and epidermis
- 55. Tracheids
- 56. Collenchyma cells
- 57. Vessel elements

58-60. Match the definition on the right to the term on the left.

- 58. Hypogynous a. whorls attached below the ovary 59. Perigynous b. whorls attached above the ovary
- 60. Epigynous c. stamens and petals adnate to the calyx, forming a tube at the base of the ovary

61-63. Match the fruits to the placentation types below.

- 61. Axile
- 62. Parietal
- 63. Free central

64-77. Match the phylum on the right to the characteristic on the left.

- 64. Flowerlike reproductive structures
- 65. Metasequoia and Wollemia
- 66. One genus and one species
- 67. Its members have tracheids and vessel elements
- 68. Sperm multiflagellated with about 40,000 flagella
- 69. Needlelike leaves
- 70. Maidenhair tree, once thought to be extinct
- 71. Palmlike leaves
- 72. Scalelike, leaflike, broad and leathery leaves
- 73. Cycas and Zamia
- 74. 70 genera & 630 species
- 75. <u>Pinus</u>
- 76. Ovulate and microsporangiate cones on same plant; ovulate cones compound
- 77. Ovulate and microsporangiate cones on separate plants; fleshy-coated seeds

78-86. Match the taxonomic group on the right to the characteristics on the left.

- 78. Flower parts in 4s and 5s
- 79. Flower parts in 3s
- 80. Vascular bundles in stem form a ring
- 81. Pollen- triaperturate
- 82. Vascular cambium present
- 83. Two cotyledons present
- 84. Leaf venation is netted
- 85. Grasses, lilies, irises, orchids, cattails, palms
- 86. Trees, shrubs, herbs

- a. Eudicotyledones- eudicots
- b. Monocotyledones- monocots

A) Ginkgophyta

B) Cycadophyta

D) Coniferophyta

C) Gnetophyta

87-91. Match the defin	nition on the right to the fruit		the left.
87. Ovule	. Ovule a. the enlarged basal portion of a carpel		
88. Carpel	*		
89. Ovary 90. Fruit	·		
91. Seed	d. mature ovule	e female gametoi	ohyte with egg cell, including the
71. S eed	nucellus and integuments	e remare gameto	onlyte with egg een, merdanig the
	nition on the right to the devel		on the left.
92. Protoderm93. Procambium	a. forms epidermis of t		and roots that forms navy calls
93. Procambium b. regions of tissue at the tip of shoots and roots that forms new cells c. positioned between the two embryonic leaves in eudicots			
95. Apical Meristem	1		
96. Shoot Apical Merist		*	
•	-	-	
07 100 Match the abo	mantaristics on the left to the	owwoot towomom	ia guann an tha right
97. Megaphylls, leptosp	nracteristics on the left to the c	a. Psilotales, Ps	
	oots, dichotomously branched		ida, <u>Polypodium</u>
	phylls on strobili, club moss		nyta, <u>Lycopodium</u>
	nomosporous, horsetails	d. Equisetopsio	
101 110 Motch the de	escription on the right to the c	arract tavanami	c group on the left. Write your
		orrect taxonomi	e group on the left. Write your
answer in the space pr			
101. Conifere	ophyta	a. requires water	er for fertilization
102. Monilop	phyta	b. does not req	uire water for fertilization
103. Ginkgop	phyta		
104. Rhyniop	phyta		
105. Eudicot	yledones		
106. Lycopo	diophyta		
107. Cycadoj	phyta		
108. Trimero	phytophyta		
109. Gnetoph	nyta		
110. Anthoce	erotophyta		
111-115. Match the ta	xonomic group on the right to	the characteris	tics on the left. Write your
answer in the space pr	ovided on the left.		
111. Syneciu	m, grow on lime-rich soils		a. Psilotales
112. Euspora	ngia in 2 rows, leaves dissected	or unbranched	b. Polypodiopsida
113. Whisk f	erns		c. Ophioglossales
114. Strobilu	s and whorled leaves		d. Equisetopsida
115. Larget g	group of ferns (10,500 species)		e. Marattiopsida

116-125. For the *Polypodium* life cycle below, label <u>all</u> of the processes, structures, and generations.

146-150. In the space below construct a table that compares 10 traits that differ or are similar between the life history of a green alga, moss, gymnosperm, and angiosperm.

Trait	Green Alga	Moss	Gymnosperm	Angiosperm
	I I	I I	1	1
	İ	İ	İ	İ
	 	I I	 	I I
		1	1	1
	1	ı İ	1	l I
	I I	1	1	1
	İ	Ī	İ	i
	 	[[1	1
	l I	I	İ	i i
	1	1 [I I
	1	1	1	1
	1	1	1	1
	I I] [1	1
	İ	i I	i !	i i
	 	1 1	1	1 1
		1	1	1
	1	1	1	l I
	I I	I 1	1	1
	İ	Ī	İ	i
] [1	1
	I	1	1	1
	I	I I		I I
		1	1	1
	İ	1	1	1
	I I] [I I	I I
	Ī	i I	i	İ
	 	[[I I	
	I	1	1	I

Study Guide For Final Lecture Examination

e. found in herbaceous dicots

1-13. Multiple Choice. Select the single best possible answer for each question. 1. The function of roots is/are a. anchorage b. absorption of water, minerals, and inorganic ions c. conduction d. storage e. all of the above 2. Root depth and width depends on _____ a. soil moisture b. soil temperature c. soil composition d. the species e. all of the above 3. Lateral roots arise from the ______. a. intercellular spaces b. casparian strip c. pericycle d. epidermis e. endodermis 4. Which of the following is not a character Gregor Mendel studied in the garden pea? a. flower color b. flower position c. root length d. seed color e. pod shape 5. The shoot a. is the below ground portion of the plant and consists of stem and leaves b. contains a pericycle c. contains vascular and ground tissue, but not epidermal tissue d. contains stems, leaves, nodes, internodes, and buds e. in dicots has scattered vascular bundles Leaf abscission _____ a. occurs in evergreen plants b. is a normal process resulting from structural and chemical changes c. is caused by the formation of four divisional layers that excise the petiole d. is instantaneous and occurs before sugars and amino acids are removed from the leaf e. none of the above 7. Secondary growth is a. defined as an increase in thickness to the plant body b. formed by the activity of the vascular, cork, and leaf meristems c. defined as an increase in height to the plant body d. found in monocots

8. The periderm

- a. is the outer tissue that replaces the epidermis as the protective covering of the plant
- b. includes the cork cambium
- c. includes cork, which are cells that are cut toward the outside of the cork cambium
- d. includes phelloderm, which are cells that are cut towards the inside of the cork cambium
- e. all of the above

9. The bristlecone pine

- a. was thought to be extinct, but was recently found growing in Australia
- b. was found in China in the 1940s, but earlier had been described from the fossil record
- c. is considered by some botanists to the be the fastest growing tree alive
- d. is a gnethophyte, not a pine
- e. is thought to be the oldest living tree on the planet, at about 4,900 years old
- 10. Which of the following is not a criterion for judging the essentiality of elements?
 - a. if it is needed for the plant to complete its life cycle
 - b. if it is part of any molecule or constituent of the plant that is itself essential
 - c. if deficiency symptoms appear in the absence of the element
 - d. if it occurs in unusually high concentrations in any plant
- 11. Which of the following is not a macronutrient?
 - a. manganese
- c. carbon
- e. nitrogen

b. sulfur

d. calcium

12. Tropism

- a. explains the phenomenon of nyctinasty in leaves
- b. is the directional growth in response to an external stimulus
- c. explains the phenomenon of thigmonasty in leaves
- d. is the alteration of plant growth patterns in response to mechanical stimuli
- e. is unrelated to the direction of the external stimulus
- 13. Auxin is involved in all of the following except:
 - a. apical dominance
 - b. differentiation and regeneration of vascular tissue
 - c. fruit development
 - d. preventing abscission
 - e. inhibiting the formation of lateral roots

14-22. True or False. Mark A on your answer sheet if the statement is true, Mark B if it is false.

- 14. Abscisic Acid is responsible for stomatal closure.
- 15. Silt consists of fragments of rock and minerals that range in size from 2-20 μm.
- 16. Macronutrients are required in large amounts, which equates to 1 mg/kg of dry matter.
- 17. Ear length in corn is an example of incomplete dominance.
- 18. Tomato shape is due to polygenic inheritance.
- 19. Phloem conducts water and minerals.
- 20. The radicle is the embryonic shoot.
- 21. Ethylene delays leaf senescence.
- 22. Cytokinins inhibit cell division in plant shoots.

23-27. Match the hormone on the right to its function or action on the left.

23. Apical Dominance

a. Auxins

24. Breaking seed dormancy

b. Cytokinins

25. Fruit ripening

c. Ethylene

26. Responsible for stomatal closure

d. Abscisic acid

27. Promote cell division

e. Gibberellins

28. 29. 30. 31.	28-32. Match the definition on the right to the plant structure on the left. 28. Corm 29. Stolons 30. Rhizome 31. Tuber 32. Bulb 32. Bulb 33. Match the definition on the right to the plant structure on the left. 34. Corm 55. cord a. stems that grow horizontally on the soil surface, giving rise to new plants at the nodes to the soil surface, giving rise to new plants at the nodes of the soil surface, giving rise to new plan		
	37. Match the term on the right to its definition on the left.		
	An organism's traits	a. Homozygous	
	An organism's genetic makeup Identical alleles for a gene	b. Heterozygousc. Phenotype	
	Two different alleles for a gene	d. Genotype	
		e. Locus	
38. Ecology a. deals with the impact of humans on the environment b. is the study of the interactions between organisms and their environment c. is the study of natural resources d. is the study of classification e. none of the above			
39.	Which of the following two words best describes ecology? a. mortality and herbivory b. reproduction and biosynthesis c. distribution and abundance d. obligate and facultative		
	e. hans and franz		
40.	40. Which of the following levels is <u>not</u> typically dealt with by ecologists? a. individual b. population c. community d. ecosystem e. all of the above are typically studied by ecologists		
41.	a. are biological b. include competition for space c. include competition for light d. include herbivory e. all of the above		
42.	Succession a. is a process in biology that involves humankind's cub. is the component of the environment created by hum. c. is a predictable process of recovery that occurs after. d. is an evolutionary hypothesis derived from genetic d. e. none of the above	ans a disturbance	

Short answer questions

In the spaces below list 5 abiotic and 2 biotic factors.
Abiotic,
Biotic,
Define the principle of competitive exclusion.
In the space below draw and label the trophic levels found in a typical food chain/web.
Describe the difference between r-selected and K-selected species. In your answer, include a table comparing 6 differences outlined in class between the two types of species.

In the space below, illustrate and label the logistic and exponential growth curves. formulas for each.	Include the two
List <u>six</u> types of symptoms found in plants that have nutrient deficiencies.	

Scientific Method Laboratory

Be able to:

-Define the scientific method

Magnification B

- -Describe 1 everyday situation and 1 botanical example of how the scientific method is used
- -Outline the 4 major steps to the scientific method
- -List and define the 3 variables defined in all experiments
- -Write a hypothesis, experiment, and define the variables of an experiment given a mock experiment
- -Name and define the 4 major biological theories

Microscopes Laboratory

What did the spectacle maker from Holland, Zach	narias Janssen construct in 1595 AD? Describe it.
The English scientist	described and named in his 1665 publication in <i>Micrographia</i> .
What is Antony Van Leeuwenhoek (1632-1723) I Define magnification and resolution.	known for?
What is parfocal?	
	ppe as well as list their functions. The parts are: light
	phragm, objective lens, nosepiece (turret), eyepieces,
stage clips, coarse-adjustment, fine-adjustment, b	
Be able to:	,
-Distinguish between a dissecting microscope and	d a compound microscope, and list 3 reasons why you
know this	
-Calculate total magnification on the compound n	
-Calculate the field of view given an equation and	I some numbers
-Convert from mm to μm , and from μm to mm	
Exit Quiz, Microscopes BIO 3 What type of microscope is this? List 3 reasons for your answer above:	
What are the names and functions of the labeled r Structure	microscope parts? Function
A)	1 unction
B)	
C)	
D)	
E)	
F)	
Given this equation and numbers, what is the field	d of view at 40X in μm? Show your work below.
Magnification A = 4, diameter of A = 4.25	

Biochemistry Laboratory Study Guide

At the end of today's lab you should be able to:

- -describe the four methods used in this lab to identify the macromolecules
- -identify primary and secondary metabolites based their chemistry (i.e. by looking at their chemistry you should be able to identify a chemical structure as a carbohydrate, nucleic acid, protein, lipid, alkaloid, phenolic, or terpenoid)

Systematics Laboratory Part I Study Guide

At the end of today's lab you should be able to: Write and use a dichotomous key

Systematics Laboratory Part II Study Guide

At the end of today's lab you should be able to: Construct cladograms given a data matrix

Cyanobacteria Laboratory

Phylum Cyanobacteria (Topic 11)

Using a microscope be able to identify the following genera, also be able to recall the name of the phylum they are classified to (Phylum= Cyanobacteria): *Aphanothece* (see Wasserbluthe slide), *Anabaena*, *Gloeocapsa*, *Spirulina*, *Nostoc*, *Stigonema*, *Scytonema*, *Lyngbya*, *Oscillatoria*. You should also be able to name the habit (unicell, colony of unicells, trichome, many trichomes in large sheath, uniseriate branched filament, multiseriate branched filament, pseudo-branched filament) of each of these genera. Be able to identify and list the function of the following: heterocyst, akinete, and hormogonia. Be able to identify the cytology of a cyanobacterium as illustrated on figure 11.9 of your lab manual: mucilaginous sheath, cyanophycean granules, thylakoids, cytoplasm, and cell wall. Be able to list the photosynthetic pigments of a cyanobacterium.

Fungi Part 1 Laboratory Topic 12

Phylum Chytridiomycota

Be able to identify *Allomyces* to genus and phylum. You should also be able to identify if the specimen of *Allomyces* on a given slide represents the gametophyte or sporophyte phase, and the chromosomal state of the phase, gametophytes are haploid (=N) and sporophytes are diploid (=2N). Know where meiosis and mitosis occur in the life history, and that this is a sporic meiosis.

Be able to identify and define the following terms: coenocytic, aseptate, zygote, anisogamous, isogamous, oogamous, gametangium, sporangium, zoospore, gametes, karyogamy, plasmogamy, mycology, mycelium.

Phylum Zygomycota

Be able to identify *Rhizopus* to genus and phylum. You should also be able to identify if the specimen of *Rhizopus* on the slide represents the gametophyte (N) or sporophyte (2N). Know where meiosis and mitosis occur in the life history, and that this is a zygotic meiosis.

Be able to identify and define the following terms: sporangium, gametangium, aseptate, zygote, zygosporangium, asexual and sexual reproduction, rhizoids, stolon, and sporangiophore.

Phylum Glomeromycota

Be able to identify *Glomus* to genus and phylum. This slide is simply labeled Endomycorrhizae. It doesn't state it on the slide, but this is the genus *Glomus*. You should know the difference between endomycorrhizae and ectomycorrhizae.

Additional Slides

Ectomycorrhizae. Be able to identify Ectomycorrhizal fungi from the slide.

Fungi Part II Laboratory Topic 12

Phylum Ascomycota- the sac fungi

Be able to identify *Saccharomyces, Schizosaccharomyces, Aspergillus, Penicillium*, and *Peziza* to genus and phylum.

Be able to identify and define the following terms: septate, asci (singular= ascus), ascospores, ascoma (= ascocarp), budding, conidia, and conidiophores. Know that meiosis takes place in the ascus.

Phylum Basidiomycota- the club fungi

Be able to identify *Coprinus*, *Puccinia*, and *Ustilago* to genus and phylum.

Be able to identify and define the following terms: basidioma (= basidiocarp), basidium, cap (=pileus) and stalk (= stipe) of a mushroom fruiting body. Know that meiosis takes place in the basidium.

Additional Slide

Lichen. Be able to identify the photobiont (= phycobiont) and mycobiont layers/portions of the thallus. Know and be able to identify the three forms of lichens: foliose, fruticose, and crustose.

Additional Materials

Dried lichen specimens, various dried and pickled fungi.

Heterotrophic 'Protista' Laboratory Topics 13 and 14

Phylum Oomycota

Be able to identify *Saprolegnia* and *Plasmopara* to genus and phylum. You should also be able to identify if the specimen of *Saprolegnia* on a given slide represents the haploid (=N) or diploid (=2N) phase. Know where meiosis and mitosis occur in the life history, and that this is a gametic meiosis.

Be able to identify and define the following terms: coenocytic hyphae, antheridium, oogonium, male nuclei, eggs, fertilization tube, zygote, oospores, zoosporangium, zoospore.

Phylum Myxomycota

Be able to identify *Physarum*, *Stemonitis*, *Dictydium*, and *Fuligo* to genus and phylum. You should also be able to identify a sclerotium and the two phases of the life history, the diplophase (=2N) and haplophase (=N). Know where meiosis and mitosis occur, and that this is a sporic meiosis.

Be able to identify and define the following terms: plasmodium, sporangium, sclerotium.

Phylum Dictyosteliomycota

Be able to identify *Dictyostelium* to genus and phylum.

Be able to identify and define the following terms: myxamoebas, pseudoplasmodium, slug, sporocarp.

Phylum Myzozoa

Be able to identify *Ceratium* and *Peridinium* to genus and phylum. Also be able to identify living marine dinoflagellates if you saw them on a slide. You should be able to describe their anatomy, epicone and hypocone, two flagella (1 transverse, 1 longitudinal), list their photosynthetic pigments (Chl. A, C, peridinin), and know they have a mesokaryotic nucleus. They show positive phototaxis to dim light.

Phylum Euglenozoa

Be able to identify *Euglena* to genus and phylum. You should be able to identify and define: eyespot (stigma), pellicle, paramylon starch, and know they show positive phototaxis to dim light. List their photosynthetic pigments (Chl. A, B, carotenoids) and know they have a mesokaryotic nucleus.

Note- you should be able to identify these organisms using the prepared slides, dried, pickled or the fresh materials.

Autotrophic 'Protista' Laboratory Topics 13 and 14

Phylum Chlorophyta (Superkingdom Archaeplastida, Kingdom Plantae)

Be able to identify *Chara, Coleochaete, Chlamydomonas, Chlorella, Spirogyra, Volvox, Hydrodictyon, Scenedesmus, Ulothrix, Codium,* and *Ulva* to genus and phylum.

Be able to identify and define the following terms: antheridium (plural-antheridia), oogonium (plural-oogonia), thallus, zygote, isogamous, anisogamous. You should know that the photosynthetic plant pigments for this group are Chlorophylls A, B, and carotenoids. Also, know that most species have flagellated cells (either the cell itself has flagella or the gamete or spore has flagella), and the flagella are of the whiplash (no hairs) type. It is <u>not</u> necessary to learn the other bold terms in your lab manual.

Phylum Rhodophyta (Superkingdom Archaeplastida, Kingdom Plantae)

Be able to identify *Polysiphonia* and *Pyropia* (previously classified as *Porphyra*) to genus and phylum.

Be able to identify and define the following terms: tetrasporophyte (2N free-living), male gametophyte (N free-living), female gametophyte (N free-living), carposporophyte (2N lives on female gametophyte), triphasic life history. You should know that the photosynthetic plant pigments for this group are Chlorophylls A, D, and phycobilins. Red algae do not have flagella. It is <u>not</u> necessary to learn the other bold terms in your lab manual.

Phylum Heterokontophyta (Superkingdom Stramenopila)

Class Phaeophyceae

Be able to identify Fucus, Laminaria, and Undaria to genus and phylum.

Be able to identify and define the following terms: holdfast (function is attachment), stipe (structural and conduct nutrients), blade (reproduction and photosynthesis), sporophyll (= modified blade that contains sporangia), eggs (=female gamete), sperm (= male gamete), antheridium, cortex, medulla, paraphyses, oogonium, unilocular sporangium, zoospores, sporophyte (2N), gametophyte (N), monoecious (= homothallic) vs. dioecious (= heterothallic). Most have sporic life histories (the kelps), but *Fucus* has a gametic life history. Be able to identify the receptacles and conceptacles in *Fucus*, as well as its midrib. You should know that the photosynthetic plant pigments for this group are Chlorophylls A, C, and fucoxanthin. Brown algae have heterokont flagella, one is whiplash and the other is tinsellated (=hairy). It is <u>not</u> necessary to learn any of the other bold terms in your lab manual, just focus on those in this paragraph.

Class Bacillariophyceae

Be able to identify a diatom if you saw it, and be able to name its phylum. You should also know that the photosynthetic plant pigments for this group are Chlorophylls A, C, and fucoxanthin, and that the shell is called a frustule and is mostly composed of silicon dioxide=glass (SiO₂). Be able to illustrate (= draw) the four diatom forms (centric, pennate, gonoid, trellisoid).

Class Synurophyceae

Be able to identify *Synura* to genus and phylum. You should know that the photosynthetic plant pigments for this group are Chlorophylls A, C, and fucoxanthin.

Note- you should be able to identify these organisms using the prepared slides, dried, pickled, or the fresh materials.

Bryophytes Laboratory Topic 15

Phylum Marchantiophyta

Be able to identify *Marchantia* from a slide, pickled, or fresh material to genus and phylum. You should be able to identify and know the functions of the thallus, female and male gametophytes, gemmae cups, gemmae, rhizoids, air pores, antheridiophore, antheridial head, antheridia, sperm, spermatogenous tissue, sterile jacket, paraphyses, archegoniophore, archegonial head, archegonia, egg, venter, neck canal cells, calyptra, embryo, sporophyte, sporangium (=capsule), spores, seta, foot, placenta, elaters. Meiosis occurs in the sporangium. You should be able to identify the sporophyte (2n) and gametophyte (N) generations. This group has a heterothallic, heteromorphic, sporic alternation of generations.

Phylum Anthocerotophyta

Be able to identify *Anthoceros* from a slide, pickled, or fresh material to genus and phylum. You should be able to identify and know the functions of the female and male gametophytes (some are homothallic), rhizoids, stomata (on sporophyte), spores, sporangium (=capsule), seta, foot, placenta. Meiosis occurs in the elongate horn-like sporangium. You should be able to identify the sporophyte (2n) and gametophyte (N) generations. This group has a heterothallic, heteromorphic, sporic alternation of generations.

Phylum Bryophyta

Be able to identify *Mnium* and *Sphagnum* from a slide, pickled, or fresh material to genus and phylum. You should be able to identify and know the functions of the female and male gametophytes, protonemata, gemmae, rhizoids, stomata, antheridial head, antheridia, sperm, spermatogenous tissue, sterile jacket, paraphyses, archegonial head, archegonia, egg, venter, neck canal cells, calyptra, embryo, sporophyte, sporangium (=capsule), spores, seta, foot, placenta, peristome. Meiosis occurs in the sporangium. You should be able to identify the sporophyte (2n) and gametophyte (N) generations. This group has a heterothallic, heteromorphic, sporic alternation of generations.

Note- you should be able to identify these organisms using the prepared slides, dried, pickled or the fresh materials as stated above.

Lycopodiophyta Laboratory Topic 16

Phylum Lycopodiophyta

Be able to identify *Lycopodium*, *Isoetes*, and *Selaginella* from a slide, pickled, or fresh material to genus and phylum. You should be able to identify and know the functions of the the following terms:

Strobilus (plural=strobili)

Microphylls

Aerial stem

Rhizome

Root

Sporophyte (2N)

Sporangium

Microsporangium

Megasporangium

Sporophyll

Megasporophyll

Microsporophyll

Microspores

Megaspores

Ligule

Rhizoids

Gametophyte (N)

Archegonia

Antheridia

Egg (=female gamete)

Sperm (=male gamete)

Megagametophyte (=female gametophyte)

Microgametophyte (=male gametophyte)

Zygote

Fertilization

Embryo

Stem

Corm

You should be able to identify the sporophyte (2n) and gametophyte (N) generations. This group has a heterothallic, heteromorphic, sporic alternation of generations. Note- you should be able to identify these organisms using the prepared slides, dried, pickled or the fresh materials as stated above.

Monilophyta Laboratory Topic 16

Phylum Monilophyta

Be able to identify Equisetum, Polypodium, Pteris, and Psilotum to genus and phylum. You should be able to identify and know the functions of the following:

Strobilus (plural=strobili)

Sorus (plural=sori)

Prothallus (=gametophyte of a fern)

Rachis

Rhizome

Root

Stem

Sporophyte (2N)

Sporangium

Sporophyll

Megaphyll

Fiddlehead

Rhizoids

Gametophyte (N)

Archegonia - Egg (=female gamete)

Antheridia - Sperm (=male gamete)

Sporangiophore

Node

Internode

Zygote

Fertilization

Embryo

Protostele

Siphonostele

Eustele

Xylem

Phloem

You should be able to identify the sporophyte (2n) and gametophyte (N) generations. This group has homothallic and heterothallic representatives, heteromorphic, sporic alternation of generations. Noteyou should be able to identify these organisms using the prepared slides, dried, pickled or the fresh materials as stated above.

Gymnosperm Laboratory Topic 17

Phylum Cycadophyta

Be able to identify *Cycas* and *Zamia* to genus and phylum based on leaves, microstrobili, and megastrobili. Distinguish between cycad microstrobili (male cones) and megastrobili (female cones).

Phylum Ginkgophyta

Be able to identify *Ginkgo* to genus and phylum based on leaf, seed, ovule, and pollen strobili.

Phylum Gnetophyta

Be able to identify *Ephedra* to genus and phylum based on its leaves, microstrobilus, and megastrobilus. Distinguish between *Ephedra* microstrobili (male cones) and megastrobili (female cones).

Phylum Coniferophyta

Be able to identify *Pinus* to genus and phylum. Be able to label all the figures in your lab manual (Figures 17-1 to 17-5). Be able to identify and know the functions of the following:

Megastrobilus (= ovulate cone) with seed-scale complex (sterile bract and ovuliferous scale)

Integuments and micropyle

Megasporangium (= nucellus) (2N)

Megasporophyll (2N)

Megasporocyte (2N) and megaspores (N)

Archegonium

Microstrobilus (= microsporangiate cone, male cone)

Microsporangium (2N)

Microsporophyll (2N)

Microsporocyte (2N), tetrad of microspores (N), microspores (N)

Pollen grain and its cells (2 prothallial cells, generative cell, tube cell)

Mature microgametophyte (sterile cell, two sperm nuclei, pollen tube)

Embryo with suspensors

Seed with shoot apex, root apex, root cap, hypocotyl, cotyledons, and seed coat

Sporophyte (2N) with taproot system

Pinus older stem (= siphonostele)

Be able to identify in any gymnosperm if a strobilus is a megastrobilus or microstrobilus Refer to bold terms in your lab manual for these key terms and their functions

Angiosperm Laboratory Part 1 Topic 18

Phylum Anthophyta

Be able to identify *Lilium* to genus and phylum based on the slides presented. Also be able to define and identify all of the bold terms in the manual, including the following from slides or fresh materials:

Integuments

Micropyle

Megasporangium (= nucellus)

Megasporocyte (2N) or megaspore mother cell

Megaspore (N)

Embryo sac

Chalaza

Antipodals

Polar nuclei

Egg with synergids

Placenta

Funiculus

Ovary wall

Pollen sacs (=Microsporangia)

Microsporophyll

Microsporocyte (2N) or microspore mother cell

Tapetum

Pollen grain with vegetative cell and generative cell that divides to give rise to sperm cells

Pollen tube

Pollination

Double fertilization

Zygote (2N) and 3N tissue = endosperm

Flower- stamens (anther and filament), androecium

Carpel=pistil (stigma, style, ovary), gynoecium

Sepals, collectively calyx

Petals, collectively corolla

Perianth

Connate vs. adnate, superior, inferior, epigynous, perigynous, hypogynous, complete vs. incomplete, perfect vs. imperfect, receptacle, pedicel, inflourescence, actinomorphic vs. zygomorphic

You should be able to name the botanical classification of any fruit presented in the laboratory

Early Development of the Plant Body: Topic 20

Phylum Anthophyta

Be able to:

- -Label the figures in your lab manual (Figures 20-1 and 20-2).
- -Define and identify epigeous versus hypogeous and exalbuminous versus albuminous for *Phaseolus* (=bean), *Pisum* (=pea), and *Zea* (=corn).
- -Define and identify all of the bold terms in the manual, paying particular attention to: proembryo, suspensor, cotyledon, protoderm, procambium, ground meristem, embryo sac, endosperm, basal cell, radicle, shoot and root apical meristems, root cap, seed coat, hypocotyl, epicotyl, plumule, pericarp, micropyle, hilum, foliage leaves.
- -Identify the primary meristems: protoderm, procambium, ground meristem.
- -Identify the three stages of eudicot embryo development: globular, heart, torpedo.

Cells and tissues of the Plant Body: Topic 21

Phylum Anthophyta

Be able to:

- -Label the figures in your lab manual (Figures 21-1 and 21-4).
- -Complete the Summary of Tissue Systems, Tissues, and Cell Types table on page 21-7 of your lab manual.
- -Identify the primary meristems: protoderm, procambium, ground meristem.
- -Identify all cells and tissues of the plant body and know their functions, this includes: ground tissues (parenchyma, collenchyma, and sclerenchyma (sclereids and fibers), vascular tissues (xylem= tracheids and vessel elements, parenchyma, sclerenchyma and phloem in gymnosperms= sieve cells and albuminous cells, phloem in angiosperms= sieve-tube elements and companion cells, parenchyma, sclerenchyma), dermal tissues (epidermis, guard cells, root hairs, and periderm= cork cells, cork cambium, phelloderm)

The Root: Topic 22

Phylum Anthophyta

Be able to:

- -Label figures 22-1, 22-2 and 22-3 in your lab manual
- -Define and identify all of the bold terms in the lab manual
- -Distiguish between the fibrous and taproot systems
- -Identify and describe roots hairs
- -Identify all of the labeled terms on pages 566 and 567 of your textbook in figures 24-10 and 24-11
- -Identify all of the labeled terms on pages 571 of your textbook in figure 24-16c
- -Identify lateral roots and their origin via a slide of *Salix* (= willow)
- -Identify a storage root, as shown on page 577 of your textbook in the beet in figure 24-23

Primary Structure of the Stem and Leaves: Topics 23 and 24

Phylum Anthophyta

Be able to:

- -Label the figures in your <u>lab manual</u> (Figures 23-1, 23-2, 23-3, 24-2 24-4 and 24-'4'=24-5)
- -Define and identify all of the bold terms in the lab manual
- -Identify the leaf abscission layers as seen in Figure 25-35 page 604 of you textbook
- -Identify the main leaf types and features, and know all of the terms on the "Scavenger Hunt for Leaves" handout
- -Identify and name the three types of vascular organizations in the stem: siphonostele, eustele, and scattered (=complex), as seen in Figures 25-8 to 25-13 of your <u>textbook</u>
- -Identify all of the structures in the mesophyte, hydrophyte, and xerophyte leaves as shown in Figures 25-21 to 25-23 on pages 594 and 595 of your <u>textbook</u>

Wood: Secondary Xylem: Topic 26

Phyla Coniferophyta and Anthophyta

Be able to:

- -Label the figures in your lab manual (Figures 26-2 and 26-3)
- -Define and identify all of the bold terms in the <u>lab manual</u>
- -Distinguish hardwood (oak) from softwood (pine) in slide view and using the paper blocks
- -Distinguish heartwood from sapwood
- -Distinguish storied from non-storied vascular cambia
- -Label all of the structures in Figures 26-9, 26-10, 26-11, 26-12, 26-14, 26-16, 26-20 to 26-25 of your textbook
- -Identify and describe the function of a lenticel
- -Identify and name the three sections of wood: transverse, radial, and tangential, as seen in slides and paper blocks
- -Accurately estimate the age of a piece of wood by counting growth rings in transverse section

Growth Regulators and External Factors: Topics 27 and 28

Topic 27, Exercise I, be able to:

- -Identify the 4 plants used in this experiment (Part A)
- -Identify the 3 plants used in this experiment (Part B)
- -Identify 2,4-D treated plants and describe the effects of the compound (Part C)

Topic 27, Exercise II, be able to:

-Identify and describe the effects of plants treated with gibberellin

Topic 27, Exercise III, be able to:

-Identify callous tissue treated with IAA and cytokinin (=kinetin), or both

Topic 28, In Exercise I, be able to:

- -Identify phototropism and know that the curvature toward light is caused by auxin (Part A)
- -Identify positive and negative gravitropisms in roots and shoots (Parts C & D) and know the hormones responsible for them

-Identify thigmotropism if you saw it (Part E)

Topic 28, In Exercise IV, be able to:

-Identify nastic movements and the pulvinus in *Mimosa*

Inorganic Nutrients and Soils: Topic 29 and Handout

Be able to:

- -List symptoms shown by plants with nutrient deficiencies
- -Identify plants lacking nitrogen, phosphorous, magnesium, potassium, calcium, sulfur, iron using the dichotomous key on page 29-2 of your lab manual
- -Identify soil type using the texture by feel analysis on page S-11 of the handout
- -List the three main types of weathering: Biological, Chemical, and Mechanical
- -Draw and label the soil horizons
- -Predict the rate of nutrient flow through soil given three different soil profiles (desert, prairie, temperate rainforest)

Genetics: Topic 10

Be able to:

- -Define the terms in **bold font** terms in your lab manual on page 10-14
- -Complete a monohybrid and dihybrid cross (Punnett square) given genotypic information similar to that presented in your lab manual (see Exercises I, II, III)
- -Estimate the results (genotypic and phenotypic percentages) for monohybrid and dihybrid genetic crosses
- -Identify monohybrid and dihybrid genotypes and phenotypes based on ears of corn
- -List the reasons why *Arabidopsis thaliana* was such an excellent model organism for plant genetics