### **CSE 321b**

# Computer Organization (2)

تنظيم الحاسب (2)



3<sup>rd</sup> year, Computer Engineering
Winter 2017
Lecture #2



Dr. Hazem Ibrahim Shehata Dept. of Computer & Systems Engineering

Credits to Dr. Ahmed Abdul-Monem Ahmed for the slides

#### **Adminstrivia**

- Schedule:
  - —Lectures: Wednesday 10:15am 12:45pm
  - —Tutorials: after lecture (this week only)
  - —Office hour: TBA
- Assignment #1:
  - —To be released next week

Website: <a href="http://hshehata.github.io/courses/zu/cse321b">http://hshehata.github.io/courses/zu/cse321b</a>

Office hours: TBA

# Ch 5: Internal Memory (Cont.)

### **Error Correction**

- Semiconductor memory is subject to errors
  - Rate: 1 error/hour to 1 error/century in a 1GB memory!
  - Types: hard and soft.

#### Hard Failure

- Permanent physical defect.
- Mem. cells can't store data: stuck at 0 or 1, or switching.
- Caused by harsh environments, manufacturing defects, or wear.

#### Soft Error

- Random, non-destructive event that alters contents of one or more memory cells.
- No permanent damage to memory.
- Caused by power supply problems or alpha particles.
- Detected/corrected using Hamming error correcting code.

# **Error-Correcting Code Function**



## **Hamming Error-Correcting Code**



Chosen so that total number of 1s in each circle is even.

By checking the parity bits, discrepancies are found -> error can be easily found and corrected.

### **Error-Correcting Codes**

- A codeword consists of N bits split into M data bits and K check (redundant) bits
  - N = M + K
- Hamming distance: Number of bit-positions in which two codewords differ.
  - Ex.: 11001001, 10100001 → Hamming distance = 3 → 3 bit errors are needed to convert one into the other.
- Note: in a code, not all  $2^N$  codewords are legal.
- Hamming distance of the whole code: minimum Hamming distance between 2 legal codewords.
- A distance d code can:
  - **Detect:** d-1 errors.
  - **Correct:** (d-1)/2 errors if d is odd, or (d/2)-1 errors if d is even.

#### **Error Detection/Correction**

- Detection: parity bit.
  - Distance = 2 → can detect up to 1 bit error.
  - Ex.: data=1011010 → codeword=10110100 → any codeword with a distance = 1 (such as: 10100100) is considered illegal → single-bit errors are detectable.
- Correction: Consider a code with 4 valid codewords:

- Distance =  $5 \rightarrow$  can correct up to 2 bit errors.
- If 0000000111 arrives, → 0000011111
- If 0000000000 becomes 000000111 due to 3 errors → cannot be corrected properly.

# **Single Bit Error Correction**

Design a code to correct all single bit errors.

- M = data bits, K = check bits
- N = M + K
- Rule: Choose Ks.t.  $M + K + 1 \le 2^K$
- Justification:
  - Each of the 2<sup>M</sup> legal words has N illegal codewords at distance 1.
  - Thus, each of the  $2^M$  legal words requires (N + 1) bit patterns dedicated to it.
  - $(N+1) 2^M \le 2^N \to M+K+1 \le 2^K$

# **Hamming Code**

$$2^{K}-1 \ge M+K \implies 2^{K} \ge 9+K \implies K=4$$



Bit position **2** 

Bit position 8: 0

# **Hamming Code (2)**



- Assume error in bit 9.
- Recompute the check bits.
- Bit 1 = 0 (error).
- Bit 2 = 1.
- Bit 4 = 1.
- Bit 8 = 1 (error).
- Error is in bit position  $= 1 + 8 = 9 \rightarrow$  flip it (correction).

# **Hamming SEC-DED Code**



# **Hamming SEC-DED Code (2)**



### **Increase in Word Length with Error Correction**

|           | Single-Error Correction |            | Single-Error Correction/<br>Double-Error Detection |            |
|-----------|-------------------------|------------|----------------------------------------------------|------------|
| Data Bits | Check Bits              | % Increase | Check Bits                                         | % Increase |
| 8         | 4                       | 50         | 5                                                  | 62.5       |
| 16        | 5                       | 31.25      | 6                                                  | 37.5       |
| 32        | 6                       | 18.75      | 7                                                  | 21.875     |
| 64        | 7                       | 10.94      | 8                                                  | 12.5       |
| 128       | 8                       | 6.25       | 9                                                  | 7.03       |
| 256       | 9                       | 3.52       | 10                                                 | 3.91       |

### **Advanced DRAM Organization**

- Interface to MM is a system bottleneck.
- DRAM chip is the main building block of MM.
- Basic DRAM architecture same since 1970s!
- Enhancements to basic DRAM architecture
  - —Synchronous DRAM (SDRAM)
    - DDR-SDRAM, DDR2-SDRAM, DDR3-SDRAM
  - —Rambus DRAM (RDRAM)
  - —Cache DRAM (CDRAM)

# Synchronous DRAM (SDRAM)



- Unlike traditional DRAM (which is asynchronous), SDRAM exchanges data with CPU synchronized to an external clock (system bus).
- No wait states!
  - —SDRAM moves data in/out under control of system clock.
  - —CPU issues command and address.
  - —Latched by the SDRAM.
  - —SDRAM responds after a number of clock cycles.
  - —Meanwhile, CPU can do other tasks → no waits.

# Synchronous DRAM (SDRAM) (2)

- Burst mode: a series of data bits can be clocked out rapidly after the first bit has been accessed.
- Eliminates row and column address setup time.
- Useful when the required bits are in sequence and in the same row of the array as the initial access.
- Multiple-bank internal architecture improves opportunities for parallelism.
- Mode Register (MR)
  - —Specifies burst length.
  - Allows programmer to adjust latency between read request and data transfer.



### **SDRAM Operation**



- Burst type, length and latency are set in mode reg.
  - —Type: interleaved or sequential
  - —In the example: length=4 and latency=3
- Burst read command is initiated.
  - —At the rising edge of the clock: CS & CAS → low, and RAS & WE → high.
- Address inputs determine starting column for burst.

#### **Enhanced versions of SDRAM**

- Double Data Rate (DDR-SDRAM)
  - —produces two words of data every memory cycle
  - —sends data to CPU twice per clock cycle (at rising & falling edges of the clock)
  - —2x data rate of SDRAM (with same cell speed)

#### DDR2-SDRAM

- —produces four words of data every memory cycle
- -2x bus speed & data rate of DDR (with same cell speed)

### DDR3-SDRAM

- —produces eight words of data every memory cycle
- -2x bus speed & data rate of DDR2 (with same cell speed)

# Rambus DRAM (RDRAM) (1)



- Adopted by Intel for Pentium & Itanium in late 90s.
- Was main competitor to SDRAM.
- Chips are vertical packages all pins on one side.
- Data exchange over 28 wires < 12 cm long.</li>
- Bus can address up to 32 RDRAM chips and is rated at 1.6 GBps.

# Rambus DRAM (RDRAM) (2)

- Asynchronous block-oriented protocol
  - Initial 480 ns access time.
  - Then 1.6 GB/s.
- What makes this speed possible is the bus itself, which defines impedances, clocking, and signals very precisely.
- RDRAM gets a memory request over the highspeed bus (unlike conventional DRAMs controlled by RAS, CAS, R/W, and CE).
- This request contains address, operation, number of bytes.

### **RDRAM Diagram**



- Controller and a number of RDRAM modules connected via a common bus.
- Bus: 18 data lines, cycling at twice the clock rate → 800 Mbps per line.
- Address and control signals: 8 lines (RC)
- Clock starts at the far end from the controller, propagates to the controller end, then loops back.
- Module sends data to the controller synchronously to the clock to master.
- Controller sends data to a module synchronously with the clock in the opposite direction.

# Cache DRAM (CDRAM)

- CDRAM integrates a small SRAM cache (16 kb) onto a generic DRAM chip.
- CDRAM can be used in two ways:
  - 1. As a **true cache** with 64-bit lines.
  - 2. As a **buffer** to support serial access of a data block.
    - -e. g., to refresh a bit-mapped screen, the CDRAM can prefetch the data from the DRAM into the SRAM buffer. Subsequent accesses to the chip results in accesses to the SRAM only.

# **Reading Material**

- Stallings, Chapter 5:
  - —Pages 170 180