6

광고 클릭 이벤트 집계

온라인 광고

실시간 데이터를 통해 광고 효과를 정량적으로 측정할 수 있음

Real-Time Bidding

- 실시간 경매
- 디지털 광고의 핵심 프로세스
- 경매 절차를 통해 광고가 나갈 지면을 거래함

속도와 데이터의 정확성이 중요함

광고 클릭 이벤트 집계

온라인 광고가 얼마나 효율적이었는지 측정하는 데 결정적인 역할 ⇒ 광고주가 얼마나 많은 돈을 지불할지에 영향을 끼침

핵심 지표

- CTR(클릭률)
- CVR(전환률)

문제 이해 및 설계 범위 확정

기능 요구사항

• 지난 M분 동안의 ad id 클릭 수 집계

- 매분 가장 많이 클릭된 상위 100개 광고 아이디를 반환
- 다양한 속성에 따른 집계 필터링을 지원
- 데이터의 양은 페이스북이나 구글 규모

비기능 요구사항

- 집계 결과 정확성은 데이터가 RTB 및 광고 과금에 사용되므로 중요
- 지연되거나 중복된 이벤트를 적절히 처리할 수 있어야 함
- 견고성
 - 부분적인 장애는 감내할 수 있어야 함
- 지연 시간 요구사항
 - 。 전체 처리 시간은 최대 수 분을 넘지 않아야 함

개략적 추정

- DAU = 10억 명
- 각 사용자는 하루에 평균 1개 광고를 클릭한다고 가정
- 광고 클릭 QPS = 10^9 이벤트 / 하루 10^5초 = 10000
- 최대 광고 QPS는 평균 QPS의 5배 = 50000
- 광고 클릭 이벤트 하나당 0.1KB의 저장용량 필요
- 일일 저장소 요구량 = 0.1KB * 10억 = 100GB
- 월간 저장 요구량 = 3TB

개략적 설계안 제시 및 동의 구하기

질의 API 설계

목적은 클라이언트와 서버 간의 통식 규약을 만드는 것

1. 지난 M분간 각 ad id에 발생한 클릭 수 집계

- 2. 지난 M분 동안 가장 많은 클릭이 발생한 상위 N개 ad_id 목록 반환
- 3. 다양한 속성을 기준으로 집계 결과를 필터

데이터 모델

원시 데이터

로그 파일에 포함된 원시 데이터

여러 애플리케이션 서버에 산재해 있음

[AdClickEvent] ad001, 2021-01-01 00:00:01, user1, 207.148.22.:

ad_id	click_timestamp	user_id	ip	country
ad001	2021-01-01 00:00:01	user1	207.148.22.22	USA
ad001	2021-01-01 00:00:02	user1	207.148.22.22	USA
ad002	2021-01-01 00:00:02	user2	209.153.56.11	USA

집계 결과 데이터

1. 집계 결과 테이블

ad_id	click_minute	filter_id	count
ad001	202101010000	0012	2
ad001	202101010000	0023	3
ad001	202101010001	0012	1
ad001	202101010001	0023	6

2. 필터 테이블

filter_id	region	ip	user_id
0012	US	0012	*
0013	*	0023	123.1.2.3

3. M분 동안 가장 많이 클릭된 상위 N개의 광고를 반환하는 질의를 지원하는 테이블

window_size	integer	분 단위로 표현된 집계 윈도 크리
update_time_minute	timestamp	마지막으로 갱신된 타임스탬프(1분 단 위)
most_clicked_ads	array	JSON 형식으로 표현된 ID 목록

원시 데이터 vs 집계 결과 데이터

	원시 데이터만 보관	집계 데이터만 보관
장점	- 원본 데이터를 손실 없이 보관 - 데이터 필터링 및 재계산 지원	- 데이터 용량 절감 - 빠른 질의 성능
단점	- 막대한 데이터 용량 - 낮은 질의 성능	- 데이터 손실 - 원본 데이터가 아닌 계산/유도된 데이터를 저장 하는 데서 오는 결과

⇒ 둘 다 저장해라!

- 문제가 발생하면 디버깅에 활용할 수 있도록 원시 데이터도 보관하는 것이 좋음
 - 데이터가 손상되면 원시 데이터에서 집계 결과를 다시 만들 수 있음
- 원시 데이터는 양이 많아서 직접 질의하는 것은 비효율 적이기 때문에 집계 결과 데 이터를 저장하여 이데이터를 질의하는 것이 바람직함
- 원시 데이터 = 백업 데이터
 - 。 오래된 데이터는 냉동 저장소로 옮겨서 비용 절감
- 집계 결과 데이터는 활성 데이터 구실을 함
 - 。 질의 성능을 높이기 위해 튜닝

올바른 데이터베이스의 선택

- 1. 데이터는 어떤 모습인가? 관계형 데이터인가? 문서 데이터인가? 아니면 이진 대형 객체인가?
- 2. 작업 흐름이 읽기 중심인가 쓰기 중심인가? 아니면 둘 다인가?
- 3. 트랜잭션을 지원해야 하는가?
- 4. 질의 과정에서 SUM이나 COUNT 같은 온라인 분석 처리 함수를 많이 사용해야 하는 가?

• 원시 데이터

- 백업, 재계산 용도로만 이용이 되기 때문에 읽기 연산 빈도가 낮음
- 。 쓰기 연산 중심
- 관계형 데이터 베이스로는 이정도 규모의 쓰기 연산이 가능하도록 구성하기 어려움
- 。 쓰기 및 시간 범위 질의에 최적화된 <mark>카산드라</mark>나 InfluxDB를 사용하는 것이 바람직

• 집계 데이터

- 。 시계열 데이터
- 。 읽기 연산, 쓰기 연산 둘 다 많이 사용함
- 。 원시 데이터와 같은 유형의 데이터베이스를 활용하는 것이 가능

개략적 설계안

그림 6.3 개략적 설계안

비동기 처리

트래픽이 갑자기 증가하여 발생하는 이벤트 수가 소비자의 처리 용량을 훨씬 넘어서는 경우, 메모리 부족 등의 이슈가 발생할 수 있음

- ⇒ 카프카와 같은 메시지 큐를 도입하여 생산자와 소비자의 결합 끊기
- ⇒ 전체 프로세스는 비동기 방식으로 동작
- ⇒ 생상자와 소비자의 규모를 독립적으로 확장해 나갈 수 있음

데이터베이스 기록 프로세스

메시지 큐에서 데이터를 꺼내 데이터베이스가 지원하는 형식으로 변환한 다음 기록하는 역할

첫 번째 메시지 큐

광고 클릭 이벤트 데이터가 기록됨

⇒ 원시 데이터

두 번째 메시지 큐

- 1. 분 단위로 집계된 광고 클릭수
- 2. 분 단위로 집계한 가장 많이 클릭한 상위 N개 광고
- ⇒ 집계 데이터

집계 결과를 데이터베이스에 바로 기록하지 않는 이유

정확하게 한 번 데이터를 처리하기 위해 카프카와 같은 시스템을 두 번째 메시지 큐로 도입해 야 하기 때문

집계 서비스

유형 비순환 그래프(DAG)

- 맵 리듀스 패러다임을 표현하기 위한 모델
- 맵/집계/리듀스 노드 등의 작은 컴퓨팅 단위로 세분화하는 것이 DAG의 핵심
 - ㅇ 각 노드는 한 가지 작업만 처리하고 그 결과를 다음 노드에 인계함
- 빅데이터를 입력으로 받아 병렬 분산 컴퓨팅 자원을 활용하여 빅데이터를 작거나 일반적
 인 크기의 데이터로 변환할 수 있도록 설계된 모델
- 중간 데이터는 메모리에 저장될 수 있음

- 노드 간 통신은 TCP나 공유 메모리로 처리할 수 있음
 - 。 노드들이 서로 다른 프로세스에서 실행되는 경우 → TCP
 - 노드들이 서로 다른 스레드에서 실행되는 경우 → 공유 메모리

맵 노드

- 데이터 출처에서 읽은 데이터를 필터링하고 변환하는 역할
- ex) [ad_id % 2 == 0] 조건을 만족하는 데이터는 노드 1, 그렇지 않은 데이터는 노드 2
 로 전송
- 필수일까?
 - 카프카 파티션이나 태그를 구성한 다음에 집계 노드가 카프카를 직접 구독하는 것은?
 - o 입력 데이터를 정리하거나 정규화해야 하는 경우에는 맵 노드가 필요함
 - 데이터가 생성되는 방식에 대한 제어권이 없는 경우에는 동일한 ad_id를 갖는 이벤트가 서로 다른 카프카 파티션에 입력될 수도 있음

집계 노드

- ad_id별 광고 클릭 이벤트 수를 매 분 메모리에서 집계
- 맵리듀스 패러다임에서 집계 노드는 리듀스 프로세스의 일부
- 맵-집계-리듀스 프로세스 = 맵-리듀스-리듀스 프로세스

리듀스 노드

- 모든 집계 노드가 산출한 결과를 최종 결과로 축약
- ex) 집계 노드 각각은 자기 관점에서 가장 많은 클릭이 발생한 광고 3개를 추려 리듀스 노드로 보내고, 리듀스 노드는 그 결과를 모아 최종적으로 3개의 광고만 남김

주요 사용 사례

- 1. 클릭 이벤트 수 집계
 - 맵 노드는 시스템에 입력되는 이벤트를 [ad_id % 3]을 기준으로 분배
 - 분해나 결과는 각 집계 노드가 집계

- 2. 가장 많이 클릭된 상위 N개 광고 반환
 - 입력 이벤트는 ad_id 기준으로 분배되고 각 집계 노드는 힙을 내부적으로 사용하여 상위 N개 광고를 효율적으로 식별
 - 마지막 단계의 리듀스 노드는 전달 받은 M개의 광고 가운데 지난 1분간 가장 많이 클릭된 광고 N개를 골라냄

3. 데이터 필터링

- 필터링 기준을 사전에 정의한 다음 해당 기준에 따라 집계하는 스타 스키마 기법
 - 。 데이터 웨어하우스에서 널리 쓰이는 기법
 - 。 필터링에 사용되는 필드 = 차원
 - ㅇ 장점
 - 이해하기 쉽고 구축하기 간단
 - 기존 집계 서비스를 재사용 가능
 - 결과를 미리 계산해 두는 방식이기 때문에 필터링 기준에 따라 빠르게 접근 할 수 있음
 - ㅇ 단점
 - 많은 버킷과 레코드가 생성된다는 한계가 있음
 - 필터링 기준이 많을 수록 더욱 그럼

상세 설계

스트리밍 vs 일괄 처리

본 설계안은 스트림 처리와 일괄 처리 방식을 모두 사용함

- 데이터를 오는 대로 처리하고 거의 실시간으로 집계된 결과를 생성할 때 → 스트림 처리
- 이력 데이터를 백업할 때 → 일괄 처리

⇒ 람다

- 두 가지 처리 경로를 지원해야 하기 때문에 유지 관리해야 할 코드가 두 벌임
- ⇒ 일괄 처리와 스트리밍 처리 경로를 하나로 결합하는 카파 아키텍처를 통해 해결

→ 단일 스트림 처리 엔진을 사용하여 실시간 데이터 처리 및 끊임없는 데이터 재처리 문 제를 모두 해결

데이터 재계산

- 이미 집계한 데이터를 다신 계산하는 경우
 - 。 데이터 재처리
- 재계산 프로세스는 집계 서비스를 재사용하기는 하지만 처리 데이터는 다른 곳에서 읽음
 - 。 원시 데이터를 직접 읽음
- 흐름
 - 1. 원시 데이터 저장소에서 데이터를 검색함
 - 일괄 처리 프로세스를 따름
 - 2. 추출된 데이터는 전용 집계 서비스로 전송
 - 전용 집계 서비스를 두는 이유는 실시간 데이터 처리 과정이 과거 데이터 재처리 프로세스와 간섭하는 일을 막기 위해서
 - 3. 집계 결과는 두 번째 메시지 큐로 전송되어 집계 결과 데이터베이스에 반영

시간

집계에 사용하는 타임스탬프

- 이벤트 시각
 - 。 광고 클릭이 발생한 시각
- 처리 시각
 - 。 집계 서버가 클릭 이벤트를 처리한 시스템 시각
- 네트워크 지연이나 비동기적 처리 환경 때문에 이벤트가 발생한 시각과 처리 시각 차이에 격차가 커질 수 있음

	장점	단점
이벤트 발생 시각	광고 클릭 시점을 정확히 아는 것은 클 라이언트이기 때문에 집계 결과가 보 다 정확함	클라이언트가 생성한 타임스탬프에 의종하는 방식이기 때문에 클라이언 트에 설정된 시간이 잘못되었거나 악 성 사용자가 타임스탬프를 고의로 조 작하는 문제에서 자유로울 수 없음

	장점	단점
처리 시각	서버 타임스탬프가 클라이언트 타임 스탬프보다 안정적임	이벤트가 시스템에 도착한 시각이 한 참 뒤인 경우에는 집계 결과가 부정확 해짐

데이터 정확도는 아주 중요하기 때문에 이벤트 발생 시각을 사용할 것을 추천함

시스템에 늦게 도착한 이벤트를 올바를게 처리하는 방법

- 워터마크
 - 。 각 윈도 마지막에 붙은 여분의 사각형
 - 。 집계 윈도의 확장
 - 。 크기는 비즈니스 요구사항에 따라 달라짐
 - 길면 늦게 도착하는 이벤트도 포착 가능하지만 이벤트 처리 시간이 늘어남
 - 짧으면 데이터 정확도는 떨어지지만 시스템의 응답 지연은 낮아짐
 - 。 시간이 한참 으른 후에 시스템에 도달하는 이벤트는 처리할 수 없음
 - 발생할 확률이 낮은 이벤트 처리를 위해 시스템을 복잡하게 설계하면 투자 대비 효 능이 떨어짐
 - 사소한 데이터 오류는 하루치 데이터 처리를 마감할 때 조정 가능
 - ⇒ 데이터의 정확도는 높아지지만 대기 시간이 늘어나 전반적인 지연 시간이 늘어남

집계 윈도

텀블링 윈도

- 시간을 같은 크기의 겹치지 않는 구간으로 분할
- 매 분 발생한 클릭 이벤트를 집계하기에 적합

슬라이딩 윈도

- 데이터 스트림을 미끄러져 나아가면서 같은 시간 구간 안에 있는 이벤트를 집계
- 서로 겹칠 수 있음
- 지난 M분간 가장 많이 클릭된 상위 N개 광고를 알아내기에 적합

전달 보장

집계 결과는 과금 등에 활용될 수 있기 때문에 데이터의 정확성과 무결성이 아주 중요함

- 1. 이벤트의 중복 처리는 어떻게 피할 수 있는가?
- 2. 모든 이벤트 처리를 어떻게 보장할 수 있는가?

어떤 전달 방식을 선택할 것인가

- 약간의 중복은 허용한다면 '최소 한 번'이 적합
- 본 설계안이 다루는 시스템은 데이터의 몇 퍼센트 차이가 수백만 달러 차이로 이어질 수 있음
- ⇒ '정확히 한 번'이 적합

데이터 중복 제거

- 데이터 중복이 발생하는 곳
 - 。 클라이언트
 - 한 클라이언트가 같은 이벤트를 여러 번 보내는 경우
 - 악의적인 의도로 전송되는 중복 이벤트를 처리하는 데는 광고 사기/위험 제어 컴포넌트가 적합
 - 。 서버 장애
 - 집계 도중에 집계 서비스 노드에서 장애가 발생하였고 업스트림 서비스가 이벤트 메시지에 대해 응답을 받지 못한 경우
- ex) 집계 서비스 노드에 발생한 장애의 결과로 중복 데이터가 생기는 경우
 - 。 이 노드는 업스트림 카프카에 오프셋을 저장하여 데이터 소비 상태를 관리함
 - 1. 집계 서비스 노드에 장애가 생겨 6단계를 실행하지 못하면 100에서 110까지의 이벤트는 이미 다운스트림에 전송되었으나 새 오프셋은 업스트림 카프카에 반영되지 않음
 - 2. 새로 복구된 집계 서비스 노드는 오프셋 100부터 이벤트를 다시 소비할 것이고, 그 결과로 데이터 중복이 발생

- HDFS나 SC 같은 외부 파일 저장소에 오프셋을 기록하는 해결책
 - 。 집계 결과를 다운스트림으로 전송하기 전에 오프셋을 외부 파일 저장소에 저장
 - ㅇ 저장 직후 집계 서비스 노드에 장애가 발생하면 그 사이에 있는 데이터는 손실이 됨
 - ⇒ 다운스트림에서 집계 결과 수신 확인 응답을 받은 후에 오프셋을 저장해야 함

대규모 시스템에서 데이터 중복을 없애기는 쉽지 않음 이벤트를 정확히 한 번 처리하는 것은 난이도가 아주 높은 작업임

시스템 규모 확장

메시지 큐의 규모 확장

- 생산자
 - 생산자 인스턴스 수에는 제한을 두지 않기 때문에 확장성 쉽게 달성 가능
- 소비자
 - 소비자 그룹 내의 재조정 메커니즘은 노드 추가/삭제를 통해 그 규모를 쉽게 조정할수 있게 함
 - 소비자가 많은 경우에는 재조정 작업이 오래 걸리기 때문에 시스템 사용량이 많지
 않은 시간에 실행하여 영향을 최소화하는 것이 좋음

브로커

- 해시 키
 - 같은 ad_id를 갖는 이벤트를 같은 카프카 파티션에 저장하기 위해 ad_id를 해시 키로 사용
 - 집계 서비스는 같은 ad_id를 갖는 이벤트를 전부 같은 파티션에서 구독 가능
- 파티션의 수
 - 파티션의 수가 변하면 같은 ad_id를 갖는 이벤트가 다른 파티션에 기록되는 일이 생길 수 있음
 - 사전에 충분한 파티션을 확보하여 프로턱션 환경에서 파티현의 수가 동적으로 늘어 나는 일을 피하는 것이 좋음
- 토픽의 물리적 샤딩

- 보통 하나의 토픽만으로 충분한 경우가 없기 때문에 지역 혹은 사업 유형에 따라 여러 토픽 두기
- 데이터를 여러 토픽으로 나누면 시스템의 처리 대역폭을 높일 수 있음
- 단일 토픽에 대한 소비자의 수가 줄면 소비자 그룹의 재조정 시간도 단축됨
- 。 복잡성이 증가함
- 。 유지 관리 비용이 늘어남

집계 서비스의 규모 확장

- 노드의 추가/삭제를 통해 수평적으로 조정이 가능함
- 집계 서비스의 처리 대역폭을 높이려면 어떻게 해야 할까?
 - 1. ad_id마다 별도의 처리 스레드를 두는 방안
 - 구현하기 쉬움
 - 자원 공급자에 대한 의존 관계가 없음
 - 2. 집계 서비스 노드를 아파치 하둡 YARN 같은 자원 공급자에 배포하는 방식
 - 다중 프로세싱을 활용함
 - 더 많은 컴퓨팅 자원을 추가하여 시스템 규모를 확장할 수 있기 때문에 실제로 더 많이 사용됨

데이터베이스의 규모 확장

- 카산드라는 안정 해시와 유사한 방식으로 수평적인 규모 확장을 지원
- 데이터는 각 노드에 균등하게 분산
 - 。 사본도 적당한 수만큼 만들어 분산
- 각 노드는 해시 링 위의 특정 해시 값 구간의 데이터 보관을 담당
 - 。 다른 가상 노드의 데이터 사본도 보관
- 클러스터에 새 노드를 추가하면 가상 노드 간의 균형은 자동으로 다시 조정됨
 - 수동으로 샤딩을 조정하는 과정은 필요하지 않음

핫스팟 문제

핫스팟

• 다른 서비스나 샤드보다 더 많은 데이터를 수신하는 서비스나 샤드

많은 예산을 집행하는 회사의 광고는 더 많은 클릭이 발생하기 때문에 핫스팟 문제가 발생할 수 있음

핫스팟 문제는 서버 과부하 문제로 이어짐

- ⇒ 더 많은 집계 서비스 노드를 할당하여 해결
- ⇒ 전역-지역 집계, 분할 고유 집계 방식도 있지만 복잡함

더 많은 집계 서비스 노드를 할당하는 방법

- 1. 집계 서비스 노드에 300개 이벤트가 도착하여 한 노드가 감당할 수 있는 양을 초과함
- 2. 자원 관리자에게 추가 자원을 신청
- 3. 자원 관리자는 해당 서비스 노드에 과부하가 걸리지 않도록 추가 자원을 할당
- 4. 원래 집계 서비스 노드는 각 서비스 노드가 100개씩의 이벤트를 처리할 수 있도록 이벤트를 세 개 그룹으로 분할
- 5. 집계가 끝나 축약된 결과는 다시 원래 집계 서비스 노드에 기록

집계 서비스의 결함 내성

- 집계는 메모리에서 이루어지기 때문에 집계 노드에 장애가 생기면 집계 결과도 손실됨
- 업스트림 카프카 브로커에서 이벤트를 다시 받아오면 그 숫자를 다시 만들어 낼 수 있음
- 카프카 데이터를 원점부터 다시 재생하여 집계하면 시간이 오래 걸림
- 업스트림 오프셋 같은 '시스템 상태'를 스냅숏으로 저장하고 마지막으로 저장된 상태부터 복구하는 것이 바람직
- 지난 M분간 가장 많이 클릭된 광고 N개 같은 데이터도 시스템 상태의 일부로 저장해야 함
- 스냅숏을 이용하면 집계 서비스의 복구 절차가 단순해짐
- 어떤 집계 서비스 노드 하나에 장애가 발생하면 해당 노드를 새 것으로 대체한 다음 마지
 막 스냅숏에서 복구하면 됨

• 스냅숏을 마지막으로 찍은 후에 도착한 새로운 이벤트는 새 집계 서비스 노드가 카프카 브로커에서 읽어가 처리할 것

데이터 모니터링 및 정확성

지속적 모니터링

- 지연 시간
 - 데이터를 처리하는 각 단계마다 지연시간이 추가될 수 있기 때문에 시스템의 중요
 부분마다 시각 추적이 가능하도록 해야 함
 - 。 기록된 시각 사이의 차이를 지연 시간 지표로 변환해서 모니터링
- 메시지 큐 크기
 - 。 큐의 크기가 갑자기 늘어난다면 더 많은 집계 서비스 노드를 추가해야 할 수 있음
- 집계 노드의 시스템 자원
 - CPU
 - 。 디스크
 - JVM

조정

- 다양한 데이터를 비교하여 데이터 무결성을 보증하는 기법
- 매일 각 파티션에 기록된 클릭 이벤트를 이벤트 발생 시각에 따라 정렬한 결과를 일괄 처리하여 만들어 낸 후 실시간 집계 결과와 비교하기
- 더 높은 정확도가 필요하면 더 작은 집계 윈도 사용
- 윈도 크기에 관계없이 일부 이벤트는 늦게 도착할 수 있기 때문에 배치 작업 결과가 실시 간 집계 결과와 정확히 일치하지 않을 수 있다는 점에 유념

대안적 설계안

사고 프로세스를 설명하고 타협적 선택지 사이의 장단점을 설명하는 능력을 보이는 것이 중 요함

다른 설계 방법

- 광고 클릭 데이터를 하이브에 저장
- 빠른 질의는 일래스틱서치 계층을 얹어서 처리하기
- 집계는 클릭하우스나 드루이드 같은 OLAP 데이터베이스를 통해 처리하기

마무리

참 잘했어요~!

그림 6.28 최종 설계안

