INF01 118

Técnicas Digitais para Computação

Multiplicador Decodificador e Multiplexador

Aula 14

Multiplicador Combinacional

2) Equações em SDP, simplificado por mapa de Karnaugh

$$P_{3} = m_{15}$$

$$P_{2} = \sum m (10, 11, 14)$$

$$P_{1} = \sum m (6, 7, 9, 11, 13, 14)$$

$$P_{0} = \sum m (5, 7, 13, 15)$$

$$\begin{aligned} \mathbf{P}_{0} &= \mathbf{A}_{0} \mathbf{B}_{0} \\ \mathbf{P}_{1} &= \overline{\mathbf{A}}_{1} \mathbf{A}_{0} \mathbf{B}_{1} + \overline{\mathbf{A}}_{1} \mathbf{B}_{0} \mathbf{A}_{1} + \mathbf{A}_{1} \overline{\mathbf{A}}_{0} \mathbf{B}_{0} + \mathbf{B}_{1} \overline{\mathbf{B}}_{0} \mathbf{A}_{0} \\ \mathbf{P}_{2} &= \mathbf{A}_{1} \overline{\mathbf{A}}_{0} \mathbf{B}_{1} + \mathbf{A}_{1} \mathbf{B}_{1} \overline{\mathbf{B}}_{0} \\ \mathbf{P3} &= \mathbf{A}_{1} \mathbf{A}_{0} \mathbf{B}_{1} \mathbf{B}_{0} \end{aligned}$$

Multiplicador de 2 bits. Síntese de circuito combinacional

X_1	\mathbf{X}_{0}	\mathbf{Y}_{1}	$\mathbf{Y_0}$	P_3	$\mathbf{P_2}$	\mathbf{P}_{1}	$\mathbf{P_0}$
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

$$P_3 = m_{15}$$

$$P_2 = \sum m (10, 11, 14)$$

$$P_1 = \sum m (6, 7, 9, 11, 13, 14)$$

$$P_0 = \sum m (5, 7, 13, 15)$$

$$P_{1} = \overline{X}_{1}X_{0}Y_{1} + \overline{Y}_{1}Y_{0}X_{1} + \overline{X}_{1}X_{0}Y_{0} + \overline{Y}_{1}Y_{0}X_{0}$$

Multiplicador Combinacional

$$A_1A_0 \times B_1B_0 = P_3P_2P_1P_0$$

1) Multiplicação é equivalente a uma operação E

2) Soma binaria dos termos:

Soma =
$$X \oplus Y \oplus C_{in}$$

 $C_{out} = XY + XC_{in} + YC_{in}$

3) Substituindo os X e Y pelos termos da multiplicação:

$$\begin{split} &P_{0} = A_{0}B_{0} \\ &P_{1} = \overline{A}_{1}A_{0}B_{1} + \overline{A}_{1}B_{0}A_{1} + A_{1}\overline{A}_{0}B_{0} + B_{1}\overline{B}_{0}A_{0} \\ &P_{2} = A_{1}\overline{A}_{0}B_{1} + A_{1}B_{1}\overline{B}_{0} \\ &P_{3} = A_{1}A_{0}B_{1}B_{0} \end{split}$$

Multiplicador Combinacional

Array Multiplier

Generates all n partial products simultaneously.

Multiplicador em VHDL

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity ULA is
  Port (A: in STD_LOGIC_VECTOR (3 downto 0);
     B: in STD_LOGIC_VECTOR (3 downto 0);
     F: out STD_LOGIC_VECTOR (7 downto 0));
end ULA;
architecture Behavioral of ULA is
Begin
                      multiplicador
process (A, B)
begin
F \le A * B;
end process;
end Behavioral;
```


Decodificadores

Apenas uma saída é igual a 1 Ex: se $A_1A_0 = 10$ então $D_2=1$

\mathbf{A}_1	$\mathbf{A_0}$				
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Imaginando-se que A_1A_0 seja um código, as saídas o decodificam.

Se cada saída tivesse uma lâmpada (LED) que acendesse quando esta saída fosse igual a 1, e se esta lâmpada iluminasse um número com o algarismo decodificado, teríamos explicitamente na saída a informação sobre o código detectado.

Aplicações

• Decodificação de endereço em uma memória

• Decodificador de instruções

- Implementação de funções combinacionais
 - Imaginando que as entradas são as variáveis X,Y,Z de uma função F
 - As 8 saídas correspondem então aos mintermos
 - Tomando a soma dos produtos usando mintermos, basta fazer um OR entre os mintermos para os quais a função é = 1.

Exemplo: Full Adder

$$S(X,Y,C_{in}) = \Sigma m (1,2,4,7)$$

 $C_{out}(X,Y,C_{in}) = \Sigma m (3,5,6,7)$

Codificadores

Codificador simples

- 2ⁿ entradas \longrightarrow n saídas
- Apenas uma entrada pode ter valor = 1
- Saída fornece código binário correspondente à entrada ligada.

Tabela-verdade

\mathbf{D}_7	\mathbf{D}_6	$\mathbf{D_5}$	$\mathbf{D_4}$	$\mathbf{D_3}$	$\mathbf{D_2}$	\mathbf{D}_1	$\mathbf{D_0}$	A ₂	\mathbf{A}_{1}	$\mathbf{A_0}$
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
:	:		:	:		:		 :	:	:
1	0	0	0	0	0	0	0	1	1	1

Implementação

$$A_0 = D_1 + D_3 + D_5 + D_7$$

$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

3 Portas OR de 4 entradas

Problemas

Se mais de uma entrada = 1

Ex:
$$D_3 = 1$$
 e $D_6 = 1$
 $A_2 A_1 A_0 = 1$ 1 1 \Longrightarrow como se $D_7 = 1$

Se nenhuma entrada = 1

$$A_2A_1A_0 = 000$$
, como se $D_0=1$

Codificador de prioridade

Se duas entradas são iguais a 1 simultaneamente, a entrada de maior prioridade tem precedência.

Tabela - verdade

$\mathbf{D_3}$	$\mathbf{D_2}$	\mathbf{D}_1	$\mathbf{D_0}$	\mathbf{A}_{1}	$\mathbf{A_0}$	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

V indica saída válida (pelo menos uma entrada = 1)

X = don't care

Mapas de Karnaugh

$$\mathbf{A}_1 = \mathbf{D}_2 + \mathbf{D}_3$$
$$\mathbf{V} = \mathbf{D}_3 + \mathbf{D}_2 + \mathbf{D}_1 + \mathbf{D}_0$$

$$\mathbf{A}_0 = \mathbf{D}_3 + \mathbf{D}_1 \cdot \overline{\mathbf{D}}_2$$

Implementação

Multiplexadores

- Seleciona 1 de 2ⁿ entradas e a conecta à saída
- Seleção controlada por n sinais de controle

Tabela de Função

S_1	S_0	Y
0	0	$\mathbf{D_0}$
0	1	\mathbf{D}_{1}
1	0	$\mathbf{D_2}$
1	1	$\mathbf{D_3}$

$$Y = \overline{S_0} \overline{S_1} D_0 + \overline{S_0} S_1 D_1 + S_0 \overline{S_1} D_2 + S_0 S_1 D_3$$

Implementação

Um mux é um decodificador ao qual foram acrescentados

- Uma entrada de dados D_0 - D_3 em cada AND (portanto decodifica S_0 S_1 e deixa passar o D_i correspondente)
- Uma porta OR na saída

Implementação de Multiplexador por transistor de passagem

Implementação de funções booleanas

- Alternativa 1
 - Usando decoder: coloca-se na saída um OR dos mintermos desejados
 - Considerar que o MUX é um decoder que já tem o OR Portanto: usar MUX, selecionando mintermos através das entradas de dados
- Exemplo de somador: $S = \Sigma$ m (1,2,4,7)

• Esta solução exige, para n variáveis, um MUX de n entradas de seleção.

• Alternativa 2

- Solução exige, para n variáveis, um MUX de n-1 entradas de seleção (metade do tamanho de um MUX com n entradas de seleção)
- Método
 - Aplicar n-1 primeiras variáveis como entradas de seleção
 - Usar variável restante (Z) como entrada de dados
 - Expressar saída como função de Z, Z, 0, 1 (as únicas 4 alternativas que existem)
- Exemplo

$$F = \Sigma m(1,2,4,5)$$

	F	Z	Y	X
F=Z	0	0	0	0
1,-2	1	1	0	0
F=Z	1	0	1	0
r-Z	0_	1	1	0
D-1	1	0	0	1
F=1	1	1	0	1
F=0	0	0	1	1
L -0	0	1	1	1

• Exemplo do somador: $S = \sum m(1,2,4,7)$

X	Y	Cin	S	
0	0	0	0	S=C _{in}
0	0	1	1	o C _{in}
0	1	0	1	$S=\overline{C_{in}}$
0	1	1	0	S-C _{in}
1	0	0	1	\overline{C}
1	0	1	0	$S=C_{in}$
1	1	0	0	S=C _{in}
1	1	1	1	o C _{in}

• Outra aplicação de multiplexadores: Seleção de caminhos de dados

Exercícios

- Questão 1: Implemente as seguintes funções Booleanas utilizando multiplexadores. Mostre o circuito final composto apenas por multiplexadores. Pode-se usar MUX 2:1, MUX 4:1 e MUX 8:1, conforme preferência. Justifique a escolha.
- F = A'.B + A'.B'.C' + B.C'.D + A.B.D' + B'.C.D
- G = A.B.C + A.B.C' + A'.B'.C

• Questão 2: Determine a equação Booleana da função Z1 e Z2, minimizada, do circuito a seguir composto por multiplexadores 2:1.

