システムソフトウェア特論演習:課題 03

九州大学 大学院システム情報科学研究院 特任准教授 安藤 崇央

2019/05/27

有向グラフの隣接行列

- 隣接行列は、グラフのノード間の 隣接関係を表す正方行列である
- とくに対象のグラフが有向グラフである場合、隣接行列の (i,j) 成分は ノード i からノード j へ向かう遷移 がある場合は1、遷移がない場合は 0となる
- 右上図の有向グラフの隣接行列は 右の通りとなる

from	0	1	2
0	[0	1	0]
1	0	1	1
2	L 1	1	0

有向グラフ上の移動と行列演算(1/3)

- 右の有向グラフ上を、遷移に従い 移動することを考える
- 開始地点をノードOとするとき、 1ステップで到達するノードは、 ノード1である
 - 1ステップ:遷移を1度だけたどる
- ノードOからちょうど2ステップで 到達するノードは、ノード1または ノード2である

有向グラフ上の移動と行列演算(2/3)

- ここで、右下の隣接行列 A とおき、 行ベクトル $x_0 = (1 \ 0 \ 0)$ とする
- このとき x_0 に右から A をかけてできる行ベクトル x_1 は次の様になる $x_1 = x_0 A = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$

さらに右から A をかけていくと…

$$x_2 = x_1 A = x_0 A^2 = (0 \ 1 \ 1)$$

 $x_3 = x_2 A = x_0 A^3 = (1 \ 2 \ 1)$
 $x_4 = \cdots$

有向グラフ上の移動と行列演算(3/3)

• 行ベクトル $x_0 = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$ は、「初期ノードは 0 である」を表現していると捉えられる

• すると、 $x_1 = x_0 A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 \end{pmatrix}$ は…

さらに、x₂, x₃, x₄, … の表現している
 ものは、…

$$x_2 = x_1 A = x_0 A^2 = (0 \ 1 \ 1)$$

 $x_3 = x_2 A = x_0 A^3 = (1 \ 2 \ 1)$
 $x_4 = \cdots$

from
$$\begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{bmatrix}$$

隣接行列を用いた演算

右図の有向グラフの隣接行列を求めよまた、行列演算を用いて、ノードOから 3ステップ以内で到達可能なすべての ノードを示せ ただし、初期ノードはOステップで到達 可能なノードとして取り扱うものとする

- レポートには、上記の隣接行列と行列 演算を数式の形で明記し解答すること
 - プログラム記述を求めていないことに注意

到達可能·到達不能

- 右図の有向グラフにおいて、以下の命題 a. b.を行列演算を利用し示せただし、課題03-01と同様初期ノードは0ステップで到達可能なノードとして取り扱うものとする
 - a. ノードOは、すべてのノードに到達可能で ある
 - b. ノード5には、到達不能なノードがある
- レポートには、上記の命題を示すために 利用した行列演算を数式の形で明記し 解答すること
 - プログラム記述を求めていないことに注意

到達可能性判定器の実装(1/2)

- 以下のようなノード数が10の有向グラフ G について 考える
 - 各ノードには、0~9の自然数が重複することなく、個別の IDとして付与されている
 - G の隣接行列 A は、その (i,j) 成分 a_{ij} が以下の式を満たす 10×10 の正方行列として与えられる

$$a_{ij} = \begin{cases} 1 (J - \mathbb{1}^i) & \text{trient} \\ 0 (J - \mathbb{1}^i) & \text{trient} \\ 0 & \text{trient} \end{cases}$$
 に直接の遷移がない場合)

到達可能性判定器の実装(2/2)

- 有向グラフ G の隣接行列 A と、G中の2つのノードID m,nを入力とし、G においてノード m から ノード n に 到達可能であるか判定するプログラムを作成せよ
 - 隣接行列および2つのノードIDの入力方法は自由とする ただし、隣接行列やノードIDをソースコードなどに、ハード コーディングすることは認めない
 - また、レポートには入力方法を必ず明記すること

提出方法

- メールにて提出
 - 宛先(福田先生ではないので注意!)
 ando.takahiro@f.ait.kyushu-u.ac.jp
 - 件名:システムソフトウェア特論課題03-学籍番号
 - 例)システムソフトウェア特論課題03-2IE19999X
 - メール本文にも必ず、氏名と学籍番号を記載すること
- 提出するもの
 - C言語のソースコード一式(コンパイルが可能な状態)
 - 説明レポート
 - 課題内容とそれに対するソースコードについての解説
 - ファイル形式は PDF とする
- 提出期限
 - 2019/06/24 12:00 (JST)
 - 期限を過ぎてからの提出の場合、点数を半減

休講のお知らせ

- ・ 次週 6/3(月) は、システムソフトウェア特論演習は 休講
 - ただし、課題 02 の提出期限は、6/3(月) 12:00 である ことに注意!!