Bio334

Phylogenetic reconstruction Part I: Distance-based methods

Janko Tackmann, David Patsch & Nicolas Näpflin For questions, feel free to contact us on Slack or via:

janko.tackmann@mls.uzh.ch david.patsch@mls.uzh.ch nicolas.naepflin@mls.uzh.ch

Setup for today

- Exercises: Bio334/04_njtrees/exercises
- If you haven't cloned the repository yet:
 - Open the terminal, `cd` to a directory of your choice, then type `git clone https://github.com/meringlab/Bio334`
- If you cloned it yesterday:
 - make sure to type `git pull` within the Bio334 folder to get the latest updates

Complexity

Complexity

$$\binom{n}{2} = \frac{n!}{2! (n-2)!} = \frac{n (n-1)}{2} \sim O(n^2)$$

Time: 1000 proteins -> 1 s

10.000 proteins -> 100 s

100.000 proteins -> 10.000s (~ 3 hours)

Shortcomings of naïve Jaccard

- Shortcomings of naïve Jaccard
 - All amino acid transitions have equal probability: unrealistic
 - Use explicit substitution matrices (BLOSUM, PAM)

PAM Substitution Matrix

- Shortcomings of naïve Jaccard
 - All amino acid transitions have equal probability:
 unrealistic
 - Use explicit substitution matrices (BLOSUM, PAM)
 - Dependencies between neighboring sites (e.g. indels) are not considered
 - Smaller gap penalties, explicit modeling

AGTG-----ACTATAAT---CG---GAGGACAG-ATTCTGT---CCTATAAT---CG---GAGAAAAGCC
AGTCTGT---ACTATAATGTTGG---GAGGAAAAGC
AGTCCGTTGC--TATAAT---GG---GAGGAAAACC
AATCTGT---AGTATAAT---GGTGTGAGGAAAACC

Nucleotides vs Amino acids

- Nucleotides vs Amino acids
 - Nucleotides
 - High resolution: small differences can be detected
 - More neutrally evolving regions: less biased similarity estimates
 - Distinction between synonymous and non-synonymous mutations

- Nucleotides vs Amino acids
 - Nucleotides
 - High resolution: small differences can be detected
 - More neutrally evolving regions: less biased similarity estimates
 - Distinction between synonymous and non-synonymous mutations
 - Amino acids
 - Stable over longer evolutionary time frames, used to address questions on non-recent evolution

1 *	Α	В	C	D
0	0.08	0.36	0.36	0.38
0.08	0	0.32	0.34	0.36
0.36	0.32	0	0.32	0.26
0.36	0.34	0.32	0	0.22
0.38	0.36	0.26	0.22	0
	0.36 0.36	0.08 0 0.36 0.32 0.36 0.34	0.08 0 0.32 0.36 0.32 0 0.36 0.34 0.32	0.08 0 0.32 0.34 0.36 0.32 0 0.32 0.36 0.34 0.32 0

➤ Compute matrix D2:

	QA	В	С	D
QA	0			
В		0	0.32	0.26
С		0.32	0	0.22
D		0.26	0.22	0

Distance calculation:

Protein_Q:GDRVG RKFII WFSIL GTAPF ALWLP YAD-A DTTAI LVILI GFIIS SAFAS Protein_A:GDRVG RKFII WFSIL GAAPF ALWLP YAD-A QTTAI LIVLI GFIIS SAFAS

1. Calculate Jaccard index J:

$$J(A,Q) = \frac{|A \cap Q|}{|A \cup Q|} = \frac{46}{50}$$

2. Calculate Jaccard distance:

$$d_j(A,Q) = 1 - J(A,Q) = 1 - \frac{|A \cap Q|}{|A \cup Q|} = 1 - \frac{46}{50} = 0.08$$

0				
U	0.08	0.36	0.36	0.38
0.08	0	0.32	0.34	0.36
0.36	0.32	0	0.32	0.26
0.36	0.34	0.32	0	0.22
0.38	0.36	0.26	0.22	0
	0.36 0.36	0.08 0 0.36 0.32 0.36 0.34	0.08 0 0.32 0.36 0.32 0 0.36 0.34 0.32	0.08 0 0.32 0.34 0.36 0.32 0 0.32 0.36 0.34 0.32 0

➤ Compute matrix D2:

	QA	В	С	D
QA	0			
В		0	0.32	0.26
С		0.32	0	0.22
D		0.26	0.22	0

– for distance between QA and C:

> mean between all node distances of QA and C:

$$d_j(QA,C) = \frac{d_j(Q,C) + d_j(A,C)}{2} = \frac{0.36 + 0.34}{2} = 0.35$$

0				
U	0.08	0.36	0.36	0.38
0.08	0	0.32	0.34	0.36
0.36	0.32	0	0.32	0.26
0.36	0.34	0.32	0	0.22
0.38	0.36	0.26	0.22	0
	0.36 0.36	0.08 0 0.36 0.32 0.36 0.34	0.08 0 0.32 0.36 0.32 0 0.36 0.34 0.32	0.08 0 0.32 0.34 0.36 0.32 0 0.32 0.36 0.34 0.32 0

➤ Compute matrix D2:

	QA	В	С	D
QA	0			
В		0	0.32	0.26
С		0.32	0	0.22
D		0.26	0.22	0

– for distance between QA and C:

> mean between all node distances of QA and C:

$$d_j(QA,C) = \frac{d_j(Q,C) + d_j(A,C)}{2} = \frac{0.36 + 0.34}{2} = 0.35$$

	Q	Α	В	С	D	
Q	0	0.08	0.36	0.36	0.38	
Α	0.08	0	0.32	0.34	0.36	
В	0.36	0.32	0	0.32	0.26	
С	0.36	0.34	0.32	0	0.22	
D	0.38	0.36	0.26	0.22	0	
	QA	В	С	D		
QA	0	0.34	0.35	0.37		
В	0.34	0	0.32	0.26		
С	0.35	0.32	0	0.22		
D	0.37	0.26	0.22	0		
	QA	В	CD			
QA	0	0.34	0.36			
В	0.34	0	0.29			
CD	0.36	0.29	0			
	QA	BCD				
QA		0.35333333				
BCD	0.35333333	0				

Fusobacterium necrophorum subsp. funduliforme B35

Fusobacteriumnecrophorumsubsp. funduliformeB35GenusSpeciesSubspeciesType strain

$$Q(i,j) = \ (n-2)d(i,j) - \sum_{k=1}^n d(i,k) - \sum_{k=1}^n d(j,k)$$