

Хранение информации. Системы счисления.

Автор курса

Владимир Виноградов

MCID: 9210561

После урока обязательно

Повторите этот урок в видео формате на <u>ITVDN.com</u>

Доступ можно получить через руководство вашего учебного центра

Проверьте как Вы усвоили данный материал на <u>TestProvider.com</u>

Тема

Хранение информации. Системы счисления.

Оперативная память (ОЗУ)

Внутренняя память (ОЗУ) — это электронное устройство, которое хранит информацию, пока питается электроэнергией. При отключении компьютера от сети информация из оперативной памяти исчезает.

Бит

Бит – единица измерения информации.

Состояние бита

Не горит

Горит в пол накала

Горит в полный накал

Состояние бита

 $2^1 = 2$ команды

 $2^2 = 4$ команды

 $2^6 = 64$ команды

 $2^3 = 8$ команд

Y

 $2^7 = 128$ команд

2⁴ = 16 команд

 $2^8 = 256$ команд

Количество команд представленное разным количеством лампочек можно вычислить по формуле 2ⁿ n – количество лампочек

Байт

Байт – это единица хранения и обработки цифровой информации, равная 8 битам.

В процессе развития электронно-вычислительной техники, количество бит в байте изменялось. С 1970 годов 8 бит в байте стало стандартом, и в большинстве ЭВМ используется именно такое количество бит в байте.

= 256 комбинаций

 $2^8 = 2 \times 2 = 256$

Как устроено ОЗУ?

О3У

Каждый байт в памяти имеет свой адрес (порядковый номер).

Процессор и ОЗУ

CPU

Процессор – это основной элемент компьютера, с помощью которого обрабатывается информация.

Системы счисления

Система счисления – это способ записи чисел и соответствующие ему правила действия над числами.

Позиционная

значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда)

N2	N10	N16
0000 0000	0	0
0000 0001	1	1
0000 0010	2	2
0000 0011	3	3
0000 0100	4	4
0000 0101	5	5
0000 0110	6	6
0000 0111	7	7

Непозиционная

значение каждого символа не зависит от того места, на котором он стоит

Римские цифры	Значение	
I	1	
V	5	
X	10	
L	50	
С	100	
D	500	
M	1000	
Z	2000	

Двоичная система счисления

Двоичная СС — это позиционная система счисления с основанием 2. Для записи числа в этой СС используется две цифры «0» и «1».

Предназначена для представления чисел в большинстве ЭВМ.

Двоичная	Десятичная	
0	0	
1	1	
10	2	
11	3	
100	4	
101	5	
110	6	
111	7	
1000	8	

Внутреннее представление любой информации в компьютере является двоичным

$$10_2 = 2_{10}$$

Шестнадцатеричная система счисления

Шестнадцатеричная СС — это позиционная система счисления с основанием 16. На сегодняшний день является популярным средством компактной записи двоичных чисел. Широко используется при разработке и проектировании цифровой техники.

Двоичная	Десятичная	16-ричная
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	Α
1011	11	В
1100	12	С
1101	13	D
1110	14	E
1111	15	F

Для записи числа в шестнадцатеричной СС используются символы — 1234567890ABCDEF

$$10_{16} = 16_{10}$$

Перевод десятичного числа в двоичное

Чтобы преобразовать число, записанное в десятичном формате в двоичный, необходимо:

- 1) последовательно делить заданное число и получаемые целые части на 2 до тех пор, пока целая часть не станет меньше 2-х.
- 2) полученные остатки от деления, представленные цифрами из нового счисления, записать в виде числа, начиная с последней целой части (польская нотация).

Перевод двоичного числа в десятичное

10 1001 =
$$\frac{1}{2} + 2^{3} + 2^{0} = \frac{1}{2} + 2 + 2 = \frac{1}{2} =$$

Чтобы преобразовать число, записанное в двоичном формате в десятичный, необходимо:

- 1) Заменить 1 в числе на 2, возведенную в степень соответственно с разрядом этой 1.
- 2) Выполнить сложение полученных значений.

Перевод десятичного числа в шестнадцатеричное

$$1225_{10} = 4C9_{16}$$

Чтобы преобразовать число, записанное в десятичном формате в шестнадцатеричный, необходимо:

- 1) Последовательно делить заданное число и получаемые целые части на 16 до тех пор, пока целая часть не станет меньше 16-ти.
- 2) Полученные остатки от деления, представленные цифрами из нового счисления, записать в виде числа, начиная с последней целой части.

Перевод шестнадцатеричного числа в десятичное

Чтобы преобразовать число, записанное в шестнадцатеричном формате в десятичное, необходимо:

- 1) Число умножить на 16 в степени соответственно с разрядом.
- 2) Выполнить сложение полученных значений.

Варианты хранения информации в ОЗУ

1 байт = 8 бит

2 байта = 16 бит (Машинное слово)

4 байта = 32 бита (Двойное машинное слово)

8 байт = 64 бита (Учетверённое машинное слово)

Основные типы данных

Ядром системы типов в С++ являются семь базовых типов данных

Тип данных	Диапазон значений	Количество байт	Значение
bool	true / false	1	Булева переменная
char	-127 / 127	1	Символ
wchar_t,	0 / 65535	2	«Широкий» символ
int	- 2 147 483 648 / 2 147 483 647	4	Целое число
float	1.8E-38 / 3.4E+38	4	Число с плавающей точкой
double	2.2E-208 / 1.8E+308	8	Число с плавающей точкой удвоенной точности
void	-	-	Пустой тип

Создание переменной

Для создания переменной необходимо указать:

- имя переменной (идентификатор)
- тип переменной
- начальное значение (необязательно)

Переменная

Переменная – это область памяти, которая хранит в себе значение, которое можно изменить

Смотрите наши уроки в видео формате

ITVDN.com

Посмотрите этот урок в видео формате на образовательном портале <u>ITVDN.com</u> для закрепления пройденного материала.

Все курсы записаны сертифицированными тренерами, которые работают в учебном центре CyberBionic Systematics

Проверка знаний

TestProvider.com

TestProvider — это online сервис проверки знаний по информационным технологиям. С его помощью Вы можете оценить Ваш уровень и выявить слабые места. Он будет полезен как в процессе изучения технологии, так и общей оценки знаний IT специалиста.

После каждого урока проходите тестирование для проверки знаний на <u>TestProvider.com</u>

Успешное прохождение финального тестирования позволит Вам получить соответствующий Сертификат.

Q&A

Информационный видеосервис для разработчиков программного обеспечения

