Inteligentny Sterownik Bramy

Szymon Ciemała, Jakub Kaniowski

Plan prezentacji

Geneza pomysłu

- Inteligentne systemy automatki domowej muszą być drogie?
- Uciążliwość wykorzystania transmisji radiowej
- Bezpieczeństwo Nasze i Wasze

Założenia projektu

W tym projekcie układem sterujemy za pomocą inteligentnych asystentów głosowych.

Kolejnym założeniem jest znaczne obniżenie kosztów w porównaniu do konkurencji.

Innowacyjność

Inteligentny sterownik bramy	Tradycyjny sterownik
Stosowanie komend głosowych	Stosowanie mało efektywnej transmisji radiowej krótkiego zasięgu
Łączność z lokalną siecią	Brak łączności, podglądu systemu poza obszarem mieszkalnym
Wieloplatformowość	Ograniczona możliwość sterowania

Harmonogram

L.P.	Opis	Data
1	Opracowanie założeń	19.10 - 26.10
2	Sporządzenie ogólnego projektu	26.10 - 02.11
3	Zapoznanie się z elementami elektronicznymi, czytnik RFID, multiplekser itd. Napisanie programowania obsługującego dany element.	02.11 - 09.11
4	Wykonanie i testy płytki.	09.11 - 16.11
5	Napisanie końcowego oprogramowania wraz z implementacją komunikacji głosowej.	16.11 - 23.11

Wykonanie

Budowa sterownika

Mikroprocesor:

Espressif ESP8266 (nodeMCU 1.0)

• Czujniki:

Podczerwieni, mechaniczne, obciążenia napędu

• Interakcja z użytkownikiem:

Moduł RFID RC522, Asystent Google, Siri, przełącznik mechaniczny.

Element wykonawczy:

Silnik DC, zintegrowany z przekładnią ślimakową.

Schemat układu

Multiplekser

Ilość wyprowadzeń cyfrowych była znacząco ograniczona.

W celu zwiększenia ilości wyprowadzeń użyto multipleksera 8 kanałowego.

Umożliwło to podpięcie czujników położenia napędu, przełącznika sterownika ręcznego oraz prostego konfiguratora w postaci DIP Switch znajdującego się na dedykowanej płytce PCB.

• Płytka PCB:

- 1. Wbudowany system mikroprocesorowy.
- Stabilność działania niezawodność połączeń.
- 3. Łatwy sposób przyłączenia urządzeń wykonawczych oraz czujników.

Projekt mechanizmu

Komunikacja

Komunikacja w dużej mierze odbywa się za pośrednictwem asystentów głosowych, typu asystent Google'a czy Siri.

Asystent głosowy

Zastosowanie komend głosowych pozwala na pozbycie się często uciążliwego pilota radiowego oraz zwiększa bezpieczeństwo użytkowania.

Blynk

To usługa pozwalająca na obsługę urządzeń IoT. Blynk za darmo udostępnia swój serwer do komunikacji smartfonu z dowolnym urządzeniem.

IFTTT

IFTTT to usługa pozwalająca na tworzenie łańcucha instrukcji warunkowych między usługami internetowymi. W naszym przypadku IFTTT wyśle polecenia do serwera w momencie rejestracji komendy głosowej.

Przepływ danych

Alternatywna obsługa - RFID

W przypadku kiedy nie ma dostępnego telefonu, użytkownik może otworzyć bramę korzystając z karty lub breloków RFID.

Zabezpieczenia - obciążenie

Obciążenie – na podstawie napięcia na silniku określamy, czy silnik jest zablokowany.

Zabezpieczenia - fotokomórka

Mechanizmem zabezpieczającym jest układ diody oraz odbiornika IR, który wykrywa zmianę natężenie światła podczerwonego.

Problemy - laminat

Przykłady użycia

- Zastąpienie standardowego sterownika.
- Rozszerzenie możliwości standardowego sterownika.

Konkurencja

Popularny sterownik gatebox firmy BleBox, który jedynie rozszerza możliwości standardowego sterownika, pozwalając jedynie na sterowanie za pomocą telefonu, kosztuje około 250zł. Natomiast nie wspiera żadnego inteligentnego asystenta.

Koszty

Inteligentny sterownik bramy

- Około 8,5€ (~30zł) sam sterownik
- Około 20€ wliczając sterownik silnika PWM
- Popularność mikrokontrolera znacząco obniża koszty
- Prostota działania
- Rezygnacja z uciążlwej transmisji radiowej

Tradycyjny sterownik

- Około 45€ urządzenie umożliwiające dostęp WiFi
- Powyżej 80€
- Brak uniwersalności, tylko dedykowane urządzenia
- Skomplikowana konstrukcja

Plany na przyszłość - Rozwój projektu

- Zastosowanie własnego serwera pozwalającego na obsługę oraz monitoring urządzeń IoT.
- Sterowanie układem na podstawie pozycji użytkownika.
- Monitoring bramy uszkodzenie, włamanie.
- Uniwersalność urządzenia zastąpienie dedykowanych sterowników na masową skalę

Kosztorys

Element dostarczany	Opis	Cena
ESP8266 (nodeMCU v3)	Mikrokontroler sterujący całym urządzeniem	13.25 PLN
Ekspander wyjść/wejść	Multiplekser CD4067BE wykorzystany do zwiększenia ilości wejść d/a	3.60 PLN
Dioda i odbiornik IR	Stosowana jako symulacja fotokomórek automatu bramowego.	2.45 PLN
Stabilizator LM7805	Stosowany do zasilenia układu mikroprocesorowego	0.50 PLN
Mostek H L293D	Stosowany jako sterownik makiety silnika bramy.	2.49 PLN
Przekaźnik 5V	Stosowany w celu obsługi rzeczywistego automatu bramowego	2.90 PLN
Wyłączniki krańcowe	Stosowane do określenia pozycji makiety bramy	3.48 PLN
Laminat PCB	Wykorzystany do wytworzenia płytki PCB	2.40 PLN
Inne elementy	Podstawowe elementy elektroniczne (kondensatory, rezystory, dip switch, złącza ARK)	2.50 PLN
Suma		33.57 PLN

Podsumowanie

- Zmiana sposobu interakcji z użytkownikiem
- Zwiększenie bezpieczeństwa użytkowników
- Prosta konstrukcja sterownika
- Implementacja bezpłatnych narzędzi (blynk)
- Wszechstronność dot. sterowania i oprogramowania
- Koszty projektu są niewielkie
- Możliwość zastąpienia dedykowanej centrali sterowniczej
- Możliwość rozszerzenia funkcjonalności obecnych centrali sterowniczych

Dziękujemy za uwagę!

Inteligentny Sterownik Bramy