64-bit Timer

IOB-TIMER User Guide, V0.1, Build 03ea994

January 2, 2021

Contents

1	Intro	oduction	5
2	Sym	nbol	5
3	Fea	tures	5
4	Ben	efits	6
5	Deli	verables	6
6	Bloc	ck Diagram and Description	7
7	Inte	rface Signals	8
8	Reg	isters	9
9	FPG	GA Results	10
L	ist (of Tables	
	1	Block descriptions	7
	2	General Interface Signals	8
	3	CPU Native Slave Interface Signals	8
	4	CPU AXI4 Lite Slave Interface Signals	9
	5	Software accessible registers	9
	6	Implementation Resources for Xilinx Kintex Ultrascale Devices	10
L	ist d	of Figures	
	1	IP Core Symbol	5
	2	High-level block diagram	7

1 Introduction

The IObundle Timer core includes a 64-bit counter for returning the time in clock cycles. It is written in Verilog and includes a C software driver. With the knowledge of the clock frequency in its software driver, it is also possible to print the time in microseconds, milliseconds or seconds. The IP is currently supported for use in ASICs and FPGAs.

2 Symbol

Figure 1: IP Core Symbol

3 Features

- · Verilog 64-bit time counter in clock cycles.
- · C software driver.
- Reset, enable and time read functions.
- IOb-SoC native CPU interface.
- AXI4 Lite CPU interface (premium option).

4 Benefits

- Easy hardware and software integration
- · Compact hardware implementation
- · Can fit many instances in low cost FPGAs
- · Can fit many instances in small ASICs
- Low power consumption

5 Deliverables

- · FPGA synthesized netlist or
- · ASIC synthesized netlist or
- · Verilog source code
- · Example testbench
- · User documentation for easy system integration
- Example integration in IOb-SoC (optional)
- · FPGA synthesis and implementation scripts or
- · ASIC synthesis and place and route scripts

6 Block Diagram and Description

A high-level block diagram of the IOB-TIMER core is presented in Figure 6 and a brief explanation of each block is given in Table 1.

Figure 2: High-level block diagram

Block	Description
Register File	Configuration, control and status registers accessible by the sofware
KNN	

Table 1: Block descriptions.

7 Interface Signals

The interface signals of the I²S/TDM transceiver core are described in the following tables.

Name	Direction	Width	Description	
clk	input	1	System clock input	
rst	input	1	System reset asynchronous and active high	

Table 2: General Interface Signals

Name Direction W		Width	Description	
valid	input	1	Native CPU interface valid signal	
address	input	ADDR_W	Native CPU interface address signal	
wdata	input	WDATA_W	Native CPU interface data write signal	
wstrb	input	DATA_W/8	Native CPU interface write strobe signal	
rdata	output	DATA_W	Native CPU interface read data signal	
ready	output	1	Native CPU interface ready signal	

Table 3: CPU Native Slave Interface Signals

Name Direction Width		Width	Description		
s_axil_awaddr	input	ADDR_W	Address write channel address		
s_axil_awcache	input	4	Address write channel memory type. Transactions set with		
			Normal Non-cacheable Modifiable and Bufferable (0011).		
s_axil_awprot	input	3	Address write channel protection type. Transactions set with		
			Normal Secure and Data attributes (000).		
s_axil_awvalid	input	1	Address write channel valid		
s_axil_awready	output	1	Address write channel ready		
s_axil_wdata	input	DATA_W	Write channel data		
s_axil_wstrb	input	DATA_W/8	Write channel write strobe		
s_axil_wvalid	input	1	Write channel valid		
s_axil_wready	output	1	Write channel ready		
s_axil_bresp	output	2	Write response channel response		
s_axil_bvalid output		1	Write response channel valid		
s_axil_bready	input	1	Write response channel ready		
s_axil_araddr	input	ADDR_W	Address read channel address		
s_axil_arcache	input	4	Address read channel memory type. Transactions set with		
			Normal Non-cacheable Modifiable and Bufferable (0011).		
s_axil_arprot	input	3	Address read channel protection type. Transactions set with		
			Normal Secure and Data attributes (000).		
s_axil_arvalid	input	1	Address read channel valid		
s_axil_arready	output	1	Address read channel ready		
s_axil_rdata	output	DATA_W	Read channel data		
s_axil_rresp	output	2	Read channel response		
s_axil_rvalid	output	1	Read channel valid		
s_axil_rready input		1	Read channel ready		

Table 4: CPU AXI4 Lite Slave Interface Signals

8 Registers

The software accessible registers of the TIMER core are described in Table 5. The table gives information on the name, read/write capability, word aligned addresses, used word bits and a textual description.

Name	R/W	Addr	Bits	Initial	Description
				Value	
NK	W	0x00	7:0	0	number of neighbors
XX	W	0x04	WDATA_W-1:0	0	x coordenate for point being studied
YY	W	0x08	WDATA_W-1:0	0	y coordenate for point being studied
DATA_X	W	0x0c	WDATA_W-1:0	0	x coordenate for data point
DATA_Y	W	0x10	WDATA_W-1:0	0	y coordenate for data point
DATA_LABEL	W	0x14	7:0	0	data label
CONTROL	W	0x18	3:0	0	KNN reset and control (LSB reset the others con-
					trol)
XLABEL	R	0x1c	31:0	0	label of the studied point

Table 5: Software accessible registers.

9 FPGA Results

The following are FPGA implementation results for two FPGA device families.

Resource	Used
LUTs	1212
Registers	490 Registers
490	
DSPs	2
BRAM	0

Table 6: Implementation Resources for Xilinx Kintex Ultrascale Devices