Множества. Комбинаторика.

Aminjon Shermatov

9 мая 2022 г.

Contents

Множества

Определение

Операции над множествами

Эквивалентные и неэквивалентные множества

Система множеств.

Комбинаторика

Упорядоченные множества

Размещения и перестановки

Сочетания

Определение

Буквами **N**, **Z**, **Q**, **R**, **C** обозначают соответственно множества натуральных, целых, рациональных, действительных и комплексных чисел

Если x – элемент множества A, то пишут $x \in A$, а если x не является элементом множества A, то пишут $x \notin A$

Если каждый элемент множества \pmb{A} является элементом множества \pmb{B} , то пишут $\pmb{A} \subset \pmb{B}$ или $\pmb{B} \supset \pmb{A}$ и говорят, что множество \pmb{A} является подмножеством множества \pmb{B} . В этом случае говорят также, что \pmb{A} содержится в \pmb{B} или что \pmb{B} содержит \pmb{A} .

Если $\mathbf{A} \subset \mathbf{B}$ и $\mathbf{B} \subset \mathbf{A}$, то $\mathbf{A} = \mathbf{B}$.

Для удобства вводится понятие пустого множества (его обозначают \emptyset), которое по определению не содержит элементов и содержится в любом множестве.

Операции над множествами

Множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств A и B, называется объединением множеств A и B и обозначается $A \cup B$ или A + B

Множество, состоящее из всех тех и только тех элементов, которые принадлежат как множеству ${\pmb A}$, так и множеству ${\pmb B}$, называется пересечением множеств ${\pmb A}$ и ${\pmb B}$ и обозначается ${\pmb A} \cap {\pmb B}$ или ${\pmb A}{\pmb B}$. Если ${\pmb A} \cap {\pmb B} = \emptyset$, то говорят, что множества ${\pmb A}$ и ${\pmb B}$ не пересекаются.

Множество, состоящее из всех элементов множества \pmb{A} , не принадлежащих множеству \pmb{B} , называется разностью множеств \pmb{A} и \pmb{B} и обозначается $\pmb{A} \setminus \pmb{B}$.

Если $\pmb{A} \subset \pmb{B}$, то разность $\pmb{B} \setminus \pmb{A}$ называют дополнением множества \pmb{A} до множества \pmb{B} и обозначают \pmb{A}'_B . В тех случаях, когда рассматриваются только подмножества некоторого основного множества \pmb{U} , дополнение множества \pmb{M} до множества \pmb{U} называют просто дополнением \pmb{M} и вместо \pmb{M}'_U пишут просто \pmb{A}' ,

Непосредственно из определения дополнения множества следуют равенства (2):

$$M \cup M' = U, M \cap M' = \emptyset, (M')' = M, (M') = M,$$

Эквивалентные и неэквивалентные множества

Множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств A и B, называется объединением множеств A и B и обозначается $A \cup B$ или A + B

Множество, состоящее из всех тех и только тех элементов, которые принадлежат как множеству ${\pmb A}$, так и множеству ${\pmb B}$, называется пересечением множеств ${\pmb A}$ и ${\pmb B}$ и обозначается ${\pmb A} \cap {\pmb B}$ или ${\pmb A}{\pmb B}$. Если ${\pmb A} \cap {\pmb B} = \emptyset$, то говорят, что множества ${\pmb A}$ и ${\pmb B}$ не пересекаются.

Множество, состоящее из всех элементов множества \pmb{A} , не принадлежащих множеству \pmb{B} , называется разностью множеств \pmb{A} и \pmb{B} и обозначается $\pmb{A} \setminus \pmb{B}$.

Если $\pmb{A} \subset \pmb{B}$, то разность $\pmb{B} \setminus \pmb{A}$ называют дополнением множества \pmb{A} до множества \pmb{B} и обозначают \pmb{A}_B' . В тех случаях, когда рассматриваются только подмножества некоторого основного множества \pmb{U} , дополнение множества \pmb{M} до множества \pmb{U} называют просто дополнением \pmb{M} и вместо \pmb{M}_U' пишут просто \pmb{A}_A' ,

Непосредственно из определения дополнения множества следуют равенства (2):

$$M \cup M' = U, M \cap M' = \emptyset, (M')' = M, (M') = M,$$

Система множеств.

Пусть дано множество $S=\{s\}$, называемое множеством индексов, и каждому индексу s сопоставлено множество A_s . Множество $\{A_s\}$, элементами которого являются множества A_s , $s\in S$ называют системой или семейством множеств. Понятия объединения и пересечения двух множеств обобщаются на случай произвольной конечной или бесконечной системы множеств следующим образом.

Объединением системы множеств A_s , $s \in S$, называется множество всех элементов, принадлежащих хотя бы одному из множеств системы.

Пересечением системы множеств A_s , $s \in S$, называется множество всех элементов, содержащихся в каждом множестве системы.

Объединение и пересечение системы множеств A_s , $s \in S$, обозначают соответственно (3)

$$\bigcup_{s \in S} A_s, \bigcap_{s \in S} A_s. \tag{3}$$

Упорядоченные множества

Множество называется упорядоченным, если для любых двух его элементов a и b установлено отношение порядка $a \leq b$ или $b \leq a$ a не превосходит b или b не превосходит a, обладающее свойствами:

- 1. рефлексивности: $a \le a$, т.е. любой элемент не превосходит самого себя;
- 2. антисимметричности: если $a \le b$ и $b \le a$, то элементы a и b равны;
- 3. транзитивности: если $a \le b$, $b \le c$, то $a \le c$.

Размещения и перестановки

Пусть имеется множество, содержащее n элементов. Каждое его упорядоченное подмножество, состоящее из k элементов, называется размещением из п элементов по k элементов.

Число размещений из n элементов по k элементов обозначается A_n^k И вычисляется по формуле (4)

$$A_n^k = n(n-1)(n-2)\dots(n-(k-1))$$
 (4)

Размещения из n элементов по n элементов называются перестановками из n элементов. Число перестановок из n элементов обозначается P_n и вычисляется по формуле (5)

$$P_n = 1 \cdot 2 \cdot \ldots \cdot n = n!. \tag{5}$$

Сочетания

Пусть имеется множество, состоящее из n элементов. Каждое его подмножество, содержащее k элементов, называется сочетанием из n элементов по k элементов.

Число всех сочетаний из n элементов по k элементов обозначается символом C_n^k и вычисляется по формуле (6)

$$C_n^k = \frac{n!}{k!(n-k)!},\tag{6}$$

или по формуле (7)

$$C_n^k = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}.$$
 (7)

Справедливы равенства (8):

$$C_n^k = C_n^{k-1}, C_{n+1}^{k+1} = C_n^{k+1} + C_n^k, k < n.$$
 (8)

