Estimación de Pi por el método de Montecarlo

Introducción

Intento de estimar el valor de π mediante el método de Montecarlo basándonos en un círculo y su cuadrado circunscrito asociado.

Se hacen distintos lanzamientos aleatorios obteniendo puntos del cuadrado y se ve si están dentro del círculo o no. Como el área del círculo es πr^2 y el del cuadrado circunscrito es $4r^2$, tomando puntos aleatorios del cuadrado la probabilidad de caer en el círculo será de $\frac{\pi r^2}{4r^2}=\frac{\pi}{4}$. Por tanto podemos aproximar Pi de la forma:

```
\pi = 4 rac{aciertos}{tiradas}
```

siendo acierto el caer dentro del círculo.

Estimación

La estimación se hace gracias a un pequeño script en python .

Para hacer una tirada, se calcula aleatoriamente un punto dentro del cuadrado de lado 2 (consideramos r=1). Centrando el cuadrado en el (0,0) sería obtener unos $x \in y$ aleatorios entre -1 y 1.

Tendremos éxito si (x,y) están en el círculo, es decir, si $x^2+y^2<=1$.

Código

```
# Estimación de pi mediante el método de Montecarlo
 3 | from random import randint, uniform, random
   aciertos = 0
    INTENTOS = 1000000
7 for i in range(1, INTENTOS):
       x = uniform (-1,1)
9
        y = uniform(-1,1)
        if x^{**2} + y^{**2} <= 1:
10
11
            aciertos += 1
12
13 | pi = (aciertos / INTENTOS) * 4
14
15
    print(pi)
```

Resultado

Tiradas	Estimación de π
100	3,04
1.000	3,172
10.000	3,1376
100.000	3,14204
1.000.000	3,1429