Exercice 1. On dispose d'une urne contenant quatre boules numérotées 1, 2, 3 et 4. On effectue dans cette urne une succession de tirages d'une boule avec remise et on suppose qu'à chaque tirage, chacune des boules a la même probabilité d'être tirée.

On note pour tout n de \mathbb{N}^* , X_n la variable aléatoire égale au nombre de numéros distincts obtenus en n tirages. On a donc $X_1=1$ et par exemple, si les premiers tirages donnent 2,2,1,2,1,4,3, alors on a : $X_1=1$, $X_2=1$, $X_3=2$, $X_4=2$, $X_5=2$, $X_6=3$, $X_7=4$.

La probabilité d'un événement H est notée $\mathbf{P}(H)$.

L'espérance et la variance d'une variable aléatoire Z sont notées respectivement $\mathbf{E}[Z]$ et $\mathbf{V}(Z)$.

Soit A la matrice carrée d'ordre 4 définie par : $A = \begin{pmatrix} 1/4 & 0 & 0 & 0 \\ 3/4 & 1/2 & 0 & 0 \\ 0 & 1/2 & 3/4 & 0 \\ 0 & 0 & 1/4 & 1 \end{pmatrix}$.

On note pour tout n de \mathbb{N}^* , U_n la matrice à 4 lignes et 1 colonne définie par : $U_n = \begin{pmatrix} \mathbf{P}\left([X_n=1]\right) \\ \mathbf{P}\left([X_n=2]\right) \\ \mathbf{P}\left([X_n=3]\right) \\ \mathbf{P}\left([X_n=4]\right) \end{pmatrix}$.

- **1. a)** Déterminer la loi de la variable aléatoire X_2 .
 - **b)** Calculer $\mathbf{E}[X_2]$ et $\mathbf{V}(X_2)$.
 - c) On note F la fonction de répartition de X_2 . Tracer la courbe représentative de F.
- **2. a)** Déterminer U_1 .
 - **b)** Préciser l'ensemble des valeurs prises par X_n .
 - c) Établir, pour tout n de \mathbb{N}^* , la relation suivante : $U_{n+1} = AU_n$.
- 3. On considère les quatre matrices V_1 , V_2 , V_3 , V_4 à 4 lignes et 1 colonne, définies par :

$$V_1 = \begin{pmatrix} 1 \\ -3 \\ 3 \\ -1 \end{pmatrix}, V_2 = \begin{pmatrix} 0 \\ 1 \\ -2 \\ 1 \end{pmatrix}, V_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}, V_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

a) Établir par récurrence, pour tout n de \mathbb{N}^* , la relation suivante :

$$U_n = \left(\frac{1}{4}\right)^{n-1} V_1 + 3\left(\frac{1}{2}\right)^{n-1} V_2 + 3\left(\frac{3}{4}\right)^{n-1} V_3 + V_4$$

- **b)** Déterminer la loi de la variable aléatoire X_n .
- **4. a)** Calculer, pour tout n de \mathbb{N}^* , la valeur de $\mathbf{E}[X_n]$.
 - **b)** Calculer $\lim_{n\to +\infty} \mathbf{E}[X_n]$. Commenter.