

HR Data Analysis

Using Microsoft Excel and Power BI

1. Using Excel, how would you filter the dataset to only show employees aged 30 and above?

Following the below steps to filter the dataset to only show Employees Age 30 and above :-

Go to Data Tab => Click on Filter => Select the column header arrow => Select Number Filters, and then select a comparison, like greater than or equal to => Enter the filter criteria(which is 30 in this case) and select OK.

Age	Attritio	Busines Departr	Distanc - Educati	▼ Educati ▼ E	Employ T Er	mploy Gender 🔻	JobLeve ▼ JobRole ▼ Marital ▼	Monthl ▼ N	umCo 🔻 Over18 🔻	Percent ▼ Standa	r 🔻 Sto	ockOp▼ To
5	1 No	Travel_Ra Sales	6	2 Life Scienc	1	1 Female	1 Healthcare Married	131160	1 Y	11	8	0
3	1 Yes	Travel_Fre Research &	10	1 Life Scienc	1	2 Female	1 Research Single	41890	0 Y	23	8	1
3	2 No	Travel_Fre Research &	17	4 Other	1	3 Male	4 Sales Exec Married	193280	1 Y	15	8	3
3	8 No	Non-Trave Research	2	5 Life Scienc	1	4 Male	3 Human Re Married	83210	3 Y	11	8	3
3	2 No	Travel_Ra Research	10	1 Medical	1	5 Male	1 Sales Exec Single	23420	4 Y	12	8	2
4	6 No	Travel_RaResearch {	8	3 Life Scienc	1	6 Female	4 Research I Married	40710	3 Y	13	8	0
3	1 No	Travel_Ra Research (1	3 Life Scienc	1	9 Male	3 Laborator Married	20440	0 Y	21	8	0
4	5 No	Travel_RaResearch {	17	2 Medical	1	11 Male	2 Laborator Married	79910	0 Y	13	8	2
3	6 No	Travel_Ra Research (28	1 Life Scienc	1	12 Male	1 Laborator Married	33770	0 Y	12	8	2
5	5 No	Travel_RaResearch {	14	4 Life Scienc	1	13 Female	1 Sales Exec Single	55380	0 Y	17	8	0
4	7 Yes	Non-Trave Research	1	1 Medical	1	14 Male	1 Research ! Married	57620	1 Y	11	8	2
3	7 No	Travel_RaResearch {	1	3 Life Scienc	1	16 Male	2 Healthcar(Married	53460	4 Y	11	8	0
3	7 No	Non-Trave Research	1	3 Medical	1	18 Male	2 Sales Exec Divorced	41270	2 Y	13	8	1
3	5 No	Travel_Ra Sales	7	4 Life Scienc	1	19 Male	1 Sales Repr Divorced	24380	7 Y	16	8	0
3	8 No	Travel_Ra Research (8	3 Life Scienc	1	20 Female	1 Manager Divorced	68700	1 Y	11	8	1
5	0 No	Travel_RarSales	8	4 Life Scienc	1	22 Male	1 Research ! Divorced	96670	3 Y	23	8	0
5	3 No	Travel_Ra Research 8	11	4 Life Scienc	1	23 Female	2 Research ! Married	21480	3 Y	11	8	0
4	2 No	Travel_RaiResearch {	4	4 Life Scienc	1	24 Male	1 Manufactı Married	89260	1 YActivat	te Wir14 ows	8	0 N
-	E NI.	Travel Da Dassarah	1	1 O+h a=	1	26 Famala	1 Descarab (Married	67000	2 V	11	0	^

2. Create a pivot table to summarize the average Monthly Income by Job Role.

JobRole	₹ /	Average of MonthlyIncome
Healthcare Representative		60983.74046
Human Resources		58528.07692
Laboratory Technician		66314.05405
Manager		63395.88235
Manufacturing Director		69183.72414
Research Director		65473.125
Research Scientist		64975.68493
Sales Executive		65186.68712
Sales Representative		65370.96386
Grand Total		65029.31293

3. Apply conditional formatting to highlight employees with Monthly Income above the company's average income.

Age	▼ Attritio	Busines Departr	Distanc - Educat	i ▼ Educati ▼ E	Employ 🔻 Em	ploy - Gender -	JobLeve ▼ JobRole ▼ MaritalStatus	▼ MonthlyIncome ▼ Num	Co V Over18 V Percent
	51 No	Travel_Ra Sales	6	2 Life Scienc	1	1 Female	1 Healthcare Married	131160	1 Y
	31 Yes	Travel_Fre Research {	10	1 Life Scienc	1	2 Female	1 Research ! Single	41890	0 Y
	32 No	Travel_Fre Research	17	4 Other	1	3 Male	4 Sales Exec Married	193280	1 Y
	38 No	Non-Trav∈ Research {	2	5 Life Scienc	1	4 Male	3 Human Re Married	83210	3 Y
	32 No	Travel_Ra Research (10	1 Medical	1	5 Male	1 Sales Exec Single	23420	4 Y
	46 No	Travel_RaiResearch {	8	3 Life Scienc	1	6 Female	4 Research I Married	40710	3 Y
	28 Yes	Travel_Ra Research (11	2 Medical	1	7 Male	2 Sales Exec Single	58130	2 Y
	29 No	Travel_RaiResearch {	18	3 Life Scienc	1	8 Male	2 Sales Exec Married	31430	2 Y
	31 No	Travel_Ra Research (1	3 Life Scienc	1	9 Male	3 Laborator Married	20440	0 Y
	25 No	Non-Trav∈ Research {	7	4 Medical	1	10 Female	4 Laborator Divorced	134640	1 Y
	45 No	Travel_Ra Research (17	2 Medical	1	11 Male	2 Laborator Married	79910	0 Y
	36 No	Travel_RaiResearch {	28	1 Life Scienc	1	12 Male	1 Laborator Married	33770	0 Y
	55 No	Travel_Ra Research (14	4 Life Scienc	1	13 Female	1 Sales Exec Single	55380	0 Y
	47 Yes	Non-Trav∈ Research {	1	1 Medical	1	14 Male	1 Research ! Married	57620	1 Y
	28 No	Travel_Ra Research (1	3 Life Scienc	1	15 Male	1 Manufactı Married	25920	1 Y
	37 No	Travel_RaiResearch {	1	3 Life Scienc	1	16 Male	2 Healthcare Married	53460	4 Y
	21 No	Travel_Ra Research (3	2 Life Scienc	1	17 Male	1 Laborator Single	42130	1 Y
	37 No	Non-Trave Research	1	3 Medical	1	18 Male	2 Sales Exec Divorced	Activa41270 Vind	OVZ Y
	OF No	Traval Da Calas	7	1 lifa Caiona	1	10 Mala	1 Calas Dany Divaread	24200	7 V

4. Create a bar chart in Excel to visualize the distribution of employee ages.

5. Identify and clean any missing or inconsistent data in the "Department" column.

Dealing with missing or inconsistent data values in categorical columns(like Department Column) is a lot easier. Simply I need to replace the missing or inconsistent value with a constant value or the most popular category. This is a good approach when my data size is small, though it does add bias. But the most preferable approach is to model the missing value in a categorical column(Department Column) as a new category called Unknown as our Dataset is large.

In the given Dataset, Department Column don't have any missing or inconsistent value so there is no need to change anything in the Department Column.

6. In Power BI, establish a relationship between the "EmployeeID" in the employee data and the "EmployeeID" in the time tracking data.

7. Using DAX, create a calculated column that calculates the average years an employee has spent with their current manager.

8. Using Excel, create a pivot table that displays the count of employees in each Marital Status category, segmented by Department.

Sum of EmployeeCount	Department	v			
MaritalStatus	▼ Human Resources	Researc	ch & Development Sales	Gra	nd Total
Divorced		21	621	339	981
Married		96	1350	573	2019
Single		72	912	426	1410
Grand Total		189	2883	1338	4410

9. Apply conditional formatting to highlight employees with both above-average Monthly Income and above-average Job Satisfaction.

EmployeeID	MonthlyIncome	JobSatisfaction	
	131160	Jobsatisfaction	4
1	41890		2
	193280		2
3	83210		4
2 3 4 5 6 7 8	23420		1
5			
	40710		2
/	58130		3
8	31430		2
	20440		4
10	134640		1
11	79910		4
12	33770		4
13	55380		1
14	57620		2
15	25920		4
16	53460		4
17	42130		3
18	41270		4
19	24380		2
20	68700		1
21	104470		2
22	96670		2
23	21480		3
24	89260		3
25	65130		4
26	67000		4

10. In Power BI, create a line chart that visualizes the trend of Employee Attrition over the years.

11. Describe how you would create a star schema for this dataset, explaining the benefits of doing so.

A star schema is a multi-dimensional data model used to organize data in a database so that it is easy to understand and analyze. Star schemas can be applied to data warehouses, databases, data marts, and other tools. The star schema design is optimized for querying large data sets.

A fact table sits at the center of a star schema database, and each star schema database only has a single fact table. The fact table contains the specific measurable (or quantifiable) primary data to be analyzed.

Dimension tables store supporting information to the fact table. Each star schema database has at least one dimension table, but will often have many. Each dimension table will relate to a column in the fact table with a dimension value, and will store additional information about that value.

Here, fact table is General Data Table and dimesion tables are Manager Survey Data, Manager Survey Data, In_Time Data and Out_Time. Tables are connected through Employee ID.

12. Using DAX, calculate the rolling 3-month average of Monthly Income for each employee.

13. Create a hierarchy in Power BI that allows users to drill down from Department to Job Role to further narrow their analysis.

14. How can you set up parameterized queries in Power BI to allow users to filter data based 2 of 2 on the Distance from Home column?

In Power BI, we can set up parameterized queries using parameters in your queries. To filter data based on the distance from home column, follow these steps:-

- ☐ Creating parameters Go to "Home" tab => Click on "Manage Properties" => Creating Parameters
- Modify Queries Open Power Query Editor => Edit the Query => Use parameters
- □ Load and use Parameters Close & Apply Changes => Creating Visualizations & Use parameters in slicer or other filters
- Paramterize Distance Column If "DistanceFromHome" column is static and not a parameter, then we might to create a calculated column based on parameters.
- Utilize Slicers Creating slicer for our report canvas linked to the parameters we created.

15. In Excel, calculate the total Monthly Income for each Department, considering only the employees with a Job Level greater than or equal to 3

16. Explain how to perform a What-If analysis in Excel to understand the impact of a 10% increase in Percent Salary Hike on Monthly Income.

The What-If Analysis in Excel is a powerful tool to perform complex mathematical calculations, experiment with data, and try out different scenarios. There are three What-If Analysis tools available:

- ☐ Goal Seek It calculate input value based on given result. Goal Seek performs reverse calculations.
- ☐ Scenario Manager Scenario Manager is used for a comparison of different scenarios.
- □ Data Table Data Table is used for sensitivity analysis.

In the given dataset, for understanding the impact of 10% increase in Percent Salary Hike on Monthly Income I use Data Table tool of What-If Analaysis.

Firstly, I was calculated 10% Salary with the given salary as a Desired Salary then put the Desired Salary in blank cell in the same sheet. After that enter Monthly Income of all Employees in vertical cells and Percentage Increment in horizontal cell. Select the data and apply data table (Go to Data Tab => Click on What-If Analysis => Select Data Table). Put cell name of Percentage Hike in Row Input cell and cell name of Monthly Income in Column Input Data. Then click on OK. It will calculate 10% Percent Salary Hike for each employee based on their Monthly Income.

144276	10%	Monthly Income
41890	46079	Percentage Hike
193280	212608	Desired Salary
83210	91531	
23420	25762	
40710	44781	
58130	63943	
31430	34573	
20440	22484	
134640	148104	
79910	87901	
33770	37147	
55380	60918	
57620	63382	
25920	28512	
53460	58806	
42130	46343	
41270	45397	
24380	26818	
68700	75570	
104470	114917	
96670	106337	
21480	23628	
89260	98186	
65130	71643	
67990	74789	
162910	179201	

10%

17. Verify if the data adheres to a predefined schema. What actions would you take if you find inconsistencies

Understand the Database Schema Review Data Sources **Compare Dataset** Datatypes and Constraints Date and Time Format Applying filters and Conditional Formatting Use Data Validation Remove Duplicates Identify Patterns and Outliers

Thank You!

