Interro 4.4 - Magnétostatique

- 1. Énoncer le Théorème d'Ampère. On précisera notamment l'expression du courant enlacé pour une distribution volumique de courant, puis pour une distribution filiforme de courant.
- 2. Définir le vecteur moment magnétique. Puis expliciter l'approximation dipolaire dans le cadre d'un dipôle magnétique.
- 3. Compléter ce tableau d'analogie entre dipôle électrostatique et magnétostatique :

grandeur	électrostatique	magnétostatique
constante	$\frac{1}{\epsilon_0}$	
champs extérieur	$ec{E}_{ m ext}$	
vecteur représentant le dipôle	\vec{p}	
champs créé par le dipôle	$\vec{E} = \frac{3(\vec{p}.\vec{e}_r)\vec{e}_r - \vec{p}}{4\pi\epsilon_0 r^3}$	
si le champ extérieur est uniforme, la résultante des forces est	$\vec{F}_{ec{E}_{\mathrm{ext}} ightarrow ec{p}} = \dots$	
le couple exercé sur le dipôle par un champ extérieur	$ec{\Gamma}=$	
l'énergie potentielle d'un dipôle dans un champ extérieur	$E_p = \dots$	
si le champ extérieur n'est pas uniforme, la résultante des forces est	$ \mid \vec{F}_{\vec{E}_{\rm ext} \to \vec{p}} = (\vec{p}.\overrightarrow{grad})(\vec{E}) $	

4. Soit une réaction $aA + bB \rightarrow cC + dD$,

Faire un tableau d'avancement. Nous allons préciser la démarche à suivre pour déterminer l'avancement final en deux étapes.

- a. Si l'équilibre est atteint, quelle équation permet de déterminer l'avancement final?
- $\underline{\mathbf{b}}$. Si la réaction se fait dans le sens direct dans quel cas l'équilibre n'est pas atteint ? Quel sera alors l'avancement final ?