Internet of Things Laboratory

Assignment 3

Prajakta Deokule

C22019221332

4329

Problem Statement: Write an application using Beaglebone Black board to control the operation ofhardware simulated traffic signal.

1. Explain the use of libraries with examples.

a. Adafruit_BBIO library in BBB

Adafruit_BBIO is an API to enable GPIO, PWM, ADC, UART, SPI and eQEP (Quadrature Encoder) hardware access from Python applications running on the Beaglebone.

b. Time Library

This library is used to create delays during the runtime of the python code/thread. The program stays idle during the specified time(in seconds)passed as parameter to time.sleep(t) function.

2. Draw the layout of the Traffic controller board.

Р9_11 У Р9_13 G Р9_24 G Р9_15

3. List the pin numbers used for implementation.

4. Draw FRC pin diagram with pins on it.

5. Write sample code for Dancing LED.

```
time.sleep(5)

GPIO.output("P9_11",GPIO.LOW)

GPIO.output("P8_11",GPIO.HIGH)

time.sleep(5)

GPIO.output("P8_11",GPIO.LOW)

GPIO.output("P8_18",GPIO.HIGH)

time.sleep(5)

GPIO.output("P8_18",GPIO.LOW)

GPIO.output("P8_18",GPIO.LOW)

time.sleep(5)
```

6. Write a program for traffic signal with output as HIGH, LOW after every 5 seconds.

```
import Adafruit_BBIO.GPIO as GPIO
import time
GPIO.setup("P9_11",GPIO.OUT)
GPIO.setup("P9_13",GPIO.OUT)
GPIO.setup("P9_15",GPIO.OUT)
GPIO.setup("P9_24",GPIO.OUT)
GPIO.setup("P9_12",GPIO.OUT)
GPIO.setup("P9_14",GPIO.OUT)
GPIO.setup("P9_16",GPIO.OUT)
GPIO.setup("P9_23",GPIO.OUT)
GPIO.setup("P8_11",GPIO.OUT)
GPIO.setup("P8_13",GPIO.OUT)
GPIO.setup("P8_15",GPIO.OUT)
GPIO.setup("P8 17",GPIO.OUT)
GPIO.setup("P8_14",GPIO.OUT)
GPIO.setup("P8_16",GPIO.OUT)
```

```
GPIO.setup("P8_18",GPIO.OUT)
GPIO.setup("P8 12",GPIO.OUT)
while True:
       num=0
       GPIO.output("P8_16",GPIO.LOW) # Y low
       GPIO.output("P9_13",GPIO.LOW) #Y
       GPIO.output("P9_11",GPIO.LOW) # R
       GPIO.output("P8_18",GPIO.LOW) #R
       GPIO.output("P8_15",GPIO.LOW) # G
       GPIO.output("P8_17",GPIO.LOW) #G
       GPIO.output("P9_12",GPIO.LOW) #G
       GPIO.output("P9_14",GPIO.LOW) #G
       GPIO.output("P9_15",GPIO.HIGH) #G
       GPIO.output("P9_24",GPIO.HIGH) #G
       GPIO.output("P8_14",GPIO.HIGH) #G
       GPIO.output("P8_12",GPIO.HIGH) #G
       GPIO.output("P8_11",GPIO.HIGH) #R
       GPIO.output("P9_23",GPIO.HIGH) #R
       time.sleep(5)
       # Yellow Light Blinking (Q1 & Q3)
       while num<3:
              GPIO.output("P9_16",GPIO.LOW)
              GPIO.output("P8_13",GPIO.LOW)
              time.sleep(1)
              GPIO.output("P9_16",GPIO.HIGH)
              GPIO.output("P8_13",GPIO.HIGH)
              time.sleep(1)
              num=num+1
       # Q1 & Q3 Green
       num=0
```

```
GPIO.output("P8_13",GPIO.LOW) #Y
GPIO.output("P9 16",GPIO.LOW) #Y
GPIO.output("P9 11",GPIO.HIGH) #R
GPIO.output("P8_18",GPIO.HIGH) #R
GPIO.output("P9_15",GPIO.LOW) #G
GPIO.output("P9_24",GPIO.LOW) #G
GPIO.output("P8_14",GPIO.LOW) #G
GPIO.output("P8 12",GPIO.LOW) #G
GPIO.output("P8_11",GPIO.LOW) #R
GPIO.output("P9_23",GPIO.LOW) #R
GPIO.output("P9_14",GPIO.HIGH) #G
GPIO.output("P9_12",GPIO.HIGH) #G
GPIO.output("P8_15",GPIO.HIGH) #G
GPIO.output("P8_17",GPIO.HIGH) #G
time.sleep(5)
# Yellow Light Blinking (Q2 & Q4)
while num<3: # no of blinks for Yellow Light
       GPIO.output("P8_16",GPIO.LOW)
       GPIO.output("P9_13",GPIO.LOW)
       time.sleep(1)
       GPIO.output("P8_16",GPIO.HIGH)
       GPIO.output("P9_13",GPIO. HIGH)
       time.sleep(1)
       num=num+1
```

GPIO.cleanup()

7. Mention steps to copy file from PC to Beaglebone Board.

- 1. Edit your IOTL program and save file as test.py
- 2. Open a new terminal
- 3. Type 'su' and input password
- 4. Now use sftp command connect to BBB as sftp <ip addr of BBB>

- 5. Now use put command to copy file from PC to BBB put test.py
- 6. Now for BBB terminal compile file as python test.py
- 7. Every time you modify test.py on PC perform step 4 to upload changes to BBB.

