Kleene's Theorem

Shakir Ullah Shah

Lecture 7

Proof of Part 3: Converting Regular Expressions into FAs

We prove this part by recursive definition and constructive algorithm at the same time.

The set of regular expressions is defined by the following rules:

- Rule 1: Every letter of the alphabet ∑ is a regular expression, Λ itself is a regular expression.
- Rule 2: If r₁ and r₂ are regular expressions, then so are:
 - (i) (r_1) (ii) $r_1 + r_2$ (iii) $r_1 r_2$ (iv) r_1^*
- FAST National University of Computer and Emerging Sciences, Peshawar

Rule 1

There is an FA that accepts any particular letter of the alphabet.

There is an FA that accepts only the word Λ .

Proof of rule 1

If letter x is in \sum , then the following FA accepts only the word \sum

The following FA accepts only : Λ

Rule 2

If there is an FA called FA_1 that accepts the language defined by the regular expression r_1 , i.e. $L(FA_1) = r_1$ and

there is an FA called FA_2 that accepts the language defined by the regular expression r_2 , i.e. $L(FA_2)=r_2$

then there is an FA that we shall call FA_3 that accepts the language defined by the regular expression $(r_1 + r_2)$ i.e. $L(FA_3) = (r_1 + r_2)$

Proof of Rule 2

We shall show that FA_3 exists by presenting an algorithm showing how to construct FA_3 .

Algorithm:

- Starting with two machines, FA_1 with states x_1 ; x_2 ; x_3 ;..., and FA_2 with states y_1 ; y_2 ; y_3 ; ..., we construct a new machine FA_3 with states z_1 ; z_2 ; z_3 ; ... where each z_i is of the form $x_{something}$ or $y_{something}$.
- The combination state x_{start} or y_{start} is the start state of the new machine FA_3 .
- If either the x part or the y part is a final state,
 then the corresponding z is a final state.

Algorithm (cont.)

- To go from one state z to another by reading a letter from the input string, we observe what happens to the x part and what happens to the y part and go to the new state z accordingly. We could write this as a formula:

 z_{new} after reading letter $p = (x_{new})$ after reading letter p on FA_1) or (y_{new}) after reading letter p on FA_2)

Remarks

The new machine FA_3 constructed by the above algorithm will simultaneously keep track of where the input would be if it were running on FA_1 alone, and where the input would be if it were running on FA_2 alone.

If a string traces through the new machine FA_3 and ends up at a final state, it means that it would also end at a final state either on machine FA_1 or on machine FA_2 . Also, any string accepted by either FA_1 or FA_2 will be accepted by this FA_3 . So, the language FA_3 accepts is the union of the languages accepted by FA_1 and FA_2 , respectively.

Note that since there are only finitely many states x's and finitely many states y's, there can be only finitely many possible states z's.

Consider the following two FAs:

FA1 accepts all words with a double a in them.

FA2 accepts all words ending with b.

Let's follow the algorithm to build FA_3 that accepts the union of the two languages.

Combining the FAs

The start (-) state of FA_3 is $Z_1 = X_1$ or Y_1 .

In z_1 , if we read an a, we go to x_2 (observing FA_1), or we go to y_1 (observing FA_2).

Let
$$z_2 = x_2$$
 or y_1 .

In z_1 , if we read a b, we go to x_1 (observing FA_1), or to y_2 (observing FA_2).

z, must be a 	final state s New states a	since y, is after reading
Old states	a	b
z ₁ - € (x ₁ ,y ₁)	$(x_2,y_1) \in z_2$	(x ₁ ,y ₂) € z ₃

z3 = x1 or y2

In z_2 , if we read an a, we go to x_3 or y_1 . Let $z_4 = x_3$ or y_1 . z_4 is a final state because x_3 is.

In z_2 , if we read a b, we go to x_1 or y_2 , which is z_3 .

FAST National University of Computer and Emerging Sciences, Peshawar

z4 = x3 or y1

z3 = x1 or v2

	 	
	New states after reading	
Old states	a	b
$z_1 - \in (x_1, y_1)$	$(x_2,y_1) \in z_2$	$(x_1,y_2) \in z_3$
$z_2 \in (x_2, y_1)$	$(x_3, y_1) \in z_4$	(x ₁ , y ₂) € z ₃
$\mathbf{z}_3 + \mathbf{\mathfrak{E}} (\mathbf{x}_1, \mathbf{y}_2)$	$(x_2, y_1) \in z_2$	(x ₁ , y ₂) € z ₃
$\mathbf{z}_4 + \mathbf{\mathfrak{C}} (\mathbf{x}_3, \mathbf{y}_1)$	(x ₃ , y ₁) € z ₄	(x ₃ , y ₂) € z ₅
$\mathbf{z}_{5} + \mathbf{\mathfrak{C}}(\mathbf{x}_{3}, \mathbf{y}_{2})$	(x ₃ , y ₁) € z ₄	(x ₃ , y ₂) € z ₅

FAST National University of Computer and Emerging Sciences, Peshawar

This machine accepts all words that have a double *a* or that end with *b*.

The labels $z_1 = x_1$ or y_1 , $z_2 = x_2$ or y_1 , etc. can be removed if you want.

RE corresponding to the above FA may be

Let $r_1=(a+b)*a$ (words that end in a) and the corresponding FA_1 be

Let r_1 =(a+b)*a (words that end in a) and the corresponding FA_1 be

Let $r_2 = (a+b)((a+b)(a+b))^*$ or $(a+b)(a+b)^*(a+b)$ (words of odd length)

Let $r_1=(a+b)*a$ (words that end in a) and the corresponding FA_1 be

Let $r_2 = (a+b)((a+b)(a+b))* or (a+b)(a+b))*(a+b)$ (words of odd length) an \dot{r} \dot{r}

Task:

Generate Union of FAs corresponding to r1 and r2 i.e.

r1+r2

Rule 3

If there is an FA_1 that accepts the language defined by the regular expression r_1 , and

there is an FA_2 that accepts the language defined by the regular expression r_2 ,

then there is an FA_3 that accepts the language defined by the (concatenation) regular expression (r_1r_2) , i.e. the product language.

Let $r_1 = (a+b)*b$ defines L_1 and FA_1 be

and $r_2 = (a+b)*aa (a+b)* defines L₂ and FA₂$

be

b

Concatenation of two FAs Continued ...

Let FA_3 be an FA corresponding to r_1r_2 , then the initial state of FA₃ must correspond to the initial state of FA₁ and the final state of FA₃ must correspond to the final state of FA₂. Since the language corresponding to r₁r₂ is the concatenation of corresponding languages L₁ and L₂, consists of the strings obtained, concatenating the strings of L_1 to those of L_2 , therefore the moment a final state of FA1 is entered, the possibility of the initial state of FA2will be included as well.

Concatenation of two FAs Continued ...

Since, in general, FA₃ will be different from both FA₁ and FA₂, so the labels of the states of FA₃ may be supposed to be $z_1, z_2, z_3, ...,$ where z_1 stands for the initial state. Since z₁ corresponds to the states x_1 , so there will be two transitions separately for each letter read at z₁. It will give two possibilities of states which correspond to either z_1 or different from z_1 . This process may be expressed in the following transition table for all possible states of FA₃

Example continued ...

	New states after reading	
Old states	a	b
z ₁ - € x ₁	$x_1 \in z_1$	$(x_2,y_1) \in Z_2$

Example continued ...

Old states	New states after reading	
	а	b
z ₁ - € x ₁	$x_1 \in z_1$	$(x_2,y_1) \in Z_2$
$z_2 \in (x_2, y_1)$	$(x_1, y_2) \in z_3$	$(x_2, y_1) \in Z_2$
$z_3 \in (x_1, y_2)$	$(x_1, y_3) \in Z_4$	$(x_2, y_1) \in Z_2$
$z_4 + \in (x_1, y_3)$	$(x_1, y_3) \in Z_4$	$(x_2, y_1, y_3) \in Z_5$
$z_5 + \in (x_2, y_1, y_3)$	$(x_1, y_2, y_3) \in Z_6$	$(x_2, y_1, y_3) \in Z_5$
$z_6 + \in (x_1, y_2, y_3)$	$(x_1, y_3) \in Z_4$	$(x_2, y_1, y_3) \in Z_5$

FAST National University of Computer and Emerging Sciences, Peshawar

Let $r_1 = b(a+b)^*$, the corresponding FA_1 $b_{(1)}$

FA1

also
$$r_2 = (a+b)*b$$

Task:

Generate the FA representing r1 r2 using Concatenation Algorithm

KLEENE'S THEOREM PART 3 ...

Closure of an FA

If r is a regular expression and FA_1 is a finite automaton that accepts exactly the language defined by r, then there is an FA, called FA_2 , that will accepts exactly the language defined by r^* .

KLEENE'S THEOREM PART 3 ...

Closure of an FA

Closure of an FA, is same as concatenation of an FA with itself, except that

- the initial state of the required FA is a final state as well (because Λ is also accepted in closure).
- non final state of the required FA as well.
 - Means initial state of given FA will correspond to two sates in required FA.

Consider the regular expression r = aa*bb*.

Consider the regular expression r = aa*bb*.

This defines the language where all the a's come before all the b's.

The FA that accepts this language is:

Consider the regular expression r = aa*bb*.

This defines the language where all the a's come before all the b's.

The FA that accepts this language is:

Let us now build FA_2 that accepts $r^* = (aa*bb*)*$.

We begin with the start state $z_1 = x_1$.

In z_1 , reading an a takes us to $x_2 = z_2$. Reading a b

takes us to $x_3 = z_3$.

	New states after reading	
Old states	а	b
$z_1 - += x_1$	$X_2 = Z_2$	$\mathbf{x}_3 = \mathbf{z}_3$

Let us now build FA_2 that accepts $r^* = (aa*bb*)*$.

We begin with the start state $z_1 = x_1$.

In z_1 , reading an a takes us to $x_2 = z_2$. Reading a b

takes us to $x_3 = z_3$.

Old states	New states after reading	
	а	b
$z_1 - + = x_1$	$X_2 = Z_2$	$\mathbf{x}_3 = \mathbf{z}_3$

In z_2 , if we read an a we go back to z_2 . If we read a b, we go to x_4 , or we have the option of jumping to the start state x_1 (since x_4 is a final state).

eit

Hence, let $z_4 += x_4$ or x_1 .

In z_3 , just $z_1 + z_2$ loop back b

ł	ner _d antes	New states after Or a <i>D</i> re₩₩	
		а	b
	$z_1 - + = x_1$	$\mathbf{x}_2 = \mathbf{z}_2$	$\mathbf{x}_3 = \mathbf{z}_3$
	$\mathbf{z}_2 = \mathbf{x}_2$	$\mathbf{x}_2 = \mathbf{z}_2$	$X_{1=}Z_4+$
			$X_{4=}Z_4$ +
	$\mathbf{z}_3 = \mathbf{x}_3$	$x_3 = z_3$	$\mathbf{x}_3 = \mathbf{z}_3$

In z_2 , if we read an a we go back to z_2 . If we read a b, we go to x_4 , or we have the option of jumping to the start state x_1 (since x_4 is a final state).

FAST National University of Computer and Emerging Sciences, Peshawar

	New states after reading	
Old states	а	b
$z_1 - + = x_1$	$\mathbf{x}_2 = \mathbf{z}_2$	$x_3 = z_3$
$z_2 = x_2$	$x_2 = z_2$	$X_{1=}Z_4+$
		$X_{4}=Z_4+$
$z_3 = x_3$	$\mathbf{x}_3 = \mathbf{z}_3$	$x_3 = z_3$

	New states after reading	
Old states	a	b
$z_1 - + = x_1$	$\mathbf{x}_2 = \mathbf{z}_2$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{z}_2 = \mathbf{x}_2$	$\mathbf{x}_2 = \mathbf{z}_2$	$X_{1}=Z_4+$
		$X_{4=}Z_4+$
$\mathbf{z}_3 = \mathbf{x}_3$	$\mathbf{x}_3 = \mathbf{z}_3$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{z}_4 + = \mathbf{x}_1$	$\mathbf{x}_2 = \mathbf{z}_2$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{z}_4 + = \mathbf{x}_4$	$\mathbf{x}_3 = \mathbf{z}_3$	$\mathbf{x}_4 = \mathbf{z}_4$
	$(x_2,x_3)=z_5$	$x_1 = z_1$
		$(x_3, x_4, x_1) = z_6$

- In z_4 , what happens if we read an a? If $z_4 = x_1$, we go to x_2 . If $z_4 = x_4$, we go to x_3 . Hence, we will be in x_2 or x_3 . So, let $z_5 = x_2$ or x_3 .
- In Z_4 , if we read a b? If Z_4 means X_1 , we go X_3 . If Z_4 means X_4 , we go to X_4 or jump to X_1 (due to final X_4). Thus, let $Z_6 = X_1$ or X_3 or X_4 . Z_6 must be a final state since X_4 is.

	New states after reading	
Old states	а	b
$z_{1} - + = x_{1}$	$\mathbf{x}_2 = \mathbf{z}_2$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{z}_2 = \mathbf{x}_2$	$\mathbf{x}_2 = \mathbf{z}_2$	$X_{1}=Z_4+$
		$X_{4}=Z_4+$
$\mathbf{z}_3 = \mathbf{x}_3$	$x_3 = z_3$	$\mathbf{x}_3 = \mathbf{z}_3$
$z_4 + = x_1$	$\mathbf{x}_2 = \mathbf{z}_2$	$x_3 = z_3$
$z_4 + = x_4$	$\mathbf{x}_3 = \mathbf{z}_3$	$\mathbf{x}_4 = \mathbf{z}_4$
	$(x_2,x_3)=z_5$	$x_1 = z_1$
		$(x_3, x_4, x_1) = z_6$
$\mathbf{z}_5 = (\mathbf{x}_2, \mathbf{x}_3)$	$(x_2,x_3)=z_5$	$(x_4, x_1, x_3) = z_6$

- In z5, reading an a takes us to x2 or x3, which is still z5. So, we have an a-loop at z5.
- In z5, reading a b takes us to x4 or x1, or x3, which is z6.

New states after reading	
а	b
$\mathbf{x}_2 = \mathbf{z}_2$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{x}_2 = \mathbf{z}_2$	$X_{1}=Z_4+$
	$X_{4=}Z_4+$
$\mathbf{x}_3 = \mathbf{z}_3$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{x}_2 = \mathbf{z}_2$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{x}_3 = \mathbf{z}_3$	$\mathbf{x}_4 = \mathbf{z}_4$
$(\mathbf{x}_2,\mathbf{x}_3)=\mathbf{z}_5$	$\mathbf{x_1} = \mathbf{z_1}$
	$(x_3, x_4, x_1) = z_6$
$(\mathbf{x}_2,\mathbf{x}_3)=\mathbf{z}_5$	$(x_4, x_1, x_3) = z_6$
$(\mathbf{x}_{2} \mathbf{x}_{3}) = \mathbf{z}_{5}$	$(x_4, x_1, x_3) = z_6$
→ (x4+) →	
	a $x_{2} = z_{2}$ $x_{2} = z_{2}$ $x_{3} = z_{3}$ $x_{2} = z_{2}$ $x_{3} = z_{3}$ $(x_{2}, x_{3}) = z_{5}$ $(x_{2}, x_{3}) = z_{5}$

- In z6, reading an a, take us to x2 or x3, which is z5.
- In z6, reading a b takes us to x3, x4, or x1, which is still z6. So, we have a b-loop at z6.

	New states after reading	
Old states	а	b
$z_1 - + = x_1$	$\mathbf{x}_2 = \mathbf{z}_2$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{z}_2 = \mathbf{x}_2$	$\mathbf{x}_2 = \mathbf{z}_2$	$X_{1}=Z_4+$
		$X_{4=}Z_4+$
$\mathbf{z}_3 = \mathbf{x}_3$	$\mathbf{x}_3 = \mathbf{z}_3$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{z}_4 + = \mathbf{x}_1$	$\mathbf{x}_2 = \mathbf{z}_2$	$\mathbf{x}_3 = \mathbf{z}_3$
$\mathbf{z}_4 + = \mathbf{x}_4$	$\mathbf{x}_3 = \mathbf{z}_3$	$x_4 = z_4$
	$(\mathbf{x}_2,\mathbf{x}_3)=\mathbf{z}_5$	$x_1 = z_1$
		$(x_3, x_4, x_1) = z_6$
$\mathbf{z}_5 = (\mathbf{x}_2, \mathbf{x}_3)$	$(\mathbf{x}_2,\mathbf{x}_3)=\mathbf{z}_5$	$(x_4, x_1, x_3) = z_6$
a	$b(_3)=\mathbf{z}_5$	$(x_4, x_1, x_3) = z_6$
x1- a	→ (4+) √	

Let r=(a+b)*b and the corresponding FA be

then the FA corresponding to r* may be determined as under

In this case we need to represent x_1 as two separate z-states in FA_2 ,

- one as a start and final state ± (z1 ± = x1), and the other as
- the non-final start state (z2 = x1).

The ± state is necessary for FA₂ to accept.

The non-final start state is necessary for FA_2 to operate correctly, since some strings that return to the start state x_1 may not be x_1 therefore should not be accept x_1 .

	New states after reading	
Old states	a	b
$z_1 - + x_1$	Non-final x_1	$(x_2, x_1) z_3$
	Z_2	

FAST National University of Computer and Emerging Sciences, Peshawar

	New states after reading	
Old states	a	b
$z_1 - + x_1$	Non-final x ₁	$(x_2, x_1) z_3$
	Z_2	
Non final z	V 7	(
FAST National University	y of Computer and Emer	ging Schences, Peshawar

	New states after reading	
Old states	a	b
$z_1 - + x_1$	Non-final x ₁	$(x_2, x_1) z_3$
	Z_2	
Non final z	V 7	(
FAST National University	y of Computer and Emer	ging Schences, Peshawar

	New states after reading	
Old states	a	b
$z_1 - + x_1$	Non-final x ₁	$(x_2, x_1) z_3$
	Z_2	
Non final 7	V 7	(x x) =

FAST National University of Computer and Emerging Schences, Peshawar

Let r=(a+b)*aa(a+b)* and the corresponding FA be

Old states	New states after reading	
	а	b
z_1 - + y_1	y ₂ Z ₃	y ₁ z ₂

Old states	New states after reading	
	а	b
z_1 - + y_1	y ₂ Z ₃	y ₁ z ₂
$z_2 y_1$	y ₂ z ₃	y ₁ Z ₂

Old states	New states after reading	
	а	b
z_1 - + y_1	y ₂ Z ₃	y ₁ z ₂
$z_2 y_1$	y ₂ Z ₃	y ₁ Z ₂
z_3 y_2	$(y_3, y_1) z_4$	y ₁ Z ₂

Old states	New states after reading	
	а	b
$z_1 - + y_1$	y ₂ z ₃	y_1 z_2
$z_2 y_1$	y ₂ z ₃	y ₁ Z ₂
z_3 y_2	$(y_3, y_1) z_4$	y ₁ Z ₂
$z_4^+ (y_3, y_1)$	$(y_3, y_1, y_2) z_5$	$(y_3, y_1) z_4$

Old states	New states after reading	
Old States	а	b
$z_1 - + y_1$	y ₂ Z ₃	$y_1 z_2$
$z_2 y_1$	y ₂ z ₃	y ₁ Z ₂
$z_3 y_2$	$(y_3, y_1) z_4$	$y_1 z_2$
$z_4^+ (y_3, y_1)$	(y_3, y_1, y_2) z_5	$(y_3, y_1) z_4$
z_{5}^{+} (y_{3}, y_{1}, y_{2})	$(y_3, y_1, y_2) z_5$	$(y_3, y_1) z_4$

PROOF

We have finished the proof of part 3 of Kleene's theorem.

PROOF

We have finished the proof of part 3 of Kleene's theorem.

Because of Rules 1, 2, 3, and 4, we know that all regular expressions have corresponding finite automata that define the same language.

PROOF

We have finished the proof of part 3 of Kleene's theorem.

Because of Rules 1, 2, 3, and 4, we know that all regular expressions have corresponding finite automata that define the same language.

This is because while we are constructing the regular expression from elementary building blocks using recursive definition, we can simultaneously be constructing the FAST-Netional Maineralty of Computer and Emerging Sciences replayer

NONDETERMINISTIC FINITE AUTOMATON (NFA)

- Definition: An NFA is a TG with a unique start state and a property of having single letter as label of transitions. An NFA is a collection of three things
- 1) Finite many states with one initial and some final states
- 2) Finite set of input letters, say, $\Sigma = \{a, b, c\}$
- 3) Finite set of transitions, showing where to move if a letter is input at certain state (Λ is not a valid transition), there may be more than one transition for certain letters and there may not be any transition for certain letters.

FAST National University of Computer and Emerging Sciences, Peshawar

EXAMPLES OF NFA

EXAMPLES OF NFA

It is to be noted that the above NFA accepts the language consisting of a and aa.

EXAMPLES OF NFA

It is to be noted that the above NFA accepts the language of strings, defined over $\Sigma = \{a, b\}$, containing aa.

 for every NFA, there is some FA that accepts exactly the same language.

- for every NFA, there is some FA that accepts exactly the same language.
- Proof 1

- for every NFA, there is some FA that accepts exactly the same language.
- Proof 1
- By the proof of part 2 of Kleene's theorem, we can convert an NFA into a regular expression, since an NFA is a TG.

- for every NFA, there is some FA that accepts exactly the same language.
- Proof 1
- By the proof of part 2 of Kleene's theorem, we can convert an NFA into a regular expression, since an NFA is a TG.
- By the proof of part 3 of Kleene's theorem, we can construct an FA that accepts the same language as the regular expression. Hence, for every

- for every NFA, there is some FA that accepts exactly the same language.
- Proof 1
- By the proof of part 2 of Kleene's theorem, we can convert an NFA into a regular expression, since an NFA is a TG.
- By the proof of part 3 of Kleene's theorem, we can construct an FA that accepts the same language as the regular expression. Hence, for every
- NFA, there is a corresponding FA.

NOTE

 Theorem 7 means that all NFAs can be converted into FAs.

- Clearly, all FAs can be considered as NFAs that do not make use of the option of extra freedom of edge production.
- Hence, as language acceptors, NFA = FA.

Consider the following FA corresponding to

(a+b)*b

Can the structure of above NFA be compared with the corresponding RE?
FAST National University of Computer and Emerging Sciences, Peshawar

Consider the following FA

The above FA may be equivalent to the following NIEA

NOTE

- It is to be noted that every FA can be considered to be an NFA as well, but the converse may not true.
- It may also be noted that every NFA can be considered to be a TG as well, but the converse may not true.
- It may be observed that if the transition of null string is also allowed at any state of an NFA then what will be the behavior in the new structure. This structure is

defined in the following
FAST National University of Computer and Emerging Sciences, Peshawar

NFA WITH NULL STRING

- **<u>Definition</u>**: If in an NFA, Λ is allowed to be a label of an edge then the NFA is called NFA with Λ (NFA- Λ). An NFA- Λ is a collection of three things
- (1) Finite many states with one initial and some final states.
- (2) Finite set of input letters, say, $\Sigma = \{a, b, c\}$.
- (3) Finite set of transitions, showing where to move if a letter is input at certain state. There may be more than one transitions for certain letter and there may not be any transition for after the input of the letter it it is input at certain state. There may be more than one transitions for letter and there may not be any transition for after the input of the inp

Consider the following NFA with Null string

The above NFA with Null string accepts the language of strings, defined over $\Sigma = \{a, b\}$, **ending in b**.

Consider the following NFA with Null string

The above NFA with Null string accepts the language of strings, defined over $\Sigma = \{a, b\}$, **ending in a**.

It is to be noted that every FA may be considered to be an NFA- Λ as well, but the converse may not true.

Similarly every NFA- Λ may be considered to be a TG as well, but the converse may not true.

- •For any NFA, there is a DFA that recognizes the same language
- Proof is by construction: a DFA that keeps track of the set of states the NFA might be in
- This is called the subset construction
- •First, an example starting from this NFA:

- Initially, the set of states the NFA could be in is just {q0}
- So our DFA will keep track of that using a start state labeled { q0}:

- Now suppose the set of states the NFA could be in is {q0}, and it reads a 0
- The set of possible states after reading the 0
 is {q0}, so we can show that transition:

- Suppose the set of states the NFA could be in is {q0}, and it reads a 1
- The set of possible states after reading the 1
 is {q0,q1}, so we need another state:

- From $\{q0,q1\}$ on a 0, the next set of possible states is $\delta(q0,0)$ \cup $\delta(q1,0) = \{q0,q2\}$
- From $\{q0,q1\}$ on a 1, the next set of possible states is $\delta(q0,1) \cup \delta(q1,1) = \{q0,q1,q2\}$
- Adding these transitions and states, we get...

- Eventually, we find that no further states are generated
- That's because there are only finitely many possible sets of states: P(Q)
- In our example, we have already found all sets of states reachable from { q0}...

NFA TO FA $\begin{array}{c}
0,1 \\
\hline
q_0
\end{array}$ $\begin{array}{c}
q_1
\end{array}$ $\begin{array}{c}
0,1 \\
\hline
q_1
\end{array}$

- It only remains to choose the accepting states
- An NFA accepts *x if its set of possible states* after reading *x includes at least one accepting* state
- So our DFA should accept in all sets that contain at least one NFA accepting state

