ACUERDOS A NIVEL DE SERVICIO - PRÁCTICA 3

Gerardo Ismael Garzón Domínguez

Línea base 1 (Notificación leve: 60% de utilización de recursos):

Cuando la utilización de CPU, RAM o Red alcance el 60%, el sistema enviará automáticamente un correo electrónico al administrador del sistema o a las partes pertinentes, incluyendo una gráfica de utilización de los recursos mencionados. Este correo servirá como advertencia de que se están acercando a los límites establecidos en el SLA. Los fabricantes de memorias RAM, CPUs y NICs recomiendan este umbral como punto de atención, ya que indica que los recursos están siendo utilizados de manera moderada, pero aún hay margen para afrontar picos de demanda.

Línea base 2 (Notificación moderada: 80% de utilización de recursos):

Si la utilización de CPU, RAM o Red alcanza el 80%, el sistema enviará automáticamente un correo electrónico al administrador del sistema o a las partes pertinentes, incluyendo una gráfica de utilización de los recursos mencionados. Según los fabricantes de memorias RAM, CPUs y NICs, este umbral indica una utilización alta de los recursos, y es importante estar alerta para evitar problemas de rendimiento o saturación del sistema.

Línea base 3 (Notificación crítica: 95% de utilización de recursos):

En caso de que la utilización de CPU, RAM o Red llegue al 95%, el sistema enviará automáticamente un correo electrónico al administrador del sistema o a las partes pertinentes, incluyendo una gráfica de utilización de los recursos mencionados. Además, como medida acordada por exceso de uso del sistema, se procederá a apagar automáticamente el sistema para prevenir daños o afectaciones en su rendimiento. Este umbral es crítico según los fabricantes de memorias RAM, CPUs y NICs, ya que una utilización tan alta puede causar problemas de estabilidad, rendimiento y potencialmente acortar la vida útil de los componentes.

Al justificar los umbrales de utilización de CPUs, RAM y NICs, en laptops es importante considerar múltiples factores que puedan impactar tanto en el rendimiento como en la vida útil de los dispositivos. Algunos de los factores clave a considerar incluyen

Eficiencia energética: La duración de la batería es una consideración importante para los usuarios de laptops. Optimizar la utilización de recursos, como la CPU, RAM y NIC, puede mejorar la eficiencia energética y prolongar la vida útil de la batería.

Temperatura y refrigeración: Las laptops tienen sistemas de refrigeración más limitados que las computadoras de escritorio. Es importante mantener la temperatura de los componentes, como la CPU y la RAM, bajo control para evitar el sobrecalentamiento y garantizar un rendimiento óptimo y la vida útil de los dispositivos.

Rendimiento: Los usuarios de laptops pueden requerir diferentes niveles de rendimiento según sus actividades. Es posible que necesiten un rendimiento máximo al ejecutar aplicaciones exigentes, como juegos o software de edición de video, pero un rendimiento menor para tareas más básicas, como navegación web o procesamiento de textos.

Estabilidad y confiabilidad: Mantener la utilización de recursos en niveles óptimos puede ayudar a garantizar la estabilidad y confiabilidad del sistema en general. Una utilización excesiva de recursos puede provocar bloqueos, congelamientos o problemas de rendimiento.

Ruido: Las laptops a menudo tienen ventiladores que pueden ser ruidosos cuando los componentes internos, como la CPU, se calientan. Mantener la utilización de recursos en niveles adecuados puede reducir el ruido del ventilador y mejorar la experiencia del usuario.

Vida útil del dispositivo: Los componentes electrónicos, como las CPUs, RAM y NICs, tienen una vida útil limitada, y el uso intensivo puede reducir su duración. Establecer umbrales de utilización puede ayudar a mantener una utilización moderada de los recursos, extendiendo la vida útil de los dispositivos.

Intel: Intel, uno de los principales fabricantes de procesadores, proporciona guías y documentación sobre la utilización y el rendimiento de sus productos. Un recurso útil es el "Intel 64 and IA-32 Architectures Optimization Reference Manual" (Manual de optimización de arquitecturas Intel 64 y IA-32):

AMD: AMD, otro fabricante líder de procesadores, también proporciona guías y documentación sobre la utilización y el rendimiento de sus productos. La página de "Developer Guides, Manuals & ISA Documents"

Microsoft: Microsoft proporciona información sobre cómo administrar y optimizar el rendimiento del sistema, incluyendo la utilización de CPU y memoria RAM. El artículo "Performance Tuning Guidelines for Windows Server"

Kingston: Kingston, un fabricante líder de memorias RAM, ofrece información sobre el rendimiento y la utilización de la memoria en sus productos. El artículo "How to Monitor and Manage Server Memory Usage"