12.3.1 Instruction path length

A transaction or job runs a set of instructions to complete its task. These instructions are composed of various paths through the operating system, subsystems, and application. The total count of instructions that are run across these software components is referred to as the *transaction* or *job path length*.

The path length varies for each transaction or job, and depends on the complexity of the tasks that must be run. For a particular transaction or job, the application path length tends to stay the same, assuming that the transaction or job is asked to run the same task each time.

However, the path length that is associated with the operating system or subsystem can vary based on the following factors:

- ► Competition with other tasks in the system for shared resources. As the total number of tasks grows, more instructions are needed to manage the resources.
- ► The number of logical processors (*n-way*) of the image or LPAR. As the number of logical processors grows, more instructions are needed to manage resources that are serialized by latches and locks.

12.3.2 Instruction complexity

The type of instructions and the sequence in which they are run interacts with the design of a microprocessor to affect a performance component. This factor is defined as *instruction complexity*. The following design alternatives affect this component:

- ► Cycle time (GHz)
- ► Instruction architecture
- ► Pipeline
- Superscalar
- ► Out-of-order execution
- ► Branch prediction
- ► Transaction Lookaside Buffer (TLB)
- ► Transactional Execution (TX)
- ► Single instruction multiple data instruction set (SIMD)
- ► Simultaneous multithreading (SMT)⁵

As workloads are moved between microprocessors with various designs, performance varies. However, when on a processor, this component tends to be similar across all models of that processor.

12.3.3 Memory hierarchy and memory nest

The *memory hierarchy* of a processor generally refers to the caches, data buses, and memory arrays that stage the instructions and data that must be run on the microprocessor to complete a transaction or job.

The following design choices affect this component:

- ▶ Cache size
- ► Latencies (sensitive to distance from the microprocessor)
- ► Number of levels, the Modified, Exclusive, Shared, Invalid (MESI) protocol, controllers, switches, the number and bandwidth of data buses, and so on.

⁵ Only available for IFL, zIIP, and SAP processors