Imperial College London

Recommended Reading List

NLP Team Project:

- 1. Deep Learning Basics
 - 1. Book: Deep Learning by Ian Goodfellow et al.
 - 2. Link: https://github.com/janishar/mit-deep-learning-book-pdf
 - 3. Highlights: Chapter 1 (2 3 4 5) 10
 - 1. Chapter 1 is essential for understanding deep learning
 - 2. Chapter 2-5 are math. If you have learned them in class, you may skip
 - 3. Chapter 10 focuses on language technology
 - 4. other chapters can be helpful but optional for the summer school
- 2. Natural Language Processing Basics
 - 1. Tokenization:
 - 1. https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
 - 2. Word Embeddings
 - 1. https://jalammar.github.io/illustrated-word2vec/
 - 2. https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html
 - 3. http://jalammar.github.io/illustrated-bert/
 - 4. https://arxiv.org/abs/1301.3781
 - 5. https://arxiv.org/abs/1802.05365
 - 3. Models:
 - 1. RNN: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
 - 2. LSTM: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
 - 3. Seq2Seq: https://arxiv.org/abs/1409.3215
 - 4. Transformer-based models:
 - 1. Transformer: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
 - 2. BERT: https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
 - 5. Natural Language Understanding
 - 1. Text classification: https://developers.google.com/machine-learning/guides/text-classification
 - 2. Question Answering: https://ai.google.com/research/NaturalQuestions
 - 6. Natural Language Generation
 - 1. Machine translation https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
 - 2. Summarization: https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html

Imperial College London

- 3. Online Courses
 - 1. Stanford CS224N: http://web.stanford.edu/class/cs224n/

Computer Vision Team Project

- 1. Book: Deep Learning by Goodfellow et al (focus on chapter 7, 8, 9 and 12.2): https://github.com/janishar/mit-deep-learning-book-pdf
- 2. Online course: Deep learning and computer vision: http://cs231n.stanford.edu/
- 3. Paper: UNet: https://arxiv.org/abs/1505.04597
- 4. Paper: Convolutional neural networks: an overview and application in radiology: https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9