Math 101 HW 8

Jeff Carney

February 8, 2017

Please grade 4.16, 2, and 3.

4.16

Q: Show lub $\{r \in \mathbb{Q} : r < a\} = a \text{ for each } a \in \mathbb{R}$

Let $a \in \mathbb{R}$ and $A = \{r \in \mathbb{Q} : r < a\}$. By the definition of A, $\forall r \in A, r < a$. Thus a is an upper bound for A. Now let $z \in \mathbb{R}$ s.t. z < a. By the Density of the Rationals we know $\exists q \in \mathbb{Q}$ s.t. z < q < a. But if $q \in \mathbb{Q}$ is less than a then it is in the set A. Thus, z cannot be an upper bound for A. Therefore, a = lub(A).

2

Q: Prove if $\{x_n\}$ converges to 0 then $\forall c \in \mathbb{R}, \{cx_n\}$ converges to 0.

 $\{x_n\}$ converges to $0 \Rightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ s.t.}$ if n > N then $|x_n - 0| < \epsilon$. If c = 0, $\{cx_N\} = \{0, 0, 0, ...\}$ in which case $\{cx_n\}$ converges to 0. Assume $c \neq 0$, $\Rightarrow |c| > 0$. Let $\epsilon > 0$ be given $\Rightarrow \frac{\epsilon}{|c|} > 0$. $\exists N \in \mathbb{N} \text{ s.t.} \ \forall n > N$, $|x_n| < \frac{\epsilon}{|c|} \Rightarrow \forall n > N$, $|cx_n| < \epsilon$. Thus, $\{cx_n\}$ converges to 0.

3

Q: Prove that $\{x_n\}$ converges to 0 iff for every $\epsilon > 0$, $(-\epsilon, \epsilon)$ contains either all the terms of $\{x_n\}$ or all but finitely many terms of $\{x_n\}$

 (\Rightarrow)

Assume that $\{x_n\}$ converges to $0. \Rightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \text{s.t.}$ if n > N then $|x_n - 0| < \epsilon$. Thus, $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \text{s.t.}$ if n > N then $|x_n| < \epsilon \Rightarrow -\epsilon < x_n < \epsilon$. If $\{x_n\} = \{0,0,0,0,...\}$ then $\forall \epsilon > 0$ all of the terms of $\{x_n\}$ are contained in $(-\epsilon,\epsilon)$. If $\{x_n\} \neq \{0,0,0,0,...\}$ then we still know that $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \text{s.t.}$ if n > N then $-\epsilon < x_n < \epsilon$, which tells us that for all n > N the terms of $\{x_n\}$ are contained in $(-\epsilon,\epsilon)$ and the first N (note that N is a finite number) terms of $\{x_n\}$ are not in $(-\epsilon,\epsilon)$.

 (\Leftarrow)

Assume that for every $\epsilon > 0$, $(-\epsilon, \epsilon)$ contains either all the terms of $\{x_n\}$ or all but finitely many terms of $\{x_n\}$. If every term of $\{x_n\}$ is contained in the interval $(-\epsilon, \epsilon)$, then $\{x_n\} = \{0, 0, 0, ...\}$. If there are finitely many terms of $\{x_n\}$ not in $(-\epsilon, \epsilon)$ then the terms not in the interval must come from the head because the tail is infinite. Thus, $\exists N \in \mathbb{N}$ s.t. $\{x_1, x_2,, x_N\}$ are not in the interval $(-\epsilon, \epsilon)$ and so $\forall n > N$, x_n is contained in the interval $(-\epsilon, \epsilon)$, which means that $|x_n| < \epsilon \Rightarrow |x_n - 0| < \epsilon$. Thus, $\{x_n\}$ converges to 0.

4

Q: Prove that $\{x_n\} \rightarrow l$ iff $\{x_n - l\}$ is null.

 (\Rightarrow)

Assume that $\{x_n\} \to l$. $\Rightarrow \forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if n > N, then $|x_n - l| < \epsilon \Rightarrow |(x_n - l) - 0| < \epsilon$. Thus, $\{x_n - l\}$ is null.

 (\Leftarrow)

Assume that $\{x_n - l\}$ is null. $\Rightarrow \forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. if n > N, then $|(x_n - l) - 0| < \epsilon \Rightarrow |x_n - l| < \epsilon$. Thus, $\{x_n\} \to l$.