Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

1. (Currently amended) A compound of the formula (I):

$$Z \bigvee_{N} O \\ N = Q$$

$$(O)_{m}$$

$$(I)[[+]]$$

or a pesticidally acceptable salt thereof,

wherein:

W is (C_1-C_4) haloalkyl;

Z is CH or N;

=Q is a group of formula (A) or (B):

R¹ and R⁶ are each independently H, (C₁-C₈)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, NHCO(C₁-C₆)alkyl, NHSO₂(C₁-C₆)alkyl, CO(C₁-C₆)alkyl or

 $SO_2(C_1-C_6)$ alkyl, wherein any available carbon on R^1 and R^6 can be which last twelve mentioned groups are unsubstituted or substituted by one or more R^8 groups; or R^1 and R^6 are (C_3-C_8) cycloalkyl or (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl- which cycloalkyl radicals are unsubstituted or substituted by one or more (C_1-C_6) alkyl, (C_1-C_6) haloalkyl or R^8 groups; or

 R^1 and R^6 are -(CR⁹R¹⁰)_pR¹¹, -(CR⁹R¹⁰)_pheterocyclyl, OH, SO₂R¹¹, NH₂, NHCOR¹¹, NH(C₃-C₈)cycloalkyl, NH(CR⁹R¹⁰)_sR¹¹, O(CR⁹R¹⁰)_rR¹¹, -(CR⁹R¹⁰)CO₂CH₂R¹¹, O(CH₂)_rheterocyclyl, N=C[(C₁-C₆)alkyl]₂, COR^{11a} or CO-heterocyclyl; or R^1 and R^6 are (C₃-C₆)alkenyl substituted by R^{11a} ;

 R^2 , R^3 , R^4 and R^5 are each independently H, (C_1-C_8) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl, wherein any available carbon on R^2 , R^3 , R^4 or R^5 can be which last three mentioned groups are unsubstituted or substituted by one or more R^8 groups; or R^2 , R^3 , R^4 and R^5 are (C_3-C_8) cycloalkyl or (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl- which cycloalkyl radicals are unsubstituted or substituted by one or more (C_1-C_6) alkyl, (C_1-C_6) alkyl or R^8 groups; or

 R^2 , R^3 , R^4 and R^5 are (C_1-C_6) alkyl-SH, $-(CR^9R^{10})_pR^{11}$, $-(CR^9R^{10})_p$ heterocyclyl or $O(CH_2)_rR^{11}$;

or R^2 and R^3 , or R^4 and R^5 together with the respective attached carbon atom form a carbonyl or thiocarbonyl group or a (C_3-C_8) cycloalkyl ring; or an imino group which is unsubstituted or substituted by (C_1-C_6) alkyl, $CO(C_1-C_6)$ alkyl or R^{11a} ;

 R^7 is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, $-(CR^9R^{10})_pR^{11}$, $-(CR^9R^{10})_p$ heterocyclyl,

 $CO(C_1-C_6)$ alkyl or a (C_3-C_8) cycloalkyl ring; or (C_1-C_8) alkyl unsubstituted or substituted by one or more radicals selected from halogen and $-OC(=O)-(C_1-C_4)$ alkyl;

 R^8 is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{12}$, CN, $CO_2(C_1-C_6)$ alkyl, CO_2H , NO_2 , OH, amino, (C_1-C_6) alkylamino, di- (C_1-C_6) alkylamino, carbamoyl, (C_1-C_6) -alkylcarbamoyl, di- (C_1-C_6) -alkylcarbamoyl, $CH[O(C_1-C_6)$ alkyl]₂, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy or $O(CH_2)_rR^{11}$;

R⁹ and R¹⁰ are each independently H, (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;

 R^{11} is aryl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) haloalkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl,

(C₃-C₈)cycloalkyl, -(CH₂)_uR^{11a}, heterocyclyl, halogen, (C₁-C₆)alkoxy,

 (C_1-C_6) haloalkoxy, $S(O)_nR^{12}$, CN, $CO_2(C_1-C_6)$ alkyl, NO_2 , amino, (C_1-C_6) alkylamino, di- (C_1-C_6) alkylamino and $CO(C_1-C_6)$ alkyl;

 R^{11a} is aryl unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, $S(O)_nR^{12}$, CN, $CO_2(C_1-C_6)$ alkyl, CO_2H , NO_2 , OH, amino, (C₁-C₆)alkylamino and di-(C₁-C₆)alkylamino;

 R^{12} is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

X is O, S, NR¹³ or NOR¹³;

R¹³ is H, (C₁-C₈)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₈)cycloalkyl wherein any available carbon on R¹³ can be which last four mentioned groups are unsubstituted or substituted by one or more R⁸ groups; or

 $\underline{R^{13}}$ is (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl- which cycloalkyl is unsubstituted or substituted by one or more (C_1-C_6) alkyl, (C_1-C_6) haloalkyl or R^8 groups; or

 R^{13} is -(CR^9R^{10})_p R^{11} or -(CR^9R^{10})_pheterocyclyl;

m, s and u are each independently 0 or 1;

n is 0, 1 or 2;

p is 0, 1, 2 or 3;

r is 0 or an integer from 1 to 6; and each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from the group consisting of N, O and S, and is unsubstituted or substituted by one or more radicals selected from the group consisting of (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, -(CH₂)_uR^{11a}, halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR¹², CN, CO₂(C₁-C₆)alkyl, NO₂, OH, amino, (C₁-C₆)alkylamino and di-(C₁-C₆)alkylamino; di-(C₁-C₆)alkylamino.

or a pesticidally acceptable salt thereof.

- 2. (Original) A compound or a salt thereof as claimed in claim 1, wherein W is CF₃.
- 3. (Original) A compound or a salt thereof as claimed in claim 1 or 2, wherein Z is CH.
- 4. (Currently amended) A compound or a salt thereof as claimed in claim 1, $\frac{2 \text{ or } 3}{2 \text{ or } 3}$, wherein R^1 and R^6 are each independently selected from the group consisting of H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, $\frac{CO(C_1-C_6)}{2}$ alkyl or $\frac{SO_2(C_1-C_6)}{2}$ alkyl, or are $\frac{CR^9R^{10}}{2}$ $\frac{R^{11}}{2}$.

- 5. (Currently amended) A compound or a salt thereof as claimed in any one of elaims 1 to 4 claim 1, wherein R², R³, R⁴ and R⁵ are each independently selected from the group consisting of H, (C₁-C₈)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, -(CR⁹R¹⁰)_pR¹¹, -(CR⁹R¹⁰)_pheterocyclyl or O(CH₂)_rR¹¹ and O(CH₂)_rR¹¹; or R² and R³ together with the attached carbon atom form a carbonyl or thiocarbonyl group, or an imino group which is unsubstituted or substituted by (C₁-C₆)alkyl, CO(C₁-C₆)alkyl or R^{11a}; or R² and R³, or R⁴ and R⁵ together with the respective attached carbon atom form a (C₃-C₈)cycloalkyl ring.
- 6. (Currently amended) A compound or a salt thereof as claimed in any one of elaims 1 to 5 claim 1 wherein:

W is CF₃;

Z is CH;

 R^1 and R^6 are each independently selected from the group consisting of H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, $CO(C_1-C_6)$ alkyl or $SO_2(C_1-C_6)$ alkyl; or are $CO(C_1-C_6)$ alkyl, $CO(C_1-C_6)$ alkyl and $CO(C_1-C_6)$ alk

 R^2 , R^3 , R^4 and R^5 are each independently selected from the group consisting of H, $(C_1\text{-}C_8)$ alkyl, $(C_3\text{-}C_6)$ alkenyl, $(C_3\text{-}C_6)$ alkynyl, $-(CR^9R^{10})_pR^{11}$, $-(CR^9R^{10})_p$ heterocyclyl [[or]] and $O(CH_2)_rR^{11}$; or R^2 and R^3 together with the attached carbon atom form a carbonyl or thiocarbonyl group, or an imino group which is unsubstituted or substituted by $(C_1\text{-}C_6)$ alkyl, $CO(C_1\text{-}C_6)$ alkyl or R^{11a} ; or R^2 and R^3 , or R^4 and R^5 together with the respective attached carbon atom form a $(C_3\text{-}C_8)$ cycloalkyl ring;

 R^7 is (C_1-C_8) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, $-(CR^9R^{10})_pR^{11}$ or $-(CR^9R^{10})_p$ heterocyclyl;

 R^8 is (C_1-C_4) alkoxy or OH;

 R^9 and R^{10} are each independently selected from the group consisting of H, (C_1-C_4) alkyl [[or]] and (C_1-C_4) haloalkyl;

 R^{11} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl,

 (C_3-C_6) cycloalkyl, $-(CH_2)_uR^{11a}$, heterocyclyl, halogen, (C_1-C_4) alkoxy,

 (C_1-C_4) haloalkoxy, $S(O)_nR^{12}$, CN, $CO_2(C_1-C_4)$ alkyl, NO_2 , amino, (C_1-C_4) alkylamino and di- (C_1-C_4) alkylamino; (more preferably R^{11} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_4) alkyl, halogen,

(C₁-C₄)alkoxy, NO₂ and amino);

 R^{11a} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_4) alkyl, (C_1-C_4) haloalkyl, halogen, (C_1-C_4) alkoxy,

 $(C_1\text{-}C_4) \\ haloalkoxy, \\ S(O)_n R^{12}, \\ CN, \\ CO_2(C_1\text{-}C_4) \\ alkyl, \\ CO_2H, \\ NO_2, \\ OH, \\ amino, \\ OH, \\ Amino, \\ OH, \\ Amino, \\ OH, \\$

(C₁-C₄)alkylamino and di-(C₁-C₄)alkylamino;

 R^{12} is (C_1-C_4) alkyl or (C_1-C_4) haloalkyl;

X is O or S;

m is 0; and

p, r, s and u are each independently 0 or 1; [[and]]

wherein each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N, O and S.

7. (Currently amended) A compound or a salt thereof as claimed in any one of claims 1 to 6 claim 1 wherein:

W is CF₃;

Z is CH;

=Q is a group of formula (A1):

 R^1 and R^6 are each independently selected from the group consisting of H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, $CO(C_1-C_6)$ alkyl or $SO_2(C_1-C_6)$ alkyl; or are $CO(C_1-C_6)$ alkyl, $CO(C_1-C_6)$ alkyl and $CO(C_1-C_6)$ alk

 R^2 and R^3 are each independently selected from the group consisting of H, (C_1-C_8) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, $-(CR^9R^{10})_pR^{11}$, $-(CR^9R^{10})_p$ heterocyclyl [[or]] and $O(CH_2)_rR^{11}$; and

Y is O or S; [[and]]

wherein said heterocyclyl is a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N, O and S.

8. (Currently amended) A process for the preparation of a compound of formula (I) or a salt thereof as defined in any one of claims 1 to 7 claim 1, which process comprises:

a) where =Q is a formula (A), R² and R³ are as defined in claim-1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, R⁴ and R⁵ together with the attached carbon atom form a thiocarbonyl group, R¹

and R⁶ are each a hydrogen atom and m is zero, the cyclisation-rearrangement reaction of a compound of formula (II):

$$\begin{array}{c|c}
W & O & S & R^2 & R^3 \\
\hline
V & N & N & CN \\
\end{array}$$
(III)

wherein W and Z are as defined in claim 1, R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, by heating and/or reaction in the presence of a base, via an intermediate of formula (III):

$$Z$$
 N
 N
 R^3
 R^2

wherein W, Z, R² and R³ are as defined in claim 1, which rearranges to the compound of formula (I), where =Q is a formula (A), R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, R⁴ and R⁵ together with the attached carbon atom form a thiocarbonyl group, R¹ and R⁶ are each a hydrogen atom and m is zero; or

b) where W and Z are as defined in claim 1, =Q is a formula (A), R² and R³ are as defined in claim 1 excluding where they form a carbonyl, thiocarbonyl or imino group, R⁴ and R⁵ together with the attached carbon atom form a thiocarbonyl group, R¹ and R⁶

are each a hydrogen atom and m is zero, reacting a compound of formula (IV):

(IV)

wherein W and Z are as defined in claim 1, with a compound of formula (V):

$$H_2NCR^2(R^3)CN$$
 (V)

wherein R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, to give the corresponding compound of formula (II), followed by cyclisation and rearrangement as described in process a) above to give a compound of formula (I) where W and Z are as defined in claim 1, =Q is a formula (A), R² and R³ are as defined in claim 1 excluding where they form a carbonyl, thiocarbonyl or imino group, R⁴ and R⁵ together with the attached carbon atom form a thiocarbonyl group, R¹ and R⁶ are each a hydrogen atom and m is zero; or

c) where =Q is a formula (A), R¹ is a hydrogen atom, R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, R⁴ and R⁵ together with the attached carbon atom form a carbonyl group, W, Z and R⁶ are as defined in claim 1 and m is zero, reacting a compound of formula (VI):

(VI)

wherein W, Z and R⁶ are as defined in claim 1, with a compound of formula (VII):

$H_2NCR^2(R^3)CO_2R^7$ (VII)

wherein R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, and R⁷ is a leaving group, in the presence of a coupling agent to give an intermediate compound of formula (VIII):

wherein the various symbols are as defined above, followed by cyclisation to give a compound of formula (I) where =Q is a formula (A), R¹ is a hydrogen atom, R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl, thiocarbonyl or imino group, R⁴ and R⁵ together with the attached carbon atom form a carbonyl group, W, Z and R⁶ are as defined in claim 1 and m is zero; or

d) where =Q is a formula (A) or (B), m is zero and the other symbols are as defined in claim 1, acylating the corresponding compound of formula (A¹) or (B¹):

wherein the various symbols are as defined in claim 1, with a compound of formula (IX):

wherein W and Z are as defined in claim 1 and L is a leaving group to give a compound of formula (I) where =Q is a formula (A) or (B), m is zero and the other symbols are as defined in claim 1; or

e) where =Q is a formula (B), W, Z, R¹ and R² are as defined in claim 1, X is S, m is zero, and R² and R³ are as defined in claim 1 excluding where together with the attached carbon atom they form a carbonyl or thiocarbonyl group, or an imino group which is unsubstituted or substituted by (C₁-C₆)alkyl, CO(C₁-C₆)alkyl or R^{11a}, reacting a compound of formula (I) which is of formula (X):

$$Z$$
 N
 N
 R^3
 R^3
 (X)

wherein W, Z, R_{1} , R_{2} and R_{3} R_{1} , R_{2} and R_{3} are as defined in claim 1, with a compound of formula (XI):

$$R^7L$$
 (XI)

wherein R^7 is as defined in claim 1 and L is a leaving group to give a compound of formula (I) where =Q is a formula (B), W, Z, R^1 and R^7 are as defined in claim 1, X is S, m is zero, and R^2 and R^3 are as defined in claim 1 excluding where together with the

attached carbon atom they form a carbonyl or thiocarbonyl group, or an imino group which is unsubstituted or substituted by (C₁-C₆)alkyl, CO(C₁-C₆)alkyl or R^{11a}; or

f) where =Q is a formula (A), W, Z, R^4 , R^2 , R^3 , R^4 and R^5 are as defined in claim 1, R^6 is hydrogen and m is zero, cyclising a compound of formula (XII):

(XII)

wherein W, Z, R^1 , R^2 , R^3 , R^4 and R^5 are as defined in claim 1, in the presence of a base to give a compound of formula (I) where =Q is a formula (A), W, Z, R^1 , R^2 , R^3 , R^4 and R^5 are as defined in claim 1, R^6 is hydrogen and m is zero; or

- g) where =Q is a formula (A), W, Z, R^1 , R^2 and R^3 are as defined in claim 1, R^4 and R^5 together with the attached carbon atom form a carbonyl group, R^6 is hydrogen, and R^5 together with the attached carbon atom formula (R) wherein R^6 is a group of formula (R), R^6 is R^6 and R^6 and R^6 are as defined in claim 1, and R^6 are as defined in claim 1, R^6 and R^6 are as defined in claim 1, R^6 and R^6 together with the attached carbon atom form a carbonyl group, R^6 is hydrogen, and R^6 is hydrogen.
- h) where =Q is a formula (B), W, Z, R², R³ and R⁷ are as defined in claim 1, R¹ is CO(C₁-C₆)alkyl which is unsubstituted or substituted by one or more R⁸ groups, or is COR^{11a} or CO heterocyclyl, and m is zero, acylating the corresponding compound of formula (I) wherein R¹ is hydrogen, using a compound of formula (XIII):

R¹COL (XIII)

wherein L is a leaving group to give a compound of formula (I) where =Q is a formula (B), W, Z, R^2 , R^3 and R^7 are as defined in claim 1, R^1 is $CO(C_1-C_6)$ alkyl which is unsubstituted or substituted by one or more R^8 groups, or is COR^{11a} or CO-heterocyclyl, and m is zero; or

- i) where=Q is a group of formula (A), W, Z, R^2 , R^3 , R^4 , R^5 and R^6 are as defined in elaim 1, R^1 is $CO(C_1-C_6)$ alkyl which is unsubstituted or substituted by one or more R^8 groups, or is COR^{11a} or CO heterocyclyl, and m is zero, acylating the corresponding compound of formula (I) wherein R^1 is hydrogen, using a compound of formula (XIII) as defined above to give a compound of formula (I) where =Q is a group of formula (A), W, Z, R^2 , R^3 , R^4 , R^5 and R^6 are as defined in claim 1, R^1 is $CO(C_1-C_6)$ alkyl which is unsubstituted or substituted by one or more R^8 groups, or is COR^{11a} or CO-heterocyclyl, and m is zero; or
- j) where Q is as defined in claim 1, and m is 1, oxidising a corresponding compound of formula (I) in which m is 0 to give a compound of formula (I) where Q is as defined in claim 1, and m is 1; and if desired optionally, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.
- 9. (Currently amended) A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 1 to 7 claim 1, in association with and a pesticidally acceptable diluent or carrier and/or surface active agent.

- 10. (Cancelled)
- 11. (New) The compound of claim 6, wherein R^{11} is phenyl substituted unsubstituted or substituted by one or more radicals selected from the group consisting of (C_1-C_4) alkyl, halogen, (C_1-C_4) alkoxy, NO_2 and amino.