

AFOSR 68-2151

TELEDYNE INDUSTRIES
EARTH SCIENCES DIVISION
114 MONTGOMERY STREET
ALEXANDRIA, VIRGINIA
703 836-3882

LASA DATA SERVICE FINAL REPORT

8
2
6
6
2
8
Project Code No. 7F10
Name of Contractor TELEDYNE INDUSTRIES, INC.
Contract No. F44620-67-C-0075
Date of Contract 1 March 1967
Amount of Contract \$ 116,205.00
Contract Termination Date 31 March 1968
Project Manager Daniel E. Frankowski
(703) 836-3882
Short Title of Work LASA Data Service

Gentlemen:

This is the final report issued by the LASA Data Service and covers the work performed from 1 March 1967 through 31 March 1968.

I. INTRODUCTION

The LASA Data Service (LDS) was established to make LASA data available to all interested users. The standard formats of LASA data are as follows:

1. This document has been approved for public release and sale; its distribution is unlimited.

Film (16 mm)

- A. Short-period vertical component data from the center seismometer of each subarray.
- B. Long-period three component data from the AO (center subarray) and the D- and F-Ring subarrays.

Magnetic Tape

Standard IBM compatible 800 BPI tapes are recorded in High Rate and Low Rate multiplexed data groups.

- A. High Rate digital tapes contain approximately 8 minutes of data from all short period vertical component seismometers, 63 long period components, plus certain phased sum outputs, all digitized at 20 samples per second.
- B. Low Rate digital tapes contain approximately 80 minutes of data from the 63 long period components digitized at 5 samples per second, the 21 unphased subarray sums and certain phased sum outputs digitized at 20 samples per second.

II. SERVICES AVAILABLE TO USERS

- A. Copies of Films and Digital Tapes.

Utilizing the CDC 604 magnetic tape drive units on lease to the LDS, digital tapes are copied at 200, 556, or 800 bpi. The LDS now has the capability to produce LASA film copies in-house. In addition, enlarged paper prints of the films are available from the LDS. Xerox copies of supporting documents, such as recording calibration information, are also supplied along with the film and tape copies.

LDS Final Report
Page 3

B. Film and Tape LASA Data Catalog.

LDS maintains a catalog of all available LASA data. This catalog can be obtained either by request or on a regular monthly basis. The catalog designates the data contained on each tape as noise, event, test, or calibration. Event information such as location, origin time, arrival time, depth, and magnitude is given. A summary by depth and magnitude of all events described in the catalog is also included.

C. LASA Data Publications.

LDS will furnish, on request, information concerning publications available through DDC pertaining to LASA travel time and amplitude anomalies, optimum filters, noise studies, seismicity studies, automated bulletins, and array processing.

D. Visitor Facilities.

Space and 16 mm viewers have been provided so that visitors can select data for analysis and/or copying. LASA users are urged to avail themselves of these facilities for their analyses.

E. Event Bulletins.

An event bulletin is prepared daily from data recorded two to three days previously. Weekly summaries are compiled from the daily bulletins. The weekly summary is mailed to subscribers.

In addition, the daily bulletin is maintained on magnetic tape to facilitate requests for special listing. Copies of this bulletin tape are available on request.

III. WORK COMPLETED

A. The LASA Event Bulletin and Weekly Summary was distributed to the 39 research groups listed in Appendix A.

B. A LASA Data Catalog of all available LASA data was maintained and distributed to the organizations marked by an asterisk (*) in Appendix A.

C. Sixteen millimeter film copies were made in the following manner:

1. Brown University	36,730 feet
2. St. Louis University	170 feet
3. California Institute of Technology	<u>40 feet</u>
	TOTAL

36,940

D. Copies of LASA Multiplexed tapes were supplied to the following research groups:

1. Southern Methodist University	2
2. Texas Instruments	29
3. Lamont Geological Observatory	29
4. University of California	15
5. California Institute of Technology	1
6. Dallas Seismological Observatory	22
7. University of Michigan	6
8. AFOSR for H.I.S. Thirlaway	3
9. Seismic Data Laboratory ¹	<u>49</u>
Total Tapes Copied	156

E. Paper prints were made for the following research groups

1. University of Michigan	12
2. Petty Geophysical Company	20
3. New Mexico Institute of Mining and Technology	10
4. St. Louis University	<u>244</u>
Total Number of Prints	286

¹ The Seismic Data Lab used the program and equipment to copy 49 tapes. Costs were charged to the Seismic Data Lab.

F. Computer Programming Completed

1. A program to copy LASA multiplexed tapes and in addition give the time of the first sample of data and locations of all errors encountered during copying procedures.
2. A program to convert the TWX punched paper tapes (LASA Event Bulletins) to a standard BCD magnetic tape to facilitate using this data on the digital computers.
3. A program to enable changes, additions, or deletions to be made to the LASA Bulletins as they are stored on magnetic tape.
4. A program to retrieve any single LASA Bulletin or all Bulletins between specified dates from the magnetic tape.
5. A program to summarize all events between specified dates by USC & GS geographic region number.
6. Various programs and subroutines to enable the Data Catalog to be updated and printed with a minimum of manual involvement to minimize errors which could occur in the large volume of record-keeping required in the catalog procedures.
7. A program to demultiplex the LASA Low-Rate multiplexed tapes (Long-period sensors only) and convert this data from 18-bit words to 32 or 24 bit words so that it will be compatible for use on IBM 360 or CDC 3000 systems.

G. Travel

1. The SSA convention was attended in March, 1967 for the purpose of announcing the establishment of the LDS.
2. Lincoln Labs was visited in July, 1967 for the purpose of obtaining detailed records of the operational history of LASA.

H. Equipment Purchases

Equipment and supplies were purchased with contract funds as specified by the contract to enable the LDS to fulfill the terms of the contract with a minimum of cost to the government.

- I. Miscellaneous tasks were also performed as specified by AFOSR, Technical Monitor, to make LDS more widely publicized and to maintain the capability to offer its services to as many interested groups and individuals as possible.

Very truly yours,

Daniel E. Frankowski

APPENDIX A

Dr. Jorgen Hjelme
Geodetic Institute
Department of Seismology
Vodroffsvej 4,
Copenhagen V, Denmark

Prof. Setumi Miyamura
Earthquake Research Institute
Tokyo University
Tokyo, Japan

*Prof. Paul Pomeroy
Lamont Geological Observatory
Columbia University
Palisades, New York 10964

Mr. Rowland McLaughlin
Institute of Science & Technology
University of Michigan
P. O. Box 618
Ann Arbor, Michigan

Mr. Joseph T. Beardwood, III
Manager, Geophysics Department
General Atronics Corporation
1200 E. Mermaid Lane
Philadelphia, Pa. 19118

Prof. Robert Phinney
Department of Geology
Princeton University
Princeton, New Jersey 08540

Mr. Lou C. Pakiser
Branch of Crustal Sciences
U. S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

Rev. David Linehan, S.J.
Director
Weston Observatory
319 Concord Road
Weston, Massachusetts 02193

*Rev. William Stauder, S.J.
Dept. of Geophysics & Geophysical
Engineering
St. Louis University
P. O. Box 8020 - College Station
St. Louis, Missouri 63156

Dr. H.I.S. Thirlaway
Ukaea, Blacknest
Brimpton
(Nr. Reading), Berkshire, England

Dr. Ulf Ericsson
Seismic Research Group
FOZ, 4,
Stockholm 80, Sweden

Seismologist
Department of Geophysics
Australian National University
P. O. Box 4
Canberra City, A.C.T., Australia

*Mr. Harry Lake
Texas Instruments, Inc.
Science Services Division
P.O. Box 5621
Dallas, Texas 75222

Appendix A
Page Two

Prof. David G. Harkrider
Dept. of Geological Sciences
Brown University
Providence, Rhode Island 02912

*Director
Seismograph Station
University of California
Berkeley, California 94720

Prof. Don L. Anderson
Seismological Lab.
California Institute of Technology
220 N. San Rafael Avenue
Pasadena, California 91105

Prof. Marcus Bath
Seismological Institute
The University
Uppsala, Sweden

*Mr. Gordon G. Sorrells
Dallas Seismological Observatory
Room 360 Science Information Center
Southern Methodist University
Dallas, Texas 75222

Richard W. Couch
Department of Oceanography
Oregon State University
Corvallis, Oregon 97331

Dr. Eijo E. Vesane
Seismological Observatory
University of Helsinki
Helsinki, Finland

Mr. Robert L. Kovach
Department of Geophysics
Stanford University
Stanford, California 94305

Dr. P. L. Willmore
International Seismological
Research Centre
6 S. Oswald Road
Edenbridge, Scotland

Mr. E. B. Manchee
Division of Seismology
Dominion Observatory
Ottawa, Ontario, Canada

*Mr. A. E. Beck
Dept. of Geophysics
University of Western Ontario
London, Canada

J. E. Lawson, Jr.
2441 N. Harvard No. 10
Tulsa, Oklahoma 74115

Mr. David Dobbs
IBM Corporation
4301 Connecticut Avenue, N. W.
Washington, D. C. 20008

Dosent M. Sellevoll
University of Bergen
Seismological Observatory
P. O. Box 2643
Bergen, Norway

Dr. Joseph Eisler
Earth Sciences Department
Stanford Research Institute
Menlo Park, California

Brian Lewis
Geophysical & Polar Research Centre
University of Wisconsin
Madison, Wisconsin 53707

Appendix A
Page Three

Mr. W. P. Haney
Mail Station 940
Texas Instruments, Inc.
P. O. Box 5621
Dallas, Texas 75222

Dr. Don Tocher, Director
U.S. Earthquake Mechanism Lab.
ESSA - Inst. for Earth Sciences
390 Main Street, Room 7021
San Francisco, California 94105

Mr. William J. Best
Chief, Geophysics Division
AFDSR/OAR
1400 Wilson Boulevard
Arlington, Virginia 22209

Mr. Robert Baron
IBM Corporation Dept. FF2
Van Ness Center
4301 Connecticut Avenue, N. W.
Washington, D. C. 20008

Mr. James E. Fix
Geotech, A Teledyne Company
Box 28277
Dallas, Texas 75288

H.S.S. Swarima
Scientific Officer (SD 2)
Seismic Array Station
Gauribidanur, Kolar Dist.
Mysore State, India

T. G. Varghess
Nuclear Physics Division
Bhabha Atomic Research Center
Second Floor, Modular Laboratory
Trombay, Bombay-74, India

Dr. John Denoyer
U. S. Department of Interior
U. S. Geological Survey
General Services Building, Room 5233
Washington, D. C. 20242

****Mr. M. J. Randall**
University of California
Institute of Geophysics and
Planetary Physics
Los Angeles, California 90024

Dr. A. T. Ewald
Department of Oceanography
University of Hawaii
Honolulu, Hawaii

- * Also Receives Data Catalog
- ** Received individual copies of the Bulletin and Data Catalog
- *** Received individual copies of the Bulletin