

List: Linked list

เมื่อเรียนจบแล้ว สิ่งที่นิสิตสามารถทำได้คือ

- 1)สามารถแยกแยะระหว่าง list และ linked list ได้
- 2)เข้าใจการทำงานของ linked list
- 3)สามารถเขียนโปรแกรมทำการเก็บข้อมูลลงใน linked list ได้
- 4)สามารถเขียนโปรแกรมทำการลบข้อมูลลงใน linked list ได้
- 5)สามารถเขียนโปรแกรมทำการค้นหาข้อมูลลงใน linked list ได้
- 6)สามารถเขียนโปรแกรมทำการนับจำนวนข้อมูลลงใน linked list ได้
- 7)สามารถนำ linked list ไปใช้ในการปัญหาทางการโปรแกรมได้
- 8)ทราบ BigO ทุก Operation

2.3 The List anguma

ข้อมูลที่เรียกกัจไ

A General list of the form $A_1, A_2, A_3, ..., A_N$

list 907 girling list ha

For any list except the empty list, we say that A_{i+1} follows (or succeeds) A_i (i<N) and that A_{i-1} precedes A_i (i>1). The first element of the list is A_1 , and the last element A_i in a list is A_N

> นำหน้า ← 1 ← กามหลัง เลียก 1 จาคี N A_{i+1} , A_i , A_{i+1} (i < N)

2.3.1 List Operation

- ☐ insert
- remove

- printList
- ☐ makeEmpty
- ☐ find
- count

2.3.2 Array List

10 20 36 40 50

1) Insert

10 20 40 50

- 1. สร้าง Array โดยคาดคะเนว่า list จะมีข้อมูลมากที่สุดกี่ค่า
- 2. กำหนดตัวแปร size คือจำนวนข้อมูล pos(position) คือตำแหน่งที่ ต้องการแทรก

3. การ insert จะทำโดยการหาตำแหน่งที่ต้องการแทรกข้อมูลก่อน เช่น

ต้องการแทรก 35 ตำแหน่งที่จะแทรกคือ 3

- 4. จะแทรกได้จะต้องขยับเลื่อนข้อมูลด้านหลังทุกตัวไป 1 ค่า ในช่วง possize ซัลงมี array ซัลเรีย
- 5. ทำการแทรก

```
\frac{n}{a} = \frac{1}{a} \times n = O(n)
int main()
    int a[8]=\{10,20,30,40,50,\omega\};
    int newNumber,i,j,size,index;
    size=5;
                                n(n+1)
    newNumber=35;
    for(i=0;i<size;i++)
         if(newNumber<a[i])</pre>
                  index=i;
                  break;
    cout << index;
```

- 1. สร้าง Array โดยคาดคะเนว่า list จะมีข้อมูลมากที่สุดกี่ค่า
- 2. กำหนดตัวแปร size คือจำนวน ข้อมูล pos(position) คือ ตำแหน่งที่ต้องการแทรก
- 3. การ insert จะทำโดยการหา ตำแหน่งที่ต้องการแทรกข้อมูล ก่อน เช่น

ต้องการแทรก 35 ตำแหน่งที่ จะแทรกคือ 3 ซึ่งเก็บอยู่ใน ตัวแปร index


```
assign จากรถัง 8กรางา
```

$$a[i+1] = a[i];$$

```
for(i=size-1;i>=index;i--)
     a[i+1]=a[i]; i=5;a[5]
   size++; i=4;a[4]
                 i=3; a[3]
```

a[index]=newNumber;

```
10 20 30 40 50 60
```

- 4. ต้องเลื่อน ตั้งแต่ตัวที่ 3 5 หรือ ์ ตั้งแต่ index ถึง size ไป ตำแหน่งที่ 4-6 ทุกตัวไป 1 ค่า ในช่วง pos-size
- ทำการแทรก

Delete

- 1. หาตำแหน่งที่ต้องการลบใส่ตัวแปร index
- 2. ขยับข้อมลตั้งแต่ลำดับ 4-6 คือ index+1 ถึง size 1 เลื่อนมาด้านหน้า
- 3. ลดขนาด size

03603212: Module1 – Introduction 8

<u>ภารบ้าน 2</u>

 จงเขียนโปรแกรมโดยใช้ Array ขนาด 10 ช่อง สร้างเป็น list โดยมีการทำงานตาม menu ดังนี้ ให้แยกการทำงานข้อ 1-3 ออกเป็นฟังก์ชัน

หมายเหตุ ให้ทดลอง insert 8 5 1 20 6 14 และลบ 8 20 1

```
=======Menu======
```

```
+ 1) Insert +
```

+ 4) Exit +

Please choose >

```
ถ้าเลือกข้อ 1
```

Enter: 8

Output = 8 จากนั้นกลับไปที่เมนู

ถ้าเลือกข้อ 1

Enter: 5

Output = 5 8 จากนั้นกลับไปที่เมนู

ถ้าเลือกข้อ 2

Delete: 8

Output = 5 จากนั้นกลับไปที่เมนู

03603212: Module1 – Introduction 9

ถ้าเลือกข้อ 3 สมมุติว่ามีข้อมูล 10 20 30 40 50 60 จะแสดงข้อมูลดังนี้

Print : 10 20 30 40 50 60

Print first half : 10 20 30

Print second half: 40 50 60

หรือ

Print : 1 22 23 47 50

Print first half : 1 22

Print second half: 23 47 50

LinkedList

Avoid the linear cost of insertion and deletion of array.

The linked list consists of a series of nodes, which are not necessary adjacent in memory. Each node contains the element and a link to a node containing its successor. We call this the next link. The last cell's next link points to NULL.

memory array ตัดสติกกัน

2.3.3 Linked List

Insert

Delete

ข้อแตกต่างระหว่าง Array list และ Linked list

1. การประกาศตัวแปร

Array list จะต้องประกาศตัวแปรก่อน จึงต้องคาดคะเนจำนวน ข้อมูลไว้ ว่า list จะมีจำนวนกี่ตัว

Linked list ไม่จำเป็นจะต้องประกาศตัวแปรก่อน สามารถสร้าง node ขณะที่ run โปรแกรมได้

2. การ insert และ delete

Array list ทำได้ยากกว่า เพราะโครงสร้างไม่เหมาะสม Linked list ทำได้ง่าย

ข้อแตกต่างระหว่าง Array list และ Linked list(ต่อ)

3. การเขียนโปรแกรม

Array list เขียนโปรแกรมโดยใช้การวน loop Linked list เขียนโปรแกรมต้องใช้ pointer

1 การ Insert แยกกรณี

- 1. กรณีที่ไม่มีข้อมูล
- 2. กรณีที่มีข้อมูล
 - insert หน้าสุด
 - insert ตรงกลาง
 - insert ท้าย

เมื่อรับ input x เข้ามาจะแยกความ แตกต่างอย่างไร

70.72324HUM


```
int menu()
{ int choose;
 cout << " 1) Insert list\n";
 cout << " 2) Delete list\n";
 cout << " 3) Print list\n";
 cout << " 4) Exit\n";
 cout << " Please choose > ";
 cin >> choose;
 return choose;
```


03603212 : Module2–List _{1. กรณีไม่มีข้อมูล}

```
struct record *insert(struct record *head,int data)
                                        NULL
     struct record *node,*p;
                                              head
      if ( head == NULL ) **** T
         head=new struct record;
                                               2000
                                     head
         head-> value = data;
         head-> next = NULL;
                                      1024
                                               จองพื้นที่ นี่
                                      2000
     return head;
             return pointer
                                            1024
             विद्यामधा * रिवेशनवक्सान
```



```
struct record *insert(struct record *
1 { struct record *node,*p;
2 if (head == NULL)
3 { head=new struct record;
4 head-> value = data;
5 head-> next = NULL;
6 }

2. กรณีมีข้อมูลอยู่แล้ว
-Insert ด้านหน้า
head

1024

1024
```



```
7 else /**head !=NULL **/
                                         2. กรณีมีข้อมูลอยู่แล้ว
       node=new struct record;
8 {
                                         -Insert ด้านหน้า
       node-> value = data;
                                          สร้างพื้นที่
       if( data < head->value)
                                                   ชื่อดูขันเก็บ 1024
10
           node->next = head;
11
                                                    head
12
            head=node;
                             node
13 }
                                                      1024
                                10<del>50</del>
                   2 nade = 4000
14 }
                                                     2000
                               4000
15 return head;
                        head - value = 1050
                                           1050
                                                           1024
                        head -> next = 1094
                                                   node. next = 1024
                        head → next → value = 5
```



```
struct record *insert(struct record *head,int data)
      struct record *node,*p;
                                       3. กรณีแทรกกลาง
                                            หรือท้าย
      if ( head == NULL )
         head=new struct record;
         head-> value = data;
         head-> next = NULL;
                 head
                           1050
                            2000
       p = p → next;
        1024 → 1050
                           1050
                                      1024
                                                1080
                                                         2015
```



```
7 else /**head !=NULL **/
                                  3. กรณีแทรกกลาง
8 {
      node=new struct record;
      node-> value = data;
     if( data < head->value)
10
11
            แทรกหน้า list กรณี 2 เรียนแล้ว ♥
12
13
                                   node
      else
                                   2040
             แทรกกลาง/ท้าย
                                             2040
                                   4000
```



```
Head
          1024 tmp
                         1050
                              1080
                                    1090
                                           NULL
 1024
          5000
2000
                1050
                          1080
                            1080
             1024
                                          1090
                      1050
                                                     2016
void print(struct record *head)
     cout << "\nPrint Listed : \n"; 4 5 10 15 20
     struct record *tmp; int cout = 0;
     tmp=head;
     while(tmp!=NULL) T T T T F
          cout << tmp->value << " "; count ++ ; 1, 2, 3
          tmp=tmp->next;
```