

301: 자연어처리의 흐름

Topic 3: Natural Language Process

단어나 문서의 의미를 나타낼 수 있는 "표현"을 찾는다.

- 1. 기계가 이해할 수 있는 단어 표현
- 2. 통계기반의 모델
- 3. 언어모델의 종류
- 4. 전처리 방식
- 5. (실습) Pre-trained Model

기계가 이해할 수 있는 단어 표현방법은 무엇일까?

자연어의 표현: One-Hot Vector

위치 값을 기준으로 단어를 표현하는 방법

한국인	중국인	일본인
1	0	0
0	1	0
0	0	1

안	丏0	하	세	요
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

자연어의 표현: 유사도

$$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

$$d = \sum_{i=1}^n |x_i - y_i|$$

3. <mark>코사인 유사도</mark>

자연어의 표현: 유사도

- 1. -1과 1 사이로 정규화 된다.
- 2. 벡터의 내적공식을 변형, 크기는 무시한다.
 - 3. 벡터의 '각도 '만 고려한다.

자연어의 표현: One-Hot Vector의 유사도

한국인	중국인	일본인
1	0	0
0	1	0
0	0	1

```
2 import numpy as np
3 from numpy.linalg import norm
    def cosine similarity(A, B):
          return np.dot(A, B)/(norm(A)*norm(B))
10 korean = np.array([1, 0, 0])
11 chinese = np.array([0, 1, 0,])
12 japanese = np.array([0, 0, 1])
print(cosine_similarity(korean, chinese)) # 0.0
16 print(cosine similarity(korean, japanese)) # 0.0
```


자연어의 표현: One-Hot Vector의 한계

One-Hot Vector		
장점	간단하게 단어를 표현할 수 있다.	
단점	1. 의미를 담을 수 없다. 2. "희소행렬" Sparse Matrix이 생성된다.	

희소행렬 Sparse Matrix	
특징	 값이 대부분 0으로 이루어진 행렬 데이터가 밀집되지 않고 넓게 분산된 표현방식 (↔ 밀집행렬 Dense Matrix)
단점	 불필요한 0으로 인한 메모리 낭비 행렬의 크기로 인한 연산 시간 증가

자연어의 표현: Distributional Semantics

단어의 의미는 주변 단어에 의해 형성된다.

분포가설 (distributional hypothesis)

Count-based Model	• 말뭉치 (corpus) 로부터 DTM을 구축하여 단어, 문서 벡터를 추출하는 과정
Prediction-based Model (Language Model)	 단어의 의미를 스스로 학습하여 벡터에 담는 모델 밀집 벡터 (Dense Vector)를 만드는 것이 목표 P(next context)를 최대화 하는 방향으로 학습

Count-based Model

Document Term Matrix

Tip

- 문장: 단어(Term)의 집합
- 문서: 문장의 집합
- 말뭉치(corpus): 문서의 집합

전제

• 분포가설 + 자주 쓰이는 단어는 문장 안에서 중요한 위치를 차지한다.

방법

- 1. 문서(Document)에서 쓰인 모든 단어(Term)를 구한다.
- 2. 각 문장을 그 단어가 쓰인 빈도를 나타내는 벡터로 변환한다.
- 3. 벡터들을 모아 하나의 문서를 행렬 (Matrix)으로 표현

Document Term Matrix

Count-based Model

장점

- 1. 가설에 의하면 단어의 의미를 반영됨: 문장간 유사도를 알아낼 수 있다.
- 2. 자주 쓰는 단어가 기준이므로 희소행렬 문제 일부 해소

단점

- 단순 빈도만 따지는 문제
 - 1. 의미 없이 자주 쓰이는 단어를 중요한 단어로 인식 → 불용어 판단 불가
 - 2. 어순 반영 불가
 - 3. I love you의 DTM과 I love you I love you 의 cosine similarity는 동일(=1)

Term Frequency-Inverse Document Frequency

Count-based Model

$$TFIDF(t,d) = TF(t,d) * IDF(t)$$

$$IDF(t) = \log(\frac{n}{1 + DF(t)})$$

말뭉치 전체에서 차지하는 비중은 작으나 특정 문서에서 많이 사용되었다면, 해당 단어가 문서를 대표하는 단어일 것이다.

TF(term, document)

- 문서에서 쓰인 단어의 개수
- 문서에서 용어가 몇 번 사용되었는가
- DTM과 같다

IDF(Inversed DF)

- 용어가 등장한 문서는 몇 개인가
- DF: 말뭉치에서의 용어 사용 횟수
- IDF가 크면 말뭉치 전체에서 용어가 사용되는 빈도가 낮다.

Term Frequency-Inverse Document Frequency

Count-based Model

장점

확률적으로 문서를 대표하는 단어를 찾을 수 있다.
 (맥락을 반영하지는 않는다.)

단점

- 동음이의어를 구분할 수는 없다.
 - Rule based model은 문장과 맥락을 이해하지 못하므로 동음이의어 등을 구분할 수 없다.