Homework (12)

1. Given $f: \mathbb{R}^n \to \mathbb{R}$, consider the general iterative algorithm

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)},$$

where $\mathbf{d}^{(1)}, \mathbf{d}^{(2)}, \cdots$ are given vectors in \mathbb{R}^n and α_k is chosen to minimize $f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$; that is,

$$\alpha_k = \operatorname*{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}).$$

Show that for each k, the vector $\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}$ is orthogonal to $\nabla f(\mathbf{x}^{(k+1)})$ (assuming that the gradient exists).

Homework (12)

2. Use the steepest descent method with the knowledge of Hessian, the Gauss-Newton method, Damped Newton method, and the Conjugate Gradient method with three update formulae for β_k to minimize Rosenbrock's function:

$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

Use an initial condition of $\mathbf{x}^{(0)} = [-2, 2]^T$. Terminate the algorithm when the norm of the gradient of f is less than 10^{-5} . Write a report to show the figures of $\log(f(\mathbf{x}^{(k)}) - p^*)$ vs. iteration number k and running time, respectively, and your choice of parameters, and what your observation is. p^* can be estimated by running the "best" algorithm with much more iterations. Remember to restart your computer before running the program. Hand in both your code and report.

Homework (12)

- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be given by $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} \mathbf{x}^T\mathbf{b}$, where $\mathbf{b} \in \mathbb{R}^n$, and \mathbf{Q} is a real symmetric positive definite $n \times n$ matrix. Show that in the conjugate gradient method for this f, $\mathbf{d}^{(k)T}\mathbf{Q}\mathbf{d}^{(k)} = -\mathbf{d}^{(k)T}\mathbf{Q}\mathbf{g}^{(k)}$.
- 4. Consider a conjugate gradient algorithm applied to a quadratic function.
 - a) Show that the gradients associated with the algorithm are mutually orthogonal. Specifically show that $\mathbf{g}^{(k+1)T}\mathbf{g}^{(i)} = 0$ for all $0 \le k \le n-1$ and $0 \le i \le k$.
 - b) Show that the gradients associated with the algorithm are **Q**-conjugate if separated by at least two iterations. Specifically, show that $\mathbf{g}^{(k+1)T}\mathbf{Q}\mathbf{g}^{(i)} = 0$ for all $0 \le k \le n-1$ and $0 \le i \le k-1$.