Digital Logic

# Introduction to Logic

Related Resources:
Mano, Chapter 1 and 2

# Binary Algebra

- All variables have one of two values: 0 1
- Strings of variables represent data
  - Numbers, letters, colours, sounds etc.
  - Only our interpretation provides meaning.
- As numbers:
  - Base 2, each place value means " $+a \times 2^n$ "

$$e.g.: 101_2$$

#### Some examples

$$1_{2}=2^{0}=1_{10}$$

$$10_{2}=2^{1}=2_{10}$$

$$100_{2}=$$

$$1111_{2}=$$

$$10000_{2}=$$

$$10000_{2}=$$

#### Know these

$$0_{10} = 0000_2$$
  $8_{10} = 1000_2$   
 $1_{10} = 0001_2$   $9_{10} = 1001_2$   
 $2_{10} = 0010_2$   $10_{10} = 1010_2$   
 $3_{10} = 0011_2$   $11_{10} = 1011_2$   
 $4_{10} = 0100_2$   $12_{10} = 1100_2$   
 $5_{10} = 0101_2$   $13_{10} = 1101_2$   
 $6_{10} = 0110_2$   $14_{10} = 1110_2$   
 $7_{10} = 0111_2$   $15_{10} = 1111_2$ 

#### Others to know

```
2^{10} = 1024 = 1 \text{ Kilo-} \approx 10^3 = 1 \text{ k}
2^{20} = 1,048,576 = 1 \text{ Mega-} \approx 10^6
2^{30} = 1,073,741,824 = 1 \text{ Giga-} \approx 10^9
2^{40} = 1,099,511,627,776 = 1 \text{ Tera-} \approx 10^{12}
2^{50} = 1,125,899,906,842,624 = 1 Peta = 10^{15}
   these are for bytes.
Use exactly 10^3, 10^6, 10^9, 10^{12}, 10^{15}
   for Hz, flops etc
```

### In general

 $2^{10n} \approx 10^{3n}$ 

Exa-: 
$$10^{18} \approx 2^{60} = 1.1529 \times 10^{18}$$

Zetta-: 
$$10^{21} \approx 2^{70} = 1.1806 \times 10^{21}$$

Yotta-: 
$$10^{24} \approx 2^{80} = 1.2089 \times 10^{24}$$

• Works OK till n = 30

$$2^{300} = 2.037035976334486 \times 10^{90}$$

$$2^{299} = 1.018517988167243 \times 10^{90}$$

• Googol =  $10^{100} \approx 2^{333}$ 

### Back to binary algebra

- an *Algebra* is a system with *symbols* operated upon by *actions*.
- Binary algebra: two symbols are {0,1}
  - also called Boolean Algebra: George Boole (1815-1864)
  - Could use any two symbols:
- And the actions?
  - 3 basic primitives
  - AND (•, &, ∩, XY) OR (+, |, ∪) NOT (/,¬, $\overline{X}$ , X')

$$X \longrightarrow Z = X \bullet Y \longrightarrow X \longrightarrow Z = X + Y \longrightarrow Z = /X$$

#### What do they do?

- AND is 1 iff all inputs are 1
- OR is 0 iff all inputs are 0 (not like english)
- NOT is opposite:
  - 1 if the input is 0, and 0 if the input is 1
- Truth tables:

| X | y | ху |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

| _ |   |   |    |
|---|---|---|----|
|   | X | y | ХУ |
| L | 0 | 0 | 0  |
|   | 0 | 1 | 0  |
|   | 1 | 0 | 0  |
|   | 1 | 1 | 1  |

| X | X |
|---|---|
| 0 | 1 |
| 1 | 0 |

#### Functions of two variables

- A function of 2 variables has 4 possible output cases
- Therefore there are only 16 possible functions of 2 variables (some with names and common usage)

| A  | В  | F0    | F1  | F2 | F3 | F4 | F5 | F6  | F7 | F8  | F9   | F10      | F11 | F12 | F13 | F14  | F15  |
|----|----|-------|-----|----|----|----|----|-----|----|-----|------|----------|-----|-----|-----|------|------|
| 0  | 0  | 0     | 0   | 0  | 0  | 0  | 0  | 0   | 0  | 1   | 1    | 1        | 1   | 1   | 1   | 1    | 1    |
| 0  | 1  | 0     | 0   | 0  | 0  | 1  | 1  | 1   | 1  | 0   | 0    | 0        | 0   | 1   | 1   | 1    | 1    |
| 1  | 0  | 0     | 0   | 1  | 1  | 0  | 0  | 1   | 1  | 0   | 0    | 1        | 1   | 0   | 0   | 1    | 1    |
| 1  | 1  | 0     | 1   | 0  | 1  | 0  | 1  | 0   | 1  | 0   | 1    | 0        | 1   | 0   | 1   | 0    | 1    |
| Na | me | Zeros | AND | AB | A  | ĀB | В  | XOR | OR | NOR | XNOR | <u>B</u> | A+B | A   | Ā+B | NAND | Ones |

# Venn Diagrams



CS 201 10

# More gates

3-input AND

8-input OR





Formulas?

# Why these symbols?

AND is much like multiplication

$$0 \cdot n = 0$$

$$1 \cdot n = n$$



OR is sort of addition, but not really

$$0 + n = n$$

$$1 + n = 1$$

| X | n | x+n |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

Best to think of it as entirely new functions

#### Boolean Functions (e.g. F = A + B)

- Functions consist of
  - Binary variables
  - Binary constants {1, 0}
  - Logic operation symbols
  - Parentheses
  - Equal sign
- Each variable represents a binary value
  - For a given set of input variable values, A, B  $\in$  {0,1}, F  $\in$  {0,1}

#### Representations: Same Info

$$\frac{Function}{F = X + \overline{Y}Z}$$

#### Circuit Diagram



#### Truth Table

| X | Y | Z | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

# Boolean Identities (Mano and Kime table 2-3)

$$1. x + 0 = x$$

$$3. x + 1 = 1$$

$$5. x + x = x$$

$$7. x + \overline{x} = 1$$

9. 
$$\overline{X}=X$$

10. 
$$x + y = y + x$$

12. 
$$x+(y+z) = (x+y)+z$$

14. 
$$x(y+z) = xy+xz$$

16. 
$$\neg(x+y)=(\overline{x})(\overline{y})$$

$$2. x \cdot 1 = x$$

$$4. x \cdot 0 = 0$$

6. 
$$x x = x$$

$$8. x \overline{x} = 0$$

11. 
$$x y = y x$$

13. 
$$x(yz) = (xy)z$$

15. 
$$x+yz = (x+y)(x+z)$$

17. 
$$(xy)' = \overline{X} + \overline{y}$$

#### Identity

#### Proofs

- All of these identities (and all valid boolean functions) can be proved exhaustively using truth tables.
  - Shows that in all cases, for all inputs, the output is the same
  - e.g. demorgan

| X | y | X' | y' | x'+y' | ху | (xy)' |
|---|---|----|----|-------|----|-------|
| 0 | 0 | 1  | 1  | 1     | 0  | 1     |
| 0 | 1 | 1  | 0  | 1     | 0  | 1     |
| 1 | 0 | 0  | 1  | 1     | 0  | 1     |
| 1 | 1 | 0  | 0  | 0     | 1  | 0     |

# Simplification

- Given a boolean function,
- Use identities to simplify:
  - Reduce number of *literals*
    - A literal is a single instance of a variable or input.
  - Reduce number of logic levels
    - A logic level is a gate feeding into another gate.
  - Reduce number of operations
    - An operation is a gate performing a computation.
- Sometimes can't reduce all of these at the same time
  - Tradeoffs, e.g. more levels for fewer literals

# Simplification Examples(1)

• 
$$F = X'YZ+X'YZ'+XZ'$$

8 literals, 3 levels, 6 operations.

= 
$$X'Y(Z+Z')+XZ$$
 Distributive  
=  $X'Y(1)+XZ$  Inverse  
=  $X'Y+XZ$  AND with 1

4 literals, 3 levels, 4 operations.

#### Simplification proof by observing truth table



CS 201 19

# Simplification Examples(2)

• 
$$F = XY+X'Z+YZ$$



# Why simplify?

- Circuit cost
- gates cost money to build
- gates take time to operate
- Gate Delay



- time from change at input and stable output
- NOT gate: 1-5 ns, AND/OR gate: 5-10 ns
- Can be in the ps range depending on implementation technology
- Nanoseconds matter. Light travels a full foot in a nanosecond

# Find the complement

#### Duality

- The *Duality* principle: the dual  $F^*$  of a function F is formed by swapping all AND $\Leftrightarrow$ OR and all  $1\Leftrightarrow$ 0
  - If F=G, then  $F^*=G^*$

- You can find the complement of a function by finding the dual, and complementing each literal
  - essentially the same as demorgan
- Calculate truth table, switch 1⇔0

ZS 201

#### Some Theory

#### Minterm

- A product term (i.e. AND term) with exactly one literal for each variable in the function
- e.g. ABC, ABC, ABC...

#### Maxterm

- A sum term (i.e. OR term) with exactly one literal for each variable in the function
- e.g. A+B+C, \(\overline{A}\)+B+C, \(\overline{A}\)+\(\overline{B}\)+\(\overline{C}\)...
- Note: product = AND, sum = OR but...
  - different from add, multiply, as we've seen

#### All 2-variable minterms and maxterms

| A | В | Minterm | Symbol | Maxterm | Symbol |
|---|---|---------|--------|---------|--------|
| 0 | 0 | ĀB      | m0     | A+B     | MO     |
| 0 | 1 | ĀB      | m1     | A+B     | M1     |
| 1 | 0 | AB      | m2     | Ā+B     | M2     |
| 1 | 1 | AB      | m3     | Ā+B     | M3     |

- Note:  $\overline{AB} = (A+B)'$  by demorgan
  - in general,  $m_i = M_i'$
- Note: binary encoding of variable values give minterm names
  - $\bullet$  00 = 0; 11 = 3

#### 3-variable minterms and maxterms

| A | В | C | Minterm | Symbol | Maxterm                                  | Symbol |
|---|---|---|---------|--------|------------------------------------------|--------|
| 0 | 0 | 0 | ABC     | $m_0$  | A+B+C                                    | $M_0$  |
| 0 | 0 | 1 | ĀBC     | $m_1$  | $A+B+\overline{C}$                       | $M_1$  |
| 0 | 1 | 0 | ĀBC     | $m_2$  | $A+\overline{B}+C$                       | $M_2$  |
| 0 | 1 | 1 | ĀBC     | $m_3$  | $A+\overline{B}+\overline{C}$            | $M_3$  |
| 1 | 0 | 0 | ABC     | $m_4$  | $\overline{A}+B+C$                       | $M_4$  |
| 1 | 0 | 1 | ABC     | $m_5$  | $\overline{A}+B+\overline{C}$            | $M_5$  |
| 1 | 1 | 0 | ABC     | $m_6$  | $\overline{A}+\overline{B}+C$            | $M_6$  |
| 1 | 1 | 1 | ABC     | $m_7$  | $\overline{A}+\overline{B}+\overline{C}$ | $M_7$  |

• Note: minterm names ( $e.g. m_0$ ) are ambiguous unless you know how many variables you have

#### Take care when naming maxterms

- Minterms are easy to name.
  - Each literal that is positive counts as a 1
  - Each literal that is negated counts as 0
  - Calculate the binary encoding for the minterm name
    - e.g.  $\overline{A}B\overline{C} = 010 = m2$
- Maxterms are opposite
  - Each literal that is positive counts as a 0
  - Each literal that is negated counts as 1
    - $eg (\overline{A} + B + \overline{C}) = 101 = M6$

#### Canonical Forms

- Any boolean function can be expressed as a sum of minterms or a product of maxterms
- e.g. F(X,Y,Z) = X'Y'+Z= X'Y'(Z+Z') + (X+X')(Y+Y')Z= X'Y'Z+X'Y'Z' + XYZ+XY'Z+X'YZ+X'Y'Z= X'Y'Z'+X'Y'Z+X'YZ+XY'Z+XYZ'= m0 + m1 + m3 + m5 + m7 $= \sum (m0, m1, m3, m5, m7)$  $= \sum m(0,1,3,5,7)$  (Sum of minterms 0, 1, 3, 5, 7)

#### Canonical Forms: product-of-maxterms

• 
$$F(X,Y,Z) = X'Y'+Z$$
  
=  $X'Y'+Z$   
=  $(X'+Z)(Y'+Z)$   
=  $(X'+YY'+Z)(XX'+Y'+Z)$   
=  $(X'+Y+Z)(X'+Y'+Z)(X+Y'+Z)(X'+Y'+Z)$   
=  $(X+Y'+Z)(X'+Y+Z)(X'+Y'+Z)$   
=  $M_2 M_4 M_6$   
=  $\prod (M_2, M_4, M_6)$   
=  $\prod M(2, 4, 6)$ 

product of maxterms 2,4,6

#### Duality of Canonical Forms

- Note:  $\sum m(0, 1, 3, 5, 7) = \prod M(2, 4, 6)$
- in general,
  - $\Sigma m({a}) = \Pi M({b}), where$ 
    - $\{a\}\cup\{b\}=\{0,1,...2n-1\}, and$
    - $\{a\} \cap \{b\} = \{\emptyset\}$
    - and n is the number of variables

CS 201 30

#### Canonical Forms and Demorgan

• Also:  $\sum m(\{a\}) = (\prod M(\{a\}))'$ 

$$(\prod M(\{a\}))' = (M_{a1} \cdot M_{a2} \cdot ... \cdot M_{ak})'$$
  
=  $M_{a1}' + M_{a2}' + ... + M_{ak}'$   
=  $m_{a1} + m_{a2} + ... + m_{ak}$  because  $m_i = M_i'$   
=  $\sum m(\{a\})$ 

• e.g.  $M_0' = (A+B+C)' = A'B'C' = m_0$ 

#### Standard Forms

- Sum of Products form (SOP)
  - e.g. F = A(B+C) = AB+AC
  - can be simpler than canonical (sum of minterms)
  - sum of minterms is an example of SOP
- Product of Sums form (POS)
  - e.g. F = A+BC = (A+B)(A+C)
  - product of maxterms is an example of POS

### Implementation of Standard Forms with gates

- OR-AND implementation
  - POS can be implemented in two levels
    - sum terms become OR gates (with inverter inputs as necessary
    - one *n*-input AND gate
- AND-OR implementation
  - SOP can be implemented in two levels
    - product terms become AND gates
    - one *n*-input OR gate

S 201 33

# Example of AND-OR standard form

•  $F = \overline{A}BC + AB\overline{C} + AC$ 

 Note: this could be simplified to F=B(AC+AC)+AC
 but this is not standard form





#### Same example in canonical form

All terms must be minterms

$$F = \overline{A}BC + AB\overline{C} + AC$$

$$= \overline{A}BC + AB\overline{C} + AC(B + \overline{B})$$

$$= \overline{A}BC + AB\overline{C} + ABC + A\overline{B}C$$



CS 201 35

### Simplifying Standard Forms

- Two-level minimum cost design
  - POS or SOP with minimum number of terms
  - Each term has minimum number of literals
- "best" design (depending on criteria)
- How do we find this?
  - Repeated boolean simplification
    - we must somehow make sure it is the simplest.
- Systematic method to find simplest:
  - Karnaugh Maps

#### Karnaugh Maps

- Also called k-maps
- Graphical representation of all minterms
  - Map depends on number of variables
- Allows systematic simplification of boolean functions
- Variables are enumerated as both positive (A=1) and negative (A=0),
  - Half are listed vertically, the other half horizontally, making a grid

37 S 201

### K-maps: 2 variables



#### K-maps: 3 variables

- 3-variable map
- Note minterm ordering
- Adjacent cells differ by one variable

| ͺ BC     |     |     |     |     |
|----------|-----|-----|-----|-----|
| <b>A</b> | 00  | 01  | 11  | 10  |
| 0        | 000 | 001 | 011 | 010 |
| 1        | 100 | 101 | 111 | 110 |

| ͺBC      |    |    |    |    |
|----------|----|----|----|----|
| <b>A</b> | 00 | 01 | 11 | 10 |
| 0        | m0 | m1 | m3 | m2 |
| 1        | m4 | m5 | m7 | m6 |

| ͺ BC |        |       |      |       |
|------|--------|-------|------|-------|
| A    | 00     | 01    | 11   | 10    |
| 0    | A'B'C' | A'B'C | A'BC | A'BC' |
| 1    | AB'C'  | AB'C  | ABC  | ABC'  |

# Adjacent cells differ by one variable value Alternate forms are also acceptable





Minterms and Maxterms variables (16 combinations)

| A | В | C | D | Minterm  | Symbol                 | Maxterm     | Symbol          |
|---|---|---|---|----------|------------------------|-------------|-----------------|
| 0 | 0 | 0 | 0 | A'B'C'D' | $m_0$                  | A+B+C+D     | $M_0$           |
| 0 | 0 | 0 | 1 | A'B'C'D  | $m_1$                  | A+B+C+D'    | $M_1$           |
| 0 | 0 | 1 | 0 | A'B'CD'  | $m_2$                  | A+B+C'+D    | $M_2$           |
| 0 | 0 | 1 | 1 | A'B'CD   | $m_3$                  | A+B+C'+D'   | $M_3$           |
| 0 | 1 | 0 | 0 | A'BC'D'  | $m_4$                  | A+B'+C+D    | $M_4$           |
| 0 | 1 | 0 | 1 | A'BC'D   | $m_5$                  | A+B'+C+D'   | $M_5$           |
| 0 | 1 | 1 | 0 | A'BCD'   | $m_6$                  | A+B'+C'+D   | $M_6$           |
| 0 | 1 | 1 | 1 | A'BCD    | $m_7$                  | A+B'+C'+D'  | $M_7$           |
| 1 | 0 | 0 | 0 | AB'C'D'  | $m_8$                  | A'+B+C+D    | $M_8$           |
| 1 | 0 | 0 | 1 | AB'C'D   | $m_9$                  | A'+B+C+D'   | $M_9$           |
| 1 | 0 | 1 | 0 | AB'CD'   | $m_{10}$               | A'+B+C'+D   | $M_{10}$        |
| 1 | 0 | 1 | 1 | AB'CD'   | $m_{11}$               | A'+B+C'+D'  | $M_{11}$        |
| 1 | 1 | 0 | 0 | ABC'D'   | <i>m</i> <sub>12</sub> | A'+B'+C+D   | $M_{12}$        |
| 1 | 1 | 0 | 1 | ABC'D    | <i>m</i> <sub>13</sub> | A'+B'+C+D'  | M <sub>13</sub> |
| 1 | 1 | 1 | 0 | ABCD'    | $m_{14}$               | A'+B'+C'+D  | M <sub>14</sub> |
| 1 | 1 | 1 | 1 | ABCD     | <i>m</i> <sub>15</sub> | A'+B'+C'+D' | M <sub>15</sub> |

#### K-maps: 4 variables



#### A k-map is a torus



| m0  | m1  | m3  | m2  |
|-----|-----|-----|-----|
| m4  | m5  | m7  | m6  |
| m12 | m13 | m15 | m14 |
| m8  | m9  | m11 | m10 |

- m0 is adjacent to m1, m2, m4, and m8
- m15 is adjacent to m7, m13, m14, and m11





#### K-map simplification

- Adjacent cells differ by one variable
  - Up, down, left, right
  - Wrap around
  - Not diagonally



- Simplify: grouping cells
  - groups of cells = groups of related minterms
  - simplify minterms in a standard way.

#### K-map simplification

- Example:  $F(A,B,C)=\Sigma m(0,1)$ 
  - $= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C$
  - $= \overline{AB}(\overline{C}+C)$
  - $= \overline{A}\overline{B}$
- Note variable values
  - for the group:



- only C is different between these two minterms,
- so C disappears from the product term.
- Uses distributive rule for each group.

#### K-map simplification

•  $F(W,X,Y,Z)=\Sigma m(1,5,7,8,10,12,14)$ 



$$= W'Y'Z+W'XZ+WZ'$$

#### Essential Prime Implicants

- an *Implicant* is another name for a group of 1s on a map
  - must be a power of 2 (i.e. 1, 2, 4, 8, or 16 terms), and in a rectangular shape
- a *Prime Implicant* is an implicant that is as large as possible
- an Essential Prime Implicant is a prime implicant that contains at least one term not covered by another Prime Implicant

## Example (1)



Essential Prime Implicants

Non-Essential
Prime Implicant
Non-prime Implicant

# Example (2)

#### indicate all essential prime implicants



#### k-map procedure

- draw the map
- write "1" for each minterm in the function
- fill the rest with "0"
- find essential prime implicants
- choose prime implicant(s) to cover remaining "1"s



$$F = BC+A'C'D+B'C'D+ACD'$$

also valid:

$$F = BC + A'BD + B'C'D + ACD'$$

write corresponding terms in SOP form

# Example

•  $F(A,B,C) = \sum m(1, 2, 3, 4, 5)$ 

#### Two more examples

$$F(X,Y,Z) = \sum m(3,4,6)$$
  $G(X,Y,Z) = \sum m(0,2,4,5,6)$ 

#### New Feature: "Don't Care" Conditions

- A "don't care" is a minterm for which the function is undefined, or when we don't care what the result is
- Often used when that input combination is impossible
  - so the output can be unspecified.
- e.g. 4-bit binary code for a decimal digit
  - Minterms 0-9 would valid; 10-15 would be invalid
- Notation:  $F = \sum m(...) + d(...)$ 
  - 'x' indicates a don't care in a k-map or truth table
- In a k-map, can be in a group or not.
  - Use selectively to make biggest groups

#### Don't Care Conditions: example

 $F(W,X,Y,Z)=\Sigma m(1,3,7,11,15)+d(0,2,5)$ 



### Simplifying in POS form

- All k-maps so far have been in SOP form
- k-maps can be used to find POS form as well
- Find the form for the *complement* of the map
  - Recall  $\sum m(\{a\}) = (\prod M(\{a\}))'$
  - Group the *zeros* instead of the ones, then complement the result



$$G' = X'Z + YZ$$

$$G = (X'Z+YZ)'$$

$$= (X+Z')(Y'+Z') \rightarrow POS$$

# More gates

$$F = (XY)'$$



$$F = (X+Y)'$$



| X | Y | (XY)' |
|---|---|-------|
| 0 | 0 | 1     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |

| X | Y | (X+Y)' |
|---|---|--------|
| 0 | 0 | 1      |
| 0 | 1 | 0      |
| 1 | 0 | 0      |
| 1 | 1 | 0      |

#### Universal Gate

- A universal gate is a gate which (in combination with copies of itself) can implement AND, OR, or NOT
- All circuits can be represented in standard form (SOP)
  - so all circuits can be build with •, +,
  - so a universal gate can implement any circuit

#### NAND and NOR are both universal

If all you have is a bucket of NAND gates (or a bucket of NOR gates), you can build any circuit



S 201

# NAND and NOR implementations of circuits

- Implement a circuit with only NAND (or NOR)
  - Function-based:
    - use demorgan to move from AND-OR to NAND
    - e.g. AB+CD = (AB+CD)'' = ((AB)'(CD)')'
  - Circuit-based
    - replace all gates with NAND gates and undo any complements caused by the replacement

#### NAND implementation: Function-based

• e.g. F=AB+CD+E = ((AB)'(CD)'E')'





#### NOR implementation: Function-based

- From a POS form
- e.g. F = (A+B)(C+D)E = ((A+B)'+(C+D)'+E')'





#### NOR implementation

Note the gate equivalence:



- This is a circuit-level implementation of demorgan's law: (A+B)' = A'B'
- "bubbles" represent inversions
- When replacing gates, two "bubbles" cancel out.

### NAND / NOR implementation: Circuit-based



- Original Circuit: SOP
  - Z=PQ+QR



- NAND implantation of SOP
  - replace gates with NAND
  - added bubbles cancel out e





- NOR implementation of SOP
  - replace gates with NOR
  - added bubbles must be negated 😕

# More gates

XOR
$$F = XY' + X'Y$$

$$= X \oplus Y$$



| XNOR            |
|-----------------|
| F=XY+X'Y'       |
| $=(X\oplus Y)'$ |



| X | Y | X  Y |
|---|---|------|
| 0 | 0 | 0    |
| 0 | 1 | 1    |
| 1 | 0 | 1    |
| 1 | 1 | 0    |

| X | Y | $(X \oplus Y)'$ |
|---|---|-----------------|
| 0 | 0 | 1               |
| 0 | 1 | 0               |
| 1 | 0 | 0               |
| 1 | 1 | 1               |

#### XOR and XNOR

• Prove that  $(X\overline{Y} + \overline{X}Y)' = XY + \overline{X}\overline{Y}$ 

#### Exclusive-OR and Exclusive-NOR Venn Diagram



## XOR and parity

- *Parity* refers to the number of 1s (or 0s) in a string of bits
- A bitstream exhibits even parity if there is an even number of 1s, and odd parity if there is an odd number of 1s
- XOR can be used to calculate the parity of a bitstream
  - NOR will be true if there is an odd number of 1s
  - NOR will be true if there is an even number of 1s

### Error Checking using Parity

- You can enforce even parity by adding a single bit to the bitstream
  - Set to 1 or 0 to make total number of 1s even
  - Odd parity make an odd number of 1s
- Parity bit generator
  - Given a bit string, generate the parity bit
- Parity bit checker
  - Given a bit string with parity, verify that the bit stream is correct.

#### Error Checking using Parity

- Parity verification
  - Will only detect an odd number of errors.
    - if there are, say, two errors, they will "cancel out"

- e.g.: 3 bit message, even parity
  - $P = A1 \oplus A2 \oplus A3$

$$C = A1 \oplus A2 \oplus A3 \oplus P$$



