Problem 106: Mandelbrot Set

Difficulty: Medium

Author: Louis Ronat, Denver, Colorado, United States

Originally Published: Code Quest 2019

Problem Background

The Mandelbrot set is drawn by considering the recursive function $Z_{n+1} = Z_n^2 + c$, where c is a complex number of the form a + bi (in mathematics, i is an imaginary number with the value of $\sqrt{-1}$; thus, $i^2 = -1$). By iterating repeatedly, using each value of Z to calculate the next value, we find that for some input values of c, Z grows without bound. For others, Z remains bound.

To draw the Mandelbrot set, we use the "complex plane", where the horizontal x-axis represents the value of a, and the vertical y-axis represents the value of b. Each point is colored based on the number of iterations (n) we can perform before the absolute value of $Z(|Z_n|)$ becomes greater than a specified value. When this happens, it is said that the function "diverges". In the image below, black indicates that $|Z_n|$ remained below a prescribed value for all values of n. Blue pixels represent points at which it took many iterations to get $|Z_n|$ above that value; red pixels required fewer iterations.

© 2019, 2020 Lockheed Martin Corporation. All Rights Reserved.

Let's consider the function using a value of c = 1.1 + 2i.

Regardless of the value of c, the value of Z_0 always equals 0. We can use this to determine the value of Z_1 :

$$Z_1 = Z_0^2 + c$$

 $Z_1 = 0^2 + 1.1 + 2i$
 $Z_1 = 1.1 + 2i$

From this, we can see that for any value of c, $Z_1 = c$. Now we need to determine if the function has diverged. For the purposes of this problem, we'll consider the function to have diverged if $|Z_n| \ge 100$. Since i is an imaginary number, we use this formula to determine the absolute value of numbers of the form a + bi:

$$|Z_1| = \sqrt{a_1^2 + b_1^2}$$

$$|Z_1| = \sqrt{1.1^2 + 2^2}$$

$$|Z_1| = \sqrt{1.21 + 4}$$

$$|Z_1| \approx 2.2825$$

2.2825 is less than 100, so the function hasn't diverged yet. We need to do more iterations to determine when it diverges, if ever:

$$\begin{split} Z_2 &= {Z_1}^2 + c \\ Z_2 &= (a_1 + b_1 i)^2 + a_0 + b_0 i \\ Z_2 &= (1.1 + 2i)^2 + 1.1 + 2i \\ Z_2 &= 1.1^2 + 1.1(2i) + 1.1(2i) + (2i)^2 + 1.1 + 2i \\ Z_2 &= 1.21 + 4.4i - 4 + 1.1 + 2i \\ Z_2 &= -1.69 + 6.4i \\ a_2 &= -1.69 \\ b_2 &= 6.4 \\ |Z_2| &= \sqrt{-1.69^2 + 6.4^2} \\ |Z_2| &\approx \sqrt{2.8561 + 40.96} \\ |Z_2| &\approx 6.6194 \end{split}$$

(Remember that $i^2 = -1$, so above, $(2i)^2 = 2^2 * i^2 = 4 * -1 = -4$.)

 $|Z_2|$ is still less than 100, so it hasn't diverged yet. How many iterations do we need to do to reach that point?

n	Z	а	b	Z
1	1.1 + 2 <i>i</i>	1.1	2	2.2825
2	-1.69 + 6.4 <i>i</i>	-1.69	6.4	6.6194
3	-37.0039 - 19.632 <i>i</i>	-37.0039	-19.632	41.8892
4	984.9732 + 1454.9211 <i>i</i>	984.9732	1454.9211	1756.9769

From Lockheed Martin Code Quest™ Academy - <u>www.Imcodequestacademy.com</u>

So at n = 4, we see that the value of |Z| > 100. This means that for this value of c, the function has diverged at 4. We color the point at x = 1.1, y = 2 an appropriate color for that value, and move on to the next value of c to be checked.

Problem Description

Your program must identify the color to use in a rendering of the Mandelbrot set for a given value of c. Use the following table and the explanation above to determine what colors should be used:

Value of <i>n</i> when function diverges	Color
≤ 10	RED
11-20	ORANGE
21-30	YELLOW
31-40	GREEN
41-50	BLUE
> 51	BLACK

For the example calculation above, the function diverged at n=4, so the color for that value of c should be red.

Sample Input

The first line of your program's input, received from the standard input channel, will contain a positive integer representing the number of test cases. Each test case will include a single line of input with two decimal numbers separated by spaces. These numbers represent the values for a and b, respectively. Remember that c = a + bi.

4 1.1 2.0 -0.7 0.2 -0.5 0.65 -0.5 0.608

Sample Output

For each test case, your program must output the value of c, followed by a space, followed by the color used to render that value of c according to the table above. The color should be printed in uppercase letters. Decimal values should be printed as they were received from the input.

```
1.1+2.0i RED
-0.7+0.2i BLACK
-0.5+0.65i ORANGE
-0.5+0.608i BLUE
```