北京化工大学 2014 --- 2015 学年第一学期

《CHEMICAL REACTION ENGINEERING》期中考试试卷

6

B. t_1 =300°C; t_2 =300°C

D. t_1 =500°C; t_2 =500°C

4

总分

姓名:

3

2

1

班级:

题号

C. t₁=500°C; t₂=300°C C. t₁=300°C; t₂=500°C

	得分										
1. Choose the most suitable one from the four answers (5 points for each one, 25 points in total)											
(1) A r	eaction conve	ersion rea	ches 309	% at t=1	Omin and	l 45% at	t=15min	, the rea	ction may be ()	
A.Zero-order reaction						B.First-order reaction					
C.Second-order reaction					D.Third-order reaction						
(2) The	e first order r	eactions i	n series	$A^{\frac{k_1}{2}}$	$\rightarrow R^{\frac{k_2}{2}}$	$\rightarrow S$ pro	ceed in a	n ideal r	eactor. Which one of	of	
the following four conditions makes the fractional yield of product R maximum? ()											
A. $k_1/k_2=1$, batchreactor						B. k ₁ /k ₂ =10, batch reactor					
C .	C. $k_1/k_2=1$, mixed flow reactor					D.	D. $k_1/k_2=10$, mixed flow reactor				
(3) If -r _A =-(dC _A /dt) =0.1mol/liter·sec when C _A =1mol/liter, what is the rate of reaction when C _A =10 mol/ liter? Note: the order of reaction is not know.											
A.().1mol/liter·s	ec	B.0.5	mol/liter	·sec	C. 1	mol/liter	·sec	D. Not know		
(4) Gaseous reaction A→3R is allowed to proceed to completion, equal molar A and inerts present at											
the start, what is the value of expansion factor ε ? ()											
A.	1	I	3. 2		C.3	3	4	D.4			
(5) The	e second orde	er reaction	ns in seri	ies A—	$\xrightarrow{h_1 < 0} $	$R = \frac{\triangle H_2}{t_2}$	$\rightarrow S p$	roceed ii	n a plug reactor. Wh	nich	

2. Write your answers in the blanks (5 points for each one, 20points in total)

(1) Liquid A (C_{A0} =1mol/liter) decomposes by second-order kinetics in a batch reactor, 50% of A will be converted in a 5-minute run. How much time would it take to reach 75% conversion? _____15min_____

one of the following four conditions makes the concentration of product R maximum? (

- (2) Time required to process one reactor volume of feed is called space time
- (3)A reaction proceeds with an activation energy of 100kJ/mol. The reaction rate is 1 at 500°C, the reaction rate is 2 at 536 °C.

(4) Liquid phase reactions $A + B \xrightarrow{k_1} R + S$ and $R + B \xrightarrow{k_2} P + S$ are allowed to proceed to completion, an equimolar feed of $C_{A0} = C_{B0} = 1 \text{mol} / \text{liter}$ is introduced into a batch reactor, the final concentrations of A and R are 0.3mol/liter, 0.4mol/liter, respectively, the value of k_1/k_2 is 1.25 Note: you may use the following figure.

- 3.A catalytic reaction C₂₀H₄₂→R is proceed in a batch reactor, the reactor unit contains 100 tons of ρ=1000 kg/m³ porous catalyst, 2820m³ of ρ=1000 kg/m³ reactants are treated per day, if 72% of the reactants turn into products, what is the rate of reaction, expressed as -r (mols reacted/kg cat·hr)?
 (8points) 3 mols reacted/kg cat·hr
- **4.** A liquid reactant(1mol/liter) passes through two mixed flow reactors in series. The concentration of A in the exit of the first reactor is 0.5mol/literand 0.2mol/liter of the second reactor exit. The reaction is of first-order with respect to A, what is the value of the reactor volume ratio V_2/V_1 ? (10 points)

1.5

5. A first order gas decomposes reaction $A \rightarrow 2R$ proceeds in a plug flow reactor isothermally. The inlet stream with 60% A and 40% inerts. The volume of outlet stream is 1.2 times as inlet one and the mean residence time is 10 sec. Please find the conversion of reactant A and the rate constant k. (12points)

$$x_A=1/3$$
 k=0.04sec⁻¹

6.Qualitatively find the optimum temperature progression to maximize C_S for the reaction scheme

Data: $E_1=10$, $E_2=25$, $E_3=15$, $E_4=10$, $E_5=20$, $E_6=25$ (10 points)

Low-high-low

7. Liquid reactant A decomposes as follows:

$$A \to R$$
 $r_R = k_1 C_A^2$ $k_1 = 0.4m^3 \cdot mol^{-1} \cdot min^{-1}$

 $A \rightarrow S$ $r_S = k_2 C_A$ $k_2 = 2 \text{ min}^{-1}$

A feed of aqueous A (C_{A0} =10mol·m⁻³) enters a reactor, decomposes, and a mixture of A, R, and S leaves. Find C_R and C_S and τ for X_A = 0.9 in a plug flow reactor. (15 points)

 C_R =4.42mol/m³ C_S =4.58mol/m³ t=0.693min

北京化工大学 2014——2015 学年第一学期

《CHEMICAL REACTION ENGINEERING》

期中考试试卷答案

1

- (1) A (2) B (3) D (4) A (5) B

2

- 15 minutes 1.
- space time 2.
- 3. 536
- 4. 1.25

3.

$$n = (2820*1000) / 0.282 = 10^7 \text{ mol}$$

 $-r = (0.72*10^7) / (10^5*24) = 3 \text{ mols reacted/kg cat·hr}$

4.

$$\tau = \frac{C_{A0}\Delta x_{A}}{-r_{A}} = \frac{C_{A0}\Delta x_{A}}{kC_{A0}(1-x_{A})} \qquad k\tau = \frac{\Delta x_{A}}{(1-x_{A})}$$
For $x_{A} = 0.5$
$$k\tau_{1} = \frac{0.5}{(1-0.5)} = 1$$
For $x_{A} = 0.8$
$$k\tau_{2} = \frac{0.8 - 0.5}{(1-0.8)} = 1.5$$

$$\frac{k\tau_{2}}{k\tau_{1}} = 1.5$$

$$V_{2}/V_{1} = 1.5$$

5.

$$\delta_{A} = \frac{2-1}{1} = 1 \qquad y_{A0} = 0.6 \qquad \varepsilon_{A} = 1 \times 0.6 = 0.6$$

$$V = V_{0} (1 + \varepsilon_{A} x_{A}) \qquad 1.2 = 1 \times (1 + 0.6 x_{A}) \qquad x_{A} = 1/3$$

$$\bar{t} = C_{A0} \int_{0}^{x} \frac{dx_{A}}{-r_{A} (1 + \varepsilon_{A} x_{A})} \qquad k\bar{t} = -\ln(1 - x_{A})$$

$$k = \frac{-\ln(1 - x_{A})}{\tau} = \frac{-\ln(1 - 1/3)}{10} = 0.0405 \text{ sec}^{-1}$$

6.

low-high-low

7.

$$\begin{split} \varphi_R &= \frac{dC_R}{dC_A} = \frac{k_1 C_A^2}{k_2 C_A + k_1 C_A^2} = \frac{0.4 C_A}{2 + 0.4 C_A} \\ C_R &= \int_{C_A}^{C_{A0}} \varphi_R dC_A = \int_1^{10} \frac{0.4 C_A}{2 + 0.4 C_A} dC_A \\ \varphi_S &= \frac{dC_S}{dC_A} = \frac{k_2 C_A}{k_2 C_A + k_1 C_A^2} = \frac{2}{2 + 0.4 C_A} \\ C_S &= \int_{C_A}^{C_{A0}} \varphi_S dC_A = \int_1^{10} \frac{2}{2 + 0.4 C_A} dC_A = \frac{2}{0.4} \ln(2 + 0.4 C_A) \Big|_1^{10} \\ &= \frac{2}{0.4} \ln \frac{2 + 0.4 \times 10}{2 + 0.4 \times 1} = 4.58 mol \cdot m^{-3} \\ C_R &= (C_{A0} - C_A) - C_S = (10 - 1) - 4.58 = 4.42 mol \cdot m^{-3} \\ \tau &= \int_1^{10} \frac{1}{-r_A} dC_A = \int_1^{10} \frac{1}{k_2 C_A + k_1 C_A^2} dC_A = \int_1^{10} \frac{1}{2 C_A + 0.4 C_A^2} dC_A = \int_1^{10} \frac{1}{10} \times \frac{1}{0.2 C_A (1 + 0.2 C_A)} dC_A \\ &= \frac{1}{10} \int_1^{10} (\frac{1}{0.2 C_A} - \frac{1}{1 + 0.2 C_A}) dC_A = \frac{1}{10} \left[\frac{1}{0.2} \ln C_A \right]_1^{10} - \frac{1}{0.2} \ln(1 + 0.2 C_A) \Big|_1^{10} \right] = 0.693 \, \text{min} \end{split}$$