Constructing Pairing-Friendly Elliptic Curves

Peter Manohar, Xingyou Song

November 29, 2015

Abstract

The goal of this report is to....

Contents

1	Introduction	1
2	Background	3
3	Constructing Pairing-Friendly Curves	6
4	Applications	7

1 Introduction

1.1 Elliptic Curves

For our project, we shall define an elliptic curve to be a curve of the form:

$$E: \ y^2 = x^3 + Ax + B \tag{1}$$

where A and B are elements of some field \mathbb{F} , with $\operatorname{char}(\mathbb{F}) \neq 2,3$. The curve E is nonsingular if $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ are not simultaneously 0 for all points on E. It follows that E is nonsingular $\iff x^3 + Ax + B$ has distinct roots. Through Vieta's formulas, E has distinct roots $\iff ((r_1 - r_2)(r_1 - r_3)(r_2 - r_3))^2 = -(4A^3 + 27B^2)$ is nonzero. Therefore, we shall also require that the discriminant of E,

$$\Delta = -16(4A^3 + 27B^2) \tag{2}$$

is nonzero. The j-invariant of E is defined by:

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2} \tag{3}$$

1.2 Group Law

The points on an elliptic curve form an additive abelian group. We shall define the group law geometrically.

Let $P = (x_p, y_p), Q = (x_q, y_q)$. A line through P and Q intersects E at a third point, $R = (x_r, y_r)$. We define $P + Q := (x_r, -y_r)$. Pictorally, this looks like

The group law can also be defined in terms of algebraic formulas, which can be found in [SIL08].

1.3 Notation

- \mathbb{F} is a field
- $\overline{\mathbb{F}}$ is the algebraic closure of \mathbb{F}
- \mathbb{F}_p is a field with p elements, where p is prime
- $\bullet \ E(\mathbb{F}) = \{ \mathbb{F} \times \mathbb{F} \mid E(x, y) = 0 \}$
- ϕ is an isogeny (or endomorphism)
- ϕ_p is the Frobenius endomorphism
- [n] is the multiplication by n map

2 Background

In this section, we shall define key concepts needed for our report. We will prove some of the more important results, and cite a source otherwise.

2.1 Isogenies

An isogeny of two elliptic curves E_1 and E_2 defined over a field \mathbb{F} is a nonconstant morphism $\phi: E_1 \to E_2$, where ϕ is a group homomorphism from $E_1(\overline{\mathbb{F}}) \to E_2(\overline{\mathbb{F}})$. E_1 and E_2 are isomorphic if $\exists \phi_1: E_1 \to E_2$ and $\phi_2: E_2 \to E_1$, isogenies, such that $\phi_2 \circ \phi_1 = \text{Identity}$.

2.1.1 Separable and Inseparable Isogenies

Any isogeny ϕ can be expressed as $\phi(x,y) = (\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)}y)$, where $u,v,s,t \in \mathbb{F}[x]$, and $\gcd(u,v) = \gcd(s,t) = 1$. An isogeny is separable if $(\frac{u}{v})' = 0$, and is inseparable otherwise. The degree of an isogeny is defined as $\deg(\phi) := \max(\deg(u), \deg(v))$. For any separable isogeny ϕ , $\deg(\phi) = |\ker \phi|$. [SUTH15]

2.1.2 Dual isogenies

Theorem 1 Let $\phi: E_1 \to E_2$ be an isogeny. Then \exists a unique $\hat{\phi}: E_2 \to E_1$ such that $\hat{\phi} \circ \phi = [n]$, where $n = \deg(\phi)$.

The proof of this can be found in either [SIL08] or [SUTH15]. Furthermore, for any two isogenies ϕ_1 and ϕ_2 , $\widehat{\phi_1 + \phi_2} = \widehat{\phi}_1 + \widehat{\phi}_2$.

2.2 Endomorphisms

An endomorphism is an isogeny from E to itself. The endomorphisms of E form a ring, where addition is addition of functions and multiplication is function composition.

2.2.1 Examples

The map $[n]: E \to E$, where $[n]P = P + P + \cdots + P$ (n times) is an endomorphism.

If E is defined over \mathbb{F}_p , the Frobenius map $\phi_p: E \to E$ defined by $\phi_p(x,y) := (x^p, y^p)$ is an (inseparable) endomorphism.

2.2.2 Trace of an Endomorphism

Theorem 2 For any endomorphism ϕ , $\phi + \hat{\phi} = 1 + \deg(\phi) - \deg(1 - \phi)$, where we can regard the RHS as an endomorphism by the map $n \mapsto [n]$.

Proof: As endomorphisms,

$$[\deg(1-\phi)] = \widehat{(1-\phi)}(1-\phi) = (\widehat{1}-\widehat{\phi})(1-\phi) = (1-\widehat{\phi})(1-\phi)$$

$$= 1 - \widehat{\phi} - \phi + \widehat{\phi} \circ \phi = 1 - \widehat{\phi} - \phi + [\deg(\phi)]$$

$$\implies \phi + \widehat{\phi} = 1 + [\deg(\phi)] - [\deg(1-\phi)]$$

By the above theorem, we can now define $\operatorname{trace}(\phi) := \phi + \hat{\phi}$.

Theorem 3 $\#E(\mathbb{F}_p) = p + 1 - t$, where $t = \operatorname{trace}(\phi_p)$

Proof: The fixed field of ϕ_p is \mathbb{F}_p , and $1 - \phi_p$ is separable (see [SUTH15]). Therefore, $\ker(1 - \phi_p) = \#E(\mathbb{F}_p)$. It is clear that $\deg(\phi_p) = p$ by definition $(u(x) = x^p)$ and v(x) = 1. We have that

$$\ker(1 - \phi_p) = \deg(1 - \phi_p) = 1 + \deg(\phi_p) - \operatorname{trace}(\phi_p) = p + 1 - t$$

$$\implies \#E(\mathbb{F}_p) = p + 1 - t$$

2.3 j-invariant

Theorem 4 Two elliptic curves $E_1(\mathbb{F})$ and $E_2(\mathbb{F})$ are isomorphic over $\overline{\mathbb{F}} \iff j(E_1) = j(E_2)$. Furthermore, $\forall j_0 \in \overline{\mathbb{F}}$, \exists an elliptic curve $E(\mathbb{F})$ such that $j(E) = j_0$.

The proof requires some lengthy algebraic manipulation, which can be found in [SIL08]. As a consequence of the proof, for any $j \in \overline{\mathbb{F}}$, we can define an canonical elliptic curve E associated with this j-invariant. We see that

$$E: y^{2} = x^{3} + \frac{3j}{1728 - j}x + \frac{2j}{1728 - j} \text{ if } j \neq 0, 1728$$

$$E: y^{2} = x^{3} + 1 \text{ if } j = 0$$

$$E: y^{2} = x^{3} + x \text{ if } j = 1728$$

$$(4)$$

2.4 Twists

Two curves $E_1(\mathbb{F})$ and $E_2(\mathbb{F})$ are *twists* if they are isomorphic over $\overline{\mathbb{F}}$ but not over \mathbb{F} .

2.4.1 Quadratic Twists

In particular, we are interested in quadratic twists. If $E: y^2 = x^3 + Ax + B$ is an elliptic curve defined over \mathbb{F} , and $d \in \mathbb{F}$ is a nonsquare, then we define the quadratic twist of E as $\tilde{E}: y^2 = x^3 + d^2Ax + d^3B$.

Theorem 5 If $E: y^2 = x^3 + Ax + B$ is an elliptic curve over \mathbb{F}_p with $\#E(\mathbb{F}_p) = p + 1 - t$, then $\#\tilde{E}(\mathbb{F}_p) = p + 1 + t$

Proof: Let $\binom{\cdot}{p}$ be the legendre symbol mod p. For any $x \in \mathbb{F}_p$, we see that $1 + \binom{x^3 + Ax + B}{p} = \#$ of points on E with x-coordinate x. Therefore,

$$\#E(\mathbb{F}_p) = 1 + \sum_{x \in \mathbb{F}_p} \left(1 + \left(\frac{x^3 + Ax + B}{p} \right) \right) = p + 1 + \sum_{x \in \mathbb{F}_p} \left(\frac{x^3 + Ax + B}{p} \right)$$

Since \mathbb{F}_p is a field, $\forall x \in \mathbb{F}_p$, $\exists x' \in \mathbb{F}_p$ such that dx' = x. Therefore, for $\tilde{E}(\mathbb{F}_p)$, we have that

$$\begin{split} &\# \tilde{E}(\mathbb{F}_p) = 1 + \sum_{x \in \mathbb{F}_p} (1 + \left(\frac{(dx)^3 + A(dx) + B}{p}\right)) = p + 1 + \sum_{x \in \mathbb{F}_p} \left(\frac{d^3(x^3 + Ax + B)}{p}\right) \\ &= p + 1 + \sum_{x \in \mathbb{F}_p} \left(\frac{d}{p}\right) \left(\frac{d^2}{p}\right) \left(\frac{x^3 + Ax + B}{p}\right) = p + 1 - \sum_{x \in \mathbb{F}_p} \left(\frac{x^3 + Ax + B}{p}\right) \end{split}$$

2.5 Pairings and Pairing-Friendly Curves

Let G be an additive abelian group of order p, a prime, and let G' be a multiplicative group of order p. A pairing is a bilinear map $e: G \times G \to G'$ satisfying:

- 1. (bilinearity) $e(P_1 + P_2, P_3) = e(P_1, P_3)e(P_2, P_3) \ \forall P_1, P_2, P_3 \in G$
- 2. (non-degeneracy) $e(P, P) \neq 1$, where $G = \langle P \rangle$
- 3. (computability) e is efficiently computable

[PAIR91]

2.5.1 Weil and Tate Pairings

Let $E[r] = \{ P \in E(\mathbb{F}_p) \mid rP = O \}$ be the r-torsion group of $E(\mathbb{F}_p)$.

The Weil Pairing is a map $e_r: E[r] \times E[r] \to \mu_r$, where μ_r is the set of rth roots of unity in $\overline{\mathbb{F}_p}$.

The Tate Pairing is a map: $\tau_r : E(F_p)[r] \times E(F_p)[r]/rE(F_p) \to \mu_r$, where $\tau_r(P,Q) = e_r(P, R - \phi_p(R))$, where R satisfies rR = Q. [WASH08]

2.5.2 Embedding Degree

We do not need the full algebraic closure $\overline{\mathbb{F}_p}$ to determine μ_r . Instead, we can find a positive integer k such that $\mu_r \subset \mathbb{F}_{p^k}$, that is, we require only a finite degree algebraic extension. We define the embedding degree k of $E(\mathbb{F}_p)$ with respect to r as $k := [\mathbb{F}_p(\mu_r) : \mathbb{F}_p]$, the degree of the extension field. Therefore, we can regard k as the smallest positive integer such that $\mu_r \subset \mathbb{F}_{p^k}$.

Alternatively, suppose that k is the smallest positive integer such that $\mu_r \subset \mathbb{F}_{p^k}$. $\mu_r \subset \mathbb{F}_{p^k} \iff r \middle| \# \mathbb{F}_{p^k}^*$ (since multiplicative groups of finite fields are cyclic) $\iff \gcd(r, p^k - 1) = r \iff p^k - 1 \equiv 0 \mod r \iff p \text{ is a primitive } k \text{th root of unity mod } r \text{ (since we picked } k \text{ to be minimal)}.$

Therefore, the embedding degree k is the smallest positive integer satisfying $p^k \equiv 1 \mod r$.

2.5.3 Pairing-Friendly Curves

The Weil/Tate Pairing is efficiently computable when k is small, as computing the pairings requires computation in \mathbb{F}_{p^k} . A curve with efficiently computable pairings is pairing-friendly. Pairing-friendly curves are rare. In general, if $r \approx p$, then $\Pr[\text{pairing-friendly curve}] = O(\frac{\log^3 M}{M})$. [IM98]

3 Constructing Pairing-Friendly Curves

3.1 Complex Multiplication Method

```
Input: p, a prime, and N a positive integer Output: An elliptic curve E(\mathbb{F}_p) where \#E(\mathbb{F}_p) = N t := p + 1 - N; D = \text{square free part of } t^2 - 4p; H_D(x) = \text{Hilbert class polynomial} Pick j \in \mathbb{F}_p such that H_D(j) = 0 Compute E according to (4). if \#E(\mathbb{F}_p) = N then | \text{ return } E | else | \text{ return } \text{ quadratic twist of } E end
```

As a result from the theory of complex multiplication, the above algorithm will always succeed provided that such a curve E exists and will be efficient if D is not too large [SUTH15]. A slight subtlety arises if j = 0 or j = 1728. If j = 0, then there are 6 classes of curves, corresponding to sextic twists of E by $1, \zeta, \zeta^2, \ldots, \zeta^5$, for ζ , a primitive root of unity in \mathbb{F}_p . If j = 1728, then there are 4 classes of curves, corresponding to quartic twists of E by $1, \zeta, \ldots \zeta^3$, for ζ , a primitive root of unity in \mathbb{F}_p . If a curve E exists, then one of these curves will satisfy the conditions of the algorithm. TODO NEED SOURCE

Rationale for this algorithm:

3.2 Cocks Pinch Method

We wish to construct a curve with a subgroup of size r and embedding degree k. Suppose we also have chosen a CM discriminant D such that $\left(\frac{D}{r}\right) = 1$. The Cocks Pinch method finds a prime p and the trace of Frobenius t such that \exists an elliptic curve E over \mathbb{F}_p with trace t, and a subgroup of size r with embedding degree k. There are 3 conditions on p, t:

- 1. $t^2 4p = f^2D$, for some f. This means that E has CM discriminant D
- 2. $p+1-t \equiv 0 \mod r$. This means that $r \mid \#E(\mathbb{F}_p) \implies$ there is a subgroup of size r by the characterization of finitely generated abelian groups
- 3. p is a primitive kth root of unity mod r. As mentioned earlier, this condition is equivalent to E having embedding degree k with respect to the subgroup of size r.

We see that we only need to satisfy the above 3 conditions for p,t. To do this, we first choose g, a primitive kth root of unity mod r. We know that $t-1 \equiv p \equiv g \mod r$. Using (1), we see that $\frac{(t^2-f^2D)}{4}=p$. We can set $a=2^{-1}(g+1)\mod r$ (as integers). Then, $2a \equiv g+1 \equiv t \mod r \implies a^2 \equiv \frac{t^2}{4}\mod r$. We can also set $f_0=\frac{2(a-1)}{\sqrt{D}}\mod r$. Suppose $p=\frac{(t^2-f_0^2D)}{4}$ is prime, and t=2a. Then $p+1-t \equiv a^2-(a-1)^2+1-t \equiv 2a-1+1-t \equiv 0 \mod r$, so that (2) is satisfied, and (2) \implies (3) since $t-1 \equiv g$. (1) is satisfied by construction of p, and so we have the desired output. If p is not prime, then we can compute $p=\frac{(t^2-f^2D)}{4}$ for $f=f_0+ir$, which gives new values for p while preserving the above congruences mod r. If the algorithm succeeds in finding a prime p then it outputs p,t, and will output \perp if it fails. The algorithm is given below in pseudocode:

If the algorithm succeeds, we can use the CM method to construct the desired elliptic curve E, provided that E exists. We see that $\frac{t^2}{4} \leq \frac{t^2 - f^2 D}{4} = p^2 \implies t \leq 2\sqrt{p}$ since D < 0. As part of the proof of the CM method [SUTH15], a curve E with trace t exists if (1) is satisfied, $t \leq 2\sqrt{p}$, and $t \not\equiv 0 \mod p$. The last equation is satisfied since t > 0 and p > t. Therefore, E exists.

3.3 Dupont Enge Morain Method

4 Applications

4.1 Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is formalized as follows: Given two points P, Q, find an integer k such that kP = Q.

Currently, the fastest known method for solving ECDLP is Pollard's ρ method, which runs in $O(\sqrt{p})$ time.

4.1.1 Pohlig-Hellman Method

Suppose $N = \#E(\mathbb{F}_p)$, and write $N = \prod_i q_i^{e_i}$ as a product of primes. To determine k, all we need to do is find $k \mod q_i^{e_i}$ and then construct k using the Chinese Remainder

theorem. This is the main idea behind the Pohlig-Hellman Method, which is efficient provided that the prime factors of N are small. [WASH08]

4.1.2 MOV attack

The Menezes-Okamoto-Vanstone (MOV) attack relies on using pairings to solve the ECDLP. The idea behind the attack is to map the DLP on E to the DLP in \mathbb{F}_{p^k} , where k is the embedding degree, and then use the index calculus method to solve the DLP in subexponential time. This attack is efficient provided that k is small. However, elliptic curves generally have large embedding degree with respect to any large subgroup, so this attack is only useful against pairing-friendly elliptic curves.

References

[SIL08] Joseph H. Silverman The Arithmetic of Elliptic Curves, 2008.

[WASH08] Lawrence C. Washington Elliptic Curves, Number Theory and Cryptography, 2008.

[CMS10] Nigel Smart. Advances in Elliptic Curve Cryptography, 2010.

[CEC10] K. Rubin and A. Silverberg. Choosing the Correct Elliptic Curve in the CM Method, 2010.

[TAX10] David Freeman, Michael Scott, and Edlyn Teske. A Taxonomy of Pairing-Friendly Elliptic Curves, 2010.

[FR06] David Freeman. Methods for Constructing Pairing Friendly Elliptic Curves, 2006.

[EM08] Koray Karabina and Edlyn Teske. On Prime-Order Elliptic Curves with Embedding Degrees k = 3, 4, and 6, 2008.

[PAIR91] Alfred Menezes. An Introduction to Pairing-Based Cryptography, 1991.

[SUTH15] Andrew Sutherland. MIT: Math 18.783 Elliptic Curves, Lectures, 2015.

[IM98] R. Balasubramanian, N. Koblitz. The Improbability That an Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes-Okamoto-Vanstone Algorithm, 1998.