3. Exact Matching: A Deeper Look At Classical Method

2015-04-14 Wonyeop Lee

Exact set matching problem

- A generalization of the exact matching problem
 - to find all occurrences of any pattern in text T
 - in a set of patterns $\mathcal{P} = \{P_1, P_2, \dots, P_z\}$
- It can be solved in O(n + m + k)
 - where k is the number of occurrences in T of the patterns from P
 - by using keyword tree

Definition of keyword tree

The keyword tree for set \mathcal{P} is a rooted directed tree \mathcal{K} satisfying three conditions:

- 1. Each edge is labeled with exactly one character
- 2. Any two edges out of the same node have distinct labels
- 3. Every pattern P_i in $\boldsymbol{\mathcal{P}}$ maps to some node v of $\boldsymbol{\mathcal{K}}$
 - Such that the characters on the path from the root of K to v exactly spell out P_i
 - Every leaf of K is mapped to by some pattern in P

- Example(create *keyword tree*)
 - for the set of patterns { potato , poetry, pot, pottery, science, school }

- Example(create *keyword tree*)
 - for the set of patterns { *potato*, *poetry*, *pot*, *pottery*, *science*, *school* }

- Example(create *keyword tree*)
 - for the set of patterns { *potato*, *poetry*, *pot*, *pottery*, *science*, *school* }

- Example(create *keyword tree*)
 - for the set of patterns { *potato*, *poetry*, *pot*, *pottery*, *science*, *school* }

- Example(create *keyword tree*)
 - for the set of patterns { *potato*, *poetry*, *pot*, *pottery*, *science*, *school* }

- Example(create *keyword tree*)
 - for the set of patterns { *potato*, *poetry*, *pot*, *pottery*, *science*, *school* }

- Example of keyword tree
 - for the set of patterns { potato, poetry, pot, pottery, science, school}

- Time complexity of construct keyword tree
 - During the insertion of P_{i+1} , it takes $O(|P_{i+1}|)$ time
 - So the time to construct the entire keyword tree is O(n)

Assumption

- No pattern in \mathcal{P} is a proper substring of any other pattern in \mathcal{P}
- It is useful to solve the *exact set matching problem easily*

- **Definition of** $\mathcal{L}(v)$
 - The node pointed to by the arrow is labeled with the string *pott*

Definition

For a node v of K, let n_v be the unique node in K labeled with the suffix of $\mathcal{L}(v)$ of length lp(v). When lp(v) = 0 then n_v is the root of K

Definition

We call the order pair (v, n_v) a **failure link**

• Example

• Algorithm n_v

• To find n_v , for every node v, repeatedly apply the algorithm to the nodes in K in a **breadth-first manner** starting at the root

• Theorem 3.4.1

- Let n be the total length of all the patterns in \mathcal{P} .
- The total time used by Algorithm n_v when applied to all nodes in K is O(n)
 - because we find failure link at once for each node
 - and traverse of failure link for parents at most length of pattern -1

- Algorithm AC search
 - *l* indicates the starting position of the patterns in *T*
 - Point c into T indicates the current character of T
 - to be compared with a character on K

• Algorithm AC search

$$l = 3$$
 $l = 5$ $c = 8$ $c = 11$ $l = 10$

Report that P_1 occurs in T starting at S

- Algorithm AC search
 - Search time is O(m)
 - because no back jump occurs during the search

- The full AC algorithm: relaxing the substring assumption
 - Until now we have assumed that no pattern in \mathcal{P} is a substring of another pattern in \mathcal{P}
 - If one pattern is a substring of another, and yet Algorithm AC search uses the same keyword tree as before, then the algorithm has a problem

• The full AC algorithm: relaxing the substring assumption

- **P** = { *potato*, *pot*, *tatter*, *at* }
- T = x t a t t e x

Pattern 'at' occurs in text! But, does not reported!

• The full AC algorithm: relaxing the substring assumption

- **P** = { *potato*, *pot*, *tatter*, *at* }
- T = x t a t t e x

Report that pattern 'at' occurs in text

• Lemma 3.4.2

- Suppose, in a keyword tree K, there is a directed path of failure links from a node v to a node that is **numbered** with pattern i.
- Then pattern P_i must **occur in** T ending at position c (the current character) whenever node v is reached during the search phase of the *Aho-Corasick algorithm*

• Lemma 3.4.3

- Suppose a node *v* has been reached during the algorithm.
- Then pattern P_i occurs in T ending at position c only if v is numbered i or there is a directed path of failure links from v to the node numbered i

Output link

- The output link at a node *v* points to that numbered node other than *v* that is reachable from *v* by the fewest failure links
- The output links can be determined in O(n) time
 - during the running of the preprocessing algorithm n_v

Output link

- When the n_v value is determined, the possible output link from node v is determined
 - If n_v is numbered node then the output link from v point to n_v
 - If n_v is not numbered but has an output links to a node w, then the output link from v points to w
 - Otherwise *v* has no output link

Output link

- An output link points only to a numbered node
- With the output links, all occurrences in T of patterns of \mathcal{P} can be detected in O(m+k) time

• The full AC algorithm: relaxing the substring assumption

- **P** = { *potato*, *pot*, *tatter*, *at* }
- T = x t a t t e x

Report that pattern 'at' occurs in text

- Time complexity of Algorithm full AC search
 - It takes O(n) time to construct a keyword tree.
 - And the preprocessing task to find all failure links and output links takes O(n) time
 - The time complexity to execute the full AC search algorithm is O(m + k) time
 - So the entire time complexity for the full AC search algorithm is O(n + m + k) time

Thanks