Logic Control

Prof. Dr. Ping Zhang WS 2017/2018

Overview of the course

- Introduction
- Modeling of logic control systems
 - Boolean algebra
 - Finite state automata
 - > Petri nets, SIPN
- Analysis of logic control systems
- Design of logic control systems
- Verification and validation
- Online diagnosis of logic control systems
- Implementation of logic control systems
 - > PLC
 - Programming languages (IEC 61131-3)
 - Automatic code generation
- Distributed control (optional)

Example 1: Mixing tank

Specifications:

- If the **button START** is pressed, open Valve 1 and Valve 2 to fill in, respectively, the liquid A and B.
- 2. When the tank level reaches Level 2, close both Valve 1 and Valve 2 and start the motor of the mixer.
- 3. After 10 minutes, turn off the motor of the mixer and open Valve 3
- 4. When the tank is empty, close Valve 3.

Signals	1/0	Symbol	Logic assignment
START	I	i1	START button is pressed i1=1
Level switch 1	ı	i2	Tank is full i2=1
Level switch 2	ı	i3	Tank is empty i3=0
Valve 1	0	01	Open Valve 1, o1=1
Valve 2	0	o2	Open Valve 2, o2=1
Valve 3	0	о3	Open Valve 3, o3=1
Motor	0	04	Motor on, o4=1

Example 2: Heated mixing tank

Specifications:

- After pressing the START button, the tank is filled by opening Valve 1 and Valve 2 and the motor of the mixer is started.
- Valve 1 and Valve 2 are closed if the tank is full.
- Then the mixture in the tank is heated, until a certain temperature is exceeded.
- After that Valve 3 is opened. If the tank is empty, close Valve 3 and stop the motor of the mixer.

Signals	I/O	Symbol	Logic assignment
START	I	i1	START button is pressed i1=1
Level switch 1	1	i2	Tank is full i2=1
Level switch 2	1	i3	Tank is empty i3=0
Temperature switch	1	i4	Temperature above limit i4=1
Valve 1	0	01	Open Valve 1, o1=1
Valve 2	0	o2	Open Valve 2, o2=1
Valve 3	0	о3	Open Valve 3, o3=1
Motor	0	04	Motor on, o4=1
Heater	0	o5	Heater on, o5=1

Summary of signal interpreted Petri nets

- The SIPN has been developed to take into account the input and output signals in logic control systems.
- The **input signals** incluence the **firing** of the transitions in the SIPN. The places in the SIPN decides the output signals.
- For complex systems, the SIPN can be built up in a hierarchical way (for instance, the place is indeed again an SIPN)

Overview of the course

- Introduction
- **Modeling of logic control systems**
 - **Boolean algebra**
 - > Finite state automata
 - Petri nets, SIPN
- **Analysis of logic control systems**
- Design of logic control systems
- Verification and validation
- Online diagnosis of logic control systems
- Implementation of logic control systems
 - > PLC
 - Programming languages (IEC 61131-3)
 - Automatic code generation
- Distributed control (optional)

Chapter 3 Analysis of logic control systems

Analysis of logic control systems

- Based on the model of the logic control systems (Boolean algebra, FSA, PN, SIPN), the system behaviour can be analyzed systematically.
- Some often encountered questions regarding the characteristics of logic control systems:
 - > Certain states should not be reached (for instance, due to safety considerations)
 - Some states should be reached.
 - No deadlocks in the system

Analysis based on Boolean Algebra

- There is no dynamics in the standard Boolean algebra based system description
 - analysis straightforward
- Some recent research in logic control networks, in which the state transitions in logic control systems are expressed by boolean expressions and can be handled by a recently proposed mathematical tool (the socalled **semi-tensor product**).

Reachability analysis in the FSA

- \triangleright If a state z_i is on a path that begins at the state z_i , then z_i is **reachable** from z_i .
- Correspondingly, the sequence of the inputs labeled on the arcs in the path are the **input sequence** that can control the state from z_i to z_i .

Structural analysis in the FSA

- \triangleright Two states z_i and z_i are called **strongly connected**, if there is a path in the state transition diagram that goes from z_i to z_i and also a path from z_i to z_i .
- > Example:

 $\{Z_1, Z_2, Z_3\}$ strongly connected

 ${Z_6, Z_7, Z_8, Z_9}$ strongly connected

 ${Z_6, Z_7, Z_8, Z_9}$ not strongly connected; $\{Z_7, Z_8\}$ s.c.

Structural analysis in the FSA

- > The state transition diagram can be decomposed into q subdiagrams. The states in each sub-diagram are strongly connected with each other. The sub-diagrams are connected by one-directional arc.
- \triangleright If all the states in the FSA are strongly connected (i.e. q=1), then the FSA is said to be **irreducible**. Otherwise, it is called reducible.
- The states in an irreducible FSA are said to be recurrent.

Structural analysis in the FSA

- > The sub-diagram that has only incoming arcs (i.e. no arcs come out of this sub-diagram) is called ergodic.
- If an ergodic sub-diagram contains only one state, then this state is said to be an absorbing state (deadlock).
- > If an ergodic sub-diagram contains more than one state, then this sub-diagram is said to be an livelock.
- The states in the state transition diagram that can only be reached **once** are called **transient states**.
- > An FSA is called live, if it can generate state transition sequence of arbitrary length.

Example:

- The main tool used in the analysis of PN is reachability graph.
- If a marking m_i can be produced from the marking m_i by firing of transitions, then m_i is **reachable** from m_i .
- The reachable set of a Petri net consists of the initial marking m_0 and all the markings that are reachable from m_0 .
- The reachability graph is obtained as follows. The initial marking m_0 and all the markings that are reachable from m_0 are the nodes. If m_i is **reached** from m_i by the firing of the transition t_k , then there is a directed arc from m_i to m_i and this arc is labeled by t_k .

PN

Reachability graph

PN

Reachability graph

PN Reachability graph (1,0,0) \mathbf{p}_1 t_2 t_2 p_2 p_3 (1,1,0)(0,0,1)

An infinite number of reachable marking

- → Infinite reachability graph
- → An additional variable q is introduced
- → coverability graph

