Tesi di Laurea Ingegneria Energetica

TECNICHE PER LA FUSIONE NUCLEARE INDOTTA DA ESPLOSIONE COULOMBIANA DI CLUSTER DI DEUTERIO E TRIZIO

Relatore: Prof. Gianni Coppa

> Candidati: Diego Vai Edoardo Sanna

SOMMARIO

- Introduzione alla fusione nucleare
- Il confinamento inerziale
- L'esplosione coulombiana
- Modello fisico per l'esplosione di un cluster di deuterio
- Modello numerico per l'analisi del modello fisico
- Analisi dei risultati

La fusione nucleare

$$D + T \rightarrow^{4} He(3, 5MeV) + n(14, 1MeV)$$

 $D + D \rightarrow T(1, 01MeV) + p(3, 02MeV)$
 $D + D \rightarrow^{3} He(0, 82MeV) + n(2, 45MeV)$
 $D +^{3} He \rightarrow^{4} He(3, 6MeV) + p(14, 7MeV)$

Confinamento del plasma

Gravitazionale

Magnetico

Inerziale

Confinamento inerziale

Indiretto

Diretto

Laser attuali

National Ignition Facility

Esplosione coulombiana

IRRAGGIAMENTO LASER

DISTRIBUZIONE DELL'ENERGIA

IONIZZAZIONE

CAMPO ELETTRICO

ESPLOSIONE COULOMBIANA

Esplosione coulombiana

Layout dell'esperimento di fusione da cluster di deuterio T. Ditmire *et al.*, (1999)

Risultati dell'esperimento

Specifiche:

Durata impulso = 35 fs Distanza detector = 62 cm Intensità laser = $5x10^{17}$ W/cm²

Picco di neutroni in corrispondenza di E = 2.45 ± 0,02 MeV

Spettro del tempo di volo dei neutroni

Modello fisico

Teorema di Gauss

Relazione tra campo e carica elettrica

Campo elettrico

Determinazione delle nuove coordinate di ogni particella al variare del tempo

$$E_i = \frac{Q_i}{r_i^2} = \frac{\frac{N(r_i)}{N_0}}{r_i^2}$$
 $\Phi(r) = -\int_0^r E(r')dr' + C$

$$\Phi(r) = -\int_{0}^{\infty} E(r')dr' + C$$

Potenziale elettrostatico

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{v} \\ \frac{d\mathbf{v}}{dt} = \frac{q}{m}E(r)\mathbf{u_r} \end{cases}$$

$$m\mathbf{a} = q\mathbf{E}(r)$$

Bilancio di forze

Modello numerico

Modello geometrico utilizzato

Approssimazioni rispetto al modello fisico:

Particella computazionale

Discretizzazione del tempo

Distribuzione spaziale uniforme nella sfera

Distribuzione gaussiana della velocità iniziale

Parametrizzazione

Procedimento di calcolo

$$\mathbf{x_i}(t) \ \mathbf{v_i}(t)$$

$$t = 0$$

$$E_i = \frac{Q_i}{r_i^2} = \frac{N(r_i)/N_0}{r_i^2}$$

$$\mathbf{v_i}(t + \Delta t) = \mathbf{v_i}(t) - \frac{e}{m}\mathbf{E_i}\Delta t$$

$$\mathbf{x_i}(t + \Delta t) = \mathbf{x_i}(t) + \mathbf{v_i}(t + \Delta t)\Delta t$$

Distribuzione spaziale degli elettroni all'interno della sfera al variare della velocità termica

Andamento del potenziale ed energia degli elettroni

Densità di ioni ed elettroni in funzione del raggio

$$N = 10^5$$

 $m_i = 100$

Miscela di ioni

Modello geometrico utilizzato

ma = ZE

Effetto del campo elettrico su ioni aventi masse diverse

Distribuzione spaziale a gusci sferici

Composizione della miscela: Deuterio e Trizio

Strato interno di trizio

 $N = 10^4$ v = 1 $m_1/m_2 = 2/5$

Strato interno di deuterio

 $N = 10^4$ v = 1 $m_1/m_2 = 2/5$

Grazie per la Vostra attenzione