Building a Recommender System with Python

David Lim Cheng (X017427) COMPSCI X433.3 - 005

Recommender Systems Overview

- Content-Based Filtering
 - Uses information about the description and attributes of previously-consumed items
 - Candidate items are compared to previously-consumed items, and similarly-matched items are recommended

- Collaborative Filtering
 - Makes predictions about user interests based on the interests of many users (collaborating)
 - o If Person A has the same opinion as Person B on Item 1, then Person A is more likely to share Person B's opinion for any given item

Singular Value Decomposition (SVD)

- Algorithm that leverages a latent factor model to capture similarities between users and items
- Decreases dimensionality of the utility matrix by extracting latent factors
- Given by the following equation:

$$R = M \sum U^T$$

- Where:
 - \circ *M* is orthogonal to the column space of *R*,
 - \circ *U* is orthonormal to the row space of *R*

Uhhhhhhh.....

Latent Factors

"Algorithm that leverages a latent factor model to capture similarities between users and items"

- Important part of **Principal Component Analysis (PCA)**, a precursor to SVD
- Another way to say "latent factors" is "typical traits"
- Oversimplified example:
 - Our dataset is full of **movies** and user ratings
 - "Latent factors" or "typical traits" of movies: GENRE!

"45% Drama, 25% Action, 10% Comedy, 5% Thriller..."

Latent Factors (Continued)

- Oversimplified example:
 - Our dataset is full of movies and **user ratings**
 - "Latent factors" or "typical traits" of user ratings: **AFFINITY TO GENRES**

"50% Affinity for Drama, 25% Affinity for Comedy, 15% Affinity for True Crime..."

"45% Drama 25% Action 10% Comedy 5% Thriller..."

"50% Affinity for Drama,25% Affinity for Comedy,15% Affinity for True Crime..."

SVD Says: "Bet that old lady likes Titanic!"

Matrix Factorization

"Decreases dimensionality of the utility matrix"

- Analogy: Polynomial Factorization
 - $0 X^2 4 \rightarrow (x 2)(x + 2)$
 - Took **one** item, and simplified it by turning it into **two** items
 - We can rebuild the original term using the simplified terms
- Matrix Factorization is the same thing
 - \circ Matrix \rightarrow (Vector)(Vector)(Vector)
 - Took one item, and simplified it by turning it into three items
 - We can *rebuild* the original matrix using the simplified vectors

$$R = M \sum U^T$$

Matrix Factorization (Continued)

"Decreases dimensionality of the utility matrix"

MovieID	1	2	3	4	5	6	7	8	9	10		3943	3944	3945	3946	3947	3948	3949	3950	3951	3952
UserID																					
1	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	4.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0
10	5.0	5.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	***	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0

Recap

- Reveal the latent factors of both the movies and the users using SVD
- Rebuild the utility matrix using these latent factors
- Use the rebuilt matrix to make predictions of what movies would receive a high rating for a particular user

"SVD? Yeahhhh, baby!"