2022201041

Build a Provably Secure PRG(Code)

DEFINITION 3.14 Let $\ell(\cdot)$ be a polynomial and let G be a deterministic polynomial-time algorithm such that for any input $s \in \{0,1\}^n$, algorithm G outputs a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following two conditions hold:

- 1. (Expansion:) For every n it holds that $\ell(n) > n$.
- 2. (Pseudorandomness:) For all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that:

$$\big|\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]\big| \le \mathsf{negl}(n),$$

where r is chosen uniformly at random from $\{0,1\}^{\ell(n)}$, the seed s is chosen uniformly at random from $\{0,1\}^n$, and the probabilities are taken over the random coins used by D and the choice of r and s.

The function $\ell(\cdot)$ is called the expansion factor of G.

Designing single-bit expansion PRGs from Computational Hardness

- One-way Functions
 - Easy to compute, Hard to Invert
 - Textbook definition:

DEFINITION 6.1 A function $f: \{0,1\}^* \to \{0,1\}^*$ is one-way if the following two conditions hold:

- 1. (Easy to compute:) There exists a polynomial-time algorithm M_f computing f; that is, $M_f(x) = f(x)$ for all x.
- 2. (Hard to invert:) For every probabilistic polynomial-time algorithm A, there exists a negligible function negl such that

$$\Pr[\mathsf{Invert}_{\mathcal{A},f}(n) = 1] \leq \mathsf{negl}(n).$$

Utility functions:

discrete log: DLP One way function GENERATOR = 8173 MOD = 65521

Performs (GENERATOR^x) % (MOD)

Args: x (int): seed value

Returns: one way function value and get_hardcore_bit(x)

So, it is basically a deterministic polynomial time algorithm G, which takes input of n bits

and outputs I(n) bits where:

- 1. I(n) > n and
- 2. Output of G is computationally indistinguishable from uniform distribution.

Now, let's figure out how to design a single-bit expansion PRGS from computational hardness.

HARDCORE PREDICATES

- □ Hardest bit of information about x to obtain from f(x)
- Textbook definition:

DEFINITION 6.5 A function $hc: \{0,1\}^* \to \{0,1\}$ is a hard-core predicate of a function f if (1) hc can be computed in polynomial time, and (2) for every probabilistic polynomial-time algorithm A there exists a negligible function hc such that

$$\Pr_{x \leftarrow \{0,1\}^n} \left[\mathcal{A}(f(x)) = \mathsf{hc}(x) \right] \leq \frac{1}{2} + \mathsf{negl}(n),$$

where the probability is taken over the uniform choice of x in $\{0,1\}^n$ and the random coin tosses of A.

MSB(x) is a Hardcore predicate of Discrete Logarithm Problem

THEOREM 6.8 Assume that there exists a pseudorandom generator with expansion factor $\ell(n) = n + 1$. Then for any polynomial $p(\cdot)$, there exists a pseudorandom generator with expansion factor $\ell(n) = p(n)$.

- Take the last bit from l + 1 length string for output
- 2. Apply I' times to get output of string I'