Lecture 6a Introducción a los codificadores automáticos Autoencoders

Class activation maps

GradCam

- . Compute $\frac{\partial y^c}{\partial A^k}$: gradient of score y^c for class c wrt feature maps A^k
- Global average pool these gradients to obtain neuron importance weights

$$\alpha_k^c = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y^c}{\partial A_{ij}^k}$$

 Perform weighted combination of forward activations maps and follow it by ReLU to obtain

$$L_{Grad-CAM}^{c} = ReLU\left(\sum_{k} \alpha_{k}^{c} A^{k}\right)$$

GradCam

(b) Visualizing ResNet based Hierarchical co-attention VQA model from [29]

A house with a roof

A group of people flyir

Lecture 10a - Introducción a los codificadores automáticos

Figure 1: Training neural autoencoder with noisy-clean speech pairs.

Lu, X., Tsao, Y., Matsuda, S., & Hori, C. (2013, August). Speech enhancement based on deep denoising autoencoder. In Interspeech (pp. 436-440).

Escuela de Ciencias Aplicadas e Ingeniería

Gondara, L. (2016, December). Medical image denoising using convolutional denoising autoencoders. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW) (pp. 241-246). IEEE.

Figure 1. Schematic representation of the semi-adversarial neural network architecture designed to derive perturbations that are able to confound gender classifiers while still allowing biometric matchers to perform well. The overall network consists of three sub-components: a convolutional autoencoder (subnetwork I), an auxiliary gender classifier (subnetwork II), and an auxiliary matcher (subnetwork III).

Vahid Mirjalili, Sebastian Raschka, Anoop Namboodiri, and Arun Ross (2018) Semi-adversarial networks: Convolutional autoencoders for imparting privacy to face images. Proc. of 11th IAPR International Conference on Biometrics (ICB 2018), Gold Coast, Australia

"About half (52%) of U.S. adults said they decided recently not to use a product or service because they were worried about how much personal information would be collected about them."

https://www.pewresearch.org/fact-tank/2020/04/14/half-ofamericans-have-decided-not-to-use-a-product-or-servicebecause-of-privacy-concerns/

Lecture 10a - Introducción a los codificadores automáticos

- 1. Reducción de dimensionalidad
- 2. Codificadores automáticos completamente conectados
- 3. Codificadores automáticos convolucionales
- 4. Otros tipos de codificadores automáticos

Extracción de características y reducción de dimensionalidad

1. Reducción de dimensionalidad

- 2. Codificadores automáticos completamente conectados
- 3. Codificadores automáticos convolucionales
- 4. Codificadores automáticos convolucionales en PyTorch
- 5. Otros tipos de codificadores automáticos

Aprendizaje no supervisado

Trabajar con conjuntos de datos <u>sin</u> considerar la variable de <u>destino</u>

Algunas aplicaciones y objetivos:

- Encontrar estructuras ocultas en los datos
- Compresión de datos
- Agrupación
- Recuperar objetos similares
- Análisis exploratorio de datos
- Generando nuevos ejemplos

Análisis de componentes principales (ACP o PCA por sus siglas en inglés)

1) Encontrar direcciones de mayor varianza

Análisis de componentes principales (PCA)

2) Transformar características en direcciones de máxima variación.

Análisis de componentes principales (PCA)

3) Por lo general, considere el subconjunto de vectores propios de mayor varianza (reducción de dimensionalidad)

Un perceptrón multicapa en forma de reloj de arena

- 1. Reducción de dimensionalidad
- 2. Codificadores automáticos completamente conectados
- 3. Codificadores automáticos convolucionales
- 4. Codificadores automáticos convolucionales en PyTorch
- 5. Otros tipos de codificadores automáticos

Un codificador automático básico completamente conectado (perceptrón multicapa)

Un codificador automático básico completamente conectado (perceptrón multicapa)

Si no usamos funciones de activación no lineales y minimizamos el MSE, esto es muy similar al PCA

Sin embargo, las dimensiones latentes no serán necesariamente ortogonales y tendrán ~ la misma varianza

Un codificador automático básico completamente conectado (perceptrón multicapa)

Pregunta:

Si podemos lograr lo mismo con PCA, que es esencialmente un tipo de factorización matricial que es más eficiente que Backprop + SGD, ¿por qué molestarse con los codificadores automáticos?

Posibles aplicaciones del codificador automático

Después del entrenamiento, ignore esta parte

Utilice los embeddings (espacio latente) como entrada a los métodos clásicos de aprendizaje automático (SVM, KNN, Random Forest, ...)

O, de forma similar a transfer learning, entrene el codificador automático en un conjunto de datos de imagen grande, luego ajuste la parte del codificador con un conjunto de datos más pequeño o entrene su propia capa de salida (clasificación)

El espacio latente también se puede usar para la visualización (EDA, agrupamiento), pero existen mejores métodos para eso

Un codificador automático simple

- 1. Reducción de dimensionalidad
- 2. Codificadores automáticos completamente conectados
- 3. Codificadores automáticos convolucionales
- 4. Codificadores automáticos convolucionales en PyTorch
- 5. Otros tipos de codificadores automáticos

Un codificador automático convolucional

Convolución transpuesta

- Nos permite aumentar el tamaño del mapa de características de salida en comparación con el mapa de características de entrada

- Sinónimos:

- A menudo también (incorrectamente) llamada "deconvolución" temáticamente, la deconvolución se define como la inversa de la convolución, que es diferente de las convoluciones transpuestas)
- El término "unconv" a veces también se usa
- La convolución fraccionada es otro (¿mejor?) término para eso.

Convolución transpuesta

Convolución regular:

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016). https://arxiv.org/abs/1603.07285

Convolución transpuesta (paso = 2):

A Conv2DTranspose with 3x3 kernel and stride of 2x2 applied to a 2x2 input to give a 5x5 output.

UNIVEI (https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8)

Convolución transpuesta (kernel 3x3, paso = 2):

A Conv2DTranspose with 3x3 kernel and stride of 2x2 applied to a 2x2 input to give a 5x5 output. (https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8)

Convolución transpuesta (emulada con convolución directa

Convolución regular: (paso = 1):

Figure 2.1: (No padding, unit strides) Convolving a 3×3 kernel over a 4×4 input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Convolución transpuesta (emulada con convolución directa): (paso = 1)

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Convolución transpuesta

```
output = s(n-1) + k - 2p
```


Deconvolution and Checkerboard **Artifacts**

Google Brain

VINCENT DUMOULIN Université de Montréal

Google Brain

Oct. 17

Citation: Odena, et al., 2016

https://distill.pub/2016/deconv-checkerboard/

Un buen artículo interactivo que destaca los peligros de la convolución transpuesta.

En resumen, recomienda reemplazar la convolución transpuesta por muestreo ascendente (interpolación) seguido de convolución regular

Un perceptrón multicapa en forma de reloj de arena

- 1. Reducción de dimensionalidad
- 2. Codificadores automáticos completamente conectados
- 3. Codificadores automáticos convolucionales
- 4. Otros tipos de codificadores automáticos

Convolución transpuesta

Agregue capas de dropout para obligar a las redes a aprender características redundantes

Codificadores automáticos de reducción de ruido

Agregue dropout después de la entrada o agregue ruido a la entrada para aprender a eliminar el ruido de las imágenes

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). <u>Extracting and composing robust features with denoising autoencoders</u>. In Proceedings of the 25th International Conference on Machine Learning (pp. 1096-1103). ACM. http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf

Codificador automático disperso

Agregue una penalización L1 a la pérdida para aprender representaciones de características dispersas

$$\mathcal{L} = ||\mathbf{x} - Dec(Enc(\mathbf{x}))||_2^2 + \sum_i |Enc_i(\mathbf{x})|$$

Codificador automático variacional

$$L^{[i]} = -\mathbb{E}_{z \sim q_w(z \mid x^{[i]})} \left[\log p_w \left(x^{[i]} \mid z \right) \right] + \mathbf{KL} \left(q_w \left(z \mid x^{[i]} \right) || p(z) \right)$$

Expected neg. log likelihood term; wrt to encoder distribution

Kullback-Leibler divergence term where $p(z) = \mathcal{N} \left(\mu = 0, \sigma^2 = 1 \right)$

Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114.

