MATH 7251: High-Dimensional Probability

Spring 2022

Lecture 1

Name: Tyler LaBonte Professor: Konstantin Tikhomorov

1 Overview of the Course

- 1. Bernstein-type inequalities for linear combinations of scalar random variables
- 2. Matrix Bernstein-type inequalities
- 3. Concentration for martingales
- 4. Isoperimetric inequalities
- 5. Concentration in product spaces
- 6. ϵ -net arguments
- 7. Applications to sample covariance matrices, dimensionality reduction, and random matrices

2 Linear Algebra Review

2.1 Orthogonality

Suppose **A** is an $n \times m$ matrix. The span of the columns is called the column space; it is a linear subspace of \mathbb{R}^n . Similarly, the span of the rows is called the row space, and it is a linear subspace of \mathbb{R}^m . The null space is $\{x \in \mathbb{R}^m : \mathbf{A}x = 0\}$ and it is the orthogonal complement of the row space. The dimensionalities of the row space and the column space are equal and are called the rank.

Theorem 2.1: Matrix Orthogonality

The following are equivalent for a square matrix **A**:

- 1. $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}$.
- 2. $\mathbf{A}\mathbf{A}^{\top} = \mathbf{I}$.
- 3. The columns of **A** form an orthonormal basis of \mathbb{R}^n .
- 4. The rows of **A** form an orthonormal basis of \mathbb{R}^n .
- 5. **A** is distance-preserving: $\|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$ for all $\mathbf{x} \in \mathbb{R}^n$.

Lecture 1 1-2

The eigenvalues of a square matrix \mathbf{A} are numbers λ such that $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$. A nonzero vector $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector of \mathbf{A} if there exists $\lambda \in \mathbb{C}$ such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$. Another way to write this is $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$, and this means that $\mathbf{A} - \lambda \mathbf{I}$ is non-invertible (it has determinant 0). Thus, λ must be an eigenvalue of \mathbf{A} . A square matrix \mathbf{A} is diagonalizable if there exists matrices \mathbf{M} , \mathbf{D} such that \mathbf{M} is invertible, \mathbf{D} is diagonal, and $\mathbf{A} = \mathbf{M}^{-1}\mathbf{D}\mathbf{M}$.

Theorem 2.2: Eigendecomposition of Diagonalizable Matrices

Suppose **A** is an $n \times n$ diagonalizable matrix. Then, $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ where **P** is an $n \times n$ matrix whose columns are eigenvectors of **A** and **D** is a diagonal matrix whose elements are the eigenvalues of **A**.

2.2 Symmetric Matrices

An $n \times n$ matrix **A** is symmetric if $\mathbf{A}^{\top} = \mathbf{A}$. Let $\boldsymbol{x}, \boldsymbol{y}$ be eigenvectors of a symmetric matrix **A** with corresponding eigenvalues $\lambda_{\boldsymbol{x}}$ and $\lambda_{\boldsymbol{y}}$. Then,

$$\langle \mathbf{A}\boldsymbol{x}, \boldsymbol{y} \rangle = \lambda_{\boldsymbol{x}} \langle \boldsymbol{x}, \boldsymbol{y} \rangle \tag{1}$$

$$= \langle \boldsymbol{x}, \mathbf{A}^{\top} \boldsymbol{y} \rangle = \langle \boldsymbol{x}, \mathbf{A} \boldsymbol{y} \rangle = \langle \boldsymbol{x}, \lambda_{\boldsymbol{y}} \boldsymbol{y} \rangle = \lambda_{\boldsymbol{y}}^{\star} \langle \boldsymbol{x}, \boldsymbol{y} \rangle.$$
 (2)

Applied with $\mathbf{y} = \mathbf{x}$ we obtain $\lambda_{\mathbf{x}} \langle \mathbf{x}, \mathbf{x} \rangle = \lambda_{\mathbf{x}}^{\star} \langle \mathbf{x}, \mathbf{x} \rangle$, so $\lambda_{\mathbf{x}}$ is real. Thus all eigenvalues of a symmetric matrix are real. When the eigenvalues are distinct, we have $\lambda_{\mathbf{x}} \langle \mathbf{x}, \mathbf{y} \rangle = \lambda_{\mathbf{y}} \langle \mathbf{x}, \mathbf{y} \rangle$, which is only possible when \mathbf{x} and \mathbf{y} are orthogonal. Thus, eigenvectors corresponding to distinct eigenvalues of a symmetric matrix must be orthogonal.

Theorem 2.3: Eigendecomposition for a Symmetric Matrix

Suppose **A** is an $n \times n$ symmetric matrix. Then, $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}$ where **U** is an orthogonal matrix whose columns are eigenvectors of **A** and **D** is a diagonal matrix of eigenvalues of **A**. By orthogonality, **A** is representable as the sum of rank-one matrices: $\mathbf{A} = \sum_{i=1}^{n} \lambda_i(\mathbf{A}) \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$ where $\lambda_1(\mathbf{A}) \geq \lambda_2(\mathbf{A}) \geq \cdots \geq \lambda_n(\mathbf{A})$ are the eigenvalues of **A** and \mathbf{x}_i is the unit eigenvector corresponding to $\lambda_i(\mathbf{A})$. Note that all the \mathbf{x}_i form an orthonormal basis of \mathbb{R}^n .

An important class of symmetric matrices are positive semi-definite matrices. Suppose **A** is a symmetric real $n \times n$ matrix. Then, **A** is positive semi-definite if $\langle \mathbf{A} \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}^n$ and positive definite if $\langle \mathbf{A} \boldsymbol{x}, \boldsymbol{x} \rangle > 0$ for all $\boldsymbol{x} \in \mathbb{R}^n$. For symmetric matrices, this is equivalent to all eigenvalues of **A** being non-negative or positive, respectively.

For example, let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ be a random vector in \mathbb{R}^n . Assume that variances of all components of \mathbf{x} are well-defined and finite. That is,

$$\operatorname{Var}(x_i) = \mathbb{E}\left[(x_i - \mathbb{E}\left[x_i\right])^2 \right] < \infty \text{ for all } x_i.$$
 (3)

Lecture 1 1-3

Then, the covariance matrix of x is defined as

$$\Sigma = \mathbb{E}\left[(\boldsymbol{x} - \mathbb{E}\left[\boldsymbol{x}\right])(\boldsymbol{x} - \mathbb{E}\left[\boldsymbol{x}\right])^{\top} \right]. \tag{4}$$

Claim 2.1: Covariance Matrices are PSD

 Σ is positive semi-definite.

Proof: We have $\Sigma_{ij} = \mathbb{E}[(x_i - \mathbb{E}[x_i])(x_j - \mathbb{E}[x_j])]$. It is clear that $\Sigma_{ij} = \Sigma_{ji}$. So, Σ is symmetric. Pick any fixed vector $\mathbf{y} \in \mathbb{R}^n$. We want to show that $\langle y, \Sigma \mathbf{y} \rangle \geq 0$. We can alternatively write this as

$$\mathbf{y}^{\top} \mathbf{\Sigma} \mathbf{y} = \mathbf{y}^{\top} \mathbb{E} \left[(\mathbf{x} - \mathbb{E} \left[\mathbf{x} \right]) (\mathbf{x} - \mathbb{E} \left[\mathbf{x} \right])^{\top} \right] \mathbf{y}$$
 (5)

$$= \mathbb{E}\left[\boldsymbol{y}^{\top}(\boldsymbol{x} - \mathbb{E}\left[\boldsymbol{x}\right])(\boldsymbol{x} - \mathbb{E}\left[\boldsymbol{x}\right])^{\top}\boldsymbol{y}\right] \tag{6}$$

$$= \mathbb{E}\left[(\boldsymbol{y}^{\top} (\boldsymbol{x} - \mathbb{E}\left[\boldsymbol{x}\right]))^{2} \right]. \tag{7}$$

Since squares are always non-negative, we have that Σ is positive semi-definite.

2.3 Singular Value Decomposition

Let **A** be an $n \times m$ matrix with $m \leq n$. Then, $\mathbf{A}^{\top}\mathbf{A}$ is positive semi-definite (exercise). The square roots of eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ are called singular values of **A**. Note that all these square roots are well-defined since all eigenvalues are non-negative by positive semi-definiteness. Formally, $s_i(\mathbf{A}) = \sqrt{\lambda_i(\mathbf{A}^{\top}\mathbf{A})}$ with $s_1(\mathbf{A}) \geq s_2(\mathbf{A}) \geq \cdots \geq s_m(\mathbf{A}) \geq 0$.

A variational formula for extreme singular values is

$$s_{\max}(\mathbf{A}) = \max_{\mathbf{x} \in \mathbb{R}^m, \|\mathbf{x}\| = 1} \|\mathbf{A}\mathbf{x}\|_2 \quad s_{\min}(\mathbf{A}) = \min_{\mathbf{x} \in \mathbb{R}^m, \|\mathbf{x}\| = 1} \|\mathbf{A}\mathbf{x}\|_2. \tag{8}$$

The largest singular value is also called the spectral norm of **A**.

Recall B_2^m is the unit Euclidean ball in \mathbb{R}^m , $B_2^m = \{ \boldsymbol{x} \in \mathbb{R}^m : \|\boldsymbol{x}\|_2 \leq 1 \}$. Then, applying a linear transformation to B_2^m creates an ellipsoid:

$$A(B_2^m) = \{ \boldsymbol{y} \in \mathbb{R}^n : \boldsymbol{y} = \mathbf{A}\boldsymbol{x} \text{ for some } \boldsymbol{x} \in B_2^m \}.$$
 (9)

The geometric interpretation of the singular values of **A** is that they are the semiaxes of the ellipsoid $A(B_2^m)$.

Lecture 1 1-4

Theorem 2.4: Singular Value Decomposition

For every $n \times m$ matrix \mathbf{A} with $m \leq n$, we have $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ where \mathbf{U} is $n \times n$ orthogonal, \mathbf{V} is $m \times m$ orthogonal, and \mathbf{D} is $n \times m$ rectangular diagonal whose elements are the singular values of \mathbf{A} . Furthermore, the columns of \mathbf{V} are right singular vectors of \mathbf{A} , and the columns of \mathbf{U} are left singular vectors of \mathbf{A} .