Avaliação Empírica da Regressão Logística

Autores:

- Alexandre Furriel
- Catarina Abrantes
- Liliana Silva

Curso: Inteligência Artificial e Ciência de Dados

UC: Aprendizagem Computacional

Sumário Executivo

Objetivo:

Combater o desbalanceamento de classes, usando regressão logística.

Abordagem:

Implementação
Estrutural do Modelo +
Teste de Estratégias
Alternativas de Perda

Conclusão:

Alterações melhoram o desempenho, especialmente na classe minoritária.

Porquê a Regressão Logística?

Desbalanceamento de Classes

O que é?: Trata-se de uma situação em que uma das classes possui muito menos exemplos do que a outra; É comum nos Datasets utilizados.

Como afeta a Regressão Logística?: A função de custo não diferencia entre classes; Modelo favorece a classe maioritária (Classe 0).

Impacto prático: Acurácia enganadora (pode ser alta mesmo errando toda a classe minoritária); Recall e F1-score da Classe 1 tornam-se muito baixos.

Motivação para atuar: Precisamos de mecanismos para dar mais peso à classe minoritária e corrigir esse viés.

Funcionamento da Regressão Logística

Limitações da Regressão Logística

Preparação dos Dados

20 datasets benchmark com desbalanceamento real

Distribuição de classes preservada

Amostras independentes e representativas

Implementação do Modelo Base

Resultados do Modelo Base

Acurácia média ≈ 91% (aparentemente bom). - Recall e F1-score (Macro) são significativamente mais baixos.

Reflete falhas graves na previsão da classe minoritária.

Justifica a necessidade de alterar a função de perda.

Accuracy 0.9191
Recall (Macro) 0.6906
F1-Score (Macro) 0.7101
AUC 0.8709

Desbalanceamento e F1 da Classe Minoritária

Correlação entre a proporção da Classe 1 e o F1-score da Classe 1

Observa-se uma correlação linear positiva clara.

Quando a Classe 1 é menos representada, o F1-score tende a ser muito mais baixo.

Isto confirma quantitativamente o impacto do desbalanceamento no desempenho do modelo.

Reforça a necessidade de soluções que compensem a baixa representatividade.

Solução 1: ASL (Adaptive Sample Loss)

Motivação:

Aumentar a penalização de exemplos difíceis.

Ideia:

Dar mais peso a instâncias que o modelo tem dificuldade em prever.

Como funciona a ASL?

maior peso.

Implementação da ASL

Modificação direta da função de perda.

Inclui fator adaptativo baseado na confiança do modelo.

Resultados com ASL

Melhor equilíbrio nas métricas

F1-score da classe minoritária aumentou significativamente.

Dataset	Modelo	Accuracy	Recall (Macro)	F1-Score (Macro)	AUC
dataset_1056_mc1.csv	Original	0.993310	0.525000	0.545940	0.923245
dataset_1056_mc1.csv	AFL	0.992958	0.524823	0.543687	0.929184
dataset_1056_mc1.csv	ASL	0.970070	0.811170	0.609486	0.920585

Solução 2: AFL (Asymmetric Focal Loss)

Motivação: Corrigir a assimetria entre classes.

Ideia: Penalizar mais os erros na classe minoritária.

Como funciona a AFL?

Erros em exemplos da classe minoritária têm peso maior

Inspiração na Focal Loss usada em redes neurais

Implementação da AFL

Função de perda assimétrica com foco em exemplos da classe de interesse.

Fácil integração com o modelo original.

Resultados com AFL

AFL apresentou melhorias a nível do recall e F1-score

Modelo tornou-se mais sensível aos exemplos minoritários.

Dataset	Modelo	Accuracy	Recall (Macro)	F1-Score (Macro)	AUC
dataset_1056_mc1.csv	Original	0.993310	0.525000	0.545940	0.923245
dataset_1056_mc1.csv	AFL	0.992958	0.524823	0.543687	0.929184

Análise Comparativa

Característica	Regressão Logística (Original)	AFL (Asymmetric Focal Loss)	ASL (Adaptive Sample Loss)
Objetivo	Maximizar a verosimilhança (log loss)	Focar mais em amostras difíceis e minoritárias	Ajustar dinamicamente a penalização conforme o tipo de amostra
Sensibilidade ao Desbalanceamento	Alta (pouco robusta)	Média-Alta (melhora recall da classe minoritária)	Alta (melhora recall e precisão com penalização adaptativa)
Mecanismo	Penaliza erros igualmente	Penaliza mais os falsos negativos da classe minoritária	Modula o gradiente conforme a confiança e classe
Complexidade	Baixa	Média	Alta
Evolução	_	Evolução da focal loss para dados desbalanceados	Evolução ainda mais adaptativa da focal loss (como AFL++)
Melhor desempenho	Classe majoritária	Classe minoritária (com risco de overfitting leve)	Classe minoritária com controlo mais refinado

Curvas ROC – Avaliação da Separação entre Classes

A curva ROC mostra a capacidade do modelo em separar as classes.

ASL e AFL apresentam maiores áreas sob a curva (AUC).

Matriz de Confusão – Impacto nas Predições

Mais predições corretas da classe minoritária com ASL e AFL Redução nos falsos negativos (Classe 1 predita como Classe 0)

Mostra claramente que o modelo está mais equilibrado

Comparação de Modelos - Acurácia

Acurácia continua elevada na maioria dos modelos

ASL apresenta maior variação entre Datasets

AFL mantém performance próxima do modelo base

Diferenças de acurácia não comprometem resultados

Acurácia mascara falhas na classe minoritária

Reflete estabilidade das soluções testadas

Comparação de Modelos-Recall (Macro)

AFL e ASL superam o modelo original

ASL lidera em Recall macro na maioria dos casos

AFL mantém bom equilíbrio entre classes

Modelo original tem pior desempenho na classe 1

Resultados validam foco na classe minoritária

Soluções adaptadas mostram maior sensibilidade

Comparação de Modelos — AUC

Todos os modelos apresentam AUC elevada

Diferenças entre modelos são pouco significativas

ASL e AFL mantêm boa separação entre classes

AUC reforça eficácia das abordagens adaptadas

Pequenas oscilações não afetam desempenho geral

AUC valida robustez dos modelos em cenários difíceis

Comparação de Modelos - F1-Score (Macro)

AFL tem o F1 macro mais elevado na maioria dos datasets

ASL mostra melhorias, mas com maior variação

Modelo original tem o pior equilíbrio global

AFL garante melhor compromisso entre precisão e recall

F1 macro reforça eficácia da AFL em desbalanceamento

Desempenho da ASL depende mais do Dataset

Conclusões

Modelos padrão falham em contextos desbalanceados

F1-score continua a ser a métrica mais justa nestes casos

Resultados validam o uso de perdas assimétricas em aplicações críticas AFL apresenta o melhor equilíbrio geral entre as métricas

Alterar a função de perda melhora a sensibilidade à minoria ASL maximiza o recall da classe minoritária

As soluções propostas mantêm **acurácia elevada e estável**

	Accuracy	Recall (Macro)	F1-Score (Macro)	AUC
Modelo				
Original	0.9191	0.6906	0.7101	0.8709
AFL	0.9056	0.7511	0.7358	0.8666
ASL	0.8240	0.7810	0.6920	0.8590

Limitações e Melhorias Futuras

Ajustar dinamicamente o limiar de decisão (threshold)

Otimizar métricas mais informativas como F1-score

Analisar AUC com intervalos de confiança em classes raras

Usar métricas alternativas (ex: balanced accuracy, MCC)

Aumentar diversidade e número de datasets

Explorar calibradores de probabilidade (Platt, isotonic)

Referências

- Base de código: github.com/rushter/MLAlgorithms
- Artigos: Adaptive Losses for Imbalanced Data, Focal Loss
- OpenAI. (2024). ChatGPT (versão GPT-4).

