

Demostración

Elija vectores \mathbf{u}_{k+1} , \mathbf{u}_{k+2} , ..., \mathbf{u}_n tales que $B_1 = \{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ sea una base ortonormal para \mathbb{R}^n (esto se puede hacer igual que en la prueba del teorema 6.1.2).† Después $B_2 = \{\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_k, \mathbf{u}_{k+1}, \mathbf{u}_{k+2}, \ldots, \mathbf{u}_n\}$ es también una base ortonormal para \mathbb{R}^n . Para ver esto, observe primero que ninguno de los vectores $\mathbf{u}_{k+1}, \mathbf{u}_{k+2}, \ldots, \mathbf{u}_n$ puede expresarse como una combinación lineal de $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_k$ porque ninguno de estos vectores está en H y $\{\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_k\}$ es una base para H. Así, B_2 es una base para \mathbb{R}^n porque contiene n vectores linealmente independientes. La oportunidad de los vectores en B_2 se deduce de la manera en que se escogieron (\mathbf{u}_{k+j}) es ortogonal a todo vector en H para $J = 1, 2, \ldots, n-k$. Sea \mathbf{v} un vector en \mathbb{R}^n . Entonces del teorema 6.1.4 [ecuación (6.1.20)]

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{v} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{v} \cdot \mathbf{u}_k) \, \mathbf{u}_k + (\mathbf{v} \cdot \mathbf{u}_{k+1}) \, \mathbf{u}_{k+1} + \dots + (\mathbf{v} \cdot \mathbf{u}_n) \, \mathbf{u}_n$$

$$= (\mathbf{v} \cdot \mathbf{w}_1) \, \mathbf{w}_1 + (\mathbf{v} \cdot \mathbf{w}_2) \, \mathbf{w}_2 + \dots + (\mathbf{v} \cdot \mathbf{w}_k) \, \mathbf{w}_k + (\mathbf{v} \cdot \mathbf{u}_{k+1}) \, \mathbf{u}_{k+1} + \dots + (\mathbf{v} \cdot \mathbf{u}_n) \, \mathbf{u}_n$$

$$(6.1.22)$$

La ecuación (6.1.21) se deduce de la ecuación (6.1.22).

Definición 6.1.5

Complemento ortogonal

Sea H un subespacio de \mathbb{R}^n . El **complemento ortogonal** de H denotado por H^{\perp} , está dado por

$$H^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \cdot \mathbf{h} = 0 \text{ para toda } \mathbf{h} \in H \}$$

Teorema 6.1.6

Si H es un subespacio de \mathbb{R}^n , entonces

- i) H^{\perp} es un subespacio de \mathbb{R}^n .
- **ii)** $H \cap H^{\perp} = \{0\}.$
- iii) dim $H^{\perp} = n \dim H$.

Demostración

- i) Si \mathbf{x} y \mathbf{y} están en H^{\perp} y si $\mathbf{h} \in H$, entonces $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{h} = \mathbf{x} \cdot \mathbf{h} + \mathbf{y} \cdot \mathbf{h} = 0 + 0 = 0$ y $(\alpha \mathbf{x} \cdot \mathbf{h})$ = $\alpha(\mathbf{x} \cdot \mathbf{h}) = 0$, de manera que H^{\perp} es un subespacio.
- ii) Si $x \in H \cap H^{\perp}$, entonces $x \cdot x = 0$, de manera que x = 0, lo que muestra que $H \cap H^{\perp} = \{0\}$.
- iii) Sea $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ una base ortonormal para H. Por el resultado del problema 5.5.32, esto puede expandirse a una base B para \mathbb{R}^n : $B = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$. Utilizando el proceso de Gram-Schmidt, se puede convertir a B en una base ortonormal para \mathbb{R}^n . Igual que en la prueba del teorema 6.1.2, la base que ya es ortonormal $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ no cambia en el proceso y se obtiene la base ortonormal $B_1 = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_n\}$. Para completar la prueba es necesario demostrar, únicamente, que $\{\mathbf{u}_{k+1}, \dots, \mathbf{u}_n\}$ es una base

[†] Primero debemos encontrar vectores $\mathbf{v}_{k+1}, \mathbf{v}_{k+2}, \dots, \mathbf{v}_n$ tales que $\{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ sea una base para \mathbb{R}^2 . Esto se puede hacer como en la prueba del teorema 5.5.4; vea también el problema 5.5.32.