Concrete Machine Learning Deep User: 2020 Summer Program

Gaussian Mixture Model

Clustering algorithm

Unsupervised learning

Bayesian theory Base

Labeling process

Get internal structure information

Knowledge discovery in data

Mixture Model

전체 분포에서 하위 분포가 존재한다고 보는 모델 데이터가 모수를 갖는 여러개의 분포로부터 생성되었다고 가정하는 모델

Mixture Model

전체 분포에서 하위 분포가 존재한다고 보는 모델 데이터가 모수를 갖는 여러개의 분포로부터 생성되었다고 가정하는 모델

데이터가 K개의 정규분포로부터 생성되었다고 보는 모델

정규분포 1: 평균 = -0.5, 표준편차 = 0.2 (파란색)

정규분포 2: 평균 = -0.1, 표준편차 = 0.07 (주황색)

정규분포 3: 평균 = 0.2, 표준편차 = 0.13 (녹색)

정규분포 1: 평균 = -0.5, 표준편차 = 0.2 (파란색)

정규분포 2 : 평균 = -0.1, 표준편차 = 0.07 (주황색)

정규분포 3: 평균 = 0.2, 표준편차 = 0.13 (녹색)

정규분포 1: 평균 = -0.5, 표준편차 = 0.2 (파란색)

정규분포 2 : 평균 = -0.1, 표준편차 = 0.07 (주황색)

정규분포 3: 평균 = 0.2, 표준편차 = 0.13 (녹색)

Weight: 3가지 정규분포 중 확률적으로 어디에서 속해 있는가를 나타내는 값

Mean, Variance : 모수(평균, 분산)

Mean, Variance: EM 알고리즘을 iterative하게 구현하여 모수 추정

$$p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$
 (1)

$$0 \le \pi_k \le 1 \tag{2}$$

$$\sum_{k=1}^{K} \pi_k = 1 \tag{3}$$

적절한 πk,μk,Σk를 추정

$$p(x) = \sum_{k=1}^{K} \pi_k N(x | \mu_k, \Sigma_k)$$
 (1)

$$0 \le \pi_k \le 1$$

$$\sum_{k=1}^{K} \pi_k = 1 \tag{3}$$

$$\gamma(z_{nk}) = p(z_{nk}=1|x_n) \tag{4}$$

$$p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$
 (1)

$$0 \le \pi_k \le 1 \tag{2}$$

$$\sum_{k=1}^{K} \pi_k = 1 \tag{3}$$

$$\gamma(z_{nk}) = p(z_{nk}=1|x_n) \tag{4}$$

$$\gamma(z_{nk}) = p(z_{nk}=1|x_n) = \frac{p(z_{nk}=1)p(x_n|z_{nk}=1)}{\sum_{j=1}^{K} p(z_{nj}=1)p(x_n|z_{nj}=1)} = \frac{\pi_k N(x_n|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x_n|\mu_j, \Sigma_j)}$$
(5)

$$\gamma(z_{nk}) = p(z_{nk}=1|x_n) = \frac{p(z_{nk}=1)p(x_n|z_{nk}=1)}{\sum_{j=1}^{K} p(z_{nj}=1)p(x_n|z_{nj}=1)} = \frac{\pi_k N(x_n|\mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(x_n|\mu_j, \Sigma_j)}$$
(5)

$$\mathcal{L}(X;\theta) = \ln p(X|\pi, \ \mu, \ \Sigma) = \ln \left\{ \prod_{n=1}^{N} p(x_n|\pi, \ \mu, \ \Sigma) \right\} = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k, \ \Sigma_k) \right\}$$
(6)

$$\frac{\partial \mathcal{L}(X;\theta)}{\partial \mu_{k}} = \sum_{n=1}^{N} \frac{\pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{n} | \mu_{j}, \Sigma_{j})} \Sigma_{k}^{-1}(x_{n} - \mu_{k}) = 0$$

$$\Leftrightarrow \sum_{n=1}^{N} \gamma(z_{nk})(x_{n} - \mu_{k}) = 0$$

$$\therefore \mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk})x_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

$$(7)$$

$$\frac{\partial \mathcal{L}(X;\theta)}{\partial \Sigma_{k}} = \sum_{n=1}^{N} \frac{\pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{n} | \mu_{j}, \Sigma_{j})} \left\{ \frac{1}{2} \Sigma_{k}^{-1} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T} \Sigma_{k}^{-1} - \frac{1}{2} \Sigma_{k}^{-1} \right\} = 0$$

$$\iff \sum_{n=1}^{N} \gamma(z_{nk}) \{ \Sigma_{k}^{-1} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T} - 1 \} = 0$$

$$: \Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (x_n - \mu_k) (x_n - \mu_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$
(8)

A 라그랑주 승수법

A 라그랑주 승수법

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$
 (1)

$$\nabla f = \lambda \nabla g \tag{2}$$

$$L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c)$$
 (3)

$$L(x, y, \lambda_1, \lambda_2, \lambda_2, ..., \lambda_n) = f(x, y) - \sum_{i=1}^{N} \lambda_i (g_i(x, y) - c_i)$$
 (4)

$$\frac{\partial \mathcal{L}(X;\theta)}{\partial \Sigma_{k}} = \sum_{n=1}^{N} \frac{\pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{n} | \mu_{j}, \Sigma_{j})} \left\{ \frac{1}{2} \Sigma_{k}^{-1} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T} \Sigma_{k}^{-1} - \frac{1}{2} \Sigma_{k}^{-1} \right\} = 0$$

$$\iff \sum_{n=1}^{N} \gamma(z_{nk}) \{ \Sigma_{k}^{-1} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T} - 1 \} = 0$$

$$: \Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (x_n - \mu_k) (x_n - \mu_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$
(8)

$$\frac{\partial \mathcal{L}(X;\theta)}{\partial \Sigma_{k}} = \sum_{n=1}^{N} \frac{\pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{n} | \mu_{j}, \Sigma_{j})} \left\{ \frac{1}{2} \Sigma_{k}^{-1} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T} \Sigma_{k}^{-1} - \frac{1}{2} \Sigma_{k}^{-1} \right\} = 0$$

$$\iff \sum_{n=1}^{N} \gamma(z_{nk}) \{ \Sigma_{k}^{-1} (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T} - 1 \} = 0$$

$$\Sigma_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$
(8)

$$J(X;\theta, \lambda) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k) + \lambda \left(1 - \sum_{k=1}^{K} \pi_k \right)$$
 (9)

$$J(X;\theta, \lambda) = \sum_{n=1}^{N} \ln \sum_{k=1}^{K} \pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k}) + \lambda \left(1 - \sum_{k=1}^{K} \pi_{k}\right)$$

$$\frac{\partial J(X;\theta, \lambda)}{\partial \pi_{k}} = \sum_{n=1}^{N} \frac{N(x_{n} | \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{n} | \mu_{j}, \Sigma_{j})} - \lambda = 0$$

$$\Leftrightarrow \sum_{k=1}^{K} \sum_{n=1}^{N} \frac{\pi_{k} N(x_{n} | \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{n} | \mu_{j}, \Sigma_{j})} - \lambda \sum_{k=1}^{K} \pi_{k} = 0$$

$$\Leftrightarrow \sum_{k=1}^{K} \sum_{n=1}^{N} \gamma(z_{nk}) - \lambda = 0 \quad \left(\because \sum_{k=1}^{K} \pi_{k} = 1\right)$$

$$\therefore \lambda = N \quad \left(\because \sum_{k=1}^{K} \gamma(z_{nk}) = 1\right)$$

$$(10)$$

$$\frac{\partial J(X;\theta, \lambda)}{\partial \pi_{k}} = \sum_{n=1}^{N} \frac{N(x_{n}|\mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{n}|\mu_{j}, \Sigma_{j})} - N = 0$$

$$\Leftrightarrow \sum_{n=1}^{N} \frac{\pi_{k} N(x_{n}|\mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{n}|\mu_{j}, \Sigma_{j})} - N\pi_{k} = 0$$

$$\therefore \pi_{k} = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk}) \tag{11}$$

```
Algorithm 1: EM algorithm for GMM
     Input : a given data X = \{x_1, x_2, ..., x_n\}
     Output: \pi = \{\pi_1, \pi_2, ..., \pi_K\},
                       \mu = {\mu_1, \mu_2, ..., \mu_K},
                        \Sigma = \{\Sigma_1, \Sigma_2, ..., \Sigma_K\}
  1 Randomly initialize \pi, \mu, \Sigma
 2 for t = 1 : T do
             // E-step
             for n = 1 : N do
                    for k = 1 : K do
                          \gamma(z_{nk}) = \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x_n | \mu_j, \Sigma_j)}
                    end
             end
             // M-step
             for k = 1 : K do
10
                  \mu_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) x_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})}
\Sigma_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (x_{n} - \mu_{k}) (x_{n} - \mu_{k})^{T}}{\sum_{n=1}^{N} \gamma(z_{nk})}
\pi_{k} = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})
11
15 end
```

Algorithm 2: GMM classification

```
Input :a given data X = \{x_1, x_2, ..., x_n\},

\pi = \{\pi_1, \pi_2, ..., \pi_K\},

\mu = \{\mu_1, \mu_2, ..., \mu_K\},

\Sigma = \{\Sigma_1, \Sigma_2, ..., \Sigma_K\}

Output: class labels y = \{y_1, y_2, ..., y_N\} for X

1 for n = 1 : N do

2 y_n = \underset{k}{\operatorname{arg max}} \gamma(z_{nk})

3 end
```

(π = initialprobability, it should be [1/3, 1/3, 1/3].

 μ =it is diagonal matrix and diagonal entry is random on initial stage.

its shape is 3 x n matrix each row means each cluster, select 3 data randomly and use it as mean of each cluster.

 Σ = it is diagonal matrix and diagonal entry is random on initial stage, its shape is 3 x n x n matrix, first dimension means cluster, others means covariancematrix of feature, N = Data Point, K=Num of Gaussian distribution, T = iteration)

```
Algorithm 1: EM algorithm for GMM
    Input: a given data X = \{x_1, x_2, \dots, x_N\}
   Output: \pi = \{\pi_1, \pi_2, ..., \pi_K\},
                 \mu = \{\mu_1, \mu_2, ..., \mu_K\},\
                 \Sigma = \{\Sigma_1, \Sigma_2, ..., \Sigma_K\}
1 Randomly initialize \pi, \mu, \Sigma
 2 \text{ for } t = 1 : T \text{ do}
          // E-step
         for n = 1 : N do
               for k = 1 : K do
                                    \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_i N(x_n | \mu_i, \Sigma_i)}
               end
         end
         // M-step
         for k = 1 : K do
11
12
15 end
```

For a given data x, GMM expresses the probability that x will occur as the sum of several Gaussian probability density functions as shownin [Equation 1].

$$p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$
 (1)

Learning GMM is equivalent to estimating the appropriate πk , μk , Σk for the given data $X = \{x1, x2, ..., xN\}$.

After build all of function, you can see below result from python console when you compile "main.py" GMM – EM algorithm can reach local optimal, sometime but it mostly shows this result.

Feature (Z-score) normalization

0.001 0.001 Example of PDF normalization= 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001

PDF1

0.002

PDF2

0.002

	PDF1	PDF2
	0.5	0.5
	0.5	0.5
	0.5	0.5
	0.5	0.5
1	0.5	0.5
-	0.5	0.5
	0.5	0.5
	0.5	0.5

THANKS