

	0.0 4000.001 1 100.000 001 0	Binoroniai Equation	
Questions		JEE Main Crash Cours	
1.		slope $\frac{2y}{x\log_e x}$ for all positive real value of x . Then the value of $f(e)$ is equal to	
2.	A continuous function $f: R \to R$ satisfies the differential equation (1) $\frac{13}{10}$ (3) $\frac{10}{13}$	$f(x) = (1+x^2) \left[1 + \int_0^x \frac{(f(t))^2}{1+t^2} dt \right]$, then $f(-3)$ is	
3.	20	(4) $\frac{5}{8}$ e differential equation $\frac{dp(t)}{dt} = \frac{1}{2}p(t)-200$. If $p(0) = 100$, then $p(t)$ equals : 1000 when	
	(1) $600 - 500e^{\frac{t}{2}}$	(2) $400 - 300e^{-\frac{t}{2}}$	

	$(3) 400 - 300e^2$	(4) $300 - 200e^{-2}$			
4. If $\cos^2 x \frac{dy}{dx} - y \tan 2x = \cos^4 x$, where $\left x \right < \frac{\pi}{4}$ and $y\left(\frac{\pi}{6}\right) = \frac{3\sqrt{3}}{8}$, then the constant term in the solution of the differential equation is					
	(1) 1	(2) 0			
	(3)a#1 ngo /// mathongo /// mathongo ///	mathongo /(4) 2 athongo /// m			
5.	The solution of the differential equation $(1-x^2)\cdot \frac{dy}{dx} + xy = (x-x^3)y^{\frac{1}{2}}, \ (\forall x <1)$ is $\sqrt{9y} = -f(x) + c(1-x^2)^{\frac{1}{4}}$, where c is an arbitrary constant and				
	$f\left(\frac{1}{2}\right) = \frac{3}{4}$. Then, $f(x)$ is				
	(1) an odd function	(2) an even function			

	(3) a periodic function	(4) symmetric about line $x = 1$
6.	The solution of the equation $(xy^4 + y)dx - xdy = 0$ is $\frac{dy}{dx} = 0$	
	$(1) \ 4x^4y^3 + 3x^3 = Cy^3$	$(2) \ \ 3x^3y^4 + 4x^3 = Cx^3$

	$(3) \ 3x^4y^3 + 4x^3 = Cy^3$	$(4) \ \ 3x^4y^3 + 4x^3 = Cx^3$
7.	The solution of the differential equation $y(\sin^2 x)dy + (\sin x \cos x)y^2 dx =$	xdx is (where C is the constant of integration)
	(1) $\sin^2 x \cdot y = x^2 + C$	(2) $\sin^2 x \cdot u^2 - x^2 \perp C$

(3)
$$\sin x \cdot y^2 = x^2 + C$$
 (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (5) $\sin^2 x \cdot y^2 = x + C$ mathons (7) $\sin^2 x \cdot y^2 = x + C$ mathons (8) $\sin^2 x \cdot y^2 = x + C$ mathons (8) $\sin^2 x \cdot y^2 = x + C$ mathons (9) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (2) $\sin^2 x \cdot y^2 = x + C$ mathons (2) $\sin^2 x \cdot y^2 = x + C$ mathons (2) $\sin^2 x \cdot y^2 = x + C$ mathons (3) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (4) $\sin^2 x \cdot y^2 = x + C$ mathons (5) $\sin^2 x \cdot y^2 = x + C$ mathons (6) $\sin^2 x \cdot y^2 = x + C$ mathons (7) $\sin^2 x \cdot y^2 = x + C$ mathons (8) $\sin^2 x \cdot y^2 = x + C$ mathons (8) $\sin^2 x \cdot y^2 = x + C$ mathons (8) $\sin^2 x \cdot y^2 = x + C$ mathons (8) $\sin^2 x \cdot y^2 = x + C$ mathons (9) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot y^2 = x + C$ mathons (1) $\sin^2 x \cdot$

9. The curve satisfying the differential equation
$$\frac{dx}{dy} = \frac{x+2yx^2}{y-2x^3}$$
 and passing through $(1, 0)$ is given by

(1) $x^2 + y^2 = 1$ mathongo m

(3)
$$y^2 - \frac{y}{x} - x^2 = -1$$
 (4) $x^2 - y^2 = 1$

10. If the solution of the differential equation $\left(1 + e^{\frac{x}{y}}\right)dx + e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0$ is $x + kye^{\frac{x}{y}} = C$ (where, C is an arbitrary constant), then the value of k is equal to

