SIEMENS

PLC management

Page 1

Muslimovic jasmine 05/17/2018

Contents

1	Data	1 types	4
2		IS data	
	2.1	DLMS Request	
	2.2	DLMS Response	
	2.3	Flow diagram	
3	Pinç		
	3.1	Ping request	7
	3.2	Ping Response	
	3.3	Flow diagram	
4	PLC	Route	
	4.1	Route request	9
	4.2	Route response	9
	4.3	Flow diagram	
5	DLN	IS Multicast request	11
6	ACK	ζ	12
7	NAC	K	13
	7.1	Diagram Reason=Protocol Error	14
	7.2	Diagram Reason=Busy	14
	7.3	Diagram Reason= Unknown Meter	14
	7.4	Diagram Reason= Route Error	15

List of figures and tables

Table 2: Response and acknowledgment data types	4
Table 3 DLMS Data Request	
Table 4 DLMS Data Request	5
Table 5: Ping Request	7
Table 6: Ping response	7
Table 7: Route Request	
Table 8: Route Response	
Table 9: DLMS Multicast Request	11
Table 10: ACK	
Table 11: NACK	13
Table 12: NACK Reasons	13
Figure 1: DLMS Data flow diagram	6
Figure 2: Ping Request Diagram	8
Figure 3: Routing Table diagram	
Figure 4: DLMS Multicast Diagram	
Figure 5: NACK with Reason = Protocol Error Diagram	14
Figure 6: NACK with Reason = Busy Diagram	14
Figure 7: NACK with Reason = Unknown Meter Diagram	
Figure 8: NACK with Reason = Route Error Diagram	

1 Data types

The Siemens header has a dynamic structure, so the information in the header depends on the Head type. In Tables 1 and 2 are the defined data types with corresponding values.

Table 1: Request data types

HEAD END SYSTEM → GW		
Data type	Value	
DLMS_REQ	0	
PING_REQ	2	
ROUTE_REQ	4	
DLMS_MULTICAST_REQ	8	

Table 1: Response and acknowledgment data types

GW → HEAD END SYSTEM		
Data type	Value	
DLMS_RSP	1	
PING_RSP	3	
ROUTE_RSP	5	
ACK	6	
NACK	7	

In next chapters are each head type is explained in more detail.

2 DLMS data

Two data types are defined: DLMS_REQ and DLMS_RSP. Data passing through TCP in both directions (HEAD END system \rightarrow GW and GW \rightarrow HEAD END system), which include the Siemens headers and the DLMS data:

data = Siemens header (DLMS_REQ or DLMS_RSP) + DLMS data (wrapper header + data)

Unlike the previous version of data communication, the GW Proto header is not embedded between the wrapper header and DLMS data any more. The information from the GW Proto Header or the counter address is implemented in the new Siemens header.

2.1 DLMS Request

 $DLMS_REQ$ value = 0

Table 2 DLMS Data Request

Restricted Page 4 / 15

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	DLMS_REQ
Packet ID	2	UINT16
Meter EUI64	8	EUI64
Data Len	2	UINT16
Data	Data Len	DLMS Wrapper + DLMS Data

2.2 DLMS Response

DLMS_RSP value = 1

Table 3 DLMS Data Request

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	DLMS_RSP
LQI	1	UINT8
Meter EUI64	8	EUI64
Data Len	2	UINT16
Data	Data Len	DLMS Wrapper + DLMS Data

LQI - link quality indicator

Restricted Page 5 / 15

2.3 Flow diagram

Figure 1: DLMS Data flow diagram

Restricted Page 6 / 15

3 Ping

Two data types are defined: PING_REQ and PING_RSP. Data passing through TCP in both directions (HEAD END System \rightarrow GW and GW \rightarrow HEAD END System) include the Siemens headers and the ping data:

data = Siemens Header (PING_REQ or PING_RSP) + PING data

The ping data is used to build an ICMPv6 packet and send it to the meter via PLC. In this Version of PLC Management the type of ICMPV6 packet is set to "ECHO Request" with the value 128. If necessary, other types (129 - 155) can also be set.

3.1 Ping request

PING_REQ value = 2

Table 4: Ping Request

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	PING_REQ
Packet ID	2	UINT16
Meter EUI64	8	EUI64
Data Len	2	UINT16
Data	Data Len	Ping Data

3.2 Ping Response

PING RSP value = 3

Table 5: Ping response

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	PING_RSP
Meter EUI64	8	EUI64
Data Len	2	UINT16
Data	Data Len	Ping Data

The meter also responds with an ICMPv6 packet and from this packet becomes the response Ping data unpacked and sent back to the HEAD END system

Restricted Page 7 / 15

3.3 Flow diagram

Figure 2: Ping Request Diagram

Restricted Page 8 / 15

4 PLC Route

There are two types defined for this data type: ROUTE_REQ and ROUTE_RSP. Data via TCP sent from the HEAD END system to the GW contain the Siemens header only:

```
data = Siemens Header (ROUTE_REQ)
```

and data returned from the GW to the HEAD END system includes the response Siemens headers and the routing tables:

data = Siemens Header (ROUTE_RSP) + Routing Tables (all meters)

4.1 Route request

ROUTE_REQ value = 4

Table 6: Route Request

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	ROUTE_REQ
Packet ID	2	UINT16

4.2 Route response

ROUTE_RSP value = 5

Table 7: Route Response

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	ROUTE_RSP
Packet ID	2	UINT16
Data Len	2	UINT16
Data	Data Len	PLC PAN Routing Tables

Restricted Page 9 / 15

Meter

```
'hopCount': " ",
'weakLinks': " ",
'validTime': " "
}
```

4.3 Flow diagram

Figure 3: Routing Table diagram

Restricted Page 10 / 15

5 DLMS Multicast request

DLMS_MULTICAST_REQ value = 8

Table 8: DLMS Multicast Request

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	DLMS_MULTICAST_REQ
Packet ID	2	UINT16
Group ID Len	2	UINIT16
Group ID	Group ID Len	Group number
Data Len	2	UINT16
Data	Data Len	DLMS Wrapper + DLMS Data

All meters that are set as members of this group are queried with this request. Based on the group ID, a multicast address consisting of a 2-byte prefix and 14-byte Group ID composed, constructed:

multicast address = "\ xFF \ x02" + group id

and the data will be sent to this address.

The length of the group ID in the header can be a minimum of 1-byte and a maximum of 14-byte. In the case, that the groups ID e.g. is 1, the length is 1-byte and the multicast address is set as the following:

Figure 4: DLMS Multicast Diagram

Restricted Page 11 / 15

6 ACK

A positive acknowledgment is returned whenever a request delivered successfully and reached the (first) meter. An ACK is sent to HEAD END system only in the case of a DLMS_REQ, PING_REQ and DLMS_MULTICAST_REQ data type only.

ACK Value = 6

Table 9: ACK

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	ACK
Packet ID	2	UINT16
Data Len	2	UINT16
Data	Data Len	Meter Path

The data contains the path of the requested meter. This information is sent at this point because the requested meter can communicate over multiple counters and the ACK Is sent immediately after the first meter has been reached

Restricted Page 12 / 15

7 NACK

A negative acknowledgment can be sent to the HEAD END system for a variety of reasons. These reasons are built into the header under the Reasons field.

NACK Value = 7

Table 10: NACK

Description	Len (Byte)	Туре
SYNC	1	0x55
SYNC	1	0x55
SYNC	1	0x55
Version	1	UINT8
Data Type	1	NACK
Packet ID	2	UINT16
Reason	1	NACK Reason

There are 4 reasons for a NACK for this version of PLC Management. The reasons can be extended anytime. All errors that occur in the log, see Table 12, are recorded through a reason with value up to 99.

Table 11: NACK Reasons

NACK Reasons	Value	Description
BUSY	0	
UNKNOWN_MET	1	Meter is not registered, unknown
ROUTE_ERR	2	Route to the meter could not be found
PROTOCOL_ERROR	99	Error in protocol e.g.: - Unknown data type - no enough data received - data length is not correct - etc.

Restricted Page 13 / 15

7.1 Diagram Reason=Protocol Error

Figure 5: NACK mit Reason = Protocol Error Ablaufdiagramm

Figure 5: NACK with Reason = Protocol Error Diagram

7.2 Diagram Reason=Busy

Figure 6: NACK with Reason = Busy Diagram

7.3 Diagram Reason= Unknown Meter

Restricted Page 14 / 15

Figure 7: NACK with Reason = Unknown Meter Diagram

7.4 Diagram Reason= Route Error

Figure 8: NACK with Reason = Route Error Diagram

Restricted Page 15 / 15