Encryption Algorithms for Secure Communication over the Internet

BICS student: Desislava MARINOVA*, PhD Student Asya MITSEVA[†], Prof. Dr. Thomas ENGEL [‡]
Faculty of Science, Technology and Communication, University of Luxembourg,
Luxembourg

Email: *desislava.marinova.002@student.uni.lu, †asya.mitseva@uni.lu, ‡thomas.engel@uni.lu

Abstract—Cryptography is a broad method for secure data disguise and transmission. The primary purpose of this paper is to explore the state-of-the-art of cryptographic primitives, both in theory and in practice. The project mainly focuses on symmetric-key cryptography and reviews the types of ciphers it encompasses: transposition and substitution along with block and stream. The project carries on with an implementation of a chat application, in Python programming language, that encrypts messages before transmitting them over the Internet. The encryption algorithms used to develop the client/server infrastructure are: Caesar cipher, ROT13, DES and AES. The latter two have been implemented through the means of PyCryptodome library. Being able to choose the type of encryption, once connected to the server, the client can easily compare the efficiency of the implemented algorithms. As a result, the basic features, advantages, drawbacks and applications of various symmetric-key cryptography algorithms have been mentioned in this paper.

1. Introduction (\pm 5% total words)

Communication technologies have turned the past decades into an information age, dense with electronic connectivity, eavesdropping and fraud. We witness an influx of sensitive information breaches. The reason being is the lack of strong access control measures. Various methods exist for hacking and circumventing sensitive data, e.g social engineering attacks, distributed brute forcing. It is worth mentioning, the use of the same password to access different accounts that grant easy account access to determined scammers. We should not fall short in addressing todays threat landscape. For all that, when we send private data around the world instantaneously, we do not want it to be intercepted, redirected or stolen. Thus, information is an asset that has precious value like any other. Modern society relies on an evolving panoply of information technologies and technology-enabled services. Future needs of data security is of utmost importance given the increasing global nature of commerce, business, communication, eHealth and eGovernment. We all use the Internet, data is becoming congested. Therefore, how do we maintain privacy, integrity, online-identity? Network based attacks spring up every day and distance for hackers is not a problem anymore since data has been digitalized. There are various factors contributing to the vulnerability of Internet security. For this reason, the disciplines of Cryptography and Network Security have matured. Thanks to them financial flows and medical records are being protected. Cryptography and Network Security combined defend state secrets and the corporate sort, and make the e-commerce industry possible. Without cryptography, credit-card details, bank transfers would zip around the Internet unprotected, for anyone to see or steal. From obscure science, Cryptography has become one of the major pillars of modern cyber reality. To develop a security mechanism (algorithm or protocol) one must always consider potential attacks, take countermeasures, role play as an intruder and exploit eventual weaknesses.

In order to understand the principles of cryptography, we dive into the terminology that governs our report. The word cryptography comes from two Greek words meaning secret writing [1]. Cryptography is the art and science of concealing meaning, of keeping the enciphered information secret and designing and analyzing encryption schemes. Mathematics is the foundation on which modern encryption rests. Cryptanalysis is the breaking of encoded data and uses statistical and mathematical approaches. The areas of cryptography and cryptanalysis together are called cryptology [1]. The basic component of cryptography is a cryptosystem which is based on substitution and permutation. The former changes characters in the plaintext to produce the ciphertext. The latter is an ordered sequence of elements in a finite set with each character appearing only once. In order to make information secret, we use a cipher a cryptographic algorithm that converts plaintext (i.e. data in readable form) into ciphertext (i.e. a message in unreadable but protected form). We ought to be in possession of a key to be able to convert back the cipher, otherwise it would not be possible to discover the original content. The process of making text secret is called encryption, and the reverse process is called decryption.

There are three types of cryptography: symmetric key, asymmetric key and hash functions. For this project, we shall focus mainly on the symmetric, also called *conventional*. It comprises a single key for both encryption and decryption and it is the preferred choice when we need to encrypt large amounts of data. The reason being is because it is faster and less power consuming, mainly on the

decryption side. Some of the encryption algorithms that use symmetric key encryption are: DES (Data Encryption Standard), Triple DES, AES (Advanced Encryption Standard), Blowfish, Twofish. One of the shortcomings of symmetric key cryptography is related to transferring secure files because the same key has to be used for both encryption and decryption. The sender must find a secure way to provide the recipient with the key so that the latter is able to decrypt the files. Otherwise, they risk placing the key in the wrong hands, leading to deciphering of the encrypted files. Moreover, when the file transfer environment involves multiple users dispersed around the world, it is highly impossible to distribute the key using this crypto method.

On the other hand, asymmetric cryptography, also called *public key* or *two-key cryptography*, makes use of two keys: public and private. The public key is used to encrypt the message, whereas the private key is used to decrypt it. Most widely employed asymmetric key algorithms are the Rivest-ShamirAdleman (RSA) and the Digital Signature Algorithm (DSA). However, the asymmetric method is computationally costly and cannot deal with large quantities of data [2]. The reasons for its downside are the runtime of employed supporting processes, the more storage space required and the more time needed to move over a link. However, asymmetric key cryptography is more secure when we want to transfer over an insecure channel. Furthermore, it does not have the issue with multiple user key distribution, as long as the private key is kept secret.

A cryptographic hash function takes an arbitrary block of data and returns a fixed-size bit string (a hash value, also called (message) digest) such that any change to the data will change the hash value. Prominent examples among hash functions are: Message Digest 5 (MD5), Secure Hash Algorithm 256 (SHA256), Password-Based Key Derivation Function 2 (PBKDF2).

The choice to be made on which system to use for encryption and decryption depends on the purposes, requirements, ease of distribution and on the functions of each algorithm. Modern applications employ a hybrid versions of both symmetric and asymmetric key cryptography as they have their own advantages. For example, Secure Sockets Layer (SSL) and Secure Shell (SSH) are classified as hybrid cryptosystems.

If someone wants to break the ciphertext, knowing the algorithm but not the specific cryptographic key, there are three main types of attacks. A good cryptosystem should protect against them [3]:

- Ciphertext only attack: the ciphertext is known and the goal is to find the corresponding plaintext. If possible, the key may be found as well.
- Known plaintext attack: both ciphertext and plaintext are known and the goal is to find the key.
- Chosen plaintext attack: specific plaintexts are enciphered in order to find out the corresponding ciphertexts and the goal is to find the key.

2. Project description (\pm 10% total words)

2.1. Domain

The report draws on a variety of disciplines. However, it is impossible to appreciate the vastness and significance of the topic in a limited number of pages. Nevertheless, we attempt to make the report self-contained by providing the reader with an intuitive understanding of our survey and application results. The domains that are associated with our project are:

- Internet security: a branch to computer security, related to the Internet, comprised of measures to protect transactions done over a collection of interconnected networks [4].
- Computer Security: the process of preventing and detecting unauthorized use of a computer [5].
- Cryptographic primitives: well-established, low-level cryptographic algorithms frequently used to build cryptographic protocols for computer security systems [6].
- Symmetric-key cryptography: an algorithm for cryptography that uses the same key for both encryption and decryption [7].
- Cryptographic algorithms: ensure alteration of data in order to preserve its authenticity, confidentiality, integrity through various security mechanisms such as symmetric encryption, asymmetric encryption and cryptographic hash functions [1].

2.2. Objectives

The objectives of this project are three-fold.

- As a preliminary task, we address a highly needed background material. We give a basic introduction to the concepts and primitives of cryptography, i.e. transposition/permutation, encryption/decryption, symmetry/asymmetry, block ciphers/stream ciphers and how they preserve their security in constantly emerging attacks.
- Our main focus falls on symmetric encryption, taking into account both classical and modern algorithms. Therefore, we review existing state-of-theart encryption algorithms: Caesar cipher, ROT13, One-time pad, DES, 3DES, AES.
- 3) Last but not least, we implement a chat system that encrypts user's messages before they are transmitted over the Internet.

2.3. Constraints

Our project takes into account substitution/transposition; block/stream ciphers but we do not consider:

- Asymmetric ciphers (public-key algorithms, including RSA and elliptic curve);
- Data integrity algorithms (cryptographic hash functions, message authentication codes (MACs); digital signatures;
- Authentication techniques: key management and key distribution (protocols for key exchange);

3. Background (\pm 15% total words)

3.1. Scientific

In this section we present substitution and transposition ciphers along with stream and block ciphers. On the one hand, substitution ciphers they take the i-th element of a string and change it for another value to produce a ciphertext. Substitution ciphers can be monoalphabetic or polyalphabetic. The former, also called simple substitution cipher, maps a plaintext letter to a ciphertext letter based on a single alphabet key. The latter uses multiple substitution alphabets. In transposition ciphers the values of plain letters are not changed for another but rearranged. Modern ciphers use a combination of both substitution and transposition ciphers. Ciphers can also be divided into stream and block ciphers. The former convert one symbol (1 bit or byte) of plaintext directly into a symbol of ciphertext. The latter encrypt a group of plaintext symbols as one block and outputs a block of ciphertext. We add that substitution ciphers can operate on either blocks or streams.

In the rest of the section, we describe different examples of ciphers for each of the groups presented above.

Substitution ciphers: The most popular example of substitution cipher is the One - Time Pad (OTP), designed in 1917. What makes it very secure is that a pad (secret key) is never reused. Instead, OTP utilizes a random key which has an equal length to the message. It shifts each plain letter depending on the corresponding keyword letter. The random key is also used in encryption and decryption of the message, and afterwards is discarded [8]. If we want to generate a new message, a new key is required. Thus, this scheme leads to an output unrelated to the plaintext. If we try to decipher a ciphertext using this method, and let us suppose we have succeeded in finding the key, our attempts would lead us to fairly different decrypted outputs. For this reason, it would be difficult to decide upon the correct decryption. However, there are two fundamental complexities related to the one-time pad: (1) making large quantities of random keys; (2) key distribution and protection (since a key of equal length is needed by both sender and receiver) [8]. Hence, if we ought to employ the one-time pad, it would be best for low-bandwidth channels requiring very high security [8]. Nevertheless, this cryptosystem is regarded as the sole exhibiting perfect secrecy [8]. Some cipher machines attempted mechanically then electronically, in both cases nevertheless unsuccessfully, to create approximations to onetime pads (OTPs). Many snake oil algorithms claim to be unbreakable, posing as OTPs. Hence, these algorithms give rise to pseudo-OTPs providing pseudo-security [9].

How does a substitution cipher work? In order to produce the ciphertext, the cipher modifies characters in the plaintext. Can it be broken? We can break the monoalphabetic cipher by using letter frequency analysis since letter frequencies are preserved (e.g. 'e is the most common letter in English, followed by 't,i,o,a,n,s,r'). The polyalphabetic cipher can be broken by decomposing into individual alphabets and as a consequence to treat it as a simple substitution cipher. A historical example of breaking the substitution cipher is the execution of Mary, Queen of Scots, in 1587 for plotting to kill Queen Elizabeth [10]. The "Vigenere Cipher" is the most popular polyalphabetic cipher. The Vigenere cipher is an improvement of the Caesar cipher but not as secure as the unbreakable One Time Pad. Caesar cipher encodes each plain letter by a constant shift, whereas the One Time Pad shifts each plain letter depending on the corresponding keyword letter. The Vigenere cipher uses a keyword of given length repeatedly to determine the encoding shift of each plain letter. For instance, we are given a word, we convert it to numbers, according to the letter position in the alphabet. Next, we repeat the sequence of numbers along the message. Then, we encrypt each letter in the message by shifting, according to the number below it, and send the encrypted message openly to the recipient. Hence, we employ multiple shifts. To decrypt the message, we should subtract the shifts according to the secret word or key we have a copy of.

Cipher machines: Cryptography was mechanized by the 1900s in the form of encryption machines. The basic component of a cipher machine is the wired rotor. When we get prior to the Second World War, the Germans realized that, thanks to radios, messages can be sent across the battlefield in an instant but that always meant the other side could also tap into those radio channels. Therefore high-tech encryption was highly needed. The Germans invented Enigma, whose complexity guaranteed their privacy. The Enigma was a substitution cipher, but a more sophisticated one because it used three rotors in a row, each feeding into the next. The Germans typed their messages on a keyboard that came out as gibberish on a lampboard. Then they sent it over the radio to the other side, which also has the same Enigma machine to help them decrypt the unintelligible message. Furthermore, to decrypt the message, it is assumed that the other side should know the algorithm and must have configured the machine the same way as the Enigma machine encrypting the message. The Enigma relies on a random letter generator. Hence, its encryption does not seem to follow any kind of pattern. There are 26 wires coming out of the keyboard, running through three rotors with 6 permutations, going into the lamps representing the output letter. Once the first of the three rotors hits a full evolution, it kicks the next rotor to start moving, yet again, when it completes its cycle, it transmits the process to the last rotor. The inside of the rotors resembles scrambled wiring. A rotor's side has 26 junctions or contacts, accepting the incoming wires and outputting them to the other side of the

rotor. The rotor moves each time a letter is typed in. Even if the same letter is passed sequentially, the rotor would move and a lamp representing a different output letter would light up. Thus, the dynamism of the rotors accounts for the complicated encryption. Finally, a plugboard at the front of the machine allows letters to be optionally swapped so that the machine it is interacting with is configured the same way. Alan Turing and his colleagues at Bletchley Park were able to break the Enigma codes and automate the process by developing a new machine called the Bombe [11]. The rotor machines were cracked because the same key had been used over an extended period of time and due to the use of old compromised keys while encrypting. In addition, the circuit's configuration showed that it was impossible for a letter to be encrypted as itself, which turned out to be a cryptographic flaw.

Transposition ciphers: Another kind of mapping is achieved by performing permutation on the plaintext letters. This technique is referred to as a transposition cipher. For example, a simple cipher of this sort is the rail fence technique. The plaintext is written as a sequence of diagonals and read off as a sequence of rows. The key is the number of rows used to encode.

With today's computer power transposition ciphers can be broken quickly. Trying to compute the frequencies of the cipher letters is one method. Another way is testing possible rearrangements. For instance, one may try to read the cipher text backwards. If that does not yield the plain text then the rail fence technique could be tested. If that does not yield the plain text, one could check if two consecutive letters were switched.

Stream ciphers: A stream cipher generates a stream of bytes, one for each byte of the text we want to encrypt. An example is Rivest Cipher 4 (RC4), designed in 1987 by Ron Rivest. RC4 uses either 64-bit or 128-bit key sizes. Its most popular implementation is in WEP for 802.11 wireless networks and in SSL. RC4 consists of a keyscheduling algorithm, which initializes a permutation of all 256 possible bytes (since the permutation array has a length of 256 bytes) [3]. The permutation itself is started with a length key between 40 and 2048 bits. RC4 is also composed of pseudo-random generation algorithm (PRGA) which generates the stream of bits. PRGA has two 8-bit index pointers (i and j) on which, during the 256 iterations, it executes operations such as XOR-ing, swapping, modulo. Stream ciphers are vulnerable to attacks, mostly to bitflipping [12]. Bit-flipping attack deals with changing a bit in a ciphertext so that it results in a predictable plaintext. It is not targeting the cipher itself but a message or a series of messages on a channel. For this reason, it could turn into a Denial of Service attack. We should never reuse a key with a stream cipher. The main reason being that we can recover the plaintext, using the keystream and the ciphertext. The keystream could be recovered as well using the plaintext and the ciphertext. Furthermore, if we use two ciphertexts from the same keystream, we can recover the XOR-encryption of the plaintexts.

Block ciphers: Block ciphers date back to late 1960s

when IBM attempted to develop banking security systems [13]. The result was Lucifer, an encryption method, with 128-bit key and block size, aimed at protecting data for cashdispensing system in the UK. However, it was not secure in any of its version implementations. When we use block ciphers, each block is encrypted independently producing a ciphertext block of equal size. The block size can be 64-bits, 128-bits or 256-bits. The ciphertext is generated from the plaintext and the key by iterating a round function (as we go through it several times). Input to the round functions consists of key and the output of previous round. Block ciphers are also known as product ciphers and are built with a Feistel structure, as first described by Horst Feistel of IBM in 1973. The plaintext is split into left and right halves. The Feistel design consists of a number of identical rounds of processing. During each round, substitution is performed on one half of the processed data, followed by a permutation that interchanges the two halves. What is more, the original key is expanded so that a different key is used for each round. Symmetric block encryption algorithms are based on this structure. In general, it is accepted that block ciphers are applicable to a broader range of applications in software as opposed to stream ciphers.

When we want to encrypt longer than a 16-byte plaintext (email, file, etc.) with a symmetric key block cipher algorithm, there exist several modes of operation:

- ECB (Electronic Code Book mode)
- CBC (Cipher Block Chaining mode)
- CFB (Cipher Feedback mode)
- OFB (Output Feedback mode)
- CTR (Counter mode)

These modes aim at providing confidentiality and protection for sensitive data. The latter three modes use the block cipher as a building block for a stream cipher [14]. To encrypt data with DES and AES our project utilizes ECB and CBC modes, respectively. ECB requires that the length of the plaintext is a multiple of the block size of the cipher used. If the plaintext does not conform to the required length, it must be padded. Padding is achieved by appending as many zero bits as possible in order to reach a multiple of the block length (i.e. 8, 16, 32, etc.). In case the plaintext conforms to the length, an extra block is appended consisting of only padding bits. Furthermore, in ECB mode each block is encrypted separately. One of the advantages of ECB is that if a transmission problem occurs, the received encrypted block could still be decrypted [14]. Moreover, parallelization is allowed in ECB mode, i.e. one encryption unit encrypts block 1, the next one block 2, etc., which is useful in highspeed implementations [14]. Nevertheless, there are some weaknesses associated with the ECB mode. During encryption identical plaintext blocks result in identical ciphertext blocks as long as the key does not change [14]. Hence, an attacker could easily deduce information. The ECB mode is susceptible to substitution attacks because once block mapping from plaintext to ciphertext is known, a sequence of ciphertexts can be manipulated [14]. With regard to CBC, all encrypted blocks are chained together such that a certain ciphertext depends not only on a certain block but on all previous plaintext blocks as well [15]. Each plaintext block also gets XORed with the previous ciphertext block prior to encryption [15]. In addition, the encryption is randomized by using an initialization vector (IV). In our case, the IV is new every time we encrypt and is always incremented when a new session starts. If we encrypt a string once with a first IV and a second time with a different IV, the two resulting ciphertext sequences look completely unrelated to each other. To strengthen the encryption method, a mode of operation is used, for AES we have chosen CBC mode.

DES: Cryptography gradually moved from hardware to software with the advent of computers. Most famous example of the block cipher design and the classic Feistel structure is the Data Encryption Standard (DES), designed by IBM under the advisement of NASA in 1977 and standardized 2 years later. It was meant to encipher sensitive but non classified data. DES complexity is comprised of a simple repetition of the primitives of transposition, substitution, split, concatenation and bit-wise operation. DES uses a 56-bit key. The cipher is thoroughly examined in section 4 of this report for it has been used during our hands-on approach.

TRIPLE DES (3DES): has replaced DES since the simpler version is susceptible to brute force attacks. 3DES is a more secure method of symmetric- key encryption, as it encrypts data three times in contrast to DES, i.e. the one 56-bit key becomes three individual keys rendering a 168bit key. However, initiating three instances of DES, implies that 3DES is much slower than other methods of encryption. The text is encrypted firstly with key 1, then decrypted with key 2 and lastly encrypted once more by key 3. Triple DES offers a security level of 2¹¹² instead of 2¹⁶⁸, i.e., with only two keys of encryption, since the 168-bit key can be cumbersome to implement. This method is known as Encrypt-Decrypt-Encrypt (EDE): key 1 encrypts the message; then the message is decrypted using key 2, afterwards the text is encrypted again with key 2. We should mention that there exists double DES as well, which is composed of two successive instances of DES. 2DES offers a security level of 2^{57} instead of 2^{112} due to the cryptographic attack, called meet-in-the-middle [16]. If we take some plaintexts and encode them and at the same time take some encrypted values and start decrypting them, we only have to look for where they meet in the middle with the same value. Those intersections then reveal the key. 3DES avoids this as we would need to perform a third operation to tell if they met in the middle. Thus, it is not enough to look for where the first and last operation produce the same value.

AES: The Advanced Encryption Standard (AES) replaced DES in 2000 as the US Government encryption technique to protect classified information. The symmetric block cipher was developed by two Belgian cryptographers Joan Daemen and Vincent Rijmen. AES was designed to be efficient in both hardware and software. It supports a block length of 128 bits and key lengths of 128, 192, and

256 bits. Thus, brute-force attacks are much harder to be launched against it. AES chops data up into 16-byte blocks, transferred to a state array, and then applies a series of substitutions (e.g. substitute bytes, MixColumns) and permutations (e.g. ShiftRows), based on the key value. We note that the state array undergoes various modifications throughout both encryption and decryption. Moreover, that way, it obscures the message, by adding diffusion, confusion and non-linearity and repeating the processes ten (for a 16-byte key) or more times (12 rounds for 24-byte key; 14 rounds for a 32-byte key) for each block. In order to substitute bytes, an S-box is used to perform a byte-by-byte substitution of the block. The other substitution, called MixColumns, utilizes arithmetic over (2⁸) [17]. In fact, all encryption algorithms necessitate arithmetic operations. The key is expanded into an array of key schedule four-byte words. Employing a bitwise XOR of the current block with part of the expanded key is a stage called AddRoundKey, solely used on the key. Therefore, the cipher is locked around this stage adding to the security of the AES encryption. At the end, the state of the plaintext is copied to an output matrix where the bytes are ordered in a column. Similarly, the bytes of the expanded key, which form a word, are placed in the column of the matrix. Today, AES is used everywhere, from encrypting files and sensitive data, transmitting data over WiFi with WPA2, to accessing websites using HTTPS.

3.2. Technical

One of the deliverables of this project is a chat system implemented in Python. The application employs ciphers reviewed in this report to encrypt messages. Python is a programming language created by Guido van Rossum in late 1980s in the Netherlands. Python is a free software and the latest version can be downloaded from www.python.org. Python is a simple and very powerful general purpose computer programming language. This allows for the language to remain fresh and current with the newest trends. Python has libraries for just about everything. It can be used for web development, web scraping, writing scripts, browser automation, GUI development, data analysis, machine learning, computer vision, and game development, etc. In addition, Python is an object-oriented programming language (OOP). There are four pillars of OOP: encapsulation, abstraction, inheritance, and polymorphism. Before turning to OOP, there is procedural programming, a simple and straightforward programming, that divides a program into a set of functions. However, as our program grows we end up with spaghetti code, i.e. many functions all over the place that are interdependent. Thus, OOP offers a solution to this issue. We can bundle a group of related variables (referred to as *properties*) and functions that operate on them (referred to as methods) into an object. This grouping is called *encapsulation*. Using this technique, we can reduce complexity and increase reusability. In Python, objects are data and have a certain type (integer, float, list, etc.). Once we have created our objects we can manipulate and interact with them (append, sort, delete, concatenate, etc.). We can hide the details and complexity (e.g. some methods and properties) from the outside and show only the essentials through the process of *abstraction*. This is beneficial as we produce simpler interface and reduce the impact of change (i.e. no inner changes leak to the outside of the contained object). *Inheritance* is a mechanism that allows us to eliminate redundant code. *Polymorphism* is a technique that allows us to refactor long if/ else or switch/case statements.

Our platform is macOS and we can open Python on a Terminal. Moreover, we can use any Text Editor or IDLE of our choice. For this project, we have used the source code editor Visual Studio Code (VSC) developed by Microsoft. VSC is a lightweight yet powerful editor. It offers support for debugging, embedded Git control, syntax highlighting, snippets, extensions, smart code completion and code refactoring. A GitHub repository was set up to share and build our project. The link is provided in the annex of the report. GitHub is a web-based hosting service of open source projects for version control using Git.

To build the chat program for our project we need a client and a server. To establish a connection between both and be able to transmit information back and forth over the Internet, we need a socket link. Sockets aid the communication between these two entities. The client requests information from the server and the server carries out data to the client. Similarly, the client is a program as well. However, altogether, they are referred to as client/server architecture. For instance, when we visit a website, we are using a socket and accessing a port of the web server. In this case, the server has generally port 80 open, used to transfer HTTP data. Other websites have ports 21 and 20 open for FTP access, which is not very secure, some have port 22 intended for SSH. The lower number ports are specific ports, whereas the higher number ports signify general purpose rights. More often than not, questions arise regarding security when using higher number ports.

Our client should send an initial request to the server's port number, the listening port. To keep the communication over TCP (valid for every other protocols as well), we have the client's IP address and local port number as well as the server's IP address along with its port number. Each client that connects to the server gets unique set of values of two IP addresses and two port numbers in a tuple, a collection of items.

4. BSPro - A First Bachelor Semester Project in BiCS-land

4.1. Requirements (\pm 15% total words)

Ciphers have been used long before apparition of computers. During Roman times, Julius Caesar invented an encryption for his private correspondence. Today, it is known as the Caesar cipher. Given the English alphabet, the cipher shifts a letter from the alphabet three places to the right, i.e. A is encrypted as D, B as E,etc. It is a monoalphabetic cipher. To decrypt the message, the other party needs to

know both the algorithm and the shifting number. The secret key shared by the sender and the recipient of the message is k=3. Breaking the Caesar Cipher can be done by testing all possible shifts. Since an alphabet of length 26 is used we have to test 26 shifts.

ROT13 is a simple monoalphabetic substitution cipher, a special class of Caesar cipher, that encodes a certain letter with another letter that is 13 positions after it. Only those letters which occur in the English alphabet are affected. Numbers, symbols, whitespace, and all other characters are left unchanged. It is an example of a cipher providing weak encryption, since both operations encryption and decryption are identical. Hence, this cipher is its own inverse. Because we know there are 26 letters in the English alphabet, if we wish to apply twice 13 it would give us one shift of 26. Thus, it leads us back to the original text. Moreover, the direction of the shift is of no importance, since it will always give the same output [18]. ROT13 is used in online forums as a means of hiding spoilers, punchlines, puzzle solutions, and offensive materials from the casual glance. Furthermore, it has inspired a variety of letter and word games online [19].

Another cipher our project deals with is the block cipher Data Encryption Standard (DES). In DES we put 64-bit block of plaintext, DES' key (which does the processing) is 64 bit which is 8 bytes but for each byte there is one parity bit, therefore, the value in the key is only 56 bits which means there are 2 to the power of 56 different keys. The output ciphertext is a 64-bit block. From the 56-bit key, 16 bits are generated (one for each round). Each DES round works consecutively, has the same operations and uses a different key. Each round uses a combination of proper substitution, where we take some bits which are substituted with another combination of bits. Each DES round takes as an input the ciphertext produced by the previous round and outputs the ciphertext for the next round. The input is divided into a left half and a right half. The output left half is just the right half of the input. The right output is the result of XOR-ing the left half of the input and the output of the Mangler Function (which takes as an input the 32bit right half, expands it to 48-bit (bit-wise operation) then XORs it to 48-bit key, then uses the S-Boxes to substitute the 48-bit value into a 32-bit value). The algorithm process of decryption in DES is the same as the encryption process. It uses the ciphertext as an input to DES but the keys are run in reversed order, i.e. k = 16 is used as the first round of decryption, k = 15 is used as a second round of decryption and so on, so forth. Diffusion is one of the principles in encryption. It is achieved through permutation (initial transposition). Permutation works by changing the position of the bits in DES. The mixed bits are taken to a sub-box which receives the 56-bit key and the 64-bit plaintext, once it completes processing, it outputs the 64 bits into another transposition subsection, which in turn produces a 64-bit ciphertext. The larger the block size, the key size and number of rounds means greater security. However, when there are more than 16 rounds or more than 56 keys, the security will neither be increased nor the encryption will be made any stronger. The possible attacks that often occur on product ciphers are differential cryptanalysis and linear cryptanalysis, however, according to Stallings, DES has proven to be resistant to these sort of attacks [20]. By 1999, a computer could try every possible key in a couple of days rendering the cipher insecure.

4.2. Design (\pm 20% total words)

The technical part of our project consists of creating a chat application. Our source code editor is Visual Studio Code and we program in Python. We create a TCP server as well as a TCP client that connects to the server. For the client to use TCP Networking, we require a socket module, imported beforehand from Python's standard library, that serves as a communication endpoint with two parameters:

```
s= socket.socket
  (socket.AF_INET, socket.SOCK_STREAM)
```

the first parameter AF_INET stands for IPv4, the connection type we want to use, and the second parameter $SOCK_STREAM$ means we are going to use TCP connection. We specify a variable for port number (on which the server is running) and ip, which holds the ip of the host machine it is running on. We use *gethostbyname* to look for the hosts ip since the host machine does not have a fixed IP address and often when it reconnects to an Internet connection is assigned a new IP address.

Once we the port and ip address are known, we can connect to the server by passing the function to a data structure:

```
s.connect(((ip, port))
```

For the server to use TCP Networking, we require a socket module that serves as a communication endpoint with two parameters:

```
s= socket.socket
  (socket.AF_INET, socket.SOCK_STREAM)
```

For the client to work, a port number equal to 1234 is specified equal to the servers so that both can connect. When the port and host have been bounded, we can listen to incoming connections with socket variable s and calling listen on it:

```
s.listen(10)
```

We pass the variable 10 which means that up to 10 people can be queued for us to handle the requests. However, the eleventh will be rejected. To accept requests from outside, we use connection variable and address variable as:

```
conn, addr = s.accept()
```

which stores the ip import of the client trying to connect and we call accept on the socket we have created. Upon a connection being established, the client can send messages to the server that will cause it to echo back the message. The server can receive data from client by creating variable data and sending it to the response gathered from connection. We write:

```
incoming_message = conn.recv(4096)
```

Afterwards we can close the connection between client and server

```
conn.close()
```

on the server side, as well as close the socket itself as it allows connections to exist, on the client side,

```
s.close()
```

For our project, we aim at implementing in Python several encryption and decryption applications. The client stores the encryption algorithms, whereas the server holds the decryption methods. We make use of Caeser Cipher, ROT13, DES, and AES. DES and AES have been implemented through the means of the crypto library PyCryptodome. It is a self-contained Python package of low-level cryptographic primitives [21]. It supports PyPy, Python2 and Python3. PyCryptodome can be used as a replacement for the old PyCrypto library. We install all modules under Crypto package with pip3 install pycryptodome. However, having both PyCrypto and PyCryptodome installed at the same time is not a good idea as they will interfere with each other. If, however, one insists on having them both, it would be best to deploy them in a virtual environment. To have an independent library of the old PyCrypto, it suffices to type the following command in Terminal shell:

```
pip3 install pycryptodomex
```

and all modules are installed under Cryptodome package and PyCrypto and PyCryptodome can coexist.

4.3. Production (\pm 20% total words)

We implement all algorithms with Python programming language.

Caeser cipher is a substitution cipher and a type of shift cipher. Shift ciphers work by using the modulo operator to encrypt and decrypt messages. In the following lines we demonstrate its algorithm. We take an alphabetic message (A to Z). We take a key, an integer from 0 to 25, since there are 26 letters in English alphabet, to be equal to 3.To encrypt, we do a right-shift letter by letter by the value of key mod 26. To decrypt, a left-shift of the message letter by letter is performed, subtracting the value of key and taking the modulus 26. Our code can be presented as follows: for every letter (char) in the message, we find the letter that matches its position in the alphabet starting from 0. We calculate

```
newPosition = (position + key) mod 26
```

then convert *newPosition* into a letter that matches its order in the alphabet starting from 0. The decryption process is similar; however, instead of adding the key, we subtract it during the modular operation.

ROT13 is a special case of Caeser cipher. ROT13 is implemented by setting the value of the key to 13. The key is used by both encryption and decryption algorithms. The *ord()* function returns an integer representing the Unicode code point of a character string. For example, *ord('z')* returns the integer 122. 32 implies empty space in ASCII, hence, we check for empty space with

if ord(message[i]) == 32

Since we are working with uppercase letters, in the *encrypt_rot13()* function, we check if our variable temp is bigger than the integer 90, which corresponds to uppercase Z. If so, we subtract 26 and move back to A. We note that lowercase letters under ASCII map from 97 to 122. The *chr()* function is the opposite of *ord()*. It returns the string character whose Unicode code point is an integer. For instance, *chr(122)* returns string z. In decrypt_rot13() function we verify if our variable temp is less than uppercase A and if so, we add 26 to it and move back to uppercase Z. In ASCII, Unicode code points less than 65 are various symbols. The *decrypt()* functions differs from *encrypt()* by the fact that we subtract the key to get our variable temp.

To implement DES, we import DES functional dependency from Cryptodome library module. Then we create and specify a fixed key = mysecret of length 8 bytes, a password that shall be used to encrypt the text. We have created a pad function, despad taking as input text. Whatever we type for the text parameter, the pad function shall operate on the text. We run a while loop checking the length of text mod 8, i.e. the modulus divides it and shows the remainder. If remainder is not equal to zero, we add a space at the end of text such that it becomes multiple of 8 (e.g. 8, 16, 24, 32, etc.), otherwise the encryption is not going to work as DES encryption algorithm takes input in 8 bytes. For instance, if we type abcd it is not going to work, hence, the function adds 4 empty spaces at the end of abcd to make sure it is a total of 8 characters/bytes. Then, we create an object, called des. We use new() function of module DES that takes two parameters: key and DES.MODE ECB which is the encryption mode. We have created a variable taking an input from client that shall be encrypted. The padded_text variable uses the despad() function on the client's input to make sure it is a multiple of 8 and if necessary adds empty spaces to conform to the multiple condition. Next, we have created an encrypted_text variable that uses the encrypt() function on the *padded_text* and turns it into an encrypted string. To represent ciphertexts, it is more readable to use hex strings rather than bytes. Moreover, hex() makes it easier to parse the decryption input, implemented in the server. To be sure that data remains intact without modification during transfer from client to server, we need to encode it. To reverse the process, the server needs to decode the message. In order to decrypt, we run des submodule and pass decrypt() function on it. Since we have used padding before encryption, we need to unpad the recovered cleartext by using rstrip().

AES has been implemented using the *PyCryptodome* library. We import the module AES along with the hash package and hash object *SHA-256*. In function *make_key()*,

SHA-256 produces a 256-bit digest of the password, aka key. Digest() returns a binary digest of the message that has been hashed. Since digest() produces a random output it is impossible to derive the original input data. On the client side, the aesencrypt() function has a pad variable which appends to the back as many bytes we need to reach the next 16-byte boundary, before encrypting the bytes message. On the server side, an unpad function is used to reverse the padding executed before encryption. The block_size is the size of the message block in bytes. The IV (initialization vector) is a unique and random piece of data used to initialize the processing. This setting does not allow an attacker to get relations between encrypted messages segments. The iv need not be private so that we can send it with the ciphertext without risk. Its length is equal to 16 bytes. Since, AES is symmetrical, it uses the same key for encryption and decryption. The key and IV have been loaded on separate files and are used for both operations. The iv is written and overwritten each time it is used to encrypt a message on file. And it is being read from the file during decryption. The type of files is .dat and not .txt because .dat, a binary text file, can store (unreadable) data that differs from plaintext and is not always printable on screen. We could not print the iv after attempting to load it on a .txt file. We came to the conclusion that it is due to the fact that the iv is unique, written in 16 bytes, and may contain not only readable data but unreadable as well. We observe that the key is private and is reused to encrypt multiple plaintexts, but coupled with the mode of operation CBC (Ciphertext Block Chaining), where the IV is randomly generated for each new message, we can encrypt a lot of data under the same key. CBC requires the length of plaintext and ciphertext to be always a multiple of 16 bytes. The new() function instantiates a new object for the AES algorithm. It has 3 parameters: key (in bytes), mode (MODE_CBC) and iv (in bytes as a read-only attribute). The new() function returns a CBC cipher object. To encode and decode the message, base64 has been used. It allows to transfer over a medium relying on textual data by converting from binary data to text strings and vice versa. The method encrypt() (and likewise decrypt()) of a CBC cipher object expects data to have length multiple of the block size, i.e. 16 bytes for AES. The message is being translated from a Unicode string into a sequence of bytes through UTF-8 (Unicode Transformation Format) encoding. Encode(utf-8) and Decode(utf-8) return byte representations of the Unicode string, encoded in UTF-8.

4.4. Assessment (\pm 15% total words)

We have used a TCP network protocol and same ip and port number for both client and server. We have shown a secure communication over the Internet between a client and a server having the choice to encrypt and decrypt between four different algorithms. We highlight that both client and server should support the same set of encryption algorithms, modes of operation, as well as key lengths set for encryption and decryption processes.

The mode of operation plays an important role in the security of the cipher. We have used two block ciphers, DES and AES, that rely on one single key for both encryption and decryption. ECB or Electronic Code Book, used along DES in our project, splits up the plaintext into blocks and encrypts them independently of each other. This is an advantage of ECB a so called parallel operation. ECB does not use an initialization vector to launch the encryption. Thus, it executes the same algorithm to encrypt data. However, when multiple messages are encrypted, ECB cannot be considered secure, because identical plaintext blocks result in identical ciphertext. Also known as deterministic encryption. Hence, repetition makes it easier for an attacker to guess the original message. Moreover, ECB allows for partial decryption and is able to compensate blanks, which is impossible using CBC (Cipher Block Chaining) when there are missing blocks. CBC cannot operate in parallel since it waits on finishing encryption on each block. CBC, used along AES in our project, introduces an initialization vector (IV), which alters the plaintext before the start of the encryption process. The vector ensures that the initial ciphertext blocks are different even with an identical plaintext. To accomplish this, the IV is unpredictable, unique and cryptographically random for each separate key to avoid deterministic encryption. As both the encryption and decryption need to be performed using the same unique IV, the IV is prefixed to the ciphertext. If we use a different IV in decryption, we would get a garbled message indicating an erroneous use of IV. Furthermore, the IV must be of the same length as the block size (e.g., given 64-bit block size, 64-bit IV, etc.) It is worth noting that when a predictable IV is used, CBC is considered vulnerable as plaintexts could be deduced. The vector is the result of the previous encrypted block, and this result is XORed with the plaintext block before encryption. Hence, with CBC, every block depends on the output of the previous block. Nevertheless, the disadvantage of this property is that if there is an error or failure in a given block, it will result in the following block as well. Perhaps even in every other block. The key in AES is hashed to provide a 256-bit output, then the hash is encrypted, and a 256-bits encrypted output is produced. The IV is then used to encrypt the next 256bits. This results in a chaining algorithm. Considering the comparison between the two modes of operation, it is not a good idea to use ECB for message confidentiality as it is a rather simple and raw mode for a block cipher. Instead, we can turn to CBC and its random use of IV.

In addition, to prevent access to data from the outside while transferring information between clients and server, we should not store any data as open text. The reason being is that any stored piece of information can be accessed during a server attack, social engineering or man in the middle attack. Another remark to be made is to never create our own cryptography security schemes and to never implement standard ones on our own. We will most probably do major security mistakes leading to insecure applications. However, for the purpose of academic education, we could not obey this rule of law. As a future work, we could simulate a couple of attack scenarios such as frequency letter analysis

(on Caesar cipher and ROT13), man-in-the-middle attack or brute force (on both AES and DES) and test their resilience. Since, technological advancement coupled with growing cyber threats and attack is a day-by-day phenomenon, ensuring data security is a challenge. Nevertheless, we witness a considerable boost of chip power each year, as foreseen by Intel co-founder Gordon Moore, which came to be known as Moores Law in computing industry. Moores law states that power of computers is almost doubled every year [22]. If we look at the capacity of processors and number of computers, which have increased and evolved since the 1970s, it is a confirmed prediction. If we have one or two computers at home, some organizations have thousands of computers in data centres. Thus, the tasks can be divided among engineers in order to test all possible keys and eventually break a cipher. For instance, experts found attacks on DES that enabled to crack its keys without doing a brute force attack. In 2012, a system was designed to crack any DES key in 26 hours [23]. AES replaced DES as it is more powerful and offers a great number of possible keys, 2256, which has no comparison. Even the number of atoms in the universe is smaller than AES keys (with a range from between 10^{78} to 10⁸² [24]. We suppose, even if we had many supercomputers to each test the 2^{256} keys per second, the time to crack AES would still be much longer than the age of the universe (estimated at 13.82 billion years [25]).

Acknowledgment

The authors would like to thank the BiCS management and education team for the amazing work done.

5. Conclusion

The security of data that flows through communication channels is an important aspect in the world of software development. Thus, transferring data over the Internet requires higher level of security when it comes to sensitive information. It could be achieved through the means of cryptosystems and cryptography. Primitives of symmetric-key cryptography lay the foundation of our report. Surveying its mechanisms, we have implemented a simple chat application in Python that encrypts messages before transferring them over the Internet. Substitution and transposition ciphers, alongside block and stream ciphers have been introduced in our project. The palette of reviewed ciphers stretches from simple to more complex ones: Caesar cipher, ROT13. One-time pad, Vigenere cipher, Enigma machine, Rivest Cipher 4, Data Encryption Standard (DES), 3DES, Advanced Encryption Standard. Existing modes of operations (ECB, CBC, CFB, OFB, CTR) that could be applied to block and stream ciphers are also presented as they allow for larger data to be encrypted in order to guarantee its confidentiality.

6. Appendix

A link to the GitHub repository of the project: https://github.com/dmarinova1/BSP-S3-Encryption-algorithms

References

- [1] Wikipedia contributors, "Cryptography Wikipedia, the free encyclopedia," 2018, [Online; accessed 26-October-2018]. [Online]. Available: https://en.wikipedia.org/wiki/Cryptography
- [2] —, "Public-key cryptography Wikipedia, the free encyclopedia," 2018, [Online; accessed 26-October-2018].
- [3] W. Stallings, Cryptography and Network Security, 7th ed. Pearson, 2017.
- [4] "Internet security," Nov 2018. [Online]. Available: https://en. wikipedia.org/wiki/Internet security
- [5] "Computer security," Dec 2018. [Online]. Available: https://en. wikipedia.org/wiki/Computer_security
- [6] "Cryptographic primitive," Nov 2018. [Online]. Available: https://en.wikipedia.org/wiki/Cryptographic_primitive
- [7] "Symmetric-key algorithm," Nov 2018. [Online]. Available: https://en.wikipedia.org/wiki/Symmetric-key_algorithm
- [8] W. Stallings, Cryptography and Network Security, 5th ed. Pearson, 2011.
- [9] M. Curtin, Snake Oil Warning Signs: Encryption Software to Avoid, 1998
- [10] "The black chamber: Mary queen of scots," https://www.simonsingh. net/The_Black_Chamber/maryqueenofscots.html, accessed: 2018-10-26
- [11] "Alan turing: Creator of modern computing," https://www.bbc.com/ timelines/z8bgr82, accessed: 2018-10-26.
- [12] "Rc4," https://en.wikipedia.org/wiki/RC4, accessed: 2018-10-26.
- [13] "Ibm: Cryptography for a connected world," http://www-03.ibm.com/ ibm/history/ibm100/us/en/icons/cryptography/, accessed: 2018-10-26.
- [14] C. Paar and J. Pelzl, *Understanding cryptography a textbook for students and practitioners*. Springer, 2010.
- [15] Dworkin and Morris, "Recommendation for block cipher modes of operation: Methods and techniques," Dec 2001. [Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-38a/final
- [16] Wikipedia contributors, "Meet-in-the-middle attack Wikipedia, the free encyclopedia," https://en.wikipedia.org/w/index.php?title= Meet-in-the-middle_attack&oldid=856926199, 2018, [Online; accessed 26-October-2018].
- [17] W. Stallings, Cryptography and Network Security, 7th ed. Pearson, 2017.
- [18] C. Swenson, Modern cryptanalysis: techniques for advanced code breaking. John Wiley & Sons, 2008.
- [19] Wikipedia contributors, "Rot13 Wikipedia, the free encyclopedia," https://en.wikipedia.org/w/index.php?title=ROT13&oldid= 865606310, 2018, [Online; accessed 26-October-2018].
- [20] W. Stallings, Cryptography and Network Security, 5th ed. Pearson,
- [21] "Pycryptodome." [Online]. Available: https://pycryptodome. readthedocs.io/en/latest/src/introduction.html
- [22] "Moore's law," Dec 2018. [Online]. Available: https://en.wikipedia. org/wiki/Moore's_law
- [23] [Online]. Available: https://crack.sh/
- [24] A. M. Helmenstine and Helmenstine, "How many atoms are there in the universe?" [Online]. Available: https://www.thoughtco.com/ number-of-atoms-in-the-universe-603795
- [25] N. T. Redd, "How old is the universe?" Nov 2017. [Online]. Available: https://www.space.com/24054-how-old-is-the-universe.html