Date Period

Worksheet 2.1—Tangent Line Problem

Show all work. No calculator permitted, except when stated.

Short Answer

1. Find the derivative function, f'(x), for each of the following using the limit definition.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(a)
$$f(x) = 2x^2 + 3x - 4$$

(b)
$$f(x) = \frac{3}{x-1}$$

(c)
$$f(x) = \sqrt{x-2}$$

2. Find the slope of the tangent lines to the graphs of the following functions at the indicated points. Use the alternate form.

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

(a)
$$f(x) = 3 - 2x$$
 at $(-1,5)$

(b)
$$g(x) = 5 - x^2$$
 at $x = 2$

3. Find the equation of the tangent line, in Taylor Form: $y = y_1 + m(x - x_1)$, for $g(x) = x^2 + 1$ at (2,5). Use the *modified form* to find g'(2).

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

4. Find the equation of the tangent line, in Taylor Form: $y = y_1 + m(x - x_1)$, for $y = \sqrt{x} - 1$ at c = 9. Use the *alternate form* to find y'(9).

$$y'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

5. Find an equation of the line that is tangent to $f(x) = x^3$ and parallel to the line 3x - y + 1 = 0. Remember, parallel lines have the same slope, but different base camps.

6. Find the equations of the two lines, ℓ_1 and ℓ_2 , that are tangent to the graph of $f(x) = x^2$ if each pass through the point (1,-3), as shown at right. Hint: equate two different expressions for finding the slope of a line. Solve the resulting equation.

7. The graph of a function f(x) is show above. For which value(s) of x is the graph of f(x) not differentiable. In each case, explain why not.

8. For each of the following, the limit represents f'(c) for a function f(x) and a number x = c. Find both f and c.

(a)
$$\lim_{h\to 0} \frac{\left[5-3(1+h)\right]-2}{h}$$

(b)
$$\lim_{h\to 0} \frac{(-2+h)^3+8}{h}$$

(c)
$$\lim_{x\to 6} \frac{-x^2+36}{x-6}$$

(d)
$$\lim_{x\to 9} \frac{2\sqrt{x}-6}{x-9}$$

9. Using the alternate form, determine whether each of the following function is differentiable at the indicated point. Show the work that leads to your answer.

(a)
$$f(x) = \begin{cases} 5 - 4x, & x \le 0 \\ -2x^2, & x > 0 \end{cases}$$
 at $x = 0$

(b)
$$f(x) = \begin{cases} (x-1)^3, & x \le 1 \\ (x-1)^2, & x > 1 \end{cases}$$
 at $x = 1$

- 10. True or False. If false, explain why or give a counterexample.
 - (a) The slope of the tangent line to the differentiable function f at the point (2, f(2)) is $\frac{f(2+h)-f(2)}{h}.$
 - (b) If a function is continuous at a point, then that function is differentiable at that point.
 - (c) If a function's slopes from both the right and the left at a point are the same, then that function is differentiable at that point.
 - (d) If a function is differentiable at a point, then that function is continuous at that point.

11. Using your <u>calculator</u> to zooooooom in, determine if $h(x) = \sqrt{x^2 + 0.0001} + 0.99$ is locally linear at x = 0. Give a reason for your answer.

Multiple Choice

- _____ 12. A function will fail to be differentiable at all of the following except
 - (A) A vertical asymptote
- (B) A removable discontinuity
- (C) A cusp

- (D) A vertical tangent line
- (E) A horizontal tangent line

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & x \neq 2 \\ 1, & x = 2 \end{cases}$$

- _____13. Let f be the function defined above. Which of the following statements about f are true?
 - I. $\lim_{x \to 2} f(x)$ exists
 - II. f is continuous at x = 2
 - III. f is differentiable at x = 2
 - (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III

- 14. Let f be a differentiable function such that f(2)=1 and f'(2)=4. Let T(x) be the equation of the tangent line to f(x) at x=2. What is the value of T(1.9)?
 - (A) 0.4
- (B) 0.6
- (C) 0.7
- (D) 1.3
- (E) 1.4

_____15. Let f be a function such that $\lim_{h\to 0} \frac{f(7+h)-f(7)}{h} = 5$. Which of the followign must be true?

- I. f is continuous at x = 7
- II. f is differentiable at x = 7
- III. The derivative of f is differentiable at x = 7
- (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only
- (E) II and III only

_____16. At x = 4, the function given by $h(x) = \begin{cases} x^2, & x \le 4 \\ 4x, & x > 4 \end{cases}$ is

- (A) Undefined
- (B) Continuous but not differentiable
- (C) Differentiable but not continuous
- (D) Neither continuous nor differentiable
- (E) Both continuous and differentiable