Chapter 6

External Memory Structures

Acknowledgements

- Disk storage, Wikipedia. https://en.wikipedia.org/wiki/Disk_storage
- B-tree, Wikipedia. https://en.wikipedia.org/wiki/B-tree
- R-tree, Wikipedia. https://en.wikipedia.org/wiki/R-tree
- Multimedia Databases and Data Mining. Primary key indexing B-trees.
 Christos Faloutsos CMU
- Spatial Access Methods, Chapter 26 of book. Dr Eamonn Keogh,
 Computer Science & Engineering Department, University of California –
 Riverside, Riverside, CA 92521

Chapter Outline

- External Disk Storage
- Working with External Data
- B-tree
- B⁺-tree
- R-tree

External Storage

Computer Architecture

Types of External Memory

- Magnetic Tape
- Optical
 - CD (Compact Disc)
 - CD-ROM
 - CD-R
 - CD-RW
 - VCD (Video Compact Disc)
 - DVD (Digital Video/Versatile Disc)
- Magnetic Disk
 - RAID

Magnetic Disk

- Metal or plastic disk coated, on one or both sides, with magnetizable material
- Data read and written through a magnetic head (coil) by means of induction

Disk Data Layout

Data Organization and Formatting

- Concentric rings or tracks
 - Gaps between tracks, reduce gap to increase capacity
 - Same number of bits per track (variable density)
 - Constant angular velocity
- Tracks divided into sectors
- Data read/written in blocks
 - Minimum block size is one sector
 - May have more than one sector per block

Finding Sectors

- Must be able to identify start of track and sector
- Format disk
 - Additional information not available to user
 - Marks tracks and sectors

Multiple Platters

- One head per side
- Heads are joined and aligned
- Aligned tracks on each platter form cylinders
- Data is striped by cylinder
 - reduces head movement
 - increases speed (transfer rate)

Speed

- Seek time
 - Moving head to the right track
- (Rotational) latency
 - Waiting for data to rotate under head
- Access time = Seek + Latency
- Transfer rate: speed of copying bytes from disk

Look at External Storage

A file partitioned into blocks of records

RAID

Redundant Arrays of Independent Disks

B-tree

B-trees

Eg., B-tree of order 3:

B - tree properties:

- each node, in a B-tree of order *n*:
 - Key order
 - at most n pointers
 - at least n/2 pointers (except root)
 - all leaves at the same level
 - if number of pointers is k, then node has exactly k-1 keys
 - (leaves are empty)

- what about range queries? (eg., 5<salary<8)
- Proximity/ nearest neighbor searches? (eg., salary ~
 8)

- what about range queries? (eg., 5<salary<8)
- Proximity/ nearest neighbor searches? (eg., salary ~
 8)

- Insert in leaf; on overflow, push middle up (recursively)
- split: preserves B tree properties

Easy case: Tree TO; insert '8'

Tree T0; insert '8'

- Case1: delete a key at a leaf no underflow
- Case2: delete non-leaf key no underflow
- Case3: delete leaf-key; underflow, and 'rich sibling'
- Case4: delete leaf-key; underflow, and 'poor sibling'

Easiest case: Tree T0; delete '3'

Easiest case: Tree T0; delete '3'

Easiest case: Tree T0; delete '3'

- Case1: delete a key at a leaf no underflow
- Case2: delete non-leaf key no underflow
 - Case3: delete leaf-key; underflow, and 'rich sibling'
 - Case4: delete leaf-key; underflow, and 'poor sibling'

- Case2: delete a key at a non-leaf no underflow (eg., delete 6 from T0)
- Q: How to promote?
- A: pick the largest key from the left sub-tree (or the smallest from the right sub-tree)
- Observation: every deletion eventually becomes a deletion of a leaf key

- Case1: delete a key at a leaf no underflow
- Case2: delete non-leaf key no underflow
- Case3: delete leaf-key; underflow, and 'rich sibling'
 - Case4: delete leaf-key; underflow, and 'poor sibling'

Case3: underflow & 'rich sibling'

- 'rich' = can give a key, without underflowing
- 'borrowing' a key: THROUGH the PARENT!

- Case1: delete a key at a leaf no underflow
- Case2: delete non-leaf key no underflow
- Case3: delete leaf-key; underflow, and 'rich sibling'
- Case4: delete leaf-key; underflow, and 'poor sibling'

- Merge, by pulling a key from the parent
- exact reversal from insertion: 'split and push up', vs. 'merge and pull down'

B+-Tree

B⁺-trees: Motivation

if we want to store the whole record with the key -> problems (what?)

Solution: B+-trees

- They string all leaf nodes together
- AND
- replicate keys from non-leaf nodes, to make sure every key appears at the leaf level

B+ trees

R-Tree

Spatial Data

Name	ID	Type	Phone	Location	Grade
Marios Pizza	1	ITA	888-1212	244,365	D
Joes Bugers	2	US	848-1298	34,764	A
Tinas Mexican	3	MEX	878-1333	123,32	A
Sues Pasta	4	ITA	878-1342	876,65	В

- Given such a database we can easily answer queries by using SQL, such as
 - List all Mexican restaurants.
 - List all Grade A restaurants.
- However, classic databases do not allow queries such as
 - List all Mexican restaurants within five miles of UCR
 - List the pizza restaurant nearest to 91 and 60.
- These kinds of queries are called spatial queries
 - Nearest neighbor queries
 - Range queries
 - Spatial joins

Indexing Spatial Data

- So, we call always index 1-dimensional data (*if you can sort it, you can index it*), such that we can answer 1-nearest neighbor queries by accessing just O(log(n)) of the database. (n is the number of items in the database). (i.e. the B-tree)
- But we cannot sort 2 dimensional data...

- Solution: R-Tree
 - introduced by Guttman in the 1984 SIGMOD conference.

R-Trees

- R-trees are a N-dimensional extension of B⁺-trees, useful for indexing sets of rectangles and other polygons.
- Supported in many modern database systems, along with variants like R⁺ -trees and R*-trees.
- Basic idea: generalize the notion of a onedimensional interval associated with each B+ -tree node to an N-dimensional interval, that is, an N-dimensional rectangle.
- Will consider only the two-dimensional case (N = 2)
 - generalization for N > 2 is straightforward, although Rtrees work well only for relatively small N

R-Trees

- A rectangular bounding box is associated with each tree node.
 - Bounding box of a leaf node is a minimum sized rectangle that contains all the rectangles/polygons associated with the leaf node.
 - The bounding box associated with a non-leaf node contains the bounding box associated with all its children.
 - Bounding box of a node serves as its key in its parent node (if any)
 - Bounding boxes of children of a node are allowed to overlap
- A polygon is stored only in one node, and the bounding box of the node must contain the polygon
 - The storage efficiency or R-trees is better than that of k-d trees or quadtrees since a polygon is stored only once

MBR

- Suppose we have a cluster of points in 2-D space...
- We can build a "box" around points. The smallest box (which is axis parallel) that contains all the points is called a Minimum Bounding Rectangle (MBR)

$$MBR = \{(L.x,L.y)(U.x,U.y)\}$$

MINDIST

 The formula for the distance between a point and the closest possible point within an MBR

MINDIST(Q,MBR)

```
if L.x < x < U.x and L.y < y < U.y then 0
elseif L.x < x < U.x then min( (L.y -y)^2, (U.y -y)^2)
elseif ....
```


MINDIST Example

$$MINDIST(point, MBR) = 5$$

$$MINDIST(point, MBR) = 0$$

MINDIST Example

• Suppose we have a query point Q and one known point R. Could any of the points in the MBR be closer to Q than R is?

Constructing MBR

- Each MBR can be represented with just two points. The lower left corner, and the upper right corner.
- We can further recursively group MBRs into larger MBRs....

Constructing R-Tree

 ...these nested MBRs are organized as a tree (called a spatial access tree or a multidimensional tree).

Constructing R-Tree

 At the leave nodes we have the location, and a pointer to the record in question

 At the internal nodes, we just have MBR information

Search in R-Tree

- To find data items (rectangles/polygons)
 intersecting (overlaps) a given query point/region,
 do the following, starting from the root node:
 - If the node is a leaf node, output the data items whose keys intersect the given query point/region.
 - Else, for each child of the current node whose bounding box overlaps the query point/region, recursively search the child
- Can be very inefficient in worst case since multiple paths may need to be searched
 - but works acceptably in practice.
- Simple extensions of search procedure to handle predicates *contained-in* and *contains*

Insertion in R-Tree

- To insert a data item:
 - Find a leaf to store it, and add it to the leaf
 - To find leaf, follow a child (if any) whose bounding box contains bounding box of data item, else child whose overlap with data item bounding box is maximum
 - Handle overflows by splits (as in B+ -trees)
 - Split procedure is different though (see below)
 - Adjust bounding boxes starting from the leaf upwards

• Split procedure:

- Goal: divide entries of an overfull node into two sets such that the bounding boxes have minimum total area
 - This is a heuristic. Alternatives like minimum overlap are possible
- Finding the "best" split is expensive, use heuristics instead
 - See next slide

Splitting an R-Tree Node

- Quadratic split divides the entries in a node into two new nodes as follows
 - 1. Find pair of entries with "maximum separation"
 - that is, the pair such that the bounding box of the two would has the maximum wasted space (area of bounding box – sum of areas of two entries)
 - 2. Place these entries in two new nodes
 - 3. Repeatedly find the entry with "maximum preference" for one of the two new nodes, and assign the entry to that node
 - Preference of an entry to a node is the increase in area of bounding box if the entry is added to the other node
 - 4. Stop when half the entries have been added to one node
 - Then assign remaining entries to the other node
- Cheaper linear split heuristic works in time linear in number of entries,
 - Cheaper but generates slightly worse splits.

Deleting in R-Trees

- Deletion of an entry in an R-tree done much like a B⁺-tree deletion.
 - In case of underfull node, borrow entries from a sibling if possible, else merging sibling nodes
 - Alternative approach removes all entries from the underfull node, deletes the node, then reinserts all entries
 - As always, deletion tends to be rarer than insertion for many real world databases.

End of Chapter 6