

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

1^η Άσκηση

ΓΙΩΡΓΟΣ ΧΑΤΖΗΛΙΓΟΣ ΑΜ4835 2° Ετος

1.1 ΝΟΜΟΣ ΤΟΥ ΟΗΜ

Στόχος: Η πειραματική επαλήθευση του νόμου του Ohm: $R = \frac{V}{V}$

Υλοποίηση: Υλοποιήστε στο breadboard το κύκλωμα του Σχήματος 1.1(α). Χρησιμοποιήστε αντίσταση ονομαστικής τιμής R=10K Ω .

Μετρήσεις:

- Α) Τροφοδοτήστε διαδοχικά το κύκλωμα με τάση V ίση με 1V, 2V, 3V, 4V και 5V και μετρήστε με το πολύμετρο το ρεύμα που διαρρέει την αντίσταση. Παρόλο που το τροφοδοτικό παρέχει ένδειξη της τάσης, μπορείτε να χρησιμοποιήστε και τον παλμογράφο για την ακριβή μέτρησή της. Στο Σχήμα 1.1(β) παρουσιάζεται, προς εξοικείωση, η συνδεσμολογία της πειραματικής διάταξης σε αυτό το πρώτο πείραμα (βλ. επίσης τις ενότητες 0.1.1 και 0.4.3 καθώς και τα Σχήματα 0.2 και 0.11). Καταγράψτε τα ζεύγη των τιμών ρεύματος-τάσης και απεικονίστε την καμπύλη ρεύματος-τάσης στο διάγραμμα, ύστερα από βαθμονόμηση των αξόνων.
- Β) Επαναλάβετε το ίδιο για αντίσταση ονομαστικής τιμής R=20ΚΩ.
- Γ) Με βάση τις καμπύλες των μετρήσεων Α και Β υπολογίστε τις τιμές των αντιστάσεων (R_u) . Μετρήστε τις αντιστάσεις με το πολύμετρο (R_π) και συγκρίνετε τα ζεύγη τιμών.

Σχήμα 1.1: Διάταξη επαλήθευσης του νόμου του Ohm

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

V	I _{A(A)}	I _{B(A)}
1V	0.1	0.05
	mA	mA
2V	0.2	0.1
	mA	mA
3V	0.3	0.15
	mA	mA
4V	0.4	0.2
	mA	mA
5)/	0.5	0.25
5V	mA	mA

(A) $R_{\pi} = 10K\Omega$ $R_{\mu} = 10k\Omega$	(B) $R_{\pi} = 20K\Omega$	$R_{\mu} = 20K\Omega$	
---	---------------------------	-----------------------	--

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

2 Fig The Sevteph ypaquen trapadaon Except
$$0(0,0)$$
 and $0 \le 0 \le 0$ Sevtepo onpero $0(1,0.05)$
 $1 = 0.05 - 0 = 0.05$
 $1 - 0 = 0.05$
 $1 - 0 = 0.05(x - 0) = 0$
 $1 - 0 = 0.05(x - 0) = 0$
 $1 - 0 = 0.05(x - 0) = 0$
 $1 - 0 = 0.05(x - 0) = 0$
 $1 - 0 = 0.05(x - 0) = 0$

1.2 ΔΙΑΙΡΕΤΗΣ ΤΑΣΗΣ

Στόχος: Η μελέτη του διαιρέτη τάσης.

Υλοποίηση: Υλοποιήστε στο breadboard τα κυκλώματα του Σχήματος 1.2. Χρησιμοποιήστε αρχικά αντιστάσεις R_1 =10Κ Ω και R_2 =10Κ Ω .

Σχήμα 1.2: Διαιρέτης τάσης

Μετρήσεις: Τροφοδοτήστε τα κυκλώματα με τάση **V=10V**.

Μετρήστε τις διαφορές δυναμικού V_1 και V_2 στα άκρα των αντιστάσεων R_1 και R_2 του Σχήματος 1.2. Συγκρίνετε το άθροισμα των V_1 και V_2 με την τάση τροφοδοσίας V. Μετρήστε το ρεύμα I και με βάση το Νόμο Ohm υπολογίστε τη συνολική αντίσταση $R_{\text{ολ}}$ στο κύκλωμα;

Επαναλάβετε το ίδιο για αντίσταση R₂=1KΩ.

	V ₁	V .		R _{ολ.} =R1+R2		
	V ₁	V ₂	'	Ονομαστική Τιμή	Μέτρηση	
$R_2 = 10K\Omega$	5V	5V	0.02mA	20ΚΩ	10+10=20ΚΩ	
$R_2 = 1K\Omega$	9V	1V	11μΑ	11ΚΩ	1+10=11ΚΩ	

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

1.3 ΔΙΑΙΡΕΤΗΣ ΡΕΥΜΑΤΟΣ

Στόχος: Η μελέτη του διαιρέτη ρεύματος.

Υλοποίηση: Υλοποιήστε στο breadboard τα κυκλώματα του Σχήματος 1.3. Χρησιμοποιήστε αρχικά αντιστάσεις R_1 =10Κ Ω και R_2 =10Κ Ω .

Σχήμα 1.3: Διαιρέτης ρεύματος

Μετρήσεις: Τροφοδοτήστε τα κυκλώματα με τάση V=10V.

Μετρήστε τα ρεύματα I_1 και I_2 που διαρρέουν τις αντιστάσεις R_1 και R_2 του Σχήματος 1.3. Μετρήστε επίσης το συνολικό ρεύμα I και συγκρίνετε αυτή τη μέτρηση με το άθροισμα των ρευμάτων I_1 και I_2 .

Με βάση το συνολικό ρεύμα Ι και με χρήση του Νόμου Ohm υπολογίστε τη συνολική αντίσταση $R_{o\lambda}$ στο κύκλωμα;

Επαναλάβετε το ίδιο για αντίσταση R₂=1KΩ.

	1.	l ₂	1-	$R_{o\lambda} = R1*R2/(R1+R2)$	
	11		•	Ονομαστική Τιμή	Μέτρηση
$R_2 = 10K\Omega$	10μΑ	10μΑ	20μΑ	5ΚΩ	10^2/2*10=5ΚΩ
$R_2 = 1K\Omega$	10μΑ	1μΑ	1,1μΑ	0,909ΚΩ	10/11ΚΩ

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

