

Virtual Knowledge Graph Generation from Heterogeneous Data Sources

David Chaves-Fraga, Ontology Engineering Group Universidad Politécnica de Madrid, Spain

Freddy Priyatna, OEG-UPM Oscar Corcho, OEG-UPM

schema:email = lower(substr({name},1,1) || {surname} || '@fi.upm.es')

PhD Student and Researcher at OEG-UPM since 2016 (Data Integration team):

- MSc Thesis (2016): Methods and Techniques for the Evaluation of Ontology Learning
- PhD Thesis (2016-2020): Virtual Knowledge Graph Generation from heterogeneous resources

Interests:

- OBDA
- Heterogeneous data
- SPARQL
- Federated queries
- Data Integration
- Public Transport
- Linked Connections
- R2RML-RML
- Virtualization Access

2011-2016

2017

OBDA... Ontology Based Data Access

Focused on optimizing the generated SQL query to improve the performance

But we are working on... Semantic WEB

How is the data exposed on the Web?

OBDA... Ontology Based Data Access

OBDA... Ontology Based Data Access

The problems of OBDA with CSV(s)

Multiple CSV files with relations among them:

- 1. Joins are not explicit
- 2. Constraints are not defined explicitly in the CSVs (PK, FKs)
- 3. The data may not be in the desirable format (e.g. dates)
- 4. CSVs are not in 3NF:
 - a. PK may be repeated
 - b. FKs may not be explicited
 - c. FKs could not have a 1:1 cardinality
 - d. Lists in column

R2RML is not enough for dealing with CSV(s) in an OBDA approach

Let's give an example...

LD Generation from GTFS to LinkedGTFS (in hours)

Dataset (size mg)	Morph-R2RML	RML-Mapper
D1 (2.3)	0.004	3.739
D2 (2.6)	0.026	2.587
D3 (2.9)	0.068	0.778
D4 (3.4)	0.118	7.026
D5 (4.2)	0.115	7.026
D6 (4.7)	0.217	12.218
D7 (31)	1.153	151.541
D8 (96)	12.496	>160

Our mission as researchers it to provide solutions for:

- Generate Linked Data when:
 - o Quality is important
 - The data is static
- Access to data using a graph query language when:
 - o Data is volatile
 - Performance is relevant
 - Underlying query engine for translation exists

Common point: The mapping language!

How to provide **access**/generation to heterogeneous data exposed on the web with relations among them using semantic technologies?

How can we extend standard Mapping Languages maintaining their semantics for using **OBDA engines** or LD generators?

Core Mapping Language + extensions

Mapping Languages

Feature	R2RML	RML	RML-C
Data format	RBD	JSON,CSV, XML	CSV
Materialization	Yes	Yes	Yes
Virtualization	Yes	No	Yes
Functions	No	Yes (FnO)	Yes (SQL Functions)
Specification	Yes	Partially? (FnO+RML?)	Partially

Contributions

"Virtual Statistics Knowledge Graph Generation from CSV files" D. Chaves-Fraga, F. Priyatna, I. Santana-Perez and O.Corcho at SemStats Workshop co-located with ISWC18 (Best Paper Award)

"SATET: Providing access to multiple CSV on the Web using OBDA" D. Chaves-Fraga and O.Corcho (on-going work)

Virtual Statistics Knowledge Graph Generation from CSV files

David Chaves-Fraga, Ontology Engineering Group Universidad Politécnica de Madrid, Spain

Freddy Priyatna, OEG-UPM Idafen Perez-Santana, OEG-UPM Oscar Corcho, OEG-UPM

Virtual Statistics Knowledge Graph Generation

The **size** of the R2RML mapping depends on the **number of columns** in the CSV

Difficulty of maintenance and creation

RMLC-Iterator solution

Two variables for identifying independently each TriplesMap and provide access to the CSV data: {\$column},{\$alias}

RMLC-Iterator Example

Output and Results

Outputs:

- RMLC-Iterator for transforming the mappings to R2RML
- Morhp-RDB as OBDA engine for the query translation

Results:

D1

Features	R2RML	RMLC
Total Lines	~700	74
#TriplesMaps / #SubjectMaps	12	1
#PredicateObjectMaps	60	5

D2

Features	R2RML	RMLC
Total Lines	>2800	< 70
#TriplesMaps / #SubjectMaps	>40	1
#PredicateObjectMaps	>170	4

SATET: Providing access to multiple CSV on the Web using OBDA

David Chaves-Fraga, Ontology Engineering Group Universidad Politécnica de Madrid, Spain

Freddy Priyatna, OEG-UPM Oscar Corcho, OEG-UPM

Semantic Interoperability in CSV files - Virtualizing

Multiple CSV files with relations

SATET: Semantic Access for heTErogeneous Tabular data

- RMLC: Extension of R2RML for including SQL functions
 - Discover implicit joins among CSV files
 - Transforming CSV columns to RDF objects
- Generation of an enriched database schema using the mapping info (optimization)
- Semantic preservation of R2RML

Join in R2RML and RML

Discovering implicit joins between CSV files

Relational Database

id, name, surname, birthdate, location
1, david, chaves-fraga, 27-11-1993, SDC

id,job 1,phd_student

CSV files

name, surname, birthdate, location
david, chaves_fraga, 27111993, SDC

full_name,job
"David Chaves Fraga","phd_student"

RMLC: RDF Mapping Language extension for heterogeneous CSV files

The functions are SQL basic transformation functions

Table 1

Table 2

name, surname, birthdate, location
david, chaves_fraga, 27111993, SDC

```
full_name,job
"David Chaves Fraga","phd_student"
```

```
SELECT ?name ?birthday ?job WHERE {
    ?name ?p1 ?birthday.
    ?name ?p2 ?job .
}
```

```
SELECT ?name ?birthday ?job
WHERE {
     ?name ex:birthday ?birthday.
     ?name ex:job ?job .
}
```

```
<#TriplesMap1>
 rr:predicateObjectMap[
  rr:predicate foaf:name;
  rr:objectMap [
   rr:parentTriplesMap <#TriplesMap2>;
   rr:joinCondition [
    rmlc:child [
     rmlc:functions "LOWER({FULL NAME})";
    rmlc:parent [
     rmlc:functions "CONCAT({NAME},' ',REPLACE({SURNMAE},' ',' '))";
```

↓

SELECT name, birthday, table2.job FROM table1
INNER JOIN table2 ON
CONCAT(table1.name,' ',REPLACE(table1.surname,'_',' ')) = LOWER(table2.full_name)

Example with GraphQL

```
listSocialMediaPosting {
  identifier
  comment
  author {
   identifier
  email
  familyName
  givenName
  name
  telephone
 }
}
```

```
"data": {
    "listSocialMediaPosting": [
        "identifier": "http://ex.org/1",
        "comment": "Hallo Dunia@id",
        "author": {
          "identifier": "http://ex.org/Person/1",
          "email": "fpriyatna@fi.upm.es",
          "familyName": "Priyatna",
          "givenName": "Freddy",
          "name": "Freddy Priyatna",
          "telephone": "8141"
        "identifier": "http://ex.org/2",
        "comment": "Hola Mundo@es",
        "author": {
          "identifier": "http://ex.org/Person/2",
          "email": "dchaves@fi.upm.es",
          "familyName": "Chaves",
          "givenName": "David",
          "name": "David Chaves",
          "telephone": "9063"
        "identifier": "http://ex.org/3",
SELECT
  "listSocial"."id" AS "id",
  'http://ex.org/' || "listSocial".id || '' AS "identifier",
  "listSocial". "mensaje" AS "comment",
  "author"."id" AS "author__id",
  'http://ex.org/Person/' | author".id | '' AS "author__identifier",
  lower(substr("author".nombre,1,1) | | "author".apellido | | '@fi.upm.es') AS "author__email",
  "author". "apellido" AS "author__familyName",
  "author". "nombre" AS "author__givenName",
  '' | | "author".nombre | | ' ' | | "author".apellido | | '' AS "author__name",
  "author". "telephone" AS "author__telephone"
FROM comentarios "listSocial"
LEFT JOIN personas "author" ON "listSocial".usuario = lower(substr("author".nombre,1,1) | | "author".apellido)
```

Transforming CSV columns to RDF objects


```
<TriplesMap1>
...
rr:predicateObjectMap[
    rr:predicate ex:shortName;
    rr:objectMap [
        rr:datatype xsd:string;
        rmlc:functions "REPLACE(SUBSTRING(LOWER{FULL_NAME},1,5),' ','-')";
    ]; ];
rr:predicateObjectMap[
    rr:predicate ex:yearofBirthday;
    rr:objectMap [
        rmlc:functions "YEAR({birthday})"; ]; ];
```

Enriched database schema

Alignment with R2RML and OBDA engines

- RMLC maintains the semantics of R2RML
- It's aligned with R2RML:
 - ObjectMaps with Functions → new column in the table with the name of the predicate
 - Joins with Functions → new columns in the tables
 - SATET transforms RMLC to R2RML
- SATET can be introduced on the top of state-of-art OBDA engines (morph/ontop) for using their optimizations to efficiently access to CSV files

Example

```
SELECT ?name ?birthday ?job
WHERE {
     ?name ex:birthday ?birthday.
     ?name ex:job ?job .
}
```

```
<#TriplesMap1>
 rr:predicateObjectMap[
  rr:predicate ex:fullName;
  rr:objectMap [
   rr:parentTriplesMap <#TriplesMap2>;
   rr:joinCondition [
    rmlc:child [
     rmlc:functions "LOWER({FULL NAME})";
    rmlc:parent [
     rmlc:functions "CONCAT({NAME},' ',REPLACE({SURNMAE},'_',' '))";
```


SELECT name, birthday, table2.job FROM table1
INNER JOIN table2 ON table1.fullName = table2.fullName

GTFS to RDF materialization

SATET: Semantic Access for heTErogeneous Tabular data

Main Contributions:

- Discover implicit joins
- Apply transformation functions to individual columns
- Enriched database schema from mapping information
- Semantic preservation of R2RML

Future Work:

- Alignment with FnO → full specification (Possible collaboration)
- Alignment with RML (without FnO) for LD Generation from RDB/CSV
- Optimizations over generated SQL queries
- Query answering over SATET
- Applying to transport domain for linking potential datasets during a route planning creation
- Define the core for the mapping languages of SW (Possible collaboration)

Virtual Knowledge Graph Generation from heterogeneous data sources

David Chaves-Fraga, Ontology Engineering Group
Universidad Politécnica de Madrid, Spain
Freddy Priyatna, OEG-UPM
Oscar Corcho, OEG-UPM

