

SM-2302: Software for Mathematicians

Matlab1: Basic Operations in MATLAB

Dr. Huda Ramli

Mathematical Sciences, Faculty of Science, UBD huda ramli@ubd.edu.bn

Semester I, 2023/24

Basic Operations in MATLAB

Simple arithmetic operations can be done in MATLAB.

- Type the addition command: >> 4+5
 Press Enter and MATLAB prints: ans = 9
- Enter the subtraction command: >> 5-9
 Notice that it prints: ans = -4
- Multiplication: >> 5*9ans = 45
- Division: >> 8/9 ans = 0.8889
- Exponentiation: >> 5^3
 ans = 125

Variable Assignment

Notice that when the command 4 + 5 is typed above, MATLAB responds with ans = 9 and forgets this calculation when we enter another command. In order to save values, we **assign** the output to a variable.

For example,

command	MATLAB response
>> x = 18	x = 18
>> y = x + 2	y = 20

When you assign a variable, the variable name appears in the Workspace viewer. To view the contents of the variable, double-click on the variable in the workspace or enter the variable name on the command line.

Example 1

Predict the responses of the following commands and check your understanding.

command

MATLAB response

>> a = 3; b = 4; c = 5;

- >> a = b* c
- >> b/a
- >> a = a-18
- >> a^b

Order of Operations

MATLAB uses a fairly standard order of priority for operations:

This means addition and subtraction have the same priority, which is below multiplication and division; and powers have the highest priority.

For example, the command >> 5-1/3 will return an evaluation of 4.6667 or 5-1/3, as division is done before the substraction.

Example 2 (Operations with same precedence)

Investigate the expressions below to see the order in which the operations are performed by ${\tt MATI.AB}$.

Example 3

Evaluate the following expressions. Let a=4; b=5; c=8;

(i)
$$\frac{a^{b}-c/b}{c}$$

(ii)
$$\frac{a^{c-b}}{c-b}$$

(iii)
$$\frac{a^{3/2}}{b}$$

(iv)
$$\frac{a-b(c-a)}{c-a}$$

Function Evaluation

MATLAB allows extra functionality with its built-in functions:

command	output	remarks
sqrt(225)	15	
pi	3.1416	π is built-in
exp(1)	2.7183	e is not built-in
sin(pi/2)	1	
x = pi/4	x = 0.7854	assigns x
tan(x)	1.000	as $x=\pi/4$ by above
$\sin(x)^2 + \cos(x)^2$	1	again, because $x=\pi/4$

NOTE:

- When you get an error message, check that you have spelled the function name correctly.
- For trigonometric functions, arguments must be specified in radians, not in degrees. Recall, to convert from degrees to radians you multiply by $\pi/180$.

Buit-in mathematical functions

MATLAB notation	Mathematical notation	Operation
sqrt(x)	\sqrt{X}	square root
abs(x)		absolute value
exp(x)	e^{x}	exponential function
log(x)	ln x	natural logarithm
log10(x)	log ₁₀ <i>x</i>	logarithm base 10
sin(x)	sin x	sine
cos(x)	cos x	cosine
tan(x)	tan x	tangent
asin(x)	$\sin^{-1} x$	inverse sine
acos(x)	$\cos^{-1} x$	inverse cosine
atan(x)	$tan^{-1}x$	inverse tangent

Vectors

- A **vector** in MATLAB is a variable that contains more than one element.
- Vectors are created in MATLAB using square brackets: []
 - To create a row vector:

```
>> a = [1 2 3] % use percentage symbol for comments
```

To create a column vector:

```
>> b = [4;5;6]; % suppress output by adding a semicolon at the end of command line
```


Sequences

• To generate a squence of numbers separated by 1, use the colon symbol as in a:b

• If we want a step size h, we use the syntax a:h:b

• For evenly-spaced numbers between two points without figuring out the step size, we can use the linspace function:

Vector operations

```
% add scalar to a vector a
>> a+3
                        % element-by-element addition
>> a+b
                        % element-by-element subtraction
>> a-b
                        % scalar-vector multuplication
>> a*3
                        % element wise multiplication
>> a.*b
                        % dot product
>> a*b
>> dot(a,b)
                        % dot product
>> a'
                        % transpose
                        % cross product (only for arrays with 3 elements)
>> cross(a,b)
                        % element wise division
>> a./b
                        % pseudoinverse: ab^{-1}
>> a/b
```


Matrices

MATLAB = MATtrix LABoratory

i.e. a matrix is the primary object involved in any MATLAB computation.

• In general, we create matrices with more than one row and coloumn.

Functions to create matrices:

```
>> zeros(5,5) % all zeros
>> ones(5,5) % all ones
>> I=eye(5) % unit matrix
>> rand(5,5) % unifomly distributed random elements, between 0 and 1
>> randn(5,5) % normally distributed random elements, mean 0 and variance 1
```

Matrix arithmetic

Matrices can be combined using the operations +, -, * to form new matrices - provided that the matrices have the same dimensions. For example, if

$$\mathbf{A} = \begin{pmatrix} -3 & -1 \\ 3 & 2 \\ 3 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 7 & 3 \\ -2 & 2 \\ 3 & -1 \end{pmatrix}, \text{ and } \mathbf{C} = \begin{pmatrix} -3 & -2 & -2 \\ 5 & 8 & -2 \end{pmatrix}$$

then the MATLAB commands gives

$$>> D = A+B$$

$$>>$$
 F = C+A

$$\% \mathbf{D} = \begin{pmatrix} 4 & 2 \\ 1 & 4 \\ 6 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 10 & 4 \\ \end{pmatrix}$$

$$\% \mathbf{E} = \begin{pmatrix} 10 & 4 \\ -5 & 0 \\ 0 & -1 \end{pmatrix}$$

% an error message because dimensions do not match

Matrix operations

>>	A+3	%	matrix A plus a scalar
>>	A*3	%	matrix A multiplied by a scalar
>>	A*a	%	matrix A multiplies a vector a
>>	sin(A)	%	element-wise sine of a matrix
>>	exp(A)	%	element-wise exponential of a matrix
>>	A+B	%	matrix addition
>>	A-B	%	matrix subtraction
>>	A*B	%	matrix multiplication
>>	A.*B	%	element-wise multiplication
>>	A.^3	%	element-wise power
>>	Α'	%	transpose or complex conjugate transpose of a matrix
>>	inv(A)	%	inverse of a matrix
>>	A./B	%	element-wise division
>>	A/B	%	equivalent to A*inv(B)
>>	A\B	%	backslash operator: inv(A)*B
	det(A)	%	determinant of a matrix

Matrix indexing

- Index starts from 1 (not from 0)
- Column-major convention
- >> A(3.2)% the element of 3rd row and 2nd column
 - >> A(:,1) % the 1st column
 - >> A(2.2:3)through 2nd to 3rd elements of 2nd row
- $\gg sum(A(2,:))$ % sum of all elements of 2nd row
- $>> \max(A(3,:))$ % maximum element of the 3rd row

Example 4

- (a) Create length 3 vectors and 3×3 matrices.
- (b) Practice the vector operations listed above.
- (c) Practice the matrix operations listed above.

Cell array

Objects of different types (e.g. data, text, color) in MATLAB can be represented as matrices in a cell array.

Create a cell array:

- >> cell(size1,size 2,...)
 % creates a multidimensional cell array. Refer to help cell for more details
- >> myCell = {2, [7 8 9], [1 2 3; 4 5 6]; 'text', rand(5,5),{11; 22; 33}} % initialize a 2-by-3 cell array of different types of elements

Example 5

Determine what is produced by the following MATLAB statements.

- (a) >> myCell{1,3}; (c) >> myCell{1,:};
- (b) \Rightarrow myCell{2,1:2}; (d) \Rightarrow iscell(myCell)

Creating plots

The basic idea is to first plot several points (x_i, y_i) and then to connect them together using lines using the command plot(x,y).

Example 6 (Plotting $y = x^2 - \sqrt{x+3} + \cos 5x$)

```
>> n = 81;
>> x = linspace(-3, 5, n);
>> y = zeros(1,n);
>> y = x.^2 - sqrt(x+3) + cos(5*x);
>> plot(x,y)
```


Plot of sine and cosine functions

```
 \begin{array}{l} x=0: pi/100: 4*pi; \;\; \% \;\; create \;\; a \;\; vector \;\; for \;\; x-coordinates \\ y=\sin(x); \;\; \% \;\; vector \;\; for \;\; sin \;\; x \\ y2=\cos(x); \;\; \% \;\; vector \;\; for \;\; cos \;\; x \\ plot(x,y,'k') \;\; \% \;\; plot \;\; sin \;\; x \;\; in \;\; black \\ hold \;\; on \;\; \% \;\; hold \;\; allows \;\; to \;\; overlay \;\; several \;\; plots \;\; on \;\; the \;\; same \;\; set \;\; of \;\; axes \\ plot(x,y2,'--r','linewidth',2) \;\; \% \;\; plot \;\; cos \;\; x \;\; in \;\; thick \;\; red \;\; dashed \;\; line \\ xlabel('x') \;\; \% \;\; add \;\; graph \;\; labels \\ ylabel('y') \;\; axis([0 \;\; 4*pi \;\; -1 \;\; 1]) \;\; \% \;\; axis([xmin \;\; xmax \;\; ymin \;\; ymax]) \\ title('Plot \;\; of \;\; sine \;\; and \;\; cosine \;\; functions','FontSize',12) \\ legend('sin(x)','cos(x)') \end{array}
```

See help plot documentation for more plotting capabilities.

Example 7 (Chebyshev polynomials)

Chebyshev polynomials are used in a variety of engineering applications. The jth Chebyshev polynomial $T_j(x)$ is defined by

$$T_j(x) = \cos(j \arccos(x)), \quad -1 \le x \le 1.$$

(a) Explain what happens when the following MATLAB code is executed.

```
 \begin{array}{lll} x = linspace (-1,1,201); & subplot (2,2,1) \,, \; plot (x,\; T1) \\ T1 = cos (acos (x)); & subplot (2,2,2) \,, \; plot (x,\; T3) \\ T3 = cos (3*acos (x)); & subplot (2,2,3) \,, \; plot (x,\; T5) \\ T5 = cos (5*acos (x)); & subplot (2,2,4) \,, \; plot (x,\; T7) \\ T7 = cos (7*acos (x)); & \end{array}
```

(b) Compare this to the following plot code:

```
subplot(1,1,1)
plot(x, T1,'b')
hold on
plot(x, T3,'r')
plot(x, T5,'g')
plot(x, T7,'c')
```