Explore resilience evi

AJ Perez-Luque (@ajpelu)
2017 Aug

Prepare data

```
# Read data
raw_evires <- read.csv(file=paste(di, "/data/resilience/resilience_evi.csv", sep=""), header = TRUE, se
# add data of pop
anomalias <- read.csv(file=paste(di, "/data/anomalies/anomalias_evimean.csv", sep=""), header = TRUE, s
attr_iv_malla_modis_id <- anomalias %% dplyr::select(iv_malla_modi_id,long,lat,pop) %>% unique()
raw_evires <- raw_evires %>% inner_join(attr_iv_malla_modis_id, by='iv_malla_modi_id')
# filter by pop and add new variable
evires <- raw_evires %>%
 mutate(
    clu_pop = as.factor(case_when(
     pop == 1 ~ "Camarate",
      pop %in% c(2,3,4,5) ~ 'Northern slope',
     pop %in% c(6,7,8) \sim 'Southern slope',
      pop == 9 ~ 'out')),
    clu_pop2 = as.factor(case_when(
      pop %in% c(1,2,3,4,5) \sim 'N',
     pop %in% c(6,7,8) ~ 'S',
      pop == 9 ~ 'out'))) %>%
  filter(clu_pop != 'out')
\hbox{\it\# Change name of $clu\_pop2$ and $disturb\_year$ para los $analisis$ anovas}
evires <- evires %>% dplyr::rename(site = clu_pop2) %>%
  mutate(disturb_year = as.factor(disturb_year))
```

ANOVAS

Recovery

Table 1: ANOVA table: rc

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	1.951	1.951	420.3	0
site	1	0.6528	0.6528	140.6	0
disturb_year:site	1	1.969	1.969	424.1	0
Residuals	1820	8.45	0.00464		

	Statistic
R^2	0.35
$\mathrm{adj}R^2$	0.35
σ_e	0.07
F	328.31
p	0.00
df_m	4.00
$\log \mathrm{Lik}$	2313.52
AIC	-4617.05
BIC	-4589.50
dev	8.45
df_e	1820.00

```
# Post hoc Define model
mymodel <- aov_rc$mymodel</pre>
postH_rc <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                                   SE
                                        df lower.CL upper.CL
                   lsmean
                 1.120312 0.002257496 1820 1.115885 1.124740
                 1.057062 0.002257496 1820 1.052634 1.061489
##
   2012
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                  estimate
                                         df t.ratio p.value
## 2005 - 2012 0.06325071 0.003192582 1820 19.812 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                   lsmean
                                   SE
                                        df lower.CL upper.CL .group
                 1.057062 0.002257496 1820 1.051998 1.062126
##
   2012
## 2005
                 1.120312 0.002257496 1820 1.115248 1.125377
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
##
## ### Clu pop ###
## $1smeans
## site lsmean
                           SE
                                df lower.CL upper.CL
         1.107615 0.002220056 1820 1.103261 1.111969
## N
         1.069759 0.002294326 1820 1.065259 1.074259
##
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
```

```
SE df t.ratio p.value
## contrast estimate
## N - S
          0.03785579 0.003192582 1820 11.857 <.0001
##
## Results are averaged over the levels of: disturb_year
##
##
                               df lower.CL upper.CL .group
   site lsmean
                          SE
        1.069759 0.002294326 1820 1.064612 1.074906 a
        1.107615 0.002220056 1820 1.102635 1.112595
## N
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site lsmean
                                      SE
                                            df lower.CL upper.CL
                N
                    1.172113 0.003139633 1820 1.165955 1.178271
## 2012
                     1.043117 0.003139633 1820 1.036959 1.049275
                N
                     1.068512 0.003244666 1820 1.062148 1.074876
## 2005
                S
## 2012
                S
                     1.071007 0.003244666 1820 1.064643 1.077370
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
                       estimate
                                         SE
                                             df t.ratio p.value
   2005,N - 2012,N 0.128996090 0.004440112 1820 29.052 <.0001
   2005,N - 2005,S 0.103601172 0.004514992 1820 22.946 <.0001
## 2005,N - 2012,S 0.101106495 0.004514992 1820 22.394 <.0001
## 2012,N - 2005,S -0.025394918 0.004514992 1820 -5.625 <.0001
##
   2012,N - 2012,S -0.027889595 0.004514992 1820 -6.177 <.0001
## 2005,S - 2012,S -0.002494677 0.004588651 1820 -0.544 1.0000
##
## P value adjustment: bonferroni method for 6 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Resistance

Table 3: ANOVA table: rt

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	3.266	3.266	1079	0
site	1	0.6366	0.6366	210.2	0
$disturb_year:site$	1	0.9736	0.9736	321.5	0
Residuals	1820	5.511	0.00303		

	Statistic
R^2	0.47
$\mathrm{adj}R^2$	0.47
σ_e	0.06
F	536.85
p	0.00
df_m logLik	4.00 2703.33
AIC	-5396.66
BIC	-5369.12
dev	5.51
df_e	1820.00

```
# Post hoc Define model
mymodel <- aov_rt$mymodel</pre>
postH_rt <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                                    SE
                                        df lower.CL upper.CL
                 0.8607403 0.001823114 1820 0.8571647 0.8643159
## 2005
   2012
                 0.9438559 0.001823114 1820 0.9402803 0.9474315
##
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                          df t.ratio p.value
                  estimate
                                     SE
## 2005 - 2012 -0.08311557 0.002578272 1820 -32.237 <.0001
## Results are averaged over the levels of: site
##
                                    SE
                                         df lower.CL upper.CL .group
## disturb_year
                    lsmean
                 0.8607403 0.001823114 1820 0.8566506 0.8648300 a
## 2005
                 0.9438559 0.001823114 1820 0.9397662 0.9479456
## 2012
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
```

```
## significance level used: alpha = 0.01
##
## ### Clu pop ###
## $1smeans
## site
           lsmean
                            SE
                                df lower.CL upper.CL
## N
        0.8836057 0.001792878 1820 0.8800894 0.8871220
         0.9209905 0.001852856 1820 0.9173566 0.9246245
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
## contrast
               estimate
                                      df t.ratio p.value
                                 SE
## N - S
            -0.03738486 0.002578272 1820
                                           -14.5 < .0001
##
## Results are averaged over the levels of: disturb_year
##
##
   site
            lsmean
                                 df lower.CL upper.CL .group
##
        0.8836057 0.001792878 1820 0.8795838 0.8876276 a
        0.9209905 0.001852856 1820 0.9168341 0.9251470
##
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                             df lower.CL upper.CL
                        lsmean
                                        SE
                     0.8189321 0.002535512 1820 0.8139593 0.8239049
## 2005
                N
## 2012
                N
                     0.9482792 0.002535512 1820 0.9433064 0.9532521
## 2005
                S
                     0.9025485 0.002620335 1820 0.8974093 0.9076877
## 2012
                     0.9394325 0.002620335 1820 0.9342934 0.9445717
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
                      {\tt estimate}
                                        SE
                                             df t.ratio p.value
   2005,N - 2012,N -0.12934712 0.003585755 1820 -36.072 <.0001
   2005,N - 2005,S -0.08361641 0.003646227 1820 -22.932 <.0001
## 2005,N - 2012,S -0.12050043 0.003646227 1820 -33.048 <.0001
## 2012,N - 2005,S 0.04573071 0.003646227 1820 12.542 <.0001
## 2012,N - 2012,S 0.00884669 0.003646227 1820
                                                  2.426 0.0921
## 2005,S - 2012,S -0.03688402 0.003705713 1820 -9.953 <.0001
## P value adjustment: bonferroni method for 6 tests
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Resilience

Table 5: ANOVA table: rs

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	0.6334	0.6334	258.4	0
site	1	0.0533	0.0533	21.74	0
disturb_year:site	1	0.01931	0.01931	7.875	0.00507
Residuals	1820	4.462	0.00245		

	Statistic
R^2	0.14
$\mathrm{adj}R^2$	0.14
σ_e	0.05
F	96.00
p	0.00
$d\!f_m$	4.00
$\log \mathrm{Lik}$	2895.92
AIC	-5781.83
BIC	-5754.29
dev	4.46
df_e	1820.00

```
# Post hoc Define model
mymodel <- aov_rs$mymodel</pre>
postH_rs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                                    SE
                                        df lower.CL upper.CL
                 0.9587200\ 0.001640436\ 1820\ 0.9555027\ 0.9619373
## 2005
   2012
                 0.9962045 0.001640436 1820 0.9929872 0.9994219
##
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                          df t.ratio p.value
                   estimate
                                     SE
## 2005 - 2012 -0.03748452 0.002319926 1820 -16.158 <.0001
## Results are averaged over the levels of: site
##
                                    SE
                                         df lower.CL upper.CL .group
## disturb_year
                    lsmean
                 0.9587200 0.001640436 1820 0.9550401 0.9623999 a
## 2005
                 0.9962045 0.001640436 1820 0.9925246 0.9998844
## 2012
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
```

```
## significance level used: alpha = 0.01
##
## ### Clu pop ###
## $1smeans
## site
           lsmean
                           SE
                                df lower.CL upper.CL
## N
        0.9720535 0.001613229 1820 0.9688896 0.9752175
         0.9828710 0.001667198 1820 0.9796012 0.9861408
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
                                      df t.ratio p.value
## contrast
               estimate
                                 SE
## N - S
            -0.01081743 0.002319926 1820 -4.663 <.0001
##
## Results are averaged over the levels of: disturb_year
##
##
   site
            lsmean
                                df lower.CL upper.CL .group
##
        0.9720535 0.001613229 1820 0.9684347 0.9756724 a
        0.9828710 0.001667198 1820 0.9791310 0.9866109
##
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                             df lower.CL upper.CL
                        lsmean
                                        SE
                     0.9565664 0.002281451 1820 0.9520919 0.9610410
## 2005
                N
## 2012
                N
                     0.9875407 0.002281451 1820 0.9830661 0.9920152
## 2005
                S
                     0.9608736 0.002357774 1820 0.9562493 0.9654978
## 2012
                     1.0048684 0.002357774 1820 1.0002442 1.0094926
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
                       estimate
                                         SE
                                              df t.ratio p.value
   2005,N - 2012,N -0.030974221 0.003226458 1820 -9.600 <.0001
   2005,N - 2005,S -0.004307134 0.003280871 1820 -1.313 1.0000
## 2005,N - 2012,S -0.048301950 0.003280871 1820 -14.722 <.0001
## 2012,N - 2005,S 0.026667087 0.003280871 1820
                                                  8.128 <.0001
   2012,N - 2012,S -0.017327728 0.003280871 1820 -5.281 <.0001
## 2005,S - 2012,S -0.043994816 0.003334396 1820 -13.194 <.0001
## P value adjustment: bonferroni method for 6 tests
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Relative Resilience

Table 7: ANOVA table: rrs

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	1.023	1.023	321.9	0
site	1	0.3215	0.3215	101.2	0
disturb_year:site	1	1.267	1.267	398.7	0
Residuals	1820	5.783	0.00318		

	Statistic
R^2	0.31
$\mathrm{adj}R^2$	0.31
σ_e	0.06
F	273.95
p	0.00
$d\!f_m$	4.00
$\log \mathrm{Lik}$	2659.30
AIC	-5308.61
BIC	-5281.06
dev	5.78
$d\!f_e$	1820.00

```
# Post hoc Define model
mymodel <- aov_rrs$mymodel</pre>
postH_rrs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                                     SE
                                          df
                                               lower.CL upper.CL
                 0.09797968 0.001867656 1820 0.09431670 0.1016427
## 2005
   2012
                 0.05234863 0.001867656 1820 0.04868565 0.0560116
##
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                         df t.ratio p.value
                  estimate
                                    SE
## 2005 - 2012 0.04563105 0.002641264 1820 17.276 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                     lsmean
                                     SE
                                          df
                                               lower.CL
                                                          upper.CL .group
                 0.05234863 0.001867656 1820 0.04815899 0.05653826 a
## 2012
## 2005
                 0.09797968 0.001867656 1820 0.09379004 0.10216931
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
```

```
## significance level used: alpha = 0.01
##
## ### Clu pop ###
## $1smeans
## site
            lsmean
                            SE
                                  df
                                       lower.CL
                                                  upper.CL
## N
        0.08844787 0.001836681 1820 0.08484564 0.09205009
         0.06188044 0.001898125 1820 0.05815770 0.06560317
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
                                    df t.ratio p.value
## contrast
              estimate
                                SE
## N - S
            0.02656743 0.002641264 1820 10.059 <.0001
##
## Results are averaged over the levels of: disturb_year
##
##
   site
            lsmean
                                       lower.CL
                                  df
                                                  upper.CL .group
##
        0.06188044 0.001898125 1820 0.05762245 0.06613842 a
         0.08844787 0.001836681 1820 0.08432772 0.09256802
##
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                              df lower.CL
                          lsmean
                                          SE
                     0.13763432 0.002597459 1820 0.1325400 0.14272863
## 2005
                N
## 2012
                N
                     0.03926142 0.002597459 1820 0.0341671 0.04435573
## 2005
                S
                     0.05832504 0.002684355 1820 0.0530603 0.06358978
## 2012
                     0.06543584 0.002684355 1820 0.0601711 0.07070057
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
                       {\tt estimate}
                                         SE
                                              df t.ratio p.value
   2005,N - 2012,N 0.098372900 0.003673362 1820
                                                  26.780 <.0001
   2005,N - 2005,S 0.079309278 0.003735312 1820 21.232 <.0001
##
## 2005,N - 2012,S 0.072198481 0.003735312 1820 19.329 <.0001
## 2012,N - 2005,S -0.019063621 0.003735312 1820
                                                  -5.104 <.0001
   2012,N - 2012,S -0.026174419 0.003735312 1820 -7.007 <.0001
## 2005,S - 2012,S -0.007110797 0.003796251 1820 -1.873 0.3673
## P value adjustment: bonferroni method for 6 tests
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

mean + sd

mean + ci

grid.arrange(plot_mdCI, plot_msCI, plot_mdsCI, ncol=3)

pdf ## 2

pdf

pdf ## 2

term	df	sumsq	meansq	statistic	p.value	var
disturb_year	1	1.951	1.951	420.3	3.368e-84	rc
site	1	0.6528	0.6528	140.6	2.706e-31	rc
$disturb_year:site$	1	1.969	1.969	424.1	7.127e-85	$_{\rm rc}$
Residuals	1820	8.45	0.004643	NA	NA	rc
$disturb_year$	1	3.266	3.266	1079	3.446e-186	rt
site	1	0.6366	0.6366	210.2	3.608e-45	rt
$disturb_year:site$	1	0.9736	0.9736	321.5	2.446e-66	rt

19

term	df	sumsq	meansq	statistic	p.value	var
Residuals	1820	5.511	0.003028	NA	NA	$_{ m rt}$
$disturb_year$	1	0.6334	0.6334	258.4	1.817e-54	rs
site	1	0.0533	0.0533	21.74	3.346e-06	$_{\rm rs}$
disturb_year:site	1	0.01931	0.01931	7.875	0.005066	$_{\rm rs}$
Residuals	1820	4.462	0.002452	NA	NA	rs
$disturb_year$	1	1.023	1.023	321.9	2.05e-66	rrs
site	1	0.3215	0.3215	101.2	3.356e-23	rrs
$disturb_year:site$	1	1.267	1.267	398.7	2.249e-80	rrs
Residuals	1820	5.783	0.003178	NA	NA	rrs

	rc	rt	rs	rrs
R^2	0.3511444	0.4694715	0.1366188	0.3110905
$\mathrm{adj}R^2$	0.3500749	0.4685970	0.1351956	0.3099549
σ_e	0.06813799	0.05502703	0.04951326	0.05637145
F	328.31282	536.84720	95.99708	273.95212
p	2.291209 e-170	7.130860e-250	1.111125e-57	1.015581e-146
$d\!f_m$	4	4	4	4
$\log \mathrm{Lik}$	2313.524	2703.332	2895.917	2659.304
AIC	-4617.048	-5396.664	-5781.835	-5308.608
BIC	-4589.504	-5369.120	-5754.291	-5281.064
dev	8.449871	5.510913	4.461844	5.783487
df_e	1820	1820	1820	1820
variable	rc	rt	rs	rrs

Asumptions

```
shapirosNormal <- function(df, resp_var, factor_vars) {</pre>
  rv <- enquo(resp_var)</pre>
  out <- df %>%
    dplyr::group_by_(.dots=factor_vars) %>%
    dplyr::summarise(statistic = round(shapiro.test(!!rv)$statistic,5),
               p_value = round(shapiro.test(!!rv)$p.value,5)) %>%
    data.frame()
  return(out)
homogetest <- function(resp_var, factores, df){</pre>
  out_factores <- c()</pre>
  for (f in factores){
    myformula <- as.formula(paste0(resp_var, "~", f))</pre>
    #tests
    fk <- fligner.test(myformula, data = df)</pre>
    lv <- leveneTest(myformula, data = df)</pre>
    # out
```

```
hv$fk_stat <- fk$statistic
hv$fk_pvalue <- fk$p.value
hv$lev_stat <- lv$`F value`[1]
hv$lev_pvalue <- lv$`Pr(>F)`[1]
hv$factor <- f
hv <- as.data.frame(hv)
row.names(hv) <- NULL

out_factores <- rbind(out_factores, hv)}
return(out_factores)
}</pre>
```

• Explorar si se cumplen los supuestos de normalidad y homocedasticidad. Tenemos que comprobar que cada uno de los grupos son normales (2005 vs 2012; N vs S; e interactions)

Normalidad

```
# See auxiliar::shapirosNormal
### Resilience
nrsA<- shapirosNormal(evires, resp_var = rs, 'disturb_year')</pre>
nrsA$var <- 'rs'</pre>
nrsB <- shapirosNormal(evires, resp_var = rs, 'site')</pre>
nrsB$var <- 'rs'</pre>
nrsAB <- shapirosNormal(evires, resp_var = rs, c('disturb_year','site'))</pre>
nrsAB$var <- 'rs'
### Recovery
nrcA <- shapirosNormal(evires, resp_var = rc, 'disturb_year')</pre>
nrcA$var <- 'rc'</pre>
nrcB <- shapirosNormal(evires, resp_var = rc, 'site')</pre>
nrcB$var <- 'rc'</pre>
nrcAB <- shapirosNormal(evires, resp_var = rc, c('disturb_year','site'))</pre>
nrcAB$var <- 'rc'</pre>
### Resistance
nrtA <- shapirosNormal(evires, resp_var = rt, 'disturb_year')</pre>
nrtA$var <- 'rt'</pre>
nrtB <- shapirosNormal(evires, resp_var = rt, 'site')</pre>
nrtB$var <- 'rt'</pre>
nrtAB <- shapirosNormal(evires, resp_var = rt, c('disturb_year','site'))</pre>
nrtAB$var <- 'rt'</pre>
### Relative Resilience
nrrsA <- shapirosNormal(evires, resp_var = rrs, 'disturb_year')</pre>
nrrsA$var <- 'rrs'</pre>
nrrsB <- shapirosNormal(evires, resp_var = rrs, 'site')</pre>
nrrsB$var <- 'rrs'</pre>
nrrsAB <- shapirosNormal(evires, resp_var = rrs, c('disturb_year','site'))</pre>
nrrsAB$var <- 'rrs'</pre>
```

normtestA <- rbind(nrcA, nrtA, nrsA, nrrsA)
normtestA %>% pander()

disturb_year	statistic	p_value	var
2005	0.9937	0.00069	rc
2012	0.9952	0.00573	$_{\rm rc}$
2005	0.9962	0.0248	rt
2012	0.9976	0.2164	rt
2005	0.9989	0.8793	$_{\rm rs}$
2012	0.9938	8e-04	$_{ m rs}$
2005	0.9977	0.2435	rrs
2012	0.9916	5e-05	rrs

```
write.csv(normtestA,
```

file=paste0(di, '/out/anovas_resilience/evi/normo_disturb_year.csv'), row.names = F)

normtestB <- rbind(nrcB, nrtB, nrsB, nrrsB)
normtestB %>% pander()

site	statistic	p_value	var
N	0.9768	0	$_{\rm rc}$
\mathbf{S}	0.9889	0	$_{\rm rc}$
N	0.9909	1e-05	rt
\mathbf{S}	0.9981	0.4341	rt
N	0.9901	1e-05	$_{\rm rs}$
\mathbf{S}	0.9968	0.0752	$_{\rm rs}$
N	0.9942	0.00113	rrs
S	0.9905	2e-05	rrs

write.csv(normtestB,

file=paste0(di, '/out/anovas_resilience/evi/normo_site.csv'), row.names = F)

normtestAB <- rbind(nrcAB, nrtAB, nrsAB, nrrsAB)
normtestAB%>% pander()

disturb_year	site	statistic	p_value	var
2005	N	0.9873	0.00041	$_{\rm rc}$
2005	\mathbf{S}	0.9922	0.02101	rc
2012	\mathbf{N}	0.9907	0.0045	$_{\rm rc}$
2012	\mathbf{S}	0.9905	0.00597	$_{\rm rc}$
2005	\mathbf{N}	0.9932	0.03304	rt
2005	\mathbf{S}	0.994	0.07917	rt
2012	N	0.9959	0.2602	rt
2012	\mathbf{S}	0.9964	0.4178	rt
2005	\mathbf{N}	0.9949	0.1252	rs
2005	\mathbf{S}	0.9959	0.3181	$_{\rm rs}$
2012	N	0.9832	3e-05	$_{\rm rs}$
2012	\mathbf{S}	0.9916	0.01349	$_{\rm rs}$
2005	\mathbf{N}	0.994	0.05822	rrs
2005	\mathbf{S}	0.9962	0.3659	rrs

disturb_year	site	statistic	p_value	var
2012	N	0.9961	0.3059	rrs
2012	\mathbf{S}	0.9843	0.00011	rrs

• No se cumplen los requisitos de normalidad

Heterocedasticidad

```
## See auxiliar::homogetest

factores <- c('disturb_year', 'site', 'interaction(disturb_year, site)')
responses <- c('rs', 'rc', 'rt', 'rrs')
homo <- c()

for (i in responses){
   ht <- homogetest(resp_var = i, factores = factores, df = evires)
   ht <- ht %>% mutate(response = i)
   homo <- rbind(homo, ht)
}

homo %>% pander()
```

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
2.525	0.1121	2.648	0.1039	disturb_year	rs
3.839	0.05008	3.789	0.05174	site	$_{ m rs}$
17.51	0.0005562	5.914	0.0005166	interaction(disturb_year,	$_{\rm rs}$
				site)	
211.9	5.368e-48	246.3	3.656e-52	disturb_year	$_{ m rc}$
141.3	1.413e-32	150.6	2.554e-33	site	$_{\rm rc}$
190.7	4.314e-41	70.07	6.952e-43	interaction(disturb_year,	$_{\rm rc}$
				site)	
63.89	1.317e-15	66.3	7.115e-16	disturb_year	$_{ m rt}$
125.1	4.959e-29	131.9	1.555e-29	site	rt
12.28	0.006492	4.056	0.006951	interaction(disturb_year,	${ m rt}$
				site)	
130.1	3.979e-30	146.9	1.419e-32	disturb_year	rrs
99.79	1.69e-23	105.6	4.123e-24	site	rrs
140.8	2.564e-30	50.69	1.832e-31	interaction(disturb_year,	rrs
				site)	

• Tampoco se cumplen los requisitos de homogeneidad de varianzas entre grupos

Transformación datos

Log

• Probamos a transformar los datos con log y reanalizar los supuestos de homocedasticidad

```
factores <- c('disturb_year', 'site', 'interaction(disturb_year, site)')
responses <- c('logrs', 'logrc', 'logrt', 'logrrs')
homo_log <- c()

evires <- evires %>%
    mutate(
    logrs = log(rs),
    logrc = log(rc),
    logrt = log(rc),
    logrrs = log(rrs)
)

for (i in responses){
    ht <- homogetest(resp_var = i, factores = factores, df = evires)
    ht <- ht %>% mutate(response = i)
    homo_log <- rbind(homo_log, ht)
}

homo_log %>% pander()
```

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
0.2861	0.5927	0.2493	0.6176	disturb_year	logrs
4.653	0.031	4.631	0.03153	site	$\log rs$
18.81	0.0002987	6.272	0.0003116	interaction(disturb_year, site)	logrs
181.4	2.449e-41	208.7	7.253e-45	disturb_year	logrc
127.8	1.217e-29	136.2	2.146e-30	site	logrc
165.2	1.367e-35	60.48	2.844e-37	interaction(disturb_year,	logrc
				site)	
181.4	2.449e-41	208.7	7.253e-45	disturb_year	logrt
127.8	1.217e-29	136.2	2.146e-30	site	logrt
165.2	1.367e-35	60.48	2.844e-37	interaction(disturb_year,	logrt
				site)	
2.26	0.1328	2.944	0.0864	$disturb_year$	$\log rrs$
19.95	7.953e-06	16.68	4.642 e - 05	site	$\log rrs$
116.2	5.156e-25	32.45	2.308e-20	$\begin{array}{c} \text{interaction}(\text{disturb_year},\\ \text{site}) \end{array}$	logrrs

• Tampoco se cumplen

Log + 1

```
factores <- c('disturb_year', 'site', 'interaction(disturb_year, site)')
responses <- c('log1rs', 'log1rc', 'log1rt', 'log1rrs')
homo_log1 <- c()

evires <- evires %>%
    mutate(
    log1rs = log(rs + 1),
    log1rc = log(rc + 1),
    log1rt = log(rc + 1),
    log1rrs = log(rrs + 1)
)

for (i in responses){
    ht <- homogetest(resp_var = i, factores = factores, df = evires)
    ht <- ht %>% mutate(response = i)
    homo_log1 <- rbind(homo_log1, ht)
}

homo_log1 %>% pander()
```

fk_stat	${\rm fk_pvalue}$	lev_stat	lev_pvalue	factor	response
1.128	0.2883	1.152	0.2833	disturb_year	log1rs
4.259	0.03905	4.202	0.04052	site	$\log 1 rs$
17.94	0.0004531	6.002	0.0004567	interaction(disturb_year,	$\log 1 rs$
				site)	
196.2	1.4e-44	227.4	1.624e-48	disturb_year	$\log 1 rc$
134.3	4.666e-31	143.7	6.465 e-32	site	$\log 1 rc$
176.4	5.39e-38	64.66	1.001e-39	interaction(disturb_year,	$\log 1 rc$
				site)	
196.2	1.4e-44	227.4	1.624e-48	disturb_year	log1rt
134.3	4.666e-31	143.7	6.465 e-32	site	log1rt
176.4	5.39e-38	64.66	1.001e-39	interaction(disturb_year,	log1rt
				site)	
107.1	4.152e-25	119.2	6.458e-27	disturb_year	log1rrs
86.45	1.431e-20	91.37	3.696e-21	site	$\log 1 rrs$
136.2	2.493e-29	49.05	1.747e-30	interaction(disturb_year,	$\log 1 rrs$
				site)	-

• Tampoco se cumplen

Buscar mejor transformación de Box-Cox

• Buscamos el mejor lambda para cada variable para estudiar posibles transformaciones

Lambda Resilience

```
m <- lm(rs ~ disturb_year*site, evires)
b <- boxcox(m)</pre>
```


b\$x[which.max(b\$y)]

[1] -0.1414141

Lambda Resistance

```
m <- lm(rt ~ disturb_year*site, evires)
b <- boxcox(m)</pre>
```


b\$x[which.max(b\$y)]

[1] 0.8282828

Lambda Recovery

m <- lm(rc ~ disturb_year*site, evires)
b <- boxcox(m)</pre>

b\$x[which.max(b\$y)]

[1] -1.151515

Lambda Relative Resilience

```
m <- lm(rrs ~ disturb_year*site, evires)
b <- boxcox(m)
b$x[which.max(b$y)]</pre>
```

Obtengo diferentes lambdas, lo cual complica las transformaciones. Por lo que opto por ROBUST ANOVA

ROBUST ANOVA

- Ver Wilcox (2005, 2012)
- Vamos a realizar un Robust factorial ANOVA. En concreto:
- Two-way robust factorial ANOVA on M-estimator
- pkg WRS2

```
robustANOVA <- function(df, resp_var, factores,</pre>
         alpha, nboot, treshold) {
  # alpha: alpha ci for huber m-estimation
  # nboot: numer of iterations
  # treshoold for letter (posthoc)
  # See http://rcompanion.org/rcompanion/d 08a.html
  set.seed(123)
  # Create interaction
  df$interaction <- interaction(df$disturb_year, df$site)</pre>
  # Formulas
  formulaFull <- as.formula(paste0(resp_var, " ~ ",</pre>
                                  paste(factores, collapse = '+')))
  formula_A <- as.formula(paste0(resp_var, " ~ ", factores[1]))</pre>
  formula_B <- as.formula(paste0(resp_var, " ~ ", factores[2]))</pre>
  formula_AB <- as.formula(paste0(resp_var, " ~ interaction"))</pre>
  # Produce Huber M-estimators and confidence intervals by group
  mest <- groupwiseHuber(formulaFull, data = df, ci.type = 'wald', conf.level = alpha)
  mest_a <- groupwiseHuber(formula_A, data = df, ci.type = 'wald', conf.level = alpha)
  mest_b <- groupwiseHuber(formula_B, data = df, ci.type = 'wald', conf.level = alpha)</pre>
  # Two-way robust analysis
  x <- pbad2way(formulaFull, data = df, est = "mom", nboot = nboot)
  out_ra <- data.frame(</pre>
    term = c(x$varnames[2],
             x$varnames[3],
             paste0(x$varnames[2], ':', x$varnames[3])),
    p_value = c(x$A.p.value, x$B.p.value, x$AB.p.value))
  out_raTrimmed <- t2way(formulaFull, data = df)</pre>
```

```
# post-hoc
  ## factor A
  pha <- pairwiseRobustTest(formula_A, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## factor B
  phb <- pairwiseRobustTest(formula_B, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## interaction effect (AB)
  phab <- pairwiseRobustTest(formula_AB, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ph <- rbind(pha, phb, phab)</pre>
  phRWS2 <- mcp2a(formulaFull, data=df, est = "mom", nboot = nboot)</pre>
  phtrimmed <- mcp2atm(formulaFull, data=df)</pre>
  out <- list()</pre>
  out$mest <- mest # Huber M-estimators and Confidence Intervals
  out$mest a <- mest a
  out$mest_b <- mest_b
  out$ra <- out_ra # Output for Two-way robust analysis (M-estimators)</pre>
  out$raTrimmed <- out_raTrimmed</pre>
  out$ph <- ph # posthoc comparison usinng pairwiseRobustTest</pre>
  out$pha <- pha
  out$phb <- phb
  out$phab <- phab
  print(cat('\n Robust M-Anova \n'))
  print(out_ra)
  print(cat('\n Robust Trimmed \n'))
  print(out_raTrimmed)
  print(cat('\n post hoc Mhuber \n'))
  print(phRWS2)
  print(cat('\n post hoc Trimmed means \n'))
 print(phtrimmed)
 return(out)
factores = c('disturb_year', 'site', 'disturb_year:site')
rars <- robustANOVA(df=evires, resp_var='rs', factores=factores,</pre>
               alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
```

```
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
##
##
## Robust M-Anova
## NULL
##
                  term p_value
## 1
          disturb_year
                         0.000
## 2
                         0.000
                  site
## 3 disturb_year:site
                         0.042
##
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
##
                        value p.value
                     207.1788 0.001
## disturb_year
                      29.8225
                                0.001
## disturb_year:site
                     6.1386 0.014
##
##
## post hoc Mhuber
## NULL
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
##
                         psihat ci.lower ci.upper p-value
## disturb_year1
                       -0.07125 -0.07957 -0.06281 0.00000
                       -0.02635 -0.03510 -0.01809 0.00000
## disturb_year1:site1  0.01036  0.00241  0.01923  0.01533
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
                         psihat ci.lower ci.upper p-value
                       -0.07055 -0.08017 -0.06094 0.00000
## disturb_year1
                       -0.02677 -0.03639 -0.01715 0.00000
## site1
## disturb_year1:site1  0.01214  0.00253  0.02176  0.01338
```

Rs Letters

```
x <-rars
letraArs <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
letraArs
```

Group Letter MonoLetter var

```
25
              a
                        a rs
      212
                          b rs
letraBrs <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
    Group Letter MonoLetter var
## 1
        N
              a
                         a rs
## 2
        S
               b
                          b rs
letraABrs <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%
letraABrs
   Group Letter MonoLetter var
## 1 25.N
               a
## 2 212.N
               b
                         b
                             rs
## 3 25.S
               a
                             rs
## 4 212.S
               С
                          c rs
rarc <- robustANOVA(df=evires, resp_var='rc', factores=factores,</pre>
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
##
##
## Robust M-Anova
## NULL
##
                 term p_value
## 1
         disturb_year
                            0
## 2
                 site
                            0
## 3 disturb_year:site
                            0
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
##
                       value p.value
                     311.9904 0.001
## disturb_year
                     105.4134 0.001
## disturb_year:site 364.3131 0.001
##
##
```

post hoc Mhuber

```
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
                       psihat ci.lower ci.upper p-value
## disturb_year1
                       0.12129 0.11064 0.13335
                       0.07067 0.05837 0.08124
## disturb_year1:site1 0.13400 0.12269 0.14566
                                                       0
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
                       psihat ci.lower ci.upper p-value
                       0.11995 0.10662 0.13328
## disturb_year1
## site1
                       0.06972 0.05639 0.08305
                                                       0
## disturb_year1:site1 0.12962 0.11629 0.14295
                                                       0
Rc Letters
x <-rarc
letraArc <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
letraArc
##
    Group Letter MonoLetter var
## 1
       25
               a
                         a rc
                          b rc
      212
letraBrc <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
letraBrc
## Group Letter MonoLetter var
## 1
        N
               a
## 2
                          b rc
letraABrc <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%;
letraABrc
    Group Letter MonoLetter var
## 1 25.N
               a
                        a
## 2 212.N
               b
                         b
                            rc
## 3 25.S
                          c rc
               С
## 4 212.S
rart <- robustANOVA(df=evires, resp_var='rt', factores=factores,</pre>
             alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
## [1] "comparison 1 ..."
##
## [1] "comparison 1 ..."
```

NULL

```
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
##
##
##
## Robust M-Anova
## NULL
                  term p_value
## 1
          disturb_year
## 2
                 site
                             0
## 3 disturb_year:site
                             0
##
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
                        value p.value
## disturb_year
                     799.8687 0.001
                     153.2230
                                0.001
## site
## disturb_year:site 234.6974
                              0.001
##
## post hoc Mhuber
## NULL
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
##
                         psihat ci.lower ci.upper p-value
## disturb_year1
                       -0.16567 -0.17474 -0.15608
                       -0.07410 -0.08292 -0.06388
                                                         0
## site1
## disturb_year1:site1 -0.09022 -0.09970 -0.08094
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
##
                        psihat ci.lower ci.upper p-value
                       -0.16468 -0.17611 -0.15326
## disturb_year1
                       -0.07208 -0.08350 -0.06065
## disturb_year1:site1 -0.08921 -0.10063 -0.07778
```

Rt Letters

```
x <-rart
letraArt <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
letraArt
```

```
## Group Letter MonoLetter var
## 1
       25
                  a rt
               а
      212
                        b rt
letraBrt <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
letraBrt
## Group Letter MonoLetter var
## 1
      N
               a
## 2
        S
                         b rt
               b
letraABrt <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%;
   Group Letter MonoLetter var
## 1 25.N
              a
                        a
## 2 212.N
               b
                         b
## 3 25.S
              С
                         c rt
## 4 212.S
              b
                         b
rarrs <- robustANOVA(df=evires, resp_var='rrs', factores=factores,</pre>
             alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
##
##
##
## Robust M-Anova
## NULL
##
                 term p_value
## 1
         disturb_year 0
## 2
                            0
                 site
## 3 disturb_year:site
##
## Robust Trimmed
## NULL
## t2way(formula = formulaFull, data = df)
##
##
                       value p.value
## disturb_year
                    245.2539 0.001
## site
                     71.3917
                               0.001
## disturb_year:site 341.0327 0.001
##
```

##

```
## post hoc Mhuber
## NULL
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                       psihat ci.lower ci.upper p-value
                      0.09017 0.07973 0.09855
## disturb_year1
                      0.04760 0.03817 0.05760
## site1
                                                      0
## disturb_year1:site1 0.10647 0.09718 0.11636
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
##
                       psihat ci.lower ci.upper p-value
## disturb_year1
                      0.08798 0.07695 0.09900
                      0.04747 0.03644 0.05849
                                                      0
## disturb_year1:site1 0.10375 0.09272 0.11477
                                                      0
x <-rarrs
letraArrs <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mu
letraArrs
    Group Letter MonoLetter var
## 1
       25
                    a rrs
               a
letraBrrs <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mu
letraBrrs
## Group Letter MonoLetter var
## 1 N a
                         a rrs
## 2
                          b rrs
               b
letraABrrs <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%
letraABrrs
    Group Letter MonoLetter var
## 1 25.N
           a
                    a rrs
## 2 212.N
               b
                        b rrs
## 3 25.S
               С
                          c rrs
## 4 212.S
                          c rrs
               C.
letrasA <- rbind(letraArs, letraArc, letraArt, letraArrs) %>%
  mutate(disturb_year =
           case_when(Group == "25" \sim "2005".
                    Group == "212" ~ "2012")) %>%
  dplyr::select(-Group)
letrasB <- rbind(letraBrs, letraBrc, letraBrt, letraBrrs) %>% rename(site = Group)
letrasAB <- rbind(letraABrs, letraABrc, letraABrt, letraABrrs) %>%
  separate(Group, into=c('disturb_year', 'site')) %>%
 mutate(disturb_year =
```

Estimadores de huber

```
rars$mest$var <- 'rs'
rarc$mest$var <- 'rc'</pre>
rart$mest$var <- 'rt'</pre>
rarrs$mest$var <- 'rrs'
mhuber <- rbind(rarc$mest, rart$mest, rars$mest, rarrs$mest)</pre>
# add letras
mhuber <- mhuber %>% inner_join(letrasAB, by=c('var', 'disturb_year', 'site'))
mhuber_agg <- mhuber %>%
  mutate(M.Huber = round(M.Huber, 4),
         lower.ci = round(lower.ci, 4),
         upper.ci = round(upper.ci, 4)) %>%
  unite_("ci", c("lower.ci", "upper.ci"), sep=",") %>%
  mutate(ci = paste0('(', ci, ')')) %>%
  dplyr::select(-MonoLetter) %>%
  dplyr::select(var, disturb_year:ci, Letter) %>% as.data.frame()
mhuber_agg %>% pander()
```

var	disturb_year	site	n	M.Huber	ci	Letter
$_{\rm rc}$	2005	N	471	1.169	(1.161, 1.1768)	a
rc	2005	\mathbf{S}	441	1.066	(1.0584, 1.0741)	\mathbf{c}
rc	2012	N	471	1.042	(1.0364, 1.047)	b
rc	2012	\mathbf{S}	441	1.071	(1.0674, 1.0748)	\mathbf{c}
rt	2005	N	471	0.819	(0.8137, 0.8243)	a
rt	2005	\mathbf{S}	441	0.9016	(0.8958, 0.9074)	$^{\mathrm{c}}$
rt	2012	N	471	0.9472	(0.9423, 0.9521)	b
rt	2012	\mathbf{S}	441	0.9387	(0.9336, 0.9438)	b
$_{\rm rs}$	2005	N	471	0.9553	(0.9507, 0.9599)	a
$_{\rm rs}$	2005	\mathbf{S}	441	0.9618	(0.9573, 0.9663)	a
$_{\rm rs}$	2012	N	471	0.9855	(0.9805, 0.9905)	b
$_{\rm rs}$	2012	\mathbf{S}	441	1.004	(0.9996, 1.0081)	\mathbf{c}
rrs	2005	N	471	0.1362	(0.1304, 0.142)	a
rrs	2005	\mathbf{S}	441	0.0582	(0.0514, 0.065)	\mathbf{c}
rrs	2012	N	471	0.0388	(0.034, 0.0437)	b
rrs	2012	\mathbf{S}	441	0.0662	(0.0629, 0.0695)	\mathbf{c}

```
rars$mest_a$var <- 'rs'
rarc$mest_a$var <- 'rc'
rart$mest_a$var <- 'rt'
rarrs$mest_a$var <- 'rrs'

mhuber_a <- rbind(rarc$mest_a, rart$mest_a, rarrs$mest_a)</pre>
```

var	${\it disturb_year}$	n	M.Huber	ci	Letter
$_{\rm rc}$	2005	912	1.12	(1.1131,1.1262)	a
rc	2012	912	1.057	(1.0537, 1.0604)	b
rt	2005	912	0.8584	(0.8535, 0.8633)	a
rt	2012	912	0.9431	(0.9396, 0.9466)	b
rs	2005	912	0.9585	(0.9553, 0.9617)	a
rs	2012	912	0.9947	(0.9913, 0.998)	b
rrs	2005	912	0.0999	(0.0948, 0.1051)	a
rrs	2012	912	0.0533	(0.0502, 0.0563)	b

var	site	n	M.Huber	ci	Letter
rc	N	942	1.102	(1.0958, 1.1084)	a
$_{\rm rc}$	\mathbf{S}	882	1.069	(1.0652, 1.0729)	b
rt	N	942	0.8835	(0.8777, 0.8893)	a
rt	\mathbf{S}	882	0.9207	(0.9167, 0.9246)	b
rs	N	942	0.9701	(0.9666, 0.9737)	\mathbf{a}
rs	\mathbf{S}	882	0.983	(0.9797, 0.9864)	b
rrs	N	942	0.0866	(0.0816, 0.0917)	\mathbf{a}

var	site	n	M.Huber	ci	Letter
rrs	S	882	0.063	(0.0596, 0.0664)	b

Pairwise comparison

```
rars$ph$var <- 'rs'
rarc$ph$var <- 'rc'
rart$ph$var <- 'rt'
rarrs$ph$var <- 'rrs'

pairwise <- rbind(rarc$ph, rart$ph, rarrs$ph)
pairwise %>% pander()
```

Comparison	Statistic	p.value	p.adjust	var
2005 - 2012 = 0	0.05994	0	0	$_{\rm rc}$
N - S = 0	0.03308	0	0	rc
2005.N - 2012.N = 0	0.1276	0	0	rc
2005.N - 2005.S = 0	0.1023	0	0	rc
2005.N - 2012.S = 0	0.09598	0	0	rc
2012.N - 2005.S = 0	-0.02531	0	0	rc
2012.N - 2012.S = 0	-0.03167	0	0	rc
2005.S - 2012.S = 0	-0.006357	0.2453	1	rc
2005 - 2012 = 0	-0.0853	0	0	rt
N - S = 0	-0.03784	0	0	rt
2005.N - 2012.N = 0	-0.1279	0	0	rt
2005.N - 2005.S = 0	-0.08216	0	0	rt
2005.N - 2012.S = 0	-0.1199	0	0	rt
2012.N - 2005.S = 0	0.04579	0	0	rt
2012.N - 2012.S = 0	0.008059	0.02467	0.148	rt
2005.S - 2012.S = 0	-0.03773	0	0	rt
2005 - 2012 = 0	-0.03583	0	0	rs
N - S = 0	-0.01344	0	0	rs
2005.N - 2012.N = 0	-0.03045	0	0	rs
2005.N - 2005.S = 0	-0.007997	0.036	0.216	$_{\rm rs}$
2005.N - 2012.S = 0	-0.0488	0	0	$_{\rm rs}$
2012.N - 2005.S = 0	0.02245	0	0	rs
2012.N - 2012.S = 0	-0.01835	0	0	rs
2005.S - 2012.S = 0	-0.0408	0	0	rs
2005 - 2012 = 0	0.04601	0	0	rrs
N - S = 0	0.02191	0	0	rrs
2005.N - 2012.N = 0	0.09832	0	0	rrs
2005.N - 2005.S = 0	0.07703	0	0	rrs
2005.N - 2012.S = 0	0.06889	0	0	rrs
2012.N - 2005.S = 0	-0.02129	0	0	rrs
2012.N - 2012.S = 0	-0.02943	0	0	rrs
2005.S - 2012.S = 0	-0.008148	0.04667	0.28	rrs

Interaction plot

Response \sim (x=Drought)

```
mhuber<- mhuber %>%
  mutate(var_sorted = case_when(var == "rc" ~ "1_rc",
                                var == "rt" ~ "0 rt",
                                var == "rs" ~ "2_rs",
                                var == "rrs" ~ "3_rrs"))
pd <- position_dodge(.2)</pre>
robust_plot_evi_drought <- ggplot(mhuber, aes(x=disturb_year, y=M.Huber, color = site, group=site, fill
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=site,color=site, linetype=site), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                 '1_rc' = 'Recovery',
                                 '2_rs' = 'Resilience',
                                 '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue')) +
  scale_fill_manual(values=c('black','blue')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed")) +
  theme(panel.grid.minor = element_blank(),
        strip.background = element_rect(colour='black',
                                        fill='white'),
        legend.position="bottom") +
  ylab('') + xlab('Drought event')
robust_plot_evi_drought
```



```
pdf(paste0(di, '/out/resilience_robust/evi/robust_plot_evi_drought.pdf'), width=9, height = 9)
robust_plot_evi_drought
dev.off()
```

pdf ## 2

Response ~ (x=site)

```
pd <- position_dodge(.2)
robust_plot_evi_site <- ggplot(mhuber, aes(x=site, y=M.Huber, color = disturb_year, group=disturb_year,</pre>
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=disturb_year,color=disturb_year, linetype=disturb_year), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                 '1_rc' = 'Recovery',
                                 '2_rs' = 'Resilience',
                                 '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue')) +
  scale_fill_manual(values=c('black','blue')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed")) +
  theme(panel.grid.minor = element_blank(),
        strip.background = element_rect(colour='black',
                                         fill='white'),
```

```
legend.position="bottom") +
ylab('') + xlab('Drought event')

robust_plot_evi_site
```


disturb_year ◆ 2005 ◆ 2012

pdf(paste0(di, '/out/resilience_robust/evi/robust_plot_evi_site.pdf'), width=9, height = 9)
robust_plot_evi_site
dev.off()

pdf ## 2

Export data

write.csv(mhuber, file=paste0(di, '/out/anovas_resilience/huber_evi/robust_mhuber.csv'), row.names = F)
write.csv(mhuber_agg, file=paste0(di, '/out/anovas_resilience/huber_evi/robust_mhuber_agg.csv'), row.names
write.csv(mhuber_a, file=paste0(di, '/out/anovas_resilience/huber_evi/robust_mhuber_a.csv'), row.names
write.csv(mhuber_agg_a, file=paste0(di, '/out/anovas_resilience/huber_evi/robust_mhuber_agg_a.csv'), row.names
write.csv(mhuber_b, file=paste0(di, '/out/anovas_resilience/huber_evi/robust_mhuber_b.csv'), row.names
write.csv(mhuber_agg_b, file=paste0(di, '/out/anovas_resilience/huber_evi/robust_mhuber_agg_b.csv'), row.names
write.csv(pairwise, file=paste0(di, '/out/anovas_resilience/huber_evi/robust_pairwise.csv'), row.names