Programming Exercises 2: Sets

Submissions only via Moodle (due to 23:55, Sep. 09)

September 1, 2014

In this assignment, you will have to implement a "package" of (finite) sets of elements using the list data type.

```
type 'a set = 'a list;;

Examples:
s1 = ["hello"; "world"; "community"; "manager"; "stuff"; "blue"; "green"]
s2 = ["hello"; "world"; "stuff"; "blue"; "green"; "red"]
s3 = [1; 2; 3]
```

Now you will need to implement the standard operations on sets. In particular, you will need to implement the following functions

- 1. A distinguished set called emptyset: 'a set
- 2. A function member that given an element x and a set s, returns true if $x \in s$ and false otherwise. member: 'a -> 'a set -> bool
- 3. A function subseteq that given two sets s_1 and s_2 returns true if $s_1 \subseteq s_2$ and false otherwise. That is, every member of s_1 should be a member of s_2 if $s_1 \subseteq s_2$. subseteq: 'a set -> 'a set -> bool
- 4. A function seteq that given two sets s_1 and s_2 returns true if $s_1 = s_2$ and false otherwise. Two sets are equal if they have exactly the same members (though the order of writing them may differ. seteq: 'a set -> 'a set -> bool
- 5. A function setdiff that given two sets s_1 and s_2 (elements of the same type) returns the set difference $s_1 s_2$. Remember that $x \in s_1 s_2$ if $x \in s_1$ and $x \notin s_2$. setdiff: 'a set -> 'a set -> 'a set

Examples:

```
s1-s2 = ["community"; "manager"]
and
s2-s1 = ["red"]
```

- 6. A function union that given two sets s_1 and s_2 (elements of the same type) returns their union $s_1 \cup s_2$. Remember that $x \in s_1 \cup s_2$ if $x \in s_1$ or $x \in s_2$. union: 'a set -> 'a set -> 'a set
- 7. A function intersect that given two sets s_1 and s_2 (elements of the same type) returns their intersection $s_1 \cap s_2$. Remember that $x \in s_1 \cap s_2$ if $x \in s_1$ and $x \in s_2$. intersect: 'a set -> 'a set -> 'a set
- 8. A functionpowerset that given a set s, returns its powerset $\mathcal{P}(s)$, i.e., the set of all its subsets. Recall that $s' \in \mathcal{P}(s)$ if $s' \subseteq s$. powerset: 'a set -> ('a set) set

Example:

```
powerset s3 = [[]; [1]; [2]; [3]; [1; 2]; [1; 3]; [2; 3]; [1; 2; 3]].
```

9. A function cartesian that given two sets s_1 and s_2 (elements of the possibly different types) returns their cartesian product $s_1 \times s_2$, which consists of pairs, the first element of which is from s_1 and the second from s_2 .