Teoria Analisi 1

A. Languasco

February 9, 2025

Contents

1	Teorema del differenziale (Lagrange - Rolle generalizzato)	•
	1.1 Enunciato	•
2	Teorema dell'unicità del limite	•
	2.1 Enunciato	
	2.2 Dimostrazione	•
3	Teorema fondamentale del calcolo integrale (TFCI)	2
	3.1 Enunciato	4
	3.2 Dimostrazione	4
4	Formula fondamentale del calcolo integrale	ţ
	4.1 Enunciato	ļ
	4.2 Dimostrazione	ţ
5	Teorema del confronto I	ţ
	5.1 Enunciato	ļ
	5.2 Dimostrazione	(
6	Teorema del confronto II	(
	6.1 Enunciato	(
	6.2 Osservazione	(
7	Teorema del confronto III - delle 3 funzioni - Carabinieri	7
	7.1 Enunciato	7
	7.2 Dimostrazione	7
8	Teorema del valore medio integrale	8
	8.1 Enunciato	8
	8.2 Dimostrazione	8
9	Criterio integrale convergenza delle serie numeriche	8
	9.1 Enunciato	8
10	Teorema delle derivate successive	8
	10.1 Enunciato	8
11	Teorema di Rolle	ę
	11.1 Enumerate	-

12	Teorema di Lagrange	6
	12.1 Enunciato	8
13	Teorema condizione necessaria di convergenza delle serie	10
	13.1 Enunciato	10
	13.2 Dimostrazione	10
		10
	14.1 Enunciato	
	14.2 Dimostrazione	10

1 Teorema del differenziale (Lagrange - Rolle generalizzato)

1.1 Enunciato

2.2em $f: I \subset \mathbb{R}, I$ intervallo, $x_0 \in I$, x_0 interno ad I, f derivabile in x_0 . Allora: \exists w: $I \to \mathbb{R}$ t.c. w è continua in x_0 , w $(x_0) = 0$ e

$$f(x_0) + f'(x_0)(x - x_0) + w(x)(x - x_0)$$

dove: $f(x_0) + f'(x_0)(x - x_0)$ è la tangente $w(x)(x - x_0)$ è l'errore causato da alcuni fattori, lo possiamo trascurare.

2 Teorema dell'unicità del limite

2.1 Enunciato

 $f: A \subset \mathbb{R} \to \mathbb{R}, x_0 \in \widetilde{\mathbb{R}}$ punto di accumulazione per A Se:

1. $\lim_{x\to x_0} f(x) = l_1 \in \widetilde{\mathbb{R}}$

2. $\lim_{x\to x_0} f(x) = l_2 \in \widetilde{\mathbb{R}}$

Allora: $\mathbf{l_1} = \mathbf{l_2}$

2.2 Dimostrazione

ip1) $\forall V l_1$ intorno di $l_1 \exists U x_0$ intorno di x_0 t.c. $f(x) \in \forall l_1$ per ogni $x \in (U x_0 \cap A) - \{0\}$

ip2) $\forall V l_2$ intorno di $l_2 \exists U' x_0$ intorno di x_0 t.c. $f(x) \in \forall l_2$ per ogni $x \in (U' x_0 \cap A) - \{0\}$

Per contraddizione: $l_1 \neq l_2$

Allora $\exists V l_1, V l_2$ intorni di l_1 e l_2 (rispettivamente) tali che: $V l_1 \bigcup V l_2 \neq \emptyset$

 $Wx_0 = \bigcup U'x_0$ è un intorno di x_0

Sia $x \in (Wx_0 \bigcup A) - \{x_0\} \neq \emptyset$ (perché x_0 è di accumulazione)

$$\Rightarrow \begin{cases} f(x) \in Vl_1 \text{ (Per definizione di limite 1)} \\ f(x) \in Vl_2 \text{ (Per definizione di limite 2)} \end{cases}$$

$$\Rightarrow f(x) \in Vl_1 \cap Vl_2 \neq \emptyset \Rightarrow \mathbf{l_1} = \mathbf{l_2}$$
. Contraddizione

Teorema fondamentale del calcolo integrale (TFCI) 3

3.1 **Enunciato**

 $[a,b] \subset \mathbb{R}, a < b.$ f R-integrale su [a,b]. $\exists x_1 \in [a, b]$ t.c. f sia continua in x_1 . Fissato $x_0 \in [a, b]$ e presa $F(x) = \int_{x_0}^x f(t)dt$, si ha che F è derivabile in x_1 e $F'(x_1) = f(x_1)$

Dimostrazione 3.2

$$0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right|, \quad x \ne x_1$$

$$= \left| \frac{\int_{x_0}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_0}^x f(t)dt + \int_{x_1}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_1}^x f(t)dt - f(x_1)(x - x_1)}{x - x_1} \right|$$

$$= \left| \frac{\int_{x_1}^x (f(t) - f(x_1))dt}{x - x_1} \right|$$

$$\le \frac{1}{x - x_1} \int_{x_1}^x |f(t) - f(x_1)|dt$$

Ma f è continua in $x_1 \iff$

$$\forall \epsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \text{t.c.} \ |f(t) - f(x_1)| < \epsilon \ \forall t/0 < |t - x_1| < \delta_{\varepsilon} \ t \in [a, b]$$

Osservo che $t \in [x_1, x]$ (oppure $t \in [x, x_1]$, dipende come abbiamo disposto $x \in x_1$) Implica che $|t - x_1| \le |x - x_1|$

Sia allora $x \in [a, b]/|x - x_1| < \delta_{\varepsilon}$. Con questo forziamo le due varibli a stare vicine fra loro

Quindi $|t - x_1| \le |x - x_1| < \delta_{\varepsilon}$ e $|f(t) - f(x_1)| < \epsilon$ Allora $0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \frac{1}{|x - x_1|} \left| \int_{x_1}^x \epsilon dt \right| = \epsilon \frac{|x - x_1|}{|x - x_1|} = \epsilon$ Ossia: $\forall \epsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \text{t.c.}$ $\left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \epsilon \ \forall x \ \text{t.c.}$ $0 < |x - x_1| < \delta_{\varepsilon}, \ x \in [a, b]$

Cioè: $\lim_{x_1} \frac{F(x) - F(x_1)}{x - x_1}$ esiste e vale $f(x_1)$.

Quindi: $\mathbf{F}'(\mathbf{x}_1) = \mathbf{f}(\mathbf{x}_1)$

4 Formula fondamentale del calcolo integrale

4.1 Enunciato

 $f \in C^0[a,b]$ e sia $G:[a,b] \to \mathbb{R}$ una primitiva di f in [a,b]

Allora
$$\int_a^b f(t)dt = G(b) - G(a)$$

4.2 Dimostrazione

Sia $x \in [a,b]$ e $F(x) = \int_{x_0}^x f(t)dt$. Per il TFCI* è derivabile in [a,b] e $F'(x) = f(x) \forall x \in [a,b]$. F, G sono primitive di f in un intervallo $[a,b] \Rightarrow \exists c \in \mathbb{R}/G(x) = F(x) + c \ \forall x \in [a,b]$

Osservo adesso che:
$$G(b) - G(a) = F(b) + c - F(a) - c = F(b) - F(a)$$

 $= \int_{x_0}^b f(t)dt - \int_{x_0}^a f(t)dt$
 $= \int_{x_0}^a f(t)dt + \int_{x_0}^b f(t)dt - \int_{x_0}^a f(t)dt = \int_{x_0}^b f(t)dt.$

*TFCI: Teorema Fondamentale Calcolo Integrale

Osservazione: $f \in C^0([a,b])$ e sia

 $H(x) = \int_{\alpha(x)}^{\beta(x)} f(t)dt$ dove $\alpha, \beta : [a, b] \to \mathbb{R}$ derivabili in [a, b].

Si ha che H(x) è derivabile perché $H(x) = F(\beta(x)) - F(\alpha(x))$ dove $F(u) = \int_{x_0}^{u} f(t)dt$ (Composizione di f derivabili)

Inoltre $H'(x) = F'(\beta(x))\beta'(x) - F'(\alpha(x))\alpha'(x) = f(\beta(x))\beta'(x) - f(\alpha(x))\alpha'(x) \ \forall x \in [a, b]$

5 Teorema del confronto I

5.1 Enunciato

 $f,g:A\subset\mathbb{R}\to\mathbb{R}, x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Allora:

a) Se
$$\lim_{x \to x_0} f(x) = \ell_1 \in \mathbb{R}$$

Se $\lim_{x \to x_0} g(x) = \ell_2 \in \mathbb{R}$
con $\ell_1 < \ell_2$, allora:

$$\exists U_{x_0}$$
, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

b) Se
$$\lim_{x\to x_0} f(x) = -\infty$$

Se $\lim_{x\to x_0} g(x) = \ell \in \mathbb{R} \cup \{+\infty\}$, allora:

$$\exists U_{x_0}, \text{ intervallo di } x_0, \text{ tale che } f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$$

c) Se
$$\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$$

Se $\lim_{x \to x_0} g(x) = +\infty$, allora:

$$\exists U_{x_0}$$
, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

5.2Dimostrazione

a) $l_1 < l_2(l_1, l_2 \in \mathbb{R})$. Fisso $\epsilon > 0$ $\lim_{x \to x_0} f(x) = l_1 \Rightarrow \exists U'x_0 \text{ intervallo di } x_0 \text{ tale che } \forall x \in (U'x_0 \cap A) \setminus \{x_0\}$ $\lim_{x \to x_0} g(x) = l_2 \Rightarrow \exists U''x_0 \text{ intorno di } x_0/l_2 - \epsilon < g(x) < l_2 + \epsilon \ \forall x \in (U''x_0 \cap A) \setminus \{x_0\}$

Se $x \in (U'x_0 \cap U''x_0 \cap A) \setminus \{x_0\}$ idea: scelgo $\epsilon > 0/l_1 + \epsilon \le l_2 - \epsilon$ Scelgo in quanto sopra $\epsilon = \frac{l_2 - l_1}{2}$ Per $x \in (U'x_0 \cap U''x_0 \ cap A) \setminus \{x_0\}$ si ha allora

$$f(x) < l_1 + \epsilon = l_1 + \frac{l_2 - l_1}{2} = \frac{l_1 + l_2}{2}$$

6 Teorema del confronto II

6.1**Enunciato**

 $f,g:A\subset\mathbb{R}\to\mathbb{R}$ $A\neq\emptyset$ $x\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Allora:

a) Se $\lim_{x \to x_0} f(x) = l_1 \in \mathbb{R}$ Se $\lim_{x \to x_0} g(x) = l_2 \in \mathbb{R}$

Se $\exists Ux_0$ intorno di $x_0/f(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow l_1 \leq l_2$$

b) Se $\lim_{x\to x_0}g(x)=-\infty$ e $\exists Ux_0$ intorno di $x_0/f(x)\leq g(x)$ $\forall x\in (Ux_0\cap A)\setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} g(x) = +\infty$$

c) Se $\lim_{l \to x_0} f(x) = +\infty$ e $\exists Ux_0$ intorno di $x_0/f(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} g(x) = +\infty$$

6.2Osservazione

Cosa accade se si suppone $f(x) < g(x) \stackrel{?}{\Rightarrow} l_1 < l_2$

NO:
$$f(x) = 0 \ \forall x \mathbb{R} \ g(x) = \begin{cases} \frac{1}{x} \ x > 0 \\ 0 \ x = 0 \\ -\frac{1}{x} \ x < 0 \end{cases}$$

7 Teorema del confronto III - delle 3 funzioni - Carabinieri

7.1 Enunciato

 $f,g,h:A\subset\mathbb{R}\to\mathbb{R},\,A\neq\emptyset,\,x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A. Inoltre

$$\exists \lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

$$\exists \lim_{x \to x_0} g(x) = l \in \mathbb{R}$$

 $\exists Ux_0 \text{ intorno di } x_0/f(x) \leq h(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} h(x) = l$$

7.2 Dimostrazione

Sia
$$\epsilon > 0$$
: $\exists U'x_0, \ U''x_0$ intorni di $x_0/|f(x) - l| < \epsilon \ \forall x \in (U'x_0 \cap A) \setminus \{x_0\}$
 $|g(x) - l| < \epsilon \ \forall x \in (U''x_0 \cap A) \setminus \{x_0\}$

Sia $Wx_0 = U'x_0 \cap U''x_0$ è un intorno di x_0 . Se $x \in Wx_0 \cap A \setminus \{x_0\}$

$$l - \epsilon < f(x) \ \frac{\text{definizione } \lim f \text{ (per ipotesi)}}{f(x)} \\ \leq h(x) \leq g(x) \\ g(x) < l + \epsilon$$

Quindi $l - \epsilon < h(x) < l + \epsilon$ cioè $|h(x) - l| < \epsilon$ Ho fatto vedere che:

$$\forall \epsilon > 0 \ \exists W x_0$$
intorno di $x_0/\left|h(x) - l\right| < \epsilon \ \mathrm{per} \ x \in W x_0 \cap A \setminus \{x_0\}$

Che è esattamente la definizione di: $\lim_{x \to x_0} h(x) = l$

8 Teorema del valore medio integrale

8.1 Enunciato

$$\begin{split} f: [a,b] &\to \mathbb{R}, \, f, gR-integralein[a,b]. \\ \operatorname{Sia} m &= \inf f(x)/x \in [a,b], \, (\in \mathbb{R}) \\ M &= \sup f(x)/x \in [a,b], \, (\in \mathbb{R}) \\ \\ &\Rightarrow \begin{cases} 1) \, \, m(b-a) \leq \int_a^b f(x) dx \leq M(b-a) \\ 2) \, \, \exists \mu \in [m,M]/\int_a^b f(x) dx = \mu(b-a) \\ 3) \, \operatorname{Se} \, f \, \operatorname{continua} \, \operatorname{in} \, [a,b], \, \operatorname{allora} \, \exists x_0 \in [a,b]/\int_a^b f(x) dx = f(x_0)(b-a). \end{cases} \end{split}$$

8.2 Dimostrazione

1)
$$m \leq f(x) \leq M$$
 $x \in [a, b]$ $P = a, b \Rightarrow D(P, f) = m(b - a) \in G$ $S'(P, f) = M(b - a) \in H$.
Allora: $m(b - a)$ $leqsup(G) = \int_a^b f(x)dx = inf(H) \leq M(b - a)$

2) Dal punto 1):
$$m \leq \frac{\int_a^b f(x)dx}{b-a} \leq M$$
. Sia $\mu = \frac{\int_a^b f(x)dx}{b-a}$, allora $\mu \in [m,M]$ e ovviamenete, $\int_a^b f(x)dx = \mu(b-a)$

3) $f \in C^0[a, b]$: per il teorema dei valori intermedi f([a, b]) è intervallo; per il teorema di Weistrass f ha max e min **GLOBALE**

Quindi
$$f([a,b]) = [m,M]$$

Per il punto 2), $\exists \mu \in [m,M]/\mu(b-a) = \int_a^b f(x)dx$;
 $\operatorname{ma}[m,M] = Im(f) \Rightarrow \exists x_0 \in [a,b]/f(x_0) = \mu$

9 Criterio integrale convergenza delle serie numeriche

9.1 Enunciato

$$f: [1, +\infty) \to \mathbb{R}, f(x) \ge 0 \ \forall x \in [1, +\infty.$$

Sia f . debolmente crescente in $[+\infty)$.
Allora $(\sum_{k=1}^{\infty} f(k) \text{ converge } \iff \int_{1}^{+\infty} f(x) dx \text{ converge.})$

10 Teorema delle derivate successive

10.1 Enunciato

Sia
$$n \in \mathbb{N}$$
, $n \geq \$$, $f \in C^{n-1}(I)$, I intervallo, $x_0 \in I$, x_0 interno ad I .
Suppongo che $\exists f^n(x_0)$ e che $f^{(k)}(x_0) = 0$ per $k = 1, 2, 3, ..., n - 1$.
 $f^{(n)} > 0 \ (< 0)$.

$$\Rightarrow \begin{cases} \text{se } n \text{ è } \mathbf{PARI}, \text{ si ha che } x_0 \text{ è punto di minimo (massmimo) locale forte.} \\ \text{se } n \text{ è } \mathbf{DISPARI}, \text{ allora } x_0 \text{nè pto di massimo nè pto di minimo locale.} \end{cases}$$

11 Teorema di Rolle

11.1 Enunciato

 $f:[a,b] \to \mathbb{R}, \ f$ continua in [a,b] f derivabile in (a,b) e f(a)=f(b)Allora $\exists \overline{x} \in [a,b]$ $x_1=a$ e $x_2=b$ (o viceversa): allora, dato che

$$f(a) = f(b) \Rightarrow f(x) = f(a) \ \forall x \in [a, b]$$
$$\Rightarrow f'(x) = 0 \ \forall x \in (a, b)$$

Se almeno uno tra x_1 e x_2 non è in un estremo di [a, b] esempio sia $x_1 \in (a, b)$. Allora x_1 è interno ad [a, b]. Per le condizioni necessarie di estremalità si ha $f'(x_1) = 0$ Nel caso di $x_2 \in (a, b)$: si replichi lo stesso ragionamento.

12 Teorema di Lagrange

12.1 Enunciato

 $\begin{array}{l} f:[a,b]\to\mathbb{R},\ f\ \text{continua in}\ [a,b],\ f\ \text{derivabile in}\ (a,b). \\ \text{Allora}\ \exists \overline{x}\in (a,b)/f(b)-f(a)=f'(\overline{x})(b-a) \\ \text{Sia}\ \varphi(x)=(f(x)-f(a))(b-a)-(f(b)-f(a))(x-a),\ f\ \text{\`e}\ \text{continua in}\ [a,b]; \\ \varphi\ \text{\`e}\ \text{derivabile in}\ (a,b),\ \varphi(a)=0-0=0;\ \varphi(b)=0-0=0. \\ \text{Per il teorema di Rolle:}\ \exists \overline{x}\in (a,b) \qquad \varphi(\overline{x})\to \text{punto che azzera la derivata prima.} \\ \text{Ma}\ \varphi'(x)=(f'(x)(b-a))-(f(b)-f(a))\ \forall x\in (a,b) \end{array}$

$$\Rightarrow 0 = \varphi'(\overline{x}) = f'(\overline{x})(b-a) - f(b) - f(a)$$
e quindi $0 = \varphi'(\overline{x})$ dato che il resto è nullo da cui segue la tesi.

13 Teorema condizione necessaria di convergenza delle serie

13.1 Enunciato

Se
$$\sum a_k$$
 converge, allora $\lim_{x \to +\infty} a_k = 0$

13.2 Dimostrazione

Sia
$$A_n = \sum_{k=0}^n a_n, \ n \in \mathbb{N}$$
.
Per ipotesi $\exists A \in \mathbb{R} \lim_{n \to +\infty} An = A$.
Inoltre si ha che $A_n - A_{n-1} = \sum_{k=0}^n a_n - \sum_{h=0}^{n-1} a_n = a_n$
Ma $\lim_{n \to +\infty} (A_n - A_{n-1}) = (\lim_{n \to +\infty} A_n) - (\lim_{n \to +\infty} A_{n-1}) = A - A = 0$
 $\Rightarrow \lim_{n \to +\infty} a_n = 0$.

14 Teorema Disuguaglianza di Bernoulli

14.1 Enunciato

$$x \in \mathbb{R}, \, x > -1.$$
 Allora $(1+x)^m \geq 1 + nx \; \forall n \in \mathbb{N}$

14.2 Dimostrazione

Passo base:

È vero che: $(1+x)^0 \le 1+0*x$?, si \Rightarrow passo base <u>verificato!</u>

Passo induttivo:

Ipotesi induttiva: $(1+x)^m \ge 1+mx$ con $m \in \mathbb{N}$ Tesi induttiva: $(1+x)^{m+1} \ge 1+(m+1)x$

 $(1+x)^{m+1} = (1+x)(1+x)^m \ge (1+mx)(1+x)$ $1+x+mx+mx^2 = x(1+m)+1+mx^2 = (m+1)x+1+mx^2 \ge (m+1)x+1$ Posso anche ingnorare mx^2 perche è sempre positivo

Quindi il passo induttivo è verificato per il principio di induzione $\forall x > -1$