

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 October 2003 (09.10.2003)

PCT

(10) International Publication Number
WO 03/083140 A2

(51) International Patent Classification⁷: C12Q 1/68,
C12N 151/11

(74) Agent: **COLTNER, Kathryn, L. Alston & Bird**; Bank of America Plaza, Suite 4000, 101 South Tryon Street, Charlotte, NC 28280-4000 (US).

(21) International Application Number: PCT/US03/08486

(22) International Filing Date: 19 March 2003 (19.03.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/367,144 22 March 2002 (22.03.2002) US

(71) Applicant (for all designated States except US): **ST.JUDE CHILDREN'S RESEARCH HOSPITAL, INC.** [US/US]; 332 N. Lauderdale Street, Memphis, TN 38105-2794 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **DOWNING, James, R.** [US/US]; 7650 Chapel Ridge Drive, Cordova, TN 38106 (US). **YEON, Eng-Juh** [MY/SG]; 5 Lower Kent Ridge Road, Singapore 119074, Republic of Singapore (SG). **WILKINS, Dawn, E.** [US/US]; 3321 Whippoorwill Lane, Oxford, MS 38655 (US). **WONG, Limsoon** [SG/SG]; 6B Balmeg Hill #02-01, Singapore 119908, Republic of Singapore (SG).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: CLASSIFICATION AND PROGNOSIS PREDICTION OF ACUTE LYMPHOBLASTIC LEUKEMIA BY GENE EXPRESSION PROFILING

(57) Abstract: The present invention provides methods and compositions useful for diagnosing and choosing treatment for leukemia patients. The claimed methods include methods of assigning a subject affected by leukemia to a leukemia risk group, methods of predicting whether a subject affected by leukemia has an increased risk of relapse, methods of predicting whether a subject affected by leukemia has an increased risk of developing secondary acute myeloid leukemia, methods to aid in the determination of a prognosis for a subject affected by leukemia, methods of choosing a therapy for a subject affected by leukemia, and methods of monitoring the disease state in a subject undergoing one or more therapies for leukemia. The claimed compositions include arrays having capture probes for the differentially-expressed genes of the invention, computer readable media having digitally-encoded expression profiles associated with leukemia risk groups, and kits for diagnosing and choosing therapy for leukemia patients.

WO 03/083140

CLASSIFICATION AND PROGNOSIS PREDICTION OF ACUTE
LYMPHOBLASTIC LEUKEMIA BY GENE EXPRESSION PROFILING

5

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This research underlying this invention was supported in part with funds from National Institutes of Health grants P01 CA71907-06, CA51001, CA36401, CA78224, Cancer Center CORE Grant CA-21765, and National Science Foundation grant EIA-0074869. The United States Government may have an interest in the subject matter of the invention.

BACKGROUND OF THE INVENTION

Pediatric acute lymphoblastic leukemia (ALL) is one of the great success stories of modern cancer therapy, with contemporary treatment protocols achieving overall long-term event free survival rates approaching 80% (Schrappe et al. (2000) *Blood* 95:3310-22; Silverman et al. (2001) *Blood* 97:1211-18; and Pui and Evans (1998) *N. Eng. J. Med.* 339:605-15). This success has been achieved in part by using risk-adapted therapy that involves tailoring the intensity of treatment to each patient's risk of relapse. This approach was developed following the realization that pediatric ALL is a heterogeneous disease consisting of various leukemia subtypes that differ markedly in their response to chemotherapy (reviewed in Pui and Evans (1998) *N. Eng. J. Med.* 339:605-15). By tailoring the intensity of treatment to a patient's relative risk of relapse, patients are neither under-treated or over-treated, and are thus afforded the highest chance for a cure.

Critical to the success of this approach has been the accurate assignment of individual patients to specific risk groups. Although risk assignment is influenced by a variety of clinical and laboratory parameters, the genetic alterations that underlie the pathogenesis of individual leukemia subtypes figure prominently in most classification schemes (Silverman LB et al. (2001) *Blood* 97:1211-18; and Pui and

Evans (1998) *N. Engl. J. Med.* 339:605-15). Through systematic immunophenotyping and cytogenetic analysis, and the subsequent molecular cloning of the genes targeted by the identified chromosomal rearrangements, a number of genetically distinct leukemia subtypes have been defined. These include B-lineage leukemias that contain t(9;22)[BCR-ABL], t(1;19)[E2A-PBX1], t(12;21)[TEL-AML1], 5 rearrangements in the MLL gene on chromosome 11, band q23, or a hyperdiploid karyotype (i.e., >50 chromosomes), and T-lineage leukemias (T-ALL) (Silverman *et al.* (2001) *Blood* 97:1211-18; and Pui and Evans (1998) *N. Eng. J. Med.* 339:605-15). The underlying genetic lesions in these leukemia subtypes influence the response to 10 cytotoxic drugs. For example, leukemias that express the E2A-PBX1 fusion protein respond poorly to conventional antimetabolite-based treatment, but have cure rates approaching 80% when treated with more intensive therapies (Raimondi *et al.* (1990) *J. Clin. Oncol.* 8:1380-88; and Hunger (1996) *Blood* 87:1211-1224). Similarly, BCR-ABL expressing ALLs, or infants with MLL rearrangements have exceedingly poor 15 cure rates with conventional chemotherapy, and allogeneic hematopoietic stem cell transplantation with HLA matched sibling donor has already been shown to improve outcome for patients with the former leukemia subtype (Pui *et al.* (1991) *Blood* 77:440-46; Heerema *et al.* (1999) *Leukemia* 13:679-86; Arico *et al.* (2000) *N. Engl. J. Med.* 342:998-1006; and Biondi *et al.* (2000) *Blood* 96:24-33).

20 Unfortunately, the accurate assignment of patients to specific risk groups is a difficult and expensive process, requiring intensive laboratory studies including immunophenotyping, cytogenetics, and molecular diagnostics (Pui and Evans (1998) *N. Eng. J. Med.* 339:605-15; and Pui *et al.* (2001) *Lancet Oncology* 2:597-607). Moreover, these diagnostic approaches require the collective expertise of a number of 25 professionals, and although this expertise is available at most major medical centers, it is generally unavailable in developing countries. Accordingly, there remains a need for rapid, less expensive methods of assigning patients affected by ALL into known leukemia risk groups and identifying patients for whom there is a high risk that conventional therapeutic approaches will fail.

30

BRIEF SUMMARY OF THE INVENTION

The present invention provides methods and compositions useful for diagnosing and choosing treatment for subjects affected by leukemia. The claimed

methods include methods of assigning a subject affected by leukemia to a leukemia risk group, methods of predicting whether a subject affected by leukemia has an increased risk of relapse, methods of predicting whether a subject affected by leukemia has an increased risk of developing secondary acute myeloid leukemia (AML), methods to aid in the determination of a prognosis for a subject affected by leukemia, methods of choosing a therapy for a subject affected by leukemia, and methods of monitoring the disease state in a subject undergoing one or more therapies for leukemia. Methods of screening test compounds to identify therapeutic compounds useful for the treatment of leukemia and molecular targets for these therapeutic compounds are also provided.

The claimed methods comprise providing an expression profile of a sample from a subject affected by leukemia and comparing this subject expression profile to one or more reference expression profiles. In one embodiment, the reference profiles are associated with leukemia risk groups, and the subject expression profile is compared to one or more of these risk group reference profiles to thereby assign the subject affected by leukemia to a leukemia risk group. In another embodiment, one or more reference profiles are associated with relapse of leukemia and the subject expression profile is compared to one or more of these relapse reference profiles to determine if the subject has an increased risk of relapse. In yet another embodiment, one or more reference profiles are associated with secondary AML, and the subject expression profile is compared to one or more of these reference profiles to determine whether the subject has an increased risk of developing secondary AML.

The present invention also provides compositions useful for diagnosing and choosing a therapy for subjects affected by leukemia. These compositions include arrays comprising a plurality of capture probes that can bind specifically to nucleic acid molecules that are differentially expressed in leukemia risk groups, in leukemia subjects who have relapsed, or in leukemia subjects who have developed secondary AML. Also provided is a computer-readable medium comprising digitally-encoded expression profiles comprising values representing the expression levels of genes that are differentially expressed in leukemia risk groups, in leukemia subjects who have relapsed, or in leukemia subjects who have developed secondary AML. Additional compositions of the invention include kits comprising an array of capture probes that can bind specifically to nucleic acid molecules that are differentially expressed in

leukemia risk groups, in leukemia subjects who have relapsed, or in leukemia subjects who have developed secondary AML, and a computer-readable medium having digitally encoded expression profiles with values representing the expression level of a nucleic acid molecule detected by the array.

5

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a single platform, expression analysis, that can accurately identify each of the known prognostically and therapeutically relevant subgroups of leukemia and predict the risk of relapse and the risk of secondary (therapy-induced) AML in patients having leukemia. The methods and compositions of the invention provide tools useful in choosing a therapy for leukemia patients, including methods for assigning a leukemia patient to a leukemia risk group, methods of predicting whether a leukemia patient has an increased risk of relapse, methods of predicting whether a leukemia patient has an increased risk of developing secondary (therapy-induced) AML, methods of choosing a therapy for a leukemia patient, methods of determining the efficacy of a therapy in a leukemia patient, and methods of determining the prognosis for a leukemia patient.

The methods of the invention comprise the steps of providing an expression profile from a sample from a subject affected by leukemia and comparing this subject expression profile to one or more reference profiles that are associated with a particular physiologic condition, such as a leukemia risk group, the occurrence of relapse, or the development of secondary AML. By identifying the leukemia risk group reference profile that is most similar to the subject expression profile, the subject can be assigned to a leukemia risk group. Similarly, the risk that a subject affected by leukemia will relapse or develop secondary AML can be predicted by determining whether the expression profile from the subject is sufficiently similar to a reference profile associated with relapse or a reference profile associated with the development of secondary AML.

In another embodiment, the subject expression profile is from a subject affected by leukemia who is undergoing a therapy to treat the leukemia. The subject expression profile is compared to one or more reference expression profiles of the invention to monitor the efficacy of the therapy.

Expression Profiles

As used herein, an "expression profile" comprises one or more values corresponding to a measurement of the relative abundance of a gene expression product. Such values may include measurements of RNA levels or protein abundance. Thus, the expression profile can comprise values representing the measurement of the transcriptional state or the translational state of the gene. See, 5 U.S. Pat. Nos. 6,040,138, 5,800,992, 6,020135, 6,344,316, and 6,033,860, which are hereby incorporated by reference in their entireties.

The transcriptional state of a sample includes the identities and relative 10 abundance of the RNA species, especially mRNAs present in the sample. Preferably, a substantial fraction of all constituent RNA species in the sample are measured, but at least a sufficient fraction to characterize the transcriptional state of the sample is measured. The transcriptional state can be conveniently determined by measuring transcript abundance by any of several existing gene expression technologies.

15 Translational state includes the identities and relative abundance of the constituent protein species in the sample. As is known to those of skill in the art, the transcriptional state and translational state are related.

In some embodiments, the expression profiles of the present invention are generated from samples from subjects affected by leukemia, including subjects having 20 leukemia, subjects suspected of having leukemia, subjects having a propensity to develop leukemia, or subjects who have previously had leukemia, or subjects undergoing therapy for leukemia. The samples from the subject used to generate the expression profiles of the present invention can be derived from a variety of sources including, but not limited to, single cells, a collection of cells, tissue, cell culture, 25 bone marrow, blood, or other bodily fluids. The tissue or cell source may include a tissue biopsy sample, a cell sorted population, cell culture, or a single cell. Sources for the sample of the present invention include cells from peripheral blood or bone marrow, such as blast cells from peripheral blood or bone marrow.

In selecting a sample, the percentage of the sample that constitutes cells 30 having differential gene expression in leukemia risk groups, relapse, or secondary AML should be considered. Samples may comprise at least 20%, at least 30%, at least 40%, at least 50%, at least 55%, at least 60%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% cells having differential expression in

leukemia risk groups, relapse, or secondary AML, with a preference for samples having a higher percentage of such cells. In some embodiments, these cells are blast cells, such as leukemic cells. The percentage of a sample that constitutes blast cells may be determined by methods well known in the art; see, for example, the methods 5 described elsewhere herein.

In some embodiments of the present invention, the expression profiles comprise values representing the expression levels of genes that are differentially expressed in leukemia risk groups, in subjects affected by leukemia who have relapsed, or in subjects affected by leukemia who have developed secondary AML. 10 The term "differentially expressed" as used herein means that the measurement of a cellular constituent varies in two or more samples. The cellular constituent may be upregulated in a sample from a subject having one physiologic condition in comparison with a sample from a subject having a different physiologic condition, or down regulated in a sample from a subject having one physiologic condition in 15 comparison with a sample from a subject having a different physiologic condition. For example, in one embodiment, the differentially expressed genes of the present invention may be expressed at different levels in different leukemia risk groups. In another embodiment, the differentially expressed genes are expressed in different levels in subjects affected by leukemia who will relapse after conventional treatment 20 in comparison with subjects affected by leukemia who will not relapse and thus will remain in continuous complete remission. In yet another embodiment, the differentially expressed genes are expressed in different levels in subjects affected by leukemia who will develop secondary AML in comparison with subjects affected by leukemia who will not develop secondary AML.

25 The present invention provides groups of genes that are differentially expressed in diagnostic leukemia samples of patients in different risk groups, or in patients that go on to develop a relapse or a therapy induced (secondary) AML. Some of these genes were identified based on gene expression levels for 12,600 probes in 360 leukemia samples. Values representing the expression levels of the nucleic acid 30 molecules detected by the probes were analyzed using five different statistical metrics to identify genes that were differentially expressed in leukemia risk groups. The methods used to analyze the expression level values to identify differentially expressed genes were the Chi-square statistics method, the Correlation-based Feature

Selection method, the T-statistics method, the Wilkins' method, and the self-organizing map and discriminant analysis with variance metric. Although different methods of analysis resulted in the selection of different groups of differentially expressed genes, the genes selected by each method could be used to create an expression profile that could accurately determine whether a leukemia patient should be assigned to a risk group, with an overall diagnostic accuracy of about 96%. See, the Experimental section.

Additional genes that are differentially expressed in diagnostic leukemia samples were identified based on gene expression levels for 26,825 probes in a subset 10 of 132 leukemia samples selected from the 360 leukemia samples described above. A chi-squared metric followed by permutation test was used to identify discriminating genes for the T-ALL, *E2A-PBX1*, *TEL-AML1*, *BCR-ABL*, *MLL* rearrangement, and Hyperdiploid>50 chromosomes. Genes whose expression is limited to a single B-cell lineage were also identified, and are provided in Tables 70-74.

15 Thus, distinct sets of differentially expressed genes that can be used to distinguish the T-lineage, hyperdiploid >50 chromosomes, BCR-ABL, E2A-PBX1, TEL-AML1, and MLL gene rearrangement risk groups are provided. Examples of genes that are differentially expressed in the T-ALL risk group are shown in Tables 7, 14, 21, 28, 35, 59, and 67. Examples of genes that are differentially expressed in the 20 E2A-PBX1 risk group are shown in Tables 3, 10, 17, 24, 31, 55, 64, and 71. Examples of genes that are differentially expressed in the TEL-AML1 risk group are shown in Tables 8, 15, 22, 29, 36, 60, 68, and 74. Examples of genes that are 25 differentially expressed in the BCR-ABL risk group are shown in Tables 2, 9, 16, 23, 30, 54, 63, and 70. Examples of genes that are differentially expressed in the MLL risk group are shown in Tables 5, 12, 19, 26, 33, 57, 66, and 73. Examples of genes that are 30 differentially expressed in the Hyperdiploid >50 risk group are shown in Tables 4, 11, 18, 25, 32, 56, 65, and 72.

The present invention further provides a seventh leukemia risk group, herein termed "Novel," that can be distinguished from the previously-described leukemia risk groups based on expression profiling. The expression profiles from subjects in the Novel risk group are distinguishable from those of the T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, and Hyperdiploid >50 risk groups. Subjects assigned to the Novel risk group have similar expression profiles. Examples of genes that are

differentially expressed in the Novel leukemia risk group are shown in Tables 4, 11, 18, 25, 32, and 58.

Similarly, sets of differentially expressed genes associated with leukemia patients in the T-ALL, Hyperdiploid >50, TEL-AML1, MLL, and Other (*i.e.* not the 5 T-ALL, hyperdiploid >50, TEL-AML1, MLL, E2A-PBX1, or BCR-ABL) risk groups who have undergone relapse were identified. Examples of differentially expressed genes associated with relapse in subjects in the T-ALL risk group are shown in Table 44. Examples of differentially expressed genes associated with relapse in subjects in the hyperdiploid >50 risk group are shown in Table 45. Examples of differentially 10 expressed genes associated with relapse in subjects in the TEL-AML1 risk group are shown in Table 46. Examples of differentially expressed genes associated with relapse in subjects in the MLL risk group are shown in Table 47. Examples of differentially expressed genes associated with relapse in subjects in the E2A-PBX1, BCR-ABL, and Novel risk group are shown in Table 48.

15 The invention also provides genes that are differentially expressed in subjects affected by TEL-AML1 who have developed secondary (treatment-induced) AML. Examples of such genes are shown in Table 52.

The present invention also reveals genes with a high differential level of expression in leukemic compared to normal cells. These highly differentially 20 expressed genes are selected from the genes shown in Tables 2-36 and 44-48, 63-68, and 70-74. These genes and their expression products are useful as markers to detect the presence of minimal residual disease (MRD) in a patient. Antibodies or other reagents or tools may be used to detect the presence of these telltale markers of MRD.

25 The expression profiles of the invention comprise one or more values representing the expression level of a gene having differential expression in a leukemia risk group, in subjects affected by leukemia who will relapse after conventional therapy, or in subjects affected by leukemia who will develop secondary AML after conventional therapy. Each expression profile contains a sufficient number of values such that the profile can be used to distinguish one leukemia risk 30 group from another, or to distinguish subjects who will relapse after conventional therapy from those who will not relapse, or to distinguish subjects who will develop secondary AML after conventional therapy from those who will not develop secondary AML. In some embodiments, the expression profiles comprise only one

value. For example, it can be determined whether a subject affected by leukemia is in the T-ALL risk group based only on the expression level of the CD3D antigen (NCBI Accession No. AA919102; see Table 14). Similarly, it can be determined whether a subject affected by leukemia is in the E2A-PBX1 risk group based only on the expression level of the cDNA of NCBI Accession No. AL049381 (see Table 10). In other embodiments, the expression profile comprises more than one value corresponding to a differentially expressed gene, for example at least 2 values, at least 3 values, at least 4 values, at least 5 values, at least 6 values, at least 7 values, at least 8 values, at least 9 values, at least 10 values, at least 11 values, at least 12 values, at least 13 values, at least 14 values, at least 15 values, at least 16 values, at least 17 values, at least 18 values, at least 19 values, at least 20 values, at least 22 values, at least 25 values, at least 27 values, at least 30 values, at least 35 values, at least 40 values, at least 45 values, at least 50 values, at least 75 values, at least 100 values, at least 125 values, at least 150 values, at least 175 values, at least 200 values, at least 250 values, at least 300 values, at least 400 values, at least 500 values, at least 600 values, at least 700 values, at least 800 values, at least 900 values, at least 1000 values, at least 1200 values, at least 1500 values, or at least 2000 or more values.

It is recognized that the diagnostic accuracy of assigning a subject to a leukemia risk group, determining whether a subject has an increased risk for relapse, or determining whether a subject has an increased risk of developing secondary AML will vary based on the number of values contained in the expression profile. Generally, the number of values contained in the expression profile is selected such that the diagnostic accuracy is at least 85%, at least 87%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, as calculated using methods described elsewhere herein, with an obvious preference for higher percentages of diagnostic accuracy.

It is recognized that the diagnostic accuracy of assigning a subject to a leukemia risk group, determining whether a subject has an increased risk for relapse, or determining whether a subject has an increased risk of developing secondary AML will vary based on the strength of the correlation between the expression levels of the differentially expressed genes and the associated physiologic condition. When the values in the expression profiles represent the expression levels of genes whose expression is strongly correlated with the physiologic condition, it may be possible to

use fewer number of values in the expression profile and still obtain an acceptable level of diagnostic or prognostic accuracy.

The strength of the correlation between the expression level of a differentially expressed gene and the presence or absence of a particular physiologic state may be determined by a statistical test of significance. For example, the chi square test used to select genes in some embodiments of the present invention assigns a chi square value to each differentially expressed gene, indicating the strength of the correlation of the expression of that gene and the presence or absence of the associated physiologic condition. Similarly, the T-statistics metric and the Wilkins' metric both provide a value or score indicative of the strength of the correlation between the expression of the gene and the absence or presence of the associated physiologic conditions. These scores may be used to select the genes whose expression levels have the greatest correlation with a particular physiologic state in order to increase the diagnostic or prognostic accuracy of the methods of the invention, or in order to reduce the number of values contained in the expression profile while maintaining the diagnostic or prognostic accuracy of the expression profile.

For example, in one embodiment the chi square test is used to determine the significance of the differentially expressed genes whose expression levels are included in the array, and only those genes having a chi square value of more than 20, more than 25, more than 30, more than 35, more than 40, more than 45, more than 50, more than 55, more than 60, more than 65, more than 70, more than 75, more than 80, more than 90, more than 100, more than 120, more than 140, more than 160, more than 180, or more than 200 are selected.

In another embodiment, the T-statistics metric is used to determine the significance of the differentially expressed genes whose expression levels are included in the array, and only those genes with a score having an absolute value of greater than 4, greater than 5, greater than 6, greater than 7, greater than 8, greater than 9, greater than 10, greater than 12, greater than 25, greater than 27, greater than 30, or greater than 35 are selected.

In yet another embodiment, the Wilkins' metric is used to determine the significance of the differentially expressed genes whose expression levels are included in the array, and only those genes having a score of greater than 0.55, greater than 0.57, greater than 0.59, greater than 0.61, greater than 0.63, greater than 0.65,

greater than 0.67, greater than 0.69, greater than 0.71, greater than 0.73, greater than 0.75, greater than 0.77, greater than 0.79, greater than 0.81, greater than 0.83, or greater than 0.85 are selected.

Each value in the expression profiles of the invention is a measurement 5 representing the absolute or the relative expression level of a differentially expressed genes. The expression levels of these genes may be determined by any method known in the art for assessing the expression level of an RNA or protein molecule in a sample. For example, expression levels of RNA may be monitored using a membrane blot (such as used in hybridization analysis such as Northern, Southern, dot, and the 10 like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Patent Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 and 5,445,934, which are expressly incorporated herein by reference. The gene expression monitoring system may also comprise nucleic acid probes in solution.

In one embodiment of the invention, microarrays are used to measure the 15 values to be included in the expression profiles. Microarrays are particularly well suited for this purpose because of the reproducibility between different experiments. DNA microarrays provide one method for the simultaneous measurement of the expression levels of large numbers of genes. Each array consists of a reproducible 20 pattern of capture probes attached to a solid support. Labeled RNA or DNA is hybridized to complementary probes on the array and then detected by laser scanning. Hybridization intensities for each probe on the array are determined and converted to a quantitative value representing relative gene expression levels. See, the 25 Experimental section. See also, U.S. Pat. Nos. 6,040,138, 5,800,992 and 6,020,135, 6,033,860, and 6,344,316, which are incorporated herein by reference. High-density oligonucleotide arrays are particularly useful for determining the gene expression 30 profile for a large number of RNA's in a sample.

In one approach, total mRNA isolated from the sample is converted to labeled cRNA and then hybridized to an oligonucleotide array. Each sample is hybridized to 30 a separate array. Relative transcript levels are calculated by reference to appropriate controls present on the array and in the sample. See, for example, the Experimental section.

In another embodiment, the values in the expression profile are obtained by measuring the abundance of the protein products of the differentially-expressed genes. The abundance of these protein products can be determined, for example, using antibodies specific for the protein products of the differentially-expressed genes. The term "antibody" as used herein refers to an immunoglobulin molecule or immunologically active portion thereof, i.e., an antigen-binding portion. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab')₂ fragments which can be generated by treating the antibody with an enzyme such as pepsin.

The antibody can be a polyclonal, monoclonal, recombinant, e.g., a chimeric or humanized, fully human, non-human, e.g., murine, or single chain antibody. In a preferred embodiment it has effector function and can fix complement. The antibody can be coupled to a toxin or imaging agent.

A full-length protein product from a differentially-expressed gene, or an antigenic peptide fragment of the protein product can be used as an immunogen. Preferred epitopes encompassed by the antigenic peptide are regions of the protein product of the differentially expressed gene that are located on the surface of the protein, e.g., hydrophilic regions, as well as regions with high antigenicity. The antibody can be used to detect the protein product of the differentially expressed gene in order to evaluate the abundance and pattern of expression of the protein. These antibodies can also be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given therapy. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance (i.e., antibody labeling). Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent

materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^3H .

Once the values comprised in the subject expression profile and the reference expression profile or expression profiles are established, the subject profile is compared to the reference profile to determine whether the subject expression profile is sufficiently similar to the reference profile. Alternatively, the subject expression profile is compared to a plurality of reference expression profiles to select the reference expression profile that is most similar to the subject expression profile.

Any method known in the art for comparing two or more data sets to detect similarity between them may be used to compare the subject expression profile to the reference expression profiles. In some embodiments, the subject expression profile and the reference profile are compared using a supervised learning algorithm such as the support vector machine (SVM) algorithm, prediction by collective likelihood of emerging patterns (PCL) algorithm, the k -nearest neighbor algorithm, or the Artificial Neural Network algorithm. Each of these algorithms is described in the Experimental section of the application. To determine whether a subject expression profile shows "statistically significant similarity" or "sufficient similarity" to a reference profile, statistical tests may be performed to determine whether the similarity between the subject expression profile and the reference expression profile is likely to have been achieved by a random event. An example of such a statistical test is the permutation test described in the Experimental section; however, any statistical test that can calculate the likelihood that the similarity between the subject expression profile and the reference profile results from a random event can be used. The accuracy of assigning a subject to a risk group based on similarity between an expression profile for the subject and an expression profile for the risk group depends in part on the degree of similarity between the two profiles. Therefore, when more accurate diagnoses are required, the stringency with which the similarity between the subject expression profile and the reference profile is evaluated should be increased. For example, in various embodiments, the p-value obtained when comparing the subject expression profile to a reference profile that shares sufficient similarity with the subject expression profile is less than 0.20, less than 0.15, less than 0.10, less than 0.09, less than 0.08, less than 0.07, less than 0.06, less than 0.05, less than 0.04, less than 0.03, less than 0.02, or less than 0.01.

In some embodiments, the assignment of a subject affected by leukemia to a leukemia risk group, the prediction of whether a subject affected by leukemia has an increased risk of relapse, or the prediction of whether a subject by affected by leukemia has an increased risk of developing secondary AML is used in a method of choosing a therapy for the subject affected by leukemia. A therapy, as used herein, refers to a course of treatment intended to reduce or eliminate the affects or symptoms of a disease, in this case leukemia. A therapy regimen will typically comprise, but is not limited to, a prescribed dosage of one or more drugs or hematopoietic stem cell transplantation. Therapies, ideally, will be beneficial and reduce the disease state but in many instances the effect of a therapy will have non-desirable effects as well. Thus, the methods of the invention are useful for monitoring the effectiveness of a therapy even when non-desirable side-effects are observed.

Arrays, Computer-Readable Medium, and Kits

The present invention provides compositions that are useful in determining the gene expression profile for a subject affected by leukemia and selecting a reference profile that is similar to the subject expression profile. These compositions include arrays comprising a substrate having a capture probes that can bind specifically to nucleic acid molecules that are differentially expressed in leukemia risk groups, subjects affected by leukemia who will relapse after conventional therapy, or subjects affected by leukemia who will develop secondary AML after conventional therapy. Also provided is a computer-readable medium having digitally encoded reference profiles useful in the methods of the claimed invention. The invention also encompasses kits comprising an array of the invention and a computer-readable medium having digitally-encoded reference profiles with values representing the expression of nucleic acid molecules detected by the arrays. These kits are useful for assigning a subject affected by leukemia to a leukemia risk group, predicting whether a subject affected by leukemia has an increased risk of relapse, and predicting whether a subject affected by leukemia has an increased risk of developing secondary AML.

30

The present invention provides arrays comprising capture probes for detecting the differentially expressed genes of the invention. By "array" is intended a solid support or substrate with peptide or nucleic acid probes attached to said support or

substrate. Arrays typically comprise a plurality of different nucleic acid or peptide capture probes that are coupled to a surface of a substrate in different, known locations. These arrays, also described as "microarrays" or colloquially "chips" have been generally described in the art, for example, in U.S. Patent Nos. 5,143,854, 5,445,934, 5,744,305, 5,677,195, 6,040,193, 5,424,186, 6,329,143, and 6,309,831 and 5 5 Fodor *et al.* (1991) *Science* 251:767-77, each of which is incorporated by reference in its entirety. These arrays may generally be produced using mechanical synthesis methods or light directed synthesis methods which incorporate a combination of photolithographic methods and solid phase synthesis methods.

10 Techniques for the synthesis of these arrays using mechanical synthesis methods are described in, e.g., U.S. Patent No. 5,384,261, incorporated herein by reference in its entirety for all purposes. Although a planar array surface is preferred, the array may be fabricated on a surface of virtually any shape or even a multiplicity of surfaces. Arrays may be peptides or nucleic acids on beads, gels, polymeric 15 surfaces, fibers such as fiber optics, glass or any other appropriate substrate, see U.S. Pat. Nos. 5,770,358, 5,789,162, 5,708,153, 6,040,193 and 5,800,992, each of which is hereby incorporated in its entirety for all purposes. Arrays may be packaged in such a manner as to allow for diagnostics or other manipulation of an all-inclusive device. See, for example, U.S. Pat. Nos. 5,856,174 and 5,922,591 herein incorporated by 20 reference.

The arrays provided by the present invention comprise capture probes that can specifically bind a nucleic acid molecule that is differentially expressed in leukemia risk groups, a nucleic acid molecule that is differentially expressed in subjects affected by leukemia who will relapse after conventional therapy, or a nucleic acid 25 molecule that is differentially expressed in subjects affected by leukemia who will develop secondary AML after conventional therapy. These arrays can be used to measure the expression levels of nucleic acid molecules to thereby create an expression profile for use in methods of determining the diagnosis and prognosis for leukemia patients, and for monitoring the efficacy of a therapy in these patients as 30 described elsewhere herein.

In some embodiments, each capture probe in the array detects a nucleic acid molecule selected from the nucleic acid molecules designated in Tables 2-36, 44-49, 52, 54-60, 63-68, and 70-74. The designated nucleic acid molecules include those

differentially expressed in leukemia risk groups selected from the T-ALL risk group (Tables 7, 14, 21, 28, 35, 59, and 67); E2A-PBX1 risk group (Tables 3, 10, 17, 24, 31, 55, 64, and 71), TEL-AML1 risk group (Tables 8, 15, 22, 29, 36, and 60, 68, and 74), BCR-ABL risk group (Tables 2, 9, 16, 23, 30, 54, 63, and 70), MLL risk group 5 (Tables 5, 12, 19, 26, 33, 57, 66, and 73), Hyperdiploid >50 risk group (Tables 4, 11, 18, 25, 32, 56, 65, and 72), and Novel risk group (Tables 6, 13, 20, 27, 34, and 58), those differentially expressed in subjects affected by leukemia who will relapse after conventional therapy (Tables 44-48), and those differentially expressed in subjects affected by TEL-AML1 who will develop secondary AML after conventional therapy 10 (Table 52).

The arrays of the invention comprise a substrate have a plurality of addresses, where each addresses has a capture probe that can specifically bind a target nucleic acid molecule. The number of addresses on the substrate varies with the purpose for which the array is intended. The arrays may be low-density arrays or high-density 15 arrays and may contain 4 or more, 8 or more, 12 or more, 16 or more, 20 or more, 24 or more, 32 or more, 48 or more, 64 or more, 72 or more 80 or more, 96, or more addresses, or 192 or more, 288 or more, 384 or more, 768 or more, 1536 or more, 3072 or more, 6144 or more, 9216 or more, 12288 or more, 15360 or more, or 18432 or more addresses. In some embodiments, the substrate has no more than 12, 24, 48, 20 96, or 192, or 384 addresses, no more than 500, 600, 700, 800, or 900 addresses, or no more than 1000, 1200, 1600, 2400, or 3600 addressees.

The invention also provides a computer-readable medium comprising one or more digitally-encoded expression profiles, where each profile has one or more values representing the expression of a gene that is differentially expressed in a leukemia risk group, the expression level of a gene that is differentially expressed in subjects 25 affected by leukemia who will relapse after conventional therapy, or the expression level of a gene that is differentially expressed in subjects affected by leukemia who will develop secondary AML after conventional therapy. Such profiles are described elsewhere herein. In some embodiments, the digitally-encoded expression profiles are comprised in a database. See, for example, U.S. Patent No. 6,308,170.

The present invention also provides kits useful for diagnosing, treating, and monitoring the disease state in subjects affected by leukemia. These kits comprise an array and a computer readable medium. The array comprises a substrate having

addresses, where each address has a capture probe that can specifically bind a nucleic acid molecule that is differentially expressed in at least one leukemia risk group, in a subject affected by leukemia who will relapse after conventional therapy, or in a subject affected by leukemia who will develop secondary AML after conventional therapy. The results are converted into a computer-readable medium that has digitally-encoded expression profiles containing values representing the expression level of a nucleic acid molecule detected by the array.

Methods of Screening and Therapeutic Targets

The methods and compositions of the invention may be used to screen test compounds to identify therapeutic compounds useful for the treatment of leukemia. In one embodiment, the test compounds are screened in a sample comprising primary cells or a cell line representative of a particular leukemia risk group. After treatment with the test compound, the expression levels in the sample of one or more of the differentially-expressed genes of the invention are measured using methods described elsewhere herein. Values representing the expression levels of the differentially-expressed genes are used to generate a subject expression profile. This subject expression profile is then compared to a reference profile associated with the leukemia risk group represented by the sample to determine the similarity between the subject expression profile and the reference expression profile. Differences between the subject expression profile and the reference expression profile may be used to determine whether the test compound has anti-leukemogenic activity.

The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) *Anticancer Drug Des.* 12:145).

Examples of methods for the synthesis of molecular libraries can be found in the art, for example in DeWitt *et al.* (1993) *Proc. Natl. Acad. Sci. USA* 90:6909; Erb

et al. (1994) *Proc. Natl. Acad. Sci. USA* 91:11422; Zuckermann *et al.* (1994). *J. Med. Chem.* 37:2678; Cho *et al.* (1993) *Science* 261:1303; Carell *et al.* (1994) *Angew. Chem. Int. Ed. Engl.* 33:2059; Carell *et al.* (1994) *Angew. Chem. Int. Ed. Engl.* 33:2061; and in Gallop *et al.* (1994) *J. Med. Chem.* 37:1233. Libraries of compounds 5 may be presented in solution (e.g., Houghten (1992) *Biotechniques* 13:412-421), or on beads (Lam (1991) *Nature* 354:82-84), chips (Fodor (1993) *Nature* 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (U.S. Patent No. 5,223,409), plasmids (Cull *et al.* (1992) *Proc. Natl. Acad. Sci. USA* 89:1865-1869) or on phage (Scott and Smith (1990) *Science* 249:386-390); (Devlin (1990) *Science* 249:404-406); (Cwirla *et al.* 10 (1990) *Proc. Natl. Acad. Sci. U.S.A.* 97:6378-6382); (Felici (1991) *J. Mol. Biol.* 222:301-310).

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam *et al.* (1991) *Nature* 354:82-84; Houghten *et al.* (1991) *Nature* 354:84-86) and 15 combinatorial chemistry-derived molecular libraries made of D- and/or L- configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang *et al.* (1993) *Cell* 72:767-778); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); 4) small organic and inorganic molecules (e.g., 20 molecules obtained from combinatorial and natural product libraries; 5) zinc analogs; 6) leukotriene A₄ and derivatives; 7) classical aminopeptidase inhibitors and derivatives of such inhibitors, such as bestatin and arphamenine A and B and derivatives; 8) and artificial peptide substrates and other substrates, such as those disclosed herein above 25 and derivatives thereof.

The present invention discloses a number of genes that are differentially expressed in leukemia risk groups, in subjects affected by leukemia who will relapse after conventional therapy, or in subjects affected by leukemia who will develop secondary AML after conventional therapy. These differentially-expressed genes are 30 shown in Tables 2-36 and 44-48, and 52. Because the expression of these genes is associated with leukemia risk factors, these genes may play a role in leukemogenesis. Accordingly, these genes and their gene products are potential therapeutic targets that

are useful in methods of screening test compounds to identify therapeutic compounds for the treatment of leukemia.

The differentially-expressed genes of the invention may be used in cell-based screening assays involving recombinant host cells expressing the differentially-expressed gene product. The recombinant host cells are then screened to identify compounds that can activate the product of the differentially-expressed gene (*i.e.* agonists) or inactivate the product of the differentially-expressed gene (*i.e.* antagonists).

Any of the leukemogenic functions mediated by the product of the differentially-expressed gene may be used as an endpoint in the screening assay for identifying therapeutic compounds for the treatment of leukemia. Such endpoint assays include assays for cell proliferation, assays for modulation of the cell cycle, assays for the expression of markers indicative of leukemia, and assays for the expression level of genes differentially expressed in leukemia risk groups as described above.

Modulators of the activity of a product of a differentially-expressed gene identified according to these drug screening assays provided above can be used to treat a subject with leukemia. These methods of treatment include the steps of administering the modulators of the activity of a product of a differentially-expressed gene in a pharmaceutical composition as described herein, to a subject in need of such treatment.

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

25 EXAMPLE 1:

To determine if gene expression profiling of leukemic cells could identify known biologic ALL subgroups, 327 diagnostic bone marrow (BM) samples were analyzed with AFFYMETRIX® oligonucleotide microarrays (Affymetrix Inc., Santa Clara, CA) containing 12,600 probe sets.

In an initial analysis of the gene expression data set (12,600 probe sets in 327 leukemia samples; greater than 4×10^6 data elements), an unsupervised two-dimensional hierarchical clustering algorithm was used to group leukemia samples with similar gene expression patterns against clusters of similarly expressed genes.

This analysis clearly identified 6 major leukemia subtypes that corresponded to T-ALL, hyperdiploid with >50 chromosomes, BCR-ABL, E2A-PBX1, TEL-AML1, and MLL gene rearrangement. Moreover, within the heterogeneous collection of leukemias that were not assigned to one of these subtypes, a novel subgroup of 14 cases was identified that had a distinct gene expression profile. The separation of these seven leukemia subgroups was also seen using the multidimensional scaling procedure of discriminant analysis with variance (DAV), in which the data are reduced into component dimensions consisting of linear combinations of discriminating genes. For example, using the three component dimensions that accounted for 72.8% of the variance of gene expression among the subgroups, it was possible to distinguish T-ALL (43 cases), E2A-PBX1 (27 cases), TEL-AML1 (79 cases) and hyperdiploid >50 (64 cases) from the remaining ALL subtypes (114 cases). Similarly, using three different components that account for an additional 16.1% of the variance in gene expression made it possible to discriminate cases with BCR-ABL (15 cases), MLL gene rearrangement (20 cases) and the novel subgroup of ALL (14 cases).

Statistical methods were used to identify those genes that best define the individual groups. Expression profiles were obtained using the top 40 genes per subgroup as selected by a Chi square metric. Distinct groups of genes distinguish cases defined by E2A-PBX1, MLL, T-ALL, hyperdiploid >50, BCR-ABL, the novel subgroup, and TEL-AML1. In addition to these specific subgroups, 65 cases (20% of the total) were identified that did not cluster into any of the leukemia subtypes. The expression profiles of these latter cases varied markedly, suggesting that they represent a heterogeneous group of leukemias. Nearly identical results were obtained when the hierarchical clustering was performed with genes selected by other statistical metrics.

For T-ALL, two gene clusters that discriminated this subtype from B-lineage cases were identified. One cluster was expressed at high and one cluster was expressed at low levels. In contrast the top ranked discriminating genes for each of the other leukemia subtypes consisted primarily of genes that were overexpressed within the specific leukemia subtype. With the exception of T-ALL, the identified expression profiles do not represent a specific differentiation stage of the leukemic blasts. For example, although E2A-PBX1 is almost exclusively found in ALLs with a

pre-B cell immunophenotype (Hunger (1996) *Blood* 87:1211-24), the identified expression profile was specific for the E2A-PBX1 genetic lesion and not the pre-B immunophenotype.

To confirm that the microarray analysis provided an accurate reflection of
5 actual gene expression levels, the microarray data was compared with results for RNA
levels obtained by real-time RT-PCR (5 genes). In addition, the corresponding
protein levels were assessed by immunophenotype analysis performed by flow
cytometry using nine specific cell surface antigens). A very high degree of
correlation was observed between the levels of RNA expression detected by
10 quantitative RT-PCR and microarray analysis. Similarly, in agreement with results
from immunophenotyping, T-lineage restricted RNA expression was observed for
CD2, CD3, and CD8, whereas B-lineage restricted expression was observed for
CD19, and CD22. In addition, the level of CD10 RNA expression closely correlated
with protein levels, with high expression detected in TEL-AML1 leukemias,
15 intermediate levels in E2A-PBX1 and low to undetectable expression in cases with
rearrangements of MLL. Thus, microarray analysis provides an accurate reflection of
expression levels for most genes, and can be used to accurately detect the expression
of the more common surface antigens used in the diagnostic evaluation of pediatric
ALL patients.

20 The majority of the leukemia subtype specific genes identified through this
study were not previously known to have a restricted pattern of expression. In
addition to their use as diagnostic and subclassification markers, these genes provide
unique insights into the underlying biology of the different leukemia subtypes. For
example, E2A-PBX1 leukemias were characterized by high expression of the c-Mer
25 receptor tyrosine kinase (MERTK), a known transforming gene (Graham *et al.* (1994)
Cell Growth Differ. 5:647-657); and Georgescu *et al.* (1999) *Mol. Cell. Biol.* 19:1171-
81), suggesting that C-MER may be involved in the abnormal growth of these cells.
Similarly, HOXA9 and MEIS1 were exclusively expressed in cases having MLL
rearrangements, indicating that they may be directly involved in MLL mediated
30 alterations in the growth of the leukemic cells. Interestingly, high expression of
MTG16, a homologue of ETO (Gamou *et al.* (1998) *Blood* 91:4028-4037), was found
in TEL-AML1 cases. Alteration of ETO family members in both t(8;21) acute
myeloid leukemia (by translocation) (Downing (1999) *Br. J. Hematol.* 106:296-308)

and TEL-AML1 (by altered expression) suggests that alteration in the biologic function of ETO genes is mechanistically involved in these leukemias.

Little is known about the underlying molecular pathogenesis of hyperdiploid ALL >50 chromosomes, which clinically is distinct from hyperdiploid cases having 47-50 chromosomes. This distinction is supported by the marked differences in gene expression profiles between these two subgroups. Although hyperdiploid >50 ALLs have an excellent prognosis, the specific genetic lesions responsible for the aberrant proliferation in these cases remains poorly understood. Interestingly, almost 70% of the genes that define this subgroup are localized to either chromosome X or 21.

Moreover, the class defining genes on chromosome X were overexpressed in the hyperdiploid >50 chromosomes ALLs irrespective of whether the leukemic blasts had a trisomy of this chromosome (data not shown). Detailed analysis will be required to determine the specific signaling pathways that are disrupted as a result of the altered expression of these genes. Lastly, the novel subgroup of ALL was defined by high expression of a group of genes, including the receptor phosphatase PTPRM, and LHFPL2, a gene that is a part of the LHFPL-like gene family, the founding member of which was identified as the target of a lipoma-associated chromosomal translocation (Petit et al. (1999) *Genomics* 57:438-41).

20 Expression Profiling as a Diagnostic Tool

A major goal of this study was to develop a single platform of expression profiling to accurately identify the known, prognostically important leukemia subtypes. To this end, computer-assisted learning algorithms were used to develop an expression-based leukemia classification. Through a reiterative process of error minimization, these algorithms learn to recognize the optimal gene expression patterns for a leukemia subtype. Classification was approached using a decision tree format, in which the first decision was T-ALL versus B-lineage (non-T-ALL), and then within the B-lineage subset, cases were sequentially classified into the known risk groups characterized by the presence of E2A-PBX1, TEL-AML1, BCR-ABL, MLL chimeric genes, and lastly hyperdiploid with >50 chromosomes. Cases not assigned to one of these classes were left unassigned. Classification was performed using a Support Vector Machine (SVM) algorithm with a set of discriminating genes selected by a correlation-based feature selection (CFS), or if this method selected

greater than 20 genes for a particular class, by using the top 20 ranked genes selected by a chi-square metric, or one of the other metrics detailed in the Experimental Procedures section. This approach resulted in an accurate class prediction in a randomly selected training set that consisted of two-thirds of the total cases (215 cases). When this classification model was then applied to a blind test set consisting of the remaining 112 samples, an overall accuracy of 96% was achieved for class assignment. The number of genes required for optimal class assignment varied between classes. A single gene was sufficient to give 100% accuracy for both T-ALL and E2A-PBX1, whereas 7-20 genes were required for prediction of the other classes. 10 Only slight differences were observed in the prediction accuracy of individual classes when the process was repeated using genes selected by a number of other metrics, including T-statistics, a novel metric referred to as Wilkins', or genes selected by a combination of self organizing maps (SOM) and DAV. Moreover, nearly identical results were obtained when the various sets of selected genes were used in a number 15 of different supervised learning algorithms, including κ -Nearest Neighbor (κ -NN), Artificial Neural Network (ANN), and prediction by collective likelihood of emerging patterns (PCL).

Four cases initially appeared to be misclassified as TEL-AML1 by gene expression analysis since they lacked a detectable chimeric transcript by RT-PCR. 20 Upon further analysis by FISH, however, one of these cases was shown to have a TEL-AML1 fusion, presumably, a variant rearrangement that could not be detected with the amplification primers used for the TEL-AML1 RT-PCR assay. In each of the three remaining cases, re-examination of the karyotypes revealed translocations involving the p arm of chromosome 12. FISH analysis demonstrated that two of these 25 cases had deletion of one TEL allele, whereas the remaining case had a partial deletion of one TEL allele. Thus, the identified expression profiles appear to reflect an abnormality of the TEL transcription factor, and may in fact provide a more accurate means of identifying a specific leukemia subtype defined by its underlying biology. Collectively, these data demonstrate that the single platform of gene 30 expression profiling can accurately identify the known prognostic subtypes of ALL.

Use of Expression Profiles to Identify Patients at High Risk of Treatment Failure

Relapse and the development of therapy-induced acute myeloid leukemia (AML) are the major causes of treatment failure in pediatric ALL. To determine if expression profiling might further enhance the ability to identify patients who are likely to relapse, the expression profiles of the four groups of leukemic samples were compared. The groups of samples used for this comparison were: 1) diagnostic samples of patients that developed hematological relapses ($n = 32$); (ii) diagnostic samples from patients who remained in continuous complete remission (CCR) ($n = 201$); (iii) diagnostic samples from patients who developed therapy-induced AML ($n = 16$); and (iv) leukemic samples collected at the time of ALL relapse ($n = 25$). Using DAV, distinct gene expression profiles were identified for each of these groups.

To further assess the predictive power of the different gene expression profiles, supervised learning algorithms were used. Because of the overwhelming differences in the expression profiles of the different leukemia subtypes, it was not possible to identify a single expression signature that would predict relapse irrespective of the genetic subtype. However, within individual leukemic subtypes, distinct expression profiles could be defined that predicted relapse. Class assignment was performed using a SVM supervised learning algorithm with discriminating genes selected by CFS, or if this method returned >20 genes, the top 20 genes selected by T-statistics. For both the T-lineage and hyperdiploid >50 subgroups, expression profiles identified those cases that went on to relapse with an accuracy of 97% and 100%, respectively, as assessed by cross validation. Moreover, the predictive accuracy was statistically significant when compared to results from an analysis of 1000 random permutations of the specific patient data set. Similarly, expression profiles predictive of relapse were identified for TEL-AML, MLL, or cases that lacked any of the known genetic risk features. Although the predictive accuracy of these latter expression profiles was very high as assessed by cross validation, it did not reach statistical significance when compared to results from an analysis of 1000 random permutations of the same patient data set, likely secondary to the limited number of cases. The patterns of expression for a combination of genes, rather than expression levels of a single gene were found to have the greatest predictive accuracy. Since few known risk-stratifying biologic features have been previously identified for either T-ALL or

hyperdiploid >50 ALL, the results suggest that the identified expression profiles provide independent risk stratifying information.

A distinct expression profile was identified in the ALL blasts from patients who developed therapy-induced AML. Because secondary AML is thought to arise 5 from a hematopoietic stem cell that is distinct from that giving rise to the primary leukemia, it is difficult to understand how the biology of the original ALL blasts could predict the risk of developing a therapy-induced complication. However, when the accuracy of expression profiling was evaluated in within the TEL-AML1 subgroup, a distinct expression signature consisting of 20 genes was defined. This 10 profile identified, with 100% accuracy in cross validation, all patients who developed secondary AML, with a p value of 0.031 as assessed by comparison to results from an analysis of 1000 random permutations of the patient data set. Genes within this signature included RSU1, a suppressor of the Ras signaling pathway, and Msh3, a mismatch repair enzyme.

15

Overview of Experimental Procedures

A. Tumor Samples

The diagnosis of ALL was based on the morphologic evaluation of the bone marrow and on the pattern of reactivity of the leukemic blasts with a panel of 20 monoclonal antibodies directed against lineage-associated antigens. A total of 389 pediatric acute leukemia samples were analyzed in this study, from which high quality gene expression data was obtained on 360 (93%). The successfully-analyzed samples included 332 diagnostic BM, 3 diagnostic peripheral bloods (PB), and 25 relapsed ALL samples from BM or PB. 264 (79%) of the diagnostic ALL BM samples and all 25 relapse samples were from patients enrolled on St. Jude Children's Research Hospital Total Therapy Studies XIII A or XIII B and corresponded to 64% of the patients treated on these protocols. The details of these protocols have been previously published (Pui et al. (2000) *Leukemia* 14:2286-94). The remaining samples were obtained from patients treated on St. Jude Total Therapy Studies XI, XII, XIV, XV, or 30 by best clinical management. All protocols and consent forms were approved by the hospital's institutional review board, and informed consent was obtained from parents, guardians, or patients (as appropriate). The composition of the data sets used for the identification of gene expression profiles predictive of specific genetic

subtypes, hematological relapse, and risk of developing secondary AML are described below.

B. Gene Expression Profiling

5 RNA was extracted from cryopreserved mononuclear cell suspensions from diagnostic BM aspirates or PB samples using TRIZOL® (Invitrogen Corp., Carlsbad, California) according to the manufacturer's instructions, and the RNA integrity was assessed by using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). cDNA was synthesized using a T-7 linked oligo-dT primer and cRNA was then 10 synthesized with biotinylated UTP and CTP. The labeled RNA was then fragmented and hybridized to HG_U95Av2 oligonucleotide arrays (Affymetrix Incorporated, Santa Clara, CA) according to the manufacturer's instructions.

Arrays were scanned using a laser confocal scanner (Agilent) and the expression value for each gene was calculated using AFFYMETRIX® Microarray 15 Software version 4.0. The average intensity difference (AID) values were normalized across the sample set and minimum quality control standards were established for including a sample's hybridization data in the study. 10% of samples were run in duplicate to ensure consistency of data acquisition throughout the study. A high level of reproducibility was observed between replicate samples, with fewer than 1% of 20 genes showing a variation in average intensity difference of greater than 2-fold.

C. Statistical Analysis

Unsupervised hierarchical clustering, principal component analysis (PCA), discriminant analysis with variance (DAV), and self organizing maps (SOM) were 25 performed using GeneMaths software (version 1.5, Applied Maths, Belgium). Data reduction to define the genes most useful in class distinction was performed using a variety of metrics as detailed below. Genes selected by the various metrics were used in supervised learning algorithms to build classifiers that could identify the specific genetic or prognostic subgroups. The algorithms used included k-Nearest Neighbors 30 (k-NN), Support Vector Machine (SVM), prediction by collective likelihood of emerging patterns (PCL), an artificial neural network (ANN), and weighted voting. Performance of each model was initially assessed by leave-one-out cross validation on a randomly selected stratified training set consisting of two-thirds of the total

cases. True error rates of the best performing classifiers were then determined using the remaining third of the samples as a blinded test group. Details of the individual metrics and supervised learning algorithms are described below.

5 **Detailed Experimental Procedures**

A. RNA Extraction, Labeling, Hybridization, and Data analysis

Mononuclear cell suspensions from diagnostic BM aspirates or peripheral blood (PB) samples were prepared from each patient and an aliquot was cryopreserved. RNA was extracted using TRIZOL® following the manufacturer's recommended protocol as described above. RNA integrity was assessed by electrophoresis on the Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA).

First and second strand cDNA were synthesized from 5-15 µg of total RNA using the SuperScript Double-Stranded cDNA Synthesis Kit ((Invitrogen Corp., Carlsbad, California) and an oligo-dT₂₄-T7 (5'-GGC CAG TGA ATT GTA ATA CGA CTC ACT ATA GGG AGG CGG-3'; SEQ ID NO:1) primer according to the manufacturer's instructions. cRNA was synthesized and labeled with biotinylated UTP and CTP by in vitro transcription using the T7 promoter coupled double stranded cDNA as template and the T7 RNA Transcript Labeling Kit according the manufacturer's instructions (Enzo Diagnostics Inc., Farmingdale NY). Briefly, double stranded cDNA synthesized from the previous steps was washed twice with 70% ethanol and resuspended in 22 µl RNase-free water. The cDNA was incubated with 4 µl of 10X each reaction buffer, 1µl of biotin labeled ribonucleotides, 2µl of DTT, 1µl of RNase inhibitor mix and 2 µl 20X T7 RNA polymerase for 5 hours at 37°C. The labeled cRNA was separated from unincorporated ribonucleotides by passing through a CHROMA SPIN-100 column (Clontech, Palo Alto, CA) and precipitated at -20°C for 1 hr to overnight.

The cRNA pellet was resuspended in 10 µl Rnase-free H₂O and 10.0 µg was fragmented by heat and ion-mediated hydrolysis at 95°C for 35 minutes in 200 mM Tris-acetate, pH 8.1, 500 mM KOAc, 150 mM MgOAc. The fragmented cRNA was hybridized for 16 hr at 45°C to HG_U95Av2 AFFYMETRIX® oligonucleotide arrays (Affymetrix, Santa Clara, CA) containing 12,600 probe sets from full-length annotated genes together with additional probe sets designed to represent EST sequences. Arrays were washed at 25°C with 6X SSPE (0.9M NaCl, 60 mM

NaH₂PO₄, 6 mM EDTA, 0.01% Tween 20) followed by a stringent wash at 50°C with 100 mM MES, 0.1M NaCl₂, 0.01% Tween 20. The arrays were then stained with phycoerythrin conjugated streptavidin (Molecular Probes, Eugene, OR).

Arrays were scanned using a laser confocal scanner (Agilent, Palo Alto, CA) 5 and the expression value for each gene was calculated using AFFYMETRIX® Microarray software (MAS 4.0). The signal intensity for each gene was calculated as the average intensity difference (AID), represented by [$\Sigma(PM - MM)/(number\ of\ probe\ pairs)$], where PM and MM denote perfect-match and mismatch probes, respectively. Expression values were normalized across the sample set by scaling the 10 average of the fluorescent intensities of all genes on an array to a constant target intensity of 2500, then any AID over 45,000 was capped to a value of 45,000. All AID's less than 100, including negative values and absent calls were converted to a 15 value of 1. In addition, a variation filter was used to eliminate any probe set in which fewer than 1% of the samples had a present call, or if the Max AID – Min AID across the sample set was less than 100. The average intensity differences for each of the 20 remaining genes were analyzed. For some metrics the data was log transformed prior to analysis. The minimum quality control values required for inclusion of a sample's hybridization data in the study were 10% or greater present calls, a GAPDH/Actin 3'/5' ratio <5, and use of a scaling factor that was within 3 standard deviations from the mean of the scaling values of all chips analyzed.

The average percent present calls for the overall data set was 29.7%, and for 25 each of the genetic subgroups was *BCR-ABL* (31.1%), *E2A-PBX1* (28.9%), Hyper >50 (31%), *MLL* (29.8%), T-ALL (29.1%), *TEL-AML1* (28.5%), Novel (30.2%), others (31.1%). In addition, each sample had >75% blasts. The average percentage 30 blasts for the overall data set used to define the genetic subtypes was 93%, and for each genetic subtype was *BCR-ABL* (92%), *E2A-PBX1* (96%), Hyper >50 (93%), *MLL* (93%), T-ALL (91%), *TEL-AML1* (92%), Novel (95%), and others (94%).

B Reproducibility of Microarray Data

30 The reproducibility of the AFFYMETRIX® microarray system was assessed by comparing the gene expression profiles of RNA extracted from duplicate cryopreserved diagnostic leukemic samples from 23 patients with single RNA samples from 13 patients analyzed on two separate arrays. The mean number of

probe sets that displayed a ≥ 2 -fold difference in expression between separately extracted but paired RNA samples was 144, and for single RNA samples analyzed on two separate occasions was 133. Moreover, very few probe sets were found to have a ≥ 3 -fold difference in expression levels between replicate samples. The observed 5 number of probe sets showing a difference in expression values represents less than 2% of the total number of probe sets on the microarray, and thus these data suggest that the AFFYMETRIX® microarray system has a very high degree of reproducibility.

10 C. Comparison of Expression Profiles from PB and BM leukemia samples

Matched BM and PB samples that contained $\geq 80\%$ leukemic blasts were obtained from 10 patients and the RNA was extracted and assessed by microarray analysis. A very high level of correlation was observed between the expression profiles of BM and PB, with only 189 probe sets having a greater than a 2-fold difference in expression. No genes were found to be consistently over- or under-expressed in one sample type. These data demonstrate that there are minimal differences in the gene expression profiles of leukemic blasts obtained from BM or PB, and that diagnostic gene expression profiling is possible on samples obtained from the PB.

20

D. RT-PCR Results

Real-time TAQMAN® RT-PCR assays (Applied Biosystems, Foster City, CA) were performed to independently determine the level of mRNA for five genes that were found by microarray analysis to be predictive of either T-lineage ALL 25 (*CD3δ*, *CD3D* antigen delta polypeptide TiT3 complex; *MAL*, mal T-Cell differentiation protein; and *PRKCIQ*, protein kinase C theta) or *E2A-PBX1* expressing ALL (*MERTK*, *c-Mer* proto-oncogene tyrosine kinase and KIAA802). The RNA samples analyzed included four samples each of *E2A-PBX1* and T-ALL, and two samples each from the remaining subtypes (*BCR-ABL*, *MLL*, *TEL-AML1*, 30 *Hyperdiploid >50*, *Hyperdiploid 47-50*, *Hypodiploid*, *Pseudodiploid*, and *normal*). Whenever possible, the forward and reverse primers were designed in different exons so that DNA contamination would not be a concern. In the case of *MAL* where this was not clear, the RNA was treated for 15 minutes at room temperature with 1.0 unit

of DNase I (Invitrogen Corp., Carlsbad, California) using the Invitrogen protocol to remove any contaminating DNA.

13 Thirty-three ng of RNA from each sample was reverse transcribed using random hexamers and Multiscribe Reverse Transcriptase (Applied Biosystems, Foster City, CA) in a total volume of 10 µl. Real time PCR was performed on a Applied Biosystems PRISM® 7700 Sequence Detection System (Applied Biosystems). All probes were labeled at the 5' end with FAM (6-carboxy-fluroescein) and at the 3' end with TAMRA (6-carboxy-tetramethyl-rhodamine).

18 The PCR reactions were performed in a total volume of 50 µl containing 10 µl of the reverse transcriptase product, 300 nM each of the forward and reverse primers, 100 nM of probe, 1X master mix and 1 µl of AMPLITAQ GOLD® DNA polymerase (Applied Biosystems). Following a 10 minute incubation at 95°C to activate the polymerase, samples were denatured at 95°C for 15 seconds, then annealed and extended at 60°C for 1 minute, for a total of 40 cycles. The RNA from each sample 23 was also amplified using primers and probes to RNase P (Applied Biosystems) for use in normalization according to the manufacturer's instructions. Negative controls were included in each run. Standard curves were generated for T-cell markers and RNase P using MOLT4 RNA, a T-cell leukemia cell line, and for the *E2A-PBX1* markers and RNase P using a leukemia cell line, 697, that contains an *E2A-PBX1* fusion.

28 The expression level of the predictive genes and RNase P were determined in each of the 24 ALL samples. A ratio was then calculated by taking the expression value for the specific gene and dividing it by the expression level of RNase P in the sample. These ratios were then compared to the values obtained from the AFFYMETRIX® chip data from the same RNA sample. The raw AFFYMETRIX® 33 chip data were scaled as described and then normalized using the 3'GAPDH value for each sample, yielding a normalized ratio. The TAQMAN® results and AFFMETRIX® chip ratios were then log transformed and compared. Since the markers selected for TAQMAN® analysis were predictors for either *E2A-PBX1* or T-ALLs, each gene was expected to have four RNA samples with high and 20 samples with low expression. For each gene evaluated, an average expression value for both the TAQMAN® results and AFFYMETRIX® data was calculated for all samples in the up-regulated group, and similarly, for the samples in the down-regulated group.

E. Comparison of Real-time RT-PCR Data and AFFYMETRIX® Chip Data

The normalized gene expression ratios for the TAQMAN® data (gene/RNase P) and for the AFFYMETRIX® microarray data (AID for a gene/AID for GAPDH) were log transformed and then the average expression values for each gene was calculated in the four samples in which its expression was expected to be up-regulated and separately in the 20 samples in which its expression was expected to be down-regulated. For example, for genes that were expected to be up-regulated in T-ALL (*CD3δ*, *MAL*, and *PRKCO*), the log expression ratios in the T-ALL samples were averaged to give the up regulated values and the log expression ratios of each gene in the non-T-ALL cases were averaged to give the down regulated value.

In both the TAQMAN® and the microchip array analysis, *MERTK* and *KIAA802*, were very highly expressed in the diagnostic samples containing *E2A-PBX1*, and expressed at low levels in all of the other samples. Likewise, *PRKCO*, *CD3δ*, and *MAL*, showed high levels of expression in T cells by both methodologies in comparison with non T-cells. The normalized ratios from the TAQMAN® assay were plotted against the normalized ratios from the microchip array for both the up-regulated and down-regulated genes. The correlation between TAQMAN® results and the microchip array results was 70%, indicating that the same pattern of gene expression was seen in both analyses. The *MERTK* was extremely high in two of the *E2A-PBX1* patient samples by TAQMAN® analysis. Removal of the *MERTK* gene from the analysis resulted in a correlation of 91% between the TAQMAN® results and the microchip array results.

F. Comparison of AFFYMETRIX® Microarray Chip Results and

25 Immunophenotype Results

Leukemic blasts at the time of diagnosis were analyzed for expression of lineage restricted cell surface antigens using phycoerythrin- or fluorescein isothiocyanate-conjugated monoclonal antibodies against CD2, CD3ε, CD4, CD5, CD7, CD8, CD10, CD19, and CD22 (Becton Dickinson Immunocytometry Systems, 30 San Jose, CA, USA). Data were obtained using a COULTER® EPICS XL™ (Beckman Coulter, Miami, FL), a COULTER® ELITE™ (Beckman Coulter), or a BD FACSCalibur™ flow cytometer (Becton Dickinson, San Jose, CA). The expression patterns for these antigens were then compared to gene expression patterns

for the AFFYMETRIX® chip sites specified for *CD2* (1 probe set, 40738_at), *CD3 δ* (1 probe set, 38319_at), *CD3 ε* (1 probe set, 36277_at), *CD3 ζ* (1 probe set, 37078_at), *CD3 γ* (1 probe set, 39226_at), *CD4* (5 probe sets, 856_at, 1146_at, 35517_at, 34003_at, and 37942_at), *CD5* (1 probe set, 32953_at), *CD7* (1 probe set, 771_s_at), 5 *CD8 α* (1 probe set, 40699_at), *CD8 β* (1 probe set, 39239_at), *CD10* (1 probe set, 1389_at), *CD19* (2 probe sets, 1096_g_at and 1116_at), and *CD22* (2 probe sets, 38521_at and 38522_s_at). As a control, the performance of the AFFYMETRIX® microarray probe sets were also assessed using RNA isolated from flow sorted single positive CD4+ and CD8+ thymocytes, and CD10+/CD19+ bone marrow cells. High 10 RNA expression was observed in T-ALL for the T-lineage restricted genes *CD2*, *CD3 δ* , ε , and ζ , *CD8 α* , and *CD7*, and in B-lineage ALLs for the B-cell restricted genes *CD19*, and *CD22*. A similar high level of correlation was observed between RNA and protein expression for *CD10*. The observed low expression levels of T-cell restricted genes in B-cell cases, and B-cell restricted genes in T-ALLs, is consistent 15 with the low level of normal contaminating lymphocytes present in the diagnostic marrow samples analyzed.

G. Patient Data Set

A total of 389 Pediatric acute leukemia samples were analyzed in this study, 20 from which high quality gene expression data were obtained on 360 (93%). The successfully analyzed samples included: 332 diagnostic bone marrows (BM), 3 diagnostic peripheral blood samples (PB), and 25 relapse ALL samples from BM or PB. 264 (79%) of the diagnostic ALL BM samples and all relapse samples were from patients treated on St. Jude Children's Research Hospital Total Therapy Studies XIII A 25 or XIII B and correspond to 64% of the patients treated on these protocols. The details of these protocols are described in Pui *et al.*, "Risk-adapted treatment for acute lymphoblastic leukemia: findings from St. Jude Children's Research Hospital," *Haematology and Blood Transfusions*, 1997, pp 629-37, Springer-Verlag, Berlin and in Pui *et al.* (2000) *Leukemia* 14:2286-94. Study XIII A ran from December 20, 1991 30 to August 23, 1994 and enrolled 165 patients, whereas Study XIII B ran from August 24, 94 to July 27, 1998 and enrolled 247 patients. No patients were lost to follow-up during treatment. When the databases were frozen for analysis, 100% and 93% of event-free survivors in studies XIII A and XIII B, respectively, had been seen within 12

months. The median (minimum, maximum) follow-up of the event-free survivors was 8.09 (6.59, 9.94) and 4.52 (2.37, 7.06) years for XIII A and XIII B, respectively. All other samples were obtained from patients treated on St. Jude Total Therapy Studies XI, XII, XIV, XV, or by best clinical management.

5 For the identification of gene expression profiles that predict specific genetic subtypes of ALL, 327 diagnostic BM samples were used. The criteria for inclusion in this data set were the availability of a cryopreserved diagnostic BM sample containing $\geq 5\%$ blasts, and complete data from each of the following diagnostic studies: morphology, immunophenotype, cytogenetics, DNA ploidy, Southern blot for MLL 10 gene rearrangements, and RT-PCR analysis for MLL-AF4, MLL-AF9, E2A-PBX1, TEL-AML1, and BCR-ABL. This final data set includes diagnostic BM samples from XV (38), XIV (4), XIII A (100), XIII B (161), or from patients treated on one of our older protocols or by best clinical management (24).

15 The data sets used to identify expression profiles prediative of hematologic relapse and the development of therapy-induced AML are described in Table 1.

Table 1: Patient Database
Diagnostic samples used for subtype classification (n=327)

<i>BCR-ABL</i> subgroup (n=15)					
<u>Label[®]</u>	<u>Protocol[#]</u>	<u>Outcome[%]</u>	<u>Label[®]</u>	<u>Protocol[#]</u>	<u>Outcome[%]</u>
BCR-ABL-C1	T13B	CCR	BCR-ABL-#4	T11	NA
BCR-ABL-R1	T13A	Heme Relapse	BCR-ABL-#5	T12	NA
BCR-ABL-R2	T13A	Heme Relapse	BCR-ABL-#6	T12	NA
BCR-ABL-R3	T13B	Heme Relapse	BCR-ABL-#7	T12	NA
BCR-ABL-			BCR-ABL-#8	T14	NA
Hyperdip-R5	T13B	Heme Relapse	BCR-ABL-#9	T15	NA
BCR-ABL-#1	T13A	Censored	BCR-ABL-Hyperdip-#10	T12	NA
BCR-ABL-#2	T13B	Censored			
BCR-ABL-#3	T13B	Censored			

<i>E2A-PBX1</i> subgroup (n=27)					
<u>Label[®]</u>	<u>Protocol[#]</u>	<u>Outcome[%]</u>	<u>Label[®]</u>	<u>Protocol[#]</u>	<u>Outcome[%]</u>
E2A-PBX1-C1	T13A	CCR	E2A-PBX1-#1	Others	NA
E2A-PBX1-C2	T13A	CCR	E2A-PBX1-#2	Others	NA
E2A-PBX1-C3	T13A	CCR	E2A-PBX1-#3	Others	NA
E2A-PBX1-C4	T13A	CCR	E2A-PBX1-#4	Others	NA
E2A-PBX1-C5	T13A	CCR	E2A-PBX1-#5	Others	NA
E2A-PBX1-C6	T13B	CCR	E2A-PBX1-#6	Others	NA
E2A-PBX1-C7	T13B	CCR	E2A-PBX1-#7	T11	NA
E2A-PBX1-C8	T13B	CCR	E2A-PBX1-#8	T11	NA
E2A-PBX1-C9	T13B	CCR	E2A-PBX1-#9	T12	NA
E2A-PBX1-C10	T13B	CCR	E2A-PBX1-#10	T12	NA
E2A-PBX1-C11	T13B	CCR	E2A-PBX1-#11	T14	NA
E2A-PBX1-C12	T13B	CCR	E2A-PBX1-#12	T15	NA

E2A-PBX1-R1	T13B	Heme Relapse	E2A-PBX1-#13	T15	NA
E2A-PBX1-2M#1	T13B	2nd AML			

Hyperdip>50 subgroup (n=64)

Hyperdip>50-C1	T13A	CCR	Hyperdip>50-C33	T13B	CCR
Hyperdip>50-C2	T13A	CCR	Hyperdip>50-C34	T13B	CCR
Hyperdip>50-C3	T13A	CCR	Hyperdip>50-C35	T13B	CCR
Hyperdip>50-C4	T13A	CCR	Hyperdip>50-C36	T13B	CCR
Hyperdip>50-C5	T13A	CCR	Hyperdip>50-C37	T13B	CCR
Hyperdip>50-C6	T13A	CCR	Hyperdip>50-C38	T13B	CCR
Hyperdip>50-C7	T13A	CCR	Hyperdip>50-C39	T13B	CCR
Hyperdip>50-C8	T13A	CCR	Hyperdip>50-C40	T13B	CCR
Hyperdip>50-C9	T13A	CCR	Hyperdip>50-C41	T13B	CCR
Hyperdip>50-C10	T13A	CCR	Hyperdip>50-C42	T13B	CCR
Hyperdip>50-C11	T13A	CCR	Hyperdip>50-C43	T13B	CCR
					Heme
Hyperdip>50-C12	T13A	CCR	Hyperdip>50-R1	T13A	Relapse
					Heme
Hyperdip>50-C13	T13A	CCR	Hyperdip>50-R2	T13A	Relapse
					Heme
Hyperdip>50-C14	T13A	CCR	Hyperdip>50-R3	T13A	Relapse
					Heme
Hyperdip>50-C15	T13B	CCR	Hyperdip>50-R4	T13B	Relapse
					Heme
Hyperdip>50-C16	T13B	CCR	Hyperdip>50-R5	T13B	Relapse
Hyperdip>50-C17	T13B	CCR	Hyperdip>50-2M#1	T13A	2nd AML
Hyperdip>50-C18	T13B	CCR	Hyperdip>50-2M#2	T13B	2nd AML
Hyperdip>50-C19	T13B	CCR	Hyperdip>50-#1	T13A	Censored
Hyperdip>50-C20	T13B	CCR	Hyperdip>50-#2	T13B	Censored
Hyperdip>50-C21	T13B	CCR	Hyperdip>50-#3	Others	NA
Hyperdip>50-C22	T13B	CCR	Hyperdip>50-#4	Others	NA
Hyperdip>50-C23	T13B	CCR	Hyperdip>50-#5	T12	NA
Hyperdip>50-C24	T13B	CCR	Hyperdip>50-#6	T15	NA
Hyperdip>50-C25	T13B	CCR	Hyperdip>50-#7	T15	NA
Hyperdip>50-C26	T13B	CCR	Hyperdip>50-#8	T15	NA
Hyperdip>50-C27-N	T13B	CCR	Hyperdip>50-#9	T15	NA
Hyperdip>50-C28	T13B	CCR	Hyperdip>50-#10	T15	NA
Hyperdip>50-C29	T13B	CCR	Hyperdip>50-#11	T15	NA
Hyperdip>50-C30	T13B	CCR	Hyperdip>50-#12	T15	NA
Hyperdip>50-C31	T13B	CCR	Hyperdip>50-#13	T15	NA
Hyperdip>50-C32	T13B	CCR	Hyperdip>50-#14	T15	NA

Hyperdip47-50 subgroup (n=23)

Hyperdip47-50-C1	T13A	CCR	Hyperdip47-50-C13	T13B	CCR
Hyperdip47-50-C2	T13A	CCR	Hyperdip47-50-C14-N	T13B	CCR
Hyperdip47-50-C3-N	T13A	CCR	Hyperdip47-50-C15	T13B	CCR
Hyperdip47-50-C4	T13A	CCR	Hyperdip47-50-C16	T13B	CCR
Hyperdip47-50-C5	T13A	CCR	Hyperdip47-50-C17	T13B	CCR

Hyperdip47-50-C6	T13B	CCR	Hyperdip47-50-C18	T13B	CCR
Hyperdip47-50-C7	T13B	CCR	Hyperdip47-50-C19	T13B	CCR
Hyperdip47-50-C8	T13B	CCR	Hyperdip47-50-2M#1	T13A	2nd AML
Hyperdip47-50-C9	T13B	CCR	Hyperdip47-50-#1	T15	NA
Hyperdip47-50-C10	T13B	CCR	Hyperdip47-50-#2	T15	NA
Hyperdip47-50-C11	T13B	CCR	Hyperdip47-50-#3	T15	NA
Hyperdip47-50-C12	T13B	CCR			

Hypodip subgroup (n=9)

Hypodip-C1	T13A	CCR	Hypodip-C6	T13B	CCR
Hypodip-C2	T13A	CCR	Hypodip-2M#1	T13A	2nd AML
Hypodip-C3	T13B	CCR	Hypodip-#1	T15	NA
Hypodip-C4	T13B	CCR	Hypodip-#2	T15	NA
Hypodip-C5	T13B	CCR			

MLL subgroup (n=20)

MLL-C1	T13A	CCR	MLL-2M#1	T13A	2nd AML
MLL-C2	T13B	CCR	MLL-2M#2	T13A	2nd AML
MLL-C3	T13B	CCR	MLL-#1	T13B	Censored
MLL-C4	T13B	CCR	MLL-#2	T13B	Censored
MLL-C5	T13B	CCR	MLL-#3	Others	NA
MLL-C6	T13B	CCR	MLL-#4	Others	NA
MLL-R1	T13A	Heme Relapse	MLL-#5	Others	NA
MLL-R2	T13A	Heme Relapse	MLL-#6	T12	NA
MLL-R3	T13B	Heme Relapse	MLL-#7	T14	NA
MLL-R4	T13B	Heme Relapse	MLL-#8	T14	NA

Normal subgroup (n=18)

Normal-C1-N	T13A	CCR	Normal-C10	T13B	CCR
Normal-C2-N	T13A	CCR	Normal-C11-N	T13B	CCR
Normal-C3-N	T13A	CCR	Normal-C12	T13B	CCR
					Heme
Normal-C4-N	T13B	CCR	Normal-R1	T13A	Relapse
					Heme
Normal-C5	T13B	CCR	Normal-R2-N	T13B	Relapse
					Heme
Normal-C6	T13B	CCR	Normal-R3	T13B	Relapse
Normal-C7-N	T13B	CCR	Normal-#1	T13A	Censored
Normal-C8	T13B	CCR	Normal-#2	T13B	Censored
Normal-C9	T13B	CCR	Normal-#3	T13B	Censored

Pseudodip subgroup (n=29)

Pseudodip-C1	T13A	CCR	Pseudodip-C16-N	T13B	CCR
Pseudodip-C2-N	T13A	CCR	Pseudodip-C17	T13B	CCR
Pseudodip-C3	T13A	CCR	Pseudodip-C18	T13B	CCR
Pseudodip-C4	T13A	CCR	Pseudodip-C19	T13B	CCR
					Heme
Pseudodip-C5	T13A	CCR	Pseudodip-R1-N	T13A	Relapse

				Other
Pseudodip-C6	T13A	CCR	Pseudodip-#1	T13B
Pseudodip-C7	T13A	CCR	Pseudodip-#2	T13B
Pseudodip-C8	T13A	CCR	Pseudodip-#3	Others
Pseudodip-C9	T13A	CCR	Pseudodip-#4	Others
Pseudodip-C10	T13B	CCR	Pseudodip-#5	T15
Pseudodip-C11	T13B	CCR	Pseudodip-#6	T15
Pseudodip-C12	T13B	CCR	Pseudodip-#7	T15
Pseudodip-C13	T13B	CCR	Pseudodip-#8-N	T15
Pseudodip-C14	T13B	CCR	Pseudodip-#9	T15
Pseudodip-C15	T13B	CCR		NA

T-ALL subgroup (n=43)

T-ALL-C1	T13A	CCR	T-ALL-C23	T13B	CCR
T-ALL-C2	T13A	CCR	T-ALL-C24	T13B	CCR
T-ALL-C3	T13A	CCR	T-ALL-C25	T13B	CCR
T-ALL-C4	T13A	CCR	T-ALL-C26	T13B	CCR
					Heme
T-ALL-C5	T13A	CCR	T-ALL-R1	T13A	Relapse
					Heme
T-ALL-C6	T13A	CCR	T-ALL-R2	T13B	Relapse
					Heme
T-ALL-C7	T13A	CCR	T-ALL-R3	T13B	Relapse
					Heme
T-ALL-C8	T13A	CCR	T-ALL-R4	T13B	Relapse
					Heme
T-ALL-C9	T13B	CCR	T-ALL-R5	T13B	Relapse
					Heme
T-ALL-C10	T13B	CCR	T-ALL-R6	T13B	Relapse
T-ALL-C11	T13B	CCR	T-ALL-2M#1	T13B	2nd AML
					Other
T-ALL-C12	T13B	CCR	T-ALL-#1	T13B	Relapse
					Other
T-ALL-C13	T13B	CCR	T-ALL-#2	T13B	Relapse
T-ALL-C14	T13B	CCR	T-ALL-#4	T13B	Censored
T-ALL-C15	T13B	CCR	T-ALL-#5	T13B	Censored
T-ALL-C16	T13B	CCR	T-ALL-#6	T15	NA
T-ALL-C17	T13B	CCR	T-ALL-#7	T15	NA
T-ALL-C18	T13B	CCR	T-ALL-#8	T15	NA
T-ALL-C19	T13B	CCR	T-ALL-#9	T15	NA
T-ALL-C20	T13B	CCR	T-ALL-#10	T15	NA
T-ALL-C21	T13B	CCR	T-ALL-#11	T15	NA
T-ALL-C22	T13B	CCR			

TEL-AML1 subgroup (n=79)

TEL-AML1-C1	T13A	CCR	TEL-AML1-C41	T13B	CCR
TEL-AML1-C2	T13A	CCR	TEL-AML1-C42	T13B	CCR
TEL-AML1-C3	T13A	CCR	TEL-AML1-C43	T13B	CCR
TEL-AML1-C4	T13A	CCR	TEL-AML1-C44	T13B	CCR
TEL-AML1-C5	T13A	CCR	TEL-AML1-C45	T13B	CCR
TEL-AML1-C6	T13A	CCR	TEL-AML1-C46	T13B	CCR
TEL-AML1-C7	T13A	CCR	TEL-AML1-C47	T13B	CCR
TEL-AML1-C8	T13A	CCR	TEL-AML1-C48	T13B	CCR
TEL-AML1-C9	T13A	CCR	TEL-AML1-C49	T13B	CCR
TEL-AML1-C10	T13A	CCR	TEL-AML1-C50	T13B	CCR

TEL-AML1-C11	T13A	CCR	TEL-AML1-C51	T13B	CCR
TEL-AML1-C12	T13A	CCR	TEL-AML1-C52	T13B	CCR
TEL-AML1-C13	T13A	CCR	TEL-AML1-C53	T13B	CCR
TEL-AML1-C14	T13A	CCR	TEL-AML1-C54	T13B	CCR
TEL-AML1-C15	T13A	CCR	TEL-AML1-C55	T13B	CCR
TEL-AML1-C16	T13A	CCR	TEL-AML1-C56	T13B	CCR
TEL-AML1-C17	T13A	CCR	TEL-AML1-C57	T13B	Heme
TEL-AML1-C18	T13A	CCR	TEL-AML1-R1	T13A	Relapse Heme
TEL-AML1-C19	T13A	CCR	TEL-AML1-R2	T13A	Relapse Heme
TEL-AML1-C20	T13A	CCR	TEL-AML1-R3	T13B	Relapse
TEL-AML1-C21	T13A	CCR	TEL-AML1-2M#1	T13A	2nd AML
TEL-AML1-C22	T13A	CCR	TEL-AML1-2M#2	T13A	2nd AML
TEL-AML1-C23	T13A	CCR	TEL-AML1-2M#3	T13A	2nd AML
TEL-AML1-C24	T13A	CCR	TEL-AML1-2M#4	T13B	2nd AML
TEL-AML1-C25	T13A	CCR	TEL-AML1-2M#5	T13B	2nd AML Other
TEL-AML1-C26	T13A	CCR	TEL-AML1-#1	T13B	Relapse
TEL-AML1-C27	T13A	CCR	TEL-AML1-#2	T13A	Censored
TEL-AML1-C28	T13A	CCR	TEL-AML1-#3	T13A	Censored
TEL-AML1-C29	T13B	CCR	TEL-AML1-#4	T13B	Censored
TEL-AML1-C30	T13B	CCR	TEL-AML1-#5	T15	NA
TEL-AML1-C31	T13B	CCR	TEL-AML1-#6	T15	NA
TEL-AML1-C32	T13B	CCR	TEL-AML1-#7	T15	NA
TEL-AML1-C33	T13B	CCR	TEL-AML1-#8	T15	NA
TEL-AML1-C34	T13B	CCR	TEL-AML1-#9	T15	NA
TEL-AML1-C35	T13B	CCR	TEL-AML1-#10	T15	NA
TEL-AML1-C36	T13B	CCR	TEL-AML1-#11	T15	NA
TEL-AML1-C37	T13B	CCR	TEL-AML1-#12	T15	NA
TEL-AML1-C38	T13B	CCR	TEL-AML1-#13	T15	NA
TEL-AML1-C39	T13B	CCR	TEL-AML1-#14	T15	NA
TEL-AML1-C40	T13B	CCR			

@Label key-

- 5 Subtype Name-C# Dx Sample of patient in CCR
 Subtype Name-R# Dx Sample of patient who developed a hematologic relapse
 Subtype Name-# Dx Sample used for subgroup classification only
 Subtype Name-2M# Dx Sample of patient who later developed 2nd AML
 Subtype Name-N Dx Sample in novel group

10 #Protocol- Protocol that patient was treated on

- 15 %Outcome-
 CCR Continuous complete remission
 Heme Relapse Hematologic relapse
 Other Relapse Extramedullary relapse
 2nd AML Diagnostic samples of patients who later developed 2nd AML
 Censored Censored due to BM transplant, treated off protocol, or died in CR

NA Not applicable, primarily because the patient was not treated on Total 13, and thus is excluded from the analysis used to identify gene expression profiles predictive of outcome

5

H. Diagnostic Samples Used for Prediction of Prognosis

In addition to the 201 CCR and 27 Heme Relapse cases listed in Table 1, five additional relapse cases were also included in the prognostic analysis, giving a total of 233 cases for this analysis. These additional cases were not included in the subgroup prediction data set because they did not meet the established criteria for the reasons listed below.

	Label	Protocol	Comment
	BCR-ABL-R4	T13B	Did not meet QC criteria because contained 70% blasts
15	MLL-R5	T13A	Peripheral Blood Sample (90% blasts)
	Normal-R4	T13B	Molecular studies not performed
	T-ALL-R7	T13A	Peripheral Blood Sample (90% blasts)
	T-ALL-R8	T13B	Peripheral Blood Sample (90% blasts)

I. Diagnostic Samples used for prediction of Secondary AML

In addition to the 201 CCR and 13 secondary AML cases listed in Table 1, three additional diagnostic marrow samples from patients who developed secondary AML were also included in the prognostic analysis. This gives a total of 217 cases used for this analysis. These additional cases were not included in the diagnostic data set because they did not meet the established criteria for the reasons listed below.

	Label	Protocol	Comment
	Hyperdip>50-2M#3	T12	Non Total 13 diagnostic sample
	Hypodip-2M#2	T13B	No molecular studies performed
	Hypodip-2M#3	T12	Non Total 13 diagnostic sample

30

Relapsed Samples (n=25)

Twenty-five relapse samples were analyzed, 17 samples which were paired to the diagnostic samples listed above (Subtype Name-2M#), and 8 additional non-paired relapse samples.

35

Detailed Analysis

A. Hierarchical cluster analysis of diagnostic cases using all genes that passed the variation filter

5 Two-dimensional hierarchical clustering was performed using Pearson correlation coefficient and an unweighted pair group method using arithmetic averages (GeneMaths, version 1.5). The results of hierarchical clustering of the 327 diagnostic samples using the 10,991 probe sets that passed the variation filter can be viewed at our web site, www.stjuderesearch.org/ALL1.

10

B. Methods for gene selection

Discriminating genes for the various leukemia subtypes were selected using a variety of statistical metrics. The individual metrics used and the list of selected probe sets and corresponding genes are given below.

15

1. Chi-Square

The Chi square method evaluates each gene individually by measuring the Chi square statistics with respect to the classes. The method first discretizes the observed expression values of the gene into several intervals using an entropy-based discretization method¹. The Chi square statistics of a gene is then calculated as $X^2 = \sum \sum (A_{ij} - E_{ij})^2 / E_{ij}$, summing over intervals $i = 1..m$ and classes $j = 1..k$. A_{ij} is the number of samples in the i^{th} interval that are of the j^{th} class. E_{ij} is the expected frequency of A_{ij} and is calculated as $E_{ij} = R_i * C_j / N$, where R_i is the number of samples in the i^{th} interval, C_j is the number of samples in the j^{th} class, and N is the total number of samples. The genes are then sorted according to their Chi square statistics: the larger the Chi square statistics, the more important the gene. The 40 genes with the highest Chi square statistics in each subtype are listed in Tables 2-8. Generally, using anywhere from the top 20 to 40 genes did not result in significant differences in subtype prediction accuracy. Therefore, only the top 20 genes in subtype prediction were used, unless noted otherwise.

Table 2. Genes selected by Chi square: *BCR-ABL*

Affymetrix number	Gene Name	GeneSymbol	Reference number	Chi square value	Above/Below Mean
1 1637_at	mitogen-activated protein kinase-activated protein kinase 3	MAPKAPK3	U09578	62.75	Above
2 36650_at	cyclin D2	CCND2	D13639	59.79	Above
3 40196_at	HYA22 protein	HYA22	D88153	54.79	Above
4 1635_at	proto-oncogene tyrosine-protein kinase ABL gene	ABL	U07563	54.77	Above
5 33775_s_at	caspase 8 apoptosis-related cysteine protease	CASP8	X98176	49.70	Above
6 1636_g_at	proto-oncogene tyrosine-protein kinase ABL gene	ABL	U07563	48.29	Above
7 41295_at	GTT1 protein	GTT1	AL041780	42.60	Above
8 37600_at	extracellular matrix protein 1	ECM1	U68186	42.60	Above
9 37012_at	capping protein actin filament muscle Z-line beta	CAPZB	U03271	38.46	Above
10 39225_at	alkylglycerone phosphate synthase	AGPS	Y09443	38.46	Above
11 1326_at	caspase 10 apoptosis-related cysteine protease	CASP10	U60519	37.83	Above
12 34362_at	solute carrier family 2 facilitated glucose transporter member 5	SLC2A5	M55531	37.54	Above
13 33150_at	disrupter of silencing 10	SAS10	AI126004	36.95	Above
14 40051_at	TRAM-like protein	KIAA0057	D31762	36.95	Above
15 39061_at	bone marrow stromal cell antigen 2	BST2	D28137	36.95	Above
16 33172_at	hypothetical protein FLJ10849	FLJ10849	T75292	36.95	Above
17 37399_at	aldo-keto reductase family 1 member C3 3-alpha hydroxysteroid dehydrogenase type II	AKR1C3	D17793	36.95	Above
18 317_at	protease cysteine 1 legumain	PRSC1	D55696	36.95	Above
19 40953_at	calponin 3 acidic	CNN3	S80562	33.94	Above
20 330_s_at	tubulin, alpha 1, isoform 44	TUBA1	HG2259-HT2348	33.32	Above
21 40504_at	paraoxonase 2	PON2	AF001601	31.46	Above
22 38578_at	tumor necrosis factor receptor superfamily member 7	TNFRSF7	M63928	30.47	Above
23 39044_s_at	diacylglycerol kinase delta 130kD	DGKD	D73409	29.59	Below
24 36634_at	BTG family member 2	BTG2	U72649	29.16	Below
25 38119_at	glycophorin C Geibich blood group	GPC	X12496	29.16	Above
26 32562_at	endoglin Osler-Rendu-Weber syndrome 1	ENG	X72012	27.96	Above
27 33228_g_at	interleukin 10 receptor beta	IL10RB	AI984234	27.70	Below
28 37006_at	step II splicing factor SLU7	SLU7	AI660656	27.15	Above

29	38641_at	Homo sapiens mRNA for TSC-22-like protein		AJ133115	27.15	Above
30	38220_at	dihydropyrimidine dehydrogenase	DPYD	U20938	27.15	Above
31	1211_s_at	CASP2 and RIPK1 domain containing adaptor with death domain	CRADD	U84388	26.46	Above
32	39730_at	v-abl Abelson murine leukemia viral oncogene homolog 1	ABL1	X16416	25.90	Above
33	36591_at	tubulin alpha 1 testis specific	TUBA1	X06956	25.90	Above
34	36035_at	anchor attachment protein 1 Gaalp yeast homolog	GPAA1	AB002135	25.34	Above
35	980_at	Niemann-Pick disease type C1	NPC1	AF002020	25.29	Above
36	671_at	secreted protein acidic cysteine-rich osteonectin	SPARC	J03040	25.29	Above
37	40698_at	C-type calcium dependent carbohydrate-recognition domain lectin superfamily member 2 activation-induced	CLECSF2	X96719	23.80	Above
38	39330_s_at	actinin alpha 1	ACTN1	M95178	23.70	Above
39	1983_at	cyclin D2	CCND2	X68452	23.70	Above
40	2001_g_at	ataxia telangiectasia mutated	ATM	U26455	22.60	Above

Table 3: Genes selected by Chi Square for *E2A-PBX1*

Affymetrix number		Gene Name	GeneSymbol	Reference number	Chi square value	Above/Below Mean
1	41146_at	ADP-ribosyltransferase NAD poly ADP-ribose polymerase	ADPRT	J03473	187.00	Above
2	1287_at	ADP-ribosyltransferase NAD poly ADP-ribose polymerase	ADPRT	J03473	187.00	Above
3	32063_at	pre-B-cell leukemia transcription factor 1	PBX1	M86546	187.00	Above
4	33355_at	Homo sapiens cDNA FLJ12900 fis clone NT2RP2004321 (by CELERA serach of target sequence = PBX1)	PBX1	AL049381	187.00	Above
5	430_at	nucleoside phosphorylase	NP	X00737	187.00	Above
6	40454_at	FAT tumor suppressor Drosophila homolog	FAT	X87241	176.11	Above
7	753_at	nidogen 2	NID2	D86425	164.28	Above
8	33821_at	Human DNA sequence from clone RP3-483K16 on chromosome 6p12.1-21.1	HELO1	AL034374	155.00	Above
9	39614_at	KIAA0802 protein	KIAA0802	AB018345	153.46	Above
10	38340_at	huntingtin interacting protein-1-related	KIAA0655	AB014555	143.85	Above
11	1786_at	c-mer proto-oncogene tyrosine kinase	MERTK	U08023	142.34	Above
12	39929_at	KIAA0922 protein	KIAA0922	AB023139	139.97	Above

13	39379_at	Homo sapiens mRNA cDNA DKFZp586C1019 from clone DKFZp586C1019		AL049397	139.49	Above
14	717_at	GS3955 protein	GS3955	D87119	135.24	Above
15	362_at	protein kinase C zeta	PRKCZ	Z15108	131.36	Above
16	33513_at	signaling lymphocytic activation molecule	SLAM	U33017	131.36	Above
17	37225_at	KIAA0172 protein	KIAA0172	D79994	131.36	Above
18	854_at	B lymphoid tyrosine kinase	BLK	S76617	130.95	Above
19	35974_at	lymphoid-restricted membrane protein	LRMP	U10485	123.33	Above
20	36452_at	synaptopodin	KIAA1029	AB028952	123.33	Above
21	40648_at	c-mer proto-oncogene tyrosine kinase	MERTK	U08023	120.51	Above
22	38393_at	KIAA0247 gene product	KIAA0247	D87434	120.51	Above
23	38994_at	STAT induced STAT inhibitor-2	STATI2	AF037989	118.58	Below
24	34861_at	golgi autoantigen golgin subfamily a 3	GOLGA3	D63997	116.80	Above
25	38748_at	adenosine deaminase RNA- specific B1 homolog of rat RED1	ADARB1	U76421	114.13	Above
26	40113_at	GS3955 protein	GS3955	D87119	114.13	Above
27	36179_at	mitogen-activated protein kinase- activated protein kinase 2	MAPKAPK2	U12779	113.43	Above
28	37493_at	colony stimulating factor 2 receptor beta low-affinity granulocyte-macrophage	CSF2RB	H04668	113.04	Above
29	578_at	Human recombination activating protein (RAG2) gene	RAG2	M94633	111.32	Above
30	41017_at	myosin-binding protein H	MYBPH	U27266	109.73	Above
31	37625_at	interferon regulatory factor 4	IRF4	U52682	108.51	Above
32	38679_g_at	small nuclear ribonucleoprotein polypeptide E	SNRPE	AA733050	106.02	Above
33	1389_at	membrane metallo-endopeptidase neutral endopeptidase	MME	J03779	105.65	Below
34	34783_s_at	enkephalinase CALLA CD10 BUB3 budding uninhibited by benzimidazoles 3 yeast homolog	BUB3	AF047473	103.87	Above
35	36959_at	ubiquitin-conjugating enzyme E2 variant1	UBE2V1	U49278	103.87	Above
36	39864_at	cold inducible RNA-binding protein	CIRBP	D78134	99.76	Below
37	41862_at	KIAA0056 protein	KIAA0056	D29954	99.76	Above
38	41425_at	Friend leukemia virus integration 1	FLI1	M98833	96.47	Above
39	37177_at	CD58 antigen lymphocyte function-associated antigen 3	CD58	Y00636	93.84	Above
40	37485_at	fatty-acid-Coenzyme A ligase very long-chain 1	FACVL1	D88308	93.17	Above

Table 4: Genes selected by Chi square for Hyperdiploid >50

Affymetrix number	Gene Name	GeneSymbol	Reference number	Chi square value	Above/Below Mean
1 36620_at	superoxide dismutase 1 soluble amyotrophic lateral sclerosis 1 adult	SOD1	X02317	52.43	Above
2 37350_at	Human DNA sequence from clone 889N15 on chromosome Xq22.1-22.3.	PSMD10	AL031177	48.71	Above
3 171_at	von Hippel-Lindau binding protein 1	VBP1	U56833	45.80	Above
4 37677_at	phosphoglycerate kinase 1	PGK1	V00572	45.80	Above
5 41724_at	accessory proteins BAP31/BAP29	DXS1357E	X81109	45.58	Above
6 32207_at	membrane protein palmitoylated 1 55kD	MPP1	M64925	44.07	Above
7 38738_at	SMT3 suppressor of mif two 3 yeast homolog 1	SMT3H1	X99584	43.57	Above
8 40480_s_at	FYN oncogene related to SRC FGR YES	FYN	M14333	43.57	Above
9 38518_at	sex comb on midleg Drosophila like 2	SCML2	Y18004	43.20	Above
10 41132_r_at	heterogeneous nuclear ribonucleoprotein H2 H	HNRPH2	U01923	43.15	Above
11 31492_at	muscle specific gene	M9	AB019392	43.01	Below
12 38317_at	transcription elongation factor A SII like 1	TCEAL1	M99701	41.10	Above
13 40998_at	trinucleotide repeat containing 11 THR-associated protein 230 kDa subunit	TNRC11	AF071309	40.88	Above
14 35688_g_at	mature T-cell proliferation-1	MTCP1	Z24459	40.52	Above
15 40903_at	ATPase H transporting lysosomal vacuolar proton pump membrane sector associated protein M8-9	APT6M8-9	AL049929	40.33	Above
16 36489_at	phosphoribosyl pyrophosphate synthetase 1	PRPS1	D00860	40.33	Above
17 1520_s_at	interleukin 1 beta	IL1B	X04500	40.29	Above
18 35939_s_at	POU domain class 4 transcription factor 1	POU4F1	L20433	38.74	Above
19 38604_at	neuropeptide Y	NPY	AI198311	38.26	Above
20 31863_at	KIAA0179 protein	KIAA0179	D80001	38.26	Above
21 890_at	ubiquitin-conjugating enzyme E2A RAD6 homolog	UBE2A	M74524	37.99	Above
22 39402_at	interleukin 1 beta	IL1B	M15330	37.92	Above
23 41490_at	phosphoribosyl pyrophosphate synthetase 2	PRPS2	Y00971	37.72	Above
24 34753_at	synaptobrevin-like 1	SYBL1	X92396	37.72	Above
25 40891_f_at	DNA segment on chromosome X unique 9879 expressed sequence	DXS9879E	X92896	37.15	Above
26 306_s_at	high-mobility group nonhistone chromosomal protein 14	HMG14	J02621	37.15	Above

27	37640_at	hypoxanthine phosphoribosyltransferase 1 Lesch-Nyhan syndrome	HPRT1	M31642	37.15	Above
28	34829_at	dyskeratosis congenita 1 dyskerin	DKC1	U59151	36.48	Above
29	36169_at	NADH dehydrogenase ubiquinone 1 alpha subcomplex 1 7.5kD MWFE	NDUFA1	N47307	36.48	Above
30	38968_at	SH3-domain binding protein 5 BTK-associated	SH3BP5	AB005047	35.95	Above
31	36128_at	transmembrane trafficking protein	TMP21	L40397	35.88	Above
32	37014_at	myxovirus influenza resistance 1 homolog of murine interferon-inducible protein p78	MX1	M33882	35.65	Above
33	34374_g_at	upstream regulatory element binding protein 1	UREB1	Z97054	35.55	Above
34	36542_at	solute carrier family 9 sodium/hydrogen exchanger isoform 6	SLC9A6	AF030409	35.55	Above
35	688_at	proteasome prosome macropain 26S subunit ATPase 1	PSMC1	L02426	35.55	Above
36	955_at	calmodulin type I		HG1862-HT1897	35.55	Above
37	35816_at	cystatin B stefin B	CSTB	U46692	35.27	Above
38	38459_g_at	Human cytochrome b5 (CYB5) gene	CYB5	L39945	35.18	Above
39	41288_at	matrix Gla protein	MGP	AL036744	35.18	Above
40	32251_at	hypothetical protein FLJ21174	FLJ21174	AA149307	35.14	Above

Table 5: Genes selected by Chi square for *MLL*

	Affymetrix number	Gene Name	GeneSymbol	Reference number	Chi square value	Above/Below Mean
1	34306_at	muscleblind Drosophila like	MBNL	AB007888	64.07	Above
2	40797_at	a disintegrin and metalloproteinase domain 10	ADAM10	AF009615	62.85	Above
3	33412_at	LGALS1 Lectin, galactoside-binding, soluble, 1	LGALS1	AI535946	57.97	Above
4	39338_at	S100 calcium-binding protein A10 annexin II ligand calpastatin I light polypeptide p11	S100A10	AI201310	57.97	Above
5	2062_at	insulin-like growth factor binding protein 7	IGFBP7	L19182	55.22	Above
6	32193_at	plexin C1	PLXNC1	AF030339	53.59	Above
7	40518_at	protein tyrosine phosphatase receptor type C	PTPRC	Y00062	53.40	Above
8	36777_at	DNA segment on chromosome 12 unique 2489 expressed sequence	D12S2489E	AJ001687	51.47	Above
9	32207_at	membrane protein palmitoylated 1 55kD	MPP1	M64925	50.73	Below
10	33859_at	sin3-associated polypeptide 18kD	SAP18	U96915	50.48	Above

11	38391_at	capping protein actin filament gelsolin-like	CAPG	M94345	50.26	Above
12	40763_at	Meis1 mouse homolog	MEIS1	U85707	50.26	Above
13	1126_s_at	cell surface glycoprotein CD44 gene	CD44	L05424	50.17	Above
14	34721_at	FK506-binding protein 5	FKBP5	U42031	50.17	Above
15	37809_at	homeo box A9	HOXA9	U41813	50.17	Above
16	34861_at	golgi autoantigen golgin subfamily a 3	GOLGA3	D63997	47.58	Below
17	38194_s_at	immunoglobulin kappa constant	IGKC	M63438	46.18	Below
18	657_at	protocadherin gamma subfamily C 3	PCDHGC3	L11373	46.05	Above
19	36918_at	guanylate cyclase 1 soluble alpha 3	GUCY1A3	Y15723	43.90	Above
20	32215_i_at	KIAA0878 protein	KIAA0878	AB020685	43.90	Above
21	38160_at	lymphocyte antigen 75	LY75	AF011333	43.90	Above
22	38413_at	defender against cell death 1	DAD1	D15057	43.90	Above
23	1389_at	membrane metallo- endopeptidase neutral endopeptidase enkephalinase CALLA CD10	MME	J03779	43.82	Below
24	34168_at	deoxynucleotidyltransferase terminal	DNTT	M11722	43.82	Below
25	2036_s_at	CD44 antigen homing function and Indian blood group system	CD44	M59040	42.55	Above
26	40522_at	glutamate-ammonia ligase glutamine synthase	GLUL	X59834	42.55	Above
27	854_at	B lymphoid tyrosine kinase	BLK	S76617	42.34	Above
28	40067_at	E74-like factor 1 ets domain transcription factor	ELF1	M82882	40.85	Above
29	39756_g_at	X-box binding protein 1	XBP1	Z93930	39.95	Below
30	36940_at	TGFB1-induced anti-apoptotic factor 1	TIAF1	D86970	39.82	Below
31	36935_at	RAS p21 protein activator GTPase activating protein 1	RASA1	M23379	38.77	Above
32	32134_at	testin	DKFZP586 B2022	AL050162	38.77	Above
33	39379_at	Homo sapiens mRNA cDNA DKFZp586C1019 from clone DKFZp586C1019		AL049397	38.77	Above
34	40493_at	Human cell surface glycoprotein CD44 CD44		L05424	38.44	Above
35	769_s_at	annexin A2	ANXA2	D00017	37.61	Above
36	40415_at	acetyl-Coenzyme A	ACAA1	X14813	37.55	Above
37	35983_at	acyltransferase 1 peroxisomal 3- oxoacyl-Coenzyme A thiolase				
38	40519_at	hypothetical protein R32184_1	R32184_1	AC004528	37.55	Above
39	794_at	protein tyrosine phosphatase receptor type C	PTPRC	Y00638	36.56	Above
40	41234_at	protein tyrosine phosphatase non-receptor type 6	PTPN6	X62055	36.56	Above
		DnaJ Hsp40 homolog subfamily B member 6	DNAJB6	AI540318	36.56	Above

Table 6: Genes selected by Chi square for Novel risk group

	Affymetrix number	Gene Name	GeneSymbol	Reference number	Chi square value	Above/Below Mean
1	37960_at	carbohydrate chondroitin 6/keratan sulfotransferase 2	CHST2	AB014679	175.82	Above
2	31892_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	172.85	Above
3	994_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	172.85	Above
4	995_g_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	172.85	Above
5	41074_at	G protein-coupled receptor 49	GPR49	AF062006	139.36	Above
6	41073_at	G protein-coupled receptor 49	GPR49	AI743745	139.36	Above
7	34676_at	KIAA1099 protein	KIAA1099	AB029022	137.71	Above
8	36139_at	DKFZP586G0522 protein	DKFZP586G0522	AL050289	127.05	Above
9	37542_at	lipoma HMGIC fusion partner-like 2	LHFPL2	D86961	120.79	Above
10	41159_at	clathrin heavy polypeptide Hc	CLTC	D21260	115.15	Above
11	40081_at	phospholipid transfer protein	PLTP	L26232	108.33	Above
12	32800_at	Human retinoid X receptor alpha mRNA, 3' UTR, partial sequence	RXR	U66306	107.39	Above
13	36906_at	cannabinoid receptor 1 brain	CNR1	U73304	107.39	Above
14	39878_at	protocadherin 9	PCDH9	AI524125	99.20	Above
15	41747_s_at	Human myocyte-specific enhancer factor 2A (MEF2A) gene, last coding exon, and complete cds.	MEF2A	U49020	99.20	Above
16	33410_at	integrin alpha 6	ITGA6	S66213	96.17	Above
17	34947_at	phorbolin-like protein MDS019	MDS019	AA442560	93.59	Above
18	36029_at	chromosome 11 open reading frame 8	C11ORF8	U57911	93.59	Above
19	41708_at	KIAA1034 protein	KIAA1034	AB028957	92.60	Above
20	1664_at	insulin-like growth factor 2	IGF2	HG3543-HT3739	92.60	Above
21	32736_at	HSPC022 protein	HSPC022	W68830	91.62	Below
22	41266_at	integrin alpha 6	ITGA6	X53586	86.95	Above
23	36566_at	cystinosis nephropathic	CTNS	AJ222967	82.89	Above
24	1825_at	IQ motif containing GTPase activating protein 1	IQGAP1	L33075	81.20	Below
25	1731_at	platelet-derived growth factor receptor alpha polypeptide	PDGFRA	M21574	78.22	Above
26	37023_at	lymphocyte cytosolic protein 1 L-plastin	LCP1	J02923	78.22	Below
27	33037_at	carbohydrate N-acetylglucosamine 6-O sulfotransferase 7	CHST7	AL022165	76.00	Above
28	33411_g_at	integrin alpha 6	ITGA6	S66213	75.47	Above
29	538_at	CD34 antigen	CD34	S53911	74.86	Above

30	39108_at	lanosterol synthase 2 3-oxidosqualene-lanosterol cyclase	LSS	U22526	71.90	Above
31	38364_at	BCE-1 protein	BCE-1	AF068197	71.90	Above
32	40423_at	KIAA0903 protein	KIAA0903	AB020710	71.29	Above
33	35192_at	glycine dehydrogenase decarboxylating glycine decarboxylase glycine cleavage system protein P	GLDC	D90239	71.29	Above
34	39037_at	myeloid/lymphoid or mixed-lineage leukemia trithorax Drosophila homolog translocated to 2	MLLT2	L13773	71.29	Above
35	38747_at	Human CD34 gene, exon 8.	CD34	M81945	69.45	Above
36	37687_i_at	Fc fragment of IgG low affinity IIa receptor for CD32	FCGR2A	M31932	67.75	Above
37	1857_at	MAD mothers against decapentaplegic Drosophila homolog 7	MADH7	AF010193	66.28	Above
38	38618_at	Human PAC clone RP3-515N1 from 22q11.2-q22	LIMK2	AC002073	64.03	Above
39	31782_at	prostaglandin D2 receptor DP	PTGDR	U31099	61.92	Above
40	32842_at	B-cell CLL/lymphoma 7A	BCL7A	X89984	61.57	Above

Table 7. Genes selected for Chi square for T-ALL

	Affymetrix number	Gene Name	GeneSymbol	Reference number	Chi square value	Above/Below Mean
1	38319_at	CD3D antigen delta polypeptide TiT3 complex	CD3D	AA919102	215.00	Above
2	1096_g_at	CD19 antigen	CD19	M28170	206.48	Below
3	38242_at	B cell linker protein	SLP65	AF068180	198.52	Below
4	32794_g_at	T cell receptor beta locus	TRB	X00437	197.71	Above
5	37988_at	CD79B antigen immunoglobulin-associated beta	CD79B	M89957	197.71	Below
6	38017_at	CD79A antigen immunoglobulin-associated alpha	CD79A	U05259	197.53	Below
7	35016_at	Human Ia-associated invariant gamma-chain gene, exon 8, clones lambda-y(1,2,3).	M13560	M13560		Below
8	36277_at	Human membran protein (CD3- epsilon) gene, exon 9.	CD3E	M23323	197.53	Above
9	38095_i_at	major histocompatibility complex class II DP beta 1	HLA-DPB1	M83664	191.09	Below
10	39318_at	T-cell leukemia/lymphoma 1A	TCL1A	X82240	189.78	Below
11	38147_at	SH2 domain protein 1A Duncan s disease lymphoproliferative syndrome	SH2D1A	AL023657	189.78	Above
12	41723_s_at	major histocompatibility complex class II DR beta 1	HLA-DRB1	M32578	189.25	Below

13	38833_at	Human mRNA for SB classII histocompatibility antigen alpha-chain		X00457	189.03	Below
14	33238_at	Human T-lymphocyte specific protein tyrosine kinase p56lck (lck) abberant mRNA	lck	U23852	189.03	Above
15	37039_at	major histocompatibility complex class II DR alpha	HLA-DRA	J00194	188.93	Below
16	38051_at	mal T-cell differentiation protein MAL		X76220	188.93	Above
17	37344_at	major histocompatibility complex class II DM alpha	HLA-DMA	X62744	187.25	Below
18	38096_f_at	major histocompatibility complex class II DP beta 1	HLA-DPB1	M83664	182.38	Below
19	2059_s_at	lymphocyte-specific protein tyrosine kinase	LCK	M36881	182.38	Above
20	1105_s_at	T cell receptor beta locus	TRB	M12886	180.45	Above
21	32649_at	transcription factor 7 T-cell specific HMG-box	TCF7	X59871	177.84	Above
22	38949_at	protein kinase C theta	PRKCQ	L01087	172.59	Below
23	39709_at	selenoprotein W 1	SEPW1	U67171	171.96	Above
24	41165_g_at	immunoglobulin heavy constant mu	IGHM	X67301	171.96	Below
25	36473_at	ubiquitin specific protease 20	USP20	AB023220	167.27	Above
26	266_s_at	CD24 antigen small cell lung carcinoma cluster 4 antigen	CD24	L33930	165.56	Below
27	40570_at	forkhead box O1A rhabdomyosarcoma	FOXO1A	AF032885	165.29	Below
28	40775_at	integral membrane protein 2A	ITM2A	AL021786	164.14	Above
29	37420_i_at	Human DNA sequence from clone RP3-377H14 on chromosome 6p21.32-22.1.		AL022723	164.14	Below
30	1085_s_at	phospholipase C gamma 2 phosphatidylinositol-specific	PLCG2	M37238	161.30	Below
31	38018_g_at	CD79A antigen immunoglobulin-associated alpha	CD79A	U05259	160.51	Below
32	35643_at	nucleobindin 2	NUCB2	X76732	160.07	Above
33	41166_at	immunoglobulin heavy constant mu	IGHM	X58529	158.50	Below
34	38415_at	protein tyrosine phosphatase type IVA member 2	PTP4A2	U14603	155.78	Above
35	38893_at	neutrophil cytosolic factor 4 40kD	NCF4	AL008637	155.78	Below
36	1241_at	protein tyrosine phosphatase type IVA member 2	PTP4A2	U14603	155.78	Above
37	32793_at	T cell receptor beta locus	TRB	X00437	155.43	Above
38	36571_at	topoisomerase DNA II beta 180kD	TOP2B	X68060	152.16	Below
39	37399_at	aldo-keto reductase family 1 member C3 3-alpha hydroxysteroid dehydrogenase type II	AKR1C3	D17793	151.93	Above
40	41097_at	telomeric repeat binding factor 2 TERF2		AF002999	151.86	Below

Table 8. Genes selected by Chi square for TEL-AML1

Affymetrix number	Gene Name	GeneSymbol	Reference number	Chi square value	Above/Below Mean
1 38652_at	hypothetical protein FLJ20154	FLJ20154	AF070644	137.92	Above
2 36239_at	POU domain class 2 associating factor 1	POU2AF1	Z49194	131.43	Above
3 41442_at	core-binding factor runt domain alpha subunit 2 translocated to 3	CBFA2T3	AB010419	130.17	Above
4 37780_at	piccolo presynaptic cytomatrix protein	PCLO	AB011131	126.79	Above
5 36985_at	isopentenyl-diphosphate delta isomerase	IDI1	X17025	125.47	Above
6 38578_at	tumor necrosis factor receptor superfamily member 7	TNFRSF7	M63928	115.72	Above
7 38203_at	potassium intermediate/small conductance calcium-activated channel subfamily N member 1	KCNN1	U69883	112.87	Above
8 35614_at	transcription factor-like 5 basic helix-loop-helix	TCFL5	AB012124	108.45	Above
9 32224_at	KIAA0769 gene product	KIAA0769	AB018312	107.08	Above
10 32730_at	Homo sapiens mRNA for KIAA1750 protein partial cds		AL080059	104.93	Above
11 35665_at	phosphoinositide-3-kinase class 3	PIK3C3	Z46973	104.83	Above
12 1077_at	recombination activating gene 1	RAG1	M29474	102.90	Above
13 36524_at	Rho guanine nucleotide exchange factor GEF 4	ARHGEF4	AB029035	100.67	Above
14 34194_at	Homo sapiens cDNA FLJ21697 fis clone COL09740		AL049313	98.31	Above
15 36937_s_at	PDZ and LIM domain 1 elfin	PDLIM1	U90878	96.91	Below
16 36008_at	protein tyrosine phosphatase type IVA member 3	PTP4A3	AF041434	96.68	Above
17 1299_at	telomeric repeat binding factor 2	TERF2	X93512	93.08	Above
18 41814_at	fucosidase alpha-L- 1 tissue	FUCA1	M29877	92.77	Above
19 41200_at	CD36 antigen collagen type I receptor thrombospondin receptor like 1	CD36L1	Z22555	90.86	Above
20 35238_at	TNF receptor-associated factor 5	TRAF5	AB000509	90.81	Above
21 880_at	FK506-binding protein 1A 12kD	FKBP1A	M34539	86.69	Above
22 33690_at	Homo sapiens mRNA cDNA DKFZp434A202 from clone DKFZp434A202		AL080190	86.69	Above
23 40272_at	collapsin response mediator protein 1	CRMP1	D78012	85.44	Above
24 35362_at	myosin X	MYO10	AB018342	83.60	Above
25 41819_at	FYN-binding protein FYB-120/130	FYB	U93049	83.25	Above
26 40279_at	KIAA0121 gene product	KIAA0121	D50911	81.66	Above
27 1488_at	protein tyrosine phosphatase receptor type K	PTPRK	L77886	81.66	Above

28	1325_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59423	81.17	Above
29	37908_at	guanine nucleotide binding protein 11	GNG11	U31384	80.37	Above
30	769_s_at	annexin A2	ANXA2	D00017	78.68	Below
31	33415_at	non-metastatic cells 2 protein NM23B expressed in	NME2	X58965	77.04	Below
32	1980_s_at	non-metastatic cells 2 protein NM23B expressed in	NME2	X58965	76.35	Below
33	32579_at	SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily a member 4	SMARCA4	D26156	76.35	Above
34	39425_at	thioredoxin reductase 1	TXNRD1	X91247	75.97	Above
35	755_at	inositol 1 4 5-triphosphate receptor type 1	ITPR1	D26070	75.56	Above
36	37343_at	inositol 1 4 5-triphosphate receptor type 3	ITPR3	U01062	75.11	Above
37	1336_s_at	protein kinase C beta 1	PRKCB1	X06318	73.96	Above
38	41097_at	telomeric repeat binding factor 2	TERF2	AF002999	73.84	Above
39	31786_at	Sam68-like phosphotyrosine protein T-STAR	T-STAR	AF051321	73.72	Above
40	160029_at	protein kinase C beta 1	PRKCB1	X07109	73.66	Above

2. Correlation-based Feature Selection (CFS)

5 The Correlation-based Feature Selection (CFS) is a method that evaluates subsets of genes rather than individual genes. (Hall and Holmes (2000), "Benchmarking Attribute Selection Techniques for Data Mining," Working Paper 00/10, Department of Computer Science, University of Waikato, New Zealand). The core of the algorithm is a subset evaluation heuristic that takes into account the usefulness of individual features for predicting the class along with the level of intercorrelation among them with the belief that "good feature subsets contain features highly correlated with the class, yet uncorrelated with each other". The heuristic assigns a score Merit_s to a subset S containing k genes, defined as Merit_s = $(k * r_{cf}) / \sqrt{k + k * (k - 1) * r_{ff}}$, where r_{cf} is the average gene-class correlation and r_{ff} is the average gene-gene correlation. Like the Chi square method, CFS first discretizes the gene expressions into intervals and then calculates a matrix of gene-class and gene-gene correlations from the training data for merit calculation. The correlation between two genes or a gene and a class is calculated as $r_{xy} = 2 * [H(X) + H(Y) - H(X, Y)] / [H(X) + H(Y)]$, where H(X) is the entropy of a gene X. CFS starts

10

15

from an empty set of genes and uses the best-first search technique with a stopping criterion of 5 consecutive fully expanded non-improving subsets. The subset with the highest merit found during the search is selected. Tables 9-15 list the top gene subsets chosen by CFS for each subtype. For subtype prediction, each gene subset must be used in its entirety, as within each subset, all genes are equally ranked.

Table 9. Genes selected by CFS: *BCR-ABL*

Affymetrix number		Gene Name	GeneSymbol	Reference number	Above/Below Mean
1	36650_at	cyclin D2	CCND2	D13639	Above
2	40196_at	HYA22 protein	HYA22	D88153	Above
3	1635_at	proto-oncogene tyrosine-protein kinase (ABL) gene	ABL	U07563	Above
4	33775_s_at	caspase 8 apoptosis-related cysteine protease	CASP8	X98176	Above
5	1636_g_at	proto-oncogene tyrosine-protein kinase (ABL) gene	ABL	U07563	Above
6	41295_at	GTT1 protein	GTT1	AL041780	Above
7	1326_at	caspase 10 apoptosis-related cysteine protease	CASP10	U60519	Above
8	33150_at	disrupter of silencing 10	SAS10	AI126004	Above
9	40051_at	TRAM-like protein	KIAA0057	D31762	Above
10	39061_at	bone marrow stromal cell antigen 2	BST2	D28137	Above
11	33172_at	hypothetical protein FLJ10849	FLJ10849	T75292	Above
12	37399_at	aldo-keto reductase family 1 member C3 3-alpha hydroxysteroid dehydrogenase type II	AKR1C3	D17793	Above
13	317_at	protease cysteine 1 legumain	PRSC1	D55696	Above
14	330_s_at	tubulin, alpha 1, isoform 44	TUBA1	HG2259-HT2348	Above
15	38578_at	tumor necrosis factor receptor superfamily member 7	TNFRSF7	M63928	Above
16	39044_s_at	diacylglycerol kinase delta 130kD	DGKD	D73409	Below
17	32562_at	endoglin Osler-Rendu-Weber syndrome 1	ENG	X72012	Above
18	38641_at	Homo sapiens mRNA for TSC-22-like protein		AJ133115	Above
19	1211_s_at	CASP2 and RIPK1 domain containing CRADD adaptor with death domain		U84388	Above
20	39730_at	v-abl Abelson murine leukemia viral oncogene homolog 1	ABL1	X16416	Above
21	36591_at	tubulin alpha 1 testis specific anchor attachment protein 1 Gaalp yeast homolog	TUBA1	X06956	Above
22	36035_at		GPAA1	AB002135	Above

23	980_at	Niemann-Pick disease type C1	NPC1	AF002020	Above
24	40698_at	C-type calcium dependent carbohydrate-recognition domain lectin superfamily member 2 activation-induced	CLECSF2	X96719	Above
25	39330_s_at	actinin alpha 1	ACTN1	M95178	Above
26	2001_g_at	ataxia telangiectasia mutated includes complementation groups A C and D	ATM	U26455	Above
27	39319_at	lymphocyte cytosolic protein 2 SH2 domain-containing leukocyte protein of 76kD	LCP2	U20158	Above
28	37685_at	Clathrin assembly lymphoid-myeloid leukemia gene	CLTH	U45976	Above
29	33813_at	tumor necrosis factor receptor superfamily member 1B	TNFRSF1B	AI813532	Above
30	33134_at	adenylate cyclase 3	ADCY3	AB011083	Above
31	36536_at	schwannomin interacting protein 1	SCHIP-1	AF070614	Above
32	36985_at	isopentenyl-diphosphate delta isomerase	IDI1	X17025	Below
33	35991_at	Sm protein F	LSM6	AA917945	Above
34	33774_at	caspase 8 apoptosis-related cysteine protease	CASP8	X98172	Above
35	37470_at	leukocyte-associated Ig-like receptor 1	LAIR1	AF013249	Above
36	39245_at	Human 40871 mRNA partial sequence		U72507	Above
37	40076_at	tumor protein D52-like 2	TPD52L2	AF004430	Below
38	39370_at	Microtubule-associated proteins 1A and 1B light chain 3	MAP1ALC3	W28807	Below
39	41594_at	Janus kinase 1 a protein tyrosine kinase	JAK1	M64174	Above
40	41338_at	amino-terminal enhancer of split	AES	AI969192	Below
41	32319_at	tumor necrosis factor ligand superfamily member 4 tax-transcriptionally activated glycoprotein 1 34kD	TNFSF4	AL022310	Above
42	33924_at	KIAA1091 protein	KIAA1091	AB029014	Above
43	37397_at	platelet/endothelial cell adhesion molecule-1 (PECAM-1) gene	PECAM	L34657	Above
44	37190_at	WAS protein family member 1	WASF1	D87459	Below
45	39070_at	singed Drosophila like sea urchin fascin homolog like	SNL	U03057	Above
46	38994_at	STAT induced STAT inhibitor-2	STATI2	AF037989	Above
47	32621_at	down-regulator of transcription 1 TBP-binding negative cofactor 2	DR1	M97388	Above
48	40108_at	KIAA0005 gene product	KIAA0005	D13630	Below
49	35238_at	TNF receptor-associated factor 5	TRAF5	AB000509	Above
50	1558_g_at	p21/Cdc42/Rac1-activated kinase 1 yeast Ste20-related	PAK1	U24152	Above

51	1373_at	transcription factor 3 E2A immunoglobulin enhancer binding factors E12/E47	TCF3	M31523	Below
52	35731_at	integrin alpha 4 antigen CD49D alpha 4 subunit of VLA-4 receptor	ITGA4	X16983	Above
53	38659_at	suppressor of clear C. elegans homolog of	SHOC2	AB020669	Below

Table 10. Gene selected by CFS for *E2A-PBX1*

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean	
1	33355_at	Homo sapiens cDNA FLJ12900 fis clone NT2RP2004321 (by CELERA search of target sequence = PBX1)	PBX1	AL049381	Above

Table 11. Genes selected by CFS for: Hyperdiploid >50

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean	
1	36620_at	superoxide dismutase 1 soluble amyotrophic lateral sclerosis 1 adult	SOD1	X02317	Above
2	37350_at	clone 889N15 on chromosome Xq22.1-22.3. Contains part of the gene for a novel protein similar to X. laevis Cortical Thymocyte Marker CTX	PSMD10	AL031177	Above
3	41724_at	accessory proteins BAP31/BAP29	DXS1357E	X81109	Above
4	38738_at	SMT3 suppressor of mif two 3 yeast homolog 1	SMT3H1	X99584	Above
5	40480_s_at	FYN oncogene related to SRC FGR YES	FYN	M14333	Above
6	38518_at	sex comb on midleg Drosophila like 2	SCML2	Y18004	Above
7	31492_at	muscle specific gene	M9	AB019392	Below
8	35688_g_at	mature T-cell proliferation 1	MTCP1	Z24459	Above
9	35939_s_at	POU domain class 4 transcription factor 1	POU4F1	L20433	Above
10	36128_at	transmembrane trafficking protein	TMP21	L40397	Above
11	37014_at	myxovirus influenza resistance 1 homolog of murine interferon-inducible protein p78	MX1	M33882	Above
12	34374_g_at	upstream regulatory element binding protein 1	UREB1	Z97054	Above
13	688_at	proteasome prosome macropain 26S subunit ATPase 1	PSMC1	L02426	Above
14	39878_at	protocadherin 9	PCDH9	AI524125	Below
15	38771_at	histone deacetylase 1	HDAC1	D50405	Below

16	865_at	ribosomal protein S6 kinase 90kD polypeptide 3	RPS6KA3	U08316	Above
17	41143_at	calmodulin (CALM1) gene	CALM1	U12022	Above
18	39867_at	Tu translation elongation factor mitochondrial	TUFM	S75463	Below
19	41470_at	prominin mouse like 1	PROML1	AF027208	Above
20	41503_at	KIAA0854 protein	KIAA0854	AB020661	Below
21	2039_s_at	FYN oncogene related to SRC FGR YES	FYN	M14333	Above
22	36845_at	KIAA0136 protein	KIAA0136	D50926	Above
23	36940_at	TGFB1-induced anti-apoptotic factor 1	TIAF1	D86970	Above
24	32236_at	ubiquitin-conjugating enzyme E2G 2 homologous to yeast UBC7	UBE2G2	AF032456	Above
25	36885_at	spleen tyrosine kinase	SYK	L28824	Below
26	40200_at	heat shock transcription factor 1	HSF1	M64673	Below
27	40842_at	U1 snRNP-specific protein A gene	SNRPA	M60784	Below
28	40514_at	hypothetical 43.2 Kd protein	LOC51614	AF091085	Below
29	41222_at	signal transducer and activator of transcription 6 (STAT6) gene	STAT6	AF067575	Below
30	1294_at	ubiquitin-activating enzyme E1-like	UBE1L	L13852	Below
31	34315_at	AFG3 ATPase family gene 3 yeast like 2	AFG3L2	Y18314	Above
32	39806_at	DKFZP547E2110 protein	DKFZP547E21 10	AL050261	Above
33	40875_s_at	small nuclear ribonucleoprotein 70kD polypeptide RNP antigen	SNRP70	X06815	Below
34	38458_at	cytochrome b5 (CYB5) gene	CYB5	L39945	Above
35	1817_at	prefoldin 5	PFDN5	D89667	Below
36	34709_r_at	stromal antigen 2	STAG2	Z75331	Above
37	33447_at	myosin light polypeptide regulatory non-sarcomeric 20kD	MLCB	X54304	Above
38	1077_at	recombination activating gene 1	RAG1	M29474	Below
39	1915_s_at	v-fos FBJ murine osteosarcoma viral oncogene homolog	FOS	V01512	Above
40	38854_at	KIAA0635 gene product	KIAA0635	AB014535	Above
41	37732_at	RING1 and YY1 binding protein	RYBP	AL049940	Above
42	35940_at	POU domain class 4 transcription factor 1	POU4F1	X64624	Above
43	34733_at	splicing factor 3a subunit 1 120kD	SF3A1	X85237	Below
44	245_at	selectin L lymphocyte adhesion molecule 1	SELL	M25280	Below
45	40146_at	RAP1B member of RAS oncogene family	RAP1B	AL080212	Below
46	40104_at	serine/threonine kinase 25 Ste20 yeast homolog	STK25	D63780	Below
47	430_at	nucleoside phosphorylase	NP	X00737	Above

48	36899_at	special AT-rich sequence binding protein 1 binds to nuclear matrix/scaffold-associating DNA s	SATB1	M97287	Below
49	35727_at	hypothetical protein FLJ20517	FLJ20517	AI249721	Below
50	38649_at	KIAA0970 protein	KIAA0970	AB023187	Below
51	36107_at	ATP synthase H transporting mitochondrial F0 complex subunit F6	ATP5J	AA845575	Above
52	38789_at	transketolase Wernicke-Korsakoff syndrome calpain 3 p94	TKT	L12711	Below
53	39301_at		CAPN3	X85030	Below
54	41278_at	BAF53	BAF53A	AF041474	Below
55	41162_at	protein phosphatase 1G formerly 2C magnesium-dependent gamma isoform	PPM1G	Y13936	Below
56	37819_at	hypothetical protein	LOC54104	AF007130	Below
57	38717_at	DKFZP586A0522 protein	DKFZP586 A0522	AL050159	Below
58	40019_at	ecotropic viral integration site 2B	EVI2B	M60830	Above
59	39489_g_at	protocadherin 9	PCDH9	W27720	Below
60	857_at	protein phosphatase 1A formerly 2C magnesium-dependent alpha isoform	PPM1A	S87759	Above
61	32804_at	RNA binding motif protein 5	RBMS	AF091263	Below
62	37676_at	phosphodiesterase 8A	PDE8A	AF056490	Below
63	1519_at	v-ets avian erythroblastosis virus E26 oncogene homolog 2	ETS2	J04102	Above
64	37680_at	A kinase PRKA anchor protein gravin 12	AKAP12	U81607	Below
65	548_s_at	spleen tyrosine kinase	SYK	S80267	Below
66	39797_at	KIAA0349 protein	KIAA0349	AB002347	Above
67	32789_at	nuclear cap-binding protein subunit 2 20kD	NCBP2	AA149428	Below
68	38091_at	lectin galactoside-binding soluble 9 galectin 9	LGALS9	Z49107	Below
69	41223_at	cytochrome c oxidase subunit Va	COX5A	M22760	Below
70	933_f_at	zinc finger protein 91 HPF7 HTF10	ZNF91	L11672	Below
71	37012_at	capping protein actin filament muscle Z-line beta	CAPZB	U03271	Below
72	35214_at	UDP-glucose dehydrogenase	UGDH	AF061016	Above
73	32434_at	myristoylated alanine-rich protein kinase C substrate MARCKS 80K-L	MACS	D10522	Above
74	38345_at	centrosomal protein 1	CEP1	AF083322	Below
75	40404_s_at	CDC16 cell division cycle 16 S. cerevisiae homolog	CDC16	U18291	Below
76	39096_at	SON DNA binding protein	SON	AB028942	Above
77	33429_at	DKFZP586M1523 protein	DKFZP586M1 523	AL050225	Above
78	40641_at	TBP-associated factor 172	TAF-172	AF038362	Above
79	41381_at	KIAA0308 protein	KIAA0308	AB002306	Below

80	35135_at	Homo sapiens Similar to CG15084 gene product clone MGC 10471 mRNA complete cds		X13956	Below
81	39421_at	runt-related transcription factor 1 acute myeloid leukemia 1 aml1 oncogene	RUNX1	D43969	Below
82	195_s_at	caspase 4 apoptosis-related cysteine protease	CASP4	U28014	Below
83	36898_r_at	primase polypeptide 2A 58kD	PRIM2A	X74331	Above
84	38792_at	spermine synthase	SMS	AD001528	Above
85	32643_at	glucan 1 4-alpha- branching enzyme 1 glycogen branching enzyme Andersen disease glycogen storage disease type IV	GBE1	L07956	Below
86	38808_at	cell membrane glycoprotein 110000M GP110 r surface antigen		D64154	Below
87	36062_at	Leupaxin	LPXN	AF062075	Below
88	300_f_at	transcription factor BTF3 homolog (GB:M90355)		HG4518- HT4921	Below
89	1979_s_at	nucleolar protein 1 120kD	NOL1	X55504	Below
90	32230_at	eukaryotic translation initiation factor 3 subunit 2 beta 36kD	EIF3S2	U39067	Below
91	39893_at	guanine nucleotide binding protein G protein gamma 7	GNG7	AB010414	Below
92	34651_at	catechol-O-methyltransferase	COMT	M58525	Above
93	1052_s_at	CCAAT/enhancer binding protein C/EBP delta	CEBPD	M83667	Below
94	36272_r_at	peripheral myelin protein 2	PMP2	X62167	Below
95	2044_s_at	retinoblastoma 1 including osteosarcoma	RB1	M15400	Below
96	32135_at	sterol regulatory element binding transcription factor 1	SREBF1	U00968	Below

Table 12. Genes selected by CFS for *MLL*

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/ Below Mean
1	34306_at	muscleblind Drosophila like	MBNL	AB007888
2	40797_at	a disintegrin and metalloproteinase domain 10	ADAM10	AF009615
3	33412_at	LGALS1 Lectin, galactoside-binding, soluble, 1 (galectin 1)	LGALS1	AI535946
4	39338_at	S100 calcium-binding protein A10 annexin II ligand calpastatin I light polypeptide p11	S100A10	AI201310
5	2062_at	insulin-like growth factor binding protein 7	IGFBP7	L19182
6	32193_at	plexin C1	PLXNC1	AF030339
7	40518_at	protein tyrosine phosphatase receptor	PTPRC	Y00062

		type C		
8	36777_at	DNA segment on chromosome 12 unique 2489 expressed sequence	D12S2489E	AJ001687
9	38391_at	capping protein actin filament gelsolin-like	CAPG	M94345
10	40763_at	Meis1 mouse homolog	MEIS1	U85707
11	34721_at	FK506-binding protein 5	FKBP5	U42031
12	37809_at	homeo box A9	HOXA9	U41813
13	32215_i_at	KIAA0878 protein	KIAA0878	AB020685
14	38160_at	lymphocyte antigen 75	LY75	AF011333
15	1389_at	membrane metallo-endopeptidase neutral endopeptidase enkephalinase CALLA CD10	MME	J03779
16	34168_at	deoxynucleotidyltransferase terminal	DNTT	M11722
17	40522_at	glutamate-ammonia ligase glutamine synthase	GLUL	X59834
18	854_at	B lymphoid tyrosine kinase	BLK	S76617
19	40067_at	E74-like factor 1 ets domain transcription factor	ELF1	M82882
20	39756_g_at	X-box binding protein 1	XBP1	Z93930
21	32134_at	Testing	DKFZP586 B2022	AL050162
22	39379_at	Homo sapiens mRNA cDNA DKFZp586C1019 from clone DKFZp586C1019		AL049397
23	40415_at	acetyl-Coenzyme A acyltransferase 1 peroxisomal 3-oxoacyl-Coenzyme A thiolase	ACAA1	X14813
24	40519_at	protein tyrosine phosphatase receptor type C	PTPRC	Y00638
25	33847_s_at	cyclin-dependent kinase inhibitor 1B p27 Kip1	CDKN1B	U10906
26	32696_at	pre-B-cell leukemia transcription factor 3	PBX3	X59841
27	40417_at	KIAA0098 protein		D43950
28	1644_at	eukaryotic translation initiation factor 3 subunit 2 beta 36kD	EIF3S2	U36764
29	948_s_at	peptidylprolyl isomerase D cyclophilin D	PPID	D63861
30	34337_s_at	putative DNA binding protein	M96	AJ010014
31	41747_s_at	myocyte-specific enhancer factor 2A (MEF2A) gene	MEF2A	U49020
32	39516_at	hypothetical protein	HSPC004	AI827793
33	31820_at	hematopoietic cell-specific Lyn substrate 1	HCLS1	X16663
34	33305_at	serine or cysteine proteinase inhibitor clade B ovalbumin member 1	SERPINB1	M93056
35	40520_g_at	protein tyrosine phosphatase receptor type C	PTPRC	Y00638

36	41222_at	signal transducer and activator of transcription 6 (STAT6) gene	STAT6	AF067575	Above
37	1718_at	actin related protein 2/3 complex subunit 2 34 kD	ARPC2	U50523	Above
38	38342_at	KIAA0239 protein	KIAA0239	D87076	Below
39	38805_at	TG-interacting factor TALE family homeobox	TGIF	X89750	Below
40	32089_at	sperm associated antigen 6	SPAG6	AF079363	Above
41	1950_s_at	Smad 3, exon 1		AB004922	Above
42	39410_at	development and differentiation enhancing factor 2	DDEF2	AB007860	Above
43	37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	Below
44	32607_at	brain acid-soluble protein 1	BASP1	AF039656	Above
45	39389_at	CD9 antigen p24	CD9	M38690	Below
46	40913_at	ATPase Ca transporting plasma membrane 4	ATP2B4	W28589	Below
47	1039_s_at	hypoxia-inducible factor 1 alpha subunit basic helix-loop-helix transcription factor	HIF1A	U22431	Below
48	35939_s_at	POU domain class 4 transcription factor 1	POU4F1	L20433	Below
49	963_at	ligase IV DNA ATP-dependent	LIG4	X83441	Below
50	39628_at	RAB9 member RAS oncogene family	RAB9	U44103	Below
51	38242_at	B cell linker protein	SLP65	AF068180	Below
52	37692_at	diazepam binding inhibitor GABA receptor modulator acyl-Coenzyme A binding protein	DBI	AI557240	Above
53	32166_at	KIAA1027 protein	KIAA1027	AB028950	Above
54	34800_at	DKFZP586O1624 protein	DKFZP586O16	AL039458	Below
55	34386_at	methyl-CpG binding domain protein 4	MBD4	AF072250	Below
56	40296_at	hypothetical protein	753P9	AL023653	Below
57	40456_at	up-regulated by BCG-CWS	LOC64116	AL049963	Above
58	33943_at	ferritin heavy polypeptide 1	FTH1	L20941	Below
59	39049_at	G18.1a and G18.1b proteins (G18.1a and G18.1b genes, located in the class III region of the major histocompatibility complex)		AJ243937	Below
60	38075_at	synaptophysin-like protein	SYPL	X68194	Above
61	932_i_at	zinc finger protein 91 HPF7 HTF10	ZNF91	L11672	Below
62	1825_at	IQ motif containing GTPase activating protein 1	IQGAP1	L33075	Above
63	34210_at	CDW52 antigen CAMPATH-1 antigen	CDW52	N90866	Below
64	39778_at	mannosyl alpha-1 3- glycoprotein beta-1 2-N-acetylglucosaminyltransferase	MGAT1	M55621	Below
65	34699_at	CD2-associated protein	CD2AP	AL050105	Below

66	40066_at	ubiquitin-activating enzyme E1C homologous to yeast UBA3	UBE1C	AF046024	Above
67	41177_at	hypothetical protein FLJ12443	FLJ12443	AW024285	Above
68	32736_at	HSPC022 protein	HSPC022	W68830	Above
69	1928_s_at	mad protein homolog Smad2 gene	Smad2	U78733	Below
70	1081_at	ornithine decarboxylase 1	ODC1	M33764	Above
71	37345_at	Calumenin	CALU	AF013759	Above
72	34099_f_at	nucleosome assembly protein 1-like 1	NAP1L1	W26056	Above
73	933_f_at	zinc finger protein 91 HPF7 HTF10	ZNF91	L11672	Below
74	32214_at	thioredoxin-like 32kD	TXNL	AF003938	Below
75	33501_r_at	SNC73 protein SNC73 mRNA complete cds		S71043	Below
76	950_at	translocation protein 1	TLOC1	D87127	Below
77	41161_at	death-associated protein 6	DAXX	AB015051	Below
78	41381_at	KIAA0308 protein	KIAA0308	AB002306	Below
79	38705_at	ubiquitin-conjugating enzyme E2D 2 homologous to yeast UBC4/5	UBE2D2	AI310002	Above
80	38617_at	LIM domain kinase 2	LIMK2	D45906	Below
81	34305_at	poly rC binding protein 1	PCBP1	Z29505	Above
82	40436_g_at	solute carrier family 25 mitochondrial carrier adenine nucleotide translocator member 6	SLC25A6	J03592	Above
83	1827_s_at	c-myc-P64 mRNA, initiating from promoter P0		M13929	Above
84	38479_at	acidic protein rich in leucines	SSP29	Y07969	Below
85	33207_at	DnaJ Hsp40 homolog subfamily C member 3	DNAJC3	AI095508	Below
86	39039_s_at	CGI-76 protein	LOC51632	AI557497	Below
87	32157_at	protein phosphatase 1 catalytic subunit alpha isoform	PPP1CA	S57501	Above
88	905_at	guanylate kinase 1	GUK1	L76200	Below
89	35794_at	KIAA0942 protein	KIAA0942	AB023159	Below
90	1007_s_at	discoidin domain receptor family member 1	DDR1	U48705	Below
91	39424_at	tumor necrosis factor receptor superfamily member 14 herpesvirus entry mediator	TNFRSF14	U70321	Below
92	36634_at	BTG family member 2	BTG2	U72649	Below
93	38760_f_at	butyrophilin subfamily 3 member A2	BTN3A2	U90546	Below

Table 13. Genes selected by CFS for Novel Class
Gene Name **GeneSymbol** **Reference**
number

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/ Below Mean
1	37960_at	carbohydrate chondroitin 6/keratan sulfotransferase 2	CHST2	AB014679
2	31892_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288

3	994_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	Above
4	995_g_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	Above
5	41074_at	G protein-coupled receptor 49	GPR49	AF062006	Above
6	41073_at	G protein-coupled receptor 49	GPR49	AI743745	Above
7	34676_at	KIAA1099 protein	KIAA1099	AB029022	Above
8	36139_at	DKFZP586G0522 protein	DKFZP586G05	AL050289	Above
9	37542_at	lipoma HMGIC fusion partner-like 2	LHFPL2	D86961	Above
10	41159_at	clathrin heavy polypeptide Hc	CLTC	D21260	Above
11	32800_at	retinoid X receptor alpha mRNA		U66306	Above
12	1664_at	insulin-like growth factor 2	IGF2	HG3543-HT3739	Above
13	36566_at	cystinosis nephropathic	CTNS	AJ222967	Above

Table 14. Gene selected by CFS for T-ALL

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 38319_at	CD3D antigen delta polypeptide TiT3 complex	CD3D	AA919102	Above

Table 15. Genes selected by CFS for TEL-AML1

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 38652_at	hypothetical protein FLJ20154	FLJ20154	AF070644	Above
2 36239_at	POU domain class 2 associating factor 1	POU2AF1	Z49194	Above
3 41442_at	core-binding factor runt domain alpha subunit 2 translocated to 3	CBFA2T3	AB010419	Above
4 37780_at	piccolo presynaptic cytomatrix protein	PCLO	AB011131	Above
5 36985_at	isopentenyl-diphosphate delta isomerase	IDI1	X17025	Above
6 38578_at	tumor necrosis factor receptor superfamily member 7	TNFRSF7	M63928	Above
7 35614_at	transcription factor-like 5 basic helix-loop-helix	TCFL5	AB012124	Above
8 32224_at	KIAA0769 gene product	KIAA0769	AB018312	Above
9 32730_at	KIAA1750 protein		AL080059	Above
10 36937_s_at	PDZ and LIM domain 1 elfin	PDLIM1	U90878	Below
11 36008_at	protein tyrosine phosphatase type IVA member 3	PTP4A3	AF041434	Above
12 41200_at	CD36 antigen collagen type I receptor thrombospondin receptor like 1	CD36L1	Z22555	Above

13	33690_at	DKFZp434A202 from clone DKFZp434A202		AL080190	Above
14	755_at	inositol 1 4 5-triphosphate receptor type 1	ITPR1	D26070	Above
15	41097_at	telomeric repeat binding factor 2	TERF2	AF002999	Above
16	160029_at	protein kinase C beta 1	PRKCB1	X07109	Above
17	34481_at	vav proto-oncogene	Vav	AF030227	Above
18	41498_at	KIAA0911 protein	KIAA0911	AB020718	Above
19	37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	Above
20	1647_at	IQ motif containing GTPase activating protein 2	IQGAP2	U51903	Below
21	37724_at	v-myc avian myelocytomatisis viral oncogene homolog	MYC	V00568	Below
22	37981_at	drebrin 1	DBN1	U00802	Above
23	37326_at	proteolipid protein 2 colonic epithelium-enriched	PLP2	U93305	Below
24	37344_at	major histocompatibility complex class II DM alpha	HLA-DMA	X62744	Above
25	38666_at	pleckstrin homology Sec7 and coiled/coil domains 1 cytohesin 1	PSCD1	M85169	Below
26	39039_s_at	CGI-76 protein	LOC51632	AI557497	Below
27	34819_at	CD164 antigen sialomucin	CD164	D14043	Below
28	40729_s_at	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1	NFKBIL1	Y14768	Above
29	34224_at	fatty acid desaturase 3	FADS3	AC004770	Above
30	39827_at	hypothetical protein	FLJ20500	AA522530	Below
31	32157_at	protein phosphatase 1 catalytic subunit alpha isoform	PPP1CA	S57501	Below
32	34183_at	DKFZP434C171 protein	DKFZP434C171	AL080169	Below
33	39329_at	actinin alpha 1	ACTN1	X15804	Below
34	38124_at	midkine neurite growth-promoting factor 2	MDK	X55110	Above
35	33304_at	interferon stimulated gene 20kD	ISG20	U88964	Above
36	41295_at	GTT1 protein	GTT1	AL041780	Below
37	40745_at	adaptor-related protein complex 1 beta 1 subunit	AP1B1	L13939	Above
38	38906_at	spectrin alpha erythrocytic 1 elliptocytosis 2	SPTA1	M61877	Above
39	263_g_at	S-adenosylmethionine decarboxylase 1	AMD1	M21154	Below
40	41609_at	major histocompatibility complex class II DM beta	HLA-DMB	U15085	Above
41	39045_at	hypothetical protein FLJ21432	FLJ21432	W26655	Below

42	39421_at	runt-related transcription factor 1 acute myeloid leukemia 1 aml1 oncogene	RUNX1	D43969	Above
43	34210_at	CDW52 antigen CAMPATH-1 antigen	CDW52	N90866	Above
44	37276_at	IQ motif containing GTPase activating protein 2	IQGAP2	U51903	Below
45	38763_at	L-iditol-2 dehydrogenase gene		L29254	Below
46	40960_at	UDP-Gal betaGlcNAc beta 1 4- galactosyltransferase polypeptide 1	B4GALT1	D29805	Below
47	1127_at	ribosomal protein S6 kinase 90kD polypeptide 1	RPS6KA1	L07597	Below
48	37359_at	KIAA0102 gene product	KIAA0102	D14658	Below
49	38968_at	SH3-domain binding protein 5 BTK- associated	SH3BP5	AB005047	Below
50	39135_at	KIAA0767 protein	KIAA0767	AB018310	Below
51	36128_at	transmembrane trafficking protein	TMP21	L40397	Below
52	1158_s_at	calmodulin 3 phosphorylase kinase delta	CALM3	J04046	Above
53	34782_at	jumonji mouse homolog	JMJ	AL021938	Below
54	37893_at	protein tyrosine phosphatase non- receptor type 2	PTPN2	AI828880	Below
55	39758_f_at	Lysosomal-associated membrane protein 1	LAMP1	J04182	Below
56	35151_at	tumor suppressor deleted in oral cancer-related 1	DOC-1R	AF089814	Below
57	38096_f_at	major histocompatibility complex class II DP beta 1	HLA-DPB1	M83664	Above
58	40467_at	succinate dehydrogenase complex subunit D integral membrane protein	SDHD	AB006202	Below
59	39712_at	S100 calcium-binding protein A13	S100A13	AI541308	Below
60	41812_s_at	KIAA0906 protein	KIAA0906	AB020713	Below
61	34336_at	lysyl-tRNA synthetase	KARS	D32053	Below
62	38336_at	KIAA1013 protein	KIAA1013	AB023230	Below
63	32253_at	arginine-glutamic acid dipeptide RE repeats	RERE	AB007927	Below
64	35731_at	integrin alpha 4 antigen CD49D alpha 4 subunit of VLA-4 receptor	ITGA4	X16983	Below
65	40698_at	C-type calcium dependent carbohydrate-recognition domain lectin superfamily member 2 activation-induced	CLECSF2	X96719	Below
66	840_at	zinc finger protein 220	ZNF220	U47742	Above
67	41171_at	proteasome prosome macropain activator subunit 2 PA28 beta	PSME2	D45248	Above
68	34877_at	Janus kinase 1 a protein tyrosine kinase	JAK1	AL039831	Above
69	37190_at	WAS protein family member 1	WASF1	D87459	Below
70	31690_at	Glutamate dehydrogenase-2	GLUD2	U08997	Below

71	40961_at	SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily a member 2	SMARCA2	X72889	Below
72	38149_at	KIAA0053 gene product	KIAA0053	D29642	Above
73	2061_at	integrin alpha 4 antigen CD49D alpha 4 subunit of VLA-4 receptor	ITGA4	L12002	Below
74	2012_s_at	protein kinase DNA-activated catalytic polypeptide	PRKDC	U34994	Below
75	36878_f_at	major histocompatibility complex class II DQ beta 1	HLA-DQB1	M60028	Above
76	34821_at	DKFZP586D0623 protein	DKFZP586D0623	AL050197	Below
77	36980_at	proline-rich protein with nuclear targeting signal	B4-2	U03105	Below
78	853_at	nuclear factor erythroid-derived 2 like 2	NFE2L2	S74017	Below
79	39320_at	caspase 1 apoptosis-related cysteine protease interleukin 1 beta convertase	CASP1	U13697	Below
80	32572_at	ubiquitin specific protease 9 X chromosome Drosophila fat facets related	USP9X	X98296	Below
81	387_at	cyclin-dependent kinase 9 CDC2-related kinase	CDK9	X80230	Below
82	35300_at	glutamyl-prolyl-tRNA synthetase	EPRS	X54326	Below
83	36155_at	KIAA0275 gene product	KIAA0275	D87465	Below
84	37625_at	Interferon regulatory factor 4	IRF4	U52682	Below
85	35763_at	KIAA0540 protein	KIAA0540	AB011112	Below
86	39077_at	DR1-associated protein 1 negative cofactor 2 alpha	DRAP1	U41843	Below
87	40132_g_at	Follistatin-like 1	FSTL1	D89937	Below
88	32615_at	aspartyl-tRNA synthetase	DARS	J05032	Below
89	38357_at	Homo sapiens mRNA cDNA DKFZp564D156 from clone DKFZp564D156		AL049321	Above
90	34817_s_at	ataxin 2 related protein	A2LP	U70671	Above
91	40856_at	serine or cysteine proteinase inhibitor clade F alpha-2 antiplasmin pigment epithelium derived factor member 1	SERPINF1	U29953	Below
92	39784_at	eukaryotic translation initiation factor 2 subunit 1 alpha 35kD	EIF2S1	U26032	Below
93	37600_at	extracellular matrix protein 1	ECM1	U68186	Below
94	40839_at	ubiquitin-like 3	UBL3	AL080177	Below
95	34832_s_at	KIAA0763 gene product	KIAA0763	AB018306	Below
96	33244_at	chimerin chimaerin 2	CHN2	U07223	Below
97	31516_f_at	basic transcription factor 3 like 1	BTF3L1	M90354	Below
98	35266_at	bladder cancer associated protein	BLCAP	AL049288	Above

99	253_g_at	(clone GPCR W) G protein-linked receptor gene (GPCR) gene	L42324	Below
100	35227_at	retinoblastoma-binding protein 8	RBBP8	U72066
101	41073_at	G protein-coupled receptor 49	GPR49	AI743745
102	38084_at	chromobox homolog 3 Drosophila HP1 gamma	CBX3	AI797801
103	39025_at	6.2 kd protein	LOC54543	AI557912
104	32085_at	KIAA0981 protein	KIAA0981	AB023198
105	38902_r_at	Activating transcription factor 2	ATF2	X15875

3. T-statistics

T-statistics is a classical feature selection approach. The t-statistics of a gene is defined as $T = |\mu_1 - \mu_2|/\sqrt{(\sigma_1^2/n_1 + \sigma_2^2/n_2)}$, where μ_i is the mean expression of that gene in the i^{th} class, σ_i^2 is the variance of that gene in the i^{th} class and n_i is the size of the i^{th} class. This formula assigns higher value to a gene that has larger mean difference between two classes and has smaller variance within both classes. For *BCR-ABL*, hyperdiploid >50, *MLL*, Novel, and *TEL-AML1* the top ranked 40 genes are listed in Tables 16, 18, 19, 20, and 22, whereas for *E2A-PBX1* and T-ALL only the top 30 and 31 genes are shown. Additional genes that may be used in expression profiles to assign subjects to a leukemia risk group are shown in Tables 54-60. The genes in Tables 54-60 were selected on the basis of having a T-statistic value greater than the T-statistic value for the gene when examined as a discriminator in 999 of 1000 permutations of the data set ($p<0.001$; this statistical test is described elsewhere herein). Of these genes, only those having a T-statistic absolute values equal to or greater than 8 (representing a nominal p value of $\sim<0.0001$) are shown in Tables 54-50.

Generally, using the top 20-40 genes did not result in significant changes to subtype prediction accuracy. Accordingly, the top 20 genes were used for subtype prediction, unless noted otherwise.

Table 16. Genes Selected by T statistics for *BCR-ABL*

	Affymetrix number	Gene Name	Gene Symbol	Reference number	T-stat value	Above/Below Mean
1	32319_at	tumor necrosis factor ligand superfamily member 4 tax-transcriptionally activated glycoprotein 1 34kD	TNFSF4	AL022310	12.0346	Above
2	36194_at	low density lipoprotein-related protein-associated protein 1 alpha-2-macroglobulin receptor-associated protein 1	LRPAP1	M63959	-11.3077	Below
3	1211_s_at	CASP2 and RIPK1 domain containing adaptor with death domain	CRADD	U84388	10.6627	Above
4	37397_at	Homo sapiens platelet/endothelial cell adhesion molecule-1 (PECAM-1) gene, exon 16 and complete cds.	PECAM	L34657	10.2460	Above
5	330_s_at	tubulin, alpha 1, isoform 44	TUBA1	HG2259-HT2348	10.0540	Above
6	33774_at	caspase 8 apoptosis-related cysteine protease	CASP8	X98172	9.9147	Above
7	202_at	heat shock transcription factor 2	HSF2	M65217	-9.7639	Below
8	1558_g_at	p21/Cdc42/Rac1-activated kinase 1 yeast Ste20-related	PAK1	U24152	9.6562	Above
9	39691_at	SH3-containing protein SH3GLB1	SH3GLB1	AB007960	9.5307	Above
10	2045_s_at	hemopoietic cell kinase	HCK	M16592	-9.3898	Below
11	36591_at	tubulin alpha 1 testis specific	TUBA1	X06956	9.3382	Above
12	1386_at	protein tyrosine phosphatase non-receptor type 9	PTPN9	M83738	-9.2414	Below
13	35991_at	Sm protein F	LSM6	AA917945	9.0298	Above
14	41273_at	FK506 binding protein 12-rapamycin associated protein 1	FRAP1	AL046940	8.9732	Above
15	35970_g_at	M-phase phosphoprotein 9	MPHOSPH9	N23137	8.6474	Above
16	38636_at	immunoglobulin superfamily containing leucine-rich repeat	ISLR	AB003184	8.4291	Above
17	36683_at	matrix Gla protein	MGP	AI953789	-8.3872	Below
18	39070_at	singed Drosophila like sea urchin fascin homolog like	SNL	U03057	8.2583	Above
19	40798_s_at	a disintegrin and metalloproteinase domain 10	ADAM10	Z48579	8.2283	Above
20	41649_at	FOXJ2 forkhead factor	LOC55810	AF038177	8.2275	Above
21	38966_at	glycoprotein synaptic 2	GPSN2	AF038958	8.2080	Above
22	34759_at	Human hbc647 mRNA sequence		U68494	8.1863	Above
23	1434_at	phosphatase and tensin homolog mutated in multiple advanced cancers 1	PTEN	U92436	8.1671	Above

24	40167_s_at	CS box-containing WD protein	LOC55884	AF038187	8.1655	Above
25	40264_g_at	zinc finger protein-like 1	ZFPL1	AF001891	8.1384	Above
26	36129_at	KIAA0397 gene product	KIAA0397	AB007857	8.0041	Above
27	551_at	E1A binding protein p300	EP300	U01877	-7.7578	Below
28	38345_at	centrosomal protein 1	CEP1	AF083322	-7.7431	Below
29	41137_at	myosin phosphatase target subunit 2	MYPT2	AB007972	-7.7301	Below
30	39068_at	protein phosphatase 2 regulatory subunit B B56 delta isoform	PPP2R5D	L76702	-7.6161	Below
31	38160_at	lymphocyte antigen 75	LY75	AF011333	7.5830	Above
32	34314_at	ribonucleotide reductase M1 polypeptide	RRM1	X59543	7.5778	Above
33	39519_at	KIAA0692 protein	KIAA0692	AB014592	7.4662	Above
34	32788_at	RAN binding protein 2	RANBP2	D42063	7.4114	Above
35	34882_at	nucleolar protein KKE/D repeat	NOP56	Y12065	7.3622	Above
36	2064_g_at	excision repair cross-complementing rodent repair deficiency complementation group 5	ERCC5	L20046	7.3597	Above
37	41836_at	protein with polyglutamine repeat calcium ca2 homeostasis endoplasmic reticulum protein	ERPROT213 -21	U94836	7.3350	Above
38	1563_s_at	tumor necrosis factor receptor superfamily member 1A	TNFRSF1A	M58286	7.3039	Above
39	37047_at	Niemann-Pick disease type C1	NPC1	AF002020	7.2357	Above
40	32724_at	phytanoyl-CoA hydroxylase Refsum disease	PHYH	AF023462	-7.2252	Below

Table 17. Genes Selected by T statistics for *E2A-PBX1*

Affymetrix number	Gene Name	Gene Symbol	Reference number	T-stat value	Above/Below Mean	
1	32063_at	pre-B-cell leukemia transcription factor 1	PBX1	M86546	126.7442	Above
2	33355_at	Homo sapiens cDNA FLJ12900 fis clone NT2RP2004321 (by CELERA search of target sequence = PBX1)	PBX1	AL049381	36.6116	Above
3	40454_at	FAT tumor suppressor Drosophila homolog	FAT	X87241	30.7577	Above
4	717_at	GS3955 protein	GS3955	D87119	23.7813	Above
5	39070_at	singed Drosophila like sea urchin fascin homolog like	SNL	U03057	-22.8956	Below
6	33641_g_at	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1	NFKBIL1	Y14768	-20.4637	Below
7	36536_at	schwannomin interacting protein 1	SCHIP-1	AF070614	-20.1554	Below
8	854_at	B lymphoid tyrosine kinase	BLK	S76617	19.6467	Above
9	37625_at	interferon regulatory factor 4	IRF4	U52682	18.8419	Above

10	39614_at	KIAA0802 protein	KIAA0802	AB018345	17.8214	Above
11	37099_at	arachidonate 5-lipoxygenase-activating protein	ALOX5AP	AI806222	-17.7944	Below
12	38994_at	STAT induced STAT inhibitor-2	STATI2	AF037989	-17.6553	Below
13	37641_at	Human gene for hepatitis C-associated microtubular aggregate protein p44, exon 9 and complete cds.		D28915	-17.3074	Below
14	40113_at	GS3955 protein	GS3955	D87119	16.7288	Above
15	2031_s_at	cyclin-dependent kinase inhibitor 1A p21 Cip1	CDKN1A	U03106	-14.9826	Below
16	330_s_at	tubulin, alpha 1, isoform 44	TUBA1	HG2259-HT2348	-14.8016	Below
17	38340_at	huntingtin interacting protein-1-related	KIAA0655	AB014555	14.7180	Above
18	38510_at	Homo sapiens mRNA cDNA DKFZp586B0220		AL049435	-14.4522	Below
19	268_at	Homo sapiens platelet/endothelial cell adhesion molecule-1 (PECAM-1) gene, exon 16 and complete cds.	PECAM	L34657	-13.7540	Below
20	2062_at	insulin-like growth factor binding protein 7	IGFBP7	L19182	13.6403	Above
21	37893_at	protein tyrosine phosphatase non-receptor type 2	PTPN2	AI828880	13.5099	Above
22	38580_at	guanine nucleotide binding protein G protein q polypeptide	GNAQ	U43083	-12.8525	Below
23	40049_at	death-associated protein kinase 1	DAPK1	X76104	-12.3837	Below
24	38393_at	KIAA0247 gene product	KIAA0247	D87434	12.3436	Above
25	39379_at	Homo sapiens mRNA cDNA DKFZp586C1019		AL049397	12.2102	Above
26	430_at	nucleoside phosphorylase	NP	X00737	12.1307	Above
27	37975_at	cytochrome b-245 beta polypeptide chronic granulomatous disease	CYBB	X04011	-12.0743	Below
28	34862_at	CGI-49 protein	LOC51097	AA005018	12.0264	Above
29	39756_g_at	X-box binding protein 1	XBP1	Z93930	-11.9796	Below
30	307_at	arachidonate 5-lipoxygenase	ALOX5	J03600	-11.9492	Below
31	37304_at	chromobox homolog 1 Drosophila HP1 beta	CBX1	U35451	11.9422	Above
32	1287_at	ADP-ribosyltransferase NAD poly ADP-ribose polymerase	ADPRT	J03473	11.9051	Above
33	1520_s_at	interleukin 1 beta	IL1B	X04500	11.7327	Above
34	596_s_at	colony stimulating factor 3 receptor granulocyte	CSF3R	M59820	-11.6814	Below
35	37493_at	colony stimulating factor 2 receptor beta low-affinity granulocyte-macrophage synaptopodin	CSF2RB	H04668	11.6620	Above
36	36452_at		KIAA1029	AB028952	11.4021	Above
37	1081_at	ornithine decarboxylase 1	ODC1	M33764	11.2865	Above

38	1563_s_at	tumor necrosis factor receptor superfamily member 1A	TNFRSF1A	M58286	-11.1361	Below
39	39069_at	AE-binding protein 1	AEBP1	AF053944	11.0984	Above
40	36203_at	ornithine decarboxylase 1	ODC1	X16277	10.9475	Above

Table 18. Genes Selected by T statistics for Hyperdiploid > 50

Affymetrix number		Gene Name	Gene Symbol	Reference number	T-stat value	Above/Below Mean
1	36620_at	superoxide dismutase 1 soluble amyotrophic lateral sclerosis 1 adult	SOD1	X02317	9.1574	Above
2	39878_at	protocadherin 9	PCDH9	AI524125	-6.9008	Below
3	37543_at	Rac/Cdc42 guanine exchange factor GEF 6	ARHGEF6	D25304	6.8366	Above
4	41470_at	prominin mouse like 1	PROML1	AF027208	6.7290	Above
5	31492_at	muscle specific gene	M9	AB019392	-6.6885	Below
6	38968_at	SH3-domain binding protein 5 BTK-associated	SH3BP5	AB005047	6.4051	Above
7	1915_s_at	v-fos FBJ murine osteosarcoma viral oncogene homolog	FOS	V01512	6.4008	Above
8	37677_at	phosphoglycerate kinase 1	PGK1	V00572	6.2865	Above
9	39867_at	Tu translation elongation factor mitochondrial	TUFM	S75463	-6.2299	Below
10	36795_at	prosaposin variant Gaucher disease and variant metachromatic leukodystrophy	PSAP	J03077	6.1812	Above
11	40875_s_at	small nuclear ribonucleoprotein 70kD polypeptide RNP antigen	SNRP70	X06815	-6.0877	Below
12	306_s_at	high-mobility group nonhistone chromosomal protein 14	HMG14	J02621	6.0804	Above
13	41724_at	accessory proteins BAP31/BAP29	DXS1357E	X81109	6.0244	Above
14	39168_at	Ac-like transposable element	ALTE	AB018328	5.9336	Above
15	955_at	calmodulin type I	CALM1	HG1862-HT1897	5.8650	Above
16	38604_at	neuropeptide Y	NPY	AI198311	5.8313	Above
17	39147_g_at	alpha thalassemia/mental retardation syndrome X-linked RAD54 S. cerevisiae homolog	ATRX	U72936	5.8181	Above
18	39069_at	AE-binding protein 1	AEBP1	AF053944	-5.6901	Below
19	37014_at	myxovirus influenza resistance 1 homolog of murine interferon-inducible protein p78	MX1	M33882	5.6688	Above
20	1520_s_at	interleukin 1 beta	IL1B	X04500	5.6605	Above

21	1488_at	protein tyrosine phosphatase receptor type K	PTPRK	L77886	-5.5877	Below
22	32553_at	MYC-associated zinc finger protein purine-binding transcription factor	MAZ	M94046	-5.5000	Below
23	36169_at	NADH dehydrogenase ubiquinone 1 alpha subcomplex 1 7.5kD MWFE	NDUFA1	N47307	5.4376	Above
24	1817_at	prefoldin 5	PFDN5	D89667	-5.4110	Below
25	578_at	Human recombination activating protein (RAG2) gene, last exon	RAG2	M94633	-5.4026	Below
26	1556_at	RNA binding motif protein 5	RBMS5	U23946	-5.3032	Below
27	40998_at	trinucleotide repeat containing 11 THR-associated protein 230 kDa subunit	TNRC11	AF071309	5.2349	Above
28	37294_at	B-cell translocation gene 1 anti-proliferative	BTG1	X61123	-5.1877	Below
29	1447_at	proteasome prosome macropain subunit beta type 1	PSMB1	D00761	5.1699	Above
30	35940_at	POU domain class 4 transcription factor 1	POU4F1	X64624	5.1200	Above
31	33307_at	kraken-like	BK126B4.1	AL022316	-5.0984	Below
32	1081_at	ornithine decarboxylase 1	ODC1	M33764	-5.0822	Below
33	34336_at	lysyl-tRNA synthetase	KARS	D32053	-5.0692	Below
34	41143_at	Human calmodulin (CALM1) gene, exons 2,3,4,5 and 6, and complete cds	CALM1	U12022	5.0543	Above
35	32251_at	hypothetical protein FLJ21174	FLJ21174	AA149307	5.0373	Above
36	35298_at	eukaryotic translation initiation factor 3 subunit 7 zeta 66/67KD	EIF3S7	U54558	-4.9499	Below
37	38649_at	KIAA0970 protein	KIAA0970	AB023187	-4.9228	Below
38	36629_at	glucocorticoid-induced leucine zipper	GILZ	AI635895	4.8061	Above
39	39721_at	ephrin-B1	EFNB1	U09303	4.7968	Above
40	2094_s_at	v-fos FBJ murine osteosarcoma viral oncogene homolog	FOS	K00650	4.7446	Above

Table 19. Genes Selected by T statistics for MLL

	Affymetrix number	Gene Name	Gene Symbol	Reference number	T-stat value	Above/Below Mean
1	307_at	arachidonate 5-lipoxygenase	ALOX5	J03600	-16.8244	Below
2	37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	-15.4460	Below
3	1520_s_at	interleukin 1 beta	IL1B	X04500	-13.6764	Below
4	36908_at	Human macrophage mannose receptor (MRC1) gene, exon 30.	MRC1	M93221	-11.8629	Below

5	33412_at	LGALS1 Lectin, galactoside-binding, soluble, 1 (galectin 1)	LGALS1	AI535946	11.0223	Above
6	2062_at	insulin-like growth factor binding protein 7	IGFBP7	L19182	10.4318	Above
7	35940_at	POU domain class 4 transcription factor 1	POU4F1	X64624	-10.1815	Below
8	39721_at	ephrin-B1	EFNB1	U09303	-9.6158	Below
9	39402_at	interleukin 1 beta	IL1B	M15330	-9.5998	Below
10	1737_s_at	insulin-like growth factor-binding protein 4	IGFBP4	M62403	-9.4119	Below
11	37413_at	dipeptidase 1 renal	DPEP1	J05257	-9.4101	Below
12	40519_at	protein tyrosine phosphatase receptor type C	PTPRC	Y00638	9.3163	Above
13	1971_g_at	fragile histidine triad gene	FHIT	U46922	-9.2257	Below
14	1983_at	cyclin D2	CCND2	X68452	-9.2213	Below
15	38869_at	KIAA1069 protein	KIAA1069	AB028992	-9.1951	Below
16	40520_g_at	protein tyrosine phosphatase receptor type C	PTPRC	Y00638	9.1099	Above
17	1718_at	actin related protein 2/3 complex subunit 2 34 kD	ARPC2	U50523	9.0435	Above
18	34237_at	HBS1 S. cerevisiae like	HBS1L	AB028961	-8.8208	Below
19	1726_at	DNA polymerase, epsilon, catalytic subunit		HG919-HT919	-8.4664	Below
20	36643_at	discoidin domain receptor family member 1	DDR1	L20817	-8.4627	Below
21	1325_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59423	-8.3762	Below
22	39379_at	Homo sapiens mRNA cDNA DKFZp586C1019		AL049397	8.2974	Above
23	36536_at	schwannomin interacting protein 1 SCHIP-1		AF070614	-8.1177	Below
24	564_at	guanine nucleotide binding protein GNA11 G protein alpha 11 Gq class		M69013	-8.1107	Below
25	39705_at	KIAA0700 protein	KIAA0700	AB014600	-7.9334	Below
26	36105_at	Human nonspecific crossreacting antigen mRNA, complete cds.	NCA	M18728	-7.6911	Below
27	174_s_at	intersectin 2	ITSN2	U61167	7.5752	Above
28	39114_at	decidual protein induced by progesterone	DEPP	AB022718	-7.4767	Below
29	40436_g_at	solute carrier family 25 mitochondrial carrier adenine nucleotide translocator member 6	SLC25A6	J03592	7.3952	Above
30	794_at	protein tyrosine phosphatase non-receptor type 6	PTPN6	X62055	7.2192	Above
31	38032_at	KIAA0736 gene product	KIAA0736	AB018279	-7.0718	Below
32	40518_at	protein tyrosine phosphatase receptor type C	PTPRC	Y00062	6.9829	Above
33	41762_at	TIA1 cytotoxic granule-associated RNA-binding protein-like 1	TIAL1	D64015	-6.9118	Below

34	1389_at	membrane metallo-endopeptidase neutral endopeptidase enkephalinase CALLA CD10	MME	J03779	-6.7734	Below
35	39967_at	leucine zipper down-regulated in cancer 1	LDOC1	AB019527	-6.7415	Below
36	188_at	ephrin-B1	EFNB1	U09303	-6.5964	Below
37	160033_s_at	X-ray repair complementing defective repair in Chinese hamster cells 1	XRCC1	NM_006297	-6.5936	Below
38	40913_at	ATPase Ca transporting plasma membrane 4	ATP2B4	W28589	-6.5774	Below
39	37398_at	platelet/endothelial cell adhesion molecule CD31 antigen	PECAM1	AA100961	-6.5675	Below
40	1488_at	protein tyrosine phosphatase receptor type K	PTPRK	L77886	-6.5584	Below

Table 20. Genes Selected by T statistics for Novel Risk Group

Affymetrix number		Gene Name	Gene Symbol	Reference number	T-stat value	Above/ Below Mean
1	41734_at	KIAA0870 protein	KIAA0870	AB020677	-40.5168	Below
2	31892_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	33.4654	Above
3	995_g_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	24.7557	Above
4	34676_at	KIAA1099 protein	KIAA1099	AB029022	14.0491	Above
5	37908_at	guanine nucleotide binding protein GNG11 11	GNG11	U31384	11.4548	Above
6	37960_at	carbohydrate chondroitin 6/keratan CHST2 sulfotransferase 2	CHST2	AB014679	10.9971	Above
7	33410_at	integrin alpha 6	ITGA6	S66213	10.0370	Above
8	40585_at	adenylate cyclase 7	ADCY7	D25538	-9.5897	Below
9	33284_at	myeloperoxidase	MPO	M19507	-9.4724	Below
10	41159_at	clathrin heavy polypeptide Hc	CLTC	D21260	9.4489	Above
11	36591_at	tubulin alpha 1 testis specific	TUBA1	X06956	-9.1387	Below
12	37712_g_at	MADS box transcription enhancer factor 2 polypeptide C myocyte enhancer factor 2C	MEF2C	S57212	-9.1225	Below
13	38576_at	H2B histone family member B	H2BFB	AJ223353	-9.0869	Below
14	38408_at	transmembrane 4 superfamily member 2	TM4SF2	L10373	-8.7026	Below
15	33907_at	eukaryotic translation initiation factor 4 gamma 3	EIF4G3	AF012072	-8.3540	Below
16	41273_at	FK506 binding protein 12- rapamycin associated protein 1	FRAP1	AL046940	-8.3212	Below
17	402_s_at	intercellular adhesion molecule 3	ICAM3	X69819	-7.9741	Below
18	35112_at	regulator of G-protein signalling 9	RGS9	AF071476	7.8348	Above
19	34850_at	ubiquitin-conjugating enzyme E2E 3 homologous to yeast UBC4/5	UBE2E3	AB017644	7.8197	Above
20	37030_at	KIAA0887 protein	KIAA0887	AB020694	-7.6343	Below

21	36322_at	fucosyltransferase 7 alpha 1 3 fucosyltransferase	FUT7	AB012668	-7.6240	Below
22	39509_at	Homo sapiens cDNA FLJ22071		AI692348	-7.6232	Below
23	40091_at	B-cell CLL/lymphoma 6 zinc finger protein 51	BCL6	U00115	-7.6171	Below
24	37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	7.5991	Above
25	1325_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59423	7.5824	Above
26	831_at	DEAD/H Asp-Glu-Ala-Asp/His box polypeptide 10 RNA helicase	DDX10	U28042	7.4276	Above
27	37600_at	extracellular matrix protein 1	ECM1	U68186	-7.2991	Below
28	41266_at	integrin alpha 6	ITGA6	X53586	7.2985	Above
29	36958_at	zyxin	ZYX	X95735	-7.2889	Below
30	36564_at	Human DNA sequence from clone RP5-1174N9 on chromosome 1p34.1-35.3		W27419	-7.2848	Below
31	32174_at	solute carrier family 9 sodium/hydrogen exchanger isoform 3 regulatory factor 1	SLC9A3R1	AF015926	-7.2749	Below
32	619_s_at	membrane-spanning 4-domains subfamily A member 2 Fc fragment of IgE high affinity I receptor for beta polypeptide	MS4A2	M27394	-7.2325	Below
33	40749_at	membrane-spanning 4-domains subfamily A member 2 Fc fragment of IgE high affinity I receptor for beta polypeptide	MS4A2	X07203	-7.2063	Below
34	31894_at	centromere protein C 1	CENPC1	M95724	6.9679	Above
35	32319_at	tumor necrosis factor ligand superfamily member 4 tax-transcriptionally activated glycoprotein 1 34kD	TNFSF4	AL022310	6.8225	Above
36	38259_at	syntaxin binding protein 2	STXBP2	AB002559	-6.6992	Below
37	35629_at	hypothetical protein	DJ1042K10. 2	AL022238	-6.6968	Below
38	38700_at	cysteine and glycine-rich protein 1	CSRP1	M33146	-6.6962	Below
39	37397_at	Homo sapiens platelet/endothelial cell adhesion molecule-1 (PECAM-1) gene, exon 16 and complete cds.	PECAM	L34657	-6.6934	Below
40	41127_at	solute carrier family 1 glutamate/neutral amino acid transporter member 4	SLC1A4	L14595	-6.6892	Below

Table 21. Genes Selected by T statistics for T-ALL

	Affymetrix number	Gene Name	Gene Symbol	Reference number	T-stat value	Above/Below Mean
1	38242_at	B cell linker protein	SLP65	AF068180	-115.8362	Below
2	38319_at	CD3D antigen delta polypeptide TiT3 complex	CD3D	AA919102	27.6995	Above
3	37988_at	CD79B antigen immunoglobulin-associated beta	CD79B	M89957	-23.7294	Below
4	38147_at	SH2 domain protein 1A Duncan s disease lymphoproliferative syndrome	SH2D1A	AL023657	22.4501	Above
5	38522_s_at	CD22 antigen	CD22	X52785	-21.2795	Below
6	35350_at	B cell RAG associated protein	BRAG	AB011170	-19.1460	Below
7	36277_at	Human membran protein (CD3-epsilon) gene, exon 9.	CD3E	M23323	19.0859	Above
8	38604_at	neuropeptide Y	NPY	AI198311	-18.8194	Below
9	33705_at	phosphodiesterase 4B cAMP-specific dunce Drosophila homolog phosphodiesterase E4	PDE4B	L20971	-18.6383	Below
10	36878_f_at	major histocompatibility complex class II DQ beta 1	HLA-DQB1	M60028	-18.5620	Below
11	36638_at	connective tissue growth factor	CTGF	X78947	-18.2772	Below
12	32794_g_at	T cell receptor beta locus	TRB	X00437	17.9081	Above
13	32174_at	solute carrier family 9 sodium/hydrogen exchanger isoform 3 regulatory factor 1	SLC9A3R1	AF015926	17.4427	Above
14	160041_at	protein tyrosine phosphatase non-receptor type 18 brain-derived	PTPN18	X79568	-17.3412	Below
15	38521_at	CD22 antigen	CD22	X59350	-17.0388	Below
16	38018_g_at	CD79A antigen immunoglobulin-associated alpha	CD79A	U05259	-16.7948	Below
17	36571_at	topoisomerase DNA II beta 180kD	TOP2B	X68060	-16.7508	Below
18	1096_g_at	CD19 antigen	CD19	M28170	-16.4583	Below
19	39318_at	T-cell leukemia/lymphoma 1A	TCL1A	X82240	-16.2017	Below
20	41710_at	hypothetical protein	LOC54103	AL079277	-15.9099	Below
21	599_at	H2.0 Drosophila like homeo box 1	HLX1	M60721	-15.5425	Below
22	266_s_at	CD24 antigen small cell lung carcinoma cluster 4 antigen	CD24	L33930	-15.0123	Below
23	36502_at	PFTAIRE protein kinase 1	PFTK1	AB020641	-14.9972	Below
24	39114_at	decidual protein induced by progesterone	DEPP	AB022718	-14.9886	Below
25	37539_at	RalGDS-like gene KIAA0959 protein	KIAA0959	AB023176	-14.6872	Below
26	40775_at	integral membrane protein 2A	ITM2A	AL021786	14.5666	Above
27	34033_s_at	leukocyte immunoglobulin-like receptor subfamily A with TM domain member 2	LILRA2	AF025531	-14.3809	Below

28	2031_s_at	cyclin-dependent kinase inhibitor 1A p21 Cip1	CDKN1A	U03106	-14.1071	Below
29	38051_at	mal T-cell differentiation protein	MAL	X76220	14.0743	Above
30	35794_at	KIAA0942 protein	KIAA0942	AB023159	-13.9659	Below
31	41156_g_at	catenin cadherin-associated protein alpha 1 102kD	CTNNA1	U03100	-13.8135	Below
32	32979_at	GRB2-associated binding protein 1	GAB1	U43885	-13.5842	Below
33	32562_at	endoglin Osler-Rendu-Weber syndrome 1	ENG	X72012	-13.4209	Below
34	36536_at	schwannomin interacting protein 1	SCHIP-1	AF070614	-13.4172	Below
35	36108_at	major histocompatibility complex class II DQ beta 1	HLA-DQB1	M16276	-13.3518	Below
36	41734_at	KIAA0870 protein	KIAA0870	AB020677	-13.2672	Below
37	41153_f_at	Homo sapiens alphaE-catenin (CTNNA1) gene, exon 18 and complete cds.	CTNNA1	AF102803	-12.7927	Below
38	37710_at	MADS box transcription enhancer factor 2 polypeptide C myocyte enhancer factor 2C	MEF2C	L08895	-12.7716	Below
39	39893_at	guanine nucleotide binding protein GNG7 G protein gamma 7	GNG7	AB010414	-12.7696	Below
40	37908_at	guanine nucleotide binding protein GNG11 11	GNG11	U31384	-12.7353	Below

Table 22. Genes Selected by T statistics for *TEL-AML1*

Affymetrix number	Gene Name	Gene Symbol	Reference number	T-stat value	Above/Below Mean
1	tumor necrosis factor receptor superfamily member 7	TNFRSF7	M63928	15.2209	Above
2	potassium intermediate/small conductance calcium-activated channel subfamily N member 1	KCNN1	U69883	15.0804	Above
3	Rho guanine nucleotide exchange factor GEF 4	ARHGEF4	AB029035	14.9774	Above
4	piccolo presynaptic cytomatrix protein	PCLO	AB011131	14.1405	Above
5	transcription factor-like 5 basic helix-loop-helix	TCFL5	AB012124	12.9369	Above
6	protein kinase C beta 1	PRKCB1	X07109	12.5429	Above
7	non-metastatic cells 2 protein NM23B expressed in	NME2	X58965	-12.5035	Below
8	protein tyrosine phosphatase receptor type K	PTPRK	L77886	12.3871	Above
9	Homo sapiens cDNA FLJ21697		AL049313	12.1089	Above
10	guanine nucleotide binding protein GNG11 11	GNG11	U31384	11.4322	Above
11	collapsin response mediator	CRMP1	D78012	11.0625	Above

		protein 1				
12	41097_at	telomeric repeat binding factor 2	TERF2	AF002999	11.0133	Above
13	33690_at	Homo sapiens mRNA cDNA DKFZp434A202		AL080190	10.8763	Above
14	32730_at	Homo sapiens mRNA for KIAA1750		AL080059	10.7439	Above
15	1325_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59423	10.5332	Above
16	41819_at	FYN-binding protein FYB- 120/130	FYB	U93049	10.3692	Above
17	1299_at	telomeric repeat binding factor 2	TERF2	X93512	10.2921	Above
18	35665_at	phosphoinositide-3-kinase class 3	PIK3C3	Z46973	10.0568	Above
19	36537_at	Rho-specific guanine nucleotide exchange factor p114	P114-RHO- GEF	AB011093	9.8824	Above
20	37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	9.8662	Above
21	1936_s_at	proto-oncogene c-myc, alt. transcript 3, ORF 114		HG3523- HT4899	-9.6621	Below
22	1077_at	recombination activating gene 1	RAG1	M29474	9.4563	Above
23	38763_at	Human (clone D21-1) L-iditol-2 dehydrogenase gene, exon 9 and complete cds.		L29254	-9.2719	Below
24	41295_at	GTT1 protein	GTT1	AL041780	-9.1813	Below
25	36008_at	protein tyrosine phosphatase type IVA member 3	PTP4A3	AF041434	9.1682	Above
26	38570_at	major histocompatibility complex class II DO beta	HLA-DOB	X03066	9.0394	Above
27	32163_f_at	EST		AA216639	9.0392	Above
28	40570_at	forkhead box O1A rhabdomyosarcoma	FOXO1A	AF032885	8.9931	Above
29	32724_at	phytanoyl-CoA hydroxylase Refsum disease	PHYH	AF023462	8.9571	Above
30	932_i_at	zinc finger protein 91 HPF7 HTF10	ZNF91	L11672	8.8075	Above
31	37343_at	inositol 1 4 5-triphosphate receptor type 3	ITPR3	U01062	8.7321	Above
32	33447_at	myosin light polypeptide regulatory non-sarcomeric 20kD	MLCB	X54304	-8.6848	Below
33	35362_at	myosin X	MYO10	AB018342	8.6700	Above
34	38906_at	spectrin alpha erythrocytic 1 elliptocytosis 2	SPTA1	M61877	8.5010	Above
35	324_f_at	basic transcription factor 3	BTF3	HG1515- HT1515	-8.4705	Below
36	39329_at	actinin alpha 1	ACTN1	X15804	-8.3219	Below
37	577_at	midkine neurite growth-promoting factor 2	MDK	M94250	8.2693	Above
38	40729_s_at	nuclear factor of kappa light polypeptide gene enhancer in B- cells inhibitor-like 1	NFKBIL1	Y14768	8.2000	Above

39	41442_at	core-binding factor runt domain alpha subunit 2 translocated to 3	CBFA2T3	AB010419	8.0604	Above
40	36275_at	Homo sapiens mRNA from chromosome 5q21-22 clone FBR89		AB002438	7.8550	Above

4. Wilkins'

This method of selecting genes uses the weighted sum of three components to estimate the discriminative value of each gene. The higher the score, the better the gene is at discriminating between the two classes. The input to the scoring method is preprocessed and normalized data. The idea of the metric is that a gene is a good discriminator if: (1) it is expressed in one class and not in the other, or if the gene is expressed in both classes, but significantly more so in one than the other, or (2) the gene is present in most samples, and the data are pure, in the sense that there is a threshold expression value for the gene where the gene generally has expression levels larger than the threshold in one class, and smaller than the threshold in the other class. The components of the metric were quantified as follows. For a gene, assume PR₁ is the ratio of "present" samples to all samples in class 1, where present means that the gene's expression value was not preprocessed to a constant (1). Assume PR₂ is defined similarly for class 2. The first component of the metric, M₁, is estimated as the absolute difference between PR₁ and PR₂. This value is between 0 (when the gene is equally present in both classes) and 1 (when the gene is expressed in one class and not in the other). The second component of the metric, M₂, measures the extent to which the gene is present overall, and is defined as the average of PR₁ and PR₂. The final component, M₃, estimates the "purity", or existence of a threshold value. The gene expression values for the present samples are sorted into ascending order and a vector of their class labels is built, for example {+, +, +, -, -, -, +, -, -, +, -}. The next step is to find the best place to partition the samples so that the expression values for one class (maybe +) are less than the partition point, and the values from the other class are larger. Let L_{C1} and L_{C2} be the number of class 1 and class 2 samples on the left side of the partition, respectively. Assume R_{C1} and R_{C2} are defined similarly for the right side of the partition. Then the purity is estimated as: max {L_{C1} - L_{C2} + R_{C2} - R_{C1}, L_{C2} - L_{C1} + R_{C1} - R_{C2}} / number of total present samples. Each possible partition is checked. In the example above, the partition {+, +, +, || -, -, -, +, -, -, +, -} is the best

partition, with a purity value of $M_3 = 7 / 11 = 0.64$. The score for the gene is the weighted sum of $0.5*M_1 + 0.25*M_2 + 0.25*M_3$. The top 50 genes for each subgroup selected by this metric are listed in Tables 23-29. For class prediction all 50 genes were used, unless otherwise stated.

5

Table 23. Genes Selected by Wilkins' for *BCR-ABL*

Affymetrix number	Gene Name	Gene Symbol	Reference number	Train set score	Above/Below Mean
1 32319_at	tumor necrosis factor ligand superfamily member 4 tax-transcriptionally activated glycoprotein 1 34kD	TNFSF4	AL022310	0.6354	Above
2 37479_at	CD72 antigen	CD72	M54992	0.6352	Below
3 1211_s_at	CASP2 and RIPK1 domain containing adaptor with death domain	CRADD	U84388	0.6265	Above
4 37397_at	platelet/endothelial cell adhesion molecule-1 (PECAM-1) gene	PECAM	L34657	0.6161	Above
5 33162_at	insulin receptor	INSR	X02160	0.6118	Below
6 39691_at	SH3-containing protein SH3GLB1	SH3GLB1	AB007960	0.6089	Above
7 1558_g_at	p21/Cdc42/Rac1-activated kinase 1 yeast Ste20-related	PAK1	U24152	0.6087	Above
8 34759_at	Human hbc647 mRNA sequence		U68494	0.6061	Above
9 33774_at	caspase 8 apoptosis-related cysteine protease	CASP8	X98172	0.6040	Above
10 1326_at	caspase 10 apoptosis-related cysteine protease	CASP10	U60519	0.6021	Above
11 38342_at	DKFZp564O222 from clone DKFZp564O222		AL050002	0.6010	Above
12 35970_g_at	M-phase phosphoprotein 9	MPHOSPH9	N23137	0.5989	Above
13 41273_at	FK506 binding protein 12-rapamycin associated protein 1	FRAP1	AL046940	0.5989	Above
14 40798_s_at	a disintegrin and metalloproteinase domain 10	ADAM10	Z48579	0.5980	Above
15 40953_at	calponin 3 acidic	CNN3	S80562	0.5972	Above
16 1434_at	phosphatase and tensin homolog mutated in multiple advanced cancers 1	PTEN	U92436	0.5963	Below
17 38966_at	glycoprotein synaptic 2	GPSN2	AF038958	0.5953	Above
18 35991_at	Sm protein F	LSM6	AA917945	0.5938	Above
19 330_s_at	tubulin, alpha 1, isoform 44	TUBA1	HG2259-HT2348	0.5938	Above
20 38032_at	KIAA0736 gene product	KIAA0736	AB018279	0.5934	Above
21 1983_at	cyclin D2	CCND2	X68452	0.5927	Above
22 36194_at	low density lipoprotein-related protein-associated protein 1 alpha-2-macroglobulin receptor-associated protein 1	LRPAP1	M63959	0.5914	Below

23 34460_at	peripheral benzodiazepine receptor-associated protein 1	PRAX-1	AB014512	0.5911	Above
24 2001_g_at	ataxia telangiectasia mutated includes complementation groups A C and D	ATM	U26455	0.5910	Above
25 31443_at	AML1	AML1	S76346	0.5896	Above
26 33410_at	integrin alpha 6	ITGA6	S66213	0.5896	Above
27 37472_at	mannosidase beta A lysosomal	MANBA	U60337	0.5887	Below
28 36099_at	splicing factor arginine-serine-rich 1 splicing factor 2 alternate splicing factor	SFRS1	M69040	0.5877	Below
29 38636_at	immunoglobulin superfamily containing leucine-rich repeat	ISLR	AB003184	0.5858	Above
30 34314_at	ribonucleotide reductase M1 polypeptide	RRM1	X59543	0.5858	Below
31 36129_at	KIAA0397 gene product	KIAA0397	AB007857	0.5858	Above
32 40264_g_at	zinc finger protein-like 1	ZFPL1	AF001891	0.5858	Above
33 37399_at	aldo-keto reductase family 1 member C3 3-alpha hydroxysteroid dehydrogenase type II lymphocyte antigen 75	AKR1C3	D17793	0.5852	Above
34 38160_at	FOXJ2 forkhead factor	LY75	AF011333	0.5832	Above
35 41649_at	tubulin alpha 1 testis specific	LOC55810	AF038177	0.5832	Above
36 36591_at	CS box-containing WD protein	TUBA1	X06956	0.5832	Above
37 40167_s_at	excision repair cross-complementing rodent repair deficiency complementation group	LOC55884	AF038187	0.5832	Above
38 2064_g_at	Human natural killer cell enhancing factor (NKEFB) mRNA, complete cds.	NKEFB	L19185	0.5829	Below
40 38270_at	poly ADP-ribose glycohydrolase	PARG	AF005043	0.5828	Below
41 40613_at	uncharacterized hypothalamus protein HT012	HT012	AL031775	0.5819	Below
42 39070_at	singed Drosophila like sea urchin fascin homolog like	SNL	U03057	0.5813	Above
43 40782_at	short-chain dehydrogenase/reductase 1	SDR1	AF061741	0.5813	Above
44 34256_at	sialyltransferase 9 CMP-NeuAc lactosylceramide alpha-2 3-sialyltransferase GM3 synthase	SIAT9	AB018356	0.5797	Above
45 41836_at	protein with polyglutamine repeat calcium ca2 homeostasis endoplasmic reticulum protein	ERPROT213 -21	U94836	0.5777	Above
46 35681_r_at	zinc finger homeobox 1B	ZFHXB1	AB011141	0.5759	Below
47 37190_at	WAS protein family member 1	WASF1	D87459	0.5759	Below
48 32788_at	RAN binding protein 2	RANBP2	D42063	0.5756	Above
49 828_at	prostaglandin E receptor 2 subtype EP2 53kD	PTGER2	U19487	0.5740	Above
50 38220_at	dihydropyrimidine dehydrogenase	DPYD	U20938	0.5737	Above

Table 24: Genes Selected by Wilkins' for *E2A-PBX1*

Affymetrix number	Gene Name	Gene Symbol	Reference number	Train set score	Above/Below Mean
1 32063_at	pre-B-cell leukemia transcription factor 1	PBX1	M86546	0.8750	Above
2 38994_at	STAT induced STAT inhibitor-2	STATI2	AF037989	0.8252	Below
3 33355_at	Homo sapiens cDNA FLJ12900 (by CELERA serach of target sequence = PBX1)	PBX1	AL049381	0.8040	Above
4 40454_at	FAT tumor suppressor Drosophila homolog	FAT	X87241	0.7899	Above
5 753_at	nidogen 2	NID2	D86425	0.7368	Above
6 717_at	GS3955 protein	GS3955	D87119	0.7306	Above
7 1786_at	c-mer proto-oncogene tyrosine kinase	MERTK	U08023	0.7300	Above
8 39070_at	singed Drosophila like sea urchin fascin homolog like	SNL	U03057	0.7271	Below
9 1065_at	fms-related tyrosine kinase 3	FLT3	U02687	0.7160	Below
10 36650_at	cyclin D2	CCND2	D13639	0.7151	Below
11 33513_at	signaling lymphocytic activation molecule	SLAM	U33017	0.7096	Above
12 33748_at	minor histocompatibility antigen HA-1	KIAA0223	D86976	0.7084	Below
13 37225_at	KIAA0172 protein	KIAA0172	D79994	0.7033	Above
14 38717_at	DKFZP586A0522 protein	DKFZP586A0522	AL050159	0.7003	Below
15 854_at	B lymphoid tyrosine kinase	BLK	S76617	0.6982	Above
16 33641_g_at	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1	NFKBIL1	Y14768	0.6975	Below
17 40468_at	KIAA0554 protein	KIAA0554	AB011126	0.6971	Below
18 41266_at	integrin alpha 6	ITGA6	X53586	0.6965	Below
19 36536_at	schwannomin interacting protein 1	SCHIP-1	AF070614	0.6938	Below
20 362_at	protein kinase C zeta	PRKCZ	Z15108	0.6904	Above
21 755_at	inositol 1 4 5-triphosphate receptor type 1	ITPR1	D26070	0.6877	Below
22 307_at	arachidonate 5-lipoxygenase	ALOX5	J03600	0.6875	Below
23 39614_at	KIAA0802 protein	KIAA0802	AB018345	0.6863	Above
24 1563_s_at	tumor necrosis factor receptor superfamily member 1A	TNFRSF1A	M58286	0.6837	Below
25 38748_at	adenosine deaminase RNA-specific B1 homolog of rat RED1	ADARB1	U76421	0.6763	Above
26 41409_at	basement membrane-induced gene	ICB-1	AF044896	0.6757	Below
27 34892_at	tumor necrosis factor receptor superfamily member 10b	TNFRSF10B	AF016266	0.6726	Below
28 40648_at	c-mer proto-oncogene tyrosine kinase	MERTK	U08023	0.6710	Above
29 38408_at	transmembrane 4 superfamily member 2	TM4SF2	L10373	0.6667	Below

30 34583_at	fms-related tyrosine kinase 3	FLT3	U02687	0.6665	Below
31 36900_at	stromal interaction molecule 1	STIM1	U52426	0.6650	Below
32 37625_at	interferon regulatory factor 4	IRF4	U52682	0.6636	Above
33 38340_at	huntingtin interacting protein-1-related	KIAA0655	AB014555	0.6609	Above
34 1830_s_at	transforming growth factor beta 1	TGFB1	M38449	0.6608	Below
35 37099_at	arachidonate 5-lipoxygenase-activating protein	ALOX5AP	AI806222	0.6605	Below
36 38254_at	KIAA0882 protein	KIAA0882	AB020689	0.6539	Below
37 37641_at	Human gene for hepatitis C-associated microtubular aggregate protein p44, exon 9 and complete cds.		D28915	0.6531	Below
38 33865_at	adenovirus 5 E1A binding protein	BS69	AA127624	0.6515	Below
39 40729_s_at	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1	NFKBIL1	Y14768	0.6502	Below
40 40113_at	GS3955 protein	GS3955	D87119	0.6476	Above
41 32979_at	GRB2-associated binding protein 1	GAB1	U43885	0.6457	Below
42 36591_at	tubulin alpha 1 testis specific	TUBA1	X06956	0.6427	Below
43 38739_at	v-ets avian erythroblastosis virus E26 oncogene homolog 2	ETS2	AF017257	0.6424	Below
44 37485_at	fatty-acid-Coenzyme A ligase very long-chain 1	FACVL1	D88308	0.6363	Above
45 538_at	CD34 antigen	CD34	S53911	0.6326	Below
46 37893_at	protein tyrosine phosphatase non-receptor type 2	PTPN2	AI828880	0.6318	Above
47 41017_at	myosin-binding protein H	MYBPH	U27266	0.6297	Above
48 37967_at	lymphocyte antigen 117	LY117	AF000424	0.6260	Below
49 37281_at	KIAA0233 gene product	KIAA0233	D87071	0.6250	Below
50 35675_at	vinexin beta SH3-containing adaptor molecule-1	SCAM-1	AF037261	0.6229	Below

Table 25. Genes selected for Wilkins for Hyperdiploid > 50

Affymetrix number	Gene Name	Gene Symbol	Reference number	Train set score	Above/Below Mean
1 39878_at	protocadherin 9	PCDH9	AI524125	0.5838	Below
2 41470_at	Prominin mouse like 1	PROML1	AF027208	0.5616	Above
3 39069_at	AE-binding protein 1	AEBP1	AF053944	0.5423	Below
4 1520_s_at	interleukin 1 beta	IL1B	X04500	0.5399	Above
5 578_at	Human recombination activating protein (RAG2) gene, last exon	RAG2	M94633	0.5208	Below
6 32251_at	hypothetical protein FLJ21174	FLJ21174	AA149307	0.5164	Above
7 40480_s_at	FYN oncogene related to SRC FGR YES	FYN	M14333	0.5090	Above
8 38604_at	neuropeptide Y	NPY	AI198311	0.5083	Above

9	40903_at	ATPase H transporting lysosomal vacuolar proton pump membrane sector associated protein M8-9	APT6M8-9	AL049929	0.5080	Above
10	38968_at	SH3-domain binding protein 5 BTK-associated	SH3BP5	AB005047	0.5057	Above
11	37272_at	inositol 1 4 5-trisphosphate 3-kinase B	ITPKB	X57206	0.5025	Below
12	35688_g_at	mature T-cell proliferation 1	MTCP1	Z24459	0.5018	Above
13	1488_at	protein tyrosine phosphatase receptor type K	PTPRK	L77886	0.4977	Below
14	36885_at	spleen tyrosine kinase	SYK	L28824	0.4964	Below
15	1630_s_at	tyrosine kinase syk	syk	HG3730-HT4000	0.4913	Below
16	38317_at	transcription elongation factor A SII like 1	TCEAL1	M99701	0.4901	Above
17	38649_at	KIAA0970 protein	KIAA0970	AB023187	0.4898	Below
18	39721_at	ephrin-B1	EFNB1	U09303	0.4895	Above
19	33307_at	kraken-like	BK126B4.1	AL022316	0.4880	Below
20	38518_at	sex comb on midleg Drosophila like 2	SCML2	Y18004	0.4879	Above
21	39402_at	interleukin 1 beta	IL1B	M15330	0.4750	Above
22	36489_at	phosphoribosyl pyrophosphate synthetase 1	PRPS1	D00860	0.4718	Above
23	37747_at	Human annexin V (ANX5) gene, exon 13.	(ANX5	U05770	0.4717	Above
24	40200_at	heat shock transcription factor 1	HSF1	M64673	0.4689	Below
25	35940_at	POU domain class 4 transcription factor 1	POU4F1	X64624	0.4685	Above
26	35727_at	hypothetical protein FLJ20517	FLJ20517	AI249721	0.4675	Below
27	1357_at	ubiquitin specific protease 4 proto-oncogene	USP4	U20657	0.4670	Below
28	36592_at	prohibitin	PHB	S85655	0.4668	Above
29	37014_at	myxovirus influenza resistance 1 homolog of murine interferon-inducible protein p78	MXI	M33882	0.4635	Above
30	40891_f_at	DNA segment on chromosome X unique 9879 expressed sequence	DXS9879E	X92896	0.4608	Above
31	40846_g_at	interleukin enhancer binding factor 3 90Kd	ILF3	U10324	0.4605	Below
32	41132_r_at	heterogeneous nuclear ribonucleoprotein H2 H	HNRPH2	U01923	0.4605	Above
33	37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	0.4595	Below
34	35939_s_at	POU domain class 4 transcription factor 1	POU4F1	L20433	0.4594	Above
35	890_at	ubiquitin-conjugating enzyme E2A RAD6 homolog	UBE2A	M74524	0.4570	Above
36	38738_at	SMT3 suppressor of mif two 3 yeast homolog 1	SMT3H1	X99584	0.4568	Above
37	38458_at	Human cytochrome b5 (CYB5) gene, exon 6 and complete cds.	CYB5	L39945	0.4552	Above

38 38869_at	KIAA1069 protein	KIAA1069	AB028992	0.4549	Above
39 915_at	interferon-induced protein with tetratricopeptide repeats 1	IFIT1	M24594	0.4544	Above
40 38408_at	transmembrane 4 superfamily member 2	TM4SF2	L10373	0.4535	Above
41 39301_at	calpain 3 p94	CAPN3	X85030	0.4533	Below
42 41425_at	Friend leukemia virus integration 1	FLI1	M98833	0.4519	Below
43 2094_s_at	v-fos FBJ murine osteosarcoma viral oncogene homolog	FOS	K00650	0.4514	Above
44 36605_at	transcription factor 4	TCF4	M74719	0.4497	Above
45 37709_at	DNA segment numerous copies expressed probes GS1 gene	DXF68S1E	M86934	0.4493	Above
46 36128_at	transmembrane trafficking protein	TMP21	L40397	0.4488	Above
47 171_at	von Hippel-Lindau binding protein 1	VBP1	U56833	0.4473	Above
48 41490_at	phosphoribosyl pyrophosphate synthetase 2	PRPS2	Y00971	0.4466	Above
49 36536_at	schwannomin interacting protein 1	SCHIP-1	AF070614	0.4448	Above
50 35843_at	Homo sapiens mRNA cDNA DKFZp434D0935		L40402	0.4443	Above

Table 26. Genes Selected by Wilkins' for *MLL*

Affymetrix number	Gene Name	Gene Symbol	Reference number	Train set score	Above/Below Mean
1 39402_at	interleukin 1 beta	IL1B	M15330	0.7355	Below
2 307_at	arachidonate 5-lipoxygenase	ALOX5	J03600	0.7221	Below
3 1389_at	membrane metallo-endopeptidase neutral endopeptidase enkephalinase CALLA CD10	MME	J03779	0.7178	Below
4 37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	0.7021	Below
5 36650_at	cyclin D2	CCND2	D13639	0.6759	Below
6 37043_at	inhibitor of DNA binding 3 dominant negative helix-loop-helix protein	ID3	AL021154	0.6743	Below
7 1520_s_at	interleukin 1 beta	IL1B	X04500	0.6689	Below
8 40913_at	ATPase Ca transporting plasma membrane 4	ATP2B4	W28589	0.6684	Below
9 36536_at	schwannomin interacting protein 1	SCHIP-1	AF070614	0.6554	Below
10 37398_at	platelet/endothelial cell adhesion molecule CD31 antigen	PECAM1	AA100961	0.6548	Below
11 39114_at	decidual protein induced by progesterone	DEPP	AB022718	0.6478	Below
12 37967_at	lymphocyte antigen 117	LY117	AF000424	0.6432	Below
13 1325_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59423	0.6421	Below
14 38336_at	KIAA1013 protein	KIAA1013	AB023230	0.6395	Below
15 577_at	midkine neurite growth-promoting factor 2	MDK	M94250	0.6363	Below

16 38671_at	KIAA0620 protein	KIAA0620	AB014520	0.6353	Below
17 33412_at	LGALS1 Lectin, galactoside-binding, soluble, 1	LGALS1	AI535946	0.6351	Above
18 40451_at	hypothetical protein FLJ21434	FLJ21434	AL080203	0.6350	Below
19 36908_at	Human macrophage mannose receptor (MRC1) gene, exon 30.	MRC1	M93221	0.6290	Below
20 963_at	ligase IV DNA ATP-dependent	LIG4	X83441	0.6282	Below
21 41346_at	like-glycosyltransferase	LARGE	AJ007583	0.6214	Below
22 32207_at	membrane protein palmitoylated 1 55kD	MPP1	M64925	0.6155	Below
23 2062_at	insulin-like growth factor binding protein 7	IGFBP7	L19182	0.6145	Above
24 38408_at	transmembrane 4 superfamily member 2	TM4SF2	L10373	0.6137	Below
25 854_at	B lymphoid tyrosine kinase	BLK	S76617	0.6075	Above
26 32193_at	plexin C1	PLXNC1	AF030339	0.6065	Above
27 35939_s_at	POU domain class 4 transcription factor 1	POU4F1	L20433	0.6046	Below
28 33705_at	phosphodiesterase 4B cAMP-specific dunce Drosophila homolog	PDE4B	L20971	0.5991	Below
29 34168_at	phosphodiesterase E4 deoxynucleotidyltransferase terminal	DNTT	M11722	0.5979	Below
30 36383_at	v-ets avian erythroblastosis virus E26 oncogene related	ERG	M17254	0.5976	Below
31 38968_at	SH3-domain binding protein 5 BTK-associated	SH3BP5	AB005047	0.5976	Below
32 39263_at	2'5' oligoadenylate synthetase 2	OAS2	M87434	0.5967	Below
33 39329_at	actinin alpha 1	ACTN1	X15804	0.5953	Below
34 34699_at	CD2-associated protein	CD2AP	AL050105	0.5945	Below
35 1267_at	protein kinase C eta	PRKCH	M55284	0.5941	Below
36 35172_at	tyrosylprotein sulfotransferase 2	TPST2	AF049891	0.5937	Below
37 38124_at	midkine neurite growth-promoting factor 2	MDK	X55110	0.5936	Below
38 33813_at	tumor necrosis factor receptor superfamily member 1B	TNFRSF1B	AI813532	0.5934	Below
39 34176_at	hypothetical protein from clone 643	LOC57228	AF091087	0.5930	Below
40 39424_at	tumor necrosis factor receptor superfamily member 14 herpesvirus entry mediator	TNFRSF14	U70321	0.5930	Below
41 40729_s_at	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1	NFKBIL1	Y14768	0.5905	Below
42 32607_at	brain acid-soluble protein 1	BASP1	AF039656	0.5905	Above
43 38342_at	KIAA0239 protein	KIAA0239	D87076	0.5896	Below
44 32533_s_at	vesicle-associated membrane protein 5 myobrevin	VAMP5	AF054825	0.5880	Below
45 39330_s_at	actinin alpha 1	ACTN1	M95178	0.5867	Below

46 40519_at	protein tyrosine phosphatase receptor type C	PTPRC	Y00638	0.5848	Above
47 39338_at	S100 calcium-binding protein A10 annexin II ligand calpastatin I light polypeptide p11	S100A10	AI201310	0.5844	Above
48 35940_at	POU domain class 4 transcription factor 1	POU4F1	X64624	0.5824	Below
49 39712_at	S100 calcium-binding protein A13	S100A13	AI541308	0.5818	Below
50 39379_at	Homo sapiens mRNA cDNA DKFZp586C1019 from clone DKFZp586C1019		AL049397	0.5811	Above

Table 27: Genes Selected by Wilkins' for Novel Risk Group

Affymetrix number	Gene Name	Gene Symbol	Reference number	Train set score	Above/Below Mean
1 31892_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	0.8668	Above
2 41734_at	KIAA0870 protein	KIAA0870	AB020677	0.8614	Below
3 995_g_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	0.8505	Above
4 994_at	protein tyrosine phosphatase receptor type M	PTPRM	X58288	0.7694	Above
5 37967_at	lymphocyte antigen 117	LY117	AF000424	0.7399	Below
6 34676_at	KIAA1099 protein	KIAA1099	AB029022	0.7298	Above
7 41159_at	Clathrin heavy polypeptide Hc	CLTC	D21260	0.7283	Above
8 39728_at	interferon gamma-inducible protein 30	IFI30	J03909	0.7138	Below
9 37542_at	lipoma HMGIC fusion partner-like 2	LHFPL2	D86961	0.7069	Above
10 35350_at	B cell RAG associated protein	BRAG	AB011170	0.7049	Below
11 41438_at	KIAA1451 protein	KIAA1451	AL049923	0.6999	Below
12 34370_at	Archain 1	ARCN1	X81198	0.6999	Below
13 36029_at	chromosome 11 open reading frame 8	C11ORF8	U57911	0.6964	Above
14 37960_at	carbohydrate chondroitin 6/keratan sulfate transferase 2	CHST2	AB014679	0.6947	Above
15 35869_at	MD-1 RP105-associated	MD-1	AB020499	0.6908	Below
16 36601_at	Vinculin	VCL	M33308	0.6908	Below
17 40775_at	Integral membrane protein 2A	ITM2A	AL021786	0.6879	Above
18 37281_at	KIAA0233 gene product	KIAA0233	D87071	0.6837	Below
19 957_at	Arrestin, beta 2	ARRB2	HG2059-HT2114	0.6744	Below
20 33284_at	myeloperoxidase	MPO	M19507	0.6712	Below
21 40585_at	adenylate cyclase 7	ADCY7	D25538	0.6712	Below
22 37908_at	guanine nucleotide binding protein 11	GNG11	U31384	0.6656	Above
23 40167_s_at	CS box-containing WD protein	LOC55884	AF038187	0.6581	Below
24 38576_at	H2B histone family member B	H2BFB	AJ223353	0.6576	Below
25 36591_at	tubulin alpha 1 testis specific	TUBA1	X06956	0.6576	Below

26 37712_g_at	MADS box transcription enhancer factor 2 polypeptide C myocyte enhancer factor 2C	MEF2C	S57212	0.6576	Below
27 33924_at	KIAA1091 protein	KIAA1091	AB029014	0.6484	Below
28 32724_at	phytanoyl-CoA hydroxylase Refsum disease	PHYH	AF023462	0.6466	Above
29 33358_at	EST (retina)		W29087	0.6457	Above
30 33740_at	chromosome 1 open reading frame 2	C1ORF2	AF023268	0.6441	Below
31 36588_at	KIAA0810 protein	KIAA0810	AB018353	0.6441	Below
32 38802_at	progesterone binding protein	HPR6.6	Y12711	0.6441	Below
33 38408_at	transmembrane 4 superfamily member 2	TM4SF2	L10373	0.6440	Below
34 32227_at	proteoglycan 1 secretory granule	PRG1	X17042	0.6409	Below
35 34840_at	Homo sapiens cDNA FLJ22642 fis clone HSI06970		AI700633	0.6409	Below
36 1131_at	mitogen-activated protein kinase kinase 2	MAP2K2	L11285	0.6409	Below
37 33410_at	integrin alpha 6	ITGA6	S66213	0.6391	Above
38 38006_at	CD48 antigen B-cell membrane protein	CD48	M37766	0.6342	Below
39 33907_at	eukaryotic translation initiation factor 4 gamma 3	EIF4G3	AF012072	0.6304	Below
40 41273_at	FK506 binding protein 12-rapamycin associated protein 1	FRAP1	AL046940	0.6304	Below
41 39781_at	insulin-like growth factor-binding protein 4	IGFBP4	U20982	0.6301	Below
42 39893_at	guanine nucleotide binding protein G protein gamma 7	GNG7	AB010414	0.6301	Below
43 37326_at	proteolipid protein 2 colonic epithelium-enriched	PLP2	U93305	0.6267	Below
44 36687_at	cytochrome c oxidase subunit VIIb	COX7B	N50520	0.6266	Below
45 40423_at	KIAA0903 protein	KIAA0903	AB020710	0.6254	Above
46 32542_at	four and a half LIM domains 1	FHL1	AF063002	0.6236	Below
47 33232_at	cysteine-rich protein 1 intestinal	CRIP1	AI017574	0.6211	Below
48 37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	0.6208	Above
49 1325_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59423	0.6208	Above
50 40729_s_at	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1	NFKBIL1	Y14768	0.6199	Below

Table 28. Genes selected by Wilkins' for T-ALL

Affymetrix number	Gene Name	Gene Symbol	Reference number	Train set score	Above/Below Mean
1 38242_at	B cell linker protein	SLP65	AF068180	0.8683	Below
2 37988_at	CD79B antigen immunoglobulin-associated beta	CD79B	M89957	0.8422	Below
3 1096_g_at	CD19 antigen	CD19	M28170	0.8181	Below
4 39318_at	T-cell leukemia/lymphoma 1A	TCL1A	X82240	0.8128	Below
5 38018_g_at	CD79A antigen immunoglobulin-associated alpha	CD79A	U05259	0.8127	Below
6 36878_f_at	major histocompatibility complex class II DQ beta 1	HLA-DQB1	M60028	0.8053	Below
7 38147_at	SH2 domain protein 1A Duncan s disease lymphoproliferative syndrome	SH2D1A	AL023657	0.8016	Above
8 35350_at	B cell RAG associated protein	BRAG	AB011170	0.7914	Below
9 38051_at	mal T-cell differentiation protein	MAL	X76220	0.7900	Above
10 266_s_at	CD24 antigen small cell lung carcinoma cluster 4 antigen	CD24	L33930	0.7867	Below
11 38521_at	CD22 antigen	CD22	X59350	0.7856	Below
12 37344_at	major histocompatibility complex class II DM alpha	HLA-DMA	X62744	0.7835	Below
13 34033_s_at	leukocyte immunoglobulin-like receptor subfamily A with TM domain member 2	LILRA2	AF025531	0.7761	Below
14 36638_at	connective tissue growth factor	CTGF	X78947	0.7755	Below
15 38213_at	galactosidase alpha	GLA	U78027	0.7701	Below
16 41734_at	KIAA0870 protein	KIAA0870	AB020677	0.7693	Below
17 37711_at	MADS box transcription enhancer factor 2 polypeptide C myocyte enhancer factor 2C	MEF2C	S57212	0.7560	Below
18 36239_at	POU domain class 2 associating factor 1	POU2AF1	Z49194	0.7440	Below
19 38319_at	CD3D antigen delta polypeptide TiT3 complex	CD3D	AA919102	0.7426	Above
20 38894_g_at	neutrophil cytosolic factor 4 40kD	NCF4	AL008637	0.7422	Below
21 33705_at	phosphodiesterase 4B cAMP-specific dunce Drosophila homolog phosphodiesterase E4	PDE4B	L20971	0.7414	Below
22 38017_at	CD79A antigen immunoglobulin-associated alpha	CD79A	U05259	0.7360	Below
23 41156_g_at	catenin cadherin-associated protein alpha 1 102kD	CTNNA1	U03100	0.7315	Below
24 38994_at	STAT induced STAT inhibitor-2	STATI2	AF037989	0.7292	Below
25 37710_at	MADS box transcription enhancer factor 2 polypeptide C myocyte enhancer factor 2C	MEF2C	L08895	0.7283	Below
26 41155_at	catenin cadherin-associated protein alpha 1 102kD	CTNNA1	U03100	0.7278	Below

27 40570_at	forkhead box O1A rhabdomyosarcoma	FOXO1A	AF032885	0.7258	Below
28 34224_at	fatty acid desaturase 3	FADS3	AC004770	0.7254	Below
29 38604_at	neuropeptide Y	NPY	AI198311	0.7212	Below
30 36773_f_at	major histocompatibility complex class II DQ beta 1	HLA-DQB1	M81141	0.7197	Below
31 32562_at	endoglin Osler-Rendu-Weber syndrome 1	ENG	X72012	0.7180	Below
32 36502_at	PFTAIRe protein kinase 1	PFTK1	AB020641	0.7179	Below
33 37180_at	phospholipase C gamma 2 phosphatidylinositol-specific	PLCG2	X14034	0.7114	Below
34 38893_at	neutrophil cytosolic factor 4 40kD	NCF4	AL008637	0.7100	Below
35 387_at	cyclin-dependent kinase 9 CDC2- related kinase	CDK9	X80230	0.7024	Below
36 32035_at	Human MHC class II HLA- DRw53-associated glycoprotein beta- chain mRNA complete cds		M16942	0.6992	Below
37 41153_f_at	Homo sapiens alphaE-catenin (CTNNA1) gene	CTNNA1	AF102803	0.6976	Below
38 40780_at	C-terminal binding protein 2	CTBP2	AF016507	0.6976	Below
39 40775_at	integral membrane protein 2A	ITM2A	AL021786	0.6952	Above
40 39402_at	interleukin 1 beta	IL1B	M15330	0.6945	Below
41 38522_s_at	CD22 antigen	CD22	X52785	0.6945	Below
42 41166_at	immunoglobulin heavy constant mu	IGHM	X58529	0.6941	Below
43 36937_s_at	PDZ and LIM domain 1 elfin	PDLIM1	U90878	0.6937	Below
44 38833_at	Human mRNA for SB classII histocompatibility antigen alpha- chain		X00457	0.6925	Below
45 2047_s_at	junction plakoglobin	JUP	M23410	0.6920	Below
46 36277_at	Human membran protein (CD3- epsilon) gene, exon 9.	CD3E	M23323	0.6899	Above
47 40688_at	linker for activation of T cells	LAT	AJ223280	0.6898	Above
48 39389_at	CD9 antigen p24	CD9	M38690	0.6879	Below
49 33162_at	Insulin receptor	INSR	X02160	0.6879	Below
50 31891_at	chitinase 3-like 2	CHI3L2	U58515	0.6872	Above

Table 29. Genes Selected by Wilkins' for *TEL-AML1*

Affymetrix number	Gene Name	Gene Symbol	Reference number	Train set score	Above/ Below Mean
1 37780_at	Piccolo presynaptic cytomatrix protein	PCLO	AB011131	0.7121	Above
2 38203_at	potassium intermediate/small conductance calcium-activated channel subfamily N member 1	KCNN1	U69883	0.7086	Above

3	36524_at	Rho guanine nucleotide exchange factor GEF 4	ARHGEF4	AB029035	0.6782	Above
4	38578_at	tumor necrosis factor receptor superfamily member 7	TNFRSF7	M63928	0.6718	Above
5	32730_at	Homo sapiens mRNA for KIAA1750 protein partial cds		AL080059	0.6616	Above
6	34194_at	Homo sapiens cDNA FLJ21697 fis clone COL09740		AL049313	0.6518	Above
7	40272_at	collapsin response mediator protein 1	CRMP1	D78012	0.6160	Above
8	41819_at	FYN-binding protein FYB-120/130	FYB	U93049	0.6058	Above
9	1488_at	protein tyrosine phosphatase receptor type K	PTPRK	L77886	0.6056	Above
10	35665_at	phosphoinositide-3-kinase class 3	PIK3C3	Z46973	0.6022	Above
11	35614_at	transcription factor-like 5 basic helix-loop-helix	TCFL5	AB012124	0.5983	Above
12	36008_at	protein tyrosine phosphatase type IVA member 3	PTP4A3	AF041434	0.5976	Above
13	35362_at	Myosin X	MYO10	AB018342	0.5964	Above
14	37908_at	guanine nucleotide binding protein 11	GNG11	U31384	0.5888	Above
15	39329_at	Actinin alpha 1	ACTN1	X15804	0.5840	Below
16	1936_s_at	proto-oncogene c-myc, alt. transcript 3, ORF 114		HG3523-HT4899	0.5761	Below
17	33690_at	Homo sapiens mRNA cDNA DKFZp434A202	DKFZp434 A202	AL080190	0.5725	Above
18	39389_at	CD9 antigen p24	CD9	M38690	0.5684	Below
19	37343_at	inositol 1 4 5-triphosphate receptor type 3	ITPR3	U01062	0.5642	Above
20	1299_at	telomeric repeat binding factor 2	TERF2	X93512	0.5585	Above
21	38652_at	hypothetical protein FLJ20154	FLJ20154	AF070644	0.5563	Above
22	38763_at	(clone D21-1) L-iditol-2 dehydrogenase gene		L29254	0.5535	Below
23	37724_at	v-myc avian myelocytomatisis viral oncogene homolog	MYC	V00568	0.5506	Below
24	36937_s_at	PDZ and LIM domain 1 elfin	PDLM1	U90878	0.5506	Below
25	1325_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59423	0.5482	Above
26	41549_s_at	adaptor-related protein complex 1 sigma 2 subunit	AP1S2	AF091077	0.5474	Below
27	39827_at	hypothetical protein	FLJ20500	AA522530	0.5471	Below
28	32724_at	phytanoyl-CoA hydroxylase Refsum disease	PHYH	AF023462	0.5459	Above
29	31786_at	Sam68-like phosphotyrosine protein T-STAR	T-STAR	AF051321	0.5403	Above
30	38570_at	major histocompatibility complex class II DO beta	HLA-DOB	X03066	0.5384	Above
31	39330_s_at	actinin alpha 1	ACTN1	M95178	0.5375	Below

32 36493_at	lymphocyte-specific protein 1	LSP1	M33552	0.5356	Below
33 574_s_at	caspase 1 apoptosis-related cysteine protease interleukin 1 beta convertase	CASP1	M87507	0.5336	Below
34 32224_at	KIAA0769 gene product	KIAA0769	AB018312	0.5326	Above
35 1077_at	recombination activating gene 1	RAG1	M29474	0.5302	Above
36 37280_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59912	0.5283	Above
37 41200_at	CD36 antigen collagen type I receptor thrombospondin receptor like 1	CD36L1	Z22555	0.5261	Above
38 36009_at	hypothetical protein	CL683	AF091092	0.5259	Below
39 36933_at	N-myc downstream regulated	NDRG1	D87953	0.5254	Below
40 1126_s_at	Human cell surface glycoprotein CD44 (CD44) gene, 3' end of long tailed isoform.	CD44	L05424	0.5232	Below
41 39824_at	ESTs		AI391564	0.5231	Above
42 38078_at	filamin B beta actin-binding protein-278	FLNB	AF042166	0.5208	Below
43 38127_at	syndecan 1	SDC1	Z48199	0.5199	Above
44 32941_at	interferon consensus sequence binding protein 1	ICSBP1	M91196	0.5195	Below
45 37276_at	IQ motif containing GTPase activating protein 2	IQGAP2	U51903	0.5191	Below
46 34768_at	DKFZP564E1962 protein	DKFZP564 E1962	AL080080	0.5184	Below
47 39781_at	insulin-like growth factor-binding protein 4	IGFBP4	U20982	0.5173	Below
48 37918_at	integrin beta 2 antigen CD18 p95 lymphocyte function-associated antigen 1 macrophage antigen 1 macrophage antigen 1 beta subunit	ITGB2	M15395	0.5162	Below
49 41490_at	phosphoribosyl pyrophosphate synthetase 2	PRPS2	Y00971	0.5155	Below
50 41814_at	fucosidase alpha-L- 1 tissue	FUCA1	M29877	0.5101	Above

5. SOM/DAV

The 10,991 probe sets that passed the variation filter were used for subsequent selection of discriminating genes using the self-organizing map (SOM) and discriminant analysis with variance (DAV) programs in the GeneMaths software package (version 1.5, Applied Maths, Belgium). The subgroups for which genes were selected included T-lineage ALL, *TEL-AML1*, *E2A-PBX1*, *MLL* rearrangement, *BCR-ABL*, hyperdiploid ALL (chromosomal number > 50) and the novel subgroup described in the text of the paper. The target number of total genes chosen by each algorithm was 500.

The SOM analysis was performed using 30 X 18 node format to enable an optimal number of genes per node (~20 genes per node). Nodes that contained genes whose expression varied more than 2-fold from the mean in more than 70% of the samples in a particular subgroup were chosen. A total of 451 genes were chosen 5 using the SOM algorithm and 443 genes using the DAV algorithm. The combined gene sets contained 755 unique genes, of which 185 were present in both subsets. 2-D hierarchical clustering of the genes and samples were performed using Pearson's correlation coefficient as the metric and unweighted pair group method using arithmetic averages (UPGMA). Approximately 10% of the genes that were found to 10 have correlation coefficients less than 0.7 in each branch of the dendrogram were removed and the process was repeated reiteratively until the correlation coefficient for all genes within a branch was > 0.7, or until the removal of additional gene resulted in a deterioration of the class distinction as indicated by inappropriate clustering of cases. Through this approach a subset of 215 genes were selected that optimally 15 separated the 7 subgroups. These genes are listed in Tables 30-36. The selection of genes by this approach does not provide for a ranking. For class prediction between 20 and 30 genes were used for each genetic subgroup, unless otherwise stated.

Table 30. Genes selected by DAV-SOM for *BCR-ABL*

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 39250_at	nephroblastoma overexpressed gene	NOV	X96584	Above
2 37600_at	extracellular matrix protein 1	ECM1	U68186	Above
3 38312_at	DKFZp564O222 from clone DKFZp564O222		AL050002	Above
4 38342_at	KIAA0239 protein	KIAA0239	D87076	Above
5 39712_at	S100 calcium-binding protein A13	S100A13	AI541308	Above
6 39730_at	v-abl Abelson murine leukemia viral oncogene homolog 1	ABL1	X16416	Above
7 39781_at	Insulin-like growth factor-binding protein 4	IGFBP4	U20982	Above
8 40051_at	TRAM-like protein	KIAA0057	D31762	Above
9 40504_at	paraoxonase 2	PON2	AF001601	Above
10 33362_at	Cdc42 effector protein 3	CEP3	AF094521	Above
11 33404_at	adenylyl cyclase-associated protein 2	CAP2	U02390	Above
12 34362_at	solute carrier family 2 facilitated glucose transporter member 5	SLC2A5	M55531	Above
13 36591_at	Tubulin alpha 1 testis specific	TUBA1	X06956	Above

14 38077_at	collagen type VI alpha 3	COL6A3	X52022	Above
15 40196_at	HYA22 protein	HYA22	D88153	Above
16 1911_s_at	Growth arrest and DNA-damage-inducible alpha	GADD45A	M60974	Above
17 1702_at	interleukin 2 receptor alpha	IL2RA	X01057	Above
18 1635_at	Human proto-oncogene tyrosine-protein kinase (ABL) gene, exon 1a and exons 2-10, complete cds.	ABL	U07563	Above
19 1636_g_at	Human proto-oncogene tyrosine-protein kinase (ABL) gene, exon 1a and exons 2-10, complete cds.	ABL	U07563	Above
20 1326_at	Caspase 10 apoptosis-related cysteine protease	CASP10	U60519	Above
21 330_s_at	Tubulin, alpha 1, isoform 44	TUBA1	HG2259-HT2348	Above

Table 31. Genes selected by DAV-SOM for E2A-PBX1

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 33513_at	signaling lymphocytic activation molecule	SLAM	U33017	Above
2 37479_at	CD72 antigen	CD72	M54992	Above
3 37485_at	fatty-acid-Coenzyme A ligase very long-chain 1	FACVL1	D88308	Above
4 39614_at	KIAA0802 protein	KIAA0802	AB018345	Above
5 39929_at	KIAA0922 protein	KIAA0922	AB023139	Above
6 40648_at	c-mer proto-oncogene tyrosine kinase	MERTK	U08023	Above
7 41017_at	Myosin-binding protein H	MYBPH	U27266	Above
8 41425_at	Friend leukemia virus integration 1	FLT1	M98833	Above
9 41862_at	KIAA0056 protein	KIAA0056	D29954	Above
10 32063_at	pre-B-cell leukemia transcription factor 1	PBX1	M86546	Above
11 37225_at	KIAA0172 protein	KIAA0172	D79994	Above
12 38285_at	mu-crystallin gene		AF039397	Above
13 38286_at	KIAA1071 protein	KIAA1071	AB028994	Above
14 38340_at	huntingtin interacting protein-1-related	KIAA0655	AB014555	Above
15 39379_at	cDNA DKFZp586C1019 from clone DKFZp586C1019		AL049397	Above
16 39402_at	interleukin 1 beta	IL1B	M15330	Above
17 40454_at	FAT tumor suppressor Drosophila homolog	FAT	X87241	Above
18 41139_at	melanoma antigen family D 1	MAGED1	W26633	Above
19 41146_at	ADP-ribosyltransferase NAD poly ADP-ribose polymerase	ADPRT	J03473	Above
20 33355_at	Homo sapiens cDNA FLJ12900 fis clone NT2RP2004321		AL049381	Above
21 34783_s_at	BUB3 budding uninhibited by benzimidazoles 3 yeast homolog	BUB3	AF047473	Above

22 36179_at	mitogen-activated protein kinase-activated protein kinase 2	MAPKAPK2	U12779	Above
23 36589_at	aldo-keto reductase family 1 member B1 aldose reductase	AKR1B1	X15414	Above
24 38393_at	KIAA0247 gene product	KIAA0247	D87434	Above
25 38438_at	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 p105	NFKB1	M58603	Above
26 1786_at	c-mer proto-oncogene tyrosine kinase	MERTK	U08023	Above
27 1520_s_at	interleukin 1 beta	IL1B	X04500	Above
28 1287_at	ADP-ribosyltransferase NAD poly ADP-ribose polymerase	ADPRT	J03473	Above
29 854_at	B lymphoid tyrosine kinase	BLK	S76617	Above
30 753_at	Nidogen 2	NID2	D86425	Above
31 430_at	nucleoside phosphorylase	NP	X00737	Above
32 362_at	Protein kinase C zeta	PRKCZ	Z15108	Above

Table 32. Genes selected by DAV/SOM for Hyperdiploid >50

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 36795_at	prosaposin variant Gaucher disease and variant metachromatic leukodystrophy	PSAP	J03077	Above
2 38242_at	B cell linker protein	SLP65	AF068180	Above
3 38518_at	sex comb on midleg Drosophila like 2	SCML2	Y18004	Above
4 39628_at	RAB9 member RAS oncogene family	RAB9	U44103	Above
5 31863_at	KIAA0179 protein	KIAA0179	D80001	Above
6 33228_g_at	interleukin 10 receptor beta	IL10RB	AI984234	Above
7 33753_at	KIAA0666 protein	KIAA0666	AB014566	Above
8 37543_at	Rac/Cdc42 guanine exchange factor GEF 6	ARHGEF6	D25304	Above
9 38968_at	SH3-domain binding protein 5 BTK-associated	SH3BP5	AB005047	Above
10 39039_s_at	CGI-76 protein	LOC51632	AI557497	Above
11 39329_at	Actinin alpha 1	ACTN1	X15804	Above
12 39389_at	CD9 antigen p24	CD9	M38690	Above
13 32207_at	membrane protein palmitoylated 1 55kD	MPP1	M64925	Above
14 32236_at	ubiquitin-conjugating enzyme E2G 2 homologous to yeast UBC7	UBE2G2	AF032456	Above
15 32251_at	hypothetical protein FLJ21174	FLJ21174	AA149307	Above
16 35764_at	chromosome X open reading frame 5	OFD1	Y15164	Above
17 36620_at	superoxide dismutase 1 soluble amyotrophic lateral sclerosis 1 adult	SOD1	X02317	Above
18 36937_s_at	PDZ and LIM domain 1 elfin	PDLIM1	U90878	Above
19 37326_at	proteolipid protein 2 colonic epithelium-enriched	PLP2	U93305	Above

20 37350_at	clone 889N15 on chromosome Xq22.1-22.3. Contains part of the gene for a novel protein similar to X. laevis Cortical Thymocyte Marker CTX	PSMD10	AL031177	Above
21 38738_at	SMT3 suppressor of mif two 3 yeast homolog 1	SMT3H1	X99584	Above
22 39168_at	Ac-like transposable element	ALTE	AB018328	Above
23 40903_at	ATPase H transporting lysosomal vacuolar proton pump membrane sector associated protein M8-9	APT6M8-9	AL049929	Above
24 32572_at	ubiquitin specific protease 9 X chromosome USP9X Drosophila fat facets related		X98296	Above
25 1065_at	fms-related tyrosine kinase 3	FLT3	U02687	Above
26 306_s_at	high-mobility group nonhistone chromosomal protein 14	HMG14	J02621	Above

Table 33: Genes selected by DAV/SOM for *MLL*

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 31492_at	Muscle specific gene	M9	AB019392	Above
2 36777_at	DNA segment on chromosome 12 unique 2489 expressed sequence	D12S2489E	AJ001687	Above
3 39301_at	Calpain 3 p94	CAPN3	X85030	Below
4 41448_at	Homeo box A4	HOXA4	AC004080	Above
5 39424_at	tumor necrosis factor receptor superfamily member 14 herpesvirus entry mediator	TNFRSF14	U70321	Below
6 40076_at	Tumor protein D52-like 2	TPD52L2	AF004430	Above
7 40493_at	Human cell surface glycoprotein CD44 (CD44) gene, 3' end of long tailed isoform.	CD44	L05424	Above
8 40506_s_at	Homo sapiens polyadenylate binding protein mRNA, complete cds.		U75686	Above
9 40514_at	hypothetical 43.2 Kd protein	LOC51614	AF091085	Above
10 40763_at	Meis1 mouse homolog	MEIS1	U85707	Above
11 40797_at	a disintegrin and metalloproteinase domain 10	ADAM10	AF009615	Above
12 40798_s_at	a disintegrin and metalloproteinase domain 10	ADAM10	Z48579	Above
13 41747_s_at	myocyte-specific enhancer factor 2A (MEF2A) gene	MEF2A	U49020	Above
14 32193_at	Plexin C1	PLXNC1	AF030339	Above
15 32215_i_at	KIAA0878 protein	KIAA0878	AB020685	Above
16 33412_at	LGALS1 Lectin, galactoside-binding, soluble, 1 (galectin 1)	LGALS1	AI535946	Above
17 34306_at	muscleblind Drosophila like	MBNL	AB007888	Above
18 34785_at	KIAA1025 protein	KIAA1025	AB028948	Above

19 35298_at	eukaryotic translation initiation factor 3 subunit 7 zeta 66/67kD	EIF3S7	U54558	Above
20 36690_at	Nuclear receptor subfamily 3 group C member 1	NR3C1	M10901	Above
21 37675_at	solute carrier family 25 mitochondrial carrier phosphate carrier member 3	SLC25A3	X60036	Above
22 38391_at	capping protein actin filament gelsolin-like	CAPG	M94345	Above
23 38413_at	defender against cell death 1	DAD1	D15057	Above
24 39110_at	eukaryotic translation initiation factor 4B	EIF4B	X55733	Above
25 39867_at	Tu translation elongation factor mitochondrial	TUFM	S75463	Above
26 2062_at	Insulin-like growth factor binding protein 7	IGFBP7	L19182	Above
27 2036_s_at	CD44 antigen homing function and Indian blood group system	CD44	M59040	Above
28 1914_at	Cyclin A1	CCNA1	U66838	Above
29 1327_s_at	mitogen-activated protein kinase kinase kinase 5	MAP3K5	U67156	Above
30 1126_s_at	Human cell surface glycoprotein CD44 (CD44) gene, 3' end of long tailed isoform.	CD44	L05424	Above
31 1102_s_at	Nuclear receptor subfamily 3 group C member 1	NR3C1	M10901	Above
32 873_at	homeo box A5	HOXA5	M26679	Above
33 706_at	Glucocorticoid receptor, beta		HG4582-HT4987	Above
34 657_at	protocadherin gamma subfamily C 3	PCDHGC3	L11373	Above

Table 34. Genes selected by DAV/SOM for Novel Class

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 33137_at	latent transforming growth factor beta binding protein 4	LTBP4	Y13622	Above
2 38081_at	leukotriene A4 hydrolase	LTA4H	J03459	Above
3 38661_at	seb4D	HSRNASEB	X75314	Above
4 39878_at	protocadherin 9	PCDH9	AI524125	Above
5 35260_at	KIAA0867 protein	MONDOA	AB020674	Above
6 1373_at	transcription factor 3 E2A immunoglobulin enhancer binding factors E12/E47	TCF3	M31523	Above
7 35177_at	KIAA0725 protein	KIAA0725	AB018268	Above
8 38618_at	Human PAC clone RP3-515N1 from 22q11.2-q22	LIMK2	AC002073	Above
9 34947_at	phorbol-like protein MDS019	MDS019	AA442560	Above
10 40692_at	transducin-like enhancer of split 4 homolog of Drosophila E sp1	TLE4	M99439	Above
11 38364_at	BCE-1 protein	BCE-1	AF068197	Above
12 37960_at	carbohydrate chondroitin 6/keratan sulfotransferase 2	CHST2	AB014679	Above

13 994_at	Protein tyrosine phosphatase receptor type M	PTPRM	X58288	Above
14 31892_at	Protein tyrosine phosphatase receptor type M	PTPRM	X58288	Above
15 995_g_at	Protein tyrosine phosphatase receptor type M	PTPRM	X58288	Above
16 41073_at	G protein-coupled receptor 49	GPR49	AI743745	Above
17 41708_at	KIAA1034 protein	KIAA1034	AB028957	Above
18 34376_at	protein kinase cAMP-dependent catalytic inhibitor gamma	PKIG	AB019517	Below
19 37978_at	quinolinate phosphoribosyltransferase nicotinate-nucleotide pyrophosphorylase carboxylating	QPRT	D78177	Below
20 38717_at	DKFZP586A0522 protein	DKFZP586A05 22	AL050159	Below
21 33999_f_at	Human L2-9 transcript of unarranged immunoglobulin V H 5 pseudogene		X58398	Above
22 36181_at	LIM and SH3 protein 1	LASP1	X82456	Below
23 41202_s_at	conserved gene amplified in osteosarcoma	OS4	AF000152	Above
24 41138_at	Antigen identified by monoclonal antibodies 12E7 F21 and O13	MIC2	M16279	Below
25 40771_at	Moesin	MSN	Z98946	Above
26 39070_at	singed Drosophila like sea urchin fascin homolog like	SNL	U03057	Below
27 32562_at	endoglin Osler-Rendu-Weber syndrome 1	ENG	X72012	Below
28 36536_at	schwannomin interacting protein 1	SCHIP-1	AF070614	Below
29 36650_at	cyclin D2	CCND2	D13639	Below
30 39756_g_at	X-box binding protein 1	XBP1	Z93930	Above
31 34168_at	deoxynucleotidyltransferase terminal	DNTT	M11722	Above
32 1389_at	membrane metallo-endopeptidase neutral endopeptidase enkephalinase CALLA CD10	MME	J03779	Below
33 41213_at	peroxiredoxin 1	PRDX1	X67951	Above
34 36571_at	Topoisomerase DNA II beta 180kD	TOP2B	X68060	Above
35 253_g_at	clone GPCR W G protein-linked receptor gene (GPCR) gene, 5' end of cds.		L42324	Below
36 252_at	clone GPCR W G protein-linked receptor gene (GPCR) gene, 5' end of cds.		L42324	Above
37 2087_s_at	cadherin 11 type 2 OB-cadherin osteoblast	CDH11	D21254	Above
38 36976_at	cadherin 11 type 2 OB-cadherin osteoblast	CDH11	D21255	Above

Table 35. Genes selected by DAV/SOM for T-ALL

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/ Below Mean Below
1 35016_at	Human Ia-associated invariant gamma-chain gene, exon 8, clones lambda-y(1,2,3).		M13560	
2 36277_at	membrane protein (CD3-epsilon) gene	CD3E	M23323	Above

3 38147_at	SH2 domain protein 1A Duncan's disease lymphoproliferative syndrome	SH2D1A	AL023657	Above
4 38949_at	protein kinase C theta	PRKCQ	L01087	Above
5 32649_at	transcription factor 7 T-cell specific HMG-box	TCF7	X59871	Above
6 33238_at	Human T-lymphocyte specific protein tyrosine kinase p56lck (LCK) aberrant mRNA, complete cds.	LCK	U23852	Above
7 35643_at	nucleobindin 2	NUCB2	X76732	Above
8 36473_at	ubiquitin specific protease 20	USP20	AB023220	Above
9 38319_at	CD3D antigen delta polypeptide TiT3 complex	CD3D	AA919102	Above
10 39709_at	selenoprotein W 1	SEPW1	U67171	Above
11 40775_at	integral membrane protein 2A	ITM2A	AL021786	Above
12 32794_g_at	T cell receptor beta locus	TRB	X00437	Above
13 37039_at	major histocompatibility complex class II DR alpha	HLA-DRA	J00194	Below
14 38051_at	mal T-cell differentiation protein	MAL	X76220	Above
15 38095_i_at	major histocompatibility complex class II DP beta 1	HLA-DPB1	M83664	Below
16 38096_f_at	major histocompatibility complex class II DP beta 1	HLA-DPB1	M83664	Below
17 38415_at	protein tyrosine phosphatase type IVA member 2	PTP4A2	U14603	Above
18 38833_at	Human mRNA for SB classII histocompatibility antigen alpha-chain		X00457	Below
19 2059_s_at	lymphocyte-specific protein tyrosine kinase	LCK	M36881	Above
20 1241_at	protein tyrosine phosphatase type IVA member 2	PTP4A2	U14603	Above
21 1105_s_at	T cell receptor beta locus	TRB	M12886	Above

Table 36: Genes selected by DAV/SOM for *TEL-AML1*

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 31508_at	upregulated by 1, 25-dihydroxyvitamin D-3	VDUP1	S73591	Above
2 33690_at	cDNA DKFZp434A202 from clone DKFZp434A202		AL080190	Above
3 34481_at	vav proto-oncogene, exon 27, and complete cds.	VAV	AF030227	Above
4 36239_at	POU domain class 2 associating factor 1	POU2AF1	Z49194	Above
5 37470_at	Leukocyte-associated Ig-like receptor 1	LAIR1	AF013249	Above
6 38203_at	Potassium intermediate/small conductance calcium-activated channel subfamily N member 1	KCNN1	U69883	Above

7	38570_at	major histocompatibility complex class II DO beta	HLA-DOB	X03066	Above
8	38578_at	tumor necrosis factor receptor superfamily member 7	TNFRSF7	M63928	Above
9	38906_at	spectrin alpha erythrocytic 1 elliptocytosis 2	SPTA1	M61877	Above
10	40729_s_at	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1	NFKBIL1	Y14768	Above
11	40745_at	adaptor-related protein complex 1 beta 1 subunit	AP1B1	L13939	Above
12	41097_at	telomeric repeat binding factor 2	TERF2	AF002999	Above
13	41381_at	KIAA0308 protein	KIAA0308	AB002306	Above
14	41442_at	core-binding factor runt domain alpha subunit 2 translocated to 3	CBFA2T3	AB010419	Above
15	31898_at	KIAA0212 gene product	KIAA0212	D86967	Above
16	32660_at	KIAA0342 gene product	KIAA0342	AB002340	Above
17	34194_at	cDNA FLJ21697 fis clone COL09740		AL049313	Above
18	35614_at	transcription factor-like 5 basic helix-loop- helix	TCFL5	AB012124	Above
19	35665_at	Phosphoinositide-3-kinase class 3	PIK3C3	Z46973	Above
20	36008_at	protein tyrosine phosphatase type IVA member 3	PTP4A3	AF041434	Above
21	36524_at	Rho guanine nucleotide exchange factor GEF 4	ARHGEF4	AB029035	Above
22	36537_at	Rho-specific guanine nucleotide exchange factor p114	P114-RHO- GEF	AB011093	Above
23	37280_at	MAD mothers against decapentaplegic <i>Drosophila</i> homolog 1	MADH1	U59912	Above
24	38652_at	hypothetical protein FLJ20154	FLJ20154	AF070644	Above
25	41200_at	CD36 antigen collagen type I receptor thrombospondin receptor like 1	CD36L1	Z22555	Above
26	32224_at	KIAA0769 gene product	KIAA0769	AB018312	Above
27	36985_at	isopentenyl-diphosphate delta isomerase	IDI1	X17025	Above
28	38124_at	midkine neurite growth-promoting factor 2	MDK	X55110	Above
29	39824_at	ESTs		AI391564	Above
30	40570_at	forkhead box O1A rhabdomyosarcoma	FOXO1A	AF032885	Above
31	41498_at	KIAA0911 protein	KIAA0911	AB020718	Above
32	41814_at	fucosidase alpha-L- 1 tissue	FUCA1	M29877	Above
33	32579_at	SWI/SNF related matrix associated actin dependent regulator of chromatin subfamily a member 4	SMARCA4	D26156	Above
34	33162_at	insulin receptor	INSR	X02160	Above
35	1779_s_at	pim-1 oncogene	PIM1	M16750	Above
36	1488_at	protein tyrosine phosphatase receptor type K	PTPRK	L77886	Above

37 1325_at	MAD mothers against decapentaplegic Drosophila homolog 1	MADH1	U59423	Above
38 1336_s_at	protein kinase C beta 1	PRKCB1	X06318	Above
39 1299_at	Telomeric repeat binding factor 2	TERF2	X93512	Above
40 1217_g_at	protein kinase C beta 1	PRKCB1	X07109	Above
41 1077_at	recombination activating gene 1	RAG1	M29474	Above
42 932_i_at	zinc finger protein 91 HPF7 HTF10	ZNF91	L11672	Above
43 880_at	FK506-binding protein 1A 12kD	FKBP1A	M34539	Above
44 755_at	inositol 1 4 5-triphosphate receptor type 1	ITPR1	D26070	Above
45 577_at	midkine neurite growth-promoting factor 2	MDK	M94250	Above
46 160029_at	protein kinase C beta 1	PRKCB1	X07109	Above

C. Comparison of genes selected by the different metrics

There is a high degree of overlap between the genes chosen by the various metrics, however the top ranked genes for each metric differ. Despite this, the top genes selected by the various metrics are all able to accurately identify the leukemia risk groups as detailed below. As a result, a limited number of genes can be used to accurately identify the genetic subtypes and one can use non-overlapping lists and still achieve high prediction accuracy. Thus, there are many genes that are distinct discriminators of these seven risk groups, and one need only to use a small subset of these in a supervised learning algorithm to accurately identify a case as belonging to the genetic subtype.

D. Decision tree for the diagnosis of genetic subtypes

Classification was approached using a decision tree format, in which the first decision was T-ALL versus B-lineage (non-T-ALL). Within the B-lineage subset, cases were then sequentially classified into the known risk groups characterized by the presence of *E2A-PBX1*, TEL-AML1, BCR-ABL, MLL chimeric genes, and lastly hyperdiploid >50 chromosomes. Cases not assigned to one of these classes were left unassigned. Classification was performed using the supervised learning algorithms described below.

E. Description of Supervised Learning Algorithms

An analysis of the profiles was performed using a linear classifier, C4.5, and a variety of different non-linear classifiers. The non-linear classifiers consistently outperformed

the linear classifier. Therefore, only the description and data from non-linear classifiers are included below.

1. Support Vector Machine (SVM)

5 Support vector machine (SVM) selects a small number of critical boundary instances from each class and builds a linear discriminant function that separates them as widely as possible (Witten and Frank, *Data Mining: Practical Machine Learning Tools and Techniques with Java Implementation*, Morgan Kaufmann, 1999, herein incorporated by reference). In the case where no linear separation is possible, the
10 technique of “kernel” is used to automatically inject the training instances into a higher dimensional space and a separator is learned in that space. The Weka version of SVM developed at the University of Waikato of New Zealand (www.cs.waikato.ac.nz/ml/weka), which implements Platt’s sequence minimal optimization algorithm for training a support vector classifier using polynomial
15 kernels was used (Platt, "Fast Training of Support Vector Machines Using Sequential Minimal Optimization," *Advances in Kernel Methods---Support Vector Learning*, Schlkopf *et al.*, eds., MIT Press, 1998, herein incorporated by reference).

2. Prediction by Collective Likelihood of Emerging Patterns (PCL)

20 Emerging patterns (EPs) are a notion used in data mining to discover sharp differences between two classes of data (Dong and Li, "Efficient Mining of Emerging Patterns: Discovering Trends and Differences," *Proc. 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 43-52 (1999), herein incorporated by reference). An EP is a pattern---the expression level of
25 several genes in our case---whose frequency increases significantly from one class of samples to another class. In particular, the most general patterns that have infinite growth in the sense that their frequency in one class is 0% and in another class is greater than 0% and none of their proper subpatterns are EPs were identified. These EPs can then be combined into reliable rules for subtype prediction. Three earlier
30 methods for classification based on EPs are JEP(Li *et al.* (2001) *Knowledge and Information System* 3:131-45, herein incorporated by reference), DeEPs (Li *et al.*, "DeEPs: Instance-based Classification by Emerging Patterns," *Proc. 4th European Conference on Principles and Practice of Knowledge Discovery in Databases*, pp.

191-200, 2000, herein incorporated by reference), and CAEP (Dong *et al.*, "CAEP: Classification by Aggregation Emerging Patterns," *Proc. 2nd International Conference on Discovery Science*, pages 30-42, 1999, herein incorporated by reference).

5 In this analysis an original variation in the spirit of JEP but with a different manner of aggregating EPs was used. Given two training data sets D_p and D_n and a testing sample T, the first phase was to discover EPs from D_p and D_n . Denote the EPs of D_p , in descending order of frequency, as $\text{TopEP}^p_1, \dots, \text{TopEP}^p_i$, and those of D_n as $\text{TopEP}^n_1, \dots, \text{TopEP}^n_j$. Suppose T contains the following EPs of D_p : $\text{TopEP}^p_{i1}, \dots,$
 10 TopEP^p_{ix} , where $i1 < i2 < \dots < ix \leq i$; and the following EPs of D_n : $\text{TopEP}^n_{j1}, \dots,$
 TopEP^n_{jy} , where $j1 < j2 < \dots < jy \leq j$. In the next step, two scores were calculated for T: $\text{score}_p = \sum [\text{frequency}(\text{TopEP}^p_{im})/\text{frequency}(\text{TopEP}^p_m)]$ and $\text{score}_n =$
 $\sum [\text{frequency}(\text{TopEP}^n_{jm})/\text{frequency}(\text{TopEP}^n_m)]$, summing over $m = 1..k$, where $k \ll i$ and $k \ll j$. In this case, k is chosen to be 25. Finally, a prediction is made on T as
 15 follows: If $\text{score}_p > \text{score}_n$, then T is predicted to be in class D_p ; otherwise, it is predicted as class D_n .

The spirit of this variation is to measure how far the top k EPs contained in T are away from the top k EPs of a class. For example, if $k = 1$, then score_p indicates whether the number-one EP contained in T is far from the most frequent EP of D_p . If
 20 the score is the maximum value 1, then the "distance" is very close, namely the most common property of D_p is also present in this testing sample. With smaller scores, the distance becomes further and the likelihood of T belonging to D_p becomes weaker. Using more than one top-ranked EPs in this way leads to very reliable predictions. This variation of EP-based classification method was termed "prediction by
 25 collective likelihood of EPs" or PCL for short.

3. k -Nearest Neighbor (k -NN)

k -NN is a typical instance-based learner where the class of a new instance is decided by the majority class of its k closest neighbors (Cover and Hart (1967) *IEEE Transactions on Information Theory* 13:21-27, herein incorporated by reference). This method was used with the Euclidean distance metric. Conceptually, this is one of the most straightforward methods and is often used as a baseline for comparison purposes. The data were normalized using the z-score method, then the "best" few

genes were chosen using one of the statistical gene selection methods. For these experiments, the "top n " genes, where $n= 1-50$, were used. The expression values of the top genes from each diagnostic sample were treated as a vector in n -dimensional space. To classify a new sample, the same top n genes were chosen, and the

5 Euclidean distance was computed between this new vector and each vector in the training data. The prediction was made by a majority vote of the k nearest samples, where $k=1$ or $k=3$. In this experiment, k was set to 1.

4. Artificial Neural Network (ANN)

10 The artificial neural network (ANN) learning models built are all feed-forward, fully connected, and non-recurrent. The input layer of each ANN contains 50 units, which correspond to the 50 input values (the "top 50" scoring genes). Each ANN has one hidden layer with 4 units, and an output layer that contains two units, which represent the two class labels. In a preprocessing step all input data was

15 normalized using the z-score method. The apparent error was estimated using 3-fold cross-validation. That is, for each training procedure, the training samples were randomly shuffled and divided into three groups of approximately equal size. A model was built with two of the groups and the third group was set aside for validation. This step was repeated three times, each time with a different group for

20 validation. This shuffling-training process was repeated ten times, resulting in 30 ANN models. Each test sample was fed into each of the 30 ANN models, and the output was the average of the 30 outputs. The class predicted was the one that was represented by the output unit with the larger average output value.

25 F. Table of results using the different algorithms to predict the genetic subgroups
A summary of the true prediction accuracy on the blinded test set of 112 cases are presented in Tables 37-39. Sensitivity was calculated as the number of positive samples predicted /the number of true positives. Specificity was calculated as the number of negative samples predicted/the number of true negatives.

Table 37. True Prediction Accuracy Results on Test Set using SVM and ANN algorithms

		SVM			ANN	
		Chi Sq	CFS	T-stats	SOM/DAV	Wilkins'
T-ALL	True Accuracy	100	100	100	100	100
	Sensitivity	100	100	100	100	100
	Specificity	100	100	100	100	100
E2A-PBXI	True Accuracy	100	100	100	100	100
	Sensitivity	100	100	100	100	100
	Specificity	100	100	100	100	100
TEL-AML1	True Accuracy	99	99	98	97	100
	Sensitivity	100	100	100	100	100
	Specificity	98	98	97	97	100
BCR-ABL	True Accuracy	95	97	94	97	97
	Sensitivity	50	67	33	83	83
	Specificity	100	100	100	98	98
MLL	True Accuracy	100	98	100	97	100
	Sensitivity	100	100	100	86	100
	Specificity	100	98	100	100	100
H>50	True Accuracy	96	96	96	95	94
	Sensitivity	100	100	100	95	100
	Specificity	93	93	93	93	89

Table 38. True Prediction Accuracy Results on Test Set using k-NN

		k-NN			Wilkins'
		Chi Sq	CFS	T-stats	
T-ALL	True Accuracy	100	100	100	100
	Sensitivity	100	100	100	100
	Specificity	100	100	100	100
E2A-PBXI	True Accuracy	100	100	100	100
	Sensitivity	100	100	100	100
	Specificity	100	100	100	100
TEL-AML1	True Accuracy	98	98	99	100
	Sensitivity	100	96	96	100
	Specificity	97	98	100	100
BCR-ABL	True Accuracy	94	97	95	93
	Sensitivity	33	67	50	67
	Specificity	100	100	100	96
MLL	True Accuracy	100	98	95	100
	Sensitivity	100	83	100	100
	Specificity	100	100	94	100
H>50	True Accuracy	98	96	94	98
	Sensitivity	100	100	95	100
	Specificity	96	93	93	96

Table 39. True Prediction Accuracy Results on Test Set using PCL

		PCL	
		Chi Sq	CFS
T-ALL	True Accuracy	100	100
	Sensitivity	100	100
	Specificity	100	100
E2A-PBX1	True Accuracy	ND	100
	Sensitivity	ND	100
	Specificity	ND	100
TEL-AML1	True Accuracy	99	ND
	Sensitivity	96	ND
	Specificity	100	ND
BCR-ABL	True Accuracy	97	ND
	Sensitivity	67	ND
	Specificity	100	ND
MLL	True Accuracy	100	ND
	Sensitivity	100	ND
	Specificity	100	ND
H>50	True Accuracy	98	ND
	Sensitivity	100	ND
	Specificity	96	ND

The assignment of a leukemic sample to a specific biologic subgroup is more accurately reflected by its gene expression profile than by the presence or absence of a specific genetic lesion. For example, four patients that had expression profiles classified as TEL-AML1, despite lacking a TEL-AML1 chimeric message by the reverse transcriptase polymerase chain reaction (RT-PCR) were found to have an alteration in TEL, suggesting a common underlying biology. Thus, from a technical viewpoint, gene expression profiling provides a viable alternative to standard diagnostic approaches.

G. Absence of correlation of expression data for genetic subtypes with stage of B-cell differentiation

The expression profiles of the different risk groups of B-cell leukemias do not correspond to markers of different stages of B-cell differentiation. The first issue is defining the stage of B-cell differentiation. The defined stages of BM derived B-cells relevant to pediatric ALL are outlined below in Table 40, along with their frequency in pediatric ALL (Campana and Behm (2000)*J. Immunologic Methods*, 243:59-75). Three stages of differentiation are defined by a limited number of

markers. In Table 41 below, the distribution of the leukemia cases into these B-cell differentiation stages is shown. As can be seen, none of the genetic subtypes is specifically associated with one of these three stages of differentiation. Thus, this simple analysis clearly shows that the majority of the chromosomal translocation subgroups in pediatric ALL do not correspond to a specific stage of B-cell differentiation. This is a well-known fact in the field of pediatric ALL and differs from the relationship typically seen between chromosomal translocations and other genetic lesions, and the stage of differentiation seen in B-cell lymphomas.

10 **Table 40. Immunophenotyping of acute lymphoblastic leukemias^a**

Subtype	Leukocyte antigen expression (% of cases positive)					Frequency (%)
	CD19	CD22	cIgμ	sIgμ	sIg κ or λ	
Early Pre-B	100	>95	0	0	0	60-65
Pre-B	100	100	100	0	0	20-25
Transitional	100	100	100	100	0	1-3

Abbreviations: cIg μ, cytoplasmic immunoglobulin μ chain; sIg μ, surface immunoglobulin μ chain; sIg κ or λ, surface immunoglobulin κ or λ chains

^aD.Campana and F.G.Behm, "Immunophenotyping of leukemia", Journal of Immunological Methods 243: 59-75, 2000.

15

Table 41. Distribution of genetic subtypes by immunophenotype^a

	EARLY PRE-B	PRE-B	TRANSITIONAL PRE B
E2A	0	17	6
TEL	55	23	0
BCR	11	3	0
MLL	12	6	1
Hyperdip>50	49	9	5
Novel	8	4	1
Total	172	77	24

^aFor this analysis, samples with other immunophenotypes (NOS or mature B-cell) were not included

20 The next goal was to determine whether a set of genes that could accurately identify subjects by their stage of differentiation, regardless of leukemia risk group. To accomplish this, cases were assigned into one of three classes, early pre-B, pre-B, or transitional pre-B based on their immunophenotype. The top 50 genes that distinguished each group from the other two groups were selected using the Wilkins' metric. These genes were then used in an ANN analysis to assess their performance in correctly classifying the 273 diagnostic B-lineage ALL samples, for which a stage of differentiation could be determined, through a process of cross validation. The results of this analysis are included below.

Table 42. Accuracy Results for immunophenotype discrimination using Wilkins' metric and ANN algorithm

	Accuracy	Sensitivity	Specificity
Early Pre-B ^a	78.39%	85.47%	66.34%
Pre-B ^b	71.79%	38.96%	84.69%
Transitional Pre-B ^c	91.24%	33.33%	96.79%

^aCells with CD19+, CD22+, cytoplasmic Igμ-, surface Igμ- immunophenotype

^bCells with CD19+, CD22+, cytoplasmic Igμ+, surface Igμ- immunophenotype

^cCells with CD19+, CD22+, cytoplasmic Igμ+, surface Igμ+ immunophenotype

The selected genes perform rather poorly in correctly assigning cases to specific B-cell differentiation stages, with accuracies well below those achieved for prediction of the genetic subgroups. When these genes are used in a two-dimensional hierarchical clustering algorithm they failed to cluster cases by immunophenotype, but instead, resulted in the loose clustering of some of the genetic subgroups, including *E2A-PBX1*, *TEL-AML1*, *BCR-ABL*, *MLL*, and hyperdiploid >50. The analysis was repeated using genes selected by DAV and again, no clustering of the immunophenotypically-defined stages was observed. Thus, it was not possible to identify expression profiles that can accurately identify the immunophenotypically-defined differentiation stages of pediatric B-cell ALL. Moreover, the expression profiles that were defined for the genetic subtypes are not profiles that correspond to specific stages of B-cell differentiation. Although some of the genes that define specific genetic subtypes can be associated with a particular stage of B-cell differentiation, the majority of the discriminating genes show no correlation with differentiation.

H. Results for relapse prediction

In the prediction of whether a patient would go into continuous complete remission or would relapse, a subtype-specific approach was adopted. An individual classifier was constructed for each subtype of ALL. Given a sample, the subtype was first predicted, and then the corresponding subtype-specific prognostic classifier was invoked to predict whether the patient would relapse. This subtype-specific approach was required because an expression profile predictive of relapse for the entire group could not be defined.

In the construction of the type-specific classifiers, genes were selected by CFS unless this algorithm returned >20 genes, in which case the top 20 ranked genes by T-

statistics were used. When the T-statistics method was used, the selection of how many among the top 20 T-statistics genes were to be used was made by performing cross validation experiments---that is, the top n genes for n = 1..20 were picked the n that gave the best cross validation results was selected. The cross validation results for the optimal choice of genes are summarized in Table 43 below. The genes that were chosen for use in subtype-specific relapse predictions are summarized in Table 44.

Table 43. Results of relapse prediction on indicated subgroups

	Relapse	CCR	# genes	metric	Accuracy	P value by permutation test
T-ALL	8	26	7	t-stats	97	0.034
H>50	5	43	13	t-stats	100	0.018
<i>TEL-AML1</i>	3	56	7	CFS	100	0.145
<i>MLL</i>	5	7	4	t-stats	100	0.104
Others	4	56	20	t-stats	98.3	0.079

Table 44. Genes selected by T-statistics/CFS for relapse (T-ALL)

Gene Name	GeneSymbol	Reference Number	Above/Below Mean
Human TBXAS1 gene for thromboxane synthase	TBXAS1	D34625	Above
Homo sapiens mRNA for 41-kDa phosphoribosylpyrophosphate synthetase-associated protein		AB007851	Above
Human DNA sequence from PAC 370M22		Z82206	Above
Human spinal muscular atrophy gene	SMA5	X83301	Above
Human cell surface glycoprotein CD44	CD44	L05424	Above
Human mRNA for KIAA0056 gene	KIAA0056	D29954	Above
Human BTK region clone ftp-3 mRNA		U01923	Above

Table 45. Genes Selected by T statistics/CFS for relapse Hyperdiploid > 50

Affymetrix number	Gene Name	Gene Symbol	Reference Number	Above/Below Mean
1	37721_at	deoxyhypusine synthase	DHPS	U79262
2	38721_at	KIAA1536 protein	KIAA1536	W72733
3	40120_at	hydroxyacetyl glutathione hydrolase	HAGH	X90999
4	41386_i_at	KIAA0346 protein	KIAA0346	AB002344

5	38677_at	stress 70 protein chaperone microsome-associated 60kD	STCH	U04735	Above
6	37620_at	Human TFIID subunits TAF20 and TAF15 mRNA, complete cds.		U57693	Above
7	34703_f_at	EST		AA151971	Above
8	38355_at	DEAD/H Asp-Glu-Ala-Asp/His box polypeptide Y chromosome	DBY	AF000984	Above
9	41214_at	ribosomal protein S4 Y-linked	RPS4Y	M58459	Above
10	34530_at	Homo sapiens cDNA FLJ22448 fis clone HRC09541		W73822	Above
11	603_at	nuclear receptor subfamily 2 group C member 1	NR2C1	M29960	Above
12	32697_at	inositol myo 1 or 4 monophosphatase 1	IMPA1	AF042729	Above
13	41129_at	KIAA0033 protein	KIAA0033	D26067	Above
14	33333_at	KIAA0403 protein	KIAA0403	AB007863	Above
15	37078_at	CD3Z antigen zeta polypeptide TiT3 complex	CD3Z	J04132	Above
16	38148_at	cryptochrome 1 photolyase-like	CRY1	D83702	Above
17	39150_at	ring finger protein 11	RNF11	U69559	Above
18	33869_at	DKFZp586N1323 from clone DKFZp586N1323		AL080218	Above
19	41447_at	KIAA0990 protein	KIAA0990	AB023207	Above
20	39369_at	KIAA0935 protein	KIAA0935	AB023152	Above

Table 46: Genes selected by T-statistics/CFS for relapse (*TEL-AML11*)

Affymetrix number	Gene Name	Gene Symbol	Reference number	Above/Below Mean
1	Human interleukin-13 gene	IL-13Ra	Y10659	Above
2	Human death-associated protein kinase	DRAK2	AB011421	Above
3	Human l(3)mbt protein homolog mRNA		U89358	Above
4	Homo sapiens mRNA. CDNA DKFZp564A186		AL049305	Above
5	H. sapiens mRNA for phosphate cyclase		Y11651	Above
6	Homo sapiens cDNA		W27466	Above
7	Homo sapiens mRNA for KIAA0754 protein	KIAA0754	AB018297	Above

Table 47: Genes selected by T-statistics/CFS for relapse (*MLL*)

Affymetrix number	Gene Name	Gene Symbol	Reference number	Above/Below Mean
1 294_s_at	Protein Kinase Pitslre, Alpha, Alt. Splice 1-Feb			Below
2 38226_at	23h11 Homo sapiens cDNA		W27152	Below
3 1398_g_at	Human protein kinase (MLK-3) mRNA	HUMMLK3A	L32976	Above
4 409_at	Human mRNA for 14.3.3 protein, a protein kinase regulator		X56468	Below

Table 48: Genes selected by T-statistics/CFS for relapse (Others)

Affymetrix number	Gene Name	GeneSymbol	Reference number	Above/Below Mean
1 33782_r_at	nn82f03.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-1090397		AA587372	Above
2 33338_at	Human transcription factor ISGF-3 mRNA		M97936	Above
3 40242_at	Human (clone N5-4) protein p84 mRNA		L36529	Above
4 37018_at	qd05c04.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-1722822		AI189287	Above
5 38337_at	Homo sapiens zinc finger protein mRNA		U62392	Above
6 41464_at	Human mRNA for KIAA0339 gene	KIAA0339	AB002337	Above
7 38064_at	H.sapiens lrp mRNA	LRP	X79882	Above
8 33173_g_at	yc89b05.r1 Homo sapiens cDNA, 5 end /clone=IMAGE-23231		T75292	Below
9 33365_at	Homo sapiens mRNA for KIAA0945 protein	KIAA0945	AB023162	Above
10 39367_at	ni38e08.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-979142		AA522537	Above
11 41108_at	Homo sapiens mRNA for putative GTP-binding protein	PGPL	Y14391	Above
12 37304_at	Homo sapiens heterochromatin protein p25 mRNA	P25beta	U35451	Below
13 40359_at	Human DNA-binding protein (HRC1) mRNA	HRC1	M91083	Above
14 32792_at	Human DNA sequence from clone 465N24 on chromosome 1p35.1-36.13. Contains two novel genes, ESTs, GSSs and CpG islands		AL031432	Above
15 34726_at	Human voltage-gated calcium channel beta subunit mRNA		U07139	Above
16 40299_at	Homo sapiens G-protein coupled receptor RE2 mRNA,		AF091890	Above

17 40704_at	H.sapiens mRNA for phosphatidylinositol 3-kinase	Z29090	Above
18 38568_at	Homo sapiens p53 binding protein mRNA	U82939	Above
19 32038_s_at	wi30c12.x1 Homo sapiens cDNA, 3 end /clone=IMAGE-2391766	AI739308	Above
20 39613_at	H.sapiens HUMM9 mRNA	X74837	Above

I. Permutations test results

As the number of relapse samples were small, in addition to the usual cross validation experiments, 1000 permutation experiments were performed for each subtype-specific relapse study. In each permutation experiment, the samples were re-partitioned in a manner that preserved class size by randomly swapping the class labels ("relapse" or "continuous complete remission"). The same metric was then employed to pick the same number of genes as in the original partitioning of the samples given by the original class labels. SVM was then used to obtain a prediction accuracy by cross validation for this random partition using these freshly selected genes. The percentage of these 1000 permutation experiments was taken as a p-value that gave an indication on how many random partitions of the original samples could achieve the same accuracy as the original samples. The results of these permutation experiments are summarized in the last column of Table 43 above. These results show that the high accuracy obtained on the predictability of relapse in T-lineage ALL, Hyperdiploid>50, and others are unlikely to be a random event. The higher p-values obtained for the subtypes of *TEL-AML1* and *MLL* are probably due to the small number of relapse samples available for analysis.

20

Table 49. Permutation test results for predictors of T-ALL relapse

Rank	Affymetrix number	t-statistic value	Perm 1%	Perm 5%	neighbors
1	33777_at	7.8337	7.3774	5.4783	6
2	41853_at	6.1727	6.5948	4.8117	16
3	38866_at	5.9890	6.0293	4.5611	12
4	41643_at	5.6106	5.6815	4.3877	12
5	1126_s_at	5.4777	5.5162	4.2375	11
6	41862_at	5.3734	5.3759	4.1208	11
7	41131_f_at	4.9134	5.2280	4.0295	17

Table 50. Permutation test results for predictors of Hyperdiploid > 50 relapse

Rank	Affymetrix number	t-statistics value	Perm 1%	Perm 5%	neighbors
1	37721_at	8.7160	12.7358	9.9506	75
2	38721_at	8.4162	10.7256	8.8438	59
3	40120_at	7.2736	9.9837	8.0383	73
4	41386_i_at	6.3436	9.0552	7.5579	88
5	38677_at	6.2698	8.8633	7.2466	88
6	37620_at	6.2174	8.4154	6.9604	82
7	34703_f_at	6.0770	8.0982	6.8835	83
8	38355_at	5.5120	7.8657	6.7434	92
9	41214_at	5.4262	7.6583	6.6094	90
10	34530_at	5.4013	7.5991	6.5109	87
11	603_at	5.3142	7.5903	6.4409	87
12	32697_at	5.1785	7.5146	6.3265	90
13	41129_at	5.1450	7.3939	6.2121	88
14	33333_at	5.1061	7.2601	6.1389	87
15	37078_at	5.0738	7.1484	6.0308	86
16	38148_at	4.9256	6.9688	5.9230	93
17	39150_at	4.9061	6.9273	5.9015	93
18	33869_at	4.8256	6.8900	5.8367	93
19	41447_at	4.7919	6.8135	5.7621	93
20	39369_at	4.7790	6.7731	5.7391	92

Individually, the discriminating genes for relapse in T-ALL are significant at either the 1% or 5% level, while those for hyperdiploid >50 fall at approximataltey the 7% level.

5

Table 51. Results of relapse prediction on indicated subgroups

	Relapse	CCR	# genes	metric	Accurac y	P value by permutation test
T-ALL	8	26	7	t-stats	97	0.034
H>50	5	43	13	t-stats	100	0.018
<i>TEL-AML1</i>	3	56	7	CFS	100	0.145
<i>MLL</i>	5	7	4	t-stats	100	0.104
Others	4	56	20	t-stats	98.3	0.079

As the number of relapse samples were small, in addition to the usual cross validation experiments, 1000 permutation experiments were also performed for each 10 subtype-specific relapse study. In each permutation experiment, the samples were re-partitioned in a manner that preserved class size by randomly swapping the class labels ("relapse" or "continuous complete remission"). The same metric was employed to pick the same number of genes as in the original partitioning of the

samples given by the original class labels. SVM was then used to obtain a prediction accuracy by cross validation for this random partition using these freshly selected genes. The percentage of these 1000 permutation experiments was taken as a p-value that gave an indication on how many random partitions of the original samples could
5 achieve the same accuracy as the original samples. The results of these permutation experiments are summarized in the last column of Table 51 above. These results show that the high accuracy obtained on the predictability of relapse in T-lineage ALL, Hyperdiploid>50, and others are unlikely to be a random event. The p-values for the subtypes of *TEL-AML1* and *MLL* are weaker than the other subtypes. However, in the
10 case of *TEL-AML1* the number of relapse samples were exceedingly small (3) and in the case of *MLL* the number of relapse and non-relapse samples were both very small.

J. Results for secondary AML prediction

For the secondary AML prediction ,the same subtype-specific approach was
15 adopted as described earlier in relapse prediction. This time only the *TEL-AML1* subtype had sufficient number of samples for a secondary AML prediction model to be developed. For this model, the MIT score (Golub *et al.* (1999) *Science* 286:531-37, herein incorporated by reference) was used to select genes and SVM to perform classification using these genes. The MIT score of a gene is defined as $T = |\mu_1 - \mu_2|/(\sigma_1 + \sigma_2)$, where μ_i is the mean expression of that gene in the i^{th} class and σ_i is the standard deviation of that gene in the i^{th} class. This formula assigns higher value to a gene that has larger mean difference between two classes and has smaller variance within both classes. The 20 genes with the highest MIT scores in *TEL-AML1* patients that went into continuous complete remission versus those *TEL-AML1* samples that
20 developed secondary AML are listed in Table 52 below. 100% accuracy for secondary AML prediction accuracy was achieved on *TEL-AML1* specific subtype samples using these 20 genes. A permutation test was also performed in the same manner as described earlier in the subtype-specific relapse prediction, and obtained a p-value of 0.031 was obtained, demonstrating that the predictability of the
25 development of secondary AML in *TEL-AML1* -specific patients was unlikely to be a random event.
30

Table 52. Genes selected by MIT score for secondary AML

Affymetrix Number	Gene Name	Gene Symbol	Reference Number	Above/Below Mean
<i>TEL-AML1</i>				
1 34890_at	ATPase H transporting lysosomal vacuolar ATP6A1 proton pump alpha polypeptide 70kD isoform 1		L09235	Above
2 40925_at	hypothetical protein FLJ10803	FLJ10803	AA554945	Above
3 1719_at	mutS E. coli homolog 3	MSH3	U61981	Above
4 32877_i_at	EST IMAGE:954213		AA524802	Above
5 32650_at	neuronal protein	NP25	Z78388	Above
6 33173_g_at	hypothetical protein FLJ10849	FLJ10849	T75292	Above
7 32545_r_at	RSU-1/RSP-1	RSU-1	L12535	Above
8 34889_at	ATPase H transporting lysosomal vacuolar ATP6A1 proton pump alpha polypeptide 70kD isoform 1		AA056747	Above
9 35180_at	cDNA DKFZp586F1323 from clone DKFZp586F1323		AL050205	Above
10 34274_at	KIAA1116 protein	KIAA1116	AB029039	Above
11 35727_at	hypothetical protein FLJ20517	FLJ20517	AI249721	Above
12 1627_at	tyrosine kinase (GB:Z25437)		HG2715-HT2811	Above
13 1461_at	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha	NFKBIA	M69043	Below
14 36023_at	lacrimal proline rich protein	LPRP	AI864120	Above
15 39167_r_at	serine or cysteine proteinase inhibitor clade H heat shock protein 47 member 2	SERPINH2	D83174	Above
16 39969_at	H4 histone family member G	H4FG	AA255502	Above
17 38692_at	NGFI-A binding protein 1 ERG1 binding protein 1	NAB1	AF045451	Above
18 1594_at	polymerase RNA II DNA directed polypeptide C 33kD	POLR2C	J05448	Above
19 33234_at	RBP1-like protein	LOC51742	AA887480	Above
20 34739_at	hypothetical protein FLJ20275	FLJ20275	W26023	Above

Table 53. Permutation test results for secondary AML

Rank	Affymetrix number	t-statistics number	Perm 1%	Perm 5%	Perm median	neighbors
1	34890_at	1.2204	2.7933	2.2138	1.4712	822
2	40925_at	1.0712	2.0006	1.7607	1.2884	859
3	1719_at	1.0599	1.8536	1.6272	1.1894	767
4	32877_i_at	1.0364	1.7125	1.5218	1.1200	715
5	32650_at	1.0217	1.6580	1.4584	1.0776	646
6	33173_g_at	1.0126	1.5868	1.4132	1.0416	595
7	32545_r_at	1.0097	1.5536	1.3630	1.0223	536
8	34889_at	0.9959	1.5164	1.3241	1.0009	512
9	35180_at	0.9854	1.4838	1.2938	0.9777	477
10	34274_at	0.9420	1.4759	1.2721	0.9600	550
11	35727_at	0.8493	1.4482	1.2507	0.9415	809
12	1627_at	0.8471	1.4207	1.2398	0.9254	782
13	1461_at	0.8312	1.4012	1.2260	0.9114	801
14	36023_at	0.8177	1.3551	1.2012	0.8995	813
15	39167_r_at	0.8136	1.3462	1.1806	0.8894	790
16	39969_at	0.8122	1.3395	1.1702	0.8785	759
17	38692_at	0.8109	1.3333	1.1565	0.8696	729
18	1594_at	0.8103	1.3142	1.1503	0.8626	696

Table 54: Additional Genes selected by T statistics for BCR-ABL risk group

Gene symbol	Accession Number
TUBA1	HG2259-HT2348
TUBA1	X06956
CRADD	U84388
SLC2A5	M55531
PHYH	AF023462
ZFPL1	AF001891
CD34	S53911
KIAA0015	D13640
CLECSF2	X96719
CD34	M81945
GAB1	U43885
E2F5	U31556
CLTB	M20470
ENG	X72012
LOC55884	AF038187
TNFRSF1A	M58286
TMSNB	D82345
SNL	U03057

KIAA0990	AB023207
MAP1A	W26631
MYPT2	AB007972
IFI30	J03909
ERPROT213-21	U94836
DKFZP586A052 2	AL050159
LOC51109	AA126515
	W29087
TSTA3	U58766
TNFRSF1B	AI813532
GSN	X04412
KIAA0582	AI761647
STAT12	AF037989
	AL049313
ITGA4	X16983
FLJ20500	AA522530
SDR1	AF061741
ARHGEF4	AB029035
C18ORF1	AF009426
MAPK14	U19775
FHL1	AF063002
GATA3	X58072
KIAA0076	D38548
KCNN1	U69883
POM121L1	D87002
IFI30	J03909
ABL1	X16416
NELL2	D83018
MEST	D78611
S100A4	W72186
D12S2489E	AJ001687
ATP2B4	W28589
CTGF	X78947
RGS1	S59049
CDK9	X80230
	AI524873
STIM1	U52426
VEGFB	U48801
PPP2R2A	M64929
CASP2	U13022
SPS	U34044
HRK	D83699
KIAA0870	AB020677
ABL	U07563
PKIA	S76965
FLJ12474	AA306076

CD97	X94630
HCK	M16591
FYN	M14333
KIR2DL3	AC006293
DMPK	L08835
N33	U42360
FLJ13949	AL041879
PRKCZ	Z15108
IL17R	U58917
FMR2	U48436
INSR	M10051
AHNAK	M80899
KIAA0878	AB020685
CD86	U04343
	U82303
KIAA1043	AL033538
N33	U42349
SYN47	Y17829
ITPR1	D26070
SFRS9	AL021546
EPOR	M60459
GAC1	AF030435
CAMK4	D30742
KIAA0084	D42043
LAT	AJ223280
XBP1	Z93930
FLT3LG	U03858
TESK1	D50863
	AF070633
KIAA0681	U89358
FUT8	Y17979

T Table 55: Additional Genes selected by statistics for E2A-PBX1 Risk Group

Gene symbol	Accession Number
PBX1	M86546
	AL049381
FAT	X87241
BLK	S76617
IRF4	U52682
GS3955	D87119
KIAA0802	AB018345
SCHIP-1	AF070614
SNL	U03057
KIAA0655	AB014555
GS3955	D87119

IGFBP7	L19182
CDKN1A	U03106
CSF2RB	H04668
STAT12	AF037989
KIAA1029	AB028952
KIAA0247	D87434
	AL049397
NP	X00737
TM4SF2	L10373
ALOX5	J03600
LRMP	U10485
PTPN2	AI828880
ALOX5AP	AI806222
AEBP1	AF053944
TGFBR2	D50683
ODC1	M33764
NID2	D86425
ODC1	X16277
CBX1	U35451
CSF3R	M59820
KIAA0172	D79994
IL1B	M15330
KIAA0922	AB023139
LOC51097	AA005018
TUBA1	X06956
ITGA6	S66213
NFKBIL1	Y14768
ADPRT	J03473
ADPRT	J03473
CSF3R	M59818
EFNB1	U09303
CD9	M38690
CDKN2D	U40343
KIAA0442	AB007902
PRKCZ	Z15108
	AF055029
RECK	D50406
GOLGA3	D63997
ZAP70	L05148
FLI1	M98833
LASP1	X82456
	AJ001381
TBXA2R	D38081
BHLHB2	AB004066
ADARB1	U76421
PTPN6	X62055

	X58398
TIMP1	D11139
KIAA0554	AB011126
SRP14	AI525652
ATP9A	AB014511
HELO1	AL034374
GNAQ	U43083
POU4F1	X64624
MERTK	U08023
KIAA0625	AB014525
PCLO	AB011131
IL7R	AF043129
ITGA6	X53586
TUBA1	HG2259-HT2348
PIR121	L47738
MAGED1	W26633
CD48	M37766
TLR1	AL050262
NPR1	X15357
GLUL	X59834
DAPK1	X76104
	X58398
ARHGEF4	AB029035
NKEFB	L19185
	AL049435
ITM2A	AL021786
RAG2	M94633
	L24521
SCGF	AF020044
PRKACB	M34181
KCNN4	AF022797
KCNN1	U69883
MAPKAPK2	U12779
PIN	AI540958
TOP2B	X68060
GATA2	M68891
IL1B	X04500
PDE3B	U38178
DGKD	D73409
KIAA0993	AB023210
ADAM10	AF009615
IGLL1	M27749
PDLM1	U90878
PRKAR1A	M33336
CD34	S53911
GLA	U78027

BAZ1B	AF072810
EFNA1	M57730
FADS3	AC004770
FLT3	U02687
LOC57228	AF091087
BCL6	U00115
BMP2	M22489
CD22	X59350
KIAA0429	AB007889
DKFZP434C171	AL080169
CTBP2	AF016507
	M11810
SIAT9	AB018356
CYBB	X04011
AKR1B1	X15414
NFKBIL1	Y14768
UBE2V1	U49278
DOC-1R	AF089814
BUB3	AF047473
IL7R	M29696
ACK1	L13738
ENIGMA	L35240
KIAA1071	AB028994
IGL	AI932613
MN1	X82209
KIAA0823	AB020630
NFKB1	M58603
CD24	L33930
YWHAQ	X56468
VDAC1	L06132
P85SPR	D63476
SYNGR1	AL022326
NDR	Z35102
JMJ	AL021938
PRSC1	D55696
MRC1	M93221
	AI184710
CRIP1	AI017574
KIAA0056	D29954
	AF039397
	U79265
SLAM	U33017
LYL1	AC005546
KIAA0620	AB014520
VDAC1P	AJ002428
SRP9	AF070649

PRDX1	X67951
SLC9A3R1	AF015926
CD72	M54992
ECM1	U68186
PPP2R5A	L42373
HDGF	D16431
MERTK	U08023
	L02326
CD34	M81945
IL17R	U58917
ARL7	AB016811
P4HA2	U90441
BZRP	M36035
F13A1	M14539
KRAS2	M54968
BS69	X86098
ORP150	U65785
	D28915
LEF1	AL049409
SH2D1A	AL023657
LY6E	U66711
FACVL1	D88308
EPB42	M60298
	AL049471
BMI1	L13689
KCNJ13	N36926
N33	U42349
VIL2	X51521
CCNG2	U47414
C18ORF1	AF009425
NUMA1	Z11584
DBN1	U00802
FLT3	U02687
KIAA0854	AB020661
MGC4175	AI656421
KIAA1012	AB023229
CIRBP	D78134
ST5	U15131
KIAA0001	D13626
CCR1	D10925
CD19	M28170
SNRPE	AA733050
CR2	M26004
HEXA	M16424
IFIT4	AF026939
	W26667

EPOR	M60459
TMSNB	D82345
GCLM	L35546
H41	H15872
TUBB2	HG1980-HT2023
TNFAIP2	M92357
GAB1	U43885
PTPRK	L77886
BCL7A	X89984

**Table 56: Additional Genes selected by
T statistics for Hyperdiploid >50
Risk Group**

Gene symbol	Accession Number
SH3BP5	AB005047
FLT3	U02687
MX1	M33882
NPY	AI198311
SOD1	X02317
PTPRK	L77886
IL1B	X04500
CD9	M38690
FLT3	U02687
PGK1	V00572
EFNB1	U09303
FOS	K00650
IL1B	M15330
MRC1	M93221
HMG14	J02621
SNRP70	X06815
PDLM1	U90878
ALOX5	J03600
RAG2	M94633
CALM1	U12022
KIAA1013	AB023230
NDUFA1	N47307
FOS	V01512
DXS1357E	X81109
ICSBP1	M91196
ETS2	J04102
PCDH9	AI524125
LILRA2	AF025531

PSAP	J03077
SCHIP-1	AF070614
CCND2	D13639
KCNN1	U69883
ALTE	AB018328
IGFBP4	U20982
M9	AB019392
SCML2	Y18004
LOC51632	AI557497
UBE2G2	AF032456
STAT12	AF037989
ATRX	U72936
APT6M8-9	AL049929
PTPRE	X54134
GILZ	AI635895
PECAM1	AA100961
ARHGEF4	AB029035
ECM1	U68186

Table 57: Additional Genes selected by T statistics for the MLL Risk Group

Gene symbol	Accession Number
EPOR	M60459
CD44	L05424
PRKCH	M55284
MADH1	U59423
KLF1	U65404
MME	J03779
PTPRK	L77886
IL1B	X04500
YES1	M15990
ARPC2	U50523
IGFBP4	M62403
ITPR3	U01062
	M13929
EFNB1	U09303
FHIT	U46922
NME2	X58965
CCND2	X68452
MPB1	M55914

CDH2	M34064
IGFBP7	L19182
ALOX5	J03600
PTGDR	U31099
PLXNC1	AF030339
EIF3S2	U39067
BLVRA	X93086
HSPC022	W68830
	S67247
MYLK	U48959
SLC6A11	S75989
	X67098
SERPINB1	M93056
LGALS1	AI535946
HRK	D83699
	AL049313
HBS1L	AB028961
KIAA0437	AB022660
GDI2	Y13286
ITGA4	X16983
EEF1B2	X60489
MD-1	AB020499
POU4F1	X64624
TST	X59434
PTPRF	Y00815
ARHGEF4	AB029035
SCHIP-1	AF070614
ASMTL	AA669799
DDR1	L20817
N33	U42360
CR2	M26004
AHNAK	M80899
SCGF	AF020044
EPB49	U28389
PSPHL	AJ001612
MADH1	U59912
ITPR3	U01062
DPEP1	J05257
AKAP12	U81607
DBI	AI557240
KIAA0736	AB018279
MAL	X76220
S100A4	W72186
MDK	X55110
CRK	D10656

CAPG	M94345
KCNH2	U04270
KIAA1069	AB028992
DKFZP564L0862	AL080091
KIAA0298	AB002296
DGKD	D73409
DEPP	AB022718
	AL049957
CD8B1	X13444
EFNB1	U09303
	AI391564
LDOC1	AB019527
EFNA1	M57730
CD44	L05424
PTPRC	Y00062
PTPRC	Y00638
PTPRC	Y00638
TFPI	M59499
TSPAN-5	AF065389
BCL11A	W27619
	AJ001381
KIAA1011	AL080133
FYB	U93049
DKFZp761F2014	AA149431
FGFR1	X66945
	M63589
PTPN6	X62055

Table 58: Additional Genes selected by T statistics for the Novel Risk Group

Gene symbol	Accession Number
CHST2	AB014679
CLTC	D21260
TUBA1	X06956
GNG11	U31384
PCDH9	AI524125
MDS019	AA442560
RAG2	M94633
ITGA6	X53586
UBE2E3	AB017644
CD34	S53911
CD34	M81945
FGFR1	M34641

ECM1	U68186
MADH1	U59423
FUT7	AB012668
PROML1	AF027208
CSNK2A1	M55265
FLNB	AF042166
MADH1	U59912
LIG4	X83441
ZNF151	Y09723
CSF3R	M59818
	AL080205
STAU2	AL079286
AEBP1	AF053944
KIAA0320	AB002318
KIAA0746	AB018289
PTPRM	X58288
IGFBP4	M62403
ZNF266	AA868898
PDLIM1	U90878
MTMR3	AB002369
TIMP1	D11139
TTC2	W28595
TM4SF2	L10373
PSA	AA978353
HTR4	Y12505
MMS19L	AF007151
	AI391564
TJP2	L27476
BMP2	M22489
ARL7	AB016811
TLR1	AL050262
SMC2L1	AF092563
TGFBR2	D50683
TGFBR2	D50683
SPARC	J03040
GPRK5	L15388
CDH2	M34064
KIAA0877	AB020684
ABLIM	D31883
RNF3	W25793
CCBP2	U94888
CHN2	U07223
ITGA4	X16983
IQGAP2	U51903
FLJ22531	W80358
PIK3CD	U86453

FXYD2	H94881
	W30677
AMPD3	U29926
	D78577
KIAA0125	D50915
FADS3	AC004770
DKFZP434C171	AL080169
EST00098	AI885170
BMP2	M22489
LILRB4	AF072099
KIAA0429	AB007889
DKFZP586G0522	AL050289
	U92818
ATIC	D82348
MONDOA	AB020674
CNK1	AF100153
NGFR	M14764
KIAA0540	AB011112
MYO10	AB018342
PIASX-BETA	AF077954
ACVR1	Z22534
ARHGEF10	AB002292
PON2	AF001601
TST	X59434
SPTBN1	M96803
ERCC2	AA079018
PRSC1	D55696
DKFZP434D174	AL080150
	AI184710
CD8B1	X13444
	U79265
DKFZp761F2014	AA149431
MEF2A	U49020
JAG2	AF029778
ZNF143	AF071771
CASP1	U13697
HAP1	AF040723
FABGL	D82061
ALDH1	K03000
RAD9	U53174
	AL109722
CDC27	AA166687
B4GALT1	D29805

PTPRM	X58288
AHR	L19872
N33	U42349
IL12RB2	U64198
MTR	U73338
KIAA0697	AB014597
CSNK2B	M30448
	U15590
	W28612
HSU79253	AF052186
RBBP1	S57153
S100A11	D38583
TCF12	M80627
	AI971169
EEF1E1	N32257
SAP18	AW021542
PVRL1	AF060231
	M13929
MKP-L	AF038844
	W26667
CD79B	M89957
KIAA0437	AB022660
	AF070633
GCLM	L35546
EDG6	AJ000479
MAL	X76220

Table 59: Additional Genes selected by T statistics for the T-ALL Risk Group

Gene symbol	Accession Number
SLP65	AF068180
CD3D	AA919102
SH2D1A	AL023657
CD79B	M89957
CD3E	M23323
CTGF	X78947
PFTK1	AB020641
TRB	X00437
CD24	L33930
CD22	X52785
TOP2B	X68060
CD22	X59350
TCL1A	X82240
BRAG	AB011170
CD79A	U05259
SCHIP-1	AF070614

MAL	X76220
HLA-DQB1	M16276
PDE4B	L20971
HLA-DQB1	M60028
CD19	M28170
KIAA0959	AB023176
LILRA2	AF025531
PTPN18	X79568
MEF2C	L08895
PTP4A2	U14603
NPY	AI198311
GAB1	U43885
lck	U23852
TCF7	X59871
TERF2	X93512
ITM2A	AL021786
MEF2C	S57212
SLC9A3R1	AF015926
ENG	X72012
DEPP	AB022718
IL1B	X04500
IL1B	M15330
ECM1	U68186
HLA-DMA	X62744
CRMP1	D78012
WFS1	AF084481
PRKCQ	L01087
GNG7	AB010414
	X58398
CDKN1A	U03106
CD9	M38690
PTK2	L13616
TRB	M12886
IFI35	L78833
NUCB2	X76732
KIAA0942	AB023159
VATI	U18009
ARL7	AB016811
USP20	AB023220
PLCG2	X14034
PRDX1	X67951
POU2AF1	Z49194
CMAH	D86324
ALOX5	J03600
PTPN7	M64322
MEF2C	S57212

KIAA0668	AL021707
LOC54103	AL079277
EFNB1	U09303
HELO1	AL034374
ADF	S65738
KIAA0906	AB020713
IGFBP4	U20982
LDHB	X13794
CTNNA1	U03100
ENO2	X51956
LAT	AJ223280
PTPN7	D11327
	M16942
CSRP2	U57646
GLA	U78027
ADA	X02994
RGS10	AF045229
KIAA0870	AB020677
CD3Z	J04132
STAT12	AF037989
GSN	X04412
INSR	X02160
HLA-DNA	M31525
CD72	M54992
EPHB6	D83492
MYLK	U48959
HLA-DQAI	AA868382
LCK	M36881
FHL1	AF063002
CRIM1	AI651806
AQP3	N74607
HLA-DQB1	M81141
GNG11	U31384
LARGE	AJ007583
FOXO1A	AF032885
NPR1	X15357
GAB1	U43885
PTPRE	X54134
PDLM1	U90878
NCF4	AL008637
ARHGEF4	AB029035
PTP4A2	U14603
CTNNA1	AF102803
SEPW1	U67171
CHI3L2	U58515
LILRA2	U82277

CD79A	U05259
TCL1B	AB018563
TCF4	M74719
TACTILE	M88282
	AB002438
TXN	AI653621
ADE2H1	X53793
	AL049449
GLUL	X59834
ZFHX1B	AB011141
P4HB	M22806
IFITM1	J04164
KIAA0182	D80004
SH2D1A	AF100539
GNA11	M69013
NCF4	AL008637
SLC2A5	M55531
KIAA0993	AB023210
HLA-DPB1	M83664
HLX1	M60721
CTNNA1	D14705
FADS3	AC004770
GATA3	X58072
GDI2	Y13286
TM4SF2	L10373
GNA15	M63904
BTG2	U72649
RAG1	M29474
MDK	X55110
	X00457
AKR1C3	D17793
SLA	D89077
LDHA	X02152
	AL049279
PTPRC	Y00638
BMP2	M22489
ERG	M17254
ICSBP1	M91196
CCT2	AF026166
AKAP2	AB023137
	X58398
KIAA0128	D50918
IGHM	X58529
NOTCH3	U97669
JUP	M23410
DKFZP586O1624	AL039458

MYO10	AB018342
CTNNA1	L23805
NOS2A	U31511
	D00749
	L29376
ICB-1	AF044896
GNAI1	AL049933
S100A11	D38583
MAPKAPK3	U09578
ADA	M13792
S100A13	AI541308
VDAC3	AF038962
	AL049265
TRIM	AJ224878
CTBP2	AF016507
F13A1	M14539
ZNF43	HG620-HT620
DKFZp761F2014	AA149431
KIAA0442	AB007902
CTNNA1	U03100
CD2	M16336
BMP2	M22489
HSPC022	W68830
ICAM3	X69819
NCF4	X77094
GS3955	D87119
CTSC	X87212
GH1	V00520
ARPC2	U50523
HLA-DRB1	M32578
GAS1	L13698
LAMB2	M55210
EPHB4	U07695
COX8	AI525665
KIAA0618	N29665
KIAA0870	AI808958
PIK3CG	X83368
IGHD	K02882
IRF4	U52682
HSPCB	M16660
CAPN3	X85030
CD6	X60992
WSX-1	AI263885
FXYD2	H94881
PTK2	HG3075-HT3236

FUCA1	M29877
FADS2	AL050118
KARS	D32053
DSCR1	U85267
SOX4	X70683
TRD	X73617
MHC2TA	U18259
	AL049435
MDK	M94250
CALM1	U12022
PCLO	AB011131
	AI391564
FHIT	U46922
MONDOA	AB020674
TRG	M30894
SPIB	X66079
FLJ10097	AL035494
TAGLN2	D21261
LGALS9	Z49107

Table 60: Additional Genes selected by T statistics for the TEL-AML1 Risk Group

Gene symbol	Accession Number
ARHGEF4	AB029035
TNFRSF7	M63928
PCLO	AB011131
TCFL5	AB012124
KCNN1	U69883
NME2	X58965
PTPRK	L77886
	AL049313
TERF2	X93512
GNG11	U31384
RAG1	M29474
	AL080190
MADH1	U59423
	HG3523-HT4899
MADH1	U59912
P114-RHO-GEF	AB011093
	L29254
MDK	M94250
TERF2	AF002999
CRMP1	D78012

HLA-DOB	X03066
NFKBIL1	Y14768
	AA216639
	AL080059
CBFA2T3	AB010419
MDK	X55110
PIK3C3	Z46973
ALOX5	J03600
PTP4A3	AF041434
POU2AF1	Z49194
POU4F1	L20433
PRKCB1	X07109
GCAT	Z97630
PHYH	AF023462
SPTA1	M61877
IDI1	X17025
FYB	U93049
ITPR1	D26070
GTT1	AL041780
FADS3	AC004770
CCT2	AF026166
ISG20	U88964
SCHIP-1	AF070614
DR6	AF068868
MYO10	AB018342
ZNF91	L11672
T-STAR	AF051321
FUCA1	M29877
HLA-DQB1	M60028
	AB002438
CTGF	X78947
FKBP1A	M34539
	AI391564
RAB1	AL050268
INSR	X02160
KIAA0540	AB011112
TM4SF2	L10373
CASP1	M87507
MT1L	AA224832
MME	J03779
	AI743299
KARS	D32053
CHN2	U07223
IQGAP2	U51903
KIAA0906	AB020713
STAT12	AF037989

HLA-DMA	X62744
CD36L1	Z22555
PRKCB1	X06318
GS3955	D87119
ACTN1	X15804
FLJ20154	AF070644
KIAA0769	AB018312
SDC1	Z48199
SOX4	X70683
NRTN	U78110
CTNND1	AB002382
FHIT	U46922
FARP1	AI701049
FOXO1A	AF032885
NPY	AI198311
VDUP1	S73591
H2AFO	AI885852
TACTILE	M88282
SNL	U03057
JUP	M23410
NR3C2	M16801
PRPS2	Y00971
LILRA2	AF025531
RNAHP	H68340
DPYSL2	U97105
ITGB2	M15395
PCDH9	AI524125
LAIR1	AF013249
CD79A	U05259
NFKBIL1	Y14768
PCCA	S79219
HLA-DMB	U15085
SMARCA4	D26156

EXAMPLE 2

5 To identify additional additional genes whose expression levels could be used as a diagnostic tool to identify ALL subgroups, leukemic blasts from 132 diagnostic samples were analyzed using higher density oligonucleotide arrays that allow the interrogation of a majority of the identified genes in the human genome.

10 A subset of the 327 diagnostic pediatric ALL samples described above were reanalyzed using these higher density microarrays. Case selection was based on

providing a representation of the known prognostic ALL subtypes including t(9;22)[*BCR-ABL*], t(1;19)[*E2A-PBX1*], t(12;21)[*TEL-AML1*], rearrangement in the *MLL* gene on chromosome 11q23, and hyperdiploid karyotype with >50 chromosomes. Since the goal was to define expression profiles that could be used to accurately diagnose the known prognostic subtypes of ALL, we chose to over represent these subtypes compared to what is normally seen in a random population of childhood leukemia patients. A total of 132 samples met these criteria and had sufficient material remaining to be used for this analysis. The list of samples and subtype distribution of the cases used in this study are shown in Tables 61 and 52, respectively.

Table 61. Diagnostic ALL samples used for class prediction (n=132)

BCR-ABL-#1	Hyperdip>50-C18	Pseudodip-#6
BCR-ABL-#2	Hyperdip>50-C21	Pseudodip-C2-N
BCR-ABL-#3	Hyperdip>50-C22	Pseudodip-C3
BCR-ABL-#4	Hyperdip>50-C23	Pseudodip-C5
BCR-ABL-#5	Hyperdip>50-C27-N	Pseudodip-C6
BCR-ABL-#6	Hyperdip>50-C32	Pseudodip-C7
BCR-ABL-#7	Hyperdip>50-R4	Pseudodip-C9
BCR-ABL-#8	Hyperdip47-50-C14-N	Pseudodip-C14
BCR-ABL-#9	Hyperdip47-50-C3-N	Pseudodip-C16-N
BCR-ABL-Hyperdip-#10	Hypodip-#2	Pseudodip-R1-N
BCR-ABL-C1	Hypodip-2M#1	T-ALL-#5
BCR-ABL-R1	Hypodip-C2	T-ALL-#6
BCR-ABL-R2	Hypodip-C5	T-ALL-#7
BCR-ABL-R3	MLL-#1	T-ALL-#8
BCR-ABL-Hyperdip-R5	MLL-#2	T-ALL-#10
E2A-PBX1-#5	MLL-#3	T-ALL-C2
E2A-PBX1-#6	MLL-#4	T-ALL-C6
E2A-PBX1-#9	MLL-#5	T-ALL-C7
E2A-PBX1-#10	MLL-#6	T-ALL-C11
E2A-PBX1-#12	MLL-#7	T-ALL-C15

E2A-PBX1-#13	MLL-#8	T-ALL-C19
E2A-PBX1-2M#1	MLL-2M#1	T-ALL-C21
E2A-PBX1-C2	MLL-2M#2	T-ALL-R5
E2A-PBX1-C3	MLL-C1	T-ALL-R6
E2A-PBX1-C4	MLL-C2	TEL-AML1-#6
E2A-PBX1-C5	MLL-C3	TEL-AML1-#9
E2A-PBX1-C6	MLL-C4	TEL-AML1-#10
E2A-PBX1-C7	MLL-C5	TEL-AML1-#14
E2A-PBX1-C9	MLL-C6	TEL-AML1-2M#1
E2A-PBX1-C10	MLL-R1	TEL-AML1-2M#2
E2A-PBX1-C11	MLL-R2	TEL-AML1-C4
E2A-PBX1-C12	MLL-R3	TEL-AML1-C5
E2A-PBX1-R1	MLL-R4	TEL-AML1-C6
Hyperdip>50-#8	Normal-C1-N	TEL-AML1-C26
Hyperdip>50-#12	Normal-C2-N	TEL-AML1-C28
Hyperdip>50-#14	Normal-C3-N	TEL-AML1-C30
Hyperdip>50-C1	Normal-C4-N	TEL-AML1-C31
Hyperdip>50-C4	Normal-C7-N	TEL-AML1-C32
Hyperdip>50-C6	Normal-C8	TEL-AML1-C33
Hyperdip>50-C8	Normal-C9	TEL-AML1-C34
Hyperdip>50-C11	Normal-C11-N	TEL-AML1-C37
Hyperdip>50-C13	Normal-R1	TEL-AML1-C38
Hyperdip>50-C15	Normal-R2-N	TEL-AML1-C40
Hyperdip>50-C16	Pseudodip-#5	TEL-AML1-R3

*Subtype Name-C# Dx Sample of patient in CCR

Subtype Name-R# Dx Sample of patient who developed a hematologic relapse

Subtype Name-# Dx Sample used for subgroup classification only

Subtype Name-2M# Dx Sample of patient who later developed 2nd AML

Subtype Name-N Dx Sample in novel group

Table 62. Subgroup distribution of ALL cases

Subgroup	Train Set	Test Set
<i>BCR-ABL</i>	11	4
<i>E2A-PBX1</i>	13	5
Hyperdiploid >50	13	4
<i>MLL</i>	15	5
T-ALL	12	2
<i>TEL-AML1</i>	15	5
Other	21	7
Total	100	32

26,825 probe sets from combined Affymetrix® brand U133A and B

- 5 microarrays (Affymetrix, Inc., Santa Clara, CA) showed variation in expression levels across the 132 diagnostic leukemia samples. In an initial analysis of these data, two complementary unsupervised clustering algorithms: two-dimensional hierarchical clustering and principle component analysis (PCA), were used to assess the major sub-groupings of the leukemia cases based solely on gene expression profiles. These
- 10 unbiased clustering algorithms demonstrated that the pediatric ALL cases cluster primarily into seven major subtypes: T-ALL and 6 subtypes of B-cell lineage ALL corresponding to (1) rearrangement in the MLL gene on chromosome 11q23, (2) t(1;19)[E2A-PBX1], (3) hyperdiploid >50 chromosomes, (4) t(9;22)[BCR-ABL], (5) the novel subgroup, and (6) t(12;21)[TEL-AML1]. In addition, a heterogeneous group
- 15 of B-lineage cases were identified that lacked any of the defined genetic lesions and failed to cluster into the novel subgroup. Several of these leukemia subtypes formed distinct branches when all differentially expressed genes were used in the two-dimensional hierarchical clustering algorithm (T-ALL, Hyperdiploid >50 chromosomes, and TEL-AML1), whereas other subtypes clustered in multiple
- 20 branches, suggestive of gene expression differences within these subclasses. Using PCA, the distinct nature of the B-cell lineage subtypes is better appreciated when the T-ALL cases were removed from the analysis. A diagnostic accuracy of 100% was achieved for two of the leukemia subtypes (T-ALL and TEL-AML1), indicating the need to use supervised learning algorithms to achieve optimal diagnostic accuracy by
- 25 gene expression profiling.

Statistical methods were used to identify probe sets that were the best discriminators of the individual leukemia subtypes. In order to identify the genes that

provide the highest accuracy in diagnosing specific prognostic subtypes of leukemia, the decision tree format described elsewhere herein was used for the identification of leukemia subtypes. Briefly, we first defined whether a case is T- or B-cell in lineage. If the case is classified as T-cell, a diagnosis of T-ALL is made. If non-T, we then 5 determine if the case can be classified into one of the known B-cell lineage risk groups, deciding sequentially if it is E2A-PBX1, TEL-AML1, BCR-ABL, rearranged MLL gene, and lastly hyperdiploid with >50 chromosomes. Cases not assigned to one of these classes are left unassigned. The use of this decision tree format directly influences the selection of genes, allowing the selection of discriminating genes for 10 groups lower down the tree that might also be expressed by subtypes higher in the tree. Using a number of different supervised learning algorithms, it was found that a higher diagnostic accuracy is obtained using this decision tree format, as compared to a parallel format in which each class is identified against all others.

Discriminating genes were selected using a chi-square metric on the 100 cases 15 in the training set. Genes were selected that discriminated between a class and all leukemia subtypes below it in the decision tree. The number of discriminating probe sets per leukemia subtype at a statistical significance level of $p \leq 0.001$ (as determined by a permutation test) were: T-ALL, 2063; E2A-PBX1, 1059; TEL-AML1, 805; BCR-ABL, 201; MLL chimeric genes, 726; and hyperdiploid with >50 chromosomes, 20. 994. The lists of discriminating genes obtained using the top 100 ranked probe sets for the six prognostically important subgroups are contained in Tables 63-68. As multiple probe sets for the same gene are present on Affymetrix microarrays, the top 100 ranked probe sets represent between 75 and 92 distinct genes, depending on the leukemia subtype. As shown, distinct groups of either over or under expressed genes 25 distinguish cases defined by E2A-PBX1, MLL gene rearrangement, T-ALL, hyperdiploid >50 chromosomes, BCR-ABL, and TEL-AML1.

The following tables contain a list of the top 100 probe sets for each diagnostic subtype, ranked by their chi-square value. Each table contains the Affymetrix® U133 series probe set number, a gene description, gene symbol, chromosomal location, and 30 primary GenBank reference. Chi-square values were calculated utilizing only the samples in the train set in a differential diagnosis decision tree format. The calculation of the fold change was done in a parallel format using the total data set

and comparing the mean signal value in the class versus the mean signal value in the non-class.

Table 63. Top 100 chi-square probe sets selected for *BCR-ABL*

	U133 probe set	Gene description	Gene symbol	Chromo-somal location	GenBank Reference	Chi-square value	Bcr above/below mean	Fold change
1	241812_at	EST FLJ39877	FLJ39877	2	AV648669	47.4	Above	5.2
2	201876_at	Paraoxonase/arylesterase 2	PON2	7q21.3	NM_000305.1	47.2	Above	18.7
3	201028_s_at	Antigen identified by monoclonal antibodies 12E7, F21 and O13	MIC2	Xp22.32	U82164.1	44.3	Above	2.6
4	200953_s_at	Cyclin D2	CCND2	12p13	NM_001759.1	42.3	Above	3.5
5	202947_s_at	Glycophorin C integral membrane glycoprotein	GPC	2q14-q21	NM_002101.2	42.3	Above	3.1
6	223449_at	Semaphorin 6A	SEMA6A	5q23.1	AF225425.1	42.3	Above	4.3
7	201029_s_at	Antigen identified by monoclonal antibodies 12E7, F21 and O13	MIC2	Xp22.32	NM_002414.1	41.2	Above	2.4
8	204429_s_at	Solute carrier family 2 (facilitated glucose/fructose transporter), member 5	SLC2A5	1p36.2	BE560461	41.2	Above	5
9	210830_s_at	Paraoxonase	PON2	7q21.3	AF001602.1	41.2	Above	23.6
10	215028_at	Semaphorin 6A	SEMA6A	5	AB002438.1	41.2	Above	4.5
11	220024_s_at	Periaxin	PRX	19q13.13 -q13.2	NM_020956.1	41.2	Above	8.2
12	201906_s_at	HYA22 protein	HYA22	3p21.3	NM_005808.1	41.1	Above	43.4
13	209365_s_at	Extracellular matrix protein 1	ECM1	1q21	U65932.1	41.1	Above	6
14	238689_at	GPR110 G protein-coupled receptor 110	GPR110	6	BG426455	41.1	Above	10.9
15	222154_s_at	DKFZP564A2416 unknown protein with a histone H5 signature.	DKFZP564A2416	2q33.1	AK002064.1	40.4	Above	12.4
16	218084_x_at	FXYD domain-containing ion transport regulator 5	FXYD5	19q12-q13.1	NM_014164.2	38	Above	1.5
17	212242_at	Tubulin, alpha 1 (testis specific)	TUBA1	2q36.2	AL565074	37	Above	3.2
18	201445_at	Calponin 3, acidic	CNN3	1p22-p21	NM_001839.1	36.3	Above	10.8
19	202771_at	KIAA0233 gene product	KIAA023	16q24.3	NM_014745.1	36.3	Above	1.9
20	212298_at	Neuropilin 1	NRP1	10p12	BE620457	36.3	Above	13.8

21	212458_at	FLJ21897	FLJ21897	2	AW138902	36.3	Above	2.4
22	222488_s_at	Dynactin 4	DCTN4	5q31-q32	BE218028	36.3	Above	3.6
23	222762_x_at	LIM domains containing 1	LIMD1	3p21.3	AU144259	36.3	Above	2.6
24	200951_s_at	Cyclin D2	CCND2	12p13	NM_001759.1	35.3	Above	12.7
25	204430_s_at	Solute carrier family 2 (facilitated glucose/fructose transporter), member 5	SLC2A5	1p36.2	NM_003039.1	35.3	Above	5.1
26	205467_at	Caspase 10	CASP10	2q33-q34	NM_001230.1	35.3	Above	3.6
27	225660_at	Semaphorin 6A	SEMA6A	5q23.1	W92748	35.3	Above	3.3
28	225913_at	FLJ21140 (Ser/Thr protein kinase)	FLJ21140	15	AK025943.1	35.3	Above	2.9
29	236489_at	EST		6	AI282097	35.3	Above	16.7
30	240173_at	EST		4	AI732969	35.3	Above	10.3
31	240499_at	EST		10	AA482221	35.3	Above	1.3
32	201310_s_at	P311 protein. Similar to gastrin/cholecystokinin type B receptor.	P311	5q21.3	NM_004772.1	35.2	Below	2.2
33	215617_at	FLJ11754	FLJ11754	2	AU145711	35.2	Above	14.4
34	242579_at	EST		4	AA935461	35.2	Above	10.2
35	202717_s_at	CDC16 cell division cycle 16 homolog	CDC16	13q34	NM_003903.1	34.4	Above	1.1
36	205055_at	Integrin, alpha E (antigen CD103, human mucosal lymphocyte antigen 1)	ITGAE	17p13	NM_002208.3	34.4	Below	2.1
37	217967_s_at	Chromosome 1 ORF 24	C1orf24	1q25	AF288391.1	34.4	Above	3.2
38	201656_at	Integrin, alpha 6	ITGA6	2q31.1	NM_000210.1	33.9	Above	2.8
39	207196_s_at	Nef-associated factor 1	NAF1	5q32-q33.1	NM_006058.1	32.2	Above	1.4
40	219315_s_at	hypothetical protein FLJ23058	FLJ20898	16p13.12	NM_024600.1	32.2	Above	5.3
41	202123_s_at	V-abl Abelson murine leukemia viral oncogene homolog 1	ABL1	9q34.1	NM_005157.2	31.4	Above	1.8
42	219938_s_at	Pro-Ser-Thr phosphatase interacting protein 2	PSTPIP2	18q12	NM_024430.1	31.2	Above	5
43	228046_at	EST;DKFZp434P 0235	DKFZp434P 0235	4	AA741243	31.2	Above	1.1
44	64064_at	Immune associated nucleotide 4 like 1	IAN4L1	7q36	AI435089	30.9	Above	3.3
45	222729_at	F-box and WD-40 domain protein 7 (archipelago homolog, Drosophila)	FBXW7	4q31.23	BE551877	30.5	Above	2.4

46	229975_at	EST		4	AI826437	30.5	Above	9.1
47	200864_s_at	RAB11A	RAB11A	15q21.3-q22.31	NM_004663.1	29.7	Above	1.4
48	203089_s_at	Protease, serine, 25	PRSS25	2p12	NM_013247.1	29.7	Above	1.7
49	205376_at	Inositol polyphosphate-4-phosphatase, type II	INPP4B	4q31.1	NM_003866.1	29.7	Above	12.4
50	209229_s_at	KIAA1115 protein	KIAA1115	19q13.42	BC002799.1	29.7	Above	1.3
51	219871_at	Hypothetical protein FLJ13197	FLJ13197	4p14	NM_024614.1	29.7	Above	14.5
52	222868_s_at	Interleukin 18 binding protein	IL18BP	11q13	AI521549	29.7	Above	7.1
53	235988_at	GPR110 G protein-coupled receptor 110	GPR110	6p12.3	AA746038	29.7	Above	15.8
54	239273_s_at	Matrix metalloproteinase 28	MMP28	17q11-q21.1	AI927208	29.7	Above	90.5
55	206150_at	Tumor necrosis factor receptor superfamily, member 7	TNFRSF7	12p13	NM_001242.1	29.5	Above	3.2
56	212203_x_at	Interferon induced transmembrane protein 3	IFITM3	8q13.1	BF338947	29.5	Above	2.3
57	217110_s_at	Mucin 4	MUC4	3q29	AJ242547.1	29.5	Above	47.5
58	223075_s_at	hypothetical protein FLJ12783	FLJ12783	9q34.13-q34.3	AL136566.1	29.5	Above	3.9
59	229139_at	EST		8	AI202201	29.5	Above	10.8
60	229367_s_at	Hypothetical proteins FLJ22690.	FLJ22690	7	AW130536	29.5	Above	3.6
61	213093_at	FLJ30869	FLJ30869	Xq28	AI471375	29.1	Above	2.5
62	216033_s_at	FYN oncogene related to SRC	FYN	6	S74774.1	29.1	Above	2.7
63	202369_s_at	TRAM-like protein	KIAA005	6p21.1-p12	NM_012288.1	28.7	Above	3.3
64	212592_at	immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides	IGJ	4q21	AV733266	28.7	Above	7.9
65	219218_at	hypothetical protein FLJ23058	FLJ23058	17q25.3	NM_024696.1	28.7	Below	6.2
66	242051_at	EST		Y	AI695695	28.7	Above	2.2
67	200655_s_at	Calmodulin 1 (phosphorylase kinase, delta)	CALM1	14q24-q31	NM_006888.1	28.5	Above	1.3
68	202794_at	Inositol polyphosphate-1-phosphatase	INPP1	2q32	NM_002194.2	28.4	Above	1.6
69	218348_s_at	HSPC055 protein	HSPC055	16p13.3	NM_014153.1	27.7	Below	1.1
70	205269_at	Lymphocyte cytosolic protein 2	LCP2	5q33.1-pter	AI123251	26.9	Above	1.6

71	238488_at	Ran binding protein 11	LOC51194	5q12.2	BF511602	26.9	Above	2.7
72	202242_at	Transmembrane 4 superfamily member 2	TM4SF2	Xq11.4	NM_004615.1	26.6	Above	1.7
73	218764_at	Hypothetical protein MGC5363	MGC5363	14q22.1-q22.3	NM_024064.1	26.6	Above	1.7
74	224811_at	FLJ30652	FLJ30652	3	BF112093	26.6	Above	1.5
75	225799_at	Hypothetical protein MGC4677	MGC4677	2q12.3	BF209337	26.6	Above	2.2
76	228297_at	Calponin 3, acidic	CNN3	1p22-p21	AI807004	26.6	Above	4.7
77	203508_at	Tumor necrosis factor receptor superfamily, member 1B	TNFRSF1B	1p36.3-p36.2	NM_001066.1	26	Above	2.6
78	208071_s_at	Leukocyte-associated Ig-like receptor 1	LAIR1	19q13.4	NM_021708.1	26	Above	2
79	209321_s_at	Adenylate cyclase 3.	ADCY3	2p24-p22	AF033861.1	26	Above	2.1
80	226345_at	DKFZp434O1317	DKFZp434O1317	10	AW270158	26	Below	1.4
81	200863_s_at	RAB11A, member RAS oncogene family	RAB11A	15q21.3-q22.31	AI215102	25.8	Above	1.4
82	205270_s_at	Lymphocyte cytosolic protein 2	LCP2	5q33.1-qter	NM_005565.2	25.8	Above	1.6
83	208881_x_at	Isopentenyl-diphosphate delta isomerase	IDI1	10p15.3	BC005247.1	25.8	Below	1.7
84	212862_at	CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase e) 2	CDS2	20p13	AL568982	25.8	Above	1.8
85	213385_at	Chimerin 2	CHN2	7	AK026415.1	25.8	Above	3
86	218013_x_at	Dynactin 4	DCTN4	5q31-q32	NM_016221.1	25.8	Above	3.6
87	218966_at	Myosin 5C	MYO5C	15q21	NM_018728.1	25.8	Above	1.8
88	200742_s_at	Ceroid-lipofuscinosis, neuronal 2, late infantile (Jansky-Bielschowsky disease). A pepstatin-insensitive lysosomal peptidase.	CLN2	11p15	BG231932	25	Above	1.5
89	203217_s_at	Sialyltransferase 9	SIAT9	2p11.2	NM_003896.1	25	Above	1.8
90	205259_at	Nuclear receptor subfamily 3, group C, member 2	NR3C2	4q31.1	NM_000901.1	25	Above	1.9
91	220684_at	T-box 21	TBX21	17q21.2	NM_013351.1	25	Above	3.3
92	225244_at	IMAGE3451454: GRASP protein	IMAGE3451454	1q42.13	AA019893	25	Above	2

93	239519_at	EST		10	AA927670	25	Above	18.2
94	203005_at	Lymphotoxin beta receptor (TNFR superfamily, member 3)	LTBR	12p13	NM_002342.1	24.3	Above	10
95	200665_s_at	Secreted protein, acidic, cysteine-rich (osteonectin)	SPARC	5q31.3-q32	NM_003118.1	24.3	Above	9.8
96	204004_at	PRKC, apoptosis, WT1, regulator	PAWR	12q21	AI336206	24.3	Above	3
97	204576_s_at	KIAA0643 protein	KIAA0643	16p12.3	AA207013	24.3	Above	2
98	214255_at	ATPase, Class V, type 10C	ATP10C	15q11-q13	AB011138.1	24.3	Above	9.9
99	216985_s_at	Syntaxin 3A	STX3A	11q12.3	AJ002077.1	24.3	Above	12
100	48106_at	FLJ20489	FLJ20489	12p11.1	H14241	24.3	Above	2.8

Table 64. Top 100 chi-square probe sets selected for *E2A-PBX1*

	U133 probe set	Gene Description	Symbol	Chromosomal Location	GenBank reference	Chi-square value	E2A above/below mean	Fold change
1	201579_at	FAT tumor suppressor homolog (Drosophila)	FAT	4q34-q35	NM_005245.1	88.0	Above	9.9
2	201695_s_at	nucleoside phosphorylase	NP	14q13.1	NM_000270.1	88.0	Above	3.8
3	204674_at	lymphoid-restricted membrane protein	LRMP	12p12.3	NM_006152.1	88.0	Above	5.8
4	205253_at	pre-B-cell leukemia transcription factor 1	PBX1	1q23	NM_002585.1	88.0	Above	3549.2
5	212148_at	pre-B-cell leukemia transcription factor 1, splice variant	PBX1	1q23	BF967998	88.0	Above	5283.5
6	212151_at	pre-B-cell leukemia transcription factor 1, splice variant	PBX1	1q23	BF967998	88.0	Above	7472.2
7	212371_at	DKFZp586C1019	DKFZp586C1019	1	AL049397.1	88.0	Above	2.5
8	219155_at	retinal degeneration beta	RDGBB	17q24.2	NM_012417.1	88.0	Above	2.7
9	225483_at	hypothetical protein	MGC10485	11q25	AI971602	88.0	Above	7.7
10	227439_at	MGC10485 E2a-Pbx1-associated protein	EB-1	12	AW005572	88.0	Above	269.8

11	227949_at	Q9H4T4 like	H17739	20q13.32	AL357503	88.0	Above	59.3	
12	230306_at	hypothetical protein MGC10485	MGC1048 5	11q25	AA514326	88.0	Above	19.2	
13	231095_at	retinal degeneration beta	RDGBB B	17q24.2	AW193811	88.0	Above	25.6	
14	203372_s_at	STAT induced	SOCS2	12q	AB004903.1	80.6	Below	23.4	
15	206028_s_at	STAT inhibitor-2 c-mer	proto- oncogene	MERTK	2q14.1	NM_006343.1	80.6	Above	23.7
16	206181_at	tyrosine kinase signaling	SLAM	1q22-q23	NM_003037.1	80.6	Above	6.3	
17	208788_at	lymphocytic activation molecule	homolog of yeast long chain polyunsaturated fatty acid elongation enzyme 2	HELO1	6p21.1- p12.1	AL136939.1	80.6	Above	2.2
18	209760_at	KIAA0922 protein	KIAA092 2	4q31.23	AL136932.1	80.6	Above	2.9	
19	35974_at	lymphoid- restricted	LRMP	12p12.3	U10485	80.6	Above	6.2	
20	38340_at	membrane protein huntingtin interacting protein	HIP12	12q24	AB014555	80.6	Above	3.8	
21	208644_at	12	ADP- ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)	ADPR	1q41-q42	M32721.1	80.2	Above	3.0
22	212789_at	KIAA0056 protein	KIAA005 6	11q25	AI796581	80.2	Above	3.9	
23	221113_s_at	wingless-type MMTV integration site family, member	WNT16	7q31	NM_016087.1	80.2	Above	2547.6	
24	224022_x_at	16	wingless-type MMTV integration site family, member	WNT16	7q31	AF169963.1	80.2	Above	569.1
25	231040_at	EST		9	AW512988	80.2	Above	16.4	
26	232289_at	FLJ14167	FLJ14167	17	BF237871	80.2	Above	144.1	
27	235666_at	EST	FLJ20489	10	AA903473	80.2	Above	654.6	
28	203373_at	STAT induced	SOCS2	12q	NM_003877.1	74.2	Below	24.8	
29	210785_s_at	STAT inhibitor-2	basement membrane- induced gene	ICB-1	1p35.3	AB035482.1	74.2	Below	4.1
30	224733_at	chemokine-like factor	CKLFSF3 super family 3	16q23.1	AL574900	74.2	Below	41.7	
31	225235_at	hypothetical	MGC1485	5q35.3	AW007710	74.2	Above	3.6	

		protein MGC14859	9						
32	204114_at	nidogen (osteonidogen)	2 NID2	14q21- q22	NM_007361.1	73.1	Above	15.1	
33	211913_s_at	c-mer proto- oncogene tyrosine kinase	MERTK	2q14.1	L08961.1	72.8	Above	37.7	
34	219551_at	uncharacterized bone marrow protein BM040	BM040	3q21.1	NM_018456.1	72.8	Above	3.0	
35	223693_s_at	hypothetical protein FLJ10324	FLJ10324	7p22	AL136731.1	72.8	Above	65.6	
36	200600_at	moesin	MSN	Xq11.2- q12	NM_002444.1	72.5	Below	2.2	
37	213909_at	FLJ12280	FLJ12280	3	AU147799	72.5	Above	12.5	
38	221669_s_at	acyl-Coenzyme A dehydrogenase family, member 8	ACAD8	11q25	BC001964.1	72.5	Above	2.6	
39	235911_at	ESTs, Weakly similar to PIHUB6 salivary proline- rich protein precursor PRB1 (large allele)		3	AI885815	72.5	Above	36.6	
40	243533_x_at	ESTs			H09663	72.5	Above	23.2	
41	202615_at	DKFZp686D0521	DKFZp68 6D0521	9	BF222895	68.6	Below	6.2	
42	204774_at	ecotropic viral integration site 2A	EVI2A	17q11.2	NM_014210.1	68.6	Below	3.0	
43	218283_at	synovial sarcoma translocation gene on chromosome 18-like 2	SS18L2	3p21	NM_016305.1	68.6	Above	1.6	
44	209130_at	synaptosomal- associated protein, 23kDa	SNAP23	15q14	BC003686.1	67.8	Below	1.9	
45	228580_at	serine protease HTRA3	HTRA3	4p16.1	AI828007	66.6	Above	3.8	
46	202796_at	synaptopodin	KIAA102 9	5q33.1	NM_007286.1	66.5	Above	52.3	
47	218640_s_at	phafin 2	FLJ13187	8q21.3	NM_024613.1	66.5	Above	3.1	
48	235099_at	ESTs, Weakly similar to PLLP_HUMAN Plasmolipin [H.sapiens]		3	AW080832	66.5	Above	6.7	
49	201889_at	family sequence similarity 3, member C	with FAM3C	7q22.1- q31.1	NM_014888.1	65.3	Above	4.6	
50	202106_at	golgi autoantigen, golgin subfamily a, 3	GOLGA3	12q24.33	NM_005895.1	65.3	Above	3.3	
51	202208_s_at	ADP-ribosylation factor-like 7	ARL7	2q37.2	BC001051.1	65.3	Above	3.2	
52	205173_x_at	CD58 antigen, (lymphocyte function- associated antigen	CD58	1p13	NM_001779.1	65.3	Above	2.4	

53	211744_s_at	3) CD58 antigen, CD58 (lymphocyte function- associated antigen 3)		1p13	BC005930.1	65.3	Above	2.5
54	212552_at	hippocalcin-like 1	HPCAL1	2p25.1	BE617588	65.3	Below	2.6
55	213358_at	KIAA0802	KIAA080	18p11.21	AB018345.1	65.3	Above	12.7
56	222699_s_at	protein 2	FLJ13187	8q21.3	BF439250	65.3	Above	3.5
57	225618_at	phafin 2 EST		17	AI769587	65.3	Below	5.3
58	238778_at	DKFZp451L157	DKFZp45 1L157	10	AI244661	65.3	Above	23.5
59	239427_at	ESTs		1	AA131524	65.3	Above	13.7
60	47069_at	Rho GTPase activating protein 8	ARHGAP	22q13.31	AA533284	65.3	Above	3.3
61	205769_at	solute carrier family 27 (fatty acid transporter), member 2	SLC27A2	15q21.2	NM_003645.1	65.1	Above	56.0
62	210786_s_at	Friend leukemia virus integration 1	FLI1	11q24.1-q24.3	M93255.1	65.1	Above	2.2
63	212985_at	DKFZp434E033	DKFZp43 4E033	4	BF115739	65.1	Above	7.1
64	227441_s_at	E2a-Pbx1-associated protein	EB-1	12	AW005572	65.1	Above	1139.4
65	234261_at	DKFZp761M1012	DKFZp76 1M10121	12	AL137313.1	65.1	Above	960.8
66	244565_at	ESTs		10	AI685824	65.1	Above	7.6
67	202181_at	KIAA0247 gene product	KIAA024	14q24.1	NM_014734.1	63.7	Above	1.8
68	202207_at	ADP-ribosylation factor-like 7	ARL7	2q37.2	NM_005737.2	63.7	Above	3.2
69	207571_x_at	basement membrane-induced gene	ICB-1	1p35.3	NM_004848.1	63.7	Below	4.4
70	209558_s_at	huntingtin interacting protein 12	HIP12	12q24	AB013384.1	61.1	Above	23.8
71	213005_s_at	KIAA0172 protein	KIAA017	9p24.3	D79994.1	61.1	Above	8.3
72	236854_at	cDNA DKFZp667F0617	DKFZp66 7F0617	20	AA743694	61.1	Above	12.6
73	226233_at	tubulin-specific chaperone e	TBCE	1q42.3	BG112197	60.0	Above	2.6
74	203435_s_at	membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase, CALLA, CD10)	MME	3q25.1-q25.2	NM_007287.1	59.9	Below	2.2
75	202478_at	GS3955 protein	GS3955	2p25.1	NM_021643.1	59.3	Above	4.0
76	202479_s_at	GS3955 protein	GS3955	2p25.1	BC002637.1	59.3	Above	3.3
77	203999_at	synaptotagmin I	SYT1	12cen-q21	NM_005639.1	59.3	Above	3.9
78	212149_at	KIAA0143 protein	KIAA014	8q24.12	AA805651	59.3	Below	13.5

79	212873_at	minor histocompatibility antigen HA-1	HA-1	19p13.3	BE349017	59.3	Below	2.9
80	218346_s_at	p53 regulated nuclear protein	PA26	6q21	NM_014454.1	59.3	Below	4.7
81	224856_at	FK506 binding protein 5	FKBP5	6p21.3-21.2	AL122066.1	59.3	Below	5.5
82	200811_at	cold inducible RNA binding protein	CIRBP	19p13.3	NM_001280.1	59.1	Below	5.8
83	201722_s_at	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 1 (GalNAc-T1)	GALNT1	18q12.1	NM_020474.2	59.1	Below	1.8
84	223711_s_at	HSPC144 protein cDNA	HSPC144	11q25	AF182413.1	59.1	Above	2.0
85	233273_at	FLJ12010	FLJ12010	1	AU146834	59.1	Above	30.6
86	201460_at	mitogen-activated protein kinase-activated kinase 2	MAPKAP	1q32	AI141802	57.9	Above	2.1
87	202421_at	immunoglobulin superfamily, member 3	IGSF3	1p13	AB007935.1	57.9	Above	4.4
88	217983_s_at	ribonuclease precursor	6 RNASE6P L	6q27	NM_003730.2	57.9	Below	3.4
89	218087_s_at	sorbin and SH3 domain containing 1	SORBS1	10q23.3-q24.1	NM_015385.1	57.9	Above	25.1
90	218491_s_at	HSPC144 protein	HSPC144	11q25	NM_014174.1	57.9	Above	1.4
91	201825_s_at	CGI-49 protein	LOC5109	1q44	AL572542	57.8	Above	2.2
92	202206_at	ADP-ribosylation factor-like 7	ARL7	2q37.2	NM_005737.2	57.8	Above	3.9
93	218683_at	polypyrimidine tract binding protein 2	PTBP2	1p22.11-p21.3	NM_021190.1	57.8	Above	1.8
94	226590_at	cDNA clone EUROIDAGE 1517766		9	AA031404	57.8	Above	3.1
95	227440_at	E2a-Pbx1-associated protein	EB-1	12	AW005572	57.8	Above	1168.9
96	229770_at	hypothetical protein FLJ31978	FLJ31978	12q24.33	AI041543	57.8	Above	51.8
97	40148_at	amyloid beta (A4) precursor protein-binding, family B, member 2 (Fe65-like)	APBB2	4p14	U62325	57.8	Above	6.2
98	212959_s_at	MGC4170 protein	MGC4170	12q23.1	AK001821.1	57.2	Below	3.0
99	203143_s_at	KIAA0040 gene product	KIAA004 0	1q24-25	T79953	56.3	Above	2.4
100	209683_at	hypothetical protein	DKFZP56 6A1524	2p24.2	AA243659	56.3	Below	10.0
		DKFZp566A1524						

Table 65. Top 100 chi-square probe sets selected for Hyperdiploid >50

	U133 probe set	Gene description	Symbol	Chromo-somal Location	GenBank Ref	Chi-square value	HD above/below mean	Fold change
1	200600_at	Moesin (membrane-organizing extensio spike protein)	MSN	Xq11.2-q12	NM_002444.1	34.0	Above	1.9
2	200737_at	Phosphoglycerate kinase 1	PGK1	Xq13	NM_000291.1	34.0	Above	1.8
3	200980_s_at	Pyruvate dehydrogenase (lipoamide) alpha 1	PDHA1	Xp22.2-p22.1	NM_000284.1	34.0	Above	1.7
4	201136_at	Proteolipid protein 2 (colonic epithelium-enriched)	PLP2	Xp11.23	NM_002668.1	34.0	Above	3.3
5	201807_at	Vacuolar protein sorting 26 (yeast)	VPS26	10q21.1	NM_004896.1	34.0	Above	1.7
6	202214_s_at	Cullin 4B	CUL4B	Xq23	NM_003588.1	34.0	Above	1.9
7	202557_at	Stress 70 protein chaperone, microsome associated, 60 kD membrane interacting protein of RGS16	STCH	21q11	AI718418	34.0	Above	2.0
8	202593_s_at	MIR16	16p12-p11.2	NM_016641.1	34.0	Below	1.6	
9	203680_at	Protein kinase, cAMP-dependent, regulatory, type II, beta	PRKAR2B	7q22-q31.1	NM_002736.1	34.0	Above	3.3
10	204194_at	BTB and CNC homology 1, basic leucine zipper transcription factor 1	BACH1	21q22.11	NM_001186.1	34.0	Above	1.8
11	205324_s_at	FtsJ homolog 1 (E. coli)	FTSJ1	Xp11.23	NM_012280.1	34.0	Above	2.1
12	208598_s_at	Upstream regulatory element binding protein 1	UREB1	Xp11.22	NM_005703.2	34.0	Above	1.6
13	208861_s_at	Alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, S. cerevisiae)	ATRX	Xq13.1-q21.1	U72937.2	34.0	Above	1.7
14	211342_x_at	Trinucleotide repeat containing 11 (THR-associated protein, 230 kDa subunit)	TNRC11	Xq13	BC004354.1	34.0	Above	1.8

15	216071_x_at	Trimucleotide repeat containing 11	TNRC11	Xq13	AF132033	34.0	Above	1.8
16	218573_at	APR-1 protein/melanoma-associated antigen	MAGEH1	Xp11.22	NM_014061.1	34.0	Above	3.0
17	219485_s_at	proteasome (prosome, macropain) 26S subunit, non-ATPase, 10	PSMD10	Xq22.3	NM_002814.1	34.0	Above	2.4
18	200655_s_at	Calmodulin 1 (phosphorylase kinase, delta)	CALM1	14q24-q31	NM_006888.1	30.1	Above	1.7
19	200738_s_at	Phosphoglycerate kinase 1	PGK1	Xq13	NM_000291.1	30.1	Above	1.8
20	200944_s_at	High-mobility group (nonhistone chromosomal) protein 14; member of the HMG 14/17 family	HMG14	21q22.2	NM_004965.1	30.1	Above	1.7
21	201092_at	Retinoblastoma binding protein 7/RbAp46	RBBP7	Xp22.31	NM_002893.2	30.1	Above	1.6
22	201100_s_at	Ubiquitin specific protease 9	USP9X	Xp11.4	NM_004652.2	30.1	Above	1.7
23	201688_s_at	Tumor protein D52	TPD52	8q21	BE974098	30.1	Below	4.1
24	201899_s_at	Ubiquitin-conjugating enzyme E2A (RAD6 homolog)	UBE2A	Xq24-q25	NM_003336.1	30.1	Above	1.8
25	202325_s_at	ATP synthase, H ⁺ transporting, mitochondrial F0 complex, subunit F6	ATP5J	21q21.1	NM_001685.1	30.1	Above	1.6
26	202829_s_at	Synaptobrevin-like 1	SYBL1	Xq28	NM_005638.1	30.1	Above	1.5
27	202854_at	Hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan syndrome)	HPRT1	Xq26.1	NM_000194.1	30.1	Above	1.4
28	206846_s_at	Histone deacetylase 6	HDAC6	Xp11.23	NM_006044.2	30.1	Above	1.5
29	209370_s_at	SH3-domain binding protein 2	SH3BP2	4p16.3	AB000462.1	30.1	Above	3.1
30	209565_at	zinc finger protein 183	ZNF183	Xq25-q26	BC000832.1	30.1	Above	2.2
31	212846_at	KIAA0179 protein	KIAA0179	21q22.3	D80001.1	30.1	Above	2.0
32	217356_s_at	Phosphoglycerate kinase	PGK1	Xq13	S81916.1	30.1	Above	1.8
33	218163_at	MCT-1 protein	MCT-1	Xq22-24	NM_014060.1	30.1	Above	1.8
34	218386_x_at	Ubiquitin specific protease 16; de-	USP16	21q22.11	NM_006447.1	30.1	Above	1.7

		ubiquitinates histone H2A; ubiquitous expression.						
35	218402_s_at	Hermansky- Pudlak syndrome 4	HPS4		NM_022081.1	30.1	Below	3.4
36	218495_at	Ubiquitously- expressed transcript	UXT	Xp11.23- p11.22	NM_004182.1	30.1	Above	1.5
37	218499_at	Mst3 and SOK1- related kinase/STE20-like kinase; contains a Ser/Thr protein kinase domain	MST4	Xq26.1	NM_016542.1	30.1	Above	2.5
38	218757_s_at	Similar to yeast Upf3, variant B	UPF3B	Xq25- q26	NM_023010.1	30.1	Above	2.3
39	219038_at	Hypothetical protein FLJ11565	FLJ11565	Xq22.2	NM_024657.1	30.1	Above	6.9
40	229967_at	Chemokine-like factor super family 2.	CKLFSF2	16q23.1	AA778552	30.1	Above	4.3
41	242794_at	EST		4q31.1	AI569476	30.1	Above	3.2
42	201132_at	Heterogeneous nuclear ribonucleoprotein H2 (H')	HNRPH2	Xq22	NM_019597.1	30.0	Above	2.0
43	201312_s_at	SH3 domain binding glutamic acid-rich protein like	SH3BGR	Xq13.3	NM_003022.1	30.0	Above	1.6
44	201894_s_at	Decorin; glycoprotein that binds to type I collagen fibrils & plays a role in matrix assembly.	DCN	12q13.2	NM_001920.1	30.0	Above	1.5
45	201923_at	Peroxiredoxin 4	PRDX4	Xp22.13	NM_006406.1	30.0	Above	1.9
46	202371_at	Hypothetical protein FLJ21174	FLJ21174	Xq22.1	NM_024863.1	30.0	Above	3.6
47	203126_at	Inositol(myo)-1(or 4)- monophosphatase 2	IMPA2	18p11.2	NM_014214.1	30.0	Above	4.1
48	204219_s_at	proteasome (prosome, macropain) 26S subunit, ATPase, 1	PSMC1	19p13.3	NM_002802.1	30.0	Above	1.3
49	204835_at	polymerase (DNA directed), alpha	POLA	Xp22.1- p21.3	NM_016937.1	30.0	Above	2.0
50	212071_s_at	Spectrin, beta, non-erythrocytic 1	SPTBN1	2p21	BE968833	30.0	Below	1.7
51	212419_at	EST		10q22.3	AL049949.1	30.0	Above	13.1
52	212718_at	Hypothetical protein MGC5370	MGC5378	14q32.2	BG110231	30.0	Above	1.5
53	213502_x_at	Homo sapiens cDNA FLJ32313	FLJ32313	22q11.23	X03529	30.0	Below	1.8

		fis, clone PROST2003232, weakly similar to BETA- GLUCURONIDA SE PRECURSOR (EC 3.2.1.31)						
54	214051_at	Thymosin, beta	TMSNB	Xq21.33- q22.3 2q11.2	BF677486	30.0	Above	3.1
55	226039_at	Mannosyl (alpha- 1,3)-glycoprotein beta-1,4-N- acetylglucosaminy ltransferase	MGAT4A		AW006441	30.0	Above	3.0
56	227279_at	hypothetical protein MGC15737	MGC1573 7	Xq22.1	AA847654	30.0	Above	5.6
57	200642_at	Superoxide dismutase 1, soluble	SOD1	21q22.11	NM_000454.1	26.7	Above	2.3
58	200799_at	Heat shock 70kD protein 1A	HSPA1A	6p21.3	NM_005345.3	26.7	Above	2.7
59	200943_at	High-mobility group (nonhistone chromosomal) protein 14; member of the HMG 14/17 family	HMG14	21q22.2	NM_004965.1	26.7	Above	1.6
60	201018_at	Eukaryotic translation initiation factor 1A	EIF1A	Xp22.12	BE542684	26.7	Above	1.8
61	201311_s_at	SH3 domain binding glutamic acid-rich protein like	SH3BGR L	Xq13.3	AL515318	26.7	Above	1.6
62	201443_s_at	ATPase, H+ transporting, lysosomal interacting protein 2	ATP6IP2	Xq21	AF248966.1	26.7	Above	1.9
63	201472_at	Von Hippel- Lindau binding protein 1	VBP1	Xq28	NM_003372.2	26.7	Above	1.7
64	201689_s_at	Tumor protein D52	TPD52	8q21	BE974098	26.7	Below	4.3
65	202602_s_at	HIV TAT specific factor 1	HTATSF1	Xq26.1- q27.2	NM_014500.1	26.7	Above	1.5
66	203041_s_at	Lysosomal- associated membrane protein 2	LAMP2	Xq24	J04183.1	26.7	Above	3.1
67	203102_s_at	Mannosyl (alpha- 1,6-)-glycoprotein beta-1,2-N- acetylglucosaminy ltransferase	MGAT2	14q21	NM_002408.2	26.7	Above	1.6
68	203744_at	High-mobility	HMG4	Xq28	NM_005342.1	26.7	Above	1.9

		group (nonhistone chromosomal) protein 4						
69	205518_s_at	Cytidine monophosphate- N- acetylneuraminic acid hydroxylase (CMP-N- acetylneuraminate monooxygenase)	CMAH	6p22-p23	NM_003570.1	26.7	Below	2.9
70	208683_at	Calpain 2, (m/II) large subunit; calcium- dependent Cys protease.	CAPN2	1q41-q42	M23254.1	26.7	Above	2.2
71	209440_at	Phosphoribosyl pyrophosphate synthetase 1; purine biosynthesis.	PRPS1	Xq21- q27	BC001605.1	26.7	Above	1.4
72	210786_s_at	Friend leukemia virus integration 1	FLI1	11q24.1- q24.3	M93255.1	26.7	Below	2.5
73	212070_at	G protein-coupled receptor 56	GPR56	16q13	AL554008	26.7	Above	2.4
74	213334_x_at	Three prime repair exonuclease 2	TREX2	Xq28	BE676218	26.7	Above	1.7
75	215117_at	Recombination activating gene 2; V(D)J recombinase.	RAG2	11p13	AW058148	26.7	Below	27.2
76	218694_at	ALEX1 protein	ALEX1	Xq21.33- q22.2	NM_016608.1	26.7	Above	2.8
77	222741_s_at	hypothetical protein FLJ11101	FLJ11101	6p21.1	AI761426	26.7	Above	1.5
78	223082_at	SH3-domain kinase binding protein 1	SH3KBP1	Xp22.1- p21.3	AF230904.1	26.7	Above	2.0
79	225105_at	clone MGC:23936 IMAGE:3838595, mRNA, complete cds		12q23.3	BF969397	26.7	Above	2.1
80	225406_at	Twisted gastrulation	TSG	18p11.3	AA195009	26.7	Above	1.9
81	225553_at	Homo sapiens cDNA FLJ12874 fis		14q22.2	AL042817	26.7	Above	1.6
82	226199_at	Hypothetical protein MGC23937	MGC2393 7	Xq13.1	AL563795	26.7	Above	2.1
83	226875_at	Hypothetical protein FLJ32122	FLJ32122	Xq24	AI742838	26.7	Above	2.3
84	232974_at	cDNA FLJ12417 fis		Xp22.31	AU148256	26.7	Above	3.1
85	46323_at	SCAN-1 Ca++- dependent ER nucleoside diphosphatase/apy rase	SHAPY	17q25.3	AL120741	26.7	Above	1.7

86	203694_s_at	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 16	DDX16	6p21.3	NM_003587.2	26.3	Above	1.3
87	200658_s_at	Prohibitin	PHB	17q21	AL560017	26.3	Above	2.0
88	201898_s_at	ubiquitin-conjugating enzyme E2A (RAD6 homolog)	UBE2A	Xq24-q25	AI126625	26.3	Above	1.6
89	203556_at	KIAA0854 protein	KIAA085 4	8q24.13	NM_014943.1	26.3	Below	1.6
90	203745_at	Holoxytchrome c synthase (cytochrome c heme-lyase)	HCCS	Xp22.3	AI801013	26.3	Above	2.1
91	203909_at	Solute carrier family 9 (sodium/hydrogen exchanger), isoform 6	SLC9A6	Xq26.3	NM_006359.1	26.3	Above	1.9
92	204446_s_at	Arachidonate 5-lipoxygenase	ALOX5	10q11.2	NM_000698.1	26.3	Above	4.2
93	205191_at	Retinitis pigmentosa 2 (X-linked recessive)	RP2	Xp11.4-p11.21	NM_006915.1	26.3	Above	2.1
94	206874_s_at	Ste20-related serine/threonine kinase	SLK	10q25.1	AL138761	26.3	Above	1.6
95	208073_x_at	Tetratricopeptide repeat domain 3	TTC3	21q22.2	NM_003316.1	26.3	Above	1.9
96	209056_s_at	CDC5 cell division cycle 5-like (S. pombe)	CDC5L	6p21	AW268817	26.3	Above	1.4
97	210645_s_at	Tetratricopeptide repeat domain 3	TTC3	21q22.2	D83077.1	26.3	Above	2.2
98	215773_x_at	ADP-ribosyltransferase (NAD+; poly(ADP-ribose) polymerase)-like 2	ADPRTL2	14q11.2-q12	AJ236912.1	26.3	Above	1.6
99	215884_s_at	Ubiquilin 2	UBQLN2	Xp11.23-p11.1	AK001029.1	26.3	Above	1.9
100	217954_s_at	PHD finger protein 3	PHF3	6	NM_015153.1	26.3	Above	1.5

Table 66. Top 100 chi-square probe sets selected for MLL

	U133 probe set	Description	Symbol	Chromo-somal Location	GenBank Ref	Chi-square value	MLL above/below mean	Fold change
1	202603_at	a disintegrin and metalloproteinase domain 10	ADAM10	15q22	N51370	44.6	Above	1.8
2	219463_at	chromosome 20 open reading frame 103	C20orf103	20p12	NM_012261.1	44.6	Above	24.7
3	224772_at	neuron navigator 1	NAV1		AB032977.1	44.6	Below	3.8
4	204069_at	Meis1, myeloid	MEIS1	2p14-p13	NM_002398.1	44.4	Above	73.7

		ecotropic viral integration site 1 homolog						
5	218966_at	myosin 5C	MYO5C	15q21	NM_018728.1	44.4	Below	4.5
6	226939_at	cDNA FLJ37247	FLJ37247		AI202327	44.4	Above	6.9
7	204446_s_at	fis	ALOX5	10q11.2	NM_000698.1	40.7	Below	66.8
8	206492_at	arachidonate 5-lipoxygenase	FHIT	3p14.2	NM_002012.1	40.7	Below	36.6
9	212588_at	fragile histidine triad gene	PTPRC	1q31-q32	AI809341	40.7	Above	2.3
10	215925_s_at	protein tyrosine phosphatase, receptor type, C	CD72	9p11.2	AF283777.2	40.7	Above	3.0
11	211733_x_at	CD72 antigen (ligand for CD5)	SCP2	1p32	BC005911.1	40.1	Above	1.5
12	212386_at	sterol carrier protein 2	FLJ11918		AK021980.1	40.1	Below	3.1
13	218764_at	cDNA FLJ11918						
14	218847_at	fis	PRKCH	14q22.1-q22.3	NM_024064.1	40.1	Below	7.6
15	222409_at	Protein Kinase C eta isoform.	IMP-2	3q28	NM_006548.1	40.1	Above	23.2
16	242172_at	IGF-II mRNA-binding protein 2	CORO1C	12q24.1	AL162070.1	40.1	Above	4.8
17	201153_s_at	coronin, actin binding protein, 1C						
18	210487_at	ESTs	MBNL	3q25	N50406	40.1	Above	33.6
19	219686_at	muscleblind-like (Drosophila)	DNTT	10q23-q24	NM_021038.1	40.0	Above	2.1
20	226981_at	deoxynucleotidyltransferase, terminal	HSA2508	4p16.2	M11722.1	40.0	Below	2.9
21	203375_s_at	gene for serine/threonine	39		NM_018401.1	40.0	Below	28.3
22	221676_s_at	protein kinase						
23	201152_s_at	Homo sapiens, clone						
24	221773_at	IMAGE:4401491, mRNA						
25	201162_at	tripeptidyl peptidase II	TPP2	13q32-q33	NM_003291.1	37.2	Above	1.6
26	201163_s_at	coronin, actin binding protein, 1C	CORO1C	12q24.1	BC002342.1	37.2	Above	3.5
27	203836_s_at	muscleblind-like (Drosophila)	MBNL	3q25	NM_021038.1	36.2	Above	2.2
28	203837_at	ELK3, ETS-domain protein (SRF accessory protein 2)	ELK3	12q23	AW575374	36.2	Below	8.2
		insulin-like growth factor binding protein 7	IGFBP7	4q12	NM_001553.1	36.0	Above	4.3
		insulin-like growth factor binding protein 7	IGFBP7	4q12	NM_001553.1	36.0	Above	4.0
		mitogen-activated protein kinase	MAP3K5	6q22.33	D84476.1	36.0	Above	13.9
		kinase kinase 5	MAP3K5	6q22.33	NM_005923.2	36.0	Above	4.2

		protein kinase kinase kinase 5						
29	213891_s_at	cDNA FLJ11918	FLJ11918		AI927067	36.0	Below	3.2
		fis						
30	214895_s_at	a disintegrin and metalloproteinase domain 10	ADAM10	15q22	AU135154	36.0	Above	1.9
31	226415_at	KIAA1576 protein 6	KIAA157	16q22.1	AA156723	36.0	Above	40.7
32	235879_at	ESTs			AI697540	36.0	Above	3.8
33	212387_at	cDNA FLJ11918	FLJ11918		AK021980.1	35.8	Below	3.3
		fis						
34	218988_at	bladder cancer overexpressed protein	BLOV1	12q15	NM_018656.1	35.8	Below	16.3
35	228555_at	EST; by BLAT calcium/calmoduli n-dependent Proline Kinase type II Delta chain (CAMK GROUP I)	CAMK2D		AA029441	35.8	Above	3.1
36	202975_s_at	Rho-related BTB domain containing 3 3	RHOBTB	5q21.2	N21138	35.3	Above	5.5
37	201105_at	lectin, galactoside- binding, soluble, 1 (galectin 1)	LGALS1	22q13.1	NM_002305.2	34.5	Above	14.5
38	203434_s_at	membrane metallo- endopeptidase (neutral endopeptidase, enkephalinase, CALLA, CD10)	MME	3q25.1- q25.2	AI433463	34.1	Below	31.2
39	212135_s_at	calcium transporting ATPase plasma membrane protein.	ATP2B4		AW517686	34.1	Below	2.4
40	212136_at	calcium transporting ATPase plasma membrane protein.	ATP2B4		AW517686	34.1	Below	2.1
41	230179_at	cDNA DKFZp547P158	DKFZp54 7P158		N52572	34.1	Below	6.4
42	218217_at	likely homolog of rat and mouse retinoid-inducible serine	RISC	17q23.2	NM_021626.1	32.8	Above	3.4
43	225841_at	carboxypeptidase hypothetical protein FLJ30525	FLJ30525	1p13.2	BE502436	32.8	Above	1.8
44	226668_at	Homo sapiens, similar to WD domain, G-beta repeat containing protein			W80623	32.8	Above	2.4

45	200989_at	hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)	HIF1A	14q21-q24	NM_001530.1	32.2	Below	1.8
46	201151_s_at	muscleblind-like (Drosophila) sorbitol dehydrogenase transcription factor 4	MBNL	3q25	NM_021038.1	32.2	Above	2.6
47	201563_at		SORD	15q15.3	L29008.1	32.2	Above	1.8
48	203753_at		TCF4	18q21.1	NM_003199.1	32.2	Below	2.9
49	205668_at	lymphocyte antigen 75	LY75	2q24	NM_002349.1	32.2	Above	2.1
50	206471_s_at	plexin C1	PLXNC1	12q23.3	NM_005761.1	32.2	Above	7.7
51	211302_s_at	phosphodiesterase 4B, cAMP-specific	PDE4B	1p31	L20966.1	32.2	Below	3.0
52	212012_at	Melanoma associated gene	D2S448	2pter-p25.1	AF200348.1	32.2	Below	2.4
53	212063_at	CD44 antigen	CD44	11p13	BE903880	32.2	Above	3.1
54	213241_at	PLEXIN c1	PLXNC1		AF035307.1	32.2	Above	2.5
55	214651_s_at	homeo box A9	HOXA9	7p15-p14	U41813.1	32.2	Above	28.5
56	218140_x_at	APMCF1 protein	APMCF1	3q22.2	NM_021203.1	32.2	Above	1.4
57	219988_s_at	hypothetical protein FLJ10597	FLJ10597	1p34.1	NM_018150.1	32.2	Above	1.9
58	223046_at	egl nine homolog 1 (C. elegans)	EGLN1	1q42.1	NM_022051.1	32.2	Below	4.2
59	224150_s_at	p10-binding protein	BITE	3q22-q23	AF289495.1	32.2	Above	2.1
60	224933_s_at	hypothetical protein DKFZp761F0118	DKFZp761F0118	10q22.1	AB037801.1	32.2	Above	1.9
61	201078_at	transmembrane 9 superfamily member-2	TM9SF2	13q32.3	NM_004800.1	32.0	Above	1.5
62	205550_s_at	brain and reproductive organ-expressed (TNFRSF1A modulator)	BRE	2p23.3	NM_004899.1	32.0	Above	2.0
63	212382_at	cDNA FLJ11918	FLJ11918		AK021980.1	32.0	Below	2.7
64	225019_at	fis calcium/calmodulin n-dependent protein kinase (CaM kinase) II delta	CAMK2D	4q25	AA777512	32.0	Above	3.6
65	225202_at	Rho-related BTB domain containing 3	RHOBTB	5q21.2	BE620739	32.0	Above	5.5
66	228855_at	nudix (nucleoside diphosphate linked moiety X)-type motif 7	NUDT7		AI927964	32.0	Above	5.6
67	231899_at	KIAA1726	KIAA1726	11q23.1	AB051513.1	32.0	Above	33.0
68	52164_at	protein chromosome 11 open reading	C11orf24	11q13	AA065185	32.0	Above	2.3

69	212660_at	frame 24 KIAA0239 protein actin related protein 2/3 complex, subunit 2, 34kDa	KIAA0239 9	5q31.1	AI735639	31.7	Below	1.7
70	213513_x_at	hypothetical protein FLJ23309 ESTs	ARPC2	2q36.1	BG034239	31.7	Above	1.3
71	222603_at		FLJ23309	9p24	AL136980	31.7	Above	3.6
72	238558_at				AI445833	31.7	Above	3.8
73	202391_at	brain abundant, membrane attached signal protein 1	BASP1	5p15.1- p14	NM_006317.1	31.3	Above	2.1
74	202604_x_at	a disintegrin and metalloproteinase domain 10	ADAM10	15q22	NM_001110.1	31.3	Above	1.8
75	203435_s_at	membrane metallo- endopeptidase (neutral endopeptidase, enkephalinase, CALLA, CD10)	MME	3q25.1- q25.2	NM_007287.1	31.3	Below	54.8
76	204445_s_at	arachidonate 5- lipoxygenase	ALOX5	10q11.2	AI361850	31.3	Below	687.0
77	209705_at	likely ortholog of mouse metal response element binding transcription factor 2	M96	1p22.1	AF073293.1	31.3	Below	1.5
78	214366_s_at	arachidonate 5- lipoxygenase	ALOX5	10q11.2	AA995910	31.3	Below	54.7
79	215000_s_at	fasciculation and elongation protein zeta 2 (zygin II)	FEZ2	2p21	AL117593.1	31.3	Above	1.7
80	220643_s_at	Fas apoptotic inhibitory molecule	FAIM	3q23	NM_018147.1	31.3	Above	2.9
81	226459_at	Homo sapiens gastric cancer- related protein GCYS-20 (gcys- 20) mRNA, complete cds; homology with mouse epidermal growth factor receptor pathway substrate 8			AW575754	31.3	Above	1.6
82	238712_at	ESTs			BF801735	31.3	Above	2.7
83	229686_at	cDNA FLJ35637 fis	FLJ35637		AI436587	31.0	Below	1.5
84	222620_s_at	hypothetical protein similar to mouse Dnaj11	DNAJL1	10p11.23	BF591419	29.8	Above	2.4
85	224516_s_at	hypothetical protein HSPC195	HSPC195	5q31.3	BC006428.1	29.8	Above	2.7

86	203217_s_at	sialyltransferase 9 (CMP- NeuAc:lactosylcer- amide alpha-2,3- sialyltransferase; GM3 synthase)	SIAT9	2p11.2	NM_003896.1	28.8	Below	2.1
87	204030_s_at	schwannomin interacting protein 1	SCHIP1	3q25.32	NM_014575.1	28.8	Below	17.6
88	209191_at	tubulin beta-5	TUBB-5		BC002654.1	28.8	Above	6.4
89	213541_s_at	v-ets erythroblastosis virus E26 oncogene like (avian) Williams Beuren syndrome chromosome region 20A	ERG	21q22.3	AI351043	28.8	Below	2.8
90	213773_x_at	WBSCR2 0A	WBSCR2 0A	7q11.23	AW248552	28.8	Above	1.3
91	219243_at	immunity associated protein 4	HIMAP4	7q35	NM_018326.1	28.8	Below	13.4
92	219256_s_at	hypothetical protein FLJ20356	FLJ20356	4p16.1	NM_018986.1	28.8	Below	2.6
93	223358_s_at	phosphodiesterase 7A	PDE7A	8q13	AW269834	28.8	Above	1.5
94	224796_at	development and differentiation enhancing factor 1	DDEF1	8q24.1- q24.2	W03103	28.8	Below	1.8
95	203076_s_at	MAD, mothers against decapentaplegic homolog 2 (Drosophila) cDNA FLJ11918 fis	MADH2	18q21.1	U65019.1	28.7	Below	2.0
96	212385_at	POLE	FLJ11918		AK021980.1	28.7	Below	3.2
97	216026_s_at	polymerase (DNA directed), epsilon	KIAA0930	12q24.3	AL080203.1	28.7	Below	3.0
98	217118_s_at	protein KIAA0930	KIAA0930	22q13.31	AK025608.1	28.7	Above	1.9
99	219821_s_at	hypothetical protein FLJ20330	FLJ20330	6pter- p22.1	NM_018988.1	28.7	Below	5.5
100	201875_s_at	hypothetical protein FLJ21047	FLJ21047	1q23.2	NM_024569.1	28.5	Above	2.0

Table 67. Top 100 chi-square probe sets selected for T-ALL

	U133 probe set	Gene Description	Symbol	Chromo-somal Location	GenBank Ref	Chi-square	T-ALL above/below mean	Fold change
1	201137_s_at	major histocompatibility complex, class II, DP beta 1	HLA-DPB1	6p21.3	NM_002121.1	100.0	Below	21.0
2	202113_s_at	sorting nexin 2	SNX2	5q23	AF043453.1	100.0	Below	4.2

3	202114_at	sorting nexin 2	SNX2	5q23	NM_003100.1	100.0	Below	4.6
4	203675_at	nucleobindin 2	NUCB2	11p15.1-p14	NM_005013.1	100.0	Above	3.6
5	204670_x_at	major histocompatibility complex, class II, DR beta 3	HLA-DRB3	6p21.3	NM_002125.1	100.0	Below	13.4
6	205297_s_at	CD79B antigen (immunoglobulin-associated beta)	CD79B	17q23	NM_000626.1	100.0	Below	23.3
7	205456_at	CD3E antigen, epsilon polypeptide (TiT3 complex)	CD3E	11q23	NM_000733.1	100.0	Above	20.7
8	206398_s_at	CD19 antigen	CD19	16p11.2	NM_001770.1	100.0	Below	5693.6
9	208306_x_at	major histocompatibility complex, class II, DR beta 4	HLA-DRB4	6p21.3	NM_021983.2	100.0	Below	8.3
10	208894_at	major histocompatibility complex, class II, DR alpha	HLA-DRA	6p21.3	M60334.1	100.0	Below	20.9
11	209312_x_at	major histocompatibility complex, class II, DR beta 1	HLA-DRB1	6p21.3	U65585.1	100.0	Below	12.6
12	209619_at	CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated)	CD74	5q32	K01144.1	100.0	Below	15.1
13	210116_at	SH2 domain protein 1A, Duncan's disease (lymphoproliferative syndrome)	SH2D1A	Xq25-q26	AF072930.1	100.0	Above	150.7
14	210982_s_at	major histocompatibility complex, class II, DR alpha	HLA-DRA	6p21.3	M60333.1	100.0	Below	23.4
15	211990_at	major histocompatibility complex, class II, DP alpha 1	HLA-DPA1	6p21.3	M27487.1	100.0	Below	19.6
16	211991_s_at	major histocompatibility complex, class II, DP alpha 1	HLA-DPA1	6p21.3	M27487.1	100.0	Below	24.5
17	213539_at	CD3D antigen, delta polypeptide (TiT3 complex)	CD3D	11q23	NM_000732.1	100.0	Above	35.7
18	214049_x_at	CD7 antigen (p41)	CD7	17q25.2-q25.3	AI829961	100.0	Above	312.2
19	214551_s_at	CD7 antigen (p41)	CD7	17q25.2-q25.3	NM_006137.2	100.0	Above	228.1

20	217147_s_at	T-cell receptor interacting molecule	TRIM	3q13	AJ240085.1	100.0	Above	42.6
21	217478_s_at	MHC, class IIa, HLA-DMA	HLA-DMA		X76775	100.0	Below	11.9
22	221969_at	paired box gene 5 (B-cell lineage specific activator protein)	PAX5	9p13	BF510692	100.0	Below	3922.0
23	227646_at	early B-cell factor	EBF	5q34	BG435302	100.0	Below	85.0
24	229487_at	cDNA FLJ39389	FLJ39389	5	W73890	100.0	Below	7685.7
25	229838_at	fis	FLJ39156		AI377271	100.0	Above	12.7
26	232204_at	early B-cell factor	EBF	5q34	AF208502.1	100.0	Below	7129.1
27	203965_at	ubiquitin specific protease 20	USP20	9q34.12-q34.13	NM_006676.1	91.3	Above	9.0
28	204891_s_at	lymphocyte-specific protein tyrosine kinase	LCK	1p34.3	NM_005356.1	91.3	Above	13.8
29	205255_x_at	transcription factor 7 (T-cell specific, HMG-box)	TCF7	5q31.1	NM_003202.1	91.3	Above	8.4
30	207655_s_at	B-cell linker	BLNK	10q23.2-q23.33	NM_013314.1	91.3	Below	103.2
31	209771_x_at	CD24 antigen (small cell lung carcinoma cluster 4 antigen)	CD24	6q21	AA761181	91.3	Below	40.1
32	211796_s_at	T cell receptor beta locus	TRB	7q34	AF043179.1	91.3	Above	20.7
33	213792_s_at	insulin receptor	INSR	19p13.3-p13.2	AA485908	91.3	Below	8.0
34	215193_x_at	major histocompatibility complex, class II, DR beta 3	HLA-DRB3	6p21.3	AJ297586.1	91.3	Below	12.1
35	216379_x_at	KIAA1919 protein	KIAA1919	6q22.1	AK000168.1	91.3	Below	44.0
36	219191_s_at	bridging integrator 2	BIN2	12q13	NM_016293.1	91.3	Above	271.0
37	219563_at	hypothetical protein FLJ21276	FLJ21276	14q32.2	NM_024633.1	91.3	Below	5.8
38	219724_s_at	KIAA0748 gene product	KIAA0748	12q12	NM_014796.1	91.3	Above	11.6
39	221750_at	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)	HMGCS1	5p14-p13	BG035985	91.3	Above	3.4
40	226157_at	cDNA FLJ39131	FLJ39131	3	AI569747	91.3	Above	4.4
41	226496_at	fis	FLJ22611	9p11.1	BG291039	91.3	Below	7.6
42	266_s_at	hypothetical protein FLJ22611	CD24	6q21	L33930	91.3	Below	69.7

43	39318_at	T-cell leukemia/lymphoma 1A	TCL1A	14q32.1	X82240	91.3	Below	367.4
44	204214_s_at	RAB32, member RAS oncogene family	RAB32	6q24.3	NM_006834.1	90.6	Above	127.9
45	204777_s_at	mal, T-cell differentiation protein	MAL	2cen-q13	NM_002371.2	90.6	Above	96.8
46	204890_s_at	lymphocyte-specific protein tyrosine kinase	LCK	1p34.3	U07236.1	90.6	Above	18.6
47	205049_s_at	CD79A antigen (immunoglobulin-associated alpha)	CD79A	19q13.2	NM_001783.1	90.6	Below	11.4
48	205254_x_at	transcription factor 7 (T-cell specific, HMG-box)	TCF7	5q31.1	AW027359	90.6	Above	352.0
49	205504_at	Bruton agammaglobuline mia tyrosine kinase	BTK	Xq21.33-q22	NM_000061.1	90.6	Below	6.6
50	210915_x_at	T cell receptor beta locus	TRB	7q34	M15564.1	90.6	Above	15.9
51	211211_x_at	SH2 domain protein 1A, Duncan's disease (lymphoproliferative syndrome)	SH2D1A	Xq25-q26	AF100542.1	90.6	Above	1963.5
52	213830_at	T cell receptor delta locus	TRD	14q11.2	AW007751	90.6	Above	7411.2
53	216191_s_at	T cell receptor delta locus	TRD	14q11.2	X72501.1	90.6	Above	253.7
54	217143_s_at	T cell receptor delta locus	TRD	14q11.2	X06557.1	90.6	Above	151.9
55	219528_s_at	B-cell CLL/lymphoma 11B (zinc finger protein)	BCL11B	14q32.31-q32.32	NM_022898.1	90.6	Above	11.6
56	220418_at	ubiquitin associated and SH3 domain containing, A	UBASH3A	21q22.3	NM_018961.1	90.6	Above	759.3
57	222895_s_at	B-cell CLL/lymphoma 11B (zinc finger protein)	BCL11B	14q32.31-q32.32	AA918317	90.6	Above	11.7
58	223553_s_at	hypothetical protein FLJ22570	FLJ22570	5q35.3	BC004564.1	90.6	Below	6.1
59	225090_at	HRD1 protein	HRD1	11q12	AA844682	90.6	Below	3.6
60	226459_at	Homo sapiens gastric cancer-related protein GCYS-20 (gcys-20) mRNA, complete cds			AW575754	90.6	Below	10.7
61	228314_at	cDNA FLJ37485	FLJ37485		BE877357	90.6	Below	4.7

62	201384_s_at	membrane component, chromosome 17, surface marker 2 (ovarian carcinoma antigen CA125)	M17S2	17q21.1	NM_005899.1	83.8	Above	3.3
63	202540_s_at	3-hydroxy-3-methylglutaryl-Coenzyme A reductase cyclin-dependent kinase 9 (CDC2-related kinase)	HMGCR	5q13.3-q14	NM_000859.1	83.8	Above	4.4
64	203198_at	major histocompatibility complex, class II, DM beta	CDK9	9q34.1	NM_001261.1	83.8	Below	4.8
65	203932_at	phospholipase C, gamma 2 (phosphatidylinositol-specific)	HLA-DMB	6p21.3	NM_002118.1	83.8	Below	7.9
66	204613_at	POU domain, class 2, associating factor 1	PLCG2	16q24.1	NM_002661.1	83.8	Below	3.9
67	205267_at	CD24 antigen (small cell lung carcinoma cluster 4 antigen)	POU2AF1	11q23.1	NM_006235.1	83.8	Below	11.2
68	208650_s_at	CD24 antigen (small cell lung carcinoma cluster 4 antigen)	CD24	6q21	BG327863	83.8	Below	74.7
69	208651_x_at	T-cell leukemia/lymphoma 1A	CD24	6q21	M58664.1	83.8	Below	52.7
70	209995_s_at	protein kinase C, theta	TCL1A	14q32.1	BC003574.1	83.8	Below	20166.2
71	210038_at	cysteine and glycine-rich protein 2	PRKCQ	10p15	AL137145	83.8	Above	12.7
72	211126_s_at	pre-B lymphocyte gene 3	CSRP2	12q21.1	U46006.1	83.8	Below	18.0
73	220068_at	cDNA DKFZp451C132	VPREB3	22q11.23	NM_013378.1	83.8	Below	6559.8
74	226245_at	DKFZp686D0521	DKFZp451C132	1C132	U55984	83.8	Above	8.7
75	202615_at	cDNA FLJ31057	DKFZp686D0521	6D0521	BF222895	82.2	Above	3.1
76	224861_at	fis	FLJ31057		BF477658	82.2	Above	3.5
77	201194_at	selenoprotein W, 1	SEPW1	19q13.3	NM_003009.1	82.0	Above	3.8
78	201349_at	solute carrier family 9 (sodium/hydrogen exchanger), isoform 3	SLC9A3R1	17q25.2	NM_004252.1	82.0	Above	2.9
79	202539_s_at	regulatory factor 1	HMGCR	5q13.3-	AL518627	82.0	Above	3.5

		methylglutaryl-Coenzyme A reductase		q14				
80	203588_s_at	transcription factor Dp-2 (E2F dimerization partner 2)	TFDP2	3q23	BG034328	82.0	Above	17.5
81	204852_s_at	protein tyrosine phosphatase, non-receptor type 7	PTPN7	1q32.1	NM_002832.1	82.0	Above	9.5
82	207434_s_at	FXYD domain containing ion transport regulator 2	FXYD2	11q23	NM_021603.1	82.0	Above	14.6
83	208872_s_at	DNA segment, single copy probe LNS-CAI/LNS-CAII	D5S346	5q22-q23	AA814140	82.0	Below	2.6
84	209200_at	MADS box transcription enhancer factor 2, polypeptide C (myocyte enhancer factor 2C)	MEF2C	5q14	N22468	82.0	Below	7.5
85	212795_at	KIAA1033 protein	KIAA1033	12q24.11	AL137753.1	82.0	Below	2.4
86	212827_at	immunoglobulin heavy constant mu	IGHM	14q32.33	X17115.1	82.0	Below	13.1
87	213193_x_at	T cell receptor beta locus	TRB	7q34	AL559122	82.0	Above	10.9
88	221002_s_at	tetraspanin similar to TM4SF9	DC-TM4F2	10q23.2	NM_030927.1	82.0	Below	2.1
89	225314_at	hypothetical protein MGC45416	MGC45416	4p12	BG291649	82.0	Above	5.5
90	227432_s_at	insulin receptor	INSR	19p13.3-p13.2	AI215106	82.0	Below	6.0
91	203332_s_at	inositol polyphosphate-5-phosphatase, 145kDa	INPP5D	2q36-q37	NM_005541.1	81.5	Below	2.2
92	203589_s_at	transcription factor Dp-2 (E2F dimerization partner 2)	TFDP2	3q23	NM_006286.1	81.5	Above	35.1
93	205674_x_at	FXYD domain containing ion transport regulator 2	FXYD2	11q23	NM_001680.2	81.5	Above	12.2
94	209881_s_at	Linker for activation of T cells	LAT	16q13	AF036905.1	81.5	Above	1823.4
95	211005_at	Linker for activation of T cells	LAT	16q13	AF036906.1	81.5	Above	67.8
96	211075_s_at	CD47	CD47		Z25521.1	81.5	Above	2.1
97	211210_x_at	SH2 domain protein 1A,	SH2D1A	Xq25-q26	AF100539.1	81.5	Above	300.2

		Duncan's disease (lymphoproliferati- ve syndrome)						
98	213601_at	slit homolog 1 (Drosophila)	SLIT1	10q23.3- q24	AB011537.2	81.5	Above	1752.1
99	213857_s_at	CD47 antigen (Rh-related antigen, integrin- associated signal transducer)	CD47	3q13.1- q13.2	BG230614	81.5	Above	2.2
100	214924_s_at	KIAA1042 protein	KIAA1042 2	3p25.3- p24.1	AK000754.1	81.5	Below	2.3

Table 68. Top 100 chi-square probe sets selected for TEL-AML1

	U133 probe set	Gene Description	Symbol	Chromo- somal Location	GenBank Ref	Chi- square value	TEL- AML above/ below mean	Fold change
1	224722_at	KIAA1323	KIAA1323	18q11.1	W80418	75	Above	7.6
2	227377_at	FLJ12722	FLJ12722	17q21.32	AK022784.1	75	Above	2446.3
3	237206_at	EST		17p12	AI452798	75	Above	23.7
4	241505_at	EST			BF513468	75	Above	13.4
5	203184_at	Fibrillin 2 (congenital contractural arachnodactyly)	FBN2	5q23.2	NM_001999.2	69.1	Above	14.4
6	205109_s_at	Rho guanine nucleotide exchange factor (GEF) 4	ARHGEF4	2q22	NM_015320.1	69.1	Above	148.1
7	210650_s_at	Piccolo	PCLO	7q21.11	BC001304.1	69.1	Above	101.2
8	213558_at	Piccolo	PCLO	7q21.11	AB011131.1	69.1	Above	77.5
9	220451_s_at	Livin IAP (inhibitor of apoptosis)	BIRC7	20q13.3	NM_022161.1	69.1	Above	25.4
10	224720_at	KIAA1323	KIAA1323	18q11.1	W80418	69.1	Above	4.3
11	235694_at	IMAGE:4661943 Unknown EST		20q13.33	N49233	69.1	Above	9.3
12	202808_at	Hypothetical protein FLJ20154	FLJ20154	10q24.32	AK000161.1	68.9	Above	3.7
13	206032_at	Desmocollin 3	DSC3	18q12.1	AI797281	68.9	Above	54.1
14	206033_s_at	Desmocollin 3	DSC3	18q12.1	NM_001941.2	68.9	Above	357.1
15	209228_x_at	Putative prostate cancer tumor suppressor gene N33	N33	8p22	U42349.1	68.9	Above	20.8
16	224725_at	KIAA1323	KIAA1323	18q11.1	W80418	68.9	Above	3.6
17	203910_at	PTPL1-associated RhoGAP Transcription	PARG1	1p22.1	NM_004815.1	64	Above	7.1
18	204849_at		TCFL5	20q13.33	NM_006602.1	64	Above	8.9

		factor-like 5 (helix-loop-helix domain)						
19	206231_at	Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 1	KCNN1	19p13.1	NM_002248.2	64	Above	72.7
20	208056_s_at	Core-binding factor, runt domain, alpha subunit 2; translocated to, 3	CBFA2T3	16q24	NM_005187.2	63	Above	2.5
21	211222_s_at	Huntingtin-associated protein 1 (neuroan 1, HAP-1)	HAP1	17q21.2	AF040723.1	63	Above	80.8
22	223468_s_at	hypothetical protein from EUROIMAGE 363668 RGM: likely ortholog of chicken repulsive guidance molecule	RGM	15q26.1	AL136826.1	63	Above	10.6
23	227266_s_at	FYN-binding protein	FYB	5p13.1	BF679849	63	Above	3.1
24	228158_at	Lymphocyte-specific protein 1		2p11.1	AI623211	63	Above	7.9
25	37986_at	EPO receptor	EPOR	19p13.2	M60459	63	Above	15.5
26	203464_s_at	Epsin 2	EPN2	17p11.1	NM_014964.1	62.9	Above	43.3
27	213317_at	chloride intracellular channel 5	CLIC5	6p21.1	AL049313.1	62.9	Above	99.3
28	213423_x_at	Putative prostate cancer tumor suppressor	N33	8p22	AI884858	62.9	Above	15.7
29	226817_at	Desmocollin 2	DSC2	18q12.1	AU154691	62.9	Above	48.3
30	227862_at	ESTs		1p35.1	AA037766	62.9	Above	14.7
31	229339_at	EST		17p12	AI093327	62.9	Above	31.1
32	211795_s_at	FYN binding protein	FYB	5p13.1	AF198052.1	59.4	Above	4.1
33	218627_at	Hypothetical protein FLJ11259	FLJ11259	12q23.1	NM_018370.1	57.9	Above	4.6
34	221748_s_at	Homo sapiens cDNA FLJ32766 fis	TNS	2q35	AL046979	57.9	Above	6.6
35	200709_at	FK506 binding protein 1A (12kD)	FKBP1A	20p13	NM_000801.1	57.1	Above	1.8
36	204615_x_at	Isopentenyl-diphosphate delta isomerase	IDI1	10p15.3	NM_004508.1	57.1	Above	2.6
37	208881_x_at	Isopentenyl-diphosphate delta isomerase	IDI1	10p15.3	BC005247.1	57.1	Above	2.6
38	213301_x_at	Transcriptional intermediary factor 1	TIF1	7q34	AL538264	57.1	Above	2.0

39	221747_at	Tensin KIAA1323	TNS	2q35 18q11.1	AL046979 W80418	57.1 57.1	Above Above	49.2 26.1
40	224726_at		KIAA132 3					
41	231455_at	ESTs		2p25.2	AA768888	57.1	Above	7.7
42	232750_at	Homo sapiens cDNA FLJ13750	FLJ13750	2q35	AU158570	57.1	Above	35.0
43	209685_s_at	Protein kinase C, beta 1	PRKCB1	16p11.2	M13975.1	53.6	Above	1.9
44	204404_at	EST like Na+/K+/Cl- transporter with AA permease domain, memb 2	SLC12A2	5q23.3	NM_001046.1	53.4	Above	2.0
45	239673_at	ESTs		4q31.23	AW080999	53.4	Above	9.0
46	240950_s_at	Homo sapiens cDNA FLJ32658	FLJ32658	19q13.33	AA400740	53.4	Above	9.9
47	204297_at	Phosphoinositide- 3-kinase, class 3	PIK3C3	18q12.3	NM_002647.1	52.5	Above	4.5
48	206591_at	Recombination activating gene 1	RAG1	11p13	NM_000448.1	52.1	Above	5.4
49	209962_at	Erythropoietin receptor	EPOR	19p13.2	M34986.1	52.1	Above	17.0
50	209963_s_at	Erythropoietin receptor	EPOR	19p13.2	M34986.1	52.1	Above	7.6
51	210186_s_at	FK506 binding protein 1A (12kD)	FKBP1A	20p13	BC005147.1	52.1	Above	1.8
52	219866_at	Chloride intracellular channel 5	CLIC5	6p21.1	NM_016929.1	52.1	Above	60.3
53	203474_at	IQ motif containing GTPase activating protein 2	IQGAP2	5q13.2	NM_006633.1	51.6	Below	2.8
54	210058_at	Mitogen-activated protein-kinase 13	MAPK13	6p21.1	BC000433.1	51.6	Above	2.3
55	211891_s_at	Rho guanine nucleotide exchange factor (GEF) 4	ARHGEF 4	2q22	AB042199.1	51.6	Above	452.6
56	214214_s_at	Complement component 1, q subcomponent binding protein	C1QBP	17p13.3	AU151801	51.6	Below	2.0
57	218152_at	High-mobility group 20A	HMG20A	15q24	NM_018200.1	51.6	Above	1.7
58	234983_at	ESTs	FLJ21415	12q24.22	BE893995	51.6	Above	2.4
59	240446_at	KIAA1323		18q11.2	AI798164	51.6	Above	102.2
60	244107_at	ESTs		18q12.1	AW189097	51.6	Above	518.9
61	205794_s_at	Neuro-oncological ventral antigen 1	NOVA1	14q12	NM_002515.1	51.4	Above	40.4
62	217628_at	chloride intracellular channel 5	CLIC5	6p21.1	BF032808	51.4	Above	87.4
63	218804_at	Hypothetical protein FLJ10261	FLJ10261	11q13.3	NM_018043.1	51.4	Above	41.6
64	230698_at	EST		7q11.22	AW072102	51.4	Above	8.7

65	225129_at	cDNA FLJ37548 fis	FLJ37548	16q13	AW170571	49.4	Above	3.0
66	201266_at	Thioredoxin reductase 1	TXNRD1	12q23- q24.1	NM_003330.1	48.2	Above	1.7
67	203611_at	Telomeric repeat binding factor 2	TERF2	16q22.1	NM_005652.1	48.2	Above	5.3
68	213017_at	Lung alpha/beta hydrolase 3	LABH3	18q11.1	AL534702	48.2	Above	4.0
69	236430_at	hypothetical protein MGC23911	MGC2391 1	16q22.1	AA708152	48.2	Above	16.8
70	209035_at	Midkine (neurite growth-promoting factor 2).	MDK	11p11.2	M69148.1	47.7	Above	4.6
71	209193_at	Pim-1 oncogene	PIM1	6p21.2	M24779.1	47.7	Above	2.0
72	218625_at	Neuritin 1	NRN1	6p24.1	NM_016588.1	47.7	Above	5.1
73	226038_at	Hypothetical protein FLJ23749	FLJ23749	8p23.1	BF680438	47.7	Above	5.2
74	232227_at	EST		9q34.3	AV736391	47.7	Above	14.7
75	204160_s_at	Ectonucleotide pyrophosphatase/p hosphodiesterase 4 (putative function)	ENPP4	6p12.3	AW194947	46.5	Above	7.2
76	206233_at	UDP- Gal:betaGlcNAc beta 1,4- galactosyltransfера ^s , polypeptide 6	B4GALT6	18q11	AF097159.1	46.5	Above	2.6
77	218813_s_at	SH3-domain GRB2-like endophilin B2	SH3GLB2	9q34.11	NM_020145.1	46.5	Above	6.2
78	227111_at	Homo sapiens cDNA FLJ31099 fis, clone	FLJ31099	9q33	BG179317	46.5	Above	2.7
79	202382_s_at	IMR321000230 Glucosamine-6- phosphate isomerase	GNPI	5q21	NM_005471.1	46.2	Above	5.6
80	202838_at	Fucosidase, alpha-L-1, tissue	FUCA1	1p34	NM_000147.1	46.2	Above	4.8
81	225731_at	Hypothetical protein KIAA1223	KIAA122 3	4q26	AB033049.1	46.2	Above	2.8
82	225835_at	FLJ21409	SLC12A2	5q23.2	AK025062.1	46.2	Above	3.6
83	229790_at	Telomeric repeat binding factor 2	TERF2	16q22.1	AW006832	46.2	Above	7.4
84	230069_at	Hypothetical protein FLJ12876	FLJ12876	5q35.3	BF593817	46.2	Above	9.4
85	235872_at	ESTs			BE408975	46.2	Above	17.7
86	239300_at	EST		18q12.3	AI632214	46.2	Above	3.0
87	241940_at	EST		18q11.2	BF477544	46.2	Above	2.9
88	203370_s_at	Enigma (LIM domain protein)	ENIGMA	5q35.3	NM_005451.2	45.9	Above	8.1
89	215149_at	LOC149153:	LOC1491 53	1p36.32	AF052109.1	45.9	Above	9.2
90	217901_at	Desmoglein 2 desmosomal	DSG2	18q12.1	BF031829	45.9	Above	6.7

91	235333_at	cadherin UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 6	B4GALT6	18q12.1	BG503479	45.9	Above	2.0
92	242881_x_at	EST			BG285837	45.9	Above	11.8
93	200783_s_at	Stathmin 1/oncoprotein 18 leukemia-associated phosphoprotein Rho guanine nucleotide exchange factor (GEF) 12	STMN1	1p35.1	NM_005563.2	45.8	Above	1.5
94	201334_s_at		ARHGEF12	11q23.3	NM_015313.1	45.8	Above	6.1
95	203038_at	Protein tyrosine phosphatase, receptor type, K	PTPRK	6q22.33	NM_002844.1	45.8	Above	9.1
96	209735_at	ATP-binding cassette, sub-family G (WHITE), member 2	ABCG2	4q22	AF098951.2	45.8	Above	4.5
97	212063_at	Unactive progesterone receptor, 23 kD	P23	12q12	BE903880	45.8	Below	7.4
98	212399_s_at	Hypothetical protein KIAA0121	KIAA0121	3p25.2	D50911.2	45.8	Above	1.8
99	212438_at	Putative nucleic acid binding protein RY-1	RY1	2p13.1	BG252325	45.2	Above	1.7
100	214761_at	OLF-1/early B-cell factor associated-zinc finger protein	OAZ	16q12	AW149417	45.2	Above	2.1

Biologic insights from the new class defining genes

Interestingly, the overall quantitative pattern of expression of discriminating genes varied significantly between leukemia subtypes (Table 69). Within the B-cell lineage leukemia subtypes, E2A-PBX1, TEL-AML1, BCR-ABL, and Hyperdiploid >50 chromosomes were characterized primarily by genes that were overexpressed, whereas almost 40% of the discriminating genes that characterized MLL fusion gene expressing leukemias were underexpressed. More remarkably, the discriminating genes for the leukemia subtypes defined by chimeric transcription factors were markedly overexpressed, with an average fold increase of 112 and 48 for E2A-PBX1 and TEL-AML1, respectively. By contrast, the discriminating genes for BCR-ABL

and MLL fusion gene expressing leukemias showed an average fold increases of only 6.8. and 8.6, respectively, whereas the discriminating genes for hyperdiploid >50 chromosomes had an average fold-increase of only 2.6 fold. These data suggest that the quantitative global changes in a cell's expression profile vary markedly depending 5 on the genetic lesion(s) that underlie the initiation of the leukemic process.

Table 69. Summary of fold change by diagnostic subgroup (by gene)

Subgroup	Mean fold change	Range
<i>BCR-ABL</i>	6.8	1.1 – 90.5
<i>E2A-PBX1</i>	112.0	1.6 - 5435
Hyperdiploid >50	2.6	1.3 - 27.2
<i>MLL</i> rearrangement	8.6	1.0 - 75
T-ALL	387	2.1 - 7685
<i>TEL-AML1</i>	48.3	1.5 - 2446

10

Tables 70-74 show genes whose expression is limited to a single B-cell lineage class, and therefore function not only as class discriminators in the decision tree format, but are also class discriminators in a parallel format in which a class is distinguished against all others. Thus, these genes have the potential of serving as 15 unique class specific diagnostic or therapeutic targets. In addition, these genes may provide unique insights into the underlying biology of the different leukemia subtypes. For example, BCR-ABL expressing ALLs are characterized by the over expression of Dynactin 4, which encodes a RING finger containing protein that is part of the 20S dynactin multisubunit complex involved in movement, intracellular 20 transport and division through its interaction with the cytoplasmic microtubule-based motor dynein; PSTPIP2, which encodes a proline/serine/threonine phosphatase-interacting protein that is also involved in controlling the organization of the cytoskeleton, and is tyrosine phosphorylated following activation of receptor tyrosine kinases (Karki et al. (2000) *J. Biol. Chem.* 275:4834-4839); and several novel ESTs.

25

Table 70: Genes highly Correlated with BCR-ABL

GenBank Reference	Gene Description
AK002064	DKFZP564A2416 histone H5 signature
BE218028	Dynactin 4
NM_024600	FLJ20898
NM_024430	Pro-Ser-Thr phosphatase interac. protein 2
AV648669	FLJ39877

E2A-PBX1 expressing leukemias are characterized by the expression of PBX1, the receptor tyrosine kinase gene C-MERTK, and the FAT tumor suppressor, which encodes a member of the cadherin repeat domain containing family of 5 transmembrane proteins (see Table 64). Among the discriminating genes were two genes, EB-1 and Wnt16 that had previously been shown to be over expressed in this leukemia subtype (Wu *et al.* (1998) *J. Biol. Chem.* 273:30487-30496; and Fu *et al.* (1999) *Oncogene* 18:4920-4929). In addition, the retinal degeneration B beta gene (McWhirter *et al.* (1999) *Proc. Natl. Acad. Sci. U S A.* 96:11464-11469), and a 10 number of novel ESTs were identified as being uniquely over expressed in this leukemia subtype, whereas the SOCS2 negative regulators of cytokine signaling was found to be under expressed (Fullwood and Hsuan (1999) *J Biol. Chem.* 274:31553-31558).²⁶

Table 71: Genes highly Correlated with E2A-PBX1

GenBank Reference	Gene Description
NM_012417	retinal degeneration B beta
AI971602	MGC10485
AW005572	EB-1
AL357503	Q9H4T4 like
NM_016087	Wnt16

15

Hyperdiploid leukemias with >50 chromosomes were characterized by the over expression of MST4, which encodes a novel serine/threonine kinase (Horvat and Medrano (2001) *Genomics* 72:209-212); SH3BP2, which encodes a SH3-domain

containing binding protein (Lin *et al.* (2001) *Oncogene* 20:6559-6569) histone deacetylase 6, which encodes a protein involved in transcriptional repression; the retinoblastoma binding protein 7 gene, which encodes a protein found in many functional histone deacetylase complexes (Bell *et al.* (1997) *Genomics* 44:163-170),
 5 and TNRC11 a trinucleotide repeat containing gene that is also known as HOPA or TRAP230 and is part of the thyroid hormone receptor-associated protein (TRAP) complex (Huang *et al.* (1991) *Nature* 350:160-162; and Ito *et al.* (1999) *Mol Cell.* 3:361-370.

Table 72: Genes highly Correlated with Hyperdiploid >50

GenBank Reference	Gene Description
NM_002893	Retinoblastoma binding protein 7
AB000462	SH3-domain binding protein 2
NM_006044	Histone deacetylase 6
BC004354	trinucleotide repeat containing 11
NM_016542	Mst3 and SOK1-related kinase

10

Cases with MLL gene rearrangements were characterized by the over expression of HOXA9 and Meis1 (see Table 66). Included in the up-regulated genes was a novel transcript from chromosome 20 that was over expressed almost 25 fold. This transcript is predicted to encode a protein of 280 amino acids that shows a low
 15 level of homology to a lysosome-associated membrane glycoprotein (LAMP). Also specifically over expressed in this leukemia subtype is a gene encoding an insulin growth factor (IGF) II RNA binding protein, that has been shown to repress the translation of the IGF-II growth factor (Armstrong *et al.* (2002). *Nat. Genet.* 30:41-47). Among the down regulated genes was neuron navigator 1 (Nielsen *et al.* (1999)
 20 *Mol Cell Biol.* 19:1262-1270), which encodes an 1874 amino acid protein and is involved in direction guidance of migratory cells, and a member of the TCF/LEF family of transcription factors, TCF-4. TCF-4 functions downstream of β -catenin in the Wnt-mediated signaling cascade and has been shown to be essential for the maintenance of intestinal crypt stem cells (Maes *et al.* (2002) *Genomics* 80:21-30).

25

Table 73: Genes highly Correlated with MLL

GenBank Reference	Gene Description
NM_012261	C20orf103
AI202327	FLJ37247
NM_006548	IGF-II mRNA-binding protein 2
NM_018401	gene for serine/threonin protein kinase
NM_018728	myosin 5C
AB032977	neuron navigator 1

Genes that were discriminators of TEL-AML1 leukemias included a gene localized to chromosome 18q11.1 that encodes a 795 amino acid protein that has 8 ankyrin repeat domains and a C-terminal RING finger domain. This combination of 5 domains is identified in only a limited number of mammalian proteins, most notably BARD1, a regulator of the BRCA1 tumor suppressor (Korinek *et al.* (1998) Nat Genet. 19:379-383). Other genes overexpressed in the subtype include desmocollin (Irminger-Finger and Leung (2002) *Int. J. Biochem. Cell Biol.* 34:582-587), FLJ12722 a novel protein of unknown function, and a member of the IAP family of apoptosis 10 inhibitors, BIRC7, which is overexpressed 25 fold (Whittock *et al.* (2000) *Biochem Biophys Res Commun.* 276:454-460).

Table 74: Genes highly Correlated with TEL-AML1

GenBank Reference	Gene Description
W80418	KIAA1323
AK022784	FLJ12722
NM_022161	BIRC7
AI452798	FLJ39434
AI797281	Desmocollin 3

Expression profiling accurately identifies the prognostic subtypes of ALL

To assess the accuracy of identifying prognostically important ALL genetic subtypes by expression profiling, the class discriminating genes identified using a chi-squared metric were used in an ANN-based supervised learning algorithm. Class 5 assignment utilized the decision tree differential diagnostic format described elsewhere herein, and required that the node value for assignment exceeded a statistically defined confidence level. Using this approach resulted in exceptionally accurate class prediction in a randomly selected training set that consisted of three-fourths of the total cases (100 cases). When this classification model was then applied 10 to a blinded test set consisting of the remaining 32 samples, an overall accuracy of 97% was achieved for class assignment. To control for over-fitting of the data, 10 additional rounds of this analysis were performed in which for each round new training and test sets were developed, genes reselected using the new training set, and then their performance assessed on the new test set. This resulted in an average 15 accuracy of class assignment in the blinded test sets of 97.2%, with a range from 93.8% to 100%. Although the number of genes required for optimal class assignment varied between classes, the best overall diagnostic accuracy was achieved using the top 50 genes per class. A similar level of accuracy was achieved using a variety of other supervised learning algorithms, including κ -NN and SVM.

20 Interestingly, of the rare misclassification errors, two were cases of BCR-ABL expressing ALL that by gene expression analysis was classified as hyperdiploid >50 chromosomes. The karyotype of these cases showed the presence of both the Philadelphia chromosome and a hyperdiploid karyotype consisting of >50 chromosomes - including trisomy of chromosomes X and 21 (data not shown). The 25 expression profile thus correctly identified the presence of the hyperdiploid >50 chromosomes class; however, since each case is assigned to only a single class, the algorithm failed to correctly identify the presence of BCR-ABL. Nevertheless, the data presented demonstrates the exceptional accuracy of this single platform for the diagnosis of the prognostically important subtypes of ALL.

30

Overview of Experimental Procedure

A. Gene expression profiling

The preparation of mononuclear cell suspensions from diagnostic bone marrow aspirates, extraction of total RNA, and preparation of hybridization solutions was performed as described for Example 1. Individual hybridization solutions from our previous study had been stored at -80°C since initial hybridization (approximately 5 years). These solutions were thawed and hybridized to Affymetrix® HG-U133A and HG-U133B oligonucleotide microarrays (Affymetrix Inc., Santa Clara, CA) according to Affymetrix protocols. In two cases where the original hybridization solutions were no longer available, replicate viably frozen mononuclear cell preparations from the diagnostic bone marrow aspirate were obtained, RNA isolated, cDNA and cRNA synthesized, labeled, fragmented and hybridized as described for Example 1.

After sample hybridization, arrays were then stained with phycoerythrin-conjugated streptavidin (Molecular Probes, Eugene, OR). Antibody amplification was performed with biotinylated anti-streptavidin (Vector Laboratories, Burlingame, CA), followed by staining with phycoerythrin-conjugated streptavidin (Molecular Probes). Arrays were scanned using a laser confocal scanner (Agilent, Palo Alto, CA) and then analyzed with Affymetrix® Microarray suite 5.0 (MAS 5.0). Detection values (present, marginal or absent) were determined by default parameters, and signal values were scaled by global methods to a target value of 500. Microarray scan images were visually inspected for apparent defects, and Affymetrix internal controls were utilized to monitor the success of hybridization, washing, and staining procedures. Minimal quality control parameters for inclusion in the study included greater than 10% present calls and a GAPDH 3'/5' ratio of ≤ 3. The arrays included in 15 this study had an average % present call of 35.9% for the A chip and 21.0% for the B chip (combined average of 28.5%).

B. Statistical Analysis

The dataset was separated into a train set (100) and test set (32). The identification of subtype discriminating genes was performed using the training set. Moreover, both gene discovery and subsequent class predictions were performed using a differential diagnosis decision tree format. In this format, classification was 30 performed in a sequential order starting with T-ALL and proceeding in order E2A-

PBX1, TEL-AML1, BCR-ABL, MLL rearrangement, and Hyperdiploid >50 chromosomes. Unassigned cases were classified as other. Samples classified into the class under diagnosis were removed prior to proceeding to the next level in the decision tree. In addition, prior to analysis a variation filter was applied to remove any probe set that showed minimal variation across the dataset, and thus contributed minimally, if at all, to the discrimination of leukemia subtypes. Specifically, probe sets were eliminated from further analysis if the number of cases with a present call was less than ½ the number of samples comprising the leukemia subgroup under analysis, had a signal value < 100 in all samples in the dataset, or had a maximal signal value in the dataset – minimal signal value in the dataset that was less than 100. In addition, all signal values with absent or marginal calls were reset to 1, while probe sets with a present “P” call and a signal <100 had the signal reset to 100. The values for signals from the Affymetrix® control sets were removed prior to analysis.

Unsupervised hierarchical clustering and principal component analysis (PCA) were performed using GeneMaths software (version 1.5, Applied Maths, Belgium). Data reduction to define the genes most useful in class distinction was primarily performed using a chi-square metric. In this procedure, an entropy-based discretization method was first applied to identify genes whose expression across the dataset showed differentiation between class and non-class.¹⁷ The assigned descretized value for the gene was then used in a chi-square calculation to determine if the association with a class was more than would be expected by random chance. The stronger the association with the class, the larger the chi-square value calculated. For the genes that couldn't be discretized, their chi-squared values were set to zero. To evaluate the statistical significance of the discriminating genes, we used a permutation test in which for each class, case labels were randomly reassigned to generate new groups of identical size. The label permuted data was discretized again and the chi-square values were recalculated. The permutation test was repeated for a total of 1000 times. The true chi-square values for each probe set were then compared to the values generated from the 1000 permutations to determine how many times a chi-square value for a probe set in a randomly labeled group was greater than that obtained for the true class distinction. A p value was calculated as the number of times the chi-square value exceeded the true value in the 1000 permutations.

The discriminating genes selected were then used in supervised learning

algorithms to build classifiers that could identify the specific genetic subgroup. Algorithms used included k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), and an artificial neural network (ANN). See, Example 1, Witten and Frank (1999) *Data mining: Practical machine learning tools and techniques with Java implementation*. Morgan Kaufman; Platt (1998) *Fast training of support vector machines using sequential minimal optimization* in *Advances in kernel methods – support vector learning* Schlkopf B, Burges C, and Smola A, eds. MIT Press; and Cover and Hart (1967) *IEEE Transactions on Information Theory* 13:21-27.

- 5 Performance of each model was initially assessed by three-fold cross validation on a
10 randomly selected stratified training set. True error rates of the best performing
classifiers were then determined using the remaining one-fourth of the samples as a
blinded test group. Class assignment required that a sample's calculated node value
exceed a statistically determined confidence level in order for it to be assigned to a
class. Details of the supervised learning algorithms and their use are described below.

15

Detailed Experimental Procedures

A. Patient Dataset

- 132 cases of pediatric ALL were selected from the original 327 diagnostic
20 bone marrow aspirates described in Example 1 to reanalyze on the higher density
U133A and B microarrays. The selection of cases was based on having sufficient
numbers of each subtype to build accurate class predictions, rather than reflecting the
actual frequency of these groups in the pediatric population.

25 **B. Hybridization of microarrays**

- The hybridization solutions according to Example 1 were thawed at 45°C, then
microcentrifuged for 5 minutes to remove any insoluble material from the mixture.
The hybridization solutions were added to U133A chips and allowed to hybridize for
16 hours at 45°C. At the end of the incubation period, the hybridization solution was
30 removed from each U133A chip and refrozen. Subsequently, the hybridizations were
thawed and hybridized to the U133B chip.

A non-stringent wash buffer (6X SSPE, 0.01% Tween 20) was added to each
chip cassette after the hybridization solution was removed and the cassette allowed to

equilibrate to room temperature. The microarray cassettes were then placed on the fluidics station and the antibody amplification protocol performed. The arrays were washed at 25°C with the non-stringent buffer followed by a more stringent wash at 50°C with 100 mM MES, 0.1M NaCl₂, 0.01% Tween 20. The arrays were then 5 stained with Streptavidin Phycoerythrin (SAPE, Molecular Probes, Eugene, OR) for 10 minutes at 25°C. Following another non-stringent wash, the arrays were hybridized for 10 minutes at 25°C with an antibody solution (100 mM MES, 1 M [Na⁺], 0.05% Tween 20, 2 mg/ml BSA, 0.1 mg/ml goat IgG, and 3 µg/ml biotinylated antibody). This solution was removed and the cassettes restained with the SAPE 10 solution.

Arrays were scanned on a laser confocal scanner (Agilent, Palo Alto, CA) and then analyzed with Affymetrix® Microarray Suite 5.0 (MAS 5.0). Detection values (present, marginal or absent) were determined by default parameters, and signal values were scaled by global methods to a target value of 500. After completing the 15 scans, the arrays were visually inspected for defects and Affymetrix internal controls were utilized to monitor the success of hybridization, washing, and staining procedures.

C. Statistical methods
20 The chi-square metric and the kNN and ANN supervised learning algorithms were performed as described for Example 1. The SVM supervised learning algorithm that was used in this study is available as part of the software package Rv 1.6.0. See, Ribeiro, and Brown. *The ISBA Bulletin*, 8(1):12-16, and www.r-project.org.

To determine the performance of each model using ANN, a confidence 25 threshold was built for each diagnostic subtype utilizing a modification of the method described by Khan et al. (2001) *Nat. Med.* 7:673-679. Models were built based on a decision tree format where each level of the decision tree contains only two possible distinctions – class and non-class (for example, T verses non-T). At each level, using only samples in the training set, 3 ANN models were built by 3-fold cross validation.
30 The training set samples were then shuffled and 3 additional ANN models were built. This model building process was repeated for a total of 100 times at each step of the decision tree. Then an empirical probability distribution for the ANN output node value was built only for subtype under study, for example, T-ALL at the first step of

the decision tree. Only nodal values greater than 0.5 for each subtype were included. For each individual sample in the training set, the 100 validation subtype node values were averaged and compared to threshold. Individual samples were assigned to the subtype under study only when its average subtype nodal value was greater than the
5 95% confidence threshold. For samples in the test set, subtype nodal values are averaged from all models generated in the 3-fold cross validation. A sample is assigned to the class under study when the average subtype nodal value is greater than the 95% confidence level defined on the training set. A sample not assigned to the subtype will progress to the next level of the decision tree, where the entire process is
10 repeate

All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All
15 publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of
20 illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

THAT WHICH IS CLAIMED:

1. A method of assigning a subject affected by leukemia to a leukemia risk group, said method comprising:

- 5 a) providing a subject expression profile of a sample from said subject affected by leukemia;
- 10 b) providing a plurality of reference expression profiles, each associated with a leukemia risk group selected from the group consisting of T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid >50, and Novel, wherein the subject expression profile and each reference expression profile comprise one or more values representing the expression level of a gene having differential expression in at least one leukemia risk group; and
- 15 c) selecting the reference expression profile most similar to the subject expression profile to thereby assign said subject affected by leukemia to a leukemia risk group.

2. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the T-ALL risk group comprise values selected from the group consisting of:

- 20 a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 7;
- 25 b) a value representing the expression level of the gene shown in Table 14;
- 30 c) values representing the expression levels of at least 20 genes selected from the genes shown in Table 21;
- 35 d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 28;
- 40 e) values representing the expression levels of at least 20 genes selected from the genes shown in Table 35;
- 45 f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 59; and
- 50 g) values representing the expression levels of at least 20 genes selected from the genes shown in Table 67.

3. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the E2A-PBX1 risk group comprise values selected from the group consisting of:

- 5 a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 3;
- b) a value representing the expression level of the gene shown in Table 10;
- 10 c) values representing the expression levels of at least 20 genes selected from the genes shown in Table 17;
- d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 24;
- e) values representing the expression levels of at least 20 genes selected from the genes shown in Table 31;
- 15 f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 55;
- g) values representing the expression levels of at least 20 genes selected from the genes shown in Table 64; and
- h) values representing the expression levels of at least one of the 20 genes shown in Table 71.

4. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the TEL-AML1 risk group comprise values selected from the group consisting of:

- 25 a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 8;
- b) values representing the expression levels of the genes shown in Table 15;
- c) values representing the expression levels of at least 20 genes selected from the genes shown in Table 22;
- 30 d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 29;

- e) values representing the expression levels of at least 20 genes selected from the genes shown in Table 36;
- f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 55 ;
- 5 g) values representing the expression levels of at least 20 genes selected from the genes shown in Table 68; and
- h) values representing the expression levels of at least one of the genes shown in Table 74.

10 5. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the BCR-ABL risk group comprise values selected from the group consisting of:

- a) values representing the expression level of at least 20 genes selected from the genes shown in Table 2;
- b) 15 values representing the expression levels of the genes shown in Table 9;
- c) values representing the expression level of at least 20 genes selected from the genes shown in Table 16;
- d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 23;
- e) 20 values representing the expression levels of at least 20 gene selected from the genes shown in Table 30;
- f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 54;
- g) 25 values representing the expression levels of at least 20 genes selected from the genes shown in Table 63; and
- h) values representing the expression levels of at least one of the genes shown in Table 70.

30 6. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the MLL risk group comprise values selected from the group consisting of:

- a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 5;
- b) values representing the expression levels of the genes shown in Table 12;
- 5 c) values representing the expression level of at least 20 genes selected from the genes shown in Table 19;
- d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 26;
- e) values representing the expression levels of at least 20 genes 10 selected from the genes shown in Table 33;
- f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 57;
- g) values representing the expression levels of at least 20 genes selected from the genes shown in Table 66; and
- 15 h) values representing the expression levels of at least one of the genes shown in Table 73.

7. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the Hyperdiploid >50 risk group comprise values selected from the group consisting of:
- a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 4;
 - b) values representing the expression levels of the genes shown in Table 11;
 - 25 c) values representing the expression levels of at least 20 genes selected from the genes shown in Table 18;
 - d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 25;
 - e) values representing the expression levels of at least 20 genes 30 selected from the genes shown in Table 32;
 - f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 56;

- g) values representing the expression levels of at least 20 genes selected from the genes shown in Table 65; and
h) values representing the expression levels of at least one of the genes shown in Table 72.

5

8. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the Novel risk group comprise values selected from the group consisting of:

- a) values representing the expression level of at least 20 genes selected from the genes shown in Table 6;
b) values representing the expression level of the genes shown in Table 13;
c) values representing the expression levels of at least 20 genes selected from the genes shown in Table 20;
d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 27;
e) values representing the expression levels of at least 20 genes selected from the genes shown in Table 34; and
f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 58.

9. The method of claim 1, wherein said sample from said subject affected by ALL comprises leukemic blasts.

25

10. The method of claim 9, wherein said sample from said subject affected by ALL comprises at least 35 % leukemic blasts.

11. The method of claim 10, wherein said sample from said subject affected by ALL comprises at least 75% leukemic blasts.

30

12. The method of claim 9 wherein said sample comprises leukemic blasts derived from peripheral blood.

13. The method of claim 9 wherein said sample comprises blast cells derived from bone marrow.

14. A method of predicting whether a subject affected by leukemia has an increased risk of relapse, said method comprising the steps of:

- 10 a) assigning the subject affected by leukemia to a leukemia risk group selected from the group consisting of T-ALL, Hyperdiploid >50, TEL-AML1, MLL, E2A-PBX1, BCR-ABL, and Novel;

 b) providing a subject expression profile of a sample from said subject affected by leukemia;

15 c) providing a reference expression profile associated with the occurrence of relapse in the leukemia risk group to which the subject affected by leukemia is assigned, wherein the subject expression profile and the reference expression profile comprise one or more values representing the expression level of a gene having differential expression in subjects affected by leukemia who will relapse after conventional therapy; and

20 d) determining whether the subject expression profile shares sufficient similarity to the reference expression profile associated with relapse in the leukemia risk group to which the subject affected by leukemia is assigned to thereby determine whether the subject affected by leukemia has an increased risk of relapse.

15. The method of claim 14, wherein the step of assigning the subject affected by leukemia to a leukemia risk group is performed according to the method of claim 1.

25

16. The method of claim 14, wherein said subject affected by leukemia is assigned to the T-ALL risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 8 genes selected from the genes shown in Table 44.

30

17. The method of claim 14, wherein said subject affected by leukemia is assigned to the Hyperdiploid >50 risk group and said subject expression profile and

said reference expression profile comprise values representing the expression levels of at least 5 genes selected from the genes shown in Table 45.

18. The method of claim 14, wherein said subject affected by leukemia is
5 assigned to the TEL-AML1 risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 3 genes selected from the genes shown in Table 46.

19. The method of claim 14, wherein said subject affected by leukemia is
10 assigned to the MLL risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 5 genes selected from the genes shown in Table 47.

20. The method of claim 14, wherein said subject affected by leukemia is
15 not assigned to the T-ALL, Hyperdiploid>50, TEL-AML1, MLL, E2A-PBX1, or BCR-ABL risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 4 genes selected from the genes shown in Table 48.

21. A method of predicting whether a subject affected by TEL-AML1 has
20 an increased risk of developing secondary AML, said method comprising:

- a) providing a subject expression profile of a sample from said subject affected by TEL-AML1;
- b) providing a reference expression profile associated with the occurrence of secondary AML in subjects affected by TEL-AML1 wherein the subject expression profile and the reference expression profile comprise one or more values representing the expression level of a gene having differential expression in subjects affected by TEL-AML1 who will develop secondary AML; and
- c) determining whether the subject expression profile shares sufficient similarity to the reference expression profile associated with the occurrence of secondary AML to thereby determine whether the subject affected by TEL-AML1 has an increased risk of developing secondary AML.

22. A method of choosing a therapy for a subject affected by leukemia, said method comprising:

- a) providing a subject expression profile of a sample from said subject affected by leukemia;
- 5 b) providing a plurality of reference expression profiles, each associated with a leukemia risk group selected from the group consisting of T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid >50, and Novel, wherein the subject expression profile and each reference expression profile comprise one or more values representing the expression of level of a gene having differential expression in at least one leukemia risk group; and
- 10 c) selecting the reference expression profile most similar to the subject expression profile to thereby choose a therapy for the subject affected by leukemia.

15 23. A method of choosing a therapy for a subject affected by leukemia, said method comprising the steps of:

- a) assigning the subject affected by leukemia to a leukemia risk group selected from the group consisting of T-ALL, Hyperdiploid >50, TEL-AML1, MLL, E2A-PBX1, BCR-ABL, and Novel;
- 20 b) providing a subject expression profile of a sample from said subject affected by ALL;
- c) providing a reference expression profile associated with the occurrence of relapse in the leukemia risk group to which the subject affected by leukemia is assigned, wherein the subject expression profile and the reference expression profile comprise one or more values representing the expression level of a gene having differential expression in subjects who will relapse after conventional therapy; and
- 25 d) determining whether the subject expression profile shares sufficient similarity to the reference expression profile associated with relapse in the leukemia risk group to which the subject affected by ALL is assigned to thereby chose a therapy for said subject affected by ALL.

24. The method of claim 23, wherein the step of assigning the subject affected by leukemia to a leukemia risk group is performed according to the method of claim 1.

5 25. The method of claim 23, wherein said subject affected by leukemia is assigned to the T-ALL risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 8 genes selected from the genes shown in Table 44.

10 26. The method of claim 23, wherein said subject affected by leukemia is assigned to the Hyperdiploid >50 risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 5 genes selected from the genes shown in Table 45.

15 27. The method of claim 23, wherein said subject affected by leukemia is assigned to the TEL-AML1 risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 3 genes selected from the genes shown in Table 46.

20 28. The method of claim 23, wherein said subject affected by leukemia is assigned to the MLL risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 5 genes selected from the genes shown in Table 47.

25 29. The method of claim 23, wherein said subject affected by leukemia is not assigned to the T-ALL, hyperdiploid >50, TEL-AML1, MLL, E2A-PBX1, or BCR-ABL risk group and said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 4 genes selected from the genes shown in Table 48.

30

30. A method of choosing a therapy for a subject affected by TEL-AML1, said method comprising:

- a) providing a subject expression profile of a sample from said subject affected by TEL-AML1;
 - b) providing a reference expression profile associated with the occurrence of secondary AML in subjects affected by TEL-AML1 wherein the subject expression profile and the reference expression profile comprise one or more values representing the expression level of a gene having differential expression in subjects affected by TEL-AML1 who will develop secondary AML; and
- 5
- c) determining whether the subject expression profile shares sufficient similarity to the reference expression profile associated with the occurrence 10 of secondary AML to thereby chose a therapy for the subject affected by TEL-AML1.

31. The method of claim 30, wherein said subject expression profile and said reference expression profile comprise values representing the expression levels of at least 7 genes selected from the genes shown in Table 48.

15

32. A method to aid in the determination of a prognosis for a subject affected by leukemia, said method comprising:

- a) providing a subject expression profile of a sample from said subject affected by leukemia;
- b) providing a plurality of reference expression profiles, each 20 associated with a leukemia risk group selected from the group consisting of T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid >50, and Novel, wherein the subject expression profile and each reference expression profile comprise one or more values representing the expression of level of a gene having differential expression in at least one leukemia risk group; and
- c) selecting the reference expression profile most similar to the 25 subject expression profile to thereby determine the prognosis for the subject affected by leukemia.

30 33. A method to aid in the determination of the prognosis for a subject affected by leukemia, said method comprising the steps of:

- a) assigning the subject affected by leukemia to a leukemia risk group selected from the group consisting of T-ALL, Hyperdiploid >50, TEL-AML1, MLL, E2A-PBX1, BCR-ABL, or Novel risk group;
- b) providing a subject expression profile of a sample from said 5 subject affected by leukemia;
- c) providing a reference expression profile associated with the occurrence of relapse in the leukemia risk group to which the subject affected by leukemia is assigned, wherein the subject expression profile and the reference expression profile comprise one or more values representing the expression level of a gene having differential expression in subjects who will relapse after conventional 10 therapy ; and
- d) determining whether the subject expression profile shares sufficient similarity to the reference expression profile associated with relapse in the Leukemia risk group to which the subject affected by leukemia is assigned to thereby 15 determine the prognosis for the subject affected by leukemia.

34. A method to aid in the determination of the prognosis for a subject affected by TEL-AML1, said method comprising:

- a) providing a subject expression profile of a sample from said 20 subject affected by TEL-AML1;
- b) providing a reference expression profile associated with the occurrence of secondary AML in subjects affected by TEL-AML1 wherein the subject expression profile and the reference expression profile comprise one or more values representing the expression level of a gene having differential expression in 25 subjects affected by TEL-AML1 who will develop secondary AML after conventional therapy; and
- c) determining whether the subject expression profile shares sufficient similarity to the reference expression profile associated with the occurrence of secondary AML to thereby determine the prognosis for the subject affected by 30 TEL-AML1.

35. A method of assigning a subject affected by ALL to an ALL risk group selected from the group consisting of T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid >50, and Novel, said method comprising:

- a) providing a subject expression profile of a sample from said
5 affected by ALL;
- b) providing a reference expression profile associated with the T-ALL risk group wherein the subject expression profile and the reference expression profile comprises one or more values representing the expression level of a gene having differential expression in the T-ALL risk group;
- c) determining whether the subject expression profile shares statistically significant similarity to the reference expression profile associated with the T-ALL risk group to thereby determine whether the subject affected by ALL is in the T-ALL risk group;
- d) if the subject affected by ALL is not in the T-ALL risk group, providing a reference expression profile associated with the E2A-PBX1 risk group wherein the subject expression profile and the reference expression profile comprises one or more values representing the expression level of a gene having differential expression in the E2A-PBX1 risk group;
- e) determining whether the subject expression profile shares statistically significant similarity to the reference expression profile associated with the E2A-PBX1 risk group to thereby determine whether the subject affected by ALL is in the E2A-PBX1 risk group;
- f) if the subject affected by ALL is not in the E2A-PBX risk
25 group, providing a reference expression profile associated with the TEL-AML1 risk group wherein the subject expression profile and each reference expression profile comprises one ore more valued representing the expression level of a gene having differential expression in the TEL-AML1 risk group;
- g) determining whether the subject expression profile shares statistically significant similarity to the reference expression profile associated with the TEL-AML1 risk group to thereby determine whether the subject affected by ALL is in the TEL-AML1 risk group;

- h) if the subject affected by ALL is not in the Tel-AML1 risk group, providing a reference expression profile associated with the BCR-ABL risk group wherein the subject expression profile and each reference expression profile comprises one or more values representing the expression level of a gene having differential expression in the BCR-ABL risk group;
- 5 i) determining whether the subject expression profile shares statistically significant similarity to the reference expression profile associated with the BCR-ABL risk group to thereby determine whether the subject affected by ALL is in the BCR-ABL risk group;
- 10 j) if the subject affected by ALL is not in the BCR-ABL risk group, providing a reference expression profile associated with the MLL risk group wherein the subject expression profile and each reference expression profile comprises one or more values representing the expression level of a gene having differential expression in the MLL risk group;
- 15 k) determining whether the subject expression profile shares statistically significant similarity to the reference expression profile associated with the MLL risk group to thereby determine whether the subject affected by ALL is in the MLL risk group;
- l) if the subject affected by ALL is not in the MLL risk group,
- 20 providing a reference expression profile associated with the Hyperdiploid >50 risk group wherein the subject expression profile and each reference expression profile comprises one or more values representing the expression level of a gene having differential expression in the Hyperdiploid >50 risk group;
- m) determining whether the subject expression profile shares
- 25 statistically significant similarity to the reference expression profile associated with the Hyperdiploid 50 risk group to thereby determine whether the subject affected by ALL is in the Hyperdiploid >50 risk group;
- n) if the subject affected by ALL is not in the Hyperdiploid >50 risk group, providing a reference expression profile associated with the Novel risk group wherein the subject expression profile and each reference expression profile comprises one or more values representing the expression level of a gene having differential expression in the Novel risk group; and

o) determining whether the subject expression profile shares statistically significant similarity to the reference expression profile associated with the Novel risk group to thereby determine whether the subject affected by ALL is in the Novel risk group.

5

36. An array for use in a method of assigning a subject affected by leukemia to a leukemia risk group comprising a substrate having a plurality of addresses, wherein each address has disposed thereon a capture probe that can specifically bind a nucleic acid molecule selected from the group consisting of:

10 a) a nucleic acid molecule that is differentially expressed in at least one leukemia risk group selected from the group consisting of T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid >50, and Novel;

b) a nucleic acid molecule that is differentially expressed in subjects affected by leukemia who will relapse after conventional therapy; and

15 c) a nucleic acid molecule that is differentially expressed in subjects affected by leukemia who will develop secondary AML after conventional therapy.

37. The array of claim 36, wherein each nucleic acid molecule that is
20 differentially expressed in at least one leukemia risk group is selected from the group consisting of the genes shown in Tables 2-36, 63-68, and 70-74.

38. The array of claim 36, wherein each nucleic acid molecule that is
differentially expressed in subjects affected by leukemia who will relapse after
25 conventional therapy is selected from the group consisting of the genes shown in
Tables 44-48.

39. The array of claim 36, wherein each nucleic acid molecule that is
differentially expressed in subjects affected by leukemia who will develop secondary
30 AML after conventional therapy is selected from the group consisting of the genes
shown in Table 52.

40. The array of claim 36, wherein the substrate has greater than 20 addresses.

5 41. The array of claim 40, wherein the substrate has greater than 40 addresses.

42. The array of claim 41, wherein the substrate has greater than 68 addresses.

10 43. The array of claim 36, wherein the substrate has no more than 500 addresses.

44. A kit for assigning a subject affected by ALL to a leukemia risk group, said kit comprising:

15 a) an array comprising a substrate having a plurality of addresses, wherein each address has disposed thereon a capture probe that can specifically bind a nucleic acid molecule that is differentially expressed in at least one leukemia risk group selected from the group consisting of T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid >50, and Novel; and

20 b) a computer-readable medium having a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a nucleic acid molecule detected by the array.

25 45. A kit for assigning a subject affected by ALL to a leukemia risk group, said kit comprising:

a) an array according to claim 37; and
b) a computer-readable medium having a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a nucleic acid molecule detected by the array.

46. A kit for predicting whether a subject affected by leukemia has an increased risk of relapse, said kit comprising:

- a) an array comprising a substrate having a plurality of addresses, wherein each address has disposed thereon a capture probe that can specifically bind a nucleic acid molecule that is differentially expressed in subjects affected by leukemia who will relapse following conventional therapy; and
- b) a computer-readable medium having a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a nucleic acid molecule detected by the array.

47. A kit for predicting whether a subject affected by leukemia has an increased risk of relapse, said kit comprising:

- a) an array according to claim 38; and
- b) a computer-readable medium having a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a nucleic acid molecule detected by the array.

48. A kit for predicting whether a subject affected by TEL-AML1 has an increased risk of relapse, said kit comprising:

- a) an array comprising a substrate having a plurality of addresses, wherein each address has disposed thereon a capture probe that can specifically bind a nucleic acid molecule that is differentially expressed in subjects affected by TEL-AML1 who will relapse after conventional therapy; and
- b) a computer-readable medium having a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a nucleic acid molecule detected by the array.

30

49. A kit for predicting whether a subject affected by TEL-AML1 has an increased risk of relapse, said kit comprising:

- a) an array according to claim 39; and

b) a computer-readable medium having a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a nucleic acid molecule detected by the array.

5

50. A kit to aid in choosing therapy for a subject affected by leukemia, said kit comprising:

a) an array comprising a substrate having a plurality of addresses, wherein each address has disposed thereon a capture probe that can specifically bind a 10 nucleic acid molecule that is differentially expressed in at least one leukemia risk group selected from the group consisting of T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid >50, and Novel; and

b) a computer-readable medium having a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of 15 values, each value representing the expression of a nucleic acid molecule detected by the array.

51. A kit to aid in choosing therapy for a subject affected by leukemia, said kit comprising:

20 a) an array according to claim 37; and

b) a computer-readable medium having a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a nucleic acid molecule detected by the array.

25

52. A computer-readable medium comprising a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a gene that is differentially expressed in at least one leukemia risk group selected from the group consisting of T-30 ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid >50, and Novel.

53. The computer readable medium of claim 52, wherein the expression profiles comprise values selected from the group consisting of:

- a) values representing the expression levels of at least 7 genes selected from the genes show in Tables 2-8, 16-36, 54-60, and 63-68;
 - b) a value representing the expression level of the gene shown in Table 10;
 - 5 c) a value representing the expression level of the gene shown in Table 14;
 - d) values representing the expression levels of the genes shown in Tables 9, 11, 12, 13, and 15; and
 - e) values representing the expression level of at least one gene
- 10 showin in Tables 70, 71, 72, 73, and 74.

54. A computer-readable medium comprising a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a gene that is differentially expressed in subjects affected by leukemia who will relapse following conventional therapy.

55. The computer readable medium of claim 54, wherein the expression profiles comprise values selected from the group consisting of:
- 20 a) values representing the expression levels at least 8 genes selected from the genes show in Table 44.
 - b) values representing the expression levels of at least 5 genes selected from the genes shown in Table 45;
 - c) values representing the expression levels of at least 3 genes
- 25 selected from the genes shown in Table 46;
- d) values representing the expression levels of at least 5 genes selected from the genes shown in Table 47; and
 - e) values representing the expression levels of at least 4 genes selected from the genes shown in Table 48.

30

56. A computer-readable medium comprising a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of

values, each value representing the expression of a gene that is differentially expressed in subjects affected by leukemia who will develop secondary AML.

57. The computer readable medium of claim 56, wherein the expression profiles comprise values selected from values representing the expression levels of at least 7 genes selected from the genes show in Table 52.

58. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the T-ALL risk group comprise values 10 selected from the group consisting of:

- a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 7;
- b) a value representing the expression level of the gene shown in Table 14;
- c) values representing the expression levels of at least 20 genes selected from the genes shown in Table 21;
- d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 28;
- e) values representing the expression levels of at least 20 genes 20 selected from the genes shown in Table 35; and
- f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 59.

59. The method of claim 1 wherein the subject expression profile and the 25 reference expression profile associated with the E2A-PBX1 risk group comprise values selected from the group consisting of:

- a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 3;
- b) a value representing the expression level of the gene shown in 30 Table 10;
- c) values representing the expression levels of at least 20 genes selected from the genes shown in Table 17;

- d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 24;
- e) values representing the expression levels of at least 20 genes selected from the genes shown in Table 31;
- 5 f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 55;
- g) values representing the expression levels of at least 20 genes selected from the genes shown in Table 64; and
- h) values representing the expression levels of at least one of the
10 genes shown in Table 71.

60. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the TEL-AML1 risk group comprise values selected from the group consisting of:
- 15 a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 8;
 - b) values representing the expression levels of the genes shown in Table 15;
 - c) values representing the expression levels of at least 20 genes
20 selected from the genes shown in Table 22;
 - d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 29;
 - e) values representing the expression levels of at least 20 genes selected from the genes shown in Table 36; and
 - 25 f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 55.

61. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the BCR-ABL risk group comprise values selected from the group consisting of:
- a) values representing the expression level of at least 20 genes selected from the genes shown in Table 2;

- b) values representing the expression levels of the genes shown in Table 9;
- c) values representing the expression level of at least 20 genes selected from the genes shown in Table 16;
- 5 d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 23;
- e) values representing the expression levels of at least 20 gene selected from the genes shown in Table 30; and
- f) values representing the expression levels of at least 20 genes
10 selected from the genes shown in Table 54.

62. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the MLL risk group comprise values selected from the group consisting of:

- 15 a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 5;
- b) values representing the expression levels of the genes shown in Table 12;
- c) values representing the expression level of at least 20 genes
20 selected from the genes shown in Table 19;
- d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 26;
- e) values representing the expression levels of at least 20 genes selected from the genes shown in Table 33; and
- 25 f) values representing the expression levels of at least 20 genes selected from the genes shown in Table 57.

63. The method of claim 1 wherein the subject expression profile and the reference expression profile associated with the Hyperdiploid >50 risk group
30 comprise values selected from the group consisting of:

- a) values representing the expression levels of at least 20 genes selected from the genes shown in Table 4;

- b) values representing the expression levels of the genes shown in Table 11;
- c) values representing the expression levels of at least 20 genes selected from the genes shown in Table 18;
- 5 d) values representing the expression levels of at least 20 genes selected from the genes shown in Table 25;
- e) values representing the expression levels of at least 20 genes selected from the genes shown in Table 32; and
- f) values representing the expression levels of at least 20 genes
10 selected from the genes shown in Table 56.

64. The array of claim 36, wherein each nucleic acid molecule that is differentially expressed in at least one leukemia risk group is selected from the group consisting of the genes shown in Tables 2-36.

15

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
9 October 2003 (09.10.2003)

PCT

(10) International Publication Number
WO 2003/083140 A3

(51) International Patent Classification⁷: C12N 15/11

C12Q 1/68,

(74) Agent: COULTER, Kathryn, L. Alston & Bird; Bank of America Plaza, Suite 4000, 101 South Tryon Street, Charlotte, NC 28280-4000 (US).

(21) International Application Number:

PCT/US2003/008486

(22) International Filing Date: 19 March 2003 (19.03.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/367,144 22 March 2002 (22.03.2002) US

(71) Applicant (for all designated States except US): ST.JUDE CHILDREN'S RESEARCH HOSPITAL, INC. [US/US]; 332 N. Lauderdale Street, Memphis, TN 38105-2794 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DOWNING, James, R. [US/US]; 7650 Chapel Ridge Drive, Cordova, TN 38106 (US). YEOH, Eng-Juh [MY/SG]; 5 Lower Kent Ridge Road, Singapore 119074, Republic of Singapore (SG). WILKINS, Dawn, E. [US/US]; 3321 Whippoorwill Lane, Oxford, MS 38655 (US). WONG, Limsoon [SG/SG]; 6B Balmeg Hill #02-01, Singapore 119908, Republic of Singapore (SG).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report: 26 February 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A3

WO 2003/083140

(54) Title: CLASSIFICATION AND PROGNOSIS PREDICTION OF ACUTE LYMPHOBLASTIC LEUKEMIA BY GENE EXPRESSION PROFILING

(57) Abstract: The present invention provides methods and compositions useful for diagnosing and choosing treatment for leukemia patients. The claimed methods include methods of assigning a subject affected by leukemia to a leukemia risk group, methods of predicting whether a subject affected by leukemia has an increased risk of relapse, methods of predicting whether a subject affected by leukemia has an increased risk of developing secondary acute myeloid leukemia, methods to aid in the determination of a prognosis for a subject affected by leukemia, methods of choosing a therapy for a subject affected by leukemia, and methods of monitoring the disease state in a subject undergoing one or more therapies for leukemia. The claimed compositions include arrays having capture probes for the differentially-expressed genes of the invention, computer readable media having digitally-encoded expression profiles associated with leukemia risk groups, and kits for diagnosing and choosing therapy for leukemia patients.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/08486

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : C12Q 1/68; C12N 15/11
US CL : 435/6; 536/24.3

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6; 536/24.3

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 01/67061 A2 (YEDA RESEARCH AND DEVELOPMENT CO. LTD) 13 September 2001 (13.09.2001), pages 20-23.	1, 9-13, 36, 40-44, 46, 50
A,P	US 2002/0111742 A1 (ROCKE et al.) 15 August 2002 (15.08.2002), pages 2, 8-10, 15, 16.	1, 9-13, 36, 40-44, 46, 50
X	GOLUB et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science. 15 October 1999, Vol. 286, pages 531-537, especially page 531.	1, 9-13, 36, 40-44, 46, 50
X	Database BIOSIS on STN, AN 2002:152016, FILLMORE et al. 'Gene expression profiling of T-cell lymphoma cell lines'. Blood. 16 November 2001, Vol. 98, No. 1, page 158b, Abstract.	1, 9-13, 36, 40-44, 46, 50
X	Database BIOSIS on STN, AN 2002:250205, FERRANDO et al. 'Prognostic classification of pediatric T-ALL using oligonucleotide microarrays'. Blood. 16 November 2001, Vol. 98, No. 11, pages 759a-760a, Abstract.	1, 9-13, 36, 40-44, 46, 50

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

22 August 2003 (22.08.2003)

Date of mailing of the international search report

18 SEP 2003

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Faxsimile No. (703)305-3230

Authorized officer

John S. Brusca

Telephone No. 703 308-0196

INTERNATIONAL SEARCH REPORT

C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Database BIOSIS on STN, AN 2001:312132, FERRANDO et al. 'Quantitative analysis of oncogenic transcription factors in T-cell acute lymphoblastic leukemia'. Blood. 16 November 2000, Vol. 96, No. 11, page 696a, Abstract.	1, 9-13, 36, 40-44, 46, 50

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/08486

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim Nos.: 52-57
because they relate to subject matter not required to be searched by this Authority, namely:
Claims 52-57 are drawn to a mere presentation of data.

2. Claim Nos.: 2-8,15-20,24-29,31,37-39,45,47,49,51 and 58-64
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Please See Continuation Sheet

3. Claim Nos.: 15, 24
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Please See Continuation Sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1, 9-13, 36, 40-44, 46, 50, and the T-ALL risk group

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT**Continuation of Box I Reason 2:**

Claims 2-8, 15-20, 24-29, 31, 37-39, 45, 47, 49, 51, and 58-64 are not searchable because they are drawn to subject matter comprising sequences that are improperly incorporated by reference because the claimed sequences are not described in the description at the time of filing, and the sequences referenced by database accession numbers in the tables discussed in the claims could be modified by the database authors subsequent to the international filing date.

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

It is noted that claims 2-8, 16-20, 25-29, 31, 37-39, 45, 47, 49, 51, and 58-64 are not searchable because they are drawn to subject matter sequences that are improperly incorporated by reference because the claimed sequences are not described in the description at the time of filing, and the sequences referenced by database accession numbers in the tables discussed in the claims could be modified by the database authors subsequent to the international filing date. It is further noted that claims 15 and 24 are not searchable because they are improper multiple dependent claims, and claims 52-57 are not searchable because they are directed to data on computer readable media which is not patentable subject matter.

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claim(s) 1, 9-13, 36, 40-44, 46, 48, and 50 drawn to a method of assigning a leukemia patient expression profile to a risk group and apparatus for performing the method (1st method and 1st apparatus).

Group II, claim(s) 14, drawn to a method of determining prognosis of leukemia relapse (2nd method).

Group III, claim(s) 21, drawn to a method of determining prognosis of secondary AML in a subject affected by TEL-AML1 (3rd method).

Group IV, claim(s) 22, drawn to a method of choosing a therapy for a subject affected by leukemia by comparing expression profiles of the subject to expression profiles of subjects in different risk groups (4th method).

Group V, claim(s) 23, drawn to a method of choosing a therapy for a subject affected by leukemia by comparing expression profiles of the subject to expression profiles of subjects who will relapse (5th method).

Group VI, claim(s) 30, drawn to a method of choosing a therapy for a subject affected by TEL-AML1 by comparing expression profiles of the subject to expression profiles of subjects who will develop secondary AML (6th method).

Group VII, claim(s) 32, drawn to a method of determining the prognosis of a subject affected by leukemia by comparing expression profiles of the subject to expression profiles of subjects in different risk groups (7th method).

Group VIII, claim(s) 33, drawn to a method of determining the prognosis of a subject affected by leukemia by assigning the subject to a risk group and then comparing expression profiles of the subject to expression profiles of subjects in the same risk group who have relapsed (8th method).

Group IX, claim(s) 34, drawn to a method of determining the prognosis of a TEL-AML1 subject by comparing expression profiles of the subject to expression profiles of subjects affected by TEL-AML1 (9th method).

Group X, claim(s) 35, drawn to a method of assigning a subject affected by ALL to an ALL risk group by comparing expression profiles of the subject to expression profiles of the subject to expression profiles to subjects in different risk groups (10th method).

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack unity of invention because they are not so linked as to form a single general inventive concept under PCT Rule 13.1.

In order for more than one species to be examined, the appropriate additional examination fees must be paid. The species are as follows:

INTERNATIONAL SEARCH REPORT

The seven risk group species are 1)T-ALL, 2) E2A-PBX1, 3) TEL-Aml1, 4) BCR-ABL, 5) MLL, 6) Hyperdiploid>50, and 7) Novel.

The claims are deemed to correspond to the species listed above in the following manner:

Claims 1, 40-43, and 50 of group I and claims 14, 21, 22, 23, 30, 32, 33, 34, and 35 of Groups II-X are Markush-type claims.
Claims 9-13 of Group I are drawn to the ALL species. Claim 48 of Group I is drawn to the TEL-AML1 species.

The following claim(s) are generic: 44 and 46 of Group I.

The inventions listed as Groups I-X do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: PCT Rule 13.1 and Annex B do not provide for unity of invention between two or more different products, methods of making, methods of use, or apparatus that share a special technical feature. Each Group is drawn to a different method with different steps and produces different results.

The species listed above do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the following reasons: each species is drawn to a mutually exclusive different disease risk group.

Continuation of B. FIELDS SEARCHED Item 3:
Medline, Biosis, US Patent and Publications, Derwent WPI
Search terms: leukemia, T-ALL, microarray