Temat: Badanie regulatora proporcjonalnego

1. Zadanie do wykonania

Opracować układ pomiarowy, zmontować układ do badania regulatora, opracować algorytm sterowania w układzie regulacji **proporcjonalnej** i przetestować regulator w warunkach laboratoryjnych.

Cz.1. Badanie toru wykonawczego PWM.

Cz.2. Badanie regulatora

2. Założenia projektowe

2.1. Schemat blokowy typowego układu regulacji

Rys. 1. Schemat blokowy układu regulacji. Uzupełnij schemat o nazwy zmiennych, które wystąpią w Twoim programie (zmienne języka C, np. _pv_, _sp_, _xp, ...)

2.2. Schemat blokowy podłączenia sygnałów w układzie do badania regulatora /opracować analogicznie jak dla regulatora dwustawnego/

Rys. 2. Schemat blokowy połączeń elektrycznych układu do badania regulatora. Uzupełnij schemat o nazwy zmiennych z architektury wewnętrznej mikroprocesora (np. PD0-PD7, PA0, ..)

2.3.Zadawanie parametrów regulacji

Zakres pomiarowy (0-400)°C/(0-5)V

- a) Po RESET SP=60%, Xp=20%
- b) Gdy SW2=1, SP=50%
- c) Gdy SW6=1, SP=40%
- d) Gdy SW10=1, Xp=30%
- e) Gdy SW14=1, Xp=40%

2.4. Projekt wykorzystania wyświetlacza LCD

Wariant I SP=xx% PV=xx.x% Wariant II SP=xxC PV=xx.xC Xp=xx% E=+xx.x% Xp=xxC E=+xx.xC

2.5. Schematy ideowe połączeń elektrycznych

- a) Podłączenie zasilania mikroprocesora Połączenia wykonać wg schematu dla regulatora dwustawnego.
- b) Podłączenie wyświetlacza LCD do mikroprocesora Połączenia wykonać wg schematu dla regulatora dwustawnego.
- c) Podłączenie czterech przycisków (sw1, sw5, sw9 i sw13) do linii mikroprocesora Połączenia wykonać wg schematu dla regulatora dwustawnego.
- d) Podłączenie potencjometru do zadawania napięcia Up (symulacja pomiaru zmiennej procesowej) oraz wyjścia regulatora do D3.10
 Połączenia wykonać wg schematu dla regulatora dwustawnego.

3. Regulator proporcjonalny

Algorytm działania:

Dane: SP (wartość zadana), Xp (zakres proporcjonalności), PV (pomiar, zmienna procesowa) Założenia dodatkowe:

okres dla sygnału PWM T0=2.0[s] (dla testów T0=20[s]), rozdzielczość sygnału sterującego 5% (CV=0%, 5%, 10%, .., 95%, 100%), do odmierzania czasu użyć funkcji dely_ms (ms=100, albo dla testów 1000).

Opisać szczegółowo sposób obliczania sterowania (CV) oraz sposób przejścia na sygnał PWM.

Rys. 3A. Charakterystyka regulatora proporcjonalnego

Rys. 3B. Przykład (w S7-200) przejścia ze zmiennej ciągłej na sygnał PWM

Opis algorytmu:

4. Tabela pomiarowa

Każda grupa oblicza dane do tabeli dla "własnych" danych. Należy zaproponować tabelę z kolumnami dobranymi do badania sygnału wyjściowego typu PWM

Badanie regulatora dla SP= % , Xp= %, okres sygnału T0=20[s],								
Autorzy: zakres pomiarowy: (0-400)°C / (0-5)V								
E [Xp]	E[%]	PV[%]	PV[ADC]	PV[°C]	PV[V]	CV[%]	tH[s]	tH[s]/20[s]
							pomiar	x 100%
-1,00 Xp								
-0,55 Xp								
-0,50 Xp								
-0,45 Xp								
-0,40Xp								
-0,20 Xp								
-0,10 Xp								
0,00 Xp								
0,10 Xp								
0,20Xp								
0,40 Xp								
0,45 Xp								
0,50 Xp								
0,55 Xp								
1,00 Xp								

5. Uwagi i wnioski

6. Załącznik nr 1: Kod programu

Program (zdjęcie wykonane podczas zajęć) wkleić do dokumentu edytora tekstowego. Sformatować tak, aby wydrukować bez zaciemnionych marginesów. Wydruk programu podpisują studenci z grupy, która wykonała program. Całe sprawozdanie wykonujemy ręcznie, jedynym wydrukiem jest wydruk programu (dwustronny w razie potrzeby).