

Task 3: Predictive Models

Machine Learning Techniques

Pablo Alcázar Morales
Diego Pedregal Hidalgo
Alberto Velasco Mata

Feature Selection

No clue on how physical sensors are affected on attacks

Initially, all "meaningful" features selected

UserID
UUID
Version
TimeStemp

Gyroscope (X mean, Z mean, z-x cov, z-y cov)
Magnetic Field (X mean, Z mean, z-x cov, z-y cov)
Pressure (mean)
Linear Acceleration (X mean, Z mean, z-x cov, z-y cov)

attack

Naïve Bayes

Tried different classifier models

All give really bad results due to unbalanced data

Accuracy: 99.84%

No attack

Decision Trees

Unbalanced data leads to practically the same result

Accuracy: 99.84%

Random Forests

Once again...

Accuracy: 99.84%

Second Iteration Improvement

Balance Dataset

Clustering 0s

K-Means: $\sqrt{20000} \approx 141 \Rightarrow$ group 0s in 141 clusters

New dataset: 141 no-attacks (cluster centers) and (initial) 30 attacks

Better results with this one

Random selection of 0s

Downsample no-attacks by randomly selecting samples

New dataset: ~200 no-attacks and 30 attacks

Second Iteration

Naïve Bayes

Tends to predict attacks

However, it seems like balancing the data did its job

Accuracy: 18.8%

Second Iteration

Decision Trees

75% of attacks in test are detected

In this case it might be better to have false positives rather than false negatives

Maybe Random Forests can do better (as they usually do...)

Accuracy: 90.07%

Second Iteration

Random Forests

They do!

		Predicted	
		0	1
Actual	0	4716	180
	1	1	7

Accuracy: 96.0%

Observations

- Balancing the dataset was the key
- Random Forest gives the best results
- However, it might be interesting to obtain more false positives if that leads to detect all attacks
- We could try to select those features RF gives more relevance to (third iteration focusing on feature selection)