Name-Harshita Totala Roll No-SEITA14 Div-IT A

ASSIGNMENT-7 Modulus And Counter

AIM:To design and implement mod- 10, mod -7, Mod-100 asynchronous BCD counter using

IC 7490.

OBJECTIVE:To know Modules counter as well as binary &BCD Counter

IC's USED: IC 7490.

THEORY: Part A – IC 7490

IC 7490 is a TTL MSI (medium scale integration) decade counter. It contains 4 master slave flip flops internally connected to provide MOD-2 i.e. divide by 2 and MOD-5 i.e. divide by 5 counters. MOD-2 and Mod-5 counters can be used independently or in cascading.

It is a 4-bit ripple type decade counter. The device consists of 4-master slave flip flops internally connected to provide a divide by two and divide by 5 sections. Each section has a separate clock i/p to initiate state changes of the counter on the high to low clock transition.

Since the o/p from the divide by 2 section is not internally connected to the succeeding stages. The device may be operated in various counting modes. In a BCD counter the CP_1 input must be externally connected to Q_A o/p. The CP_0 i/p receives the incoming count producing a BCD count sequence. It is also provided with additional gating to provide a divide by 2 counter and binary counter for which the count cycle length is divide by 5. The device may be operated in various counting modes.

There are 2 reset inputs $R_0(1)$ and $R_0(2)$ both of which need to be connected to the 'logic 1' for clearing all flip flops. Two set inputs $R_g(1)$ and $R_g(2)$ when connected to logic 1 are used for setting counter to 1001 (BCD 9).

Pin out of IC 7490:

Basic internal Structure of IC 7490:

Digital Laboratory DYPCOE 1 / 11

Function Table of MOD-2 counter:

Input A clock	Output	Count
↓	0	0
+	1	1

Function Table of MOD-5 counter:

InputB clock	Output			
	QD	QC	QB	Count
+	0	0	0	0
\	0	0	1	1
+	0	1	0	2
\	0	1	1	3
+	1	0	0	4

Digital Laboratory DYPCOE 2 / 11

Design of MOD-10 counter using IC 7490:

The QA o/p the first flip flop is connected to the input B which is clock i/p of internal MOD-5 ripple counter. Due to cascading of Mod-2 and Mod-5 counters, the overall configuration the decade counters count from 0000 to 1001. After 1001 mod-5 resets to 0000 and next count after 1001 is 0000.

When QA o/p is connected to B i/p, we have the Mod-2 counter followed by Mod-5 counter. The count sequence obtained is shown in the table. It may be noted that QA changes from 0 to 1 the state of Mod-5 counter doesn't change, whereas when QA changes from 1 to 0 the Mod-5 counter goes to the next state.

Logic DiagramMOD-10 counter using IC 7490:

5. Modulus n Counter

Digital Laboratory DYPCOE 3 / 11

Function table:

I/p clock	Output					
	QD	QC	QB	QA	Count	
↓	0	0	0	0	0	
↓	0	0	0	1	1	
1	0	0	1	0	2	
1	0	0	1	1	3	
1	0	1	0	0	4	
↓	0	1	0	1	5	
↓	0	1	1	0	6	
↓	0	1	1	1	7	
↓	1	0	0	0	8	
<u></u>	1	0	0	1	9	

5. Modulus n Counter

Digital Laboratory DYPCOE 4 / 11

Timing diagram of mod10:

Design of Mod-7 Counter using IC 7490:

Mod-7 counter counts through seven states from 0 to 6 counters and it should reset as soon as the count becomes 7. The o/p of reset logic should be 1 corresponding to invalid states. The reset logic o/p should be applied to pin 2 and 3.

Truth Table of Reset Logic:

QD	QC	QB	QA	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0

Digital Laboratory DYPCOE 5 / 11

0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

Logic Diagram Mod 7 Counter using IC 7490:

Digital Laboratory DYPCOE 6 / 11

Function table:

I/p clock	Output				
l' p clock	Output				
	QD	Count			
	0	0	0	0	0
 ↓	0	0	0	0	0
	0	0	0	1	1
 	0	0	1	0	2
	0	0	1	1	3
▼					
↓	0	1	0	0	4
1	0	1	0	1	5
V	0	1	1	0	6
↓	U	1	1	0	U

Timing diagram of mod7:

Design of Mod-99 using IC 7490:

For Mod-99 two IC 7490's will be required. Hence to implement a divide by 99 counter we have to use two decade counters IC's. A divide by 99 counter counts 99 states from 0 to 98

Digital Laboratory DYPCOE 7 / 11

and the counter should reset as soon as the count becomes 99. So in order to reset the counter of 99 connect the Q o/p which are equal to 1 in the count of 99 to an 'And' gate & then connect and o/p to the reset i/p of both IC's.

Conclusion: Thus we have Designed MOD -100 using IC 7490

FAQs:

- What do you mean modulus counter?
 It represents the number of possible states of counter.
- 2. How will you use the 7490 IC to design symmetrical divide by 10 frequency counter?

 The divide by 5 circuit followed by divide by 2 circuit will give symmetrical output.
 - 1. Where counters are used? Give real life example of counter.

Digital Laboratory DYPCOE 8 / 11

Digital Laboratory DYPCOE 9 / 11

Digital Laboratory DYPCOE 10 / 11