1 Bayes Network

Naive Bayes Effects are conditionally independent given a cause. **Bayesian network** (G,P): DAG with cond. prob. dist. $P(X_s|Pa_{X_s})$ (G,P) defines joint distribution $P(X_{1:n}) = \prod_{i} P(X_i|Pa_{X_i})$.

Specifying a BN Variables X_1, \dots, X_n . Pick order. For all $i \in [n]$ find 1. min. subset $A \subseteq \{X_1, \dots, X_{i-1}\}$ s.t. $X_i \perp X_{\bar{A}} | X_A$. Specify/learn $P(X_i|A)$.

BN defined this way are sound. Ordering matters a lot for compact

Active Trails If for all consecutive triplets X,Y,Z.

X and Y d-separated by Z iff no active trail exists with observations Z. Implies c.i.: d-sep $(X;Y|Z) \Rightarrow X \perp Y|Z$.

2 Inference

Typical Queries Cond. Distr., MPE (argmax_{e,b,a} P(e,b,a|J=t, M = f), MAP (argmax_eP(e|J = t, M = f))

2.1 Exact Inference

Variable Elimination

- Given BN and Query P(Q|E=e) (E=evidence variables)
- Choose an ordering of $X_1,...,X_n$
- Set up initial factors: $fi = P(X_i|P_{ai})$
- For $i=1:n, X_i \in X \setminus \{Q,E\}$
- 1. Collect and multiply all factors f that include X_i
- 2. Generate new factor by marginalizing out X_i
- 3. Add g to set of factors, $g = \sum_{x_i} \prod_i f_i$
- Renormalize P(q,e) to get $P(q|e) = \frac{1}{\sum_{e} P(q,e)} P(q,e)$

Variable Elimination for Polytrees

Polytree: A DAG is a polytree iff dropping edge dir. \rightarrow tree

- Pick root
- Orient edges towards the root
- Eliminate in topological ordering (descendants before parents **Factor Graph** of BN is bipartite graph with variables on one side and factors on the other.

Sum-Product / Belief Propagation Algorithm

- Initialize all messages as uniform distribution
- Until converged do
- 1. Pick some ordering on the factor graph edges (+directions)
- 2. Update messages according to this ordering

Messages from variable v to factor u:

$$\mu_{v \to u}^{(t+1)}(x_v) = \prod_{u' \in N(v) \setminus \{u\}} \mu_{u' \to v}^{(t)}(x_v)$$

Messages from factor u to variable v:

$$\mu_{u \to v}^{(t+1)}(x_v) = \sum_{x_u \sim x_v} f_u(x_u) \prod_{v' \in N(u) \setminus \{v\}} \mu_{v' \to u}^{(t)}(x_{v'})$$

3. Break once all messages change by at most ϵ

Intention: $\hat{P}(X_v = x_v) \propto \prod_{u \in N(v)} \mu_{u \to v}(x_v)$

$$\hat{P}(X_u = x_u) \propto f_u(x_u) \prod_{v \in N(u)} \mu_{v \to u}(x_u)$$

Belief Propagation on Trees (converges in two rounds)

- Factor graph of polytree is a tree!
- Choose one node as root
- Send messages from leaves to root, and from root to leaves

Variable Elimination for MPE

- Given BN and evidence E=e
- Choose an ordering of $X_1,...,X_n$
- Set up initial factors: $f_i = P(X_i|Pa_i)$
- For $i=1:n,X_i\notin E$
- 1. Collect and multiply all factors f_i that include X_i
- 2. Generate new factor by maximizing out $X_i, q_i = \max_{x_i} \prod_i f_i$
- 3. Add q to set of factors
- For $i=n:-1:1, X_i \notin E: \hat{x_i} = \operatorname{argmax}_{x_i} g_i(x_i, \hat{x}_{i+1:n})$

Example

```
\operatorname{argmax}_{e,b,a} P(e,b,a|J,M) = \operatorname{argmax}_{e,b,a} \stackrel{\checkmark}{\times} P(e,b,a,J,M)
= \operatorname{argmax}_{e,b,a} P(e)P(b)P(a|e,b)P(J|a)P(M|a)
= \operatorname{argmax}_{a} P(J|a) P(M|a) \operatorname{argmax}_{e} P(e) \operatorname{argmax}_{b} P(b) P(a|e,b)
```

$$a^* = \operatorname{argmax}_a P(J|a) P(M|a) g_e(a)$$

 $e^* = \operatorname{argmax}_e P(J|a^*) P(M|a^*) P(e) g_b(a^*,e)$

Max-product Message Passing on Factor Graphs Messages from variable v to factor u:

$$\mu_{v \to u}^{(t+1)}(x_v) = \prod_{u' \in N(v) \setminus \{u\}} \mu_{u' \to v}^{(t)}(x_v)$$

Messages from factor u to variable v:

$$\mu_{u \to v}^{(t+1)}(x_v) = \max_{x_u \sim x_v} f_u(x_u) \prod_{v' \in N(u) \setminus \{v\}} \mu_{v' \to u}^{(t)}(x_{v'})$$

Retrieving MAP From Max-Product

- Define max-marginals: $P_{max}(X_v = x_v) = \max_{x \sim x_v} P(x)$
- For tree factor graphs, max-product computes max-marginals: $P_{max}(X_v = x_v) \propto \prod_{u \in N(v)} \mu_{u \to v}(x_v)$
- Can retrieve MAP sol. from these (must be careful with ties)

2.2 Approximate Inference

Problem: if BN contains loops. Loopy belief propagation will in general not converge \rightarrow Sampling Based Inference

Monte Carlo Sampling from a BN (forward Sampling)

- Sort variables in topological ordering $X_1,...,X_n$
- For i=1 to n do: Sample $xi \sim P(X_i|X_1=x_1,...,X_{i-1}=x_{i-1})$

Computing Probabilities Through Sampling

Marginals:
$$P(w=t) \approx \frac{1}{N} \sum_{i=1}^{N} [w=t](x^{(i)} = \frac{Count(w=t)}{N})$$

Conditionals:
$$P(C=t|W=t) = \frac{P(C=t,W=t)}{P(w=t)} \approx \frac{Count(W=t,C=t)}{Count(W=t)}$$

Rejection Sampling "Normalen Würfel nehmen um Verteilung von 1..5 zu samplen, 6 wird jeweils ignoriert"

$$\hat{P}(X_A = x_A | X_B = x_B) \approx \frac{Count(x_a, x_B)}{Count(x_B)}$$

Throw away samples that disagree with x_B problematic if x_B is

Markov Chain A MC is sequence of RVs, $X_1,...,X_N$ with Prior $P(X_1)$ & transition probabilities $P(X_{t+1}|X_t)$ independent of t. Ergodic: $\exists t \in \mathbb{N}$ s.t. every state is reachable from every state in exactly t steps. Then it has uniq., positive, stat. distribution.

 \exists uniq. stat. $\pi(x) > 0$ s.t. $\forall x \lim_{N \to \infty} P(X_N = x) = \pi(x)$ ind. of $P(X_1)$.

Ergodic Thm: $\lim_{N\to\infty} \frac{1}{N} \sum_i f(x_i) = \sum_{x\in D} \pi(x) f(x)$, where D finite state space.

Sampling from MC Sample $x_1 \sim P(X_1), x_2 \sim P(X_2|X_1 =$ $x_1, \dots, x_N \sim P(X_N | X_{N-1} = x_{N-1})$. If simulated "sufficiently long", sample X_N is drawn "very close" to the stationary dist. π .

Algorithm 1: Gibbs Sampling: Random Order

Start with initial assignment \mathbf{x} to all variables

Fix observed variables X_B to their observed values \mathbf{x}_B

for $t \leftarrow 1$ to ∞ do | Pick a variable i uniformly at random from $\{1,...,n\} \backslash B$ Set \mathbf{v}_i =values of \mathbf{x} , except for x_i Update x_i by sampling from $P(X_i|\mathbf{v}_i)$

Satisfies detailed balance equation! For unnormalized Q $\forall x, x' : \frac{1}{Z}Q(x)P(x'|x) = \frac{1}{Z}Q(x')P(x|x')$

Algorithm 2: Gibbs Sampling: Practical Variant

Start with initial ass. $\mathbf{x}^{(0)}$ to all (except the obs.) vars Fix observed variables X_B to their observed values x_B

for $t \leftarrow 1$ to ∞ do $\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)}$ (Load the previous sample) foreach variable X_i (except those in B) do

Construct evidence: \mathbf{v}_i = values of $\mathbf{x}^{(t)}$, except for x_i , since this is the variable that we want to sample. Sample $x_i^{(t)} \sim P(X_i | \mathbf{v}_i)$ (Update the value of the sample)

Output the sample $\mathbf{x}^{(t)}$

No detailed balance, but also has correct stationary distribution.

Ex. for Michi $P(C|S,R,W=1) = \frac{P(C,S,R,W=1)}{\sum_{c'} P(C=c',S,R,W=1)}$.

Metropolis Hastings MCMC Algorithm

- 1. Proposal distribution R(X'|X)
- Given $X_t = x$, sample "proposal" $x' \sim R(X'|X=x)$
- Note: The performance of the algorithm will strongly depend on R. 2. Acceptance distribution:
- Suppose $X_t = x$
- With probability $\alpha = \min \left\{ 1, \frac{Q(x')R(x|x')}{Q(x)R(x'|x)} \right\}$ set $X_{t+1} = x'$
- With prob. $1-\alpha$, set $X_{t+1}=x$ (again to the current/same state).

2.3 Temporal models

Markov Chains

Markov assumption: $x_{t+1} \perp x_{1:t-1} | x_t \forall t$

Stationary asm.: $P(x_{t+1} = x | x_t = x') = P(x_{t+1} | x_{t'} = x') \forall t, t'$

Hidden Markov Model/ Kalman Filters

 $X_1,...,X_T$: Unobserved (hidden) variables (called states) $Y_1,...,Y_T$: Observations

HMMs: X_i categorical, Y_i categorical (or arbitrary) Kalman Filters: X_i, Y_i Gaussian distributions

Inference Tasks Filtering: $P(X_t|y_{1:t})$; Prediction: $P(X_{t+T}|y_{1:t})$ Smoothing: $P(X_t|y_{1:T})$ for $1 \le t < T$; MPE: $\operatorname{argmax}_{X_{1:T}} P(X_{1:T} | y_{1:T})$

Bayesian Filtering Suppose we already have computed $P(X_t|y_{1,...t})|\mathbf{v}^{\pi} = \mathbf{r}^{\pi} + \gamma \mathbf{T}^{\pi} \mathbf{v}^{\pi} \iff \mathbf{v}^{\pi} = (\mathbf{I} - \gamma \mathbf{T}^{\pi})^{-1} \mathbf{r}^{\pi}$. now want to efficiently compute $P(X_{t+1}|y_{1,\dots,t+1})$

- Start with $P(X_1)$
- At time t (Assume we have: $P(X_t|y_{1,\dots,t-1})$
- Conditioning: $P(X_t|y_{u1:t}) = \frac{1}{7}P(X_t|y_{1:t-1})P(y_t|X_t)$
- $Z = \sum P(x, y_t | y_{1:t-1})$
- Prediction: $P(X_{t+1}|y_{y_1:t}) = \sum_{x_t} P(X_t|y_{1:t})P(X_{t+1}|x_t)$

Computation is recursive (cost independent of t)!

Particle filtering Approximate the posterior at each time by samples (particles), which are propagated and reweighted over time True distribution (possibly continuous): P(x), N i.i.d. samples: $x_1,...x_N$; Represent: $P(x) \approx \frac{1}{N} \sum_{i=1}^N \delta_{x_i}(x)$. E.g. $\delta_{x_i}(x) := x_i = x$

- Suppose $P(X_t|y_{1:t}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i,t}$ (measurement)
- Prediction: Propag. each particle: $x_i' \sim P(X_{t+1}|x_{i,t})$ (movement)
- Conditioning: Weigh particles: $w_i = \frac{1}{Z} P(y_{t+1} | x_i')$
- Conditioning: Resample N particles: $x_{i,t+1} \sim \frac{1}{N} \sum_{i=1}^{N} w_i \delta_{x'}$

2.4 Probabilistic planning

How should we control the robot to maximize reward?

Markov Decision Process (MDP) – "controlled Markov chain" States $X = \{1, ..., n\}$, actions $A = \{1, ..., m\}$, transition probabilities P(x'|x,a) = Pr[next state = x'|Action a in state x)] and reward function r(x,a).

Induced MC by Policy A deterministic policy π induces a Markov Chain $X_0, X_1, ..., X_t, ...$ with transition probabilities

$$P(X_{t+1}=x'|X_t=x)=P(x'|x,\pi(x))$$

Modes Finite horizon (T timesteps) or discounted rewards (∞ timesteps but discount factor γ).

Value of policy deterministic (fixed) policy $\pi: X \to A$.

$$V_{\pi}(x) = J(\pi|X_0 = x) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(X_t, \pi(X_t)) | X_0 = x\right]$$

= $\sum_{x'} P(x'|x, \pi(x)) [r(x, \pi(x), x') + \gamma V_{\pi}(x')].$
= $r(x, \pi(x)) + \gamma \sum_{x'} P(x'|x, \pi(x)) V_{\pi}(x')$

Given π , compute V_{π} exactly by solving linear system!

Greedy policy w.r.t. V

$$\begin{split} \pi_g(x) &= \mathrm{argmax}_a \sum_{x'} & \mathrm{P}(x'|x,a) (r(x,a,x') + \gamma V_\pi(x')) \\ &= \mathrm{argmax}_a r(x,a) + \gamma \sum_{x'} & \mathrm{P}(x'|x,\pi(x)) V_\pi(x')). \end{split}$$

Bellmann Eq. Policy opt. \iff greedy w.r.t. its ind. val. f. $V^*(x) = \max_a [r(x,a) + \gamma \sum_{x'} P(x'|x,a) V^*(x')].$

Recursion of Value Function

$$\mathbf{v}^{\pi} = \begin{pmatrix} V^{\pi}(1) \\ V^{\pi}(2) \\ \vdots \\ V^{\pi}(n) \end{pmatrix}, \quad \mathbf{T}^{\pi} = \begin{pmatrix} P(1|1,\pi(1)) & \cdots & P(n|1,\pi(1)) \\ P(1|2,\pi(2)) & \cdots & P(n|2,\pi(2)) \\ \vdots & \ddots & \vdots \\ P(1|n,\pi(n)) & \cdots & P(n|n,\pi(n)) \end{pmatrix}, \quad \mathbf{r}^{\pi} = \begin{pmatrix} r(1,\pi(1)) \\ r(2,\pi(2)) \\ \vdots \\ r(n,\pi(n)) \end{pmatrix}.$$

$$\mathbf{v}^{\pi} = \mathbf{r}^{\pi} + \gamma \mathbf{T}^{\pi} \mathbf{v}^{\pi} \iff \mathbf{v}^{\pi} = (\mathbf{I} - \gamma \mathbf{T}^{\pi})^{-1} \mathbf{r}^{\pi}.$$

Algorithm 3: Policy Iteration

Start with an arbitrary (e.g., random) policy π while not converged do

(2) Compute value function $V^{\pi}(x)$ (solve LSE)

(1) Compute greedy policy π_G w.r.t. V^{π}

 $\pi \leftarrow \pi_G$ (use the current greedy policy for the next iter.)

Converged when $\pi = \pi_G$. Guaranteed to monotonically improve, thus converging to an optimal policy in poly. steps. Iteration: $O(n^3)$ -time.

Algorithm 4: Value Iteration (usualy learned off-policy)

for each
$$x \in \mathcal{X}$$
 do $V_0(x) \leftarrow \max_a r(x,a)$ (Init)

Iteratively compute value function:

$$\begin{array}{c|c} \textbf{for } t \leftarrow 1 \textbf{ to } \infty \textbf{ do} \\ \textbf{for each } x \in \mathcal{X} \textbf{ do} \\ \textbf{for each } a \in \mathcal{A} \textbf{ do} \\ & & L Q_t(x,a) = r(x,a) + \gamma \sum_{x'} P(x'|x,a) V_{t-1}(x') \\ & & V_t(x) \leftarrow \max_a Q_t(x,a) \text{ (so called "Bellman Update")} \\ \textbf{if } \|\mathbf{v}_t - \mathbf{v}_{t-1}\|_{\infty} < \epsilon' \textbf{ then} \\ & L \textbf{ break} \end{array}$$

Then choose greedy policy π_G w.r.t. V_t

Conv. to ϵ -optimal policy in poly. steps. Iteration: $O(n \cdot m \cdot a)$ -time.

3 Learning BN

Learn from i.i.d. data: 1.) Learning structure (conditional independencies) 2.) Learning parameters (CPDs)

3.1 Parameter learning

$$P(X_1,...,X_N) = \prod_{i=1}^{n} P(X_i|Pa_i,\theta_i|Pa_i)$$

Given: BN structure G & Data set D of complete observations For each variable X_i estimate: $\hat{\theta}_{X_i|Pa_i} = \frac{Count(\hat{X}_i, Pa_i)}{Count(Pa_i)}$ (MLE)

We can also use a Beta prior (A priori knowledge).

3.2 Structure learning

Score based structure learning: scoring function S(G;D). Quantifies, for each structure G the fit to the data D.

 $G^* = \operatorname{argmax}_G S(G; D); \text{ MLE: } S(G; D) = \operatorname{max}_{\theta} \log P(D | \theta, G)$

 $\log P(D|\theta_{G, \text{ MLE for G}}, G) = N \sum_{i=1}^{n} \hat{I}(X_i; Pa_i) + c.$ Problem: Optimal sol. for MLE is always the fully connected graph.

Mutual Inf (MI)
$$I(X_i;X_j) = \sum_{X_i,X_j} P(X_i,X_j) \log \frac{P(x_i,x_j)}{P(x_i)P(x_j)} \ge 0$$

Empir. MI
$$\hat{P}(X_i, X_j) = \frac{\#(X_i, X_j)}{N}, \quad \hat{I}(X_i; X_j)$$

$$\sum\nolimits_{x_i,x_j} {{{\hat{\mathbf{P}}}(x_i,\!x_j)}{\log \frac{{{{\hat{\mathbf{P}}}(x_i,\!x_j)}}}{{{{\hat{\mathbf{P}}}(x_i)}{{\hat{\mathbf{P}}}(x_j)}}}}}$$

Entropy $H(X_i) = -\sum_{x} P(x_i) \log P(x_i) = \mathbb{E}_{x_i} [-\log P(x_i)].$

Properties of MI $I(\overline{X_i}; X_i) = 0$ iff X_i, X_i independent. Symmetric. $I(X_A; X_B) = H(X_A) - H(X_A|X_B)$. $B \subseteq C \implies I(X_A; X_B) \le$ $I(X_A;X_C)$.

Bayesian Information Criterion (BIC) (Regularizing) $S_{BIC}(G)$ = $|\sum_{i=1}^{n} \hat{I}(X_i; Pa_i) - \frac{\log N}{2N} |G|$ where |G| is # of parameters of G, n is # of variables, N is # of training examples.

Chow-Liu algorithm Given samples of $X_1,...,X_n$. Find BN with exactly one parent per variable. Gives opt. tree w.r.t. BIC.

- For each pair X_i, X_i of variables compute $P(x_i, x_i)$
- Compute Mutual Information $\hat{I}(X_i, X_i)$
- Take graph K_n , weight edge $(X_i, X_i) = \hat{I}(X_i, X_i)$
- Find maximum spanning tree of graph \rightarrow undirected tree
- Pick any variable as root and orient the edges away using BFS

4 Reinforcement Learning

"Learn mapping from (seq. of) actions to rewards"

4.1 Passive Reinforcement

Execute a set of trials in the environment using (fixed) policy π Reduction to a supervised problem. But does not exploit that values of states are not independent! (Bellman)

4.2 Active Reinforcement Learning

Not interested in fixed policy; need to decide action in every state. Fundamental Dilemma: Exploration-Exploitation.

- Always pick a random action will eventually estimate all prob and rewards. May do extremely poorly.
- Always pick the best action according to current knowledge quickly get some rewards but can get stuck in suboptimal action.

4.2.1 Model-based RL

Learn the MDP - optimize policy based on MDP.

Learning the MDP

Estimate transitions: $\hat{P}(X_{t+1}|X_t,A_t) = \frac{Count(X_{t+1},X_t,A_t)}{Count(X_t,A_t)}$

Estimate rewards: $\hat{r}(X=x,A=a) = \frac{\sum_{t:x_t=x,a_t=a}r_t}{Count(X=x,A=a)}$

 ϵ_t greedyWith probability ϵ_t : Pick random action; With probability $(1-\epsilon_t)$: Pick best action

 R_{max} Algorithm Init: $r(x,a) = R_{max}$. $P(x^*|x,a) = 1$ where x^* is a "fairy tale" state: $r(x^*,a) = r_{max} \forall a$ Choose optimal π according

Repeat: Execute Pi. $\forall (x,a) \in visited$. update r(x,a). Estimate P(x'|x,a). After "enough" rewards, recompute π according to r.P. Depends heavily on state space $O(|x|^3)$

4.2.2 Model-free RL

Estimate the value function directly.

Q-Learning $Q^*(x,a) = r(x,a) + \gamma \cdot \max_{a'} (Q^*(x',a'))$;

Algorithm Init Q matrix to zero (or R if optimistic).

- Select/Observe init state x
- Repeat until end state (restart after epoch):
- Select a according to policy (i.e. ϵ -greedy, or $\pi(x) =$ $\operatorname{argmax}_{a} Q(x,a)$).
- Observe new state x' and reward r(x,a,x').
- $Q^{(t+1)}(x, a) \leftarrow (1 \alpha_t)Q^{(t)}(x, a) + \alpha_t(r(x, a, x')) +$ $\gamma \max_{a'} Q^{(t)}(x',a')$
- $Q^{(t+1)}(x,a') \leftarrow Q^{(t)}(x,a') \forall a \neq a'$, remaining actions stay same.
- $Q^{(t+1)}(x'',a') \leftarrow Q^{(t)}(x'',a') \forall x'' \neq x$, remaining states stay same.

Depends on action space O(|a|) (matrix size), i.e. iteration time is in O(|a|).