Francesc Alted, Scott Prater PyTables User's Guide

Prater, Francesc Alted, Scott:

PyTables User's Guide

A hierarchical database for Python Release $0.8\,$

All rights reserved. © 2002, 2003, 2004 Francesc Alted, Scott Prater

Typeset by Francesc Alted, Scott Prater Day of print: 2004, January, 2th

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000, 2001, 2002, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

See more information about the terms of this license at: http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

Copyright Notice and Statement for AURA numarray software library

Copyright (C) 2001 Association of Universities for Research in Astronomy (AURA)

THIS SOFTWARE IS PROVIDED BY AURA "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AURA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

1	Intr	oduction 1
	1.1	Main Features
	1.2	The Object Tree
_		
2		allation 7
	2.1	Installation from source
		2.1.1 Prerequisites
		2.1.2 PyTables package installation
	2.2	Binary installation (Windows)
		2.2.1 Windows prerequisites
		2.2.2 PyTables package installation
3	Tuto	orials 11
J	3.1	Getting started
	5.1	3.1.1 Importing tables objects
		3.1.2 Declaring a Column Descriptor
		3.1.3 Creating a PyTables file from scratch
		3.1.4 Creating a new group
		3.1.5 Creating a new table
		3.1.6 Reading (and selecting) data in a table
		3.1.7 Creating new array objects
		3.1.8 Closing the file and looking at its content
	3.2	Browsing the <i>object tree</i> and appending to tables
		3.2.1 Traversing the object tree
		3.2.2 Setting and getting user attributes
		3.2.3 Getting object metadata
		3.2.4 Reading data from Array objects
		3.2.5 Appending data to an existing table
		3.2.6 And finally how to delete rows from a table
	3.3	Multidimensional table cells and automatic sanity checks
		3.3.1 Shape checking
		3.3.2 Field name checking
		3.3.3 Data type checking
4	T 91	D. f
4		cary Reference 31
	4.1	tables variables and functions
		4.1.1 Global variables
		4.1.2 Global functions
	4.2	The File class
		4.2.1 File instance variables
		4.2.2 File methods
		4.2.3 File special methods
	4.3	The Group class

		4.3.1 Group instance variables
		4.3.2 Group methods
		4.3.3 Group special methods
	4.4	The Leaf class
		4.4.1 Leaf instance variables
		4.4.2 Leaf methods
	4.5	The Table class
		4.5.1 Table instance variables
		4.5.2 Table methods
		4.5.3 Table special methods
		4.5.4 The Row class
	4.6	The Array class
		4.6.1 Array instance variables
		4.6.2 Array methods
		4.6.3 Array special methods
	4.7	The EArray class
		4.7.1 EArray instance variables
		4.7.2 EArray methods
	4.8	The VLArray class
		4.8.1 VLArray instance variables
		4.8.2 VLArray methods
		4.8.3 VLArray special methods
	4.9	The Unimplemented class
	4.10	The AttributeSet class
		4.10.1 AttributeSet instance variables
		4.10.2 AttributeSet methods
	4.11	Declarative classes
		4.11.1 The IsDescription class
		4.11.2 The Col class and its descendants
		4.11.3 The Atom class and its descendants
5	Opti	mization tips 53
	5.1	Taking advantage of Psyco
	5.2	Compression issues
	5.3	Shuffling (or how to make the compression even more efective)
	5.4	Informing PyTables about expected number of rows in tables
	5.5	Selecting an User Entry Point (UEP) in your tree
A	Supp	ported data types in PyTables 61
_		
В		ables File Format
	B.1	Mandatory attributes for a File
	B.2	Mandatory attributes for a Group
	B.3	Mandatory attributes, storage layout and supported datatypes for Leaves
		B.3.1 Table format
		B.3.2 Array format
		B.3.3 EArray format
		B.3.4 VLArray format

Chapter 1

Introduction

La sabiduría no vale la pena si no es posible servirse de ella para inventar una nueva manera de preparar los garbanzos (Wisdom isn't worth anything if you can't use it to come up with a new way to cook garbanzos).

> —A wise Catalan in "Cien años de soledad" Gabriel García Márquez

The goal of PyTables is to enable the end user to manipulate easily scientific data **tables** and **array** objects objects in a hierarchical structure. The foundation of the underlying hierarchical data organization is the excellent HDF5 library (see NCSA).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5 API, but only to provide a flexible, *very Pythonic* tool to deal with (arbitrarily) large amounts of data (typically bigger than available memory) in tables and arrays organized in a hierarchical and persistent disk storage structure.

A table is defined as a collection of records whose values are stored in *fixed-length* fields. All records have the same structure and all values in each field have the same *data type*. The terms *fixed-length* and strict *data types* may seem to be a strange requirement for an interpreted language like Python, but they serve a useful function if the goal is to save very large quantities of data (such as is generated by many internet services applications or scientific applications, for example) in an efficient manner that reduces demand on CPU time and I/O.

In order to emulate in Python records mapped to HDF5 C structs PyTables implements a special *meta-class* object so as to easily define all its fields and other properties. PyTables also provides a powerful interface to mine data in tables. Records in tables are also known in the HDF5 naming scheme as *compound* data types.

For example, you can define arbitrary tables in Python simply by declaring a class with name field and types information, such as in the following example:

```
class Particle(IsDescription):
   name
              = StringCol(16)
                                # 16-character String
    idnumber
             = Int64Col()
                                # Signed 64-bit integer
    ADCcount
             = UInt16Col()
                                # Unsigned short integer
    TDCcount
             = UInt8Col()
                                # unsigned byte
    grid_i
              = Int32Col()
                                # integer
                                # integer (equivalent to Int32Col)
    grid_j
              = IntCol()
    pressure = Float32Col(shape=(2,3)) # 2-D float array (single-precision)
              = FloatCol(shape=(2,3,4)) # 3-D float array (double-precision)
    energy
```

You then pass this class to the table constructor, fill its rows with your values, and save (arbitrarily large) collections of them to a file for persistent storage. After that, the data can be retrieved and post-processed quite easily with PyTables or even with another HDF5 application (in C, Fortran, Java or whatever language that provides a library to interface with HDF5).

Other important entities in PyTables are the *array* objects that are analogous to tables with the difference that all of their components are homogeneous. They come in different flavors, like *generic* (they provide a quick and fast way to deal with for numerical arrays), *enlargeable* (arrays can be extended in any single dimension) and *variable length* (each row in the array can have a different number of elements).

The next section describes the most interesting capabilities of PyTables.

1

1.1 Main Features

PyTables takes advantage of the powerful object orientation and introspection capabilities offered by Python to provide these features:

- Support for table entities: Allows the user to work with a large number of records, i.e. more than will fit into memory.
- *Appendable tables:* Supports adding records to already created tables. This can be done even between different Python sessions without copying the dataset or redefining its structure.
- Multidimensional table cells: You can declare a column to consist of general array cells as well as scalars, as the majority of relational databases allow.
- Support for numerical arrays: Numeric (see Ascher et al.) and numarray (see Greenfield et al.) arrays can be used as a useful complement of tables to store homogeneous table slices (such as selections of table columns).
- Enlargeable arrays: You can add new elements to existing arrays on disk in any dimension you want (but only one).
- *Variable length arrays*: The number of elements in these arrays can be variable from row to row. This provides a lot of flexibility when dealing with complex data.
- Supports a hierarchical data model: Allows the user to clearly structure all the data. PyTables builds up an object tree in memory that replicates the underlying file data structure. Access to the file objects is achieved by walking through and manipulating this object tree.
- Support of files bigger than 2 GB: PyTables automatically inherits this capability from the underlying HDF5 library (assuming your platform supports the C long long integer, or, on Windows, __int64).
- Ability to read/modify generic HDF5 files: PyTables can access a wide range of objects in generic HDF5 files, like compound type datasets (that can be mapped to Table objects), homogeneous datasets (that can be mapped to Array objects) or variable length record datasets (that can be mapped to VLArray objects). Besides, if a dataset is not supported, it will be mapped into a special UnImplemented class (see 4.9), that will let the user see that the data is there, although it would be unreachable (still, you will be able to access the attributes and some metadata in the dataset). With that, PyTables probably can access and modify most of the HDF5 files out there.
- Data compression: Supports data compression (using the Zlib, LZO and UCL compression libraries) out of the box. This is important when you have repetitive data patterns and don't want to spend time searching for an optimized way to store them (saving you time spent analyzing your data organization).
- *High performance I/O*: On modern systems storing large amounts of data, tables and array objects can be read and written at a speed only limited by the performance of the underlying I/O subsystem. Moreover, if your data is compressible, even that limit is surmountable!
- Architecture-independent: PyTables has been carefully coded (as has HDF5 itself) with little-endian/big-endian byte orderings issues in mind. In principle you can write a file on a big-endian machine (like a Sparc or MIPS) and read it on other little-endian machine (like an Intel or Alpha) without problems. In addition, it has been tested successfully with 64 bit platforms (Intel-64, MIPS, UltraSparc).

1.2 The Object Tree

The hierarchical model of the underlying HDF5 library allows PyTables to manage tables and arrays in a tree-like structure. In order to achieve this, an *object tree* entity is *dynamically* created imitating the HDF5 structure on disk. The HDF5 objects are read by walking through this object tree. You can get a good picture of what kind data is kept in the object by examining the *metadata* nodes.

The different nodes in the object tree are instances of PyTables classes. There are several types of classes, but the most important ones are the Group and the Leaf classes. Group instances (referred to as *groups* from now on) are a grouping structure containing instances of zero or more groups or leaves, together with supplementary metadata. Leaf instances (referred to as *leaves*) are containers for actual data and cannot contain further groups or leaves. The Table, Array, EArray, VLArray and UnImplemented classes are descendents of Leaf, and inherit all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix filesystem. As is the case with Unix directories and files, objects in the object tree are often described by giving their full (or absolute) path names. In PyTables this full path can be specified either as string (such as '/subgroup2/table3') or as a complete object path written in a format known as the *natural name* schema (such as file.root.subgroup2.table3).

Support for *natural naming* is a key aspect of PyTables. It means that the names of instance variables of the node objects are the same as the names of the element's children¹. This is very *Pythonic* and intuitive in many cases. Check the tutorial section 3.1.6 for usage examples.

You should also be aware that not all the data present in a file is loaded into the object tree. Only the *metadata* (i.e. special data that describes the structure of the actual data) is loaded. The actual data is not read until you request it (by calling a method on a particular node). Using the object tree (the metadata) you can retrieve information about the objects on disk such as table names, titles, name columns, data types in columns, numbers of rows, or, in the case of arrays, the shapes, typecodes, etc. of the array. You can also search through the tree for specific kinds of data then read it and process it. In a certain sense, you can think of PyTables as a tool that applies the same introspection capabilities of Python objects to large amounts of data in persistent storage.

To better understand the dynamic nature of this object tree entity, let's start with a sample PyTables script (you can find it in examples/objecttree.py) to create a HDF5 file:

```
from tables import *
class Particle(IsDescription):
    identity = StringCol(length=22, dflt=" ", pos = 0) # character String
    idnumber = Int16Col(1, pos = 1) # short integer
            = Float32Col(1, pos = 1) # single-precision
# Open a file in "w"rite mode
fileh = openFile("objecttree.h5", mode = "w")
# Get the HDF5 root group
root = fileh.root
# Create the groups:
group1 = fileh.createGroup(root, "group1")
group2 = fileh.createGroup(root, "group2")
# Now, create a table in the "group0" group
array1 = fileh.createArray(root, "array1", ["string", "array"], "String array")
# Create 2 new tables in group1
table1 = fileh.createTable(group1, "table1", Particle)
table2 = fileh.createTable("/group2", "table2", Particle)
# Create the last table in group2
array2 = fileh.createArray("/group1", "array2", [1,2,3,4])
# Now, fill the tables:
for table in (table1, table2):
    # Get the record object associated with the table:
    row = table.row
```

 $^{^{1}}$ I got this simple but powerful idea from the excellent Objectify module by David Mertz (see Mertz)

Figure 1.1: An HDF5 example with 2 subgroups, 2 tables and 1 array.

```
# Fill the table with 10 records
for i in xrange(10):
    # First, assign the values to the Particle record
    row['identity'] = 'This is particle: %2d' % (i)
    row['idnumber'] = i
    row['speed'] = i * 2.
    # This injects the Record values
    row.append()

# Flush the table buffers
    table.flush()

# Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()
```

This small program creates a simple HDF5 file called objecttree.h5 with the structure that appears in figure 1.1. When the file is created, metadata in the object tree is updated in memory while the actual data is saved disk. When you close the file the object tree is no longer available. However, when you reopen this file the object tree will be reconstructed in memory from the metadata on disk, allowing you to work with it in exactly the same way as when you originally created it.

In figure 1.2 you can see an example of the object tree created when the above objecttree.h5 file is read (in fact, such an object is always created when reading any supported generic HDF5 file). It's worthwhile to take your time to understand it². It will help you to avoid programming mistakes.

² Bear in mind, however, that this diagram is **not** a standard UML class diagram; it is rather meant to show the connections between the PyTables objects and some of its most important attributes and methods.

Figure 1.2: A PyTables object tree example.

Chapter 2

Installation

T'adones, company, no volen arguments, usen la força, t'adones, amic. T'adones, company, que hem de sortir al carrer junts, molts, com més millor, si no volem perdre-ho tot, t'adones, amic.

-Raimon in the song "T'adones, amic"

The Python Distutils are used to build and install PyTables, so it is fairly simple to get the application up and running. Also, a binary distribution is available for Windows (see section 2.2). In addition, packages are starting to appear in different Linux distributions (like for instance RockLinux or Debian).

2.1 Installation from source

These instructions are for both Unix/Linux and Windows systems. If you are using Windows, it is assumed that you have a recent version of MS Visual C++ (>= 6.0) compiler installed. A GCC compiler is assumed for Unix, but other compilers should work as well.

Extensions in PyTables have developed in Pyrex (see Ewing) and C language. You can rebuild everything from scratch if you have Pyrex installed, but this is not necessary, as the Pyrex compiled source is included in the distribution.

To compile PyTables you will need a recent version of the HDF5 (C flavor) library and the numarray (see Greenfield *et al.*) package. Although you won't need Numerical Python (see Ascher *et al.*) in order to compile PyTables, it is supported; you only need a reasonably recent version of it (>= 21.x) if you plan on using its methods in your applications. PyTables has been successfully tested with Numeric 21.3, 22.0 and 23.0. If you already have Numeric installed, the test driver module will detect it and will run the tests for Numeric automatically.

2.1.1 Prerequisites

First, make sure that you have HDF5 1.6.2 and numarray 0.8 or higher installed (I'm using HDF5 1.6.2 and numarray 0.8 currently). If you don't, you can find them at http://hdf.ncsa.uiuc.edu/HDF5 and http://www.pfdubois.com/numpy.

Compile and install these packages (but see section 2.2.1 for instructions on how to install precompiled binaries if you are not willing to compile the prerequistes on Windows systems).

For compression (and possibly improved performance), you will need to install the Zlib (see Gailly and Adler), which is also required by HDF5 as well. You may also optionally install the excellent LZO and UCL compression libraries (see Oberhumer and section 5.2).

Unix setup.py will detect HDF5, Zlib, LZO or UCL libraries and include files under /usr or /usr/local; this will cover most manual installations as well as installations from packages. If setup.py can't find libhdf5 or libz (or liblzo or libucl that you may wish to use) or if you have several versions of a library installed and want to use a particular one, then you can set the path to the resource in the environment, setting the values of the HDF5_DIR, ZLIB_DIR, LZO_DIR or UCL_DIR environment variables to the path to the particular resource. You may also specify the locations of the resource root directories on the setup.py command line. For example:

```
--zlib=/stuff/zlib-1.2.1
--ucl=/stuff/ucl-1.0.1
```

If your HDF5 library was built as a shared library not in the runtime load path, then you can specify the additional linker flags needed to find the shared library on the command line as well. For example:

```
--lflags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.6.2/lib"
or perhaps just
--rpath="/stuff/hdf5-1.6.2/lib"
```

Check your compiler and linker documentation as well as the Python Distutils documentation for the correct syntax.

It is also possible to link specific libraries with the standard Distutils --libraries switch:

```
--libraries="-lhdf5-1.6.5"
--libraries="-lhdf5-1.6.5 -lnsl"
```

Windows Once you have installed the prerequisites, setup.py needs to know where the necessary library *stub* (.lib) and *header* (.h) files are installed. Set the following environment variables:

- **HDF5_DIR** Points to the root HDF5 directory (where the include/ and dll/ directories can be found). *Mandatory*.
- **ZLIB_DIR** Points to the root ZLIB directory (where the include/ and lib/ directories can be found). *Mandatory*.
- **LZO_DIR** Points to the root LZO directory (where the include/ and lib/ directories can be found). *Optional*.
- **UCL_DIR** Points to the root UCL directory (where the include/ and lib/ directories can be found). *Optional*.

For example:

```
set HDF5_DIR=c:\stuff\5-162-win2k\c\release
set ZLIB_DIR=c:\stuff\zlib121
set LZO_DIR=c:\stuff\lzo-1-07
```

Or, you can pass this information to setup.py by setting the appropriate arguments on the command line. For example:

```
--hdf5=c:\stuff\5-162-win2k\c\release --zlib=c:\stuff\zlib121 --lzo=c:\stuff\lzo-1-07 --ucl=c:\stuff\ucl-1-01
```

2.1.2 PyTables package installation

Once you have installed the HDF5 library and numarray packages, you can proceed with the PyTables package itself:

1. Run this command from the main PyTables distribution directory, including any extra command line arguments as discussed above:

```
python setup.py build_ext --inplace
```

Depending on the compiler flags used when compiling your Python executable, there may appear many warnings. Don't worry, almost all of them are caused by variables declared but never used. That's normal in Pyrex extensions.

2. To run the test suite, change into the test directory and execute this command:

Unix In the shell sh and its variants:

```
PYTHONPATH=..
export PYTHONPATH
python test_all.py
```

Windows Open a DOS terminal and type:

```
set PYTHONPATH=..
python test_all.py
```

If you would like to see verbose output from the tests simply add the flag -v and/or the word verbose to the command line. You can also run only the tests in a particular test module. For example, to execute just the types test:

```
python test_types.py -v
```

If a test fails, please enable verbose output (the -v and verbose flags), run the failing test module again, and send back the output to developers so that we may continue improving PyTables.

If you run into problems because Python can't load the HDF5 library or other shared libraries:

Unix Try setting the LD_LIBRARY_PATH environment variable to point to the directory where the missing libraries can be found.

Windows Put the DLL libraries (hdf5dll.dll, zlib1.dll and, optionally, lzo.dll and ucl.dll) in a directory listed in your PATH environment variable. The setup.py installation program will print out a warning to that effect if the libraries can't be found.

3. To install the entire PyTables Python package, change back to the root distribution directory and run the following command (make sure you have sufficient permissions to write to the directories where the PyTables files will be installed):

```
python setup.py install
```

Of course, you will need super-user privileges if you want to install PyTables on a system-protected area. You can select, though, a different place to install the package using the --prefix flag:

```
python setup.py install --prefix="/home/myuser/mystuff"
```

Have in mind, however, that if you use the --prefix flag to install in a non-standard place, you should properly setup your PYTHONPATH environment variable, so that the python interpreter would be able to find your new PyTables installation.

You have more installation options available in distutils package. Issue a:

```
python setup.py install --help
```

for more information on that subject.

That's it! The next chapter describes how to use PyTables.

2.2 Binary installation (Windows)

This section is only intended for installing precompiled binaries on Windows platforms. If you're installing on Unix, or want to compile PyTables for Windows, jump to the section 2.1.

2.2.1 Windows prerequisites

First, make sure that you have HDF5 1.6.2 or higher and numarray 0.8 or higher installed (I'm using HDF5 1.6.2 and numarray 0.8 currently). If don't, you can find them at http://hdf.ncsa.uiuc.edu/HDF5 and http://sourceforge.net/projects/numpy/. Download the binary packages (or sources, if you want to compile everything yourself) and install them.

For the HDF5 it should be enough to manually copy the hdf5dll.dll, zlib1.dll and szipdll.dll files to a directory in your PATH environment variable (for example C:\WINDOWS\SYSTEM).

Caveat: When downloading the binary distribution for HDF5 libraries, select one compiled with MSVC 6.0, such as the package 5-162-win2k.zip, regardless of whether you are using Win2k or WinXP (it should work fine on both). The file 5-162-winxp-net.zip was compiled with the MSVC 7.0 (aka ".NET") and does not work well with the PyTables binary (which has been generated with MSVC 6.0). You have been warned!

Normally, the NCSA team generate binaries that links against the Zlib binary libraries that can be found at: http://www.gzip.org/zlib/. Please, use this build if you don't want to run into problems.

To enable compression with optional LZO and UCL libraries (see the section 5.2 for hints about how they may be used to improve performance), fetch and install the LZO and UCL binaries from:

http://gnuwin32.sourceforge.net/. Normally, you will only need to fetch and install the <package>-<version>-bin.zip file and copy the lzo.dll or ucl.dll files in a directory in the PATH environment variable, so that they can be found by the PyTables extensions.

Note:If you are reading this because you have been redirected from the section 2.1 (*Installation from source*), some of the headers you will need are in the cpackage>-<version>-lib.zip file.

2.2.2 PyTables package installation

Download the tables-<version>.win32-py<version>.exe (tables-<version>-LU.win32-py<version>.exe if you want support for LZO and UCL libraries) file and execute it.

You can (you should) test your installation by unpacking the source tarball, changing to the test/ subdirectory and executing the test_all.py script. If all the tests pass (possibly with a few warnings, related to the potential unavailability of LZO and UCL libs) you already have a working, well-tested copy of PyTables installed! If any test fails, please try to locate which test module is failing and execute:

```
test_<module>.py -v verbose
```

Mail the output to the developers so that we may work to improve the installation process.

That's it! Now, proceed to the next chapter to see how to use PyTables.

Tout le malheur des hommes vient d'une seule chose, qui est de ne savoir pas demeurer en repos, dans une chambre.

-Blaise Pascal

Chapter 3

Tutorials

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand PyTables' main features. If you would like more information about some particular instance variable, global function, or method, look at the doc strings or go to the library reference in chapter 4. If you are reading this in PDF or HTML formats, follow the corresponding hyperlink near each newly introduced entity.

Please note that throughout this document the terms *column* and *field* will be used interchangeably, as will the terms *row* and *record*.

3.1 Getting started

In this section, we will see how to define our own records in Python and save collections of them (i.e. a **table**) into a file. Then we will select some of the data in the table using Python cuts and create numarray arrays to store this selection as separate objects in a tree.

In *examples/tutorial1-1.py* you will find the working version of all the code in this section. Nonetheless, this tutorial series has been written to allow you reproduce it in a Python interactive console. I encourage you to do parallel testing and inspect the created objects (variables, docs, children objects, etc.) during the course of the tutorial!

3.1.1 Importing tables objects

Before starting you need to import the public objects in the tables package. You normally do that by executing:

```
>>> import tables
>>>
```

This is the recommended way to import tables if you don't want to pollute your namespace. However, PyTables has a very reduced set of first-level primitives, so you may consider using the alternative:

```
>>> from tables import *
>>>
```

which will export in your caller application namespace the following objects: openFile, isHDF5, isPyTablesFile and IsDescription. This is a rather reduced set of objects, and for convenience, we will use this technique to access them.

If you are going to work with numarray or Numeric arrays (and normally, you will) you will also need to import objects from them. So most PyTables programs begin with:

>>>

3.1.2 Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data retrieved from it. You need first to define the table, the number of columns it has, what kind of object is contained in each column, and so on.

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and an ADC (Analogic to Digital Converter) with a range of 16 bits. For these values, we will define 2 fields in our record object called TDCcount and ADCcount. We also want to save the grid position in which the particle has been detected, so we will add two new fields called grid_i and grid_j. Our instrumentation also can obtain the pressure and energy of the particle. The resolution of the pressure-gauge allows us to use a simple-precision float to store pressure readings, while the energy value will need a double-precision float. Finally, to track the particle we want to assign it a name to identify the kind of the particle it is and a unique numeric identifier. So we will add two more fields: name will be a string of up to 16 characters, and idnumber will be an integer of 64 bits (to allow us to store records for extremely large numbers of particles).

Having determined our columns and their types, we can now declare a new Particle class that will contain all this information:

```
>>> class Particle(IsDescription):
                  = StringCol(16)
                                     # 16-character String
       name
        idnumber = Int64Col()
                                     # Signed 64-bit integer
. . .
        ADCcount = UInt16Col()
                                    # Unsigned short integer
. . .
        TDCcount = UInt8Col()
                                    # unsigned byte
        grid_i
                  = Int32Col()
                                    # integer
                  = IntCol()
                                    # integer (equivalent to Int32Col)
        grid_j
. . .
        pressure = Float32Col()
                                    # float (single-precision)
. . .
        energy
                  = FloatCol()
                                    # double (double-precision)
. . .
. . .
>>>
```

This definition class is self-explanatory. Basically, you declare a class variable for each field you need. As its value you assign a subclass instance of the appropriate Col class, according to the kind of column defined (the data type, the length, the shape, etc. See the section 4.11.2 for a complete description of these subclasses. See also appendix A for a list of data types supported in Col constructors.

From now on, we can use Particle instances as a descriptor for our detector data table. We will see later on how to pass this object to the Table constructor. But first, we must create a file where all the actual data pushed into Table will be saved.

3.1.3 Creating a PyTables file from scratch

Use the first-level openFile (see 4.1.2) function to create a PyTables file:

```
>>> h5file = openFile("tutorial1.h5", mode = "w", title = "Test file")
```

openFile (see 4.1.2) is one of the objects imported by the "from tables import *" statement. Here, we are saying that we want to create a new file in the current working directory called "tutorial1.h5" in "w"rite mode and with an descriptive title string ("Test file"). This function attempts to open the file, and if successful, returns the File (see 4.2) object instance h5file. The root of the object tree is specified in the instance's root attribute.

3.1.4 Creating a new group

Now, to better organize our data, we will create a group called *detector* that branches from the root node. We will save our particle data in this group.

```
>>> group = h5file.createGroup("/", 'detector', 'Detector information')
>>>
```

Here, we have taken the File instance h5file and invoked its createGroup method (see 4.2.2) to create a new group called *detector* branching from "/" (another way to refer to the h5file.root object we mentioned above). This will create a new Group (see 4.3) object instance that will be assigned to the variable group.

3.1.5 Creating a new table

Let's now create the Table (see 4.5) object as a branch off the newly-created group. We do that by calling the createTable (see 4.2.2) method of the h5file object:

```
>>> table = h5file.createTable(group, 'readout', Particle, "Readout example")
>>>
```

We create the Table instance under group. We assign this table the node name "readout". The Particle class declared before is the *description* parameter (to define the columns of the table) and finally we set "Readout example" as the Table title. With all this information, a new Table instance is created and assigned to the variable table.

If you are curious about how the object tree looks right now, simply print the File instance variable *h5file*, and examine the output:

```
>>> print h5file
Filename: 'tutorial1.h5' Title: 'Test file' Last modif.: 'Sun Jul 27 14:00:13 2003'
/ (Group) 'Test file'
/detector (Group) 'Detector information'
/detector/readout (Table(0,)) 'Readout example'
>>>
```

As you can see, a dump of the object tree is displayed. It's easy to see the Group and Table objects we have just created. If you want more information, just type the variable containing the File instance:

```
>>> h5file
File(filename='tutorial1.h5', title='Test file', mode='w', trMap={}, rootUEP='/')
/ (Group) 'Test file'
/detector (Group) 'Detector information'
/detector/readout (Table(0,)) 'Readout example'
  description := {
    "ADCcount": Col('UInt16', shape=1, itemsize=2, dflt=0),
    "TDCcount": Col('UInt8', shape=1, itemsize=1, dflt=0),
    "energy": Col('Float64', shape=1, itemsize=8, dflt=0.0),
    "grid_i": Col('Int32', shape=1, itemsize=4, dflt=0),
    "grid_j": Col('Int32', shape=1, itemsize=4, dflt=0),
    "idnumber": Col('Int64', shape=1, itemsize=8, dflt=0),
    "name": Col('CharType', shape=1, itemsize=16, dflt=None),
    "pressure": Col('Float32', shape=1, itemsize=4, dflt=0.0) }
byteorder := little
```

>>>

More detailed information is displayed about each object in the tree. Note how Particle, our table descriptor class, is printed as part of the *readout* table description information. In general, you can obtain much more information about the objects and their children by just printing them. That introspection capability is very useful, and I recommend that you use it extensively.

The time has come to fill this table with some values. First we will get a pointer to the Row instance of this table instance:

```
>>> particle = table.row
>>>
```

The row attribute of table points to the Row (see 4.5.4) instance that will be used to write data rows into the table. We write data simply by assigning The Row instance the values for each row as if it were a dictionary (although it is actually an *extension class*), using the column names as keys.

Below is an example of how to write rows:

```
>>> particle = table.row
>>> for i in xrange(10):
        particle['name'] = 'Particle: %6d' % (i)
        particle['TDCcount'] = i % 256
. . .
        particle['ADCcount'] = (i * 256) % (1 << 16)</pre>
        particle['grid_i'] = i
. . .
        particle['grid_j'] = 10 - i
. . .
        particle['pressure'] = float(i*i)
. . .
        particle['energy'] = float(particle['pressure'] ** 4)
. . .
        particle['idnumber'] = i * (2 ** 34)
. . .
        particle.append()
. . .
. . .
>>>
```

This code should be easy to understand. The lines inside the loop just assign values to the different columns in the Row instance particle (see 4.5.4). A call to its append() method writes this information to the table I/O buffer.

After we have processed all our data, we should flush the table's I/O buffer if we want to write all this data to disk. We achieve that by calling the table.flush() method.

```
>>> table.flush()
>>>
```

3.1.6 Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we are interested in. See the example below:

The first line creates a "shortcut" to the *readout* table deeper on the object tree. As you can see, we use the **natural naming** schema to access it. We also could have used the h5file.getNode() method, as we will do later on

You will recognize the last two lines as a Python list comprehension. It loops over the rows in *table* as they are provided by the table.iterrows() iterator (see 4.5.2). The iterator returns values until all the data in table is exhausted. These rows are filtered using the expression x['TDCcount'] > 3 and x['pressure'] < 50. We select the value of the pressure column from filtered records to to create the final list and assign it to pressure variable.

We could have used a normal for loop to accomplish the same purpose, but I find comprehension syntax to be more compact and elegant.

Let's select the name column for the same set of cuts:

```
>>> names=[ x['name'] for x in table if x['TDCcount']>3 and 20<=x['pressure']<50 ]
>>> names
['Particle: 5', 'Particle: 6', 'Particle: 7']
>>>
```

Note how we have omitted the iterrows() call in the list comprehension. The Table class has an implementation of the special method __iter__() that iterates over all the rows in the table. In fact, iterrows() internally calls this special __iter__() method. Accessing all the rows in a table using this method is very convenient, especially when working with the data interactively.

That's enough about selections. The next section will show you how to save these select results to a file.

3.1.7 Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a new group columns branching off the root group:

```
>>> gcolumns = h5file.createGroup(h5file.root, "columns", "Pressure and Name")
>>>
```

Note that this time we have specified the first parameter using *natural naming* (h5file.root) instead of with an absolute path string ("/").

Now, create one Array object:

We already know the first two parameters of the createArray (see 4.2.2) methods (these are the same as the first two in createTable): they are the parent group *where* Array will be created and the Array instance *name*. The third parameter is the *object* we want to save to disk. In this case, it is a Numeric array that is built from the selection list we created before. The fourth parameter is the *title*.

Now, we will save another data set. It contains the list of strings we selected before: we save this object as-is, with no further conversion.

```
>>> h5file.createArray(gcolumns, 'name', names, "Name column selection")
/columns/name Array(4,) 'Name column selection'
type = 'CharType'
```

```
itemsize = 16
flavor = 'List'
byteorder = 'little'
>>>
```

As you can see, <code>createArray()</code> accepts *names* (which is a regular Python list) as an *object* parameter. Actually, it accepts a variety of different regular objects (see 4.2.2) as parameters. We will retrieve exactly the same object from disk later on.

Note that in these examples, the createArray method returns an Array instance that is not assigned to any variable. Don't worry, this is intentional to show the kind of object we have created by displaying its representation. The Array objects has been attached to the object tree and saved to disk, as you can see if you print the complete object tree:

```
>>> print h5file
Filename: 'tutorial1.h5' Title: 'Test file' Last modif.: 'Sun Jul 27 14:00:13 2003'
/ (Group) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'
>>>
```

3.1.8 Closing the file and looking at its content

To finish this first tutorial, we use the close method of the h5file File object to close the file before exiting Python:

You have now created your first PyTables file with a table and two arrays. You can examine it with any generic HDF5 tool, such as h5dump or h5ls. Here is what the tutorial1.h5 looks like when read with the h5ls program:

```
$ h5ls -rd tutorial1.h5
/columns
                         Group
/columns/name
                         Dataset {3}
   Data:
        (0) "Particle:
                            5", "Particle:
                                                 6", "Particle:
                                                                     7 "
                         Dataset {3}
/columns/pressure
   Data:
        (0) 25, 36, 49
                         Group
/detector
/detector/readout
                         Dataset {10/Inf}
   Data:
        (0) {0, 0, 0, 0, 10, 0, "Particle:
                                                 0", 0},
        (1) {256, 1, 1, 1, 9, 17179869184, "Particle:
                                                            1", 1},
        (2) {512, 2, 256, 2, 8, 34359738368, "Particle:
                                                              2", 4},
        (3) {768, 3, 6561, 3, 7, 51539607552, "Particle:
                                                               3", 9},
        (4) {1024, 4, 65536, 4, 6, 68719476736, "Particle:
                                                                 4", 16},
        (5) {1280, 5, 390625, 5, 5, 85899345920, "Particle:
                                                                  5", 25},
```

```
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36}, (7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49}, (8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64}, (9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}
```

Here's the outputs as displayed by the "dumpFile.py" PyTables utility (located in examples/ directory):

```
$ python dumpFile.py tutorial1.h5
Filename: 'tutorial1.h5' Title: 'Test file' Last modif.: 'Sun Jul 27 14:40:51 2003'
/ (Group) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'
```

You can pass the -v or -d options to dumpFile.py if you want more verbosity. Try them out!

3.2 Browsing the *object tree* and appending to tables

In this section, we will learn how to browse the tree and retrieve meta-information about the actual data, then append some rows to an existing table to show how table objects can be enlarged.

In *examples/tutorial1-2.py* you will find the working version of all the code in this section. As before, you are encouraged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1 Traversing the object tree

Let's start by opening the file we created in last tutorial section.

```
>>> h5file = openFile("tutorial1.h5", "a")
```

This time, we have opened the file in "a"ppend mode. We use this mode to add more information to the file

PyTables, following the Python tradition, offers powerful introspection capabilities, i.e. you can easily ask information about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existing File instance:

```
>>> print h5file
Filename: 'tutorial1.h5' Title: 'Test file' Last modif.: 'Sun Jul 27 14:40:51 2003'
/ (Group) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10,)) 'Readout example'
>>>
```

It looks like all of our objects are there. Now let's make use of the File iterator to see to list all the nodes in the object tree:

```
>>> for node in h5file:
... print node
...
/ (Group) 'Test file'
/columns (Group) 'Pressure and Name'
/detector (Group) 'Detector information'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector/readout (Table(10,)) 'Readout example'
>>>
```

We can use the walkGroups method (see 4.2.2) of the File class to list only the groups on tree:

```
>>> for group in h5file.walkGroups("/"):
... print group
...
/ (Group) 'Test file'
/columns (Group) 'Pressure and Name'
/detector (Group) 'Detector information'
>>>
```

Note that walkGroups() actually returns an *iterator*, not a list of objects. Using this iterator with the listNodes() method is a powerful combination. Let's see an example listing of all the arrays in the tree:

listNodes() (see 4.2.2) returns a list containing all the nodes hanging off a specific Group. If the *classname* keyword is specified, the method will filter out all instances which are not descendants of the class. We have asked for only Array instances.

We can combine both calls by using the __call__(where, classname) special method of the File object (see 4.2.3). For example:

```
>>> for array in h5file("/", "Array"):
... print array
...
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
>>>
```

This is a nice shortcut when working interactively.

Finally, we will list all the Leaf, i.e. Table and Array, instances (see 4.4 for detailed information on Leaf class), in the /detector group. Note that only one instance of the Table class (i.e. readout) will be selected in this group (as should be the case):

```
>>> for leaf in h5file.root.detector('Leaf'):
... print leaf
...
/detector/readout (Table(10,)) 'Readout example'
>>>
```

We have used a call to the Group.__call__(classname, recursive) special method (4.3.3), using the *natural naming* path specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let's take a look at some important PyTables object instance variables.

3.2.2 Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by using the AttributeSet class (see section 4.10). You can access this object through the standard attribute attrs in Leaf nodes and _v_attrs in Group nodes.

For example, let's imagine that we want to save the date indicating when the data in /detector/readout table has been acquired, as well as the temperature during the gathering process:

```
>>> table = h5file.root.detector.readout
>>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
>>> table.attrs.temperature = 18.4
>>> table.attrs.temp_scale = "Celsius"
>>>
```

Now, let's set a somewhat more complex attribute in the /detector group:

```
>>> detector = h5file.root.detector
>>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]
>>>
```

Note how the AttributeSet instance is accessed with the _v_attrs attribute because detector is a Group node. In general, you can save any standard Python data structure as an attribute node. See section 4.10 for a more detailed explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

```
>>> table.attrs.gath_date
'Wed, 06/12/2003 18:33'
>>> table.attrs.temperature
18.399999999999999
>>> table.attrs.temp_scale
'Celsius'
>>> detector._v_attrs.stuff
[5, (2.29999999999998, 4.5), 'Integer and tuple']
>>>
```

You can probably guess how to delete attributes:

```
>>> del table.attrs.gath_date
```

If you want to examine the current complete attribute set of /detector/table, you can print its representation (try hitting the TAB key twice if you are on a Unix Python console with the rlcompleter module active):

```
>>> table.attrs
/detector/readout (AttributeSet), 14 attributes:
   [CLASS := 'TABLE',
   FIELD_0_NAME := 'ADCcount',
   FIELD_1_NAME := 'TDCcount',
   FIELD_2_NAME := 'energy',
```

```
FIELD_3_NAME := 'grid_i',
    FIELD_4_NAME := 'grid_j',
    FIELD_5_NAME := 'idnumber',
    FIELD_6_NAME := 'name',
    FIELD_7_NAME := 'pressure',
    NROWS := 10,
    TITLE := 'Readout example',
    VERSION := '2.0',
    tempScale := 'Celsius',
    temperature := 18.39999999999999999
>>>
  You can get a list of only the user or system attributes with the _f_list() method.
>>> print table.attrs._f_list("user")
['temp_scale', 'temperature']
>>> print table.attrs._f_list("sys")
['CLASS', 'FIELD 0 NAME', 'FIELD 1 NAME', 'FIELD 2 NAME', 'FIELD 3 NAME',
 'FIELD_4_NAME', 'FIELD_5_NAME', 'FIELD_6_NAME', 'FIELD_7_NAME', 'NROWS',
 'TITLE', 'VERSION']
  You can also rename attributes:
>>> table.attrs._f_rename("temp_scale","tempScale")
>>> print table.attrs._f_list()
['tempScale', 'temperature']
>>>
  However, you can't set, delete or rename read-only attributes:
>>> table.attrs._f_rename("VERSION", "version")
Traceback (most recent call last):
 File ">stdin>", line 1, in ?
  File "/home/falted/PyTables/pytables-0.7/tables/AttributeSet.py", line 249, in _f_rename
    raise RuntimeError, \
RuntimeError: Read-only attribute ('VERSION') cannot be renamed
>>>
  After your terminating your session, you can use h51s to read the /detector/readout attributes from
the file written to disk:
$ h5ls -vr tutorial1.h5/detector/readout
Opened "tutorial1.h5" with sec2 driver.
/detector/readout
                       Dataset {10/Inf}
    Attribute: CLASS
                         scalar
        Type:
                6-byte null-terminated ASCII string
        Data: "TABLE"
    Attribute: VERSION
                         scalar
                   4-byte null-terminated ASCII string
        Data: "2.0"
    Attribute: TITLE
                         scalar
        Type:
                  16-byte null-terminated ASCII string
```

```
Data: "Readout example"
Attribute: FIELD 0 NAME scalar
             9-byte null-terminated ASCII string
   Type:
   Data: "ADCcount"
Attribute: FIELD_1_NAME scalar
   Type: 9-byte null-terminated ASCII string
   Data: "TDCcount"
Attribute: FIELD_2_NAME scalar
             7-byte null-terminated ASCII string
   Data: "energy"
Attribute: FIELD_3_NAME scalar
   Type:
             7-byte null-terminated ASCII string
   Data: "grid_i"
Attribute: FIELD_4_NAME scalar
   Type: 7-byte null-terminated ASCII string
   Data: "grid_j"
Attribute: FIELD_5_NAME scalar
   Type:
             9-byte null-terminated ASCII string
   Data: "idnumber"
Attribute: FIELD_6_NAME scalar
   Type:
          5-byte null-terminated ASCII string
   Data: "name"
Attribute: FIELD_7_NAME scalar
   Type: 9-byte null-terminated ASCII string
   Data: "pressure"
Attribute: tempScale scalar
   Type:
              8-byte null-terminated ASCII string
   Data: "Celsius"
Attribute: temperature {1}
             native double
   Type:
   Data: 18.4
Attribute: NROWS
                  {1}
   Type:
              native int
   Data: 10
Location: 0:1:0:1952
Links:
          1
Modified: 2003-07-24 13:59:19 CEST
Chunks:
         {2048} 96256 bytes
Storage: 470 logical bytes, 96256 allocated bytes, 0.49% utilization
          struct {
Type:
              "ADCcount"
                               +0 native unsigned short
                              +2 native unsigned char
              "TDCcount"
                                     native double
              "energy"
                                +3
              grid_i"
                                +11
                                     native int
              "grid_j"
                               +15 native int
                               +19 native long long
              "idnumber"
              "name"
                               +27 16-byte null-terminated ASCII string
                              +43 native float
              "pressure"
          } 47 bytes
```

3.2.3 Getting object metadata

Each object in PyTables has *metadata* information about the data in the file. Normally this *metainformation* is accessible through the node instance variables. Let's take a look at some examples:

```
>>> print "Object:", table
Object: /detector/readout Table(10,) 'Readout example'
>>> print "Table name:", table.name
Table name: readout
>>> print "Table title:", table.title
Table title: Readout example
>>> print "Number of rows in table:", table.nrows
Number of rows in table: 10
>>> print "Table variable names with their type and shape:"
Table variable names with their type and shape:
>>> for name in table.colnames:
     print name, ':= %s, %s' % (table.coltypes[name], table.colshapes[name])
. . .
ADCcount := UInt16, 1
TDCcount := UInt8, 1
energy := Float64, 1
grid_i := Int32, 1
grid_j := Int32, 1
idnumber := Int64, 1
name := CharType, 1
pressure := Float32, 1
>>>
```

Here, the name, title, nrows, colnames, coltypes and colshapes attributes (see 4.2.1 for a complete attribute list) of the Table object gives us quite a bit of information about the table data.

You can interactively retrieve general information about the public objects in PyTables by printing their internal doc strings:

```
>>> print table.__doc__
Represent a table in the object tree.
    It provides methods to create new tables or open existing ones, as
    well as to write/read data to/from table objects over the
    file. A method is also provided to iterate over the rows without
    loading the entire table or column in memory.
    Data can be written or read both as Row instances or as numarray
    (NumArray or RecArray) objects.
    Methods:
      Common to all leaves:
        close()
        flush()
       getAttr(attrname)
       rename(newname)
        setAttr(attrname, attrvalue)
      Specific of Table:
```

```
iterrows()
        read([start] [, stop] [, step] [, field [, flavor]])
        removeRows(start, stop)
    Instance variables:
      Common to all leaves:
        name -- the leaf node name
        hdf5name -- the HDF5 leaf node name
        title -- the leaf title
        shape -- the leaf shape
        byteorder -- the byteorder of the leaf
      Specific of Table:
        description -- the metaobject describing this table
        row -- a reference to the Row object associated with this table
        nrows -- the number of rows in this table
        rowsize -- the size, in bytes, of each row
        colnames -- the field names for the table (list)
        coltypes -- the type class for the table fields (dictionary)
        colshapes -- the shapes for the table fields (dictionary)
>>>
```

The help function is also a handy way to see PyTables reference documentation online. Try it yourself with other object docs:

```
>>> help(table.__class__)
>>> help(table.removeRows)
```

To examine metadata in the /columns/pressure Array object:

```
>>> pressureObject = h5file.getNode("/columns", "pressure")
>>> print "Info on the object:", repr(pressureObject)
Info on the object: /columns/pressure (Array(3,)) 'Pressure column selection'
    type = Float64
    itemsize = 8
    flavor = 'NumArray'
    byteorder = 'little'
>>> print " shape: ==>", pressureObject.shape
    shape: ==> (3,)
>>> print " title: ==>", pressureObject.title
    title: ==> Pressure column selection
>>> print " type: ==>", pressureObject.type
    type: ==> Float64
>>>
```

Observe that we have used the getNode() method of the File class to access a node in the tree, instead of the natural naming method. Both are useful, and depending on the context you will prefer one or the other. getNode() has the advantages that it can get a node from the pathname string (as in this example) and can also act as a filter to show only nodes in a particular location that are instances of class *classname*. In general, however, I consider natural naming to be more elegant and easier to use, especially if you are using the name completion capability present in interactive console. Try this powerful combination of natural naming and

completion capabilities present in most Python consoles, and see how pleasant it is to browse the object tree (at least, as pleasant as such an activity can be).

If you look at the type attribute of the pressureObject object, you can verify that it is a "Float64" array. By looking at its shape attribute, you can deduce that the array on disk is unidimensional and has 4 elements. See 4.6.1 or the internal string docs for the complete Array attribute list.

3.2.4 Reading data from Array objects

Once you have found the desired Array, use the read() method of the Array object to retrieve its data:

```
>>> pressureArray = pressureObject.read()
>>> pressureArray
array([ 25., 36.,
                   49.])
>>> print "pressureArray is an object of type:", type(pressureArray)
pressureArray is an object of type: <class 'numarray.numarraycore.NumArray'>
>>> nameArray = h5file.root.columns.name.read()
>>> nameArray
                                     6', 'Particle:
['Particle:
                 5', 'Particle:
>>> print "nameArray is an object of type:", type(nameArray)
nameArray is an object of type: <type 'list'>
>>>
>>> print "Data on arrays nameArray and pressureArray:"
Data on arrays nameArray and pressureArray:
>>> for i in range(pressureObject.shape[0]):
     print nameArray[i], "-->", pressureArray[i]
              5 --> 25.0
Particle:
Particle:
               6 --> 36.0
               7 --> 49.0
Particle:
>>> pressureObject.name
'pressure'
>>>
```

You can see that the read() method (see section 4.6.2) returns an authentic numarray object for the pressureObject instance by looking at the output of the type() call. A read() of the nameObject object instance returns a native Python list (of strings). The type of the object saved is stored as an HDF5 attribute (named FLAVOR) for objects on disk. This attribute is then read as Array metainformation (accessible through in the Array.attrs.FLAVOR variable), enabling the read array to be converted into the original object. This provides a means to save a large variety of objects as arrays with the guarantee that you will be able to later recover them in their original form. See section 4.2.2 for a complete list of supported objects for the Array object class.

3.2.5 Appending data to an existing table

Now, let's have a look at how we can add records to an existing table on disk. Let's use our well-known *readout* Table object and append some new values to it:

```
>>> table = h5file.root.detector.readout
>>> particle = table.row
>>> for i in xrange(10, 15):
...    particle['name'] = 'Particle: %6d' % (i)
...    particle['TDCcount'] = i % 256
...    particle['ADCcount'] = (i * 256) % (1 << 16)
...    particle['grid_i'] = i
...    particle['grid_j'] = 10 - i</pre>
```

```
... particle['pressure'] = float(i*i)
... particle['energy'] = float(particle['pressure'] ** 4)
... particle['idnumber'] = i * (2 ** 34)
... particle.append()
...
>>> table.flush()
```

It's the same method we used to fill a new table. PyTables knows that this table is on disk, and when you add new records, they are appended to the end of the table ¹.

If you look carefully at the code you will see that we have used the table.row attribute to create a table row and fill it with the new values. Each time that its append() method is called, the actual row is committed to the output buffer and the row pointer is incremented to point to the next table record. When the buffer is full, the data is saved on disk, and the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the .flush() method after a write operation, or else your tables will not be updated!

Let's have a look at some rows in the modified table and verify that our new data has been appended:

```
>>> for r in table.iterrows():
       print "%-16s | %11.1f | %11.4g | %6d | %6d | %8d | " % \
          (r['name'], r['pressure'], r['energy'], r['grid_i'], r['grid_j'],
. . .
           r['TDCcount'])
. . .
. . .
Particle:
              0
                          0.0
                                          0
                                                  0 |
                                                          10
                                                                      0
Particle:
              1 |
                          1.0
                                         1
                                                  1
                                                           9
                                                                      1
Particle:
              2 |
                          4.0
                                        256
                                                  2 |
                                                           8
                                                                      2
              3 |
                          9.0
Particle:
                                       6561
                                                  3 |
                                                           7
                                                                      3
Particle:
              4
                         16.0
                                 6.554e+04
                                                  4 |
                                                           6
                                                                      4
              5
                         25.0
                                 3.906e+05
                                                  5 l
                                                           5 I
Particle:
                                                                      5 |
                         36.0
                                  1.68e+06
                                                  6 l
                                                           4
Particle:
              6
                                                                      6 |
              7
                                                  7 |
                         49.0
                                  5.765e+06
                                                           3 |
                                                                      7
Particle:
Particle:
              8
                         64.0
                                  1.678e+07
                                                  8
                                                           2
                                                                      8
Particle:
              9
                         81.0
                                  4.305e+07
                                                  9
                                                           1
                                                                      9
                                                 10 l
                                                           0 |
Particle:
             10 l
                        100.0
                                      1e+08
                                                                     10
                                                          -1 |
Particle:
             11 |
                        121.0
                                  2.144e+08
                                                 11 |
                                                                     11
Particle:
             12
                        144.0
                                    4.3e+08
                                                 12 |
                                                          -2
                                                                     12
Particle:
             13
                        169.0
                                  8.157e+08
                                                 13 |
                                                          -3 |
                                                                     13
                        196.0 |
Particle:
             14
                                  1.476e+09
                                                 14
                                                          -4
                                                                     14 |
```

3.2.6 And finally... how to delete rows from a table

We'll finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the the 5th to 9th rows (inclusive):

```
>>> table.removeRows(5,10)
5
>>>
```

removeRows(start, stop) (see 4.5.2) deletes the rows in the range (start, stop). It returns the number of rows effectively removed.

We have reached the end of this first tutorial. Don't forget to close the file when you finish:

¹ Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

Figure 3.1: The final version of the data file for tutorial 1, with a view of the data objects.

```
>>> h5file.close()
>>> ^D
$
```

In figure 3.1 you can see a graphical view of the PyTables file with the datasets we have just created. In figure 3.2 are displayed the general properties of the table /detector/readout.

3.3 Multidimensional table cells and automatic sanity checks

Now it's time for a more real-life example (i.e. with errors in the code). We will create two groups that branch directly from the root node, Particles and Events. Then, we will put three tables in each group. In Particles we will put tables based on the Particle descriptor and in Events, the tables based the Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created table /Events/TEvent3 and select some values from it, using a comprehension list.

Look at the next script (you can find it in examples/tutorial2.py). It appears to do all of the above, but it contains some small bugs. Note that this Particle class is not directly related to the one defined in last tutorial; this class is simpler (note, however, the *multidimensional* columns called pressure and temperature).

We also introduce a new manner to describe a Table as a dictionary, as you can see in the Event description. See section 4.2.2 about the different kinds of descriptor objects that can be passed to the createTable() method.

Figure 3.2: General properties of the /detector/readout table.

```
= Float32Col(shape=(2,3)) # array of floats (single-precision)
    temperature = FloatCol(shape=(2,3))
                                          # array of doubles (double-precision)
# Another way to describe the columns of a table
Event = {
              : Col('CharType', 16),
    "name"
                                        # 16-character String
    "TDCcount": Col("UInt8", 1),
                                        # unsigned byte
    "ADCcount": Col("UInt16", 1),
                                       # Unsigned short integer
    "xcoord" : Col("Float32", 1),
                                       # integer
    "ycoord"
             : Col("Float32", 1),
                                        # integer
    }
# Open a file in "w"rite mode
fileh = openFile("tutorial2.h5", mode = "w")
# Get the HDF5 root group
root = fileh.root
# Create the groups:
for groupname in ("Particles", "Events"):
    group = fileh.createGroup(root, groupname)
# Now, create and fill the tables in the Particles group
gparticles = root.Particles
# Create 3 new tables
for tablename in ("TParticle1", "TParticle2", "TParticle3"):
    # Create a table
    table = fileh.createTable("/Particles", tablename, Particle,
                           "Particles: "+tablename)
    # Get the record object associated with the table:
```

```
particle = table.row
    # Fill the table with data for 257 particles
    for i in xrange(257):
        # First, assign the values to the Particle record
        particle['name'] = 'Particle: %6d' % (i)
        particle['lati'] = i
        particle['longi'] = 10 - i
        ######### Detectable errors start here. Play with them!
        particle['pressure'] = array(i*arange(2*3), shape=(2,4)) # Incorrect
        #particle['pressure'] = array(i*arange(2*3), shape=(2,3)) # Correct
        ######## End of errors
        particle['temperature'] = (i**2)
                                            # Broadcasting
        # This injects the Record values
        particle.append()
    # Flush the table buffers
    table.flush()
# Now Events:
for tablename in ("TEvent1", "TEvent2", "TEvent3"):
    # Create a table in the Events group
    table = fileh.createTable(root.Events, tablename, Event,
                           "Events: "+tablename)
    # Get the record object associated with the table:
    event = table.row
    # Fill the table with data on 257 events
    for i in xrange(257):
        # First, assign the values to the Event record
        event['name'] = 'Event: %6d' % (i)
        event['TDCcount'] = i % (1<<8) # Correct range</pre>
        ######### Detectable errors start here. Play with them!
        #event['xcoord'] = float(i**2) # Correct spelling
        event['xcoor'] = float(i**2)
                                       # Wrong spelling
        event['ADCcount'] = i * 2
                                       # Correct type
        #event['ADCcount'] = "s"
                                         # Wrong type
        ######### End of errors
        event['ycoord'] = float(i)**4
        # This injects the Record values
        event.append()
    # Flush the buffers
    table.flush()
# Read the records from table "/Events/TEvent3" and select some
table = root.Events.TEvent3
e = [ p['TDCcount'] for p in table
      if p['ADCcount'] < 20 and 4 <= p['TDCcount'] < 15]
print "Last record ==>", p
print "Selected values ==>", e
print "Total selected records ==> ", len(e)
# Finally, close the file (this also will flush all the remaining buffers)
fileh.close()
```

3.3.1 Shape checking

If you look at the code carefully, you'll see that it won't work. You will get the following error:

```
$ python tutorial2.py
Traceback (most recent call last):
   File "tutorial2.py", line 53, in ?
     particle['pressure'] = array(i*arange(2*3), shape=(2,4)) # Incorrect
   File "/usr/local/lib/python2.2/site-packages/numarray/numarraycore.py", line 281, in array a.setshape(shape)
   File "/usr/local/lib/python2.2/site-packages/numarray/generic.py", line 530, in setshape raise ValueError("New shape is not consistent with the old shape")
ValueError: New shape is not consistent with the old shape
```

This error indicates that you are trying to assign an array with an incompatible shape to a table cell. Looking at the source, we see that we were trying to assign an array of shape (2,4) to a pressure element, which was defined with the shape (2,3).

In general, these kinds of operations are forbidden, with one valid exception: when you assign a *scalar* value to a multidimensional column cell, all the cell elements are populated with the value of the scalar. For example:

```
particle['temperature'] = (i**2) # Broadcasting
```

The value i**2 is assigned to all the elements of the temperature table cell. This capability is provided by the numarray package and is known as *broadcasting*.

3.3.2 Field name checking

After fixing the previous error and rerunning the program, we encounter another error:

```
$ python tutorial2.py
Traceback (most recent call last):
   File "tutorial2.py", line 74, in ?
      event['xcoor'] = float(i**2)  # Wrong spelling
   File "/home/falted/PyTables/pytables-0.7/src/hdf5Extension.pyx",
   line 1812, in hdf5Extension.Row.__setitem__
      raise AttributeError, "Error setting \"%s\" attr.\n %s" % \
AttributeError: Error setting "xcoor" attr.
Error was: "exceptions.KeyError: xcoor"
```

This error indicates that we are attempting to assign a value to a non-existent field in the *event* table object. By looking carefully at the Event class attributes, we see that we misspelled the xcoord field (we wrote xcoor instead). This is unusual behavior for Python, as normally when you assign a value to a non-existent instance variable, Python creates a new variable with that name. Such a feature can be dangerous when dealing with an object that contains a fixed list of field names. PyTables checks that the field exists and raises a KeyError if the check fails.

3.3.3 Data type checking

Finally, in order to test type checking, we will change the next line:

```
event.ADCcount = i * 2  # Correct type
```

to read:

Figure 3.3: Table hierarchy for tutorial 2.

This modification will cause the following TypeError exception to be raised when the script is executed:

```
$ python tutorial2.py
Traceback (most recent call last):
   File "tutorial2.py", line 76, in ?
      event['ADCcount'] = "s"  # Wrong type
   File "/home/falted/PyTables/pytables-0.7/src/hdf5Extension.pyx", line 1812, in hdf5Exten raise AttributeError, "Error setting \"%s\" attr.\n %s" % \
AttributeError: Error setting "ADCcount" attr.
Error was: "exceptions.TypeError: NA_setFromPythonScalar: bad value type."
```

You can see the structure created with this (corrected) script in figure 3.3. In particular, note the multidimensional column cells in table /Particles/TParticle2.

Feel free to examine the rest of examples in directory examples, and try to understand them. I've written several practical sample scripts to give you an idea of the PyTables capabilities, its way of dealing with HDF5 objects, and how it can be used in the real world.

"Tenho pensamentos que, se pudesse revelá-los e fazê-los viver, acrescentariam nova luminosidade às estrelas, nova beleza ao mundo e maior amor ao coração dos homens."

-Fernando Pessoa, in "O Eu Profundo"

Chapter 4

Library Reference

PyTables implements several classes to represent the different nodes in the object tree. They are named File, Group, Leaf, Table, Array, EArray, VLArray and UnImplemented. Another one allows the user to complement the information on these different objects; its name is AttributeSet. Finally, another important class called IsDescription allows to build a Table record description by declaring a subclass of it. Many other classes are defined in PyTables, but they can be regarded as helpers whose goal is mainly to declare the *data type properties* of the different first class objects and will be described at the end of this chapter as well.

An important function, called openFile is responsible to create, open or append to files. In addition, a few utility functions are defined to guess if the user supplied file is a *PyTables* or *HDF5* file. These are called isPyTablesFile and isHDF5, respectively. Finally, there exists a function called whichLibVersion that informs about the versions of the underlying C libraries (for example, the HDF5 or the Zlib).

Let's start discussing the first-level variables and functions available to the user, then the different classes defined in PyTables.

4.1 tables variables and functions

4.1.1 Global variables

__version__ The PyTables version number.

ExtVersion The version of the Pyrex extension module. This might be useful when reporting bugs.

HDF5Version The underlying HDF5 library version number.

4.1.2 Global functions

isHDF5(filename) Determines whether filename is in the HDF5 format or not. When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE. Otherwise returns a negative value. To this function to work, it needs a closed file.

isPyTablesFile(filename) Determines whether a file is in the PyTables format. When successful, returns the format version string, for TRUE, or 0 (zero), for FALSE. Otherwise returns a negative value. To this function to work, it needs a closed file.

openFile(filename, mode='r', title='', trMap={}, rootUEP="/") Open a PyTables (or generic HDF5)
file and returns a File object.

filename The name of the file (supports environment variable expansion). It is suggested that it should have any of ".h5", ".hdf" or ".hdf5" extensions, although this is not mandatory.

mode The mode to open the file. It can be one of the following:

- 'r' read-only; no data can be modified.
- 'w' write; a new file is created (an existing file with the same name would be deleted).
- 'a' append; an existing file is opened for reading and writing, and if the file does not exist it is created.
- 'r+' is similar to 'a', but the file must already exist.
- **title** If filename is new, this will set a title for the root group in this file. If filename is not new, the title will be read from disk, and this will not have any effect.
- **trMap** A dictionary to map names in the object tree Python namespace into different HDF5 names in file namespace. The keys are the Python names, while the values are the HDF5 names. This is useful when you need to use HDF5 node names with invalid or reserved words in Python.
- **rootUEP** The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the starting point to create the object tree. The group has to be named after its HDF5 name and can be a path. If it does not exist, a RuntimeError exception is issued. Use this if you do not want to build the **entire** object tree, but rather only a **subtree** of it.
- whichLibVersion(libname) Returns info about versions of the underlying C libraries. libname can be whether "hdf5", "zlib", "lzo" or "ucl". It always returns a tuple of 3 elements. When successful, the first element of this tuple has a positive value, and is 0 (zero) when library is not available (for example LZO or UCL). In case the library is available, the second element of tuple contains the library version and the third element the date (if available) of that version.

4.2 The File class

This class is returned when a PyTables file is opened with the openFile function. It has methods to flush and close files. Also, the File class offer methods to create, rename and delete nodes, as well as to traverse the object tree. One of its attributes (rootUEP) represents the *user entry point* to the object tree attached to the file.

Next, we will discuss the attributes and methods for File class ¹.

4.2.1 File instance variables

filename Filename opened.

format version The PyTables version number of this file.

isopen It takes the value 1 if the underlying file is open. 0 otherwise.

mode Mode in which the filename was opened.

rootUEP The UEP (User Entry Point) group in file (see 4.1.2).

title The title of the root group in file.

trMap This is a dictionary that maps node names between python and HDF5 domain names. Its initial values are set from the *trMap* parameter passed to the openFile function. You can change its contents *after* a file is opened and the new map will take effect over any new object added to the tree.

objects Dictionary with all objects (groups or leaves) on tree.

groups Dictionary with all object groups on tree.

leaves Dictionary with all object leaves on tree.

¹ On the following, the term Leaf will whether refer to a Table, Array, EArray, VLArray or UnImplementednode object.

4.2.2 File methods

createGroup(where, name, title=")

Create a new Group instance with name name in where location.

where The parent group where the new group will hang from. *where* parameter can be a path string (for example "/level1/group5"), or another Group instance.

name The name of the new group.

title A description for this group.

createTable(where, name, description, title='', compress=0, complib='zlib', shuffle=1, fletcher32=0, expectedrows=10000)

Create a new Table instance with name name in where location.

where The parent group where the new table will hang from. *where* parameter can be a path string (for example "/level1/leaf5"), or Group instance.

name The name of the new table.

description An instance of a user-defined class (derived from the IsDescription class) where table fields are defined. However, in certain situations, it is more handy to allow this description to be supplied as a dictionary (for example, when you do not know beforehand which structure will have your table). In such a cases, you can pass the description as a dictionary as well. See section 3.3 for an example of use. Finally, a Recarray object from the numarray package is also accepted, and all the information about columns and other metadata is used as a basis to create the Table object. Moreover, if the Recarray has actual data this is also injected on the newly created Table object.

title A description for this object.

compress Specifies a compress level for data. The allowed range is 0-9. A value of 0 disables compression. The default is that compression is disabled, that balances between compression effort and CPU consumption.

complib Specifies the compression library to be used. Right now, "zlib" (default), "lzo" and "ucl" values are supported. See section 5.2 for some advice on which library is better suited to your needs.

shuffle Whether or not to use the *shuffle* filter present in the HDF5 library. This is normally used to improve the compression ratio (at the cost of consuming a little bit more CPU time). A value of 0 disables shuffling and 1 makes it active. The default value depends on whether compression is enabled or not; if compression is enabled, shuffling defaults to be active, else shuffling is disabled.

fletcher32 Whether or not to use the *fletcher32* filter in the HDF5 library. This is used to add a checksum on each data chunk. A value of 0 disables the checksum and it is the default.

expectedrows An user estimate of the number of records that will be on table. If not provided, the default value is appropriate for tables until 1 MB in size (more or less, depending on the record size). If you plan to save bigger tables you should provide a guess; this will optimize the HDF5 B-Tree creation and management process time and memory used. See section 5.4 for a discussion on that issue.

createArray(where, name, object, title=")

Create a new Array instance with name name in where location.

object The regular array to be saved. Currently accepted values are: lists, tuples, scalars (int and float), strings and (multidimensional) Numeric and NumArray arrays (including CharArrays string arrays). However, these objects must be regular (i.e. they cannot be like, for example, [[1,2],2]). Also, objects that has some of its dimension equal to zero are not supported (this will be solved when unlimited arrays will be implemented).

See createTable description 4.2.2 for more information on the *where*, *name*, *title*, *compress*, *complib*, *shuffle* and *fletcher32* parameters.

createEArray(where, name, object, title=", compress=0, complib='zlib', shuffle=1, fletcher32=0, expectedrows=1000)

Create a new EArray instance with name *name* in *where* location.

- **object** An object describing the kind of objects that you can append to the EArray object. It can be an instance of any of NumArray, CharArray or Numeric classes and one of its dimensions **must** be 0. The dimension being 0 means that the resulting EArray object can be extended along it. Multiple enlargeable dimensions are not supported right now.
- **expectedrows** In the case of enlargeable arrays this represents an user estimate about the number of row elements that will be added to the growable dimension in the EArray object. If not provided, the default value is 1000 rows. If you plan to create both much smaller or much bigger EArrays try providing a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of memory used.

See createTable description 4.2.2 for more information on the *where*, *name*, *title*, *compress*, *complib*, *shuffle* and *fletcher32* parameters.

createVLArray(where, name, atom=None, title="', compress=0, complib = 'zlib', shuffle=1, fletcher32=0, expectedsizeinMB=1.0)

Create a new VLArray instance with name *name* in *where* location. See the section 4.8 for a description of the VLArray class.

- **atom** An Atom instance representing the shape, type and flavor of the atomic object to be saved. See section 4.11.3 for the supported set of Atom class descendants.
- expectedsizeinMB An user estimate about the size (in MB) in the final VLArray object. If not provided, the default value is 1 MB. If you plan to create both much smaller or much bigger VLA's try providing a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of memory used.

See createTable description 4.2.2 for more information on the *where*, *name*, *title*, *compress*, *complib*, *shuffle* and *fletcher32* parameters.

getNode(where, name=", classname=")

Returns the object node *name* under *where* location.

- where Can be a path string or Group instance. If where doesn't exists or has not a child called name, a ValueError error is raised.
- **name** The object name desired. If *name* is a null string ("), or not supplied, this method assumes to find the object in *where*.
- classname If supplied, returns only an instance of this class name. Allowed names in classname are:
 'Group', 'Leaf', 'Table', 'Array', 'EArray', 'VLArray' and 'UnImplemented'. Note
 that these values are strings.

getAttrNode(where, attrname, name=")

Returns the attribute attrname under where.name location.

where Can be a path string or Group instance. If where doesn't exists or has not a child called name, a ValueError error is raised.

attrname The name of the attribute to get.

name The node name desired. If *name* is a null string (''), or not supplied, this method assumes to find the object in *where*.

setAttrNode(where, attrname, attrvalue, name=")

Sets the attribute attrname with value attrvalue under where.name location.

where Can be a path string or Group instance. If where doesn't exists or has not a child called name, a ValueError error is raised.

attrname The name of the attribute to set on disk.

attrvalue The value of the attribute to set. Only strings attributes are supported natively right now. However, you can always use (c)Pickle so as to serialize any object you want save therein.

name The node name desired. If *name* is a null string (''), or not supplied, this method assumes to find the object in *where*.

listNodes(where, classname="')

Returns a list with all the object nodes (Group or Leaf) hanging from *where*. The list is alphanumerically sorted by node name.

where The parent group. Can be a path string or Group instance.

classname If a *classname* parameter is supplied, the iterator will return only instances of this class (or subclasses of it). The only supported classes in *classname* are 'Group', 'Leaf', 'Table', 'Array', 'EArray', 'VLArray' and 'UnImplemented'. Note that these values are strings.

removeNode(where, name = "", recursive=0)

Removes the object node name under where location.

where Can be a path string or Group instance. If where doesn't exists or has not a child called *name*, a LookupError error is raised.

name The name of the node to be removed. If not provided, the *where* node is changed.

recursive If not supplied, the object will be removed only if it has no children. If supplied with a true value, the object and all its descendants will be completely removed.

renameNode(where, newname, name)

Rename the object node *name* under *where* location.

where Can be a path string or Group instance. If where doesn't exists or has not a child called *name*, a LookupError error is raised.

newname Is the new name to be assigned to the node.

name The name of the node to be changed. If not provided, the *where* node is changed.

walkGroups(where='/')

Iterator that returns the list of Groups (not Leaves) hanging from *where*. If *where* is not supplied, the root object is taken as origin. The returned Group list is in a top-bottom order, and alphanumerically sorted when they are at the same level.

where The origin group. Can be a path string or Group instance.

flush()

Flush all the leaves in the object tree.

close()

Flush all the leaves in object tree and close the file.

4.2.3 File special methods

Following are described the methods that automatically trigger actions when a File instance is accessed in a special way (e.g., fileh("/detector")) will cause a call to group.__call__("/detector")).

```
__call__(where="/", classname="")
```

Recursively iterate over the children in the File instance. It takes two parameters:

where If supplied, the iteration starts from this group.

classname (String) If supplied, only instances of this class are returned.

Example of use:

```
# Recursively print all the nodes hanging from '/detector'
print "Nodes hanging from group '/detector':"
for node in h5file("/detector"):
    print node
```

```
__iter__()
```

Iterate over the children on the File instance. However, this does not accept parameters. This iterator *is recursive*.

Example of use:

```
# Recursively list all the nodes in the object tree
print "All nodes in the object tree:"
for node in h5file:
    print node
```

4.3 The Group class

Instances of this class are a grouping structure containing instances of zero or more groups or leaves, together with supporting metadata.

Working with groups and leaves is similar in many ways to working with directories and files, respectively, in a Unix filesystem. As with Unix directories and files, objects in the object tree are often described by giving their full (or absolute) path names. This full path can be specified either as string (like

in '/group1/group2') or as a complete object path written in the Pythonic fashion known as *natural name* schema (like in file.root.group1.group2) and discussed in the section 1.2.

A collateral effect of the *natural naming* schema is that you must be aware when assigning a new attribute variable to a Group object to not collide with existing children node names. For this reason and to not pollute the children namespace, it is explicitly forbidden to assign "normal" attributes to Group instances, and the only ones allowed must start with some reserved prefixes, like "_f_" (for methods) or "_v_" (for instance variables) prefixes. Any attempt to assign a new attribute that does not starts with these prefixes, will raise a NameError exception.

Other effect is that you cannot use reserved Python names or other non-allowed python names (like for example "\$a" or "44") as node names. You can, however, make use of the trMap (translation map dictionary) parameter in the openFile function (see section 4.1.2) in order to use non-valid Python names as node names in the file.

4.3.1 Group instance variables

- _v_title A description for this group.
- _v_name The name of this group.
- _v_hdf5name The name of this group in HDF5 file namespace.
- _v_pathname A string representation of the group location in tree.
- _v_parent The parent Group instance.
- _v_rootgroup Pointer to the root group object.
- _v_file Pointer to the associated File object.
- _v_childs Dictionary with all nodes (groups or leaves) hanging from this instance.
- _v_groups Dictionary with all node groups hanging from this instance.
- _v_leaves Dictionary with all node leaves hanging from this instance.
- _v_attrs The associated AttributeSet instance (see 4.10).

4.3.2 Group methods

This class define the __setattr__, __getattr__ and __delattr__ and they work as normally intended. So, you can access, assign or delete childs to a group by just using the next constructs:

```
# Add a Table child instance under group with name "tablename"
group.tablename = Table(recordDict, "Record instance")
table = group.tablename  # Get the table child instance
del group.tablename  # Delete the table child instance
```

Caveat: The following methods are documented for completeness, and they can be used without any problem. However, you should use the high-level counterpart methods in the File class, because these are most used in documentation and examples, and are a bit more powerful than those exposed here.

- _f_join(name) Helper method to correctly concatenate a name child object with the pathname of this group.
- **_f_rename**(**newname**) Change the name of this group to *newname*.
- **_f_remove(recursive=0)** Remove this object. If *recursive* is true, force the removal even if this group has children.
- _f_getAttr(attrname) Gets the HDF5 attribute attrname of this group.

- **_f_setAttr(attrname, attrvalue)** Sets the attribute *attrname* of this group to the value *attrvalue*. Only string values are allowed.
- _f_listNodes(classname='') Returns a *list* with all the object nodes hanging from this instance. The list is alphanumerically sorted by node name. If a *classname* parameter is supplied, it will only return instances of this class (or subclasses of it). The supported classes in *classname* are 'Group', 'Leaf', 'Table' and 'Array', 'EArray', 'VLArray' and 'UnImplemented'.
- **_f_walkGroups**() Iterator that returns the list of Groups (not Leaves) hanging from *self*. The returned Group list is in a top-bottom order, and alphanumerically sorted when they are at the same level.
- **_f_close()** Close this group, making it and its children unaccessible in the object tree.

4.3.3 Group special methods

Following are described the methods that automatically trigger actions when a Group instance is accessed in a special way (e.g., group("Table") will be equivalent to a call to group.__call__("Table")).

```
__call__(classname="", recursive=0)
```

Iterate over the childs in the Group instance. It takes two parameters:

classname (String) If supplied, only instances of this class are returned.

recursive (*Integer*) If false, only childs hanging immediately after the group are returned. If true, a recursion over all the groups hanging from it is performed.

Example of use:

```
# Recursively print all the arrays hanging from '/'
print "Arrays the object tree '/':"
for array in h5file.root(classname="Array", recursive=1):
    print array
```

```
__iter__()
```

Iterate over the childs on the group instance. However, this does not accept parameters. This iterator is **not** recursive.

Example of use:

```
# Non-recursively list all the nodes hanging from '/detector'
print "Nodes in '/detector' group:"
for node in h5file.root.detector:
    print node
```

4.4 The Leaf class

This is a helper class useful to place common functionality of all Leaf objects. It is also useful for classifying purposes. A Leaf object is an end-node, that is, a node that can hang directly from a group object, but that is not a group itself and, thus, it cannot have descendents. Right now this set of end-nodes is composed by Table, Array, EArray, VLArray and UnImplemented class instances. In fact, all the previous classes inherits from the Leaf class.

The public variables and methods that class descendants inherits from Leaf are listed below.

4.4.1 Leaf instance variables

name The Leaf node name in Python namespace.

hdf5name The Leaf node name in HDF5 namespace.

objectID The HDF5 object ID of the Leaf node.

title The Leaf title (actually a property rather than a plain attribute).

shape The shape of the associated data in the Leaf.

byteorder The byteorder of the associated data of the Leaf.

complevel The compression level (0 means no compression).

complib The compression filter used (in case of a compressed dataset).

shuffle Whether the *shuffle* filter is active or not.

fletcher32 Whether the *fletcher32* filter is active or not.

attrs The associated AttributeSet instance (see 4.10).

4.4.2 Leaf methods

rename(**newname**) Change the name of this leaf to *newname*.

remove() Remove this leaf.

getAttr(attrname) Gets the HDF5 attribute attrname of this leaf.

setAttr(attrname, attrvalue) Sets the attribute *attrname* of this leaf to the value *attrvalue*. Only string values are allowed.

flush() Flush the leaf buffers.

close() Flush the leaf buffers and close the HDF5 dataset.

4.5 The Table class

Instances of this class represents table objects in the object tree. It provides methods to read/write data and from/to table objects in the file.

Data can be read from or written to tables by accessing to an special object that hangs from Table. This object is an instance of the Row class (see 4.5.4). See the tutorial sections chapter 3 on how to use the Row interface.

Note that this object inherits all the public attributes and methods that Leaf already has.

4.5.1 Table instance variables

description The metaobject describing this table

row The Row instance for this table (see 4.5.4).

nrows The number of rows in this table.

colnames The field names for the table (list).

coltypes The data types for the table fields (dictionary).

colshapes The shapes for the table fields (dictionary).

4.5.2 Table methods

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding Row instances built from rows in table. If a range is supplied (i.e. some of the *start*, *stop* or *step* parameters are passed), only the appropriate rows are returned. Else, all the rows are returned. See also the __call__() and __iter__() special methods in section 4.5.3 for shorter ways to call this iterator.

The meaning of the *start*, *stop* and *step* parameters is the same as in the range() python function, except that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do not especify neither *start* nor *stop*, then all the rows in the object are selected.

read(start=None, stop=None, step=1, field=None, flavor="numarray")

Returns the actual data in Table. If field is not supplied, it returns the data as a RecArray object table.

The meaning of the *start*, *stop* and *step* parameters is the same as in the range() python function, except that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do not especify neither *start* nor *stop*, then all the rows in the object are selected.

The rest of the parameters are described next:

field If specified, only the column *field* is returned as a NumArray object. If this is not supplied, all the fields are selected and a RecArray is returned.

flavor When a field in table is selected, passing a *flavor* parameter make an additional conversion to happen in the default "numarray" returned object. *flavor* must have any of the next values: "numarray" (i.e. no conversion is made), "Numeric", "Tuple" or "List".

removeRows(start=None, stop=None)

Removes a range of rows in the table. If only *start* is supplied, this row is to be deleted. If a range is supplied, i.e. both the *start* and *stop* parameters are passed, all the rows in the range are removed². A *step* parameter is not supported yet.

start Sets the starting row to be removed. It accepts negative values meaning that the count starts from the end. A value of 0 means the first row.

stop Sets the last row to be removed to *stop* - 1, i.e. the end point is omitted (in the Python range tradition). It accepts, likewise *start*, negative values. A special value of None means the last row.

4.5.3 Table special methods

Following are described the methods that automatically trigger actions when a Table instance is accessed in a special way (e.g., table["var2"] will be equivalent to a call to table.__getitem__("var2")).

```
__call__(start=None, stop=None, step=1)
```

It returns the same iterator than Table.iterrows(start, stop, step). It is, therefore, a shorter way to call it.

Example of use:

Which is equivalent to:

² However, for removeRows() to work, you need that the rows **after** the stop parameter will fit in-memory so as to method to work. This limitation will be hopefully removed in a future version.

```
__iter__()
```

It returns the same iterator than Table.iterrows(0,0,1). However, this does not accept parameters. Example of use:

Which is equivalent to:

```
__getitem__(key)
```

It takes different actions depending on the type of the key parameter:

key is an Integer The corresponding table row is returned as a RecArray. Record object.

key is a Slice The row slice determined by key is returned as a RecArray object.

key is a String The key is interpreted as a *column* name of the table, and, if it exists, it is read and returned as a NumArray or CharArray object (whatever is appropriate).

Example of use:

```
record = table[4]
recarray = table[4:1000:2]
narray = table["var2"]
```

Which is equivalent to:

```
record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)
narray = table.read(field="var2")
```

4.5.4 The Row class

This class is used to fetch and set values on the table fields. It works very much like a dictionary, where the keys are the field names of the associated table and the values are the values of those fields in a specific row.

This object turns out to actually be an extension type, so you won't be able to access their documentation interactively. Neither you won't be able to access it's internal attributes (they are not directly accessible from Python), although that *accessors* (i.e. methods that return an internal attribute) has been defined for the most important variables.

Row methods

append() Once you have filled the proper fields for the current row, calling this method actually commit this data to the disk (actually data is written to the output buffer).

nrow() Accessor that returns the current row in the table. It is useful to know which row is being dealt with in the middle of a loop.

4.6 The Array class

Represents an array on file. It provides methods to write/read data to/from array objects in the file. This class does not allow to enlarge the datasets on disk; see the EArray descendant in section 4.7 if you want enlargeable dataset support and/or compression features.

Caveat: All Numeric and numarray data types are supported except those that corresponds to complex data types³. See numarray manual (Greenfield *et al.*) to know more about the supported data types, or see appendix A.

Note that this object inherits all the public attributes and methods from Leaf already provides.

4.6.1 Array instance variables

flavor The object representation for this array. It can be any of "NumArray", "CharArray" "Numeric", "List", "Tuple", "String", "Int" or "Float" values.

nrows The length of the first dimension of Array.

nrow On iterators, this is the index of the current row.

type The type class of the represented array.

itemsize The size of the base items. Specially useful for CharArray objects.

4.6.2 Array methods

Note that, as this object has no internal I/O buffers, it is not necessary to flush() method inherited from Leaf.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding numarray instances built from rows in array. The return rows are taken from the first dimension in case of an Array instance and the enlargeable dimension in case of an EArray instance. If a range is supplied (i.e. some of the *start*, *stop* or *step* parameters are passed), only the appropriate rows are returned. Else, all the rows are returned. See also the __call__() and __iter__() special methods in section 4.6.3 for shorter ways to call this iterator.

The meaning of the *start*, *stop* and *step* parameters is the same as in the range() python function, except that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do not especify neither *start* nor *stop*, then all the rows in the object are selected.

read(start=None, stop=None, step=1)

Read the array from disk and return it as a numarray (default) object, or an object with the same original flavor that it was saved. It accepts start, stop and step parameters to select rows (the first dimension in the case of an Array instance and the enlargeable dimension in case of an EArray) for reading.

The meaning of the *start*, *stop* and *step* parameters is the same as in the range() python function, except that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do not especify neither *start* nor *stop*, then all the rows in the object are selected.

4.6.3 Array special methods

Following are described the methods that automatically trigger actions when an Array instance is accessed in a special way (e.g., array[2:3,...,::2] will be equivalent to a call to array.__getitem__(slice(2,3, None), Ellipsis, slice(None, None, 2))).

³ However, these might be included in the future

__call__(start=None, stop=None, step=1)

It returns the same iterator than Array.iterrows(start, stop, step). It is, therefore, a shorter way to call it.

Example of use:

```
result = [ row for row in arrayInstance(step=4) ]
```

Which is equivalent to:

```
result = [ row for row in arrayInstance.iterrows(step=4) ]
```

```
__iter__()
```

It returns the same iterator than Array.iterrows(0,0,1). However, this does not accept parameters. Example of use:

```
result = [ row[2] for row in array ]
```

Which is equivalent to:

```
result = [ row[2] for row in array.iterrows(0, 0, 1) ]
```

```
__getitem__(key)
```

It returns a numarray (default) object (or an object with the same original *flavor* that it was saved) containing the slice of rows stated in the key parameter. The set of allowed tokens in key is the same as extended slicing in python (the Ellipsis token included).

Example of use:

```
array1 = array[4]  # array1.shape == array.shape[1:]
array2 = array[4:1000:2]  # len(array2.shape) == len(array.shape)
array3 = array[::2, 1:4, :]
array4 = array[1, ..., ::2, 1:4, 4:]  # General slice selection
```

4.7 The EArray class

This is a child of the Array class (see 4.6) and as such, EArray represents an array on the file. The difference is that EArray allows to enlarge datasets along any single dimension⁴ you select. Another important difference is that it also support compression.

So, in addition to the attributes and methods that EArray inherits from Array, it supports a few more that provides a way to enlarge the arrays on disk. Following are described the new variables and methods as well as some that already exists in Array but that differ somewhat on the meaning and/or functionality in the EArray context.

4.7.1 Earray instance variables

extdim The enlargeable dimension.

nrows The length of the enlargeable dimension.

 $^{^{4}}$ In the future, multiple enlargeable dimensions might be implemented as well.

4.7.2 Earray methods

append(object)

Appends an object to the underlying dataset. Obviously, this object has to have the same type as the EArray instance, and if not, a type conversion is forced. In the same way, the dimensions of the object has to conform those of EArray, that is, all the dimensions has to be the same except, of course, that of the enlargeable dimension which can be of any length (even 0!).

Example of use (code available in examples/earray1.py):

```
import tables
   from numarray import strings
   fileh = tables.openFile("earray1.h5", mode = "w")
   a = strings.array(None, itemsize=8, shape=(0,))
   # Use 'a' as the object type for the enlargeable array
   array_c = fileh.createEArray(fileh.root, 'array_c', a, "Chars")
   # Append a couple of CharArrays
   array_c.append(strings.array(['a'*2, 'b'*4], itemsize=8))
   array_c.append(strings.array(['a'*6, 'b'*8, 'c'*10], itemsize=8))
   # Read the string EArray we have created on disk
   for s in array_c:
       print "array_c[%s] => '%s'" % (array_c.nrow, s)
   # Close the file
   fileh.close()
and the ouput is:
   array_c[0] => 'aa'
   array_c[1] => 'bbbb'
   array_c[2] => 'aaaaaa'
   array_c[3] => 'bbbbbbbbb'
   array_c[4] => 'ccccccc'
```

4.8 The VLArray class

Instances of this class represents array objects in the object tree with the property that their rows can have a **variable** number of (homogeneous) elements (called *atomic* objects, or just *atoms*). Variable length arrays (or *VLA*'s for short), similarly to Table instances, can have only one dimension, and likewise Table, the compound elements (the *atoms*) of the rows of VLArrays can be fully multimensional objects.

VLArray provides methods to read/write data from/to vaiable length array objects residents on disk. Also, note that this object inherits all the public attributes and methods that Leaf already has.

4.8.1 VLArray instance variables

atom The class instance choosed for the atom object (see section 4.11.3).

nrow On iterators, this is the index of the row currently dealed with.

nrows The total number of rows.

4.8.2 VLArray methods

append(object1, object2, ...)

Append the objects passed as parameters to a single row in the VLArray instance. The type of the objects has to be compliant with the VLArray. atom instance type.

Example of use (code available in examples/vlarray1.py):

```
import tables
   from Numeric import *
                            # or, from numarray import *
   # Create a VLArray:
   fileh = tables.openFile("vlarray1.h5", mode = "w")
   vlarray = fileh.createVLArray(fileh.root, 'vlarray1',
   tables.Int32Atom(flavor="Numeric"),
                    "ragged array of ints", compress = 1)
   # Append some (variable length) rows
   # All these different parameter specification are accepted:
   vlarray.append(array([5, 6]))
   vlarray.append(array([5, 6, 7]))
   vlarray.append([5, 6, 9, 8])
   vlarray.append(5, 6, 9, 10, 12)
   # Now, read it through an iterator
   for x in vlarray:
       print vlarray.name+"["+str(vlarray.nrow)+"]-->", x
   # Close the file
   fileh.close()
And the output for this looks like:
```

```
vlarray1[0]--> [5 6]
vlarray1[1]--> [5 6 7]
vlarray1[2]--> [5 6 9 8]
vlarray1[3]--> [ 5 6 9 10 12]
```

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding one row per iteration. If a range is supplied (i.e. some of the start, stop or step parameters are passed), only the appropriate rows are returned. Else, all the rows are returned. See also the _call__() and __iter__() special methods in section 4.8.3 for shorter ways to call this iterator.

The meaning of the start, stop and step parameters is the same as in the range () python function, except that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do not especify neither start nor stop, then all the rows in the object are selected.

read(start=None, stop=None, step=1)

Returns the actual data in VLArray. As the lengths of the different rows are variable, the returned value is a python list, with as many entries as specified rows in the range parameters.

The meaning of the start, stop and step parameters is the same as in the range () python function, except that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do not especify neither start nor stop, then all the rows in the object are selected.

4.8.3 VLArray special methods

Following are described the methods that automatically trigger actions when a VLArray instance is accessed in a special way (e.g., vlarray[2:5] will be equivalent to a call to vlarray. __getitem__(slice(2,5,None)).

```
__call__(start=None, stop=None, step=1)
```

It returns the same iterator than VLArray.iterrows(start, stop, step). It is, therefore, a shorter way to call it.

Example of use:

```
for row in vlarray(step=4):
    print vlarray.name+"["+str(vlarray.nrow)+"]-->", row
```

Which is equivalent to:

```
for row in vlarray.iterrows(step=4):
    print vlarray.name+"["+str(vlarray.nrow)+"]-->", row
```

```
__iter__()
```

It returns the same iterator than VLArray.iterrows(0,0,1). However, this does not accept parameters. Example of use:

```
result = [ row for row in vlarray ]
```

Which is equivalent to:

```
result = [ row for row in vlarray.iterrows() ]
```

```
__getitem__(key)
```

It returns the slice of rows determined by key, which can be an integer index or an extended slice. The returned value is a list of objects of type array.atom.type.

Example of use:

```
list1 = vlarray[4]
list2 = vlarray[4:1000:2]
```

4.9 The Unimplemented class

Instances of this class represents an unimplemented dataset in a generic HDF5 file. When reading such a file (i.e. one that has not been created with PyTables, but with some other HDF5 library based tool), chances are that the specific combination of *datatypes* and/or *dataspaces* in some dataset migth not be supported by PyTables yet. In such a case, this dataset will be mapped into the UnImplemented class and hence, the user will still be able to build the complete object tree of this generic HDF5 file, as well as enabling the access (both read and *write*) of the attributes of this dataset and some metadata. Of course, the user won't be able to read the actual data on it.

This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its datasets would not be supported by PyTables. However, if you are really interested in having access to an unimplemented dataset, please, get in contact with the developer team.

This class does not have any public instance variables, except those inherited from the Leaf class (see 4.4).

4.10 The AttributeSet class

Represents the set of attributes of a node (Leaf or Group). It provides methods to create new attributes, open, rename or delete existing ones.

Like in Group instances, AttributeSet instances make use of the *natural naming* convention, i.e. you can access the attributes on disk like if they were *normal* AttributeSet attributes. This offers the user a very convenient way to access (but also to set and delete) node attributes by simply specifying them like a *normal* attribute class.

Caveat: All Python data types are supported. The scalar ones (i.e. String, Int and Float) are mapped directly to the HDF5 counterparts, so you can correctly visualize them with any HDF5 tool. However, the rest of the data types and more general objects are serialized using cPickle, so you will be able to correctly retrieve them only from a Python-aware HDF5 library. Hopefully, the list of supported native attributes will be extended to fully multidimensional arrays sometime in the future.

4.10.1 AttributeSet instance variables

```
_v_node The parent node instance.
```

- **v** attrnames List with all attribute names.
- _v_attrnamessys List with system attribute names.
- _v_attrnamesuser List with user attribute names.

4.10.2 AttributeSet methods

Note that this class define the __setattr__, __getattr__ and __delattr__ and they work as normally intended. So, you can access, assign or delete attributes on disk by just using the next constructs:

```
leaf.attrs.myattr = "string attr"  # Set the attribute myattr
attrib = leaf.attrs.myattr  # Get the attribute myattr
del leaf.attrs.myattr  # Delete the attribute myattr
```

_f_list(attrset = "user") Return the list of attributes of the parent node.

attrset Selects the attribute set to be returned. An "user" value returns only the user attributes. This is the default. "sys" returns only the system (some of which are read-only) attributes. "readonly" returns the system read-only attributes. "all" returns both the system and user attributes.

_f_rename(oldattrname, newattrname) Rename an attribute.

4.11 Declarative classes

4.11.1 The IsDescription class

This class is in fact a so-called *metaclass* object. There is nothing special on this fact, except that their subclasses attributes are transformed during its instantiation phase, and new methods for instances are defined based on the values of the class attributes.

It is designed to be used as an easy, yet meaningful way to describe the properties of Table objects through the use of classes that inherit properties from it. In order to define such a special class, you have to declare it as descendant of *IsDescription*, with many attributes as columns you want in your table. The name of these attributes will become the name of the columns, while its values are the properties of the columns that are obtained through the use of the Col class constructor. See the section 4.11.2 for instructions on how define the properties of the table columns.

Then, you can pass an instance of this object to the Table constructor, where all the information it contains will be used to define the table structure. See the section 3.3 for an example on how that works.

4.11.2 The Col class and its descendants

The Col class is used as a mean to declare the different properties of a table column. In addition, a series of descendant classes are offered in order to make these column descriptions easier to the user. In general, it is recommended to use these descendant classes, as they are more meaningful when found in the middle of the code.

Note that the only public method accessible in these classes is the constructor itself.

Col(dtype="Float64", shape=1, dflt=None, pos=None) Declare the properties of a Table column.

dtype The data type for the column. See the appendix A for a relation of data types supported in a IsDescription class declaration. The type description is accepted both in string format and as numarray data type.

shape An integer or a tuple, that specifies the number of *dtype* items for each element (or shape, for multidimensional elements) of this column. For CharType columns, the first dimension is used as the length of the character strings. However, for this kind of objects, the use of StringCol subclass is strongly recommended.

dflt The default value for elements of this column. If the user does not supply a value for an element while filling a table, this default value will be written to disk. If the user supplies an scalar value for a multidimensional column, this value is automatically *broadcasted* to all the elements in the column cell. If *dflt* is not supplied, an appropriate zero value (or *null* string) will be chosen by default.

pos By default, columns are arranged in memory following an alphanumerical order of the column names. In some situations, however, it is convenient to impose a user defined ordering. *pos* parameter allows the user to force the desired ordering.

StringCol(length=None, dflt=None, shape=1, pos=None) Declare a column to be of type CharType. The *length* parameter sets the length of the strings. The meaning of the other parameters are like in the Col class.

BoolCol(dflt=0, shape=1, pos=None) Define a column to be of type Bool. The meaning of the parameters are the same of those in the Col class.

IntCol(dft=0, shape=1, itemsize=4, sign=1, pos=None) Declare a column to be of type IntXX, depending on the value of *itemsize* parameter, that sets the number of bytes of the integers in the column. *sign* determines whether the integers are signed or not. The meaning of the other parameters are the same of those in the Col class.

This class has several descendants:

Int8Col(dflt=0, shape=1, pos=None) Define a column of type Int8.

UInt8Col(dflt=0, shape=1, pos=None) Define a column of type UInt8.

Int16Col(dflt=0, shape=1, pos=None) Define a column of type Int16.

UInt16Col(dflt=0, shape=1, pos=None) Define a column of type UInt16.

Int32Col(dflt=0, shape=1, pos=None) Define a column of type Int32.

UInt32Col(dflt=0, shape=1, pos=None) Define a column of type UInt32.

Int64Col(dflt=0, shape=1, pos=None) Define a column of type Int64.

UInt64Col(dflt=0, shape=1, pos=None) Define a column of type UInt64.

FloatCol(dflt=0, shape=1, itemsize=8, pos=None) Define a column to be of type FloatXX, depending on the value of itemsize. The itemsize parameter sets the number of bytes of the floats in the column and the default is 8 bytes (double precision). The meaning of the other parameters are the same as those in the Col class.

This class has two descendants:

Float32Col(dflt=0.0, shape=1, pos=None) Define a column of type Float32.

Float64Col(dflt=0.0, shape=1, pos=None) Define a column of type Float64.

4.11.3 The Atom class and its descendants.

The Atom class is meant to declare the different properties of the *base element* (also known as *atom*) of a VLArray row. The Atom instances have the property that its length is always the same, but you can put a variable number of them on the same row. Moreover, the atoms are not restricted to scalar values, and they can be fully multimensional objects.

A series of descendant classes are offered in order to make the use of these element descriptions easier. In general, it is recommended to use these descendant classes, as they are more meaningful when found in the middle of the code. Note that the only public methods accessible in these classes are the atomsize() method and the constructor itself. The atomsize() method returns the total length, in bytes, of the element base atom.

A description of the different constructors with their parameters follows:

Atom(dtype="Float64", shape=1, flavor="NumArray") Define properties for the base elements of VLArray rows.

dtype The data type for the base element. See the appendix A for a relation of data types supported. The type description is accepted both in string format and as numarray data type.

shape An integer or a tuple, that specifies the number of *dtype* items for each element (or shape, for multidimensional elements) of this base element. For CharType elements, the first dimension is used as the length of the character strings. However, for this kind of objects, the use of StringAtom subclass is strongly recommended.

flavor The object representation for this atom. It can be any of "CharArray" or "String" for the CharType type and "NumArray", "Numeric", "List" or "Tuple" for the rest of the types. If the specified values differs from CharArray or NumArray values, the read atoms will be converted to that specific flavor. If not specified, the atoms will remain in their native format (i.e. CharArray or NumArray).

StringAtom(shape=1, length=None, flavor="CharArray") Define an atom to be of CharType type. The meaning of the *shape* parameter is the same as in the Atom class. *length* sets the length of the strings atoms. *flavor* can be whether "CharArray" or "String". Unicode strings are not supported by this type; see the VLStringAtom class if you want Unicode support.

BoolAtom(shape=1, flavor="NumArray") Define an atom to be of type Bool. The meaning of the parameters are the same of those in the Atom class.

IntAtom(shape=1, itemsize=4, sign=1, flavor="NumArray") Define an atom to be of type IntXX, depending on the value of *itemsize* parameter, that sets the number of bytes of the integers that conform the atom. *sign* determines whether the integers are signed or not. The meaning of the other parameters are the same of those in the Atom class.

This class has several descendants:

Int8Atom(shape=1, flavor="NumArray") Define an atom of type Int8.

UInt8Atom(shape=1, flavor="NumArray") Define an atom of type UInt8.

Int16Atom(shape=1, flavor="NumArray") Define an atom of type Int16.

UInt16Atom(shape=1, flavor="NumArray") Define an atom of type UInt16.

Int32Atom(shape=1, flavor="NumArray") Define an atom of type Int32.

UInt32Atom(**shape=1, flavor="NumArray"**) Define an atom of type UInt32.

Int64Atom(shape=1, flavor="NumArray") Define an atom of type Int64.

UInt64Atom(shape=1, flavor="NumArray") Define an atom of type UInt64.

FloatAtom(shape=1, itemsize=8, flavor="NumArray") Define an atom to be of FloatXX type, depending on the value of itemsize. The itemsize parameter sets the number of bytes of the floats in the atom and the default is 8 bytes (double precision). The meaning of the other parameters are the same as those in the Atom class.

This class has two descendants:

```
Float32Atom(shape=1, flavor="NumArray") Define an atom of type Float32. Float64Atom(shape=1, flavor="NumArray") Define an atom of type Float64.
```

Now, there come two special classes, ObjectAtom and VLString, that actually do not descend from Atom, but which goal is so similar that they should be described here. The difference between them and the Atom and descendents classes is that these special classes does not allow multidimensional atoms, nor multiple values per row. A *flavor* can't be specified neither as it is immutable (see below).

ObjectAtom() This class is meant to fit any kind of object in a row of an VLArray instance by using cPickle behind the scenes. Due to the fact that you cannot forsee how long will be the output of the cPickle serialization (i.e. the atom already has a variable length), you can only fit a representant of it per row. However, you can still pass several parameters to the VLArray.append() method as they will be regarded as a tuple of compound objects (the parameters), so that we still have only one object to be saved in a single row. It does not accept parameters and its flavor is automatically set to "Object", so the reads of rows always returns an arbitrary python object. You can regard ObjectAtom types as an easy way to save an arbitrary number of generic python objects in a VLArray object.

VLStringAtom() This class describes a row of the VLArray class, rather than an atom. It differs from the StringAtom class in that you can only add one instance of it to one specific row, i.e. the VLArray.append() method only accepts one object when the base atom is of this type. Besides, it supports Unicode strings (contrarily to StringAtom) because it uses the UTF-8 codification (this is why its atomsize() method returns always 1) when serializing to disk. It does not accept any parameter and because its flavor is automatically set to "VLString", the reads of rows always returns a python string. See the appendix B.3.4 if you are curious on how this is implemented at the low-level. You can regard VLStringAtom types as an easy way to save generic variable length strings.

See in this example how to use the different atom types:

```
# -*- coding: latin-1 -*-
from numarray import *
from tables import *
# Open a new empty HDF5 file
fileh = openFile("vlarray2.h5", mode = "w")
# Get the root group
root = fileh.root
# Boolean arrays
vlarray = fileh.createVLArray(root, 'vlarray1', BoolAtom(2), "Boolean atoms")
vlarray.append([[1,0]])
vlarray.append([1,0], [3,0], [0, 20]) # This will be converted to booleans
# Unicode variable length strings (with Unicode support)
vlarray = fileh.createVLArray(root, 'vlarray2', VLStringAtom(),
                              "Variable Length String")
vlarray.append(u"asd")
vlarray.append(u"")
                      # The empty string
vlarray.append(u"aaañá")
# Create an VLArray made of objects
vlarray = fileh.createVLArray(root, 'vlarray3', ObjectAtom(),
                              "pickled object")
```

```
vlarray.append({"passwd": "abracadabra"}) # A dictionary
vlarray.append() # An empty row
vlarray.append(["123", "456"], "3") # Different objects (tuple) on a single row
# Close the file
fileh.close()
# Open the file for reading
fileh = openFile("vlarray2.h5", mode = "r")
for vlarray in fileh.listNodes(fileh.root, "VLArray"):
   print repr(vlarray)
    for i in range(vlarray.nrows):
        print "%s[%s] --> <%s>" % (vlarray.name, i, vlarray[i])
  The output:
/vlarray1 (VLArray(2,)) 'Boolean atoms'
  atom = Atom(type=Bool, shape=1, flavor='NumArray')
  nrows = 2
  flavor = 'NumArray'
  byteorder = 'little'
vlarray1[0] --> <[1]>
vlarray1[1] --> <[1 0 1]>
/vlarray2 (VLArray(3,)) 'Variable Length String'
  atom = VLString()
 nrows = 3
  flavor = 'VLString'
  byteorder = 'little'
vlarray2[0] --> <asd>
vlarray2[1] --> <>
vlarray2[2] --> <aaañá>
/vlarray3 (VLArray(3,)) 'pickled object'
  atom = Object()
 nrows = 3
 flavor = 'Object'
 byteorder = 'little'
vlarray3[0] --> <{'passwd': 'abracadabra'}>
vlarray3[1] --> <None>
vlarray3[2] --> <(['123', '456'], '3')>
```

See examples/vlarray2.py for further examples on VLArrays, including object serialization and Unicode string management.

... durch planmässiges Tattonieren.
—Johann Karl Friedrich Gauss
[asked how he came upon his theorems]

Chapter 5

Optimization tips

On this chapter, you will get deeper knowledge of PyTables internals. PyTables has several places where the user can improve the performance of his application. If you are planning to deal with really large data, you should read carefully this section in order to learn how to get an important boost for your code. But if your dataset is small or medium size (say, up to 1 MB), you should not worry about that as the default parameters in PyTables are already tuned to handle that perfectly.

5.1 Taking advantage of Psyco

Psyco (see Rigo)is a kind of specialized compiler for Python that typically accelerates Python applications with no change in source code. You can think of Psyco as a kind of just-in-time (JIT) compiler, a little bit like Java's, that emit machine code on the fly instead of interpreting your Python program step by step. The result is that your unmodified Python programs run faster.

Psyco is very easy to install and use, so in most scenarios it is worth to have it a try. However, it only runs on Intel 386 architectures, so if you are using other architectures, you are out of luck (at least until Psyco will support yours).

As an example, imagine that you have a small script that reads and selects data over a series of datasets, like this:

```
def readFile(filename):
    "Select data from all the tables in filename"

fileh = openFile(filename, mode = "r")
    result = []
    for table in fileh("/", 'Table'):
        result = [ p['var3'] for p in table if p['var2'] <= 20 ]

    fileh.close()
    return e

if __name__ == "__main__":
    print readFile("myfile.h5")

In order to accelerate this piece of code, you can rewrite your main program to look like:</pre>
```

if name -- main ".

```
if __name__ == "__main__":
    import pysco
    psyco.bind(readFile)
    print readFile("myfile.h5")
```

That's all!. From now on, each time that you execute your python script, Psyco will deploy its sophisticated algorithms so as to accelerate your calculations.

Figure 5.1: Writing tables with/without Psyco.

Figure 5.2: Reading tables with/without Psyco.

You can see in the graphs 5.1 and 5.2 how much I/O speed improvement you can get by using Psyco. By looking at this figures you can get an idea if these improvements are of your interest or not. In general, if you are not going to use compression you will take advantage of Psyco if your tables are medium sized (1e+3 < nrows < 1e+6), and this advantage will disappear progressively when the number of rows grows well over one million. However if you use compression, you will probably see improvements even beyond this limit (see section 5.2). As always, there is no substitute for experimentation with your own dataset.

5.2 Compression issues

One of the beauties of PyTables is that it supports compression on tables (but not on arrays!, that may come later), although it is disabled by default. Compression of big amounts of data might be a bit controversial feature, because compression has a legend of being a very big CPU time resources consumer. However, if you are willing to check if compression can help not only reducing your dataset file size but **also** improving your I/O efficiency, keep reading.

There is an usual scenario where users need to save duplicated data in some record fields, while the others

Compr. Lib	File size (MB)	Time writing (s)	Time reading (s)	Speed writing (Krow/s)	Speed reading (Krow/s)
NO COMPR	244.0	24.4	16.0	18.0	27.8
Zlib (lvl 1)	8.5	17.0	3.11	26.5	144.4
Zlib (lvl 6)	7.1	20.1	3.10	22.4	144.9
Zlib (lvl 9)	7.2	42.5	3.10	10.6	145.1
LZO (lvl 1)	9.7	14.6	1.95	30.6	230.5
UCL (lvl 1)	6.9	38.3	2.58	11.7	185.4

Table 5.1: Comparison between different compression libraries. The tests has been conducted on a Pentium 4 at 2 GHz and a hard disk at 4200 RPM.

have varying values. In a relational database approach such a redundant data can normally be moved to other tables and a relationship between the rows on the separate tables can be created. But that takes analysis and implementation time, and made the underlying libraries more complex and slower.

PyTables transparent compression allows the user to not worry about finding which is their optimum data tables strategy, but rather use less, not directly related, tables with a larger number of columns while still not cluttering the database too much with duplicated data (compression is responsible to avoid that). As a side effect, data selections can be made more easily because you have more fields available in a single table, and they can be referred in the same loop. This process may normally end in a simpler, yet powerful manner to process your data (although you should still be careful about what kind of scenarios compression use is convenient or not).

The compression library used by default is the **Zlib** (see Gailly and Adler), and as HDF5 *requires* it, you can safely use it and expect that your HDF5 files can be read on any other platform that has HDF5 libraries installed. Zlib provides good compression ratio, although somewhat slow, and reasonably fast decompression. Because of that, it is a good candidate to be used for compress you data.

However, in many situations (i.e. write *once*, read *multiple*), it is critical to have *very good* decompression speed (at expense of whether less compression or more CPU wasted on compression, as we will see soon). This is why support for two additional compressors has been added to PyTables: LZO and UCL (see Oberhumer). Following his author (and checked by the author of this manual), LZO offers pretty fast compression (although small compression ratio) and extremely fast decompression while UCL achieve an excellent compression ratio (at the price of spending much more CPU time) while allowing very fast decompression (and *very close* to the LZO one). In fact, LZO and UCL are so fast when decompressing that, in general (that depends on your data, of course), writing and reading a compressed table is actually faster (and sometimes **much faster**) than if it is uncompressed. This fact is very important, specially if you have to deal with very large amounts of data.

Be aware that the LZO and UCL support in PyTables is not standard on HDF5, so if you are going to use your PyTables files in other contexts different from PyTables you will not be able to read them.

In order to give you a raw idea of what ratios would be achieved, and what resources would be consumed, look at the table 5.1. This table has been obtained from synthetic data and with a somewhat outdated PyTables version (0.5), so take this just as a guide because your mileage will probably vary. Have also a look at the graphs 5.3 and 5.4 (these graphs has been obtained with tables with different row sizes and PyTables version than the previous example, so, do not try to directly compare the figures). They show how evolves the speed of writing/reading rows as the size (the row number) of tables grows. Even though in these graphs the size of one single row is 56 bytes, you can most probably extrapolate this figures to other row sizes. If you are curious how well can perform compression together with Psyco, look at the graphs 5.5 and 5.6. As you can see, the results are pretty interesting.

By looking at graphs, you can expect that, generally speaking, LZO would be the fastest both compressing and uncompressing, but the one that achieves the worse compression ratio (although that may be just ok for many situations). UCL is the slowest when compressing, but is faster than Zlib when decompressing, and, besides, it achieves very good compression ratios (generally better than Zlib). Zlib represents a balance between them: it's somewhat slow compressing, the slowest during decompressing, but it normally achieves fairly good compression ratios.

So, if your ultimate goal is reading as fast as possible, choose LZO. If you want to reduce as much as

Figure 5.3: Writing tables with several compressors.

Figure 5.4: Reading tables with several compressors.

Figure 5.5: Writing tables with several compressors and Psyco.

Figure 5.6: Reading tables with several compressors and Psyco.

possible your data, while retaining good read speed, choose UCL. If you don't mind too much about the above parameters and/or portability is important for you, Zlib is your best bet.

The compression level that I recommend to use for all compression libraries is 1. This is the lowest level of compression, but if you take the approach suggested above, normally the redundant data is to be found in the same row, so the redundant data locality is very high and such a small level of compression should be enough to achieve a good compression ratio on your data tables, saving CPU cycles for doing other things. Nonetheless, in some situations you may want to check how compression level affects your application.

You can select the compression library and level by setting the complib and compress keywords in the createTable method (see 4.2.2). A compression level of 0 will completely disable compression (the default), 1 is the less CPU time demanding level, while 9 is the maximum level and most CPU intensive. Finally, have in mind that LZO is not accepting a compression level right now, so, when using LZO, 0 means that compression is not active, and any other value means that LZO is active.

5.3 Shuffling (or how to make the compression even more efective)

The HDF5 library provides an interesting filter that can leverage the results of your favorite compressor. Its name is *shuffle*, and because it can greatly benefit compression and don't take many CPU resources, it is active by *default* in PyTables whenever the compression is activated (independently of the compressor choosed). It is of course deactivated when compression is off (which is the default, as you already should know).

From the HDF5 reference manual:

The *shuffle* filter de-interlaces a block of data by reordering the bytes. All the bytes from one consistent byte position of each data element are placed together in one block; all bytes from a second consistent byte position of each data element are placed together a second block; etc. For example, given three data elements of a 4-byte datatype stored as 012301230123, shuffling will re-order data as 000111222333. This can be a valuable step in an effective compression algorithm because the bytes in each byte position are often closely related to each other and putting them together can increase the compression ratio.

In table 5.2 you can see a benchmark that shows how the *shuffle* filter can help to the different libraries to compress data in three table datasets. Generally speaking, *shuffle* makes the writing process (shuffling+compressing) faster (between 7% and 22%), which is an interesting result in itself. However, the reading process (unshuffling+decompressing) is slower, but by a lesser extent (between 3% and 18%).

But the most impressive is the level of compression that compressor filters can achieve after *shuffle* has passed over the data: the total file size can be up to 40 times smaller than the uncompressed file, and up to

Compr. Lib	File size (MB)	Time writing (s)	Time reading (s)	Speed writing (MB/s)	Speed reading (MB/s)
NO COMPR	165.4	24.5	17.13	6.6	9.6
Zlib (lvl 1)	26.4	22.2	5.77	7.3	28.4
Zlib+shuffle	4.0	19.0	5.94	8.6	27.6
LZO (lvl 1)	44.9	17.8	4.13	9.2	39.7
LZO+shuffle	4.3	16.4	5.03	9.9	32.6
UCL (lvl 1)	27.4	48.8	5.02	3.3	32.7
UCL+shuffle	3.5	38.1	5.31	4.3	30.9

Table 5.2: Comparison between different compression libraries. The tests has been conducted on a Pentium 4 at 2 GHz and a hard disk at 4200 RPM.

5 times smaller than the already compressed files (!). Of course, the data for doing this test is synthetic, and *shuffle* seems to do a great work with it, so in general, the results will vary in your case. However, due to the small drawbacks (read are slowed down by a small extent) and its potential gains (faster writing, but specially much better compression level), I do believe that it is a good thing to have such a filter enabled by default in the battle for discovering redundancy in your data.

5.4 Informing PyTables about expected number of rows in tables

The underlying HDF5 library that is used by PyTables takes the data in bunches of a certain length, so-called *chunks*, to write them on disk as a whole, i.e. the HDF5 library treats chunks as atomic objects and disk I/O is always made in terms of complete chunks. This allows data filters to be defined by the application to perform tasks such as compression, encryption, checksumming, etc. on entire chunks.

An in-memory B-tree is used to map chunk structures on disk. The more chunks that are allocated for a dataset the larger the B-tree. Large B-trees take memory and causes file storage overhead as well as more disk I/O and higher contention for the metadata cache. Consequently, it's important to balance between memory and I/O overhead (small B-trees) and time to access to data (big B-trees).

PyTables can determine an optimum chunk size to make B-trees adequate to your dataset size if you help it by providing an estimation of the number of rows for a table. This must be made in table creation time by passing this value in the expectedrows keyword of createTable method (see 4.2.2).

When your table size is bigger than 1 MB (take this figure only as a reference, not strictly), by providing this guess of the number of rows you will be optimizing the access to your data. When the table size is larger than, say 100MB, you are **strongly** suggested to provide such a guess; failing to do that may cause your application doing very slow I/O operations and demanding **huge** amounts of memory. You have been warned!.

5.5 Selecting an User Entry Point (UEP) in your tree

If you have a **huge** tree in your data file with many nodes on it, creating the object tree would take long time. Many times, however, you are interested only in access to a part of the complete tree, so you won't strictly need PyTables to build the entire object tree in-memory, but only the *interesting* part.

This is where the rootUEP parameter of openFile function (see 4.1.2) can be helpful. Imagine that you have a file called "test.h5" with the associated tree that you can see in figure 5.7, and you are interested only in the section marked in red. You can avoid the build of all the object tree by saying to openFile that your root will be the /Group2/Group3 group. That is:

```
fileh = openFile("test.h5", rootUEP="/Group2/Group3")
```

As a result, the actual object tree built will be like the one that can be seen in figure 5.8.

Of course this has been a simple example and the use of the rootUEP parameter was not very necessary. But when you have *thousands* of nodes on a tree, you will certainly appreciate the rootUEP parameter.

Figure 5.7: Complete tree in file test.h5, and subtree of interest for the user.

Figure 5.8: Resulting object tree derived from the use of the ${\tt rootUEP}$ parameter.

Appendix A

Supported data types in PyTables

IsDescription subclasses supports a limited set of data types to define the table fields. Such a set is roughly the same than the types supported by the numarray package (see Greenfield *et al.*) in Python, with the exception of the complex datatypes that are not supported yet.

These data types in table columns can be set through the use of the Col class and its descendants (see 4.11.2). You may find useful the table A as a quick reference to the complete set of supported data types in PyTables.

 Table A.1: Data types supported by subclasses of IsDescription definitions.

Type Code	Description	C Type	Size (in bytes)	Python Counterpart
Bool	boolean	unsigned char	1	Boolean
Int8	8-bit integer	signed char	1	Integer
UInt8	8-bit unsigned integer	unsigned char	1	Integer
Int16	16-bit integer	short	2	Integer
UInt16	16-bit unsigned integer	unsigned short	2	Integer
Int32	integer	int	4	Integer
UInt32	unsigned integer	unsigned int	4	Long
Int64	64-bit integer	long long	8	Long
UInt64	unsigned 64-bit integer	unsigned long long	8	Long
Float32	single-precision float	float	4	Float
Float64	double-precision float	double	8	Float
CharType	arbitrary length string	char[]	*	String

Appendix B

PyTables File Format

PyTables has a powerful capability to deal with native HDF5 files created with another tools. However, there are situations were you may want to create truly native PyTables files with those tools while retaining fully compability with PyTables format. That is perfectly possible, and in this appendix is presented the format that you should endow to your own-generated files in order to get a fully PyTables compatible file.

We are going to describe the **1.2 version of PyTables file format** (introduced in PyTables version 0.8). At this stage, this file format is considered stable enough to do not introduce significative changes during a reasonable amount of time. As times goes by, some changes will be introduced (and documented here) in order to cope with new necessities. However, the changes will be carefully analyzed so as to ensure backward compatibility whenever is possible.

A PyTables file is composed with arbitrarily large amounts of HDF5 groups (Groups in PyTables naming scheme) and datasets (Leaves in PyTables naming scheme). For groups, the only requirements are that they must have some *system atributes* available. By convention, system attributes in PyTables are written in upper case, and user attributes in lower case but this is not enforced by the software. In the case of datasets, besides the mandatory system attributes, some conditions are further needed in their storage layout, as well as in the datatypes used in there, as we will see shortly.

As a final remark, you can use any filter as you want to create a PyTables file, provided that the filter is a standard one in HDF5, like *zlib*, *shuffle* or *szip* (although the last one cannot be used from within PyTables to create a new file, datasets compressed with szip can be read, because it is the HDF5 library which do the decompression transparently).

B.1 Mandatory attributes for a File

The File object is, in fact, an special HDF5 *group* structure that is *root* for the rest of the objects on the object tree. The next attributes are mandatory for the HDF5 *root group* structure in PyTables files:

CLASS This attribute should always be set to 'GROUP' for group structures.

PYTABLES_FORMAT_VERSION It represents the internal format version, and currently should be set to the '1.2' string.

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the string '1.0'.

B.2 Mandatory attributes for a Group

The next attributes are mandatory for group structures:

CLASS This attribute should always be set to 'GROUP' for group structures.

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the string '1.0'.

There exist a special Group, called the *root*, that, in addition to the attributes listed above, it requires the next one:

PYTABLES_FORMAT_VERSION It represents the internal format version, and currently should be set to the '1.2' string.

B.3 Mandatory attributes, storage layout and supported datatypes for Leaves

This depends on the kind of Leaf. The format for each type follows.

B.3.1 Table format

Mandatory attributes

The next attributes are mandatory for table structures:

CLASS Must be set to 'TABLE'.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string '2.1'.

FIELD_X_NAME It contains the names of the different fields. The X means the number of the field (beware, order do matter). You should add as many attributes of this kind as fields you have in your records.

NROWS This should contain the number of *compound* datatype entries in the dataset. It must be an *int* datatype.

Storage Layout

A Table has a dataspace with a 1-dimensional chunked layout.

Datatypes supported

The datatype of the elements (rows) of Table must be the H5T_COMPOUND *compound* datatype, and each of these compound components must be built with only the next HDF5 datatypes *classes*:

H5T_BITFIELD This class is used to represent the Bool type. Such a type must be build using a H5T_NATIVE_B8 datatype, followed by a HDF5 H5Tset_precision call to set its precision to be just 1 bit.

H5T_INTEGER This includes the next datatypes:

- **H5T_NATIVE_SCHAR** This represents a *signed char* C type, but it is effectively used to represent an Int8 type.
- **H5T_NATIVE_UCHAR** This represents an *unsigned char* C type, but it is effectively used to represent an UInt8 type.
- **H5T_NATIVE_SHORT** This represents a *short* C type, and it is effectively used to represent an Int16 type.
- **H5T_NATIVE_USHORT** This represents an *unsigned short* C type, and it is effectively used to represent an UInt16 type.
- **H5T_NATIVE_INT** This represents an *int* C type, and it is effectively used to represent an Int32 type.

- **H5T_NATIVE_UINT** This represents an *unsigned int* C type, and it is effectively used to represent an UInt32 type.
- **H5T_NATIVE_LONG** This represents a *long* C type, and it is effectively used to represent an Int32 or an Int64, depending on whether you are running a 32-bit or 64-bit architecture.
- **H5T_NATIVE_ULONG** This represents an *unsigned long* C type, and it is effectively used to represent an UInt32 or an UInt64, depending on whether you are running a 32-bit or 64-bit architecture.
- **H5T_NATIVE_LLONG** This represents a *long long* C type (__int64, if you are using a Windows system) and it is effectively used to represent an Int64 type.
- **H5T_NATIVE_ULLONG** This represents an *unsigned long long* C type (beware: this type does not have a correspondence on Windows systems) and it is effectively used to represent an UInt64 type.
- **H5T_FLOAT** This includes the next datatypes:
 - **H5T_NATIVE_FLOAT** This represents a *float* C type and it is effectively used to represent an Float32 type.
 - **H5T_NATIVE_DOUBLE** This represents a *double* C type and it is effectively used to represent an Float64 type.
- **H5T_STRING** The datatype used to describe strings in PyTables is H5T_C_S1 (i.e. a *string* C type) followed with a call to the HDF5 H5Tset_size() function to set their length.
- **H5T_ARRAY** This allows the construction of homogeneous, multi-dimensional arrays, so that you can include such objects in compound records. The types supported as elements of H5T_ARRAY datatypes are the ones described above. Currently, PyTables does not support nested H5T_ARRAY types.

You should note that *nested compound* datatypes are not allowed in Table objects.

B.3.2 Array format

Mandatory attributes

The next attributes are mandatory for *array* structures:

CLASS Must be set to 'ARRAY'.

- **FLAVOR** This is meant to provide the information about the kind of object kept in the Array, i.e. when the dataset is read, it will be converted to the indicated flavor. It can take one the next string values:
 - "NumArray" The dataset will be returned as a NumArray object (from the numarray package).
 - "CharArray" The dataset will be returned as a CharArray object (from the numarray package).
 - "Numeric" The dataset will be returned as an array object (from the Numeric package).
 - "List" The dataset will be returned as a Python List object.
 - "Tuple" The dataset will be returned as a Python Tuple object.
 - "Int" The dataset will be returned as a Python Int object. This is meant mainly for scalar (i.e. without dimensions) integer values.
 - "Float" The dataset will be returned as a Python Float object. This is meant mainly for scalar (i.e. without dimensions) floating point values.
 - "String" The dataset will be returned as a Python String object. This is meant mainly for scalar (i.e. without dimensions) string values.
- **TITLE** A string where the user can put some description on what is this dataset used for.
- **VERSION** Should contain the string '2.0'.

Storage Layout

An Array has a *dataspace* with a *N-dimensional contiguous* layout (if you prefer a *chunked* layout see EArray below).

Datatypes supported

The elements of Array must have HDF5 *atomic* datatypes, and can currently be one of the next HDF5 datatypes *classes*: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT and H5T_STRING. See the Table format description in section B.3.1 for more info about these types.

You should note that H5T_ARRAY class datatypes are not allowed in Array objects.

B.3.3 Earray format

Mandatory attributes

The next attributes are mandatory for *earray* structures:

CLASS Must be set to 'EARRAY'.

EXTDIM (*Integer*) Must be set to the extensible dimension. Only one extensible dimension is supported right now.

FLAVOR This is meant to provide the information about the kind of objects kept in the EArray, i.e. when the dataset is read, it will be converted to the indicated flavor. It can take the same values as the Array object (see B.3.2).

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string '1.0'.

Storage Layout

An EArray has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of EArray must have HDF5 *atomic* datatypes, and can currently be one of the next HDF5 datatypes *classes*: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT and H5T_STRING. See the Table format description in section B.3.1 for more info about these types.

You should note that H5T_ARRAY class datatypes are not allowed in EArray objects.

B.3.4 VLArray format

Mandatory attributes

The next attributes are mandatory for vlarray structures:

CLASS Must be set to 'VLARRAY'.

FLAVOR This is meant to provide the information about the kind of objects kept in the VLArray, i.e. when the dataset is read, it will be converted to the indicated flavor. It can take one of the next values:

- "NumArray" The elements in dataset will be returned as NumArray objects (from the numarray package).
- "CharArray" The elements in dataset will be returned as CharArray objects (from the numarray package).
- "String" The elements in the dataset will be returned as Python String objects of *fixed* length (and not as CharArrays).

- "Numeric" The elements in the dataset will be returned as array objects (from the Numeric package).
- "List" The elements in the dataset will be returned as Python List objects.
- "Tuple" The elements in the dataset will be returned as Python Tuple objects.
- "Object" The elements in the dataset will be interpreted as pickled (i.e. serialized objects trhough the use of the Pickle Python module) objects and returned as Python generic objects. Only one of such objects will be supported per entry. As the Pickle module is not normally available in other languages, this flavor won't be useful in general.
- "VLString" The elements in the dataset will be returned as Python String objects of *any* length, with the twist that **Unicode** strings are supported as well (provided you use the **UTF-8** codification, see below). However, only one of such objects will be supported per entry.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string '1.0'.

Storage Layout

An VLArray has a dataspace with a 1-dimensional chunked layout.

Datatypes supported

The datatype of the elements (rows) of VLArray objects must be the H5T_VLEN *variable-length* (or VL for short) datatype, and the base datatype specified for the VL datatype can be of any *atomic* HDF5 datatype that is listed in the Table format description section B.3.1. That includes the classes:

- H5T_BITFIELD
- H5T_INTEGER
- H5T_FLOAT
- H5T_STRING
- H5T ARRAY

You should note that this does not include another VL datatype, or compound datatype. Note as well that, for Object and VLString special flavors, the base for the VL datatype is always a H5T_NATIVE_UCHAR. That means that the complete row entry in the dataset has to be used in order to fully serialize the object or the variable length string.

In addition, if you plan to use a VLString flavor for your text data and you are using ascii-7 (7 bits ASCII) codification for your strings, but you don't know (or just don't want) to convert it to the required UTF-8 codification, you should not worry too much about that because the ASCII characters with values in the range [0x00, 0x7f] are directly mapped to Unicode characters in the range [U+0000, U+007F] and the UTF-8 encoding has the useful property that an UTF-8 encoded ascii-7 string is indistinguishable from a traditional ascii-7 string. So, you will not need any further conversion in order to save your ascii-7 strings and have an VLString flavor.

Bibliography

ASCHER, David, Paul F. DUBOIS, Konrad HINSEN, Jim HUGUNIN, and Travis OLIPHANT, : *Numerical Python*. Package to speed-up arithmetic operations on arrays of numbers.

URL http://www.pfdubois.com/numpy/ 2,7

EWING, Greg,: Pyrex. A Language for Writing Python Extension Modules.

URL http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex 7

GAILLY, JeanLoup and Mark ADLER, : zlib. A Massively Spiffy Yet Delicately Unobtrusive Compression Library. A standard library for compression purposes.

URL http://www.gzip.org/zlib/ 7,55

GREENFIELD, Perry, Todd MILLER, Richard L. WHITE, and J. C. HSU., : *Numarray*. Reimplementation of Numeric which adds the ability to efficiently manipulate large numeric arrays in ways similar to Matlab and IDL. Among others, Numarray provides the record array extension.

URL http://stsdas.stsci.edu/numarray/ 2,7,42,61

MERTZ, David, : *Objectify. On the 'Pythonic' treatment of XML documents as objects(II)*. Article describing XML Objectify, a Python module that allows working with XML documents as Python objects. Some of the ideas presented here are used in PyTables.

 $URL \quad \text{http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.} \\ \text{html } 3$

NCSA,: What is HDF5? Concise description about HDF5 capabilities and its differences from earlier versions (HDF4).

URL http://hdf.ncsa.uiuc.edu/whatishdf5.html 1

OBERHUMER, Markus F.X.J., : LZO and UCL. A couple of portable lossless data compression libraries. They offer pretty fast compression and extremly fast decompression.

URL http://www.oberhumer.com/opensource/ 7,55

RIGO, Armin, : *Psyco. A Python specializing compiler.* Run existing Python software faster, with no change in your source.

URL http://psyco.sourceforge.net 53