15.094J: Robust Modeling, Optimization, Computation

Lecture 4: RLO: Probabilistic Guarantees

February 2015

Outline

Guarantees for independent uncertainty

2 Guarantees for non-independent distributions

Philosophical Remarks

Objectives Today

- Probabilistic Guarantees for RLO
- Insights in selecting parameters

Row-wise Ellipsoidal uncertainty

RO:

$$\begin{aligned} \max & c'x \\ \text{s.t.} & \max_{a_i \in \mathcal{U}_i} a_i'x \leq b_i. \\ & x \geq \mathbf{0}. \end{aligned}$$

- $\mathcal{U}_i = \{a_i | a_i = \overline{a}_i + \Delta'_i u_i, ||u_i||_2 \le \rho\}, \Delta_i : k_i \times n, u_i : k_i \times 1.$
- RC:

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & \overline{a}_i'x + \rho||\boldsymbol{\Delta}_ix||_2 \leq b_i, \quad i = 1, \dots, m. \\ & x \geq \boldsymbol{0}. \end{array}$$

Probabilistic Guarantee

- Suppose u_i are independent, have zero mean and have support in [-1,1].
- Suppose that x satisfies $\overline{a}'x + \rho||\Delta x|| \leq b$.
- Then

$$P(\tilde{a}'x > b) \le e^{-\rho^2/2}.$$

- **Remarkable property**: Independent of the distributions of u (we do not even require identical distributions).
- How to select ρ : Suppose our tolerance for infeasibility is ϵ , that is $P(\tilde{a}'x > b) \leq \epsilon$.
- Use $\epsilon = e^{-\frac{
 ho^2}{2}}$, select $\rho = \sqrt{2\log\left(\frac{1}{\epsilon}\right)}$.

ϵ	ρ
10^{-6}	5.25
10^{-5}	4.79
10^{-4}	4.29
10^{-3}	3.71
10^{-2}	3.03
10^{-1}	2.14

Proof from First Principles

- Let $X(\xi) = w_0 + \sum_{i=1}^k w_i \xi_i$, where ξ_i are independent with zero mean and with support in [-1,1].
- Let $w = (w_1, \dots, w_k)'$. We will first show that

$$P(X(\xi) > 0) = P\left(w_0 + \sum_{i=1}^k w_i \xi_i > 0\right) \le \exp\left(-\frac{w_0^2}{2||w||^2}\right).$$

$$P(X(\boldsymbol{\xi}) > 0) = \int \chi(X(\boldsymbol{\xi})) \ dP(\boldsymbol{\xi}), \quad \chi(s) = \left\{ \begin{array}{ll} 0, & s \leq 0, \\ 1, & s > 0 \end{array} \right.$$

- Note that $\chi(s) \leq \gamma(s) = e^s$.
- Let $\alpha > 0$. Note also that $\chi(s) = \chi(\alpha \cdot s) \le \gamma(\alpha \cdot s)$.

•

$$P(X(\boldsymbol{\xi}) > 0) \leq E[\exp(\alpha w_0 + \sum_{i=1}^k \alpha w_i \xi_i)] = \exp(\alpha w_0) \prod_{i=1}^k E[\exp(\alpha w_i \xi_i)].$$

←□ → ←□ → ← □ → ← □ → へ○

6 / 14

Proof continued

ullet For every random variable ξ with zero mean and support in [-1,1]

$$E[e^{t\xi}] \le e^{t^2/2}.$$

- Let $f(s) = e^{ts} \frac{e^t e^{-t}}{2}s$.
- f(s) convex in s. Maximum in [-1,1] is at endpoint.
- $\max_{|s|<1} f(s) = f(1) = f(-1) = \frac{e^t + e^{-t}}{2}$.

$$E[e^{t\xi}] = \int f(s) dP(s)$$
 [zero mean]
 $\leq \max_{|s| \leq 1} f(s)$
 $= \frac{e^t + e^{-t}}{2}$
 $\leq e^{t^2/2}$ [Taylor series].

4□ > 4□ > 4 = > 4 = > = 90

Proof continued

• For all $\alpha > 0$:

$$P(X(\xi) > 0) \leq \exp(\alpha w_0) \prod_{i=1}^k E[\exp(\alpha w_i \xi_i)]$$

$$\leq \exp\left(\alpha w_0 + \frac{\alpha^2}{2} \sum_{i=1}^k w_i^2\right).$$

- Select α to minimize the upper bound.
- •

$$P(X(\boldsymbol{\xi}) > 0) \leq \min_{\alpha > 0} \exp\left(\alpha w_0 + \frac{\alpha^2}{2}||w||^2\right).$$

- $\alpha^* = -w_0/||w||^2$.
- $P(X(\xi) > 0) = P\left(w_0 + \sum_{i=1}^k w_i \xi_i > 0\right) \le exp\left(-\frac{w_0^2}{2||w||^2}\right)$.

Proof of the key guarantee

- Suppose that x satisfies $\overline{a}'x + \rho||\Delta x|| \le b$.
- Then

$$P(\tilde{a}'x > b) = P(\bar{a}'x + u'\Delta x > b) \le P(u'\Delta x > \rho||\Delta x||).$$

• Select $w_0 = -\rho ||\Delta x||$ and $w = \Delta x$, we obtain

$$P(\tilde{a}'x > b) \le e^{-\frac{\rho^2}{2}}.$$

9 / 14

Lecture 4 15.094J-RO February 2015

Guarantees for non-independent distributions

RO:

$$\label{eq:linear_constraints} \begin{split} \max & & c'x \\ \text{s.t.} & & \tilde{A}x \leq b \\ & & x \in P \\ & & \forall \tilde{A} \in \mathcal{U} = \left\{ \tilde{A} \mid ||M(\text{vec}(\tilde{A}) - \text{vec}(\overline{A}))|| \leq \Delta \right\}. \end{split}$$

RC:

max
$$c'x$$

s.t. $\overline{a}_i x + \Delta ||M^{-1}x_i||^* \le b_i, \quad i = 1, \dots, m$
 $x \in P,$

- ullet $\operatorname{vec}(ilde{A}) \sim (\operatorname{vec}(\overline{A}), oldsymbol{\Sigma}).$
- Let $M = \Sigma^{-\frac{1}{2}}$.

Probabilistic Guarantees

•

 $P\left(\widetilde{a}_i'x^*>b_i
ight)\leq rac{1}{1+\Delta^2\left(rac{||\Sigma^{rac{1}{2}} imes_i^*||^*}{\|\Sigma^{rac{1}{2}} imes_i^*\|_2}
ight)^2}.$

• If L_p norm used in \mathcal{U} , then

$$P\left(\tilde{a}_i'x^* > b_i\right) \leq rac{1}{1 + \Delta^2 \min\left\{rac{1}{
ho^2}, rac{1}{n}
ight\}}.$$

• If L_2 used in \mathcal{U} , then

$$P\left(\tilde{a}_i'x^*>b_i\right)\leq rac{1}{1+\Delta^2}.$$

- Remark: Arbitrary Dependence structure.
- How to select Δ?

Lecture 4

Proof

Optimal robust solution x_i* satisfies

$$(\operatorname{vec}(\overline{A}))'x_i^* + \Delta ||\Sigma^{\frac{1}{2}}x_i^*||^* \leq b_i,$$

Thus

$$P\left((\operatorname{\mathsf{vec}}(\widetilde{A}))'x_i^* > b_i\right) \leq P\left((\operatorname{\mathsf{vec}}(\widetilde{A}))'x_i^* \geq (\operatorname{\mathsf{vec}}(\overline{A}))'x_i^* + ||\Sigma^{\frac{1}{2}}x_i^*||^*\right).$$

ullet Bertsimas and Popescu: if S is a convex set, and $ilde{X} \sim (\overline{X}, \Sigma)$, then

$$P\left(\tilde{X}\in S\right)\leq \frac{1}{1+d^2},$$

where

$$d^{2} = \inf_{\tilde{X} \in S} \left(\tilde{X} - \overline{X} \right)' \Sigma^{-1} \left(\tilde{X} - \overline{X} \right).$$

→□▶ ◆□▶ ◆ ≥ ▶ ◆ ≥ ♥ ♀ ○

Lecture 4

Proof continued

- $S_i = \left\{ \operatorname{vec}(\widetilde{A}) \mid (\operatorname{vec}(\widetilde{A}))'x_i \geq (\operatorname{vec}(\overline{A}))'x_i + \Delta ||\Sigma^{\frac{1}{2}}x_i||^* \right\}.$
- $\bullet \ \ d_i^2 = \mathsf{inf}_{\mathsf{VeC}(\tilde{A}) \in S_i} \left(\mathsf{vec}(\tilde{A}) \mathsf{vec}(\overline{A}) \right)' \Sigma^{-1} \left(\mathsf{vec}(\tilde{A}) \mathsf{vec}(\overline{A}) \right).$
- Optimal solution (KKT):

$$\operatorname{vec}(\overline{A}) + \Delta \left(\frac{||\Sigma^{\frac{1}{2}} x_i||^*}{\|\Sigma^{\frac{1}{2}} x_i\|_2} \right)^2 \Sigma x_i,$$

•

$$d^2 = \Delta^2 \left(\frac{||\Sigma^{\frac{1}{2}} x_i||^*}{\|\Sigma^{\frac{1}{2}} x_i\|_2} \right)^2.$$

On the interplay of probability and optimization

- Use Probability theorems to select parameters.
- Use optimization ideas to find best possible results in probability.
- In exercise we will explore other bounds.
- Use RO to solve problems under uncertainty computationally.