MNN. Firemed abers. com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

1	(i)	$y = 3(x-1)^{2} + 2$ $a = 3, b = 1, c = 2$	B1, B1, B1	B1 for each, may be given in the form $y = 3(x-1)^2 + 2$
	(ii)	(1, 2)	√ B 1	Follow through on their answers to (i) If using differentiation, follow through on their <i>x</i> only.
2		$2^{4x} \times 4^{y} \times 8^{x-y} = 1$ Considering powers of either 2, 4 or 8 $7x - y = 0$ $3^{x+y} = \frac{1}{3}$	M1	M1 for considering powers of either 2, 4 or 8 and forming an equation using these powers
		Considering powers of 3 $x + y = -1$	B1	B1 for equation considering powers of 3
		Solving both simultaneously gives $x = -\frac{1}{8}, \ y = -\frac{7}{8}$	M1 A1	M1 for attempt to solve their equations A1 for both
3	(i)	$f(-3) = -27 + 9p - 3p^{2} + 21$ = $9p - 3p^{2} - 6$	M1 A1	M1 for substitution of $x = -3$ A1 answer must be simplified
	(ii)	$\begin{vmatrix} 9p - 3p^2 - 6 < 0 \\ (p-1)(p-2) > 0 \end{vmatrix}$	M1	M1 for attempt to factorise
		Critical values 1 and 2 $p < 1, p > 2$	A1 A1	A1 for critical values A1 for correct range
4	(i)	$V = x(24 - 2x)^{2}$ $= x(576 - 96x + 4x^{2})$	M1	M1 for attempt at a product of 3 lengths, 2 of which must be the
		$= 4x^3 - 96x^2 + 576x$	A1	A1 for expansion to reach given answer
	(ii)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 12x^2 - 192x + 576$	M1	M1 for attempt to differentiate
		When $\frac{dV}{dx} = 0$, $12x^2 - 192x + 576 = 0$	DM1	DM1 for equating $\frac{dV}{dx}$ to zero and attempt to solve
		leading to $(x-4)(x-12)=0$		and accompt to sorre
		with $x = 4$ the only possible solution $V = 1024$	A1 A1	A1 for $x = 4$ A1 for $V = 1024$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

5 (i)	$64 - 960x + 6000x^2$	B1, B1, B1	B1 for each correct term
(ii)	$(64-960x+6000x^2)(a^3+3a^2bx),$	B1	B1 for first two terms of $(a + bx)^3$
	$64a^3 = 512, a = 2$	В1	B1 for equating constant term to 512 and obtaining $a = 2$
	$-960a^3 + 3a^2b(64) = 0$	M1	M1 for attempt to equate coefficient of x to zero, must have two terms involved
	leading to $b = 10$	A1	A1 for $b = 10$
6	When $x = 2$, $y = -4$	B 1	B1 for $y = -4$
	$\frac{dy}{dx} = x \left(\frac{2x}{3}\right) (x^2 - 12)^{-\frac{2}{3}} + (x^2 - 12)^{\frac{1}{3}}$	M1, B1 A1	M1 for differentiation of a product B1 for $\frac{2x}{3}(x^2-12)^{-\frac{2}{3}}$
	When $x=2$, $\frac{dy}{dx} = -\frac{4}{3}$	M1	M1 for attempt at normal equation
	Normal: $y + 4 = \frac{3}{4}(x - 2)$	A1	A1 allow unsimplified
	(4y = 3x - 22)		
7 (a) (i)	15120	B1	
(ii)	$ \begin{array}{c} (5\times4)\times(4\times3\times2)\\480 \end{array} $	M1 A1	M1 for attempt to multiply number of ways of getting 4 letters by the number of ways of getting 2 digits.
(b) (i)	5456	B 1	
(ii)	$^{18}C_2 \times 15$ 2295	M1 A1	M1 for attempt at an appropriate product, at least one term must be correct.
(iii)	5456 – Number of ways only girls get tickets $5456 - 455 = 5001$	M1 A1	M1 for a complete correct method their (i) – number of ways only girls get tickets
	Or 1B 2G 1890 2B 1G 2295 3B 816	M1	M1 must be considering at least 2 of the cases shown
	Total 5001	A1	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

8	(i)	1	B1	
	(ii)	$a = 8e^{-2t}$	M1	M1 for attempt to differentiate
		$8e^{-2t} = 6, -2t = \ln \frac{3}{4}$	DM1	DM1 for correct attempt to solve equation in the form $e^{-2t} = constant$
		t = 0.144	A1	A1 must be at least 3 sf
	(iii)	$s = 5t + 2e^{-2t} + (+c)$	M1	M1 for attempt to integrate
		When $t = 0$, $s = 0$, so $c = -2$	DM1,A1	DM1 for attempt to find <i>c</i> , A1 <i>c</i> correct
		When $t = 1.5$, $s = 5.60$	M1, A1	M1 for substitution of $t = 1.5$
		Alternative : $s = [5t + 2e^{-2t}]_0^{1.5}$	M1 DM1 A1 M1	M1 for attempt to integrate DM1 for attempt to use limits A1 all correct M1 for evaluation of square bracket notation
		Leading to $s = 5.60$	A1	
	(iv)	Velocity is always +ve, so no change in direction	В1	Allow any valid argument.
9	(i)	$\cos x \left(3\sin x - 2 \right) = 0$		
		$\cos x = 0, \ x = 90^{\circ}$	B1	B1 for 90°
		$\sin x = \frac{2}{3},$	M1	M1 for attempt to solve $\sin x = \frac{2}{3}$
		$x = 41.8^{\circ}, 138.2^{\circ}$	A1,√A1	Follow through on their first answer
	(ii)	$10\sin^2 y + \cos y = 8$		
		$10(1-\cos^2 y) + \cos y = 8$	M1	M1 for use of correct identity
		$10\cos^2 y - \cos y - 2 = 0$	M1	M1 for attempt to reduce to a 3 term quadratic and attempt to solve quadratic
		$(2\cos y - 1)(5\cos y + 2) = 0$ $\cos y = \frac{1}{2}, \cos y = -\frac{2}{5}$	M1	M1 for attempt to solve using factors in terms of cos
		$y = 60^{\circ}$, 300° and $y = 113.6^{\circ}$, 246.4°	A1, A1	A1 for any 'pair'

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

10 (i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В1	
(ii)		M1 A1, 0	M1 for plotting logy against x^2 –1 each error, poor point plotting, poor line drawing
(iii)	Gradient: $\lg b = 0.4, \ b = 2.5 \text{ (allow 2.45 to 2.55)}$	M1 A1	M1 for correct use of gradient
	Intercept: $\lg A = -0.3, A = 0.5$ (allow 0.4 to 0.6)	M1 A1	M1 for correct use intercept
(iv)	2.1 (allow 2 to 2.2)	M1, A1	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0606	13

11 (i)	at A $\sqrt{3} \sin 3x + \cos 3x = 0$	M1	M1 for equating to zero and attempt to solve using tan
	$\tan 3x = -\frac{1}{\sqrt{3}}, \ 3x = \frac{5\pi}{6} \ 150^{\circ}$	DM1	DM1 for dealing with $3x$
	$x = \frac{5\pi}{18} (0.873) \text{ (allow } 50^{\circ}\text{)}$	A1	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sqrt{3}\cos 3x - 3\sin 3x$	B1, B1	B1 for $\frac{dy}{dx}$
	When $\frac{dy}{dx} = 0$, $\tan 3x = \sqrt{3}$, $3x = \frac{\pi}{3}$ or $3x = 60^{\circ}$,	M1	M1 for attempt to solve $\frac{dy}{dx} = 0$
	$x = \frac{\pi}{9} (0.349)$ (allow 20°)	A1	
(iii)	Area = $\left[-\frac{\sqrt{3}}{3}\cos 3x + \frac{1}{3}x + \frac{1}{3}\sin 3x \right]_{\frac{\pi}{9}}^{\frac{5\pi}{18}}$	M1 A1, A1	M1 for attempt to integrate A1 for each term
	$= \left(-\frac{\sqrt{3}}{3}\cos\frac{5\pi}{6} + \frac{1}{3}\sin\frac{5\pi}{6}\right) - \left(-\frac{\sqrt{3}}{3}\cos\frac{\pi}{3} + \frac{1}{3}\sin\frac{\pi}{3}\right)$	DM1	DM1 for correct application of their limits
	$=\frac{2}{3} \text{ or } 0.667 \text{ or better}$	A1	