This is the model we are going to use.

Parameter	Description	Dimension
β	basic transmission rate	$\begin{array}{ccc} individuals^{-1} & \times \\ time^{-1} & \end{array}$
c	reduction of transmission in hospital	dimensionless
γ_1	per capita rate of progress from exposed to infectious state	$time^{-1}$
γ_2	per capita rate of progress through initial infectious state	$time^{-1}$
γ_3	per capita rate of progress through hospitalized state	$time^{-1}$
γ_4	per capita rate of progress through non-hospitalized infectious state	$time^{-1}$
p_1	proportion of initially infectious population that becomes hospitalized.	dimensionless
p_2	proportion of hospitalized population that die	dimensionless

The equations governing common upper respiratory virus dynamics are given by

$$\begin{aligned} \frac{dS}{dt} &= -\beta S(I_1 + I_2 + cH) \\ \frac{dE}{dt} &= \beta S(I_1 + I_2 + cH) - \gamma_1 E \\ \frac{dI_1}{dt} &= \gamma_1 E - \gamma_2 I_1 \\ \frac{dI_2}{dt} &= \gamma_2 (1 - p_1) I_1 - \gamma_4 I_2 \\ \frac{dH}{dt} &= \gamma_2 p_1 I_1 - \gamma_3 H \\ \frac{dR}{dt} &= \gamma_4 I_2 + \gamma_3 (1 - p_2) H \\ \frac{dD}{dt} &= \gamma_3 p_2 H \end{aligned}$$

The total population is $N=S+E+I_1+I_2+H+R+D.$ Parameters

Total Coronavirus Cases in China

Total Cases

(Linear Scale)

Daily New Cases in China

Daily New Cases

Cases per Day Data as of 0:00 GMT+0

Active Cases in China

Active Cases

Total Coronavirus Cases in the United States

Total Cases

Currently Infected

(Linear Scale)

800k

600k

400k

200k

0

(Entition to the control of the contro

Daily New Cases in the United States

Daily New Cases

Cases per Day Data as of 0:00 GMT+0

Active Cases in the United States

Active Cases