		pmf,pdf	fpo	臼	Var	Mode	MGF
Bernoulli		p,(1-p)		d	bd	0;0,1;1	$q + pe^t$
Binomial $B(n,p)$	# of success in n trials	$\binom{n}{k}p^k(1-p)^{n-k}$		du	np(1-p)	$\lfloor np \rfloor$, $\lceil np \rceil$	$(q+pe^t)^n$
Hyper-Geometric (N, n, K)	k success in n draws, in population N with K success	$rac{\binom{K}{n}\binom{N-K}{n-k}}{\binom{N}{n}}$		$n rac{K}{N}$	$n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}$	$\lfloor \frac{(n+1)(K+1)}{N+2} \rfloor$	
Geometric (p)	# of trials on which 1st success occurs	$(1-p)^{k-1}p$		<u>1</u>	$\frac{1-p}{p^2}$	1	$\frac{pe^t}{1 - (1 - p)e^t}$
Negative Binomial $NB(r, p)$	# of trials on which r-th success occurs	$\binom{k+r-1}{k}\cdot (1-p)^r p^k$		$\frac{pr}{1-p}$	$\frac{pr}{(1-p)^2}$	$\left\lfloor \frac{p(r-1)}{1-p} \right\rfloor \text{ if } r > 1$	$\left(\frac{1-p}{1-pe^t}\right)^r$
Poisson (λ)	# of success on an interval of time (0,t)	$\frac{\lambda^k e^{-\lambda}}{k!}$		χ	γ	$\lceil \lambda \rceil - 1, \lfloor \lambda ceil$	$\exp(\lambda(e^t - 1))$
Discrete Uniform $unif\{a, b\}$		$n = b - a + 1, \frac{1}{n}$	$\frac{\lfloor k \rfloor - a + 1}{n}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$	N/A	$\frac{e^{at} - e^{(b-1)t}}{n(1 - e^t)}$
Continuous Uniform $unif(a,b)$		$\frac{1}{b-a}$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	any value in (a, b)	$\frac{e^{tb} - e^{ta}}{t(b-a)} \text{ for } t \neq 1$
Exponential $(\lambda > 0)$	time until 1st success	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\lambda^{-1} = \beta$	$\lambda^{-2} = \beta^2$	0	$\frac{\lambda}{\lambda - t}$, for $t < \lambda$
Gamma (α, β)	time untile α -th success	$rac{eta^{lpha}}{\overline{\Gamma(lpha)}}x^{lpha-1}e^{-eta x}$		$\frac{\alpha}{\beta}$	$\frac{\alpha}{eta^2}$	$\frac{\alpha-1}{\beta}$ for $\alpha \ge 1$	$(1 - \frac{t}{\beta})^{-\alpha}$ for $t < \beta$
Chi-square (k)		$rac{1}{2^{rac{k}{2}}\Gamma(rac{k}{2})}x^{rac{k}{2}-1}e^{-rac{x}{2}}$		k	2k	maxk-2,0	$(1-2t)^{-k/2}$
Normal $N(\mu, \sigma^2)$		$\frac{1}{2\pi\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		ή	σ^2	π	$\exp\{\mu t + \frac{1}{2}\sigma^2 t^2\}$
Beta (α, β)		$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$\frac{\alpha-1}{\alpha+\beta-2}$	