02;12

Экспериментальное исследование воздействия протонов на приборы с зарядовой связью

© К.Н. Ермаков, Н.А. Иванов, О.В. Лобанов, В.В. Пашук, М.Г. Тверской, С.М. Любинский

Петербургский институт ядерной физики им. Б.П. Константинова РАН, Гатчина

Hayчно-исследовательский институт телевидения, Санкт-Петербург E-mail: ivanovna@pnpi.spb.ru

Поступило в Редакцию 17 февраля 2010 г.

Исследовано воздействие протонов с энергией 1000 MeV на датчики изображения на основе приборов с зарядовой связью (ССD-матриц), которые в составе различной аппаратуры широко используются на космических летательных аппаратах. Цель — изучить влияние на параметры ССD-матриц локальных структурных повреждений кристаллической решетки отдельными ядерными частицами. Представлены зависимости темнового тока ССD-матриц от флюенса протонов в диапазоне до $2 \cdot 10^{11} \, \mathrm{cm}^{-2}$.

Нарушение кристаллической структуры полупроводниковых материалов является одной из основных причин изменения параметров различных изделий электронной техники, работающих в полях ионизирующих излучений. Миниатюризация электроники привела к тому, что отказы элементов изделий, изготовленных по микронной и субмикронной технологиям, стали происходить под действием отдельных ядерных частиц (SEE — Single-Event Effects) — тяжелых ионов, а также нейтронов и протонов с энергиями выше 10 MeV [1–3].

Основной характеристикой, определяющей качество ССD-матриц, является величина темнового тока в пикселях. Известно [4,5], что увеличение флюенса бомбардирующих частиц приводит к монотонному возрастанию темнового тока в пикселях ССD-матрицы. Наряду с этим при облучении ССD-матриц протонами и нейтронами наблюдались случаи появления светлых пятен в отдельных пикселях, в которых темновой ток существенно превышал средние значения.

Таблица 1. Параметры ССО-матрицы

Тип CCD	Производитель	Назначение	Размер чипа	Размер пикселя	Число пикселей
ICX259AL	SONY (RINOHR)	Приемник изображения	6 × 4.96 mm	6.50×6.25 um	795 × 596

Одна из причин возникновения таких пятен — ионизационно-индуцированные процессы генерации неравновесных носителей заряда вдоль трека заряженной частицы, пересекающей чувствительный объем прибора. Поскольку эти носители заряда уходят из пикселей при считывании сигналов, то данный эффект приводит лишь к искажению изображения в пределах одного кадра и в этом плане он аналогичен одиночным сбоям, создаваемым в изделиях микроэлектроники за счет ионизационных процессов.

В то же время под действием нейтронов и протонов возникают долговременные светлые пятна, так называемые спайки (spikes or hot pixels). Они обусловлены радиационными структурными дефектами, образованными продуктами ядерных реакций бомбардирующих частиц

Рис. 1. Структура комплекса для исследований ССD-матриц: 1 — профилометр; 2 — двухсекционная ионизационная камера; 3 — лазер; 4 — пульт управления ускорителем; 5 — блок управления пучком; PC — персональный компьютер; TV — видеокамера.

с ядрами атомов чувствительного объема ССD-матрицы [4–6]. Данный эффект аналогичен возникновению "катастрофического" отказа в других изделиях микроэлектроники.

Объектом исследований являлась ССD-матрица, ICX259AL, основные параметры которой приведены в табл. 1. Облучение ССD-матриц проводилось на синхроциклотроне ПИЯФ РАН им. Б.П. Константинова при энергии протонов 1000 MeV с использованием автоматизированного измерительного комплекса (рис. 1), в состав которого входят:

система мониторирования пучка протонов (профилометр, двухсекционная ионизационная камера, монитор наведенной активности);

блок управления пучком, связанный с пультом управления ускорителем и обеспечивающий вывод импульсов пучка протонов в заданной временной последовательности;

блок контроля функционирования ССD-матриц, набора, накопления и предварительной обработки информации в процессе радиационных исследований;

лазер для позиционирования ССО-матриц в поле протонного пучка.

ССD-матрица, входящая в состав видеокамеры TV, размещалась на пучке протонов за мониторирующей системой и могла облучаться как отдельными импульсами протонов, так и последовательностью импульсов. Видеосигнал от TV поступал на плату захвата изображения AverMedia EZCapture в персональном компьютере (РС) для записи и просмотра видеоизображений. Для воспроизведения файлов был использован проигрыватель Light Alloy.

В двух сеансах облучения воздействию различными флюенсами протонов подвергались три ССD-матрицы. В первом сеансе проведено несколько циклов по облучению ССD-матриц во включенном состоянии (в активном режиме) с суммарным флюенсом протонов $2 \cdot 10^{10} \, \mathrm{cm}^{-2}$. На рис. 2 приведены кадры видеофайлов, записанных во время воздействия пучка протонов (a) и после воздействия (b). В процессе облучения телевизионной системы в активном режиме на экране монитора РС наблюдались как устойчивые дефектные комплексы (спайки), так и кратковременные вспышки, обусловленные ионизационными потерями протонов в пикселях, а также следы (треки) вторичных заряженных частиц, образующихся от взаимодействий налетающих протонов с ядрами материала ССD-матрицы.

Характеристики распределения пикселей ССД-матрицы по величине темнового тока для разных флюенсов протонов и общее количество

Рис. 2. Кадры видео-файла, записанные во время (a) и после (b) облучения ССD-матрицы пучком протонов.

спайков были определены с помощью как программы обработки [7], так и стандартных программ Mathcad и Excell. Распределение числа пикселей по темновому току необлученной матрицы описывается

Рис. 3. Распределение пикселей ССD-матрицы, облученной флюенсом протонов $1.1\cdot 10^{10}~{\rm cm}^{-2}$, по величине темнового тока.

нормальным распределением со средним значением темнового тока I_0 и стандартным отклонением σ_1 , равными 64.1 и 10.3 (в отн. ед.) соответственно. Максимальное значение темнового тока в этом распределении равно 112. На рис. 3 представлено распределение числа пикселей по величине темнового тока ССД-матрицы, облученной суммарным флюенсом $1.1 \cdot 10^{10} \, \text{cm}^{-2}$. Отдельно, в логарифмическом масштабе (правая шкала ординат), показана область больших темновых токов спайков. Максимальное значение темнового тока в этом распределении равно 255. Среднеквадратичное отклонение полного распределения темнового тока облученной матрицы составляет 16.3. Область же наиболее вероятных значений темнового тока также описывается нормальным распределением со средним значением темнового тока I_0 и стандартным отклонением σ_1 , равными 61.7 и 10.4 (в отн. ед.) соответственно. Суммирование по спектру значений тока при разных флюенсах протонов (до $2 \cdot 10^{10} \, \text{cm}^{-2}$) показало, что полное число пикселей равно паспортному значению (около $4 \cdot 10^5$).

Таблица 2. Зависимость числа спайков от флюенса протонов

№ цикла облучения	Продолжительность облучения, s		Флюенс протонов, 10^{10}cm^{-2}		Количество спайков $(5\sigma_I)$	
	цикл	общая	цикл	общий	цикл	общее
1	10	10	0.03	0.03	13	13
2	60	70	0.18	0.2	91	104
3	300	370	0.9	1.1	573	677
4	300	670	0.9	2	463	1140

Таблица 3. Параметры распределения напряжения видеосигнала в ССD, облученных флюенсами протонов $2 \cdot 10^{10}$ и $2 \cdot 10^{11}$ cm $^{-2}$

Параметр	CCD	Nº 1	CCD № 3		
Флюенс, ст $^{-2}$ U_{mean} , V	$2 \cdot 10^{10}$ 0.15	$2 \cdot 10^{11}$	$2 \cdot 10^{10}$ 0.13	$2 \cdot 10^{11}$ 0.4	
σ_{U}, V	0.016	0.06	0.02	0.07	

Спайками, возникшими в результате облучения ССD-матрицы протонами, считались те пиксели, величина темнового тока которых превышала среднее значение темнового тока на несколько (3–5) стандартных отклонений σ_1 . В табл. 2 приведены результаты обработки экспериментальной информации по облучению ССD-матрицы протонным пучком отдельными циклами продолжительностью от 10 до 300 s. Из таблицы видно, что количество спайков пропорционально флюенсу протонов.

В рамках второго сеанса было проведено облучение двух ССР-матриц (№ 1 и 3) до флюенса протонов $2 \cdot 10^{11}$ cm $^{-2}$, облученных ранее протонами с флюенсом до $2 \cdot 10^{10}$ cm $^{-2}$, причем одна из низ (№ 1) облучалась в пассивном режиме (в выключенном состоянии), а другая (№ 3) — в активном режиме. Для оценки эффекта радиационного воздействия измерялось распределение пикселей по величине напряжения видеосигнала U при закрытом объективе с помощью осциллографа С-81. Величина этого напряжения пропорциональна величине темнового тока. Средние величины напряжения видеосигнала U_{mean} и стандартного отклонения σ_U приведены в табл. 3. Максимальная величина напряжения видеосигнала U_{max} составила 0.8 V. Отметим, что при указанном флюен-

се протонов, когда количество ядерных реакций в объеме ССD-матриц было близким к числу пикселей, среднеквадратичное отклонение и темновой ток (яркость) возросли примерно втрое в обеих матрицах.

Основные результаты проведенных исследований по воздействию протонов на ССD-матрицы могут быть сформулированы следующим образом:

Разработан измерительный стенд и отработана методика проведения экспериментальных исследований влияния на характеристики ССО-матриц устойчивых локальных структурных нарушений, образованных в результате ядерных реакций протонов с энергией 1000 MeV с ядрами атомов полупроводниковых материалов внутри чувствительного объема изделий микроэлектроники.

Получены исходные данные для разработки модели возникновения и прогнозирования отказов изделий микроэлектронной техники в результате образования радиационных повреждений внутри микрообъема полупроводниковой структуры под действием отдельных ядерных частиц.

Показано, что при облучении протонами различия в распределениях темновых токов ССD-матриц, включенных в активном и пассивном режимах, незначительны.

Список литературы

- Miroshkin V.V., Tverskoy M.G. // IEEE Trans. Nucl. Sci. 1994. V. NS-41. N 6. P. 2085–2092.
- [2] Messenger G.C. // M.S. Ash. Single Event Phenomena. N.Y. Chapman & Hall, 1997. P. 368.
- [3] Чумаков А.И. Действие космической радиации на интегральные схемы. М.: Радио и связь, 2004. С. 320.
- [4] Pickel J.C., Calma A.H., Hopkinson G.R., Marshall C.J. // IEEE Trans. Nucl. Sci. 2003. V. NS-50. P. 671–688.
- [5] Hopkinson G.R., Dale C.J., Marshall P.W. // IEEE Trans. Nucl. Sci. 1996.V. NS-43/1993. P. 614–627.
- [6] Srour J.R., Marshall C.J., Marshall P.W. // IEEE Trans. Nucl. Sci. 2003. V. NS-50. N 3. P. 653–670.
- [7] Фисенко Т.Ю. и др. // Техника средств связи. Сер. Техника телевидения. 1988. В. 3. С. 39–44.