Une Démonstration du Théorème de Cayley-Hamilton

Séries Entières, Intégration, Réduction, Fonctions à Valeurs Matricielles $10~{\rm septembre}~2023$

On se propose ici de démontrer le théorème de Cayley-Hamilton sur $\mathbb C$ par des méthodes analytiques.

On assimilera ici \mathbb{C} et $\mathbb{C}I_n$ où $n \in \mathbb{N}$.

On prend $A \in M_n(\mathbb{C})$

- 1. Montrer que pour $z\in\mathbb{C}$ suffisamment grand, $\det(z-A)\neq 0$
- 2. En déduire que pour r assez grand, l'intégrale $\int\limits_{-\pi}^{+\pi} \frac{(re^{i\theta})^{k+1}}{re^{i\theta}-A} \frac{d\theta}{2\pi}$ a un sens.