Teorema de Tychonoff

Michael Abarca Jiménez

Universidad de Costa Rica Escuela de Matemática MA-0704 Topología

Contenidos

- Definición de conjuntos dirigidos y redes. Ejemplos.
- Definición de subredes y nociones de convergencia.
- Caracterizaciones de conjuntos compactos mediante redes.
- Ultra Redes y Ultra Filtros
- Teorema de Tychonoff.

Conjunto Dirigido

Definición

Un conjunto no vacío Λ se dice conjunto dirigido si existe una relación \leq en Λ tal que

- \bullet $\lambda \leq \lambda$ para cada $\lambda \in \Lambda$.
- ② Si $\lambda_1 \leq \lambda_2$ y $\lambda_2 \leq \lambda_3$, entonces $\lambda_1 \leq \lambda_3$.
- Si $λ_1, λ_2 ∈ Λ$, entonces existe $λ_3 ∈ Λ$ tal que $λ_i ≤ λ_3$, para i = 1, 2.

Ejemplos

Ejemplo

- **○** Si A es un conjunto no vacío. Se puede tomar en $\mathbb{P}(A)$ la relación de inclusión inversa $U_1 \leq U_2$ si $U_1 \subset U_2$ -, para definir en este un conjunto dirigido.
- 2 Relación de orden usual en N.
- ③ Si (D_1, \leq_1) y (D_2, \leq_2) son dos conjuntos dirigidos, entonces $(D_1 \times D_2, \leq)$ es un conjunto dirigido con:

$$(a,b) \leq (c,d) \Leftrightarrow a \leq_1 c \wedge b \leq_2 d$$

Red

Definición

Una red en un conjunto X es una función $P:\Lambda\to X$, donde Λ es un conjunto dirigido. El punto $P(\lambda)$ se denota usualmemte x_λ , y frecuentemente referenciamos - la red $\{x_\lambda\}_{\lambda\in\Lambda}$ - o - la red $\{x_\lambda\}$ - si no hay confusión del contexto.

Motivación de redes

Ejemplo

Sea \mathbb{P} de todas las particiones finitas de un invervalo cerrado [a, b] ordenadas bajo la relación $A_1 \leq A_2$ si y solo si A_2 es más fina que A_1 definen un conjunto dirigido.

Entonces, si f es una función en [a,b], podemos definir la red $P_L: \mathbb{P} \to \mathbb{R}$ tomando $P_L(A)$ la suma de Riemann inferior de f bajo A. La "convergencia" de esta red, que definiremos formalmente más adelante, a un número $c \in \mathbb{R}$ simplemente significa

$$\int_{a}^{b} f \ dx = c$$

Subred

Definición

Una subred de una red $P:\Lambda\to X$ es una composición $P\circ\phi$, donde $\phi:M\to\Lambda$ es una función creciente de un conjunto dirigido M en Λ y además es cofinal en Λ . Esto es,

- ② Para cada $\lambda \in \Lambda$, existe $\mu \in M$ tal que $\lambda \leq \phi(\mu)$. Esto se llama ser cofinal en Λ .

Para $\mu \in M$, al punto $P \circ \phi(\mu)$ usualmente se le denota $x_{\lambda_{\mu}}$, y hablamos de la subred $\{x_{\lambda_{\mu}}\}$.

Convergencia

Definición

Decimos que una red $\{x_{\lambda}\}$ tiene a $x \in X$ como punto de acumulación si y solo si para todo vecindario U de x y para cada $\lambda_0 \in \lambda$, existe $\lambda \geq \lambda_0$ tal que $x_{\lambda} \in U$.

Definición

Una red $\{x_{\lambda}\}$ converge a $x \in X$, denotado $x_{\lambda} \to x$, si para cada vecindario U de x existe $\lambda_0 \in \Lambda$ tal que $x_{\lambda} \in U$ si $\lambda \geq \lambda_0$.

Convergencia

Teorema

Una red $\{x_{\lambda}\}$ tiene a $x \in X$ como punto de acumulación si y solo si tiene una subred que converge a x.

Prueba

Sea x un punto de acumulación de $\{x_{\lambda}\}$.

• $M := \{(\lambda, U) : \lambda \in \Lambda, U \text{ vecindario de } x \text{ tal que } x_{\lambda} \in U\}$ Considere a M como conjunto dirigido mediante la siguiente relación:

$$(\lambda_1, U_1) \leq (\lambda_2, U_2)$$
 si y solo si $\lambda_1 \leq \lambda_2 \wedge U_2 \subseteq U_1$

Convergencia

- Defina $\Phi: M \to \Lambda$ mediante $\Phi(\lambda, U) = \lambda$. Se obtiene una subred definida por Φ .
- Sea U_0 cualquier vecindario de x, y tome $\lambda_0 \in \Lambda$ tal que $x_{\lambda_0} \in U_0$.
- Entonces $(\lambda_0, U_0) \in M$, y además $(\lambda, U) \ge (\lambda_0, U_0) \Rightarrow U \subset U_0$, por lo cual $x_\lambda \in U \subset U_0$. Por esto, la subred definida por Φ converge a x.

Teorema

Un espacio topológico X es compacto si y solo si cada red en X tiene una subred convergente en X.

Observación

Es conocido que un conjunto X es compacto si y solo si cada colección de conjuntos cerrados en X que satisface la propiedad de intersección finita tiene intersección no vacía.

Asuma que X es Compacto.

- Suponga $\{x_{\lambda}\}$ red que no posee ninguna subred convergente.
- $\{x_{\lambda}\}$ no tiene puntos de acumulación. Así para cualquier $x \in X$ podemos encontrar U_x vecindario de x y un λ_x tal que $x_{\lambda} \notin U$ para cada $\lambda \geq \lambda_x$.
- Como X es compacto, $y \{U_x\}_{x \in X}$ es cubrimiento por abiertos para X, existen $x_1, \ldots, x_n \in X$ tales que $X = \bigcup_{i=1}^n U_{x_i}$.
- $X = \bigcup_{i=1}^{n} U_{x_i}$. Tome $\lambda \ge \lambda_{x_i}$ para i = 1, ..., n. Entonces $x_{\lambda} \notin X$, lo cual es contradictorio.

Asuma que toda red en X tiene una subred convergente.

Prueba

- $\mathcal{F} = \{F_i : i \in I\}$ una familia de conjuntos cerrados de X con FIP.
- Sea

$$\Lambda = \{\{i_1, \ldots, i_n\} : i_1, \ldots, i_n \in I \land n \in \mathbb{N}\}\$$

y un orden en Λ como $\lambda_1 = \{i_1, \ldots, i_n\} \le \lambda_2 = \{j_1, \ldots, j_n\}$ si y solo si $\{i_1, \ldots, i_n\} \subseteq \{j_1, \ldots, j_n\}$.

- Como la familia \mathcal{F} tiene propiedad de intersección finita, para cada $\lambda = \{i_1, \dots, i_n\} \in \Lambda$ podemos encontrar $x_{\lambda} \in F_{i_1} \cap \dots \cap F_{i_n}$.
- Usando la hipótesis, la red $\{x_{\lambda}\}$ tiene una subred convergente, digamos $\{x_{\lambda_m}\} \to x$.
- Se prueba $x \in F_i$, para todo $i \in I$.

Ultra - Redes

Definición

Una red $\{x_{\lambda}\}$ se dice residualmente en $E \subset X$ si existe $\lambda_0 \in \Lambda$ tal que para todo $\lambda \geq \lambda_0$ se tiene $x_{\lambda} \in E$.

Definición

Una red $\{x_{\lambda}\}$ en X es una ultra - red si y solo si para cada subconjunto $E \subset X$, $\{x_{\lambda}\}$ está residualmente en E o residualmente en E^c .

Observación

Una ultra - red debe converger a sus puntos de acumulación.

Relación redes y ultra - redes

Teorema

Toda red $\{x_{\lambda}\}$ tiene una subred que es una ultra - red.

Observación

Para la demostración de este teorema, primero necesitaremos la definición de un ultra - filtro en un espacio topológico.

Ultra - Filtros

Definición

Una colección $\mathcal U$ de subconjuntos no vacíos de X es un ultra - filtro en X si es cerrada bajo intersecciones finitas, y además para $A\subseteq X$ tenemos que $A\in \mathcal U$ o $A^{\mathbf c}\in \mathcal U$

Observación

Si $\{x_{\lambda}\}_{{\lambda}\in{\Lambda}}$ es una ultra - red, considere la colección ${\mathcal U}$ de subconjuntos A de X tales que $\{x_{\lambda}: {\lambda} \geq {\lambda}_0\} \subseteq A$ para algún ${\lambda}_0$, que depende de A. Esto define un ultra filtro.

Además, si tenemos un ultra - filtro \mathcal{U} , condérelo como un conjunto dirigido mediante la inclusión inversa. Para cada $A \in \mathcal{U}$ tome $x_A \in A$. Así. $\{x_A\}_{A \in \mathcal{U}}$ define una ultra - red.

Resultado fundamental de ultra - filtros

Teorema

Toda colección A de subconjuntos de X con propiedad de intersección finita está contenida en un ultra - filtro \mathcal{U} de X.

Observación

En la demostración de este teorema se usa el Lema de Zorn.

Volviendo al teorema...

Teorema

Toda red $\{x_{\lambda}\}$ tiene una subred que es una ultra - red.

- Sea {x_λ}_{λ∈Λ} una red. Considere la colección A de subconjuntos de Λ de la forma {λ : λ ≥ λ₀} para λ₀ ∈ Λ. Esta colección tiene FIP, ya que está contenida en un ultra - filtro U de Λ.
- Ordene U mediante inclusión inversa, viendolo así como un conjunto dirigido.

Volviendo al teorema...

- Considere $\Phi: \mathcal{U} \to \Lambda$ tal que $\Phi(A) \in A$, para todo $A \in \mathcal{U}$. Este mapeo define una subred.
- Como $\mathcal U$ es un ultra filtro en Λ , la red $\{\Phi(A)\}_{A\in\mathcal U}$ es una ultra red. Por lema 1.15, la red $\{x_{\Phi(A)}\}_{A\in\mathcal U}$ es una ultra red, por ser la imagen de $\{\Phi(A)\}_{A\in\mathcal U}$ bajo la función $f:\Lambda\to X.$ $f(i)=x_i.$

Imagen ultra - filtro

Lema

Sean X, Y dos conjuntos no vacíos. Si $\{x_{\lambda}\}$ es una ultra - red en X $y \ f : X \to Y$ es una función, entonces $\{f(x_{\lambda})\}$ es una ultra - red.

Prueba

Si $B \subset Y$, entonces $f^{-1}(B) = (f^{-1}(B^c))^c$, entonces $\{x_{\lambda}\}$ está residualmente en $f^{-1}(B)$ o en $f^{-1}(B^c)$, de lo cual $\{f(x_{\lambda})\}$ está residualmente en B o en B^c , por lo cual es una ultra - red.

Teorema de Tychonoff

Teorema

Un producto no vacío $X = \prod_{i \in I} X_i$ es compacto si y solo si cada factor X_i es compacto.

- Willard, S, General Topology. Dover, New York, 2004, (1970).
- Várilly, J.C, *Notas para el curso MA-0704: Topología.* I-Ciclo 2011, Universidad de Costa Rica.
- Munkres, James R, Topology. Prentice Hall, (2000)
- Norwood, Zach, TYCHONOFF'S THEOREM IMPLIES AC. http://www.math.ucla.edu/~znorwood/files/tychonoffimpliesac.pdf
- Manoussos, Antonios, A prf OF TYCHONOFF'S THEOREM. https://www.math.uni-bielefeld.de/~amanouss/Tychonoff_theorem.pdf
- Clarke, Pete L, CONVERGENCE.
 http://math.uga.edu/~pete/convergence.pdf
- Kruckman, Alex, Notes on Ultrafilters. https:
 //math.berkeley.edu/~kruckman/ultrafilters.pdf

