L'ipotesi di Riemann

Università di Roma, La Sapienza,

7 Novembre, 2006

Georg Friedrich Bernhard Riemann

Nato: 17.09.1826 a Breselenz / Königreich Hannover

Morto: 20.07.1866 a Selasca / Italia

$$\zeta(\sigma + it) = 0, \sigma \in (0, 1) \implies \sigma = \frac{1}{2}$$

Problema. Produrre un numero primo "random" $p \approx 10^{100}$

Algoritmo Probabilistico

- 1. Let $p = \text{Random}(10^{100})$
- 2. If ISPRIME(p)=1 then Output=p else goto 1

due sottoproblemi:

- A. Quante iterazioni sono necessarie?
 - (i.e. come sono distribuiti i numeri primi?)
- B. Come si verifica se p è primo?
 - (i.e. come si calcola la funzione $\mathtt{ISPRIME}(p)$?) \leadsto test di primalità

Distribuzione dei numeri primi

$$\pi(x) = \#\{p \le x \text{ t. c. } p \text{ è primo}\}$$

$$\pi(10) = 4$$
 $\pi(100) = 25$ $\pi(1,000) = 168$

Dunque la probabilità che un intero random con 100 cifre decimali sia primo è:

$$\frac{\pi(10^{100})}{10^{100}}$$

Se P_k è la probabilità che tra k numeri casuali $\leq 10^{100}$ ce ne sia uno primo, allora

$$P_k = 1 - \left(1 - \frac{\pi(10^{100})}{10^{100}}\right)^k$$

2000 anni fa:

Euclide di Alessandria (325A.C. - 265A.C. circa)

Esistono infiniti numeri primi: $\pi(x) \to \infty$ se $x \to \infty$

La Scuola di Atene (Raffaello Sanzio)

Euclide di Alessandria

Nato: 325 A.C. (circa)

Morto: 265 A.C. (circa)

Esistono infiniti numeri primi: $\pi(x) \to \infty$ se $x \to \infty$

x	$\pi(x)$
10,000	1,229
100,000	9,592
1,000,000	78,498
10,000,000	664,579
100,000,000	5,761,455
1,000,000,000	50,847,534
10,000,000,000	455,052,511
100,000,000,000	4,118,054,813
1,000,000,000,000	37,607,912,018
10,000,000,000,000	346,065,536,839
100,000,000,000,000	3,204,941,750,802
1,000,000,000,000,000	29,844,570,422,669
10,000,000,000,000,000	279,238,341,033,925
$100,\!000,\!000,\!000,\!000,\!000$	2,623,557,157,654,233
1,000,000,000,000,000,000	24,739,954,287,740,860
10,000,000,000,000,000,000	234,057,667,276,344,607
100,000,000,000,000,000,000	2,220,819,602,560,918,840
1,000,000,000,000,000,000,000	21,127,269,486,018,731,928
10,000,000,000,000,000,000,000	201,467,286,689,315,906,290

Il grafico della funzione $\pi(x)$

L'intuizione di Legendre

Adrien-Marie Legendre 1752-1833

$$\pi(x)$$
 è circa $\frac{x}{\log x}$

$$\pi(x)$$
 è circa $\frac{x}{\log x}$

cioè

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$$
 e si scrive

$$\pi(x) \sim \frac{x}{\log x}$$

x	$\pi(x)$	$\frac{x}{\log x}$
1000	168	145
10000	1229	1086
100000	9592	8686
1000000	78498	72382
10000000	664579	620420
10000000	5761455	5428681
100000000	50847534	48254942
10000000000	455052511	434294482
10000000000	4118054813	3948131654
100000000000	37607912018	36191206825
1000000000000	346065536839	334072678387
10000000000000	3204941750802	3102103442166
100000000000000	29844570422669	28952965460217
10000000000000000	279238341033925	271434051189532
100000000000000000	2623557157654233	2554673422960305
1000000000000000000	24739954287740860	24127471216847324
100000000000000000000	234057667276344607	228576043106974646
100000000000000000000000000000000000000	2220819602560918840	2171472409516259138

La Congettura di Gauss

Johann Carl Friedrich Gauss (1777 - 1855)

$$\pi(x) \sim \int_0^x \frac{du}{\log u}$$

11

Foto più recente di Gauss

Johann Carl Friedrich Gauss (1777 - 1855)

$$\pi(x) \sim \int_0^x \frac{du}{\log u}$$

La funzione "logartimo integrale" di Gauss

$$\operatorname{Li}(x) = \int_0^x \frac{du}{\log u}$$

x	$\pi(x)$	$\mathrm{Li}(x)$	$\frac{x}{\log x}$
1000	168	178	145
10000	1229	1246	1086
100000	9592	9630	8686
1000000	78498	78628	72382
10000000	664579	664918	620420
10000000	5761455	5762209	5428681
100000000	50847534	50849235	48254942
1000000000	455052511	455055614	434294482
10000000000	4118054813	4118066401	3948131654
100000000000	37607912018	37607950281	36191206825
1000000000000	346065536839	346065645810	334072678387
10000000000000	3204941750802	3204942065692	3102103442166
100000000000000	29844570422669	29844571475288	28952965460217
10000000000000000	279238341033925	279238344248557	271434051189532
100000000000000000	2623557157654233	2623557165610822	2554673422960305
1000000000000000000	24739954287740860	24739954309690415	24127471216847324
100000000000000000000	234057667276344607	234057667376222382	228576043106974646
100000000000000000000000000000000000000	2220819602560918840	2220819602783663484	2171472409516259138

GRANDE PROBLEMA DELL'800:

Congettura:

$$\pi(x) \sim \frac{x}{\log x}$$

Il Contributo di Tchebicev

Th. Costins

Pafnuty Lvovich Chebyshev 1821 - 1894

TEOREMI DI CHEBYCHEV

$$\bullet \ \frac{7}{8} \le \frac{\pi(x)}{x} \le \frac{9}{8}$$

•
$$\liminf_{x \to \infty} \frac{\pi(x)}{x/\log x} \le 1$$

•
$$\limsup_{x \to \infty} \frac{\pi(x)}{x/\log x} \ge 1$$

• $\forall n, \exists p, n (Postulato di Bertrand)$

L'articolo di Riemann 1859

IDEA RIVOLUZIONARIA:

Usare la funzione:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

e l'analisi complessa.

(i.e.
$$s \in \mathbb{C}$$
)

IPOTESI DI RIEMANN:

$$\pi(x) = \operatorname{Li}(x) + O(\sqrt{x} \log x)$$

(Ueber die Anzahl der Primzahlen unter einer

gegebenen Grösse.) Monatsberichte der

Berliner Akademie, 1859

Il punto della situazione:

• L'ipotesi di Riemann (1959)

$$\pi(x) = \operatorname{Li}(x) + O(\sqrt{x}\log x)$$

- Riemann non completa la dimostrazione del Teorema dei numeri primi ma suggerisce la strada giusta.
- \bullet L'idea è di usare la funzione ζ come funzione di variabile complessa
- Hadamard e de la vallée Poussen (1897) aggiungono il pezzo mancante al programma di Riemann e dimostrano il Teorema dei numeri primi.

$$\pi(x) = \operatorname{Li}(x) + O(x \exp{-a\sqrt{\log x}}).$$

 \bullet L'idea di usare ζ per studiare i primi era già stata suggerita da Eulero!!

Il Teorema dei numeri primi finalmente dimostrato

Jacques Salomon Hadamard 1865 - 1963

Charles Jean Gustave Nicolas

Baron de la Vallée Poussin 1866 - 1962

$$\pi(x) = \text{Li}(x) + O(x \exp{-a\sqrt{\log x}}) \quad \exists a > 0$$

Il Contributo di Eulero

Leonhard Euler (1707 - 1783)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 ha a che fare con i primi

Il Contributo di Eulero

Leonhard Euler (1707 - 1783)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 ha a che fare con i primi

Il Contributo di Eulero

- $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ converge per s > 1
- $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$, ...
- In generale $\zeta(2k) \cdot \pi^{-2k} \in \mathbb{Q}$
- Formula del prodotto di Eulero:

$$\zeta(s) = \prod_{p \text{ primo}} \frac{1}{1 - \frac{1}{p^s}}.$$

- Fornisce subito una nuova dimostrazione che esistono infiniti primi
- Vale la pena dimostrarla.

Torniamo alla distribuzione per i test di Primalità

Teorema. (Hadamard - de la Vallée Poussen - 1897)

$$\pi(x) \sim \frac{x}{\log x}$$

Versione quantitativa:

Teorema. (Rosser - Schoenfeld) Se $x \ge 67$

$$\frac{x}{\log x - 1/2} < \pi(x) < \frac{x}{\log x - 3/2}$$

Quindi

 $0.0043523959267 < Prob ((\mathtt{Random}(10^{100}) = \mathtt{prime}) < 0.004371422086$

Se P_k è la probabilità che tra k numeri casuali $\leq 10^{100}$ ce ne sia uno primo, allora

$$P_k = 1 - \left(1 - \frac{\pi(10^{100})}{10^{100}}\right)^k$$

Quindi $0.663942 < P_{250} < 0.66554440$

Per fare più velocemente: Si considerano solo numeri casuali dispari non divisibili per 3 né per 5.

Sia

$$\Psi(x,30) = \# \{ n \le x \text{ s.t. } \gcd(n,30) = 1 \}$$

Allora

$$\frac{4}{15}x - 4 < \Psi(x, 30) < \frac{4}{15}x + 4$$

Quindi, se P'_k è la probabilità che tra k numeri casuali $\leq 10^{100}$ coprimi con 30, ce ne sia almeno uno primo, allora,

$$P'_k = 1 - \left(1 - \frac{\pi(10^{100})}{\Psi(10^{100}, 30)}\right)^k$$

e

$$0.98365832 < P'_{250} < 0.98395199$$

Cominciamo a Lavorare su ζ

- Scriviamo $s = \sigma + it \in \mathbb{C}$.
- Dunque

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^{\sigma+it}} = \sum_{n=1}^{\infty} \frac{\cos(t \log n) - i \sin(t \log n)}{n^{\sigma}}$$

- visto che $e^{i\theta} = \cos\theta + i\sin\theta$
- La serie complessa converge per $\Re(s) = \sigma > 1$ infatti

$$|\zeta(s)| = \left| \sum_{n=1}^{\infty} \frac{1}{n^s} \right| \le \sum_{n=1}^{\infty} \left| \frac{1}{n^s} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}$$

• Quindi ζ è una funzione olomorfa nella regione $\{z \in \mathbb{C} \text{ tale che } \Re z > 1\}$

Che cosa è una funzione olomorfa?

- Sia $\Omega \subseteq \mathbb{C}$ un sottoinsieme aperto (per esempio $\Omega = \{z \in \mathbb{C} \text{ tale che } \Re z > 1\}$)
- $f: \Omega \to \mathbb{C}$ si dice olomorfa se $\forall z_0 \in \Omega$ esiste

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

- Dalla definizione seguono moltissime proprietà importantissime:
 - $-- \rightarrow f$ ammette tutte le derivate successive
- --> f si può espandere in serie di potenze in un intorno di qualsiasi punto di Ω
- ---> Principio di Di Rigidità per funzioni olomorfe: Se f e g sono due funzioni olomorfe su Ω che coincidono in un sottoinsieme aperto di Ω , allora f=g su tutto Ω .

Estensione di ζ su $\{s|\Re s>0, s\neq 1\}$

- Sia [x] la parte intera di $x \in \mathbb{R}$ e $\{x\} = x [x]$ la parte frazionaria.
- Allora

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = s \int_1^{\infty} \frac{[x]}{x^{s+1}} dx$$

• Quindi

$$\zeta(s) = \frac{s}{s-1} - s \int_1^\infty \frac{\{x\}}{x^{s+1}} dx$$

- Siccome l'integrale improprio converge per $\Re(s)>0$, l'espressione si può usare per definire ζ come funzione olomorfa su $\{s\mid\Re(s)>0,s\neq1\}$
- Per il Principio di rigidità questo è l'unico modo per estendere ζ .

Esercizio

Dimostrare che se $\sigma, t \in \mathbb{R}$ sono tali che

$$\begin{cases}
\int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \cos(t \log x) dx = \frac{\sigma}{(\sigma-1)^2 + t^2} \\
\int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \sin(t \log x) dx = \frac{t}{(\sigma-1)^2 + t^2}
\end{cases}$$

Allora $\sigma = \frac{1}{2}$.

La bellissima formula di Riemann

$$\zeta(s) = \pi^{\frac{s}{2}} \frac{1}{s(s-1)} + \int_{1}^{\infty} \left(x^{\frac{s}{2}-1} + x^{-\frac{s+1}{2}} \right) \left(\sum_{n=1}^{\infty} e^{-n^{2}\pi x} \right) dx}{\int_{0}^{\infty} e^{-u} u^{\frac{s}{2}-1} \frac{du}{u}}$$

Classicamente si scrive:

$$\Gamma(s) = \int_0^\infty e^{-u} u^s \frac{du}{u}$$
 e $\omega(x) = \sum_{n=1}^\infty e^{-n^2 \pi x}$

La bellissima formula di Riemann

Quindi

$$\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \frac{1}{s(s-1)} + \int_{1}^{\infty} \left(x^{\frac{s}{2}-1} + x^{-\frac{s+1}{2}}\right)\omega(x)dx$$

La famosa equazione funzionale

$$\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-\frac{(1-s)}{2}}\Gamma\left(\frac{(1-s)}{2}\right)\zeta(1-s)$$

Quindi ζ è una funzione olomorfa su $\mathbb{C} \setminus \{1\}$

Nostri Obiettivi:

- 1. Dimostrare la formula di Riemann e spiegare come si usa per dimostrare il Teorema dei numeri primi
- 2. Spiegare perchè l'ipotesi di Riemann si può enunciare nei due modi diversi equivalenti:

Università Roma Tre

A.
$$\zeta(\sigma + it) = 0, \sigma \in (0, 1) \Rightarrow \sigma = \frac{1}{2}$$

e

B.
$$\pi(x) = \text{Li}(x) + O(\sqrt{x} \log x)$$