Основы машинного обучения

Лекция 13

Решающие деревья. Композиции моделей.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2024

Решающее дерево

Как выбирать предикаты

Энтропия

• Мера неопределённости распределения

Энтропия

- Дискретное распределение
- Принимает n значений с вероятностями p_1 , ..., p_n
- Энтропия:

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

Энтропия

$$H(p_1, ..., p_K) = -\sum_{i=1}^K p_i \log_2 p_i$$

- Характеристика «хаотичности» вершины
- Impurity

Критерий Джини

$$H(p_1, ..., p_K) = \sum_{i=1}^K p_i (1 - p_i)$$

- Вероятность ошибки случайного классификатора, который выдаёт класс k с вероятностью p_k
- Примерно пропорционально количеству пар объектов, относящихся к разным классам

Как сравнить разбиения?

- (0.5, 0.5, 0) и (0, 0, 1)
- H = 0.693 + 0 = 0.693

- (0.33, 0.33, 0.33) и (0.33, 0.33, 0.33)
- H = 1.09 + 1.09 = 2.18

Критерий информативности

$$Q(R, j, t) = H(R) - \frac{|R_{\ell}|}{|R|} H(R_{\ell}) - \frac{|R_{r}|}{|R|} H(R_{r}) \to \max_{j, t}$$

Или так:

$$Q(R, j, t) = \frac{|R_{\ell}|}{|R|} H(R_{\ell}) + \frac{|R_{r}|}{|R|} H(R_{r}) \to \min_{j, t}$$

Как сравнить разбиения?

- (5/6, 1/6) и (1/6, 5/6)
- 0.5 * 0.65 + 0.5 *0.65 = 0.65

- (6/11, 5/11) и (0, 1)
- $\bullet \frac{11}{12} * 0.994 + \frac{1}{12} * 0 = 0.911$

А для регрессии?

А для регрессии?

А для регрессии?

Задача регрессии

$$H(R) = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - y_R)^2$$

$$y_R = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} y_i$$

• То есть «хаотичность» вершины можно измерять дисперсией ответов в ней

Жадное построение дерева

Как строить дерево?

- Оптимальный вариант: перебрать все возможные деревья, выбрать самое маленькое среди безошибочных
- Слишком долго

Как строить дерево?

- Мы уже умеем выбрать лучший предикат для разбиения вершины
- Будем строить жадно
- Начнём с корня дерева, будем разбивать последовательно, пока не выполнится некоторый критерий останова

Критерий останова

- Ограничить глубину
- Ограничить количество листьев
- Задать минимальное число объектов в вершине
- Задать минимальное уменьшение хаотичности при разбиении
- И так далее

Жадный алгоритм

- 1. Поместить в корень всю выбору: $R_1 = X$
- 2. Запустить построение из корня: SplitNode $(1, R_1)$

Жадный алгоритм

- SplitNode (m, R_m)
- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j, t = \arg\min_{j,t} Q(R_m, j, t)$
- 3. Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Признаки

$$(1, 0)$$

 $H(p) = 0$

$$(1/2, 1/2)$$

H(p) = 0.69

$$\frac{3}{13}H(p_l) + \frac{10}{13}H(p_r) = 0.53$$

$$(3/4, 1/4)$$

H(p) = 0.56

$$(5/9, 4/9)$$

H(p) = 0.69

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.65$$

(4/5, 1/5)H(p) = 0.5 (1/2, 1/2)H(p) = 0.69

$$\frac{5}{13}H(p_l) + \frac{8}{13}H(p_r) = 0.62$$

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.47$$

$$(1, 0)$$

 $H(p) = 0$

(4/6, 2/6)H(p) = 0.64

$$\frac{7}{13}H(p_l) + \frac{6}{13}H(p_r) = 0.66$$

(4/7, 3/7)H(p) = 0.68

$$(1/2, 1/2)$$

H(p) = 0.69

$$\frac{9}{13}H(p_l) + \frac{4}{13}H(p_r) = 0.53$$

(6/9, 3/9)H(p) = 0.46

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.47$$

$$(1, 0)$$

H(p) = 0

Лучшее разбиение!

Резюме

- Решающие деревья позволяют строить сложные модели, но есть риск переобучения
- Деревья строятся жадно, на каждом шаге вершина разбивается на две с помощью лучшего из предиктов
- Алгоритм довольно сложный и требует перебора всех предикатов на каждом шаге

Неустойчивость деревьев

Устойчивость моделей

- $X = (x_i, y_i)_{i=1}^{\ell}$ обучающая выборка
- Обучаем модель a(x)
- Ожидаем, что модель устойчивая
- То есть не сильно меняется при небольших изменениях в X
- $ilde{X}$ случайная подвыборка, примерно 90% исходной

Устойчивость моделей

- $ilde{X}$ случайная подвыборка, примерно 90% исходной
- Что будет происходить с деревьями на разных подвыборках?

Композиция моделей

- У нас получилось N деревьев: $b_1(x)$, ..., $b_N(x)$
- Объединим их через голосование большинством (majority vote):

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Композиция моделей

Композиция моделей

Голосование по большинству и усреднение

• Какой из двух логотипов более старый?

Google Google

• Как выглядит корпус Вышки в Перми?

• Покоординатный спуск — это метод оптимизации 1-го или 2-го порядка?

- Дано: N базовых алгоритмов $b_1(x)$, ..., $b_N(x)$
- Композиция: класс, за который проголосовало больше всего базовых алгоритмов

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

- Наблюдение: усреднение результатов повышает их точность
- Измерение артериального давления
- Измерение скорости света
- Усреднение соседних пикселей изображения

• Сколько лет факультету компьютерных наук?

• Сколько метров в 1 сажени?

• Сколько лет лектору?

Композиции моделей

Общий вид: классификация

- $b_1(x)$, ..., $b_N(x)$ базовые модели
- Каждая хотя бы немного лучше случайного угадывания
- Композиция: голосование по большинству (majority vote)

$$a_N(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^N [b_n(x) = y]$$

Общий вид: регрессия

- $b_1(x)$, ..., $b_N(x)$ базовые модели
- Каждая хотя бы немного лучше случайного угадывания
- Композиция: усреднение

$$a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

Базовые модели

- $b_1(x)$, ..., $b_N(x)$ базовые модели
- Как на одной выборке построить N различных моделей?
- Вариант 1: обучить их независимо на разных подвыборках
- Вариант 2: обучать последовательно для корректировки ошибок

Бустинг

- Каждая следующая модель исправляет ошибки предыдущих
- Например, градиентный бустинг

Бэггинг

- Bagging (bootstrap aggregating)
- Базовые модели обучаются независимо
- Каждый обучается на подмножестве обучающей выборки
- Подмножество выбирается с помощью бутстрапа

Бутстрап

- Выборка с возвращением
- Берём ℓ элементов из X
- Пример: $\{x_1, x_2, x_3, x_4\} \rightarrow \{x_1, x_2, x_2, x_4\}$
- В подвыборке будет ℓ объектов, из них около 63.2% уникальных
- Если объект входит в выборку несколько раз, то мы как бы повышаем его вес

Случайные подпространства

- Выбираем случайное подмножество признаков
- Обучаем модель только на них

Случайные подпространства

- Выбираем случайное подмножество признаков
- Обучаем модель только на них
- Может быть плохо, если имеются важные признаки, без которых невозможно построить разумную модель

Виды рандомизации

- Бэггинг: случайная подвыборка
- Случайные подпространства: случайное подмножество признаков

Резюме

- Будем объединять модели в композиции через усреднение или голосование большинством
- Бэггинг композиция моделей, обученных независимо на случайных подмножествах объектов
- Можно ещё рандомизировать по признакам
- Как лучше всего?

Смещение и разброс моделей

$$L(\mu) = \underbrace{\mathbb{E}_{x,y}\Big[ig(y - \mathbb{E}[y \mid x]ig)^2\Big]}_{\text{шум}} + \underbrace{\mathbb{E}_x\Big[ig(\mathbb{E}_Xig[\mu(X)ig] - \mathbb{E}[y \mid x]ig)^2\Big]}_{\text{смещение}} + \underbrace{\mathbb{E}_x\Big[\Big[\mu(X) - \mathbb{E}_Xig[\mu(X)ig]ig)^2\Big]\Big]}_{\text{разброс}}$$

• Разберём на уровне идеи

- Ошибка модели складывается из трёх компонент
- Шум (noise) характеристика сложности и противоречивости данных

- Ошибка модели складывается из трёх компонент
- Шум (noise) характеристика сложности и противоречивости данных
- Смещение (bias) способность модели приблизить лучшую среди всех возможных моделей

- Ошибка модели складывается из трёх компонент
- Шум (noise) характеристика сложности и противоречивости данных
- Смещение (bias) способность модели приблизить лучшую среди всех возможных моделей
- Разброс (variance) устойчивость модели к изменениям в обучающей выборке

Смещение и разброс: линейная модель

Бэггинг

- Смещение $a_N(x)$ такое же, как у $b_n(x)$
- Разброс $a_N(x)$:

$$\frac{1}{N}$$
 (разброс $b_n(x)$) + ковариация $(b_n(x), b_m(x))$

- Если базовые модели независимы, то разброс уменьшается в N раз!
- Чем более похожи выходы базовых моделей, тем меньше эффект от построения композиции

Смещение и разброс: бэггинг

Случайный лес

Жадный алгоритм

$SplitNode(m, R_m)$

- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j, t = \arg\min_{j,t} Q(R_m, j, t)$
- 3. Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Жадный алгоритм

 $SplitNode(m, R_m)$

- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j, t = \arg\min_{j,t} Q(R_m, j, t)$
- 3. Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Выбор предиката

$$j, t = \arg\min_{j,t} Q(R_m, j, t)$$

• Будем искать лучший предикат среди случайного подмножества признаков размера q

Корреляция между деревьями

Hastie, Tibshirani, Friedman. The Elements of Statistical Learning.

Корреляция между деревьями

Рекомендации для q:

- Регрессия: $q = \frac{d}{3}$
- Классификация: $q = \sqrt{d}$

Случайный лес (Random Forest)

```
Для n = 1, ..., N:
```

- 1. Сгенерировать выборку $ilde{X}$ с помощью бутстрапа
- 2. Построить решающее дерево $b_n(x)$ по выборке \tilde{X}
- 3. Дерево строится, пока в каждом листе не окажется не более n_{min} объектов
- 4. Оптимальное разбиение ищется среди q случайных признаков

Случайный лес (Random Forest)

```
Для n = 1, ..., N:
```

- 1. Сгенерировать выборку $ilde{X}$ с помощью бутстрапа
- 2. Построить решающее дерево $b_n(x)$ по выборке \tilde{X}
- 3. Дерево строится, пока в каждом листе не окажется не более n_{min} объектов
- 4. Оптимальное разбиение ищется среди q случайных признаков

Выбираются заново при каждом разбиении!

Случайный лес (Random Forest)

• Регрессия:

$$a(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

• Классификация:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Универсальный метод

- Ошибка сначала убывает, а затем выходит на один уровень
- Случайный лес не переобучается при росте N

Out-of-bag

- Каждое дерево обучается примерно на 63% данных
- Остальные объекты как бы тестовая выборка для дерева
- X_n обучающая выборка для $b_n(x)$
- Можно оценить ошибку на новых данных:

$$Q_{test} = \frac{1}{\ell} \sum_{i=1}^{\ell} L\left(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin X_n]} \sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)\right)$$

Важность признаков

- Перестановочный метод для проверки важности j-го признака
- Перемешиваем соответствующий столбец в матрице «объекты-признаки» для тестовой выборки
- Измеряем качество модели
- Чем сильнее оно упало, тем важнее признак

Резюме

- Случайный лес метод на основе бэггинга, в котором делается попытка повысить разнообразие деревьев
- Метод практически без гиперпараметров
- Можно оценить обобщающую способность без тестовой выборки