

An anomaly may be linked to a sequence of observations

```
In [2]: zstart = windows.loc[4]['begin']
  zend = windows.loc[4]['end']
  zsignal = signal[(signal.index >= zstart) & (signal.index < zend)]
  nab.plot_series(zsignal, labels=labels.loc[4:5])</pre>
```

The loc field in pandas addresses the index of a DataFrame or Series

An anomaly may be linked to a sequence of observations

It's a frequent case in real life:

- Isolated outliers may be due to measurement noise
 - e.g. faulty sensors, human mistakes
- Real anomalies often persist for a while

In this case it may be worth to combine multiple probabilities

- We will start by seeing a simple approach
- ...Which makes the assumption that the observations are i.i.d.
 - I.i.d.: Independent and Identically Distributed

- \blacksquare Let **x** be a random variable corresponding to n subsequent observations
- We can formulate our new detection condition as follows:

$$P(\mathbf{x}) \leq \theta^n$$

Since we are assuming i.i.d. observations, we get:

$$\prod_{i=1}^n P(x_i) < \theta^n$$

With a log transformation:

$$\sum_{i=1}^{n} \log P(x_i) < n \log \theta$$

Finally, we get:

$$\frac{1}{n} \sum_{i=1}^{n} \log P(x_i) < \theta$$

Intuitively:

- Considering multiple (independet, identical) observations
- ...It's the same as smoothing our signal using a moving average

We can implement the smoothing via a convolution:

Given a sequence $\{x_i\}_{i=1}^n$ and a sequence $\{f_j\}_{j=1}^m$ (a filter)

- A convolution is an operation that "slides" the filter over the main series
- ...And computes dot products to yield a third sequence $\{y_k\}_{k=m}^n$ s.t.:

$$y_k = f \cdot (x_{k-m} \quad x_{k-m+1} \quad x_{k-m+2} \quad \dots \quad x_k)$$

- I.e. the filter is applied to the first *m* terms...
- ...Then we move one time step forward and we repeat

Normally we need at least m values before the first filter application

- Hence, the output series will be shorter than the input one
- lacksquare This is depicted by having the y sequence start from index m
- There are other ways (not discussed) to handle the series boundaries

We want to compute a moving average

...Which is just the average of the last few values:

- Let *m* be the length of the time window for the moving average
- Let us choose as filter: $\left(\frac{1}{m}, \frac{1}{m}, \dots\right)$

The convolution will compute an output sequence $\{y_k\}_{k=m}^m$, s.t.:

$$y_k = \frac{1}{m} \sum_{i=k-m}^k x_i$$

This is exactly what we need!

First we build the filter:

The we apply the convolution:

```
In [4]: smooth_signal = -np.convolve(ldens, flt, mode='valid')
smooth_signal_idx = data.index[avg_win_len-1:]
smooth_signal = pd.Series(index=smooth_signal_idx, data=smooth_signal)
```

- lacktriangle The convolution needs n observations before it can be first applied
- Hence, we need to update the index for our smoothed signal

In pandas, we can streamline this process via the rolling iterator

```
In [5]: signal.rolling(avg_win_len)
Out[5]: Rolling [window=24,center=False,axis=0,method=single]
```

- This will iterate over the series by groups of avg_win_len observations
- Then we can compute the average with:

```
In [6]: | signal.rolling(avg win len).mean()
Out[6]: timestamp
        2014-07-01 00:00:00
                                     NaN
        2014-07-01 00:30:00
                                     NaN
        2014-07-01 01:00:00
                                     NaN
        2014-07-01 01:30:00
                                     NaN
        2014-07-01 02:00:00
                                     NaN
        2015-01-31 21:30:00
                                0.104761
        2015-01-31 22:00:00
                                0.159036
        2015-01-31 22:30:00
                                0.232360
        2015-01-31 23:00:00
                                0.280827
        2015-01-31 23:30:00
                                0.307642
        Length: 10320, dtype: float64
```

Let's plot the smoothed signal

Some anomalies are now more evident!

Threshold Effect

We can now measure the effect of changing the threshold

First, we consider the "idealized" cost surface

Threshold Effect

It is worth to compare it with our original cost surface:

```
In [9]: thr_range = np.linspace(1, 10, 100)
    cost_range = [cmodel.cost(signal, labels, windows, thr) for thr in thr_range]
    cost_range = pd.Series(index=thr_range, data=cost_range)
    nab.plot_series(cost_range)
```

The minimum is a bit lower with the smoothed signal

Threshold Optimization

We can now optimize the threshold

- Same cost as before on the training set
- On the whole dataset, however:

```
In [11]: smooth_ctst = cmodel.cost(smooth_signal, labels, windows, smooth_best_thr)
    print(f'Cost on the whole dataset {smooth_ctst}')
Cost on the whole dataset 37
```

■ The cost with our original approach used to be 45

Some Considerations

It may worth combining multiple observations:

- If we notice that the data is noise
- ...Or if we are interested in persistent anomalies

Combining multiple observations with an i.i.d. assumption...

- ...Is equivalent to smoothing with a moving average
- ...And the other way round!
- Warning: the assumption may not be valid

The approach introduces an extra parameter (window length):

- In principle, we should optimize over that as well
- We skipped that part for sake of simplicity