I.LIMIT POINTS / Accummulation point.

Let $X \in \mathbb{R}^N$ $\left(X = (x_n)\right)$. We say $x \in \overline{\mathbb{R}}$ is a limit point of the sequence X if \exists a subsequence (x_{n_k}) of X s.t. $\lim_{k \to \infty} x_{n_k} = x$, $x_{n_k} \neq x \neq k$.

<u>II</u> .

Let
$$X = (Rn) \in R^{N}$$
. Define a new sequence $(sn) \in R^{N}$
by $S_{n} = \sum_{i=1}^{n} z_{i}$ $(n^{th} pantial Sum)$

We say (writt) $\sum_{n=1}^{\infty} x_n = \sum x_n = x \iff \lim_{n\to\infty} s_n = x.$ Note that we can have $x \in \mathbb{R}$.

Example: (i) $\alpha_n = 0 \quad \forall n$. $\sum n_n = 0$.

(ii)
$$\alpha_n = \frac{1}{n^2} \forall n \geq 1$$
. $\sum \alpha_n = \frac{\pi^2}{6}$ (Basel Problem)

(iii) $x_n = (-1)^n \forall n \geqslant 1$. $\sum x_n$ does not exist in \mathbb{R} .

(iv)
$$\chi_n = 1 \quad \forall n > 1. \quad \sum n_n = \infty.$$

(v)
$$x_n = \frac{1}{n} + n \ge 1$$
. $\sum x_n = \infty$.

Proof that
$$\Sigma h = \infty$$
:

 $y = yx$

$$S_{n-1} = 1 - \frac{1}{4} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} > \int_{-\infty}^{n} \frac{1}{\pi} dx$$

$$= \ln n$$

$$s_n \geqslant ln(n+1)$$

Let
$$k > 0$$
. Then take $N = \lceil e^k \rceil + 1000$
 $\Rightarrow N > e^k - 1$
2f $n > N$ then $S_n \ge l_n(n+1) > l_n e^k = k$.

$$\therefore \ \Sigma_{h}^{+} = \infty.$$

Fact: (1)
$$\sum \left(\frac{1}{n} - \ln n\right) \in \mathbb{R}$$

The limit of the above series is known as the Euler-Mascheroni constant.

- If In ≠ R we say the series does not converge in 1R. - If $\sum a_n \in \mathbb{R}$ then $\lim a_n = 0$. - If $x_n > 0$ in then $\sum x_n$ converges in $\mathbb{R} \cup \{\infty\}$. - Say $0 \le nn \le yn \quad \forall n \ge 1$ lim an = ∞ .

· I y ER => Ian ER

- $\alpha_n \geqslant 0$. $M \geqslant 1$.

 $\sum x_n \in \mathbb{R} \Rightarrow \sum (x_n)^M \in \mathbb{R}$

- Then an diverges.

-Then an converges in IR.

- $x_n \geqslant 0$. Let $\pi: N \Rightarrow N$ be a bijection. Let $y_n = x_{\pi \pi}(n)$. Then (y_n) is said to be a rearrangement of (x_n) Furthermore $\Sigma y_n = \Sigma a_n$

- We say I'an absolutely converges if I | an | < a