Resumo – Algoritmos de Ordenação

Algoritmos $O(n^2)$ – simples, mas lentos em listas grandes

Bubble Sort

- o Ideia: troca vizinhos até ordenar.
- \circ Complexidade: $O(n^2)$.
- o Estável ✓.
- Uso: aprendizado, listas muito pequenas.

Selection Sort

- o Ideia: seleciona o menor elemento e coloca na posição correta.
- o Complexidade: O(n²).
- Instável X.
- o Uso: poucas trocas, mas ineficiente em listas grandes.

Insertion Sort

- Ideia: insere cada elemento na parte já ordenada (como cartas de baralho).
- o Complexidade: O(n²), mas O(n) em listas quase ordenadas.
- ∘ Estável **√**.
- Uso: listas pequenas ou quase ordenadas; parte de algoritmos híbridos (ex.: TimSort).

Algoritmos O(nlogn) – eficientes para grandes volumes

Merge Sort

- o Ideia: divide e conquista, combina sublistas ordenadas.
- o Complexidade: O(nlogn).
- o Estável ✓.
- o Uso: listas grandes, quando estabilidade é necessária.

Quick Sort

- Ideia: escolhe um pivô, particiona lista em menores/maiores, recursivo.
- o Complexidade: O(nlogn) médio, O(n²) pior caso.
- o Instável X.
- Uso: muito rápido na prática, padrão em várias linguagens.

Heap Sort

- o Ideia: constrói heap máximo e extrai o maior elemento.
- o Complexidade: O(nlogn).
- o Instável X.
- Uso: robusto, não precisa de memória extra, mas menos eficiente que Quick/Merge.

Comparação Geral

Algoritmo	Complexidade	Estável	Melhor uso
Bubble Sort	$O(n^2)$	√	Ensino, listas pequenas
Selection Sort	$O(n^2)$	X	Poucas trocas
Insertion Sort	$O(n^2)$	√	Listas pequenas/quase ordenadas
Merge Sort	O(nlogn)	√	Listas grandes, estabilidade
Quick Sort	O(nlogn) médio	X	Listas grandes, rapidez prática
Heap Sort	O(nlogn)	X	Robusto, sem memória extra