Esercizio 6.1

Sia dato il seguente linguaggio:

$$L = \{ w \mid w \in \{a,b\}^*, w \text{ ha un numero pari di } a \text{ ed un numero dispari di } b \}$$

Costruire l'automa accettore a stati finiti che riconosce L.

Dobbiamo sintetizzare l'automa accettore M (Figura 6.11) tale che:

$$L = T(M)$$

$$M = (Q, \delta, q_0, F)$$
 con alfabeto $X = \{a,b\}$

e con:

- i) $Q = \{q_0, q_1, q_2, q_3\}$ dove:
 - q_0 = numero pari di a e di b;
 - q_1 = numero pari di a e numero dispari di b;
 - q_2 = numero dispari di a e numero pari di b;
 - q_3 = numero dispari di a e di b;
- ii) la funzione di transizione δ è definita come segue:
 - $\delta(q_0, a) = \delta(q_3, b) = q_2$;
 - $\delta(q_0,b) = \delta(q_3,a) = q_1$;
 - $\delta(q_1, a) = \delta(q_2, b) = q_3$;
 - $\delta(q_1,b) = \delta(q_2,a) = q_0$;
- iii) q_0 è lo stato iniziale;
- iv) l'insieme degli stati finali o di accettazione è $F = \{q_1\}$.

Figura 6.11

Esercizio 6.2

Sia dato il seguente linguaggio:

$$L = \left\{ w \middle| w \in \{a,b\}^*, w \neq \alpha a a \beta, \alpha, \beta \in \{a,b\}^* \right\}$$
(w non contiene due a consecutive)

Costruire l'automa accettore a stati finiti deterministico che riconosce L.

Dobbiamo sintetizzare l'automa accettore *M* tale che:

$$L = T(M)$$

$$M = (Q, \delta, q_0, F) \text{ con alfabeto } X = \{a, b\}$$

con:

- i) $Q = \{q_0, q_1, q_2\}$ dove:
 - q_0 = parole su $X = \{a,b\}$ che non contengono due o più a consecutive e terminano per b;
 - q_1 = parole su $X = \{a,b\}$ che non contengono due o più a consecutive e terminano per a;
 - q_2 = parole su $X = \{a,b\}$ che contengono due o più a consecutive (*stato pozza*);
- ii) la funzione di transizione δ è definita come segue:

$$\delta: Q \times X \to Q$$

- $\delta(q_0, a) = q_1$;
- $\delta(q_0,b) = \delta(q_1,b) = q_0$;
- $\delta(q_1, a) = \delta(q_2, a) = \delta(q_2, b) = q_2$;
- iii) q_0 è lo stato iniziale;
- iv) l'insieme degli stati finali o di accettazione è $F = \{q_0, q_1\}$.

La tavola di transizione è dunque:

Il grafo degli stati è indicato in Figura 6.12:

Figura 6.12

ed M è deterministico.

Esercizio 6.3

Trasformare il seguente automa non deterministico M (Figura 6.13):

Figura 6.13

in un automa deterministico M' ad esso equivalente.

L'automa accettore a stati finiti deterministico M' tale che T(M') = T(M) si costruisce come segue.

Dato l'automa di Figura 6.13:

$$M = (Q, \delta, q_0, F)$$
 con $X = \{0,1\}$ come alfabeto di ingresso

ove:

- 1) $Q = \{q_0, q_1\};$
- 2) $F = \{q_1\}$;
- 3) la funzione di transizione $\delta: Q \times X \to 2^Q$ è definita dalla seguente tavola di transizione:

$$\begin{array}{c|cccc} \delta & q_0 & q_1 \\ \hline 0 & \{q_0,q_1\} & - \\ 1 & \{q_1\} & \{q_0,q_1\} \end{array}$$

Definiamo M' come segue:

$$M' = (Q', \delta', q'_0, F')$$
 con $X = \{0,1\}$ come alfabeto di ingresso

ove:

i)
$$Q' = 2^Q = 2^{\{q_0, q_1\}};$$

ii)
$$q'_0 = \{q_0\}$$
;

iii)
$$F' = \{ \{q_1\}, \{q_0, q_1\} \};$$

iv) la funzione di transizione δ' è definita come segue:

$$\delta': O' \times X \to O'$$

- $\delta'(\{q_0\},0) = \delta(q_0,0) = \{q_0,q_1\};$
- $\delta'(\{q_0\},1) = \delta(q_0,1) = \{q_1\};$
- $\delta'(\{q_1\}, 0) = \delta(q_1, 0) = \text{ non è definita};$
- $\delta'(\{q_1\},1) = \delta(q_1,1) = \{q_0,q_1\};$

•
$$\delta'(\{q_0, q_1\}, 0) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\};$$

$$\bullet \quad \delta'(\{q_0,q_1\},1) = \delta(q_0,1) \cup \delta(q_1,1) = \{q_0,q_1\}\,;$$

La tavola di transizione che riassume la definizione della funzione δ' è:

$$egin{array}{c|c|c|c} \delta' & \{q_0\} & \{q_1\} & \{q_0,q_1\} \ \hline 0 & \{q_0,q_1\} & - & \{q_0,q_1\} \ 1 & \{q_1\} & \{q_0,q_1\} & \{q_0,q_1\} \end{array}$$

Il grafo degli stati di M' è indicato in Figura 6.14:

Figura 6.14