Equations

Fourier

Periodic $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \qquad x[n] = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$ $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt \qquad a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\left(\frac{2\pi}{N}\right)n}$ Transform (CT) Transform (DT) $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \qquad x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ Aperiodic $X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}$

Trigonometric Fourier Series

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_0 t).$$

$$a_0 = \frac{1}{T} \int_T x(t) dt.$$

$$a_k = \frac{2}{T} \int_T x(t) \cos(k\omega_0 t) dt.$$

$$b_k = \frac{2}{T} \int_T x(t) \sin(k\omega_0 t) dt.$$

Table 1: Properties of Continuous Time Fourier Series

Property	Periodic signal	Fourier series coefficients
	$x(t)$ periodic with period T and fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time shifting	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency shifting	$e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	$x^*(t)$	a_{-k}^*
Time reversal	x(-t)	a_{-k}
Time scaling	$x(\alpha t), \alpha > 0$ (periodic with period $\int_{T} x(\tau) y(t-\tau) d\tau$	a_k
Periodic convolution	$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$
Differentiation	$\frac{d}{dt}x(t)$	$jk\omega_0a_k$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$ finite valued and periodic only if $a_0 = 0$	$rac{1}{jk\omega_0}a_k$
Conjugate symmetry for real signals		$\begin{cases} a_k = a_{-k}^* \\ \mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \forall a_k = - \forall a_{-k} \end{cases}$
Real and even signals	x(t) real and even	a_k real and even
Real and odd signals	x(t) real and odd	a_k purely imaginary and odd
Even-odd decomposition for real signals	$x_e(t) = \mathfrak{Ev}\{x(t)\}, [x(t) \text{ real}]$ $x_o(t) = \mathfrak{Dd}\{x(t)\}, [x(t) \text{ real}]$	$\mathfrak{Re}\{a_k\}$ $j\mathfrak{Im}\{a_k\}$

1 0 1 1 1 - 1

Table 2: Basic Fourier Transform Pairs

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$	a_k
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{ otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0$, otherwise
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, k \neq 0$ (This is the Fourier series representation for any choice of $T > 0$
Periodic square wave		
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
and $x(t+T) = x(t)$		
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	-
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	-
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	-
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_
$e^{-at}u(t), \Re \mathfrak{e}\{a\} > 0$	$\frac{1}{a+j\omega}$	-
$te^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \Re \mathfrak{e}\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	_

Table 3: Properties of the Fourier Transform

Property	Aperiodic signal	Fourier transform
	x(t)	$X(j\omega)$
	y(t)	$Y(j\omega)$
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency shifting	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0))$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time reversal	x(-t)	$X(-j\omega)$
Time and frequency scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
Differentiation in time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Differentiation in frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$ $\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re \{X(j\omega)\} = \Re \{X(-j\omega)\} \end{cases}$
Conjugate symmetry for real signals	x(t) real	$\begin{cases} \mathfrak{Im}\{X(j\omega)\} = -\mathfrak{Im}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \triangleleft X(j\omega) = -\triangleleft X(-j\omega) \end{cases}$
Symmetry for real and even signals	x(t) real and even	$X(j\omega)$ real and even
Symmetry for real and odd signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
Even-odd decomposition for real signals	$x_e(t) = \mathfrak{Ev}\{x(t)\}, [x(t) \text{ real}]$ $x_o(t) = \mathfrak{Dd}\{x(t)\}, [x(t) \text{ real}]$	$\mathfrak{Re}\{X(j\omega)\}$ $j\mathfrak{Im}\{X(j\omega)\}$

Parseval's relation for aperiodic signals $\int_{-\infty}^{\infty}|x(t)|^2dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|X(j\omega)|^2d\omega$

Table 4: Properties of the Discrete-Time Fourier Series

Property	Periodic signal	Fourier series coefficients
$\begin{bmatrix} x[t] \\ y[t] \end{bmatrix}$	Periodic with period N fundamental frequency $\omega_0 = 2\pi/N$	$ \begin{array}{c} a_k \\ b_k \end{array} $ Periodic with period N
Linearity	Ax[n] + By[n]	$Aa_k + Bb_k$
Time shifting	$x[n-n_0]$	$a_k e^{-jk(2\pi/N)n_0}$
Frequency shifting	$e^{jM(2\pi/N)n}x[n]$	a_{k-M}
Conjugation	$x^*[n]$	a_{-k}^*
Time reversal	x[-n]	a_{-k}
Time scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$	$\frac{1}{m}a_k$ (viewed as periodic with period mN)
Periodic convolution	$\sum_{r=< N>} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=< N>} a_l b_{k-l}$
First difference	x[n] - x[n-1]	$(1 - e^{-jk(2\pi/N)})a_k$
Running sum	$\sum_{k=-\infty}^{\infty} x[k] \left(\text{finite valued and periodic only } \right)$	$\left(\frac{1}{(1 - e^{-jk(2\pi/N)})}\right) a_k$ $\left(a_k = a_{-k}^*\right)$
Conjugate symmetry for real signals	x[n] real	$\begin{cases} a_k = a_{-k}^* \\ \mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Im}\{a_k\} = -\mathfrak{Im}\{a_{-k}\} \\ a_k = a_{-k} \\ \lessdot a_k = - \lessdot a_{-k} \end{cases}$
Real and even signals	x[n] real and even	a_k real and even
Real and odd signals	x[n] real and odd	a_k purely imaginary and odd
Even-odd decomposition of real signals	$x_e[n] = \mathfrak{Ev}\{x[n]\}, [x[n] \text{ real}]$ $x_o[n] = \mathfrak{Dd}\{x[n]\}, [x[n] \text{ real}]$	$\mathfrak{Re}\{a_k\}$ $j\mathfrak{Im}\{a_k\}$

Parseval's relation for aperiodic signals

$$\frac{1}{N} \sum_{n = \langle N \rangle} |x[n]|^2 = \sum_{k = \langle N \rangle} |a_k|^2$$

Table 5: Basic Laplace Transform Pairs

<i>x</i> (<i>t</i>)	X(s)	ROC
$\delta(t)$	1	All s
u(t)	$\frac{1}{s}$	$\operatorname{Re}(s) > 0$
-u(-t)	$\frac{1}{s}$	$\operatorname{Re}(s) < 0$
tu(t)	$\frac{1}{s^2}$	$\operatorname{Re}(s) > 0$
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\operatorname{Re}(s) > 0$
$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\operatorname{Re}(s) < 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$\operatorname{Re}(s) > -a$
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}(s) < -a$
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	$\operatorname{Re}(s) > -a$
$-te^{-at}u(-t)$	$\frac{1}{(s+a)^2}$	$\operatorname{Re}(s) < -a$
$(\cos\omega_0 t)u(t)$	$\frac{s}{s^2 + \omega^2}$	$\operatorname{Re}(s) > 0$
$(\sin \omega_0 t) u(t)$	$\frac{\omega_0}{s^2 + \omega^2}$	$\operatorname{Re}(s) > 0$
$(e^{-at}\cos\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\operatorname{Re}(s) > -a$
$(e^{-at}\sin\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2 + \omega^2}$	$\operatorname{Re}(s) > -a$

Table 6: Properties of the Laplace Transform

Property	Signal	Laplace transform	ROC
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in <i>s</i> domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in ROC if $s - s_0$ is in R)
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in ROC if s/a is in R)
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in the time domain	$\frac{dx(t)}{dt}$	sX(s)	At least R
Differentiation in the <i>s</i> -domain	-tx(t)	$\frac{dX(s)}{ds}$	R
Integration in the time domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{s}X(s)$	At least $R \cap \{\mathfrak{Re}\{s\} > 0\}$

Initial- and final-value theorems: If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0, then

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

$$\lim_{t\to\infty}x(t)=\lim_{s\to 0}sX(s)$$

Table 7: *z*-Transform Pairs

Signal	Transfrom	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
$\alpha^n u[n]$	$\frac{1}{1 - \alpha z^{-1}}$	$ z > \alpha $
$-\alpha^n u[-n-1]$	$\frac{1}{1 - \alpha z^{-1}}$	$ z < \alpha $
$n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2}$	$ z > \alpha $
$-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2}$	$ z < \alpha $
$(\cos\omega_0 n)u[n]$	$\frac{1 - (\cos \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}$	z > 1
$(\sin \omega_0 n) u[n]$	$\frac{1 - (\sin \omega_0) z^{-1}}{1 - 2(\cos \omega_0) z^{-1} + z^{-2}}$	z > 1
$(r^n\cos\omega_0t)u[n]$	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
$(r^n \sin \omega_0 t) u[n]$	$\frac{1 - (r\sin\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r

Table 8: Properties of the z-Transform

Property	Aperiodic signal	z-transform	ROC
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	at least $R_1 \cap R_2$
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R
Scaling in z domain	$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	$ z_0 R$
	$e^{j\omega n}x[n]$	$X(e^{-j\omega n}z)$	R
	$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R (i.e., $ a R$, the set of points $\{a z \}$ for z in R)
Time reversal	x[-n]	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} , where z is in R).
Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some integer r .	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, where z is in R)
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	at least $R_1 \cap R_2$
Conjugation	$x^*[n]$	$X^*(z^*)$	R
First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
Differentiation in the <i>z</i> -domain	nx[n]	$-z\frac{dX(z)}{dz}$	R
Initial value theorem: If $x[n] = 0$ for $n < 0$, then $x[0] = \lim_{z \to \infty} X(z)$			