Математический анализ

Харитонцев-Беглов Сергей

26 марта 2022 г.

Содержание

1. Интегральное исчисление функции одной переменной		1
1.1	Первообразная и неопределенный интеграл	1
1.2	Определенный интеграл	3
1.3	Свойства интеграла	5
1.4	Приложения формулы интегрирования по частям	8
Отсту	пление. Равномерная непрерывность	11
Продо	олжение главы 1	13
1.5	Интегральные суммы	13
1.6	Несобственные интегралы	16
2. Ана	ализ в метрических пространствах	23
2.1	Метрические и нормированные пространства	23
2.2	Компактность	31
2.3	Непрерывные отображения	35
2.4	Длина кривой	38
2.5	Линейные операторы	41
3. Ряд	(ы	44
3.1	Ряды в нормированных пространствах	44
3.2	Знакопостоянные ряды	45

1. Интегральное исчисление функции одной переменной

1.1. Первообразная и неопределенный интеграл

Определение 1.1. $f:\langle a,b\rangle\to\mathbb{R}$. Функция $F:\langle a,b\rangle\to\mathbb{R}$ — первообразная функции f, если $F'(x)=f(x)\forall x\in\langle a,b\rangle$

Теорема 1.1. Непрерывная на промежутке функция имеет первообразную.

Доказательство. Позже.

Замечание. $\operatorname{sign} x = egin{cases} 1 & \operatorname{если} x > 0 \\ 0 & \operatorname{если} x = 0. \ \operatorname{Не} \ \operatorname{имеет} \ \operatorname{первообразной}. \\ -1 & \operatorname{если} x < 0 \end{cases}$

Доказательство. От противного: пусть нашлась $F:\langle a,b\rangle\to\mathbb{R}$ и F'(x)=sign(x).

Тогда воспользуемся теоремой Дарбу для F на отрезке [0;1].

Пусть
$$k = \frac{1}{2} \in (\text{sign }(0), \text{sign }(1))$$
. Значит $\exists c \in (0,1) \colon F'(c) = k = \frac{1}{2}$. Противоречие.

Теорема 1.2. $f, F: \langle a, b \rangle \to \mathbb{R}$ и F — первообразная для f. Тогда:

- 1. F+C первообразная для f.
- 2. Если $\Phi: \langle a, b \rangle \to \mathbb{R}$ первообразная для f, то $\Phi = F + C$.

Доказательство.

1.
$$(F(x) + C)' = F'(x) + C' = f(x)$$

2.
$$(\Phi(x)-F(x))'=\Phi'(x)-F'(x)=f(x)-f(x)=0\Rightarrow (\Phi-F)'\equiv 0\implies \Phi-F$$
 — константа.

Определение **1.2.** Неопределённый интеграл — множество всех первообразных.

$$\int f(x) dx = \{F: F$$
 — первообразная $f\}$. Но мы будем записывать $\int f(x) dx = F(x) + C$

Табличка интегралов.

1.
$$\int 0 \, dx = C$$
.

2.
$$\int x^p \, dx = \frac{x^{p+1}}{p+1} + C$$
, при $p \neq -1$.

$$3. \int \frac{dx}{x} = \ln|x| + C.$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + c$$
, при $a > 0, a \neq 1$.

5.
$$\int \sin x \, dx = -\cos x + C.$$

6.
$$\int \cos x \, dx = \sin x + C.$$

7.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C.$$

8.
$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

9.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C.$$

10.
$$\int \frac{dx}{1+x^2} = \arctan x + C$$
.

11.
$$\int \frac{dx}{\sqrt{x^2+1}} = \ln|x + \sqrt{x^2 \pm 1}| + C.$$

12.
$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C$$
.

Доказательство. Для 3. Если x>0 $\int \frac{dx}{x}=\ln x+C$. Если x<0 $\int \frac{dx}{x}=\ln(-x)+C$, то есть $(\ln(-x))'=(\frac{1}{-x})(-x)'=\frac{-1}{x}$.

Для 11.
$$(\ln|x+\sqrt{x^2\pm 1}|)'=\frac{1}{x+\sqrt{x^2\pm 1}}(x+\sqrt{x^2\pm 1})'=\frac{1+\frac{x}{\sqrt{x^2\pm 1}}}{x+\sqrt{x^2}}=\frac{\frac{\sqrt{x^2pm^1}+x}{\sqrt{x^2\pm 1}}}{\sqrt{x^2\pm 1}+x}=\frac{1}{\sqrt{x^2\pm 1}}$$
 Для 13. $(\frac{1}{2}(\ln|1+x|-\ln|1-x|))'=\frac{1}{2}(\frac{1}{1+x}+\frac{1}{1-x})=\frac{1}{1-x^2}$

Замечание. $A+B\coloneqq\{a+b\colon a\in A,b\in B\},\ cA\coloneqq\{ca\colon a\in A\}.$

$$\int f(x) \, dx + \int g(x) \, dx = \{F + C\} + \{G + \widetilde{C}\} = \{F + G + C\}.$$

Теорема 1.3 (Арифметические действия с неопределенными интегралами). Пусть $f, g: \langle a, b \rangle \to \mathbb{R}$ имеют первообразные. Тогда:

- 1. f+g имеет первообразную и $\int (f+g) dx = \int f dx + \int g dx$
- 2. αf имеет первообразную и $\int \alpha f \, dx = \alpha \int f \, dx$

Доказательство. Пусть F и G первообразные для f и g.

- 1. Тогда F + G первообразная для f + g. Тогда $\int (f + g) = F + G + C = \int f + \int g$.
- 2. Тогда αF первообразная для $\alpha f \implies \int \alpha F = \alpha F + C = \alpha (F + \frac{C}{\alpha}) = \alpha \int f$.

Следствие Линейность неопрделенного интеграла. $f,g:\langle a,b\rangle\to\mathbb{R}$ имеют первообразную $\alpha,\beta\in\mathbb{R},\ |\alpha|+|\beta|\neq 0.$ Тогда $\int (\alpha f+\beta g)=\alpha\int f+\beta\int g.$

Доказательство. Прямое следствие из теоремы выше.

Теорема 1.4 (Теорема о замене переменной в непопределенном интеграле). $f:\langle a,b\rangle\to\mathbb{R},\varphi:\langle c,d\rangle\to\langle a,b\rangle, f$ имеет первообразную $F.\varphi$ дифференцируемая. Тогда $\int f(\varphi(t))\varphi'(t)\,dt=F(\varphi(t))+C.$

Доказательство. Надо проверить, что $F(\varphi(t))$ — первообразная для $f(\varphi(t))\varphi'(t)$.

$$(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi(t)...$$

Cnedcmeue. $\int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$

Доказательство. $\int \alpha f(\alpha x + \beta dx) = F(\alpha x + \beta) + C$. И делим обе части на α .

Теорема 1.5 (Форумла интегрирования по частям). $f, g: \langle a, b \rangle \to \mathbb{R}$, дифференцируемые, f'g имеет первообразную.

Тогда fg' имеет первообразную и $\int fg' = fg - \int f'g$

Доказательство. H — первообразная для f'g. Тогда H'=f'g.

Надо доказать, что fg - H — первообразная для fg'.

$$(fg - H)' = f'g + gh' - H' = f'g + fg' - f'g = fg'.$$

1.2. Определенный интеграл

Пусть \mathcal{F} — совокупность (множество) ограниченных плоских фигур.

Определение 1.3. Площадь: σ : \mathcal{F} → $[0; +\infty)$, причём

- 1. $\sigma([a;b] \times [c,d]) = (b-a)(d-c)$
- 2. (Аддитивность). $\forall E_1, E_2 \in \mathcal{F} \colon E_1 \cap E_2 = \varnothing \Rightarrow \sigma(E_1 \cup E_2) = \sigma(E_1) + \sigma(E_2)$

Свойство Монотонность площади. $\forall E, \widetilde{E} \colon E \subset \widetilde{E} \Rightarrow \sigma(E) \leqslant \sigma(\widetilde{E}).$

Доказательство.
$$E = \widetilde{E} \cup (\widetilde{E} \setminus E) \Rightarrow \sigma(\widetilde{E}) = \sigma(E) + \sigma(\widetilde{E} \setminus E)$$
.

Определение 1.4. Псевдоплощадь: $\sigma: \mathcal{F} \to [0; +\infty]$, причём

- 1. $\sigma([a;b] \times [c,d]) = (b-a)(d-c),$
- 2. $\forall E, \widetilde{E} \in \mathcal{F} : E \subset \widetilde{E} \Rightarrow \sigma(E) \leqslant \sigma(\widetilde{E}),$
- 3. Разобьем E вертикальной или горизонтальной прямой, в том числе теми прямыми, которые правее или левее E. Тогда $E = E_- \cup E_+, E_- \cap E_+ = \emptyset$ и $\sigma(E) = \sigma(E_-) + \sigma(E_+)$.

Свойства. 1. Подмножество вертикального или горизонтального отрезка имеет нулевую площадь.

2. В определении E_- и E_+ не важно куда относить точки из l.

Доказательство. Заметим, что
$$\sigma(E_- \cup (E \cap l)) = \sigma(E_- \setminus l) + \underbrace{\sigma(E \cap l)}_{=0} \Rightarrow$$
 вообще не имеет разницы куда относить точки из l .

Пример.

1.
$$\sigma_1(E) = \inf \left\{ \sum_{k=1}^n |P_k| \colon P_k - \text{прямоугольник}, \bigcup_{k=1}^n \supset E \right\}.$$

2.
$$\sigma_2(E)=\infigg\{\sum_{k=1}^n|P_k|\colon P_k$$
 — прямоугольник, $\bigcup_{k=1}^\infty\supset Eigg\}$.

Упражнение.

- 1. Доказать, что $\forall E \ \sigma_1(E) \geqslant \sigma_2(E)$.
- 2. $E = ([0,1] \cap \mathbb{Q}) \times ([0,1] \cap \mathbb{Q})$. Доказать, что $\sigma_1(E) = 1, \sigma_2(E) = 0$.

Теорема 1.6.

- 1. σ_1 квазиплощадь.
- 2. Если E' сдвиг E, то $\sigma_1(E) = \sigma_1(E')$.

Доказательство.

- 2. E' сдвиг E на вектор v. Пусть P_k покрытие $E\iff P'_k$ покрытие E'. $\sigma_1(E)=\inf\{\sum_{k=1}^n |P_k|\}=\inf\{\sum |P'_k|\}=\sigma_1(E')$.
- 1. \Rightarrow монотонность. Пусть есть $E \subset \widetilde{E}$. Тогда возьмем покрытие P_k для \widetilde{E} . $E \subset \widetilde{E} \subset \bigcup_{k=1}^n P_k$. А теперь заметим, что σ_1 inf, а значит $\sigma_1(E) \leqslant \sum |P_k| = \sigma_1(\widetilde{E})$.
- 1'. Докажем теперь аддитивность.

«<». $\sigma_1(E) = \sigma_1(E_-) + \sigma_1(E_+)$. Пусть P_k — покрытие E_-, Q_j — покрытие E_+ . $\bigcup_{k=1}^n P_k \cup P_k$

$$\bigcup_{j=1}^{m}Q_{j}\supset E_{i}\cup E_{+}=E. \text{ A значит }\sigma_{1}(E)\leqslant\inf\left\{ \sum_{k=1}^{n}|P_{k}|+\sum_{j=1}^{n}|Q_{j}|\right\} =\inf\{\sum|P_{k}|\}+\inf\{\sum|Q_{j}|\}=1$$

 $\sigma_1(E_-) + \sigma(E_+)$. Заметим, Что переход с разделением инфинумов возможен, так как P и Q выбираются независимо.

- «»». Пусть P_k покрытие E. Тогда можно разбить $|P_k| = |P_k^-| + |P_k^+|$. $\sum |P_k| = \sum |P_k^-| + \sum |P_k^+|$. Заметим, что сумму $\geqslant \sigma \Rightarrow \sum |P_k| \geqslant \sigma(E_1) + \sigma(E_2) \Rightarrow \sigma(E) \geqslant \sigma(E_1) + \sigma(E_2)$.
- 1". Проверим, что сама площадь прямоугольника не сломалась: $\sigma_1([a,b]\times[c,d])=(b-a)(d-c)$. Заметим, что $\sigma_1(P)\leqslant |P|$.

Тогда посмотрим на P_k . Проведем прямые содержащие все стороны прямоугольников из разбиения. Заметим, что получили разбиение с суммой равной |P|. Тогда заметим, что некоторые части разбиения встречаются в P_k несколько раз. А значит выкинув все лишнее мы как раз получим |P|, а значит $\sigma_1(P) \geqslant |P|$.

Определение 1.5. Пусть $f:[a,b]\to \mathbb{R}$. Тогда $f_+,f_-:[a,b]\to [0;+\inf)$. Причем $f_+(x)=\max\{f(x),0\},\ f_-=\max\{-f(x),0\}$.

Coo*i*cmsa. 1. $f = f_{+} - f_{-}$.

2.
$$|f| = f_+ + f_-$$

3.
$$f_+ = \frac{f+|f|}{2}$$
, $f_- = \frac{|f|-f}{2}$.

4. Если $f \in C([a,b])$, то $f_{\pm} \in C([a,b])$.

Определение 1.6. Пусть $f:[a,b] \rightarrow [0;\inf]$.

Тогда, подграфик $P_f([a;b]) := \{(x,y) \in \mathbb{R}^2 \mid x \in [a,b], 0 \leqslant y \leqslant f(x)\}.$

Определение 1.7. $\int_{a}^{b} f = \int_{a}^{b} f(x) dx = \sigma(P_{f_{+}}([a;b])) - \sigma(P_{f_{-}}([a;b])).$

Cooucmea. 1. $\int_{a}^{a} f = 0$.

2.
$$\int_{a}^{b} = c(b-a)$$

Доказательство. По графику очевидно :)

3.
$$f \geqslant 0 \Rightarrow \int_{a}^{b} = \sigma(P_f)$$
.

4.
$$\int_{a}^{b} (-f) = -\int_{a}^{b} f$$
.

Доказательство. $(-f)_+ = \max\{-f,0\} = f_-$. $(-f)_- = \max\{f,0\} = f_+$. Откуда все и следует.

5.
$$f \geqslant 0 \land \int_{a}^{b} = 0 \land a < b \Rightarrow f = 0$$
.

Доказательство. От противного. $\exists c \in [a,b]: f(c) > 0$. Тогда, возьмем $\varepsilon \coloneqq \frac{f(c)}{2}, \delta$ из определения непрерывности в точке c. Если $x \in (c-\delta,c+\delta)$, то $f(x) \in (f(c)-\varepsilon,f(c)+\varepsilon) = (\frac{f(c)}{2};\frac{3f(c)}{2}) \Rightarrow f(x) \geqslant \frac{f(c)}{2}$ при $x \in (c-\delta;c+\delta) \Rightarrow P_f \supset [c-\frac{\delta}{2};c+\frac{\delta}{2}] \times [0;\frac{f(c)}{2}] \Rightarrow \int\limits_a^b f = \sigma(P_f) \geqslant \delta \cdot \frac{f(c)}{2} > 0$

1.3. Свойства интеграла

Теорема 1.7 (Аддиктивность интеграла). Пусть $f:[a,b] \to \mathbb{R}, c \in [a,b]$.

Тогда
$$\int_a^b f = \int_a^c f + \int_c^b f$$
.

Доказательство. $\int\limits_a^b f = \sigma(P_{f_+}([a,b])) - \sigma(P_{f_-}([a,b]))$. Разделим наш [a,b] вертикальной прямой x=c. Тогда можно воспользоваться свойством 3 из определения квазиплощади.

Теорема 1.8 (Монотонность интеграла). Пусть $f,g:[a,b]\to\mathbb{R}$ и $\forall x\in[a,b]\colon f(x)\leqslant g(x).$

Тогда
$$\int_{a}^{b} f \leqslant \int_{a}^{b} g$$
.

Доказательство. $f_{+} = \max\{f, 0\} \leqslant \max\{g, 0\} = g_{+} \Rightarrow P_{f_{+}} \subset P_{g_{+}} \Rightarrow \sigma(P_{f_{+}}) \leqslant \sigma(P_{g_{+}}).$ $f_{-} = \max\{-f, 0\} \geqslant \max\{-g, 0\} = g_{-} \Rightarrow P_{f_{-}} \supset P_{g_{-}} \Rightarrow \sigma(P_{f_{-}}) \geqslant \sigma(P_{g_{-}}).$

Следствие. 1. $|\int_a^b f| \leqslant \int_a^b |f|$

2.
$$(b-a) \min_{x \in [a,b]} f(x) \leqslant \int_{a}^{b} f \leqslant (b-a) \max_{x \in [a,b]} f(x)$$
.

Доказательство. 1. $-|f| \leqslant f \leqslant |f| \Rightarrow \int\limits_a^b -|f| \leqslant \int\limits_a^b f \leqslant \int\limits_a^b |f| \Rightarrow |\int\limits_a^b f| \leqslant \int\limits_a^b |f|$

2.
$$m := \min f(x), M := \max f(x). \ m \leqslant f(x) \leqslant M \Rightarrow \int_a^b m \leqslant \int_a^b f \leqslant \int_a^b M.$$

Теорема 1.9 (Интегральная теорема о среднем). Пусть $f \in C([a,b])$.

Тогда
$$\exists c \in (a,b) : \int_a^b f = (b-a)f(c).$$

Доказательство. $m \coloneqq \min f = f(p), M \coloneqq \max f = f(q)$ (по теореме Вейерштрасса). Тогда $f(p) \leqslant \frac{1}{b-a} \int_{a}^{b} f \leqslant f(q) \xrightarrow{\text{T. B-K}} \exists c : f(c) = \frac{1}{b-a} \int_{a}^{b} f.$

Определение 1.8. $I_f := \frac{1}{b-a} \int\limits_{a}^{b} f$ — среднее значения f на отрезке [a,b].

Определение 1.9. $f:[a,b]\to\mathbb{R}$. Интеграл с переменным верхним пределом $\Phi(x)\coloneqq\int\limits_{-x}^{x}f,$ где $x \in [a, b].$

Определение 1.10. $f:[a,b]\to\mathbb{R}$. Интеграл с переменным нижним пределом $\Psi(x)\coloneqq\int\limits_{-\infty}^{0}f,$ где $x \in [a, b]$.

Замечание. $\Phi(x) + \Psi(x) = \int_{a}^{b} f$.

Теорема 1.10 (Теорема Барроу). Пусть $f \in C[a,b]$. Тогда $\Phi'(x) = f(x) \quad \forall x \in [a,b]$. То есть Φ — первообразная функции f.

Доказательство. Надо доказать, что $\lim_{y\to x} \frac{\Phi(y)-\Phi(x)}{y-x} = f(x)$. Проверим для предела справа.

Тогда
$$\Phi(y) - \Phi(x) = \int_a^y f - \int_a^x f = \int_x^y f.$$

Тогда $\frac{\Phi(y)-\Phi(x)}{y-x}=\frac{1}{y-x}\int\limits_{-\infty}^{y}f=f(c)$ для некоторого $c\in(x,y).$

Проверяем определение по Гейне. Берем $y_n>x$ и $y_n\to x$. Тогда $\frac{\Phi(y_n)-\Phi(x)}{y_n-x}=f(c_n)$, где $c_n \in (x, y_n), x < c_n < y_n \to x \Rightarrow c_n \to x \Rightarrow f(c_n) \to f(x).$

Credemeue. $\Psi'(x) = -f(x) \quad \forall x \in [a, b].$

Доказательство.
$$\Psi(x) = \int_a^b f - \Phi(x) = C - \Phi(x) \Rightarrow \Psi' = (C - \Phi(x))' = -Phi'(x) = -f(x).$$

Теорема 1.11. Непрерывная на промежутке функция имеет первообразную.

Доказательство. $f: \langle a, b \rangle \to \mathbb{R}$.

Рассмотрим
$$F(x) \coloneqq \begin{cases} \int\limits_{c}^{x} f & \text{при } x \geqslant c \\ -\int\limits_{x}^{c} f & \text{при } x \leqslant c \end{cases}$$

Если x > c, то F'(x) = f(x).

Теорема 1.12 (Формула Ньютона-Лейбница). $f:[a,b]\to \mathbb{R}$ и F – её первообразная. Тогда $\int\limits_{a}^{b}f=F(b)-F(a).$

Доказательство. $\Phi(x) = \int\limits_a^x f$ — первообразная и $F(x) = \Phi(x) + C$.

Тогда
$$F(b) - F(a) = (\Phi(b) + C) - (\Phi(a) + C) = \Phi(b) - \Phi(a) = \int_a^b f$$

Определение 1.11. $F \mid_{a}^{b} := F(b) - F(a)$

Теорема 1.13 (Линейность интеграла). $\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$.

Доказательство. F, G — первообразные для f, g.

Тогда $\alpha F + \beta G$ — первообразная для $\alpha f + \beta g$. Тогда воспользуемся формулой Ньютона-Лейбница:

$$\int_{a}^{b} \alpha f + \beta g = \alpha F + \beta G \mid_{a}^{b} = \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a).$$

Теорема 1.14 (Формула интегрирования по частям). Пусть $f, g \in C^1[a, b]$.

Тогда
$$\int_{a}^{b} fg' = fg \mid_{a}^{b} - \int_{a}^{b} f'g.$$

Доказательство. Докажем при помощи формулы Ньютона-Лейбница. Пусть H — первообразная f'g. Тогда fg - H — первообразная для fg'.

Проверим данный факт: (fg-H)'=f'g+fg'-f'g=fg'. А значит нам можно воспользоваться формулой Ньютона-Лейбница.

$$\int_{a}^{b} fg' = (fg - H) \mid_{a}^{b} = fg \mid_{a}^{b} - H \mid_{a}^{b} = fg \mid_{a}^{b} - \int_{a}^{b} f'g.$$

Замечание Соглашение. Если a>b, то $\int\limits_a^bf:=-\int\limits_b^af.$

Мотивация: Если F — первообразная, то $\int\limits_a^b f = F\mid_a^b$.

Теорема 1.15 (Формула замены переменной). Пусть $f \in C[a,b], \varphi : [c,d] \to [a,b], \varphi \in C^1[c,d], p,q \in [c,d].$

Тогда
$$\int_{p}^{q} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(p)}^{\varphi(q)} f(x)dx.$$

Доказательство. Пусть F — первообразная f. Тогда $\int_{\varphi(p)}^{\varphi(q)} f(x) dx = F \mid_{\varphi(p)}^{\varphi(q)} = F_0 \varphi \mid_p^q$, где $F_0 \varphi$ — первообразная для $f(\varphi(t))\varphi'(t)$.

Проверим данные факты: $(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi'(t)$.

Тогда интеграл равен
$$\int\limits_{p}^{q}f(\varphi(t))\varphi'(t)\mathrm{d}t$$

Пример.

$$\int_0^{\frac{\pi}{2}} \frac{\sin 2t}{1 + \sin^4 t} \mathrm{d}t. \tag{1}$$

Произведем замену $\varphi(t) = \sin^2 t, \ f(x) = \frac{1}{1+x^2}, \ \varphi'(t) = 2\sin t\cos t = \sin 2t, \ \varphi(0) = 0, \varphi(\frac{\pi}{2}) = 1$:

$$(1) = \int_0^{\frac{\pi}{2}} \frac{\varphi'(t)}{1 + (\varphi(t))^2} = \int_{\varphi(0)}^{\varphi(\frac{\pi}{2})} f(x) dx = \int_0^1 \frac{dx}{1 + x^2} = \operatorname{arctg} x \mid_0^1 = \frac{\pi}{4}.$$

1.4. Приложения формулы интегрирования по частям

Пример.
$$W_n := \int_{0}^{\frac{\pi}{2}} \sin^n x dx = \int_{0}^{\frac{\pi}{2}} \cos^n t dt = (1)$$

Где
$$x = \frac{\pi}{2} - t =: \varphi(t), \ \varphi'(t) = -1, \sin(\frac{\pi}{2} - t) = \cos t.$$

Тогда (1) =
$$-\int_{0}^{\frac{\pi}{2}} \sin^{n} \varphi(t) \cdot \varphi(t) dt = -\int_{\frac{\pi}{2}}^{0} \sin^{n} x dx$$

Частные случаи $W_0 = \frac{\pi}{2}$, $W_1 = \int_0^{\frac{\pi}{2}} \sin x \mathrm{d}x = -\cos \left|_0^{\frac{\pi}{2}} = 1\right|$

Общее решение: $W_n = \int_0^{\frac{\pi}{2}} \sin^n x dx = -\int_0^{\frac{\pi}{2}} \sin^{n-1} x \cdot (\cos x)' dx =$. Воспользовались тем, что $\sin x = -(\cos x)', \ f'(x) = (n-1)\sin^{n-2} x \cdot \cos x$.

Тогда получаем:

$$= -\left(\underbrace{\sin^{n-1}x \cdot \cos x}_{=0} \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (n-1)\sin^{n-2}x \underbrace{\cos^{2}x}_{=1-\sin^{2}x} dx\right) =$$

$$= (n-1)\left(\int_{0}^{\frac{\pi}{2}} \sin^{n-2}x dx - \int_{0}^{\frac{\pi}{2}} \sin^{n}x dx\right) = (n-1)(W_{n-2} - W_{n}).$$

Посчитаем для четных: $W_{2n} = \frac{2n-1}{2n} \cdot W_{2n-2} = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} W_{2n-4} = \dots = \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2}$, где k!! — произведение натуральных чисел той же четности, что и k и $\leqslant k$.

Для нечетных:
$$W_{2n+1} = \frac{2n}{2n+1}W_{2n-1} = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1}W_{2n-3} = \dots = \frac{(2n)!!}{(2n+1)!!}W_1 = \frac{(2n)!!}{(2n+1)!!}$$

Теорема 1.16 (Формула Валлиса).

$$\lim_{n \to \inf} \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{2n+1}} = \sqrt{\frac{\pi}{2}}.$$

Доказательство. $\sin^n x \geqslant \sin^{n+1} x$ на $[0, \frac{\pi}{2}]$. Тогда $W_n = \int_0^{\frac{\pi}{2}} \sin^n x dx \geqslant \int_0^{\frac{\pi}{2}} \sin^{n+1} x dx = W_{n+1}$.

Заметим, что $W_{2n+2}\leqslant W_{2n+1}\leqslant W_{2n}\iff \frac{\pi}{2}\frac{(2n+1)!!}{(2n+2)!!}\leqslant \frac{(2n)!!}{(2n+1)!!}\leqslant \frac{\pi}{2}\frac{(2n-1)!!}{(2n)!!}$. Поделим на $\frac{(2n-1)!!}{(2n)!!}$:

$$\frac{\pi}{2} \frac{2n+1}{2n+2} \leqslant \frac{((2n)!!)^2}{(2n+1)((2n-1)!!)^2} \leqslant \frac{\pi}{2} \implies \lim \left(\frac{(2n)!!}{\sqrt{(2n+1)}(2n-1)!!}\right)^2 = \frac{\pi}{2}.$$

Следствие.

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{4^n}{\sqrt{\pi n}}.$$

Доказательство. Заметим, что $(2n)! = (2n)!! \cdot (2n-1)!!$, а $(2n)!! = 2 \cdot 4 \cdot 6 \cdot \ldots \cdot (2n) = 2^n \cdot n!$. Тогда подставим в Сшку:

$$\binom{2n}{n} = \frac{(2n)!!(2n-1)!!}{\frac{(2n)!!}{2^n} \frac{(2n)!!}{2^n}} = 4^n \cdot \frac{(2n-1)!!}{(2n)!!}.$$

При этом из Валлиса, заметим, что $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\frac{\pi}{2}}\sqrt{2n+1} \sim \sqrt{\frac{\pi}{2}}\sqrt{2n} = \sqrt{\pi n}$. А значит все сойдется.

Теорема 1.17 (Формула Тейлора (с остатком в интегральной форме)). Пусть $f \in C^{n+1}[a,b]$, $x, x_0 \in [a,b]$. Тогда:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

Доказательство. Индукция по n:

- База. $n=0, f(x)=f(x_0)+\int\limits_{x_0}^x f'(t)\mathrm{d}t=f(x_0)+f\mid_{x_0}^x$
- Переход. $n \to n+1$.
- Доказательство. $f(x) = T_n(x) + \frac{1}{n!} \int_{x_0}^x \underbrace{(x-t)^n}_{g'} \underbrace{f^{(n+1)}(t)}_f dt$. Проинтегрируем интеграл по частям. $g(t) = \frac{1}{n+1} (x-t)^{n+1}$.

Подставим:
$$\int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) dt = \underbrace{\frac{1}{n+1} (x-x_0)^{n+1} f^{(n+1)}(x_0)}_{\text{новый член Teğ nopa!}} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) dt$$

Пример.

$$H_j := \frac{1}{j!} \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^j \cos x \mathrm{d}x. \tag{2}$$

Свойство 1. $0 < H_j \leqslant \frac{1}{j!} \left(\frac{\pi}{2}\right)^{2j} \int_{0}^{\frac{\pi}{2}} \cos x dx = \frac{\left(\frac{\pi}{2}\right)^{2j}}{j!}.$

Свойство 2. $\forall c > 0 : c^j \cdot H_j \xrightarrow{j \to \infty} 0. \ 0 < c^j H_j \leqslant \frac{\left(\frac{\pi}{2}\right)^{2j} \cdot c^j}{j!} = \frac{\left(\frac{\pi^2}{4}c\right)^j}{j!} \to 0.$

Свойство 3. $H_0 = 1, H_1 = 2$ (упраженение).

Свойство 4. $H_j = (4j-2)H_{j-1} - \pi^2 H_{j-2}$, при $j \geqslant 2$.

Глава #1

Доказательство.

$$j!H_j = \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^j (\sin x)' dx$$
 (3)

Заметим, что $\left(\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^j\right)'=j\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-1}\cdot(-2x).$ Тогда:

$$(3) = \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^j \sin x}_{=0} |x| + 2j \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} x \underbrace{\sin x}_{=(-\cos x)'} dx =$$

$$= 2j \left(\underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} x \underbrace{\sin x}_{=(-\cos x)'} dx =$$

$$= 2j \left(\underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} x \underbrace{\sin x}_{=(-\cos x)'} dx =$$

$$= 2j \left(\underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} x \underbrace{\sin x}_{=(-\cos x)'} dx =$$

$$= 2j \left(\underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} x \underbrace{\sin x}_{=(-\cos x)'} dx =$$

$$= 2j \left(\underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot (-\cos x)}_{=0} |x| + 2j \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-$$

Откуда с легкостью получаем $j!H_j=2j!H_{j-1}-\pi^2j!H_{j-2}+4(j-1)j!H_{j-1}\iff H_j=(4j-2)H_{j-1}-\pi^2H_{j-2}.$

Свойство 5. Существует многочлен P_n с целыми коэффициентами степени $\leqslant n$, такой что $H_j = P_j(\pi^2)$.

Доказательство.
$$P_0 \equiv 1, P_1 \equiv 2, P_n(x) = (4n-2)P_{n-1}(x) - xP_{n-2}(x).$$

Теорема 1.18 (Ламберта, доказательство: Эрмит). Числа π и π^2 иррациональные.

Доказательство. От противного. Пусть π^2 — рационально. Тогда пусть $\pi^2 = \frac{m}{n}$. Тогда $H_j = P_j(\frac{m}{n}) = \frac{\text{целое число}}{n^j} > 0$.

$$n^j H_j =$$
 целое число $>0 \Rightarrow n^j H_j \xrightarrow{j \to +\inf} 0$, но $n^j H_j \geqslant 1$.

Отступление. Равномерная непрерывность

Определение 1.12. $f: E \subset \mathbb{R} \to \mathbb{R}$ равномерно непрерывна на E, если $\forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in E$: $|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

Определение 1.13. f непрерывна во всех точках из E: $\forall x \in E \forall \varepsilon > 0 \exists \delta > 0 \forall y \in E : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

Пример. $\sin x$ и $\cos x$ равномерно непрерывны на \mathbb{R} .

 $|\sin x - \sin y| \le |x - y| \Rightarrow \delta = \varepsilon$ подходит. $|\cos x - \cos y| \le |x - y|$.

Пример. $f(x) = x^2$ не является равномерно непрерывной на \mathbb{R} . Рассмотрим $\varepsilon = 1$, никакое $\delta > 0$ не подходит. x и $x + \frac{\delta}{2}$. $f(x + \frac{\delta}{2}) - f(x) = (x + \frac{\delta}{2})^2 - x^2 = \ldots = \delta x + \frac{\delta^2}{4} > \delta x$. При $x = \frac{1}{\delta}$ противоречие.

Теорема 1.19 (Теорема Кантора). Пусть $f \in C[a,b]$, тогда f равномерно непрерывна на [a,b].

Доказательство. Берем $\varepsilon > 0$ и предположим, что $\delta = \frac{1}{n}$ не подходит, то есть $\exists x_n, y_n \in [a, b]$: $|x_n - y_n| < \frac{1}{n}$ и по теореме Больцано-Вейерштрасса у последовательности x_n есть сходящаяся последовательность $x_{n_k} \to c$, то есть $\lim x_{n_k} = c \in [a, b]$.

$$\underbrace{x_{n_k} - \frac{1}{n_k}}_{\to c} < y_{n_k} < \underbrace{x_{n_k} + \frac{1}{n_k}}_{\to c} \implies \lim y_{n_k} = c. \text{ Но } f \text{ непрерывна в точке } c \implies f(x_{n_k}) = f(c) = \lim f(y_{n_k}) \implies \lim (f(x_{n_k}) - f(y_{n_k})) = 0, \text{ но } |f(x_{n_k}) - f(y_{n_k})| \geqslant \varepsilon.$$

Замечание. Для интервала или полуинтервала неверно. $f(x) = \frac{1}{x}$ на (0;1]. Докажем, что нет равномерной непрерывностью на (0;1].

Пусть $\varepsilon = 1$ и $\delta > 0$. Пусть $0 < x < \delta, y = \frac{x}{2}, |x - y| = \frac{x}{2} < \delta$. Тогда $f(y) - f(x) = \frac{2}{x} - \frac{1}{x} = \frac{1}{x} > 1$.

Определение 1.14. Пусть $f: E \subset \mathbb{R} \to \mathbb{R}$.

Тогда $\omega_f(\delta) \coloneqq \sup\{|f(x) - f(y)| \mid \forall x, y \in E, |x - y| \leq \delta\}$ — модуль непрерывности f.

Ceouchea. 1. $\omega_f(0) = 0$,

- 2. $|f(x) f(y)| \le \omega_f(|x y|)$.
- 3. $\omega_f \uparrow$.
- 4. Если f липшицева функция с константой L, то $\omega_f(\delta) \leqslant L\delta$. В частности, если $|f'(x)| \leqslant L \quad \forall x \in \langle a,b \rangle$.
- 5. f равномерно непрерывна на $E \iff \omega_f$ непрерывна в нуле $\iff \lim_{\delta \to 0+} \omega_f(\delta) = 0.$
 - Доказательство. $1 \to 2$. $\forall \varepsilon > 0 \exists \gamma > 0 \forall x,y \in E : |x-y| < \gamma \implies |f(x)-f(y)| < \varepsilon$. Возьмем $\delta < \gamma$. Тогда $|x-y| \leqslant \delta \implies |x-y| < \gamma \implies |f(x)-f(y)| < \varepsilon \implies \sup \leqslant \varepsilon$. Тогда с одной стороны $\omega_f \geqslant 0$, а с другой ограничена ε . Следовательно предел ω_f равен 0.
 - 2 \rightarrow 1. Из $\lim_{\delta \to 0+} \omega_f(\delta) = 0$. Возьмем $\delta > 0$ для $\omega_f(\delta) < \varepsilon$: $|f(x) f(y)| \leqslant \omega_f(\delta) < \varepsilon \ \forall \varepsilon$, $\forall x, y \in E \colon |x y| \leqslant \delta$.

Отступление 11 из 47 Автор: ХБ

6. $f \in C[a,b] \iff \omega_f$ непрерывен в нуле $\iff \lim \omega_f(\delta) = 0.$

Доказательство. Для функции на отрезке равномерная непрерывность \iff непрерывность.

Продолжение главы 1

1.5. Интегральные суммы

Определение **1.15.** Пусть есть [a,b]. Тогда дробление (разбиение, пунктир) отрезка: набор точек: $x_0 = a < x_1 < x_2 < \ldots < x_n = b$.

Определение 1.16. Ранг дробления: $\max_{k=1,2,\dots,n} (x_k - x_{k-1}) \eqqcolon |\tau|, \ \tau = (x_0,x_1,\dots,x_n)$

Определение 1.17. Оснащение дробления — набор точек $\xi = (\xi_1, \xi_2, \dots, \xi_n)$, такой что $\xi_k \in [x_{k-1}, x_k]$.

Определение 1.18. Интегральная сумма (сумма Римана) $S(f, \tau, \xi) := \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1}),$

По факту просто сумма прямоугольников под графиком рисунок принял ислам очень жаль.

Теорема 1.20 (Теорема об интегральных суммах). Пусть $f \in C[a,b]$,

тогда
$$\left|\int\limits_a^b -S(f,\tau,\xi)\right| \leqslant (b-a)\omega_f(|\tau|).$$

Доказательство.

$$\Delta := \int_{a}^{b} f - \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(t) dt - \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(\xi_{k}) dt = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} (f(t) - f(\xi_{k})) dt.$$

$$|\Delta| \leq \sum |\int \dots| \leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(t) - f(\xi_k)| dt \leq \sum_{k=1}^{n} (x_k - x_{k-1}) \omega_f(|\tau|) = (b-a)\omega_f(|\tau|).$$

$$\int_{x_{k-1}}^{x_k} |f(t) - f(\xi_k)| dt \leqslant \int_{x_{k-1}}^{x_k} \omega_f(|\tau|) dt = (x_k - x_{k-1}) \omega_f(|\tau|)..$$

Следствие. $\forall \varepsilon > 0 \exists \delta > 0 \forall$ дробления ранга $\leqslant \delta \forall$ оснащения $|\int\limits_a^b -S(f,\tau,\xi)| < \varepsilon$

Следствие. Если τ_n последовательность дроблений, ранг которых $\to 0$, то $S(f, \tau_n, \xi_n) \to \int\limits_a^b f$.

Пример. $S_p(n) := 1^p + 2^p + \ldots + n^p$. Посчитаем $\lim_{n \to \infty} \frac{S_p(n)}{n^{p+1}}$.

Возьмем $f:[0,1]\to\mathbb{R}$ $f(t)=t^p\,\frac{S_p(n)}{n^{p+1}}=\frac{1}{n}\cdot\sum_{k=1}^n\left(\frac{k}{n}\right)^p=S(f,\tau,\xi),$ где $x_k=\xi_k=\frac{k}{n}.$

Тогда
$$\lim \frac{S_p(n)}{n^{p+1}} = \int_0^1 t^p dt = \frac{t^{p+1}}{p+1} \mid_{t=0}^{t=1} = \frac{1}{p+1}$$

Определение 1.19. Пусть $f:[a,b]\to\mathbb{R}$, тогда f интегрируема по Риману, если $\exists I\in\mathbb{R}\forall\varepsilon>0\exists\delta>0\forall$ дробление ранги $<\delta\forall$ его оснащение $|S(f,\tau,\xi)-I|<\varepsilon$.

I — интеграл по Риману $\int\limits_a^b f$.

Лемма. $f \in C^2[\alpha, \beta]$. Тогда

$$\int_{a}^{b} f(t)dt - \frac{f(\alpha) + f(\beta)}{2}(\beta - \alpha) = -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t - \alpha)(\beta - t)dt.$$

Доказательство. Пусть $\gamma \coloneqq \frac{\alpha+\beta}{2}$. Тогда:

$$\int_{\alpha}^{\beta} f(t)dt = \int_{\alpha}^{\beta} f(t)(t-\gamma)'dt = f(t)(t-\gamma) \Big|_{t=\alpha}^{t=\beta} - \int_{\alpha}^{\beta} f'(t)(t-\gamma)dt.$$

Заметим, что $f(t)(t-\gamma)\mid_{t=\alpha}^{t=\beta}=f(\beta)(\beta-\gamma)-f(\alpha)(\alpha-\gamma)=\frac{f(\alpha)+f(\beta)}{2}(\beta-\alpha)$. Продолжим:

левая часть
$$= -\int_{\alpha}^{\beta} f'(t)(t-\gamma) \mathrm{d}t = \frac{1}{2} \int_{\alpha}^{\beta} f'(t)((t-\alpha)(\beta-t))' \mathrm{d}t =$$
$$= \frac{1}{2} f'(t)(t-\alpha)(\beta-t) \mid_{t=\alpha}^{t=\beta} -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t-\alpha)(\beta-t) \mathrm{d}t.$$

Переход к $((t-\alpha)(\beta-t))'$:

$$((t - \alpha)(\beta - t))' = (-t^2 - (\alpha + \beta)t - \alpha\beta)' = -2t + (\alpha + \beta) = -2(t - \gamma).$$

Замечание. Бла-бла-бла.

Теорема 1.21 (Оценка погрешности в формуле трапеций). Пусть $f \in C^2[a,b]$.

Тогда:

$$\left| \int_{a}^{b} f(t) dt - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| \leq \frac{|\tau|^2}{8} \int_{a}^{b} |f''|$$

Доказательство. $\Delta \coloneqq \int\limits_a^b - \sum \ldots = \sum\limits_{k=1}^n \int\limits_{x_{k-1}}^{x_k} - \sum\limits_{k=1}^n \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1})$

$$|\Delta| \leqslant \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f dt - \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| = \frac{1}{2} \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f''(t) (t - x_{k-1}) (x_k - t) dt \right|. \tag{4}$$

Тогда вспомним, что $(t-x_{k-1})(x_k-t)\leqslant \left(\frac{x_k-x_{k-1}}{2}\right)^2\leqslant \frac{|\tau|^2}{4}\implies (4)\leqslant \frac{1}{2}\sum_{k=1}^n\int\limits_{x_{k-1}}^{x_k}|f''(t)|\cdot \frac{|\tau|^2}{4}\mathrm{d}t=$

$$\frac{|\tau|^2}{8} \sum_{x_{k-1}} \int_{x_{k-1}}^{x_k} |f''| = \frac{|\tau|^2}{8} \cdot \int_a^b |f''|$$

Замечание. Пусть разбиение на n равных отрезков $x_k - x_{k-1} = \frac{b-a}{n} = |\tau|$:

$$\sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} = \frac{b-a}{n} (f(x_k)) + \sum_{k=1}^{n-1} f(x_k) + \frac{f(x_n)}{2} \dots$$

Замечание. Возьмем разбиение на равные отрезки и $\xi_k = x_k$:

$$S(f,\tau,\xi) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} f(x_k).$$

Теорема 1.22 (формула Эйлера-Маклорена). Пусть $f \in C^2[m,n]$, тогда

$$\sum_{k=m}^{n} f(k) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f(t)dt + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Доказательство. Подставим $\alpha = k$ и $\beta = k+1$ в лемму:

$$\int_{k}^{k+1} f(t)dt = \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{k}^{k+1} f''(t)(t-k)(k+1-t)dt =$$

$$= \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{k}^{k+1} f''(t)\{t\}(1-\{t\})dt.$$

Дальше суммируем по k от m до n-1:

$$\int_{m}^{n} f(t)dt = \sum_{k=m}^{n-1} \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Заметим, что $\sum_{k=m}^{n-1} \frac{f(k)+f(k+1)}{2} = \frac{f(m)+f(n)}{2} + \sum_{k=m+1}^{n-1} f(k)$. И тогда:

$$\sum_{k=m}^{n} f(k) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f(t)dt + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Пример. $S_p(n) = 1^p + 2^p + \ldots + n^p$, $f(t) = t^p$, m = 1, $f''(t) = p(p-1)t^{p-2}$.

$$S_p(n) = \frac{1+n^p}{2} + \int_1^n t^p dt + \frac{1}{2} \int_1^n p(p-1)t^{p-2} \{t\} (1-\{t\}) dt.$$

При $p \in (-1,1)$ $\int_1^n t^p dt = \frac{t^{p+1}}{p+1} \Big|_1^n = \frac{n^{p+1}}{p+1} - \frac{1}{p+1} = \frac{n^{p+1}}{p+1} + \mathcal{O}(1).$

$$\int_{1}^{n} t^{p-2} \underbrace{\{t\}(1-\{t\})}_{\leqslant \frac{1}{4}} dt \leqslant \frac{1}{4} \int_{1}^{n} t^{p-2} dt = \frac{1}{4} \cdot \frac{t^{p-1}}{p-1} \mid_{1}^{n} = \frac{1}{4} \cdot \frac{n^{p-1}-1}{p-1} = \mathcal{O}(1)..$$

То есть $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(1)$.

При p > 1 $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(n^{p-1}).$

Пример. $H_n := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$. $m = 1, f(t) = \frac{1}{t}, f''(t) = \frac{2}{t^3}$.

$$H_n = \frac{1 + \frac{1}{n}}{2} + \int_1^n \frac{\mathrm{d}t}{t} + \frac{1}{2} \int_1^n \frac{2}{t^3} \{t\} (1 - \{t\}) \mathrm{d}t$$

Откуда получаем $(a_n := \int_1^n \frac{\{t\}(1-\{t\})}{t^3})$:

$$H_n = \ln n + \frac{1}{2} + \frac{1}{2n} + a_n.$$

Заметим, что $a_{n+1}=a_n+\int\limits_n^{n+1} \frac{\{t\}(1-\{t\})}{t^3}\mathrm{d}t>a_n$. То есть $a_n\uparrow$. Причем $a_b\leqslant \int\limits_1^n \frac{\mathrm{d}t}{t^3}=-\frac{1}{2^2}\mid_1^n=\frac{1}{2}-\frac{1}{2n^2}<\frac{1}{2}$.

А значит a_n имеет предел, а значит $a_n = a + o(1)$.

Вывод: $H_n = \ln n + \gamma + o(1)$, где $\gamma \approx 0.5772156649$ — постоянная Эйлера.

Замечание. $H_n = \ln n + \gamma + \frac{1}{2n} + \mathcal{O}(\frac{1}{n^2}).$

Пример Формула Стирлинга. $m=1, f(t)=\ln t, f''(t)=-\frac{1}{t^2}.$

$$\ln n! = \sum_{k=1}^{n} \ln k = \underbrace{\frac{\ln 1 + \ln n}{2}}_{=\frac{1}{2} \ln n} + \underbrace{\int_{1}^{n} \ln t dt}_{t - t|_{1}^{n} = n \ln n - n + 1} + \underbrace{\frac{1}{2} \int_{1}^{n} \frac{\{t\}(1 - \{t\})}{t^{2}} dt}_{:=b_{n}}.$$

Посмотрим на b_n :

$$b_n \leqslant \frac{1}{2} \int_1^n \frac{\mathrm{d}t}{t^2} = \frac{1}{2} (-\frac{1}{t}) \mid_1^n = \frac{1}{2} (1 - \frac{1}{n}) < \frac{1}{2} \implies b_n = b + o(1)...$$

А значит $\ln n! = n \ln n - n + \frac{1}{2} \ln n + (1-b) + o(1)$. $n! = n^n e^{-n} \sqrt{n} e^{1-b} e^{o(1)} \sim n^n e^{-n} \sqrt{n} C$.

Вспомним (из следствия формулы Валлиса): $\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$. А еще знаем, что $\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{(2n)^{2n}e^{-2n}\sqrt{2n}C}{(n^ne^{-n}\sqrt{n}C)^2} = \frac{4^n\sqrt{2}}{\sqrt{n}C}$.

Тогда получаем, что $\frac{4^n}{\sqrt{\pi n}} \sim \frac{4^n\sqrt{2}}{\sqrt{n}C} \implies C \sim \frac{4^n\sqrt{2}}{\sqrt{n}} \cdot \frac{\sqrt{\pi n}}{4^n} = \sqrt{2\pi}$.

Итоговый результат:

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

 $\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + o(1).$

Замечание. $\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + \mathcal{O}(\frac{1}{n}).$

1.6. Несобственные интегралы

Определение 1.20. Пусть $-\infty < a < b \leqslant +\infty$ и $f \in C[a,b)$.

Тогда определим $\int_{a}^{\to b} f := \lim_{B \to b-} \int_{a}^{B} f$.

Если
$$-\infty \leqslant a < b < +\infty, f \in C(a,b],$$
 тогда $\int\limits_{-a}^b f \coloneqq \lim\limits_{A \to a+} \int\limits_A^b f.$

Замечание. Если $b < +\infty$ и $f \in C[a,b]$, то определение не дает ничего нового:

$$\int_{a}^{b} f = \lim_{B \to b} f$$

$$\left| \int_{a}^{b} f - \int_{a}^{B} f \right| \leqslant M(b - B) \to 0.$$

Пример. 1.
$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{p}} = \lim_{y \to +\infty} \int_{a}^{y} \frac{\mathrm{d}x}{x^{p}} = \lim_{\substack{y \to +\infty \\ \text{при } p \neq 1}} -\frac{1}{(p-1)x^{p-1}} \mid_{x=1}^{x=y} = \frac{1}{p-1} - \lim_{y \to +\infty} \frac{1}{(p-1)y^{p-1}} = \frac{1}{p-1} \text{ при } p > 1,$$
 при $p < 1$ получаем $+\infty$, а при $p = 1$ $\lim_{y \to +\infty} \ln x \mid_{1}^{y} = \lim_{y \to +\infty} \ln y = +\infty$

$$2. \int\limits_0^1 \frac{\mathrm{d}x}{x^p} = \lim_{y \to 0+} \int\limits_y^1 \frac{\mathrm{d}x}{x^p} = \lim_{y \to 0+} -\frac{1}{(p-1)x^{p-1}} \mid_{x=y}^{x=1} = -\frac{1}{p-1} + \lim_{y \to 0+} = \frac{y^{1-p}}{p-1} = \frac{1}{1-p} \text{ при } p < 1, \text{ при } p > 1$$
 получаем $+\infty$, а вот при $p = 1 \lim_{y \to 0+} \ln x \mid_y^1 = \lim_{y \to 0+} -\ln y = +\infty.$

То есть, при
$$p < 1 \int\limits_0^1 \frac{\mathrm{d}x}{x^p} = \frac{1}{1-p},$$
 при $p \geqslant 1 \int\limits_0^1 \frac{\mathrm{d}x}{x^p} = +\infty.$

Замечание. Если $f\in C[a,b)$ и F его первообразная, то $\int\limits_a^b f=\lim_{B\to b-}F(B)-F(a).$

Если
$$f \in C[a,b)$$
 и F его первообразная, то $\int\limits_a^b f = F(b) - \lim\limits_{A \to a+} F(A)$.

Доказательство. Очевидно по формуле Ньютона-Лейбница.

Oпределение 1.21.
$$F \mid_a^b := \lim_{B \to b^-} F(B) - F(a)$$
.

Определение 1.22. $\int\limits_a^{\to b} f$ сходится, если $\lim B$ его определении существует и конечен.

Теорема 1.23 (Критерий Коши). Пусть $-\infty < a < b \le +\infty, f \in C[a,b)$.

Тогда
$$\int\limits_a^b f$$
 сходится $\iff \forall \varepsilon \exists c \in (a,b) \colon \forall A,B \in (c,b) \ \left| \int\limits_A^B f \right| < \varepsilon.$

Замечание. 1. Если $b=+\infty$ это означает, что $\forall arepsilon\exists c>a \forall A,B>c\colon \left|\int\limits_A^B f\right|<arepsilon.$

2. Если
$$b<+\infty$$
 это означает, что $\forall \varepsilon>0 \exists \delta>0 \forall A,B\in (b-\delta;b)\colon \left|\int\limits_A^B f\right|<\varepsilon.$

Доказательство. Для $b < +\infty$.

• "⇒"
$$\int\limits_a^b f$$
 сходится \Longrightarrow \exists конечный $\lim\limits_{B \to b^-} \int\limits_a^B f =: g(B)$.
$$\forall \varepsilon > 0 \exists \delta > 0 \ \ \forall B \in (b-\delta,b) \quad |g(B)-I| < \frac{\varepsilon}{2} \\ \forall A \in (b-\delta,b) \quad |g(A)-I| < \frac{\varepsilon}{2} \ \Longrightarrow \ |g(B)-g(A)| \leqslant |g(B)-I| + |I-g(A)| < \varepsilon$$

• "
$$\Leftarrow$$
" $\int\limits_a^B f=:g(B).$
$$\forall \varepsilon>0 \exists \delta>0 \forall A,B\in (b-\delta,b): |g(B)-g(A)|<\varepsilon \text{ это условие из критерия Коши для}\lim_{B\to b^-}g(B).$$

Замечание. Если существует $A_n, B_n \in [a,b)$: $\lim A_n = \lim B_n = b$: $\int\limits_{A_n}^{B_n} f \not\to 0$, то $\int\limits_a^b f$ расходится.

 Γ лава #1 17 из 47 Автор: XБ

Доказательство. Возьмем A_{n_k} и $B_{n_k}\colon |\int\limits_{A_{n_k}}^{B_{n_k}} f| \to C > 0 \implies |\int\limits_{A_{n_k}}^{B_{n_k}} f| > \frac{C}{2}$ при больших k. Но это противоречит критерию Коши.

- **Свойства несобственных интегралов.** 1. Аддитивность. Пусть $f \in C[a,b), c \in (a,b)$. Если $\int\limits_a^b f$ сходятся, то $\int\limits_a^b f$ сходятся и $\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f$.
 - 2. Если $\int\limits_a^b f$ сходится, то $\lim\limits_{c \to b-} \int\limits_c^b f = 0$
 - 3. Линейность $\alpha, \beta \in \mathbb{R}$ и $\int\limits_a^b f$ и $\int\limits_a^b g$ сходятся. Тогда $\int\limits_a^b (\alpha f + \beta g)$ сходится и $\int\limits_a^b (\alpha f + \beta g) = \alpha \int\limits_a^b f + \beta \int\limits_a^b g$.
 - 4. Монотонность. Пусть $\int\limits_a^b f$ и $\int\limits_a^b g$ существует в \overline{R} и $f\leqslant g$ на [a,b). Тогда $\int\limits_a^b f\leqslant \int\limits_a^b g$.
 - 5. Интегрирование по частям. $f, g \in C^1[a;b) \implies \int_a^b fg' = fg \mid_a^b \int_a^b f'g$.
 - 6. Замена переменных. $\varphi \colon [\alpha,\beta) \to [a,b), \ \varphi \in C^1[\alpha,\beta)$ и $\exists \lim_{\gamma \to \beta^-} \varphi(\gamma) \eqqcolon \varphi(\beta^-)$ и $f \in C[a,b)$.

Тогда $\int\limits_{\alpha}^{\beta}f(\varphi(t))\varphi'(t)\mathrm{d}t=\int\limits_{\varphi(\alpha)}^{\varphi(\beta-)}f(x)\mathrm{d}x.$ «Если существует один из \int , то существует второй и они равны»

Доказательство. 1. $\int\limits_a^b f=\lim_{B\to b-}F(B)-F(a)\implies \lim_{B\to b-}F(B)$ существует и конечный $\Longrightarrow \int\limits_c^b=\lim_{B\to b-}F(b)-F(c)-\text{сходится}.$

$$\int_{a}^{b} = \lim F(B) - F(a) = \lim F(B) - F(c) + F(c) - F(a) = \int_{c}^{b} f + \int_{a}^{c} f.$$

- 2. $\int_{c}^{b} f = \int_{a}^{b} f \int_{a}^{c} f \to \int_{a}^{b} f \int_{a}^{b} f = 0$
- 3. $\int_{a}^{b} (\alpha f + \beta g) = \lim_{B \to b-} \int_{a}^{B} (\alpha f + \beta g) = \lim_{B \to b-} (\alpha \int_{a}^{B} f + \beta \int_{a}^{B} g) = \alpha \lim_{B \to b-} \int_{a}^{B} f + \beta \lim_{B \to b-} \int_{a}^{B} g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$
- 4. $\int_{a}^{B} f \leqslant \int_{a}^{B} g$ (монотонность интеграла), а дальше предельный переход.
- 5. a < B < b. $\int\limits_a^B fg' = fg\mid_a^B \int_a^B f'g$ и переход к пределу.
- 6. $F(y)\coloneqq\int\limits_{arphi(lpha)}^y f(x)\mathrm{d}x,\ \Phi(\gamma)\coloneqq\int\limits_{lpha}^\gamma f(arphi(t))arphi'(t)\mathrm{d}t.$ Знаем, что $F(arphi(\gamma))=\Phi(\gamma)$ при $lpha<\gamma<\beta.$

Пусть существует правый \int , то есть $\exists \lim_{y \to \varphi \beta^-} F(y)$. Возьмем $\gamma_n \nearrow \beta \implies \varphi(\gamma_n) \to \varphi(\beta^-) \implies \Phi(\gamma_n) = F(\varphi(\gamma_n)) \to \int\limits_{\varphi(\alpha)}^{\varphi(\beta^-)} f(x) \mathrm{d}x$. При этом $\Phi(\gamma_n) \to \int\limits_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \mathrm{d}t$.

Пусть существует левый \int , то есть $\exists \lim_{\gamma \to \beta-} \Phi(\gamma)$. Докажем, что \exists правый \int . При $\varphi(\beta-) < b$ нечего доказывать.

Пусть $\varphi(\beta-)=b$. Тогда возьмем $b_n\nearrow b$. Можно считать, что $b_n\in [\varphi(\alpha),b)$. Тогда $\exists \gamma_n\in [\alpha,\beta)\colon \varphi(\gamma_n)=b_n$. Докажем, что $\gamma_n\to\beta$. Пусть это не так. Тогда найдется $\gamma_{n_k}\to\widetilde{\beta}<\beta\Longrightarrow \varphi(\gamma_{n_k})\to \varphi(\widetilde{\beta})< b$ по непрерывности в $\widetilde{\beta}$. Противоречие.

Итак,
$$\gamma_n \to \beta$$
, $F(b_n) = F(\varphi(\gamma_n)) = \Phi(\gamma_n) \to \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$.

Замечание ко второму свойству. 1. Если $\int\limits_a^b f$ сходится, а $\int\limits_a^b g$ расхоидится, то $\int\limits_a^b (f+g)$ расходится. Доказательство от противного, путь интеграл сходится, то $g=(f+g)-f \implies \int\limits_a^b g$ сходится.

2. Если $\int_a^b f$ и $\int_a^b g$ расходятся, то $\int_a^b (f+g)$ может сходиться. $\int_1^{+\infty} \frac{\mathrm{d}x}{x}$ и $\int_1^{+\infty} -\frac{\mathrm{d}x}{x}$ расходятся.

Замечание к шестому свойству. $\int\limits_a^b f(x)\mathrm{d}x$. Сделаем замену $x=b-\frac{1}{t}=\varphi(t),\ \varphi'(t)=\frac{1}{t^2}, \varphi(\alpha)=a, \alpha=\frac{1}{b-a}$.

Тогда
$$\int_a^b f(x) dx = \int_{\frac{1}{b-a}}^{+\infty} f(b-\frac{1}{t}) \frac{1}{t^2} dt$$
.

Определение 1.23. Пусть f непрерывен на (a,b) за исключением точек $c_1 < c_2 < \ldots < c_n$.

 $\int_{a}^{b} f$ сходится, если сходятся интегралы по все маленьким отрезкам (содержащих только одну выколотую точку).

Несобственные интегралы от неотрицательных функций

Теорема 1.24. Пусть $f \in C[a,b)$ и $f \geqslant 0$.

Тогда $\int\limits_a^b f$ сходится \iff $F(y) \coloneqq \int\limits_a^y f$ ограничена сверху.

Доказательство. $f\geqslant 0\implies F$ монотонно возрастает. $\int\limits_a^b f$ сходится \iff \exists конечный $\lim\limits_{y\to b^-}F(y)\iff F$ ограничена сверху.

Замечание. $f \in C[a;b), f \geqslant 0$. $\int\limits_a^b f$ расходящийся означает, что $\int\limits_a^b f = +\infty$.

Следствие Признак сравнения. $f,h\in C[a,b),\,f,g\geqslant 0$ и $f\leqslant g.$

 Γ лава #1 19 из 47 Автор: XБ

- 1. Если $\int_a^b g$ сходится, то $\int_a^b f$ сходится.
- 2. Если $\int_a^b f$ расходится, то $\int_a^b g$ расходится.

Доказательство. $F(y)\coloneqq\int\limits_a^y f$ и $G(y)\coloneqq\int\limits_a^y g.$

- 1. Пусть $\int\limits_a^b g$ сходящийся \implies G(y) ограничена, но $F(y)\leqslant G(y)$ \implies F(y) ограничена $\implies \int\limits_a^b f$ сходящаяся.
- 2. От противного.

Замечание. 1. Неравенство $f\leqslant g$ нужно лишь для аргументов близких к b.

2. Неравенство $f\leqslant g$ можно заменить на $f=\mathcal{O}(g)$. $f=\mathcal{O}(g) \implies f\leqslant cg. \int\limits_{a}^{b}g \, \text{сходящийся} \implies \int\limits_{a}^{b}cg \, \text{сходящийся} \implies \int\limits_{a}^{b}f \, - \, \text{сходящийся}.$

3. Если $f=\mathcal{O}(\frac{1}{x^{1+\varepsilon}})$ для $\varepsilon>0,$ то $\int\limits_a^{+\infty}f-$ сходящийся. $g(x)=\frac{1}{x^{1+\varepsilon}}$ и можно считать, что $a\geqslant 1\int\limits_a^{+\infty}g(x)\mathrm{d}x-$ сходящийся.

Следствие. $f,g \in C[a,b), \, f,g \geqslant 0$ и $f(x) \sim g(x), x \to b-$. Тогда $\int\limits_a^b f$ и $\int\limits_a^b g$ ведут себя одинаково (либо оба сходятся, либо оба расходятся).

Доказательство. $f \sim g \implies f = \varphi \cdot g$, где $\varphi(x) \xrightarrow{x \to b -} 1 \implies$ в окрестности $b \frac{1}{2} \leqslant \varphi \leqslant 2 \implies f \leqslant 2g \land g \leqslant 2f$ в окрестности $b \implies$ из сходимости интеграла g следует сходимость $f \land$ наоборот.

Определение 1.24. $f \in C[a,b)$. $\int_{a}^{b} f$ абсолютно сходится, если $\int_{a}^{b} |f|$ сходится.

Теорема 1.25. $\int_a^b f$ сходится абсолютно $\int_a^b f$ сходится.

Доказательство. $f = f_+ - f_-, |f| = f_+ + f_-. |f| \geqslant f_\pm \geqslant 0$. Если $\int_a^b f$ сходится абсолютно $\Longrightarrow \int_a^b f$ сходится $\int_a^b f_\pm$ сходится $\Longrightarrow \int_a^b f = \int_a^b f_+ - \int_a^b f_-$ сходящийся.

Теорема 1.26 (Признак Дирихле). $f,g\in C[a,+\infty)$. Если

1. f имеет ограниченную на $[a, +\infty]$ первообразную, то есть $\left|\int\limits_a^y f(x) \mathrm{d}x\right| \leqslant K \quad \forall y.$

 Γ лава #1 20 из 47 Автор: XБ

- 2. g монотонна.
- 3. $\lim_{x \to +\infty} g(x) = 0$

, то
$$\int\limits_a^{+\infty} f(x)g(x)\mathrm{d}x$$
 сходится.

Доказательство. Только для случая $g \in C^1[a; +\infty)$.

Надо доказать, что \exists конечный $\lim_{y\to +\infty}\int\limits_a^y f(x)g(x)\mathrm{d}x,\ F(y)\coloneqq\int\limits_a^y f(x)\mathrm{d}x.$

$$\int_{a}^{y} f(x)g(x)dx = \int_{a}^{y} F'(x)g(x)dx = F(x)g(x) \mid_{a}^{y} - \int_{a}^{y} F(x)g'(x)dx = F(y)g(y) - \int_{a}^{y} F(x)g'(x)dx$$

 $\lim_{y\to +\infty} F(y)g(y)=0$ — произведение бесконечно малой и ограниченной функции.

 $\int\limits_a^y F(x)g'(x)\mathrm{d}x$ имеет конечный lim, то есть $\int\limits_a^{+\infty} F(x)g'(x)\mathrm{d}x$ сходится.

Докажем, что он абсолютно сходится. $\int\limits_a^{+\infty} |F(x)||g'(x)|\mathrm{d}x, \ |F(x)||g'(x)|\leqslant K|g'(x)| = Kg'(x).$ $\int_a^{+\infty} g'(x)\mathrm{d}x = g \mid_a^{+\infty} = \lim_{y \to +\infty} g(y) - g(a) = -g(a) \implies \text{сходящийся}.$

Теорема 1.27 (Признае Абеля). $f,g\in C[a,+\infty]$, Если

- 1. $\int_{a}^{+\infty} f(x) dx$ сходится,
- 2. g монотонна,
- 3. q ограничена

Тогда $\int_{a}^{+\infty} f(x)g(x)dx$ сходится.

Доказательство. $2) + 3) \implies \exists l \in \mathbb{R} := \lim_{x \to +\infty} g(x).$

Пусть $\widetilde{g}(x) \coloneqq g(x) - l \implies \lim_{x \to +\infty} \widetilde{g}(x) = 0$ и \widetilde{g} монотонна.

Пусть $F(x) \coloneqq \int_a^x f(t) dt$. 1) \iff существует конечный предел $\lim_{x \to +\infty} F(x)$.

Тогда f и \widetilde{g} удовлетворяют условиям признака Дирихле $\Longrightarrow \int\limits_a^{+\infty} f(x)\widetilde{g}(x)\mathrm{d}x$ — сходится. Тогда:

$$\int_{a}^{+\infty} = \int_{a}^{+\infty} f(\widetilde{g} + l) = \int_{a}^{+\infty} f\widetilde{g} + l \int_{a}^{+\infty} f.$$

Где $\int\limits_a^{+\infty}f\widetilde{g}$ сходится по доказанному, а $\int\limits_a^{+\infty}f$ — по условию.

Утверждение 1.28. f — периодическая функция с периодом T. Тогда $\int\limits_{a}^{a+T}f=\int\limits_{a}^{b+T}f$

Доказательство. Картинка:

Добавить картинку. Альтернатива: посмотреть доски Храброва/пнуть меня.

$$\int_{a}^{a+kT} f = \int_{b-(k-1)T}^{a+T} f. \int_{a+kT}^{b+T} f = \int_{a+T}^{b-(k-1)T} f$$

Следствие. $f,g \in C[a;+\infty), f$ — периодическая с периодом T, g монотонная и $\int\limits_a^{+\infty} g(x) \mathrm{d}x$ расходится.

Тогда $\int\limits_{a}^{+\infty}fg$ сходится $\iff \int\limits_{a}^{a+T}f=0.$

Доказательство. \Leftarrow . $F(x) = \int_{a}^{x} f$ — периодична с периодом T: $F(x+T) = \int_{a}^{x+T} f = \int_{a}^{x} f + \int_{x}^{x+T} f = \int_{x}^{x} f + \int_{x}^{x} \int_{x}^{x} f +$

F(x). F — непрерывна и периодична \implies ограничена $\implies \int\limits_a^{+\infty} fg$ сходится по признаку Дирихле.

 \Rightarrow . Пусть $\int\limits_a^{a+T}f$ $=:K
eq 0. \ \widetilde{f}(x)=:f(x)-\frac{K}{T}$ — периодична с периодом T. Тогда $\int\limits_a^{a+T}\widetilde{f}=\int\limits_a^{a+T}(f-\frac{K}{T})=K-T\cdot\frac{K}{T}=0 \implies \int\limits_a^{+\infty}\widetilde{f}g$ сходится.

Тогда $\int_a^{+\infty} fg = \int_a^{+\infty} (\widetilde{f} + \frac{K}{T})g = \int_a^{+\infty} \widetilde{f}g + \frac{K}{T} \int_a^{+\infty} g \implies \int_a^{+\infty} fg$ расходится как сумма сходящегося и расходящегося.

Пример. Рассмотрим $\int_{a}^{+\infty} \frac{\sin x}{x^{p}} dx.$

- 1. p>1 интеграл сходится абсолютно: $|\sin x|\leqslant 1 \implies \left|\frac{\sin x}{x^p}\right|\leqslant \frac{1}{x^p}$, а значит $\int\limits_a^{+\infty}\frac{\mathrm{d}x}{x^p}$ сходящийся.
- 2. $0 интеграл сходящийся, но не абсолютно. <math>\int_{a}^{+\infty} \frac{\mathrm{d}x}{x^{p}}$ расходится, $\frac{1}{x^{p}} \searrow 0$. $g(x) := \frac{1}{x^{p}}, f(x) = \sin x$. $\int_{0}^{2\pi} \sin x \, \mathrm{d}x = 0 \implies \int_{1}^{+\infty} \frac{\sin x}{x^{p}} \, \mathrm{d}x$ сходящийся.

Если взять $f(x) = |\sin x|$, то интеграл по периоду равен 4. Значит исходный интеграл расходится.

3. $p \leqslant 0$ интеграл расходится.

$$a_n := \frac{\pi}{6} + 2\pi n, b_n := \frac{5\pi}{6} + 2\pi n.$$
 Тогда $\int_{a_n}^{b_n} \frac{\sin x}{x^p} dx \geqslant \frac{1}{2} \int_{a_n}^{b_n} \frac{dx}{x^p} \geqslant \frac{1}{2} \int_{a_n}^{b_n} = \frac{b_n - a_n}{2} = \frac{\pi}{3}.$

2. Анализ в метрических пространствах

2.1. Метрические и нормированные пространства

Определение 2.1. Метрика (расстояние) $\rho: X \times X \to [0; +\infty)$, если выполняются следующие условия:

- 1. $\rho(x,y) = 0 \iff x = y$,
- 2. $\rho(x, y) = \rho(y, x)$,
- 3. (неравенство треугольника) $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$.

Определение 2.2. Метрическое пространство — пара (X, ρ) .

Пример. Дискретная метрика (метрика Лентяя) $\rho(x,y) = \begin{cases} 0, & x=y\\ 1 & x \neq y \end{cases}$

Пример. На \mathbb{R} : $\rho(x,y) = |x-y|$.

Пример. На \mathbb{R}^d : $\rho(x,y) = \sqrt{\sum_{k=1}^d (x_k - y_k)^2}$. Неравенство треугольника здесь — неравенство Минковского.

Пример. C[a,b]. $\rho(f,g) = \int_{a}^{b} |f-g|.$

Неравенство треугольника:

$$\rho(f,h) = \int_{a}^{b} |f - h| \le \int_{a}^{b} (|f - g| + |g - h|) = \rho(f,g) + \rho(g,h)..$$

Пример. Манхэтеннская метрика: $\mathbb{R}^2 \rho((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 + y_2|$.

Пример. Французская железнодорожная метрика. \mathbb{R}^2 . Есть точка P (Париж), тогда $\rho(A,B)=AB$, если A,B,P на одной прямой, иначе $\rho(A,B)=|AP|+|PB|$.

Определение 2.3. (X, ρ) — метрическое пространство. $B_r(x) \coloneqq \{y \in X \mid \rho(x, y) < r\}$ — открытый шар радиуса r с центром в точке x.

Определение 2.4. (X, ρ) — метрическое пространство. $\overline{B}_r(x) := \{y \in X \mid \rho(x, y) \leqslant r\}$ — закрытый шар радиуса r с центром в точке x.

Coourmea. 1. $B_{r_1}(a) \cap B_{r_2}(a) = B_{\min\{r_1, r_2\}}(a)$.

2. $x \neq y \implies \exists r > 0 : B_r(x) \cap B_r(y) = \emptyset \wedge \overline{B}_r(x) \cap \overline{B}_r(y) = \emptyset$.

Доказательство. 1. $x \in B_{r_1}(a) \cap B_{r_2}(a) \iff \begin{cases} \rho(x,a) < r_1 \\ \rho(x,a) < r_2 \end{cases} \iff \rho(x,a) < \min\{r_1,r_2\} \implies x \in B_{\min\{r_1,r_2\}}(a).$

2. $r \coloneqq \frac{1}{3}\rho(x,y) > 0$. Пусть $\overline{B}_r(x) \cap \overline{B}_r(y) \neq \emptyset$. Тогда $\exists z \in \overline{B}_r(x) \cap \overline{B}_r(y) \implies \rho(x,z) \leqslant r \land \rho(y,z) \leqslant \rho \implies \rho(x,y) \leqslant \rho(x,z) + \rho(z,y) \leqslant 2r = \frac{2}{3}\rho(x,y)$.

Определение 2.5. $A \subset X$. A — открытое множество, если $\forall a \in A \exists B_r(a) \subset A \ (r > 0)$.

Теорема 2.1 (О свойствах открытых множеств). 1. \emptyset, X — открытые.

- 2. Объединение любого числа открытых множеств открытое.
- 3. Пересечение конечного числа открытых множеств открытое.
- 4. $B_r(a)$ открытое.

Доказательство. 2. A_{α} — открытые, $\alpha \in I$. $B =: \bigcup_{\alpha \in I} A_{\alpha}$. Берем $b \in B \implies b \in A_{\beta}$ для некоторого β . Но A_{β} — открытое $\implies \exists r > 0$ $B_r(b) \subset A_{\beta} \subset B$.

3. A_1,A_2,\ldots,A_n — открытые. $B\coloneqq\bigcap_{k=1}^nA_k$. Берем $b\in B\implies b\in A_k \forall k=1,2,\ldots,n$. Но A_k — открытое $\exists r_k>0 B_{r_k}\subset A_k$. $\forall k\implies B_r(b)\subset\bigcap_{k=1}^nA_k=B$.

$$r := \min\{r_1, \dots, r_n\} > 0 \implies B_r(b) \subset B_{r_k}(b) \subset A_k \quad \forall \implies B_r(b) \subset \bigcap_{k=1}^n A_k = B.$$

4. Картинка :($\rho(a,x) < R, r := R = \rho(a,x) > 0$. Докажем, что $B_r(x) \subset B_R(a)$. Возьмем $y \in B_r(x)$, то есть $\rho(x,y) < r \implies \rho(y,a) \leqslant \rho(y,x) + \rho(x,a) < r + \rho(x,a) = R \implies y \in B_R(a)$.

Замечание. Существенна конечность. $\mathbb{R}.$ $\bigcap_{n=1}^{\infty}(-\frac{1}{n},1)=[0,1).$

Определение 2.6. $A \subset X, a \in A.$ a — внутренняя точка множества A, если $\exists r > 0 \colon B_r(a) \subset A.$ Замечание. A — открытое \iff все его точки внутренние.

Определение **2.7.** Внутренность множества $\operatorname{Int} a := \{a \in A \mid a - \operatorname{внутренняя} \operatorname{точка} \}.$

Пример. $A = [0, 1] \subset \mathbb{R}$. Тогда Int A = (0, 1).

Свойства внутренности. 1. Int $A \subset A$.

- 2. Int $A \bigcup$ всех открытых множеств, которые содержатся в A.
- 3. Int A открытое множество.
- 4. A открытое $\iff A = \text{Int } A$.
- 5. Если $A \subset B$, то $\operatorname{Int} A \subset \operatorname{Int} B$.
- 6. $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$
- 7. Int(Int A) = Int A.

Глава #2

Доказательство. $B := \bigcup_{\alpha \in I} A_{\alpha}, A_{\alpha} \subset A$ открытые.

 $B \subset \operatorname{Int} A$. Берем $b \in B \implies \exists \beta \in I \colon B \in A_{\beta}$ — открытое $\implies \exists r > 0 \colon B_r(b) \subset A_{\beta} \subset A \implies b$ — внутренняя точка $A \implies b \in \operatorname{Int} A$.

Int $A \subset B$. Берем $b \in \text{Int } A \Longrightarrow \exists r > 0 B_r(b) \subset A$, но $B_r(b)$ — открытое множество \Longrightarrow оно участвует в объединении $\bigcup A_{\alpha} \Longrightarrow B_r(b) \subset B \Longrightarrow b \in B$.

Докажем пункт 4. \Rightarrow : пункт 3. \Leftarrow всего его точки внутренние $\implies A = \operatorname{Int} A$. Пункт 6. \subset : $A \cap B \subset A$, $\subset B \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A \wedge \operatorname{Int}(A \cap B) \subset \operatorname{Int} B$.

$$\supset$$
. Пусть $x \in \operatorname{Int} A \cap \operatorname{Int} B \implies \begin{cases} \exists r_1 > 0 & B_{r_1}(x) \subset A \\ \exists r_2 > 0 & B_{r_2}(x) \subset B \end{cases} \implies \operatorname{если} r = \min\{r_1, r_2\} \implies B_r(x) \subset A \wedge B_r(x) \subset B \implies x \in \operatorname{Int}(A \cap B).$

Пункт 7.
$$B := \operatorname{Int} A$$
 — открытое $\Longrightarrow B = \int B$.

Определение **2.8.** $A \subset X$. A — замкнутое, если $X \setminus A$ — открытое.

Теорема 2.2 (о свойствах замкнутых множеств). 1. \emptyset, X — замкнуты.

- 2. Пересечение любого числа замкнутых множеств замкнуто.
- 3. Объединение конечного числа замкнутых множеств замкнуто.
- 4. $\overline{B}_R(a)$ замкнуто.

Доказательство. 2. A_{α} — замкнуты $\Longrightarrow X \setminus A_{\alpha}$ — открытые $\Longrightarrow \bigcup_{\alpha \in I} X \setminus A_{\alpha}$ — открыто $\Longrightarrow X \setminus \bigvee_{\alpha \in I} (X \setminus A_{\alpha}) = \bigcap_{\alpha \in I} A_{\alpha}$ — замкнутое.

4. $X \in \overline{B}_r(a)$ — открытое. Берем $x \notin \overline{B}_R(a)$. Возьмем $r \coloneqq \rho(a,x) - R > 0$. Покажем, что $B_r(x) \subset x \setminus \overline{B}_R(a)$.

От противного. Пусть $B_r(x) \cap \overline{B}_R(a) \neq \emptyset$. Берем $y \in B_r(x) \cap \overline{B}_R(a) \implies \rho(x,y) < r \land \rho(a,y) \leqslant R \implies \rho(a,x) \leqslant \rho(a,y) + \rho(y,x) < R + r = \rho(a,x)$. Противоречие.

Замечание. В 3 важна конечность. $\mathbb{R}.$ $\bigcup_{n=1}^{\infty} [\frac{1}{n}, 1] = (0, 1]$ — не является замкнутой.

Определение 2.9. Замыкание множества $\operatorname{Cl} A$ — пересечение всех замкнутых множеств, содержащих A.

Теорема 2.3. $X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A)$ и $X \setminus \operatorname{Int} A = \operatorname{Cl}(X \setminus A)$.

Доказательство. $\operatorname{Int}(X \setminus A) = \bigcup B_{\alpha}$. B_{α} — открытые, $B_{\alpha} \subset X \setminus A \iff X \setminus B_{\alpha}$ — замкнутое. $X \setminus B_{\alpha} \supset A$.

$$\bigcap (X \setminus B_{\alpha}) = \operatorname{Cl} A \implies X \setminus \bigcap (X \setminus B_{\alpha}) = X \setminus \operatorname{Cl} A \iff \bigcup (B_{\alpha}) = \operatorname{Int}(X \setminus A).$$

Следствие. Int $A = X \setminus Cl(x \setminus A)$ и $Cl A = X \setminus Int(X \setminus A)$.

Свойства. 1. $\operatorname{Cl} A \supset A$.

- 2. ClA замкнутое множество.
- 3. A замкнуто \iff $A = \operatorname{Cl} A$.

Глава #2

Доказательство. \Leftarrow — пункт 2. \Rightarrow A — замкнутое \Rightarrow оно участвует в пересечении из определения \Longrightarrow $\operatorname{Cl} A \subset A \Longrightarrow \operatorname{Cl} A = A$.

 $4. \ A \subset B \implies \operatorname{Cl} A \subset \operatorname{Cl} B.$

Доказательство.
$$X \setminus A \supset X \setminus B \implies \operatorname{Int}(X \setminus A) \supset \operatorname{Int}(C \setminus B) \implies X \setminus \operatorname{Int}(X \setminus A) \subset X \setminus \int (X \setminus B)$$

- 5. $Cl(A \cup B) = Cl A \cup B$.
- 6. Cl(Cl A) = Cl A.

Доказательство.
$$B \coloneqq \operatorname{Cl} A - \operatorname{замкнуто} \implies \operatorname{Cl} B = B$$
.

Упражнение. Cl Int Cl Int $\ldots A$. Какое наибольшее количество различных множеств может получиться.

Теорема 2.4. $x \in \operatorname{Cl} A \iff \forall r > 0$ $B_r(x) \cap A \neq \emptyset$.

Доказательство. $x \notin \operatorname{Cl} A \iff \exists r > 0 B_r(x) \cap A = \emptyset$. Что означает, что $x \notin A$? Это значит, что $x \in X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A) \iff x \in \operatorname{Int}(X \setminus A) \iff x -$ внутренняя точка $X \setminus A \iff \exists r > 0$: $B_r(x) \cap A = \emptyset \iff \exists r > 0$: $B_r(x) \cap A = \emptyset \iff \exists r > 0$: $B_r(x) \cap A = \emptyset \iff \exists r > 0$.

Следствие. U — открытое, $U \cap A = \emptyset \implies U \cap \operatorname{Cl} A = \emptyset$.

Доказательство. Возьмем
$$x \in U \implies \exists r > 0 : B_r(x) \subset U \implies B_r(x) \cap A = \varnothing \implies x \notin \operatorname{Cl} A \implies U \cap \operatorname{Cl} A = \varnothing.$$

Определение 2.10. Окрестностью точки x будем называть шар $B_r(x)$ для некоторого r>0. Обозначать будем U_x

Определение 2.11. Проколотой окрестностью точки $x - B_r(x) \setminus \{x\}$. \dot{U}_x .

Определение 2.12. x — предельная точка множества A, если $\forall \dot{U}_x \colon \dot{U}_x \cap A \neq \varnothing$.

Обозначим через A' — множество предельных точек для A.

Свойства.

1. $\operatorname{Cl} A = A \cup A'$.

Доказательство.
$$x \in \operatorname{Cl} A \iff \forall U_x \cap A \neq \varnothing \iff \begin{bmatrix} x \in A \\ \forall \dot{U}_x \cap A \neq \varnothing \iff x \in A' \end{bmatrix}$$

- 2. $A \subset B \implies A' \subset B'$. Очевидно.
- 3. A замкнуто $\iff A \supset A'$.

Доказательство.
$$A$$
 — замкнуто \iff = $\operatorname{Cl} A \iff A = A \cup A' \iff A \supset A'$.

4. $(A \cup B)' = A' \cup B'$.

Доказательство. Докажем "С". Возьмем $x \in (A \cup B)' : x \notin A' \implies \exists \dot{U}_x : \dot{U}_x \cap A = \varnothing$, но $\dot{U}_x \cap (A \cup B) \neq \varnothing \implies \dot{U}_x \cap B \neq \varnothing \implies x \in B'$.

Докажем "Э". $A \cup B \supset A \implies (A \cup B)' \supset A'$. Провернем тот же фокус для B, получим $(A \cup B)' \supset A' \cup B'$.

Теорема 2.5. $x \in A' \iff \forall r > 0$ $B_r(x)$ содержит бесконечное количество точек из A.

Доказательство. Докажем " \Leftarrow ". $B_r(x) \cap A$ содержит бесконечное количество точек $\implies \dot{B}_r(x) \cap A$ содержит бесконечное число точек $\implies \dot{B}_r(x) \cap A \neq \varnothing \Rightarrow x \in A'$.

"⇒". Возьмем радиус r. Тогда $\dot{B}_r(x) \cap A \neq \varnothing \implies \exists x_1 \in A : 0 < \rho(x,x_1) < r$. Возьмем $r = \rho(x,x_1) \ \dot{B}_r(x) \cap A \neq \varnothing \implies \exists x_2 \in A : 0 < \rho(x,x_2) < \rho(x,x_1)$. Тогда можно взять $r = \rho(x,x_2)$, и так далее.

В итоге получили, что $r > \rho(x, x_1) > \rho(x, x_2) > \rho(x, x_3) > \ldots > 0 \implies$ все x_n различны.

Следствие. Конечно множество не имеет предельных точек.

Доказательство. Предположим конечная точка существует $\iff \exists r > 0 \colon B_r(x) \cap A$ содержит бесконечное количество точек. Но это невозможно, так как в A конечное число точек.

Определение 2.13. (X, ρ) — метрическое пространство $Y \subset X$.

Тогда $(Y, \rho \mid_{Y \times Y})$ — подпространство метрического пространства (X, ρ) .

Пример.
$$(\mathbb{R}, |x-y|)$$
. $Y = [a, b] \subset \mathbb{R}$. $B_1(1) = (0, 1], B_2(0) = [0, 1].$ $B_r^Y(a) = Y \cap B_r^X(a)$.

Теорема 2.6 (об открытых и замкнутых множества в пространстве и подпространстве). (X, ρ) — метрическое пространство, (Y, ρ) — его подпространство, $A \subset Y$. Тогда

- 1. A открыто в $Y \iff \exists G$ открытое в X: $A = G \cap Y$.
- 2. A замкнуто в $Y \iff \exists F$ замкнутое в $X : A = F \cap Y$.

Доказательство.

1. "⇒"
$$A$$
 — открыто в Y \Longrightarrow $\forall x \in A \exists r_x > 0 \colon B^Y_{r_x}(x) \subset A \implies A = \bigcup_{x \in A} B^Y_{r_x}(x)$.

То есть наше множество будет объединением большего числа шариков (возможно бесконечного). Найдем теперь $G: G := \bigcup_{x \in A} B^X_{r_x}(x)$ — открыто. Посмотрим теперь на $G \cap Y = \bigcup_{x \in A} (B^X_{r_x}(x) \cap Y) = \bigcup_{x \in A} B^Y_{r_x}(x) = A$.

В обратную сторону. Пусть $A=G\cap Y$, где G открыто в X. Возьмем $x\in G\cap Y$. G — открыто в X \Longrightarrow $\forall x\in G\cap Y\exists r>0$: $B_r^X(x)\subset G$ \Longrightarrow $B_r^X(x)\cap Y\subset G\cap Y=A$ \Longrightarrow $B_r^Y(x)\subset A$ \Longrightarrow x — внутренняя точка A \Longrightarrow A — открыто в Y.

2. A — замкнуто в $Y \iff Y \setminus A$ — открыто в $Y \iff \exists G$ — открытое в X, такое что $Y \setminus A = Y \cap G \iff A = Y \setminus (Y \cap G) = Y \cap (X \setminus G) \iff \exists G$ — открытое в X, такое что $A = Y \cap (X \setminus G) \iff \exists F$ — замкнуто в X, такое что $A = Y \cap F$.

Пример. (\mathbb{R} , |x-y|). Y=[0,3). [0,1) — открыто в [0,3): $[0,1)=[0,3)\cap(-1,-1)$. [2,3) — замкнуто в [0,3): $[2,3)=[0,3)\cap[2,3]$.

Определение **2.14.** X — векторное пространство над \mathbb{R} .

$$||.||:X \to \mathbb{R}$$
 — норма, если

1.
$$||x|| \ge 0 \quad \forall x \in X \text{ if } ||x|| = 0 \iff x = \overrightarrow{0}$$
.

Глава #2

- 2. $||\lambda x|| = |\lambda| \cdot ||x|| \quad \forall x \in X \ \forall \lambda \in \mathbb{R}.$
- 3. (неравенство треугольник)

Пример. 1. $|x| \in \mathbb{R}$,

- 2. $||x||_1 = |x_1| + |x_2| + \ldots + |x_d| \in \mathbb{R}^d$.
- 3. $||x||_{\infty} = \max_{k=1,2,\dots,d} |x_k|$. $||x+y||_{\infty} = \max\{|x_k| + |y_k|\} \le \max\{|x_k|\} + \max\{|y_k|\} = ||x||_{\infty} + ||y||_{\infty}$
- 4. $||x||_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$
- 5. $||x||_p = \left(\sum_{k=1}^d |x_k|^p\right)^{\frac{1}{p}}$ в \mathbb{R}^d при $p \geqslant 1$. Неравенство треугольника неравенство Минковского.
- 6. C[a, b]. $||f|| = \max_{t \in [a, b]} |f(t)|$.

Определение 2.15. X векторное пространство над \mathbb{R} . $\langle .,. \rangle : X \times X \to \mathbb{R}$ скалярное произведение, если

- 1. $\langle x, x \rangle \geqslant 0$ и $\langle x, x \rangle = 0 \iff x = \overrightarrow{0}$.
- 2. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- 3. $\langle x, y \rangle = \langle y, x \rangle$.
- 4. $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle \quad \lambda \in \mathbb{R}$.

Пример. 1. \mathbb{R}^d . $\langle x, y \rangle = \sum x_i y_i$.

- 2. Возьмем $w_1, \ldots, w_d > 0$. Тогда $\langle x, y \rangle = \sum w_i x_i y_i$.
- 3. C[a,b]. $\langle f,g\rangle = \int_a^b f(x)g(x)dx$.

Свойства. 1. Неравенство Коши-Буняковского. $\langle x,y\rangle^2\leqslant \langle x,x\rangle\cdot \langle y,y\rangle.$

Доказательство. $f(t)\coloneqq\langle x+ty,x+ty\rangle\geqslant 0$. $f(t)=\langle x,x\rangle>+t\langle x,y\rangle+t\langle x,y\rangle+t^2\langle y,y\rangle=t^2\langle y,y\rangle+2t\langle x,y\rangle+\langle x,y\rangle-$ квадратный трехчлен (если $\langle y,y\rangle=0\Longrightarrow y=0\Longrightarrow$ везде нули). Тогда $0\geqslant D=(\langle x,y\rangle)^2-4\langle x,x\rangle\cdot\langle y,y\rangle=4(\langle x,y\rangle^2-\langle x,x\rangle\cdot\langle y,y\rangle)$. Потому что иначе есть значения меньше нуля.

2. $||x|| \coloneqq \sqrt{\langle x, x \rangle}$ — норма.

Доказательство. $||\lambda x|| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, \rangle} = |\lambda| \cdot ||x||.$

Неравенство треугольника: $||x+y|| \le ||x|| + ||y||$. Возведем в квадрат, получим $\langle x+y, x+y \rangle \le \langle x, x \rangle + \langle y, y \rangle + 2\sqrt{\langle x, x \rangle \langle y, y \rangle}$, но теперь вспомним, что $\langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, y \rangle + 2\langle x, y \rangle$. А, сократив общие слагаемые, получим доказанное неравенство Коши-Буняковского. \square

3. $\rho(x,y) = ||x-y||$ — метрика.

Доказательство. $\rho(x,y) \geqslant 0$. $\rho(x,y) = 0 \iff \|x-y\| = 0 \iff x-y = \overrightarrow{0} \iff x = y$. $\rho(y,x) = \|y-x\| = \|(-1)(x-y)\| = |-1|\|x-y\| = \rho(x,y)$. $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$: $\|(x-y) + (y-z)\| = \|x-z\| \leqslant \|x-y\| + \|y-z\|$.

4. $||x - y|| \ge |||x|| - ||y|||$.

Доказательство. Надо доказать, что
$$-\|x - y\| \le \|x\| - \|y\| \le \|x - y\|$$
.
$$\|(y - x) + x\| = \|y\| \le \|x\| + \|x - y\| = \|x\| + \|y - x\|.$$

5. Упражненение. Если норма порождается скалярным произведением $\iff \|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$. Тождество параллелограмма.

Определение 2.16. (X, ρ) — метрическое пространство. $x_1, x_2, \ldots \in X, a \in X$.

 $\lim x_n = a$, если

- 1. Вне любого открытого шара с центром в точке a содержится лишь конечное число членов последовательности.
- 2. $\forall \varepsilon > 0 \exists N \forall n \geqslant N \quad \rho(x_n, a) < \varepsilon \iff x_n \in B_{\varepsilon}(a)$.

Oпределение 2.17. $A \subset X$.

Tогда A — ограничено, если оно содержится в некотором шаре.

Свойства. 1. $a = \lim x \iff \rho(x_n, a) \to 0$.

Доказательство.
$$\forall \varepsilon > 0 \exists n > N \quad |\rho(x_n, a)| < \varepsilon$$
 — предел равен 0.

2. Предел единственный.

Доказательство. Пусть
$$\exists a = \lim x_n = b$$
. Тогда мы, что $B_r(a) \cap B_r(b) = \varnothing \implies \exists N_1, N_2, \forall n \geqslant \max\{N_1, N_2\} x_n \in B_r(a) \land x_n \in B_r(b)$.

- 3. Если $a = \lim x_n, a = \lim y_n$. То для перемешанной последовательности x_n и y_n предел такой же.
- 4. $a = \lim x_n \implies$ для последовательности, в которой x_n взяты с конечной кратностью, то a будет пределом.
- 5. Если $a = \lim x_n$, то $\lim x_{n_k} = a$.
- 6. Последовательность имеет предел \implies она ограничена

Доказательство.
$$\varepsilon = 1 \exists N \forall n \geqslant N \rho(x_n, a) < 1$$
. Тогда $R = \max \{ \rho(x_1, a), \dots, \rho(x_{N-1}, a) \} + 1 \implies x_n \in B_R(a)$.

- 7. Если $a = \lim x_n$, то последовательность, полученная из $\{x_n\}$ перестановкой членов имеет тот же предел.
- 8. a предельная точка $A \iff \exists a \neq \{x_n\} \in A \colon \lim x_n = a$.

Более того, x_n можно выбирать так, что $\rho(x_n, a)$ строго убывает.

Доказательство. " \Rightarrow " Пусть $\lim x_n = a$. Возьмем $B_r(a) \implies \exists N \forall n \geqslant N x_n \in B_r(a) \implies x_n B_r(a) \implies \dot{B}_r(a) \cap A \neq \varnothing \implies a$ — предельная точка.

"\(\infty\)" Берем $r_1 = 1$. $\dot{B_{r_1}}(a) \cap A \neq \emptyset$. Берем оттуда точку, называем $x_1 \neq a$. $r_2 = \frac{\rho(x_1,a)}{2}$. $\dot{B_{r_2}}(a) \cap A \neq \emptyset$. Берем оттуда точку $x_3 \neq a$. $r_3 = \frac{\rho(x_2,a)}{2}$. И так далее.

Получили:
$$x_n \neq a$$
 и $\rho(x_n, a) < \frac{\rho(x_{n-1}, a)}{2} < \rho(x_{n-1}, a)$. $\rho(x_n, a) < \frac{1}{2^n} \to 0 \implies x_n = a$.

Теорема 2.7 (об арифметических действиях с пределами). X — нормированное пространство, $x_n, y_n \in X, \ \lambda_n \in \mathbb{R}. \ \lim x_n = a, \lim y_n = b, \lim \lambda_n = \mu. \$ Тогда:

- 1. $\lim(x_n + y_n) = a + b$.
- 2. $\lim (x_n y_n) = a b$.
- 3. $\lim \lambda_n x_n = \mu a$.
- 4. $\lim ||x_n|| = ||a||$.
- 5. Если в X есть скалярное произведение, то $\lim \langle x_n, t_n \rangle = \langle a, b \rangle$.

Доказательство. 1. $\rho(x_n + y_n, a + b) = \|(x_n + y_n - (a + b))\| = \|(x_n - a) + (y_n - b)\| \le \|x_n - a\| + \|y_n - n\| = \rho(x_n, a) + \rho(y_n, b) \to 0.$

- 2. Аналогично.
- 3. $\rho(\lambda_n x_n, \mu a) = \|\lambda_n x_n \mu a\| = \|\lambda_n x_n \lambda_n a + \lambda_n a \mu a\| \leq \|\lambda_n x_n \lambda_n a\| + \|\lambda_n a \mu a\| = |\lambda_n| \|x_n a\| + |\lambda_n \mu| \|a\| \to 0$, так как $|\lambda_n|$ ограниченная, $\|x_n a\| = \rho(x_n a) \to 0$, $|\lambda_n \mu| \to 0$, $\|a\|$ константа.
- 4. $|||x_n|| ||a||| \le ||x_n a|| = \rho(x_n, a) \to 0 \implies \lim ||x_n|| = ||a||$
- 5. $\langle x,y \rangle = \frac{1}{4}(\|x+y\|^2 \|x-y\|^2) = \frac{1}{4}(\langle x+y,x+y \rangle \langle x-y,x-y \rangle)$. Тогда получаем $4\langle x_n,y_n \rangle = \|x_n+y_n\|^2 \|x_n-y_n\|^2 \rightarrow \|a+b\|^2 \|a-b\|^2 = 4\langle a,b \rangle$.

 $m{Onpedenehue}$ 2.18. \mathbb{R}^d — пространство с нормой $\sqrt{x_1^2+x_2^2+\ldots+x_d^2}$.

Определение **2.19**. Покоординатная сходимость в R^d :

$$x_n \in \mathbb{R}^d$$
. $x_n = (x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(d)}) \xrightarrow{\text{покоординатно}} a = (a^{(1)}, a^{(1)2}, \dots)$.

Теорема 2.8. в \mathbb{R}^d сходимость по метрике и покоординатная сходимость совпадает.

Доказательство. Метрика \Longrightarrow покоординатная. $\rho(x_n,a) \to 0 \Longrightarrow 0 \leqslant (x_n^{(1)} - a^{(1)})^2 + \ldots + (x_n^{(d)} - a^{(d)}) = \rho(x_n,a)^2 \to 0 \Longrightarrow \lim (x_n^{(k)} - a^{(k)})^2 = 0 \Longrightarrow \lim x_n^{(k)} = a^{(k)} \Longrightarrow$ покоординатная сходимость.

Покоординатная \Longrightarrow метрика. Пусть $|x_n^{(k)} - a^{(k)}| \to 0 \quad \forall k \Longrightarrow (x_n^{(k)} - a^{(k)})^2 \to 0 \Longrightarrow \sum_{k=1}^d (x_n^{(k)} - a^{(k)})^2 \to 0$. А так как $(\ldots)^2 = \rho(x_n, a)^2 \Longrightarrow \rho(x_n, a) \to 0$.

Определение 2.20. $x_n \in X$ — фундаментальная последовательность, если

$$\forall \varepsilon > 0 \exists N \forall m, n \geqslant N : \rho(x_n, x_m) < \varepsilon.$$

Свойства. 1. Сходящаяся последовательность фундаментальна.

- 2. Фундаментальная последовательность ограничена.
- 3. Если у последовательности есть сходящаяся подпоследовательность, то последовательность имеет предел.

Доказательство. Упражнение! Утверждается, что так же, как и в пределах.

Глава #2 30 из 47 Автор: Харитонцев-Беглов Сергей

Определение 2.21. (x, ρ) — метрическое пространство — полное, если любая фундаментальная последовательность имеет предел.

Пример. \mathbb{R} :, $\rho(x,y) = |x-y|$ — полное.

Упражнение. (X, ρ) — полное метрическое пространство $X \supset Y$ замкнуто. Доказать, что (Y, ρ) — полное.

Упражнение. (0,1) не полное. $x_n = \frac{1}{n}$ — фундаментальная, но $\lim \frac{1}{n} = 0 \notin (0;1)$.

Теорема 2.9. \mathbb{R}^d — полное.

Доказательство. Пусть x_n — фундаментальная, то есть

$$\forall \varepsilon > 0 \exists N \forall m, n \geqslant N : \rho(x_n, x_m) = \sqrt{(x_n^{(1)} - x_m^{(1)})^2 + \ldots + (x_n^{(d)} - x_m^{(d)})^2} < \varepsilon.$$

Но мы знаем, что $\rho(x_n,x_m)\geqslant |x_n^{(k)}-x_m^{(k)}|$. Тогда заметим, что $x_n^{(k)}$ — фундаментальная \Longrightarrow $\exists a^{(k)}=\lim_{n\to\infty}x_n^{(k)}$. Значит и x_n сходится к a покоординатно \Longrightarrow $\rho(x_n,a)\to 0$ \Longrightarrow x_n сходится к a по метрике.

2.2. Компактность

Определение 2.22. $A, U_{\alpha}, \alpha \in I$.

Множества U_{α} — покрытие множества A, если $A \subset \bigcup_{\alpha \in I} U_{\alpha}$.

Определение 2.23. Открытое покрытие — покрытие открытыми множествами.

Определение 2.24. (X, ρ) — метрическое пространство, $K \subset X$.

K — компакт, если из любого его открытого покрытия можно выделить конечное подпокрытие.

Определение 2.25. То есть для любого покрытия можно выбрать $\alpha_1, \alpha_2, \dots, \alpha_n \in I : K \subset \bigcup_{i=1}^n U_{\alpha_i}$

Теорема 2.10 (Теорема о свойствах компактных множеств). 1. $K \subset Y \subset X$. Тогда K — компакт в $(X, \rho) \iff K$ — компакт в (Y, ρ) .

- 2. $K \text{компакт} \implies K$ замкнуто и ограничено.
- 3. Замкнутое подмножество компакта компакта.

Доказательство. 1. \Leftarrow . Пусть G_{α} покрытие K множествами в X. Тогда $U_{\alpha} = G_{\alpha} \cap Y$ — открытыми в Y и $K \subset \bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} = G_{\alpha} \cap Y = (\bigcup_{\alpha \in I} G_{\alpha}) \cap Y$.

 U_{α} — открытое покрытие в $(U,\rho) \Longrightarrow$ можно выделить конечное подпокрытие $\alpha_1,\ldots,\alpha_n,$ такое что $K \subset \bigcup_{i=1}^n U_{\alpha_i} \subset \bigcup_{i=1}^n G_{\alpha_i}$ — конечное подпокрытие $G_{\alpha} \Longrightarrow K$ компакт в $(X,\rho).$

 \Rightarrow . Воспользуемся тем же наблюдением: $U_{\alpha}=G_{\alpha}\cap Y$. Следовательно можно выбрать $\alpha_1,\alpha_2,\ldots,\alpha_n$ в X и они же подойдут и в Y.

2. Ограниченность. Возьмем $a \in X$. Тогда $K \subset \bigcup_{n=1}^{\infty} B_n(a) = X$ — открытое покрытие K.

Выделим конечное подпокрытие $K\subset \bigcup_{n=1}^N B_n(a)\implies K\subset B_N(a)\implies K$ — ограничено.

Замкнутость. Надо доказать, что $X\setminus K$ — открытое. Возьмем $a\in X\setminus K$ и докажем, что a лежит в $X\setminus K$ вместе с некоторым шариком.

Пусть $U_x=B_{(\rho\frac{x,a}{2})}(x)$. Причем он не пересекается с $B_x=B_{\frac{\rho(x,a)}{2}}(a)$. Возьмем тогда $K\subset$

 $\bigcup_{x\in K} U_x$ — открытое покрытие. Выделим конечное подпокрытие $K\in\bigcup_{i=1}^n U_{x_i}, r=\min\{\frac{\rho(x_i,a)}{2}\}.$

Тогда $B_r(a) = \bigcap_{i=1}^n B_{x_i}$. $B_r(a) \cap \bigcup_{i=1}^n U_{x_i} = \varnothing \implies B_r(a) \cap K = \varnothing \implies B_r(a) \subset X \setminus K \implies a -$ внутренняя $X \cap K$.

3. Пусть \widetilde{K} — компакт, K — замкнуто и $K \subset \widetilde{K}$.

Рассмотрим открытое покрытие K U_{α} . Тогда \widetilde{K} покрыто $(X \subset K) \cup \bigcup_{\alpha \in I} U_{\alpha}$ — открытое покрытие \widetilde{K} . Выделим конечное покрытие $X \cap K, U_{\alpha_1}, \dots, U_{\alpha_n}$. $K \subset X \setminus K \cup \bigcup_{i=1}^n U_{\alpha_i} \implies K \subset \bigcup_{i=1}^n U_{\alpha_i}$ — открытое множество, а значит K — компакт.

Теорема 2.11. K_{α} — семейство компактов, такое что пересечение любого конечного числа из них непусто. Тогда $\bigcap_{\alpha \in I} K_{\alpha} \neq \emptyset$.

Следствие. $K_1 \subset K_2 \subset K_3 \subset \ldots$ непустые компакты. Тогда $\bigcap_{n=1}^{\infty} K_n \neq \varnothing$.

Доказательство. От противного. Пусть $\bigcap_{\alpha \in I} K_{\alpha} = \emptyset$. Зафиксируем компакт $K_0 \implies K_0 \cap \bigcap_{\alpha \in I} K_{\alpha} = \emptyset \implies K_0 \subset X \setminus \bigcap_{\alpha \in I} K_{\alpha} = \bigcup_{\alpha \in I} X \setminus K_{\alpha}$ — открытое покрытие K_0 . Выделим конечное подпокрытие $K_0 \subset \bigcup_{i=1}^n X \setminus K_{\alpha_i} = X \setminus \bigcap_{i=1}^n K_{\alpha_i} \implies K_0 \cap \bigcap_{i=1}^n K_{\alpha_i} = \emptyset$??!

Определение 2.26. K — секвенциально компактное множество, если из любой последовательности точек из K можно выделить подпоследовательность, которое сходится к какой-то точке из K.

Пример. $[a,b] \in \mathbb{R}$ секвенциально компактно.

 $x_n \in [a;b] \xrightarrow{\text{T. B-B}} \exists$ подпоследовательность x_{n_k} , имеющая предел $\Longrightarrow \lim x_{n_k} \in [a,b]$, так как неравенства сохраняются.

Теорема 2.12. Бесконечное подмножества компакта имеет предельную точку.

Доказательство. K — компакт. $A \subset K$. Пусть $A' = \emptyset$. Тогда A — замкнуто $\Longrightarrow A$ — компакт и ни одна из его точек не является предельной $a \in A$ не предельная $\Longrightarrow \exists r_a > 0 \ \dot{B_{r_a}}(a) \cap A = \emptyset \Longrightarrow B_{r_a}(a) \cap A = \{a\}$. Рассмотрим открытое покрытие $A \subset \bigcup_{a \in A} B_{r_a}(a)$, но их этого покрытия нельзя убрать ни одного множества \Longrightarrow нет конечного подпокрытия \Longrightarrow противоречие. \square

Cледствие. Компактность ⇒ секвенциальная компактность.

Доказательство. $x_1, x_2, \ldots \in K$. $D = \{x_1, x_2, x_3, \ldots\}$ — множество значений последовательности.

CTb.

- 1. $|D| < +\infty \implies$ есть элемент, повторяющийся бесконечно много раз, оставим только его это нужная подпоследовательность.
- 2. $|D| = +\infty \implies$ у D есть предельная точка.

Пусть a — предельная точка $D \implies$ найдутся различные $y_1, y_2, \ldots \in D$, такие что $\lim y_n = a$.

Но y_i — это какой-то $x_{n_i} \lim x_{n_i} = a$. Осталось переставить x_{n_i} так, что получится последовательность. Ну, а так как K — замкнуто, то $a \in K$.

Лемма (Лемма Лебега). K — секвенциальный компакт, $K \subset \bigcup_{\alpha \in I} U_{\alpha}$ — открыток покрытие.

Тогда $\exists r > 0 \colon \forall x \in K \quad B_r(x)$ целиком покрывается каким-то U_α .

Доказательство. От противного. Тогда $r = \frac{1}{n}$ не подходит $\implies \exists x_n \in K : B_{\frac{1}{n}}(x_n)$ не содержится целиком ни в каком U_{α} .

Выберем подпоследовательность x_{n_k} , такую что $\lim x_{n_k} = a \in K$.

Тогда $a\in U_\beta$ для некоторого $\beta\in I\Longrightarrow\exists B_\varepsilon(a)\subset U_\beta.$ Возьмем $N_1\colon\forall k\geqslant N_1\quad \rho(x_{n_k},a)<\frac{\varepsilon}{2}.$ А еще можно взять $N_2\colon\forall k\geqslant N_2\quad \frac{1}{n_k}<\frac{\varepsilon}{2}.$ А значит $B_{\frac{1}{n_k}}\subset B_\varepsilon(a)\subset U_\beta$ при $k\geqslant \max\{N_1,N_2\}$?!!

Докажем
$$B_{\frac{1}{n_k}} \subset B_{\varepsilon}(a)$$
: Если $x \in B_{\frac{1}{n_k}}(x_{n_k})$ $\rho(x_{n_k},x) < \frac{1}{n_k} < \frac{\varepsilon}{2} \wedge \rho(x_{n_k},a) < \frac{\varepsilon}{2} \implies \rho(x,a) \leqslant \rho(x_{n_k},x) + \rho(a,x_{n_k}) < \varepsilon$

Теорема 2.13. Компактность = секвенциальная компактность.

Доказательство. \Rightarrow Пусть $K \subset \bigcup_{\alpha \in I} U_{\alpha}$ — открытое покрытие. Возьмем r > 0 из леммы Лебега. Рассмотрим открытое покрытие $K \subset \bigcup_{x \in K} B_r(x)$.

Достаточно из него выделить конечное подпокрытие. Возьмем $x_1 \in K$. Если $B_r(x_1) \supset K$, то выбрали конечное покрытие. Иначе берем $x_2 \in K \setminus B_r(x_1)$. Если объединение шариков $\supset K$, то выбрали конечное подпокрытие. Иначе продолжаем процесс: $x_n \in K \setminus \bigcup_{i=1}^{n-1} B_r(x_i)$. Если процесс оборвался, то выделили конечное подпокрытие.

Если он не оборвался, то мы построили последовательность x_1, x_2, \ldots Причем $x_n, x_k \geqslant r \forall n > k \implies \rho(x_i, x_j) \geqslant r \forall i \neq j$. Из такой последовательности не выбрать сходящуюся подпоследовательность, так как любая подпоследовательность не фундаментальная.

Определение 2.27. $A \subset X$. (X, ρ) — метрическая пространство.

 $E \subset A$, ε -сеть множества A, если $\forall a \in A \exists x \in E : \rho(x, a) < \varepsilon$.

Конечная ε -сеть — E — конечное множество.

То есть $\{x_1, x_2, ..., x_n\} \subset A - \varepsilon$ -сеть, если $\forall a \in A \exists k \quad \rho(a, x_k) < \varepsilon$.

Определение 2.28. A — вполне ограничено, если $\forall \varepsilon > 0 \exists$ конечная ε -сеть A.

Свойства. 1. Вполне ограниченность \Longrightarrow ограниченность.

Доказательство.
$$\varepsilon = 1$$
 и конечная 1-сеть x_1, x_2, \dots, x_n . $A \subset \bigcup_{k=1}^n B_r(x_k) \subseteq B_{r+1}(x_1)$, где $r = \max_{i \neq j} \rho(x_i, x_j)$.

2. В \mathbb{R}^d ограниченность \Longrightarrow вполне ограниченность.

Доказательство. $A \subset \mathbb{R}^d$ — ограниченное. $A \subset B_R(O) \subset [-R, R]^d$.

Зафиксируем $\varepsilon > 0$ и возьмем $n \in \mathbb{N}$. $\rho(x_i, a) \leqslant 2n$ диагональ $= \sqrt{d} \frac{2R}{n} < \varepsilon$ при $n > \frac{\sqrt{d} 2R}{\varepsilon}$ получается ε -сеть.

Теорема 2.14 (Хаусдорфа). 1. Компактное множество вполне ограничено.

2. Если (X, ρ) — полное метрическое пространство, то замкнуто вполне ограниченное подмножество X — компактно.

Доказательство. 1. Берем $\varepsilon > 0$ $K \subset \bigcup_{x \in K} B_{\varepsilon}(x)$ — открытое покрытие. Выделим конечное подпокрытие $\implies K \subset \bigcup_{i=1}^n B_{\varepsilon}(x_i) \implies x_1, \dots, x_n - \varepsilon$ -сеть.

2. Проверим секвенциальную компактность. Берем $x_1, x_2, \ldots \in K$. Возьмем 1-сеть $K \subset \bigcup_{i=1}^{n_1} B_1(y_{1i})$. В каком-то шарике бесконечное число членов последовательности. Выкинем все, кроме них $x_{11}, x_{12}, x_{13}, \ldots$ Возьмем $\frac{1}{2}$ -сеть. $K \subset \bigcup_{i=1}^{n_2} B_{\frac{1}{2}}(y_{2i})$. В каком-то шарике бесконечное число членов последовательности...

На *j*-ом шаге $K \subset B_{\frac{1}{i}}(y_{ji})$. Пусть на каждом шаге выбирали шарик $B_{\frac{1}{i}}(z_i)$.

В итоге получили:

Воспользуемся диагональным методом Кантора. Пусть $a_n \coloneqq x_{nn}$. Заметим, что a_n, a_{n+1}, a_{n+2} — последовательность $x_{n1}, x_{n2}, x_{n3}, \ldots \implies$ все лежат в $B_{\frac{1}{n}}(z_n) \implies \rho(a_i, a_j) \leqslant \rho(a_i, z_n) + \rho(a_j, z_n) < \frac{2}{n}$, при $i, j \geqslant n \implies a_i$ — фундаментальная \implies у нее есть предел $\implies a = \lim a_n \in K$, так как K — замкнуто. Следовательно, K — секвенциально компактно.

Следствие Характеристика компактов в \mathbb{R}^d . K — компакт $\iff K$ — замкнуто и ограничено.

Доказательство. ⇒ верна всегда и доказано выше.

А вот \Leftarrow верна не всегда. Поэтому докажем эту штуку для \mathbb{R}^d . Мы знаем, что \mathbb{R}^d — полное. А еще мы знаем, что в \mathbb{R}^d ограниченность \Longrightarrow вполне ограниченность, а значит понятно, что K — компакт.

Упражнение. (K, ρ) — метрическое пространство, K — компакт. Доказать, что (K, ρ) — полное.

Следствие теорема Больцано-Вейерштрасса в \mathbb{R}^d . Из любой ограниченной последовательности в \mathbb{R}^d можно выбрать сходящуюся подпоследовательность.

Доказательство. $\{x_n\} \implies \exists R \ x_n \in B_R(a) \subset \overline{B}_R(a)$ — замкнуто и ограниченно \implies компактно \implies секвенциально компактно $\implies x_n$ — последовательность точек секвенциального компакта \implies у нее есть сходящаяся последовательность.

2.3. Непрерывные отображения

Определение 2.29. (X, ρ_X) и (Y, ρ_Y) — метрические пространства, $E \subset X$. $f : E \to Y$, a — предельная точка $E, b \in Y$.

 $b = \lim_{x \to a} f(x)$ означает, что

По Коши: $\forall \varepsilon > 0 \exists \delta > 0 \forall x : \rho_x(x, a) < \delta \land a \neq x \in E \implies \rho_Y(f(x), b) < \varepsilon$.

В терминах окрестностей: $\forall \varepsilon > 0 \exists \delta > 0 \colon f(\dot{B}_{\delta}(a) \cap E) \subset B_{\varepsilon}(b)$

По Гейне: \forall последовательности $a \neq x_n \in E$: $\lim x_n = a \implies \lim f(x_n) = b$

Теорема 2.15. Все определения равносильны.

Доказательство. Упражнение (смотри доказательство для последовательностей).

Теорема 2.16 (Критерий Коши). $f: E \subset X \to Y, Y -$ полное, a -предельная точка E. Тогда $\exists \lim_{x \to a} f(x) \iff \forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in \dot{B}_{\delta}(a) \cap E \implies \rho_{Y}(f(x), f(y)) < \varepsilon$.

Доказательство. \Rightarrow . Упражнение: взять доказательство и заменить модуль на ρ .

 \Leftarrow . Проверим определение по Гейне. Надо доказать, что $a \neq x_n \in E \wedge \lim x_n = a \implies \lim f(x_n)$ существует.

 $f(x_n)$ — последовательность в Y — полное. Поэтому достаточно проверить, что $f(x_n)$ — фундаментальная последовательность. Возьмем $\varepsilon>0$, по нему $\delta>0$ из условия. По $\delta>0$ берем N, такое что $\forall n\geqslant N: \rho_X(x_n,a)<\delta \implies x_n\in \dot{B}_\delta(a)\cap E$ при $n\geqslant N\implies \forall m,n\geqslant N: \rho(f(x_n),f(x_m))<\varepsilon f(x_n)$ фундаментальная $\implies f(x_n)$ имеет предел.

Теорема 2.17 (об арифметических действиях с пределами). $f, g: E \subset X \to Y, Y$ — нормированное пространство, a — предельная точка E.

Пусть $\lim_{x\to a} f(x) = b, \lim_{x\to a} g(x) = c \wedge \alpha, \beta \in \mathbb{R}$. Тогда

- 1. $\lim_{x \to a} \alpha f(x) + \beta g(x) = \alpha b + \beta c.$
- 2. Если $\lambda \colon E \to \mathbb{R},$ такое что $\lim_{x \to a} \lambda(x) = \mu \in \mathbb{R},$ то $\lim_{x \to a} \lambda(x) f(x) = \mu b.$
- 3. $\lim_{x \to a} ||f(x)|| = ||b||$
- 4. Если Y пространство со скалярным произведением, то $\lim_{x\to a}\langle f(x),g(x)\rangle=\langle b,c\rangle$.
- 5. Если $Y = \mathbb{R}$ и $c \neq 0$, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$.

Доказательство. Проверка по Гейне. Берем $x_n \to a$,, тогда $f(x_n) \to b, g(x_n) \to c$ и теорема про пределы последовательности.

Определение 2.30. (X, ρ_X) и (Y, ρ_Y) — метрические пространства, $E \subset X, a \in E$. $f \colon E \to Y, f$ непрерывна в точке a, если

- 1. a не предельная точка или a предельная и $\lim_{x\to a} f(x) = f(a)$.
- 2. По Коши. $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in E : \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), f(a)) < \varepsilon$.
- 3. С окрестностями. $\forall B_{\varepsilon}(f(a)) \exists B_{\delta}(a) : f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a))$.

4. По Гейне: $\forall x_n \in E : \lim x_n = a \implies \lim f(x_n) = f(a)$.

Доказательство. Упражнение!

Теорема 2.18 (о непрерывности композиции). $(X, \rho_X), (Y, \rho_Y), (Z, \rho_Z) - D \subset X, E \subset Y, a \in D, f : D \to E, g : E \to Z$. Если f непрерывна в точке a, а g непрерывна в точке f(a), то $g \circ f$ непрерывна в точке a.

Доказательство.

$$\forall B_{\varepsilon}(g(f(a))) \exists B_{\delta}(f(a)) \colon g(B_{\delta}(f(a)) \cap E) \subset B_{\varepsilon}(g(f(a)))$$

$$\forall B_{\delta}(f(a)) \exists B_{\gamma}(a) \colon f(B_{\gamma}(a) \cap D) \subset B_{\delta}(f(a)) \cap E$$

$$\Rightarrow g(f(B_{\gamma}(a) \cap D)) \subset g(B_{\delta}(f(a)) \cap E) \subset B_{\varepsilon}(g(f(a))) \implies g \circ f \text{ непрерывна в точке } a$$

Теорема 2.19 (Характеристика непрерывности в терминах открытых множеств). $f: X \to Y$. Тогда

f непрерывна во всех точках $\iff \forall U$ — открытого в Y: $f^{-1}(U) \coloneqq \{x \in X \mid f(x) \in U\}$ — открыто в X.

Доказательство. \Rightarrow . Берем $a \in f^{-1}(U) \implies f(a) \in U$ – открыто $\implies \exists \varepsilon > 0 \quad B_{\varepsilon}(f(a)) \subset U$.

f непрерывно в точке $a \Longrightarrow \exists \delta > 0 \colon f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)) \subset U \Longrightarrow B_{\delta}(a) \subset f-1(U) \Longrightarrow a$ внутренняя точка $f^{-1}(U) \Longrightarrow f^{-1}(U)$ — открыто.

$$\Leftarrow$$
. $U := B_{\varepsilon}(f(a))$ — открыто $\Longrightarrow f^{-1}(B_{\varepsilon}(f(a)))$ — открыто и $a \in f^{-1}(B_{\varepsilon}(f(a))) \implies \exists \delta > 0$ $B_{\delta}(a) \subset f^{-1}(B_{\varepsilon}(f(a))) \implies f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)) \implies f$ непрерывна в точке a .

Теорема 2.20 (Непрерывный образ компакта — компакт). $(X, \rho_X), (Y, \rho_Y)$ — метрические пространства, $K \subset X, K$ — компакт.

 $f\colon K o Y$ непрерывна во всех точка. Тогда f(K) — компакт.

Доказательство. Рассмотрим открытое покрытие $f(K) \subset \bigcup_{\alpha \in I} U_{\alpha}$ — открытые $\implies K \subset f^{-1}(\bigcup_{\alpha \in I} U_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(U_{\alpha})$ по непрерывности $f(f^{-1}(U_{\alpha})) = 0$ — открыто \implies это открытое покрытие K, но K — компакт \implies выбираем конечное подпокрытие K $\bigcup_{j=1}^{n} f^{-1}(U_{\alpha_{j}}) = f^{-1}(\bigcup_{j=1}^{n} U_{\alpha_{j}}) \implies f(K) \subset \bigcup_{j=1}^{n} U_{\alpha_{j}}$. Нашли конечное подпокрытие $\implies f(K)$ — компакт.

Определение 2.31. $f: E \subset X \to Y$ — ограниченное отображение, если f(E) — ограниченное множество.

Следствие. Непрерывный образ компакта замкнут и ограничен.

Доказательство. Знаем, что непрерывный образ компакта — компакт. А следовательно, образ замкнут и ограниченю \Box

Следствие. Если K — компакт и f непрерывна на K, то f — ограниченное отображение.

Следствие Теорема Вейерштрасса. $f: K \to \mathbb{R}, K$ — компакт, f непрерывна на K.

Тогда $\exists a, b \in K : f(a) \leqslant f(x) \leqslant f(b) \quad \forall x \in K.$

Доказательство. f(K) — ограниченное множество в $\mathbb{R} \implies B \coloneqq \sup_{x \to K} f(x) \in \mathbb{R} \implies \exists x_n \in K : \lim f(x_m) = N$. При этом $x_n \in K$ — секвенциальный компакт \implies существует сходящаяся подпоследовательность x_{n_k} .

Тогда
$$\lim x_{n_k} =: b \in K \implies \lim f(x_{n_k}) = f(b) \implies f(b) = \sup_{x \to K} f(x) = B \implies f(x) \leqslant f(b) \quad \forall x \in K.$$

Теорема 2.21. $f: X \to Y$ непрерывна во всех точках, биекция и X — компакт. Тогда f^{-1} непрерывна во всех точках.

Доказательство. Проверяем непрерывность f^{-1} в терминах открытых множеств. Надо для f^{-1} проверить, что прообраз открытого — открыт, то есть для f проверить, что образ открытого открыт.

$$U$$
 — открыто в $X \implies X \setminus U$ — замкнуто $\subset X$ — компакт $\implies X \setminus U$ — компакт $\implies f(X \setminus U) = Y \setminus f(U)$ — компакт $\implies Y \setminus f(U)$ — замкнуто $\implies f(U)$ — открыто.

Определение 2.32. $f: E \subset X \to Y$ равномерно непрерывна, если $\forall \varepsilon > 0 \exists \delta > 0 \forall x,y \in E: \rho_X(x,y) < \delta \implies \rho_Y(f(x),f(y)) < \varepsilon.$

Теорема 2.22 (Теорема Кантора). $f: K \to Y$ непрерывна, K — компакт. Тогда f равномерно непрерывна.

Доказательство. Берем $x \in K$, f непрерывна в точке $x \implies \exists r_x > 0 \colon f(B_{r_x}(x)) \subset B_{\frac{\varepsilon}{2}}(f(x))$.

Тогда $K \subset \bigcup_{x \to K} B_{r_x}(x)$ — открытое покрытие K. Возьмем $\delta > 0$ из леммы Лебега, то есть $\forall x \in KB_{\delta}(x)$ целиком попал в какой-то элемент покрытия.

Проверим, что это $\delta > 0$ подходит в определение равномерной непрерывности.

$$x, y \in K\rho_X(x, y) < \delta \implies y \in B_{\delta}(x) \implies \exists a \in K : B_{\delta}(x) \subset B_{r_x}(a) \implies x, y \in B_{r_a}(a) \implies f(x), f(y) \in B_{\frac{\varepsilon}{2}}(f(a)) \implies \rho_Y(f(x), f(a)) < \frac{\varepsilon}{2} \wedge \rho_Y(f(y), f(a)) < \frac{\varepsilon}{2} \implies \rho_Y(f(x), f(y)) < \varepsilon \qquad \Box$$

Определение 2.33. X — векторное пространство и $\|.\|$ и $\||.\||$ — норм в X. Нормы эквиваленты, если $\exists C_1, C_2 > 0$

$$C_1||x|| \leqslant |||x||| \leqslant C_2||x|| \quad \forall x \in X.$$

Замечание. 1. Это отношение эквивалентности. (упражнение)

- 2. Пределы последовательности для эквивалентных норм совпадают. Док-во: Пусть $\lim x_n = a$ по норме ||.||, т.е. $\lim ||x_n a|| = 0$. А $0 \le |||x_n a|| \le C_2 ||x_n a|| \to 0$, значит $\lim x_n = a$ и по норме |||.|||.
- 3. Непрерывность отображений для эквивалентных норм совпадают (записываем по Гейне, а для последовательностей мы всё знаем).

Теорема 2.23. В \mathbb{R}^d все нормы эквивалентны.

Доказательство. $||x||\sqrt{x_1^2+x_2^2+\ldots+x_d^2}$. Достаточно доказать, что остальные норма эквиваленты.

Пусть p(x) — другая норма в \mathbb{R}^d . e_k — вектор с нулями и единицей на k-ой позиции.

$$x = (x_1, x_2, \dots, x_d) = \sum_{k=1}^d x_k e_k. \ p(x-y) = p(\sum_{k=1}^d (x_k - y_k) e_k) \leqslant \sum_{k=1}^d p((x_k - y_k) e_k) = \sum_{k=1}^d |x_k - y_k| p(e_k) \leqslant (\text{Коши-Буняковский}) \left(\sum_{k=1}^d (x_k - y_k)^2\right)^{\frac{1}{2}} \left(\sum_{k=1}^d p(e_k)^2\right)^{\frac{1}{2}} = \left(\sum_{k=1}^d p(e_k)^2\right)^{\frac{1}{2}} \|x - y\| \Longrightarrow$$

$$\begin{split} p(x) \leqslant \left(\sum_{k=1}^d p(e_k)^2\right)^{\frac{1}{2}} \|x\|. \\ S \coloneqq \left\{x \in \mathbb{R}^d \colon x_1^2 + x_2^2 + \ldots + x_d^2 = 1\right\} - \text{ компакт } \implies \exists a \in S \colon 0 < p(a) \leqslant p(x) \quad \forall x \in S. \\ p(x) = p(\frac{x}{\|x\|} \cdot \|x\|) = \|x\|p(\frac{x}{\|x\|}) \geqslant \|x\|p(a). \end{split}$$
 Тогда $p(a)\|x\| \leqslant p(x) \leqslant M\|x\| \quad \forall x \in \mathbb{R}^d.$

2.4. Длина кривой

Определение 2.34. (X, ρ) — метрическое пространство. (\mathbb{R}^d — ключевой случай).

 $\gamma \colon [a,b] \to X$ непрерывное — путь.

 $\gamma(a)$ — начало пути, $\gamma(b)$ — конец пути. $\gamma([a,b])$ носитель пути.

Замкнутый путь $\gamma(a)=\gamma(b)$. Простой (самонепересекающийся) путь: $\gamma(u)\neq\gamma(v)\quad \forall u,v\in[a,b]$. Возможно, за исключением равенства $\gamma(a)=\gamma(b)$.

Определение 2.35. Эквивалентные пути: $\gamma_1 \colon [a,b] \in X, \ \gamma_2 \colon [c,d] \to X$. Если $\exists u \colon [a,b] \to [c,d], \ u$ — непрерывна, u — строго монотонно возрастает, u(a) = c, u(b) = d, такой, что $\gamma_1 = \gamma \circ u$.

Определение **2.36.** Класс эквивалентных путей — кривая.

Конкретный представитель класса — параметризация кривой.

$$extbf{Onpedenenue 2.37.} \ \gamma\colon [a,b] o \mathbb{R}^d. \ r$$
-гладкий путь, если $\gamma=egin{pmatrix} \gamma_1 \ \gamma_2 \ dots \ \gamma_d \end{pmatrix}, \gamma_j\colon [a,b] o \mathbb{R}-r$ -гладкие

функции, то есть $\gamma_j \in C^r[a,b]$.

Кривая гладкая, если у нее есть гладкая параметризация. Если r опущено, то r=1.

Определение 2.38. Длина пути $l(\gamma) = \sup_{k=1}^n \rho(\gamma(t_k), \gamma(t_{k-1})),$ где t_k — дробление отрезка.

Замечание. Длины эквивалентных путей равны.

Свойства. 1. $l(\gamma) \geqslant \rho(\gamma(a), \gamma(b))$. Можно просто взять дробление состоящее из двух точек.

2. $l(\gamma) \geqslant$ длина вписанной в нее ломаной.

Теорема 2.24. Пусть есть $\gamma: [a, b] \to X.$ $c \in [a, b].$

$$l(\gamma) = l(\gamma \Big|_{[a,c]}) + l(\gamma \Big|_{[c,b]}).$$

Обозначим куски за γ_1, γ_2 .

Доказательство. Нам нужно доказать какое-то равенство, поэтому докажем два неравенства!

• \geqslant . Давайте вписывать ломанные. Впишем какую-то ломанную в γ_1 и еще какую-то в γ_2 . Пусть получились дробления $a=t_0 < t_1 < t_2 < \ldots < t_n = u_0 < \ldots < u_m = b$ — получилось дробление [a,b].

Тогда посчитаем сумму: $\sum_{k=1}^{n} \rho(\gamma(t_{k-1}), \gamma(t_k)) + \sum_{k=1}^{n} \rho(\gamma(u_{k-1}), \gamma(u_k)) \leqslant l(\gamma)$. Заменим первое слагаемое на sup: $\sup \ldots + \sum_{k=1}^{n} \rho(\gamma(u_{k-1}), u_k) \leqslant l(\gamma)$. А этот $\sup -$ длина γ_1 . Встает вопрос по-

чему можно переходить. Мы знаем, что все числа меньше, то и супремум меньше, поэтому переход корректный. Дальше заменяем правый sup. В итоге получаем $l(\gamma_1) + l(\gamma_2) \leq l(\gamma)$.

• Возьмем дробление γ t_i . Посмотрим на сумму $S = \sum_{j=1}^n \rho(\gamma(t_{j-1}), \gamma(t_j))$.

Возьмем дробление t_i и добавим в него точку c. Получаем:

$$S \leqslant \sum_{j=1}^{k} \rho(\gamma(t_{j-1}), \gamma(t_{j})) + \rho(\gamma(t_{k}), \gamma(c)) + \rho(\gamma(c), \gamma(t_{k+1})) + \sum_{j=k+2}^{n} \rho(\gamma(t_{j-1}), \gamma(t_{j}))$$

А теперь увидим, что первые два слагаемых $\leq l(\gamma_1)$, а вторые два $\leq l(\gamma_2)$.

Теорема 2.25. $\gamma\colon [a,b] o \mathbb{R}^d$ — гладкий путь. $\gamma=\begin{pmatrix} \gamma_1\\ \gamma_2\\ \vdots\\ \gamma_d \end{pmatrix}$. Тогда:

$$l(\gamma) = \int_{a}^{b} \|\gamma'(t)\| \mathrm{d}t$$

Тогда $m_{\Delta}l(\Delta) \leqslant l(\gamma \Big|_{\Delta}) \leqslant M_{\Delta}l(\Delta).$

Доказательство. Впишем в $\gamma\Big|_{\Delta}$ ломаную. Пусть a_k — длина k-го звена.

По теореме Лагранжа:
$$\gamma_i(t_k) - \gamma_i(t_{k-1}) = \underbrace{\gamma_i'(\xi_{ik})(t_k - t_{k-1})}_{\leqslant m_{\Delta}^{(i)}(t_k - t_{k-1})} \leqslant M_{\Delta}^{(i)}(t_k - t_{k-1})$$

Тогда $m_{\Delta}(t_k-t_{k-1})\leqslant a_k\leqslant M_{\Delta}(t_k-t_{k-1}).$ Просуммируя все такие неравенства получим исходное.

Доказательство теоремы.

$$m_k(x_k - x_{k-1}) \leqslant l(\gamma \Big|_{[x_{k-1}, x_k]}) \leqslant M_k(x_k - x_{k-1})$$

$$\sum_{k=1}^n m_k(x_k - x_{k-1}) \leqslant l(\gamma) \leqslant \sum_{k=1}^n M_k(x_k - x_{k-1})$$

$$m_k(x_k - x_{k-1}) \leqslant \int \sqrt{\gamma'_1(t)^2 + \ldots + \gamma'_d(t)^2} dt \leqslant M_k(x_k - x_{k-1})$$

Докажем, что \square (штука с M_k) минус \bigcirc стремится к нулю. По факту хотим доказать, что $\sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) \to 0$.

Глава #2 39 из 47

Автор: Харитонцев-Беглов Сергей

$$\begin{split} M_k - m_k &= \sqrt{\sum_{i=1}^d (M_{[x_{k-1},x_k]}^{(i)})^2} - \sqrt{\sum_{i=1}^d (m_{[x_{k-1},x_k]}^{(i)})^2} \leqslant (\text{Минковский}) \sqrt{\sum_{i=1}^d (M_{[x_{k-1},x_k]}^{(i)} - m_{[x_{k-1},x_k]}^{(i)})^2} \leqslant \\ &\leqslant \sum_{i=1}^d (M_{[x_{k-1},x_k]}^{(i)} - m_{[x_{k-1},x_k]}^{(i)}) = \sum_{i=1}^d (\gamma_i(\xi_k) - \gamma_i(\eta_k)) \leqslant \sum_{l=1}^d \omega_k(|\tau|) \\ 0 \leqslant \sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) \leqslant \sum_{i=1}^d \omega_k(|\tau|) \cdot \sum_{k=1}^n (x_k - x_{k-1}) \end{split}$$

Следствие.

1.
$$\|\gamma'\| \leqslant C \implies l(\gamma) \leqslant C(b-a)$$

- 2. Длина графика функции $f:[a,b]\to\mathbb{R}$ $l=\int\limits_{-b}^{b}\sqrt{1+f'(x)^2}\mathrm{d}x.$
- 3. Длина в полярных координатах. $r: [\alpha, \beta] \to \mathbb{R}$. Тогда $l = \int_{-\infty}^{\beta} \sqrt{r(\varphi)^2 + r'(\varphi)^2} d\varphi$.

Доказательство. 2. $\gamma(x) = \begin{pmatrix} x \\ f(x) \end{pmatrix}, \gamma'_1(x) = 1, \gamma'_2(x) = f'(x)$, а дальше применить функцию.

3.
$$\gamma(\varphi) = \begin{pmatrix} r(\varphi)\cos\varphi\\ r(\varphi)\sin\varphi \end{pmatrix}$$

Определение 2.39. A — связное множество, если \forall покрытие $A \subset U \cup V, U \cap V = \varnothing \implies$ либо $A \subset U$, либо $A \subset V$, где U, V — открытые.

Пример. 1. [a,b] — связное множество в \mathbb{R} .

2. \mathbb{Q} — несвязное множество в \mathbb{R} . Пример $\mathbb{Q} \subset (-\infty; \sqrt{2}) \cup (\sqrt{2}; +\infty)$.

Теорема 2.26. Непрерывный образ связного множества — связное множество.

Доказательство. A- связное, $f:A\subset X\to Y$ непрерывное. $f(a)\subset U\cup V-$ открытые в Yи $U\cap V=\varnothing$. $A\subset f^{-1}(U)\cup f^{-1}(V)$. $f^{-1}(U)\cap f^{-1}(V)=\varnothing$. A- связное $\implies A\subset f^{-1}(U)$ или $A \subset f^{-1}(V) \implies f(A) \subset U$ или $f(a) \subset V \implies f(A)$ — связно.

Следствие Теорема Больцано-Коши. Пусть A — связное, $a, b \in A$. $f: A \to \mathbb{R}$ непрерывная. Тогда f принимает все промежуточные значения, лежащие между f(a) и f(b).

Доказательство. От противного. Пусть f(a) < C < f(b) и C — не значение. Тогда $f(A) \subset$ $(-\infty, C) \cup (C, +\infty)$. Заметим, что данные множества открытые и не пересекаются. Тогда получили противоречие со связностью f(A).

Теорема 2.27. $\langle a,b\rangle$ — связное подмножество $\mathbb{R}, a,b\in\overline{\mathbb{R}}.$

Доказательство. От противного. Пусть $\langle a,b\rangle\subset U\cap V,\,U\cap V=\varnothing.$

Пусть $f:\langle a,b\rangle \to \mathbb{R}=f(x)= egin{cases} 0 & x\in\langle a,b\rangle\cap U\neq\varnothing \\ 1 & x\in\langle a,b\rangle\cap V\neq\varnothing \end{pmatrix}$ — непрерывная функция. Её прообраз: $\emptyset, \langle a, b \rangle, \langle a, b \rangle \cap U, \langle a, b \rangle \cap V$ — открытые в $\langle a, b \rangle$ множества, но значения $\frac{1}{2}$ не принимаются.

Определение 2.40. A — линейно связно, если $\forall u, v \in A \exists \gamma \colon [a, b] \to A \colon \gamma(a) = u, \gamma(b) = v$.

Теорема 2.28. Линейно связное множество связно.

Доказательство. A — линейно связно, пусть оно не связно $\implies A \subset U \cup V \quad U \cap V = \varnothing$. $A \cap U \neq \varnothing$ и $A \cap V \neq \varnothing$.

Возьмем $u \in A \cap U, v \in A \cap V$ и соединим их путем γ . $\gamma[a,b]$ — связное (как образ отрезка), $\gamma[a,b] \subset A \subset U \cup V \implies \gamma[a,b] \subset U$ или $\gamma[a,b] \subset V$. Противоречие.

Определение 2.41. Область — открытое, линейно связное множество.

Замечание. Если A открыто, то A — связно $\iff A$ — линейно связное.

2.5. Линейные операторы

Определение **2.42.** X, Y — векторные пространства,

 $A: X \to Y$ — линейный оператор, если $\forall x, y \in X, \forall \alpha, \beta \in \mathbb{R} A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$.

Свойства. 1. $A0_X = 0_Y$. Доказательство: $\alpha = 0, \beta = 0$.

2. $A(\sum_{k=1}^{n} x_k) = \sum_{k=1}^{n} \lambda_k A(x_k)$. Доказательство: индукция.

Определение 2.43. A, B — линейный оператор: $X \to Y$.

$$(A+B)(x) \coloneqq A(x) + B(x).$$

$$(\lambda A)(x) = \lambda A(x).$$

То есть получили векторное пространство линейных операторов.

Определение 2.44. $A\colon X\to Y, B\colon Y\to Z$ — линейные операторы $B\circ A\colon X\to Z.$ $(B\circ A)(x)\coloneqq B(A(x)).$

Замечание. Это линейный оператор.

Определение 2.45. Обратный оператор: $A\colon X\to Y,\, B\colon Y\to X$ обратный к A, если $A\circ B=Id_Y$ и $B\circ A=Id_x.$

Свойства. 1. Если обратный оператор \exists , то он единственный.

- 2. $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$.
- 3. $A: X \to X$ обратимые операторы образуют группу по операции композиция.

Доказательство. 1. $B \circ A = Id_X \implies A$ — инъекция. Если $A(x) = A(y) \implies x = B(A(x)) = B(A(y)) = y$.

$$A \circ B = Id_Y \implies A$$
 — суръекция. $A(B(y)) = y$.

Пусть B, C — обратные к A. $B(A(x)) = B \circ A(x) = x = C \circ A(x) = C(A(x)).$

2.
$$((\frac{1}{\lambda}A^{-1}) \circ (\lambda A))(x) = \frac{1}{\lambda}A^{-1}(\lambda A(x)) = x.$$

Пример. $X = \mathbb{R}^n, Y = \mathbb{R}^m$. Можно рассматривать линейные операторы как матрицы бла-бла-бла.

Определение 2.46. $A: R^n \to R^m$. Возьмем базисный вектор e_k — везде, кроме k-ой позиции нули.

Пусть
$$x = \sum_{i=1}^n x_i$$
. Тогда $Ax = A(\sum_{k=1}^n x_k e_k) = \sum_{k=1}^n x_k A_{x_k}$.

То есть получили набор столбцов. Из которого можно получить матрицу.

Определение 2.47. X и Y — нормированные пространства. $A \colon X \to Y$ — линейный оператор. $\|A\| \coloneqq \sup_{\|x\|_X \leqslant 1} \|A_x\|_Y$.

Оператор ограниченный, если его норма конечна.

Замечание. Ограниченные оператор \neq ограниченное отображение.

Линейное отображение + ограниченность $\Longrightarrow = 0$.

Доказательство. Пусть $Ax \neq 0$, тогда $A(\lambda x) = \lambda Ax$, а это уже не ограничено.

Свойства. 1. $||A + B|| \le ||A|| + ||B||$

- 2. $\|\lambda A\| = \|\lambda\| \|A\|$.
- 3. $||A|| = 0 \iff A \equiv 0$.

Доказательство. 1. $\|(A+B)x\|_Y = \|Ax+Bx\|_Y \leqslant \|Ax\|_Y + \|Bx\|_T \iff \sup_{\|x\|_x \leqslant 1} \|(A+B)x\| = \|A+B\| \leqslant \sup_{\|x\|_x \leqslant 1} \|Ax\|_Y + \sup_{\|x\|_x \leqslant 1} \|Bx\|_Y.$

$$2. \ \|\lambda Ax\| = |\lambda| \cdot \|Ax\|. \sup_{\|x\|_x \leqslant 1} \|\lambda Ax\| = |\lambda| \sup_{\|x\|_x \leqslant 1} \|Ax\| = |\lambda| \|A\|.$$

$$3. \Rightarrow ||A|| = 0 \implies ||Ax|| = 0 \implies Ax = 0 \implies Ax = A(\frac{x}{||x||} \cdot ||x||) = ||x||A(\frac{x}{||x||}) = 0.$$

Теорема 2.29. $A: X \to Y$ — линейный оператор. Тогда

$$\|A\| = \sup_{\|x\|_x \leqslant 1} \|Ax\|_Y = \sup_{\|x\|_x = 1} \|Ax\|_Y = \sup_{x \neq 0} \frac{\|Ax\|_Y}{\|x\|_x} = \inf\{c > 0 \mid \|A_x\|_Y \leqslant C\|x\|_X\}.$$

Доказательство. Обозначим за N_i *i*-ый элемент этой цепочки.

 $N_1 \geqslant N_2$ и $N_1 \leqslant N_3$, так как $N_2, N_3 \subset N_1$.

$$N_3 \geqslant N_4$$
. $\frac{\|Ax\|_Y}{\|x\|_X} = \frac{1}{\|x\|} \|Ax\|_Y = \|A\frac{x}{\|x\|}\|_X \leqslant N_3$.

$$N_4 = N_5$$
. $N_5 = \inf\{c > 0 \mid \frac{\|Ax\|_Y}{\|x\|_X} < c\}$

Теперь докажем, что $N_1 \leqslant N_2$. Пусть $||x|| \leqslant 1 \implies ||(1-\varepsilon)x|| \leqslant 1 \implies ||A((1-\varepsilon)x)|| \leqslant N_2$. Воспользуемся линейностью A: вытащим $(1-\varepsilon)$ за скобку. После этого устремим ε к 0. Тогда $||Ax|| \leqslant N_2 \implies N_1 = \sup_{\|x\| \leqslant 1} ||Ax|| \leqslant 1$.

Теперь докажем, что
$$N_1\leqslant N_4$$
. $\|x\|\leqslant 1$. Тогда $y\coloneqq \frac{x}{\|x\|}, \|y\|=1 \implies \|A_y\|\leqslant N_4 \implies \|Ax\|\leqslant \frac{1}{\|x\|\cdot\|Ax\|}=\|A(\frac{x}{\|x\|})\|\leqslant N_4 \implies N_1=\sup_{\|x\|\leqslant 1}\|Ax\|\leqslant N_4.$

Теорема 2.30. $A: X \to Y$ — линейный оператор. Следующие условия равносильны:

- 1. A ограниченный оператор.
- 2. A непрерывна в нуле.

Глава #2 42 из 47

Автор: Харитонцев-Беглов Сергей

- 3. A непрерывна во всех точках.
- 4. A равномерно непрерывна.

Доказательство. $4 \implies 3 \implies 2$ — очевидно.

$$1 \implies 4 \|Ax - Ay\|_Y = \|A(x - y)\|_Y \leqslant \|A\| \cdot \|x - y\|_X$$
. Если $\|x - y\|_X < \frac{\varepsilon}{\|A\|}$, то $\|Ax - Ay\| < \varepsilon$.

 $2\implies 1.$ Возьмем $\varepsilon=1$ и $\delta>0$ из определения непрерывности. $\forall x\in X\colon \|x\|<\delta\implies \|Ax\|<1.$

Пусть
$$\|y\| < 1$$
. Тогда $\|\delta y\| < \delta \implies \|A(\delta y)\| < 1 \implies \|Ay\| < \frac{1}{\delta} \implies \sum_{\|y\| < 1} \|Ay\| \leqslant \frac{1}{\delta}$.

Cnedcmeue. 1. $||Ax||_Y \leqslant ||A|| ||x||_X \quad \forall x \in X$.

2. $||AB|| \le ||A|| \cdot ||B||$.

Доказательство. 2. $||A(Bx)|| \le ||A|| \cdot ||Bx|| \le ||A|| ||B|| ||x||$. $||AB|| = \inf\{c > 0 \mid ||A(Bx)|| \le C||x||\} \implies ||AB|| \le ||A|| ||B||$.

1. а где

Теорема 2.31. $A: \mathbb{R}^n \to \mathbb{R}^m$. $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$.

Тогда $||A||^2 \leqslant \sum_{k=1}^n \sum_{i=1}^m a_{jk}^2$. В частности, все такие операторы ограничены.

Доказательство. $||Ax||^2 = \sum_{j=1}^m \left(\sum_{k=1}^n a_{jk} x_k\right)^2 \leqslant$ (Коши-Буняковский) $\sum_{j=1}^m \sum_{k=1}^n a_{jk}^2 \sum_{k=1}^n x_k^2$. Следова-

тельно, $||Ax|| \leqslant ||x|| \sqrt{\sum_{k=1}^{m} \sum_{j=1}^{n} a_{jk}^2} /$

Замечание. В бесконечномерном случае бывают неограниченные операторы.

3. Ряды

3.1. Ряды в нормированных пространствах

Определение 3.1. X — пространство с нормой, $x_n \in X$.

$$\sum\limits_{k=1}^{\infty}x_k$$
 — ряд. Частичная сумма ряда $S_n\coloneqq\sum\limits_{k=1}^nx_k.$

Если $\exists \lim_{n \to \infty}$, то он называется суммой ряда.

Ряд сходится, если у него есть сумма (и для \mathbb{R} эта сумма конечна), иначе она бесконечна.

Теорема 3.1 (Необходимое условие сходимости). Если ряд $\sum_{n=1}^{\infty} x_k$ — сходится, то $\lim x_n = 0$.

Доказательство.
$$S_n := \sum_{k=1}^n x_k \to S \implies \underbrace{S_n - S_{n-1}}_{x_n} \to S - S = 0.$$

Свойства. 1. Линейность.
$$\sum_{n=1}^{\infty} (\alpha x_n + \beta y_n) = \alpha \sum_{n=1}^{\infty} x_n + \beta \sum_{n=1}^{\infty} y_n.$$

2. Расстановка скобок. В ряду произвольным образом можно ставить скобки, то расстановка скобок дает тот же результат.

Набросок доказательства: мы просто смотрим на предел подпоследовательности.

3. В \mathbb{C} и \mathbb{R}^n сходимость равносильна покоординатной сходимости.

Теорема 3.2 (Критерий Коши). X — полное нормированное пространство.

Тогда ряд
$$\sum\limits_{n=1}^{\infty}x_n$$
 сходится $\iff \forall \varepsilon>0 \exists N \forall m,n\geqslant N \colon \|\sum\limits_{k=m}^nx_j\|<\varepsilon.$

Доказательство. $S_n \coloneqq \sum_{k=1}^n x_k$. Последовательность S_n сходится $\iff S_n$ — фундаментальная

$$\iff \forall \varepsilon > 0 \exists N \forall m, n > N : ||S_n - S_m|| < \varepsilon \iff ||\sum_{k=m+1}^n x_k|| < \varepsilon.$$

Определение 3.2. Ряд $\sum_{n=1}^{\infty} x_n$ сходится абсолютно, если $\sum_{n=1}^{\infty} \|x_n\|$ сходится.

Замечание. В частности, в $\mathbb R$ абсолютная сходимость — сходимость ряда $\sum\limits_{n=1}^\infty \|x_n\|.$

Теорема 3.3. X — полное нормированное пространство.

Если $\sum_{n=1}^{\infty} x_n$ абсолютно сходится, то он абсолютно сходится.

Доказательство. Пусть $\sum\limits_{n=1}^{\infty}\|x_n\|$ — сходится. Тогда $\forall \varepsilon>0 \exists N \forall m,n\geqslant N$: $\sum\limits_{k=m+1}^{n}\|x_k\|<\varepsilon$. Воспользуемся свойством о том, что сумма норм не меньше, чем норма суммы. А значит получили $\forall \varepsilon>0 \exists N \forall m,n\geqslant N$: $\|\sum\limits_{k=m+1}^{n}x_k\|<\varepsilon$, что является критерием Коши для исходной последовательности.

Теорема 3.4. 1. X — нормированное пространство. Если $\lim x_n = 0$ и в каждой скобке $\leq M$ слагаемых то из сходимости ряда после расстановки скобок следует сходимость исходиного

 $2. \ \mathbb{R}. \$ Если в каждой скобке все члены одного знака, то из сходимости ряда после расстановки скобок следует сходимость исходного.

Доказательство. $S_n := \sum_{k=1}^n x_k$ и $S_{n_k} \to S$.

- 1. Возьмем $n: n_k \leqslant n < n_{k+1}.$ $S_n = S_{n_k} + x_{n_k} + x_{n_k+1} + x_{n_k+2} + \ldots + x_n.$ $\|S_n S\| \leqslant \|S_{n_k} S\| + \|x_{n_k+1}\| + \ldots + \|x_n\|.$ Мы знаем, что $S_{n_k} \to S \implies \exists K \forall k \geqslant K: \|S_{n_k} S\| < \varepsilon.$ $\lim x_j = 0 \implies \exists J \forall j \geqslant J \|x_j\| < \varepsilon.$ Следовательно исходная сумма не более (M+1)S.
- 2. $n_k \leqslant n < n_{k+1}$. Пусть в этом блоке неотрицательные слагаемые. $S_n = S_{n_k} + x_{n_k+1} + x_{n_k+2} + \dots + x_n \geqslant S_{n_k}$. А еще знаем, что $S_n = S_{n_{k+1}} x_{n_{k+1}} x_{n_{k+1}-1} \dots x_{n+1} \leqslant S_{n_{k+1}}$. Откуда получаем, что $S_{n_k} \leqslant S_n \leqslant S_{n_{k+1}}$.

3.2. Знакопостоянные ряды

Теорема 3.5. Пусть $a_n \geqslant 0$.

Тогда сходимость ряда $\sum_{n=1}^{\infty} a_n$ равносильная ограниченности последовательности $S_n = \sum_{k=1}^n a_k$.

Доказательство. $S_1 \leqslant S_2 \leqslant \dots$ Монотонная возрастающая последовательность имеет предел \iff она ограничена.

Теорема 3.6 (Признак сравнения). Пусть $0 \le a_n \le b_n$. Тогда

- 1. Если $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится.
- 2. Если $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. 1. $A_n := \sum_{k=1}^n a_k \leqslant \sum_{k=1}^n b_k = B_n$.

 $\sum b_n -$ сходится $\implies B_n -$ ограничена $\implies A_n$ ограничена $\implies \sum a_n$ сходится.

2. Отрицание 1.

Следствие. 1. Пусть $a_n, b_n \geqslant 0$. Если $a_n = \mathcal{O}(b_n)$ и $\sum_{n=1}^{\infty} b_n$ — сходится, то $\sum_{n=1}^{\infty} a_n$ — сходится.

2. Пусть $a_n, b_n \geqslant 0$, Если $a_n \sim b_n$, то ряды ведут себя одинаково.

Доказательство. 1. $a_n = \mathcal{O}(b_n) \implies 0 \leqslant a_n \leqslant Cb_n$. $\sum_{n=1}^{\infty} Cb_n = C\sum_{n=1}^{\infty} b_n - \text{сходится} \implies \sum a_n - \text{сходится}$.

2. $a_n = b_n c_n$, где $\lim c_n = 1 \implies \frac{1}{2} \leqslant c_n \leqslant 2$ при $n \geqslant N$. Тогда $a_n = \mathcal{O}(b_n)$ и $b_n = \mathcal{O}(a_n)$.

Теорема 3.7 (Признак Коши). Пусть $a_n \geqslant 0$.

- 1. Если $\sqrt[n]{a_n} \leqslant q < 1$, то ряд сходится.
- 2. $\sqrt[n]{a_n} > 1$, то ряд расходится.
- 3. Пусть $\overline{\lim} \sqrt[n]{a_n} =: q^*$. Если $q^* > 1$, то ряд расходится, если $q^* < 1$, то ряд сходится.

Замечание. Если $q^* = 1$, то ряд может сходиться, а может расходиться. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ — сходится, $\sqrt[n]{\frac{1}{n(n+1)}} \to 1$.

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 — расходится. $\sqrt[n]{a_n} = \frac{1}{\sqrt[n]{n}} \to 1$.

Доказательство. 1. $\sqrt[n]{a_n} \leqslant q < 1 \implies a_n \leqslant q^n$. По признаку сравнения с геометрической прогрессией $\sum_{n=1}^{\infty} q^n - \text{сходится}$.

- 2. $\sqrt[n]{a_n} \geqslant 1 \implies a_n \not\to 0 \implies$ расходится.
- 3. Если $q^* > 1$. Найдется $n_k : \sqrt[n_k]{a_{n_k}} \to q^* > 1$ (по определению верхнего предела) \Longrightarrow начиная с некоторого номера $\sqrt[n_k]{a_{n_k}} > 1 \Longrightarrow a_{n_k} > 1 \Longrightarrow a_n \not 0$ и ряд расходится. Если $q^* < 1$, $q^* = \lim_{n \to \infty} \sup_{k \ge n} \sqrt[k]{a_k} \Longrightarrow$ для больших $n \sup_{k \ge n} \sqrt[k]{a_k} < q < 1$. Но при этом $\sqrt[n]{a_n} \leqslant \sup_{k \ge n} \sqrt[k]{a_k}$, а значит $\sqrt[n]{a_n} < q$ при больших $n \Longrightarrow$ ряд сходится.

Теорема 3.8 (Признак Даламбера). Пусть $a_n > 0$. Тогда

- 1. $\frac{a_{n+1}}{a_n} \le d < 1$, то ряд сходится.
- 2. Если $\frac{a_{n+1}}{a_n} \geqslant 1$, то ряд расходится.
- 3. Пусть $\lim \frac{a_{n+1}}{a_n} = d^*$. Если $d^* < 1$, то ряд сходится. Если $d^* > 1$, то ряд расходится.

Замечание. С единицей все еще ничего непонятно. Смотри предыдущие примеры.

Доказательство. 1. $\frac{a_n}{a_1} = \frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \ldots \cdot \frac{a_2}{a_1} \leqslant d^{n-1}$. $a_n \leqslant d^{n-1} \cdot a_1$ и ряд мажорируется геометрической прогрессией $\sum_{n=1}^{\infty} a_1 \cdot d^{n-1}$. Она сходится $\Longrightarrow \sum_{n=1}^{\infty} a_n$ — сходится.

- 2. $a_{n+1}\geqslant a_n\implies a_n\geqslant a_1>0$ и $a_n\not\to 0\implies$ ряд расходится.
- 3. Если $d^* > 1$. Тогда $\frac{a_{n+1}}{a_n} \geqslant 1$ при $n \geqslant N \implies a_n \geqslant a_N > 0 \quad \forall n \geqslant N \implies a_n \not \to 0$ и ряд расходится.

Если $d^* < 1$. Так как $\lim \frac{a_{n+1}}{a_n} = d^* \implies \frac{a_{n+1}}{a_n} < d$ при $n \geqslant N \implies$ ряд сходится по признаку 1.

Пример. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Даламбер. $\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} : \frac{x^n}{n!} = \frac{x}{n+1} \to 0 < 1$. Ряд сходится.

Коши. $\sqrt[n]{a_n} = \sqrt[n]{\frac{x^n}{n!}} = \frac{x}{\sqrt[n]{n!}} \sim \frac{x}{\sqrt[n]{n^n e^{-n} \sqrt{2\pi n}}} = \frac{x}{ne^{-1} \sqrt[2n]{2\pi n}} \sim \frac{xe}{n} \to 0.$

Теорема 3.9. Пусть $a_n > 0$ и $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = d^*$. Тогда $\lim \sqrt[n]{a_n} = d^*$.

Доказательство. $\lim \frac{a_{n+1}}{a_n} = d^* \implies \lim \frac{\ln a_{n+1} - \ln a_n}{(n+1) - n} = \ln d^* \stackrel{\text{т. Штольца}}{=\!=\!=\!=} \lim \frac{\ln a_n}{n} = \ln d^* \implies \sqrt[n]{a_n} = d^*.$

Теорема 3.10. Пусть f неотрицательная монотонная : $[1, +\infty) \to \mathbb{R}$. Тогда:

$$\left| \sum_{k=a}^{b} f(k) - \int_{a}^{b} f(x) dx \right| \leq \max\{f(a), f(b)\}.$$

Доказательство. Картинка :(

$$\sum_{k=a}^{b-1} f(k) \geqslant \int_{a}^{b} f(x) dx \geqslant \sum_{k=a+1}^{b} f(k).$$
TODO.

Теорема 3.11 (интегральный признак сходимости ряда). Пусть $f:[1,+\infty)\to\mathbb{R}$ неотрицательная, монотонно убывающая.

Тогда $\sum_{n=1}^{\infty} f(n)$ и $\int_{1}^{\infty} f(x) dx$ ведут себя одинаково.

Доказательство. По предыдущей теореме $S_n :== \sum_{k=1}^n f(k) \geqslant \int\limits_1^n f(x) \mathrm{d}x \geqslant \sum_{k=2}^n f(k) = S_n - f(1).$

Если ряд сходится, то S_n — ограничена $\Longrightarrow \int_1^n f(x) dx \Longrightarrow F(x) = \lim_1^x f$ — ограничена.

Если \int сходится $\Longrightarrow \int_1^n f$ — ограничена $\Longrightarrow S_n$ — ограничена \Longrightarrow ряд расходится. \square

Пример. 1. $\sum_{n=1}^{\infty} \frac{1}{n^p}$, p > 0 (иначе члены ряда $\neq 0$ и ряд расходится).

 $f(x)=rac{1}{x^p}.$ Монотонно убывает. $\sum rac{1}{n^p}$ и $\int\limits_1^\infty rac{\mathrm{d}x}{x^p}$ ведут себя одинаково: сходятся при p>1.

2. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$. $f(x) = \frac{1}{x \ln x}$ монотонно убывает. Поэтому $\int\limits_{2}^{\infty} \frac{\mathrm{d}x}{x \ln x}$ и $\sum\limits_{n=2}^{\infty} \frac{1}{n \ln n}$ ведут себя одинаково. Там можно посчитать интеграл.

Следствие. 1. Если $a_n > 0$ и $a_n = \mathcal{O}(\frac{1}{n^p})$ при p > 1.

2. Если $a_n>0$ и $a_n\sim \frac{c}{n^p},$ то при p>1 ряд $\sum a_n$ — сходится, а иначе расходится.