Problem Set 1-STAT 7200

- 1. Let *A* be a $p \times q$ matrix, and let *B* be a $q \times p$ matrix.
 - (a) Prove that det(I + AB) = det(I + BA).
 - (b) Prove that *AB* and *BA* have the same nonzero eigenvalues.
- 2. Let $\mathbf{x} \in \mathbb{R}^p$, and let *A* be a $p \times p$ symmetric matrix. Prove that

$$\frac{\partial \mathbf{x}^T A \mathbf{x}}{\partial \mathbf{x}} = 2A \mathbf{x}.$$

- 3. Let (X,Y) be uniformly distributed on the unit disk $D = \{(x,y) \mid x^2 + y^2 \le 1\}$. Let $R = \sqrt{X^2 + Y^2}$. Find the distribution and the density function of R.
- 4. Let $X, Y \sim U(0,1)$ be independent. Find the density functions of U = X Y and V = X/Y.
- 5. Find the characteristic function of the binomial, Poisson, and chi-square distributions.
- 6. Let $X_1, ..., X_n \sim Exp(\beta)$. Find the characteristic function of X_i . Use the result to prove that $\sum_{i=1}^n X_i \sim \text{Gamma}(n, \beta)$.
- 7. Reduce the multivariate Central Limit Theorem to the univariate CLT, i.e. assuming the univariate result, prove the multivariate one.

8. Let $(X_{11}, X_{21}), \dots, (X_{1n}, X_{2n})$ be a random sample with mean $\mu = (\mu_1, \mu_2)$ and variance Σ . Let

$$\bar{X}_1 = \frac{1}{n} \sum_{i=1}^n X_{1i}, \qquad \bar{X}_2 = \frac{1}{n} \sum_{i=1}^n X_{2i}.$$

Define $Y_n = \bar{X}_1/\bar{X}_2$. Find the limiting distribution of the sequence Y_n .