Week 2: Part 2

Recursion, Recurrences & Running time

Methods for Solving Recurrences

- Iteration method
- Substitution method
- Recursion tree method
- Master method
- Muster method

The Iteration Method

- Convert the recurrence into a summation and try to bound it using a known series
 - Iterate the recurrence until the initial condition is reached.
 - Use back-substitution to express the recurrence in terms of *n* and the initial (boundary) condition.

Iteration Method – Binary Search

$$T(n) = c + T(n/2)$$
 $T(n) = c + T(n/2)$
 $T(n/2) = c + T(n/4)$
 $T(n/2) = c + T(n/4)$
 $T(n/4) = c + T(n/8)$
 $T(n/4) = c + T(n/8)$
Stop when $n/2^i = 1$ => $i = lgn$
 $T(n) = c + c + ... + c + T(1)$
 $n \text{ times}$
 $T(n) = c + c + ... + c + T(1)$
 $T(n) = c + c + ... + c + T(1)$
 $T(n) = c + c + ... + c + T(1)$
 $T(n) = c + c + ... + c + T(1)$
 $T(n) = c + c + ... + c + T(1)$
 $T(n) = c + c + ... + c + T(1)$
 $T(n) = c + c + ... + c + T(1)$

Iteration - Mergesort

$$T(n) = n + 2T(n/2)$$

$$T(n) = n + 2T(n/2) \qquad T(n/2) = n/2 + 2T(n/4)$$

$$= n + 2(n/2 + 2T(n/4))$$

$$= n + n + 4T(n/4)$$

$$= n + n + 4(n/4 + 2T(n/8))$$

$$= n + n + n + 8T(n/8)$$
... = in + 2ⁱT(n/2ⁱ) stop at i = Ign
$$= nIgn + 2^{Ign}T(1)$$

$$= nIgn + nT(1)$$

$$= \Theta(nIgn)$$

Substitution Method

Guess a solution

$$T(n) = O(g(n))$$

Induction goal: apply the definition of the asymptotic notation

$$T(n) \le c g(n)$$
, for some $c > 0$ and $n \ge n_0$

- Induction hypothesis: $T(k) \le c g(k)$ for all k < n
- Prove the induction goal
 - Use the **induction hypothesis** to find some values of the constants c and n_0 for which the **induction goal** holds

Substitution: T(n) = T(n-1)+T(n-2)

Guess: $T(n) = O(\phi^n)$

Induction goal: $T(n) \le c\phi^n$, for some c and $n \ge n_0$

- Induction hypothesis: $T(k) \le c\phi^k$ for k < n
- Proof of induction goal:

$$T(n) = T(n-1) + T(n-2)$$

$$\leq c\phi^{n-1} + c\phi^{n-2}$$

$$\leq c\phi^{n-2} (\phi + 1)$$

$$\leq c\phi^{n-2} (\phi^{2})$$

$$T(n) \leq c \phi^{n}$$

$$T(n) = O(\phi^{n})$$

Properties

$$\Phi = \frac{1+\sqrt{5}}{2}$$

$$\Phi^2 = \frac{3+\sqrt{5}}{2}$$

$$\Phi + 1 = \Phi^2$$

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- Convert the recurrence into a tree:
 - Each node represents the cost incurred at various levels of recursion
 - Sum up the costs of all levels
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- Usually involves geometric series

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

T(*n*)


```
Solve T(n) = T(n/4) + T(n/2) + n^2:
Solve T(n) = T(n/4) + T(n/2) + n^2:
```


$$(n/4)^{2} \qquad n^{2} \qquad n^{2}$$

$$(n/4)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$n^{2} \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^{2} + \left(\frac{5}{16}\right)^{3} + \cdots\right)$$

$$= O(n^{2})$$

$$= n^{2}$$

Geometric series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \quad \text{for } x \neq 1$$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

$$n^{2}\left(1+\frac{5}{16}+\left(\frac{5}{16}\right)^{2}+\left(\frac{5}{16}\right)^{3}+\cdots\right)=n^{2}\left(\frac{1}{1-\frac{5}{16}}\right)=\frac{16}{11}n^{2}$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^{2} \qquad n^{2} \qquad n^{2} \qquad 5 \\ (n/4)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$O(1) \qquad Total \geq n^{2} = \Omega(n^{2})$$

Therefore $T(n) = \Theta(n^2)$

Recursion Tree – Example 2

$$T(n) = T(n/3) + T(2n/3) + n$$

 The longest path from the root to a leaf is:

$$n \rightarrow (2/3)n \rightarrow (2/3)^2 \ n \rightarrow \dots \rightarrow 1$$

- Subproblem size hits 1 when $1 = (2/3)^{i}n \Leftrightarrow i = \log_{3/2}n$
- cost of the problem at level i = n
- Total cost:

T(n)
$$< n + n + ... = n(\log_{3/2} n) = n \frac{\lg n}{\lg \frac{3}{2}} = O(n \lg n)$$

$$\Rightarrow$$
 T(n) = O(nlgn)

The Master Method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Idea of Master Method

Idea of Master Method

Case 1

Ex.
$$T(n) = 4T(n/2) + n$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$$

CASE 1:
$$f(n) = O(n^{2-\varepsilon})$$
 for $\varepsilon = 1$.

$$T(n) = \Theta(n^2)$$
.

Idea of Master Method

Case 2

Ex.
$$T(n) = 4T(n/2) + n^2$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$$

CASE 2:
$$f(n) = \Theta(n^2)$$

$$\therefore T(n) = \Theta(n^2 \lg n).$$

Idea of master theorem

Case 3

Ex.
$$T(n) = 4T(n/2) + n^3$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$$

CASE 3:
$$f(n) = \Omega(n^{2+\epsilon})$$
 for $\epsilon = 1$ *and*

$$4(cn/2)^3 \le cn^3$$
 (reg. cond.) for $c = 1/2$.

$$T(n) = \Theta(n^3)$$
.

No Cases

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$$

Master method does not apply.

Master Method

"Formula" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

case 1: if
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

case 2: if
$$f(n) = \Theta(n^{\log_b a})$$
, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

case 3: if
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for some $\epsilon > 0$, and if

 $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then:

$$T(n) = \Theta(f(n))$$
 regularity

Master Method – Binary Search

$$T(n) = T(n/2) + c$$

$$a = 1$$
, $b = 2$, $log_2 1 = 0$

compare $n^{\log_2 1} = n^0 = 1$ with f(n) = c

Case 2: if
$$f(n) = \Theta(n^{\log_b a})$$
, then: $T(n) = \Theta(n^{\log_b a} \log n)$

$$f(n) = \Theta(1) \Rightarrow case 2$$

$$\Rightarrow$$
 T(n) = Θ (lgn)

Master Method – Example 1

$$T(n) = 2T(n/2) + n^2 \qquad a = 2, b = 2, \log_2 2 = 1$$

$$compare \ n \ with \ f(n) = n^2$$

$$case \ 3: \ if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ for \ some \ \epsilon > 0$$

$$\Rightarrow f(n) = \Omega(n^{1+\epsilon}) \ case \ 3 \Rightarrow verify \ regularity \ cond.$$

$$a \ f(n/b) \le c \ f(n)$$

$$\Leftrightarrow 2 \ n^2/4 \le c \ n^2 \Rightarrow c = \frac{1}{2} \ is \ a \ solution \ (c<1)$$

$$\Rightarrow T(n) = \Theta(n^2)$$

Master Method – Example 2

T(n) = 2T(n/2) +
$$\sqrt{n}$$
 a = 2, b = 2, $\log_2 2 = 1$

compare n with $f(n) = n^{1/2}$

$$\Rightarrow$$
 f(n) = O(n^{1-\varepsilon}) case 1

$$\Rightarrow T(n) = \Theta(n)$$

Master Method - Example 3

Master Method: Merge-Sort

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

where, a = 2, b = 2, and f(n) = n $n^{\log_b a} = n^{\log_2 2} = n$

case 1: if $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

case 2: if $f(n) = \Theta(n^{\log_b a})$, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

case 3: if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if

$$T(n) = \Theta(nlgn)$$

Decrease and Conquer

Muster Theorem for "decrease and conquer" recurrences of the form

$$T(n) = a T(n-b) + f(n)$$

for some integer constants $a, b > 0, d \ge 0$.

If f(n) is $O(n^d)$ then

$$T(n) = \begin{cases} O(n^d), & if \ a < 1, \\ O(n^{d+1}), & if \ a = 1 \\ O(n^d a^{n/b}), & if \ a > 1. \end{cases}$$

Decrease and Conquer: Towers

$$T(n) = 2 T(n-1) + 1$$

$$T(n) = a T(n-b) + f(n)$$

 $a = 2$, $b = 1$, $f(n) = 1$ so $d = 0$.

$$T(n) = \begin{cases} O(n^d), & \text{if } a < 1, \\ O(n^{d+1}), & \text{if } a = 1 \\ O(n^d a^{n/b}), & \text{if } a > 1. \end{cases}$$

T(n) is $O(2^n)$ even better

f(n) is $\Theta(n^d)$ so we could conclude that T(n) is $\Theta(2^n)$.