Conversions binaire – décimal – hexadécimal

Sciences de l'ingénieur - Première spécialité

Décimal	Hexadécimal	Binaire			
		2 ³	22	21	20
0	0	0	0	0	0
1	1	0	0	0	1
2	2	0	0	1	0
3	3	0	0	1	1
4	4	0	1	0	0
5	5	0	1	0	1
6	6	0	1	1	0
7	7	0	1	1	1
8	8	1	0	0	0
9	9	1	0	0	1
10	Α	1	0	1	0
11	В	1	0	1	1
12	С	1	1	0	0
13	D	1	1	0	1
14	E	1	1	1	0
15	F	1	1	1	1

Figure 1: tableau de conversion des chiffres en base 2, 10 et 16

1. Conversion B vers décimal

 $N_{10} = a_n \times B^n + \cdots + a_1 \times B^1 + a_0 \times B^0 + a_{-1} \times B^{-1} + \cdots + a_{-m} \times B^{-m}$

N : nombre en base 10

B : base (2 pour binaire, 16 pour hexadécimal)

 a_i : chiffre de rang i; son poids est B^i

2. Conversion décimal vers B

Figure 2 : schéma des divisions successives

3. Conversion binaire-hexadécimal

Binaire vers hexadécimal : regrouper en partant de la droite les chiffres par série de 4 et remplacer le groupe par son équivalent hexadécimal (cf. figure 1)

Hexadécimal vers binaire: remplacer chaque chiffre par son équivalent binaire (cf. figure 1)