MDM Lista 11

Weronika Jakimowicz

ZAD. 1.

Dane jest drzewo T oraz jego automorfizm ϕ . Udowodnij, że istnieje wierzchołek v taki, że $\phi(v) = v$ lub istnieje krawędź $\{u, v\}$ taka, że $\phi(\{u, v\}) = \{u, v\}$

......

Niech n będzie liczbą wierzchołków w drzewie T. Dla n = 1 mamy drzewo o jednym wierzchołku i tylko jeden automorfizm na nim - identyczność, która zachowuje nie tylko wierzchołki, ale i (nieistniejące) krawędzie. Dla n = 2 mamy tylko jedną krawędź i dwa punkty, więc ta jedyna krawędź zawsze musi przejść na samą siebie.

Załóżmy teraz, że dla wszystkich drzew o co najwyżej n wierzchołkach teza jest prawdziwa. Niech |T| = n + 1. Zauważmy, że jeśli ϕ jest automorfizmem na T, a $v \in T$ jest jego dowolnym liściem, to $\phi(v)$ musi nadal być liściem - inaczej v stopnia 1 przeszłoby na wierzchołek będący węzłem, a więc mający co najmniej stopień 2 i takie ϕ nie mogłoby być automorfizmem na T.

Wiemy też, że w drzewie jest na pewno jeden wierzchołek stopnia 1, niech więc

$$L = \{v \in T : d(v) = 1\}$$

będzie wierzchołkiem wszystkich liści, który na pewno jest niepusty. Niech T' = T\L. Wtedy jeśli ϕ' jest automorfizmem na T', to na mocy założenia indukcyjnego ϕ' spełnia tezę. Z uwagi wyżej wiemy, że liście muszą przejść na siebie, więc jeśli będziemy rozszerzać ϕ' do całego T, to $\phi[L]$ = L, czyli nie wpływa na poprawność tezy dla rozszerzenia ϕ' do całego T.

ZAD. 2.

Graf prosty G jest samodopełniający wtedy i tylko wtedy, gdy jest izomorficzny ze swym dopełnieniem. Pokaż, że samodopełniający graf n wierzchołkowy istnieje dokładnie wtedy, gdy n $\equiv 0$ lub n $\equiv 1 \mod 4$

.....

Graf pełny o n wierzchołkach ma $\frac{n(n-1)}{2}$ krawędzi. My chcemy je rozdzielić po równo między dopełnienie i graf sam w sobie, czyli musimy być w stanie liczbę krawędzi K_n podzielić dodatkowo na 2, a więc n(n-1) musi być podzielne przez 4. Jest to wtedy, gdy

 $n \equiv 0 \mod 4$

lub

 $(n-1) \equiv 0 \mod 4$ $n \equiv 1 \mod 4$.

ZAD. 3.

Niech $C_1, C_2, ..., C_{m-n-1}$ będą zbiorami krawędzi wszystkich (m – n+1) cykli otrzymanych poprzez dodanie do drzewa spinającego T grafu prostego G jednej krawędzi G która nie należy do T. Pokaż, że zbiór krawędzi dowolnego cyklu w G jest różnica symetryczną pewnej liczby zbiorów wybranych spośród $C_1, C_2, ..., C_{m-n-1}$.

.....

No ale to widać