Моделирование аукционов. Домашняя работа - 3.

- 1. Можно решать задачи в любом порядке.
- 2. При подозрении на опечатку спрашивайте в блоге!
- 3. Насколько подробно все расписывать решай сам исходя из конкретной ситуации. Очевидно, что в примере 1+2+3=? ответ можно написать сразу, а взятие интеграла $\int x^5 \cos(x) dx$ требует каких-то промежуточных записей.
- 4. Паниковать при решении домашки строжайше запрещено!
- 5. Для каждой задачи обязательно нужно спрогнозировать свою оценку. Не надо скромничать, лучше попытаться объективно оценить свое решение. За неверное оценивание баллы снижаться не будут, а верное оценивание даст возможность чему-то научиться. Опыт показывает, что оценка своих собственных решений позволяет резко улучшить их качество. Прогноз своей оценки пишем в табличку!
- 6. Не забудь подписать свою работу. Пожалуйста!

Имя:	
Отчество:	
Фамилия:	
Группа:	

	Задача 1	Задача 2	Задача 3	Задача 4	Задача 5	Итого
Прогноз оценки						
Оценка (от 0 до 5)						

- 1. Техническая задача.
 - (a) Выразите $(a+c) \lor (b+c)$ через $a \lor b$. Выразите $(a+c) \land (b+c)$ через $a \land b$.
 - (b) Случайные величины $Z_1, ..., Z_n$ аффилированы между собой. Случайные величины $W_1, ..., W_k$ аффилированы между собой. Набор случайных величин $Z_1, ..., Z_n$ не зависит от набора $W_1, ..., W_k$. Верно ли, что набор случайных величин $Z_1, ..., Z_n, W_1, ..., W_k$ аффилирован?
- 2. Пусть V общая ценность товара для двух игроков, равномерна на [1;2]. Величины R_1 и R_2 независимы между собой и с V и равномерны на [-0.5;0.5]. По смыслу: R_1 и R_2 это ошибки игроков при подсчете ценности товара V. Игроки получают сигналы $X_i = V + R_i$, т.е. игроки знают ценность V с ошибкой.
 - (а) Найдите совместную функцию плотности X_1 и X_2 . Верно ли, что X_1 и X_2 аффилированны?
 - (b) Найдите $v(x,y) = E(V|X_1 = x, Y_1 = y)$. Найдите равновесие Нэша на аукционе второй цены.
 - (c) Найдите совместную функцию плотности X_1 и Y_1 , g(x,y)

Hint: В решении контрольной есть похожая задача. А g(x,y) можно неплохо упростить пользуясь предыдущей задачей.

- 3. Пусть R_1 , R_2 и S равномерны на [0;1] и независимы. Ценность товара для первого игрока, $V_1=0.8X_1+0.2X_2$ и для второго $V_2=0.8X_2+0.2X_1$. Первый игрок получает сигнал $X_1=S+R_1$. Второй игрок получает сигнал $X_2=S+R_2$.
 - (a) Найдите g(x,y), R(y|x) и $v(x,y) = E(V|X_1 = x, Y_1 = y)$
 - (b) Используя предыдущие функции найдите равновесие Нэша на аукционе второй цены, первой цены и кнопочном аукционе
- 4. Продолжение задачи 2 с контрольной (можно использовать все полученные в ней результаты). На аукционе продается картина, которая равновероятно является «Джокондой» Леонардо да Винчи или ее подделкой. За нее торгуются п покупателей. Ценность картины для всех покупателей одинакова, V₁ = V₂ = ... = V_n = V и равна 1, если это оригинал и 0, если подделка.

Если V=0, то сигналы X_i условно независимы и равномерны на [0;1]. Если V=1, то сигналы X_i условно независимы и имеют функцию плотности f(x|V=1)=2x при $x\in[0;1]$

- (а) Найдите равновесие Нэша на аукционе второй цены
- (b) Найдите $E(V|X_1=x_1,X_2=x_2,X_3=x_3...X_n=x_n)$
- (c) С помощью предыдущего пункта найдите функции $b^n(x)$, $b^{n-1}(x,p_n)$ и $b^{n-2}(x,p_{n-1},p_n)$ в равновесии Нэша на кнопочном аукционе
- 5. Лекция 3 получилась трудной технически. Помогите будущим студентам ее понять! Придумайте задачу на тему лекции 3. Решите придуманную задачу. Можно пойти по простому пути взять уже имеющуюся задачу и поменять в ней что-нибудь. Можно попытаться придумать что-то своё, оригинальное. Оригинальные и красивые задачи с решениями могут получить оценку существенно выше 5 баллов.