MODELOS COGNITIVOS

Luís Morgado
ISEL-ADEETC

DESENVOLVIMENTO FILOGENÉTICO DE DIFERENTES COMPONENTES DO COMPORTAMENTO

(adaptado de [Shepherd, 1994])

INTELIGÊNCIA

Mundo externo

- Percepção
- Acção

Comportamento

- Propósito
- Adaptação
- Inovação

Mundo interno

- Modelos do mundo
- O que fazer
- Como fazer

PERCEPÇÃO DO MUNDO

O PROBLEMA DA REPRESENTAÇÃO

Como gerar uma representação interna do mundo adequada para suporte de processamento cognitivo eficiente

MODELO COGNITIVO

- Representação de um domínio de descrição (problema, sistema) a nível cognitivo
 - Modelação de processos cognitivos
 - Percepção
 - Representação de conhecimento
 - Aprendizagem
 - Raciocínio
- Perspectiva computacional
 - Modelo computacional
 - Simbólico
 - Sub-simbólico

- Fenómeno
 - Características
 - Dimensões de categorização
 - Categoria
 - Vectores de características
 - Espaços de características

Percepção

Feature vector

- Conceito
 - Propriedades
 - Características
 - Conceitos

» ...

Estruturação a diferentes níveis de organização

FORMAÇÃO DE CONCEITOS

ESPAÇO DE CARACTERÍSTICAS (FEATURE SPACE)

Posições específicas representam **instâncias** de percepção (e.g. **objectos**)

Proximidade Agrupamento Categorização

Regiões representam propriedades e conceitos

FORMAÇÃO DE CONCEITOS

Conceito: ave

Propriedades: cobertura, patas, ...

Domínios:

cobertura = {cor, textura, ...}
patas = {cor, número, ... }

Dimensões:

cor= $\{R, G, B\}$ número = N^0

REPRESENTAÇÃO DE CONCEITOS

ESTRUTURAS SIMBÓLICAS

Conceitos representados por estruturas simbólicas organizadas a diferentes níveis de descrição

ave é um animal
ave tem cobertura de penas

cobertura tem textura
cobertura tem cor

cor é composta por R, G, B
número é inteiro

REPRESENTAÇÃO DE ACÇÃO

PLANEAMENTO DE ACÇÃO

- Como representar internamente o mundo?
- Como processar a representação do mundo para gerar um plano de acção?

MODELO DO MUNDO

- Suporte para o planeamento de acção
- Mapa cognitivo (Tolman, 1948)
 - Representação espacial do ambiente mantida internamente
 - Serve para manter informação acerca da localização e características de experiências (objectos, situações) num ambiente espacial

MAPA COGNITIVO

Representação espacial do ambiente mantida internamente

Refere-se a um **espaço**

- Físico
- Abstracto

Raciocínio espacial

Gerado a partir da interacção com o ambiente

[Schmidt & Redish, 2013]

MAPA COGNITIVO

Figure 2: (a.) Simple maze with places p_i (i = 1, ..., 7) and views v_j (j = 1, ..., 12). One can think of the views as visual input available during approaching a junction through the corresponding corridor (e.g. pictures attached to the maze walls in the direction of heading, or visual information gathered along the corridor). (b.) Directed place graph of the maze, with corridors c_j corresponding to the views v_j .

Pode ter diferentes formas de

REPRESENTAÇÃO DE ACÇÃO

OPERADOR

(Representação de acção - relacional)

[Newell, 1994]

REPRESENTAÇÃO DE CONHECIMENTO

REPRESENTAÇÃO E RACIOCÍNIO

operator	preconditions	add-list	delete-list
OP1:	INROOM(IT,rk)	NEXTTO(IT, dx)	
GOTODOOR (IT, dx)	CONNECT (dx,rk,rm)		
OP2:	CONNECT (dx,rk,rm)	INROOM(IT, rm)	INROOM(IT,rk)
GOTHRUDOOR(IT,dx)	NEXTTO(IT, dx)		
	STATUS(dx, OPEN)		
	INROOM(IT,rk)		

```
initial state:
INROOM(IT, R1)
INROOM(B1,R2)
CONNECTS(D1, R1, R2)
CONNECTS(D1, R2, R1)
STATUS(D1,OPEN)

goal state:
INROOM(IT,R2)
INROOM(B1,R2)
CONNECTS(D1,R2,R1)
STATUS(D1,OPEN)
CONNECTS(D1,R2,R1)
STATUS(D1,OPEN)
```

ESPAÇOS DE CONFIGURAÇÕES

Configuração

- De um problema
- De um sistema

Espaço de configurações

 Representa as configurações possíveis de um domínio de descrição

- Dimensões

- Representam domínios de valores dos parâmetros das configurações
- Ortogonais
 - Não existe redundância na representação das configurações

ESPAÇOS DE CONFIGURAÇÕES

- Cada configuração é representada como um ponto do espaço
- e. g. espaço de características

Feature vector

Feature space (3D)

Ortogonalidade

- Discriminação dos parâmetros das configurações (das propriedades de uma representação)
- Se x e y são dimensões do espaço, então $\langle x, y \rangle = 0$

Sistemas físicos

 Espaços de configurações utilizados para descrever o estado de um sistema como um ponto num espaço n-dimensional de parâmetros do sistema

ESPAÇOS DE ESTADOS

Estado

- Configuração
 - De um problema
 - De um sistema

Espaço de estados

- Estrutura
 - Configuração (informação de estado)
 - $s = (x_0, x_1, x_2, ..., x_{n-1}), x_i \in X_i$ dimensão (característica)
- Dinâmica
 - Transição (transformação de estado)
 - Acção
 - Operador
 - Vector de transformação de estado
- Valor
 - Quantificação da congruência de um estado com uma finalidade (objectivo)

ESPAÇO DE ESTADOS

Representação de estado

$$s = (x_0, x_1, x_2, ..., x_{n-1}), x_i \in X_i$$

Vector de transformação de estado

$$\Delta s = (\Delta x_0, \Delta x_1, \Delta x_2, ..., \Delta x_{n-1})$$

Representação de comportamento

Representação no espaço de estados de uma trajectória formada por estados resultantes da actividade de um sistema ao longo do tempo

ESPAÇO DE ESTADOS

ESTADO

→ TRANSIÇÃO DE ESTADO

ESPAÇO DE ESTADOS

REPRESENTAÇÃO COM BASE EM GRAFOS

- Um *grafo* consiste em:
 - Um conjunto de nós (vértices)
 - $n_1, n_2, ..., n_k$
 - Um conjunto de arcos (arestas)
 - Ligam pares de nós
 - Podem ser descritos por pares ordenados (n_1, n_2)

- tem uma direcção específica associada a cada arco
- Num arco (n_1, n_2)
 - n_1 é designado o **antecessor** de n_2
 - n₂ é designado o sucessor de n₁

REPRESENTAÇÃO COM BASE EM GRAFOS

- Percurso (caminho) de dimensão k
 - $-[n_1, n_2, n_3, ..., n_k]$
 - Cada par (n_i, n_{i+1}) representa um arco
- Um percurso que contenha o mesmo nó mais que uma vez é designado um ciclo (malha)

VALOR DE ESTADO

Quantificação da congruência de um estado com uma finalidade (objectivo)

TIPOS DE REPRESENTAÇÃO

Simbólico

Sub-simbólico

Symbolic AI	Connectionism	
Representations are syntactically structured.	Activity patterns over sets of units represent structure.	
Cognition is accomplished via hard, representation level rules.	Problems are solved by networks settling into states fitting well with constraints.	
Multiple constraints are handled sequentially.	All constraints are put into the hopper at once and allowed to do their work.	
Representations of memories are stored.	Only active representations are present. Representation-forming dispositions reside in the weights.	

TIPOS DE REPRESENTAÇÃO

- Sub-simbólico (numérico)
 - Domínios numéricos
 - Valores representam informação
 - Características
 - Vectores de características
- Simbólico (conceptual)
 - Domínios simbólicos
 - Símbolos representam informação
 - Conceitos
 - Propriedades

ESPAÇO CONCEPTUAL (Gardenfors, 2000)

 Espaço multi-dimensional onde dimensões qualitativas representam características básicas através das quais conceitos e objectos podem ser representados e comparados

ESPAÇOS CONCEPTUAIS

- Posições específicas representam objectos e regiões representam conceitos
- Dimensões qualitativas
 - Dimensões base do espaço representam qualidades
 - Características base dos objectos e conceitos
 - Cor, peso, altura, ...

- Conceitos e objectos relacionados através de noções de semelhança
- Noção de categorias naturais
 - Regiões convexas num espaço conceptual

ESPAÇO CONCEPTUAL

Noções base:

Dimensão qualitativa

Dimensão base que representa uma qualidade de objectos e conceitos

- Domínio

Conjunto de dimensões base, separáveis das restantes dimensões

Propriedade (de um conceito)

Região convexa num determinado domínio

Conceito

Conjunto de regiões convexas num determinado conjunto de domínios

Qualidade

Característica específica de um objecto numa dimensão qualitativa

Protótipo

Instância mais representativa de um conceito

ESPAÇO CONCEPTUAL

REPRESENTAÇÕES SIMBÓLICAS

ESTRUTURAS DE SÍMBOLOS

SÍMBOLOS
SIGNIFICADO?

REPRESENTAÇÕES SIMBÓLICAS

ESTRUTURAS DE SÍMBOLOS

SÍMBOLOS
SIGNIFICADO?

REPRESENTAÇÕES SIMBÓLICAS

SÍMBOLOS COMO REPRESENTAÇÃO DA REALIDADE

ANCORAGEM SIMBÓLICA

(Symbolic Grounding)

REPRESENTAÇÃO DE CONHECIMENTO

CONSTRUÇÃO DE SIGNIFICADO ATRAVÉS DE RELACIONAMENTO

Representação da realidade ≠ Realidade

REFERÊNCIAS

[Russel & Norvig, 2003]

S. Russell, P. Norvig, "Artificial Intelligence: A Modern Approach", 2nd Ed., Prentice Hall, 2003

[Gardenfors, 2000]

P. Gardenfors "Conceptual Spaces: The Geometry of Tought", MIT Press, 2000

[Mahadevan, 2009]

S. Mahadevan, "Learning Representation and Control in Markov Decision Processes: New Frontiers", Foundations and Trends in Machine Learning, 1:4, 2009

[Shepherd, 1994]

G. Shepherd, "Neurobiology", Oxford University Press", Cambridge University Press, 1994

[Kragic & Vincze, 2009]

D. Kragic, M. Vincze, "Vision for Robotics", Foundations and Trends in Robotics, 1:1, 2009

[Montemerlo et al., 2008]

M. Montemerlo et al., "Junior: The Stanford Entry in the Urban Challenge", Special Issue on the 2007 DARPA Urban Challenge, Part II, Wiley, 2008

[Banaee & Loutfi, 2014]

H. Banaee & A. Loutfi "Using Conceptual Spaces to Model Domain Knowledge in Data-to-Text Systems", 8th International Natural Language Generation Conference, 2014