UNCLASSIFIED

425720

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMEROII STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

FOR OFFICIAL USE ONLY

425720

R 259

Technical Report

CORROSION OF BURIED PIPES

9 December 1963

SATALOTTO BY

U. S. NAVAL CIVIL ENGINEERING LABORATORY

Port Hueneme, California

Best Available Copy

CORROSION OF BURIED PIPES

Y-F015-99-012

Type B Final Report

by

H. R. Joerding

ABSTRACT

The objective of this task was to determine the relative merit and economy of various types of external protective coverings for underground metal, cold pipes in the highly corrosive soil at the Naval Ordnance Test Station, China Lake, California.

A highly corrosive area of the station was selected as a test site. A network of a number of test pipes with different commercial projective coverings was connected to an existing cold water line and tested for 49 months. Included in the test as control were bare pipes of galvanized steel, black steel, and copper. Visual inspections through test holes were made periodically to determine the progress of corrosion. At the end of the test, all pipes were removed and brought to NCEL for close examination.

Final results showed no corrosion on galvanized steel pipe that was factory-wrapped with resin-impregnated glass cloth. This covering is very difficult to damage and imposes no special handling or installation requirements. Black steel pipe that was wrapped with black polyvinylchioride plastic tape was in excellent condition. Extreme care was necessary during installation to prevent cuts or nicks in the tape. The black steel pipes protected by bituminous coating, cured gilsonite, and uncured gilsonite had deteriorated badly.

Qualified requesters may obtain copies of this report from DDC.

The Laboratory invites comment on this report, particularly on the results obtained by those who have applied the information.

INTRODUCTION

The desert soil at the Naval Ordnance Test Station, China Lake, California, Las a heavy concentration of minerals in some areas, particularly the dry lake beds, causing serious corrosion problems for underground pipes. In these areas of the station, metal pipes have had very short lives. For example, an uncoated cast-iron water pipe failed after about 3 years of service. In another case, a 2-inch standard-weight black steel pipe, asphalt-coated and wrapped, failed in approximately 1 year. Because of the failure of these and other piping systems and the trend toward expansion of facilities in highly corrosive areas, an investigation was undertaken to determine the most suitable method of protecting cold water pipes against the corrosive elements of this soil.

The task objective was pursued by connecting underground test pipes to an existing cold water line in a corrosive area and observing the progress of corrosion by periodic visual inspection. Results of these inspections have been published. After 49 months of tests, the pipes were removed and given a thorough and final inspection. The task is complete with this final report.

DESCRIPTIONS

Test Installation

The initial test installation was made in June 1958. At that time, six 60-foot lengths of 2-inch test pipe were laid in parallel trenches 3 feet deep and spaced 4 feet apart. The pipes of joined by a 10-inch asbestos-cement pipe header at each end, and the entire network was connected to an existing 10-inch asbestos-cement pipe that corried cold water. The network included one 60-foot length, made of 20-foot sections of galvanized steel, black steel, and copper, connected

Technical Note N-373, Evaluation of External Corrosion Protection Methods for Cold Pipes in a Desert Soil, by K. B. Edwards, 1 June 1959. Technical Note N-404, Evaluation of External Corrosion Protection Methods for Buried Cold Pipes at China Lake, California, by H. R. Joerding, 1 March 1961. Ibid, N-441, 25 June 1962.

together by dielectric couplings and four 60-foot lengths of black steel pipe protected by a bituminous coating, a black plastic tape, uncured gilsonite, and cured gilsonite, respectively. The sixth length was galvanized steel and protected by a polyester-resin-impregnared glass cloth wrap. It was purchased from Temploc, Incorporated, Baldwin Park, California.*

As the test progressed, there was concern that the length with the 20-foot sections might not give reliable test data because the length of each pipe was shortened to 1/3 of full length, and because of the close proximity of dissimilar metals in soil of high electric worlductivity. As a result, three additional 60-foot lengths of pipe were installed in July 1960, with one length each of galvanized steel, black steel, and copper pipe, making a total of nine 60-foot lengths in the test. The complete network is shown schematically in Figure 1 and described as follows:

- Pipe No. 1. Galvanized steel pipe: Type 1, standard-weight. The hot-dipped zinc-coated pipe conforms to Federal Specification WW-P-406b.
- Pipe No. 2. Black steel pipe: Type 1, standard-weight. Conforms to Federal Specification WW-P-406b.
- Pipe No. 3. Copper pipe: Type K, straight drawn tube. Conforms to Federal Specification WW-T-799a.
- Pipe No. 4. Galvanizet' steel black steel copper pipe. Each length conformed to the weights and specifications for the corresponding type above. The dielectric couplings used between each length had a metallic cover with a threaded dielectric insert.
- Pipe No. 5. Black steel pipe coated with bituminous coating. The black steel was the same as Pipe No. 2. The coating consisted of one coat of coal-tar primer, covered by a coat of coal-tar enamel. Application of the coating was according to Specification 34Yc for Type 1 profective system and was purchased under Mil-P-15147.

This company is no longer in business, but the Durant Insulated Pipe Company, 325 Demeter Street, East Palo Alto, California, makes a similar product.

Pipe No. 6. Black steel pipe wrapped with plastic tape. The black steel was the same as Pipe No. 2. The tape was 3 inches wide, 10 mils thick, and made of polyvinylchloride. The adhesive used on the tape was a rubber-base cement. It was spirally wrapped with a 1/2-inch overlap. (The tape did not necessarily conform to any military specification.)

Pipe No. 7. Galvanized steel pipe factory-wrapped with resin-impregnated glass cloth. The galvanized steel was the same as Pipe No. 1. The cloth was 3 inches wide and about 40 mils thick. It was spirally wrapped with a 1/2-inch overlap at the factory. The glass cloth conforms to Mil-C-19663 and the resin to Mil-R-7575B, Grade A, Class O.

Pipe No. 8. Biack steel pipe with uncured gilsonite. The black steel was the same as Pipe No. 2. The gilsonite, an asphaltic resinous material in granular form, surrounded the pipe and extended radially 5 inches; no heat was applied to the pipe to melt and consolidate the gilsonite into a coating.

Pipe No. 9. Black steel pipe with cured gilsonite. The black steel was the same as Pipe No. 2. The gilsonite, an asphaltic resinous material in granular form, surrounded the steel pipe and extended radially 5 inches. To melt this material and consolidate it around the pipe, the pipe was heated for 72 hours at 250 F as recommended by the supplier.

Inspection Procedure

The pipes were inspected periodically during the test through three test holes at each pipe. On each inspection, a set of new holes was dug so the condition of the pipes could be determined in soil not recently disturbed. The amount of rust and corrosion was observed and recorded; representative areas were photographed. There were five inspections; the first two at approximately 12-month intervals and the last three at 6-month intervals. The intervals were shortened as the test progressed because the rate of corrosion appeared to be accelerating.

In July 1962 the pipes were removed from the test and brought to NCEL.

After a visual inspection of their general overall condition, they were thoroughly cleaned of rust and dirt by wire brushing so that micrometer measurements could be taken to determine the loss of metal from corrosion.

Determination of Metal Loss

Rough and uneven exterior surfaces on the pipe made it difficult to measure loss of metal; therefore, a statistical method was developed to obtain this information.

At 3-foot intervals on each pipe, one micrometer measurement of the outside diameter was made, at a random location on the circumference. These measurements were checked against the original specifications of the pipe diameters, and the percentage of loss was calculated (Appendix A). Then each pipe was cut lengthwise, and the thickness of the wall was measured at several places where extreme corrosion was evident. From this data the maximum percentage of loss in wall thickness was determined (Appendix A). The calculations for each pipe are summarized in Table 1.

Soil Conditions

The corrosive character of the soil was determined by analyzing soil and ground water, and by measuring the ground-water level. Samples of soil and of ground water were taken from test holes at each periodic inspection and analyzed. These analyses are tabulated in Appendix B. Both soil and water were slightly alkaline and had a high concentration of dissolved solids, particularly chlorides, sulfates, and sodium. The results of pH determinations showed a variation from 7.8 to 9.4 for soil, and from 7.4 to 8.2 for ground water. The alkalinity of the ground water was produced by the presence of bicarbonates. The pH along with the chlorinity of the ground water showed it to be about equivalent to ocean water in corrosivity. The chlorinity of the ground water varied from 9000 to 38,000 ppm (parts per million); ocean water has a chlorinity of 19,000 ppm.

A thermocouple tree was located near the center of the test site to obtain temperatures of the air at ground level, and of the ground and ground water. Seven thermocouples were spaced at 9-inch intervals from 1 inch above ground level to 53 inches below the surface. Temperature curves from 6 April 1962 to 17 July 1962 (Figure 2) show that ground-water temperature was usually about 5 F below that of the ground. When this difference was noted between adjacent thermocouples, it was assumed that the ground-water level was between them. Figure 3 shows curves of the approximate level of the ground water for the same period. This level varied from 21 to 47 inches below the soil surface; thus the pipes were submerged much of the time.

RESULTS

Each length of pipe is described as It appeared at the final inspection at NOTS:

<u>Pipe No. 1.</u> Galvanized steel pipe: exposed 24 months. There was very little evidence of the zinc coating. Medium rust with tight scale covered 80% of the surface (Figure 4).

- Pipe No. 2. Black steel pipe: exposed 24 months. There was medium to heavy rust with tight scale and pitting over the entire surface (Figure 5). Some of the pits penetrated over 50% through the wall. The surrounding soil was discolored by the rust.
- Pipe No. 3. Copper pipe: exposed 24 months. The pipe was covered with a white powder that could be brushed off, leaving the surface clean like a mill finish although there were small marks, like those of a ball peen, over the entire surface. The surrounding soil was discolored dark green.
- <u>Fipe No. 4.</u> Galvanized steel black steel copper pipe: exposed 49 months.
- a. Galvanized steel pipe: nearly all of the zinc coating was gone and the remaining portions could be easily removed by rubbing. The pipe had blackened, but there was very little rust and only 5% loss of metal.
- b. Black steel pipe: there was light to medium rust with loose scale over the entire surface. No deep pitting was observed.
- c. Copper pipe: this pipe was clean and uncorroded although there were small marks, like those of a ball peen, over the entire surface.
- Pipe No. 5. Black steel pipe with bituminous coating: exposed 49 months. Only about 50% of the pipe was still coated at the end of the test. The bitumin that came off seemed to disperse into the earth, discoloring the surrounding soil. The coating that remained on the pipe apparently did not offer much protection as there was medium rust with loose scale and pitting over the entire surface. Some of the pits penetrated over 40% through the wall.
- Pipe No. 6. Black steel pipe wrapped with plastic tape: exposed 49 months. In general, the tape was intact, in good condition, and gave excellent protection. The only corrosion occurred where the tape had been nicked by shovels when the inspection holes were dug (Figure 6); however, at these piaces the pits penevrated over 40% through the wall.

Pipe No. 7. Galvanized steel pipe wrapped with resin-impregnated glass cloth: exposed 49 months. This pipe was in excellent condition. There was no sign of rust nor deterioration of the zinc coating (Figure 7). The glass cloth was also in excellent condition with no evidence of deterioration (Figure 8).

Pipe No. 8. Black steel pipe with uncured gilsonite: exposed 49 months. Medium to heavy rust, tight scale, and deep pits covered the pipe. The gilsonite did not detericrate, but it apparently permitted gradual seepage of the corrosive soil elements. It offered good protection for the first 24 months of the test. However, when rusting began, it progressed very fast. Many deep pits penetrated the wall as deep as 85% (Figure 9).

Pipe No. 9. Black steel pipe with cured gilsonite: exposed 49 months. The gilsonite consolidated well and did not deteriorate, but it permitted overall light to medium rust with loose scale and pitting that penetrated as much as 84% into the wall (Figure 10).

The plastic tape and glass cloth provided the most protection, and gilsonite, cured and uncured, provided the least. However, uncured gilsonite gave good protection for the first 2 years. It is interesting to note that the individual pipes Nos. 2 and 3, suffered more metal loss than their coupled counterparts 4b and 4c despite the fact that the former were in the ground about half as long.

COST

Current prices (1963) of the pipes and protective coverings (Table II) are f.o.b. the vendor and do not include any costs for joints or connections. The rental cost of a steam generator for curing the gilsonite is also not included.

For the test, a steam generator was used for 2 days at a cost of \$100 per day.

Because the zinc plating was unaffected, it is unnecessary to use galvanized pipe when the glass cloth is applied. Black steel pipe would lower the cost.

CONCLUSIONS

- 1. Resin-impregnated glass cloth was the most satisfactory covering tested in this environment. There was no rust or discoloration of the zinc plating or the steel pipe itself; there was no evidence of deterioration of the covering; and no special handling was required because the covering is hard and not easily damag. 4.
- 2. Plastic tape was also satisfactory where carefully installed. It was rust-free except where the tape had been damaged by shovels. There was no evidence of deterioration of the tape; however, the tape is soft, easily cut or damaged, and special care is required to prevent nicks or cuts during installation. Even a sharp rock in the backfill could cause damage.
- 3. The other three coatings (cured and uncured gilsonite and bitumin) permitted extensive rusting and are not satisfactory for use in this type of soil.

Table 1. Summary of Statistics for Cornssion of Buried Pipes at China Lake, California

	Upper Limit	13	52	20	Ξ	4	19	47	432/	0	85	84
Maximum Externai Lous in Wall Thickness Due to Pitting (%)	Average	က	14	ო	2	S.	2	88	332/	0	49	83
Maxim in V D.e	Lower Limit	0	90	0	0	ာ	0	78	232/	0	12	17
ai	Upper Limit	4	8	82	12	•	=	82 [_	0	15	15
Uniform External Metal Loss (%)	Average	†o	91	13	22	2	5	15	0	0	ò.	=
Un	Lower Lin.it.	0	12	۲.	0	0	0	=	0	0	Ŋ	
Exposure	(OE)	24	55	*	49	49	49	46	49	49	49	46
External		попе	none	none	none	none	none	bituminous	plastic tape	glass cloth	uncured	cured
Type		Galvanized Sreel	Black Steel	Copper	Galvanized Steel	Black Steel	Copper	Black Steel;	Black Stee!	Galvanized Steel	Black Steel	Black Steel
E S	Pipe No.		2	က	\$	4	4 _c	S	9	^	∞	٥

1/95% confidence limits.
2/ At places where the covering was nicked by shovels during inspections.

Table 11. Costs of 2-Inch Pipes and Coverings (1963)

Pipe	Cost of Pipe (\$)	Covering	Cost of Covering 1/ (\$)	Total (\$)
Galvanized Steel	0.55	none	-	0.55
Black Steel	0.45	none	_	0.45
Copper	1.20	none	_	1.20
Black Steel	0.45	bituminous coating	0.45	0.90
Black Steel	0.45	plastic tape	0.45	0.90
Galvanized Steel	0.55	glass cloth	0.87	1.42
Black Steel	0.45	uncured gilsonite	2.45	2.90
Black Steel	0.45	cured gilsonite	2.45	2.90

1/per foot of pipe

Figure 1. Diagram of underground pipe installation. Pipes spaced 4 feet apart and buried 3 feet.

Figure 2. Temperature of air, soil, and ground water from 4 April to 17 July 1962.

Figure 3. Approximate level of ground water from 4 April to 17 July 1962.

Note the properties of the contraction of the properties of the pr

Figure 4. Galvanized steel pipe after 24 months exposure; galvanized coating nearly gone and 80% coverage of medium rust with tight scale.

Figure 5. Bare black steel pipe after 24 months exposure; 100% coverage of medium to heavy rust with tight scale and pits.

Figure 6. Black steel pipe wrapped with plastic tape; the pipe was rust-free except where the tape had been nicked by a shovel (see arrow).

Figure 7. Galvanized steel pipe with a section of the resin-impregnated glass cloth removed; after 49 months exposure the pipe was bright and clean.

Figure 10. Black steel pipe with cured gilsonite; 100% coverage of light to medium rust with loose scale and light pitting.

A THE PARTY AND THE PROPERTY OF THE PROPERTY O

Figure 8. Resin-impregnated glass cloth wrapping on a galvanized steel pipe; no signs of deterioration after 49 months exposure.

... paradio de la compansio de la compansió de la compansión de la compans

Figure 9. Black steel pipe coated with uncured gilsonite; 100% coverage of medium to heavy rust with tight scale and deep pits (see arrow).

by

W. Wilcoxsor.

The statistics of importance to this investigation are the auxinity of metal lost, per unit length, due to external corrosion, and the degree of pitting due to external corrosion. Let

L = length of pipe

 \overline{R}_0 , \overline{r}_0 = original mean outer and inner radii, respectively

 \overline{R}_{t} , \overline{r}_{t} = mean outer and inner radii after time t, respectively

Then an estimate of the percent of metal lost per unit length after a time t due to external corrosion is

$$m_{t} = \frac{100 \left[\frac{2\pi L \left(\overline{R}_{o} - \overline{R}_{t} \right)}{L} \right]}{\frac{2\pi L \left(\overline{R}_{o} - \overline{r}_{o} \right)}{L}}$$

$$= \frac{100 (\overline{R}_{o} - \overline{R}_{t})}{\overline{R}_{o} - \overline{r}_{o}}$$

To determine the degree of pitting, let

$$\vec{T}_o = \vec{R}_c - \vec{r}_o$$

= original mean wall thickness

 $\overline{T}_t = \underline{\text{minimum}}$ wall thickness after time t (an average from several places showing extreme external pitting and corrosion).

The average loss in wall thickness, $\overline{\iota}_{i}$, due to internal corrosion and erosion is

$$\bar{\iota}_i = \bar{r}_i - \bar{r}_o$$

Therefore, the maximum percentage loss in wall thickness due to pitting, $p_{t'}$ after a time t due to external corrosion is

$$p_{t} = \frac{100 (\overline{T}_{0} - \overline{T}_{t} + \overline{\iota}_{i})}{\overline{T}_{0} + \overline{\iota}_{i}}$$

An estimate of the 95% confidence limits* on m are

$$M_{t} = m_{t} \pm 1.96 \left[\left(\Delta \overline{R}_{o} \frac{\partial m_{t}}{\partial \overline{R}_{o}} \right)^{2} + \left(\Delta \overline{T}_{o} \frac{\partial m_{t}}{\partial \overline{T}_{o}} \right)^{2} + \left(\Delta \overline{R}_{t} \frac{\partial m_{t}}{\partial \overline{R}_{t}} \right)^{2} \right]^{2}$$

nichten erreiten er

$$= m_{t} \pm \frac{1.96}{\overline{T}_{0}} \left[\Delta \overline{R}_{0}^{2} (100 - m_{t})^{2} + \Delta \overline{T}_{0}^{2} m_{t} + \Delta \overline{R}_{t}^{2} 100^{2} \right]^{\frac{1}{2}}$$

An estimate of the limits on p_t are

^{*} On the average one out of twenty samples would be expected to exceed these limits.

$$P_{t} = P_{t} + 1.96 \left[\left(\triangle \overline{I}_{o} \frac{\partial P_{t}}{\partial \overline{I}_{o}} \right)^{2} + \left(\triangle \overline{I}_{t} \frac{\partial P_{t}}{\partial \overline{I}_{t}} \right)^{2} + \left(\triangle \overline{I}_{t} \frac{\partial P_{t}}{\partial \overline{I}_{t}} \right)^{2} + \left(\triangle \overline{I}_{o} \frac{\partial P_{t}}{\partial \overline{I}_{o}} \right)^{2} \right]$$

$$= p_{t} \pm \frac{1.96}{\overline{t}_{0} + \overline{t}_{1}} \left[\Delta \overline{t}_{0}^{2} (100 - p_{t})^{2} + \Delta \overline{t}_{1}^{2} 100^{2} + \Delta \overline{r}_{t}^{2} (100 - p_{t})^{2} \right]$$

$$+ \Delta \overline{r}_{o}^{2} (100 - p_{t})^{2}$$

$$= p_{t} \pm \frac{1.96}{\overline{T}_{0} + \overline{L}_{1}} \left[(100 - p_{t})^{2} (\Delta \overline{T}_{0}^{2} + \Delta \overline{T}_{t}^{2} + \Delta \overline{T}_{0}^{2}) + 100^{2} \Delta \overline{T}_{t}^{2} \right]^{\frac{1}{2}}$$

The manufacturer's tolerance on the original thickness is 0.007; i.e., $\Delta \overline{T}_{c} = 0.007$. According to standard shop practice, the tolerance on the original radii are

$$\Delta \bar{r}_{o} = 0.005/2 = 0.0025$$

$$\Delta \overline{R}_{c} = 0.005/2 = 0.0025$$

 $\frac{\triangle \overline{R}_t}{\overline{T}_t}$ is the standard error of the mean, \overline{R}_t , and $\Delta \overline{T}_t$ is the standard error of the mean, \overline{T}_t .

$$\triangle \overline{R}_{t}^{2} = \frac{1}{n(n-1)} \sum_{j=1}^{n} (R_{tj} - \overline{R}_{t})^{2}$$

$$\Delta \overline{T}_{t}^{2} = \frac{1}{k(k-1)} \sum_{i=1}^{k} (T_{tk} - \overline{T}_{t})^{2}$$

Where n is the number of measurements on the radius and k is the number of measurements on the thickness. R_{tj} and T_{tj} are the j^{th} measurements. \overline{R}_{t} and \overline{T}_{t} are the mean values of these measurements; i.e.,

$$\overline{R}_{t} = \frac{1}{n} \sum_{j=1}^{n} R_{tj}$$

$$\overline{T}_{t} = \frac{1}{k} \sum_{j=1}^{k} T_{tj}$$

Since the measurements were made on the pipe diameter, D, it can be shown that

$$\overline{R}_{t} = \frac{1}{2}\overline{D}_{t}$$

$$\Delta \overline{R}_t^2 = \frac{1}{4} \Delta \overline{D}_t^2$$

where
$$\overline{D}_{t} = \frac{1}{n} \sum_{j=1}^{n} D_{tj}$$

$$\Delta \overline{D}_{t}^{2} = \frac{1}{n(n-1)} \sum_{j=1}^{n} (D_{tj} - \overline{D}_{t})^{2}$$

Sample Calculation

For black steel pipe coated with cured gilsonite (all measurements in inches)

Outside	Diameter	Inside Diameter
i	D	1 2.075
ì	2.314	2 2.074
2	2.334	3 2.074
3	2.347	4 2.074
4	2.362	5 2.073
5	2.340	6 2.073
6	2.367	
7	2.370	
8	2,327	Minimum Wall Thickness
9	2,330	1 0.095
10	2,330	2 0.103
11	2.342	3 0.120
12	2,363	4 0.130
13	2.342	
14	2.352	
15	2.365	
16	2.297	
17	2.333	
\widehat{R}_{o}	= 1.1875	$\Delta \overline{R}_{o} = 0.0025$ $\Delta \overline{r}_{o} = 0.0025$
ro	= 1.0335	$\Delta \overline{r}_{o} = 0.0025$
To	= 0.154	$\Delta \overline{T}_{o} = 0.007$

Results of computations:

$$\overline{R}_{t} = 1.171$$
 $\Delta \overline{R}_{t}^{2} = 5.853 \times 10^{-6}$
 $\overline{r}_{t} = 1.037$
 $\Delta \overline{r}_{t}^{2} = 6.333 \times 10^{-8}$
 $\overline{T}_{t} = 0.112$
 $\Delta \overline{T}_{t}^{2} = 6.317 \times 10^{-7}$
 $\overline{\ell}_{i} = 3.417 \times 10^{-3}$
 $m_{t} = 10.695$
 $M_{t} = 10.695 \pm 4.296$
 $p_{t} = 28.851$
 $p_{t} = 28.851 \pm 11.888$

Rounding the results, for external corresion only:

	Metal Loss (%)	Maximum Loss in Wall Thickness (%)		
Lower limit	6	17		
Average	11	28		
Upper limit	15	41		

Appendix B

SOIL AND WATER ANALYSES

Table 9-1. Soil Electrolyte Analysis (parts per million)

Sodium $\begin{pmatrix} \text{O.} \text{ides} \\ \text{Fe}_2 \text{O.} \end{pmatrix}$ Hycrogen lon $\langle \text{Na} \rangle$ $\langle \text{Al}_2 \text{O.} \rangle$ $\langle \text{Al}_2 \text{O.} \rangle$	21 – 8.9	3934 – 9.1	8542 – 9.4	897 138 9.2	1660 128 8.5	3380 112 8.3	764 6 8.2	0 7.8	820 0 8.1	385 0 8.0	2310 0 8.1	1540 0 8.0	1060 0 8.3	700 0 8.5
	8921	36	 &		- 			2		<u>ო</u>			<u> </u>	_
Magnesium (Mg)	5	35	29	267	29	21	trace	7	ۍ	4	_	7	_	0
Calcium (Ca)	20	240	280	537	44	107	28	81	81	18	20	4	24	13
Sulphates (SO ₄)	2941	1336	2602	222	754	1525	138	203	147	90	379	264	250	125
Chlorides (CI)	۲۹۵۶،	895	725¢	1700	4884	6648	800)	1475	1300	488	3300	2200	1438	940
Bicarbonates (HCO ₃)	329	305	0	88	46	28		65'	171	183	122	128	122	114
Carbonotes (CO_3)	384	552	7181	50	0	0	fráce	0		trace	0	0	trace	30
Hydroxides (OH)	0	۰.	54	0	0	0	0	0	0	0	0	0	0	0
Sample No.	-7_	7	ო	_	_	7	77	8	ო	4	7]	7	က	4
Date of Sample	Oct 59			Oct 60	Jul 61		Feb 62				Ju! 62			

1) . Ivsis by Hernkohl Laboratories, Hakërsfield, California 2) " slys's ky Fhiit Growers Laboratory, Santa Paula, California

Table B-II. Ground Water Aralysis (parts per million)

Ricarbonates Chlorides Sulphates (Ca) (Ca) (Ca) (Ca) (Mg) (Na) (SiO ₂) (Al ₂ O ₃) Solids (Ferror Total (HCO ₃) (Ca) (Ca) (Ca) (Mg) (Na) (Na) (Na) (Na) (Na) (Na) (Na) (Na	7.9	8.0	7.4	7.7	8.2
Hardness	450	1551	1005	920	896
Total Dissolved Solids	15189	32906	71793	43422	65333
Oxides (Fe_2O_3) (AI_2O_3)	37	458	116	6	0
Silico (SiO ₂)	25	177	15	35	52
Sodium (Na)	2009	11320	30500	16380	24600
Magnesium (Mg)	30	88	\$	47	54
Calcium (Ca)	131	492	291	290	300
Sulphates (SO ₄)	843	1762	1972	2764	4526
Chlorides (CI)	8980	18500	38624	23750	32000
Ricarbonates (HCO ₃)	74	711	જ	189	293
<u></u>	3%	0	142	0	0
Date Hydroxides Carbonate of (CO3)	0	0	٥	0	0
Date of Sample	Mar 59	Oct 60	Jul 61	Feb 623	Jul 62]/

1/ Analysis by Fruit Growers Laboratory, Santa Paula, California

AND THE REPORT OF THE PROPERTY OF THE PROPERTY

DISTRIBUTION LIST

SNDL Code	No. of Activities	Total Copies	
	1	10	Chief, Bureau of Yards and Docks (Code 42)
23A	1	1	Naval Forces Commanders (Taiwan only)
39B	2	4	Construction Battalions
39D	10	10	Mobile Construction Battalions
39E	3	3	Amphibious Construction Batiations
39 F	1	2	Construction Battalion Base Units
A2A	1	1	Chief of Naval Research - Only
A3	2	2	Chief of Naval Operation (OP-07, OP-04)
A5	5	5	Bureaus
B3	2	2	Colleges
E4	1	2	Laboratory ONR (Washington, D. C. c. Ily)
E5	1	1	Research Office ONR (Pasadena anly)
E16	1	1	Training Cevice Center
F9	7	7	Station - CNO (Boston; Key West; San Juan, Long Beach; San Diego; Treasure Island, and Rodman, C. Z. only)
F17	6	6	Communication Station (Son Juan; San Francisco; Pearl Harbor; Adal Alaska; and Guam only)
F41	1	1	Security Station
F42	1	1	Radio Station (Uso and Chettanham only)
F48	1	1	Security Group Activities (Winter Harbor on'y)
Н3	7	7	Hospital (Chelsea; St. Albans, Portsmouth, Va; Beaufort; Great Lakes San Diego; and Camp Pendleton unly)
H6	1	1	Medical Center
)1	2	2	Administration Command and Unit - BuPers (Great Lakes and San Diego only)
13	1	1	U.S. Fleet Anti-Air Warfare Training Cental (Virginia Beach only)
i.a	2	2	Amphibious Bases
119	1	1	Receiving Station (Brooklyn anly)
34	1	1	Station - BuPers (Washington, D. C. only)
46	1	1	Personnel Center
48	1	1	Construction Training Unit
6C	1	ļ	School Academy
65	1	1	School CEC Officers
84	1	1	School Postgraduate
90	1	•	heal Supply Corps

DISTRIBUTION LIST (Cont'd)

			DISTRIBUTION EIST (COIN 4)
SNDL Code	No. of Activities	Total Contas	
J95	1	į	School War College
J99	į	3	Communication Training Center
i, I	11	11	Shipyards
L7	4	4	Laboratory - Bulhips (New London; Panama City; Carderock; and Annapolis only)
L26	5	5	Naval Facilities - BuShips (Antigue; Turks Island; Barbados; San Salvador; and Eleuthera only)
L30	i	1	Submarine Base (Graton, Conc. only)
L32	2	2	Naval Support Activities (London and Naples only)
L 42	2	2	Fieet Activities - BuShips
K-27	4	4	Supply Center
M28	6	6	Supply Depot (except Guantanamo Bay; Subic Bay; and Yokosuka
M61	2	2	Aviation Supply Office
NI	6	18	BuDucks Director, Overseas Division
N2	9	27	Public Works Offices
N5	3	9	Construction Battalion Center
หร	5	Ś	Construction Officer-in-Charge
N7	1	1	Construction Resident-Officer-in-Charge
N9	- 6	12	Public Works Center
N14	1	1	Housing Activity
R9	2	2	Recruit Depota
R 10	າ	2	Supply Installations (Albany and Barstow only)
R20	1	1	Marine Corps Schools (Quantico)
R64	3	3	Marine Curps Base
R66	1	į	Marine Corps Comp Detachment (Tongan only)
WIAI	6	6	Air Station
W1A2	35	35	Air Station
wie	9	8	Air Station Auxiliary
WIC	4	4	Air Facility (Phoenix; Monterey; Oppoma; Noha; and Naples only)
*15	6	6	Marine Corps Air Station (except Quantico)
HIW	9	9	Station - BuWops (except Roto)
	1	1	Deputy Chief of Staff, Research and Development, Headquarters, U.S.Marine Corps, Washington, D. C.
	1	ſ	President, Marine Co ps Equipment Board, Marine Corps School, Quantico, Vo.

SAME CONTROL SUBSTITUTION SHEET SUBSTITUTION OF SECOND

DISTRIBUTION LIST (Cont'd)

			DISTRIBUTION CLEAT (COM 4)
	No. of Activities	Total Copies	
•	1	1	Chief of Staff, U.S.Army, Chief of Research and Development, Department of the Army, Washington, D.C.
·	1	1	Office of the Chief of Engineers, I ssistant Chief of Engineering for Civil Works, Department of the Army, Washington, D. C.
	1	1	Chief of Engineers, Department of the Army, Washington, D.C., Attn: Engineering Research and Development Division
	1	ì	Chief of Engineers, Department of the Army, Washington, D. C., Attn: ENGCW-0E
	1	1	Director, U.S. Army Engineer Research and Development Laboratories, Fort Bulvoir, Va., Attn: Information Resources Branch
	1	1	ASD (ASNXRR), Wright-Patterson Air Force Base, Ohio
	1	3	Headquarters, U.S. Air Force, Directorate of Civil Engineering, Washington, D.C., Attn: AFOCE-ES
	1	1	Commanding Officer, U.S. Naval Construction Battalion Center, Port Hucheme, Calif., Attn: Materiel Dept., Code 140
	1	1	Deputy Chief of Staff, Deve'spment, Director of Research and Development, Department of the Air Force, Washington, D. C.
	1	1	Director, National Bureau of Standards, Department of Commerce, Cannecticut Avenue, Washington, D. C
	1	2	Office of the Director, U.S. Coast and Geodetic Survey, Washington, D.C.
	1	20	Defense Documentation Center, Building 5, Cameron Station, Alexandria, Va.
	1	2	Director of Defense Research and Engineering, Department of Defense, Washington, D. C
	1	1	Commander, Pacific Missile Range, Technical Documentation Section, P. O. Box 10, Point Mugu, Calif., Attn: 4332
	1	2	Director, Bureau of Reclamation, Washington, D. C.
	1	1	Facilities Officer, Code 108, Office of Naval Research, Washington, D. C.
	1	1	Federal Aviation Agency, Office of Management Services, Administrative Services Division, Washington, D. C., Attn: Library Branch
	1	2	Commander Navol Beach Group TWO, U.S. Naval Amphibious Base, Little Creek, Norfolk, Va
	1	1	Office of Naval Resear > Broach Office, Navy No. 100, Box 39, FPO, New York
	1	1	Commanding Officer, U.S. Naval Unit, U.S. Army Chemical Corps School, Fort McClellan, Ala.
	1	1	U.S. Naval Research Laboratory, Chemistry Division, Washington, D.C.
,	1	1	Deputy Chief of Staff, Research & Development Headquarters, U.S.Marine Corps, Washington, D.C.
	1	1	Point Laboratory, U.S. Engineers Office, Clock Tower Building, Rock Island, III.
•	1	4	U.S. Army Material Command, Washington, D.C.
	1	1	Commanding Officer, Signal Corps Engineering Labs, Fort Monmouth, N. J.

DISTRIBUTION LIST (Cont'd)

		Distribution List (com s)
No. of Activities	Total Copies	
:	1	Chief, Bureau of Ships, Navy Department, Washington, D. C., Attn: Chief of Resourch and Development Division
1	1	Officer in Char _a -, U.S.Naval Supply Research and Development Facility, Naval Supply Center, Enyonne, N.J., At n.: Library
1	1	Commander, Pacific Missile Range, Point Mugu, Calif., Attn: Technical Director
1	1	Commander, Amphibious Force, U.S. Pacific Fleet, San Diego, Calif.
1	1	Conmander, Amphibious Force, U.S. Atlantic Fleet, U.S. Naval Base, Norfolk, Va.
1	1	Officer in Charge, U.S.Naval Supply Research and Development Facility, Naval Supply Center, Bayonne, N.J.
1	1	Commander, Norfolk Navai Shipyard, Portsmouth, Va., Attn: Metallurgical Laboratory
1	1	Commander, Norfolk Naval Shipyard, Portsmouth, Va., Attn: Chemical Laboratory
1	1	Commanding Officer, Fleet Training Center, Navy No. 12E, FPO, San Francisco
ì	1	Commander, U.S. Naval Shipyard, Boston, Mass., Attn: Muterials and Chemical Laboratory
1	1	Commander, U.S. Naval Shipyard, Brooklyn, Attn: Material Laboratory
1	1	Navy Liaison Officer, Detroit Arsenal, Centerline, Mich.
1	1	U.S. Army Corps of Engineers, Office of the District Engineer, St. Paul District, 1217 U.S.P.O. and Customs House, St. Paul, Minn.
1	1	U.S. Army Cold Regions Research and Engineering Laboratory, Corps of Engineers, P.O. Box 282, Hansver, N.H.
1	ŀ	Chief, Physical Research Branch, Research Division, U.S. Department of Commorce, Bureau of Public Roads, Washington, D.C.
1	1	Mr. J. R. Moses, Diractor (C-490), Morerials Testing and Evaluation Division, District Public Works Office, 14ND, Novy No. 128, FPO, San Francisco
1	1	Mr. W. E. Edwards (Code M-220:WEE), Materials Tryssion, District Public Works Office, 14ND, Navy No. 128, FPO, Son Francisco, Calif.
1	ī	Mr. William Crozer, (Code 0-230), DPWO, 12th Naval District, San Bruna, Calif.
1	ı	Mr. Gordon Hanson, (Code 7036), Public Works Department, U.S. Naval Ordnesce Station, China Lake, Calif.
1	1	Mr. E. W. Watkins, (Code B-330), DPWO, 17th Naval District, San Diego
1	1	Director, National Bureau of Standards, Department of Commerce, Connecticut Avenue, Washington, D. C., Attn: Mr. Melvin Romanoff
1	1	Director, Fort Menmouth Office, Communications-Electronics Combat Developments Agency, Building 410, Fort Monmouth, N. J.

SOUTH THE PROPERTY OF THE PROP

ering Laboratory	CORROSION OF BURIED PIPES, by H. R. Janding 25 p. 111va 9 Nov 53 OFFICIAL USE ONLY
U. S. Naval Civil Englinkering Laboratory Technical Report R-259	CORROSION OF BURIED 25 p. illus 9 Nov 63

of protecting external surfaces of underground, metal, cold pipes in the highly corrosive soil at NOTS, China Lake, California. The results of a 49-month test to evaluate methods

Key Words: Corrosion; Pipe Exteriors; Soil; Steel; Godings.

U. S. Naval Civil Engineering Laboratory
Technical Report R-259
CORROSION OF BURIED PIPES, by H. R. Joarding
26 p. illus 9 Nov 63 OFFICIAL USE CONY

1. Corrosion - Buried

pipes 1. Joerding, H. R. 11. Y-F015-99-012

1. Corrosion -- Buried

1, Joerding, H. R. II. Y-F015-99-012

of protecting external surfaces of underground, metal, cold pipes in the highly corrosive soil at NOTS, China Lake, Californic. The results . f a 49-month text to evaluate methods

Key Words: Comosion; Pipe Exteriors; Soil; Steel; Glass Cloth; Coatings.

CORROSION OF BURIED PIPES, by H. R. Joerding 26 p. 111us 9 Nov 63 OFFICIAL USE ONLY U. S. Naval Civil Engineering Laboratory Technical Report R-259 1. Corrosion - Buried

pipes
1. Joerding, H. R.
11. Y-F015-99-012

U. S. Navai con. T. Technical Report R-259
CORROSION OF BURIED PIPES, by H. R. Joerding on No. 63
OFFICIAL USE ONLY

S. Naval Civil Engineering Laboratory

The results of a 49-month test to evaluate methods of protecting external surfaces of underground, metal,

Corrosion - Buried

1. Joerding, H. R. II. Y-F015-99-012

index 49-nonth test to evaluate methods لدر فيملود زيدان د دريات

· Cloth; Courings.

The Part All Control of the State

CANADA CONTRACTOR OF THE PARTY OF THE PARTY

である。 大学のでは、「ない、「ない、」

A 1987 .

が、ハラをないないをある