ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ ВАРИАНТЫ КУРСОВОЙ РАБОТЫ

Авторы Саратов Ю.С., Баранов В.Н., Нарская Н.Л.

Во всех задачах материальные тела считаются материальными точками. Индекс "О" соответствует исходному положению тела (M_0) , текущее положение — M.

Кольцо массой m = 5,0 кг может скользить по гладкой круговой направляющей радиусом r = 0,5 м, расположенной в вертикальной плоскости. Кольцо нитью AM связано с пружиной, жёсткость которой c = 402,0 H/м. Пружина не деформирована, когда кольцо находится в положении M_0 .

Определить, при каком значении начальной скорости v_o кольцо при движении из положения M_o достигнет крайнего верхнего положения и максимальное значение силы давления кольца на направляющую.

Ответ: 10,0 м/с; 1049 Н.

Вариант 2.

Толкатель с гладкой круговой направляющей радиусом $r = 0.5 \, m$ и высотой h = r/2 начинает двигаться по горизонтальной плоскости с постоянным ускорением a и приводит в движение тело, находившееся на плоскости в

Определить, с каким значением относительной скорости тело покинет направляющую, если $a=g\sqrt{3}$ (Учесть, что поверхность толкателя является неудерживающей связью.)

покое.

Ответ: 2,56 м/с.

Вариант 3.

Тело массой m=1, 0 кг движется по плоскости, наклонённой под углом $\alpha=30^\circ$ к горизонту. На тело действует сила сопротивления $\overline{R}=-\mu\overline{v}$, где \overline{v} - скорость тела,

 $\mu = 0.2~H\cdot c/m$. Движение началось с начальной скоростью $v_0 = 1.0~m/c$, направленной перпендикулярно линии наибольшего ската Ox.

Полагая наклонную плоскость достаточно протяжённой, найти значение предельной ($t \rightarrow \infty$) скорости и наибольшее удаление тела от оси x.

От в ет: 24,5 м/с; 5,0 м.

Вариант 4.

Тело массой m=2,0 кг движется по круговой направляющей радиусом r=1,0 м, вращающейся в горизонтальной плоскости с постоянной угловой скоростью $\omega=2,5$ рад/с вокруг оси, проходящей через точку O. Сила сопротивления, действующая со стороны направляющей на тело, $\overline{R}=-\mu|\overline{v}|\cdot\overline{v}$ ($R=\mu\cdot v^2$), где $\mu=0,3$ $H\cdot c^2/m^2$, \overline{v} - относительная скорость тела.

Определить, при каком минимальном значении относительной скорости v_0 тело, начавшее движение из положения O, совершит полный оборот и придет в исходное положение?

Ombem: 8,0 м/с. Вариант 5.

Тело может двигаться в вертикальной плоскости по гладкой внутренней поверхности цилиндра радиусом r = 5,0 м. При каком значении начальной скорости v_0 тело, движущееся из крайнего нижнего положения, достигнет крайнего верхнего положения? (Учесть, что поверхность цилиндра является неудерживающей связью.)

О m в е m: 15,7 м/с. Вариант 6.

Толкатель начинает двигаться с постоянным ускорением a=1,0 m/c^2 в прямолинейных направляющих и гладкой прямой лопаткой длиной L=1,0 m, наклоненной под углом $\alpha=60^\circ$ к оси толкателя, приводит в движение по горизонтальной плоскости тело массой m=1,0 κz . Сила сопротивления, действующая на тело со стороны плоскости,

 $\overline{R} = -\mu \cdot \overline{v}_a$, где \overline{v}_a - скорость тела относительно плоскости, $\mu = 0.5~H \cdot c/M$.

Какое расстояние пройдет тело до остановки после схода с лопатки толкателя?

О m в е m: 3,46 м/с. Вариант 7.

Планер массой m=400,0 кг стартует с поверхности земли, имея начальную скорость $v_0=40,0$ м/c, направленную по горизонтали. Аэродинамические силы, действующие на планер, приводятся к равнодействующей, проекции которой $R_x=-\mu v_x$, $R_y=kv_x-\mu v_y$. Здесь v_x , v_y - проекции скорости планера, $\mu=40,0$ $H\cdot c/m$, k=280,0 $H\cdot c/m$ - аэродинамические коэффициенты.

Определить максимальное значение вертикальной составляющей v_y^{\max} скорости планера и соответствующее этому моменту время.

O т в е т: 48,2 м, t = 6 с.

Вариант 8.

Тело массой m=1,0 кг движется внутри гладкой трубки, вращающейся с постоянной угловой скоростью $\omega=10,0$ рад/с вокруг вертикальной оси. Тело связано с концом пружины AM. Жесткость пружины c=500,0 H/M, её длина в недеформированном состоянии равна 2L=20,0 см. Движение началось без начальной относительной скорости из положения, соответствующего недеформированной пружине.

Определить наибольшее отклонение тела от оси вращения и максимальную величину силы давления на боковую стенку.

От в ет: 15,0 см; 10,0 Н.

Вариант 9.

Тело массой m=1,0 кг брошено вертикально с поверхности земли со скоростью $v_0=20,0$ м/с и движется в условиях ветра, дующего с постоянной по высоте скоростью u=8,0 м/с. Сила сопротивления, действующая на тело, $\overline{R}=-\mu\cdot\overline{v}_r$, \overline{v}_r - скорость тела относительно среды, $\mu=0,2$ $H\cdot c/м$.

Определить значение горизонтального сноса L тела в момент достижения им наибольшей высоты.

От в е т: 2,1 м.

Вариант 10.

Тело массой m=1,0 кг движется в трубке, изогнутой по дуге окружности радиусом r=0,2 м с углом охвата 90° . Трубка вращается вокруг вертикальной оси с постоянной угловой скоростью $\omega=5,0$ pad/c. Со стороны среды, заполняющей

трубку, на тело действует сила сопротивления $\overline{R} = -\mu |\overline{v}| \cdot \overline{v}$, ($R = \mu \cdot v^2$), где $\mu = 1.5 \, H \cdot c^2 / M^2$, \overline{v} - относительная скорость тела. Определить значение относительной скорости тела в момент его вылета из трубки, полагая, что его движение началось из состояния покоя в положении M_0 , близком к оси врашения трубки.

Ответ: 1,18 м/с.

Вариант 11.

Тело движется в вертикальной плоскости по внутренней поверхности цилиндра радиусом r=5,0 м. Коэффициент трения скольжения между телом и поверхностью f=0,2. Определить, при каком значении начальной скорости v_o тело, начавшее движение из положения A, достигнет кромки цилиндра.

От в ет: 15,1 м/с.

Вариант 12.

Рабочая поверхность толкателя представляет собой плоскость, наклоненную под углом $\alpha=45^{\circ}$ к горизонту. Верхняя кромка находится на высоте h=1,0 м. Толкатель движется с ускорением a=2g и приводит в движение тело, находящееся на горизонтальной плоскости в покое.

Коэффициент трения тела о поверхность толкатели f = 0,2. Пренебрегая сопротивлением воздуха, определить, на какую высоту над уровнем верхней кромки толкателя поднимется тело.

Ответ: 0,2 м.

Вариант 13.

При посадке самолета массы $m=1000~\kappa z$ на этапе его пробега по посадочной полосе к аэродинамический силам добавляется тормозная сила F=fN, где N — модуль силы нормальной реакции полосы, f=0.05. Проекции равнодействующей

аэродинамических сил равны $R_x = -\mu v^2$, $R_y = k v^2$, v - скорость самолета, μ и k - постоянные аэродинамические коэффициенты, удовлетворяющие условиям:

- 1) в момент приземления с посадочной скоростью $v_0 = 180 \ \kappa m/q \ (kv_0^2 = mg)$,
- 2) в горизонтальном полете тяге мотора $Q=20,0~\kappa H$ соответствует постоянная предельная скорость $v_{np}=360~\kappa \text{M}/\text{ч}.$

Найти путь, пройденный самолетом при посадке.

Ответ: 644 м.

Вариант 14.

Тело массой m=1,0 кг движется внутри гладкой трубки, вращающейся с постоянной угловой скоростью $\omega=10,0$ рад/с вокруг вертикальной оси O, отстоящей от трубки на некотором расстоянии. Тело связано с концом пружины AM. Жесткость пружины c=500 H/M, её длина в недеформированном состояний 2L=20,0 см.

Полагая, что движение тела началось из состояния относительного покоя при недеформированной пружине, определить его максимальное отклонение от начального положения M_0 .

Ответ: 5,0 см.

Вариант 15.

Кольцо массой m = 1,0 кг может двигаться по гладкой круговой направляющей, расположенной в вертикальной плоскости. Кольцо связано с пружиной AM. Жесткость пружины c = 196,0 H/M, её свободная длина равна r, где r = 20,0 cM - радиус направляющей.

Найти: положение равновесия кольца (кроме положения при $\varphi=0$) и скорость кольца в этом положении, если его движение началось без начальной скорости из положения, близкого к B.

Ответ: 1,682 рад; 1,62 м/с.

Вариант 16.

Тело приводится в движение по горизонтальной плоскости гладкими направляющими спарника параллелограммного механизма, кривошипы OA и CB которого одинаковой длины L=1,0 м вращаются с постоянной угловой скоростью ω . Сила сопротивления

со стороны плоскости $\overline{R} = -\mu \cdot \overline{v}$, где $\mu = const > 0$, \overline{v} - скорость тела относительно плоскости. В начальный момент времени кривошипы располагались по линии OC, тело находилось в покое в положении M_0 ($OM_0 = L$).

Определить, каким станет расстояние *OM* после поворота кривошипов на угол 180°,

Ответ: 1,0 м.

Вариант 17.

Тело массой m=1 ,0 кг движется по плоскости, наклонённой под углом $\alpha=30^\circ$ к горизонту. На тело действует сила сопротивления $\overline{R}=-\mu\overline{w}$, где \overline{v} - скорость тела, $\mu=0.5$ $H\cdot c/m$.

Найти координаты тела, соответствующие положению максимального подъема, если движение началось со

скоростью, равной $v_0 = 10.0 \text{ м/c}$ и направленной под углом $\beta = 60^{\circ}$ к оси x.

Ответ: 4,69 м; 4,89 м.

Вариант 18.

Тело приводится в движение по гладкой горизонтальной плоскости прямой лопаткой, вращающейся с постоянной угловой скоростью $\omega = 1.0~pad/c$ вокруг вертикальной оси, проходящей через точку O. Коэффициент трения скольжения тела о поверхность лопатки f = 0.2.

Определить путь, пройденный телом вдоль лопатки за $1\ c$, если в начальный момент времени оно находилось в покое на расстоянии $L=1,0\ m$ от оси вращения.

Ответ: 0,476 м.

Вариант 19.

Глубинная бомба массой m=400,0 кг входит в воду под углом $\alpha=60^\circ$ к поверхности со скоростью $v_0=100,0$ м/с и упреждением по дальности положения цели L=80,0 м. Сила сопротивления воды сопротивления $\overline{R}=-\mu\overline{v}$, где \overline{v} - скорость бомбы, $\mu=200$ $H\cdot c/m$. Определить, на какую глубину H должен быть установлен

гидростатический взрыватель для того, чтобы взрыв бомбы

произошел в точке, находящейся на одной вертикали с целью.

От в е т: 170 м.

Вариант 20.

Кольцо массой m=1,0 кг может скользить по гладкой круговой направляющей радиуса r=20,0 см, вращающейся с постоянной угловой скоростью ω вокруг вертикальной оси. Кольцо нитью AM соединено с пружиной, жесткость которой c=196,0 Н/м. В крайнем нижнем положении кольца пружина не деформирована.

Определить, при каком значении угловой скорости ω кольцо, начавшее движение без начальной скорости вблизи крайнего нижнего положения, достигнет высоты, равной 1.5r.

O т в е т: 31,3 paд/с.

Вариант 21.

При катапультировании кресло с пилотом обшей массой m=250,0 кг отделяется от самолета с начальной скоростью $v_0=10,0$ м/с. Сила сопротивления, действующая на кресло со стороны воздуха, $\overline{R}=-\mu\overline{w}_a$, где \overline{v}_a - скорость кресла относительно воздуха, $\mu=125$ $H\cdot c/m$ - аэродинамический

коэффициент. Скорость самолета в горизонтальном полёте $u = 720 \ \kappa \text{м/ч}$.

Считая связанную с самолетом систему координат инерциальной, найти координаты кресла в момент достижения им максимальной высоты.

От в е т: 3,0 м; 3,8 м.

Вариант 22.

Тело может двигаться внутри гладкой трубки, вращающейся вокруг вертикальной оси с постоянной угловой скоростью $\omega = 10.0~pad/c$. Угол между трубкой и осью вращения $\alpha = 30^{\circ}$.

Определить, при каком значении начальной относительной скорости v_0 тело, начавшее движение от оси вращения, сможет покинуть трубку некоторой конечной длины.

Ответ: 1,7 м/с.

Вариант 23.

Тело начинает движение по поверхности гладкого сферического купола радиусом r = 6,0 м без начальной скорости из положения M_0 , близкого к крайней верхней точке. Определить, на каком расстоянии от поверхности купола тело упадет на горизонтальную плоскость.

Ответ: 0,75 м.

Вариант 24.

Тело может свободно двигаться в гладкой кольцевой трубке радиусом r=0.4~m, вращающейся с постоянной угловой скоростью ω относительно вертикальной оси. В начальный момент времени тело находилось в состоянии относительного покоя на оси вращения. Определить наименьшую угловую скорость вращения, необходимую для перемещения тела в крайнее верхнее положение.

Ответ: 7,0 рад/с.

Вариант 25.

При взлете самолет массой $m=1000~\kappa z$ разгоняется по взлетной полосе при постоянной тяге мотора Q=5,0 κH . Проекции аэродинамической силы $R_x=-\mu\cdot v_x^2$, $R_y=k\cdot v_x^2$. Здесь μ и k - аэродинамические коэффициенты, определяемые из следующих условий:

- 1) $k \cdot v_1^2 = mg$, где v_1 минимальная скорость, необходимая для отделения от полосы, $v_1 = 180 \ \kappa\text{M/u}$;
- 2) в горизонтальном полете тяге Q=5.0 кH соответствует предельная скорость $v_{np}=360~\kappa \text{м/y}.$

Пренебрегая силой сопротивления, действующей со стороны полосы, найти длину пробега самолета при взлете.

Ответ: 288 м.

Вариант 26.

Тело массой m=1,0 кг приводится в движение по горизонтальной плоскости прямой гладкой лопаткой, вращающейся с постоянной угловой скоростью $\omega=0,4$ рад/с вокруг вертикальной оси, проходящей через точку O. Сила сопротивления, действующая на тело со стороны плоскости $R=-\mu\cdot v$, где v — скорость движения тела по плоскости, $\mu=0,6$ $H\cdot c/m$.

Определить путь, пройденный телом вдоль лопатки за 2 с, если в начальный момент времени оно находилось в покое на расстоянии L=0.5~m от оси вращения

От в е т: 11,7 см.

Вариант 27.

Кольцо массой m=1,0 кг может двигаться по гладкой круговой направляющей радиусом r=0,5 м, расположенной в горизонтальной плоскости. Кольцо связано с двумя одинаковыми пружинами, жёсткость которых c=196,0 H/m. Длины пружин в недеформированном состоянии равны ε (т.е. положение тела, соответствующее точке O, является равновесным). Определить скорость кольца и радиальную

составляющую силы его давления на направляющую в положении равновесия, если движение кольца началось из состояния покоя при $\phi_0 = 45^\circ$.

Ответ: 5,51 м/с; 18,3 Н.

Вариант 28.

Рабочая поверхность толкателя представляет собой цилиндрическую поверхность радиусом r с углом охвата $\alpha=60^\circ$. Толкатель начинает двигаться по горизонтальной плоскости с постоянным ускорением a и приводит в движение тело, находящееся на плоскости в покое. Пренебрегая трением тела о поверхность толкателя, определить, при каком минимальном значении ускорения толкателя тело достигнет верхней кромки.

Ответ: 17,0 м/ c^2 .

Вариант 29.

Тело массой m=10,0 кг движется из состояния покоя под действием пружинного толкателя по прямолинейной направляющей, наклоненной к горизонту под углом $\alpha=30^\circ$. Сила сопротивления со стороны направляющей $\mu=50,0$ $H\cdot c$ / m^2 , коэффициент жёсткости пружины толкателя c=1000,0 H/m, в начальном положении деформация пружины равна L=20,0 см.

Определить, какую скорость получит тело к моменту окончания действия толкателя. Какую силу надо приложить к телу для того, чтобы его последующее движение оказалось равномерным?

Ответ: 0,58 м/с; 66,0 Н.

Вариант 30.

С летящего на высоте h=100,0~m самолета производится пуск реактивной глубинной бомбы. Горизонтальная скорость самолета \overline{v}_1 , относительная скорость отделения бомбы \overline{v}_2 составляет угол $\alpha=30^\circ$ с \overline{v}_1 , $v_1=360,0~\kappa$ м/ч, $v_2=100,0~m$ /с, масса бомбы $m=500,0~\kappa$ г.

Пренебрегая сопротивлением воздуха, определить дальность полета бомбы L до касания её с поверхностью воды. Полагая, что при движении в воде на бомбу действует сила сопротивления, проекция которой $\overline{R}_y = -\mu |\overline{v}_y| \cdot \overline{v}_y$, где $\mu = 10.0$ $H \cdot c^2/\mathit{M}^2$, найти значение вертикальной составляющей скорости бомбы на глубине 50,0 м.

Ответ: 320 м; 32,0 м/с.

Вариант 31.

Тело массой m=0,1 кг начинает движение в гладкой трубке из состояния покоя под действием пружины, жёсткость которой c=4,0 кH/м. Начальная деформация сжатия пружины составляет L=0,2 м. После вылета из трубки тело движется свободно в поле силы тяжести при действии силы сопротивления воздуха

$$\overline{R} = -\mu \cdot \overline{v}$$
, где $\mu = 0.05 \ H \cdot c/M$.

Пренебрегая сопротивлением воздуха при движении тела по трубке, определить, насколько оно опустится к моменту удара в стену, отстоящую от конца трубки на s = 20.0 м.

Ответ: 1,48 м.

Вариант 32.

Тело массой m=20,0 кг падает без начальной скорости с некоторой высоты и со скоростью 35,0 м/с входит в воду. Сила сопротивления воздуха $\overline{R}=-\mu_{l}\overline{v}$, где $\mu_{l}=2,0$ $H\cdot c/m$, сила сопротивления воды $\overline{R}=-\mu_{2}|\overline{v}|\cdot\overline{v}$ ($R=\mu_{2}\cdot v^{2}$), где $\mu_{2}=0,3$ $H\cdot c^{2}/m^{2}$, \overline{v} - скорость тела. Пренебрегая некоторой потерей скорости при ударе тела о поверхность воды, определить:

1) с какой высоты h началось движение тела; 2) скорость погружения на глубине H=20,0 м.

O т в е т: 1) 83,0 м; 2) 18,3 м/с.