Рассмотрим такой ряд:

$$1 - 1 + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{4} + \frac{1}{4} - \frac{1}{2} + \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \dots$$

Сходится ли этот ряд? Да, потому что можно разбить на скобки из 3х слагаемых (кроме 1), каждая из которых =0.

Рассмотрим похожий ряд:

$$-1+1-\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}-\frac{1}{4}+\frac{1}{2}-\frac{1}{4}-\frac{1}{4}+\frac{1}{2}-\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}-\frac{1}{16}+\ldots=-1$$

Произошла магия — сумма ряда =-1, т.к. $b_n=-a_n$, где b_n — слагаемое этого ряда, a_n — прошлого ряда. Но мы просто переставили слагаемые предыдущего ряда \Rightarrow перестановка бесконечного числа слагаемых меняет результат.

Определение.
$$\sum a_k, w: \mathbb{N} \to \mathbb{N}$$
 — биекция $b_k:=a_{w(k)}, \sum b_k$ называется перестановкой ряда $\sum a_k$

Теорема 1. Ряд A абсолютно сходится, тогда его перестановка B тоже абсолютно сходится и имеет ту же сумму.

Доказательство. 1. $a_k \ge 0$

$$S_n^{(b)} = b_1 + \ldots + b_n = a_{w(1)} + \ldots + a_{w(n)} \le S_N^{(a)}, N = \max(w(1) \ldots w(n))$$

Предельный переход: $S^{(b)} \leq S^{(a)}$

Т.к. A — перестановка B, то $S^{(a)} \leq S^{(b)} \Rightarrow S^{(a)} = S^{(b)}$

2. Общий случай

$$a_k^+ = \max(a_k, 0), a_k^- = \max(-a_k, 0)$$

$$\sum b_k^+$$
 — перестановка $\sum a_k^+; \sum b_k^-$ — перестановка $\sum a_k^-$

Срезки сходятся по пункту 1., в силу абсолютной сходимости частичные суммы конечны $\Rightarrow S^{(a)} = S^{(b)}$

Теорема 2. Римана.

 $\sum a_k$ — сходится неабсолютно. Тогда:

- 1. \exists перестановка ряда A, которая не имеет предела частичной суммы
- 2. $\forall S \in \overline{\mathbb{R}} \; \exists$ перестанвка ряда A с суммой S

Доказательство. 2. Т.к. $\sum a_k$ сходится неабсолютно, существует две кучи - одна из положительных a_k , другая из отрицательных. Обе кучи бесконечные и имеют бесконечную сумму. Тогда будем брать элементы из положительной кучи, пока частичная сумма < S, потом берем элементы из отрицательной кучи, пока сумма > S. Получаем ряд, осциллирующий вокруг S. Если есть нулевые элементы, то будем их добавлять в сумму, когда меняем направление.

1. Будем осциллировать не вокруг S, а между T и S.

М3137у2019 Лекция 12

Пример.

$$\sum_{n=1}^{+\infty} \frac{1}{n(2n-1)} = \sum_{n=1}^{+\infty} \left(\frac{2}{2n-1} - \frac{1}{n}\right) = 2\left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots\right) - 1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \dots =$$

$$= 2 - 1 - \frac{1}{2} + \frac{2}{3} - \frac{1}{3} - \frac{1}{4} + \frac{2}{5} - \frac{1}{5} + \dots =$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

Разложим $f(x) = \ln(1+x)$ по Тейлору:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{1}{(n+1)!} f^{(n+1)}(c) x^n$$
$$f^{(n+1)}(c) = \frac{(-1)^n n!}{(1+c)^{n+1}}$$
$$R_n \le \frac{1}{n+1} \frac{1}{(1+c)^{n+1}} \le \frac{1}{n+1}$$
$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \dots$$

Проблема: сумма этого ряда должна быть > 1, но мы получили обратное. Это произошло, потому что мы переставили слагаемые неабсолютно сходящегося ряда.

Произведение рядов

$$(a_1 + \ldots + a_k)(b_1 + \ldots + b_l) = \sum \sum a_i b_j$$

Определение. $\sum a_k, \sum b_k$

$$\gamma:\mathbb{N}\to\mathbb{N}\times\mathbb{N}$$
 — биекция, $\gamma(k)=(\varphi(k),\psi(k))$

 $\gamma:\mathbb{N} \to \mathbb{N} \times \mathbb{N}$ — биекция, $\gamma(k)=(\varphi(k),\psi(k))$ Произведение рядов A и B — ряд $\sum_{k=1}^{+\infty} a_{\varphi(k)} b_{\psi(k)}$

Теорема 3. Коши.

Пусть ряды $\sum a_k, \sum b_k$ абсолютно сходятся. Тогда \forall биекции $\gamma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ произведение рядов абсолютно сходится и его сумма = AB

Доказательство. $\sum |a_k| = A^*, \sum |b_k| = B^*, 0 \le A^*, B^* < +\infty$

$$\sum_{k=1}^{N} |a_{\varphi(x)} b_{\psi(x)}| \le \sum_{i=1}^{M} |a_i| \sum_{j=1}^{L} |b_j| \le A^* B^*$$

$$M := \max(\varphi(1) \dots \varphi(N))$$
 $N := \max(\psi(1) \dots \psi(N))$

Итого произведение сходится абсолютно $\Rightarrow \forall \gamma$ произведение рядов имеет одинаковую сумму. Возьмём γ такое, что оно обходит точки $\mathbb{N} \times \mathbb{N}$ "по квадратам", т.е. не заходит в следующий квадрат, пока не обошло предыдущий. Тогда:

$$\sum_{k=1}^{n^2} a_{\varphi(k)} b_{\psi(k)} = \sum_{i=1}^n a_i \sum_{j=1}^n b_j \xrightarrow[n \to +\infty]{} AB$$

M3137y2019

 $\ensuremath{\varPi pumep}.\ x \in \mathbb{R}, x$ — фиксированный

$$\sum_{k=0}^{+\infty} a_k x^k \sum_{j=0}^{+\infty} b_j x^j = \sum_{n=0}^{+\infty} c_n x^n$$

$$c_n = a_0 b_n + a_1 b_{n-1} + \ldots + a_n b_0$$

Это называется произведение степенных рядов.

М3137у2019 Лекция 12