Отчёт по лабораторной работе №3 по дисциплине Компьютерный практикум по статистическому анализу данных

Линейная алгебра

Шаповалова Диана Дмитриевна

Содержание

1	Цель работы	5
2	Выполнение работы	6
	2.1 Поэлементные операции над многомерными массивами	. 6
	2.2 Транспонирование, след, ранг, определитель и инверсия матриць	ı 7
	2.3 Вычисление нормы векторов и матриц, повороты, вращения	. 8
	2.4 Матричное умножение, единичная матрица, скалярное произведен	ие 10
	2.5 Факторизация. Специальные матричные структуры	. 11
	2.6 Общая линейная алгебра	. 12
	2.7 Задания для самостоятельного выполнения	. 13
	2.8 Произведение векторов	. 13
	2.9 Системы линейных уравнений	. 13
	2.10 Операции с матрицами	. 16
	2.11 Линейные модели экономики	. 19
3	Выводы	22

Список иллюстраций

2.1	выполняем примеры по поэлементные операции над многомерны-	
	ми массивами	7
2.2	Выполняем примеры по транспонированию, след, ранг, определи-	
	тель и инверсия матрицы	8
2.3	Выполняем примеры по вычислению нормы векторов и матриц,	
	повороты, вращения	9
2.4	Выполняем примеры по матричному умножению, единичная мат-	
	рица, скалярное произведение	10
2.5	Выполняем примеры по факторизации, специальные матричные	
	структуры	11
2.6	Выполняем примеры по общей линейной алгебре	12
2.7	Произведение векторов	13
2.8	Системы линейных уравнений	14
2.9	Системы линейных уравнений	15
	Системы линейных уравнений	16
	Операции с матрицами	17
	Операции с матрицами	18
	Операции с матрицами	19
	Линейные модели экономики	20
	Линейные модели экономики	20
2.16	Линейные молели экономики	21

Список таблиц

1 Цель работы

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры

2 Выполнение работы

2.1 Поэлементные операции над многомерными

массивами

Для матрицы 4×3 рассмотрим поэлементные операции сложения и произведения её элементов.

Для работы со средними значениями можно воспользоваться возможностями пакета Statistics

Шаповалова Диана Дмитриевна. 1032211220

[▼] Лаб №4. Линейная алгебра ¶

4.2.1. Поэлементные операции над многомерными массивами

```
[1]: a = rand(1:20,(4,3))
[1]: 4x3 Matrix{Int64}:
      2 12 5
      5 7 11
      20 12
             7
      4 16 10
[2]: # Поэлементная сумма:
     sum(a)
[2]: 111
[4]: # Поэлементная сумма по столбцам:
     sum(a,dims=1)
[4]: 1x3 Matrix{Int64}:
     31 47 33
[5]: # Поэлементная сумма по строкам:
     sum(a,dims=2)
[5]: 4x1 Matrix{Int64}:
      23
      39
      30
[6]: # Поэлементное произведение:
     prod(a)
[6]: 49674240000
```

Рис. 2.1: Выполняем примеры по поэлементные операции над многомерными массивами

2.2 Транспонирование, след, ранг, определитель и инверсия матрицы

Для выполнения таких операций над матрицами, как транспонирование, диагонализация, определение следа, ранга, определителя матрицы и т.п. можно

4.2.2. Транспонирование, след, ранг, определитель и инверсия матрицы

```
[15]: import Pkg
      Pkg.add("LinearAlgebra")
      using LinearAlgebra
         Resolving package versions...
         Updating `C:\Users\dina7\.julia\environments\v1.10\Project.toml`
        [37e2e46d] + LinearAlgebra
      No Changes to `C:\Users\dina7\.julia\environments\v1.10\Manifest.toml`
[16]: b = rand(1:20,(4,4))
[16]: 4x4 Matrix{Int64}:
        9 19 17 1
        5 12 2 1
       3 6 6 1
20 7 17 1
[17]: # Транспонирование:
      transpose(b)
[17]: 4x4 transpose(::Matrix{Int64}) with eltype Int64:
       9 5 3 20
       19 12 6 7
       17 2 6 17
1 1 1 1
[18]: # След матрицы (сумма диагональных элементов):
[18]: 28
[19]: # Извлечение диагональных элементов как массив:
      diag(b)
[19]: 4-element Vector{Int64}:
       12
        6
        1
```

Рис. 2.2: Выполняем примеры по транспонированию, след, ранг, определитель и инверсия матрицы

2.3 Вычисление нормы векторов и матриц, повороты, вращения

Для вычисления нормы используется LinearAlgebra.norm(x).

4.2.3. Вычисление нормы векторов и матриц, повороты, вращения

```
24]: # Создание вектора Х:
     X = [2, 4, -5]
24]: 3-element Vector{Int64}:
       4
      -5
25]: # Вычисление евклидовой нормы:
     norm(X)
25]: 6.708203932499369
26]: # Вычисление р-нормы:
     p = 1
     norm(X,p)
26]: 11.0
27]: # Расстояние между двумя векторами X и Y:
     X = [2, 4, -5];
     Y = [1,-1,3];
     norm(X-Y)
27]: 9.486832980505138
29]: # Проверка по базовому определению:
     sqrt(sum((X-Y).^2))
29]: 9.486832980505138
30]: # Угол между двумя векторами:
     acos((transpose(X)*Y)/(norm(X)*norm(Y)))
30]: 2.4404307889469252
```

Рис. 2.3: Выполняем примеры по вычислению нормы векторов и матриц, повороты, вращения

2.4 Матричное умножение, единичная матрица, скалярное произведение

▼ 4.2.4. Матричное умножение, единичная матрица, скалярное произведение

```
[37]: # Матрица 2х3 со случайными целыми значениями от 1 до 10:
      A = rand(1:10,(2,3))
[37]: 2x3 Matrix{Int64}:
       5 4 6
       5 10 7
[38]: # Матрица 3х4 со случайными целыми значениями от 1 до 10:
      B = rand(1:10,(3,4))
[38]: 3x4 Matrix{Int64}:
      8 3 7 8
1 9 1 1
       9 10 3 1
[39]: # Произведение матриц А и В:
      A*B
[39]: 2x4 Matrix{Int64}:
       98 111 57 50
       113 175 66 57
[40]: # Единичная матрица 3х3:
      Matrix{Int}(I, 3, 3)
[40]: 3x3 Matrix{Int64}:
      1 0 0
       0 1 0
       0 0 1
[41]: # Скалярное произведение векторов X и Y:
      X = [2, 4, -5]
      Y = [1, -1, 3]
      dot(X,Y)
[41]: -17
[42]: # тоже скалярное произведение:
      X'Y
```

Рис. 2.4: Выполняем примеры по матричному умножению, единичная матрица, скалярное произведение

2.5 Факторизация. Специальные матричные структуры

4.2.5. Факторизация. Специальные матричные структуры

```
[43]: # Задаём квадратную матрицу 3х3 со случайными значениями:
      A = rand(3, 3)
[43]: 3x3 Matrix{Float64}:
       0.0348329 0.375824 0.747843
       0.240031 0.385661 0.968305
       0.360039 0.0386811 0.778836
[44]: # Задаём единичный вектор:
      x = fill(1.0, 3)
[44]: 3-element Vector{Float64}:
       1.0
       1.0
[45]: # Задаём вектор b:
      b = A*x
[45]: 3-element Vector{Float64}:
       1.1584997099418903
       1.5939970955428544
       1.177556154750584
[46]: # Решение исходного уравнения получаем с помощью функции \
      # (убеждаемся, что х - единичный вектор):
      A\b
[46]: 3-element Vector{Float64}:
       0.99999999999992
       0.99999999999999
       1.000000000000000004
[47]: # LU-факторизация:
      Alu = lu(A)
[47]: LU{Float64, Matrix{Float64}, Vector{Int64}}
      L factor:
      3x3 Matrix{Float64}:
```

Рис. 2.5: Выполняем примеры по факторизации, специальные матричные структуры

2.6 Общая линейная алгебра

4.2.6. Общая линейная алгебра

```
9]: # Матрица с рациональными элементами:
    Arational = Matrix{Rational{BigInt}}(rand(1:10, 3, 3))/10
9]: 3x3 Matrix{Rational{BigInt}}:
     3//10 3//5 1//10
            4//5 1//5
     1
     2//5 3//10 9//10
0]: # Единичный вектор:
    x = fill(1, 3)
0]: 3-element Vector{Int64}:
     1
     1
1]: # Задаём вектор b:
    b = Arational*x
1]: 3-element Vector{Rational{BigInt}}:
      2
     8//5
2]: # Решение исходного уравнения получаем с помощью функции \
    # (убеждаемся, что х - единичный вектор):
    Arational\b
2]: 3-element Vector{Rational{BigInt}}:
     1
     1
3]: # LU-разложение:
    lu(Arational)
3]: LU{Rational{BigInt}, Matrix{Rational{BigInt}}, Vector{Int64}}
```

Рис. 2.6: Выполняем примеры по общей линейной алгебре

2.7 Задания для самостоятельного выполнения

2.8 Произведение векторов

- 1. Задайте вектор v. Умножьте вектор v скалярно сам на себя и сохраните результат в dot_v.
- 2. Умножьте v матрично на себя (внешнее произведение), присвоив результат переменной outer_v.

4.4. Задания для самостоятельного выполнения

4.4.1. Произведение векторов

```
[84]: ### 1. Задайте вектор v. Умножьте вектор v скалярно сам на себя и сохраните результат в dot_v.

[85]: v = [1, 2, 3]

[85]: 3-element Vector{Int64}:
    1
    2
    3

[86]: dot_v= dot(v, v)

[86]: 14

[87]: ### 2. Умножьте v матрично на себя (внешнее произведение), присвоив результат переменной outer_v

[88]: outer_v = v * transpose(v)

[88]: 3x3 Matrix{Int64}:
    1    2    3
    2    4    6
    3    6    9
```

Рис. 2.7: Произведение векторов

2.9 Системы линейных уравнений

1. Решить СЛАУ с двумя неизвестными

1. Решить СЛАУ с двумя неизвестными. Пунтк а)

Рис. 2.8: Системы линейных уравнений

Пункт d)

```
[111]: A = [1 1; 2 2; 3 3]
       B = [1; 2; 3]
[111]: 3-element Vector{Int64}:
        2
[112]: rez = A\ B
[112]: 2-element Vector{Float64}:
        0.499999999999999
        0.5
       Пункт е)
[113]: A = [1 1; 2 1; 1 -1]
       B = [2; 1; 3]
[113]: 3-element Vector{Int64}:
        1
        3
[114]: rez = A\ B
[114]: 2-element Vector{Float64}:
         1.50000000000000004
        -0.999999999999997
```

Рис. 2.9: Системы линейных уравнений

2. Решить СЛАУ с тремя неизвестными

2. Решить СЛАУ с тремя неизвестными. Пункт а)

```
[117]: A = [1 1 1; 1 -1 -2;]
       B = [2; 3]
[117]: 2-element Vector{Int64}:
        3
[118]: rez = A\ B
[118]: 3-element Vector{Float64}:
        2.2142857142857144
        0.35714285714285704
        -0.5714285714285712
       Пункт b)
[119]: A = [1 \ 1 \ 1; \ 2 \ 2 \ -3; \ 3 \ 1 \ 1]
       B = [2; 4; 1]
[119]: 3-element Vector{Int64}:
        2
        4
        1
[120]: rez = A\ B
[120]: 3-element Vector{Float64}:
        2.5
         0.0
       Пункт с) (система имеет бесконечно много решений)
[121]: A = [1 1 1; 1 1 2; 2 2 3]
       B = [1; 0; 1]
```

[121]: 3-element Vector{Int64}:

Рис. 2.10: Системы линейных уравнений

2.10 Операции с матрицами

1. Приведите приведённые ниже матрицы к диагональному виду

4.4.3. Операции с матрицами

1. Приведите приведённые ниже матрицы к диагональному виду. Пункт а)

```
5]: using LinearAlgebra
    # Исходная матрица
    A = [1 -2;
         -2 1]
    # Собственные значения и собственные векторы
    eigen_decomp = eigen(A)
    # Собственные значения (диагональная матрица)
    D = Diagonal(eigen_decomp.values)
    # Матрица собственных векторов
    P = eigen_decomp.vectors
    println("Исходная матрица А:")
    println(A)
    println("\nДиагональная матрица D:")
    println(D)
    println("\nМатрица собственных векторов Р:")
    println(P)
    Исходная матрица А:
    [1 -2; -2 1]
    Диагональная матрица D:
    [-1.0 0.0; 0.0 3.0]
    Матрица собственных векторов Р:
    \hbox{$[-0.7071067811865475\ -0.7071067811865475;\ -0.7071067811865475\ 0.7071067811865475]}
```

Рис. 2.11: Операции с матрицами

2. Вычислите

2. Вычислите. Пункт а)

```
29]: using LinearAlgebra
     # Исходная матрица
     A = [1 -2;
          -2 1]
     # Собственные значения и векторы
     eigen_decomp = eigen(A)
     P = eigen_decomp.vectors # Матрица собственных векторов
     D = Diagonal(eigen_decomp.values) # Диагональная матрица собственных значений
     # Возводим диагональную матрицу в 10-ю степень
     D_10 = D.^10
     # Вычисляем А^10
     A_10 = P * D_10 * inv(P)
     println("Матрица A^10:")
     println(A_10)
     Матрица А^10:
     [29525.0 -29524.0; -29524.0 29525.0]
```

Пункт b)

```
using LinearAlgebra

# Исходная матрица
A = [5 -2;
    -2 5]

# Собственные значения и векторы
eigen_decomp = eigen(A)
eigenvalues = eigen_decomp.values
eigenvectors = eigen_decomp.vectors

# Проверяем, что собственные значения неотрицательные
if all(eigenvalues .>= 0)
```

Рис. 2.12: Операции с матрицами

3. Найдите собственные значения матрицы А. Создайте диагональную матрицу из собственных значений матрицы П. Создайте нижнедиагональную матрицу из матрица П. Оцените эффективность выполняемых операций.

```
COSADATE диагональную матрицу из собственных значений матрицы Л. Создайте нижнедиагональную матрица Л. Оцените эффективность выполняемых операций.

[145]: single Literal-Igère single genchartroit = fun outnus dennus d
```

Рис. 2.13: Операции с матрицами

2.11 Линейные модели экономики

Линейная модель экономики может быть записана как СЛАУ $\square - \square \square = \square$, где элементы матрицы \square и столбца \square — неотрицательные числа. По своему смыслу в экономике элементы матрицы \square и столбцов \square , \square не могут быть отрицательными числами.

 Матрица □ называется продуктивной, если решение □ системы при любой неотрицательной правой части □ имеет только неотрицательные элементы □_□. Используя это определение, проверьте, являются ли матрицы продуктивными.

4.4.4. Линейные модели экономики

1. Матрица A называется продуктивной, если решение x системы при любой неотрицательной правой части y имеет только неотрицательные элементы x_i . Используя это определение, проверьте, являются ли матрицы продуктивными.

Using LinearAlgebra # Mccodean Marpusu A A = [1 2; 3 4] # Coodean Marpusu I (Mangumep, c ucnomasodamuen Matrix(Floate4)) Linetirs 1(2) # Edminumen Mangusu pasnepa 2/2 # Manpusa I - A Lininus A * Linatrix A # Independent Addenous an Manpusa I - A Hedwpoodemoù (ofpamunoù) delliminus A = del(Liminus A) printin("Orpeannten Marpusa I - A ofpamuna, u cucnena umean edunchdennoe pessense # Ecau onpedenumen Henyhedeoù, mo Manpusa I - A ofpamuna, u cucnena umean edunchdennoe pessense # Ecau onpedenumen Henyhedeoù, mo Manpusa I - A ofpamuna, u cucnena umean edunchdennoe pessense # Ecau onpedenumen Henyhedeoù, mo Manpusa I - A ofpamuna, u cucnena umean edunchdennoe pessense # printin("Marpusa I - A ofpatuna, Cuctena umeat сариственное решение.") else printin("Marpusa I - A ofpatuna, cuctena umeat сариственное решения.") onpeanntena Marpusa I - A ofpatuna, cuctena umeat единственное решения.") onpeanntena Marpusa I - A . 1 - 6.8 Marpusa I - A ofpatuna, cuctena umeat единственное решение.

Рис. 2.14: Линейные модели экономики

 Критерий продуктивности: матрица □ является продуктивной тогда и только тогда, когда все элементы матрица (□ – □)^−1 являются неотрицательными числами. Используя этот критерий, проверьте, являются ли матрицы продуктивными.

2. Критерий продуктивности: матрица A является продуктивной тогда и только тогда, когда все элементы матрица (E-A)–1 являются неотрицательными числами. Используя этот критерий, проверьте, являются ли матрицы продуктивными.

Пункт а)

```
using LinearAlgebra

# Исходная матрица A
A = [1 2; 3 1]

# Единичная матрица E размером 2x2
E = I(2)

# Матрица E - A
E_minus_A = E - A

# Пробервем, существует ли обратная матрица
if det(E_minus_A) != 0
# Находии обратную матрицу (E - A)^-1
inv_E_minus_A = inv(E_minus_A)

# Пробервем, является продуктивной матрицы неотрицательными
if all(x -> x >= 0, inv_E_minus_A)

println("Матрица A является продуктивной.")
else

println("Матрица A не является продуктивной.")
end

else

println("Матрица E - A вырождена, не существует обратной матрицы.")
end

Матрица A не является продуктивной.
```

Рис. 2.15: Линейные модели экономики

3. Спектральный критерий продуктивности: матрица □ является продуктивной тогда и только тогда, когда все её собственные значения по модулю

меньше 1. Используя этот критерий, проверьте, являются ли матрицы продуктивными.

3. Спектральный критерий продуктивности: матрица A является продуктивной тогда и только тогда, когда все её собственные значения по модулю меньше 1. Используя этот критерий, проверьте, являются ли матрицы продуктивными.

Пункт а)

```
# Исходная матрица A
A = [1 2; 3 1]
# Находик собственные значения матрицы A
eigenvalues_A = eigen(A).values
# Проверяем, что дес собственные значения по модулю меньше 1
if all(abs(eigenvalue) < 1 for eigenvalue in eigenvalues_A)
println("Матрица A является продуктивной.")
else
println("Матрица A не является продуктивной.")
end
Матрица A не является продуктивной.")
```

Пункт b)

```
# Исходная матрица A
A = [1 2; 3 1]

# Создаем матрицу (1/2) * A
half_A = 0.5 * A

# Haxodum собственные значения матрицы (1/2) * A
eigenvalues_half_A = eigen(half_A).values

# Правераем, wmo dec coбственные значения по модулю меньше I
if all(abs(eigenvalue) < 1 for eigenvalue in eigenvalues_half_A)
println("Marpuцa (1/2) * A является продуктивной.")
else

println("Матрица (1/2) * A не является продуктивной.")
end

Матрица (1/2) * А не является продуктивной.")
```

Рис. 2.16: Линейные модели экономики

3 Выводы

Мы изучили возможности специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры