Parcial 1: Conceptos Básicos y Serie de Fourier Señales y Sistemas 2025-I

Profesor: Andrés Marino Álvarez Meza, Ph.D.

Departamento de Ingeniería Eléctrica, Electrónica, y Computación
Universidad Nacional de Colombia - sede Manizales

1. Instrucciones

- Para recibir crédito total por sus respuestas, estas deben estar claramente justificadas e ilustrar sus procedimientos y razonamientos (paso a paso) de forma concreta, clara y completa.
- El parcial debe ser enviado al correo electrónico amalvarezme@unal.edu.co antes de las 23:59 del 16 de mayo de 2025, vía link de GitHub, con componentes teóricas de solución a mano en formato pdf y componentes de simulación en un cuaderno de Python. Si el correo unal o GitHub presentan inconsistencias, enviar los archivos como adjunto en .zip.
- Los códigos deben estar debidamente comentados y discutidos en celdas de texto (markdown). Códigos no comentados ni discutidos, no serán contabilizados en la nota final.
- Incluir en el asunto del correo de envío del parcial: Parcial 1 SyS 2025-1: Nombre completo.

2. Preguntas

- 1. Se tiene un microprocesador de 5 bits con entrada análoga de -3.3 a 5 [v]. Diseñe el sistema de acondicionamiento y digitalización para la señal: $x(t) = 20\sin(7t \pi/2) 3\cos(5t) + 2\cos(10t)$. Presente las simulaciones y gráficas de los procedimientos más representativos en un cuaderno de Python, incluyendo al menos dos períodos de la señal estudiada.
- 2. Cuál es la señal obtenida en tiempo discreto al utilizar un conversor análogo digital con frecuencia de muestreo de 5kHz, aplicado a la señal $x(t)=3\cos(1000\pi t)+5\sin(2000\pi t)+10\cos(11000\pi t)$?. Realizar la simulación del proceso de discretización. En caso de que la discretización no sea apropiada, diseñe e implemente un conversor adecuado para la señal estudiada.
- 3. La distancia media entre dos señales $x_1(t), x_2(t) \in \mathbb{R}, \mathbb{C}$, se puede expresar a partir de la potencia media:

$$d(x_1, x_2) = \bar{P}_{x_1 - x_2} = \lim_{T \to \infty} \frac{1}{T} \int_T |x_1(t) - x_2(t)|^2 dt.$$

Sean $x_1(t)$ y $x_2(t)$:

$$x_1(t) = A\cos(w_0 t), \quad w_0 = \frac{2\pi}{T}, \quad T, A \in \mathbb{R}^+$$

$$x_2(t) = \begin{cases} 1 & si & 0 \le t < \frac{T}{4} \\ -1 & si & \frac{T}{4} \le t < \frac{3T}{4} \end{cases}$$
$$1 & si & \frac{3T}{4} \le t < T$$

¿Cuál es la distancia media entre las señales?. Corrobore sus desarrollos con Sympy.

4. Sea x''(t) la segunda derivada de la señal x(t), donde $t \in [t_i, t_f]$. Demuestre que los coeficientes de la serie exponencial de Fourier se pueden calcular según:

$$c_n = \frac{1}{(ti - tf)n^2 w_o^2} \int_{t_i}^{t_f} x''(t)e^{-jnw_o t} dt; \quad n \in \mathbb{Z}.$$

¿Cómo se pueden calcular los coeficientes a_n y b_n desde $x^{''}(t)$ en la serie trigonométrica de Fourier?.

Encuentre el espectro de Fourier, su magnitud, fase, parte real, parte imaginaria y el error relativo de reconstrucción para $n \in \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}$, a partir de $x^{''}(t)$ para la señal x(t) en la Figura $\boxed{1}$. Compruebe el espectro obtenido con la estimación a partir de x(t) y presente las respectivas simulaciones sobre Python.

Figura 1: Señal x(t) - ejercicio 4.

SOLUCION 1) micropocesador= 5bits - Analoga -3,3V a 5V Diseño de Sistema de acondicionamiento y digitalización Para la Señal $x(t) = 20 \sin(7t - \pi/2) - 3\cos(5t) + 2\cos(10t)$ $A_1 = 20$, $A_2 = 3$ $A_3 = 2$ Se bione un termino Seno y 2 Cosonos, functores que osulen entre -1 11 Por lo tanto. X (max) = 20 (1) -3 (-1) +2 (1)= 25 V [-25V - 25V] X (min) = 20(-1)-3()+2(-1) = -25V 50V Atenuación #EStados = 25 = [32] 1 Rango = 5-(-3.3V)=(8,3V) sa nacosta heror al acondicionamiento va que el microprocesador solo recibe seriales entre (-3,3 v a 5 v) Venaxin 25V ZSV Vmin .17 -25V Vmerx out 5V -3,34 Vmin out -3,3V m= Vmuxo-Vmino = 5-(3,3) 54 Vmentin- Vannin m= 83=0,166 Escalamiento -3,71 b = J-mx = 1min-Mxmin = Vmino-Vminm = -3,3V-(-25) (0,166)

-

J= mx +b X(t) Acond = 0, 166 x(t) +0,85 Digitalización 75 # Estado = 32 - 31 Saltos DV= Rengo = 8,3V= 0,267V La sonal acondicionada se prode Cumtizer asignendo a Cerda nivel (32) por Separado ~ 0,267V, miciando en -3,3V Ahora Sa halla Frewerera de muos treo ne casarra. w=20 = 211F= W, = 7 = 7 = 0.8 = F1 Wz= 5 = 5 - 1,11=Fz $\omega_3 = 10 = \frac{10^5}{217} = 7.59 = F_3$ F572F. Fs 7 2 (1.59) F57 3.2 Sen(76-17/2) = descomponemos la función seno como: Sen (a-B) = Send Cosb-SenB Cosd, = 5en (7t) cos(Th) - 5en(Trh) cos(7t) = 5e (7)(0 - 1. Co5(7t) =- cós 7 t $X(t) = -20 \cos(7t) - 3\cos(5t) + 2\cos(10t)$

Acondictorando la Señal Original queda. X(t) Ajostada = 0,166(-20 cos(7t)-300s(5t) + 2 cos(10t)) x(t) Ajusteda = -3,32 cos(7t) - 0,5 cos(51) +0,33 cos (10t)

2) cue es la Señal obdenida en trempo discreto
al utilizar un conversor A/D con frewencia de muss treo 5 KHz aplicado a la Senal. X(t)= 3COS(1000 11t) + 5SIN(200011t) + 10COS (1100011t) Realizar Simulación de discretización. En Caso de que la discretización no sea cipropicida, diseñar a implementer un conversor adecuado para la sonal estudiada FS= 5KHZ= 5000 HZ · Se Calcula Cada frewencia Para haller F57,2 Fo FS 7/2 Fmex -max W3=11000TT=2TT=2TTF1 W.= 100017=217 = 217F, ; W= 200017=217 - 217F2 Fi = Wi = 1000TT = 500 Hz V ALIASING Fz = Wz - 2000 # - 1000 HZV F3 = W1 - 11000TF = 5500 HZX Fs no comple el teorema de Nyquist Fs7/2Fo F572 max (F, Fz, F3) Fs 7 2 max (500 Hz, 1000 Hz, 5500 Hz) FSZ 2(5500) FS7 11000 HZ NO ES 5000 HZ X 11000 HZ - 5000 HZ K 11000 HZ APROPIADA

- Ahora Se discretiza la Señal X(1)=3005 (1000 TE) +55in (2000 TE) + 10 COS (11000 TE) ton Se multiplica po (FI, Fz, F3) se divide por (F5) X (n/m)= 3 COS (1000 1Tn) + Sin (2000 TTn) + 10 COS (1000 TTn) X(n/g)= 3 (05 (1000 TM) + 5 Sin (2000 TM) + 10 (05 (11000 TM) X(n/s)= 3 cos (500 H2 Trn) + 5 Sin (2000H2 2Tm) + 10 cos (5000 H2) + 5000 H2 X68)= 3cos(2170)+55in (2170)+10cos(22170) X(n/Fs) = 3 (a)(\frac{1}{2}n) +5 Sin(\frac{2}{2}n) + 10 (a)(11_1m) 6,21 [0-211] V GUIT[012217] V 2,217(0-217) X Como el 3er Coseno esta por fuera del parado de 2TT, esto indica que es un ALIASING, por lo que sa deba heller la frecuencia original por le que se resta 217 pera encontrar la copia que Ester dontro del intorvalo de (0-271) Norig- Nopia + 2KT) V3 = TIL € [0-54) N3-54 = 111-101 = 112-101 = 115

3

3

-

3

3

-

3

- Ahora 50 debe Volver a llevar esta frecuencia al coseno que sa consideren que duederra con su fracesonera original de discretiqueson. X[n/Fs] = 3 COS(\(\frac{2}{5}n\) + 5 Sin(\(\frac{2}{5}n\)) + 10 COS(\(\frac{2}{5}n\)) SE Suman los terminos con la mil ma freuenta X[n/Fs]= 13 COS(In) + 55in(2111)

3. Les distancées entre dos señales XI(t), XI(t) E R, C, Se puede expreser a partir de la potenoin media: d(x,, x2) = Px,-x2= / im + [x, (t)-x2(t)] dt Seen X. (t) J. X2 (t) X, (t) = A cos(wot), Wo = ZI, T, A E R+ (· 15) 05t ZT/4 X2(t)={--151 IST 1-15: 3ILt LT distancia media ontre las señales? X2(t) Se evalua la sonal en lossintervalos X2(4). Por lo que se divide la integral de Px en 3. Px1-x2 = Lim + SIAcos(wot)-112 dt + SIAcos(wot)+112 dt + STIACOS (wot) -112 dt

3

3

3

-

-6

3

-

9999

Sa aplica binomio Cuadrado pera expandir la integral I factoritur Pri-xz = Lim (Acos (wot)-2Acos (wot) +1) dt + J(Acos (w.t) +2Acos (w.t)+1) dt + [Acos (w.t)-2Acos (w.t)+]dt · Se evalua Cada une de las integrales de acuerdo a los limites o intervalos 04 t Z T/4 [Acos2(wot)-2Acos(wot)+1]dt Propreded Trigonometrica. (02,(0)= 1+ (0)(50) (1+cos(2wot))-2ACos(wot)+1]dt Simplificando $\int_{0}^{\pi/4} \left(\underbrace{A^{2} + A^{2}}_{2} \cos(2\omega_{0}t) - ZA\cos(\omega_{0}t) \right) + 1 dt$ $\frac{A^{2}}{2}\int_{0}^{T/4}dt = \frac{A^{2}}{2}\int_{0}^{T/4} = \frac{A^{2}}{2}I - 0 = \begin{bmatrix} \frac{A^{2}}{8}I - \frac{1}{8}I \end{bmatrix}$ Se Separa la Integnal on Sumas yrostas, 1 Separando constantes [Iz= 4] cos(2wol)dt = 42 (sen(2wol)) = 42 (sin(Iwo)-sin(6)) = A (Sin (211- 100)) = A Sin(11) = 0 $I_3 = 2 \int_{a} A \cos(\omega_0 t) dt = 2A \left(\frac{\sin(\omega_0 t)}{\omega_0} \right) \int_{a}^{T/4} = \frac{2A}{\omega_0} \sin(\frac{\omega_0 T}{4})$ U= woll, du=dt/2/cos(w) du= 2/2 Sen(u)

101

100

bill.

145

相

45

2A Sin (Wo-2T) = 2A Sin (T) = 2A $I_4 = \int_0^{\pi} dt = \frac{2}{t} t^{1/4} = \frac{1}{4}$ =I, +I2-I3+14 = AT - 2A + T 2) Ahora So evalua Para ILET ZIT J(Acos2(w.t)+ZACos(w.t)+1) dt J(ACO) (Wot) #ZACU (Wou), I dentide de trigonomotrica
Resserbiendo la integral COSº 0= 1+ COS(20)
2 = [A(1+cos(2Wot))+ZACOs(w.t)+1]dt $= \int_{1/4}^{37/4} \left(\frac{A^{2} + A^{2} \cos(2\omega_{0} t) + 2A\cos(\omega_{0} t)}{2} \right) dt$ +/4 I, Iz Iz I, I4 $\boxed{1} = \frac{A^2}{2} \left| \cos(2\omega_0 t) dt - \frac{A^2}{2} \left(\frac{\sin(2\omega_0 t)}{2\omega_0} \right) \right|_{T/\mu}^{3T/4}$ $2\omega_0.3T - 3\pi 2\left(\frac{\sin(3\pi) - \sin(\pi)}{2}\right) = 0$ $2\omega_0.\frac{\pi}{4} = \pi \sin(\pi) = 0$

_ En el Codigo Poner A-como Vertable Simbolica I3=2 ACOS (w.t) dt=ZA(Sin(w.t)) |31/4 U= wot; du= wodt its coswidu= it son (w) Con WoT = 21 Wo 31 = 311 => Sin (31) = -1 $= 2A(\frac{-1-1}{\omega_0}) = \frac{4A}{\omega_0} \left[I_4 = \int_{-1/4}^{3T/4} dt = t \right] = \frac{3T}{4} - I = \left[\frac{T}{2} \right]$ W. I= = > Sin(=)=1 I, + I2-I3+I4 = AT+0- 4A+ I - AT-4A+ I 3) Ahora Se evalva para 3T EtLT [A2 Cos(w.t) + 2A Cos(w.t) +1] dt Cos20=1+2cos0 So aplice nuova monto la identida trigonometra = ([A2(1+2(0)0)+2A (0)(wot)+1] dt = S[=3A] + A] Cos(2wot) + 2A (os(wot) +1) dt II = STUZ dt = At = 3 - TAT AT

$$I_{2} = \int_{37/4}^{T} A \left(\cos(2\omega t) dt = \frac{A}{2} \left[\frac{\sin(2\omega t)}{2\omega t} \right] \frac{1}{37/4} (a)$$

$$b) 2(1/2, T = 2\pi + 2\omega t) = 4\pi + \frac{A}{2} \left[\frac{\sin(2\pi t)}{2\omega t} \right] - \frac{\cos(2\pi t)}{2\omega t}$$

$$son(4\pi t) = 0$$

$$(a) 2\omega_{0} = 3\pi - 3\pi \Rightarrow son(3\pi) = 0$$

$$I_{2} = 0$$

$$I_{3} = \int_{2A} \cos(2\omega t) dt = 2A \left(\frac{\sin(\omega t)}{2\omega t} \right) \frac{T(b)}{4}$$

$$I_{3} = \frac{3}{2}\pi \Rightarrow son(2\pi t) = 0$$

$$(a) \omega_{0} = \frac{3}{4} = \frac{3}{2}\pi \Rightarrow son(3\pi) = 1$$

$$I_{4} = \int_{3\pi/4}^{1} dt = t = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$Sume ndo Cala Integral.$$

$$I_{1} = I_{2} + I_{4} = \frac{A}{3} + 0 - \frac{2A}{2A} + I_{4} = \frac{A}{3} = \frac{1}{4} = \frac{A}{4} = \frac{1}{4} = \frac{A}{4} = \frac{A}{4$$

4. Sea X"(t) la sejonder derivada de la señal;	x (E)
donde t E [ti, ti]. Demoestre que los coeficientes de	
Jerre exponencial de Fourier 50 pueden Calcular	
Según:	
$C_n = \frac{1}{(t_i - t_f)n^2 \omega_o^2} \int_{t_i}^{t_f} X''(t) e^{-jn\omega_o t} dt; n \in \mathbb{Z}$	
- Partimos del peso o espectro de Fourier	
$C_n = + \int_{-T/2}^{T/2} \chi(t) e^{jn\omega \cdot t} dt$	
Integramos por partes	
0=x(f) 90=x, (f) 9f	
$U = X(t) \qquad du = X'(t) dt$ $du = e^{-jn\omega_0 t} dt \qquad V = \frac{j e^{-jn\omega_0 t}}{n\omega_0}$	
Ju du = uv - Ju du	
Sustifuzendo.	
$C_{n} = \frac{1}{T} \left[\left(\times (t) \frac{je^{-jn\omega \cdot t}}{n\omega \cdot 0} \right) \Big _{-TL}^{TL} - \frac{j}{n\omega \cdot 0} \int_{1-TL}^{TL} \frac{j}{n\omega \cdot 0} \frac{\int_{1-TL}^{TL}}{\int_{1-TL}^{TL}} \frac{\int_{1-TL}^{$	
Nucvamonto	
1)- X'(+) du- x"/ de	
$0=x'(t) \rightarrow du=x''tdt$ $dv=e^{-jn\omega_0t}dt \rightarrow v=\underline{je^{-jn\omega_0t}}$	
	lorma

(x'(t)e-jnwoldt=[x'(t) je-jnwot] The j (x''(t)e-jnwot) At Asi tenemos on de la sigurente manera $C_{n} = \frac{1}{T} \left(\left[X(t) \frac{je}{n\omega_{0}} \right]_{-T/2}^{-jn\omega_{0}t} \frac{j}{n\omega_{0}} \left(\left[X'(t) \frac{je}{n\omega_{0}} \right]_{-T/2}^{-jn\omega_{0}t} \frac{j}{n\omega_{0}} \right) \left[X''(t)e \right]_{-T/2}^{-jn\omega_{0}t} \frac{j}{n\omega_{0}} \left[X''(t)e \right]_{-T/2}^{-jn\omega_{0}t} \frac{j}{n\omega_{0}} \left[X''(t)e \right]_{-T/2}^{-jn\omega_{0}t} \frac{j}{n\omega_{0}t} \frac{j}{n\omega_{0}t} \left[X''(t)e \right]_{-T/2}^{-jn\omega_{0}t} \frac{j}{n\omega_{0}t} \frac{j}$ - Se evalua la primera Integral terriordo en wonte. $\frac{1}{T}\left(j\chi(t)\underbrace{e^{-j\eta\omega_{0}t}}_{\eta\omega_{0}}\right)^{Th} = \frac{1}{T}\left(J\chi(T/2)T\underbrace{e^{-j\eta TT}}_{2\eta T} - J\chi(-Th)T\underbrace{e^{j\eta TT}}_{2\eta T}\right)$ = 1 [x(t/2) + x (-T/2) Sin(nT)] Se evalue la Segunda integral pero en USB de X(t) tenemos X'(t), la cual sera igual a la contervor, per lo que fambien Sera o Cn=+ Sx(t) e inwo t dt= Inwit (x"(t) e inwot dt

Encuentre el espectro de Faurier, su majorifud y el encor relativo de vo construcción para n E EO, ±1, ±2, ±3, ±4, ±53, a partir de x"(+) peren la Sortal X(t) Comprobor el espectro obtenido con la est mentos a pailir de x(t). -de -de tiemposside de The Je define la función a trozos de la siguiento munera (-T/2 ≤t < -d2 - x(t)=0 -dz \ t \ -di - x (t) - mit +b. $x(t) = \begin{cases} -d_1 \le t < d_1 \longrightarrow x(t) = -A_1 \\ d_1 \le t < d_2 \longrightarrow x(t) = m_2 t + b_2 \end{cases}$ (dr ≤ t 4 + /2 -> X(t)=0 Al realizer la razón de Cembio sa puede obtener las pendientes min mz m. + + b [-dv; -d.] $m_7 = -A - (0) = -A = -di + dz$

matto [dida] M2 = 0- (-A) - A t-dr- pasa de o ami - A Positivo de magnitud mi tadi - pasa de mi a O -> A negativo do magnitud mi t-di → persa de o ami - A positivo de magnifud miz t-dr - pera de ma a o -> A negativo de magnitud mz Ahara Sa toma la formula general de Buler complejo para haller los coeficientes Xt)= Co + ∑ Cn. e-incot Cn=+ (x(t) einwot dt Cn= Inwotdr Cinwotd dt Jejnwotdr Jinwotdr dt Se dos compone el euler complejo en forminos de Sono y cosono Con parto [RE] & { Im} -Th' w? [cos(nw.di) + jsen(nw.di)]-[cos(nw.di) + jsen(nw.di)]t...
-Th' w? ... +[cos(nw.di) + sen(nw.di)]-[cos(nw.di)-jsen(nw.di)]t... . + cos (nw. d.) -jsen(nw.di) - cos (nw. dz) + i sen(nw.dz) = 2jsen(nw.dz) - 25en(nw.di)

Powered by CamScanner

milto [didi] M2 - O- (-A) - A t-dr- pasa de o ami - A Positivo de magnitud mi tadi - pasa de m. a O -> A negativo de magnitud mi t-di- pesa de o ami - A positivo de magnified miz t-dr - pesa de ma a o - A negativo de magnitud mz Ahora Sa toma la formula general de Buler complejo para haller los coeficientes RA) = Co + 5 Cn. e-inust Cn=+ (x(t) e-inwot dt Cn= Inword Jeinwold dt Jeinwold dt - (Se des compone el euler complejo en terminos de Sono y cosono Con parto (RE) & { Im} + cos (nw.di)-jsen(nw.di) - cos (nw.dz) + i sen(nw.dz) = 2jsen(nwodz) - 25en(nwodi)

(n= 1 (2 Sen (nwodz) - 2 Sen (nwodi)) Por lo tendo el espectro es: Cn = 21 (Sen (nwodz) - Sen (nwodi)] - magnitud Cn= an + bni donde anzon entonces. 1Cn1=16nil Cn=bn=> pora to do lo que |Cn| = / 02 + 12" = 6n acompaña a la j (Cn) = 2 (Sen (nwodz) - Sen (nwodi)) -Fase 0= tan (b) emo an =0 == ± II Como este en todo el eje imaginario entonces: 0 Cn = 1 - 1 Si 1 Cn 1 70 0 Si / cn/ =0

Porte Real
Cn: no tiene parte {Re}: anzo
- Perfe maginaria
- Perfe Imaginaria Es el mismo bon es dedi:
· bn = 2 (5en(nwodz) - 5en(nwodi))
- Error Relativo
A)conce: Los Coeficientes X'(t). Se halla los coeficientes de X(t):
- Coeficientes X' (t) Son:
$C_n^2 = -n^2 \omega_0^2 \cdot C_n$
averemos encontrer el Cn original, par la tendo se
Alemba
$C\ddot{n} = \frac{C\ddot{n}}{-n^2w^2}$ Coeficientos de X(t),
Con la conterior tenemos que:
$C_n^2 = -n^2 \omega^2 \left(\frac{1}{-T_n^2 \omega_0^2} \left(\text{Sen}(n\omega_0 d_2) - \text{Sen}(n\omega_0 d_1) \right) \right)$
Ch = Zi [Sen (nw.dz) - Sen (nw.di)]
- Ahora so halla potoncia de la seral Pa Usando.
$\angle im Px = \sum_{n=-N}^{N} C_n ^n P_n = 0$; donde $P_n = 1$
Norma

 $P_{x} = \sum_{n=-\infty}^{\infty} |C_{n}|^{2}$ - A) Calcular $|C_{n}|^{2}$ (on los n [-5,5] $\sum_{n=1}^{5} 2 |Cn|^2$. Se halla (Cn/2 |cn|= 2 (500 (nw.dz) - 500 (nwodi)) 1012 = 4 (5en(nwod2) - Sen (nwod1)) - Tomando el error relativo tenemos: 7. $E_{r} = \left(1 - \frac{\sum_{n=1}^{5} 2|C_{n}|^{2}}{\sum_{n=1}^{5} |C_{n}|^{2}}\right) * 100\%$ 7. Ex=[-\frac{4}{5\infty} (5\infty) (5\infty) - 5\infty) (nw.dz) - 5\infty)

7. Ex=[-\frac{4}{5\infty} (5\infty) (nw.dz) - 5\infty) (nw.dz))

7. -\frac{4}{5\infty} (5\infty) (nw.dz) - 5\infty) * 100%