Tema 7. CONTRAST D'HIPÒTESIS

En aquest tema estudiam la validesa de les suposicions (hipòtesis) referents als paràmetres poblacionals, contrastant-les amb les dades mostrals

Exemple:

Considerem la següent situació:

Dues persones A i B juguen a llançar una moneda. La persona A guanya si surt cara i B guanya si surt creu.

Després de 100 llançaments han sortit 65 cares i el segon jugador sospita que la moneda està trucada.

Com pot confirmar de manera rigorosa les seves sospites?

Hi ha dues maneres de respondre a la pregunta:

1) Utilitzant intervals de confiança:

A partir del valor de \hat{p}_{mostra} obtingut ($\hat{p}_{mostra} = \frac{65}{100} = 0.65$) es pot calcular l'interval de confiança on es troba, amb probabilitat alta (p.ex. 95%), la proporció poblacional (probabilitat de cara) :

$$0,65 \pm z_{0,025} \cdot \sqrt{\frac{0,65 \cdot (1-0,65)}{100}} = 0,65 \pm 0,0935 = (0,56,0,74)$$

Com que la probabilitat de cara és, amb una probabilitat molt alta, diferent de 0,5, llavors podem concloure que la moneda està trucada.

2) Fent un contrast d'hipòtesis:

Suposam que la moneda **no** està **trucada** (p = 0.5) i calculam si és raonable o no obtenir un valor mostral com el que hem trobat ($\hat{p}_{mostra} = 0.65$).

Per *no raonable* s'entén que la probabilitat de $\hat{p_X} \ge 0.65$ quan p = 0.5 és molt petita (per exemple, inferior al 5%).

A la suposició inicial sobre el paràmetre poblacional (en aquest cas p=0,5) se l'anomena **hipòtesi nul.la** ($\mathbf{H_0}$). H_0 : p=0,5

A la probabilitat màxima permesa de que el paràmetre mostral prengui un valor *no raonable* quan es verifica la hipòtesi nul.la se l'anomena **nivell de significació** o **error de tipus l** (α). En el nostre exemple α =0,05. El nivell de significació defineix un rang de valors *no raonables* (**regió crítica**) formada pels valors mostrals que tener menor probabilitat de passar quan es verifica la hipòtesi nul.la:

valor mostral
$$\hat{\theta}_{mostra}$$
 no raonable si $P(\hat{\theta} = \{\hat{\theta}_{mostra} \ o \ pitjor\} | H_0) \leq \alpha$ es cumpleix que $P(Regio\ Critica) = \alpha$

El conjunt de valor raonables defineixen l'anomenada regió d'acceptació.

Si el valor mostral (en el nostre exemple \hat{p}_{mostra} =0,65) cau dins la regió crítica, llavors la hipòtesi nul.la es rebutjarà (es considerarà falsa) en favor d'una altra hipòtesi, anomenada **hipòtesi alternativa** (**H**₁).

$$\hat{\theta}_{mostra} \in R.C. \Rightarrow rebutjam H_0 \ (acceptam H_1)$$

$$\hat{\theta}_{mostra} \in R.A. \Rightarrow acceptam H_0 \ (rebutjam H_1)$$

La manera de calcular $P(Regio\ Critica)$ depèn de la hipòtesi alternativa considerada.

Si la hipòtesi nul.la és de la forma H_0 : $\theta = \theta_0$ (en el nostre cas H_0 : p =0,5) llavors tenim 3 possibilitats:

1) H_1 : $\theta \neq \theta_0$ (contrast bilateral) i la regió crítica té la forma:

2) H_1 : $\theta > \theta_0$ (contrast unilateral per la dreta) i la regió crítica té la forma:

3) H_1 : $\theta < \theta_0$ (contrast unilateral per l'esquerra) i la regió crítica té la forma:

En el nostre exemple:

$$H_0: p = 0.5$$
 $n = 100$

$$n = 100$$

$$\hat{p}_{mostra} = 0,65$$

$$\alpha = 0.05$$

$$\hat{p}_{mostra} = 0.65$$
 $\alpha = 0.05$ $\hat{p}_{X} \sim N\left(p, \frac{p(1-p)}{n}\right) = N(0.5, 0.05^{2})$

1) H_1 : $p \neq 0.5$ (contrast bilateral):

$$0,025 = P(\hat{p}_X < \hat{p}_I) = F_{\hat{p}_X}(\hat{p}_I) = F_Z\left(\frac{\hat{p}_I - 0.5}{0.05}\right)$$

(taula) $\hat{p}_1 = 0.402 \Rightarrow (simetria) \hat{p}_s = 0.598$

$$\hat{p}_{mostra}$$
 = 0,65 \in R.C. \Rightarrow rebutjam H_0

2) H_1 : p > 0.5 (contrast unilateral per la dreta):

$$0.05 = P(\hat{p}_X > \hat{p}_S) = 1 - F_{\hat{p}_X}(\hat{p}_S) = 1 - F_Z \left(\frac{\hat{p}_S - 0.5}{0.05}\right)$$

$$(taula) \quad \hat{p}_S = 0.582$$

$$\hat{p}_{mostra}$$
 = 0,65 \in R.C. \Rightarrow rebutjam H_0

3) H_1 : p < 0.5 (contrast unilateral per l'esquerra):

$$0.05 = P(\hat{p}_X < \hat{p}_I) = F_{\hat{p}_X}(\hat{p}_I) = F_Z\left(\frac{\hat{p}_I - 0.5}{0.05}\right)$$

(taula)
$$\hat{p}_{I} = 0.418$$

$$\hat{p}_{mostra} = 0.65 \in R.A. \Rightarrow acceptam H_0$$

Per decidir quina és la millor hipòtesi alternativa H_1 ens hem de fixar en el valor de la mostra $\hat{\theta}_{mostra}$:

- si
$$\hat{\theta}_{mostra} > \theta_0$$
 llavors triam $H_1: \theta > \theta_0$ (o $H_1: \theta \neq \theta_0$)

- si
$$\hat{\theta}_{mostra} < \theta_0$$
 llavors triam $H_1: \theta < \theta_0$ (o $H_1: \theta \neq \theta_0$)

p-valor

És el nivell de significació màxim, per davall del qual rebutjariem la hipòtesi nul.la, quan el valor de la mostra és $\hat{\theta}_{mostra}$

Càlcul del p-valor:

1) H_1 : $\theta \neq \theta_0$ (contrast bilateral):

$$si \, \hat{\theta}_{mostra} > \theta_0 \Rightarrow \theta_S = \hat{\theta}_{mostra}$$

$$p - valor = 2 \cdot P(\hat{\theta} > \hat{\theta}_{mostra})$$

$$si \, \hat{\theta}_{mostra} < \theta_0 \Rightarrow \theta_I = \hat{\theta}_{mostra}$$

$$p - valor = 2 \cdot P(\hat{\theta} < \hat{\theta}_{mostra})$$

2) H_1 : $\theta > \theta_0$ (contrast unilateral per la dreta):

3) H_1 : $\theta < \theta_0$ (contrast unilateral per l'esquerra):

p-valor

En el nostre exemple:

$$H_0: p=0.5$$
 $n=100$ $\hat{p}_{mostra}=0.65$ $\alpha=0.05$ $\hat{p}_X \sim N\left(p, \frac{p(1-p)}{n}\right) = N(0.5, 0.05^2)$

1) H_1 : $p \neq 0.5$ (contrast bilateral):

$$0,65 > 0,5 \Rightarrow$$

2) H_1 : p > 0.5 (contrast unilateral per la dreta):

Tipus d'errors en un contrast d'hipòtesis

- Error tipus I:
$$\alpha = P(\hat{\theta} \in R.C. \mid H_0)$$
 (nivell de significació)

- Error tipus II:
$$\beta = P(\hat{\theta} \in R.A. \mid H_1)$$

En el nostre exemple:

$$H_{0}: p=0,5 \qquad n=100 \qquad \hat{p}_{mostra}=0,65 \qquad \alpha=0,05$$
 Si $H_{1}: p>0,5$ Regió d'acceptació Regió reflica R.A.
$$\frac{Regió}{p=0,5} \qquad \hat{p}_{S}=0,582$$
 Si realment $p=0,6>0,5$, llavors
$$\hat{p}_{X} \sim N\left(p,\frac{p(1-p)}{n}\right) = N\left(0,6,0,049^{2}\right)$$

$$\beta=P\left(\hat{p}_{X}<0,582\right) = \left(1-F_{\hat{p}_{X}}(0,582)\right) = 1-F_{Z}\left(\frac{0,582-0,6}{0.049}\right) = 0,6443$$

Contrast d'hipòtesi de mitjana, variància i proporció

Els contrasts d'hipòtesis de mitjana, variància i proporció es fan tenint en compte que els paràmetres mostrals corresponents són v.a. amb les següents distribucions de probabilitat:

Paràmetre	Esperança	Variància	Distribució	
mostral			de probabilitat	
(estadístic)				
\bar{X}	$E(\bar{X}) = \mu$	$Var(\bar{X}) = \frac{\sigma^2}{n}$	$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$	població normal, σ conegut
			$\frac{X-\mu}{\hat{s}_X/\sqrt{n}} \sim t_{n-1}$	població normal, σ desconegut, $n \leq 30$
				població normal, σ conegut població normal, σ desconegut, $n \leq 30$ σ desconegut, $n > 30$
\hat{s}_X^2	$E(\hat{s}_X^2) = \sigma^2$	$\operatorname{Var}(\hat{s}_X^2) = \frac{2\sigma^4}{n-1}$	$\frac{n-1}{\sigma^2}\hat{s}_X^2 \sim \chi_{n-1}^2$	població normal
\hat{p}_X	$E(\hat{p}_X) = p$	$\operatorname{Var}(\hat{p}_X) = \frac{p(1-p)}{n}$	$\hat{p}_X \sim N(p, \frac{p(1-p)}{n})$ $\hat{p}_X \sim t_{n-1}$	població normal $n>30$ població normal, $n\leq 30$

Contrast d'hipòtesi de diferència de mitjanes i diferència de proporcions

Si les dades provenen de dues mostres <u>independents</u>, les distribucions de probabilitat de les v.a. *Diferència de Mitjanes* i *Diferència de Proporcions* són:

Paràmetre mostral	Distribució de probabilitat	
Diferència de mitjanes	$ \frac{\bar{X} - \bar{Y} \sim N(\mu_X - \mu_Y, \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m})}{\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{1}{n} + \frac{1}{m}}}}{\sqrt{\frac{n\hat{s}_X^2 + m\hat{s}_Y^2}{n + m - 2}}} \sim t_{n+m-2} $	si poblacions normals i variàncies conegudes
	$\frac{\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{1}{n} + \frac{1}{m}}}}{\sqrt{n\hat{s}_X^2 + m\hat{s}_Y^2}} \sim t_{n+m-2}$	si poblacions normals i variàncies
	$\sqrt{\frac{n\sigma_X + n\sigma_Y}{n+m-2}}$	desconegudes però iguals i $n \leq 30$
	$\bar{X} - \bar{Y} \sim N(\mu_X - \mu_Y, (\frac{n\hat{s}_X^2 + m\hat{s}_Y^2}{n + m - 2})(\frac{1}{n} + \frac{1}{m}))$	si poblacions normals i variàncies desconegudes però iguals i $n>30$
	$\bar{X} - \bar{Y} \sim N(\mu_X - \mu_Y, \frac{\hat{s}_X^2}{n} + \frac{\hat{s}_Y^2}{m})$	si poblacions normals i variàncies desconegudes i diferents
Diferència de proporcions	$\hat{p}_X - \hat{p}_Y \sim N(p_X - p_Y, \frac{\hat{p}_X(1-\hat{p}_X)}{n} + \frac{\hat{p}_Y(1-\hat{p}_Y)}{m})$	n gran

Contrast d'hipòtesi de diferència de mitjanes i diferència de proporcions

Si les dades provenen de dues mostres <u>dependents</u> (per a cada element de la mostra es prenen dos valors), es calculen les diferències entre els valors corresponents a cada un dels elements i es fa un *contrast de la mitjana* d'aquestes diferències.

Bondat d'ajustament

Conegudes les frequencies absolutes dels valors d'una mostra, ens demanam si aquestes frequències es troben distribuïdes seguint alguna llei *típica* L (binomial, Poisson, normal, ...)

Es fa el següent contrast d'hipòtesi:

H₀: la distribució de valors segueix la llei L

H₁: la distribució de valors <u>no</u> segueix la llei L

Bondat d'ajustament

Es calcula el següent estadístic:

$$\varepsilon = \sum_{i=1}^{r} \frac{(o_i - e_i)^2}{e_i}$$

on

r és el nombre de valors o intervals de la mostra o_i és la freqüència absoluta *observada* de l'interval i e_i és la freqüència absoluta *esperada* de l'interval i

$$e_i = n \cdot p_i$$

$$p_i = P(interval i \mid H_0)$$

n és el tamany de la mostra

(Nota: els valors mostrals s'han d'agrupar de manera que $e_i \ge 5$ per a tots els intervals)

arepsilon és una v.a amb distribució $\chi^2_{r-(k+1)}$

on r és el nombre de valors o intervals de la mostra

i k és el nombre de paràmetres desconeguts de la llei ${
m L}$

Per a un nivell de significació α la hipòtesi nul.la s'accepta si $\varepsilon \leq \chi^2_{r-(k+1), 1-c}$