

Урок 2

Криволинейное движение с постоянным и переменным ускорением

Курс подготовки к вузовским олимпиадам 11 класса

Криволинейное движение с переменным ускорением

№1. Мяч, брошенный с горизонтальной поверхности земли под углом $\alpha = 60^{\circ}$ к горизонту со скоростью $V_0 = 10$ м/с, упал на эту поверхность, имея вертикальную составляющую скорости по абсолютной величине на 30% меньшую, чем при бросании. Найдите время полёта мяча.

Считать, что сила сопротивления \overrightarrow{F}_c движению мяча пропорциональна его скорости \overrightarrow{V} , то есть $\overrightarrow{F}_c = - k \cdot \overrightarrow{V}$, где k – постоянный коэффициент.

Основные формулы для равноускоренного движения ($\vec{a} = \frac{\Delta \vec{V}}{\Delta t} = const$):

$$1 \qquad \overrightarrow{\mathsf{V}} = \overrightarrow{\mathsf{V}}_0 + \overrightarrow{\mathsf{a}} \cdot \mathsf{t}$$

3

$$\vec{S} = \vec{V}_0 \cdot t + \frac{1}{2} \vec{a} \cdot t^2 = \vec{V} \cdot t - \frac{1}{2} \vec{a} \cdot t^2$$

$$2\cdot(\vec{a};\vec{S})=|\vec{V}|^2-|\vec{V}_0|^2$$
, где $(\vec{a};\vec{S})=|\vec{a}|\cdot|\vec{S}|\cdot\cos\theta$ – скалярное произведение вектора ускорения \vec{a} на вектор перемещения \vec{S} (θ – угол между этими векторами)

$$\vec{\mathsf{S}} = \frac{1}{2} (\vec{\mathsf{V}}_0 + \vec{\mathsf{V}}) \cdot \mathsf{t}$$

Геометрическая иллюстрация основных формул:

Свободное падение ($\vec{a} = \vec{g} = const$):

Векторные треугольники и их особенности:

Векторный треугольник скоростей:

Векторный треугольник перемещений:

Объединение треугольников скоростей и перемещений:

- 1) Векторы $\vec{g} \cdot t$ и $\frac{1}{2} \vec{g} \cdot t^2$ всегда параллельны и направлены вертикально вниз. Векторы \vec{V}_0 и $\vec{V}_0 \cdot t$ параллельны.
- 2) «Верхний» угол в треугольниках скоростей и перемещений всегда равен $\beta = 90^{\circ} \alpha$ («90 без альфа»).
- 3) Вектор $\frac{\vec{S}}{t}$ медиана в треугольнике скоростей. Он напр. горизонтально в ед. случае, если $|\vec{V}| = |\vec{V}_0|$.
- 4) Если $\vec{V}_0 \perp \vec{V}$, то основание медианы $\frac{\vec{S}}{t}$ явл. центром опис. окружности около треуг. скоростей: $|\frac{1}{2}\vec{g}\cdot t|=|\vec{S}/t|$
- 5) Если $\vec{V}_0 \perp \vec{V}$, то вектор \vec{V}_0 направлен вдоль биссектрисы угла между вертикалью и вектором перемещения \vec{S} .
- 6) Важно, что $V = V_{min}$, если $\vec{V} \perp \vec{gt}$, что свойственно для наивысшей точки траектории.

- №2. С горизонтальной поверхности земли под углом α к горизонту бросают камень. Через τ секунд он падает обратно на эту поверхность. Чему равна дальность полёта камня? Ускорение свободного падения g. Сопротивлением воздуха пренебречь.
- №3. Мячик бросили со скоростью V_0 под углом к горизонту. В полёте он находился время τ . Чему равна дальность полёта мячика, если точки бросания и приземления находятся на одном горизонтальном уровне? Сопротивлением воздуха пренебречь.
- №4. С поверхности земли под углом к горизонту бросают камень со скоростью V_0 . Какова максимальная дальность полёта камня, если точки броска и приземления находятся на одном горизонтальном уровне? Сопротивлением воздуха пренебречь.
- №5. Баскетболист бросает мяч в кольцо. Скорость мяча после броска $V_0=8$ м/с и составляет угол $\alpha=60^{\circ}$ с горизонтом. С какой скоростью мяч попал в кольцо, если он долетел до него за $\tau=1$ с? Ускорение свободного падения g=10 м/с². Сопротивлением воздуха пренебречь.
- №6. Камень бросили со скоростью V_0 под углом α к горизонту. Чему равно расстояние между точками броска и приземления, если камень летел до падения время τ ? Сопр. возд. не учитывать.

- №7. Камень бросили под углом $\alpha = 60^{\circ}$ к горизонту. Через время t = 4 с его скорость оказалась направленной под углом $\beta = 30^{\circ}$ ниже линии горизонта. Какое время τ он был в полёте, если точки броска и приземления камня находились на одном горизонтальном уровне? Ускорение свободного падения g = 10 м/с². Сопротивлением воздуха пренебречь.
- №8. Над горизонтальной поверхностью земли на несколько осколков разорвался снаряд. Они разлетелись во все стороны с одинаковыми по величине начальными скоростями. Осколок, полетевший вертикально вниз, достиг земли за время t_1 . Осколок, полетевший вертикально вверх, упал на землю через время t_2 . Пренебрегая сопротивлением воздуха, ответьте на вопросы:
- 1. Чему равна величина начальной скорости осколков?
- 2. На какой высоте над поверхностью земли разорвался снаряд?
- 3. Какой максимальной высоты над поверхностью земли достиг осколок, полетевший вертикально вверх?
- 4. Сколько времени падали осколки, полетевшие горизонтально?
- 5. Какое расстояние по горизонтали они преодолели?

№9. Тело бросают с высоты h = 4 м вверх под углом $\alpha = 45^0$ к горизонту так, что к поверхности земли оно подлетает под углом $\beta = 60^0$. Какое расстояние по горизонтали пролетит тело? Сопротивлением воздуха пренебречь.

№10. С поверхности земли под углом к горизонту бросают камень. Через время т он падает на поверхность холма, причём со скоростью, перпендикулярной начальной. Чему равно расстояние между точками броска и приземления? Сопротивлением воздуха пренебречь.

№11. С горизонтальной поверхности под углом к горизонту бросают мячик. Через $t_1=0.8$ с после броска он упруго ударяется о вертикальную стенку и отскакивает от неё. Через $t_2=1.5$ с после удара мячик падает обратно на ту поверхность, с которой был осуществлён бросок.

На какой высоте над этой поверхностью находится точка, о которую произошёл удар? Ускорение свободного падения $g=10\ \text{м/c}^2$. Сопротивлением воздуха пренебречь.

Экстремальные параметры полёта:

Основная идея: площадь треугольника скоростей пропорциональна горизонтальной дальности полёта L. Это прив. к тому, что при «оптимальной» траект. векторы нач. и кон. скоростей должны быть взаимно перпенд. ($\overrightarrow{V}_0 \perp \overrightarrow{V}$).

Важные выводы:

Если задана V_0 , то $L=L_{max}$ при $\phi=90^{\circ}$.

Если задана L, то $V_0 = V_{0min}$, если $\phi = 90^{\circ}$.

При
$$\phi=90^0$$
 ($\overrightarrow{V_0}\bot\overrightarrow{V}$) $L=\frac{V_0\cdot V}{g}$ и $tg\,\alpha=\frac{V_0}{V}=\frac{V_0^2}{g\cdot L}$.

Если $\overrightarrow{V_0} \perp \overrightarrow{V}$, то вектор нач. скорости $\overrightarrow{V_0}$ направлен по биссектрисе угла между перемещением \overrightarrow{S} и вертикалью.

№12. С высоты h над поверхностью земли со скоростью V_0 бросают камень. Под каким углом к горизонту его следует бросить, чтобы дальность полёта камня была наибольшей? Определите эту дальность. Сопротивлением воздуха пренебречь.

mapenkin.ru

ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛ

Михаил Александрович ПЕНКИН

- w /penkin
- /mapenkin
- fmicky@gmail.com