Machine Learning: Algorithms and Applications

Advanced Multimedia Research Lab University of Wollongong

Math Review - Linear Algebra 2020

Outline of Topics

Introduction

Vectors and matrices

Introduction

- To provide context, consider a researcher that is interested in capturing some of the charcteristics that describe a person. This researcher might consider measuring height, weight, circumference of neck, circumference of waist and possibly age.
- These five quantities (variables) will vary from person to person. Actually they are random variables.
- Let us represent them by x_1, x_2, x_3, x_4, x_5 respectively.
- A convenient data structure to model these variables for each person we consider is a vector.
- When we consider a group of people we can use another data structure, matrix, to model the information about the group.

Linear algebra provides a mathematical framework to reason about and manipulate vectors and matrices. This is used extensively in Machine Learning to model and solve problems.

Vectors

With the context in mind we now consider elementary concepts in linear algebra.

 A d-dimensional column vector and its transpose (a row vector) can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$
 and $\mathbf{x}^t = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}$

We assume that all the components can take on real values. The transpose can also be written as \mathbf{x}' .

Vectors

With the context in mind we now consider elementary concepts in linear algebra.

 A d-dimensional column vector and its transpose (a row vector) can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$
 and $\mathbf{x}^t = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}$

We assume that all the components can take on real values. The transpose can also be written as \mathbf{x}' .

Example (Description of one person (5-dimensional vector))

$$\mathbf{x} = \begin{bmatrix} 1.5 \\ 75.2 \\ 41.3 \\ 81.28 \\ 35.5 \end{bmatrix} \quad \text{and} \quad \mathbf{x}^t = \begin{bmatrix} 1.5 & 75.2 & 41.3 & 81.28 & 35.5 \end{bmatrix}$$

• An $n \times d$ matrix **M** and its $d \times n$ transpose **M**^t are written as,

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & \dots & m_{1d} \\ m_{21} & m_{22} & \dots & m_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \dots & m_{nd} \end{bmatrix} ; \quad \mathbf{M}^{i} = \begin{bmatrix} m_{11} & m_{21} & \dots & m_{n1} \\ m_{12} & m_{22} & \dots & m_{n2} \\ \vdots & \vdots & \ddots & \dots \\ m_{1d} & m_{2d} & \dots & m_{nd} \end{bmatrix}$$

5 / 27

• An $n \times d$ matrix **M** and its $d \times n$ transpose \mathbf{M}^t are written as,

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & \dots & m_{1d} \\ m_{21} & m_{22} & \dots & m_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \dots & m_{nd} \end{bmatrix} ; \quad \mathbf{M}^t = \begin{bmatrix} m_{11} & m_{21} & \dots & m_{n1} \\ m_{12} & m_{22} & \dots & m_{n2} \\ \vdots & \vdots & \ddots & \ddots \\ m_{1d} & m_{2d} & \dots & m_{nd} \end{bmatrix}$$

Example (Description of five variables for 3 people)

A 3 \times 5 matrix **M** and its 5 \times 3 transpose \mathbf{M}^t are written as,

$$\mathbf{M} = \begin{bmatrix} 1.5 & 75.2 & 41.3 & 81.28 & 35.5 \\ 1.75 & 80.6 & 46.7 & 102.5 & 45 \\ 1.82 & 69.3 & 42.5 & 83.5 & 30 \end{bmatrix}; \quad \mathbf{M}^t = \begin{bmatrix} 1.5 & 1.75 & 1.82 \\ 75.2 & 80.6 & 69.3 \\ 41.3 & 46.7 & 42.5 \\ 81.28 & 102.5 & 83.5 \\ 35.5 & 45 & 30 \end{bmatrix}$$

5 / 27

- We can write the entries of a matrix M as m_{ij} where i and j refer to the row and column values respectively.
- The product, **C**, of two matrices **A** (with dimension $m \times n$) and **B** (with dimension $n \times d$) is given as,

$$C = AB$$

and the entries of C are c_{ij} . Each entry is given by,

$$c_{ij} = \sum_{k=1}^{j} a_{ik} \times b_{kj}$$

We note that the transpose of the matrix C is,

$$C^t = (AB)^t = B^t A^t$$

Example (Product)

The product, **M**, of two **compatible** matrices **A** and **B** is given as,

$$\mathbf{M} = \begin{bmatrix} 4.6 & 5.7 & 6.1 & 5.5 \\ 2.4 & 3.6 & 4.7 & 4.9 \\ 3.5 & 5.3 & 9.5 & 8.5 \end{bmatrix} \times \begin{bmatrix} 3.5 & 6.2 & 1.0 \\ 1.5 & 3.7 & 3.3 \\ 4.1 & 8.7 & 7.5 \\ 7.5 & 4.1 & 9.5 \end{bmatrix} = \begin{bmatrix} 90.91 & 125.23 & 121.41 \\ 69.82 & 89.18 & 96.08 \\ 122.90 & 158.81 & 172.99 \end{bmatrix}$$

Notice that **A** is of dimension 3×4 while **B** is 4×3 . The entry m_{11} of **M** is obtained as,

$$m_{11} = 4.6 \times 3.5 + 5.7 \times 1.5 + 6.1 \times 4.1 + 5.5 \times 7.5 = 90.91$$

Similarly, the entry m_{32} ,

$$m_{32} = 3.5 \times 6.2 + 5.3 \times 3.7 + 9.5 \times 8.7 + 8.5 \times 4.1 = 158.81$$

We can multiply a matrix, M, and a vector, x, to obtain a vector, y,

$$\begin{bmatrix} m_{11} & m_{12} & \dots & m_{1d} \\ m_{21} & m_{22} & \dots & m_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \dots & m_{nd} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} y_1 \\ x_y \\ \vdots \\ y_n \end{bmatrix}$$

Each component of the vector, **y** is given by,

$$y_i = \sum_{j=1}^d m_{ij} x_j$$

The number of columns of M must be equal to the number of rows of x

Example

The product, **M**, of a matrix **A** and vector **x** is given as,

$$\mathbf{M} = \begin{bmatrix} 4.6 & 5.7 & 6.1 & 5.5 \\ 2.4 & 3.6 & 4.7 & 4.9 \\ 3.5 & 5.3 & 9.5 & 8.5 \end{bmatrix} \times \begin{bmatrix} 4.1 \\ 8.7 \\ 7.5 \\ 1.5 \end{bmatrix} = \begin{bmatrix} 122.45 \\ 83.76 \\ 144.46 \end{bmatrix}$$

The product
$$\mathbf{A} \times \mathbf{B}$$
 is not always equal to $\mathbf{B} \times \mathbf{A}$. Let $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.

We have
$$\mathbf{AB} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$
 while $\mathbf{BA} = \begin{bmatrix} 23 & 34 \\ 31 & 46 \end{bmatrix}$

Notice that
$$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \times \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ while } \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 14 & 28 \\ -7 & -14 \end{bmatrix}$$

Definition

A square matrix \mathbf{M} , (with dimension $d \times d$) is called symmetric if the entries have the following relationship,

$$m_{ij}=m_{ji}$$

Definition

A square matrix \mathbf{M} , (with dimension $d \times d$) is called skew-symmetric (or anti-symmetric) if the entries have the following relationship,

$$m_{ij} = -m_{ji}$$

The matrix,
$$\mathbf{C} = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 2 & -8 & 8 & 1 \\ 4 & 8 & 5 & 3 \\ 5 & 1 & 3 & 7 \end{bmatrix}$$
 is symmetric and $\mathbf{D} = \begin{bmatrix} 0 & -2 & 4 & -5 \\ 2 & 0 & 8 & 1 \\ -4 & -8 & 0 & 3 \\ 5 & -1 & -3 & 0 \end{bmatrix}$ is skew-symmetric.

Definition

A general matrix \mathbf{M} , is called non-negative if,

$$m_{ij} \ge 0$$
, for all i and j

The matrix,
$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 0 & 5 \\ 2 & 8 & 8 & 1 \\ 4 & 8 & 5 & 3 \\ 5 & 0 & 3 & 7 \end{bmatrix}$$
 is non-negative.

Definition

A square matrix I, (with dimension $d \times d$) is the identity matrix and has the diagonal entries equal to unity (1) and other entries zero (0). The Kronecker delta function or Kronecker symbol, defined as

$$\delta_{ij} = \left\{ egin{array}{ll} 1, & ext{if } i = j; \\ 0, & ext{otherwise.} \end{array}
ight.$$

can serve to define entries of an identity matrix.

The matrix,
$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 is identity of dimension 4.

Definition

A general diagonal matrix is one that has a zero (0) in all the off-diagonal entries and denoted as $diag(m_{11}, m_{22}, \ldots, m_{dd})$

The matrix
$$\mathbf{D} = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 is diagonal. It can be written as diag(4, 6, 2, 1).

Definition

Addition of vectors and of matrices is component by component.

Example (Sum of matrices)

The sum, **M**, of two **compatible** matrices **A** and **B** is given as,

$$\mathbf{M} = \begin{bmatrix} 4.6 & 5.7 & 6.1 \\ 2.4 & 3.6 & 4.7 \\ 3.5 & 5.3 & 9.5 \end{bmatrix} + \begin{bmatrix} 3.5 & 6.2 & 1.0 \\ 1.5 & 3.7 & 3.3 \\ 4.1 & 8.7 & 7.5 \end{bmatrix} = \begin{bmatrix} 8.1 & 11.9 & 7.1 \\ 3.9 & 7.3 & 8.0 \\ 7.6 & 14.0 & 17.0 \end{bmatrix}$$

Definition

The inner product (or scalar product) of two vectors, \mathbf{x} and \mathbf{y} having the same dimensionality, d, will be denoted as $\mathbf{x}'\mathbf{y}$ and the result is a scalar,

$$\mathbf{x}^t\mathbf{y} = \sum_{i=1}^d \mathbf{x}_i \mathbf{y}_i = \mathbf{y}^t \mathbf{x}$$

Definition

The Euclidean norm or length of a vector x is,

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^t \mathbf{x}}$$

The vector is normalized if $\|\mathbf{x}\| = 1$.

Definition

The inner product (or scalar product) of two vectors, \mathbf{x} and \mathbf{y} having the same dimensionality, \mathbf{d} , will be denoted as $\mathbf{x}^t \mathbf{y}$ and the result is a scalar,

$$\mathbf{x}^t\mathbf{y} = \sum_{i=1}^d \mathbf{x}_i \mathbf{y}_i = \mathbf{y}^t \mathbf{x}$$

Definition

The angle, θ , between two *d*-dimensional vectors **x** and **y** is given by,

$$cos\theta = \frac{\mathbf{x}^t \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Inner product is a measure of the colinearity of two vectors; an indication of similarity (to within a scale factor).

Example (Inner product)

The inner product of two vectors
$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 2 \\ 7 \end{bmatrix}$ is $1 \times 5 + 3 \times 1 + 4 \times 0 + 6 \times 2 + 8 \times 7 = 76$

Example (Inner product)

The inner product of two vectors
$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 2 \\ 7 \end{bmatrix}$ is $1 \times 5 + 3 \times 1 + 4 \times 0 + 6 \times 2 + 8 \times 7 = 76$

Example (Magnitude)

The magnitude of vector \mathbf{x} is

$$\|\mathbf{x}\| = \sqrt{1 \times 1 + 3 \times 3 + 4 \times 4 + 6 \times 6 + 8 \times 8} = \sqrt{126} = 11.23.$$

Example (Inner product)

The inner product of two vectors
$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 2 \\ 7 \end{bmatrix}$ is $1 \times 5 + 3 \times 1 + 4 \times 0 + 6 \times 2 + 8 \times 7 = 76$

Example (Magnitude)

The magnitude of vector \mathbf{x} is

$$\|\mathbf{x}\| = \sqrt{1 \times 1 + 3 \times 3 + 4 \times 4 + 6 \times 6 + 8 \times 8} = \sqrt{126} = 11.23.$$

Example (Magnitude)

The magnitude of vector \mathbf{y} is

$$\|\mathbf{y}\| = \sqrt{5 \times 5 + 1 \times 1 + 0 + 2 \times 2 + 7 \times 7} = \sqrt{79} = 8.89.$$

Example (Inner product)

The inner product of two vectors
$$\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 5 \\ 1 \\ 0 \\ 2 \\ 7 \end{bmatrix}$ is $1 \times 5 + 3 \times 1 + 4 \times 0 + 6 \times 2 + 8 \times 7 = 76$

Example (Angle)

The angle between the vectors **x** and **y** is

$$\theta = \arccos \frac{\mathbf{x}^t \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \arccos \frac{76}{11.23 \times 8.89} = 0.707 \text{ radians}$$

Orthogonal vectors

Definition

If $\mathbf{x}^t \mathbf{y} = 0$, the vectors are orthogonal.

Definition

If $\mathbf{x}^t \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\|$, the vectors are colinear.

Definition

The Cauchy-Schwartz inequality follows directly from previous definition of an angle between two vectors. In other words,

$$\mathbf{x}^t \mathbf{y} \leq \|\mathbf{x}\| \|\mathbf{y}\|.$$

Definition

The trace of a square matrix \mathbf{A} , denoted $Tr\{\mathbf{A}\}$, is the sum of its diagonal elements,

$$Tr\{A\} = \sum_{i=1}^d a_{ii}$$

and $Tr\{CD\} = Tr\{DC\}$ provided that the product CD is a square matrix. Neither C nor D need be square.

The trace of the matrix
$$\mathbf{D} = \begin{bmatrix} 4 & 2 & 9 & 0 \\ 1 & 6 & 7 & 1 \\ 4 & 9 & 2 & 3 \\ 2 & 7 & 3 & 1 \end{bmatrix}$$
 is $4 + 6 + 2 + 1 = 13$.

Definition

The determinant of a square $(d \times d)$ matrix **M**, written as $|\mathbf{M}|$ is the sum,

$$|\mathbf{M}| = \sum_{j=1}^d m_{ij} M_{ij}$$
 for $i = 1 \dots, d$

where the cofactor, M_{ij} , is the determinant of the matrix formed by deleting the *i*th row and the *j*th column of **M**, multiplied by $(-1)^{i+j}$.

Definition

The transpose of the matrix of the cofactors, $\mathbf{C}(c_{ij} = M_{ij})$, is called the adjoint of \mathbf{M} , Adj[\mathbf{M}].

Definition

The inverse of a $d \times d$ matrix, **M** is that unique matrix \mathbf{M}^{-1} of dimension $d \times d$, with entries such that,

$$\mathbf{M}^{-1}\mathbf{M} = \mathbf{M}\mathbf{M}^{-1} = \mathbf{I}$$

Definition

We can obtain the inverse of a matrix from,

$$\mathbf{M}^{-1} = \frac{Adj[\mathbf{M}]}{|\mathbf{M}|}$$

Definition

If the inverse exists the matrix is said to be nonsingular otherwise it is singular and $|\boldsymbol{M}|=0$

Note that,
$$(\mathbf{M}^t)^{-1} = (\mathbf{M}^{-1})^t$$
 and $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

Example

Consider the matrix $\mathbf{A} = \begin{bmatrix} 2 & 4 & 6 \\ -1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$. The determinant is,

$$2 \times (2 \times 9 - 3 \times 4) - 4 \times (-1 \times 9 - 1 \times 3) + 6 \times (-1 \times 4 - 2 \times 1) = 24$$

Example

The adjoint of **A** is
$$\begin{bmatrix} 6 & 12 & -6 \\ -12 & 12 & -4 \\ 0 & -12 & 8 \end{bmatrix}^{\prime} = \begin{bmatrix} 6 & -12 & 0 \\ 12 & 12 & -12 \\ -6 & -4 & 8 \end{bmatrix}.$$

Example

The inverse of A is

$$\mathbf{A}^{-1} = \frac{1}{24} \begin{bmatrix} 6 & -12 & 0 \\ 12 & 12 & -12 \\ -6 & -4 & 8 \end{bmatrix}.$$

Linear independence and rank

Definition

A set of k vectors of equal dimension are linearly dependent if there exists a set of scalars c_1, c_2, \ldots, c_k , not all zero, such that,

$$c_1\mathbf{x}_1+\cdots+c_k\mathbf{x}_k=0$$

If it is impossible to find such a set of c_1, c_2, \ldots, c_k , then the vectors, $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are said to be linearly independent.

Definition

The rank of a matrix is the maximum number of linearly independent rows (or equivalently, the maximum number of linearly independent columns).

Definition

A $d \times d$ matrix is of full rank if the rank is equal to d. It will also be true that the determinant is non-zero and it will possess an inverse.

Linear independence and rank

Definition

For a rectangular matrix (i.e. non-square) **M** of dimension $d \times n$, the rank of **M**, denoted rank (**M**) is such that rank (**M**) $\leq min(d, n)$.

We have that,

$$rank(\mathbf{M}) = rank(\mathbf{M}^{\mathbf{t}}) = rank(\mathbf{M}^{\mathbf{t}}\mathbf{M}) = rank(\mathbf{M}\mathbf{M}^{\mathbf{t}})$$

Orthogonal matrix

Definition

A square matrix M, is orthogonal if,

$$\mathbf{MM}^t = \mathbf{M}^t \mathbf{M} = \mathbf{I}$$

- The rows and columns are orthonormal, $\mathbf{x}^t \mathbf{y} = 0$ and $\mathbf{x}^t \mathbf{x} = 1$, $\mathbf{y}^t \mathbf{y} = 1$ for any two different columns \mathbf{x} and \mathbf{y} .
- An orthogonal matrix represents a linear transformation that preserves distances and angles, consisting of a rotation and/or reflection
- lacktriangle An orthogonal matrix is nonsingular and the inverse is its transpose, lacktriangle lacktriangle lacktriangle
- The determinant of an orthogonal matrix is ± 1 , with -1 indicating a reflection and +1 indicating pure rotation.

Positive definiteness

Definition

A square matrix ${\bf M}$ is positive definite if the quadratic form, ${\bf x}^t{\bf M}{\bf x}>{\bf 0}$ for all vectors ${\bf x}\neq{\bf 0}.$

Definition

A square matrix **M** is positive semidefinite if the quadratic form, $\mathbf{x}^t \mathbf{M} \mathbf{x} \geq \mathbf{0}$ for all vectors $\mathbf{x} \neq \mathbf{0}$. A positive definite matrix will have a full rank.

• Given a $d \times d$ matrix **M**, an important class of linear equations is of the form,

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$

or

$$(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

for a scalar λ .

• The solution to the characteristic equation,

$$|M - \lambda I| = 0$$

gives the eigenvalues or characteristic roots of the $d \times d$ matrix.

- The characteristic equation is a dth order polynomial in λ . There are d solutions, $\lambda_1, \lambda_2, \ldots, \lambda_d$. They are not necessarily distinct and may be real or complex.
- Associated with each eigenvalue, λ_i is an eigenvector, \mathbf{u}_i , such that,

$$\mathbf{M}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

• The eigenvectors are not unique because any scalar multiple of \mathbf{u}_i satisfies $\mathbf{M}\mathbf{u}_i = \lambda_i \mathbf{u}_i$. Eigenvectors are usually normalized so that, $\mathbf{u}_i^t \mathbf{u}_i = 1$.

Properties of eigenvalues and eigenvectors

- **1** The product of the eigenvalues is equal to the determinant of **M**. $\prod_{i=1}^d \lambda_i = \det(\mathbf{M})$. For a given matrix, if the eigenvalues are all non-zero, then the inverse of **M** exists.
- 2 The sum of the eigenvalues is equal to the trace of the matrix. $\sum_{i=1}^{d} \lambda_i = Tr(\mathbf{M})$.
- If M is a real symmetric matrix, the eigenvalues and eigenvectors are all real.
- If M is positive definite, the eigenvalues are all greater than zero.
- If **M** is positive semidefinite of rank m, then there will be m non-zero eigenvalues and d-m eigenvalues with the value of zero.

Properties of eigenvalues and eigenvectors (continued)

- **6** Every real symmetric matrix has a set of orthonormal characteristic vectors. The matrix, \mathbf{U} , whose columns are the eigenvectors of the real symmetric matrix is orthogonal. $\mathbf{U} = \{\mathbf{u}_1, \dots, \mathbf{u}_d\}$. We have $\mathbf{U}^t \mathbf{U} = \mathbf{U} \mathbf{U}^t = \mathbf{I}$.
- The matrix U diagonalizes M,

$$U^tMU = \Lambda$$

where $\Lambda = diag(\lambda_1, \dots, \lambda_d)$ is a diagonal matrix whose entries are the eigenvalues of **M**.

$$\mathbf{M} = \mathbf{U} \wedge \mathbf{U}^t = \sum_{i=1}^d \lambda_i \mathbf{u}_i \mathbf{u}_i^t$$

Properties of eigenvalues and eigenvectors (continued)

3 If **M** is positive definite, then $\mathbf{M}^{-1} = \mathbf{U}\Lambda^{-1}\mathbf{U}^t$. Here, $\Lambda^{-1} = diag(1/\lambda_1, \dots, 1/\lambda_d)$

There are more linear algebraic results and they will be introduced as we need them!