Theory Problem 1: Sum of squares of Fibonacci numbers

Claim
$$\sum_{i=1}^{n} F_i^2 = F_i F_{i+1}$$

Since we know $F_1 = 1$ and $F_2 = 1$, it is possible to verify n=1 as a base case.

$$\sum_{i=1}^{1} F_{i}^{2} = F_{1} F_{2} \rightarrow 1^{2} = 1 \cdot 1$$

The inductive hypothesis is for n + 1 when $n \ge 1$:

$$\sum_{i=1}^{n+1} F_{n+1}^2 = F_{n+1} F_{n+1+1}$$

Step 1.
$$F_1 F_1 + ... + F_n F_n$$
 = $F_n F_{n+1}$
Step 2. $F_1 F_1 + ... + F_n F_n + F_{n+1} F_{n+1}$ = $F_{n+1} F_{n+1+1}$
We can substitute $F_n F_{n+1}$ from Step 1.

$$=F_{n+1}F_{n+1+1}$$

Now we have: $F_n F_{n+1} + F_{n+1} F_{n+1} = F_{n+1} F_{n+1+1}$

After simplification, we are left with the definition of Fibonacci sequence: $F_n + F_{n+1} = F_{n+1+1}$.