Integrare

Cursul 11

Matematică - anul I

Facultatea de Informatică, UAIC

e-mail: adrian.zalinescu@info.uaic.ro

web: https://profs.info.uaic.ro/~adrian.zalinescu

3 Ianuarie 2022

Integrala

Noțiunea de integrală este centrală nu numai în matematică, ea servind și la:

- determinarea stării unui sistem dinamic a cărui viteză de evoluție este cunoscută;
- calculul: caracteristicilor numerice a unor obiecte geometrice (lungime, arie, volum, centru de greutate);
- cantităților fizice (moment, lucru mecanic);
- caracteristicilor numerice ale variabilelor aleatoare în teoria probabilităților (funcție de distribuție, medie și varianță).

Sumarul cursului

- Primitive
- Integrala Riemann
- 3 Integrala Riemann multiplă pe mulțimi compacte
 - Integrala dublă pe mulțimi compacte
 - Integrala triplă pe mulțimi compacte

Primitive

Fie $I \subseteq \mathbb{R}$ un interval cu $\mathring{I} \neq \emptyset$ și $f: I \to \mathbb{R}$.

Definiție

• O funcție $F:I \to \mathbb{R}$ este o *primitivă* a lui f dacă F este derivabilă pe I și

$$F'(x) = f(x), \ \forall x \in I.$$

• Dacă f are cel puțin o primitivă pe I, atunci mulțimea primitivelor lui f se numește integrala nedefinită a lui f și se notează $\int f(x) dx$.

Observații.

- **1.** Dacă $F: I \to \mathbb{R}$ este o primitivă a unei funcții $f: I \to \mathbb{R}$, atunci orice altă primitivă a lui f are forma F + c, unde c este o constantă reală.
 - Notând $\mathcal C$ mulțimea tuturor funcțiilor constante pe I, avem $\int\!\!f(x)dx=F+\mathcal C.$
 - Prin abuz de limbaj, putem scrie $\int f(x)dx = F(x) + c$, $x \in I$.

- **2.** Dacă $f: I \to \mathbb{R}$ este o funcție derivabilă pe I, atunci f este primitiva lui f'.
- **3.** Orice primitivă a unei funcții $f:I\to\mathbb{R}$ este continuă, deoarece orice funcție derivabilă este continuă.
- **4.** Spațiul $\mathcal{P}(I)$ al tuturor funcțiilor $f:I\to\mathbb{R}$ ce admit primitive este un spațiu liniar (subspațiu al spațiului liniar $\mathscr{F}(I;\mathbb{R})$), deoarece

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx, \ \forall \alpha, \beta \in \mathbb{R}.$$

5. Orice funcție $f:I\to\mathbb{R}$ ce admite primitive are *proprietatea lui Darboux*: pentru orice $a,b\in I$ și s între f(a) și f(b), există x între a și b astfel încât f(x)=s.

Listă de primitive:

$$\bullet \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|; \quad \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a}, \ a \in \mathbb{R}^*;$$

•
$$\int \sin x dx = -\cos x$$
; $\int \cos x dx = \sin x$;

•
$$\int \sinh x \, dx = \int \frac{e^x - e^{-x}}{2} \, dx = \cosh x;$$
 $\int \cosh x \, dx = \int \frac{e^x + e^{-x}}{2} \, dx = \sinh x$

(pentru simplitate, am omis constanta c).

Integrare prin părți

Fie $f, g: I \to \mathbb{R}$ două funcții derivabile, cu f' și g' continue pe I. Atunci

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx, \ x \in I,$$

Putem aplica această formulă pentru a completa lista de mai sus:

•
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{|a|} + c$$
, $a \in \mathbb{R}_+^*$;

•
$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{x^2 \pm a^2} \right| + c, \ a \in \mathbb{R}^*;$$

Integrarea prin părți este recomandată pentru integrale de forma

$$\int P(x)f(x)dx$$

unde $P \in \mathbb{R}[X]$ și f este o funcție elementară de tipul: a^x , $\sin x$, $\cos x$, $\tan x$, etc. Aplicând această metodă, putem reduce cu o unitate gradul polinomului P.

Integrala Riemann

Fie $a, b \in \mathbb{R}$, a < b și $f : [a, b] \to \mathbb{R}$.

Definiție

- Numim o *diviziune* (sau *partiție*) a intervalului [a, b] o mulțime finită $\Delta = \{x_0, x_1, \ldots, x_n\}$ astfel încât $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$.
- Numărul

$$\|\Delta\| = \max_{1 \le i \le n} \left\{ x_i - x_{i-1} \right\}$$

(notat de asemenea $\nu(\Delta)$) se numește *norma* diviziunii Δ .

- O diviziune Δ a intervalului [a, b] se numește *echidistantă* dacă $x_i x_{i-1} = \frac{b-a}{n}$, $\forall i = \overline{1, n}$; în acest caz $\|\Delta\| = \frac{b-a}{n}$ și $x_i = a + i\frac{b-a}{n}$.
- ullet Vom nota cu $\mathcal{D}[a,b]$ mulțimea tuturor diviziunilor intervalului compact [a,b].
- Dacă $\Delta_1, \Delta_2 \in \mathcal{D}[a, b]$ și $\Delta_1 \subseteq \Delta_2$, spunem că Δ_2 este mai *fină* decât Δ_1 și notăm $\Delta_1 \prec \Delta_2$.

Fie $\Delta = \{x_0, x_1, ..., x_n\}$ cu $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$ o diviziune a intervalului [a, b].

Definiție

- Un n-uplu $\xi_{\Delta}=(\xi_1,\xi_2,\ldots,\xi_n)\in\mathbb{R}^n$ se numește un sistem de puncte intermediare al lui Δ dacă $\xi_i\in[x_{i-1},x_i],\ \forall i=\overline{1,n}.$
- Mulțimea tuturor sistemelor de puncte intermediare ale lui Δ este notată Ξ_{Δ} .
- Numim suma Riemann corespunzătoare funcției $f:[a,b]\to\mathbb{R}$ în raport cu Δ și un sistem de puncte intermediare $\xi_\Delta=(\xi_1,\xi_2,\ldots,\xi_n)$,numărul

$$\sigma_f(\Delta, \xi_{\Delta}) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}).$$

Definiție

• Funcția $f:[a,b] \to \mathbb{R}$ se numește integrabilă Riemann (sau \mathcal{R} -integrabilă) dacă există un număr real I, numit integrala Riemann a lui f, astfel încât

$$\forall \varepsilon>0, \ \exists \delta_{\varepsilon}>0: \Delta\in \mathcal{D}[a,b], \ \|\Delta\|<\delta_{\varepsilon}, \ \xi_{\Delta}\in \Xi_{\Delta}\Rightarrow |\sigma_f(\Delta,\xi_{\Delta})-I|<\varepsilon.$$

- Integrala Riemann va fi notată prin $\int_a^b f(x) dx$.
- Mulțimea tuturor funcțiilor \mathcal{R} -integrabile pe [a,b] este notată $\mathcal{R}[a,b]$.

Propoziție

Dacă o funcție $f:[a,b] o \mathbb{R}$ este Riemann integrabilă, atunci ea este mărginită.

Observație. Un exemplu de funcție mărginită ce nu este Riemann integrabilă este funcția lui Dirichlet, $f:[a,b]\to\mathbb{R}$, definită de $f(x)=\left\{\begin{array}{ll} 1, & x\in[a,b]\cap\mathbb{Q};\\ 0, & x\in[a,b]\setminus\mathbb{Q}. \end{array}\right.$

Proprietăți

Propoziție

- i) Dacă $f \in \mathcal{R}[a, b]$, atunci $f|_{[c,d]} \in \mathcal{R}[c, d]$, pentru orice interval $[c, d] \subseteq [a, b]$.
- ii) Fie $f:[a,b] \to \mathbb{R}$ și $c \in (a,b)$. Dacă $f|_{[a,c]} \in \mathcal{R}[a,c]$ și $f|_{[c,b]} \in \mathcal{R}[c,b]$, atunci $f \in \mathcal{R}[a,b]$ și

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

iii) Dacă $f \in \mathcal{R}[a,b]$, atunci $|f| \in \mathcal{R}[a,b]$ și

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

Propoziție

iv) Dacă $f,g \in \mathcal{R}[a,b]$, atunci $f \cdot g \in \mathcal{R}[a,b]$ și are loc *inegalitatea Cauchy-Schwarz* pentru funcții \mathcal{R} -integrabile:

$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \left(\int_a^b f^2(x)\,dx\right)\left(\int_a^b g^2(x)\,dx\right).$$

- v) Dacă $f \in \mathcal{R}[a, b]$ și $|f(x)| \ge \mu > 0$, $\forall x \in [a, b]$, atunci $\frac{1}{f} \in \mathcal{R}[a, b]$.
- vi) Dacă $f,g\in\mathcal{R}[a,b]$ și $lpha,eta\in\mathbb{R}$, atunci $lpha f+eta g\in\mathcal{R}[a,b]$ și

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

(cu alte cuvinte, $\mathcal{R}[a, b]$ este un subspațiu liniar al lui $\mathscr{F}([a, b]; \mathbb{R})$).

vii) Dacă $f \in \mathcal{R}[a, b]$ și $f(x) \ge 0$, $\forall x \in [a, b]$, atunci $\int_a^b f(x) dx \ge 0$.

Observații.

1. O generalizare a inegalității Cauchy-Schwarz este, ca în cazul sumelor finite de numere reale, *inegalitatea lui Hölder* pentru funcții \mathcal{R} -integrabile:

$$\left| \int_a^b f(x)g(x)dx \right| \leq \left(\int_a^b |f(x)|^p dx \right)^{\frac{1}{p}} \left(\int_a^b |g(x)|^q dx \right)^{\frac{1}{q}},$$

unde f, $g \in \mathcal{R}[a, b]$, p, $q \in (1, +\infty)$, cu $\frac{1}{p} + \frac{1}{q} = 1$.

2. Integrala Riemann este o funcțională monotonă, adică dacă $f,g\in\mathbb{R}[a,b]$ astfel încât $f(x)\leq g(x),\ \forall x\in[a,b],$ atunci

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

3. Dacă $f \in \mathcal{R}[a, b]$, definim $\int_b^a f(x) dx := -\int_a^b f(x) dx$ și $\int_a^a f(x) dx := 0$.

4. Fie
$$f \in \mathcal{R}[a,b]$$
 și $m = \inf_{x \in [a,b]} f(x) \in \mathbb{R}$, $M = \sup_{x \in [a,b]} f(x) \in \mathbb{R}$. Datorită

monotoniei integralei Riemann, avem

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

Mai mult, dacă $f \in C([a,b])$ (adică f este continuă pe [a,b]), atunci există $x_1, x_2 \in [a,b]$ astfel încât $f(x_1) = m$, $f(x_2) = M$; rezultă că

$$f(x_1) \le \frac{1}{b-a} \int_a^b f(x) dx \le f(x_2)$$

Deoarece f are proprietatea lui Darboux (ce este implicată de continuitatea lui f), atunci există c între x_1 și x_2 (cu posibilitate de egalitate) astfel încât

 $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$, adică are loc următoarea formulă a mediei:

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

A. Zălinescu (lași) Cursul 11 3 Ianuarie 2022

Criterii de integrabilitate

Fie $f:[a,b] \to \mathbb{R}$ o funcție.

Teoremă

- i) Dacă $f \in C([a, b])$, atunci $f \in \mathcal{R}[a, b]$.
- ii) Dacă f este monotonă pe [a, b], atunci $f \in \mathcal{R}[a, b]$.

Observație. Concluzia punctului **ii)** rămâne valabilă și dacă f este *monotonă pe porțiuni*, adică $f|_{[c_{i-1},c_i]}$ este monotonă, unde $\{c_0,c_1,\ldots,c_n\}\in\mathcal{D}[a,b]$.

Formula Leibniz-Newton

Fie $f:[a,b] \to \mathbb{R}$ o funcție integrabilă Riemann și funcția $F:[a,b] \to \mathbb{R}$ definită prin

$$F(x) = \int_{a}^{x} f(t) dt, x \in [a, b].$$

Teoremă

i) $F \in C([a, b])$; mai mult, există L > 0 astfel încât

$$|F(x) - F(\tilde{x})| \le L|x - \tilde{x}|, \ \forall x, \tilde{x} \in [a, b].$$

- ii) dacă f este continuă în $x_0 \in [a, b]$, atunci F este derivabilă în x_0 și $F'(x_0) = f(x_0)$.
 - dacă $f \in C([a, b])$, atunci F este o primitivă a lui f.;
- dacă $f \in C([a, b])$ și F' = f, atunci are loc formula *Leibniz-Newton*:

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} := F(b) - F(a).$$

A. Zălinescu (laşi) Cursul 11 3 Ianuarie 2022

• Pentru a calcula integrala Riemann a unei funcții $f \in C([a,b])$, putem utiliza schimbarea de variabilă, prin formula

$$\int_{\alpha}^{\beta} (f \circ \varphi)(x) \varphi'(x) dx = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt,$$

unde $\varphi : [\alpha, \beta] \to [a, b]$ este o funcție de clasă C^1 .

• O a doua formulă de schimbare de variabilă, echivalentă cu prima, este

$$\int_{a}^{b} f(x) dx = \int_{\psi^{-1}(a)}^{\psi^{-1}(b)} (f \circ \psi)(t) \psi'(t) dt,$$

unde $\psi : [a, b] \to [\alpha, \beta]$ este o funcție bijectivă, de clasă C^1 .

 O altă manieră de a calcula o integrală Riemann este integrarea prin părți, dată de formula

$$\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx,$$

pentru $f, g : [a, b] \to \mathbb{R}$ derivabile pe [a, b] cu $f', g' \in \mathcal{R}[a, b]$ (în particular, $f, g \in C^1[a, b]$).

Integrale multiple

- Integralele multiple sunt o extensie naturală a integralei Riemann la cazul funcțiilor de mai multe variabile.
- Când funcția ce trebuie integrată are 2 variabile: integrala dublă;
- când avem de a face cu 3 variabile: integrala triplă.
- În acest fel, putem calcula unele caracteristici numerice ale obiectelor 3D (arie, volum, masă, centru de greutate, etc.)

Măsura Jordan

- Unor mulțimi din \mathbb{R} , \mathbb{R}^2 sau \mathbb{R}^3 le corespunde un anumit număr, ca *lungime*, arie, respectiv volum (sau masă, dacă ne gândim la obiecte fizice).
- O $m \ddot{a} sur \ddot{a}$ pe \mathbb{R}^n generalizează aceste concepte: măsura unei mulțimi va fi un număr pozitiv.
- Vom începe prin a defini măsura unor obiecte simple.

Definiție

• Fie $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ astfel încât $a_k < b_k, \ \forall k \in \overline{1, n}$. Mulțimea

$$I_0 = [a_1, b_1] \times \cdots \times [a_n, b_n]$$

= $\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid a_k \le x_k \le b_k, \ \forall k \in \overline{1, n}\}$

se numește un interval compact n-dimensional (dacă n=2 sau n=3, îl numim de asemenea dreptunghi, respectiv paralelepiped cu laturile, respectiv fețele paralele la axele de coordonate).

Definiție

• Măsura (Jordan a) lui este numărul

$$\mu(I_0) := (b_1 - a_1)(b_2 - a_2) \dots (b_n - a_n).$$

(dacă n = 2 sau n = 3, aceasta este *aria*, respectiv *volumul* dreptunghiului sau paralelipipedului I_0).

• Numim mulțime elementară (măsurabilă Jordan) orice mulțime din \mathbb{R}^n ce poate fi scrisă ca o reuniune finită de intervale compacte n-dimensionale ce nu au puncte interioare comune, adică o mulțime de forma

$$E = \bigcup_{\ell=1}^{q} I_{\ell}$$

astfel încât $I_\ell = [a_1^\ell, b_1^\ell] \times [a_2^\ell, b_2^\ell] \times \cdots \times [a_n^\ell, b_n^\ell], \ \ell = \overline{1, q}$ și astfel încât $\mathring{I}_j \cap \mathring{I}_\ell = \emptyset, \ \forall j, \ell \in \{1, 2, \ldots, q\}, \ j \neq \ell.$

• Măsura Jordan a multimii E este definită ca

$$\mu(E) := \sum_{\ell=1}^{q} \mu(I_{\ell}),$$

unde $\mu(I_{\ell}) = \prod_{k=1}^{n} (b_{k}^{\ell} - a_{k}^{\ell}).$

Vom nota \mathcal{E}_J^n familia tuturor mulțimilor elementare din \mathbb{R}^n . Fie $A\subseteq\mathbb{R}^n$ o mulțime mărginită.

Definiție

• Numim măsura Jordan interioară a mulțimii A numărul

$$\mu_*(A) = \sup \{ \mu(E) \mid E \subseteq A, E \in \mathcal{E}_J^n \}$$

(dacă nu există o mulțime elementară inclusă în A, $\mu_*(A)$ este atunci 0).

• Măsura Jordan exterioară a mulțimii A este numărul

$$\mu^*(A) = \inf \{ \mu(E) \mid E \supseteq A, E \in \mathcal{E}_J^n \}.$$

• Spunem că A este măsurabilă Jordan dacă $\mu_*(A) = \mu^*(A)$. Valoarea ei comună se numește măsura Jordan a mulțimii A și se notează $\mu_J(A)$ (se obișnuiește să o numim arie dacă n=2 sau volum dacă n=3).

Este evident că pentru o mulțime mărginită $A \subseteq \mathbb{R}^n$, $\mu_*(A)$ și $\mu^*(A)$ sunt numere reale pozitive ce satisfac $\mu_*(A) \leq \mu^*(A)$.

Observații.

- 1. Orice mulțime elementară $E \in \mathcal{E}_J^n$ este măsurabilă Jordan, prin definiție.
- 2. Nu orice mulțime mărginită din \mathbb{R}^n este măsurabilă Jordan. De exemplu, în \mathbb{R}^2 considerăm

$$A_D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y \le f_D(x)\}$$

unde $f_D: \mathbb{R} \to \mathbb{R}$ este funcția lui Dirichlet, definită de

$$f_D(x) := \begin{cases} 1, & x \in \mathbb{Q}; \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Atunci $\mu_*(A_D)=0$, deoarece nu există mulțime elementară $E\subseteq A_D$; pe de altă parte, $\mu^*(A_D)=1$, deoarece orice mulțime elementară $E\supseteq A$ trebuie să includă dreptunghiul $[0,1]\times[0,1]$. De aceea, E nu este măsurabilă Jordan.

3. Există mulțimi ne-elementare ce sunt măsurabile Jordan. De exemplu, subgraficul unei funcții integrabile Riemann $f:[a,b]\to\mathbb{R}_+$, adică mulțimea

$$\Gamma_f = \left\{ (x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ 0 \le y \le f(x) \right\},$$

este măsurabilă Jordan, cu $\mu_J(\Gamma_f) = \operatorname{aria}(\Gamma_f) = \int\limits_a^b f(x) dx$.

Demonstrație:

4. Mai general, putem afirma că dacă $f,g:[a,b]\to\mathbb{R}$ sunt două funcții Rieman integrabile pe [a,b] astfel încât $f(x)\leq g(x),\ \forall x\in[a,b],$ atunci mulțimea $\Gamma_{f,g}=\left\{(x,y)\in\mathbb{R}^2\mid a\leq x\leq b,\ f(x)\leq y\leq g(x)\right\}$ este măsurabilă Jordan cu

$$\mu_J\left(\Gamma_{f,g}\right) = \int_a^b \left(g(x) - f(x)\right) dx.$$

Applicație: aria unei elipse

Fie \tilde{a} , $\tilde{b}>0$ și $a:=-\tilde{a}$, $b:=\tilde{a}$. Definim funcțiile f, $g:[a,b]\to\mathbb{R}$ prin $f(x):=-\frac{\tilde{b}}{\tilde{a}}\sqrt{\tilde{a}^2-x^2}$ și $g(x):=\frac{\tilde{b}}{\tilde{a}}\sqrt{\tilde{a}^2-x^2}$, $x\in[a,b]=[-\tilde{a},\tilde{a}]$. Reuniunea graficelor lor determină o elipsă de ecuație $\frac{x^2}{\tilde{a}^2}+\frac{y^2}{\tilde{b}^2}-1=0$; de aceea, domeniul mărginit de această elipsă este dat de

$$\Gamma_{f,g} = \left\{ (x,y) \in \mathbb{R}^2 \mid -\tilde{a} \le x \le \tilde{a}, \ -\frac{\tilde{b}}{\tilde{a}} \sqrt{\tilde{a}^2 - x^2} \le y \le \frac{\tilde{b}}{\tilde{a}} \sqrt{\tilde{a}^2 - x^2} \right\},\,$$

Prin calcul integral, găsim $\mu_J(\Gamma_{f,g})=rac{2\tilde{b}}{\tilde{a}}\int_{-\tilde{a}}^{\tilde{a}}\sqrt{\tilde{a}^2-x^2}dx=\pi\tilde{a}\tilde{b}$. În consecință aria unei elipse de semiaxe \tilde{a} și \tilde{b} este $\pi\tilde{a}\tilde{b}$.

5. Din definiție, o mulțime $B\subseteq \mathbb{R}^n$ este măsurabilă și are măsura Jordan nulă dacă pentru orice $\varepsilon>0$, există $E_\varepsilon\in\mathcal{E}_J^n$ astfel încât $B\subseteq E_\varepsilon$ și $\mu_J(E_\varepsilon)<\varepsilon$.

Condiții necesare și suficiente de măsurabilitate Jordan

Fie $A \subseteq \mathbb{R}^n$ o mulțime mărginită.

Teoremă

Următoarele afirmații sunt echivalente:

- (i) A este măsurabilă Jordan;
- (ii) $\forall \varepsilon > 0$, $\exists E_{\varepsilon}', E_{\varepsilon}'' \in \mathcal{E}_{J}^{n} : E_{\varepsilon}' \subseteq A \subseteq E_{\varepsilon}''$ și $\mu_{J}(E_{\varepsilon}') \mu_{J}(E_{\varepsilon}'') < \varepsilon$;
- (iii) ∂A este măsurabilă Jordan și $\mu_{I}(\partial A) = 0$;
- (iv) există șiruri $(\tilde{E}_m)_{m\in\mathbb{N}^*}\subseteq\mathcal{E}_J^n$ și $(\hat{E}_m)_{m\in\mathbb{N}^*}\subseteq\mathcal{E}_J^n$ astfel încât $\tilde{E}_m\subseteq A\subseteq\hat{E}_m$, $\forall\,m\in\mathbb{N}^*$ și $\lim_{m\to\infty}\mu_J(\tilde{E}_m)=\lim_{m\to\infty}\mu_J(\hat{E}_m)$.

Observație. Pentru o mulțime măsurabilă Jordan A, $\mu_J(A) \neq 0$ este echivalentă cu $\mathring{A} \neq \emptyset$.

A. Zălinescu (lași) Cursul 11 3 Ianuarie 2022

Proprietăți ale măsurii Jordan

Notăm \mathcal{M}^n_I familia tuturor mulțimilor din \mathbb{R}^n ce sunt măsurabile Jordan.

Teoremă

- i) $\mu_I(A) \geq 0$, $\forall A \in \mathcal{M}_I^n$ (pozitivitate).
- $\textbf{ii)} \ \, \forall \textit{A},\textit{B} \in \mathcal{M}^\textit{n}_{\textit{J}}: \mathring{\textit{A}} \cap \mathring{\textit{B}} = \varnothing \Rightarrow \mu_{\textit{J}}(\textit{A} \cup \textit{B}) = \mu_{\textit{J}}(\textit{A}) + \mu_{\textit{J}}(\textit{B}) \text{ (aditivitate)}.$
- iii) $\forall A, B \in \mathcal{M}_{J}^{n} : B \subseteq A \Rightarrow \mu_{J}(A \setminus B) = \mu_{J}(A) \mu_{J}(B)$ (substracție).
- iv) $\forall A, B \in \mathcal{M}_{I}^{n} : B \subseteq A \Rightarrow \mu_{I}(B) \leq \mu_{I}(A)$ (monotonie).
- **v)** $\forall A \in \mathcal{M}_{J}^{n}$, $\forall B \subseteq \mathbb{R}^{n} : \mu_{J}(A) = 0$, $B \subseteq A \Rightarrow \mu_{J}(B) = 0$ (completitudine).

Observații.

- 1 Se poate arăta că dacă $A,B\in\mathcal{M}_J^n$, atunci $A\cup B\in\mathcal{M}_J^n$ și $A\smallsetminus B\in\mathcal{M}_J^n$. Mai mult, are loc proprietatea de subaditivitate: $\mu_J(A\cup B)\leq \mu_J(A)+\mu_J(B)$.
- **2.** Graficul unei funcții continue $f:[a,b]\longrightarrow \mathbb{R}_+$ are aria nulă
- 3. Orice mulțime din \mathbb{R}^2 a cărei frontieră se poate scrie ca o reuniune finită de grafice ale unor funcții continue pe intervale compacte este măsurabilă Jordan.

Integrala Riemann multiplă pe mulțimi compacte

Fie $D\subseteq \mathbb{R}^n$ o mulțime compactă nevidă (deci, mărginită și închisă) astfel încât $D\in \mathcal{M}^n_J$.

Definiție

- Numim *diviziune* a lui D orice familie finită $\{D_i\}_{1 \leq i \leq p}$ de submulțimi ale lui D astfel încât:
 - a) $D_i \in \mathcal{M}_I^n$, $\forall i \in \overline{1, p}$;
 - b) $\mathring{D}_i \cap \mathring{D}_j = \emptyset$, $\forall i, j \in \{1, ..., p\}$ cu $i \neq j$;
 - c) $D = \bigcup_{i=1}^{p} D_i$.

Notăm $\mathcal{D}(D)$ familia tuturor diviziunilor lui D.

• Pentru o diviziune Δ definim *norma* ei $\|\Delta\| := \max_{1 \le i \le p} \{ \operatorname{diam}(D_i) \}$, unde $\operatorname{diam}(D_i)$ este diametrul lui D_i .

Observație. Din proprietatea de aditivitate a măsurii Jordan, avem

$$\mu_J(D) = \sum_{i=1}^p \mu_J(D_i).$$

Fie $f: D \to \mathbb{R}$ o funcție.

Definiție

Fie $\Delta = \{D_i\}_{1 \leq i \leq p}$ o diviziune a lui D.

- Un p-uplu $\xi_{\Delta}=(\xi^1,\xi^2,\ldots,\xi^p)\in(\mathbb{R}^n)^p$ se numește un sistem de puncte intermediare ale lui Δ dacă $\xi^i\in D_i,\ \forall i=\overline{1,n}.$ Mulțimea tuturor sistemelor de puncte intermediare ale lui Δ este notată Ξ_{Δ} .
- Numim suma Riemann a funcției f în raport cu Δ și un sistem de puncte intermediare $\xi_{\Lambda} = (\xi^1, \xi^2, \dots, \xi^n)$, numărul

$$\sigma_f(\Delta, \xi_{\Delta}) = \sum_{i=1}^n f(\xi^i) \mu_J(D_i).$$

Definiție

Spunem că funcția f este integrabilă Riemann dacă există $I \in \mathbb{R}$ astfel încât

$$\forall \varepsilon > 0, \ \exists \delta_{\varepsilon} > 0, \ \forall \Delta \in \mathcal{D}(D), \ \forall \xi_{\Delta} \in \Xi_{\Delta} : \|\Delta\| < \delta_{\varepsilon} \Rightarrow |\sigma_{f}(\Delta, \xi_{\Delta}) - I)| < \varepsilon.$$

Definiție

Numărul I se numește integrala multiplă (dacă n=2 sau n=3, integrala dublă, respectiv triplă) a lui f și se notează

$$\int \cdots \int_D f(x_1, x_2, \ldots, x_n) dx_1 dx_2 \ldots dx_n.$$

Teoremă

Fie $D\subseteq\mathbb{R}^n$ o mulțime compactă nevidă care este măsurabilă Jordan și $f:D\to\mathbb{R}$ o funcție continuă. Atunci f este integrabilă Riemann.

Proprietăți

Fie $D\subseteq\mathbb{R}^n$ o mulțime compactă nevidă ce este măsurabilă Jordan.

Propoziție

i)
$$\int \cdots \int_{D} 1 dx_1 dx_2 \dots dx_n = \mu_J(D);$$

ii) pentru orice funcții integrabile Riemann $f,g:D\to\mathbb{R}$ și orice $\alpha,\beta\in\mathbb{R}$, $\alpha f+\beta g$ este integrabilă Riemann și

$$\int \cdots \int_{D} (\alpha f(x_1, \dots, x_n) + \beta g(x_1, \dots, x_n)) dx_1 \dots dx_n =$$

$$\alpha \int \cdots \int_{D} f(x_1, \dots, x_n) dx_1 \dots dx_n + \beta \int \cdots \int_{D} g(x_1, \dots, x_n) dx_1 \dots dx_n;$$

iii) pentru orice funcții integrabile Riemann $f,g:D\to\mathbb{R}$ cu $f(x)\leq g(x)$, $\forall x\in D$, avem:

$$\int \cdots \int_{D} f(x_1, \ldots, x_n) dx_1 \ldots dx_n \leq \int \cdots \int_{D} g(x_1, \ldots, x_n) dx_1 \ldots dx_n;$$

Propoziție

iv) pentru orice funcție integrabilă Riemann $f:D\to\mathbb{R},\ |f|$ este de asemenea integrabilă Riemann și

$$\left|\int \cdots \int_{D} f(x_{1}, \ldots, x_{n}) dx_{1} \ldots dx_{n}\right| \leq \int \cdots \int_{D} \left|f(x_{1}, \ldots, x_{n})\right| dx_{1} \ldots dx_{n};$$

v) pentru orice funcție integrabilă Riemann $f:D\to\mathbb{R}$, există

$$\lambda \in \left[\inf_{x \in D} f(x), \sup_{x \in D} f(x)\right]$$
 astfel încât:

$$\int \cdots \int_{D} f(x_1, \ldots, x_n) dx_1 \ldots dx_n = \lambda \mu_J(D).$$

Dacă, în plus, $f \in C(D)$ și D este conexă (adică nu poate fi împărțită în două mulțimi închise disjuncte), atunci există $\xi \in D$ astfel încât

$$\int \cdots \int_{D} f(x_1, \ldots, x_n) dx_1 \ldots dx_n = f(\xi) \mu_J(D);$$

Propoziție

vi) dacă D este reuniunea a două mulțimi compacte nevide D_1 și D_2 ce sunt măsurabileJordan, cu $\overset{\circ}{D_1}\cap\overset{\circ}{D_2}=\varnothing$, și f este integrabilă Riemann și pe D_1 și pe D_2 , atunci f este integrabilă Riemann pe D și

$$\int \cdots \int_{D} f(x_1, \dots, x_n) dx_1 \dots dx_n = \int \cdots \int_{D_1} f(x_1, \dots, x_n) dx_1 \dots dx_n$$
$$+ \int \cdots \int_{D_2} f(x_1, \dots, x_n) dx_1 \dots dx_n;$$

vii) pentru orice $f,g\in C(D)$ cu $g(x)\geq 0$, $\forall x\in D$, există $\eta\in D$ astfel încât

$$\int \cdots \int_{D} f(x_{1}, \dots, x_{n}) g(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}$$

$$= f(\eta) \int \cdots \int_{D} g(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}.$$

Integrala dublă pe mulțimi compacte

- Integrala multiplă în cazul n=2 se mai numește integrala dublă.
- Dacă $f:D\to\mathbb{R}$ este o funcție integrabilă Riemann pe o mulțime compactă nevidă și măsurabilă Jordan $D\subseteq\mathbb{R}^2$, vom nota integrala ei dublă prin $\iint_{\mathbb{R}} f(x,y) dx \, dy.$

Fie a, b, c, $d \in \mathbb{R}$ cu a < b, c < d, $D := [a, b] \times [c, d]$ și $f : D \to \mathbb{R}$ o funcție integrabilă Riemann.

Propoziție

Dacă pentru orice $x \in [a,b]$, $f(x,\cdot)$ este integrabilă Riemann și funcția $x \mapsto \int_c^d f(x,y) dy$ este de asemenea Riemann integrabilă pe [a,b], atunci

$$\iint_{[a,b]\times[c,d]} f(x,y) dx dy = \int_a^b \left(\int_c^d f(x,y) dy \right) dx.$$

Mai mult, dacă $f(x,y)=f_1(x)f_2(y)$ și $f_1\in\mathcal{R}[a,b],\ f_2\in\mathcal{R}[c,d],$ atunci avem $\iint_{[a,b]\times[c,d]}f_1(x)f_2(y)dx\,dy=\int_a^bf_1(x)dx\cdot\int_c^df_2(y)dy.$

Observații.

1. Un rezultat similar obținem inversând rolurile lui x și y, prin egalitatea

$$\iint_{[a,b]\times[c,d]} f(x,y) dx dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy.$$

2. O condiție suficientă pentru ca ipoteza rezultatului de mai sus să fie îndeplinită este $f \in C([a,b] \times [c,d])$.

Definiție

• O submulţime $D \subseteq \mathbb{R}^2$ se numeşte *simplă în raport cu axa Oy* dacă există funcţiile continue $\varphi, \psi : [a, b] \to \mathbb{R}$ cu $\varphi(x) \le \psi(x), \ \forall x \in [a, b]$, astfel încât

$$D = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ \varphi(x) \le y \le \psi(x)\}.$$

• O submulțime $D \subseteq \mathbb{R}^2$ se numește *simplă în raport cu axa Ox* dacă există funcțiile continue $\gamma, \omega : [c, d] \to \mathbb{R}$ cu $\gamma(y) \le \omega(y), \forall y \in [c, d]$, astfel încât

$$D = \{(x, y) \in \mathbb{R}^2 \mid \gamma(y) \le x \le \omega(y), \ c \le y \le d\}.$$

A. Zălinescu (lași) Cursul 11 3 lanuarie 2022

Teoremă

Fie $D \subseteq \mathbb{R}^2$ un domeniu simplu în raport cu axa Oy și $f \in C(D)$. Atunci

$$\iint_D f(x,y)dxdy = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} f(x,y)dy\right)dx,$$

unde funcțiile $\varphi, \psi : [a, b] \to \mathbb{R}$ cu $\varphi(x) < \psi(x)$ sunt astfel încât $D = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \ \varphi(x) \le y \le \psi(x)\}.$

Observație. Dacă $f \in C(D)$, cu D simplă în raport cu axa Ox, adică având forma

$$D = \{(x, y) \in \mathbb{R}^2 \mid \gamma(y) \le x \le \omega(y), \ c \le y \le d\},\$$

atunci are loc egalitatea

$$\iint_D f(x,y) dxdy = \int_c^d \left(\int_{\gamma(y)}^{\omega(y)} f(x,y) dx \right) dy.$$

A. Zălinescu (lași) Cursul 11 3 Ianuarie 2022

Exemplu

Fie $D = \{(x, y) \in \mathbb{R}^2_+ | 1 \le xy \le 3, \ 1 \le \frac{y}{x} \le 4\}$. Vom calcula aria lui D:

$$aria(D) = \mu_J(D) = \iint_D 1 dx \, dy = \iint_D dx \, dy.$$

Figure: graphs of xy = 1, xy = 3, $\frac{y}{x} = 1$, $\frac{y}{x} = 4$

A. Zălinescu (lași) Cursul 11 3 Ianuarie 2022

Decarece $D = D_1 \cup D_2 \cup D_3$, cu $\overset{\circ}{D_i} \cap \overset{\circ}{D_j} = \emptyset$, $\forall i,j \in \{1,2,3\}$, $i \neq j$, unde $D_1 = \{(x,y) \in \mathbb{R}^2 \mid \gamma_1(y) = \frac{1}{y} \leq x \leq \omega_1(y) = y, 1 \leq y \leq \sqrt{3}\}$, $D_2 = \{(x,y) \in \mathbb{R}^2 \mid \gamma_2(y) = \frac{1}{y} \leq x \leq \omega_2(y) = \frac{3}{y}, \sqrt{3} \leq y \leq 2\}$ și $D_3 = \{(x,y) \in \mathbb{R}^2 \mid \gamma_3(y) = \frac{y}{4} \leq x \leq \omega_3(y) = \frac{3}{y}, 2 \leq y \leq 2\sqrt{3}\}$, obținem, decarece D_1 , D_2 , D_3 sunt domenii simple în raport cu axa O_X :

$$\begin{aligned} \operatorname{aria}(D) &= \iint_D 1 dx \, dy = \iint_{D_1} 1 dx \, dy + \iint_{D_2} 1 dx \, dy + \iint_{D_3} 1 dx \, dy = \\ &= \int_1^{\sqrt{3}} \left(\int_{1/y}^y 1 dx \right) dy + \int_{\sqrt{3}}^2 \left(\int_{1/y}^{3/y} 1 dx \right) dy + \int_2^{2\sqrt{3}} \left(\int_{y/4}^{3/y} 1 dx \right) dy = \\ &= \int_1^{\sqrt{3}} \left(y - \frac{1}{y} \right) dy + \int_{\sqrt{3}}^2 \frac{2}{y} dy + \int_2^{2\sqrt{3}} \left(\frac{3}{y} - \frac{y}{4} \right) dy = \\ &= \left(\frac{y^2}{2} - \ln y \right) \Big|_1^{\sqrt{3}} + 2 \ln y \Big|_{\sqrt{3}}^2 + \left(3 \ln y - \frac{y^2}{8} \right) \Big|_2^{2\sqrt{3}} = \\ &= \frac{3}{2} - \frac{1}{2} \ln 3 - \frac{1}{2} + 2 \ln 2 - \ln 3 + 3 \ln 2 + \frac{3}{2} \ln 3 - \frac{3}{2} - 3 \ln 2 + \frac{1}{2} = 2 \ln 2. \end{aligned}$$

Schimbarea de variabile

Definiție

Fie $\Omega \subseteq \mathbb{R}^2$ o mulțime compactă nevidă, măsurabilă Jordan și $F:\Omega \to D \subseteq \mathbb{R}^2$, definită de $F(u,v)=(x(u,v),y(u,v)),\ (u,v)\in\Omega$ o funcție bijectivă ce poate fi extinsă la o funcție de clasă C^1 pe o mulțime deschisă $\Omega'\supseteq\Omega$ astfel încât

$$\det(J_F)(u,v) = \frac{D(x,y)}{D(u,v)}(u,v) \neq 0, \forall (u,v) \in \Omega.$$

Atunci D este de asemenea o mulțime compactă, măsurabilă Jordan, iar F se numește o schimbare de variabile (coordonate) de la Ω la D.

Propoziție

Fie $F:\Omega\to D$, F(u,v)=(x(u,v),y(u,v)), $(u,v)\in\Omega$ o schimbare de variabile și $f:D\to\mathbb{R}$ o funcție continuă. Atunci

$$\iint_D f(x,y) dx dy = \iint_{\Omega} f(x(u,v),y(u,v)) \left| \frac{D(x,y)}{D(u,v)} \right| (u,v) du dv.$$

Observații.

1. Pentru exemplul precedent am fi putut aplica de asemenea o schimbare de variabile. Să considerăm schimbarea de variabile dată de xy=u și $\frac{y}{x}=v$, echivalent $x=\sqrt{\frac{u}{v}}$ și $y=\sqrt{uv}$, cu $u\in[1,3]$ și $v\in[1,4]$. Atunci avem

$$\operatorname{aria}(D) = \iint_D 1 dx dy = \iint_\Omega \left| \frac{D(x,y)}{D(u,v)} \right| (u,v) du dv,$$

unde $\Omega=\{(u,v)\in\mathbb{R}^2\mid 1\leq u\leq 3, 1\leq v\leq 4\}=[1,3]\times[1,4]$ și

$$\frac{D(x,y)}{D(u,v)}(u,v) = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} (u,v) = \det \begin{bmatrix} \frac{1}{2\sqrt{uv}} & -\frac{\sqrt{u}}{2v\sqrt{v}} \\ \frac{\sqrt{v}}{2\sqrt{u}} & \frac{\sqrt{u}}{2\sqrt{v}} \end{bmatrix} = \frac{1}{2v}.$$

Astfel

$$\operatorname{aria}(D) = \int_{1}^{3} du \cdot \int_{1}^{4} \left| \frac{1}{2v} \right| dv = \left(\left. u \right|_{1}^{3} \right) \left(\frac{1}{2} \ln v \right|_{1}^{4} \right) = 2 \frac{1}{2} \ln 4 = 2 \ln 2.$$

2. O schimbare de variabile des întâlnită este dată de trecerea de la coordonatele carteziene (x, y) la coordonatele polare (r, θ) , prin relațiile

$$\begin{cases} x = r\cos\theta; \\ y = r\sin\theta, \end{cases} \quad \text{cu } r \in [r_1, r_2] \subseteq [0, \infty), \ \theta \in [\theta_1, \theta_2] \subseteq [0, 2\pi].$$

Jacobianul acestei transformări este $\frac{D(x,y)}{D(r,\theta)}(r,\theta) = \det \begin{bmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{bmatrix} = r(\sin^2\theta + \cos^2\theta) = r.$

3. Câteodată putem folosi coordonatele polare generalizate:

$$\begin{cases} x = ar \cos^{\alpha} \theta; \\ y = br \sin^{\alpha} \theta, \end{cases}$$

cu $r \in [r_1, r_2] \subseteq [0, \infty)$ și $\theta \in [\theta_1, \theta_2] \subseteq [0, 2\pi]$, cu a, b și α parametri potriviți. Dacă $\alpha = 1$, r și θ sunt numite *coordonate eliptice*, corespunzând ecuației elipsei $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$ (în coordonate eliptice, această ecuație devine r = 1).

Examplu

Să calculăm $\iint_D (y-x+2) dx dy$, unde $D = \{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{4} + \frac{y^2}{9} < 1\}$.

Folosind transformarea eliptică $(x,y) \to (r,\theta)$ dată de $x=2r\cos\theta,\ y=3r\sin\theta,$ cu $0 \le r < 1$ și $0 \le \theta \le 2\pi,$ găsim

$$\iint_{D} (y - x + 2) dx \, dy = \int_{0}^{2\pi} \left[\int_{0}^{1} (3r \sin \theta - 2r \cos \theta + 2) \left| \frac{D(x, y)}{D(r, \theta)} \right| (r, \theta) dr \right] d\theta$$
$$= \int_{0}^{2\pi} \left[\int_{0}^{1} (3r \sin \theta - 2r \cos \theta + 2) 6r dr \right] d\theta$$
$$= \int_{0}^{2\pi} (6 \sin \theta - 4 \cos \theta + 6) d\theta = 12\pi.$$

Masă și centru de greutate

O altă aplicație a integralei duble este calculul masei unui obiect material D în plan, cu densitate de masă cunoscută ρ . Aceasta este dată de formula

$$mass(D) = \iint_D \rho(x, y) dx dy.$$

Putem de asemenea determina coordonatele centrului de greutate (x_G, y_G) al lui D, prin formulele

$$x_G = \frac{\iint_D x \rho(x,y) dx dy}{\iint_D \rho(x,y) dx dy} \quad \text{si} \quad y_G = \frac{\iint_D y \rho(x,y) dx dy}{\iint_D \rho(x,y) dx dy}.$$

Integrala triplă pe mulțimi compacte

- Integrala triplă reprezintă integrala multiplă în cazul n = 3.
- Se notează

$$\iiint_D f(x, y, z) dx dy dz$$

unde $f:D\to\mathbb{R}$ și $D\subseteq\mathbb{R}^3$ este o mulțime compactă nevidă, măsurabilă Jordan.

Definiție

O submulțime $D\subseteq\mathbb{R}^3$ se numește *simplă în raport cu axa Oz* dacă există o mulțime compactă, măsurabilă Jordan $\tilde{D}\subseteq\mathbb{R}^2$ și două funcții continue $\varphi,\psi:\tilde{D}\to\mathbb{R}$ cu $\varphi(x,y)\leq\psi(x,y),\ \forall (x,y)\in\tilde{D}$, astfel încât

$$D = \{ (x, y, z) \in \mathbb{R}^3 \mid \varphi(x, y) \le z \le \psi(x, y), \ (x, y) \in \tilde{D} \}.$$

Un astfel de domeniu în \mathbb{R}^3 are *volum* (adică măsură Jordan) dat de formula

$$vol(D) = \mu_J(D) = \iint_{\tilde{D}} \psi(x, y) dx dy - \iint_{\tilde{D}} \varphi(x, y) dx dy.$$

Propoziție

Fie $D \subseteq \mathbb{R}^3$ o multime simplă în raport cu Oz și fie $f:D \to \mathbb{R}$ o funcție continuă. Atunci

$$\iiint_D f(x,y,z) dxdy z = \iint_{\widetilde{D}} \left(\int_{\varphi(x,y)}^{\psi(x,y)} f(x,y,z) dz \right) dxdy.$$

Exemplu. Să calculăm $\iiint_D \sqrt{x^2 + y^2} dx dy dz$, unde *D* este domeniul mărginit de suprafețele z=0, z=1 și $z=\sqrt{x^2+y^2}$. Observăm că

$$D = \{(x, y, z) \in \tilde{D} \times \mathbb{R} \mid \sqrt{x^2 + y^2} \le z \le 1\}.$$

unde $\tilde{D} = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Luăm $\varphi(x, y) := \sqrt{x^2 + y^2}$ și $\psi(x,y):=1$, aşa că obținem

$$\iiint_{D} \sqrt{x^2 + y^2} dx dy dz = \iint_{\tilde{D}} \left(\int_{\sqrt{x^2 + y^2}}^{1} dz \right) \sqrt{x^2 + y^2} dx dy$$
$$= \iint_{\tilde{D}} \sqrt{x^2 + y^2} \left(1 - \sqrt{x^2 + y^2} \right) dx dy.$$

Pentru a calcula această integrală dublă, vom folosi coordonatele polare (r, θ) :

$$\iint_{\tilde{D}} \sqrt{x^2 + y^2} (1 - \sqrt{x^2 + y^2}) dx dy = \int_0^{2\pi} \left(\int_0^1 r(1 - r) r dr \right) d\theta =$$

$$= 2\pi \int_0^1 (r^2 - r^3) dr = 2\pi \left(\frac{r^3}{3} - \frac{r^4}{4} \right) \Big|_0^1 = \frac{\pi}{6}$$

O formulă de schimbare de variabilă asemănătoare are loc și în cazul n=3:

Propoziție

Fie $F:\Omega\to D$, F(u,v,w)=(x(u,v,w),y(u,v,w),z(u,v,w)), $(u,v,w)\in\Omega$ o schimbare de variabile între mulțimi compacte, măsurabile Jordan, Ω și D. Dacă $f:D\to\mathbb{R}$ este o funcție continuă, atunci

$$\iiint_{D} f(x, y, z) dx dy dz$$

$$= \iiint_{\Omega} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{D(x, y, z)}{D(u, v, w)} \right| (u, v, w) du dv dw.$$

Observații.

1. Cea mai folosită schimbare de variabile în \mathbb{R}^3 este trecerea de la coordonatele carteziene x,y,z la coordonatele sferice r,θ,φ , dată de

$$\begin{cases} x = r \sin \theta \cos \varphi, & r \in [r_1, r_2] \subseteq [0, +\infty], \\ y = r \sin \theta \sin \varphi, & \theta \in [\theta_1, \theta_2] \subseteq [0, \pi], \\ z = r \cos \theta, & \varphi \in [\varphi_1, \varphi_2] \subseteq [0, 2\pi]. \end{cases}$$

Jacobianul acestei transformări este

$$\frac{D(x,y,z,)}{D(r,\theta,\varphi)}(r,\theta,\varphi) = \det \begin{bmatrix} \sin\theta\cos\varphi & \sin\theta\sin\varphi & \cos\theta \\ r\cos\theta\varphi & r\cos\theta\sin\varphi & -r\sin\theta \\ -r\sin\theta\sin\varphi & r\sin\theta\cos\varphi & 0 \end{bmatrix} = r^2\sin\theta.$$

2. Un alt tip de schimbare de variabile este dat de *coordonatele cilindrice*, transformare definită de

$$\begin{cases} x = r \cos \theta, & r \in [r_1, r_2] \subseteq [0, +\infty], \\ y = r \sin \theta, & \theta \in [\theta_1, \theta_2] \subseteq [0, 2\pi], \\ z = z, & z \in [z_1, z_2] \subseteq \mathbb{R}. \end{cases}$$

În acest caz avem $\frac{D(x,y,z)}{D(r,\theta,z)}(r,\theta,z)=r$.

Exemplul precedent:

$$\iiint_D \sqrt{x^2 + y^2} dx dy dz,$$

unde $D=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2\leq z\leq 1,\,(x,y)\in\tilde{D}\}$ și $\tilde{D}=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\};$ folosind coordonatele cilindrice obținem

$$\iiint_{D} \sqrt{x^{2} + y^{2}} dx \, dy \, dz = \int_{0}^{1} \left(\int_{0}^{2\pi} \left(\int_{r}^{1} r dz \right) d\theta \right) r dr = 2\pi \int_{0}^{1} (1 - r) r^{2} dr = \frac{\pi}{6} r dr$$

Din nou, integrala triplă poate fi folosită pentru a calcula masa și centrul de greutate a unui corp material D, cu densitate de masă ρ , prin formulele

$$mass(D) = \iiint_D \rho(x, y, z) dx dy dz$$

și

$$\begin{split} x_G &= \frac{\int\!\!\int\!\!\int_D x \rho(x,y,z) dx \, dy \, dz}{\int\!\!\int\!\!\int_D \rho(x,y,z) dx \, dy \, dz}, \ y_G &= \frac{\int\!\!\int\!\!\int_D y \rho(x,y,z) dx \, dy \, dz}{\int\!\!\int\!\!\int_D \rho(x,y,z) dx \, dy \, dz}, \\ z_G &= \frac{\int\!\!\int\!\!\int_D z \rho(x,y,z) dx \, dy \, dz}{\int\!\!\int\!\!\int_D \rho(x,y,z) dx \, dy \, dz}. \end{split}$$

- 🔪 G. Apreutesei, N. A. Dumitru, *Introducere în teoria integrabilității*, Editura "Performantica", Iasi, 2005.
- D. Cioroboiu, A. Pitea, M. Postolache, Calcul integral, Editura "Fair Partners", București, 2010.
- 陯 T. de Cepeda, M. Delgado, *Calculus II, Unit 3: Integrals Depending on a* Parameter, Universidad Carlos III de Madrid, 2016.
- M. Gorunescu, F. Gorunescu, A. Prodan, *Matematici superioare. Biostatistică* și Informatică (Cap. 8), Editura Albastră, Cluj-Napoca, 2002.
- P. B. Iaval, *Improper Integrals*, Kennesaw State University, 2015.
- L. Larson, Introduction to Real Analysis, Univ of Louisville Publ., 2014.
- 陯 G. Mocică, *Probleme de funcții speciale*, Editura Didactică și Pedagogică, București, 1988.
- S. A. Popescu, Mathematical Analysis II. Integral Calculus, Conspress, Bucharest, 2011.
- 🦫 H. Tudor, *Analiză matematică*, Editura Albastră, Cluj-Napoca, 2008.