Взаимно-обратные функции

Пусть задана функция y = f(x), где каждое значение $x \in D(f)$.

Понятно, что каждому значению $x_0 \in D(f)$ соответствует единственное значение $y_0 = f(x_0)$ из области значений функции. Если мы по данному значению функции y_0 захотим найти соответствующее значение аргумента, нам придётся решить уравнение относительно x, то есть решить уравнение $f(x) = y_0$.

Понятно, что такое уравнение может иметь не одно, а несколько и даже бесконечно много решений. Решениями нашего уравнения являются абсциссы всех точек, в которых прямая $y=y_0$ пересекает график функции y=f(x).

Однако существуют такие функции, для которых уравнение $f(x) = y_0$ имеет единственное решение для каждого фиксированного значения y_0 . Такие функции называют *обратимыми*.

Запомните! Если функция y = f(x) принимает каждое своё значение только при одном значении x, то эту функцию называют **обратимой**.

Вот, например, рассмотрим две функции: y = 5x + 2 и $y = x^2$.

Функция y = 5x + 2 обратима, так как каждое значение y принимается при единственном значении аргумента x. Чтобы найти это значение, нам нужно решить уравнение y = 5x + 2 относительно x. Этим мы займёмся чуть позже.

Что касается функции $y=x^2$, то она не является обратимой, так как значения y принимает не при единственном значении аргумента x. Например, значение y=4 функция $y=x^2$ принимает при $x_1=2$; $x_2=-2$.

Итак, пусть y=f(x) — *обратимая функция*. В этом случае уравнение f(x)=y можно при любом $y\in E(f)$ однозначно разрешить относительно x, то есть каждому $y\in E(f)$ поставить в соответствие единственное $x\in D(f)$ такое, что f(x)=y. Это соответствие определяет функцию x от y. Обозначим эту функцию x=g(y). Но мы привыкли обозначать аргумент функции буквой x, а значения — буквой y. Перейдём к привычным для нас обозначениям. Для этого поменяем в этой записи местами x и y. Получим функцию y=g(x).

Функцию y = g(x) называют **обратной** к функции y = f(x). Давайте найдём функцию, обратную к функции y = 5x + 2.

<u>Решение</u>. Решим уравнение y = 5x + 2. Для этого 2 перенесём в левую часть уравнения.

$$y - 2 = 5x$$

Затем разделим обе части нашего уравнения на 5. Получим

$$\frac{1}{5}(y-2) = x$$

или, что то же самое,

$$x = \frac{1}{5}(y-2)$$

Теперь поменяем в нашем равенстве местами $^{\mathcal{X}}$ и $^{\mathcal{Y}}$. Получим

$$y = \frac{1}{5}(x-2)$$

Итак, функция $y = \frac{1}{5}(x-2)$ обратна к функции y = 5x + 2.

Сделаем вывод. Если *обратимая* функция y = f(x) задана формулой, то для нахождения *обратной* функции нужно решить уравнение f(x) = y относительно x, а затем поменять местами x и y.

Вернёмся к нашему примеру. Мы с вами показали, что функция $y=\frac{1}{5}(x-2)$ является обратной к функции y=5x+2. Обратите внимание: в свою очередь и функция y=5x+2 также будет являться обратной к функции $y=\frac{1}{5}(x-2)$. Такие функции называют *взаимно обратными*.

Сделаем вывод: если g(x) — функция, обратная к функции f(x), то и f(x) — функция, обратная к g(x), при этом область определения обратной функции совпадает со множеством значений исходной функции, а множество значений обратной функции совпадает с областью определения исходной функции. Это свойство, которое показывает, как связаны функция и обратная к ней.

Вы уже знаете, что функция называется **возрастающей** на некотором промежутке, если в этом промежутке большему значению аргумента соответствует большее значение функции. И функция называется **убывающей** в

некотором промежутке, если в этом промежутке большему значению аргумента соответствует меньшее значение функции. Чаще всего *возрастающие* и *убывающие* функции называют одним словом — монотонные.

Докажем **теорему**. *Монотонная* функция является *обратимой*.

Доказательство. Пусть функция y=f(x), например, возрастает и пусть y_0 — её значение в некоторой точке x_0 , то есть $y_0=f(x_0)$.

Тогда если $\mathbf{x} \in \mathbf{D}(f)$, то при $\mathbf{x} > \mathbf{x_0}$ выполняется неравенство $f(x) > f(x_0) = \mathbf{y_0}$, в свою очередь, при $\mathbf{x} < \mathbf{x_0}$ выполняется неравенство $f(x) < f(x_0) = \mathbf{y_0}$. Понятно, что значение $\mathbf{y_0}$ функция f(x) принимает только в одной точке $\mathbf{x_0}$, а значит, является обратимой.

Что и требовалось доказать.

Для убывающей функции доказательство проводится аналогично.

К примеру, рассмотрим функцию $y=x^5$. Эта функция возрастающая, значит, является **обратимой**. Не сложно догадаться, что обратной к ней будет функция $y=\sqrt[5]{x}$.

Из теоремы вытекает следующее **следствие**: если функция y = f(x) возрастает (убывает), то для неё существует обратная функция, и она возрастает (убывает) на множестве значений данной функции.

Другими словами, если функция y = f(x) возрастает, то понятно, что с увеличением x значения y также увеличиваются y увеличиваются y увеличиваются y увеличиваются y

Это означает, что обратная функция также возрастает.

И аналогично с убывающей функцией: если функция y = f(x) убывает, то **обратная** к ней функция также убывает.

Кстати, функция, не являющаяся **монотонной**, может не иметь обратной. Примером такой функции служит функция $y=x^2$. Мы с вами уже говорили, что эта функция не имеет **обратной**, если рассматривать её на всей числовой оси. Однако если мы с вами будем рассматривать функцию $y=x^2$ только при $x\geq 0$, то на промежутке $x=x^2$ она возрастает и, следовательно, имеет **обратную**. Функция $x=x^2$ при $x=x^$

Данный пример показывает, что некоторые функции *обратной* функции не имеют, если их рассматривать на всей области определения, и имеют *обратную* функцию, если область определения сузить. Часто в качестве сужения области определения берут интервал *монотонности* функции f(x).

А теперь давайте докажем ещё одну **теорему**. Если функция имеет *обратную*, то график *обратной функции* симметричен графику данной функции относительно прямой y=x.

<u>Доказательство</u>. Пусть некоторая точка с координатами $(x_0; y_0)$, принадлежит графику функции y = f(x), то есть $y_0 = f(x_0)$.

Из существования обратной функции следует, что $x_0 = g(y_0)$. Значит, точка с координатами $(y_0; x_0)$ принадлежит графику обратной

функции y=g(x). Следовательно, точки с координатами $(x_0;y_0)$ и $(y_0;x_0)$ симметричны относительно прямой y=x.

Что и требовалось доказать.

Хотелось бы обратить внимание, что и знакомая вам *степенная функция* $y=x^p$ с областью определения x>0 и $p\neq 0$ *обратима*, так как она *монотонна*. *Обратной* к *степенной* функции $y=x^p$ при x>0 и $p\neq 0$ яв ляется функция $y=x^p$.

А теперь давайте приступим к практической части нашего урока.

<u>Задание</u>. Найдите обратную функцию для функции $y = \frac{x-1}{3x+2}$.

<u>Решение</u>. Решим это уравнение относительно $^{\mathcal{X}}$.

$$\mathsf{MMeem}\,y(3x+2) = x-1$$

Затем перенесём слагаемое 3xy в правую часть уравнения, а $^{-1}$ – в левую. Вынесем общий множитель x за скобку. Заметим, что если выражение 1-3y=0, то есть $y=\frac{1}{3}$, то последнее соотношение превращается в неверное равенство. Значит, можем разделить обе части нашего уравнения на выражение 1-3y.

 $x=rac{2y+1}{1-3y}.$ Не забудем поменять x и y местами. Тогда функция $y=rac{2x+1}{1-3x}$ обратная к функции $y=rac{x-1}{3x+2}.$