Lesson 16. The Solow Growth Model

0 Warm up

Example 1.

Consider a function f(x) with df/dx > 0 and $df^2/dx^2 < 0$. Draw what the graph of y = f(x) might look like.

1 Overview

- The Solow growth model is an economic model of long-run economic growth
- This model attempts to explain long-run economic growth by looking at
 - o capital accumulation
 - o labor growth

2 The model

• Notation:

$$\circ$$
 $\dot{y} = dy/dt$ for any function $y(t)$

$$\circ f_u = \partial f/\partial u, f_{uu} = \partial^2 f/\partial u^2$$
 for any function $f(u, v)$

- Variables: K = capital, L = labor Q = output
- Parameters:

$$s$$
 = marginal propensity to save $(0 < s < 1)$
 λ = rate of growth of labor $(\lambda > 0)$

• Model:

$$Q = f(K, L) \quad (K, L > 0)$$

$$\dot{K} = sQ$$

$$\dot{L} = \lambda L$$

- Assumptions:
 - f is homogeneous: f(aK, aL) = af(K, L)
 - $f_K > 0$, $f_L > 0$: output is increasing in capital and labor
 - f_{KK} < 0, f_{LL} < 0: diminishing marginal output in capital and labor

3 Simplifying the model

• Define

$$\phi(k) = \frac{Q}{L}$$
 where $k = \frac{K}{L}$

• It's not too hard to show that

$$f_K > 0 \quad \Rightarrow \quad \frac{d\phi}{dk} > 0 \qquad \text{and} \qquad f_{KK} < 0 \quad \Rightarrow \quad \frac{d^2\phi}{dk^2} < 0$$

• By combining the definition of ϕ and the model equations, we obtain the differential equation

$$\dot{k} = s\phi(k) - \lambda k \tag{S}$$

• This is where we will start our analysis

4 Qualitative analysis

• To draw the phase line of (S), let's first draw the two individual terms on the RHS:

• Now let's use this information to draw the phase line:

• So there is an equilibrium $k = \bar{k}$ that is	
What does this mean economically?	
• At $k = \bar{k}$, we have $\dot{k} = 0$, or in words:	
• Therefore, in the long run, capital must grow at the same rate as labor	
• Recall that we defined $\phi(k) = Q/L$. So, at $k = \bar{k}$, we have also that $Q = L\phi(\bar{k})$	
 Therefore, in the long run, output must also grow at the same rate as labor 	
5 Quantitative analysis	
Example 2. Suppose the production function in the Solow growth model is $f(K, L) = K^{3/4}L^{1/4}$.	
a. Show that f is homogeneous: $f(aK, aL) = af(K, L)$. b. Find $\phi(k)$.	
c. Write the differential equation (S). Solve the equation for k . Hint. It is a Bernoulli equation! d. What does k converge to as $t \to \infty$?	