Data Exploration

Goal of Data Exploration

- Goal:
 - Understand the basic characteristics of the data
- Examples for characteristics:
 - Structure
 - Size
 - Completeness
 - Relationships

Descriptive Statistics

- Summarize data through single value
- Common statistics
 - Central tendency (mean/median/mode)
 - Variability (standard deviation, interquartile range)
 - Range of data (min/max)
- Other important statistics
 - Kurtosis and skewness for the shape of distributions

Kurtosis

skewness

skewness

Central Tendency

- Arithmetic mean
 - $mean(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$ with $x = (x_1, ..., x_n) \in \mathbb{R}^n$
- Median
 - The value that separates the higher half from the data of the lower half

- Mode
 - The value that appears most in the data

Variability

Measure for the spread of the data

- Standard deviation
 - Measure for the difference of observation to the arithmetic mean

•
$$sd(x) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - mean(x))^2}{n-1}}$$

- Interquartile Range (IQR)
 - Percentile: value below which a given percentage falls
 - Difference between the 75% percentile and the 25% percentile

percentile

- K-th percentile is x
 - K% of the values are less than x
 - (100 K) % of the values are larger than x

percentile

	25th PERCENTILE	50th PERCENTILE	75th PERCENTILE
EXAMPLE SALARY	\$100,000	\$115,000	\$135,000
WHAT IT MEANS	25% of companies surveyed are paying \$100,000 or less for this role (and the other 75% of companies are paying more than \$100,000)	50% of companies surveyed at paying \$115,000 or less for this role (and the other 50% of companies are paying more than \$115,000)	75% of companies surveyed at paying \$135,000 or less for this role (and the other 25% of companies are paying more than \$130,000)

Range of data

- Range for which values are observed
- Minimum: Smallest observed value
- Maximum: Largest observed value

- May be strongly distorted by invalid data
 - Makes it also a good tool to discover invalid data

Example

- Random typing on the keypad
- x = (1, 2, 1, 1, 3, 4, 5, 2, 3, 4, 5, 1, 3, 2, 1, 6, 5, 4, 9, 4, 3, 6, 1, 5, 6, 8, 4, 6, 5, 1, 3, 2, 1, 6, 8, 7, 6, 1, 3, 1, 6, 8, 4, 7, 6, 4, 3, 5, 4, 9, 7, 4, 3, 1, 4, 6, 8, 7, 9, 1, 4, 6, 1, 3, 8, 6, 7, 4, 9, 6, 5, 1, 3, 6, 8, 7)
- central tendency:
 - mean: 4.46052631579
 - median: 4.0
 - mode (count): 1 (14)
- variability
 - sd: 2.41944311488
- range
 - min: 1
 - max: 9

Visualization

- A Picture Says More than 1000 Words
- Processed faster than textual information
- Simplify complex information
- Show patterns
- Better long memrization (information retention)

Types of visualizations

Line plot

Sales

Heat Map

Arrival time delay Heatmap

Bar plots

Bar plots

Proportions

Proportions

Distributions

Distribution plot

Scatter Plot

Scatter Plot

Map plot

Roadmap for data exploration

- 1. Organize the data set
- 2. Find the central point for each attribute
- 3. Understand the spread of the data for each attribute
- 4. <u>Visualize the distribution of each attribute</u>
- 5. Watch out for outliers
- 6. Understanding the relationship between attributes
- 7. Visualize the relationship between attributes

Data preparation

Data pre-processing tasks

	Main Task	Subtasks	Popular Methods
	Data consolidation	Access and collect the data Select and filter the data Integrate and unify the data	SQL queries, software agents, Web services. Domain expertise, SQL queries, statistical tests. SQL queries, domain expertise, ontology-driven data mapping.
Data clear	Data cleaning	Handle missing values in the data Identify and reduce noise in the data	 Fill in missing values (imputations) with most appropriate values (mean, median, min/max, mode, etc.); recode the missing values with a constant such as "NA"; remove the record of the missing value; do nothing. Identify the outliers in data with simple statistical techniques (such as averages and standard deviations) or with cluster analysis; once identified, either remove the outliers or smooth them by using binning, regression, or simple averages.
		Find and eliminate erroneous data	Identify the erroneous values in data (other than outliers), such as odd values, inconsistent class labels, odd distributions; once identified, use domain expertise to correct the values or remove the records holding the erroneous values.

Data pre-processing tasks

Main Task	Subtasks	Popular Methods
Data transformation	Normalize the data	Reduce the range of values in each numerically valued variable to a standard range (e.g., 0 to 1 or -1 to $+1$) by using a variety of normalization or scaling techniques.
	Discretize or aggregate the data If needed, convert the numeric variables into discrete representation range- or frequency-based binning techniques; for categorical variation reduce the number of values by applying proper concept hierarchies.	
	Construct new attributes	Derive new and more informative variables from the existing ones using a wide range of mathematical functions (as simple as addition and multiplication or as complex as a hybrid combination of log transformations).
	Reduce number of attributes	Use principal component analysis, independent component analysis, chi- square testing, correlation analysis, and decision tree induction.
Data reduction	Reduce number of records	Perform random sampling, stratified sampling, expert-knowledge-driven purposeful sampling.
	Balance skewed data	Oversample the less represented or undersample the more represented classes.

Summary

Important to understand the data available

- Summary statistics provide a good overview
 - Can be deceptive!
- Visualization is a powerful way to understand data

• <u>Data prerpration tasks</u> is important because real-world data is not clean and ordered