Software-Project Scientific Computing

Frank Noé frank.noe@fu-berlin.de

Learning Aims

- Learned to conduct a scientific software development project
- Be able to acquired information of the numerical methods to be implemented
- Understand a few important algorithms for analyzing highdimensional scientific data
- Collaborate in a small group (<10)
- Be familiar with:
 - source code repository management, public development platform, source code testing, continuous integration
- Have a rough idea of software architecture design
- Improve programming skills, in particular python, C(++), CUDA.

Rules

- If you are in, stay in.
- We are one team, everyone helps the others
- The project is finished when the features are functional, or at the end of the semester. We all finish together.
- Nobody does something and then leans back for the second half of the semester.
- If you are done with something, regroup
- Everyone has to present and contribute

- discretize data without suffering from curse of dimensions
- works well in a few dimensions (typically <10)

Time t [s]

b)

Data processing algorithms

2. k-means clustering

- discretize data without suffering from curse of dimensions
- works well in a few dimensions (typically <10)

Data processing algorithms

1. time-lagged independent component analysis

Pipeline:

high-dimensional data stream

Application: molecular dynamics

Our software library: EMMA

source code repository: git

Git Data Transport Commands

http://osteele.com

You'll need a repository whenever you are not working alone. But even when you work alone it has many advantages.

public development site: www.github.com

- Github offers you free git repositories, combined with issue management and other features in a nice website.
- "Github is like facebook for coding"

software design / continuous integration

software design / continuous integration

software design / continuous integration

Meetings

Suggestion: Every two weeks, roughly for 2 hours

Assignments for next meeting (Oct 31st)

- All: Decide if you are in!
- Form teams: TICA (2+), k-means (2+), HMM (3+)
- Every team should have at least one person designing and implementing tests
- Every team should have one representative
- Elect one or two project leaders.
- Project leader(s) are github administrators and create a repository
- I upload three papers to the repository (theory)
- Make sure all project members can communicate and get technical help from others (mailing list)
- All: Get github accounts, make sure you have push+pull rights in the project
- Read and understand theory
- Whenever possible, start with python prototypes (you can use any availble code or package for the prototype!)