QUESTIONNAIRES AND BEYOND: THE RASCH MODEL

Ottavia M. Epifania
ottavia.epifania@unipd.it
University of Padova
Catholic University of the Sacred Heart

September 28th 2022, Padova

XXX Conference of the Italian Association of Psychology (AIP)

- The intuition
- The model
- Wait...
- Why is it useful?
- Closing time

0

 A_{Lisa}

Q1

 d_{q1}

 A_{Bart}

Q2

$$\frac{3}{2}x^2 + \frac{5}{4}x = 0$$

$$d_{q2}$$

 A_{Lisa}

Q1

$$4 + 5 = ?$$
 d_{q1}

 A_{Bart}

$$rac{A_p}{d_i}$$
 (1)
 $> 1 ext{ if } A_p > d_i$
 $< 1 ext{ if } A_p < d_i$

Q2

$$\frac{3}{2}x^2 + \frac{5}{4}x = ?$$

$$d_{q2}$$

 A_{Lisa}

$$P(X_{pi} = 1) = \frac{\frac{A_p}{d_i}}{1 + \frac{A_p}{d_i}}$$
 (2)

- The intuition
- 2 The model
- Wait...
- 4 Why is it useful?
- 6 Closing time

$$ln(A_p) = \beta_p$$
 $ln(d_i) = \delta_i$

$$P(X_{pi} = 1 | \beta_p, \delta_i) = \frac{\exp(\beta_p - \delta_i)}{1 + \exp(\beta_p - \delta_i)}$$
(3)

- Wait...

* Eureka moment *

Generalized Linear Model (GLM) binomially distributed responses

Generalized Linear Model (GLM) binomially distributed responses

$$\mu_{pi} = g(\eta_{pi}) = log\left(\frac{\mu_{pi}}{1 - \mu_{pi}}\right)$$

Generalized Linear Model (GLM) binomially distributed responses

$$\mu_{pi} = g(\eta_{pi}) = log\left(\frac{\mu_{pi}}{1 - \mu_{pi}}\right)$$

$$g^{-1} = \frac{exp(\eta_{pi})}{1 + exp(\eta_{pi})}$$

- The intuition
- The model
- Wait...
- 4 Why is it useful?
- Closing time

Issue

Quite limiting in Psychological Research

Issue

Quite limiting in Psychological Research

(Generalized) Linear Model: "Any" kind of response

Issue

Quite limiting in Psychological Research

(Generalized) Linear Model: "Any" kind of response

e.g.: Response times

log-transformation and log-normal model parametrization

Linearity of the scores

Logarithm transformation \rightarrow Respondents and items on the same latent trait

- Comparison invariance
 - Respondents can be compared between each other without considering the items....and vice versa!
- Local independence

Given the person \rightarrow The responses to the items are independent

Unidimensionality

Linearity of the scores

Logarithm transformation \rightarrow Respondents and items on the same latent trait

Comparison invariance

Respondents can be compared between each other without considering the items....and vice versa!

Local independence

Given the person \rightarrow The responses to the items are independent

Rasch model

Generalized Linear Model

Local independence

Rasch model

- Can't be applied
- The estimates would make no sense

Generalized Linear Model

- Add the random part (Go Mixed)
- Obtain a Rasch-like parametrization of the data

- The intuition
- The mode
- Wait...
- Why is it useful?
- **6** Closing time

Think outside of the box!

Yes

Rasch estimates
The sky is the limit
Keep it maximal

But

Rasch-like parametrization

Don't over complicate things

Keep it minimal

Think outside of the box!

Yes

Rasch estimates
The sky is the limit
Keep it maximal

But

Rasch-like parametrization

Don't over complicate things

Keep it minimal

Thank you

Questions!

https://ottaviae.github.io/AIP2022/Rasch/epifaniaRasch.pdf