

Bluetooth Low Energy Ranging by Multi-Carrier Phase Difference

Jayson Van Marter
Josiah Smith

5/5/2021

Bluetooth Low Energy (BLE) Ranging: Background and Motivations

Background:

- GPS does not work well indoors and has accuracy on the order of 3 meters.
- Accurate estimation of distance between low energy devices has increased in interest for many applications with the emergence of the Internet-of-Things (IoT).
- Most existing indoor positioning systems use Wi-Fi standards and are not low power. In addition, Wi-Fi positioning approaches often require more than one access point for accurate localization through trilateration (802.11az).

➤ <u>Motivations</u>:

- Location-based targeted promotions for retail
- Geo-fencing buildings and parking structures
- Residential room occupancy detection
- Digital car key ranging

Multi-Carrier Phase Difference (MCPD) Ranging

$$H_{2W}(f_k) = H_r(f_k)H_i(f_k) = \alpha e^{-j4\pi f_k \tau}$$

Recover time of flight τ from $H_{2W}(f_k)$, and estimate distance as $r = \tau \times c_0$.

Key Fourier Transform Property: $\delta(t-\tau) \leftrightarrow e^{-j2\pi f\tau}$

Multipath Considerations

Two-Way Signal Model For Two Paths:

$$H_{2W}(f_k) = \left(\alpha_1 e^{-j2\pi f_k \left(\frac{r_1}{c_0}\right)} + \alpha_2 e^{-j2\pi f_k \left(\frac{r_2}{c_0}\right)}\right)^2$$

$$= \alpha_1^2 e^{-j2\pi f_k \left(\frac{2r_1}{c_0}\right)} + \alpha_1 \alpha_2 e^{-j2\pi f_k \left(\frac{r_1+r_2}{c_0}\right)} + \alpha_2^2 e^{-j2\pi f_k \left(\frac{2r_2}{c_0}\right)}$$

Recovering the LOS distance r_1 from $H_{2W}(f_k)$ requires the use of spectral estimation techniques. One of the most well-known techniques is MUltiple SIgnal Classification (MUSIC) [2].

MCPD Timeline

The channel measurement timeline across frequencies f_k can be defined as the above figure where T_o is the intra-delay, T_r is the inter-delay, T_f is the total delay per channel measurement, and $\tau = \frac{r}{c_0}$ is the propagation delay related to distance. Max number of channels is $K_f = 78$ for BLE with 1 MHz channel spacing.

Crystal Offset

➤ The crystal in a BLE device is typically used for both LO (local oscillator) and clock-generation (sampling frequency).

The actual frequencies and timing will scale by a factor of $(1 + \eta)$ where η is the crystal offset, typically expressed in part-per-million (ppm or 10^{-6}).

➤ For BLE devices, the crystal offset can be assumed to be at most ±20 ppm and varies per device.

Errors Due to Delay and Crystal Offset

Define the phase measured at the reflector and initiator respectively as

$$\phi_R(f_k, r) = -2\pi f_k^r \left(\frac{r}{c_0} - \Delta_t\right) - \theta$$

And

$$\phi_I(f_k, r) = -2\pi f_k^i \left(\frac{r}{c_0} + \Delta_t\right) + \theta$$

Where the frequencies and measurement timings defined as

$$f_k^i = (1 + \eta_i) f_k$$

$$f_k^r = (1 + \eta_r) f_k$$

$$\Delta_t = T_k^i - T_k^r$$

$$T_k^r = (1 + \eta_r) t_k$$

$$T_k^i = (1 + \eta_i) (t_k + T_0)$$

With T_o being the time difference at which measurement is taken at the initiator and reflector.

Errors Due to Delay and Crystal Offset

Add the initiator and reflector phase responses to obtain

$$\phi_{2W}(f_k, r) = -2\pi \left(f_k^i + f_k^r\right) \frac{r}{c_0} + 2\pi \left(f_k^i - f_k^r\right) \left(T_k^r - T_k^i\right)$$

and define $r = -\frac{c_0}{4\pi\Delta_f} \frac{\phi_{2W}(f_{K_f},r) - \phi_{2W}(f_0,r)}{K_f-1}$ as the LOS distance for K_f BLE channels with frequency spacing Δ_f .

 \triangleright Compute the error with respect to the estimated distance \tilde{r} as

$$e_r = \tilde{r} - r = -\frac{c_0}{2} (\eta_r - \eta_i)^2 \left(\frac{f_o}{\Delta_f} + K_f \right) T_f - \frac{c_0}{2} (1 + \eta_i) (\eta_i - \eta_r) T_o$$

$$\approx -\frac{c_0}{2} (1 + \eta_i) (\eta_i - \eta_r) T_o$$

$$\approx -\frac{c_0}{2} (\eta_i - \eta_r) T_o$$

The e_r approximations are made since the second term with respect to T_o dominates and $(1 + \eta_i) \approx 1$.

Doppler Effect for Mobility

> The effect of mobility is to shift the received carrier frequency as

$$f_r = \left(1 + \frac{\Delta_v}{c_0 + v_t}\right) f_t \approx \left(1 + \frac{\Delta_v}{c_0}\right) f_t$$

where Δ_v is the difference between the velocity of the receiver v_r and the velocity of the transmitter v_t , c_o is the propagation speed (speed of light), and f_t is the transmitted carrier frequency.

> The Doppler frequency shift can then be represented as

$$f_d = \frac{f_t}{c_0} \Delta_v = \frac{\Delta_v}{\lambda_t}$$

Effect of Mobility for BLE MCPD Ranging

> The Doppler frequency adds to the carrier frequencies as

$$\hat{f}_k^i = (1 + \eta_i) f_k + f_{d,k}^i$$
 (where $f_{d,k}^i = \frac{f_k^r}{c_0} (v_i - v_r)$)

and

$$\hat{f}_k^r = (1 + \eta_r) f_k + f_{d,k}^r$$
 (where $f_{d,k}^r = \frac{f_k^i}{c_0} (v_r - v_i)$)

where v_i and v_r are the velocities of the initiator and reflector respectively.

Without crystal offset, the frequency offsets due to mobility cancel due to the sign change in $\Delta_v = v_i - v_r$ between initiator and reflector.

Effect of Mobility for BLE MCPD Ranging

 \triangleright Including the frequency offset due to mobility with the previous derivation for e_r , the error due to crystal offset, we obtain the following new result

$$\begin{split} \hat{e}_r &= \tilde{r} - r \\ &= -\frac{c_0}{2\Delta_f} \Big[(\eta_r - \eta_i)^2 \big(f_o + K_f \Delta_f \big) - \Big(f_{d,K_f}^i - f_{d,K_f}^r \Big) (\eta_r - \eta_i) \Big] T_f \\ &- \frac{c_0}{2} \Big[(1 + \eta_i)(\eta_i - \eta_r) - \frac{1}{2} \big((1 + \eta_i)^2 + (1 + \eta_i)(1 + \eta_r) \big) (v_i - v_r) \Big] T_o \end{split}$$

➤ The new terms are added due to mobility. For practical values for BLE, the error due to mobility is on the order of <1 cm.

Simulation: Effect of Crystal Offset and Mobility on Ranging Error

To illustrate the effect of crystal offset and mobility on ranging error (bias), we evaluate the following four cases:

Case	T_{o}	T_r	$\Delta_v = v_i - v_r$	$\epsilon = \eta_i - \eta_r$
1	0 to 1 ms	0	0	-10 ppm
2	1 ms	0 to 1 ms	0	-10 ppm
3	1 ms	1 ms	0 to 30 m/s	-10 ppm
4	1 ms	1 ms	30 m/s	0 to -10 ppm

Where $T_f = T_o + T_r$, the total channel measurement delay, is the sum of the intra- and inter-delay respectively.

The errors are most sensitive to intra-delay (T_o) and crystal offsets (ϵ) , while being relatively insensitive to inter-delay (T_r) and mobility (Δ_v) .

Fourier Transform-Based Distance Estimation

> The Fourier transform approach can be expressed as

$$h_{2W}(n) = \sum_{k=0}^{K-1} H_{2W}(f_k) e^{-j\frac{2\pi}{K}kn}$$

where $-\pi \le n < \pi$ with spacing of $2\pi/K$, and the set of distance estimates is $d = -\frac{n \times c_0}{2\pi \Delta_f}$. The estimated LOS distance is then the peak in $h_{2W}(n)$ with lowest distance d.

> The Fourier transform approach has low complexity (can be implemented as FFT) but suffers from lack of resolution between two paths with similar distances.

MUSIC-Based Distance Estimation

For MUSIC-based distance estimation, first define the smoothed sample correlation matrix as

$$\widehat{\mathbf{R}}_{xx} = \frac{1}{M} \sum_{k=1}^{M-1} \mathbf{x}(k) \mathbf{x}(k)^{H}$$

where $\mathbf{x}(k) = [x(k) \cdots x(k+L-1)]^T$ is a subarray of the received noisy channel frequency response (CFR) measurements and M = N - L + 1 where N is the CFR snapshot length and L is the smoothing subarray size.

- ightharpoonup Define the noise eigenvectors of $\widehat{\mathbf{R}}_{xx}$ as \mathbf{q}_i , $L_p \leq i \leq L-1$ where L_p is the number of signal paths.
- Poefine the steering vectors as $\mathbf{v}(\tau_i) = \begin{bmatrix} 1 & e^{-j2\pi\Delta_f\tau_i} & \dots & e^{-j2\pi(L-1)\Delta_f\tau_i} \end{bmatrix}^T$ where the set of τ_i defines the set of MUSIC search delays $(\tau_i = \frac{r_i}{c_0})$ and Δ_f is the frequency measurement spacing (1 or 2 MHz for BLE).

MUSIC-Based Distance Estimation

> The MUSIC pseudospectrum is then calculated as

$$S_{MUSIC}(\tau) = \frac{1}{\sum_{i=L_p}^{L-1} \left| \mathbf{q}_i^H \mathbf{v}(\tau) \right|^2} = \frac{1}{\| \mathbf{Q}_w^H \mathbf{v}(\tau) \|^2}$$

where $\mathbf{Q}_w = [\mathbf{q}_{L_p} \quad \mathbf{q}_{L_p+1} \quad \cdots \quad \mathbf{q}_{L-1}]$ is the matrix of noise eigenvectors. The estimated LOS distance is $r_1 = \tau_1 \times c_0$ where τ_1 is the smallest delay with a peak in $S_{MUSIC}(\tau)$.

It has been well-studied that the estimated correlation matrix $\hat{\mathbf{R}}_{xx}$ can be improved using a forward-backward approach [3]. The forward-backward correlation matrix is calculated as

$$\widehat{\mathbf{R}}_{\chi\chi}^{(FB)} = \frac{1}{2} (\widehat{\mathbf{R}}_{\chi\chi} + \mathbf{J} \widehat{\mathbf{R}}_{\chi\chi}^* \mathbf{J})$$

Where the superscript * denotes conjugate and J is the $L \times L$ reversal matrix whose antidiagonal is all ones with zeros everywhere else.

Simulation: FFT vs. MUSIC Distance Estimation

Simulated multi-path distances are 2 m and 6.5 m with equal attenuation. The two-way distances are then 4 m, 8.5 m, and 13 m as indicated by example iterations in the figure.

SNR = 15 dB over 1000 Iterations

Method	LOS Est. (m)	STD (m)	Mean Error (m)	RMSE (m)
FFT	1.642	0.026	-0.358	0.359
MUSIC	2.091	0.335	0.091	0.347

SNR = 25 dB over 1000 Iterations

Method	LOS Est. (m)	STD (m)	Mean Error (m)	RMSE (m)
FFT	1.642	0.009	-0.358	0.358
MUSIC	2.002	0.066	0.002	0.066

Residual Learning for Improved BLE Ranging

- Preliminaries of Residual Learning [4]
 - Additive Noise Model

$$z = y + n$$

o Goal: train a deep learning network (DNN) to predict the noise, e.g., $\hat{n} \approx n$, to improve SNR

$$\widehat{y} \approx z - \widehat{n}$$

- ➤ Two-Way BLE Channel Frequency Response (CFR)
 - Element-wise multiplication of *Initiator* and *Reflector* CFR (⊙)

$$\mathbf{s}_{2W} = (\mathbf{s}_R + \mathbf{n}_R) \odot (\mathbf{s}_I + \mathbf{n}_I)$$

$$= \mathbf{s}_R \odot \mathbf{s}_I + (\mathbf{s}_R \odot \mathbf{n}_I + \mathbf{s}_I \odot \mathbf{n}_R + \mathbf{n}_R \odot \mathbf{n}_I)$$

$$\psi$$

o Estimate the noiseless CFR by $\widehat{m{\psi}} = m{s}_{2W} - \widehat{m{\eta}}$

Steps:

- 1. Estimate $\widehat{\boldsymbol{\psi}}$
- 2. Subtract from CFR
- 3. Improve SNR

DNN Architecture – Fully Convolutional Neural Network

Fully convolutional neural network (FCNN): input and output of network are identical in size, Θ – parameters.

$$\widehat{\boldsymbol{\eta}} = \mathcal{F}(\boldsymbol{s}_{2W}, \boldsymbol{\Theta})$$

- Convolution layers
 - Zero-padding to preserve input size
 - Varying kernel size and decreasing number of layers
 - Alternating activation functions between ReLU and tanh
- > RMSE regression, Adam optimizer

$$\mathcal{L}(\mathbf{\Theta}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} ||\boldsymbol{\eta}_i - \widehat{\boldsymbol{\eta}}_i||^2}$$
$$\mathbf{\Theta} = \arg\min \mathcal{L}(\mathbf{\Theta})$$

Residual DNN Demonstration

- 1. Direct MUSIC on noisy CFR
 - Missing LOS peak!
- 2. Ground Truth
 - Noiseless
 - Three ideal peaks
- 3. Noise-Subtracted
 - Predicted noise subtracted from noisy CFR
 - Higher SNR than 1
 - LOS peak is recovered!

Comparison vs Classical MUSIC Algorithm

Train 2 Networks Offline

- MUSIC-A-DNN: trained with AWGN fixed channel fading data
- 2. MUSIC-AR-DNN: trained with AWGN Rayleigh fading data

Test on both AWGN fixed and Rayleigh fading data

- Two-tap multi-path scenario
- ➤ 160 scenarios from 10 m 18 m, step size 5 cm
 - Each scenario repeated 20 times with new noise/channel
- Compare empirical CDF of ranging error over all 3200 samples

Comparison vs Classical MUSIC Algorithm – CDF

Fixed Fading Data

Rayleigh Fading Data

Comments

- Residual learning technique improves SNR
 - LOS peak is recovered more often than with traditional MUSIC
- Drawbacks:
 - Network must be retrained for various scenarios
 - Offline training time and online latency (~10 ms)
- Lower performance gain from MUSIC-AR-DNN than MUSIC-A-DNN
 - o Residual learning does not address the impact of Rayleigh channel, only additive noise
 - SNR is still improved, but LOS may be lost
 - Alternative method (classical or deep learning) may yield better results for Rayleigh channel
 - Calls for further research into DNNs for sinusoidal-structured data
- Further investigation is likely to yield better results

Conclusions

- Investigated error introduced by crystal offset and timing errors
- Extended work of [1] by deriving analytical expression for ranging error due to mobility
 - For pedestrian velocities less than 3 m/s, error is less than 1 cm
- Considered multi-path and Rayleigh fading channel
- Introduced FFT and MUSIC spectral estimators for ranging
 - MUSIC has higher resolution, but requires high SNR
- Improved BLE ranging with residual learning technique
 - Novel residual learning framework specific to BLE ranging
 - FCNN architecture to estimate the noise for a given two-way CFR
 - Reduced average ranging error compared to direct MUSIC approach

References

- [1] P. Zand, J. Romme, J. Govers, F. Pasveer and G. Dolmans, "A high-accuracy phase-based ranging solution with Bluetooth Low Energy (BLE)," 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019, pp. 1-8, doi: 10.1109/WCNC.2019.8885791.
- [2] Xinrong Li and K. Pahlavan, "Super-resolution TOA estimation with diversity for indoor geolocation," in IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 224-234, Jan. 2004, doi: 10.1109/TWC.2003.819035.
- [3] P. Stoica and R. L. Moses, Spectral Analysis of Signals. Pear-son/Prentice Hall, 2005.
- [4] Y. Jiang, H. Li and M. Rangaswamy, "Deep learning denoising based line spectral estimation," in IEEE Signal Processing Letters, vol. 26, no. 11, pp. 1573-1577, Nov. 2019, doi: 10.1109/LSP.2019.2939049.

Backup Slides