Best Team Ever

•••

Zillow Kaggle Competition

Patrick Masi-Phelps | Katie Critelli Ningxi Xu | John Merrick

EDA: Visualization of Missingness

Missingness Plot

storytypeid basementsgift flreplaceflage fraistyletypeid decktypeid decktypeid decktypeid decktypeid decktypeid decktypeid decktypeid decktypeid sollypeid to pooltypeid the pooltypeid flreplacecnt unterbathnbr pooltypeid pooltypeid pooltypeid flreplacecnt unterbathnbr pooltypeid poolty

EDA: Correlation of Numeric Variables

EDA: Tableplot Visualizations

Predictor values sorted by logerror

EDA: Tableplot Visualizations

• Predictor values sorted by logerror

Data Cleaning and Imputation

Data Cleaning and Imputation

- Does the property contain the item classified by the variable?
 - Assumed NA means this property does not contain the item: imputed NAs with 0
 - Taxdelinquencyyear, taxdelinquencyflag, lotsizesquarefeet, fireplacecnt, garagecarcnt, garagetotalsqft, poolcnt, pooltypeid7, pooltypeid2, poolsizesum, basementsqft, threequarterbathnbr, hashottuborspa
 - Imputed heatingorsystemtypeid with 13 and airconditioningtypeid with 5 (equivalent to none)
- Reason for NA is unknown: imputed with -1 per Shu's lecture code
 - Preserving any reasons for missingness that could be inherent in these particular observations
 - Unitcnt, bedroomcnt, bathroomcnt, fullbathcnt, buildingqualitytypeid, numberofstories, yearbuilt
- Other methods
 - Calculatedfinishedsquarefeet: mean imputation
 - Dropped other floor space area variables as redundant/overly missing
 - Region variables: random imputation
 - Small number of missing data points

Data Cleaning and Imputation

- Missing tax building and land assessment values
 - Examine property taxes paid
 - 23,887/23,902 observations had zero bathrooms and zero bedrooms (not missing)
 - Likely no building
 - Divide property taxes paid by median property tax rate (across all properties)
 - Impute this value for land assessment value
 - Impute zero for building assessment value
 - For properties with no taxation values
 - Impute average building and land assessment values
 - Group by zip code, num bed, num bath

Data Transformations

Normal Curve Fitted to 'Structuretaxvaluedollarcnt'

Dollar Count (X^1/3)

Oe+00 Ze+06 4e+06 5e+06 8e+06 1e+07

Data Transformations

Flexible technique

- Measured skewness of each variable
- Found a constant C for which the skewness of the transformed function, log(X + C), was minimized

Models

GLM process trial and error

- Fitting lrl: logerror ~ bathroomcnt + bedroomcnt + buildingqualitytypeid + calculatedfinishedsquarefeet + fireplacecnt + fullbathcnt + garagecarcnt + lotsizesquarefeet + poolcnt + taxdelinquencyflag + structuretaxvaluedollarcnt + unitcnt + yearbuilt, numberofstories + landtaxvaluedollarcnt
 - Result: poor predictive power and several features with high VIFs
 (including garagecarcnt, poolcnt, etc)
- Remedy #1: Fit lr2, leaving out features with both high VIFs and high p-values
 - Result: R-squared still low, violated linear model assumptions (see selected graphs)
- Remedy #2: Fit lr3, discarding additional features likely to be multicollinear with others

OLS to GLM with coefficient shrinkage

- R-squared still extremely low in lr3 after dropping majority of features (0.002606):
 - OLS likely not optimal model, because linear model assumptions all appeared to be in violation
 - P-value of F-test and all VIFs are significant
 - We do not believe that there is a legitimate linear relationship between logerror and variables
- As a result, we **fit a GLM model with regularization**
 - Fit 100 ridge and lasso models to improve model accuracy
 - Used lambda that yielded the lowest MSE
 - Reduced features used to only 6
 - Significant shrinkage in coefficients

Multiple Linear Regression with Regularization

Backward AIC Results Summary

Coefficients:

Residual standard error: 0.9992 on 90268 degrees of freedom Multiple R-squared: 0.001577, Adjusted R-squared: 0.001511 F-statistic: 23.76 on 6 and 90268 DF, p-value: < 2.2e-16

Ridge and Lasso Regression Plots

- Lasso Regression Variable Importance (lambda = .2595)
 - calculatedfinishedsquarefeet
 - o bathrooment
 - bedrooment
 - o landtaxvaluedollarcnt
 - lotsizesquarefeet

Principal Components Regression in Python

• Preparation for PCA

- Scaled and centered all numeric predictors
- LinearRegression in Scikitlearn: plotted change in MSE with each added component
- Smallest MSE at ~17 components
- Calculated cumulative variance explained by each added component
- Trained regression model on training subset
- Predicted logerror on test subset
- Overall MSE of 1.02

Random Forest: Regression Trees

- Key tuning parameters
 - Number of randomly sampled variables considered at each split: mtry = variables/3
 - Number of trees to grow: ntree = 500
 - Minimal size of terminal nodes: nodesize = 5
 - Maximum terminal nodes (maxnodes): if not limited by nodesize, will grow to max value

• Variable selection

- Tested with all variables and gradually narrowed, eliminating less important variables
- Broad model performed best
- Tuning and cross validation
 - Sampled 10%-25% of data set for initial broad grid searches and cross validation
 - High computational complexity of random forest calculations
 - Efficiently narrow down the search for optimal parameters
 - 75%/25% training/test split for precise model tuning

Random Forest: Regression Trees

• Optimal parameters

- Number of variables considered at each split: 2
- Number of trees: 1000
- Minimal terminal node size: 12 observations

Takeaways

- Kaggle scoring: final RF model is worse than basic two-variable MLR!
 - MLR (logerror~yearbuilt+calculatedfinishedsquarefeet): 0.0651 MAE
 - RF: 0.0658 MAE
- Problem in the model, or reflecting the challenges inherent in trying to predict this particular dependent variable/scoring metric?
- Random forest model useful for assessing variable importance

Variable Importance - Random Forest

full_model

Variable Importance - Gradient Boosting

Gradient Boosting Regressor

Numeric variables

Bathrooment, Bedrooment,
 Calculatedfinishedsquarefeet,
 Fireplaceent, Fullbathent, Garagecarent,
 Latitude, Longitude, Lotsizesquarefeet,
 Poolent, Yearbuilt, Numberofstories,
 Structuretaxvaluedollarent,
 Landtaxvaluedollarent

Categorical variables

Airconditioningtypeid,
 Propertylandusetypeid,
 Heatingorsystemtypeid, Regionidcounty,
 Buildingqualitytypeid, Unitcnt

• Tuning and cross validation

 Used 5-fold grid search CV to minimize mean absolute error

Optimal hyperparameters

- Learning rate: .06
- Maximum features per split: 11
- Minimum samples split: 600
- o Subsample: .85
- o Max_depth: 11
- Min samples per leaf: 30
- Number of estimators: 40

• 80/20 train/test split

Mean Absolute Error: 0.0516168

XGBoost

Variables - same as sklearn gradient boosting regressor (previous slide)

prior tree

- Regularization, tuning and cross validation
 - Used 5-fold grid search CV to minimize mean absolute error
 - \circ Ridge (MAE = .052879) chosen over Lasso (MAE = .052996) or Elasticnet (α = .5) (MAE = .053169)

• Optimal hyperparameters

- Learning rate: .06
- Column sample by tree: .7
- o Max_depth: 7
- o Min child weight: 1
- Number estimators: 1000
- o Subsample: .85
- Reg alpha: 0
- Reg lambda: 1 (Ridge)
- 80/20 train/test split
 - Mean Absolute Error: 0.0528799

Underneath the hood

Complexity

 λ = 1 asserts L2 Ridge regression. L1 Lasso and

ElasticNet are alternative

penalty function

Regularized Objective Function (one example)

Loss/error function $\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f_k)$ where $\Omega(f) = \gamma T + \frac{1}{2} \lambda \|w\|^2$ "Weak learning" trees incorporate estimates from the

$$\mathcal{L}^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y_i}^{(t-1)}) + f_t(\mathbf{x}_i)) + \Omega(f_t)$$

Boosted Models: Logerror Distributions

K-Nearest Neighbors

Tuning and cross validation

 Used 10-fold CV to minimize mean absolute error across K from 1-50

K-Nearest Neighbors

- Optimal hyperparameters:
 - Weights: uniform (rather than distance)
 - K-Neighbors: 10 (near elbow)
 - \circ R²: .1144
 - Mean Absolute Error: 0.0566785

- Run time on training/test data set (~90,000 rows): ~ 10 minutes
- Run time on full properties data set (~3,000,000 rows): unknown (7+ hours)
- Has potential to be a predictive model difficult to scale more processing needed

Model Stacking - Kaggle Submission

Our stacked model took the average logerror prediction across all models (equal weighting) for each property in the specified months.

Public Kaggle MAE: 0.0646177 - Rank #774

Any Questions?

Appendix: Hierarchical Linear Model

- Feature importance plots suggest that location variables are important
- HLM can highlight in-subgroup variation that is otherwise obscured
 - Treated regionidcity as the level-one subgroup
 - Coefficient of each regionidcity value was used as random variable to estimate a new linear model
 - Selected most important variables using random forest feature importance plot
 - logerror ~ 1 + structuretaxvaluedollarcnt + landtaxvaluedollarcnt +
 calculatedfinishedsquarefeet + lotsizesquarefeet + bedroomcnt + longitude + latitude
 - groups = train['propertycountylandusecode']
- Didn't perform well independently (MAE of 0.0660), but improved the performance of the stacked Kaggle submission