### Chapters 10

### Other Public-Key Cryptosystems

Dr. Shin-Ming Cheng

CON ECTIFITY LAB

CS4003701

#### Discrete Logarithm Problem

- › Diffie-Hellman Key Exchange
- > The Discrete Logarithm Problem
- > Security of the Diffie-Hellman Key Exchange
- > The Elgamal Encryption Scheme



#### Diffie-Hellman Key Exchange: Overview

- > Proposed in 1976 by Whitfield Diffie and Martin Hellman
  - Invented public-key cryptography
  - W. Diffie and M. E. Hellman, "New Directions in Cryptography", *IEEE Transactions on Information Theory*, vol. IT-22, Nov. 1976, pp. 644-654
  - Widely used, in Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol Security (IPSec)
- The Diffie-Hellman Key Exchange (DHKE) is a key exchange protocol and not used for encryption
  - For the purpose of encryption based on the DHKE, ElGamal can be used.

### Diffie-Hellman Key Exchange: Setup

- > Choose a large prime p
- > Choose an integer  $\alpha$  ∈ {2,3, ..., p − 2}
- $\rightarrow$  Publish p and  $\alpha$
- > Discrete Logarithm/離散對數 Problem
  - Given p,  $\alpha$ , and  $A(=\alpha^a)$ , how to compute a
  - It's hard when p is large
- > Diffie-Hellman Problem
  - Given p,  $\alpha$ ,  $A(=\alpha^a)$ , and  $B(=\alpha^b)$ , how to compute  $\alpha^{ab}$

### Diffie-Hellman Key Exchange

#### Alice

Choose random private key

$$k_{prA} = a \in \{1, 2, ..., p - 1\}$$

Compute corresponding public key

$$k_{pubA} = A = \alpha^a \mod p$$

Α

В

Compute correspondig public key  $k_{pubB} = B = a^b \mod p$ 

Bob

Choose random private key

 $k_{prB} = b \in \{1, 2, ..., p - 1\}$ 

Compute common secret

$$k_{AB} = A^b = (\alpha^b)^a \mod p$$

We can now use the joint key  $k_{AB}$  for encryption, e.g., with AES

Compute common secret

 $k_{AB} = B^a = (\alpha^a)^b \mod p$ 

$$y = AES_{k_{AB}}(x)$$

 $x = AES^{-1}_{k_{AB}}(y)$ 

### Diffie-Hellman Key Exchange: Example

Domain parameters p = 29,  $\alpha = 2$ 

Alice

Bob

Choose random private key

$$k_{prA} = a = 5$$

Choose random private key

$$k_{prB} = b = 12$$

Compute corresponding public key

$$k_{pubA} = A = 2^5 = 3 \mod 29$$

Α

В

Compute correspondig public key

$$k_{pubB} = B = 2^{12} = 7 \mod 29$$

Compute common secret

$$k_{AB} = B^a = 7^5 = 16 \mod 29$$

Compute common secret  $k_{AB} = A^b = 3^{12} = 16 \mod 29$ 

Proof of correctness:

Alice computes:  $B^a = (a^b)^a \mod p$ 

Bob computes:  $A^b = (\alpha^a)^b \mod p$ 

i.e., Alice and Bob compute the same key  $k_{AB}$ !



#### The Discrete Logarithm Problem

Discrete Logarithm Problem (DLP) in  $Z_p^*$ 

- > Given is the finite cyclic group  $Z_p^*$  of order p-1 and a primitive element  $\alpha \in Z_p^*$  and another element  $\beta \in Z_p^*$
- > The DLP is the problem of determining the integer  $1 \le x \le p-1$  such that  $\alpha^x \equiv \beta \mod p$
- This computation is called the discrete logarithm problem (DLP)

$$x = \log_{\alpha} \beta \mod p$$

> Example: Compute x for  $5^x \equiv 41 \mod 47$ 



### The Generalized Discrete Logarithm Problem

- > Given a finite cyclic group G with the group operation  $\circ$  and cardinality n
- > We consider a primitive element  $\alpha \in G$  and another element  $\beta \in G$
- > The discrete logarithm problem is finding the integer x, where  $1 \le x \le n$ , such that:

$$\beta = \alpha \circ \alpha \circ \alpha \circ \dots \circ \alpha = \alpha^{x}$$
*x* times

### The Generalized Discrete Logarithm Problem

- > The difficulty of this problem depends on the group *G* 
  - Very easy: polynomial time algorithm
    - $\rightarrow (Z_{\rm N},+)$
  - Rather hard: sub-exponential time algorithm
    - $\rightarrow$   $(Z_P, \times)$
  - Very hard: exponential time algorithm
    - > Elliptic Curve groups
- > The multiplicative group of a Galois field  $GF(2^m)$  or a subgroup of it. Schemes such as the DHKE can be realized with them
- > Hyperelliptic curves or algebraic varieties, which can be viewed as generalization of elliptic curves

# Attacks against the Discrete Logarithm Problem

- > The following algorithms for computing discrete logarithms exist
  - Generic algorithms: Work in any cyclic group
    - > Brute-Force Search
    - > Shanks' Baby-Step-Giant-Step Method
    - > Pollard's Rho Method
    - > Pohlig-Hellman Method
  - Non-generic Algorithms: Work only in specific groups, in particular in  $\mathbb{Z}_p$ 
    - > The Index Calculus Method

# Attacks against the Discrete Logarithm Problem

> Summary of records for computing discrete logarithms in  $\mathbb{Z}_p^*$ 

| Decimal digits | Bit length | Date |
|----------------|------------|------|
| 58             | 193        | 1991 |
| 68             | 216        | 1996 |
| 85             | 282        | 1998 |
| 100            | 332        | 1999 |
| 120            | 399        | 2001 |
| 135            | 448        | 2006 |
| 160            | 532        | 2007 |

- In order to prevent attacks that compute the DLP, it is recommended to use primes with a length of at least 1024 bits for schemes such as Diffie-Hellman in  $Z_p^{\ast}$ 

### Security of the classical Diffie-Hellman Key Exchange

- > Which information does Oscar have?
  - $-\alpha, p$
  - $-k_{pubA} = A = \alpha^a \mod p$
  - $-k_{pubB} = B = \alpha^b \bmod p$
- > Which information does Oscar want to have?
  - $-k_{AB} = \alpha^{ba} = \alpha^{ab} \mod p$
  - Diffie-Hellman Problem (DHP)
- > The only known way to solve the DHP is to solve the DLP, i.e.
  - Compute  $a = \log_{\alpha} A \mod p$
  - Compute  $k_{AB} = B^a = \alpha^{ba} \mod p$ 
    - > It is conjectured that the DHP and the DLP are equivalent, i.e., solving the DHP implies solving the DLP.
- > To prevent that the DLP is solved, choose  $p > 2^{1024}$

### The ElGamal Encryption Scheme: Overview

- > Proposed by Taher ElGamal in 1985
  - A public key cryptosystem and a signature scheme based on discrete logarithms
- Can be viewed as an extension of the DHKE protocol
- Based on the intractability of the discrete logarithm problem and the Diffie-Hellman problem

## The ElGamal Encryption Scheme: Principle



This looks very similar to the DHKE! The actual Elgamal protocol reorders the computations which helps to save one communication (cf. next slide)

### The ElGamal Encryption Protocol



### Computational Aspects

- > Key Generation
  - Generation of prime p
    - $\rightarrow p$  has to of size of at least 1024 bits
- > Encryption
  - two modular exponentiations and a modular multiplictation
  - All operands have a bitlength of  $log_2p$
  - Efficient execution requires methods such as the square-and-multiply algorithm
- > Decryption
  - one modular exponentiation and one modulare inversion
  - the inversion can be computed from the ephemeral key

$$k_{\rm M}^{-1} = k_{\rm E}^{-d} = \alpha^{-di} = k_{\rm E}^{p-1-d} \mod p$$
  
-  $p-1-d>0, -di<0$  requires inverse

### Security

- > Passive attacks
  - Attacker eavesdrops  $p, \alpha, \beta = \alpha^d$ ,  $k_E = \alpha^i$ ,  $y = x \cdot \beta^i$  and wants to recover x
  - Problem relies on the DLP
- > Active attacks
  - If the public keys are not authentic, an attacker could send an incorrect public key
  - An attack is also possible if the secret exponent
     i is being used more than once

#### Man-in-the-Middle Attack

- > Should be careful Alice whom you are  $a \rightarrow a$  agreeing a key with  $g^m \leftarrow a$ 
  - Alice agrees a key with Eve, thinking it is Bob
  - Bob agrees a key with Eve, thinking it is Alice
  - Eve can now examine communications as they pass through (acting as a router)



#### Lessons Learned

- > The Diffie-Hellman protocol is a widely used method for key exchange. It is based on cyclic groups
- > The discrete logarithm problem is one of the most important one-way functions in modern asymmetric cryptography. Many public-key algorithms are based on it
- > For the Diffie-Hellman protocol in  $Z_p^*$ , the prime p should be at least 1024 bits long. This provides a security roughly equivalent to an 80-bit symmetric cipher
- > For a better long-term security, a prime of length 2048 bits should be chosen
- > The Elgamal scheme is an extension of the DHKE where the derived session key is used as a multiplicative masked to encrypt a message
- > Elgamal is a probabilistic encryption scheme, i.e., encrypting two identical messages does not yield two identical ciphertexts

### (NIST) SP 800-57 Part1

| Bits of security | Symmetric<br>key<br>algorithm | Finite Field<br>Cryptography<br>(FFC e.g., DSA,<br>D-H) | Integer<br>Factorization<br>Cryptography<br>(IFC, e.g., RSA) | Elliptic Curve<br>Cryptogrpahy<br>(ECC, e.g.,<br>ECDSA) |
|------------------|-------------------------------|---------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|
| 80               | 2TDEA                         | L=1024, N=160                                           | k=1024                                                       | f=160-223                                               |
| 112              | 3TDEA                         | L=2048, N=224                                           | k=2048                                                       | f=224-255                                               |
| 128              | AES-128                       | L=3072, N=256                                           | k=3072                                                       | f=256-383                                               |
| 192              | AES-192                       | L=7680, N=384                                           | k=7680                                                       | f=384-511                                               |
| 256              | AES-256                       | <i>L</i> =15360, <i>N</i> =512                          | k=15360                                                      | f=512+                                                  |

