

Digital Logic

MINIMIZATION
Lecture No.05

By- CHANDAN SIR

04 DUAL & SELF DUAL

05 DISCUSSION

TOPICS TO BE

COVERED

K Map - Basics

Rule of Minimization

Q.1
$$f(A,B) = \overline{A} \, \overline{B} + \overline{A}B + AB = \sum m (0, 1, 3)$$

Q.2
$$f(A, B) = \overline{A} \overline{B} + \overline{A}B + A\overline{B} + AB$$

1	1	
1	1	= 7

$$f(A,B,C) = \sum m(0,1,3,6,7)$$

AB+ AB+ ABC

$$f(A,B,C) = \sum m(0,1,3,5,6,7)$$

$$f(A,B,C) = \sum m(0,2,4,6)$$

$$f(A,B,C) = \sum m(0,3,5,6)$$

ADTABRT ABC

Q.8 $f(A,B,C,D) = \sum m(0,1,2,4,6,9,10,11,12,13,15)$

0.9

$f(A,B,C,D) = \sum m (1,5,6,7,11,12,13,15)$

Q.12

$f(A,B,C,D) = \sum_{n=0}^{\infty} m(135,6,8,10,12,13,15)$

AB+ (B+ AB+ ACB

 $f(A,B,C,D) = \sum_{i=1}^{1} m(0,5,6,7,11,12,13,15)$

Q.13

$f(A,B,C,D) = \sum_{i=1}^{6} m(1,5,6,7,11,12,13,15)$

K Map - Basics

Don't Care Condition

Combination of inputs on which the output may or may not depends are called don't care condition.

$$f(A_1B) = \overline{A}B + (\overline{A}B)$$

$$Q f(A_1B_1C) = Zm(0,1,2) + Zd(3,6)$$

Arr= A

Q.15

 $f(A,B,C,D) = \sum m (0, 2, 4, 6, 7, 8, 10, 11, 12, 14, 15) + \sum d(1,3)$

ABETBC+ ACD

