Το WLAN στο φυσικό στρώμα

Εισηγητής: Χρήστος Δαλαμάγκας

cdalamagkas@gmail.com

Άδεια χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται στη διεθνή άδεια χρήσης Creative Commons Attribution-ShareAlike 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).

7 Layers of the OSI Model

Application

- End User layer
- HTTP, FTP, IRC, SSH, DNS

Presentation

- Syntax layer
- SSL, SSH, IMAP, FTP, MPEG, JPEG

Session

- Synch & send to port
- · API's, Sockets, WinSock

Transport

- End-to-end connections
- TCP, UDP

Network

- Packets
- IP, ICMP, IPSec, IGMP

Data Link

- Frames
- · Ethernet, PPP, Switch, Bridge

Physical

- Physical structure
- Coax, Fiber, Wireless, Hubs, Repeaters

Το στρώμα πρόσβασης στο δίκτυο (network access layer)

- Το στρώμα πρόσβασης στο δίκτυο αποτελείται από δυο στρώματα κατά OSI:
 - Ο Φυσικό στρώμα (Layer 1 L1)
 - Ο Στρώμα ζεύξης δεδομένων (Layer 2 L2)
- Το network access layer συμπεριλαμβάνει τις αρμοδιότητες και των δυο χαμηλότερων στρωμάτων του OSI
- Το στρώμα ζεύξης δεδομένων αποτελείται από δυο υποστρώματα
 - Ο Υπόστρωμα ελέγχου πρόσβασης (MAC)
 - Υπόστρωμα ελέγχου λογικών συνδέσεων (LLC)

Λειτουργίες φυσικού επιπέδου (PHY)

- Κωδικοποίηση πληροφορίας σε ψηφιακό ή αναλογικό σήμα
- Αποκωδικοποίηση αναλογικού ή ψηφιακού σήματος σε πληροφορία
- Συγχρονισμός πομπού και δέκτη
- Προδιαγραφές μέσου μετάδοσης (χαρακτηριστικά)
- Φυσική τοπολογία, δηλαδή διασύνδεση συσκευών μεταξύ τους
 - Σημείο σε σημείο
 - Τοπολογία αστέρα
 - ο Τοπολογία αρτηρίας

Ασύρματα LAN - WLAN

Πεδία εφαρμογής

- Επέκταση κάλυψης των ενσύρματων LAN, πχ κτίρια με μεγάλους ανοικτούς χώρους
 (εργοστάσια, αποθήκες) ή κτίρια όπου δεν μπορούν να συνδεθούν καλώδια όπως ιστορικά μνημεία.
- Το ασύρματο LAN συνδέεται συνήθως με ενσύρματο LAN
- Διασύνδεση κτηρίων
- Νομαδική πρόσβαση, πχ σύνδεση Laptop σε ασύρματο LAN
- Ad Hoc δικτύωση: Δημιουργία ομότιμου, προσωρινού ασύρματου LAN εντός της εμβέλειας
 των σταθμών

Απεικόνιση ενός WLAN

Απαιτήσεις και χαρακτηριστικά ενός WLAN

- Επαρκή ταχύτητα
- Υποστήριξη πολλών σταθμών
- Διασύνδεση με δίκτυα κορμού
- Εμβέλεια (100-300m)
- Μικρή κατανάλωση ενέργειας
- Ανθεκτικότητα σε παρεμβολές και ασφάλεια
- Δεν χρειάζονται άδειες για τη χρήση των συχνοτήτων του Wi-Fi

Η τεχνολογία Wi-Fi

Η οικογένεια προτύπων Wi-Fi

- Το WiFi είναι μια τεχνολογία που υλοποιεί ασύρματα δίκτυα τύπου WLAN
- Υποστηρίζεται από την μη-κερδοσκοπική οργάνωση Wi-Fi Alliance, η οποία παρέχει πιστοποιητικά σε συσκευές που περνούν με επιτυχία μια σειρά από δοκιμές
- Τα πρότυπα Wi-Fi καλύπτονται από τη σειρά εγγράφων IEEE 802.11

Πρότυπα Wi-Fi

Έκδοση	Ημερομηνία	Ζώνη συχνοτήτων	Εύρος ζώνης καναλιού	Ονομαστικός ρυθμός μετάδοσης	Διαμόρφωση σήματος	Εμβέλεια εσωτερικών χώρων
802.11	1997	2.4 GHz	22 MHz	2 Mbit/s	IR / FHSS / DSSS	20 m
802.11b	1999	2.4 GHz	22 MHz	11 Mbit/s	DSSS	38 m
802.11a	1999	5 GHz	5/10/20 MHz	54 Mbit/s	OFDM	35 m
802.11g	2003	2.4 GHz	5/10/20 MHz	54 Mbit/s	OFDM	38 m
802.11n	2009	2.4/5 GHz	20/40 MHz	288.8/600 Mbit/s	MIMO-OFDM	70 m
802.11ac	2013	5 GHz	20/40/80/160 MHz	346.8/800/1733.2/3466.8 Mbit/s	MIMO-OFDM	35 m
802.11ax	Αναμένεται Δεκ. 2019	2.4/5/6 GHz	?	10.53 Gbit/s	MIMO-OFDM	?

Πρόσβαση στο δίκτυο Wi-Fi

- Όλοι οι κόμβοι ενός δικτύου Wi-Fi βρίσκονται στο ίδιο μέσο μετάδοσης
- Οι κόμβοι ανταγωνίζονται για την πρόσβασή τους στο κοινό μέσο
- Τα δεδομένα που μεταδίδονται στο Wi-Fi λαμβάνονται από όλους τους κόμβους (ευρυεκπομπή)
- Τα μεταδιδόμενα δεδομένα είναι εκτεθειμένα χωρίς την κατάλληλη κρυπτογράφηση
- Το πρωτόκολλο ασφαλείας WEP είναι εύκολο να παραβιαστεί, ενώ το WPA2 είναι ασφαλές, αν ο διαχειριστής έχει επιλέξει έναν δύσκολο κωδικό πρόσβασης

Κανάλια Wi-Fi

- Όταν λέμε πως ένα δίκτυο Wi-Fi λειτουργεί στα 2.4 GHz, ουσιαστικά εννοούμε ένα εύρος ζώνης με επίκεντρο τα 2.4 GHz
- Το Wi-Fi χωρίζει το εύρος γύρω από τα 2.4 GHz (2.401-2.495) σε 11 κανάλια στη Β. Αμερική, 13 στην Ευρώπη και 14 στην Ιαπωνία
- Τα 5 GHz χωρίζονται επίσης σε 24 κανάλια, κάποια από αυτά δεν επιτρέπονται σε Ιαπωνία και Β. Αμερική. Στην Ευρώπη επιτρέπονται και τα 24.
- Κάθε κανάλι έχει μοναδική αρίθμηση
- Αν μπορούμε, καλό είναι να συντονιζόμαστε στα κανάλια με τον χαμηλότερο φόρτο

Κανάλια 2.4GHz

Channel Number	Lower Frequency MHz	Centre Frequency MHz	Upper Frequency MHz
1	2401	2412	2423
2	2406	2417	2428
3	2411	2422	2433
4	2416	2427	2438
5	2421	2432	2443
6	2426	2437	2448
7	2431	2442	2453

Channel Number	Lower Frequency MHz	Centre Frequency MHz	Upper Frequency MHz
8	2436	2447	2458
9	2441	2452	2463
10	2446	2457	2468
11	2451	2462	2473
12	2456	2467	2478
13	2461	2472	2483
14	2473	2484	2495

2.400 GHz

2.490 GHz

Channel Number	Frequency MHz	Europe (ETSI)	North America (FCC)	Japan
36	5180	Indoors	✓	~
40	5200	Indoors	✓	✓
44	5220	Indoors	✓	✓
48	5240	Indoors	✓	✓
52	5260	Indoors / DFS / TPC	DFS	DFS / TPC
56	5280	Indoors / DFS / TPC	DFS	DFS / TPC
60	5300	Indoors / DFS / TPC	DFS	DFS / TPC
64	5320	Indoors / DFS / TPC	DFS	DFS / TPC
100	5500	DFS / TPC	DFS	DFS / TPC
104	5520	DFS / TPC	DFS	DFS / TPC
108	5540	DFS / TPC	DFS	DFS / TPC
112	5560	DFS / TPC	DFS	DFS / TPC
116	5580	DFS / TPC	DFS	DFS / TPC
120	5600	DFS / TPC	No Access	DFS / TPC
124	5620	DFS / TPC	No Access	DFS / TPC
128	5640	DFS / TPC	No Access	DFS / TPC
132	5660	DFS / TPC	DFS	DFS / TPC
136	5680	DFS / TPC	DFS	DFS / TPC
140	5700	DFS / TPC	DFS	DFS / TPC
149	5745	SRD	✓	No Access
153	5765	SRD	✓	No Access
157	5785	SRD	✓	No Access
161	5805	SRD	✓	No Access
165	5825	SRD	✓	No Access

DFS = Dynamic Frequency Selection; TPC = Transmit Power Control; SRD = Short Range Devices

Συσκευές στο φυσικό μέσο

Επαναλήπτης (Repeater)

- Λειτουργεί στο φυσικό επίπεδο
- Απλώς επανεκπέμπει το σήμα που λαμβάνει (πχ από έναν wireless router) προς μια περιοχή στην οποία δεν υπάρχει επαρκής κάλυψη
- Οι επαναλήπτες μπορεί να ενισχύουν το σήμα που λαμβάνουν. Σε αυτή την περίπτωση
- Οι ασύρματοι επαναλήπτες μπορεί να χειροτερεύσουν την ποιότητα του σήματος, λόγω εκτεταμένων παρεμβολών!
- Παρόλα αυτά, οι επαναλήπτες μπορεί να χρησιμοποιούν διαφορετικά κανάλια για την επανεκπομπή του σήματος, ώστε να μειωθούν οι παρεμβολές

Wi-Fi range extender

- Συχνά ταυτίζονται οι επαναλήπτες με τους range extender, δεν υπάρχει τυποποιημένος διαχωρισμός τους
- Ωστόσο, κάποιες συσκευές μπορούν να λαμβάνουν σήμα μέσω ethernet ή PLC και να αναπαράγουν σήμα Wi-Fi
- Σε αυτή την περίπτωση, το σήμα των extender
 δεν υποβαθμίζεται από παρεμβολές του
 σήματος Wi-Fi που λαμβάνει!

Σημείο Πρόσβασης – Access Point (AP)

- Πρακτικά, γενίκευση των extender
- Χρησιμοποιούνται για την ασύρματη
 πρόσβαση τερματικών σε ένα υπάρχον LAN
- Συνήθως αποτελούν ενσωματωμένες συσκευές σε ένα οικιακό modem/router

μέσο

Μέθοδοι τυχαίας προσπέλασης στο

Πολλαπλή πρόσβαση στο μέσο

- Η φύση μερικών δικτύων αναγκάζει τους κόμβους να χρησιμοποιούν το ίδιο μέσο και να ανταγωνίζονται για την πρόσβαση σε αυτό
- Σε τηλεπικοινωνιακά δίκτυα, μια κεντρική οντότητα (πχ ο ISP ή ο σταθμός βάσης GSM) ρυθμίζει το πότε θα έχει κάποιος πρόσβαση στο δίκτυο
- Μια πιο «άναρχη» προσέγγιση είναι η τυχαία πρόσβαση στο μέσο
- Στην τυχαία πρόσβαση στο μέσο, δεν υπάρχει κεντρική οντότητα που καθορίζει το πότε θα στείλει κάποιος δεδομένα
- Στην τυχαία πρόσβαση στο μέσο, ο κάθε κόμβος στέλνει δεδομένα στο κανάλι, προαιρετικά θα μπορούσε πριν να ακούσει το κανάλι για τυχόν μεταδόσεις σε εξέλιξη

Μέθοδοι τυχαίας πρόσβασης στο μέσο

- ΑΙοhα: Ο κάθε κόμβος απλώς μεταδίδει όταν έχει διαθέσιμα δεδομένα. Αν κατά τη μετάδοση ληφθούν δεδομένα, σημαίνει πως συνέβη σύγκρουση και η μετάδοση αναβάλλεται για αργότερα
- Slotted Aloha: Οι μεταδόσεις δε γίνονται τυχαία, αλλά στην αρχή προκαθορισμένων χρονοθυρίδων (πχ κάθε 5 ms)

CSMA

- CSMA/CD: Εντοπισμός συγκρούσεων
- CSMA/CA: Αποφυγή συγκρούσεων με κατάλληλο συντονισμό
- Πρόσβαση με «εισιτήρια» (token): Σε ένα κοινόχρηστο μέσο, πχ δακτύλιος, οι κόμβοι μιλούν σε γύρους, εκ περιτροπής, με κάποια tokens

Προβλήματα στο WLAN

- (a) Το πρόβλημα του κρυφού σταθμού.
- (b) Το πρόβλημα του εκτεθειμένου σταθμού.

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

- Ο ασύρματος κόμβος ακροάζεται το κανάλι για μεταδόσεις σε εξέλιξη, πριν ξεκινήσει τη δική του μετάδοση, όπως και στο Ethernet
- Η διαφορά με το Ethernet είναι πως στο Wi-Fι υπάρχει το πρόβλημα του κρυφού κόμβου κάποιος άλλος μπορεί να μεταδίδει και ο κόμβος μας να μη το γνωρίζει
- Ο μηχανισμός αιτημάτων Request to Send (RST) και Clear to Send (CTS)
 χρησιμοποιείται για να αντιμετωπιστεί το εν λόγω πρόβλημα

Επισκόπηση του CSMA/CA

- Ο πομπός ακροάζεται το κανάλι για τυχόν μεταδόσεις
- Αν το κανάλι είναι αδρανές, τότε στέλνει ένα RTS προς το σημείο πρόσβασης
- Το ΑΡ πρέπει να απαντήσει με ένα CTS, το οποίο θα υποδηλώνει πως δεν υπάρχουν ταυτόχρονες μεταδόσεις προς το ΑΡ, οι οποίες θα μπορούσαν να συγκρουστούν με τη μετάδοση του κόμβου

Λειτουργία κατανεμημένου συντονισμού (DCF)

- Για να αποφανθεί ο πομπός ότι ένα κανάλι είναι αδρανές, θα πρέπει να το ανιχνεύει συνεχώς για χρόνο DIFS (DCF Interframe Space)
- Αν σε αυτό το διάστημα, βρεθεί ότι το κανάλι είναι απασχολημένο, τότε ουσιαστικά αναβάλλεται η μετάδοση
- Ακόμη, ο χρόνος απόκρισης ενός κόμβου ορίζεται ως Short Interframe Space (SIFS).

SIFS = [Πότε στάλθηκε το πρώτο σύμβολο/απάντηση] – [Πότε ελήφθη το τελευταίο σύμβολο]

Ισχύει DIFS = SIFS + (2 * Slot time)

Standard	SIFS (µs)
IEEE 802.11-1997 (FHSS)	28
IEEE 802.11b/g/n (2.4 GHz)	10
IEEE 802.11a	16
IEEE 802.11n, IEEE 802.11ac (5 GHz)	16

Standard	Slot time (µs)	DIFS (µs)
IEEE 802.11-1997 (FHSS)	50	128
IEEE 802.11b	20	50
IEEE 802.11a	9	34
IEEE 802.11g/n (2.4 GHz)	9 or 20	28 or 50
IEEE 802.11n/ac (5 GHz)	9	34

Slot time: Μέγιστο χρονικό διάστημα για έναν παλμό να φτάσει από τον έναν κόμβο στον άλλον