Background	Derivatives $\frac{\partial}{\partial \mathbf{x}}(\mathbf{b}^{\top}\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{b}) = \mathbf{b}$	Optimization <i>GDM:</i>	MAP: Lasso (L^1 penalty)	Causality
Linear Algebra	$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = (\mathbf{A}^{\top} + \mathbf{A})\mathbf{x}$	$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L} + \mu(\theta^{(t)} - \theta^{(t-1)})$	Penalize full β . Lasso has no closed form.	<i>Counterfactual Invariance:</i> A function <i>f</i> is
$\ \mathbf{x}\ _p = (\sum x_i ^p)^{1/p} \qquad \ \mathbf{x}\ _{\infty} = \max x_i $	$\frac{\partial}{\partial z}(\mathbf{c}^{\top}\mathbf{X}\mathbf{b}) = \mathbf{c}\mathbf{b}^{\top}$ $\frac{\partial}{\partial z}(\ \mathbf{X}\ _{2}^{2}) = 2\mathbf{X}$	<i>GD</i> : $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L}$	$\beta \sim Lapl(0, \lambda^{-1}) = \frac{\lambda}{2} exp(-\lambda \beta)$	invariant if $f(X(w)) = f(X(w')) \forall w, w',$
T : T : T		SGD: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla \mathcal{L}(\theta^{(t)}, x_i, y_i)$	$\mathcal{L} = \sum_{i=1}^{n} (y_i - x_i^T \boldsymbol{\beta})^2 + \lambda \sum_{i=1}^{d} \beta_i $	↓ bias from spurious correlations. Confounding: A hidden variable
$ \mathbf{A}\mathbf{B} = \mathbf{A} \mathbf{B} \qquad \mathbf{A}^m = \mathbf{A} ^m$	$\frac{\partial}{\partial \mathbf{x}} \ \mathbf{x}\ _2 = \frac{\mathbf{x}}{\ \mathbf{x}\ _2} \left \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}) _1 = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}^T \operatorname{sgn}(\mathbf{x})$	<i>NGD</i> : $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta (\nabla_{\theta}^2 \mathcal{L})^{-1} \nabla_{\theta} \mathcal{L}$, , , , , , , , , , , , , , , , , , ,	influences W and X , \Rightarrow spurious correlation
$(\mathbf{A} + \mathbf{UCV})^{-} = \mathbf{A}^{-} - \mathbf{A}^{-} \mathbf{U} (\mathbf{C}^{-} + \mathbf{V} \mathbf{A}^{-} \mathbf{U})^{-} \mathbf{V} \mathbf{A}^{-}$	$\frac{\partial}{\partial \mathbf{x}}(\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2^2) = 2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b})$	$\to f(x+t) \approx f(x) + t f'(x) + \frac{1}{2} f''(x) t^2 = 0$	$= (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta} _1$	with Y. Selection Bias: A hidden variable
$(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}(\mathbf{A} + \mathbf{B})^{-1}\mathbf{A}^{-1}$	$\frac{\partial}{\partial \mathbf{X}}(\mathbf{X}) = \mathbf{X} \cdot \mathbf{X}^{-1}, \mathbf{X} ^{-1} = \mathbf{X}^{-1} $	Parametric Density Estimation	Bayesian view: $Y (X,\beta) \sim \mathcal{N}(x^T\beta, \sigma^2 I)$	S filters the training data based on W and X , inducing non-causal associations.
$\mathbf{U}(\mathbf{V}\mathbf{U} + \mathbf{I})^{-1} = (\mathbf{U}\mathbf{V} + \mathbf{I})^{-1}\mathbf{U}$	$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{\top} = \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}^{T} \mid \frac{\partial}{\partial \mathbf{X}} \operatorname{tr} f(\mathbf{X}) = \operatorname{tr} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$	Assume prior $\mathbb{P}(\theta)$,	d-Dim Bayesian Linear Regression	If f is counterf. invar.:
$\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{A})^{-1} = (\mathbf{I} + \mathbf{A})^{-1}$	$\frac{\partial \mathbf{X}}{\partial \mathbf{X}} f(\mathbf{X}) = \frac{\partial \mathbf{X}}{\partial \mathbf{X}} + \frac{\partial \mathbf{X}}{\partial \mathbf{X}} \text{ if } f(\mathbf{X}) = \text{if } \frac{\partial \mathbf{X}}{\partial \mathbf{X}}$		<i>Prior:</i> $\beta \sim \mathcal{N}(\mu_0, \Lambda^{-1})$	anti-causal scenario: $f(X) \perp W \mid Y$.
Probability	$\frac{\partial}{\partial \mathbf{X}} \det f(\mathbf{X}) = \det f(\mathbf{X}) \operatorname{tr}(f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}})$		Likelihood: $Y \beta, X, \sigma \sim \mathcal{N}(X\beta, \sigma_n^2 \mathbb{I})$	causal scenario (no selection): $f(X) \perp W$.
$B(a,b) = \Gamma(a)\Gamma(b)\Gamma^{-1}(a+b)$	$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{-1} = -f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} f(\mathbf{X})^{-1}$		Posterior: $\beta \mathbf{X}, \mathbf{y} \sim \mathcal{N}(\mu, \Sigma)$	causal scenario (no confounding): $Y \perp$
-) i am i i i i	Quadratic Forms	Solve $\nabla_{\theta} log P(\mathcal{X} \theta) P(\theta) = 0$	$\Sigma = (\sigma_n^{-2} \mathbf{X}^T \mathbf{X} + \Lambda)^{-1}$	$X \mid W, X_{\perp W} \text{ and } f(X) \perp W \mid Y.$
	T	1-D Gaussian Bayesian learning	$\cdot \mu = \Sigma(\Lambda \mu_0 + \sigma_n^{-2} \mathbf{X}^T \mathbf{y})$	A set of variables Z d-separates X and Y in a DAG \mathcal{G} if all paths between X and Y are
$p_Y(y) = p_X(g^{-1}(y)) \left \det \frac{\partial g^{-1}(y)}{\partial y} \right $	$(\mathbf{v} + \mathbf{A} - 1\mathbf{b}) = \mathbf{b}T\mathbf{A} - 1\mathbf{b} + \mathbf{a}$	-	Nonlinear Regression	blocked by $Z: X \perp Y \mid Z$. A path is blocked
$\mathbb{E}_{Y X}[Y] = \mathbb{E}_{Y}[Y X] \mathbb{I} \mathbb{E}_{Y}[\mathbb{E}_{X}[X Y]] = \mathbb{E}_{X}[X]$	$ax^2 + bx + c = (x + b)^2 + (b)^2 + c$	$A \mid \theta \sim \mathcal{N}(\theta, \theta')$ $\theta \sim \mathcal{N}(m_0, s_0)$ $\theta \mid X \sim \mathcal{N}(\mu_n, \sigma_n^2)$	<i>Idea:</i> Add feature space transformation,	if: Collider: $A \rightarrow B \leftarrow C$ and neither B nor
$\mathbb{E}_{Y X}[I] = \mathbb{E}_{Y}[I][X] + \mathbb{E}_{Y}[\mathbb{E}_{X}[X]] = \mathbb{E}_{X}[X]$	20 20	$\theta \mid A \sim \mathcal{N}(\mu_n, O_n)$	kernel to compute inner product. Suppose:	its descendants are in Z. Chain: $A \rightarrow B \rightarrow C$. Fork: $A \leftarrow B \rightarrow C$ where $B \in Z$.
	$H[p] = \mathbb{E}_{\mathbf{x} \sim p} [-\log p(\mathbf{x})]$	$\sigma_n^2 = rac{\sigma^2 s_0^2}{n s_0^2 + \sigma^2}, \mu_n = rac{n s_0^2 \overline{x} + m_0 \sigma^2}{n s_0^2 + \sigma^2}$	$\beta \sim \mathcal{N}(0, \Lambda^{-1})$ $\varepsilon \sim \mathcal{N}(0, \sigma_n^2 \mathbb{I}_d)$	Algos
	$H[p q] = \mathbb{E}_{\mathbf{x} \sim p} \left[-\log q(\mathbf{x}) \right]$	Recursive Bayesian density learning	$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \mathbf{X}\boldsymbol{\Lambda}^{-1}\mathbf{X}^T + \boldsymbol{\sigma}_n^2 \mathbb{I}_d)$	K-Means $J = \sum_{x \in \mathcal{X}} x - \mu_{c(x)} ^2$
			Kernels	PCA proj. maximum variance subspace.
	$\mathrm{KL}[p q] = \mathbb{E}_{\theta \sim p} \left[\log \left(\frac{p(\theta)}{q(\theta)} \right) \right]$	$\mathcal{X}^n = x_{1:n} : p(\theta \mathcal{X}^n) = \frac{p(x_n \theta)p(\theta \mathcal{X}^{n-1})}{\int p(x_n \theta)p(\theta \mathcal{X}^{n-1})d\theta}$	Kernel: $k(x_i, x_j) = \phi(x_i) \Lambda^{-1} \phi(x_j)^T$	top d eigenv. of $S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{X})(x_i - \overline{X})^T$
$ern(-\frac{1}{2}(r-\mu)T\Sigma^{-1}(r-\mu))$	$[q(\theta)]$	Frequentist vs Bayesian	Similarity based reasoning.	EM fit GMMs $(\sum_{k=1}^{K} \pi_k \mathcal{N}(x \mu_k, \Sigma_k))$ by
	$KL[p q] \neq KL[q p] \ge 0$	Bayes: priors, distributions, needs efficient	Gram Matrix: $K = k(\mathbf{x}_i, \mathbf{x}_j), 1 \le i, j \le n$	max. likelihood. Reaches local optimum.
		integration, adds regularization term.	$k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x}) \cdot k(\mathbf{x}, \mathbf{x}')$ pos.semi-def.	Latent variable: $M_{xc} = 1\{c \text{ generated } x\}$
	$H[\mathbf{X} \mathbf{Y} = y] = \mathbb{E}_{\mathbf{X} \sim p(\cdot y)} \left[-\log p(\mathbf{X} y) \right]$ $H[\mathbf{X} \mathbf{Y}] = \mathbb{E}_{y} \left[H[\mathbf{X} \mathbf{Y} = y] \right]$	Frequentist: no priors, point estimate, requires only differentiation methods.	$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$	$P(\mathcal{X}, M \theta) = \prod_{x} \prod_{c=1}^{k} (\pi_c P(x \theta_c))^{M_{xc}}$
	$H[\mathbf{X} \mathbf{Y}] = H[\mathbf{Y} \mathbf{X}] + H[\mathbf{X}] - H[\mathbf{Y}]$	MLE are consistent, equivariant,	$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}') = \mathbf{x} \cdot \mathbf{A}\mathbf{x}$ = $k_1(\mathbf{x}, \mathbf{x}') \cdot k_2(\mathbf{x}, \mathbf{x}') = c \cdot k_1(\mathbf{x}, \mathbf{x}')$	$\gamma_{xc} = \mathbb{E}[M_{xc} \mathcal{X}, \boldsymbol{\theta}^{(j)}] = \frac{\pi_c \mathcal{N}(\mathbf{x}; \mu_c, \Sigma_c)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}; \mu_j, \Sigma_j)}$
		asymptotically normal, asymptotically efficient (no efficient for finite samples).	$= p(k_1(\mathbf{x}, \mathbf{x}')) = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}') f(\mathbf{x}')$	
		Data Types		$\mu_c^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} x}{\sum_{c \in \mathcal{X}} \gamma_{xc}} \pi_c^{(j+1)} = \frac{1}{ \mathcal{X} } \sum_{c \in \mathcal{X}} \gamma_{xc}$
$([\mathbf{Y}])^{-j}$, $[[\mathbf{Y}]]$, $[[\mathbf{L}_{21}]]$	T[X7, X7][77] T[X7, X7, 77] T[X7, 77]	monadic: $X: O \rightarrow \mathbb{R}^d$ dyadic: $X: O_1 \times O_2 \rightarrow$	$k(\mathbf{x}, \mathbf{x}') = \phi(x)^T \phi(x') = (1 + \mathbf{x}^T \mathbf{x}')^m$	$(\sigma_c^2)^{(j+1)} = \frac{\sum_{c \in \mathcal{X}} \gamma_{xc} (x - \mu_c)^2}{\sum_{c \in \mathcal{X}} \gamma_{xc}}$
$p(\mathbf{Y} \mathbf{X} = \mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	$H(\mathcal{N}(\mu, \Sigma) = \frac{1}{2} \ln(\det(2\pi e \Sigma))$	Dd pairwise: V: 0. VO. \Dd palvadia	$= \tanh(\alpha \mathbf{x}^T \mathbf{x}' + c)$	
$\mu = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (\mathbf{x} - \mu_{\mathbf{X}})$		data: $X:O_1 \times O_2 \times O_3 \rightarrow \mathbb{R}^d$ nominal =	$= \sigma^2 \exp(-\frac{2\sin(p^{-1}\pi \mathbf{x}-\mathbf{x}' _2^2)}{l^2})$	Perceptron Bound: $\frac{\max_{i \in \tilde{\mathcal{X}}^{mc}} \ \tilde{x}_i\ ^2 \ \hat{a}\ }{(\min_{i \in \tilde{\mathcal{X}}^{mc}} (\hat{a}^{\top} \tilde{x}_i))^2}$
/ = / · · · · / · · · / · · · · · · · ·	$(a-b)^T B^{-1} (a-b) - d + \ln(\frac{\det B}{\det A}))$	qualitative (sweet, sour), ordinal =	$= \exp(- \mathbf{x} - \mathbf{x}' _1 l^{-1})$	$(\min_{i \in \bar{\mathcal{X}}^{mc}} (a^+ x_i))^2$ Bias-Variance tradeoff
Inequalities and Estimators	$\det A / I = (\operatorname{det} A / I)$	absolute order, quantitative = numbers	$= \exp(- \mathbf{x} - \mathbf{x}' _2^2 (2l^2)^{-1})$	Bias $(\hat{f}) = \mathbb{E}[\hat{f}] - f$
Jensen: $log(\sum_{i} \lambda_{i}^{(\geq 0)} x_{i}) \geq \sum_{i} \lambda_{i} log(x_{i})$	Risks	Regression	RBF : $\phi_j(x) = \exp(-\frac{ x _2^2}{2}) \prod_{i=0}^d x^{j_i} (j_i!)^{-\frac{1}{2}}$	$Var(\hat{f}) = \mathbb{E}[f] - f$ $Var(\hat{f}) = \mathbb{E}[(\hat{f} - \mathbb{E}[\hat{f}])^2]$
		Model of data: $Y = X\beta^* + \varepsilon$	\uparrow Lengthscale, smoother fcts.	Squared Error Decomposition
ϵ^2		$\mathbf{X} \in \mathbb{R}^{(d+1) \times n} \beta \in \mathbb{R}^{d+1} \varepsilon \sim \mathcal{N}(0, \mathbb{I}\sigma^2)$	Gaussian Process Regression	-
	Empirical Risk Minimizer (ERM) \hat{f} :	$\mathbf{Y} \mathbf{X}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2 \sim \mathcal{N}(\mathbf{Y}; \mathbf{X}^T \boldsymbol{\beta}, \mathbb{I}_{(d+1)} \boldsymbol{\sigma}^2)$	Applying a kernel, we get:	$\mathbb{E}_D \mathbb{E}_{X,Y} [(\hat{f}(X) - Y)^2] =$ $\mathbb{E}_{X,Y} [(\hat{f}(X) - Y)^2] = \frac{1}{2} \mathbb{E}_{X,Y} [($
Consistent: $\mathbb{P}(\hat{\theta} - \theta^* < \varepsilon) \to 0 \text{ convP}$		MLE: Ordinary Least Squares	$\mathbf{V} = \mathbf{A} \mathbf{P} + \mathbf{a} = \mathbf{A} \mathbf{f} (0 + \mathbf{a} \mathbf{A} - 1 \mathbf{a} \mathbf{f} + \mathbf{a} 2 \mathbf{\pi})$	$\mathbb{E}_{X,Y}[(\mathbb{E}_{Y X}[Y] - Y)^2] \text{ (noise var)}$
Asymp Normal: $(\hat{\theta} - \theta^*)\hat{se}^{-1} \sim \mathcal{N}(0, 1)$	$R(f, \mathcal{D}^{train}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(Y_i, f(X_i))$	OLSE is unbiased, orthogonal projection		$+\mathbb{E}_{X}\mathbb{E}_{D}[(\hat{f}_{D}(X) - \mathbb{E}_{D}[\hat{f}(X)])^{2}]$ (var.)
Rao-Cra.: $\mathbb{E}_{x \theta}[(\theta - \hat{\theta})^2] \ge \frac{(\frac{\partial}{\partial \theta}b_{\hat{\theta}} + 1)^2}{\mathbb{E}_{x \theta}[\Lambda^2]} + b_{\hat{\theta}}^2$	$\hat{R}(\hat{f}, \mathcal{D}^{test}) = \frac{1}{m} \sum_{i=n+1}^{n+m} \mathcal{L}(Y_i, \hat{f}(X_i))$	with lowest variance. differentiate wrt β . \mathcal{L} =RSS(β)= $\sum_{i=1}^{n} (y_i - x_i^T \beta)^2 = (\mathbf{y} - \mathbf{X}\beta)^2$	$[\mathcal{F}^*]$ $[$ K $K(x_*,x_*)+O$ $]$	$+\mathbb{E}_X[(\mathbb{E}_D[\hat{f}_D(X)] - \mathbb{E}_{Y X}[Y])^2]$ (bias ²) With $\mathbb{E}_{Y X}[Y]$ the expected label and
$b_{\hat{\theta}} = \mathbb{E}_{x \theta}[\hat{\theta}] - \theta \qquad \Lambda = \frac{\partial}{\partial \theta} \log p(x \theta)$	Loss Fcts: $\mathcal{L}(y,z)$ $z=w^{\top}x$	Estimator: $\hat{\beta}^{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$	Gaussian Process Prediction	$\mathbb{E}_D[\hat{f}(X)]$ the expected classifier.
$\mathbb{E}_{x m{ heta}}[\Lambda] = 0 o \mathbb{E}_{x m{ heta}}[\Lambda\hat{m{ heta}}] = rac{\partial}{\partialm{ heta}}b_{\hat{m{ heta}}} + 1$	$\mathcal{L} = \mathbb{I}[\operatorname{Sign}(\mathcal{L}) \neq y]$	Prediction: $\hat{y} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$	Given $\mathcal{GP}(\mu, K)$,	p-value
$ \rightarrow \operatorname{Cov}(\Lambda, \hat{\theta}) \rightarrow \operatorname{Cauchy} $	$\mathcal{L}^{\text{hinge}} = \max(0, 1 - yz)$ for SVM's $\mathcal{L}^{\text{percep}} = \max(0, -yz)$	MAP: Ridge Regression (L^2 penalty)	$p(\mathbf{y}_* \mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\sigma}}^2),$	p-value= $\inf\{\alpha : T(X^n) \in \{x T(x) \ge c\}\}$
	$\mathcal{L}^{\text{logistic}} = \log(1 + \exp(-yz))$		$\tilde{\mu} = \mu(x_*) + \mathbf{k}^T (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} (\mathbf{y} - \mu(\mathbf{X})),$	likelihood to accept H_0 . it is the least
$\operatorname{Eff}_{\mathbf{c}} : \operatorname{End}_{\mathbf{c}} = \operatorname{E}_{\mathbf{c}} \left[\frac{\partial}{\partial \theta^2} \right]$		Penalize energy in β . <i>Prior:</i> $\beta \sim \mathcal{N}(0, \lambda^{-}\mathbb{I})$ Loss: $\mathcal{L} = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^{T}\beta$	$ \cdot \sigma^{-} = k(x_{*}, x_{*}) - \mathbf{K}^{-} (\mathbf{K} + \sigma^{-} \mathbf{I})^{-1} \mathbf{k} $ $ \cdot \mathbf{k} = k(x_{*}, x_{*}) - \mathbf{K}^{-} (\mathbf{K} + \sigma^{-} \mathbf{I})^{-1} \mathbf{k} $	probable threshold for rejecting the H_0 .
Efficiency of σ . $e(o_n) = \frac{1}{\operatorname{Var}[\hat{\theta}_n]\mathcal{I}_n(\theta)}$	aCE File I (a De (a Di	Estimator: $\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$	$\mathbf{A} = \kappa(x_i, \mathbf{A}) \mathbf{A}_{ij} = \kappa(x_i, x_j)$ $\tilde{\sigma}^2 = k(x_i, x_i) \mathbf{k}^T (\mathbf{K} + \sigma^2 \mathbf{\pi})^{-1} \mathbf{k}$	Statistical Learning and Validation
(1.2) 2)	$y' = \frac{1+y}{2}, z' = \frac{1+z}{2}$	Estimator: $p = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{y}$	$\mathbf{o}_{ij} = \kappa(x_i, x_j) - \mathbf{\kappa}_i \left(\mathbf{K} + \mathbf{o}^{-1} \right) \mathbf{k}_j$	Find $f: X \to Y$ to minimize expected risk by approximation with empirical risk.

K-Fold Cross Validation

Partition data Z into K equa. subsets: $\mathcal{Z} = \mathcal{Z}_1 \cup \mathcal{Z}_2 \cup \cdots \cup \mathcal{Z}_K, \mathcal{Z}_u \cap \mathcal{Z}_v = \emptyset$ $|\mathcal{Z}_k| \approx n \frac{K-1}{K}$ # of training samples. Learn $\hat{f}^{-\nu}(x) = \operatorname{arg\,min}_{f \in \mathcal{F}} \frac{\sum_{i \notin \mathcal{Z}_{\mathcal{V}}} \mathcal{L}(y_i, f(x_i))}{|\mathcal{Z} - \mathcal{Z}_{\mathcal{V}}|}$

 $\hat{R}^{cv}(\mathcal{A}) = \frac{1}{n} \sum_{i \le n} \mathcal{L}(y_i, \hat{f}^{-\kappa(i)}(x_i))$ Underfits because smaller dataset. **Leave-one-out:** K = n (unbiased but var can be large from correlated datasets)

confident (shows too small bias)!

 $\mathcal{Z}^* = \{\mathcal{Z}_1^*, \cdots \mathcal{Z}_R^*\}$ Bootstrapping of same size as original, drawn with replacement. a sample to have appears in **strong duality** if $\theta(\eta^*)=f(w^*)$ So if we compute the ERM on \mathcal{Z} we could strong duality $\to w^*$: $f(w^*) = L(\eta^*, w^*)$ get 63% accuracy by memorization. Over- and $\alpha_i h_i(w^*) = 0$, $\forall j \leq n$.

Leave-one-out/out of bucket error: compensates by computing the ERM where no memorization was for specific sample. E.g., for classification, like cross- x_i support vectors, $y_i \in \{-1, +1\}$.

$$0.368\hat{R}(A(Z)) + 0.632\hat{R}_{bs}$$

Wald Test: $W = \frac{\hat{\theta} - \theta_0}{\text{s.e.}(\hat{\theta})}$

Bayesian Neural Networks (BNN)

NN: no uncertainty quantification, $L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j$ overconfident, adversarial examples, The optimal hyperplane is given by poor generalization for domain shifts. $\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x_i}$ poster. by variational infer. (min rev KL). $\sigma \leftarrow \sigma - \alpha_t \left(\varepsilon^{\top} \frac{\partial}{\partial w} F(w, \theta) + \frac{\partial}{\partial \sigma} F(w, \theta) \right)$

ITL selects x_n that maximizes mutual information of $y_x = f_x + \varepsilon_x$ about f: $x_n = \arg\max_{x \in S} I(f_A; y_x | D_{n-1})$ If $f \sim GP(\mu, k)$, then:

$$I(f_A; y_x | D_{n-1}) = \frac{1}{2} \log \left(\frac{\text{Var}[y_x | D_{n-1}]}{\text{Var}[y_x | f_A, D_{n-1}]} \right)$$

Safe Bayesian Optimization

$$x_n = \arg\max_{x \in \hat{S}_n = \{x | u_n^g(x) \ge 0\}} u_n^J(x)$$

Batch Active Learning | ProbCover $G=(X,E), E=\{(x,x') \mid ||x-x'|| < \delta\}$

 $L \leftarrow \emptyset$ $\forall i = 1, 2, \dots, b$ $\arg \max_{x \in X} |\{x' \mid (x, x') \in E, x' \in X\}|$ $L \leftarrow L \cup \{\hat{x}\} \mid E \leftarrow E \setminus (\{\hat{x}\} \times (B_{\delta}(\hat{x}) \cap X))$

Max Mean Discrep. $MMD^2(\mathcal{F}, X, Y) =$ $\sup_{\|f\|_{\mathcal{U}} \le 1} [(\mathbb{E}_P[f(x)] - \mathbb{E}_q[f(y)])^2 = 1$

 $(\mathbb{E}_P\langle\phi(x),f\rangle_{\mathcal{H}} - \mathbb{E}_q\langle\phi(y),f\rangle_{\mathcal{H}})^2 =$ $\langle \mu_x - \mu_y, f \rangle_{\mathcal{H}}^2 = \|\mu_x - \mu_y\|_{\mathcal{H}}^2$ = $\mathbb{E}[k(x, x')] + \mathbb{E}[k(y, y')] - 2\mathbb{E}[k(x, y)]$

Convex Optimization Given constrained optimization problem: Use kernel in discriminant function: $\min_{w \in \mathbb{R}^d} f(w) : g_{1:m}(w) = 0, h_{1:n}(w) \le 0$ it is convex if f, $g_{1:m}$, $h_{1:n}$ are convex and E.g solve the XOR Problem with: the feasible region is convex. Lagrange Multiclass SVM The Lagrangian with multipliers $\eta = (\lambda, \alpha)$: $f(w) + \sum_{i \le m} \lambda_i g_i(w) + \sum_{j \le n} \alpha_j h_j(w)$ $\nabla_{w}L(\eta,W) = 0, g_{i}(W) = 0, h_{j}(W) \leq 0, \alpha_{i} \geq 0 \\ \min_{w_{j}} \frac{1}{2} w^{T} w = \min_{\{w_{y}\}_{n=1}^{M}} \sum_{y=1}^{M} w_{y}^{T} w_{y}$ the **Dual Problem** is and satisfies $\forall w$: $\max_{\alpha>0,\lambda} |\theta(\eta):=\inf_w L(\eta,w)| \leq f(w^*)$ bootstrap with prob: $1-(1-n^{-1})\approx 0.632$. Slater's cond. if $\exists w_0$ feasible: $h_{1:n}(w_0)<0$

Support Vector Machine (SVM) Convex constrained optimization problem

with strong duality (if linearly separable). Bias $[\hat{f}(x)] = \frac{1}{B} \sum_{i=1}^{B} \text{Bias}[f_i(x)]$ $\min_{w,w_0|\forall i \le n: y_i(w^\top x_i + w_0) \ge 1} \frac{1}{2} ||w||^2$ $\hat{\mathcal{R}}(\mathcal{A}) = \frac{1}{B} \sum_{b=1}^{B} \sum_{z_i \notin \mathcal{Z}^{*b}} \frac{\mathbb{I}_{c(x_i) \neq y_i}}{B - |\mathcal{Z}^{*b}|} \hat{R}_{0.632} = \underset{\textbf{Lagrangian:}}{\textbf{Lagrangian:}} \frac{\mathcal{L}(w, w_0, \alpha) = \frac{1}{2} \|w\|^2 + \frac{1}{2} \|w\|^2}{\|w\|^2 + \|w\|^2}$ $\sum_{i=1}^{n} \alpha_i (1 - y_i (w^{\top} x_i + w_0)) \quad \bar{\alpha_i} \ge 0.$ \overrightarrow{KKT} : $w^* = \sum_{i=1}^n \alpha_i y_i x_i \quad \sum_{i=1}^n \alpha_i y_i = 0$ *Dual:* $\max_{\alpha > 0: \sum_{i=1}^{n} \alpha_i y_i = 0} L(\alpha)$

BNN: Using p(w) and p(D|w), approx. $w_0^* = -\frac{1}{2}(\min_{y_i=1} \mathbf{w}^{*T} \mathbf{x_i} + \max_{y_i=-1} \mathbf{w}^{*T} \mathbf{x_i})$ affected. **Random Forest** Collection of $\leq |\mathcal{H}_{\varepsilon}|(1-\varepsilon)^m \leq |\mathcal{H}| \exp(-m\varepsilon) \leq \delta$

Optimal Margin: $\mathbf{w}^T \mathbf{w} = \sum_{i \in SV} \alpha_i^*$ Information-based Transductive Lear. $\hat{\mathbf{Discrim}}$: $g^*(\mathbf{x}) = \sum_{i \in SV} y_i \alpha_i^* \mathbf{x_i}^T \mathbf{x_i} + w_0^*$ class = $sign(\mathbf{x}^T\mathbf{w}^* + \mathbf{w}_0^*)$

Soft Margin SVM

Introduce slack to relax constraints. C controls margin maximization vs. Init: $\mathcal{X} = \{(x_1, y_1), \dots, (x_n, y_n)\}, w_i^{(1)} = \frac{1}{n}$ constraint violation.

 $\min_{\xi_i \ge 0, w, w_0 | \forall i \le n: y_i (w^\top x_i + w_0) \ge 1 - \xi_i}$ $\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$ Lagrangian: $L(\mathbf{w}, w_0, \xi, \alpha, \beta) = \frac{1}{2} \mathbf{w}^T \mathbf{w} +$ $C\sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i} [z_{i}(\mathbf{w}^{T}\mathbf{y}_{i} + w_{0}) - 1 + \xi_{i}]$ Dual Problem same as usual SVM but with Best approx. at log-odds ratio. supplementary constraint: $C \ge \alpha_i \ge 0$

 $\xi = 0, \xi_i(\alpha_i - C) = 0$ You should solve α via quadratic optimisation. Optimal hyperplane and classification as normal SVM. Optimal slack: $\xi_i^* = \max(0, 1 - y_i(w^{*T}x_i + w_0^*))$ $\xi_i^* = \mathcal{L}^{\text{hinge}}(y_i, w^{*T}x_i + w_0^*)$

Non-Linear SVM

 $g(\mathbf{x}) = \sum_{i, i=1}^{n} \alpha_i z_i K(\mathbf{x_i}, \mathbf{x})$ $K(x,y) = (1 + x_1y_1 + x_2y_2)^2$

 $L(\eta, w) = \forall \text{class } y \in \{1, 2, \dots, M\} \text{ we introduce } \mathbf{w}$ and define our problem: (w is v-stacked) Emp. err.: $\hat{\mathcal{R}}_n(\hat{c}_n) = \frac{1}{n} \sum_{i=1}^n 1\{\hat{c}_n(x_i) \neq y_i\}$ s.t. $(\mathbf{w}_{v_i}^T \mathbf{x}_i + w_{v_i,0})$ – $\max_{\mathbf{v}\neq\mathbf{v}_i}(\mathbf{w}_{\mathbf{v}}^T\mathbf{x}_i+w_{\mathbf{v},0})\geq 1, \forall \mathbf{x}_i\in\mathcal{X}$ classification: $\hat{y} = argmax_v(w_v^T x + w_{v,0})$ **Ensemble Methods**

Combining Regressors

Set of estimators: $\hat{f}_1(x), \dots, \hat{f}_B(x)$ simple average: $\hat{f}(x) = \frac{1}{B} \sum_{i=1}^{B} \hat{f}_i(x)$ $\mathbb{V}[\hat{f}(x)] \approx \frac{\sigma^2}{R}$ if the estimators are uncorrelated.

Combining Classifiers

Infer $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b c_b(x))$ with weights $\{\alpha_b\}_{b=1}^B$ Requires diversity of the classifiers.

Input: classifiers $c_1(x), \dots, c_B(x)$

Bagging

Train on bootstrapped subsets. Covariance small, variance similar, bias weakly $\hat{R}(h) = 0 \le \sum_{h \in \mathcal{H}_s} P(\hat{R}(h) = 0)$ uncorr. decision trees. Partition data space Only Support Vectors $(\alpha_i^* \neq 0)$ contribute. recursively. Grow the tree sufficiently deep to reduce bias. (random sample cuts to VC dimension reduce bias). Prediction with voting.

Boosting (Weak to avoid overfitting) Combine uncorr. weak learners in sequence. intervals in R: V_C =2 For k intervals, 2k half Coeff. of \hat{c}_{b+1} depend on \hat{c}_b 's results **AdaBoost** (minimizes exp. loss)

Fit $\hat{c}_b(x)$ to \mathcal{X} weighted by $w^{(b)}$ $\varepsilon_b = \sum_{i=1}^n w_i^{(b)} \mathbb{I}_{\{\hat{c}_b(x_i) \neq y_i\}} / \sum_{i=1}^n w_i^{(b)}$ $\alpha_b = \log \frac{1-\varepsilon_b}{\varepsilon_b} > 0$

 $w_i^{(b+1)} = w_i^{(b)} \exp(\alpha_b \mathbb{I}_{\{\hat{c}_b(x_i) \neq y_i\}})$ return $\hat{c}_B(x) = \operatorname{sgn}(\sum_{b=1}^B \alpha_b \hat{c}_b(x))$

Like stagewise-additive modeling.

KTT Conditions: $\alpha_i^*(z_i(w^Ty_i+w_0)-1+$ **Difference** Boosting: identical \mathcal{D} , $\forall c(x)$ prediction weighted on accuracy, Bagging: varies \mathcal{D} , gives same importance. Notes Repeatedly draw from $\operatorname{Beta}(x|1,\alpha)$ AdaBoost gives high weight to hard-to- with fixed α , but from reducing stick: classify samples (maybe outliers). Bagging, $\rho_k = \beta_k (1 - \sum_{i=1}^{k-1} \rho_i)$. The prior: if imbalanced dataset maybe \mathcal{Z} missing a class. then, make the bootstrap size large enough s.t. at least one point is included. $\mathbb{P}[z_i = k | z_{-i}, \alpha] = \begin{cases} \frac{N_{k,-i}}{\alpha + N - 1} \\ \frac{\alpha}{\alpha + N - 1} \end{cases}$

Logistic Regression

$$\begin{split} \log \frac{P(y=1|x)}{P(y=-1|x)} &= \sum_{b=1}^{B} c_b(x) =: F(x) \\ P(y=1|x) &= \frac{exp(F(x))}{1+exp(F(x))} \end{split}$$
 PAC learning

Exp./Gen. err: $\mathcal{R}(\hat{c}_n) = \mathbb{P}_{X,Y}(\hat{c}_n(x) \neq c(x))$ Init: assign all data to a cluster, with prior Eff. PAC learnable: A can learn a concept class \mathcal{C} from \mathcal{H} if, given a sufficiently large sample, it outputs a hypothesis that

generalizes well with high probability. $0 < \varepsilon < \frac{1}{2}, 0 < \delta < \frac{1}{2}, (X, Y) \in \mathcal{X} \times \{0, 1\}$: If $n \geq poly(\frac{1}{\varepsilon}, \frac{1}{\delta}, dim(\mathcal{X})),$ $\mathbb{P}_{X,Y}(\mathcal{R}(\hat{c}_n) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) \leq \varepsilon) \geq 1 - \delta.$

VC Inequality Select ERM. Under uniform convergence:

 $\mathbb{P}\left(\mathcal{R}(\hat{c}_m^*) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) > \varepsilon\right) <$ $\mathbb{P}\left(\sup_{c\in\mathcal{C}}|\hat{\mathcal{R}}_n(c)-\mathcal{R}(c)|>\frac{\varepsilon}{2}\right)$: $P(\sup |\ldots| > \varepsilon) \le 2|\mathcal{C}| \exp(-2n\varepsilon^2)$

 $P(\sup |\ldots| > \varepsilon) \le 9n^{V_C} \exp\left(-\frac{n\varepsilon^2}{32}\right)$

 $\mathbb{P}[\mathcal{R}(\hat{c}) - \inf_{c \in \mathcal{C}} \mathcal{R}(c) > \varepsilon] < 1 - \delta.$ Def R.H.S. $\leq \delta$: $\varepsilon = \sqrt{\frac{\log N - \log(\delta/2)}{2n}}$

Consider $\mathcal{H}_{\varepsilon} = \{h \in \mathcal{H} : R(h) > \varepsilon\}$. We bound the probability of bad learning for consistent learn.: $P(\exists h \in \mathcal{H}_{\varepsilon})$:

$\Rightarrow m \geq \frac{1}{\varepsilon} \left(\log(|\mathcal{H}|) + \log\left(\frac{1}{\delta}\right) \right)$

classifier can shatter any n but no some n+1 points. **Examples:** $(-\infty, a] = 1$ all planes in R^2 : 3 for unit circles 3 convex polygons in R^2 : ∞ convex polygons in R^2 with at most k vertices: 2k + 1

Nonparametric Bayesian methods

Beta $(x|a,b) = B(a,b)^{-1}x^{a-1}(1-x)^{b-1}$: prob. of Bernoulli proc. after observing a-1 success and b-1 failures. Multivariate case: Dirichlet distr. that will give multivar. probs, based on finite counts! But we don't know exactly which multivar. distribution works. With more data, we update the Dirichlet distribution. Is a conjugate prior.

Stick-breaking Dirichl. proc.

Final Gibbs sampler: $\mathbb{P}[z_i = k | z_{-i}, \alpha, \mu] =$ $\begin{cases} \frac{N_{k,-i}}{\alpha+N-1} p(x_i|x_{-i,k},\mu) \\ \frac{\alpha}{\alpha+N-1} p(x_i,\mu) \end{cases}$ existing k otherwise Gibbs sampling

 π_i , with $\sum_{k=1}^K \pi_i < 1$ (s.t. new clusters possible). E.g. with stick-breaking. Then remove x from k and compute new θ_k . then compute Gibbs sampler prob. (CRP), and sample the new cluster assignment $z_i \sim p(z_i|x_{-i},\theta_k)$. If cluster is empty, remove it and decrease K.