Lecture 15b: Reinforcement Learning

CSCI 360 Introduction to Artificial Intelligence USC

Here is where we are...

	3/1		Project 2 Out		
9	3/4	3/5	Quantifying Uncertainty	[Ch 13.1-13.6]	
	3/6	3/7	Bayesian Networks	[Ch 14.1-14.2]	
10	3/11	3/12	(spring break, no class)		
	3/13	3/14	(spring break, no class)		
11	3/18	3/19	Inference in Bayesian Networks	[Ch 14.3-14.4]	
	3/20	3/21	Decision Theory	[Ch 16.1-16.3 and 16.5]	
	3/23		Project 2 Due		
12	3/25	3/26	Advanced topics (Chao traveling to National Science Foundation)		
	3/27	3/28	Advanced topics (Chao traveling to National Science Foundation)		
	3/29		Homework 2 Out		
13	4/1	4/2	Markov Decision Processes	[Ch 17.1-17.2]	
	4/3	4/4	Decision Tree Learning	[Ch 18.1-18.3]	
	4/5		Homework 2 Due		
	4/5		Project 3 Out		
14	4/8	4/9	Perceptron Learning	[Ch 18.6]	
	4/10	4/11	Neural Network Learning	[Ch 18.7]	
15	4/15	4/16	Statistical Learning	[Ch 20.2.1-20.2.2]	
	4/17	4/18	Reinforcement Learning	[Ch 21.1-21.2]	
16	4/22	4/23	Artificial Intelligence Ethics		
	4/24	4/25	Wrap-Up and Final Review		
	4/26		Project 3 Due		
	5/3	5/2	Final Exam (2pm-4pm)		

Outline

- What is Al?
- Part I: Search
- Part II: Logical reasoning
- Part III: Probabilistic reasoning
- Part IV: Machine learning
 - Decision Tree Learning
 - Perceptron Learning
 - Neural Network Learning
 - Statistical Learning

Reinforcement Learning

Example search problem

- Initial state: (1,1)
- Goal state: (4,3) utility +1
 - (4,2) utility -1

- Actions:
 - Up, Down, Left, Right reward -0.04
 - (won't move it running into the wall)
- Transition model:
 - If RESULT(s, a) is deterministic, then it's a search problem

Example adversarial search problem

- Initial state: (1,1)
- Goal state: (4,3) utility +1
 - (4,2) utility -1

- Actions:
 - Up, Down, Left, Right reward -0.04
 - (won't move it running into the wall)
- Transition model:
 - If RESULT(s, a) is non-deterministic,
 then it's an adversarial search problem

Example MDP (Markov Decision Process) problem

- Initial state: (1,1)
- Goal state: (4,3) utility +1
 - (4,2) utility -1

- Actions:
 - Up, Down, Left, Right reward -0.04
 - (won't move it running into the wall)
- Transition model:
 - If RESULT(s, a) is non-deterministic, and probabilistic, then it's MDP (Markov decision process)

Example reinforcement learning problem

- Initial state: (1,1)
- Goal state: (4,3) utility +1
 - (4,2) utility -1

- Actions:
 - Up, Down, Left, Right reward -0.04
 - (won't move it running into the wall)
- Transition model:
 - If RESULT(s, a) is unknown, then it's reinforcement learning

Markov decision process (MDP)

- MDP is a sequential decision problem that has
 - a fully observable, stochastic environment
 - a Markovian transition model, and
 - the additive rewards
- State space formalism
 - Initial state (s0)
 - Actions(s) = {a1, a2, ... } for each state
 - Transition model P(s' | s, a) for each state and each action
 - Reward function R(s)

Reinforcement learning: Compared to MDP

- MDP is a sequential decision problem that has
 - a fully observable, stochastic environment
 - a Markovian transition model, and
 - the additive rewards
- State space formalism
 - Initial state (s0)
 - Actions(s) = {a1, a2, ... } for each state
 - Transition model P(s' | s, a) for each state and each action
 - Reward function R(c)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute U*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute U*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute U*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Difference between R(s) and U(s)

- **R(s)** the "**short-term**" reward for being in state (s)
- U(s) the "long-term" total reward from (s) onward

Given U(s), compute optimal policy $\pi^*(s)$

Pick the action with the maximal expected utility (MEU)

$$\pi^*(s) = \operatorname*{argmax}_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')$$

Up:

Down:

Left:

Right:

_				
3	0.812	0.868	0.918	+1
2	0.762		0.660	-1
1	0.705	0.655	0.611	0.388
'	1	2	3	4

Given U(s), compute optimal policy $\pi^*(s)$

Pick the action with the maximal expected utility (MEU)

$$\pi^*(s) = \operatorname*{argmax}_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')$$

Up:

$$0.8*0.918 + 0.1*0.868 + 0.1*1 = 0.9212$$

Down:

$$0.8*0.660 + 0.1*0.868 + 0.1*1 = 0.7148$$

Left:

$$0.8*0.868 + 0.1*0.660 + 0.1*0.918 = 0.8522$$

Right:

$$0.8*1 + 0.1*0.918 + 0.1*0.660 = 0.9578$$

The problem is that "we don't have U(s)" in the first place

Bellman equation (1957)

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' | s, a) U(s')$$

Example:

$$U(1,1) = -0.04 + \gamma \max[0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), (Up) \\ 0.9U(1,1) + 0.1U(1,2), (Left) \\ 0.9U(1,1) + 0.1U(2,1), (Down) \\ 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)]. (Right)$$

Solutions to these equations are unique!

Bellman equation (1957)

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' | s, a) U(s')$$

You can't directly solve these equations due to the non-linear (max) operation

Example:

$$U(1,1) = -0.04 + \gamma \max[0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), (Up) \\ 0.9U(1,1) + 0.1U(1,2), (Left) \\ 0.9U(1,1) + 0.1U(2,1), (Down) \\ 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)]. (Right)$$

Solutions to these equations are unique!

Policy evaluation

• Given a policy $\pi(s)$, compute U(s)

$$U_i(s) = R(s) + \gamma \sum_{s'} P(s' | s, \pi_i(s)) U_i(s')$$

This is a set of *linear* equations, which is polynomial time solvable (by LP solver); in contrast, the Bellman equation $U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')$ is nonlinear.

Policy evaluation: example

But you do not know the **transition model** P(s'|s,a)

• Given a policy $\pi(s)$, compute U(s)

$$U_i(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi_i(s)) U_i(s')$$

This is a set of *linear* equations, which is polynomial time solvable (by LP solver); in contrast, the Bellman equation $U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')$ is nonlinear.

$$U_{i}(1,1) = -0.04 + 0.8U_{i}(1,2) + 0.1U_{i}(1,1) + 0.1U_{i}(2,1) ,$$

$$U_{i}(1,2) = -0.04 + 0.8U_{i}(1,3) + 0.2U_{i}(1,2) ,$$

$$\vdots$$

You could have directly solved these equations

Reinforcement learning

Passive RL

 The policy is fixed, but the transition model is unknown, and we want to learn the utility U(s)

Active RL

 Need to learn a policy (i.e., deciding what actions to take)

Reinforcement learning

Passive RL

 The policy is fixed, but the transition model is unknown, and we want to learn the utility U(s)

Active RL

 Need to learn a policy (i.e., deciding what actions to take)

Passive Reinforcement Learning

Objective

– Assume policy $\pi(s)$ is fixed, but transition model is unknown, and we would like to directly learn the utility U(s)

Passive Reinforcement Learning

Objective

 Assume policy π(s) is fixed, but transition model is unknown, and we would like to directly learn the utility U(s)

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \ . \end{array}$$

- Learn a map from states to utilities
 - $-(1,1) \rightarrow$
 - $-(1,2) \rightarrow$
 - $(1,3) \rightarrow$
 - - ...

$$\begin{array}{l} (1,1) \cdot .04 \leadsto (1,2) \cdot .04 \leadsto (1,3) \cdot .04 \leadsto (1,2) \cdot .04 \leadsto (1,3) \cdot .04 \leadsto (2,3) \cdot .04 \leadsto (3,3) \cdot .04 \leadsto (4,3) + 1 \\ (1,1) \cdot .04 \leadsto (1,2) \cdot .04 \leadsto (1,3) \cdot .04 \leadsto (2,3) \cdot .04 \leadsto (3,3) \cdot .04 \leadsto (3,2) \cdot .04 \leadsto (3,3) \cdot .04 \leadsto (4,3) + 1 \\ (1,1) \cdot .04 \leadsto (2,1) \cdot .04 \leadsto (3,1) \cdot .04 \leadsto (3,2) \cdot .04 \leadsto (4,2) \cdot 1 \end{array} .$$

- Learn a map from states to utilities
 - $-(1,1) \rightarrow 0.76$
 - $-(1,2) \rightarrow$
 - $(1,3) \rightarrow$
 - ...

$$\begin{array}{l} (1,1) - .04 \leadsto (1,2) - .04 \leadsto (1,3) - .04 \leadsto (1,2) - .04 \leadsto (1,3) - .04 \leadsto (2,3) - .04 \leadsto (3,3) - .04 \leadsto (4,3) + 1 \\ (1,1) - .04 \leadsto (1,2) - .04 \leadsto (1,3) - .04 \leadsto (2,3) - .04 \leadsto (3,3) - .04 \leadsto (3,3) - .04 \leadsto (3,3) - .04 \leadsto (4,3) + 1 \\ (1,1) - .04 \leadsto (2,1) - .04 \leadsto (3,1) - .04 \leadsto (3,2) - .04 \leadsto (4,2) - 1 \end{array}.$$

Learn a map from states to utilities

```
- (1,1) \rightarrow 0.72
- (1,2) \rightarrow (0.76 + 0.84) / 2 = 0.80
- (1,3) \rightarrow
```


$$\begin{array}{l} (1,1) \cdot .04 \leadsto (1,2) \cdot .04 \leadsto (1,3) \cdot .04 \leadsto (1,2) \cdot .04 \leadsto (1,3) \cdot .04 \leadsto (2,3) \cdot .04 \leadsto (3,3) \cdot .04 \leadsto (4,3) + 1 \\ (1,1) \cdot .04 \leadsto (1,2) \cdot .04 \leadsto (1,3) \cdot .04 \leadsto (2,3) \cdot .04 \leadsto (3,3) \cdot .04 \leadsto (3,3) \cdot .04 \leadsto (3,3) \cdot .04 \leadsto (4,3) + 1 \\ (1,1) \cdot .04 \leadsto (2,1) \cdot .04 \leadsto (3,1) \cdot .04 \leadsto (3,2) \cdot .04 \leadsto (4,2) \cdot 1 \end{array} .$$

Learn a map from states to utilities

$$- (1,1) \rightarrow 0.72$$

$$- (1,2) \rightarrow (0.76 + 0.84) / 2 = 0.80$$

$$- (1,3) \rightarrow (0.80 + 0.88) / 2 = 0.84$$

$$\begin{array}{l} (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (2,1) \text{-.04} \leadsto (3,1) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (4,2) \text{-1} \end{array} .$$

Learn a map from states to utilities

$$- (1,1) \rightarrow 0.76$$

$$-(1,2) \rightarrow (0.76 + 0.84) / 2 = 0.80$$

$$- (1,3) \rightarrow (0.80 + 0.88) / 2 = 0.84$$

- ...

Problem: misses important information - utilities of states are NOT independent!

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) U^{\pi}(s')$$

$$\begin{array}{l} (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (2,1) \text{-.04} \leadsto (3,1) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (4,2) \text{-1} \end{array} .$$

- Learn a map from states to utilities
 - $(1,1) \rightarrow 0.76$
 - $(1,2) \rightarrow (0.76 + 0.84) / 2 = 0.80$
 - $(1,3) \rightarrow (0.80 + 0.88) / 2 = 0.84$

Problem: misses important information – utilities of states are NOT independent!

Could have updated U(1,1) based on previous value of U(1,2) but it didn't...

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) U^{\pi}(s')$$

$$(1,1)_{-.04} \leadsto (1,2)_{-.04} \leadsto (1,3)_{-.04} \leadsto (1,2)_{-.04} \leadsto (1,3)_{-.04} \leadsto (2,3)_{-.04} \leadsto (3,3)_{-.04} \leadsto (4,3)_{+1}$$

$$(1,1)_{-.04} \leadsto (1,2)_{-.04} \leadsto (1,3)_{-.04} \leadsto (2,3)_{-.04} \leadsto (3,3)_{-.04} \leadsto (3,2)_{-.04} \leadsto (3,3)_{-.04} \leadsto (4,3)_{+1}$$

$$(1,1)_{-.04} \leadsto (2,1)_{-.04} \leadsto (3,1)_{-.04} \leadsto (3,2)_{-.04} \leadsto (4,2)_{-1}.$$

Question

- While learning *U(s)*, how to leverage state dependency (e.g., Bellman equation) to speed up the iterations?
 - Without it, "Direct Utility Estimation" method is slow to converge

Adaptive dynamic programming (ADP)

- Learn the transition model P(s' | s,a) first
 - Input: a "state-action" pair (s,a)
 - Output: a new state s'
 - Treat it as a table of probabilities
 - Count how often each action outcome s'occurs, given (s,a)

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \end{array}.$$

P((2,3) | (1,3), Right) is estimated to be 2/3

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) U^{\pi}(s')$$

Question

- How do you count?
 - Often times, the results need to be normalized
 - In other words, we want frequency (e.g., P(s' | s,a))

Example: Expected Age

Goal: Compute expected age of this **CS 360** students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

Why does this work? Because eventually you learn the right model.

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Question

- How to compute the "moving average"?
 - Don't want to wait for all samples to come in
 - Need to have the average of samples seen so far

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Temporal-difference learning

- Idea: learn from every experience
 - Update U(s) each time we experience a transition (s, a, s', r)
 - Likely outcome (s') will contribute more often
- Adjust value based on the value of successor state
 - Moving average

Sample of U(s):
$$sample = R(s) + \gamma U^{\pi}(s')$$

Update to U(s):
$$U^{\pi}(s) = (1 - \alpha) U^{\pi}(s) + (\alpha) sample$$

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

Temporal-difference learning (example)

- Suppose that, after the 1st trial, we have
 - U(1,3) = 0.84
 - U(2,3) = 0.92
- In the 2^{nd} trial, since transition $(1,3) \rightarrow (2,3)$ occurs again
 - U(1,3) = -0.04 + U(2,3) = -0.04 + 0.92 =**0.88**
 - Assume $(\gamma=1)$ for ease of understanding

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

```
\begin{array}{l} (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (1,2) \text{-.04} \leadsto (1,3) \text{-.04} \leadsto (2,3) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (3,3) \text{-.04} \leadsto (4,3) \text{+1} \\ (1,1) \text{-.04} \leadsto (2,1) \text{-.04} \leadsto (3,1) \text{-.04} \leadsto (3,2) \text{-.04} \leadsto (4,2) \text{-1} \end{array}.
```

Temporal-difference learning (example)

- Suppose that, after the 1st trial, we have
 - U(1,3) = **0.84**
 - U(2,3) = 0.92
- In the 2^{nd} trial, since transition $(1,3) \rightarrow (2,3)$ occurs again
 - U(1,3) = -0.04 + U(2,3) = -0.04 + 0.92 =**0.88**
 - Assume $(\gamma=1)$ for ease of understanding

But we could do better

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$
(0.88 - 0.84)

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (1,2)_{\textbf{-.04}} \leadsto (1,3)_{\textbf{-.04}} \leadsto (2,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (3,3)_{\textbf{-.04}} \leadsto (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \leadsto (2,1)_{\textbf{-.04}} \leadsto (3,1)_{\textbf{-.04}} \leadsto (3,2)_{\textbf{-.04}} \leadsto (4,2)_{\textbf{-1}} \ . \end{array}$$

Reinforcement learning

Passive RL

 The policy is fixed, but the transition model is unknown, and we want to learn the utility U(s)

Active RL

 Need to learn a policy (i.e., deciding what actions to take)

Trade-off: exploitation vs. exploration

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: try to explore areas whose badness is not (yet) established, but eventually stop exploring
- Exploration function
 - Takes a value estimate \mathbf{u} and a visit count \mathbf{n} , and returns an optimistic utility, e.g. f(u,n) = u + k/n

Q-learning

- Learn an "action-utility" representation, denoted Q(s,a)
 - Q(s,a) denotes the value of doing action (a) in state (s)

$$U(s) = \max_{a} Q(s, a)$$

- Insight: Agent with Q(s,a) no longer needs P(s' | s,a) for action selection
 - Called "model-free" method

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with U₀(s)
 - Given U_k, calculate the depth k+1 values for all states:

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a)
 - Given Q_k, calculate the depth k+1 Q-values for all Q-states:

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting sub optimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough...
 - In the limit, it doesn't matter how you select actions (!)

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute U*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute U*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute U*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning