Trabalho 2 Grupos e Corpos

Yuri Kosfeld

Junho 2025

Exercício (4.1.8). a) Poderiámos provar utilizando Eisenstein, mas vamos mostrar por um processo analogo a um exemplo dessa seção. Informalmente, sabemos que uma raiz de x^2-3 é $\sqrt{3}$, assim sabemos que o polinomio pode ser reescrito como $x^2-3=(x-\sqrt{3})(x+\sqrt{3})$. Então se $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$, o polinomio é redutivel. Suponha então que $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$. Logo $\exists a,b \in \mathbb{Q}$ tais que $\sqrt{3}=a+b\sqrt{2}$.

$$(\sqrt{3})^2 = (a + b\sqrt{2})^2$$
$$3 = a^2 + 2ab\sqrt{2} + 2b^2$$
$$= (a^2 + 2b^2) + (2ab)\sqrt{2}$$

Assim temos, $a^2 + 2b^2 = 3$ e 2ab = 0. Como 2ab = 0, então ou a = 0 ou b = 0.

- Se a=0, então $2b^2=3\Rightarrow b=\sqrt{3/2}$ e logo $b\notin\mathbb{Q}$, absurdo.
- O caso b=0 é analago ao anterior, também chegando em um absurdo.

Logo $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ e assim o polinomio é irredutivel. b)

$$x^4 - 10x^2 + 1 = (x^2 - 2x\sqrt{3} + 1)(x^2 + 2x\sqrt{3} + 1)$$

 $(x^2-2x\sqrt{3}+1),(x^2+2x\sqrt{3}+1)$ são redutiveis em $\mathbb{Q}[x]$.

Exercício (4.2.8). Seja $a = p_1 p_2 \dots p_k$ em que cada p_i é um primo distinto. Vamos usar o Criterio de Eisenstein. Seja p qualquer p_i da decomposição de a. Temos então que $p \nmid 1$, $p \mid a$ pela hipotese sobre a, mas $p^2 \nmid a$, já que cada primo da decomposição de a é diferente. Logo $x^n - a$ é irredutivel.

Exercício (4.3.4). a) Suponha que G é um subgrupo de L que contém F, ou seja, $F \subset G \subset L$. Pelo Teorema de Extensão de Torres temos que

$$p = [L:F] = [L:G][G:F]$$

Mas como p é primo, a unico possibilidade para esse produto é p e 1. Assim temos dois casos:

- $Se[L:G] = p \ e[G:F] = 1$, então sabemos que G = F.
- $Se[L:G] = 1 \ e[G:F] = p$, então segue que L = G.

O que queriamos. b) Seja $\alpha \in L \setminus F$ e considere $F(\alpha)$. Sabemos que $F \subset F(\alpha) \subset L$. Como vimos do item anterior, temos duas possibilidades, ou $F(\alpha) = F$ ou $F(\alpha) = L$. Mas $\alpha \notin F$, portanto $F(\alpha) \neq F$. Logo $F(\alpha) = L$.

Exercício (4.4.4). Seja L|F uma extensão finita de grau n. Sabemos que se ela é finita então é algebrica. Tome então $\alpha \in L$ e considere $F(\alpha)$. Sabemos que qualquer coleção de n+1 elementos em $F(\alpha)$ é L.D., então temos que $1, \alpha, \ldots, \alpha^n$ são L.D.. Portanto existem $a_0, a_1, \ldots, a_n \in F$ tais que

$$a_0 + a_1\alpha + \dots + a_n\alpha^n = 0$$

Seja então $p(x) = a_0 + a_1x + \cdots + a_nx^n$. Note então que $p(x) \in F[x]$ e $p(\alpha) = 0$, o que queriamos.

Exercício (5.1.4). As raizes da unidade do polinomio $f(x) = x^6 - 1$ são dadas por

$$x = e^{2\pi i k/6}$$
 $k = 0, 1, 2, 3, 4, 5$

Então temos:

1,
$$e^{i\pi/3}$$
, $e^{2i\pi/3}$, -1 , $e^{4i\pi/3}$, $e^{5i\pi/3}$

Note que a primeira raiz complexa é:

$$e^{i\pi/3} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$

O corpo de decomposição de f(x) deve conter todos as raízes. As raizes 1 e -1 já estão em \mathbb{Q} , então precisamos de um corpo $\mathbb{Q}(\alpha)$ tal que possue todas as demais raizes complexas. Note que a primeira raiz complexa pode ser escrita com $i\sqrt{3}$. Além disso, as demais raizes complexas são geradas a partir da primeira, logo $1, i\sqrt{3}$ geram todas as raizes. Portanto o corpo de decomposição de $f \in \mathbb{Q}(i\sqrt{3})$.

Exercício (5.2.4). $\overline{\mathbb{Q}} \mid \mathbb{Q}$ é uma extensão normal que não é finita. Seja $p(x) \in \mathbb{Q}[x]$ o polinomio minimal de $\alpha \in \overline{\mathbb{Q}}$. Como $\overline{\mathbb{Q}}$ é algebricamente fechado, o corpo de decomposição de p está contido em $\overline{\mathbb{Q}}$. Logo a extensão é normal. Para todo p primo, já vimos que $x^p - 2$ é irredutivel em \mathbb{Q} . Temos que $[\mathbb{Q}(x^p - 2) : \mathbb{Q}] = p$. Como temos infinitos primos e $\overline{\mathbb{Q}}$ contém todos os corpos de decomposição dos polinomios dessa forma, segue que o grau da extensão é infinita entre $\overline{\mathbb{Q}}$ e \mathbb{Q} . Portanto é normal mas não é finita.

Exercício (5.3.14). Tome $\alpha \in K$ um algebrico sobre F. Como $K \subset L$, $\alpha \in L$ e portanto é algebrico sobre F. Sabemos que $L \mid F$ é separavel, então o polinomio $p_{\alpha \mid F}$ é separavel. Logo $K \mid F$ é separavel. Tome agora $\beta \in L$ algebrico sobre K. Queremos mostrar que o polinomio minimal de β em K é separavel. Como $L \mid F$ é algebrico. Logo β é algebrico sobre F, portanto $p_{\beta \mid F}$ é separavel. Como $p_{\beta \mid K}$ divide $p_{\beta \mid F}$ e este é separavel, então $p_{\beta \mid K}$ também deve ser separavel.

Exercício (5.4.7). Seja $K = F(\alpha_1, \dots, \alpha_{n-1})$. Como cada α_i é separavel então $K \mid F$ é separavel. Note também que temos $L \mid K \mid F$, e como $L \mid F$ é finito, $K \mid F$ é também finito. Portanto pelo Teorema do Elemento Primitivo, $\exists \theta \in K$ tal que $K = F(\theta)$. Então agora temos $L = K(\alpha_n) = F(\theta)(\alpha_n)$. $\theta \in K$ é separavel sobre F já que $K \mid F$ é separavel. Como a extensão $FF(\theta)(\alpha_n)$ é finita, então $\exists \alpha \in K$ tal que $L = F(\alpha)$.

Exercício (6.1.6). Note que $\sqrt{6}$ e $\sqrt{10}$ geram $\sqrt{15}$, por:

$$\frac{\sqrt{6}\sqrt{10}}{2} = \frac{\sqrt{60}}{2} = \frac{2\sqrt{15}}{2} = \sqrt{15}$$

Então $\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15}) = \mathbb{Q}(\sqrt{6}, \sqrt{10})$. Calculamos agora o grau da extensão: O polinomio minimal de $\sqrt{6}$ e $\sqrt{10}$ são $x^2 - 6$ e $x^2 - 10$. Então

$$[\mathbb{Q}(\sqrt{6},\sqrt{10}):\mathbb{Q}]=[\mathbb{Q}(\sqrt{6},\sqrt{10}):\mathbb{Q}(\sqrt{10})][\mathbb{Q}(\sqrt{10}):\mathbb{Q}]=2\times 2=4$$

Exercício (6.2.3). a) O grau do polinomio $x^4 + x^3 + x^2 + x + 1$ é 4, então $[\mathbb{Q}(w):\mathbb{Q}] = 4$. O polinomio minimal de $\sqrt[5]{2}$ é $x^5 - 2$, com grau 5 então $[\mathbb{Q}(\sqrt[5]{2}):\mathbb{Q}] = 5$. Como $w \notin \mathbb{R}$ então $w \notin \mathbb{Q}(\sqrt[5]{2})$, logo temos:

$$[L:\mathbb{Q}] = [\mathbb{Q}(w, \sqrt[5]{2}) : \mathbb{Q}(w)][\mathbb{Q}(w) : \mathbb{Q}] = 5 \times 4 = 20$$

b) Todas as raizes de x^5-2 são $w\sqrt[5]{2}$ com $w=e^{2\pi i/5}$. Então $\mathbb{Q}(w,\sqrt[5]{2})$ é o corpo de decomposição.

Exercício (6.3.2). a) Os polinomios minimais de i e $\sqrt{2}$ são x^2+1 e x^2-2 . Então o grau da extensão é 4, portanto $|Gal(\mathbb{Q}(i,\sqrt{2})|\mathbb{Q})|=4$. As raizes de x^2+1 são i e -i. Já as raizes de x^2-2 são $\sqrt{2}$ e $-\sqrt{2}$. Então $\sigma(i) \in \{i,-i\}$ e fixa $\sqrt{2}$. E também $\sigma(\sqrt{2}) \in \{\sqrt{2},-\sqrt{2}\}$ fixa i. Logo $\sigma^2=Id$. Portanto temos o grupo de Klein, V_4 . b) Já analisamos o caso para i. O polinomio minimal de $\sqrt[4]{2}$ é x^4-2 . Logo o grau da extensão é δ e portanto $|Gal(\mathbb{Q}(i,\sqrt[4]{2})|\mathbb{Q})|=8$. Todas as raizes de x^4-2 são $\sqrt[4]{2},-\sqrt[4]{2},i\sqrt[4]{2},-i\sqrt[4]{2}$. Analogo ao caso anterior temos $\{(1234),(24)\}=D_4$.