大数据分析

Scalable Machine Learning decision tree 刘盛华

Outline

- 决策树 (Decision Tree)
- 随机森林 (Random Forest)
- 梯度提升树 (Gradient Boosted Decision Tree (GBDT))

Cho-Jui Hsieh, UC Davis ECS171: Machine Learning

Decision Tree

- 每个节点负责检查特征 x_i:
 - □ 若 x_i < threshold , 选择左子树
 - 若 x_i ≥ threshold,选择右子树

Decision Tree

- 计算能力:
 - □ 决策树是非线性分类器
 - □ 决策树更具备可解释性
 - □ 决策树天然适合处理类别型特征
- 计算效率:
 - □ 训练: 较慢
 - □ 预测: 较快
 - 决策树有h 步操作operations (h: 树的深度,通常≤15)

划分节点

- 分类树: 依照使数据的熵最大的准则划分节点
- S表示一个节点中的全部样本,每个样本的标签 c = 1,···

Entroy:
$$H(S) = -\sum_{c=1}^{C} p(c) \log p(c)$$
,

- p(c)表示所有样本中属于类别c的样本所占比例. □ 若所有样本属于同一类别, Entropy=0

 - □ 若 p(1) = ··· = p(C) , Entropy最大

信息增益

■ 划分 S → S1, S2的熵的平均值为:

$$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

■ 信息增益:评价划分方式的好坏

$$H(S) - \left((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2) \right)$$

节点划分

- 给定当前节点,如何选择最优划分方法?
- 对所有特征和阈值:
 - □ 计算按照每个特征及阈值划分后的信息增益
 - □ 选择最优划分(最大化信息增益)
- 对n个样本和d个特征: 时间复杂度 O(nd)

回归树

- 为每个叶子节点赋一个数值
- 通常每个叶子节点取值为它包含的所有y个样 本的平均(最小化平方误差)

回归树

Objective function:

$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + (\text{Regularization})$$

The quality of partition $S = S_1 \cup S_2$ can be computed by the objective

where
$$y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i$$
, $y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i$

每个划分集的方差最小

Find the best split:

Try all the features & thresholds and find the one with minimal objective function

决策树的超参数

- 最大树深: (通常~10)
- 分割节点所需的最小样本数: (10, 50, 100)
- 单决策树通常效果有限…
- 是否可以构建多棵决策树,然后集成?

随机森林

- 随机森林 (多决策树通过自助法集成 (Bootstrap ensemble)):
 - □ 创建τ棵树
 - □ 对每棵树, 采样一个数据子集 S; 和特征子集 D; 用来训练
- □ 预测: 取7棵树的结果的平均
- 随机森林的优点:
 - □ 避免过拟合
 - □ 改善稳定性和准确率
- 有很好的软件包:
 - □ R: "randomForest" package
 - Python: sklearn

Outline

- 决策树 (Decision Tree)
- 随机森林 (Random Forest)
- 梯度提升树 (Gradient Boosted Decision Tree (GBDT))

Cho-Jui Hsieh, UC Davis ECS171: Machine Learning

通过MapReduce构建决策树

- Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB '09]
 - A sequence of MapReduce jobs that builds a decision
 - Spark MLlib Decision Trees are based on PLANET

Outline

- 决策树 (Decision Tree)
- 随机森林 (Random Forest)
- 梯度提升树 (Gradient Boosted Decision Tree (GBDT))

Cho-Jui Hsieh, UC Davis ECS171: Machine Learning

│提升树(Boosted Decision Tree)

■ Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \underset{F}{\operatorname{argmin}} \sum_{i=1}^n \ell(\mathbf{y}_i, F(\mathbf{x}_i))$$
 with $F(\mathbf{x}) = \sum_{m=1}^T f_m(\mathbf{x})$

(each f_m is a decision tree)

- \blacksquare Direct loss minimization: at each stage m, find the best function to
 - solve $f_m = \underset{f_m}{\operatorname{argmin}}_{f_m} \sum_{i=1}^N \ell(y_i, F_{m-1}(\mathbf{x}_i) + f_m(\mathbf{x}_i))$ update $F_m \leftarrow F_{m-1} + f_m$

 $F_m(\mathbf{x}) = \sum_{i=1}^m f_i(\mathbf{x})$ is the prediction of \mathbf{x} after m iterations.

- Two problems:
 - Hard to implement for general loss
 - Tend to overfit training data

梯度提升树 (GBDT)

Key idea:

- Each base learner is a decision tree
- Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial E}$

梯度提升树 (GBDT)

Key idea:

- Each base learner is a decision tree
- Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

$$F_{m-1}(x_i) = \sum\nolimits_{j=1}^{m-1} f_j(x_i) \qquad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i) = F_{m-1}(x_i)}$$

梯度提升树 (GBDT)

Key idea:

- Each base learner is a decision tree
- Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial E}$

$$F_{m-1}(x_i) = \sum\nolimits_{j=1}^{m-1} f_j(x_i) \qquad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i) = F_{m-1}(x_i)}$$

梯度提升树 (GBDT)

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

梯度提升树 (GBDT)

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial f}$

Final prediction $F(x_i) = \sum_{j=1}^{T} f_j(x_i)$

Questions?