Работа 3.6.1

Спектральный анализ электрических сигналов.

Малиновский Владимир

galqiwi@galqiwi.ru

Цель работы: исследование спектра колебаний электрических сигналов. В работе используются: персональный компьютер; USB-осциллограф АКИП-4107; функциональный генератор WaveStation2012; соединительные кабели.

Идея

Разложение сложных сигналов на периодические колебания

Используется разложение в сумму синусов и косинусов с различными аргументами или, как чаще его называют, разложение в ряд Фуръе.

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1=\frac{2\pi}{T}$, где T — период повторения импульсов. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$
 (1)

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n).$$
 (2)

Если сигнал чётен относительно t=0, в тригонометрической записи остаются только члены с косинусами. Для нечетной наоборот.

Коэффициенты определяются по формуле

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
(3)

Здесь t_1 — время, с которого мы начинаем отсчет.

Сравнив формулы (1) и (2) можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2},$$

$$\psi_n = \arctan \frac{b_n}{a_n}.$$
(4)

Периодическая последовательность прямоугольных импульсов

Введем величину: $\Omega_1 = \frac{2\pi}{T}$, где T — период повторения импульсов.

Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}.$$
 (5)

Здесь V_0 - амплитуда сигнала.

Поскольку наша функция четная, то $b_n = 0$.

Пусть T кратно τ . Тогда введем ширину спектра, равную $\Delta\omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедиться при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1. \tag{6}$$

Периодическая последовательность цугов

Возьмём цуги колебания $V_0\cos(\omega_0 t)$ с длительностью цуга τ и периодом повторений T.

Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}} + \frac{\sin\left[\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}} \right).$$

$$(7)$$

Пусть T кратно τ . Тогда спектры последовательности прямоугильных сигналов и цугов аналогичны, но максимумы сдвинуты на ω_0 .

Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t. \tag{8}$$

Коэффициент m называется глубиной модуляции. При m<1 амплитуда меняется от минимальной $A_{min}=A_0(1-m)$ до максимальной $A_{max}=A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}. (9)$$

Простым тригонометрическим преобразованием уравнения (8) можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
 (10)

Метод, результаты и обработка

Исследование спектра периодических последовательностей прямоугольных импульсов

Устанавливаем прямоугольные колебания с $\nu_{\text{повт}}=1$ к Γ ц (период T=1 мс) и длительностью импульса $\tau=100$ мкс.

Получаем на экране спектр сигнала и, изменяя либо τ , либо $\nu_{\text{повт}}$, наблюдаем, как изменяется спектр.

Из данных видно, что, при увеличении au, уменьшается $\Delta
u$, а при увеличении $u_{\text{повт}}$, увеличивается расстояние между пиками.

Измерим зависимость $\Delta \nu$ от τ :

τ , MKC	ν_0 , к Γ ц	$\Delta \nu_0$, к Γ ц	$1/\nu_0$, MKC	$\Delta 1/\nu_0$, MKC
50.0	1.0	30	40.0	0
50.0	1.2	17	59	3
50.0	1.4	13	77	6
50.0	1.6	10	100.0	0
50.0	1.8	8	125	16
50.0	2.0	7	140	20
50.0	3.0	6	170	30
50.0	4.0	6	170	30
50.0	5.0	5	200.0	0

Из графика $\Delta\nu\cdot\tau=1.004\pm0.014,$ что подтверждает соотношение неопределенностей.

Исследование спектра периодической последовательности цугов

Посмотрим на последовательность цугов с характерными параметрами: $\nu_0=50$ к Γ ц частота повторения импульсов $f_{\text{повт}}=1$ к Γ ц и исследуем спектр этого сигнала для разных длительностей импульса:

Из данных видно, что при изменении au значение $\Delta\omega$ обратнопропорционально меняется.

Рассмотрим поведение спектрограммы при фиксировнном значении τ и меняющемся значении ν_0 :

Из данных видно, что при изменении ν_0 картина смещается без изменения расстояния между спектральными компонентами.

Рассмотрим то, как это расстояние меняется при изменении $f_{\text{повт}}$:

$f_{\text{повт}}$	ν , к Γ ц
0.5	0.5
1.0	1.0
2.0	2.0
4.0	4.0
5.0	5.0

Погрешность результатов определяется погрешностью генератора — $0.5~\Gamma$ ц.

$$\frac{f_{\text{повт}}}{\nu, \text{к}\Gamma\text{ц}} = 1 \pm 0.1\%,$$

что согласуется с теорией.

Исследование спектра амплитудно модулированного сигнала

Рассмотрим амплитудно промодулированную синусоиду с параметрами $\nu_0=25$ к Γ ц, $\nu_{\text{мод}}=1$ к Γ ц:

Посмотрим на спектрограмму этого сигнала: <тут должен быть скрин со спектрограммой, но у меня его нет>

Посмотрим зависимость отношения амплитуд $k = A_{\text{бок}}/A_{\text{осн}}$ у боковых и остовной частоты от параметра $m = (A_{max} - A_{min})/(A_{max} + A_{min})$.

$A_{max} - A_{min}$, B	$A_{\text{бок}}, B$	m	k
0.2	0.0160	0.1	0.0497
0.6	0.0470	0.3	0.1460
1.0	0.0750	0.5	0.2329
1.4	0.1070	0.7	0.3323
1.8	0.1390	0.9	0.4317
2.0	0.1530	1.0	0.4752

Из графика

$$\frac{k}{m} = 0.476 \pm 0.015,$$

что сходится с теоретическим значением 0.5.

Вывод

В данной работе мы изучили понятие спектра и спектрального анализа, а также исследовали спектральный состав периодических электрических сигналов.

А именно, мы посмотрели на прямоугольные импульсы, цуги гармонических колебаний, а также гармонические сигналы, модулированные по амплитуде. Кроме того, нами был экспериментально проверен частный случай выполнения соотношения неопределённости.