Оглавление

1.	Математика	2
	1.1. Математический анализ	2
	1.2. Дискретная математика и математическая логика	5
	1.3. Алгебра и теория чисел	7
	1.4. Теория вероятностей	13
2.	Алгоритмы и структуры данных	16
	2.1. Оценка алгоритмов	16
	2.2. Простейшие алгоритмы	16
	2.3. Простейшие структуры данных	17
3.	Программирование	18

1. Математика

1.1. Математический анализ

Предел

Предел последовательности

Число A будем называть **пределом последовательности** $\{x_n\}_{n=1}^{n=\infty}$, если для любого $\varepsilon > 0$ можно найти номер $n_0 = n_0(\varepsilon)$ (зависящий от ε), начиная с которого все члены последовательности будут удовлетворять неравенству $|x_n - A| < \varepsilon$.

Обозначается: $\lim_{n\to\infty} x_n = A$ $\forall \varepsilon > 0, \ \exists n_0 = n_0(\varepsilon), \ \forall n > n_0 : |x_n - A| < \varepsilon$

Предел функции

Определение предела функции по Коши

Число A называется пределом функции f(x) при x, стремящемся к x_0 (или в точке x_0), если для любого $\varepsilon > 0$ можно найти число $\delta = \delta(\varepsilon) > 0$ так, что для всех значений $x \in D(f)$, для которых выполнено неравенство $0 < |x - x_0| < \delta$, справедливо неравенство $|f(x) - A| < \varepsilon$.

Обозначается: $\lim_{x\to x_0} f(x) = A$ $\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \ 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon$

Определение предела функции по Гейне

Число A называется **пределом функции** f(x) при x, стремящемся к x_0 (или в точке x_0), если для любой последовательности $\{x_n\}$ точек, взятых из области определения функции, сходящейся к x_0 , но не содержащей x_0 в качестве одного из своих элементов, последовательность значений функции $f(x_n)$ будет стремиться к числу A.

Обозначения О() и о()

Пусть f(x) и g(x) — две функции, определенные в некоторой проколотой окрестности точки x_0 , причем в этой окрестности g не обращается в ноль. Говорят, что:

• f является «О» большим от g при $x \to x_0$, если существует такая константа C > 0, что для всех x из некоторой окрестности точки x_0 имеет

место неравенство: $|f(x)| \le C|g(x)|$;

• f является «о» малым от g при $x \to x_0$, если для любого $\varepsilon > 0$ найдется такая проколотая окрестность U'_{x_0} точки x_0 , что для всех $x \in U'_{x_0}$ имеет место неравенство: $|f(x)| < \varepsilon |g(x)|$.

Иначе говоря, в первом случае отношение $\frac{|f|}{|g|} \leq C$ в окрестности точки x_0 (то есть ограничено сверху), а во втором оно стремится к нулю при $x \to x_0$.

Запись $x^2 = o(x)$ означает, что x^2 при $x \to 0$ является бесконечно малой функцией более высокого порядка, по сравнению с функцией x.

Доказательство и применение асимптотических оценок, при необходимости переформулировка в «терминах эпсилон и дельта»

1

Непрерывность

Непрерывность в точке:

Определение 1: Пусть $x_0 \in D(f)$ - предельная точка области определения функции f(x). (Предельная точка множества — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.) Будем говорить, что функция f(x) непрерывна в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$.

Если точка x_0 является предельной точкой области D(f), но функция не является непрерывной в этой точке, то точка x_0 называется **точкой разрыва** функции f(x).

Определение 2: Функция f(x) непрерывна в точке x_0 , если $\lim_{x\to x_0^{-0}} f(x) = \lim_{x\to x_0^{+0}} f(x) = f(x_0)$.

Если односторонние пределы в точке x_0 существуют и равны между собой, но функция в этой точке не определена или $f(x_0) \neq \lim_{x \to x_0^{-0}} f(x) = \lim_{x \to x_0^{+0}} f(x)$, то точка x_0 называется **точкой устранимого разрыва**.

Если существуют конечные односторонние пределы, но они не равны между собой, то точка x_0 , называется **точкой разрыва первого рода**.

Если в точке x_0 хотя бы один конечный односторонний предел не существует или существует и бесконечен, то эта точка называется **точкой**

разрыва второго рода.

Критерий непрерывности функции в точке:

Функция f(x) будет непрерывной в точке x_0 тогда и только тогда, когда ее приращение в этой точке будет стремиться к нулю, если приращение аргумента стремится к нулю.

Если
$$\triangle x \to 0$$
, то $\triangle f(x_0) \to 0$.

Непрерывность на множестве:

Определение: Будем говорить, что функция f(x) непрерывна на множестве, если она непрерывна в каждой точке этого множества.

Первая теорема Вейерштрасса: Функция, непрерывная на отрезке, ограничена.

Вторая теорема Вейерштрасса: Если функция непрерывна на отрезке, то на этом отрезке она достигает своих наибольшего и наименьшего значений.

Первая теорема Коши о промежуточном значении непрерывной на отрезке функции: Пусть функция f(x) непрерывна на отрезке [a,b] и на концах этого отрезка принимает значения разных знаков. Тогда внутри отрезка найдется, по крайней мере,одна точка, в которой f(x) = 0.

Равномерная непрерывность:

Числовая функция вещественного переменного $f: M \subset \mathbb{R} \to \mathbb{R}$ равномерно непрерывна, если: $\forall \varepsilon > 0, \ \exists \delta = \delta(\varepsilon) > 0 : \forall x_1, x_2 \in M \ (|x_1 - x_2| < \delta) \Rightarrow (|f(x_1) - f(x_2)| < \varepsilon).$

Производная

Пусть функция y=f(x) определена в некоторой окрестности точки x_0 . Допустим, что существует предел отношения приращения функции в этой точке к вызвавшему его приращению аргумента, когда последнее стремится к нулю: $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$. Тогда этот предел называется **производной** функции в точке x_0 .

T.o.
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}$$
.

Первообразная

Первообразной для данной функции f(x) называют такую функцию F(x), производная которой равна f (на всей области определения f),), то есть F'(x) = f(x).

Дифференциал

Функция f (x) называется **дифференцируемой** в точке x_0 , если существует число A такое, что $\triangle f(x_0) = A \triangle x + o(\triangle x)$ при $\triangle x \to 0$.

Допустим, что функция f(x) дифференцируема в точке x_0 . Тогда выражение $f'(x_0) \triangle x$ будем называть **дифференциалом** этой функции в точке x_0 и обозначать $df(x_0)$ или df.

Нахождение экстремума функции от одной и от многих переменных

1

Формула Тейлора

Если функция f(x) имеет n+1 производную на отрезке с концами a и x, то для произвольного положительного числа p найдётся точка ξ , лежащая между a и x, такая, что (или пусть действительная функция f определена в некоторой окрестности точки a): $f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \left(\frac{x-a}{x-\xi}\right)^p \frac{(x-\xi)^{n+1}}{n!p} f^{(n+1)}(\xi)$.

1.2. Дискретная математика и математическая логика

Отображения и отношения и их свойства

1

Транзитивное замыкание отношения

1

1
Отношения порядка
1
Логика высказываний
1
Кванторы
1
Метод математической индукции
1
Основные понятия теории графов
1
Лемма о рукопожатиях
1
Критерий двудольности
1
Оценки числа ребер
1
Характеризация деревьев
1

Эквивалентность

1.3. Алгебра и теория чисел

Группы

Непустое множество G с заданной на нём бинарной операцией $*: G \times G \to G$ называется группой (G,*), если выполнены следующие аксиомы:

1. ассоциативность:

$$\forall (a, b, c \in G) : (a * b) * c = a * (b * c);$$

2. наличие нейтрального элемента:

$$\exists e \in G \quad \forall a \in G : (e * a = a * e = a);$$

3. наличие обратного элемента:

$$\forall a \in G \quad \exists a^{-1} \in G : (a * a^{-1} = a^{-1} * a = e).$$

Поля

Множество F с введёнными на нём алгебраическими операциями сложения + и умножения * (+: $F \times F \to F$, *: $F \times F \to F$, $F \mapsto F \to F$, $F \mapsto F \mapsto F$, $F \mapsto F$

1. Коммутативность сложения:

$$\forall a, b \in F \quad a+b=b+a.$$

2. Ассоциативность сложения:

$$\forall a, b, c \in F \quad (a+b) + c = a + (b+c).$$

3. Существование нулевого элемента:

$$\exists 0 \in F : \forall a \in F \quad a+0=0+a=a.$$

4. Существование противоположного элемента:

$$\forall a \in F \ \exists (-a) \in F : a + (-a) = 0.$$

5. Коммутативность умножения:

$$\forall a, b \in F \quad a * b = b * a.$$

6. Ассоциативность умножения:

$$\forall a, b, c \in F \quad (a * b) * c = a * (b * c).$$

7. Существование единичного элемента:

$$\exists e \in F \setminus \{0\}: \forall a \in F \quad a * e = a.$$

8. Существование обратного элемента для ненулевых элементов:

$$\forall a \in F: a \neq 0) \ \exists a^{-1} \in F: a * a^{-1} = e.$$

9. Дистрибутивность умножения относительно сложения:

$$\forall a, b, c \in F \quad (a+b) * c = (a*c) + (b*c).$$

Кольца

Множество R, на котором заданы две бинарные операции: + и * (называемые сложение и умножение), со следующими свойствами, выполняющимися для любых $a,b,c\in R$:

1. Коммутативность сложения:

$$a+b=b+a$$
.

2. Ассоциативность сложения:

$$(a+b) + c = a + (b+c).$$

3. Существование нулевого элемента:

$$\exists 0 \in R: a + 0 = 0 + a = a.$$

4. Существование противоположного элемента:

$$\forall a \in R \ \exists (-a) \in R : a + (-a) = 0.$$

5. Ассоциативность умножения:

$$(a * b) * c = a * (b * c).$$

6. Дистрибутивность:

$$a * (b + c) = (a * b) + (a * c)$$

$$(b+c)*a = (b*a) + (c*a).$$

Факторизация

Факторизацией натурального числа называется его разложение в произведение простых множителей. Может быть выполнена, например, **перебором возможных делителей**. Способ заключается в том, чтобы последовательно делить факторизуемое число n на натуральные числа от 1 до $\lfloor \sqrt{n} \rfloor$. Формально достаточно делить только на простые числа в этом интервале, однако, для этого необходимо знать их множество. На практике составляется таблица простых чисел и производится проверка небольших чисел (например, до 2^{16}). Для очень больших чисел алгоритм не используется в силу низкой скорости работы.

Идеал

Для кольца R идеалом называется подкольцо, замкнутое относительно умножения на элементы из R.

Идеалом кольца R называется такое подкольцо (подкольцо кольца (K, +, *) рассматривается как подмножество $R \subset K$, замкнутое относительно операций + и * из основного кольца) I кольца R, что

- 1. $\forall i \in I \ \forall r \in R$ произведение $ir \in I$ (условие на правые идеалы);
- 2. $\forall i \in I \ \forall r \in R$ произведение $ri \in I$ (условие на левые идеалы);

Сравнения

Если два целых числа a и b при делении на m дают одинаковые остатки, то они называются сравнимыми (или равноостаточными) по модулю числа m.

Сравнимость чисел a и b записывается в виде формулы (сравнения):

$$a \equiv b \pmod{m}$$

. Число т называется модулем сравнения.

Алгоритм Евклида

Алгоритм Евклида — эффективный алгоритм для нахождения наибольшего общего делителя двух целых чисел.

Пусть a и b — целые числа, не равные одновременно нулю, и последовательность чисел $a>b>r_1>r_2>r_3>r_4>\ldots>r_n$ определена тем, что каждое r_k — это остаток от деления предпредыдущего числа на предыдущее, а предпоследнее делится на последнее нацело, то есть:

```
a = bq_0 + r_1,

b = r_1q_1 + r_2,

r_1 = r_2q_2 + r_3,

...

r_{k-2} = r_{k-1}q_{k-1} + r_k,
```

$$r_{n-2} = r_{n-1}q_{n-1} + r_n,$$

 $r_{n-1} = r_nq_n.$

Тогда HOД(a,b), наибольший общий делитель a и b, равен r_n , последнему ненулевому члену этой последовательности.

Теоремы Эйлера и Ферма

Теорема Эйлера: если a и m взаимно просты, то $a^{\varphi(m)} \equiv 1 \pmod m$, где $\varphi(m)$ — функция Эйлера (количество натуральных чисел, меньших m и взаимно простых с ним).

Малая теорема Ферма: если a не делится на простое число p, то $a^{p-1} \equiv 1 \pmod{p}$.

Кольцо многочленов

Многочлен от x с коэффициентами в поле k — это выражение вида $p = p_m x^m + p_{m-1} x^{m-1} + \ldots + p_1 x + p_0$, где p_0, \ldots, p_m — элементы k, коэффициенты p, a, x, x^2, \ldots — формальные символы («степени х»). Такие выражения можно складывать и перемножать по обычным правилам действий с алгебраическими выражениями (коммутативность сложения, дистрибутивность, приведение подобных членов и т. д.). Члены $p_k x^k$ с нулевым коэффициентом p_k при записи обычно опускаются. Используя символ суммы, многочлены записывают в более компактном виде:

$$p = p_m x^m + p_{m-1} x^{m-1} + \ldots + p_1 x + p_0 = \sum_{k=0}^m p_k x^k.$$

Множество всех многочленов с коэффициентами в k образует коммутативное кольцо, обозначаемое k[x] и называемое кольцом многочленов над k

Число корней многочлена

Корень многочлена (не равного тождественно нулю) $a_0 + a_1 x + \ldots + a_n x^n$ над полем K — это элемент $c \in K$ (либо элемент расширения поля K), такой, что выполняются два следующих равносильных условия:

• данный многочлен делится на многочлен x-c;

• подстановка элемента с вместо х обращает уравнение $a_0 + a_1 x + \ldots + a_n x^n = 0$ в тождество.

Число корней многочлена степени n не превышает n даже в том случае, если кратные корни учитывать кратное количество раз.

Линейные пространства и операторы

Линейное пространство $V\left(F\right)$ над полем F — это упорядоченная четвёрка $(V,F,+,\cdot)$, где

- \bullet V непустое множество элементов произвольной природы, которые называются векторами;
- \bullet F поле, элементы которого называются скалярами;
- Определена операция сложения векторов $V \times V \to V$, сопоставляющая каждой паре элементов \mathbf{x}, \mathbf{y} множества V единственный элемент множества V, называемый их суммой и обозначаемый $\mathbf{x} + \mathbf{y}$;
- Определена операция умножения векторов на скаляры $F \times V \to V$, сопоставляющая каждому элементу λ поля F и каждому элементу \mathbf{x} множества V единственный элемент множества V, обозначаемый $\lambda \cdot \mathbf{x}$ или $\lambda \mathbf{x}$;

причём заданные операции удовлетворяют следующим аксиомам — аксиомам линейного (векторного) пространства:

- $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$, для любых $\mathbf{x}, \mathbf{y} \in V$ (коммутативность сложения);
- $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$, для любых $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ (ассоциативность сложения);
- существует такой элемент $\mathbf{0} \in V$, что $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ для любого $\mathbf{x} \in V$ (существование нейтрального элемента относительно сложения), называемый нулевым вектором или просто нулём пространства V;
- для любого $\mathbf{x} \in V$ существует такой элемент $-\mathbf{x} \in V$, что $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$, называемый вектором, противоположным вектору \mathbf{x} ;
- $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$ (ассоциативность умножения на скаляр);
- $1 \cdot \mathbf{x} = \mathbf{x}$ (унитарность: умножение на нейтральный (по умножению) элемент поля F сохраняет вектор).
- $(\alpha + \beta)$ **x** = α **x** + β **x** (дистрибутивность умножения вектора на скаляр

относительно сложения скаляров);

• $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$ (дистрибутивность умножения вектора на скаляр относительно сложения векторов).

Линейным отображением (оператором) векторного пространства L_K над полем K в векторное пространство M_K над тем же полем K (линейным оператором из L_K в M_K) называется отображение $f: L_K \to M_K$, удовлетворяющее условию линейности:

- $\bullet \ f(x+y) = f(x) + f(y),$
- $f(\alpha x) = \alpha f(x)$.

для всех $x, y \in L_K$ и $\alpha \in K$.

Базис, размерность, ранг

Рангом системы строк (столбцов) матрицы A с m строк и n столбцов называется максимальное число линейно независимых строк.

Число столбцов и строк задают размерность матрицы.

Векторы $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ называются линейно зависимыми, если существует их нетривиальная линейная комбинация, значение которой равно нулю; то есть $\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \dots + \alpha_n\mathbf{x}_n = \mathbf{0}$ при некоторых коэффициентах $\alpha_1, \alpha_2, \dots, \alpha_n \in F$, причём хотя бы один из коэффициентов α_i отличен от нуля.

В противном случае эти векторы называются линейно независимыми.

Число элементов (мощность) максимального линейно независимого множества элементов векторного пространства не зависит от выбора этого множества. Данное число называется рангом, или размерностью, пространства, а само это множество — базисом. Элементы базиса именуют базисными векторами. Размерность пространства чаще всего обозначается символом dim.

Собственные числа и собственные векторы

Пусть L — линейное пространство над полем $K, A: L \to L$ — линейное преобразование.

Собственным вектором линейного преобразования A называется такой ненулевой вектор $x \in L$, что для некоторого $\lambda \in K$ $Ax = \lambda x$.

Собственным значением (собственным числом) линейного преобразования A называется такое число $\lambda \in K$, для которого существует собственный вектор, то есть уравнение $Ax = \lambda x$ имеет ненулевое решение $x \in L$.

Упрощённо говоря, собственный вектор — любой ненулевой вектор x, который отображается в коллинеарный ему вектор λx оператором A, а соответствующий скаляр λ называется собственным значением оператора.

Характеристический многочлен

Для данной матрицы A, $\chi(\lambda) = \det(A - \lambda E)$, где E — единичная матрица, является многочленом от λ , который называется характеристическим многочленом матрицы A.

1.4. Теория вероятностей

Зависимые и независимые события

Два события называются **независимыми**, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.

События называются **зависимыми**, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая.

Условные вероятности

Вероятность одного события B, вычисленная в предположении осуществления другого события A, называется условной вероятностью события B и обозначается $P\{B|A\}$.

Формула полной вероятности

Если событие A наступает только при условии появления одного из событий $B_1, B_2, \dots B_n$, образующих полную группу несовместных событий, то вероятность события A равна сумме произведений вероятностей каждого из событий $B_1, B_2, \dots B_n$ на соответствующую условную вероятность события $B_1,B_2,\dots B_n$: $P\{A\}=\sum_{i=1}^n P\{B_i\}P\{A|B_i\}.$ При этом события $B_i,\ i=1,\dots,n$ называются гипотезами, а вероятности

 $P\{B_i\}$ — априорными.

Математическое ожидание

Математическое ожидание дискретной случайной величины X вычисляется как сумма произведений значений x_i , которые принимает случайная величина X, на соответствующие вероятности p_i : $M[X] = \sum_{i=1}^{\infty} x_i p_i$.

Задание. Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, этой случайной величины.

Решение. Введем дискретную случайную величину X = (Число попаданий в цель). Х может принимать значения 0, 1, 2 и 3. Найдем соответствующие вероятности. Вероятность не попасть 3 раза: 0, 2*0, 3*0, 4. Вероятность не попасть 2 раза: 0, 2*0, 3*0, 6+0, 2*0, 7*0, 4+0, 8*0, 3*0, 4. И т.д. Мат. ожидание будет 0*0, 2*0, 3*0, 4+1*0, 2*0, 3*0, 6+0, 2*0, 7*0, 4+0, 8*0, 3*0, 4и т.д.

Второй момент

Начальным моментом s-го порядка прерывной случайной величины называется сумма вида: $\alpha_s[X] = \sum_{i=1}^{\infty} x_i^s p_i$.

Математическое ожидание – первый начальный момент случайной величины.

Неравенства Маркова и Чебышёва

Неравенство Маркова дает вероятностную оценку того, что значение неотрицательной случайной величины превзойдет некоторую константу через известное математическое ожидание. Когда никаких других данных о распределении нет, неравенство дает некоторую информацию, хотя зачастую оценка груба или тривиальна.

Пусть X - случайная величина, принимающая неотрицательные значения, M(X) - ее конечное математическое ожидание, то для любых a>0 выполняется: $P(X\geq a)\leq \frac{M(X)}{a}$.

Задача: Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор превысит 400. **Решение**: По условию M(X)=300. Воспользуемся формулой (неравенством Маркова): $P(X \ge 400) \le \frac{300}{400} = 0,75$, т.е. вероятность того, что число вызовов превысит 400, будет не более 0,75.

Неравенство Чёбышева показывает, что случайная величина принимает значения близкие к среднему (математическому ожиданию) и дает оценку вероятности больших отклонений.

$$P(|X-M(X)| \ge a) \le \tfrac{D(X)}{a^2}, a > 0$$

2. Алгоритмы и структуры данных

Нужно уметь написать код для перечисленных ниже элементарных алгоритмов.

2.1. Оценка алгоритмов

Мы рассчитываем, что вы понимаете, какое количество операций и объём дополнительной памяти необходимы для обсуждаемых алгоритмов и из каких соображений это получается.

2.2. Простейшие алгоритмы

Поиск заданного элемента

Пои

Поиск наибольшего элемента

1

Сортировка вставкой

1

Сортировка пузырьком

1

Быстрая сортировка

1

Иерархические сортировки

1

2.3. Простейшие структуры данных

Массив

1

Список

1

Стек

1

Очередь

1

3. Программирование

Нужно знать базовые принципы одного из «традиционных» (C, C++, Java, Python и др.) языков программирования.

Основы синтаксиса		
Переменные		
Условные выражения		
Циклы		
Массивы		
Функции		
Рекурсия		
Динамическая память		
Стек		