VEŽBE IZ MATEMATIČKE ANALIZE I

Blesić Andrija, Dedeić Jovana, Dragić Đorđe, Janjoš Aleksandar, Miščević Irena, Ostojić Tijana, Prokić Aleksandar, Tošić Stefan, Vuković Manojlo

> Katedra za matematiku Fakultet tehničkih nauka

Novi Sad, 2020.

Sadržaj

1	Vež	be II.5
	1.1	Diferencijabilnost funkcije
	1.2	Rolova teorema
	1.3	Lagranžova teorema
	1.4	Košijeva teorema
	1.5	Tejlorova teorema
	1.6	Zadaci za samostalan rad
2	Vež	be II.6
	2.1	Funkcije više promenljivih
	2.2	Ekstremne vrednosti funkcija više promenljivih
	2.3	Zadaci za samostalni rad

1. Vežbe II.5

1.1. Diferencijabilnost funkcije

Funkcija f(x) je diferencijabilna nad otvorenim skupom D ako postoji izvod funkcije f za svako $x \in D$.

Ako je funkcija diferencijabilna u tački (nad skupom D) onda je i neprekidna u toj tački (nad skupom D). Obrnuto nije uvek tačno.

Zadatak 1.1. Date su funkcije
$$f(x) = \begin{cases} \frac{x}{2} + x^2 \cos \frac{1}{x}, & x \neq 0 \\ A, & x = 0 \end{cases}$$
 i $g(x) = \begin{cases} \frac{x}{2} + x^3 \cos \frac{1}{x}, & x \neq 0 \\ B, & x = 0 \end{cases}$.

- a) Odrediti A i B tako da funkcije budu neprekidne i pokazati da je $f'(0) = g'(0) = \frac{1}{2}$.
- b) Pokazati da je g'(x) neprekidna funkcija, a da f'(x) ima prekid za x=0.
- c) Da li postoje okoline tačke x=0 u kojima su funkcije f(x) i g(x) monotone? (Posmatrati nizove $\{a_n\}$ i $\{b_n\}$ date sa $a_n=\frac{1}{\frac{\pi}{2}+2n\pi}$ i $b_n=\frac{1}{\frac{3\pi}{2}+2n\pi}$).
- a) Pošto je $\cos x$ ograničena funkcija važ
i $\lim_{x\to 0} x\cos\frac{1}{x}=0,$ pa je

$$A = \lim_{x \to 0} \left(\frac{x}{2} + x^2 \cos \frac{1}{x} \right) = 0, \ B = \lim_{x \to 0} \left(\frac{x}{2} + x^3 \cos \frac{1}{x} \right) = 0.$$

Za $x \neq 0$ prvi izvodi imaju oblik $f'(x) = \frac{1}{2} + 2x \cos \frac{1}{x} + \sin \frac{1}{x}$ i $g'(x) = \frac{1}{2} + 3x^2 \cos \frac{1}{x} + x \sin \frac{1}{x}$. Kako $\lim_{x \to 0} f'(x)$ ne postoji, jer ne postoji $\lim_{x \to 0} \sin \frac{1}{x}$, po definiciji tražimo izvod u tački x = 0.

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{\Delta x}{2} + \Delta x^2 \cos \frac{1}{\Delta x} - 0}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left(\frac{1}{2} + \Delta x \cos \frac{1}{\Delta x}\right) = \frac{1}{2}$$
$$g'(0) = \lim_{x \to 0} g'(x) = \lim_{x \to 0} \left(\frac{1}{2} + 3x^2 \cos \frac{1}{x} + x \sin \frac{1}{x}\right) = \frac{1}{2}$$

- b) Kako je $g'(0) = \lim_{x \to 0} g'(x)$, to je funkcija g'(x) neprekidna za x = 0. $\lim_{x \to 0} f'(x) = \lim_{x \to 0} (\frac{1}{2} + 2x \cos \frac{1}{x} + \sin \frac{1}{x})$ ne postoji, jer ne postoji $\lim_{x \to 0} \sin \frac{1}{x}$, odakle sledi da funkcija f'(x) nije neprekidna za x = 0.
- c) Funkcija g'(x) je neprekidna za x=0 i $g'(0)=\frac{1}{2}>0$, pa postoji okolina tačke x=0 u kojoj je g'(x)>0, tj. okolina u kojoj funkcija g(x) monotono raste.

Svi članovi nizova $\{a_n\}$ i $\{b_n\}$ pozitivni su i pritom je $\lim_{n\to\infty}a_n=0$ i $\lim_{n\to\infty}b_n=0$. Tada imamo

$$f'(a_n) = \frac{1}{2} + 2a_n \cos \frac{1}{a_n} + \sin \frac{1}{a_n} = \frac{1}{2} + \frac{2}{\frac{\pi}{2} + 2n\pi} \cos \left(\frac{\pi}{2} + 2n\pi\right) + \sin \left(\frac{\pi}{2} + 2n\pi\right) = \frac{3}{2} > 0,$$

$$f'(b_n) = \frac{1}{2} + 2b_n \cos \frac{1}{b_n} + \sin \frac{1}{b_n} = \frac{1}{2} + \frac{2}{\frac{3\pi}{2} + 2n\pi} \cos \left(\frac{3\pi}{2} + 2n\pi\right) + \sin \left(\frac{3\pi}{2} + 2n\pi\right) = -\frac{1}{2} < 0,$$

pa u svakoj okolini tačke x = 0 postoje tačke u kojima je f'(x) > 0 i tačke u kojima je f'(x) < 0, odakle sledi da ne postoji nijedna okolina tačke x = 0 u kojoj je funkcija f(x) monotona.

Zadatak 1.2. Funkcija
$$f$$
 je data sa $f(x) = \begin{cases} Ax + B, & x \leq 0, \\ \frac{x}{3} + x^2 \sin \frac{1}{7x}, & x > 0. \end{cases}$

Odrediti A i B tako da funkcija bude diferencijabilna za svako x. Da li je funkcija rastuća u tački x = 0? Da li je funkcija monotona u nekoj okolini tačke x = 0?

Rešenje.

Da bi funkcija bila diferencijabilna, mora biti neprekidna u tački x=0 i mora postojati f'(0). Funkcija je neprekidna ako $\lim_{x\to 0^+}(\frac{x}{3}+x^2\sin\frac{1}{7x})=f(0)$, pa vrednost B dobijamo

$$\lim_{x \to 0^+} \left(\frac{x}{3} + x^2 \sin \frac{1}{7x}\right) = 0, f(0) = B \quad \Rightarrow B = 0.$$

$$f'(x) = \begin{cases} A, & x \le 0, \\ \frac{1}{3} + 2x\sin\frac{1}{7x} + x^2\cos\frac{1}{7x} \cdot \frac{1}{7}(-\frac{1}{x^2}), & x > 0, \end{cases}$$

pa nakon sređivanja za prvi izvod funkcije f(x) dobijamo

$$f'(x) = \begin{cases} A, & x \le 0, \\ \frac{1}{3} + 2x \sin \frac{1}{7x} - \frac{1}{7} \cos \frac{1}{7x}, & x > 0. \end{cases}$$

Pošto je f'(0) = A potrebno je ispitati

$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \left(\frac{1}{3} + 2x\sin\frac{1}{7x} - \frac{1}{7}\cos\frac{1}{7x}\right),$$

ali $\lim_{x\to 0^+}f'(x)$ ne postoji, jer ne postoji $\lim_{x\to 0^+}\cos\frac{1}{7x}$, pa zato desni izvod u tački x=0 tražimo po definiciji

$$f'(0^{+}) = \lim_{\Delta x \to 0^{+}} \frac{f(0^{+} + \Delta x) - f(0^{+})}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\frac{\Delta x}{3} + (\Delta x)^{2} \sin \frac{1}{7\Delta x}}{\Delta x}$$
$$= \lim_{\Delta x \to 0^{+}} \left(\frac{1}{3} + \Delta x \sin \frac{1}{7\Delta x}\right) = \frac{1}{3} \Rightarrow A = \frac{1}{3}.$$

Za monotonost u okolini tačke x=0 imamo

- 1. $f'(0) = \frac{1}{3} > 0 \Rightarrow$ funkcija je rastuća u tački x = 0,
- 2. $x \in (-\varepsilon, 0] \Rightarrow f'(x) = \frac{1}{3} > 0$,
- 3. $x \in (0, \varepsilon) \Rightarrow f'(x) = \frac{1}{3} + 2x \sin \frac{1}{7x} \frac{1}{7} \cos \frac{1}{7x} \ge \frac{1}{3} 2\varepsilon \frac{1}{7} = \frac{4}{21} 2\varepsilon > 0$ za svako dovoljno malo $\varepsilon > 0$.

Dakle, u svakoj dovoljno maloj okolini tačke x=0 funkcija f je monotono rastuća jer je f'(x)>0 za $x\in(-\varepsilon,\varepsilon)$.

1.2. Rolova teorema

Ako je funkcija $f:[a, b] \to R$ neprekidna nad zatvorenim intervalom [a, b], ima izvod nad otvorenim intervalom (a, b) i ako je f(a) = f(b), tada postoji bar jedna tačka $\xi \in (a, b)$, takva da je $f'(\xi) = 0$.

Zadatak 1.3. Pokazati da jednačina $a_n \cos nx + a_{n-1} \cos (n-1)x + ... + a_1 \cos x = 0$ ima bar jedno rešenje u intervalu $(0, \pi)$.

Rešenje.

Koristimo pomoćnu funkciju $F(x) = \frac{a_n}{n} \sin nx + \frac{a_{n-1}}{n-1} \sin(n-1)x + ... + a_1 \sin x$ koja zadovoljava uslove Rolove teoreme (funkcija F(x) je neprekidna nad intervalom $[0,\pi]$, diferencijabilna nad intervalom $(0,\pi)$ i $F(0) = F(\pi) = 0$, čiji je prvi izvod jednak datoj jednačini) odakle sledi da postoji $\xi \in (0,\pi)$ za koje je $F'(\xi) = 0$, tj. $a_n \cos n\xi + a_{n-1} \cos (n-1)\xi + ... + a_1 \cos \xi = 0$, što je trebalo i dokazati.

1.3. Lagranžova teorema

Ako je funkcija $f:[a, b] \to R$ neprekidna nad zatvorenim intervalom [a, b] i ima izvod nad otvorenim intervalom (a, b), tada postoji bar jedna tačka $\xi \in (a, b)$ takva da je: $\frac{f(b)-f(a)}{b-a}=f'(\xi)$.

Zadatak 1.4. Pokazati da jednačina $2x\cos\frac{1}{x} + \sin\frac{1}{x} = \frac{16\sqrt{2}-9}{2\pi}$ ima bar jedno rešenje u intervalu $(\frac{3}{\pi}, \frac{4}{\pi})$.

Rešenje.

Funkcija $F(x)=x^2\cos\frac{1}{x}$ je neprekidna nad intervalom $\left[\frac{3}{\pi},\frac{4}{\pi}\right]$, a diferencijabilna nad intervalom $\left(\frac{3}{\pi},\frac{4}{\pi}\right)$ pa zadovoljava uslove Lagranžove teoreme, tj. postoji $\xi\in\left(\frac{3}{\pi},\frac{4}{\pi}\right)$ takvo da je $F\left(\frac{4}{\pi}\right)-F\left(\frac{3}{\pi}\right)=F'(\xi)\left(\frac{4}{\pi}-\frac{3}{\pi}\right)$.

$$F\left(\frac{4}{\pi}\right) - F\left(\frac{3}{\pi}\right) = \frac{16}{\pi^2} \cos \frac{\pi}{4} - \frac{9}{\pi^2} \cos \frac{\pi}{3} = \frac{16}{\pi^2} \frac{\sqrt{2}}{2} - \frac{9}{\pi^2} \frac{1}{2} = \frac{16\sqrt{2} - 9}{2\pi^2} = F'(\xi) \cdot \frac{1}{\pi},$$
$$\frac{16\sqrt{2} - 9}{2\pi^2} = \left[2\xi \cos \frac{1}{\xi} + \sin \frac{1}{\xi}\right] \cdot \frac{1}{\pi} \Rightarrow 2\xi \cos \frac{1}{\xi} + \sin \frac{1}{\xi} = \frac{16\sqrt{2} - 9}{2\pi},$$

pa je ξ jedno rešenje jednačine.

1.4. Košijeva teorema

Ako su funkcije f(x) i g(x) neprekidne nad zatvorenim intervalom [a, b], imaju izvode nad otvorenim intervalom (a, b), i za svako $x \in (a, b)$ je $g'(x) \neq 0$, tada postoji bar jedna tačka $\xi \in (a, b)$, takva da je $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$.

Zadatak 1.5. Date su funkcije f i g sa $f(x) = x + \arccos \frac{2e^x}{e^{2x}+1}$ i $g(x) = x - \frac{\pi}{2} + 2 \operatorname{arctg} e^x$. Naći sve realne brojeve x za koje važi f(x) = g(x).

Rešenje.

Prvi izvod funkcije f(x) ima oblik

$$f'(x) = 1 + \frac{-1}{\sqrt{1 - (\frac{2e^x}{e^{2x} + 1})^2}} \cdot \frac{2e^x(e^{2x} + 1) - 2e^x \cdot 2e^{2x}}{(e^{2x} + 1)^2} = 1 + \frac{2e^x(e^{2x} - 1)}{|e^{2x} - 1|(e^{2x} + 1)},$$

što znači da znak prvog izvoda zavisi od

$$e^{2x} - 1 > 0 \Leftrightarrow e^{2x} > 1 \Leftrightarrow 2x \ln e > \ln 1 = 0 \Leftrightarrow 2x > 0 \Rightarrow x > 0.$$

$$f'(x) = \begin{cases} 1 + \frac{2e^x}{e^{2x} + 1} = \frac{(e^x + 1)^2}{e^{2x} + 1}, x > 0\\ 1 - \frac{2e^x}{e^{2x} + 1} = \frac{(e^x - 1)^2}{e^{2x} + 1}, x < 0 \end{cases}$$

Prvi izvod funkcije g(x) ima oblik

$$g'(x) = 1 + 2 \cdot \frac{1}{1 + e^{2x}} \cdot e^x = \frac{(e^x + 1)^2}{e^{2x} + 1}.$$

Za svako x>0 važi f'(x)=g'(x). Kako su funkcije $f(\mu)$ i $g(\mu)$ neprekidne za svako $\mu\in[0,x]$, i prvi izvod ovih funkcija postoji za svako $\mu\in(0,x)$, to one ispunjavaju uslove Košijeve teoreme, pa za svako x>0 postoji $\xi\in(0,x)$ takvo da važi $\frac{f(x)-f(0)}{g(x)-g(0)}=\frac{f'(\xi)}{g'(\xi)}$. Sada imamo

$$f(0) = \arccos 1 = 0,$$

$$g(0) = 0 - \frac{\pi}{2} + 2 \operatorname{arct} g 1 = -\frac{\pi}{2} + 2 \frac{\pi}{4} = 0,$$

$$f'(\xi) = g'(\xi) \Rightarrow \frac{f'(\xi)}{g'(\xi)} = 1.$$

Dakle, dobili smo $\frac{f(x)}{g(x)} = 1 \Rightarrow f(x) = g(x)$ za svako $x \ge 0$.

Da bi pokazali da je $f(x) \neq g(x)$ za svako x < 0 posmatramo funkciju F(x) = f(x) - g(x) gde je F(0) = 0. Ako bi postojala tačka a < 0 za koju je F(a) = 0, na osnovu Rolove teoreme postoji $\xi \in (a, 0)$, takvo da je $F'(\xi) = 0$ što je nemoguće, jer je

$$F'(x) = f'(x) - g'(x) = \frac{(e^x - 1)^2 - (e^x + 1)^2}{e^{2x} + 1} = \frac{-4e^x}{e^{2x} + 1} < 0,$$

za svako x < 0. Dakle, $f(x) \neq g(x)$ za svako x < 0.

1.5. Tejlorova teorema

Neka su funkcija f(x) i svi njeni izvodi do (n-1)-og reda neprekidni nad zatvorenim intervalom [a, b] i neka f(x) ima n-ti izvod nad otvorenim intervalom (a, b). Tada postoji bar jedna tačka $\xi \in (a, b)$ takva da je:

$$f(b) = f(a) + \frac{b-a}{1!} \cdot f'(a) + \frac{(b-a)^2}{2!} \cdot f''(a) + \dots + \frac{(b-a)^{n-1}}{(n-1)!} \cdot f^{(n-1)}(a) + R_n,$$

gde je $R_n = \frac{(b-a)^n}{n!} \cdot f^{(n)}(\xi)$. Kada je funkcija f(x) predstavljena kao

$$\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n(x)$$

kažemo da je razvijena po Tejlorovoj formuli u tački a. Funkcija $R_n(x)$ se naziva ostatak (ili greška) i predstavlja odstupanje funkcije f(x) od Teljorovog polinoma

$$T_{n-1}(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k, \ R_n(x) = f(x) - T_{n-1}(x).$$

Napomenimo da za n = 1 dobijamo Lagranžovu teoremu.

Ako u Tejlorovu formulu stavimo da je a=0 dobićemo Maklorenovu formulu

$$f(x) = f(0) + \frac{x}{1!} \cdot f'(0) + \frac{x^2}{2!} \cdot f''(0) + \dots + \frac{x^{n-1}}{(n-1)!} \cdot f^{(n-1)}(0) + R_n(x),$$

gde je sada $R_n(x) = \frac{x^n}{n!} \cdot f^{(n)}(\omega x), \ 0 < \omega < 1$, a odgovarajući polinom

$$M_{n-1}(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k,$$

zove se Maklorenov polinom.

Zadatak 1.6. Aproksimirati funkciju $f(x)=x^2e^{-x}$ Tejlorovim polinomom trećeg stepena u tački x=2.

Rešenje.

Potrebna su nam prva tri izvoda funkcije f(x), kao i vrednosti u tački x=2

$$f(x) = x^{2}e^{-x} \Rightarrow f(2) = 4e^{-2}$$

$$f'(x) = 2xe^{-x} - x^{2}e^{-x} = e^{-x}(2x - x^{2}) \Rightarrow f'(2) = e^{-2}(4 - 4) = 0$$

$$f''(x) = -e^{-x}(2x - x^{2}) + e^{-x}(2 - 2x)$$

$$= e^{-x}(x^{2} - 4x + 2) \Rightarrow f''(2) = e^{-2}(4 - 8 + 2) = -2e^{-2}$$

$$f'''(x) = e^{-x}(-x^{2} + 6x - 6) \Rightarrow f'''(2) = 2e^{-2}.$$

Prema Tejlorovoj formuli za funkciju $f(x)=x^2e^{-x}$ u okolini x=2je

$$f(x) = f(2) + f'(2)(x - 2) + \frac{f''(2)}{2}(x - 2)^2 + \frac{f'''(2)}{6}(x - 2)^3 + R_3(x),$$

pa zamenom dobijenih vrednosti dobijamo

$$T_3(x) = f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \frac{f'''(2)}{3!}(x-2)^3$$
$$= 4e^{-2} - \frac{1}{e^2}(x-2)^2 + \frac{1}{3e^2}(x-2)^3.$$

Zadatak 1.7. Razviti funkciju $f(x) = \operatorname{arctg} x + (x^3 - 2x^2 + 1)$ u Tejlorov polinom trećeg stepena u tački x = 1 i u Maklorenov polinom trećeg stepena. **Rešenje.**

Tejlorov polinom trećeg stepena u x=1 za polinom x^3-2x^2+1 možemo napisati po stepenima od x-1, tj. razvojem ćemo dobiti isti polinom. Isto važi i za Maklorenov polinom, pa je potrebno raditi samo razvoj funkcije z(x)= arctg x, prvo u Tejlorov polinom

$$z(x) = \operatorname{arctg} x \Rightarrow z(1) = \frac{\pi}{4}$$

$$z'(x) = \frac{1}{1+x^2} \Rightarrow z'(1) = \frac{1}{2}$$

$$z''(x) = \frac{-2x}{(1+x^2)^2} \Rightarrow z''(1) = \frac{-2}{4} = -\frac{1}{2}$$

$$z'''(x) = \frac{-2+6x^2}{(1+x^2)^3} \Rightarrow z'''(1) = \frac{-2+6}{8} = \frac{4}{8} = \frac{1}{2},$$

pa pošto je polinom $x^3 - 2x^2 + 1$ već razvijen možemo razviti i celu funkciju f(x)

$$T_3(x) = \frac{\pi}{4} + \frac{1}{2}(x-1) + \frac{-\frac{1}{2}}{2!}(x-1)^2 + \frac{\frac{1}{2}}{3!}(x-1)^3 + x^3 - 2x^2 + 1$$
$$= \frac{\pi}{4} + \frac{1}{2}(x-1) - \frac{1}{4}(x-1)^2 + \frac{1}{12}(x-1)^3 + x^3 - 2x^2 + 1.$$

Nakon izračunavanja $z(0)=0,\ z'(0)=1,\ z''(0)=0,\ z'''(0)=-2$ možemo izraziti i Maklorenov polinom funkcije f(x)

$$M_3(x) = x - \frac{1}{3}x^3 + x^3 - 2x^2 + 1 = \frac{2}{3}x^3 - 2x^2 + x + 1.$$

1.6. Zadaci za samostalan rad

Zadatak 1.8. Data je funkcija
$$f(x) = \begin{cases} \frac{x}{4} + x^3 \sin \frac{1}{x^2}, & x > 0 \\ C, & x = 0 \\ (1 + e^{\frac{1}{x}})^{\frac{1}{x}} + Ax + B, & x < 0 \end{cases}$$

- a) Odrediti konstante A,Bi Ctako da funkcija bude diferencijabilna u tački x=0.
- b) Pokazati da funkcija f(x) nije monotona u okolini tačke x=0, koristeći nizove $a_n=\frac{1}{\sqrt{2n\pi}}$ i $b_n=\frac{1}{\sqrt{(2x+1)\pi}}$.

Zadatak 1.9. Neka je $f: R \to R$ dva puta diferencijabilna funkcija, sa osobinom da je f'(a) = f'(b) = 0 i $f'(x) \neq 0$ za $x \in (a, b)$.

- a) Dokazati da funkcija f ima najviše jednu nulu u intervalu (a,b). Dokazati da je funkcija f monotono rastuća ili monotono opadajuća nad intervalom [a,b].
- b) Dokazati da jednačina f(x) = 0 ima bar jedno rešenje u intervalu (a, b).

Zadatak 1.10. Aproksimirati funkciju $f(x) = \sin x$ Maklorenovim polinomom četvrtog stepena.

2. Vežbe II.6

2.1. Funkcije više promenljivih

Daćemo osnove funkcija dve realne promenljive. Slične osnove važe i za realne funkcije više realnih promenljivih. Broj A je granična vrednost funkcije z =f(x,y) kada tačka M(x,y) teži tački $M_0(x_0,y_0)$ na bilo koji način (duž neke proizvoljne putanje), ako za svako $\varepsilon > 0$ postoji $\delta > 0$ takvo da iz $d(M, M_0) < \delta$ sledi $|f(x,y)-A|<\varepsilon$, što se još zapisuje

$$A = \lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{\begin{subarray}{c} x\to x_0\\ y\to y_0\end{subarray}} f(x,y)$$

Funkcija z = f(x, y) je neprekidna u tački $M_0(x_0, y_0)$ ako je $x \to x_0$ $y \rightarrow y_0$

 $f(x_0, y_0)$, gde je (x_0, y_0) tačka nagomilavanja definicionog skupa.

Ako je (x_0, y_0) izolovana tačka oblasti definisanosti funkcija je u njoj neprekid-

na. Parcijalni izvod funkcije
$$z=f(x,y)$$
 po promenljivoj x je
$$\frac{\partial z}{\partial x}=\lim_{\Delta x\to 0}\frac{\Delta_x z}{\Delta x}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x,\ y)-f(x,\ y)}{\Delta x},$$

a po promenljivoj
$$y$$
 je
$$\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}.$$

Totalni diferencijal prvog reda funkcije z = f(x, y) je $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$.

Ako postoji parcijalni izvod $\frac{\partial}{\partial x_j}(\frac{\partial f}{\partial x_i})(M)$ njega zovemo drugim parcijalnim izvodom ili parcijalnim izvodom drugog reda funkcije fu tački M, po promenljivima $x_i,\ x_j$ (tim redom) kojeg označavamo sa $\frac{\partial^2 f}{\partial x_i \partial x_j}(M)$ ili $f_{x_i,x_j}(M)$.

U slučaju kada je i=j odgovarajući parcijalni izvod označavamo sa $\frac{\partial^2 f}{\partial x_i^2}(M)$. Ako je $i \neq j$, parcijalni izvod zovemo mešovitim.

U opštem slučaju, mešoviti parcijalni izvodi, $\frac{\partial^2 f}{\partial x_i \partial x_i}(M)$ i $\frac{\partial^2 f}{\partial x_i \partial x_i}(M)$, ako postoje, mogu imati različite vrednosti.

Ako postoje drugi mešoviti parcijalni izvodi $\frac{\partial^2 f}{\partial x_i \partial x_j}(M)$ i $\frac{\partial^2 f}{\partial x_i \partial x_i}(M)$ u nekoj okolini tačke M(x,y) i ako su oni neprekidni u datoj tački $\dot{\mathbf{M}},$ onda su oni i jednaki u ovoj tački, to jest važi jednakost $\frac{\partial^2 f}{\partial x_i \partial x_i}(M) = \frac{\partial^2 f}{\partial x_i \partial x_i}(M)$. Totalni diferencijal drugog reda

$$d^{2}z = d(dz)$$

$$= d(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy) = \frac{\partial}{\partial x}(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy)dx + \frac{\partial}{\partial y}(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy)dy =$$

$$= \frac{\partial^{2}z}{\partial x^{2}}dx^{2} + 2 \cdot \frac{\partial^{2}z}{\partial x\partial y}dxdy + \frac{\partial^{2}z}{\partial y^{2}}dy^{2} = (\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy)^{2}z.$$

Dalje, ispitivaćemo funkcije dve i tri promenljive (z = f(x, y)) i u = f(x, y, z), a analogno se definišu parcijalni izvodi i za fukcije n promenljivih $u = f(x_1, x_2, ..., x_n)$. Za funkcije dve promenljive imamo četiri parcijalna izvoda drugog reda, dok za funkciju tri promenljive imamo devet.

Zadatak 2.1. Za funkciju $f(x,y) = \frac{1}{y} \cdot e^{-\frac{x^2}{y}}$ naći parcijalne izvode prvog i drugog reda, kao i totalni diferencijal prvog i drugog reda.

Rešenje. Prvo ćemo izračunati parcijalne izvode prvog reda za totalni diferencijal prvog reda.

$$\begin{split} &\frac{\partial f}{\partial x} = \frac{1}{y} \cdot e^{-\frac{x^2}{y}} \cdot (-2x) \cdot \frac{1}{y} = -\frac{2x}{y^2} \cdot e^{-\frac{x^2}{y}}, \\ &\frac{\partial f}{\partial y} = -\frac{1}{y^2} \cdot e^{-\frac{x^2}{y}} + \frac{1}{y} \cdot e^{-\frac{x^2}{y}} \cdot \frac{x^2}{y^2} = e^{-\frac{x^2}{y}} \cdot \frac{x^2 - y}{y^3}, \\ &df = -\frac{2x}{y^2} \cdot e^{-\frac{x^2}{y}} dx + \frac{x^2 - y}{y^3} \cdot e^{-\frac{x^2}{y}} dy. \end{split}$$

Zatim, koristimo parcijalne izvode za izračunavanje parcijalnih izvoda drugog reda. Drugi parcijalni izvod po x

$$\frac{\partial^2 f}{\partial x^2} = -\frac{2}{y^2} \cdot (e^{-\frac{x^2}{y}} + xe^{-\frac{x^2}{y}} \cdot (-\frac{2x}{y})) = \frac{2(2x^2 - y)}{y^3} \cdot e^{-\frac{x^2}{y}},$$

pa mešoviti parcijalni izvod drugog reda

$$\begin{split} \frac{\partial^2 f}{\partial x \partial y} &= -2x(-\frac{2}{y^3} \cdot e^{-\frac{x^2}{y}} + \frac{1}{y^2} \cdot e^{-\frac{x^2}{y}} \cdot \frac{x^2}{y^2}) \\ &= -\frac{2x}{y^4} \cdot e^{-\frac{x^2}{y}} (-2y + x^2) = \frac{2x}{y^4} \cdot e^{-\frac{x^2}{y}} (2y - x^2). \end{split}$$

Na kraju, potreban je i parcijalni izvod drugog reda po y

$$\begin{split} \frac{\partial^2 f}{\partial y^2} &= \frac{-y^3 - 3y^2(x^2 - y)}{y^6} \cdot e^{-\frac{x^2}{y}} + e^{-\frac{x^2}{y}} \frac{x^2}{y^2} \cdot \frac{x^2 - y}{y^3} = \\ &= e^{-\frac{x^2}{y}} (\frac{-y^2 - 3x^2y + 3y^2 + x^4 - x^2y}{y^5}) = e^{-\frac{x^2}{y}} \cdot \frac{x^4 - 4x^2y + 2y^2}{y^5}, \end{split}$$

nakon čega možemo ispisati totalni diferencijal drugog reda

$$d^2f = \frac{2(2x^2 - y)}{y^3} \cdot e^{-\frac{x^2}{y}} dx^2 + 2 \cdot \frac{2xe^{-\frac{x^2}{y}}}{y^4} \cdot (2y - x^2) dx dy + e^{-\frac{x^2}{y}} \frac{x^4 - 4x^2y + 2y^2}{y^5} dy^2.$$

Zadatak 2.2. Dokazati da je za funkciju $z = \operatorname{arctg} \frac{x}{y}$ za x = u + v, y = u - vzadovoljena jednačina $\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=\frac{u-v}{u^2+v^2}.$ Rešenje. Iz uslova za x i y izražavamo parcijalne izvode po u i v

$$\begin{split} \frac{\partial z}{\partial u} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} = \frac{1}{1 + \frac{x^2}{y^2}} \cdot \frac{1}{y} \cdot 1 + \frac{1}{1 + \frac{x^2}{y^2}} (-\frac{x}{y^2}) \cdot 1 \\ &= \frac{y}{x^2 + y^2} - \frac{x}{x^2 + y^2} = \frac{y - x}{x^2 + y^2}, \end{split}$$

$$\begin{split} \frac{\partial z}{\partial v} &= \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v} = \frac{y^2}{y^2 + x^2} \cdot \frac{1}{y} \cdot 1 + \frac{y^2}{y^2 + x^2} \cdot (-\frac{x}{y^2})(-1) \\ &= \frac{y + x}{x^2 + y^2}. \end{split}$$

Konačno, potrebno je sabiranjem potvrditi jednakost

$$\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = \frac{y-x}{x^2+y^2} + \frac{x+y}{x^2+y^2} = \frac{2y}{x^2+y^2} = \frac{2(u-v)}{2(u^2+v^2)} = \frac{u-v}{u^2+v^2}.$$

Zadatak 2.3. Naći parcijalne izvode funkcije

$$z = f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}.$$

Rešenje. Za $(x,y) \neq (0,0)$

$$\frac{\partial z}{\partial x} = \frac{y(x^2 + y^2) - 2x \cdot xy}{(x^2 + y^2)^2} = \frac{y^3 - x^2y}{(x^2 + y^2)^2},$$
$$\frac{\partial z}{\partial y} = \frac{x(x^2 + y^2) - 2y \cdot xy}{(x^2 + y^2)^2} = \frac{x^3 - xy^2}{(x^2 + y^2)^2}.$$

U slučaju (x,y)=(0,0) parcijalne izvode ispitujemo po definiciji

$$\begin{split} \frac{\partial z}{\partial x}(0,0) &= \lim_{\Delta x \to 0} \frac{z(0+\Delta x,\ 0) - z(0,\ 0)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{\frac{\Delta x \cdot 0}{(\Delta x)^2 + 0} - 0}{\Delta x} = 0, \\ \frac{\partial z}{\partial y}(0,0) &= \lim_{\Delta y \to 0} \frac{z(0,\ 0+\Delta y) - z(0,\ 0)}{\Delta y} \\ &= \lim_{\Delta y \to 0} \frac{\frac{\Delta y \cdot 0}{(\Delta y)^2 + 0} - 0}{\Delta y} = 0. \end{split}$$

Napomena: Funkcija z ima parcijalne izvode $\frac{\partial z}{\partial x}$ i $\frac{\partial z}{\partial y}$ u tački (0,0), ali u toj tački ima prekid.

Zadatak 2.4. Pokazati da funkcija z(x,y) definisana implicitno $x+y+z=\ln(x^2+y^2+z^2)$ zadovoljava jednačinu $(y-z)\frac{\partial z}{\partial x}+(z-x)\cdot\frac{\partial z}{\partial y}=x-y.$ **Rešenje.** Prvo, pravimo parcijalni izvod po x implicitno zadate funkcije

$$x + y + z = \ln(x^2 + y^2 + z^2)/x',$$

 $1 + \frac{\partial z}{\partial x} = \frac{1}{x^2 + y^2 + z^2}(2x + 2z\frac{\partial z}{\partial x}).$

Množenjem jednačine sa $x^2 + y^2 + z^2$ dobija se

$$x^{2} + y^{2} + z^{2} + (x^{2} + y^{2} + z^{2})\frac{\partial z}{\partial x} = 2x + 2z\frac{\partial z}{\partial x},$$

pa sređivanjem dolazimo do prvog parcijalnog izvoda po x

$$\frac{\partial z}{\partial x} = \frac{2x - (x^2 + y^2 + z^2)}{x^2 + y^2 + z^2 - 2z}.$$

Analogno, od parcijalnog izvoda po y implicitno zadate funkcije

$$x + y + z = \ln(x^2 + y^2 + z^2)/y',$$

dobija se

$$\frac{\partial z}{\partial y} = \frac{2y - (x^2 + y^2 + z^2)}{x^2 + y^2 + z^2 - 2z}.$$

Konačno rešenje dobijamo sabiranjem izraza

$$(y-z)\frac{\partial z}{\partial x} + (z-x)\frac{\partial z}{\partial y} = \frac{2xy - y(x^2 + y^2 + z^2) - 2xz + z(x^2 + y^2 + z^2)}{x^2 + y^2 + z^2 - 2z}$$

$$+ \frac{2yz - z(x^2 + y^2 + z^2) - 2xy + x(x^2 + y^2 + z^2)}{x^2 + y^2 + z^2 - 2z}$$

$$= \frac{(x-y)\left[x^2 + y^2 + z^2 - 2z\right]}{x^2 + y^2 + z^2 - 2z} = x - y.$$

2.2. Ekstremne vrednosti funkcija više promenljivih

Neka je funkcija z = f(x, y) diferencijabilna u nekoj oblasti D i tačka $M_0(x_0, y_0)$ je unutrašnja tačka iz te oblasti.

Potreban uslov za ekstrem:

Ako funkcija z=f(x,y) ima ekstrem u tački $M_0(x_0,y_0)$, tada u toj tački parcijalni izvodi $\frac{\partial z}{\partial x}$ i $\frac{\partial z}{\partial y}$ ili su jednaki nuli ili ne postoje.

Tačke u kojima su parcijalni izvodi $\frac{\partial z}{\partial x}$ i $\frac{\partial z}{\partial y}$ jednaki nuli ili ne postoje nazivaju se kritične tačke funkcije z=f(x,y). Tačke u kojima je $\frac{\partial z}{\partial x}=0$ i $\frac{\partial z}{\partial y}=0$ nazivaju se stacionarne tačke.

Dovoljan uslov za ekstrem:

Neka je tačka $M_0(x_0,y_0)$ stacionarna tačka funkcije z=f(x,y), tj. neka je $\frac{\partial z}{\partial x}(x_0,y_0)=0$ i $\frac{\partial z}{\partial y}(x_0,y_0)=0$. Ako u nekoj okolini tačke $M_0(x_0,y_0)$, uključujući i tu tačku, funkcija z=f(x,y) ima neprekidne parcijalne izvode drugog reda, tada:

- 1. ako je $d^2z > 0$ za $(dx, dy) \neq (0, 0)$ funkcija z = f(x, y) u tački $M_0(x_0, y_0)$ ima minimum,
- 2. ako je $d^2z < 0$ za $(dx, dy) \neq (0, 0)$ funkcija z = f(x, y) u tački $M_0(x_0, y_0)$ ima maksimum,
- 3. ako d^2z menja znak za $(dx,dy)\neq (0,\,0)$ funkcija z=f(x,y)u tački $M_0(x_0,y_0)$ nema ekstrem.

Ovaj kriterijum važi za bilo koju funkciju n-promenljivih.

Za funkciju dve promenljive važi i sledeći dovoljan uslov za ispitivanje ekstremne vrednosti:

- 1. ima maksimum ako je $rt s^2 > 0$ i r < 0 (ili t < 0),
- 2. ima minimum ako je $rt s^2 > 0$ i r > 0 (ili t > 0),
- 3. nema ekstrem ako je $rt s^2 < 0$,
- 4. potrebna su dalja ispitivanja ako je $rt s^2 = 0$,

gde je
$$r = \frac{\partial^2 z}{\partial x^2}$$
, $t = \frac{\partial^2 z}{\partial y^2}$ i $s = \frac{\partial^2 z}{\partial x \partial y}$.

Zadatak 2.5. Naći ekstremne vrednosti funkcije $z = \ln(y - 2xy) + xy - x$. **Rešenje.**

Stacionarne tačke:

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{1}{y-2xy}(-2y) + y - 1 = 0 \Rightarrow \frac{2}{2x-1} + y - 1 = 0, \\ \frac{\partial z}{\partial y} &= \frac{1}{y-2xy}(1-2x) + x = 0 \Rightarrow \frac{1}{y} + x = 0. \end{split}$$

Sistem je dalje ekvivalentan sa sistemom

$$2 + 2xy - y - 2x + 1 = 0,$$

$$x = -\frac{1}{y},$$

pa dolazimo do jednačine

$$2 + 2xy - y - 2x + 1 = 0 \Leftrightarrow -y + \frac{2}{y} + 1 = 0 \Leftrightarrow y^2 - y - 2 = 0.$$

Rešenja jednačine su $y_1=-1$ i $y_2=2$, a stacionarne tačke su A(1,-1) i $B(-\frac{1}{2},2)$. Pre ispitivanja karaktera stacionarnih tačaka potrebni su parcijalni izvodi drugog reda

$$\begin{split} r &= \frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} (\frac{2}{2x-1} + y - 1) = -\frac{4}{(2x-1)^2} \\ t &= \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} (\frac{1}{y} + x) = -\frac{1}{y^2} \\ s &= \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} (\frac{\partial z}{\partial x}) = \frac{\partial}{\partial y} (\frac{2}{2x-1} + y - 1) = 1. \end{split}$$

Tačka A
$$r = -4, \ t = -1, \ s = 1\\ rt - s^2 = 4 - 1 = 3 > 0\\ r < 0$$
 Funkcija $z(x,y)$ ima maksimum -2 u tački A. Tačka B
$$r = -1, \ t = -\frac{1}{4}, \ s = 1\\ rt - s^2 = \frac{1}{4} - 1 = -\frac{3}{4} < 0\\ \text{Funkcija nema ekstrem u}\\ \text{tački B.}$$

Zadatak 2.6. Odrediti ekstremne vrednosti funkcije

$$u = x^{2} + 2y^{2} + 2z^{2} + 2xy + 2yz + 4x + 6y + 6z.$$

Rešenje. Rešavanje započinjemo traženjem stacionarnih tačaka, ali metodu rst ne možemo koristiti.

$$\begin{split} \frac{\partial u}{\partial x} &= 2x + 2y + 4 = 0 \Leftrightarrow x + y + 2 = 0 \Rightarrow x = -y - 2, \\ \frac{\partial u}{\partial y} &= 4y + 2x + 2z + 6 = 0 \Leftrightarrow 2y + x + z + 3 = 0, \\ \frac{\partial u}{\partial z} &= 4z + 2y + 6 = 0 \Rightarrow 2z + y + 3 = 0 \Rightarrow z = \frac{-y - 3}{2}. \end{split}$$

Ubacivanjem prve i treće jednačine u drugu dobija se

$$2y - y - 2 - \frac{y+3}{2} + 3 = 0 \Leftrightarrow y - \frac{y+3}{2} + 1 = 0 \Leftrightarrow 2y - y - 3 + 2 = 0 \Rightarrow y = 1,$$

a stacionarna tačka je A(-3, 1, -2). Totalni diferencijal drugog reda: Za parcijalne izvode drugog reda dobijamo

$$\frac{\partial^2 u}{\partial x^2} = 2, \quad \frac{\partial^2 u}{\partial x \partial y} = 2, \quad \frac{\partial^2 u}{\partial x \partial z} = 0,$$
$$\frac{\partial^2 u}{\partial y^2} = 4, \quad \frac{\partial^2 u}{\partial y \partial z} = 2,$$
$$\frac{\partial^2 u}{\partial z^2} = 4,$$

pa je totalni diferencijal drugog reda u tački A

$$\begin{split} d^2u &= \frac{\partial^2 u}{\partial x^2} dx^2 + \frac{\partial^2 u}{\partial y^2} dy^2 + \frac{\partial^2 u}{\partial z^2} dz^2 \\ &+ 2 \frac{\partial^2 u}{\partial x \partial y} dx dy + 2 \frac{\partial^2 u}{\partial x \partial z} dx dz + 2 \frac{\partial^2 u}{\partial y \partial z} dy dz \\ &= 2 dx^2 + 4 dy^2 + 4 dz^2 + 4 dx dy + 4 dy dz \\ &= 2 (dx + dy)^2 + 2 (dy + dz)^2 + 2 dz^2 > 0 \end{split}$$

Dakle, funkcija u(x,y,z)ima minimum u(-3,1,-2)=-9u tački A(-3,1,-2).

2.3. Zadaci za samostalni rad

Zadatak 2.7. Za funkciju $u = f(x^3y - z^2)$ naći $\frac{\partial^3 u}{\partial x \partial y \partial z}$ ako je f(t) tri puta diferencijabilna funkcija (gde je $t = x^3y - z^2$).

Zadatak 2.8. Za funkciju $u(x,y,z)=x^{y^z}$ odrediti totalni diferencijal drugog reda. Ako je $u(x,y,z)=y\cdot f(xe^y\sin z)$, gde je f(t) diferencijabilna funkcija $(t=xe^y\sin z)$, odrediti $\frac{\partial u}{\partial y}$.

Zadatak 2.9. Ako je $u(x,y,z)=y\cdot f(xe^y\sin z)$, gde je f(t) diferencijabilna funkcija $(t=xe^y\sin z)$, odrediti $\frac{\partial u}{\partial y}$.

Zadatak 2.10. Naći ekstremne vrednosti funkcije $z=x^4+y^4-x^2-2xy-y^2.$

Zadatak 2.11. Naći ekstremne vrednosti funkcije $f(x, y, z) = e^{z^2 + (x-y)^2 + (x-1)^2}$.

Literatura

- [1] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Uvodni pojmovi i granični procesi*. FTN Izdavaštvo, Novi Sad 2018
- [2] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Diferencijalni i integralni račun; obične diferencijalne jednačine*. FTN Izdavaštvo, Novi Sad 2018
- [3] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladmir Ćurić. Testovi sa ispita iz Matematičke analize 1. FTN Izdavaštvo, Novi Sad 2018
- [4] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladmir Ćurić, Momčilo Novaković. Zbirka rešenih zadataka iz Matematičke analize 1. FTN Izdavaštvo, Novi Sad 2018