What is claimed is:

- An EDF scheduling method comprising:

 checking the number of tasks to be scheduled;

 allocating priorities to the tasks;

 updating current time as the lowest priority; and
 processing the tasks in a shortest-deadline-first order from the updated lowest priority on a temporal axis.
 - 2. The method of claim 1, wherein it is determined that the number of tasks to be scheduled is less than the number of a priority level.
 - 3. The method of claim 2, wherein the number of a priority level is 2^k .
 - 4. The method of claim 2 or 3, wherein if the number of tasks is less than that of the priority level, a priority of each task is determined as a value obtained by dividing a value obtained by dividing a deadline d_i of a corresponding task by a maximum deadline T_{max} by a specific time unit q.
 - 5. The method of claim 4, wherein the maximum deadline is a relative deadline of a task having the longest period among the tasks.
 - 6. The method of claim 4, wherein the specific time unit is a value obtained by dividing the maximum deadline by the number of a priority level.

10

15

20

- 7. The method of claim 4, wherein the current time is indicated by a current time indicator.
- 8. The method of claim 7, wherein the current time indicator is a value obtained by dividing a value obtained by dividing current time of a system by the maximum deadline by the specific time unit.
 - 9. The method of claim 2 or 3, wherein if the number of tasks is less than the number of a priority level, a priority of each task (P_i) is calculated by a following formula of $\left[\frac{d_i \mod T_{\max}}{q}\right]$, in which the d_i denotes a deadline of a corresponding task, T_{\max} denotes a maximum deadline, and the q denotes a specific time unit.
- The method of claim 9, wherein the T_{max} is a relative deadline of a
 task having the longest period among tasks.
 - 11. The method of claim 10, wherein the specific time unit is calculated by a formula of $q = \frac{T_{\text{max}}}{2^k}$.
- 12. The method of claim 11, wherein current time is updated by a formula of $\left[\frac{(current\,time)\,\mathrm{mod}\,T_{\mathrm{max}}}{q}\right]$, and the current_time is current time of a system.

- 13. The method of claim 2 or 3, wherein if the number of tasks is more than the number of a priority level, tasks are grouped into several task sets.
- 14. The method of claim 13, wherein one current time indicator is set to each task set.

5

- 15. The method of claim 14, wherein a priority (P_i) of a task having a deadline which is in a range of $2^{m-1}T_{min} \sim 2^mT_{min}$ is obtained by a following formula of $(m-1)x + \left[\frac{d_i \mod 2^m T_{min}}{q(m)}\right]$, wherein the q(m) denotes a time unit relevant to the mth time indicator, the x denotes the number of a priority level relevant to each current time indicator, and the d_i denotes a deadline of a corresponding task.
- The method of claim 15, wherein the number of the current time indicator is $\left[\frac{2^{k}}{x}\right]$.
 - 17. The method of claim 16, wherein a value of the mth time indicator, C(m) is updated by a following formula of $\left[\frac{(current \, time) \, \text{mod} \, 2^m \, T_{\text{min}}}{q(m)}\right]$.