

ITEA2 Project Call 6 11025 2012 - 2015

Work-Package 7: "Toolchain"

Event-B Model of Subset 026, Section 3.13

Matthias Güdemann April 2013

Funded by:

This page is intentionally left blank

Work-Package 7: "Toolchain"

OETCS April 2013

Event-B Model of Subset 026, Section 3.13

Matthias Güdemann

Systerel Les Portes de l'Arbois, Bâtiment A 1090 rue René Descartes 13857 Aix-en-Provence Cedex 3, France

Model Description

Prepared for openETCS@ITEA2 Project

Disclaimer: This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing: European Union Public Licence (EUPL v.1.1+) AND Creative Commons Attribution-ShareAlike 3.0 – (cc by-sa 3.0)

THE WORK IS PROVIDED UNDER OPENETCS OPEN LICENSE TERMS (OOLT) WHICH IS A DUAL LICENSE AGREEMENT INCLUDING THE TERMS OF THE EUROPEAN UNION PUBLIC LICENSE (VERSION 1.1 OR ANY LATER VERSION) AND THE TERMS OF THE CREATIVE COMMONS PUBLIC LICENSE ("CCPL"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS OLT LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

http://creativecommons.org/licenses/by-sa/3.0/

http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

Table of Contents

1	Modeling Strategy					
2	Model Overview					
3	Model Benefits					
4	Detailed Model Description					
	4.1	Context 0 - Train Inputs, TI and DMI command	8			
	4.2	Machine 0 - Train Status and Commands	9			
	4.3	Machine 1 - Brake Model	. 10			
	4.4	Context 1 - Decelerations	. 11			
	4.5	Machine 2 - Calculate Decelerations	. 11			
	4.6	Machine 3 - Calculation of Brake Buildup Time	. 12			
	4.7	Machine 4 - Acceleration due to Gradient	. 13			
	4.8	Context 3 - Speed Profiles	. 13			
	4.9	Machine 5 - Most Restrictive Speed Profile	. 14			
	4.10	Context 4 - Targets	. 14			
	4.11	Machine 6 - Supervised Targets	. 14			
	4.12	Context 5 - Braking Curves	. 15			
	4.13	Machine 7 - Braking Curves	. 15			
	4.14	Context 6 - Supervision Limits	. 16			
	4.15	Machine 8 - Supervision Limit	. 17			
5	Model	Decomposition	. 19			
Refe	rences		. 19			

Figures and Tables

Fi	a	u	r	е	S

Figure 1.	Speed and Distance Monitoring Overview ([Eur12] p. 85)	6
Figure 2.	Decomposition of System	7
Figure 3.	Machine Decomposition Overview	7

Tables

This document describes a formal model of the requirements of section 3.13 of the subset 026 of the ETCS specification 3.3.0 [Eur12]. This section describes the speed and distance monitoring subsystem of ETCS.

The model is expressed in the formal language Event-B [Abr10] and developed within the Rodin tool [Jas12]. This formalism allows an iterative modeling approach. In general, one starts with a very abstract description of the basic functionality and step-wise adds additional details until the desired level of accuracy of the model is reached. Rodin provides the necessary proof support to ensure the correctness of the refined behavior.

In this document we present an Event-B model of the speed and distance monitoring subsystem of ETCS. At first, we describe shortly the background of Event-B, then the overall approach taken to model this section and finally present the model in detail.

The section 3.13 of the SRS gives a very detailed description of the calculation of many necessary values for speed and distance monitoring. As Event-B is a system modeling approach, we give an abstract model of the system. The calculations are abstracted as functions and the system ensures the correct parameter flow to the functions. We illustrate the model decomposition capabilities of Event-B and Rodin by decomposing the overall model into different functional parts.

For a short introduction on Event-B and the usage of Rodin with models on github see https://github.com/openETCS/model-evaluation/blob/master/model/B-Systerel/Event_B/rodin-projects-github.pdf?raw=true

1 Modeling Strategy

The section 3.13 of the SRS describes the speed and distance monitoring together with the necessary parameters and data. The model starts with an abstract modeling of dataflow of the various intermediate calculated values. This model is partitioned into functional parts, the model is decomposed using shared variables and the respective sub-models are refined until the basic calculation functions are reached.

2 Model Overview

The overview of the speed and distance monitoring is shown in Fig. 1 from the SRS.

The on-board system comprises only the middle layer. The upper layer gives train related inputs as parameters, the lower layer track related inputs. The system itself takes the current position, speed and acceleration of the train and computes commands for the train interface and for the driver machine interface. For the train interface, this consists of the command for the service and emergency brakes. For the driver machine interface this consists of the status indication for the driver.

The Event-B modeling starts with machines describing the dataflow of all inputs, outputs and intermediate values of the model. For example, the values that are calculated for $T_brake_service$ in $Traction/Braking\ Models$ are written into a variable by an event that calculates then and these values and are read as input by the event that calculates T_bs for SBI limit.

This approach is conducted for each intermediate value of the system until a single machine is created with one variable for each intermediate value as well as for each input and output. On

Figure 1. Speed and Distance Monitoring Overview ([Eur12] p. 85)

this level of modeling, all events only define the necessary input values and write a new value to their output variable. This value is provided as event parameter on this abstraction level.

The next step is to decompose the single machine into different sub-machines, in general one machine for each functional part of the model. This allows for model structuring and complexity reduction for each machine. For this we use the Rodin decomposition plug-in ¹ using the shared-variable decomposition approach [SPHB11]. This approach splits the set of events of a machine into several disjoint sets and assigns one such set to each sub-machine. It also allows to distribute the variables over several machines, effectively implementing a shared variable distributed system.

The borders for the subsystem decomposition are shown in Fig. 2. The dashed lines show the separate sub-machines. The dataflows that cross these lines are represented by the shared variables of the decomposed model.

Each of the sub-machines with its shared variables is then further refined until the desired level of detail is reached. The overview of these refinements is shown in Fig. 3.

This refinement and context overview is very different from the others, as first an abstract global model was developed and then this model was decomposed into sub-models which are further refined. The contexts are shared between the decomposed models as far as possible. In this case, all resulting contexts and machines are kept in the same Rodin project. It is also possible to create a new project for each sub-machine which will reduce the complexity of each single project.

 $^{{}^{1}}http://wiki.event-b.org/index.php/Decomposition_Plug-in_User_Guide$

Figure 2. Decomposition of System

Figure 3. Machine Decomposition Overview

The global model is shown in the lower right. The first machine describes the global input and output variables of the system. The further refinements represent the iterative addition of more functions as shown in Fig. 2. For example the machine 1 adds the brake model with its inputs and outputs and the machine 2 adds the calculation of deceleration which uses the outputs of the braking model.

The last machine is then decomposed into the nine machines representing each a single functional block. This structure is shown in the upper part of Fig. 3, this also illustrates the further independent refinement of the decomposed sub-machine.

The context hierarchy also reflects this structuring. The contexts define the data types for the intermediate values, as well as the functions that calculate these values. These functions are generally not further refined in the Event-B model, as this is not part of the system modeling.

3 Model Benefits

The modeled section of the SRS provides many details for calculation of various values. The main content from a system modeling point of view is the model. So while in this case the same benefits from using Rodin as for [Mat13a, Mat13b, Mat13c] are present, the main advantage here is the model structuring facility.

 Model Decomposition The shared variable model decomposition [SPHB11] allows for decomposing an Event-B model and for separate refining of the machines of the resulting sub-models while retaining correctness of the refinement proofs.

4 Detailed Model Description

4.1 Context 0 - Train Inputs, TI and DMI command

The first context introduces many basic type for the model, *t_locations*, *t_speed*, *t_acceleration*, *t_TI_commands*, *t_DMI_commands*, *t_time* and *t_train_modes*.

The commands for the train interface (TI) are represented by the constants $c_emergency_brake$, $c_service_brake$, c_TCO , $c_no_command$. For the driver machine interface (DMI) the commands are represented by the constants c_normal , $c_indication$, $c_overspeed$, $c_warning$ and $c_intervention$.

The other constants provide default values for the initialization of variables of that type.

```
CONTEXT c0_train_ti_dmi_commands
SETS
     t_locations all possible locations on track
     t_speed train speed measurement
     t_acceleration train acceleration
     t_TI_commands track interface commands
     t_DMI_commands driver machine interface commands
     t time
     t_train_modes
CONSTANTS
     c_emergency_brake
     c_service_brake
     c_TCO traction cut off
     c_no_command empty command
     c\_normal
     c_{indication}
     c_overspeed
     c_warning
     c_{intervention}
     c_v0
     c_a0
     c l0
     c_a_brake0
     c\_T\_brake0
AXIOMS
```

END

4.2 Machine 0 - Train Status and Commands

This first machine introduces the external input variables, i.e., the position, speed and acceleration of the train as well as the output variables, i.e., the TI commands and the DMI commands. The input variables are read by the event *update_train_style* and the output variables by the event *new_outputs*.

```
MACHINE m0 trainstatus commands
SEES c0_train_ti_dmi_commands
VARIABLES
     v_current current speed of train
     a_current current acceleration of train
     loc_current current position of train as track location
     status current current DMI status
INVARIANTS
      inv1 : v\_current \in t\_speed
      inv2 : a\_current \in t\_acceleration
      inv3 : loc\_current \in t\_locations
      inv4: cmd\_current \in t\_TI\_commands
       inv5: status\_current \in t\_DMI\_commands
EVENTS
Initialisation
   begin
             act1 : v\_current := c\_v0
             act2 : a\_current := c\_a0
             act3 : loc\_current := c\_l0
             act4 : cmd\_current := c\_no\_command
             act5 : status_current := c_normal
   end
Event update\_train\_state =
   anv
           l_speed
           l\_accel
           l\_loc
    where
             grd1: l\_speed \in t\_speed
            grd2: l\_accel \in t\_acceleration
```

```
grd3: l\_loc \in t\_locations
    then
             act1 : v\_current := l\_speed
             act2 : a\_current := l\_accel
             act3 : loc\_current := l\_loc
    end
Event new_outputs =
    any
            l ti cmd
            l_dmi_status
    where
             grd1: l\_ti\_cmd \in t\_TI\_commands
             grd2: l\_dmi\_status \in t\_DMI\_commands
    then
             act1 : cmd\_current := l\_ti\_cmd
             act2 : status\_current := l\_dmi\_status
    end
END
```

4.3 Machine 1 - Brake Model

The first refinement adds the notion of the brake model. This is represented by the variables describing the speed dependent acceleration functions for emergency, service and normal service braking. The variables $T_brake_service$ and $T_brake_emergency$ describe the brake build-up times for the brakes.

```
MACHINE m1_brake_model
REFINES m0_trainstatus_commands
SEES c0_train_ti_dmi_commands
VARIABLES
     A_brake_emergency emergency brake acceleration
     A_brake_service service brake acceleration
     A_brake_normal_service
     T\_brake\_service
     T\_brake\_emergency
EVENTS
Event set\_A\_brake\_emergency =
    any
           l_a_brake
    where
             grd1: l\_a\_brake \in t\_speed \rightarrow t\_acceleration
    then
             act1 : A\_brake\_emergency := l\_a\_brake
Event set\_A\_brake\_service =
    any
           l\_a\_brake
    where
             grd1: l\_a\_brake \in t\_speed \rightarrow t\_acceleration
    then
             act1 : A\_brake\_service := l\_a\_brake
    end
Event set\_A\_brake\_normal\_service =
```

```
any
            l_a_brake
    where
              grd1: l\_a\_brake \in t\_speed \rightarrow t\_acceleration
    then
              act1 : A\_brake\_normal\_service := l\_a\_brake
    end
Event set_T_brake_service =
    any
            l\_T\_brake
             grd1: l\_T\_brake \in t\_time
    then
              act1 : T\_brake\_service := l\_T\_brake
    end
Event set_T_brake_emergency =
    any
            l\_T\_brake
    where
             grd1: l\_T\_brake \in t\_time
    then
              act1 : T\_brake\_emergency := l\_T\_brake
    end
END
```

4.4 Context 1 - Decelerations

This context extension adds a distance type and a function that maps the speed and distance to an acceleration.

```
CONTEXT cl_decelerations

EXTENDS c0_train_ti_dmi_commands

SETS

t\_distance

CONSTANTS

f\_A\_deceleration0

AXIOMS

axm1: f\_A\_deceleration0 \in t\_speed \times t\_distance \rightarrow t\_acceleration

END
```

4.5 Machine 2 - Calculate Decelerations

This refinement adds the calculation of deceleration to the model. This is represented by three variables which are functions that map speed and distance to an acceleration. There is one function for each on of EBD, SBD and GUI.

```
MACHINE m2_calculation_deceleration
REFINES m1_brake_model
SEES c1_decelerations
VARIABLES

A_safe
```

```
A\_expected
      A\_normal\_service
EVENTS
Event set\_A\_safe =
    anv
             l_a_decel
    where
               grd1: l\_a\_decel \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd2: A\_brake\_emergency \in t\_speed \rightarrow t\_acceleration
    then
               act1 : A\_safe := l\_a\_decel
    end
Event set\_A\_expected =
    any
             l_a_decel
    where
               grd1: l\_a\_decel \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd2: A\_brake\_service \in t\_speed \rightarrow t\_acceleration
    then
               act1 : A\_expected := l\_a\_decel
    end
Event set\_A\_normal\_service =
             l\_a\_decel
    where
               grd1: l\_a\_decel \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd2: A\_brake\_normal\_service \in t\_speed \rightarrow t\_acceleration
    then
               act1 : A\_normal\_service := l\_a\_decel
    end
END
```

4.6 Machine 3 - Calculation of Brake Buildup Time

The next machine refinement adds the brake buildup calculation to the model. This is represented by two variables, T_be for the emergency brake and T_se for the service brake.

```
MACHINE m3_safe_brake_buildup
REFINES m2_calculation_deceleration
SEES c1_decelerations
VARIABLES
     T\_be
     T_bs
EVENTS
Event set_T_be =
   any
          l\_t\_be
    where
            grd1: l_tbe \in t_time
            grd2: T\_brake\_emergency \in t\_time
   then
            act1 : T\_be := l\_t\_be
   end
```

```
Event set\_T\_bs \cong
any
l\_t\_bs
where
grd1 : l\_t\_bs \in t\_time
grd2 : T\_brake\_service \in t\_time
then
act1 : T\_bs := l\_t\_bs
end
END
```

4.7 Machine 4 - Acceleration due to Gradient

The refinement adds the notion of the acceleration due to gradient. This is represented by the variable $A_gradient$ which is a function that maps speed to acceleration.

```
MACHINE m4_accel_decel_gradient

REFINES m3_safe_brake_buildup

SEES c2_gradients

VARIABLES

A_gradient

EVENTS

Event set_A_gradient 
any

l_a_gradient

where

grd1: l_a_gradient ∈ t_acceleration

then

act1: A_gradient := l_a_gradient

end

END
```

4.8 Context 3 - Speed Profiles

This context extension introduces the type *speed_profiles* which maps locations to speeds. It also defines one constant value of that type which is used as default value for variables of that type.

```
CONTEXT c3_speed_profiles

EXTENDS c2_gradients

CONSTANTS

c\_speed\_profile0
t\_speed\_profiles
AXIOMS

axm1 : t\_speed\_profiles \subseteq t\_locations \times t\_speed
axm2 : c\_speed\_profile0 \in t\_speed\_profiles
END
```

4.9 Machine 5 - Most Restrictive Speed Profile

This machine refinement introduces the most restrictive speed profile to the model. This is represented by the variable *MRSP* of the type *speed_profile*.

```
MACHINE m5_MRSP
REFINES m4_accel_decel_gradient
SEES c3_speed_profiles
VARIABLES

MRS P
EVENTS
Event set_MRSP =
any

l_sp
where

grd1 : l_sp ∈ t_speed_profiles
then

act1 : MRS P := l_sp
end
END
```

4.10 Context 4 - Targets

This context extension introduces the type $t_targets$ which represents a target, i.e., a pair of location and speed.

```
CONTEXT c4_targets

EXTENDS c3_speed_profiles

CONSTANTS

t\_targets
c\_target0

AXIOMS

axm1 : t\_targets \subseteq t\_locations \times t\_speed

axm2 : c\_target0 \in t\_targets

END
```

4.11 Machine 6 - Supervised Targets

This refinement adds limit of authority, end of authority and supervision limit to the model. For each there exists one variable of type $t_targets$.

```
MACHINE m6_supervised_targets
REFINES m5_MRSP
SEES c4_targets
VARIABLES

LOA
EOA
SvL
EVENTS
Event set_EOA 

©
```

```
any
            l_target
    where
             grd1: l\_target \in t\_targets
             grd2 : MRSP \in t\_speed\_profiles
    then
             act1 : EOA := l\_target
    end
Event set\_LOA =
    any
            l_target
    where
             grd1: l\_target \in t\_targets
             grd2 : MRSP \in t\_speed\_profiles
    then
             act1 : LOA := l\_target
    end
Event set\_SvL \cong
    any
            l_target
    where
             grd1: l\_target \in t\_targets
             grd2 : MRSP \in t\_speed\_profiles
    then
             act1 : SvL := l\_target
    end
END
```

4.12 Context 5 - Braking Curves

This context extension introduces the type $t_braking_curves$ and a constant of that type.

```
CONTEXT c5_braking_curves

EXTENDS c4_targets

SETS

t\_braking\_curves

CONSTANTS

c\_curve0

AXIOMS

axm1 : c\_curve0 \in t\_braking\_curves

END
```

4.13 Machine 7 - Braking Curves

This machine refinement adds the braking curves to the model, these are represented by the three variables *EBD*, *SBD* and *GUI* of the appropriate type.

```
MACHINE m7_braking_curves
REFINES m6_supervised_targets
SEES c5_braking_curves
VARIABLES

EBD
```

```
SBD
      GUI
EVENTS
Event set\_EBD \cong
             l_curve
     where
               grd1: l\_curve \in t\_braking\_curves
               grd2: A\_safe \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd3: A\_expected \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd4: A\_normal\_service \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd5 : LOA \in t\_targets
               grd6 : EOA \in t\_targets
               grd7 : SvL \in t\_targets
    then
               act1 : EBD := l\_curve
    end
Event set\_SBD \cong
    any
              l\_curve
     where
               grd1: l\_curve \in t\_braking\_curves
               grd2: A\_safe \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd3: A\_expected \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd4: A\_normal\_service \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd5 : LOA \in t\_targets
               grd6 : EOA \in t\_targets
               grd7 : SvL \in t\_targets
    then
               act1 : SBD := l\_curve
    end
Event set\_GUI \widehat{=}
    any
              l_curve
     where
               grd1: l\_curve \in t\_braking\_curves
               grd2: A\_safe \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd3: A\_expected \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd4: A\_normal\_service \in t\_speed \times t\_distance \rightarrow t\_acceleration
               grd5 : LOA \in t\_targets
               grd6 : EOA \in t\_targets
               grd7 : SvL \in t\_targets
    then
               act1 : GUI := l\_curve
    end
END
```

4.14 Context 6 - Supervision Limits

This context adds the type *t_supervision_limits* to the model, as well as a constant value of that type.

```
CONTEXT c6_supervision_limits
EXTENDS c5_braking_curves
SETS

t_supervision_limits
CONSTANTS
```

```
c\_slimit0
AXIOMS
axm1 : c\_slimit0 \in t\_supervision\_limits
END
```

4.15 Machine 8 - Supervision Limit

This machine refinement adds the supervision limits to the model, emergency brake intervention (*EBI*), service brake intervention (*SBI*), warning limit (*warning_limit*), permitted speed (*P_limit*), indication limit (*I_limit*), pre-indication location (*PI_limit*) and the release start speed monitoring location (*RSM_start*).

```
MACHINE m8 supervision limits
REFINES m7_braking_curves
SEES c6_supervision_limits
VARIABLES
     EBI emergency brake intervention
     SBI service brake intervention
     W_limit warning limit
     P_limit permitted speed
     I_limit indication limit
     PIl pre-indication_location
     RS M_start release speed monitoring start location
EVENTS
Event set\_EBI \cong
    anv
            l\_limit
    where
             grd1: l\_limit \in t\_supervision\_limits
             grd2 : MRSP \in t\_speed\_profiles
             grd3 : EBD \in t\_braking\_curves
             grd4 : SBD \in t\_braking\_curves
             grd5 : GUI \in t\_braking\_curves
             grd6: T\_bs \in t\_time
             grd7: T\_be \in t\_time
    then
             act1 : EBI := l\_limit
    end
Event set\_SBI \widehat{=}
    any
            l_limit
    where
             grd1: l\_limit \in t\_supervision\_limits
             grd2 : MRSP \in t\_speed\_profiles
             grd3 : EBD \in t\_braking\_curves
             grd4 : SBD \in t\_braking\_curves
             grd5 : GUI \in t\_braking\_curves
             grd6: T\_bs \in t\_time
             grd7: T\_be \in t\_time
    then
             act1 : SBI := l\_limit
    end
Event set_W_{limit} =
    any
            l_limit
    where
```

```
grd1: l\_limit \in t\_supervision\_limits
              grd2 : MRSP \in t\_speed\_profiles
              grd3 : EBD \in t\_braking\_curves
              grd4 : SBD \in t\_braking\_curves
              grd5 : GUI \in t\_braking\_curves
              grd6: T\_bs \in t\_time
              grd7: T\_be \in t\_time
    then
              act1 : W\_limit := l\_limit
    end
Event set_I_limit =
    any
            l_limit
    where
              grd1: l\_limit \in t\_supervision\_limits
              grd2 : MRSP \in t\_speed\_profiles
              grd3 : EBD \in t\_braking\_curves
              grd4 : SBD \in t\_braking\_curves
              grd5 : GUI \in t\_braking\_curves
              grd6: T\_bs \in t\_time
              grd7: T\_be \in t\_time
    then
              act1 : I\_limit := l\_limit
    end
Event set_P_limit =
    any
            l\_limit
    where
              grd1: l\_limit \in t\_supervision\_limits
              grd2 : MRSP \in t\_speed\_profiles
              grd3 : EBD \in t\_braking\_curves
              grd4 : SBD \in t\_braking\_curves
              grd5 : GUI \in t\_braking\_curves
              grd6: T\_bs \in t\_time
              grd7: T\_be \in t\_time
    then
              act1 : P\_limit := l\_limit
    end
Event set\_PIl\_limit =
    any
            l\_limit
    where
              grd1: l\_limit \in t\_supervision\_limits
              grd2 : MRSP \in t\_speed\_profiles
              grd3 : EBD \in t\_braking\_curves
              grd4 : SBD \in t\_braking\_curves
              grd5 : GUI \in t\_braking\_curves
              grd6: T\_bs \in t\_time
              grd7: T\_be \in t\_time
    then
              act1 : PIl := l\_limit
    end
Event set\_RSM\_start\_limit =
    any
            l\_limit
    where
              grd1: l\_limit \in t\_supervision\_limits
              grd2 : MRSP \in t\_speed\_profiles
```

5 Model Decomposition

The machine m9 does not really add detail to the refined machine m8. The only changes are that the variables which are read by an event are explicitly added to the conditions by specifying a typing condition for them. This assures that the model decomposition preserves these necessary variables in the sub-machines and only removes the unneeded ones.

References

- [Abr10] Jean-Raymond Abrial. *Modeling in Event-B System and Software Engineering*. Cambridge University Press, 2010.
- [Eur12] European Railway Agency (ERA). System Requirements Specification ETCS Subset 026. http://www.era.europa.eu/Document-Register/Documents/Index00426.zip, 2012.
- [Jas12] Michael Jastram, editor. Rodin User's Handbook. DEPLOY Project, 2012.
- [Mat13a] Matthias Güdemann. Event-B Model of Subset 026, Section 3.5. github openETCS, 2013.
- [Mat13b] Matthias Güdemann. Event-B Model of Subset 026, Section 4.6. github openETCS, 2013.
- [Mat13c] Matthias Güdemann. Event-B Model of Subset 026, Section 5.9. github openETCS, 2013.
- [SPHB11] Renato Silva, Carine Pascal, Thai Son Hoang, and Michael Butler. Decomposition tool for event-b. *Software: Practice and Experience*, 41(2):199–208, 2011.