III - Processus markoviens

Romain HÉRAULT

INSA Rouen

Automne 2015

Problématique

On suppose que l'on dispose d'un certain nombre de mesures (ou observations) bruitées $\mathcal{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \ldots\}$ d'un signal aléatoire (ou état) $\mathcal{X} = \{\mathbf{x}_0, \mathbf{x}_2, \ldots\}$.

- une mesure ou observation réside dans un espace réel de dimension $m, \mathbf{y}_k \in \mathbb{R}^m$;
- un état réside dans un espace réel de dimension n, $\mathbf{x}_k \in \mathbb{R}^n$;
- **x**_{*i*:*j*}, représente l'ensemble des états de l'instant *i* à l'instant *j* ;
- il existe un état x₀ avant la première observation y₁

Nous supposons que le signal est **markovien** et nous cherchons à réaliser les tâches suivantes :

- Prédiction : trouver un état futur à partir d'observations passées ;
- Filtrage : trouver l'état présent à partir des observations passées et présente ;
- Lissage ou Explication : trouver les états passées des observations passées et présente;
- Signification statistique: est-ce les observations que je mesure sont vraisemblable?

Tâche à réaliser

Nous cherchons donc à réaliser les tâches suivantes :

Prédiction :

Connaissant $\mathbf{y}_{1:T}$, trouver une estimation de \mathbf{x}_{T+1} ;

• Filtrage :

Connaissant $\mathbf{y}_{1:T}$, trouver une estimation de \mathbf{x}_T ;

Lissage ou Explication :

Connaissant $\mathbf{y}_{1:T}$, trouver une estimation de $\mathbf{x}_{1:T}$;

Signification statistique :

Connaissant un modèle de notre système, calculer la vraisemblance de $\mathbf{y}_{1:T}$.

ou encore

• Prédiction :

Connaissant $\mathbf{y}_{1:t}$, trouver une estimation de \mathbf{x}_k avec t < k;

Filtrage :

Connaissant $\mathbf{y}_{1:t'}$, trouver une estimation de \mathbf{x}_k avec t' = k;

• Lissage ou Explication :

Connaissant $\mathbf{y}_{1:T}$, trouver une estimation de $\mathbf{x}_k \quad \forall k \in 1 \dots T$;

Signification statistique :

Connaissant un modèle de notre système, calculer la vraisemblance de $\mathbf{y}_{1:T}$.

Schéma tâches à réaliser

Tâche à réaliser : cadre probabiliste

Dans un cadre probabiliste cela revient à chercher :

• Prédiction :

$$p(\mathbf{x}_{k+c}|\mathbf{y}_{1:k})$$
 avec $c \geq 1$

(distribution prédictive a posteriori)

• Filtrage :

$$p(\mathbf{x}_k|\mathbf{y}_{1:k})$$

(distribution a posteriori)

Lissage ou Explication :

$$p(\mathbf{x}_{0:T}|\mathbf{y}_{1:T})$$

(distribution a posteriori)

Signification statistique :

$$p(\mathbf{y}_{1:T})$$

(vraisemblance)

Ce dont nous disposons

Modèle dynamique

Le modèle dynamique décrit l'évolution temporelle des états \mathbf{x} . L'état à l'instant t ne dépend que de l'état à l'instant t-1 (processus markovien).

$$\mathbf{x}_k = f(\mathbf{x}_{k-1}) + \mathbf{q}$$
 avec \mathbf{q} variable aléatoire ou $\mathbf{x}_k \sim p(\mathbf{x}_k | \mathbf{x}_{k-1})$ sous forme probabiliste .

Modèle d'observation (ou de mesure)

Le modèle d'observation décrit le lien entre un état \mathbf{x} et une observation \mathbf{y} . L'observation à l'instant t ne dépend que de l'état à l'instant t.

$$\mathbf{y}_k = g(\mathbf{x}_k) + \mathbf{r}$$
 avec \mathbf{r} variable aléatoire ou $\mathbf{y}_k \sim p(\mathbf{y}_k|\mathbf{x}_k)$ sous forme probabiliste.

Distribution a priori de l'état initial

$$\mathbf{x}_0 \sim p(\mathbf{x}_0)$$

Exemple: Voiture subissant une force constante (1)

On considère une voiture ayant une position initiale $(x_{0,1}, x_{0,2})$ et une vitesse initiale $(\dot{x}_{0,1}, \dot{x}_{0,2})$ sur lequel on applique une force constante $(g_{k,1}, g_{k,2}) = cte \quad \forall k$, on observe une position bruitée de la voiture $(y_{k,1}, x_{k,2})$.

Loi de Newton

$$\mathbf{g}(t) = m.\ddot{\mathbf{x}}(t)$$

où m est le poids du véhicule

Problème

L'accélération ne peut pas être déterminée entre deux instants : Comment traduire ce problème en processus markovien?

Solution

Ne pas se contenter de la position du véhicule comme état du système mais prendre en compte aussi la vitesse et l'accélération!

Exemple: Voiture subissant une force constante (2)

Variables

$$\mathbf{x}_{k} = [x_{k,1}, x_{k,2}, \dot{x}_{k,1}, \dot{x}_{k,2}, \ddot{x}_{k,1}, \ddot{x}_{k,2}]^{\mathsf{T}} \mathbf{y}_{k} = [y_{k,1}, y_{k,2}]^{\mathsf{T}}$$

Initialisation: $p([x_{0,1}, x_{0,2}, \dot{x}_{0,1}, \dot{x}_{0,2}, g_{0,1}/m, g_{0,2}/m]^{\mathsf{T}})$

Modèles

 $\mathbf{x}_k \sim p(\mathbf{x}_k | \mathbf{x}_{k-1}) = \mathcal{N}(\mathbf{x}_k | \mathbf{A}.\mathbf{x}_{k-1}, \mathbf{Q})$ $\mathbf{y}_k \sim p(\mathbf{y}_k | \mathbf{x}_k) = \mathcal{N}(\mathbf{y}_k | \mathbf{H}.\mathbf{x}_k, \mathbf{R})$

Ce que nous cherchons

La vraisemblance des observations

$$p(\mathbf{y}_{1:T}) = \int_{\mathbf{x}_{0:T}} p(\mathbf{y}_{1:T}|\mathbf{x}_{0:T}) p(\mathbf{x}_{0:T}) d_{\mathbf{x}_{0:T}}$$

Signification statistique

Distribution a posteriori des états

Inversion du conditionnement :

$$\rho(\mathbf{x}_{0:T}|\mathbf{y}_{1:T}) = \frac{p(\mathbf{x}_{0:T}, \mathbf{y}_{1:T})}{p(\mathbf{y}_{1:T})} = \frac{p(\mathbf{y}_{1:T}|\mathbf{x}_{0:T})p(\mathbf{x}_{0:T})}{p(\mathbf{y}_{1:T})}$$

Filtrage, Lissage

Distribution prédictive a posteriori des états

$$p(\mathbf{x}_{0:T+1}|\mathbf{y}_{1:T}) = p(\mathbf{x}_{0:T+1}|\mathbf{x}_{0:T},\mathbf{y}_{1:T})p(\mathbf{x}_{0:T}|\mathbf{y}_{1:T})$$

Prédiction

◆ロ > ◆卸 > ◆ 差 > ・ 差 ・ り へ

Propriétés liés au processus de Markov

Propriété des états

x suit un processus markovien alors :

• \mathbf{x}_k est indépendant de tout ce qui c'est passé avant k-1,

$$p(\mathbf{x}_k|\mathbf{x}_{1:k-1},\mathbf{y}_{1:k-1}) = p(\mathbf{x}_k|\mathbf{x}_{k-1})$$
.

x_{k-1} est indépendant de tout ce qui ce passera dans le futur,

$$p(\mathbf{x}_{k-1}|\mathbf{x}_{k:T},\mathbf{y}_{k:T}) = p(\mathbf{x}_{k-1}|\mathbf{x}_k) .$$

Indépendances conditionnelles des mesures

L'observation courante \mathbf{y}_k connaissant \mathbf{x}_k est conditionnellement indépendante des états et mesures passées,

$$p(\mathbf{y}_k|\mathbf{x}_{1:k},\mathbf{y}_{1:k-1}) = p(\mathbf{y}_k|\mathbf{x}_k) .$$

Implication

Connaissant la distribution initiale $p(\mathbf{x}_0)$ on peut trouver la distribution d'une séquence d'état complète :

$$\begin{array}{rcl}
\rho(\mathbf{x}_{0:T}) & = & \rho(\mathbf{x}_{T}|\mathbf{x}_{0:T-1})\rho(\mathbf{x}_{0:T-1}) \\
\rho(\mathbf{x}_{0:T}) & = & \rho(\mathbf{x}_{T}|\mathbf{x}_{T-1})\rho(\mathbf{x}_{0:T-1}) \\
\rho(\mathbf{x}_{0:T}) & = & \rho(\mathbf{x}_{T}|\mathbf{x}_{T-1})\rho(\mathbf{x}_{T-1}|\mathbf{x}_{T-2})\rho(\mathbf{x}_{0:T-2})
\end{array}$$

$$p(\mathbf{x}_{0:T}) = p(\mathbf{x}_0) \prod_{k=1}^{T} p(\mathbf{x}_k | \mathbf{x}_{k-1})$$

De la même manière

$$\rho(\mathbf{y}_{1:T}|\mathbf{x}_{0:T}) = \prod_{k=1}^{T} \rho(\mathbf{y}_{k}|\mathbf{x}_{k})$$

Ce que nous cherchons (2)

La vraisemblance des observations

$$\rho(\mathbf{y}_{1:T}) = \int \dots \int_{\mathbf{x}_{0:T}} \rho(\mathbf{x}_0) \left(\prod_{k=1}^T \rho(\mathbf{x}_k | \mathbf{x}_{k-1}) \right) \left(\prod_{k=1}^T \rho(\mathbf{y}_k | \mathbf{x}_k) \right) d\mathbf{x}_{0:T}$$

Distribution a posteriori des états

$$p(\mathbf{x}_{0:T}|\mathbf{y}_{1:T}) = \frac{p(\mathbf{x}_0) \left(\prod_{k=1}^T p(\mathbf{x}_k|\mathbf{x}_{k-1})\right) \left(\prod_{k=1}^T p(\mathbf{y}_k|\mathbf{x}_k)\right)}{p(\mathbf{y}_{1:T})}$$

Complexité ⇒ Intraitable!

Filtrage / Prédiction (1)

On va calculer les distributions a posteriori $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ et prédictive a posteriori $p(\mathbf{x}_{k+1}|\mathbf{y}_{1:k})$ par récursion.

Initialisation

On commence avec la distribution a priori de l'état initial $p(\mathbf{x}_0)$.

Récursion

On répète deux étapes au cours de la récursion :

- Prédiction
- Mise à jour

Filtrage / Prédiction (2)

Étape de prédiction

A partir du modèle de dynamique $p(\mathbf{x}_k|\mathbf{x}_{k-1})$ et de la distribution a posteriori $p(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1})$, on peut calculer la distribution prédictive a posteriori $p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$,

$$\rho(\mathbf{x}_{k}|\mathbf{y}_{1:k-1}) = \int \rho(\mathbf{x}_{k}|\mathbf{x}_{k-1})\rho(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1})d\mathbf{x}_{k-1} .$$

C'est l'équation de Chapman-Kolmogorov.

Étape de mise-à-jour

On prend en compte l'observation \mathbf{y}_k pour trouver la distribution a posteriori $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ à partir du modèle d'observation $p(\mathbf{y}_k|\mathbf{x}_k)$ et de la distribution prédictive a posteriori $p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$,

$$p(\mathbf{x}_k|\mathbf{y}_{1:k}) = \frac{1}{Z_k} p(\mathbf{y}_k|\mathbf{x}_k) p(\mathbf{x}_k|\mathbf{y}_{1:k-1}) ,$$

avec comme terme de normalisation

$$Z_k = \int \rho(\mathbf{y}_k|\mathbf{x}_k)\rho(\mathbf{x}_k|\mathbf{y}_{1:k-1})d\mathbf{x}_k.$$

C'est une application de la règle de Bayes.

On boucle ces deux étapes.

Filtrage / Prédiction (3)

Prédiction à plus 1 pas de temps

Grâce au modèle de dynamique $p(\mathbf{x}_k|\mathbf{x}_{k-1})$ (ou $\mathbf{x}_k = f(\mathbf{x}_{k-1}) + q$), on peut projeter à plus d'un pas dans le temps. On applique l'équation de Chapman-Kolmogorov autant de fois que nécessaire,

$$\rho(\mathbf{x}_{k}|\mathbf{y}_{1:k-1}) = \int \rho(\mathbf{x}_{k}|\mathbf{x}_{k-1})\rho(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1})d\mathbf{x}_{k-1} ,$$

$$\rho(\mathbf{x}_{k+1}|\mathbf{y}_{1:k-1}) = \int \rho(\mathbf{x}_{k+1}|\mathbf{x}_{k})\rho(\mathbf{x}_{k}|\mathbf{y}_{1:k-1})d\mathbf{x}_{k} ,$$

$$\rho(\mathbf{x}_{k+2}|\mathbf{y}_{1:k-1}) = \int \rho(\mathbf{x}_{k+2}|\mathbf{x}_{k+1})\rho(\mathbf{x}_{k+1}|\mathbf{y}_{1:k-1})d\mathbf{x}_{k+1} ,$$

Illustration: Prédiction (1)

Illustration: Prédiction (2)

Application du modèle de dynamique

Illustration: Prédiction (3)

Application du modèle de dynamique

Illustration: Prédiction (4)

Distribution prédictive

Illustration: Prédiction (4)

Illustration: Mise à jour (1)

Illustration: Mise à jour (2)

Illustration: Mise à jour (2)

Lissage (1)

Attention

$$p(\mathbf{x}_k|\mathbf{y}_{1:T}) \neq p(\mathbf{x}_k|\mathbf{y}_{1:k})$$

Lissage (2)

Algorithme en deux passes.

Passe 1 : Forward (Filtrage)

Initialisation:

$$p(\mathbf{x}_0)$$

Pour k allant de 1 à T:

$$\rho(\mathbf{x}_{k}|\mathbf{y}_{1:k-1}) = \int \rho(\mathbf{x}_{k}|\mathbf{x}_{k-1})\rho(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1})d\mathbf{x}_{k-1} ,$$

$$\rho(\mathbf{x}_{k}|\mathbf{y}_{1:k}) = \frac{1}{Z_{k}}\rho(\mathbf{y}_{k}|\mathbf{x}_{k})\rho(\mathbf{x}_{k}|\mathbf{y}_{1:k-1}) ,$$

avec comme terme de normalisation

$$Z_k = \int \rho(\mathbf{y}_k|\mathbf{x}_k)\rho(\mathbf{x}_k|\mathbf{y}_{1:k-1})d\mathbf{x}_k.$$

Lissage (3)

Passe 2: Backward

Initialisation:

$$p(\mathbf{x}_T|\mathbf{y}_{1:T}) \leftarrow \text{Dernière itération de la première passe}$$

Pour k allant de T-1 à 1:

$$p(\mathbf{x}_{k}|\mathbf{y}_{1:T}) = p(\mathbf{x}_{k}|\mathbf{y}_{1:k}) \int \left[\frac{p(\mathbf{x}_{k+1}|\mathbf{x}_{k})p(\mathbf{x}_{k+1}|\mathbf{y}_{1:T})}{p(\mathbf{x}_{k+1}|\mathbf{y}_{1:k})} \right] d\mathbf{x}_{k+1} ,$$

Implémentation

On peut simplifier, réduire la complexité des équations des filtrage/prédiciton/lissage et signification statistique suivant les propriétés ou les approximations des modèles .

Modèles

$$\begin{array}{ll} \text{Dynamique} & \text{Observation} \\ \mathbf{x}_k = f(\mathbf{x}_{k-1}) + \mathbf{q} & \mathbf{y}_k = g(\mathbf{x}_k) + \mathbf{r} \\ \mathbf{x}_k \sim p(\mathbf{x}_k|\mathbf{x}_{k-1}) & \mathbf{y}_k \sim p(\mathbf{y}_k|\mathbf{x}_k) \end{array}$$

- x discret, y discret → HMM ;
- x discret, y continue → GHMM,...;
- ullet x continue, y continue, f et g linéaire o Filtre de Kalman, lissage de Rauch-Tung-Striebel ;
- x continue, y continue, f et g non linéaire mais dérivable → Filtre de Kalman étendu, . . . ;
- ullet x continue, y continue, f et g quelconques o Filtre particulaire, ...;

Implémentation : Voiture subissant une force constante (1)

Espaces d'état et d'observation continus, f et g linéaire, bruits gaussien \Rightarrow

Filtre de Kalman

Modèles

$$p(\mathbf{x}_k|\mathbf{x}_{k-1}) = \mathcal{N}(\mathbf{x}_k|\mathbf{A}.\mathbf{x}_{k-1},\mathbf{Q}) \quad p(\mathbf{y}_k|\mathbf{x}_k) = \mathcal{N}(\mathbf{y}_k|\mathbf{H}.\mathbf{x}_k,\mathbf{R})$$

Notations

$$\begin{array}{lcl} \rho(\boldsymbol{x}_{k}|\boldsymbol{y}_{1:k-1}) & = & \mathcal{N}(\boldsymbol{x}_{k}|\boldsymbol{m}_{k}^{-},\boldsymbol{P}_{k}^{-}) \ , \\ \rho(\boldsymbol{x}_{k}|\boldsymbol{y}_{1:k}) & = & \mathcal{N}(\boldsymbol{x}_{k}|\boldsymbol{m}_{k},\boldsymbol{P}_{k}) \ , \\ \rho(\boldsymbol{y}_{k}|\boldsymbol{y}_{1:k-1}) & = & \mathcal{N}(\boldsymbol{y}_{k}|\boldsymbol{H}\boldsymbol{m}_{k}^{-},\boldsymbol{S}_{k}) \ . \end{array}$$

Résolution : Voiture subissant une force constante (2)

Prédiction

$$\mathbf{m}_{k}^{-} = \mathbf{A}\mathbf{m}_{k-1} ,$$
 $\mathbf{P}_{k}^{-} = \mathbf{A}\mathbf{P}_{k-1}\mathbf{A}^{\mathsf{T}} + \mathbf{Q} .$

Mise à jour

$$\begin{array}{rcl} {\bf v}_k & = & {\bf y}_k - {\bf H}{\bf m}_k^- \; , \\ {\bf S}_k & = & {\bf H}{\bf P}_k^- {\bf H}^\intercal + {\bf R} \; , \\ {\bf K}_k & = & {\bf P}_k^- {\bf H}^\intercal {\bf S}_k^{-1} \; , \\ {\bf m}_k & = & {\bf m}_k^- + {\bf K}_k {\bf v}_k \; , \\ {\bf P}_k & = & {\bf P}_k^- - {\bf K}_k {\bf S}_k {\bf K}_k^\intercal \; . \end{array}$$

Résolution: Voiture subissant une force constante (3)

Modèles

Dynamique

$$\mathbf{x}_k = f(\mathbf{x}_{k-1}) + \mathbf{q}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & \Delta t & 0 & 0 & 0 \\ 0 & 1 & 0 & \Delta t & 0 & 0 \\ 0 & 0 & 1 & 0 & \Delta t & 0 \\ 0 & 0 & 0 & 1 & 0 & \Delta t \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{x}_k = \mathbf{A} \cdot \mathbf{x}_{k-1} + \mathbf{q}_{k-1}$$

avec $\mathbf{q}_{k-1} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$

$$\mathbf{x}_k \sim p(\mathbf{x}_k|\mathbf{x}_{k-1}) = \mathcal{N}(\mathbf{x}_k|\mathbf{A}.\mathbf{x}_{k-1},\mathbf{Q})$$
 $\mathbf{y}_k \sim p(\mathbf{y}_k|\mathbf{x}_k) = \mathcal{N}(\mathbf{y}_k|\mathbf{H}.\mathbf{x}_k,\mathbf{R})$

Observation

$$\mathbf{y}_k = g(\mathbf{x}_k) + \mathbf{r}$$

$$\boldsymbol{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{y}_k = \mathbf{H}.\mathbf{x}_k + \mathbf{r}_k$$
 avec $\mathbf{r}_k \sim \mathcal{N}(0,\mathbf{R})$

$$\mathbf{y}_k \sim p(\mathbf{y}_k|\mathbf{x}_k) = \mathcal{N}(\mathbf{y}_k|\mathbf{H}.\mathbf{x}_k,\mathbf{R})$$

Résolution : Voiture subissant une force constante (4)

Résolution : Voiture subissant une force constante (5)

Résolution : Voiture subissant une force constante (6)

Résolution : Voiture subissant une force constante (7)

Résolution : Voiture subissant une force constante (8)

