Last time
$$\pi_1(X, x) = \{[y] \mid \text{loops } y \text{ in } X \text{ at } x\}$$
 under the operation $[\beta] * [y] = [\beta * y]$ [what's the id elt?]

Q how much does it depend on X, x?

if y is a path in X, then $f \circ y$ is a path in Y

if h is a path homotopy from γ to γ' then $f \circ h$ is a path homotopy from $f \circ \gamma$ to $f \circ \gamma'$

<u>Thm</u> suppose f : X to Y is cts

- 1) if y, y' are paths in X s.t. $y \sim_p y'$ then $f \circ y$, $f \circ y'$ are paths in Y s.t. $f \circ y \sim_p f \circ y'$
- 2) if β , γ are paths in X s.t. $\beta(1) = \gamma(0)$, then $f \circ (\beta * \gamma) = (f \circ \beta) * (f \circ \gamma)$

Cor suppose
$$f : X \text{ to } Y \text{ is cts and } f(x) = y$$

1) well-def map $f_* : \pi_1(X, x)$ to $\pi_1(Y, y)$ s.t.

$$f_*([y]) = [f \circ y]$$

[if [y] = [y'], then
$$[f \circ y] = [f \circ y']$$
]

2) f_* is a group homomorphism:

$$f_*([\beta] * [\gamma]) = f_*([\beta]) * f_*([\gamma])$$

[LHS = f_*([
$$\beta * \gamma$$
])
= [f \circ ($\beta * \gamma$)]
= [(f \circ β) * (f \circ γ)]
= [f \circ β] * [f \circ γ] = RHS]

<u>Cor</u> if f : X to Y is a homeo then f_* is an isomorphism

$$\underline{Ex}$$
 if $f = id_X$, then $f_* = id_{\pi_1(X, x)}$

Q is the converse true?

Ex R and
$$\{0\}$$
 are not homeomorphic [why?] but $\pi_1(R, 0) = \pi_1(\{0\}, 0)$

[in fact:]

$$\begin{array}{ll} \underline{Thm} & \text{if X is a convex subset of R^n} \\ & \text{then for any x and loop y based at x,} \\ & \text{have y \sim_p e_x$} \\ & \text{thus $\pi_1(X, x) = \{[e_x]\}$} \end{array}$$

Pf recall the homotopy
$$h(s, t) = (1 - t)*x + t*y(s)$$
is it a path homotopy?
$$h(0, t) = (1 - t)*x + t*y(0) = (1 - t)*x + t*x = x$$

Q given cts maps
$$f : X \text{ to } Y \text{ and } g : Y \text{ to } Z$$

s.t. $f(x) = y \text{ and } g(y) = z$

 $h(1, t) = (1 - t)^*x + t^*y(1) = (1 - t)^*x + t^*x = x$

how to relate f_* :
$$\pi_1(X, x)$$
 to $\pi_1(Y, y)$, g_* : $\pi_1(Y, y)$ to $\pi_1(Z, z)$, (g \circ f)_* : $\pi_1(X, x)$ to $\pi_1(Z, z)$?

$$\underline{\mathsf{Thm}} \qquad (\mathsf{g} \, \circ \, \mathsf{f}) \underline{\ }^* = \mathsf{g} \underline{\ }^* \circ \mathsf{f} \underline{\ }^*$$

$$\begin{array}{ll} \underline{Pf} & (g \circ f)_^*([\gamma]) &= [g \circ f \circ \gamma] \\ &= [g \circ (f \circ \gamma)] \\ &= g_^*([f \circ \gamma]) \\ &= g_^*(f_^*([\gamma])) \end{array}$$

have f injective and g surjective by PS3, #8 also
$$g_* \circ f_* = (id_X)_* = id_{\pi_1(X, x)}$$
 so $f_* = (id_X)_* = id_{\pi_1(X, x)}$

Ex
$$x = (1, 0) \text{ in } S^1$$

i : S^1 to R^2 -
$$\{(0, 0)\}\$$
 i(x, y) = (x, y)
r : R^2 - $\{(0, 0)\}\$ to S^1 $r(x, y) = (x, y)/|(x, y)|$

$$r \circ i = id_{S^1}$$

so i_* injective and r_* surjective

in fact:
$$\pi_1(S^1, x) = \pi_1(R^2 - \{(0, 0)\}, x) = Z$$

and i_*, r_* are isomorphisms

but
$$i \circ r \neq id_{R^2 - \{(0, 0)\}}$$

but
$$i \circ r \sim id_{R^2 - \{(0, 0)\}}$$

via h(s, t) = $((1 - t) + t/|(x, y)|)*(x, y)$

(Munkres §58)

<u>Df</u> a homotopy equivalence btw X and Y is a pair of cts maps

f: X to Y and g: Y to X

s.t. $g \circ f \sim id_X \text{ and } f \circ g \sim id_Y$

if such maps exist, then we say that X and Y are homotopy equivalent

Thm if f: X to Y and g: Y to X form a homotopy equivalence

then f_* and g_* are isomorphisms of π_1 's