PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-038368

(43)Date of publication of application: 07.02.1990

(51)Int.CI.

CO4B 35/58

(21)Application number: 63-186816

(71)Applicant:

TOSHIBA CORP

(22)Date of filing: 28.07.1988 (72)Inventor:

KASORI MITSUO SATO YOSHIKO

UENO FUMIO TSUGE AKIHIKO

(54) PRODUCTION OF SINTERED MATERIAL OF ALUMINUM NITRIDE

(57)Abstract:

PURPOSE: To produce a sintered material of AIN having denseness and high thermal conductivity at low sintering temperature in a short time by blending AIN as a main component with AIF3 and a compound metallic compound and burning. CONSTITUTION: AIN powder (preferably one having 0.1–2.5) m average particle diameter and 0.1–3wt.% oxygen content) as a main component is blended with (A) AIF3 and (B) 0.1–20wt.%, preferably 0.2–15wt.% calculated as cation of an additive comprising at least one selected from (b1) alkaline earth element compound, (b2) rare earth element compound, (b3) alkaline earth element—rare earth element compound, (b5) rare earth element—aluminum compound and (b6) alkaline earth element—rare earth element—aluminum compound as an essential component, ground, incorporated, molded and then burnt at 1,400–1,850° C to give a sintered material of aluminum nitride.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑲ 日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報(A) 平2-38368

@Int. Cl. 5

識別記号

庁内整理番号

43公開 平成2年(1990)2月7日

C 04 B 35/58

104 D

7412-4G

審査請求 未請求 請求項の数 1 (全7頁)

69発明の名称 窒化アルミニウム焼結体の製造方法

> 願 昭63-186816 ②特.

願 昭63(1988)7月28日

饱発 明 者 加曽利 光男 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合 研究所内 烟発 明 者 佐 佳 子 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合 藤 研究所内 明者 個発 雄 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合 上 野 文 @発 明 者 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合 賁 彦 柘

研究所内 神奈川県川崎市幸区堀川町72番地

弁理士 鈴江 四代 理 人 武彦 外2名

株式会社東芝

明 細 審

1. 発明の名称

窒化アルミニウム焼結体の製造方法

2. 特許請求の範囲

⑪出 願 人

窒化アルミニウムを主成分とし、これに (A) フッ化アルミニウムと、

(B) アルカリ土類元素化合物、希土類元素化合 物、アルカリ土類元素希土類元素化合物、アルカ り土類元素アルミニウム酸化物、希土類元素アル ミニウム酸化物及びアルカリ土類元素希土類元素 アルミニウム化合物から選ばれる少なくとも1種

を必須成分とする添加物を陽イオン種の元素換算 で 0.1 ~ 20重量%加えて焼結することを特徴とす る窒化アルミニウム焼結体の製造方法。

3. 発明の詳細な説明

[発明の目的]

(産業上の利用分野)

本発明は、窒化アルミニウム焼結体の製造方 法に関する。

(従来の技術)

窓化アルミニウム (AIN) は常温から高温 まで高強度性を保持し、かつ溶融金属に濡れず、 更に電気絶殺性が高く、高熱伝導性である等、多 くの優れた特性を有することから新索材として注 目されている。特に、近年、AIN焼結体の半導 体基板への応用研究が盛んに行われ、量産可能な A Q N 焼 結 体 の 熱 伝 導 率 は 数 年 前 ま で は 40~ 60 W/m・kであったものが、特殊な焼結方法の採 用により~200 W/m・kまで改良されるに到っ ている。

このようなAIN焼結体の高熱伝導率化は、高 純度 A 』 N 原料、特に酸素含有量の少ない A 』 N 粉末の量産が可能になったことが第1の要因であ る。酸素含有量の少ないAIN粉末を主成分とし、 焼結助剤の最適化により高熱伝導性の A.Q. N.焼結 体が得られるようになったが、一方、酸素含有量 が少なくなるに伴って焼結性が低下する傾向があ り、緻密な焼精体を得るためには従来に比べてよ り高温、長時間での焼結が必要となってきた。即

ち、酸染含有量の多い A 』 N 粉末を原料して得られた焼結体は熱伝導率が低いものの、焼結性に優れ、級密化が可能となる。

半導体実装基板への応用を考える時、現在広く使用されているアルミナ基板との代替が考えられるが、上述した状況では徹底的な低コスト化が必要であり、焼結温度の上昇、長時間化は製造コストの増加となり、好ましくないものである。

ところで、AIN焼結体をホットプレス以外の方法で得ようとする場合、焼結体の緻密化及びAIN原料粉末の不純物酸素のAIN粒内への固溶を防止するためには、従来より焼結助剤として希土類元素酸化物、アルカリ土類元素酸化物等を添加することが行われている(特開昭 60-1272 67号、特開昭 61-10071号、特開昭 60-71575号等)。これらの焼結助剤はAIN原料粉末の不純物酸素と反応し、液相を生成して焼結体の緻密化を達成すると大に、この不純物酸素を粒界相として固定し酸素トラップ)し、高熱伝導率化を達成すると考えられている。

分とする添加物を脳イオン種の元素換算で0.1 ~ 20重量%加えて焼結することを特徴とする窒化ア ルミニウム焼結体の製造方法である。

上記 A ℓ N としては、酸素が $0.1\sim3$ 重量 % 含み、遠心沈降法による平均粒径が $0.1\sim2.5$ μ m のものを用いることが望ましい。

上記添加物としては、次のような形態のものを 挙げることができる。

①. 上記 (A) 成分及び (B) 成分のみからなる添加物。

②. 上記 (A) 成分、 (B) 成分及び選移金属 化合物からなる添加物。

③. 上記 (A) 成分、 (B) 成分及びアルミニウム酸化物からなる添加物。

④. 上記 (A) 成分、(B) 成分、選移金属化合物及びアルミニウム酸化物からなる添加物。

上記(B)成分中のアルカリ土類元素化合物としては、例えばMg、Ca、Sr、Baの酸化物、フッ化物、窒化物又は炭化物を挙げることができ、特にCa、Srの化合物が好ましい。

このように焼結助剤をAIN粉末原料に添加することにより確かにAIN焼結体の緻密化、高熱伝導率化を達成することが可能となるが、上記焼粘助剤ではいずれも1700~1900℃の高温で、長時間の焼結が必要であるため、AIN焼結体の低コストの障害となっていた。

(発明が解決しようとする課題)

本発明は、上記従来の課題を解決するためになされたもので、高熱伝導性を損うことなく焼結 温度の低下、焼結時間の短縮化を達成したA 9 N 焼結体の製造方法を提供しようとするものである。

[発明の構成]

(課題を解決するための手段)

本発明は、窒化アルミニウムを主成分とし、これに(A)フッ化アルミニウムと、(B)アルカリ土類元素化合物、希土類元素化合物、アルカリ土類元素アルミニウム化合物、オ土類元素アルミニウム化合物及びアルカリ土類元素希土類元素アルミニウム化合物から選ばれる少なくとも1種とを必須成

上記(B)成分中の希土類元素化合物としては、例えばSc、Y、La、Ce、Sm、Eu、Tm、Tb、Dy、Nd、Gd、Pr、Ho、Er、Ybの酸化物、ファ化物、窒化物又は炭化物を挙げることができ、特にY、La、Ceの化合物が好ましい。

上記(B)成分中のアルカリ土類元素希土類元素化合物としては、例えばアルカリ土類元素をR、希土類元素をLnとした時、R-Ln-O、R-Ln-F、R-Ln-C、R-Ln-Nで表わされる化合物を挙げることができ、特にRLn-4-O-7、RLn-2-O-4、RLn-4-F-1-が望ましい。

上記 (B) 成分中のアルカリ土類元素アルミニウム化合物としては、例えばアルカリ土類元素をRとした時、R2 A Q2 O5 、RAQ2 O4 、R12A Q14O33、R3 A Q2 O6 で表わされる酸化物等を挙げることができる。

上記(B)成分中の希土類元素アルミニウム 化合物としては、例えば希土類元素をしn と した時、 Ln 3 · A l 5 O 12、 Ln A l O 3 、 Ln 4 A l 2 O 9 で表わされる酸化物等を挙げる ことができる。

上記(B)成分中のアルカリ土類元素裕土類元素アルミニウム化合物としては、アルカリ土類元素をR、希土類元素をLnとした時、RーLnーAQ-O系の複合酸化物で表わされるものであり、特にRLnAQO、RLnAQ3O、が望ましい。

上記添加物中に含まれる選移金属化合物としては、例えばT!、 Zr、 Hf、 Ni、 Cr、 Mn、Fe、 Co、 Vの酸化物、フッ化物、窒化物又は 炭化物を挙げることができ、特にT!、 Zr、 Hfの化合物が好ましい。

上記添加物中に含まれるアルミニウム酸化物としては、例えば α - A ℓ $_2$ O $_3$ 、 γ - A ℓ $_2$ O $_3$ を挙げることができる。

上記添加物の A Q N 粉末に対する量は、陽イオン換算で 0.1 ~ 20重量 %、より好ましくは 0.2 ~ 15重量 %の範囲することが望ましい。この理由は、

添加物の量を0.1 重量%未満にすると焼結体の特 性改善の効果が充分ではなく、一方その量が20重 量%をを越えると熱伝導率、高温強度等の特性劣 化が無視できなくなる恐れがあるからである。ま た、添加物中のフッ化アルミニウムの量は0.05~ 5 重量%とするこが望ましく、0.05重量%未満に すると特性改善効果を充分に達成し難く、かとい って5 重量%を越えると旋結体中に気泡が残留す る場合があり、緻密な焼結体が得難くなるからで ある。更に、添加物中に遷移金属化合物及びアル ミニウム酸化物を含ませる場合、各成分は夫々 0.01~3 重量%添加することが望ましい。この理 由は、選移金属化合物の添加量を0.01質量%未満 にすると焼結体の高強度化や着色化を充分に達成 できず、かといって3 重量%を越えると焼結体の 熱伝導串を低下させる恐れがあるからである。ア ルミニウム酸化物の添加量を0.01重量%未満にす ると該酸化物の添加効果である焼結性の向上化を 充分に達成できず、かといって3 重量%を越える と焼結体の熱伝導率を低下させる恐れがあるから

である。

上記各添加物は、 遠心沈降法による平均粒径が0.3~2.0 μmの粉末又は液相として A 2 N原料粉末に加えることが望ましい。 液相として 加える例としては、 陽イオン種元素の硝酸塩をアルコールに溶解して A 2 N原料粉末に加える方法、 又は同陽イオン種元素のアルコキシドを A 2 N原料粉末に加えた後、 加水分解させる方法等を採用し得る。

次に、本発明の製造方法をより具体的に説明する。

まず、AIN粉末に添加物を加え、ボールミル等を用いて粉砕、混合して原料を調製する。但し、常圧焼結の場合は前記ボールミル等で粉砕、混合したものに更にバインダを加え、混練、造粒を行なって原料を調製する。つづいて、バインダを含む原料を金型、静水圧又はシート成形等の手段により成形した後、成形体をN2がス気流中にて加熱してバインダを除去する。次いで、成形体を思め、窒化硼素又は窒化アルミニウムからなる容器

にセットし、N2 ガス雰囲気中にて1400~1850℃で常圧焼結を行なう。一方、ホットプレス焼結の 場合は前記ボールミルで粉砕、混合して調製した 原料を1400~1800℃の温度でホットプレスを行な う。

(作用)

本発明によれば、窒化アルミニウムを主成分とし、これに(A)フッ化アルミニウムと、(B)アルカリ土類元素化合物、希土類元素化合物、アルカリ土類元素が上類元素でルミニウム化合物、希土類元素でルミニウム化合物を関が、新土類元素でルミニウム化合物から選ばれる少なくとも1種とないではのから選ばれる少なくとも1種となっての11~20重量%加えて焼結することにによるものと推定される。

即ち、添加物の主要成分であるファ化アルミニ

ウム (A l F g)による反応促進効果が挙げられ る。AlF3は、通常の雰囲気下では融点を持た ず、加熱すれは分解しないで昇華する。そして、 蒸気圧は1300℃付近で1気圧に達する。A.Q. N.原 料粉末の焼結に際しては、AQN原料粉末中に不 可避的に混入する不純物酸素と添加物との反応に より液相を生成し、液相焼結により級密化が進行 するものと考えられる。 AIF3 は、この反応を より低温、短時間で進行させる効果があるものと 考えられる。例えば、添加物としてY2O3を A Q N 原料に加えた系を考えると、焼結後の粒界 付近にはY-AQ-O系の複合酸化物が生成して おり、これらの生成物が焼結温度で液相となる。 この場合、生成相がY3AV5012とするとそ の液相温度は1760℃と考えられており、級密な A Q N 焼結体を得るためにはこれ以上の温度(約 1800℃) で焼結する必要がある。これは、一見 Y 2 O 3 と A Q 2 O 3 の 二 成 分 系 の 反 応 と 類 似 し ており、事実、酸素を含むAIN原料粉末を非 酸化性雰囲気で加熱しても1300℃付近からαAl₂O₃の生成が確認される。

本発明者らは、Y₂O₃とA₁2O₃粉末を 3Y₂O₃・5A₁2O₃又は2Y₂O₃・ A₁2O₃などの定比組成となるように混合し、 空気中で1500℃まで加熱すると、定比組成物の他 に未反応のY₂O₃とA₁2O₃が多く存在する が、A₁F₃を微量(例えば0.5 重量%程度)加 えると、同一条件下で全て定比組成物に変換され ており、未反応物は残っていないことを確認した。

また、添加物のもう一つの (B) 成分であるアルカリ土類元素化合物、希土類元素化合物等は従来の技術で説明したように焼結性を向上してAIN焼結体の極密化及び高熱伝導率化に寄与するものである。

更に、前述した選移金属化合物を含む②、④の添加物を使用することによってAIN焼結体の高強度化及び着色化を達成できる。即ち、遷移金属化合物を含む系の添加物はAIN原料の焼結及び粒成長を阻害することなく焼結体内に均一に分布し、ピンニング効果による焼結体の強度増加を達

(発明の実施例)

以下、本発明の実施例を詳細に説明する。 実施例 1

まず、不純物酸素を0.7 重量%含有し、平均粒径が1.2 μmのAlN粉末に添加物として平均粒径1.0 μmのYlO3 数重量%(Y換算; 2.36重量%)及び平均粒径1.3 μmのAlF3 0.3 重量%(Al换算; 0.094 重量%)を加え、ボールミルを用いて解砕、混合して原料を調製した。つづ

いて、この原料にアクリル系バインダを7 重量% 添加して造粒した後、500 kg/ddの圧力でプレス成形して50cm×50cm×8 cmの寸法の圧粉体とした。ひきつづき、この圧粉体を窒素ガス雰囲気で700 でまで加熱してアクリル系バインダを除去した。次いで、この圧粉体をカーボン製容器中にセットし、窒素ガス雰囲気下にて1700℃で30分間常圧焼結してA2 N焼結体を製造した。

原料として後掲する第 1 表に示す A 2 N 粉末、添加物である混合粉末からなるものを用いた以外、実施例 1 と同様な方法により 1 3種の A 2 N 焼結体を製造した。但し、Ca O は Ca C O 3 を重量換算して添加し、平均粒径はn-ブタノールを分散媒

とした時の遠心沈降径を示す。

しかして、本実施例 1~11及び比較例 1~3で得られた各A 2 N焼結体の密度を測定した。また、各A 2 N焼結体を研削して直径10㎞、厚さ2.5 ㎞の円板を作製し、これらを試験片としてレーザッラッシュ法によって無伝導率を測定した。なお、

測定に際しての温度は21℃±2℃とした。これらの結果を後掲する第1表に示す。

後掲する第1表から明らかなように本実施例 1~11のA 2 N焼結体は、比較例 1~ 3のA 2 N焼結体は、比較例 1~ 3のA 2 N焼結体に比べて緻密性及び熱伝導率のいずれの特性についても優れていることがわかる。

実施例12

まず、不純物酸紫を0.9 重量%含有し、平均粒径が1.5 μmのA Q N 粉末に添加物として平均粒径0.8 μmのCa C O 3 を C a O 換算で1.0 重量% (C a 換算: 0.714 重量%)及び平均粒径1.3 μmのA Q F 3 0.5 重量% (A Q 換算: 0.161 重量%)を加え、ボールミルを用いて解幹に1.6 1 重量%)を加え、ボールミルを用いて解幹にアクリル系バインダを7 重量% 添加して30cm×30cm×500 超ノcmの圧力でプレス成形して30cm×30cm×500 超ノcmの圧力でプレス成形して30cm×30cm×6 で変素ガス雰囲気で700 でまで加熱してアクリル系バインダを除去した。次いで、この圧粉体をカーボン製容器中にセットし、窒素ガス雰囲気に

実施例13~21、比較例 5、 6

照料として後掲する第3表に示すAg N粉末、添加物である混合粉末からなるものを用い、これらを同第3表に示す条件で焼結した以外、実施例1と同様な方法により11種のAg N焼結体を製造した。但し、CaOはCaCO₃ を重量換算して添加し、平均粒径はn-ブタノールを分散媒とした時の遠心沈降径を示す。

しかして、本実施例13~21及び比較例 5、 8の A Q N 焼結体について実施例 1と同様に方法により密及び室温での熱伝導率を測定した。また、各 A Q N 焼結体を研削して幅 4 mm、厚さ 3 mm、 2 mm、

後掲する第3表から明らかなように、本実施例 13~21のAIN焼結体は比較例 5、 8の焼結体に 比べて密度、熱伝導率及び3点曲げ強度のいずれ て1600℃で夫々10分間、30分間、60分間、180分間、300分間、300分間及び720分間常圧焼結して6 種のA Q N焼結体を製造した。

比較例 4

まず、不純物酸素を0.9 重量%含有し、平均粒径が1.5 μmのA Ø N 粉末に添加物として平均粒径0.8 μmのC a C O 3 を C a O 換算で1.0 重量%を加え、ボールミルを用いて解砕、混合して原料を調製した。つづいて、この原料を用いて実施例12と同様な方法により常圧焼結して β 種のA Ø N 娩結体を製造した。

しかして、本実施例12及び比較例 4で得られた各AQN焼結体について密度及び窒温での熱伝導率を測定した。これらの結果を後掲する第2表に示す。

後掲する第2表から明らかなように本実施例12では80分間という短時間の焼結においても窩密度で髙熱伝導率のAIN焼結体を得ることができることがわかる。

も受れていることがわかる。

「発明の効果」

以上詳述した如く、本発明によれば高熱伝導性を損うことなく、焼結温度の低下、焼結時間の短縮化を達成でき、ひいては緻密かつ高熱伝導率を有する回路基板等に好適なA』N焼結体を高歩留りでかつ低コストで製造し得る方法を提供できる。

第 1 表

	A』N粉末			添加物			
	平均粒径 (μm)	酸素含有量 (重量%)	配合量(重量%)	添加物組成 (重量比)	配合量(重量%)	密度 (g/cnt)	熱伝導率 (W/m·k)
実施例1	1.2	0.7	96.7	Y ₂ O ₃ :AQF ₃ -3:0.3	3.3	3.30	191
2	"	"	"	CaYAQO4:AQF3-3:0.3	"	3.29	186
3	1.8	0.3	97.8	CeO ₂ :AQF ₃ = 2:Q2	2.2	"	215
4	"	"	98.8	YP3:APF3=1:0.2	1.2	3.28	209
5	"	"	99.6	YF3:AQF3=0.2:0.2	0.4	3.26	135
6	1.3	2.9	79.0	La ₂ 0 ₃ : AQF ₃ = 20:1	21.0	3.65	103
7	"	"	"	Nd 203: AQF3 = 20:1	"	3.58	102
8	2.5	0.1	97.8	YF ₃ :CaYAQO ₄ :AQF ₃ : γ-AQ ₂ O ₃ -1:0.5:0.2:0.5	2.2	3.29	213
9	1.2	0.7	98.7	CaO: AQF3 -1:0.3	1.3	3.26	165
10	"	"	95.7	Y ₂ O ₃ :CaO:AQF ₃ =3:1:0.3	4.3	3.29	185
11	"	"	96.7	CaY407:AQF3 = 3:0.3	3.3	"	187
比較例1	1.2	0.7	97.0	Y ₂ O ₃	3.0	3.08	135
2	1.3	2.9	79.0	La ₂ 03	21.0	3.20	68
3	1.2	0.7	99.0	CaO	1.0	3.18	136

第 2 表

7	実 施	ØŊ 1 2	比 較 例 4					
添加物	CaO	1.0重量%	CaO	1.0重量%				
	AQF3	0.5重量%						
焼 結 時 間	密度	熱伝導率	密度	熱伝導率				
(分)	(g/cal)	(W/m - k)	(g/cml)	(W/m - k)				
10	2.76	2 8	2.15	1 8				
3 0	3.05	90	2.32	2 3				
6.0	3.24	110	2.62	2.6				
180	"	1 2 5	2.80	3 0				
300	3 . 2 5	1 3 6	3.15	9 1				
720	"	165	3.24	153				

特開平2-38368 (フ)

第 3 表

	A』N粉末			添加物		烧秸条件				3点曲げ	焼結体の
	平均粒径 (µm)	酸素含有量 (重量%)	配合 益(重量%)	添加物粗成 (重量比)	配合量(重量%)	温度 (°C)	時間 (hr)	密度 (g/cm²)	熱伝導率 (W/m・k)	強度 色 (kg/mml)	色期
実施例13	1.5	0.9	94.0	Gd ₂ O ₃ :AQF ₃ :ZrO ₂ -5:0.5:0.5	6.0	1800	i	3.36	201	52	茶褐色
14	"	"	"	CeO,:ARF3:T102=5:0.5:0.5	"	"	"	3.34	207	53	黒
15	"	"	94.5	YN: AQF, -5:0.5	5.5	"	"	3.31	202	42	クリーム
16	*	"	95.5	Eu203:CaYAQO4:AQF3-1:3:0.5	4.5	"	"	3.32	196	43	ピンク
17	"	"	95.0 .	YF3:AQF3-4:1	5.0	1850	1.6	3.26	265	40	クリーム
81	1.2	1.5	"	YF3:AQF3=4:1	"	1550	"	3.27	215.	"	"
19	1.5	0.9	96.5	Ca ₃ N: AQF ₃ = 3:0.5	3.5	1700	0.5	3.24	183	41	白
20	"	"	"	Ca ₂ C: AQF ₃ = 3:0.5	"	"	~	3.26	182	43	"
21	1.8	0.3	97.5	CaO:AQF3:ZrO2: 7-AQ2O3-1:0.5:0.5:0.5	2.5	1800	*	3.29	192	49	茶褐色
比較例5	1.5	0.9	95.0	Y ₂ O ₃	5.0	1700	"	3.12	142	28	Á
6	"	"	99.0	Ca0	1.0	"	"	3.18	129	32	"