MATH 2135 Linear Algebra

Chapter 3 Linear Maps

Alyssa Motas

March 21, 2021

Contents

1	The		or Spaces of Linear Maps (3.A)			
	1.1	Defini	tion and Examples of Linear Maps			
		1.1.1	Definition of a linear map			
		1.1.2	Notation $\mathcal{L}(V,W)$			
		1.1.3	Examples of linear maps			
		1.1.4	Linear maps and basis of domain			
	1.2		raic Operations on $\mathcal{L}(V,W)$			
		1.2.1	Addition and scalar multiplication on $\mathcal{L}(V,W)$			
		1.2.2	$\mathcal{L}(V,W)$ is a vector space			
		1.2.3	Product of linear maps			
		1.2.4	Algebraic properties of products of linear maps			
		1.2.5	Example			
		1.2.6	Linear maps take 0 to 0			
2	Nul	_	es and Ranges (3.B)			
	2.1	Null S	pace and Injectivity			
		2.1.1	Definition of null space			
		2.1.2	Examples of null spaces			
		2.1.3	The null space is a subspace			
		2.1.4	Injective			
		2.1.5	Injectivity is equivalent to null space equals $\{0\}$ 13			
	2.2	Range	and Surjectivity			
		2.2.1	Definition of range			
		2.2.2	Examples of range			
		2.2.3	The range is a subspace			
		2.2.4	Surjective			
		2.2.5	Example			
	2.3	Funda	mental Theorem of Linear Maps			
		2.3.1	A map to a smaller dimensional space is not injective 14			
		2.3.2	A map to a larger dimensional space is not surjective. 14			
		2.3.3	Homogenous system of linear equations 15			
		2.3.4	Inhomogenous system of linear equations 15			
3	Matrices (3.C)					
	3.1	Repres	senting a Linear Map by a Matrix			
		3.1.1	Definition of a matrix			
		3.1.2	Definition of the matrix of a linear map 16			
		3 1 3	Evample 16			

3.2	Addition and Scalar Multiplication of Matrices			
	3.2.1	Definition of matrix addition	17	
	3.2.2	The matrix of the sum of linear maps	17	
	3.2.3	Definition of scalar multiplication of a matrix	17	
	3.2.4	The matrix of a scalar times a linear map	17	
	3.2.5	Notation of $\mathbf{F}^{m,n}$	17	
	3.2.6	$\dim \mathbf{F}^{m,n} = mn \dots \dots \dots \dots \dots \dots \dots \dots \dots$	18	
3.3	Matri	x Multiplication	18	
	3.3.1	Definition of matrix multiplication	18	
	3.3.2	The matrix of the product of linear maps	18	
3.4	Isomorphism			
	3.4.1	Definition of isomorphism	18	
	3.4.2	Inverse function	18	
	3.4.3	Definition of isomorphic	19	
	3.4.4	Finite-dimensional vector spaces are isomorphic	19	

1 The Vector Spaces of Linear Maps (3.A)

1.1 Definition and Examples of Linear Maps

The words "map," "mapping," "function" all mean exactly the same thing. Let X, Y be sets. A function $f: X \to Y$ is an operation that assigns to each element $x \in X$ a unique element $y \in Y$, called y = f(x). X is called the domain of f, and Y is called the codomain of f. We also say that f is a "map" from X to Y.

1.1.1 Definition of a linear map

A linear map or linear transformation from V to W is a function $T: V \to W$ with the following properties:

1. Additivity.

$$T(u+v) = Tu + Tv$$
 for all $u, v \in V$

2. Homogeneity.

$$T(\lambda v) = \lambda(Tv)$$
 for all $\lambda \in \mathbf{F}$ and all $v \in V$.

1.1.2 Notation $\mathcal{L}(V, W)$

The set of all linear maps from V to W is denoted by

$$\mathcal{L}(V, W) = \{T : V \to W \mid T \text{ is linear } \}.$$

In the case that V = W, a linear function $T : V \to V$ is called an *operator* on V. In other words, $\mathcal{L}(V, V)$ is the set of operators on V.

1.1.3 Examples of linear maps

1. **zero function** The zero function is denoted by $0 \in \mathcal{L}(V, W)$ and defined with

$$0v = 0$$
 or $f(v) = 0$.

The 0 on the left side is a function from VtoW, whereas the right one is the additive identity in W. The zero function is linear.

2. **identity function** The identity map, denoted by I, is the function that takes each element to itself. It is defined as $I \in \mathcal{L}(V, V)$ such that

$$Iv = v$$
.

The identity map is linear.

3. differentiation Define $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ by

$$Dp = p'$$
.

D is a linear function because: (f+g)'=f'+g' and $(\lambda f)'=\lambda f'$ whenever f,g are differentiable and λ is a constant.

4. integration (antiderivative) Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ such that

$$T(p) = \int_0^x p(t)dt.$$

T is a linear function since the integral of the sum of two functions equals the sum of the integrals, and the integral of a constant times a function equals the constant times the integral of the function.

5. integration (definite integrals) Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ such that

$$T(p) = \int_0^1 p(x)dx.$$

T is also linear with similar reasons as the previous example.

6. multiplication by x^2 Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ such that

$$(Tp)(x) = x^2 p(x).$$

7. **backward shift** Recall that \mathbf{F}^{∞} is the vector space of all sequences of elements of \mathbf{F} . Define $B \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ such that

$$B(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots).$$

8. forward shift Define $F \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ such that

$$F(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots).$$

9. recurrence relation Consider the Fibonacci sequence such taht

$$a_{n+2} = a_n + a_{n+1}, \qquad n \ge 3.$$

For example, we have $(a_1, a_2, a_3, a_4, a_5, ...) = (1, 1, 2, 3, 5, ...)$. We can also write the reccurence in terms of the backward (and forward) shfit operators:

$$a = (a_1, a_2, a_3, a_4, a_5, \dots)$$

$$Ba = (a_2, a_3, a_4, a_5, a_6, \dots)$$

$$B^2a = B(Ba) = (a_3, a_4, a_5, a_6, a_7, \dots)$$

Cosnider the equation $B^2a = Ba + a$. We can do algebra with such equation:

$$B^2a - Ba - a = 0 \qquad \Leftrightarrow \qquad (B^2 - B - I)a = 0.$$

10. from \mathbb{R}^3 to \mathbb{R}^2 Define $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ by

$$T(x, y, z) = (2x - y + 3z, 7x + 5y - 6z).$$

11. **from** \mathbf{F}^n **to** \mathbf{F}^m Let m and n be positive integers, and let $A_{j,k} \in \mathbf{F}$ for $j = 1, \ldots, m$ and $k = 1, \ldots, n$, and define $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$ by

$$T(x_1, \dots, x_n) = (A_{1,1}x_1 + \dots + A_{1,n}x_n, \dots, A_{m,1}x_1, \dots + A_{m,n}x_n).$$

1.1.4 Linear maps and basis of domain

Suppose v_1, \ldots, v_n is a basis of V and $w_1, \ldots, w_n \in W$. Then there exists a unique linear map $T: V \to W$ such that

$$Tv_i = w_i$$

for each $j = 1, \ldots, n$.

Proof. Let us prove the existence of a linear map T with the desired property. Define $T:V\to W$ by

$$T(c_1v_1 + \cdots + c_nv_n) = c_1w_1 + \cdots + c_nw_n,$$

where c_1, \ldots, c_n are arbitrary elements of **F**. Since v_1, \ldots, v_n is a basis of V, the equation does define a function T since each element of V can be uniquely written in the form of $c_1v_1 + \cdots + c_nv_n$. Suppose that $c_j = 1$ and the other c's being equal to 0, then we have $Tv_j = w_j$.

If $u, v \in V$ with $u = a_1v_1 + \cdots + a_nv_n$ and $v = c_1v_1 + \cdots + c_nv_n$, then

$$T(u+v) = T((a_1 + c_1)v_1 + \dots + (a_n + c_n)v_n)$$

$$= (a_1 + c_1)w_1 + \dots + (a_n + c_n)w_n$$

$$= (a_1w_1 + \dots + a_nw_n) + (c_1w_1 + \dots + c_nw_n)$$

$$= Tu + Tv.$$

If $\lambda \in \mathbf{F}$ and $v = c_1 v_1 + \cdots + c_n v_n$, then

$$T(\lambda v) = T(\lambda c_1 v_1 + \dots + \lambda c_n v_n)$$

= $\lambda c_1 w_1 + \dots + \lambda c_n w_n$
= $\lambda (c_1 w_1 + \dots + c_n w_n)$
= $\lambda T v$.

Thus, T is a linear map from V to W. Now we need to prove that it is unique. Suppose that $T \in \mathcal{L}(V, W)$ and that $Tv_j = w_j$ for j = 1, ..., n. Let $c_1, ..., c_n \in \mathbf{F}$. The homogeneity property of T implies that $T(c_jv_j) = c_jw_j$. The additivity of T now implies that

$$T(c_1v_1 + \dots + c_nv_n) = c_1w_1 + \dots + c_nw_n.$$

Then T is unquiely determined on $\operatorname{span}(v_1, \ldots, v_n)$. Because v_1, \ldots, v_n is a basis of V, this implies that T is uniquely determined on V.

1.2 Algebraic Operations on $\mathcal{L}(V, W)$

1.2.1 Addition and scalar multiplication on $\mathcal{L}(V, W)$

Suppose $S, T \in \mathcal{L}(V, W)$ and $\lambda \in \mathbf{F}$. The sum S + T and the product λT are the linear maps from V to W defined by

$$(S+T)(v) = Sv + Tv$$
 and $(\lambda T)(v) = \lambda (Tv)$

for all $v \in V$.

1.2.2 $\mathcal{L}(V,W)$ is a vector space

With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space (it holds all the 8 laws of vector space). Note that the additive identity is the zero linear map or function.

1.2.3 Product of linear maps

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then the product $ST \in \mathcal{L}(U, W)$ is defined by

$$(ST)(u) = S(Tu)$$

for $u \in U$. In other words, ST is the composition $S \circ T$ of two functions. Note that ST is defined only when T maps into the domain of S.

1.2.4 Algebraic properties of products of linear maps

1. Associativity:

$$(T_1T_2)T_3 = T_1(T_2T_3)$$

where T_3 maps into the domain of T_2 , and T_2 maps into the domain of T_1 .

2. Identity:

$$TI = IT = T$$

where $I \in \mathcal{L}(W, W)$ and $T \in \mathcal{L}(V, W)$.

3. Distributive properties:

$$(S_1 + S_2)T = S_1T + S_2T$$
 and $S(T_1 + T_2) = ST_1 + ST_2$

where $T, T_1, T_2 \in \mathcal{L}(U, V)$ and $S, S_1, S_2 \in \mathcal{L}(V, W)$.

4. Powers: If $T \in \mathcal{L}(V, V)$, we define $T^n \in \mathcal{L}(V, V)$ by

$$T^2 = TT$$
 (i.e. $T^2v = T(Tv)$)
 $T^3 = TTT$

:

$$T^n = TT^{n-1}.$$

1.2.5 Example

Suppose that $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the differentiation map and $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the multiplication by x^2 . Show that $TD \neq DT$.

We have

$$((TD)p)(x) = x^2p'(x)$$

but

$$((DT)p)(x) = x^2p'(x) + 2xp(x).$$

In other words, differentiating and then multiplying by x^2 is not the same as multiplying by x^2 and then differentiating.

1.2.6 Linear maps take 0 to 0

Suppose T is a linear map from V to W. Then T(0) = 0.

Proof. We can prove this by additivity or homogeneity.

- By additivity: T(0) = T(0+0) = T(0) + T(0). Then add the additive inverse of T(0) to each side of the equation to conclude T(0) = 0.
- By homogeneity: Suppose that $\lambda = 0$ and u = 0. Then $T(0 \cdot 0) = 0 \cdot T(0) \Rightarrow T(0) = 0$.

2 Null Spaces and Ranges (3.B)

2.1 Null Space and Injectivity

2.1.1 Definition of null space

For $T \in \mathcal{L}(V, W)$, the *null space* or *kernel* of T, denoted null T, is the subset of V consisting of those vectors that T maps to 0:

null
$$T = \{ v \in V \mid Tv = 0 \}.$$

2.1.2 Examples of null spaces

- If $T: V \to W$ is the zero map where Tv = 0 for every $v \in V$, then null T = V.
- If $T: V \to V$ is the identity function, then null $T = \{0\}$.
- Suppose $\phi \in \mathcal{L}(\mathbb{R}^3, \mathbf{F})$ is defined by $\phi(z_1, z_2, z_3) = z_1 + 2z_2 + 3z_3$. Then null $\phi = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 + 2z_2 + 3z_3 = 0\}$. A basis of null ϕ is (-2, 1, 0), (-3, 0, 1).
- Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the differentiation map defined by Dp = p'. The only functions whose derivative equals the zero function are the constant functions. Then, the null space of D equals the set of constant functions.

$$\text{null } D = \{ a_0 \mid a_0 \in \mathbb{R} \}.$$

- Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the multiplication by x^2 map defined by $(Tp)(x) = x^2p(x)$. The only polynomial p such that $x^2p(x) = 0$ for all $x \in \mathbb{R}$ is the 0 polynomial. Then null $T = \{0\}$.
- Suppose $B \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ is the backward shift defined by

$$B(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots).$$

Then $B(x_1, x_2, x_3,...) = 0$ if and only if $x_2 = x_3 = ... = 0$. So we have null $B = \{(a, 0, 0, ...) \mid a \in \mathbf{F}\}.$

2.1.3 The null space is a subspace

Suppose $T \in \mathcal{L}(V, W)$. Then null T is a subspace of V.

Proof. Since T is a linear map, we know that T(0) = 0 then $0 \in \text{null } T$. Suppose $u, v \in \text{null } T$, then

$$T(u+v) = Tu + Tv = 0 + 0 = 0.$$

Since $u + v \in \text{null } T$, then it is closed under addition. Suppose that $u \in \text{null } T$ and $\lambda \in \mathbf{F}$. Then

$$T(\lambda u) = \lambda T u = \lambda 0 = 0.$$

Hence $\lambda u \in \text{null } T$ and it is closed under scalar multiplication. Thus, null T is a subspace of V.

2.1.4 Injective

A function $T: V \to W$ is called *injective* or *one-to-one* if Tu = Tv implies u = v. This can be rephrased to say that T is injective if $u \neq v$ implies that $Tu \neq Tv$.

2.1.5 Injectivity is equivalent to null space equals {0}

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof. Suppose T is injective. We want to prove that null $T = \{0\}$. We already know that $\{0\} \subset \text{null } T \text{ since } 0 \in \text{null } T$. To prove that null $T \subset \{0\}$, suppose $v \in \text{null } T$. Then

$$T(v) = 0 = T(0).$$

Since T is injective, the equation above implies v = 0, then we can conclude that null $T = \{0\}$, as desired.

Suppose that null $T=\{0\}$ and we need to show that T is injective. Suppose $u,v\in V$ and Tu=Tv. Then

$$0 = Tu - Tv = T(u - v).$$

Then $u - v \in \text{null } T$, which equals $\{0\}$. Hence $u - v = 0 \Rightarrow u = v$ which implies T is injective, as desired.

2.2 Range and Surjectivity

2.2.1 Definition of range

For T a function from V to W, the range of T is the subset of W consisting of those vectors that are of the form Tv for some $v \in V$:

range
$$T = \{ Tv \mid v \in V \}.$$

2.2.2 Examples of range

- If T is the zero map from V to W, in other words if Tv = 0 for every $v \in V$, then range $T = \{0\}$.
- Suppose $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ is defined by T(x,y) = (2x, 5y, x+y), then range $T = \{(2x, 5y, x+y) \mid x, y \in \mathbb{R}\}$. A basis of range T is (2,0,1), (0,5,1).
- Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the differentiation map by Dp = p'. Because for every polynomial $q \in \mathcal{P}(\mathbb{R})$ there exists a polynomial $p \in \mathcal{P}(\mathbb{R})$ such that p' = q, the range of D is $\mathcal{P}(\mathbb{R})$.
- Suppose $B \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ is the backshift operator defined by $B(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$. Then

range
$$B = \{B(x_1, x_2, \dots) \mid (x_1, x_2, dots) \in \mathbf{F}^{\infty}\}$$

= $\{(x_2, x_3, x_4, \dots) \mid x_1, x_2, \dots \in \mathbf{F}\}$
= \mathbf{F}^{∞} .

• Let $F \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ be the forward shift operator defined by $F(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots)$. Then

range
$$F = \{ F(x_1, x_2, \dots) \mid (x_1, x_2, \dots) \in \mathbf{F}^{\infty} \}$$

= $\{ (0, x_1, x_2, \dots) \mid x_1, x_2, \dots \in \mathbf{F} \}.$

This is a proper subspace of \mathbf{F}^{∞} .

2.2.3 The range is a subspace

If $T \in \mathcal{L}(V, W)$, then range T is a subspace of W.

Proof. Suppose $T \in \mathcal{L}(V, W)$, then T(0) = 0 which implies that $0 \in \text{range } T$. If $w_1, w_2 \in \text{range } T$, then there exist $v_1, v_2 \in V$ such that $Tv_1 = w_1$ and $Tv_2 = w_2$. So

$$T(v_1 + v_2) = Tv_1 + Tv_2 = w_1 + w_2.$$

Hence $w_1 + w_2 \in \text{range } T$, so it is closed under addition. If $w \in \text{range } T$ and $\lambda \in \mathbf{F}$, then there exists $v \in V$ such that Tv = w. Thus

$$T(\lambda v) = \lambda T v = \lambda w.$$

Hence $\lambda w \in \text{range } T$, and it is closed under scalar multiplication. Hence, range T is a subspace of W.

2.2.4 Surjective

A function $T: V \to W$ is called *surjective* or *onto* if its range equals W.

2.2.5 Example

The differentiation map $D \in \mathcal{L}(\mathcal{P}_5(\mathbb{R}), \mathcal{P}_5(\mathbb{R}))$ defined by Dp = p' is not surjective, because the polynomial x^5 is not in the range of D. However, the differentiation map $S \in \mathcal{L}(\mathcal{P}_5(\mathbb{R}), \mathcal{P}_4(\mathbb{R}))$ defined by Sp = p' is surjective, because its range equals $\mathcal{P}_4(\mathbb{R})$, which is now the vector space into which S maps.

2.3 Fundamental Theorem of Linear Maps

Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Then range T is finite-dimensional and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T.$$

Proof. Let u_1, \ldots, u_m be a basis of null T, then dim null T = m. The linearly independent list u_1, \ldots, u_m can be extended to a basis

$$u_1,\ldots,u_m,v_1,\ldots,v_n$$

of V, thus dim V = m + n. We need to show that range T is finite-dimensional and dim range T = n. We will do this by proving that Tv_1, \ldots, Tv_n is a basis of range T.

Let $v \in V$. Since $u_1, \ldots, u_m, v_1, \ldots, v_n$ spans V, we can write

$$v = a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n$$

where $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbf{F}$. Applying T to both sides, we get

$$Tv = b_1 T v_1 + \dots + b_n T v_n,$$

where all the terms of Tu_j disappeared since $u_j \in \text{null } T$. The equation above implies that Tv_1, \ldots, Tv_n spans range T, then range T is finite-dimensional.

To show that Tv_1, \ldots, Tv_n is linearly independent, suppose $c_1, \ldots, c_n \in \mathbf{F}$ and $c_1Tv_1 + \cdots + c_nTv_n = 0$. Then

$$T(c_1v_1 + \dots + c_nv_n) = 0$$

and $c_1v_1 + \cdots + c_nv_n \in \text{null } T$. Because u_1, \ldots, u_m spans null T, we can write $c_1v_1 + \cdots + c_nv_n = d_1u_1 + \cdots + d_mu_m$ where $d_1, \ldots, d_m \in \mathbf{F}$. The equation implies all c's and d's are 0 (since $u_1, \ldots, u_m, v_1, \ldots, v_n$ is linearly independent). Thus Tv_1, \ldots, Tv_n is linearly independent and hence is a basis of range T, as desired.

2.3.1 A map to a smaller dimensional space is not injective

Suppose V and W are finite-dimensional vector spaces such that $\dim V > \dim W$. Then no linear map from V to W is injective.

Proof. Let $T \in \mathcal{L}(V, W)$. Then

$$\dim \text{ null } T = \dim V - \dim \text{ range } T$$

$$\geq \dim V - \dim W$$

$$> 0.$$

The inequality states that dim null T > 0 which means null T contains vectors other than 0. Thus, T is not injective since null $T \neq \{0\}$.

2.3.2 A map to a larger dimensional space is not surjective

Suppose V and W are finite-dimensional vector spaces such that $\dim V < \dim W$. Then no linear map from V to W is surjective.

Proof. Let $T \in \mathcal{L}(V, W)$. Then

$$\dim \text{ range } T = \dim V - \dim \text{ null } T$$

$$\leq \dim V$$

$$< \dim W.$$

The inequality states that dim range $T < \dim W$. This means that range $T \neq W$, so T is not surjective. \square

2.3.3 Homogenous system of linear equations

A homogenous system of linear equations with more variables than equations has nonzero solutions.

Proof. Consider $T: \mathbf{F}^n \to \mathbf{F}^m$ defined by

$$T(x_1, \dots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \dots, \sum_{k=1}^n x_k\right)$$

where $T(x_1, ..., x_n) = 0$ and 0 here is the additive identity in \mathbf{F}^m , which is the list of length m of all 0's. We have a homogeneous system of m linear equations with n variables. If $\dim \mathbf{F}^n = n > \dim \mathbf{F}^m = m$, then T is not injective. We also have null $T \neq \{0\}$ which implies that there exists some $v \in \text{null } T \text{ such that } v \neq 0$. So, the system Tv = 0 has nonzero solutions. \square

2.3.4 Inhomogenous system of linear equations

An inhomogenous system of linear equations with more equations than variables has no solution for some choice of the constant terms.

Proof. Define $T: \mathbf{F}^n \to \mathbf{F}^m$ by

$$T(x_1, \dots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \dots, \sum_{k=1}^n A_{m,k} x_k\right)$$

where $T(x_1, ..., x_n) = (c_1, ..., c_m)$. We have a system of m equations with n variables $x_1, ..., x_n$. We see that T is not surjective if n < m since range $T \neq \mathbf{F}^m$.

3 Matrices (3.C)

3.1 Representing a Linear Map by a Matrix

3.1.1 Definition of a matrix

Let m and n denote positive integers. An m-by-n matrix is a rectangular array of elements of \mathbf{F} with m rows and n columns:

$$A = \begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{bmatrix}$$

The notation $A_{j,k}$ denotes the entry in row j, column k of A.

3.1.2 Definition of the matrix of a linear map

Suppose $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_n is a basis of V and w_1, \ldots, w_m is a basis of W. The *matrix* of T with respect to these bases is the m-by-n matrix $\mathcal{M}(T)$ whose entries $A_{j,k}$ are defined by

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m.$$

If the bases are not clear from the context, then the notation $\mathcal{M}(T,(v_1,\ldots,v_n),(w_1,\ldots,w_n))$ is used.

$$\mathcal{M}(T) = A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$$

3.1.3 Example

Suppose $T \in \mathcal{L}(\mathbf{F}^2, \mathbf{F}^3)$ is defined by T(x, y) = (x + 3y, 2x + 5y, 7x + 9y). Find the matrix of T with respect to the standard bases of \mathbf{F}^2 and \mathbf{F}^3 .

Since T(1,0) = (1,2,7) and T(0,1) = (3,5,9), then

$$\mathcal{M}(T) = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 7 & 9 \end{bmatrix}.$$

Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined by Dp = p'. Find the matrix of D with respect to the standard bases of $\mathcal{P}_3(\mathbb{R})$ and $\mathcal{P}_2(\mathbb{R})$.

Since $(x^n)' = nx^{n-1}$, then we have

$$\mathcal{M}(D) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

3.2 Addition and Scalar Multiplication of Matrices

3.2.1 Definition of matrix addition

The sum of two matrices of the same size is the matrix obtained by adding corresponding entries in the matrices:

$$\begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{bmatrix} + \begin{bmatrix} C_{1,1} & \dots & C_{1,n} \\ \vdots & & \vdots \\ C_{m,1} & \dots & C_{m,n} \end{bmatrix} = \begin{bmatrix} A_{1,1} + C_{1,1} & \dots & A_{1,n} + C_{1,n} \\ \vdots & & \vdots \\ A_{m,1} + C_{m,1} & \dots & A_{m,n} + C_{m,n} \end{bmatrix}$$

In other words, $(A+C)_{i,k} = A_{i,k} + C_{i,k}$.

3.2.2 The matrix of the sum of linear maps

Suppose $S, T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(S+T) = \mathcal{M}(S) + \mathcal{M}(T)$.

3.2.3 Definition of scalar multiplication of a matrix

The product of a scalar and a matrix is the matrix obtained by mutliplying each entry in the matrix by the scalar:

$$\lambda \begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{bmatrix} = \begin{bmatrix} \lambda A_{1,1} & \dots & \lambda A_{1,n} \\ \vdots & & \vdots \\ \lambda A_{m,1} & \dots & \lambda A_{m,n} \end{bmatrix}$$

In other words, $(\lambda A)_{j,k} = \lambda A_{j,k}$

3.2.4 The matrix of a scalar times a linear map

Suppose $\lambda \in \mathbf{F}$ and $T \in \mathcal{L}(V, W)$. Then $\mathcal{M}(\lambda T) = \lambda \mathcal{M}(T)$.

3.2.5 Notation of $\mathbf{F}^{m,n}$

For m and n positive integers, the set of all m-by n matrices with entries in \mathbf{F} is denoted by $\mathbf{F}^{m,n}$.

3.2.6 dim $\mathbf{F}^{m,n} = mn$

Suppose m and n are positive integers. With addition and scalar multiplication defined as above, $\mathbf{F}^{m,n}$ is a vector space with dimension mn.

3.3 Matrix Multiplication

3.3.1 Definition of matrix multiplication

Suppose A is an m-by-n matrix and C is an n-by-p matrix. Then AC is defined to be the m-by-p matrix whose entry in row j, column k, is given by the following equation:

$$(AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k}.$$

In other words, the entry in row j, column k, of AC is computed by taking row j of A and column k of C, multiplying together corresponding entries, and then summing. Matrix multiplication is not commutative, but it is associative and distributive.

3.3.2 The matrix of the product of linear maps

If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$.

3.4 Isomorphism

3.4.1 Definition of isomorphism

Let V, W be vector spaces over \mathbf{F} and let $T \in \mathcal{L}(V, W)$. We say that T is an isomorphism if T is bijective (i.e. injective and surjective.

3.4.2 Inverse function

If $T \in \mathcal{L}(V, W)$ is an isomorphism, then the inverse function $T^{-1} \in \mathcal{L}(W, V)$ exists and is linear.

Example. Let $V = \mathbb{R}^4$ and let $W = \mathcal{P}_3(\mathbb{R})$. A basis of V is $v_1 = (1,0,0,0), v_2 = (0,1,0,0), v_3 = (0,0,1,0), v_4 = (0,0,0,1),$ and a basis of $\mathcal{P}_3(\mathbb{R})$ is $w_1 = 1, w_2 = x, w_3 = x^2, w_4 = x^3$. Define an isomorphism $T \in \mathcal{L}(\mathbb{R}^4 \to \mathcal{P}_3(\mathbb{R}))$, namely the unique linear map such that

$$T(v_1) = w_1, \dots, T(v_4) = w_4.$$

The inverse $T^{-1} \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^4)$ is the unique linear map such that

$$T^{-1}w_1 = v_1, \dots, T^{-1}w_4 = v_4.$$

More concretely, we can describe T and T^{-1} like this:

$$T \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = a + bx + cx^2 + dx^3$$

and

$$T^{-1}(a+bx+cx^2+dx^3) = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

3.4.3 Definition of isomorphic

Vector spaces V,W are isomorphic if there exists an isomorphism between them.

3.4.4 Finite-dimensional vector spaces are isomorphic

Finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.