WikipediA

Radiant exitance

In <u>radiometry</u>, **radiant exitance** or **radiant emittance** is the <u>radiant flux</u> emitted by a surface per unit area, whereas **spectral exitance** or **spectral emittance** is the radiant exitance of a surface per unit <u>frequency</u> or <u>wavelength</u>, depending on whether the <u>spectrum</u> is taken as a function of frequency or of wavelength. This is the emitted component of <u>radiosity</u>. The <u>SI unit</u> of radiant exitance is the <u>watt</u> per square metre (W/m²), while that of spectral exitance in frequency is the watt per square metre per <u>hertz</u> (W·m²·Hz²) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m³)—commonly the watt per square metre per nanometre (W·m²·nm³). The <u>CGS unit erg</u> per square centimeter per second (erg·cm²·s³¹) is often used in <u>astronomy</u>. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

Contents

Mathematical definitions

Radiant exitance Spectral exitance

SI radiometry units

See also

References

Mathematical definitions

Radiant exitance

Radiant exitance of a *surface*, denoted M_e ("e" for "energetic", to avoid confusion with <u>photometric</u> quantities), is defined as^[1]

$$M_{
m e}=rac{\partial \Phi_{
m e}}{\partial A},$$

where

- ∂ is the partial derivative symbol;
- Φ_e is the radiant flux *emitted*;
- A is the area.

If we want to talk about the radiant flux *received* by a surface, we speak of irradiance.

The radiant exitance of a black surface, according to the Stefan-Boltzmann law, is equal to:

$$M_{\rm e}^{\circ} = \sigma T^4$$
,

where

• σ is the Stefan–Boltzmann constant;

• T is the temperature of that surface,

so for a real surface, the radiant exitance is equal to:

$$M_{
m e} = arepsilon M_{
m e}^{\circ} = arepsilon \sigma T^4,$$

where ε is the <u>emissivity</u> of that surface.

Spectral exitance

Spectral exitance in frequency of a *surface*, denoted $M_{e,v}$, is defined as^[1]

$$M_{
m e,
u} = rac{\partial M_{
m e}}{\partial
u},$$

where ν is the frequency.

Spectral exitance in wavelength of a *surface*, denoted $M_{e,\lambda}$, is defined as^[1]

$$M_{\mathrm{e},\lambda} = rac{\partial M_{\mathrm{e}}}{\partial \lambda},$$

where λ is the wavelength.

The spectral exitance of a <u>black surface</u> around a given frequency or wavelength, according to the <u>Lambert's cosine law</u> and the <u>Planck's law</u>, is equal to:

$$egin{aligned} M_{ ext{e},
u}^\circ &= \pi L_{ ext{e},\Omega,
u}^\circ = rac{2\pi ext{h}
u^3}{c^2}rac{1}{e^{rac{ ext{h}
u}{ ext{k}T}}-1}, \ M_{ ext{e},\lambda}^\circ &= \pi L_{ ext{e},\Omega,\lambda}^\circ = rac{2\pi ext{h}c^2}{\lambda^5}rac{1}{e^{rac{ ext{h}c}{\lambda ext{k}T}}-1}, \end{aligned}$$

where

- h is the Planck constant;
- v is the frequency;
- λ is the wavelength;
- k is the Boltzmann constant;
- c is the speed of light in the medium;
- T is the temperature of that surface,

so for a real surface, the spectral exitance is equal to:

$$egin{aligned} M_{ ext{e},
u} &= arepsilon M_{ ext{e},
u}^\circ = rac{2\pi ext{h}arepsilon
u^3}{c^2} rac{1}{e^{rac{ ext{h}
u}{ ext{k}T}} - 1}, \ M_{ ext{e},\lambda} &= arepsilon M_{ ext{e},\lambda}^\circ = rac{2\pi ext{h}arepsilon c^2}{\lambda^5} rac{1}{e^{rac{ ext{h} c}{\lambda ext{k}T}} - 1}. \end{aligned}$$

SI radiometry units

SI radiometry units

Quantity		Unit		Dimension	
Name	Symbol ^[nb 1]	Name	Symbol	Symbol	Notes
Radiant energy	Q _e ^[nb 2]	joule	J	M·L ² ·T ⁻²	Energy of electromagnetic radiation.
Radiant energy density	w _e	joule per cubic metre	J/m ³	$\mathbf{M} \cdot \mathbf{L}^{-1} \cdot \mathbf{T}^{-2}$	Radiant energy per unit volume.
Radiant flux	Φ _e ^[nb 2]	watt	<u>W</u> = J/s	M·L ² ·T ⁻³	Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power".
Spectral flux	$\begin{array}{c} \Phi_{\rm e,v}^{\rm [nb 3]} \\ \textit{or} \\ \Phi_{\rm e,\lambda}^{\rm [nb 4]} \end{array}$	watt per <u>hertz</u> or watt per metre	W/Hz or W/m	M·L ² ·T ⁻² or M·L·T ⁻³	Radiant flux per unit frequency or wavelength. The latter is commonly measured in W·nm ⁻¹ .
Radiant intensity	$I_{ extsf{e},\Omega}^{ ext{[nb 5]}}$	watt per <u>steradian</u>	W/sr	M.L ² .T ⁻³	Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity	$I_{e,\Omega,v}^{[nb 3]}$ or $I_{e,\Omega,\lambda}^{[nb 4]}$	watt per steradian per hertz or watt per steradian per metre	W·sr ⁻¹ ·Hz ⁻¹ or W·sr ⁻¹ ·m ⁻¹	M·L ² ·T ⁻² or M·L·T ⁻³	Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W·sr ⁻¹ ·nm ⁻¹ . This is a <i>directional</i> quantity.
<u>Radiance</u>	$L_{ m e,\Omega}^{ m [nb~5]}$	watt per steradian per square metre	W·sr ⁻¹ ·m ⁻²	M · T ⁻³	Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance	$L_{e,\Omega,v}^{[nb 3]}$ or $L_{e,\Omega,\lambda}^{[nb 4]}$	watt per steradian per square metre per hertz or watt per steradian	W·sr ⁻¹ ·m ⁻² ·Hz ⁻¹ or W·sr ⁻¹ ·m ⁻³	M·T ⁻² or M·L ⁻¹ ·T ⁻³	Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in

1/2019		Radiant	exitance - Wikipedia		
		per square metre, per metre			W·sr ⁻¹ ·m ⁻² ·nm ⁻¹ . This is a <i>directional</i> quantity. This is sometimes also confusingly called "spectral intensity".
Irradiance Flux density	E _e [nb 2]	watt per square metre	W/m ²	M·T ⁻³	Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance Spectral flux density	$E_{\mathrm{e,v}}^{[\mathrm{nb}\ 3]}$ or $E_{\mathrm{e,\lambda}}^{[\mathrm{nb}\ 4]}$	watt per square metre per hertz or watt per square metre, per metre	W·m ⁻² ·Hz ⁻¹ or W/m ³	M·T ⁻² or M·L ⁻¹ ·T ⁻³	Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10 ⁻²⁶ W·m ⁻² ·Hz ⁻¹) and solar flux unit (1 sfu = 10 ⁻²² W·m ⁻² ·Hz ⁻¹
Radiosity	J _e [nb 2]	watt per square metre	W/m ²	M · T ^{−3}	= 10 ⁴ Jy). Radiant flux <i>leaving</i> (emitted, reflected and transmitted by) a <i>surface</i> per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity	$J_{\mathrm{e,v}}^{[\mathrm{nb }3]}$ or $J_{\mathrm{e,\lambda}}^{[\mathrm{nb }4]}$	watt per square metre per hertz or watt per square metre, per metre	W·m ⁻² ·Hz ⁻¹ or W/m ³	M·T ⁻² or M·L ⁻¹ ·T ⁻³	Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W·m ⁻² ·nm ⁻¹ . This is sometimes also confusingly called "spectral intensity".
Radiant exitance	M _e ^[nb 2]	watt per square metre	W/m ²	M·T ⁻³	Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance		watt per square			Radiant exitance of

/1/20	19		Radiant	exitance - wikipedia		
		$M_{\rm e,v}^{\rm [nb~3]}$ or $M_{\rm e,\lambda}^{\rm [nb~4]}$	metre per hertz or watt per square metre, per metre	W·m ⁻² ·Hz ⁻¹ or W/m ³	M·T ⁻² or M·L ⁻¹ ·T ⁻³	a <i>surface</i> per unit frequency or wavelength. The latter is commonly measured in W·m ⁻² ·nm ⁻¹ . "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
F	Radiant exposure	$H_{ m e}$	joule per square metre	J/m ²	M · T ^{−2}	Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
S	Spectral exposure	$H_{\mathrm{e,v}}^{[\mathrm{nb}\ 3]}$ or $H_{\mathrm{e,\lambda}}^{[\mathrm{nb}\ 4]}$	joule per square metre per hertz or joule per square metre, per metre	J·m ^{−2} ·Hz ^{−1} or J/m ³	M⋅T ⁻¹ or M⋅L ⁻¹ ⋅T ⁻²	Radiant exposure of a <i>surface</i> per unit frequency or wavelength. The latter is commonly measured in J·m ⁻² ·nm ⁻¹ . This is sometimes also called "spectral fluence".
	lemispherical missivity	ε			1	Radiant exitance of a <i>surface</i> , divided by that of a <i>black body</i> at the same temperature as that surface.
	Spectral hemispherical missivity	$arepsilon_{ m V}$ or $arepsilon_{ m \lambda}$			1	Spectral exitance of a <i>surface</i> , divided by that of a <i>black body</i> at the same temperature as that surface.
	Directional emissivity	$arepsilon_\Omega$			1	Radiance emitted by a surface, divided by that emitted by a black body at the same temperature as that surface.
	spectral directional missivity	$egin{array}{c} arepsilon_{\Omega,V} & & & & & & & & & & & & & & & & & & $			1	Spectral radiance emitted by a surface, divided by that of a black body at the same

1/2019		Radiani	exitance - wikipedia		
					temperature as that surface.
Hemispherical absorptance	А			1	Radiant flux absorbed by a surface, divided by that received by that surface. This should not be confused with "absorbance".
Spectral hemispherical absorptance	$A_{ m V}$ or $A_{ m \lambda}$			1	Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance".
Directional absorptance	A_{Ω}			1	Radiance absorbed by a surface, divided by the radiance incident onto that surface. This should not be confused with "absorbance".
Spectral directional absorptance	$A_{\Omega,V}$ or $A_{\Omega,\lambda}$			1	Spectral radiance absorbed by a surface, divided by the spectral radiance incident onto that surface. This should not be confused with "spectral absorbance".
Hemispherical reflectance	R			1	Radiant flux reflected by a surface, divided by that received by that surface.
Spectral hemispherical reflectance	R _ν or R _λ			1	Spectral flux reflected by a surface, divided by that received by that surface.
Directional reflectance	R_{Ω}			1	Radiance reflected by a surface, divided by that received by that surface.
Spectral directional reflectance	$R_{\Omega,V}$ or $R_{\Omega,\lambda}$			1	Spectral radiance reflected by a surface, divided by that received by that surface.
Hemispherical	Т			1	Radiant flux

Radian Catalice - Wikipedia						
transmittance					transmitted by a surface, divided by that received by that surface.	
Spectral hemispherical transmittance	T _ν or T _λ			1	Spectral flux transmitted by a surface, divided by that received by that surface.	
Directional transmittance	$ au_\Omega$			1	Radiance transmitted by a surface, divided by that received by that surface.	
Spectral directional transmittance	$T_{\Omega,v}$ or $T_{\Omega,\lambda}$			1	Spectral radiance transmitted by a surface, divided by that received by that surface.	
Hemispherical attenuation coefficient	μ	reciprocal metre	m ⁻¹	L ⁻¹	Radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.	
Spectral hemispherical attenuation coefficient	$\mu_{ m V}$ or $\mu_{ m A}$	reciprocal metre	m ⁻¹	L ⁻¹	Spectral radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.	
Directional attenuation coefficient	μ_{Ω}	reciprocal metre	m ⁻¹	L ⁻¹	Radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.	
Spectral directional attenuation coefficient	$\mu_{\Omega,V}$ or $\mu_{\Omega,\lambda}$	reciprocal metre	m ⁻¹	L-1	Spectral radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.	
See also: SI · Radiometry · Photometry						

- 1. <u>Standards organizations</u> recommend that radiometric <u>quantities</u> should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or <u>photon</u> quantities.
- 2. Alternative symbols sometimes seen: *W* or *E* for radiant energy, *P* or *F* for radiant flux, *I* for irradiance, *W* for radiant exitance.
- 3. Spectral quantities given per unit <u>frequency</u> are denoted with suffix "<u>v</u>" (Greek)—not to be confused with suffix "v" (for "visual") indicating a photometric quantity.
- 4. Spectral quantities given per unit $\underline{wavelength}$ are denoted with suffix " $\underline{\lambda}$ " (Greek).
- 5. Directional quantities are denoted with suffix " Ω " (Greek).