

И З В Е С Т И Я ВЫСШИХУЧЕБНЫХ З А В Е Д Е Н И Й

PAJIOOJIEKTPOHIKA

ТРИФОНОВ А. П., ГЛАЗНЕВ А. А.

ОЦЕНКА ДИСПЕРСИИ СЛУЧАЙНОГО СИГНАЛА С НЕИЗВЕСТНОЙ ПОЛОСОЙ ЧАСТОТ

Выполнен синтез и анализ алгоритма совместной оценки максимального правдоподобия дисперсии и полосы частот случайного сигнала. Приведены результаты статистического моделирования совместной оценки.

В [1] получена структура и найдены характеристики адаптивного максимально-правдоподобного измерителя дисперсии случайного сигнала с прямоугольной формой спектра мощности. При этом предполагалось, что полоса
частот анализируемого случайного сигнала априори точно известна. Однако
при практической реализации алгоритмов обработки случайных сигналов в
радиоэлектронных системах полоса частот сигнала часто бывает известна не
точно. Поэтому рассмотрим возможность адаптивного измерения дисперсии
случайного сигнала с априори неизвестной полосы частот. Аналогично [1]
полагаем, что в течение времени [0; 7]обработке доступна реализации наблюдаемых данных вида

$$x(t) = s(t) + v(t) + n(t),$$
 (1)

здесь v (t) — широкополосная гауссовская стационарная помеха с постоянной в полосе частот $[-\omega_m/2;\omega_m/2]$ и априори неизвестной односторонней спектральной плотностью γ_0,ω_m — полоса пропускания преселектора радиоэлектронной системы [1], на выходе которой необходимо измерить дисперсию D_0 гауссовского стационарного случайного сигнала s (t); n (t) — гауссовский белый шум с односторонней спектральной плотностью N_0 , который описывает собственные шумы элементов радиоэлектронной системы, включенных после преселектора. Следуя [1], прямоугольный спектр мощности центрированного сигнала s (t) запишем как G_s $(\omega) = 2$ π D_0 I $(\omega/\Omega_0)/\Omega_0$, где I (x) = 1 при |x| < 1/2 и I (x) = 0 при |x| > 1/2, а Ω_0 — априори неизвестная полоса частот анализируемого случайного сигнала, причем $\Omega_0 < \omega_m$.

Рассмотрим, как влияет априорное незнание полосы частот сигнала Ω_0 на точность оценки дисперсии

$$\hat{D} = \frac{1}{T(k-1)} \left[k \int_{0}^{T} y_{2}^{2}(t) dt - \int_{0}^{T} y_{1}^{2}(t) dt \right], \tag{2}$$

синтезированной в [1]. В (2) y_i (t) — отклики фильтров с передаточными функциями H_i (ω) (i=1,2) на реализацию наблюдаемых данных (1). Передаточные функции фильтров $H_i(\omega)$ удовлетворяют соотношениям:

$$\left|H_{1}\left(\omega\right)\right|^{2}=I\left(\omega/\omega_{m}\right),\left|H_{2}\left(\omega\right)\right|^{2}=I\left(\omega/\Omega^{*}\right),k=\omega_{m}/\Omega^{*},$$

а Ω^* — ожидаемое (предполагаемое) значение полосы частот случайного сигнала, причем в общем случае $\Omega^* \neq \Omega_0$ и $\Omega^* < \omega_m$. Отметим, что структура алгоритма оценки (2) инвариантна к спектральным плотностям помехи γ_0 и белого myма N_0 .

Подставляя в (2) реализацию наблюдаемых данных (1) и выполняя усреднение при фиксированных значениях D_0 и Ω_0 , получаем для условных смещения (систематической ошибки) и рассеяния (среднего квадрата ошибки) оценки (2) выражения:

$$b(\hat{D} | D_0, \delta \Omega) = \langle \hat{D} - D_0 \rangle = D_0 k_0 \min(\delta \Omega, 0) / (k_0 - \delta \Omega - 1),$$

$$V(\hat{D} | D_0, \delta \Omega) = \langle (\hat{D} - D_0)^2 \rangle = b^2 (\hat{D} | D_0, \delta \Omega) +$$

$$+ D_0^2 \{ k_0 (k_0 - 2 \delta \Omega - 2) [(1 + 2 q) \min(\delta \Omega, 0) + (1 + q)^2 +$$

$$+ \delta \Omega q^2] + (\delta \Omega + 1)^2 (1 + 2 q + k_0 q^2) \} / \mu [k_0 - \delta \Omega - 1]^2.$$
(4)

Здесь μ = T Ω_0 / 4 π , k_0 = ω_m / Ω_0 , q = (γ_0 + N_0) Ω_0 / 4 π D_0 — отношение суммарной средней мощности помехи и белого шума в полосе частот случайного сигнала к средней мощности самого сигнала, $\delta \Omega = (\Omega^* - \Omega_0) / \Omega_0$.

Проигрыш в точности оценки дисперсии вследствие неточного знания полосы частот случайного сигнала будем характеризовать отношением $\chi = V(\hat{D} \mid D_0, \delta \Omega) / V(\hat{D} \mid D_0),$ где $V(\hat{D} \mid D_0) = V(\hat{D} \mid D_0, \delta \Omega = 0)$ — рассеяние оценки дисперсии при априори точно известном значении полосы частот случайного сигнала [1]. Зависимость χ (δ Ω) для μ = 100 и различных значений qприведена на рис. 1 (для $k_0 = 2$) и рис. 2 (для $k_0 = 5$). Кривые l рассчитаны для $q=0,1,\ 2-0,5,\ 3-1$. Как следует из рис. 1, 2, априорное незнание полосы частот случайного сигнала может привести к значительному снижению точности оценки дисперсии (2). Однако проигрыш в точности оценки убывает с ростом параметров q и k_0 . Отметим, что для не слишком больших значений \mid δ Ω \mid проигрыш существенно меньше при δ Ω > 0, чем при δ Ω < 0. Сдедовательно, если неизвестно точное значение полосы частот сигнала Ω_0 , то полосу

(4)

пропускания Ω^* фильтра H_2 (ω) измерителя (2) следует выбирать несколько большей, чем ожидаемые значения полосы частот сигнала. При этом, если полоса пропускания фильтра превышает полосу частот сигнала не более чем на 10...15%, то проигрыш в точности оценки дисперсии относительно мал — менее 3 дБ. Если же полоса частот сигнала априори известна с погрешностью более 10...15%, то проигрыш в точности оценки может быть значительным, достигая значений 10...15 дБ.

Для устранения проигрыша в точности оценки дисперсии сигнала вследствие незнания его полосы частот целесообразно использовать приемное устройство, реализующее совместные оценки дисперсии случайного сигнала и его полосы частот. Для синтеза такого устройства, адантирующегося к широкополосной помехе с неизвестной мощностью и к неизвестной полосе частот сигнала, используем метод максимального правдоподобия [2, 3]. Аналогично [1] введем в рассмотрение три вспомогательные гипотезы H_i , i=0,1,2. Гипотеза H_2 предполагает, что реализация наблюдаемых данных имеет вид (1). Гипотеза H_1 предполагает, что анализируемый случайный сигнал отсутствует, так что x(t)=v(t)+n(t). Наконец, гипотеза H_0 предполагает, что наблюдается только белый шум и x(t)=n(t). Обозначим $F_2(D,\Omega,\gamma)$ — логарифм функционала отношения правдоподобия (ФОП) для гипотезы H_2 при альтернативе H_0 и $F_1(\gamma)$ — логарифм ФОП для гипотезы H_1 при альтернативе H_0 . Тогда оценки максимального правдоподобия (ОМП) дисперсии \widetilde{D} и полосы частот Ω случай-

ного сигнала s (t) при наличии помехи с неизвестной спектральной плотностью γ_0 можно записать в виде

$$(\widetilde{D}, \widetilde{\Omega}) = \arg \sup L(D, \Omega), \Omega \in [\Omega_{\min}; \Omega_{\max}],$$
 (5)

$$L(D, \Omega) = \sup_{\gamma} F_2(D, \Omega, \gamma) - \sup_{\gamma} F_1(\gamma). \tag{6}$$

Здесь $[\Omega_{\min};\Omega_{\max}]$ — априорный интервал возможных значений неизвестной полосы частот случайного сигнала и $\Omega_{\max} < \omega_m$. Введение вспомогательных гипотез H_i , i=0,1,2 позволяет избежать существенных математических трудностей при получении логарифма ФОП. В результате, полагая $\mu >> 1$ и испльзуя [2, 4], имеем

$$F_{2}(D, \Omega, \gamma) = \frac{T(\gamma + d)}{\pi N_{0} (\gamma + d + N_{0})} \int_{0}^{\Omega/2} S_{T}(\omega) d\omega + \frac{T \gamma}{\pi N_{0} (\gamma + N_{0})} \int_{\Omega/2}^{\omega_{m}/2} S_{T}(\omega) d\omega - \frac{T}{4 \pi} \left[\Omega \ln \left(1 + \frac{\gamma + d}{N_{0}} \right) + (\omega_{m} - \Omega) \ln \left(1 + \frac{\gamma}{N_{0}} \right) \right], \tag{7}$$

$$F_{1}(\gamma) = F_{2}(0, 0, \gamma), \tag{8}$$

 $d=4 \pi D/\Omega$, $S_T(\omega)=\left|\int\limits_0^T x(t)\exp(-j\omega t)\,dt\right|^2/T$ — периодограмма реализации наблюдаемых данных. Подставляя (7), (8) в (5), (6), необходим ОМП дисперсии и полосы частот случайного сигнала

$$\widetilde{D} = \frac{1}{\pi} \left[\int_{0}^{\widetilde{\Omega}/2} S_{T}(\omega) d\omega - \frac{1}{\omega_{m}/\widetilde{\Omega} - 1} \int_{\widetilde{\Omega}/2}^{S_{T}(\omega)} S_{T}(\omega) d\omega \right], \tag{9}$$

$$\widetilde{\Omega} = \operatorname{argsup} M(\Omega), \Omega \in [\Omega_{\min}; \Omega_{\max}], \tag{10}$$

$$M(\Omega) = \frac{T \omega_{m}}{4 \pi} \ln \begin{bmatrix} \omega_{m}/2 \\ (\omega_{m} - \Omega) \int S_{T}(\omega) d\omega \\ \frac{\omega_{m}/2}{\omega_{m}/2} \\ \omega_{m} \int S_{T}(\omega) d\omega \end{bmatrix} + \frac{T \Omega}{4 \pi} \ln \begin{bmatrix} \omega_{m}/2 \\ \Omega \int S_{T}(\omega) d\omega \\ \frac{\Omega/2}{\Omega/2} \\ (\omega_{m} - \Omega) \int S_{T}(\omega) d\omega \end{bmatrix} (11)$$

Получим характеристики оценок дисперсии (9) и полосы частот (10) случайного сигнала. Для этого представим (11) в виде

$$M(\Omega) = \frac{T \omega_m}{4 \pi} \ln \left[\frac{L_1 (\omega_m)}{L_2 (\Omega)} \right] + \frac{T \Omega}{4 \pi} \ln \left[\frac{L_2 (\Omega)}{L_1 (\Omega)} \right], \tag{12}$$

где

$$L_1(\Omega) = \frac{4}{\Omega(\gamma_0 + N_0)} \int_0^{\Omega/2} S_T(\omega) d\omega,$$
 (13)

$$L_{2}(\Omega) = \frac{4}{(\omega_{m} - \Omega)(\gamma_{0} + N_{0})} \int_{\Omega/2}^{\omega_{m}/2} S_{T}(\omega) d\omega.$$
 (14)

Функцию L_1 (Ω) представим в виде суммы сигнальной и нормированной шумовой функции [2]: L_1 (Ω) = S_1 (Ω) + ϵ N_1 (Ω), ϵ = $1/\sqrt{\mu}$, S_1 (Ω) = $1+\min$ (Ω , Ω_0) / q Ω , N_1 (Ω) = $\sqrt{\mu}$ [L_1 (Ω) - S_1 (Ω)]. Нормированная шумовая функция N_1 (Ω) обладает нулевым математическим ожиданием и корреляционной функцией

$$< N_1(\Omega_1) N_1(\Omega_2) > = \frac{\Omega_0}{q^2 \Omega_1 \Omega_2} [(1 + 2 q) \min(\Omega_0, \Omega_1, \Omega_2) + q^2 \min(\Omega_1, \Omega_2)].$$

Причем дисперсия шумовой функции $< N_1^2 \left(\Omega_0 \right) > = (1+1/q)^2$ и ограничена при любых значениях q > 0 и $\mu \to \infty$.

Аналогично функцию $L_2\left(\Omega\right)$ представим в виде суммы сигнальной и нормированной шумовой функции: $L_2\left(\Omega\right) = S_2\left(\Omega\right) + \epsilon \, N_2\left(\Omega\right),$ $S_2\left(\Omega\right) = 1 + \max\left(\Omega_0 - \Omega, 0\right) / q\left(\omega_m - \Omega\right), \; N_2\left(\Omega\right) = \sqrt{\mu} \left[L_2\left(\Omega\right) - S_2\left(\Omega\right)\right].$ Нормированная шумовая функция $N_2\left(\Omega\right)$ обладает нулевым математическим ожиданием и корреляционной функцией

$$\begin{split} < N_2 \left(\Omega_1 \right) N_2 \left(\Omega_2 \right) > &= \frac{\Omega_0}{q^2 \left(\omega_m - \Omega_1 \right) \left(\omega_m - \Omega_2 \right)} \left\{ \; \left(1 + 2 \; q \right) \left[\max \left(\Omega_0, \; \Omega_1, \; \Omega_2 \right) - \right. \right. \\ &\left. - \max \left(\Omega_1, \; \Omega_2 \right) \; \right] + q^2 \min \left(\omega_m - \Omega_1, \; \omega_m - \Omega_2 \right) \right\}. \end{split}$$

Причем дисперсия шумовой функции $< N_2^2 \left(\Omega_0 \right) > = \left(k_0 - 1 \right)^{-1}$ и ограничена при любых значениях $k_0 > 1$ и $\mu \to \infty$.

Подставив полученные выражения в (12), получим $M(\Omega)$ как функцию параметра ϵ :

$$M(\Omega) = -\frac{T\Omega}{4\pi} \ln \left[S_1(\Omega) + \varepsilon N_1(\Omega) \right] - \frac{T(\omega_m - \Omega)}{4\pi} \ln \left[S_2(\Omega) + \varepsilon N_2(\Omega) \right] + \frac{T\omega_m}{4\pi} \ln \left[S_1(\omega_m) + \varepsilon N_1(\omega_m) \right]. \tag{15}$$

Полагая $\mu >> 1$ ($\epsilon << 1$), разложим (15) в ряд Маклорена по ϵ до первого члена разложения, зависящего от реализации наблюдаемых данных включительно и отбросим слагаемые, не зависящие от оцениваемого параметра Ω . Тогда (12) можно представить в виде

$$M(\Omega) = \hat{S}(\Omega) + \hat{N}(\Omega), \tag{16}$$

$$\hat{S}(\Omega) = -\mu \left\{ \frac{\Omega}{\Omega_0} \ln S_1(\Omega) + \left(k_0 - \frac{\Omega}{\Omega_0} \right) \ln S_2(\Omega) \right\}, \tag{17}$$

 $\hat{N}\left(\Omega\right) = -\sqrt{\mu} \left\{ \frac{\Omega}{\Omega_{0}} \frac{N_{1}\left(\Omega\right)}{S_{1}\left(\Omega\right)} + \left(k_{0} - \frac{\Omega}{\Omega_{0}}\right) \frac{N_{2}\left(\Omega\right)}{S_{2}\left(\Omega\right)} \right\}.$

Согласно (17) сигнальная функция \hat{S} (Ω) достигает наибольшего максимума, когда $\Omega=\Omega_0$. Следовательно, выходное отношение сигнал/шум можем записать как [2]: $z^2=\hat{S}^2$ (Ω_0) / $<\hat{N}^2$ (Ω_0) > = μ ln² (1 + 1 / q) / k_0 . В дальнейшем полагаем, что μ >> 1 и z >> 1, так что оценки (9) и (10) обладают высокой апостериорной точностью. В этом случае, аналогично [3, 5], достаточно исследовать поведение случайного процесса (11) в малой окрестности точки Ω_0 . С увеличением μ процесс (11) в малой окрестности Ω_0 может быть аппроксимирован марковским гауссовским процессом. Применяя затем метод локальномарковской аппроксимации [3], аналогично [5], находим выражения для условных смещения и рассеяния оценки полосы частот (10)

$$\times \left[2 \Gamma_{2}^{3} - \Gamma_{1}^{2} (\Gamma_{2} + \Gamma_{1})\right] \right\} \Gamma_{1}^{-4} \Gamma_{2}^{-3} (\Gamma_{2} - \Gamma_{1})^{-4}, \tag{19}$$

где $\Gamma_1=1-q\ln{(1+1/q)},\ \Gamma_2=\{(1+2\ q)\ln{(1+1/q)}-1\}/q.$ В случае отсутствия широкополосной помехи v (t) параметр $q=N_0\ \Omega_0/4\ \pi\ D_0$ и выражения (18), (19) совпадают с аналогичными выражениями для условных смещения и рассеяния оценки полосы частот, найденными в [5]. Отметим также, что полученные выражения не зависят от истинного значения Ω_0 полосы частот случайного сигнала. Следовательно, условные смещение и рассеяние ОМП Ω , когда $\Omega_0\in(\Omega_{\min};\ \Omega_{\max})$, асимптотически (при $\mu\to\infty$) совпадают с соответствующими безусловными характеристиками.

При конечном интервале (Ω_{\min} ; Ω_{\max}) значений параметра Ω_0 рассеяние ОМП полосы частот должно быть ограничено, а теоретическое значение рассеяния (19) с увеличением q неограниченно возрастает. Уточним зависимости (18), (19) в области больших значений q. Для $\mu >> 1$ с увеличением q процесс $M(\Omega)$ (16) является асимптотически винеровским. В [3] получено распределение положения наибольшего максимума винеровского процесса на конечном интервале. Используя результаты [3], находим, что при $\mu / q^2 << 1$ смещение и рассеяние оценки ОМП полосы частот определяются выражениями

$$b_0 (\widetilde{\Omega} \mid \Omega_0) = (\Omega_{\min} + \Omega_{\max}) / 2 - \Omega_0,$$

$$V_0 (\widetilde{\Omega} \mid \Omega_0) = b_0^2 (\widetilde{\Omega} \mid \Omega_0) + (\Omega_{\max} - \Omega_{\min})^2 / 8.$$

Таким образом, результирующее выражение для условного рассеяния оценки полосы частот может быть записано в виде

$$V(\overset{\sim}{\Omega}\mid\Omega_{0})=\min\left[V_{0}\,(\overset{\sim}{\Omega}\mid\Omega_{0}),\,V_{1}\,(\overset{\sim}{\Omega}\mid\Omega_{0})\,\right],\,\Omega_{0}\in(\Omega_{\min};\,\Omega_{\max}).$$

Зададим границы априорного интервала полосы частот случайного сигнала как $\Omega_{\min}=\omega_m$ $\eta,~\Omega_{\max}=\omega_m$ $(1-\eta),~\eta<0,5$. На рис. 3 приведены зависимости нормированного рассеяния $\rho_1=V(\overset{\sim}{\Omega}|~\Omega_0)/\Omega_0^2$ от параметра q для различных значений параметров η и для $\Omega_0=(\Omega_{\min}+\Omega_{\max})/2$. Кривые I построены для $\eta=0,1;~2-0,2;~3-0,3;~4-0,4$. Для всех кривых $\mu=100,~k_0=2$.

Рассмотрим теперь характеристики оценки дисперсии (9). Полагаем вначале, что величина параметра Ω_0 априори известна. Тогда в (9) следует полагать $\widetilde{\Omega}=\Omega_0$. При этом характеристики оценки \widetilde{D} определяются выражениями (3), (4) при δ $\Omega=0$. Считаем теперь, что величина параметра Ω_0 не известна. Из (4) следует, что при $\widetilde{\Omega}=\Omega_0$ и $\mu>>1$ рассеяние оценки (9) имеет порядок малости

 μ^{-1} . В то же время, при не слишком больших q рассеяние оценки (10) имеет порядок малости μ^{-2} . Отсюда, аналогично [6], получаем, что характеристики оценки (9) при $\mu \to \infty$ асимптотически совпадают с характеристиками оценки (2), найденными при известном Ω_0 . Следовательно, графики на рис. 1, 2 характеризуют выигрыш в точности совместной оценки дисперсии и полосы частот (9) и (10) по сравнению с оценкой дисперсии случайного сигнала (2) при $\Omega^* \neq \Omega_0$.

Для проверки работоспособности рассмотренных алгоритмов оценки дисперсии (2), (9) было проведено статистическое моделирование. Моделирование проводилось в частотной области и полагалось, что реализация наблюдаемых данных x(t) доступна обработке в течение интервала наблюдения [-T/2; T/2]. Для формирования функций (13), (14), (15) на ЭВМ перейдем к нормированному аргументу $\widetilde{\omega} = \omega / \Omega_{\text{max}}$. Тогда

$$M(\alpha) = \mu k_0 \ln \left[\frac{L_1 (k_0 \alpha_0)}{L_2 (\alpha)} \right] + \frac{\mu \alpha}{\alpha_0} \ln \left[\frac{L_2 (\alpha)}{L_1 (\alpha)} \right], \tag{20}$$

$$L_{1}(\alpha) = \frac{\mu}{\alpha} \int_{0}^{\alpha/2} |\widetilde{X}(\widetilde{\omega})|^{2} d\widetilde{\omega}, \tag{21}$$

$$L_{2}(\alpha) = \frac{\mu}{(k_{0} \alpha_{0} - \alpha) q} \int_{\alpha/2}^{k_{0} \alpha_{0}/2} |\widetilde{X}(\widetilde{\omega})|^{2} d\widetilde{\omega}, \qquad (22)$$

где $\widetilde{X}(\widetilde{\omega}) = 2X(\widetilde{\omega} \Omega_{\max}) / T \sqrt{D_0}, X(\omega) = \int_{-T/2}^{T/2} x(t) \exp(-j \omega t) dt$ — снектр реали-

зации x (t), $\alpha = \Omega$ / $\Omega_{\rm max}$, $\alpha_0 = \Omega_0$ / $\Omega_{\rm max}$. Соответственно алгоритм оценки полосы частот (10) может быть представлен как

$$\stackrel{\wedge}{\alpha} = \operatorname{argsup} M(\alpha), \ \alpha \in [\eta / (1 - \eta); 1]. \tag{23}$$

Положим $\Omega_0 = (\Omega_{\min} + \Omega_{\max}) / 2$, тогда при заданном значении η нормированная полоса частот $\alpha_0 = 1 / 2 (1 - \eta)$, а $k_0 = 2$. Для моделирования алгоритмов оценки необходимо формировать реализации случайного процесса $\widetilde{X}(\widetilde{\omega})$ и на их основе вырабатывать функции (20), (21) и (22).

В процессе моделирования вырабатывались отсчеты случайного процесса $\widetilde{X}(\widetilde{\omega})$ с шагом Δ $\widetilde{\omega}$. На основе сформированных дискретных последовательностей непрерывные реализации этого процесса аппроксимировались ступенчатой

функцией. Относительная среднеквадратичная погрешность аппроксимации определялась по формуле

$$\delta_{X} = \left\{ \max < |\widetilde{X}(\widetilde{\omega}^{*}) - \widetilde{X}(\widetilde{\omega})|^{2} > \sigma_{X}^{-2} \right\}^{1/2} = \left\{ 2 \left[1 - R_{X}(\Delta \widetilde{\omega} / 2) \right] \right\}^{1/2}. \quad (24)$$

$$\widetilde{\omega} \in \left(\widetilde{\omega}^{*} - \frac{\Delta \widetilde{\omega}}{2}, \widetilde{\omega}^{*} + \frac{\Delta \widetilde{\omega}}{2} \right)$$

Здесь $\widetilde{\omega}^*$ — одна из точек, в которых формировались отсчеты процесса $\widetilde{X}(\widetilde{\omega})$, σ_X^2 — его дисперсия, а $R_X(\widetilde{\omega})$ — коэффициент корреляции. В случае отсутствия сигнала s (t) и широкополосной помехи v (t) случайный процесс $\widetilde{X}(\widetilde{\omega})$ является стационарным и обладает коэффициентом корреляции $R_X(\widetilde{\omega}) = \sin{(2\pi\mu\,\widetilde{\omega}/\alpha_0)}/(2\pi\mu\,\widetilde{\omega}/\alpha_0)$. Тогда при шаге $\Delta\,\widetilde{\omega} = 0.1\,\alpha_0/\mu$ из (24) для среднеквадратичной погрешности аппроксимации имеем $\delta_X < 0.2$.

Рассмотрим формирование дискретных отсчетов случайного процесса $\widetilde{X}(\widetilde{\omega})$. Для этого представим $\widetilde{X}(\widetilde{\omega})$ как $\widetilde{X}(\widetilde{\omega}) = \widetilde{X}_c(\widetilde{\omega}) + j\widetilde{X}_s(\widetilde{\omega})$, где $\widetilde{X}_c(\widetilde{\omega}) = \operatorname{Re} \widetilde{X}(\widetilde{\omega})$, а $\widetilde{X}_s(\widetilde{\omega}) = \operatorname{Im} \widetilde{X}(\widetilde{\omega})$. При достаточно большом времени наблюдения ($\mu >> 1$) справедливо представление

$$\widetilde{X}_{c,s}\left(\widetilde{\omega}\right) = \sqrt{\frac{\Omega_{\max}}{2 \pi D_0}} \int_{-\infty}^{\infty} \sqrt{G_X\left(\widetilde{\omega}' \Omega_{\max}\right)} h\left(\widetilde{\omega} - \widetilde{\omega}'\right) \left[\eta_1\left(\widetilde{\omega}'\right) \pm \eta_2\left(\widetilde{\omega}'\right)\right] d\widetilde{\omega}', \quad (25)$$

где

$$G_X(\widetilde{\omega} \Omega_{\max}) = 2 \pi D_0 I(\widetilde{\omega} / \alpha_0) / \Omega_0 + \gamma_0 I(\widetilde{\omega} / k_0 \alpha_0) / 2 + N_0 / 2$$

спектральная плотность случайного сигнала

$$x(t)(1), h(\widetilde{\omega}) = \sin(2\pi \mu \widetilde{\omega}/\alpha_0)/[2\pi \mu \widetilde{\omega}/\alpha_0],$$

а $\eta_1(\widetilde{\omega})$ и $\eta_2(\widetilde{\omega})$ — независимые гауссовские случайные процессы с ненулевыми математическими ожиданиями и одинаковыми корреляционными функциями $<\eta_i(\widetilde{\omega}_1)$ $\eta_i(\widetilde{\omega}_2)>=\delta\left(\widetilde{\omega}_1-\widetilde{\omega}_2\right)$ (i=1,2). При достаточно малом шаге Δ $\widetilde{\omega}$ можно записать:

$$\begin{split} \widetilde{X}_{c,s}\left(\widetilde{\omega}_{k}\right) &\approx \sqrt{\frac{\Omega_{\max}}{2 \pi D_{0}}} \sum_{i=-\infty}^{\infty} \sqrt{G_{X}\left(\widetilde{\omega}_{i} \Omega_{\max}\right)} h\left(\widetilde{\omega}_{k} - \widetilde{\omega}_{i}\right) \times \\ &\widetilde{\omega}_{i} + \Delta \widetilde{\omega} / 2 \\ &\times \int_{\widetilde{\omega}_{i} - \Delta \widetilde{\omega} / 2} \left[\eta_{1}\left(\widetilde{\omega}'\right) \pm \eta_{2}\left(\widetilde{\omega}'\right) \right] d\widetilde{\omega}', \end{split} \tag{26}$$

где $\widetilde{\omega}_k = k \Delta \widetilde{\omega}$, $\widetilde{\omega}_i = i \Delta \widetilde{\omega}$. Обозначим:

$$\widetilde{\omega}_{i} + \Delta \widetilde{\omega} / 2$$

$$v_{i} = \int_{\widetilde{\omega}_{i} - \Delta \widetilde{\omega} / 2} \eta (\widetilde{\omega}') d\widetilde{\omega}'$$

— независимые гауссовские случайные величины с ненулевыми математическими ожиданиями и дисперсиями $< v_i^2 > = \Delta \widetilde{\omega}$. Тогда $v_i = x_i \sqrt{\Delta \widetilde{\omega}}$, где x_i — независимые гауссовские случайные величины с нулевыми математическими ожиданиями и единичными дисперсиями. Заменяя в (26) бесконечные пределы суммирования на конечные, получаем:

$$\widetilde{X}_{c,s}\left(\widetilde{\omega}_{k}\right) \approx \sqrt{\Delta \widetilde{\omega} / \alpha_{0}} \sum_{i=-p}^{p} \sqrt{q + I\left[\left(k - i\right) \Delta \widetilde{\omega} / \alpha_{0}\right]} h\left(\widetilde{\omega}_{i}\right) \left(x_{k-i} \pm \widehat{x}_{k-i}\right), \quad (27)$$

где $\overset{\wedge}{x_i}$ — независимые гауссовские случайные величины с нулевыми математическими ожиданиями и единичными дисперсиями. При выбранном шаге дискретизации число слагаемых в (27) определялось таким образом, чтобы при отсутствии сигнала s (t) и широкополосной помехи v (t) относительное отклонение дисперсии сформированного отсчета $<\widetilde{X}_{c,s}^2\left(\widetilde{\omega}_k\right)>$ от дисперсии самого процесса $\sigma^2=<\widetilde{X}_{c,s}^2\left(\widetilde{\omega}\right)>$ не превышало заданную величину, то есть $|1-\sigma^{-2}<\widetilde{X}_{c,s}^2\left(\widetilde{\omega}_k\right)>|<\varepsilon$. Для обеспечения величины $\varepsilon=0,02$ необходимо положить p=2 α_0 / μ Δ $\widetilde{\omega}$.

По сформированным согласно (27) ступенчатым аппроксимациям процессов (25) вычислялись аппроксимации интегралов (21), (22)

$$L_{1}(\alpha) = \left[\mu \Delta \widetilde{\omega} / \alpha q\right] \sum_{k=1}^{N} \left[\widetilde{X}_{c}^{2}(\widetilde{\omega}_{k}) + \widetilde{X}_{s}^{2}(\widetilde{\omega}_{k})\right], \tag{28}$$

$$L_{2}(\alpha) = \left[\mu \Delta \widetilde{\omega} / (k_{0} \alpha_{0} - \alpha) q\right] \sum_{k=N+1}^{M} \widetilde{X}_{c}^{2}(\widetilde{\omega}_{k}) + \widetilde{X}_{s}^{2}(\widetilde{\omega}_{k})\right], \tag{29}$$

где $N=\inf{(\alpha/2\Delta\widetilde{\omega})}, M=\inf{(k_0\alpha_0/2\Delta\widetilde{\omega})},$ а $\inf{(\cdot)}$ — целая часть числа. В результате подстановки аппроксимаций (28), (29) интегралов (21), (22) в (20) формированся логарифм ФОП. Затем, согласно (23) определялось ОМП α нормированной полосы частот сигнала и вычислялись значения оценок дисперсии (2) и (9). Для каждой сформированной в процессе моделирования реализации (28), (29) интегралов (21), (22) оценки дисперсии вычислялись по формулам

$$\hat{D} = D_0 \left(\delta \Omega + 1\right) q \left[L_1 \left[\alpha_0 \left(\delta \Omega + 1\right)\right] - L_2 \left[\alpha_0 \left(\delta \Omega + 1\right)\right]\right]$$

— для квазиправдоподобной оценки (2) и $\widetilde{D}=D_0$ $\widehat{\alpha}$ q [L_1 ($\widehat{\alpha}$) – L_2 ($\widehat{\alpha}$)] / α_0 — для ОМП дисперсии (9).

Моделирование проводилось при значениях параметров $\mu = 100, \Delta \ \widetilde{\omega} = 10^{-3} \ \alpha_0, p = 20.$ Для каждого значения параметров $k_0, \ \eta, \ q, \ \delta \ \Omega$ было проведено от 500 до 2000 циклов испытаний. По результатам моделирования алгоритмов оценки дисперсии (2), (9) вычислялось экспериментальное значение отношения рассеяния оценки дисперсии (2) к рассеянию совместной оценки (9). Полученные экспериментальные значения нанесены на рис. 1, 2. На рис. 3 показаны экспериментальные значения нормированного рассеяния $\rho_1 = V(\widetilde{\Omega} \mid \Omega_0) / \Omega_0^2$ ОМП (10) полосы частот. Кроме того, для определения области, в которой характеристики совместной оценки дисперсии и полосы частот (9), (10) можно аппроксимировать характеристиками оценки дисперсии случайного сигнала с априори известной полосы частот, на рис. 4 показаны теорегическая и экспериментальная зависимости нормированного рассеяния оценки дисперсии (9) $\rho_2 = V(\widetilde{D} \mid D_0)$ / D_0^2 от q для значений параметров $\mu = 100, k_0 = 2.$ Экспериментальные значения на рис. 3, 4 обозначены: прямоугольники — для $\eta=0,1$, крестики — 0,2, треугольники — 0,3, кружочки — 0,4.

Из анализа рис. 1, 2, 4 видно, что при значениях параметров $q \le 1$ использование совместной ОМП дисперсии и полосы частот случайного сигнала позволяет почти полностью компенсировать проигрыш в точности оценки дисперсии, возникающий из-за априорного незнания полосы частот. Кроме

того, из рис. 3 следует, что моделирование показало удовлетворительное согласование теоретических характеристик оценки полосы частот с экспериментальными для q > 0,1. Моделирование также показало удовлетворительное согласование полученных в [1] теоретических характеристик оценки дисперсии (2) с экспериментальными и подтвердило работоспособность рассмотренных алгоритмов оценки дисперсии случайного сигнала.

Приведенные результаты получены при поддержке Российского фонда фундаментальных исследований.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Трифонов А. П.*, *Алексеенко С. П.* Квазиправдоподобная оценка дисперсии стационарного гауссовского случайного процесса // Радиоэлектроника.— 1994.— № 11.— С. 10—18. (Изв. высш. учеб. заведений).
- 2. Куликов Е. И., Трифонов А. П. Оценка параметров сигналов на фоне помех.— М.: Сов. радио, 1978.— 296 с.
- 3. *Трифонов А. П., Шинаков Ю. С.* Совместное различение сигналов и оценка их параметров на фоне помех.— М.: Радио и связь, 1986.— 264 с.
- 4. *Куликов Е. И.* Методы измерения случайных процессов.— М.: Радио и связь, 1986.— 272 с.
- 5. Трифонов А. П., Галун С. А. Прием случайного сигнала с неизвестной шириной спектра мощности // Радиотехника и электроника.— 1982.— Т. 27.— № 8.— С. 1554—1562. 6. Трифонов А. П., Захаров А. В. Теоретическое и экспериментальное исследование

оценок параметров случайного сигнала с неизвестными моментами появления и исчезновения // Радиотехника и электроника.— 1996.— Т. 41.— № 8.— С. 972—978.

Воронежский госуниверситет.

Поступила в редакцию 05.01.98.

УДК 621.396,677

КОМАРОВИЧ В. Ф., МАРЧУК Л. А., ПРАСЬКО А. Д.

МЕТОД СИНТЕЗА АЛГОРИТМОВ АДАПТИВНОЙ ФИЛЬТРАЦИИ СИГНАЛОВ С НЕТОЧНО ИЗВЕСТНЫМИ ПРОСТРАНСТВЕННЫМИ ПАРАМЕТРАМИ

Предложен метод синтеза алгоритмов адаптивной пространственной фильтрации, обеспечивающих при наличии ошибок в определении направления прихода полезного сигнала значение отношения сигнал/(помеха+шум) на выходе адаптивной антенной решетки, близкое к потенциально. Достижимой величине.

Известно, что одним из путей повышения эффективности систем радиосвязи является применение адаптивных антенных решеток (AAP), обеспечивающих подавление помех, совпадающих по несущей частоте и форме спектра с полезным сигналом. Для максимизации отношения сигнал/(помеха+шум) (ОСПШ) на выходе ААР необходимо иметь точные априорные данные о