

Matemática Discreta 1

Operações Lógicas sobre Proposições

AULA 2

Professor: Luiz Augusto Laranjeira

luiz.laranjeira@gmail.com

Inb Operações sobre Proposições

- Negação
- Conjunção (E)
- Disjunção (OU)
- Disjunção Exclusiva (XOR)
- Condicional
- Bicondicional

Negação

- Símbolo $\sim p$, p', \overline{p} ou $\neg p$
- A negação de uma proposição p é representada por "não p", cujo valor lógico é a verdade (V) quando p é falsa e a falsidade (F) quando p é verdadeira.
- Não Não = Sim
- Ex.: João não é gordo = João é magro.

Negação

Tabela verdade

р	~ p
V	F
F	V

$$\sim$$
V = F, \sim F = V

e
$$\mathbb{V}(\sim p) = \sim \mathbb{V}(p)$$

Negação

 Vide exemplos página 18 do livro texto (Iniciação à Lógica Matemática – Edgard A. Filho).

Conjunção

- A conjunção de duas proposições p e q representada por "p e q", cujo valor lógico é a verdade (V) quando as proposições p e q são ambas verdadeiras e a falsidade (F) nos demais casos
- Símbolo:
 - p q ou p ∧ q (onde lê-se p e q)

Conjunção

Tabela verdade

р	q	p.q
V	V	V
V	F	F
F	V	F
F	F	F

Ou seja:

$$V \bullet V = V, V \bullet F = F, F \bullet V = F, F \bullet F = F$$

e $V(p \bullet q) = V(p) \bullet V(q)$

Conjunção

Olhar exemplos do LT página 19.

Disjunção

 Chama-se disjunção de duas proposições p e q a proposição representada por "p ou q", cujo valor lógico é a verdade (V) quando ao menos uma das proposições p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas.

Disjunção

- Símbolo: p + q ou $p \vee q$
- Tabela verdade

р	q	p + q
V	V	V
V	F	V
F	V	V
F	F	F

Onde:
$$V + V = V$$
, $V + F = V$,
 $F + V = V$, $F + F = F$
e $V(p + q) = V(p) + V(q)$

Disjunção

Vide exemplos do LT pág. 20.

Disjunção Exclusiva

 "p ou q, mas não ambos", cujo valor lógico é a verdade (V) somente quando p é verdadeira ou q é verdadeira, mas não quando p e q são ambas verdadeiras, e a falsidade (F) quando p e q são ambas verdadeiras ou ambas falsas.

Disjunção exclusiva

- Símbolo: p ⊕ q
- Tabela verdade

р	q	p \bigoplus q
V	V	F
V	F	V
F	V	V
F	F	F

Onde: $V \oplus V = F$, $V \oplus F = V$, $F \oplus V = V$, $F \oplus F = F$

 $e \quad \mathbb{V}(p \oplus q) = \mathbb{V}(p) \oplus \mathbb{V}(q) \quad \text{(ou, informalmente, } \mathbb{V}(p) \mathrel{!=} \mathbb{V}(q) \text{)}$

$$p \oplus q \equiv (p \bullet q') + (p' \bullet q)$$

Unb dama Disjunção X Disjunção Exclusiva

P: Maria é médica ou¹ escritora

Maria pode ser médica e escritora ao mesmo tempo

Q: Jorge é mineiro ou² carioca

- Jorge não pode ser mineiro e carioca ao mesmo tempo
- (¹) ou inclusivo
- (2) ou exclusivo

🕡 UnB disjunção X Disjunção Exclusiva 🥅

Não confundir

Disjunção Disjunção Exclusiva

p + q

 $p \oplus q$

$$V + V = V$$

$$V \oplus V = F$$

 Chama-se proposição condicional uma proposição representada por "se p então q", cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade(V) nos demais casos.

- Símbolo: $p \rightarrow q$
- Lê-se "p condicional q", e não "p implica q"

- Pode-se dizer também:
 - p é condição suficiente para q
 - q é condição necessária para p
- Diz-se que p é o antecedente e q o consequente.

Cuidado!

"p implica q" tem outro significado e é expresso pelo símbolo ⇒.

(será visto em uma das próximas aulas)

Tabela verdade

р	q	$p \to q$
V	V	V
V	F	F
F	V	V
F	F	V

Onde:
$$V \rightarrow V = V$$
, $V \rightarrow F = F$,
 $F \rightarrow V = V$, $F \rightarrow F = V$
e $V(p \rightarrow q) = V(p) \rightarrow V(q)$

Cuidado

- Uma condicional p → q não afirma tão somente que o consequente q se deduz ou é consequência do antecedente p.
- De forma mais geral, o condicional é uma relação entre os valores lógicos do antecedente e do consequente de acordo com sua Tabela Verdade.

Vide exemplos da página 23 do LT.

Α	~A	В	~A + B
V		V	
V		F	
F		V	
F		F	

Α	~A	В	~A + B
V	F	V	
V	F	F	
F	V	V	
F	V	F	

Α	~ A	В	~A + B
V	F	V	V
V	F	F	F
F	V	V	V
F	V	F	V

Α	~A	В	~A + B	$A \rightarrow B$
V	F	V	V	
V	F	F	F	
F	V	V	V	
F	V	F	V	

Α	~A	В	~A + B	$A \rightarrow B$
V	F	V	V	V
V	F	F	F	F
F	V	V	V	V
F	V	F	V	V

$$A \rightarrow B \equiv \sim A + B$$

- Chama-se proposição bicondicional uma proposição representada por "p se e somente se q", cujo valor lógico é a verdade (V) quando p e q são ambas verdadeiras ou ambas falsas, e a falsidade (F) nos demais casos.
- Símbolo: p ↔ q

• Onde lê-se:

- p é condição necessária e suficiente para q
- q é condição necessária e suficiente para p

Tabela verdade

$$p \leftrightarrow q$$
 é o mesmo que $p \equiv q$

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Onde:
$$V \leftrightarrow V = V$$
, $V \leftrightarrow F = F$, $F \leftrightarrow V = F$, $F \leftrightarrow F = V$
e $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q)$

$$p \rightarrow q$$
 e $q \rightarrow p$

$$(p \leftrightarrow q) \equiv p \rightarrow q \cdot q \rightarrow p$$

 $(p \leftrightarrow q) \equiv (p' + q) \cdot (p + q')$
 $(p \leftrightarrow q)' \equiv (p \cdot q') + (p' \cdot q) \text{ ou } (p \leftrightarrow q)' \equiv p \oplus q$

Tabelas-Verdade de Proposições Compostas

- É possivel construir a tabela-verdade de toda proposição composta a partir dos valores lógicos das proposições simples componentes.
- Dada uma proposição composta com n proposições simples sua tabela verdade terá 2ⁿ linhas:

$$N_L = A_{n,2} = 2^n$$

$$P(p, q) = \sim (p \bullet \sim q)$$

$$P(p, q) = \sim (p \bullet \sim q) = \sim p + q = p \rightarrow q$$

р	q	~q	p ● ~q	~(p • ~q)
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

$$P(p, q) = \sim (p + q) \bullet (q \rightarrow p)$$

$$P(p, q) = \sim (p + q) \bullet (q \rightarrow p)$$

р	q	p + q	~(p + q)	$q \rightarrow p$	~(p +q) • (q → p)
V	V	V	F	V	F
V	F	V	F	V	F
F	V	V	F	F	F
F	F	F	V	V	V

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q
```


Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q : Cláudio fala inglês ou alemão
```

p.q :

p.q':

p'. q' :

(p')':

(p'.q')':

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q : Cláudio fala inglês ou alemão
```

p. q : Cláudio fala inglês e alemão

```
p.q':
```

$$(p')'$$
:

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q : Cláudio fala inglês ou alemão
```

p. q : Cláudio fala inglês e alemão

p. q': Cláudio fala inglês mas não fala alemão

```
p'. q' :
```

$$(p')'$$
:

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

```
p + q : Cláudio fala inglês ou alemão
```

p. q : Cláudio fala inglês e alemão

p. q': Cláudio fala inglês mas não fala alemão

p'. q' : Cláudio não fala nem inglês nem alemão

(p')' :

(p'.q')':

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

p + q : Cláudio fala inglês ou alemão

p. q : Cláudio fala inglês e alemão

p. q': Cláudio fala inglês mas não fala alemão

p'. q' : Cláudio não fala nem inglês nem alemão

(p')' : Não é verdade que Cláudio não fala inglês

(p'.q')':

Sejam as proposições

p: Cláudio fala inglês e q: Cláudio fala alemão.

Traduzir as seguintes proposições em linguagem simbólica para a linguagem corrente:

p + q : Cláudio fala inglês ou alemão

p. q : Cláudio fala inglês e alemão

p. q': Cláudio fala inglês mas não fala alemão

p'. q' : Cláudio não fala nem inglês nem alemão

(p')' : Não é verdade que Cláudio não fala inglês

(p'.q')': Não é verdade que Cláudio não fala nem inglês

nem alemão

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante

Marcos é alto, mas não é elegante

Não é verdade que Marcos é baixo ou elegante

Marcos não é nem alto nem elegante

Marcos é alto ou é baixo e elegante

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante:

Não é verdade que Marcos é baixo ou elegante:

Marcos não é nem alto nem elegante:

Marcos é alto ou é baixo e elegante:

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante:

Marcos não é nem alto nem elegante:

Marcos é alto ou é baixo e elegante:

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante: (p' + q)'

Marcos não é nem alto nem elegante:

Marcos é alto ou é baixo e elegante:

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p.q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante: (p' + q)'

Marcos não é nem alto nem elegante: p'. q'

Marcos é alto ou é baixo e elegante:

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p. q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante: (p' + q)'

Marcos não é nem alto nem elegante: p'. q'

Marcos é alto ou é baixo e elegante: p + (p'. q)

Sejam as proposições

p: Marcos é alto e q: Marcos é elegante.

Traduzir as seguintes proposições em linguagem corrente para a linguagem simbólica:

Marcos é alto e elegante: p. q

Marcos é alto, mas não é elegante: p. q'

Não é verdade que Marcos é baixo ou elegante: (p' + q)'

Marcos não é nem alto nem elegante: p'. q'

Marcos é alto ou é baixo e elegante: p + (p'. q)

É falso que Marcos é baixo ou que não é elegante: (p' + q')'

Tautologia

- É toda proposição composta cujo valor lógico é sempre V.
- Exemplos: $p + \sim p = V$ $\sim (p \bullet \sim p) = V$
- Somente simplificar um expressão não é tautologia. Deve-se chegar ao valor lógico V.

Mostrar que a proposição seguinte é uma tautologia:

$$A \oplus B \leftrightarrow (A \leftrightarrow B)'$$

Mostrar usando a tabela-verdade que a proposição seguinte é uma tautologia: $A \oplus B \leftrightarrow (A \leftrightarrow B)'$

Mostrar usando a tabela-verdade que a proposição seguinte é uma tautologia:

$$A \oplus B \leftrightarrow (A \leftrightarrow B)'$$

Α	В	A \oplus B	$A \leftrightarrow B$	(A ↔ B)'	$A \oplus B \leftrightarrow (A \leftrightarrow B)'$
V	V	F	V	F	V
V	F	V	F	V	V
F	V	V	F	V	V
F	F	F	V	F	V

Demonstre analiticamente que a proposição seguinte é uma tautologia: A ⊕ B ↔ (A ↔ B)'

Demonstre analiticamente que a proposição seguinte é uma tautologia: A ⊕ B ↔ (A ↔ B)'

De sua tabela verdade havíamos inferido que:

$$A \oplus B \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Demonstre analiticamente que a proposição seguinte é uma tautologia: A ⊕ B ↔ (A ↔ B)'

De sua tabela verdade havíamos inferido que:

$$A \oplus B \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Vamos mostrar também que:

$$(A \leftrightarrow B)' \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Demonstre analiticamente que a proposição seguinte é uma tautologia: A ⊕ B ↔ (A ↔ B)'

De sua tabela verdade havíamos inferido que:

$$A \oplus B \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Vamos mostrar também que:

$$(A \leftrightarrow B)' \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Começamos lembrando que:

$$A \leftrightarrow B \equiv (A \rightarrow B) \bullet (B \rightarrow A) \equiv (A' + B) \bullet (B' + A)$$

Demonstre analiticamente que a proposição seguinte é uma tautologia: A ⊕ B ↔ (A ↔ B)'

De sua tabela verdade havíamos inferido que:

$$A \oplus B \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Vamos mostrar também que:

$$(A \leftrightarrow B)' \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Começamos lembrando que:

$$A \leftrightarrow B \equiv (A \rightarrow B) \bullet (B \rightarrow A) \equiv (A' + B) \bullet (B' + A)$$

Daí vem que :
$$(A \leftrightarrow B)' \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Demonstre analiticamente que a proposição seguinte é uma tautologia: A ⊕ B ↔ (A ↔ B)'

De sua tabela verdade havíamos inferido que:

$$A \oplus B \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Vamos mostrar também que:

$$(A \leftrightarrow B)' \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

Começamos lembrando que:

$$A \leftrightarrow B \equiv (A \rightarrow B) \bullet (B \rightarrow A) \equiv (A' + B) \bullet (B' + A)$$

Daí vem que :
$$(A \leftrightarrow B)' \equiv (A \bullet B') + (A' \bullet B) \equiv C$$

E a expressão inicial se reduz a:

$$C \leftrightarrow C \equiv (C \rightarrow C) \bullet (C \rightarrow C) \equiv (C \rightarrow C) \equiv (C' + C) \equiv V$$
 CQD

Regra da Simplificação

Mostrar que:

$$p + p' \cdot q \equiv p + q$$

 $p' + p \cdot q \equiv p' + q$

р	q	p + q	p'	p' • q	p + p'• q
V	V	V	F	F	V
V	F	V	F	F	V
F	V	V	V	V	V
F	F	F	V	F	F

Mostrar que a proposição seguinte é uma tautologia:

$$(p \rightarrow q) \rightarrow (p \cdot r \rightarrow q \cdot r)$$

Mostrar que a proposição seguinte é uma tautologia:

$$\begin{array}{l} (p \rightarrow q) \rightarrow (p \bullet r \rightarrow q \bullet r) \\ \\ (p'+q) \rightarrow (p'+r') + q \bullet r \\ \\ (p'+q)' + (p'+r') + q \bullet r \\ \\ p.q'+p' + r'+q \bullet r \\ \\ p'+r'+q'+q \\ \\ p'+r'+q'+q \\ \\ p'+r'+V \end{array} \qquad \text{(utilizando a regra da simplificação)}$$

- Mostrar que A + B é equivalente a (A' B')'
- Mostrar que A → B é equivalente a (A B')'

Este exercício demonstra que para toda proposição composta existe uma proposição equivalente formada apenas pelos conectivos de conjunção e negação.

O conetivo binário \(\preceq\)
 é definido por:

$$p \perp q \equiv \sim (p + q)$$

р	q	р І д
V	V	F
V	F	F
F	V	F
F	F	V

 Mostrar que qualquer proposição pode ser expressa em termos deste conectivo (usar o resultado do exercício anterior).

- O conetivo binário | é definido por:
- Mostrar que qualquer proposição pode ser expressa em termos deste conectivo (usar o resultado do exercício anterior).

р	q	р І q
V	V	F
V	F	F
F	V	F
F	F	V

A prova consiste em se mostrar que os conetivos de negação e de conjunção (~ e Λ) podem ser expressos em função do conetivo L

- a) p <u>l</u> p ≡ ~p
- b) $p \perp q \equiv \sim (p + q)$ $\sim p \perp \sim q \equiv \sim (\sim p + \sim q) \equiv p \land q \equiv (p \perp p) \perp (q \perp q)$

Provar que existem proposições que não podem ser expressas somente em termos dos conectivos → e +.

 Provar que existem proposições que não podem ser expressas somente em termos dos conectivos → e +.

A prova consiste em se mostrar que não há meios de se expressar a operação de negação com estes dois conectivos:

$$p \rightarrow p = \sim p + p = V$$

 $p + p = p$

~p não pode ser expresso em termos de pe →

~p não pode ser expresso em termos de pe+