QM simulácie-projekt

May 29, 2020

Zadanie

Oxid zinočnatý ZnO má široké uplatnenie v priemysle pri spracovaní gumy, cementu a i. Pri T=0 K a nulovom tlaku má takzvanú wurtzite (WU) štruktúru, ktorá posobením tlaku prejde na rock salt (RS) mriežku. V rámci projektu preskúmajte nasledujúce vlastnosti:

- zobrazením závislosti entalpie od tlaku H=E+pV oboch fáz nájdite tlak p_c , pri ktorom nastane fázový prechod
- $\bullet\,$ určite relatívnu zmenu objemu/hustoty pri prechode z fázy WU do fázy RS
- fitovaním Birch-Murnaghanovej stavovej rovnice

$$p(V) = \frac{3B_0}{2} \left(\left(\frac{V_0}{V} \right)^{7/3} - \left(\frac{V_0}{V} \right)^{5/3} \right) \left(1 + \frac{3}{4} \left(B_0' - 4 \right) \left(\left(\frac{V_0}{V} \right)^{2/3} - 1 \right) \right)$$
(1)

nájdite modul objemovej pružnosti B_0 a jeho deriváciu podľa tlaku B_0' (obe hodnoty sú platné pre nulový tlak)

- vypočítajte elektrónovú štruktúru a zostrojte graf elektrónovej husoty stavov a pásový diagram. Výsledky okomentujte (kov/izolant, rozdiely medzi elektrónovou štruktúrou vo fázach WU a RS, ...)
- vypočítajte a porovnajte frekvencie fonónových módov v Γ bode pre obe fázy. Výsledky skúste porovnať s experimentálnymi dátami aspoň pre fázu WU.

Štruktúry

Štruktúry sú pribalené k zadaniu vo forme *cif súborov. Sú vo formáte conventional standard cell, teda konvenčnej bunke ktorá má všetky symetrie kryštálu ale nie nutne minimálnu bázu. S primitívnou bunkou simulácie zbehnú rýchlejšie a naviac pre DOS, band diagram a fonóny v Γ bode je nutné počítať s primitívnou bunkou.

Konvenčná bunka WU sa dá transformovať na primitívnu maticou

$$\begin{pmatrix}
0.5 & -0.5 & 0 \\
0.5 & 0.5 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
(2)

a RS $\,$

$$\begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \end{pmatrix}, \tag{3}$$

ale je oveľa pohodlnejšie využiť možnosti ponúkané Quantum Espressom v nastavení ibrav.