

Deep Learning Based High Accuracy Traffic Sign Detection

GROUP 8: Kaiyi Chen

Xiao Guo

Chujia Chen

Shihong Yang

Date: 05/01/2023

PART 3

Problem Description

Approaches

PART 5

PART 6

Lesson

Learned

Future Work

Our Team

Kaiyi Chen

MEng CS

Xiao Guo

MEng Student CSA - Data Chujia Chen

Ph.D. Student GBCB

Shihong Yang

Ph.D. Student Animal Data Science

Problem Description

Traffic sign detection is an important task for autonomous driving systems.

necessary information for navigation & safety

- detect the changes in sign size, shape, color, occlusion, and illumination makes it a hot topic in the CV domain.
- require high accuracy and real-time performance, which is usually a natural shortage of object detection models.

Dataset

German Traffic Sign Detection Benchmark (GTDRB): 900 photos with traffic signs.

The German Traffic Sign Detection Benchmark

The German Traffic Sign Detection Benchmark is a single-image detection assessment for researchers with interest in the field of computer vision, pattern recognition and image-based driver assistance. It is supposed to be introduced on the IEEE International Joint Conference on Neural Networks 2013. It features ...

Dataset

- The images contain zero to six traffic signs.
- Traffic signs are grouped into: prohibitory, danger, mandatory
- The sizes of the traffic signs in the images vary from 16x16 to 128x128
- Traffic signs appear in every perspective and under every lighting condition
- Original dataset are converted to the YOLO format.
- Images are in *.jpg format and have corresponding *.txt files with YOLO annotations.
- Annotations include bounding box information in the format of [Class Number] [center in x] [center in y] [Width] [Height].

Approaches

What makes YOLOv7 model different?

Extended efficient layer aggregation: Put the backbone together and pull features together from images.

Approaches

What makes YOLOv7 model different?

Model scaling techniques: Change different layers to accommodate different sizes to make the neural network smaller or larger.

Training

Epoch	gpu_mem	box	obj	cls	total	labels	img_size	ON THE REAL PROPERTY.		
299/299	4.81G	0.01153	0.002572	0.0009846	0.01509	10	640:	100%	111/111 [01:02<00:00,	1.78it/s]
11812	Class	Image	s Lal	pels	P	R	mAP@.5	mAP@.5:.95: 100%	7/7 [00:02<00:00,	3.30it/s]
	all	7	8	119	0.977	0.911	0.95	0.807		
pro	ohibitory	7	8	52	0.985	1	0.995	0.866		
	danger	7	8	29	1	0.966	0.994	0.838		
()	mandatory	7	8	14	0.928	0.929	0.967	0.861		
	other	7	8	24	0.996	0.75	0.843	0.664		

Demo

Demo

Results

Precision	Recall	mAP @ 0.5	mAP @ [0.5, 0.95]
0.9995	0.9286	0.955	0.8072

Lessons Learned

1

Time to Run

Local GPU vs Remote

2 Dataset Coverage

Need a large and realistic dataset to train the model

(3) From theory to practice

Both efficiency and accuracy

Future Work

SECTION 06

2. Utilize cloud computing platforms like Colab and AWS to speed up the training

3. Compare other YoLo models' performance Use other datasets like CCTSDB 4. Segment anything?

THANKS!!

GROUP 8: Kaiyi Chen

Xiao Guo

Chujia Chen

Shihong Yang