CENG424

Logic for Computer Science Assignment 2

Zeynep Sıla Egül e2380335@ceng.metu.edu.tr

Question 1

1.

2.	$p \Rightarrow q$ $q \Rightarrow r$ $p \Rightarrow \neg r$	Premise Premise (by Deduction Theorem)
4.	$(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$	Implication Introduction (II)

4.	$(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$	Implication Introduction (II)
5.	$p \Rightarrow (q \Rightarrow r)$	Modus Ponens (4, 2)
6.	$(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$	Implication Distribution (ID)
7.	$p \Rightarrow r$	Modus Ponens (6, 1)
8.	$(p \Rightarrow \neg r) \Rightarrow ((p \Rightarrow r) \Rightarrow \neg p)$	Contradiction Rule (CR)
9.	$(p \Rightarrow r) \Rightarrow \neg p$	Modus Ponens (8, 3)
10.	$\neg p$	Modus Ponens (9, 7)

It is shown that $(p \Rightarrow \neg r) \Rightarrow \neg p$.

2.

1.	$\neg s \lor \neg r \Rightarrow \neg t$	Premise
2.	$s \Rightarrow p \vee \neg r$	Premise
3.	$p \wedge s \Rightarrow q$	Premise
4.	t	Premise (by Deduction Theorem)
5.	$\neg(\neg t) \Rightarrow \neg(\neg s \vee \neg r)$	Contraposition
	$\neg(\neg t) \Rightarrow \neg(\neg s \vee \neg r)$ $t \Rightarrow s \wedge r$	Contraposition Double Negation Rule
6.	` ' ' ' '	-

Conjuction elimination (7) Conjuction elimination (7) $10. \quad p \vee \neg r$ Modus Ponens (2,7)11. p Disjunction elimination (10) 12. $p \wedge s$ Conjuction introduction (8,12) Modus Ponens (3,12)

It is shown that $(\neg s \lor \neg r \Rightarrow \neg t) \land (s \Rightarrow p \lor \neg r) \land (s \Rightarrow p \lor \neg r) \Rightarrow (t \Rightarrow q)$.

Question 2

$$(r \Rightarrow s) \land ((t \land q) \Rightarrow \neg s) \Rightarrow ((t \land q) \Rightarrow \neg r)$$

First, we express the given logical formula in conjunctive normal form (CNF) and negate the goal.

Premises:

$$r \Rightarrow s \equiv \neg r \vee s$$

$$(t \land q) \Rightarrow \neg s \equiv \neg t \lor \neg q \lor \neg s$$

$$(t \land q) \Rightarrow \neg r \equiv \neg t \lor \neg q \lor \neg r$$

Thus, the premises are:

1.
$$\neg r \lor s$$

2.
$$\neg t \lor \neg q \lor \neg s$$

3.
$$\neg t \lor \neg q \lor \neg r$$

We negate the goal $(t \land q) \Rightarrow \neg r$:

$$\neg((t \land q) \Rightarrow \neg r) \equiv (t \land q) \land r$$

So, the negated goal gives us the following clauses:

1 *t*

5. q

6. r

The premises and the negated goal:

1.
$$\neg r \lor s$$

2.
$$\neg t \lor \neg q \lor \neg s$$

3.
$$\neg t \lor \neg q \lor \neg r$$

4. t

5. q

6. r

We resolve the clauses step by step:

Resolving $\neg r \lor s$ (1) and r (6) gives us:

7. s

Resolving $\neg t \lor \neg q \lor \neg s$ (2) and s (7) gives us:

8. $\neg t \lor \neg q$

Resolving $\neg t \vee \neg q \vee \neg r$ (3) and $\neg t \vee \neg q$ (8) gives us:

 $9. \neg r$

Resolving r (6) and $\neg r$ (9) gives us:

10. \square (Contradiction)

Since we reached a contradiction (an empty clause, \Box), the negation of the goal leads to a contradiction. Therefore, the original implication is valid.

Question 3

1.

If Paul has holidays and it is snowing, he will go skiing.

 $(\mathbf{HOL} \wedge \mathbf{SNO}) \Rightarrow \mathbf{GSK}$

He will go to France or Florida.

 $\mathbf{GFR} \vee \mathbf{GFL}$

There is no skiing in Florida.

 $\neg \mathbf{SFL}$

There is skiing in France.

 \mathbf{SFR}

Paul has holidays and he will go to Florida.

 $\mathbf{HOL} \wedge \mathbf{GFL}$

2.

Conjunctive Normal Form (CNF) of statements above:

$$\begin{aligned} & (\mathbf{HOL} \, \wedge \, \mathbf{SNO}) \Rightarrow \mathbf{GSK} = \neg \, (\mathbf{HOL} \, \wedge \, \mathbf{SNO}) \Rightarrow \mathbf{GSK} = \neg \, \mathbf{HOL} \, \vee \neg \, \mathbf{SNO} \, \vee \, \mathbf{GSK} \\ & (\neg \, \mathbf{HOL} \, \vee \neg \, \mathbf{SNO} \, \vee \, \mathbf{GSK}) \, \wedge \, (\mathbf{GFR} \, \vee \, \mathbf{GFL}) \, \wedge \, (\neg \mathbf{SFL}) \, \wedge \, (\mathbf{SFR}) \, \wedge \, (\mathbf{HOL}) \, \wedge \, (\mathbf{GFL}) \end{aligned}$$

Statement we need to prove: It is not snowing. $(\neg SNO)$

We assume SNO (it is snowing) and will derive a contradiction.

The resolution process:

Resolving SNO and
$$(\neg HOL \lor \neg SNO \lor GSK)$$
, end up with: $(\neg HOL \lor GSK)$

Resolve (\neg HOL \lor GSK) with HOL, end up with: GSK

Resolve \mathbf{GFL} with \mathbf{GSK} , end up with: $\mathbf{GFL} \wedge \mathbf{GSK}$

Resolve $\mathbf{GFL} \wedge \mathbf{GSK}$ with $\neg \mathbf{SFL}$, end up with a contradiction and an empty clause because Paul will go to Florida and he will go skiing, but there is no skiing in Florida.

Since we have reached a contradiction, we conclude that the assumption SNO is false, and therefore ¬SNO.