Name:

Solution

Date: 02/22/2018

M20580 L.A. and D.E. Tutorial Quiz 4

1. Let A, B, C be 3×3 matrices with $\det(A) = -2$, $\det(B) = \frac{1}{3}$, and $\det(C) = \frac{1}{5}$. What is $\det(3A^{-1}B^3C^T)$?

 $de+(3A^{-1}B^{3}C^{T}) = 3^{3}(-2)^{-1}(\frac{1}{3})^{3} = -\frac{1}{2}(\frac{1}{5})^{2} = -\frac{1}{2}(\frac{1}{5})^{2}$

2. Consider the linear system of equations:

$$x_1 + 2x_2 + x_3 = 2$$

 $-x_2 + 2x_3 = 1$
 $3x_1 + x_3 = 0$

Use Cramer's Rule to find x_3 . Caution! You must use Cramer's Rule and show all your work to receive full credit.

$$det(A_3(5)) = \begin{vmatrix} 1 & 2 & 2 \\ 0 & -1 & 1 \\ 3 & 0 & 0 \end{vmatrix} = 3 \begin{vmatrix} 2 & 2 \\ -1 & 1 \end{vmatrix} = 3 \cdot 4 = 12$$

$$x_3 = \frac{\det(A_1 \overline{b_1})}{\det(A_1)} = \frac{1^2}{14} = \frac{6}{1}$$