获得的答案

(a) Languages are

 $L_1 = \{w \mid \text{the length of } w \text{ is at most 5} \} \text{ on } \Sigma = \{0,1\}$

And $L_2 = \{w | \text{ every odd position of } w \text{ is } a1\} \text{ on } \Sigma = \{0,1\}$

 M_1 be the NFA that recognizes L_1 and

 ${\it M}_{\rm 2}$ be the NFA that recognizes ${\it L}_{\rm 2}.$

Let $L = L_1 0 L_2$

M be the NFA that recognizes L.

• $L_1 = \{ w \mid \text{ the length of } w \text{ is at most 5} \}$

The state diagram of $M_{\rm l}$ that recognizes $L_{\rm l}$ is

• $L_2 = \{w\}$ every odd position of w is a1

$$L_2 = (1\Sigma)^*$$

The state diagram of $M_{\scriptscriptstyle 2}$ that recognizes $L_{\scriptscriptstyle 2}$ is

 $\it L$ is concatenation of $\it L_1$ and $\it L_2$

So the state diagram of $\boldsymbol{\mathit{M}}$ that recognizes L is described as follows

(b) Given Languages are

 $L_1 = \{ w \mid w \text{ contains at least three 1s} \} \text{ on } \Sigma = \{0,1\}$

浙ICP备16034203号-2

And $L_2 = \{w \mid w \text{ is a empty set}\}\ \text{on } \Sigma = \{0,1\}$

 $\emph{M}_{\rm l}$ be the NFA that recognizes $\emph{L}_{\rm l}$ and

 $M_{\rm 2}$ be the NFA that recognizes $L_{\rm 2}.$

Let
$$L = L_1 0 L_2$$

M be the NFA that recognizes L.

• $L_1 = \{ w \mid w \text{ contains at least three1s} \}$

$$L_1 = (0,1)^* 1(0,1)^* 1(0,1)^* (0,1)^*$$

The state diagram of M_{I} that recognizes L_{I} is

• $L_2 = \{ w \mid w \text{ is a empty set} \}$

$$L_2=\phi=\left\{\ \right\}$$

The state diagram of $\boldsymbol{M_2}$ that recognizes $\boldsymbol{L_2}$ is

 $\it L$ is concatenation of $\it L_{\rm l}$ and $\it L_{\rm 2}$

So the state diagram of M that recognizes L is described as follows

