### **BIST Part 2**

- Output Response Analysis
  - Simple ORA
  - LFSR-based ORA
    - \* Serial: compress one bit at a time
    - Parallel: compress multiple bits at a time
      - MISR
      - Aliasing
      - Masking
- BIST Architecture
- Issues with BIST
- Conclusions



#### Parallel ORA

- Serial ORA only compress one CUT output
- How about multiple CUT outputs?
  - One LFSR for each CUT output?
  - Too much hardware overhead!



**Any Better Idea?** 

**LFSR** 

**CUT** 

# Multiple Input Signature Register, MISR

- MISR has similar structure to LFSR, except
  - Parallel inputs feed XOR between stages
- MISR characteristic polynomial same as LFSR
- Example: MISR with 4 parallel inputs
  - Modified from type-2 LFSR
  - $f(x) = x^4 + x^3 + 1$





# What is MISR Signature?



| cycle | $Q_0$ | $Q_1$ | $Q_2$ | $Q_3$ |
|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     |
| 1     | 0     | 1     | 0     | 1     |
| 2     | 0     | 1     | 0     | 0     |
| 3     | 1     | 1     | 0     | 0     |
| 4     | 0     | 1     | 1     | 1     |
| 5     | 0     | 1     | 0     | 1     |
| 6     | 1     | 0     | 1     | 1     |

initial state

signature

**Too Slow!** 

## **Equivalent LFSR**

- Change MISR to equivalent LFSR
  - Just phase shift and add many input bit streams



# Signature Analysis Using CRC

assume type-2 LFSR



$$(x+x^2+x^4+x^5+x^7+x^8) \div (1+x^3+x^4) = 1+x+x^4 \dots 1+x^2+x^3$$
  
 $M(x) \div f(x) = Q(x) \dots R(x)$ 

### Quiz

- Q: Given same example. The first bit of rightmost '1' is flipped to '0'
  - 1) Find equivalent LFSR and associated input bit stream
  - 2) What is MISR signature using CRC analysis?



### **BIST Part 2**

- Output Response Analysis
  - Simple ORA
  - LFSR-based ORA
    - \* Serial: compress one bit at a time
    - \* Parallel : compress multiple bits at a time
      - MISR
      - Aliasing
      - Masking
- BIST Architecture
- Issues with BIST
- Conclusions



# **Good Signature (1/2)**

#### Assume

- f(x) = N-degree characteristic polynomial, which is primitive
- Totally N MISR inputs: n=0,1,2,...,N-1 (from left to right)
- ◆ Totally K cycles of MISR input bit stream: k=0,1,2,...,K-1
- $M_n(x) = MISR n_{th}$  input polynomial

#### Example

- N=4, K=6,  $f(x) = x^4 + x^3 + 1$
- $M_0(x)=x+x^3+x^4$ ,  $M_1(x)=x+x^3+x^4+x^5$ ,  $M_2(x)=x+x^3+x^4$ ,  $M_3(x)=x+x^2+x^4+x^5$



# **Good Signature (2/2)**

•  $M_{good}(x)$  = good input bit stream;  $R_{good}(x)$  = good signature

$$\begin{aligned} M_{good}(x) &= M_0(x) + x^1 M_1(x) + x^2 M_2(x) \dots + x^{N-1} M_{N-1}(x) \\ R_{good}(x) &= M_{good}(x) \bmod f(x) \end{aligned}$$

Example:



$$\begin{split} M_{good}(x) = & M_0(x) + x M_1(x) + x^2 M_2(x) + x^3 M_3(x) + x^4 M_4(x) = x + x^2 + x^4 + x^5 + x^7 + x^8 \\ R_{good}(x) = & M_{good}(x) \bmod f(x) = 1 + x^2 + x^3 \end{split}$$

#### When Error Occurs

 $M_{faulty}(x) = M_{good}(x) + M_{error}(x)$ 

$$\begin{split} M_{faulty}(x) &= M_0(x) + x^1 \, M_1(x) + x^2 \, M_2(x) \, \dots + x^{N-1} \, M_{N-1}(x) + M_{error}(x) \\ R_{faulty}(x) &= M_{faulty}(x) \, \operatorname{mod} f(x) \end{split}$$



$$M_{faulty}(x) = x + x^2 + x^4 + x^5 + x^7 + x^8 + x^8 = x + x^2 + x^4 + x^5 + x^7$$
  
 $R_{faulty}(x) = M_{faulty}(x) \mod f(x) = 1 + x$  No aliasing.

### PAL=?

- Same analysis as LFSR
  - $M_{faulty}(x) = M_{good}(x) + M_{error}(x)$
  - Bit stream length m= K+N-1

$$PAL = \frac{2^{m-N} - 1}{2^m - 1} = \frac{2^{K-1} - 1}{2^{N+K-1} - 1} \approx 2^{-N}$$

- Example
  - *N*=4, *K*=6
  - m=9
  - ◆ PAL≅2-4



PAL=2<sup>-N</sup>. Same as LFSR!

### Quiz

Q: We have 5 inputs, each 100 bits long. 5-degree MISR (PP= $1+x^2+x^5$ ) What is PAL of this MISR?

A:



### **BIST Part 2**

- Output Response Analysis
  - Simple ORA
  - LFSR-based ORA
    - \* Serial: compress one bit at a time
    - \* Parallel : compress multiple bits at a time
      - MISR
      - Aliasing
      - Masking
- BIST Architecture
- Issues with BIST
- Conclusions



#### What If Two Errors?

#### Two cases:

#### different columns



#### same column



# Masking

- Masking (aka. error cancellation)
  - One error bit cancels another error bits
  - Before reaching MISR feedback tap points



Masking ≠ Aliasing

## **More Careful Analysis**

- Actually, error can happen anywhere in the middle
  - Error bits can get cancelled before summation

$$M_{faulty}(x) = M_0(x) + M_{error0}(x) + x^1 M_1(x) + M_{error1}(x) + x^2 M_2(x) + M_{error2}(x) + \dots$$

```
011011
                     000000
    M_{arror0}(x)
                    010110
    M_{error1}(x) 000100
                  010111
    M_{error2}(x) 000010
                 010110
+ \mathbf{M}_{\mathtt{error3}}(\mathbf{x})000000
    M_{faulty}(x) 011011011
```

# Probability of Masking (Bardell 87)

Probability of masking =Probability of even ones in same column

Assume all errors are equally likely, then

$$Pr(masking) \approx 2^{1-N-K} << 2^{-N} = PAL$$

Conclusion: Prob. of masking is much smaller than PAL

# **Aliasing and Masking**

|                     | Aliasing                                                                              | Masking                                                                                                 |
|---------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Reason of happening | Error bits propagate through feedback path and cancel out with errors in later cycles | Error bit shifted down the MISR and cancelled by another error bit, before reaching feedback tap points |
| Probability         | 2 <sup>-N</sup>                                                                       | 2 <sup>1-N-K</sup>                                                                                      |
|                     |                                                                                       | Smaller                                                                                                 |
| Happens in          | Both LFSR and MISR                                                                    | Only MISR                                                                                               |
| Polynomial          | Dependent                                                                             | Independent                                                                                             |

# **Summary**

- MISR (Multiple input signature register)
  - Similar to LFSR but multiple inputs
  - Most popular parallel ORA
    - Small area, low PAL
- How to analyze MISR?
  - Convert to equivalent LFSR
- Aliasing
  - ◆ PAL = 2<sup>-N</sup>. same as LFSR
- Masking
  - Prob. much smaller than PAL



### FFT

- Q: Why is aliasing PAL polynomial-dependent?
  - What if non-primitive polynomial

|                     | Aliasing                                                                              | Masking                                                                                                 |
|---------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Reason of happening | Error bits propagate through feedback path and cancel out with errors in later cycles | Error bit shifted down the MISR and cancelled by another error bit, before reaching feedback tap points |
| Probability         | 2 <sup>-N</sup>                                                                       | 2 <sup>1-N-K</sup><br>Smaller                                                                           |
| Happens in          | Both LFSR and MISR                                                                    | Only MISR                                                                                               |
| Polynomial          | Dependent                                                                             | Independent                                                                                             |