CPSC 340 Formula Sheet

Basics

Entropy: $-\sum_{c=1}^{k} p_c \log p_c$ L0 norm: $|r|_0$ counts number of non-zero elements in r

L1 norm: $|r|_1 = \sum |r_i|$ L2 norm: $|r|_2 = \sqrt{\sum r_i^2}$ L ∞ norm: $|r|_{\infty} = \max |r_i|$ Dot product: $a^T b = b^T a$ Norm: $||a||^2 = a^T a$

Transpose: $(A+B)^T = A^T + B^T$ $(AB)^T = B^T A^T$

Supervised Learning

Notation

Feature matrix $X = [n \times d]$

Example i: x_i . Column j: x^j

Label vector $y = [n \times 1]$

Prediction vector $\hat{y} = [n \times 1]$

Test data/predictions: \tilde{X} and \tilde{y}

Concepts

Training accuracy: accuracy on training data Test accuracy: accuracy on new (test) data

Golden rule: never train on test data

Overfitting: low accuracy on test data since model is too specific to training data

IID assumption: assume training data reflects test data

Training and test error: E_{train} and E_{test} .

Generalization gap: $E_{\text{gap}} = E_{\text{test}} - E_{\text{train}}$

Fundamental trade-off: for complex model, E_{train} decreases but E_{gap} increases

Validation: use part of training data to approximate test data Optimization bias: find good model by chance, but have overfit to validation set

Cross validation: partitition section of data for validation, then average all of the validation errors to get a more accurate estimate of the test error

Decision Trees

Decision stump: split data on one feature, then pick most common labels for predictions. O(nkd), k is number of thresholds. Decision tree: greedy splitting or info gain (better). Aim to decrease entropy.

info gain = entropy $(y) - \frac{n_1}{n}$ entropy $(y_1) - \frac{n_2}{n}$ entropy (y_2)

Naive Bayes

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$ $P(\text{spam} \mid \text{words}) = \frac{P(\text{words} \mid \text{spam})P(\text{spam})}{P(\text{words})}$

 $P(\text{words} \mid \text{spam}) = \prod_{j=1}^{d} P(\text{word}_j \mid \text{spam})$

Estimate $P(\text{word}_i \mid \text{spam})$ and P(spam) based on proportion in training data

Laplace smoothing: avoid no occurences for a word in a class. Add β to numerator and βk to denominator of $P(\text{word}_i)$ spam)

KNN

Finds k nearest training examples, then takes most common

Lazy learning: does not train, just memorizes data. O(nd) to classify one example.

Nonparametric: model size depends on number of training examples

Problematic for high-dimensional data or features with different scales

Ensemble Methods

Voting: take majority vote of multiple (possibly different structure) models

Stacking: fit a classifier on the predictions of other classifiers Bootstrapping: sample with replace to create new training sets Random trees: only consider subset of features at each split (typically \sqrt{d})

Random forests: bootstrap data to train multiple random trees, then vote

Clustering

K-Means: assigns each point to closest mean, then update means. O(ndk) to assign examples, O(nd) to update means. Does not work well with non-convex clusters.

Label switching: cluster label \hat{y}_i is meaningless

Vector quantization: replace examples with mean of their clus-

Density-based clustering: ε threshold for neighbour. Min-Neighbours: number of neighbours needed for dense region.

- 1. Find core points that have MinNeighbours points nearby
- 2. Merge core points into clusters (can be reached by traversing through other core points)
- 3. Expand clusters based on existing and newfound core points Naive case $O(dn^2)$, but can be sped up to $O(dn \log n)$.

Hierarchical clustering: tree of clustering which splits data into small clusters.

Bottom up clustering: each point starts as own cluster, then merge closest clusters repeatedly.

Biclustering: cluster training examples and features. Heatmap visualizes clusters.

Outliers

- 1. Probabilistic: assume data is generated by a distribution, then find points with low probability
- 2. Graphical: visualization of data. Limited by dimensionality
- 3. Cluster based: find points far from clusters, or small clus-
- 4. Distance based: find points far from other points, KNN Local distance: outlierness = $\frac{\text{average distance of } i \text{ to KNN}}{\text{average distance of neighbours to KNN}}$
- 5. Supervised learning

Linear Regression

1D objective: minimize $f(w) = \frac{1}{2} \sum_{i=1}^{n} (wx_i - y_i)^2$ 1D solution: $w = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$

Weights $w = [d \times 1]$

Data matrix $X = [n \times d]$

Example $x_i = [d \times 1]$

Outputs $y = [n \times 1]$

Objective: $f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} x_i - y_i)^2 = \frac{1}{2} ||Xw - y||^2$ Matrix gradients:

 $\nabla[c] = 0$ $\nabla[w^T b] = b$ $\nabla \left[\frac{1}{2}w^T A w\right] = A w$ for symmetric A.

2D solution: $X^T X w = X^T y$ (normal equations)

Normal equations time: $O(nd^2 + d^3)$

Bias: create matrix Z with extra feature of 1s

Polynomial:
$$Z = \begin{bmatrix} 1 & x_1 & \cdots & (x_1)^p \\ \vdots & \vdots & \ddots & \\ 1 & x_n & \cdots & (x_n)^p \end{bmatrix}$$

Transformed data matrix: $Z = [n \times k]$

Transformed normal equations: $Z^T Z v = Z^T y$

Gradient Descent

Iteration equation: $w^{t+1} = w^t - \alpha^t \nabla f(w^t)$

Gradient descent time: O(ntd)

Convex functions: lines between points are above function

Convexity criterion:

- 1. 1-variable, twice-differentiable, f''(w) > 0
- 2. convex function * non-negative constant
- 3. linear functions, norms, squared norms
- 4. sum/max of convex functions
- 5. composition of convex function with linear function f(w) =g(Xw-y), g is convex

Modified Linear Regression

Robust regression: L1 loss $f(w) = \sum_{i=1}^{n} |w^{T}x_{i} - y_{i}|$ Huber loss: smooth approximation to L1.

$$h(r_i) = \begin{cases} \frac{1}{2}r_i^2 & \text{if } |r_i| \le \varepsilon \\ \varepsilon(|r_i| - \frac{1}{2}\varepsilon) & \text{otherwise} \end{cases}$$

Brittle regression: L ∞ norm minimizes highest error

Log-sum-exp: smooth approximation to $L\infty$

 $\max_{i} \{z_i\} \approx \log(\sum_{i} \exp(z_i))$

Information criteria: $score(p) = \frac{1}{2} ||Z_p v - y||^2 + \lambda k$ Degrees of freedom: k = (p + 1) for polynomial

Akaike information criterion (AIC): $\lambda = 1$

Bayesian information criterion (BIC): $\lambda = \frac{1}{2} \log(n)$

Feature Selection

Association: compute correlation between feature and output. Performs poorly because it ignores variable interactions

Regression weight: keep features with large weights. Has major problems with collinearity

Search and score: pick best subset of features based on score (often validation error). Struggles with large number of features

Forward selection: start with no features, greedibly add features that improve score

L0-penalty: $f(w) = \frac{1}{2} ||Xw - y||^2 + \lambda ||w||_0$

Regularization

L2-Regularization (Ridge): $f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2$ Normal equations: $(X^TX + \lambda I)w = X^Ty$

Regularization path: plot weights against λ Standardize features: replace y_i with $\frac{y_i - \mu_y}{\sigma_y}$

Radial basis functions (RBF): replace x_i with

$$z_i = (g(||x_i - x_1||), \dots, g(||x_i - x_n||))$$

Gaussian RBF: $g(\varepsilon) = \exp(-\frac{\varepsilon^2}{2-\varepsilon^2})$

Hyperparameter optimization: exhaustive search σ and λ , or random search

L1-Regularization (LASSO): $f(w) = \frac{1}{2} ||Xw - y||^2 + \lambda ||w||_1$

- Lower test error, requires gradient methods
- Non-unique and sparse solutions
- Can learn with exponential irrelevant features

Ensemble: designed to reduce false positives/false negatives Bootstrap: only take features selected in all bootstraps (reduces false positives)

Linear Classifiers

Prediction: $o_i = w^T x_i$

Least squares: not good because "too right" predictions are penalized

0-1 loss: number of classification errors

 $0-1 \log = \|\operatorname{sign}(o_i) - y\|_0$

Non-convex: difficult to minimize

Perceptron: update weights when prediction is wrong

 $w^0 = 0, \qquad w^{t+1} = w^t + y_i x_i$

Minimizes 0-1 loss if data is linearly separable

Degenerate convex: $f(w) = \sum_{i=1}^{n} \max\{0, -y_i o_i\}$

Hinge loss: $\max\{0, 1 - y_i o_i\}$

Support vector machine (SVM): hinge loss with L2 regularization

- $-f(w) = \sum_{i=1}^{n} \max\{0, 1 y_i w^T x_i\} + \frac{\lambda}{2} ||w||^2$
- $-f(w) = \overline{C} \sum_{i=1}^{n} \max\{0, 1 y_i w^T x_i\} + \frac{1}{2} ||w||^2$
- $C = \frac{1}{\lambda}$, low C means high regularization

Logistic loss: $\log(1 + \exp(-y_i w^T x_i))$

Probability: $p(y_i = 1 \mid w, x_i) = \frac{1}{1 + \exp(-w^T x_i)}$

One vs All: one classifier for each class, then take most confident (highest value of o_{ic})

 $W = [k \times d]$, each row is a classifier

Multi-class SVM: $w_{vi}^T x_i > w_c^T x_i$ for all $c \neq y_i$

- Sum: $\sum_{c \neq y_i} \max \{0, 1 w_{y_i}^T x_i + w_c^T x_i\}$
- Max: $\max_{c \neq y_i} \{ \max\{0, 1 w_{y_i}^T x_i + w_c^T x_i \} \}$
- Softmax: $w_{ui}^T x_i > \max_c \{ w_c^T x_i \}$
- \Longrightarrow minimize $-w_{yi}^T x_i + \log(\sum_{c=1}^k \exp(w_c^T x_i))$

Multi-class probability: $p(y = c \mid z_1, z_2, \dots, z_k) = \frac{\exp(z_c)}{\sum_{i'=1}^k \exp z_{c'}}$

Matrix form: predict $\operatorname{argmax}(XW^T)$

Feature Engineering

Discretization: convert continuous to categorical, good for counting-based methods

Standardize: convert to same units/normal distribution, good **PCA** for distance-based methods

Non-linear transforms: polynomial, exponential/logarithm, sinusoidal, RBFs, good for regression-based methods

Bag of words: represent sentences/documents by word counts N-gram: ordered sets of n words. Captures local context Kernel trick:

- L2-regularized least squares: $f(v) = \frac{1}{2} ||Zv y||^2 + \frac{\lambda}{2} ||v||^2$
- Solution: $v = \underbrace{(Z^TZ + \lambda I)}_{k \times k}^{-1} Z^T y$ Equivalent solution: $v = Z^T \underbrace{(ZZ^T + \lambda I)}_{n \times n}^{-1} y$.
- $-\hat{y} = \tilde{Z}V = \tilde{Z}Z^T(ZZ^T + \lambda I)^{-1}y = \tilde{K}(K + \lambda I)^{-1}y = \tilde{K}u$
- Gram matrix $K = ZZ^T = [n \times n]$
- $-\tilde{K} = \tilde{Z}Z^T = [t \times n]$
- Kernel function $k(x_i, x_j) = z_i^T z_j$
- Degree-p polynomial: $k(x_i, x_i) = (1 + x_i^T x_i)^p$
- RBF: $k(x_i, x_j) = \exp(-\frac{\|x_i x_j\|^2}{2^{-2}})$
- $-K_{ij} = (1 + x_i^T x_j)^p, \quad \tilde{K}_{ij} = (1 + \tilde{x}_i^T x_j)^p$
- Training cost $O(n^2d)$, prediction cost O(ndt)

Stochastic Gradient Descent

Sample gradient: $w^{t+1} = w^t - \alpha^t \nabla f_i(w^t)$

Use cases: minimize average, can't do brittle regression Decreasing step sizes: needed for convergence

- Use $\alpha^t = O(1/\sqrt{t})$

Mini-batch: sample B examples for calculating gradient Termination: stop when error after k iterations is less than ε

MLE and MAP

Regression tree: predict mean of training examples in leaf XGBoost: each tree corrects previous trees

Likelihood: for dataset D and parameters w, pmf is $p(D \mid w)$ Maximum likelihood estimation (MLE): choose

 $\hat{w} \in \operatorname{argmax}_{w} \{ p(D \mid w) \}$

Negative log-likelihood (NLL): minimize

 $\operatorname{argmin}_{w} \{ -\log(p(D \mid w)) \}$

IID: $p(D \mid w) = \prod_{i=1}^{n} p(D_i \mid w) = \prod_{i=1}^{n} p(y_i \mid w, x_i)$ Least squares is MLE under Gaussian likelihood:

 $p(y_i \mid x_i, w) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{(w^T x_i - y_i)^2}{2})$

MLE of w is minimum of $f(w) = \frac{1}{2} ||Xw - y||^2$

Absolute error is MLE under Laplace likelihood:

 $p(y_i | x_i, w) = \frac{1}{2} \exp(-|w^T x_i - y_i|)$

MLE of w is minimum of $f(w) = ||Xw - y||_1$

Logistic loss is MLE under sigmoid likelihood

Maximum a posteriori (MAP): choose

 $\hat{w} \in \operatorname{argmax}_{w} \{ p(w \mid D) \}$ $p(w \mid D) = \frac{p(D|w)p(w)}{p(D)} \propto p(D \mid w)p(w)$

Prior p(w): belief that w is correct before seeing data Gaussian likelihood + prior gives L2-regularized least squares Laplace likelihood + Gaussian prior gives L2-regularized robust regression

Data matrix: $X[n \times d]$, k components

Outputs $Z = [n \times k], W = [k \times d]$

Approximation: $\hat{x}_{ij} = \langle w^j, z_i \rangle, \hat{x}_i = W^T z_i, X \approx ZW$

Applications: dimensionality reduction, visualization, outlier detection

Objective: $f(W, Z) = \sum_{i=1}^{n} ||W^{T} z_{i} - x_{i}||^{2}$

Centering: each column of X has mean zero

Choosing k: based on explained variance in data

Prediction: replace
$$\tilde{x}_{ij}$$
 with $\tilde{x}_{ij} - \mu_j$, then $\tilde{Z} = \tilde{X}W^T(WW^T)^{-1}$

Sequential fitting: find orthonormal PCs one at a time

Alternating minimization: fix Z and find optimal W, then fix W and find optimal Z

SGD: works well for large dataset X

Outliers in X: can use L1 loss

 $f(W,Z) = \sum_{i=1}^{n} \sum_{j=1}^{d} \left| \left\langle w^{j}, z_{i} \right\rangle - x_{ij} \right|$ L2-regularized PCA:

$$f(W,Z) = \frac{1}{2} \|ZW - X\|^2 + \frac{\lambda_1}{2} \|W\|^2 + \frac{\lambda_2}{2} \|Z\|^2$$

Recommender Systems:

- Content-based filtering (supervised): extract features x_i of users and items, builds model to predict rating y_i given x_i

- Collaborative filtering (unsupervised): only have labels y_{ij}

Matrix factorization: PCA over available ratings Multi-dimensional scaling (MDS): preserve distances

 $f(Z) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\|z_i - z_j\| - \|x_i - x_j\|)^2$

t-distributed stochastic neighbour embedding (t-SNE): preserve neighbour distances

Neural Networks

Neuron: $\hat{y}_i = v^T h(Wx_i)$

Add bias: $\hat{y}_i = v^T h(Wx_i) + b$

Sigmoid: $\frac{1}{1+\exp(-w_x^T x_i)}$, smooth approximation to 0-1

Regression: minimize squared residual

Binary classification: minimize logistic loss Multi-class classification: minimize log softmax

Deep learning: many hidden layers

Backpropagation: compute gradients of loss wrt weights

- m layers, z_i have k elements $\implies O(dk + mk^2)$

Vanishing gradients: gradients become very small

Relu: $\max\{0, z_{ic}\}$, avoids vanishing gradients

Skip connections: add shortcuts between layers

Dropout: randomly set some activations to zero ResNet: $a^{l+2} = h(a^l + W^{l+1}h(W^l a^l))$

Parameter initialization: weights cannot be the same initially Learning rate decay: decrease learning rate over time Momentum:

 $w^{t+1} = w^t - \alpha^t \nabla f_i(w^t) + \beta^t (w^t - w^{t-1})$, usually $\beta^t = 0.9$

Weight decay: L2-regularize v and W

Convolution Neural Network

Convolution: apply sliding filter

Max pooling: take max of each region