STEP Lectures

Sayako Hoshimiya

October 18, 2019

1. [Rudin 6.13 (6.14 is similar)] Define

$$f(x) = \int_{x}^{x+1} \sin\left(t^2\right) dt$$

and prove that

a $|f(x)| < \frac{1}{x} \text{ if } x > 0.$

b

$$2xf(x) = \cos(x^2) - \cos[(x+1)^2] + r(x)$$

where $|r(x)| < \frac{c}{x}$ and c is constant.

c Find

$$\limsup_{x \to \infty} x f(x) \quad \text{and} \quad \liminf_{x \to \infty} x f(x).$$

d Does the improper integral

$$\int_0^\infty \sin(t^2) dt$$

converge?

2. [Rudin 8.19] A trigonometric polynomial is a finite formal sum

$$f(x) = a_0 + \sum_{n=1}^{N} (a_n \cos nx + b_n \sin nx)$$

in a real formal variable x with all coefficients a_i and b_i in \mathbb{C} ; it can be viewed as a complex-valued function. If $\frac{\alpha}{\pi}$ is irrational, prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x + n\alpha) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt.$$

3. Define

$$F(a) = \int_0^1 |\sin x - a\cos x| dx.$$

Find the a that minimizes F(a).

- 4. Let f(x) be differentiable on \mathbb{R} and f(x) > 0, f'(0) = 0. If f satisfies the functional equation $f(x+y) = f(x)f(y)e^{2xy}$, find f(x).
- 5. Assume that $f(x) \geq 0$ and that f decreases monotonically on $[1, \infty)$. Prove that the improper integral

$$\int_{1}^{\infty} f(x)dx$$

converges if and only if

$$\sum_{n=1}^{\infty} f(n)$$

converges.

6. Prove that

$$\sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

1

- 7. Fill an $n \times n$ table A_j^i with 0 and 1, prove that $n \ge 5$ is a sufficient condition for that there exists i_1, i_2, j_1, j_2 such that $A_{j_1}^{i_1} = A_{j_2}^{i_2} = A_{j_1}^{i_2}$.
- 8. For a function f such that f(x) > 0 on \mathbb{R} , define

$$I_a = \frac{1}{a} \int_0^a f(x) \, dx.$$

If $\lim_{a\to\infty} I_a = A$, then there exists a strictly monotonically increasing $\{x_n\}$ such that $\lim_{n\to\infty} x_n = \infty$ and $\lim_{n\to\infty} f(x_n) = A$.

9. Let f be continuous on [1, 2], and $1 \le x \le 2$. Find A and B in

$$\int_{\frac{1}{x}}^{\frac{2}{x}} |\log y| f(xy) dy = 3x(\log x - 1) + A + \frac{B}{x}.$$

10. Let $a = \frac{2^8}{3^4}$. Consider the sequence

$$b_k = \frac{(k+1)^{k+1}}{a^k k!}$$
 $(k=1,2,3,\cdots).$

- a. Show that $f(x) = (x+1)\log\left(1+\frac{1}{x}\right)$ is monotonically increasing on x>1.
- b. Find the maximum M of the sequence $\{b_k\}$, and nominate all k such that $M=b_k$.
- 11. Consider the Cauchy's functional equation

$$f(x+y) = f(x) + f(y).$$

It is clear that linear functions, i.e. functions of the form $f: x \mapsto cx$ where c is constant, is a family of solutions. Discover the structure of this and other families of solutions by following the steps below.

a. Show that when f is a function with domain \mathbb{Q} , then linear functions are the only solutions to Cauchy's functional equation.

A subset A of \mathbb{R}^2 is called to be dense if any disk in \mathbb{R}^2 , however small and wherever it is, contains a point from A.

b. Show that on \mathbb{R} , a solution to the Cauchy's functional equation is either linear or having the pathological property that the graph set $G := \{(x, f(x)) \mid x \in \mathbb{R}\}$ is dense in \mathbb{R}^2 .

The Hamel basis is a set $\{b_i\}_{i\in I} = \mathcal{B} \subset \mathbb{Q}$ such that for every $x \in \mathbb{R}$, it can be represented as a linear combination of the elements in \mathcal{B} , i.e. $x = \sum_{j=1}^{n} \lambda_j b_{i_j}$.

c. Prove that there exists non-linear solutions to Cauchy's functional equation on \mathbb{R} , assuming the Hamel basis exists.

Two sets are said to be of the same cardinality if there exists a bijection between them. A is said to be smaller than B in the cardinality sense if an injection from A to B can be established but a surjection cannot.

d. Show that there are more nonlinear solutions than linear ones to the Cauchy's functional equation over \mathbb{R} .