C01-02 Intervalles

1. Intervalles de nombres réels

E Définition

Soient a et b deux nombres réels tels que $a \leqslant b$.

• On appelle intervalle fermé [a;b] l'ensemble des nombres réels x tels que $a\leqslant x\leqslant b$.

- On appelle intervalle ouvert]a;b[l'ensemble des nombres réels x tels que a < x < b.

- On définit de même les intervalles $[a;b[\ {
 m et}\]a;b].$
- On note $[a; +\infty[$ l'ensemble des nombres réels x tels que $x\geqslant a.$

- On note $]a;+\infty[$ l'ensemble des nombres réels x tels que x>a.

• On définit de même $]-\infty;a[$ et $]-\infty;a[$.

Remarques

- Le symbole $+\infty$ se lit " Plus l'infini ".
- Le symbole $-\infty$ se lit " Moins l'infini ".

Représenter des intervalles

Enoncé

Ecrire les inégalités suivantes sous la forme d'un intervalle, puis représenter cet intervalle sur la droite des réels :

- 1. $x \leqslant 5$
- 2. x > -3
- 3. 2 < x < 5
- 4. $-4 \leqslant x \leqslant -3$
- 5. $-3 \leqslant x < 8$
- 6. $-2 < x \leqslant 0$

- $1.\]-\infty;5]$
- 2.] $-3;+\infty[$
- 3.]2;5[
- 4. [-4; -3]
- 5. [-3; 8[
- 6.]-2;0]

~

Enoncé

Compléter avec un symbole \in ou $\not\in$:

- -2...[-2;1[
- -3...[-5;-1[
- $-\frac{26}{5}\ldots]-5;-4[$
- 4...[-3;4[
- $2\pi \dots [7; 8]$
- 0...ℝ
- $0 \dots \mathbb{R}^*$

- $\bullet \quad -2 \in [-2;1[$
- $-3 \in [-5; -1[$
- $-\frac{26}{5} \notin]-5;-4[$
- $4 \notin [-3; 4[$
- $2\pi \notin [7; 8]$
- $0 \in \mathbb{R}$
- $0 \notin \mathbb{R}^*$

2. Unions et intersections d'intervalles

Définition

Soient I et J deux intervalles.

- L'intersection de I et J est l'ensemble des réels qui appartiennent à la fois à I \textbf{ET} à J. On note cet ensemble $I \cap I$
- La réunion de I et J est l'ensemble des réels qui appartiennent à I \textbf{OU} à J. On note cet ensemble $I \cup J$.

Remarques

- La notation \cap se lit \og inter \fg. D'où $I \cap J$ se lit \og I inter J \fg.
- La notation \cup se lit \log union \backslash fg. D'où $I \cup J$ se lit $\log I$ union $J \backslash$ fg.
- Parfois, il n'y a aucun élément qui appartiennent à la fois à I et J. L'intersection est donc \textbf{vide}, et on note \emptyset l'ensemble vide. Dans ce cas $I \cap J = \emptyset$.

Exemple

On considère les intervalles I=[3;7] et J=]2;5[.

 $\bullet \ \ \, \text{L'ensemble}\, I\cap J \text{ est } [3;5[.$

 $\bullet \ \ \, \text{L'ensemble}\, I \cup J \text{ est }]2;7].$

Enoncé

R\'eduire sous la forme d'un seul intervalle si possible et représenter sur la droite des réels :

-] $-3;7]\cap]-2;8[$
-] $-4;3] \cap [-2;3,5[$
- $[-7;4[\cup]-3;5]$
-] $-3;5] \cup [-1;2]$
- $[-6;6] \cup [-2;2]$
-] $-\infty$; $2[\cap]1$; $+\infty[$
-] $-\infty;-1]\cup]2;6]$
- $[-5;3] \cap [6;8]$

•
$$]-3;7]\cap]-2;8[=]-2;7]$$

•
$$]-4;3] \cap [-2;3,5[=[-2;3]]$$

•
$$[-7;4[\cup]-3;5]=[-7;5]$$

•
$$]-3;5] \cup [-1;2] =]-3;5]$$

•
$$[-6;6] \cup [-2;2] = [-6;6]$$

•]
$$-\infty$$
; $2[\cap]1; +\infty[=]1; 2[$

•]
$$-\infty;-1]\cup]2;6] =] -\infty;-1]\cup]2;6]$$

•
$$[-5;3] \cap [6;8] = \emptyset$$

L'ensemble vide est noté \emptyset .

▼ Travailler les inéquations et les intervalles

Enoncé

Compléter en s'aidant de la méthode donnée dans l'exemple ci-dessous.

Exemple

On a les équivalences :

$$x\in[1;2] \hspace{1cm} \Longleftrightarrow \hspace{1cm} 1\leqslant x\leqslant 2 \hspace{1cm} \text{par d\'efinition}$$

$$\iff \hspace{1cm} 3\leqslant 3x\leqslant 6 \hspace{1cm} \text{en multipliant chaque membre de }$$

$$\text{l'in\'egalit\'e par 3}$$

$$\iff \hspace{1cm} 3x\in[3;6] \hspace{1cm} \text{par d\'efinition}$$

d'où $x \in [1;2]$ si et seulement si $3x \in [3;6]$

1.
$$x \in [7;20]$$
 si et seulement si $7x \in \dots$

2.
$$x \in]-1;3]$$
 si et seulement si $x+4 \in \dots$

3.
$$x \in [2;6]$$
 si et seuelemnt si $8-x \in \dots$

4.
$$x \in \ldots$$
 si et seulement si $x + 6 \in]3; +\infty[$

5.
$$x \in \ldots$$
 si et seulement si $-2x \in [4; +\infty[$

6.
$$x \in \ldots$$
 si et seulement si $4x+3 \in [-6;5]$

1.
$$x \in [7;20]$$
 si et seulement si $7x \in [49;140]$

2.
$$x \in]-1;3]$$
 si et seulement si $x+4 \in]3;7]$

3.
$$x \in [2;6]$$
 si et seuelemnt si $8-x \in [2;6]$

4.
$$x\in]-3;+\infty[$$
 si et seulement si $x+6\in]3;+\infty[$

5.
$$x\in]-\infty;-2]$$
 si et seulement si $-2x\in [4;+\infty[$

6.
$$x \in [-rac{9}{4};2]$$
 si et seulement si $4x+3 \in [-6;5]$

$$\bullet \quad y>-3 \text{ et } y<4$$

•
$$y > -3$$
 ou $y < 4$

•
$$y \leqslant \frac{1}{3}$$
 et $y \leqslant \frac{1}{2}$

•
$$y \leqslant \frac{1}{3}$$
 ou $y \leqslant \frac{1}{2}$

Solution

A venir

🕜 ▼ Résolutions d'équations du premier degré

Enoncé

1. Résoudre dans $\ensuremath{\mathbb{R}}$ chacune des équations suivantes :

2.
$$3x - 6 = 0$$

3.
$$3x - 4 = 0$$

4.
$$-3x + 64 = 19$$

$$5. -2(x+5) = -8$$

6.
$$3x - \pi = 0$$

7.
$$\frac{x-8}{3} = -4$$

8. Lesquelles de ces 4 équations sont résolubles dans $\mathbb Z$? Dans $\mathbb Q$?

Solution

A venir

Résolutions d'inéquations du premier degré

Enoncé

Résoudre les inéquations suivantes et présenter le résultat sous la forme d'un intervalle :

•
$$3x - 6 > 0$$

•
$$3x - 4 \leq 0$$

•
$$-3x + 64 < 19$$