# Theory questions 1) In class we discussed the diff...

chegg.com/homework-help/questions-and-answers/theory-questions-1-class-discussed-differential-flatness-methodmethod-trajectory-generati-q120186433

# Question

(0)

#### Theory questions

- 1) In class we discussed the differential flatness method and the A\* method for trajectory generation.
  a) Please discuss which method requires more computational resources and why?
  - b) For obstacle avoidance which method would you use and why?

  - c) For movement in obstacle free 3d space, which method would you use and why? What are the drawbacks of the method you didn't choose?
- 2) Pose stabilization: Consider Example 3.2.1 in the class notes. Show that  $\dot{V} < 0$  for the chosen control inputs (Equation 3.11 in the notes). Show all the steps in the math.
- 3) Consider the following nonlinear system

$$\dot{x_1} = -x_1 + x_2^3 \\
\dot{x_2} = -x_2 + u$$

Using the Lyapunov function  $V = \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4$ , find the control u that will stabilize this system

- 4) Describe step by step (in words) the A\* grid-based search algorithm. What are cons of this method?
- 5) Describe step by step (in words) the Probabilistic Road Map (PRM) sampling-based motion planning method. What are the cons of this method?
- 6) Describe step by step (in words) the Rapidly-exploring Random Tree (RRT) sampling-based motion planning method. What are the cons of this method?

# **Expert Answer**



This solution was written by a subject matter expert. It's designed to help students like you learn core concepts.

# Step-by-step

1st step

All steps

Answer only

Step 1/3√

#### Solution:

1) . In class, you discussed the Differential Flatness method and the A\* method for trajectory generation.

#### Step-1:

# a) Computational Resources:

- Differential Flatness Method: Typically requires fewer computational resources because it focuses on finding a trajectory that satisfies system dynamics, leading to smoother and more efficient paths. It doesn't involve an extensive search process.
- A\* Method: Generally requires more computational resources, especially in complex environments, as it searches a discrete grid or graph representation of the environment for an optimal path.

#### b) Obstacle Avoidance:

For obstacle avoidance, the A\* method is preferred because it is specifically designed to find collision-free paths in environments with obstacles. It considers discrete obstacle representations and efficiently avoids collisions.

# c) Movement in Obstacle-Free 3D Space:

For movement in an obstacle-free 3D space, the Differential Flatness method is more appropriate. It generates smooth and feasible trajectories that satisfy system constraints without the need for complex pathfinding algorithms.

# Drawbacks of not choosing each method:

- Drawbacks of using A\* in obstacle-free spaces: A\* may introduce unnecessary complexity and computational overhead when obstacles are absent.
- Drawbacks of using Differential Flatness in obstacle-filled spaces: Differential Flatness doesn't handle obstacles directly, so it may lead to collisions or require additional collision avoidance strategies.

#### **Explanation:**

A\* may introduce unnecessary complexity and computational overhead when obstacles are absent.

### Step-2:

#### 2. Pose Stabilization:

To show that V < 0 for the chosen control inputs (u1andu2) in Equation 3.11, you would need to compute the time derivative of the Lyapunov function V and demonstrate that it is negative.

# 3. Nonlinear System Stabilization:

- To stabilize the system  $x_1 = -x_1 + x_2^3$  and  $x_2 = -x_2 + u$ , you can use the Lyapunov function  $V = \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4$ .
- Find the control u that stabilizes the system by computing V and setting it to be negative:

Compute V  $\dot{}$  = dt / dV = (  $\partial V / \partial x_1$ )  $x_1$  + (  $\partial V / \partial x_2$ )  $x_2$ Chosen u such that V < 0 for all ( $x_1$ ,  $x_2$ ) in the state space.

### 4. A\* Grid-Based Search Algorithm:

- A\* is a popular pathfinding algorithm for discrete grids or graphs.
- Initializing opening and closing sets.
- Add the starting node to the open set.
- While the set is not empty:
- Select the node with the lowest cost in the open set.
- Expand it by considering its neighbors.
- Calculate costs (e.g., g-cost, h-cost) for each neighbor.
- Update the open set with the neighbors.
- when the goal node is reached or no path is found, terminate.

**Cons:** A\* can be computationally expensive for large grids, especially in high-dimensional spaces. It doesn't handle dynamic environments well and requires a good heuristic for efficient performance.

# Step-3:

# 5. Probabilistic Road Map (PRM) Sampling-Based Motion Planning:

- Sample random configurations (nodes) in the configuration space.
- · Connect nodes to form a graph based on collision checking.
- Find a path by searching the graph using algorithms like Dijkstra's or A\*.

**Cons:** PRM's quality depends on the sampling density, and it may not guarantee the optimal path. It can be computationally expensive when the environment is cluttered.

# 6. Rapidly-Exploring Random Tree (RRT) Sampling-Based Motion Planning:

- Initialize a tree with the start configuration.
- Sample a random configuration and find the nearest node in the tree.
- Extend the tree towards the sampled configuration.
- · repeat steps 2 and 3 until reaching the goal or a specified time limit.

**Cons:** RRT may not find the optimal path. They can be inefficient in cluttered environments and might require tuning to balance exploration and exploitation.

Final answer∨

#### **Final Answer:**

PRM's quality depends on the sampling density, and it may not guarantee the optimal path. It can be computationally expensive when the environment is cluttered.

Was this answer helpful?

# Post a question

Your toughest questions, solved step-by-step.

26 days left to ask 13 more questions

# **My Textbook Solutions**

+ Add textbook