Recap

LING572 Advanced Statistical Methods for NLP January 24, 2019

Outline

Summary of the material so far

Reading materials

Math formulas

So far

- Introduction:
 - -Course overview
 - –Information theory
 - -Overview of classification task
- Basic classification algorithms:
 - -Decision tree
 - –Naïve Bayes
- kNN, Feature selection, chi-square test and recap
- Hw1-Hw3

Main steps for solving a classification task

- Prepare the data:
 - Reformulate the task into a learning problem
 - Define features
 - Feature selection
 - Form feature vectors

Train a classifier with the training data

Run the classifier on the test data

Evaluation

Comparison of 3 Learners

	kNN	Decision Tree	Naïve Bayes
Modeling	Vote by your neighbors	Vote by your groups	Choose the c that max P(c x)
Training	None	Build a decision tree	Learn P(c) and P(f c)
Decoding	Find neighbors	Traverse the tree	Calculate P(c)P(x c)
Hyper parameter s	K	Max depth	Delta for smoothing
	Similarity fn	Split function	3111334111119
		Thresholds	

Implementation issues

Taking the log:

$$lg(P(c) \prod_{i} P(f_i \mid c)) = lgP(c) + \sum_{i} lgP(f_i \mid c)$$

Ignoring some constants:

$$P(d_i|c) = P(|d_i|)|d_i|! \prod_{k=1}^{|V|} \frac{P(w_k|c)^{N_{ik}}}{N_{ik}!}$$

Increasing small numbers before dividing $log P(x, c_1)$ is -200, $log P(x, c_2)$ is -201.

Implementation issues (cont)

Reformulate the formulas: e.g., entropy calc

$$P(d_{i}, c)$$

$$= P(c) \prod_{w_{k} \in d_{i}} P(w_{k}|c) \prod_{w_{k} \notin d_{i}} (1 - P(w_{k}|c))$$

$$= P(c) \prod_{w_{k} \in d_{i}} \frac{P(w_{k}|c)}{1 - P(w_{k}|c)} \prod_{w_{k}} (1 - P(w_{k}|c))$$

Store useful intermediate results

$$\prod_{w_k} (1 - P(w_k|c))$$

Lessons learned

- Don't follow the formulas blindly.
 - Ex1: Multinomial NB

$$P(c) \prod_{k=1}^{|V|} P(w_k|c)^{N_{ik}}$$

Ex2: cosine function for kNN

$$cos(d_i, d_j) = \frac{\sum_k a_{i,k} a_{j,k}}{\sqrt{\sum_k a_{i,k}^2} \sqrt{\sum_k a_{j,k}^2}}$$

Next

- •Next unit (2.5 weeks): two more advanced methods:
- -MaxEnt
- -CRF

Focus:

- Main intuition, final formulas used for training and testing
- Mathematical foundation
- Implementation issues

Reading material

The purpose of having reading material

Something to rely on besides the slides

Reading before class could be beneficial

 Papers (not textbooks) could be the main source of information in the future

Problems with the reading material

- The authors assume that you know the algorithm already:
 - Little background info
 - Page limit
 - Style

The notation problem

It could take a long time to understand everything

Some tips

- Look at several papers and slides at the same time
 - Skim through the papers first to get the main idea
 - Go to class and understand the slides
 - Then go back to the papers (if you have time)

 Focus on the main ideas. It's ok if you don't under all the details in the paper.

Math formulas

The goal of ling572

- Understand ML algorithms
 - The core of the algorithms
 - Implementation: e.g., efficiency issues

- Learn how to use the algorithms:
 - Reformulate a task into a learning problem
 - Select features
 - Write pre- and post-processing modules

Understanding ML methods

- •1: never heard about it
- 2: know very little
- 3: know the basics
- 4: understand the algorithm (modeling, training, testing)
- 5: have implemented the algorithm
- 6: know how to modify/extend the algorithm

Our goal: kNN, DT, NB: 5

MaxEnt, CRF, SVM, TBL: 3-4

Math is important for 4-6, especially for 6.

Why are math formulas hard?

- Notation, notation, notation.
 - Same meaning, different notation:

$$f_k, w_k, t_k$$

 Calculus, probability, statistics, optimization theory, linear programming, ...

People often have typos in their formulas.

A lot of formulas to digest in a short period of time.

Some tips

No need to memorize the formulas

Determine which part of the formulas matters

$$P(d_i|c_j) = P(|d_i|)|d_i|! \prod_{t=1}^{|V|} \frac{P(w_t|c_j)^{N_{it}}}{N_{it}!}$$

$$classify(d_i) = argmax_c P(c) \prod_{k=1}^{|V|} P(w_k|c)^{N_{ik}}$$

It's normal if you do not understand it the 1st/2nd time around.

Understanding a formula

$$P(w_t|c_j) = \frac{1 + \sum_{i=1}^{|D|} N_{it} P(c_j|d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{is} P(c_j|d_i)}$$

$$P(w_t|c_j) = \frac{\sum_{i=1}^{|D|} N_{it} P(c_j|d_i)}{\sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{is} P(c_j|d_i)}$$

$$= \frac{\sum_{i=1}^{|D|} N_{it} P(c_j|d_i)}{Z(c_j)}$$

$$= \frac{\sum_{d_i \in D(c_j)}^{|D|} N_{it}}{Z(c_j)}$$