ToolRL: Reward is All Tool Learning Needs

在RLVR背景下,如何设计PRM(PROCESS BASED REWARD)?

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, Heng Ji

University of Illinois Urbana-Champaign {chengq9, hengji}@illinois.edu

开源代码: HTTPS://GITHUB.COM/QIANCHENGO/TOOLRL

简介

本文提出了ToolRL,探索在非数学领域,延续RLVR做法,让llm学会使用tool(本文更像function calling)提升自己的能力,该如何设计reward function呢?

背景

目前LLM + Tool via RL的工作基本聚焦在数学领域,一方面是数学题很容易验证正确性,适合RLVR,另一方面相关的公开数据集非常丰富。本文则思考如何将LLM + Tool via RL扩展到通用领域,延续RLVR的做法,那么重点就是如何设计reward function?

我个人认为,如果将数学领域的reward function类比为 ORM(outcome based reward)吗,那么本文的reward function可以看作PRM。

实验设置

- 框架: verl
- 实验对象: Qwen-2.5-Instruct 和 Llama-3.2-Instruct
- 强化学习算法: GRPO
- 为了提升模型探索能力,去除了kl loss
- reward function: 包含格式和function 调用正确性两部分

 $r_{ ext{match}} = r_{ ext{name}} + r_{ ext{param}} + r_{ ext{value}} \in [0, S_{ ext{max}}] \quad \mathcal{R}_{ ext{final}} = \mathcal{R}_{ ext{format}} + \mathcal{R}_{ ext{correct}} \in [-3, 4]$

思考

部分实验结果

Model	Overall Acc	Non-Live AST Acc	Non-Live Exec Acc	Live Acc	Multi Turn Acc
Qwen2.5-1.5B-Instruct (Raw)	19.41%	16.00%	13.18%	35.58%	0.00%
Qwen2.5-1.5B-Instruct (SFT400)	40.21%	65.12%	61.11%	56.69%	1.00%
Qwen2.5-1.5B-Instruct (SFT4k)	40.67%	59.94%	59.84%	59.31%	1.00%
Qwen2.5-1.5B-Instruct (SFT400+PPO)	42.95%	77.65%	69.75%	55.73%	1.88%
Qwen2.5-1.5B-Instruct (SFT400+GRPO)	40.93%	70.54%	60.79%	56.33%	1.00%
Qwen2.5-1.5B-Instruct (PPO Cold Start)	38.32%	79.40%	70.11%	45.24%	0.87%
Qwen2.5-1.5B-Instruct (Ours, GRPO Cold Start)	46.20%	77.96%	76.98%	60.73%	2.25%
Qwen2.5-3B-Instruct (Raw)	33.04%	42.52%	40.80%	53.96%	1.00%
Qwen2.5-3B-Instruct (SFT400)	34.08%	69.29%	61.50%	41.40%	0.00%
Qwen2.5-3B-Instruct (SFT4k)	41.97%	62.85%	54.73%	59.17%	0.75%
Qwen2.5-3B-Instruct (SFT400+PPO)	45.80%	78.29%	71.09%	58.76%	5.12%
Qwen2.5-3B-Instruct (SFT400+GRPO)	46.42%	76.21%	68.93%	64.15%	1.75%
Qwen2.5-3B-Instruct (PPO Cold Start)	51.15%	82.42%	78.52%	67.78%	4.88%
Qwen2.5-3B-Instruct (Ours, GRPO Cold Start)	52.98%	81.58%	79.43%	73.78%	3.75%

乍一看,本文和前面读过的TORL、ZTRL一个套路,但实际上差别还是很大的。数学领域的REWARD设计很简单,当然应用题和证明题除外,这也是为什么为家不用这两种题型训练模型。所以想要将RL+TOOL扩展到其他领域,难点是如何设计REWARD FUNCTION,当然前提是延续RLVR的做法,如果有REWARD MODEL

那就是另一个话题了。因此关于数据集格式,会发现长这样: (PROMPT,GROUND_TRUTH_RESPONSE),作者设计了细粒度的几个REWARD,去比较LLM生成的RESPONSE和GROUND_TRUTH_RESPONSE,我的第一感觉就是,这很像PRM啊。另外一点区别是,LLM直接生成完整的RESPONSE,包含了要调用的函数名称和参数值,而不是像TORL、ZTRL那样生成代码之后,还需要外部代码解释器执行,然后将执行结果返回给LLM,继续生成,因此我更偏向于用FUNCTIONCALLING来表述,而非TOOL。此外可能是数据集自身的原因,REWARD中竟然没有评估RESPONSE是否正确?

の机器爱学习