Úvod do komplexní analýzy

doc. RNDr. Roman Lávička, Ph.D.

15. října 2020

Obsah

1	Zavedení základních pojmů	2
2	Lineární zobrazení	2
3	Diferencovatelnost	3
4	Elementární funkce v $\mathbb C$	5
	4.1 Exponenciála	5
	4.2 Logaritmus	6
	4.3 Obecná mocnina	6
	4.4 Hyperbolické funkce	7
	4.5 Goniometrické funkce	
5	Křivkový integrál	8
6	Mocninné řady	16
7	Riemannova sféra	18
	7.1 Izolované singularity	20
	7.2 Laurentovy řady	
	7.3 Holomorfní funkce na mezikruží	
	7.4 Izolované singularity 2	
	7.5 Reziduum	
8	Speciální typy integrálů	25

1 Zavedení základních pojmů

 \mathbb{R}^2 je reálný vektorový prostor dimenze 2. Definujeme v něm $\mathit{Euklidovskou\ normu}$ a $\mathit{metriku}$:

•
$$|z| = \sqrt{x^2 + y^2}, z = (x, y) \in \mathbb{R}^2$$

•
$$\rho(z,w) := |z-w|, z,w \in \mathbb{R}^2$$

Definice 1.1. Prostor $\mathbb C$ je prostor $\mathbb R^2$, v němž definujeme navíc:

- násobení (x,y).(u,v) = (xu yv, xv + yu)
- ztotožňujeme $(x,0) \cong x$, neboli $\mathbb{R} \subset \mathbb{C}$
- značíme i = (0,1)

Značení 1.2. Necht z = x + iy, kde $x, y \in \mathbb{R}$. Potom

- $\overline{z} := x iy$ je komplexně sdružené číslo k z,
- Re(z) := x je reálná část z, Im(z) := y je imaginární část z,
- $|z| = \sqrt{x^2 + y^2}$ je modul nebo absolutní hodnota z.

Vlastnosti 1.3.

Vlastnosti \mathbb{C} . Necht $z = (x, y) \in \mathbb{C}$.

- Potom z = x + iy a $(\pm i)^2 = -1$.
- Násobení v $\mathbb C$ zahrnuje násobení v $\mathbb R$ i násobení skalárem v $\mathbb R^2$.
- $|z|^2 = z\overline{z}$, $\overline{zw} = \overline{z}.\overline{w}$, |zw| = |z|.|w|, $z + \overline{z} = 2.Re(z)$, $z \overline{z} = 2i.Im(z)$,
- $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$, je-li $z \neq 0$,
- C je těleso.

Pozor, \mathbb{C} nelze $rozumn\check{e}$ uspořádat!

- $i > 0 \implies -1 = i^2 > 0$,
- $i < 0 \implies -1 = i^2 > 0$.

2 Lineární zobrazení

Definice 2.1. \mathbb{R}^2 je reálný vektorový prostor dimenze 2, jeho báze je $\{(1,0)^T, (0,1)^T\}$. Obecné \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ má tvar

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \tag{1}$$

kde $a,b,c,d \in \mathbb{R}$. \mathbb{C} je komplexní vektorový prostor dimenze 1, jeho báze je {1}. Obecné \mathbb{C} -lineární zobrazení $L:\mathbb{C} \to \mathbb{C}$ má tvar $Lz=wz,z \in \mathbb{C}$, kde $w \in \mathbb{C}$. Necht z=(x+iy), w=(a+ib). Potom

$$Lz = (a+ib)(x+iy) = (ax-by, bx+ay) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Pozorování 2.2. \mathbb{R} -lineární zobrazení (1) je \mathbb{C} -lineární, právě když d=a, c=-b.

Poznámka 2.3. C-lineární zobrazení jsou velmi specifická R-lineární zobrazení.

Úmluva 2.4. Nebude-li řečeno něco jiného, funkce znamená komplexní funkci komplexní proměnné. Na $f: \mathbb{C} \to \mathbb{C}$ se můžeme vždy dívat jako na $f: \mathbb{R}^2 \to \mathbb{R}^2$, protože $\mathbb{C} \approx \mathbb{R}^2$. Nechť f je funkce z \mathbb{C} do \mathbb{C} . Spojitost a limita se definuje stejně jako v základním kurzu matematické analýzy.

Definice 2.5. Pro $z_0 \in \mathbb{C}, \delta > 0$ značíme $U(z_0, \delta) := \{z \in \mathbb{C} : |z - z_0| < \delta\}$ a nazýváme ji okolí z_0 . Dále $P(z_0, \delta) := U(z_0, \delta) \setminus \{z_0\}$ nazýváme prstencové okolí. Pokud δ není důležité, budeme často psát jen $U(z_0), P(z_0)$.

Potom definujeme

- $\lim_{z \to z_0} f(z) = L$, pokud $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall z \in P(z_0, \delta) : f(z) \in U(L, \varepsilon)$
- f je spojitá v z_0 , pokud $\lim_{z \to z_0} f(z) = f(z_0)$.

3 Diferencovatelnost

Definice 3.1. Funkce f je v z_0 \mathbb{R} -diferencovatelná, pokud existuje \mathbb{R} -lineární zobrazení $L: \mathbb{R}^2 \to \mathbb{R}^2$ takové, že

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - L(h)}{|h|} = 0.$$

Poznámka 3.2. Potom d $f(z_0) := L$ je tzv. totální diferenciál $f \vee z_0$ a platí, že

$$df(z_0)h := \begin{pmatrix} \frac{\partial f_1}{\partial x}(z_0) & \frac{\partial f_1}{\partial y}(z_0) \\ \frac{\partial f_2}{\partial x}(z_0) & \frac{\partial f_2}{\partial y}(z_0) \end{pmatrix} h, \quad h \in \mathbb{R}^2,$$

kde $f(x,y) = (f_1(x,y), f_2(x,y))$. (Tato matice se nazývá *Jacobiho matice*.)

Definice 3.3. Řekneme, že funkce f je v z_0 \mathbb{C} -diferencovatelná, pokud existuje konečná limita

$$f'(z_0) := \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}.$$

Číslo $f'(z_0)$ nazýváme komplexní derivací $f \vee z_0$.

Poznámka 3.4. Jako pro reálnou funkci reálné proměnné platí $(f \pm g)' = f' \pm g'$, (f.g)' = f'g + g'f, $(f/g)' = \frac{f'g - g'f}{g^2}$ a $(f \circ g)' = (f' \circ g).g'$.

Příklad 3.5.

- $(z^n)' = n.z^{n-1}, z \in \mathbb{C} \text{ a } n \in \mathbb{N}.$
- $f(z) = \overline{z}$ není nikde v \mathbb{C} \mathbb{C} -diferencovatelná, ale f(x,y) = (x,-y) je všude \mathbb{R} -diferencovatelná. Skutečně, pro $z_0 \in \mathbb{C}$ libovolné, máme

$$\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h} = \lim_{h\to 0} \frac{\overline{h}}{h},$$

avšak poslední limita neexistuje.

Věta 3.6 (Cauchy-Riemannova). Nechť f je funkce diferencovatelná na okolí $z_0 \in \mathbb{C}$. Pak následující tvrzení jsou ekvivalentní:

- 1. Existuje $f'(z_0)$
- 2. Existuje $df(z_0)$ a $df(z_0)$ je \mathbb{C} -lineární
- 3. Existuje $df(z_0)$ a v z_0 platí tzv. Cauchy-Riemannovy podmínky.

Cauchy-Riemannovy podmínky:

$$\frac{\partial f_1}{\partial x}(z_0) = \frac{\partial f_2}{\partial y}(z_0),$$

$$\frac{\partial f_1}{\partial y}(z_0) = -\frac{\partial f_2}{\partial x}(z_0),$$
(CR)

 $kde\ f(x,y) = (f_1(x,y), f_2(x,y)).$

 $D\mathring{u}kaz$. (2. \iff 3.): Plyne z pozorování pro lineární zobrazení (1. \iff 2.) Podle definice $w = f'(z_0)$ znamená, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{h}.$$
 (2)

Po vynásobení výrazu v limitě h/|h| dostaneme, že

$$0 = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0) - wh}{|h|},\tag{3}$$

což je ekvivalentní tomu, že d $f(z_0)h = wh$, $h \in \mathbb{C}$. Z (3) plyne (2) vynásobením |h|/h. \square

Poznámka 3.7.

- Existuje-li $f'(z_0)$, potom $df(z_0)h = f'(z_0)h, h \in \mathbb{C}$ a $f'(z_0) = \frac{\partial f}{\partial x}(z_0)$
- Platí, že (CR) $\iff \frac{\partial f}{\partial x}(z_0) = -i\frac{\partial f}{\partial y}(z_0)$

Důkaz.

- $\mathrm{d}f(z_0)1 = \frac{\partial f_1}{\partial x}(z_0) + i\frac{\partial f_2}{\partial x}(z_0) =: \frac{\partial f}{\partial x}(z_0)$
- zřejmé

Příklad 3.8. Nechť $f(z) = \overline{z}$, pak f(x,y) = (x,-y). Dále

$$\frac{\partial f_1}{\partial x} = 1$$
, $\frac{\partial f_1}{\partial y} = 0$, $\frac{\partial f_2}{\partial x} = 0$, $\frac{\partial f_2}{\partial y} = -1$.

Máme, že $f\in C^\infty(\mathbb{R}^2)$, ale v žádném $z\in\mathbb{C}$ nesplňuje (CR), proto není nikde \mathbb{C} -diferencovatelná.

Definice 3.9. Necht $G \subset \mathbb{C}$ je otevřená a $f: G \to \mathbb{C}$. Potom říkáme, že f je na G holomorfní, pokud f je \mathbb{C} -diferencovatelná v každém $z_0 \in G$. Značíme $\mathcal{H}(G)$ prostor všech holomorfních funkcí $f: G \to \mathbb{C}$. Říkáme, že funkce F je celá, pokud $F \in \mathcal{H}(\mathbb{C})$.

Příklad 3.10.

- Polynom $p(z) = a_0 z^n + a_1 z^{n-1} + ... + a_n, z \in \mathbb{C}$ je celá funkce.
- Nechť R=P/Q, kde $P,\,Q$ jsou polynomy, které nemají společné kořeny a $Q\not\equiv 0$. Potom racionální funkce R je holomorfní na $\mathbb{C}\setminus Q^{-1}(\{0\})$,kde $Q^{-1}(\{0\})$ je konečná množina.

4 Elementární funkce v $\mathbb C$

4.1 Exponenciála

Definice 4.1. $\exp(z)$: $= e^x(\cos y + i\sin y), z = x + iy \in \mathbb{C}$

Vlastnosti 4.2.

- $\exp |_{\mathbb{R}}$ je reálná exponenciála
- $\exp(z+w) = \exp(z)\exp(w)$
- $\exp'(z) = \exp(z), z \in \mathbb{C}$

$$f(z) = \exp(z)$$

$$f_1(x,y) = e^x \cos y$$

$$f_2(x,y) = e^x \sin y$$

$$\frac{\partial f_1}{\partial x} = e^x \cos y = \frac{\partial f_2}{\partial y}$$

$$\frac{\partial f_2}{\partial x} = e^x \sin y = -\frac{\partial f_1}{\partial y}$$
(4)

Tedy $f \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ a (CR) platí všude v $\mathbb{R}^2 \cong \mathbb{C}$. Z CR-věty a poznámky 3.7 máme $f'(z) = \exp(z), z \in \mathbb{C}$

- $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C}.$
- $\exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}$
- exp není prostá na \mathbb{C} , je $2\pi i$ -periodická a platí dokonce: $\exp(z) = \exp(w) \iff \exists k \in \mathbb{Z} \colon w = z + 2k\pi i$
- Necht $P := \{z \in \mathbb{C} \mid \text{Im } z \in (-\pi, \pi]\}$. Potom $\exp |_P$ je prostá a $\exp(P) = \mathbb{C} \setminus \{0\}$.

Definice 4.3. Nechť z = x + iy je komplexní číslo, pak se na něj můžeme dívat jako na bod v rovině určený kartézskými souřadnicemi x a y. Polární (Goniometrický) tvar komplexního čísla získáme tak, že si body x a y vyjádříme v polárních souřadnicích a ty pak dosadím do rovnice udávající z. Tedy

 $x = r\cos\varphi$, $y = r\sin\varphi$, $z = x + iy = r(\cos\varphi + i\sin\varphi) = |z|e^{i\varphi}$, kde r = |z| a φ je argument z. Polární souřadnice nám říkají jak je daleko od počátku r a v jakém směru $\angle\varphi$ se bod z nachází.

Značení 4.4. Nechť $z \in \mathbb{C} \setminus \{0\}$. Potom položme $\operatorname{Arg}(z) := \{\varphi \in \mathbb{R} \mid z = |z|e^{i\varphi}\}$ Je-li $\operatorname{Arg}(z) \cap (-\pi, \pi] = \{\varphi_0\}$, potom $\operatorname{arg}(z) := \varphi_0$ je tzv. hlavní hodnota argumentu z.

Platí:

- $\operatorname{Arg}(z)$: = $\{\operatorname{arg}(z) + 2k\pi \mid k \in \mathbb{Z}\},\$
- funkce arg: $\mathbb{C}\setminus\{0\}\to(-\pi,\pi]$, kde arg je surjektivní a navíc je konstantní na polopřímkách vycházejících z 0. Dále je arg spojitá na $\mathbb{C}\setminus(-\infty,0]$, ale není spojitá v žádném $z\in(-\infty,0]$

4.2 Logaritmus

Pro dané $z \in \mathbb{C}$ řešíme rovnici $e^w = z$.

- Pro z = 0 nemá rovnice řešení.
- Pro $z \neq 0$ je $z = |z|e^{i\arg(z)} = e^{\log|z| + i\arg(z)} = e^w \iff \exists \ k \in \mathbb{Z} \colon w = \log|z| + i\arg(z) + 2k\pi i$.

Definice 4.5. Nechť $z \in \mathbb{C} \setminus \{0\}$. Položme

- Log z: = { $w \in \mathbb{C} \mid e^w = z$ }
- $\log z$: $= \log |z| + i \arg z$, tzv. hlavní hodnota logaritmu z.

Vlastnosti 4.6.

Nechť $z \in \mathbb{C} \setminus \{0\}$.

- Log $z = \{\log z + 2k\pi i \mid k \in \mathbb{Z}\}$ a log $= (\exp |_P)^{-1}$, kde P je množina z vlastností exponenciály.
- log není spojitá v žádném $z \in (-\infty, 0]$, ale log $\in \mathcal{H}(\mathbb{C} \setminus (-\infty, 0])$. Navíc log' $z = \frac{1}{z}, z \in \mathbb{C} \setminus (-\infty, 0]$.
- $\log(1-z) = -\sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1$

Pozor na počítání s komplexním logaritmem!

- $\exp(\log z) = z$, $\log(\exp z) \neq z$, z toho, že exponenciála je $2\pi i$ -periodická
- $\log(zw) \neq \log(z) + \log(w)$

např.
$$0 = \log 1 = \log((-1)(-1)) \neq 2\log(-1) = 2\pi i$$

4.3 Obecná mocnina

Definice 4.7. Nechť $z \in \mathbb{C} \setminus \{0\}$ a $\alpha \in \mathbb{C}$. Potom *hlavní hodnotu* α -té mocniny z definujeme z^{α} : = $\exp(\alpha \log z)$. Položme $m_{\alpha}(z)$: = $\{\exp(\alpha w) \mid w \in \text{Log } z\}$.

Vlastnosti 4.8.

- $e^z = \exp(z \log e) = \exp(z)$
- Je-li z > 0 a $\alpha \in \mathbb{R}$, potom z^{α} je v souladu s definicí z MA.
- $m_{\alpha}(z) = \{z^{\alpha}e^{2k\pi i\alpha} \mid k \in \mathbb{Z}\}, z \neq 0$

$$D\mathring{u}kaz. \ w \in \text{Log}\,z \iff w = \log z + 2k\pi i$$

- $(z^{\alpha})' = \alpha z^{\alpha-1}, z \in \mathbb{C} \setminus (-\infty, 0])$ a $\alpha \in \mathbb{C}$
- $(1+z)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} z^n$, |z| < 1, kde ${n \choose n} := \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$.

Pozorování 4.9. Nechť $z \in \mathbb{C} \setminus \{0\}$.

- Necht $\alpha \in \mathbb{Z}$. Potom $m_{\alpha}(z) = \{z^{\alpha}\}.$
- Nechť $\alpha \in \mathbb{Q}$ a $\alpha = p/q$, kde $q \in \mathbb{N}$, $p \in \mathbb{Z}$ a p,q jsou nesoudělná. Potom $m_{\frac{p}{q}}(z) = \{z^{\frac{p}{q}}e^{\frac{2k\pi ip}{q}}: k \in \{0,1,\cdots,q-1\}\}$ tvoří vrcholy pravidelného q-úhelníka vepsaného do kružnice se středem v počátku a poloměrem $z^{\frac{p}{q}}$.

• Nechť $\alpha \in \mathbb{C} \setminus \mathbb{Q}$. Potom je $m_{\alpha}(z)$ nekonečné.

Příklad 4.10. • $\sqrt{-1} = e^{\frac{\pi i}{2}} = i, m_{\frac{1}{2}}(-1) = \{\pm i\}$

- $\sqrt[3]{-1}=e^{\frac{\pi i}{3}}$ (nesouhlasí s definicí z MA!), $m_{\frac{1}{3}}(-1)=\{e^{\frac{\pi i}{3}},e^{-\frac{\pi i}{3}},-1\}$
- $i^i = e^{-\frac{\pi}{2}}, m_i(i) = \{e^{-\frac{\pi}{2} + 2k\pi} \mid k \in \mathbb{Z}\}$

Pozor na počítání s mocninami!

• $(zw)^{\alpha} \neq z^{\alpha}w^{\alpha}$ např. $1 = \sqrt{1} = \sqrt{(-1)(-1)} \neq \sqrt{-1}\sqrt{-1} = i^2 = -1$

Poznámka 4.11. Je-li $f \colon \mathbb{C} \to \mathbb{C}$, potom $f(z) = \underbrace{\frac{f(z) + f(-z)}{2}}_{\text{sudá část}} + \underbrace{\frac{f(z) - f(-z)}{2}}_{\text{lichá část}}$.

4.4 Hyperbolické funkce

$$e^z = \cosh(z) + \sinh(z)$$
, kde

Definice 4.12.

$$\cosh(z) := \frac{e^z + e^{-z}}{2}, \ z \in \mathbb{C}$$

$$\sinh(z) := \frac{e^z - e^{-z}}{2}, \ z \in \mathbb{C}$$

Vlastnosti 4.13.

- $\cosh' z = \sinh z$, $\sinh' z = \cosh z$
- $\cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$, $\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$

4.5 Goniometrické funkce

$$e^{iz} = \cos(z) + i\sin(z)$$
, kde

Definice 4.14.

$$\cos(z) := \frac{e^{iz} + e^{-iz}}{2}, z \in \mathbb{C}$$

$$\sin(z) := \frac{e^{iz} - e^{-iz}}{2i}, z \in \mathbb{C}$$

Vlastnosti 4.15. • cos a sin jsou rozšířením příslušných reálných funkcí z \mathbb{R} do \mathbb{C} .

- $\sin'(z) = \cos(z)$, $\cos'(z) = -\sin(z)$
- sin i cos jsou 2π -periodické, ale nejsou omezené na $\mathbb C$. Platí, že $\sin(\mathbb C) = \mathbb C = \cos(\mathbb C)$

- i na $\mathbb C$ platí součtové vzorce, atd.
- $\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$

5 Křivkový integrál

Definice 5.1. Necht $\varphi : [\alpha, \beta] \to \mathbb{C}$. Potom

- 1. φ je *křivka*, pokud je φ spojitá
- 2. φ je regulární křivka, pokud je φ po částech spojitě diferencovatelná, tzn. φ je spojitá na $[\alpha, \beta]$ a existuje dělení $\alpha = t_0 < t_1 < \dots < t_n = \beta$ takové, že $\varphi|_{[t_i, t_{i+1}]}$ je spojitě diferencovatelné pro každé $i = 0, \dots, n-1$.

Definice 5.2 (Úsečka). Nechť $a,b \in \mathbb{C}$. Potom $\varphi(t) := a + t(b-a), \ t \in [0,1]$ je úsečka z a do b. Značíme [a;b].

Definice 5.4 (Lomenná čára). Řekneme, že regulární křivka φ je lomenná čára v \mathbb{C} , existují-li $z_1, z_2, \dots, z_k \in \mathbb{C}$ taková, že $\varphi = [z_1; z_2] \dotplus [z_2; z_3] \dotplus \dots \dotplus [z_{k-1}; z_k]$.

Definice 5.5 (Kružnice). Nechť $z_0 \in \mathbb{C}$ a r > 0. Potom $\varphi(t) := z_0 + re^{it}$, $t \in [0, 2\pi]$ je kružnice probíhaná v kladném směru (proti směru hodinových ručiček).

Poznámka 5.6. Pro křivku φ může být její graf $\langle \varphi \rangle := \varphi([\alpha, \beta])$ například čtverec (Peanova křivka).

Úmluva 5.7. Pokud neřekneme něco jiného, $k\check{r}ivkou$ budeme rozumět $regul\acute{a}rn\acute{i}$ $k\check{r}ivku$ v \mathbb{C} .

Připomenutí 5.8. Jako v MA definujeme

1. Vše po složkách, například:

$$\varphi'(t) = \varphi_1'(t) + i\varphi_2'(t),$$
$$\int_{\alpha}^{\beta} \varphi(t) dt = \int_{\alpha}^{\beta} \varphi_1(t) dt + i \int_{\alpha}^{\beta} \varphi_2(t) dt,$$

mají-li pravé strany smysl. Zde $\varphi(t) = (\varphi_1(t), \varphi_2(t)) = \varphi_1(t) + i\varphi_2(t)$

2. Délka křivky:

$$V(\varphi) := \int_{\alpha}^{\beta} |\varphi'(t)| \, \mathrm{d}t,$$

je-li φ regulární.

Definice 5.9. Nechť $\varphi: [\alpha, \beta] \to \mathbb{C}$ je regulární křivka a $f: \langle \varphi \rangle \to \mathbb{C}$ je spojitá. Potom definujeme

8

$$\int_{\varphi} f := \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt \tag{5}$$

Poznámka 5.10.

- 1. Křivkový integrál (5) existuje vždy jako Riemannův.
- 2. Píšeme také $\int_{\varphi} f(z) dz$

Základní vlastnosti 5.11.

1. Je-li φ křivka, f a g jsou spojité funkce na $\langle \varphi \rangle$ a $A, B \in \mathbb{C}$, potom

$$\int_{\varphi} (Af + Bg) = A \int_{\varphi} f + B \int_{\varphi} g.$$

2. Je-li φ křivka a f je spojitá funkce na $\langle \varphi \rangle$, potom

$$\left| \int_{\varphi} f \right| \le \max_{\langle \varphi \rangle} |f| \cdot V(\varphi)$$

.

 $D\mathring{u}kaz$. Označíme $M:=\max_{\langle \varphi \rangle} |f|$. Potom máme

$$\left| \int_{\varphi} f \right| = \left| \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) \, \mathrm{d}t \right| \le \int_{\alpha}^{\beta} \left| f(\varphi(t)) \right| \left| \varphi'(t) \right| \, \mathrm{d}t$$

$$\le \int_{\alpha}^{\beta} M \left| \varphi'(t) \right| \, \mathrm{d}t = M \int_{\alpha}^{\beta} \left| \varphi'(t) \right| \, \mathrm{d}t = M \cdot V(\varphi)$$

3. Nechť $\varphi:[\alpha,\beta]\to\mathbb{C},\ \psi:[\gamma,\delta],\to\mathbb{C}$ jsou křivky a $\varphi(\beta)=\psi(\gamma).$ Potom

$$\int_{\varphi \dot{+}\psi} f = \int_{\varphi} f + \int_{\psi} f$$
a
$$\int_{\dot{-}\varphi} f = -\int_{\varphi} f,$$

kde $(\dot{-}\varphi)(t) := \varphi(-t), t \in [-\beta, -\alpha]$ je opačná křivka k φ .

4. Křivkový integrál nezávisí na parametrizaci křivky. Nechť $\varphi : [\alpha, \beta] \to \mathbb{C}$ je křivka, $\omega : [\gamma, \delta] \xrightarrow{\text{na}} [\alpha, \beta]$ je spojitě diferencovatelné s $\omega' > 0$ a $\psi := \varphi \circ \omega$. Potom

$$\int_{\varphi} f = \int_{\psi} f.$$

Důkaz.

$$\int_{\psi} f = \int_{\gamma}^{\delta} f(\varphi(\omega(t))) \varphi'(\omega(t)) \omega'(t) dt$$

$$= \int_{\gamma}^{\delta} f(\varphi(\omega(t))) \psi'(t) dt \stackrel{\text{subst.}}{=} \int_{\alpha}^{\beta} f(\varphi(\tau)) \varphi'(\tau) d\tau = \int_{\varphi} f.$$

Definice 5.12. Řekneme, že funkce f má na otevřené $G \subset \mathbb{C}$ primitivní funkci F, pokud F' = f na G

Příklad 5.13. $\frac{z^{n+1}}{n+1}$ je primitivní funkcí k z^n

$$\left\{ \begin{array}{ll} \text{na } \mathbb{C} & \text{pro } n=0,1,2,3,\dots \\ \text{na } \mathbb{C} \setminus \{0\} & \text{pro } n=-2,-3,-4,\dots \end{array} \right.$$

Věta 5.14 (O výpočtu křivkového integrálu pomocí PF). Nechť $G \subset \mathbb{C}$ je otevřená a f má na G primitivní funkci F. Nechť $\varphi : [\alpha, \beta] \to G$ je křivka a f je spojitá^(*) na $\langle \varphi \rangle$. Potom

1.
$$\int_{\varphi} f = F(\varphi(\beta)) - F(\varphi(\alpha))$$

2.
$$\int_{\varphi} f = 0$$
, je -li φ uzavřená, tzn . $\varphi(\alpha) = \varphi(\beta)$

Poznámka 5.15. (*) Ukážeme si později, že funkce f, která má na G primitivní funkci, je na G holomorfní, tudíž i spojitá.

Důkaz. Z Cauchy-Riemannovy věty plyne, že

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big(F(\varphi(t))\Big) = \frac{\partial F}{\partial x}\varphi_1' + \frac{\partial F}{\partial y}\varphi_2' = F'\varphi_1' + iF'\varphi_2' = F'(\varphi(t))\varphi'(t).$$

Tato rovnost platí až na konečně mnoho $t \in [\alpha, \beta]$, neboli $F \circ \varphi$ je zobecnění PF k integrandu. Máme tedy

$$\int_{\varphi} f = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = \int_{\alpha}^{\beta} \frac{d}{dt} (F(\varphi(t))) dt = F(\varphi(\beta)) - F(\varphi(\alpha)).$$

Příklad 5.16.

• $\frac{1}{z}$ je holomorfní na $\mathbb{C}\setminus\{0\}$, ale na $\mathbb{C}\setminus\{0\}$ nemá primitivní funkci, neboť víme

$$\int_{\varphi} \frac{\mathrm{d}z}{z} = 2\pi i \neq 0 \text{ pro } \varphi(t) = e^{it}, \ t \in [0, 2\pi].$$

• $\frac{1}{z}$ má na $\mathbb{C} \setminus (-\infty, 0]$ primitivní funkci $\log(z).$

$$\log'(z) = \frac{1}{z}.$$

Připomenutí 5.17 (Souvislost). Nechť $G \subset \mathbb{C}(\mathbb{R}^n)$ otevřená. Následující tvrzení jsou ekvivalentní:

- (a) G je souvislá, tj. G je oblast.
- (b) G je $k\check{r}ivkov\check{e}$ souvislá, tzn. pro každé $z_1, z_2 \in G$ existuje spojitá křivka $\varphi : [\alpha, \beta] \to G$ taková, že $\varphi(\alpha) = z_1$ a $\varphi(\beta) = z_2$.
- (c) Pro každé $z_1, z_2 \in G$ existuje lomenná čára $\varphi : [\alpha, \beta] \to G$ taková, že $\varphi(\alpha) = z_1$ a $\varphi(\beta) = z_2$.

 $D\mathring{u}kaz.$ $(a) \iff (b)$: víte z MA; $(c) \Rightarrow (b)$: jasné; $(a) \Rightarrow (c)$: ukáže se podobně jako $(a) \Rightarrow (b)$

Věta 5.18. Funkce f je konstantní na oblasti $G \subset \mathbb{C}$, právě když f' = 0 na G.

 $D\mathring{u}kaz. \Rightarrow Jasn\'e.$

 \Leftarrow Nechť $z,w\in G$ a φ je lomená čára v G spojující z a w. Potom $f(w)-f(z)=\int_{\varphi}f'=0$, protože f je primitivní funkcí k f' na G.

Důsledek 5.19. Jsou-li F_1, F_2 primitivní funkce k f na oblasti $G \subset \mathbb{C}$, potom existuje $c \in \mathbb{C}$ tak, že $F_2 = F_1 + c$.

Důkaz.

$$(F_2 - F_1)' = F_2' - F_1' = f - f = 0.$$

Věta 5.20 (O existenci PF). Nechť $G \subset \mathbb{C}$ je oblast a f je spojitá na G. Následující tvrzení jsou ekvivalentní:

- 1. f má na G primitivní funkci.
- 2. $\int_{\omega} f = 0$ pro každou uzavřenou křivku φ v G.
- 3. $\int_{\varphi} f$ nezávisí v G na křivce φ , tzn. pro každé dvě křivky $\varphi: [\alpha, \beta] \to G$, $\psi: [\gamma, \delta] \to G$ takové, $\check{z}e$ $\varphi(\alpha) = \psi(\gamma)$ a $\varphi(\beta) = \psi(\delta)$, plati $\int_{\varphi} f = \int_{\psi} f$.

Poznámka 5.21. Přípomíná větu o potenciálu z MA ?

Důkaz věty 5.20.

- $1. \Rightarrow 2.$ Víme z věty o výpočtu integrálu pomocí PF
- $2. \Rightarrow 3.$ Položme $\tau := \varphi \dotplus (\dot{-} \psi).$ Potom je τ uzavřená a z 2. dostaneme

$$0 = \int_{\mathcal{T}} f = \int_{\omega} f - \int_{\psi} f.$$

 $3. \Rightarrow 1.$ Volme $z_0 \in G$ pevně. Pro každé $z \in G$ najděme lomenou čáru φ_z v G, která začíná v z_0 a končí v z. Definujeme $F(z) := \int_{\varphi_z} f, \ z \in G$. Definice F je korektní, nezávislá na volbě φ_z , protože předpokládáme 3. Ukážeme, že F je hledaná PF k f na G. Nechť $z_1 \in G$. Dokážeme, že $F'(z_1) = f(z_1)$. Volme r > 0, aby $U(z_1, r) \subset G$. Je-li |h| < r, potom

$$F(z_1 + h) - F(z_1) \stackrel{3}{=} \int_{\varphi_{z_1} + u} f - \int_{\varphi_{z_1}} f = \int_u f,$$

kde $u = [z_1; z_1 + h]$ je úsečka, tzn. $u(t) = z_1 + t \cdot h$, $t \in [0, 1]$. Tedy

$$F(z_1+h)-F(z_1) = \int_u f = \int_0^1 f(z_1+th)h dt,$$

tudíž

$$\frac{F(z_1+h)-F(z_1)}{h}-f(z_1)=\int_0^1 (f(z_1+th)-f(z_1))\,\mathrm{d}t.$$

To se blíží k nule pro $h \to 0$, protože

$$\left| \int_0^1 \left(f(z_1 + th) - f(z_1) \right) dt \right| \le \max_{z \in [z_1; z_1 + h]} |f(z) - f(z_1)| \xrightarrow{h \to 0} 0$$

ze spojitosti f v z_1 . Máme, že $F'(z_1) = f(z_1)$.

Značení 5.22.

1. Řekneme, že $m \subset \mathbb{C}$ je $hv\check{e}zdovit\acute{a}$, pokud existuje $z_0 \in M$ (tzv. $st\check{r}ed\ hv\check{e}zdovitosti$), pro který $[z_0;z] \subset M$ pro každé $z \in M$.

Poznámka. Konvexní ⊊ hvězdicovitá.

2. Řekneme, že $\triangle \subset \mathbb{C}$ je trojúhelník s vrcholy $a,b,c \in \mathbb{C}$, pokud

$$\triangle := \{ \alpha a + \beta b + \gamma c \mid \alpha, \beta, \gamma \ge 0, \alpha + \beta + \gamma = 1 \}$$

 $(konvexni\ obal\ a,b,c)$ a značíme $\partial \triangle := [a;b] \dotplus [b;c] \dotplus [c;a]$. Připouštíme i degenerované \triangle , tzn. a,b,c mohou ležet na jedné přímce nebo body a,b,c mohou splývat...

Dodatek 5.23. Nechť f je spojitá funkce na hvězdicovité oblasti $G \subset \mathbb{C}$. Je-li

$$\int_{\partial \triangle} f = 0, \tag{6}$$

pro každý trojúhelník $\triangle \subset G$, potom f má na G primitivní funkci.

 $D\mathring{u}kaz$. Nechť z_0 je střed hvězdovitosti G, Pro každé $z \in G$ položme $\varphi_z := [z_0; z]$ a $F(z) := \int_{\varphi_z} f$. Rozmyslíme si, že důkaz F' = f na G je zcela analogický $3 \Rightarrow 1$ předchozí věty, když místo 3 uvažujeme 6.

Poznámka 5.24. Cauchyho věta – Nechť $G \subset \mathbb{C}$ je otevřená, $f \in \mathcal{H}(G)$ a φ je uzavřená křivka v G. Potom Cauchyho věty nám říkají za jakých podmínek na G a φ je $\int_{\varphi} f = 0$.

Věta 5.25 (Gousartovo lemma – "Cauchyho věta pro \triangle "). Nechť $G \subset \mathbb{C}$ je otevřená, $f \in \mathcal{H}(G)$ a \triangle je trojúhelník v G. Potom

$$\int_{\partial \wedge} f = 0. \tag{7}$$

Důkaz. Označme $\varphi_0 := \partial \triangle$. Sporem: Předpokládejme, že $|\int_{\varphi_0} f| =: K > 0$. Zřejmě \triangle je nedegenerovaný. V \triangle veďme střední příčky a označme ψ_1 , ψ_2 , ψ_3 , ψ_4 obvody čtyř vzniklých trojúhelníků (ψ_4 je obvod vnitřního trojúhelníka). Obvody vnitřních trojúhelníků ψ_1 (vlevo dole), ψ_2 (vpravo dole), ψ_3 (nahoře) a ψ_4 (uprostřed) probíháme proti směru hodinových ručiček. Potom $\int_{\varphi_0} f = \int_{\psi_1} f + \int_{\psi_2} f + \int_{\psi_3} f + \int_{\psi_4} f$. Ex. $j_1 = 1, \dots, 4$ tak, že $|\int_{\psi_{j_1}} f| \ge \frac{K}{4}$ a $V(\psi_{j_1}) = \frac{V(\varphi)}{2}$. Označme $\varphi_1 = \psi_{j_1}$. Indukcí sestrojíme posloupnost (uzavřených) trojúhelníků, tž $\triangle \psi_{j_1}$ zase rozdělíme na 4 menší \triangle -y středními příčkami a proces opakujeme. Pak $\triangle_0 := \triangle \supset \triangle_1 \supset \triangle_2 \supset \dots$ s obvody φ_0 , φ_1 , φ_2 , . . . takové, že

$$\left| \int_{\varphi_j} f \right| \ge \frac{K}{4^j} \quad a$$

$$V(\varphi_j) = \frac{V(\varphi)}{2^j}$$
(a)

. Máme, že $\bigcap_{j=0}^{\infty} \triangle_j = \{z_0\} \subset G,$ protože diam $(\triangle_j) \to 0$. Položme

$$\varepsilon(z) := \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0), \ z \in G \setminus \{z_0\}; \\ 0, \ z = z_0 \end{cases}$$

Potom ε je spojitá na G a máme pro $j \in \mathbb{N}_0$

$$\int_{\varphi_i} f(z) dz = \int_{\varphi_i} (f(z_0) + f'(z_0)(z - z_0)) dz + \int_{\varphi_i} \varepsilon(z)(z - z_0) dz,$$
 (b)

kde první integrand vpravo má PF na $\mathbb C$ a první integrál je roven 0. Pro každé $j\in\mathbb N_0$ z (a),(b) dostaneme

$$0 < \frac{K}{4^j} \le \left| \int_{\varphi_j} f \right| \stackrel{\text{(b)}}{=} \left| \int_{\varphi_j} \varepsilon(z)(z - z_0) \right| \le V^2(\varphi_j) \max_{\langle \varphi_j \rangle} |\varepsilon| \stackrel{\text{(a)}}{=} \frac{V^2(\varphi)}{4^j} \cdot \max_{\langle \varphi_j \rangle} |\varepsilon|,$$

kde třetí nerovnost platí díky tomu, že $|z-z_0| \leq V(\varphi_j)$. Z předchozího tedy máme (po vynásobení 4^j): $0 < K \leq V^2(\varphi) \cdot \max_{<\varphi_j>} |\varepsilon| \to 0$, protože ε je spojitá v z_0 a $\varepsilon(z_0) = 0$. Což je spor. \square

Věta 5.26 (Cauchyho věta pro hvězdovité oblasti). Nechť $G \subset \mathbb{C}$ je hvězdovitá oblast a $f \in \mathcal{H}(G)$. Potom f má na G primitivní funkci. Ekvivalentně: platí, že $\int_{\varphi} f = 0$ pro každou uzavřenou křivku φ v G.

Důkaz. Z Goursartova lemmatu a dodatku k větě o existenci PF (Dodatek 5.23).

Poznámka 5.27. Gousartovo lemma a tedy i předchozí věta platí i pro funkci f, která je spojitá na G a holomorfní na $G \setminus \{z_0\}$ pro nějaké $z_0 \in G$.

 $D\mathring{u}kaz$. Nechť \triangle je nedegenerovaný trojúhelník v G. Rozlišujeme případy:

- 1. Necht $z_0 \notin \triangle$. Potom $\int_{\partial \triangle} f = 0$. Dle Gousartova lemmatu.
- 2. Nechť z_0 je vrchol \triangle . Nechť \triangle_{ε} je trojúhelník podobný s \triangle , $\triangle_{\varepsilon} \subset \triangle$ a z_0 je jeho vrcholem. Nechť poměr stran \triangle ku \triangle_{ε} je roven ε . \triangle' , \triangle'' jsou trojúhelníky vzniklé rozdělením \triangle na tři trojúhelníky (\triangle_{ε} , \triangle' , \triangle''). Obvody vzniklých vnitřních trojúhelníků procházíme proti směru hodinových ručiček. Potom $\int_{\partial \triangle} f = \int_{\partial \triangle_{\varepsilon}} f + \int_{\partial \triangle'} f + \int_{\partial \triangle''} f$, kde poslední dva integrály jsou rovny 0 podle bodu 1. Tudíž $|\int_{\partial \triangle} f| = |\int_{\partial \triangle_{\varepsilon}} f| \le \varepsilon \cdot V(\partial \triangle) \cdot \max_{\triangle} |f| \xrightarrow{\varepsilon \to 0+} 0$. Tedy $\int_{\partial \triangle} f = 0$.
- 3. Nechť z_0 leží uvnitř strany \triangle . Potom \triangle rozřízneme na dva menší trojúhelníky \triangle' a \triangle'' se společným vrcholem v z_0 . Jejich obvody procházím proti směru hodinových ručiček. Potom $\int_{\partial \triangle} f = \int_{\partial \triangle'} f + \int_{\partial \triangle''} f$, kde oba integrály na pravé straně jsou rovny 0 podle bodu 2. Tudíž $\int_{\partial \triangle} f = 0$.
- 4. Necht z_0 leží uvnitř \triangle . Potom \triangle rozřízneme na tři menší trojúhelníky \triangle' a \triangle'' , \triangle''' se společným vrcholem v z_0 . Jejich obvody procházím proti směru hodinových ručiček. Potom $\int_{\partial \triangle} f = \int_{\partial \triangle'} f + \int_{\partial \triangle''} f + \int_{\partial \triangle'''} f$, kde jsou všechny tři integrály na pravé straně rovny 0 podle bodu 2. Tudíž $\int_{\partial \triangle} f = 0$.

Věta 5.28 (O derivování podle komplexního parametru). Nechť φ je křivka $v \mathbb{C}$ a $\Omega \subset \mathbb{C}$ je otevřená. Nechť F(z,s) a komplexní derivace $\frac{\partial F}{\partial s}(z,s)$ jsou spojité komplexní funkce na $\langle \varphi \rangle \times \Omega$. Pro každé $s \in \Omega$ položme $\phi(s) := \int_{\varphi} F(z,s) dz$. Potom $\phi \in \mathcal{H}(\Omega)$ a $\phi'(s) = \int_{\varphi} \frac{\partial F}{\partial s}(z,s) dz$, $s \in \Omega$.

 $D\mathring{u}kaz$. Pro $s=s_1+is_2=(s_1,\ s_2)\in\Omega$ máme $\phi(s)=\int_{\alpha}^{\beta}F(\varphi(t),(s_1,s_2))\varphi'(t)dt$, pokud $\varphi\colon [\alpha,\beta]\to\mathbb{C}$. Podle vět o spojitosti a derivování integrálu závislého na reálných parametrech máme $\frac{\partial\phi}{\partial s_j}(s)=\int_{\varphi}\frac{\partial F}{\partial s_j}(z,s)dz$, pro $s\in\Omega$ a j=1,2 navíc jsou tyto parciální derivacespojité a splňují (CR)-podmínky. To je vidět z toho, že $\frac{\partial F}{\partial s_j}(z,s)$, j=1,2 jsou spojité a splňují (CR)-podmínky. Z (CR) dostaneme, že funkce φ je komplexně diferencovatelná a komplexní derivace se rovná derivaci vzhledem k té první proměnné. Odtud plyne věta.

Definice 5.29. Nechť je φ uzavřená křivka v \mathbb{C} a $s \in \mathbb{C} \setminus \langle \varphi \rangle$. Potom číslo

$$ind_{\varphi}s := \frac{1}{2\pi i} \int_{\varphi} \frac{dz}{z - s}$$

nazveme indexem bodu s vzhledem ke křivce φ

Poznámka 5.30. Ukážeme si, že $ind_{\varphi}s$ se rovná počtu oběhů φ kolem s v kladném směru (tzn. proti směru hodinových ručiček).

Věta 5.31 (o základních vlastnostech indexu). Nechť φ je uzavřená křivka v \mathbb{C} a $G := \mathbb{C} \setminus \langle \varphi \rangle$. Potom je G otevřená, funkce $s \mapsto ind_{\varphi}s$ je konstantní na každé komponentě G a na jediné její neomezené komponentě je nulová.

 $D\mathring{u}kaz$. (i) Podle předchozí věty je $\phi(s):=\frac{1}{2\pi i}\int_{\varphi}\frac{dz}{z-s},\ s\in G$ holomorfní a pro každé $s\in G$ je $\phi'(s)=\frac{1}{2\pi i}\int_{\varphi}\frac{dz}{(z-s)^2}=0$, protože $f(z):=\frac{1}{(z-s)^2}$ má PF na $\mathbb{C}\setminus\{s\}$. Tedy ϕ je konstantní na každé komponentě G.

(ii) Volíme R>0, aby $\langle \varphi \rangle \subset U(0,R)$. Potom $\mathbb{C}\backslash U(0,R)$ je obsaženo v jediné neomezené komponentě G_0 množiny G. Navíc pro $s\in \mathbb{C}\backslash U(0,R)$ je funkce $g(z):=\frac{1}{z-s},\ z\in U(0,R)$ holomorfní a dle Cauchyho věty pro hvězdovitou oblast je $\phi(s)=0$

Příklad 5.32. Nechť $z_0 \in \mathbb{C}$, r > 0 a $\varphi(t) := z_0 + re^{it}$, $t \in [0, 2\pi]$. Potom

$$ind_{\varphi}s = \begin{cases} 0 & \text{pro } |s - z_0| < r, \\ 1 & \text{pro } |s - z_0| > r. \end{cases}$$

Spočetli jsme, že $ind_{\varphi}z_0 = \frac{1}{2\pi i}\int_{\varphi}\frac{dz}{z-z_0} = 1$. Zbytek plyne z předchozí věty.

Věta 5.33 (Cauchyův vzorec pro kruh). Nechť $G \subset \mathbb{C}$ je otevřená a $f \in \mathcal{H}(G)$. Nechť $\overline{U(z_0,r)} \subset G$ a $\varphi(t) := z_0 + r.e^{it}$, $t \in [0,2\pi]$ (*). Potom platí

$$\frac{1}{2\pi i} \int_{\varphi} \frac{f(z)}{z - s} dz = \begin{cases} f(s), & |s - z_0| < r \\ 0, & |s - z_0| > r \end{cases}$$
 (CV_z)

 $D\mathring{u}kaz$. Existuje R > r tak, že $U(z_0, R) \subset G$.

(i) Necht $|s - z_0| < r$. Definujme

$$h(z) := \left\{ \begin{array}{l} \frac{f(z) - f(s)}{z - s}, \quad z \neq s \ a \ z \in G \\ f'(s), \quad z = s. \end{array} \right.$$

Potom $h \in \mathcal{H}(U(z_0,R) \setminus \{s\})$ a spojitá na hvězdovité oblasti $U(z_0,R)$. Potom z Cauchyho věty

$$0 = \frac{1}{2\pi i} \int_{\varphi} h = \frac{1}{2\pi i} \int_{\varphi} \frac{f(z)}{z - s} dz - f(s) \cdot \underbrace{\frac{1}{2\pi i} \int_{\varphi} \frac{dz}{z - s}}_{=ind, s = 1}$$

(ii) Nechť $|s-z_0| > r$. Volme $R' \in (r, |s-z_0|)$, aby $U(z_0, R') \subset G$. Potom f(z)/(z-s) je holomorfní funkce na $U(z_0, R')$ a z Cauchyho věty je

$$\frac{1}{2\pi i} \int_{\mathcal{Q}} \frac{f(z)}{z - s} dz = 0.$$

Důsledek 5.34. Nechť $G \subset \mathbb{C}$ je otevřená a $f \in \mathcal{H}(G)$. Potom f má komplexní derivaci všech řádů všude na G. Nechť $\overline{U(z_0,r)} \subset G$ a φ je jako v (*). Potom

$$f^{(k)}(s) = \frac{k!}{2\pi i} \int_{\omega} \frac{f(z)}{(z-s)^{k+1}} dz, \quad |s-z_0| < r \ a \ k = 0, 1, 2, 3, \dots$$
 (CV_z^(k))

Zde $f^{(0)} = f$ a k-tá komplexní derivace $f^{(k)}$ je definovaná jako $f^{(k)} = (f^{(k-1)})'$, má-li pravá strana smysl.

 $D\mathring{u}kaz$. Z věty o derivaci integrálu dle komplexního parametru a (CV_z) , protože

$$\frac{d^k}{ds^k} \left(\frac{1}{z-s} \right) = \frac{k!}{(z-s)^{k+1}}, \ z \neq s.$$

Věta 5.35 (Morera). Nechť f je spojitá funkce na otevřené $G \subset \mathbb{C}$. Potom $f \in \mathcal{H}(G)$, právě když

$$\int_{\partial \wedge} f = 0 \quad pro \ ka\check{z}d\acute{y} \ troj\acute{u}heln\acute{k} \ \triangle \subset G. \tag{8}$$

Důkaz. "⇒": Goursatovo lemma

" \Leftarrow ": Nechť $\mathcal{U} := U(z_0, R)$ je libovolný kruh v G. Protože f je spojitá na \mathcal{U} , \mathcal{U} je hvězdicovitá oblast a

 $\int_{\partial \triangle} f = 0$

pro každý trojúhelník $\triangle \subset \mathcal{U}$, má f na \mathcal{U} primitivní funkci F, to znamená, že f = F' na \mathcal{U} . Protože $F \in \mathcal{H}(\mathcal{U})$, máme f' = F'' na \mathcal{U} , tudíž f je holomorfní na \mathcal{U} . Protože \mathcal{U} byl libovolný kruh v G, je $f \in \mathcal{H}(G)$.

Věta 5.36 (Cachyho odhady). Nechť $z_0 \in \mathbb{C}$, $r \in (0, +\infty)$ a f je holomorní funkce na otevřené množině obsahující $\overline{U(z_0, r)}$. Potom pro každé k = 0, 1, 2, ... je

$$\forall s \in \mathcal{U} := U(z_0, r) : \quad |f^{(k)}(s)| \le \frac{r \cdot k!}{(d(s))^{k+1}} \cdot \max_{\partial \mathcal{U}} |f|, \tag{CO_1}$$

 $kde\ d(s) := dist(s, \partial \mathcal{U}) \stackrel{def.}{:=} \min_{z \in \partial \mathcal{U}} |s - z|$

$$\forall s \in U\left(z_0, \frac{r}{2}\right): |f^{(k)}(s)| \le \frac{k! \cdot 2^{k+1}}{r^k} \cdot \max_{\partial U} |f|.$$
 (CO₂)

$$|f^{(k)}(z_0)| \le \frac{k!}{r^k} \cdot \max_{\partial U} |f|. \tag{CO_3}$$

 $D\mathring{u}kaz$. (CO_1) dostaneme z $(CV_z^{(k)})$, protože

$$|f^{(k)}(s)| = \left|\frac{k!}{2\pi i} \int_{\mathcal{Q}} \frac{f(z)}{(z-s)^{k+1}} dz\right| \leq \frac{k!}{2\pi} \cdot 2\pi r \cdot \frac{1}{(d(s))^{k+1}} \cdot \max_{\partial \mathcal{U}} |f|$$

a $|z-s| \ge d(s)$, $z \in \partial \mathcal{U} = \langle \varphi \rangle$, zde $\varphi(t) = z_0 + r.e^{it}$, $t \in [0, 2\pi]$.

 (CO_2) plyne z (CO_1) , protože $d(s) \geq \frac{r}{2} \ \forall s \in U(z_0, r/2)$.

$$(CO_3)$$
 plyne z (CO_1) , protože $d(z_0) = r$.

Věta 5.37 (Liouville). Je-li f holomorfní a omezená na \mathbb{C} , potom je f konstantní.

 $D\mathring{u}kaz$. Ukážeme, že f'=0 na \mathbb{C} . Označme $M:=\sup_{\mathbb{C}}|f|<+\infty$. Nechť $z_0\in\mathbb{C}$. Z (CO_3) dostaneme pro každé r>0

$$|f'(z_0)| \le \frac{1}{r} \max_{\partial U(z_0,r)} |f| \le \frac{M}{r} \underset{r \to +\infty}{\longrightarrow} 0,$$

tudíž
$$f'(z_0) = 0$$
.

Důsledek 5.38 (Základní věta algebry). $V \mathbb{C}$ má polynom stupně aspoň 1 vždy aspoň jeden kořen.

Důkaz. Necht $p(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_n$, kde $a_j \in \mathbb{C}$, $a_0 \neq 0$ a $n \geq 1$.

Sporem: Předpokládejme, že $p \neq 0$ na \mathbb{C} . Položme f := 1/p. Potom f je holomorfní a omezená na \mathbb{C} , tudíž dle Liouvilleovy věty je f i p konstantní. Tedy p' = 0 a $0 = p^{(n)} = n!a_0$, což je spor. Omezenost f: Máme

$$|f(z)| = \left| \frac{1}{z^n \cdot \left(a_0 + \frac{a_1}{z} + \dots + \frac{a_n}{z^n} \right)} \right| \le \frac{1}{r^n} \cdot \frac{1}{|a_0| - \frac{|a_1|}{r} - \dots - \frac{|a_n|}{r^n}} \longrightarrow 0$$

pro $r = |z| \to +\infty$.

Existuje $r_0 \in (0, +\infty)$ tak, že $|f(z)| \le 1$, je-li $|z| > r_0$. Funkce f je omezená na $\overline{U(0, r_0)}$, protože je tam spojitá.

Lemma 5.39. Nechť φ je křivka $v \mathbb{C}$, f_n jsou spojité funkce na $\langle \varphi \rangle$ pro n = 1, 2, 3, ... a $f_n \rightrightarrows f$ na $\langle \varphi \rangle$. Potom f je spojitá na $\langle \varphi \rangle$ a

$$\int_{\varphi} f_n \longrightarrow \int_{\varphi} f.$$

Důkaz. Máme

$$0 \leq \left| \int_{\varphi} f_n - \int_{\varphi} f \right| = \left| \int_{\varphi} (f_n - f) \right| \leq V(\varphi) \cdot \max_{\langle \varphi \rangle} |f_n - f| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Věta 5.40 (Weierstrass). Nechť $G \subset \mathbb{C}$ je otevřená, $f_n \in \mathcal{H}(G)$ pro $n \in \mathbb{N}$ a $f_n \stackrel{loc}{\Rightarrow} f$ na G. Potom $f \in \mathcal{H}(G)$ a $f_n^{(k)} \stackrel{loc}{\Rightarrow} f^{(k)}$ na G pro každé $k \in \mathbb{N}$.

 $D\mathring{u}kaz$. (1) Zřejmě je f spojitá. Nechť \triangle je trojúhelník v G. Potom

$$0 = \int_{\partial \wedge} f_n \stackrel{Lemma}{\longrightarrow} \int_{\partial \wedge} f = 0$$

Z Morerovy věty je $f \in \mathcal{H}(G)$.

② Necht $k \in \mathbb{N}$ a $z_0 \in G$. Volme r > 0, aby $\overline{U(z_0, r)} \subset G$. Potom z (CO_2) máme:

$$\forall s \in U\left(z_0, \frac{r}{2}\right) : \quad \left|f_n^{(k)}(s) - f^{(k)}(s)\right| = \left|\left(f_n - f\right)^{(k)}(s)\right| \leq \frac{k! \cdot 2^{k+1}}{r^k} \cdot \max_{\partial U(z_0, r)} \left|f_n - f\right| \overset{n \to +\infty}{\longrightarrow} 0$$

6 Mocninné řady

Definice 6.1. Necht $\{a_n\}_{n=0}^{\infty} \subset \mathbb{C}$ a $z_0 \in \mathbb{C}$. Potom

$$\sum_{n=0}^{\infty} a_n \cdot (z - z_0)^n, \quad z \in \mathbb{C}$$
(9)

je mocninná řada o středu z_0 s koeficienty $\{a_n\}_{n=0}^{\infty}$.

Vlastnosti 6.2.

(1) Konvergence (na cvičení)

Existuje jediné $R \in [0, +\infty]$ takové, že

- řada (9) konverguje absolutně a lokálně stejnoměrně na $U(z_0, R) := \{z \in \mathbb{C} : |z z_0| < R\},\$
- řada (9) diverguje pro $|z-z_0| > R$.

Číslo R se nazývá poloměr konvergence (9) a platí, že

$$R = \frac{1}{\limsup_{n \to +\infty} \sqrt[n]{|a_n|}},$$

kde položíme $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$.

② Označíme-li součet (9) na $U(z_0,R)$ jako f, potom je $f\in\mathcal{H}(U(z_0,R))$ a

$$\forall k \in \mathbb{N}_0 \ \forall z \in U(z_0, R): \quad f^{(k)}(z) = \sum_{n=k}^{+\infty} a_n \cdot n \cdot (n-1) \dots (n-k+1) (z-z_0)^{n-k},$$

speciálně $a_k = \frac{f^{(k)}(z_0)}{k!}$.

Poznámka 6.3. Mocninnou řadu derivujeme "člen po členu", můžeme na $U(z_0,r)$ zaměnit sumu a komplexní derivaci.

Důkaz. Užijeme Weierstrassovu větu na

$$S_n(z) := \sum_{n=0}^{N} a_n (z - z_0)^n, \quad z \in U(z_0, R)$$

Dosadíme-li do (9) $z = z_0$, máme $f^{(k)}(z_0) = a_k \cdot k!$

Věta 6.4 (O rozvoji holomorfní funkce na kruhu do mocninné řady). Nechť $R \in (0, +\infty]$ a $f \in (U(z_0, R))$. Potom existuje jediná mocninná řada $\sum_{n=0}^{\infty} a_n (z - z_0)^n$, která má na $U(z_0, R)$ součet f. Navíc platí, že $a_n = \frac{f^{(n)}(z_0)}{n!}$, $n \in \mathbb{N}_0$.

 $D\mathring{u}kaz.$ 1. jednoznačnost: Zřejmě z toho, že $a_n=\frac{f^{(n)}(z_0)}{n!},\,n\in\mathbb{N}_0.$

2. existence: Nechť $z \in U(z_0,R)$. Volme r>0, aby $|z-z_0| < r < R$. Potom z (CV_z) je (1) $f(z) = \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{w-z} \, \mathrm{d}w$, kde $\varphi(t) = z_0 + re^{it}$, $t \in [0,2\pi]$. Pro každé $w \in \langle \varphi \rangle$ máme

(2)
$$\frac{1}{w-z} = \frac{1}{(w-z_0) - (z-z_0)} = \frac{1}{w-z_0} \cdot \frac{1}{1 - \frac{z-z_0}{w-z_0}} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}}.$$

Kde $\left|\frac{z-z_0}{w-z_0}\right|=1$ a suma konverguje stejnoměrně pro $w\in\langle\varphi\rangle$. Dosadíme (2) do (1). Potom

$$f(z) = \frac{1}{2\pi i} \int_{\varphi} \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}} f(w) dw = \sum_{n=0}^{\infty} (z-z_0)^n \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{(w-z_0)^{n+1}} dw$$
$$= \sum_{n=0}^{\infty} (z-z_0)^n \frac{f^{(n)}(z_0)}{n!} z (CV_z^{(n)}).$$

Příklad 6.5. $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C}$, protože $\exp \in \mathcal{H}(\mathbb{C})$ a $\exp^{(n)}(0) = \exp(0) = 1$.

Věta 6.6 (O nulovém bodě). Nechť f je holomorfní funkce na okolí $z_0 \in \mathbb{C}$ a $f(z_0) = 0$. Potom buď

- 1. existuje r > 0, že f = 0 na $U(z_0, r)$, anebo
- 2. existuje r > 0, že $f \neq 0$ na $P(z_0, r) := U(z_0, r) \setminus \{z_0\}$.

V případě 2. existuje jediné $p \in \mathbb{N}$ takové, že (0) $f(z_0) = f'(z_0) = \ldots = f^{(p-1)}(z_0) = 0$, $f(p)(z_0) \neq 0$. Číslo p nazýváme násobnost nulového bodu z_0 funkce f.

Poznámka 6.7. Navíc z_0 je nulový bod f násobnosti p, právě když existuje r > 0 a $g \in \mathcal{H}(U(z_0, r))$ tak, že $\forall z \in U(z_0, r)$: $(\triangle) \ g(z) \neq 0$ a $f(z) = (z - z_0)^p g(z)$.

 $D\mathring{u}kaz$. Máme, že $f(z)=\sum\limits_{n=0}^{\infty}a_n(z-z_0)^n,\,z\in U(z_0,r)$. Pokud nenastane 1., potom existuje $n\in\mathbb{N},$ že $0\neq a_n=\frac{f^{(n)}(z_0)}{n!}$. Zvolme nejmenší $p\in\mathbb{N},$ aby $a_p\neq 0$. Potom platí (0) a $\forall z\in U(z_0,r)\colon f(z)=a_p(z-z_0)^p+\ldots=(z-z_0)^p\cdot\sum\limits_{n=p}^{\infty}a_n(z-z_0)^{n-p}.$ Dále g(z) definujeme jako poslední sumu.Protože $g(z_0)=a_p\neq 0,$ existuje r>0, že $g\neq 0$ na $U(z_0,r)$ a $f(z)=(z-z_0)^pg(z)\neq 0$ na $P(z_0,r).$ Obrácené tvrzení plyne snadno.

Věta 6.8 (O jednoznačnosti pro holomorfní funkce). Nechť $\emptyset \neq G \subset \mathbb{C}$ je oblast a $f,g \in \mathcal{H}(G)$. Pak jsou následující tvrzení ekvivalentní:

- 1. $f = g \ na \ G$;
- 2. $mno\check{z}ina\ M := \{z \in G | f(z) = g(z)\}\ m\acute{a}\ v\ G\ hromadn\acute{y}\ bod,\ tj.\ existuje\ z_0 \in G\ takov\acute{y},\ \check{z}e\ M \cap P(z_0,r) \neq \emptyset\ \forall r > 0;$
- 3. existuje $z_0 \in G$, že $f^{(k)}(z_0) = g^{(k)}(z_0) \ \forall k \in \mathbb{N}_0$.

 $D\mathring{u}kaz$. BÚNO $g \equiv 0$ na G (jinak uvažme f - g).

 $1 \Rightarrow 2$, $2 \Rightarrow 3$ Nechť $z_0 \in G$ je hromadný bod $M := \{z \in G | f(z) = 0\}$. Z věty o nulovém bodě je f = 0 na nějakém okolí z_0 , tudíž platí 3.

 $3 \Rightarrow 1$ Nechť $N := \{z \in G | \forall k \in \mathbb{N}_0 : f^{(k)}(z_0) = 0\}$. Potom $\emptyset \neq N$, N je uzavřená v G, protože všechny $f^{(k)}$ jsou spojité. Navíc N je otevřená. Nechť $z_1 \in \mathbb{N}$. Podle věty o nulovém bodě existuje r > 0, že f = 0 na $U(z_1, r)$. Tedy $U(z_1, r) \subset N$. Protože G je oblast, dostaneme N = G a speciálně 1.

Příklad 6.9. Vzoreček $\sin(2z) = 2\sin(z)\cos(z)$, $z \in \mathbb{C}$ dostaneme z věty o jednoznačnosti, protože obě strany rovnosti jsou celé funkce a víme, že rovnost platí na \mathbb{R} (tzn. platí 2).

Poznámka 6.10. Podobně lze řadu vzorečků bez počítání zobecnit z \mathbb{R} do $\mathbb{C}!$

Věta 6.11 (Princip maxima modulu). Nechť $G \subset \mathbb{C}$ je oblast a $f \in \mathcal{H}(G)$. Potom je f konstantní na G, pokud |f| nabývá na G lokální maximum, tzn. existuje $z_0 \in G$ a r > 0 tak, že $\forall z \in U(z_0, r) \subset G : |f(z)| \leq |f(z_0)|$. (+)

 $\begin{array}{l} D\mathring{u}kaz. \ \ \mathrm{Necht} \ \ \mathrm{plati} \ \ (+). \ \ \mathrm{Potom} \ \ f(z) = \sum\limits_{n=0}^{\infty} a_n (z-z_0)^n, \ z \in U(z_0,r). \ \ \mathrm{Pro} \ \ 0 < \rho < r \ \ \mathrm{plati}, \ \ \check{z}e \\ |a_0|^2 = |f(z_0)|^2 \geq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \, \mathrm{d}t = \frac{1}{2\pi} \int_0^{2\pi} (\sum\limits_{n=0}^{\infty} a_n \rho^n e^{int}) (\sum\limits_{m=0}^{\infty} \overline{a_m} \rho^m e^{-imt}) \, \mathrm{d}t = \sum\limits_{n=0}^{\infty} \sum\limits_{m=0}^{\infty} a_n \cdot \overline{a_m} \rho^{n+m} \frac{1}{2\pi} \int_0^{2\pi} e^{it(n-m)} \, \mathrm{d}t = \sum\limits_{n=0}^{\infty} |a_n|^2 \rho^{2n}, \ \ \mathrm{nebot} \ \ \frac{1}{2\pi} \int_0^{2\pi} e^{it(n-m)} \, \mathrm{d}t = 0, \ \ \mathrm{pro} \ \ n \neq m \ \ \mathrm{a} \\ \frac{1}{2\pi} \int_0^{2\pi} e^{it(n-m)} \, \mathrm{d}t = 1, \ \ \mathrm{pro} \ \ n = m. \ \ \mathrm{Nebo-li} \ \ |a_0|^2 \geq |a_0|^2 + |a_1|^2 \rho^2 + \cdots, \ \ \mathrm{tud\acute{i}}\check{z} \ \ 0 = a_1 = a_2 = \cdots. \\ \ \ \mathrm{Dost\acute{a}v\acute{a}me, \check{z}e} \ \ f = a_0 \ \ \mathrm{na} \ \ U(z_0,r) \ \ \mathrm{a} \ \ \mathrm{z} \ \ \mathrm{v\acute{e}ty} \ \ \mathrm{o} \ \ \mathrm{jednozna\check{c}nosti} \ \ f = a_0 \ \ \mathrm{na} \ \ G. \end{array}$

7 Riemannova sféra

Rozšíříme \mathbb{C} o nekonečno. Položíme $\$ = \mathbb{C} \cup \{\infty\}$, kde $\infty \notin \mathbb{C}$, a zavedeme okolí kolem ∞ $P(\infty,\varepsilon) := \{z \in \mathbb{C} \mid |z| > \frac{1}{\varepsilon}, \ \varepsilon > 0, \ U(\infty,\varepsilon) := P(\infty,\varepsilon) \cup \{\infty\}.$

Definice 7.1. Řekneme, že $z_n \to z_0$ v \$, pokud $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : z_n \in U(z_0, \varepsilon)$.

Poznámka 7.2. Z definice plyne:

- $z_n \to z_0$ v \$ a $z_0 \in \mathbb{C} \Leftrightarrow z_n \to z_0$ v \mathbb{C} .
- $z_n \to \infty \Leftrightarrow |z_n| \to +\infty \Leftrightarrow \frac{1}{z_n} \to \cdot$. Zde $\frac{1}{\infty} := 0$ a $|\infty| := +\infty$.

Poznámka 7.3. \$ je jednobodová kompaktifikace topologického prostoru C.

Vlastnosti 7.4.

Na \$ zavedeme metriku ρ (není jediná), $t\check{z}$. (*) $z_n \to z_0$ v \$ $\Leftrightarrow \rho(z_n, z_0) \to 0$. Navíc (\$, ρ) bude $izometrick\acute{y}$ s jednotkovou sférou $S^2 := \{(\alpha, \beta, \gamma) \in \mathbb{R}^3 \mid \alpha^2 + \beta^2 + \gamma^2 = 1\}$, kterou chápeme jako metrick \acute{y} podprostor \mathbb{R}^3 . Speciálně (\$, ρ) je $kompaktn\acute{z}$.

• Definujeme stereografickou projekci $\phi: \mathbb{C} \to S^2 \setminus \{N\}$ jako na obrázku, kde N = (0,0,1).

Položme $\phi(\infty) := N$. Pro $z \in \mathbb{C}$ je $\{\phi(z)\} = (S \setminus \{N\}) \cap p_z$, kde p_z je polopřímka z N procházející bodem $z \in \mathbb{C}$. Potom $\phi : \$ \xrightarrow{na} S^2$ je bijekce.

Cvičení 7.5. (CV)

$$- \phi(z) := (\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}), \ z = x + iy \in \mathbb{C}.$$

$$- \phi^{-1}(\alpha, \beta, \gamma) := (\frac{\alpha}{1 - \gamma}, \frac{\beta}{1 - \gamma}), \ (\alpha, \beta, \gamma) \in S^2 \setminus \{N\}$$

- Položme $\rho(z,w):=|\phi(z)-\phi(w)|,\ z,w\in\$,$ kde $|\cdot|_S$ je Eukleidovská norma v $\mathbb{R}^3.(\phi$ je izometrie $(\$,\rho)$ na $S^2)$
- Platí (*). Skutečně z předchozího bodu a z cvičení máme: $\rho(z_n, z_0) \to 0 \Leftrightarrow \phi(z_n) \to \phi(z_0) \Leftrightarrow z_n \to z_0 v$, protože ϕ i ϕ^{-1} jsou spojité.

Příklad 7.6. Necht $z_n \in \mathbb{C}$ a $z_n \to \infty$. Potom $|z_n| \to +\infty \Rightarrow \phi(z_n) \in S^2$; $\phi_3(z_n) \to 1 \Rightarrow \phi(z_n) \to N := (0,0,1)$

Příklad 7.7. Necht $(\alpha, \beta, \gamma) \in S^2 \setminus \{N\}$ a $(\alpha, \beta, \gamma) \to N$. Potom $|\phi^{-1}(\alpha_n, \beta_n, \gamma_n)|^2 = \frac{1 - \gamma_n^2}{(1 - \gamma_n)^2} = \frac{1 + \gamma_n}{1 - \gamma_n} \to +\infty \Rightarrow \phi^{-1}(\alpha_n, \beta_n, \gamma_n) \to \infty$

Značení. $\mathbb{S} := \mathbb{C} \cup \{\infty\}$

Definice 7.8. Necht $f: \mathbb{S} \to \mathbb{S}$ a $z_0, L \in \mathbb{S}$. Potom $L = \lim_{z \to z_0} f(z)$, pokud pro každou $(z_n) \subset \mathbb{S}$: $z_0 \neq z_n \to z_0 \Rightarrow f(z_n) \to L$. Platí:

- 1. $\lim_{z\to\infty} f(z) = \lim_{z\to 0} f(1/z)$, má-li alespoň jedna strana smysl.
- 2. $\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} 1/f(z) = 0$.

Definice 7.9 (Aritmetika limit v S). Platí:

$$\begin{split} \lim_{z \to z_0} \left(f(z) \pm g(z) \right) &= \lim_{z \to z_0} f(z) \pm \lim_{z \to z_0} g(z), \\ \lim_{z \to z_0} \left(f(z) \cdot g(z) \right) &= \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z), \\ \lim_{z \to z_0} \frac{f(z)}{g(z)} &= \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}, \end{split}$$

mají-li pravé strany smysl, pokud definujeme $a/\infty=0 \ \forall a\in\mathbb{C},\ a/0=\infty \ \forall a\in\mathbb{S}\setminus\{0\},\ a\pm\infty=\infty \ \forall a\in\mathbb{C},\ a\cdot\infty=\infty \ \forall a\in\mathbb{S}\setminus\{0\}.$

Nedefinujeme: $0/0, \infty/\infty, \infty \pm \infty \ 0 \cdot \infty$.

Příklad 7.10. Racionální funkce lze chápat jako spojité funkce z \mathbb{S} do \mathbb{S} . Skutečně, necht R = P/Q, kde P, Q jsou polynomy, $Q \neq 0$ a P, Q nemají stejné kořeny.

- 1. Nechť $Q(z_0) = 0$. Potom $P(z_0) \neq 0$ a $\lim_{z \to z_0} R(z) = \infty$. Položme $R(z_0) := \infty$.
- 2. Pokud $R \not\equiv 0$, potom

$$\lim_{z \to \infty} R(z) = \lim_{z \to \infty} \underbrace{\frac{\stackrel{\neq 0}{a_0} z^n + \dots + a_n}{b_0 z^m + \dots + b_m}}_{\stackrel{\neq 0}{= z \to \infty}} = \lim_{z \to \infty} z^{n-m} \left(\frac{a_0 + \frac{a_1}{z} + \frac{a_n}{z^n}}{b_0 + \frac{b_1}{z} + \frac{b_m}{z^m}} \right) = \begin{cases} 0 & \text{pro } n < m, \\ \frac{a_0}{b_0} & \text{pro } n = m, \\ \infty & \text{pro } n > m. \end{cases}$$

Položme $R(\infty) := \lim_{z \to \infty} R(z)$.

7.1 Izolované singularity

Definice 7.11. Nechť f je holomorfní funkce na $P(z_0)$. Potom f má v z_0

- 1. *izolovanou singularitu*, existuje-li $\lim_{z\to z_0} f(z) \in \mathbb{C}$,
- 2. $p \delta l$, je-li $\lim_{z \to z_0} f(z) = \infty$,
- 3. podstatnou singularitu, pokud $\lim_{z\to z_0} f(z)$ neexistuje.

Příklad 7.12.

$$\frac{\sin z}{z} \text{ má v 0 odstranitelnou singularitu,}$$

$$\frac{1}{z^{10}} \text{ má v 0 pól,}$$

$$e^{1/z} \text{ má v 0 podstatnou singularitu.}$$

Věta 7.13 (O odstranitelné singularitě). Nechť f je holomorfní funkce na $P(z_0)$. NTJE:

- 1. z_0 je odstranitelná singularita f,
- 2. existuje r > 0 tak, že f je omezená na $P(z_0, r)$,
- 3. existuje $F \in \mathcal{H}(U(z_0))$ tak, že F = f na $P(z_0)$.

Úmluva 7.14. Odstranitelná singularita je vždy odstraněna ve smyslu (3). Didefinujeme f v z_0 holomorfně.

$$\begin{split} & \textit{Důkaz. } (1) \Rightarrow (2), \ (2) \Rightarrow (3) \text{:} \\ & \text{Položme} \ g(z) := \left\{ \begin{array}{ll} (z-z_0)^2 f(z) & \text{pro} \ z \in P(z_0) \\ 0 & \text{pro} \ z = z_0. \end{array} \right. \end{split}$$

Položme
$$g(z) := \begin{cases} (z-z_0)^2 f(z) & \text{pro } z \in P(z_0), \\ 0 & \text{pro } z = z_0. \end{cases}$$
Potom $g \in \mathcal{H}(U(z_0))$, protože $g'(z_0) = \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \underbrace{(z - z_0)}_{omez} \underbrace{f(z)}_{omez} = 0$. Navíc pro každé $z \in U(z_0)$ je $g(z) = \sum_{n=2}^{\infty} a_n (z - z_0)^n = (z - z_0)^2 F(z)$, kde $F(z) := \sum_{n=2}^{\infty} a_n (z - z_0)^{n-2}, z \in U(z_0)$. Zřejmě $F \in \mathcal{H}(U(z_0))$ a $F = f$ na $P(z_0)$

každé
$$z \in U(z_0)$$
 je $g(z) = \sum_{n=2}^{\infty} a_n (z - z_0)^n = (z - z_0)^2 F(z)$, kde $F(z) \stackrel{\text{def.}}{:=} \sum_{n=2}^{\infty} a_n (z - z_0)^{n-2}$, $z \in U(z_0)$. Zřejmě $F \in \mathcal{H}(U(z_0))$ a $F = f$ na $P(z_0)$. \square

Věta 7.15 (O pólu). Nechť f je holomorfní funkce na $P(z_0)$. NTJE:

- 1. z_0 je pól f,
- 2. $h := \frac{1}{f} \ a \ h(z_0) := 0 \ m\'{a} \ v \ z_0 \ nulov\'{y} \ bod \ n\'{a}sobnosti \ p \ pro \ n\'{e}jak\'{e} \ p \in \mathbb{N},$
- 3. existuje $p \in \mathbb{N}$ tak, že

$$\lim_{z \to z_0} (z - z_0)^p f(z) \in \mathbb{C} \setminus \{0\},\$$

4. existuje $p \in \mathbb{N}$ tak, že $\forall k \in \mathbb{Z}$

$$\lim_{z \to z_0} (z - z_0)^k f(z) = \begin{cases} \infty & pro \ k < p, \\ \in \mathbb{C} \setminus \{0\} & pro \ k = p, \\ 0 & pro \ k > p. \end{cases}$$

Číslo p z (2.) – (4.) je určeno jednoznačně a nazývá se násobnost pólu z_0 funkce f.

Poznámka 7.16. Píšeme $f(z) \sim g(z)$ pro $z \to z_0$, je-li $\lim_{z \to z_0} \frac{f(z)}{g(z)} \in \mathbb{C} \setminus \{0\}$. Potom ③. $f(z) \sim \frac{1}{(z-z_0)^p}$, pro $z \to z_0$.

 $D\mathring{u}kaz.$ (1.) \Rightarrow (2.) Protože $\lim_{z\to z_0} f(z) = \infty$, je $\lim_{z\to z_0} \frac{1}{f(z)} = 0$. Po odstranění odstranitelné singularity má 1/f v z_0 nulový bod konečné násobnosti $p \in \mathbb{N}$.

 $\underbrace{(2.)} \Rightarrow \underbrace{(3.)} \text{ Existuje } r > 0 \text{ a } g \in \mathcal{H}(U(z_0)) \text{ tak, } \check{\text{ze}} \ g \neq 0 \text{ na } U(z_0, \ r) \text{ a } h(z) = (z-z_0)^p g(z), \ z \in U(z_0, \ r). \text{ Potom } \lim_{z \to z_0} (z-z_0)^p \underbrace{f(z)}_{h(z)} = \frac{1}{g(z_0)} \in \mathbb{C} \setminus \{0\}.$

$$\underbrace{3.} \Rightarrow \underbrace{4.} \text{ Máme } \lim_{z \to z_0} (z - z_0)^k f(z) = \lim_{z \to z_0} (z - z_0)^{k-p} \underbrace{(z - z_0)^p f(z)}_{\in \mathbb{C} \setminus \{0\}} = \begin{cases} \infty & \text{pro } k < p, \\ \in \mathbb{C} \setminus \{0\} & \text{pro } k = p, \\ 0 & \text{pro } k > p. \end{cases}$$

$$\underbrace{4.} \Rightarrow \underbrace{1.} \text{ pro } k = 0.$$

Věta 7.17 (Casorati-Weierstrass). Nechť f je holomorfní funkce na $P(z_0)$. NTJE:

- 1. z₀ je podstatná singularita f,
- 2. $\forall r > 0 : \overline{f(P(z_0, r))} = \mathbb{C}$.

Poznámka 7.18 (Velká Picardova věta). $(1.) \iff (3.)$

3. $\forall r > 0 : \mathbb{C} \setminus f(P(z_0, r))$ je nejvýše jednobodová [hluboká věta, důkaz nebude].

Příklad 7.19. $\exp(\mathbb{C}\setminus\{0\}) = \mathbb{C}\setminus\{0\}$, $\exp(1/z)$ má v 0 podstatnou singularitu.

 $D\mathring{u}kaz$. (2.) \Rightarrow (1.) Jasné z definice limity.

 \neg (2.) $\Rightarrow \neg$ (1.) Předpokládejme, že existuje r > 0 tak, že $\mathbb{C} \setminus \overline{f(P(z_0, r))} \neq \emptyset$ a $f \in \mathcal{H}(P(z_0, r))$. Potom existuje $U(u_0, \beta) \subset \mathbb{C} \setminus \overline{f(P(z_0, r))}$, speciálně máme, že $0 < |z - z_0| < r \Rightarrow |f(z) - u_0| \ge \beta$. Definujeme

 $g(z) := \frac{1}{f(z) - u_0}, \ z \in P(z_0, \ r). \tag{*}$

Potom je g holomorfní a $|g| \leq \frac{1}{\beta}$ na $P(z_0, r)$. Tedy z_0 je odstranitelná singularita a existuje $L := \lim_{z \to z_0} g(z) \in \mathbb{C}$. Potom máme $\lim_{z \to z_0} f(z) \stackrel{(*)}{=} \lim_{z \to z_0} (u_0 + \frac{1}{g(z)}) = \begin{cases} \infty & \text{pro } L = 0, \\ \in \mathbb{C} & \text{pro } L \neq 0. \end{cases}$ Tedy f má v z_0 buď odstranitelnou singularitu anebo pól.

7.2 Laurentovy řady

Definice 7.20. Nechf $\{a_n\}_{n=-\infty}^{+\infty} \subset \mathbb{C} \text{ a } z_0 \in \mathbb{C}.$ Potom

$$\underbrace{\sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n}_{(L)} = \underbrace{\sum_{n=1}^{+\infty} a_{-n} (z - z_0)^{-n}}_{(H)} + \underbrace{\sum_{n=0}^{+\infty} a_n (z - z_0)^n}_{(R)}$$
(10)

je Laurentova řada s koeficienty a_n a středem z_0 . Řada (R) je regulární část (L) a řada (H) je hlavní část (L). Řekneme, že (L) konverguje, pokud obě její části, tj. (H) i (R), konvergují.

Příklad 7.21.

$$\exp(\frac{1}{z}) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n}$$

Vlastnosti 7.22 (L).

- (1.) Konvergence: Existují jedinná $R, r \in [0, +\infty]$ tak, že
 - 1. řada (R) konverguje absolutně a lokálně stejnoměrně na $|z-z_0| < R$ a diverguje na $|z-z_0| > R$,
 - 2. řada (H) konverguje absolutně a lokálně stejnoměrně na $|z-z_0| > r$ a diverguje na $|z-z_0| < r$.
- ②. Součet: Necht $0 \le r < R \le +\infty$ (toto vždy neplatí!). Položme mezikruží $P(z_0, r, R) := \{z \in \mathbb{C} | r < |z z_0| < R\}$. Označíme-li součet (L) jako f, potom na $P(z_0, r, R)$ je f holomorfní, řadu (L) tam definujeme "člen po členu", atd.

Poznámka. $P(z_0, R) = P(z_0, 0, R)$.

 $D\mathring{u}kaz$. (1.) Číslo R je poloměr konvergence mocninné řady (R). Pro $w = \frac{1}{z-z_0}$ je řada (H) rovna mocninné řadě (*) $\sum_{n=1}^{\infty} a_{-n}w^n$. Číslo $\frac{1}{r}$ je poloměr konvergence (*).

(2.) Plyne opět z Weierstrassovy věty.

Cíl Ukážeme, že $f \in \mathcal{H}(P(z_0, r, R))$, právě když existuje jedinné (L), které má na $(P(z_0, r, R))$ součet f.

7.3 Holomorfní funkce na mezikruží

Lemma 7.23. Nechť f je holomorfní funkce na $P(z_0, r, R) := \{z \in \mathbb{C} | r < |z - z_0| < R\}$, kde $0 \le r < R \le +\infty$. Pro každé $\rho \in (r, R)$ $(\triangle)\varphi_{\rho}(t) := z_0 + \rho e^{it}$, $t \in [0, 2\pi]$ a $J(\rho) = \int_{\varphi_{\rho}} f$. Potom je J konstantní na (r, R).

 $D\mathring{u}kaz$. BÚNO nechť $z_0=0$. Nechť $\rho\in(r,R)$. Potom máme $J(\rho)=i\int_0^{2\pi}f(\rho e^{it})\rho e^{it}\,\mathrm{d}t=i\int_0^{2\pi}g(\rho e^{it})\,\mathrm{d}t$, kde $g(z):=f(z)\cdot z,\ z\in P:=P(0,r,R)$. Dále $J'(\rho)\stackrel{(\times)}{=}\frac{i}{\rho}\int_0^{2\pi}g'(\rho e^{it})\rho e^{it}\,\mathrm{d}t=\frac{i}{\rho}\int_{\varphi_0}g'=0$, protože g' má PF g na P.

Platí (×), protože
$$\frac{d}{d\rho}(g(\rho e^{it})) = \frac{dg}{dx}\cos t + \frac{dg}{dy}\sin t \stackrel{\text{CR}}{=} g'\cos t + ig'\sin t = g'e^{it}.$$

Věta 7.24 (Cauchyho vzorec na mezikruží). Nechť $f \in \mathcal{H}(P)$, kde $P := P(z_0, r, R)$. Nechť $r < r_0 < R_0 < R$ a $s \in P(z_0, r_0, R_0)$. Potom platí

$$\Box f(s) = \frac{1}{2\pi i} \int_{\varphi_{R_0}} \frac{f(z)}{z - s} dz - \frac{1}{2\pi i} \int_{\varphi_{r_0}} \frac{f(z)}{z - s} dz,$$

 $kde \varphi_{\rho} je jako v (\triangle).$

 $D\mathring{u}kaz$. Pro $z \in P$ položme

$$h(z) = \frac{f(z) - f(s)}{z - s}, \ z \neq s,$$
$$= f'(s), z = s.$$

Potom $h \in \mathcal{H}(P)$, protože h má "odstraněnou" singularitu v s. Podle lemmatu máme

$$\int_{\varphi_{R_0}} h = \int_{\varphi_{R_0}} \frac{f(z) \, \mathrm{d}z}{z-s} - f(s) \int_{\varphi_{R_0}} \frac{\mathrm{d}z}{z-s}, \text{ kde poslední integrál je roven } 2\pi i \cdot \mathrm{ind}_{\varphi_{R_0}} s = 2\pi i,$$

$$\int_{\varphi_{r_0}} h = \int_{\varphi_{r_0}} \frac{f(z) \, \mathrm{d}z}{z-s} - f(s) \int_{\varphi_{r_0}} \frac{\mathrm{d}z}{z-s}, \text{ kde poslední integrál je roven } 2\pi i \cdot \mathrm{ind}_{\varphi_{r_0}} s = 0.$$

Dále
$$\int_{\varphi_{R_0}} h = \int_{\varphi_{r_0}} h$$
, tudíž platí (\square).

Věta 7.25 (O Laurentově rozvoji holomorfní funkce na mezikruží). Nechť $P := P(z_0, r, R)$, $kde \ 0 \le r < R \le +\infty$. Nechť $f \in \mathcal{H}(P)$. Potom existuje jediná Laurentova řada $(L) \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$, $která \ má \ na \ P \ součet \ f$.

 $D\mathring{u}kaz$. 1. jednoznačnost: Nechť platí $f(z) = \sum_{n=-\infty}^{\infty} a_n(z-z_0)^n$, $z \in P$. Je-li $\rho \in (r,R)$ a $m \in \mathbb{Z}$, pak

$$\int_{\varphi_{\rho}} f(z)(z-z_0)^{-(m+1)} dz = \int_{\varphi_{\rho}} \sum_{n=-\infty}^{\infty} a_n (z-z_0)^{n-m-1} dz = \sum_{n=-\infty}^{\infty} a_n \int_{\varphi_{\rho}} (z-z_0)^{n-m-1} dz = \int_{\varphi_{\rho}} \int_{\varphi_{\rho}} f(z)(z-z_0)^{-(m+1)} dz = \int_{\varphi_{\rho}} f(z-z_0)^{-(m+1)} dz = \int_$$

 $=2\pi i\cdot a_m$, kde z druhé rovnosti suma konverguje stejnoměrně na $\langle \varphi_{\rho} \rangle$ a poslední integrál je roven 0 pro $n \neq m$ a $2\pi i \cdot \operatorname{ind}_{\varphi_{\rho}} z_0 = 2\pi i$ pro n = m.

Závěr: koeficienty (L) se dají vyjádřit pomocí součtu f jako

$$a_m = \frac{1}{2\pi i} \int_{\varphi_\rho} \frac{f(z)}{(z - z_0)^{m+1}} dz, \ m \in \mathbb{Z}, (**),$$

kde φ_{ρ} je jako v (\triangle). Podle lemmatu integrandy nezávisejí na $\rho \in (r, R)$.

2. existence: Nechť $s \in P$. Volme $r < r_0 < R_0 < R$, aby $s \in P(z_0, r_0, R_0)$. Potom z Cauchyho vzorce máme

$$(a) f(s) = \frac{1}{2\pi i} \int_{\varphi_{R_0}} \frac{f(z) dz}{z - s} - \frac{1}{2\pi i} \int_{\varphi_{r_0}} \frac{f(z) dz}{z - s};$$

$$(b) \frac{1}{z - s} = \frac{1}{(z - z_0) - (s - z_0)} = \frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{s - z_0}{z - z_0}} = \sum_{r=0}^{+\infty} \frac{(s - z_0)^r}{(z - z_0)^{n+1}};$$

kde řada konverguje stejnoměrně pro $z \in \langle \varphi_{R_0} \rangle$;

$$(c)\,\frac{1}{z-s} = \frac{1}{(z-z_0)-(s-z_0)} = \frac{(-1)}{s-z_0}\cdot\frac{1}{1-\frac{z-z_0}{s-z_0}} = -\sum_{n=0}^{+\infty}\frac{(z-z_0)^n}{(s-z_0)^{n+1}},$$

kde řada konverguje stejnoměrně pro $z \in \langle \varphi_{r_0} \rangle$. Dosadíme (b), (c) do (a) a dostaneme

$$f(s) = \frac{1}{2\pi i} \int_{\varphi_{R_0}} \sum_{n=0}^{+\infty} \frac{(s-z_0)^n}{(z-z_0)^{n+1}} f(z) dz + \frac{1}{2\pi i} \int_{\varphi_{r_0}} \sum_{n=0}^{+\infty} \frac{(z-z_0)^n}{(s-z_0)^{n+1}} f(z) dz = \frac{1}{2\pi i} \int_{\varphi_{R_0}} \sum_{n=0}^{+\infty} \frac{(z-z_0)^n}{(z-z_0)^{n+1}} f(z) dz$$

$$=\sum_{n=0}^{+\infty}(s-z_0)^n\cdot a_n+\sum_{n=0}^{+\infty}(s-z_0)^{-n-1}\cdot a_{-(n+1)}, \text{ kde } a_n \text{ jsou jako v } (**).$$

7.4 Izolované singularity 2

Věta 7.26 (O Laurentově rozvoji kolem izolované singularity). Nechť $f \in \mathcal{H}(P(z_0,r))$ a $f(z) = \sum_{-\infty}^{+\infty} a_n(z-z_0)^n, \ z \in P(z_0,r).$ Potom

- 1. $f \ m\'a \ v \ z_0 \ odstranitelnou \ singularitu \Leftrightarrow \forall n < 0 : a_n = 0;$
- 2. f má v z_0 pól násobnosti $p \in \mathbb{N} \Leftrightarrow a_{-p} \neq 0$ a $\forall n < -p : a_n = 0$;
- 3. f má v z_0 podstatnou singularitu $\Leftrightarrow a_n \neq 0$ pro nekonečně mnoho n < 0.

Důkaz. 1. jasné

2. f má v z_0 pól násobnosti p, právě když $g(z):=(z-z_0)^p f(z)$ má v z_0 odstranitelnou singularitu a po jejím odstranění je $g(z_0)\neq 0$. Neboli $(z-z_0)^p f(z)=\sum\limits_{n=0}^{+\infty}b_n(z-z_0)^n,$ $z\in P(z_0,r)$ a $b_0=g(z_0)\neq 0$, tzn.

$$f(z) = \frac{b_0}{(z - z_0)^p} + \frac{b_1}{(z - z_0)^{p-1}} + \dots = \sum_{n=0}^{+\infty} b_n (z - z_0)^{n-p}, \ z \in P(z_0, r).$$

3. Z 1., 2. máme, že f nemá v z_0 podstatnou singularitu, právě když $a_n \neq 0$ pro konečně mnoho n < 0.

Věta 7.27 (Rozklad holomorfní funkce s nekonečně mnoha izolovanými singularitami). Nechť $G \subset \mathbb{C}$ je otevřená, $M \subset G$ je konečná a $f \in \mathcal{H}(G \setminus M)$. Pro každé $s \in M$ označme H_s součet hlavní části Laurentova rozvoje funkce f kolem s. Potom existuje jediná $h \in \mathcal{H}(G)$ tak, že $f = \sum_{s \in M} H_s + h$ na $G \setminus M$.

 $D\mathring{u}kaz$. Zřejmě $H_s \in \mathcal{H}(\mathbb{C}\setminus\{s\}) \forall s \in M$. Funkce $h:=f-\sum\limits_{s\in M}H_s$ je holomorfní na $G\setminus M$ a v bodech $s\in M$ má odstranitelné singularity. Skutečně, nechť $s_0\in M$. Potom existuje $r_0>0$ tak, že $P(s_0,r_0)\subset G\setminus M$ a $f=R_{s_0}+H_{s_0}$ na $P(s_0,r_0)$, kde R_{s_0} je součet regulární části Laurentova rozvoje f kolem s_0 a $R_{s_0}\in \mathcal{H}(U(s_0,r_0))$. Tedy na $P(s_0,r_0)$ máme $h=R_{s_0}+H_{s_0}-\sum\limits_{s\in M}H_s=R_{s_0}-\sum\limits_{s\in M,s\neq s_0}H_s\in \mathcal{H}(U(s_0,r_0))$.

7.5 Reziduum

Definice 7.28. Necht $f \in \mathcal{H}(P(z_0))$ a necht $f(z) = \sum_{n=-\infty}^{+\infty} a_n(z-z_0)^n$, $z \in P(z_0)$. Potom reziduem f v z_0 nazveme číslo $\operatorname{res}_{z_0} f := a_{-1}$.

Věta 7.29 (Reziduová na hvězdovitých oblastech). Nechť $G \subset \mathbb{C}$ je hvězdovitá oblast, $M \subset G$ je konečná a $f \in \mathcal{H}(G \setminus M)$. Nechť φ je uzavřená křivka v $G \setminus M$. Potom máme $(RV) \int_{\varphi} f = 2\pi i \sum_{s \in M} res_s f \cdot ind_{\varphi} s$.

Poznámka. Pro $M = \emptyset$ dostaneme Cauchyho větu.

 $D\mathring{u}kaz$. Podle předchozí věty existuje $f \in \mathcal{H}(G)$ tak, že $f = \sum_{s \in M} H_s + h$ na $G \setminus M$. Potom máme $\int_{\varphi} f = \sum_{s \in M} \int_{\varphi} H_s$, protože $\int_{\varphi} h = 0$ z Cauchyho věty pro hvězdovité oblasti. Pro každé $s \in M$:

$$\int_{\varphi} H_s(z) dz = \int_{\varphi} \sum_{n=1}^{+\infty} a_{-n}^s \frac{1}{(z-s)^n} dz = \sum_{n=1}^{+\infty} a_{-n}^s \int_{\varphi} \frac{dz}{(z-s)^n} = 2\pi i \cdot \operatorname{res}_s f \cdot \operatorname{ind}_{\varphi} s,$$

jelikož suma konverguje stejnoměrně na $\langle \varphi \rangle$ a poslední integrál je roven 0, $n \neq 1$ (integrand má PF) a $2\pi i \cdot \operatorname{ind}_{\varphi} s$, je-li n = 1.

Příklad 7.30. Nechť $\varphi := \psi^t + [-1;1]$, kde $\psi^t(t) := e^{it}$, $t \in [0,\pi]$. Potom $\mathbb{C}(0,\pi) = G_0 \cup G_\infty$, kde G_0 je omezená komponenta ("vnitřek") a G_∞ je neomezená komponenta ("vnějšek"). Platí

$$ind_{\varphi}s = \begin{cases} 1, & s \in G_0 \\ 0, & s \in G_{\infty}. \end{cases}$$

Položme $\tilde{\varphi}:=\psi^-\dotplus[1;-1],$ kde $\psi^-(t):=e^{it},\ t\in[-\pi,0].$ Potom máme

$$1 = ind_{\varphi + \varphi}s = ind_{\varphi}s + in \varphi.$$

8 Speciální typy integrálů

Věta 8.1. Nechť R = P/Q, kde P,Q jsou polynomy, které nemají společné kořeny a platí

- 1. $Q \neq 0$ na \mathbb{R} ,
- 2. $st(Q) \ge st(P) + 2$, $kde\ st(Q)\ je\ stupe\check{n}\ polynomu\ Q$.

Potom

$$\int_{-\infty}^{\infty} R(x)dx = 2i\pi. \sum_{\substack{Q(s) = 0\\I \neq s} > 0} res_s R.$$

$$(11)$$

 $D\mathring{u}kaz$. Ukažte, že integrál v (11) konverguje, právě když platí 1., 2. Nechť r>0 a $\varphi_r:=\varphi_r^1\dotplus\varphi_r^2$, kde $\varphi_r^1(t):=t$ $t\in[-r,r]$ a $\varphi_r^2(t):=re^{it},\ t\in[0,\pi]$. Je-li r>0 tak velké, aby uvnitř φ_r ležely všechny póly R z horní polrovviny, potom

$$2i\pi. \sum_{\substack{Q(s)=0\\Ims>0}} res_s R \stackrel{(RV)}{=} \int_{\varphi_r} R = \int_{\varphi_r^1} R + \int_{\varphi_r^2} R.$$
 (12)

Máme

$$\int_{\varphi_r^1} R = \int_{-r}^r R \stackrel{r \to \infty}{\longrightarrow} \int_{-\infty}^{\infty} R.$$

Protože $\int_{\varphi_r^2} R \to 0$ pro $r \to +\infty$, dostaneme z (12) pro $r \to \infty$, že platí (11). Neboť existuje C > 0, $r_0 > 0$ tak, že $|R(z)| \le \frac{C}{r^2}$, je-li $|z| = r \ge r_0$. Máme totiž

$$|R(z)| = \left| \frac{a_0 z^n + a_1 z^{n-1} \dots + a_n}{b_0 z^m + b_1 z^{m-1} + \dots + b_m} \right| = \frac{1}{|z|^2} |z|^{n-m+2} \cdot \underbrace{\left| \underbrace{\frac{a_0 + \frac{a_1}{z} + \dots + \frac{a_n}{z^n}}{b_0 + \frac{b_1}{z} + \dots + \frac{b_m}{z^m}}}_{\substack{z \to \infty \\ b_0}} \right|}_{\substack{z \to \infty \\ b_0}}.$$

Tedy

$$\left| \int_{\varphi_r^2} R \right| \leq V(\varphi_r^2) \cdot \max_{\langle \varphi_r^2 \rangle} |R| \leq r \pi \frac{C}{r^2} \overset{r \to \infty}{\longrightarrow} 0.$$

Příklad 8.2.

$$\begin{split} I &= \int_0^\infty \frac{x^2+1}{x^4+1} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{x^2+1}{x^4+1} dx = i\pi. (res_{z_0}R + res_{z_1}R) \\ &= -\frac{i\pi}{4\sqrt{2}} \left[(1+i)^2 - (1-i)^2 \right] = -\frac{i\pi}{4\sqrt{2}} 2.2i = \frac{\pi}{\sqrt{2}}, \end{split}$$

protože

$$\begin{split} res_{z_k}R &= \frac{z_k^2+1}{4z_k^3}.\frac{z_k}{z_k} = -\frac{1}{4}(z_k^2+1)z_k,\\ res_{z_0}R &= -\frac{1}{4}(i+1)(1+i)\frac{1}{\sqrt{2}} = -\frac{1}{4\sqrt{2}}(1+i)^2,\\ res_{z_1}R &= -\frac{1}{4}(-i+1)(-1+i)\frac{1}{\sqrt{2}} = \frac{1}{4\sqrt{2}}(1-i)^2. \end{split}$$

Věta 8.3. Nechť R = P/Q, kde P,Q jsou polynomy, které nemají společné kořeny a platí

1. $Q \neq 0$ na \mathbb{R} ,

2.
$$st(Q) > st(p) + 1$$
.

 $Necht \ a > 0$. Potom

$$\int_{-\infty}^{\infty} R(x)e^{iax}dx = 2i\pi. \sum_{\substack{Q(s) = 0\\Ims > 0}} res_s \left(R(z)e^{iaz}\right).$$
(13)

Důkaz. Za cvičení:

- Dokažte, že Newtonův integrál v (13) konverguje právě když platí 1., 2.
- Jak se spočte tento integrál pro a < 0?

Jako v předešlé větě integrujeme podél φ_r funkci $R(z)e^{iaz}$ a pošleme $r\to\infty$. Platí, že

$$\int_{\varphi_r^2} R(z)e^{iaz}dz \xrightarrow{r \to \infty} 0 \tag{14}$$

z Jordanova Lemmatu (bylo na 5. cvičení), z 2. totiž máme, že $\lim_{z\to\infty} R(z) = 0$.

Poznámka 8.4. Je-li a < 0, potom (14) obecně neplatí. V tomto případě je nutno integrovat přes dolní půlkružnici.

Příklad 8.5. Spočteme Fourierovu transformaci \mathcal{F} funkce $f(x) := \frac{1}{x^2+1}$, kde

$$(\mathcal{F}f)(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{itx}dx, \ t \in \mathbb{R}$$

- Necht t > 0. Potom $(\mathcal{F}f)(t) = i.res_i(f(z)e^{itz}) = i.\frac{e^{-t}}{2i} = \frac{e^{-t}}{2}$.
- Necht t < 0. Potom $(\mathcal{F}f)(t) = i.res_{(-i)}(f(z)e^{itz}).(-1) = -i.\frac{e^{-t}}{2.(-i)} = \frac{e^t}{2}$.

Lépe:

$$(\mathcal{F}f)(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\cos(tx) + i\sin(tx)}{1 + x^2} dx = \frac{e^{-|t|}}{2}, \ t \in \mathbb{R}$$

Příklad 8.6.

$$\int_0^\infty \frac{x \sin x}{x^2 + 1} dx = \frac{1}{2} Im \underbrace{\int_{-\infty}^\infty \frac{x \cdot e^{ix}}{x^2 + 1} dx}_{:=I} = \frac{\pi}{2e},$$

protože

$$I = 2\pi i.res_i f = 2\pi i \frac{ie^{-1}}{2i} = \frac{\pi i}{e}.$$

Poděkování:

Tyto poznámky byly vytexány společnou prací několika studentů 3. ročníku bakalářského studia obecné matematiky. Bez jejich iniciativy by tyto poznámky nevznikly.

Kateřina Lipavská, Stanislav Mosný, Terka Poláková a Petr Sedláček