Sampling Distributions

Single population parameter

Assumptions	Population parameter	Sampling distribution	Statistical value at $\frac{\alpha}{2}\%$	Standard Error
Normal population. Population variance σ^2 known.	mean μ	Sample mean $ar{X}$ is Normal	$Z_{lpha/2}$	$^{\sigma}/_{\sqrt{n}}$
Normal population. Population variance σ^2 unknown.	mean μ	Sample mean $ar{X}$ is t_{n-1}	$t_{n-1;\alpha/2}$	$^{S}/\sqrt{n}$
Any population. Big sample size, $n>30$. Central Limit Theorem. $\sigma^2 \approx s^2$.	mean μ	Sample mean $ar{X}$ is Normal	$Z_{lpha/2}$	$^{S}/\sqrt{n}$
Binary population. Big sample size, $n>30$. Central Limit Theorem.	proportion π	Sample proportion p is Normal	$Z_{lpha/2}$	$\sqrt{\frac{p(1-p)}{n}}$

Comparison of two population means, μ_1 and μ_2

Assumptions	Sampling distribution of $ar{X}_1 - ar{X}_2$	Statistical value at $\frac{\alpha}{2}\%$	Standard Error of $ar{X}_1 - ar{X}_2$
 Normal populations. Independent samples. Population variances σ₁² and σ₂² are known. 	Normal	$Z_{lpha/2}$	$\sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}$
 Normal populations. Independent samples. Population variances are unknown but equal σ₁² = σ₂² = σ². 	$t_{n_1+n_2-2}$	$t_{n_1+n_2-2;\alpha/2}$	$\sqrt{\frac{{s_p}^2}{n_1} + \frac{{s_p}^2}{n_2}},$ ${s_p}^2 = \frac{(n_1 - 1) \ {s_1}^2 + (n_2 - 1) \ {s_2}^2}{n_1 + n_2 - 2}$
 Any population. Independent samples. Large sample sizes, n₁ > 30, n₂ > 30 Central Limit Theorem. 	Normal	$Z_{lpha/2}$	$\sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}$
PAIRED samples, calculate sample of differences.			

Significance Levels Tree

