# Math club modules

Topic: Geometry

Triangles

Armaan Hooda (Organizer)

## Contents

| 1 | Cor | ngruence of Triangles         | L |
|---|-----|-------------------------------|---|
|   | 1.1 | Different congruence criteria | Ĺ |
| 2 | Ang | gles of a Transversal         | 2 |
|   | 2.1 | Types of angles               | 2 |
|   | 2.2 | Properties                    | 2 |
|   | 2.3 | Practice problems             | Ó |
| 3 | Are | ea of Triangles               | 7 |
|   | 3.1 | Revision                      | 7 |
|   | 3.2 | Properties                    | 7 |
|   | 3.3 | Practice problems             | 3 |
| 4 | Sim | ilarity of Triangles          | ) |
|   | 4.1 | Different similarity criteria | ) |
|   | 4.2 | Properties                    | ) |
|   | 4.3 | Practice problems             | Ĺ |

## 1 Congruence of Triangles

| Two triangles $\triangle ABC$ and $\triangle A_1B_1C_1$ are said to be congruent when their <b>corresponding</b> sides and <b>corresponding</b> angles are equal.                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                              |
| 1.1 Different congruence criteria                                                                                                                                                                                                                            |
| Criterion SSS (side-side)  If three pairs of corresponding sides are equal, then the triangles are congruent.  Criterion SAS (side-angle-side)  If two pairs of corresponding sides and the angles between them are equal, then the triangles are congruent. |
| Criterion ASA (angle-side-angle) If two pairs of corresponding angles and the sides formed by the common rays of these angles are equal, then the triangles are congruent.                                                                                   |
|                                                                                                                                                                                                                                                              |

#### 2 Angles of a Transversal

#### 2.1 Types of angles

When two lines p and q are intersected by a third line t, we get 8 angles. The line t is called a transversal. The pairs of angles, depending on their position relative to the transversal and the two given lines are called:

**corresponding angles**: if they lie on the same side of the transversal and one of them is in the interior of the lines p and q, while the other one is in the exterior.

alternate angles: if they lie on different side of the transversal and both of them are either in the interior or in the exterior of the lines p and q;

**consecutive interior angles**: if they lie on the same side of the transversal and both of them are either in the interior or in the exterior of the lines p and q.

#### 2.2 Properties

| Property 2.3 | : In any triangle, a | greater side sul | otends a greater a | ngle. |
|--------------|----------------------|------------------|--------------------|-------|
| F            |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |
|              |                      |                  |                    |       |

|                 | l (Triangle Iner<br>than the lengtl |                |         | e, the sum of | f the lengths | of any two |
|-----------------|-------------------------------------|----------------|---------|---------------|---------------|------------|
| ndes is greate. | t than the length                   | if of the time | a side. |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 | es is parallel to                   |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |
|                 |                                     |                |         |               |               |            |

**Property 2.6**: Let M be a midpoint of the side AB in the triangle ABC. Prove that  $\angle ABC = 90^{\circ}$  if and only if  $\overline{MA} = \overline{MB} = \overline{MC}$ .

#### 2.3 Practice problems

- 1. Let ABC be an equilateral triangle. Let  $D \in AB$  and  $E \in BC$ , such that AD = BE. Let  $AE \cap CD = F$ . Find  $\angle CFE$ .
- 2. In the triangle ABC, let  $A_1$  be the midpoint of BC and let  $B_1$  and  $C_1$  be the feet of the altitudes from the vertices B and C, respectively. Prove that the triangle  $A_1B_1C_1$  is equilateral if and only if  $\angle BAC = 60^{\circ}$ .
- 3. Let M and N be midpoints of the sides AB and AC, respectively, in a triangle ABC. Let P and Q be points outside the triangle, such that  $PM \perp AB$ ,  $PM = \frac{1}{2}AB$  and  $QN \perp AC$ ,  $QN = \frac{1}{2}AC$ . If L is the midpoint of BC, prove that LP = LQ and  $\angle PLQ = 90^{\circ}$ .
- 4. Let C be a point on the line segment AB. Let D be a point that doesn't lie on the line AB. Let M and M be points on the angle bisectors of  $\angle ACD$  and  $\angle BCD$ , respectively, such that  $MN \parallel AB$ . Prove that the line CD bisects MN.
- 5. Let ABC be a triangle and let M be a point on the ray AB beyond B, such that  $\overline{BM} = \overline{BC}$ . Prove that MC is parallel to the angle bisector of ABC.
- 6. (IGO 2015, Elementary) Let ABC be a triangle with  $\angle A = 60^{\circ}$ . The points M, N and K lie on BC, AC and AB, respectively, such that  $\overline{BK} = \overline{KM} = \overline{MN} = \overline{NC}$ . If  $\overline{AN} = 2\overline{AK}$ , find the values of  $\angle B$  and  $\angle C$ .
- 7. Let ABCD be a convex quadrilateral with right angle at the vertex C. Let  $P \in CD$ , such that  $\angle APD = \angle BPC$  and  $\angle BAP = \angle ABC$ . Prove that

$$\overline{BC} = \frac{\overline{AP} + \overline{BP}}{2}$$

8. (IGO 2017, Intermediate) Let ABC be an acute-angled triangle with  $\angle A = 60^{\circ}$ . Let E, F be the feet of altitudes through B, C respectively. Prove that  $\overline{CE} \cdot \overline{BF} = \frac{3}{2}(\overline{AC} \cdot \overline{AB})$ .

- 9. Prove that any point P that lies on the side bisector of a line segment AB is equidistant from the endpoints.
- 10. Let  $P_0$  be the reflection of the point P with respect to the line AB. Prove that  $\triangle PAB \cong \triangle P_0AB$ .

### 3 Area of Triangles

#### 3.1 Revision

Area of a triangle =  $\frac{1}{2} \times \text{base} \times \text{altitude} = \frac{1}{2} \times AC \times BD$ 



#### 3.2 Properties

#### Property 3.1

- 1. Two triangles that have base sides of equal length and a common altitude, have equal areas.
- 2. Two triangles that have a common base side and altitudes of equal length, have equal areas.



**Property 3.2**: Let A, P, B be collinear points in that order and let Q be a point that is not collinear with them. Then

$$\frac{P_{\triangle APQ}}{P_{\triangle BPQ}} = \frac{\overline{AP}}{\overline{PB}}$$



**Property 3.3 (Thales' Proportionality Theorem)**: Let OAB be a triangle and let CD be a line that intersects its sides OA and OB at C and D, respectively. Prove that

$$AB \parallel CD \iff \frac{\overline{OC}}{\overline{CA}} = \frac{\overline{OD}}{\overline{DB}}$$



#### 3.3 Practice problems

- 1. Let ABCD be a parallelogram with area 1. Let M be the midpoint of the side AD. Let  $BM \cap AC = P$ . Find the area of MPCD.
- 2. Let ABCD be a trapezoid  $(AB \parallel CD)$ . Let its diagonals AC and BD intersect at P. Let the areas of the triangle  $\triangle ABP$  and  $\triangle CDP$  be m and n, respectively. Prove that area of  $ABCD = (\sqrt{m} + \sqrt{n})^2$ .
- 3. Let P be a point on the side AB in  $\triangle ABC$ , such that AP = 3PB. Let  $Q \in AC$ , such that AQ = 4QC. Prove that BQ bisects the line segment CP.

## 4 Similarity of Triangles

| Two triangles $\Delta ABC$ and $\Delta A_1B_1C_1$ are said to be similar when their <b>corresponding</b> angles are equal and their <b>corresponding</b> sides are proportional. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| Question: What is the ratio of areas of two similar triangles if the ratio of their sides is $k$ ? ( $k$ is called the <b>ratio of similarity</b> )                              |
| 4.1 Different similarity criteria                                                                                                                                                |
| Criterion AA (angle-angle)                                                                                                                                                       |
| If two pairs of corresponding angles are equal, then the triangles are similar.                                                                                                  |
| Criterion SSS (side-side)                                                                                                                                                        |
| If three pairs of corresponding sides are proportional, then the triangles are similar.  Criterion SAS (side-angle-side)                                                         |
| If two pairs of corresponding sides are proportional and the angles between them are equal, then the triangles are similar.                                                      |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |

#### 4.2 Properties

**Property 4.1 (Euclid's laws)**: In a right triangle ABC, with the right angle at C, let D be the foot of the perpendicular from C to AB. Prove that:

$$\overline{CD} = \overline{AD} \cdot \overline{DB}$$

$$\overline{AC} = \overline{AD} \cdot \overline{AB}$$

$$\overline{BC} = \overline{BD} \cdot \overline{BA}$$



**Property 4.2 (Pythagorean Theorem)**: Prove that the square of the hypothenuse in a right triangle is equal to the sum of the squares of the legs.





#### 4.3 Practice problems

- 1. Let  $\triangle ABC$  be a right triangle. The angle bisector of  $\angle ABC$  intersects AC at D. If AD=5 and CD=3, find AB.
- 2. In the triangle ABC, let BE and CF be perpendiculars to the angle bisector AD. Prove that  $\overline{AE} \cdot \overline{DF} = \overline{AF} \cdot \overline{DE}$ .
- 3. Let ABC be a right triangle ( $\angle BCA = 90^{\circ}$ ). Let CD be the altitude from the vertex C. Prove that the distances from the point D to the legs of the triangle are proportional to the lengths of the legs.
- 4. (Sharygin 2011, Correspondence Round). The diagonals of a trapezoid ABCD meet at point O. Point M of lateral side CD and points P, Q of bases BC and AD are such that segments MP and MQ are parallel to the diagonals of the trapezoid. Prove that line PQ passes through point O.