STAT512 – Exam 2 Spring 2018

Honor Pledge: I have not given, received, or used any unauthorized assistance on this exam.				
Signature:				
Printed Name:_	KEY			

Instructions:

- Open book, open notes, calculator required. No computers or cell phones.
- Time limit is 1 hour 50 minutes strictly enforced!
- If an answer is in the computer output, use it; don't calculate it by hand.
- Show your work where appropriate. Put your final answer in the box (if provided).
- Make explanations brief and legible.
- All questions are worth 4 points except where noted. Maximum score is 100.
- Computer input/output is provided at the end of the exam.
- The exam contains a total of 13 pages (including computer input/output).
- If you run out of space, you may use the blank area on page 6.

Questions 1 through 2: An experiment was done to investigate the material hardness (Y) of 4 trts (A,B,C,D). The experiment took a total of 4 days to complete, because a group of 4 units are sprayed and left to dry in a ventilated hood overnight and tested the following day. It was thought that **position** (1,2,3,4) in the hood may affect the resulting hardness (Y) of the material. Suppose now that random assignments were made such that each treatment was represented exactly once on each day (1,2,3,4) and each position (1,2,3,4). There are a total of 4 trts * 4 reps = 16 observations.

	Day1	Day2	Day3	Day4
Pos1	Α	D	С	В
Pos2	В	Α	D	С
Pos3	С	В	Α	D
Pos4	D	С	В	Α

1. What is the name for this design? Circle one answer.

CRD RCB Latin Square Split-Plot

2. Provide R code to fit an appropriate model. (I am just looking for a single line of R code.)

Lm (YN Trt + Day + Pos)

Questions 3 through 13 (Feed Trial): A study was done to investigate a new vitamin supplement for cattle. A successful supplement would increase ADG (average daily gain) in cattle. Three Feed formulations (A, B, C) and two levels of Suppl (0 or 1) were considered. Feeds are expected to be different, so the research question focused on the effect of Suppl for each Feed. A total of 24 pens of cattle were randomly assigned to one of 6 treatment combinations (2 Suppl x 3 Feed). ADG was recorded at the end of the study. The R input and output are labeled Feed Trial. Use $\alpha = 0.05$.

Questions 3 through 7: The following questions use just the Model1 results.

3. Considering the **emmeans1 \$emmeans** output, a colleague notices that that SE is the same for each of the treatment combinations (SE = 0.072). Briefly explain why the SE is the same.

Model based SE assuming equal variance (and we have a balanced design)

Note. Need more than balanced design

4. Considering the **emmeans1** and **emmeans2 \$contrasts** output, both are comparing levels of Suppl. Briefly explain the <u>difference</u> between the two sets of comparisons (for someone with little knowledge of statistics).

emmeans 2 compares Supple 0 vs 1 at each level of Feed.

emmeans 2 compares Supple 0 vs 1 averaging over levels.

of Feed.

5. Calculate the F test statistic corresponding to the main effect of Suppl.

F= MS Supple = (0,459/1) = ZZ.15

F=22.15

6. What is the **p-value** corresponding to the test of main effect of **Suppl**? Hint: This information appears elsewhere in the output.

emmeans 2 \$ contrasts output.

0,0002

7. A colleague notices that the Feed:Suppl interaction is not significant (F = 2.301, p = 0.1288). He says that since the interaction is not significant, based on the "Factorial Principle" that it is <u>wrong</u> to present the **emmeans1** comparisons and <u>only</u> the **emmeans2** comparisons should be considered. Do you agree? Briefly discuss.

When interaction is not significant we can increase power by focusing on main effect comparisons (emmeans 2) but it is OK to look at interaction comparisons (emmeans 1).

Think about research questions.

Model I includes Feed: Suppl interaction Model Z only includes main effects.

Briefly explain the difference between Models 1 and 2.

9. Is there any <u>advantage</u> to using Model2 (as compared to Model1)? Discuss. Hint: Think in terms of power, but there may be other approaches.	
* Slight increase in dfResid from 18 720	
Not much advantage. * Slight increase in dfResid from 18 > 20 but also increase in MSResid from 0.0707 > 0.0234 SE=6.059 > SE=0.06	2
10. As there any <u>disadvantage</u> to using Model2 (as compared to Model1)? Discuss. Hint: Consider the emmeans3 and emmeans4 results.	•
Cannot estimate interaction contrasts!	
Actually increase SE for main effect of Suppli (see above))
Questions 11 through 13 (Feed Trial continued): Now return to Model 1 and consider the following	
scenarios.	
11. Suppose (just for this question), that the data had not been balanced. For example, 2 (out of 6) treatme combinations had 3 pens (instead of 4) for a total of 22 pens for the study. What modifications to the I code would be required?	
No changes required.	
No changes required. Already using Type 3 tests and emmeans.	
12. Suppose (just for this question), that the investigators had recorded the initial weight (Weight0) of each pen and wanted to include Weight0 as a covariate in the model. Provide R code to fit an appropriate model. (I am just looking for a single line of R code.)	a
lm (ADG N Feed * Supp + Weighto)	
Gave full credit for feed * Support Weight, but add three covariate to	d
To Track Subb + (Il Para ID))	
[Iner (ADG N Feed * Supp + CI [PenID))	3
-4 for fixed Pen	24

Questions 14 through 19 (Germination):						
germination rate of seeds for a certain varie	ety of w	heat. Tempera	iture (Temp) rai	nged between 5 and 30 degrees		
(Celsius). At each level of temperature 40	seeds v	vere tested (Nte	est = 40) and the	e number that germinated		
(Ngerm) were recorded. The goal of the a	nalysis	is to model the	probability of g	germination as a function of		
temperature. The R input and output are la						
14. Briefly explain the difference betw	een Mo	dels 1 and 2.	Note: I am looki	ng for more than the R		
function!				_		
Model I linear	regi	resolven				
Model 2 logistic	, req	ression				
	·					
15. For Model1, identify and interpret	the slop	<u>se</u> . Be specific.	,			
A 1º increase in Te increase in Piedia	1 4 4 5~	is allow:	-1 - 1 3034	0.013 (additive)		
A I modes in le	-	is associ.	ared with	A Company of the Company		
increase in PBros	52611	ity for no	obox from)	germination		
- Q-mentionizationsee	AND DESCRIPTION OF PERSONS ASSESSMENT OF PER			0		
16. For Model2 , identify and <u>interpret</u>						
A 10 increase in T $exp(0.055) = 1.0$ In the predict	emp	is ass	ociated !	with		
	ETT	1 010.	Libration	ATOO SINCLOOKO		
exp(0.055) = 1.0	<u> </u>	(0(2.6%) [MITTPICA	The meterse		
in the predict	than a	10h alxn	Mation			
17. Comparing the plots of both mode	ls, does	one model see	m to fit better?	Or is there any evidence of		
"lack of fit" for either model?				01 12 011010 unij 0 1 1 u 0 1 0 1		
Both models provide similar predicted values Cover observed range of Temps.						
150th Models pro	ovide	Similar	predicta	ed values		
Louex obselv	ed	course of	- Temps	*		
1: ()	N.A.	8	· Reduction			
No lack of.	77					
18. Looking at the predicted values for both models , we get similar predicted values at Temp = 18 but						
noticeably different predicted values at Temp = 60. Explain why the <u>predicted values are so different at</u>						
$\underline{\text{Temp}} = 60$. Be specific. (I am looking for more than that we are using two different models).						
	Temp	PredMod1	PredMod2			
	18	0.527	0.529			
	60	1.085	0.918			

Model 2 allows a non-linear response. Curvature beyond the range of data.

19. Do you feel "confident" in the prediction at Temp = 60 for either model? Briefly discuss.

Model I gives predicted prop/prob >1 which makes no sense).

But even Model 2 we are extrapolating beyond the range of the data.

Questions 20 through 25: An RCB analysis was done using R. There are a total of 3 Trts * 5 Blocks = 15 observations. See ANOVA table below.

Anova Table (Type III tests)

Sum Sq Df F value Pr(>F)
(Intercept) 333.55 1 733.732 3.716e-09 ***
Block 5.75 4 3.161 0.0778 .
Trt 53.27 2 58.587 1.668e-05 ***
Residuals 3.64 8

20. Calculate the SE for the difference between Trt means. Show your work to receive full credit.

SE= \(\frac{2. Ms Resid}{n} = \sqrt{\frac{2.(3.64/8)}{5}} = 0.426

0.426

21. Could a Block*Trt interaction have been included in this model? Discuss. Hint: Think about df.

[NO] The interaction would require 8 df. This would leave O df for Resid.

Note: Need More than just reduce of reduces power.

22. Suppose (just for this question) that Block had been dropped from the model, would dfResid be higher or lower? (2 pts)

Higher Lower

23. Suppose (just for this question) that Block had been dropped from this model, would SSResid be higher or lower? (2 pts)

Higher Lower

24. All other things held equal, will a model with higher dfResid have higher or lower power? (2 pts)

(Higher Lower

25. All other things held equal, will a model with higher MSResid have higher or lower power? (2 pts)

Higher Lower

Questions continue on the next page....

<u>Questions 26 through 27:</u> An experiment was done to compare Yield (Y) for 5 Varieties * 3 Herbicides = 15 treatment combinations. Four **Blocks** of fifteen plots were laid out in a field. <u>Within each block</u>, five Varieties (A,B,C,D,E) were randomly assigned to North-South columns. <u>Within each column</u>, three **Herbicide** treatments (1,2,3) were randomly assigned. There are a total of 15 trts * 4 blocks = 60 observations. The layout for <u>block 1</u> is shown below (but remaining blocks are not shown!).

D2	A2	E1	В3	C1
D3	A1	E2	B1	С3
D1	А3	E3	B2	C2

26. What is the name for this design? Circle one answer.

CRD

RCB

Latin Square

Split-Plot

Var = Whole Plot Factor Herb = Sub Plot Factor

27. Provide R code for analysis. (I am just looking for a single line of R code.)

Iner (YN Varx Herb + (IBlock) + (IBlock: Var))

-2 for (IBlock Herb) instead of Block: Var

Feed Trial (Questions 3 through 13)

```
library(dplyr)
library(car)
library(emmeans)
FeedData$Suppl <- as.factor(FeedData$Suppl)</pre>
str(FeedData)
SumStats <- summarize(group by(FeedData, Feed, Suppl),
                       n = n(),
                       mean = mean(ADG),
                       sd = sd(ADG),
                            = sd/sqrt(n)
                       SE
SumStats
with(interaction.plot(Feed, Suppl, ADG, lwd = 2), data = FeedData)
options(contrasts = c("contr.sum", "contr.poly"))
Model1 <- lm(ADG ~ Feed*Suppl, data = FeedData)</pre>
Anova (Model1, type = 3)
#EMMEANS1
emmeans (Model1, pairwise ~ Suppl|Feed)
#EMMEANS2
emmeans (Model1, pairwise ~ Suppl)
#MODEL2
Model2 <- lm(ADG ~ Feed + Suppl, data = FeedData)</pre>
Anova (Model2, type = 3)
#EMMEANS3
emmeans (Model2, pairwise ~ Suppl|Feed)
#EMMEANS4
emmeans (Model2, pairwise ~ Suppl)
> library(dplyr)
> library(car)
> library(emmeans)
> FeedData$Suppl <- as.factor(FeedData$Suppl)</pre>
> str(FeedData)
Classes 'tbl df', 'tbl' and 'data.frame':
                                               24 obs. of 4 variables:
 $ Feed : chr "A" "A" "A" "A" ...
 $ Suppl: Factor w/ 2 levels "0", "1": 1 1 1 1 2 2 2 2 1 1 ...
 $ ADG : num 1.55 1.81 1.99 1.93 2.2 ...
> SumStats <- summarize(group_by(FeedData, Feed, Suppl),</pre>
+
                         n = n()
                         mean = mean(ADG),
+
                         sd = sd(ADG),
+
                              = sd/sqrt(n)
                         SE
```

```
> SumStats
# A tibble: 6 x 6
# Groups: Feed [?]
  Feed
       Suppl
                  n
                     mean
                               sd
                                       SE
  <chr> <fct> <int> <dbl>
                            <db1>
                                   <dbl>
1 A
                   4
                      1.82 0.195
2 A
        1
                      2.25 0.0449 0.0224
3 B
        0
                      2.22 0.0861 0.0430
4 B
        1
                   4
                      2.50 0.167
                                  0.0833
5 C
        0
                   4
                      2.79 0.147
                                  0.0735
6 C
        1
                      2.92 0.165
                                  0.0826
> with(interaction.plot(Feed, Suppl, ADG, lwd = 2), data = FeedData)
```



```
> #MODEL1
> options(contrasts = c("contr.sum", "contr.poly"))
> Model1 <- lm(ADG ~ Feed*Suppl, data = FeedData)</pre>
> Anova(Model1, type = 3)
Anova Table (Type III tests)
Response: ADG
             Sum Sq Df
                         F value
                                    Pr(>F)
(Intercept) 140.052
                      1 6764.833 < 2.2e-16 ***
Feed
              2.752
                      2
                          66.458 4.885e-09 ***
Suppl
              0.459
                      1
Feed:Suppl
              0.095
                      2
                           2.301 0.1288688
Residuals
              0.373 18
---
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \ ' 1
```

```
> #EMMEANS1
> emmeans (Model1, pairwise ~ Suppl|Feed)
$emmeans
Feed = A:
Suppl emmean SE df lower.CL upper.CL
     1.816961 0.07194272 18 1.665815 1.968107
      2.247085 0.07194272 18 2.095939 2.398231
 1
Feed = B:
Suppl emmean SE df lower.CL upper.CL
 0 2.220061 0.07194272 18 2.068915 2.371207
      2.498621 0.07194272 18 2.347475 2.649768
 1
Feed = C:
 Suppl emmean SE df lower.CL upper.CL
 0 2.794944 0.07194272 18 2.643798 2.946090
     2.916420 0.07194272 18 2.765274 3.067566
1
$contrasts
Feed = A:
contrast estimate SE df t.ratio p.value
 0 - 1 -0.4301239 0.1017424 18 -4.228 0.0005
Feed = B:
 contrast estimate SE df t.ratio p.value
 0 - 1 -0.2785603 0.1017424 18 -2.738 0.0135
Feed = C:
contrast estimate SE df t.ratio p.value
 0 - 1 -0.1214767 0.1017424 18 -1.194 0.2480
> #EMMEANS2
> emmeans(Model1, pairwise ~ Suppl)
NOTE: Results may be misleading due to involvement in interactions
$emmeans
 Suppl emmean SE df lower.CL upper.CL
      2.277322 0.04153615 18 2.190058 2.364586
      2.554042 0.04153615 18 2.466778 2.641306
$contrasts
 contrast estimate SE df t.ratio p.value
 0 - 1 -0.2767203 0.05874098 18 -4.711 0.0002
```

Results are averaged over the levels of: Feed

```
> #MODEL2
> Model2 <- lm(ADG ~ Feed + Suppl, data = FeedData)
> Anova(Model2, type = 3)
Anova Table (Type III tests)
Response: ADG
            Sum Sq Df F value Pr(>F)
(Intercept) 140.052 1 5986.075 < 2.2e-16 ***
           2.752 2 58.807 4.204e-09 ***
Feed
           0.459 1 19.637 0.0002567 ***
Suppl
Residuals
           0.468 20
Signif. codes: 0 \*** 0.001 \** 0.01 \*' 0.05 \.' 0.1 \' 1
> #EMMEANS3
> emmeans (Model2, pairwise ~ Suppl Feed)
$emmeans
Feed = A:
Suppl emmean SE df lower.CL upper.CL
      1.893662 0.06244515 20 1.763404 2.023921
 1
      2.170383 0.06244515 20 2.040124 2.300641
Feed = B:
 Suppl emmean SE df lower.CL upper.CL
     2.220981 0.06244515 20 2.090723 2.351239
      2.497701 0.06244515 20 2.367443 2.627960
 1
Feed = C:
 Suppl emmean SE df lower.CL upper.CL
 0 2.717322 0.06244515 20 2.587064 2.847580
      2.994042 0.06244515 20 2.863784 3.124300
$contrasts
Feed = A:
 contrast estimate SE df t.ratio p.value
         -0.2767203 0.06244515 20 -4.431 0.0003
Feed = B:
           estimate
                          SE df t.ratio p.value
 contrast
 0 - 1 -0.2767203 0.06244515 20 -4.431 0.0003
Feed = C:
 contrast estimate
                           SE df t.ratio p.value
         -0.2767203 0.06244515 20 -4.431 0.0003
```

See next page...

> #EMMEANS4

> emmeans(Model2, pairwise ~ Suppl)

\$emmeans

 Suppl
 emmean
 SE df
 lower.CL
 upper.CL

 0
 2.277322
 0.04415539
 20
 2.185215
 2.369428

 1
 2.554042
 0.04415539
 20
 2.461936
 2.646149

\$contrasts contrast estimate SE df t.ratio p.value 0 - 1 -0.2767203 0.06244515 20 -4.431 0.0003

Results are averaged over the levels of: Feed

Germination (Questions 14 through 19)

```
GermData$PropGerm <- GermData$Ngerm/GermData$Ntest</pre>
GermData
#Model1
Model1 <- lm(PropGerm ~ Temp, data = GermData)</pre>
summary(Model1)
#Model2
Model2 <- glm(cbind(Ngerm, Ntest-Ngerm) ~ Temp, family = binomial(link = "
logit"), data = GermData)
summary(Model2)
#Predictions (both models)
NewData <- data.frame(Temp = c(18, 60))
Predictions <- data.frame(NewData,
                         PredMod1 = predict(Model1, NewData),
                         PredMod2 = predict(Model2, NewData,
                                     type = "response"))
Predictions
> GermData$PropGerm <- GermData$Ngerm/GermData$Ntest</pre>
> GermData
 Temp Ntest Ngerm PropGerm
    5
1
         40
               13
                     0.325
2
   10
         40
               17
                     0.425
3
   15
         40
               21
                     0.525
        40
4
   20
               23
                     0.575
5
   25
      40
               24
                     0.600
6
   30
         40
               27
                     0.675
> #Model1
> Model1 <- lm(PropGerm ~ Temp, data = GermData)</pre>
> summary(Model1)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
Temp
           0.013286
                      0.001373 9.678 0.000638 ***
Residual standard error: 0.02871 on 4 degrees of freedom
Multiple R-squared: 0.959, Adjusted R-squared: 0.9488
F-statistic: 93.67 on 1 and 4 DF, p-value: 0.0006377
```

Germination continued (Questions 14 through 19)

```
> #Model2
> Model2 <- glm(cbind(Ngerm, Ntest-Ngerm) ~ Temp, family = binomial(link =
"logit"), data = GermData)
> summary(Model2)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.87292
                         0.30515
                                  -2.861 0.004228 **
Temp
             0.05491
                         0.01585
                                   3.464 0.000533 ***
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 13.11149
                              on 5
                                    degrees of freedom
Residual deviance: 0.54339
                              on 4
                                    degrees of freedom
AIC: 29.117
> #Predictions (both models)
> NewData <- data.frame(Temp = c(18, 60))</pre>
> Predictions <- data.frame(NewData,</pre>
                 PredMod1 = predict(Model1, NewData),
                 PredMod2 = predict(Model2, NewData, type = "response"))
> Predictions
  Temp PredMod1
                 PredMod2
    18 0.5274762 0.5288117
1
    60 1.0854762 0.9184448
> #Plots (both models)
> #Model1
> plot(PropGerm ~ Temp, data = GermData, main = "Model1")
> abline(coef(Model1))
> #Model2
> TempRange <- seq(0, 35, 0.5)</pre>
> phat <- predict(Model2, list(Temp = TempRange), type = "response")</pre>
> plot(PropGerm ~ Temp, data = GermData, main = "Model2")
> lines(phat ~ TempRange)
                       Model1
                                                     Model2
```

Prop Gem 5 10 15 20 25 30 Temp

Exam 2 "Extra" Output

Note: This information was NOT provided during the original exam!

#5,6

> Anova(Model1, type = 3)
Anova Table (Type III tests)
Response: ADG

Sum Sq Df F value Pr(>F) (Intercept) 140.052 1 6764.833 < 2.2e-16 *** Feed 2.752 2 66.458 4.885e-09 *** Suppl 0.459 1 (22.192 0.0001743)*** Feed:Suppl 0.095 2 2.301 0.1288688 Residuals 0.373 18

#18, 19

0.

0.8

9.0

0.4

0.2

0.0

Model1

50

Model2

#20

PropGerm

> library(emmeans)

0 10

> emmeans(Model, pairwise ~ Trt)

30

Temp

\$contrasts

con	trast	estimate	SE	df	t.ratio	p.value
A -	В	-1.892546	0.4264264	8	-4.438	0.0055
A -	С	-4.592350	0.4264264	8	-10.769	<.0001
В -	С	-2.699804	0.4264264	8	-6.331	0.0006

Warning message:

In anova.lm(Model2) :

ANOVA F-tests on an essentially perfect fit are unreliable