Security Protocols and Verification

Design and Analysis of Cryptographic Protocols

Garance Frolla Ely Marthouret Ewan Decima

Team: ASKO OM8464A2

September / November 2025

Contents

1	Init	ial Knowledge	2
2	Ely	ig frog 2	
3	\mathbf{Pro}	Protocol Description	
	3.1	Messages cost and description	2
	3.2	Value Generated	3
	3.3	Security Properties	3

1 Initial Knowledge

At the beginning of the protocol, agents A and B are assumed to know all public keys, especially each other's. Both A and B also know their respective symmetric keys (K_{AS} and K_{BS}) shared with an honest server S and there clocks are synchronised on the S one. Furthermore, each participant is aware of the chosen protocol and the following specifications.

2 Ely the big frog

- 1. $A \rightarrow B : \{|\langle A, N_A \rangle|\}_{K_{AB}}$
- 2. $A \to S : \{ |\langle B, \tau, \lambda, K_{AB} \rangle | \}_{K_{AS}}$
- 3. $S \to B : \{ |\langle A, \tau, \lambda, K_{AB} \rangle| \}_{K_{BS}}$
- 4. $B \to A : \{|N_A + 1|\}_{K_{AB}}$

3 Protocol Description

3.1 Messages cost and description

This protocol begins with entity A generating a nonce, denoted as N_A . A then encrypts her identity together with the nonce using the freshly generated session key K_{AB} . The transmitted data is structured as follows: $\{|\langle A, N_A \rangle|\}_{K_{AB}}$. This message costs **63**.

After sending the first message, A sends to the honest and trusted server S, using the shared key K_{AS} , the identity of B, a timestamp τ , a lifetime period λ to confirm the key and the session key K_{AB} . The transmitted data is structured as follows: $\{|\langle B, \tau, \lambda, K_{AB} \rangle|\}_{K_{AS}}$. This message costs **166**.

First, S checks whether $t \geq \tau + \lambda$, where t denotes the time at which S receives the message from A. If this condition holds, S aborts. Otherwise, using the shared key K_{BS} , S sends to B essentially the same message as before, except that A is replaced with B. The transmitted data is structured as follows: $\{|\langle A, \tau, \lambda, K_{AB} \rangle|\}_{K_{BS}}$. This message costs: **166**.

B receives the message $\{|\langle A, \tau, \lambda, K_{AB} \rangle|\}_{K_{BS}}$ and obtains the session key K_{AB} . He also learns the validity period λ , starting from time τ , during which A will accept his response. This measure provides protection against ticket theft. Indeed, even if an attacker manages to intercept a ticket, they will not be able to use it after its expiration. When B receives this message at time t, if $t \geq \tau + \lambda$, then B aborts.

Otherwise, B respond to the first message of A, he can decrypt $\{|\langle A, N_A \rangle|\}_{K_{AB}}$ with the session key. Key confirmation lies in the fact that B sends back $N_A + 1$ to A. In this way, A knows that B has successfully retrieved the key. This allows combining key confirmation with the challenge–response mechanism for the authentication of B with respect to A. The transmitted data is structured as follows: $\{|N_A + 1|\}_{K_{AB}}$. This message costs $\mathbf{12}$.

At the end, when A receives the last message from B at time t, she checks whether $t \geq \tau + \lambda$. If this condition holds, A rejects the message and aborts. Otherwise, the key exchange protocol succeeds.

The total cost is: 409.

3.2 Value Generated

- N_A is a nonce generated by A.
- K_{AB} is a perfectly random symmetric key generated by A.
- τ is a timestamp generated by A based on the clock synchronized by S.
- λ is a duration generated by A, small enough to be secure but long enough to establish a communication.

3.3 Security Properties

In addition to the security properties specified in the project description, we have:

• Freshness: K_{AB} is freshly generated by A, independently of B and of the current time. Each new session results in a newly generated key K_{AB} .

- Authentification: When B receives the first message $\{|\langle A, N_A \rangle|\}_{K_{AB}}$, he can't be sure that A sends it to him. But after receiving $\{|\langle A, \tau, \lambda, K_{AB} \rangle|\}_{K_{BS}}$ from S he can be sure of the origin of the first message. Indeed, A uses S to authenticate to B. Since the message containing A's identity is encrypted with K_{BS} , B can be sure that A initiated the conversation.
- Key confirmation: After receiving the third message, B obtains the session key K_{AB} from S. To confirm possession of this key, B sends back to A the value $N_A + 1$, encrypted under K_{AB} . This proves to A that B has indeed obtained the correct key.
- Secrecy: Nobody except for agents A and B know the session key K_{AB} . Indeed, all messages transmitted over the network are encrypted using symmetric encryption.
- Integrity: Each message is encrypted with a symmetric key, ensuring that only an entity possessing the corresponding key $(K_{AB}, K_{AS}, \text{ or } K_{BS})$ can modify its contents.