Equipe $abnT_EX2$

Modelo Canônico de Trabalho Acadêmico com abnTEX2

Brasil

2014, v-1.9.2

Equipe abnTEX2

Modelo Canônico de Trabalho Acadêmico com abnTEX2

Modelo canônico de trabalho monográfico acadêmico em conformidade com as normas ABNT apresentado à comunidade de usuários LATEX.

Universidade do Brasil – UBr Faculdade de Arquitetura da Informação Programa de Pós-Graduação

Orientador: Lauro César Araujo

Coorientador: Equipe $abnT_EX2$

Brasil 2014, v-1.9.2

Equipe $abnT_EX2$

Modelo Canônico de

Trabalho Acadêmico com abn
TEX2/ Equipe abn TEX2. – Brasil, 2014, v-1.9.2-49 p. : il. (algumas color.) ; 30 cm.

Orientador: Lauro César Araujo

Tese (Doutorado) – Universidade do Brasil – UBr Faculdade de Arquitetura da Informação Programa de Pós-Graduação, 2014, v-1.9.2.

1. Palavra-chave
1. 2. Palavra-chave 2. I. Orientador. II. Universidade xxx. III. Faculdade de xxx. IV. Título

CDU 02:141:005.7

Errata

Elemento opcional da ABNT (2011, 4.2.1.2). Exemplo:

FERRIGNO, C. R. A. Tratamento de neoplasias ósseas apendiculares com reimplantação de enxerto ósseo autólogo autoclavado associado ao plasma rico em plaquetas: estudo crítico na cirurgia de preservação de membro em cães. 2011. 128 f. Tese (Livre-Docência) - Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2011.

Folha	Linha	Onde se lê	Leia-se
1	10	auto-conclavo	autoconclavo

Equipe $abnT_EX2$

Modelo Canônico de Trabalho Acadêmico com abnTEX2

Modelo canônico de trabalho monográfico acadêmico em conformidade com as normas ABNT apresentado à comunidade de usuários LATEX.

Trabalho aprovado. Brasil, 24 de novembro de 2012:

Lauro César Araujo Orientador
Professor Convidado 1
Professor Convidado 2

 $\begin{array}{c} {\rm Brasil} \\ 2014, \, {\rm v\text{-}} 1.9.2 \end{array}$

Este trabalho é dedicado às crianças adultas que, quando pequenas, sonharam em se tornar cientistas.

Agradecimentos

Os agradecimentos principais são direcionados à Gerald Weber, Miguel Frasson, Leslie H. Watter, Bruno Parente Lima, Flávio de Vasconcellos Corrêa, Otavio Real Salvador, Renato Machnievscz¹ e todos aqueles que contribuíram para que a produção de trabalhos acadêmicos conforme as normas ABNT com LATEX fosse possível.

Agradecimentos especiais são direcionados ao Centro de Pesquisa em Arquitetura da Informação² da Universidade de Brasília (CPAI), ao grupo de usuários $latex-br^3$ e aos novos voluntários do grupo $abnT_EX2^4$ que contribuíram e que ainda contribuirão para a evolução do abn T_EX2 .

Os nomes dos integrantes do primeiro projeto abnTEX foram extraídos de http://codigolivre.org.br/
projects/abntex/>

 $^{^{2}}$ <http://www.cpai.unb.br/>

^{3 &}lt;http://groups.google.com/group/latex-br>

^{4 &}lt;http://groups.google.com/group/abntex2> e <http://abntex2.googlecode.com/>

"Não vos amoldeis às estruturas deste mundo, mas transformai-vos pela renovação da mente, a fim de distinguir qual é a vontade de Deus: o que é bom, o que Lhe é agradável, o que é perfeito. (Bíblia Sagrada, Romanos 12, 2)

Resumo

Segundo a ABNT (2003, 3.1-3.2), o resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto.

Palavras-chaves: latex. abntex. editoração de texto.

Abstract

This is the english abstract.

 $\mathbf{Key\text{-}words}:$ latex. abntex. text editoration.

Lista de ilustrações

Lista de tabelas

Lista de abreviaturas e siglas

ABNT Associação Brasileira de Normas Técnicas

abnTeX — ABsurdas Normas para TeX

Lista de símbolos

 Γ Letra grega Gama

 Λ Lambda

 \in Pertence

Sumário

	Introdução
1	CAPÍTULO 1
1.1	Oscilador LC MOS cruzado acoplado
1.2	Oscilador Royer
1.3	Oscilador Mazzilli
1.3.1	Modos de Operação
1.3.2	Limitações do circuito
1.3.2.1	Dependência da carga
1.3.2.2	Resposta do Gate
1.3.2.3	Alta voltagem no Gate
1.3.3	Resistência do transistor
1.4	Aquecimento por indução
1.4.1	Efeito skin
1.4.2	Histerese
1.4.3	Eficiência de aquecimento
	Conclusão
	Referências
	APÊNDICES 37
	APÊNDICE A – QUISQUE LIBERO JUSTO
	APÊNDICE B – NULLAM ELEMENTUM URNA VEL IMPERDIET SODALES ELIT IPSUM PHARETRA LIGULA AC PRETIUM ANTE JUSTO A NULLA CURABI- TUR TRISTIQUE ARCU EU METUS 41

ANEXOS	43
ANEXO A – MORBI ULTRICES RUTRUM LOREM	45
ANEXO B – CRAS NON URNA SED FEUGIAT CUM SOCIIS NA- TOQUE PENATIBUS ET MAGNIS DIS PARTURI- ENT MONTES NASCETUR RIDICULUS MUS	47
ANEXO C – FUSCE FACILISIS LACINIA DUI	49

Introdução

1 Capítulo 1

Isto é uma sinopse de capítulo. A ABNT não traz nenhuma normatização a respeito desse tipo de resumo, que é mais comum em romances e livros técnicos.

1.1 Oscilador LC MOS cruzado acoplado

Neste tipo de oscilador, os transistores estão em classe A, fornecendo energia ao tanque LC, que consome devido a sua não idealidade. Neste caso, a energia que o transistor injeta no tanque, deve ser maior ou igual que a resistência de perda total do circuito. O fator de qualidade deste circuito é:

$$Q = \frac{2\pi * f * L}{R_p} \tag{1.1}$$

E o g_m é:

$$g_m = \frac{i_D}{V_{GS} - V_t} \tag{1.2}$$

Para que ocorra uma oscilação:

$$\frac{1}{g_m} \ge \frac{2\pi * f * L}{Q} \tag{1.3}$$

É importante notar que, mesmo que o circuito seja instável e os transistores entrem em corte e saturação, a tesnão na saída continuará próxima de uma senoide perfeita quanto maior for o fator de qualidade do tanque. Uma das grandes desvantagens desse circuito deve-se ao fato de que são poucos os MOSFETs que sustentam uma tensão de gate maior que 20V, limitando assim a potência do circuito.

1.2 Oscilador Royer

Em 1954, George Royer patenteou o oscilador Royer, um circuito auto ressonante, simples e com pouco uso de componentes. Como a maioria dos osciladores, ele utiliza um tanque LC para a oscilação. A grande vantagem deste circuito deve-se ao fato do terceiro enrolamento estar conectado à base dos transistores. Isto garante que um transistor estará cortado enquanto o outro estiver ativo, diminuindo bastante o consumo energético do circuito.

1.3 Oscilador Mazzilli

O oscilador Mazzilli é uma derivação do oscilador Royer com o LC MOS. A grande diferença neste circuito está no circuito presente no gate, para assegurar o baixo consumo energético e o chaveamento em ZVS sem ter que utilizar um terceiro enrolamento no

indutor. Mazzilli usa uma combinação, retirando energia de Vin (como no Royer) e no entanto ligando os gates por um diodo ao dreno oposto. Com isso, suprimos o problema de tensão que existia no LC MOS e continuamos a utilizasr MOSFET ao invés de BJT, podendo assim, garantir alta frequência na oscilação.

1.3.1 Modos de Operação

Esse conversão possui quatro modos de operação. O primeiro dele consiste no dreno das duas chaves aterrados. Como eles estão ligados cruzado, isto garante que a chave 1 está cortada e a 2 ativa. Durante esta operação o capacitor é completamente descarregado. Depois disso a chave 1 é cortada e é a vez da chave 2 está ativa. Assim há a geração de uma corrente que irá percorrer o tanque LC e irá descarregar na chave ativa. Quando a voltagem no dreno 1 retorna para zero, ocorre o chaveamento das duas chaves. Assim como no modo de operação 1 o capacitor está completamente descarregado, e o indutor carrega totalmente a corrente em posição oposta. E finalmente, o modo 4 que ocorre exatamente o mesmo evento que o modo 2, no entanto, na chave 1.

1.3.2 Limitações do circuito

1.3.2.1 Dependência da carga

Durante a transferência de potência a carga é refletida para o primário, e aparece em paralelo com o tanque LC, e com isso a frequÇencia de oscilação é dependente da carga em uso, gerando uma perda maior.

1.3.2.2 Resposta do Gate

Quando a frequência de oscilação é baixa, este fator não é crucial. No entanto, com o aumento de frequência, já que o gate é um capacitor, a constante RC deve ser levada em conta.

1.3.2.3 Alta voltagem no Gate

Outro problema é a alta voltagem presente no gate. Este problema é facilmente mitigado adicionando um zener com uma tensão ligeiramente abaixo da tensão de breakdown do gate, embora cause uma perda maior na resistência do gate.

1.3.3 Resistência do transistor

Quando o transistor está descarregando o capacitor, toda a corrente gerada no circuito passa através dele, havendo a necessidade de optar por um MOSFET que possua a

1.3. Oscilador Mazzilli 31

menor resistência possível quando ele estiver ativo, afim de manter a menor perda possível no transistor, e garantir que ele não esquente demais.

1.4 Aquecimento por indução

- 1.4.1 Efeito skin
- 1.4.2 Histerese
- 1.4.3 Eficiência de aquecimento

Conclusão

Referências

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *NBR 6028*: Resumo - apresentação. Rio de Janeiro, 2003. 2 p. Citado na página 13.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14724: Informação e documentação — trabalhos acadêmicos — apresentação. Rio de Janeiro, 2005. 9 p. Citado na página 35.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14724: Informação e documentação — trabalhos acadêmicos — apresentação. Rio de Janeiro, 2011. 15 p. Substitui a Ref. ABNT (2005). Citado na página 3.

APÊNDICE A – Quisque libero justo

APÊNDICE B – Nullam elementum urna vel imperdiet sodales elit ipsum pharetra ligula ac pretium ante justo a nulla curabitur tristique arcu eu metus

ANEXO A – Morbi ultrices rutrum lorem.

ANEXO B – Cras non urna sed feugiat cum sociis natoque penatibus et magnis dis parturient montes nascetur ridiculus mus

ANEXO C – Fusce facilisis Iacinia dui