作业讲解II

Anyi Cao

Nanjing University

作业讲解Ⅱ-1

Exercises 3.3

3.3 Say $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is such that for $k \in \{0,1\}^n$, algorithm Enc_k is only defined for messages of length at most $\ell(n)$ (for some polynomial ℓ). Construct a scheme satisfying Definition 3.8 even when the adversary is not restricted to outputting equal-length messages in $\mathsf{PrivK}^\mathsf{eav}_{A,\Pi}$.

作业讲解Ⅱ-1

Solution:

Let Π =(Gen, Enc, Dec) be a scheme that is secure with respect to the original Definition 3.8 (for messages of equal length). Construct a scheme Π' =(Gen', Enc', Dec') as follows:

- (a) Gen' is identical to Gen.
- (b) Upon input a plaintext message m of length at most l=l(n) (where n is the length of the key), Enc' first sets $m':=0^{l-|m|}1||m$ and then encrypts m' using Enc. Note that m' is always exactly l(n)+1 bits long.
- (c) Dec' applies Dec to the ciphertext, and parses the result as $0^t1||m|$ for $t\geq 0$. It outputs m. Next, we will show that the existence of an adversary breaking Π' with respect to the modified definition implies the existence of an adversary breaking Π with respect to Definition 3.8.

作业讲解 Ⅱ - 1

Given an adversary A' who breaks Π' ,

 $\Pr[PrivK_{\mathcal{A}',\Pi'}^{eav}(n)=1]=\frac{1}{2}+\epsilon(n)$ where $\epsilon(n)$ is non-negligible.

We construct an adversary ${\mathcal A}$ to break Π by reduction.

When \mathcal{A}' outputs a pair of plaintexts m_0, m_1, \mathcal{A} pad them in the same of as Enc' would.

Then, it outputs the padded messages to be encrypted. Observe that ${\cal A}$ outputs equal-length messages, as required.

After getting c, \mathcal{A} give the challenge ciphertext to \mathcal{A}' and obtain output b'. Output 1 if b'=1, and output 0 otherwise.

Thus, if \mathcal{A}' can correctly guess b with probability non-negligibly greater than 1/2, then A guesses correctly with the same probability.

 $\Pr[\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n})=1] = \Pr[\textit{PrivK}^{\textit{eav}}_{\mathcal{A}',\Pi'}(\textit{n})=1] = \frac{1}{2} + \epsilon(\textit{n}),$ which contradicts with Π is secure.

Exercises 3.4

Prove the equivalence of Definition 3.8 and Definition 3.9.

DEFINITION 3.8 A private-key encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ has indistinguishable encryptions in the presence of an eavesdropper, or is EAV-secure, if for all probabilistic polynomial-time adversaries $\mathcal A$ there is a negligible function negl such that, for all n,

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

The probability above is taken over the randomness used by \mathcal{A} and the randomness used in the experiment (for choosing the key and the bit b, as well as any randomness used by Enc).

 $\begin{array}{ll} \textbf{DEFINITION 3.9} & A \ private\text{-}key \ encryption \ scheme \ \Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec}) \\ has \ \mathsf{indistinguishable \ encryptions \ in \ the \ presence \ of \ \mathsf{an \ eavesdropper} \ \mathit{if \ for \ all} \\ \mathtt{PPT} \ \mathit{adversaries} \ \mathcal{A} \ \mathit{there \ is \ a \ negligible \ function \ negl \ \mathit{such \ that}} \end{array}$

$$\Pr[\mathsf{out}_{\mathcal{A}}(\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n,0)) = 1] - \Pr[\mathsf{out}_{\mathcal{A}}(\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n,1)) = 1] \Big| \leq \mathsf{negl}(n).$$

作||/讲解 || _{- 2}

$$\begin{split} &\Pr[\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n}) = 1] = \Pr[\textit{out}_{\mathcal{A}}(\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n},\textit{b})) = \textit{b}] \\ = &\frac{1}{2}(\Pr[\textit{out}_{\mathcal{A}}(\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n},0)) = 0] + \Pr[\textit{out}_{\mathcal{A}}(\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n},1)) = 1]) \\ = &\frac{1}{2} + \frac{1}{2}(\Pr[\textit{out}_{\mathcal{A}}(\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n},1)) = 1] - \Pr[\textit{out}_{\mathcal{A}}(\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n},0)) = 1]) \\ = &\frac{1}{2} + \frac{1}{2}\epsilon(\textit{n}) \end{split}$$

Let $\Pr[out_{\mathcal{A}}(PrivK_{A\Pi}^{eav}(n,1))=1] - \Pr[out_{\mathcal{A}}(PrivK_{A\Pi}^{eav}(n,0))=1] = \epsilon(n).$ If Π satisfies definition 3.9, then $\epsilon(n) \leq negl(n)$, so $\Pr[PrivK_{4\Pi}^{eav}(n)=1] \leq \frac{1}{2} + \frac{1}{2}negl(n)$, which satisfies definition 3.8.

6/20

If Π satisfies definition 3.8, then $\frac{1}{2} + \frac{1}{2}\epsilon(n) \leq \frac{1}{2} + negl(n)$, $\epsilon(n) \leq 2negl(n)$. We can construct \mathcal{A}' that outputs the complement of \mathcal{A} , so

$$\begin{split} \Pr[\textit{PrivK}^{\textit{eav}}_{\mathcal{A}',\Pi}(\textit{n}) = 1] = & 1 - \Pr[\textit{PrivK}^{\textit{eav}}_{\mathcal{A}',\Pi}(\textit{n}) = 1] \\ = & \frac{1}{2} - \frac{1}{2}\epsilon(\textit{n}) \end{split}$$

Therefore $-\epsilon(n) \leq 2 \operatorname{negl}(n)$.

So $|\Pr[\textit{out}_{\mathcal{A}}(\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n},1)) = 1] - \Pr[\textit{out}_{\mathcal{A}}(\textit{PrivK}^{\textit{eav}}_{\mathcal{A},\Pi}(\textit{n},0)) = 1]| \leq \max\{\epsilon(\textit{n}), -\epsilon(\textit{n})\} \leq 2\textit{negl}(\textit{n}) = \textit{negl}'(\textit{n}), \text{ which satisfies definition } 3.9$

4□ > 4ⓓ > 4≧ > 4≧ > ½

Exercises 3.6

- 3.6 Let G be a pseudorandom generator. In each of the following cases, say whether G' is necessarily a pseudorandom generator. If yes, give a proof; if not, show a counterexample.
 - (a) Define $G'(s) \stackrel{\text{def}}{=} G(\bar{s})$, where \bar{s} is the complement of s.
 - (b) Define $G'(s) \stackrel{\text{def}}{=} \overline{G(s)}$.
 - (c) Define $G'(s) \stackrel{\text{def}}{=} G(0^{|s|} ||s)$.
 - (d) Define $G'(s) \stackrel{\text{def}}{=} G(s) \parallel G(s+1)$.

作||/讲解 || - 3

- (a) Define $G'(s) \stackrel{\text{def}}{=} G(\bar{s})$, where \bar{s} is the complement of s.
- (b) Define $G'(s) \stackrel{\text{def}}{=} \overline{G(s)}$.

Lemma: If r is a uniformly random number, then \bar{r} is also a uniformly random number.

- (a) Yes, since \bar{r} is also a random number, and the outputs of G using a random number as seed is pseudorandom.
- (b) Yes, otherwise we can construct D using D' to distinguish G(s) from r. when D receive a number t, it computes \bar{t} and run D', outputs the same value with D'. Obviously we have $\Pr[D(G(s)) = 1] = \Pr[D'(G'(s)) = 1]$, $\Pr[D(r) = 1] = \Pr[D'(\bar{r}) = 1]$ (since \bar{r} is also a uniformly random number). So if G is a PRG, then G' is also a PRG.

作||/讲解 || - 3

- (c) Define $G'(s) \stackrel{\text{def}}{=} G(0^{|s|} ||s|)$.
- (d) Define $G'(s) \stackrel{\text{def}}{=} G(s) \parallel G(s+1)$.

Lemma: If G is a PRG with expanding factor I(n) = kn, then $G'(s) = G(s_{[1,m]}), m > n/k$ is also a PRG, where k is a constant and $s_{[1,m]}$ means the first m bits of s.

Explain: If s is a uniformly random value in $\{0,1\}^n$ then $s_{[1,m]}$ is also uniformly random in $\{0,1\}^m$ and the expanding factor of G' is I'(n) = km > n.

- (c) No, we substitute G with $G''(s) = G(s_{[1,n/2]})$ and get $G'(s) = G''(0^{|s|}||s) = G(0^{|s|})$, which is a constant.
- (d) No, we substitute G with $G''(s) = G(s_{[1.n-1]})$ and get G'(s) = G''(s)||G''(s+1)|. If s[n] = 0 then $s_{[1,n-1]} = (s+1)_{[1,n-1]}$, and G''(s) = G''(s+1).

Exercises 3.11

- 3.11 Let F be a length preserving pseudorandom function. For the following constructions of a keyed function $F': \{0,1\}^n \times \{0,1\}^{n-1} \to \{0,1\}^{2n}$, state whether F' is a pseudorandom function. If yes, prove it; if not, show an attack.
 - (a) $F'_k(x) \stackrel{\text{def}}{=} F_k(0||x) || F_k(0||x)$.
 - (b) $F'_k(x) \stackrel{\text{def}}{=} F_k(0||x) || F_k(1||x)$.
 - (c) $F'_k(x) \stackrel{\text{def}}{=} F_k(0||x) || F_k(x||0)$.
 - (d) $F'_k(x) \stackrel{\text{def}}{=} F_k(0||x) || F_k(x||1)$.

(a)
$$F'_k(x) \stackrel{\text{def}}{=} F_k(0||x) || F_k(0||x)$$
.

(a) No. Because the first half is the same with the second hald, we can construct a distinguisher D that D(r) = 1 if $r_{[1,n]} = r_{[n+1,2n]}$.

(b)
$$F'_k(x) \stackrel{\text{def}}{=} F_k(0||x) || F_k(1||x)$$
.

(b) Yes. We prove it by reduction.

Assume $F_k'(x)$ is not a PRF, i.e. there exists a PPT distinguisher D' can distinguish F_k' from a random function $f': \{0,1\}^{n-1} \to \{0,1\}^{2n}$, that $|\Pr[D'^{F_k'(\cdot)}(1^{n-1})=1] - \Pr[D'^{f'(\cdot)}(1^{n-1})=1]| = \delta(n)$, where $\delta(n)$ is a non-negligible function. Then we can construct a distinguisher D by D' which can distinguish F_k from $f: \{0,1\}^{2n} \to \{0,1\}^{2n}$.

D has access to the oracle $\mathcal O$ and simulates what D' does, i.e. when D' want to query x, D query 0||x,1||x and get $\mathcal O(0||x), \mathcal O(1||x)$, then concat the result $\mathcal O(0||x)||\mathcal O(1||x)$ as the result of D''s query. Finally, D outputs the same as D'.

When D's oracle is F_k , the results of queries are the same with D', so we have

$$\Pr[D^{F_k(\cdot)}(1^{2n}) = 1] = \Pr[D'^{F'_k(\cdot)}(1^{n-1}) = 1]$$

When D's oracle is f, the answer of x is f(0||x)||f(1||x). Suppose q(n) is a polynomial bound of query. When D' is given an oracle f, the result of queries is $f'(x_1), f'(x_2), ..., f'(x_{q(n)})$. In the simulation of D, the results of queries is $f(0||x_1)||f(1||x_1), f(0||x_2)||f(1||x_2), ..., f(0||x_{q(n)})||f(1||x_{q(n)})$. Note that $x_i \neq x_j$ implies $(0||x_i) \neq (0||x_j)$ and $(0||x_i) \neq (1||x_j)$, the query is 2q(n) different points on f, so the distribution of probability is the same with D'.

$$\Pr[D^{f(\cdot)}(1^{2n}) = 1] = \Pr[D^{f(\cdot)}(1^{n-1}) = 1]$$

So we have

$$|\Pr[D^{F_k(\cdot)}(1^{2n}) = 1] - \Pr[D^{f(\cdot)}(1^{2n}) = 1]|$$

$$= |\Pr[D'^{F'_k(\cdot)}(1^{n-1}) = 1] - \Pr[D'^{f'(\cdot)}(1^{n-1}) = 1]|$$

$$= \delta(n)$$

which contradict with that F_k is PRF. So F'_k is PRF.

◆ロト ◆問ト ◆意ト ◆意ト ・ 意 ・ 釣り○

- (c) $F'_k(x) \stackrel{\text{def}}{=} F_k(0||x) || F_k(x||0)$.
- (d) $F'_k(x) \stackrel{\text{def}}{=} F_k(0||x) || F_k(x||1)$.
- (c) No. Query $x = 0^{n-1}$ and if the oracle is F' it will get $F_k(0^n)||F_k(0^n)$.
- (d) No. Query $x_1 = 0^{n-1}$ and $x_2 = 0^{n-2}1$. If the oracle is F', it will get $y_1 = F_k(0^n)||F_k(0^{n-1}1)|$ and $y_2 = F_k(0^{n-1}1)||F_k(0^{n-2}11)|$, that the second half of y_1 is the same as the first half of y_2 .

<ロト < 部 > ∢ 重 > ∢ 重 > ・ 重 ・ 釣 Q で

Exercises 3.20

- 3.20 Let F be a length preserving pseudorandom function and G be a pseudorandom generator with expansion factor $\ell(n) = n+1$. For each of the following encryption schemes, state whether the scheme is EAV-secure and whether it is CPA-secure. (In each case, the shared key is a uniform $k \in \{0,1\}^n$.) Explain your answer in each case.
 - (a) To encrypt $m \in \{0,1\}^{n+1}$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext $\langle r, G(r) \oplus m \rangle$.
 - (b) To encrypt $m \in \{0,1\}^n$, output the ciphertext $m \oplus F_k(0^n)$.
 - (c) To encrypt $m \in \{0,1\}^{2n}$, parse m as $m_1 || m_2$ with $|m_1| = |m_2|$, then choose uniform $r \in \{0,1\}^n$ and send $\langle r, m_1 \oplus F_k(r), m_2 \oplus F_k(r+1) \rangle$.

Anyi Cao (CS@NJU) 16 / 20

- (a) No. The ciphertext in this scheme doesn't depend on a key k and everyone can access to G, so everyone can decrypt the cipertext.
- (b) The scheme has indistinguishable encryption in the presence of an eavesdropper, according to the indistinguishablity between PRF F_k and a random function f. But it is not CPA-secure because there's no randomness, adversary can compute $F_k(0^n) = c \oplus m$.
- (c) The scheme is CPA-secure. The proof is the extension of the proof of Theorem 3.31 by query r and r+1 together. Assume in one query the adversary get $< u, F_k(u), F_k(u+1) >$, the condition that the adversary can get a non-negligible advantage is that $u \in \{r-1, r, r+1\}$. So by q(n) query the adversary can succeed with probability less then $\frac{1}{2} + \frac{3q(n)}{2^n}$.

Anyi Cao (CS@NJU) 17/20

Exercises 3.19

3.19 Let F be a pseudorandom permutation, and define a fixed-length encryption scheme (Enc, Dec) as follows: On input a key $k \in \{0,1\}^n$ and message $m \in \{0,1\}^{n/2}$, algorithm Enc chooses a uniform string $r \in \{0,1\}^{n/2}$ and computes $c := F_k(r||m)$.

Show how to decrypt, and prove that this scheme is CPA-secure for messages of length n/2.

Dec: compute $F_k^{-1}(c)$ and output the second half.

Next we prove it is CPA-secure. We first introduce a scheme Π' using a truly random permutation instead of a pseudorandom permutation and prove Π' is CPA-secure. The proof is similar to the proof of Theorem 3.31. When adversary receive, he makes q(n) queries for $m_1, m_2, \ldots, m_{a(n)}$. If $m_i \neq m$ then $r_i || m_i \neq r || m$, and the adversary get nothing since the result of query $r_i || m_i$ is a randomly value. If $m_i = m$, the adversary can get information only when $r_i = r$, in the condition he can win the game and the probability it happening is $\frac{1}{2n/2}$. So the probability upper bound of adversary win the game is $\frac{1}{2} + \frac{q(n)}{2n/2}$ when the adversary queries m for q(n)times, which shows that Π' is \overline{CPA} -secure.

So Π is CPA-secure, otherwise we can find a distinguisher to distinguish F_k with a truly random permutation f.

Anyi Cao (CS@NJU) 19 / 20

The End