

Άσκηση 1

ΠΑΡΑΛΛΗΛΑ ΣΥΣΤΗΜΑΤΑ

Οικονόμου Βασίλειος | Α.Μ.: 71347451

Δομή του προγράμματος

Για το πρόγραμμα έχουν οριστεί τύποι δεδομένων και συναρτήσεις

- Τύποι δεδομένων: Η δομή Array1D χρησιμοποιείται για την σύνθεσης της Array2D, όπως φαίνεται παρακάτω. Με την δομή Array2D αναπαριστάνονται τα δεδομένα του δοθέντος δισδιάστατου πίνακα της και του ζητούμενου πίνακα Β.
 - > Array1D

```
typedef struct Array1D
{
    int columnLen;
    int *column;
}Array1D;
```

➤ Array2D

```
typedef struct Array2D
{
   int rowLen;
   Array1D *row;
}Array2D;
```

Φ Συναρτήσεις:

- > void initArray2D(Array2D *array): Κάνει αρχικοποίησή έναν πίνακα τύπου Array2D
- **void addRow(Array2D *array):** Προσθέτει μία γραμμή σε έναν πίνακα τύπου Array2D δεσμεύοντας περισσότερη μνήμη στο Array1D, όπου περιέχει ο τύπος.
- νoid addColumn(Array1D *array): Προσθέτει μία στήλη σε έναν πίνακα τύπου Array1D δεσμεύοντας περισσότερη μνήμη στον πίνακα column, όπου περιέχει ο τύπος.
- νoid insertColumnValue(Array2D *array, int rowIndex, int value): προσθέτει μία στήλη και τιμή σε μία δεδομένη γραμμή του πίνακα. Εάν η γραμμή δεν υπάρχει και είναι η επόμενη του πίνακα, τότε την δημιουργεί.
- > Array2D readArray2D(char *filePath): Εισάγει έναν δισδιάστατο πίνακα από αρχείο.
- void displayArray2D(Array2D array): Τυπώνει στο τερματικό τα δεδομένα τύπου δεδομένου Array2D
- void freeArray2D(Array2D *array): Αποδεσμεύει τον χώρο των δεικτών του τύπου δεδομένου Array2D
- int isSymetrical(Array2D array): Ελέγχει εάν ένας πίνακας είναι συμμετρικός (τετράγωνος)
- int isDiagonallyDominant(Array2D array): Ελέγχει παράλληλα εάν ο πίνακας είναι διαγώνια δεσπόζων με την χρήση των threads.
- int maxValue(Array2D array): Βρίσκει την μέγιστη τιμή του πίνακα με την χρήση των threads.
- **void createSymmetricalSize(Array2D *targetArray, int dimension):** Δημιουργεί συμμετρικό (ή τετραγωνικό) πίνακα με βάση τις διαστάσεις άλλου πίνακα.

- > Array2D buildArray(const Array2D inputArray, int max): Δημιουργεί το πίνακα του ερωτήματος παράλληλα με την χρήση των threads.
- int minValue_Reduction(Array2D array): Βρίσκει την ελάχιστη τιμή του πίνακα με την χρήση των threads με το reduction clause.
- int minValue_Critical(Array2D array): Βρίσκει την ελάχιστη τιμή του πίνακα με την χρήση των threads χρησιμοποιώντας την κρίσιμη περιοχή.
- int minValue_BinaryTree(Array2D array): Βρίσκει την ελάχιστη τιμή του πίνακα με την χρήση των threads και του δυαδικού δέντρου.

***** Σταθερές:

- > FILEPATH: Περιέχει το μονοπάτι του αρχείου, που θα διαβάσει τον πίνακα εισόδου.
- > **SYMMETRICAL**: Περιέχει την τιμή επιστροφής της συνάρτησης isSymetrical, στην περίπτωση που ο πίνακας είναι συμμετρικός
- **ASYMMETRICAL**: Περιέχει την τιμή επιστροφής της συνάρτησης isSymetrical, στην περίπτωση που ο πίνακας είναι μη συμμετρικός.
- **DIAGONALLY_DOMINANT**: Η τιμή επιστροφής της συνάρτησης isDiagonallyDominant στην περίπτωση που είναι διαγώνια δεσπόζων.
- NOT_DIAGONALLY_DOMINANT: Η τιμή επιστροφής της συνάρτησης isDiagonallyDominant στην περίπτωση που δεν είναι διαγώνια δεσπόζων.

Επεξήγηση του προγράμματος

Η ρουτίνα του προγράμματος είναι η εξής:

- 1. καλεί την συνάρτηση <u>readArray2D</u> για να διαβάσει τον πίνακα από το δηλωμένο μονοπάτι του αρχείου.
- 2. Ελέγχει εάν είναι συμμετρικός ο πίνακας καλώντας την συνάρτηση isSymetrical.
- 3. Ελέγχει εάν είναι διαγώνια δεσπόζων καλώντας την συνάρτηση isDiagonallyDominant.
- 4. Υπολογίζει την μέγιστη τιμή του πίνακα καλώντας την συνάρτηση maxValue.
- 5. Δημιουργεί τον πίνακα Β καλώντας την συνάρτηση buildArray.
- 6. Βρίσκει την ελάχιστη τιμή με το reduction clause καλώντας την συνάρτηση minValue Reduction.
- 7. Βρίσκει την ελάχιστη τιμή με την κρίσιμη περιοχή καλώντας την συνάρτηση minValue Critical.
- 8. Βρίσκει την ελάχιστη τιμή με ελάττωση της τιμής με δυαδικό δέντρο καλώντας την συνάρτηση minValue BinaryTree.

Αποτελέσματα και χρόνοι του προγράμματος σε διάφορες συνθήκες

Για τα αποτελέσματα το πρόγραμμα έτρεξε για πέντε φορές για κάθε συνδυασμό μεγέθους πίνακα-πλήθος νημάτων και υπολογίστηκε ο μέσος όρος του χρόνου τρεξίματος. Ο χρόνος υπολογίσθηκε με την χρήση της συνάρτησης omp get wtime του openMP.

Παρατηρήσεις: Το πρόγραμμα για μερικές τιμές των threads έκανε περισσότερο χρόνο από το αναμενόμενο.

Παρακάτω είναι τα σχετικά διαγράμματα των χρόνων τρεξίματος.

