背景模型

L×L,N个移动振子随机排列在其中,具有周期性边界条件[10]。

空间:
$$x_i \left(t_k + \Delta t \right) = x_i \left(t_k \right) + v \cos \theta_i \left(t_k \right) \Delta t \mod L$$

$$y_i \left(t_k + \Delta t \right) = y_i \left(t_k \right) + v \sin \theta_i \left(t_k \right) \Delta t \mod L$$

v: 振子移动速度

 $(x_i(t_k), y_i(t_k))$: 第i个振子在时间t处的坐标

 $\theta_i(t)$: 第i个振子在时间t处运动的方向角度 $\theta_i(t) \in [-\pi,\pi]$

 $\Delta t = t_{k+1} - t_k$

背景模型

 $\theta_i(t) = \varphi_i(t)$: 振子的相位影响振子的运动方向,使得运动方向与振子的相位变量正相关

相位:
$$\dot{\varphi_i}(t) = \omega_i + \lambda \sum_{j=1}^N A_{ij} \sin(\varphi_j(t) - \varphi_i(t))$$

 $\varphi_i(t)$: 第i个振子在时间t处的相位 $\varphi_i(t) \in [-\pi,\pi]$

 ω_i : 第i个振子的固有频率

Aii: 定义邻接矩阵网络的连接

λ: 耦合强度

 $(A_{ij} = 1$ 表示第i个节点和第j个节点之间存在边,否则 $A_{ij} = 0$)

计算两个振子之间的欧几里德距离:
$$D_{ij}(t) = \sqrt{\left[x_i(t) - x_j(t)\right]^2 + \left[y_i(t) - y_j(t)\right]^2}$$

相位振子只能在相互作用范围r内与它们的局部邻居相互作用,该相互作用范围也可以称为通信半径。

$$D_{ij}(t) \le r, A_{ij} = 1$$
 $D_{ij}(t) \ge r, A_{ij} = 0$

固有频率 ω : 双均匀分布,恰好一半的粒子的固有频率是从一个均匀分布($\omega_i \sim U(1,3)$) 中随机选取的,而另一半的粒子的固有频率是从另一个均匀分布($\omega_i \sim U(-3,-1)$) 中随机选取的。

①加入视角的影响 在这里我们考虑给定一个限制角 β ,当两个振子空间上的方向差小于限制角 β ,那么它们趋向于同步,取向一致,此时 $A_{ij}=1$ 。当振子空间上的方向差大于限制角 β ,那么它们之间不产生作用,此时 $A_{ij}=0$ 。即,

$$A_{ij} = egin{cases} 1 & , & \left| heta_i - heta_j
ight| \leq eta \ 0 & , & \left| heta_i - heta_j
ight| > eta \end{cases}$$

除了上述情况之外,还可以考虑反向作用,即,

$$A_{ij} = egin{cases} 1 & , & \left| heta_i - heta_j
ight| \leq eta \ -1 & , & \left| heta_i - heta_j
ight| > eta \end{cases}$$

其中 $A_{ij} = -1$ 会造成两振子空间取向趋于相差 π 。

②加入考虑阻挫 类似Sakaguchi- Kuramoto模型,考虑相位角加阻挫,形如:

$$\dot{\varphi}_i(t) = \omega_i + \lambda \sum_{j=1}^N A_{ij} \sin(\varphi_j(t) - \varphi_i(t) + \alpha)$$

③考虑空间距离权重函数 主要考虑加入空间距离权重函数,考虑其连续变化对振

子相位和空间的影响。形如

$$\dot{\varphi}_i(t) = \omega_i + \frac{K}{N} \sum_{j=1}^N A_{ij} \sin(\varphi_j(t) - \varphi_i(t))$$

其中 A_{ii} 的选择可以是多种形式的。

	方程	图像		方程	图像
a	$A_{ij} = \begin{cases} 1 & , & \left \overrightarrow{r_i} - \overrightarrow{r_j} \right \le d_0 \\ 0 & , & \left \overrightarrow{r_i} - \overrightarrow{r_j} \right > d_0 \end{cases}$	A_{ij} 1 0 d_0 r	С	$A_{ij} = r_0^{\alpha} \left(r_0 + r \right)^{-\alpha}$	
b	$A_{ij}=e^{-lpha\left \overrightarrow{r_{i}}-\overrightarrow{r_{j}} ight }$		d	$A_{ij} = \frac{1}{e^{(r-r_0)} + 1}$	

注: 其中 α 均可作为调节参数。两振子之间的距离 $r = \begin{vmatrix} \vec{r_i} - \vec{r_j} \end{vmatrix}$

④改变振子的空间取向与相位的影响关系 原模型认为振子的运动方向受振子的相位影响,使得振子的空间运动方向与相位变量正相关,即 $\theta_i(t) = \varphi_i(t)$ 。

如果振子的角度与相位并不是简单的正相关?

情况a: $\mathbf{a} \quad A_{ij} = \begin{cases} 1 & , & |\vec{r_i} - \vec{r_j}| \le d_0 \\ 0 & , & |\vec{r_i} - \vec{r_j}| > d_0 \end{cases}$

· 1.距离 d_0 和耦合强度 λ 对方程的影响

(结论:发现四种空间集群状态,分别是四环,双环,1环1集群,双集群)

· 2.固定距离 $d_0 = 1$ 时不同耦合强度 λ 对序参量的影响

(结论:在固定距离 d_0 的情况下,随着耦合强度 λ 的增加,相位上的全局序参量呈现出四种状态: 1)当耦合强度 λ 非常小时,全局序参量处于混乱无序状态; 2)当耦合强度开始逐渐增加时,全局序参量开始出现有规律的全局震荡状态; 3)当耦合强度开始大于0.5时,序参量全局振荡状态消失,出现序参量接近1的小幅度无序振荡。4)当耦合强度等于1时,序参量稳定在1附近有序小幅度振荡。)

· 3.考虑粒子几种不同情况下固有频率 ω

(结论:分别考虑单频(F1),两个频率(F2),单一均匀分布(F3),双均匀分布(F4),单高斯分布(F5),双高斯分布(F6)记录集群空间运动状态及全局序参量变化情况。)

情况**a:** $\mathbf{a} \qquad A_{ij} = \begin{cases} 1 & , & |\vec{r_i} - \vec{r_j}| \le d_0 \\ 0 & , & |\vec{r_i} - \vec{r_j}| > d_0 \end{cases}$

· 4.固有频率 w 双高斯分布的细化

(结论:方差的大小决定了双高斯分布概率密度曲线的"陡峭"或"扁平"程度,标准差越大,曲线越扁平;标准差越小,曲线越陡峭。初始粒子固有频率的一个不同分布,对空间集群也会产生一个相对的影响)

· 5.粒子数N的不均匀分布

(结论:主要针对双均匀分布及双高斯分布,分别对粒子数N均匀和不均匀进行横向对比,总体来说双均匀分布受到不均匀粒子数的影响较为明显,且有一定的规律;而对于双高斯分布来说,粒子数不均匀的情况可能会扰乱之前出现的一些态,造成混乱。)

• 6. 考虑固有频率的交叉

(结论:针对双高斯分布,我们又进行了进一步的细化。当双高斯分布出现一些交叠,集群的表现也会出现一些交叉,根据交叉部分的大小,交叉越大,集群之间的混合也会越多。)

 \cdot 1.距离 d_0 和耦合强度 λ 对方程的影响

情况a

- 距离 d_0 和耦合强度 λ 对方程的影响
- t = 50000
- L: 10×10

距离d 耦合强度λ	0.1	0.5	1	2	5
0	杂乱无序	杂乱无序	<u>杂乱无序</u>	杂乱无序	杂乱无序
0.009	杂乱无序	杂乱—四环	杂乱—四环—两环	<u>杂乱—1集群,1环(不</u> <u>均匀)</u>	<u>杂乱—双方向集群(空</u> 间运动混乱)
0.01	杂乱无序	<u>杂乱—环</u>	杂乱—四环(半径变大)	<u>杂乱—四环—1集群</u> <u>,1环—双集群</u>	<u>杂乱—双方向集群(空</u> 间运动混乱)
0.05	杂乱无序	杂乱—四环—半径逐渐 变大—双环(不均匀)	<u>杂乱—四环(不均匀)—</u> <u>生成集群</u>	<u>杂乱—双集群(1集中</u> <u>1分散,大小不一)</u>	瞬间耦合
0.1	<u>杂乱—环(最后刚出</u> <u>现)</u>	杂乱—环(短暂)—半径逐 渐变大—双环(不均匀)	<u>杂乱—环(短暂)—双集</u> <u>群</u>	<u>杂乱—双集群(松散)—</u> <u>单群同步</u>	瞬间耦合
0.5	杂乱—四环	<u>杂乱—集群</u>	杂乱—双集群(更松散, 半径更大)—单群同步	<u>杂乱—方向同步,空间</u> <u>微聚集</u>	瞬间耦合
0.9	<u>杂乱-四环-两环</u>	杂乱—双集群	杂乱—快速同步,单 群,松散	杂乱—快速方向同步, 空间未聚集	瞬间耦合
1	瞬间耦合	瞬间耦合	瞬间耦合	瞬间耦合	瞬间耦合

状态

- 四环
- ・双环
- ・ 1环,1集群
- ・ 双集群

近一步的猜想:

状态:

- 四环?
- · 双环
- · 1环,1集群
- ・ 双集群

除了这些状态之外,还要特别考虑均匀与非均匀态,以及环的半径大小的不同

关于几种状态的判断,序参量的选择:

- 考虑质心距离(半径的变化)
 - 1) 终态各粒子的质心距离 2) 粒子质心距离随时间的变化情况(适用半径出现明显变化的粒子)

四环: 各粒子到质心距离基本相同, 保持一致

双环: 各粒子到质心距离基本相同, 保持一致, 双环半径应大于四环

1环,1集群:其中集群到质心的距离应是不同的,连续变化的,环里各粒子到质心距离基本相同

双集群:每个集群到质心的距离是不同的,连续变化的

 \cdot 2.固定距离 $d_0=1$ 时不同耦合强度 λ 对序参量的影响

· 3.考虑粒子几种不同情况下固有频率 ω

考虑了粒子几种不同情况下固有频率ω:

- 1.单频(F1): $ω_i = 1$ 适用于所有粒子。
- 2.两个频率(F2): 恰好一半的粒子具有 $\omega_i = 1$, 另一半具有 $\omega_i = -1$ 。
- 3.单一均匀分布(F3): 所有粒子的固有频率都是从单一均匀分布中随机选取的,使得 $\omega_i \sim U(1,\Omega)$ 。
- 4.双均匀分布(F4):恰好一半的粒子的固有频率是从一个均匀分布($\omega_i \sim U(1,\Omega)$)中随机选取的,而另一半的粒子的固有频率是从另一个均匀分布($\omega_i \sim U(-\Omega,-1)$)中随机选取的。
 - 5.单高斯分布(F5):均值为0,其对应于分布的密度,scale越大越矮胖,数据越分散;scale越小越瘦高,数据越集中
 - 6.双高斯分布(F6): 两组高斯分布均值分别为2和-2
 - U(X,Y)是在区间[X,Y]上的均匀分布函数, $\Omega = 3$

1.单频(F1): $ω_i = 1$ 适用于所有粒子。

- L: 10×10
- t = 50000
- 距离 $d_0 = 1$ 和
- 耦合强度 $\lambda = 0.1$ 对方程的影响

2.两个频率(F2): 恰好一半的粒子具有 $\omega_i = 1$,另一半具有 $\omega_i = -1$ 。

• L: 10×10

• t = 50000

• 距离 $d_0 = 1$ 和

• 耦合强度 $\lambda = 0.1$ 对方程的影响

3.单一均匀分布(F3): 所有粒子的固有频率都是从单一均匀分布中随机选取的,使得 $\omega_i \sim U(1,\Omega)$ 。其中 $\Omega = 3$

20000

30000

40000

50000

10000

- L: 10×10
- t = 50000
- 距离 $d_0 = 1$ 和
- 耦合强度 $\lambda = 0.1$ 对方程的影响

4.双均匀分布(F4):恰好一半的粒子的固有频率是从一个均匀分布($\omega_i \sim U(1,\Omega)$)中随机选取的,而另一半的粒子的固有频率是从另一个均匀分布($\omega_i \sim U(-\Omega,-1)$)中随机选取的。其中 $\Omega=3$ 。这种情况是之前一直讨论的。

- L: 10×10
- t = 50000
- 距离 $d_0 = 1$ 和
- 耦合强度 $\lambda = 0.1$ 对方程的影响

4.双均匀分布(F4):

双环

• L: 10×10 • t = 50000

• 距离 $d_0 = 1$ •耦合强度 $\lambda = 0.1$ 对方程的影响

考虑固有频率正负分组ω:

5.单高斯分布(F5):均值为0,其对应于分布的密度,scale越大越矮胖,数据越分散;scale越小越瘦高,数据越集中

5.单高斯分布(F4)均值为0: #w = np.random.normal(loc=0, scale=1.0, size=N)

- L: 10×10 t = 50000
- 距离 $d_0 = 1$ •耦合强度 $\lambda = 0.1$ 对方程的影响

6.双高斯分布(F6): 两组高斯分布均值分别为2和-2

6.双高斯分布(F4): #a=np.random.normal(loc=2, scale=2.0, size=500) #b=np.random.normal(loc=-2, scale=2.0, size=500)

- L: 10×10 t = 50000
- ・ 距离 $d_0 = 1$ ・耦合强度 $\lambda = 0.1$ 对方程的影响

6.双高斯分布(F6): 两组高斯分布均值分别为2和-2

6. 双高斯分布 (F4):

#a=np.random.normal(loc=2, scale=2.0, size=500)

#b=np.random.normal(loc=-2, scale=2.0, size=500)

考虑固有频率正负分组ω:

· 4.固有频率ω双高斯分布的细化

1.固有频率ω双高斯分布的细化:

6.双高斯分布(F6): 两组高斯分布均值分别为2和-2

6.双高斯分布 (F4):
a=np.random.normal(loc=3, scale=0.5, size=500)
b=np.random.normal(loc=-3, scale=0.5, size=500)

- L: 10×10 t = 50000
- 距离 $d_0 = 1$ •耦合强度 $\lambda = 0.1$ 对方程的影响

· 5.粒子数N的不均匀分布

粒子数N的不均匀分布:

1.总粒子数N = 1000

考虑正负固有频率ω的粒子数不同

例:正固有频率粒子取N = 667 负固有频率粒子取N = 333

双均匀分布:

• L: 10×10

• t = 50000

• 距离 $d_0 = 1$ •耦合强度 $\lambda = 0.1$ 对方程的影响

对比: 之前粒子数均匀分布

4. 双均匀分布 (F4):

a = np.random.uniform(1,3,500)

b = np.random.uniform(-3, -1, 500)

- L: 10×10
- t = 50000
- 距离 $d_0 = 1$ 和
- 耦合强度 $\lambda = 0.1$ 对方程的影响

动图总结

4. 双均匀分布 (F4):

a = np.random.uniform(1,3,500)

b = np.random.uniform(-3, -1, 500)

双均匀分布&粒子数均匀

距离d 耦合强度 λ	1
0.009	杂乱—四环—两环
0.01	杂乱—四环(半径变大)
0.05	杂乱—四环(不均匀)— 生成集群
0.1	<u>杂乱—环(短暂)—双集</u> <u>群</u>
0.5	杂乱—双集群(更松散 <u>,</u> 半径更大)—单群同步
0.9	杂乱—快速同步,单 群、松散

L: 10×10

• t = 50000

距离 $d_0 = 1$

4. 双均匀分布 (F4):

a = np.random.uniform(1,3,667)

b = np.random.uniform(-3, -1, 333)

双均匀分布&粒子数不均匀

粒子数之比 耦合强度 λ	2: 1	4: 1	19: 1
0.009	<u>两环</u>	<u>两环</u>	<u>两环</u>
0.01	<u>两环</u>		
0.05			
0.1	双集群	双集群	双集群
0.5			
0.9			

1.正固有频率粒子取<math>N = 667

2.正固有频率粒子取N = 800

3.正固有频率粒子取<math>N = 950

负固有频率粒子取N = 333

负固有频率粒子取N = 200

负固有频率粒子取N=50

粒子数之比

6. 双高斯分布 (F4):

a=np.random.normal(loc=3, scale=0.5, size=500)

b=np.random.normal(loc=-3, scale=0.5, size=500)

双高斯分布&粒子数均匀

距离d 耦合强度λ	1
0.009	8环(4红4蓝)
0.01	9环(5红4蓝)
0.05	<u>集群</u>
0.1	<u>标准四集群</u>
0.5	<u>经过双集群—</u> <u>出现闪变</u>
0.9	<u>闪变</u>

- L: 10×10
- t = 50000
- 距离 $d_0 = 1$

正固有频率粒子取N = 667 负固有频率粒子取N = 333

6. 双高斯分布 (F4):

a=np.random.normal(loc=3, scale=0.5, size=667)
b=np.random.normal(loc=-3, scale=0.5, size=333)

双高斯分布&粒子数不均匀

距离d 耦合强度λ	1
0.009	
0.01	
0.05	
0.1	双环 (红多蓝少)
0.5	
0.9	

• 6. 考虑固有频率的交叉

考虑固有频率的交叉

6. 双高斯分布 (F4):

a=np.random.normal(loc=3, scale=0.5, size=500)
b=np.random.normal(loc=-3, scale=0.5 size=500)

σ^2 耦合强度 λ			1	0.5	0.2
0.01	数量不同混合散乱 <u>环</u>	少量混合-双环 散乱	四环 散乱	9环(5红4蓝)	环 聚集 不混合
0.05	集群-环混合	集群-环混合	集群 个别混合	集群	<u>集群</u>
0.1	混合集群(有散乱)	混合集群 小环	集群 个别混合	四集群→合并趋势	集群

考虑固有频率的交叉

σ^2 耦合强度 λ	4
0.01	<u>环 混合</u>
0.05	集群-环混合
0.1	集群-环混合