Exercice 1:

f est la fonction définie sur \mathbb{R} par : $f(x) = xe^{\frac{-x^2}{2}}$. On note C la courbe représentative de la fonction f dans un repère orthonormé du plan.

1. Étude de la fonction

a) étudier la parité de la fonction f

On sait, par définition qu'une fonction f est paire si et seulement si pour tout x dans \mathbb{R} , f(-x) = f(x), et qu'une fonction est impaire si et seulement si pour tout x dans \mathbb{R} , f(-x) = -f(x).

Or, on sait que $f(-x) = -xe^{\frac{-x^2}{2}} = -f(x)$, on peut donc dire que la fonction f est impaire.

b) Établir le tableau de variations de f sur l'intervalle $[0; +\infty]$.

On calcule d'abord f':

On pose
$$u(x) = x$$
, $u'(x) = 1$; $v(x) = \frac{-x^2}{2}$, $v'(x) = -x$

$$f'(x) = u'(x) (e^v) (x) + u(x) (e^v)' (x)$$

$$= 1 \left(e^{\frac{-x^2}{2}} \right) + x \left(-xe^{\frac{-x^2}{2}} \right)$$

$$= e^{\frac{-x^2}{2}} - x^2 e^{\frac{-x^2}{2}}$$

$$= e^{\frac{-x^2}{2}} \left(1 - x^2 \right)$$

On cherche à déterminer le signe de $1-x^2$ sur $\mathbb{R}^+,$ or $1-x^2>0\iff x^2<1\iff x<1$

\overline{x}	0	1	$+\infty$
signe de $e^{\frac{-x^2}{2}}$	+	+	+
signe de $1 - x^2$	_	+	_
signe de $f'(x)$	_	+	_
variations de f	\searrow	7	\searrow

c) Déterminer une équation de la tangente T_0 à la courbe C au point d'abscisse 0.

Une équation de la tangente est :

$$y = f'(a)(x-a) + f(a)$$

$$= \left(e^{\frac{-a^2}{2}} (1-a^2)\right) (x-a) + ae^{\frac{-x^2}{2}} \Big|_{a=0}$$

$$= \left(e^{\frac{-(0)^2}{2}} (1-(0)^2)\right) (x-0) + (0)e^{\frac{-x^2}{2}}$$

$$= e^0(x-0)$$

$$y = x$$

d) Étudier la convexité de f et déterminer les éventuels points d'inflextion

Pour étudier la convexité de f, on cherche le signe de f''(x).

On pose:

$$u(x) = e^{\frac{-x^2}{2}}$$

 $u'(x) = -xe^{\frac{-x^2}{2}}$

$$v(x) = 1 - x^2$$
$$v'(x) = -2x$$

On sait que:

$$f'(x) = u(x)v(x)$$

On en déduit que :

$$f''(x) = u'(x)v(x) + u(x)v'(x)$$

$$= -xe^{\frac{-x^2}{2}} (1 - x^2) - 2xe^{\frac{-x^2}{2}}$$

$$= e^{\frac{-x^2}{2}} (-x(1 - x^2) - 2x)$$

$$= e^{\frac{-x^2}{2}} (x^3 - 3x)$$

$$= e^{\frac{-x^2}{2}} (x(x^2 - 3))$$

$$= xe^{\frac{-x^2}{2}} (x^2 - 3)$$

On sait que la fonction exponentielle est positive $\mathbb R.$ On peut donc dire que $e^{\frac{-x^2}{2}}>0.$

On cherche le signe de $(x^2 - 3)$: $x^2 - 3 > 0x^2 > 3 - \sqrt{3} > x > \sqrt{3}$

On à donc :

\overline{x}	$-\infty$	$-\sqrt{3}$	-1	0	1	$\sqrt{3}$	$+\infty$
signe de $xe^{\frac{-x^2}{2}}$	_	_	_	0	+	+	+
signe de $x^2 - 3$	+	0	_	_	_	0	+
signe de $f''(x)$	_	0	+	0	_	0	+

On voit donc que f est concave sur $]-\infty;-3],$ puis convexe sur $[-\sqrt{3};0],$ concave sur []

Graphique.png

Figure 1: