0.1 Monotoniegenskaper

De fleste funksjonsverdier varierer. Beskrivelser av hvordan funksjonene varierer kaller vi beskrivelser av funksjonenes monotoniegenskaper.

0.1 Voksende og avtagende funskjoner

Gitt en funksjon f(x).

• f er voksende på intervallet [a, b] hvis vi for alle $x_1, x_2 \in [a, b]$ har at

$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \tag{1}$$

Hvis $f(x_1) \leq f(x_2)$ kan erstattes med $f(x_1) < f(x_2)$, er f strengt voksende.

• f er avtagende på intervallet [a,b] hvis vi for alle $x_1,x_2\in [a,b]$ har at

$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2) \tag{2}$$

Hvis $f(x_1) \ge f(x_2)$ kan erstattes med $f(x_1) > f(x_2)$, er f strengt avtagende.

0.2 Monotoniegenskaper og den deriverte

Gitt f(x) deriverbar på intervallet [a, b].

- Hvis $f' \ge 0$ for $x \in [a, b]$, er f voksende for $x \in (a, b)$
- Hvis $f' \leq 0$ for $x \in [a, b]$, er f avtagende for $x \in (a, b)$

Hvis henholdsvis \geq og \leq kan erstattes med > og <, er f strengt voksende/avtagende.

Eksempel

Avgjør på hvilke intervaller f er voksende/avtagende når

$$f(x) = \frac{1}{3}x^3 - 4x^2 + 12x$$
 , $x \in [0, 8]$

Svar

Vi har at

$$f'(x) = x^2 - 8x + 12$$

For å tydeliggjøre når f' er positiv, negativ eller lik 0 gjør vi to ting; vi faktoriserer uttrykket til f', og tegner et fortegnsskjema:

$$f'(x) = (x-2)(x-6)$$

$$0 2 6 8$$

$$x-2 --- --- f'$$

Fortegnsskjemaet illustrerer følgende:

- Uttrykket x-2 er negativt når $x \in [0,2)$, lik 0 når x=2, og positivt når $x \in (2,8]$.
- Uttrykket x-6 er negativt når $x \in [0,8)$, lik 0 når x=6, og positivt når $x \in (6,8]$.

• Siden
$$f'=(x-2)(x-6)$$
, er
$$f'\geq 0 \text{ når } x\in [0,2]\cup (6,8]$$

$$f'=0 \text{ når } x\in \{2,6\}$$

$$f'\leq 0 \text{ når } x\in [2,6]$$

Dette betyr at

f er voksende når $x \in (0,2) \cup (6,8)$ f er avtagende når $x \in (2,6)$

$0.2\,\mathrm{Monotoniegenskaper}$ og den deriverte (forklaring)

Gitt f(x), hvor $f' \ge 0$ for $x \in [a,b]$. La $x_1, x_2 \in (a,b)$ og $x_2 > x_1$. Av middelverdisetningen¹ finnes det et tall $c \in (x_1, x_2)$ slik at

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Da $c \in [a, b]$, er $f'(x) \ge 0$, og da er

$$0 \ge \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Følgelig er $f(x_2) \ge f(x_1)$, og av definisjon 0.1 er da f voksende på intervallet (a, b).

¹Se vedlegg??

0.2 Ekstremalpunkt

0.3 Maksimum og minimum

Merk: Et tall c kan omtales som et punkt i funskjonsdrøftinger, underforstått at det er snakk om punktet (c, 0).

Gitt en funksjon f(x) og et tall c.

Absolutt maksimum og minimum

- f har absolutt maksimum f(c) hvis $f(c) \ge f(x)$ for alle $x \in D_f$.
- f har absolutt minimum f(c) hvis $f(c) \le f(x)$ for alle $x \in D_f$.

Lokalt maksimum og minimum

- f har et lokalt maksimum f(c) hvis det finnes et åpent intervall I om c slik at $f(c) \ge f(x)$ for $x \in I$.
- f har et lokalt minimum f(c) hvis det finnes et åpent intervall I om c slik at $f(c) \leq f(x)$ for $x \in I$.

Språkboksen

Et maksimum/minimum blir også kalt en maksimumsverdi/minimumsverdi.

0.4 Ekstremalverdi og ekstremalpunkt

Gitt en funksjon f(x) med maksimum/minimum f(c). Da er

- f(c) en ekstremalverdi for f.
- c et ekstremalpunkt for f. Nærmere bestemt et maksimalpunkt/minimumspunkt for f.
- (c, f(c)) et toppunkt/bunnpunkt for f.

0.5 Kritiske punkt

Et tall c er et kritisk punkt for en funksjon f(x) hvis én av følgende gjelder:

- f er ikke deriverbar i c
- f'(c) = 0

$0.6 \ f' = 0$ for lokale ektstremalpunkt

Gitt en deriverbar funksjon f(x) og $c \in [a, b]$.

- (i) Hvis c er et lokalt ekstremalpunkt for f, er f'(c) = 0
- (ii) Hvis f' > 0 for $x \in (a, c)$ og f' < 0 for $x \in (c, b)$, er c et lokalt maksimumspunkt for f
- (iii) Hvis f' < 0 for $x \in (a, c)$ og f' > 0 for $x \in (c, b)$, er c et lokalt minimumspunkt for f

Språkboksen

Det som blir beskrevet i punkt ii) og iii) omtales ofte som at \boldsymbol{f} skifter fortegn i \boldsymbol{c}

0.6 f' = 0 for lokale ektstremalpunkt (forklaring) Punkt (i)

La c være et lokalt maksimumspunkt for f. For et tall h må vi da ha at $c \ge x$ for $x \in (c - |h|, c + |h|)$. Da er

$$f(c+h) - f(c) \le 0$$

Dette betyr at

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$$

og at

$$\lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \ge 0$$

Følgelig er

$$\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^{+}} \frac{f(c+h) - f(c)}{h}$$

Altså er f'(c) = 0, og f' skifter fortegn fra positiv til negativ i c. Med samme framgangsmåte kan det vises at dette også gjelder dersom c er et minimumspunkt, bare at da skifter f' fra negativ til positiv.

Punkt (ii)

Hvis f'>0 på intervallet (a,c), har vi av regel 0.2 at f er sterkt voksende der. Hvis f'<0 på (c,b), er f sterkt avtagende der. Dette må nødvendigvis bety at $f(c)\geq f(x)$ for $x\in(a,b)$, og da er c et maksimumspunkt.

Punkt (iii)

Tilsvarende resonnement som for punkt (ii).

0.7 Andrederiverttesten

Gitt en deriverba funksjon f(x) og et tall c.

- Hvis f'(c) = 0 og f''(c) < 0, er f(c) et lokalt maksimum.
- Hvis f'(c) = 0 og f''(c) > 0, er f(c) et lokalt minimum.
- Hvis f'(c) = f''(c) = 0, kan man ikke ut ifra denne informasjonen alene si om f(c) er et lokalt maksimum eller minimum.

0.7 Andrederiverttesten (forklaring)

Av definisjonen for den deriverte har vi at

$$f''(c) = \lim_{h \to 0} \frac{f'(c+h) - f'(c)}{h}$$

Når f'(c) = 0, er

$$f''(c) = \lim_{h \to 0} \frac{f'(c+h)}{h}$$

Når f''(c) < 0, betyr dette at

$$\lim_{h \to 0} \frac{f'(c+h)}{h} < 0$$

Altså må f'(c+h) være positiv når h går mot 0 fra venstre og negativ når h går mot 0 fra høgre. Dermed skifter f' fortegn i c, som da må være et maksimalpunkt for f. Tilsvarende må c være et minimumspunkt for f hvis f(c) = 0 og f''(c) < 0.

0.8 Infleksjonspunkt og vendepunkt

For en kontinuerlig funksjon f(x) har vi at

- Hvis f''(c) = 0 og f'' skifter fortegn i c, er c et infleksjonspunkt for f.
- Hvis c er et infleksjonspunkt for f, er (c, f(c)) et vendepunkt.
- Hvis f'' går fra positiv til negativ, går f fra konveks til konkav (og omvendt).

Eksempel

$$f(x) = x^3 - 3x^2 - 144x - 140$$

$\mathrm{punkt/verdi}$	type
A = (-14, -1456)	absolutt bunnpunkt
-14	ekstremalpunkt; absolutt minimum
-1456	absolutt minimum
B = (-6, 400)	lokalt toppunkt
-6	ekstremalpunkt; lokalt maksimalpunkt
400	lokalt maksimum
C = (-1, -286)	vendepunkt
-1	infleksjonspunkt
D = (8, -972)	lokalt bunnpunkt
8	ekstremalpunkt; lokalt minimumspunkt
-972	lokal minimum
E = (16, 884)	absolutt maksimum
16	ekstremalpunkt; absolutt maksimumspunkt
884	absolutt maksimum
-10, -1 og 14	nullpunkt

Eksempel

Gitt funksjonen

$$f(x) = \sin x \quad , \quad x \in [-2, 4]$$

- a) Finn infleksjonspunktene til f.
- **b)** Finn vendepunktene til f.

Svar

a) Infleksjonspunktene finner vi der hvor f''(x) = 0:

$$f''(x) = 0$$
$$(\sin x)'' = 0$$
$$-\sin x = 0$$

Av $x \in D_f$ er det x = 0 og $x = \pi$ som oppfyller kravet fra ligningen over. For å finne ut om f'' skifter fortegn i disse punktene, setter vi opp et fortegnsskjema:

f'' går altså fra positiv til negativ i x=0 og fra negativ til positiv i $x=\pi$. Dette betyr at f går fra konveks til konkav i x=0 og fra konkav til konveks i $x=\pi$.

0.3 Asymptoter

0.9 Vertikale asymptoter

Gitt en funksjon f(x) og en konstant c.

- Hvis $\lim_{x\to c^+} f(x) = \pm \infty$, er c en **vertikal asymptote** ovenfra for f.
- Hvis $\lim_{x\to c^-} f(x) = \pm \infty$, er c en **vertikal asymptote** nedenfra for f.
- Hvis $\lim_{x\to c} f(x) = \pm \infty$, er c en **vertikal asymptote** for f.

Eksempel

Finn den vertikale asymptoten til

$$f(x) = \frac{1}{x-3} + 2$$

Svar

Vi observerer at

$$\lim_{x \to 3} \left[\frac{1}{x - 3} + 2 \right] = \pm \infty$$

Altså er x=3 en vertikal asymptote for f

0.10 Horisontale asymptoter

Gitt en funksjon f(x). Da er y=c en **horisontal asymptote** for f hvis

$$\lim_{x \to |\infty|} f(x) = c$$

Eksempel

Finn den horisontale asymptoten til

$$f(x) = \frac{1}{x-3} + 2$$

Svar

Vi observerer at

$$\lim_{x\to |\infty|} \left[\frac{1}{x-3}+2\right] = 2$$

Altså er y=2 en horisontal asymptote for f.

0.4 Konvekse og konkave funksjoner

0.11 Konvekse og konkave funksjoner

Gitt en kontinuerlig funksjon f(x).

Hvis hele linja mellom (a, f(a)) og (b, f(b)) ligger over grafen til f på intervallet [a, b], er f konveks for $x \in [a, b]$.

Hvis hele linja mellom (a, f(a)) og (b, f(b)) ligger under grafen til f på intervallet [a, b], er f konkav for $x \in [a, b]$.

0.5 Injektive funksjoner

0.12 Injektive funksoner

Gitt en funksjon f(x). Hvis alle verdier til f er unike på intervallet $x \in [a, b]$, er f injektiv på dette intervallet.

Språkboksen

Et annet ord for injektiv er $\acute{e}n\text{-}entydig.$

0.6 Omvendte funksjoner

Gitt funksjonen f(x) = 2x + 1, som åpenbart er injektiv for alle $x \in \mathbb{R}$. Dette betyr at likningen f = 2x + 1 bare har én løsning, uavhengig om vi løser med hensyn på x eller f. Løser vi med hensyn på x, får vi at

$$x = \frac{f - 1}{2}$$

Nå har vi gått fra å ha et uttrykk for f til, det "omvendte", et uttrykk for x. Siden x og f begge er variabler, er x en funksjon av f, og for å tydeliggjøre dette kunne vi ha skrevet

$$x(f) = \frac{f-1}{2}$$

Denne funksjonen kalles den *omvendte* til f. Setter vi uttrykket til f inn i uttrykket til x(f), får vi nødvendigvis x:

$$x(2x+1) = \frac{2x+1-1}{2}$$
$$= x$$

Likningen over synliggjør et problem; det er veldig rotete å behandle x som en funksjon og som en variabel samtidig. Det er derfor vanlig å omdøpe både f og x, slik at den omvendte funksjonen og variabelen den avhenger av får nye symboler. For eksempel kan vi sette y=f og g=x. Den omvendte funksjonen g til f er da at

$$g(y) = \frac{y-1}{2}$$

0.13 Omvendte funksjoner

Gitt to injektive funksjoner f(x) og g(y). Hvis

$$g(f) = x$$

er f og g omvendte funksjoner.

Eksempel 1

Gitt funksjonen f(x) = 5x - 3.

- a) Finn den omvendte funksjonen g til f.
- b) Vis at g(f) = x.

Svar

a) Vi setter y=f, og løser likningen med hensyn på x:

$$y = 5x - 3$$
$$x = \frac{y+3}{5}$$

Da er $g(y) = \frac{y+3}{5}$.

b) Når y = f, har vi at

$$g(y) = g(5x - 3)$$

$$= \frac{5x - 3 + 3}{5}$$

$$= x$$

f^{-1}

Hvis f og g er omvendte funksjoner, skrives g ofte som f^{-1} . Da er det veldig viktig å merke seg at f^{-1} ikke er det samme som $(f)^{-1}$. For eksempel, gitt f(x) = x + 1. Da er

$$f^{-1} = x - 1$$
 , $(f)^{-1} = \frac{1}{x + 1}$

I alle andre tilfeller enn ved n=-1, vil det i denne boka være slik at

$$f^n = (f)^n$$