(a)
$$A = \begin{pmatrix} 1 & o \\ 0 & 1 \end{pmatrix}$$
 $|A - \lambda 1| = \begin{vmatrix} 1 - \lambda & o \\ 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2$

$$\therefore \ \lambda_1 = \lambda_2 = 1$$

when
$$\lambda_1 = \lambda_2 = 1$$
, $\begin{pmatrix} 1 - 1 & 0.5 \\ 0 & 1 - 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\therefore \quad \xi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Therefore, matrix A is not diagonalizable.

(b) $A^n = \begin{pmatrix} 1 & \frac{n}{2} \\ 0 & 1 \end{pmatrix}$

Suppose that the formula above is true for
$$n=k$$
.

$$A^{k+1} = A^k A = \begin{pmatrix} 1 & \frac{k}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} + \frac{k}{2} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{k+1}{2} \\ 0 & 1 \end{pmatrix}$$

Therefore,
$$A^n = \begin{pmatrix} 1 & \frac{n}{2} \\ 0 & 1 \end{pmatrix}$$

$$(C) \quad e^{A} = \sum_{n=0}^{\infty} \frac{1}{n!} \begin{pmatrix} 1 & \frac{n}{2} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{1}{n!} & \sum_{n=0}^{\infty} \frac{n}{2n!} \\ 0 & \sum_{n=0}^{\infty} \frac{1}{n!} \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{n=0}^{\infty} \frac{1}{n!} & \sum_{n=0}^{\infty} \frac{n}{2n!} \\ \sum_{n=0}^{\infty} \frac{1}{n!} & \sum_{n=0}^{\infty} \frac{1}{2n!} \end{pmatrix}$$

$$\therefore e^{A} = \begin{pmatrix} e & \frac{1}{2}e \\ 0 & e \end{pmatrix}$$

Problem 1:

(a) suppose x, y, \geq ove variables in ν and α . β are real numbers.

$$(y \oplus 2) = (x \oplus y) \oplus 2$$

$$\lambda \quad X \oplus y = y \oplus X$$

3)
$$X \oplus 0 = X$$

4)
$$(-X) \oplus X = 0$$

6)
$$\alpha \circ (\beta \circ x) = (\alpha \cdot \beta) \circ x$$

7)
$$10x = x$$

8)
$$\alpha O(x \oplus y) = (\alpha O x) \oplus (\alpha O y)$$

$$9)(\alpha+\beta)\bigcirc x = (\alpha\bigcirc x) \oplus (\beta\bigcirc x)$$

Since $x.y. \ge$ are all scalars and all above properties remain true for scarlars, we can say that they are satisfied as well here. And this proves that v is a vector space.

(b) Assume x, y owe two variables.

. x.y E 2

inner product is mapping from vector to R.

< x, y > & IR

expectation of the product \tilde{E} [xy] $\in \mathbb{R}$

we can say that expectation is also a mapping from vector x,y to R which shows that its also a inner product.

(C) Assume $\geq_0 = 1$ then we have $\Omega = \{\geq_0, \geq_1, \cdots, \geq_K\}$.

To find a best proximation of subspace in a vector space, we can project X onto subspace 12 and find the minimal value using orthogonality principle= $E\{(x-\hat{x})\cdot \geq i\}=0, i\in [0,k]$ for each i+1 equalitions.

(d) The physical meaning is that \hat{x} is the projection of x in Ω .

Problem 3.

See attachments.

Problem 4.

(a) Since the linear manifold is defined by Ax+By+C=0.

We assume that there's another linear manifold be perpendicular to the oringinal one. We can know that the gradient of this new line is %.

$$\begin{cases} y - y_0 = \frac{B}{A}(x - x_0) \\ Ax + By + C = 0 \end{cases}$$

 $y-y_0 = \frac{B}{A}(x-x_0)$ $\{Ax+By+C=0\}$ Ax+By+C=0 xwe can solve that $Q(\frac{B^2x_0-ABy_0-AC}{A^2+B^2}, \frac{A^2y_0-ABx_0-BC}{A^2+B^2})$ $|PQ|^2 = \left(\frac{B_{xo}^2 - AB_{yo} - AC}{A^2 + B^2} - \chi_o\right)^2 + \left(\frac{A^2 y_o - AB_{xo} - BC}{A^2 + B^2} - y_o\right)^2$ $= \frac{A^{2}(Ax_{0}+By_{0}+C)^{2}+B^{2}(Ax_{0}+By_{0}+C)^{2}}{(A^{2}+B^{2})^{2}}$ $= \frac{(A \times + B \times + C)^2}{A^2 + B^2}$ $- |PQ| = \frac{|AX_0 + By_0 + C|}{\sqrt{A^2 + D^2}}$

In this case, IPQI is the smallest distance of a point (Xo, Yo).

(b) Past function =
$$\int_{i=1}^{n} \frac{(Ax_{i} + By_{i} + C)^{2}}{A^{2} + B^{2}}$$

$$\frac{df}{dC} = \sum_{i=0}^{n} \frac{2(Ax_{i} + By_{i} + C)}{A^{2} + B^{2}} = \frac{2}{A^{2} + B^{2}} \sum_{i=0}^{n} (Ax_{i} + Bx_{i} + C)$$

Assume $\frac{df}{dC} = 0$

$$C = -\sum_{i=0}^{n} (Ax_{i} + By_{i} + C) = 0$$

$$C = -\sum_{i=0}^{n} (Ax_{i} + By_{i})/n$$

$$\therefore \text{ bost function } : \int_{i=0}^{n} \frac{(Ax_{i} + By_{i} - \sum_{i=0}^{n} (Ax_{i} + By_{i})/n)^{2}}{A^{2} + B^{2}}$$

Assume $X = \sum_{i=0}^{n} x_{i} \quad Y = \sum_{i=0}^{n} y_{i}$

$$\int_{A^{2} + B^{2}} \frac{(Ax + By - \frac{A}{n}x - \frac{B}{n}y)^{2}}{A^{2} + B^{2}}$$

$$= \frac{(Ax + By - \frac{A}{n}x - \frac{B}{n}y)^{2}}{A^{2} + B^{2}}$$

$$= \frac{(AB)}{(x - \frac{1}{n}x)(x - \frac{1}{n}y)(x - \frac{1}{n}y)} \cdot \frac{A}{(x - \frac{1}{n}x)(x - \frac{1}{n}y)(x - \frac{1}{n}y)} \cdot \frac{A}{(x - \frac{1}{n}x)(x - \frac{1}{n}y)(x - \frac{1}{n}y)}$$

$$= \frac{x^{T}\Omega x}{x^{T}x} \qquad x = \binom{A}{B} \quad \Omega = \binom{(x - \frac{1}{n}x)^{2}}{(x - \frac{1}{n}x)^{2} + (y - \frac{1}{n}y)^{2}}$$

(C) distance from point to circle:
$$\begin{cases} Ax + Bx + C = 0 \\ (x - A)^{2} + (y - B)^{2} = C^{2} \end{cases} \Rightarrow d = |A(x - A)^{2} + (y - B)^{2} - C|$$

Similar to what we did above =

Cost function:
$$f = \sum_{i=0}^{n} \left(\sqrt{(x_i - A)^2 + (y_i - B)^2} - C \right)^2$$

$$\frac{\partial f}{\partial C} = \sum_{i=0}^{n} 2 \left(\sqrt{(x_i - A)^2 (Y_i - B)^2} - C \right)$$
Assume
$$\frac{\partial f}{\partial C} = 0$$
we have
$$\sum_{i=0}^{n} 2 \left(\sqrt{(x_i - A)^2 (Y_i - B)^2} \right) = 0$$

$$C = \sum_{i=0}^{n} \sqrt{(x_i - A)^2 (Y_i - B)^2}$$

$$\therefore \text{ Oost function: } f = \sum_{i=0}^{n} \left(\sqrt{(x_i - A)^2 + (Y_i - B^2)} - \sum_{i=0}^{n} \sqrt{(x_i - A)$$

(4) Step 0: Given
$$X^{\circ}$$
, set $k=0$
Step 1: $dk = -\nabla f(X_{K})$. If $dk = 0$, then stop.

$$f(X_{K}) = \sqrt{(X_{K} - A)^{2} + ((Y_{K} - B))^{2}} - \sqrt{(X_{K} - A)^{2}((Y_{K} - B))^{2}}$$
Step $\lambda = Solve \min_{k} f(X_{K} + dd_{K})$ for the stepsize d_{K} , perhaps chosen by an exact or inexact linesearch.
Step $3 = Set X_{K+1} \leftarrow X_{K} + d_{K} d_{K}$, $K \leftarrow k+1$. Go to step 1.

Branch: master ▼ Copy path

CourseWork / CS596 Foundations of Computer and Data Science / Homework #2 / hw2_Q3.m

```
hello-roderickwang finish 596 hk2

148d133 1 hour ago

1 contributor
```

```
Î
 Raw
       Blame
               History
55 lines (47 sloc) 1.25 KB
      % @Date
                : 2019-10-12 17:15:20
      % @Author : Xuenan(Roderick) Wang
      % @Email
                : roderick_wang@outlook.com
  4
     % @GitHub : https://github.com/hello-roderickwang
  6
     % Generation of a random matrix of rank equal to 3
  7
     A = rand(20, 5);
  8
     B = matrix_filling(A, 3);
 9
     disp('My random matrix of rank equal to 3 is:')
 10
     disp('Rank of this matrix is:');
      disp(rank(B));
 14
      % Question (a)
      B2 = put_random_zeros(B, 2);
 16
     B3 = put_random_zeros(B, 3);
      B4 = put_random_zeros(B, 4);
     B5 = put_random_zeros(B, 5);
 18
 19
 20
     [U2, S2, V2] = svd(B2);
     [U3, S3, V3] = svd(B3);
     [U4, S4, V4] = svd(B4);
     [U5, S5, V5] = svd(B5);
 24
     disp('Rank of B2 matrix is:');
 26
     disp(rank(B2));
      disp('Rank of B3 matrix is:');
 27
 28
     disp(rank(B3));
     disp('Rank of B4 matrix is:');
 29
 30
      disp(rank(B4));
      disp('Rank of B5 matrix is:');
     disp(rank(B5));
 34
     % Question (b)
     B2f = matrix_filling(B2, 3)
     B3f = matrix_filling(B3, 3)
      B4f = matrix_filling(B4, 3)
 38
      B5f = matrix_filling(B5, 3)
 40
     % Question (c)
 41
     var2 = var(var(B2f-B))
 42
     var3 = var(var(B3f-B))
 43
     var4 = var(var(B4f-B))
 44
     var5 = var(var(B5f-B))
 45
 46
     function B = matrix_filling(A, target_rank)
 47
          [U, S, V] = svd(A);
          B = U(:, 1:target_rank)*S(1:target_rank, 1:target_rank)*V(:,1:target_rank)';
 49
      end
 50
      function A = put_random_zeros(A, zero_num)
```

```
>> hw2_Q3
My random matrix of rank equal to 3 is:
    0.7595
               0.5430
                         0.6031
                                    0.5085
                                               0.6016
    0.5534
               0.6484
                         -0.0604
                                    0.5779
                                               0.7058
    0.5506
               0.5050
                         0.9045
                                    0.4355
                                               0.3462
    0.6921
               1.0408
                         0.3689
                                    0.8792
                                               0.8543
    0.6613
               0.7026
                         0.3235
                                    0.6222
                                               0.6906
    0.2914
               0.9128
                         0.9982
                                    0.6959
                                               0.3235
    0.9525
               0.4616
                         0.4291
                                    0.4849
                                               0.7523
               0.1784
                         0.2838
    0.9382
                                    0.2754
                                               0.6558
    0.7007
               0.2988
                         0.1034
                                    0.3337
                                               0.5988
    0.2895
               0.3436
                         0.5721
                                    0.2841
                                               0.1888
    0.5072
               0.4303
                         0.2802
                                    0.3947
                                               0.4700
                                               0.3919
    0.0280
               0.8879
                         0.1218
                                    0.6660
    0.4890
               0.4214
                         0.5840
                                    0.3742
                                               0.3613
    0.6508
               0.4714
                         0.2721
                                    0.4491
                                               0.5923
    0.7691
               0.7575
                         0.3191
                                    0.6810
                                               0.7930
                         0.7203
                                    0.2593
    0.3968
               0.2945
                                               0.1968
    0.8059
               0.7215
                         0.8254
                                    0.6419
                                               0.6492
                         0.3624
    0.8566
               0.9692
                                    0.8524
                                               0.9389
    0.2138
               0.8953
                         0.9001
                                    0.6738
                                               0.2906
    0.2221
               0.3286
                         0.9162
                                    0.2496
                                               0.0305
Rank of this matrix is:
     3
Rank of B2 matrix is:
Rank of B3 matrix is:
     5
Rank of B4 matrix is:
Rank of B5 matrix is:
B2f =
    0.7754
               0.5497
                         0.5945
                                    0.5153
                                               0.5765
    0.5543
               0.6504
                         -0.0608
                                    0.5756
                                               0.7050
    0.4395
               0.4608
                         0.9648
                                    0.3840
                                               0.1754
    0.7009
               1.0458
                         0.3643
                                    0.8809
                                               0.8409
    0.6703
               0.7072
                         0.3187
                                    0.6248
                                               0.6767
    0.3094
               0.9195
                         0.9883
                                    0.7050
                                               0.2948
    0.9670
               0.4682
                         0.4212
                                    0.4904
                                               0.7296
    0.9510
               0.1842
                         0.2769
                                    0.2803
                                               0.6358
    0.7075
               0.3025
                         0.0998
                                    0.3353
                                               0.5885
               0.3481
                         0.5655
                                    0.2903
                                               0.1695
    0.3016
    0.5152
               0.4341
                         0.2759
                                    0.3975
                                               0.4576
    0.0270
               0.8886
                         0.1224
                                    0.6638
                                               0.3939
               0.4268
                         0.5765
                                               0.3395
    0.5028
                                    0.3807
               0.4758
                         0.2673
                                    0.4519
    0.6597
                                               0.5785
    0.7787
               0.7626
                         0.3140
                                    0.6835
                                               0.7782
    0.4129
               0.3002
                         0.7115
                                    0.2677
                                               0.1711
    0.7156
               0.6751
                         0.0482
                                    0.6164
                                               0.7879
    0.8670
               0.9750
                         0.3569
                                    0.8547
                                               0.9231
```

	. 2294 . 2403	0.9011 0.3347	0.8917 0.9062	0.6815 0.2599	0.2659 0.0012			
B3f =								
	.5793 .5455 .5659 .6801 .6620 .2806 .9769 .9717 .7167 .2959 .5131 .0074 .1026 .6603 .7715 .4121 .8203 .8540 .0253 .2325	0.4299 0.6438 0.5116 1.0305 0.7022 0.8984 0.4790 0.2038 0.3116 0.3452 0.4338 0.8602 0.5137 0.4781 0.7587 0.3020 0.7284 0.9664 0.9165 0.3308	0.7202 -0.0552 0.8942 0.3764 0.3229 1.0044 0.4135 0.2624 0.0933 0.5677 0.2764 0.1442 0.5202 0.2660 0.3175 0.7102 0.8158 0.3640 0.8842 0.9089	0.3940 0.5722 0.4501 0.8761 0.6241 0.7014 0.4969 0.2897 0.3394 0.2921 0.3987 0.6524 0.3941 0.4540 0.6832 0.2723 0.6545 0.8527 0.6813 0.2633	0.3374 0.7207 0.3163 0.8755 0.6888 0.3407 0.7076 0.5947 0.5701 0.1759 0.4589 0.4559 0.1803 0.5748 0.7882 0.1673 0.6214 0.9433 0.2453 0.0091			
B4f =	B4f =							
	.7768 .5583 .5419 .6983 .6613 .2950 .9411 .9225 .6938 .2856 .5243 .0453 .4832 .7104 .7318 .3883 .7983 .8586 .2195	0.3332 0.6440 0.5289 1.0414 0.7093 0.9237 0.4833 0.2027 0.3102 0.3569 0.2605 0.8709 0.4376 0.2076 0.7402 0.3151 0.7440 0.9751 0.9024 0.3496	0.6135 -0.0617 0.9056 0.3668 0.3230 0.9961 0.4313 0.2872 0.1049 0.5724 0.2875 0.1172 0.5848 0.2357 0.0140 0.7216 0.8262 0.3613 0.8977 0.9169	0.2908 0.5874 0.3973 0.8830 0.6134 0.6842 0.4477 0.2316 0.3134 0.2636 0.2377 0.7016 0.3484 0.2189 0.6760 0.2256 0.6064 0.8461 0.6686 0.2167	0.5376 0.6977 0.3633 0.8452 0.6918 0.3203 0.7730 0.6831 0.6111 0.1970 0.4136 0.3635 0.3728 0.5434 0.8442 0.2130 0.6645 0.9372 0.2836 0.0444			
B5f =								
0 . 0 . 0 .	. 6736 . 6635 . 4637 . 8496 . 7072	0.5447 0.6463 0.5067 -0.0031 0.7017	0.5805 0.0259 0.8812 0.4107 0.3362	0.6075 0.4603 0.5365 0.6969 0.5675	0.6177 0.6788 0.3618 0.8252 0.6832			

0.4248	0.9102	1.0337	0.5410	0.2992
0.8059	0.4644	0.3904	0.6538	0.7798
0.7036	0.0046	0.2214	0.5473	0.6988
0.6080	0.3006	0.0791	0.4402	0.6166
0.2606	0.3442	0.5643	0.3178	0.1940
0.4947	0.4305	0.2772	0.4084	0.4729
0.3481	-0.0062	0.2068	0.2952	0.3331
0.4334	0.4225	0.5692	0.4386	0.3715
0.6156	0.4721	0.2631	0.4888	0.5994
0.8072	0.7567	0.3299	0.6350	0.7872
0.2966	0.2964	0.6935	0.3761	0.2147
0.7450	0.7226	0.8094	0.7119	0.6607
0.9478	0.9674	0.3875	0.7444	0.9238
0.3703	-0.0030	0.9411	0.4943	0.2606
0.1554	0.3299	0.8981	0.3279	0.0419

var2 =

1.7120e-04

var3 =

1.7426e-05

var4 =

8.5757e-06

var5 =

0.0025

>>