Fortgeschrittene Techniken der Kryptographie

Jürgen Fuß

Episode 14: CRYSTALS

Polynome und Restklassen

Restklassen und Polynome

▶ Rechnen in $\mathcal{R} := \mathbb{Z}_q[x]/(x^{256}+1)$.

x²⁵⁶ + 1 = 0 x²⁵⁶ = -1

- ge P
- Restklassen modulo q nicht als ganze Zahlen zwischen 0 und q-1 angeschrieben, sondern als ganze Zahlen zwischen -q/2 und q/2.
- \triangleright $x^{256} + 1$ ist nicht irreduzibel, wir brauchen aber keine Divisionen.
- ▶ Wir bilden Vektoren (\mathbb{R}^n) und Matrizen ($\mathbb{R}^{m \times n}$) aus solchen "Zahlen".
- lst $p := a_0 + a_1x + \cdots + a_{255}x^{255}$ ein Element von \mathcal{R} , dann wird dessen Norm definiert als der Betrag des Koeffizienten a_i mit dem größten Betrag.
- ▶ Bildet man einen Vektor solcher Polynome, so wird dessen Norm (Länge) als die größte auftauchende Norm in den Koordinaten des Vektors definiert.¹
- ▶ In den folgenden Abschnitten werden für kurze Vektoren (Vektoren mit kleiner Norm) griechische Buchstaben verwendet, damit diese einfacher zu erkennen sind.

¹Das ist also der größte Koeffizient, der irgendwo auftaucht.

Das Problem

Gegeben sei eine Matrix M.

Wählt man zwei Vektoren α und ε mit kleiner Norm (also kurze Vektoren), so lässt sich einfach

$$a := M \cdot \alpha + \varepsilon$$

berechnen.

Umgekehrt ist es aber sehr schwierig, kurze Vektoren α und ε zu finden, so dass $a = M \cdot \alpha + \varepsilon$, wenn M und a gegeben sind.²

²Beachte: Irgendwelche Vektoren x und e zu finden, so dass $a=M\cdot x+e$ gilt, ist sehr einfach: man wähle irgendeinen kurzen Vektor x und berechne $e:=a-M\cdot x$. Nur ist der Vektor e dann meist nicht kurz. Die Aufgabe, zwei kurze Vektoren e und e zu finden, führt auf ein sogenanntes Gitterproblem. Diese Art von Problemen scheint selbst für Quantencomputer schwierig zu lösen zu sein.

Graphische Veranschaulichung

Ist M die Matrix $\begin{pmatrix} | & | \\ b_1 & b_2 \\ | & | \end{pmatrix}$ und $\alpha = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, dann ist $M \cdot \alpha$ der Vektor $3b_1 + 2b_2$ und $M \cdot \alpha + \varepsilon$ liegt ein

klein wenig daneben.

CRYSTALS Dilithium – Post-quantum Signatures

CRYSTALS Dilithium – Schlüsselerzeugung

In diesem Verfahren ist q:=8380417 und $\mathcal{R}:=\mathbb{Z}_q[x]/(x^{256}+1)$.

Schlüsselerzeugung: Alice wählt eine zufällige Matrix $M \in \mathcal{R}^{6 \times 5}$. Weiterhin wählt sie zwei Vektoren $\alpha \in \mathcal{R}^5$ und $\varepsilon \in \mathcal{R}^6$ zufällig, deren Norm höchstens 4 ist. Schließlich berechnet sie

Der Public Key ist dann (M, a). Der dazugehörige Private Key ist α .

CRYSTALS Dilithium - Signieren

Signieren: Alice wählt einen Vektor $k \in \mathcal{R}^5$ zufällig, dessen Norm höchstens 2^{19} ist. Alice berechnet nun $r := \text{high}(M \cdot k)$, die höchstwertigen Bits aller Koordinaten des Vektors $M \cdot k$ (direkt als Bitfolge interpretiert). Nun werden r und m zusammen gehasht, das Ergebnis wird kodiert als ein Polynom $\mathcal{L} \in \mathcal{R}$, das genau 49 Koeffizienten hat, die den Wert 1 oder -1 haben und dessen restliche Koeffizienten 0 sind. Schließlich wird $\mathcal{L} := k + \zeta \cdot \alpha$ berechnet. Kompakter also:

$$r := high(M \cdot k),$$
 \longrightarrow Bits
$$\zeta := H(r, h), \qquad \longrightarrow$$
 kleines Polynom
$$s := k + \zeta \cdot \alpha. \qquad \longrightarrow$$
 Veletor
Veltor

Die **Signatur** ist (ζ, s) .

³Es wird hier nicht darauf eingegangen, wie dies genau geschieht.

CRYSTALS Dilithium – Verifizieren

Verifizieren: Bob prüft, dass die Norm von s nicht zu groß ist und berechnet dann $r:=\operatorname{high}(M\cdot s-\zeta\cdot a)$ und h:=H(m). Damit wird H(r,h) berechnet und abschließend mit ζ verglichen.

Tatsächlich erhält man beim Verifizieren dasselbe a wie beim Signieren, denn

$$M \cdot s - \zeta \cdot a = M \cdot (k + \zeta \cdot \alpha) - \zeta \cdot (M \cdot \alpha + \varepsilon) = M \cdot k + \zeta \cdot M \cdot \alpha - \zeta \cdot M \cdot \alpha - \zeta \cdot \varepsilon = M \cdot k - \zeta \cdot \varepsilon.$$

Da sowohl in ζ als auch in ε nur kleine Koeffizienten vorkommen, beeinflussen diese die höchstwertigen Bits nicht. Daher ist

$$r = \text{high}(M \cdot s - \zeta \cdot t) = \text{high}(M \cdot k - \zeta \varepsilon) = \text{high}(M \cdot k).$$

CRYSTALS Kyber – Post-quantum Key Encapsulation

CRYSTALS Kyber – Schlüsselerzeugung

In diesem Verfahren ist q:=3329 und $\mathcal{R}:=\mathbb{Z}_q[x]/(x^{256}+1)$.

Schlüsselerzeugung: Alice wählt eine zufällige Matrix $M \in \mathcal{R}^{3 \times 3}$. Weiterhin wählt sie zwei Vektoren $\alpha \in \mathcal{R}^3$ und $\varepsilon \in \mathcal{R}^3$ zufällig, deren Norm höchstens 2 ist. Schließlich berechnet sie

$$a := M \cdot \alpha + \varepsilon$$
.

Der Public Key ist dann (M, a). Der dazugehörige Private Key ist α .

CRYSTALS Kyber – Verschlüsseln

Verschlüsseln: Um einen 256 Bit langen Schlüssel zu verschlüsseln, wird dieser zunächst als ein Element $\kappa \in \mathcal{R}$ dargestellt, nämlich als jenes Polynom, dessen Koeffizienten die Schlüsselbits sind. Daraus erhält man $k := |q/2| \cdot \kappa.^4$ Bob wählt Vektoren $\beta, \zeta \in \mathbb{R}^3$ sowie $\gamma \in \mathbb{R}$ zufällig, deren Norm $u:=M^{\mathsf{T}}\cdot\zeta+\beta,$ $v:=a^{\mathsf{T}}\cdot\zeta+k+\gamma.$ Es ergibt sich als Chiffrat das Paar (u,v). höchstens 2 ist. Er berechnet nun

⁴Die Multiplikation von k mit $\lfloor q/2 \rfloor$ führt dazu, dass die Koeffizienten dieses Polynoms entweder den (betragsmäßig) kleinsten Wert 0 oder oder größten Wert $\lfloor q/2 \rfloor = 1664$ haben.

CRYSTALS Kyber – Entschlüsseln

Entschlüsseln: Alice berechnet

$$k' := v - \alpha^{\mathsf{T}} \cdot u$$
.

CRYSTALS Kyber - Korrektheit

Beim Entschlüsseln ergibt sich die ursprüngliche Nachricht, denn

$$k' = v - \alpha^{\mathsf{T}} \cdot u$$

$$= a^{\mathsf{T}} \cdot \zeta + k + \gamma - \alpha^{\mathsf{T}} \cdot (M^{\mathsf{T}} \cdot \zeta + \beta) \qquad \text{(Einsetzen von } u \text{ und } v\text{)}$$

$$= a^{\mathsf{T}} \cdot \zeta + k + \gamma - \alpha^{\mathsf{T}} \cdot M^{\mathsf{T}} \cdot \zeta - \alpha^{\mathsf{T}} \cdot \beta \qquad \text{(Ausmultiplizieren)}$$

$$= a^{\mathsf{T}} \cdot \zeta + k + \gamma - (M \cdot \alpha)^{\mathsf{T}} \cdot \zeta - \alpha^{\mathsf{T}} \cdot \beta \qquad (\alpha^{\mathsf{T}} M^{\mathsf{T}} = (M\alpha)^{\mathsf{T}})$$

$$= a^{\mathsf{T}} \cdot \zeta + k + \gamma - (a - \varepsilon)^{\mathsf{T}} \cdot \zeta - \alpha^{\mathsf{T}} \cdot \beta \qquad (a = M\alpha + \varepsilon)$$

$$= a^{\mathsf{T}} \cdot \zeta + k + \gamma - a^{\mathsf{T}} \cdot \zeta + \varepsilon^{\mathsf{T}} \cdot \zeta - \alpha^{\mathsf{T}} \cdot \beta \qquad \text{(Ausmultiplizieren)}$$

$$= \lfloor q/2 \rfloor \cdot \kappa + \gamma + \varepsilon^{\mathsf{T}} \cdot \zeta - \alpha^{\mathsf{T}} \cdot \beta.$$

In den Ausdrücken β , $\varepsilon^{\intercal} \cdot \zeta$ und $\alpha^{\intercal} \cdot \beta$ kommen nur kleine Koeffizienten vor. Werden diese Werte zum Polynom $\lfloor q/2 \rfloor \cdot \kappa$ addiert oder von diesem subtrahiert, können diese kleinen "Fehler" sehr einfach korrigiert werden, um die Schlüsselbits zu erhalten.

