Ordenamiento Recursivo MergeSort (Mezclas)

Prof. Luis E. Garreta U. Igarreta@uao.edu.co

Universidad Autonoma de Occidente – Cali Depto. Operaciones y Sistemas Facultad de Ingeniería

6 de marzo de 2018

Divide y Vencerás

Una de las estrategias más conocidas para el diseño de algoritmos:

Esquema Divide y Vencerás

Características

Características que deben cumplir los problemas para que se pueda aplicar esta técnica:

- El problema se debe poder descomponer en otros similares pero más pequeños.
- Los nuevos problemas deben ser disjuntos.
- Debe ser posible combinar las soluciones individuales para obtener la global.

Ejemplo 1: maxArreglo iterativo

Encontrar el valor máximo en un arreglo de enteros

```
A: [11, 21, 22, ..., .. 9, 8, 55]
```

```
int maxArreglo (int A[], int n) {
   int maximo = A [0];
   for (int i=1; i<n; i++) {
     if (A[i] > maximo)
        maximo = A[i]

   return maximo;
}
```

Enfoque Divide y Vencerás maxArreglo

Ejemplo 1: maxArreglo divide y vencerás

```
int maxArreglo (int A[], int ini, int fin) {
 int mitad, maxIzquierda, maxDerecha;
 if (ini == fin)
   return A [ini];
 else {
    mitad = (ini+fin)/2;
   maxIzquierda = maxArreglo (A, ini, mitad);
    maxDerecha = maxArreglo (A, mitad+1, fin);
   if (maxIzquierda > maxDerecha)
      return maxIzquierda:
    else
      return maxDerecha:
 return -1; // Buena prActica por si no retorna nada
```

Ejemplo 2: Búsqueda Binaria Divide y Vencerás

```
int busquedaBinaria (int A[], int ini, int fin, int k) {
   int mitad;
   if (fin >= ini) {
      mitad = ini + (fin-ini)/2;
      if (k == A [mitad])
        return mitad;
      if (k < A [mitad])
        return busquedaBinaria (A, ini, mitad-1, k);
      else
        return busquedaBinaria (A, mitad+1, fin, k);
   }
   return -1;
}</pre>
```

Ejemplo 2: Ordenamiento Merge Sort

Mergesort Dividir y Vencerás

DIVIDIR: Dividir el arreglo a ordenar de n elementos en dos arreglos de tamaño n/2

CONQUISTAR: Ordenar recursivamente los dos subarreglos usiando Mergesort

COMBINAR: Mezclar los dos subarreglos ordenados para producir un nuevo arreglo ordenado

Función Merge de Mergesort

- Input: Sorted arrays K[1..n₁], L[1..n₂]
- Output: Merged sorted array M[1.. n₁+n₂]

Linear Time Complexity: $\Theta(n_1 + n_2)$

Algoritmo MergeSort

Merge-Sort A[1...n]

If n > 1then

- 1. Recursively merge-sort $A[1\cdots \lfloor n/2 \rfloor]$ and $A[\lfloor n/2 \rfloor + 1\cdots n]$
- 2. Merge the two sorted subsequences