PEMECAHAN MASALAH DENGAN MENCARI

Pemecahan masalah AGEN

2.4.7—that is,

interna

10.

solutions

algorithms

a fixed case where

O()

3.1 AGEN pemecahan masalah

	Manian, menikmati pemandangan, menikmati kehidupan malam (seperti itu	RO-
	tujuan	
TUJUAN FORMULASI	formulasi tujuan,	
	banyak,	left."
POSLEM FORMULATION	Formulasi masalah	
	agen akan mempertimbangkan tindakan pada tingkat mengemudi dari satu kota utama particular adalah mengingat	
	which	
	2.3—then	
	berikut	
	agen dengan bet	berapa
	Pilihan segera nilai yang tidak diketahui dapat memutuskan apa yang harus dilakukan dengan terlebih dahulu memeriksa yang akhirnya menyebabkan negara nilai dikenal.	tindakan

arc

66

MASALAH

Sebuah

a fixed one

on.

MOLUTION

EXECUTION

actions.

OPEN-LOOP

AWAL STATE

 $\{In(Buchmest)\}.$

ULT(a,s) Resu Do

PAIN BIAYA

LANGKAH BIAYA

s' c(s, s').

SOLUSI OPTIMAL

model—an

				In	(Arad),	
ABSTRAKSI						
		enfo	orcement			
			Rimnicu			
		sah				
						berguna
3.2 CONTOH						
TOY MASALAH				oleh	dunia nyata	
REAL-WORLD MASALAH						
	-	complete				

 $n \cdot 2^n$

2

Kiri kanan,

Mengisap. Naik Turun.

Kiri

Kanan mengisap

from 4]

are

ruled out

SLIDING-BLOCK

algorithms.

R-CUEEN'S MASALAH 8-queens

TAMBAHAN
FORMILLATION
menambah

COMPLE⇔NE-STATE FORMA LATI ON

cither

64

n n

10400

4.

the

5-s0

POUTE-FINDING MASALAH

them.

within-airport

TOURING	MASALAH

 $In & ed(\{Bucharest\});\\ In(Vaslui), Visited(\{Bucharest, Urziceni, Vaslui\}),\\ & \text{visited}.$

TRAVELING SALESPERSON PROBLEM

VLSI LAYOUT

solving.

SCOOT NAVIGASI

AUTOMATIC MAJELIS SEQUENCING

	scarch		Sebuah	
PROTEIN DESIGN				
3.3 MENCARI	SOLUSI			
SEARCH IREE NODE				In(Arad).
MENGEMBANGKAN PEMBANGKIT INDUK				
NODE ANAK NODE	In(Sibnu), In(Timison	ara), In(Zerind).	Dalam (Arad)	
LEAF NODE	Dalam (Fagaras), di (Oradea),	In(RimnicuVilcea). Zerind. set		In(Arad).
DAFTAR OPEN				
CARI STRATEGI			so-called	strategy.
REPEATED NEGARA				In(Arad)

tak terbatas

other

PATH Loopy

limit

EDUN dant PATH

Arad-Zerind-Oradea-Sibiu

TREE-SEARCH GRAPH-SEARCH(problem) node. GRAFH-SEARCH

GRID RECTANGULAR

As

TERTUTUP UST

algoritma itu, oget sejarah mereka ditakdirkan untuk mengulanginya.

SEPARATOR

3.2.

separation recumgular-grid

In

secara sistematis

n

= n.

n.PARENT: di

n.ACTION:

n.PATH-COST: traditionally g(n), from

CHILD-NODE

Figure

EMPTY?(antre)

• P OP(queue)

INSERT(element,

FIFC QUEUE				sulung	
LIFO DUEUE					
PRIORITY ANTRE					
CANUNICAL BENTUK			74),	Urziceni, Vaslui, Buchares	t}.
KELENGKAPAN					
DP IMAL IY					
TIME KOMPLEKSITAS					
SPACE KOMPLEKSITAS					
	(links).	E			structure
	(Harday)				
	implisit				
Bercabang FAKTOR					
KEDALAMAN					
CARI COAT					
TOTAL BIAYA	usage—or				
				from Arad	

untuk

16.

3.4 STRATEGI CARI

Kurang informasi CARI CARI BLIND

memesan

INFORMASI CARI

MENDENGAR ISM CARI

BREADTH-F HST

mereka

dangkal

tweak

dihasilkan

menyelesaikan-jika

d,

b

dangkal

optimal

READTH-FIRST-SE problem INITIAL SOLUTION(node) problem.GOAL-TEST simpul. perbatasan simpul dieksplorasi sebuah EMP1Y?(frontier) simpul - POP(frontier) f * perbatasan 🧤 menambahkan. to explored .ACTIONS masalah tindakan (n ode. ← CHILE-NODE(problem, anak. dieksplorasi perbatasan Ganak) perbatasan anak, perbatasan)

sehingga kompleksitas ruang

 $O(b^{\circ})$, yaitu, didominasi oleh ukuran perbatasan. Switching

untuk

beralih bisa biaya banyak waktu.

Kompleksitas eksponensial terikat untuk

O(t)

berbagai nilai kedalaman solusi

 d_{ullet} waktu dan memori yang dibutuhkan untuk breadth- sebuah

pencarian pertama dengan branching factor

10. Tabel mengasumsikan bahwa juta node dapat

dihasilkan per detik dan bahwa node membutuhkan

1000 byte penyimpanan. Banyak masalah pencarian

muat kira-kira dalam asumsi ini (memberi atau mengambil faktor 100) ketika dijalankan pada komputer pribadi modem.

11,110 11
10 11
8 10 exabytes

h 10: nodes/second: 1000 bytes/node.

UNIFORM-COST

Two pelajaran yang dapat dipelajari dari Gambar 3.13. Pertama,

memory requirements

first

execution time

untuk solusi

take.

breadth-first

(or

memang

kurang informasi pencarian) untuk menemukan itu. Secara umum, exponemi ul-complexity

Ketika semua biaya langkah yang sama, pencarian luas-pertama adalah optimal karena selalu memperluas

simpul tidak dikembangkan. Dengan perpanjangan sederhana, kita dapat menemukan sebuah algoritma yang optimal dengan fungsi langkah-biaya. Alih-alih memperluas simpul dangkal, memperluas node dengan

n

g(n).

diperintahkan oleh q. Algoritma ini ditunjukkan pada Gambar 3.14.

perbedaan dari pencarian luas-pertama. Yang pertama adalah bahwa tes tujuan diterapkan ke node ketika

expansion

graph-search

daripada ketika pertama kali dihasilkan. Alasannya adalah bahwa node tujuan pertama yang

blem)

problem INITIAL-STATE

- /*

blem.GOAL T(node.S

SOLUTION(node)

add node. to explored

problem.ACTIONS(node.STATE)

CHILE-NODE(problem,

child.STATE

node

Rimnicu

Bucharest

310.

80 + 97 + 101 =g-cost n'3.9: n. n'y-cost η uniform-cost pencarian memperluas node dalam urutan jalur optimal biaya. jumlah поор solution. bC * ϵ . $O(t^{1+})$ $b^{1+|C^+/\epsilon|}$ aku s b^{d+1}

d

3.4.3

DEPTH-FIRST SEARCH terdalam

3.17.

NoOp

Figure 3.16 Depth-first search on a binary tree. The unexplored region is shown in light gray. Explored nodes with no descendants in the frontier are removed from memory. Nodes at depth 3 have no successors and M is the only goal node.

properties

nonoptimal. subtree depth-first return $O(b^m)$ m

m. O(bm)

9).

O(m) O(bm).

backtracking SEAHCE

O(m)

 ℓ .

 ℓ $O(b^{\frac{1}{\ell}})$ $O(b\ell)$. $\ell = \infty$.

20 ii

DEPTH-LIMITED-SEARCH

membatasi)

RECURSIVE-DLS(MAKE-NODE(problem.1NITIAL-STATE), masalah, batasan)

(Node, masalah, batas) node.

problem.GOAL-TEST(

SOLUTION(node)

limit =

cutoffff

cutoff_occurred?

problem.ACTIONS(node.STATE)

tindakan CIIILD-NODE (masalah, simpul, tindakan)

hasil

RECURSIVE-DL S (anak, masalah, Memancarkan - 1)

Hasilnya = cutoff

cutojf_ terjadi? hasil

hasil ≠ kegagalan cutoff_occurred?

memotong

kegagalan

DIAVETER

ITERATIVE

d,

ITERATIVE-DEEPENING-SEARCH

function ITERATIVE-DEEPENING-SEARCH (problem, n) returns a solution, or failure for depth = 0 to ∞ do result — DEPTH-LIMITED-SEARCH (problem, depth) if $result \neq \text{cutoff}$ then return result

Figure 3.18 The iterative deepening search algorithm, which repeatedly applies depth-limited search with increasing limits. It terminates when a solution is found or if the depth-limited search returns *failure*, meaning that no solution exists.

d times.

$$N({
m IDS})$$
 (D) $b+(d-1)\,b_{2+}$ $+(1)b$ $O(b$)—asymptotically generating $d=$

+

nins

Secara umum, pendalaman berulang aku s

metode pencarian uninformed yang disukai ketika ruang pencarian besar dan kedalaman solusi is no1 dikenal.

ITERATIF LENGTHENING SEARCH

$$b^{2}$$
 b^{2} b^{3}

d =

3. b=

 $O(b^{d/-})$. $O(b^{d/-})$

the

PREDECESSOF x

eksplisit tercantum

n-queens

3.4.7

for

O(b ^d Yes ^c	$O(b^{1+\lfloor C \rfloor/\epsilon \rfloor})$	$O(b^m)$ O(bm)	$O(b^{\ell})$ $O(b\ell)$	O(t) O(bd) Yes ^c	$O(b^{a^{-\alpha}})$ $O(t^{a^{-1}a})$ Yes' a
Yes				Yes	Yes

3,5 INFORMA	ASI (HEURISTIK) STRATEGI	CARI		
INFORMASI CARI				
BEST-FIRST PENCARIAN			search.	
EVALUASI FUNGSI				
				shows
EURISTIC FUNGSI	E/E)		h(n):	_
	h(n) $h(n)$,	7
	constraint:	nonnegative, (n)		
CARI BEST-FIRST SERAKAH				
STRAIGHT-LINE JARAK		h(n). mute-finding h_{SLD} .	Romania;	
	$h_{SLD}(In(Arail))$		h_{SLD}	
	h_{SLD}			h_{SLL}
		Zerind		
		best-first		
		(1984).		

			Mehadia Neamt	
	Drobeta		Dhiriston Wheen	
	Fagaras		Rimnicu Vilcea	
	Hirsova	151	Urziceni	
	Lngoj	244	Zerind	374
h_{SM} straight-line				

saya t

Fagaras,

Urziceni, Fagaras.

Vaslui

aku s

O m

3.5.2 A * search: Meminimalkan total perkiraan biaya solusi

PENCARIAN

$$g(n) = h(n)$$

 $g(n)$ n

n

$$9(n)$$
 $h(n)$.

Figure 3.23 Stages in a greedy best-first tree search for Bucharest with the straight-line distance heuristic h_{SLD} . Nodes are labeled with their h-values.

ADMISSIBLE HEURISTIS

$$f(n)=$$

 h_{SLD}

mungkin

CONSISTENCY

MONOTONICITY

search.

14N)

n'

a.

n':

 $h(n) \leq c (n, a,$

h(n')

SEGITIGA

n'.

 G_n

h(n)

 G_n

h(n),

G,.

 h_{SLD} .

saya t

A*

itu Iree-search versi A *

dapat diterima, sedangkan versi grafik-pencari optimal jika h (n) konsisten. optimal

g

A*

f(n)any nondecreasing.

if h(n) konsisten, maka nilai-nilai

g(n) = g(n) + c(n, a. ii)

h(n') =f(n') = g(n')

c(n,a,n) + h(n) >

h(n) = f

setiap kali A * memilih node n untuk ekspansi, jalur optimal

ke node yang telah ditemukan.

n'

96 Bab

nondecreasing n'

GRAPH-SEARCH nondecreasing

f

KONTUR

example.

A*

 $C^{st}.$ C^{st}

 C^* , ϵ f(n) C^* —for Timisoara

PEMANGKASAN

 h_{SLD}

pruning-climinating

information-A'

UPI IMALLY EFFIC THT

not

ABSOLUTE ERROR

ERROR RELATIF

$$\frac{h^*}{(h^*-h)/h^*}$$

Sebuah

 $O(b^{-1})$.

(n)

A*

is.

$$\begin{array}{cc} (b^{\epsilon d}) & & ((b^{\epsilon})^{-}) \\ b^{\epsilon} & & \end{array}$$

C*-even

RECURSIVE-BEST-FIRST-SEARCH (problem) (problem, MAKE-NODE(problem.INITIAL-NEGARA), ∞] RBFS(problem, simpul ,f_limit) problem.GOAL-TEST(node,STATE) SOLUTION(node) penerus - 11 problem ACTIONS (simpul. tindakan masalah, simpul, tindakan) penerus penerus kegagalan, 🗙 f penerus + s.h. node)).f 5.f 4 f-value jangan sampai penerus terbaik. f7 f_limit kegagalan, terbaik. f alternatif penerus RB(f_limit, alternatif)) Hasilnya, terbaik, f (Masalah, terbaik, hasil ≠ kegagalan hasil

A*

RECLASIVE REST-FIRST PENCARIAN

 f_limut

alternatif

BACKED IP NIA Children.

RBFS
IDA*.
Rimnicu

increase—h IDA* h(n)SEBAGAI terlalu sedikit MA^*). SMA^* A^* SMA^* SMA* SMA* SMA* terburuk SMA* 77 n. SMA* terbaru sulung bahkan jika itu adalah pada jalur solusi optimal, be SMA* d, SMA*

the

	SMA*:	of computation	keterbatasan memori dapat membuat masalah terselesaikan waktu.	from inti nya
ETALEVEL NEGARA SPACE OR: FCT-LEVEL			belajar	metalevel
ETAL EVEL				metaleve

$$h_1$$
 an

MANHATTAN DISTANCE 2

$$h_2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$
.

FFFECTIVE faktor pencabangan b^* .

fairly

A*

 h_2 .

$\mathbf{A}^{\cdot}(h_1)$	$A(h_2)$	$A^*(h_1)$	$A^*(h_2)$
			24
			ti
			27

 h_2 h_1 . It $n, h_2(n) > -(n)$

DOMINATION

 $(N) = C^*).$ $(n) \quad C^*$ $h(n) \quad C^*$ h_2

lo

8-puzzle h_2 h_2 ?

 h_2

 h_2 RE AXEC supergraph lebih baik biaya dari solusi optimal untuk masalah santai adalah heuristik diterima untuk masalah asli. O tanpa pencarian, obtain. problem (Prieditis, 1993). $h_1 \dots h_m$

 $h(n) = \max\{h_1(n), \dots, h_m(n)\}.$

h.

* 2		4			2		
*				4			
*	3	1					
subpro	blem						

saya t

saya t

from

subproblem

3.28.

POLA DATABASE

instance-in

 h_{DB}

back

15-puzzles

menambahkan,

5-6-7-8

Ву

17

DA ABASES

database pola menguraikan. Dengan database seperti itu,

15-puzzles

2008).

nonadditive

h(n)

h(n)

h(n)

18.

fitur

$$x_1$$
 $h(n)$.
 $x_2(n)$ $x_1(n)$ $x_2(n)$ $h(n)$?

$$c_1x_1(n) + c_2x_2(n)$$
.

 e_1

pasang

h(n) =

Breadth-first

Uniform-cost

g(n),

h n)

best-first

h(n).

g(n) + h(n).

GAMBAR-SEARCH).

RBFS

SMA*

 A^*

nition, precomputed

of

defi-

Bellman

(1968).

8-puzzle

15-puzzle,

mid-1870s.

American Journal of Mathematics

n n problems.

Schach

undecidable.

et al.,

Shabookar Mazumder

Bellman

cases.

search"

"penetrance"

g (n).

et al.

Martelli's

A*.

111

g(n) +

Huyn

2007). "effective

 $O((b^*)^{\top})$. $O(b^{\top})$, search Helm

search, Helmert

 $f_w(n) = w_y g(n)$

h(n) $w_a = w_h$ sadmissible—that

 ϵ A_{ϵ}^* ϵ

A* A*

et dari, 2006).

IDA*

1966).

(1978)

ITERATIF EKSPANSI 1992). LWO

A* DTA* V efald MA^{s} et al. ΙF SMA* minimum-spanning-tree Prieditis Hemadvolgyi Edelkamp lansson (1984) Heuristics et al. Artificial Intelligence majalah of yang ACM_ PAFALLEL PENCARIAN Sebuah et al., (Ralphs et al., Korf

labirin

b.

c.

d. details:

d(i,j)

D(i, D(i,j)/2,

C.

(1982).)

 $\sqrt[3]{n!}$

records.

(x, y)

polygons.

c.

adalah

(Amarel,

Go(Sibiu)

Pergiactions.

Go(Sibiu)Go(Rimnicu Vilcea)Go(Pitesti)Go(Bucharest).

(Petunjuk: afterwards.)

b. h(n) 0 A*

allowed.

11.

problem + all?
3.16 3.32

 $[\epsilon,1],$ < <

3.18 O(n) = O(n).

URLS

3.20

Construct

b.

formance search n performance n?

Sebuah

the MST—see Exercise RBFS

8-puzzle

A*

algoritma akan mempertimbangkan dan the dan skor li setiap node.

h(n)

Hal RISTIC 51.114
ALGORITHN

 $_{,F(n)} = w)g(n)$

untuk =

(x,y).

sebuah

(i.e., n

(i, i+1,

n.

 y_i): h.

grid.

 $\frac{\sum_{i=1}^{r} i}{\max\{h_1,}$

h

C.

Sebuah.

d.

3,31

heuristis Gaschnig's

Gaschnig's

3,32

Gaschnig ini

1

-