1.2 Čísla, premenné a výrazy

Pojmy:

Konštanta – je stála veličina. Konštantou sa vo všeobecnosti myslí výsledok poznania relatívne stálych súvislostí alebo vlastností.

Premenná – je značka resp. označenie, ktoré zastupuje prvky určitého oboru variability.

Výraz – je zoskupenie matematických symbolov na vyjadrenie určitých vzťahov a operácií.

Algebraický výraz je tvorený z konštánt ("čísla") a premenných ("písmena"), ktoré sú dokopy spojené pomocou algebraických operácií (napr. sčítania, násobenia) a zátvoriek. Premenná zastupuje čísla z určitého oboru hodnôt. Pomocou algebraických výrazov môžeme vykonávať všeobecné výpočty.

Matematický zápis, v ktorom po nahradení premenných konštantami dostaneme konštantu, nazývame algebraický výraz.

Racionálny algebraický výraz neobsahuje odmocniny, napr. $\frac{x+5}{3} - \frac{3}{4}x$

Iracionálny algebraický výraz obsahuje odmocniny, napr. $\sqrt{2x-7}+3x$

Počtový výraz je matematický zápis, ktorým vyjadrujeme počtové operácie s číslami a poradie v akom majú byť prevedené. Napr.: $(2\cdot(5-1.76)+5):0,4$.

Počtové výrazy sa pomenovávajú podľa počtových operácií – výkonov. napr. počtový výraz 3 + 2 je súčet, 6 - 4 je rozdiel, 2. 4 je súčin, 4 : 2 alebo 4/2 je podiel.

Obor definície výrazu – Definičný obor premenných algebraického výrazu je množina všetkých takých hodnôt premenných, pre ktoré je algebraický výraz definovaný – má zmysel. Zvyčajne ho označujeme D (D_f).

Rovnosť výrazov – Rovnosť v matematike znamená, že dve veličiny sú rovnaké, v prípade dvoch čísiel alebo počtových výrazov sa zapisuje: a = b, znak = sa nazýva znak rovnosti. 1+ 5 = 2 . 3

Hodnota výrazu – Výpočet hodnoty algebraického výrazu pre dané hodnoty premenných, vykonáme dosadením daných hodnôt premenných za jednotlivé premenné a určením hodnoty takto vzniknutého číselného výrazu.

Jednočlen – je výraz, ktorý sa dá zapísať ako:

konštanta 5; -2.36; -1/3; π ; e

premenná a; x; y

súčin, podiel konštánt, premenných a ich mocnín 5.x; -7.a.b²

Mnohočlen - je výraz, ktorý sa dá zapísať ako súčet jednočlenov : $5k^2 + 3p^3 + 4pq + 56$

Názov mnohočlenu je odvodený od počtu jeho jednočlenov (sú oddelené znamienkami + alebo -)

- jednočlen $2x^5$ - dvojčlen $m + n^2$

- trojčlen $a^2 - b^3 + 5$ - štvorčlen $pq + p^2q - 5p + 2$

Stupeň mnohočlena – určuje najväčší stupeň jeho jednočlenov.

Napr.: $3a^7 - 5b^2 + 4a^3b^5$ je trojčlen 8. stupňa

Výraz typu $A(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$, pričom a_0 , a_1 , a_2 ,..., a_n , $x \in \mathbb{R}$, $a_n \neq 0$, $n \in \mathbb{N}$ nazývame **polynómom** – mnohočlen n - tého stupňa s premennou x.

Stupeň polynómu je najvyšší exponent premennej. Číselnú hodnotu mnohočlena dostaneme ak do mnohočlena dosadíme za premennú niektoré číslo z oboru premennej.

Doplnenie do štvorca (pre kvadratický mnohočlen) – Doplnenie na štvorec alebo doplnenie do štvorca je úloha z oblasti matematickej analýzy, pri ktorej **podstatou je zmena polynómu 2. stupňa, teda kvadratického trojčlena na tvar štvorca.**

Využíva sa rovnosť: $ax^2 + bx + c = a(x + \frac{b}{2a})^2 + \frac{4ac - b^2}{4a}$, ktorá platí za predpokladu, že $a \neq 0$ pre každé číslo x.

Člen mnohočlena – Jednotlivé sčítance mnohočlenu nazývame členmi mnohočlenu.

$$a_0$$
 – absolútny člen, a_1x – lineárny člen, a_2x^2 – kvadratický člen, a_3x^3 – kubický člen, a_4x^4 – člen 4. stupňa, a_5x^5 – člen 5. stupňa, a_nx^n – člen n. stupňa

Vynímanie pred zátvorku – Vždy sa vyníma "maximálna hodnota" , to znamená najväčší spoločný deliteľ jednotlivých členov vo výraze.

$$ab + a = a(b + 1)$$
 $b - 2a = -(2a - b)$

Úprava na súčin – Výraz môžeme upraviť na súčin:

A. Vyňatím jednočlena pred zátvorku:

Najväčšieho spoločného deliteľa všetkých členov mnohočlena (koeficienty aj premenné) napíšeme pred zátvorku. V zátvorke zostanú členy, ktoré sme týmto deliteľom vydelili. Hovoríme, že sme mnohočlen sme upravili na súčin.

B. Vyňatím dvojčlena pred zátvorku:

Ak sa v mnohočlene nachádzajú násobky toho istého dvojčlena, dvojčlen vyberieme pred zátvorku. V zátvorke zostanú členy, ktoré sme týmto dvojčlenom vydelili. Hovoríme, že sme mnohočlen upravili na súčin dvojčlena a mnohočlena.

C. Pomocou algebrických vzorcov:

V matematike pracujeme s rôznymi vzorcami. V algebre medzi základné vzorce patria:

$$(a+b)^2 = (a+b)(a+b) = a^2 + 2ab + b^2 = aa + ab + ba + bb$$
$$(a-b)^2 = (a+b)(a-b) = a^2 - 2ab + b^2 = aa - ab - ba + bb$$
$$a^2 - b^2 = (a+b)(a-b) = aa + ab - ba - bb$$

Zjednodušovanie výrazu – je taká úprava výrazu, ktorej výsledkom je výraz s menším počtom operátorov, funkcií, čísel a premenných s nenulovými koeficientmi.

Čísla prirodzené (N), celé (Z), nezáporné (N_0), záporné (Z^-), racionálne (Q), iracionálne (I), reálne (R)

Prirodzené čísla N = {1,2,3,4,5,6,....}

- na tejto množine sú definované operácie sčítania a násobenia (umocnenie)
- obor prirodzených čísel = množina + operácie: (N,+, .)
- veta o uzavretosti: (a+b)∈N ∧ (a.b) ∈N

Celé čísla $Z = \{..., -3, -2, -1, 0, 1, 2, 3,\}$

- na tejto množine je definovaná operácia odčítania, sčítania, násobenia
- obor celých čísel: (Z, +, -, .)

Racionálne čísla Q

- množina všetkých čísel, ktoré sa dajú zapísať v tvare zlomku $\frac{p}{q}$; p \in Z, q \in N
- na tejto množine je definovaná operácia delenia, sčítania, násobenia, odčítania
- zlomky, zmiešané čísla, periodické čísla

Iracionálne čísla $I = \{...\sin 25^\circ; \log 5,3; ...; \forall 2; \forall 3; ...; e; \pi; ...\}$

• všetky čísla, ktoré sa nedajú zapísať do tvaru zlomku

Reálne čísla R (QUI)

• obor:
$$(R, +, -, ., /, \sqrt{\ })$$

Komplexné čísla C

- zápis: [a,b]; C = R + R
- na tejto množine je definovaná operácia odmocnenia
- množina čísel tvaru: a + bi; pričom i² = -1; a reálna zložka, bi imaginárna zložka

n-ciferné číslo – číslo ktoré sa skladá z n-cifier

Zlomky (čitateľ, menovateľ, spoločný menovateľ, základný tvar zlomku, zložený zlomok, hlavná zlomková čiara)

Zlomok – je zápis čísla vyjadrený ako podiel dvoch celých čísel, pričom znamienko delenia je nahradené tzv. zlomkovou čiarou. Aby mal zlomok zmysel, musí platiť: $b \neq 0$.

$$\frac{a}{b}$$
 citatel' menovatel'

Spoločný menovateľ - Najmenší spoločný menovateľ, alebo spoločný menovateľ je najmenší spoločný násobok menovateľov zlomkov. Je najmenšie kladné celé číslo, ktoré je násobkom každého menovateľa.

Základný tvar zlomku - Zlomok $\frac{a}{b}$ je v základnom tvare, ak sú čísla a, b nesúdeliteľné (ich jediný kladný spoločný deliteľ je teda číslo 1).

Zložený zlomok - Zlomok, ktorý má v čitateli alebo v menovateli opäť zlomok, alebo má

zlomok aj v čitateli, aj v menovateli.
$$\frac{\frac{4}{7}}{\frac{3}{8}} = \frac{4}{7} : \frac{3}{8} = \frac{4}{7} \cdot \frac{8}{3} = \frac{32}{21}$$

Desatinný rozvoj/dekadický zápis (konečný, nekonečný a periodický)

Desatinný rozvoj – sú všetky čísla za desatinnou čiarkou. Racionálne čísla môžeme zapísať nielen v tvare zlomku aj v tvare desatinného čísla. Desatinné číslo môže mať **ukončený desatinný rozvoj (konečný desatinný rozvoj)**. Napríklad: $\frac{15}{60} = 15$: 60 = 0.25

Periodické čísla sa dajú zapísať v tvare zlomku, alebo v tvare **nedokončeného desatinného rozvoja** s vyznačenou periódou **(nekonečný periodický desatinný rozvoj)**.

Napríklad:
$$\frac{1}{3} = 1$$
: 3 = 0,3333= 0,3

Každé číslo, ktoré má nekonečný neperiodický desatinný rozvoj je iracionálne číslo.

Dekadický zápis – je zápis čísla v desiatkovej sústave. Každý dekadický zápis predstavuje práve jedno číslo a to číslo je nezáporné a celé. Napríklad číslo 451 v desiatkovej sústave znamená $4.10^2 + 5.10^1 + 1.10^0 = 4.10^2 + 5.10 + 1$

Desatinné číslo – Desatinné číslo je spôsob zápisu čísla pomocou celej časti a desatinnej časti, ktorá je oddelená desatinnou čiarkou. Napríklad v zápise 154,28 je 154 celá časť a 28 desatinná časť. Na prvom mieste za desatinou čiarkou sú desatiny, na druhom stotiny, na treťom tisíciny.

Číslo π – 3,141592654..., Ludolfovo číslo je matematická konštanta definovaná ako pomer obvodu kruhu k jeho priemeru. Často sa používa jeho zaokrúhlená hodnota 3,14, prípadne zlomok $\frac{22}{7}$. Veľa matematických, vedeckých, fyzikálnych a inžinierskych rovníc obsahuje π , čo z neho robí jednu z najdôležitejších matematických konštánt. Ludolfovo číslo je iracionálne. Pomenované je podľa nemecko-holandského matematika Ludolph van Ceulena.

Nekonečno – je to, čo nemá medze, buď ako presahujúce akúkoľvek danú kvantitu istej povahy alebo smerujúce k takému stavu. Nekonečno je abstraktný pojem, ktorý si v podstate ani nemôžeme predstaviť. V matematike sa "nekonečno" často používa v kontexte, kde sa s ním narába ako s číslom (teda počíta alebo meria veci: "nekonečný počet termínov").

Číselná os – súradnicová sústava na priamke, so zvoleným začiatkom osi a jednotkou dĺžky. Čísla na nej znázorňujeme ako body.

Znázorňovanie čísel – číslo vieme znázorniť na číselnej osi

Interval (uzavretý, otvorený, ohraničený, neohraničený) - sú podmnožiny množiny reálnych čísel, ktoré ležia medzi dvoma určenými bodmi označovanými ako hraničné body intervalu.

Napr.: (2; 7) – je množina reálnych čísel nachádzajúcich sa na číselnej osi medzi číslami 2 a 7, ale bez týchto čísel.

(2; 7) – je množina reálnych čísel nachádzajúcich sa na číselnej osi medzi číslami 2 a 7, ale vrátane týchto čísel.

Druhy intervalov: (intervaly 1, 2, 3 sú ohraničené, intervaly 4, 5 sú neohraničené – aspoň jeden z koncových bodov je nekonečno)

- **1.** Otvorený interval $(a, b) = \{x \in R; a < x < b\}$
- **2.** Uzavretý interval $\langle a, b \rangle = \{x \in R; a \le x \le b\}$
- **3.** Polootvorený/polouzavretý interval $(a; b) = \{x \in R; a \le x < b\}$ $(a; b) = \{x \in R; a < x \le b\}$
- **4. Neohraničený interval** $(a; \infty) = \{x \in R; a < x\} \ (a; \infty) = \{x \in R; a \le x\} \ (-\infty; b) = \{x \in R; x < b\} \ (-\infty; b) = \{x \in R; x \le b\}$
- 5. Obojstranne neohraničený interval $(-\infty; \infty) = \{x \in R\}$

Komutatívny, asociatívny a distributívny zákon

Komutatívny zákon – zákon zameniteľnosti: a + b = b + a; $a \cdot b = b \cdot a$

Asociatívny zákon – zákon združovania: (a + b) + c = a + (b + c); (a. b). c = a. (b. c)

Distributívny zákon – zákon roznásobenia súčtu: a. (b + c) = a. b + a. c

Odmocnina (druhá) – \sqrt{a} - je špeciálnym typom všeobecnej odmocniny. Ide o najbežnejší typ odmocniny, preto sa často označuje iba ako odmocnina. Pre ľubovoľný matematický objekt s definovanou operáciou umocňovania (číslo, maticu, funkciu...) je druhá odmocnina z a, označovaná ako \sqrt{a} definovaná ako objekt b, pre ktorý platí $b^2 = a$

n-tá odmocnina – z čísla x $(\sqrt[n]{x})$ je také číslo y, pre ktoré platí, že $y \cdot y \cdot \dots \cdot y = x$, kde y sa v súčine vyskytuje n-krát. Odmocnina je inverznou funkciou k mocnine. Platí, že n-tá odmocnina čísla x sa rovná 1/n-tej mocnine čísla x: $\sqrt{9} = 9^{\frac{1}{2}} = 3$ Mocnina = Výsledok Umocňovania

Mocnina (s prirodzeným, celočíselným, racionálnym exponentom)

Mocniny s prirodzeným exponentom - Zapisujeme ju a^n , kde a je reálne číslo, n prirodzené číslo; a nazývame základ mocniny, n mocniteľ. Výraz a^n nazývame n-tá mocnina čísla a môžeme ho rozpísať ako súčin n základov, $a^2 = a \cdot a \cdot a^3 = a \cdot a \cdot a \cdot a \cdot ...$

Mocniny s celočíselným exponentom - pre každé reálne číslo a (a ≠ 0) a pre každé celé

číslo n definujeme nasledujúce mocniny:

$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

Mocnina s racionálnym exponentom - Nech reálne číslo a je kladné a nech $n=\frac{r}{s}$ je racionálny exponent , kde r je celé číslo a s je kladné celé číslo. Potom je možné robiť úpravy typu: $a^{\frac{r}{s}}=(a^r)^{\frac{1}{s}}=\sqrt[s]{a^r}=(\sqrt[s]{a})^r=(a^{\frac{1}{s}})^r$

Exponent a základ mocniny

Exponent (mocniteľ) je číslo ktoré určuje, koľkokrát sa základ násobí.

Základ mocniny (mocnenec) je číslo, ktoré sa opakovane násobí.

Základ logaritmu – Logaritmom kladného reálneho čísla u pri základe $a \in R^+ - \{1\}$ nazývame také reálne číslo v, pre ktoré platí: $a^v = u$. Zapisujeme: $log_a u = v$.

a - základ logaritmu

u - logaritmované číslo

v - logaritmus

Absolútna hodnota čísla – Absolútna hodnota čísla je jeho vzdialenosť od nuly. Absolútnu hodnotu čísla x značíme pomocou zvislých čiar: |x|, |5| = 5, |-5| = 5

Úmera (priama a nepriama)

priama: funkcia s predpisom y = k. x (lineárna funkcia), grafom je priamka, k – smernica priamky

nepriama: funkcia s predpisom y = k x (nepriama úmernosť, špeciálny prípad lineárnej lomenej funkcie), grafom je hyperbola Pomer je hodnota určená vo vzťahu k inému množstvu, veľkosti, hodnote.

Pomer - je hodnota určená vo vzťahu k inému množstvu, veľkosti, hodnote.

Percento - jedna stotina z celku: $1\% = \frac{1}{100}$ celku

Promile - jedna tisícina z celku: $1\% = \frac{1}{1000}$ celku

Základ (pre počítanie s percentami) – je celok 100%

Faktoriál – faktoriál čísla n, $n \in N_0$ je súčin všetkých prirodzených čísel menších alebo rovných n. Zapisuje sa n! a číta sa "n faktoriál". Napríklad 5! = 5 . 4 . 3 . 2 . 1 = 120

Kombinačné číslo – udáva počet kombinícií, teda spôsobov, ako vybrať k prvkov z n prvkovej množiny. Kombinačné čísla sa vyskytujú veľmi často v kombinatorických výpočtoch, a preto majú špeciálne značenie $\binom{n}{k}$ (čítame "n nad k").

Pozičná číselná sústava a jej základ – V tomto spôsobe zápisu čísel je hodnota každej číslice daná jej pozíciou v sekvencii symbolov. Každá číslica má touto pozíciou danú svoju váhu na výpočet celkovej hodnoty čísla. **Základom** je zvyčajne prirodzené číslo väčšie ako jedna. Váhy jednotlivých číslic sú potom mocninami tohto základu. Zároveň základ určuje počet symbolov pre číslice používané v danej sústave. Základ zvyčajne značíme *z*.

Dvojková a desiatková sústava

Dvojková číselná sústava, novšie tiež binárna číselná sústava (z lat. bis – dvakrát) je číselná sústava, ktorá zapisuje hodnoty pomocou dvoch symbolov 0 a 1. Konkrétnejšie hovoríme o pozičnej číselnej sústave so základom dva. Vďaka jednoduchej implementácii v elektronických obvodoch (vypnuté a zapnuté) používajú dvojkovú sústavu prakticky všetky súčasné číslicové počítače. Jednotlivé cifry (0, 1) sa nazývajú bit, čo je základná jednotka informácie.

Desiatková (dekadická) sústava, nazývaná tiež arabská, je pozično – hodnotový systém (place – value system), v ktorom rozhoduje pozícia symbolu v zápise čísla; hodnota, ktorú symbol reprezentuje závisí na mieste, ktoré zaberá. V desiatkovej sústave sa jedná o jednotky, desiatky, stovky,... milióny,... naľavo od desatinnej čiarky, ale aj desatiny, stotiny, tisíciny,... na pravo od desatinnej čiarky. Sú to mocniny čísla 10. Číslo 37 má tri desiatky a sedem jednotiek; ale číslo 73 má sedem desiatok a tri jednotky.

Približné číslo – zaokrúhlené číslo, nie presné

Platná číslica – Platné číslice sú tie číslice v čísle, ktoré sú relevantné pre presnosť daného čísla. Sú to všetky číslice okrem počiatočných núl. Koncové nuly sa počítajú. Príklady: 123 má 3 platné číslice 1230 má 4 platné číslice 0,001230 má 4 platné číslice 1,23 .105 má 3 platné číslice 1,2300 .105 má 5 platných číslic.

Absolútna chyba približného čísla – Absolútna chyba približného čísla je vzdialenosť medzi približným číslom a presným číslom. Absolútna chyba je vždy nezáporná.

Vlastnosti a vzťahy:

- $x^2 v^2 = (x v) \cdot (x + v)$, $x^2 \pm 2xv + v^2 = (x \pm v)^2$, $ax^2 + bx + c = a \cdot (x x_1) \cdot (x x_2)$, kde x_1, x_2 sú korene rovnice $ax^2 + bx + c = 0, (a \neq 0),$
 - $a^{x+y} = a^x \cdot a^y$, $(a^x)^y = a^{xy}$, $a^{-x} = \frac{1}{a^x}$, $(ab)^x = a^x \cdot b^x$, $a^0 = 1$, $a, b \ge 0$, $a \ge 0$
- $\sqrt[m]{\sqrt{x}} = \sqrt[m-n]{x}$, $(\sqrt[n]{x})^m = \sqrt[n]{x^m}$, $\sqrt[n]{x} \cdot \sqrt[n]{y} = \sqrt[n]{xy}$, pre $x, y \ge 0, m, n \in N$,
- $\sqrt{a^2} = |a|$,
- |x a| je vzdialenosť obrazov čísel x a α na číselnej osi, $\sin^2 \alpha + \cos^2 \alpha = 1$, $\cos \left(\frac{\pi}{2} \alpha\right) = \sin \alpha$, $\sin \left(\frac{\pi}{2} \alpha\right) = \cos \alpha$,
- $\sin(-\alpha) = -\sin\alpha$, $\cos(-\alpha) = \cos\alpha$, $\sin(\pi \alpha) = \sin\alpha$, $\cos(\pi \alpha) = -\cos\alpha$, $\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha, \cos 2\alpha = \cos^2\alpha - \sin^2\alpha,$ $tg\alpha = \frac{\sin\alpha}{2},$
- $a^{x} = b \iff x = \log_{a} b$, $a^{\log_{a} x} = x$, pre a > 0, $a \ne 1$, x > 0, b > 0,
- $\log_a x + \log_a y = \log_a (x \cdot y), \ \log_a x \log_a y = \log_a \frac{x}{v}, \ \text{pre } a > 0, \ a \neq 1, x, y > 0,$
- $\log_a(x^y) = y \cdot \log_a x$, pre a > 0, $a \ne 1$, x > 0,
- $n!=1\cdot 2\cdot 3\cdot ...\cdot n$, pre prirodzené čísla n, 0!=1,
- $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$, pre prirodzené čísla *n* a nezáporné celé čísla *k*, nie väčšie ako *n*,
- práve racionálne čísla majú desatinný periodický rozvoj,
- $R=Q\cup I, Q\cap I=\{\}, Z=N\cup Z^-\cup \{0\}, N\subset Z\subset Q\subset R$.