●○ 교통안전 과제

졸음은전 예방을 위한 운전자 상태 정보(운전자 심박수, 얼굴 방향, 표정, 움직임, 눈꺼풀 상태 등)영상 데이터

●○ 개요: 운전자 상태 정보 영상 데이터란?

운전자의 졸음 및 부주의 상태를 인식하고 경보 할 수 있는 AI 모델 개발에 활용할 수 있는 학습 데이터셋으로 한국교통안전공단, ㈜테스트웍스, ㈜이즈테크놀로지가 원천 영상 데이터를 수집하고, ㈜테스트웍스와 ㈜이즈테크놀로지에서 가공하여 구축한다.

졸음 단계에서 나타나는 공통적인 현상은 눈 감음과 하품 등이 대표적이며, 부주의 상황에서는 일반적으로 <mark>얼굴 방향이 전방을 주시하지 않는</mark> 형태를 갖는다. 이러한 특징을 학습할 수 있도록 사람 얼굴의 특징점을 어노테이션 한 데이터셋을 제공하며, 또한 다양한 조건에서 촬영된 운전자의 영상을 제공하여 운전자 얼굴을 지속적으로 모니터링하여 얼굴 특징을 검출 및 변화를 인식하여 졸음 상태 및 부주의 상태를 판단할 수 있도록 학습 데이터 셋을 구축하고자 한다.

본 데이터셋에서는 근적외선 카메라로 촬영된 데이터로서 운전자 안면 정보가 비식별화 없이 사용되며, 따라서 이를 공개 데이터로 개방하기 위해 운전자로부터 개인 정보 사용 동의를 득한 뒤 영상 데이터를 취득한다.

●○ 데이터셋의 구성

원천 동영상 데이터는 실제 환경, 준 통제 환경, 통제 환경(시뮬레이터) 등 세 가지 환경에서 1,000명의 운전자로부터 총 400시간의 동영상을 취득하며, 이로부터 추출한 355,000장의 이미지를 가공한 데이터셋으로 구성한다.

수집/가공	실제 운전 데이터	준 통제 환경 데이터	통제 환경 데이터
수집 환경	고속/시내/마을 버스 등 대형 차량의 실제 주행 환경	정지한 상태의 중·소형 차량	LAB 시뮬레이터 환경
수집 대상	운수업체 종사 전문 운전자	개인 운전자	개인 운전자
수집 대상 인원 (명)	650	100	250
동영상 수집량 (시간)	225	50	125

수집/가공	실제 운전 데이터	준 통제 환경 데이터	통제 환경 데이터	
동영상 길이 (분)	1	1	2	
동영상 수 (개)	13,500	3,000	3,750	
동영상 속성	720x1280 @30fps AVI	720x1280 @30fps AVI	800x1280 @30fps AVI	
이미지 가공량 (장)	192,500	50,000	112,500	
이미지 속성	720×1280 JPG	720×1280 JPG	800x1280 JPG	
가공 형식	Bounding Box	Face Keypoint	Bounding Box	
가공 정보 파일	JSON	JSON	JSON	

●○ 데이터셋의 설계 기준과 분포

| 원천 데이터 영상 수집 필요성 |

원천 데이터 구분	특성	필요성		
실제 환경 데이터	실제 운행 상황에서 촬영한 운전자 얼굴 및 사물 데이터	국내에 수집된 바 없음 à 개발된 알고리즘 및 서비스의 현실 적용 가능성 확보		
준 통제 환경 데이터	자연광 환경에서 정지된 상태에서 촬영된 운전자 얼굴 및 사물 데이터	실제 환경 데이터와 통제 환경 데이터의 연계성 확보		
통제 환경 데이터	실험실에서 엄격하게 통제된 촬영 환경에서 촬영된 운전자 얼굴 및 사물 데이터	알고리즘 학습률 확보 운전자의 이상행동으로 인한 위험성 배제		

- 실제 환경 데이터 구축의 필요성
 - 다양한 운전자의 성향 등에 대한 다양성 확보
 - 데이터셋의 서비스화를 고려한 실제 운전 데이터셋 수집
 - 국내 공개 목적의 실제 운전 데이터셋을 최초로 구축
- 준 통제 환경에서 데이터 구축의 필요성
 - 정지 상태의 차 안에서의 졸음 및 부주의 연기를 통해 실제 차량 환경의 자연광 환경에서 졸음 및 부주의 상황에 대한 데이터셋을 수집
 - 실제 환경 데이터 및 통제 환경 데이터와 함께 학습 데이터의 다양성 향상
- 통제 환경 데이터 구축의 필요성
 - 졸음 및 부주의 상황을 판단하기 위한 다양성, 정밀성, 정량적 예측 가능성 확보 목적
 - 사고 위험으로 인해 실제 차량 주행 중에는 졸음 및 부주의 상황 데이터 획득에 한계가 있음.
 따라서 실제 차량 환경과 유사한 시뮬레이터 환경에서 졸음 및 부주의 상황에 대한 얼굴
 특징 데이터셋을 빠르게 수집할 필요가 있음

| 통제 환경 데이터 분포 |

• 성별 및 연령별 - 국내 운전면허 소지자 데이터에 근거한 구성

구분	30대	40대	50대	60대	70대	계
연령 구성 (명)	100	65	50	25	10	250
남성 (명)	60	40	30	15	6	151
여성(명)	40	25	20	10	4	99

- 졸음, 부주의, 다양한 환경조건, 다양한 액세서리 착용들을 고려한 다양한 시나리오를 기반으로 데이터 셋을 구축
- 주행 중 일어날 수 있는 졸음, 부주의, 흡연, 통화와 같은 상태를 정의하고, 얼굴 각도는 운전 중 운전자의 시선이 가장 많이 가는 위치를 기준으로 정의
- 실제 주행 중 발생할 수 있는 다양한 광원 소스를 고려

| 준 통제 환경 데이터 분포 |

• 성별 및 연령별

구분	20대	30대	40대	50대	60대	70대	계
연령 구성 (명)	20	13	24	22	20	11	110
남성 (명)	1	6	11	13	13	9	53
여성 (명)	19	7	13	9	7	2	57

- 주행 중 일어날 수 있는 졸음, 부주의, 흡연, 통화와 같은 상태와 다양한 액세서리 착용들을 고려한 19가지 시나리오를 정의하여 운전자에게 연기하도록 하여 촬영
- 얼굴 각도는 운전 중 운전자의 시선이 가장 많이 가는 위치를 기준으로 정의

●○ 데이터 구조

| 가공 이미지 정보 JSON 파일의 구조 (어노테이션 포맷) |

Depth1	Depth2	Depth3	Depth4	Туре	비고
FileInfo	FileName			String	파일명
	Width			Int	이미지의 가로 길이
	Height			Int	이미지의 세로 길이
	Channel			Int	이미지의 채널 (ex 〉〉RGB:3, Gray:1)
	ID			Int	사용자 식별자
UserInfo	Gender			Int	성별 (0:Unknown,1:man,2:woman)
	Age			Int	나이
	Mask			Bool	Mask 착용여부
Accessory	Glasses			Bool	안경 및 선글라스 착용여부
	Cap			Bool	모자 및 헬멧 착용여부
Annotation				Int	1: 바운딩 박스, 2: KeyPoints
	KeyPoints	Count		int	0: 작업 X, 70: 작업 O
		Points		Int Array	좌표 리스트[(x0,y0),(x1,y1),(x69,y69)]
		Face	isVisible	Int	BoundingBox 의 Up
	BoundingBox		Position	Int Array	바운딩 박스 좌표 [xtl, ytl, xbr, ybr]
		Leye	isVisible	Bool	객체 존재유무
			Opened	Bool	개폐여부 (False: 닫힘, True: 열림)
			Position	Int Array	바운딩 박스 좌표 [xtl, ytl, xbr, ybr]
		Reye	isVisible	Bool	객체 존재유무
ObjectInfo			Opened	Bool	개폐여부 (False: 닫힘, True: 열림)
			Position	Int Array	바운딩 박스 좌표 [xtl, ytl, xbr, ybr]
		Mouth	isVisible	Bool	객체 존재유무
			Opened	Bool	개폐여부 (False: 닫힘, True: 열림)
			Position	Int Array	바운딩 박스 좌표 [xtl, ytl, xbr, ybr]
		Cigar	isVisible	Bool	객체 존재유무
			Position	Int Array	바운딩 박스 좌표 [xtl, ytl, xbr, ybr]
		Phone	isVisible	Bool	객체 존재유무
			Position	Int Array	바운딩 박스 좌표 [xtl, ytl, xbr, ybr]

●○ 데이터 예시

• 원천 영상/추출 이미지 예시

• Keypoint / Bounding Box 가공 예시

• 어노테이션 JSON 파일 예시

```
{
 "Fileinfo":{
     "FileName": "R_20-06_00_M0_G0_C1_00",
    "Width": "720",
     "Height": "1280",
     "Channel":"1"
         },
 "UserInfo":{
    "ID":"20-06",
     "Gender":"2",
     "Age":"20"
 },
 "Accessory":{
     "Mask":"0",
     "Glasses":"0",
     "Cap": "1"
 },
 "Annotaion":"1",
 "ObjectInfo":{
     "BoundingBox":{
     "Face":{
         "Invisible": "1",
         "Position":[{
             "xtl":"189.51",
             "yt1":"682.82",
             "xbr": "530.75",
             "ybr":"1020.9"
         }],
     "Leye":{
         "inVisible":"1",
         "Opended": "1",
         "Position":[{
             "xtl":"248.95",
             "yt1":"723.81",
             "xbr":"317.61",
             "ybr":"749.43"
```

●○ 데이터 구축 과정

- 데이터 수집: 실제 차량에 근적외선 카메라 및 녹화 장비를 설치하고 실제 운전자의 운행 중 모습을 촬영하거나, 준 통제 환경 및 통제 환경에서 운전 연기자에게 정해진 시나리오를 따라 졸음, 부주의 등을 연기하도록 하여 동영상을 촬영한다.
- 데이터 정제: 취득한 동영상 파일에 수집 조건 등의 메타 정보를 포함하는 파일 이름을 부여하고, 동영상으로부터 keyframe을 추출하여 이미지 가공을 위한 데이터를 마련한다.
- 데이터 가공:
 - 준 통제 환경 데이터에서 추출된 이미지에 대해 OpenPose를 이용하여 얼굴 keypoint를 자동으로 추출하는 1차 가공을 하고 이를 다시 가공 툴(annotation tool)에 올려 보정하는 작업을 거쳐 가공을 완성한다.
 - 실제 환경 데이터 및 통제 환경 데이터에서 추출한 이미지는 가공 툴을 이용하여 bounding box 어노테이션을 수행한다.
- 데이터 검수: 리뷰어에 의한 여러 단계의 검수 과정을 통해 가공 품질을 확보한다.

●○ 검수와 품질 확보

4단계에 거쳐 단계 별 데이터 가공 및 검증을 수행한다.

●○ 데이터 구축 담당자

㈜이즈테크놀로지: 031-602-0070), support@istechnology.co.kr

- 구축 담당자: nk.jeong@istechnology.co.kr

㈜테스트웍스: 02-423-5178, ai@testworks.co.kr

- 구축 담당자: youngok.park@testworks.co.kr