Contents

1	Nur	neric series	3
	1.1	Series convergence	4
	1.2	Non-negative terms series	4
	1.3	Alternating series	6
	1.4	Absolute convergence and rearrangement of series	6
2	Seq	uences and series of functions	9
	2.1	Sequences of functions	10
	2.2	Series of functions	10
	2.3	Power series	12
	2.4	Stone-Weierstraßapproximation theorem	13
3	Imp	proper integrals	15
	3.1	Locally integrable functions	16
	3.2	Improper integrals of non-negative functions	16
	3.3		17
	3.4		17
	3.5	Gamma function	19
4	Fou	rier series	21
	4.1	Preliminaries	22
	4.2	Orthogonal and orthonormal systems of functions	22
	4.3	· · · · · · · · · · · · · · · · · · ·	23
			23
			24
			24
			24
	4.4		25
			25

2 CONTENTS

Chapter 1

Numeric series

1.1 Series convergence

Definition 1.1.1. Let (a_n) be a sequence of real numbers. A numeric series is an expression of the form

$$\sum_{n=1}^{\infty} a_n.$$

We call a_n general term of the series and $S_N = \sum_{n=1}^N a_n$, for all $N \in \mathbb{N}$, N-th partial sum of the series¹.

Definition 1.1.2. We say the series $\sum a_n$ is *convergent* if the sequence of partial sums is convergent, that is, if $S = \lim_{N \to \infty} S_N$ exist and it's finite. In that case, S is called the *sum of the series*. If the previous limit doesn't exists or it is infinite we say the series is *divergent*².

Proposition 1.1.1. Let (a_n) be a sequence such that $\sum a_n < \infty$. Then $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}$ such that

$$\left| \sum_{n=1}^{N} a_n - \sum_{n=1}^{\infty} a_n \right| < \varepsilon$$

if $N \geq n_0$.

Theorem 1.1.2 (Cauchy's test). Let (a_n) be a sequence. $\sum a_n < \infty$ if and only if $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}$ such that

$$\left| \sum_{n=N}^{M} a_n \right| < \varepsilon$$

if $M > N > n_0$.

Corollary 1.1.3. Changing a finite number of terms in a series has no effect on the convergence or divergence of the series.

Corollary 1.1.4. If $\sum a_n < \infty$, then $\lim_{n \to \infty} a_n = 0$.

Theorem 1.1.5 (Linearity). Let $\sum a_n, \sum b_n$ be two convergent series with sums A and B respectively and let λ be a real number. The series

$$\sum_{n=1}^{\infty} (a_n + \lambda b_n)$$

is convergent and has sum $A + \lambda B$.

Theorem 1.1.6 (Associative property). Let $\sum a_n$ be a convergent series with sum A. Suppose (n_k) is a strictly increasing sequence of natural numbers. The series $\sum b_n$, with $b_k = a_{n_{k-1}+1} + \cdots + a_{n_k}$ for all $i \in \mathbb{N}$, is convergent and its sum is A.

1.2 Non-negative terms series

Theorem 1.2.1. Let $\sum a_n$ be a series of non-negative terms $a_n \geq 0^3$. The series converges if and only if the sequence (S_N) of partial sums is bounded.

Theorem 1.2.2 (Comparison test). Let $(a_n), (b_n) \ge 0$ be two sequences of real numbers. Suppose that exists a constant C > 0 and a number $n_0 \in \mathbb{N}$ such that $a_n \le Cb_n$ for all $n \ge n_0$.

¹From now on we will write $\sum a_n$ to refer $\sum_{i=1}^{\infty} a_n$.

²We will use the notation $\sum a_n < \infty$ or $\sum a_n = +\infty$ to express that the series converges or diverges, respectively.

³Obviously the following results are also valid if the series is of non-positive terms or has a finite number of negative or positive terms.

1. If
$$\sum b_n < \infty \implies \sum a_n < \infty$$
.

2. If
$$\sum a_n = +\infty \implies \sum b_n = +\infty$$
.

Theorem 1.2.3 (Limit comparison test). Let (a_n) , $(b_n) \geq 0$ be two sequences of real numbers. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists.

1. If
$$0 < \ell < \infty \implies \sum a_n < \infty \iff \sum b_n < \infty$$
.

2. If
$$\ell = 0$$
 and $\sum b_n < \infty \implies \sum a_n < \infty$.

3. If
$$\ell = \infty$$
 and $\sum a_n < \infty \implies \sum b_n < \infty$.

Theorem 1.2.4 (Root test). Let $(a_n) \geq 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \sqrt[n]{a_n}$ exists.

1. If
$$\ell < 1 \implies \sum a_n < \infty$$
.

2. If
$$\ell > 1 \implies \sum a_n = +\infty$$
.

Theorem 1.2.5 (Ratio test). Let $(a_n) \ge 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ exists.

1. If
$$\ell < 1 \implies \sum a_n < \infty$$
.

2. If
$$\ell > 1 \implies \sum a_n = +\infty$$
.

Theorem 1.2.6 (Raabe's test). Let $(a_n) \ge 0$. Suppose that the limit $\ell = \lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n}\right)$ exists.

1. If
$$\ell > 1 \implies \sum a_n < \infty$$
.

2. If
$$\ell < 1 \implies \sum a_n = +\infty$$
.

Theorem 1.2.7 (Condensation test). Let $(a_n) \ge 0$ be a decreasing sequence. Then:

$$\sum a_n < \infty \iff \sum 2^n a_{2^n} < \infty.$$

Theorem 1.2.8 (Logarithmic test). Let $(a_n) \ge 0$. Suppose that the limit $\ell = \lim_{n \to \infty} \frac{\log \frac{1}{a_n}}{\log n}$ exists.

1. If
$$\ell > 1 \implies \sum a_n < \infty$$
.

2. If
$$\ell < 1 \implies \sum a_n = +\infty$$
.

Theorem 1.2.9 (Integral test). Let $f:[1,\infty)\to(0,\infty)$ be a decreasing function. Then:

$$\sum f(n) < \infty \iff$$

$$\iff \exists C > 0 \text{ such that } \int_{1}^{n} f(x) dx \leq C \ \forall n.$$

4

no funciona footnote dins multline

$$\sum f(n) < \infty \iff \int_{1}^{\infty} f(x) dx < \infty.$$

⁴Later we will see that this is equivalent to say that if $f:[1,\infty)\to(0,\infty)$ is a locally integrable decreasing function, then:

1.3 Alternating series

Definition 1.3.1. An alternating series is a series of the form $\sum (-1)^n a_n$, with $(a_n) \geq 0$.

Theorem 1.3.1 (Leibnitz's test). Let $(a_n) \ge 0$ be a decreasing sequence such that $\lim_{n \to \infty} a_n = 0$. Then, $\sum (-1)^n a_n$ is convergent.

Theorem 1.3.2 (Abel's summation formula). Let (a_n) , (b_n) be two sequences of real numbers. Then,

$$\sum_{n=N}^{M} a_n (b_{n+1} - b_n) = a_{M+1} b_{M+1} - a_N b_N -$$

$$-\sum_{n=N}^{M} b_{n+1}(a_{n+1} - a_n).$$

Theorem 1.3.3 (Dirichlet's test). Let $(a_n), (b_n)$ be two sequences of real numbers such that:

1.
$$\exists C > 0 \text{ such that } \left| \sum_{n=1}^{N} a_n \right| \leq C \text{ for all } N \in \mathbb{N}.$$

2. (b_n) is monotone and $\lim_{n\to\infty} b_n = 0$.

Then, $\sum a_n b_n$ is convergent.

Theorem 1.3.4 (Abel's test). Let $(a_n), (b_n)$ be two sequences of real numbers such that:

- 1. The series $\sum a_n$ is convergent.
- 2. (b_n) is monotone and bounded.

Then, $\sum a_n b_n$ is convergent.

1.4 Absolute convergence and rearrangement of series

Definition 1.4.1. We say a series $\sum a_n$ is absolutely convergent if $\sum |a_n|$ is convergent.

Theorem 1.4.1. If a series converges absolutely, it converges.

Definition 1.4.2. We say a sequence (b_n) is a rearrangement of the sequence (a_n) if exists a bijective map $\sigma: \mathbb{N} \to \mathbb{N}$ such that $b_n = a_{\sigma(n)}$. A rearrangement of the series $\sum a_n$ is the series $\sum a_{\sigma(n)}$ for some bijection $\sigma: \mathbb{N} \to \mathbb{N}$.

Definition 1.4.3. Let $x \in \mathbb{R}$. We define the positive part of x as

$$x^{+} = \begin{cases} x & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

Analogously, we define the negative part of x as

$$x^{-} = \begin{cases} 0 & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Note that we can write $x = x^+ - x^-$ and $|x| = x^+ + x^-$.

Theorem 1.4.2. A series $\sum a_n$ is absolutely convergent if and only if positive and negative terms series, $\sum a_n^+$ and $\sum a_n^-$, converge. In this case,

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-.$$

Theorem 1.4.3. Let $\sum a_n$ be an absolutely convergent series. Then, for all bijection $\sigma: \mathbb{N} \to \mathbb{N}$, the rearranged series $\sum a_{\sigma(n)}$ is absolutely convergent and $\sum a_n = \sum a_{\sigma(n)}$.

Theorem 1.4.4 (Riemann's theorem). Let $\sum a_n$ be a convergent series but not absolutely convergent. Then, $\forall \alpha \in \mathbb{R} \cup \{\infty\}$, there exists a bijective map $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum a_{\sigma(n)}$ converges and $\sum a_{\sigma(n)} = \alpha$.

Theorem 1.4.5. A series $\sum a_n$ is absolutely convergent if and only if any rearranged series converges to the same value of $\sum a_n$.

Chapter 2

Sequences and series of functions

2.1 Sequences of functions

Definition 2.1.1. Let $D \subseteq \mathbb{R}$. A set

$$(f_n(x)) = \{f_1(x), f_2(x), \dots, f_n(x), \dots\}$$

is a sequence of real functions if $f_i: D \to \mathbb{R}$ is a real-valued function. In this case we say the sequence $(f_n(x))$, or simply (f_n) , is well-defined on D.

Definition 2.1.2. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. We say (f_n) converges pointwise to f on D if $\forall x \in D$, $\lim_{n \to \infty} f_n(x) = f(x)$

Definition 2.1.3. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$. We say (f_n) converges uniformly to f on D if $\forall \varepsilon > 0$, $\exists n_0 : |f_n(x) - f(x)| < \varepsilon \ \forall n \ge n_0$ and $\forall x \in D$.

Lemma 2.1.1. Let (f_n) be an uniform convergent sequence of functions defined on $D \subseteq \mathbb{R}$ and let f be a function such that (f_n) converges pointwise to f. Then, (f_n) converges uniformly f on D.

Lemma 2.1.2. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$. (f_n) converges uniformly a f en D if and only if $\lim_{n\to\infty} \sup\{|f_n(x)-f(x)|: x\in D\}=0$.

Corollary 2.1.3. A sequence of functions (f_n) converges uniformly to f on $D \subseteq \mathbb{R}$ if and only if there is a sequence (a_n) , with $a_n \geq 0$ and $\lim_{n \to \infty} a_n = 0$, and a number $n_0 \in \mathbb{N}$ such that $\sup\{|f_n(x) - f(x)| : x \in D\} \leq a_n, \forall n \geq n_0$.

Theorem 2.1.4 (Cauchy's test). A sequence of functions (f_n) converges uniformly to f on $D \subseteq \mathbb{R}$ if and only if $\forall \varepsilon > 0 \ \exists n_0 : \sup \{|f_n(x) - f_m(x)| : x \in D\} < \varepsilon \ \text{if } n, m \ge n_0$.

Theorem 2.1.5. Let (f_n) be a sequence of continuous functions defined on $D \subseteq \mathbb{R}$. If (f_n) converges uniformly to f on D, then f is continuous on D, that is, for any $x_0 \in D$, it satisfies:

$$\lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} f(x).$$

Theorem 2.1.6. Let (f_n) be a sequence of functions defined on $I = [a,b] \subseteq \mathbb{R}$. If (f_n) are Riemann-integrable on I and (f_n) converges uniformly to f on I, then f is Riemann-integrable on I and

$$\int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Theorem 2.1.7. Let (f_n) be a sequence of functions defined on $I = (a,b) \subset \mathbb{R}$. If (f_n) are derivable on I, $(f'_n(x))$ converges uniformly on I and $\exists x_0 \in I : \lim_{n \to \infty} f_n(x_0) \in \mathbb{R}$, then there is a function f such that (f_n) converges uniformly to f on I, f is derivable on I and $(f'_n(x))$ converges uniformly to f' on I.

2.2 Series of functions

Definition 2.2.1. Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$. The expression

$$\sum_{n=1}^{\infty} f_n(x)$$

is the series of functions associated with (f_n) .

Definition 2.2.2. A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges pointwise on D if the sequence of partials sums

$$F_N(x) = \sum_{n=1}^{N} f_n(x)$$

converges pointwise. If the pointwise limit of (F_N) is F(x), we say F is the sum of the series in a pointwise sense.

Definition 2.2.3. A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges uniformly on D if the sequence of partials sums

$$F_N(x) = \sum_{n=1}^{N} f_n(x)$$

converges uniformly. If the uniform limit of (F_N) is F(x), we say F is the sum of the series in an uniform sense.

Theorem 2.2.1 (Cauchy's test). A series of functions $\sum f_n(x)$ defined on $D \subseteq \mathbb{R}$ converges uniformly if and only if $\forall \varepsilon > 0 \ \exists n_0 \ such \ that$

$$\sup \left\{ \left| \sum_{n=N}^{M} f_n(x) \right| : x \in D \right\} < \varepsilon$$

if $M \geq N \geq n_0$.

Corollary 2.2.2. If $\sum f_n(x)$ is a series of continuous functions on $D \subseteq \mathbb{R}$, then (f_n) converges uniformly to zero on D.

Theorem 2.2.3. If $\sum f_n(x)$ is uniformly convergent series of functions on $D \subseteq \mathbb{R}$, then its sum function is also continuous on D.

Theorem 2.2.4. Let (f_n) be a sequence of functions defined on $I = [a,b] \subseteq \mathbb{R}$. If (f_n) are Riemann-integrable on I and $\sum f_n(x)$ converges uniformly on I, then $\sum f_n(x)$ is Riemann-integrable on I and

$$\int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx.$$

Theorem 2.2.5. Let (f_n) be a sequence of functions defined on $I=(a,b)\subset \mathbb{R}$. If (f_n) are derivable on I, $\sum f_n'(x)$ converges uniformly on I and $\exists c\in I:\sum f_n(c)<\infty$, then $\sum f_n(x)$ converges uniformly on I, $\sum f_n(x)$ is derivable on I and

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

Theorem 2.2.6 (Weierstraß M-test). Let (f_n) be a sequence of functions defined on $D \subseteq \mathbb{R}$ such that $|f_n(x)| \leq M_n \ \forall x \in D$ and suppose that $\sum M_n$ is a convergent numeric series. Then, $\sum f_n(x)$ is converges uniformly on D.

Theorem 2.2.7 (Dirichlet's test). Let $(f_n), (g_n)$ be two sequences of functions defined on $D \subseteq \mathbb{R}$. Suppose:

1.
$$\exists C > 0 : \sup \left\{ \left| \sum_{n=1}^{N} f_n(x) \right| : x \in D \right\} \le C, \forall N.$$

2. $(g_n(x))$ is a monotone sequence for all $x \in D$ and $\lim_{n \to \infty} \sup\{|g_n(x)| : x \in D\} = 0$.

Then, $\sum f_n(x)g_n(x)$ converges uniformly on D.

Theorem 2.2.8 (Abel's test). Let $(f_n), (g_n)$ be two sequences of functions defined on $D \subseteq \mathbb{R}$. Suppose:

- 1. The series $\sum f_n(x)$ converges uniformly on D.
- 2. $(g_n(x))$ is a monotone and bounded sequence for all $x \in D$.

Then, $\sum f_n(x)g_n(x)$ converges uniformly on D.

2.3 Power series

Definition 2.3.1. Let (a_n) be a sequence of real numbers and $x_0 \in \mathbb{R}$. A power series centred on x_0 is a series of functions of the form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Proposition 2.3.1. Let $\sum a_n(x-x_0)^n$ be a power series. Suppose there exists an $x_1 \in \mathbb{R}$ such that $\sum a_n(x_1-x_0)^n < \infty$. Then, $\sum a_n(x-x_0)^n$ converges uniformly on any closed interval $I \subset A = \{x \in \mathbb{R} : |x-x_0| < |x_1-x_0|\}$.

Theorem 2.3.2. Let $\sum a_n(x-x_0)^n$ be a power series and consider

$$R = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|}\right)^{-1} \in [0, \infty].$$

Then:

- 1. If $|x x_0| < R \implies \sum a_n (x x_0)^n$ converges absolutely.
- 2. If $0 \le r < R \implies \sum a_n(x-x_0)^n$ converges uniformly on $[x_0-r,x_0+r]$.
- 3. If $|x x_0| > R \implies \sum a_n (x x_0)^n$ diverges.

The number R is called radius of convergence of the power series.

Theorem 2.3.3 (Abel's theorem). Let $\sum a_n x^n$ be a power series¹ with radius of convergence R satisfying $\sum a_n R^n < \infty$. Then the series $\sum a_n x^n$ converges uniformly on [0, R]. In particular, if $f(x) = \sum a_n x^n$,

$$\lim_{x \to R^-} f(x) = \sum_{n=0}^{\infty} a_n R^n.$$

Corollary 2.3.4. Let f be the sum function of a power series $\sum a_n x^n$. Then f is continuous on the domain of convergence of the series.

Corollary 2.3.5. If the series $\sum a_n x^n$ has radius of convergence $R \neq 0$ and f is its sum function, then f is Riemann-integrable on any closed subinterval on the domain of convergence of the series. In particular, for |x| < R,

$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1}^{2}.$$

Corollary 2.3.6. Let f be the sum function of the power series $\sum a_n x^n$. Then f is derivable within the domain of convergence of the series and

$$f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1}.$$

Corollary 2.3.7. Any function f defined as a sum of a power series $\sum a_n x^n$ is indefinitely derivable within the domain of convergence of the series and

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n x^{n-k},$$

for all $k \in \mathbb{N} \cup \{0\}$. In particular $f^{(k)}(0) = k!a_k$.

Definition 2.3.2. A function is *analytic* if it can be expressed locally as a power series.

¹From now on we will suppose, for simplicity, $x_0 = 0$.

²The formula is also valid for |x| = R if the series $\sum a_n R^n$ (or $\sum a_n (-R)^n$) is convergent.

2.4 Stone-Weierstraß approximation theorem

Definition 2.4.1. Let f be a real-valued function. We say f has compact support³ if exists an M > 0 such that f(x) = 0 for all $x \in \mathbb{R} \setminus [-M, M]$.

Definition 2.4.2. Let f, g be real-valued functions with compact support. We define the convolution of f with g as

$$(f * g)(x) = \int_{\mathbb{R}} f(t)g(x - t)dt^{4}.$$

Definition 2.4.3. We sap a sequence of functions (ϕ_{ε}) with compact support is an approximation of unity if

- 1. $\phi_{\varepsilon} \geq 0$.
- $2. \int\limits_{\mathbb{D}} \phi_{\varepsilon} = 1.$
- 3. For all $\delta > 0$, $\phi_{\varepsilon}(t)$ converges uniformly to zero when $\varepsilon \to 0$ if $|t| > \delta$.

Lemma 2.4.1. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with compact support. Let (ϕ_{ε}) be an approximation of unity. Then $(f * \phi_{\varepsilon})$ converges uniformly to f on \mathbb{R} when $\varepsilon \to 0$.

Theorem 2.4.2 (Stone-Weierstraß theorem). Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then, there exists polynomials $p_n \in \mathbb{R}[x]$ such that the sequence (p_n) converge uniformly to f on [a,b].

$$(f * g)(x) = \int_{a}^{b} f(t)g(x - t)dt.$$

³In general, the support of a function is the adherence of the set of points which are not mapped to zero.

⁴Alternatively if f, g are Riemann-integrable functions on [a, b] we can define the convolution of f and g as

Chapter 3

Improper integrals

3.1 Locally integrable functions

Definition 3.1.1. Let $f:[a,b)\to\mathbb{R}$, with $b\in\mathbb{R}\cup\{\infty\}$. We say f is locally integrable on [a,b) if f is Riemann-integrable on [a,x] for all $a\leq x< b$.

Definition 3.1.2. Let $f:[a,b)\to\mathbb{R}$ be a locally integrable function. If there exists

$$\lim_{x \to b^{-}} \int_{a}^{x} f$$

and it's finite, we say that the improper integral of f on [a,b), $\int_{a}^{b} f$, is convergent.

Theorem 3.1.1 (Cauchy's test). Let $f:[a,b) \to \mathbb{R}$ be a locally integrable function. The improper integral $\int_{a}^{b} f$ is convergent if and only if $\forall \varepsilon > 0 \ \exists b_0, \ a < b_0 < b, \ such that$

$$\left| \int_{x_1}^{x_2} f \right| < \varepsilon$$

if $b_0 < x_1 < x_2 < b$.

3.2 Improper integrals of non-negative functions

Theorem 3.2.1. Let $f:[a,b) \to \mathbb{R}$ be a locally integrable non-negative function. A necessary and sufficient condition for $\int_a^b f$ to be convergent is that the function

$$F(x) = \int_{a}^{x} f(t)dt$$

must be bounded for all x < b.

Theorem 3.2.2 (Comparison test). Let $f, g: [a,b) \to [0,+\infty)$ be two locally integrable non-negative functions. Then:

1. If
$$\exists C > 0$$
 such that $f(x) \leq Cg(x) \ \forall x$ on a neighborhood of b and $\int_a^b g < \infty \implies \int_a^b f < \infty$.

2. Suppose the limit $\ell = \lim_{x \to b} \frac{f(x)}{g(x)}$ exists. Then,

(a) If
$$\ell \in (0, \infty) \implies \int_{-\infty}^{b} f < \infty \iff \int_{-\infty}^{b} g < \infty$$
.

(b) If
$$\ell = 0$$
 and $\int_{a}^{b} g < \infty \implies \int_{a}^{b} f < \infty$.

(c) If
$$\ell = \infty$$
 and $\int_{a}^{b} f < \infty \implies \int_{a}^{b} g < \infty$.

3.3 Absolute convergence of improper integrals

Definition 3.3.1. Let $f:[a,b)\to (0,\infty)$ be a locally integrable function. We say $\int\limits_a^b f$ converges absolutely if $\int\limits_a^b |f|$ is convergent.

Theorem 3.3.1 (Dirichlet's test). Let $f, g : [a, b) \to \mathbb{R}$ be two locally integrable functions Suppose:

- 1. $\exists C > 0$ such that $\left| \int_a^x f(t)dt \right| \leq C$ for all $x \in [a,b)$.
- 2. g is monotone and $\lim_{x\to b} g(x) = 0$.

Then,
$$\int_{a}^{b} fg$$
 is convergent.

Theorem 3.3.2 (Abel's test). Let $f, g : [a, b) \to \mathbb{R}$ be two locally integrable functions. Suppose:

1.
$$\int_{a}^{b} f$$
 is convergent.

2. g is monotone and bounded.

Then,
$$\int_{a}^{b} fg$$
 is convergent.

3.4 Differentiation under integral sign

Theorem 3.4.1. Let $f:[a,b] \times [c,d] \to \mathbb{R}$ be a continuous function on $[a,b] \times [c,d]$. Consider the function $F(y) = \int_a^b f(x,y) dx$ defined on [c,d]. Then, F is continuous, that is, if $c < y_0 < d$,

$$\lim_{y \to y_0} F(y) = \lim_{y \to y_0} \int_a^b f(x, y) dx = \int_a^b \lim_{y \to y_0} f(x, y) dx =$$

$$= \int_a^b f(x, y_0) dx = F(y_0).$$

Theorem 3.4.2. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be a Riemann-integrable function and let $F(y)=\int_a^b f(x,y)dx$. If f is differentiable with respect to y and $\partial f/\partial y$ is continuous on $[a,b]\times[c,d]$, then F(y) is derivable on (c,d) and its derivative is

$$F'(y) = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx,$$

for all $y \in (c, d)$.

Theorem 3.4.3. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be a continuous function on $[a,b]\times[c,d]$. Let $a,b:[c,d]\to\mathbb{R}$ be to differentiable functions satisfying $a\leq a(y)\leq b(y)\leq b$ for every $y\in[c,d]$. Suppose that

$$\partial f/\partial y$$
 is continuous on $\{(x,y)\in\mathbb{R}^2: a(y)\leq x\leq b(y),\ c\leq y\leq d\}$. Then $F(y)=\int_{a(y)}^{\infty}f(x,y)dx$ is

derivable on (c,d) and its derivative is

$$F'(y) = b'(y)f(b(y), y) - a'(y)f(a(y), y) +$$

$$+ \int_{a(y)}^{b(y)} \frac{\partial f}{\partial y}(x,y) dx,$$

for all $y \in (c, d)$.

Theorem 3.4.4. Let $f:[a,b)\times[c,d]\to\mathbb{R}$ be a continuous function on $[a,b)\times[c,d]$. We consider $F(y)=\int\limits_{-b}^{b}f(x,y)dx$. Suppose that:

- 1. $\frac{\partial f}{\partial y}$ is continuous on $[a,b) \times [c,d]$.
- 2. Given $y_0 \in [c, d]$, $\exists \delta > 0$ such that the integral

$$\int_{a}^{b} \sup \left\{ \left| \frac{\partial f}{\partial y}(x, y) \right| : y \in (y_0 - \delta, y_0 + \delta) \right\} dx$$

exists and it's finite on [a, b).

Then, F(y) is derivable at y_0 and

$$F'(y_0) = \int_a^b \frac{\partial f}{\partial y}(x, y_0) dx.$$

Theorem 3.4.5. Let $f:[a,b)\times[c,d]\to\mathbb{R}$ be a continuous function on $[a,b)\times[c,d]$. Let $a,b:[c,d]\to\mathbb{R}$ be two differentiable functions satisfying $a\leq a(y)\leq b(y)\leq b$ for every $y\in[c,d]$. We

consider
$$F(y) = \int_{a(y)}^{b(y)} f(x,y)dx$$
. Suppose that:

- 1. $\frac{\partial f}{\partial y}$ is continuous on $\{(x,y) \in \mathbb{R}^2 : a(y) \le x \le b(y), \ c \le y \le d\}$.
- 2. Given $y_0 \in [c, d]$, $\exists \delta > 0$ such that the integral

$$\int_{a(y)}^{b(y)} \sup \left\{ \left| \frac{\partial f}{\partial y}(x, y) \right| : y \in (y_0 - \delta, y_0 + \delta) \right\} dx$$

exists and it's finite on [a, b).

The, F(y) is derivable at y_0 and

$$F'(y_0) = b'(y_0)f(b(y_0), y_0) - a'(y_0)f(a(y_0), y_0) +$$

$$+ \int_{a(y_0)}^{b(y_0)} \frac{\partial f}{\partial y}(x, y_0) dx.$$

3.5 Gamma function

Definition 3.5.1. For x > 0, Gamma function is defined as

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt.$$

Theorem 3.5.1. Gamma function is a generalization of the factorial. In fact, for x > 0 we have

$$\Gamma(x+1) = x\Gamma(x).$$

In particular, $\Gamma(n+1) = n!$ for all $n \in \mathbb{N}$.

Theorem 3.5.2. Gamma function satisfies:

$$\lim_{x \to \infty} \frac{\Gamma(x+1)}{(x/e)^x \sqrt{2\pi x}} = 1.$$

Corollary 3.5.3 (Stirling's formula).

$$\lim_{n\to\infty}\frac{n!}{n^ne^{-n}\sqrt{2\pi n}}=1.$$

Chapter 4

Fourier series

4.1 Preliminaries

Definition 4.1.1. Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be a function. We say f has a period T or f is T-periodic with T > 0 if and only if f(x + T) = f(x) for all $x \in \mathbb{R}$.

Lemma 4.1.1. Let $f : \mathbb{R} \longrightarrow \mathbb{C}$ be a T-periodic function. Then, f(x+T') = f(x) for all $x \in \mathbb{R}$ if and only if T' = kT for some $k \in \mathbb{Z}$.

Proposition 4.1.2. Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be a T-periodic function and $a \in \mathbb{R}$ a number. Then,

$$\int_{a}^{a+T} f \, \mathrm{d}x = \int_{0}^{T} f \, \mathrm{d}x. \tag{4.1}$$

Lemma 4.1.3. Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be a T-periodic function continuous in \mathbb{R} . Then, |f| is bounded.

Proposition 4.1.4. Let $f : \mathbb{R} \longrightarrow \mathbb{C}$ be a T-periodic function. Then, there is no a power series that converges uniformly to f in \mathbb{R} .

4.2 Orthogonal and orthonormal systems of functions

Definition 4.2.1. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ be two integrable functions. We define the *inner product* of f and g as

$$\langle f, g \rangle_2 := \int_a^b f(x) \overline{g(x)} \, \mathrm{d}x,$$
 (4.2)

where \overline{g} is the conjugate of g.

Definition 4.2.2. Let $f,g:[a,b]\longrightarrow \mathbb{C}$ two integrable functions. We define the 2-norm of f as

$$||f||_2 := \sqrt{\langle f, f \rangle_2} = \left(\int_a^b |f(x)|^2 \, \mathrm{d}x \right)^{1/2}.$$
 (4.3)

Definition 4.2.3. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two integrable functions. We define the distance between r and g as

$$d(f,g) := \|f - g\|. \tag{4.4}$$

Proposition 4.2.1. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two integrable functions. Then,

- 1. $\langle f, f \rangle_2 \geq 0$.
- 2. $\langle f+g,h\rangle_2 = \langle f,h\rangle_2 + \langle g,h\rangle_2$ and $\langle f,g+h\rangle_2 = \langle f,g\rangle_2 + \langle f,h\rangle_2$.
- 3. $\langle f, q \rangle_2 = \overline{\langle q, f \rangle_2}$
- 4. Fro $\alpha \in \mathbb{C}$, $\langle \alpha f, g \rangle_2 = \alpha \langle f, g \rangle_2$ and $\langle f, \alpha g \rangle_2 = \overline{\alpha} \langle f, g \rangle_2$.

Note that for Riemann integrable functions it is not true that $\langle f, f \rangle_2 = 0 \Leftrightarrow f = 0$, since a function that is not zero at some point will satisfy $\langle f, f \rangle_2 = 0$. However, if we deal with the space of continuous functions in [a, b] the it is true.

Theorem 4.2.2. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two Riemann integrable functions. Then,

$$|\langle f, g \rangle_2| \le ||f||_2 ||g||_2.$$
 (4.5)

Theorem 4.2.3. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two Riemann integrable functions. Then,

$$||f + g||_2 \le ||f||_2 + ||g||_2. \tag{4.6}$$

Definition 4.2.4. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two Riemann integrable functions with $f \neq g$. Then,

- 1. we say f and g are orthogonal if and only if $\langle f, g \rangle_2 = 0$.
- 2. We say f and g are orthonormal if and only if $\langle f, g \rangle_2 = 0$ and $||f||_2 = ||g||_2 = 1$.
- 3. Let $S = \{\phi_0, \phi_1, \dots\}$ be a collection of Riemann integrable functions in [a, b]. We say S is an orthonormal system if and only if $\|\phi_i\|_2 = 1 \forall i$ and $\langle \phi_i, \phi_j \rangle_2 = 0 \forall i \neq j$.

Definition 4.2.5. Let $\{\phi_0, \ldots, \phi_n\}$ be a collection of Riemann integrable functions in [a, b]. We say the collection is linearly dependent in [a, b] if and only if there exist c_0, \ldots, c_n with not all being zero such that

$$c_0\phi_0(x) + \dots + c_n\phi_n(x) = 0, \forall x \in [a, b].$$
 (4.7)

Theorem 4.2.4. Let $S = \{\phi_0, \phi_1, \dots\}$ be an orthonormal system in [a, b] such that $\sum_{n=0}^{\infty} c_n \phi_n(x)$ converges uniformly in [a, b]. Let f be the function that defines the series in [a, b]. Thenm f is Riemann integrable in [a, b] and

$$c_n = \langle f, \phi_n \rangle_2 = \int_a^b f(x) \overline{\phi_n(x)} \, \mathrm{d}x, n \ge 0.$$
 (4.8)

4.3 Fourier coefficients. Fourier series

4.3.1 Exponential form

Definition 4.3.1. Let f be a Riemann integrable function in [0,1]. We define the n-th Fourier coefficient with $n \in \mathbb{Z}$ as

$$\hat{f}(n) = \langle f, e_n \rangle_2 = \int_0^1 f(x) e^{-2\pi i n x} dx.$$
 (4.9)

The series

$$Sf(x) = \sum_{n=0}^{\infty} \hat{f}(x)e^{2\pi i nx}$$

$$(4.10)$$

constructed by these coefficients is called the Fourier series of f.

Proposition 4.3.1. Let f be a Riemann integrable function in [0,1] and $\lambda, \mu \in \mathbb{C}$ two numbers. In relation to Fourier coefficients, the following statements are true.

- 1. $\lambda \widehat{f + \mu} g(n) = \lambda \widehat{f}(b) + \mu \widehat{g}(n)$.
- 2. If $\tau \in (0,1)$ and $f_{\tau}(x) := f(x-\tau)$, then $\hat{f}_{\tau}(n) = e^{-2\pi i n \tau} \hat{f}(n)$.
- 3. If f is even, then $\hat{f}(n) = \hat{f}(-n) \forall n$ and if f is odd, $\hat{f}(n) = -\hat{f}(-n) \forall n$.
- 4. If f' exists and it is continuous, then $\hat{f}'(n) = 2\pi i n \hat{f}(n)$.

Definition 4.3.2. Let f, g be two Riemann integrable functions in [0, 1]. We define the *convolution* of f and g as

$$(f * g)(x) = \int_{0}^{1} f(t)g(x - t) dt, \qquad (4.11)$$

defined for $x \in \mathbb{R}$.

Proposition 4.3.2. Let f, g be two Riemann integrable functions in [0,1]. Then, $\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n)$.

4.3.2 Fourier series in terms of sine and cosine

We can write the Fourier series as

$$Sf(x) = A_0 + 2\sum_{n=0}^{\infty} A_n \cos(2\pi nx) + B_n \sin(2\pi nx), \tag{4.12}$$

$$A_0 = \int_0^1 f(x) \, dx, \qquad A_n = \int_0^1 f(x) \cos(2\pi nx) \, dx, \qquad B_n = \int_0^1 f(x) \sin(2\pi nx) \, dx. \tag{4.13}$$

Proposition 4.3.3. Let f be a Riemann integrable function in [0,1]. If f is even, then its Fourier series is written as

$$Sf(x) = A_0 + 2\sum_{n=0}^{\infty} A_n \cos(2\pi nx).$$
 (4.14)

If f is odd, then its Fourier series is written as

$$Sf(x) = 2\sum_{n=0}^{\infty} B_n \sin(2\pi nx),$$
 (4.15)

4.3.3 Fourier series in terms of sine or cosine

Definition 4.3.3. LEt f be a Riemann integrable function in [0, 1/2]. We define the *even extension* and *odd extension*, respectively, as

$$\tilde{f}(x) = \begin{cases} f(x), & \text{if } x \in [0, 1/2] \\ f(-x), & \text{if } x \in [-1/2, 0] \end{cases}, \qquad \tilde{f}(x) = \begin{cases} f(x), & \text{if } x \in [0, 1/2] \\ -f(-x), & \text{if } x \in [-1/2, 0] \end{cases}. \tag{4.16}$$

Proposition 4.3.4. Let $f:[0,1/2] \longrightarrow \mathbb{C}$ be a Riemann integrable function. If we make the even extension of f, then

$$Sf(x) = 2A_0 + 4\sum_{n=0}^{\infty} A_n \cos(2\pi nx), \qquad A_0 = \int_0^{1/2} f(x) dx, \qquad A_n = \int_0^{1/2} f(x) \cos(2\pi nx) dx.$$
(4.17)

If we make the odd extension of f, then

$$Sf(x) = 4\sum_{n=0}^{\infty} B_n \sin(2\pi nx), \qquad B_n = \int_0^{1/2} f(x) \sin(2\pi nx) \, dx.$$
 (4.18)

4.3.4 Change of period

For a function $f: \mathbb{R} \longrightarrow \mathbb{C}$ T-periodic,

$$Sf(x) = \sum_{n = -\infty}^{\infty} \hat{f}(n)e^{2\pi nxi/T}, \qquad \hat{f}(n) = \int_{-T/2}^{T/2} f(x)e^{-2\pi inx/T} dx.$$
 (4.19)

or

$$Sf(x) = A_0 + 2\sum_{n=1}^{\infty} A_n \cos\left[\frac{2\pi nx}{T}\right] + B_n \sin\left[\frac{2\pi nx}{T}\right],\tag{4.20}$$

$$A_{0} = \frac{1}{T} \int_{-T/2}^{T/2} f(x) dx, A_{n} = \frac{1}{T} \int_{-T/2}^{T/2} f(x) \cos \left[\frac{2\pi nx}{T} \right] dx, B_{n} = \frac{1}{T} \int_{-T/2}^{T/2} f(x) \sin \left[\frac{2\pi nx}{T} \right] dx.$$

$$(4.21)$$

4.4 Punctual convergence of Fourier series

We denote the N-th partial sum as

$$S_n f := \sum_{n=-N}^{N} \hat{f}(n) e^{2\pi i n x}. \tag{4.22}$$

4.4.1 Dirichlet nucleus

$$S_N f(x) = \int_0^1 f(t) \sum_{n=-N}^N e^{e\pi i n(x-t)} dt$$
 (4.23)

Definition 4.4.1. We define the Dirichlet nucles of N-th order as

$$D_N(t) = \sum_{n=-N}^{N} e^{2\pi i n t}.$$
 (4.24)

This way, we have

$$S_N f(x) = (f * D_N)(x).$$
 (4.25)

$$D_n(t) = \frac{\sin[(2N+1)\pi t]}{\sin \pi t}.$$
 (4.26)

Proposition 4.4.1. The Dirichlet nucleus has the following elemental properties.

- 1. D_N is a periodic function of period 1.
- 2. D_N is an even function.

3.
$$\int_{0}^{1} D_{N}(t)dt = 1.$$

Definition 4.4.2 (Dirichlet kernel). We define the Dirichlet kernel of order N as

$$D_N(t) = \frac{1}{T} \sum_{n=-N}^{N} e^{\frac{2\pi i n t}{T}} = \frac{1}{T} \frac{\sin\left(\frac{(2N+1)\pi t}{T}\right)}{\sin\left(\frac{\pi t}{T}\right)}.$$

Proposition 4.4.2. The Dirichlet kernel has the following properties:

1. D_N is a T-periodic and even function.

2.
$$\int_{0}^{T} D_{N}(t)dt = 1 \text{ for all } N.$$

Proposition 4.4.3. Signi $f \in L^1([-T/2, T/2])$. Then

$$S_N f(x) = (f * D_N)(x) = \int_{-T/2}^{T/2} f(x - t) D_N(t) dt =$$

$$= \int_{0}^{T/2} [f(x + t) + f(x - t)] D_N(t) dt.$$

Lemma 4.4.4 (Riemann-Lebesgue lemma). Let $f \in L^1([-T/2, T/2])$ and $\lambda \in \mathbb{R}$. Then:

$$\lim_{\lambda \to \infty} \int_{-T/2}^{T/2} f(t) \sin(\lambda t) dt = \lim_{\lambda \to \infty} \int_{-T/2}^{T/2} f(t) \cos(\lambda t) dt = 0.$$

In particular, $\lim_{|n|\to\infty} \widehat{f}(n) = 0$.

Theorem 4.4.5. Let $f \in L^1([-T/2, T/2])$ be a function having left and right-hand side derivatives at x_0 , that is, there exists the following limits

$$f'(x_0^+) = \lim_{t \to 0^+} \frac{f(x_0 + t) - f(x_0^+)}{t},$$
$$f'(x_0^-) = \lim_{t \to 0^-} \frac{f(x_0 + t) - f(x_0^-)}{t},$$

(supposing left and right-hand side exists). Then,

$$\lim_{N \to \infty} S_N f(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}.$$

Theorem 4.4.6 (Dini's theorem). Let $f \in L^1([-T/2, T/2])$, $x_0 \in (-T/2, T/2)$ and $\ell \in \mathbb{R}$ such that

$$\int_{0}^{\delta} \frac{|f(x_0+t) + f(x_0-t) - 2\ell|}{t} dt < \infty$$

for some $\delta > 0$. Then $\lim_{N \to \infty} S_N f(x_0) = \ell$.

Theorem 4.4.7 (Lipschitz's theorem). Let $f \in L^1([-T/2, T/2])$ such that at a point $x_0 \in (-T/2, T/2)$ it satisfies $|f(x_0 + t) - f(x_0)| \le L|t|$ for some constant L and for $|t| < \delta$. Then $\lim_{N \to \infty} S_N f(x_0) = f(x_0)$.

4.5 Uniform convergence

Definition 4.5.1. Let $\sum a_n$ be a series with partial sums S_k . The series $\sum a_n$ is called *Cesàro summable* with sum S if

$$\lim_{N \to \infty} \frac{S_1 + \dots + S_N}{N} = S.$$

Definition 4.5.2 (Fejer kernel). We define the Fejer kernel of order N as

$$K_N(t) = \frac{1}{N+1} \sum_{k=0}^{N} D_k(t) = \frac{1}{T(N+1)} \frac{\sin^2\left(\frac{(N+1)\pi t}{T}\right)}{\sin^2\left(\frac{\pi t}{T}\right)},$$

being $D_k(t)$ the Dirichlet kernel of order $k, 0 \le k \le N$.

Proposition 4.5.1. The Fejer kernel has the following properties:

1. K_N is a T-periodic, even and non-negative function.

2.
$$\int_{-T/2}^{T/2} K_N(t)dt = 1 \text{ for all } N.$$

3. For all $\delta > 0$, $\lim_{N \to \infty} \sup\{|K_N(t)| : \delta \le |t| \le T/2\} = 0$.

Definition 4.5.3. Let $f \in L^1([-T/2, T/2])$. We define the Fejér means $\sigma_N f$, for all $N \in \mathbb{N}$, as

$$\sigma_N f(x) = \frac{S_0 f(x) + \dots + S_N f(x)}{N+1}.$$

Proposition 4.5.2. *Let* $f \in L^1([-T/2, T/2])$ *. Then*

$$\sigma_N f(x) = (f * K_N)(x) = \int_{-T/2}^{T/2} f(x - t) K_N(t) dt =$$

$$= \int_{0}^{T/2} [f(x + t) + f(x - t)] K_N(t) dt.$$

Theorem 4.5.3 (Fejér's theorem). Let $f \in L^1([-T/2, T/2])$ be a function having left and right-hand side limits at point x_0 . Then,

$$\lim_{N \to \infty} \sigma_N f(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}.$$

In particular, if f is continuous at x_0 , $\lim_{N\to\infty} \sigma_N f(x_0) = f(x_0)$.

Theorem 4.5.4 (Fejér's theorem). Let f be continuous on [-T/2, T/2]. Then $\sigma_N f$ converges uniformly to f on [-T/2, T/2].

Corollary 4.5.5. Let f be continuous on [-T/2, T/2]. Then there exists a sequence of trigonometric polynomials that converge uniformly to f on [-T/2, T/2]. In fact,

$$\sigma_N f(x) = \sum_{k=-N}^{N} \left(1 - \frac{|k|}{N+1} \right) \widehat{f}(k) e^{2\pi i kx}.$$

Corollary 4.5.6. Let f and g be continuous functions on [-T/2, T/2] such that Sf(x) = Sg(x). Then f = g.

4.6 Convergence in norm

Definition 4.6.1. We say a sequence (f_N) converge to f in norm $L^2([-T/2, T/2])$ if $\lim_{N\to\infty} ||f_N - f|| = 0$.

Theorem 4.6.1. Let $f \in L^2([-T/2, T/2])$. Then, $\lim_{N \to \infty} \|\sigma_N f - f\| = 0$.

Corollary 4.6.2. Let $f \in L^1([-T/2, T/2])$. Then $\lim_{N \to \infty} \|\sigma_N f - f\|_1 = 0$.

Corollary 4.6.3. Let $f, g \in L^1([-T/2, T/2])$ be functions such that Sf(x) = Sg(x). Then $\lim_{N \to \infty} \|g - f\|_1 = 0$.

Theorem 4.6.4 (Bessel's inequality). Let $f \in L^2(I)$, where I is any interval on the real line. Then:

$$T \sum_{n=-N}^{N} |\widehat{f}(n)|^2 \le ||f||^2,$$

$$\frac{T}{2} \left(\frac{|a_0|^2}{2} + \sum_{n=1}^{N} |a_n|^2 + |b_n|^2 \right) \le ||f||^2,$$

for all $N \in \mathbb{N}$.

Theorem 4.6.5. $S_N f$ is the trigonometric polynomial of degree N that best approximates f in norm L^2 .

Corollary 4.6.6. Let $f \in L^2([-T/2, T/2])$. Then, $\lim_{N \to \infty} ||S_N f - f|| = 0$.

Theorem 4.6.7 (Parseval's identity). Let $f, g \in L^2([-T/2, T/2])$ be bounded functions. Then

$$\langle f, g \rangle = T \sum_{n \in \mathbb{Z}} \widehat{f}(n) \overline{\widehat{g}(n)}.$$

In particular, if f = g, then:

$$||f||^2 = T \sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^2,$$
$$||f||^2 = \frac{T}{2} \left(\frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} |a_n|^2 + |b_n|^2 \right).$$

4.7 Applications of Fourier series

Theorem 4.7.1 (Wirtinger's inequality). Let f be a function such that f(0) = f(T), $f' \in L^2([0,T])$ and $\int_a^b f(t)dt = 0$. Then,

$$\int_{0}^{T} |f(x)|^{2} dx \le \frac{T^{2}}{4\pi^{2}} \int_{0}^{T} |f'(x)|^{2} dx,$$

with equality if and only if $f(x) = A\cos\left(\frac{2\pi x}{T}\right) + B\sin\left(\frac{2\pi x}{T}\right)$.

Theorem 4.7.2 (Wirtinger's inequality). Let $f \in C^1([a,b])$ with f(a) = f(b) = 0. Then,

$$\int_{a}^{b} |f(x)|^{2} dx \le \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(x)|^{2} dx.$$

Theorem 4.7.3 (Isoperimetric inequality). Let c be a simple and closed curve of class C^1 whose length is L. If A_c is the area enclosed by c, then

$$A_c \le \frac{L^2}{4\pi}$$

with equality if and only if c is a circle.