Fundamentals of Optimization

Lagrangian relaxation

Pham Quang Dung

dungpq@soict.hust.edu.vn
Department of Computer Science

Content

- Lagrange dual function
- Lagrange dual problem
- KKT condition

Lagrange dual function

Optimization problem in the standard form

(P) minimize
$$f(x)$$

s.t. $g_i(x) \le 0, i = 1, 2, ..., m$
 $h_i(x) = 0, i = 1, 2, ..., p$
 $x \in X \subseteq \mathbb{R}^n$

with $x \in \mathbb{R}^n$, and assume $D = (\bigcap_{i=1}^m \operatorname{dom} g_i) \cap (\bigcap_{i=1}^m \operatorname{dom} h_i)$ is not empty.

- Denote f* the optimal value of f(x)
- If f, g_i (i = 1,2,...,m) are convex functions, h_i (i = 1,...,p) are linear → convex program

Lagrange dual function

• Define Lagrangian function L: $R^n \times R^m \times R^p \rightarrow R$

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

Lagrange dual function (or dual function)

$$q(\lambda, \mu) = inf_{x \in D} L(x, \lambda, \mu)$$

Lagrange dual problem

• For each pair (λ, μ) , the Lagrange dual function provides a lower bound on the optimal value of the primal problem (original optimization problem)

$$q(\lambda,\mu) \leq f^*$$

 Question: what is the best lower bound → Lagrange dual problem

$$\max q(\lambda,\mu)$$
$$\lambda \geq 0$$

Lagrange Dual problem

- Weak duality theorem if x^* is an optimal solution to the primal problem and (λ^*, μ^*) is an optimal solution to the dual problem, then $f(x^*) \ge q(\lambda^*, \mu^*)$
- **Corollary** If there exist x^* and (c, μ^*) such that $f(x^*) = q(\lambda^*, \mu^*)$, then x^* and (λ^*, μ^*) are respectively optimal solutions to the primal and dual problems

KKT Conditions

- **Theorem** (Fritz John necessary conditions) Let x^* be a feasible solution of (P). If x^* is a local minimum of (P), then there exists (u, λ, μ) such that:
 - $u\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + \sum_{i=1}^p \mu_i \nabla h_i(x^*) = 0$
 - $u, \lambda \geq 0, (u, \lambda, \mu) \neq 0$
 - $\lambda_i g_i(x^*) = 0$, i = 1, ..., m

KKT Conditions

- **Theorem** (Karush-Kuhn-Tucker (KKT) necessary conditions) Let x^* be a feasible solution of (P) and $I = \{i: g_i(x^*) = 0\}$. Further, suppose that $\nabla h_i(x^*)$ for i = 1,..., p and $g_i(x^*)$ for $i \in I$ are linearly independent. If x^* is a local minimum of (P), then there exists (λ, μ) such that:
 - $\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + \sum_{i=1}^p \mu_i \nabla h_i(x^*) = 0$
 - $\lambda \geq 0$,
 - $\lambda_i g_i(x^*) = 0$, i = 1, ..., m

KKT Conditions

• **Theorem** (KKT sufficient conditions) Let x^* be a feasible solution of (P) which is convex program (f, g_i) are convex functions, h_i are linear functions). If there exists (λ, μ) such that:

•
$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + \sum_{i=1}^p \mu_i \nabla h_i(x^*) = 0$$

- $\lambda \geq 0$,
- $\lambda_i g_i(x^*) = 0$, i = 1, ..., m

then x^* is a global optimal solution of (P)

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

- $\nabla f(x,y) = [2 \ 1]^T, \nabla g_1(x,y) = [2x \ 2y]^T, \nabla g_2(x,y) = [1 \ -1]^T$
- f and g_2 are linear, so they are convex
- $\nabla^2 g_1(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ which is positive definite, so g_1 is convex

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

Apply the KKT necessary conditions

•
$$[2 -1]^T + \lambda_1[2x 2y]^T + \lambda_2[1 -1]^T = 0$$

•
$$x^2 + y^2 - 2 \le 0$$

•
$$x - y - 1 \le 0$$

•
$$\lambda_1(x^2 + y^2 - 2) = 0$$

•
$$\lambda_2(x-y-1)=0$$

•
$$\lambda_1$$
, $\lambda_2 \geq 0$

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

Apply the KKT necessary conditions (rewrite)

$$\bullet \ 2 + 2\lambda_1 x + \lambda_2 = 0 \tag{1}$$

•
$$-1 + 2\lambda_1 y - \lambda_2 = 0$$
 (2)

$$\bullet \ x - y - 1 \le 0 \tag{4}$$

$$\lambda_1(x^2 + y^2 - 2) = 0$$
 (5)

•
$$\lambda_2(x - y - 1) = 0$$
 (6)

•
$$\lambda_1, \lambda_2 \ge 0$$
 (7)

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

- There are 4 cases
 - (I) $\lambda_1 = \lambda_2 = 0$
 - (II) $\lambda_1 = 0$, $\lambda_2 > 0$
 - (III) $\lambda_1 > 0$, $\lambda_2 = 0$
 - (IV) $\lambda_1 > 0$, $\lambda_2 > 0$

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

• Case (I) $\lambda_1 = \lambda_2 = 0$, from (1) and (2) \rightarrow NOT POSSIBLE

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

- Case (II) $\lambda_1 = 0, \lambda_2 > 0$, from (1) and (2) we have
 - 2 + λ_2 = 0
 - -1 λ_2 = 0 (NOT POSSIBLE as λ_2 > 0)

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

- Case (III) $\lambda_1 > 0, \lambda_2 = 0$, we have
 - $\bullet \ 2 + 2\lambda_1 x = 0 \tag{8}$
 - $\bullet -1 + 2\lambda_1 y = 0 \tag{9}$

 - $\bullet \ x y 1 \le 0 \tag{11}$
- Solve this equation, we get x = -1 and y = 1, $\lambda_1 = 1$, $\lambda_2 = 0$. This solution satisfies (1) (7) $\rightarrow x = -1$, y = 1 is a global optimal solution to the problem (based on the KKT sufficient conditions)

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

• Case (IV) $\lambda_1 > 0, \lambda_2 > 0$, we have

•
$$2 + 2\lambda_1 x + \lambda_2 = 0$$
 (12)

•
$$-1 + 2\lambda_1 y - \lambda_2 = 0$$
 (13)

$$x^2 + y^2 - 2 = 0 (14)$$

•
$$x - y - 1 = 0$$
 (15)

•
$$\lambda_1, \lambda_2 \ge 0$$
 (16)

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

- Case (IV) $\lambda_1 > 0, \lambda_2 > 0$, we have
 - From (15), we have x = y + 1, replace in (12) and (13), we have

•
$$2 + 2\lambda_1(y+1) + \lambda_2 = 0$$
 (17)
• $-1 + 2\lambda_1 y - \lambda_2 = 0$ (18)

• Subtract (17) and (18), we have $3 + 2\lambda_1 + 2\lambda_2 = 0$ (NOT POSSIBLE as $\lambda_1 > 0, \lambda_2 > 0$)

Lagrange relaxation for Integer Programming

$$Z_{IP}$$
 = minimize $f(x) = c^{T}x$
s.t. $Ax \ge b$
 $Dx \ge d$
 x integer

- Let $X = \{x \text{ integer } | Dx \ge d\}$
- Assume optimizing over X can be solved easily, but adding constraint $Ax \ge b$ makes the problem too difficult

Lagrange relaxation for Integer Programming

$$Z(\lambda) = \min_{x} c^{T}x + \lambda^{T}(b - Ax)$$

s.t. $Dx \ge d$
 $x \text{ integer}$

- For a fixed λ , $Z(\lambda)$ is assumed to be computed easily
- Important: compute the best lower bound

$$Z_D = \max_{\lambda \ge 0} Z(\lambda)$$

Lagrange relaxation for Integer Programming

Subgradient method for computing Z_D

```
Choose starting point \lambda^{(0)} (e.g., \lambda^{(0)} = 0); k = 0 while (STOP condition not reach) { x^{(k)} is the solution of Z(\lambda^{(0)}) Compute subgradient s^{(k)} = b - Ax^{(k)} of function Z at \lambda^{(k)} if s^{(k)} = 0 then BREAK \lambda^{(k+1)} = \max\{0, \lambda^{(k)} + \alpha^{(k)}s^{(k)}\} /* \alpha^{(k)} denote the step size */ k = k + 1 }
```