1 Language

DEFINITION 1.1(Language): Let Σ denote a finite alphabet (a finite set of letters) A Language over Σ is a subset of Σ^* i.e., a set of strings with letters in Σ .

DEFINITION 1.2(Concatenation Operator " \circ "): Suppose L and L' are Languages, then

$$L \circ L' = LL' = \{x \cdot y | x \in L \text{ and } y \in L'\}$$

Example 1.1. Suppose $L = \{a, bb\}$ and $L' = \{\lambda, c\}$

Then $LL' = \{a, bb, ac, bbc\}$ and $L'L = \{a, bb, ca, cbb\}$

DEFINITION 1.3(λ): For any string $x \in \Sigma^*$, we have $x \cdot \lambda = \lambda \cdot x = x$

Remark. $L^0 = \{\lambda\} \neq \lambda$

Definition 1.4(L^i, L^*, L^+):

$$L^{1} := L$$

$$L^{i+1} := L^{i} \cdot L = L \cdot L^{i}$$

$$L^{*} := \bigcup_{i=0}^{\infty} L^{i}$$

$$L^{+} := \bigcup_{i=1}^{\infty} L^{i}$$

Remark. $L^* = L^+$ iff $\lambda \in L$

Theorem 1.5

(association)

$$\forall x, y, z \in \Sigma^*.(xy)z = x(yz) = xyz$$

DEFINITION 1.6(Prefix): x is a prefix of y if there exists a string x' such that y = xx'

Example 1.2. λ and y are prefixes of y

DEFINITION 1.7(Suffix): x is a suffix of y if there exist a string such that y = x'x

DEFINITION 1.8(Substring): x is a substring of y if there exists strings x' and x'' such that x'xx''=y

Example 1.3. Let y = aabaa and x = aa

then x is prefix and suffix of y but $x \neq y$

DEFINITION 1.9(Other operators on Language): If L and L' are languages over Σ so are

$$L \cup L', L \cap L', L - L', \overline{L} = \Sigma^* - L$$

2 Regular Expressions

DEFINITION 2.1(Regular Expression): Let Σ be a finite alphabet (not include $+, *, \cdot, \lambda, \phi$) Let R be the inductively defined set of strings(R is the set of regular Expressions over Σ):

Base Case: $\emptyset, \lambda \in R, \ \Sigma \subseteq R$

Constructor Cases: if $r, r' \in R$, then $(r + r') \in R, (r \cdot r') \in R, r^* \in R$

DEFINITION 2.2(Languages derived by R): The language derived by a regular expression is $\mathcal{L}(r)$ where

$$\mathcal{L}: R \to \{L | L \subseteq \Sigma^*\}$$

which is defined inductively

Base cases:

$$\begin{split} \mathcal{L}(\lambda) &:= \{\lambda\} \\ \mathcal{L}(\emptyset) &:= \emptyset \\ \mathcal{L}(a) &:= \{a\} \text{ for all } a \in \Sigma \end{split}$$

Constructor Cases:

$$\mathcal{L}((r+r')) := \mathcal{L}(r) \cup \mathcal{L}(r')$$
$$\mathcal{L}((r \cdot r')) := \mathcal{L}(r) \cdot \mathcal{L}(r')$$
$$\mathcal{L}(r^*) := \mathcal{L}(r)^*$$

Example 2.1. $((r_1 \cdot r_2) \cdot r_3) = (r_1 \cdot r_2 \cdot r_3)$ can remove "(" and ")" when no ambiguty

DEFINITION 2.3(Regular Lang): A Language L is regular if and only if $L = \mathcal{L}(r)$ for some regular expressions r.

DEFINITION 2.4(Equivalent of regular expression): Two regular expression r and r' are equivalent $r \equiv r'$ if and only if

$$\mathcal{L}(r) = \mathcal{L}(r')$$

Example 2.2. Let L_0 = "string over $\{a, b, c\}$ that start with ab", then the regular expression of L_0 is

$$a \cdot b \cdot (a+b+c)^*$$

i.e., $\mathcal{L}(a \cdot b \cdot (a+b+c)^*) = L_0$

Example 2.3. Let $L_1 =$ "strings over $\{0,1\}^*$ containing an even number of 1's", then

$$L_1 = \mathcal{L}((0^*10^*1)^*0^*)$$

Example 2.4. Let $L_2 =$ "first and last symbols are different $\subseteq \{0,1\}^*$ ", then

$$((0(0+1)^*1) + (1(0+1)^*0))$$

Theorem 2.5 Example 2.3 is true.

i.e., Denote L_1 as "strings over $\{0,1\}^*$ containing an even number of 1's", then

$$L_1 = \mathcal{L}((0^*10^*1)^*0^*) = \mathcal{L}(r_1)$$

```
Proof.
   Let x \in L_1 be arbitrary
       if s \in \{0\}^* then
            s \in \mathcal{L}((0^*10^*1)^*0^*)).
       Therefore
       If x \in \mathcal{L}(0^*)
            then x \in \mathcal{L}((0^*10^*1)^*0^*)
       otherwise x has at least two 1
            let x_1 be the shortest prefix of x containing two 1
            x = x_1 x'
            Let x_1 = u1v1 where u, v \in \{0\}^* \in \mathcal{L}(r_1)
            Prove from induction on the \# of 1's in x
            Let P(n) = \forall x \in \{0, 1\}^*. (if x contains exactly 2n ones then x \in \mathcal{L}(r_1))
            Suppose P(n)
                Let x \in L_1 be an arbitrary string such that has 2n + 2 ones
            By induction hypothesis,
                x' \in \mathcal{L}(r_1), since x_1 has 2n ones.
                so x = x_1 x' \in \mathcal{L}(0^*10^*1)\mathcal{L}((0^*10^*1)^*0^*) \subseteq \mathcal{L}((0^*10^*1)^*0^*)
            Hence P(n+1)
            By induction \forall n \in \mathbb{N}.P(n)
   L_1 \subseteq \mathcal{L}(r_1)
   Suppose x \in \mathcal{L}(r_1)
       so \exists k \in \mathbb{N}.x = (x_1...x_k)x'
       where x_i \in \mathcal{L}(0^*10^*1) for 1 \leq i \leq k and x' \in \mathcal{L}(0^*)
       Note that # 1's in x_i is exactly 2
       Number of 1's in x' is 0
       Hence x has even number of 1's
       i.e.,x \in L_1
   \mathcal{L}(r_1) \subseteq L_1
```

3 of 7

3 Deterministic finite state automaton (DFA or DFSA)

Example 3.1. We determined four things to form a DFA called A

- 1. Finite set of states $Q = \{q_0, q_1, q_2, q_3\}$
- 2. Input alphabet $\Sigma = \{0, 1\}$
- 3. Initial state q_0
- 4. the set of final states $F = \{q_1, q_2\}$
- 5. the transition function δ

Figure 3.1: A (a example of DFA)

In A, we see that 0110 is accepts, since $q_0 \rightarrow q_2$. 0101 is rejected, since $q_0 \rightarrow q_3$.

DEFINITION 3.1(State transition): $\delta: Q \times \Sigma \to Q$ is the transition function.

 $\delta(q,a)=q'$ means that there is a edge labeled a from q to q'.

DEFINITION 3.2(deterministic finite state automaton DFA): Formally, a DFA is a 5-tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

where $Q, \Sigma, \delta, q_0, F$ are defined in Example 3.1.

DEFINITION 3.3(Extended transition function): $\delta^*: Q \times \Sigma^* \to Q$ is a extended transition function Base cases: $\delta^*(q,\lambda) = q$

Constructor cases: for all $a \in \Sigma, x \in \Sigma^*$, we have $\delta^*(q, xa) = \delta(\delta^*(q, x), a)$.

Alternatively, $\delta^*(q, ax) = \delta^*(\delta(q, a), x)$

If $\delta^*(q,x) = q'$, we say that x takes the automaton M from q to q'.

DEFINITION 3.4(the language accepted by M): $\mathcal{L}(M) = \{x \in \Sigma^* | M \text{ accepts } x\}$ Also, $\mathcal{L}(M) = \{x \in \Sigma^* | \delta^*(q_0, x) \in F\}$

Proof of Example 3.1. Denote $\mathcal{L}(A) = \{x \in \{0,1\}^* | x \text{ begin with } 1 \text{ or } x \text{ begin and end with } 0\}$ We first associate a set of strings (why is not language?) L_i with each state q_i .

$$L_i = \{ x \in \Sigma^* | \delta^*(q_0, x) = q_i \}$$

Prove by structural induction or induction on the length of x.

We see that

$$\begin{split} L_0 &= \{\lambda\} \\ L_1 &= \{x | \ x \ \text{start with } 1\} = \mathcal{L}(1(0+1)^*) \\ L_2 &= \{x \in \{0,1\}^* | x \ \text{starts and end with } 0\} = \mathcal{L}(0(0+1)^*0+0) \\ L_3 &= \{x \in \{0,1\}^* | x \ \text{starts with } 0 \ \text{and end with } 1\} \end{split}$$

Then we can prove $L' = L_1 \cup L_2$.

4 Nondeterministic Finite Automaton NFA

Definition 4.1(NFA):

$$M = (Q, \Sigma, \delta, q_0, F)$$

The only difference to DFA is that

$$\delta: Q \times \Sigma \to \mathcal{P}(Q)$$

M acceptes the string X, if there is a path from q_0 to accept state labeld by X.

DEFINITION 4.2(Extended transition function): Denote the extended transition function δ^* : $Q \times \Sigma \to \mathcal{P}(Q)$ as

Base Case:
$$\delta^*(q,\lambda)=\{q\}$$
 Constructor Case:
$$\delta^*(q,xa)=\bigcup\{\delta(q',a)|q'\in\delta^*(q,x)\}$$

Definition 4.3(The language that M accepts):

$$\mathcal{L}(M) = \{ x \in \Sigma^* | \delta^*(q_0, x) \cap F \neq \emptyset \}$$

5 DFA NFA and variant of NFA

Recall. A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

DFA
$$\delta: Q \times \Sigma \to Q$$

NFA $\delta: Q \times \Sigma \to \mathcal{P}(Q)$

The language L(M) accept by M is

DFA:
$$\{x \in \Sigma^* | \delta^*(q_0, x) \in F\}$$

NFA: $\{x \in \Sigma^* | \delta^*(q_0, x) \cap F \neq \emptyset\}$

Theorem 5.1 For every NFA
$$M = (Q, \Sigma, \delta, q_0, F)$$
 there is a DFA $M' = (Q', \Sigma', \delta', q'_0, F')$ such that $L(M') = L(M)$

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an arbitrary NFA.

Idea: keep track of the states that M can be as it reads the input string.

Let $M' = (Q', \Sigma', \gamma', q'_0, F')$ be defined as follows:

$$Q' = \mathcal{P}(Q)$$

$$q_0' = \{q_0\}$$

$$F' = \{ s \in P(Q) = Q' | S \cap F \}$$

$$\Sigma' = \Sigma$$
 and $\delta = \delta'$

Denote $\gamma: Q' \times \Sigma \to Q'$ such that

$$\gamma(s,a) = \bigcup \{\delta(q,a) | q \in s\} \text{ for all } s \in Q' \text{ and } a \in \Sigma.$$

This is called subset construction.

Claim
$$L(M) = L(M')$$

For all
$$w \in \Sigma^*$$
, let $P(w) := "\gamma^*(\{q_0\}, w) = \delta^*(q_0, w)"$

Now show that $\forall w \in \Sigma^*. P(w)$ by structural induction

Base Case:
$$w = \lambda$$

By definition of extended transition function, we know

$$\gamma^*(\{q_0\}, \lambda) = \{q_0\} = \delta^*(q_0, \lambda)$$

Constructor Case: w = xa, where $x \in \Sigma^*$ and $a \in \Sigma$

Assume
$$P(x)$$
, i.e., $\gamma^*(\{q_0\}, x) = \delta^*(q_0, x)$

$$\gamma^*(\lbrace q_0 \rbrace, w) = \gamma(\gamma^*(\lbrace q_0 \rbrace, x), a)$$
 by definition

$$=\bigcup\{\delta(q,a)|q\in\gamma^*(\{q_0\},x)\}\$$
by construction

$$= \bigcup \{\delta(q, a) | q \in \delta^*(q_0, x)\} \text{ by substitution}$$

= $\delta^*(q_0, w)$ by definition

So P(w) is true.

By induction, $\forall w \in \Sigma^*.P(w)$

Therefore,
$$w \in \mathcal{L}(M') \iff \gamma^*(\{q_0\}, w) \in F' \iff \gamma^*(\{q_0\}, w) \cap F \neq \emptyset \iff w \in \mathcal{L}(M)$$

6 Variants of NFAs

6.1 NFA with multiple initial states

$$M = (Q, \Sigma, \delta, I, F)$$

where $I \subseteq Q$

$$L(M) = \{ x \in \Sigma^* | \exists q \in I. (\delta^*(q, x) \cap F \neq \varnothing) \}$$

i.e., M acceptes x if and only if there is a path from some initial state to a final state labelled by x.

Corollary 6.1 if L is accepted by an NFA with multiple start start s, then it is accepted by an NFA. we can construct a normal NFA $M'(Q \cup \{q_0\}, \sigma, \delta', q_0, F')$, where $q_0 \notin Q$, such that

$$\delta'(q_0,a) = \bigcup \{\delta(q,a)|q \in I\} \text{ for all } a \in \Sigma$$

$$\delta'(q,a) = \delta(q,a) \text{ for all } q \in Q, a \in \Sigma$$

$$F' = \begin{cases} F & \text{if } I \cap F = \varnothing \\ F \cup \{q_0\} & \text{if } I \cap F \neq \varnothing \end{cases}$$

Proof. omit

6.2 NFA with λ -transitions

let $M = (Q, \Sigma, \delta, q_0, F)$ where

$$\delta: Q \times (\Sigma \cup {\lambda}) \to \mathcal{P}(Q)$$

Denote L(M) as

$$L(M) = \{ x \in \Sigma^* | \delta^*(q_0, x) \cap F \neq \emptyset \}$$

M accepts x if and only if there is a path from q_0 to a final state such that x =concateration of the labels of the edges on that path.

Corollary 6.2 if L is accepted by an NFA with λ -transition, then it is accepted by an NFA. Denote $E(q) = \delta^*(q, \lambda) = \{q' \in Q | \text{ there is a path from } q \text{ to } q' \text{ labeled by } \lambda\}$ Then we can construct a NFA with multiple innitial states $M' = (Q, \Sigma, \delta', E(q_0), F)$, where for all $q \in Q$, $a \in \Sigma$,

$$\delta'(q, a) = \bigcup \{ E(q') | q' \in \delta(q, a) \}$$

Proof. omit

7 Closure Results

Theorem 7.1 Suppose $L_1, L_2 \subseteq \Sigma^*$ are accepted by finite automaton, then so are