NSR Search Results Page 1 of 8

Visit the <u>Isotope Explorer</u> home page!

49 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ -Ray Data Evaluation of Thermal-Neutron Capture for A = 1 ϑ 25

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n, γ),E=thermal; compiled, evaluated prompt γ -ray data.

Keynumber: 1999OH04

Reference: Nucl.Instrum.Methods Phys.Res. A425, 302 (1999)

Authors: T.Ohsaki, Y.Nagai, M.Igashira, T.Shima, T.S.Suzuki, T.Kikuchi, T.Kobayashi, T.Takaoka,

M.Kinoshita, Y.Nobuhara

Title: An NaI(Tl) Spectrometer System for keV Neutron Radiative-Capture Reactions

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E \approx 42 keV; measured capture σ (E).

Keynumber: 1999MEZW

Reference: INDC(NDS)-412, p.184 (1999) **Authors:** A.Mengoni, K.Shibata, J.Kopecky

Title: Evaluations of Radiative Capture on C, O, and Li

Keyword abstract: NUCLEAR REACTIONS ¹²C(n,γ),E <0.8 MeV; ⁷Li, ¹³C(n,γ),E <1 MeV; ¹⁶O

 (n,γ) , E < 500 keV; analyzed capture σ ; deduced parameters.

Keynumber: <u>1998KI09</u>

Reference: Phys.Rev. C57, 2724 (1998)

Authors: T.Kikuchi, Y.Nagai, T.S.Suzuki, T.Shima, T.Kii, M.Igashira, A.Mengoni, T.Otsuka

Title: Nonresonant Direct p- and d-Wave Neutron Capture by ¹²C

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=550 keV; measured E γ ,I γ ; deduced partial

capture σ . ^{13}C level deduced spectroscopic factor. Direct radiative capture calculations.

Keynumber: <u>1998KI01</u>

Reference: Phys.Rev. C57, 202 (1998) **Authors:** H.Kitazawa, K.Go, M.Igashira

Title: Low-Energy Neutron Direct Capture by ¹²C in a Dispersive Optical Potential

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E <1 MeV; calculated σ ; deduced optical

potential features.

Keynumber: 1997LI10

Reference: Nucl. Phys. A619, 49 (1997)

Authors: A.Likar, T.Vidmar

Title: Direct Neutron Capture in Light Nuclei

Keyword abstract: NUCLEAR REACTIONS 12 C, 16 O(n, γ),E <600 keV; calculated σ (En); deduced

influence of scattering potential depth. Consistent direct-semidirect model.

Keynumber: <u>1997DU09</u>

Reference: Phys.Rev. C56, 1831 (1997)

NSR Search Results Page 2 of 8

Authors: M.Dufour, P.Descouvemont

Title: Multicluster Study of the ${}^{12}C + n$ and ${}^{12}C + p$ Systems

Keyword abstract: NUCLEAR STRUCTURE 12 C; calculated binding energy,2⁺ state excitation energy,charge radius,B(E2) vs cluster-model parameter R(c); 13 C, 13 N; calculated levels,B(λ),rms

radius vs R(c). Multicluster approach.

Keyword abstract: NUCLEAR REACTIONS,ICPND 12 C(n, γ),E(cm) \leq 0.5 MeV; 12 C(p, γ),E(cm) \leq 0.6

MeV; calculated capture $\sigma(E)$.

Keynumber: 1996RE16

Reference: Acta Phys.Pol. B27, 231 (1996)

Authors: H.Rebel

Title: Coulomb Dissociation Experiments of Astrophysical Significance

Keyword abstract: NUCLEAR REACTIONS 3 He, 7 Be, 6 , 7 Li, 12 , 14 C, 16 , 15 O, 14 N(α , γ), 9 , 7 Be, 6 Li, 10 , 11 B, 11 , 12 C, 16 O, 13 N, 20 Ne, 31 S(p, γ), 4 He(d, γ), (t, γ), 12 , 14 C(n, γ), E not given; compiled, reviewed

capture reactions accessible to fast projectile Coulomb dissociation studies.

Keynumber: 1996NA27

Reference: Hyperfine Interactions 103, 43 (1996)

Authors: Y.Nagai, T.Shima, T.S.Suzuki, H.Sato, T.Kikuchi, T.Kii, M.Igashira, T.Ohsaki

Title: Fast Neutron Capture Reactions in Nuclear Astrophysics

Keyword abstract: NUCLEAR REACTIONS 1 H, 12 C, 16 O(n, γ),E=10-300 keV; measured E γ ,I γ ,capture σ at some neutron energies. Implications for primordial and stellar nucleosynthesis.

Keynumber: 1995OTZY

Reference: RIKEN-94, p.12 (1995)

Authors: T.Otsuka, M.Ishihara, N.Fukunishi, T.Nakamura, M.Yokoyama **Title:** Neutron Halo Effects in Direct Neutron Capture and Photodisintegration

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E not given; calculated σ (capture); deduced

neutron halo. Direct capture.

Keynumber: 1995ME14

Reference: Phys.Rev. C52, R2334 (1995) **Authors:** A.Mengoni, T.Otsuka, M.Ishihara

Title: Direct Radiative Capture of p-Wave Neutrons

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E \leq 500 keV; calculated capture σ (E). Direct

capture model.

Keynumber: 1995LI31

Reference: Nucl.Phys. A591, 458 (1995)

Authors: A.Likar, T.Vidmar

Title: Fast Neutron Capture Through a Consistent Version of the Direct-Semidirect Model

Keyword abstract: NUCLEAR REACTIONS ²⁰⁸Pb, ¹²C(n, γ),E \approx 6-20 MeV; ⁴⁰Ca(n, γ),E \approx 5-45 MeV; ¹⁴⁰Ce, ⁸⁹Y(n, γ),E \approx 1-20 MeV; calculated capture $\sigma(\theta)$ vs E. Direct-semidirect model,new version.

Keynumber: 1994OT04

Reference: Phys.Rev. C49, R2289 (1994)

Authors: T.Otsuka, M.Ishihara, N.Fukunishi, T.Nakamura, M.Yokoyama **Title:** Neutron Halo Effect on Direct Neutron Capture and Photodisintegration

NSR Search Results Page 3 of 8

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E <0.5 MeV; calculated σ (E). 11 Be(γ ,X),E <5 MeV; calculated photodisintegration B(E1) energy derivative; deduced neutron halo effect role. 13 C level deduced S-factor. Kinematically complete approach.

Keynumber: 1994OH02

Reference: Astrophys.J. 422, 912 (1994)

Authors: T.Ohsaki, Y.Nagai, M.Igashira, T.Shima, K.Takeda, S.Seino, T.Irie

Title: New Measurement of the ${}^{12}C(n,\gamma){}^{13}C$ Reaction Cross Section

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=10-250 keV; measured E γ ,I γ ; deduced

capture $\sigma(E)$. Maxwellian averaged σ .

Keynumber: 1993NAZU

Reference: Proc.2nd Intern.Symposium on Nuclear Astrophysics, Nuclei in the Cosmos, Karlsruhe, Germany, 6-10 July, 1992, F.Kappeler, K.Wisshak, Eds., IOP Publishing Ltd., Bristol, England, p.215 (1993)

Authors: Y.Nagai, T.Shima, K.Takeda, T.Ohsaki, T.Irie, S.Seino, M.Igashira, H.Kitazawa, S.Shibata, K.Tanaka, T.Fukuda

Title: Neutron Capture Rates of Light Nuclei and Stellar Evolution

Keyword abstract: NUCLEAR REACTIONS 12 , 13 C(n,γ),E=10-250 keV; measured Eγ, σ, reaction rates. Role of neutron capture reactions discussed.

Keynumber: 1992WI08

Reference: Z.Phys. A341, 453 (1992)

Authors: G.-D.Wicke, G.Mondry, F.Smend, G.Fink, P.Doll, S.Hauber, M.Haupenthal, H.Schieler,

H.O.Klages

Title: Radiative Capture of Polarized Neutrons by 12 C in the Energy Range E(n) = 20-35 MeV **Keyword abstract:** NUCLEAR REACTIONS 12 C(polarized n, γ),E=20-35 MeV; measured γ (θ),asymmetry vs E, γ (recoil)-coin; deduced E2,E1 capture interference. Direct semidirect model.

Keynumber: 1992JUZZ

Reference: Bull.Am.Phys.Soc. 37, No.2, 902, C8 3 (1992) **Authors:** E.T.Jurney, J.W.Starner, J.E.Lynn, S.Raman

Title: Check of the Smith and Wapstra Mass Doublet Measurements

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ¹⁴N(n,γ),E=reactor; measured not given. ¹³, ¹⁴C,

 15 N deduced neutron separation energies. Capture γ -spectroscopy. Comparison with Wapstra predictions.

Keynumber: 1992HUZT

Reference: Beijing National Tandem Accelerator Laboratory, 1990-1991, Ann.Rept., p.92 (1992)

Authors: Z.Huang, L.Zhu, L.Hou, D.Ding

Title: The Study of GDR in CIAE

Keyword abstract: NUCLEAR REACTIONS 12 C(n,γ),E ≈ 6-22 MeV; measured $\sigma(\theta)$ vs E; 2 H (d,γ),E=5.781 MeV; measured $\sigma(\theta)$. 56 Fe(n,γ),E=9 MeV; measured Eγ,Iγ. 40 Ca(n,γ),E=9.3-14 MeV; measured Eγ,Iγ. 116 Sn(16 O,γ),E=80 MeV; measured Eγ,Iγ. 132 Ce deduced GDR,GQR,energy,Γ.

Keynumber: 1991NAZY

Reference: Inst.Nucl.Study, Univ.Tokyo, Ann.Rept., 1990, p.55 (1991)

Authors: Y.Nagai, K.Takeda, S.Motoyama, T.Ohsaki, M.Igashira, N.Mukai, F.Uesawa, T.Ando,

NSR Search Results Page 4 of 8

H.Kitazawa, T.Fukuda, S.Kubono

Title: Neutron Capture Cross Sections of ${}^{7}\text{Li}$ and ${}^{12}\text{C}$ in Primordial Nucleosynthesis **Keyword abstract:** NUCLEAR REACTIONS ${}^{7}\text{Li}$, ${}^{12}\text{C}(n,\gamma)$,E=30 keV; measured σ .

Keynumber: 1991NA19

Reference: Nucl.Instrum.Methods Phys.Res. B56/57, 492 (1991)

Authors: Y.Nagai, K.Takeda, S.Motoyama, T.Ohsaki, M.Igashira, N.Mukai, F.Uesawa, T.Ando,

H.Kitazawa, T.Fukuda

Title: Neutron Capture Cross Sections of Light Nuclei in Primordial Nucleosynthesis

Keyword abstract: NUCLEAR REACTIONS 7 Li, 12 C(n, γ),E=30 keV; measured radiative capture

Ey,Iy, deduced intermediate mass nuclei primordial nucleosynthesis process role.

Keynumber: 1991NA06

Reference: Astrophys.J. 372, 683 (1991)

Authors: Y.Nagai, M.Igashira, K.Takeda, N.Mukai, S.Motoyama, F.Uesawa, H.Kitazawa, T.Fukuda

Title: Measurement of the Neutron Capture Rate of the $^{12}C(n,\gamma)^{13}C$ Reaction at Stellar Energy

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=stellar energy; measured capture σ ; deduced

nucleosynthesis implications.

Keynumber: 1991HU05

Reference: Chin.J.Nucl.Phys. 13, No 2, 97 (1991) **Authors:** Z.Huang, L.Zhu, L.Ho, X.Shi, D.Ding

Title: The Measurement of ${}^{12}C(n,\gamma){}^{13}C$ Reaction in the Pygmy Resonance Region

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=7-14 MeV; measured $\sigma(\theta)$ vs E,E γ ,I γ , $\gamma(\theta)$.

¹³C deduced pygmy resonance γ-multipolarity.

Keynumber: <u>1991HO18</u>

Reference: Phys.Rev. C44, 1148 (1991) **Authors:** Y.-K.Ho, H.Kitazawa, M.Igashira

Title: Channel-Capture Mechanism in Low-Energy Neutron Capture by ¹²C

Keyword abstract: NUCLEAR REACTIONS $^{12}C(n,\gamma)$, E=threshold-30 keV; calculated σ ; deduced

reaction mechanism. ^{13}C levels deduced Γ ,other parameters.

Keynumber: 1990MA52

Reference: Astrophys.J. 357, 649 (1990)

Authors: R.L.Macklin

Title: Neutron Capture by ¹²C at Stellar Temperatures

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E <46 keV; measured capture effective σ (E);

deduced Maxwellian averaged σ . Other input.

Keynumber: 1990HA19

Reference: Phys.Rev. C41, 2556 (1990)

Authors: A.Hakansson, A.Lindholm, L.Nilsson, J.Blomgren, P.-O.Soderman, D.M.Drake, S.A.Wender,

N.Olsson

Title: 12 C(n, γ_0) 13 C Cross Section in the 8-11 MeV Region

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=8-11 MeV; measured $\sigma(\theta=90^{\circ})$.

NSR Search Results Page 5 of 8

Kevnumber: 1989HU15

Reference: Chin.J.Nucl.Phys. 11, No. 4, 55 (1989) **Authors:** Z.Huang, J.Liu, Z.Cao, H.Wang, D.Ding

Title: A Study of 12 C(n, γ) 13 C Reaction Induced by 14.2 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=14.2 MeV; measured γ (θ); deduced γ -

multipolarity. Direct-semidirect model.

Keynumber: 1988RA10

Reference: J.Phys.(London) G14, Supplement S223 (1988)

Authors: S.Raman, S.Kahane, J.E.Lynn **Title:** Direct Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C, ²⁴, ²⁵, ²⁶Mg, ³², ³⁴, ³³S, ⁴⁰, ⁴⁴Ca

 (n,γ) , E=slow; calculated capture σ .

Keynumber: 1987LYZY

Reference: ORNL-6326, p.62 (1987) **Authors:** J.E.Lynn, S.Kahane, S.Raman

Title: Analysis of Slow Neutron Capture by ⁹Be, ¹²C, and ¹³C

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ⁹Be(n,γ),E=slow; analyzed data; deduced model

parameters, capture mechanism.

Keynumber: <u>1987LY01</u>

Reference: Phys.Rev. C35, 26 (1987)

Authors: J.E.Lynn, S.Kahane, S.Raman

Title: Analysis of Slow Neutron Capture by ⁹Be, ¹²C, and ¹³C

Keyword abstract: NUCLEAR REACTIONS ⁹Be, ¹², ¹³C(n,γ),E=thermal; calculated capture σ.

Optical model, Lane-Lynn-Raman method.

Keynumber: 1987AU02

Reference: Phys.Rev. C35, 393 (1987)

Authors: R.A.August, H.R.Weller, D.R.Tilley

Title: Measurement of the ${}^{12}C(n,\gamma_0){}^{13}C$ Cross Section in the Giant Dipole Resonance Region

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=6.5-18.5 MeV; measured σ (E, θ), θ =90 0 .

Graphite target. Direct-semidirect calculations.

Keynumber: 1986LI16

Reference: Yad.Fiz. 44, 926 (1986)

Authors: E.P.Lifshits

Title: γ Quantum Polarization in ¹²C Excitation by Polarized Neutrons

Keyword abstract: NUCLEAR REACTIONS 12 C(polarized n, γ), $E \le 9$ MeV; calculated γ CP, linear

polarizations.

Keynumber: 1986KE14

Reference: Nucl.Instrum.Methods Phys.Res. A249, 366 (1986)

Authors: T.J.Kennett, W.V.Prestwich, J.S.Tsai

Title: The $^{14}N(n,\gamma)^{15}N$ Reaction as both an Intensity and Energy Standard

Keyword abstract: NUCLEAR REACTIONS ¹⁴N, ⁹Be, ¹²C(n, γ),E=reactor; measured γ -spectra following capture. ¹⁵N levels deduced input,output I γ ,weighted difference. ¹⁰Be levels deduced I γ . Ge

NSR Search Results Page 6 of 8

detector surrounded by quadrisected NaI(Tl) annulus.

Keynumber: 1986BE17

Reference: Nucl. Phys. A456, 426 (1986)

Authors: I.Bergqvist, D.M.Drake, D.K.McDaniels, S.A.Wender, A.Lindholm, L.Nilsson, N.Olsson,

R.Zorro, F.S.Dietrich

Title: The 12 C(n, γ_0) 13 C Reaction in the Giant Resonance Region

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=7-19.5 MeV; measured σ (E, θ =90 0). 13 C

deduced giant, pygmy resonances. DSD model, 12 , 13 C(n, γ) data input.

Keynumber: 1985LAZX

Reference: Phys.Can. 41, No.3, 34, p.E1 (1985)

Authors: J.R.C.Lafontaine, J.W.Jury, J.Beland, N.R.Roberson, D.R.Tilley, H.R.Weller, J.G.Woodworth

Title: Radiative Neutron Capture Reactions on ¹²C, ¹³C and ¹⁴N

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C, ¹⁴N(n, γ),E not given; measured $\sigma(\theta)$.

Keynumber: 1985AUZZ

Reference: Diss.Abst.Int. 46B, 1600 (1985)

Authors: R.A.August, Jr.

Title: Radiative Capture of Neutrons and Deuterons into ¹³C: Evidence for a secondary doorway state

effect

Keyword abstract: NUCLEAR REACTIONS 12 C(n,γ),E=6.5-18.5 MeV; measured $\sigma(\theta)$. 12 C(polarized n,γ),E=12-18.8 MeV; measured analyzing, vector analyzing power vs θ . 11 B(polarized d,γ),E=1.6-4 MeV; measured $\sigma(\theta=90^\circ)$, vector, tensor analyzing power vs θ . 13 C deduced resonances, doorway characteristics.

Keynumber: 1984WO05

Reference: Phys.Rev. C29, 1186 (1984)

Authors: J.G.Woodworth, R.A.August, N.R.Roberson, D.R.Tilley, H.R.Weller, J.W.Jury **Title:** Polarized Neutron Capture into ¹³C: Evidence for a secondary doorway state effect

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ), (polarized n, γ),E=12-18.8 MeV; measured σ (θ),analyzing power. 13 C deduced secondary doorway state. Other data input,Legendre polynomial analysis.

Keynumber: 1983HO17

Reference: Nucl. Phys. A406, 18 (1983)

Authors: Y.K.Ho, M.A.Lone

Title: An Interference Effect in the Channel Radiative Neutron Capture Process

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=thermal; calculated radiative capture σ ;

deduced potential, resonance scattering interference effects.

T7 1 10001

Keynumber: 1982WOZV

Reference: Bull.Am.Phys.Soc. 27, No.7, 709, BE82 (1982)

Authors: J.G.Woodworth, R.A.August, N.R.Roberson, D.R.Tilley, H.R.Weller, H..Yao, J.W.Jury

Title: Radiative Nucleon Capture by ¹²C

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ), (polarized n, γ),E=16-21.8 MeV; measured σ

 (θ) . Direct-semidirect model.

NSR Search Results Page 7 of 8

Keynumber: 1982MU14

Reference: Phys.Rev. C26, 2698 (1982)

Authors: S.F.Mughabghab, M.A.Lone, B.C.Robertson

Title: Quantitative Test of the Lane-Lynn Theory of Direct Radiative Capture of Thermal Neutrons by

¹²C and ¹³C

Keyword abstract: NUCLEAR REACTIONS ¹², ¹³C(n, γ),E=thermal; measured σ (E γ),I γ ; deduced

capture mechanism. ¹², ¹³C levels deduced S.

Keynumber: 1982JU01

Reference: Phys.Rev. C25, 2810 (1982) **Authors:** E.T.Jurney, P.J.Bendt, J.C.Browne

Title: Thermal Neutron Capture Cross Section of Deuterium

Keyword abstract: NUCLEAR REACTIONS 2 H, 12 C(n, γ),E=thermal; measured E γ ,I γ , σ . 13 C

transitions deduced Iy.

Keynumber: 1981MUZU

Reference: Bull.Am.Phys.Soc. 26, No.8, 1138, CE2 (1981) **Authors:** S.F.Mughabghab, M.A.Lone, B.C.Robertson

Title: Reaction Mechanism of Thermal Neutron Capture in ^{12,13}C

Keyword abstract: NUCLEAR REACTIONS ¹², $\overline{^{13}}$ C(n, γ),E=thermal; measured σ (capture),ratio. ¹⁴C

level deduced spectroscopic factor. Lane-Lynn theory.

Keynumber: 1975SM02

Reference: Phys.Rev. C11, 1392 (1975) **Authors:** L.G.Smith, A.H.Wapstra

Title: Masses of Isotopes of H, He, C, N, O, and F

Keyword abstract: ATOMIC MASSES ³H, ³He, ¹³, ¹⁴C, ¹⁴, ¹⁵N, ¹⁶O, ¹⁹F; measured atomic mass.

Keyword abstract: NUCLEAR REACTIONS ²H, ³He, ¹², ¹³C, ¹⁴N(n,γ); calculated quadrupole

moment.

Kevnumber: 1975AR19

Reference: Phys.Rev.Lett. 35, 914 (1975) **Authors:** E.D.Arthur, D.M.Drake, I.Halpern

Title: Fore-Aft Anisotropy in the Radiative Capture of 14-MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ¹⁰B, ¹²C, ²⁹Si, ⁴⁰Ca(n,γ),E=14 MeV; measured γ-

yields, $I\gamma(\theta)$.

Keynumber: 1974AUZX **Coden:** REPT USNDC-11 P151

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ); calculated σ .

Keynumber: 1973BAUM

Coden: REPT INDC(SEC)-35/L P17

Keyword abstract: NUCLEAR REACTIONS ¹²C, ²⁸Si(n, γ); calculated σ.

Keynumber: 1972OP01

Reference: Nucl.Phys. A180, 569 (1972)

NSR Search Results Page 8 of 8

Authors: A.M.F.Op den Kamp, A.M.J.Spits

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ³⁹K Enriched Potassium

Keyword abstract: NUCLEAR REACTIONS ³⁹, ⁴¹K, ¹H, ⁶Li, ¹²C, ¹⁹F, ⁴⁰Ar, ⁵⁶Fe, ²⁰⁷Pb(n,γ),E= thermal; ¹⁹F, ²⁸Si(n,n'γ),E=fast; measured Eγ,Iγ, ³⁹K(n,γ),E=thermal; measured Eγ,Iγ,γγ-coin; deduced O. ⁴⁰, ⁴²K deduced levels,γ-branching. Ge(Li),NaI detectors.

Keynumber: 1971JUZS

Coden: REPT NCSAC-42,P163,E T Jurney,5/19/72

Keyword abstract: NUCLEAR REACTIONS 12 C(n, γ),E=thermal; measured E γ ,I γ . 13 C deduced

transitions.

Keynumber: 1968SP01

Reference: Nucl.Phys. A113, 395(1968)

Authors: P.Spilling, H.Gruppelaar, H.F.De vries, A.M.J.Spits

Title: The Reactions 12 C(n, γ) 13 C and 19 F(n, γ) 20 F

Keyword abstract: NUCLEAR REACTIONS 6 Li, 12 C, 19 F, 56 Fe(n, γ), E=thermal; 19 F(n,n' γ), E= fast; 19 F(n, α), E= fast; measured E γ ,I γ ; deduced Q. 7 Li, 13 C, 16 O, 19 F, 20 F deduced levels, branchings.

Natural targets.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁸¹Ta, ¹⁸²W, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁹Hg, ²⁰³Tl, ²⁰⁷Pb(n,γ), E = thermal;

measured $E\gamma$; deduced Q. Natural targets.
