

Brevíssima Introdução à Topologia e Geometria Diferencial

Matheus Pereira Coutinho

Instituto de Física da USP matheus.coutinho9@usp.br

Topologia e Espaços Topológicos

Motivação

O espaço-tempo é um conjunto, um conjunto de pontos. Mas essa noção é insuficiente para falarmos de continuidade de mapas, uma noção muito importante em física, cuja imagem intuitiva é a de uma curva sem "pulos". E a estrutura matemática que deve equipar um conjunto afim de nos permitir definir a continuidade de mapas é a topologia.

Definição [Topologia]

Consideremos um conjunto não-vazio M. Uma topologia τ é um subconjunto $\tau \subset \mathbb{P}(M)$, onde $\mathbb{P}(M)$ é simplesmente o conjunto de todos os subconjuntos de M, que satisfaz as seguintes condições

- $\varnothing, M \in \tau$
- $O_1, O_2 \in \tau \Rightarrow O_1 \cap O_2 \in \tau$
- Se temos um conjunto de índices Λ e $O_{\alpha} \in \tau$, $\forall \alpha \in \Lambda \implies \bigcup_{\alpha \in \Lambda} O_{\alpha} \in \tau$

Se essas condições são satisfeitas, τ é dito ser uma topologia em M e o par (M,τ) é dito ser um espaço topológico.

Exemplos:

- $(1) M = \{1, 2, 3\}$

a) $\tau_1:=\{\varnothing,\{1,2,3\}\}$ É trivial notar que τ_1 é uma topologia em M, pois obedece todas as condições para tal

b) $\tau_2 := \{\emptyset, \{1\}, \{3\}, \{1, 2, 3\}\}$

 τ_2 , por outro lado, não é uma topologia em M, pois $\{1\} \cup \{2\} = \{1,2\}$ não pertence a τ_2

- (2) M é um conjunto qualquer
- a) $\tau := \{\varnothing, M\}$ é uma topologia, chamada de topologia trivial
- b) $\tau := \mathbb{P}(M)$ é uma topologia, chamada de topologia discreta

(3)
$$M = \mathbb{R}^d = \underbrace{\mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}}_{d \text{ veres}} = \{(p_1, ..., p_d) \mid p_i \in \mathbb{R}\}$$

def:

Topologia padrão $\tau \subseteq \mathbb{P}(\mathbb{R}^d)$

Terminologia

- $O \in M$ é um conjunto aberto se $O \in \tau$
- $O \in M$ é um conjunto fechado se $M \setminus O \in \tau$

Mapas

Consideremos dois conjuntos X e Y. Um mapa é uma regra que associa um elemento $y \in Y$ a cada $x \in X$

$$\varphi: X \longrightarrow Y$$

$$\varphi: x \mapsto \varphi(x)$$

O conjunto X é chamado de Domínio do mapa e Y de contradomínio do mapa. A imagem do mapa é o conjunto de elementos de Y, tais que $\varphi(x) = y$

Podemos definir também o mapa inverso φ^{-1} , que a associa um elemento de X a cada elemento de Y

Algumas definições

- Um mapa é dito ser injetivo se, quando $x \neq x' \Rightarrow \varphi(x) \neq \varphi(x')$
- Um mapa é dito ser sobrejetivo se, para cada elemento de $y \in Y$ existe um $x \in X$, tal que $\varphi(x) = y$
- Um mapa é dito ser bijetivo quando ele é injetivo e sobrejetivo
- Se $O \in Y$ então a preimagem de φ em O é preim $_{\varphi}(O) := \{ m \in X \mid \varphi(x) \in O \}$

Dados dois mapas $\varphi: X \longrightarrow Y$ e $\psi: Y \longrightarrow Z$, definimos a composição dos dois mapas como sendo um mapa $\psi \circ \varphi: X \longrightarrow Z$, $\psi \circ \varphi = \psi(\varphi(x))$

Mapa identidade: $\operatorname{id}_X: X \longrightarrow X$, $\operatorname{id}_X(x) = x$, $\forall x \in X$

Se o mapa $\varphi: X \longrightarrow Y$ definido por $\varphi: x \mapsto \varphi(x)$ é bijetivo, então exite o mapa inverso $\varphi^{-1}: Y \longrightarrow X$, definido por $\varphi^{-1}: \varphi(x) \mapsto x$, satisfazendo a propriedade

$$\varphi \circ \varphi^{-1} = \mathrm{id}_Y \ , \quad \varphi^{-1} \circ \varphi = \mathrm{id}_X$$

É notável que as propriedades acima fazem com que seja possível definir um grupo. Um grupo é definido como um par (G, \star) de um conjunto e uma operação fechada nesse conjunto, tal que, para todos $a, b, c \in G$ temos que

- $a \star (b \star c) = (a \star b) \star c$
- $\exists e \in G \text{ tal que } g \star e = g$
- $\forall g \in G$, $\exists g^{-1}$, tal que $g \star g^{-1} = g^{-1} \star g = e$

É fácil ver que o conjunto de todos os mapas lineares $\varphi: X \longrightarrow Y$ com a operação de composição de mapas formam um grupo, onde o elemento neutro é o mapa identidade e o elemento inverso é o mapa inverso.

Continuidade de Mapas

A continuidade de um mapa $\varphi:X\longrightarrow Y$ depende de qual topologia é tomada nos conjuntos domínio e contradomínio

Definição[Continuidade]

Consideremos os dois espaços topológicos (X, τ_X) e (Y, τ_Y) , o mapa $\varphi : X \longrightarrow Y$ é dito ser contínuo (com respeitos às topologias τ_X e τ_Y) se $\forall O \in \tau_Y : \operatorname{preim}_{\varphi}(O) \in \tau_X$