Table 4.2: Common Distributions

Distribution	PMF/PDF and Support	Mean	Variance	MGF
Bernoulli Bern $(p), p \in [0, 1]$	$\mathbb{P}(X=k)=p^k(1-p)^{1-k}$ $k\in\{0,1\}$	p	p(1-p)	$(1-p)+pe^t$
Binomial $Bin(n, p), p \in [0, 1]$	$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$ $k \in \{0, 1, 2, \dots n\}$	np	np(1-p)	$[(1-p)+pe^t]^n$
Discrete uniform Unif($\{1, 2, \dots, N\}$), $N = 1, 2, \dots$	$\mathbb{P}(X = k) = \frac{1}{N}$ $k \in \{1, 2, \dots, N\}$	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$	$\frac{1}{N} \sum_{k=1}^{N} e^{kt}$
Geometric $Geo(p), p \in [0, 1]$	$\mathbb{P}(X = k) = (1 - p)^{k-1}p$ $k \in \{1, 2, \dots\}$	1/p	$(1-p)/p^2$	$\frac{pe^t}{1-(1-p)e^t}, \ t < -\log(1-p)$
Hypergeometric $\operatorname{HGeom}(N,M,n), \ 0 \leq M \leq N, N=1,2 \dots$	$\mathbb{P}(X=k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N+M}{n}}$ $k \in \{0, 1, 2, \dots, n\}$	$\frac{nM}{N}$	$\frac{nM}{N} \frac{(N-M)(N-n)}{N(N-1)}$	messy
Negative Binomial NBin (r, p) , $r = 1, 2,$	$\mathbb{P}(X = k) = {r+k-1 \choose k} p^r (1-p)^k$ $k \in \{0, 1, 2, \dots\}$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{p}{1-(1-p)e^t}\right]^r, \ t < -\log(1-p)$
Poisson Poisson(λ), $\lambda \geq 0$	$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ $k \in \{0, 1, 2, \dots\}$	λ	λ	$e^{\lambda(e^t-1)}$
Beta Beta(α, β), $\alpha, \beta > 0$	$f_X(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$ $x \in [0,1]$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	exists but has no analytic expression
Cauchy Cauchy $(\mu, \sigma), \mu \in \mathbb{R}, \sigma > 0$	$f_X(x) = \frac{1}{\pi\sigma} \frac{1}{1 + \left(\frac{x - \mu}{\sigma}\right)^2}$ $x \in \mathbb{R}$	does not exist	does not exist	does not exist
Chi Square χ_n^2 , $n = 1, 2, \dots$	$f_X(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2}$ $x \ge 0$	n	2n	$(1-2t)^{-n/2}, t < 1/2$
Exponential $Exp(\lambda), \lambda > 0$	$f_X(x) = \lambda e^{-\lambda x}$ $x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\left(1-\frac{t}{\lambda}\right)^{-1}, \ t<\lambda$
Fisher $F_{p,q}, p, q = 1, 2, \dots$	$f_X(x) = \frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)} \left(\frac{p}{q}\right)^{\frac{p}{2}} x^{\frac{p}{2}-1} \left(1 + \frac{p}{q}x\right)^{-\frac{p+q}{2}}$ $x \ge 0$	$\frac{q}{q-2}$, if $q>2$	$2\left(\frac{q}{q-2}\right)^2\frac{p+q-2}{p(q-4)},$ if $q>4$	does not exist
$\begin{array}{c} \operatorname{Gamma} \\ \operatorname{Gamma}(\alpha,\lambda), \alpha,\lambda>0 \end{array}$	$f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$ $x \ge 0$	$rac{lpha}{\lambda}$	$rac{lpha}{\lambda^2}$	$\left(1 - \frac{t}{\lambda}\right)^{-\alpha}, \ t < \lambda$
Laplace (Double Exponential) Laplace $(\mu, \sigma), \mu \in \mathbb{R}, \sigma > 0$	$f_X(x) = \frac{1}{2\sigma} e^{- x-\mu /\sigma}$ $x \in \mathbb{R}$	μ	$2\sigma^2$	$\frac{e^{\mu t}}{1 - (\sigma t)^2}, \ t < \sigma^{-1}$
Logistic Logistic $(\mu, \sigma), \mu \in \mathbb{R}, \sigma > 0$	$f_X(x) = \frac{1}{\sigma} \frac{e^{-(x-\mu)/\sigma}}{[1+e^{-(x-\mu)/\sigma}]^2}$ $x \in \mathbb{R}$	μ	$\frac{\pi^2\sigma^2}{3}$	$e^{\mu t}\Gamma(1-\sigma t)\Gamma(1+\sigma t), t < \sigma^{-1}$
Log-Normal $\mathcal{LN}(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma > 0$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} x^{-1} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$ $x > 0$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$	does not exist
Normal $\mathcal{N}(\mu, \sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $x \in \mathbb{R}$	μ	σ^2	$e^{t\mu+\frac{\sigma^2t^2}{2}}$
Pareto Pareto(α, β), $\alpha, \beta > 0$	$f_X(x) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}$ $x > \alpha$	$\frac{\alpha\beta}{\beta-1}$ if $\beta>1$	$\frac{\alpha^2\beta}{(\beta-1)^2(\beta-2)}$ if $\beta>2$	does not exist
Student- t $t_n, n = 1, 2, \dots$	$f_X(x) = \frac{\Gamma((n+1)/2)}{\sqrt{n\pi}\Gamma(n/2)} (1 + x^2/n)^{-(n+1)/2}$ $x \in \mathbb{R}$	0 if $n > 1$	$\frac{n}{n-2}$ if $n>2$	does not exist
Uniform $U(a, b), a < b$	$f_X(x) = \frac{1}{b-a}$ $x \in [a, b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt}-e^{at}}{(b-a)t}$
Weibull Weibull $(\gamma, \beta), \gamma, \beta > 0$	$f_X(x) = \frac{\gamma}{\beta} x^{\gamma - 1} e^{-x^{\gamma}/\beta}$ $x \ge 0$	$\beta^{1/\gamma}\Gamma\left(1+\frac{1}{\gamma}\right)$	$\beta^{2/\gamma} \left[\Gamma \left(1 + \frac{2}{\gamma} \right) - \Gamma^2 \left(1 + \frac{2}{\gamma} \right) \right]$	exists for $\gamma>1$, but is not helpful