

Database Management

AM05 Masters in Analytics and Management (MAM)

Dr. David Tilson

Date: Start Time: Duration:	17 October 2019 9.00 AM 90 minutes
INSTRUCTIO	NS FOR STUDENTS:
Write you	r LBS number and stream (if applicable) in the spaces below:
LBS no. (printed on your se the Academic Hon	
■ This is a c	losed exam.
•	use a calculator. However, devices that store data or connect to the not allowed.
	esponsible for ensuring that you hand your completed answers to th with all relevant answer sheets stapled together.
If the question will be give	stion is not clear, state your assumptions and if they are reasonable yo en credit.
A total of 5	50 points are available for this exam. Allocate your time optimally.
	USE ONLY – Please complete with total score for the exam AND red per question.

Question	Points	Score	Question	Points	Score
1	20		6		
2	10		7		
3	10		8		
4	10		9		
5			10		
			Total	50	

Grader initials:	IM sample: Yes	Central Services initials:

QUESTION 1

This question is set in the context of a small database that stores information about patients, medications, and prescriptions. A partial schema is shown in the figure below:

The tables are populated with the following data:

SELECT * FROM Prescription;						
	PrescriptionID	PatientID	MedicationID	AdminRegimeID	StartDate	EndDate
•	2	1	1	3	2019-10-12	2019-10-15
	3	1	3	2	2019-10-13	2019-10-16
	4	2	3	1	2019-10-14	2019-10-16
	5	4	2	2	2019-10-10	2019-10-11

SELECT * FROM Patient;				
PatientID	PatientFirstName	PatientLastName		
1	Alice	Blue		
2	Bob	Costa		
3	Charlie	Darwin		
4	Derek	Eagle		

1-1 [2 points] Enter the results of this query in the table provided

SELECT PatientLastName, COUNT(*) AS Num
FROM Patient pat INNER JOIN Prescription pre ON
pat.PatientID = pre.PatientID
GROUP BY pat.PatientLastName
ORDER BY pat.PatientLastName ASC;

PatientLastName	Num

1-2 [2 points] Enter the results of this query in the table provided

SELECT PatientLastName, COUNT(*) AS Num
FROM Patient pat LEFT OUTER JOIN Prescription pre ON
pat.PatientID = pre.PatientID
GROUP BY pat.PatientLastName
ORDER BY pat.PatientLastName ASC;

PatientLastName	Num

1-3 [2 points] Enter the results of this query in the table provided

SELECT PatientLastName, COUNT(pre.MedicationID) AS Num
FROM Patient pat LEFT OUTER JOIN Prescription pre ON
pat.PatientID = pre.PatientID
GROUP BY pat.PatientLastName
ORDER BY pat.PatientLastName ASC;

PatientLastName	Num

1-4 [2 points] Are the results of the last two queries the same or different? Explain why that is the case.

1-5 [2 points] Enter the results of this query in the table provided

SELECT HourOfDay, COUNT(*) AS NumRegimes
FROM AdminTime
GROUP BY HourOfDay
HAVING COUNT(*) > 1;

HourOfDay	NumRegimes

1-6 [2 points] Enter the results of this query in the table provided

SELECT AVG(x.NumRegimes) AS AvgOfNumRegimes
FROM (SELECT HourOfDay, COUNT(*) AS NumRegimes
FROM AdminTime
GROUP BY HourOfDay
HAVING COUNT(*) <2) AS x;</pre>

AvgOfNumRegimes	

1-7 [2	points] Enter the re	sults of this que	ery in the table provided	
		on pre INNER	e) AS NumPatientNames JOIN Patient pat entID;	
	NumPatientNames			
1-8 [2	points] Enter the re	sults of this que	ery in the table provided	
	SELECT PatientLe FROM Patient pa (SELECT * FROM : WHERE pre.Patie:	t WHERE NOT B Prescription	pre	
	PatientLastName			
-	points] Questions 1 ated subquery? Hov		ude subqueries. Which one is a	

1-10 [2 points] Enter the results of this query in the table provided

SELECT PatientLastName, PrescriptionID
FROM Patient pat LEFT OUTER JOIN Prescription pre
ON pat.PatientID = pre.PatientID
WHERE PrescriptionID IS NULL;

PatientLastName	PrescriptionID

QUESTION 2 [10 points]

Draw an ERD for the following situation

- A laboratory collects specimens that may later be analysed. For each specimen collected, the database should record a unique SpecNo. It should also specify SpecArea, and SpecCollMethod
- A specimen is analysed when a test order is issued. A specimen may not have a test order until after a considerable delay
- A test order contains a unique test order number (TONo), TOTestName, TOTestType and TOTestResult
- A test order is created for exactly one specimen
- The database should keep track of supplies needed for test orders
- A test order can use a collection of supplies (0 or more) and a supply can be used on a collection of test orders (0 or more). The Supply entity type contains a unique SuppNo, SuppName, SuppLotNo, and SuppNoInStock

Notes

- M:N relationships should be modelled with associative entities
- Choose appropriate names for all relationships and entity types based on your common knowledge of test orders and supplies
- Use doubled line relationships and rectangles to represent weak entities. Underline identifiers that are likely to become primary keys

.

QUESTION 3

The following ERD represents a data model for tracking the allocation of laboratory equipment to chemists working on projects.

3-1 [8 points] Convert the ERD into a set of relational schemas. Indicate the functional dependencies, and the PK-FK relationships with arrows. Convert all relations into 3NF. Use this sort of format to represent relations.

3-2 [2 points] How do you know that the schema that you created for question 3-1 is in third normal form?
QUESTION 4
4-1 [2 points] Give two disadvantages of the independent data mart architecture relative to the enterprise data warehouse architecture.
4-2 [2 points] What does the term data independence mean, and why is it an important goal?

4-3 [2 points] What is the main thing that HDFS does that traditional file systems do not?	
4-4 [2 points] Briefly describe the main steps in ETL	
4-4 [2 points] Briefly describe the main steps in LTL	
4-5 [2 points] Fill in the blanks	
The provides centralized storage for all data definitions, data relationships, and other system components in a RDBMS.	
The is a simple database design in which dimensional data are separated from fact or event data.	