EPFL

MAN

Mise à niveau

Maths 1B Prepa-033(b)

Student: Arnaud FAUCONNET

Professor: Olivier WORINGER

Printemps - 2019

Chapter 2

Fonctions réelles d'une variable réelle

2.1 Définitions

Définition:

$$f:A\subset\mathbb{R}\to\mathbb{R}$$

est une fonction réelle d'une variable réelle si tout $x \in A$ a au plus une image par f dans \mathbb{R} , notée f(x)

L'ensemble des $x\in A$ ayant une image par f est le domaine de définition de $f: D_f$ On note Im_f l'ensemble des $f(x)\in \mathbb{R}$

$$\operatorname{Im}_f = \left\{ y \in \mathbb{R} | \exists x \in \mathcal{D}_f, y = f(x) \right\}$$

Exemples

1.

$$f(x) = \sqrt{x}, \quad D_f = \mathbb{R}_+, \quad \operatorname{Im}_f = \mathbb{R}_+$$

2.

$$g: \mathbb{R} \to \mathbb{R},$$

 $x \mapsto E(x)$

où E(x) est la partie entière de x, c'est le plus grand entier inférieur à x:

Exemples

$$E(3) = 3$$
, $E(2.9) = 2$, $E(-2.5) = -3$

$$D_g = \mathbb{R}, \quad Im_f = \mathbb{Z}$$

3.

$$h: \mathbb{R} \to \mathbb{R},$$

 $x \mapsto \frac{1}{(x-1)^2}$

$$D_2=\mathbb{R}\backslash 1,\quad Im_h=]0,+\infty[$$

Le graphe de $f : G_f$

Definitions

- 1. **Parité** (y symétrique par rapport à O)
 - (a) f est paire si

$$f(-x) = f(x), \quad \forall x \in D_f$$

Le graphe de f est alors symétrique $/{\cal O}_y$

(b) f est impaire si

$$f(-x) = -f(x), \quad \forall x \in D_f$$

Le graphe de f est alors symétrique /0

Exemples

$$f_1(x) = x^2, \quad f_2(x) = |x|, \quad f_3(x) = \cos(x), \quad \text{ sont paires,}$$
 $f_1(x) = x^3, \quad f_2(x) = \sin(x), \quad f_3(x) = \tan(x), \quad \text{ sont impaires.}$

2. Périodicité

f est périodique en $T \in \mathbb{R}$, si $\forall x \in D_f$, f(x+T) = f(x) G_f période de f est le plus petit T > 0 tel que

$$f(x+T) = f(x), \quad \forall x \in D_f$$

Exemples

$$f(x) = \sin(x) \cdot \cos(x)$$

 \sin et \cos sont 2π -périodique.

Donc f est est 2π -périodique.

Or
$$f(x) = \frac{1}{2} \cdot \sin(2x)$$

Donc **la** période de f est $T=\pi$:

$$\begin{split} f(x+T) &= \frac{1}{2} \cdot \sin \left(2 \cdot (x+T) \right) \\ &= \frac{1}{2} \cdot \sin (2x + \underbrace{2T}_{\text{période de sinus}}) \end{split}$$

$$2T = 2\pi \iff T = \pi$$

3. Monotonie

(a) f est croissante si $\forall x_1, x_2 \in D_f$:

$$x_1 < x_2 \implies f(x_1) \le f(x_2)$$

Strictement croissante si

$$x_1 < x_2 \implies f(x_1) < f(x_2)$$

(b) f est décroissante si $\forall x_1, x_2 \in D_f$:

$$x_1 > x_2 \implies f(x_1) \ge f(x_2)$$

Strictement croissante si

$$x_1 > x_2 \implies f(x_1) > f(x_2)$$

(c) *f* est monotone si elle est croissante ou (exclusif) décroissante.

Exemples $f(x) = x^2$ est strictement décroissante sur \mathbb{R}_- , strictement croissante sur \mathbb{R}_+ et non-monotone sur \mathbb{R} .

Théorème Si *f* strictement monotone, alors l'équation:

$$f(x) = \alpha, \quad x \in \mathbb{R}$$

admet au plus une solution:

Demonstration dans ce cas:

$$f$$
: strictement croissante $\implies f(x) = \alpha$

admet au plus une solution

Demonstration par la contraposée:

Hypothèse: $f(x) = \alpha$ admet plus d'une solution

Conclusion: f non strictement croissant

Preuve: Soient $x_1 \neq x_2 \in D_f$ t.q. $f(x_1) = f(x_2) = \alpha$

Soit x_1 la plus petite, on a:

$$x_1 < x_2$$
 et $f(x_1) = f(x_2)$

f est non strictement croissante.

4. Valeur absolue de f, soit:

$$f: D_f \to \mathbb{R},$$

 $x \mapsto f(x)$

on définit

$$|f|: D_f \to \mathbb{R},$$

 $x \mapsto |f|(x) = |f(x)|$

avec

$$|f(x)| = \left\{ \begin{array}{l} -f(x), \ \mathrm{si} \ f(x) < 0 \\ f(x), \ \mathrm{si} \ f(x) \geq 0 \end{array} \right.$$

On déduit le graphe de |f| de celui de f en symétrisant $/0_x$ tous les points d'ordonnée négative.

Exemple $f(x) = x \cdot (x+3) \cdot (x-5)$

5. Compositions de Fonctions

Soient f,g deux fonctions, si $Im_g\subset D_f$ alors on définit

$$f\circ g$$

par

$$f \circ g(x) = f(g(x)), \quad \forall x \in D_f$$

Exemple

(a) Soit

$$g(x) = \sqrt{x^2 - 1}$$

et

$$f(x) = \sqrt{x^2 + 1}$$

$$f \circ g(x) = f\left(\sqrt{x^2 - 1}\right) = \sqrt{\left(\sqrt{x^2 - 1}\right)^2 + 1}$$
$$= \sqrt{x^2} = |x|$$

Mais
$$D_{f \circ g} =]-\infty;-1] \cup [1;+\infty[\neq \mathbb{R}$$

(b)
$$g = x + a$$
 et $f : \mathbb{R} \to \mathbb{R}$

$$f \circ g(x) = f(g(x)) = f(x+a)$$

Comment déduire le graphe de f(x + a) de celui de f?

On déduit le graphe de f(x+a) de celui de f(x) par la translation de (-a)-unités parallèlement à 0x.

6. Fonctions bornées

f est bornée sur D_f si

$$\exists M > 0 \text{ t.q. } |f(x)| \leq M, \quad \forall x \in D_f$$

Exemples

$$f(x)=rac{1}{x-1}$$
 n'est pas bornée sur D_f
$$g(x)=rac{1}{x+1} \ {
m et} \ h(x)=\cos x \ {
m sont} \ {
m bornées} \ {
m sur} \ D_f$$

2.2 Surjection, injection, bijection

1. Surjection

 $f: A \to B$ est dite surjective si tout $y \in B$ admet un antécédent par f dans A:

$$\forall y \in B, \exists x \in B \text{ t.q. } y = f(x)$$

En d'autres termes:

f est surjective si et seulement si $Im_f = B$

Exemples

(a) La fonction

$$f: \mathbb{R} \to \mathbb{R},$$

 $x \mapsto E(x)$

n'est pas surjective. $y=\frac{1}{2}$ n'as pas d'antécédent par contre

$$g: \mathbb{R} \to \mathbb{Z},$$

 $x \mapsto E(x)$

est surjective.

(b) La fonction

$$f: \mathbb{R} \to \mathbb{R},$$

$$x \mapsto \frac{x^2}{x+1}$$

On détermine Im_f

$$Im_f = \{ y \in \mathbb{R} | \exists x \in \mathbb{R}, y = f(x) \}$$

Soit
$$y = f(x) = \frac{x^2}{x+1}$$

 $y \in Im_f$ si x existe.

On cherche donc à résoudre l'équation

$$y = \frac{x^2}{x+1}$$

par rapport à x en considérant y comme un paramètre

$$x^2 = y \cdot (x+1)$$
$$x^2 - y \cdot x + y = 0$$

$$\Delta = (-y)^2 - 4 \cdot y = y \cdot (y - 4)$$

$$\Delta \ge 0 \iff y \in]-\infty;0] \cup [4;+\infty[$$

Donc $Im_f =]-\infty; 0] \cup [4; +\infty[$

2. Injection

Définition: La fonction

 $f: A \rightarrow B$ est dite injective

si

$$\forall x_1, x_2, \quad x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

Contre-exemple:

Énoncé contraposée en f injective si et seulement si

$$\forall x_1, x_2 \in A, \quad f(x_1) = f(x_2) \implies x_1 = x_2$$

Exemples:

(a)
$$f(x) = x^2$$

 $f(x)=x^2$ est injective sur \mathbb{R}_+ ou sur \mathbb{R}_- mais non injective sur \mathbb{R}

(b) Repère de l'exemple sur la surjection

$$f(x) = \frac{x^2}{x+1}, \quad x \neq -1$$

Soit $a, b \in \mathbb{R}$ t.q. f(a) = f(b)

$$\frac{a^2}{a+1} = \frac{b^2}{b+1} \iff a^2 \cdot (b+1) = b^2 \cdot (a+1)$$

$$\iff a^2b + a^2 - b^2a - b^2 = 0$$

$$\iff ab \cdot (a-b) + (a+b) \cdot (a-b) = 0$$

$$\iff (a-b) \cdot [a \cdot b + (a+b)] = 0$$

 $a \cdot b + a + b = 0$ est un "générateur de contre-exemples".

En effet tout $(a,b) \in \mathbb{R}^2$ vérifiant cette relation est un contre-exemple à l'injectivité de f.

 $a=3, b=-\frac{3}{4}$

Sont tels que $a \neq b$ et f(a) = f(b).

f est non injective.

(c) Bijection et fonction réciproque

Définition: f est bijective si elle est injective **et** surjective

En d'autres termes $f:A\to B$ est bijective si tout $y\in B$ admet un unique antécédent.

Définition: $f:A\to B$ bijective si il existe une unique fonction, notée f^{-1} , appelée fonction réciproque de f

Vérifiant:

$$f^{-1} \circ f = id_A$$
 et $f \circ f^{-1} = id_B$
$$f^{-1} : B \to A$$

$$x \mapsto y = f^{-1}(x)$$

$$x = f(y)$$

avec

Exemple:

$$f: \mathbb{R} \to x \mapsto y = x - x^2$$

Restreindre les ensembles de départ et d'arrivée de sorte que f devienne bijective.

Puis déterminer f^{-1}

Surjection
 On cherche

$$Im_f = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R}, y = f(x) \}$$

$$y = x - x^2 \iff x^2 - x + y = 0$$

$$\Delta = (-1)^2 - 4 \cdot y = 1 - 4y$$

$$\Delta \ge 0 \iff y \le \frac{1}{4}$$

$$Im_f =] - \infty; \frac{1}{4}]$$

• Injection Soit $a, b \in \mathbb{R}$, t.q. f(a) = f(b)

$$a - a^2 = b - b^2$$

$$\iff a^2 - b^2 - a + b = 0$$

$$\iff (a - b)(a + b) - (a - b) = 0$$

$$\iff (a - b) \cdot [(a + b) - 1] = 0$$

Comment restreindre l'ensemble de départ et d'arrivée pour rendre f injective, sans modifier Im_f ?

Il faut rendre le générateur de contre-exemple "inopérant".

$$a+b=1 \implies a-\frac{1}{2}=\frac{1}{2}-b$$

$$A=\left]-\infty;\frac{1}{2}\right] \text{ ou } A=\left[\frac{1}{2};+\infty\right[$$

$$f:\left[\frac{1}{2};+\infty\right]-\infty;\frac{1}{4}\right]$$

Alors

Or

donc

est bijective.

Pour déterminer f^{-1} , ou résoudre

$$y = f(x)$$

par rapport à x en prenant y comme paramètre

$$y = x - x^{2} \iff x^{2} - x + y = 0$$

$$\Delta = 1 - 4y$$

$$x = \frac{1 \pm \sqrt{1 - 4y}}{2}, \qquad \left(y \in \left] -\infty; \frac{1}{4}\right]\right)$$

$$x \in \left[\frac{1}{2}; +\infty\right[$$

$$x = \frac{1 + \sqrt{1 - 4y}}{2}$$

$$f^{-1}: \left] -\infty; \frac{1}{4}\right] \to \left[\frac{1}{2}; +\infty\right[$$

$$id_A:A o A, \ x\mapsto A \ id_B:B o B,$$

 $x \mapsto x$

 $x \mapsto \frac{1 + \sqrt{1 - 4y}}{2}$

2.3 Limite d'une fonction

2.3.1 Limite à infini

Définitions:

1.
$$\lim_{x \to +\infty} f(x) = a, (a \in \mathbb{R})$$
 si

$$\forall \epsilon > 0, \exists M \in \mathbb{R}(M = M(\epsilon)) \text{ t.q. } x \geq M(x \in D_{\mathsf{def}}) \implies |f(x) - a| < \epsilon$$

2.
$$\lim_{x \to \infty} f(x) = a \text{ si}$$

$$\forall \epsilon > 0, \exists N \in \mathbb{R}(N = N(\epsilon)) \text{ t.q. } x < N(x \in D_{\mathsf{déf}}) \implies |f(x) - a| < \epsilon$$

Exemple: Montrons que

$$\lim_{x \to -\infty} \frac{1}{x^2} = 0$$

Soit $\epsilon > 0$ donné

Montrons qu'il existe $N \in \mathbb{R}$ tel que

$$\begin{split} x < N &\implies |\frac{1}{x^2} - 0| < \epsilon \\ &\iff |\frac{1}{x^2}| < \epsilon \\ &\iff \frac{1}{x^2} < \epsilon \\ &\iff |x| > \frac{1}{\epsilon} \\ &\iff x \in \left] - \infty; - \frac{1}{\sqrt{\epsilon}} \left[\ \cup \ \right] \frac{1}{\sqrt{\epsilon}}; + \infty \right[\end{split}$$

Donc tout $N \leq -\frac{1}{\sqrt{\epsilon}}$ convient, car

$$x < N(\text{ avec } N \le -\frac{1}{\sqrt{\epsilon}}) \implies |\frac{1}{x^2} - 0| < \epsilon$$

Théorème de caractérisation par les suites: f admet une limite $x \to \infty$ et

$$\lim_{x \to \infty} f(x) = a$$

si et seulement si pour toute la suite x_n qui diverge vers ∞ , on a

$$\lim_{x \to \infty} f(x_n) = a$$

Exemple: Montrons que $\lim_{x\to\infty} \sin(x)$ n'existe pas.

• Soit $x_n = n \cdot \pi$, $n \in \mathbb{N}^*$

$$\lim_{n \to \infty} x_n = +\infty$$

et

$$\lim_{n \to \infty} \sin(x_n) = \lim_{n \to \infty} \sin(n \cdot \pi) = 0$$

• Soit $y_n = \frac{\pi}{2} + n \cdot 2\pi$, $n \in \mathbb{N}^*$

$$\lim_{n \to \infty} y_n = +\infty$$

et

$$\lim_{n \to \infty} \sin(y_n) = \lim_{n \to \infty} \sin(n \cdot \frac{\pi}{2}) = 1$$

Donc $\lim_{x\to +\infty} \sin(x)$ n'existe pas.

Définitions: Limites impropre

1.
$$\lim_{x \to +\infty} f(x) = +\infty$$
 si

$$\forall A > 0, \quad \exists M \in \mathbb{R} \text{ t.q. } x > M \implies f(x) > A$$

2.
$$\lim_{x \to +\infty} f(x) = -\infty$$
 si

$$\forall B < 0, \quad \exists M \in \mathbb{R} \text{ t.q. } x > M \implies f(x) < B$$

3.
$$\lim_{x \to -\infty} f(x) = +\infty$$
 si

$$\forall A > 0, \quad \exists N \in \mathbb{R} \text{ t.g. } x < N \implies f(x) > A$$

4.
$$\lim_{x \to -\infty} f(x) = -\infty$$
 si

$$\forall B < 0, \quad \exists N \in \mathbb{R} \text{ t.q. } x < N \implies f(x) < B$$

Exemple:

$$\lim_{x \to -\infty} x^2 = +\infty$$

Soit A > 0, $\exists ? N \in \mathbb{R} \text{ t.q. } x < N \implies$

$$\implies x^2 > A \iff |x| = \sqrt{A}$$
$$\implies x \in \left] -\infty; -\sqrt{A} \right] \cup \left] \sqrt{A}; +\infty \right[$$

Donc tout x < N convient.

Opération sur les limites

1. Si $\lim_{x \to \infty} f(x) = a$ et $\lim_{x \to \infty} g(x) = b$ alors

$$\lim_{x \to \infty} |f(x)| = |a|, \quad \lim_{x \to \infty} (f(x) \pm g(x)) = a \pm b$$

$$\lim_{x\to\infty}\left(f(x)\cdot g(x)\right)=a\cdot b,\quad \lim_{x\to\infty}\left(\frac{f(x)}{g(x)}\right)=\frac{a}{b},\quad (\text{ si }b\neq 0)$$

2. Si $\lim_{x\to\infty} f(x) = a$ et $\lim_{x\to\infty} g(x) = +\infty$ alors

$$\lim_{x \to \infty} (f(x) + g(x)) = +\infty$$

$$\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) = 0$$

3. Si $\lim_{x \to \infty} f(x) = +\infty$ et $\lim_{x \to \infty} g(x) = +\infty$ alors

$$\lim_{x \to \infty} (f(x) + g(x)) = +\infty$$

$$\lim_{x \to \infty} (f(x) \cdot g(x)) = +\infty$$

Cas d'indétermination Si

$$\lim_{x\to\infty}f(x)=0, \lim_{x\to\infty}g(x)=0 \text{ et } \lim_{x\to\infty}i(x)=+\infty, \lim_{x\to\infty}h(x)=+\infty$$

alors on ne peut rien dire à priori des limites suivante

$$\lim_{x \to \infty} (h(x) - i(x)) = \infty - \infty$$

$$\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) = "\frac{0}{0}"$$

$$\lim_{x \to \infty} \left(\frac{h(x)}{i(x)} \right) = \frac{\infty}{\infty}$$

Quelque théorème importants

1. Théorème des 2 gendarmes

Soient d(x), g(x) toutes les fonctions telles que

$$\exists M > 0 \text{ avec } g(x) \le x \le d(x), \quad \forall x > M$$

Alors si

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} d(x) = a$$

on a

$$\lim_{x \to +\infty} f(x) = a$$

Énoncé analogue pour $x \to -\infty$

Corollaire des 2 gendarmes

$$\lim_{x \to +\infty} |f(x)| = 0 \implies \lim_{x \to +\infty} f(x) = 0$$

$$[\underbrace{|f(x)|}_{\to 0} \le f(x) \le \underbrace{|f(x)|}_{\to 0} \quad \Box]$$

2. **Théorème du gendarme**(ou du chien méchant) Soient f(x), g(x) toutes les fonctions telles que

$$\exists M > 0 \text{ avec } f(x) \ge g(x), \quad \forall x > M$$

Alors si

$$\lim_{x \to +\infty} g(x) = +\infty$$

on a

$$\lim_{x \to +\infty} f(x) = +\infty$$

Énoncé analogue pour $x \to -\infty, y \to -\infty$

3. Théorème "0 · borné"

Soient f,g deux fonctions telles que $\lim_{x\to +\infty} f(x)=0$ et $\exists M>0$ avec g(x) est borné sur $[M;+\infty[$

Alors

$$\lim_{x \to +\infty} f(x) \cdot g(x) = 0$$

[Par hypothèse

$$\exists A > 0 \text{ t.q. } |g(x)| \le A, \quad x > M$$

$$0 \le |f(x) \cdot g(x)| = |f(x)| \cdot |g(x)| \le \underbrace{|f(x)|}_{\to 0} \cdot A$$

Donc d'après les deux gendarmes: $|f(x)\cdot g(x)|\xrightarrow[x\to\infty]{}0$ d'après son corolaire: $f(x)\cdot g(x)\xrightarrow[x\to+\infty]{}0$]

Énoncé analogue pour $x \to -\infty$

Exemple: $f(x) = \frac{\sin(x)}{x}, \quad x \to +\infty$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \underbrace{\frac{1}{x}}_{\text{born\'e}} \cdot \underbrace{\sin(x)}_{\text{born\'e}} = 0$$

Or f est paire, donc $\lim_{x \to -\infty} f(x) = 0$

- 4. **Théorème** " ∞ · signe constant "
 - Si $\lim_{x \to +\infty} f(x) = +\infty$ et $g(x) \geq m > 0$ sur un voisinage de $+\infty$. Alors

$$\lim_{x \to +\infty} f(x) \cdot g(x) = +\infty$$

• Si $\lim_{x\to +\infty} f(x) = +\infty$ et $g(x) \leq m < 0$ sur un voisinage de $+\infty$. Alors

$$\lim_{x \to +\infty} f(x) \cdot g(x) = -\infty$$

Énoncé analogue pour $x \to -\infty, y \to -\infty$

5. **Théorème** " ∞ + borné" Si $\lim_{x\to +\infty} f(x) = +\infty$ et g(x) est borné sur un voisinage de $+\infty$. Alors

$$\lim_{x \to +\infty} (f(x) + g(x)) = +\infty$$

Énoncé analogue pour $x \to -\infty, y \to -\infty$

Exemples:

1.
$$\lim_{x \to -\infty} (x + \sin(x)) = -\infty$$

2.
$$f(x) = \frac{x \cdot \sin(x)}{(\cos(x) - 2) \cdot (x + \sqrt{x^4 + x^2})}, \quad x \to -\infty$$

$$\frac{x \cdot \sin(x)}{(\cos(x) - 2) \cdot (x + \underbrace{|x|}_{=-x} \cdot \sqrt{x^2 + 1})}, \quad x < 0$$

$$\underbrace{\frac{\sin(x)}{\sin(x)}}_{\text{cos}(x) - 2)} \cdot \underbrace{(-1 \cdot \sqrt{x^2 + 1})}_{=-\infty} \xrightarrow{x \to -\infty} 0 \quad \text{("0· borné")}$$

2.3.2 Valeurs limite en x_0

Définition: Soit $x_0 \in \mathbb{R}$. On appelle voisinage pointé de x_0 , tout voisinage de x_0 , privé de x_0

Exemple: L'ensemble

$$\{x \in \mathbb{R} | 0 < |x - x_0| < \delta\}$$

est appelé δ -voisinage pointé de x_0 .

En effet: $0 < |x - x_0| < \delta$

$$\iff x \in]x_0 - \delta; x_0[\cup]x_0; x_0 + \delta[$$

Définition: Soient $x_0 \in \mathbb{R}$ et f une fonction définie sur un voisinage pointé de x_0 .

$$\lim_{\substack{x \to x_0 \\ (x \neq x_0)}} f(x) = a, \text{ si } \forall \epsilon > 0, \exists \delta > 0 \ (\delta = \delta(\epsilon))$$

tels que

$$0 < |x - x_0| < \delta \implies |f(x) - a| < \epsilon$$

 $\lim_{x\to x_0} f(x)=a$ si et seulement si tout ϵ -voisinage de a contient l'image par f d'un ϵ -voisinage pointé de x_0

1. Théorème de caractérisation par les suites

 $\lim_{x\to x_0} f(x) = a$ si et seulement si pour toutes suites $(r_n)_{n\in\mathbb{N}^*}$ qui converge vers x_0 : $\lim_{x\to x_0} (x_0+x_0)$

 $\lim_{n \to \infty} x_n = x_0, \quad (x_n \neq x_0)$

On a

$$\lim_{n \to \infty} f(x_n) = a$$

Exemple:

$$f(x) = \begin{cases} x, & \text{si } x \le 1\\ x^2 + 1, & \text{si } x > 1 \end{cases}$$

Montrons que $\lim_{x\to 1} f(x)$ n'existe pas

• Soit $x_n = 1 - \frac{1}{n}$

$$x_n \to 1$$

et

$$f(x_n) = 1 - \frac{1}{n} \xrightarrow[n \to \infty]{} 1$$

• Soit $y_n = 1 + \frac{1}{n}(y_n > 1)$

$$\lim_{n \to \infty} y_n = 1$$

mais

$$f(y_n) = y_n^2 + 1$$

$$= \left(1 + \frac{1}{n}\right)^2 + 1$$

$$= 2 + \frac{2}{n} + \frac{1}{n^2}$$

$$\lim_{n \to \infty} f(y_n) = 2$$

Donc $\lim_{f(x)}$ n'existe pas

Définitions: Limite à gauche et à droite de x_0

$$\bullet \lim_{n \to x_0^-} f(x) = a \operatorname{Si}$$

$$\forall \epsilon > 0, \exists \delta > 0 (\delta = \delta(\epsilon)) \text{ t.g. } x_0 - \delta < x < x_0 \implies |f(x) - a| < \epsilon$$

$$\bullet \lim_{n \to x_0^+} f(x) = a \operatorname{Si}$$

$$\forall \epsilon > 0, \exists \delta > 0 (\delta = \delta(\epsilon)) \text{ t.q. } x_0 < x < x_0 + \delta \implies |f(x) - a| < \epsilon$$

Reprise de l'exemple précédent:

$$\lim_{x \to x_0^-} f(x) = 1, \quad \lim_{x \to x_0^+} f(x) = 2$$

Théorème $\lim_{x\to x_0} f(x)$ existe si et seulement si

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

Définition: Limites infinies en x_0

•
$$\lim_{x \to x_0} f(x) = +\infty$$

$$\forall A > 0, \exists \delta > 0 (\delta = \delta(A)) \text{ t.g. } 0 < |x - x_0| < \delta \implies f(x) > A$$

•
$$\lim_{x \to x_0} f(x) = -\infty$$

$$\forall B < 0, \exists \delta > 0 (\delta = \delta(A)) \text{ t.q. } 0 < |x - x_0| < \delta \implies f(x) < B$$

Exemple: Montrer que

$$\lim_{x \to 0} \frac{1}{x^2} = +\infty$$

Soit A > 0 donné, montrons que

$$\exists \delta > 0 \text{ t.q. } 0 < |x - 0| < \delta \implies \frac{1}{r^2} > A$$

$$\frac{1}{x^2} > A \iff x^2 < \frac{1}{A} \iff |x| < \frac{1}{\sqrt{A}} \iff |x - 0| < \frac{1}{\sqrt{A}}$$

Donc tout $\delta \leq \frac{1}{\sqrt{A}}$ convient, car

$$0 < |x - 0| < \delta$$
, (avec $\delta \le \frac{1}{\sqrt{A}}$) $\implies \frac{1}{x^2} > A$

Définitions: Limites infinies à gauche et à droite en x_0

•
$$\lim_{x \to x_0^+} f(x) = +\infty$$
 si
$$\forall A>0, \exists \delta>0 \quad \text{t.q.} \quad x_0 < x < x_0 + \delta \implies f(x)>A$$

•
$$\lim_{x \to x_0^-} f(x) = +\infty$$
 si
$$\forall A>0, \exists \delta>0 \quad \text{t.g.} \quad x_0-\delta < x < x_0 \implies f(x)>A$$

•
$$\lim_{x \to x_0^+} f(x) = -\infty$$
 si
$$\forall B < 0, \exists \delta > 0 \quad \text{t.q.} \quad x_0 < x < x_0 + \delta \implies f(x) < B$$

•
$$\lim_{x \to x_0^-} f(x) = +\infty$$
 si
$$\forall B < 0, \exists \delta > 0 \quad \text{t.q.} \quad x_0 - \delta < x < x_0 \implies f(x) < B$$

Exemple: Montrons que $\lim_{x\to 0^-} \frac{1}{x} = -\infty$

Soit B > 0 donné, montrons que

$$\exists \delta > 0 \text{ t.q. } 0 - \delta < x < 0 \implies \frac{1}{x} < B \implies \frac{1}{x} < B \iff x > \frac{1}{B}, \quad (x, B < 0)$$

Donc tout $\delta > 0$ vérifiant

$$\frac{1}{B} < -\delta < 0$$

convient $(\delta < -\frac{1}{B})$ car

$$0 - \delta < x < 0 \quad (\text{avec } - \delta > \frac{1}{B}) \implies \frac{1}{x} > B$$

Remarque: Tout les théorèmes et règles de calcul concernant les limites lorsque $x \to \pm \infty$ restent valables lorsque $x \to x_0$

Exemple:

$$\lim_{x \to 1} \frac{x - \sqrt{2 - x}}{\sqrt[3]{1 - x^2}} \cdot \cos\left(\frac{1}{1 - x}\right)$$

$$y = \cos\left(\frac{1}{1 - x}\right)$$

$$2$$

$$\lim_{x \to 1} \frac{x - \sqrt{2 - x}}{\sqrt[4]{1 - x^2}} = 0$$

$$\lim_{x \to 1} \frac{x - \sqrt{2 - x}}{\sqrt[4]{1 - x^2}} : \text{FI} \quad "0,"$$

$$\lim_{x \to 1} \frac{x^2 - (2 - x)}{\sqrt[3]{(1 - x^2)} \cdot (x + \sqrt{2 - x})} =$$

$$\lim_{x \to 1} \frac{(x - 1) \cdot (x + 2)}{\sqrt[3]{(1 - x)} \cdot (1 + x)} \cdot (x + \sqrt{2 - x}) =$$

$$\lim_{x \to 1} \frac{\sqrt[3]{(x - 1)^2} \cdot (x + 2)}{\sqrt[3]{-1 - x} \cdot (x + \sqrt{2 - x})} = 0$$

Donc

$$\lim_{x \to 1} \underbrace{\frac{x - \sqrt{2 - x}}{\sqrt[3]{1 - x^2}}}_{\to 0} \cdot \underbrace{\cos\left(\frac{1}{1 - x}\right)}_{\text{borné}} = 0$$

2.3.3 Infiniment petits équivalents (IPE)

Définition: Soient f et g 2 fonctions définies sur un voisinage pointé de x_0 . f et g sont des IPE $(x \to x_0)$ si et seulement si

•
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 (IP)

•
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \quad (E)$$

On écrit alors $f \sim g \quad (x \to x_0)$

Montrons que

 $\sin(x) \sim x \quad x \to 0$

Soit $0 < x < \frac{\pi}{2}$

$$\dim(\Delta AOB) < \dim(O\hat{A}B) < \dim(\Delta OAC)$$

$$\iff \frac{1}{2} \cdot 1 \cdot \sin(x) < \frac{1}{2} \cdot x \cdot 1^2 < \frac{1}{2} \cdot 1 \cdot \tan(x)$$

$$\iff \sin(x) < x < \tan(x)$$

$$\iff 1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$

$$\iff \underbrace{\cos(x)}_{\rightarrow 1} < \frac{\sin(x)}{x} < 1$$

Théorème des 2 gendarmes:

$$\lim_{x \to 0^+} \frac{\sin(x)}{x} = 1$$

Or $\frac{\sin(x)}{x}$ est paire donc

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

De plus

$$\lim_{x \to 0} \sin(x) = \lim_{x \to 0} x = 0$$

donc

$$\sin(x) \sim x \quad (x \to 0)$$

Propriété: Si $f_1 \sim g_1$ et $f_2 \sim g_2$ au voisinage de x_0 , alors

$$f_1 \cdot f_2 \sim g_1 \cdot g_2$$

Attention: En général

$$f_1 \sim g_1$$
 et $f_2 \sim g_2 \implies f_1 + f_2 \sim g_1 + g_2$

Contre-exemple:

$$x \sim (x + x^2) \text{ et } x \sim (-x + x^2) \quad (x \to 0)$$

Or

$$\frac{x-x}{(x+x^2)+(-x+x^2)} = \frac{0}{2x^2} !$$

D'où la règles d'utilisation des IPE.

Dans un calcul de limit on peut remplacer une fonction par son IPE, uniquement dans une **expression factorisée** et **jamais** dans une somme.

Exemples:

1. $\lim_{x\to 0} (1-\cos(x)) = 0$ et

$$1 - \cos(x) = 2\sin\left(\frac{x^2}{2}\right) \sim 2 \cdot \left(\frac{x}{2}\right)^2 = \frac{x^2}{2}$$

donc

$$1 - \cos(x) \sim \frac{x^2}{2}, \quad (x \to 0)$$

2. $\lim_{x\to 0} \tan(x) = 0$ et

 $\lim_{x \to 0} \frac{\tan(x)}{x}$

et

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{x \to 0} \underbrace{\frac{\sin(x)}{x}}_{\to 1} \cdot \underbrace{\frac{1}{\cos(x)}}_{\to 1} = 1$$

Donc

$$tan(x) \sim x \quad (x \to 0)$$

Exemple servant d'avertissement:

$$\lim_{x \to 0} \frac{2 \cdot \sin(x) - \sin(2x)}{x^3}$$

Lorsque
$$x \to 0$$
 $2 \cdot \sin(x) \sim 2x$
et $\sin(2x) \sim 2x$

Mais

$$\lim_{x \to 0} \frac{2 \cdot \sin(x) - \sin(2x)}{x^3} \neq \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{2x - 2x}{x^3} = \lim_{x \to 0} \frac{0}{x^2} = 0$$

$$\lim_{x \to 0} \frac{2 \cdot \sin(x) - \sin(2x)}{x^3} = \lim_{x \to 0} \frac{2 \cdot \sin(x) \cdot \cos(x)}{x^3} = \lim_{x \to 0} \frac{2 \cdot \sin(x) \cdot (1 - \cos(x))}{x^3} = \lim_{x \to 0} \frac{2 \cdot x \cdot \frac{x^2}{2}}{x^3} = 1$$

2.4 Continuité

Définition: Soit f définie sur un voisinage de x_0 . f est continue en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Cette définition comporte 3 exigences:

- 1. $f(x_0)$ existe $(x_0 \in \mathbb{D}_{\text{déf}})$
- 2. $\lim_{x \to x_0} f(x)$ existe (vaut $a \in \mathbb{R}$)
- 3. $a = f(x_0)$

Définition analytique f est continue en x_0 si

$$\forall \epsilon > 0, \exists \delta > 0 \text{ t.q. } (x - x_0) < \delta \implies |f(x) - f(x_0)| < \epsilon$$

Définition: f est continue sur un ensemble I=]a,b [si f est continue en tout $x_0 \in I$ et on écrit $f \in \mathbb{C}^0_I$ (la O^e dérivé de f continue sur l'intervalle I)

Exemples:

1. Montrons que $\sin(x) \in \mathbb{C}^0_{\mathbb{R}}$

Soit $\epsilon > 0$ donné

$$|\sin(x) - \sin(x_0)| = |2 \cdot \cos\left(\frac{x + x_0}{2}\right) \cdot \sin\left(\frac{x - x_0}{2}\right)| \le$$

$$\le |2 \cdot \sin\left(\frac{x - x_0}{2}\right)| \le |2 \cdot \frac{x - x_0}{2}| = |x - x_0|$$

Donc tout $\delta \leq \epsilon$ convient car

$$|x - x_0| < \delta$$
 (avec $\delta \le \epsilon$) \Longrightarrow $|\sin(x) - \sin(x_0)| < \epsilon$

Corollaire $\cos(x) \in \mathbb{C}^0_{\mathbb{R}} \ \text{car} \ \cos(x) = \sin\left(\frac{\pi}{2} - x\right)$

2. Montrer que \sqrt{x} est contenue sur \mathbb{R}_+^*

Montrons que
$$\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$$

$$|\sqrt{x} - \sqrt{x_0}| = \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right| \le \left| \frac{x - x_0}{\sqrt{x_0}} \right| = \frac{|x - x_0|}{\sqrt{x_0}}$$

Or

$$\frac{|x-x_0|}{\sqrt{x_0}} < \epsilon \iff |x-x_0| < \epsilon \sqrt{x_0}$$

Donc tout

$$\delta \leq \epsilon \cdot \sqrt{x_0}$$

convient car

$$|x - x_0| < \delta \quad (\delta \le \epsilon \cdot \sqrt{x_0}) \implies |\sqrt{x} - \sqrt{x_0}| < \epsilon$$

Propriétés: Soit f, g continues en x_0 alors

- |f| est continue en x_0
- $f \pm g$ sont continue en x_0
- $f \cdot g$ est continue en x_0
- si $g(x_0) \neq 0, \frac{f}{g}$ est continue en x_0

Ces propriété sont la conséquence des propriétés sur la limite en x_0

Théorème: Soit f et g deux fonctions. f définie sur un voisinage pointé de x_0 . Si $\lim_{x\to x_0} = a$ et si g est continue en a, alors

$$\lim_{x \to x_0} g(f(x)) = g(\lim_{x \to x_0} f(x)) = g(a)$$

Corollaire: Soient f continue en x_0 et g continue en $f(x_0)$. Alors $g \circ f$ est continue sur en x_0

[

$$\begin{split} \lim_{x\to x_0} g\circ f(x) &= \lim_{x\to x_0} g(f(x)) \\ &= g\left(\lim_{x\to x_0} f(x)\right) \text{ car } g \text{ est continue} \\ &= g(f(x_0)) \text{ car } f \text{ est continue} \\ &= g\circ f(x_0) \end{split}$$

]

Exemples:

- 1. $f(x) = \operatorname{cste}$ est $\mathbb{C}^0_{\mathbb{R}}$ $[\delta > 0 \operatorname{qcq} \square]$
 - $\bullet \ \ f(x) = x \quad \ \text{est} \quad \ \mathbb{C}^0_{\mathbb{R}} \quad [\delta \leq \epsilon \square]$
 - $\bullet\,$ Donc toutes fonctions polynomiales sont $\mathbb{C}^0_{\mathbb{R}}$
 - \bullet Et toutes les fonctions naturelles sont \mathbb{C}^0 sur leur $\mathbb{D}_{d\acute{e}f}$
- 2. Les fonctions $\tan(x)$ et $\cot(x)$ sont \mathbb{C}^0 sur leur $\mathbb{D}_{\mathsf{déf}}$
- 3. $f(x)=\sin^2(\sqrt{x^2+1})$ est $\mathbb{C}^0_{\mathbb{R}}$ comme composé de fonctions

Définitions: Continuité gauche, droite

• f est continue à gauche en x_0 si

$$\lim_{x \to x_0^-} f(x) = f(x_0)$$

ullet f est continue à droite en x_0 si

$$\lim_{x \to x_0^+} f(x) = f(x_0)$$

Exemples:

1.
$$f(x) = E(x), \quad x_0 \in \mathbb{Z}$$

f continue à droite en x_0 et discontinue à gauche en x_0

2.
$$g(x) = \sqrt{x}$$

g est continue à droite en $x_0=0$

Définitions:

- On dit que f est continue sur [a;b] si elle continue sur]a;b[, continue à droite en x=a et à gauche en x=b
- Soit f définie sur voisinage pointé de x_0 avec $x_0 \notin \mathbb{D}_f$. On dit que f est prolongeable par continuité en x_0 si

$$\lim_{x \to x_0} f(x) \text{ existe (vaut } a \in \mathbb{R})$$

On peut alors définie $\tilde{f}(x)$ continue en x_0 en posant

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ a & \text{si } x = x_0 \end{cases}$$

 $\tilde{f}(x)$ est appelé la **prolongée par continuité** de f en x_0 .

Exemple:

$$f(x) = \frac{\sin(x)}{x}, \quad x_0 = 0$$

Théorème de la valeur intermédiare Soit f continue sur [a;b], si

$$f(a) \cdot f(b) < 0$$

alors

$$\exists x_0 \in [a; b] \text{ t.q. } f(x_0) = 0$$

Illustration du cas f(a) < 0, f(b) > 0

Démonstration: algorithm de la bisection. On coupe l'intervalle [a;b] en $x=\frac{a+b}{2}$

- $f\left(\frac{a+b}{2}\right) = 0$, $x_0 = \frac{a+b}{2}$
- $f\left(\frac{a+b}{2}\right) < 0$, alors on pose

$$I_1 = [a_1; b_1]$$
 avec $a_1 = \frac{a+b}{2}$ et $b_1 = b$

• $f\left(\frac{a+b}{2}\right) > 0$, alors on pose

$$I_1 = [a_1; b_1]$$
 avec $b_1 = \frac{a+b}{2}$ et $a_1 = a$

On réitère le découpage sur l'intervalle $I_1 = [a_1; b_1]$ et ainsi de suite :

- Soit $n \in \mathbb{N}^*$ t.q. $f\left(\frac{a_n+b_n}{2}\right)$ et alors $\frac{a_n+b_n}{2}$
- Soit on obtient (a_n) et (b_n) , $n \in \mathbb{N}^*$, 2 suites telles que

-
$$f(a_n) < 0 < f(b_n)$$

- $b_n - a_n = \frac{b-a}{2^n}$
- $a \le a_1 \le a_2 \le \dots \le a_n \le b_n \le b_{n-1} \le \dots \le b_1 \le b$

 (a_n) est croissante et majorée

 (b_n) est décroissante et minorée

Donc ces suites sont convergentes

Or

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} \left(\frac{a - b}{2^n} \right) = 0$$

Donc

$$\lim_{n\to\infty}(a_n)=\lim_{n\to\infty}(b_n)$$
 (car les deux limites existent)

Posons

$$x_0 = \lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (b_n)$$

Or f est continue sur [a; b] alors

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n) = f(x_0)$$

Mais

$$f(a_n) < 0 < f(b_n)$$

Donc

$$f(a_n) = f(b_n) = 0$$

D'où

$$f(x_0) = 0$$

Corollaire: Soit f continue sur [a; b]

Si c est compris entre f(a) et f(b), alors

$$\exists x_0 \in [a;b] \text{ t.q. } f(x_0) = c$$

Théorème: Soit f continue sur [a; b]

- Si f est strictement croissante sur [a; b] alors f est bijective de [a; b] sur [f(a); f(b)]
- Si f est strictement décroissante sur [a;b] alors f est bijective de [a;b] sur [f(b);f(a)]

Démonstration: Soit f strictement croissante.

Le théorème de la valeur intermédiaire nous donne l'existence d'un antécédent pour out $y \in [f(a); f(b)]$ et cet antécédent est **unique** car f est strictement monotone.