Module 5: Observational Studies

Fall 2021

Matthew Blackwell

Gov 2003 (Harvard)

• Up to now: experiments where design makes everything easier.

- Up to now: experiments where design makes everything easier.
- Now: what happens when do observational studies?

- · Up to now: experiments where design makes everything easier.
- · Now: what happens when do observational studies?
 - · Start with identification, selection on observables, and DAGs.

- · Up to now: experiments where design makes everything easier.
- · Now: what happens when do observational studies?
 - · Start with identification, selection on observables, and DAGs.
 - Rest of the course will cover different designs for observational studies.

1/ Identification in observational studies

• Experiment: when the researcher controls the treatment assignment.

- **Experiment**: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.

- Experiment: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p_i is controlled and known by researcher in an experiment.

- Experiment: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p; is controlled and known by researcher in an experiment.
- Randomized experiment is an experiment with two properties:

- **Experiment**: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p_i is controlled and known by researcher in an experiment.
- · Randomized experiment is an experiment with two properties:
- 1. **Positivity**: assignment is probabilistic: $0 < \mathbb{P}(D_i = 1) < 1$

- Experiment: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p; is controlled and known by researcher in an experiment.
- · Randomized experiment is an experiment with two properties:
- 1. **Positivity**: assignment is probabilistic: $0 < \mathbb{P}(D_i = 1) < 1$
 - · No deterministic assignment.

- Experiment: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p_i is controlled and known by researcher in an experiment.
- · Randomized experiment is an experiment with two properties:
- 1. **Positivity**: assignment is probabilistic: $0 < \mathbb{P}(D_i = 1) < 1$
 - · No deterministic assignment.
- 2. Unconfoundedness: $\mathbb{P}[D_i = 1 | \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1]$

- Experiment: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p_i is controlled and known by researcher in an experiment.
- · Randomized experiment is an experiment with two properties:
- 1. **Positivity**: assignment is probabilistic: $0 < \mathbb{P}(D_i = 1) < 1$
 - · No deterministic assignment.
- 2. Unconfoundedness: $\mathbb{P}[D_i = 1 | \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1]$
 - · Treatment assignment does not depend on any potential outcomes.

- Experiment: when the researcher controls the treatment assignment.
 - $p_i = \mathbb{P}[D_i = 1]$ be the probability of treatment assignment probability.
 - p_i is controlled and known by researcher in an experiment.
- · Randomized experiment is an experiment with two properties:
- 1. **Positivity**: assignment is probabilistic: $0 < \mathbb{P}(D_i = 1) < 1$
 - · No deterministic assignment.
- 2. Unconfoundedness: $\mathbb{P}[D_i = 1 | \mathbf{Y}(1), \mathbf{Y}(0)] = \mathbb{P}[D_i = 1]$
 - · Treatment assignment does not depend on any potential outcomes.
 - Sometimes written as $D_i \perp \!\!\! \perp (\mathbf{Y}(1), \mathbf{Y}(0))$

· What if we **observe** a non-randomized treatment?

- · What if we **observe** a non-randomized treatment?
 - Maybe treatment assignment is **confounded** so D_i related to POs

- What if we **observe** a non-randomized treatment?
 - Maybe treatment assignment is **confounded** so D_i related to POs
- What can we learn about the ATE here? Look at the difference-in-means:

- · What if we **observe** a non-randomized treatment?
 - Maybe treatment assignment is **confounded** so D_i related to POs
- What can we learn about the ATE here? Look at the difference-in-means:

$$\mathbb{E}[Y_i|D_i=1]-\mathbb{E}[Y_i|D_i=0]$$

- · What if we **observe** a non-randomized treatment?
 - Maybe treatment assignment is **confounded** so D_i related to POs
- What can we learn about the ATE here? Look at the difference-in-means:

$$\begin{split} &\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] \\ = &\mathbb{E}[Y_i(1)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0] \end{split} \tag{consistency}$$

- · What if we **observe** a non-randomized treatment?
 - Maybe treatment assignment is **confounded** so D_i related to POs
- What can we learn about the ATE here? Look at the difference-in-means:

$$\begin{split} &\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] \\ = &\mathbb{E}[Y_i(1)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0] \\ = &\mathbb{E}[Y_i(1)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=1] + \mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0] \end{split}$$

- · What if we **observe** a non-randomized treatment?
 - Maybe treatment assignment is confounded so D_i related to POs
- · What can we learn about the ATE here? Look at the difference-in-means:

$$\begin{split} & \mathbb{E}[Y_i|D_i = 1] - \mathbb{E}[Y_i|D_i = 0] \\ = & \mathbb{E}[Y_i(1)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0] \\ = & \mathbb{E}[Y_i(1)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 1] + \mathbb{E}[Y_i(0)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0] \\ = & \underbrace{\mathbb{E}[Y_i(1) - Y_i(0)|D_i = 1]}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0]}_{\text{selection bias}} \end{split}$$

- · What if we **observe** a non-randomized treatment?
 - Maybe treatment assignment is confounded so D_i related to POs
- What can we learn about the ATE here? Look at the difference-in-means:

$$\begin{split} &\mathbb{E}[Y_i|D_i = 1] - \mathbb{E}[Y_i|D_i = 0] \\ = &\mathbb{E}[Y_i(1)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0] \\ = &\mathbb{E}[Y_i(1)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 1] + \mathbb{E}[Y_i(0)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0] \\ = &\underbrace{\mathbb{E}[Y_i(1) - Y_i(0)|D_i = 1]}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0]}_{\text{selection bias}} \end{split}$$

• Without unconfoundedness: Naive diff-in-means = PATT + selection bias.

- · What if we **observe** a non-randomized treatment?
 - Maybe treatment assignment is **confounded** so D_i related to POs
- What can we learn about the ATE here? Look at the difference-in-means:

$$\begin{split} &\mathbb{E}[Y_i|D_i = 1] - \mathbb{E}[Y_i|D_i = 0] \\ = &\mathbb{E}[Y_i(1)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0] \\ = &\mathbb{E}[Y_i(1)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 1] + \mathbb{E}[Y_i(0)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0] \\ = &\underbrace{\mathbb{E}[Y_i(1) - Y_i(0)|D_i = 1]}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i = 1] - \mathbb{E}[Y_i(0)|D_i = 0]}_{\text{selection bias}} \end{split}$$

- Without unconfoundedness: Naive diff-in-means = PATT + selection bias.
- Selection bias: how different the treated and control groups are in terms of their potential outcome under control.

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

· Difference in means: combination of two unknown quantities.

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

- · Difference in means: combination of two unknown quantities.
 - · Can't distinguish if a diff-in-means is the ATT or selection bias.

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

- · Difference in means: combination of two unknown quantities.
 - · Can't distinguish if a diff-in-means is the ATT or selection bias.
- Example: effect of negative ads on vote shares.

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

- · Difference in means: combination of two unknown quantities.
 - · Can't distinguish if a diff-in-means is the ATT or selection bias.
- Example: effect of negative ads on vote shares.
 - · Naive estimate: negative candidates do worse than positive candidates.

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

- · Difference in means: combination of two unknown quantities.
 - · Can't distinguish if a diff-in-means is the ATT or selection bias.
- Example: effect of negative ads on vote shares.
 - · Naive estimate: negative candidates do worse than positive candidates.
 - \leadsto negative ATT **OR** positive ATT with large negative selection bias.

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

- · Difference in means: combination of two unknown quantities.
 - Can't distinguish if a diff-in-means is the ATT or selection bias.
- Example: effect of negative ads on vote shares.
 - Naive estimate: negative candidates do worse than positive candidates.
 - ullet \leadsto negative ATT **OR** positive ATT with large negative selection bias.
 - SB = candidates that go negative are worse than those who stay positive, even if they ran the same campaigns.

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

- · Difference in means: combination of two unknown quantities.
 - · Can't distinguish if a diff-in-means is the ATT or selection bias.
- Example: effect of negative ads on vote shares.
 - · Naive estimate: negative candidates do worse than positive candidates.
 - ullet \leadsto negative ATT **OR** positive ATT with large negative selection bias.
 - SB = candidates that go negative are worse than those who stay positive, even if they ran the same campaigns.
- With an unbounded Y_i , we can't even bound the ATT because, in principle, SB could be anywhere from $-\infty$ to ∞ .

$$\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0] = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

- · Difference in means: combination of two unknown quantities.
 - · Can't distinguish if a diff-in-means is the ATT or selection bias.
- Example: effect of negative ads on vote shares.
 - Naive estimate: negative candidates do worse than positive candidates.
 - \rightsquigarrow negative ATT **OR** positive ATT with large negative selection bias.
 - SB = candidates that go negative are worse than those who stay positive, even if they ran the same campaigns.
- With an unbounded Y_i , we can't even bound the ATT because, in principle, SB could be anywhere from $-\infty$ to ∞ .
- We say ATT (and ATE) are **unidentified** without further assumptions.

• **Identification** connects the counterfactual to the observed.

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, \mathbf{X}_i\}$.

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}
 - We can only learn about \mathbb{P}^* through $\mathbb{P}!$

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}
 - We can only learn about \mathbb{P}^* through $\mathbb{P}!$
- Quantity ψ is **identified** if we can write it as function of \mathbb{P} .

- · Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}
 - We can only learn about \mathbb{P}^* through $\mathbb{P}!$
- Quantity ψ is **identified** if we can write it as function of \mathbb{P} .
 - Would we know this quantity if we had access to unlimited data?

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}
 - We can only learn about \mathbb{P}^* through $\mathbb{P}!$
- Quantity ψ is **identified** if we can write it as function of \mathbb{P} .
 - Would we know this quantity if we had access to unlimited data?
 - ullet \leadsto no worrying about estimation uncertainty here.

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}
 - We can only learn about \mathbb{P}^* through $\mathbb{P}!$
- Quantity ψ is **identified** if we can write it as function of \mathbb{P} .
 - · Would we know this quantity if we had access to unlimited data?
 - → no worrying about estimation uncertainty here.
- Connecting counterfactual to the observational requires assumptions.

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}
 - We can only learn about \mathbb{P}^* through $\mathbb{P}!$
- Quantity ψ is **identified** if we can write it as function of \mathbb{P} .
 - Would we know this quantity if we had access to unlimited data?
 - ullet \leadsto no worrying about estimation uncertainty here.
- Connecting counterfactual to the observational requires assumptions.
 - "What's your identification strategy?" = what are the assumptions that allow you to claim you've estimated a causal effect?

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}
 - We can only learn about \mathbb{P}^* through $\mathbb{P}!$
- Quantity ψ is **identified** if we can write it as function of \mathbb{P} .
 - Would we know this quantity if we had access to unlimited data?
 - ullet \leadsto no worrying about estimation uncertainty here.
- Connecting counterfactual to the observational requires assumptions.
 - "What's your identification strategy?" = what are the assumptions that allow you to claim you've estimated a causal effect?
 - · Research design can help justify assumptions (experiments, RDD, etc)

- Identification connects the counterfactual to the observed.
 - Counterfactual distribution \mathbb{P}^* of $\{Y_i(1), Y_i(0), D_i, X_i\}$.
 - Observational distribution \mathbb{P} of $\{Y_i, D_i, X_i\}$.
 - Causal quantities are functions of \mathbb{P}^* , but we get samples from \mathbb{P}
 - We can only learn about \mathbb{P}^* through $\mathbb{P}!$
- Quantity ψ is **identified** if we can write it as function of \mathbb{P} .
 - Would we know this quantity if we had access to unlimited data?
 - → no worrying about estimation uncertainty here.
- Connecting counterfactual to the observational requires assumptions.
 - "What's your identification strategy?" = what are the assumptions that allow you to claim you've estimated a causal effect?
 - · Research design can help justify assumptions (experiments, RDD, etc)
 - · Or you will have justify them through argument.

· Identification tells us what to estimate, not how.

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

• But $\mathbb P$ is not directly observable! It's a population distribution!

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- But P is not directly observable! It's a population distribution!
- Once identified, we need to actually **estimate** functions of \mathbb{P} .

- Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- But P is not directly observable! It's a population distribution!
- Once identified, we need to actually **estimate** functions of \mathbb{P} .
 - $\widehat{ au}_{ ext{diff}}$ is an estimator for population diff-in-means

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- But P is not directly observable! It's a population distribution!
- Once identified, we need to actually **estimate** functions of \mathbb{P} .
 - $\widehat{ au}_{\mathsf{diff}}$ is an estimator for population diff-in-means
 - · Now just estimating conditional expectations, etc

- Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- But P is not directly observable! It's a population distribution!
- Once identified, we need to actually **estimate** functions of \mathbb{P} .
 - $\widehat{ au}_{\mathsf{diff}}$ is an estimator for population diff-in-means
 - · Now just estimating conditional expectations, etc
 - ullet \leadsto after identification, causal inference part done

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- But P is not directly observable! It's a population distribution!
- Once identified, we need to actually **estimate** functions of \mathbb{P} .
 - $\hat{ au}_{\mathsf{diff}}$ is an estimator for population diff-in-means
 - · Now just estimating conditional expectations, etc
 - \rightsquigarrow after identification, causal inference part done
 - · Purely a statistical question from here on out.

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- But P is not directly observable! It's a population distribution!
- Once identified, we need to actually **estimate** functions of \mathbb{P} .
 - $\widehat{ au}_{\mathsf{diff}}$ is an estimator for population diff-in-means
 - · Now just estimating conditional expectations, etc
 - \rightsquigarrow after identification, causal inference part done
 - · Purely a statistical question from here on out.
- · Identification comes first, then comes estimation.

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- But P is not directly observable! It's a population distribution!
- Once identified, we need to actually **estimate** functions of \mathbb{P} .
 - $\widehat{ au}_{\mathsf{diff}}$ is an estimator for population diff-in-means
 - · Now just estimating conditional expectations, etc
 - \rightsquigarrow after identification, causal inference part done
 - · Purely a statistical question from here on out.
- Identification comes first, then comes estimation.
 - Without identification, properties of the estimator are unimportant.

- · Identification tells us what to estimate, not how.
 - If identified, we know our causal parameter is some function of \mathbb{P} .
 - For example, we worked with the **population** diff-in-means:

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0]$$

- But P is not directly observable! It's a population distribution!
- Once identified, we need to actually **estimate** functions of P.
 - $\widehat{ au}_{\mathsf{diff}}$ is an estimator for population diff-in-means
 - · Now just estimating conditional expectations, etc
 - \rightsquigarrow after identification, causal inference part done
 - · Purely a statistical question from here on out.
- Identification comes first, then comes estimation.
 - Without identification, properties of the estimator are unimportant.
 - Keep them separate: estimator shouldn't drive identification.

· Confounding: treatment and potential outcomes are not independent.

- · Confounding: treatment and potential outcomes are not independent.
 - Usually because of "common causes" of Y_i and D_i .

- · Confounding: treatment and potential outcomes are not independent.
 - Usually because of "common causes" of Y_i and D_i .
 - Main worry in observational studies.

- Confounding: treatment and potential outcomes are not independent.
 - Usually because of "common causes" of Y_i and D_i .
 - · Main worry in observational studies.
- · Pervasive in the social sciences:

- · Confounding: treatment and potential outcomes are not independent.
 - Usually because of "common causes" of Y_i and D_i .
 - · Main worry in observational studies.
- · Pervasive in the social sciences:
 - effect of income on voting (confounder: age)

- Confounding: treatment and potential outcomes are not independent.
 - Usually because of "common causes" of Y_i and D_i .
 - · Main worry in observational studies.
- Pervasive in the social sciences:
 - · effect of income on voting (confounder: age)
 - effect of job training program on employment (confounder: motivation)

- · Confounding: treatment and potential outcomes are not independent.
 - Usually because of "common causes" of Y_i and D_i .
 - · Main worry in observational studies.
- Pervasive in the social sciences:
 - · effect of income on voting (confounder: age)
 - effect of job training program on employment (confounder: motivation)
 - effect of political institutions on economic development (confounder: previous economic development)

- · Confounding: treatment and potential outcomes are not independent.
 - Usually because of "common causes" of Y_i and D_i.
 - · Main worry in observational studies.
- Pervasive in the social sciences:
 - · effect of income on voting (confounder: age)
 - effect of job training program on employment (confounder: motivation)
 - effect of political institutions on economic development (confounder: previous economic development)
- Confounding \leadsto unidentified ATE \leadsto biased and inconsistent estimators.

- Confounding: treatment and potential outcomes are not independent.
 - Usually because of "common causes" of Y_i and D_i .
 - · Main worry in observational studies.
- Pervasive in the social sciences:
 - · effect of income on voting (confounder: age)
 - effect of job training program on employment (confounder: motivation)
 - effect of political institutions on economic development (confounder: previous economic development)
- Confounding \leadsto unidentified ATE \leadsto biased and inconsistent estimators.
- · What to do?

2/ Selection on observables

• Many different sets of identification assumptions that we'll cover.

- · Many different sets of identification assumptions that we'll cover.
- Begin with most common observational assumption.

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i$

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid \mathbf{X}_i$
 - · Also called: unconfoundedness

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid \mathbf{X}_i$
 - · Also called: unconfoundedness, ignorability

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i$
 - Also called: unconfoundedness, ignorability, selection on observables

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid \mathbf{X}_i$
 - Also called: unconfoundedness, ignorability, selection on observables, no omitted variables

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid \mathbf{X}_i$
 - Also called: unconfoundedness, ignorability, selection on observables, no omitted variables, exogenous

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid \mathbf{X}_i$
 - Also called: unconfoundedness, ignorability, selection on observables, no omitted variables, exogenous, conditional exchangeable, etc.

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i$
 - Also called: unconfoundedness, ignorability, selection on observables, no omitted variables, exogenous, conditional exchangeable, etc.
 - Conditional on some covariates, D_i is (effectively) randomly assigned.

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i$
 - Also called: unconfoundedness, ignorability, selection on observables, no omitted variables, exogenous, conditional exchangeable, etc.
 - Conditional on some covariates, D_i is (effectively) randomly assigned.
- 2. Positivity or overlap: $0 < \mathbb{P}[D_i = 1 | \mathbf{X}_i] < 1$

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid X_i$
 - Also called: unconfoundedness, ignorability, selection on observables, no omitted variables, exogenous, conditional exchangeable, etc.
 - Conditional on some covariates, D_i is (effectively) randomly assigned.
- 2. Positivity or overlap: $0 < \mathbb{P}[D_i = 1 | \mathbf{X}_i] < 1$
 - Treatment and control are both possible at every value of X_i .

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid X_i$
 - Also called: unconfoundedness, ignorability, selection on observables, no omitted variables, exogenous, conditional exchangeable, etc.
 - Conditional on some covariates, D_i is (effectively) randomly assigned.
- 2. Positivity or overlap: $0 < \mathbb{P}[D_i = 1 | \mathbf{X}_i] < 1$
 - Treatment and control are both possible at every value of X_i.
 - We'll take **X** as given for now and see later how we might choose it.

- · Many different sets of identification assumptions that we'll cover.
- · Begin with most common observational assumption.
- 1. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i$
 - Also called: unconfoundedness, ignorability, selection on observables, no omitted variables, exogenous, conditional exchangeable, etc.
 - Conditional on some covariates, D_i is (effectively) randomly assigned.
- 2. Positivity or overlap: $0 < \mathbb{P}[D_i = 1 | \mathbf{X}_i] < 1$
 - Treatment and control are both possible at every value of X_i.
 - We'll take X as given for now and see later how we might choose it.
 - These are assumptions that can be wrong!!

$$\tau = \mathbb{E}[Y_i(1) - Y_i(0)]$$

$$\begin{split} \tau &= \mathbb{E}[Y_i(1) - Y_i(0)] \\ &= \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) - Y_i(0) \mid \mathbf{X}_i] \right\} \end{split}$$

$$\begin{split} \boldsymbol{\tau} &= \mathbb{E}[Y_i(1) - Y_i(0)] \\ &= \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) - Y_i(0) \mid \mathbf{X}_i] \right\} \\ &= \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid \mathbf{X}_i] \right\} \end{split}$$

$$\begin{split} & \boldsymbol{\tau} = \mathbb{E}[Y_i(1) - Y_i(0)] \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) - Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid D_i = 0, \mathbf{X}_i] \right\} \end{split}$$

$$\begin{split} & \tau = \mathbb{E}[Y_i(1) - Y_i(0)] \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) - Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid D_i = 0, \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i \mid D_i = 0, \mathbf{X}_i] \right\} \end{split}$$

Positivity and no unmeasured confounders will identify the PATE:

$$\begin{split} & \tau = \mathbb{E}[Y_i(1) - Y_i(0)] \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) - Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid D_i = 0, \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i \mid D_i = 0, \mathbf{X}_i] \right\} \end{split}$$

· Useful to write the treated and control CEFs:

$$\mu_1(\mathbf{x}) = \mathbb{E}[Y_i(1) \mid \mathbf{X}_i = \mathbf{x}], \qquad \mu_0(\mathbf{x}) = \mathbb{E}[Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

Positivity and no unmeasured confounders will identify the PATE:

$$\begin{split} & \tau = \mathbb{E}[Y_i(1) - Y_i(0)] \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) - Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid D_i = 0, \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i \mid D_i = 0, \mathbf{X}_i] \right\} \end{split}$$

· Useful to write the treated and control CEFs:

$$\mu_1(\mathbf{x}) = \mathbb{E}[Y_i(1) \mid \mathbf{X}_i = \mathbf{x}], \qquad \mu_0(\mathbf{x}) = \mathbb{E}[Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

· How the mean of the potential outcomes vary with the covariates.

• Positivity and no unmeasured confounders will identify the PATE:

$$\begin{split} & \boldsymbol{\tau} = \mathbb{E}[Y_i(1) - Y_i(0)] \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) - Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i(1) \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i(0) \mid D_i = 0, \mathbf{X}_i] \right\} \\ & = \mathbb{E}_{\mathbf{X}} \left\{ E[Y_i \mid D_i = 1, \mathbf{X}_i] - \mathbb{E}[Y_i \mid D_i = 0, \mathbf{X}_i] \right\} \end{split}$$

· Useful to write the treated and control CEFs:

$$\mu_1(\mathbf{x}) = \mathbb{E}[Y_i(1) \mid \mathbf{X}_i = \mathbf{x}], \qquad \mu_0(\mathbf{x}) = \mathbb{E}[Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

- How the mean of the potential outcomes vary with the covariates.
- Key part of the above proof:

$$\underbrace{\mu_1(\mathbf{x})}_{\text{counterfactual}} = \underbrace{\mathbb{E}[Y_i \mid D_i = 1, \mathbf{X}_i = \mathbf{x}]}_{\text{observational}}, \qquad \mu_0(\mathbf{x}) = \mathbb{E}[Y_i \mid D_i = 0, \mathbf{X}_i = \mathbf{x}]$$

· Identification done, estimation has just begun!

- · Identification done, estimation has just begun!
- Regression estimators $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x}).$

- · Identification done, estimation has just begun!
- Regression estimators $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$.
 - Might be linear or nonlinear models

- · Identification done, estimation has just begun!
- Regression estimators $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$.
 - Might be linear or nonlinear models
 - $\boldsymbol{\cdot}$ Safest practice: estimate separate regressions in each treatment group.

- · Identification done, estimation has just begun!
- Regression estimators $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$.
 - · Might be linear or nonlinear models
 - Safest practice: estimate separate regressions in each treatment group.
- Regression estimator of the ATE:

$$\widehat{\tau}_{\mathrm{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- · Identification done, estimation has just begun!
- Regression estimators $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x}).$
 - · Might be linear or nonlinear models
 - · Safest practice: estimate separate regressions in each treatment group.
- Regression estimator of the ATE:

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

· Procedure:

- · Identification done, estimation has just begun!
- Regression estimators $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x}).$
 - · Might be linear or nonlinear models
 - · Safest practice: estimate separate regressions in each treatment group.
- Regression estimator of the ATE:

$$\widehat{\tau}_{\mathrm{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- · Procedure:
 - Obtain predicted values for all units when $D_i = 1$.

- · Identification done, estimation has just begun!
- Regression estimators $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x}).$
 - · Might be linear or nonlinear models
 - · Safest practice: estimate separate regressions in each treatment group.
- Regression estimator of the ATE:

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- · Procedure:
 - Obtain predicted values for all units when $D_i = 1$.
 - Obtain predicted values for all units when $D_i = 0$.

- · Identification done, estimation has just begun!
- Regression estimators $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x}).$
 - · Might be linear or nonlinear models
 - · Safest practice: estimate separate regressions in each treatment group.
- Regression estimator of the ATE:

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- · Procedure:
 - Obtain predicted values for all units when $D_i = 1$.
 - Obtain predicted values for all units when $D_i = 0$.
 - Take the average difference between these predicted values.

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

• Under linear models, $\widehat{ au}_{\text{reg}}$ is sometimes equivalent to a coefficient.

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- Under linear models, $\widehat{ au}_{\text{reg}}$ is sometimes equivalent to a coefficient.
- · Uninteracted OLS:

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- Under linear models, $\widehat{ au}_{\text{reg}}$ is sometimes equivalent to a coefficient.
- Uninteracted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from the same OLS model Y ~ D + X.

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- Under linear models, $\widehat{ au}_{\text{reg}}$ is sometimes equivalent to a coefficient.
- Uninteracted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from the same OLS model Y ~ D + X.
 - $\widehat{ au}_{\text{reg}} \equiv \text{estimated coefficient on } D_i$

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- Under linear models, $\widehat{ au}_{\text{reg}}$ is sometimes equivalent to a coefficient.
- Uninteracted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from the same OLS model Y ~ D + X.
 - $\widehat{\tau}_{reg} \equiv$ estimated coefficient on D_i
- · Fully interacted OLS:

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- Under linear models, $\widehat{ au}_{\text{reg}}$ is sometimes equivalent to a coefficient.
- · Uninteracted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from the same OLS model Y ~ D + X.
 - $\hat{\tau}_{reg} \equiv$ estimated coefficient on D_i
- · Fully interacted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from fully interacted OLS with centered covariates.

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- Under linear models, $\widehat{ au}_{\text{reg}}$ is sometimes equivalent to a coefficient.
- Uninteracted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from the same OLS model Y ~ D + X.
 - $\hat{\tau}_{reg} \equiv$ estimated coefficient on D_i
- · Fully interacted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from fully interacted OLS with centered covariates.
 - $\widehat{ au}_{\text{reg}} \equiv \text{estimated coefficient on } D_i$

$$\widehat{\tau}_{\mathrm{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- Under linear models, $\widehat{ au}_{\text{reg}}$ is sometimes equivalent to a coefficient.
- Uninteracted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from the same OLS model Y ~ D + X.
 - $\hat{\tau}_{reg} \equiv$ estimated coefficient on D_i
- · Fully interacted OLS:
 - $\hat{\mu}_1(\mathbf{x})$ and $\hat{\mu}_0(\mathbf{x})$ are from fully interacted OLS with centered covariates.
 - $\hat{\tau}_{reg} \equiv$ estimated coefficient on D_i
- These make two very different assumptions about the CEFs!

Variance estimation

- How do we get estimates of the variance of $\widehat{\tau}_{\text{reg}}?$

Variance estimation

- How do we get estimates of the variance of $\widehat{\tau}_{\rm reg} ?$
- If an OLS coefficient → use EHW variance estimator.

- How do we get estimates of the variance of $\widehat{\tau}_{\text{reg}}$?
- If an OLS coefficient → use EHW variance estimator.
- Analytic expressions can be derived, but complicated!

- How do we get estimates of the variance of $\widehat{\tau}_{\text{reg}}$?
- Analytic expressions can be derived, but complicated!
- Computational alternative: nonparametric bootstrap

- How do we get estimates of the variance of $\widehat{\tau}_{\text{reg}}$?
- If an OLS coefficient → use EHW variance estimator.
- · Analytic expressions can be derived, but complicated!
- Computational alternative: nonparametric bootstrap
 - \bullet Randomly resample n rows of the data with replacement

- How do we get estimates of the variance of $\widehat{\tau}_{\text{reg}}$?
- If an OLS coefficient → use EHW variance estimator.
- · Analytic expressions can be derived, but complicated!
- · Computational alternative: nonparametric bootstrap
 - Randomly resample *n* rows of the data with replacement
 - Refit the regressions on the bootstrapped data.

- How do we get estimates of the variance of $\widehat{\tau}_{\text{reg}}$?
- If an OLS coefficient → use EHW variance estimator.
- · Analytic expressions can be derived, but complicated!
- Computational alternative: nonparametric bootstrap
 - Randomly resample *n* rows of the data with replacement
 - · Refit the regressions on the bootstrapped data.
 - Calculate $\widehat{ au}_{\mathrm{reg}}$ in each bootstrap

- How do we get estimates of the variance of $\widehat{\tau}_{\text{reg}}$?
- If an OLS coefficient → use EHW variance estimator.
- · Analytic expressions can be derived, but complicated!
- Computational alternative: nonparametric bootstrap
 - Randomly resample *n* rows of the data with replacement
 - · Refit the regressions on the bootstrapped data.
 - Calculate $\widehat{ au}_{\text{reg}}$ in each bootstrap
 - Repeat several times and use empirical variance of the bootstraps

Imputation estimator visualization

Imputation estimator visualization

Imputation estimator visualization

Nonlinear relationships

• Same idea but with nonlinear relationship between Y_i and X_i :

Nonlinear relationships

• Same idea but with nonlinear relationship between Y_i and X_i :

Nonlinear relationships

• Same idea but with nonlinear relationship between Y_i and X_i :

Using semiparametric regression

· Here, CEFs are nonlinear, but we don't know their form.

Using semiparametric regression

- Here, CEFs are nonlinear, but we don't know their form.
- We can use GAMs from the mgcv package to for flexible estimate:

Using semiparametric regression

- Here, CEFs are nonlinear, but we don't know their form.
- We can use GAMs from the mgcv package to for flexible estimate:

```
library(mgcv)
mod0 <- gam(y~s(x), subset = d==0)
summary(mod0)</pre>
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## v \sim s(x)
##
## Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.154 0.019 -8.1 5.1e-08 ***
## ---
## Signif. codes:
  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
        edf Ref.df F p-value
##
## s(x) 5.17 6.29 36.9 <2e-16 ***
## ---
```

Using GAMs

Using GAMs

Using GAMs

3/ DAGS

· How do we know if no unmeasured confounders holds?

- · How do we know if no unmeasured confounders holds?
- Put differently:

- · How do we know if no unmeasured confounders holds?
- Put differently:
 - · What covariates do we need to condition on?

- How do we know if no unmeasured confounders holds?
- · Put differently:
 - · What covariates do we need to condition on?
 - What covariates do we need to include in our regressions?

- · How do we know if no unmeasured confounders holds?
- · Put differently:
 - What covariates do we need to condition on?
 - What covariates do we need to include in our regressions?
- One way, from the assumption itself: $\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$

- How do we know if no unmeasured confounders holds?
- · Put differently:
 - What covariates do we need to condition on?
 - · What covariates do we need to include in our regressions?
- One way, from the assumption itself: $\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$
 - Include covariates such that, conditional on them, the treatment assignment does not depend on the potential outcomes.

- · How do we know if no unmeasured confounders holds?
- · Put differently:
 - What covariates do we need to condition on?
 - · What covariates do we need to include in our regressions?
- One way, from the assumption itself: $\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$
 - Include covariates such that, conditional on them, the treatment assignment does not depend on the potential outcomes.
 - Somewhat circular

- How do we know if no unmeasured confounders holds?
- · Put differently:
 - What covariates do we need to condition on?
 - · What covariates do we need to include in our regressions?
- One way, from the assumption itself: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i$
 - Include covariates such that, conditional on them, the treatment assignment does not depend on the potential outcomes.
 - · Somewhat circular
- Another way: use DAGs and look at back-door paths.

• Directed acyclic graphs (DAGs) describe the causal structure of variables

• Nodes/vertices: observed (solid) or unobserved (dashed) variables.

- Nodes/vertices: observed (solid) or unobserved (dashed) variables.
- Edges: arrows that encodes the presence or absence of a causal effect.

- Nodes/vertices: observed (solid) or unobserved (dashed) variables.
- Edges: arrows that encodes the presence or absence of a causal effect.
 - Arrow present = a direct causal effect: $Y_i(d) \neq Y_i(d')$ for some i and d.

- Nodes/vertices: observed (solid) or unobserved (dashed) variables.
- Edges: arrows that encodes the presence or absence of a causal effect.
 - Arrow present = a direct causal effect: $Y_i(d) \neq Y_i(d')$ for some i and d.
 - Lack of an arrow = no causal effect: $Y_i(d) = Y_i(d')$ for all i and d.

- Nodes/vertices: observed (solid) or unobserved (dashed) variables.
- Edges: arrows that encodes the presence or absence of a causal effect.
 - Arrow present = a direct causal effect: $Y_i(d) \neq Y_i(d')$ for some i and d.
 - Lack of an arrow = no causal effect: $Y_i(d) = Y_i(d')$ for all i and d.
 - Missing variables = no other common causes of any variables.

- Nodes/vertices: observed (solid) or unobserved (dashed) variables.
- Edges: arrows that encodes the presence or absence of a causal effect.
 - Arrow present = a direct causal effect: $Y_i(d) \neq Y_i(d')$ for some i and d.
 - Lack of an arrow = no causal effect: $Y_i(d) = Y_i(d')$ for all i and d.
 - Missing variables = no other common causes of any variables.
- Directed: each arrow implies a direction

- Nodes/vertices: observed (solid) or unobserved (dashed) variables.
- Edges: arrows that encodes the presence or absence of a causal effect.
 - Arrow present = a direct causal effect: $Y_i(d) \neq Y_i(d')$ for some i and d.
 - Lack of an arrow = no causal effect: $Y_i(d) = Y_i(d')$ for all i and d.
 - Missing variables = no other common causes of any variables.
- **Directed**: each arrow implies a direction
- Acyclic: no cycles: a variable cannot cause itself

DAG terminology

• Path: a sequence of edges that connect two nodes.

- Path: a sequence of edges that connect two nodes.
 - A directed or causal path is all in the same causal direction.

- Path: a sequence of edges that connect two nodes.
 - A directed or causal path is all in the same causal direction.
 - Non-causal path example: $D \leftarrow X \rightarrow Y$

- Path: a sequence of edges that connect two nodes.
 - A directed or causal path is all in the same causal direction.
 - Non-causal path example: $D \leftarrow X \rightarrow Y$
- **Descendants**: nodes on a directed path away from some other node.

- · Path: a sequence of edges that connect two nodes.
 - A directed or causal path is all in the same causal direction.
 - Non-causal path example: $D \leftarrow X \rightarrow Y$
- **Descendants**: nodes on a directed path away from some other node.
 - *M* is a descendant of *D* and *X*.

- Path: a sequence of edges that connect two nodes.
 - A directed or causal path is all in the same causal direction.
 - Non-causal path example: $D \leftarrow X \rightarrow Y$
- **Descendants**: nodes on a directed path away from some other node.
 - *M* is a descendant of *D* and *X*.
 - Ancestors is the reverse: X is an ancestor of M

- Path: a sequence of edges that connect two nodes.
 - A directed or causal path is all in the same causal direction.
 - Non-causal path example: $D \leftarrow X \rightarrow Y$
- **Descendants**: nodes on a directed path away from some other node.
 - M is a descendant of D and X.
 - Ancestors is the reverse: X is an ancestor of M
- · Parents immediate causes of a node

- Path: a sequence of edges that connect two nodes.
 - A directed or causal path is all in the same causal direction.
 - Non-causal path example: $D \leftarrow X \rightarrow Y$
- **Descendants**: nodes on a directed path away from some other node.
 - M is a descendant of D and X.
 - Ancestors is the reverse: X is an ancestor of M
- · Parents immediate causes of a node
 - D is the parent of Y and M.

- Path: a sequence of edges that connect two nodes.
 - A **directed** or **causal** path is all in the same causal direction.
 - Non-causal path example: $D \leftarrow X \rightarrow Y$
- **Descendants**: nodes on a directed path away from some other node.
 - M is a descendant of D and X.
 - Ancestors is the reverse: X is an ancestor of M
- · Parents immediate causes of a node
 - *D* is the parent of *Y* and *M*.
 - **Children** are the reverse: *M* is a child of *D*

$$Y = f_y(D, U, \varepsilon_y)$$
$$D = f_d(Z, X, \varepsilon_d)$$
$$X = f_x(U, \varepsilon_x)$$
$$Z = f_z(X, \varepsilon_z)$$

• Causal DAGs equivalent to **nonparametric structural equation models**

$$Y = f_y(D, U, \varepsilon_y)$$
$$D = f_d(Z, X, \varepsilon_d)$$
$$X = f_x(U, \varepsilon_x)$$
$$Z = f_z(X, \varepsilon_z)$$

- Causal DAGs equivalent to **nonparametric structural equation models**
- NPSEM have a **causal interpreation**, but completely flexible.

$$Y = f_y(D, U, \varepsilon_y)$$
$$D = f_d(Z, X, \varepsilon_d)$$
$$X = f_x(U, \varepsilon_x)$$
$$Z = f_z(X, \varepsilon_z)$$

- · Causal DAGs equivalent to nonparametric structural equation models
- NPSEM have a **causal interpreation**, but completely flexible.
 - · No specification of a functional form or interactions, etc.

$$Y = f_y(D, U, \varepsilon_y)$$
$$D = f_d(Z, X, \varepsilon_d)$$
$$X = f_x(U, \varepsilon_x)$$
$$Z = f_z(X, \varepsilon_z)$$

- · Causal DAGs equivalent to nonparametric structural equation models
- NPSEM have a **causal interpreation**, but completely flexible.
 - · No specification of a functional form or interactions, etc.
 - More standard linear SEM is a special case.

$$Y = f_y(D, U, \varepsilon_y)$$

$$D = f_d(Z, X, \varepsilon_d)$$

$$X = f_x(U, \varepsilon_x)$$

$$Z = f_x(X, \varepsilon_x)$$

- Causal DAGs equivalent to nonparametric structural equation models
- NPSEM have a causal interpreation, but completely flexible.
 - No specification of a functional form or interactions, etc.
 - More standard linear SEM is a special case.
- Causal DAGs imply the following factorization (some conditions apply):

$$\mathbb{P}(X_1,X_2,\dots,X_J) = \prod_{j=1}^J \mathbb{P}(X_j \mid \mathrm{pa}(X_j)) \quad \text{where} \quad \mathrm{pa}(X_j) = \mathrm{parents} \; \mathrm{of} \; X_j$$

· Can we determine conditional independence from our causal DAG?

- · Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp\!\!\!\perp B \mid C$ where each is a set of nodes:

- · Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp \!\!\! \perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths from any vertex in A to any vertex in B.

- · Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp \!\!\! \perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths from any vertex in A to any vertex in B.
 - 2. Check is each path is **blocked**.

- Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp \!\!\! \perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths from any vertex in A to any vertex in B.
 - 2. Check is each path is **blocked**.
 - 3. If all paths are blocked, then A is **d-separated** from B by C

- Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp \!\!\! \perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths from any vertex in A to any vertex in B.
 - 2. Check is each path is **blocked**.
 - 3. If all paths are blocked, then A is **d-separated** from B by C
- A path is **blocked** conditional on *C* if:

- Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp \!\!\! \perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths from any vertex in A to any vertex in B.
 - 2. Check is each path is blocked.
 - 3. If all paths are blocked, then A is **d-separated** from B by C
- A path is **blocked** conditional on C if:
 - 1. C includes a non-collider on that path **OR**

- Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp \!\!\! \perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths from any vertex in A to any vertex in B.
 - 2. Check is each path is blocked.
 - 3. If all paths are blocked, then A is **d-separated** from B by C
- A path is **blocked** conditional on C if:
 - 1. C includes a non-collider on that path **OR**
 - Path includes a collider not in C and no descendant of any collider is in C.

- · Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp \!\!\! \perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths from any vertex in A to any vertex in B.
 - 2. Check is each path is blocked.
 - 3. If all paths are blocked, then A is **d-separated** from B by C
- A path is **blocked** conditional on C if:
 - 1. C includes a non-collider on that path **OR**
 - Path includes a collider not in C and no descendant of any collider is in C.
- If A and B are d-separated, then we have $A \perp \!\!\! \perp B \mid C$.

- Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp \!\!\! \perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths from any vertex in A to any vertex in B.
 - 2. Check is each path is blocked.
 - 3. If all paths are blocked, then A is **d-separated** from B by C
- A path is **blocked** conditional on C if:
 - 1. C includes a non-collider on that path **OR**
 - Path includes a collider not in C and no descendant of any collider is in C.
- If A and B are d-separated, then we have $A \perp \!\!\! \perp B \mid C$.
 - If not, then d-connected and A and B dependence conditional on C is compatible with the DAG.

• Confounder: common cause of two variables.

- Confounder: common cause of two variables.
 - D and Y unconditionally dependent, conditionally independent.

- · Confounder: common cause of two variables.
 - D and Y unconditionally dependent, conditionally independent.
- · Collider: common descendant of two variables.

- · Confounder: common cause of two variables.
 - D and Y unconditionally dependent, conditionally independent.
- · Collider: common descendant of two variables.
 - D and Y unconditionally independent, conditionally dependent.

- · Confounder: common cause of two variables.
 - D and Y unconditionally dependent, conditionally independent.
- · Collider: common descendant of two variables.
 - D and Y unconditionally independent, conditionally dependent.
 - X "blocks" the relationship between them when not conditioned on.

- Confounder: common cause of two variables.
 - D and Y unconditionally dependent, conditionally independent.
- · Collider: common descendant of two variables.
 - D and Y unconditionally independent, conditionally dependent.
 - \cdot X "blocks" the relationship between them when not conditioned on.
- Mediator: variable on the path from one variable to another.

- Confounder: common cause of two variables.
 - D and Y unconditionally dependent, conditionally independent.
- · Collider: common descendant of two variables.
 - D and Y unconditionally independent, conditionally dependent.
 - \cdot X "blocks" the relationship between them when not conditioned on.
- Mediator: variable on the path from one variable to another.
 - D and Y unconditionally dependent.

• **Backdoor path**: is a non-causal path from D to Y.

- **Backdoor path**: is a non-causal path from *D* to *Y*.
 - Would remain if we removed any arrows pointing out of *D*.

- **Backdoor path**: is a non-causal path from *D* to *Y*.
 - Would remain if we removed any arrows pointing out of *D*.
- Backdoor paths between D and Y \rightsquigarrow common causes of D and Y:

- **Backdoor path**: is a non-causal path from *D* to *Y*.
 - Would remain if we removed any arrows pointing out of *D*.
- Backdoor paths between D and $Y \rightsquigarrow$ common causes of D and Y:

• Here: backdoor path $D \leftarrow X \rightarrow Y$

Other types of confounding

• *D* is enrolling in a job training program.

- *D* is enrolling in a job training program.
- Y is getting a job.

- *D* is enrolling in a job training program.
- Y is getting a job.
- $oldsymbol{\cdot}$ U is being motivated

- *D* is enrolling in a job training program.
- Y is getting a job.
- \cdot U is being motivated
- \cdot X is number of job applications sent out.

- *D* is enrolling in a job training program.
- Y is getting a job.
- U is being motivated
- X is number of job applications sent out.
- Big assumption here: no arrow from U to Y.

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$$

• Can we use a DAG to evaluate no unmeasured confounders?

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$$

- Can we use a DAG to evaluate no unmeasured confounders?
- Holds if the **backdoor criterion** on a causal DAG is met:

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$$

- Can we use a DAG to evaluate no unmeasured confounders?
- Holds if the **backdoor criterion** on a causal DAG is met:
 - 1. No vertex in X is a descend of D (no post-treatment bias), and

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$$

- Can we use a DAG to evaluate no unmeasured confounders?
- Holds if the **backdoor criterion** on a causal DAG is met:
 - 1. No vertex in **X** is a descend of *D* (**no post-treatment bias**), and
 - 2. \mathbf{X} blocks all backdoor paths from D to Y.

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$$

- Can we use a DAG to evaluate no unmeasured confounders?
- Holds if the **backdoor criterion** on a causal DAG is met:
 - 1. No vertex in **X** is a descend of *D* (**no post-treatment bias**), and
 - 2. **X** blocks all backdoor paths from *D* to *Y*.
- The backdoor criterion is fairly powerful. Tells us:

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$$

- Can we use a DAG to evaluate no unmeasured confounders?
- Holds if the backdoor criterion on a causal DAG is met:
 - 1. No vertex in **X** is a descend of *D* (**no post-treatment bias**), and
 - 2. \mathbf{X} blocks all backdoor paths from D to Y.
- The backdoor criterion is fairly powerful. Tells us:
 - · if there confounding given this DAG,

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$$

- Can we use a DAG to evaluate no unmeasured confounders?
- Holds if the backdoor criterion on a causal DAG is met:
 - 1. No vertex in **X** is a descend of *D* (**no post-treatment bias**), and
 - 2. **X** blocks all backdoor paths from *D* to *Y*.
- The backdoor criterion is fairly powerful. Tells us:
 - · if there confounding given this DAG,
 - · if it is possible to removing the confounding, and

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i$$

- Can we use a DAG to evaluate no unmeasured confounders?
- Holds if the backdoor criterion on a causal DAG is met:
 - 1. No vertex in **X** is a descend of *D* (**no post-treatment bias**), and
 - 2. \mathbf{X} blocks all backdoor paths from D to Y.
- The backdoor criterion is fairly powerful. Tells us:
 - · if there confounding given this DAG,
 - · if it is possible to removing the confounding, and
 - · what variables to condition on to eliminate the confounding.

- *D* is enrolling in a job training program.
- Y is getting a job.
- U is being motivated
- X is number of job applications sent out.
- Big assumption here: no arrow from *U* to *Y*.
- Conditioning on X blocks all backdoor paths.

• No causal or statistical relationship between D and Y

- No causal or statistical relationship between D and Y
- Conditioning on the posttreatment variables opens non-causal paths

- No causal or statistical relationship between D and Y
- Conditioning on the posttreatment variables opens non-causal paths
 - \rightsquigarrow statistical relationship between D and Y conditional on X

- No causal or statistical relationship between D and Y
- · Conditioning on the posttreatment variables opens non-causal paths
 - \rightsquigarrow statistical relationship between D and Y conditional on X
 - But still no causal relationship \leadsto selection bias.

• Not all backdoor paths induce confounding.

- · Not all backdoor paths induce confounding.
- No conditioning: backdoor path blocked by the collider X_i .

- · Not all backdoor paths induce confounding.
- No conditioning: backdoor path blocked by the collider X_i .
- If we control for $X_i \rightsquigarrow$ opens the path and induces confounding.

- Not all backdoor paths induce confounding.
- No conditioning: backdoor path blocked by the collider X_i .
- If we control for $X_i \rightsquigarrow$ opens the path and induces confounding.
 - · Sometimes called M-bias or collider bias.

- · Not all backdoor paths induce confounding.
- No conditioning: backdoor path blocked by the collider X_i .
- If we control for $X_i \rightsquigarrow$ opens the path and induces confounding.
 - · Sometimes called M-bias or collider bias.
- Controversial because of differing views on what to control for:

- · Not all backdoor paths induce confounding.
- No conditioning: backdoor path blocked by the collider X_i .
- If we control for $X_i \rightsquigarrow$ opens the path and induces confounding.
 - · Sometimes called M-bias or collider bias.
- · Controversial because of differing views on what to control for:
 - Rubin thinks that M-bias is a "mathematical curiosity" and we should control for all pretreatment variables

- · Not all backdoor paths induce confounding.
- No conditioning: backdoor path blocked by the collider X_i .
- If we control for $X_i \leadsto$ opens the path and induces confounding.
 - · Sometimes called M-bias or collider bias.
- Controversial because of differing views on what to control for:
 - Rubin thinks that M-bias is a "mathematical curiosity" and we should control for all pretreatment variables
 - · Pearl and others think M-bias is a real threat.