Bayesian Stacking in Multilevel Models

Mingya Huang David Kaplan

University of Wisconsin-Madison

IMPS 2023

Model Uncertainty

George Box:

"All models are wrong, some are useful."

- Structural uncertainty: functional form f and the data D.
- Parametric uncertainty: parameter of interest θ .
- Blackbox methods.

Bayesian Model Averaging (BMA)

For multiple candidate models $\mathcal{M}=(M_1,\ldots,M_K)$, the posterior probability of the interested quantity given observed response y can be derived as: \mathbb{Q} : What is Δ ?

$$\int_{P(\Delta \mid y)} = \sum_{k=1}^{K} p(\Delta \mid M_k, y) p(M_k \mid y)$$

$$p(M_k \mid y) = \frac{p(y \mid M_k) p(M_k)}{\sum_{k=1}^{K} p(y \mid M_k) p(M_k)} \quad \text{(Bayes Rule)}$$

$$Q: \text{ should this be } y \text{?}$$

$$p(y \mid M_k) = \int p(y \mid \theta_k, M_k) p(\theta_k \mid M_k) d\theta_k.$$

Drawbacks: BMA assumes M-closed framework. Samuer's suggestion

Huang, M (UW-Madison)

Bayesian Stacking

IMPS 2023, Maryland

2/16

\mathcal{M} -Framework

• \mathcal{M} -closed: the true data generating model is within the candidate model list. That is, the true model M_t is one of the $M_k \in \mathcal{M}$.

• \mathcal{M} -complete: the true model exists but is not within the model list.

• \mathcal{M} -open: not only the true model M_t is not in \mathcal{M} but also the explicit form $p(\tilde{y} \mid y) = p(\tilde{y} \mid M_t, y)$ cannot be specified.

Huang, M (UW-Madison)

Bayesian Stacking

IMPS 2023, Maryland 3/16

Bayesian Stacking (BS)
simple explanation like this I
simple explanation like this I
weighted any of posteriors from each model)
weight

explain
$$p(\tilde{y} \mid \tilde{x}, w, \text{ model averaging}) = \sum_{k=1}^{K} \widehat{w_k} p(\tilde{y} \mid \tilde{x}, M_k), \quad w \in S_K$$
 explain equation like this

SUGGESTION:

4/16

BS with leave-one-out crossed validation (LOO-CV):

$$p_{k,-i} = \int_{\Theta_k} \underbrace{p(y_i \mid \theta_k, x_i, M_k)} p(\theta_k \mid M_k, \{(x_{i'}, y_{i'}) : i' \neq i\}) d\theta_k}_{\text{likelihood for } y_i \text{ give.}} \underbrace{posterior prob. for } \theta_k \text{ given } (X_i, Y_i) \text{ } i \neq i'$$

$$\hat{w}^{\text{stacking}} = \arg\max_{w} \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} w_k p_{k,-i} \right), \text{ such that } w \in \mathcal{S}_K$$

Drawbacks: Bayesian Stacking use input independent weights.

Bayesian Hierarchical Stacking (BHS)

• Bayesian Stacking: (same stacking weight for all observations)
we obr for WR

$$\hat{\mathbf{w}}^{\mathsf{stacking}} = \arg\max_{\mathbf{w}} \sum_{i=1}^n \log \left(\sum_{k=1}^K \overset{\checkmark}{w_k} p_{k,-i} \right)$$
, such that $\mathbf{w} \in \mathcal{S}_K$

• Bayesian Hierarchical Stacking: (observation specific weight)

$$\log p(\mathbf{w}(\cdot) \mid \mathcal{D}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} (w_{k}(x_{i})) p_{k,-i} \right) + \log p^{\mathsf{prior}}(\mathbf{w}) + \mathsf{constant},$$
where the formula of the prior of the prio

Huang, M (UW-Madison)

Bayesian Stacking

IMPS 2023, Maryland 5/16

Make sure stuff in this

slide is corrected. 1. Baseline Step: For a hold out dataset D' to $D = \{y_i, x_i\}_{i=1}^n$,

$$p\left(\tilde{y}_{i}|x_{i},M_{k},\mathcal{D}'\right)=\int p\left(\tilde{y}_{i}|x_{i},M_{k},\theta_{k}\right)p\left(\theta_{k}|M_{k},\mathcal{D}'\right)d\theta_{k} \tag{1}$$

2. Meta Step: Plug in x_{is} and y_{is} , calculate the probability using LOO: By integrating out the holdout dataset \mathcal{D}' , the likelihood can be obtained:

$$p\left(\tilde{y}_{i}|\mathsf{w},\mathsf{x}_{i}\right) = \mathbb{E}_{\mathcal{D}'}\left[p\left(\tilde{y}_{i}|\mathsf{w},\mathsf{x}_{i},\mathcal{D}'\right)\right] = \sum_{k=1}^{K} w_{k}\left(\mathsf{x}_{i}\right) \mathbb{E}_{\mathcal{D}'}\left(p\left(\tilde{y}_{i}|\mathsf{x}_{i},\mathsf{M}_{k},\mathcal{D}'\right)\right) \approx \sum_{k=1}^{K} w_{k}\left(\mathsf{x}_{i}\right) p_{k,-i} \tag{2}$$

$$\log(p(\mathcal{D}|\mathbf{w})) \approx \sum_{i=1}^{n} \log\left(\sum_{k=1}^{K} w_k(x_i) p_{k,-i}\right)$$
(3)

Huang, M (UW-Madison) Bayesian Stacking IMPS 2023, Maryland 6/16

Bayesian Hierarchical Stacking (BHS)

• Replace w with w(.):

$$\log p(\mathbf{w}(\cdot) \mid \mathcal{D}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} w_k(\mathbf{x}_i) \, p_{k,-i} \right) + \log p^{\mathsf{prior}}(\mathbf{w}) + \mathsf{constant}, \quad \mathbf{w}(\cdot) \in \mathcal{S}_K$$
 (4)

Softmax transformation for x in J categories:

$$w_{jk} = \frac{\exp\left(\alpha_{jk}\right)}{\sum_{k=1}^{K} \exp\left(\alpha_{jk}\right)}, 1 \le k \le K - 1, 1 \le j \le J; \quad \alpha_{jK} = 0, 1 \le j \le J,$$

$$(5)$$

• Partial pooling with priors and hyper-priors:

$$\alpha_{jk} \mid \mu_k, \sigma_k \sim \mathcal{N}(\mu_k, \sigma_k), k = 1, \dots, K - 1, j = 1, \dots, J$$
 (6)

$$\mu_k \sim \mathcal{N}\left(\mu_0, \tau_\mu\right), \quad \sigma_k \sim \mathcal{N}^+\left(0, \tau_\sigma\right)$$
 (7)

Huang, M (UW–Madison)

Bayesian Stacking

IMPS 2023, Maryland
7/16

- 1. Based on the parameters and distribution of the PISA 2018 data (OECD), data are generated using a full model with two random effects.
- 2. Four reduced models are fitted:

Model 2:

$$y \mid \beta_{s}, \sigma \sim N(\beta_{00} + \beta_{3} joyread + \beta_{4} pisadiff + \beta_{50} staffshort, \sigma^{2})$$

$$\beta_{00} \mid \gamma_{00}, \tau_{00} \sim N(\gamma_{00} + \gamma_{01} * staffshort, \tau^{2}_{00}), \quad \beta_{3-4} \mid \gamma_{30-40}, \tau_{30-40} \sim N(\gamma_{30-40}, \tau^{2}_{00-40}),$$

$$\beta_{50} \mid \gamma_{5s}, \tau_{50} \sim N(\gamma_{50} + \gamma_{51} * staffshort, \tau^{2}_{50}), \quad \sigma \sim Cauchy(0, 2.5)$$

$$\gamma_{00} \sim N(400, 1)$$

$$\gamma_{ps} \sim N(0, 1)$$

$$\tau_{ps} \sim Cauchy(0, 2.5)$$

Model 3:

y |
$$\beta_s$$
, $\sigma \sim N(\beta_{00} + \beta_7 metasum + \beta_8 gfofail + \beta_9 mastgoal + beta_{10} swbp + \beta_{11} workmast + \beta_{12} adaptivity + \beta_{13} compete + \beta_{14} Public, \sigma^2),$

$$\beta_{00} \mid \gamma_{00}, \tau_{00} \sim \textit{N}(\gamma_{00} + \gamma_{01} * \textit{Public}, \tau_{00}^{2}), \quad \beta_{7-11} \mid \gamma_{70-110}, \tau_{70-110} \sim \textit{N}(\gamma_{70-110}, \tau_{70-110}^{2}), \\ \beta_{14} \mid \gamma_{14s}, \tau_{140} \sim \textit{N}(\gamma_{140} + \gamma_{141} \textit{Public}, \tau_{140}^{2}), \quad \sigma \sim \textit{Cauchy}(0, 2.5)$$

$$\gamma_{00} \sim \textit{N}(400, 1)$$

$$\gamma_{ps} \sim \textit{N}(0, 1)$$

$$\tau_{ps} \sim \textit{Cauchy}(0, 2.5)$$

Huang, M (UW–Madison)

Bayesian Stacking

IMPS 2023, Maryland

10 / 16

Model 4:

$$y \mid \beta_{s}, \sigma \sim N(\beta_{00} + \beta_{15} perfeed + \beta_{16} belong + \beta_{17} public, \sigma^{2})$$

$$\beta_{00} \mid \gamma_{00}, \tau_{00} \sim N(\gamma_{00} + \gamma_{01} * \frac{Public}{Public}, \tau_{00}^{2}), \quad \beta_{15-16} \mid \gamma_{150-160}, \tau_{150-160} \sim N(\gamma_{150-160}, \tau_{150-160}^{2}),$$

$$\beta_{17} \mid \beta_{17s}, \tau_{170} \sim N(\gamma_{170} + \gamma_{171} \frac{Public}{Public}, \tau_{170}^{2}), \quad \sigma \sim Cauchy(0, 2.5)$$

$$\gamma_{00} \sim N(400, 1)$$

$$\gamma_{ps} \sim N(0, 1)$$

$$\tau_{ps} \sim Cauchy(0, 2.5)$$

Analysis Measures

• Kullback-Leibler Divergence Score (KLD):

$$\mathsf{KLD}(f,g) = \int p(y) \log \left(\frac{p(y)}{g(y \mid \theta)} \right) dy$$

• Log Predictive Density Score (LPD):

$$\sum_{i} \log \left[p\left(\tilde{y}_{i} \mid x, y, \tilde{x}_{i} \right) \right]$$

Results: Model Weights

Ratio	Sample Sizes $(n_i * n_j)$	Methods	Model 1	Model 2	Model 3	Model 4
1:1	100 (10*10)	BS	0.169	0.670	0.061	0.101
		BHS	0.222	0.550	0.124	0.104
	4900 (70*70)	BS	0.169	0.824	0.006	0.000
		BHS	0.217	0.702	0.059	0.023
1:5	500 (10*50)	BS	0.202	0.636	0.048	0.115
		BHS	0.235	0.560	0.088	0.117
	4500 (30*150)	BS	0.166	0.820	0.011	0.003
		BHS	0.231	0.669	0.059	0.041
5:1	500 (50*10)	BS	0.150	0.849	0.002	0.000
		BHS	0.195	0.769	0.023	0.013
	4500 (150*30)	BS	0.151	0.847	0.002	0.000
		BHS	0.133	0.813	0.045	0.009

Results: Relative Bias

Ratio	Sample Sizes $(n_i * n_j)$	Model 1	Model 2	Model 3	Model 4
1:1	100 (10*10)	0.002	0.001	0.002	0.002
	4900 (70*70)	0.003	0.002	0.004	0.004
1:5	500 (10*50)	0.002	0.001	0.003	0.002
	4500 (30*150)	0.002	0.001	0.003	0.003
5:1	500 (50*10)	0.003	0.001	0.004	0.004
	4500 (150*30)	0.003	0.002	0.004	0.004

Results: Predictive Performance

Ratio	Sample Sizes $(n_i * n_j)$	Methods	KLDs	LPDs
1:1	100 (10*10)	BS	0.156	-0.958
		BHS	0.114	-0.934
	4900 (70*70)	BS	0.127	-1.058
		BHS	0.110	-1.008
1:5	500 (10*50)	BS	0.239	-0.947
		BHS	0.200	-0.893
	4500 (30*150)	BS	0.204	-1.035
		BHS	0.172	-0.976
5:1	500 (50*10)	BS	0.086	-1.053
		BHS	0.078	-1.023
	4500 (150*30)	BS	0.079	-1.061
		BHS	0.077	-1.024

Conclusion & Discussion

- \bullet BHS outperforms BS under \mathcal{M} -complete setting, especially for the small sample size.
- The effects of between-group and within-group variation on prediction are left to investigate.

Conclusion & Discussion

- ullet BHS outperforms BS under ${\mathcal M}$ -complete setting, especially for the small sample size.
- The effects of between-group and within-group variation on prediction are left to investigate.

Ihanks yall! Thank You!

Email: mhuang233@wisc.edu

GitHub: https://https://github.com/mhuang233/BS_BHS

Website: https://mhuang233.github.io

MAKE THIS BLACK IF YOU CAN.

Lup this close the the bottom if you can use the Ivspace command.

Huang, M (UW–Madison)

Bayesian Stacking

IMPS 2023, Maryland

16/16