Name of Student: Pushkar Sane			
Roll Number: 45		Lab Assignment Number: 5 & 6	
Title of Lab Assignment: Feature Engineering, one hot Encoding, Normalization, Standardization, EDA using SageMaker DataWrangler Linear and Multiple Linear Regression using SageMaker.			
DOP: 16-03-2024		DOS: 16-03-2024	
CO Mapped: CO3	PO Mapped: PO2, PO3, PO4, PO7, PSO1, PSO2		Signature:

Practical 5 & 6

Aim: Feature Engineering, one hot Encoding, Normalization, Standardization, EDA using SageMaker DataWrangler Linear and Multiple Linear Regression using SageMaker.

Description:

Prerequisite

Create an S3 bucket and keep aside (it will be used later)

Click on "create" to create the bucket

Change the permissions

SageMaker Canvas

🔾 🗞 🌣 🗎 語 Incognito 🚦 aws ::: Services Q Sear Amazon SageMaker X OuickSetupDomain-20240317T074006 Getting started Domain details Studio Lab 🔼 User profiles Space management Environment Domain settings Canvas TensorBoard General settings Info Edit Profiler Domains Last modified Sun Mar 17 2024 07:47:23 GMT+0530 (India Standard Time) Role manager Lifecycle configurations Execution role

am:aws:iam::533267401272:role/servicerole/AmazonSageMaker-ExecutionRole-20240317T074010 Authentication method AWS Identity and Access Management (IAM) Search **▼** JumpStart Storage configurations Edit Computer vision models Encryption key Natural language processing Default space size CloudShell Feedback

Data Preparation using SageMaker DataWrangler

Import Dataset

de d-diffyyms2nqn.studious-east-1.sagemaker.aws/canvas/default/dataPreparation/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2nqn.studious-east-1.sagemaker.aws/canvas/default/dataPreparation/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2nqn.studious-east-1.sagemaker.aws/canvas/default/dataPreparation/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2nqn.studious-east-1.sagemaker.aws/canvas/default/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2ngn.studious-east-1.sagemaker.aws/canvas/default/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2ngn.studious-east-1.sagemaker.aws/canvas/default/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2ngn.studious-east-1.sagemaker.aws/canvas/default/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2ngn.studious-east-1.sagemaker.aws/canvas/default/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2ngn.studious-east-1.sagemaker.aws/canvas/default/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2ngn.studious-east-1.sagemaker.aws/canvas/dataFlovs/53fa697c-9150-dece-b31d-6c1ffb2797a9

A d-diffyyms2ngn.studious-east-1.sagemaker.aws/canvas/dataFlovs/sagemaker.aws/canvas/dataFlovs/sagemaker.aws/canvas/dataFlovs/sagemaker

Reference for sample datasets explanation:

https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-sample-datasets.html

canvas-sample-housing.csv: This dataset contains data on the characteristics tied to a given housing price. You can use this dataset to predict housing prices. Use the median_house_value column as the target column, and use the numeric prediction model type with this dataset. To learn more about building a model with this dataset, see the SageMaker Canvas workshop page. This is the California housing dataset obtained from the StatLib repository.

Delete irrelevant columns

Ordinal Encoding for categorical column

Min-Max Scaling

EDA using SageMaker DataWrangler

Table Summary

Checking if the target column is normally distributed (bell shaped graph)

Data is normally distributed but slightly skewed towards the left

Since this is a sample dataset, we can proceed with a slightly skewed data also

Checking if the relationship between the predictor and target variable is linear

The **dependent variable** is called the **target** and the **independent variable** is called the **predictor**

The dependent variable (target) depends on the independent variable (predictor)

The columns' relation is roughly linear

The relationship looks roughly linear, so we can proceed with the linear regression.

Export prepared data

Data Wrangler: Data flow > & prac3-16Mar24.flow **Export data to Amazon S3 E** Apply transforms up to this step on the full dataset and export it to a location on Amazon S3. Amazon S3 location (0) Browse s3://ait-prac3/ ML Ops Export settings 金 None CSV (.csv) Comma (,) * KMS key ID or ARN By default, Canvas uses the KMS key specified in the user profile settings or domain settings if it is available 耳 A Export the Canvas dataset with the transformations applied from your data flow. If the dataset that you've imported is larger than the Canvas dataset, choose Create job to export all of your data. ? [-

Logout of the Canvas after the data is exported

Important: Delete the SageMaker-domain-user and the SageMaker-domain Locate the exported CSV file in the bucket

Copy the S3 URI of the csv file (to be used later in the python program)

Simple Linear Regression using SageMaker

Create a Notebook

Click on "create" to create the notebook

Open in Jupyter to add the code

Add the following code

Using linear regression algorithm from sklearn library

import pandas as pd

import boto3

from io import StringIO

from sklearn.model selection import train test split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import r2_score

Load the dataset

s3 bucket = 'ait-prac3'

```
s3_key =
'output 1710650355/part-00000-d8518c19-068e-43b2-a81d-d6dfe090c63f-c000.csv'
s3 client = boto3.client('s3')
response = s3_client.get_object(Bucket=s3_bucket, Key=s3_key)
data = pd.read_csv(response['Body'])
# data = pd.read csv(response['Body'], na values=['NA', 'N/A', 'NaN', "])
# Split the data into features (X) and target variable (y)
X = data[['median income']]
y = data[['median_house_value']] # Notice the double square brackets to keep it as a
DataFrame
# Split the data into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
# Initialize and train the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions on the test set
predictions = model.predict(X_test)
#print(predictions)
# Extract the coefficients
# slope = model.coef_[0][0]
# intercept = model.intercept_[0]
# Print the equation of the linear regression line
# print(f"Linear Regression Equation: y = {slope:.2f}x + {intercept:.2f}")
## Evaluate the model's accuracy
test predictions = model.predict(X test)
r_squared = r2_score(y_test, test_predictions)
print("R-squared:", r squared)
# using SageMaker's built-in Linear Regression algorithm
# import sagemaker
# from sagemaker import get_execution_role
# from sagemaker.amazon.amazon estimator import get image uri
# from sagemaker.session import s3 input
# Define your S3 bucket and prefix
# bucket = 'your-s3-bucket'
# prefix = 'your-prefix'
```

Name: Pushkar Sane MCA / A Roll No. 45

```
# Set up SageMaker session and role
# sagemaker_session = sagemaker.Session()
# role = get_execution_role()
# Specify the location of your dataset in S3
# train_data = 's3://{}/{}/.format(bucket, prefix, 'canvas-sample-housing.csv')
# Create a LinearLearner estimator
# linear_container = get_image_uri(sagemaker_session.boto_region_name, 'linear-learner')
# linear = sagemaker.estimator.Estimator(linear_container,
#
                         role,
#
                         train_instance_count=1,
#
                         # train_instance_type='ml.m4.xlarge',
#
                         train_instance_type=",
#
                         output_path='s3://{}/output'.format(bucket, prefix),
#
                         sagemaker_session=sagemaker_session)
# Set hyperparameters
# linear.set_hyperparameters(predictor_type='regressor',
#
                 mini_batch_size=50,
#
                 epochs=3)
# Train the model
# linear.fit({'train': s3_input(train_data, content_type='text/csv')})
```

Output

Since the R^2 value is 0.66, we can say that the linear regression model is 66% accurate

Delete the Jupyter Notebook

Logout from Jupyter

CLEAN UP

- 1. Stop all the services that are running.
- 2. Delete all the resources that were created for this practical (including the buckets and the notebooks, etc.)

Conclusion: We saw data Preparation and EDA using AWS SageMaker DataWrangler, linear regression using SageMaker.