$\label{eq:total_constraints} Introduction \ \grave{a} \ la \ cryptologie \\ TD \ n^\circ \ 7: Cryptography \ via \ Pairings \ and \ Lattices.$

Exercice 1 (BLS Signatures). Let \mathbb{G} be a group with generator g and bilinear pairing $e : \mathbb{G} \times \mathbb{G} \mapsto \mathbb{G}_T$. Recall that to sign a message m, the signer outputs $\sigma = H(m)^x$, where $y = g^x$ is the public key.

- 1. Recall the verification algorithm.
- 2. Show that it is hard to output a signature on an arbitrary message m^* under the CDH assumption, even given access to a signature oracle, provided m^* was never queried. For this, we model the H as a programmable random oracle. That is, the challenger can program the oracle output in the security game with chosen random values.

Next, we to construct a signature issuance protocol, where the signer does not learn the message it signed. The scheme should remain unforgeable, that is a user should obtain at most Q valid signatures from Q signing sessions.

3. Propose such a protocol.

Hint: The user sends A = rand(H(m), r) to the signer, where rand is an appropriate randomization function that allows to recover a valid signature given $B = A^x$ and r.

- 4. Show that the scheme is blind, i.e., the user cannot distinguish between signing m_0 or m_1 first, when presented signatures σ_0 and σ_1 on m_0 and m_1 , respectively.
- 5. Show that the scheme is unforgeable if H is modeled as a programmable random oracle, assuming the One-more CDH assumption holds. That is, the adversary \mathcal{A} has access to two oracles, the first oracle $(\cdot)^x$ outputs h^x given h and the second oracle outputs challenges h_i . The assumption is that \mathcal{A} cannot compute h_i^x for Q+1 different h_i efficiently, given $(\cdot)^x$ was queried at most Q times.
- 6. Is the One-more CDH assumption reasonable?

Exercice 2 (IBE-based signatures). Recall that identity-based encryption allows to encrypt a message under unstructured public key, for example an email address. An IBE scheme consists of algorithms (Setup, Extract, Encrypt, Decrypt). Setup generates system parameters, denoted by params, and a master key mk. Extract receives an identity id and the master key mk as input and outputs a private key pk_{id} . Encrypt encrypts messages for a given identity id (via params) and Decrypt decrypts ciphertexts using the private key.

- 1. What should be hard for an adversary in the context of IBE?
- 2. Give a generic construction of a signature scheme given any IBE scheme.

Hint: Identify the identities with messages.

3. Apply the transformation to Boneh-Franklin IBE and simplify the verification algorithm. Is the scheme familiar?

Again, let \mathbb{G} be a group with generator g and bilinear pairing $e: \mathbb{G} \times \mathbb{G} \mapsto \mathbb{G}_T$. A well-known signature scheme obtained via this transformation are Boneh-Boyen signatures:

- KeyGen(): samples $\alpha, \beta, \gamma \leftarrow \mathbb{Z}_p$, and sets $u = g^{\alpha}, h = g^{\gamma}, v = e(g, g)^{\alpha\beta}$, and outputs pk = (u, h, v) and $sk = g^{\alpha\beta}$,
- Sign(sk, m): samples $r \in \mathbb{Z}_p$ and outputs $(\sigma_1, \sigma_2) = (sk \cdot (u^m h)^r, g^r) \in \mathbb{G}^2$,
- $Verify(pk, m, (\sigma_1, \sigma_2))$: outputs 1 if $e(\sigma_1, g) = v \cdot e(\sigma_2, u^m h)$, and otherwise outputs 0.

The rest of the exercise is about Boneh-Boyen signatures.

- 4. We want to show selective unforgeability: the user should not be able to forge a signature for a message fixed m^* chosen before seeing the public key. Given the structure of the scheme, what seems to be the underlying hardness assumption?
- 5. Show that given $A = g^{\alpha}$, $B = g^{\beta}$, the public key $pk = (A, A^{-m^*} \cdot g^{\delta})$ is indistinguishable from a public key output by KeyGen.

6. Show that the scheme is selectively unforgeable under the CDH assumption.

Hint: Setup the public key as above for a CDH challenge (A, B). To sign a message $m_i \neq m^*$, draw $\tilde{r}_i \leftarrow \mathbb{Z}_p$, set $\sigma_2 = g_1^{\tilde{r}_i} \cdot B^{-1(m_i - m^*)}$, and recompute an appropriate σ_1 . Finally, show that a valid signature on m^* allows to break CDH.

- 7. Is selective security satisfying in practice?
- 8. Show that the scheme is rerandomizable, i.e., given a signature on a message m you can make it look like a random signature on message m.
- 9. Modify the Boneh-Boyen scheme such that it unforgeable (for arbitrary messages). Feel free to use a programmable random oracle.

Exercice 3 (Lattice-based encryption). We consider the Regev encryption system given below:

- $-KeyGen(1^{\lambda}): \text{set } A = \begin{bmatrix} \bar{A} \\ \bar{s}^T \bar{A} + e^T \end{bmatrix} \in Z_p^{n \times m} \text{ and } s^T = [-\bar{s}^T \mid 1], \text{ and output public key } A \text{ and secret key } s. \text{ Note that } e \text{ is a small random error and } \bar{A}, \bar{s} \text{ are random values.}$ $-Encrypt(\mu): \text{ for } \mu \in \{0,1\}, \text{ sample } r \leftarrow \{0,1\}^m \text{ and output } c = Ar + \begin{bmatrix} 0^{n-1} \\ \lfloor q/2 \rfloor \cdot \mu \end{bmatrix}.$
- 1. How would you decrypt the ciphertext c?
- 2. Argue that the scheme is secure under the LWE assumption.

Hint: Ar is (almost) uniform if A and r is drawn at random.

- 3. Show that the scheme is additively homomorph.
- 4. What happens if you multiply ciphertexts? Can you still decrypt?
- 5. Assume we have an encryption scheme that allows for N additions and M multiplications, and that decryption can be implemented with less than N additions and M multiplications ¹. Propose a scheme that allows for an unbounded number of multiplications and additions.

Hint: Add an encryption of the secret key to the public key.

^{1.} The Regev encryption scheme can be adapted to fulfil this property.