Compressed sensing

Anastasiia Storozhenko

May 28, 2025

1 Introduction

Applications

2 Studying the l_0 -minimization

We want to recover an s-sparse vector $\mathbf{x} \in \mathbb{K}^N$ knowing a vector of m measurements $\mathbf{y} \in \mathbb{K}^m$ and a measurement matrix $\mathbf{A} \in M_{m \times N}(\mathbb{K})$ with m < N, such that $\mathbf{A}\mathbf{x} = \mathbf{y}$. The system is underdetermined, so we have to look for alternative ways to solve it. The most straightforward approach is to solve the corresponding l_0 -minimization problem.

Definition 2.1. The support of a vector $\mathbf{x} \in \mathbb{K}^N$ is the set of indices of its nonzero entries:

$$supp(\mathbf{x}) = \{ j \in [1, N] : x_j \neq 0 \}$$

Definition 2.2. We define $\|\mathbf{x}\|_0$ as the cardinality of supp(\mathbf{x}). We say that the vector \mathbf{x} is s-sparse if $\|\mathbf{x}\|_0 \leq s$.

Note that $\|\cdot\|_0$ is not an actual norm, nor is it a semi-norm. Now we can formalize the problem in the following form:

minimize
$$\|\mathbf{x}\|_0$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$. (P₀)

Proposition 2.3. Let $\mathbf{A} \in M_{m \times N}(\mathbb{K})$, $\mathbf{x} \in \mathbb{K}^N$ s-sparse and $\mathbf{y} \in \mathbb{K}^m$. The following two statements are equivalent:

- (i) The vector \mathbf{x} is the unique solution of the compressed sensing problem, i.e, it's the unique s-sparse vector such that $\mathbf{A}\mathbf{x} = \mathbf{y}$.
- (ii) The vector \mathbf{x} is the unique solution of P_0 .

Proof. (i) \Rightarrow (ii) If **x** is the only s-sparse vector that satisfies $\mathbf{A}\mathbf{x} = \mathbf{y}$, then there exists no such vector **z**, that $\|\mathbf{z}\|_0 \leq \|\mathbf{x}\|_0 \leq s$, which makes **x** the unique minimizer of \mathbf{P}_0 .

$$(ii) \Rightarrow (i)$$
 Immediate.

Theorem 2.4. Let $\mathbf{A} \in M_{m \times N}(\mathbb{K})$ and $\mathbf{x}, \mathbf{z} \in \mathbb{K}^N$. The following statements are equivalent:

- (i) If $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$ and both \mathbf{x} and \mathbf{z} are s-sparse, then $\mathbf{x} = \mathbf{z}$.
- (ii) $\operatorname{Ker} \mathbf{A} \cap \{\mathbf{z} \in \mathbb{K}^N \colon \|\mathbf{z}\|_0 \le 2s\} = \{\mathbf{0}\}, i.e., \mathbf{0} \text{ is the only 2s-sparse vector in the } \operatorname{Ker} \mathbf{A}.$
- (iii) For every $S \subset [1, N]$ with $\operatorname{card}(S) \leq 2s$, the submatrix \mathbf{A}_S is injective as a map from $\mathbb{K}^{\operatorname{card}(S)}$ to \mathbb{K}^m .

- (iv) Every set of 2s columns of **A** is linearly independent, i.e., rang $\mathbf{A} \geq 2s$.
- *Proof.* $(i) \Rightarrow (ii)$ Let $\mathbf{z} \in \mathbb{K}^N$ be 2s-sparse and satisfy $\mathbf{A}\mathbf{z} = \mathbf{0}$. On the other hand, we also have $\mathbf{A}\mathbf{0} = \mathbf{0}$, so by the hypothesis it has to be that $\mathbf{z} = \mathbf{0}$.
- $(ii) \Rightarrow (i)$ Now let \mathbf{x} and \mathbf{z} be two s-sparse vectors such that $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$. Then $\mathbf{x} \mathbf{z}$ is 2s-sparse and $\mathbf{A}\mathbf{x} \mathbf{A}\mathbf{z} = \mathbf{A}(\mathbf{x} \mathbf{z}) = \mathbf{0}$, which implies that $\mathbf{x} \mathbf{z} \in \text{Ker } \mathbf{A}$. By hypothesis, we conclude that x = z.
- $(ii) \Rightarrow (iii)$ We recall that linear map **A** is injective iff Ker **A** = $\{\mathbf{0}\}$. Let $\in \mathbb{K}^N$ be a 2s-sparse vector, such that $\mathbf{x}_S \in \text{Ker } \mathbf{A}_S$, where $S = \text{supp}(\mathbf{x})$. Then $\mathbf{A}\mathbf{x} = \mathbf{A}_S\mathbf{x}_S + \mathbf{A}_{\overline{S}}\mathbf{x}_{\overline{S}} = \mathbf{0} + \mathbf{A}_{\overline{S}}\mathbf{0} = \mathbf{0}$, where $\overline{S} = [1, N] \setminus S$. Then by hypothesis, $\mathbf{x} = 0$ and $\mathbf{x}_S = 0$, and thus \mathbf{A}_S is injective.
- $(iii) \Rightarrow (ii)$ Let \mathbf{x} be 2s-sparse, $S = \text{supp}(\mathbf{x})$ and \mathbf{A}_S an injective map. Suppose that $\mathbf{x} \in \text{Ker } \mathbf{A}$. Then by extension, $\mathbf{x}_S \in \text{Ker } \mathbf{A}_S$ and $\mathbf{x}_S = \mathbf{0}$. Thus, $\mathbf{x} = \mathbf{0}$.

For the last two implications we have to assume that $2s \leq m$.

- $(iii) \Rightarrow (iv)$ Let $S \subset [1, N]$, card(S) = 2s. Then $rang(A_S) = 2s dim(Ker <math>\mathbf{A}_S) = 2s 0 = 2s$.
- $(iv) \Rightarrow (iii)$ Let $S \subset [1, N]$, $card(S) \leq 2s$. Then $rang(A_S) = card(S)$ and $dim(Ker <math>\mathbf{A}_S)$) = $card(S) rang(A_S) = 0$. Thus, $Ker \mathbf{A}_S = {\mathbf{0}}$.

The importance of this theorem is that it gives us the necessary condition for a successful recovery of any s-sparse vector \mathbf{x} from P_0 : the number of measurements m has to be at least 2s. Indeed, if it is possible to reconstruct the vector by solving l_0 -problem, then statement (i) holds, and then according to the theorem, rang $\mathbf{A} \geq 2s$. On the other hand, the rank of a matrix cannot be greater than its smallest dimension, which in this case is m. This gives us the necessary condition $m \geq 2s$.

However, this lower bound is true for the most general case, where matrix A is arbitrary. In reality, there are many cases where the lower threshold is much softer. For example, in the case of random matrices, we can find a lower value of m that is enough for the problem to be solved with a reasonably high probability). This fact will be further studied in the next sections. For now, we will only state a theorem from [math intro to cs], that looks at this problem from another angle: here, we assume that the vector \mathbf{x} is known and that we can choose a measurement matrix by ourselves.

Theorem 2.5. For any $N \geq s+1$, given an s-sparse vector $\mathbf{x} \in \mathbb{K}^N$, there exists a measurement matrix \mathbf{A} in $M_{m \times N}(\mathbb{K})$ with m = s+1 rows such that the vector \mathbf{x} can be recovered from its measurement vector $\mathbf{y} = \mathbf{A}\mathbf{x}$ by solving P_0 .

Unfortunately, as good as it seems in theory, the l_0 -minimization is not effective in practice: problem P_0 happens to be NP-hard [source]. In fact, any non-convex optimization problem is NP-hard, which means that we have to look for convex alternatives instead. And one such alternative approach is l_1 -minimization.

3 From l_0 to l_1

 $\|\cdot\|_p$: (preferably with pictures of unit balls)

- 0 : non-convex, NP, bad
- p > 1: convex, but doesn't solve the problem in general
- p = 1: convex, solves the problem, good

basis pursuit:

minimize
$$||x||_1$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$ (1)

Other algorithms from chapter 3?

Figure 1: Unit balls

4 Studying the l_1 -minimization

When does it solve the problem P_0 ? \rightarrow chapter 4

Definition 4.1. Null-space property

Stability and robustness?

5 Number of measurements for l_1 -minimization

Proposition 3.10 from The Convex Geometry of Linear Inverse Problems. My plots

6 Transition phase

Leaving on the Edge paper