Second type of criticality in the brain uncovers rich multipleneuron dynamics

PNAS, VOL. 116, NO. 26, 2019

DAVID DAHMEN, SONJA GRÜN, MARKUS DIESMANN AND MORITZ HELIAS

Spiking activity in macaque motor cortex

155 neurons

Statistics of motor cortex data

☐ Fast decaying autocorrelation of the population activity

■ Weak covariances on average

«Balanced» regime, inhibition dominated

Spiking activity of awake animals

Excess of inhibitory feedback

■ Weak correlations on average: typically evidence against criticality

Critical brain hypothesis

- ☐ Hypothesis that brain operates at the critical point of a phase transition
- Optimal computational abilities from operating at a critical point
- e. g. optimal sensitivity to stimuli, optimal dynamic range

Which phase transition?

Neuronal avalanches criticality

- Linked to balance between excitation and inhibition
- ☐ Slowly decaying population autocorrelation
- ☐ Positive correlations

Motor cortex data and criticality hypothesis

- Observations in line with the balanced state
 - 1. Does this contradict the criticality hypothesis?
- ☐ Another type of criticality: **EDGE OF CHAOS CRITICALITY**
- ☐ Known to be linked to the breakdown of the stability of fixed point of vanishing activity
- Study stability of the network

A measure of stability

$$c(W) = (I - W)^{-1}D(I - W^T)^{-1}$$

- \square W determines the covariance and the **stability** of the dynamics
- \square If $Re(\lambda) \ge 1$ instability
- ☐ Problem of sparse sampling
 - 2. Which is a reliable measure of stability with few neurons measured?

A measure of stability

- Low mean of covariances is known to relate to a single highly stable eigenvalue of $W: Re(\lambda) < 0$
- ☐ But what about the other eigenvalues?
- ☐ Get information on the **statistics of the connectivity** from the **statistics of covariances**
- ☐ We turn to ideas from disordered systems + dynamical mean field

(Beyond) mean-field theory for metastatistics of activity

$$\tau \, \frac{dx(t)}{dt} = -x(t) + W \cdot x(t) + \xi(t) \qquad \text{Linear response approximation}$$

Linear response

$$Z(J) = \det(1 - W) \int \mathcal{D}X \int \mathcal{D}\tilde{X} e^{S_0(X,\tilde{X}) + J^{\mathrm{T}}X}$$

$$= \exp\left(\frac{1}{2}J^{\mathrm{T}} (\mathcal{I} - W)^{-1} D (\mathcal{I} - W^{\mathrm{T}})^{-1} J\right)$$

$$S_0(X,\tilde{X}) = \tilde{X}^{\mathrm{T}} (\mathcal{I} - W) X + \frac{D}{2} \tilde{X}^{\mathrm{T}} \tilde{X},$$

(Beyond) mean-field theory for metastatistics of activity

Disordered averaged generating function

i. i. d. weights
$$\left\langle e^{\tilde{X}^{\mathrm{T}}W\,X}\right\rangle = \prod_{i \in I} \left\langle e^{W_{ij}\tilde{X}_{i}X_{j}}\right\rangle = \prod_{i \in I} e^{\sum_{k=1}^{\infty} \frac{\kappa_{k}}{k!}(\tilde{X}_{i}X_{j})^{k}}. \text{ Homogeneous random network approximation}$$

 $\langle Z(J) \rangle \sim \int \mathcal{D}X \int \mathcal{D}\tilde{X} \, e^{S_0(X,\tilde{X}) + \frac{\lambda_{\max}^2}{2N} V(X,\tilde{X}) + J^{\mathrm{T}}X}},$ network approximation

Truncation at the second moment

$$S_0(X, \tilde{X}) = \tilde{X}^{\mathrm{T}} (\mathcal{I} - \mu \mathcal{J}) X + \frac{D}{2} \tilde{X}^{\mathrm{T}} \tilde{X},$$

$$V(X, \tilde{X}) = \tilde{X}^{\mathrm{T}} \tilde{X} X^{\mathrm{T}} X$$

Statistics of the connectivity

Auxiliary field formalism

$$Q_1 = \frac{\lambda_{\max}^2}{N} X^{\mathrm{T}} X$$

Beyond mean-field theory

- Standard mean field: neuron to neuron variability is lost
- ☐ Take into account also the fluctuations of the auxiliary fields (dependencies on the sources *j*)

Beyond mean-field theory

$$\overline{c_{ij}} = \left[(\mathcal{I} - \mu \mathcal{J})^{-1} D_{\lambda} (\mathcal{I} - \mu \mathcal{J})^{-1} \right]_{ij} = D_{\lambda} \gamma_{ij} \qquad \sim \frac{1}{N}$$

$$\overline{\delta c_{ij}^2} = \lambda_{\max}^2 \left[\frac{1}{(1 - \lambda_{\max}^2)^2} + \frac{1}{1 - \lambda_{\max}^2} \right] D_{\lambda}^2 \chi_{ij}. \qquad \delta c_{ij} \sim \frac{1}{\sqrt{N}}$$

$$\gamma_{ij} = \delta_{ij} + \gamma \qquad \gamma = \frac{\mu}{1 - \mu N} \text{ setting } \gamma \approx 0 \text{ balanced state, } \mu < 0 \qquad D_{\lambda} = \frac{D}{(1 - \lambda_{\max}^2)^2}$$

$$\gamma_{ij} = \delta_{ij} + \gamma$$
 $\gamma = \frac{\mu}{1 - \mu N}$ setting $\gamma \approx 0$ balanced state, $\mu < 0$ $D_{\lambda} = \frac{D}{(1 - \lambda_{max}^2)}$

$$\chi_{ij} = \frac{1}{N}(1 + \delta_{ij} + O(N))$$

$$\lambda_{\text{max}} = \sqrt{1 - \sqrt{\frac{1}{1 + N\Delta^2}}}.$$

$$\Delta = \frac{\delta c_{ij}}{c_{ii}}$$

Sparse inhibition dominated networks Weights: i. i. d. from a Bernoulli distribution with p = 0.1

Sparse inhibition dominated networks Weights: i. i. d. from a Bernoulli distribution with p = 0.1

Weight strength =
$$\frac{-1}{\sqrt{N}}$$

Weight strength =
$$\frac{-2}{\sqrt{N}}$$

Weight strength =
$$\frac{-3}{\sqrt{N}}$$

How robust this result is wrt more biologically realistic networks? And beyond linear response approximation?

$$\lambda_{\max} = \sqrt{1 - \sqrt{\frac{1}{1 + N\Delta^2}}}.$$

$$\Delta = \frac{\delta c_{ij}}{c_{ii}}$$

- Checked with simulations with more complex topologies
- Checked in simulations on Leaky Integrate and Fire model
- \square Δ is still well predicted by the theory
- \square $\lambda_{max} \lesssim 1$ in motor cortex data ($N=10^4$, $\Delta=0.15$): dynamically balanced critical regime

Functional and dynamical consequences of dynamically balanced criticality

- One stable eigenvalue, then
 many eigenvalues close to
 the critical line
- Many modes with slow dynamics
- Multiple neurons and heterogeneous dynamics

$$v_{\alpha}(t) \sim e^{\frac{t(1-\lambda_{\alpha})}{\tau}}$$

Avalanches criticality

Other signatures of balanced critical regime from data

- ☐ The eigenvectors and eigenvalues of the *W* of the data are not know.
- □ PCA detects modes with longer timescales
- Motor cortex data: continuum of PCs with hetereogeneous loadings
- Many modes with long time scales

$$v_{\alpha}(t) \sim e^{\frac{t(1-\lambda_{\alpha})}{\tau}}$$

Dynamically balanced criticality vs avalanches criticality

Case 1

DYNAMICALLY BALANCED
CRITICALITY

Feature

AVALANCHES CRITICALITY

Case 2

Teature	Case 1	Case 2
Population activity		
Fluctuations	Fast and weak	Slow and strong
Spike count covariance		
Mean	Low	High
Width	Large	Small
Stimulation		
Whole population	Fast and small response	Slow and strong response
Specific direction (mode)	Various timescales and amplitudes	Stereotypic timescale and amplitude
PCs		
Eigenvalues	Gradual decline	Single dominant eigenvalue
Dominant eigenvectors	Heterogenous loadings	Homogeneous loadings
Dimensionality	1 < dim ≪ <i>N</i>	1 ≲ dim

Summary and conclusions

- ☐ Going beyond mean field, analytical expression that links covariance statistics to statistics of connectivity, and solves for sampling problem
- □ No more contradiction between asynchronous irregular regime and criticality: another kind of criticality linked to spectral radius of connections
- Macaque motor cortex is dynamically critically balanced, rich multiple neuron dynamics
- ☐ The typically considered population activity is only one particular mode that weights all neurons equally!
- Critical modes are hidden if one just looks at population activity

Quasi-universal scaling in mouse-brain neuronal activity stems from edge-of-instability critical dynamics, Nov 2021, arXiv:2111.12067

Guillermo B. Morales, Serena di Santo, Miguel A. Muñoz

Thank you! Questions?

Time lagged integrated covariances

$$c_{ij} = \frac{1}{T} \left(\langle n_i n_j \rangle - \langle n_i \rangle \langle n_j \rangle \right) = \int_{-T}^{T} \frac{T - |\tau|}{T} c_{ij}(\tau) d\tau$$

$$\xrightarrow[T \to \infty]{} \int_{-\infty}^{\infty} c_{ij}(\tau) d\tau,$$

Possible future perspectives

 \square The equal time covariance C of the Ornstein Uhlenbeck process is linked to the effective connectivity matrix. And it is nothing but the Controllability Gramian C

$$(1 - W)C + C(1 - W)^{T} = DD^{T}$$

Controllability is linked to spectral properties of C

- ☐ Being at the edge of instability might have effects on the controllability
- ☐ But experimentally we face sampling problem

Going beyond mean-field

$$c_{ij} = \int c_{ij}(\tau)d\tau = \int \int \langle x_i(t+\tau)x_j(t)\rangle_x dt d\tau$$
$$= \langle X_i(0)X_j(0)\rangle_x$$

$$\tau \frac{dx(t)}{dt} = -x(t) + W \cdot x(t) + \xi(t)$$

$$Z[j] = \int \mathcal{D}x \int \mathcal{D}\tilde{x} \exp\left(S_0[x, \tilde{x}] + j^{\mathrm{T}}x\right)$$

with $S_0[x, \tilde{x}] = \tilde{x}^{\mathrm{T}} ((\partial_t + 1)\mathcal{I} - W) x + \frac{D}{2} \tilde{x}^{\mathrm{T}} \tilde{x}.$

$$Z[J] = \int \mathcal{D}X \int \mathcal{D}\tilde{X} \exp\left(S_0[X, \tilde{X}] + J^{\mathrm{T}}X\right)$$

with $S_0[X, \tilde{X}] = \tilde{X}^{\mathrm{T}} \left((i\omega + 1)\mathcal{I} - W\right) X + \frac{D}{2}\tilde{X}^{\mathrm{T}}\tilde{X},$

Linear response approximation

$$Z(J) = \det(1 - W) \int \mathcal{D}X \int \mathcal{D}\tilde{X} e^{S_0(X,\tilde{X}) + J^{\mathrm{T}}X}$$
$$= \exp\left(\frac{1}{2}J^{\mathrm{T}} (\mathcal{I} - W)^{-1} D (\mathcal{I} - W^{\mathrm{T}})^{-1} J\right)$$
$$S_0(X,\tilde{X}) = \tilde{X}^{\mathrm{T}} (\mathcal{I} - W) X + \frac{D}{2} \tilde{X}^{\mathrm{T}} \tilde{X},$$

$$c(W) = \left[\mathcal{I} - W\right]^{-1} D \left[\mathcal{I} - W^{\mathrm{T}}\right]^{-1},$$

Disordered averaged generating function

$$\left\langle e^{\tilde{X}^{\mathrm{T}}WX}\right\rangle = \prod_{i,j} \left\langle e^{W_{ij}\tilde{X}_{i}X_{j}}\right\rangle = \prod_{i,j} e^{\sum_{k=1}^{\infty} \frac{\kappa_{k}}{k!} (\tilde{X}_{i}X_{j})^{k}}.$$

Homogeneous random network approximation

$$\langle Z(J) \rangle \sim \int \mathcal{D}X \int \mathcal{D}\tilde{X} \, e^{S_0(X,\tilde{X}) + \frac{\lambda_{\max}^2}{2N} V(X,\tilde{X}) + J^{\mathrm{T}}X},$$

$$S_0(X,\tilde{X}) = \tilde{X}^{\mathrm{T}} \left(\mathcal{I} - \mu \mathcal{J}\right) X + \frac{D}{2} \tilde{X}^{\mathrm{T}} \tilde{X},$$

$$V(X,\tilde{X}) = \tilde{X}^{\mathrm{T}} \tilde{X} X^{\mathrm{T}} X$$

Auxiliary field formalism

$$Q_1 = \frac{\lambda_{\max}^2}{N} X^{\mathrm{T}} X$$

The auxiliary field formalism translates the high-dimensional ensemble average over W to a low-dimensional average over Q; it maps the local disorder in the connections to fluctuations of global fields Q interacting with a highly symmetric all-to-all connected network.

PCs and modes in a dynamically balanced network

PCs and modes in avalanches criticality

