Pembahasan Seleksi Peserta OSN Matematika SMAN 1 Probolinggo

Oleh Wildan Bagus Wicaksono

1. Tentukan nilai x yang memenuhi

$$x = \left(3 - \sqrt{5}\right)\left(\sqrt{3 + \sqrt{5}}\right) + \left(3 + \sqrt{5}\right)\left(\sqrt{3 - \sqrt{5}}\right)$$

Solusi: $2\sqrt{10}$

Ingat bahwa $a\sqrt{b} = \sqrt{a^2b}$.

$$x = (3 - \sqrt{5}) \left(\sqrt{3 + \sqrt{5}}\right) + (3 + \sqrt{5}) \left(\sqrt{3 - \sqrt{5}}\right)$$

$$= \sqrt{(3 - \sqrt{5})^2 (3 + \sqrt{5})} + \sqrt{(3 + \sqrt{5})^2 (3 - \sqrt{5})}$$

$$= \sqrt{(3 - \sqrt{5}) (3^2 - \sqrt{5}^2)} + \sqrt{(3 + \sqrt{5}) (3^2 - \sqrt{5}^2)}$$

$$= \sqrt{4 (3 - \sqrt{5})} + \sqrt{4 (3 + \sqrt{5})}$$

$$= 2\sqrt{3 - \sqrt{5}} + 2\sqrt{3 + \sqrt{5}}$$

$$x = 2\left[\sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}}\right]$$

Misalkan $y = \sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}}$.

$$y^{2} = \left(\sqrt{3 - \sqrt{5}} + \sqrt{3 + \sqrt{5}}\right)^{2}$$

$$= \left(\sqrt{3 - \sqrt{5}}\right)^{2} + 2\sqrt{\left(3 - \sqrt{5}\right)\left(3 + \sqrt{5}\right)} + \left(\sqrt{3 + \sqrt{5}}\right)^{2}$$

$$= 3 - \sqrt{5} + 2\sqrt{3^{2} - \sqrt{5}^{2}} + 3 + \sqrt{5}$$

$$= 6 + 2\sqrt{4}$$

$$= 6 + 4$$

$$y^{2} = 10$$

$$\therefore y = \pm\sqrt{10}$$

Karena $\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}>0$, maka $y=\sqrt{10}$. Sehingga

$$x = 2y = \boxed{2\sqrt{10}}$$

2. Diketahu
i $a+(a+1)+(a+2)+\cdots+50=1139.$ Jikaa bilangan positif, mak
a $a=\dots$.

Solusi: 17

Misalkan banyak suku pada deret tersebut adalah n. Terlihat bahwa diatas merupakan deret aritmetika dengan beda 1. Maka kita dapat menggunakan

$$S_n = \frac{n}{2}(2a + (n-1)b) \quad \text{atau} \quad S_n = \frac{n}{2}(a + U_n)$$

Kita gunakan $S_n = \frac{n}{2}(a + U_n)$. Perhatikan bahwa

$$1139 = \frac{n}{2}(a+50)$$
$$7 \times 67 = \frac{n}{2} \times (a+50)$$
$$2 \times 7 \times 67 = n \times (a+50)$$

Karena a positif dan melihat bentuk soal, pasti $100 > a + 50 \ge 51$. Sehingga akan dipenuhi ketika a + 50 = 67 yang ekuivalen dengan $a = \boxed{17}$.

3. Parabola $y=ax^2-4$ dan $y=8-bx^2$ memotong sumbu koordinat tepat empat titik. Keempat titik tersebut merupakan titik-titik sudut layang-layang dengan luas 24. Nilai a+b adalah

Solusi: 3

Parabola $y = ax^2 - 4$ memotong sumbu y di titik (0, -4).

Parabola $y = 8 - bx^2$ memotong sumbu y di titik (8,0).

Dua titik lainnya berada di sumbu x. Karena hanya ada dua titik, kedua parabola tersebut memotong sumbu x di titik yang sama. Dengan kata lain, $y = 8 - bx^2$ memotong sumbu x di titik $(x_1, 0)$ dan $(x_2, 0)$ serta $y = ax^2 - 4$ juga memotong sumbu x di titik $(x_1, 0)$ dan $(x_2, 0)$.

Misalkan parabola $y = ax^2 - 4$ dan $y = 8 - bx^2$ berpotongan di $A(x_1, 0)$ dan $B(x_2, 0)$.

$$ax^{2} - 4 = 8 - bx^{2}$$
$$ax^{2} + bx^{2} - 4 - 8 = 0$$
$$(a+b)x^{2} - 12 = 0$$

Dengan rumus ABC (kecap, sirup, dan lain-lain), kita peroleh

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-0 \pm \sqrt{0^2 - 4(a+b)(-12)}}{2(a+b)}$$

$$= \frac{\pm \sqrt{0 + 48(a+b)}}{2(a+b)}$$

$$= \pm \frac{4\sqrt{3}}{2\sqrt{a+b}}$$

Maka

$$x_1 = \frac{2\sqrt{3}}{\sqrt{a+b}} \quad \text{dan} \quad x_2 = -\frac{2\sqrt{3}}{\sqrt{a+b}}$$

Diketahui bahwa luas layang-layang adalah 24.

$$24 = \frac{1}{2} |8 - (-4)| \left| \frac{2\sqrt{3}}{\sqrt{a+b}} - \left(-\frac{2\sqrt{3}}{\sqrt{a+b}} \right) \right|$$

$$24 \cdot 2 = |12| \left| \frac{4\sqrt{3}}{\sqrt{a+b}} \right|$$

$$48 = 12 \left| \frac{4\sqrt{3}}{\sqrt{a+b}} \right|$$

Berdasarkan $|a|^2 = a$,

$$4 = \left| \frac{4\sqrt{3}}{\sqrt{a+b}} \right|$$

$$4^2 = \left| \frac{4\sqrt{3}}{\sqrt{a+b}} \right|^2$$

$$16 = \frac{48}{a+b}$$

$$\therefore a+b = \boxed{3}$$

4. Suatu fungsi $f: x \to \mathbb{Q}$ mempunyai sifat $f(x+1) = \frac{1+f(x)}{1-f(x)}$ untuk setiap $x \in \mathbb{Z}$. Jika f(2) = 2, maka nilai fungsi f(2018) adalah ...

Solusi: 2

Untuk x = 1, maka

$$f(1+1) = \frac{1+f(1)}{1-f(1)}$$

$$f(2) = \frac{1+f(1)}{1-f(1)}$$

$$2 = \frac{1+f(1)}{1-f(1)}$$

$$2-2f(1) = 1+f(1)$$

$$2-1 = 3f(1)$$

$$\therefore f(1) = \frac{1}{3}$$

Untuk x = 2, maka

$$f(2+1) = \frac{1+f(2)}{1-f(2)} = \frac{1+2}{1-2} = \frac{3}{-1}$$

$$\therefore f(3) = -3$$

Untuk x = 3, maka

$$f(3+1) = \frac{1+f(3)}{1-f(3)} = \frac{1+(-3)}{1-(-3)} = \frac{-2}{4} = \frac{-1}{2}$$
$$\therefore f(4) = -\frac{1}{2}$$

Untuk x = 4, maka

$$f(4+1) = \frac{1+f(4)}{1-f(4)} = \frac{1+\left(-\frac{1}{2}\right)}{1-\left(-\frac{1}{2}\right)} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3}$$

$$\therefore f(5) = \frac{1}{3} \quad \text{(Berulang)}$$

Pola tersebut berulang setelah 4 pola (yaitu setelah f(4)). Karena 2018 : 4 bersisa 2, maka nilai dari f(2018) sama dengan nilai f(2), yaitu 2.

Jadi, nilai dari $f(2018) = \boxed{2}$.

5. Jika $(x-1)^2$ membagi $ax^4 + bx^3 + 1$, maka $ab = \dots$.

Solusi: -12

Karena $(x-1)^2 | ax^4 + bx^3 + 1$, maka $ax^4 + bx^3 + 1 = k \cdot (x-1)^2$ yang ekuivalen dengan $ax^4 + bx^3 + 1 = K(x) \cdot (x^2 - 2x + 1)$.

Misalkan $P(x) = ax^4 + bx^3 + 1$ dan $Q(x) = x^2 - 2x + 1$. Karena P(x) berderajat 4 dan Q(x) berderajat 2, maka K(x) harus berderajat 2.

Misalkan $K(x) = cx^2 + dx + e$. Karena konstanta dari P(x) dan Q(x) masing-masing adalah 1, maka konstanda dari K(x) harus 1 dengan kata lain e = 1. Kita peroleh

$$P(x) = K(x) \cdot Q(x)$$

$$ax^4 + bx^3 + 1 = (cx^2 + dx + 1)(x^2 - 2x + 1)$$

$$ax^4 + bx^3 + 1 = cx^4 + dx^3 + x^2 - 2cx^3 - 2dx^2 - 2x + cx^2 + dx + 1$$

$$ax^4 + bx^3 + 0 \cdot x^2 + 0 \cdot x + 1 = cx^4 + (d - 2c)x^3 + (1 - 2d + c)x^2 + (d - 2)x + 1$$

Sehingga haruslah

$$\begin{cases} a = c \\ b = d - 2c \\ 0 = 1 - 2d + c \\ 0 = d - 2 \end{cases}$$

Demikian kita peroleh d=2. Dengan mensubtitusikan nilai d pada 1-2d+c=0, maka

$$1 - 2(2) + c = 0$$

 $c = 3$

Maka

$$b = d - 2c = 2 - 2(3) = -4$$

dan a = 3.

Sehingga
$$ab = 3(-4) = \boxed{-12}$$
.

6. Diberikan satu koin tidak seimbang. Bila koin tersebut ditos satu kali, peluang munculnya angka adalah $\frac{1}{4}$. Jika ditos n kali, peluang muncul tepat dua angka sama dengan peluang muncul angka tiga kali. Nilai n adalah

Solusi: 11

Misalkan P(A) adalah peluang munculnya angka dan P(G) adalah peluang munculnya gambar. Maka $P(A) = \frac{1}{4}$ dan $P(G) = 1 - \frac{1}{4} = \frac{3}{4}$. Dengan Distribusi Binomial,

$$P(2A) = P(3A)$$

$$\binom{n}{2} \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^{n-2} = \binom{n}{3} \left(\frac{1}{4}\right)^3 \left(\frac{3}{4}\right)^{n-3}$$

$$\frac{n(n-1)}{2} \cdot \frac{3}{4} = \frac{n(n-1)(n-2)}{6} \cdot \frac{1}{4}$$

$$9 = n-2$$

$$\therefore n = \boxed{11}$$

7. Nilai dari
$$\frac{\left(2^{2010}\right)^2 - \left(2^{2008}\right)^2}{\left(2^{2011}\right)^2 - \left(2^{2009}\right)^2}$$
 adalah

Solusi:
$$\frac{1}{4}$$

Dengan sifat $(a^b)^c = a^{bc}$,

$$\frac{(2^{2010})^2 - (2^{2008})^2}{(2^{2011})^2 - (2^{2009})^2} = \frac{2^{4020} - 2^{4016}}{2^{4022} - 2^{4018}}$$

$$= \frac{2^{4016} (2^4 - 1)}{2^{4018} (2^4 - 1)}$$

$$= \frac{2^{4016}}{2^{4018}}$$

$$= \frac{1}{2^2}$$

$$\therefore \frac{(2^{2010})^2 - (2^{2008})^2}{(2^{2011})^2 - (2^{2009})^2} = \boxed{\frac{1}{4}}$$

8. Sebuah lingkaran digambar di dalam trapesium samakaki PQRS sehingga lingkaran menyinggung setiap sisi trapesium. Jika $PS=QR=25\ cm,\ PQ=18\ cm$ dan $SR=32\ cm$. Panjang diameter lingkaran adalah

Solusi: 24 cm

Misalkan garis tinggi dari titik P dan Q memotong SR berturut-turut di titik P' dan Q'.

Perhatikan bahwa panjang diameter lingkaran sama saja dengan panjang PP' atau QQ'. Perhatikan bahwa P'Q' = PQ = 18 cm yang berarti SP' + Q'R = 14 cm. Karena PS = QR, pasti SP' = Q'R. Kita peroleh panjang SP' = Q'R = 7 cm.

Perhatikan $\triangle SP'P$. Menurut Phytagoras,

$$SP'^{2} + PP'^{2} = SP^{2}$$

 $7^{2} + PP'^{2} = 25^{2}$
 $PP'^{2} = 25^{2} - 7^{2}$
 $PP' = 24 cm$

Maka panjang diameter lingkaran adalah $\boxed{24~cm}$.

9. Perhatikan gambar persegi dengan ukuran 3×3 satuan. Luas daerah segilima yang hitam adalah \dots .

Solusi: $\frac{11}{12}$

Perhatikan bahwa $\triangle ACD$ sebangun dengan $\triangle ABG$.

$$\frac{AC}{CD} = \frac{AB}{BG}$$

$$\frac{2}{3} = \frac{1}{1 + EG}$$

$$2 + 2EG = 3$$

$$EG = \frac{1}{2}$$

Perhatikan bahwa $\triangle ABG$ sebangun dengan $\triangle FEG$.

$$\frac{AB}{BG} = \frac{FE}{EG}$$

$$\frac{1}{1 + EG} = \frac{FE}{\frac{1}{2}}$$

$$\frac{1}{\frac{3}{2}} = \frac{FE}{\frac{1}{2}}$$

$$FE = \frac{1}{3}$$

Maka

Luas Arsir =
$$L_{persegi} - L_{\triangle FEG} = 1 \times 1 - \frac{1}{2} \cdot EG \cdot FE = 1 - \frac{1}{12} = \boxed{\frac{11}{12}}$$

Dalam pembahasan ini, tentunya banyak sekali kekurangan. Maka dari itu kritik dan saran pembaca akan sangat berharga bagi saya.

Whatsapp: 082230569632

LATEX.