ex5-task13-bwf

August 30, 2024

```
[1]: import pandas as pd
     import numpy as np
     from sklearn.preprocessing import StandardScaler,label_binarize
     from sklearn.model_selection import train_test_split
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve
     import matplotlib.pyplot as plt
[2]: df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv')
     df.head()
[2]:
        fixed acidity volatile acidity citric acid residual sugar
                                                                       chlorides \
                                                0.00
                  7.4
                                   0.70
                                                                           0.076
                  7.8
                                                0.00
     1
                                   0.88
                                                                  2.6
                                                                           0.098
     2
                  7.8
                                   0.76
                                                0.04
                                                                  2.3
                                                                           0.092
     3
                 11.2
                                   0.28
                                                0.56
                                                                  1.9
                                                                           0.075
     4
                  7.4
                                   0.70
                                                0.00
                                                                  1.9
                                                                           0.076
        free sulfur dioxide total sulfur dioxide density
                                                              pH sulphates
     0
                       11.0
                                             34.0
                                                     0.9978 3.51
                                                                        0.56
                       25.0
                                             67.0
                                                                        0.68
     1
                                                     0.9968
                                                             3.20
     2
                       15.0
                                             54.0
                                                    0.9970 3.26
                                                                        0.65
     3
                       17.0
                                             60.0
                                                    0.9980 3.16
                                                                        0.58
                       11.0
                                             34.0
                                                    0.9978 3.51
                                                                        0.56
        alcohol quality
                          Ιd
     0
            9.4
            9.8
     1
     2
            9.8
                       5
     3
            9.8
                       6
                           3
            9.4
                       5
[3]: df.columns
[3]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
```

'pH', 'sulphates', 'alcohol', 'quality', 'Id'],

'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',

dtype='object')

[4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):

	#	Column	Non-Null Count	Dtype
-				
	0	fixed acidity	1143 non-null	float64
	1	volatile acidity	1143 non-null	float64
	2	citric acid	1143 non-null	float64
	3	residual sugar	1143 non-null	float64
	4	chlorides	1143 non-null	float64
	5	free sulfur dioxide	1143 non-null	float64
	6	total sulfur dioxide	1143 non-null	float64
	7	density	1143 non-null	float64
	8	рН	1143 non-null	float64
	9	sulphates	1143 non-null	float64
	10	alcohol	1143 non-null	float64
	11	quality	1143 non-null	int64
	12	Id	1143 non-null	int64

dtypes: float64(11), int64(2)

memory usage: 116.2 KB

[5]: df.describe()

[5]:		fixed acidity	y volatile acidity	citric acid	residual	sugar \	
2-3	count	1143.00000	•	1143.000000	1143.0	•	
	mean	8.31111	0.531339	0.268364	2.5	32152	
	std	1.747595	0.179633	0.196686	1.3	55917	
	min	4.600000	0.120000	0.000000	0.9	00000	
	25%	7.100000	0.392500	0.090000	1.9	00000	
	50%	7.900000	0.520000	0.250000	2.2	00000	
	75%	9.100000	0.640000	0.420000	2.6	00000	
	max	15.900000	1.580000	1.000000	15.5	00000	
		chlorides	free sulfur dioxide	total sulfu	r dioxide	density	\
	count	1143.000000	1143.000000	11	43.000000	1143.000000	
	mean	0.086933	15.615486		45.914698	0.996730	
	std	0.047267	10.250486		32.782130	0.001925	
	min	0.012000	1.000000		6.000000	0.990070	
	25%	0.070000	7.000000		21.000000	0.995570	
	50%	0.079000	13.000000		37.000000	0.996680	
	75%	0.090000	21.000000		61.000000	0.997845	
	max	0.611000	68.000000	2	89.000000	1.003690	

```
sulphates
                                           alcohol
                                                                          Ιd
                                                        quality
      count 1143.000000 1143.000000
                                      1143.000000 1143.000000 1143.000000
                             0.657708
      mean
                3.311015
                                         10.442111
                                                       5.657043
                                                                  804.969379
      std
                0.156664
                             0.170399
                                          1.082196
                                                       0.805824
                                                                  463.997116
                2.740000
                             0.330000
                                          8.400000
                                                       3.000000
                                                                    0.000000
     min
     25%
                3.205000
                             0.550000
                                          9.500000
                                                       5.000000 411.000000
     50%
                3.310000
                             0.620000
                                         10.200000
                                                       6.000000 794.000000
     75%
                3.400000
                             0.730000
                                         11.100000
                                                       6.000000 1209.500000
                4.010000
                             2.000000
                                         14.900000
                                                       8.000000 1597.000000
     max
 [6]: df.columns
 [6]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
             'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
             'pH', 'sulphates', 'alcohol', 'quality', 'Id'],
            dtype='object')
 [7]: # Identify numerical columns
      numerical_columns = df.select_dtypes(include=['float64', 'int64']).columns
      # Standardize numerical features
      scaler = StandardScaler()
      df[numerical_columns] = scaler.fit_transform(df[numerical_columns])
 [8]: df['quality'] = df['quality'].astype(int) # Convert to integer
 [9]: # Define the target variable based on quality
      df['quality_label'] = df['quality'].apply(lambda x: 1 if x >= 6 else 0)
[10]: # Define features and target variable
      X = df.drop(['quality', 'quality label', 'Id'], axis=1) # Drop unnecessary_
       ⇔columns
      y = df['quality_label']
[11]: # Split the data into training and test sets
      X train, X test, y train, y test = train_test_split(X, y, test_size=0.3,_
       →random_state=42,stratify=y)
[12]: # Initialize and train the Decision Tree model
      model = DecisionTreeClassifier()
      model.fit(X_train, y_train)
[12]: DecisionTreeClassifier()
[13]: # Make predictions
      y_pred = model.predict(X_test)
      print("Classes predicted in test set:", np.unique(y_pred))
```

```
Classes predicted in test set: [0]

[14]: # Predict probabilities
    y_prob = model.predict_proba(X_test)
    print("Shape of y_prob:", y_prob.shape)

Shape of y_prob: (343, 1)

[15]: #y_prob ## for checking prediction

[16]: # Calculate accuracy
    accuracy = accuracy_score(y_test, y_pred)
    print(f'Accuracy: {accuracy:.2f}')

Accuracy: 1.00

[ ]:
```