Theory of Automata & Formal Languages

MALAY BHATT

Outline

Properties of Context-Free Languages

Closure, Union and Concatenation of Context-Free Languages

Intersection of Context-Free Languages

Intersection of Context-Free Language with Regular Language

Recall

- If L is a Context Free Language, then L* is also a Context-Free Language
- L={a}
 S→a
- L*={a^k | k >=0} S \rightarrow aS | ϵ

Recall

- If L_{21} and L_{22} are Context-Free Languages then L_{21} U L_{22} is also a Context Free Language
- $L_{21} = \{a^i b^j | i = j\}$ $S_{21} \rightarrow aS_{21} b \mid \epsilon$
- $L_{22} = \{b^j c^k | j = k\}$ $S_{21} \rightarrow bS_{21}c | \epsilon$
- $L_{21}UL_{22} = \{a^ib^j c^k \mid i=j \text{ or } j=k\}$ $S \rightarrow S_{21} \mid S_{22}$

Recall

- If L_{11} and L_{12} are Context-Free Languages then $L_{11}L_{12}$ is also a Context Free Language
- $L_{11} = \{a^i b^j | i = j\}$ $S_{11} \rightarrow aS_{11} b | \epsilon$
- $L_{12} = \{c^k \mid k > = 0\}$ • $S_{12} \rightarrow cS_{12} \mid \epsilon$ • $L_{11}L_{12} = \{a^ib^jc^k \mid i=j, k > = 0\} = \{a^ib^jc^k \mid i=j\}$ • $S_1 \rightarrow S_{11}S_{12}$

Theorem

 Intersection of two Context-Free Languages is not always a Context-Free Language

Using a suitable example, we will prove the above statement.

Theorem

 Intersection of two Context-Free Languages is not always a Context-Free Language

```
L_{1} = \{a^{i}b^{j} c^{k} \mid i=j \}
L_{2} = \{a^{i}b^{j} c^{k} \mid j=k \}
L = L_{1} \cap L_{2} = \{a^{i}b^{j} c^{k} \mid i=j \} \cap \{a^{i}b^{j} c^{k} \mid j=k \}
= \{a^{i}b^{j} c^{k} \mid i=j \text{ and } j=k \}
```

We can write CFGs for both L1 and L2 and also construct PDA individually for both languages.

But, We can not construct PDA which can compare/match 'b's with both 'a' and 'c' at once.

One More Example

Intersection of two Context-Free Languages is not always a Context-Free Language

Proof. •
$$L_1 = \{a^ib^ic^j \mid i, j \ge 0\}$$
 is a CFL

- Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - Generated by a grammar with rules $S \to XY$; $X \to aX | \epsilon$; $Y \to bY c | \epsilon$.
- But $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ is not a CFL.

Here, it is a Context-Sensitive Language

What is the intersection of given three Context- Free Languages?

$$L_1 = \{a^i b^j c^k \mid i \leq j\}$$

$$L_2 = \{a^i b^j c^k \mid j \leq k\}$$

$$L_3 = \{a^i b^j c^k \mid k \leq i\}$$

Example-1

 There are also some examples for which intersection of two CFLs is also a CFL.

```
    L<sub>1</sub>={a<sup>n</sup>b<sup>m</sup> | n >=m}
    Strings: a, ab, aab, aaab, aabb, aaabb
```

```
• L_2=\{a^nb^m \mid m>=n\}
Strings: b, ab, abb, aabb, aabb, aabbb
L_1 \cap L_2 = \{a^nb^m \mid n=m\}
```

Example-2

 There are also some examples for which intersection of two CFLs is also a CFL.

• $L_1 = \{x \in \{a,b\}^* \mid x \text{ is a Palindrome}\}$

• $L_2=\{x \in \{a,b\}^* \mid x \text{ is an odd length Palindrome}\}$

 $L_1 \cap L_2 = \{x \in \{a,b\}^* \mid x \text{ is an odd length Palindrome}\}$

Intersection
of
Context-Free Language
with
Regular Language

Remember

- Intersection of CFL with a Regular Language is always a CFL
- L₁={aⁿb^m|n>=0,m>=0}
 Here, L₁ is representing Regular Expression a*b*
- L₂={aⁿbⁿ | n>=0} is a Context-Free Language

- L₁ ∩ L₂ is clearly L₂ which is a CFL
- Here, $L_1 \cap L_2 = L_2$ is just a coincidence

Chomsky Hierarchy

All Regular Languages are also Context-Free Languages

Deterministic Finite Automata

 $L = \{x \in \{a, b\}^* \mid x \text{ ends with a}\}$

Push Down Automata

L= $\{x \in \{a, b\}^* \mid x \text{ is an odd Length Palindrome }\}$

q0p0

q0p1

Validation of Diagram

If L_1 is a context-free language and L_2 is a regular language, then $L_1 \cap L_2$ is a CFL.

Accepted	Rejected	
a	b	
aba	aa, ab, ba, bb	
aaa	abb, aab, abba, abb,baa,bbb	
ababa		
aaaaa		

Here, $L_1 \cap L_2$ is a Context-Free Language but it is not same as L_1

Intersection of CFL and RL

Here, Language accepted is

L = $\{x \in \{a, b\}^* \mid x \text{ is an odd length palindrome}$ with the first and last symbol always a $\}$

Context-Free Grammar:

$$S \rightarrow a$$

 $S \rightarrow a S_1 a$
 $S_1 \rightarrow a S_1 a \mid b S_1 b$
 $S_1 \rightarrow a \mid b$

If L_1 is a context-free language and L_2 is a regular language, then $L_1 \cap L_2$ is a CFL.

Sketch of Proof Let $M_1 = (Q_1, \Sigma, \Gamma, q_1, Z_0, A_1, \delta_1)$ be a PDA accepting L_1 and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ an FA accepting L_2 . Then we define the PDA $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ as follows.

$$Q = Q_1 \times Q_2$$
 $q_0 = (q_1, q_2)$ $A = A_1 \times A_2$

For $p \in Q_1$, $q \in Q_2$, and $Z \in \Gamma$,

- For every σ ∈ Σ, δ((p,q), σ, Z) is the set of pairs ((p', q'), α) for which (p', α) ∈ δ₁(p, σ, Z) and δ₂(q, σ) = q'.
- δ((p,q), Λ, Z) is the set of pairs ((p',q), α) for which (p', α) ∈ δ₁(p, Λ, Z).

Practice Problem

Find intersection of PDA and FA given below

Move Number	State	Input	Stack Symbol	Move(s)
1	q_0	а	Z_0	$(q_1, a Z_0)$
2	q_1	а	а	(q_1, aa)
3	q_1	b	a	(q_2, Λ)
4	q_2	b	a	(q_2, Λ)
5	q_2	Λ	Z_0	(q_3, Z_0)
(all other combinations)		none		

We have discussed.....

Properties of Context-Free Languages

- Closure, Union and Concatenation of Context-Free Languages
- Intersection of Context-Free Languages
- Intersection of Context-Free Language with Regular Language