

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 259000 N
                                     M_{x}
                                            = 6080000 Nmm
                                                                                   Ε
= 614000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}}=
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|             | i additativo. ia | PP: 00        | oritare randamente aei |                      | o. tangonzian.            |         |   |
|-------------|------------------|---------------|------------------------|----------------------|---------------------------|---------|---|
| Ν           | = 302000 N       | $M_x$         |                        | Е                    | $= 200000 \text{ N/mm}^2$ |         |   |
| $T_v$       | = 358000 N       | $\sigma_{a}$  | $= 195 \text{ N/mm}^2$ | G                    | $= 76000 \text{ N/mm}^2$  |         |   |
| $y_G^{'}$   | =                | σ(N)          | =                      | $\sigma_{l}$         | =                         | $r_u$   | = |
| A           | =                | $\sigma(M_x)$ | .)=                    | $\sigma_{\text{II}}$ | =                         | $r_{v}$ | = |
| $S_{u}^{r}$ | =                | $\tau(T_{v})$ | =                      | $\sigma_{tres}$      | <sub>ca</sub> =           | $r_{o}$ | = |
| $J_u$       | =                | σ΄            | =                      | $\sigma_{mise}$      | es=                       |         |   |
| $J_v$       | =                | τ             | =                      | $\sigma_{\rm st.ve}$ | en=                       |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 227000 N
                                     M_{x}
                                            = 7730000 Nmm
                                                                                   Ε
= 516000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν              | = 272000 N | $M_x = 5330000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 437000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 277000 N
                                     M_{x}
                                            = 7020000 Nmm
                                                                                   Ε
= 464000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|             |            | P P . U U        |                        |                      |                           |         |   |
|-------------|------------|------------------|------------------------|----------------------|---------------------------|---------|---|
| Ν           | = 245000 N |                  |                        | Ε                    | $= 200000 \text{ N/mm}^2$ |         |   |
| $T_v$       | = 398000 N | $\sigma_{a}$     | $= 195 \text{ N/mm}^2$ | G                    | $= 76000 \text{ N/mm}^2$  |         |   |
| $y_G$       | =          | σ(N)             | ) =                    | $\sigma_{l}$         | =                         | $r_u$   | = |
| A,          | =          | σ(M <sub>3</sub> | <sub>x</sub> )=        | $\sigma_{\text{II}}$ | =                         | $r_{v}$ | = |
| $S_{u}^{n}$ | =          | $\tau(T_y)$      | ) =                    | $\sigma_{tres}$      | <sub>sca</sub> =          | $r_{o}$ | = |
| $J_u$       | =          | σ΄               | =                      | $\sigma_{mis}$       | es=                       |         |   |
| $J_v$       | =          | τ                | =                      | $\sigma_{\rm st.v}$  | en=                       |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 253000 N
                                     M_{x}
                                            = 6320000 Nmm
                                                                                   Ε
= 568000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
= 295000 N
                                    M_{x}
                                           = 5290000 Nmm
                                                                                 Ε
= 362000 N
                                            = 195 \text{ N/mm}^2
                                                                                 G
                                                                                          = 76000 \text{ N/mm}^2
                                    \sigma_{a}
                                    \sigma(N) =
                                                                                 \sigma_{l}
                                    \sigma(M_v)=
                                                                                 \sigma_{\text{II}}
                                    \tau(T_v) =
                                                                                 \sigma_{tresca}=
                                    σ
                                                                                 \sigma_{\text{mises}} =
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 227000 N
                                     M_{x}
                                            = 7160000 Nmm
                                                                                   Ε
= 538000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}}=
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν              | = 271000 N | $M_x = 4760000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 443000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | σ <sub>II</sub> =           | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 276000 N
                                     M_{x}
                                            = 6500000 Nmm
                                                                                   Ε
= 484000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 244000 N | $M_x = 5810000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 402000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}} =$  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 251000 N
                                     M_{x}
                                            = 5860000 Nmm
                                                                                   Ε
= 592000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

|             | i accitativo. ia | PP: 00        | oritare randamente dei | 10 101                 | io. tarigoriziani.        |         |   |
|-------------|------------------|---------------|------------------------|------------------------|---------------------------|---------|---|
| Ν           | = 303000 N       |               | = 5650000 Nmm          | Ε                      | $= 200000 \text{ N/mm}^2$ |         |   |
| $T_v$       | = 337000 N       | $\sigma_{a}$  | $= 195 \text{ N/mm}^2$ | G                      | $= 76000 \text{ N/mm}^2$  |         |   |
| $y_G^{'}$   | =                | σ(N)          | ) =                    | $\sigma_{l}$           | =                         | $r_u$   | = |
| A,          | =                | σ(M           | <sub>x</sub> )=        | $\sigma_{\text{II}}$   | =                         | $r_{v}$ | = |
| $S_{u}^{n}$ | =                | $\tau(T_{v})$ | ) =                    | $\sigma_{tres}$        | <sub>ica</sub> =          | $r_{o}$ | = |
| $J_u$       | =                | σ΄            | =                      | $\sigma_{mis}$         | es=                       |         |   |
| $J_v$       | =                | τ             | =                      | $\sigma_{\text{st.v}}$ | en=                       |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 239000 N
                                     M_{x}
                                            = 8290000 Nmm
                                                                                   Ε
= 495000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}}=
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| N<br>T <sub>v</sub> | = 278000 N<br>= 392000 N | $M_x = 5410000 \text{ Nmm}$<br>$\sigma_a = 195 \text{ N/mm}^2$ | $E = 200000 \text{ N/mm}^2$<br>$G = 76000 \text{ N/mm}^2$ |         |   |
|---------------------|--------------------------|----------------------------------------------------------------|-----------------------------------------------------------|---------|---|
| $y_{G}^{'}$         | =                        | $\sigma(N) =$                                                  | $\sigma_{l} =$                                            | $r_u$   | = |
| A <sub>*</sub>      | =                        | $\sigma(M_x)=$                                                 | $\sigma_{II} =$                                           | $r_{v}$ | = |
| $\hat{S_u}$         | =                        | $\tau(T_{v}) =$                                                | $\sigma_{\text{tresca}} =$                                | $r_{o}$ | = |
| $J_u$               | =                        | σ =                                                            | $\sigma_{\text{mises}} =$                                 |         |   |
| $J_{v}$             | =                        | τ =                                                            | $\sigma_{\text{st.ven}}$ =                                |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 291000 N
                                     M_{x}
                                            = 7530000 Nmm
                                                                                   Ε
= 445000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 250000 N | $M_x = 6610000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 356000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}} =$  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 265000 N | $M_x = 6780000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 545000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| $A_{_{\star}}$ | =          | $\sigma(M_x)=$                  | σ <sub>II</sub> =           | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_{y}) =$                 | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_u$          | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 308000 N | $M_x = 6010000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 321000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}} =$  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
= 237000 N
                                     M_{x}
                                            = 8280000 Nmm
                                                                                   Ε
= 494000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                             = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 283000 N | $M_x = 5680000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 410000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν              | = 285000 N | $M_x = 7270000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 431000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν              | = 256000 N | $M_x = 6940000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 373000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_{G}$        | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| $A_{_{\star}}$ | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_v$   | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_u$          | =          | σ =                             | $\sigma_{mises} =$          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
= 258000 N
                                     M_{x}
                                            = 6530000 Nmm
                                                                                   Ε
= 525000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν              | = 313000 N | $M_x = 6300000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 335000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| $A_{_{\star}}$ | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 232000 N
                                     M_{x}
                                            = 8000000 Nmm
                                                                                   Ε
= 478000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                    \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                    \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 287000 N | $M_x = 5670000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 410000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}} =$  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
= 286000 N
                                     M_{x}
                                             = 7000000 Nmm
                                                                                   Ε
= 461000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}}=
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 242000 N | $M_x = 5930000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 359000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | σ <sub>II</sub> =           | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 259000 N
                                     M_{x}
                                            = 6290000 Nmm
                                                                                   Ε
= 562000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 296000 N | $M_{x} = 5380000 \text{ Nmm}$   | $E = 200000 \text{ N/mm}^2$ |     |
|----------------|------------|---------------------------------|-----------------------------|-----|
| $T_y$          | = 322000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |     |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} = r$            | _ = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} = r$           | =   |
| $S_u$          | =          | $\tau(T_{y}) =$                 | $\sigma_{tresca}$ = r       | _ = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |     |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |     |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 233000 N
                                     M_{x}
                                            = 7700000 Nmm
                                                                                   Ε
= 512000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}}=
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 271000 N | $M_x = 4840000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 395000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_u$          | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}} =$  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 284000 N
                                     M_{x}
                                            = 6990000 Nmm
                                                                                   Ε
= 460000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 246000 N | $M_x = 6220000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 374000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 253000 N
                                     M_{x}
                                            = 6070000 Nmm
                                                                                   Ε
= 544000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}}=
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 300000 N | $M_x = 5290000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 362000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
= 227000 N
                                     M_{x}
                                            = 7410000 Nmm
                                                                                   Ε
= 494000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 275000 N | $M_x = 5080000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 412000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | σ(N) =                          | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}=$   | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 277000 N
                                     M_{x}
                                            = 6750000 Nmm
                                                                                   Ε
= 445000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 250000 N | $M_x = 6210000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 375000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν              | = 260000 N |                                 | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 588000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_{y}) =$                 | $\sigma_{tresca}$ =         | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 291000 N |                                 | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 342000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_{y}) =$                 | $\sigma_{tresca}$ =         | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 233000 N
                                     M_{x}
                                            = 8000000 Nmm
                                                                                   Ε
= 534000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali.

|             | i additativo. ia | PP: 00        | oritare randamente aei |                      | o. tangonzian.            |         |   |
|-------------|------------------|---------------|------------------------|----------------------|---------------------------|---------|---|
| Ν           | = 265000 N       | $M_x$         |                        | Е                    | $= 200000 \text{ N/mm}^2$ |         |   |
| $T_v$       | = 418000 N       | $\sigma_{a}$  | $= 195 \text{ N/mm}^2$ | G                    | $= 76000 \text{ N/mm}^2$  |         |   |
| $y_G^{'}$   | =                | σ(N)          | =                      | $\sigma_{l}$         | =                         | $r_u$   | = |
| A           | =                | $\sigma(M_x)$ | .)=                    | $\sigma_{\text{II}}$ | =                         | $r_{v}$ | = |
| $S_{u}^{r}$ | =                | $\tau(T_{v})$ | =                      | $\sigma_{tres}$      | <sub>ca</sub> =           | $r_{o}$ | = |
| $J_u$       | =                | σ΄            | =                      | $\sigma_{mise}$      | es=                       |         |   |
| $J_v$       | =                | τ             | =                      | $\sigma_{\rm st.ve}$ | en=                       |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 200000 \text{ N/mm}^2
= 285000 N
                                     M_{x}
                                            = 7280000 Nmm
                                                                                   Ε
= 481000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 240000 N | $M_x = 6200000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 380000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}} =$  |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|                |            | PP. 00          |                        |                      | · · · · · · · · · · · · · · · · · · · |         |   |
|----------------|------------|-----------------|------------------------|----------------------|---------------------------------------|---------|---|
| Ν              | = 258000 N | M <sub>x</sub>  |                        | Е                    | $= 200000 \text{ N/mm}^2$             |         |   |
| $T_y$          | = 587000 N | $\sigma_{a}$    | $= 195 \text{ N/mm}^2$ | G                    | $= 76000 \text{ N/mm}^2$              |         |   |
| $y_G$          | =          | σ(N)            |                        | $\sigma_{l}$         | =                                     | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_{x})$ | <sub>(</sub> )=        | $\sigma_{II}$        | =                                     | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y)$     | =                      | $\sigma_{tres}$      | ca=                                   | $r_{o}$ | = |
| $J_u$          | =          | σ               | =                      | $\sigma_{mise}$      | es=                                   |         |   |
| $J_v$          | =          | τ               | =                      | $\sigma_{\rm st.ve}$ | en=                                   |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

|                |            | P P . U U    |                        |                     |                           |         |   |
|----------------|------------|--------------|------------------------|---------------------|---------------------------|---------|---|
| Ν              | = 297000 N |              | = 5930000 Nmm          | Ε                   | $= 200000 \text{ N/mm}^2$ |         |   |
| $T_v$          | = 357000 N | $\sigma_{a}$ | $= 195 \text{ N/mm}^2$ | G                   | $= 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | σ(N)         | ) =                    | $\sigma_{l}$        | =                         | $r_u$   | = |
| A <sub>.</sub> | =          | σ(M          | <sub>x</sub> )=        | $\sigma_{II}$       | =                         | $r_{v}$ | = |
| $S_{u}^{n}$    | =          | $\tau(T_y)$  | ) =                    | $\sigma_{tres}$     | <sub>sca</sub> =          | $r_{o}$ | = |
| $J_u$          | =          | σ            | =                      | $\sigma_{mis}$      | es=                       |         |   |
| $J_v$          | =          | τ            | =                      | $\sigma_{\rm st.v}$ | en=                       |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν           | = 231000 N | $M_{x}$      | = 7420000 Nmm          | Ε                   | $= 200000 \text{ N/mm}^2$ |         |   |
|-------------|------------|--------------|------------------------|---------------------|---------------------------|---------|---|
| $T_v$       | = 556000 N | $\sigma_{a}$ | $= 195 \text{ N/mm}^2$ | G                   | $= 76000 \text{ N/mm}^2$  |         |   |
| $y_G$       | =          | σ(N)         | ) =                    | $\sigma_{l}$        | =                         | $r_u$   | = |
| A,          | =          | σ(M          | x)=                    | $\sigma_{II}$       | =                         | $r_{v}$ | = |
| $S_{u}^{n}$ | =          | $\tau(T_y)$  | ) =                    | $\sigma_{tres}$     | sca=                      | $r_{o}$ | = |
| $J_u$       | =          | σ΄           | =                      | $\sigma_{mis}$      | es=                       |         |   |
| $J_v$       | =          | τ            | =                      | $\sigma_{\rm st v}$ | en=                       |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali.

|             | i additativo. ia | PP100         | oritare randamente aer |                      | o. tangonzian.            |         |   |
|-------------|------------------|---------------|------------------------|----------------------|---------------------------|---------|---|
| Ν           | = 266000 N       | $M_x$         | = 4530000 Nmm          | Е                    | $= 200000 \text{ N/mm}^2$ |         |   |
| $T_v$       | = 423000 N       | $\sigma_{a}$  | $= 195 \text{ N/mm}^2$ | G                    | $= 76000 \text{ N/mm}^2$  |         |   |
| $y_G^{'}$   | =                | σ(N)          | =                      | $\sigma_{\text{I}}$  | =                         | $r_u$   | = |
| A           | =                | $\sigma(M_x)$ | .)=                    | $\sigma_{\text{II}}$ | =                         | $r_{v}$ | = |
| $S_{u}^{r}$ | =                | $\tau(T_{v})$ | =                      | $\sigma_{tres}$      | <sub>ca</sub> =           | $r_{o}$ | = |
| $J_u$       | =                | σ΄            | =                      | $\sigma_{mise}$      | es=                       |         |   |
| $J_v$       | =                | τ             | =                      | $\sigma_{\rm st.ve}$ | en=                       |         |   |





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 284000 N
                                     M_{x}
                                            = 6750000 Nmm
                                                                                   Ε
= 502000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca}=
                                     σ
                                                                                   \sigma_{\text{mises}}=
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 238000 N | $M_x = 5540000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 384000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_u$          | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}} =$  |         |   |





Calcolo degli sforzi in  $^{\ast}$  con forze baricentriche

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 258000 N | $M_x = 6070000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 612000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>.</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II}$ =             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Calcolo degli sforzi in \* con forze baricentriche

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 291000 N |                                 | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 346000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_{y}) =$                 | $\sigma_{\text{tresca}}$ =  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |





Calcolo degli sforzi in \* con forze baricentriche

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
= 200000 \text{ N/mm}^2
= 221000 N
                                     M_{x}
                                            = 7160000 Nmm
                                                                                   Ε
= 538000 N
                                             = 195 \text{ N/mm}^2
                                                                                   G
                                                                                            = 76000 \text{ N/mm}^2
                                     \sigma_{a}
                                     \sigma(N) =
                                                                                   \sigma_{\text{I}}
                                     \sigma(M_v)=
                                                                                   \sigma_{\text{II}}
                                     \tau(T_v) =
                                                                                   \sigma_{tresca} =
                                     σ
                                                                                   \sigma_{\text{mises}} =
```





Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

| Ν              | = 263000 N | $M_{x} = 4750000 \text{ Nmm}$   | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 442000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| $A_{_{\star}}$ | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}}$ =  |         |   |

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13





Calcolo degli sforzi in \* con forze baricentriche

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 271000 N | M <sub>x</sub>  |                        | Е                    | $= 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|-----------------|------------------------|----------------------|---------------------------|---------|---|
| $T_v$          | = 484000 N | $\sigma_{a}$    | $= 195 \text{ N/mm}^2$ | G                    | $= 76000 \text{ N/mm}^2$  |         |   |
| $y_G^{'}$      | =          | σ(N)            | =                      | $\sigma_{\text{I}}$  | =                         | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_{x})$ | <u>,</u> )=            | $\sigma_{II}$        | =                         | $r_v$   | = |
| $S_u$          | =          | $\tau(T_y)$     | =                      | $\sigma_{tres}$      |                           | $r_{o}$ | = |
| $J_u$          | =          | σ               | =                      | $\sigma_{mise}$      | es=                       |         |   |
| $J_v$          | =          | τ               | =                      | $\sigma_{\rm st  v}$ | en=                       |         |   |





Calcolo degli sforzi in  $^{\ast}$  con forze baricentriche

Riportare la soluzione su questo foglio.

Trattenere la relazione di calcolo per l'orale.

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia.

Rappresentare il cerchio di Mohr con Polo, elementino, dir. principali.

Operare le conclusioni sulla verifica di resistenza in \*.

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

| Ν              | = 238000 N | $M_x = 5810000 \text{ Nmm}$     | $E = 200000 \text{ N/mm}^2$ |         |   |
|----------------|------------|---------------------------------|-----------------------------|---------|---|
| $T_y$          | = 402000 N | $\sigma_a = 195 \text{ N/mm}^2$ | $G = 76000 \text{ N/mm}^2$  |         |   |
| $y_G$          | =          | $\sigma(N) =$                   | $\sigma_{l} =$              | $r_u$   | = |
| A <sub>*</sub> | =          | $\sigma(M_x)=$                  | $\sigma_{II} =$             | $r_{v}$ | = |
| $S_u$          | =          | $\tau(T_y) =$                   | $\sigma_{\text{tresca}} =$  | $r_{o}$ | = |
| $J_{u}$        | =          | σ =                             | $\sigma_{mises}$ =          |         |   |
| $J_v$          | =          | τ =                             | $\sigma_{\text{st.ven}} =$  |         |   |

