Where are the Joules? Energy Demand Analysis of Heterogeneous Memory Technologies

March 30, 2025

<u>Thomas Preisner</u>¹, Dustin Tien Nguyen¹, Manuel Vögele², Matthias Szymanski², Timo Hönig², Rüdiger Kapitza¹, Wolfgang Schröder-Preikschat¹

¹ Friedrich-Alexander-Universität Erlangen-Nürnberg

² Ruhr-Universität Bochum

RUHR UNIVERSITÄT BOCHUM

Motivation

Goal optimize system provisioning with regard to energy consumption using available memory technologies

Motivation

Goal optimize system provisioning with regard to energy consumption using available memory technologies

Problem no conclusive energy consumption data (too minimal or too specific)

Motivation

Goal optimize system provisioning with regard to energy consumption using available memory technologies

Problem no conclusive energy consumption data (too minimal or too specific)

→ Measure energy consumption of different memory technologies

meBench: memory-agnostic, configurable workload generator

meBench: memory-agnostic, configurable workload generator

Parameter space:

meBench: memory-agnostic, configurable workload generator

Parameter space:

- Read/Write-ratio
- Degree of parallelism
- Access patterns
- Access granularity

- Duration
- NUMA
- Cache Optimizations
- **.** . . .

meBench: memory-agnostic, configurable workload generator

Parameter space:

- Read/Write-ratio
- Degree of parallelism
- Access patterns
- Access granularity

- Duration
- NUMA
- Cache Optimizations
- **.** . . .
- → Measurement using Intel RAPL/external power meter

DRAM vs. NVRAM – Workloads

2 cores, 32 threads, near memory, 80 s duration

DRAM vs. NVRAM – Cache Optimizations

2 cores, 32 threads, write-only, near memory, 80 s duration

DRAM vs. NVRAM – NUMA

2 cores, 32 threads, mixed read/write, sequential, 80 s duration

✓ Workload generator for energy-focussed memory benchmarks

- ✓ Workload generator for energy-focussed memory benchmarks
- ✓ Improved upon existing research (theoretic carbon analysis)

- ✓ Workload generator for energy-focussed memory benchmarks
- ✓ Improved upon existing research (theoretic carbon analysis)

- ✓ Workload generator for energy-focussed memory benchmarks
- Improved upon existing research (theoretic carbon analysis)
- Extend meBench (access patterns, architectures, ...)

- ✓ Workload generator for energy-focussed memory benchmarks
- Improved upon existing research (theoretic carbon analysis)
- Extend meBench (access patterns, architectures, ...)
- More in-depth measurements

- ✓ Workload generator for energy-focussed memory benchmarks
- Improved upon existing research (theoretic carbon analysis)
- Extend meBench (access patterns, architectures, ...)
- More in-depth measurements
 - of the entire system

- ✓ Workload generator for energy-focussed memory benchmarks
- Improved upon existing research (theoretic carbon analysis)
- Extend **meBench** (access patterns, architectures, ...)
- More in-depth measurements
 - of the entire system
 - of CXL-equipped systems