ALGORITMICA GRAFURILOR **Săptămâna 10**

C. Croitoru

croitoru@info.uaic.ro FII

December 3, 2014

OUTLINE

● Fluxuri (ag 14-15 allinone.pdf pag. 244 → 264)

2 Problemele pentru seminarul 10

Recunoașterea secvențelor digrafice.

Date $(d_i^+)_{i=1,n}$ și $(d_i^-)_{i=1,n}$, există un digraf G cu n vîrfuri astfel încît $G=(\{1,\ldots,n\},E)$ și $d_G^+(i)=d_i^+$ și $d_G^-(i)=d_i^ \forall i=1,n$?

Dacă
$$0 \le d_i^+ \le n-1$$
 și $0 \le d_i^- \le n-1$ $\forall i=1, n$ și $\sum_{i=1,n} d_i^+ = \sum_{i=1,n} d_i^- = m$ (unde, $m=|E|$, iar $d_i^+, d_i^- \in \mathbf{Z}$), construim rețeaua bipartită:

Răspunsul este da dacă și numai dacă în această rețea, există un flux întreg de valoare maximă m.

Determinarea numărului de muchie-conexiune al unui graf.

Fie G = (V, E) un graf. Pentru $s, t \in V, s \neq t$, definim:

 $-p_e(s,t)=$ nr. maxim de drumuri cu muchii disjuncte ce unesc s și t.

 $-c_e(s,t)=$ cardinalul minim al unei mulțimi de muchii, prin îndepărtarea căreia din graf, între s și t nu mai există drumuri.

Construim din G digraful G_1 , înlocuind fiecare muchie cu o pereche de arce simetrice. Considerăm $c: E(G_1) \to \mathbf{Z}_+, c(e) = 1, \forall e \in E(G_1)$. Fie x^0 un flux întreg de valoare maximă în $R = (G_1, s, t, c)$.

Fluxul pe arcele groase este 1, pe cele subtiri 0.

Rezultă că $v(x^0) = p_e(s,t)$. Dacă (S,T) e secțiune de capacitate minimă, avem $c(S,T) = v(x^0) = c_e(s,t)$.

Corolar *G* conex:

$$\lambda(G) = \min_{s,t \in V(G)} c_e(s,t). \tag{*}$$

Determinarea numărului de muchie-conexiune al unui graf.

Pentru a afla $\lambda(G)$ ar trebui să rezolvăm cele $\frac{n(n-1)}{2}$ probleme de flux din (*).

Dacă fixăm un vîrf s_0 și rezolvăm n-1 probleme de flux cu $t \in V - s_0$ se va obține în mod necesar o pereche s_0, t_0 pentru care $c(s_0, t_0) = \lambda(G)$.

Rezultă: în $O(n \cdot (nm + n^2c)) = O(n^2m)$ se pot determina $\lambda(G)$ și o mulțime separatoare de muchii de cardinal minim în G.

Determinarea numărului de conexiune al unui graf.

$$G = (V, E)$$
 este un graf și $s, t \in V, \quad s \neq t, \quad st \notin E$

 $-\mathbf{p}(\mathbf{s},\mathbf{t})=$ numărul maxim de st-drumuri cu mulțimile de vîrfuri disjuncte (cu excepția extremităților),

 $-\mathbf{c}(\mathbf{s},\mathbf{t})=$ cardinalul minim al unei mulțimi de vîrfuri st- separatoare,

Teorema lui Menger
$$\Rightarrow$$
 $p(s,t) = c(s,t)$ (*)

Numărul de conexiune k(G) al grafului G este

$$k(G) = \begin{cases} n-1 & \text{dacă } G = K_n \\ \min_{\substack{s,t \in V \\ st \notin E}} c(s,t) & \text{dacă } G \neq K_n \end{cases}$$
 (**)

Fie $G_1 = (V(G_1), E(G_1))$ digraful construit din G astfel:

- $-\forall v \in V$ considerăm $a_v, b_v \in V(G_1)$ și $a_v b_v \in E(G_1)$;
- $\forall vw \in E$ considerăm $b_v a_w, b_w a_v \in E(G_1)$.

$$\begin{array}{c} \mathsf{Definim}\ c: E(\mathit{G}_1) \to \mathbf{Z}_+\ \mathsf{prin} \\ c(e) = \begin{cases} 1 & \mathsf{dac} e = \mathit{a}_{\mathit{v}}\mathit{b}_{\mathit{v}} \\ \infty & \mathsf{altfel}. \end{cases}$$

Determinarea numărului de conexiune al unui graf.

Considerăm rețeaua $R = (G_1, b_s, a_t, c)$. Exemplu:

 \mathbf{x}^0 flux întreg de la b_s la a_t în R de valoare maxim $\mathbf{x} \Rightarrow \mathbf{v}(\mathbf{x}^0) = \mathbf{p}(\mathbf{s}, \mathbf{t})$.

(S,T) o secțiune în R a.î. $v(x^0)=c(S,T)$. \Rightarrow $c(s,t)=|A_0|=c(S,T)=v(x_0)=p(s,t)$, unde A_0 este o mulțime de vîrfuri st- separatoare de cardinal minim.

Pentru a determina k(G) determinăm minimul din (**) prin rezolvarea a $|E(\overline{G})|$ probleme de flux. Se poate construi un algoritm de complexitate $O(m(nm + n^2 \log n))$.

Fluxuri

Flux de cost minim.

Fie R = (G, s, t, c) o rețea și x un flux de la s la t în R. Considerăm $a: E \to \mathbf{R}$ o funcție de cost care asociază fiecărui arc $ij \in E$ $a(ij) = a_{ij}$ costul (transportului unei unități de flux) pe arcul ij. **Costul fluxului** x se defineste ca fiind

$$a(x) = \sum_{i,j} a_{ij} x_{ij}.$$

Problema fluxului de cost minim

Dată R o rețea, $v \in \mathbf{R}^+$ și a : $E \to \mathbf{R}$ funcție de cost, să se determine x^0 flux în R astfel încît

$$a(x^0) = \min\{a(x) \mid x \text{ flux în } R, v(x) = v\}.$$

Problema simplă a atribuirii Se dispune de n lucrători și n lucrări. Costul atribuirii lucrătorului i la lucrarea j este $a_{ij}(i,j\in\{1,\ldots,n\})$. Să se atribuie fiecare dintre cele n lucrări la cîte un lucrător, astfel încît costul total al atribuirii să fie minim.

Problema atribuirii.

Un flux întreg de valoare n și de cost minim, oferă soluția problemei atribuirii.

Problema simplă a transporturilor (Hitchcock-Koopmans): O marfă disponibilă în depozitele D_1,\ldots,D_n în cantitățile d_1,\ldots,d_n este solicitată în centrele de consum C_1,C_2,\ldots,C_m în cantitățile c_1,c_2,\ldots,c_m . Se cunoaște costul a_{ij} al transportului unei unități de marfă de la depozitul D_i la centrul de consum $C_j(\forall i\in\{1,\ldots,n\},\ \forall j\in\{1,\ldots,m\})$. Se cere să se stabilească un plan de transport care să satisfacă toate cererile și să aibă costul total minim

Problema transporturilor

Dacă $\sum_{i=1,n} d_i \geq \sum_{j=1,m} c_j$, un flux de cost minim și de valoare $v = \sum_{i=1,m} c_i$ în rețeaua următoare, rezolvă problema.

Definiție. Fie x un flux în R = (G, s, t, c) și $a : E \to \mathbf{R}$ o funcție de cost. P C-drum în R relativ la fluxul x, \Rightarrow **costul drumului** P este

$$a(P) = \sum_{\substack{ij \in P \\ ii \text{ direct}}} a_{ij} - \sum_{\substack{ij \in P \\ ii \text{ invers}}} a_{ji}.$$

Dacă C este un C-drum închis, a(C) se calculează după aceeași formulă, după stabilirea unui sens de parcurgere a lui C.

Soluția problemei fluxului de cost minim.

Dacă P este drum de creștere relativ la fluxul x, atunci $x^1 = x \otimes r(P)$ este un flux de valoare $v(x^1) = v(x) + r(P)$ și de cost $a(x) + r(P) \cdot a(P)$.

Dacă C este un C-drum închis relativ la x, atunci $x^1 = x \otimes r(C)$ este un flux de valoare $v(x^1) = v(x)$ și de cost $a(x^1) = a(x) + r(C) \cdot a(C)$.

Dacă a(C) < 0 atunci x^1 este un flux de aceeași valoare ca și x, dar de cost strict mai mic.

Teoremă. Un flux de valoare v este de cost minim dacă și numai dacă nu admite C-drumuri închise de cost negativ.

Teoremă. Dacă x este un flux de valoare v și de cost minim iar P_0 este un drum de creștere, astfel încît

 $a(P_0) = \min\{a(P) \mid P \text{drum de creştere relativ la } x\},$ atunci $x^1 = x \bigotimes r(P_0)$ este un flux de valoare $v(x^1) = v + r(P_0)$ și de cost minim.

Algoritm generic de rezolvare a problemei fluxului de cost minim.

Algoritm generic de rezolvare a problemei fluxului de cost minim

- 0: Se consideră $x=(x_{ij})$ un flux cu valoarea $v' \leq v$; $\{x \text{ poate fi fluxul nul sau un flux } y \text{ determinat cu ajutorul algoritmului de flux maxim și apoi considerînd <math>x=(\frac{v}{v(v)}y)\}$
- 1: while (∃ circuite de pondere < 0 relativ la ā_{ij}) do
 { determină un astfel de circuit; modifică fluxul pe acest circuit }
- 2: while v(x) < v do
 { aplică un algoritm de drum minim în raport cu ponderile ā_{ij} pentru depistarea unui
 C-drum P de cost minim;
 x ← x ⊗ min(r(P), v v(x)) }

Complexitatea pentru pasul 2 este $O(n^3v)$, dacă se pleacă de la fluxul nul. Se poate dovedi că pasul 1 se poate implementa astfel ca numărul iterațiilor să fie $O(nm^2logn)$.

Problemele pentru seminarul 10

Se vor discuta (cel puțin) patru probleme dintre următoarele:

- Problema 2 Setul 8'
- 2 Problemele 1 și 4 Setul 9
- Problemele 3 și 4, Setul 10
- Problema 1 Setul 11'
- Problema 1, Setul 11"
- Problema 4 Setul 25