ナイス視点!

それぞれの工夫が「**GPU専用なのか、CPUでも意味があるのか**」という観点で整理すると、**リソースに応じた使い分けが明確**になります。以下に一覧と補足を示します。

▼ GPU使用時に特に効果的(または必須)、CPUではほぼ効果なし・無意味

手法	GPU専用に近い	CPUでも意味ある か?
LoRA	▼ 高速な GPU 推論 前提	⚠ CPUでも動くが、恩恵は薄い(学習は遅い)
Gradient checkpointing	✓ GPUメモリ削減 が目的	★ CPUでは計算コ ストが増え逆効果に 近い
BF16 / FP16 mixed precision	✓ GPUでこそ意味 あり(特に Ampere 以上)	X CPUでは基本非対応 or 遅くなる

補足 補足

- LoRA は CPU での学習も可能だけど、**高速に微調整できるというメリットが薄れる**。
- Mixed Precision (BF16/FP16) は、**CPUでは整数演算との相性も悪** く、精度や速度面でメリットがほぼなし。
- Gradient checkpointing は、**GPUのメモリ節約のために再計算する** 技術で、CPUでは計算負荷が重くなって逆に遅くなる。

CPUでもある程度使えるが、GPUでこそ最大の恩恵あり

手法	GPU向け	CPU向けでもOK?
Batching optimizations		▼ 効果あり
Data packing		✓ (ただし主に LLM系列)
Sequence length limit		✓ (長さが増えれば 遅くなるのは CPU も 同様)

補足

- バッチ処理やデータパッキングは CPU でも動作効率に貢献。特に小型モデルで大量のサンプル処理をしたいときには有効。
- **シーケンス長の制限**も、CPUで長文処理すると当然遅くなるので、**制限**

する意味はある(ただし学習じゃなく推論時に効く)。

★ 総まとめ (CPU vs GPU)

手法	GPU時有効	CPU時有効	コメント
LoRA		⚠ 微調整は可 だが遅い	
Gradient checkpointing	V	★ 再計算が重 すぎる	
BF16 / FP16	✓ (Ampere 以上)	メ 基本非対応 or 遅い	
Batching optimizations		▼ 効果あり	
Sequence length limit		✓ 推論高速化 に有効	
Data packing	V	✓ (トークン 系列限定)	

もしCPU環境でやる場合は、

- 「Batching 最適化」「Sequence 制限」「LoRA 推論のみ」は比較 的恩恵があり、
- 「Gradient checkpointing」「BF16/FP16」は基本避けたほうが 無難です。

CPUでも賢くやりたい方向けに、PyTorchやHuggingFace Transformers の**低リソース最適化Tips**もあるので、必要ならそっちも紹介できますよ!