1 Definitionen

Definition 1.1 (*Modal Interface Automat*). Ein Modal Interface Automat (MIA) ist ein Tupel $(P, I, O, \longrightarrow, -\rightarrow, p_0, e)$ mit:

- P: Menge der Zustände
- $p_0 \in P$: Startzustand
- $e \in P$: universeller Zustand
- I, O: disjunkte Input- und Outputaktionen
- $A = I \cup O$: Alphabet
- $\tau \notin A$: interne Aktion
- $\longrightarrow \subseteq P \times (A \cup \{\tau\}) \times (\mathcal{P}(P) \setminus \emptyset)^1$: disjunktive must-Transitions-Relation
- $-- \rightarrow \subseteq P \times (A \cup \{\tau\}) \times P$: may-Transitions-Relation

Es werden die folgenden Eigenschaften vorausgesetzt:

- 1. $\forall \alpha \in A \cup \{\tau\} : p \xrightarrow{\alpha} P \Rightarrow \forall p' \in P : p \xrightarrow{\alpha} p' \text{ (syntaktische Konsistenz)}$
- 2. e tritt nur als Zielzustand von Input may-Transitionen auf (Senken-Voraussetzung)

 TODO: Übersetzung überdenken

Must-Transitionen sind Transitionen, die von einer Verfeinerung implementiert werden müssen. Die may-Transitionen sind hingegen die zulässigen Transitionen für eine Verfeinerung.

Für beliebige Alphabete I, O ist dann $P = (\{e\}, I, O, \emptyset, \emptyset, e, e)$ der universelle MIA, da in e als universellen Zustand beliebiges Verhalten zulässig ist.

TODO: allgemeine Benennungen erklären (α,a)

Definition 1.2 (*Parallel produkt*). Zwei MIAs P_1, P_2 sind komponierbar, falls $O_1 \cap O_2 = \emptyset$. Für solche MIAs ist das Produkt $P_1 \otimes P_2 = ((P_1 \times P_2) \cup \{e_{12}\}, I, O, \longrightarrow, --\rightarrow, (p_{01}, p_{02}), e_{12})$ definiert mit:

- e_{12} : frischer universeller Zustand
- $I = (I_1 \cup I_2) \setminus (O_1 \cup O_2)$
- $O = (O_1 \cup O_2)$

 $^{^{1}\}mathcal{P}(P)$ bezeichnet die Potenzmenge von P

• \longrightarrow , ----: kleinste Relationen, die die folgenden Regeln erfüllen:

$$(PMust1)$$
 $(p_1, p_2) \xrightarrow{\alpha} P_1' \times \{p_2\}, falls p_1 \xrightarrow{\alpha} P_1' \text{ und } \alpha \notin A_2$

$$(PMust2)$$
 $(p_1, p_2) \xrightarrow{\alpha} \{p_1\} \times P'_2$, falls $p_2 \xrightarrow{\alpha} P'_2$ und $\alpha \notin A_1$

$$(PMust3)$$
 $(p_1, p_2) \xrightarrow{a} P_1' \times P_2'$, falls $p_1 \xrightarrow{a} P_1'$ und $p_2 \xrightarrow{a} P_2'$

$$(PMay1)$$
 $(p_1, p_2) \xrightarrow{\alpha} P_1' \times \{p_2\}, falls p_1 \xrightarrow{\alpha} P_1' und \alpha \notin A_2$

$$(PMay2)$$
 $(p_1, p_2) \xrightarrow{\alpha} \{p_1\} \times P_2'$, falls $p_2 \xrightarrow{\alpha} P_2'$ und $\alpha \notin A_1$

$$(PMay3)$$
 $(p_1, p_2) \xrightarrow{a} P'_1 \times P'_2$, falls $p_1 \xrightarrow{a} P'_1$ und $p_2 \xrightarrow{a} P'_2$

Definition 1.3 (Parallelkomposition). Gegeben ein Parallelprodukt $P_1 \otimes P_2$, ein Zustand (p_1, p_2) ist ein neuer Kommunikationsfehler, falls es ein $a \in A_1 \cap A_2$ gibt, sodass:

(a)
$$a \in O_1, p_1 \xrightarrow{a} und p_2 \xrightarrow{a} oder$$

(b)
$$a \in O_2, p_2 \xrightarrow{a} und p_1 \xrightarrow{a}$$
.

 (p_1, p_2) ist ein geerbter Kommunikationsfehler, falls eine der Komponenten ein universeller Zustand ist, d.h. $p_1 = e_1 \lor p_2 = e_2$.

 $E \subseteq P_1 \times P_2$ ist die Menge der unzulässigen Zustände. Es gilt $(p_1, p_2) \in E$, falls:

(i) (p_1, p_2) ist ein neuer oder geerbter Kommunikationsfehler,

(ii)
$$(p_1, p_2) \xrightarrow{w} (p'_1, p'_2)$$
 und $(p'_1, p'_2) \in E$. TODO: $w \in O \cup \{\tau\}$ in Notation aufnehmen