Progetto Deep Learning: Ottimizzazione di TinyViT per Embedded

Questo repository contiene tutti i file e le cartelle relativi al progetto svolto per il corso di Deep Learning, il cui obiettivo stato l'ottimizzazione di un Vision Transformer (TinyViT) per il deployment su dispositivi embedded.

Obiettivi del progetto

- Ridurre la complessit di TinyViT tramite:
- Knowledge Distillation (da ResNet18)
- Pruning (disattivazione dropout)
- Esportazione in formato TFLite (float32)
- Adattare il modello al dataset CIFAR-10 (10 classi, immagini 32x32)
- Validare il funzionamento su ambiente embedded (simulazione CPU)

Struttura del pacchetto consegna

PACCHETTO_CONSEGNA/

-- ARCHITETTURA_MODELLO/

Diagrammi, descrizioni e struttura architetturale dei modelli

-- CODICE_PROGETTO/

Script Python organizzati per addestramento, verifica,

esportazione

...

-- FONTI_PAPER/

Riferimenti scientifici, paper in PDF o link utili

-- MODELLO_DISTILLATO_PRUNATO/

Checkpoint del modello student dopo distillazione e

pruning

-- MODELLO_ORIGINALE/

Versione originale del modello student pre-distillazione

-- MODELLO TFLITE EMBEDDED/

File .tflite esportato per dispositivi embedded (es. Android,

Raspberry)

-- SCREEN_SHOT_PROGETTO/

Screenshot dell'interfaccia, risultati, inferenze

-- Giustificazione_Scientifica_TinyViT.pdf # Motivazione scientifica del progetto

-- presentazione_pechakucha.pdf # Presentazione finale (formato PechaKucha - 20 slide)

-- presentazione_pechakucha.pptx # Presentazione modificabile in PowerPoint

Rapporto_TinyViT.pdf # Report sintetico (4-6 pagine)
Dipendenze principali
- torch, torchvision
- timm (per ViT e TinyViT)
- tensorflow (per validazione TFLite)
- ai-edge-torch (per esportazione TFLite da PyTorch)
- matplotlib, numpy
Note tecniche
- La distillazione effettuata su CIFAR-10, sebbene TinyViT sia gi stato distillato durante il pretraining su
ImageNet-21k. Il fine-tuning distillato ha senso per l'adattamento al task specifico.
- La quantizzazione int8 non stata possibile, in quanto TinyViT non compatibile con TFLite quantization
post-training standard.
- Il modello finale esportato in `.tflite` (float32) ed pronto per inferenza su dispositivi embedded CPU.
Autore
Davide lannella
Progetto Deep Learning - Laurea Magistrale Ingegneria Informatica