Grade 8 Science

Fluids Class 11

Flow Rate

- Flow rate a measure of how quickly fluids move; measured in volume per unit time (L/s)
- Depends on:
 - The type of fluid that is flowing
 - The force pushing on the fluid
 - The size of the pipe or opening the fluid is flowing through
 - The type of surface over which the fluid is flowing

Checkpoint

Find the flow rate if a 1L container takes 4 seconds to fill from your kitchen tap

Controlling Fluid Flow

- Fluid mechanics study of how fluids behave when at rest and when moving
- Fluids dynamics the study of fluids in motion
 - Aerodynamics: the study of moving gases
 - Hydrodynamics: the study of moving liquids

Aeronautics

- The study of the science of flight
- Examples:
 - Wing designs to control airflow around wings
 - Parachute and paraglider designs
 - Wind tunnel used to study and control airflow around objects

Fluid Control in the Food Industry

- Margarine and shortening made made by bubbling hydrogen gas through vegetable oil
- If hydrogen gas mixes too quickly, a substance called "trans fat" may be produced

- Ethylene gas can help ripen fruit
- Fruits are picked and transported before they are ripe because ripened fruit is firmer and less likely to damage
- Fruit is stored in a ripening room where it is exposed to ethylene gas

Water Dams

- Dams are used to control the flow of water and to generate electricity
- Flow of the water spins the blades of the electric turbine thereby generating electricity

Advantages

- Does not emit air pollution
- Does not create radioactive wastes
- Renewable and clean energy source
- Reliable energy

Disadvantages

- · Loss of land due to flooding
- Construction of dam removes wetlands, agricultural land and lands for First Nations people
- Affects fish populations

Controlling Blood Flow

- Blood flow is one of the most important fluid movement within the body
 - Blood thinners medicines for patients whose blood clots too easily which can lead to heart attacks and strokes
 - Hemophilia genetic condition that causes the patient to bleed excessively; medicine needed to promote clotting
 - Artificial hearts transplanted into people who hearts are not strong enough to continuously pump blood

Volume

Volume – how much space an object occupies

 $volume = length \times width \times height$

• For solids: cm³, m³

• For gases: m³

Conversion:

1cm³ = 1mL

• For liquids: mL, L

Finding Volume by Displacement

- Used to measure irregularly-shaped objects
- Displacement the volume that the object displaces

 The volume of objects too large to fit in a graduated cylinder can be measured using an overflow can

Density

- Density the measure of the amount of matter in a given volume of a substance
- Characteristic property a property that makes a particular substance distinct from others

$$density = \frac{mass}{volume}$$

- For solids and liquids: g/cm³ or g/mL
- For gases: kg/m³

- 1kg of styrofoam and 1kg of gold may have the same mass but styrofoam would require more volume
- Gold is more dense than styrofoam
- For the same volume, there would be more gold particles than styrofoam particles

- Particles of solids are usually closer together than liquids and gases
- Space between gas particles are larger than solids and liquids
- Gases are less dense and more compressible

Checkpoint

An empty container has a mass of 50g. When 75mL of oil are placed in it, the total mass is 120g. Calculate the density of the oil.

Density of Water

Table 1 The Density of Some Common Materials

Fluids	g/cm³ or g/mL	kg/m³
air	0.001 3	1.3
carbon monoxide	0.001 45	1.45
gasoline	0.737	
distilled water (at 4 °C)	1.0	
sea water	1.03	
mercury (a liquid metal)	13.55	
Solids		
wood (balsa)	0.12	
ice	0.92	
lead	11.34	

- Usually fluids become more dense as they cool because the particles move slower and closer together
- This is true for water only until 4°C; water is most dense at 4°C
- As cooling continues, water particles move farther apart, volume increases and forms ice

- Since the mass remains the same, but the volume increases, the density decreases
- Pure water is least dense at 0°C

- Ice forms at the top of lakes and floats on liquid water
- If water behaved like other liquids, our lakes would freeze solid in the winter, killing the plants and animals

Hydrometer

HYDROMETER

- A glass tube with a weight on one end floats in the liquid sample
- Take a reading at the bottom of the meniscus when the hydrometer is not touching the sides of the column