Approximation Algorithms

Bin Wang

School of Software Tsinghua University

December 20, 2019

Outline

- Overview
- Vertex-cover problem
- **TSP**
- Set-covering problem
- Randomization and LP
- Subset-sum problem

Definition

We say that an algorithm for a problem has an **approximation ratio** of $\rho(n)$ if, for any input of size n, the cost C of the solution produced by the algorithm is within a factor of $\rho(n)$ of the cost C^* of an optimal solution:

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \le \rho(n).$$

Definition

An approximation scheme for an optimization problem is an approximation algorithm that takes as input not only an instance of the problem, but also a value

 0 such that for any fixed ε, the scheme is a (1 + ε)-approximation algorithm.

Definition

We say that an approximation scheme is a polynomial-time approximation scheme if for any fixed ε > 0, the scheme runs in time polynomial in the size n of its input instance.

Definition

We say that an approximation scheme is a fully polynomial-time approximation scheme if it is an approximation scheme and its running time is polynomial both in 1/ε and in the size n of the input instance.

For example, the scheme might have a running time of $O((1/\epsilon)^2 n^3)$.

Definition

- A vertex cover of an undirected graph G = (V, E) is a subset V' ⊆ V such that if (u, v) is an edge of G, then either u ∈ V' or v ∈ V' (or both).
- The vertex-cover problem is to find a vertex cover of minimum size in a given undirected graph. We call such a vertex cover an optimal vertex cover.

```
APPROX-VERTEX-COVER(G)
1 C = \emptyset
2 E' = G.E
   while E' \neq \emptyset
         let (u, v) be an arbitrary edge of E'
         C = C \cup \{u, v\}
6
         remove from E' every edge incident
               on either u or v
   return C
                 → Skip Example
```


Theorem 35.1

APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof.

• The running time of this algorithm is O(V + E), using adjacency lists to represent E'.

Theorem 35.1

APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof.

 The running time of this algorithm is O(V + E), using adjacency lists to represent E'.

- Let A denote the set of edges that were picked in line 4 of APPROX-VERTEX-COVER. Thus we have |C*| ≥ |A|.
- $|C| = 2|A| \le 2|C^*|$

The traveling-salesman problem

Definition

```
TSP = \{\langle G, c, k \rangle : G = (V, E) \text{ is a complete graph,}
c \text{ is a function from } V \times V \to \mathbb{Z},
k \in \mathbb{Z}, \text{ and}
G \text{ has a traveling-salesman tour}
with cost at most k \}
```


Triangle inequality

Let c(A) denote the total cost of the edges in the subset A ⊆ E:

$$c(A) = \sum_{(u,v)\in A} c(u,v).$$

Triangle inequality

 We say that cost function c satisfies the triangle inequality if for all vertices u, v, w ∈ V,

$$c(u, w) \leq c(u, v) + c(v, w).$$

APPROX-TSP-Tour(G, c)

- 1 select a vertex $r \in G$. V to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let H be the list of vertices, ordered according to a preorder tree walk of T
- 4 return the hamiltonian cycle H

→ Skip Example

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for the traveling-salesman problem with the triangle inequality.

- The running time of APPROX-TSP-TOUR is $\Theta(V^2)$.
- $c(T) \leq c(H^*)$
- A full walk of T lists the vertices when they are first visited and also whenever they are returned to after a visit to a subtree. Let us call this walk W.

$$c(W) = 2c(T) < 2c(H^*).$$

- The running time of APPROX-TSP-TOUR is $\Theta(V^2)$.
- $c(T) \leq c(H^*)$
 - A full walk of T lists the vertices when they are first visited and also whenever they are returned to after a visit to a subtree. Let us call this walk W.

$$c(W) = 2c(T) < 2c(H^*).$$

- The running time of APPROX-TSP-TOUR is $\Theta(V^2)$.
- $c(T) \leq c(H^*)$
- A full walk of T lists the vertices when they are first visited and also whenever they are returned to after a visit to a subtree. Let us call this walk W.

$$c(W) = 2c(T) \leq 2c(H^*).$$

- The running time of APPROX-TSP-TOUR is $\Theta(V^2)$.
- $c(T) \leq c(H^*)$
- A full walk of T lists the vertices when they are first visited and also whenever they are returned to after a visit to a subtree. Let us call this walk W.

$$c(H) \le c(W) = 2c(T) \le 2c(H^*).$$

Theorem 35.3

If $P \neq NP$, then for any constant $\rho \geq 1$, there is **no** polynomial-time approximation algorithm with approximation ratio ρ for the general traveling-salesman problem.

- Suppose to the contrary that for some number ρ ≥ 1, there is a polynomial-time approximation algorithm A with approximation ratio ρ. Without loss of generality, we assume that ρ is an integer, by rounding it up if necessary.
- Let G = (V, E) be an instance of the hamiltonian-cycle problem.

Proof.

• Let G' = (V, E') be the complete graph on V; that is, $E' = \{(u, v) : u, v \in V \text{ and } u \neq v\}.$

Assign an integer cost to each edge in E' as follows:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

 \bullet $(\rho|V|+1)+(|V|-1)=\rho|V|+|V|>\rho|V|$

Proof.

• Let G' = (V, E') be the complete graph on V: that is. $E' = \{(u, v) : u, v \in V \text{ and } u \neq v\}.$

as follows:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

Proof.

• Let G' = (V, E') be the complete graph on V; that is, $E' = \{(u, v) : u, v \in V \text{ and } u \neq v\}.$

 Assign an integer cost to each edge in E' as follows:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

• $(\rho|V|+1)+(|V|-1)=\rho|V|+|V|>\rho|V|$

The set-covering problem

Definition

• An instance (X, F) of the set-covering problem consists of a finite set X and a family F of subsets of X, such that every element of X belongs to at least one subset in:

$$X = \bigcup_{S \in \mathcal{T}} S$$
.

The set-covering problem

Definition

The problem is to find a *minimum-size* subset C ⊆ F whose members cover all of X:

$$X = \bigcup_{S \in \mathcal{C}} S.$$

The set-covering problem


```
GREEDY-SET-COVER(X, \mathcal{F})
   IJ = X
2 \mathcal{C} = \emptyset
3 while U \neq \emptyset
             select an S \in \mathcal{F}
                     that maximizes |S \cap U|
             U = U - S
             \mathcal{C} = \mathcal{C} \cup \{S\}
     return \mathcal{C}
```

Overview

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -approximation algorithm, where $\rho(n) = H(\max\{|S| : S \in \mathcal{F}\})$. We define $H(d) = \sum_{i=1}^{d} 1/i$ and H(0) = 0.

Proof.

The algorithm GREEDY-SET-COVER can easily be implemented to run in time polynomial in |X| and $|\mathcal{F}|$. For example, there is an implementation that runs in time $O(|X||\mathcal{F}|\min(|X|,|\mathcal{F}|)$.

Proof.

Let S_i denote the *i*th subset selected by GREEDY-SET-COVER; the algorithm incurs a cost of 1 when it adds S_i to C. We spread this cost of selecting S_i evenly among the elements covered for the first time by S_i .

Proof.

• Let c_x denote the cost allocated to element x, for each $x \in X$. If x is covered for the first time by S_i , then

$$c_{\mathsf{X}} = \frac{1}{|S_i - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Proof.

- At each step of the algorithm, 1 unit of cost is assigned, and so $|C| = \sum_{x \in X} c_x$.
- The cost assigned to the optimal cover is $\sum_{S \in C^*} \sum_{x \in S} c_x$,

Proof.

- and since each $x \in X$ is in at least once set $S \in \mathcal{C}^*$, we have $|\mathcal{C}| = \sum_{x \in X} c_x \le \sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x$.
- The remainder of the proof rests on the following key inequality, which we shall prove shortly. For any set S belonging to the family , ∑_{x∈S} c_x ≤ H(|S|).
- $|\mathcal{C}| \leq \sum_{S \in \mathcal{C}^*} H(|S|) \leq |\mathcal{C}^*| \cdot H(\max |S|).$

Proof.

• Consider any set $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}|$, and let $u_i = |S - (S_1 \cup S_2 \cup ... \cup S_i)|$ be the number of elements in S remaining uncovered after $S_1, S_2, ..., S_i$ have been selected by the algorithm.

Proof.

- We define u₀ = |S| to be the number of elements of S, which are all initially uncovered. Let k be the least index such that u_k = 0, so that each element in S is covered by at least one of the sets S₁, S₂,..., S_k.
- Then, $u_{i-1} \ge u_i$, and $u_{i-1} u_i$ elements of S are covered for the first time by S_i .

Proof.

Thus

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Proof.

Observe that

$$|S_i - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|$$

 $\geq |S - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|$
 $= u_{i-1},$

because the greedy choice of S_i guarantees that S cannot cover more new elements that S_i does.

Proof.

Consequently, we obtain

$$\sum_{x \in S} c_x \le \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}} = \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}}$$

$$\le \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j} \qquad (because \ j \le u_{i-1})$$

$$= \sum_{i=1}^k \left(\sum_{j=1}^{u_{i-1}} \frac{1}{j} - \sum_{j=1}^{u_i} \frac{1}{j} \right)$$

Proof.

Thus,

$$\sum_{x \in S} c_x \le \sum_{i=1}^k (H(u_{i-1}) - H(u_i))$$

$$= H(u_0) - H(u_k)$$

$$= H(u_0)$$

$$= H(|S|).$$

Corollary 35.5

GREEDY-SET-COVER is a polynomial-time $(\ln |X| + 1)$ -approximation algorithm

Definition

We say that an algorithm for a randomized problem has an *approximation ratio* of $\rho(n)$ if, for any input of size n, the *expected* cost C of the solution produced by the algorithm is within a factor of $\rho(n)$ of the cost C^* of an optimal solution:

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \le \rho(n).$$

Definition

We also call a randomized algorithm that achieves an approximation ratio of $\rho(n)$ a $\rho(n)$ randomized approximation algorithm.

Theorem 35.6

Given an instance of MAX-3-CNF satisfiability with n variables x_1, x_2, \ldots, x_n and m clauses, the randomized algorithm that independently sets each variable to 1 with probability 1/2 and to 0 with probability 1/2 is a randomized 8/7-approximation algorithm.

Proof.

For i = 1, 2, ..., m, we define the indicator random variable

$$Y_i = I\{ \text{ clause } i \text{ is satisfied } \}$$

Let Y be the number of satisfied clauses overall, so that $Y = Y_1 + Y_2 + \cdots + Y_m$.

Proof.

For i = 1, 2, ..., m, we define the indicator random variable

$$Y_i = I\{ \text{ clause } i \text{ is satisfied } \}$$

= 1 - 1/8

Let Y be the number of satisfied clauses overall, so that $Y = Y_1 + Y_2 + \cdots + Y_m$.

Proof.

Then we have

$$E[Y] = E\left[\sum_{i=1}^{m} Y_i\right]$$
$$= \sum_{i=1}^{m} E[Y_i] = \sum_{i=1}^{m} 7/8 = 7m/8$$

Hence the approximation ratio is at most m/(7m/8) = 8/7.

Proof.

Overview

Then we have

$$E[Y] = E\left[\sum_{i=1}^{m} Y_i\right]$$
$$= \sum_{i=1}^{m} E[Y_i] = \sum_{i=1}^{m} 7/8 = 7m/8$$

Hence the approximation ratio is at most m/(7m/8) = 8/7.

Definition

In the *minimum-weight vertex-cover problem*, we are given an undirected graph G = (V, E) in which each vertex $v \in V$ has an associated positive weight w(v). For any vertex cover $V' \subseteq V$, we define the weight of the vertex cover $w(V') = \sum_{v \in V'} w(v)$. The goal is to find a vertex cover of minimum weight.

0-1 integer program

The following 0-1 integer program is used to find a minimum-weight vertex cover:

minimize
$$\sum_{v \in V} w(v)x(v)$$

subject to

$$x(u) + x(v) \ge 1$$
 for each $(u, v) \in E$
 $x(v) \in \{0, 1\}$ for each $v \in V$.

linear-programming relaxation

Suppose, we remove the constraint that $x(v) \in \{0, 1\}$ and replace it by $0 \le x(v) \le 1$.

minimize
$$\sum_{v \in V} w(v)x(v)$$

subject to

$$x(u) + x(v) \ge 1$$
 for each $(u, v) \in E$
 $x(v) \le 1$ for each $v \in V$
 $x(v) \ge 0$ for each $v \in V$


```
APPROX-MIN-WEIGHT-VC(G, w)
1 C = \emptyset
    compute \overline{x}, an optimal solution
          to the linear program.
3 for each v \in V
          if \overline{x}(v) \geq 1/2
                C = C \cup \{v\}
    return C
```


Theorem 35.7

Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

Proof.

Let C^* be an optimal solution to the minimum-weight vertex-cover problem, and let z^* be the value of an optimal solution to the linear program.

Since an optimal vertex cover is a feasible solution to the linear program, we have $z^* < w(C^*)$.

Proof.

$$Z^* = \sum_{v \in V} w(v) \overline{x}(v)$$

$$\geq \sum_{v \in V: \overline{x}(v) \geq 1/2} w(v) \overline{x}(v)$$

Proof.

Overview

$$z^* \ge \sum_{v \in V: \overline{x}(v) \ge 1/2} w(v) \cdot \frac{1}{2}$$
$$= \sum_{v \in C} w(v) \cdot \frac{1}{2} = \frac{1}{2} w(C)$$

Thus, $w(C) \le 2z^* \le 2w(C^*)$.

An exponential-time exact algorithm

```
EXACT-SUBSET-SUM(S, t)
1 n = |S|
2 L_0 = \langle 0 \rangle
3 for each i = 1 to n
          L_i = Merge-Lists(L_{i-1}, L_{i-1} + x_i)
          remove from L<sub>i</sub> every element that
                     is greater than t
    return the largest element in L_n
6
```

An exponential-time exact algorithm

Example

If
$$S = \{1, 4, 5\}$$
, then
$$P_1 = \{0, 1\},$$

$$P_2 = \{0, 1, 4, 5\},$$

$$P_3 = \{0, 1, 4, 5, 6, 9, 10\},$$

A trimming scheme

- We use a trimming parameter δ such that $0 < \delta < 1$.
- To trim a list L by δ means to remove as many elements from L as possible,

A trimming scheme

For every element y that was removed from L, there is an element z still in L' that approximates y, that is,

$$\frac{y}{1+\delta} \leq z \leq y.$$

• $\delta = 0.1, L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle \Rightarrow$, $L' = \langle 10, 12, 15, 20, 23, 29 \rangle$.

```
\mathsf{TRIM}(L,\delta)
   m = |L|
2 L' = \langle y_1 \rangle
3 last = v_1
   for i = 2 to m
           if y_i > last \cdot (1 + \delta)
5
                  append y_i onto the end of L'
6
                  last = v_i
    return L'
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
   n = |S|
2 L_0 = \langle 0 \rangle
   for i = 1 to n
          L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
          L_i = \text{TRIM}(L_i, \epsilon/2n)
5
          remove from L_i every element that
                       is greater than t
    let z^* be the largest value in L_n
    return z*
```

Example

```
Suppose we have the instance S = \langle 104, 102, 201, 101 \rangle with t = 308 and \epsilon = 0.40. The trimming parameter \delta is \epsilon/8 = 0.05.
```

Example

APPROX-SUBSET-SUM computes the following values on the indicated lines:

line 2 : $L_0 = \langle 0 \rangle$

```
line 4: L_1 = \langle 0, 104 \rangle
line 5: L_1 = \langle 0, 104 \rangle
line 6: L_1 = \langle 0, 104 \rangle
```

Example

```
line 4: L_2 = \langle 0, 102, 104, 206 \rangle

line 5: L_2 = \langle 0, 102, 206 \rangle

line 6: L_2 = \langle 0, 102, 206 \rangle

line 4: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle

line 5: L_3 = \langle 0, 102, 201, 303, 407 \rangle

line 6: L_3 = \langle 0, 102, 201, 303 \rangle
```

Example

```
line 4: L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle

line 5: L_4 = \langle 0, 101, 201, 302, 404 \rangle

line 6: L_4 = \langle 0, 101, 201, 302 \rangle
```

Theorem 35.8

APPROX-SUBSET-SUM is a fully polynomial-time approximation scheme for the subset-sum problem.

Proof.

Let $y^* \in P_n$ denote an optimal solution to the subset-sum problem. By induction on i, it can be shown that for every element y in P_i that is at most t, there is a $z \in L_i$ such that

$$\frac{y}{(1+\epsilon/2n)^i} \le z \le y.$$

Proof.

Thus

$$\begin{aligned} \frac{y^*}{z^*} &\leq \left(1 + \frac{\epsilon}{2n}\right)^n \\ &\leq e^{\epsilon/2} \quad \left(\lim_{n \to \infty} (1 + x/n)^n = e^x\right) \\ &\leq 1 + \epsilon/2 + (\epsilon/2)^2 \quad (1 + x < e^x < 1 + x + x^2) \\ &\leq 1 + \epsilon \end{aligned}$$

Proof.

After trimming, successive elements z and z' of L_i must have the relationship $z'/z > 1 + \epsilon/2n$. The number of elements in each list L_i is at most

Proof.
$$\log_{1+\epsilon/2n} t + 2 = \frac{\ln t}{\ln(1+\epsilon/2n)} + 2$$

$$\leq \frac{2n(1+\epsilon/2n)\ln t}{\epsilon} + 2 \qquad \left(\frac{x}{1+x} \leq \ln(1+x)\right)$$

$$\leq \frac{3n\ln t}{\epsilon} + 2$$