Exercise: Functions

Problems for exercise and homework for the "JS Fundamentals" Course @ SoftUni. Submit your solutions in the SoftUni judge system at - https://judge.softuni.org/Contests/1262

• Smallest of Three Numbers

Write a function that receives **three integers** and prints the **smallest** number. Use an appropriate name for the function.

Examples

Input	Output
2,	
5,	2
3	
600, 342, 123 25, 21,	
342,	123
123	
25,	
21,	4
4	
2,	
2,	2
2	

Add and Subtract

You will receive three integer numbers.

Write a function sum() to calculate the sum of the first **two** integers and a function **subtract**(), which subtracts the result of the function sum() and the **third** integer.

Examples

Input	Output
23,	
6,	19
10	
1,	
17,	-12
30	
17, 30 42, 58, 100	
58,	0
100	

• Characters in Range

Write a function that receives **two characters** and prints on a single line all the characters in between them according to the **ASCII** code. Keep in mind that the second character code might be **before** the first one inside the **ASCII table**.

Examples

Input	Output	
'a', 'd'	b c	
'#', ':'	\$ % & '() * + ,/0123456789	
'C', '#'	\$ % & '() * + ,/0123456789:; <=>? @ AB	

• Odd and Even Sum

You will receive a single number. You have to write a function, that returns the sum of all even and all odd

digits from that number.

Examples

Input	Output
1000435	Odd sum = 9 , Even sum = 4
3495892137259234	Odd sum = 54 , Even sum = 22

• Palindrome Integers

A palindrome is a number, which reads the same **backward as forward**, such as 323 or 1001. Write a function, which receives an **array of positive integers** and checks if each integer is a palindrome or not. Output

- If the current integer is a palindrome, print: "true"
- Otherwise, print: "false"

Examples

Input	Output		Input	Output
[123,323,421,121] false true false true	false		[32,2,232,1010]	false
	true			true
	false		[32,2,232,1010]	true
	true			false

Hints

- Read more about palindromes: https://en.wikipedia.org/wiki/Palindrome
- Password Validator

Write a function that checks if a given password is valid. Password validations are:

- The **length** should be **6 10** characters (inclusive)
- It should consist **only of letters** and **digits**
- It should have at least 2 digits

If a password is a valid print: "Password is valid".

If it is **NOT** valid, for every unfulfilled rule print a message:

- "Password must be between 6 and 10 characters"
- "Password must consist only of letters and digits"
- "Password must have at least 2 digits"

Examples

Zampies	
Input	Output
lla «In!	Password must be between 6 and 10 characters
'logIn'	Password must have at least 2 digits
'MyPass123'	Password is valid
ID-¢-¢-!	Password must consist only of letters and digits
'Pa\$s\$s'	Password must have at least 2 digits

NxN Matrix

Write a function that receives a single integer number \mathbf{n} and prints $\mathbf{n}\mathbf{x}\mathbf{n}$ matrix with that number.

Examples

Input	Output
	3 3 3
3	3 3 3
	3 3 3

	777777
	777777
	777777
7	777777
	777777
	777777
	777777
2	2 2
\ \(^{2}\)	2 2

• Perfect Number

Write a function that receives a **number** and checks if that number is perfect or NOT.

A perfect number is a **positive** integer that is equal to the **sum** of its **proper positive divisors**. That is the sum of its positive **divisors** excluding the number itself (also known as its **aliquot sum**). Output

- If the number is perfect, print: "We have a perfect number!"
- Otherwise, print: "It's not so perfect."

Examples

Input	Output	Comments
6	We have a perfect number!	1 + 2 + 3
28	We have a perfect number!	1 + 2 + 4 + 7 + 14
1236498	It's not so perfect.	

Hint

Equivalently, a perfect number is a number that is **half the sum** of all of its positive divisors (including itself) \Rightarrow 6 is a perfect number because it is the sum of 1 + 2 + 3 (all of which are divided without residue).

- Read about the Perfect number here: https://en.wikipedia.org/wiki/Perfect_number
- Loading Bar

You will receive a **single number** between **0** and **100**, which is divided with 10 without residue (0, 10, 20, 30...).

Your task is to create a function that visualizes a **loading bar** depending on the number you have received in the input.

Examples

Input	Output	
30	30% [%%%]	
30	Still loading	
50	50% [%%%%%]	
50	Still loading	
100	100% Complete!	
100	[%%%%%%%%%]	

Factorial Division

Write a function that receives **two** integer numbers. Calculate the **factorial** of each number. Divide the first result by the second and print the division formatted to the **second decimal** point.

Examples

Input	Output	Input	Output
5, 2	60.00	6,	360.00

Hints

- Read more about factorial here: https://en.wikipedia.org/wiki/Factorial
- You can use recursion