01 - PUT-CALL PARITY

Forward Prices for Stocks

• The stock pays no dividends:

$$\circ \quad F_{0,T} = S_0 e^{rT} \quad \text{and} \quad F_{0,T}^P = S_0$$

• The stock pays discrete dividends:

$$\circ$$
 $F_{0,T} = S_0 e^{rT} - AV(Divs)$ and $F_{0,T}^P = S_0 - PV(Divs)$

• The stock pays continuous dividends:

$$F_{0,T} = S_0 e^{[r-\delta]T}$$
 and $F_{0,T}^P = S_0 e^{-\delta T}$

• In any case: $F_{0,T} = PV(F_{0,T}^P)$

Forwards on Currency Exchanges

• $F_{0,T} = x_0 e^{[r_d - r_t]T}$ and $F_{0,T}^P = x_0 e^{-r_t T}$

Put-Call Parity

- $C(K, T) P(K, T) = F_{0,T}^P PV(K) = S_0 e^{-\delta T} K e^{-rT}$
- · Only applies to European Options.

02 - COMPARING OPTIONS

General Principles

- · Premiums for ordinary options are never negative.
- A Eur. option is always cheaper than a similar American option.

Bounds for European Option Premiums

- $Se^{-\delta T} Ke^{-rT} \le C_{EUR} \le Se^{-\delta T}$
- $Ke^{-rT} Se^{-\delta T} \le P_{EUR} \le Ke^{-rT}$

Bounds for American Option Premiums

- $S K \le C_{AM} \le S$
- $K S \le P_{AM} \le K$

Comparing Options with Different Expiration Dates

Assume $T_1 < T_2$.

- For American Calls or Puts: $V(S, K, T_1) \leq V(S, K, T_2)$
- For European Calls or Puts: $V(S, K, T_1) \leq V(S, Ke^{-r(T_2-T_1)}, T_2)$

Different Strike Prices

Assume $K_1 < K_2 < K_3$.

C is a decreasing function of K and $-1 \le C_K \le 0$.

- $C(S, K_1, T) > C(S, K_2, T)$
- $C_{AM}(K_1) C_{AM}(K_2) < K_2 K_1$
- $C_{FUR}(K_1) C_{FUR}(K_2) < PV(K_2 K_1)$

P is an increasing function of *K* and $0 \le P_K \le 1$.

- $P(S, K_1, T) < P(S, K_2, T)$
- $\begin{array}{ll} \bullet & P_{\mathit{AM}}\left(K_{\mathit{2}}\right) P_{\mathit{AM}}\left(K_{\mathit{1}}\right) < K_{\mathit{2}} K_{\mathit{1}} \\ \bullet & P_{\mathit{EUR}}(K_{\mathit{2}}) P_{\mathit{EUR}}(K_{\mathit{1}}) < \mathit{PV}\left(K_{\mathit{2}} K_{\mathit{1}}\right) \end{array}$

- Let $a = \frac{K_3 K_2}{K_2 K_1}$ and $b = \frac{K_2 K_1}{K_2 K_1}$.
- Then $K_2 = aK_1 + bK_3$
- By convexity, $V(K_2) \leq aV(K_1) + bV(K_3)$.
- Equivalently: $\frac{V(K_1) V(K_2)}{K_2 K_1} > \frac{V(K_2) V(K_3)}{K_3 K_2}$

03 - ONE PERIOD BINOMIAL TREES

True Probabilities

- $E[S_h] = p \cdot S \cdot u + (1 p) \cdot S \cdot d$
- $\alpha = \frac{1}{h} \cdot \ln \left(\frac{e^{\delta h} E[S_h]}{S} \right)$, $\alpha = g + \delta$
- $C_u = \max[0, Su K]$, $C_d = \max[0, Sd K]$
- $P_u = \max[0, K Su]$, $P_d = \max[0, K Sd]$
- $E[PO] = p V_u + (1 p) V_d$
- $V = e^{-\gamma h} E[PO]$, but Y is generally not known.

Risk-Neutral Pricing

- $p^* = \frac{e^{(r-\delta)h} d}{u d}$
- $E[PO] = p^*V_u + (1 p^*)V_d$
- Call $(K, h) = [p^*C_u + (1 p^*)C_d]e^{-rh}$
- Put $(K, h) = [p^*P_u + (1 p^*)P_d]e^{-rh}$

Replicating Portfolios

- $\Delta e^{\delta h} S u + B e^{rh} = V_u$, $\Delta e^{\delta h} S d + B e^{rh} = V$
- $\Delta = \left(\frac{V_u V_d}{Su Sd}\right)e^{-\delta h}$, $B = \left(\frac{uV_d dV_u}{u d}\right)e^{-rh}$
- For Calls: $\Delta \ge 0$ and $B \le 0$
- For Puts: $\Delta \le 0$ and $B \ge 0$
- $\Delta_C \Delta_P = e^{-\delta h}$

• Annual volatility σ is given by $\sigma^2 = \frac{1}{h} \cdot \text{Var} \left| \ln \left(\frac{S_h}{S} \right) \right|$.

Binomial Tree Models

- Standard Model (Forward Tree)
 - $u = e^{(r-\delta)h + \sigma\sqrt{h}}$ and $d = e^{(r-\delta)h \sigma\sqrt{h}}$
- Cox-Ross-Rubinstein Tree

$$u = e^{\sigma \sqrt{h}}$$
 and $d = e^{-\sigma \sqrt{h}}$

- Lognormal Tree (Jarrow/Rudd Tree)
 - $u = e^{(r-\delta-0.5\sigma^2)h+\sigma\sqrt{h}} and d = e^{(r-\delta-0.5\sigma^2)h-\sigma\sqrt{h}}$
- Each model above satisfies $u/d = e^{2\sigma\sqrt{h}}$

05 - UTILITY

- $W_H = \frac{p^*}{p}$, $W_L = \frac{1-p^*}{1-p}$
- $U_H = \frac{1}{1+r} W_H$, $U_L = \frac{1}{1+r} W_L$
- $Q_H = pU_H$, $Q_L = (1-p)U_L$

Relationships

- $pW_H + (1 p)W_L = 1$
- $pU_H + (1-p)U_L = \frac{1}{1+r}$
- $Q_H + Q_L = \frac{1}{1 + r}$

Pricing with Utility

• $S = [Q_H S_u + Q_L S_d](1 + \delta)$, $V = Q_H V_u + Q_L V_d$

07 - LOGNORMAL STOCK MODEL

The Lognormal Distribution

• $X \sim \text{Normal}(m, v^2)$, $Y = e^X$

• $E[Y] = e^{m + 0.5v^2}$

• $\operatorname{Var}[Y] = (E[Y])^2 [e^{v^2} - 1] = e^{2m + v^2} (e^{v^2} - 1)$

• $\operatorname{Med}[Y] = e^m$

• Mode $[Y] = e^{m-v^2}$

The Lognormal Stock Model

• $S_t = S_0 e^{R_t}$, $R_t \sim \text{Normal}(m, v^2)$

• $m = (\alpha - \delta - 0.5 \sigma^2)t$, $v = \sigma \sqrt{t}$

• $E[S_t] = S_0 e^{(\alpha - \delta)t}$

• $Med[S_t] = S_0 e^m$

Methods of Stating Volatility

• $\operatorname{Var}\left[\ln\left(F_{0,T}^{P}\right)\right] = \sigma^{2}T$ or $\operatorname{Var}\left[\ln\left(F_{0,T}\right)\right] = \sigma^{2}T$

• $\ln \left[\frac{E[S_t]}{\text{Med}[S_t]} \right] = 0.5 \,\sigma^2 t$

Prediction Intervals

• $Z_{p/2} = N(1-p/2)$

• (1-p) Confidence Interval for $At: (m-z_{p/2}v, m+z_{p/2}v)$

• (1-p) Prediction Interval for S_t : $\left(S_0 e^{m-z_{\rho/2}v}, S_0 e^{m+z_{\rho/2}v}\right)$

Conditional Payoffs (Using True Probabilities)

Probability of Option Payoff

• $\hat{d}_1 = \frac{\ln(S_0 / K) + (\alpha - \delta + 0.5\sigma^2)t}{\sigma\sqrt{t}}$ • $\hat{d}_2 = \hat{d}_1 - \sigma\sqrt{t}$

• $Pr[S_t < K] = N(-\hat{d}_2)$

• $Pr[S_t > K] = N(\hat{d}_2)$

Partial and Conditional Expectations

• $PE[S_t | S_t < K] = E[S_t]N(-\hat{d}_1)$

• $PE[S_t | S_t > K] = E[S_t]N(\hat{d}_1)$

• $E[S_t | S_t < K] = \frac{S_0 e^{(\alpha - \delta)t} N(-\hat{d}_1)}{N(-\hat{d}_2)}$

 $E[S_t | S_t > K] = \frac{S_0 e^{(\alpha - \delta)t} N(\hat{d}_1)}{N(\hat{d}_2)}$

Expected Payoff

• $E[\text{Call PO}] = S_0 e^{(\alpha - \delta)t} N(\hat{d}_1) - K N(\hat{d}_2)$ • $E[\text{Put PO}] = K N(-\hat{d}_2) - S_0 e^{(\alpha - \delta)t} N(-\hat{d}_1)$

08 - ESTIMATING LOGNORMAL PARAMETERS

See Chapter 11.

09 - BLACK-SCHOLES FORMULA

General Black-Scholes Formula

•
$$d_1 = \frac{\ln(F^P(S)/F^P(K)) + 0.5\sigma^2T}{\sigma\sqrt{T}}$$

•
$$d_2 = \frac{\ln(F^P(S)/F^P(K)) - 0.5\sigma^2T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$$

•
$$C = F^{P}(S)N(d_1) - F^{P}(K)N(d_2)$$

•
$$P = F^{P}(K)N(-d_{2}) - F^{P}(S)N(-d_{1})$$

Black-Scholes Formula for Standard Options

$$d_1 = \frac{\ln(S_0/K) + (r - \delta + 0.5\sigma^2)T}{\sigma\sqrt{T}}$$

•
$$d_2 = \frac{\ln(S_0/K) + (r - \delta - 0.5\sigma^2)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$$

•
$$C = S_0 e^{-\delta t} N(d_1) - K e^{-rt} N(d_2)$$

•
$$P = Ke^{-rt}N(-d_2) - S_0e^{-\delta t}N(-d_1)$$

Black-Scholes Formula for Currency Options

r = r_d is the domestic risk free rate

• $\delta = r_f$ is the foreign risk free rate

• $S = x_0$ is the current exchange rate

•
$$d_1 = \frac{\ln(x_0 / K) + (r_d - r_f + 0.5 \sigma^2) T}{\sigma \sqrt{T}}$$

•
$$d_2 = \frac{\ln(x_0 / K) + (r_d - r_f - 0.5 \sigma^2)T}{\sigma \sqrt{T}} = d_1 - \sigma \sqrt{T}$$

•
$$C = x_0 e^{-r_f T} N(d_1) - K e^{-r_d T} N(d_2)$$

•
$$P = Ke^{-r_dT}N(-d_2) - x_0e^{-r_fT}N(-d_1)$$

Black-Scholes Formula for Futures Options

•
$$d_1 = \frac{\ln(F/K) + 0.5 \sigma^2 T}{\sigma \sqrt{T}}$$

$$d_2 = d_1 - \sigma \sqrt{T}$$

•
$$C = F e^{-rT} N(d_1) - K e^{-rT} N(d_2)$$

•
$$P = Ke^{-rT}N(-d_2) - Fe^{-rT}N(-d_1)$$

Black Formula for Bond Options

• Asset is bond worth \$1 at time T+S.

• Option expires at time *T*.

•
$$F = P_0(T, T+S) = \frac{P(0, T+S)}{P(0, T)}$$

•
$$d_1 = \frac{\ln(F/K) + 0.5 \sigma^2 T}{\sigma \sqrt{T}}$$

•
$$d_2 = d_1 - \sigma \sqrt{T}$$

•
$$C = P(0,T)[FN(d_1) - KN(d_2)]$$

•
$$P = P(0,T)[KN(-d_1) - FN(-d_1)]$$

10 - THE GREEKS

Delta $(\Delta = V_s)$

- $0 \le \Delta_C \le 1$ and $-1 \le \Delta_P \le 0$
- $\Delta_C = e^{-\delta T} N(d_1)$ and $\Delta_P = -e^{-\delta T} N(-d_1)$
- $\Delta_C \Delta_P = e^{-\delta T}$

Gamma $(\Gamma = V_{ss})$

- $\Gamma_C = \Gamma_P$
- Γ ≥ 0

Vega (V_{σ})

- $vega_C = vega_P$
- vega ≥ 0

Theta $(\theta = V_t)$

- $\theta_C \theta_P = \delta S e^{-\delta T} r K e^{-rT}$
- θ is usually negative

Rho $(\rho = V_r)$

- $\bullet \quad \rho_C \rho_P = T K e^{-rT}$
- $\rho_C \ge 0$ and $\rho_P \le 0$

Psi $(\psi = V_{\delta})$

- $\psi_C \psi_P = -T S e^{-\delta T}$ $\psi_C \le 0$ and $\psi_P \ge 0$

Replicating Portfolios

- A call can be replicated by buying Δ_C shares and borrowing $Ke^{-rT}N(d_2)$.
- A put can be replicated by selling $|\Delta_P|$ shares and lending $Ke^{-rT}N(-d_2)$.

Greeks for Portfolios

- Let G be an arbitrary Greek. If $\pi = \sum A_i$, then $G_{\pi} = \sum G_i$.

Elasticity

- Elasticity: $\Omega = \frac{S\Delta}{V}$
- $\Omega_C \ge 1$ and $\Omega_P \le 0$
- $\sigma_{option} = \sigma_{stock} |\Omega|$
- $\gamma r = \Omega(\alpha r)$
- The elasticity of a portfolio is the price-weighted average of the elasticity of its instruments.

Sharpe Ratio

- $\phi_{stock} = \frac{\alpha r}{\sigma_{stock}}$ and $\phi_{option} = \frac{\gamma r}{\sigma_{option}}$ $\phi_{call} = \phi_{stock}$ and $\phi_{put} = -\phi_{stock}$

11 - ESTIMATING VOLATILITY

Estimating Lognormal Parameters (Historical Volatility)

- Observed stock prices: S_1 , S_2 , ..., S_n
- Observed returns: $r_i = \ln(S_i / S_{i-1})$
- Standard Deviation (per period): $\hat{v} = \hat{\sigma}_h = \sqrt{\frac{1}{n-1} \sum (r_i \overline{r})^2}$
- Mean (per period): $\hat{m} = \frac{1}{n} \sum_{i=1}^{n} r_i = \frac{1}{n} \ln \left(\frac{S_n}{S_0} \right)$
- Annual Volatility estimate (**Historical Volatility**): $\hat{\sigma} = \frac{\hat{\sigma}_h}{\sqrt{h}} = \frac{\hat{v}}{\sqrt{h}}$
- Annual Return estimate: $\hat{\alpha} = \frac{\hat{m}}{h} + \delta + 0.5 \hat{\sigma}^2$
- Tip: Enter r_i 's into TI-30XS to find \hat{m} and \hat{v} using 1-Var Stats.

Implied Volatility

- Assume *S*, *K*, *T*, *r*, δ , and V_0 are known.
- Implied volatility $\hat{\sigma}$ is the solution to $V_0 = V(S, K, \hat{\sigma}, r, T, \delta)$.
- Use implied volatility (rather than historical volatility) in the Black-Scholes formula.

12 - DELTA HEDGING

Overnight Profit

- Profit during period [0, h] is given by:
- $\left[C(S_0) \Delta S_0\right]e^{rh} + \left[\Delta e^{\delta h}S_h C(S_h)\right]$ • Break-Even occurs at prices $S_0 \pm S_0 \sigma \sqrt{h}$.
- · Market maker has positive profit if $S_0 - S_0 \sigma \sqrt{h} < S_h < S_0 + S_0 \sigma \sqrt{h}$

Delta-Gamma-Theta Approximation

• $V_{t+h} \approx V_t + \Delta \epsilon + 0.5 \Gamma \epsilon^2 + h \theta$

This is an alternate form of Ito's Lemma:

• $dV = V_t dt + V_s dS + 0.5 V_{SS} (dS)^2$

Greeks for Binomial Trees

- $\Gamma(S,0) \approx \Gamma(S,h) = \frac{\Delta(Su,h) \Delta(Sd,h)}{Su Sd}$
- $V(Sud, 2h) = V(S, 0) + \Delta(S, 0)\epsilon + 0.5\Gamma(S, 0)\epsilon^2 + 2h\theta(S, 0)$

Rehedging (Boyle-Emanuel Formula)

- Assume portfolio is rehedged every *h* years.
- Periodic variance in return: $Var[r_h] = 0.5(S^2\sigma^2\Gamma h)^2$
- Annual variance in return: $0.5(S^2\sigma^2\Gamma)^2h$

13, 14 - EXOTIC OPTIONS

Asian Options

Averages

• Arithmetic Average: $A(S) = \frac{1}{n} \sum S_i$

• Geometric Average: $G(S) = \sqrt[n]{\prod S_i}$

• $G(S) \leq A(S)$

Asian Options

• Average Price Call: $PO = \max[0, \bar{S} - K]$

• Average Price Put: $PO = \max[0, K - \overline{S}]$

• Average Strike Call: $PO = \max[0, S - \overline{S}]$

• Average Strike Put: $PO = \max[0, \bar{S} - S]$

Barrier Options

Knock-In Options

• Up-and-in: $B > S_0$

• Down-and-in: $B < S_0$

Knock-Out Options

• Up-and-out: $B > S_0$

• Down-and-out: $B < S_0$

Relationship to Ordinary Options

- If $B \le K$, then an up-and-in call is equal to an ordinary call.
- If $B \ge K$, then a down-and-in put is equal to an ordinary put.
- Knock-In + Knock-Out = Ordinary Option

Compound Options

- CallOnCall: Option to buy a call.
- CallOnPut: Option to buy a put.
- PutOnCall: Option to sell a call.
- PutOnPut: Option to sell a put.

Parity Relations

- $CallOnCall PutOnCall = Call xe^{-rt_1}$
- $CallOnPut PutOnPut = Put x e^{-rt_1}$

Exchange Options

- S_t = price of underlying asset
- K_t = price of strike asset
- $\sigma = \sqrt{\sigma_S^2 + \sigma_K^2 2\rho\sigma_S\sigma_K}$
- $d_1 = \frac{\ln(S_0 / K_0) + (\delta_K \delta_S + 0.5\sigma^2)T}{\sigma\sqrt{T}}$
- $d_2 = d_1 \sigma \sqrt{T}$
- $C = S_0 e^{-\delta_s T} N(d_1) K_0 e^{-\delta_s T} N(d_2)$
- $P = K_0 e^{-\delta_x T} N(-d_1) S_0 e^{-\delta_s T} N(-d_1)$

Relationships between Calls and Puts

- Call Put = $S_0 e^{-\delta_s T} K_0 e^{-\delta_\kappa T}$
- Call (S=A, K=B) = Put(S=B, K=A)

Chooser Options

- $V_t = \max \left[C(S_t, K, T-t), P(S_t, K, T-t) \right]$
- $V_0 = C(S_0, K, T) + e^{-\delta(T-t)}P(S_0, Ke^{-(r-\delta)(T-t)}, t)$

13, 14 - EXOTIC OPTIONS

All-Or-Nothing Options

Option	Price at time 0
$S \mid S > K$ (AONC)	$S_0 e^{-\delta T} N(d_1)$
$S \mid S < K $ (AONP)	$S_0 e^{-\delta T} N \left(-d_1\right)$
$1 \mid S > K$ (CONC)	$e^{-rT} N(d_2)$
$1 \mid S < K$ (CONP)	$e^{-rT}N(-d_2)$

Relationship to Standard Options

- $C = S_0 e^{-\delta t} N(d_1) K e^{-rt} N(d_2) = (S \mid S > K) (K \mid S > K)$
- $P = K e^{-rt} N(-d_1) S_0 e^{-\delta t} N(-d_1) = (K \mid S < K) (S \mid S < K)$
- Also note that:
 - $(S \mid S > K) = S_0 \Delta_C$
 - \circ $(S \mid S < K) = -S_0 \Delta_P$

Gap Options

Strike and Trigger Prices

• Strike Price = K_1 , Trigger Price = K_2

Payoff

- Gap Call PO = $S_T K_1$ if $S_T > K_2$
- Gap Put PO = $K_1 S_T$ if $S_T < K_2$
- PO could be negative. Exercise is not optional.

Pricing Gap Options

- GapCall = $S_0 e^{-\delta T} N(d_1) K_1 e^{-rT} N(d_2)$
- GapPut = $K_1 e^{-rT} N(-d_2) S_0 e^{-\delta T} N(-d_1)$
- Use K_2 when calculating d_1 and d_2 .

Parity Relation

• GapCall – GapPut = $S_0 e^{-\delta T} - K_1 e^{-rT}$

Forward Start Options

- $d_1 = \frac{-\ln c + (r \delta + 0.5\sigma^2)(T t)}{\sigma\sqrt{T t}}$
- $d_{2} = d_{1} \sigma \sqrt{T t}$
- $C_{FS} = S_0 e^{-\delta T} N(d_1) c S_0 e^{-\delta t} e^{-r(T-t)} N(d_2)$
- $P_{FS} = c S_0 e^{-\delta t} e^{-r(T-t)} N(-d_2) S_0 e^{-\delta T} N(-d_1)$

Maxima and Minima

- $\max[A, B] = B + \max[A B, 0] = A + \max[0, B A]$
- $\min[A, B] = B + \min[A B, 0] = A + \min[0, B A]$
- $\max[k A, k B] = k \max[A, B] \text{ if } k > 0$
- $\min[kA, kB] = k\min[A, B]$ if k > 0
- $\max[-A, -B] = -\min[A, B]$
- $\max[A, B] + \min[A, B] = A + B$
- $\bullet \quad \min[A, B] = A + B \max[A, B]$

16,17 - BROWNIAN MOTION

Standard Brownian Motion

Properties

- Z(0) = 0
- $Z(t) \sim \text{Normal}(m=0, v^2=t)$
- $Z(t+h) | Z(t) \sim \text{Normal}(m = Z(t), v^2 = h)$
- If [a, b] and [c, d] don't overlap, then Z(b) Z(a) and Z(d) - Z(c) are independent.

Arithmetic Brownian Motion

- **Definition:** $A(t) = A(0) + \mu t + \sigma Z(t)$
- Differential: $dA = \mu dt + \sigma dZ$

Properties

- $A(t) \sim \text{Normal}\left(m = A(0) + \mu t, v^2 = \sigma^2 t\right)$
- $A(t+h)|A(t) \sim \text{Normal}(m = A(t) + \mu h, v^2 = \sigma^2 h)$
- $Cov[A(t_1), A(t_2)] = \sigma^2 min(t_1, t_2)$

Geometric Brownian Motion

- $G(t) = e^{A(t)}$ where $A(t) = A(0) + \mu t + \sigma Z(t)$ • Definition:
- Differential: $dG = (\mu + 0.5\sigma^2)Gdt + \sigma GdZ$

Equivalent Expressions for GBM

- $dG = (\mu + 0.5\sigma^2)Gdt + \sigma GdZ$ $\frac{dG}{G} = (\mu + 0.5\sigma^2)dt + \sigma dZ$
- $\bullet \quad G(t) = e^{A(0) + \mu t + \sigma Z(t)}$
- $\bullet \quad G(t) = G(0)e^{\mu t + \sigma Z(t)}$
- $d \ln G(t) = \mu dt + \sigma dZ(t)$
- $\ln G(t) = A(0) + \mu t + \sigma Z(t)$

Stock Model

- $A(t) = (\alpha \delta 0.5 \sigma^{2})t + \sigma Z(t)$ • Return:
- Stock Price: $S(t) = S(0)e^{A(t)}$
- Differential: $dS = (\alpha \delta)S dt + \sigma S dZ$

Equivalent Expressions for Stock Model

- $S(t) = S(0)e^{(\alpha \delta 0.5\sigma^2)t + \sigma Z(t)}$
- $dS(t) = (\alpha \delta)S(t)dt + \sigma S(t)dZ(t)$
- $\frac{dS(t)}{S(t)} = (\alpha \delta)dt + \sigma dZ$
- $d[\ln S(t)] = (\alpha \delta 0.5\sigma^2)dt + \sigma dZ$
- $\frac{dF^{P}(S)}{F^{P}(S)} = (\alpha \delta)dt + \sigma dZ$
- $d\left[\ln F^{P}(S)\right] = \left(\alpha \delta 0.5 \,\sigma^{2}\right) dt + \sigma dZ$
- $\ln \left[\frac{S(t)}{S(0)} \right] \sim \text{Normal} \left[m = \left(\alpha \delta 0.5\sigma^2 \right) t, \ v^2 = \sigma^2 t \right]$

18 - ITO'S LEMMA

Ito's Lemma

- Multiplication Rules: $(dt)^2 = dt dZ = 0$, $(dZ)^2 = dt$
- Ito's Lemma: $dV = V_t dt + V_s dS + 0.5 V_{SS} (dS)^2$

19 - BLACK-SCHOLES EQUATION

Black-Scholes Equation

- $(r-\delta)SV_S + 0.5\sigma^2S^2V_{SS} + V_t = (r-\delta^*)V$
- δ* is the rate of dividends paid by the derivative itself.

20 - SHARPE RATIO

Sharpe Ratio

- $\phi = \frac{\alpha r}{\sigma}$
- If *A* and *B* are assets driven by the same dZ, then $|\phi_A| = |\phi_B|$.

Risk-Free Portfolios

- Let $\frac{dX_1}{X_1} = (\alpha_1 \delta_1)dt + \sigma_1 dZ$ and $\frac{dX_2}{X_2} = (\alpha_2 \delta_2)dt + \sigma_2 dZ$.
- Purchase c_1 shares of X_1 and c_2 shares of X_2 , where: $c_1X_1(0)\sigma_1+c_2X_2(0)\sigma_2=0$
- $\frac{c_1 X_1(0) \alpha_1 + c_2 X_2(0) \alpha_2^2}{c_1 X_1(0) + c_2 X_2(0)} = r$

21 - RISK-NEUTRAL PRICING AND PROP. PORTFOLIOS

Risk-Neutral Pricing

- True process: $dS = (\alpha \delta)S dt + \sigma S dZ$
- R-N process: $dS = (r \delta)S dt + \sigma S d\tilde{Z}$
- $d\tilde{Z} = dZ + \phi dt$ and $\tilde{Z}(t) = Z(t) + \phi t$, where $\phi = \frac{\alpha r}{\sigma}$

Expected Values

- True: E[Z(t)] = 0, $E[\tilde{Z}(t)] = \phi t$, and $E[S(t)] = S(0)e^{(\alpha \delta)t}$
- R-N: $E^*[\tilde{Z}(t)] = 0$, $E^*[Z(t)] = -\phi t$, and $E^*[S(t)] = S(0)e^{(r-\delta)t}$

Proportional Portfolios

Let W(t) be the value of a portfolio that always has 100 p% of its value invested in a stock following $dS = (\alpha - \delta_s)Sdt + \sigma SdZ$ and 100(1-p)% of its value invested in a bond following dB = rB dt.

- $\frac{dW}{W} = [p\alpha + (1-p)r \delta_W]dt + p\sigma dZ$
- $W(t) = W(0)e^{[p\alpha + (1-p)r \delta_w 0.5p^2\sigma^2]t + p\sigma Z(t)}$
- $W(t) = W(0) \left[\frac{S(t)}{S(0)} \right]^p e^{\left[p \, \delta_S \delta_W + (1-p) \left[r + 0.5 \, p \, \sigma^2 \right] \right] t}$

22 – POWERS OF S

Expected value of $S(T)^a$

- True Probability: $E[S(T)^a] = S(0)^a e^{[a(\alpha \delta 0.5\sigma^2) + 0.5a^2\sigma^2]T}$
- $E^*[S(T)^a] = S(0)^a e^{[a(r-\delta-0.5\sigma^2)+0.5a^2\sigma^2]T}$ • R-N Probability:

Forwards on S^a

- $F_{0,T}(S^a) = S(0)^a e^{[a(r-\delta)+0.5a(a-1)\sigma^2]T}$ $F_{0,T}^P(S^a) = e^{-rT}S(0)^a e^{[a(r-\delta)+0.5a(a-1)\sigma^2]T}$

Ito Process for Sa

- $\frac{dS(t)^a}{S(t)^a} = \left[a(\alpha \delta) + 0.5 a(a 1)\sigma^2\right] dt + a\sigma dZ$ $S(t)^a = S(0)^a e^{B(t)} \text{ , where } B(t) = a\left(\alpha \delta 0.5\sigma^2\right) t + a\sigma Z(t)$

Dividend Yield for S^a

• If $V(t) = S(t)^a$, then $\delta^* = r - a(r - \delta) - 0.5a(a - 1)\sigma^2$.

24 - TREE MODELS FOR INT. RATES

Notation for Bond Prices

- P(t,T) = time t price of bond worth \$1 at time T.
- $F_{0,t}(t,T) = P_0(t,T)$ = forward price of P(t,T).
- $F_{0,t}(t,T) = P_0(t,T) = \frac{P(0,T)}{P(0,t)}$

Black-Derman-Toy Model

- Rates are effective, and $p^* = 0.5$.
- Let $r_{t,k}$ be the rate for the time t node, k nodes above the bottom.
- $r_{t,k+1} = r_{t,k} e^{2\sigma_t \sqrt{h}}$, where σ_t is the short term volatility.

Long-Term Volatility

- $y_u(1,T) = P_u(1,T)^{-(T-1)} 1$ and $y_d(1,T) = P_d(1,T)^{-(T-1)} 1$
- Volatility in the price of P(1,T) is $\sigma_{1,T} = \frac{1}{(T-1)\sqrt{h}} \ln \left[\frac{y_u(1,T)}{y_u(1,T)} \right]$

Pricing Caps

- *L* is the loan amount, and r_k is the cap.
- Caplet value = $\max |0, L(r_{t,i} r_k)|$.
- Cap value is probability weighted sum of the PV of all caplets.

26 - CONTINUOUS INT. RATE MODELS

General Equilibrium Model

- Rate Process: dr(t) = P(r)dt + Q(r)dZ(t)
- Bond Process: $\frac{dP(r, t, T)}{P(r, t, T)} = \alpha(r, t, T)dt q(r, t, T)dZ(t)$
- Sharpe Ratio: $\phi(r, t, T) = \frac{\alpha(r, t, T) r}{q(r, t, T)}$

Rendleman-Bartter Model

- Rate Process: $dr = ardt + \sigma rdZ$
 - No mean reversion, $r \ge 0$, σ is proportional to r.
 - r follows geometric Brownian Motion

Vasicek Model

- Rate Process: $dr = a(b-r)dt + \sigma dZ$
 - Mean reversion, r can become negative, σ is constant.
- **Bond Prices**: $P(0,T) = A(0,T)e^{-B(0,T)r(t)}$
 - A(0,T) = ???, $B(0,T) = \frac{1}{a}(1 e^{-aT})$
 - A(h, T + h) = A(0, T) and B(h, T + h) = B(0, T)
- Sharpe Ratio:
 - \$\phi\$ is constant in this model
 - $q(r,t,T) = B(t,T)\sigma$

Cox-Ingersoll-Ross Model

- Rate Process: $dr = a(b-r)dt + \sigma\sqrt{r}dZ$
 - Mean reversion, $r \ge 0$, σ is proportional to \sqrt{r} .
- **Bond Prices**: $P(0,T) = A(0,T)e^{-B(0,T)r(t)}$
 - \circ A(0,T) = ???, B(0,T) = ???
 - A(h, T + h) = A(0, T) and B(h, T + h) = B(0, T)
- Sharpe Ratio:
 - \circ $\phi(r, t, T) = \frac{\phi}{\Omega} \sqrt{r}$, where $\overline{\phi}$ is a constant.
 - \circ $q(r,t,T) = B(t,T)\sigma\sqrt{r}$

26 - HEDGING FORMULAS

Bond Hedging Formulas

Bond 1 expires at time T_1 and Bond 2 expires at time T_2 . You buy 1 unit of Bond 1 at time t and hedge by buyinh N units of Bond 2.

- Duration-Hedge: $N = -\frac{\left(T_1 t\right)P\left(t, T_1\right)}{\left(T_2 t\right)P\left(t, T_2\right)}$
- Delta-Hedge: $N = -\frac{P_r(r,t,T_1)}{P_r(r,t,T_2)} = -\frac{B(t,T_1)P(r,t,T_1)}{B(t,T_2)P(r,t,T_2)}$

15 - MONTE CARLO VALUATION

Simulating Derivative Prices

Standard Normal Random Numbers

- $z_i = \left(\sum_{j=1}^{12} u_j\right) 6$, $U \sim \text{Uniform}(0,1)$
- $z_i = N^{-1}(u_i)$, $U \sim \text{Uniform}(0,1)$

Lognormal Random Numbers

- $n_i = m + z_i v$, $N \sim \text{Normal}(m, v^2)$
- $x_i = e^{n_i}$, $X = e^N \sim \text{LogN}(m, v^2)$

Simulating Stock Prices

- · We use risk-neutral pricing.
- $m = (r \delta 0.5\sigma^2)T$ and $v = \sigma\sqrt{T}$
- $\bullet \quad S_T^i = S_0 e^{m + z_i v}$

Simulating Option Price

- For each S_T^i , find the option payoff V_T^i .
- $V_i = e^{-rT} V_T^i$ $\bar{V} = \sum V_i$

Control Variate Methods

- V = option being priced
- K = option with known price, K₀

Basic Control Variate Method

- $\bullet \quad V^* = \bar{V} + K_0 \bar{K}$
- $\operatorname{Var}\left[V^*\right] = \operatorname{Var}\left[\bar{V}\right] + \operatorname{Var}\left[\bar{K}\right] 2\operatorname{Cov}\left[\bar{V},\bar{K}\right]$

- $\beta = \frac{\text{Cov}[V, K]}{\text{Var}[K]} = \frac{\left(\sum v_i k_i\right) n \bar{V} \bar{K}}{\left(\sum k_i^2\right) n \bar{K}^2}$
- $\bullet \quad V^{BM} = \bar{V} + \beta (K \bar{K})$
- $\operatorname{Var}[V^{BM}] = \operatorname{Var}[\bar{V}] + \beta^2 \operatorname{Var}[\bar{K}] 2\beta \operatorname{Cov}[\bar{V}, \bar{K}]$ $= \operatorname{Var}[\bar{V}](1 - \rho_{VK}^2)$
- Recall that $\rho_{\bar{V}\bar{K}} = \frac{\text{Cov}[\bar{V}, \bar{K}]}{\sqrt{\text{Var}[\bar{V}]\text{Var}[\bar{K}]}}$
- Tip: Use LinReg in TI-30XS to find β .

Antithetic and Stratified Sampling

• Assume $u_1, u_2, ..., u_n$ have been generated.

Antithetic Method

- For each *i*, add $u_i^* = 1 u_i$ to the sample.
- For each *i*, add $n_i^* = -n_i$ to the sample.

Stratified Sampling

• For each *i*, add $u_i^* = \frac{i-1}{n} + \frac{u_i}{n}$ to the sample.