МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

(МИНЦИФРЫ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПБГУТ)

Кафедра цифрового телевидения и метрологии Дисциплина «Звуковое вещание»

ЛАБОРАТОРНАЯ РАБОТА 9DA ИССЛЕДОВАНИЕ 1-БИТНОЙ СИГМА-ДЕЛЬТА МОДУЛЯЦИИ

Выполнил:

Балан К.А.

Проверила:

Свиньина О.А.

1.1. Изучение принципов преобразования спектра ошибок квантования при 1-битной сигма-дельта модуляции

Рисунок 1 – Спектр шума квантования при сигма-дельта модуляции

1.2. Исследование спектра шума 1-битного сигма-дельта модулятора 1-5-го порядка

Рисунок 2 — Спектр шума квантования 1-битного сигма-дельта модулятора 1-5-го порядков, K_{os} =1

Рисунок 3 — Спектр шума квантования 1-битного сигма-дельта модулятора 1-5-го порядков, K_{os} =2

Рисунок 4 — Спектр шума квантования 1-битного сигма-дельта модулятора 1-5-го порядков, K_{os} =4

Рисунок 5 — Спектр шума квантования 1-битного сигма-дельта модулятора 1-5-го порядков, $K_{os}\!\!=\!\!64$

Таблица 1 Исследование спектра шума квантования

Φ	K _{os}						
Функции	1	2	3	4			
LS _{dk} , дБ	-43,80	-46,81	-49,82	-61,86			
$f_{\rm nk}$, Hz	24000	48000	96000	1536000			
$f_{\rm sk}$, Hz	48000	96000	192000	3072000			
Функции	дБ на октаву						
LS _{dk1} (4000)-	5,946	6,002	6,016	6,021			
$LS_{dk1}(2000)$							
$LS_{dk2}(4000)$ -	11,89	12,00	12,03	12,04			
$LS_{dk2}(2000)$							
LS _{dk3} (4000)-	17,84	18,01	18,05	18,06			
$LS_{dk3}(2000)$							
LS _{dk4} (4000)-	23,78	24,01	24,06	24,08			
$LS_{dk4}(2000)$							
LS _{dk5} (4000)-	29,72	30,01	30,064	30,10			
$LS_{dk5}(2000)$							

Вывод:

Повышение коэффициента дискретизации смещает спектр вправо, расширяя воспроизводимых частот И позволяя точнее передавать высокочастотные компоненты. Частота Найквиста (половина частоты дискретизации) определяет максимальную частоту сигнала для корректного воспроизведения без алиасинга. Сверхдискретизация (oversampling) снижает квантизационный шум, упрощает требования к аналоговым фильтрам и улучшает точность представления сигнала, особенно на низких частотах.

1.3. Исследование SNR 1-битного сигма-дельта модулятора 1-5-го порядков

Рисунок $6 - K_{os} = 1$

Рисунок $7 - K_{os} = 2$

Рисунок $8 - K_{os} = 4$

Рисунок 9 – K_{os}=64

Исследование отношения сигнал/шум

Таблица 2

Финания	K_{os}						
Функции	1	2	4	64			
SNR(m=1)	7,702	15,61	24,36	60,39			
SNR(m=2)	3,620	16,00	30,39	90,37			
SNR(m=3)	-1,011	15,69	35,67	119,6			
SNR(m=4)	-5,907	15,03	40,59	148,5			
SNR(m=5)	-10,96	14,16	45,29	177,1			

Вывод:

Увеличение коэффициента дискретизации с модуляторами высокого порядка улучшает соотношение сигнал/шум (SNR) за счёт перераспределения шума в менее заметные частоты. Это снижает искажения, повышает точность восстановления сигнала и улучшает детализацию, что особенно важно для профессиональных аудиосистем.

1.4. Исследование графиков SNR 1-битных сигма-дельта модуляторов 1-5-го порядков

Рисунок 10 – SNR не менее 100, 120 и 140 дБ Измерение крутизны графиков SNR

Таблица 3

Крутизна	дБ на октаву				
$SNR_1()-SNR_1()$	9,013				
SNR ₂ ()-SNR ₂ ()	15,01				
SNR ₃ ()-SNR ₃ ()	21,00				
SNR ₄ ()-SNR ₄ ()	27,00				
$SNR_5()-SNR_5()$	32,99				

	SNR = 100 дБ			SNR = 120 дБ			SNR = 140 дБ					
m	5	4	3	2	5	4	3	2	5	4	3	2
X	4,2	4,7	5,7	5,8	4,8	5,5	6,8	4,9	5,3	6,2	7,8	6,3
Kos	18,38	25,99	51,98	55,7	27,85	45,25	111,43	29,85	39,4	73,52	222,86	78,79

1.5. Контрольные вопросы

- 1. Технология Dithering декоррелирует ошибки квантования, превращая их дискретный спектр в спектр белого шума. Это минимизирует слышимые искажения, особенно в аудиосистемах высокого качества, где важна точность передачи мелких деталей звука. Dithering особенно эффективен при работе с тихими сигналами, предотвращая потерю динамического диапазона.
- 2. Технология Oversampling увеличивает частоту дискретизации fsk значительно выше минимально достаточной частоты fs. Это снижает вероятность алиасинга, упрощает аналоговую фильтрацию и повышает точность цифрового представления сигнала. Кроме того, oversampling улучшает качество обработки низкочастотных сигналов и позволяет использовать менее сложные фильтры.
- 3. Технология Noise Shaping перераспределяет квантовый шум, направляя его в менее заметные частотные области с помощью отрицательной обратной связи и интеграторов. Это снижает уровень шума в слышимом диапазоне, улучшая качество аудиосигнала, особенно в профессиональных системах. Noise Shaping особенно полезен в комбинации с dithering для достижения высокого уровня точности.
- 4. Частота Найквиста это половина частоты дискретизации. Она определяет максимальную частоту сигнала, которую можно корректно воспроизвести без искажений. Превышение этой частоты приводит к алиасингу, который может искажать звуковую картину.
- 5. Верхняя граница спектра шума квантования при АЦП равна частоте Найквиста, что делает антиалиасинговую фильтрацию важной для предотвращения искажений. Использование фильтров позволяет сохранить точность обработки и повысить качество звучания.
- 6. Мощность шума квантователя обратно пропорциональна числу уровней квантования. Большее число уровней уменьшает шаг квантования и, соответственно, снижает уровень шума, улучшая точность преобразования. Это особенно важно при работе с низкоуровневыми сигналами.

- 7. Белый шум имеет равномерное распределение энергии по всему частотному спектру. В отличие от него, розовый шум усиливает низкие частоты, создавая более естественное и теплое звучание, что часто используется в музыкальной и звуковой инженерии.
- 8. Спектральная плотность мощности белого шума остаётся постоянной на всех частотах, что делает его идеальным инструментом для калибровки аудиосистем, тестирования оборудования и анализа звукового тракта.
- 9. Частота дискретизации определяется количеством отсчётов сигнала за единицу времени. Более высокая частота улучшает точность передачи высокочастотных компонентов, но увеличивает объём данных и требования к вычислительным ресурсам.
- 10. Спектральная плотность мощности белого шума не изменяется с частотой дискретизации. Это позволяет использовать белый шум для тестирования систем с разными параметрами, сохраняя его свойства неизменными.
- 11. Коэффициенты передачи по мощности и напряжению используются для анализа изменений сигнала при прохождении через систему. Они помогают определить эффективность усиления, наличие затухания или другие искажения сигнала.
- 12. Порядок интегратора в сигма-дельта модуляторе влияет на степень подавления шума в низкочастотной области. Интеграторы более высокого порядка обеспечивают лучшее разрешение, но усложняют реализацию модулятора и могут вызывать нестабильность.
- 13. Спектр шума сигма-дельта модулятора напоминает белый шум с повышенной энергией на высоких частотах. Это позволяет достичь высокой точности на низких частотах, но требует применения фильтрации для удаления избыточного шума.
- 14. Характеристики шума сигма-дельта модулятора зависят от его порядка. Высокие порядки обеспечивают лучшее разрешение в низкочастотной области, но увеличивают сложность системы и уровень высокочастотного шума, что требует грамотного проектирования.
- 15. 1-битный сигма-дельта модулятор достигает высокого уровня SNR (до 120 дБ) за счёт увеличенной частоты дискретизации и обратной связи. Это упрощает архитектуру системы, делая её подходящей для широкого спектра приложений.
- 16. SNR сигма-дельта модулятора увеличивается с ростом частоты дискретизации и порядка интегратора. Однако это также может повысить уровень шума на высоких частотах, что требует точной настройки системы для

достижения оптимального баланса между качеством звука и сложностью реализации.