

ECOLE POLYTECHNIQUE DE THIES

BP A10 Thiès Sénégal

www.ept.sn

Téléphone: 78 422 75 63

BUREAU DES ÉLÈVES / COMMISSION PÉDAGOGIQUE / CONCOURS JUNIOR POLYTECH

Concours Junior Polytech Epreuve de Mathématiques

Terminale S — Session 2019 — Durée : 04 heures

La clarté et la rigueur de démonstration seront prises en compte.

EXERCICE 1: (3pts)

Dans cet exercice, toutes les questions sont indépendantes.

1) Calculer l'intégrale suivante :

$$I(x) = \int_0^{\frac{\pi}{2}} \frac{du}{x^2(\cos u)^2 + (\sin u)^2}.$$

2) Soit $u = e^{\frac{2i\pi}{7}}$. On pose $S = u + u^2 + u^4$ et $T = u^3 + u^5 + u^6$. Montrer que :

$$4\sin\left(\frac{4\pi}{7}\right) - \tan\left(\frac{2\pi}{7}\right) = i(T - S) = \sqrt{7}.$$

3) Soit $(a, b) \in \mathbb{R}^2$ tel que a < b, f une fonction derivable sur [a, b] tel que f(a) = f(b) = 0. On suppose que f' est bornée sur [a, b] et on pose : $|f'(t)| \le k$, $t \in [a, b]$. Montrer que :

$$\left| \int_{a}^{b} f(t) \ dt \right| \leq \frac{k(b-a)^{2}}{4}.$$

4) Soit $(a, b) \in R^2$ tel que a < b; f, g et h sont des fonctions continues et définies de [a, b] vers R^+ . Montrer que :

$$\left(\int_a^b fgh\right)^4 \leq \left(\int_a^b f^4\right) \left(\int_a^b g^2\right)^2 \left(\int_a^b h^4\right).$$

EXERCICE 2: (5pts)

On se place dans un plan complexe, rapporté à un repère orthonormé $(0; \overrightarrow{e_1}; \overrightarrow{e_2})$ et note C le cercle de centre O et de rayon 1. Pour tout nombre réel t , on note M_t le point de C d'affixe e^{it} .

Pour toute partie S de C ayant n ($n \ge 1$) éléments $A_1, A_2,, A_n$ dont les affixes respectives sont $a_1, a_2,, a_n$, on désigne par $P_S(X)$ le polynôme à coefficients complexes défini par la relation :

$$P_{S}(X) = \prod_{j=1}^{n} (X - a_j)$$

et on désigne par f_s la fonction définie sur R par la relation:

$$f_s(t) = \|\overrightarrow{A_1M_t}\| \times \|\overrightarrow{A_2M_t}\| \times ... \times \|\overrightarrow{A_nM_t}\|.$$

PARTIE A:

1) Montrer que, pour tout nombre réel t,

$$f_{\scriptscriptstyle S}(t) = \left| P_{\scriptscriptstyle S}(e^{it}) \right|$$

2) En déduire que 2π est une période de f_s .

PARTIE B:

Soit α un réel, r_α la rotation de centre 0 et d'angle α , et $S_\alpha=r_\alpha(S)$ l'image de S par r_α .

- 1) Calculer l'affixe du point $r_{\alpha}(A_i)$.
- 2) Prouver que:

$$P_{S_{\alpha}}(x) = e^{in\alpha} P_{S}(Xe^{-i\alpha}).$$

Et que , pour tout nombre réel t , $f_{S_{\alpha}}(t) = f_{S}(t - \alpha)$.

- 3) Prouver que les propriétés suivantes sont équivalentes :
 - a) Le nombre αest une période de f_s ;
 - b) $P_S(X) = e^{in\alpha}P_S(Xe^{-i\alpha});$
 - c) la partie S est globalement invariante par la rotation r_{α} , c'est-à-dire,

$$r_{\alpha}(S) = S$$
.

PARTIE C: On fixe un entier N > 1. Le but de cette partie est de calculer

$$S_N = \sum_{z \in E_N} \frac{1}{1 - z}$$

où E_N est l'ensemble des racines nièmes de l'unité privé de 1.

1) Démontrer que pout tout $\theta \neq 2k\pi$, on α :

$$\frac{1}{1 - e^{i\theta}} = \frac{1}{2} + \frac{i}{2} \cot \left(\frac{\theta}{2}\right).$$

2) Montrer que:

$$\sum_{k=1}^{N-1} \cot an \left(\frac{k\pi}{N}\right) = 0.$$

3) En déduire une simplification de S_N .

PROBLÈME: (12pts)

Autour de
$$\delta(2) = \sum_{p=1}^{\infty} \frac{1}{p^2} = \frac{\pi^2}{6}$$
.

Quelques notions:

*Une fonction f est dite de classe C^1 sur un intervalle I si f est dérivable une fois sur I et que sa dérivée est continue sur ce même intervalle.

*Deux suites U_n et V_n sont dites équivalentes ($U_n \sim V_n$) si et seulement si $\lim_{n \to +\infty} \frac{Un}{Vn} = 1$ et que V_n ne s'annule pas.

*Soit (u_n) une suite réelles . On pose $U_n = \sum_{k=0}^n u_k$, $\forall n \geq 0$.

Les quantités U_n forment une suite appelées série de terme général u_n . Les U_n sont appelées sommes partielles d'ordre n et la série est notée $\sum_{n\geq 0} u_n$.

*Soit (u_n) une suite de nombres réels :

- On dit que la série $\sum u_n$ (ou encore la serie de terme général u_n) est convergente

si la suite $(S_N) = \sum_{n=0}^N u_n = u_0 + u_1 + \cdots u_N$ tend vers une limite finie S. On note S la somme de la série :

$$S = \sum_{n=0}^{+\infty} u_n = \lim_{N \to +\infty} \left(\sum_{n=0}^{N} u_n \right) = \lim_{N \to +\infty} (S_N).$$

Première partie : Par la méthode de WALLIS

1. On pose:

$$C_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt.$$

- a) Calculer C_0 et C_1 .
- b) Pour $n \ge 2$, exprimer C_n en fonction de C_{n-2} .
- c) En déduire les valeurs de C_{2n} et C_{2n+1} .
- d) Calculer

$$\lim_{n\to+\infty}\frac{C_{2n}}{C_{2n+1}}.$$

e) En déduire :

$$\frac{(2n)!}{(2n-1)!} \sim \sqrt{\frac{\pi}{2}} \sqrt{2n+1}.$$

2. On pose:

$$I_n = \int_{0}^{\frac{\pi}{2}} t^2 cos^{2n}(t) dt$$
 et $U_n = \sum_{p=1}^{n} \frac{1}{p^2}$.

- a) Démontrer que : $\forall \ n \geq 1, U_n \leq 2$. En déduire que (U_n) admet une limite δ .
- b) Pour tout $n \ge 1$, exprimer I_n en fonction de I_{n+1} .
- c) En déduire que:

$$\frac{\pi}{4} \left(\frac{\pi^6}{6} - U_n \right) = \frac{(2n)!}{(2n-1)!} I_n.$$

d) Démontrer que :

$$I_n \le \frac{\pi^2}{4} \cdot \frac{1}{2n+1}$$

et en déduire que

$$\delta = \frac{\pi^2}{6}.$$

Deuxième partie : Par le lemme de Riemann -Lebesgue

<u>Le lemme</u>: Soit f une fonction de classe C^1 sur un intervalle [a, b] à valeurs dans C. Soit γ un réel alors

$$\lim_{\gamma \to +\infty} \int_a^b e^{i\gamma t} f(t) dt = 0.$$

- 1. Démontrer le lemme f pour de classe C^1 .
- 2. Déterminer deux réels a et b tels que, pour tout $n \in N^*$:

$$\int_0^{\pi} (at^2 + bt) \cos(nt) dt = \frac{1}{n^2}.$$

3. Démontrer que pour tout $t \neq 2k\pi$:

$$\sum_{p=1}^{n} \cos(pt) = Re \frac{e^{(n+1)it} - e^{it}}{e^{it} - 1}.$$

En déduire que:

$$\sum_{n=1}^{n} \frac{1}{p^2} = \frac{1}{2\pi} Re \int_0^{\pi} \frac{t(t-2\pi)}{e^{it}-1} \left(e^{i(n+1)t} - e^{it}\right) dt.$$

- 4. Démontrer que la fonction f définie sur $]0,\pi]$ par $f(t) = \frac{t(t-2\pi)}{e^{it}-1}$ se prolonge en une fonction de classe C^1 sur $[0,\pi]$.
- 5. A l'aide du lemme, déduire des questions précédentes que :

$$\sum_{p=1}^{\infty} \frac{1}{p^2} = \frac{\pi^2}{6}.$$

Troisième partie : Par la méthode de Holme et Papadimitriou

1. Démontrer que pour tout $\theta \in \left]0, \frac{\pi}{2}\right[$ et $n \in N^*$:

$$\sin(2n+1)\theta = \sin^{2n+1}\theta \sum_{j=0}^{n} (-1)^{j} C_{2n+1}^{2j+1} (\cot^{2}\theta)^{n-j}.$$

2. On considère, pour tout $n \in N^*$, le polynome P_n défini par:

$$P_n = \sum_{j=0}^{n} (-1)^j C_{2n+1}^{2j+1} X^{n-j}.$$

Démontrer que les n racines de P_n sont les réels :

$$\alpha_k = \cot a n^2 \frac{k\pi}{2n+1}, 1 \le k \le n.$$

3. Montrer que:

$$\sum_{k=1}^{n} \cot n^2 \frac{k\pi}{2n+1} = n \frac{(2n-1)}{3}.$$

- 4. Démontrer que, pour tout $\theta \in \left]0, \frac{\pi}{2}\right[$, on a: $\sin(\theta) < \theta < \tan(\theta)$. En déduire que : $\cot a^2(\theta) < \frac{1}{\theta^2} < 1 + \cot a^2(\theta)$.
- 5. Démontrer que :

$$\frac{\pi^2}{3} \frac{n(2n-1)}{(2n+1)^2} < \sum_{k=1}^n \frac{1}{k^2} < \frac{\pi^2}{3} \frac{n(2n+2)}{(2n+1)^2}.$$

6. En déduire :

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Quatrième partie : A l'aide des séries de Fourier

Soit $f: R \to C$, $2\pi - periodique$, impaire telle que : $\forall t \in]0, \pi[, f(t) = 1 \text{ et } \forall n \in \mathbb{Z}, f(n) = 0.$

1. Calculer les coefficients de Fourier (trigonométriques) a_n et b_n définis, pour tout $n \in \mathbb{N}$, par :

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$$
 et $b_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(nt) dt$.

2. Démontrer que la série $S_p(f)$ de Fourier de f definie pour tout $t \in R$ par :

$$S_p(f)(t) = \frac{a_0}{2} + \sum_{k=1}^{p} (a_n \cos(nt) + b_n \sin(nt))$$

Converge vers f sur R.

3. En déduire:

$$\sum_{p=0}^{\infty} \frac{(-1)^p}{2p+1} = \frac{\pi}{4}.$$

4. Démontrer que :

$$\sum_{p=0}^{\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}.$$

5.En déduire :

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

BON COURAGE