Análise de Dados e Visualização: Desenvolvimento de um Dashboard Interativo para Análise de Gastos de Deputados Federais

Matheus Galdino dos Santos Lira

28 de abril de 2025

Resumo

Este trabalho apresenta o desenvolvimento de um sistema de análise e visualização de dados dos gastos dos deputados federais brasileiros no ano de 2022. O projeto implementa um pipeline completo de ETL (Extract, Transform, Load) para coleta e processamento de dados da API da Câmara dos Deputados, seguido de análises estatísticas e visualizações interativas através de um dashboard desenvolvido com Streamlit. O sistema permite a exploração detalhada dos gastos parlamentares, oferecendo insights valiosos sobre o uso dos recursos públicos.

Conteúdo

odução			
Contextualização			
Objetivos			
rutura do Projeto			
Organização dos Arquivos			
Exemplos de Código			
2.2.1 Configuração do Ambiente			
2.2.2 Extração de Dados			
2.2.3 Transformação de Dados			
2.2.4 Visualização no Dashboard			
isão Bibliográfica			
ETL (Extract, Transform, Load)			
Visualização de Dados			
odologia			
Tecnologias Utilizadas			
i			

5	Desenvolvimento			
	5.1	Proces	sso ETL	6
		5.1.1	Extração	6
		5.1.2	Transformação	7
		5.1.3	Carga	7
	5.2	Anális	e de Dados	7
	5.3	Desenv	volvimento do Dashboard	7
6	Aná	ilises e	Visualizações	7
	6.1	Anális	ses Implementadas	7
		6.1.1	Análise de Gastos por Categoria	8
		6.1.2	Análise Temporal	8
		6.1.3	Análise por Região	8
	6.2	Visual	izações Implementadas	8
		6.2.1	Gráficos de Barras	8
		6.2.2	Gráficos de Pizza	8
		6.2.3	Tabelas Interativas	8
	6.3		plos de Análises	8
	0.0	6.3.1	Distribuição de Gastos	Ć
		6.3.2	Evolução Temporal	Ć
		6.3.3	Ranking de gastos dos Deputados	(
		6.3.4		10
_	_			
7			3	10
	7.1			10
		7.1.1		10
		7.1.2	<u> </u>	10
	7.2	_	±	11
		7.2.1	,	11
		7.2.2		11
		7.2.3	Melhorias na Interface	11
8	Res	ultado	s	11
	8.1	Visual	izações Implementadas	11
	8.2	Insight	ts Obtidos	11
9	Conclusão			
10	Rof	orôncia	as Bibliográficas	12
10	, itel	crencia	is Dibnograneas	14
\mathbf{L}	ista	de l	Figuras	
	1	Distrik	buição dos gastos por categoria	Ć
	2		ção dos gastos ao longo do tempo	(
	3		O deputados por valor total gasto	10
	4	_	médio por deputado por partido	
	-		meate per departure per partition	- (

Lista de Tabelas

Agradecimentos

Agradeço a todos que contribuíram direta ou indiretamente para a realização deste trabalho, especialmente aos professores e colegas que ofereceram suporte e orientação durante todo o processo de desenvolvimento.

1 Introdução

1.1 Contextualização

A transparência no uso dos recursos públicos é um pilar fundamental da democracia. Neste contexto, a análise dos gastos dos deputados federais se torna uma ferramenta essencial para o controle social e a fiscalização do uso do dinheiro público. Este projeto visa desenvolver um sistema completo de análise e visualização desses dados, tornando-os acessíveis e compreensíveis para a sociedade.

1.2 Objetivos

- Desenvolver um pipeline ETL robusto para extração e processamento de dados da API da Câmara dos Deputados
- Implementar análises estatísticas dos gastos parlamentares
- Criar um dashboard interativo para visualização e exploração dos dados
- Documentar todo o processo de desenvolvimento e as decisões técnicas tomadas

2 Estrutura do Projeto

2.1 Organização dos Arquivos

O projeto está organizado da seguinte forma:

- etl.py: Script principal responsável pela extração, transformação e carga dos dados
- dashboard/: Diretório contendo os arquivos do dashboard interativo
 - 1_Homepage.py: Página inicial do dashboard
 - get_deputados.py: Funções para obtenção de dados dos deputados
 - get_despesas.py: Funções para obtenção de dados de despesas
- requirements.txt: Lista de dependências do projeto
- .env: Arquivo de configuração com variáveis de ambiente

2.2 Exemplos de Código

2.2.1 Configuração do Ambiente

O projeto utiliza variáveis de ambiente para configuração. Exemplo de código para carregar configurações:

```
import os
 from dotenv import load_dotenv
 # Carregar vari veis de ambiente
 load_dotenv()
 # Configura o do logging
 path_logs = os.getenv("PATH_LOGS", "./logs")
 os.makedirs(path_logs, exist_ok=True)
10
 logging.basicConfig(
11
      level=logging.INFO,
12
      format="%(asctime)s - %(levelname)s - %(message)s",
13
      handlers=[
14
          logging.FileHandler(f"{path_logs}/logs.log"),
15
          logging.StreamHandler()
16
      ]
17
 )
```

2.2.2 Extração de Dados

Exemplo de código para extração de dados da API:

```
def verificar_proxima_pagina(data):
    for link in data['links']:
        if link['rel'] == 'next' and link['href']:
            return link['href']
        return False

# Buscar lista de deputados
url_base = "https://dadosabertos.camara.leg.br/api/v2"
url_deputados = f"{url_base}/deputados"

response = requests.get(url_deputados, params={"idLegislatura": 56})
dados_deputados = response.json()

df_deputados = pd.DataFrame(dados_deputados["dados"])
```

2.2.3 Transformação de Dados

Exemplo de código para transformação dos dados:

```
# Normaliza o dos dados
df_deputados = df_deputados.rename(columns={
```

```
'id': 'id_deputado',
'nome': 'nome_deputado',
'siglaPartido': 'partido'

**Tratamento de valores ausentes
df_deputados = df_deputados.fillna({
'partido': 'SEM PARTIDO',
'uf': 'ND'
})
```

2.2.4 Visualização no Dashboard

Exemplo de código para criação de visualizações no Streamlit:

```
1 import streamlit as st
 import plotly.express as px
4 # Configura o da p gina
5
 st.set_page_config(
      page_title="An lise de Gastos",
      page_icon="
      layout="wide"
8
9
 )
10
 # T tulo
 st.title("An lise de Gastos dos Deputados Federais")
14 # Gr fico de barras
 fig = px.bar(
15
      df_gastos,
16
      x='deputado',
17
      y='valor',
18
      title='Gastos por Deputado'
19
20 )
 st.plotly_chart(fig)
```

3 Revisão Bibliográfica

3.1 ETL (Extract, Transform, Load)

O processo ETL é fundamental para a preparação de dados para análise. No contexto deste projeto, o ETL foi implementado para:

- Extração: Obtenção dos dados da API da Câmara dos Deputados
- Transformação: Limpeza, normalização e preparação dos dados
- Carga: Armazenamento em banco de dados relacional (MySQL/SQLite)

3.2 Visualização de Dados

A visualização de dados é uma ferramenta poderosa para compreensão e comunicação de informações. Neste projeto, utilizamos o Streamlit para criar um dashboard interativo que permite:

- Visualização geral dos gastos dos deputados
- Análise detalhada por deputado
- Comparativos entre diferentes períodos
- Filtros por tipo de despesa

4 Metodologia

4.1 Tecnologias Utilizadas

- Python: Linguagem principal de programação
- Pandas: Biblioteca para manipulação e análise de dados
- Streamlit: Framework para desenvolvimento de dashboards
- SQLAlchemy: ORM para interação com banco de dados
- MySQL/SQLite: Sistemas de gerenciamento de banco de dados

4.2 Arquitetura do Sistema

O sistema foi desenvolvido seguindo uma arquitetura modular, com componentes separados para:

- Processamento de dados (ETL)
- Análise estatística
- Visualização e interface do usuário

5 Desenvolvimento

5.1 Processo ETL

O processo de ETL foi implementado utilizando Python e bibliotecas especializadas. A seguir, detalhamos cada etapa:

5.1.1 Extração

A extração dos dados foi realizada através da API da Câmara dos Deputados (dado-sabertos.camara.leg.br), utilizando a biblioteca requests. Foram coletados:

- Dados básicos dos deputados
- Informações detalhadas de cada parlamentar
- Despesas realizadas no ano de 2022

5.1.2 Transformação

O processo de transformação incluiu:

- Normalização dos dados
- Tratamento de valores ausentes
- Criação de chaves de relacionamento
- Estruturação em tabelas relacionais

5.1.3 Carga

Os dados foram armazenados em um banco de dados relacional, com suporte a:

- MySQL: Para ambientes de produção
- SQLite: Para desenvolvimento e testes

5.2 Análise de Dados

As análises implementadas incluem:

- Distribuição dos gastos por categoria
- Comparativo entre deputados
- Análise temporal dos gastos
- Identificação de padrões e outliers

5.3 Desenvolvimento do Dashboard

O dashboard foi desenvolvido utilizando Streamlit, oferecendo:

- Interface intuitiva e responsiva
- Visualizações interativas
- Filtros dinâmicos
- Exportação de dados

6 Análises e Visualizações

6.1 Análises Implementadas

O sistema implementa diversas análises sobre os dados dos deputados e seus gastos:

6.1.1 Análise de Gastos por Categoria

- Distribuição dos gastos por tipo de despesa
- Comparativo entre diferentes categorias
- Identificação de padrões de gastos

6.1.2 Análise Temporal

- Evolução dos gastos ao longo do tempo
- Sazonalidade nos gastos
- Identificação de períodos de maior gasto

6.1.3 Análise por Região

- Comparativo de gastos entre estados
- Média de gastos por região
- Identificação de padrões regionais

6.2 Visualizações Implementadas

O dashboard oferece diversas visualizações interativas:

6.2.1 Gráficos de Barras

- Comparação de gastos entre deputados
- Distribuição de gastos por categoria
- Evolução temporal dos gastos

6.2.2 Gráficos de Pizza

- Proporção de gastos por categoria
- Distribuição de deputados por partido
- Distribuição por região

6.2.3 Tabelas Interativas

- Lista detalhada de despesas
- Ranking de deputados por gastos
- Detalhamento por categoria

6.3 Exemplos de Análises

A seguir, apresentamos alguns exemplos de análises realizadas:

6.3.1 Distribuição de Gastos

A Figura 1 mostra a distribuição dos gastos por categoria:

Figura 1: Distribuição dos gastos por categoria

6.3.2 Evolução Temporal

A Figura 2 apresenta a evolução dos gastos ao longo do tempo:

Figura 2: Evolução dos gastos ao longo do tempo

6.3.3 Ranking de gastos dos Deputados

A Figura 3 apresenta o ranking dos 20 deputados que mais gastaram:

Figura 3: Top 20 deputados por valor total gasto

6.3.4 Gasto médio por Deputador por Partido

A Figura 4 apresenta o gasto médio por deputado por partido:

Figura 4: Gasto médio por deputado por partido

7 Desafios e Soluções

7.1 Desafios Encontrados

Durante o desenvolvimento do projeto, foram enfrentados diversos desafios:

7.1.1 Desafios Técnicos

- Volume de dados: O grande volume de dados exigiu otimização no processamento
- Limitações da API: Necessidade de implementar paginação e tratamento de erros
- Performance do dashboard: Otimização das visualizações para melhor performance

7.1.2 Desafios de Negócio

- Qualidade dos dados: Necessidade de tratamento e validação
- Interpretação dos dados: Desenvolvimento de visualizações claras e intuitivas
- Atualização dos dados: Implementação de processo de atualização periódica

7.2 Soluções Implementadas

Para superar os desafios, foram implementadas as seguintes soluções:

7.2.1 Otimização de Performance

- Implementação de cache para dados frequentemente acessados
- Uso de índices no banco de dados
- Otimização das consultas SQL

7.2.2 Tratamento de Dados

- Implementação de validação de dados
- Tratamento de valores ausentes
- Normalização de dados

7.2.3 Melhorias na Interface

- Design responsivo
- Feedback visual para o usuário
- Documentação clara das funcionalidades

8 Resultados

8.1 Visualizações Implementadas

O dashboard oferece diversas visualizações, incluindo:

- Gráficos de barras para comparação de gastos
- Gráficos de pizza para distribuição de despesas
- Tabelas interativas com dados detalhados
- Mapas de calor para análise temporal

8.2 Insights Obtidos

Através da análise dos dados, foi possível identificar:

- Padrões de gastos por região
- Diferenças significativas entre deputados
- Categorias de despesas mais comuns
- Comportamentos atípicos que merecem atenção

9 Conclusão

Este projeto demonstrou a viabilidade e importância da análise de dados no contexto da transparência pública. Através do desenvolvimento de um sistema completo de ETL e visualização, foi possível criar uma ferramenta valiosa para o acompanhamento dos gastos parlamentares. O dashboard desenvolvido facilita o acesso e compreensão dos dados, contribuindo para o fortalecimento do controle social.

10 Referências Bibliográficas

Referências

- [1] Streamlit Documentation. https://docs.streamlit.io/
- [2] Pandas Documentation. https://pandas.pydata.org/docs/
- [3] Câmara dos Deputados. Dados Abertos. https://dadosabertos.camara.leg.br/
- [4] SQLAlchemy Documentation. https://www.sqlalchemy.org/