1. Konfiguracja sprzętowa i programowa

Wszystkie testy omówione w niniejszym artykule wykonano na komputerze o następujących parametrach:

CPU: Intel® Core TM i5-8265U CPU @ 1,6 GHz

RAM: Pamięć 8,00 GB

HDD: WDC PC SN520 SDAPNUW-512G-1014

S.O.: Windows 10 Home

Jako systemy zarządzania bazami danych wybrano oprogramowanie wolno dostępne: MySQL, wersja Community Server 5.1.42,

PostgreSQL, wersja 13.

Testy wykonywano wielokrotnie na komputerze dla każdego systemu zarządzania bazą danych, przy czym w trakcie testów na danym komputerze zainstalowany był tylko jeden z nich, kolejność instalacji była krzyżowa.

1.2. Kryteria testów

W teście wykonano szereg zapytań sprawdzających wydajność złączeń i zagnieżdżeń z tabelą geochronologiczną w wersji zdenormalizowanej i znormalizowanej.

• Zapytanie 1 (1 ZL), którego celem jest złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci zdenormalizowanej, przy czym do warunku złączenia dodano operację modulo, dopasowującą zakresy wartości złączanych kolumn:

SELECT COUNT(*) FROM Milion INNER JOIN GeoTabela ON (mod(Milion.liczba,68)=(GeoTabela.id_pietro));

 Zapytanie 2 (2 ZL), którego celem jest złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci znormalizowanej, reprezentowaną przez złączenia pięciu tabel:

```
SELECT COUNT(*) FROM Milion INNER JOIN GeoPietro ON (mod(Milion.liczba,68)=GeoPietro.id_pietro) NATURAL JOIN GeoEpoka NATURAL JOIN GeoEon;
```

• Zapytanie 3 (3 ZG), którego celem jest złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci zdenormalizowanej, przy czym złączenie jest wykonywane poprzez zagnieżdżenie skorelowane:

```
SELECT COUNT(*) FROM Milion WHERE mod(Milion.liczba,68) =
(SELECT id pietro FROM GeoTabela WHERE mod(Milion.liczba,68) = (id pietro));
```

• Zapytanie 4 (4 ZG), którego celem jest złączenie syntetycznej tablicy miliona wyników z tabelą geochronologiczną w postaci znormalizowanej, przy czym złączenie jest wykonywane poprzez zagnieżdżenie skorelowane, a zapytanie wewnętrzne jest złączeniem tabel poszczególnych jednostek geochronologicznych:

```
SELECT COUNT(*) FROM Milion WHERE mod(Milion.liczba,68) =
```

(SELECT GeoPietro.id_pietro FROM GeoPietro NATURAL JOIN GeoEpoka NATURAL JOIN GeoEva N

2. Wyniki testów

Czasy wykonania zapytań 1 ZL, 2 ZL, 3 ZG i 4 ZG [s]

	1 ZL		2 ZL		3 ZG		4 ZG	
	MIN	AVG	MIN	AVG	MIN	AVG	MIN	AVG
BEZ INDEKSÓW								
PostgreSQL	0,26	0,2922	0,346	0,382	13,23	13,694	0,208	0,2432
MS SQL Server	0,12204	0,14221	0,07841	0,11137	3,82551	4,13567	0,10862	0,1797
<u>Z INDEKSAMI</u>								
PostgreSQL	0,221	0,2446	0,282	0,317	13,049	13,79	0,203	0,2294
MS SQL Server	0,05782	0,06333	0,05385	0,06487	1,56753	1,71702	0,06314	0,07919

Wykres 1. Porównanie czasów dla PostgeSQL i MS SQL Server bez indeksów.

Wykres 2. Porównanie czasów PostgreSQL z MS SQL Server z indeksami.

Wykres 3. Porównanie czasów dla samego PostrgeSQLa.

Wykres 4. Porównanie czasów dla samego MS SQL Server.

3. Wnioski.

Na podstawie przeprowadzonej analizy możemy stwierdzić, że wersja z indeksami jest wydajniejsza zarówno dla PostgreSQL jak i dla MS SQL Server.

W przypadku opcji bez indeksów jak i z indeksami MS SQL Server osiąga dużo lepsze wyniki czasowe. Jest szybszy we wszystkich zapytaniach, jakie zostały uruchomione. Szczególnie jest to zauważalne podczas wykonywania się zapytania 3 ZG, gdzie równica czasowa jest dosyć duża, równa około 12 sekund.

PostgreSQL w obu przypadkach (dla z i bez indeksów) osiągnął porównywalne wyniki czasowe, które różnią się od siebie mniej więcej 2 ms.

MS SQL Server osiągnął najbardziej zróżnicowane wyniki czasowe. Czas wykonywania się zapytań dla opcji bez indeksów jest ponad dwa razy dłuższy niż dla opcji z indeksami.