CIND-820 - Final project - BRFSS 2020 Survey Data

Roghayeh Taghvai (student number: 501303544)

1) Data Analysis; summarizing and visualizind data

1.1) Importing necessary libraries

```
In []: !pip install jupyter notebook
!pip install scikit-learn
!pip install seaborn
!pip install pandas
!pip install matplotlib
!pip install xgboost
In [2]: import pandas as pd
import numpy as np
import sklearn
import matplotlib.pyplot as plt
import seaborn as sns
```

1.2) Upload Dataset

```
In [23]: df = pd.read_csv("E:\\Chang_school_cources\\CIND820\\dataset\\BRFSS2020.csv")
    df.shape
Out[23]: (401958, 279)
```

1.3) Select Important Features according the papers

```
'CVDSTRK3',
    ' PHYS14D',
    'CHCKDNY2',
    '_LTASTH1',
    'GENHLTH',
    'DIFFWALK',
    'CHCSCNCR',
    'ADDEPEV3'
    #'ECIGARET'
]
df=df[column_name]
df.rename(columns={
    '_SEX': 'sex',
    '_BMI5CAT': 'bmi',
    '_AGE80': 'age_groups',
    '_SMOKER3': 'smoke_status',
    'EXERANY2': 'exercise1',
    '_TOTINDA': 'exercise2',
    'SLEPTIM1': 'sleep',
    'DIABETE4': 'diabete',
    'CVDINFR4': 'heart_disease1',
    'CVDCRHD4': 'heart_disease2',
    '_URBSTAT': 'area',
    ' RFBING5': 'drinker1',
    ' RFDRHV7': 'drinker2',
    'CVDSTRK3': 'stroke',
    '_PHYS14D' : 'Physical_Health',
    'CHCKDNY2' : 'Kidney_Disease',
    'LTASTH1': 'Asthma',
    'GENHLTH' : 'General_health',
    'DIFFWALK' : 'Difficulty_Walking',
    'CHCSCNCR' : 'Skin_Cancer',
    'ADDEPEV3' : 'depressive_disorder'
    #'ECIGARET' : 'Ecigarette'
}, inplace=True)
```

In [7]: df.head()

Out[7]:		sex	bmi	age_groups	smoke_status	exercise1	exercise2	sleep	diabete	heart_disease
	0	2	1.0	56	1	1.0	1	5.0	1.0	2
	1	2	3.0	65	9	1.0	1	7.0	3.0	2
	2	2	NaN	65	4	1.0	1	7.0	3.0	2
	3	2	NaN	80	4	2.0	2	6.0	3.0	2
	4	2	2.0	80	4	1.0	1	7.0	3.0	2

5 rows × 21 columns

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 401958 entries, 0 to 401957
Data columns (total 21 columns):

#	Column	Non-Nu	Dtype				
0	sex	401958	non-null	int64			
1	bmi	360601	non-null	float64			
2	age_groups	401958	non-null	int64			
3	smoke_status	401958	non-null	int64			
4	exercise1	401955	non-null	float64			
5	exercise2	401958	non-null	int64			
6	sleep	401955	non-null	float64			
7	diabete	401952	non-null	float64			
8	heart_disease1	401952	non-null	float64			
9	heart_disease2	401955	non-null	float64			
10	area	394831	non-null	float64			
11	drinker1	401958	non-null	int64			
12	drinker2	401958	non-null	int64			
13	stroke	401955	non-null	float64			
14	Physical_Health	401958	non-null	int64			
15	Kidney_Disease	401952	non-null	float64			
16	Asthma	401958	non-null	int64			
17	General_health	401950	non-null	float64			
18	Difficulty_Walking	386678	non-null	float64			
19	Skin_Cancer	401955	non-null	float64			
20	depressive_disorder	401952	non-null	float64			
dtynes: float64(13) int64(8)							

dtypes: float64(13), int64(8)

memory usage: 64.4 MB

In [9]: df.describe()

Out	[9]	:
-----	-----	---

	sex	bmi	age_groups	smoke_status	exercise1	ex
count	401958.000000	360601.000000	401958.000000	401958.000000	401955.000000	401958.
mean	1.542412	2.981792	54.429221	3.648065	1.248593	1.
std	0.498199	0.831831	17.666723	1.563233	0.502215	0.
min	1.000000	1.000000	18.000000	1.000000	1.000000	1.
25%	1.000000	2.000000	40.000000	3.000000	1.000000	1.
50%	2.000000	3.000000	57.000000	4.000000	1.000000	1.
75%	2.000000	4.000000	69.000000	4.000000	1.000000	1.
max	2.000000	4.000000	80.000000	9.000000	9.000000	9.

8 rows × 21 columns

2) Data preparation, including selecting, preprocessing, and transforming data

2.1) Dropping Duplicates

```
In [25]: duplicates = df.duplicated().sum()
    print(f"Number of duplicate rows: {duplicates}")
    df = df.drop_duplicates()
    df.shape
    Number of duplicate rows: 113832
Out[25]: (288126, 21)
```

2.2) Detecting and Removeing the irrelevant values and outliersOutliers

```
In [11]: columns= df.columns

plt.figure(figsize=(15, 8))
    df[columns].boxplot(rot=45) # Rotate x labels for better readability
    plt.title("Box Plot of Features to Detect Outliers")
    plt.xlabel("Features")
    plt.ylabel("Values")
    plt.show()
```


Result: Most of the features have outliers and should be removed.

```
# Remove irrelevant values.
In [26]:
         df = df.drop(df[df.bmi == -1].index)
         df = df.drop(df[df.bmi > 4].index)
         df = df.drop(df[df.smoke_status > 4].index)
         df = df.drop(df[df.heart_disease1 > 2].index)
         df = df.drop(df[df.heart disease2 > 2].index)
         df = df.drop(df[df.exercise1 > 2].index)
         df = df.drop(df[df.exercise2 > 2].index)
         df = df.drop(df[df.sleep > 20].index)
         df = df.drop(df[df.diabete > 4].index)
         df = df.drop(df[df.area == -1].index)
         df = df.drop(df[df.drinker1 > 2].index)
         df = df.drop(df[df.drinker2 > 2].index)
         df = df.drop(df[df.stroke > 2].index)
         #df = df.drop(df[df.Ecigarette > 2].index)
         df = df.drop(df[df.Physical_Health > 3].index)
         #df = df.drop(df[df.Mental_Health > 3].index)
         df = df.drop(df[df.Kidney_Disease > 2].index)
         df = df.drop(df[df.Asthma > 2].index)
         df = df.drop(df[df.General health > 5].index)
         df = df.drop(df[df.Difficulty_Walking > 2].index)
         df = df.drop(df[df.Skin Cancer > 2].index)
         df = df.drop(df[df.depressive_disorder>2].index)
         # Replace 2 to 0, then false == 0
         df.heart disease1 = df.heart disease1.replace(2, 0)
         df.heart_disease2 = df.heart_disease2.replace(2, 0)
         df['heart_disease'] = df['heart_disease1'] + df['heart_disease2']
         # Replace 2 to 1, then heart problem.
         df['heart_disease'] = df['heart_disease'].replace(2,1)
         # Replace 2 to 0, then false == 0
         df.drinker1 = df.drinker1.replace(2, 0)
         df.drinker2 = df.drinker2.replace(2, 0)
         df['drinker'] = df['drinker1'] + df['drinker2']
         # Replace 2 to 1, then exercise.
         df['drinker'] = df['drinker'].replace(2,1)
         # Replace 2 to 0, then false == 0
         df.exercise1 = df.exercise1.replace(2, 0)
         df.exercise2 = df.exercise2.replace(2, 0)
         df['exercise'] = df['exercise1'] + df['exercise2']
         # Replace 2 to 1, then exercise.
         df['exercise'] = df['exercise'].replace(2,1)
         # valores 2 representam "não", substituindo por 0 para facilitar na plotagem.
         df['stroke'] = df['stroke'].replace(2,0)
In [27]: | df.drop(columns=['heart_disease1', 'heart_disease2','exercise1', 'exercise2', 'drin
```

2.3) Deleting and Handeling NAs

```
In [14]: print(df.isna().sum())
         #df=df.dropna()
         df.shape
        sex
                                    0
                                17832
        bmi
        age_groups
                                    0
        smoke_status
                                    0
        sleep
                                    0
        diabete
                                    0
        area
                                 6275
        stroke
                                    0
                                    0
        Physical_Health
        Kidney_Disease
                                    0
        Asthma
                                    0
        General_health
                                    3
        Difficulty_Walking
        Skin_Cancer
        depressive_disorder
                                    0
        heart_disease
                                    2
        drinker
                                    0
        exercise
        dtype: int64
Out[14]: (236242, 18)
In [28]: for factor in df.columns:
              df[factor] = df[factor].fillna(df[factor].mode()[0])
         print(df.isna().sum())
        sex
                                0
        bmi
                                0
        age_groups
                                0
        smoke_status
                                0
                                0
        sleep
        diabete
                                0
        area
                                0
        stroke
        Physical_Health
                                0
        Kidney_Disease
                                0
        Asthma
                                0
        General_health
                                0
        Difficulty_Walking
                                0
        Skin_Cancer
                                0
        depressive_disorder
        heart_disease
                                0
        drinker
                                0
        exercise
                                0
        dtype: int64
In [16]: #columns= df.columns
         existing_features = [col for col in df.columns]
```

```
plt.figure(figsize=(15, 8))
df[df.columns].boxplot(rot=45) # Rotate x Labels for better readability
plt.title("Box Plot of Features to Detect Outliers")
plt.xlabel("Features")
plt.ylabel("Values")
plt.show()
```


In [29]: df = df.astype(int)

2.4) Feature Engineering

Corrolation

```
In [18]: corr_matrix=df.corr()
    corr_matrix["heart_disease"].sort_values(ascending=False).head(30)
```

```
Out[18]: heart_disease
                              1.000000
         age_groups
                              0.253184
         General health
                             0.207558
         stroke
                              0.177203
                            0.108700
         Physical_Health
         drinker
                              0.053076
         bmi
                             0.025073
         sleep
                              0.014763
         Asthma
                             0.008765
         area
                             0.005558
         depressive_disorder 0.003609
         smoke_status
                           -0.025588
         exercise
                             -0.059094
         Skin Cancer
                            -0.079174
                            -0.087834
         sex
         Kidney_Disease -0.125509
         diabete
                            -0.148064
         Difficulty_Walking
                             -0.165217
         Name: heart disease, dtype: float64
```

Result: The result of applying the corrolation function to data set shows that "heart_desease" and "General_health" are the most positively correlated features and "Difficulty_walking" and "Diabete" are the most negatively corrolated ones to the target feature.

Backward Elimination

```
In [30]: column = df.columns.drop("heart_disease")
         X = df[column] # Features
         y = df['heart disease']
         #X norm = pd.DataFrame(X, columns=df.columns.drop("heart disease"))
         #df_norm['heart_disease'] = y.values
In [31]: import statsmodels.api as sm
         def backward_elimination(data, target, significance_level=0.05):
             variables = data.columns.tolist()
             while len(variables) > 0:
                 X_with_const = sm.add_constant(data[variables])
                 model = sm.OLS(target, X with const).fit()
                 max_p_value = model.pvalues.iloc[1:].max()
                 if max_p_value > significance_level:
                     excluded_var = model.pvalues.iloc[1:].idxmax()
                     print(f"Removing {excluded_var} with p-value {max_p_value}")
                     variables.remove(excluded_var)
                 else:
                     break
             return model
         # Apply backward elimination
         final_model_backward = backward_elimination(X, y)
         print("\nFinal Model Summary (Backward Elimination):\n", final_model_backward.summa
```

Removing sleep with p-value 0.9782401943728702
Removing depressive_disorder with p-value 0.7531760650479588
Removing area with p-value 0.16299676631251564

Final Model Summary (Backward Elimination):

OLS Regression Results

		Ü	sion Results			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	heart_disease OLS Least Squares Sat, 15 Mar 2025 18:47:34 236242 236227 14 nonrobust		Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.126 0.126 2424. 0.00 -49913. 9.986e+04 1.000e+05	
== 5]	coef	std err		P> t	[0.025	0.97
const 44 sex	0.2244	0.010	21.977	0.000	0.204 -0.068	0.2
63 bmi 01	-0.0025	0.001	1 -3.329	0.001	-0.004	-0.0
age_groups 03	0.0034	3.94e-05		0.000	0.003	0.0
<pre>smoke_status 02 diabete</pre>	-0.0035 -0.0242	0.001 0.001		0.000	-0.005 -0.026	-0.0 -0.0
23 stroke	0.1642	0.003		0.000	0.159	0.1
70 Physical_Health 07	0.0047	0.001	1 4.899	0.000	0.003	0.0
Kidney_Disease 79	-0.0847	0.003		0.000	-0.090	-0.0
Asthma 14	0.0108	0.002			0.008	0.0
General_health 36 Difficulty_Walking	0.0344	0.001 0.002		0.000	0.033 -0.035	-0.0
28 Skin_Cancer	-0.0161	0.002			-0.020	-0.0
12 drinker	0.0208	0.003			0.016	0.0
26 exercise 09	0.0062	0.001			0.003	0.0
Omnibus: Prob(Omnibus): Skew:		1.959	Durbin-Watso Jarque-Bera Prob(JB):	on:	1. 238386.	989

Kurtosis: 5.977 Cond. No. 986.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

```
In [ ]: df = df.drop(['depressive_disorder'],axis=1)
    df = df.drop(['sleep'],axis=1)
    df = df.drop(['area'],axis=1)
```

2.5) Handeling unbalenced dataset

```
In [35]: df['heart_disease'].value_counts(normalize=True) * 100

Out[35]: heart_disease
    0    88.448286
    1    11.551714
    Name: proportion, dtype: float64
```

The ratio of the values of the target feature is 88% (0) to 12%(1). This huge unbalancing should be addressed. We considered 3 different method and slected one of them that give us better results regarding accuracy and

```
In []: from imblearn.under_sampling import RandomUnderSampler
    rus = RandomUnderSampler(random_state=42)
    X_resa, y_resa = rus.fit_resample(X, y)

# Convert back to DataFrame
    df_resampled = pd.DataFrame(X_resa, columns=X.columns)
    df_resampled['heart_disease'] = y_resa.values
```

```
In [36]: from imblearn.over_sampling import SMOTE
    column = df.columns.drop("heart_disease")
    X = df[column] # Features
    y = df['heart_disease']
#X = df_norm.drop(columns=['heart_disease']) # Features
#y = df_norm['heart_disease'] # Target column

smote = SMOTE(random_state=42)
X_resa, y_resa = smote.fit_resample(X, y)
    df_resampled = pd.DataFrame(X_resa, columns=X.columns)
    df_resampled['heart_disease'] = y_resa.values
```

```
#X = df_norm.drop(columns=['heart_disease']) # Features
#y = df_norm['heart_disease'] # Target column

X_resa, y_resa = sampling_pipeline.fit_resample(X, y)
df_resampled = pd.DataFrame(X_resa, columns=X.columns)
df_resampled['heart_disease'] = y_resa.values
```

The result showes that the SMOTE method is the best to apply balancing to the data.

```
In [37]: y_resa.value_counts(normalize=True) * 100

Out[37]: heart_disease
    0    50.0
    1    50.0
    Name: proportion, dtype: float64

Now the target values are balanced.
```

3) Models evaluation, including testing options, exploring algorithms, and reporting results

Dividing data into test and train data.

```
In [38]: from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(X_resa,y_resa, test_size=0.2, rand)
```

3.1) Applying Decision Tree algorithm

```
In [39]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import mean_squared_error
    model=DecisionTreeClassifier()
    model.fit(X_train,y_train)
```

```
Out[39]: 

DecisionTreeClassifier 

DecisionTreeClassifier()
```

```
In [40]: from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
    y_pred_train=model.predict(X_train)
    y_pred_test=model.predict(X_test)

accuracy_train = accuracy_score(y_train, y_pred_train) * 100
    accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
    recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
    precision = precision_score(y_test, y_pred_test) * 100
    f1 = f1_score(y_test, y_pred_test) * 100

sensitivity = recall_score(y_test, y_pred_test, pos_label=1)* 100 # Sensitivity for
```

```
specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity fo

# Print results
print(f"Accuracy train: {accuracy_train:.2f}%")
print(f"Accuracy test: {accuracy_test:.2f}%")
print(f"Recall: {recall:.2f}%")
print(f"sensitivity: {sensitivity:.2f}%")
print(f"specificity: {specificity:.2f}%")
print(f"Precision: {precision:.2f}%")
print(f"F1-Score: {f1:.2f}%")
display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 89.92% Accuracy test: 82.85%

Recall: 88.03% sensitivity: 88.03% specificity: 77.65% Precision: 79.86% F1-Score: 83.74%

3.2) Applying Gaussion-Naive Bays algorithm

```
In [42]: from sklearn.naive_bayes import GaussianNB
model= GaussianNB()
model.fit(X_train,y_train)
```

```
In [43]: y_pred_train=model.predict(X_train)
         y_pred_test=model.predict(X_test)
         accuracy_train = accuracy_score(y_train, y_pred_train) * 100
         accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
         recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
         precision = precision_score(y_test, y_pred_test) * 100
         f1 = f1_score(y_test, y_pred_test) * 100
         sensitivity = recall_score(y_test, y_pred_test, pos_label=1)* 100 # Sensitivity for
         specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity fo
         # Print results
         print(f"Accuracy train: {accuracy train:.2f}%")
         print(f"Accuracy test: {accuracy_test:.2f}%")
         print(f"Recall: {recall:.2f}%")
         print(f"sensitivity: {sensitivity:.2f}%")
         print(f"specificity: {specificity:.2f}%")
         print(f"Precision: {precision:.2f}%")
         print(f"F1-Score: {f1:.2f}%")
         display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 68.75% Accuracy test: 68.38%

Recall: 63.41% sensitivity: 63.41% specificity: 73.38% Precision: 70.57% F1-Score: 66.80%

3.3) Applying Bernuli-Naive Bays algorithm

```
In [49]: y_pred_train=model.predict(X_train)
y_pred_test=model.predict(X_test)

accuracy_train = accuracy_score(y_train, y_pred_train) * 100
accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
precision = precision_score(y_test, y_pred_test) * 100
f1 = f1_score(y_test, y_pred_test) * 100

sensitivity = recall_score(y_test, y_pred_test, pos_label=1)* 100 # Sensitivity for
specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity fo

# Print results
print(f"Accuracy train: {accuracy_train:.2f}%")
print(f"Accuracy test: {accuracy_test:.2f}%")
```

```
print(f"Recall: {recall:.2f}%")
print(f"sensitivity: {sensitivity:.2f}%")
print(f"specificity: {specificity:.2f}%")
print(f"Precision: {precision:.2f}%")
print(f"F1-Score: {f1:.2f}%")
display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 57.39% Accuracy test: 57.20%

Recall: 44.23% sensitivity: 44.23% specificity: 70.26% Precision: 59.96% F1-Score: 50.91%

3.4) Applying XGB-Classifier algorithm

```
In [51]: from xgboost import XGBClassifier

model = XGBClassifier(scale_pos_weight=9) # Ratio of majority/minority class
model.fit(X_train, y_train)
```

```
In [52]: y pred train=model.predict(X train)
         y_pred_test=model.predict(X_test)
         accuracy train = accuracy score(y train, y pred train) * 100
         accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
         recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
         precision = precision_score(y_test, y_pred_test) * 100
         f1 = f1_score(y_test, y_pred_test) * 100
         sensitivity = recall score(y test, y pred test, pos label=1)* 100 # Sensitivity for
         specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity fo
         # Print results
         print(f"Accuracy train: {accuracy_train:.2f}%")
         print(f"Accuracy test: {accuracy_test:.2f}%")
         print(f"Recall: {recall:.2f}%")
         print(f"sensitivity: {sensitivity:.2f}%")
         print(f"specificity: {specificity:.2f}%")
         print(f"Precision: {precision:.2f}%")
         print(f"F1-Score: {f1:.2f}%")
         display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 64.14% Accuracy test: 63.93%

Recall: 98.91% sensitivity: 98.91% specificity: 28.73% Precision: 58.28% F1-Score: 73.34%

3.5) Applying Random Forest algorithm

```
In [55]: y_pred_train=model.predict(X_train)
y_pred_test=model.predict(X_test)

accuracy_train = accuracy_score(y_train, y_pred_train) * 100
accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
precision = precision_score(y_test, y_pred_test) * 100
f1 = f1_score(y_test, y_pred_test) * 100

sensitivity = recall_score(y_test, y_pred_test, pos_label=1)* 100 # Sensitivity for
specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity for
# Print results
print(f"Accuracy train: {accuracy_train:.2f}%")
print(f"Accuracy test: {accuracy_test:.2f}%")
print(f"Recall: {recall:.2f}%")
```

```
print(f"sensitivity: {sensitivity:.2f}%")
print(f"specificity: {specificity:.2f}%")
print(f"Precision: {precision:.2f}%")
print(f"F1-Score: {f1:.2f}%")
display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 89.92% Accuracy test: 83.78%

Recall: 89.43% sensitivity: 89.43% specificity: 78.08% Precision: 80.42% F1-Score: 84.69%

3.6) Applying Logistic Regression algorithm

```
accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
precision = precision_score(y_test, y_pred_test) * 100

f1 = f1_score(y_test, y_pred_test) * 100

sensitivity = recall_score(y_test, y_pred_test, pos_label=1)* 100 # Sensitivity for

specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity fo

# Print results
print(f"Accuracy train: {accuracy_train:.2f}%")
print(f"Accuracy test: {accuracy_test:.2f}%")
print(f"Recall: {recall:.2f}%")
print(f"sensitivity: {sensitivity:.2f}%")
print(f"specificity: {specificity:.2f}%")
print(f"Precision: {precision:.2f}%")
print(f"F1-Score: {f1:.2f}%")
display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 73.85% Accuracy test: 73.41%

Recall: 75.77% sensitivity: 75.77% specificity: 71.02% Precision: 72.47% F1-Score: 74.08%

3.7) Applying KNN algorithm

```
In [60]: from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=4)
model.fit(X_train, y_train)
```

Out[60]:

KNeighborsClassifier

KNeighborsClassifier(n_neighbors=4)

```
In [61]: y_pred_train=model.predict(X_train)
         y_pred_test=model.predict(X_test)
         accuracy_train = accuracy_score(y_train, y_pred_train) * 100
         accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
         recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
         precision = precision_score(y_test, y_pred_test) * 100
         f1 = f1_score(y_test, y_pred_test) * 100
         sensitivity = recall_score(y_test, y_pred_test, pos_label=1)* 100 # Sensitivity for
         specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity fo
         # Print results
         print(f"Accuracy train: {accuracy train:.2f}%")
         print(f"Accuracy test: {accuracy_test:.2f}%")
         print(f"Recall: {recall:.2f}%")
         print(f"sensitivity: {sensitivity:.2f}%")
         print(f"specificity: {specificity:.2f}%")
         print(f"Precision: {precision:.2f}%")
         print(f"F1-Score: {f1:.2f}%")
         display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 85.01% Accuracy test: 79.81%

Recall: 80.34% sensitivity: 80.34% specificity: 79.29% Precision: 79.61% F1-Score: 79.97%

3.8) Applying SVM algorithm

```
In [63]:
    y_pred_train=model.predict(X_train)
    y_pred_test=model.predict(X_test)

accuracy_train = accuracy_score(y_train, y_pred_train) * 100
    accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
    recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
    precision = precision_score(y_test, y_pred_test) * 100

f1 = f1_score(y_test, y_pred_test) * 100

sensitivity = recall_score(y_test, y_pred_test, pos_label=1)* 100 # Sensitivity for

specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity fo

# Print results
    print(f"Accuracy train: {accuracy_train:.2f}%")
    print(f"Accuracy test: {accuracy_test:.2f}%")
    print(f"Recall: {recall:.2f}%")
```

```
print(f"sensitivity: {sensitivity:.2f}%")
print(f"specificity: {specificity:.2f}%")
print(f"Precision: {precision:.2f}%")
print(f"F1-Score: {f1:.2f}%")
display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 73.80% Accuracy test: 73.49%

Recall: 77.86% sensitivity: 77.86% specificity: 69.10% Precision: 71.72% F1-Score: 74.66%

3.8) Applying KNN algorithm with optimal N_neighbors

Finding optimal K value.

```
In [82]: print(list(k_values))
    print(scores)
    print(cv_scores)
```

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[0.77921184 0.77825469 0.7805728 0.77884961 0.78003111]
[0.7865088568973206, 0.7718493766937116, 0.7962688827819077, 0.7944682235908116, 0.7 969867524140807, 0.7980007432393297, 0.7937503592372634, 0.7955390467755413, 0.79079 51327303069, 0.7931311989061545, 0.7882018343328813, 0.7902567305732782, 0.785701255 3393067, 0.7868498485938289, 0.7830331779735618, 0.7845526666923976, 0.7817380201653 134, 0.7830152314989253, 0.7793840092147255]

```
In [83]: plt.figure(figsize=(8, 5))
    plt.plot(k_values, cv_scores, marker='o')
    plt.xlabel('Number of Neighbors (k)')
    plt.ylabel('Cross-Validation Accuracy')
    plt.title('Cross-Validation Accuracy for Different k Values')
    plt.xticks(k_values)
    plt.grid()
    plt.show()

# Best k
best_k = k_values[np.argmax(cv_scores)]
    print("Optimal k value:", best_k)
```


Optimal k value: 6

Traning the model.

```
In [84]: model = KNeighborsClassifier(n_neighbors=best_k)
model.fit(X_train, y_train)
```

Out[84]:

KNeighborsClassifier

KNeighborsClassifier(n_neighbors=6)

```
In [85]: y_pred_train=model.predict(X_train)
         y_pred_test=model.predict(X_test)
         accuracy_train = accuracy_score(y_train, y_pred_train) * 100
         accuracy_test = accuracy_score(y_test, y_pred_test) * 100 # Convert to %
         recall = recall_score(y_test, y_pred_test) * 100 # Sensitivity / True Positive Rat
         precision = precision_score(y_test, y_pred_test) * 100
         f1 = f1_score(y_test, y_pred_test) * 100
         sensitivity = recall_score(y_test, y_pred_test, pos_label=1)* 100 # Sensitivity for
         specificity = recall_score(y_test, y_pred_test, pos_label=0)* 100 # Specificity fo
         # Print results
         print(f"Accuracy train: {accuracy train:.2f}%")
         print(f"Accuracy test: {accuracy_test:.2f}%")
         print(f"Recall: {recall:.2f}%")
         print(f"sensitivity: {sensitivity:.2f}%")
         print(f"specificity: {specificity:.2f}%")
         print(f"Precision: {precision:.2f}%")
         print(f"F1-Score: {f1:.2f}%")
         display = ConfusionMatrixDisplay.from_estimator(model, X_test, y_test, cmap=plt.cm.
```

Accuracy train: 84.66% Accuracy test: 80.35%

Recall: 84.15% sensitivity: 84.15% specificity: 76.53% Precision: 78.30% F1-Score: 81.12%

