

ELABORAZIONE DELLE IMMAGINI

SEGMENTAZIONE DELLE IMMAGINI: REGION GROWING - SPLIT AND MERGE

SEGMENTAZIONE BASATA SULLE REGIONI

- Denotiamo con R la regione occupata dall'immagine
- La **segmentazione** dell'immagine consiste nel **partizionare** R in n **sottoregioni** $R_1, R_2, ..., R_n$ tali che
 - $\bigcup_{i=1}^{n} R_i = R$ (segmentazione completa)
 - R_i è un insieme connesso i = 1, 2, ..., n (pixel 4/8 connessi)
 - $\blacksquare R_i \cap R_j = \emptyset$ (regioni disgiunte)
 - $Q(R_i)$ = Vero per i=1,2,...,n (tutti i pixel in R_i rispettano la proprietà in Q)
 - $Q(R_i \cup R_j)$ = Falso $\forall R_i e R_j$ adiacenti (pixel in regioni adiacenti devono avere proprietà diverse)
- lacksquare Q è un predicanto logico definito sui punti di una regione R_i

- La tecninca del **region growing** (accrescimento di regione) consiste nel **raggruppare** i **pixel** in **regioni** più **grandi** in base a **criteri** predefiniti
- Il procedimento inzia da punti iniziali detti seed e si propaga ai pixel adiacenti che rispettano delle proprietà predefinite, i quali vengono aggiunti alla regione
- Se l'informazione relativa ai seed non è disponibile, per ogni pixel si calcolano delle proprietà che vengono usate per l'assegnazione dei pixel alle regioni

- Il criterio di similarità dipende dal tipo di immagine
- Es.: per immagini in scala di grigio si usano descrittori basati sui livelli di intensità
- I descrittori devono sempre essere associati alle proprietà di connettività
- Ragruppare pixel "simili" ma non adiacenti può generare segmentazioni inconsistenti

- Un altro problema riguarda la regola d'arresto, utile per arrestare l'accrescimento della regione quando i pixel non soddisfano più i criteri di inserimento
- Considerare solo i **descrittori locali** (es. livello di intensità) non è sufficiente perchè non si tiene conto della "**storia**" del processo di accrescimento
- È opportuno conisderare le caratteristiche di tutti i pixel che già sono stati inseriti nella regione

- Sia f(x,y) l'immagine di input
- Sia S(x,y) la matrice dei **seed** che assegna il valore 1 alle **posizioni dei seed** e 0 alle altre posizioni
- Sia Q un predicato da aplicare ad ogni pixel
- I passi dell'algoritmo sono i seguenti
- 1. Formare l'immagine f_Q che nel punto (x,y) contiene il valore 1 se Q(f(x,y)) è vero altrimenti contiene il valore 0
- 2. Aggiungere ad ogni seed i pixel impostati ad 1 in f_Q che risultano [4,8]connessi al seed stesso
- 3. Marcare ogni componente connessa con un'etichetta diversa

1	1	9	9	9
1	1	9	9	9
5	1	1	9	9
5	5	5	3	9
3	3	3	3	3

1	1	9	9	9
1	1	9	9	9
5	1	1		9
5	5	5	3	9
3	3	3	3	3

1	1	9	9	9
1	1	9	9	9
5	1	1	9	9
5	5	5	3	9
3	3	3	3	3

1	1	9	9	9
1	1	9	9	9
5	1	1	9	9
5	5	5	3	9
3	3	3	3	3

1	1	9	9	9
1	1	9	9	9
5	1	1	9	9
5	5	5	3	9
3	3	3	3	3

Elim Parte II – Prof. A. Ferone

1	1	9	9	9
1	1	9	9	9
5	1	1	9	9
5	5	5	3	9
3	3	3	3	3

1	1	9	9	9
1	1	9	9	9
5	1	1	9	9
5	5	5	3	9
3	3	3	3	3

1	1	9	9	9
1	1	9	9	9
5	1	1	9	9
5	5	5	3	9
3	3	3	3	3

- Un approccio alternativo consiste nel dividere (split) l'immagine in regioni disgiunte di forma e dimensioni arbitrarie e successivamente fonderle (merge) in base a dei criteri di similarità
- Sia **R** la **regione** corrispondente all'intera **immagine** e **Q** un **predicato**
- È possibile dividere R in regioni sempre più piccole finchè il predicato non risulta vero
- Una strategia molto utilizzata consiste nel dividere le regioni in quadranti (mediante quadtrees, alberi di quadranti)
- Partendo da R, se Q(R)=falso si divide R in quattro quadranti
- I quadranti per cui **Q** è falso si dividono ulteriormente in quadranti e così via finchè il predicato non risulta vero

R_1	R	22
R_3	R_{41}	R_{42}
113	R_{43}	R_{44}

- Al **termine** della fase di **splitting**, la **partizione** finale potrebbe contenere **regioni adiacenti** con caratteristiche **simili** ■
- Per questo motivo queste **regioni** possono essere **fuse** (lo schema illustrato prevede che $Q(R_i \cup R_j)$ = Falso $\forall R_i e R_j$ adiacenti)
- Si considerino due **regioni adiacenti** R_i e R_j , se $Q(R_i \cup R_j)$ =**Vero** allora è possibile effettuare il merge delle due regioni

- I passi dell'algoritmo sono i seguenti
- 1. Dividere in quattro quadranti tutte le regioni per cui il predicato Q risulta falso
- 2. Quando non è più possibile dividere le regioni, applicare il processo di **merging** a tutte le regioni adiacenti R_i e R_j , per cui $Q(R_i \cup R_j)$ =Vero
- 3. Il processo termina quando non è più possibile effettuare unioni
- Solitamente si definisce una dimesione minima della regione oltre la quale non si effettua lo split
- Per ragioni di efficienza, la fase di merge si può eseguire se il predicato è vero per le singole regioni adiacenti (non si effettua l'unione)

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
	- 1	J	U		_		ŭ

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

1	1	1	1	1	1	1	2
1	1	1	1	1	1	1	0
3	1	4	9	9	8	1	0
1	1	8	8	8	4	1	0
1	1	6	6	6	3	1	0
1	1	5	6	6	3	1	0
1	1	5	6	6	2	1	0
1	1	1	1	1	1	0	0

$$Q := \sigma > \alpha \text{ AND}$$
$$0 < m < \beta$$

- ▶ (b) 32 × 32
- ► (c) 16 × 16
- ▶ (d) 8 × 8

ESERCIZI

- Provare il codice region growing
- Implementare l'algoritmo split and merge
- Un algoritmo per trovare i nodi adiacenti di una dato nodo (es. nord)
 [Computational Geometry Algorithms and Applications, deBerg et al.]

```
Algorithm NORTHNEIGHBOR(v, T)
```

Input. A node v in a quadtree \mathfrak{T} .

Output. The deepest node v' whose depth is at most the depth of v such that $\sigma(v')$ is a north-neighbor of $\sigma(v)$, and **nil** if there is no such node.

- 1. **if** $v = root(\mathfrak{T})$ **then return nil**
- 2. **if** v = SW-child of parent(v) **then return** NW-child of parent(v)
- 3. **if** v = SE-child of parent(v) **then return** NE-child of parent(v)
- 4. $\mu \leftarrow NORTHNEIGHBOR(parent(v), \mathcal{T})$
- 5. **if** $\mu = \text{nil or } \mu$ is a leaf
- 6. then return μ
- 7. **else if** v = NW-child of parent(v)
- 8. **then return** SW-child of μ
- 9. **else return** SE-child of μ

Elim Parte II – Prof. A. Ferone

