Analog Design Techniques

Jan Genoe (jan.genoe@kuleuven.be)

CONTENTS

I Chip Design	3
1 Differential Amplifiers	5
2 Folded cascode stage	11
II Capita Selecta	15
3 Capacitive voltage conversion	17
III References	25
4 References	27
IV Overzicht	29

by Jan Genoe

This Jupyter Book comprises notebooks used in the lectures of Analog Design Techniques of the KU Leuven, campus Diepenbeek.

Note: This is currently still work in progress. Please refer to Toledo as the key source of information. This book is only added as support.

Table of Contents

- Chip Design
 - Differential Amplifiers
 - Folded cascode stage
- Capita Selecta
 - Capacitive voltage conversion
- References
 - References
- Overzicht
 - Lijst cursussen
 - Auteur Jan Genoe

Licenties

The content is licensed under a Creative Commons Attribution 4.0 International License The code is licensed under the MIT license

CONTENTS 1

2 CONTENTS

Part I Chip Design

DIFFERENTIAL AMPLIFIERS

Fig. 1.1: Differential applifier configuration

Fig. 1.2: Differential applifier configuration

Fig. 1.3: Differential applifier configuration

Fig. 1.4: Differential applifier configuration

Fig. 1.5: Differential applifier configuration

Fig. 1.6: Differential applifier configuration

Fig. 1.7: Differential applifier configuration

Fig. 1.8: Differential applifier configuration

FOLDED CASCODE STAGE

Fig. 2.1: Theoretical folded cascode configuration

In Fig. 2.1 we also add a cascode transistor (in red) between the input transistor and the output node. This corresponds as a consequence to a classical cascode stage. However, there is one major difference: the cascode transistor is of the opposite polarity when compared to the input transistors. In Fig. 2.1 the input transistor is a pMOS tranistor and the cascode transistor is an nMOS transitor. Obviously, this also alters the current flow, and in order to maintain the current flow between power (V_{dd}) and ground, an addition current source (I_b) needs to be added.

For the practical implementation of this folded cascode, we replace the current source (I_b) with the transistor T_3 , as can be seen in Fig. 2.2.

The amplication of this simple folded cascode amplifier stage is defined by:

- $\bullet \ \ {\rm the} \ g_m$ of the input transitor T_1
- the conductance of the load resistor $g_{\cal L}$
- the output conductance of the folded cascode stage $g_{casc}\,$
- the capacitive load ${\cal C}_L$

$$A = \frac{g_{m1}}{g_L + g_{casc} + j\omega C_L}$$

Fig. 2.2: Practical folded cascode amplifier stage configuration

The important next step is obviously the determination fo g_{casc} . We use Fig. 2.3 for elaborating this output impedance.

Fig. 2.3: Circuit block under consideration for measuring the folded cascode output impedance

Part II Capita Selecta

CAPACITIVE VOLTAGE CONVERSION

Classical power conversion makes use of inductors and transformers to deliver power at different voltage levels. However, these components typically transform these power converters into bulky and heavy components. However, there are several applications where we only need a voltage and a rather limited current sourced. Moreover, for power converters on silicon chips, efficient inductors are not possible and capacitive power converters are needed. In this chapter we discuss those power converters.

Fig. 3.1: Voltage doubler schematic with large C2 without resistive load

Fig. 3.2: Voltage doubler with large C2 node voltages without resistive load

Fig. 3.3: Voltage doubler with large C2 node voltages with resistive load

Fig. 3.4: Voltage doubler with large C2 in the presence of resistive load

Fig. 3.5: Voltage doubler with equal capacitances

Fig. 3.6: Voltage doubler with equal capacitances node voltages and a resistive load

Fig. 3.8: Node voltages of a capacitive Voltage upconvertor comprising 7 stages

Part III

References

CHAPTER	
FOUR	

REFERENCES

Part IV

Overzicht