Module 2 Unit 2 <u>DIELECTRICS – FORMULA SHEET</u>

Parameter	Formula
1. Capacitance (parallel plate)	$C = \frac{k\epsilon_0 A}{d}$; (k or ϵ_r)
2. Electric field, Voltage (capacitor)	$E = \frac{Q}{k\epsilon_0 A'} V = \frac{Q d}{k\epsilon_0 A}$
3. Fundamental electric quantities	$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ $\vec{P} = \epsilon_0 (k - 1) \vec{E} = \epsilon_0 \chi_e \vec{E} = N \alpha \vec{E}$ $\alpha = \frac{\epsilon_0 (k - 1)}{N}$
4. Electric susceptibility	$\chi_{\rm e}={ m k}-1$ or $\epsilon_{ m r}-1$
5. Electric dipole moment	$\vec{\mu} = \alpha \vec{E}, \vec{P} = \frac{\sum_j \vec{\mu}_j}{V} = N \vec{\mu}_{avg}$
6. Clausis-Mossotti equation	$\alpha = \frac{3\epsilon_0(k-1)}{N(k+2)}$
7. Electronic polarizability	$\alpha_e = 4\pi\epsilon_0 R^3$
8. Internal field in solids	$ec{ ext{E}}_{ ext{i}} = rac{\gamma ec{ ext{P}}}{\epsilon_0}$