PDSD - Tema 4: Resolución de los Ejercicios

Ejercicio 1: Realizad el análisis de los siguientes circuitos secuenciales síncronos:

a) Modelo Mealy - las ecuaciones del circuito y las tablas de estado, como consecuencia de éstas, se expresan a continuación:

Ecuaciones			X = 0		X = 1			
$Z = \overline{X \cdot Q}$	Q	D	Q*	Z	D	Q*	Z	
$D = X \cdot Q + X \cdot Q$	0	1	1	1	0	0	1	
$Q^* = D$	1	0	0	1	1	1	0	

Los valores Q^* (estado futuro) se obtienen al aplicar el valor de la ecuación D para los valores actuales X y Q (estado actual). El diagrama de estados resultante es el siguiente:

b) Modelo Mealy - las ecuaciones del circuito y las tablas de estado, como consecuencia de éstas, se expresan a continuación:

Ecuaciones
$Z = Q_1 \cdot X$
$J_1 = Q_0$
$K_1 = \overline{X}$
$J_0 = X \cdot \overline{Q}_1$
$K_0 = V_{CC}$

		X =	0	X = 1				
Q_1Q_0	J_1K_1	J_0K_0	$Q_1^*Q_0^*$	Z	J_1K_1	J_0K_0	$Q_1^*Q_0^*$	Z
00	01	01	00	0	00	11	01	0
01	11	01	10	0	10	11	10	0
10	01	01	00	0	00	01	10	1
11	11	01	00	0	10	01	10	1

Los valores $Q_1^*Q_0^*$ se obtienen al aplicar el valor de las ecuaciones J_iK_i para los valores actuales de X y Q_1Q_0 . Obsérvese, en la tabla de estados, que el estado S_3 es indistinguible del S_2 por lo que se reduce a uno. El diagrama de estados resultante es el siguiente:

Ejercicio 2: Diseñad un circuito secuencial síncrono con una señal de entrada X y una señal de salida Z. La señal de salida Z será 1 cuando los valores de X durante los cuatro anteriores períodos de reloj sean 0, 0, 1 y 1. La señal de salida volverá a 0 el período de reloj siguiente a que X vuelva a valer 0. Utilizad flip-flops J-K e incluid una señal asíncrona RST que obligará al circuito a reiniciar el ciclo.

Figura 1. Diagrama de estados del ejercicio 2: Modelo Moore

Se omite la tabla de estados abstracta y se realiza la tabla de estados con la asignación de valores a los estados y flip-flops.

		λ	C = 0		X = 1					
$Q_2Q_1Q_0$	J_2K_2	J_1K_1	J_0K_0	$Q_{2}^{*}Q_{1}^{*}Q_{0}^{*}$	J_2K_2	J_1K_1	J_0K_0	$Q_{2}^{*}Q_{1}^{*}Q_{0}^{*}$	Z	
000	0X	0X	1X	001	0X	0X	0X	000	0	
001	0X	1X	X1	010	0X	0X	X1	000	0	
010	0X	X0	0X	010	0X	X0	1X	011	0	
011	0X	X1	X0	001	1X	X1	X1	100	0	
100	X1	0X	1X	001	X0	0X	0X	100	1	

J_2					K_2				
	Q_0X					Q_0X			
Q_2Q_1	00	01	11	10	Q_2Q_1	00	01	11	10
00	0	0	0	0	00	X	X	X	X
01	0	0	1	0	01	X	Х	X	X
11	X	X	Х	Х	11	X	Х	X	X
10	X	X	X	X	10	1	0	X	X
	J	$X_2 = X$	$Q_1 \cdot Q_0$			$K_2 =$	X		•

J_1	Q_0X				<i>K</i> ₁	K_1 Q_0X						
Q_2Q_1	00	01	11	10	Q_2Q_1	00	01	11	10			
00				1	00	X	X	X	X			
01	X	X	X	X	01			1	1			
11	X	X	X	X	11	X	X	X	X			
10			X	X	10	X	X	X	X			
		$J_1 = Z$	$Y \cdot \overline{Q}_0$			<i>K</i> ₁ =	• Q ₀					

J_0	Q_0X				<i>K</i> ₀	Q_0X			
Q_2Q_1	00	01	11	10	Q_2Q_1	00	01	11	10
00	1		X	X	00	X	X	1	1
01		1	X	X	01	X	X	1	
11	X	X	X	X	11	X	X	X	X
10	1		X	X	10	X	X	X	X
	J	$_{0}=\overline{X}$	Q_1				$K_0 = X$	$C + Q_1$	

Z			
	Ç	Q_0	
Q_2Q_1	0	1	
00			
01			
11	X	X	
10	1	X	
	Z =	Q_2	$CLR_2 = CLR_1 = CLR_0 = RST$

Ejercicio 3: Diseñad un circuito secuencial síncrono con una señal de entrada X por la que recibe datos en formato serie. El circuito produce una señal de salida Z que se activa a 1 cada vez que el valor del bit recibido por X cambia, ya sea de 0 a 1 como de 1 a 0. Realizad el diseño utilizando flip-flops tipo J-K e incluid una entrada asíncrona \overline{RST} que obligará al circuito a reiniciar el ciclo.

Nota: Considerad que, una vez detectado el cambio de 0 a 1 o de 1 a 0, si se repite X, la salida toma el valor 0.

$$Z = Q_0$$

$$J_1 = Q_0$$

$$K_1 = Q_0$$

$$J_0 = Q_1 \oplus X$$

$$K_0 = Q_1 \oplus X$$

$$CLR_1 = CLR_0 = \overline{RST}$$

Ejercicio 4: Diseñad un circuito secuencial síncrono con una entrada X y una salida Z, de modo que dicha salida Z se ponga a 1 cuando la entrada X valga 1 durante tres o más flancos de reloj consecutivos. La salida Z sólo vuelve a cero si se rompe la secuencia, es decir si la entrada X vale O durante uno o más flancos de reloj. Resolved con flip-flops O e incluid una entrada asíncrona O O0 durante uno o más flancos de reloj. Resolved con flip-flops O1 e incluid una entrada asíncrona O1 O2 durante uno o más flancos de reloj.

$$Z = Q_1 \cdot Q_0$$

$$D_1 = X \cdot (Q_0 + Q_1)$$

$$D_0 = X \cdot (\overline{Q}_0 + Q_1)$$

$$CLR_1 = CLR_0 = \overline{RST}$$

Ejercicio 5: Diseñad un circuito secuencial síncrono que controle el uso de un bus por parte de dos periféricos, A y B. Cuando alguno de ambos periféricos precisa el uso del bus, activa a 1 la señal de petición de bus correspondiente (AR y BR, respectivamente), señales que funcionan como entrada al circuito controlador. Éste concede el uso del bus al periférico que lo ha solicitado, activando a 1 la señal de concesión de bus adecuada (AG y BG), y manteniéndola en este valor hasta que AR o BR vuelvan a 0. La petición y el uso del bus puede pasar de uno a otro periférico en cualquier momento. En caso de que los dos periféricos soliciten el uso del bus al mismo tiempo, (AR y BR = 11), el controlador sólo concederá el bus al periférico A. Utilizad flip-flops D e incluid una entrada asíncrona \overline{RST} que obligará al circuito a reiniciar el ciclo.

Figura 2. Diagrama de estados del ejercicio 5: Modelo Moore

Nota: Puede darse otra interpretación en la resolución. Estando en el estado S_2 y con entra- das 11, puede pasarse al estado S_1 , en vez de permanecer en el estado S_2 . Esto indica que el periférico A siempre tiene prioridad sobre el B aunque este tenga el Bus.

Se omite la tabla de estados abstracta y se realiza la tabla de estados con la asignación de valores a los estados y flip-flops.

		AR BR											
	0	00	C)1	10			1					
Q_1Q_0	D_1D_0	$Q_1^*Q_0^*$	$D_{1}D_{0}$	$Q_1^*Q_0^*$	$D_{1}D_{0}$	$Q_1^*Q_0^*$	$D_{1}D_{0}$	$Q_1^*Q_0^*$	AG BG				
00	00	00	10	10	01	01	01	01	00				
01	00	00	10	10	01	01	01	01	10				
10	00	00	10	10	01	01	10	10	01				
11	XX	XX	XX	XX	XX	XX	XX	XX	XX				

Consider the Constant $CLR_0 = Q_1$ $CLR_0 = Q_0$ $CLR_1 = CLR_0 = \overline{RST}$

Ejercicio 6: Diseñad un circuito secuencial síncrono con una entrada X y una salida Z, de modo que dicha salida Z se ponga a 1 durante un período de reloj, cuando en la entrada X aparezca la siguiente secuencia sin interrupción: primero 0, luego 1 y después 0. La salida Z vuelve a 0 en el siguiente período de reloj independientemente del resto de valores de X, reiniciando la lectura de la secuencia. Una señal asíncrona \overline{RST} reinicia el circuito en cualquier momento al subir a 1. Resolved con flip-flops J-K.

$$Z = Q_1 \cdot \overline{Q}_0$$

$$J_1 = X \cdot Q_0$$

$$K_1 = X + \overline{Q}_0$$

$$J_0 = \overline{X} \cdot \overline{Q}_I$$

$$K_0 = Q_1$$

$$CLR_1 = CLR_0 = \overline{RST}$$

Ejercicio 7: Diseñad un circuito secuencial síncrono que funcione como un contador de dos bits Z_1Z_0 , cuya cuenta sólo se inicia si la entrada E vale 1. El contador se quedará en el valor 3 hasta que E vuelva a valer 0, reiniciando su función. El circuito debe reiniciarse también cuando se active a 1 la señal asíncrona \overline{RST} . Utilizad flip-flops D.

$$Z_{1} = Q_{1}$$

$$Z_{0} = Q_{0}$$

$$D_{1} = (Q_{1} \oplus Q_{0}) + E \cdot Q_{1}$$

$$D_{0} = Q_{1} \cdot Q_{0} + E \cdot (Q_{1} + \overline{Q}_{0})$$

$$CLR_{1} = CLR_{0} = \overline{RST}$$

Ejercicio 8: Diseñad un circuito secuencial síncrono que tenga una salida Z y una entrada X. La salida Z se pone a 1 cuando el valor de X se repite (dos ceros o dos unos), manteniéndose en ese valor hasta que el valor de X sea distinto al anterior. El circuito debe reiniciarse cuando se active a 1 la señal asíncrona \overline{RST} . Utilizad flip-flops T.

Figura 3. Diagrama de estados del ejercicio 8: Modelo Moore

Se omite la tabla de estados abstracta y se realiza la tabla de estados con la asignación de valores a los estados y flip-flops.

			$X = \ell$)					
$Q_2Q_1Q_0$	T_2	T_1	T_0	$Q_{2}^{*}Q_{1}^{*}Q_{0}^{*}$	T_2	T_1	T_0	$Q_{2}^{*}Q_{1}^{*}Q_{0}^{*}$	Z
000	0	0	1	001	1	0	0	100	0
001	0	1	1	010	1	0	1	100	0
010	0	0	0	010	1	1	0	100	1
011	0	1	0	001	0	0	0	011	1
100	1	0	1	001	1	1	1	011	0
						7			
T_2					T_1				

	T_2					T_1					
		Q_0X					Q_0X				
	Q_2Q_1	00	01	11	10	Q_2Q_1	00	01	11	10	
	00		1	1		00				1	ı
	01		1			01		1		1	ı
	11	X	X	X	X	11	X	X	X	X	ı
	10	1	1	X	X	10		1	X	X	I
	T_2	$= Q_2 +$	$X(\overline{Q}_I +$	$\overline{\overline{Q}}_{0}$		$T_1 =$	$Q_0 \cdot \bar{X}$ +	$Q_2 \cdot X$	+ X · Q	$Q_1 \cdot \overline{Q}_{0}$	
T_0	Q_0X				Z	Q_0					
Q_2Q_1	00	01	11	10	Q_2Q_1	0 1					
00	1		1	1	00						
01					01	1 1	1				
11	X	X	X	X	11	X X	1				
10	1	1	X	X	10	X	1				
T_0	$Q_2 = Q_2 +$	$\overline{Q}_1 \cdot \overline{X}$	$+ \overline{Q}_1 Q_0$)		Z = Q	1	CLR_2	$_2 = CLI$	$R_1 = CL$	$R_0 =$

 \overline{RST}