Università degli studi di Verona Corso di Laurea in Informatica

Sistemi Operativi - 13/02/2017

Gli studenti iscritti alla seconda parte dell'esame devono svolgere SOLO gli esercizi 4 e 5.

- 1. Un ponte contiene una sola corsia di traffico consentendo l'accesso ad auto provenienti da una sola direzione per volta, a senso unico alternato. Si identifichi ciascuna auto con un processo (ci saranno quindi due tipi di processo, le macchine provenienti da nord e le macchine provenienti da sud) e si scriva un programma che sincronizzi l'accesso delle auto sul ponte, facendo uso del costrutto monitor. Si tenga conto che:
 - non esistono priorità tra i processi;
 - un processo può attraversare il ponte solo se non vi sono sopra processi dell'altro tipo.

Commentare il codice.

[8 punti]

2. Si consideri un sistema nella seguente situazione:

Processo	Alloc	Max
	ABCD	ABCD
P0	0012	0012
P1	1000	1750
P2	1 3 5 4	2356
P3	0632	0652
P4	0014	0656

Le risorse disponibili sono (1, 5, 2, 0).

- Il sistema si trova in uno stato safe?
- Nel caso arrivasse la richiesta di allocazione (0, 4, 2, 0) da parte del processo P1, l'algoritmo del banchiere accetterebbe la richiesta?
- Nel caso invece arrivasse la richiesta (1, 1, 0, 2) da parte del processo P2. l'algoritmo del banchiere accetterebbe la richiesta?

Commentare le risposte.

[3+2+2 punti]

3. Si consideri il seguente insieme di processi:

Processo	Burst	Tempo di Arrivo
1	1.5	0
2	3.5	0.5
3	1	1
4	2	1.5
5	1.5	0.5

Si mostri il diagramma dell'esecuzione dei processi usando gli algoritmi di scheduling FCFS, HRRN, e RR con quanto pari a 0.5. Si calcoli il tempo di risposta, attesa e turnaround per ogni processo. [6 punti]

4. Si definisca in dettaglio il concetto di segmentazione della memoria. Quindi, si consideri la seguente tabella di segmenti:

Segmento	Base	Lunghezza
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

Indicare gli indirizzi fisici corrispondenti ai seguenti indirizzi logici: (0,430), (1, 10), (2, 500), (1, 11), (3, 400), (4, 112) mostrando i passi effettuati per ottenere la risposta. [3+3 punti]

5. Si consideri il seguente array bidimensionale dove il tipo int è memorizzato su 4 byte:

int A[100][100];

L'elemento A[0][0] è memorizzato alla locazione 200, in un sistema paginato con dimensione di pagina pari a 200 Byte. Nelle locazioni 0-199 è memorizzato il seguente programma che manipola A:

```
for (i=0; i<100;i++)
for(j=0;j<100;j++)
    A[i][j]=0;</pre>
```

Sapendo che la memoria è costituita da 3 frame, che il primo frame contiene il programma e i restanti due sono inizialmente vuoti, si determini quanti page fault si verificano usando l'algoritmo di rimpiazzamento FIFO. Commentare la risposta. [6 punti]