Complexidade Assintótica

Prof. Luiz Chaimowicz

Complexidade Assintótica

- Na análise de algoritmos, na maioria das vezes usa-se o estudo da complexidade assintótica, ou seja, analisa-se o algoritmo quando o valor de n tente a infinito
- Nesse caso, não é necessário se preocupar com as constantes e termos de menor crescimento
- Usa-se notações especiais para representar a complexidade assintótica

Notação ⊕

Limite assintótico firme

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

Notação ⊕

• Exemplo:
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

 É necessário encontrar constantes c₁, c₂ e n₀ tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2 \ \forall n \ge n_0$$

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

O lado direito é satisfeito com $c_2 = 1/2$ para

 $c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$ O lado direito é satisfeito com c_2 = 1/2 para n maior ou igual a 1
O lado esquerdo é satisfeito com c_1 = 1/14 para n maior ou igual a 7 n maior ou igual a 7

> Logo, a equação é satisfeita com $c_1 = 1/2$, $c_2 = 1/14$ e n₀ igual a 7

Notação O

Limite assintótico superior

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

Notação O

- Apesar de muito usada na literatura como limite firme, a notação O é mais fraca que a notação Θ
 - $f(n) = \Theta(g(n))$ implica em f(n) = O(g(n)), mas não o contrário
 - $-\Theta(g(n)) \subset O(g(n))$
- Como é um limite superior, é muito usado para o pior caso. Ex.
 - − O inserção é O(n²), para qualquer entrada.

Notação Ω

Limite assintótico inferior

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

Notação Ω

- Também mais fraca que Θ
- Limite inferior, portanto pode ser usado para o melhor caso
- Inserção é $\Omega(n)$, para qualquer entrada

Teorema:

Para quaisquer duas funções f(n) e g(n), teremos $f(n) = \Theta(g(n))$ se e somente se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$

Notações o e ω

- Representam, respectivamente limites superiores e inferiores estritos
- Notação o:

$$o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$$
.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Notação ω:

$$\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$$
.
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Propriedades

Transitividade

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) imply f(n) = \Theta(h(n))

f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n))

f(n) = \Omega(g(n)) and g(n) = \Omega(h(n)) imply f(n) = \Omega(h(n))

f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n))

f(n) = \omega(g(n)) and g(n) = \omega(h(n)) imply f(n) = \omega(h(n))
```

Reflexividade

```
f(n) = \Theta(f(n))

f(n) = O(f(n))

f(n) = \Omega(f(n))
```

Propriedades

Simetria

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$

Simetria transposta

```
f(n) = O(g(n)) if and only if g(n) = \Omega(f(n))
f(n) = o(g(n)) if and only if g(n) = \omega(f(n))
```

Propriedades

 Com essas propriedades, é possível fazer uma analogia entre a comparação das funções assintóticas f e g e a comparação de números reais a e b

$$f(n) = O(g(n))$$
 is like $a \le b$
 $f(n) = \Omega(g(n))$ is like $a \ge b$
 $f(n) = \Theta(g(n))$ is like $a = b$
 $f(n) = o(g(n))$ is like $a < b$
 $f(n) = \omega(g(n))$ is like $a < b$

Classes de Comportamento Assintótico

- Em geral, é interessante agrupar os algoritmos / problemas em Classes de Comportamento Assintótico, que vão determinar a complexidade inerente do algoritmo
- Como explicado, o comportamento assintótico é medido quando o tamanho da entrada (n) tende a infinito, com isso, as constantes são ignoradas e apenas o componente mais significativo da função de complexidade é considerado
- Quando dois algoritmos fazem parte da mesma classe de comportamento assintótico, eles são ditos equivalentes. Nesse caso, para escolher um deles deve-se analisar mais cuidadosamente a função de complexidade ou o seu desempenho em sistemas reais

$$f(n) = O(1)$$

- Algoritmos de complexidade O(1) s\(\tilde{a}\) o ditos de complexidade
 constante.
 - Uso do algoritmo independe de n.
- As instruções do algoritmo são executadas um número fixo de vezes.

$f(n) = O(\log n)$.

- Um algoritmo de complexidade $O(\log n)$ é dito ter **complexidade logarítmica**.
- Típico em algoritmos que transformam um problema em outros menores.
- Pode-se considerar o tempo de execução como menor que uma constante grande.
 - Quando n é mil, $\log_2 n \approx 10$, quando n é 1 milhão, $\log_2 n \approx 20$.
 - Para dobrar o valor de log n temos de considerar o quadrado de n.
- A base do logaritmo muda pouco estes valores: quando $n \in 1$ milhão, o $\log_2 n \in 20$ e o $\log_{10} n \in 6$.

f(n) = O(n)

- Um algoritmo de complexidade O(n) é dito ter **complexidade linear**.
- Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
- É a melhor situação possível para um algoritmo que tem de processar/produzir n elementos de entrada/saída.
- Cada vez que n dobra de tamanho, o tempo de execução dobra.

$f(n) = O(n \log n)$

- Típico em algoritmos que quebram um problema em outros menores, resolvem cada um deles independentemente e ajuntando as soluções depois.
- Quando n é 1 milhão, $n\log_2 n$ é cerca de 20 milhões.
- Quando $n \in 2$ milhões, $n \log_2 n \in 2$ cerca de 42 milhões, pouco mais do que o dobro.

$f(n) = O(n^2)$

- Um algoritmo de complexidade $O(n^2)$ é dito ter **complexidade** quadrática.
- Ocorrem quando os itens de dados são processados aos pares,
 muitas vezes em um anel dentro de outro.
 - Quando n é mil, o número de operações é da ordem de 1 milhão.
 - Sempre que n dobra, o tempo de execução é multiplicado por 4.
- Úteis para resolver problemas de tamanhos relativamente pequenos.

$f(n) = O(n^3)$

- Um algoritmo de complexidade $O(n^3)$ é dito ter **complexidade cúbica**.
 - Úteis apenas para resolver pequenos problemas.
- Quando n é 100, o número de operações é da ordem de 1
 milhão.
- Sempre que n dobra, o tempo de execução fica multiplicado por 8.

$$f(n) = O(2^n)$$

- Um algoritmo de complexidade $O(2^n)$ é dito ter **complexidade exponencial**.
 - Geralmente não são úteis sob o ponto de vista prático.
- Ocorrem na solução de problemas quando se usa força bruta para resolvê-los.
- Quando n é 20, o tempo de execução é cerca de 1 milhão. Quando n
 dobra, o tempo fica elevado ao quadrado.

f(n) = O(n!)

- Um algoritmo de complexidade O(n!) é dito ter complexidade exponencial, apesar de O(n!) ter comportamento muito pior do que $O(2^n)$.
- Geralmente ocorrem quando se usa **força bruta** para na solução do problema.
- $-n = 20 \Rightarrow 20! = 2432902008176640000$, um número com 19 dígitos.
- -n = 40 => um número com 48 dígitos.

Comparação de Funções de Complexidade

Função	Tamanho n					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3^n	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

Comparação de Funções de Complexidade

Função de	Computador	Computador	Computador	
custo	atual	100 vezes	1.000 vezes	
de tempo		mais rápido	mais rápido	
n	t_1	$100 t_1$	$1000\ t_1$	
n^2	t_2	$10~t_2$	$31,6\;t_2$	
n^3	t_3	$4,6~t_3$	$10 \ t_3$	
2^n	t_4	$t_4 + 6, 6$	$t_4 + 10$	

Para Casa

- Ler capítulo 3 do Cormen
- Resolver os seguintes exercícios:
- 1. Sejam as funções f(n) e g(n) assintoticamente não negativas. Usando as definições básicas da notação Θ , prove que:

$$\Theta(f(n) + g(n)) = \max(f(n), g(n))$$

2.
$$2^{n+1} = O(2^n)$$
? $2^{2n} = O(2^n)$?