MATH32031: Coding Theory • Part 8: Decoding Linear Codes (II)

Now we analyze the decoding algorithm we have just described. Remember that we still have the usual algorithm for detecting an error: if the received vector is not a codeword then there is an error.

Proposition 13

- (a) A received vector is decoded correctly if and only if the error vector is a coset leader.
- (b) The algorithm fails to detect that an error occurred if and only if the error vector is in C but is not 0.
- (c) This is a nearest neighbour decoding.

Proof. (a) If \underline{x} is the sent codeword and \underline{e} is the error then the received vector is $\underline{y} = \underline{x} + \underline{e}$. If $\underline{y} \in \underline{a}_i + C$ then we decode it as $\underline{y} - \underline{a}_i$, which is equal to $\underline{x} + \underline{e} - \underline{a}_i$. This is equal to the sent vector \underline{x} if and only if $\underline{e} = \underline{a}_i$.

In particular, if we have decoded correctly then \underline{e} is a coset leader. Conversely, if \underline{e} is a coset leader then

$$\underline{e} \in \underline{e} + C = \underline{e} + \underline{x} + C = y + C = \underline{a}_i + C,$$

so being coset leader forces $\underline{e} = \underline{a}_i$.

- (b) $\underline{e} = \underline{y} \underline{x}$ and $\underline{x} \in C$, so $\underline{y} \in C$ if and only if $\underline{e} \in C$. Thus we declare that there is an error if and only if $\underline{e} \notin C$. We miss an error if and only if $\underline{e} \neq \underline{0}$ (so there is actually an error) and $\underline{e} \in C$.
- (c) Write $\underline{y} = \underline{a}_i + \underline{c}$. We want to show that $d(\underline{y},\underline{c}) \leq d(\underline{y},\underline{c}')$ for any $\underline{c}' \in C$. This amounts to proving that $w(\underline{a}_i) = w(y \underline{c}) \leq w(y \underline{c}')$. But notice that

$$\underline{y} - \underline{c}' \in \underline{y} + C = \underline{a}_i + C,$$

so, by definition of coset leader, $w(\underline{a}_i) \leq w(y - \underline{c}')$.

Remark. In practice this decoding algorithm is too slow for large codes; indeed, the standard arrays for many large codes have never been worked out. This will lead us later to the technique of "syndrome decoding".

Example. From previous work we know a code C with a standard array:

 0000
 1011
 0101
 1110

 1000
 0011
 1101
 0110

 0100
 1111
 0001
 1010

 0010
 1001
 0111
 1100

Note the following 1-error "trajectories"

sent received decoded
$$0101 \longrightarrow 0001 \longrightarrow 0101$$
 $0101 \longrightarrow 0100 \longrightarrow 0000$

Thus we see that some 1-error messages are not decoded as the original message. (This is, of course, only to be expected since the minimum distance of the code is 2, thus t = 0).

This leads us to calculate the probability of correctly decoding (via this algorithm) to get the original message sent.

Definition. Let $P_{\text{corr}}(C)$ denote the probability that a received vector is correctly decoded. Let α_i denote the number of coset leaders of weight i.

Theorem 14 Let C be an [n, k] \mathbf{F}_2 -code transmitted by a binary symmetric channel with symbol error rate r. Then

$$P_{\text{corr}}(C) = \sum_{i=0}^{n} \alpha_i r^i (1-r)^{n-i}.$$

Proof. From the Proposition we see that

$$P_{\text{corr}}(C) = \text{Prob}(\text{error } \underline{e} \text{ is a coset leader}) = \sum_{i=0}^{n} \text{Prob}(\underline{e} \text{ is a coset leader of weight } i).$$

But we have seen in earlier lectures that

$$\operatorname{Prob}(\underline{e} \text{ is a given vector of weight } i) = r^{i}(1-r)^{n-i},$$

SO

 $\operatorname{Prob}(\underline{e} \text{ is a coset leader of weight } i) = \alpha_i r^i (1-r)^{n-i}$

and thus

$$P_{\text{corr}}(C) = \sum_{i=0}^{n} \alpha_i r^i (1-r)^{n-i}.$$

Example (again). We compute $P_{\text{corr}}(C)$ for the code C discussed above. By inspection $\alpha_0 = 1$, $\alpha_1 = 3$, $\alpha_i = 0$ for i > 1. So

$$P_{\text{corr}}(C) = (1-r)^4 + 3r(1-r)^3$$
$$= (1-r)^3(1-r+3r)$$
$$= (1-r)^3(1+2r).$$

For instance: if r = .01 then $P_{\text{corr}}(C) = .9897$, i.e. $P_{\text{err}}(C) = .0103$.

On the other hand, if a 2-digit message is sent, without any coding, via the same channel, then

$$P_{\rm corr}(C) = (1 - r)^2,$$

which would give

$$P_{\rm err}(C) = .0199.$$

So we have essentially halved the error probability at the cost of sending 2 check symbols per message.

28

Definition. $P_{\text{undetect}}(C)$ is the probability that the received vector contains an error that we do not detect.

We have seen in the Proposition that there is an undetected error if and only if $\underline{e} \in C$ and $\underline{e} \neq \underline{0}$.

Let A_i be the number of codewords of weight i. Then

$$P_{\text{undetect}}(C) = \sum_{\underline{c} \in C \setminus \{\underline{0}\}} \text{Prob}(\underline{e} = \underline{c})$$
$$= \sum_{i=1}^{n} A_i r^i (1 - r)^{n-i}.$$

Example (yet again). By inspection $A_1 = 0$, $A_2 = 1$, $A_3 = 2$. So

$$P_{\text{undetect}}(C) = (1-r)^2 r^2 + 2r^3 (1-r)$$

= $r^2 (1-r^2)$.

In particular, setting r = .01, we find that

$$P_{\text{undetect}}(C) = .000099\dots,$$

which is not bad!