10

15

20

25

30

39

Claims

1. A metal complex of the following formula

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

Me is a transition metal of Sub-Group 7, 8, 9, 10, 11 or 12, preferably 9, 10 or 11, D¹ and D² are each independently of the other a carbocyclic or heterocyclic ring or ring system, which may be unsubstituted or substituted by one or more groups R⁵ and R⁶, R¹ and R⁴ are each independently of the other a hydrogen atom, a perfluoroalkyl radical, an unsubstituted or substituted alkyl radical, an aryl radical or an aralkyl radical, R² and R³ are a cyano group, or

R² and R³ together form a five to seven membered heterocyclic ring, or R² and R³ together form an aromatic carbocyclic ring, which is substituted by at least one electron accepting substituent, or which is substituted by at least one electron donating substituent,

R⁵ and R⁶ being a halogen atom, such as fluorine, chlorine or bromine, a group -NR⁸R⁹, a group -SO₂NR⁸R⁹, wherein

 R^8 and R^9 are each independently of the other a hydrogen atom, an alkyl group, a C_1 - C_2 4alkylcarbonyl group, an alkyl group which is substituted by E and/or interrupted by D, a C_6 24aryl-carbonyl radical or C_7 24aralkyl-carbonyl radical, an aryl group, or an aralkyl group, or R^8 and R^9 together form a five- to seven-membered heterocyclic ring, which optionally can be interrupted by D,

a nitro group, a cyano group, a hydroxy group, an alkyl group, an alkyl group which is substituted by E and/or interrupted by D, an alkoxy group which is substituted by E and/or interrupted by D, an aryloxy group, an aralkyloxy group, an alkylthio group which is substituted by E and/or interrupted by D, an arylthio group, an aralkylthio group, an acyl radical, a phenyl group, an ester group, such as a phosphonic acid, phosphoric acid or carboxylic acid ester group, a carboxamide group, a sulfamide group, an ammonium group, a carboxylic acid, sulfonic acid, phosphonic acid or phosphoric acid group or a salt thereof,

wherein at least one of the substituents R⁵ and at least one of the substituents R⁸ is an electron donating group, if R² and R³ together form an aromatic carbocyclic ring, which is substituted by at least one electron accepting substituent, or at least one of the substituents R⁵ and at least one of the substituents R⁸ is an electron accepting group, if

 ${\sf R}^2$ and ${\sf R}^3$ together form an aromatic carbocyclic ring, which is substituted by at least one electron donating substituent, wherein

D is -CO-; -S-; -SO-; -SO₂-; -O-; -NR¹⁰; and

E is -OR¹¹; -SR¹¹; -NR¹²R¹³; -COR¹⁴; -COR¹⁵; -CONR¹²R¹³; -CN; or halogen; wherein

R¹⁰, R¹² and R¹³ are each independently of the other a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group,

R¹¹ is a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group,

R¹⁴ is an alkyl group, an aryl group, or an aralkyl group, and

R¹⁵ is a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, with the proviso that the following compounds are excluded:

2. A metal complex according to claim 1, having the following formula

10

15

Me is Co^{3+} , especially Cu^{2+} , Ni^{2+} , Pd^{2+} , Pt^{2+} , Co^{2+} , or Zn^{2+} , X is >0, >S, >S=0, or $>SO_2$,

A¹, A⁴, A⁵ and A⁶ are each independently of the other a hydrogen atom, an alkoxy radical, an alkyl radical which is interrupted one or more times by -O- or by -S-,

at least one of A^2 and A^3 , preferably A^2 and A^3 , are an electron accepting substituent, especially $-NO_2$, a halogen atom, especially a chlorine or a bromine atom, a group $-SO_2-NR^3R^9$ and the other is a hydrogen atom,

R1 and R4 are defined as in claim 1,

 R^{51} , R^{52} , R^{54} , R^{61} , R^{62} and R^{64} are each independently of the other a hydrogen atom, or an C_1 - C_{18} alkyl group,

 R^{53} and R^{63} are each independently of the other a hydroxy group, an C_1 - C_{18} alkoxy group, an C_6 - C_{24} aryloxy group, an C_7 - C_{24} aralkyloxy group, a group $-NR^8R^9$, or a salt thereof, wherein R^8 and R^9 are each independently of the other a hydrogen atom, an C_1 - C_{18} alkyl group, an C_1 - C_{18} alkyl group which is substituted by E and/or interrupted by D, an C_6 - C_{24} aryl group, or an C_7 - C_{24} aralkyl group, wherein D and E are as defined in claim 1, or

 R^{53} and R^{52} , R^{53} and R^{54} , R^{63} and R^{62} , and/or R^{63} and R^{64} are each independently of the other

, wherein $A^{10}_{}\,A^{10}_{}\,A^{11}_{},\,A^{11}_{}\,A^{12}$ and $A^{12}_{}$ are each independently of the

other a hydrogen atom, or a C1-C8alkyl group, or

 $A^{1\sigma}$ and A^{11} together, form a double bond, and

 A^{13} is a hydrogen atom or a $C_1\text{-}C_8\text{alkyl}$ group, or

5 R^{53} and R^{52} and R^{54} , and/or R^{63} and R^{62} and R^{64} are

wherein A^{14} , A^{14} , A^{15} , A^{15} , A^{17} , A^{17} , A^{18} , A^{18} , A^{19} , A^{19} , A^{20} and A^{20} are each independently of the other a hydrogen atom, or a C_1 - C_8 alkyl group,

 R^{55} and R^{65} are each independently of the other a hydrogen atom, or a $C_1\text{-}C_{18}$ alkyl group,

 R^{56} , R^{57} , R^{56} , R^{56} , R^{66} , R^{67} , R^{68} and R^{69} are each independently of the other a hydrogen atom, a C_1 - C_{18} alkyl group, or a C_1 - C_{18} alkyl group, which is interrupted by one or more oxygen atoms, and

 \mathbf{X}^4 and \mathbf{X}^5 are each independently of the other a sulfur, or oxygen atom.

15

10

3. A metal complex according to claim 2 having the formula II,

III, or IV, wherein

Me is Co^{3+} , especially Cu^{2+} , Ni^{2+} , Pd^{2+} , Pt^{2+} , Co^{2+} , or Zn^{2+} ,

X is >0, >S, >S=0, or >SO2,

20 A¹, A⁴, A⁵ and A⁸ are a hydrogen atom,

A² and A³ are -NO₂,

 R^1 and R^4 are each independently of the other a hydrogen atom, a perfluoroC₁-C₈alkyl radical or a C₁-C₈alkyl radical,

 $R^{51},\,R^{52},\,R^{54},\,R^{81},\,R^{82}$ and R^{64} are a hydrogen atom, or

25 R⁵¹ and R⁵² together, and/or R⁶¹ and R⁶² together, form an unsubstituted or substituted phenyl ring,

 R^{SS} and R^{SS} are each independently of the other a hydroxy group, an C_1 - C_{18} alkoxy group, a group -NR 8 R 9 , wherein R 8 and R 9 are each independently of the other a hydrogen atom, an C_1 - C_{18} alkyl group, a group -(CH $_2$)_n-OH, a group -(CH $_2$ CH $_2$ O)_n-R 16 , where n is a number from the range 1-9 and R 16 is H or C_1 - C_{10} alkyl, or a salt thereof, or R SS and R SS , R SS and R SS , R SS and R SS , and R SS , and R SS , and R SS and R SS , and R SS and R SS and R SS , R SS and R SS

, wherein $A^{10}_{},A^{11}_{},A^{11}_{},A^{12}_{}$ and $A^{12}_{}$ are each independently of the

other a hydrogen atom, or a C1-C8alkyl group, or

A¹⁰ and A¹¹ together, form a double bond,

10 A^{13} is a hydrogen atom or a C_1 - C_8 alkyl group, or R^{53} and R^{54} and R^{54} , and/or R^{63} and R^{64} are

wherein A^{14} , A^{16} , A^{15} , A^{15} , A^{17} , A^{17} , A^{18} , A^{18} , A^{19} , A^{19} , A^{20} and A^{20} are each independently of the other a hydrogen atom, or a C_1 - C_8 alkyl group.

15

4. A metal complex according to claim 3, having the formula

$$R^{52} \xrightarrow{N} R^{64} R^{64} R^{63}$$

$$R^{63} (IIa'), \qquad 0 \qquad R^{56} R^{66} R^{66}$$

$$R^{65} (IIb'), \qquad 0 \qquad (IIb'), \qquad$$

 X^1 is a group -O-, -S-, or -NR²⁰⁰-, wherein R²⁰⁰ is a hydrogen atom, or an alkyl group, R⁵⁵ and R⁶⁵ are each independently of the other a hydrogen atom, or a C₁-C₁₈alkyl group,

 R^{56} , R^{57} , R^{59} , R^{59} , R^{68} , R^{67} , R^{68} and R^{69} are each independently of the other a hydrogen atom, a C_1 - C_{18} alkyl group, or a C_1 - C_{18} alkyl group, which is interrupted by one or more oxygen atoms,

5

10

Me is Co^{3+} , especially Cu^{2+} , Ni^{2+} , Pd^{2+} , Pt^{2+} , Co^{2+} , or Zn^{2+} ,

R1 is hydrogen and R4 is C1-C4perfluoroalkyl,

 $R^{52},\,R^{54},\,R^{62}$ and R^{64} are a hydrogen atom, or

 R^{53} and R^{63} are each independently of the other a hydroxy group, an $C_1\text{-}C_{18}\text{alkoxy}$ group, a group -NR $^8R^9$, wherein R^8 and R^9 are each independently of the other a hydrogen atom, an $C_1\text{-}C_{18}\text{alkyl}$ group, a group -(CH $_2$),-OH, a group (CH $_2$ CH $_2$ O),-R 18 , where n is a number from the range 1-9 and R^{16} is H or $C_1\text{-}C_{10}\text{alkyl}$, or a salt thereof, or R^{53} and R^{52} , R^{53} and R^{54} , R^{63} and R^{62} , and/or R^{63} and R^{64} are each independently of the other a group of formula

 A^{13} a hydrogen atom or a $C_1\text{-}C_8\text{alkyl}$ group, or

15 R^{53} and R^{52} and R^{54} , and/or R^{63} and R^{64} are a group of formula

$$\sim$$

5. A metal complex according to claim 4:

Compound	R ⁵³ = R ⁸³ Me		
A-1	-N(CH₂)₂OH	Ni ²⁺	
A-2	-N(CH₂)₂OH	Cu ²⁺	
A-3	-N(CH₂)₂OH	Co ²⁺	
A-4	-ОН	Ni ²⁺	
A-5	-OH	Cu ²⁺	
A-6	-OH	Co ²⁺	
A-7	-ONa	Ni ²⁺	
A-8	-ONa	Cu ²⁺	
A-9	-ONa	Co ²⁺	

A-10 (Me =
$$Ni^{2+}$$
)

Compound	R ⁵³ = R ⁶³	Me	
B-1	-N(CH₂)₂OH	Ni ²⁺	
B-2	-N(CH₂)₂OH	Cu ²⁺	
B-3	-N(CH₂)₂OH	Co ²⁺	
B-4	-OH Ni ²⁺		
B-5	-ОН	Cu ²⁺	
B-6	-OH	Co ²⁺	
B-7	-ONa	Ni ²⁺	
B-8	-ONa	Cu ²⁺	
B-9	-ONa	Co²⁺	
B-10	-ONH₄ Ni ²⁺		
B-11	-ONH ₄	Cu ²⁺	
B-12	-ONH ₄	Co2+	

Compound	R ⁵³ = R ⁶³	Me	
C-1	-N(CH₂)₂OH	Ni ²⁺	
C-2	-N(CH₂)₂OH	Cu ²⁺	
C-3	-N(CH₂)₂OH	Co ²⁺	
C-4	-OH	Ni ²⁺	
C-5	-OH	Cu ²⁺	
C-6	-OH	Co ²⁺	

C-8 (Me =
$$Cu^{2+}$$
)

Compound	R ⁵³ = R ⁶³ Me		
D-1	-N(CH₂)₂OH	Ni ²⁺	
D-2	-N(CH₂)₂OH	Cu ²⁺	
C-3	-N(CH₂)₂OH	Co ²⁺	
D-4	-OH	Ni ²⁺	
D-5	-ОН	Cu ²⁺	
D-6	-ОН	Co ²⁺	

D-9 (Me =
$$Co^{2+}$$
)

Compound	R ⁵³ =R ⁶³	Me	
E-1	-N(CH₂)₂OH	Ni ²⁺	
E-2	-N(CH₂)₂OH	Cu ²⁺	
E-3	-N(CH₂)₂OH	Co ²⁺	
E-4	-OH	Ni ²⁺	
E-5	-OH	Cu ²⁺	
E-6	-OH	Co2+	

Compound	R ⁵³ = R ⁶³	Me	
F-1	-N(CH₂)₂OH	Ni ²⁺	_
F-2	-N(CH₂)₂OH	Cu ²⁺	_
F-3	-N(CH₂)₂OH	Co ²⁺	
F-4	-OH	Ni ²⁺	_
F-5	-OH	Cu²+	
F-6	-OH	Co ²⁺	_

F-7 (Me =
$$Ni^{2+}$$
)
F-8 (Me = Cu^{2+})
F-9 (Me = Co^{2+})

Compound	R ⁷¹	R'2	Me
G-1	-CH ₃	-CH ₃	Ni ²⁺
G-2	-CH ₃	-CH ₃	Cu ²⁺
G-3	-CH ₃	-CH ₃	Co ²⁺
G-4	-CH ₃	-(CH ₂) ₃ OCH(CH ₃) ₂	Ni ²⁺
G-5	-CH ₃	-(CH ₂) ₃ OCH(CH ₃) ₂	Cu ²⁺
G-6	-CH ₃	-(CH ₂) ₃ OCH(CH ₃) ₂	Co ²⁺
G-7	-CH ₃	Н	Ni ²⁺
G-8	-CH ₃	н	Cu ²⁺
G-9	-CH ₃	Н	Co ²⁺

10

15

6. A composition, comprising

- (a) a metal complex according to any one of claims 1 to 5, and(b) a dye.
 - A composition according to claim 6, wherein
 Me in formula I, II, III or IV is Ni²⁺, Cu²⁺, or Co²⁺ and the dye is a oxonol dye of formula

$$\begin{bmatrix} D^1 & & & \\ & & & \\ B^1 & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

__ (\

wherein D¹, D², B¹ and B² are in each case a substituent; Y³ and Z¹ are in each case a group of atoms necessary for the formation of a carbocyclic or heterocyclic ring; G¹ and G² are in each case a group of atoms necessary for the formation of a chain having conjugated double bonds; Y¹ is =O, =NR¹⁰⁹ or =C(CN)₂, R¹⁰⁹ being a substituent; Y² is -O, -NR¹⁰⁹ or -C(CN)₂, R¹⁰⁹ being a substituent; L is a methine group, which may be substituted, or a group by means of which a polymethine group is

(Vb).

WO 2004/102551 PCT/EP2004/050706

55

completed, it being possible for 3, 5 or 7 methine groups to be connected in order to form a chain having conjugated double bonds, which chain may be substituted, x and y are 0 or 1, M^{k*} is an organic or inorganic cation, and k is an integer from 1 to 10

- An optical recording medium comprising a substrate and at least one recording layer, wherein the recording layer comprises a metal complex according to any one of claims 1 to 5 or a composition according to claim 6 or 7.
- 9. Use of a metal complex according to any one of claims 1 to 5 or a composition
 10 according to claim 6 or 7 in the production of optical recording media, colour filters (optical filters) and printing inks.
- 10. A method of producing an optical recording medium, wherein a solution of a metal complex according to any one of claims 1 to 5 or a composition according to claim 6 or
 15 7 in a solvent, especially a non-halogenated solvent, is applied to a substrate having depressions.