

2

Table 1. The 20 SPTB biomarker genes with the summaries of their functions

Gene symbol	Gene name	Gene functions
ASRGL1	Asparaginase And Isoaspartyl Peptidase 1	• Diseases associated with ASRGL1 include Telogen Effluvium and Masa Syndrome. Among its related pathways are Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism and Metabolism [1].
CDKN2A-DT	CDKN2A Divergent Transcript	CDKN2A-DT (CDKN2A Divergent Transcript) is an RNA Gene, and is affiliated with the IncRNA class. Diseases associated with CDKN2A-DT include Lung Squamous Cell Carcinoma.
CLASRP	CLK4 Associating Serine/Arginine Rich Protein	 Diseases associated with CLASRP include Paralytic Lagophthalmos and Paranasal Sinus Sarcoma. Among its related pathways are mRNA Splicing-Major Pathway.
FADS2	Fatty Acid Desaturase 2	 Diseases associated with FADS2 include Fanconi Anemia, Complementation Group D2 and Best Vitelliform Macular Dystrophy. Among its related pathways are alpha-linolenic acid (ALA) metabolism and fatty acid beta-oxidation (peroxisome) [2, 3, 4, 5].
FBXO31	F-Box Protein 31	 Diseases associated with FBXO31 include Mental Retardation, Autosomal Recessive 45 and Autosomal Recessive Non-Syndromic Intellectual Disability. Among its related pathways are Class I MHC mediated antigen processing and presentation and Innate Immune System [6].
GLYR1	Glyoxylate Reductase 1 Homolog	• Diseases associated with GLYR1 include Retinitis Pigmentosa 20. Gene Ontology (GO) annotations related to this gene include methylated histone binding and phosphogluconate
GOLGA7	Golgin A7	 dehydrogenase (decarboxylating) activity. GOLGA7 (Golgin A7) is a Protein Coding gene. Among its related pathways are Innate Immune System [7].
MCM2	Minichromosome Maintenance Complex Component 2	 Diseases associated with MCM2 include Deafness, Autosomal Dominant 70 and Autosomal Dominant Non-Syndromic Sensorineural Deafness Type Dfna. Among its related pathways are E2F mediated regulation of DNA replication and Mitotic G1-G1/S phases [8, 9, 10, 11].
MFSD4A	Major Facilitator Superfamily Domain Containing 4A	 Diseases associated with MFSD4A include Spherocytosis, Type 5. An important paralog of this gene is MFSD4B.
MIR3117	MicroRNA 3117	 microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post- transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs.
PAICS	Phosphoribosylaminoimidazole Carboxylase And Phosphoribosylaminoimidazolesuccinocarboxamide Synthase	 Diseases associated with PAICS include Hyperinsulinemic Hypoglycemia, Familial, 2 and Amyotrophic Lateral Sclerosis 1. Among its related pathways are purine nucleotides de novo biosynthesis and Metabolism of nucleotides.
PCDHGB5	Protocadherin Gamma Subfamily B, 5	 Gene Ontology (GO) annotations related to this gene include calcium ion binding. An important paralog of this gene is PCDHGB4.
PLEC	Plectin	 Diseases associated with PLEC include Epidermolysis Bullosa Simplex, Ogna Type and Muscular Dystrophy, Limb-Girdle, Autosomal Recessive 17. Among its related pathways are Cell junction organization and Apoptotic cleavage of cellular proteins [12, 13, 14, 15].
PRKAG1	Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 1	 Diseases associated with PRKAG1 include Trichuriasis and Wolff-Parkinson-White Syndrome. Among its related pathways are mTOR signalling and Oxytocin signaling pathway.
SPRTN	SprT-Like N-Terminal Domain	 Diseases associated with SPRTN include Ruijs-Aalfs Syndrome and Dental Pulp Necrosis. Among its related pathways are Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template and DNA Double-Strand Break Repair.
TARS	Threonyl-TRNA Synthetase 1	 Diseases associated with TARS1 include Trichothiodystrophy 7, Nonphotosensitive and Kidney Lipoma. Among its related pathways are Gene Expression and tRNA Aminoacylation.
TRAV4	T Cell Receptor Alpha Variable	Protein Coding gene, an important paralog of this gene is TRAV26-1.
VAMP2	Vesicle Associated Membrane Protein 2	• Diseases associated with VAMP2 include Tetanus and Infant Botulism. Among its related pathways are Vesicle-mediated transport and Neurotransmitter Release Cycle [16, 17, 18].
ZNF284	Threonyl-TRNA Synthetase 1	 Diseases associated with TARS1 include Trichothiodystrophy 7, Nonphotosensitive and Kidney Lipoma. Among its related pathways are Gene Expression and tRNA Aminoacylation.
ZNF649-AS1	Zinc Finger Protein 284	• Among its related pathways are Herpes simplex virus 1 infection. Gene Ontology (GO) annotations related to this gene include nucleic acid binding. An important paralog of this gene is ZNF225.

References

- [1]Xiangzhong Yang, Jean-Paul Renard, Harris A Lewin, Rosane Oliveira Green, Xavier Vignon, Sandra L Rodriguez-Zas, and X Cindy Tian. Aberrant gene expression patterns in placentomes are. *Physiol Genomics*, 33:65–77, 2008.
- [2]Colin D Steer, George Davey Smith, Pauline M Emmett, Joseph R Hibbeln, and Jean Golding. Fads2 polymorphisms modify the effect of breastfeeding on child iq. *PLoS One*, 5(7):e11570, 2010.
- [3]Xin Liu, Guoying Wang, Xiumei Hong, Hui-Ju Tsai, Rong Liu, Shanchun Zhang, Hongjian Wang, Colleen Pearson, Katherin Ortiz, Deli Wang, et al. Associations between gene polymorphisms in fatty acid metabolism pathway and preterm delivery in a us urban black population. *Human genetics*, 131(3):341–351, 2012.
- [4]AM Abul-Fadl, NF Al Husseini, and AY Idris. 1276 genotypic expression of fads2 in preterm babies fed exclusively on human milk versus formula fed. Archives of Disease in Childhood, 97(Suppl 2):A364–A365, 2012.
- [5]Fernando Pires Hartwig, Neil Martin Davies, Bernardo Lessa Horta, Cesar Gomes Victora, and George Davey Smith. Effect modification of fads2 polymorphisms on the association between breastfeeding and intelligence: protocol for a collaborative meta-analysis. *BMJ open*, 6(6):e010067, 2016.
- [6]Tsegaselassie Workalemahu, Daniel A Enquobahrie, Bizu Gelaye, Sixto E Sanchez, Pedro J Garcia, Fasil Tekola-Ayele, Anjum Hajat, Timothy A Thornton, Cande V Ananth, and Michelle A Williams. Genetic variations and risk of placental abruption: A genome-wide association study and meta-analysis of genome-wide association studies. *Placenta*, 66:8–16, 2018.
- [7]Kashish Khanna, Shilpa Sharma, Noel Pabalan, Neetu Singh, and DK Gupta. A review of genetic factors contributing to the etiopathogenesis of anorectal malformations. *Pediatric Surgery International*, 34(1):9–20, 2018.
- [8] Walter Prendiville. Recent innovations in colposcopy practice. Best Practice & Research Clinical Obstetrics & Gynaecology, 19(5):779– 792, 2005.
- [9]Craig S Brown and Michael B Ujiki. Risk factors affecting the barrett's metaplasia-dysplasia-neoplasia sequence. World journal of

- gastrointestinal endoscopy, 7(5):438, 2015.
- [10]Shotaro Higuchi, Tsutomu Miyamoto, Hisanori Kobara, Satoshi Yamada, Ryoichi Asaka, Norihiko Kikuchi, Hiroyasu Kashima, Satoshi Ohira, and Tanri Shiozawa. Trophoblast type-specific expression of senescence markers in the human placenta. *Placenta*, 85:56–62, 2019.
- [11]MacKinsey Diane Johnson. Transcriptomic Profiling Of Vascular Endothelial Growth Factor-Induced Signature Genes In Human Cervical Epithelial Cells. PhD thesis, Appalachian State University, 2019.
- [12]Jantien van der Heyden, Christine Willekes, Martijn Oudijk, Martina Porath, Hans J Duvekot, Kitty WM Bloemenkamp, Maureen Franssen, Mallory Woiski, Bas Bij Nijvank, Marko Sikkema, et al. 712: Behavioral and developmental outcome of neonates at 2 years of age after preterm prelabor rupture of membranes: follow up of the ppromexil trial. American Journal of Obstetrics & Gynecology, 210(1):S349–S350, 2014.
- [13]Ozlem Dural, Deniz K Acar, Ali Ekiz, Halil Aslan, Ibrahim Polat, Gokhan Yildirim, Bekir Gulac, Yeliz Erdemoglu, Ali Cay, and Osman Hacıhasanoglu. Prenatal ultrasound findings and a new ultrasonographic sign of epidermolysis bullosa with congenital pyloric atresia: a report of three cases. *Journal of Medical Ultrasonics*, 41(4):495–498, 2014.
- [14]Jan Heng, Stephen Lye, and Craig Pennell. Markers of preterm birth, November 30 2017. US Patent App. 15/591,185.
- [15] Caitlin J Smith. Genetic and metabolic associations with preterm birth. 2018.
- [16]Marta Weinstock. The role of prenatal stress in the programming of behavior. *Perinatal Programming.*, pages 241–252, 2006.
- [17]Gábor Jandó, Eszter Mikó-Baráth, Katalin Markó, Katalin Hollódy, Béla Török, and Ilona Kovacs. Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans. Proceedings of the National Academy of Sciences, 109(27):11049– 11052, 2012.
- [18]Rachel Ion, Claire Hudson, Jason Johnson, Wei Yuan, Kate Heesom, and Andrés López Bernal. Smoking alters hydroxyprostaglandin dehydrogenase expression in fetal membranes. *Reproductive Toxicology*, 82:18–24, 2018.

