Vybrané úlohy na skriptování v jazyce R

17VSADR Skriptování a analýza dat v jazyce R

Obsah

1	$\acute{\mathbf{U}}\mathbf{vod}$	-
2	Úlohy	7

1 Úvod

Následující úlohy byly vybrány jako typové pro účely opakování před testem v rámci společné výuky předmětu 17VSADR Skriptování a analýza dat v jazyce R a F7PMISKJ Skriptovací jazyky.

2 Úlohy

Úloha 1.

Určete pomocí R součet všech přirozených čísel menších než 1000 takových, že jsou celočíselně dělitelné čísly 3 nebo 5.

Řešení. V R postupně zkoušejme

```
1
        x < -1:999
                           # vektor všech přirozených čísel < 1000
2
                           # která přirozená čísla < 1000 dělitelná 3
        x \% 3 == 0
3
        x \% 5 == 0
                           # která přirozená čísla < 1000 dělitelná 5
        x \% 3 == 0 | x \% 5 == 0
4
                           # která přirozená čísla < 1000 dělitelná 3 nebo 5
5
        x[x \% 3 == 0 | x \% 5 == 0]
6
7
                           # logicky indexuji hodnoty těch přirozených
                           # čísel < 1000, které jsou dělitelné 3
8
9
                           # nebo 5
        sum(x[x \% 3 == 0 | x \% 5 == 0])
10
                           # vracím součet hodnot těch přirozených
11
12
                           # čísel < 1000, které jsou dělitelné 3 nebo 5
13
```

```
14  # řešení na jeden řádek - oneliner
15  | sum(c(1:999)[c(1:999) %% 3 == 0 | c(1:999) %% 5 == 0])
16  | # 233168
```

Zjistili jsme, že součet všech přirozených čísel menších než 1000 takových¹, že jsou celočíselně dělitelné čísly 3 nebo 5, je roven 233168.

Úloha 2.

Najděte pomocí R všechny kladné celočíselné dělitele čísla 1206660.

Úloha 3.

Rozhodněte pomocí R, zda je číslo 19937 prvočíslem. Současně napište v R uživatelskou funkci, která pro zadaný celočíselný argument $n \in \mathbb{N}$ vrátí TRUE právě tedy, je-li číslo n prvočíslem, jinak vrátí hodnotu FALSE.

Úloha 4.

Je dána množina čísel $M = \{3, 5, 7, 8, 13, 17, 31\}$. Najděte pomocí R všechna čísla nepřevyšující 1000000 taková, že nejsou dělitelná ani jedním z čísel množiny M.

Úloha 5.

Najděte pomocí R největší společný dělitel a nejmenší společný násobek² čísel 106, 159 a 371.

Úloha 6.

Najděte pomocí R počet všech přirozených čísel n nepřevyšujících 1000 takových, že číslo $\lfloor \sqrt[3]{n} \rfloor$ je dělitelem čísla n.

Úloha 7.

Určete pomocí R počet všech navzájem různých obdélníků³ s obvodem rovným 100 takových, že mají všechny strany celočíselné a že jejich obsah je větší než 1000, ale menší než 2000.

Úloha 8.

Určete pomocí R počet všech navzájem různých řešení rovnice

$$x + y + z + u + v = 2019$$

v oboru přirozených čísel.

¹Tímto jsme pomocí R vyřešili první úlohu z online série Project Euler

²Při výpočtu nejmenšího společného násobku možná oceníte příkaz options(digits = 22), který nastaví vypisování celých čísel až s přesností na 22 platných cifer, čímž lze odvrátit ztrátu informace o posledních cifrách celého čísla, které by jinak byly nahrazeny nulami.

³Obdélníky, které lze ztotožnit pouhým otočením, nepovažujeme za různé.

Úloha 9.

Kolik je prvočísel⁴ menších než 10000?

Úloha 10.

Vytvořte v R vektor v náhodných celých čísel o délce 300 takových, že žádné číslo vektoru v není menší než -100 a není větší než 100. K zajištění reproducibility řešení před vygenerováním náhodných čísel předřaďte generující funkci příkaz set.seed(1). Bez použití funkcí min() a max() najděte minimum a maximum vektoru v. Hint: V R lze numericky pracovat i s hodnotami Inf a -Inf typu numeric pro ∞ a $-\infty$, respektive.

Úloha 11.

Vytvořte v R celkem 26 matic vždy o rozměru 5×5 tak, že budou pojmenovány velkými písmeny anglické abecedy, tedy A, B, C, \ldots, Z . Hodnota každé matice bude tvořena $5 \times 5 = 25$ čísly pocházejícími vždy ze standardního normálního rozdělení $\mathcal{N}(0;1)$; pro každou matici nastavte set.seed() tak, aby byl roven pořadí jejího jména v rámci anglické abecedy. Pro každou možnou dvojici matic najděte jejich

- (i) maticový součin,
- (ii) Hadamardův součin

a určete z daného součinu vždy determinant. Ten pro každou možnou dvojici matic vhodně uložte. Výsledkem by tak mohla v obou případech být např. matice o rozměrech 26×26 s determinanty součinů původních matic.

Úloha 12.

Jaká je největší možná hodnota společného dělitele navzájem různých kladných celých čísel a, b, c splňujících vztah a+b+c=2019? Řešte pomocí R .

Úloha 13.

Řekneme, že přirozené číslo n je zajímavé, jestliže ciferný součet n i n+10 je dělitelný sedmnácti. Jaké je nejmenší zajímavé číslo? Řešte pomocí R.

Úloha 14.

Pomocí R vyřešte následující dvě úlohy na prvočísla.

- (i) Najděte všechna prvočísla p, pro která je 19p + 1 třetí mocninou nějakého celého čísla.
- (ii) Najděte největší prvočíslo p menší než 210 takové, že číslo 210 p je složené.

Úloha 15.

Posloupnost $\{a_i\}_{i=1}^{\infty}$ je zadána rekurentně jako $a_1=1$ a $a_n=\lfloor \sqrt{a_1+a_2+\cdots+a_{n-1}}\rfloor$ pro $n>1.^5$ Najděte a_{1000} .

⁴Číslo 1 není prvočíslo.

 $^{^{5}}$ Symbol |x| značí doní celou část čísla x, tj. největší celé číslo, které nepřevyšuje hodnotu čísla x.

Úloha 16.

Jeroným obchází kolem dokola kruhové náměstí, které je na obvodu osvětleno celkem 300 lampami. Na začátku jsou všechny lampy zhasnuté. Jeroným vyjde ze své strážní budky a při své první obchůzce náměstí se zastaví u každé lampy – pokud lampa nesvítí, rozsvítí ji, pokud svítí, zhasne ji⁶. Pak dojde zpět ke své budce. Následně vyjde znovu kolem dokola náměstí a při druhé obchůzce se zastaví u každé druhé lampy – pokud lampa nesvítí, rozsvítí ji, pokud svítí, zhasne ji. Nakonec se opět vrátí do své budky. Jenže potom vyjde znovu na obchůzku kolem náměstí a při své třetí obchůzce se zastaví u každé třetí lampy – pokud lampa nesvítí, rozsvítí ji, pokud svítí, zhasne ji, než dojde zpět ke své budce. To opakuje tolikrát, že provede celkem 300 obchůzek náměstí a při každé některé lampy zhasne a některé rozsvítí tak, jak je uvedeno výše⁷. Kolik lamp svítí po jeho třísté obchůzce náměstí?

Úloha 17.

Aneta napsala na tabuli vedle sebe pět dvojek následujícím způsobem

 $2 \ 2 \ 2 \ 2 \ 2$

Nyní hraje sama se sebou následující hru. Mezi každé dvě dvojky napíše libovolně některý ze čtyř následujících symbolů pro aritmetickou operaci: $+, -, \times$ a /. Symboly po řadě odpovídají sčítání, násobení a dělení. Poté, co mezi pět dvojek doplnila libovolně některé čtyři symboly pro aritmetickou operaci⁸, výraz na tabuli aritmeticky správně spočítá. Výsledek si zaznamená bokem a pak všechny čtyři doplněné symboly smaže. Anetu hra baví, proto ji hraje mnohokrát po sobě a vždy si zaznamená výsledek. Kolik možných, navzájem různých výsledků spočtených z výrazů na tabuli může Aneta nakonec obdržet?

⁶Tedy při první obchůzce rozsvítí všech 300 lamp.

 $^{^7}$ Formálněji, Jeroným provede celkem 300 obchůzek náměstí a při i-té obchůzce náměstí, kde $i \in \{1, 2, ..., 300\}$, se zastaví u každé i-té lampy: pokud ona lampa nesvítí, rozsvítí ji, pokud svítí, zhasne ji.

 $^{^8\}mathrm{V}$ rámci jednoho výrazu na tabuli se mohou symboly pro aritmetické operace opakovat.