



# Q-Bat use case

Power tool's battery pack



## Overview of model



terminals, connectors, bus burs, transistors, circuit board and casing.





#### Thermal model

- Heat generated uniformly across cell volume
- Thermal contacts set to transfer heat between chosen surfaces
- Additional heat generation in due to losses
- Robin boundary condition is assigned to the casing outer boundaries.
- Ambient temperature of 25 °C





## Model assembly



- All components are aggregated in multiple assemblies and contact regions between them are created.
- Different contact conductivities are set.
- o Overall 64 contact regions.



#### **Electric circuit**



- 5 cells connected in series
- Heat generation is set by specifying the electrical properties of the cell (capacity, voltage, resistance) and applied current load, that varies in time
- Cells are modelled using RC equivalent circuit model



# **Prototype properties**

 Material properties of the cells and heat comoponents are defined in the Excel spreadsheet

| Part             | rho  | ср   | λφ  | <b>λ</b> r | λz  |
|------------------|------|------|-----|------------|-----|
| Cell             | 2650 | 1250 | 28  | 1.3        | 28  |
|                  |      |      | λχ  | λγ         | λz  |
| Casing           | 1200 | 1200 | 0.2 | 0.2        | 0.2 |
| Connectors       | 8890 | 385  | 388 | 388        | 388 |
| Bus bars         | 8890 | 385  | 388 | 388        | 388 |
| Terminals        | 7870 | 460  | 52  | 52         | 52  |
| Transistors      | 8890 | 385  | 388 | 388        | 388 |
| Circuit<br>board | 6778 | 600  | 271 | 271        | 271 |



### **Example 1 - Normal operation**

- Operation of battery pack during regular use of a power tool
- Current profile consists of 24 reapeted cycles, which simulate screwing in a screw followed by a break
- Initial state of charge is 80%
- Overall 360 seconds of operation simulated









# **Example 2 - Rapid charging**

- Operation of battery pack during fast charging
- Constant current of 6 A
- Initial state of charge is 0%
- Overall half an hour of operation simulated









## **Example 3 - Thermal propagation**

- One cell is heating significantly more due to malfunction. Heat dissipation from a faulty cell will be checked.
- Constant current of 6 A
- Initial state of charge is 0%
- Overall half an hour of operation simulated









## **Summary**

The model consists of:

- 13 prototypes,
- 28 components,
- 209 000 mesh elements,
- 64 contact regions.



The overall simulation time is only 10-20 minutes.



#### **Learn more**

- Q-Bat is a MATLAB-based product for real-time battery thermal simulation in 3D with CFD-like accuracy. Its main features are:
  - Near real-time execution
  - Accurate 3D data of battery temperature distribution
  - The capability of exporting the model to the Simulink
  - Fast model definition via dedicated GUI and TUI.
- To learn more:
  - QuickerSim <a href="https://emobility.quickersim.com/">https://emobility.quickersim.com/</a>
  - Q-Bat product page <u>https://www.mathworks.com/products/connections/product\_detail/quickersim-q-bat.html</u>
- For a free Q-Bat lite license, visit QuickerSim licensing website https://licensing.quickersim.com/
- To get full version trial write to <u>q-bat@quickersim.com</u>

