

ELSEVIER

Journal of Power Sources 93 (2001) 302–305

JOURNAL OF
**POWER
SOURCES**

www.elsevier.com/locate/jpowsour

Subject Index of Volume 93

Activation

Laves phase alloy; Surface treatment; Nickel-rich layer (Jiansheng, C. (93) 141)

Alkaline batteries

Nickel electrode; Positive electrode (Freitas, M.B.J.G. (93) 163)

Alkaline secondary battery

Memory effect; Nickel–cadmium battery; Nickel–hydrogen battery; γ -Oxy-nickel hydroxide (Sato, Y. (93) 20)

Aluminium

Lithium-ion batteries; Cathodes; Nickel; Cobalt (Madhavi, S. (93) 156)

Amorphous carbon

LiNiO_2 ; Surface treatment; Plasma CVD; Lithium-ion battery (Endo, E. (93) 87)

Amorphous Ru oxide

Carbon; Ruthenium oxide; Temperature treatment; Composites; Electroless deposition (Ramani, M. (93) 209)

AMTEC

Heat losses; Power output; Efficiency; Design; Material; Power degradation (Lodhi, M.A.K. (93) 32)

Pressure losses; Power output; Efficiency; Chevron radiation shields (Lodhi, M.A.K. (93) 258)

Anode-supported fuel cell

Solid oxide fuel cell; Cathode-supported fuel cell; Electrolyte-supported fuel cell; Sensitivity test (Chan, S.H. (93) 130)

Anodic Pb(II) film

Pb–Ca–Sn–Ce alloy; Lead–acid battery; Cerium (Liu, H.-T. (93) 230)

Association energy

Ceramic fuel cell; LaGaO_3 ; Electrolyte; Oxygen-ion conductivity (Kim, S. (93) 279)

BASE

Power degradation; Electrode current density (Lodhi, M.A.K. (93) 41)

Batteries

Porous electrode; Ionic resistance; Linear voltammetry (Jin, X. (93) 8)

Battery modeling

Battery simulation; Electric circuit simulation; Resistive companion modeling; Virtual test bed (Wu, B. (93) 186)

Battery simulation

Battery modeling; Electric circuit simulation; Resistive companion modeling; Virtual test bed (Wu, B. (93) 186)

Battery

Emulsion; Lithium manganese oxide; Synthesis; Discharge capacity (Lu, C.-H. (93) 14)

Cadmium batteries

Electric vehicles; Metal requirement; Lithium batteries; Sodium/nickel chloride batteries; Nickel metal hydride batteries; Lead–acid batteries (Råde, I. (93) 55)

Carbon electrode

Electron beam irradiation; Surface treatment; Lithium-ion battery (Endo, E. (93) 215)

Carbon

Ruthenium oxide; Temperature treatment; Composites; Amorphous Ru oxide; Electroless deposition (Ramani, M. (93) 209)

Carbon-coated

Graphite; Lithium-ion battery (Wang, H. (93) 123)

Cathode-supported fuel cell

Solid oxide fuel cell; Anode-supported fuel cell; Electrolyte-supported fuel cell; Sensitivity test (Chan, S.H. (93) 130)

Cathodes

Lithium-ion batteries; Aluminium; Nickel; Cobalt (Madhavi, S. (93) 156)

Cathodic polarization

$\text{Gd}_{1-x}\text{Sr}_x\text{MnO}_3$; Citrate process; Solid oxide fuel cell; Electrical conductivity; Thermal expansion coefficient; Reactivity; Three-phase boundary (Yoon, H.S. (93) 1)

Ceramic fuel cell

LaGaO_3 ; Electrolyte; Oxygen-ion conductivity; Association energy (Kim, S. (93) 279)

Ceria-salt composite ceramics

Intermediate temperature; SOFCs; Direct methanol and ethanol SOFCs; Electrical vehicle (Zhu, B. (93) 82)

Cerium

Pb–Ca–Sn–Ce alloy; Lead–acid battery; Anodic Pb(II) film (Liu, H.-T. (93) 230)

Chevron radiation shields

AMTEC; Pressure losses; Power output; Efficiency (Lodhi, M.A.K. (93) 258)

Citrate process

$\text{Gd}_{1-x}\text{Sr}_x\text{MnO}_3$; Solid oxide fuel cell; Electrical conductivity; Thermal expansion coefficient; Reactivity; Cathodic polarization; Three-phase boundary (Yoon, H.S. (93) 1)

Cobalt hydroxide

Cyclic voltammetry; Reaction mechanism; Oxidation to CoOOH ; Reduction to Co; Galvanic cell; Double hydroxide principle (Elumalai, P. (93) 201)

Cobalt

Lithium-ion batteries; Cathodes; Aluminium; Nickel (Madhavi, S. (93) 156)

Composites

Carbon; Ruthenium oxide; Temperature treatment; Amorphous Ru oxide; Electroless deposition (Ramani, M. (93) 209)

Conductivity

Polymer electrolyte; Transport numbers; Electrochemical cells; Potassium bromate (Sreekanth, T. (93) 268)

Contact resistance

Lithium alloy anode; Electrochemical impedance spectroscopy (Wang, C. (93) 174)

Corrosion

Na/S battery; Metal sulfide (Okuyama, R. (93) 50)

Cyclic voltammetry

Cobalt hydroxide; Reaction mechanism; Oxidation to CoOOH ; Reduction to Co; Galvanic cell; Double hydroxide principle (Elumalai, P. (93) 201)

Cyclic voltammetry

Nickel hydroxide; Nitrate bath (Jayashree, R.S. (93) 273)

Cyclic-voltammetry

In situ observation; EC-AFM; Lead–acid battery; Negative electrodes (Yamaguchi, Y. (93) 104)

- Cycling performance
Gel polymer electrolytes; Ionic conductivity; Lithium manganese oxide; Lithium polymer battery (Kim, D.-W. (93) 151)
- Design
AMTEC; Heat losses; Power output; Efficiency; Material; Power degradation (Lodhi, M.A.K. (93) 32)
- Direct methanol and ethanol SOFCs
Ceria-salt composite ceramics; Intermediate temperature; SOFCs; Electrical vehicle (Zhu, B. (93) 82)
- Discharge capacity
Battery; Emulsion; Lithium manganese oxide; Synthesis (Lu, C.-H. (93) 14)
- Double hydroxide principle
Cobalt hydroxide; Cyclic voltammetry; Reaction mechanism; Oxidation to CoOOH; Reduction to Co; Galvanic cell (Elumalai, P. (93) 201)
- EC-AFM
In situ observation; Cyclic-voltammetry; Lead-acid battery; Negative electrodes (Yamaguchi, Y. (93) 104)
- Efficiency
AMTEC; Heat losses; Power output; Design; Material; Power degradation (Lodhi, M.A.K. (93) 32)
- AMTEC; Pressure losses; Power output; Chevron radiation shields (Lodhi, M.A.K. (93) 258)
- Electric circuit simulation
Battery modeling; Battery simulation; Resistive companion modeling; Virtual test bed (Wu, B. (93) 186)
- Electric vehicles
Metal requirement; Lithium batteries; Sodium/nickel chloride batteries; Nickel metal hydride batteries; Cadmium batteries; Lead-acid batteries (Råde, I. (93) 55)
- Electrical conductivity
 $\text{Gd}_{1-x}\text{Sr}_x\text{MnO}_3$; Citrate process; Solid oxide fuel cell; Thermal expansion coefficient; Reactivity; Cathodic polarization; Three-phase boundary (Yoon, H.S. (93) 1)
- Electrical vehicle
Ceria-salt composite ceramics; Intermediate temperature; SOFCs; Direct methanol and ethanol SOFCs (Zhu, B. (93) 82)
- Electrochemical cells
Polymer electrolyte; Conductivity; Transport numbers; Potassium bromate (Sreekanth, T. (93) 268)
- Electrochemical impedance spectroscopy
Lithium alloy anode; Contact resistance (Wang, C. (93) 174)
- Electrochemical properties
Nanocrystalline; $(\text{Zr}, \text{Ti})(\text{V}, \text{Cr}, \text{Ni})_{2.41}$ alloy; Nickel-metal hydride battery (Majchrzynki, W. (93) 77)
- Electrode current density
Power degradation; BASE (Lodhi, M.A.K. (93) 41)
- Electroless deposition
Carbon; Ruthenium oxide; Temperature treatment; Composites; Amorphous Ru oxide (Ramani, M. (93) 209)
- Electrolyte
Ceramic fuel cell; LaGaO_3 ; Oxygen-ion conductivity; Association energy (Kim, S. (93) 279)
- Electrolyte-supported fuel cell
Solid oxide fuel cell; Anode-supported fuel cell; Cathode-supported fuel cell; Sensitivity test (Chan, S.H. (93) 130)
- Electron beam irradiation
Carbon electrode; Surface treatment; Lithium-ion battery (Endo, E. (93) 215)
- Electrostatic spray deposition
 LiMn_2O_4 ; Thin film; Impedance; Modeling (Mohamedi, M. (93) 93)
- Emulsion
Battery; Lithium manganese oxide; Synthesis; Discharge capacity (Lu, C.-H. (93) 14)
- Fuel cell stack
Fuel cell; PEMFC; Stack design; Fuel cell structures (Jiang, R. (93) 25)
- Fuel cell structures
Fuel cell; PEMFC; Fuel cell stack; Stack design (Jiang, R. (93) 25)
- Fuel cell
PEMFC; Fuel cell stack; Stack design; Fuel cell structures (Jiang, R. (93) 25)
- Galvanic cell
Cobalt hydroxide; Cyclic voltammetry; Reaction mechanism; Oxidation to CoOOH ; Reduction to Co; Double hydroxide principle (Elumalai, P. (93) 201)
- $\text{Gd}_{1-x}\text{Sr}_x\text{MnO}_3$
Citrate process; Solid oxide fuel cell; Electrical conductivity; Thermal expansion coefficient; Reactivity; Cathodic polarization; Three-phase boundary (Yoon, H.S. (93) 1)
- Gel polymer electrolytes
Cycling performance; Ionic conductivity; Lithium manganese oxide; Lithium polymer battery (Kim, D.-W. (93) 151)
- Graphite
Carbon-coated; Lithium-ion battery (Wang, H. (93) 123)
Surface film; Lithiated graphite; Lithium intercalation (Fujimoto, H. (93) 224)
- Heat dissipation
Lithium ion cell; Radiative calorimeter (Vaidyanathan, H. (93) 112)
- Heat losses
AMTEC; Power output; Efficiency; Design; Material; Power degradation (Lodhi, M.A.K. (93) 32)
- Impedance
 LiMn_2O_4 ; Electrostatic spray deposition; Thin film; Modeling (Mohamedi, M. (93) 93)
- In situ observation
EC-AFM; Cyclic-voltammetry; Lead-acid battery; Negative electrodes (Yamaguchi, Y. (93) 104)
- Interfacial resistance
Lithium powder anode; Lithium foil anode; Lithium-polymer battery; Solid polymer electrolyte (Kwon, C.W. (93) 145)
- Intermediate temperature
Ceria-salt composite ceramics; SOFCs; Direct methanol and ethanol SOFCs; Electrical vehicle (Zhu, B. (93) 82)
- Ionic conductivity
Cycling performance; Gel polymer electrolytes; Lithium manganese oxide; Lithium polymer battery (Kim, D.-W. (93) 151)
- Ionic resistance
Porous electrode; Batteries; Linear voltammetry (Jin, X. (93) 8)
- LAB alloys
Lead acid battery (LAB); Lead dioxide; LAB positive plate; LAB cycle life; LAB charging mode (Dimitrov, M. (93) 234)
- LAB charging mode
Lead acid battery (LAB); Lead dioxide; LAB positive plate; LAB cycle life; LAB alloys (Dimitrov, M. (93) 234)
- LAB cycle life
Lead acid battery (LAB); Lead dioxide; LAB positive plate; LAB charging mode; LAB alloys (Dimitrov, M. (93) 234)
- LAB positive plate
Lead acid battery (LAB); Lead dioxide; LAB cycle life; LAB charging mode; LAB alloys (Dimitrov, M. (93) 234)
- LaGaO_3
Ceramic fuel cell; Electrolyte; Oxygen-ion conductivity; Association energy (Kim, S. (93) 279)
- Laves phase alloy
Activation; Surface treatment; Nickel-rich layer (Jiansheng, C. (93) 141)

- Lead acid battery (LAB)**
 Lead dioxide; LAB positive plate; LAB cycle life; LAB charging mode; LAB alloys (Dimitrov, M. (93) 234)
- Lead dioxide**
 Lead acid battery (LAB); LAB positive plate; LAB cycle life; LAB charging mode; LAB alloys (Dimitrov, M. (93) 234)
- Lead-acid battery**
 Electric vehicles; Metal requirement; Lithium batteries; Sodium/nickel chloride batteries; Nickel metal hydride batteries; Cadmium batteries (Råde, I. (93) 55)
In situ observation; EC-AFM; Cyclic-voltammetry; Negative electrodes (Yamaguchi, Y. (93) 104)
 $\text{Pb}-\text{Ca}-\text{Sn}-\text{Ce}$ alloy; Cerium; Anodic Pb(II) film (Liu, H.-T. (93) 230)
- LiMn_2O_4**
 Electrostatic spray deposition; Thin film; Impedance; Modeling (Mohamed, M. (93) 93)
- Linear voltammetry**
 Porous electrode; Ionic resistance; Batteries (Jin, X. (93) 8)
- LiNiO_2**
 Surface treatment; Plasma CVD; Amorphous carbon; Lithium-ion battery (Endo, E. (93) 87)
- Lithiated graphite**
 Graphite; Surface film; Lithium intercalation (Fujimoto, H. (93) 224)
- Lithium alloy anode**
 Electrochemical impedance spectroscopy; Contact resistance (Wang, C. (93) 174)
- Lithium batteries**
 Electric vehicles; Metal requirement; Sodium/nickel chloride batteries; Nickel metal hydride batteries; Cadmium batteries; Lead-acid batteries (Råde, I. (93) 55)
- Lithium foil anode**
 Lithium powder anode; Lithium-polymer battery; Solid polymer electrolyte; Interfacial resistance (Kwon, C.W. (93) 145)
- Lithium intercalation**
 Graphite; Surface film; Lithiated graphite (Fujimoto, H. (93) 224)
- Lithium ion cell**
 Heat dissipation; Radiative calorimeter (Vaidyanathan, H. (93) 112)
- Lithium manganese oxide**
 Battery; Emulsion; Synthesis; Discharge capacity (Lu, C.-H. (93) 14)
- Lithium manganese oxide**
 Cycling performance; Gel polymer electrolytes; Ionic conductivity; Lithium polymer battery (Kim, D.-W. (93) 151)
- Lithium polymer battery**
 Cycling performance; Gel polymer electrolytes; Ionic conductivity; Lithium manganese oxide (Kim, D.-W. (93) 151)
- Lithium powder anode**
 Lithium foil anode; Lithium-polymer battery; Solid polymer electrolyte; Interfacial resistance (Kwon, C.W. (93) 145)
- Lithium-ion batteries**
 Cathodes; Aluminium; Nickel; Cobalt (Madhavi, S. (93) 156)
 Carbon-coated; Graphite (Wang, H. (93) 123)
 Electron beam irradiation; Carbon electrode; Surface treatment (Endo, E. (93) 215)
 LiNiO_2 ; Surface treatment; Plasma CVD; Amorphous carbon (Endo, E. (93) 87)
- Lithium-polymer battery**
 Lithium powder anode; Lithium foil anode; Solid polymer electrolyte; Interfacial resistance (Kwon, C.W. (93) 145)
- Material**
 AMTEC; Heat losses; Power output; Efficiency; Design; Power degradation (Lodhi, M.A.K. (93) 32)
- Memory effect**
 Alkaline secondary battery; Nickel-cadmium battery; Nickel-hydrogen battery; γ -Oxy-nickel hydroxide (Sato, Y. (93) 20)
- Metal requirement**
 Electric vehicles; Lithium batteries; Sodium/nickel chloride batteries; Nickel metal hydride batteries; Cadmium batteries; Lead-acid batteries (Råde, I. (93) 55)
- Metal sulfide**
 Na/S battery; Corrosion (Okuyama, R. (93) 50)
- Modeling**
 LiMn_2O_4 ; Electrostatic spray deposition; Thin film; Impedance (Mohamed, M. (93) 93)
- Na/S battery**
 Corrosion; Metal sulfide (Okuyama, R. (93) 50)
- Nanocrystalline**
 $(\text{Zr}, \text{Ti})(\text{V}, \text{Cr}, \text{Ni})_{2.41}$ alloy; Nickel-metal hydride battery; Electrochemical properties (Majchrzycki, W. (93) 77)
- Negative electrodes**
In situ observation; EC-AFM; Cyclic-voltammetry; Lead-acid battery (Yamaguchi, Y. (93) 104)
- Nickel electrode**
 Alkaline batteries; Positive electrode (Freitas, M.B.J.G. (93) 163)
- Nickel hydroxide**
 Cyclic voltammetry; Nitrate bath (Jayashree, R.S. (93) 273)
- Nickel metal hydride batteries**
 Electric vehicles; Metal requirement; Lithium batteries; Sodium/nickel chloride batteries; Cadmium batteries; Lead-acid batteries (Råde, I. (93) 55)
- Nickel**
 Lithium-ion batteries; Cathodes; Aluminium; Cobalt (Madhavi, S. (93) 156)
- Nickel-cadmium battery**
 Memory effect; Alkaline secondary battery; Nickel-hydrogen battery; γ -Oxy-nickel hydroxide (Sato, Y. (93) 20)
- Nickel-hydrogen battery**
 Memory effect; Alkaline secondary battery; Nickel-cadmium battery; γ -Oxy-nickel hydroxide (Sato, Y. (93) 20)
- Nickel-metal hydride battery**
 Nanocrystalline; $(\text{Zr}, \text{Ti})(\text{V}, \text{Cr}, \text{Ni})_{2.41}$ alloy; Electrochemical properties (Majchrzycki, W. (93) 77)
- Nickel-rich layer**
 Laves phase alloy; Activation; Surface treatment (Jiansheng, C. (93) 141)
- Nitrate bath**
 Nickel hydroxide; Cyclic voltammetry (Jayashree, R.S. (93) 273)
- Oxidation to CoOOH**
 Cobalt hydroxide; Cyclic voltammetry; Reaction mechanism; Reduction to Co; Galvanic cell; Double hydroxide principle (Elumalai, P. (93) 201)
- γ -Oxy-nickel hydroxide**
 Memory effect; Alkaline secondary battery; Nickel-cadmium battery; Nickel-hydrogen battery (Sato, Y. (93) 20)
- Oxygen-ion conductivity**
 Ceramic fuel cell; LaGaO_3 ; Electrolyte; Association energy (Kim, S. (93) 279)
- $\text{Pb}-\text{Ca}-\text{Sn}-\text{Ce}$ alloy**
 Lead-acid battery; Cerium; Anodic Pb(II) film (Liu, H.-T. (93) 230)
- PEMFC**
 Fuel cell; Fuel cell stack; Stack design; Fuel cell structures (Jiang, R. (93) 25)
- Plasma CVD**
 LiNiO_2 ; Surface treatment; Amorphous carbon; Lithium-ion battery (Endo, E. (93) 87)
- Polymer electrolyte**
 Conductivity; Transport numbers; Electrochemical cells; Potassium bromate (Sreekanth, T. (93) 268)
- Porous electrode**
 Ionic resistance; Batteries; Linear voltammetry (Jin, X. (93) 8)

- Positive electrode
Nickel electrode; Alkaline batteries (Freitas, M.B.J.G. (93) 163)
- Potassium bromate
Polymer electrolyte; Conductivity; Transport numbers; Electrochemical cells (Sreekanth, T. (93) 268)
- Power degradation
AMTEC; Heat losses; Power output; Efficiency; Design; Material (Lodhi, M.A.K. (93) 32)
BASE; Electrode current density (Lodhi, M.A.K. (93) 41)
- Power output
AMTEC; Heat losses; Efficiency; Design; Material; Power degradation (Lodhi, M.A.K. (93) 32)
AMTEC; Pressure losses; Efficiency; Chevron radiation shields (Lodhi, M.A.K. (93) 258)
- Pressure losses
AMTEC; Power output; Efficiency; Chevron radiation shields (Lodhi, M.A.K. (93) 258)
- Radiative calorimeter
Heat dissipation; Lithium ion cell (Vaidyanathan, H. (93) 112)
- Reaction mechanism
Cobalt hydroxide; Cyclic voltammetry; Oxidation to CoOOH; Reduction to Co; Galvanic cell; Double hydroxide principle (Elumalai, P. (93) 201)
- Reactivity
 $\text{Gd}_{1-x}\text{Sr}_x\text{MnO}_3$; Citrate process; Solid oxide fuel cell; Electrical conductivity; Thermal expansion coefficient; Cathodic polarization; Three-phase boundary (Yoon, H.S. (93) 1)
- Reduction to Co
Cobalt hydroxide; Cyclic voltammetry; Reaction mechanism; Oxidation to CoOOH; Galvanic cell; Double hydroxide principle (Elumalai, P. (93) 201)
- Resistive companion modeling
Battery modeling; Battery simulation; Electric circuit simulation; Virtual test bed (Wu, B. (93) 186)
- Ruthenium oxide
Carbon; Temperature treatment; Composites; Amorphous Ru oxide; Electroless deposition (Ramani, M. (93) 209)
- Sensitivity test
Solid oxide fuel cell; Anode-supported fuel cell; Cathode-supported fuel cell; Electrolyte-supported fuel cell (Chan, S.H. (93) 130)
- Sodium/nickel chloride batteries
Electric vehicles; Metal requirement; Lithium batteries; Nickel metal hydride batteries; Cadmium batteries; Lead-acid batteries (Råde, I. (93) 55)
- SOFCs
Ceria-salt composite ceramics; Intermediate temperature; Direct methanol and ethanol SOFCs; Electrical vehicle (Zhu, B. (93) 82)
- Solid oxide fuel cell
Anode-supported fuel cell; Cathode-supported fuel cell; Electrolyte-supported fuel cell; Sensitivity test (Chan, S.H. (93) 130)
- $\text{Gd}_{1-x}\text{Sr}_x\text{MnO}_3$; Citrate process; Electrical conductivity; Thermal expansion coefficient; Reactivity; Cathodic polarization; Three-phase boundary (Yoon, H.S. (93) 1)
- Solid polymer electrolyte
Lithium powder anode; Lithium foil anode; Lithium-polymer battery; Interfacial resistance (Kwon, C.W. (93) 145)
- Stack design
Fuel cell; PEMFC; Fuel cell stack; Fuel cell structures (Jiang, R. (93) 25)
- Surface film
Graphite; Lithiated graphite; Lithium intercalation (Fujimoto, H. (93) 224)
- Surface treatment
Electron beam irradiation; Carbon electrode; Lithium-ion battery (Endo, E. (93) 215)
Laves phase alloy; Activation; Nickel-rich layer (Jiansheng, C. (93) 141)
 LiNiO_2 ; Plasma CVD; Amorphous carbon; Lithium-ion battery (Endo, E. (93) 87)
- Synthesis
Battery; Emulsion; Lithium manganese oxide; Discharge capacity (Lu, C.-H. (93) 14)
- Temperature treatment
Carbon; Ruthenium oxide; Composites; Amorphous Ru oxide; Electroless deposition (Ramani, M. (93) 209)
- Thermal expansion coefficient
 $\text{Gd}_{1-x}\text{Sr}_x\text{MnO}_3$; Citrate process; Solid oxide fuel cell; Electrical conductivity; Reactivity; Cathodic polarization; Three-phase boundary (Yoon, H.S. (93) 1)
- Thermoelectric generators
(Esarte, J. (93) 72)
- Thin film
 LiMn_2O_4 ; Electrostatic spray deposition; Impedance; Modeling (Mohamed, M. (93) 93)
- Three-phase boundary
 $\text{Gd}_{1-x}\text{Sr}_x\text{MnO}_3$; Citrate process; Solid oxide fuel cell; Electrical conductivity; Thermal expansion coefficient; Reactivity; Cathodic polarization (Yoon, H.S. (93) 1)
- Transport numbers
Polymer electrolyte; Conductivity; Electrochemical cells; Potassium bromate (Sreekanth, T. (93) 268)
- Virtual test bed
Battery modeling; Battery simulation; Electric circuit simulation; Resistive companion modeling (Wu, B. (93) 186)
- $(\text{Zr}, \text{Ti})(\text{V}, \text{Cr}, \text{Ni})_{2.41}$ alloy
Nanocrystalline; Nickel-metal hydride battery; Electrochemical properties (Majchrzycki, W. (93) 77)