Linear. Regression ?

For the dute set given below fit a Linear regrossion line; X 1 2 3 4 . By assuming cost 11.512 2.53 . By assuming cost function (Mean Squand error) and by assuming

(w, wo) = (1,1), Apply Gradient Descent Alg to compute updated weights and new cost? Assume

the learning rate to be oil.

Step () Regression Line finding

\times	4	X2	×Y
1	1.5		٦ - ي
2_		4	4
3	Z. T	9	7 - 5
4	3	16	12
(D	9	30	25

$$\Sigma x = 10$$
, $\Sigma y = 9$, $\Sigma x = 30$
 $\Sigma x = 25$, $N = 4$
 $M = \frac{N \Sigma x y - \Sigma x \Sigma y}{N \Sigma x^2 - (\Sigma x)^2} = \frac{4(2r) - (16)(9)}{4(30) - 160}$
 $= \frac{10}{20} = 0.5$

$$y = mn + c \Rightarrow y = 0.5n + 1$$

Step(2) Linear Regression With Gradient

Descent;

y= wx+w0 => y

5 rep(2) Linear Regression With Gradient Descent ; $y = \omega_{k+\omega_0} \Rightarrow y = 0.5n + 1$ Cost function $E = \frac{1}{N} \left(y_{\bar{i}} - \hat{y}_{\bar{i}} \right)$ = 1 5 Tyi - (mni + 1)] $D_{N} = -\frac{2}{N} \sum_{i=1}^{N} x_{i} \left(y_{i} - \hat{y}_{i} \right), \quad D_{C} = -\frac{2}{N} \sum_{i=1}^{N} \left(y_{i} - \hat{y}_{i} \right)$

 $W = W - \lambda D_m$, $W_0 = W_0 - \lambda D_c$ A = 0.1 (given)

N = 4

Iteration (

Lance	$W, w_0 = 1$)
	, •	,
	Lance	Enice W, wo =1.

	—	-
1 5 -	$\chi + 1$	

$$D_{m} = -\frac{2}{4} \left(-15 \right) = 7.5$$

$$D_c = -\frac{2}{4}(-5) = 2.5$$

$$W = W - \lambda D_m = 1 - 0.1 (7.5)$$

$$w_0 = c - d \mathcal{D}_c = 1 - o \cdot i \quad (2.5)$$

$$= 0.75$$

$$y = w \times = 0.25 \times + 0.75$$

I teration (2) y = 0.25x + 0.75

W = 002r wo = .75

			1	
4	>	4	< 5 5	n. (yý)
1	1.5		0.5	0.5-
2	2	1.25	٦٢. ٥	1.,5
3	2.5	1.5	1	3
4	3	1.75/	1.25	7

$$D_{m} = -\frac{2}{4} \left[12 \right] = -6 \quad \alpha = 0.$$

$$W = W - dD_m = 0.25 - 0.1(-6)$$

$$= 0.85$$

$$w_0 = w_0 - \lambda D_z = 0.75$$

$$-0.(-2)$$

$$= 0.95$$