Phylogenetics: Reading trees

Introduction to Evolution and Scientific Inquiry Dr. Stephanie J. Spielman; spielman@rowan.edu

Cladogenesis: birth of new clades

The first ever phylogeny

Systematics, Cladistics, Phylogenetics

Systematics: The study of diversity of life and identification of taxa (singular: taxon)

 <u>Cladistics</u>: The systematic classification of groups of organisms using shared characteristics derived from a common ancestor

 <u>Phylogenetics</u>: The science of creating <u>evolutionary trees</u> that reveal how organisms are related to each other, based on common ancestry

The Linnaean Hierarchy

Kingdom
Phylum
Class
Order
Family
Genus
Species

Is a "super family" or a "tribe" a real evolutionary entity?

Super family	Family	Sub family	Tribe	Genus	Species
Hominoidea	Hylobatidae			Hylobates	Hylobates sp.
	Hominidae	Ponginae		Pongo	Pongo pygmaeus
			Panini	Pan	Pan paniscus
		Homininae			Pan troglodytes
				Gorilla	Gorilla gorilla
			Hominini	Homo	Homo sapiens

Anatomy of a phylogeny

Anatomy of a phylogeny

Sister taxa or clades share a common ancestor

A and B are sister taxa

(A,B) and (C,D) are sister clades

Who is E sister to?

Read trees by tracing back through branches

Angled or boxy shapes are still the same. It's all about tracing through nodes!!

Each box contains the same tree drawn two different ways

Trees are fundamentally a bunch of nested trees

The tree-thinking challenge!

Components of a phylogeny

- Topology: the branching patterns
- Branch lengths can represent a variety of things (you'll be told!)
 - Nothing at all ("Cladogram")
 - Evolutionary distance (genetic change)
 - Time since divergence

- Confidence measures at nodes (usually scaled 0-100)
 - Statistical quantity with complex interpretation. *ROUGHLY means:* How confident are we that this node is correct? Interpreted as, >70 pretty confident.

Branch lengths show evolutionary distance

More flaviviruses

Time-scaled branch lengths, for example

Our place in the tree of life

The Metazoan tree of life (animals!)

Vertebrate tree of life

(ignore marker dots at nodes)

Mammalian tree of life

The primate tree of life

(ignore branch colors)

