(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 November 2000 (30.11.2000)

PCT

(10) International Publication Number WO 00/71509 A1

- (51) International Patent Classification⁷: C07C 311/46, A61K 31/18, A61P 7/02
- (21) International Application Number: PCT/US00/14194
- (22) International Filing Date: 24 May 2000 (24.05.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/135,819

24 May 1999 (24.05.1999) US

- (71) Applicant: COR THERAPEUTICS, INC. [US/US]; 256 E. Grand Avenue, South San Francisco, CA 94080 (US).
- (72) Inventors: SONG, Yonghong; 1144 Nimitz Lane, Foster City, CA 94404 (US). CLIZBE, Lane; 392 Newcastle Drive, Redwood City, CA 94061 (US). MARLOWE, Charles; 636 California Way, Redwood City, CA 94080 (US). SCARBOROUGH, Robert, M.; 22 Greenbrier Court, Half Moon Bay, CA 94019 (US). SU, Ting; 3222 Upper Lock Avenue, Belmont, CA 94002 (US). ZHU, Bing-Yan; 3325 Adelaide Way, Belmont, CA 94002 (US).

- (74) Agent: MORGAN, LEWIS & BOCKIUS LLP; 1800 M Street, NW, Washington, DC 20036 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

71509 A

(54) Title: INHIBITORS OF FACTOR Xa

(57) Abstract: The present application relates to compounds of the general formula A-Y-D-E-G-J-K-L, wherein A, Y, D, E, G, J, K and L have the meanings given in the description, having activity against mammalian factor Xa. The compounds are useful in vitro or in vivo for preventing or treating coagulation disorders.

- 1 -

INHIBITORS OF FACTOR Xa

Related Applications

This application claims benefit of priority under 35 USC § 119(e) to U.S.

Provisional Application No. 60/135,819 filed on May 24, 1999, which is herein incorporated in its entirety by reference.

Field of the Invention

10

15

20

25

30

This invention relates to novel compounds which are potent and highly selective inhibitors of isolated factor Xa or when assembled in the prothrombinase complex. These compounds show selectivity for factor Xa versus other proteases of the coagulation (e.g. thrombin, fVIIa, fIXa) or the fibrinolytic cascades (e.g. plasminogen activators, plasmin). In another aspect, the present invention relates to novel monoamidino-containing compounds, their pharmaceutically acceptable salts, and pharmaceutically acceptable compositions thereof which are useful as potent and specific inhibitors of blood coagulation in mammals. In yet another aspect, the invention relates to methods for using these inhibitors as therapeutic agents for disease states in mammals characterized by coagulation disorders.

Background of the Invention

Hemostasis, the control of bleeding, occurs by surgical means, or by the physiological properties of vasoconstriction and coagulation. This invention is particularly concerned with blood coagulation and ways in which it assists in maintaining the integrity of mammalian circulation after injury, inflammation, disease, congenital defect, dysfunction or other disruption. Although platelets and blood coagulation are both involved in thrombus formation, certain components of the coagulation cascade are primarily responsible for the amplification or acceleration of the processes involved in platelet aggregation and fibrin deposition.

Thrombin is a key enzyme in the coagulation cascade as well as in hemostasis. Thrombin plays a central role in thrombosis through its ability to catalyze the conversion of fibrinogen into fibrin and through its potent platelet activation activity. Direct or indirect inhibition of thrombin activity has been the focus of a variety of recent anticoagulant strategies as reviewed by Claeson, G., "Synthetic Peptides and Peptidomimetics as Substrates and Inhibitors of Thrombin

-2-

and Other Proteases in the Blood Coagulation System", Blood Coag. Fibrinol. 5, 411-436 (1994). Several classes of anticoagulants currently used in the clinic directly or indirectly affect thrombin (i.e. heparins, low-molecular weight heparins, heparin-like compounds and coumarins).

5

10

15

20

25

30

A prothrombinase complex, including Factor Xa (a serine protease, the activated form of its Factor X precursor and a member of the calcium ion binding, gamma carboxyglutamyl (Gla)-containing, vitamin K dependent, blood coagulation glycoprotein family), converts the zymogen prothrombin into the active procoagulant thrombin. Unlike thrombin, which acts on a variety of protein substrates as well as at a specific receptor, factor Xa appears to have a single physiologic substrate, namely prothrombin. Since one molecule of factor Xa may be able to generate up to 138 molecules of thrombin (Elodi et al., *Thromb. Res.* 15, 617-619 (1979)), direct inhibition of factor Xa as a way of indirectly inhibiting the formation of thrombin may be an efficient anticoagulant strategy. Therefore, it has been suggested that compounds which selectively inhibit factor Xa may be useful as *in vitro* diagnostic agents, or for therapeutic administration in certain thrombotic disorders, see *e.g.*, WO 94/13693.

Polypeptides derived from hematophagous organisms have been reported which are highly potent and specific inhibitors of factor Xa. United States Patent 4,588,587 describes anticoagulant activity in the saliva of the Mexican leech, Haementeria officinalis. A principal component of this saliva was shown to be the polypeptide factor Xa inhibitor, antistasin (ATS), by Nutt, E. et al., "The Amino Acid Sequence of Antistasin, a Potent Inhibitor of Factor Xa Reveals a Repeated Internal Structure", J. Biol. Chem., 263, 10162-10167 (1988). Another potent and highly specific inhibitor of Factor Xa, called tick anticoagulant peptide (TAP), has been isolated from the whole body extract of the soft tick Ornithidoros moubata, as reported by Waxman, L., et al., "Tick Anticoagulant Peptide (TAP) is a Novel Inhibitor of Blood Coagulation Factor Xa" Science, 248, 593-596 (1990).

Factor Xa inhibitory compounds which are not large polypeptide-type inhibitors have also been reported including: Tidwell, R.R. et al., "Strategies for Anticoagulation With Synthetic Protease Inhibitors. Xa Inhibitors Versus Thrombin Inhibitors", Thromb. Res., 19, 339-349 (1980); Turner, A.D. et al., "p-Amidino Esters as Irreversible Inhibitors of Factor IXa and Xa and Thrombin", Biochemistry, 25, 4929-4935 (1986); Hitomi, Y. et al., "Inhibitory Effect of New Synthetic

- 3 -

Protease Inhibitor (FUT-175) on the Coagulation System", Haemostasis, 15, 164-168 (1985); Sturzebecher, J. et al., "Synthetic Inhibitors of Bovine Factor Xa and Thrombin. Comparison of Their Anticoagulant Efficiency", Thromb. Res., 54, 245-252 (1989); Kam, C.M. et al., "Mechanism Based Isocoumarin Inhibitors for Trypsin and Blood Coagulation Serine Proteases: New Anticoagulants", Biochemistry, 27, 2547-2557 (1988); Hauptmann, J. et al., "Comparison of the Anticoagulant and Antithrombotic Effects of Synthetic Thrombin and Factor Xa Inhibitors", Thromb. Haemost., 63, 220-223 (1990); and the like.

Others have reported Factor Xa inhibitors which are small molecule organic compounds, such as nitrogen containing heterocyclic compounds which have amidino substituent groups, wherein two functional groups of the compounds can bind to Factor Xa at two of its active sites. For example, WO 98/28269 describes pyrazole compounds having a terminal C(=NH)-NH₂ group; WO 97/21437 describes benzimidazole compounds substituted by a basic radical which are connected to a naththyl group via a straight or branched chain alkylene,-C(=O) or -S(=O)₂ bridging group; WO 99/10316 describes compounds having a 4-phenyl-N-alkylamidino-piperidine and 4-phenoxy-N-alkylamidino-piperidine group connected to a 3-amidinophenyl group via a carboxamidealkyleneamino bridge; and EP 798295 describes compounds having a 4-phenoxy-N-alkylamidino-piperidine group connected to an amidinonaphthyl group via a substituted or unsubstituted sulfonamide or carboxamide bridging group.

There exists a need for effective therapeutic agents for the regulation of hemostasis, and for the prevention and treatment of thrombus formation and other pathological processes in the vasculature induced by thrombin such as restenosis and inflammation. In particular, there continues to be a need for compounds which selectively inhibit factor Xa or its precursors. Compounds that have different combinations of bridging groups and functional groups than compounds previously discovered are needed, particularly compounds which selectively or preferentially bind to Factor Xa. Compounds with a higher degree of binding to Factor Xa than to thrombin are desired, especially those compounds having good bioavailability and/or solubility.

Summary of the Invention

5

10

15

20

25

30

The present invention relates to novel compounds which inhibit factor Xa,

-4-

their pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives, and pharmaceutically acceptable compositions thereof which have particular biological properties and are useful as potent and specific inhibitors of blood coagulation in mammals. In another aspect, the invention relates to methods of using these inhibitors as diagnostic reagents or as therapeutic agents for disease states in mammals which have coagulation disorders, such as in the treatment or prevention of any thrombotically mediated acute coronary or cerebrovascular syndrome, any thrombotic syndrome occurring in the venous system, any coagulopathy, and any thrombotic complications associated with extracorporeal circulation or instrumentation, and for the inhibition of coagulation in biological samples.

In certain embodiments, this invention relates to novel compounds which are potent and highly selective inhibitors of isolated factor Xa when assembled in the prothrombinase complex. These compounds show selectivity for factor Xa versus other proteases of the coagulation cascade (e.g. thrombin, etc.) or the fibrinolytic cascade, and are useful as diagnostic reagents as well as antithrombotic agents.

In a preferred embodiment, the present invention provides a compound of the formula I:

A-Y-D-E-G-J-Z-L

20 wherein:

5

10

15

30

A is selected from:

- (a) C_1 - C_6 -alkyl;
- (b) C₃-C₈-cycloalkyl;
- (c) phenyl, which is independently substituted with 0-2 R¹ substituents;
- 25 (d) naphthyl, which is independently substituted with 0-2 R¹ substituents; and
 - (e) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;

R¹ is selected from:

- 5 -

Halo, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl,-CN, -NO₂, (CH₂)_mNR²R³, SO₂NR²R³, SO₂R², CF₃, OR², and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C_1 - C_4 -alkyl, -CN $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl and -NO₂;

R² and R³ are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;

m is an integer of 0-2;

5

10

Y is a member selected from the group consisting of:

a direct link, -C(=O)-, $-N(R^4)$ -, -C(=O)- $N(R^4)$ -, $-N(R^4)$ -C(=O)-, $-SO_2$ -, -O-, $-SO_2$ - $N(R^4)$ - and $-N(R^4)$ - SO_2 -;

R⁴ is selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂:.

D is a direct link or is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1a} substituents;
- (b) naphthyl, which is independently substituted with 0-2 R^{1a} substituents; and

10

(c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

5 R^{1a} is selected from:

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -NO₂, (CH₂)_mNR^{2a}R^{3a}, SO₂NR^{2a}R^{3a}, SO₂R^{2a}, CF₃, OR^{2a}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂:

R^{2a} and R^{3a} are independently selected from the group consisting of:

H, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, C_{0.4}alkylphenyl and C_{0.4}alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, -CN and -NO₂;.

20 E is a member selected from the group consisting of:

-N(R^5)-C(=O)-, -C(=O)-N(R^5)-, -N(R^5)-C(=O)-N(R^6)-, -SO₂-N(R^5)-, -N(R^5)-SO₂-N(R^6)- and -N(R^5)-SO₂-N(R^6)-C(=O)-;

R⁵ and R⁶ are independently selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheteroaryl, C₁₋₄alkylCOOH and C₁₋₄alkylCOOC₁₋₄alkyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl, naphthyl and heteroaryl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

G is selected from:

- 7 -

-CR7R8- and -CR7R8a-CR7bR8b-

5

10

25

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

hydrogen, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, C_{0.4}alkylphenyl, C_{0.4}alkylnaphthyl, -OR⁹,-C_{0.4}alkylCOOR⁹, -C_{0.4}alkylC(=O)NR⁹R¹⁰, -C_{0.4}alkylC(=O)NR⁹-CH₂-CH₂-O-R¹⁰, -C_{0.4}alkylC(=O)NR⁹(-CH₂-CH₂-O-R¹⁰-)₂, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and a naturally occurring or synthetic amino acid side chain, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, -CN and -NO₂;

R⁹ and R¹⁰ are independently selected from:

H, C₁₋₄alkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, -CN and -NO₂, and wherein R⁹ and R¹⁰ taken together can form a 5-8 membered heterocylic ring;

20 J is a member selected from the group consisting of:

a direct link, -CH(R11)- and -CH(R11)-CH2-;

R¹¹ is a member selected from the group consisting of:

hydrogen, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl- C_{3-8} cycloalkyl, C_{0-4} alkylphenyl, C_{0-4} alkylnaphthyl, C_{0-4} alkylheterocyclic ring having from 1 to 4 hetero ring atoms selected from the group consisting of N, O and S, CH_2COOC_{1-4} alkyl, CH_2COOC_{1-4} alkylphenyl and CH_2COOC_{1-4} alkylnaphthyl;

Z is a member selected from the group consisting of:

(a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;

- 8 -

(b) naphthyl, which is independently substituted with 0-2 R^{1b} substituents; and

(c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents;

R1b is selected from:

5

10

15

20

30

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -NO₂, NR^{2b}R^{3b}, SO₂NR^{2b}R^{3b}, SO₂R^{2b}, CF₃, OR^{2b}, O-CH₂-CH₂-OR^{2b}, O-CH₂-COOR^{2b}, N(R^{2b})-CH₂-CH₂-OR^{2b}, N(-CH₂-CH₂-OR^{2b})₂, N(R^{2b})-C(=O)R^{3b}, N(R^{2b})-SO₂-R^{3b}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

R^{2b} and R^{3b} are independently selected from the group consisting of:

H, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, C_{0-4} alkylphenyl and C_{0-4} alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CN and -NO₂;

L is selected from:

25 H, -CN, C(=0)NR¹²R¹³, (CH₂)_nNR¹²R¹³, C(=NR¹²)NR¹²R¹³, NR¹²R¹³, OR¹², -NR¹²C(=NR¹²)NR¹²R¹³, and NR¹²C(=NR¹²)-R¹³;

R¹² and R¹³ are independently selected from:

hydrogen, -OR¹⁴, -NR¹⁴R¹⁵, C₁₋₄alkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, COOC₁₋₄alkyl, COO-C₀₋₄alkylphenyl and COO-C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the

group consisting of halo, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN, and -NO₂;

PCT/US00/14194

R¹⁴ and R¹⁵ are independently selected from:

5

10

15

20

H, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, C_{0-4} alkylphenyl and C_{0-4} alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CN, and -NO₂;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

In certain aspects of this invention, compounds are provided which are useful as diagnostic reagents. In another aspect, the present invention includes pharmaceutical compositions comprising a pharmaceutically effective amount of the compounds of this invention and a pharmaceutically acceptable carrier. In yet another aspect, the present invention includes methods comprising using the above compounds and pharmaceutical compositions for preventing or treating disease states characterized by undesired thrombosis or disorders of the blood coagulation process in mammals, or for preventing coagulation in biological samples such as, for example, stored blood products and samples. Optionally, the methods of this invention comprise administering the pharmaceutical composition in combination with an additional therapeutic agent such as an antithrombotic and/or a thrombolytic agent and/or an anticoagulant.

The preferred compounds also include their pharmaceutically acceptable isomers, hydrates, solvates, salts and prodrug derivatives.

Detailed Description of the Invention

Definitions

In accordance with the present invention and as used herein, the following terms are defined with the following meanings, unless explicitly stated otherwise.

The term "alkenyl" refers to a trivalent straight chain or branched chain unsaturated aliphatic radical. The term "alkinyl" (or "alkynyl") refers to a straight or branched chain aliphatic radical that includes at least two carbons joined by a triple bond. If no number of carbons is specified alkenyl and alkinyl each refer to radicals having from 2-12 carbon atoms.

5

10

15

20

25

30

- 10 -

The term "alkyl" refers to saturated aliphatic groups including straight-chain, branched-chain and cyclic groups having the number of carbon atoms specified, or if no number is specified, having up to 12 carbon atoms. The term "cycloalkyl" as used herein refers to a mono-, bi-, or tricyclic aliphatic ring having 3 to 14 carbon atoms and preferably 3 to 7 carbon atoms.

As used herein, the terms "carbocyclic ring structure" and "C₃₋₁₆ carbocyclic mono, bicyclic or tricyclic ring structure" or the like are each intended to mean stable ring structures having only carbon atoms as ring atoms wherein the ring structure is a substituted or unsubstituted member selected from the group consisting of: a stable monocyclic ring which is aromatic ring ("aryl") having six ring atoms; a stable monocyclic non-aromatic ring having from 3 to 7 ring atoms in the ring; a stable bicyclic ring structure having a total of from 7 to 12 ring atoms in the two rings wherein the bicyclic ring structure is selected from the group consisting of ring structures in which both of the rings are aromatic, ring structures in which one of the rings is aromatic and ring structures in which both of the rings are non-aromatic; and a stable tricyclic ring structure having a total of from 10 to 16 atoms in the three rings wherein the tricyclic ring structure is selected from the group consisting of: ring structures in which three of the rings are aromatic, ring structures in which two of the rings are aromatic and ring structures in which three of the rings are nonaromatic. In each case, the non-aromatic rings when present in the monocyclic, bicyclic or tricyclic ring structure may independently be saturated, partially saturated or fully saturated. Examples of such carbocyclic ring structures include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), 2.2.2]bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin). Moreover, the ring structures described herein may be attached to one or more indicated pendant groups via any carbon atom which results in a stable structure. The term "substituted" as used in conjunction with carbocyclic ring structures means that hydrogen atoms attached to the ring carbon atoms of ring

structures described herein may be substituted by one or more of the substituents indicated for that structure if such substitution(s) would result in a stable compound.

- 11 -

The term "aryl" which is included with the term "carbocyclic ring structure" refers to an unsubstituted or substituted aromatic ring, substituted with one, two or three substituents selected from loweralkoxy, loweralkyl, loweralkylamino, hydroxy, halogen, cyano, hydroxyl, mercapto, nitro, thioalkoxy, carboxaldehyde, carboxyl, carboalkoxy and carboxamide, including but not limited to carbocyclic aryl, heterocyclic aryl, and biaryl groups and the like, all of which may be optionally substituted. Preferred aryl groups include phenyl, halophenyl, loweralkylphenyl, napthyl, biphenyl, phenanthrenyl and naphthacenyl.

10

15

20

25

30

The term "arylalkyl" which is included with the term "carbocyclic aryl" refers to one, two, or three aryl groups having the number of carbon atoms designated, appended to an alkyl group having the number of carbon atoms designated. Suitable arylalkyl groups include, but are not limited to, benzyl, picolyl, naphthylmethyl, phenethyl, benzyhydryl, trityl, and the like, all of which may be optionally substituted.

As used herein, the term "heterocyclic ring" or "heterocyclic ring system" is intended to mean a substituted or unsubstituted member selected from the group consisting of stable monocyclic ring having from 5-7 members in the ring itself and having from 1 to 4 hetero ring atoms selected from the group consisting of N, O and S; a stable bicyclic ring structure having a total of from 7 to 12 atoms in the two rings wherein at least one of the two rings has from 1 to 4 hetero atoms selected from N, O and S, including bicyclic ring structures wherein any of the described stable monocyclic heterocyclic rings is fused to a hexane or benzene ring; and a stable tricyclic heterocyclic ring structure having a total of from 10 to 16 atoms in the three rings wherein at least one of the three rings has from 1 to 4 hetero atoms selected from the group consisting of N, O and S. Any nitrogen and sulfur atoms present in a heterocyclic ring of such a heterocyclic ring structure may be oxidized. Unless indicated otherwise the terms "heterocyclic ring" or "heterocyclic ring system" include aromatic rings, as well as non-aromatic rings which can be saturated, partially saturated or fully saturated non-aromatic rings. Also, unless indicated otherwise the term "heterocyclic ring system" includes ring structures wherein all of the rings contain at least one hetero atom as well as structures having less than all of the rings in the ring structure containing at least one hetero atom, for

- 12 -

example bicyclic ring structures wherein one ring is a benzene ring and one of the rings has one or more hetero atoms are included within the term "heterocyclic ring systems" as well as bicyclic ring structures wherein each of the two rings has at least one hetero atom. Moreover, the ring structures described herein may be attached to one or more indicated pendant groups via any hetero atom or carbon atom which results in a stable structure. Further, the term "substituted" means that one or more of the hydrogen atoms on the ring carbon atom(s) or nitrogen atom(s) of the each of the rings in the ring structures described herein may be replaced by one or more of the indicated substituents if such replacement(s) would result in a stable compound. Nitrogen atoms in a ring structure may be quaternized, but such compounds are specifically indicated or are included within the term "a pharmaceutically acceptable salt" for a particular compound. When the total number of O and S atoms in a single heterocyclic ring is greater than 1, it is preferred that such atoms not be adjacent to one another. Preferably, there are no more that 1 O or S ring atoms in the same ring of a given heterocyclic ring structure.

5

10

15

Examples of monocylic and bicyclic heterocylic ring systems, in alphabetical order, are acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalinyl, carbazolyl, 4aH-carbazolyl, 20 carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H.6H-1,5,2dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, 25 octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyrazolyl, pyrazolyl, pyrazolidinyl, pyrazolyl, pyridazinyl, pryidooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, 30 pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoguinolinyl, tetrahydroguinolinyl, 6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienoexazolyl, thienoimidazolyl, 35

thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl. Preferred heterocyclic ring structures include, but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrrolyl, pyrrolidinyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, oxazolinyl, or isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocylic ring structures.

As used herein the term "aromatic heterocyclic ring system" has essentially the same definition as for the monocyclic and bicyclic ring systems except that at least one ring of the ring system is an aromatic heterocyclic ring or the bicyclic ring has an aromatic or non-aromatic heterocyclic ring fused to an aromatic carbocyclic ring structure.

The terms "halo" or "halogen" as used herein refer to Cl, Br, F or I substituents. The term "haloalkyl", and the like, refer to an aliphatic carbon radicals having at least one hydrogen atom replaced by a Cl, Br, F or I atom, including mixtures of different halo atoms. Trihaloalkyl includes trifluoromethyl and the like as preferred radicals, for example.

The term "methylene" refers to -CH₂-.

5

10

15

20

25

30

The term "pharmaceutically acceptable salts" includes salts of compounds derived from the combination of a compound and an organic or inorganic acid. These compounds are useful in both free base and salt form. In practice, the use of the salt form amounts to use of the base form; both acid and base addition salts are within the scope of the present invention.

"Pharmaceutically acceptable acid addition salt" refers to salts retaining the biological effectiveness and properties of the free bases and which are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicyclic acid and the like.

"Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly

- 14 -

preferred are the ammonium, potassium, sodium, calcium and magnesium salts. Salts derived from pharmaceutically acceptable organic nontoxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-diethylaminoethanol, trimethamine, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purines, piperizine, piperidine, N-ethylpiperidine, polyamine resins and the like. Particularly preferred organic nontoxic bases are isopropylamine, diethylamine, ethanolamine, trimethamine, dicyclohexylamine, choline, and caffeine.

"Biological property" for the purposes herein means an *in vivo* effector or antigenic function or activity that is directly or indirectly performed by a compound of this invention that are often shown by *in vitro* assays. Effector functions include receptor or ligand binding, any enzyme activity or enzyme modulatory activity, any carrier binding activity, any hormonal activity, any activity in promoting or inhibiting adhesion of cells to an extracellular matrix or cell surface molecules, or any structural role. Antigenic functions include possession of an epitope or antigenic site that is capable of reacting with antibodies raised against it.

In the compounds of this invention, carbon atoms bonded to four non-identical substituents are asymmetric. Accordingly, the compounds may exist as diastereoisomers, enantiomers or mixtures thereof. The syntheses described herein may employ racemates, enantiomers or diastereomers as starting materials or intermediates. Diastereomeric products resulting from such syntheses may be separated by chromatographic or crystallization methods, or by other methods known in the art. Likewise, enantiomeric product mixtures may be separated using the same techniques or by other methods known in the art. Each of the asymmetric carbon atoms, when present in the compounds of this invention, may be in one of two configurations (R or S) and both are within the scope of the present invention.

30

5

10

15

20

25

Preferred Embodiments

In a preferred embodiment, the present invention provides a compound according to the formula I:

- 15 -

A-Y-D-E-G-J-Z-L

wherein:

A is selected from:

- (a) C_1 - C_6 -alkyl;
- 5 (b) C₃-C₈-cycloalkyl;
 - (c) phenyl, which is independently substituted with 0-2 R¹ substituents;
 - (d) naphthyl, which is independently substituted with 0-2 R¹ substituents; and
- (e) a monocyclic or fused bicyclic heterocyclic ring system having from
 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are
 selected from N, O and S, and wherein the ring system may be
 substituted with 0-2 R¹ substituents;

R¹ is selected from:

halo, C₁₋₄alkyl, -CN, (CH₂)_mNR²R³, SO₂NR²R³, SO₂R², CF₃, OR², and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S;

R² and R³ are independently selected from the group consisting of:

m is an integer of 0-2;

20 Y is a member selected from the group consisting of:

a direct link,
$$-C(=O)$$
-, $-N(R^4)$ -, $-C(=O)$ - $N(R^4)$ -, $-N(R^4)$ - $C(=O)$ -, $-SO_2$ -, $-O$ -, $-SO_2$ - $N(R^4)$ - and $-N(R^4)$ - SO_2 -;

R4 is selected from:

25 H, C_{1.4}alkyl and C_{0.4}alkylaryl;.

D is absent or is a member selected from the group consisting of:

(a) aryl, which is independently substituted with 0-2 R^{1a} substituents; and

- 16 -

(b) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

5 R^{1a} is selected from:

Halo, C_{1.4}alkyl, -CN, -NO₂, (CH₂)_mNR^{2a}R^{3a}, SO₂NR^{2a}R^{3a}, SO₂R^{2a}, CF₃, OR^{2a}, and a 5-6 membered aromatic heterocyclic ring containing from 1-4 heteroatoms selected from N, O and S;

R^{2a} and R^{3a} are independently selected from the group consisting of:

10 H, $C_{1,a}$ alkyl and $C_{0,a}$ alkylaryl;

E is a member selected from the group consisting of:

$$-N(R^5)-C(=O)-$$
, $-C(=O)-N(R^5)-$, $-N(R^5)-C(=O)-N(R^6)-$, $-SO_2-N(R^5)-$, $-N(R^5)-SO_2-N(R^6)-$ and $-N(R^5)-SO_2-N(R^6)-$ C(=O)-;

R⁵ and R⁶ are independently selected from:

15 H, C₁₋₄alkyl, C₀₋₄alkylaryl, C₀₋₄alkylheteroaryl, C₁₋₄alkylCOOH and C₁₋₄alkylCOOC₁₋₄alkyl;

G is selected from:

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

hydrogen,
$$C_{1-4}$$
alkyl, C_{0-4} alkyl- C_{3-8} cycloalkyl, C_{0-4} alkylaryl, -OR⁹, - C_{0-4} alkylCOOR⁹, - C_{0-4} alkylC(=O)NR⁹R¹⁰, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and common amino acid side chains;

R⁹ and R¹⁰ are independently selected from:

25 H, C, alkyl and C, alkylaryl;

J is a member selected from the group consisting of:

R¹¹ is a member selected from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylaryl, C₀₋₄alkylheterocyclics, CH₂COOC₁₋₄alkyl, CH₂COOC₁₋₄alkylaryl;

Z is a member selected from the group consisting of:

- (a) aryl, which is independently substituted with 0-2 R^{1b} substituents; and
- 5 (b) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents:

R1b is selected from:

halo, C₁₋₄alkyl, -CN, -NO₂, NR^{2b}R^{3b}, SO₂NR^{2b}R^{3b}, SO₂R^{2b}, CF₃, OR^{2b}, O-CH₂-CH₂-OR^{2b}, O-CH₂-COOR^{2b}, N(R^{2b})-CH₂-CH₂-OR^{2b}, N(-CH₂-CH₂-OR^{2b})₂, N(R^{2b})-C(=O)R^{3b}, N(R^{2b})-SO₂-R^{3b}, and a 5-6 membered aromatic heterocyclic ring containing from 1-4 heteroatoms selected from N, O and S;

R^{2b} and R^{3b} are independently selected from the group consisting of:

15 H, C₁₋₄alkyl and C₀₋₄alkylaryl;

L is selected from:

H, -CN, C(=O)NR¹²R¹³, (CH₂)_nNR¹²R¹³, C(=NR¹²)NR¹²R¹³, NR¹²R¹³, OR¹², -NR¹²C(=NR¹²)NR¹²R¹³ and NR¹²C(=NR¹²)-R¹³;

R¹² and R¹³ are independently selected from:

20 hydrogen, -OR¹⁴, -NR¹⁴R¹⁵, C_{1-4} alkyl, C_{0-4} alkylaryl COOC₁₋₄alkyl, and COO- C_{0-4} alkylaryl;

R¹⁴ and R¹⁵ are independently selected from:

H and C_{1.4}alkyl; and

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and

25 prodrug derivatives thereof.

In a further preferred embodiment, the present invention provides a compound according to the formula I:

5

A-Y-D-E-G-J-Z-L

wherein:

A is selected from:

- (a) phenyl, which is independently substituted with 0-2 R¹ substituents; and
 - (b) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;
- 10 R¹ is selected from:

R² and R³ are independently selected from the group consisting of:

H and C₁₋₄alkyl;

Y is a member selected from the group consisting of:

15 a direct link, -C(=O)-, $-SO_2$ - and -O-;

D is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1a} substituents; and
- (b) a monocyclic or fused bicyclic heterocyclic ring system having from
 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are
 selected from N, O and S, and wherein the ring system may be
 substituted with 0-2 R^{1a} substituents;

R^{1a} is selected from:

Halo and C₁₋₄alkyl;

25 R^{2a} and R^{3a} are independently selected from the group consisting of:

H, C_{1.4}alkyl, C_{0.4}alkylaryl;

E is a member selected from the group consisting of:

WO 00/71509

PCT/US00/14194

 $-N(R^5)-C(=O)-$ and $-C(=O)-N(R^5)-$;

R⁵ and R⁶ are independently selected from:

H, C14alkyl, C04alkylaryl and C04alkylheteroaryl;

G is selected from:

5 $-CR^7R^8$ - and $-CR^7R^{8a}$ - $CR^{7b}R^{8b}$ -

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

- 19 -

hydrogen, $C_{1,4}$ alkyl, $C_{0,4}$ alkyl- $C_{3,8}$ cycloalkyl, $C_{0,4}$ alkylaryl, -OR⁹, - $C_{0,4}$ alkylCOOR⁹, - $C_{0,4}$ alkylC(=O) NR⁹R¹⁰, - $C_{0,4}$ alkylC(=O)NR⁹-CH₂-CH₂-O-R¹⁰, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and common amino acid side chains;

R9 and R10 are independently selected from:

H and C₁₋₄alkyl, wherein the NR⁹R¹⁰ group of R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} is optionally cyclized to form a 5-8 membered heterocyclic group;

15 J is a member selected from the group consisting of:

a direct link, -CH(R¹¹)- and -CH(R¹¹)-CH₂-;

R¹¹ is a member selected from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₀₋₄alkylaryl and a C₀₋₄alkylheterocyclic ring;

20 Z is a member selected from the group consisting of:

25

- (a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;
- (b) an aromatic heterocyclic ring having from 5 to 10 ring atoms, wherein 1-4 ring atoms are selected from N, O and S, and wherein the ring may be substituted independently by from 0-2 R^{1b} substituents; and
- (c) a fused aromatic bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected

- 20 -

from N, O and S, wherein the bicyclic ring system may be substituted with 0-2 R^{1b} substituents;

R1b is selected from:

halo, C_{1.4}alkyl, OH, OBn, O-CH₂-CH₂-OH, O-CH₂-CH₂-OCH₃,

O-CH₂-COOH, O-CH₂-C(=O)-O-CH₃, NH₂, NH-CH₂-CH₂-O-CH₃,

NH-C(=O)-O-CH₃, and NH-SO₂-CH₃;

L is selected from:

H, C(=0)NR¹²R¹³, (CH₂), NR¹²R¹³ and C(=NR¹²)NR¹²R¹³;

R¹² and R¹³ are independently selected from:

10 hydrogen and C_{1-4} alkyl;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

In a further preferred embodiment, the present invention provides a compound according to formula I:

A-D-E-G-J-Z-L

wherein

20

A is a member selected from the group consisting of:

D is a member selected from the group consisting of:

E is a member selected from the group consisting of::

$$-C(=O)-NH-$$
, $-C(=O)-N(-CH_3)-$, $C(=O)-N(-Bn)-$, $-NH-C(=O)-$, $-N(-CH_3)-$ C(=O)- and $-N(-Bn)C(=O)-$;

G is selected from:

R⁷ is a member selected from the group consisting of:

H, phenyl, Bn, -O-loweralkyl and cyclohexyl;

R⁸ is a member selected from the group consisting of:

15 H, C₁₋₆alkyl, -O-loweralkyl and C₃₋₆cycloalkyl;

J is a member selected from the group consisting of;

a direct link, -CH(R11)- and -CH(R11)-CH2-;

R¹¹ is a member selected from the group consisting of:

H, methyl, phenyl and benzyl; and

Z and L taken together are a member selected from the group consisting of:

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and

5 prodrug derivatives thereof.

The following non-limiting tables illustrate representative compounds of the present invention:

Table 1

Formula II

R ⁷	R¹b'	R ^{1b*}
н	н	н
Me	н	ОН
Ò	F	Н
ОН	-ОН	F
\Diamond	Br	он
CH ₂ ·	-NH2	ОН
CH₂CH₂ CH₂CH₂	OCH2Ph	F
CH ₂ CH ₂ NHMe	OCH2CH2OMe	н
CH ₂ CH ₂ NMe ₂	н	н
CH₂CH₂ N	Н	н

Table 1a

. R ⁷	R ^{1b} ,	R ^{1b*}
Н	Н	Н
Me	н	он
	F	н
CH ₂	-он	F
CH ₂	Br	он
OMe CH ₂	-NH2	ОН
OCH ₂ CH ₂ OMe	OCH2Ph	F
осн _г соон	OCH2CH2OMe	н
HN CH ₂	н ,	н
BnN N	н	н

Table 2

Formula III

R ⁷	R ^{1b}
н	н
Me	Ĥ
\Diamond	F
5	-ОН
	Br
ÇH _r	-NH2
CH ₂ CH ₂	OCH2Ph
CH₂CH₂ NHMe	ОСН2СН2ОМе
CH₂CH₂ NMe₂	н
CH ₂ CH ₂	н

Table 2a

Formula III

R ⁷	R ^{1b}
н	Н
Ме	Н
0	F
CH ₂	-ОН
CH ₂	Br
OMe CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
OCH ₂ COOH	OCH2CH2OMe
HN CH ₂	н
Brin CH ₂	н

Table 3

Formula IV

R ⁷	R ^{1b}
. н	н
Me ·	. н
	F
OH.	-ОН
\Diamond	Br
CH ₂ -	-NH2
сн _г сн _г	OCH 2Ph
CH₂CH₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMe ₂	н
CH ₂ CH ₂	н

Table 3a

Formula IV

R ⁷	R ^{1b}
н	н
Ме	Н
	F
CH ₂	-ОН
CH ₂	Br
OMe CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
OCH ₂ COOH	OCH2CH2OMe
HN N	н
BnN CH ₂	н

Table 4

Formula V

R ⁷	R ^{1b}
Н	Н
Ме	н
Ò	F
OH.	-он
\downarrow	Br
G F r	-NH2
CH2CH2 LO	OCH2Ph
CH₂CH₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMe ₂	н
CH ₂ CH ₂	н

Table 4a

Formula V

R ⁷	R ^{1b}
Н	н
Me	н
	F
CH ₂	-ОН
CH ₂	Br
OMe CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
OCH ₂ COOH	OCH2CH2OMe
HN CH ₂	н
BnN CH ₂	н

Table 5

Formula VI

R ⁷	R ^{1b}
н	н
Me	н
	F
\$	-ОН
	Br
ĕH.r.	-NH2
CH2CH2 O	OCH 2Ph
CH₂CH₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMe ₂	н
CH ₂ CH ₂ N	н

Table 5a

Formula VI

R ⁷	R ^{1b}
н	н
Ме	н
	F
CH ₂	-он
CH ₂	Br
CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
OCH ₂ COOH	OCH2CH2OMe
HN CH ₂	н
BnN CH ₂	н

Table 6

Formula VII

_7	
R ⁷	R ^{1b}
н	н
Ме	н
	F
₹	-ОН
\bigcirc	Br
₹ .	-NH2
CH ₂ CH ₂ CH ₂	OCH2Ph
CH₂CH₂ NHMe	OCH2CH2OMe
CH ₂ CH ₂ NMB ₂	н
CH ₂ CH ₂	Н

Table 6a

Formula VII

R ⁷	R ^{1b}
H Me	н
0	F
CH ₂	-ОН
CH ₂	Br
OMe CH ₂	-NH2
OCH ₂ CH ₂ OMe	OCH2Ph
OCH ₂ COOH	OCH2CH2OMe
HIN N	н
BnN CH ₂	н

Table 7

Formula VIII

A	D	Α	D
SO ₂ NH ₂	~	CH ₂ NMe ₂	C) F
\$O ₂ NHMe	——————————————————————————————————————		←
SO _Z NHBu(t)	——————————————————————————————————————	\(\)	-
SO ₂ Me	——————————————————————————————————————		~ >
CH²NH³	F	H ₂ N	~ >
CH2NHMe	-	H ₂ N	~_\\

Table 8

Formula IX

A	D	A	D
SO ₂ NH ₂	←	CH ₂ NMe ₂	
\$O ₂ NHMe	─		-
SO₂NHBu(t)	→	_	- >-
SO ₂ Me			~ <u></u>
CH2NH2		H ₂ N————————————————————————————————————	\
CH ₂ NHMe	-	H ₂ N	~_\

wherein R3 is a member selected from the group consisting of H, F, -OH,

Br, Cl, -NH₂, -O-CH₂-O-Ph and -O-CH₂-CH₂-O-CH₃,

Table 9

SO₂NH₂

D
H
N
N
N

Formula X

А	D	Α	D
SO ₂ NH ₂	∼	CH ₂ NMe ₂	
\$C ₂ NHMe	——————————————————————————————————————		-
SO₂NHBu(t)	→		-
ŞO ₂ Me	——————————————————————————————————————		~
CH ₂ NH ₂		H ₂ N	∼ >
CH ₂ NHMe	-	H ₂ N	← >

Table 10

Formula XI

A	D	Α	D
\$O ₂ NH ₂		CH ₂ NMe ₂	
\$O ₂ NHMe	——————————————————————————————————————		-
SO₂NHBu(t)	~~~	_	→
SO ₂ Me	——————————————————————————————————————		~ <u></u>
СНРИНЗ		H ₂ N—	←
CH ₂ NHMe	-	H ₂ N	~ <u>`</u>

Table 11

Formula XII

A	D	A	D
\$O ₂ NH ₂		CH₂NMe₂	C F
SO,NHMe	——————————————————————————————————————		—
SO ₂ NHBu(t)	─	◇	←
ŞO ₂ Me	——————————————————————————————————————		~
CH ₂ NH ₂		H ₂ N	
CH ₂ NHMe	- -	H ₂ N	~~~

Table 12

Formula XIII

A	D	A	D
SO ₂ NH ₂	_	CH ₂ NMe ₂	or F
\$O ₂ NHMe	——————————————————————————————————————		-
SO ₂ NHBu(t)	——————————————————————————————————————	_	- ◇-
ŞO _z Me	——————————————————————————————————————		-
CH ₂ NH ₂		H ₂ N	~ <u></u>
CH ₂ NHMe	-	H ₂ N	~ <u>~</u>

Table 13

Formula XIV

Α	D	Α	D
\$O₂NH₂		CH ₂ NMe ₂	cr F
\$O ₂ NHMe	——————————————————————————————————————		─
SO₂NHBu(t)			─
SO ₂ Me	→ F	\bigcirc	─
CH₂NH₂		Nh ₂	~ <u></u>
CH ₂ NHMe	-	H ₂ N	─

Table 14

Formula XV

A	D	Α	D
SO ₂ NH ₂	~	CH ₂ NMe ₂	5
\$O ₂ NHMe	——————————————————————————————————————		
SO ₂ NHBu(t)	~~~~	_	~ <u></u>
SO ₂ Me			
CH₂NH₂		Nh ₂ —	
CH ₂ NHMe	<i></i>	H ₂ N	

Table 15

Formula XVI

A	D	A	D
SO ₂ NH ₂		CH ₂ NMe ₂	cr F
\$O ₂ NHMe	——————————————————————————————————————		—
SO₂NHBu(t)	~~~~	~	-
SO ₂ Me			~>
CH2NH2		Nh ₂ —	
CH ₂ NHMe	- 	H ₂ N	←>

Table 16

Formula XVII

A	D	Α	D
SO ₂ NH ₂		CH ₂ NMe ₂	- F
\$O ₂ NHMe	——————————————————————————————————————		-
SO ₂ NHBu(t)	←		→
\$O ₂ Me	-<		
CH2NH2		Nh ₂ —	∼>
CH ₂ NHMe	-	H ₂ N	~~~~

Table 17

Formula XVIII

R ⁷	R ¹¹	R ^{1b'}	R ^{1b}
н	Н	Н	н
Ме	Н	н	ОН
Image: Control of the		F	н
F _Q	CH ₂	-ОН	F
\Diamond	ĕ.	ОН	ОН
ÇH ₂ -	CMe CH ₂	-NH2	н

Table 18

Formula XX

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н		CH ₂
Me	н		OH CH ₂
		č.	OMe

Table 19

Formula XX

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	F S	CH₂
Me	н	\rightarrow	OH CH ₂
0		Ç	OM ₀

Formula XXII

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н		Ç _{H₂}
Ма	н	\rightarrow	CH₂
		Ē.	OMe

Formula XXII

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	2-⟨_}-	CH ₂
Ме	н	<u>\</u>	OH CH ₂
			OMe CH ₂

Table 22

Formula XXIV

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	——————————————————————————————————————	CH₂
Me	н	\rightarrow	OH CH ₂
	0	CH.	OMe

Table 23

Formula XXIV

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	ş	CH ₂
Me	н		CH ₂
	0	ÇH ₂ .	OMe

Formula XXV

R ⁷	R ¹¹	R ⁷	R ¹¹
н	н	₹	CF2
Me	н	\rightarrow	CH ₂
		CH₂-	OMe CH ₂

Table 25

Formula XXVI

R ⁷	R ¹¹	R ^{1b'}	R ^{1b*}
н	H	Н	н
Me	н	H .	он
\bigcirc		F	н
- B	CH ₂	-ОН	F
\Diamond	CH ₂	он	ОН
C C	CH ₂	-NH2	н

Table 26

Formula XXVII

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	ج ج	CH₂
Мө	н	<u>\</u>	CH ₂
		ē ^t	OMe OH ₂

Table 27

Formula XXVIII

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	<u></u>	CH ₂
Ме	н	\rightarrow	OH CH ₂
	0	č.	OMe OH ₂

Table 28

Formula XXX

R ⁷⁸	R ^{7b}	R ^{7a}	R ⁷⁶
н	н	<u>9</u>	CH ₂
Ме	н	\downarrow	OH CH ₂
		GH.	OMe CH ₂

Table 29

Formula XXX

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	<u></u>	Š.
Ме	н	\Diamond	CH ₂
Q-		CH.	OMe CH ₂

Table 30

Formula XXXI

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	-{}-§	Ç.
Ме	н	-	ÖH ÖH
\bigcirc		Ē	OMe

Table 31

Formula XXXII

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	DH OH	CH ₂
Me	н	\rightarrow	CH ₂
6	0	CH ₃ .	OMe CH ₂

Formula XXXIII

R ^{7a}	R ^{7b}	R ^{7a}	R ^{7b}
н	н	<u>9</u>	Č.
Me	н	\rightarrow	OH CH ₂
		÷	OMe

Table 33

Formula XXXIV

R ^{7a}	R ^{7b}	R ^{1b'}	R ^{1b*}
н	н	н	н
Ме	н	н	ОН
6		F	н
ОН	CH ₂	-ОН	F
\Diamond	CH ₂	ОН	ОН
CH ₂ r	CH ₂	-NH 2	н
-NH2	Me	н	F
-NH Ac	Me	н .	н
NHSO2Me	Ме	н	н

Table 34

Formula XXXV

R ^{7a}	R ^{7b}
н	Н
Me	н
Image: Control of the	
OH OH	P. F.
\Diamond	CH ₂
GH à	OMe CH ₂
-NH 2	Me
-NH Ac	Me
NHSO2Me	Me

Table 35

Formula XXXVI

R ^{7a}	R ^{7b}
н	Н
Me	н
ĕ	CH ₂
\	OH CH ₂
CHr.	CH ₂
-NH 2	Me
-NH Ac	Ме
NHSO2Me	Ме

Table 36

Formula $XXXV\Pi$

R ⁷⁸	R ^{7b}
Н	н
Me	н
J _O H	○ → → ○ → → ○ → → → → → → → → → →
\Diamond	CH ₂
	QMe
-NH 2	Me
-NH Ac	Me
NHSO2Me	Me

Table 37

$$\begin{array}{c|c} SO_2NH_2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Formula XXXVIII

R ^{7a}	R ^{7b}
н	Н
Ме	н
OH OH	OH ₂
\Diamond	OH OH
ČH _r	OMe OH ₂
-NH2	Me
-NH Ac	Ме
NHSO2Me	Me

Table 38

Formula XXIX

R ^{7a}	R ^{7b}
н	н
Me	н
→ OH	CH₂
\Diamond	OH CH ₂
CH ₂ -	OMe CH ₂
-NH 2	Мө
-NH Ac	Me .
NHSO2Me	Ме

Table 39

Formula XXXX

R ^{7a}	R ^{7b}
н	н
Ме	н
→ 5	CH₂
\bigcirc	CH₂
Ğ.	OMe CH ₂
-NH 2	Ме
-NH Ac	Ме
NHSO2Me	Ме

Table 40

Formula XXXXI

R ^{7a}	R ^{7b}
н	Н
Me	н
→	CH ₂
\Diamond	CH ₂
CH ₂ -	OMe CH ₂
-NH 2	Ме
-NHAc	Ме
NHSO2Me	Me

Table 41

Formula XXXXII

R ^{7b}	R ¹¹	R ^{1b'}	R ^{1b*}
Н	Н	н	н
-C(= 0)NCH 2CH 2OC H3	н	н	он
		F	н
¥	CH ₂	-он	F
\Diamond	CH ₂	он	он
Č,	OMe CH ₂	-NH 2	н
-соон	Ме	н	F
-соос нз	Ме	н	н
-C(=0)N(CH3)2	Me	н	н

Table 42

R ^{7b}	R ¹¹
н	н
-C(= 0)NCH 2CH 2OC H3	н
	€ diameter
\Diamond	CH ₂
CHr	OMe CH ₂
-соон	Me
-соос нз	Ме
-C(=O)N(CH3)2	Me

Formula XXXXIV

R ^{7b}	R ¹¹
н	н
-C(= 0)NCH 2CH 2OC H3	н
5	€.
\Diamond	OH ₂
ÇH _r -	OMe CH ₂
-соон .	Me
-соос нз	Me
-C(=O)N(CH3)2	Me

Table 44

Formula XXXXV

R ^{7b}	R ¹¹	
н	н	
-C(=0)NCH 2CH 2OC H3	н	
₹	€ E	
\Diamond	CH ₂	
CH ₂	OMe CH ₂	
-соон	Me ·	
-соос нз	Me	
-C(=O)N(CH3)2	Me	

Table 45

Formula XXXXVI

R ^{7b}	R ¹¹	
н	н	
-C(= 0)NCH 2CH 2OC H3	н	
→ ē	CH ₂	
\Diamond	OH ₂	
ĊH _r ·	OMe OH ₂	
-соон	Me	
-соос нз	Me	
-C(=O)N(CH3)2	Ме	

Table 46

Formula XXXXVII

R ^{7b}	R ¹¹	
Н	н	
-C(= 0)NCH 2CH 2OC H3	н	
ОН	E ₂	
\Diamond	OH CH ₂	
CH ₂ -	OMe OH ₂	
-соон	Ме	
-соос нз	Me	
-C(=0)N(CH3)2	Me	

Table 47

Formula XXXXVIII

R ^{7b}	R ¹¹	
Н	н	
-C(=0)NCH 2CH 2OC H3	н	
ğ	E E	
\Diamond	OH CH2	
CH.	OMe CH ₂	
-соон	Me	
-соос нз	Me	
-C(=O)N(CH3)2	Me	

Table 48

Formula XXXXIX

R ^{7b}	R ¹¹	
н	Н	
-C(= O)NCH 2CH 2OCH3	н	
<u>ş</u>	$\bigotimes_{\vec{\delta}}$	
\Diamond	OH CH ₂	
CH ₂ ·	CH ₂	
-соон	Ме	
-соос нз	Ме	
-C(=O)N(CH3)2	Me	

Table 49

Formula L

R ⁵	R ^{7a}	R ^{7b}	R ^{1b}
н	Н	Н	н
Me	Me	н	н
		Ме	F
H ₂ C—N	CH ₂	Вп	ОН
<u></u>	CH ₂	H ₂ C—N	ОМе
CH ₂ -	CH ₂	H _z c—	OBn
н ,	-CH 200H	н₂с-√Он	осн 200 он
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂	OCH 2CH 2OM e
Bn	-CH2CH2CONMe2	H ₂ C	ОН

Table 50

Formula LI

R⁵	R ^{7a}	R ^{7b}
н	Н	н
Ме	Me	н
		Me
H ₂ C	CH ₂	Bn
<u></u>	CH ₂	H ₂ C\(\)
CH ₂	CH ₂	H ₂ C—
н	-СН 200Н	н₂сСЭ-он
Me	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 51

Formula LII

R ⁵	R ^{7a}	R ^{7b}
Н	Н	н
Мө	Me	н
		Me
H ₂ C	CH ₂	Bn
\Diamond	CH ₂	н ₂ с
CH ₁ -	OMe CH ₂	H ₂ C—
н	-CH 200H	н₂сСЭон
Me	-CH 2CH 2COOM e	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	H ₂ C

Table 52

Formula LIII

R ⁵	R ^{7a}	R ^{7b}
н	н	н
Me	Me	н
		Me
H ₂ C	CH₂	Bn
\Diamond	CH ₂	H ₂ C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
CH ₂ -	OMe CH ₂	H ₂ C-\
н	-СН 200Н	н₂с-{->-он
Ме	-СН 2СН 2СООМ е	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	H ₂ C—

Table 53

Formula LIV

R ⁵	R ^{7a}	R ^{7b}
Н	н	н
Me	Ме	н
		Ме
H ₂ C	£	Bn
\Diamond	CH ₂	H ₂ CN
CH ₂ -	OMe CH ₂	H ₂ C—
н	-CH2OOH	н ₂ сОн
Ме	-СН 2СН 2СООМ в	H ₂ C—NH ₃
Bn	-CH2CH2CONMe2	H ₂ C

Table 54

Formula LV

R ⁵	R ^{7a}	R ^{7b}
н	Н	н
Me	Ме	н
Image: Control of the		Ме
H ₂ C	CH ₂	Bn
<u></u>	OH CH ₂	H ₂ C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
GH _r	OMe CH ₂	H _z c—
н	-сн 200н	н₂сС
Ме	-СН 2СН 2СООМ в	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	H ₂ C— .

Table 55

Formula LVI

R ⁵	R ^{7a}	R ^{7b}
Н	н	н
Ме	Me ·	н
		Мө
H ₂ CN	CH ₂	Bn
\Diamond	CH ₂	H ₂ C—
CH _T	OMe CH ₂	H ₂ C—
н	-СН 200Н	н ₂ с-Сон
Me	-CH 2CH 2COOM e	H ₂ C—NH ₂
. Bn	-CH2CH2CONMe2	H ₂ C

Table 56

Formula LVII

R ⁵	R ^{7a}	R ^{7b}
Н	н	н
Me	Ме	н
\		Me
H ₂ C—	CH ₂	Bn
\Diamond	CH ₂	H ₂ C
CH ₂ -	OMe CH ₂	H ₂ C—
н	-сн 200н	н₂с-Сон
Ме	-CH 2CH 2COOM e	H ₂ C — NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 57

$$\begin{array}{c|c} SO_2NH_2 & R^5 & R^{7b} \\ \hline \\ O & R^{7a} & CH_3 & NH \end{array}$$

Formula LVIII

R ⁵	R ^{7a}	R ^{7b}	R ^{1b}
н	н	н	н
Me	Ме	н	н
		Me	F
н ₂ с	CH ₂	Bn	он
\Diamond	OH CH ₂	н ₂ с	ОМе
CH _r	OMe CH ₂	H ₂ C-\	OBn
н	-сн 200н	н₂сСт-он	осн 200 он
Me	-CH 2CH 2COOM e	H ₂ C —NH ₂	OCH 2CH 2OM e
Bn	-CH2CH2CONMe2	н ₂ с—	ОН

Table 58

Formula LIX

R ⁵	R ^{7a}	R ^{7b}
Н	н	н
Me	Me	н
		Ма
H ₂ C	OH ₂	Bn
\Diamond	OH CH ₂	H ₂ C
CH _T	OMe CH ₂	H ₂ C—
н	-СН 200Н	н ₂ с-С
Me	-СН 2СН 2СООМ е	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 59

Formula LX

R ⁵	R ^{7a}	R ^{7b}
н	н .	Н
Me	Ме	н
		Me
H ₂ C	CH ₂	Bn
\Diamond	OH OH ₂	H ₂ C-__\V
CH ₃ -	CH ₂	H ₂ C—
н	-СН 200Н	н₂с-СЭ-он
Me	-CH 2CH 2COOM e	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	н₂с-

Table 60

Formula LXI

R ⁵	R ^{7a}	R ^{7b}
Н	н	н
Me	Me	н
		Me
H ₂ CN	CH ₂	Bn
\Diamond	CH ₂	H ₂ C
CH ₃ -	OMe CH ₂	H ₂ C —
н	-СН 200Н	н₂с-{}он
Me	-CH 2CH 2COOM e	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	H ₂ C—

Table 61

Formula LXII

R ⁵	R ^{7a}	R ⁷⁶
н	н	н
Me	Me	н
Ò		Me
H ₂ CN	CH ₂	Bn
\downarrow	CH ₂	H ₂ C-__\N
CH ₂ -	OMe CH ₂	H ₂ C-\
н	-сн200н	н₂сСЭ-он
Me	-CH 2CH 2COOM e	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	н ₂ с

Table 62

Formula LXIII

R ⁵	R ^{7a}	R ^{7b}
н	н	н
Me	Me	н
		Ме
H ₂ C	O + 2 2	Bn
\Diamond	CH ₂	H ₂ C
ĞH _r	CH ₂	H ₂ C—
н	-сн 200н	н₂с-√Он
Ме	-CH 2CH 2COOM e	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 63

Formula LXIV

R ⁵	R ^{7a}	R ^{7b}
Н	н	н
Me	Me	н
		Me
H ₂ C	CH ₂	Bn
<u></u>	CH ₂	H ₂ C
ĞH ₂ -	OMe CH ₂	H ₂ C — N
н	-CH 200H	н₂с-√он
Ме	-СН 2СН 2СООМ е	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	H ₂ c—

Table 64

Formula LXV

R ⁵	R ^{7a}	R ^{7b}
н	н	
Me	Me	н
		Me
H ₂ C—	CH ₂	Bn
\Diamond	CH ₂	H ₂ C\(\)
ĞH.	OMe CH ₂	H ₂ C-\
н	-СН2ООН	н₂с-{он
Ме	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	H ₂ C—

Table 65

Formula LXVI

R ⁵	R ^{7b}	R ¹¹	R ^{1b}
Н	Н	н	н
Me	Ме	н	н
		Me .	F
H ₂ C	Ç.,	Bn	ОН
\(\)	CH ₂	H ₂ CN	ОМе
CH ₂ .	CH ₂	H ₂ C—	OBn
н	-сн 200н	н₂с-С-ОН	OCH 2CO OH
Ме	-CH 2CH 2COOM e	H ₂ C—NH ₂	OCH 2CH 2OM e
Bn	-CH2CH2CONMe2	н ₂ с—	ОН

Table 66

R ⁵	R ^{7b}	R ¹¹
Н	н	н
Me	Me	н
		Me
н ₂ с	. CH ₂	Bn
\	CH ₂	H ₂ C—\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
GFr.	CH ₂	H ₂ C-\
н	-СН 200Н	н₂сОн
Me	-СН 2СН 2СООМ в	H ₂ C —NH ₂
Bn	-CH2CH2CONMe2	н₂с-

Table 67

Formula LXVIII

R ⁵	R ^{7b} R ¹¹	
н	н	н
Me	Me	н
		Ме
H ₂ C	CH ₂	Bn
<u></u>	CH ₂	H ₂ C__\N
CH ₂ -	OMe CH ₂	н ₂ с—
н	-СН 200Н	н ₂ сОн
Me	-CH 2CH 2COOM e	H ₂ C NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 68

Formula LXVIX

R ⁵	R ^{7b}	R ¹¹
н	н	н
Me	Ме	н
		Me
H ₂ C	CH₂	Bn
\(\)	CH ₂	H ₂ C-__\N
CH ₂ -	OMe CH ₂	H ₂ C-\
н	-СН 200Н	н ₂ с-С
Me	-СН 2СН 2СООМ е	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	н ₂ с—

Table 69

Formula LXX

R ⁵	R ^{7b}	R ¹¹	
н	н	н	
Me	Me	н	
		Me	
н,с-	CH₂	Bn	
\Diamond	CH ₂	н₂с	
CHr	CH ₂	н₂с	
н	-СН 200Н	н ₂ сОн	
Me	-СН 2СН 2СООМ в	H ₂ C—NH ₂	
Bn	-CH2CH2CONMe2	н₂с—	

Table 70

Formula LXXI

R ⁵	R ^{7b}	R ¹¹
Н	н	н
Me	Me	н
		Ме
H ₂ C—	CH ₂	Bn
\Diamond	CH ₂	H ₂ C—N
ÖH₂r	CH ₂	H ₂ C-\
н	-СН 200Н	н₂с-√рон
Me	-CH 2CH 2COOM e	H ₂ C—NH ₂
8 n	-CH2CH2CONMe2	н ₂ с—

Table 71

Formula LXXII

R ⁵	R ^{7b}	R ¹¹
н	н	н
Me	Ме	н
Ò	0	Me
H ₂ CN	CH ₂	Bn
<u>\</u>	OH OH ₂	H ₂ C-__\V
CH _r	OMe CH ₂	H ₂ C—
н	-СН 200Н	н ₂ с-С
Ме	-СН 2СН 2СООМ е	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	н ₂ с-

Table 72

Formula LXXIII

R ⁵	R ^{7b}	R ¹¹
н	Н	н
Ме	Ма	н .
		Me
H ₂ C—N	OH ₂	Bn
<u></u>	CH ₂	H ₂ C\(\sigma\)N
CH ₂ -	OMe CH ₂	H ₂ C—
н	-СН 200Н	н₂с-√_>он
Ме	-СН 2СН 2СООМ ө	H ₂ C—NH ₂
Bn	-CH2CH2CONMe2	H ₂ C

Table 73

Table 74

Other preferred compounds of formula I, having the sub-formula Ia, are set forth in Table 75, below.

Table 75

Formula Ia

R ¹	⊤R³	E-J	TZ	Π.
		CH ₂	Phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H			
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl	$m-C(=O)NH_2$
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH,	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH,	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH,	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH,	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	CI-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	 	CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	 ii 	CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0.002.1112	1	0,	acid	
o-SO ₂ -NH ₂	H	CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂
0 00/11-2			carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH,	F-phenyl-amino	m-C(=NH)NH ₂
1 00,100,	1	•	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
1 2 2 2 2 2		•	carboxylic acid	` '
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
1 2 2 2 2 2 2		-	carboxylic acid	, ,
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
		•	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
		•	acid	` ´ -
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
0 00 1 1 1 2			carboxylic acid	1
0-SO ₂ -NH ₂	H	CH ₂	F-phenyl-amino	m-C(=O)NH ₂
	1		carboxylic acid	` ′ •
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
	···		carboxylic acid	. ` ′ ′
0-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
557,2	1		carboxylic acid	` ′ ′
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
,,	==		carboxylic acid	1 ' '
0-SO ₂ -NH ₂	H	CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
				

C-SO ₂ -NH ₂	R'	∏R ³	E-J	Z	L
				acid ester	· · · · · · · · · · · · · · · · · · ·
	o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH,
G-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy- acetic acid ester mc(=NH)NH ₂ acetic acid ester methyl CH ₂ -phenoxy- acetic acid ester mc(=NH)NH ₂ acetic acid ester mc(=O)NH ₂ m-C(=NH)NH ₂ mc(=NH)NH ₂ acetic acid ester mc(=O)NH ₂ acetic acid mc(=O)NH ₂ acetic acid mc(=NH)NH ₂ acetic acid mc(=NH)NH ₂ acetic acid mc(=NH)NH ₂ acid mc(=O)NH ₃ acid mc(=O)NH ₂ acid mc(=O)NH ₃ acid acid mc(=O)NH					(/
acid ester	O-SO-NH.	- H	CH.		m-C/=NH)NH
o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₂ -Denoxy-acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₂ -Denoxy-acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₂ -Denoxy acetic acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ H CH ₂ Methyl Penoxyacetic acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ H CH ₂ Methyl P-phenoxyacetic acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ H CH ₂ Methyl P-phenoxyacetic acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ H CH ₂ Methyl P-phenoxyacetic acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH ₂ acetic acid ester o-SO ₂ -NH ₃ H CH ₃ Phenoxyacetic acid m-C(=NH)NH ₃ acid ester m-C(=NH)NH ₃ acid acid acid acid acid acid acid acid	0-002-14112	1 **	C112		1110(111)1112
C-SO ₂ -NH ₂	0 8/1 8/14				m-C/=NHINH
G-SO ₂ -NH ₂ H CH ₂ Methyl CH ₂ -O-Phenoxy-acetic acid ester m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-Phenoxy acetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl CH ₂ -Phenoxyacetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -Phenoxyacetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-Phenoxy acetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-Phenoxy acetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ G-SO ₂ -NH ₃ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ G-SO ₂ -NH ₃ H CH ₂ CP ₃ -Phenoxyacetic acid m-C(=O)NH ₃ m-C(=NH)NH ₂ G-SO ₂ -NH ₃ H CH ₂ Phenoxyacetic acid m-	0-30 ₂ -Nn ₂	l n	CH ₂		111-0(-1411)14112
G-SO ₂ -NH ₂					- CY-KILIXILI
G-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH ₂ acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl CH ₂ -phenoxyacetic acid ester m-C(=O)NH ₂ acetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl CH ₂ -O-phenoxy acetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ CH ₂ -phenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ CH ₂ -phenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ CH ₂ -phenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ CH ₂ -phenoxy-acetic acid m-C(=O)NH ₂ <td>0-SO₂-NH₂</td> <td>н</td> <td>CH₂</td> <td></td> <td></td>	0-SO ₂ -NH ₂	н	CH ₂		
acetic acid ester					
G-SO ₂ -NH ₂ H CH ₂ Methyl Phenoxyacetic acid ester acid ester m-C(=O)NH ₂ m-C(=NH)NH ₂	$o-SO_2-NH_2$	H	CH ₂		m-C(=NH)NH ₂
acid ester Methyl Cl-phenoxyacetic m-C(=O)NH ₂ acid ester Methyl Cl-phenoxyacetic m-C(=O)NH ₂ acid ester m-C(=O)NH ₂ methyl CH ₂ -phenoxyacetic acid ester m-C(=O)NH ₂ methyl CH ₂ -O-phenoxyacetic m-C(=NH)NH ₂ methyl CH ₂ -D-phenoxyacetic methyl CH ₂ -D-phenoxyacetic methyl CH ₂ -D-phenoxyacetic methyl CH ₂ -D-phenoxyacetic methyl		- 1			
acid ester	o-SO ₂ -NH ₂	H	CH ₂	Methyl Phenoxyacetic	$m-C(=O)NH_2$
o-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxyacetic acid ester m-C(=O)NH ₂ acid ester m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ m-	_	1			i
o-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxyacetic m-C(=O)NH ₂ acid ester m-C(=NH)NH ₂ acid ester m-C(=NH)NH ₂ acid ester m-C(=NH)NH ₂ acid ester m-C(=NH)NH ₂ m-C(=O)NH ₃ acid ester m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ m-C(=NH)NH	o-SO ₂ -NH ₂	H	CH,	Methyl Cl-phenoxyacetic	m-C(=0)NH ₂
acid ester		- 1			' '
acid ester	O-SO-NH-	- H	CH ₂	Methyl F-phenoxyacetic	m-C(=O)NH ₂
G-SO ₂ -NH ₂ H CH ₂ Methyl CH ₁ -phenoxy-acetic acid ester acetic acid acetic acid acetic acid acetic acid acetic aceti	0-002-14112	. **	0112		(-)
acetic acid ester	- SO NIII	- 			m-C/=ONH
o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₃ P-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₃ P-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₃ P-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ P-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxyacetic acid	0-3U ₂ -NII ₂	1 11	CII2		111-0(-0)11112
o-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH ₂ acetic acid ester o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₃ CI-phenoxy-acetic acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₃ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ <t< td=""><td></td><td></td><td></td><td></td><td> C/=ONIU</td></t<>					C/=ONIU
0-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy acetic acid seter m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -Denoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -Denoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -Denoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -Denoxyace	0-SU ₂ -NH ₂	H	CH ₂		In-C(-O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ CI-phenoxy-acetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₄ H CH ₂ F-phenoxy-acetic acid m-C(=NH)NH ₄ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₄ o-SO ₂ -NH ₃ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₄ o-SO ₂ -NH ₄ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₄ o-SO ₂ -NH ₄ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₄ o-SO ₂ -NH ₄ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₄ acid m-C(=O)NH ₄ b-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₄ acid m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₄ Phenoxy-ethanol m-C(=NH)NH ₄ acid m-C(=NH)NH ₄ b-SO ₂ -NH ₄ H CH ₄ CH ₅ -phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₄ CH ₅ -phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₄ CH ₅ -phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ CH ₅ -O-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ CH ₅ -O-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ c-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ cether Rh-o-SO ₂ -NH ₄ H CH ₂ Rh-o-phenoxy-ethanol m-C(=NH)NH ₄ cether R				acetic acid ester	
O-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CI-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ F-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂	o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy	m-C(=U)NH ₂
O-SO ₂ -NH ₂ H CH ₂ CI-phenoxy-acetic acid m-C(=NIf)NH ₂ O-SO ₂ -NH ₂ H CH ₂ F-phenoxy-acetic acid m-C(=NIf)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NIf)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NIf)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ F-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂					
0-SO2-NH2 H CH2 CI-phenoxy-acetic acid m-C(=NH)NH2 0-SO2-NH2 H CH2 F-phenoxy-acetic acid m-C(=NH)NH2 0-SO2-NH3 H CH2 CH3-O-phenoxy-acetic acid m-C(=NH)NH2 0-SO2-NH2 H CH2 CH3-O-phenoxy-acetic acid m-C(=NH)NH3 0-SO2-NH2 H CH2 Phenoxyacetic acid m-C(=O)NH2 0-SO2-NH2 H CH2 Phenoxyacetic acid m-C(=O)NH2 0-SO2-NH2 H CH2 CH3-phenoxy-acetic acid m-C(=O)NH2 0-SO2-NH2 H CH2 CH3-phenoxy-acetic acid m-C(=O)NH2 0-SO2-NH2 H CH2 CH3-phenoxy-acetic acid m-C(=O)NH2 0-SO2-NH2 H CH2 CH3-O-phenoxy-acetic acid m-C(=O)NH2 0-SO2-NH2 H CH2 CH3-O-phenoxy-acetic acid m-C(=O)NH2 0-SO2-NH2 H CH2 CH3-O-phenoxy-acetic acid m-C(=O)NH2 0-SO2-NH2 H CH2 Phenoxyethanol m-C(=NH)NH2 0-SO2-NH2	o-SO ₂ -NH ₂	H	CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO₂-NH₂ H CH₂ F-phenoxy-acetic acid m-C(=NH)NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ m-C(=NH)NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ m-C(=NH)NH₂ o-SO₂-NH₂ m-C(=NH)NH₂ o-SO₂-NH₂ m-C(=		H	CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H <t< td=""><td></td><td></td><td>CH₂</td><td>F-phenoxy- acetic acid</td><td>m-C(=NH)NH₂</td></t<>			CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ m-C(=O)NH ₂ m-C(=NH)NH ₂ <td></td> <td></td> <td></td> <td>CH -phenoxy-acetic acid</td> <td></td>				CH -phenoxy-acetic acid	
o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Ch-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phen	0-302-14112			CH O phonovy acetic	
0-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ P-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol <td>0-5U₂-NH₂</td> <td>l n</td> <td>CII2</td> <td></td> <td>111-0(-1411)14112</td>	0-5U ₂ -NH ₂	l n	CII2		111-0(-1411)14112
0-SO ₂ -NH ₂ H CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ P-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol <td>o-SO₂-NH₂</td> <td>H</td> <td>CH₂</td> <td>Bn-O-phenoxy acetic acid</td> <td>m-C(=NH)NH,</td>	o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH,
O-SO ₂ -NH ₂ H CH ₂ Cl-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Cl-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Cl-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -D-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Denoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol					
O-SO₂-NH₂ H CH₂ F-phenoxyacetic acid m-C(=O)NH₂ O-SO₂-NH₂ H CH₂ CH₃-phenoxy-acetic acid m-C(=O)NH₂ O-SO₂-NH₂ H CH₂ CH₃-O-phenoxy acetic acid m-C(=O)NH₂ O-SO₂-NH₂ H CH₂ Bn-O-phenoxy acetic acid m-C(=O)NH₂ O-SO₂-NH₂ H CH₂ Phenoxy-ethanol m-C(=NH)NH₂ O-SO₂-NH₂ H CH₂ CI-phenoxy-ethanol m-C(=NH)NH₂ O-SO₂-NH₂ H CH₂ F-phenoxy-ethanol m-C(=NH)NH₂ O-SO₂-NH₂ H CH₂ CH₃-phenoxy-ethanol m-C(=NH)NH₂ O-SO₂-NH₂ H CH₂ CH₃-phenoxy-ethanol m-C(=NH)NH₂ O-SO₂-NH₂ H CH₂ Phenoxyethanol m-C(=NH)NH₂ O-SO₂-NH₂ H CH₂ Phenoxyethanol m-C(=NH)NH₂ O-SO₂-NH₂ H CH₂ Phenoxyethanol m-C(=O)NH₂ O-SO₂-NH₂ H CH₂ CH₃-phenoxy-ethanol m-C(=O)NH₂ O-SO₂-NH₂ H CH₂					
o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-acetic acid acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy acetic acid acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ <					
o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy acetic acid acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -Denoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -Denoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxy-eth				r-phenoxyaceuc acid	
acid				CH ₃ -phenoxy-acetic acid	
o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Cl-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethanol	o-SO ₂ -NH ₂	H	CH ₂		m-C(=U)Nn ₂
O-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CI-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy-ethyl					
0-SO ₂ -NH ₂ H CH ₂ CI-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy-ethyl					
0-SO ₂ -NH ₂ H CH ₂ F-phenoxy- ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy-ethy		H			
o-SO ₂ -NH ₂ H CH ₂ F-phenoxy- ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ F-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxy-ethyl<	o-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxy-ethanol	
0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxyethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxyethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxyethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxyethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-	0-SO ₂ -NH ₂	H	CH,	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxyethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy-ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy-ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ M		H		CH ₃ -phenoxy-ethanol	m-C(=NH)NH,
o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-ph				CH,-O-phenoxy-ethanol	
o-SO ₂ -NH ₂ H CH ₂ Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxyethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ <t< td=""><td>0-SO-NH</td><td></td><td>CH.</td><td></td><td></td></t<>	0-SO-NH		CH.		
0-SO ₂ -NH ₂ H CH ₂ CI-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy- ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxy- ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy- ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H C					
o-SO ₂ -NH ₂ H CH ₂ F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxy-ethyl ether m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether					
0-SO ₂ -NH ₂ H CH ₂ CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CI-phenoxy-ethyl ether m-C(=NH)NH ₂ ether 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂					
0-SO ₂ -NH ₂ H CH ₂ CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy ethyl ether m-C(=NH)NH ₂					m-Q=U)NH ₂
0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂				CH ₃ -phenoxy-ethanol	
0-SO ₂ -NH ₂ H CH ₂ Bn-O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	I			
o-SO ₂ -NH ₂ H CH ₂ Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂		H	CH ₂	Bn-O-phenoxy- ethanol	
o-SO ₂ -NH ₂ H CH ₂ Methyl Cl-phenoxyethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy-ethyl m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether o-SO ₂ -NH ₃ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂		H			m-C(=NH)NH ₂
ether					
o-SO ₂ -NH ₂ H CH ₂ Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H	CH ₂		$m-C(=NH)NH_2$
o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₃ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂		1	i		
o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₃ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-SO ₂ -NH ₂	H	CH,	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₃ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂	1	1			
ethyl ether o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- ethyl ether o-SO ₂ -NH ₃ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-SO-NH	H	CH.		m-C(=NH)NH.
o-SO ₂ -NH ₂ H CH ₂ Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₃ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-002-14112	\ **	J.1.2		
ethyl ether o-SO ₂ -NH, H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂			- 70	Mathel CU O shares	m C(=NILINKILI
o-SO ₂ -NH ₂ H CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-5U2-NH2	l H	CH ₂		חו-ט(~ואח)ואח
ethyl ether	o-SO ₂ -NH ₂	Н	CH ₂		m-U(=NH)NH ₂
h	l			ethyl ether	

R'	R'	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
] -	ether	ì
o-SO ₂ -NH ₂	Н	CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CI-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	- H	CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	 ii 	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	$-\frac{n}{H}$	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-30 ₂ -NH ₂	$-\frac{n}{H}$	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H			p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-aniline	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CI-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂

· . :

R'	R ³	E-J	Z	L
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
2 2			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	-	0102	acetic acid ester	- (- / - /
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
2 2 2 2 2		3112	acetic acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0 002		022	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-502-11112	**	C112"C112	acid ester	
o-SO ₂ -NH ₂	 н 	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-302-14112	**	C112-C112	acid ester	III-C(-O)14112
- CAN MILI	 H	CH ₂ -CH ₂	Methyl F-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	1	Cn ₂ -Cn ₂	acid ester	
				C/O\\\
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
			acetic acid ester	- C/- C/- C/- C/- C/- C/- C/- C/- C/- C/
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	į		acid	1
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
0 002 1112		01.2 01.2	acid	
o-SO ₂ -NH ₂	- H	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	- ii	CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	- H	CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
	- H		F-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	$m-C(=NH)NH_2$ $m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy ethanol	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
			ether	<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
			ether]
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
1			ethyl ether	' '
o-SO ₂ -NH ₂	- Н	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
,,	} 		ethyl ether	``,,
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
5-507 1112	1 **	J, J,	ethyl ether	2
L		1	1 341)1 04101	<u>. </u>

R'	TR ³	E-J	Z	TL
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
- 552 14112	1	01.2 01.2	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
		<i>,,</i>	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
		2	phenoxyethyl ether	-(-)2
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -O-	m-C(≡O)NH ₂
	I		phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CI-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=O)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
0-SO H ₂	H	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
0-SO2-NH2	H	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	- н	CH ₂ -CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
	1		acid	` ′ -
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂
	1		carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
• •			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₁ -phenyl-amino	m-C(=NH)NH ₂
	1		carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	1		carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
	ł		acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
	1		carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
-	L		carboxylic acid	<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	L
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂

ſŖ¹	R ⁵	E-J	Z	L
<u> </u>	-		acid ester	
0-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyacetic acid ester	m-C(=O)NH₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	CH₃-O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxy-ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(≡O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₃	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂

R'	R⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	- Н	CH ₂ -CH(-CH ₃)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	 H	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	- ii -	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	 H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-30 ₂ -Nn ₂	$-\frac{n}{H}$	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂				m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenyl	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl	m-C(=O)NH ₂
·o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-amiline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
	Н	CH ₂ -CH(-CH ₃)-	acid CI-Phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	ŀ		carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH₂-CH(-CH₃)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂

:

R	R ³	E-J	Z	L
		<u> </u>	acid ester	
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
- 5077		,,	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
	'-	(3)	acid ester	'
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 2022		,,	acetic acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0.0022		2 - \	acetic acid ester	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	ŀ	' ` "	acetic acid ester	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyacetic	m-C(=O)NH ₂
		1	acid ester	` '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
• •		• ` ` "	acid ester	, , -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
1			acid ester	, , ,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
1			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		- ' -	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
1			acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenoxyacetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
			acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH,-CH(-CH,)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
		- ` "	ether	' ' -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
	Ì		ether	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
• •	}		ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
• •			ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
1	1		ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
1 .	1		ethyl ether	
L			· · · · · · · · · · · · · · · · · · ·	

R	⊤R⁵	TE-J	Z	
				L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=NH)NH ₂
	 H	CH ₂ -CH(-NH ₂)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂				
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H.	CH ₂ -CH(-NH ₂)-	CI-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	 Ĥ	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
	 H		Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH(-NH ₂)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	 ÎÎ 	CH ₂ -CH(-NH ₂)-	Cl-aniline	p-C(=O)NH ₂
0-502-1412	H		F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH(-NH ₂)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CI-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂

Rt	R ⁵	E-J	Z	
		12-3	acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-502-14112	**	C112-C11(-14112)-	acid ester	m o(1411)1411
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0 502 1112			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 002 1.1.2		1 2	acetic acid ester	` ′ -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		' ` "	acetic acid ester	, ,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Phenoxyacetic	m-C(=O)NH ₂
			acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
			acid ester	C/-(VXII)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
- 80 - 111		CU CU(NO)	acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy- acetic acid ester	111-C(-O)N11 ₂
- 100 NIII		CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	acetic acid ester	111-0(-0):4112
0-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	Methyl Bn-O-phenoxy	m-C(=0)NH ₂
0-302-IAII2	**	\(\frac{1}{2}\)-\(\frac{1}{2}\	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	Ĥ	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0 002 1122		2	acid	` ´ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
			acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenoxyethanol	m-C(=O)NH ₂ m-C(=O)NH ₃
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy-ethanol	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂ m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH_CH(-NH ₂)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)- CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy- ethanol Methyl phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	Cn2-Cn(-Nn2)-	ether	
o-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0-502-14112	**	C112-C11(-1112)-	ether	0(1)
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0-502-11112	**		ether	
o-SO ₂ -NH ₂	н	CH2-CH(-NH2)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
			ethyl ether	. , , , ,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		1	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
1 -		1	ethyl ether	

	1 m3	1 T T		
R'	R³	E-J	Z	L
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
			l i	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl ·	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=O)NH ₂
0-3O ₂ -1VII ₂	H	CH ₂ -CH(-Bn)-		m-C(=O)NH ₂
o-SO ₂ -NH ₂			CH ₃ -phenyl	THE CY-CVNIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Aniline	p-C(=O)NH ₂
	H	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	•			
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	CI-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂

G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) delity IC-phenoxyacetic acid ester m-C(=NH)NH ₂ acid ester method acid ester acid ester method acid ester	R ¹	R³	E-J	Z	L
C-SO ₂ -NH ₂		 		acid ester	
C-SO ₂ -NH ₂	o-SO-NH.	 H 	CHCH(-Bn)-		m-C(=NH)NH
C-SO ₂ -NH ₂	0 0021112	1			
C-SO ₂ -NH ₂	o-SO-NH.	H	CH ₃ -CH(-Bn)-	Methyl F-phenoxy- acetic	m-C(=NH)NH,
C-SO ₂ -NH ₂	0 00 1 112		022, 023(22)		(,
C-SO ₂ -NH ₂	o-SO-NH.	H	CHCH(-Bn)-	Methyl CH ₂ -phenoxy-	m-C(=NH)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Melhyl CH ₂ -O-phenoxy acetic acid ester m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl C-phenoxyacetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -O-phenoxy acetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -O-phenoxy acetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -O-phenoxy acetic acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Methyl CH ₂ -O-phenoxy acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxy-acetic acid m-C(=NH)NH ₃ G-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxy-acetic acid m-C(=NH)NH ₃ G-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxy-acetic acid m-C(0 001	1	0112 011(211)		(-,,- ,
acetic acid ester	o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-		m-C(=NH)NH,
6-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH ₂ 6-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ 6-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl C-phenoxyacetic acid ester m-C(=O)NH ₂ 6-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -phenoxyacetic acid ester m-C(=O)NH ₂ 6-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -O-phenoxy acetic acid ester m-C(=O)NH ₂ 6-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH ₂ 6-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Methyl Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ 6-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ 6-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ 6-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) CH ₂ -D-phenoxyacetic acid m-C(=NH)NH ₂ 6-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) CH ₂ -D-phenoxyacetic acid m-C(=NH)NH ₂ 6-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) CH ₂ -D-phenoxyacetic acid m-C(=NH)NH ₂ 6-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) CH ₂	0 001 1		03.2 03.4 2)		(,,,,,,-
C-SO ₂ -NH ₂	o-SO _{2-NH}	 H	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy	m-C(=NH)NH
G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxyacetic acid ester m-C(=NIH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid ester m-C(=NIH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- P-phenoxy-acetic acid ester m-C(=NIH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- P-phenoxy-acetic acid ester m-C(=NIH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid ester m-C(=NIH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid ester m-C(=NIH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phen	0 00,1	1	511/2 511(511)		
C-SO ₂ -NH ₂	0-SO-NH.		CHCH(-Bn)-		m-C(=O)NH ₃
acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl F-phenoxyacetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl Bn-O-phenoxy acetic acid ester o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Methyl Bn-O-phenoxy acetic acid ester o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) C-I-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) C-I ₂ -phenoxy-acetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) C-I ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxy-acetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxy-acetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=O)NH ₂ acid acid acid acid acid acid acid acid	0 202 2 112-2		,		
acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl F-phenoxyacetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl Bn-O-phenoxy acetic acid ester o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Methyl Bn-O-phenoxy acetic acid ester o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) C-I-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) C-I ₂ -phenoxy-acetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) C-I ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxy-acetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxy-acetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=O)NH ₂ acid acid acid acid acid acid acid acid	o-SO ₂ -NH ₂	R	CH ₂ -CH(-Bn)-		m-C(=0)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- acid ester acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Cl-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Cl-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₂ -O-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₂ -O-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₂ -O-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₂ -Dhenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₃ m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -D-phenoxy-acetic acid m-C(=O)NH ₃ m-C(=O)NH ₃ <td>0 00/1112/</td> <td>ļ</td> <td> </td> <td></td> <td></td>	0 00/1112/	ļ			
acid ester Methyl CH ₃ -phenoxy- acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy acetic acid ester o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy acetic acid ester o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- C-Phenoxy-acetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -Phenoxy-acetic acid m-C(=NH)NH ₃ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -Phenoxy-acetic acid m-C(=NH)NH ₃ acid acid acid acid acid acid acid acid	0-SO-NH-	 H 	CHCH(-Bn)-		m-C(=O)NH ₃
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- actic acid ester actic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy actic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy actic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- C-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- C-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- C-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- C-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- C-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- C-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₃ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₃ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₃ o-SO ₂ -NH ₃	0 002 1112	1			
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₂ -O-phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=NH)NH ₂ ac	o-SO-NH.	† H	CH ₂ -CH(-Bn)-		m-C(=O)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy acetic acid ester m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₃ -CH(-Bn)- Methyl Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Cl-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Cl-phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Cl-phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Cl-phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂	0 002 1112				(-)
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH ₂ acetic acid ester m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₂ -phenoxy-acetic acid m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Bn-O-phenoxy-acetic acid m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Bn-O-phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Pi-phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ he-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂ here o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CI-phenoxy-ethyl here o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Methyl CI-phenoxy	o-SONH-	H	CHCH(-Bn)-		m-C(=O)NH ₃
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- GH ₂ -D-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- GH ₂ -D-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂	0-002-1112	1			(0)
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ acid o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- c-SO ₂ -NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ acid o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- c-SO ₂ -NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=NH)NH ₂ m	O-SO-NH.	Н	CHCH(-Bn)-		m-C(=O)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Cl-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₃ -Dpenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) En-O-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₂ -O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Bn-O-phenoxy acetic acid m-C(=O)NH ₂	0-002-1112	1 **	011, 011(211)		
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CI-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₃ -Dephenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CI-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₂ -O-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₂ -O-phenoxyacetic acid m-C(=O)NH ₂ </td <td>0-80-NH</td> <td>H</td> <td>CHCH(-Bn)-</td> <td></td> <td>m-C/=NH\NHa</td>	0-80-NH	H	CHCH(-Bn)-		m-C/=NH\NHa
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₃ -O-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) CH ₃ -O-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Phenoxyethanol m-C(=NH)NH ₂					
0-SO2-NH2 H CH2-CH(-Bn)- CH3-phenoxy-acetic acid m-C(=NH)NH2 acid acid acid acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=NH)NH2 acid m-C(=O)NH2 m-C(=O)NH3 H CH3-CH(-Bn)- Phenoxyacetic acid m-C(=O)NH3 m-C(=O)NH3 h CH3-CH(-Bn)- Phenoxyacetic acid m-C(=O)NH3 m-C(=O)NH3 m-C(=O)NH3 h CH3-CH(-Bn)- Phenoxyacetic acid m-C(=O)NH3					
O-SO2-NH2 H CH2-CH(-Bn)-caid CH3-O-phenoxy-acetic acid m-C(=NH)NH2 acid O-SO2-NH2 H CH2-CH(-Bn)-phenoxy acetic acid m-C(=NH)NH2 m-C(=O)NH2 m-C(=NH)NH2 m-C					m-C/=NH)NH.
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Cl-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H					m-C/=NH)NH
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -Bn-Denoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H <td>0-302-14112</td> <td> **</td> <td>CI12-CI1(-DII)-</td> <td></td> <td></td>	0-302-14112	**	CI12-CI1(-DII)-		
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Cl-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)-Cl-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)-CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-CH ₃ -D-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)-Phenoxy-ethanol	O-SO -NH	 	CH-CH(-Bn)-		m-C/=NH)NH
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -Dhenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -Dhenoxy-ethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H </td <td></td> <td></td> <td></td> <td></td> <td></td>					
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic acid acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=O)NH ₂ m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Met		1		Cl-phenoxyacetic acid	
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH-phenoxy acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxyethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxyethanol m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ <				F-phenoxyacetic acid	
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- acid m-C(=O)NH ₂ acid 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy acetic acid m-C(=O)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H <td></td> <td></td> <td></td> <td>CH -phenoxy-acetic acid</td> <td></td>				CH -phenoxy-acetic acid	
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy acetic acid m-C(=O)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyethanol m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxy-ethanol m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -Dephenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ <t< td=""><td></td><td></td><td></td><td>CHO-phenoxy acetic</td><td></td></t<>				CHO-phenoxy acetic	
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Phenoxy-ethanol m-C(=NH)NH ₂	0-302-14112	111	CI12-CI1(-DII)-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H <t< td=""><td>OSO NH</td><td> </td><td>CHCH(-Bn)-</td><td></td><td>m-C/=O)NH</td></t<>	OSO NH	 	CHCH(-Bn)-		m-C/=O)NH
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CI-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ <				Phenoxyethanol	m-C/=NHINH
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy- ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂					
O-SO2-NH2 H CH2-CH(-Bn)- CH3-Phenoxy-ethanol m-C(=NH)NH2 m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-Bn)- CH3-O-phenoxy-ethanol m-C(=NH)NH2 m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-Bn)- CH2-CH(-Bn)- D-SO2-NH2 m-C(=NH)NH2 m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-Bn)- CH2-CH(-Bn)- D-SO2-NH2 m-C(=O)NH2 m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-Bn)- CH3-Phenoxy-ethanol m-C(=O)NH2 m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-Bn)- CH3-O-phenoxy-ethanol m-C(=O)NH2 m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-Bn)- CH3-O-phenoxy-ethanol m-C(=O)NH2 m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-Bn)- Ether Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-Bn)- Ether Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-Bn)- Ether Methyl CH3-phenoxy- ethyl ether m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-Bn)- Ether Methyl CH3-O-phenoxy- ethyl ether m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-Bn)- Ether Methyl CH3-O-phenoxy- ethyl ether m-C(=NH)NH2	0-3O ₂ -Nn ₂				
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- Bn-O-phenoxy ethanol m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ Phenoxyethanol M-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ T-phenoxyethanol M-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂	0-3O ₂ -NH ₂				
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ Bn-O-phenoxy ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ Phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ F-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ CH ₃ -Denoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ Bn-O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- ether Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- ether Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- ethyl ether Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- ethyl ether Methyl Bn-O-phenoxy- ethyl ether m-C(=NH)NH ₂			CH CH(Ra)	CH O phenoxy ethanol	
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ Phenoxyethanol M-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ F-phenoxy-ethanol M-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- O-SO ₂ -NH ₂ CH ₃ -O-phenoxy-ethanol M-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- M-C(-CH(-Bn)- Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl ₃ -phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy-ethyl ether m-C(=NH)NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether					
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- 0-SO ₂ -NH ₂ CH ₃ -phenoxy-ethanol CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)- m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- m-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- m-C(=NH)NH ₂ m-C(=NH)NH ₂					
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy ethyl ether m-C(=NH)NH ₂					
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Bn-O-phenoxy- ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy ethyl ether m-C(=NH)NH ₂		1			
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- ether Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂					
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy-ethyl ether m-C(=NH)NH ₂ ethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-SU ₂ -NH ₂	1		Bn-O-pnenoxy- emanol	
0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-SU ₂ -NH ₂	H	CH2-CH(-Bn)-		
cther	. 00	<u> </u>	CH CH Day		- CV-NUNU
O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ ethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ ethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-SU ₂ -NH ₂	H	CH2-CH(-BI)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂		1,,			
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂	0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-		m-C(=NH)NH ₂
ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂		 			
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-		m-C(=NH)NH ₂
ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH(-Bn)- Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-		m-C(=NH)NH ₂
		<u></u>			
ethyl ether	o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-		m-C(=NH)NH ₂
			<u> </u>	ethyl ether	L

CSO ₂ -NH ₁	R ¹	LK,	E-J	Z	T L
C-SO ₂ -NH ₁			, — ·	, —	1 —
c-SO ₂ -NH ₁ H CH ₂ -CH(-Bn)- Methyl F-phenoxyethyl m-C(=O)NH ₂ c-SO ₂ -NH ₃ H CH ₂ -CH(-Bn)- Methyl CH ₃ -CH(=O)- Methyl Bn-O- phenoxyethyl ether c-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₃ - Methyl Bn-O- phenoxyethyl ether c-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₃ - Methyl Bn-O- phenoxyethyl ether c-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₃ - Methyl Bn-O- phenoxyethyl ether c-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₃ - Cl-phenyl m-C(=NH)NH ₃ c-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - Cl-phenyl m-C(=NH)NH ₃ c-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - Cl-phenyl m-C(=NH)NH ₃ c-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - CH ₃ -Ch(-CH ₃ - COOCH ₃)- COOCH ₃ - COOC			• • •	ether	
C-SO ₂ -NH ₁		H		ether	
Denoxyethyl ether Den	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	ether	m-C(=O)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH(-Bn) Methyl CH ₂ -O-phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃) m-C(=NH)NH ₂ m-C(=NH)NH ₂ COOCH ₃) m-C(=O)NH ₃ m-C(=O)NH ₄ COOCH ₃) m-C(=O)NH ₂ COOCH ₃) m-C(=O)NH ₂ m-C(=O)NH ₂ COOCH ₃) m-C(=O)NH ₃ m-C(=O)NH ₄ COOCH ₃) m-C(=O)NH ₄ m-C(=O)NH ₄ COOCH ₃) m-C(=O)NH ₄ COOCH ₃) m-C(=O)NH ₄ m-C(=O)NH ₄ m-C(=O)NH ₄ m-C(=O)NH ₄ COOCH ₃) m-C(=O)NH ₄ m-C(o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -phenoxyethyl ether phenoxyethyl ether phenoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ -COOCH	o-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-	m-C(=O)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) CI-phenyl m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) r-phenyl m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) CH ₃ -Dephenyl m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -Dephenyl m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -Dephenyl m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CI-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -Dephenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -Dephenyl m-C(=O)NH ₂ -Dephenyl	o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Bn-O-	m-C(=O)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) Cl-phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) F-phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) CH ₃ -Denyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) CH ₃ -Denyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) Denyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) Denyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) Cl-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) CH ₃ -Phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) CH ₃ -Dephenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -Dephenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -Dephenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCCH ₃) CH ₃ -Dephenyl m-C(=O)NH ₂	o-SO ₂ -NH ₂	H			m-C(=NH)NH ₂
COOCH.)- C-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂ H CH ₃ -CH ₁ -CH ₃ - COOCH.)- C-SO ₂ -NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -COOCH ₃ -CO	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-		m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃)-O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -COOCH ₃)-O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃)-O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃)-O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃)-O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃)-O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₁ -CH ₂ -COOCH ₃)-O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₁ -CH ₂ -COOCH ₃)-O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOC	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl	
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - cOCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=NH)NH ₂ COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=NH)NH ₂ COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₂ O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₃ O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₃ O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₃ O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - CH ₃ -Caniline D-C(=O)NH ₃ O-SO ₂ -NH ₃ H CH	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COoCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -Phenyl m-C(=O)NH ₂ COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -Phenyl m-C(=O)NH ₂ COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -O-Phenyl m-C(=O)NH ₂ COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -COOCH ₃) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₂ H CH ₇ -CH(-CH ₂ -CH ₃ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -CH(-CH ₂ -CN) O-SO ₂ -NH ₃ H CH ₇ -		·	COOCH ₃)-		
COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - COOCH ₃ - COOCH ₃ - O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - COOCH ₃ - COOCH ₃ - COOCH ₃ - O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - COOCH ₃ - COOCH ₃ - COOCH ₃ - O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - COOCH ₃ - COOCH ₃ -			COOCH ₃)-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -phenyl m-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl m-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl m-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl m-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-phenyl m-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-aniline p-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-aniline p-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-aniline p-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-aniline p-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -C	o-SO ₂ -NH ₂	H	COOCH ₃)-	_ · · ·	1
O-SO ₂ -NH ₂ H CH ₂ -CH ₂ -COCH ₃ -COOCH ₃ -COO	o-SO ₂ -NH ₂	Н	COOCH ₃)-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ -COOCH ₃ -COO	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-		m-C(=O)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -COOCH ₃ -COOC	o-SO ₂ -NH ₂	Н			m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃)-CI-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ -COOCH ₃ -COOCH ₃)-COOCH ₃ -COOCH ₃ -COOCH ₃ -COOCH ₃)-COOCH ₃ -COOCH ₃ -CO	o-SO ₂ -NH ₂	Н	COOCH ₃)-	Bn-O-phenyl	m-C(=O)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃)-COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ F-aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ Aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CI-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ F-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-CH ₃ -COOCH ₃ CH ₃ -aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -O-aniline p-C(=O)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃)-COOCH ₃ F-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ Bn-O-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ Aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CI-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-CH ₃ -COOCH ₃ CH ₃ -O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-aniline p-C(=O)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -aniline CH ₂ -CH(-CH ₂ - COOCH ₃)- p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Bn-O-aniline P-C(=NH)NH ₂ p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CI-aniline CH ₂ -CH(-CH ₂ - COOCH ₃)- P-C(=O)NH ₂ p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- COOCH ₃)- CH ₃ -O-aniline CH ₂ -CH(-CH ₂ - COOCH ₃)- P-C(=O)NH ₂ p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- COOCH ₃)- P-C(=O)NH ₂ P-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- P-C(=O)NH ₂ P-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃)- P-C(=O)NH ₂ P-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃)- P-C(=O)NH ₂ P-C(=O)NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-aniline	' ' '
COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ o-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂			CH ₂ -CH(-CH ₂ - COOCH ₃)-	•	}
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Bn-O-aniline p-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CI-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- F-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Bn-O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Phenyl-amino-carboxylic m-C(=NH)NH ₂			COOCH ₃)-	-	
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂			CH ₂ -CH(-CH ₂ - COOCH ₃)-		
COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂	• •		COOCH ₃)-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂			COOCH ₃)-		
COOCH ₃)- 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ 0-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂			COOCH ₃)-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂		L	COOCH ₃)-		' ' -
COOCH ₃)- o-SO ₂ -NH, H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂	ļ	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	l . *	
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ acid	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-		• • • •
	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-		m-C(=NH)NH ₂

R¹	⊤R⁵	TE-J	Z	IL .
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH,
		COOCH ₃)-	carboxylic acid	l ' ' -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	 H	COOCH ₃)- CH ₂ -CH(-CH ₂ -	carboxylic acid	m (Y=NIU)KIU
0-30 ₂ -Nn ₂	П	COOCH ₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CI-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		COOCH ₃)-	carboxylic acid	` ` -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
	1	COOCH ₃)-	acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
		COOCH ₃)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		COOCH,)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0 002 1112		COOCH ₃)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=0)NH ₂
		COOCH ₃)-	acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyacetic acid ester	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=0)NH ₂
		COOCH ₃)-	acid ester	l
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=0)NH ₂
		COOCH ₃)-	acetic acid ester	` ′ •
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O-phenoxy	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	 H	CH ₂ -CH(-CH ₂ -	CH ₁ -O-phenoxy-acetic	m-C(=NH)NH ₂
• -		COOCH ₃)-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CI-phenoxyacetic acid	m-C(=O)NH ₂
		1 0000113/-	<u> </u>	LJ

R¹	R ⁵	Eal	IZ	ΠL
0-SO ₂ -NH ₂	H ·	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃)- CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н-	COOCH ₃)- CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	COOCH ₃)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	COOCH ₃)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	COOCH)	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	COOCH ₃)- CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃)- CH ₂ -CH(-CH ₂ -	phenoxyethyl ether phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		CH ₂ -OH)-		

R'	I R ⁵	E-J	1Z	TL .
				I —
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂

□R ¹	R	E-J	Z	I L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
00/11/2		CH ₂ -OH)-	carboxylic acid	III O(0)1 112
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
		CH ₂ -OH)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
- 00 NIII		CH ₂ -OH)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-302-14112	1 **	CH ₂ -OH)-	acid ester	m-c(-Nn)Nn ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		CH ₂ -OH)-	acetic acid ester	(,,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		CH ₂ -OH)-	acetic acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	ļ.,,	CH₂-OH)-	acetic acid ester	- C/
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=0)NH ₂
0-302-14112	**	CH ₂ -OH)-	acid ester	
0-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=0)NH ₂
		CH ₂ -OH)-	acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		CH ₂ -OH)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=0)NH ₂
- 00 300		CH₂-OH)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
0-302-1112	**	CH ₂ -OH)-	i i nenoxyaectie acid	M-C(-1411)1411 ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
' '		CH ₂ -OH)-	' '	` ′ ′
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		CH ₂ -OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
- 50 MI	H	CH₂-OH)-	CH O shanavu asatia	CV-NIUVNU
o-SO ₂ -NH ₂	^	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		CH ₂ -OH)-	2 0 passes, acces con	- ()
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
		CH₂-OH)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=0)NH ₂
- SO NU	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m.C(=O\NU
o-SO ₂ -NH ₂	^{ra}	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	r-phenoxyaceuc acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		CH ₂ -OH)-		- 5(5)2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	<u></u> .	CH₂-OH)-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
- 8/0 - 8/1	<u> </u>	CH ₂ -OH)-	Dhanasanathar a	- C/->111123111
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
3-502-11112	1 **	CH ₂ -OH)-		~
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
	1	CH ₂ -OH)-	· · · · · · · · · · · · · · · · · · ·	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
		CH₂-OH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		CH ₂ -OH)-	L	

R ¹	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₃ -OH)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CI-phenyl	m-C(=O)NH ₂

R ¹	R ⁵	E-J	Z	L
0-SO ₂ -NH ₂	H	CH2-CH(-CH2-	F-phenyl	m-C(=O)NH ₂
2 - 2 2		C(=O)-N-	1	
	- 1	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
•		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
		C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
		C(=0)-N-		
- 00-311	H	morpholino)- CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	п	C(=0)-N-	Amine	p-C(-1411)1411 ₂
	1	morpholino)-		
o-SO ₂ -NH ₂	- H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
0-302-1112	**	C(=O)-N-	O'-aimine	p 0(1111)1112
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
0 002 1112		C(=0)-N-		1
		morpholino)-		,
o-SO ₂ -NH ₂	H H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
İ		C(=0)-N-		· ·
		morpholino)-		p-C(=O)NH ₂
O-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N-	Aniline	p-C(-0)Nn ₂
	- 1	morpholino)-		
0-SO ₂ -NH ₂	l H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0-502-14112	**	C(=O)-N-		F -(-)2
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
1 2 2	1	C(=O)-N-		
	ł	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
	1	C(=0)-N-		
		morpholino)-	Bn-O-aniline	- C(=())NH
o-SO ₂ -NH ₂	.н	CH ₂ -CH(-CH ₂ - C(=0)-N-	Bn-O-annine	p-C(=O)NH ₂
	İ	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0-302-14112	**	C(=0)-N-	acid	III O(1112)1112
		morpholino)-	40.0	
o-SO ₂ -NH ₂	- Н	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
,,	1	C(=O)-N-	carboxylic acid	` ′ ′
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
		C(=O)-N-	carboxylic acid	
		morpholino)-	<u> </u>	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
1		C(=0)-N-	carboxylic acid	
		morpholino)-		- CV-KNIVKIII
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
l	_i	C(=0)-N-	Carboxyne acid	<u> L.,</u>

R [†]	R'	E-J	Z	L
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl-amino carboxylic acid	m-C(≅O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CI-phenoxy-acetic acid	m-C(=NH)NH ₂

R ¹	R'	E-J	Z	L
		C(=0)-N-		
o-SO ₂ -NH ₂	H	morpholino)- CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-502-14112	**	C(=0)-N-	1-phenoxy- acetic acid	111-0(-1411)14112
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		C(=O)-N-	1	
o-SO ₂ -NH ₂	Н	morpholino)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0-3U ₂ -NH ₂	l n	C(=0)-N-	acid	III-C(-NII)NII ₂
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		C(=0)-N-		
o-SO ₂ -NH ₂	H	morpholino)- CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0-30 ₂ -NH ₂	1	C(=0)-N-	Phenoxyacene acid	M-C(-0)N112
	1	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
		C(=O)-N-		
a SO NID	н	morpholino)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	l n	CH ₂ -CH(-CH ₂ - C(=0)-N-	r-phenoxyaceuc acid	III-C(-C)NII ₂
	İ	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH ₁ -CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		C(=O)-N-		
- 0/A NIII	- H	morpholino)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - C(=O)-N-	acid	III-C(-O)NII ₂
		morpholino)-	20.0	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
	ı.	C(=0)-N-		
	H	morpholino)-	Phenoxyethanol	m-C(=NH)NH,
o-SO ₂ -NH ₂	I n	CH ₂ -CH(-CH ₂ - C(=O)-N-	Phenoxyeulanoi	III-C(-NII)NII ₂
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		C(=O)-N-		
- 50 NU	H	morpholino)- CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	^T	C(=0)-N-	r-phenoxy- emanor	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
		C(=0)-N-		
SO NH	-H $-$	morpholino)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	1	C(=0)-N-	CH ₃ -O-phenoxy-emanor	111-0(-1411)14112
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		C(=0)-N-		
0-SO ₂ -NH ₂	H	morpholino)- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
3-50-2-14112	**	C(=0)-N-	- Honory Chimitoi	0,1112
	1	morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CI-phenoxyethanol	m-C(=O)NH ₂
	1	C(=0)-N-		
0-SO ₂ -NH ₂	- н	morpholino)- CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
U-3U2-INII2	T	C(=0)-N-	1 -phenoxy-emanor	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
		C(=0)-N-		
l		morpholino)-	1	

C(=O)-N- morpholino)-	R'	R ³	E-J	Z	L
C(=O)-N- morpholino)- c-SO ₂ -NH ₁ H CH-CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -C	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
morpholino)- CF-CH-CH-2 CF-O)-N- morpholino)- m-C(=O)NH-1 CF-CH-CH-2 CF-O)-N- morpholino)- m-C(=NH)NH-2 CF-O)-N- morpholino)- m-C(=NH)NH-2 m-C(=N	•				` ′ •
G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -C					
C(=O)-N- morpholino)- cSO ₂ -NH ₂	o-SO ₂ -NH ₂	H		Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
morpholino)- C-SO ₂ -NH ₂			C(=0)-N-		` ′ ′
G-SO ₂ -NH ₂ H CH ₂ -CH ₂					i i
C(=O)-N-morpholino)	o-SO ₂ -NH ₂	H		Methyl phenoxy-ethyl	m-C(=NH)NH ₂
morpholino	0 0 0 2 1 1 1 1 2				
C-SO ₂ -NH ₂					1
C(=0)-N- morpholino)- ether m-C(=NH)NH	o-SONH-	H		Methyl Cl-phenoxyethyl	m-C/=NH)NH
morpholino- CH-CH-CH-2- C(=O)-N- morpholino- morpho	0 001 11111		C(=0)-N-		(
G-SO ₂ -NH ₂ H CH ₂ -CH ₂ -C ₁		1		1 0000	
C(=O)-N-morpholino)- chy-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₄ -CH	OSO NH.	- H		Methyl F-phenoxy-ethyl	m-C/=NH\NH
morpholino)- O-SO ₂ -NH ₂	0-502-14112	**	C(=O)-N-		111/1112
o-SO₂-NH₂ H CH,-CH,-CH₂- C(=O)-N- morpholino)- Methyl CH₂-Ophenoxy- ethyl ether m-C(=NH)NH o-SO₂-NH₂ H CH₂-CH₂- C(=O)-N- morpholino)- CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl Bn-O-phenoxy- ethyl ether m-C(=NH)NH o-SO₂-NH₂ H CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl CH₂-Denoxyethyl ether m-C(=O)NH₂- ether o-SO₂-NH₂ H CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl CH₂-Denoxyethyl ether m-C(=O)NH₂- ether o-SO₂-NH₂ H CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl CH₂-Denoxyethyl ether m-C(=O)NH₂- ether o-SO₂-NH₂ H CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl CH₃-Denoxyethyl ether m-C(=O)NH₂- phenoxyethyl ether o-SO₂-NH₂ H CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl CH₃-Denoxyethyl ether m-C(=O)NH₂- phenoxyethyl ether o-SO₂-NH₂ H CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl CH₃-Denoxyethyl ether m-C(=O)NH₂- phenoxyethyl ether o-SO₂-NH₂ H CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl CH₃-Denoxyethyl ether m-C(=O)NH₂- Methyl CH₃-Denoxyethyl ether o-SO₂-NH₂ H CH₂-CH₁-CH₂- C(=O)-N- morpholino)- Methyl CH₃-Denoxyethyl ether m-C(=O)NH₂- Methyl CH₃-Denoxyethyl ether o-SO₂-NH₂ H CH₂-CH₁-CH₂- CH₂-CH₁-CH₂- CH₂-S(O)₂-CH₃- CH₂-S(O)₂-CH₃-				Calci	
C(=O)-N-morpholino)- ethyl ether m-C(=NH)NH	A SOL KID			Mathyl CH phanayy	- CY=NIHINIH
morpholino)-	0-3O ₂ -Nn ₂	111			111-0(-1411)14112
6-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -CH ₂ cthyl ether morpholinol-morph		l		euryr emer	1
C(=O)-N- morpholino)- morpholi	- 00 - 111				(Y-NII)NII
morpholino	0-SO ₂ -NH ₂	n	CH ₂ -CH ₍ -CH ₂ -		m-C(-Nn)Nn ₂
0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ (C=O)-N-morpholino)-morpholinol-morpholin				ethyl ether	
C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ -					(V-XIII)
morpholino)-	$0-SO_2-NH_2$	H	CH ₂ -CH(-CH ₂ -		$m-C(=NH)NH_2$
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(e)-N-morpholino)-morpholino)-eNO ₂ -NH ₂ Methyl Phenoxyethyl ether m-C(=O)NH ₂ ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(e)-N-morpholino)-morpholin				ethyl ether	
C(=O)-N- morpholino)- ether m-C(=O)NH2 O-SO2-NH2					0/ 000
Description Description	o-SO ₂ -NH ₂	H	CH ₂ -CH ₄ -CH ₂ -		$m-C(=O)NH_2$
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)-morpholino}-morpholino-				ether	
C(=O)-N- morpholino)- cH-2CH(-CH-2- Methyl F-phenoxyethyl m-C(=O)NH-2 ether morpholino)- mor					<u> </u>
morpholino - CH2-CH(-CH2-C(-O)-N-morpholino - O-SO2-NH2	o-SO ₂ -NH ₂	H			m-C(=O)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)-chern morpholino)-morpholino)-chern morpholino-dether Methyl F-phenoxyethyl chern mr-C(=O)NH ₂ chern morpholino)-chern morpholino-dether m-C(=O)NH ₂ mr-C(=O)NH ₂ phenoxyethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)-chern morpholino-dether morphol				ether	
C(=O)-N- morpholino)- morpholino)- CH-2-CH(-CH-2- C(=O)-N- morpholino)- morpholino			morpholino)-		
morpholino - O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -		$m-C(=O)NH_2$
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)-morph		-		ether	
C(=O)-N-morpholino)- O-SO ₂ -NH ₂					
morpholino - O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -		$m-C(=O)NH_2$
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(=O)-N-phenoxyethyl ether m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(=O)-N-phenoxyethyl ether m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(=CH CH ₂ -C(=C(=C)-C(=CH ₂ -C(=C(=C)-C(=C)-C(=C(=C)-C(=C)-C(=C)-C(=C(=C)-C(=C)-C(=C)-C(=C)-C(=C(=C)-C(=C)-C(=C)-C(=C(=C)-C(=C)-C(=C)-C(=C(=C)-C(=C)-C(=C)-C(=C)-C(=C(=C)-C(=C)-C(=C)-C(=C)-C(=C)-C(=C(=C)-C(=C)-C(=C)-C(=C)-C(=C)-C(=C(=C)-C		ļ		phenoxyethyl ether	
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH ₂ -CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂			morpholino)-		
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- D-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ O-SO ₂ -NH ₂ CH ₃ -S(O) ₂ -CH ₃ O-SO ₃ -NH ₂ O-SO ₂ -NH ₂ O-SO	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -		$m-C(=O)NH_2$
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C(=O)-N-Denoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ phenyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -S(O) ₂ -CH ₃ CI-phenyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -Denoyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Denoyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Denoyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Denoyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Denoyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Denoyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -Denoyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Denoyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Denoyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -De		- 1	C(=O)-N-	phenoxyethyl ether	
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂		Ì	morpholino)-		
C(=0)-N- morpholino)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CO(-CH ₃ - CH ₂ -CO(-CH ₃ - CH ₂ -CO(-CH ₃ - CH ₂ -CH(-CH ₂ - CH ₂ -CO(-CH ₃ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ - CH ₂ -CH(-	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
morpholino - o-SO ₂ -NH ₂		1	C(=O)-N-	phenoxyethyl ether	
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ phenyl m-C(=NH)NH o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CI-phenyl m-C(=NH)NH o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenyl m-C(=NH)NH o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ -phenyl m-C(=NH)NH o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-phenyl m-C(=NH)NH o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Bn-O-phenyl m-C(=NH)NH o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ phenyl m-C(=NH)NH o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CI-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ -phenyl m-C(=O)NH ₂				1	
CH ₂ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl m-C(=NH)NH O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -Phenyl m-C(=NH)NH O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenyl m-C(=NH)NH O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -Phenyl m-C(=NH)NH O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenyl m-C(=NH)NH O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenyl m-C(=NH)NH O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -S(O) ₂ -CH ₃ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -CH ₃ -Phenyl m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenyl m-C(=O)NH ₂ O-SO ₃ -NH ₃ H CH ₃ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenyl m-C(=O)NH ₂	o-SO ₂ -NH ₂	H		phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Cl-phenyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ -phenyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ CH ₃ -O-phenyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Bn-O-phenyl m-C(=NH)NH 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ phenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ Cl-phenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃ F-phenyl m-C(=O)NH ₂			CH ₂ -S(O) ₂ -CH ₃	1. ,	` ′ -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 002 1.112	1	CH ₂ -S(O) ₂ -CH ₃		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO-NH.	- H	CH-CH-CH-	F-phenyl	m-C(=NH)NH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.002 1112	**		- p	0(1.11-)-11-2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O-SO -NH	- 1		CHphenyl	m-C/=NH)NH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-502-1112	**	CHS(O)CH-	C113 phony:	111 0(1111)1111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O-SO -NH	- 11		CHO-phenyl	m-C/=NH)NH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-302-14112	**		C113-O-phonyi	111-0(1111)11112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-80 NIL		CH_CHCCH	Rn-O-nhenyl	m-C/=NIHINIH
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-3O2-14II2	**	CH -2(U) -Ch	Di-O-pilony!	111-0(-1411)14115
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 50 XIII	 -		nhenyl	m C(=())XIU
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-3U2-NH2	l n	CH CO/ CH	buchyr	III-C(C)INI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 17/2 3/11			Clabony	TO CY-COND
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0-5U_2-NH_2$	l u	CH CO CH	Ci-phenyi	
CH ₃ -S(O) ₂ -CH ₃ CH ₃ -phenyl m-C(=O)NH ₂			CH ₂ -S(U) ₂ -CH ₃	D	
$O-SO_2-NH_2$ H $CH_2-CH(-CH_2-CH_3-phenyl)$ $m-C(=O)NH_2$	$0-SO_2-NH_2$	H	CH ₂ -CH(-CH ₂ -	r-pnenyi	m-U(=U)NH ₂
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					<u> </u>
1 1 1 CU SVAN CU 1 1 1	o-SO ₂ -NH ₂	H		CH ₃ -phenyl	m-C(=O)NH ₂
Cn_2 -5(O) ₂ -Cn ₃			CH ₂ -S(O) ₂ -CH ₃	<u></u>	<u> </u>

R ¹ o-SO ₂ -NH ₂	R'	E-J	Z	I L
U*DUA*IVII4	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		' ' -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=0)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	<u></u>	l
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
- 27 - 10		CH ₂ -S(O) ₂ -CH ₃		 - C/-XIIIXIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
- S() NH	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	п	CH ₂ -CH ₁ -CH ₂ - CH ₂ -S(O) ₂ -CH ₃	r-amme	p-C(-1411)14112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
0 00, 1,12,		CH ₂ -S(O) ₂ -CH,	——————————————————————————————————————	P 0(1.1.)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		` ` <i>'</i> '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		CH_2 - $S(O)_2$ - CH_3		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
- S/X KIP	н	CH ₂ -S(O) ₂ -CH ₃	F-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	п	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	r-amme	p-C(-O)Nn ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
0-502-14112	**	CH ₂ -S(O) ₂ -CH ₃	C113-unitimo	p-0(0)/112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
5 5 5 2 5 1 1 2		CH ₂ -S(O) ₂ -CH ₃	, +	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
0 80 MH	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	п	CH_2 - CH_2 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3	carboxylic acid	III-C(-1411)14112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	(
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
' '		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	' ' -
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
- NA NIL	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	acid Clabonil amina	m-C(=O)NH ₂
o-SO ₂ -NH ₂	п	CH ₂ -CH ₂ -CH ₃ -CH ₃	Cl-phenyl-amino carboxylic acid	III-C(-O)NII ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
0 002 1112		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	0(0)
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		CH_2 -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid_	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
a SO NIP	н	CH ₂ -S(O) ₂ -CH ₃	acid ester Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	11	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	Н	CH ₂ -S(O) ₂ -CH ₃ -CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0 002-1112		CH ₂ -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH,	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	

R¹	R⁵	E-J	Z	L
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		CH_2 -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
- NO NO	H	CH ₂ -S(O) ₂ -CH ₃	acid ester	('/-(\\\\\\\
o-SO ₂ -NH ₂	1"	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	 н 	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-302-14112	**	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	111-0(0)14112
o-SO ₂ -NH ₂	- н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0 502 1112	1	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
• •		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
00 300		CH ₂ -S(O) ₂ -CH ₃	CV shaneyy costs said	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
a SO NH	H -	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	**	CH ₂ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-502-1112	**	CH ₂ -S(O) ₂ -CH ₃	Dir G phonoxy accus usia	111 0(1111)1112
o-SO ₂ -NH ₂	- H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0 502 1112		CH ₂ -S(O) ₂ -CH ₃		(
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
• •		CH_2 - $S(O)_2$ - CH_3		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		CH_2 -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid	- CONTU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
- PO NIH	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	A1	CH ₂ -S(O) ₂ -CH ₃	1 helloxyedianoi	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-002-1112	**	CH ₂ -S(O) ₂ -CH ₃	or promotely community	0(,,,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -C \dot{H}_3		` ' -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
	_	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		- C(=C)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
20 100		CH ₂ -S(O) ₂ -CH ₃	Cl-phenoxyethanol	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Ci-phenoxyemanoi	m-C(=O)NH ₂
080-80	H		F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	111	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	1 -phenoxy-emanor	111-0(-0)1411 ₂
0-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-002-14112	**	CH ₂ -S(O) ₂ -CH ₃	213-phonoxy-cumion	(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
3-502-11112		CH ₂ -S(O) ₂ -CH ₃	Jan Daviday - Calanton	0(0),,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
	1	CH ₂ -S(O) ₂ -CH ₃		
L.	<u></u>		 	

<u></u>	⊤R⁵	TR T		
R ¹		E-J	2	L
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Cl-phenoxyethyl ether	m-C(≡O)NH₂
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н-	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -hexane)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -hexane)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -hexane)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	phenyl ·	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -hexane)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -hexane)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Aniline	p-C(=O)NH ₂
L				

R'	⊺R ⁵	TE-J	IZ	I L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
		hexane)-		-
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -hexane)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -hexane)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -hexane)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CI-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
				

No. Color	R¹	Γ R ³	E-J	Z	
hexane -	; -	L			L C/=KIUNKU
bexane	-	L	hexane)-		
hexane - acid m-C(=NH)NH2 - hexane - hexane -	o-SO ₂ -NH ₂	H	hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexan	o-SO ₂ -NH ₂	H			m-C(=NH)NH ₂
6-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane CI-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane CH ₃ -Dhenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Bn-O-phenoxy acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Phenoxyethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Thenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Thenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Thenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Thenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Thenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Thenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ <td>o-SO₂-NH₂</td> <td>Н</td> <td>CH₂-CH(-CH₂-</td> <td></td> <td>m-C(=NH)NH₂</td>	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
6-SO ₂ -NH ₁ H CH ₂ -CH ₁ -CH ₂ - hexanel-he	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
6-SO2-NH2 H CH2-CH(-CH2-hexane)-hexane F-phenoxyacetic acid m-C(=O)NH2 6-SO2-NH2 H CH2-CH(-CH2-hexane)-hexane CH3-O-phenoxy-acetic acid m-C(=O)NH2 6-SO2-NH2 H CH2-CH(-CH2-hexane)-hexane CH3-O-phenoxy acetic acid m-C(=O)NH2 6-SO2-NH2 H CH2-CH(-CH2-hexane)-hexane m-C(=O)NH2 6-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CI-phenoxy-ethanol m-C(=NH)NH2 6-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane G-SO2-NH2-hexane m-C(=NH)NH2-hexane 6-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CH3-Phenoxy-ethanol m-C(=NH)NH2-hexane m-C(=NH)NH2-hexane 6-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CH3-O-phenoxy-ethanol m-C(=NH)NH2-hexane m-C(=NH)NH2-hexane 6-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane m-C(=NH)NH2-hexane m-C(=NH)NH2-hexane 6-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane m-C(=NH)NH2-hexane m-C(=NH)NH2-hexane 6-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CI-phenoxy-ethanol m-C(=O)NH2-hexane m-C(=O)NH2-hexane 6-SO2-NH2 H	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
G-SO2-NH2 H CH,-CH(-CH2-hexane)-hexane CH3-O-phenoxy-acetic acid hexane m-C(=O)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CH3-O-phenoxy acetic acid hexane m-C(=O)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane phenoxy-ethanol hexane m-C(=NH)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CI-phenoxy-ethanol hexane m-C(=NH)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CH3-Phenoxy-ethanol m-C(=NH)NH2-hexane m-C(=NH)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CH3-O-phenoxy-ethanol m-C(=NH)NH2-hexane m-C(=NH)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane GH3-O-phenoxy-ethanol m-C(=NH)NH2-hexane m-C(=NH)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane GH3-O-phenoxy-ethanol m-C(=NH)NH2-hexane m-C(=NH)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CI-phenoxy-ethanol m-C(=NH)NH2-hexane m-C(=O)NH2-hexane G-SO2-NH2 H CH3-CH(-CH2-hexane)-hexane CH3-O-phenoxy-ethanol m-C(=O)NH2-hexane m-C(=O)NH2-hexane G-SO2-NH2 H CH3-CH	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
O-SO2-NH2 H CH2-CH(-CH2-hexane)-caid acid acid acid acid acid acid acid	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
6-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexan	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane hexane) m-C(=NH)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) m-C(=NH)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) r-phenoxy-ethanol m-C(=NH)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) Phenoxy-ethanol m-C(=NH)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) m-C(=O)NH ₂ hexane) m-C(=O)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ hexane) 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -hexane) CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - hexane) Cl-phenoxy-ethanol m-C(=NH)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - hexane) F-phenoxy-ethanol m-C(=NH)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - Hexane) m-C(=NH)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - Phenoxy-ethanol m-C(=O)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - CH ₂ - Phenoxy-ethanol m-C(=O)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - CH ₂ - Phenoxy-ethanol m-C(=O)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - CH ₃ - O-phenoxy-ethanol m-C(=O)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - CH ₃ - O-phenoxy-ethanol m-C(=O)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - CH ₃ - O-phenoxy-ethanol m-C(=O)NH ₂ hexane) o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - Methyl phenoxy-ethyl m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ ether <	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
0-SO2-NH2 H CH2-CH(-CH2-hexane) F-phenoxy-ethanol m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) CH3-O-phenoxy-ethanol m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) CH3-O-phenoxy-ethanol m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) Bn-O-phenoxy ethanol m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) CI-phenoxyethanol m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) CI-phenoxyethanol m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) CH3-D-phenoxy-ethanol m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) CH3-O-phenoxy-ethanol m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) Methyl phenoxy-ethanol m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) Methyl CI-phenoxy-ethanol m-C(=O)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) Methyl CI-phenoxy-ethyl m-C(=NH)NH2 0-SO2-NH2 H CH2-CH(-CH2-hexane) Methyl CI-phenoxy-ethyl m-C(=NH)NH2	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- hexane)- hexane)- CH ₂ -CH(-CH ₂ - hexane)- hexane)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- hexane)- Bn-O-phenoxy ethanol m-C(=NH)NH ₂ hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- hexane)- Thenoxyethanol m-C(=O)NH ₂ hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- hexane)- Thenoxy-ethanol m-C(=O)NH ₂ hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- hexane)- CH ₃ -Denoxy-ethanol m-C(=O)NH ₂ hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- hexane)- hexane)- Bn-O-phenoxy-ethanol m-C(=O)NH ₂ hexane)- hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- hexane)- hexane)- Methyl phenoxy-ethyl m-C(=O)NH ₂ hexane)- hexane)- ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- hexane)- ether Methyl CH ₃ -phenoxy-ethyl m-C(=NH)NH ₂ hexane)- ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- ethyl ether Methyl CH ₃ -Denoxy- m-C(=NH)NH ₂ hexane)- ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- ethyl ether Methyl CH ₃ -Denoxy- m-C(=NH)NH ₂ hexane)- ethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane CH ₃ -O-phenoxy ethanol hexanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=NH)NH ₂	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexan	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexan	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-CH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane) F-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane) CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane)-hexane)-hexane Bn-O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Methyl CH ₃ -phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Methyl CH ₃ -Denoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Methyl Bn-O-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Methyl Rn-O-phenoxy-ethyl ether m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)-hexane Methyl Cl-phenoxyethyl ether m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H <td< td=""><td>o-SO₂-NH₂</td><td>H</td><td>CH₂-CH(-CH₂-</td><td>Cl-phenoxyethanol</td><td>m-C(=O)NH₂</td></td<>	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
hexane - CH2-CH(-CH2- hexane - he	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
hexane	o-SO ₂ -NH ₂	Н		CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
hexane h	o-SO ₂ -NH ₂	Н	hexane)-	CH ₃ -O-phenoxy- ethanol	
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -hexan		Н	hexane)-	-	` '
hexane ether		Н	hexane)-	ether	
hexane - ether	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	ether	, , ,
hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl ether m-C(=O)NH ₂ ether m-C(=O)NH ₂	o-SO ₂ -NH ₂	Н		ether	
hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl ether m-C(=O)NH ₂ m-C(=O)NH ₂	o-SO ₂ -NH ₂	Н		ethyl ether	m-C(=NH)NH ₂
hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - hexane)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl ether m-C(=O)NH ₂ ether m-C(=O)NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Phenoxyethyl ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=O)NH ₂ hexane)- ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=O)NH ₂ ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxyethyl m-C(=O)NH ₂	o-SO ₂ -NH ₂	Н			m-C(=NH)NH ₂
hexane)- ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxyethyl m-C(=O)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxyethyl m-C(=O)NH ₂	o-SO ₂ -NH ₂	Н	hexane)-		
	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂

R ¹	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
		hexane)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
		hexane)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
- 00 - 101		hexane)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	-H $-$	CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=NH)NH ₂
0-302-14112	1 **	(HO-phenyl))-	Ci-phenyi	III-C(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
0 002 1112		(HO-phenyl))-	- phony.	
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	CH ₃ -phenyl	m-C(=NH)NH ₂
		(HO-phenyl))-	'''	' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
SO MILE		(HO-phenyl))-		TO CVE CONTROL
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	- H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
0-502-1112	**	(HO-phenyl))-	C. phony:	0(0)-12
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	- н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
0-30 ₂ -NH ₂	**	(HO-phenyl))-	Bh-O-phenyi	m-0(0)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
0 00 1 1 1 1 2		(HO-phenyl))-		' ' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
		(HO-phenyl))-	·	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
- 80 300	- н	(HO-phenyl))-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	n .	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	C113-annime	p-c(-1411)14112
o-SO ₂ -NH ₂		CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-002-1112		(HO-phenyl))-	J-13 C	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
		(HO-phenyl))-		- C/-CVXIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	— н—	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
0-002-14112		(HO-phenyl))-		P 0(0): 12-2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
	ľ	(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
		(HO-phenyl))-		- (V=2))(V)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
O SU NIU	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	n	(HO-phenyl))-	acid	111-0(-1411)14113
0-SO ₂ -NH ₂	- H	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH,
J. D. 2-14112	1	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
, ,		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
		(TT() L II)	L corbovulio poid	1

- 125 -

R ¹	TR ⁵	 	Z	- i
		E-J	<u> </u>	L
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	ļ.,.	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
	<u></u>	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
		(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
-	}	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	, , -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH,
		(HO-phenyl))-	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
V UU2-11112	1 **	(HO-phenyl))-	acid ester	0(1111)1112
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-002-1112	1**	(HO-phenyl))-	acid ester	
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-502-1112	1 **	(HO-phenyl))-	acetic acid ester	0(1111)1112
0-SO ₂ -NH ₂	Н-	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-502-14112	**	(HO-phenyl))-	acetic acid ester	m=-0(1411)14113
0-SO ₂ -NH ₂	+н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH,
0-302-14112	**	(HO-phenyl))-	acetic acid ester	m-O(-1411)14112
o-SO ₂ -NH ₂	+н	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-002-1411 ²	1 **	(HO-phenyl))-	acid ester	111-0(-0)14112
0.807.101	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	111		acid ester	m-U(-U)14112
A SO NU	н	(HO-phenyl))-	•	m C(=())NIU
o-SO ₂ -NH ₂	l II	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
- 1773 - 1777	 0	(HO-phenyl))-		m C/=(NATE)
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	C/-C/\\\
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	<u> </u>	(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
	1	(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		(HO-phenyl))-		<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	1	(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
	1	(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
• •	1	(HO-phenyl))-	1	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
• •	1	(HO-phenyl))-	-	• • • •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-	}	` <i>'</i> •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
	1	(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
1 2	1	(HO-phenyl))-	acid	
		1 (P).//		I

R ¹	TR3	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
		(HO-phenyl))-	l	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
- WY NIII		(HO-phenyl))-	F-phenoxy- ethanol	- CY-NUNNIE
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	r-pnenoxy- emanor	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	 H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-302-1112	1 • • • • • • • • • • • • • • • • • • •	(HO-phenyl))-	City-phonoxy-cumion	111/1/11/2
o-SO ₂ -NH ₂	†H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
	1	(HO-phenyl))-	', ', ', ', ', ', ', ', ', ', ', ', ',	, , , , , , , , , , , , , , , , , , , ,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
0-30 ₂ -N11 ₂	**	(HO-phenyl))-	1-phenoxy-culation	111-0(-0)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0 002 1112		(HO-phenyl))-	Carly Parenters	(0)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H .	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
- 80 NO	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	I II	(HO-phenyl))-	ether	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0-002-1412	1	(HO-phenyl))-	ether	1 (1)
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
• •		(HO-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(HO-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
- 877 XIII	 	(HO-phenyl))-	ethyl ether Methyl Phenoxyethyl	m C/=ONNH
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
0-002-1112	1 **	(HO-phenyl))-	ether	111 0(0)11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
-		(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
		(HO-phenyl))-	phenoxyethyl ether	06-0200
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
0-30 ₂ -14H ₂	**	(HO-phenyl))-	phenoxyethyl ether	111-0(-0)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
		(Cl-phenyl))-	1. ,	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
- 2/0 - 2/0	 	(Cl-phenyl))-	CU sharel	C/-NILINKILI
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-302-14112	**	(Cl-phenyl))-	J. 13-0-phonyi	11171112
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
		(Cl-phenyl))-	1	
			*···	

R¹	⊺R⁵	E-J	17	
	1	1.7.	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H .	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	Cl-phenyl))- CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CI-phenyl))- (CI-phenyl))-	F-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-aniline	p-C(=0)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
L				<u> </u>

I R ¹	ΓR ³	E-J	Z	
_	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	п	(Cl-phenyl))-	acid ester	ш-с(-тит/ит2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-302-14112	**	(Cl-phenyl))-	acid ester	11171112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-502-14112	**	(Cl-phenyl))-	acetic acid ester	1111/11112
o-SO ₂ -NH ₂	 H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0 002 1112		(Cl-phenyl))-	acetic acid ester	0(
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0 007 1122		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
1 2 2 2 2 2 2		(Cl-phenyl))-	acid ester	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=0)NH,
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=0)NH ₂
	1	(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	$m-C(=O)NH_2$
	ļ	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
- PO NII	ļ.,,—	(Cl-phenyl))-		- CY-NIUNIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
- 80 XIII	H	(Cl-phenyl))-	K mhonovy, agetic said	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	I T	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenoxy- acetic acid	
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH,
0-302-14112	1 **	(Cl-phenyl))-	C113-phonoxy-accide acid	111-0(1111)11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0-502-1112	1	(Cl-phenyl))-	acid	()
o-SO ₂ -NH ₂	181	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
000,1.1.2		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
	i	(Cl-phenyl))-		` ′ •
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=0)NH ₂
_		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=0)NH ₂
	1	(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=0)NH ₂
7/2 111		(Cl-phenyl))-	acid	- C/- CVNIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
a SO NO	1	(Cl-phenyl))-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	i nenoxyemanoi	m-C(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-002-14112	1.,	(Cl-phenyl))-	Ci-phonoxy-cumion	1111/11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	†H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
,,	1	(Cl-phenyl))-		` '1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
	1	(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=0)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
	<u> </u>	(Cl-phenyl))-		<u></u>

R ⁱ	⊤R ³	E-J	IZ	TL
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
		(Cl-phenyl))-	•	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		(Cl-phenyl))-	ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	phenoxyethyl ether Methyl CH ₃ -O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	- н	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	phenoxyethyl ether Methyl Bn-O-	m-C(=O)NH ₂
		(Cl-phenyl))-	phenoxyethyl ether	' ' -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	phenyl :	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CI-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	NH ₂)- CH ₂ -CH(-CH ₂ -	phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	н —	NH ₂)- CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	NH ₂)- CH ₂ -CH(-CH ₂ -	F-phenyl ··	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	NH ₂)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		NH ₂)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	F-aniline	p-C(=NH)NH ₂
		1 - 1 - 2/	<u> </u>	1

R ¹	_R⁵	E-J	1Z	Π.
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
		NH ₂)-		
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₂- NH₂)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂		NH ₂)- CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
		NH ₂)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -NH ₂)-	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	- н	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
,		NH ₂)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
		NH ₂)-	carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
		NH ₂)-	carboxylic acid	C/=NII/NII/
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	- н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0-502-1112	1 **	NH ₂)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		NH ₂)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
		NH ₂)-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	NH ₂)- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=O)NH ₂
0-3O ₂ -N11 ₂	**	NH ₂)-	carboxylic acid	111-0(-0)14112
o-SO ₂ -NH ₂	- н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
2 - 2 - 2		NH ₂)-	carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₁ -O-phenyl-amino	m-C(=O)NH ₂
		NH ₂)-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-502-14112		NH ₂)-	acid ester	, , ,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	NH ₂)-	acid ester	m-C(=NH)NH ₂
0-3O2-NT2	п	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl F-phenoxy- acetic acid ester	ווויכ(-ויוו)ויוו
o-SO ₂ -NH ₂	H -	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
3 3 2 3 3 3 3		NH ₂)-	acetic acid ester	5(
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		NH ₂)-	acetic acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		NH ₂)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
		NH ₂)-	acid ester	<u> </u>
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
2 207 1112	**	NH ₂)-	acetic acid ester	0(0)11112
				·

R ¹	R ⁵	E-J	Z	TL .
L	H		Methyl CH ₃ -O-phenoxy	,
o-SO ₂ -NH ₂	n n	CH ₂ -CH(-CH ₂ - NH ₂)-	acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0 002-14112		NH ₂)-	acetic acid ester	C(-C)NП2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		NH ₂)-		
O-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
		NH ₂)-		l • • • •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-807-8111	H	NH ₂)-	CH shamay: accident	m 77-KITTERY
o-SO ₂ -NH ₂	***	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH,
		NH ₂)-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		NH ₂)-		1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0-SU -NII	Н —	NH ₂)- CH ₂ -CH(-CH ₂ -	Cl-nhenovygoetic coid	m-C/=O\NIU
0-SO ₂ -NH ₂	**	NH ₂)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		NH ₂)-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
	<u> </u>	NH ₂)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	NH ₂)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
V-502-14112	**	NH ₂)-	Dir O-phonony accur acid	🔾 🔾 // 11/2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
		NH ₂)-	-	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
- 8/2 5/11	<u> </u>	NH ₂)-	2 = b = = = = = = = = = = = = = = = = =	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
,2	1	NH ₂)-	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		NH ₂)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	NH ₂)- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(≅O)NH ₂
0-502-14112	**	NH ₂)-	- nononjoumnoi	0(0)11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=0)NH ₂
		NH ₂)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
0.50 XIII	H	NH ₂)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C/=CNNIU
o-SO ₂ -NH ₂	**	CH ₂ -CH(-CH ₂ - NH ₂)-	C113-buenoxà-cmanor	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
		NH ₂)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
- 80 500	ļ.,	NH ₂)-	Matheway and	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	Н —	NH ₂)- CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0 002-1112		NH ₂)-	ether	~/17172
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		NH ₂)-	ether	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
- 8/0	<u></u>	NH ₂)-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
L	L	1 1112/-	oury outer	

R ¹	R ³	E-J	IZ	TL
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		NH ₂)-	ethyl ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-502-14112	1 **	NTI)		III-C(-C)/1112
L	İ	NH ₂)-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
		NH ₂)-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0-302-14112	1 **	C112-C11(-C112-		111-0(-0)14112
	L	NH ₂)-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=0)NH ₂
1		NH ₂)-	phenoxyethyl ether	1 ' -
o-SO ₂ -NH ₂	H -	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
0-30 ₂ -Nn ₂	l u	Cn ₂ -Cn(-Cn ₂ -	Memyr Cris-O-	III-C(-O)NH ₂
	I	NH ₂)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=0)NH ₂
1		NH ₂)-	phenoxyethyl ether	. ` ′ •
- 80 NII	+ CD	CH ₂	- honed	C/=NUNIO
o-SO ₂ -NH ₂	CH ₃		phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
0-302-14H2			C113-PHOHY1	m-od-initing
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	phenyl	m-C(=O)NH ₂
0-002-14112	C113		Clabouri	C/-C/NIU
o-SO ₂ -NH ₂	CH ₃	CH ₂	CI-phenyl .	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
	CH ₃		CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СП3	CH ₂		
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-aniline	p-C(=NH)NH ₂
0-3O ₂ -1411 ₂				
o-SO ₂ -NH ₂	CH ₃	CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
5-DC2-1112	CH,		Bn-O-aniline	
o-SO ₂ -NH ₂		CH ₂		p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-aniline	p-C(=O)NH ₂
O-SO ₂ -NH ₂	CH,	CH ₂	F-aniline	p-C(=O)NH ₂
0-502-1112	CII			
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-aniline	p-C(=O)NH ₂
a SO NH		CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	Cn ₂		III-C(-NII)NII ₂
I	1	1	acid	L
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂
	,	'	carboxylic acid	
La SOC NIII	17T	CH ₂	C mhonyl owers	m C(=NILINXILI
o-SO ₂ -NH ₂	CH,	UT12	F-phenyl-amino	m-C(=NH)NH ₂
I	1		carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		1 *	carboxylic acid	
- PO NIII	CO	CO		- CY-KILINKILI
O-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
,,	,		carboxylic acid	= = (
- 80 NII	CU	100		(Y-(NXIII)
o-SO ₂ -NH ₂	CH ₃	CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
1	1		acid	
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
	}		CH ₃ carboxylic acid	
- 00 300	1	L CHI		- C/- AND 111
o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenyl-amino	m-C(=0)NH ₂
1	1		carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenyl-amino	m-C(=0)NH ₂
0002 11112	~~,	2	carboxylic acid	5(5)
1	1	1	Carboxytic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂		m-C(=O)NH ₂

R'	R ³	E-J	TZ.	TL
	- 	1 L-3	carboxylic acid	
0-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-3O2-14112	CII3	C112	acid ester	111-0(-1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-302-14112	C113	1 5112	acid ester	1111/1112
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-502-14112	CII,	J.1.2	acid ester	111-0(1111)1111
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-002-1112	0113	J 22.2	acetic acid ester	1 0(1)
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0 00,1112,	""		acetic acid ester	2
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	,		acetic acid ester	` ′ *
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
		-	acid ester	\ ` ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0 00 1 1 1 1 2		2	acid ester	
o-SO ₂ -NH ₂	CH,	CH,	Methyl F-phenoxyacetic	m-C(=O)NH ₂
2 2	,		acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0 507 1.117	"",	2	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0 002 1112		33.2	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0 002 1.122	, J		acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH,	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH,	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0-502-1112	0113	01.2	acid	1 (1)
o-SO ₂ -NH ₂	CH ₃	CH,	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
0 002 1 122	J3		acid	'\ ', '
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenoxy- ethanol	m-C(=0)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-002-14112	J.1.3		ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0-002-14112	J.13	J.1.2	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0-002-14112	113	V122	ether	
0-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-002-14112	-113	\ \tag{\tau_2}	ethyl ether	
0-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-002-1412	J.1.3		ethyl ether	
L				<u> 1</u>

R ¹	R ⁵	E-J	Z	TL .
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	1 -	_	ethyl ether	' '
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
			Claboral	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-30 ₂ -141 ₂	CH ₃	CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂	Aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	Cn ₂ -Cn ₂		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	carboxylic acid CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	carboxylic acid Bn-O-phenyl amino	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	carboxylic acid Phenyl-amino carboxylic	m-C(=O)NH ₂
		CH ₂ -CH ₂	acid Cl-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃		carboxylic acid	` ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
				

R'	R ³	E-J	Z	L
			carboxylic acid	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl Phenoxyacetic acid ester	m-C(=0)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxyacetic acid ester	m-C(≡O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂

□R¹	R	E-J	Z	IL
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0 00, 112,	022,	01-2 01-2	ethyl ether	()
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=0)NH ₂
0 002 1.112	0223	J2 J2	ether	5(5)=
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
1 20,1112		332 3-2	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
		1 2	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
	02.3	3222	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-	m-C(=0)NH ₂
0 001 1112	0113	0112 0112	phenoxyethyl ether	(0)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Bn-O-	m-C(=0)NH ₂
0 002-1112	0.13		phenoxyethyl ether	122 0(0)2.222
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
0-30 ₂ -1411 ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂		m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	III-C(-NII)NII ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
			acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
,			carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
	"		carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	"		carboxylic acid	' ' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
• •			carboxylic acid	' ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
			acid	` ' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
	1		carboxylic acid	' ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=O)NH ₂
72	'		carboxylic acid	1 ' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	` ′
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	,		carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
		1 2 2	1	

R¹	R⁵	E-J	Z	L
	<u> </u>		carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₃	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH2-CH2-CH2	CH ₃ -phenoxy-ethanol	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH2-CH2	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH2-CH2	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH2-CH2-CH2	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂

R¹ R⁵	E-J	Z	T
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		ethyl ether	' ' '
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
SO NIII	CH ₂ -CH(-CH ₃)-		m-C(=NH)NH ₂
0-SO ₂ -NH ₂ CH ₃ 0-SO ₂ -NH ₃ CH ₃	CH CH CH	phenyl	m-C(=NH)NH ₂
	CH ₂ -CH(-CH ₃)-	Cl-phenyl	m-C(-Nn)Nn ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	phenyl	$m-C(=O)NH_2$
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CI-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH2-CH(-CH3)-	Bn-O-phenyl	m-C(=O)NH,
0-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=NH)NH ₂
0-30 ₂ -NH ₂ CH ₃		CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -amme	
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃	CH ₂ -CH(-CH ₃)-	carboxylic acid Bn-O-phenyl-amino	m-C(=O)NH ₂

R ¹	TR ³	I E-J	Z	L
	-	 	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0 002 1122	0223	5112 511(5113)	acid ester	1 0(1)2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0 002 1112	011,	511, 511(5113)	acid ester	0()
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0 002 1.1.2	J	0112 011(0113)	acid ester	1 0(1)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 002 1112	••••	0117 011(0113)	acetic acid ester	0(
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-002-1112	C113	0112 011(0113)	acetic acid ester	1 0(1111):112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-002-1112	\ \tag{2.13}	0112 011(-0113)-	acetic acid ester	111 0(1111)11112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-502-1112	C113	0112-011(-0113)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH3)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-502-14112	C113	C112-C11(-C113)-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-3O ₂ -NO ₂	C113	C112-C11(-C113)-	acid ester	111-0(-0)14112
- CO NIH	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	Cn ₂ -Cn(-Cn ₃)-	acetic acid ester	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0-3U ₂ -NII ₂	Cn,	CH ₂ -CH(-CH ₃)-	acetic acid ester	111-0(-0)14112
- SO NIH	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CII3	C112-C11(-C113)-	acetic acid ester	111-0(-0)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	m-C(=NH)NH ₂
	CH ₁	CH ₂ -CH(-CH ₃)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH(-CH ₃)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃		CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)- CH ₂ -CH(-CH ₄)-	CH ₃ -phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	Cn ₂ -Cn(-Cn ₃)-	acid	III-C(-IVII)IVII ₂
- 0/2 200	CII	CH ₂ -CH(-CH ₃)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃		Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	 , , , , , , , , , , , , , , 	· cur cur cur		((-()))(1)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
	1	<u> </u>	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
i		L	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
1	_		ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
- .		• "	ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
			ethyl ether	
· · · · · · · · · · · · · · · · · · ·				

R'	R	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl	m-C(=NH)NH ₂
0-3U ₂ -NII ₂				
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-502-1112	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃			
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl-amino	m-C(=O)NH ₂

R ⁱ	R ⁵	E-J	Z	L
			carboxylic acid	_
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0 002 1112	O3	0117 011(11112)-	acid ester	111-5(1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0 007 1.22	0,		acid ester	5(1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0 002 1112	o,	011, 011(1111,)	acid ester	1 0(1.1.1)1.1.12
o-SO ₂ -NH ₂	CH,	CH2-CH(-NH2)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0.002.1.102	,,		acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		2	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-NH2)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
• •		• ` •	acetic acid ester	, , ,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Phenoxyacetic	m-C(=O)NH ₂
· -	_	, -	acid ester	,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
			acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
			acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-NH2)-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
	<u> </u>		acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenoxy-acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
			acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
			acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenoxy-ethanol	m-C(=0)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
- 805 - 803		CO CO NO	ether Mathyl Clahanayyathyl	- CY-NITIVEIT
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
- 50 MI		CILL CILL SITE	ether	- C/-NUVNU
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
- 80 80		CD CD/ KILL	ether Methyl CH mhonovy	- C/-NUVNU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
a SOL NIP		רט רטר אט ז	ethyl ether	m C/=NU/NU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
	L		cm'a emer	

R'	R ³	E-J	TZ	TL .
	ľ	. — -	, —	l —
o-SO ₂ -NH ₂	СН,	CH₂-CH(-NH₂)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=NH)NH ₂
0-30 ₂ -NH ₂				
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	CH₃-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Aniline	p-C(=O)NH ₂
	CH ₃	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂			F-aniline	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-		p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenyl-amino	m-C(=O)NH ₂
				

o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- delivery in phenoxy- acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- phenoxy- acetic acid ester	R ¹	TR ³	E-J	ız ·	L
CH3		 		carboxylic acid	
Section	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	СН,		acid ester	
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH,			m-C(=NH)NH ₂
acetic acid ester	o-SO ₂ -NH ₂	CH,		acetic acid ester	
acetic acid ester			1	acetic acid ester	
o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- Methyl Cl-phenoxyacetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- Methyl Cl-phenoxyacetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₃-CH(-Bn)- Methyl CH₃-phenoxy- acetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- Methyl CH₃-phenoxy- acetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- Methyl Bn-O-phenoxy acetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- Phenoxyacetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- CH₂-Dhenoxy-acetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- CH₃-Dhenoxy-acetic acid m-C(=O)NH₃ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- CH₃-Dhenoxy-acetic acid m-C(=O)NH₃ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)- CH₃-Dhenoxy-acetic acid m-C(=				acetic acid ester	
o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-Methyl F-phenoxyacetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-Methyl CH₃-phenoxy-acetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-Methyl CH₃-O-phenoxy acetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-Phenoxyacetic acid m-C(=NH)NH₂ m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-Phenoxyacetic acid m-C(=O)NH₂ m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-Phenoxyacetic acid m-C(=O)NH₂ m-C(=O)NH₂ <td></td> <td>1</td> <td></td> <td>acid ester</td> <td>, , -</td>		1		acid ester	, , -
acid ester		1		acid ester	
acetic acid ester G-SO ₂ -NH ₂				acid ester	' ' -
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH(-Bn)-Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CI-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₃ CH ₃ CH ₂ -CH(-Bn)-CI-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CPhenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ <		1	}	acetic acid ester	
acetic acid ester				acetic acid ester	`
G-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- F-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CP-phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH(-Bn)- CH ₃ -D-phenoxyethanol m-C(=O)NH	l		1	acetic acid ester	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- F-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -D-phenoxy-acetic acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ <				Phenoxyacetic acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- C-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -Denoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy acetic acid m-C(=				Cl-phenoxy-acetic acid	
o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-acid acid acid m-C(=NH)NH₂ acid o-SO₂-NH₂ CH₃ CH₂-CH(-Bn)-Bn-O-phenoxy acetic acid m-C(=NH)NH₂ o-SO₂-NH₂ m-C(=NH)NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂ o-SO₂-NH₂ o-SO₂-NH₂ o-SO₂-NH₂ o-SO₂-NH₂ m-C(=O)NH₂ o-SO₂-NH₂				F-phenoxy- acetic acid	
acid acid acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic caid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic caid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -Phenoxy-ethyl m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -Phenoxy-ethyl m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -Phenoxy-ethyl m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -Phenoxy- m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH	o-SO ₂ -NH ₂	CH,		CH ₃ -phenoxy-acetic acid	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CI-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -Bn-CP-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -Bn-CP-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CP-phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=O)NH ₂			• • •	acid	`
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -D-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂					`
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₂ -Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₂ -Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -Phenoxy-ethanol	o-SO ₂ -NH ₂				
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- acid CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ acid o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxy-ethanol m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl Cl ₃ -phenoxy-ethyl m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Met					
acid	o-SO ₂ -NH ₂	CH ₃			
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Cl-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -Phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂				acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-F-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CPhenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CPhenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CPhenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-CPhenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- F-phenoxy- ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Cl-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy-	o-SO ₂ -NH ₂				$m-C(=NH)NH_2$
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -Denoxy-ethanol m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -Denoxy-ethanol m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Denoxy-CH(-B					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CI-phenoxy- ethyl m-C(=NH)NH ₂ ether C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CI-phenoxy- ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-	o-SO ₂ -NH ₂		CH ₂ -CH(-Bn)-	F-phenoxy- ethanol	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CI-phenoxy- ethyl m-C(=NH)NH ₂ ether C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CI-phenoxy- ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)-				CH ₃ -phenoxy-ethanol	
o-SO2-NH2 CH3 CH2-CH(-Bn)- Phenoxyethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- CI-phenoxyethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- CH3-phenoxy-ethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- CH3-O-phenoxy-ethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl phenoxy-ethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl Cl-phenoxyethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl F-phenoxy-ethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl CH3-phenoxy-ethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl CH3-phenoxy-ethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl CH3-phenoxy- m-C(=NH)NH2	o-SO ₂ -NH ₂			CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO2-NH2 CH3 CH2-CH(-Bn)- Phenoxyethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- CI-phenoxyethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- CH3-phenoxy-ethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- CH3-O-phenoxy-ethanol m-C(=O)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl phenoxy-ethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl Cl-phenoxyethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl F-phenoxy-ethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl CH3-phenoxy-ethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl CH3-phenoxy-ethyl m-C(=NH)NH2 o-SO2-NH2 CH3 CH2-CH(-Bn)- Methyl CH3-phenoxy- m-C(=NH)NH2					
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CI-phenoxyethyl ether m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂			CH ₂ -CH(-Bn)-	Phenoxyethanol	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂		CH ₃			
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃		F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl Cl-phenoxy-ethyl ether m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -o-phenoxy- m-C(=NH)NH ₂ ethyl ether		CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Bn-O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂					m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-Bn)- Methyl phenoxy-ethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-Bn)- Methyl Cl-phenoxyethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- ethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂ ethyl ether					m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl F-phenoxy-ethyl m-C(=NH)NH ₂ ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ ethyl ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂			CH ₂ -CH(-Bn)-	ether	
ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂ ethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂				ether	` ′ -
ethyl ether o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-Bn)- Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂				ether	
			- ' '	ethyl ether]
	o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-		m-C(=NH)NH ₂

R ¹	R³	E-J	TZ	TL
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CI-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-CH₂- COOCH₃)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CI-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CI-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-aniline	p-C(=O)NH ₂
L				· · · · · · · · · · · · · · · · · · ·

□R¹	⊢ R ⁹	TE-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0-502-14112	\ \tag{113}	COOCH ₃)-	acid	Pr-0(-1411)14115
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
- 22	'	COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
-		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		COOCH ₃)-	carboxylic acid	- C/-CVNIII
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CI-phenyl-amino	m-C(=O)NH ₂
0-502-14112	C113	COOCH ₃)-	carboxylic acid	111-0(0)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
0 002 1112	J.,	COOCH ₃)-	carboxylic acid	()
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
	,	COOCH ₃)-	carboxylic acid	` ′ ′
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		COOCH ₃)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-30 ₂ -Nn ₂	C113	COOCH ₃)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-502-1112	0113	COOCH ₃)-	acetic acid ester	0(
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		COOCH)-	acetic acid ester	` -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		COOCH ₃)-	acetic acid ester	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		COOCH ₃)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
- SO NO	CP	COOCH ₃)- CH ₂ -CH(-CH ₂ -	acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	COOCH ₃)-	Methyl F-phenoxyacetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-002-14112	J.1.3	COOCH ₃)-	acetic acid ester	5(5),,,,,,,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		COOCH ₃)-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		COOCH ₃)-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
- DO NO.		COOCH ₃)-	Name and the second	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
- SV ND		COOCH ₃)-	CH phenovy scatic soid	m (Y=NIU\XIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH,
0-30 ₂ -14П ₂	113	COOCH ₃)-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-002-14112		COOCH ₃)-	o promony about actu	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
	,	COOCH)		` ` ` `
L				

R ¹	R³	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -Q-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₁)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₁)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₁)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl	m-C(=NH)NH ₂
				

_		
1	77	

R ¹	R ³	E-J	Z	· · · · · · · · · · · · · · · · · · ·
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		CH ₂ -OH)-	-	' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO₂-NH₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-aniline	p-C(=O)NH ₂
O-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
		·	 	

R ¹	⊤R⁵	TE-J	TZ	П.
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		CH ₂ -OH)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Phenoxyacetic	m-C(=O)NH ₂
		CH ₂ -OH)-	acid ester	000000
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₃ -OH)-	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -OH)- CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
		CH₂-OH)-	<u> </u>	L

PCT/US00/14194

R¹	⊺R³	E-J	I Z	I L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		CH ₂ -OH)-	' ' '	` ´ -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂

R ¹	R ⁵	E-J	Z	L
		C(=0)-N-		
- 9/1 NIB		morpholino)-	F showy!	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	F-phenyl	III-C(-O)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH,-CH(-CH,-	CH ₃ -phenyl	m-C(=O)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	CH ₃ -O-phenyl	m-C(=O)NH ₂
	1	morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH,-CH(-CH,-	Bn-O-phenyl	m-C(=O)NH ₂
		C(=O)-N-	1	` ´ •
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
		C(=O)-N- morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
0 002-11112	52.7,	C(=0)-N-		
	ŀ	morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
		C(=0)-N-	·	
- 80 NH	CH,	morpholino)- CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Cn ₃	C(=0)-N-	Cri3-amme	p-C(-1411)1411 ₂
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
• •		C(=O)-N-	_	
		morpholino)-	•	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	Bn-O-aniline	p-C(=NH)NH ₂
	l	morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
0-502 1112	J,	C(=O)-N-		
	İ	morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
		C(=0)-N-		
a SO NID	CH ₃	morpholino)- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Cn ₃	C(=0)-N-	r-amme	p-C(-0)/41/2
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
• •		C(=0)-N-	_	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	CH ₃ -O-aniline	p-C(=O)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
	,	C(=O)-N-		' ' '
		morpholino)-	1	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		C(=O)-N- morpholino)-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
0 002 1112		C(=0)-N-	carboxylic acid	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
	1	C(=0)-N-	carboxylic acid	
- 80 3111		morpholino)-	CH phonyl amina	m (Y=NILINKILI
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
		morpholino)-	Carboxyne acid	
ı	I	1	_l	1

C(=0)-N-morpholino)- CH ₂ -CH(-CH ₂ -C(=0)-N-morpholino)- C-SO ₂ -NH ₂	o-SO ₂ -NH ₂	I R ³	E-J	Z	L
morpholino -		CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0-SO2-NH2 CH3 CH-CH-CH2-C(=O)-N-morpholino)-morpholino)-morpholino-carboxylic acid m-C(=NH)NF-creation carboxylic acid m-C(=NH)NF-creation-carboxylic acid m-C(=NH)NF-creation-carboxylic acid m-C(=O)NH2-creation-carboxylic aci		ĺ		carboxylic acid	
C(=O)-N- morpholino)- Carboxylic acid m-C(=O)NH2 CH3-CH1-CH2- C(=O)-N- morpholino)- CH3-CH1-CH2- C(=O)-N- morpholino)- CH3-CH1-CH3- C(=O)-N- morpholino)- CH3-CH1-CH3- C(=O)-N- morpholino)- CH3-CH1-CH3- C(=O)-N- morpholino)- C-SO2-NH2					
O-SO ₂ -NH ₂	$0-SO_2-NH_2$	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
O-SO ₂ -NH ₂		ĺ	(=0)-N-	carboxylic acid	
C(=O)-N-	- PO NH	CH		Phonyl omino corpovylic	m (/=0)NH
morpholino - CH ₃	0-5U ₂ -NH ₂	Cn ₃	C(=0) N		III-C(-O)NII2
O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ - (C=O)-N- (C=O)-NH ₂ (C=O)-NH ₂ (C=O)-N- (C=O)-N- (C=O)-NH ₂ (C=O)-N- (C=O)-NH ₂ (C=O)-N- (C=O)-N- (C=O)-NH ₂ (C=O)-N- (C=O)-N- (C=O)-N- (C=O)-NH ₂ (C=O)-N-				acid	1
C(=O)-N- morpholino)- CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ -CH(-C	o-SO-NH.	СН		Cl-phenyl-amino	m-C(=O)NH ₃
morpholino - CH ₂ -CH(-CH ₂ - F-phenyl-amino carboxylic acid m-C(=O)NH ₂ CH ₃ -CH(-CH ₂ - CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ CH ₃ -CH(-CH ₂ - CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ CH ₃ -CH(-CH ₂ - CH ₃ -O-phenyl-amino carboxylic acid m-C(=O)NH ₂ CH ₃ -CH(-CH ₂ - CH ₃ -O-phenyl-amino carboxylic acid m-C(=O)NH ₂ CH ₃ -CH(-CH ₂ - CH ₃ -O-phenyl-amino carboxylic acid m-C(=O)NH ₂ CH ₃ -CH(-CH ₂ - CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino - acid ester m-C(=NH)NH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino - acid ester m-C(=NH)NH ₃ CH ₃ -CH(-CH ₂ -	0 007 1117	,		carboxylic acid	1 - (-)-,2
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₃ -Dhenyl-amino carboxylic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -Dhenyl-amino carboxylic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -Dhenyl-amino carboxylic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₃ -Dhenyl-amino carboxylic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH		- [
C(=O)-N- morpholino)-	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- CH₂-CH(-CH₂- C(=O)-N- morpholino)- CH₃-O-phenyl-amino carboxylic acid m-C(=O)NH₂ m-C(=O)NH₂ O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methyl phenoxy-acetic acid ester m-C(=NH)NF O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methyl CI-phenoxyacetic acid ester m-C(=NH)NF O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methyl F-phenoxy- acetic acid ester m-C(=NH)NF O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methyl CH₃-phenoxy- acetic acid ester m-C(=NH)NF O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methyl CH₃-phenoxy- acetic acid ester m-C(=NH)NF O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methyl CH₃-O-phenoxy- acetic acid ester m-C(=NH)NF O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NF O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methyl Phenoxyacetic acid ester m-C(=NH)NF O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂- C(=O)-N- morpholino)- Methy				carboxylic acid	
C(=O)-N-morpholino)- CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- C-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(=O)-N-morph					
morpholino - CH ₂ -CH(-CH ₂ - CH ₃ -O-phenyl-amino carboxylic acid m-C(=O)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(-CH			C(=0)-N-	carboxylic acid	
C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(-CH			morpholino)-		
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CHO-N-morpholino)-CH ₂ -CH(-CH ₂ -CHO-N-morpholino)-CH ₂ -CHO-N-	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=O)NH₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH		İ		carboxylic acid	
C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃	- N/A NIII	CU		Da O about sains	- C/-()NIH
morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃	0-5U ₂ -NH ₂	Cn ₃			III-C(-O)NII ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂				carboxyne acid	
C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH(-CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -CH(-CH	0-SO-NH.	CH.	CH-CH(-CH-	Methyl phenoxy-acetic	m-C(=NH)NH
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH	0-502-14112	0113	C(=0)-N-		(,
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃					
C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH ₂ m-C(=NH)NH ₃ m-C(=NH)NH ₄ m-C(=NH)NH ₄ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- morpholino)-	o-SO ₂ -NH ₂	CH ₃		Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃			C(=O)-N-	acid ester	1 -
C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N-morpholino)-			morpholino)-		
morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)-	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃			C(=0)-N-	acid ester	
C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Cetic acid ester Methyl CH ₃ -O-phenoxy-acetic acid ester morpholino)- Methyl Bn-O-phenoxy-acetic acid ester m-C(=NH)NF-C(
morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH acetic acid ester m-C(=NH)NH acetic acid ester	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O-phenoxy- acetic acid ester O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O-phenoxy acetic acid ester Methyl Bn-O-phenoxy acetic acid ester Methyl Bn-O-phenoxy acetic acid ester Methyl Bn-O-phenoxy acetic acid ester Methyl Phenoxyacetic m-C(=NH)NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Phenoxyacetic acid ester morpholino)-			(=U)-N-	acetic acid ester	
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - morpholino)- CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ acid ester	~ C() NIU	 		Methyl CH - O-phenovy	m C(=NH\NH
o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- morpholino)- methyl Bn-O-phenoxy m-C(=NH)NH ₂ acetic acid ester m-C(=O)NH ₂	0-3O ₂ -1411 ₂	CII3	CII2-CII(-CII2-		111-0(1111)1112
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - morpholino)- CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH ₂ acid ester			morpholino)-	accino acida costos	
C(=O)-N- acetic acid ester morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N- acid ester morpholino)- Methyl Phenoxyacetic m-C(=O)NH ₂ acid ester	o-SONH.	СН		Methyl Bn-O-phenoxy	m-C(=NH)NH
morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Methyl Phenoxyacetic m-C(=O)NH ₂ acid ester	0 002 1122	011,	C(=0)-N-		
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Phenoxyacetic m-C(=O)NH ₂ c(=O)-N- acid ester morpholino)-			morpholino)-		
C(=O)-N- acid ester morpholino)-	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
				acid ester	İ
		1			
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyacetic m-C(=O)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
C(=O)-N- acid ester		1	C(=0)-N-	acid ester .	
morpholino)-	- 50		morpholino)-	Mathyl K mhanassanasti a	STO CYCONNILL
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl F-phenoxyacetic m-C(=O)NH ₂ c(=O)-N- acid ester	0-5U ₂ -NH ₂	CH ₃	C(=O) N		m-C(=O)NH ₂
morpholino)-		1		aciu esici	
	O-SO-NH	- CH.		Methyl CHphenovy-	m-C(=O)NH ₂
C_3 C_4 C_5	0-002-14112	J.113			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
morpholino)-			morpholino)-		
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O-phenoxy m-C(=O)NH ₂		CH.		Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
C(=0)-N- acetic acid ester	o-SO ₂ -NH ₂	,			` ′ ′
morpholino)-	o-SO ₂ -NH ₂		morpholino)-		
		4	CH ₃ -CH(-CH ₃ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
C(=0)-N- acetic acid ester		CH ₃			
morpholino)-		CH,	C(=O)-N-	acetic acid ester	
	o-SO ₂ -NH ₂		C(=O)-N- morpholino)-		
C(=O)-N-		CH ₃	C(=O)-N- morpholino)- CH ₂ -CH(-CH ₂ -	acetic acid ester Phenoxyacetic acid	m-C(=NH)NH ₂

R [†]	R ⁵	E-J	Z	L
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CI-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO₂-NH₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N- morpholino)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂

R'	I R ⁵	E-J	1Z	TL
	12	C(=O)-N-	L	
		(=U)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
		C(=O)-N-	į.	
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
		C(=O)-N-	İ	
		morpholino)-	†	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
	1 1	C(=O)-N-	ether	` ' -
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
0 007 1.22	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	C(=O)-N-	ether	1 0(1.1.2)2.1.2.2
		morpholino)-	l care.	1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0-302-14112	C113	C(=O)-N-	ether	III-C(-1411)1411 ₂
1:			emei	
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		C(=O)-N-	ethyl ether	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		C(=0)-N-	ethyl ether	
		morpholino)-		1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
-	_	C(=O)-N-	ethyl ether	
j		morpholino)-	1	1
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
	' '	C(=O)-N-	ether	` ′ ′
		morpholino)-	1	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
0-002-1112	C113	C(=0)-N-	ether	1 0(0)
		morpholino)-	Cuici	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0-302-1112	C113	C(=0)-N-	ether	111-0(-0)1112
į		morpholino)-	eulei	
- 60 - 501			Madrid City	C/()\\
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N-	Methyl CH ₃ -	m-C(=O)NH ₂
	ŀ		phenoxyethyl ether	<u>'</u>
60 300		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
		C(=0)-N-	phenoxyethyl ether	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
	1	C(=0)-N-	phenoxyethyl ether	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
	_	$CH_2-S(O)_2-CH_3$	<u></u>	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
_		CH ₂ -S(O) ₂ -CH ₃	1	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
	1	CH_2 -S(O) ₂ -CH ₃	-	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
	3	CH ₂ -S(O) ₂ -CH ₃	'' '	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
11	,	CH ₂ -S(O) ₂ -CH,	,, -	(
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
0-002-14112	U113	CH ₂ -CH(-CH ₂ -CH ₃ -CH	Dir-O-phony1	1111/1112
2 60. Am	CD		nhanyl	- C/-(VNI)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	Clare -	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
	[CH_2 -S(O) ₂ -CH ₃	<u>}</u>	1

IR ¹	□R ⁵	E-J	Z	TT
		1	· 	TO CHONNE
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CI-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -CH ₃ -CH ₃	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
		1 2 - (- /4 3	1	

rr'	⊤R³			
1	<u> </u>	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		CH_2 - $S(O)_2$ - CH_3	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		CH_2 -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
		CH_2 - $S(O)_2$ - CH_3	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
		CH_2 - $S(O)_2$ - CH_3	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		CH_2 - $S(O)_2$ - CH_3	acetic acid ester	_
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	1	CH_2 -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH,-CH(-CH,-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
• •		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	` ´ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
0.007	,	CH ₂ -S(O) ₂ -CH ₃		(
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0.0021112	022,	CH ₂ -S(O) ₂ -CH ₃	or phonomy moone using	= = = = = = = = = = = = = = = = =
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-302-14112	C113	CH ₂ -S(O) ₂ -CH ₃	1 -phenoxy- accue acid	111-0(1111)1112
O SO NIH	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CII3	CH ₂ -S(O) ₂ -CH ₃	C113-phenoxy-acene acid	
A SOL NIS		CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃		acid	
- CO MI		CH ₂ -S(O) ₂ -CH ₃		m-C(=NH)NH,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	III-C(-NII)NII ₂
00 101		CH ₂ -S(O) ₂ -CH ₃	De	C/-CVXIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		- C/ C/NIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		O' O'NI
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		CH_2 - $S(O)_2$ - CH_3		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
		CH_2 - $S(O)_2$ - CH_3		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
		CH_2 - $S(O)_2$ - CH_3		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
1		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
	}	CH_2 -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
•	1	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
1	1	$CH_2-S(O)_2-CH_3$		1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
	1	$CH_2-S(O)_2-CH_3$	1	1
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
	1 .	CH ₂ -S(O) ₂ -CH ₃	1 .	` ','
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
,,	ļ ,	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
5 552 1.112	,	CH ₂ -S(O) ₂ -CH ₃		
L		123	<u> </u>	

N	□R¹	TR ⁵	TE-J	Z	TL
CH_S(O)_CH_S		t		I —	1 —
CH ₂ S(O ₂ CH ₃ ether CH ₂ S(O ₂ CH ₃ ether CH ₂ S(O ₂ CH ₃ CH ₃ CH(CH ₂ -CH ₄ S(O ₂ CH ₃ ether CH ₂ S(O ₂ CH ₃ CH ₃ CH(CH ₂ -CH ₄ S(O ₂ CH ₃ ether CH ₂ S(O ₂ CH ₃ ether ether CH ₂ S(O ₂ CH ₃ ether ether CH ₂ S(O ₂ CH ₃ ether et			CH ₂ -S(O) ₂ -CH ₃		1
CH3	0-SO ₂ -NH ₂	CH ₃			m-C(=NH)NH ₂
o-SO2-NH1 CH3 CH3-CH(-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
O-SO ₂ -NH ₁	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -EHyle there m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₄	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₂ -CH ₅ ethyl ether methyl Phenoxyethyl ether m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₅ dethyl CH ₂ -Phenoxyethyl ether m-C(=O)NH ₂ dethyl CH ₃ -CH ₄ -CH ₄ -CH ₅ -CH ₄ -CH ₄ -CH ₅ -CH ₄ -CH ₄ -CH ₅ -CH ₄	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₇ -CH ₇ -S(O ₃ -CH ₃) ether cher m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -CH ₁ -S(O ₃ -CH ₃) ether cher Methyl CI-phenoxyethyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -CH ₄ -Methyl F-phenoxyethyl ether CH ₂ -S(O) ₂ -CH ₃ ether m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₄ -Methyl CH ₃ -Denoxyethyl ether CH ₂ -S(O) ₂ -CH ₃ ether CH ₃ -S(O) ₂ -CH ₃ ether CH ₃ -S(O) ₂ -CH ₃ ether CH ₃ -S(O ₃ -CH ₃ ether) m-C(=O)NH ₂ m-C(=O)NH ₂ ether m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Denoxyethyl ether m-C(=O)NH ₂ ether (CH ₂ -S(O) ₂ -CH ₃ phenoxyethyl ether m-C(=O)NH ₂ m-C(=O)NH ₂ ether m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Denoxyethyl ether phenoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Denoxyethyl ether phenoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Denoxyethyl ether phenoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Denoxyethyl ether phenoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Denoxyethyl ether phenoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₄ -CH ₄ -CH ₂ -Denoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -S(O) ₂ -CH ₃ bether Methyl Cl-phenoxyethyl ether m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -S(O) ₂ -CH ₃ bether Methyl CH ₂ - bether m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ bether m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Dephenoxyethyl ether m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Dephenoxyethyl ether m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Dephenoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Dephenoxyethyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Dephenyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Pehenyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Pehenyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Pehenyl ether m-C(=NH)NH ₂ m-C(=NH)NH ₂ <td>o-SO₂-NH₂</td> <td>CH₃</td> <td>CH₂-CH(-CH₂-</td> <td>Methyl Phenoxyethyl</td> <td>m-C(=O)NH₂</td>	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-SO2-NH2 CH3 CH3-CHI-CH3-ether Methyl F-phenoxyethyl ether m-C(=O)NH2-ether 0-SO2-NH2 CH3 CH3-CHI-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Methyl ether CH ₂ -CH) phenoxyethyl ether CH ₂ -CH(-CH ₂ -CH ₂ -CH) phenoxyethyl ether CH ₂ -CH(-CH ₂ -CH ₂ -CH) phenoxyethyl ether CH ₂ -S(O ₂ -CH ₃ phenoxyethyl ether CH ₂ -S(O ₂ -CH ₃ phenoxyethyl ether CH ₂ -S(O ₂ -CH ₃ phenoxyethyl ether CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH(-CH ₂ -DH) phenoxyethyl ether CH ₂ -CH) phenoxyethyl ether CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -S(O ₂ -CH ₃) phenoxyethyl ether m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ Methyl Bn-O- phenoxyethyl ether m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - phenyl phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - phenyl phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - Phenyl phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - CH ₃ - Phenyl phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - CH ₃ - Phenyl phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - Phenyl phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - Phenyl phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - Phenyl phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - Phenyl phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - Phenyl phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ - Phenyl phenyl m-C(=O)NH ₂ <	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH ₁ -CH ₂ -Dyn-CH ₃ phenoxyethyl ether CH ₂ -S(O) ₂ -CH ₃ phenoxyethyl ether Ph	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) p-C(=NH)NH ₂ </td <td>o-SO₂-NH₂</td> <td>CH₃</td> <td>CH₂-CH(-CH₂-</td> <td>Methyl Bn-O-</td> <td>m-C(=O)NH₂</td>	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane)-lexane CI-phenyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane CH ₃ -O-phenyl m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane bn-O-phenyl m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane p-C(=NH)NH ₂ o-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-h	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane CH ₃ -O-phenyl m-C(=NH)NH ₂ m-C(=NH)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane CH ₃ -O-phenyl m-C(=NH)NH ₂ m-C(=NH)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ m-C(=O)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ m-C(=O)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ m-C(=O)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ m-C(=O)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ m-C(=O)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ m-C(=O)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂ hexane O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂ hexane <td>o-SO₂-NH₂</td> <td>СН,</td> <td>CH₂-CH(-CH₂-</td> <td>F-phenyl</td> <td>m-C(=NH)NH₂</td>	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane CH ₃ -CH(-CH ₂ -hexane)-hexane m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane CI-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane p-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane) p-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane)-lexane m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane CI-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane CH ₃ -phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane CH ₃ -O-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane Bn-O-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane Aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane CI-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane CH ₃ -aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane CH ₃ -O-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -lexane)-lexane CH ₃ -O-aniline p-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane)-hexane CI-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane F-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane CH ₃ -O-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane Bn-O-phenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane Amiline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane CI-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane CH ₃ -aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane CH ₃ -O-aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-hexane P-C(=NH)NH ₂	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
hexane h	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenyl	` ′ •
hexane h	o-SO ₂ -NH ₂	1	hexane)-		
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -hexane)-h			hexane)-	1	
hexane hexane			CH ₂ -CH(-CH ₂ - hexane)-		1
hexane - o-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃	hexane)-	1	
hexane - o-SO ₂ -NH ₂	o-SO ₂ -NH ₂	СН,	hexane)-	Aniline	
hexane - O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃	hexane)-		p-C(=NH)NH ₂
hexane - O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	СН,	hexane)-	·	p-C(=NH)NH ₂
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -aniline	p-C(=NH)NH ₂
	o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - hexane)-	-	' ' '
	o-SO ₂ -NH ₂	СН,		Bn-O-aniline	p-C(=NH)NH ₂

R¹	TR ³	TE-J	TZ	IL
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=0)NH ₂
0 00,,	52.1,	hexane)-		F 0(0)2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
0-502-14112	CII,	hexane)-	C113-anninc	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=0)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
		hexane)-		(/->))
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
0-502-1112	J.1.3	hexane)-	carboxylic acid	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0-302-1112	CII,	hexane)-	carboxylic acid	m-C(1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
•		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
- 8/0 - 8/1	 	hexane)- CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH,
o-SO ₂ -NH ₂	CH ₃	hexane)-	carboxylic acid	III-C(-O)IVII2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
0 207 2 22	,	hexane)-	carboxylic acid	' '
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
0 50, 1.1.,	,	hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		hexane)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-502-14112	C113	hexane)-	acid ester	0()
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
-		hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-002-11112	\ \tag{2.13}	hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
_		hexane)-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-002-14112	\ \tag{2.23}	hexane)-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
SO NIL		hexane)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Bn-O-phenoxy	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		hexane)-		

R ¹	⊤R³	E-J	IZ	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
		hexane)-		, ,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CĤ(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		hexane)-		`
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -hexane)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	hexane)- CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	hexane)- CH ₂ -CH(-CH ₂ -	ether Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	hexane)- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	_	hexane)- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	hexane)-	ethyl ether	` ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
L				

R ¹	TR ⁵	TE-J	Z	TL
_ =	1		Methyl F-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	ether	III-O(-O)INII2
- SO NO	+ CB	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	hexane)-	Methyl CH ₃ - phenoxyethyl ether	111-0(-0)14112
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
0-30 ₂ -NII ₂	CI13	hexane)-	phenoxyethyl ether	111-0(-0)14112
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
0-30 ₂ -111 ₂	CII3	hexane)-	phenoxyethyl ether	111-0(-0)1112
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
0-302-14112	C113	(HO-phenyl))-	phenyi	111-0(-1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
0-302-14112	C113	(HO-phenyl))-	Ci-phenyi	111-0(1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
0-502-1112	C113	(HO-phenyl))-	1 -pilonyi	111 0(1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
0-502-1112	C113	(HO-phenyl))-	Cris-phony:	0(1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-30 ₂ -1411 ₂	C113	(HO-phenyl))-	Cris-O-phonyr	0(1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
0-302-14112	C113	(HO-phenyl))-	Bii-O-phonyi	0(1111)1112
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
0-502-1112	C113	(HO-phenyl))-	phonyi	o(o) ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
0-502-1112	C113	(HO-phenyl))-	Ci-phony:	III O(0)1112
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
0-302-14112	C113	(HO-phenyl))-	1 -phenyi	111-0(0):1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
0-3U ₂ -NII ₂	CII3	(HO-phenyl))-	Cityphonyi	III-O(O)IVII2
a SO NH	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CII3	(HO-phenyl))-	C113-O-phenyi	111-0(-0)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
0-302-14112	CII3	(HO-phenyl))-	Bil-O-pilcity:	111-0(0)1112
- SO NH	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CI13	(HO-phenyl))-	Amine	p-C(-1411)14112
a SO NH	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	C113	(HO-phenyl))-	Ci-ammic	p-C(1111)11112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
0-302-14112	CII3	(HO-phenyl))-	1 -aminic	p=0(1111)11112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
0-302-1112	CI13	(HO-phenyl))-	Cris unima	P 0(1.11).1112
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-502-1112	CII,	(HO-phenyl))-	0113 0 41111111	P 0(1.11.)1.11.2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
0 002 1112	0113	(HO-phenyl))-		F 5(1.1.1)1.1.12
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
0 002 1112	J,	(HO-phenyl))-		P = (=)= ==2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0 002 1.22	011,	(HO-phenyl))-		F -(-)2
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	F-aniline	p-C(=O)NH ₂
0 00,2 1.112	J,	(HO-phenyl))-		F -(-)2
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
550, 111,	, ····,	(HO-phenyl))-	,	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
	J,	(HO-phenyl))-	1,	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0.002.1112	J3	(HO-phenyl))-		F 5(5)2.122
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0-002-11112	J.1.3	(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH,
0-002-11112	J.1.3	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
0-502-14112	\ \frac{1.1.3}{1.1.3}	(HO-phenyl))-	carboxylic acid	
L		1 (220 Parental)	1	

R ¹	TR'	E-J	Z	L
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
	J.23	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
		(HO-phenyl))-	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
- SO NIII	CU	(HO-phenyl))-	carboxylic acid CH ₃ -phenyl-amino	m-C(=0)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	carboxylic acid	111-C(-O)N112
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
0-302-14112	City	(HO-phenyl))-	carboxylic acid	m-0(0)1111
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
0-502 1112	J.2.,	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
	1	(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid ester	·
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
- NO NIII	CU	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))-	acetic acid ester	III-C(-1411)1411 ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-302-14112	C113	(HO-phenyl))-	acetic acid ester	111 0(1111)11112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
0 002 1122	011,	(HO-phenyl))-	acid ester	== 2 (=)= == 2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
2, 2		(HO-phenyl))-	acid ester	` ´ •
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
-		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=0)NH ₂
	l	(HO-phenyl))-	acetic acid ester	C(-O)NIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy acetic acid ester	m-C(=0)NH ₂
0.50-NH	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH,
o-SO ₂ -NH ₂	L113	(HO-phenyl))-	1 monoxyacciic aciu	11-0(-1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
	3	(HO-phenyl))-		1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
• •	1	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	 	(HO-phenyl))-	acid	(V=\U\\\)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
- 50 311	 	(HO-phenyl))-	Phonoxypages and	TO CY-CVNID
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Phenoxyacetic acid	m-C(=O)NH ₂
0.80 NH	l CH	CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))-	CI-phonoxyaceuc acid	111-0(-0)/11/2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=0)NH ₂
J-50-2-14112	~113	(HO-phenyl))-	phonoxyaoene acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	,	(HO-phenyl))-		-, -, -,
		1		

R ¹	TR ⁵	E-J	IZ	T L
	1		L	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-phenoxy acetic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=0)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl Phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl F-phenoxyethyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl CH ₃ -	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	phenoxyethyl ether Methyl CH ₃ -O-	m-C(=O)NH ₂
		(HO-phenyl))- CH ₂ -CH(-CH ₂ -	phenoxyethyl ether Methyl Bn-O-	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH₃-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
		· · · · · · · · · · · · · · · · · · ·		

- 				
R ^t	R ³	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
		<u> </u>	· · · · · · · · · · · · · · · · · · ·	

R ¹	TR'	E-J	Z	L
	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	C113	(Cl-phenyl))-	acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-302-14112	3	(Cl-phenyl))-	acid ester	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-302-14112	C113	(Cl-phenyl))-	acid ester	111-0(1112)1112
o-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-302-14112	CII,	(Cl-phenyl))-	acetic acid ester	111 0(1111)11112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-002-14112	J3	(Cl-phenyl))-	acetic acid ester	0()
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-502-14112	C.1.3	(Cl-phenyl))-	acetic acid ester	0(,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-502-14112	O11 3	(Cl-phenyl))-	acid ester	(0)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CI-phenoxyacetic	m-C(=O)NH ₂
0-002-14112	C113	(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-502-14112		(Cl-phenyl))-	acid ester	=== 0(0): ===2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-502-14112	U113	(Cl-phenyl))-	acetic acid ester	0(0):2
o-SO ₂ -NH ₂	CH.	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0-502-14112	\ \tag{\tau}	(Cl-phenyl))-	acetic acid ester	(-)2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0-502-1112	C113	(Cl-phenyl))-	acetic acid ester	() 2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
0-502-1112	C223	(Cl-phenyl))-	1 1011011/10110110	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-302-1112	C113	(Cl-phenyl))-	or phonony accuracy	0(
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-302-14112	CII	(Cl-phenyl))-	I phonoxy access acid	1 0(1.1.1)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0-302-14112	0113	(Cl-phenyl))-	Cris phonoxy accine acid	1 0(1)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0-302-14112	C113	(Cl-phenyl))-	acid	111 0(1111)11112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-302-14112	CII3	(Cl-phenyl))-	Dir-O-phonoxy access acid	111 0(1111)11112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0-302-14112	C113	(Cl-phenyl))-	I nonexyacone acid	1 0(0)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=O)NH ₂
0-302-14112	C113	(Cl-phenyl))-	Or phononyasons asia	()2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
0-503-1112	0113	(Cl-phenyl))-	- phononywoods	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
J-502-11112	J3	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	3	(Cl-phenyl))-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
	,	(Cl-phenyl))-	1	·
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
	,	(Cl-phenyl))-	1	' '
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
		(Cl-phenyl))-	1 .	' ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
	,	(Cl-phenyl))-		` ´ .
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
	,	(Cl-phenyl))-	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	` ′ ′
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
	,	(Cl-phenyl))-		` ′ ′
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
1	,	(Cl-phenyl))-		1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
1 202	,	(Cl-phenyl))-		` '
L		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

□R¹	R ³	E-J	IZ	TL .
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
	-	(Cl-phenyl))-	-	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
-	,	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		(Cl-phenyl))-	ethyl ether	, ,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	ether Methyl CH ₃ -	m-C(=O)NH ₂
-		(Cl-phenyl))-	phenoxyethyl ether	, , , <u>-</u>
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
		(Cl-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -NH ₂)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	NH ₂)- CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	 	NH ₂)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
l	CH ₃	NH ₂)-	1	` · ·
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-aniline	p-C(=NH)NH ₂
L		14112/		<u> </u>

R ¹	R'	E-J	Z	L
0-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
	-	NH ₂)-	CU1:	- CV-NICINIU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
_		NH ₂)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=0)NH ₂
0 00,1.1.2	,	NH ₂)-		
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	NH ₂)- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
0-502-1112	C113	NH ₂)-	1 - MIIIII	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
- 00 300	771	NH ₂)-	CIV. O amilimo	- C/=CNNH
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
-		NH ₂)-		• • • •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	NH ₂)- CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
0-502-1112	C113	NH ₂)-	carboxylic acid	1 0(1.11)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
	ļ <u></u>	NH ₂)-	carboxylic acid	- C/ NIONI
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0 002 1122		NH ₂)-	carboxylic acid	, , ,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
- SO NIII	CH ₃	NH ₂)- CH ₂ -CH(-CH ₂ -	carboxylic acid Phenyl-amino carboxylic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	NH ₂)-	acid	III-C(-O)NII ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
		NH ₂)-	carboxylic acid	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	NH ₂)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
0-502-1112	Cin	NH ₂)-	carboxylic acid	L. O(0)
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		NH ₂)-	carboxylic acid Bn-O-phenyl-amino	- C/-ONNIH
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	carboxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
-		NH ₂)-	acid ester	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	NH ₂)- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-302-1112	C113	NH ₂)-	acid ester	111-0(-111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
l		NH ₂)-	acetic acid ester	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		NH ₂)-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
SO NO	+~~	NH ₂)-	acid ester Methyl Cl-phenoxyacetic	m-C/=ONH
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
		NH ₂)-	acid ester	<u> </u>

R ¹	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=0)NH ₂
		NH ₂)-	acetic acid ester	l
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - NH ₂)-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenoxy-acetic acid	m-C(≔NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenoxyacetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂

R'	R,	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂

Other preferred compounds of formula I, having the sub-formula Ib, are set forth in Table 76, below.

Table 76

Formula III

5

		···		···
R'	R	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂	Phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CI-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CI-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂

□R¹	I R ³	TE-J	Z	IL
	120	 	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
0 00, 111,	"		carboxylic acid	(1111)1111
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
2 2			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂	CH ₁ -O-phenyl amino	m-C(=NH)NH ₂
2 2			carboxylic acid	•
o-SO ₂ -NH ₂	H	CH,	Bn-O-phenyl amino	m-C(=NH)NH ₂
		*	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
	1		acid	
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂	F-phenyl-amino	m-C(=O)NH ₂
	<u> </u>	<u> </u>	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		<u> </u>	carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
- 20 200	H	CU	carboxylic acid	m (/=/)\kilu
o-SO ₂ -NH ₂	n	CH ₂	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
- 500 NII	Н —	CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	n	C112	acid ester	111-04-1411)14115
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-302-14112	1 **	\ \tag{2}	acid ester	111-0(1111)11112
0-SO ₂ -NH ₂	 н 	CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-302-14112	1 **	5112	acid ester	(
o-SO ₂ -NH ₂	 H 	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 00, 1111,			acetic acid ester	(,2
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₁ -O-phenoxy-	m-C(=NH)NH ₂
	ŀ	1	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
			acetic acid ester	
0-SO ₂ -NH ₂	H	CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
		<u> </u>	acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
			acid ester	0(=0)
o-SO ₂ -NH ₂	H	CH ₂	Methyl F-phenoxyacetic	m-C(=O)NH ₂
- 00 >10	<u> </u>		acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -phenoxy- acetic acid ester	
o-SO ₂ -NH ₂	 H 	CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
V-3U2-14II2	1	51.12	acetic acid ester	
o-SO ₂ -NH ₂	 H 	CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
5 552 1112	1		acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	<u> </u>	<u></u>	acid.	
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenoxyacetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	 	ļ.,,,,,,,,	acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂ m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Phenoxyethanol Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	1 0112	Ci-pitchoxy-culation	T 111-0(-1411)14113

		- 1	69 -	
R¹	R ⁵	E-J	Z	TL .
o-SO ₂ -NH ₂	H	CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-30 ₂ -Nn ₂	H	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	1	CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Pr O share we other of	
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	F-phenoxy-ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H H	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₃	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Ĥ	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
	H	CH ₂ -CH ₂ CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	- H		CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH ₂		p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Aniline	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-Phenyl-amino	m-C(=NH)NH ₂

R ¹	R°	E-J	Z	L
	_		carboxylic acid	
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
-			carboxylic acid	, , ,
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
			acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
- 00 - 111		CH CH	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenyl-amino	m-C(=O)NH ₂
- 00 NU		- CH CH	carboxylic acid	C/(\\\\\\\\
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
- CO NIU	H	CH ₂ -CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	n n	Cn ₂ -Cn ₂	carboxylic acid	III-C(-O)NI2
o-SO ₂ -NH ₂	- н	CH ₂ -CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
0-302-14112	**	C112-C112	carboxylic acid	
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0 50, 111,		011, 011,	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
2 2			acid ester	` ´ •
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
	- 1		acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	İ		acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
			acid ester	C/C/VVIII
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
00 00			acid ester	- C/=(VNIU
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-302-14112	**	C112-C112	acetic acid ester	111-0(-0)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0-002-1112		0112 0112	acetic acid ester	
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
7 2	1	2	acetic acid ester	, , -
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
			acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
- SO NIH		CH. CH	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	<u> </u>	CH2-CH2	CI-phonoxy-culation	111-0(-1411)14115

<u></u>				
R'	R	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH,
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
	1		ether	'\ ''
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0 00/1111/			ether	
o-SO ₂ -NH ₂	† H	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 507 1117		011, 011,	ethyl ether	(,,-
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		,,	ethyl ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
]	,,	ethyl ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
0 00,1112			ether	}
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
	1	2	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
1 2 2 2 2 2 2 2			ether	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
			phenoxyethyl ether	` ' •
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
		1 .	phenoxyethyl ether	` ' -
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
		• •	phenoxyethyl ether	` ´ -
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CĤ₃-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₃	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=NH)NH,
0-SO ₂ -NH ₂	Ĥ	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	 II 	CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₃	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
	H	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	**	0112-0112-0112	acid	1111/1112
O-SO-NH	Н —	CH,-CH,-CH,	Cl-Phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	1 **	J112-0112-0112	1 ~ · · · · · · · · · · · · · · · · · ·	1 *** ~ ****/****2

R ¹	R ⁵	E-J	Z	I L
	-		carboxylic acid	2
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
0-302-14112	**	C112-C112-C112	carboxylic acid	111-04-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0 002 1112	**	011, 011, 011,	carboxylic acid	111.0(1111)1111
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0 00,1		0.02 0.02	carboxylic acid	1 (
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
		• • • • • • • • • • • • • • • • • • •	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH,
			acid	` ´ -
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenyl-amino	m-C(=0)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		<u> </u>	carboxylic acid	C/-C/N/III
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl-amino	m-C(=0)NH ₂
2 SO XIII	H	CH CH CH	carboxylic acid Bn-O-phenyl-amino	m-C/=ONID
o-SO ₂ -NH ₂	n	CH ₂ -CH ₂ -CH ₂	carboxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0-002-14112	**	0112-0112-0112	acid ester	1111/11112
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-502-1112	^^		acid ester	
o-SO ₂ -NH ₂	н	CH2-CH2-CH2	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0 00, 1.1.2			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
1			acetic acid ester	` ′ -
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		<u></u>	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
	ļ.,,		acid ester	- CC-CVNIU
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
- S/A NIU	H	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	I T	Cn2-Cn2-Cn2	acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
J-502-14112	**	0117 0117-0117	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₁ -O-phenoxy	m-C(=O)NH ₂
		,,	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
	1		acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		L	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
- 8/0 NW	ļ.,.		acid	C(())
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂

R¹	I R ⁵	E-J	Z	
1				L
0-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₃	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₃	F-phenoxy-ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	Ħ	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=NH)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H H	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H H	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	Ĥ	CH ₂ -CH(-CH ₃)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH2-CH(-CH3)-	CI-Phenyl-amino	m-C(=NH)NH ₂
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	

TR ¹	Γ R ⁵	E-J	Z	
<u>K</u>	K	E-J		L
- 00	ļ	CH CH CH	carboxylic acid	0(->11)
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl amino	m-C(=NH)NH ₂
- CO NO	H	CH CHECH	carboxylic acid Phenyl-amino carboxylic	C/-O\NU
o-SO ₂ -NH ₂		CH₂-CH(-CH₃)-	acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenyl-amino carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CI-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-CH₃)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
L SY NU	 10	CH ₂ -CH(-CH ₃)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	П		Phenoxyacetic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-CH₃)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂)-	Bn-O-phenoxy acetic acid	m-C(=O)NH,
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂

R	R ⁵		7	, ,
		E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Phenoxyethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Cl-phenoxyethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy- ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
			ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
			ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
			ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyethyl	m-C(=O)NH ₂
			ether	CONT
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
			ether	O'COVNIII
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
	<u> </u>	<u> </u>	ether	C/O\NIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-	m-C(=O)NH ₂
		CIT CITY CITY	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-	m-C(=O)NH ₂
- 00 XIII		CH CHAND	phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	phenyl	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	<u>H</u>	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CI-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	$p-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
1 -	1		acid .	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-Phenyl-amino	m-C(=NH)NH ₂

R ¹	I R ⁵	E-J	Z	L
-	 = -		carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl-amino	m-C(=NH)NH ₂
0-502-1112		0112 011(11112)	carboxylic acid	0(1.1.)
o-SO ₂ -NH ₂	н	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0-003-1112			carboxylic acid	(
o-SO ₂ -NH ₂	H	CH2-CH(-NH2)-	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0-502-1112	**	0112-011(-11112)-	carboxylic acid	(1)
o-SO ₂ -NH ₂	н —	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl amino	m-C(=NH)NH ₂
0-00, 1112	**		carboxylic acid	5(
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenyl-amino carboxylic	m-C(=O)NH,
0 002		5212 521(1.1.2)	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenyl-amino	m-C(=O)NH ₂
		• ` •	carboxylic acid	` ' -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
• •		• • •	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl-amino	m-C(=0)NH ₂
_		ļ	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CI-phenoxyacetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	<u> </u>		acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
			acetic acid ester	C'-NUUNUU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		CH CHCMIN	acetic acid ester Methyl Phenoxyacetic	C/CONNU
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	acid ester	m-C(=O)NH ₂
- 80 100	H →	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	I T	CH2-CH(-NH2)-	acid ester	11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyacetic	m-C(=0)NH ₂
0-302-14112	**	C112-C11(-11112)-	acid ester	III O(0)1 1112
o-SO ₂ -NH ₂	 H 	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy-	m-C(=O)NH,
0-002-1112	\		acetic acid ester	
o-SO ₂ -NH ₂	H T	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy	m-C(=0)NH ₂
0 002 12	"-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	acetic acid ester	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
	Ì		acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	1		acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy acetic	m-C(=0)NH ₂
	<u> </u>		acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂

IR ^t	R	E-J	Z	T.
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-ethanol	
	H	CH ₂ -CH(-NH ₂)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂			Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
1		• ` •	ether	l ` ´ -
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
- 80 011	10	CH ₂ -CH(-NH ₂)-	ethyl ether Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H		ethyl ether	1
o-SO ₂ -NH ₂	Н	CH₂-CH(-NH₂)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
- SV NIII	H	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -	m C/=OWID
o-SO ₂ -NH ₂	n n		phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-	m-C(=O)NH ₂
0 00,,	-		phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=NH)NH ₂
	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H		CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	-	CH ₂ -CH(-Bn)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenyl .	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Aniline	p-C(=O)NH ₂
	H	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	1		•	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
L	<u> </u>	L <u>.</u>	aciu	L

R'	R ⁵	E-J		L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-Phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	- Н	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0-302-14112	"	C112-C11(-D11)-	carboxylic acid	111-0(-1111)1112
o-SO ₂ -NH ₂		CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	ľ		carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Bn-O-phenyl amino	m-C(=NH)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	- Н	CH2-CH(-Bn)-	Cl-phenyl-amino	m-C(=O)NH,
0-302-14112	**	CII2-CII(-DII)-	carboxylic acid	11.0(0).11.
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂ -CH(-Bn)-	Bn-O-phenyl-amino	m-C(=O)NH ₂
0-302-14112	1 **	CI12-CI1(-DII)-	carboxylic acid	111-0(0)/11/
o-SO ₂ -NH ₂	- Н	CH ₂ -CH(-Bn)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
2 - 2 2	1		acid ester	l '
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl CI-phenoxyacetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-302-14112	**	CI12-CI1(-DII)-	acetic acid ester	111-0(1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
· •			acetic acid ester	
o-SO ₂ -NH ₂	— Н	CH₂-CH(-Bn)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		CU CU (Da)	acetic acid ester Methyl Phenoxyacetic	(Y=0)NH
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0 002 1112		500/ 500(000)	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
			acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0-502-14112	1 **	CII3-CII(-DII)-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
<u> </u>			acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)- CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂ m-C(=NH)NH ₂
o-SO ₂ -NH ₂	1"	C112-C11(-D11)-	acid	1111/1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=NH)NH ₂

	D 1			
R¹	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Cl-phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	F-phenoxy-ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	CH ₃ -phenoxy-ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	н	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		- AVI - AVI	ether	
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		CO CO' 'O''	ethyl ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		CD CH(CD-)	ethyl ether	- C/-NIONIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		000 0000	ethyl ether	
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl Phenoxyethyl	m-C(=O)NH ₂
		CO CO Dev	ether Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH₂-CH(-Bn)-	ether	III-C(-O)NI12
- 00 10		CU CU(Da)		m-C(=O)NH,
o-SO ₂ -NH ₂	Н	CH₂-CH(-Bn)-	Methyl F-phenoxyethyl ether	III-C(-O)N112
- 50 NU	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -	m-C(=O)NH ₂
o-SO ₂ -NH ₂	п	CH2-CH(-BH)-	phenoxyethyl ether	111-0(-0)1112
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-	m-C(=O)NH ₂
0-302-14112	11	CI12-CI1(-DII)	phenoxyethyl ether	m-c(c).
o-SO ₂ -NH ₂	Н	CH2-CH(-Bn)-	Methyl Bn-O-	m-C(=O)NH ₂
0-302-1112	**	O112-O11(*D11)*	phenoxyethyl ether	III 6(0)1.112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
0.0021111		COOCH)-		
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
0 00,1117		COOCH)-		1 ` ′ •
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		COOCH ₃)-	• •	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
' '		COOCH ₃)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
		COOCH3)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
		COOCH ₃)-	<u></u>	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		COOCH ₃)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
		COOCH ₃)-	n. o	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
		COOCH ₃)-	·	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
		COOCH ₃)-	<u> </u>	<u> </u>

R ¹	I R ⁵	E-J	Z	Π.
_	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	n	COOCH ₁)-	CI-amime	p-C(-NII)INI2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
0-502-1112		COOCH ₃)-	1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
0 002 1112		COOCH ₃)-	CII, unimit	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₁ -O-aniline	p-C(=NH)NH ₂
0-502-1112		COOCH ₃)-	011, 0 41111110	p 0(1\12)1\12
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
0-502-14112	**	COOCH ₃)-	Di-O-amine	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
0-502-14112	**	COOCH ₃)-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0 002 1122	l	COOCH ₃)-	0	P 0(0)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
0-002-1112		COOCH ₁)-	1	P 5(5)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
0.002.1112		COOCH ₃)-	011, 41111111	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
0.002.1112		COOCH ₃)-	011, 0 111111	F 0(0)2.22
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0 00, 1,	"	COOCH)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
0 002 1112		COOCH ₃)-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
0 00,1112,		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	F-phenyl-amino	m-C(=NH)NH ₂
	1	COOCH)-	carboxylic acid	l ` ′ ′ ′ l
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		COOCH ₃)-	carboxylic acid	l ` ´ • i
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		COOCH3)-	carboxylic acid	' ' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
		COOCH ₃)-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	L	COOCH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
	 	COOCH ₃)-	carboxylic acid	- C/=XIII
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
	L	COOCH ₃)-	acid ester	- CV-NIUNIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
- CO KIII	<u> </u>	COOCH ₃)-	acid ester	m (Y=NIU\NIU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
SO NO	H	CH CH CH	acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	n n	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy- acetic acid ester	III-C(-IAII)IAII ²
0-SO ₂ -NH ₂	H	COOCH ₃)- CH ₃ -CH(-CH ₃ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
U-3U2-14112	1 **	COOCH ₃)-	acetic acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-302-14112	111	COOCH ₃)-	acetic acid ester	111-0(-1411)14112
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-302-14112	1 **	COOCH ₃)-	acid ester	111-0(0)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-002-1112	**	COOCH ₃)-	acid ester	
	<u> </u>		10.00000	L

OSO ₂ -NH ₂	R¹	Τ R ⁵	E-J	Z	
COOCH ₃ - acid ester m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=NH)NH ₂		L	, — -	<u> </u>	I —
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CN ₂ -CN ₂ -CN ₃ -CN ₄	0-3O ₂ -Nn ₂	11			III-C(-O)(411 ₂
COOCH3 A CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	o-SONH-	† 			m-C(=O)NH ₃
G-SO ₂ -NH ₂ H CH ₂ -CH(CH ₂ -CH ₂ -CN ₂ -CN ₂ -CN ₃ -CN ₄ -CN ₄ -CH(-CH ₂ -CN ₄ -CN ₄ -CH ₄ -CH ₄ -CH ₄ -CN ₄ -C	0 002 1112				0(0)
COOCH ₃ - actic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₃ - CH ₂ -CH(-CH ₃ - CH ₂ -CH(-CH ₃ - CH ₂ -CH(-CH ₃ - CH ₂ -CH(-CH ₃ - CH ₃ -CH(-CH ₃ - CH ₃ -CH(-CH ₃ - CH ₃ -CH(-CH ₃ - CH ₃ -CH(-CH ₃ - COOCH ₃) H CH ₂ -CH(-CH ₃ - CH ₃	0-SO ₂ -NH ₂	H			m-C(=O)NH,
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -C	0 007 1.1127				
COOCH ₃ - acetic acid ester Phenoxyacetic acid m-C(=NH)NH ₂ COOCH ₃ - CI-phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CI-phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CI-phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ COOCH ₃ - CH ₂ -	o-SO ₂ -NH ₂	H		Methyl Bn-O-phenoxy	m-C(=O)NH,
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -Depenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -Depenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -Depenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -Depenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -Depenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -Depenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Depenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Depenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Depenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Depenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Depenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Depenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Depenoxy-acetic ac					
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH(-CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH	o-SO ₂ -NH ₂	H		Phenoxyacetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₃ -CH ₄ -				1	` ´ `
O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₃ -CH ₄ -	o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -Phenoxy-acetic acid COCH ₃)-CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -Ch ₄ -CH ₃ -Ch ₄ -Ch ₄ -Ch ₄ -Ch ₅ -Ch ₄ -Ch ₄ -Ch ₅ -Ch ₄ -Ch ₅ -Ch ₅ -Ch ₆ -Ch ₄ -Ch ₅ -Ch ₆ -Ch ₅ -Ch ₆ -Ch ₅ -Ch ₆	1 .	Ì	COOCH)-	•	
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₂ -O-phenoxy-acetic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-CP-phenoxy-acetic acid m-C(=O)NH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-CP-phenoxy-acetic acid m-C(=O)NH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-CP-phenoxy-acetic acid m-C(=O)NH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-CP-phenoxy-acetic acid m-C(=O)NH ₂ CH ₂ -CH(-CH ₂ -COOCH ₃)-CP-phen	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
COOCH_3 - COOC					
o-SO ₂ -NH ₂ H CH,-CH(-CH ₂ -COOCH ₃)-acid acid acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-bn-Ophenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-bn-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-bn-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-bn-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-bn-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-bn-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-bn-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-bn-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CD ₂ -CD-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CD-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CD-Ophenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂	o-SO ₂ -NH ₂	H		CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
COOCH ₃ - Acid COCH ₃ - Br-O-phenoxy acetic acid COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CI-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CI-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ -					
o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -COCH ₃ -COO	o-SO ₂ -NH ₂	H		CH ₃ -O-phenoxy-acetic	$m-C(=NH)NH_2$
O-SO ₂ -NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -COCH ₃ -COO	o-SO ₂ -NH ₂	H		Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -COCH ₃ -COO	o-SO ₂ -NH ₂	H		Phenoxyacetic acid	m-C(=O)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COCH ₃ -COCH ₃) O-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -COCH ₃ -CO					- O' - O' - O' - O' - O' - O' - O' - O'
O-SO2-NH2 H CH2-CH7-CH2-COOCH3. F-phenoxyacetic acid m-C(=O)NH2 O-SO2-NH2 H CH2-CH1-CH2-COOCH3. CH3-CH1-CH2-COOCH3. CH3-O-phenoxy-acetic acid m-C(=O)NH2 O-SO2-NH2 H CH2-CH1-CH2-COOCH3. CH3-O-phenoxy acetic acid m-C(=O)NH2 O-SO2-NH2 H CH2-CH1-CH2-COOCH3. Phenoxyethanol m-C(=O)NH2 O-SO2-NH2 H CH3-CH1-CH2-COOCH3. CI-phenoxy-ethanol m-C(=NH)NH2 O-SO2-NH2 H CH3-CH1-CH2-COOCH3. CI-phenoxy-ethanol m-C(=NH)NH2 O-SO2-NH2 H CH3-CH1-CH2-COOCH3. CH3-Phenoxy-ethanol m-C(=NH)NH2 O-SO2-NH2 H CH3-CH1-CH2-COOCH3. CH3-O-phenoxy-ethanol m-C(=NH)NH2 O-SO2-NH2 H CH3-CH1-CH2-COOCH3. M-C(=NH)NH2 O-SO2-NH2 H CH3-CH1-CH2-CD3-CD3-CD3-CD3-CD3-CD3-CD3-CD3-CD3-CD3	o-SO ₂ -NH ₂	H		CI-phenoxyacetic acid	m-C(=O)NH ₂
COOCH3 - CH3-CH(-CH2-COCH3-COOCH3-					
o-SO₂-NH₂ H CH₂-CH(-CH₂- COOCH₃)- COOCH₃)- o-SO₂-NH₂ CH₃-CH(-CH₂- COOCH₃)- cOOCH₃)- o-SO₂-NH₂ CH₃-CH(-CH₂- COOCH₃)- cOOCH₃)- o-SO₂-NH₂ CH₃-CH(-CH₂- COOCH₃)- COOCH₃)- o-SO₂-NH₂ CH₃-CH(-CH₂- COOCH₃)- cOOCH₃)- o-SO₂-NH₂ Phenoxyethanol COOCH₃- cOOCH₃- cOOCH₃- o-SO₂-NH₂ m-C(=NH)NH₂- COOCH₃- cOOCH₃- cOOCH₃- o-SO₂-NH₂ o-SO₂-NH₂ H CH₂-CH(-CH₂- COOCH₃- cOOCH₃- cOOCH₃- cOOCH₃- cOOCH₃- o-SO₂-NH₂ CH₂-CH(-CH₂- COOCH₃- cOOCH₃- cOOCH₃- cOOCH₃- cOOCH₃- cOOCH₃- cOOCH₃- cOOCH₃- o-SO₂-NH₂ CH₂-CH(-CH₂- COOCH₃- cooCH₃- cooCH₃- cOOCH₃- cooCH₃	0-SO ₂ -NH ₂	H		r-pnenoxyaceuc acio	m-C(=O)Nn ₂
O-SO ₂ -NH ₂ H CCD ₂ -CH(-CH ₂ -				CH phonoxy costic soid	m-C(=O)NH
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -COCH ₃)-COCH ₃ -COCCH ₃ -C	0-5U ₂ -NH ₂	n		CH ₃ -phenoxy-acetic acid	111-0(-0)1112
COOCH ₃)- c-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ cOOCH ₃)- c-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ cOOCH ₃)- c-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ cOOCH ₃)- c-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ cOOCH ₃)- c-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ cOOCH ₃)- c-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ cOOCH ₃)- c-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -C	O SOL NIE	-		CH -O-phenoxy acetic	m _e C(=O)NH.
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃)-COOCH ₃ -COOCH	0-302-14112	**			m-0(0)/11/2
COOCH3)- COOCH3)- Phenoxyethanol m-C(=NH)NH2 o-SO2-NH2 H CH2-CH(-CH2-COCH3)- CI-phenoxy-ethanol m-C(=NH)NH2 o-SO2-NH2 H CH2-CH(-CH2-COCH3)- F-phenoxy-ethanol m-C(=NH)NH2 o-SO2-NH2 H CH2-CH(-CH2-COCH3)- CH3-Phenoxy-ethanol m-C(=NH)NH2 o-SO2-NH2 H CH2-CH(-CH2-CH3-COCH3)- COOCH3)- COOCH3)- o-SO2-NH2 H CH2-CH(-CH2-CH3-COCH3)- Phenoxyethanol m-C(=NH)NH2 o-SO2-NH2 H CH2-CH(-CH2-CH3-COCH3)- Phenoxyethanol m-C(=O)NH2 o-SO2-NH2 H CH2-CH(-CH2-CH3-COCH3)- CI-phenoxyethanol m-C(=O)NH2 o-SO2-NH2 H CH2-CH(-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	O-SO -NH	H		,	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- O-SO ₂ -NH ₂ Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- O-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ T-phenoxy-ethanol CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- O-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- O-SO ₂ -NH ₂ M-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- O-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- O-SO ₂ -NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- O-SO ₂ -NH ₂ CH ₃ -O-phenoxy-ethanol CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- ether Methyl Cl-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- ether Methyl F-phenoxy-ethyl m-C(=NH)NH ₂	0-502-1112	1 **	COOCH-)-	Dir o paenony acome acid	3 0(0)2
COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -N	0-SO-NHa	† H		Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃)-COOCH ₃ CI-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ Bn-O-phenoxy ethanol m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CI-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CI-phenoxyethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ F-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃)-COOCH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -COOCH ₃)-COOCH ₃ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -COOCH ₃)-COOCH	0 007 1.22				` ' '
COOCH3 - COOCH3 - CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- CH3-CH(-CH2- COOCH3)- COOCH3- CH3-CH(-CH2- COOCH3- COOCH3- CH3-CH(-CH2- COOCH3- CH3-CH(-CH2- COOCH3- CH3-CH(-CH2- COOCH3- CH3-CH(-CH2- COOCH3- CH3-CH(-CH2- COOCH3- CH3-CH(-CH2- COOCH3- COOCH3- CH3-CH(-CH2- COOCH3- CH3-CH(-CH2- COOCH3- COOCH3- CH3-CH(-CH2- COOCH3- COOCH3- CH3-CH(-CH2- COOCH3- COOCH3- COOCH3- CH3-CH(-CH2- COOCH3- COOCH3- CH3-CH(-CH2- COOCH3- CH3-CH(-CH2- COOCH3- COOCH3- CH3-CH(-CH2- CH3-CH3-CH3- CH3-CH3-CH3-CH3- CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	o-SO ₂ -NH ₂	H	3/	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
COOCH ₃ - O-SO ₂ -NH ₂	1				
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Methyl CI-phenoxy-ethyl m-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃)- cOOCH ₃ -			COOCH ₃)-		
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃)-COOCH ₃)-COOCH ₃)-COOCH ₃ Bn-O-phenoxy ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃)-COOCH ₃ Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -COOCH ₃)-COOCH ₃ CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH	o-SO ₂ -NH ₂	H		CH₃-phenoxy-ethanol	m-C(=NH)NH ₂
COOCH ₃ - O-SO ₂ -NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ -	O-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - COOCH					(V=NUVNUT
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -COOCH ₃)-COOCH ₃ -COOCH ₃	o-SO ₂ -NH ₂	н		Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
COOCH ₃ - O-SO ₂ -NH ₂	- 00-501	<u> </u>		The second second	(V=())NIH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-SU ₂ -NH ₂	l H	COOCH \	Filenoxyeulanoi	III-C(-O)NII2
COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ cOOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxyethyl m-C(=NH)NH ₂	- 60- 20	10-		Clahanovyathanal	m-C/=CNKID
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Bn-O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- ether Methyl phenoxy-ethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- ether Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- ether Methyl F-phenoxy-ethyl m-C(=NH)NH ₂	0-5U2-NH2	n n		Ci-phenoxyemanoi	III-C(-C)INII2
COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₂ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₂ CH(-CH ₂ - COOCH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ - O-SO ₃ -NH ₃ -	0-SO -NU	 		F-phenoxy-ethanol	m-C/=ONH.
o-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- CH ₃ -phenoxy-ethanol CH ₃ -O-phenoxy-ethanol COOCH ₃)- m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- COOCH ₃)- Bn-O-phenoxy-ethanol COOCH ₃)- ether m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- ether Methyl phenoxy-ethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- ether Methyl Cl-phenoxyethyl ether m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- ether Methyl F-phenoxy-ethyl ether m-C(=NH)NH ₂	0-3O2-14II2	1 **		- Phonoxy-ommior	0(0), 11.2
COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃ - C	O-SO-NH.	H		CHphenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - COOCH ₃)- O-SO ₂ -NH ₂ CH ₃ -O-phenoxy- ethanol COOCH ₃)- O-SO ₂ -NH ₂ m-C(=O)NH ₂ H m-C(=O)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ H m-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ COOCH ₃)- O-SO ₂ -NH ₂ m-C(=NH)NH ₂ COOCH ₃ - O-SO ₂ -NH ₂ m-C(=NH)NH ₂ COOCH ₃ - O-SO ₂ -NH ₂ m-C(=NH)NH ₂ COOCH ₃ - O-SO ₂ -NH ₂ m-C(=NH)NH ₂	J-502 1.1.2	1		,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₃	H		CH ₃ -O-phenoxy- ethanol	m-C(=O)NH,
COOCH ₃)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl phenoxy-ethyl m-C(=NH)NH ₂ cOOCH ₃)- ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ cOOCH ₃)- ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxy-ethyl m-C(=NH)NH ₂		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
COOCH ₃)- ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ cOOCH ₃)- ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxy-ethyl m-C(=NH)NH ₂					
COOCH ₃)- ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ COOCH ₃)- ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxy-ethyl m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
COOCH ₃)- ether o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxy-ethyl m-C(=NH)NH ₂					
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxy-ethyl m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H			m-C(=NH)NH ₂
					L
COOCH ₃)- ether	o-SO ₂ -NH ₂	H			m-C(=NH)NH ₂
	L	1	COOCH ₃)-	etner	<u>L</u>

R¹	R³	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		COOCH,)-	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₁)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₁)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₁)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	COOCH ₃)- CH ₂ -CH(-CH ₂ -	ether Methyl CH ₃ -	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	COOCH ₃)- CH ₂ -CH(-CH ₂ -	phenoxyethyl ether Methyl CH ₃ -O-	m-C(=O)NH ₂
		COOCH ₃)-	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂		CH₂-OH)-		1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -aniline	p-C(=O)NH ₂

R ^t	R ⁵	TE-J	TZ	
_	H	-		n C/=CNNIU
o-SO ₂ -NH ₂		CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid Phenyl-amino carboxylic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	carboxylic acid Methyl phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid ester Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxyacetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acid ester Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Phenoxyacetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
-	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -OH)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂

R'	R³	E-J	Z	I L
_	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂		CH ₂ -OH)-	<u></u>	· · · -
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
	H	CH ₂ -CH(-CH ₂ - CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂		CH ₂ -OH)-		ł
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
L	<u> </u>	CH ₂ -OH)-	buenovaemai emei	l

R [†]	⊤R³	E-J	1Z	
o-SO ₂ -NH ₂	- îi	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
0 002 1112		C(=O)-N-	phenyi	111 0(1111)1112
	j	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
		C(=O)-N-	• •	
		morpholino)-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
	ŀ	C(=0)-N-		
- 80 XIII	- Н	morpholino)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	l n	C(=O)-N-	Cri3-phenyi	
	1	morpholino)-		
o-SO ₂ -NH ₂		CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
2070.007		C(=O)-N-	,,	
	ļ	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
		C(=O)-N- morpholino)-		
0-SO ₂ -NH ₂	— н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
0-302-1112	**	C(=O)-N-	Ci-phonyi	m-c(O)Ni2
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
1 2 - 2		C(=O)-N-	1 ' '	` ′ •
		morpholino)-		
o-SO ₂ -NH ₂	- н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		C(=O)-N-		
- 500 600		morpholino)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - C(=O)-N-	Cn ₃ -O-phenyi	III-C(-O)NII ₂
		morpholino)-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
2		C(=O)-N-		1
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
		C(=O)-N-		
- SO NH	H	morpholino)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ - C(=0)-N-	CI-aminie	p-C(-N11)N112
		morpholino)-	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
		C(=O)-N-		
		morpholino)-	L	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
	l	C(=O)-N-		1
- 50 50		morpholino)-	CH Charles	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N-	CH ₃ -O-aniline	p-C(=NH)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	- Н	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
		C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
		C(=O)-N- morpholino)-		
0-SO ₂ -NH ₂	- Н	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
0-002-14112	**	C(=O)-N-		p=0(***),***12
l			L	

R¹	R'	E-J	Z	L
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂

R'	R⁵	E-J	Z	L
		C(=O)-N-	acetic acid ester	
		morpholino)-		C/0\\D\\
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=0)-N-	Methyl Phenoxyacetic acid ester	m-C(=0)NH ₂
	j	morpholino)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=0)NH ₂
		C(=0)-N-	acid ester	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
	ŀ	C(=O)-N-	acid ester	
0-SO ₂ -NH ₂	H	morpholino)- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=0)NH ₂
0-302-1112	**	C(=O)-N-	acetic acid ester	0(0)
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		C(=0)-N-	acetic acid ester	
- 50 800		morpholino)-	Methyl Bn-O-phenoxy	m-C(=0)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - C(=0)-N-	acetic acid ester	111-0(-0)14112
		morpholino)-	20020 2012 00101	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
		C(=O)-N-		
		morpholino)-	Clarkers and and	m-C(=NH)NH,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=O)-N-	Cl-phenoxy-acetic acid	m-C(-Nn)Nn ₂
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		C(=O)-N-		`
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		C(=O)-N- morpholino)-		
o-SO ₂ -NH ₂	-H $-$	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0-502-14112	**	C(=O)-N-	acid	=====================================
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
		C(=0)-N-	1	
o-SO ₂ -NH ₂	- h	morpholino)- CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
0-302-14112	"	C(=O)-N-	Thenexylectic tele	III 0(0)
	ļ	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
1	- 1	C(=0)-N-		ŀ
- SVA NIH		morpholino)- CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	1	C(=0)-N-	1-phenoxyacetic acid	m-0(0), 1112
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
_		C(=O)-N-		
- FO NO	- 	morpholino)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=0)NH ₂
o-SO ₂ -NH ₂	н	C(=0)-N-	acid	III-O(O)(112
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
-		C(=O)-N-	1	
		morpholino)-	Dhan assisted	- CY-KILLYKILL
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - C(=0)-N-	Phenoxyethanol	m-C(=NH)NH ₂
		morpholino)-		
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
3 3 3 2 2 2		C(=0)-N-	1	` ′ ′
		morpholino)-	1	1

R ^t	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
• •		C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
• •	- 1	C(=0)-N-	1	
		morpholino)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		C(=0)-N-	İ	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
		C(=0)-N-		
		morpholino)		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
		C(=O)-N-		
		morpholino)-		.]
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
		C(=0)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
	ł	C(=0)-N-		
!		morpholino)-	l N	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
	ļ	C(=0)-N-		
	_ -,	morpholino)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl ether	m-C(-NH)NH ₂
	1	C(=0)-N-	emer	
		morpholino)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	ether	111-0(-1411)14112
		C(=O)-N- morpholino)-	emer	Ĭ
- CO NIU	⊢н —	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	п	C(=0)-N-	ether	111-0(-111)1112
		morpholino)-	emer	
- S/A NIU	-H $-$	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	n	C(=0)-N-	ethyl ether	111-0(-1111)11112
	İ	morpholino)-	cmyr cmcr	
- CV NIL	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	^*	C(=0)-N-	ethyl ether	111-0(1111)1111
	l	morpholino)-	cmyr cmcr	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-30 ₂ -1411 ₂	11	C(=0)-N-	ethyl ether	111-0(1111):1112
		morpholino)-	cury cure	
o-SO ₂ -NH ₂	- R	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-002-14112	**	C(=0)-N-	ether	(-)
		morpholino)-		1
o-SO ₂ -NH ₂	- н -	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
U-1002-14112	**	C(=O)-N-	ether	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0 002 1112	1	C(=0)-N-	ether	
		morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
3 2 2 2 2		C(=0)-N-	phenoxyethyl ether	
1		morpholino)-	1. , , , , , , , , , , , , , , , , , , ,	
1			•	_ t
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂

R ¹	R ³	E-J	Z	L
	L	morpholino)-		<u> </u>
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
		C(=0)-N-	phenoxyethyl ether	
	L	morpholino)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃		L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
L		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
		CH_2 - $S(O)_2$ - CH_3		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
	<u> </u>	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
	<u></u>	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
		CH_2 - $S(O)_2$ - CH_3		
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	L	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
	<u> </u>	CH ₂ -S(O) ₂ -CH ₃		= C/=NII)NII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		- CV-NIII
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
	ļ.,,	CH ₂ -S(O) ₂ -CH ₃	U services	- (V-NILLYNILL
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
00 10	H	CH ₂ -S(O) ₂ -CH ₃	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	n .	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Cri3-ammie	p-0(-1111)1112
- SO NIH	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	n	CH ₂ -CH(-CH ₂ -CH ₃ -CH	C113-O-amme	p-0(-1111)1112
- SO NH	H	CH ₂ -5(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	11	CH ₂ -S(O) ₂ -CH ₃	Bh-O-aminic	p-0(1111)1112
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
J-502-14112	1 **	CH ₂ -S(O) ₂ -CH ₃		F 0(0)2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0-002-1112		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
1		CH ₂ -S(O) ₂ -CH ₃		• • • • • • • • • • • • • • • • • • •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	,	1
0-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	1	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
	l .	CH ₂ -S(O) ₂ -CH ₃		1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid	' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-Phenyl-amino	m-C(=NH)NH ₂
	1	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
1		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	` ' -
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
	}	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
]		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	L

R ^t	₽ ⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=0)NH ₂
0/0-000		CH ₂ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
0 002 1 1112		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		CH_2 -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
0-502-1112	**	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	m o(o). 11.2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	- н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
0-302-14112	**	CH ₂ -S(O) ₂ -CH ₃	acid ester	1111/1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
•		CH_2 - $S(O)_2$ - CH_3	acetic acid ester	
o-SO ₂ -NH ₂	- Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
O.SO. NH		CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	^	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	111-0(-1411)14112
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
	1	CH_2 -S(O) ₂ -CH ₃	acid ester	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CI-phenoxyacetic	m-C(=O)NH ₂
- 20 - 10		CH ₂ -S(O) ₂ -CH ₃	acid ester	C/CONTIL
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0 002 1122		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
0 00, 111,		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	**	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
2 2		CH ₂ -S(O) ₂ -CH ₃	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	Tana Parasana	(0)-12
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
_		CH_2 - $S(O)_2$ - CH_3	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
		CH_2 -S(O) ₂ -CH ₃	<u> </u>	<u> </u>

R'	R³	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	- н	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-007-1112	**	CH ₂ -S(O) ₂ -CH,	1 -phonoxy- canado	III O(1111)11112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н -	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-302-14112	"	CH ₂ -S(O) ₂ -CH ₃	Bir-O-phenoxy chianoi	111-0(-1111)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
		$CH_2-S(O)_2-CH_3$		
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CI-phenoxyethanol	m-C(=O)NH ₂
- 80 111		CH ₂ -S(O) ₂ -CH ₃	V	- CV-CVNIII
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenoxy-ethanol	m-C(=O)NH₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0 00,1102		CH ₂ -S(O) ₂ -CH ₃	1	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=0)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		- C/=O\\\
o-SO ₂ -NH ₂	- Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	 H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0 502 1112	1	CH ₂ -S(O) ₂ -CH,	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	ether	C/NIONIO
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 002 1112		CH ₂ -S(O) ₂ -CH,	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	ethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH,
0-502-1112	"	CH ₂ -S(O) ₂ -CH ₃	ether	2.0(0)2
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
		CH_2 -S(O) ₂ -CH,	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
J 502-11112	**	CH ₂ -S(O) ₂ -CH ₃	phenoxyethyl ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	phenoxyethyl ether	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
	1	hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
V-DO ₂ -11212		hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
0-202-14115	1 **	hexane)-	phony:	111-0(10)1112
			1	

R'	⊤R³	TE-J	Z	Π.
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
- SV NIH	H	hexane)- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂		hexane)-	1	1
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
		hexane)-	1	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
- 00 NH	1	hexane)-	(I amilian	- C/=O\NU
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-Phenyl-amino . carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
	<u> </u>	hexane)-	carboxylic acid	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	 H	hexane)- CH ₂ -CH(-CH ₂ -	carboxylic acid Phenyl-amino carboxylic	m-C(=O)NH ₂
		hexane)-	acid	
0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
0-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenyl-amino carboxylic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
U-3U ₂ -1111 ₂		hexane)-	acid ester	111/111/2

R'	R ³	E-J	Z	L
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		hexane)-	acid ester	
o-SO ₂ -NH ₂	H .	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxyacetic	m-C(=O)NH ₂
		hexane)-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	-H $-$	hexane)- CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
	10	hexane)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy- acetic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -hexane)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	hexane)- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	hexane)- CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
	H	hexane)- CH ₂ -CH(-CH ₂ -	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂		hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy-ethanol	m-C(=O)NH ₂

R'	TR⁵	E-J	Z	L
	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂		hexane)-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -hexane)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl Phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	ether Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	hexane)- CH ₂ -CH(-CH ₂ -	ether Methyl F-phenoxyethyl	m-C(=O)NH ₂
		hexane)-	ether	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CI-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
5 557 1117		(HO-phenyl))-		F - (1.12)1122

R ^t	I R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
		(HO-phenyl))-	l -	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0-30 ₂ -1411 ₂		(HO-phenyl))-	Ci-aminic	p-0(-0)//112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
		(HÓ-phenyl))-		
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		(HO-phenyl))-	CIL O Time	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0-302-14112	**	(HO-phenyl))-		P-0(0)1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
22	 	(HO-phenyl))-	acid	` ' ' ' ' ' ' '
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Cl-Phenyl-amino	m-C(=NH)NH ₂
	ļ.,	(HO-phenyl))-	carboxylic acid	06-1100
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
0 8/1 MH	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	11	(HO-phenyl))-	carboxylic acid	1111/1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH,
0 002 1 1122		(HO-phenyl))-	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
	ļ	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
0 80 NP	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH ₂
0-SO ₂ -NH ₂	**	(HO-phenyl))-	carboxylic acid	
0-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
		(HO-phenyl))-	carboxylic acid	` ','
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
	ļ.,	(HO-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
0 80 NP	H	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	, n	(HO-phenyl))-	carboxylic acid	111-C(-O)N112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
		(HO-phenyl))-	acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-30 ₂ -14П ₂	**	(HO-phenyl))-	acetic acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(HO-phenyl))-	acetic acid ester	' '
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	L	(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
O SO MU	н	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	1	(HO-phenyl))-	acid ester	m-0(-0)!чгг ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
		(HO-phenyl))-	acid ester	1 2 3 3 3 3 3 3 3
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	<u> </u>	(HO-phenyl))-	acetic acid ester	L

O-SO ₂ -NH ₂	R ^t	R ³	E-J	Z	TL.
GHO-phenyl) -	-				_
0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -H ₁ -(HO-phenyl) Phenoxyacetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -(H ₂ -H ₂ -H ₂ -H ₂ -H ₂ -H ₂ -H ₂ -H ₂ -	0-502-14H2	**			<\O)!\II3
(HO-phenyl) - O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	н —	CH-CHC-CH-		m-C(=NH)NH.
o-SO2-NH2 H CH,-CH(-CH,-(HO-phenyl))-(H			(HO-phenvl))-		
(HÖ-phenyl) O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	Н		Cl-phenoxy-acetic acid	m-C(=NH)NH,
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -C	•	l	(HO-phenyl))-	• • • •	L
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -Dhenoxy-acetic acid (HO-phenyl))-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-ph	o-SO ₂ -NH ₂	H		F-phenoxy- acetic acid	m-C(=NH)NH ₂
(HÖ-phenyl) CH ₂ -CH(-CH ₂ CH ₃ -O-phenoxy-acetic m-C(=NH)NH ₂ cHO-phenyl) acid m-C(=NH)NH ₂ cHO-phenyl) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ cHO-phenyl) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ cHO-phenyl) o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₂ -CH(-CH ₃ CH ₂ -CH(-CH ₃ CH ₂ -CH(-CH ₃ CH ₃ -CH(-CH				<u> </u>	
o-SO ₂ -NH ₂ H CH,-CH(-CH ₂ -did)-deid CH,-O-phenoxy-acetic acid m-C(=NH)NH ₂ acid o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-de-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-de-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ -(HO-phenyl))-de-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ -(HO-phenyl))-de-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ -(HO-phenyl))-de-SO ₂ -NH ₂ CH ₂ -CH(-CH ₂ -(HO-phenyl))-de-SO ₂ -NH ₂ CH ₃ -CH(-CH ₂ -(HO-phenyl))-de-SO ₂ -NH ₂	o-SO ₂ -NH ₂	Н		CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
O-SO ₂ -NH ₂	A SO NIL	Н		CH. O phenovy coeffe	m-C/=NIU/NIU
o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)-(HO-phenyl)) Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl))-(HO-phenyl)-(HO-phenyl) CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)-(HO-phenyl) CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)-(HO-phenyl) CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)-(HO-phenyl) CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)-(HO-phenyl) Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)-(HO-phenyl) m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -(HO-phenyl)-(HO-phenyl	0-3U2-NII2	n n			III-C(-NII)NII2
(HO-phenyl) O-SO ₂ -NH ₂	o-SONH-	н	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH.
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl)-(HO-phen	0.002.1112		(HO-phenvi))-	pushon, accuració	
(HO-phenyl) C-P-CH-CH2 (HO-phenyl) C-P-CH-CH3 (HO-phenyl) C-P-CH-CH4 (HO-phenyl) C-P-C	o-SO ₂ -NH ₂	H		Phenoxyacetic acid	m-C(=O)NH,
CHO-phenyl)- C-SO ₂ -NH ₂	• • •		(HO-phenyl))-		` ′ •
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phe	o-SO ₂ -NH ₂	Н		CI-phenoxyacetic acid	m-C(=O)NH ₂
(HÖ-phenyl))-					
O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	н		F-phenoxyacetic acid	m-C(=O)NH ₂
(HO-phenyl) -	- 1/0				
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- acid CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Bn-O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -O-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H	0-SU ₂ -NH ₂	H		CH3-pnenoxy-acetic acid	m-U=U)NH2
(HÖ-phenyl))- acid m-C(=O)NH2 O-SO2-NH2	0-S() - NIII	 		CHOinhenovy scetic	m-C/=ONH
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- CI-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (H ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (H ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- (HO-phenyl))- (HO-phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (CI-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (CI-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (H ₂ - (H ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (H ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (H ₃ -D-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (H ₃ -D-phenoxy-ethanol <td>0-3U₂-14II₂</td> <td> **</td> <td></td> <td></td> <td>m-0(-0)/11/2</td>	0-3U ₂ -14II ₂	**			m-0(-0)/11/2
(HO-phenyl))- O-SO ₂ -NH ₂	o-SO ₂ -NH-	н			m-C(=O)NH.
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -(HO-phenyl))-(HO-phenyl)-(HO-phenyl))-(HO-phenyl))-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(HO-phenyl)-(0 007 1.112	l			
(HÔ-phenyl) -	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH,
(HO-phenyl) - 0-SO ₂ -NH ₂		ŀ	(HO-phenyl))-		` ' -
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-phenoxy- ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Bn-O-phenoxy ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂	o-SO ₂ -NH ₂	H		Cl-phenoxy-ethanol	m-C(=NH)NH ₂
(HÔ-phenyl) -				<u></u>	
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂	o-SO ₂ -NH ₂	H		r-phenoxy- ethanol	m-C(=NH)NH ₂
(HO-phenyl) - O-SO ₂ -NH ₂	- P(V NII)	l		CH shanovy others!	m (/=NIU\NIU
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Bn-O-phenoxy ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CI-phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- Bn-O-phenoxy- ethanol m-C(=O)NH ₂	0-3U ₂ -NH ₂	n n		Cri3-phenoxy-emanor	יייייייייייייייייייייייייייייייייייייי
(HO-phenyl) - O-SO ₂ -NH ₂	o-SO-NH-	H	CH-CHCCH-	CH ₂ -O-phenoxy-ethanol	m-C(=NH)NH.
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Bn-O-phenoxy ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- F-phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- (HO-phenyl))- CH ₃ -phenoxy-ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂	5502 1112		(HO-phenvl))-	,	
(HO-phenyl) -	o-SO ₂ -NH,	H	CH2-CH(-CH2-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
(HO-phenyl))- (HO-phenyl))- (HO-phenyl)-			(HO-phenyl))-		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	H		Phenoxyethanol	m-C(=O)NH ₂
(HÖ-phenyl) - O-SO ₂ -NH ₂					(V-C)2711
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-SO ₂ -NH ₂	H		Ci-phenoxyethanol	m-C(=O)NH ₂
(HO-phenyl))- O-SO ₂ -NH ₂	0.80 - NIH	 		F-phenovy ethanol	m-C/=ONNH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-3O2-ND2	^{rr}		1 -buenoxà-emanoi	111-0(-0)(VII)2
(HÔ-phenyl))- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy- ethanol m-C(=O)NH ₂ (HÔ-phenyl))- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-phenoxy- ethanol m-C(=O)NH ₂ (HÔ-phenyl))-	o-SO ₂ -NH ₂	н —		CH ₃ -phenoxy-ethanol	m-C(=O)NH ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 002 1122	l			
(HO-phenyl))- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Bn-O-phenoxy- ethanol m-C(=O)NH ₂ (HO-phenyl))-	o-SO ₂ -NH ₂	H		CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
(HO-phenyl))-		-	(HO-phenyl))-		1
	o-SO ₂ -NH ₂	H		Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl phenoxy-ethyl m-C(=NH)NH ₂					
	o-SO ₂ -NH ₂	H			m-C(=NH)NH ₂
(HO-phenyl))- ether	- 80 - 500	l- a			m CY=NILIVNILI
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Cl-phenoxyethyl m-C(=NH)NH ₂ (HO-phenyl))- ether	0-3U2-NH2	n			III-Q-NII)NII2
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxy-ethyl m-C(=NH)NH ₂	0-80 -NH	 			m-C/=NHNH
(HO-phenyl))- ether	0-002-14112	**			1
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl CH ₃ -phenoxy- m-C(=NH)NH ₂	o-SO ₂ -NH ₃	H			m-C(=NH)NH.
(HO-phenyl))- ethyl ether			(HO-phenyl))-		
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O-phenoxy- m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
(HO-phenyl))- ethyl ether			(HO-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Bn-O-phenoxy m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H			m-C(=NH)NH ₂
(HÖ-phenyl))- ethyl ether		<u></u>	(HO-phenyl))-	ethyl ether	

O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- phenoxyethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- phenoxyethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- phenoxyethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- phenoxyethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- phenoxyethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- phenoxyethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (HO-phenyl))- phenoxyethyl ether O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl m-C(=O)NH ₂	R ¹	∣ R³	TE-J	Z	Π.
(HO-phenyl) - ether m-C(=O)NH ₂			1	, —	m-C(≡O)NH.
(HO-phenyl) ether CH; CH(-CH; HO-phenyl) ether m-C(=O)NH2 H CH; CH(-CH; HO-phenyl) ether m-C(=O)NH2 ether m-C(=O)NH3 ether m-C(=O)NH3 ether m-C(=O)NH3 ether m-C(=O)NH3 ether m-C(=NH3)NH3 ether m-C(=NH3)NH3 eth			(HO-phenyl))-	ether	
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -M ₁ (HO-phenyl))- (HO-phenyl)- (0-SO ₂ -NH ₂	H			m-C(=O)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -CH ₂ -Methyl CH ₂ -Denoxyethyl ether phenoxyethyl ether phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether m-C(=O)NH ₂ (HO ₂ -phenyl))-Q-SO ₂ -NH ₃ H CH ₂ -CH ₂ -CH ₂ -Denoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether m-C(=O)NH ₂ (HO ₂ -phenyl))-Q-SO ₂ -NH ₃ H CH ₂ -CH ₂ -CH ₂ -Denoxyethyl ether m-C(=O)NH ₂ phenyl m-C(=NH)NH ₃ G-SO ₂ -NH ₃ m-C(=NH)NH ₃ <td>o-SO₂-NH₂</td> <td>H</td> <td>CH2-CH(-CH2-</td> <td>Methyl F-phenoxyethyl</td> <td>m-C(=O)NH₂</td>	o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
HÖ-phenyl) phenoxyethyl ether m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenoxyethyl ether m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenoxyethyl ether m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenoxyethyl ether m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenoxyethyl ether m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenoxyethyl ether m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - phenyl) G-					
G-SO ₂ -NH ₂ H CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH	o-SO ₂ -NH ₂	H			m-C(=O)NH ₂
(HO-phenyl) phenoxyethyl ether m-C(=O)NH ₂ G-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₃ - phenoxyethyl ether phenyl m-C(=NH)NH ₂ G-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - CH ₃ -Do-phenyl m-C(=O)NH ₄ C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - CH ₃ -Do-phenyl m-C(=O)NH ₄ C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - CH ₃ -Do-phenyl m-C(=O)NH ₄ C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - CH ₃ -Do-aniline D-C(=NH)NH ₄ C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - CH ₃ -Do-aniline D-C(=NH)NH ₄ C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-phenyl)) G-SO ₂ -NH ₄ H CH ₂ -CH(-CH ₃ - C(-ph	o-SO ₂ -NH ₂	 H 			m-C(=O)NH,
C-SO ₂ -NH ₂			(HO-phenyl))-	phenoxyethyl ether	
G-SO ₂ -NH ₂ H CH ₃ -CH ₄ -CH ₃ - (Cl-phenyl) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₂ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₃ H CH ₃ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₄ H CH ₄ -CH(-CH ₃ - (Cl-phenyl)) G-SO ₂ -NH ₄ H CH ₃	o-SO ₂ -NH ₂	H			m-C(=O)NH ₂
C(-phenyl))- C-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₃ -CH(-CH ₃ -	phenoxyculyr culci	m-C(=NH)NH,
Ciphenyl) Ciphenyl) Ciphenyl C	0 0 0 2 1 1 1 1 2		(Cl-phenyl))-		
G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ (Cl-phenyl))- G-SO ₂ -NH ₃ H CH ₂ -CH ₁ -CH ₂ (Cl-phenyl))- G-SO ₂ -NH ₃ H CH ₂ -CH ₁ -CH	o-SO ₂ -NH ₂	H		CI-phenyl	m-C(=NH)NH ₂
Ciphenyl) Ciphenyl) Ciphenyl C	NO 1111				- C/-NUVNU
G-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl) p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₇ -CH ₇ -CH ₂ (Cl ₇ -phenyl	0-SO ₂ -NH ₂	H	(Cl-phenyl))-	r-pnenyi	m-C(=NH)NH ₂
(Cl-phenyl) CH ₂ -CH(-CH ₂ CH ₃ -O-phenyl m-C(=NH)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CL-phenyl) m-C(=NH)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ phenyl m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CL-phenyl) m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CL-phenyl) m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl m-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=NH)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=NH)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=NH)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=NH)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=NH)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=NH)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=O)NH ₂ CC-phenyl) O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ CH ₃ -phenyl D-C(=O)NH ₂ CC-phenyl D-C(=O)NH ₂ CC-phenyl D	o-SO ₂ -NH ₂	H		CH ₃ -phenyl	m-C(=NH)NH ₂
Cl-phenyl) C-SO ₂ -NH ₂			(Cl-phenyl))-		
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -C	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH₂
C(I-phenyl) C-SO ₂ -NH ₂	A SOL NILL	-		Rn O phenyl	m-C/=NH)NH
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CI-phenyl) m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) CI-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) F-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) CH ₃ -phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) CH ₃ -O-phenyl m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) m-C(=O)NH ₂ m-C(=O)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) CI-aniline p-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) CH ₃ -O-aniline p-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) CI-phenyl) p-C(=NH)NH ₂ G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CI-phenyl) CI-phenyl) p-C(=O)NH ₂ <td>0-30₂-Nn₂</td> <td>"</td> <td>(Cl-phenyl))-</td> <td>Bit-O-phenyi</td> <td>11171112</td>	0-30 ₂ -Nn ₂	"	(Cl-phenyl))-	Bit-O-phenyi	11171112
Cl-phenyl)- Cl-phenyl cl-phenyl cl-phenyl cl-phenyl cl-phenyl)- c-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	phenyl	m-C(=O)NH ₂
Cl-phenyl) CH2-CH(-CH2- (Cl-phenyl) CH2-CH(-CH2- (Cl-phenyl)) CSO2-NH2			(Cl-phenyl))-		
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl)-	o-SO ₂ -NH ₂	H		Cl-phenyl	m-C(=O)NH ₂
Cl-phenyl) CH2-CH(-CH2- CH3-phenyl m-C(=O)NH2	o SVI NIH			F-nhenyl	m-C(=O)NH
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -Dephenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -Oephenyl m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -CH ₂ -CH ₄ -C	0-30 ₂ -Nn ₂	¹¹		r-phenyi	111-0(-0)11112
Cl-phenyl)- O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
Cl-phenyl) CH2-CH1-CH2-					
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₂ -CH ₃ -CH ₄ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -CH ₃ -CH ₄ -C	o-SO ₂ -NH ₂	H		CH ₃ -O-phenyl	m-C(=O)NH ₂
Cl-phenyl) CH ₂ -CH(-CH ₂ Aniline p-C(=NH)NH ₂	o SO NH	1 4		Rn-O-nhenyl	m-C(=O)NH.
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CI-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Bn-O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CI-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Phenyl-amino-carboxylic m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- Phenyl-amino-carboxylic m-C(=NH)NH ₂	0-302-14112	1.1		Dir-O-phenyi	111-0(0)11112
Cl-phenyl) CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=NH)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=NH)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=NH)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-phenyl) Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=NH)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ Cl-phenyl) CSO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂ CH ₃ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H		Aniline	p-C(=NH)NH ₂
Cl-phenyl) O-SO ₂ -NH ₂					
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl-CH ₂ -Cl-CH ₃ -Cl-CH ₃ -Cl-CH ₃ -Aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl-CH ₃ -Cl-CH ₃ -Cl-Aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl-CH ₃ -Cl-CH ₃ -Cl-Aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl-CH ₃ -Cl-CH ₃ -Cl-Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl-CH ₃ -Cl-Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl-CH ₃ -Cl-Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl-CH ₃ -Cl-CH ₃ -Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl ₃ -Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl ₃ -Cl ₃ -Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl ₃ -Cl ₃ -Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl ₃ -Cl ₃ -Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl ₃ -Cl ₃ -Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Cl ₃ -Cl ₃ -Cl ₃ -Aniline p-C(=O)NH ₂	o-SO ₂ -NH ₂	H		Cl-aniline	p-C(=NH)NH ₂
Cl-phenyl) CH2-CH(-CH2- CH3-aniline p-C(=NH)NH2	a CV XIII	- 		F aniling	p-C/=NH)NH
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -aniline p-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃	0-3U ₂ -NH ₂	n		1-annine	p-0(-1111)1112
Cl-phenyl) CH2-CH(-CH2- CH3-O-aniline p-C(=NH)NH2 O-SO2-NH2	o-SO ₂ -NH ₂	H		CH ₃ -aniline	p-C(=NH)NH ₂
C(Cl-phenyl))- O-SO ₂ -NH ₂			(Cl-phenyl))-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Bn-O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- F-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Bn-O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Phenyl-amino-carboxylic m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H		CH ₃ -O-aniline	p-C(=NH)NH ₂
Cl-phenyl) CH2-CH(-CH2- Cl-aniline P-C(=O)NH2	0 80 -NH	H		Rn-O-aniline	D-C(=NH)NH
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Cl-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Bn-O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Phenyl-amino-carboxylic m-C(=NH)NH ₂	0-3O ₂ -Nn ₂	**		Bit-O-annuic	p-0(-1111)1112
(Cl-phenyl))-	o-SO ₂ -NH ₂	H		Aniline	p-C(=O)NH ₂
(Cl-phenyl))- O-SO ₂ -NH ₂		ļ	(Cl-phenyl))-		
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- F-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl))- (Cl-phenyl))- Bn-O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - (Cl-phenyl)- (Cl-phenyl)- Phenyl-amino-carboxylic m-C(=NH)NH ₂	O-SO ₂ -NH ₂	H		Cl-aniline	p-C(=O)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -o-aniline p-C(=O)NH ₂ (Cl-phenyl))- O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ (Cl-phenyl))- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂	- CO NO			Familing	n C/=()NIH
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -aniline (Cl-phenyl))- p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-aniline (Cl-phenyl))- p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -DH-CH ₂ -DH-CH ₃ -D-Aniline (Cl-phenyl))- p-C(=O)NH ₂ O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ -DH-CH ₃ -DH-CH ₃ -DH-CH-CH ₃ -DH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH	0-3U ₂ -NH ₂	n		L-animic	P-C(-C)NII2
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ (Cl-phenyl))- O-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
(Cl-phenyl))- O-SO ₂ -NH ₂			(Cl-phenyl))-	-	-
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=O)NH ₂ (Cl-phenyl))- o-SO ₂ -NH ₃ H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H		CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH, H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂	- P/V NIII	+		Bn () aniline	n C/=()N/U
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenyl-amino-carboxylic m-C(=NH)NH ₂	0-3U ₂ -NH ₂	ⁿ	(Cl-phenvl))-	Dir-O-aimme	P-C(-O)NII2
(Cl-phenyl))- acid	o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
			(Cl-phenyl))-		

R [†]	I R'	E-J	Z	T.
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
0-302-NII2	**	(Cl-phenyl))-	carboxylic acid	111-0-1411/14115
o-SO ₂ -NH ₂	Н —	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
2 2	1	(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH,-CH(-CH,-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
	1	(Cl-phenyl))-	carboxylic acid	, , ,
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
	<u> </u>	(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
	H	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH,
o-SO ₂ -NH ₂	п	(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
0-302-14112	**	(Cl-phenyl))-	carboxylic acid	111-0(-0)11112
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH,
0 502 1112		(Cl-phenyl))-	carboxylic acid	(-)
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	ļ	(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
	1	(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	H	CH2-CH(-CH2-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
- 80-3111	H	Cl-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxy- acetic	m-C(=NH)NH,
o-SO ₂ -NH ₂	п	(Cl-phenyl))-	acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	 н 	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-502-1112	**	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(Cl-phenyl))-	acetic acid ester	`` ′ ′
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
1 -	1	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
		(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
- 90 \	I , ,	(Cl-phenyl))-	acid ester	C/=ONIH
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	191	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
0-302-14112	1 **	(Cl-phenyl))-	acetic acid ester	111-0(0)1.1112
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
	<u> </u>	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
	ļ.,	(Cl-phenyl))-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
- 80	 	(Cl-phenyl))-	F-phenoxy- acetic acid	m C/=NILINNILI
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	r-phenoxy- acede acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
0.002-1112	"	(Cl-phenyl))-		0(
o-SO ₂ -NH ₂	 H 	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
,,	1	(Cl-phenyl))-	acid	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
''	1	(Cl-phenyl))-		` ′ *
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
	L	(Cl-phenyl))-	l	
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
I		(Cl-phenyl))-		

C(=O)NH ₂ C(=O)NH ₂ C(=O)NH ₂ C(=O)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂
C(=0)NH ₂ C(=0)NH ₂ C(=0)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂
C(=O)NH ₂ C(=O)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂
C(=O)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂
C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂
C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂
C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂
C(=NH)NH ₂ C(=NH)NH ₂ C(=NH)NH ₂
C(=NH)NH ₂ C(=NH)NH ₂
C(=NH)NH ₂
C(=NH)NH ₂
C(=0)NH ₂
C(=O)NH ₂
C(=0)NH ₂
C(=O)NH ₂
C(=0)NH ₂
C(=O)NH ₂
C(=NH)NH ₂
C(=NH)NH ₂
C(=NH)NH ₂
C(=NH)NH ₂
C(=NH)NH ₂
C(=NH)NH ₂
C(=O)NH ₂
-C(=O)NH ₂
C(=0)NH ₂
C(=O)NH ₂
·C(=O)NH₂
C(=O)NH ₂
C(=NH)NH ₂
C(≡NH)NH ₂
C(=NH)NH ₂

R'	⊤R³	E-J	Z	TT
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
		NH ₂)-		
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CI-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
O-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
				

O-SO ₂ -NH ₂	R ¹	ι R ⁵	E-J	Z	
NH ₂ -				_	m-C(=O)NH,
NH ₂ -	_	L	NH ₂)-	carboxylic acid	
NH ₂ -			NH ₂)-	carboxylic acid	· · · -
C-SO ₂ -NH ₂	o-SO ₂ -NH ₂	H			m-C(=NH)NH ₂
CSO ₂ -NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Mothyl CH ₂ -phenoxy-acetic acid ester acid acid ester acid ester acid acid ester acid ester acid acid es	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -M ₁ Methyl CH ₃ -O-phenoxy-acetic acid ester Mth ₃) m-C(=NH)NH ₂ acetic acid ester Mth ₃ -CH ₁ -CH ₂ -M ₂ Methyl Bn-U-phenoxy acetic acid ester Mth ₃ -M ₂ -M ₃ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₂ -M ₄ -M ₄ -M ₄ -M ₄ -M ₄ -M ₄ -M ₄ -M ₄	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
G-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ - Methyl Bn-O-phemoxy acetic acid ester m-C(=O)NH ₂ acetic acid ester m-C(=O)NH ₂ acid ester m-C(=NH)NH ₂ m-C(=O)NH ₂ acid ester m-C(=NH)NH ₂ m-C(=O)NH ₂ acid ester m-C(=NH)NH ₂ m-C(=O)NH ₂ acid ester m-C(=NH)NH ₂ m-C(=O)NH ₂ acid ester m-C(=NH)NH ₂ m-C	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
6-SO ₂ -NH ₂ H CH,-CH(-CH ₂ -NH ₃)-acid ester acid ester (H ₂ -CH(-CH ₂ -NH ₃)-NH ₂ . m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₃)-CH ₂ acid ester (NH ₃)-Acid ester (NH ₂)-Acid ester (NH ₂)-NH ₂ . m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-NH ₂ p-phenoxy-acetic acid ester (NH ₂)-Ac	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
6-SO2-NH2 H CH-CH-CH-2-NH3-1 acid ester m-C(=O)NH2 acid ester m-C(=NH)NH2 acid ester	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH ₁ -CH ₂ -N ₁ acid ester acid ester (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ acid ester (Pt ₂ -NH ₂). m-C(=O)NH ₂ acid ester (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ acid ester (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ acid ester (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ acid ester (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ acid ester (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=O)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=NH)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=NH)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=NH)NH ₂ . m-C(=NH)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=NH)NH ₂ (Pt ₂ -CH ₁ -CH ₂ -NH ₂). m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=NH)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O)NH ₂ . m-C(=O	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Nethyl CH ₃ -phenoxy- acetic acid ester MH ₂)- acetic acid ester MH ₃)- acetic acid ester MH ₃)- Methyl CH ₃ -O-phenoxy acetic acid ester NH ₃)- Methyl Bn-O-phenoxy acetic acid ester MH ₃)- Methyl Bn-O-phenoxy acetic acid ester MH ₃ - MH ₃)- MH ₃ -	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
O-SO ₂ -NH ₂ H CH ₂ ² CH(-CH ₂ -NH ₂) Methyl CH ₃ -O-phenoxy acetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic a	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester acid ester acid cestic acid ester acid ester acid NH ₃). m-C(=O)NH ₂ m-C(=NH)NH ₂ acetic acid ester m-C(=NH)NH ₂ NH ₃). m-C(=NH)NH ₂ m-C(=NH)NH ₂ NH ₃). O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) r-Phenoxy-acetic acid NH ₃). m-C(=NH)NH ₂ m-C(=NH)NH ₂ n-C(=NH)NH ₂	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy acetic acid ester	
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₃) NH ₃)- Phenoxyacetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₃)- CI-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -Dhenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid m-C(=O)NH ₂ NH ₃)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid m-C(=O)NH ₂ NH ₃)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid m-C(=O)NH ₂ NH ₂)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid m-C(=O)NH ₂ NH ₂)- C-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Dhenoxy-acetic acid m-C(=O)NH ₂ NH ₂)- C-	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) NH ₂ NH ₂ NH ₂ CI-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) NH ₂ F-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxy-acetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-NH ₂ NH ₂ F-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CH ₂ -CP(-CH ₂ -NH ₂)-CP(-	o-SO ₂ -NH ₂	н	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-NH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-Acid m-C(=NH)NH ₂ m-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-Acid m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-Acid m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-Acid m-C(=O)NH ₂ m-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CH ₃ -O-phenoxy-acetic acid acid acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CH ₂ -CH(-CH ₂ -NH ₂)-CH ₂ -CH(-CH ₂ -NH ₂)-CI-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CI-phenoxyacetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -O-phenoxy-acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D-Phenoxy-acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D-Phenoxy-acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D-Phenoxy-acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D-Phenoxy-acetic acid m-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D-Phenoxy-acetic acid m-C(=O)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -D-Phenoxy-acetic acid m-C(o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ CH ₃ -Phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ Phenoxyethanol m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ F-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂ CH ₃ -Phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ -Phenoxy-ethanol m-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-NH ₂) Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-NH ₂)-NH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-NH ₂)-CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₂ -NH ₂)-CP(-CH ₂ -NH ₂)-CP(-CH ₂ -NH ₂)-NH ₂ -CP(-CH ₂ -NH ₂)-NH ₂ Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂)-CP(-CH ₂ -NH ₂)-NH ₂ -NH ₂ -CP(-CH ₂ -NH ₂ -NH ₂)-CP(-CH ₂ -NH ₂ -NH ₂)-NH ₂ -CP(-CH ₂ -NH ₂ -NH ₂ -NH ₂)-CP(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂)-CP(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -CH(-CH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -NH ₂ -CP(-CH ₂ -CP(-CH ₂ -NH	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- CI-phenoxyacetic acid NH ₂)- CH ₂ -CH(-CH ₂ - NH ₂)- F-phenoxyacetic acid M-C(=O)NH ₂ m-C(=O)NH ₂ M-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid NH ₂)- CH ₃ -O-phenoxy acetic M-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy acetic acid NH ₂)- CH ₂ -CH(-CH ₂ - NH ₂)- M-C(=O)NH ₂ m-C(=O)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxyethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CI-phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol M-C(=NH)NH ₂ m-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н	CH,-CH(-CH,-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-NH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂)-CH(-CH ₂ -NH ₂ -NH ₂)-CH(-CH ₂ -NH ₂ -NH ₂)-CH ₃ -Phenoxy-ethanol m-C(=NH)NH ₂ -NH ₂ -NH ₂ -CH(-CH ₂ -NH ₂ -NH ₂)-CH ₃ -Phenoxy-ethanol m-C(=NH)NH ₂ -NH ₂ -CH(-CH ₂ -NH ₂ -NH ₂)-CH ₃ -Phenoxy-ethanol	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	' '
NH₂⟩- NH₂⟩- CH₂-CH(-CH₂- CH₃-O-phenoxy acetic acid acid m-C(=O)NH₂ 0-SO₂-NH₂ H CH₂-CH(-CH₂- Bn-O-phenoxy acetic acid m-C(=O)NH₂ m-C(=O)NH₂ 0-SO₂-NH₂ H CH₂-CH(-CH₂- Phenoxyethanol m-C(=NH)NH₂ m-C(=NH)NH₂ 0-SO₂-NH₂ H CH₂-CH(-CH₂- CI-phenoxy-ethanol m-C(=NH)NH₂ m-C(=NH)NH₂ 0-SO₂-NH₂ H CH₂-CH(-CH₂- CH₃-phenoxy-ethanol m-C(=NH)NH₂ 0-SO₂-NH₂ H CH₂-CH(-CH₂- CH₃-phenoxy-ethanol m-C(=NH)NH₂ 0-SO₂-NH₂ H CH₂-CH(-CH₂- CH₃-O-phenoxy-ethanol m-C(=NH)NH₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -		
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) acid CH ₃ -O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Bn-O-phenoxy acetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Phenoxyethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -Phenoxyethanol m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H	NH ₂)	CH ₃ -phenoxy-acetic acid	' '
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Bn-O-phenoxy acetic acid N-C(=O)NH ₂ m-C(=O)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) Phenoxyethanol N-C(=NH)NH ₂ m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) F-phenoxy-ethanol N-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -NH ₂) CH ₃ -phenoxy-ethanol N-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ -CH ₃ -O-phenoxy-ethanol N-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	acid	m-C(=O)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Phenoxyethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Cl-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - F-phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-ethanol m-C(=NH)NH ₂ O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- Cl-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- CH ₂ -CH(-CH ₂ - NH ₂)- F-phenoxy-ethanol m-C(=NH)NH ₂ o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-ethanol m-C(=NH)NH ₂	o-SO ₂ -NH ₂	H	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
	o-SO ₂ -NH ₂	Н	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂

NH ₂ - O-SO ₂ -NH ₂	=NH)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂
NH ₂ - O-SO ₂ -NH ₂	=O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂
NH ₂ - O-SO ₂ -NH ₂	=O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂
NH2)- NH2)- 0-SO2-NH2 H CH2-CH(-CH2- F-phenoxy-ethanol NH2)- m-C(NH2)- 0-SO2-NH2 H CH2-CH(-CH2- CH3-phenoxy-ethanol NH2)- m-C(NH2)- 0-SO2-NH2 H CH2-CH(-CH2- CH3-O-phenoxy-ethanol NH2)- m-C(NH2)- 0-SO2-NH2 H CH2-CH(-CH2- NH2)- Bn-O-phenoxy-ethanol NH2)-	=O)NH ₂ =O)NH ₂ =O)NH ₂ =O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- F-phenoxy-ethanol m-C(m-C(NH ₂)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ -phenoxy-ethanol m-C(NH ₂)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ -O-phenoxy- ethanol m-C(NH ₂)-	=O)NH ₂ =O)NH ₂ =O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ -phenoxy-ethanol NH ₂)- m-C(m-C(NH ₂)- o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ -O-phenoxy- ethanol NH ₂)- m-C(NH ₂)-	=O)NH ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=0)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Bn-O-phenoxy- ethanol m-C(NH ₂)-	· _ ·
	=NH)NH
NH ₂)- ether	
	=NH)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl F-phenoxy-ethyl m-C(NH ₂)- ether	=NH)NH ₂
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=NH)NH ₂
	=NH)NH ₂
	=NH)NH ₂
	(=O)NH ₂
	(=O)NH ₂
	(=O)NH ₂
	(≡O)NH ₂
	(=O)NH ₂
o-SO ₂ -NH ₂ H CH ₂ -CH(-CH ₂ - Methyl Bn-O- m-C(NH ₂)- phenoxyethyl ether	=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ phenyl m-C(=NH)NH ₂
	=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenyl m-C	=NH)NH₂
	=NH)NH ₂
	=NH)NH ₂
	=NH)NH ₂
	=O)NH ₂
	=0)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenyl m-C(=O)NH ₂
	=0)NH ₂
	=0)NH ₂
	=0)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl m-C(o-SO ₃ -NH ₃ CH ₄ CH ₅ Aniline p-C(=	
	=NH)NH ₂
	=O)NH ₂
	=O)NH ₂
	=O)NH ₂
	=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-aniline p-C(=	=O)NH₂

C-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₂ Phenyl-amino-carboxylic acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₂ acid m-C(=NH)NH ₃ acid m-C(=NH)NH ₂ acid ester m-C(=NH)NH ₂ acid ester acid ester m-C(=NH)NH ₂ acid ester acid ester m-C(=NH)NH ₂ acid ester acid ester m-C(=NH)NH ₂ acid ester acid ester m-C(=NH)NH ₂ acid ester acid m-C(=NH)NH ₂ acid ester	R¹	TR⁵	E-J	Z	L
c-SO ₂ -NH ₂ CH ₃ CH ₂ Phenyl-ammo-carboxylic acid m-C(=NH)NH ₂ acid acid m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-Phenyl-ammo carboxylic acid m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-ammo m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-ammo carboxylic acid m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenyl ammo carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₃ CH ₃ CH ₂ Phenyl-ammo carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₃ CH ₃ CH ₂ Phenyl-ammo carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₃ CH ₃ CH ₂ CH-phenyl-ammo m-C(=O)NH ₂ c-SO ₂ -NH ₃ CH ₃ CH ₂ CH ₃ -D-phenyl-ammo m-C(=O)NH ₂ c-SO ₂ -NH ₄ CH ₃ CH ₄ CH ₃ -D-phenyl-ammo m-C(=O)NH ₂ c-SO ₂ -NH ₄ CH ₃ CH ₂ CH ₃ -D-phenyl-ammo m-C(=O)NH ₂ c-SO ₂ -NH ₄ CH ₃ CH ₂ CH ₃ -D-phenyl-ammo m-C(=O)NH ₂ c-SO ₂ -NH ₄ CH ₃ CH ₂ McHyl Phenoxy-acetic m-C(=O)NH ₂ c-SO ₂ -NH ₄ CH ₃ <		CH,	CH,	Bn-O-aniline	p-C(=0)NH ₂
G-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-Phenyl-amino carboxylic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenyl-amino carboxylic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₂ -O-phenyl amino carboxylic acid m-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Phenyl-amino carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Phenyl-amino carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH-phenyl-amino m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ McHyl Phenoxyl-acetic m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃	o-SO ₂ -NH ₂			Phenyl-amino-carboxylic	m-C(=NH)NH ₂
c-SO ₂ -NH ₂ CH ₃ CH ₂ E-phenyl-amino carboxylic acid carboxylic					
o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ F-phenyl-amino acid m-C(=NH)NH ₂ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₂ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=NH)NH ₃ carboxylic acid m-C(=O)NH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₅ CH ₇ phenyl-amino m-C(=O)NH ₂ carboxylic acid m-C(=O)NH ₃ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₃ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=O)NH ₄ carboxylic acid m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=NH)NH ₄ acid ester m-C(=O)NH ₄ carboxylic acid ester m-C(=O)NH ₄ acid ester m-	o-SO ₂ -NH ₂	CH ₃	CH ₂	CI-Phenyl-amino	m-C(=NH)NH ₂
CH2	o-SO ₂ -NH ₃	CH ₁	CH ₂	F-phenyl-amino	m-C(=NH)NH,
c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino acaboxylic acid m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₂ -O-phenyl amino carboxylic acid m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ Phenyl-amino carboxylic acid m-C(=NH)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenyl-amino carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenyl-amino carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenyl-amino carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ c-SO ₂ -NH ₂ CH ₃ CH ₂ <t< td=""><td></td><td>1</td><td>2</td><td>carboxylic acid</td><td></td></t<>		1	2	carboxylic acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenyl amino carboxylic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Ci-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Ci-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Ch-phenoxy-acetic macid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Ch-phenoxy-acetic macid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Ch ₃ -phenoxy-acetic macid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Ch ₃ -	o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₁ -phenyl-amino	m-C(=NH)NH ₂
C-SO ₂ -NH ₂				carboxylic acid	
G-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl amino carboxylic acid m-C(=NI)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Phenyl-amino carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-phenyl-amino carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Cl ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Cl ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Cl ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl-amino carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl-amino m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Dienoxy-acetic m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Dienoxy-acetic m-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxy-acetic m-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl ₃ -phenoxy-acetic m-C(=NH)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl ₃ -phenoxy-acetic m-C(=NH)NH ₂ G-S	o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
C-SO ₂ -NH ₂	- 80 XIII			carboxylic acid	on Constitution
G-SO ₂ -NH ₂ CH ₃ CH ₂ Phentyl-amino carboxylic acid acid acid acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-phenyl-amino CH ₃ carboxylic acid acid broxylic acid acid carboxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid acroxylic acid acroxylic acid m-C(=O)NH ₂ G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid acrox	0-5U ₂ -NH ₂	Cn ₃	CH ₂	carboxylic acid	III-C(-NII)NII ₂
Secid	o-SONH-	CH ₂	CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
G-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-phenyl-amino CH ₃ carboxylic acid m-C(=O)NH ₂ carboxylic acid G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ carboxylic acid G-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenyl-amino carboxylic acid m-C(=O)NH ₂ carboxylic acid G-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl-amino carboxylic acid m-C(=O)NH ₂ carboxylic acid G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl phenoxy-acetic acid ester m-C(=NH)NH ₂ acid ester m-C(=NH)NH ₂ acid ester G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxy-acetic acid ester m-C(=NH)NH ₂ acid ester G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=NH)NH ₂ acetic acid ester G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxy-acetic acid ester G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy-acetic acid ester G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Ch ₃ -O-phenoxy-acetic acid ester G-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Ch ₃ -O-phenoxy-acetic acid ester G-SO ₂ -NH ₂ CH ₃ CH ₂	0 002 1112	, o,	02	acid	
CH_carboxylic acid G-SO_2-NH_2	o-SO ₂ -NH ₂	CH,	CH,		m-C(=O)NH ₂
Carboxylic acid CH ₂	· ·		_	CH ₃ carboxylic acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Phenoxy-acetic acid exter m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CI-phenoxyacetic acid exter m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CI-phenoxyacetic acid exter m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxyacetic acid exter m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxyacetic acid exter m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxyacetic acid exter m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Phenoxyacetic acid exter m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxyacetic acid exter m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxyacetic acid exter m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃	o-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenyl-amino	m-C(=O)NH ₂
Carboxylic acid CH ₂				carboxylic acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -Phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃	o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -phenyl-amino	$m-C(=O)NH_2$
o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl phenoxy-acetic acid ester m-C(=NH)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxy-acetic acid ester m-C(=NH)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy-acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy-acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester	- 0/0 - 200			carboxylic acid	
G-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenyl-amino carboxylic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -D-phenoxy acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ <	0-5U ₂ -NH ₂	Cn ₃	CH ₂	carboxylic acid	III-C(-O)NII ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl phenoxy-acetic acid ester m-C(=NH)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=NH)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy- acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy- acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxy- acetic acid ester m-C(=NH)NH ₂ acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy m-C(=NH)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CI-phenoxyacetic m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl F-phenoxyacetic m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CI-phenoxyacetic m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CI-phenoxyacetic acid m-C(=O)NH ₂ acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CI-phenoxyacetic acid m-C(=O)NH ₂ acid ester<	0-SO -NH	- св		Rn-O-phenyl-amino	m-C(=O)NH _a
O-SO2-NH2 CH3 CH2 Methyl phenoxy-acetic acid ester m-C(=NH)NH2 acid ester O-SO2-NH2 CH3 CH2 Methyl CI-phenoxyacetic acid ester m-C(=NH)NH2 m-C(=NH)NH2 m-C(=NH)NH2 acid ester O-SO2-NH2 CH3 CH2 Methyl CH3-phenoxy- acetic acid ester m-C(=NH)NH2 acetic acid ester O-SO2-NH2 CH3 CH2 Methyl CH3-O-phenoxy- acetic acid ester m-C(=NH)NH2 acetic acid ester O-SO2-NH2 CH3 CH2 Methyl Bn-O-phenoxy- m-C(=NH)NH2 acetic acid ester O-SO2-NH2 CH3 CH2 Methyl Bn-O-phenoxy- m-C(=NH)NH2 acetic acid ester O-SO2-NH2 CH3 CH2 Methyl Ch3-O-phenoxy- m-C(=O)NH2 acetic acid ester O-SO2-NH2 CH3 CH2 Methyl Ch3-O-phenoxy- m-C(=O)NH2 acid ester O-SO2-NH2 CH3 CH2 Methyl Ch3-O-phenoxy- m-C(=O)NH2 acetic acid ester O-SO2-NH2 CH3 CH2 Methyl CH3-O-phenoxy- m-C(=O)NH2 acetic acid ester O-SO2-NH2 CH3 CH2 Methyl Bn-O-phenoxy m-C(=O)NH2 acetic acid ester O-SO2-NH2 CH3 CH2 Methyl Bn-O-phenoxy m-C(=O)NH2 acetic acid m-C(=NH)NH3 acetic acid ester O-SO2-NH2 CH3 </td <td>0-302-14112</td> <td>C113</td> <td>C112</td> <td>carboxylic acid</td> <td>III O(0)1 1112</td>	0-302-14112	C113	C112	carboxylic acid	III O(0)1 1112
CH3	o-SO ₂ -NH ₂	CH.	CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH,
o-SO2-NH2 CH3 CH2 Methyl F-phenoxy-acetic acid ester m-C(=NH)NH2 o-SO2-NH2 CH3 CH2 Methyl CH3-phenoxy-acetic acid ester m-C(=NH)NH2 o-SO2-NH2 CH3 CH2 Methyl CH3-O-phenoxy-acetic acid ester m-C(=NH)NH2 o-SO2-NH2 CH3 CH2 Methyl Bn-O-phenoxy-acetic acid ester m-C(=NH)NH2 o-SO2-NH2 CH3 CH2 Methyl Phenoxyacetic acid ester m-C(=O)NH2 o-SO2-NH2 CH3 CH2 Methyl CI-phenoxyacetic acid ester m-C(=O)NH2 o-SO2-NH2 CH3 CH2 Methyl CH3-phenoxyacetic acid ester m-C(=O)NH2 o-SO2-NH2 CH3 CH2 Methyl CH3-phenoxyacetic acid ester m-C(=O)NH2 o-SO2-NH2 CH3 CH2 Methyl CH3-O-phenoxy acetic acid ester m-C(=O)NH2 o-SO2-NH2 CH3 CH2 Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH2 o-SO2-NH2 CH3 CH2 Phenoxyacetic acid m-C(=O)NH2 o-SO2-NH2 CH3 CH2 Phenoxyacetic acid m-C(=NH)NH2 o-SO2-NH2	0 002 1.112	,	2	acid ester	1 ' '
CH3	o-SO ₂ -NH ₂	CH ₃	CH ₂		m-C(=NH)NH ₂
o-SO₂-NH₂ CH₃ CH₂ Methyl CH₃-phenoxy-acetic acid ester m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ Methyl CH₃-O-phenoxy-acetic acid ester m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ Methyl Phenoxyacetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂ Methyl CH₃-phenoxyacetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂ Phenoxyacetic acid ester m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂ Phenoxyacetic acid ester m-C(=NH)NH₂ o-SO₂-NH₂<	•				
O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxy-acetic acid ester m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy-acetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CI-phenoxyacetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxyacetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxyacetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH,	CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
CH3				acid ester	
o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxy-acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ P-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
CH2 Methyl Bn-O-phenoxy m-C(=NH)NH2	2 80 NH		- CB		m-C/=NH\NH
o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Cl-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl F-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxyacetic acid ester m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -D-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -D-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃	0-3O ₂ -14H ₂	CII,	C11 ₂	acetic acid ester	111-0(1111)1112
CH2 Methyl Phenoxyacetic m-C(=O)NH2 acid ester	o-SO ₂ -NH ₂	CH ₂	CH ₂		m-C(=NH)NH,
acid ester	0 002 11112	,	12	acetic acid ester	
acid ester	o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
acid ester					
o-SO₂-NH₂ CH₃ CH₂ Methyl F-phenoxyacetic acid ester m-C(=0)NH₂ o-SO₂-NH₂ CH₃ CH₂ Methyl CH₃-phenoxyacetic acid ester m-C(=0)NH₂ o-SO₂-NH₂ CH₃ CH₂ Methyl CH₃-O-phenoxy acetic acid ester m-C(=0)NH₂ o-SO₂-NH₂ CH₃ CH₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=0)NH₂ o-SO₂-NH₂ CH₃ CH₂ Phenoxyacetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ Cl-phenoxy-acetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ CH₃-phenoxy-acetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ CH₃-O-phenoxy-acetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ CH₃-O-phenoxy-acetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ Phenoxyacetic acid m-C(=NH)NH₂ o-SO₂-NH₂ CH₃ CH₂ Phenoxyacetic acid m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂ Phenoxyacetic acid m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂ CI-phenoxyacetic acid m-C(=O)NH₂ o-SO₂-NH₂ CH₃ CH₂ CI-phenoxyacetic acid m-C(=	o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Cl-phenoxyacetic	$m-C(=O)NH_2$
acid ester					
O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxy acetic acid ester m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenoxy-acetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂ <td>o-SO₂-NH₂</td> <td>CH,</td> <td>CH₂</td> <td>Methyl F-phenoxyacenc</td> <td>m-C(=0)NH₂</td>	o-SO ₂ -NH ₂	CH,	CH ₂	Methyl F-phenoxyacenc	m-C(=0)NH ₂
acetic acid ester	0-80-NH	- CH	- CH		m-C/=O)NH.
O-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl CH ₃ -O-phenoxy acetic acid ester m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂	0-502-14112	\ \tag{21.3}	1 2112	acetic acid ester	0 0/11.12
acetic acid ester	o-SO-NHa	CH.	CH ₂		m-C(=O)NH ₂
acetic acid ester				acetic acid ester	1
acetic acid ester	o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂					
O-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxy- acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂				CI-phenoxy-acetic acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -O-phenoxy-acetic acid acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂					m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Cl-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ Bn-O-phenoxy acetic acid m-C(=NH)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂	0-3U2-NU3	Cn,	CI12		111-0(-1111)11112
o-SO ₂ -NH ₂ CH ₃ CH ₂ Phenoxyacetic acid m-C(=0)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxyacetic acid m-C(=0)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=0)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=0)NH ₂	0-SO-NH-	CH.	CH-		m-C(=NH)NH.
o-SO ₂ -NH ₂ CH ₃ CH ₂ CI-phenoxyacetic acid m-C(=0)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=0)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=0)NH ₂					
o-SO ₂ -NH ₂ CH ₃ CH ₂ F-phenoxyacetic acid m-C(=O)NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂				Cl-phenoxyacetic acid	
o-SO ₂ -NH ₂ CH ₃ CH ₂ CH ₃ -phenoxy-acetic acid m-C(=O)NH ₂			CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
		CH ₃	CH ₂	CH ₃ -phenoxy-acetic acid	
		CH,	CH ₂	CH ₃ -O-phenoxy acetic	m-C(=0)NH ₂

R	R ⁵	E-J	Z	L
			acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH,	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	CI-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
	ł	}	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
,,			ether	·
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
1 2 2		•	ethyl ether	` ' •
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
			ethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
			ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
			ether	C/OVNU
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
- PO NO		CU	ether Methyl F-phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂	ether	111-0(-0)14112
o-SO ₂ -NH ₂	CH,	CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
0-502-14112	0113	0112	phenoxyethyl ether	0(0)- 12-2
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
0 002 1112	,	_	phenoxyethyl ether	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	Cl-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-aniline Bn-O-aniline	p-C(=NH)NH ₂ p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH_CH_	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH, CH,	CH ₂ -CH ₂ CH ₂ -CH ₂	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ CH ₂ -CH ₂	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂
0-502-14112	U113	J112 V112	1 -1-3 - minimo	P ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

PCT/US00/14194

R	l R ⁵	E-J	Z	L
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenyl-amino-carboxylic	m-C(=NH)NH,
0-302-14112	1113	CII2-CII2	acid	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CI-Phenyl-amino	m-C(=NH)NH ₂
0 002 1.112		5352 5352	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
0.002-1112	0.2.3		carboxylic acid	(
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0-002-1112	52.3	0112 0112	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
0 007	,	0.02 0.02	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
	,,	,,	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenyl-amino carboxylic	m-C(=O)NH ₂
			acid	` ′ ′
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenyl-amino	m-C(=O)NH ₂
2 2		•	carboxylic acid	` ´ ´
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	F-phenyl-amino	m-C(=O)NH ₂
	}	1 1	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		' '	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	1	• •	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenyl-amino	m-C(=O)NH ₂
0 0022	,	,,	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl phenoxy-acetic	m-C(=NH)NH ₂
552,1112	,		acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
			acid ester	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
	,	,,	acid ester	`` '
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0 007	,,	,,	acetic acid ester	` ′ ′ ′
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
0 002 12	,	,,	acetic acid ester	`` ' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
		,,	acetic acid ester	` ´ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Phenoxyacetic	m-C(=O)NH ₂
	' '	• •	acid ester	, , ,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
]		acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxyacetic	m-C(=O)NH ₂
	_		acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH3-phenoxy-	m-C(=O)NH ₂
	· ·		acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
			acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		<u> </u>	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CI-phenoxy-acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	$m-C(=NH)NH_2$
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
1]	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
11				<u> </u>

R ¹	R'	E-J	Z	TL 1
	-		acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂		m-C(=NH)NH ₂
0-3O ₂ -1411 ₂			Bn-O-phenoxy ethanol Phenoxyethanol	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂		m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CI-phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
- 500 311		CHCH	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
- 277 707	CO	CUCU	ether	C/-NUNIII -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
- PO NU	CU	CH ₂ -CH ₂		CY-NIUNIU
o-SO ₂ -NH ₂	CH ₃	Cn ₂ -Cn ₂	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
200 800	CH ₃	CH ₂ -CH ₂	ethyl ether Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Cn ₃	Cn ₂ -Cn ₂	ethyl ether	
- 80 NO	CH	CD CD		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Bn-O-phenoxy ethyl ether	m-c(-Nn)Nn ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-30 ₂ -Nn ₂	CH ₃	CH2-CH2	ether	111-0(-0)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
0-302-14112	C11 ₃	C112-C112	ether	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0-302-14112	CH3	C112-C112	ether	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -	m-C(=O)NH ₂
0-502-1112	C113	C112-C112	phenoxyethyl ether	111-0(0)11112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl CH ₃ -O-	m-C(=O)NH ₂
0-002-1112	0113	C112-C112	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂	Methyl Bn-O-	m-C(=O)NH ₂
0-002-1112	0113	0112 0112	phenoxyethyl ether	III O(0)1 1212
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Aniline	D-C(=NH)NH,
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Cl-aniline	p-C(=NH)NH,
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	CH ₃ -annine CH ₃ -O-aniline	p-C(=NH)NH ₂
		CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂		CH ₂ -CH ₂ -CH ₂ CH ₂ -CH ₂ -CH ₂	CI-aniline	
o-SO ₂ -NH ₂	CH ₃		1	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-aniline	p-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-aniline	p-C(=O)NH ₂

		T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
I .			L
CH ₃	CH ₂ -CH ₂ -CH ₂		p-C(=O)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
СН,	CH ₂ -CH ₂ -CH ₂	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
СН,	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino	m-C(=NH)NH ₂
СН,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
СН,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
СН,	CH ₂ -CH ₂ -CH ₂	Bn-O-phenyl amino	m-C(=NH)NH ₂
СН,	CH ₂ -CH ₂ -CH ₂	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
СН,	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
	CH ₂ -CH ₂ -CH ₂	carboxylic acid	m-C(=O)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	carboxylic acid	m-C(=O)NH ₂
CH ₃		acid ester	m-C(=NH)NH ₂
CH ₃		acid ester	m-C(=NH)NH ₂
CH,		acid ester	m-C(=NH)NH ₂
		acetic acid ester	m-C(=NH)NH ₂
СН,		acetic acid ester	m-C(=NH)NH ₂
CH ₃		acetic acid ester	m-C(=NH)NH ₂
·		acid ester	m-C(=O)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	acid ester	m-C(=O)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	acid ester	m-C(=O)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	acetic acid ester	m-C(=O)NH ₂
		acetic acid ester	m-C(=O)NH ₂
	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=NH)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-acetic acid	$m-C(=NH)NH_2$
CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenoxy- acetic acid	m-C(=NH)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
CH ₃	CH ₂ -CH ₂ -CH ₂	Phenoxyacetic acid	m-C(=O)NH ₂
CH,	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyacetic acid	m-C(=O)NH ₂
CH,	CH ₂ -CH ₂ -CH ₂	F-phenoxyacetic acid	m-C(=O)NH ₂
			m-C(=O)NH ₂
CH,	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH4 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH4 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH4 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH4 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH4 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH4 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 CH2-CH2-CH2 CH3 C	CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-aniline CH ₃ CH ₂ -CH ₂ -CH ₂ Phenyl-amino-carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ CI-Phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ F-phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ CI-Phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -O-phenyl amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ Bn-O-phenyl amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ Phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ Phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ Phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ CI-phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₃ -phenyl-amino carboxylic acid CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl Phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid ester CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CI-phenoxy-acetic acid CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy-acetic acid CH ₃ CH ₂ -CH ₂ -CH ₂ Methyl CH ₃ -O-phenoxy-acetic acid CH ₃ CH ₂ -CH ₂ -CH ₂ CH ₂ Phenoxy-acetic acid CH ₃

R ¹	_R⁵	E-J	Z	
K	IX.	17-1		L
- CO MIL		CO CO CO	acid	TO CYTON NICE
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Cl-phenoxyethanol	m-C(=O)NH ₂ m-C(=O)NH ₃
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	F-phenoxy-ethanol	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -phenoxy-ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	CH ₃ -O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Bn-O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH2-CH2	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Methyl Cl-phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH ₂ -CH ₂	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH ₂ -CH ₂	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-aniline	p-C(=O)NH ₂
		 		

R ¹	R³	E-J	Z	TL .
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-aniline	p-C(=O)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Phenyl-amino-carboxylic	m-C(=NH)NH,
• •	,	"	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Cl-Phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	F-phenyl-amino	m-C(=NH)NH ₂
			carboxylic acid	C/G-NIUNIU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
- CO NIU	CH	CH CHCCH	carboxylic acid CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl amino	m-C(=NH)NH ₂
0-002-14112	CII	0112-011(-0113)-	carboxylic acid	111 0(1111)11112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenyl-amino carboxylic	m-C(=0)NH ₂
1 2 2	1,	37	acid	` ′ *
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Cl-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	F-phenyl-amino	m-C(=O)NH ₂
			carboxylic acid	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenyl-amino	$m-C(=O)NH_2$
		CU CUCCU	carboxylic acid	= C/=ONIH
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenyl-amino	m-C(=O)NH ₂
0-302-14112	C113	0112-011(-0113)-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0.00,1112	, C ,	0112 011(0113)	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
1 1			acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
			acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		COT COT COT	acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(-Nri)Nr ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-302-1112	CII,	C112-C11(-C113)-	acetic acid ester	11.0(11.11.11.11.11.11.11.11.11.11.11.11.11.
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyacetic	m-C(=O)NH ₂
0 552 1.1.2	,,	33.7	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
1	-		acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyacetic	m-C(=O)NH ₂
			acid ester	
O-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
SO NO	CH	CH CHCCH	acetic acid ester Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	acetic acid ester	111-0(-0)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
0-002-11112		0117 011(0113)	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
	<u> </u>		acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	F-phenoxyacetic acid CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂ m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	C113-O-PHEHOXY accue	111-0(-0)14112

R ¹	⊤R³	E-J	Z	TL
		+	acid	-
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	F-phenoxy- ethanol	m-C(=NH)NH,
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
		_	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		I OW OW	ethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
- 20	770	CH CHCCH	ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-phenoxy ethyl ether	III-C(-NT)NT ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Phenoxyethyl	m-C(=O)NH ₂
0-3O ₂ -Nn ₂	CH ₃	C112-C11(-C113)-	ether	111-0(-0)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
0-302-14112	C113	0112-011(-0113)-	ether	1.1. 0(0)2.1.2.2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₃)-	Methyl F-phenoxyethyl	m-C(=O)NH ₂
0 002 1 102	,	3,	ether	` '
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH3)-	Methyl CH ₃ -	m-C(=O)NH ₂
	'	• ` "	phenoxyethyl ether	, , _
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl CH ₃ -O-	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₃)-	Methyl Bn-O-	m-C(=O)NH ₂
			phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CI-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl	m-C(=O)NH ₂ m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)- CH ₂ -CH(-NH ₂)-	Bn-O-phenyl Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃		Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)- CH ₂ -CH(-NH ₃)-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂ 0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-aniline	p-C(=O)NH ₂
U-3U2-11112		J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	L,	L

PCT/US00/14194

Col	1113		. ,,	
R¹	R³	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH₂-CH(-NH₂)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CI-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	F-phenoxyacetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
	,,	4 4		<u> </u>

R'	I R'	E-J	Z	L
Λ		12-9		<u> </u>
	CII	CH CHANG	acid	- CENNU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Phenoxyethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Cl-phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -phenoxy-ethanol	$m-C(=O)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH(-NH2)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-NH ₂)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-NH₂)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-NH ₂)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CI-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH2-CH(-Bn)-	CH ₃ -phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Cl-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CI-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Cl-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -aniline	p-C(=O)NH ₂
		 ` 	·	· - · · · · · · · · · · · · · · · · · ·

IR ^t	I R ⁵	E-J	Z	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-aniline	p-C(=O)NH ₂
		CH ₂ -CH(-Bn)-	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃		acid	,
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	CI-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-Bn)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-Bn)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	СН3	CH ₂ -CH(-Bn)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH2-CH(-Bn)-	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl F-phenoxyacetic acid ester	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenoxy- acetic acid	$m-C(=NH)NH_2$
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CI-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-acetic acid	$m-C(=O)NH_2$

R'	I R'	E-J	Z	L.
	CH,	1	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	Cn ₃	CH ₂ -CH(-Bn)-	acid	III-C(-O)NII ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Bn-O-phenoxy acetic acid	m-C(=O)NH,
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	F-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Cl-phenoxyethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	F-phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-Bn)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-Bn)-	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
			ether	
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH₂-CH(-Bn)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH₂-CH(-Bṇ)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH₂-CH(-Bn)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-Bn)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH₂-CH(-Bn)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl	m-C(=O)NH ₂

R¹	R	E-J	Z	
	_ L	1 -		TO CY=CONU
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O-phenoxy- acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
				

R'	R ⁵	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CI-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl F-phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CI-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂

WO 00/71509

G-SO ₂ -NH ₂	R¹	R	TE-J	Z	TE .
COOCH_0	l '				1 -
COOCH ₃			COOCH ₃)-	ether	
COOCH_1			COOCH ₃)-		
COCCH_3	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - COOCH ₃)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH-CH ₃ - Methyl Phenoxyethyl ether m-C(=O)NH ₂ ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₃ - Methyl Phenoxyethyl ether m-C(=O)NH ₂ ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₃ - Methyl T-phenoxyethyl ether m-C(=O)NH ₂ ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₃ - Methyl T-phenoxyethyl ether m-C(=O)NH ₂ ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₃ - Methyl Bn-O- phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ - Methyl Bn-O- phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ - Methyl Bn-O- phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ - Methyl Bn-O- phenoxyethyl ether m-C(=O)NH ₂ phenoxyethyl ether O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ - Methyl Bn-O- phenoxyethyl ether m-C(=O)NH ₂ m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₃ - Phenyl menoxyethyl ether m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ -CH ₁ -CH ₂ - CH ₂ - CH ₂ - Phenyl m-C(=NH)NH ₂ m-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ -CH ₁ -CH ₂ - CH ₃ - CH ₃ - CH ₃ - CH ₃ -	o-SO ₂ -NH ₂	CH ₃	COOCH ₃)-	ethyl ether	m-C(=NH)NH ₂
COOCH_)	o-SO ₂ -NH ₂	CH ₃			m-C(=NH)NH ₂
COOCH_)- cther cther cther cther cOOCH_)- cther cOOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther coOCH_)- cther cthe		CH,	COOCH ₃)-		1
COOCH_)- ether methyl CH_3- m-C(=O)NH_2			COOCH,)-	ether	<u> </u>
COOCH ₃		_	COOCH ₃)-	ether	' ' -
COOCH3 -			COOCH3)-	phenoxyethyl ether	
CCOCH_3			COOCH ₃)-	phenoxyethyl ether	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₂ -OH)-CH ₂ -O	•	-	COOCH ₃)-	phenoxyethyl ether	
CH3-OH)- CH3-CH1-CH2-CH3-CH3-OH3-CH3-OH3-OH3-OH3-OH3-OH3-OH3-OH3-OH3-OH3-O			CH ₂ -OH)-		
CH ₂ -OH)- CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -Phenyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-Phenyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-Phenyl m-C(=NH)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=O)NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Dhenyl m-C(=NH)NH ₂ 0-S			CH ₂ -OH)-		
CH2-OH)- CH2-CH(-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2	•		CH₂-OH)-		` ' -
CH2-OH)- CH3-CH1-CH2- Bn-O-phenyl m-C(=NH)NH2 CSO2-NH2 CH3 CH2-CH1-CH2- phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- C1-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- C1-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- F-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- CH3-phenyl m-C(=O)NH2 CH2-CH1-CH2- CH3-OH3- CH3-OH3- m-C(=O)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- CH3-O-phenyl m-C(=O)NH2 CH3-OH3- CH3-CH1-CH2- Bn-O-phenyl m-C(=O)NH2 CH3-OH3- CH3-CH1-CH2- Bn-O-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- Bn-O-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- Bn-O-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- C1-aniline p-C(=NH)NH2 O-SO2-NH2 CH3 CH3-CH1-CH2- CH3-CH1-CH3- CH3-CH1-CH3- <td></td> <td></td> <td>CH₂-OH)-</td> <td></td> <td>1</td>			CH ₂ -OH)-		1
CH ₂ -OH - CH ₃			CH ₂ -OH)-		
CH2-OH)- CH2-OH)- CH2-CH(-CH2-CI)- CI-phenyl m-C(=O)NH2 0-SO2-NH2 CH3 CH2-CH(-CH2-CH2-CH2-CH3-CH3-DH2) CH2-CH(-CH2-CH3-CH3-DH2) m-C(=O)NH2 0-SO2-NH2 CH3 CH2-CH(-CH2-CH3-CH3-DH2) CH3-O-phenyl m-C(=O)NH2 0-SO2-NH2 CH3 CH2-CH(-CH2-CH3-CH3-DH2) CH3-O-phenyl m-C(=O)NH2 0-SO2-NH2 CH3 CH2-CH(-CH3-CH3-CH3-DH2) Aniline p-C(=NH)NH2 0-SO2-NH2 CH3 CH2-CH(-CH3-CH3-CH3-CH3-DH2) Aniline p-C(=NH)NH2 0-SO2-NH2 CH3 CH2-CH(-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3			CH ₂ -OH)-		
CH2-OH)- O-SO2-NH2 CH3 CH2-CH(-CH2- F-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH2-CH(-CH2- CH3-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH2-CH(-CH2- CH3-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH2-CH(-CH2- CH3-O-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH2-CH(-CH2- Bn-O-phenyl m-C(=O)NH2 O-SO2-NH2 CH3 CH2-CH(-CH2- Aniline p-C(=NH)NH2 O-SO2-NH2 CH3 CH3-CH(-CH2- Cl-aniline p-C(=NH)NH2 O-SO2-NH2 CH3 CH3-CH(-CH2- Cl-aniline p-C(=NH)NH2 O-SO2-NH2 CH3 CH2-CH(-CH2- Cl-aniline p-C(=NH)NH2 O-SO2-NH2 CH3 CH2-CH(-CH3- CH3-aniline p-C(=NH)NH2 O-SO2-NH2 CH3 CH2-CH(-CH2- CH3-aniline p-C(=NH)NH2 O-SO2-NH2 CH3 CH2-CH(-CH2- CH3-aniline p-C(=NH)NH2 O-SO2-NH2 CH3 CH3-CH(-CH2- CH3-O-aniline p-C(=NH)NH2 O-SO3-NH2 CH3 CH3-CH(-CH3- CH3-O-aniline p-C(=NH)NH2 O-SO3-NH2 CH3 CH3-CH(-CH3- CH3-O-aniline p-C(=NH)NH2 O-SO3-NH2 CH3 CH3-CH(-CH3- Aniline p-C(=NH)NH2 O-SO3-NH2 CH3 CH3-CH(-CH3- Aniline p-C(=O)NH2 O-SO3-NH2 CH3 CH3-CH(-CH3- Aniline p-C(=O)NH2			CH ₂ -OH)-		
CH ₂ -OH)- O-SO ₂ -NH ₂			CH ₂ -OH)-		`
CH2-OH)- O-SO2-NH2 CH3 CH2-CH(-CH2- CH3-O-phenyl m-C(=O)NH2 CH2-OH)- O-SO2-NH2 CH3 CH2-CH(-CH2- Bn-O-phenyl m-C(=O)NH2 CH2-OH)- O-SO2-NH2 CH3 CH2-CH(-CH2- Aniline p-C(=NH)NH2 CH3-OH)- O-SO2-NH2 CH3 CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-			CH ₂ -OH)-	•	
CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-phenyl m-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - Cl-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - F-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - Aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=O)NH ₂			CH₂-OH)-		
CH2-OH)- CH2-OH)- CH2-CH(-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2			CH₂-OH)-		
CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CI-aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - Aniline p-C(=O)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CI-aniline p-C(=O)NH ₂			CH ₂ -OH)-	1	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ -aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - Aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ -OI-aniline p-C(=O)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - CI-aniline p-C(=O)NH ₂			CH ₂ -OH)-		
CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Aniline p-C(=O)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=O)NH ₂			CH₂-OH)-		
CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-aniline p-C(=NH)NH ₂ O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Aniline p-C(=O)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=O)NH ₂			CH ₂ -OH)-		-
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=NH)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Aniline p-C(=O)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=O)NH ₂			CH ₂ -OH)-		
CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Aniline p-C(=O)NH ₂ CH ₂ -OH)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=O)NH ₂			CH ₂ -OH)-	1	-
CH ₂ -OH)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CI-aniline p-C(=O)NH ₂			CH ₂ -OH)-		` ` ' -
	_ •		CH₂-OH)-		
C112-C11)-	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-aniline	p-C(=O)NH ₂

R'	R⁵ .	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=0)NH ₂
		CH ₂ -OH)-		p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -aniline	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		CH ₂ -OH)-	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CI-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
- 500 MH	<u></u>	CH₂-OH)-	carboxylic acid Bn-O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	carboxylic acid	ĺ ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
- 80 30	CD	CH₂-OH)-	carboxylic acid F-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	<u> </u>	CH ₂ -OH)-	carboxylic acid	
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
		CH₂-OH)-	acid ester	
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyacetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic acid ester	m-C(=NH)NH ₂
- 8/7 8/1	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Cn ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	acetic acid ester	
o-SO ₂ -NH ₂	СН,	CH2-CH(-CH2-	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
- 20-211	ļ.,,,	CH ₂ -OH)-	acetic acid ester Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyacetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic acid ester	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
		CH₂-OH)-	acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -OH)- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Bn-O-phenoxy	m-C(=O)NH ₂
		CH ₂ -OH)-	acetic acid ester	` ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=NH)NH ₂
.0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
	L	CH ₂ -OH)-	L	<u> </u>

WO 00/71509

R [†]	⊢R³	E-J	TZ	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		CH₂-OH)-	L	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxyacetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - CH ₂ -OH)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
		1 2 1	1	

CH_2-OH . phenoxyethyl ether	R¹	R³	E-J	Z	L
C-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
CH_OH) phenoxyethyl ether				phenoxyethyl ether	
C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=NH)N C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). CI-phenyl CH ₂ -CH(-N ₂ -C(=0)-N. morpholino). m-C(=NH)N C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). CH ₃ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=NH)N C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). CH ₃ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=NH)N C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=NH)N m-C(=NH)N C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=NH)N m-C(=NH)N C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=NH)N m-C(=NH)N C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=0)NH m-C(=0)NH C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). CH ₃ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=0)NH C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). CH ₃ -CH(-CH ₂ -C(=0)-N. morpholino). m-C(=0)NH C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)-N. morpholino). CH ₃ -CH(-CH ₂ -C(=0)-N. morpholino). P-C(=NH)N C-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=0)	o-SO ₂ -NH ₂	CH,		Methyl Bn-O-	$m-C(=O)NH_2$
C(=O)-N: morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N: morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N: morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -C(=O)-N: morpholino)					
morpholino CH ₃	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	$m-C(=NH)NH_2$
O-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -C(-O)-N-morpholino)-D(-C(-O)-N-morpholino)-D				1	
C(=0)-N- morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=0)-N- morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH(-CH ₂ - C(=0)-N- morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH(-CH ₂ - C(=0)-N- morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH(-CH ₂ - C(=0)-N- morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH(-CH ₂ - C(=0)-N- morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH(-CH ₂ - C(=0)-N- morpholino) O-SO ₂ -NH ₂ CH ₃ CH ₄ -CH(-CH ₂ - C(=0)-N- morpholino) O-SO ₂ -NH		CU	morpholino)-		C/-NIDNII
morpholino - CH ₃	0-5U ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Ci-pnenyi	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(-O)-N-morpholino)-m			mombolino)		
C(=O)-N-morpholino)- m-C(=NH)N m-C(=N	a CA NIU			L phonyl	m C/=NIH)NIH
morpholino - CH ₃	0-3U ₂ -IVII ₂	CII3		r-phenyi	111-0(-1411)14112
O-SO₂-NH₂ CH₃ CH₂-CH(-CH₂-C(=O)-N-morpholino)-morpholino					
C(=O)-N-morpholino)-	o-SO-NH.	CH.	CH-CHCCH-	CHphenyl	m-C(=NH)NH ₂
morpholino - CH ₂ -CH(-CH ₂ -C(-O)-N-morpholino)- CH ₂ -CH(-CH ₂ -C(-O)-N-morpholino)- CH ₃ -CH(-CH ₂ -C(-C)-N-morpholino)- CH ₃ -CH(-CH ₂ -CH(-CH ₂ -C(-C)-N-morpholino)- CH ₃ -	0 002 1112	0,		OLIS PRODS	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₁ -CH ₂ -C(=O ₂ -N-D ₃ -N-D ₄ -N-D ₄ -D ₄ -D ₄ -D ₄ -D ₄ -D ₄ -D ₄ -D ₄			morpholino)-		
C(=O)-N-morpholino)- m-C(=NH)N C(=O)-N-morpholino)- m-C(=O)-N-morpholino)-	o-SO ₂ -NH ₂	CH,		CH ₁ -O-phenyl	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Bn-O-phenyl m-C(=NH)N O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Cl-phenyl m-C(=O)NH O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Cl-phenyl m-C(=O)NH O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ -phenyl m-C(=O)NH O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ -O-phenyl m-C(=O)NH O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ -O-phenyl m-C(=O)NH O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Aniline p-C(=NH)N O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Cl-aniline p-C(=NH)N O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Cl-aniline p-C(=NH)N O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Cl-aniline p-C(=NH)N			C(=O)-N-	1	` ´ -
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₃ -CH ₃		į.			
morpholino - O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃		Bn-O-phenyl	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)-m					
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ CH ₃ -CH(-CH ₂ - CH ₃ -CH(-					
morpholino - O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	$m-C(=O)NH_2$
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-C(=O)NH-C(=O)NH-C(=O)NH-C(=O)-N-M-C(=O)NH-C(=O)-N-M-C(=O)NH-C(=O)-N-M-C(=O)NH-C(=O)-N-M-M-C(=O)NH-C(=O)-N-M-C(=O)-N-M-C(=O)-N-M-C(=O)-N-M-C(=O)-N-M-C(=O)-N-M-C(=O)-N-M-C(=O)-N-M-C(=O)-N-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-C(=O)-N-M-M-M-C(=O)-N-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-		1			
C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₂ -CH ₃ -Phenyl C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -Phenyl C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -O-phenyl C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -CH ₃ -O-phenyl C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ -CH ₃ -CH	~ 60 MH	CB CB		Clabenyl	m-C(=O)NH
morpholino)- O-SO ₂ -NH ₂	0-3O ₂ -14H ₂	CII3		Ci-phenyi	111-0(-0)14112
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-phenyl m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ -phenyl m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ -O-phenyl m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Bn-O-phenyl m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Aniline p-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Cl-aniline p-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline p-C(=NH)N					
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline D-C(=NH)N- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)-	o-SO ₂ -NH ₂	СН		F-phenyl	m-C(=O)NH ₂
morpholino - O-SO ₂ -NH ₂	0 007 1.117	,			
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline p-C(=NH)N- C(=NH)N- C(=NH)N- C(=O)-N- morpholino)-			morpholino)-	1	
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ -CH(-CH ₂ - C(=O)-N- morpholino)-	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- CH ₃ -O-phenyl m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Bn-O-phenyl m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Aniline p-C(=NH)NI 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Cl-aniline p-C(=NH)NI 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline p-C(=NH)NI					
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline D-C(=NH)N CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-					
morpholino)- O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Bn-O-phenyl m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Aniline p-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- Cl-aniline p-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline p-C(=NH)N		l			
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline p-C(=NH)N p-C(=NH)N p-C(=NH)N					
morpholino)- O-SO ₂ -NH ₂	o-SO ₂ -NH ₂	CH ₃		Bn-O-pnenyl	m-C(=0)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=NH)N-morpholino)-		İ			
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline p-C(=NH)N p-C(=NH)N	~ 8/A XIII	CH		Aniline	n-C(=NH)NH
morpholino)- O-SO ₂ -NH ₂	0-302-14112	CII3		Amme	p-0(1411)1412
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-aniline p-C(=NH)N (= O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline p-C(=NH)N (= NH)N (=				1	
C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- F-aniline p-C(=NH)N p-C(=NH)N	o-SO ₂ -NH ₂	CH,		Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- F-aniline p-C(=NH)N			C(=0)-N-		1. ` ' -
C(=O)-N- morpholino)-					
morpholino)-	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
			C(=O)-N-	1	
	o-SO ₂ -NH ₂	CH ₃		CH ₃ -aniline	p-C(=NH)NH ₂
C(=0)-N-					
	o SO NIL			CH -O-antline	p-C(=NH)NH ₂
$C_3 = C_3 $	0-302-NU2	CH ₃	C(=0)-N-	C113-O-ammut	p-0(-1411)14112
morpholino)-			morpholino)-		
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-aniline p-C(=NH)N	0-SO-NH-	CH.		Bn-O-aniline	p-C(=NH)NH ₂
C(=0)-N-	0 002 11112	1,	C(=0)-N-		1 - ()
morpholino)-			morpholino)-	1	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Aniline p-C(=O)NH ₂	o-SO ₂ -NH ₂	Сн.		Aniline	p-C(=O)NH ₂
C(=0)-N-	<u>4</u> - · 4		C(=O)-N-		' ' '
morpholino)-			morpholino)-	1	
$O-SO_2-NH_2$ CH_3 $CH_2-CH(-CH_2 CI-aniline$ $p-C(=O)NH_2$	o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂

R'	R ³	E-J	Z	L
		C(=0)-N-		
0-SO ₂ -NH ₂	CH ₃	morpholino)- CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
0 002-1112	V.1. ,	C(=0)-N-		p o(0),
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
		C(=O)-N- morpholino)-	1	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
2 2	1	C(=O)-N-		
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	Bn-O-aniline	p-C(=O)NH ₂
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		C(=O)-N-	acid	
- 8/2 NH		morpholino)-	CI Phanul amina	('-NICONIO
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=0)-N-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
	İ	morpholino)-	outony no uoid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
	1	C(=0)-N-	carboxylic acid	
0-SO ₂ -NH ₂	CH ₃	morpholino)- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0-502-1112	CIII	C(=0)-N-	carboxylic acid	111-0(1111)1112
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		C(=O)-N- morpholino)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
0 2021.002	,	C(=O)-N-	carboxylic acid	` ′ ′
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
1		morpholino)-	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
	1	C(=O)-N-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	morpholino)- CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
0-302-14112	CII	C(=O)-N-	carboxylic acid	111-0(0)1112
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		C(=O)-N- morpholino)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
	,	C(=O)-N-	carboxylic acid	
		morpholino)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N-	Bn-O-phenyl-amino carboxylic acid	m-C(=O)NH ₂
		morpholino)-	carboxyne acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
_		C(=0)-N-	acid ester	
0-SO ₂ -NH ₂	CH ₃	morpholino)- CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-502-14112	C113	C(=0)-N-	acid ester	1111/1112
		morpholino)-		<u> </u>
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		C(=O)-N- morpholino)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	,	C(=O)-N-	acetic acid ester	
1		morpholino)-		

R ³ E-J Z	o-phenoxy m-C(=NH)NH ₂
C(=O)-N- acetic acid es morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O acetic acid es morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Pheno acid ester	oter m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- o-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- acetic acid es Methyl Bn-O acetic acid es	
O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- acetic acid es	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Pheno C(=0)-N- acid ester	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Pheno C(=0)-N- acid ester	ter
C(=0)-N- acid ester	
	oxyacetic m-C(=O)NH ₂
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Cl-ph C(=O)-N- acid ester	nenoxyacetic m-C(=O)NH ₂
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl F-phe	enoxyacetic m-C(=O)NH ₂
C(=0)-N- acid ester	m-o(-0)1411 ₂
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -I	phenoxy- m-C(=O)NH ₂
C(=0)-N- acetic acid es	
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -C	O-phenoxy m-C(=O)NH ₂
C(=O)-N- acetic acid es	
morpholino)-	ļ
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O	
C(=O)-N- acetic acid es	ter
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyaceti	ic acid m-C(=NH)NH ₂
C(=0)-N-	
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Cl-phenoxy-a	acetic acid m-C(=NH)NH ₂
C(=0)-N-	i i
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxy- a	icetic acid m-C(=NH)NH ₂
C(=0)-N-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy	y-acetic acid m-C(=NH)NH ₂
$C_1 = C_2 - C_1 = C_2 - C_3 = C_3 - C_3 $	-acede acid III-C(-IVII)IVII ₂
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-pheno	oxy-acetic m-C(=NH)NH ₂
C(=0)-N- acid	,,
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-phenox	ky acetic acid m-C(=NH)NH ₂
C(=0)-N-	
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyaceti	ic acid m-C(=O)NH ₂
C(=0)-N-	
morpholino)-	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH ₂ -CH ₂ - Cl-phenoxyac	cetic acid m-C(=O)NH ₂
C(=0)-N-	
morpholino)-	
	etic acid m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco	
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco	ļ
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco C(=O)-N- morpholino)-	Lacetic acid m-C/=ONIP
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy	y-acetic acid m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy C(=O)-N-	/-acetic acid m-C(=O)NH₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy C(=O)-N- morpholino)- O-SO ₂ -NH ₃ CH ₄ CH ₄ -CH(-CH ₂ - CH ₃ -O-phenoxy	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-pheno C(=O)-N- acid	
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -phenoxy C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -CH ₃ -phenoxy C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -C(=O)-N-morpholino)-	oxy acetic m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy C(=O)-N-morpholino)-	oxy acetic m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxyaco C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy C(=O)-N-morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-phenox acid morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-phenox morpholino)-	oxy acetic m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy C(=O)-N- morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-phenox morpholino)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-phenox C(=O)-N-	oxy acetic m-C(=O)NH ₂ xy acetic acid m-C(=O)NH ₂

R ¹	⊢R⁵	I E-J	Z	T1L
	- 	morpholino)-		 -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - C(=O)-N- morpholino)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂

R'	∏R ⁵	E-J	Z	L
	 	C(=O)-N-	phenoxyethyl ether	
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
		C(=O)-N- morpholino)-	phenoxyethyl ether	1
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
0-502-1112	C113	C(=O)-N-	phenoxyethyl ether	1 0(0). 1
		morpholino)-		
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	phenyl	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
0-302-1112	CII,	CH ₂ -S(O) ₂ -CH ₃	i -phenyi	111 0(1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
_ ·		CH ₂ -S(O) ₂ -CH ₃	l	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
NO NO	 	CH ₂ -S(O) ₂ -CH ₃	Un O aband	m C/=NU/NU
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
0 002 1112	,	CH ₂ -S(O) ₂ -CH ₃	7	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		- C/-CVNIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₃ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
0-30 ₂ -1411 ₂	CII3	CH ₂ -S(O) ₂ -CH ₃	City-pachy:	111 0(0)/112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
	1	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
	-	CH ₂ -S(O) ₂ -CH ₃	A P	- C/-NIUNNIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
0-502 1122	0,	CH ₂ -S(O) ₂ -CH ₃	0	1 - (-) - 2
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
0-302-14112	City	CH ₂ -S(O) ₂ -CH ₃	C113-O-annino	p-0(1111)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=O)NH ₂
0-302-14II2	\ \tag{21.13}	CH ₂ -CH(-CH ₂ -CH ₃ -CH		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
• • • •		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
- NO 200	1	CH ₂ -S(O) ₂ -CH ₃	CH. O antina	n C(=O)NO
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0022	3	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
		CH_2 -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
- 80 80		CH_CH(CH	carboxylic acid F-phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	m-0(-1411)1411 ₂
L		0112 0(0/2 0113	1	<u> </u>

R ¹	R ³	LE-I	Z	П.
	CH ₃	1		m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Cn ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	III-C(-NII)NII ₂
	CII	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	· · · · · · · · · · · · · · · · · · ·
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
1		CH_2 -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	$m-C(=O)NH_2$
		CH ₂ -S(O) ₂ -CH ₃	acid	
o-SO ₂ -NH ₂	CH,	CH2-CH(-CH2-	CI-phenyl-amino	m-C(=O)NH ₂
] -	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
0 000, 1122	021,	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH,
0-302-14112	C113	CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	111-0(0)11112
	CII			C/-(V)VIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	$m-C(=O)NH_2$
		CH_2 -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	$m-C(=O)NH_2$
		CH ₂ -S(O) ₂ -CH ₃	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	Methyl phenoxy-acetic	m-C(=NH)NH ₂
	1	CH ₂ -S(O) ₂ -CH ₃	acid ester	` ´ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-502-1112	C113	CH ₂ -S(O) ₂ -CH ₃	acid ester	111 0(1111)11112
- 80 - 800	- TO-	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CII C(O) CII	orid actor	111-0(-1411)14112
		CH ₂ -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		CH_2 - $S(O)_2$ - CH_3	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
1	1 1	CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
0 002 1112	0113	CH ₂ -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
0-302-14112	CII3	CH ₂ -S(O) ₂ -CH ₃	acid ester	111-0(0)11112
	- CIT		Methyl F-phenoxyacetic	(V=()\NID
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -		m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		CH_2 -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
1		CH ₂ -S(O) ₂ -CH ₃	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
1 -		$CH_2-S(O)_2-CH_3$	acetic acid ester	' ' -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
	,	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
3-502-1112	3	CH ₂ -S(O) ₂ -CH ₃	or printerly access acid	
0 SO NH	CO	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃		r-phenoxy- acene acid	m-cd-ratthatt ³
		CH ₂ -S(O) ₂ -CH ₃		
O-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		CH_2 - $S(O)_2$ - CH_3	acid	<u></u>
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
	-	CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
	,	CH ₂ -S(O) ₂ -CH ₃		` , , , , , , , , , , , , , , , , , ,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
0-002-11112	J3		o. phonoxyuoono noid	0(0)2
- CO NIT		CH_CH(CH	E phonoxygootic soid	m C(=()\NILI
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
	L	CH_2 - $S(O)_2$ - CH_3		- C(C1)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
ł	<u></u>	CH ₂ -S(O) ₂ -CH ₃	·	<u></u>
				

R ^t	R,	TO 1		
1		E-J	Z	L
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	CH ₃ -O-phenoxy acetic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=0)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	•	' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
- 50 - 507	CH	CH ₂ -S(O) ₂ -CH ₃	N	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	F-phenoxy- ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0 502 1112	J	CH ₂ -S(O) ₂ -CH ₃	cary parenting cummer	0(1.11)1.112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		CH_2 - $S(O)_2$ - CH_3	<u> </u>	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
0-502-1112	0113	CH ₂ -S(O) ₂ -CH,	or phonoxy culanor	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
• •	_	CH ₂ -S(O) ₂ -CH ₃		` ′ -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
		CH ₂ -S(O) ₂ -CH ₃		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH,
0-30 ₂ -Nn ₂	C113	CH ₂ -S(O) ₂ -CH ₃	Bh-O-phenoxy- edianoi	III-C(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
	,	CH ₂ -S(O) ₂ -CH ₃	ether	` ´ -
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
- 00 300		CH ₂ -S(O) ₂ -CH ₃	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
0-502-1112	0113	CH ₂ -S(O) ₂ -CH ₃	ethyl ether	11.0(11.11).11.12
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	1	CH ₂ -S(O) ₂ -CH ₃	ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	CU	CH ₂ -S(O) ₂ -CH ₃	ethyl ether	(7-4))
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - CH ₂ -S(O) ₂ -CH ₃	Methyl Phenoxyethyl ether	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=0)NH ₂
0 002 1.112	,	CH ₂ -S(O) ₂ -CH ₃	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=0)NH ₂
		CH ₂ -S(O) ₂ -CH ₃	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -S(O) ₂ -CH ₃ CH ₂ -CH(-CH ₂ -	phenoxyethyl ether Methyl CH ₃ -O-	m-C(=O)NH ₂
0-302-14112		CH ₂ -CH ₁ -CH ₂ -CH ₃	phenoxyethyl ether	m-0(0)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=0)NH ₂
1 -	1	CH ₂ -S(O) ₂ -CH ₃	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
. 00 NG	-	hexane)-	Clabouil	(Y=KIII\KIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
0-002-1112	3	hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
	1	hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=NH)NH ₂
L	L	hexane)-	L	1

R'	R ³	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
~ 60 MH	CH,	hexane)-		- C/-(VXIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
		hexane)-		<u> </u>
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=O)NH ₂
- SO MH	<u> </u>	hexane)-	CH O mbound	- C(-()))(I)
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=O)NH ₂
0 0 0 2 1 1 1 2	, ,	hexane)-	p	12 0(0)1 122
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
-	1	hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
0-002-1112	0113	hexane)-	C113-LIMIMO	p-0(1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
2		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
a PO NIU		hexane)- CH ₂ -CH(-CH ₂ -	Cl-aniline	- (V=())NIH
o-SO ₂ -NH ₂	CH ₃	hexane)-	Ci-amme	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
0 00,011	,	hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
_		hexane)-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	hexane)- CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
U-5U2-11112	C113	hexane)-	Bii-O-aininic	p-C(-0)/41/2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
2 - 2	,	hexane)-	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-Phenyl-amino	m-C(=NH)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
0-502-1112	C113	hexane)-	carboxylic acid	111-0(1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
• •		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl amino	m-C(=NH)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
J DO2 1112	J,	hexane)-	carboxylic acid	(),,,,,,,,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
-	1	hexane)-	carboxylic acid	' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		hexane)-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
2 V/ NIU		hexane)-	Bn-O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	carboxylic acid	III-C(-O)NI12
		T Hevane).	carooxyne acid	J

R¹	⊤R⁵	I E-J	Z	TL
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-acetic	m-C(=NH)NH ₂
0 002-14112	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	hexane)-	acid ester	111-0(-1411)[4112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
	1	hexane)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
		hexane)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
	<u> </u>	hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
- 8/A NH	Cu	hexane)-	acetic acid ester	(V>)
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyacetic	m-C(=O)NH ₂
0-502-1112	C113	hexane)-	acid ester	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=0)NH ₂
0 00 / 1.1.1./	"",	hexane)-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=0)NH ₂
	-	hexane)-	acid ester	` ′ ′ ′
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		hexane)-	acetic acid ester	<u> </u>
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
- 50 50	 	hexane)-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH,
0-302-14112	CII3	hexane)-	I henoxyacetic acid	III-C(-1411)14112
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0 00, 1112,	,	hexane)-		
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
		hexane)-	acid	C/NII/NII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=0)NH ₂
0-302-1112	CII3	hexane)-	I henoxyacette actu	111-0(0)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=0)NH ₂
0 0021112	,	hexane)-		5(5)5.552
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
	l	hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH₃-phenoxy-acetic acid	m-C(=O)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=0)NH ₂
- 80 80	 	hexane)-	Br O phonovy section and	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
U-002-1112	``````	hexane)-	1 monoxyoumnoi	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
2 2	,	hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
		hexane)-		
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
		hexane)-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
- 50 80	 	hexane)-	Da O shanayy athana	C/-NU/NU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=O)NH ₂
0-502-1112	13	hexane)-		< 0,111.2
L	J		l	l

R ¹	TR*	E-J	IZ	
		1 — *		- C/-//XIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - hexane)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - hexane)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenŷl))-	CH ₃ -phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyi))-	Bn-O-phenyl	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Aniline	p-C(=NH)NH ₂
0-SO ₂ -NH ₂	СН	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-aniline	p-C(=NH)NH ₂

WO 00/71509

R ^t	− R³	TE-J	Z	TE
L.	ľ		<u></u>	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-aniline	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ - (HO phenyl))	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl amino	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid Phenyl-amino carboxylic	m-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid Cl-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid F-phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid Methyl phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acetic acid ester Methyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl Cl-phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	acid ester Methyl F-phenoxyacetic	m-C(=O)NH ₂
		(HO-phenyl))-	acid ester	<u> </u>

PCT/US00/14194

R ⁱ	R³	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(HO-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=0)NH ₂
		(HO-phenyl))-	acetic acid ester	- C/-CVNIII
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy acetic acid ester	m-C(=O)NH ₂
- BO NO		(HO-phenyl))-		m C/=NIHINIH
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=NH)NH ₂
- PO NIII	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Cl phonoxy agetts agid	m-C(=NH)NH,
o-SO ₂ -NH ₂	Cn ₃	(HO-phenyl))-	Cl-phenoxy-acetic acid	III-C(-NII)NII ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
0-302-14112	C113	(HO-phenyl))-	1 -phenoxy- acede acid	111-0(1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH,
0-002-1112	0113	(HO-phenyl))-	orig phonony accine acid	1 0(1.1.1)1.1.12
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
0 001 1.112	, J,	(HO-phenyl))-	acid	
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
2 - 2	1 1	(HO-phenyl))-	' '	` ´ `
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		(HO-phenyl))-		
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
- 80 NO	CTT	(HO-phenyl))-	CH ₃ -O-phenoxy acetic	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (HO-phenyl))-	acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
0-502-1112	C113	(HO-phenyl))-	Bh-G-phenoxy access acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	m-C(=NH)NH ₂
2 2 2 2 2 2	, ,	(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
• •	1	(HO-phenyl))-	1	}
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	F-phenoxy- ethanol	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
		(HO-phenyl))-	<u> </u>	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
a SO ND	CH,	(HO-phenyl))- CH,-CH(-CH,-	Phenoxyethanol	m-C(=0)NH ₂
o-SO ₂ -NH ₂	CH ₃	(HO-phenyl))-	Flienoxyemanor	III-C(-0)1411 ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
0 002 1112	J,	(HO-phenyl))-	gr promony cummer	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
	1	(HO-phenyl))-	' '	` ´ `
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
		(HO-phenyl))-	·	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
		(HO-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
- 616		(HO-phenyl))-	L Vallad about a land	- C(=NUVNU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
- SQ NIA	CH ₃	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	Cn ₃	(HO-phenyl))-	ether	111-04-1411)14115
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
0-002-14112	\ \tag{2.13}	(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
J J J Z = 14.2	,	(HO-phenyl))-	ethyl ether	= =\
				1

R'	R ³	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
		(HO-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
	L	(HO-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Phenoxyethyl	m-C(=O)NH ₂
- 0/2 20/2	L	(HO-phenyl))-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=0)NH ₂
- 60 NO	-	(HO-phenyl))-	ether	m C/m/NNIU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
O SO - NP	CH,	(HO-phenyl))- CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH,
o-SO ₂ -NH ₂	C113	(HO-phenyl))-	phenoxyethyl ether	11-0(-0)14II2
0-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
0 002 1112	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(HO-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
	,	(HO-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH2-CH(-CH2-	phenyl	m-C(=NH)NH ₂
• •		(Cl-phenyl))-	1-	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=NH)NH ₂
		(Cl-phenyl))-	·	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(=NH)NH ₂
- 200 200		(Cl-phenyl))-	CH O phone!	m C(=NID/NID
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CH₃-O-phenyl	m-C(=NH)NH ₂
O-SO-NH	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl	m-C(=NH)NH ₂
0-SO ₂ -NH ₂	C113	(Cl-phenyl))-	Dir-O-pilenyi	1111/1112
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=O)NH ₂
	,	(Cl-phenyl))-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-phenyl	m-C(=O)NH ₂
		(Cl-phenyl))-	1 -	` `
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl	m-C(=O)NH ₂
	<u></u>	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl	m-C(≡O)NH ₂
	ļ	(Cl-phenyl))-	CUCO	- CONTRACT
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl	m-C(=O)NH ₂
. 80	 ~~	(Cl-phenyl))-	Pn O phony!	m C(=()N)U
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=NH)NH ₂
0-302-14112	C113	(Cl-phenyl))-		P=O(1.11)1.112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Cl-aniline	p-C(=NH)NH ₂
5 5522	,	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=NH)NH ₂
		(Cl-phenyl))-	1	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=NH)NH ₂
		(Cl-phenyl))-	<u> </u>	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=NH)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=NH)NH ₂
	ļ	(Cl-phenyl))-		
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Aniline	p-C(=O)NH ₂
- 80-80	<u></u>	(Cl-phenyl))-	Clariting	- CI-OWIH
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	CI-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-aniline	p-C(=O)NH ₂
J-502-11112	0113	(Cl-phenyl))-		F-C(-0)1-11-2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -aniline	p-C(=O)NH ₂
	,	(Cl-phenyl))-		-(-)2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-aniline	p-C(=O)NH ₂
		(Cl-phenyl))-		
				

R	∏ R⁵	TE-J	TZ	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-aniline	p-C(=O)NH ₂
0-302-14112	CII	(Cl-phenyl))-	Bh-O-aininie	p-c(-O)NII3
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino-carboxylic	m-C(=NH)NH ₂
307	,	(Cl-phenyl))-	acid	5(
o-SO ₂ -NH ₂	CH,	CH,-CH(-CH,-	Cl-Phenyl-amino	m-C(=NH)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=NH)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=NH)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl amino	m-C(=NH)NH ₂
- SO NO	CU	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	carboxylic acid Bn-O-phenyl amino	- CY-NIUNNU
o-SO ₂ -NH ₂	CH ₃	(Cl-phenyl))-	carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenyl-amino carboxylic	m-C(=O)NH ₂
0-302-14112	CII	(Cl-phenyl))-	acid	III-C(-O)(111 ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenyl-amino	m-C(=O)NH ₂
0 002 1112	0223	(Cl-phenyl))-	carboxylic acid	(),,
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenyl-amino	m-C(=O)NH ₂
	, ,	(Cl-phenyl))-	carboxylic acid	(-)2
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenyl-amino	m-C(=O)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenyl-amino	m-C(=O)NH ₂
		(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenyl-amino	m-C(=O)NH ₂
	-	(Cl-phenyl))-	carboxylic acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Methyl phenoxy-acetic acid ester	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=NH)NH ₂
0-302-14112	C113	(Cl-phenyl))-	acid ester	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy- acetic	m-C(=NH)NH ₂
5 50, 1112	3	(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	<u> </u>	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
- SO NIII	1 cm	(Cl-phenyl))-	acetic acid ester Methyl Phenoxyacetic	(Y=())NID
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyacetic	m-C(=0)NH ₂
0-502-14112	C113	(Cl-phenyl))-	acid ester	m-o(0)1112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyacetic	m-C(=O)NH ₂
	,	(Cl-phenyl))-	acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=O)NH ₂
		(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy	m-C(=O)NH ₂
	<u> </u>	(Cl-phenyl))-	acetic acid ester	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=O)NH ₂
- SO NII	 	(Cl-phenyl))-	acetic acid ester	- C/=NU\NU
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Phenoxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-acetic acid	m-C(=NH)NH ₂
0-002-14112	~~~3	(Cl-phenyl))-	Or phonoxy-accur acid	1111/11112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- acetic acid	m-C(=NH)NH ₂
		(Cl-phenyl))-	1	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=NH)NH ₂
		(Cl-phenyl))-	-	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-acetic	m-C(=NH)NH ₂
100		(Cl-phenyl))-	acid	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=NH)NH ₂
<u> </u>		(Cl-phenyl))-	l	L

R ⁱ	R	E-J	Z	L
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Phenoxyacetic acid	m-C(=O)NH ₂
2		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CI-phenoxyacetic acid	m-C(=O)NH ₂
		(Cl-phenyl))-		, , -
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	F-phenoxyacetic acid	m-C(=O)NH ₂
		(Cl-phenyl))-		<u> </u>
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-acetic acid	m-C(=O)NH ₂
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy acetic	m-C(=O)NH ₂
		(Cl-phenyl))-	acid	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy acetic acid	m-C(=O)NH ₂
- 80 XIII	Cu	(Cl-phenyl))-	Phenoxyethanol	m-C(=NH)NH,
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Filenoxyeulation	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxy-ethanol	m-C(=NH)NH ₂
0-302-14112	C113	(Cl-phenyl))-	Ci-phenoxy-edianor	111-0(-1411)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy- ethanol	m-C(=NH)NH ₂
0-502-1112	\ \tag{21.3}	(Cl-phenyl))-	phonony chambor	111 0(1111)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
0 002 1.112	,	(Cl-phenyl))-	, , , , , , , , , , , , , , , , , , , ,	1(
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
	_	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
		(Cl-phenyl))-	I	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Phenoxyethanol	$m-C(=O)NH_2$
		(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Cl-phenoxyethanol	m-C(=O)NH ₂
	<u> </u>	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	F-phenoxy-ethanol	m-C(=O)NH ₂
	100	(Cl-phenyl))-		
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	CH ₃ -phenoxy-ethanol	m-C(=0)NH ₂
- 80 NH	100	(Cl-phenyl))-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - (Cl-phenyl))-	Ch ₃ -O-phenoxy- enianor	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Bn-O-phenoxy- ethanol	m-C(=0)NH ₂
0-302-14112	C113	(Cl-phenyl))-	Bh-O-phonoxy- culture:	111-0(0)1112
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl phenoxy-ethyl	m-C(=NH)NH ₂
0-002-1412	0113	(Cl-phenyl))-	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=NH)NH ₂
1 2 2 2 2 2		(Cl-phenyl))-	ether	` ′ •
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxy-ethyl	m-C(=NH)NH ₂
		(Cl-phenyl))-	ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
		(Cl-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
	1	(Cl-phenyl))-	ethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-phenoxy	m-C(=NH)NH ₂
- C/V NID	CH ₃	(Cl-phenyl))- CH ₂ -CH(-CH ₂ -	ethyl ether Methyl Phenoxyethyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	(Cl-phenyl))-	ether	111-0(-0)14112
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Cl-phenoxyethyl	m-C(=O)NH ₂
V-002-1112	,	(Cl-phenyl))-	ether	0(0)1.122
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl F-phenoxyethyl	m-C(=O)NH ₂
	1,	(Cl-phenyl))-	ether	
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -	m-C(=O)NH ₂
	1	(Cl-phenyl))-	phenoxyethyl ether	' '
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl CH ₃ -O-	m-C(=O)NH ₂
	1	(Cl-phenyl))-	phenoxyethyl ether	
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	Methyl Bn-O-	m-C(=O)NH ₂
		(Cl-phenyl))-	phenoxyethyl ether	<u> </u>
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ -	phenyl	m-C(=NH)NH ₂
		NH ₂)-	<u> </u>	L

WO 00/71509

R'	I R'	E-J	IZ	L
O-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	СН3	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	F-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-aniline	p-C(=NH)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	F-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -aniline	p-C(=O)NH ₂
0-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	СН,	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-aniline	p-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenyl-amino-carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-Phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenyl-amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenyl amino carboxylic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenyl-amino carboxylic acid	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenyl-amino carboxylic acid	m-C(=O)NH ₂

PCT/US00/14194

o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -NH ₂) F-phenyl-amino carboxylic acid carboxylic acid m-C(=O)NH carboxylic acid o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -NH ₂) CH ₇ -phenyl-amino carboxylic acid m-C(=O)NH carboxylic acid o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -NH ₂) Bn-O-phenyl-amino carboxylic acid m-C(=O)NH carboxylic acid o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -NH ₂) Methyl phenoxy-acetic acid ester m-C(=NH)N caid ester o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -Methyl CI-phenoxyacetic acid ester m-C(=NH)N caid ester o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -Methyl CI-phenoxyacetic acid ester m-C(=NH)N caid ester o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -Methyl CI-phenoxyacetic acid ester m-C(=NH)N caid ester o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -Methyl CI-phenoxyacetic acid ester m-C(=NH)N caid ester o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -Methyl CI-phenoxyacetic acid ester m-C(=NH)N caid ester o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -Methyl CI-phenoxyacetic acid ester m-C(=O)NH caid ester o-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -Methyl CI-phenoxyacetic acid ester	— R³	R³ E-J Z		L
O-SO ₂ -NH ₂	1		envl-amino	_
O-SO ₂ -NH ₂		NH ₂)- carb	oxylic acid	
0-SO2-NH2 CH3 CH2-CH(-CH2-NH2) CH3-O-phenyl-amino carboxylic acid m-C(=O)NH2 0-SO2-NH2 CH3 CH2-CH(-CH2-NH3) Bn-O-phenyl-amino carboxylic acid m-C(=O)NH3 0-SO2-NH2 CH3 CH3-CH(-CH2-NH3) Methyl phenoxy-acetic acid ester acid ester m-C(=NH)N3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-phenoxy-acetic acid ester NH3) m-C(=NH)N3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-phenoxy-acetic acid ester NH3) m-C(=NH)N3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-phenoxy-acetic acid ester NH3) m-C(=NH)N3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-Phenoxy-acetic acid ester NH3) m-C(=NH)N3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-Phenoxy-acetic acid ester NH3) m-C(=NH)N3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-Phenoxy-acetic acid ester NH3) m-C(=O)NH3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-Phenoxy-acetic acid ester NH3) m-C(=O)NH3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-Phenoxy-acetic acid ester NH3) m-C(=O)NH3 0-SO2-NH2 CH3 CH3-CH(-CH2-Methyl CH3-Phenoxy-acetic acid ester NH3) m-C(=O)NH3	· -	NH ₂)- carb	oxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂ CH ₃ CH ₇ -CH(-CH ₂ -N ₁) bn-O-phenyl-amino carboxylic acid of the carboxylic acid of the carboxylic acid ester acid ester on the carboxylic acid	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ NH ₂)- carb	-O-phenyl-amino oxylic acid	m-C(=O)NH ₂
0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Methyl phenoxy-acetic acid ester m-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl CI-phenoxyacetic acid ester m-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl F-phenoxy-acetic acid ester m-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl CH ₃ -phenoxy-acetic acid ester m-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl Bn-O-phenoxy-acetic acid ester m-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl Phenoxyacetic acid ester m-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl Phenoxyacetic acid ester m-C(=NH)N 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl Phenoxyacetic m-C(=O)NH m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl Phenoxyacetic m-C(=O)NH m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl CH ₃ -phenoxyacetic m-C(=O)NH m-C(=O)NH 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl CH ₃ -D-phenoxy m-C(=O)NH	H, CH	CH ₁ CH ₂ -CH(-CH ₂ - Bn-0	O-phenyl-amino	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl F-phenoxy-acetic acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl F-phenoxy-acetic acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl GH ₃ -O-phenoxy-acetic acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Bn-O-phenoxy-acetic acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Bn-O-phenoxy-acetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -Phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -Phenoxyacetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met	hyl phenoxy-acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂) acid ester m-C(=NH)N (=NH ₂) acid ester m-C(=NH ₂) acid ester m-C(=NH ₂) acid ester m-C(H ₂ CH	CH ₁ CH ₂ -CH(-CH ₂ - Met	hyl Cl-phenoxyacetic	m-C(=NH)NH ₂
O-SO ₂ -NH ₂	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met	hyl F-phenoxy- acetic	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester acetic acid ester m-C(=NH)N acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Bn-O-phenoxy NH ₂)-acetic acid ester m-C(=NH)N acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Cl-phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Cl-phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -phenoxyacetic acid ester m-C(=NH)N happen acid ester	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met	hyl CH ₃ -phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester m-C(=NH)N acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester m-C(=O)NH acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester m-C(=O)NH acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester m-C(=O)NH acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester m-C(=O)NH acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester m-C(=NH)N nH ₂)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester m-C(=NH)N nH ₂)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acetic acid ester m-C(=NH)N nH ₂)- <	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met	hyl CH ₃ -O-phenoxy-	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl F-phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl F-phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl F-phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl F-phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl F-phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl F-phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxyacetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxyacetic acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxyacetic acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxyacetic acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxyacetic acid ester m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxyace	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met	hyl Bn-O-phenoxy	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) acid ester Methyl Cl-phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂) Methyl F-phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl CH ₃ -O-phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Bn-O-phenoxyacetic acid ester m-C(=O)NH acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Nethyl Bn-O-phenoxyacetic acid ester m-C(=NH)N nH ₂ -NH ₂ -NH ₂ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxyacetic acid ester m-C(=NH)N nH ₂ -NH ₂	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met	hyl Phenoxyacetic	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂)- acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂)- Methyl CH ₃ -phenoxy- acetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂)- Methyl CH ₃ -O-phenoxy acetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -NH ₂)- Methyl Bn-O-phenoxy acetic acid ester m-C(=O)NH o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ -Phenoxy-acetic acid m-C(=NH)N	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met NH ₂)- acid	ester	m-C(=O)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -phenoxy- acetic acid ester O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl CH ₃ -O-phenoxy m-C(=O)NH acetic acid ester O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O-phenoxy m-C(=O)NH acetic acid ester O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Methyl Bn-O-phenoxy m-C(=O)NH acetic acid ester O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxy-acetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-acetic m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N NH ₂)-		CH ₃ CH ₂ -CH(-CH ₂ - Met NH ₂)- acid		m-C(=O)NH ₂
NH ₂ - acetic acid ester	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met NH ₂)- acet	ic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂) acetic acid ester m-C(=O)NH acetic acid ester o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid MH ₂)- CI-phenoxy-acetic acid MH ₂)- CI-phenoxy-acetic acid MH ₂)- CH ₃ m-C(=NH)N MH ₂)- CH ₃ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxy-acetic acid MH ₂)- CH ₃ -phenoxy-acetic acid MH ₂)- CH ₃ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid MH ₂)- CH ₃ -O-phenoxy-acetic m-C(=NH)N MH ₂)- acid m-C(=NH)N MH ₂)- CH ₃ o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-acetic m-C(=NH)N MH ₂)- CH ₃ -CH(-CH ₂ - NH ₂)- Phenoxyacetic acid m-C(=NH)N MH ₂)- CH ₃ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N MH ₂)- CH ₃ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N MH ₂)- CH ₃ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N MH ₂)- CH ₃ -CH(-CH ₂ - Phenoxyacetic acid m-C(=NH)N MH ₂ -CH(-C	H ₂ CF	NH_2)- acet	ic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂)- O-SO ₂ -NH ₂ Phenoxyacetic acid NH ₂)- O-SO ₂ -NH ₂ m-C(=NH)N CH ₂ -CH(-CH ₂ - NH ₂)- O-SO ₂ -NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂)- O-SO ₂ -NH ₂ CH ₃ -O-phenoxy-acetic acid NH ₂)- O-SO ₂ -NH ₂ m-C(=NH)N O-SO ₂ -NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂)- O-SO ₂ -NH ₂ Bn-O-phenoxy acetic acid NH ₂)- O-SO ₂ -NH ₂ m-C(=NH)N O-SO ₂ -NH ₂ 0-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂)- NH ₂)- Phenoxyacetic acid NH ₂)- m-C(=O)NH	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Met NH ₂)- acet	ic acid ester	m-C(=O)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ CI-phenoxy-acetic acid NH ₂)- CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ m-C(=NH)N CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ -CH(-CH ₂ - NH ₂)- Phenoxyacetic acid M-C(=O)NH	H ₂ CF	CH ₃ CH ₂ -CH(-CH ₂ - Phen NH ₂)-	noxyacetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂) F-phenoxy- acetic acid m-C(=NH)N NH ₂)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -phenoxy-acetic acid m-C(=NH)N NH ₂)- m-C(=NH)N acid m-C(=NH)N acid m-C(=NH)N nH ₂)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=NH)N NH ₂)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂) NH ₂ -CH ₃ CH ₃ -CH(-CH ₂ - Phenoxyacetic acid m-C(=O)NH	H ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Cl-p	henoxy-acetic acid	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - NH ₂)- CH ₃ -phenoxy-acetic acid m-C(=NH)N characteristic m	H, CH	CH ₃ CH ₂ -CH(-CH ₂ - F-ph NH ₂)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ -O-phenoxy-acetic m-C(=NH)N acid o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=NH)N NH ₂)- o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=O)NH	IH ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - CH ₃ NH ₂)-	-	m-C(=NH)NH ₂
O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Bn-O-phenoxy acetic acid m-C(=NH)N NH ₂)- O-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=O)NH NH ₂)-	IH ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - CH ₃		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - Phenoxyacetic acid m-C(=O)NH NH ₂)-	IH ₂ CH	CH ₃ CH ₂ -CH(-CH ₂ - Bn-0 NH ₂)-	· · ·	m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - CI-phenoxyacetic acid m-C(=O)NH	-	CH ₃ CH ₂ -CH(-CH ₂ - Phen NH ₂)-		m-C(=O)NH ₂
NH ₂)-		CH ₃ CH ₂ -CH(-CH ₂ - Cl-p NH ₂)-		m-C(=O)NH ₂
NH ₂)-	IH ₂ CF	NH ₂)-		m-C(=O)NH ₂
NH ₂)-	_	NH ₂)-		m-C(=O)NH ₂
NH ₂)- acid	_	NH ₂)- acid		m-C(=O)NH ₂
NH ₂)-		NH ₂)-		m-C(=O)NH ₂
NH ₂)-	IH ₂ CF	NH ₂)-	•	m-C(=NH)NH ₂
NH ₂)		NH ₂)-		m-C(=NH)NH ₂
o-SO ₂ -NH ₂ CH ₃ CH ₂ -CH(-CH ₂ - F-phenoxy- ethanol m-C(=NH)N NH ₂)-	IH ₂ CF		ienoxy- ethanol	m-C(=NH)NH ₂

R'	R⁵	E-J	Z	L
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenoxy-ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenoxy ethanol	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Cl-phenoxyethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	F-phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -phenoxy-ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	CH ₃ -O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Bn-O-phenoxy- ethanol	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl F-phenoxy-ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -O-phenoxy- ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH,	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Bn-O-phenoxy ethyl ether	m-C(=NH)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Cl-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl F-phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ - phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl CH ₃ -O- phenoxyethyl ether	m-C(=O)NH ₂
o-SO ₂ -NH ₂	CH ₃	CH ₂ -CH(-CH ₂ - NH ₂)-	Methyl Bn-O- phenoxyethyl ether	m-C(=O)NH ₂

This invention also encompasses all pharmaceutically acceptable isomers, salts, hydrates and solvates of the compounds of formulas I, II and III. In addition, the compounds of formulas I, II and III can exist in various isomeric and tautomeric forms, and all such forms are meant to be included in the invention, along with pharmaceutically acceptable salts, hydrates and solvates of such isomers and tautomers.

5

10

The compounds of this invention may be isolated as the free acid or base or converted to salts of various inorganic and organic acids and bases. Such salts are

within the scope of this invention. Non-toxic and physiologically compatible salts are particularly useful although other less desirable salts may have use in the processes of isolation and purification.

- 238 -

A number of methods are useful for the preparation of the salts described above and are known to those skilled in the art. For example, the free acid or free base form of a compound of one of the formulas above can be reacted with one or more molar equivalents of the desired acid or base in a solvent or solvent mixture in which the salt is insoluble, or in a solvent like water after which the solvent is removed by evaporation, distillation or freeze drying. Alternatively, the free acid or base form of the product may be passed over an ion exchange resin to form the desired salt or one salt form of the product may be converted to another using the same general process.

Prodrug Derivatives of Compounds

10

This invention also encompasses prodrug derivatives of the compounds contained herein. The term "prodrug" refers to a pharmacologically inactive 15 derivative of a parent drug molecule that requires biotransformation, either spontaneous or enzymatic, within the organism to release the active drug. Prodrugs are variations or derivatives of the compounds of this invention which have groups cleavable under metabolic conditions. Prodrugs become the compounds of the invention which are pharmaceutically active in vivo, when they undergo solvolysis 20 under physiological conditions or undergo enzymatic degradation. Prodrug compounds of this invention may be called single, double, triple etc., depending on the number of biotransformation steps required to release the active drug within the organism, and indicating the number of functionalities present in a precursor-type 25 form. Prodrug forms often offer advantages of solubility, tissue compatibility, or delayed release in the mammalian organism (see, Bundgard, Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985 and Silverman, The Organic Chemistry of Drug Design and Drug Action, pp. 352-401, Academic Press, San Diego, CA, 1992). Prodrugs commonly known in the art include acid derivatives well known to 30 practitioners of the art, such as, for example, esters prepared by reaction of the parent acids with a suitable alcohol, or amides prepared by reaction of the parent acid compound with an amine, or basic groups reacted to form an acylated base derivative. Moreover, the prodrug derivatives of this invention may be combined with other features herein taught to enhance bioavailability.

- 239 -

As mentioned above, the compounds of this invention find utility as therapeutic agents for disease states in mammals which have disorders of coagulation such as in the treatment or prevention of unstable angina, refractory angina, myocardial infarction, transient ischemic attacks, thrombotic stroke, embolic stroke, disseminated intravascular coagulation including the treatment of septic shock, deep venous thrombosis in the prevention of pulmonary embolism or the treatment of reocclusion or restenosis of reperfused coronary arteries. Further, these compounds are useful for the treatment or prophylaxis of those diseases which involve the production and/or action of factor Xa/prothrombinase complex. This includes a number of thrombotic and prothrombotic states in which the coagulation cascade is activated which include but are not limited to, deep venous thrombosis, pulmonary embolism, myocardial infarction, stroke, thromboembolic complications of surgery and peripheral arterial occlusion.

5

10

15

20

25

30

Accordingly, a method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprises administering to the mammal a therapeutically effective amount of a compound of this invention. In addition to the disease states noted above, other diseases treatable or preventable by the administration of compounds of this invention include, without limitation, occlusive coronary thrombus formation resulting from either thrombolytic therapy or percutaneous transluminal coronary angioplasty, thrombus formation in the venous vasculature, disseminated intravascular coagulopathy, a condition wherein there is rapid consumption of coagulation factors and systemic coagulation which results in the formation of life-threatening thrombi occurring throughout the microvasculature leading to widespread organ failure, hemorrhagic stroke, renal dialysis, blood oxygenation, and cardiac catheterization.

The compounds of the invention also find utility in a method for inhibiting the coagulation biological samples, which comprises the administration of a compound of the invention.

The compounds of the present invention may also be used in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this invention may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice such as anticoagulant agents, thrombolytic agents, or other antithrombotics, including platelet aggregation inhibitors, tissue plasminogen activators, urokinase,

- 240 -

prourokinase, streptokinase, heparin, aspirin, or warfarin. The compounds of the present invention may act in a synergistic fashion to prevent reocclusion following a successful thrombolytic therapy and/or reduce the time to reperfusion. These compounds may also allow for reduced doses of the thrombolytic agents to be used and therefore minimize potential hemorrhagic side-effects. The compounds of this invention can be utilized *in vivo*, ordinarily in mammals such as primates, (e.g. humans), sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

5

10

15

20

25

30

The biological properties of the compounds of the present invention can be readily characterized by methods that are well known in the art, for example by the *in vitro* protease activity assays and *in vivo* studies to evaluate antithrombotic efficacy, and effects on hemostasis and hematological parameters, such as are illustrated in the examples.

Diagnostic applications of the compounds of this invention will typically utilize formulations in the form of solutions or suspensions. In the management of thrombotic disorders the compounds of this invention may be utilized in compositions such as tablets, capsules or elixirs for oral administration, suppositories, sterile solutions or suspensions or injectable administration, and the like, or incorporated into shaped articles. Subjects in need of treatment (typically mammalian) using the compounds of this invention can be administered dosages that will provide optimal efficacy. The dose and method of administration will vary from subject to subject and be dependent upon such factors as the type of mammal being treated, its sex, weight, diet, concurrent medication, overall clinical condition, the particular compounds employed, the specific use for which these compounds are employed, and other factors which those skilled in the medical arts will recognize.

Formulations of the compounds of this invention are prepared for storage or administration by mixing the compound having a desired degree of purity with physiologically acceptable carriers, excipients, stabilizers etc., and may be provided in sustained release or timed release formulations. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical field, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co., (A.R. Gennaro edit. 1985). Such materials are nontoxic to the recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, acetate and other organic acid salts, antioxidants such as ascorbic acid, low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as

serum albumin, gelatin, or immunoglobulins, hydrophilic polymers such as polyvinylpyrrolidinone, amino acids such as glycine, glutamic acid, aspartic acid, or arginine, monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose or dextrins, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol, counterions such as sodium and/or nonionic surfactants such as Tween, Pluronics or polyethyleneglycol.

5

10

15

20

25

30

- 241 -

Dosage formulations of the compounds of this invention to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile membranes such as 0.2 micron membranes, or by other conventional methods. Formulations typically will be stored in lyophilized form or as an aqueous solution. The pH of the preparations of this invention typically will be 3-11, more preferably 5-9 and most preferably 7-8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of cyclic polypeptide salts. While the preferred route of administration is by injection, other methods of administration are also anticipated such as orally, intravenously (bolus and/or infusion), subcutaneously, intramuscularly, colonically, rectally, nasally, transdermally or intraperitoneally, employing a variety of dosage forms such as suppositories, implanted pellets or small cylinders, aerosols, oral dosage formulations and topical formulations such as ointments, drops and dermal patches. The compounds of this invention are desirably incorporated into shaped articles such as implants which may employ inert materials such as biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers commercially available.

The compounds of the invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of lipids, such as cholesterol, stearylamine or phosphatidylcholines.

The compounds of this invention may also be delivered by the use of antibodies, antibody fragments, growth factors, hormones, or other targeting moieties, to which the compound molecules are coupled. The compounds of this invention may also be coupled with suitable polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidinone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl-aspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore,

- 242 -

compounds of the invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels. Polymers and semipermeable polymer matrices may be formed into shaped articles, such as valves, stents, tubing, prostheses and the like.

5

10

30

35

Therapeutic compound liquid formulations generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by hypodermic injection needle.

Therapeutically effective dosages may be determined by either in vitro or in vivo methods. For each particular compound of the present invention, individual determinations may be made to determine the optimal dosage required. The range of therapeutically effective dosages will be influenced by the route of administration, 15 the therapeutic objectives and the condition of the patient. For injection by hypodermic needle, it may be assumed the dosage is delivered into the body's fluids. For other routes of administration, the absorption efficiency must be individually determined for each compound by methods well known in pharmacology. Accordingly, it may be necessary for the therapist to titer the dosage and modify the 20 route of administration as required to obtain the optimal therapeutic effect. The determination of effective dosage levels, that is, the dosage levels necessary to achieve the desired result, will be readily determined by one skilled in the art. Typically, applications of compound are commenced at lower dosage levels, with 25 dosage levels being increased until the desired effect is achieved.

The compounds of the invention can be administered orally or parenterally in an effective amount within the dosage range of about 0.1 to 100 mg/kg, preferably about 0.5 to 50 mg/kg and more preferably about 1 to 20 mg/kg on a regimen in a single or 2 to 4 divided daily doses and/or continuous infusion.

Typically, about 5 to 500 mg of a compound or mixture of compounds of this invention, as the free acid or base form or as a pharmaceutically acceptable salt, is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, dye, flavor etc., as called for by accepted pharmaceutical

- 243 -

practice. The amount of active ingredient in these compositions is such that a suitable dosage in the range indicated is obtained.

Typical adjuvants which may be incorporated into tablets, capsules and the like are binders such as acacia, corn starch or gelatin, and excipients such as microcrystalline cellulose, disintegrating agents like corn starch or alginic acid, lubricants such as magnesium stearate, sweetening agents such as sucrose or lactose, or flavoring agents. When a dosage form is a capsule, in addition to the above materials it may also contain liquid carriers such as water, saline, or a fatty oil. Other materials of various types may be used as coatings or as modifiers of the physical form of the dosage unit. Sterile compositions for injection can be formulated according to conventional pharmaceutical practice. For example, dissolution or suspension of the active compound in a vehicle such as an oil or a synthetic fatty vehicle like ethyl oleate, or into a liposome may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.

Preparation of Compounds

5

10

15

20

25

30

35

The compounds of the present invention may be synthesized by either solid or liquid phase methods described and referenced in standard textbooks, or by a combination of both methods. These methods are well known in the art. See, Bodanszky, "The Principles of Peptide Synthesis", Hafner, et al., Eds., Springer-Verlag, Berlin, 1984.

Starting materials used in any of these methods are commercially available from chemical vendors such as Aldrich, Sigma, Nova Biochemicals, Bachem Biosciences, and the like, or may be readily synthesized by known procedures.

Reactions are carried out in standard laboratory glassware and reaction vessels under reaction conditions of standard temperature and pressure, except where otherwise indicated.

During the synthesis of these compounds, the functional groups of the amino acid derivatives used in these methods are protected by blocking groups to prevent cross reaction during the coupling procedure. Examples of suitable blocking groups

and their use are described in "The Peptides: Analysis, Synthesis, Biology", Academic Press, Vol. 3 (Gross, et al., Eds., 1981) and Vol. 9 (1987), the disclosures of which are incorporated herein by reference.

Non-limiting exemplary synthesis schemes are outlined directly below, and specific steps are described in the Examples. The reaction products are isolated and purified by conventional methods, typically by solvent extraction into a compatible solvent. The products may be further purified by column chromatography or other appropriate methods.

10 Scheme 1

- 245 -

Scheme 2

5

- 246 -

Scheme 3

5

- 247 -

Scheme 4

- 248 -

Scheme 5

Scheme 7

Compositions and Formulations

The compounds of this invention may be isolated as the free acid or base or converted to salts of various inorganic and organic acids and bases. Such salts are within the scope of this invention. Non-toxic and physiologically compatible salts are particularly useful although other less desirable salts may have use in the processes of isolation and purification.

- 251 -

A number of methods are useful for the preparation of the salts described above and are known to those skilled in the art. For example, reaction of the free acid or free base form of a compound of the structures recited above with one or more molar equivalents of the desired acid or base in a solvent or solvent mixture in which the salt is insoluble, or in a solvent like water after which the solvent is removed by evaporation, distillation or freeze drying. Alternatively, the free acid or base form of the product may be passed over an ion exchange resin to form the desired salt or one salt form of the product may be converted to another using the same general process.

5

10

15

20

25

Diagnostic applications of the compounds of this invention will typically utilize formulations such as solution or suspension. In the management of thrombotic disorders the compounds of this invention may be utilized in compositions such as tablets, capsules or elixirs for oral administration, suppositories, sterile solutions or suspensions or injectable administration, and the like, or incorporated into shaped articles. Subjects in need of treatment (typically mammalian) using the compounds of this invention can be administered dosages that will provide optimal efficacy. The dose and method of administration will vary from subject to subject and be dependent upon such factors as the type of mammal being treated, its sex, weight, diet, concurrent medication, overall clinical condition, the particular compounds employed, the specific use for which these compounds are employed, and other factors which those skilled in the medical arts will recognize.

Formulations of the compounds of this invention are prepared for storage or administration by mixing the compound having a desired degree of purity with physiologically acceptable carriers, excipients, stabilizers etc., and may be provided in sustained release or timed release formulations. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical field, and are described, for

- 252 -

example, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co., (A.R. Gennaro edit. 1985). Such materials are nontoxic to the recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, acetate and other organic acid salts, antioxidants such as ascorbic acid, low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as serum albumin, gelatin, or immunoglobulins, hydrophilic polymers such as polyvinalpyrrolidinone, amino acids such as glycine, glutamic acid, aspartic acid, or arginine, monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, mannose or dextrins, chelating agents such as EDTA, sugar alcohols such as mannitol or sorbitol, counterions such as sodium and/or nonionic surfactants such as Tween, Pluronics or polyethyleneglycol.

5

10

15

20

25

Dosage formulations of the compounds of this invention to be used for therapeutic administration must be sterile. Sterility is readily accomplished by filtration through sterile membranes such as 0.2 micron membranes, or by other conventional methods. Formulations typically will be stored in lyophilized form or as an aqueous solution. The pH of the preparations of this invention typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of cyclic polypeptide salts. While the preferred route of administration is by injection, other methods of administration are also anticipated such as intravenously (bolus and/or infusion), subcutaneously, intramuscularly, colonically, rectally, nasally or intraperitoneally, employing a variety of dosage forms such as suppositories, implanted pellets or small cylinders, aerosols, oral dosage formulations and topical formulations such as ointments, drops and dermal patches. The compounds of this invention are desirably incorporated into shaped articles such as implants which may employ inert materials such as

biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers commercially available.

- 253 -

The compounds of this invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of lipids, such as cholesterol, stearylamine or phosphatidylcholines.

5

10

15

20

25

The compounds of this invention may also be delivered by the use of antibodies, antibody fragments, growth factors, hormones, or other targeting moieties, to which the compound molecules are coupled. The compounds of this invention may also be coupled with suitable polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl-aspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the factor Xa inhibitors of this invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels. Polymers and semipermeable polymer matrices may be formed into shaped articles, such as valves, stents, tubing, prostheses and the like.

Therapeutic compound liquid formulations generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by hypodermic injection needle.

Therapeutically effective dosages may be determined by either in vitro or in vivo methods. For each particular compound of the present invention, individual

- 254 -

determinations may be made to determine the optimal dosage required. The range of therapeutically effective dosages will naturally be influenced by the route of administration, the therapeutic objectives, and the condition of the patient. For injection by hypodermic needle, it may be assumed the dosage is delivered into the body's fluids. For other routes of administration, the absorption efficiency must be individually determined for each inhibitor by methods well known in pharmacology. Accordingly, it may be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect. The determination of effective dosage levels, that is, the dosage levels necessary to achieve the desired result, will be within the ambit of one skilled in the art. Typically, applications of compound are commenced at lower dosage levels, with dosage levels being increased until the desired effect is achieved.

5

10

15

20

25

A typical dosage might range from about 0.001 mg/kg to about 1000 mg/kg, preferably from about 0.01 mg/kg to about 100 mg/kg, and more preferably from about 0.10 mg/kg to about 20 mg/kg. Advantageously, the compounds of this invention may be administered several times daily, and other dosage regimens may also be useful.

Typically, about 0.5 to 500 mg of a compound or mixture of compounds of this invention, as the free acid or base form or as a pharmaceutically acceptable salt, is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, dye, flavor etc., as called for by accepted pharmaceutical practice. The amount of active ingredient in these compositions is such that a suitable dosage in the range indicated is obtained.

Typical adjuvants which may be incorporated into tablets, capsules and the like are a binder such as acacia, corn starch or gelatin, and excipient such as

- 255 -

microcrystalline cellulose, a disintegrating agent like corn starch or alginic acid, a lubricant such as magnesium stearate, a sweetening agent such as sucrose or lactose, or a flavoring agent. When a dosage form is a capsule, in addition to the above materials it may also contain a liquid carrier such as water, saline, a fatty oil. Other materials of various types may be used as coatings or as modifiers of the physical form of the dosage unit. Sterile compositions for injection can be formulated according to conventional pharmaceutical practice. For example, dissolution or suspension of the active compound in a vehicle such as an oil or a synthetic fatty vehicle like ethyl oleate, or into a liposome may be desired. Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.

5

10

15

20

25

In practicing the methods of this invention, the compounds of this invention may be used alone or in combination, or in combination with other therapeutic or diagnostic agents. In certain preferred embodiments, the compounds of this inventions may be coadministered along with other compounds typically prescribed for these conditions according to generally accepted medical practice, such as anticoagulant agents, thrombolytic agents, or other antithrombotics, including platelet aggregation inhibitors, tissue plasminogen activators, urokinase, prourokinase, streptokinase, heparin, aspirin, or warfarin. The compounds of this invention can be utilized in vivo, ordinarily in mammals such as primates, such as humans, sheep, horses, cattle, pigs, dogs, cats, rats and mice, or *in vitro*.

The preferred compounds of the present invention are characterized by their ability to inhibit thrombus formation with acceptable effects on classical measures of coagulation parameters, platelets and platelet function, and acceptable levels of bleeding complications associated with their use. Conditions characterized by

- 256 -

undesired thrombosis would include those involving the arterial and venous vasculature.

5

10

15

20

25

With respect to the coronary arterial vasculature, abnormal thrombus formation characterizes the rupture of an established atherosclerotic plaque which is the major cause of acute myocardial infarction and unstable angina, as well as also characterizing the occlusive coronary thrombus formation resulting from either thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA).

With respect to the venous vasculature, abnormal thrombus formation characterizes the condition observed in patients undergoing major surgery in the lower extremities or the abdominal area who often suffer from thrombus formation in the venous vasculature resulting in reduced blood flow to the affected extremity and a predisposition to pulmonary embolism. Abnormal thrombus formation further characterizes disseminated intravascular coagulopathy commonly occurs within both vascular systems during septic shock, certain viral infections and cancer, a condition wherein there is rapid consumption of coagulation factors and systemic coagulation which results in the formation of life-threatening thrombi occurring throughout the microvasculature leading to widespread organ failure.

The compounds of this present invention, selected and used as disclosed herein, are believed to be useful for preventing or treating a condition characterized by undesired thrombosis, such as (a) the treatment or prevention of any thrombotically mediated acute coronary syndrome including myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, (b) the treatment or prevention of any thrombotically mediated cerebrovascular syndrome including embolic stroke, thrombotic stroke or transient ischemic attacks, (c) the treatment or prevention of

- 257 -

any thrombotic syndrome occurring in the venous system including deep venous thrombosis or pulmonary embolus occurring either spontaneously or in the setting of malignancy, surgery or trauma, (d) the treatment or prevention of any coagulopathy including disseminated intravascular coagulation (including the setting of septic shock or other infection, surgery, pregnancy, trauma or malignancy and whether associated with multi-organ failure or not), thrombotic thrombocytopenic purpura, thromboangiitis obliterans, or thrombotic disease associated with heparin induced thrombocytopenia, (e) the treatment or prevention of thrombotic complications associated with extracorporeal circulation (e.g. renal dialysis, cardiopulmonary bypass or other oxygenation procedure, plasmapheresis), (f) the treatment or prevention of thrombotic complications associated with instrumentation (e.g. cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve), and (g) those involved with the fitting of prosthetic devices.

10

25

Anticoagulant therapy is also useful to prevent coagulation of stored whole

blood and to prevent coagulation in other biological samples for testing or storage.

Thus the compounds of this invention can be added to or contacted with any medium containing or suspected to contain factor Xa and in which it is desired that blood coagulation be inhibited, e.g., when contacting the mammal's blood with material such as vascular grafts, stents, orthopedic prostheses, cardiac stents, valves and

prostheses, extra corporeal circulation systems and the like.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The following working examples therefore, specifically point out preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.

- 258 -

EXAMPLES

Example 1

CN HOME

5

10

15

To a solution of bis(2,2,2-trifluoroethyl)(methoxylcarbonylmethyl)phosphate (0.665ml, 3.14mmol) and 18-crown-6 (4.14g, 15.7mmol) in tetrahydrofuran (50ml) at -78 °C was added potassium bis(trimethylsilyl)amide (6.3ml, 3.15mmol) dropwise. After the addition was complete, 3-cyanobenzaldehyde (0.412g, 3.14mmol) in tetrahydrofuran (10ml) was added at -78 °C. The mixture was stirred at -78 °C for additional 1 hr. Saturated ammonia chloride solution was added to quench the reaction. Ether and water were added. The organic layer was separated, and the aqueous layer was extracted with ether once more. The combined organic extracts were dried over magnesium sulfate and concentrated *in vacuo*. The crude residue was purified by silica gel column chromatography using solvent system 5-10% ethyl acetate in hexane as eluent to give the title compound as a white solid (1.12g, 100%).

ES-MS(M+H)+=188.

Example 2

SO₂NHtBu

20

25

To a solution of tert-butylamine (5.73g, 78.4mmol) and triethylamine (16.6ml, 119mmol) in dichloromethane (200ml) in an ice bath was added benzenesulfonyl chloride (13.85g, 78.4mmol) dropwise. The mixture was stirred at room temperature overnight. It was washed with saturated sodium carbonate (60ml) and brine (60ml). The organic layer was separated, and the aqueous layer was extracted with dichloromethane (2x50ml). The combined organic extracts were dried over magnesium sulfate. The solvent was evaporated *in vacuo* to give the title compound as a light yellowish solid (15.92g, 95%). ES-MS (M+H)+ = 214.

30

- 259 -

PCT/US00/14194

Example 3

To a solution of the compound of example 2 (15.92g, 74.7mmol) in tetrahydrofuran (200ml) in an ice bath was added 1.6M n-butyllithium in hexane (100ml, 164mmol) dropwise over 30 minutes. The mixture remained a clear solution. In an ice bath it was added triisopropylborate (24.1ml, 104mmol) dropwise. The mixture was stirred at room temperature for 3.5hrs, solution becoming cloudy. After it was cooled in an ice bath, 1N hydrochloride (200ml) was added. The mixture was stirred at room temperature overnight. It was extracted with ether (2x50ml). The organic extract was washed with 1N sodium hydroxide (2x60ml). The aqueous solution was acidified to pH=1 with 6N hydrochloride, and then extracted with ether (2x100ml). The ether extract was dried over magnesium sulfate, and concentrated *in vacuo* to give the title compound as a while solid (11.5g, 60%). ES-MS (M+H)+ = 258.

Example 4

To a solution of the compound of example 3 (2.06g, 8mmol) in toluene (60ml) was added water (4ml), 8N sodium hydroxide (8ml), isopropanol (16ml), 2-fluoro-4-iodoaniline (3.8g, 16mmol) and tetrakis(triphenylphosphine)palladium(0) (464mg, 0.4mmol). The mixture was refluxed for 3-4 hrs, cooled to room temperature, and diluted with ethyl acetate. The organic layer was washed with water (25ml), and dried over magnesium sulfate. After the evaporation of the solvent *in vacuo*, the crude reside was purified by silica gel column chromatography using solvent system 20-30% ethyl acetate in hexane as eluent to give the title compound as a white solid (1.49g, 58%). ES-MS (M+H)+ = 323.

- 260 -

Example 5

To a solution of compound of example 4 (161mg, 0.5mmol) in dichloromethane (5ml) was added 2.0M trimethylaluminum in hexane (0.75ml, 1.5mmol). The mixture was stirred at room temperature for 30 minutes, methane gas evolved. A solution of the compound of example 1 (94mg, 0.5mmol) in dichloromethane (1ml) was added. The mixture was stirred at room temperature overnight. 1N hydrochloride was added to acidify the solution to pH=2. After the addition of water and dichloromethane, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic extracts were dried over

magnesium sulfate, and concentrated in vacuo to give the title compound as a yellow oil (260mg, 100%). ES-MS (M+H)+=478.

Example 6

15

- To a solution of the compound of example 5 (100mg, 0.21mmol) in absolute methanol (3ml) in an ice bath was saturated with hydrochloride gas for 10 minutes. The mixture was stirred at room temperature for 3 hrs. After the evaporation of solvent *in vacuo*, the residue was dissolved in absolute methanol (3ml), and ammonia acetate (97mg, 1.26mmol) was added. The mixture was refluxed for 3 hrs.

 The solvent was evaporated *in vacuo*. The crude residue was purified by RP-HPLC
- The solvent was evaporated in vacuo. The crude residue was purified by RP-HPLC to give the title compound as a white powder (53mg, 58%). ES-MS (M+H)+=439.

Example 7

To a solution of the compound of example 6 (30mg, 0.07mmol) in absolute methanol (2ml) was added 10% Pd/C (catalytic amount). The mixture was hydrogenated under balloon for 1hr. After the filtration through Celite, the solvent was evaporated *in vacuo*. The residue was purified by RP-HPLC to give the compound as a white powder (25mg, 81%). ES-MS (M+H)+ = 441.

10

Example 8

To a solution of the compound of example 3 (2.06g, 8mmol) in toluene (60ml) was added water (4ml), 8N sodium hydroxide (8ml), isopropanol (16ml), 2-chloro-4-iodoaniline (4.06g, 16mmol) and tetrakis(triphenylphosphine)palladium(0) (464mg, 0.4mmol). The mixture was refluxed for 3-4 hrs, cooled to room temperature, and diluted with ethyl acetate. The organic layer was washed with water (25ml), and dried over magnesium sulfate. After the evaporation of the solvent *in vacuo*, the crude reside was purified by silica gel column chromatography using solvent system 20-30% ethyl acetate in hexane as eluent to give the title compound as a white solid (1.43g, 53%). ES-MS (M+H)+ = 339.

25

30

Example 9

To a solution of the compound of example 8 (100mg, 0.3mmol) in dichloromethane (5ml) was added 2.0M trimethylaluminum in hexane (0.45ml, 0.9mmol). The mixture was stirred at room temperature for 30 minutes, methane gas evolved. A

WO 00/71509

solution of the compound of example 1 (55mg, 0.3mmol) in dichlodomethane (1ml) was added. The mixture was stirred at room temperature overnight. 1N hydrochloride was added to acidify the solution to pH=2. After the addition of water and dichloromethane, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic extracts were dried over magnesium sulfate, and concentrated *in vacuo* to give the title compound as a greenish solid (110mg, 70%). ES-MS (M+H)+ = 494.

- 262 -

PCT/US00/14194

Example 10

10

5

To a solution of the compound of example 9 (100mg, 0.2mmol) in absolute methanol (3ml) in an ice bath was saturated with hydrochloride gas for 10 minutes. The mixture was stirred at room temperature for 3 hrs. After the evaporation of the solvent in vacuo, the residue was dissolved in absolute methanol (3ml), and ammonia acetate (92mg, 1.2mmol) was added. The mixture was refluxed for 3 hrs. The solvent was evaporated *in vacuo*. The crude residue was purified by RP-HPLC to give the title compound as a white powder (46mg, 51%). ES-MS (M+H)+ = 456.

20

15

Example 11

Production of 3-[(2-2-furyl)-5-oxo-1,3-oxazolin-4-ylidene)methyl] benzenecarbonitrile.

25

30

A mixture of 3-cyanobenzaldehyde (2.102g, 15.320mmol), N-2-furoylglycine (1.846g, 10.914mmol), and sodium acetate (0.636g, 7.753mmol) in 15ml acetic anhydride was refluxed for 7 hours. The mixture was then cooled to room temperature before cooling in the freezer over night. The solid was washed with ice cold water then filtered (0.472g, 1.788mmol, 16%). ES-MS(M+H)+=265.

- 263 -

PCT/US00/14194

Example 12

Production of (2E)-N-[4(2-{[(tert-butyl)amino]sulfonyl}phenyl]-3-(3-cyanophenyl)-2-(2-furylcarbonylamino)prop-2-enamide

5

To a solution of {[2-(4-aminophenyl)phenyl]sulfonyl}(tert-butyl)amine (0.152g, 0.500mmol) in 9ml DCM was added trimethylaluminum (1ml, 2M solution in hexanes, 2mmol) which was allowed to stir for ½ hour. Then 3-[(2-(2-furyl)-5-oxo-1,3-oxazolin-4-ylidene)methyl]benzenecarbonitrile (0.11g, 0.417mmol) was added drop wise as a solution in 3ml DCM. Three hours later 6M HCl was added drop wise to pH=0. 10ml portions of water and DCM were also added and the aqueous layer was extracted twice with 10ml portions of DCM. The organic layers were dried over MgSO4, filtered and concentrated in vaccu to yield the desired product (0.259, 0.456, 109%). ES-MS(M+H)+=569.

15

10

Example 13

Production of 3-(2-{N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]carbamoyl}-2-(2-furylcarbonylamino)ethyl)benzenecarboxamidine

20

25

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-2-(2-furylcarbonylamino)prop-2-enamide (0.259g, 0.456mmol) in 7ml ethanol was added hydroxyamine (0.192g, 2.763mmol) and triethyl amine (0.762ml, 5.407mmol). This mixture was refluxed for 2 hours before it was concentrated in

vaccu. The residue was dissolved in AcOH (5ml), then acetic anhydride (0.30ml, 3.182mmol) was added and the mixture was allowed to stir for 1.5 hours. The mixture was concentrated in vaccu. The residue was dissolved in dry MeOH (3ml), 5%Pd/C (22.7mg) was added. A balloon filled with hydrogen gas was fitted to the flask with an adapter. The flask was evacuated and backfilled with hydrogen gas three times before being run for 0.75 hour. The mixture was then filtered over a bed of celite and concentrated in vaccu. The residue was purified via Preparative HPLC to yield the desired product (0.075g, 0.128mmol, 28%). ES-MS(M+H)+=588.

Example 14

Production of 3-(2-(2-furylcarbonylamino)-2-{N-[4-(2-sulfamoylphenyl)phenyl]-carbamoyl}ethyl)benzenecarboxamidine

3-(2-{N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]carbamoyl}-2-(2-furyl-carbonylamino)ethyl)benzenecarboxamidine (0.075g, 0.128mmol) was dissolved with TFA (6ml) for 2hours. The mixture was concentrated in vaccu and the residue was purified via Preparative HPLC, (0.040g, 0.075mmol, 58%). ES-MS(M+H)+=532.

20 <u>Example 15</u>

15

Production of (tert-butyl)(phenylsulfonyl)amine

To a solution of benzenesulfonyl chloride (30.00g, 169.86mmol) in 100ml DCM, in an ice bath, was added butyl amine (18ml, 171.28mmol), then triethylamine(35ml,

- 265 -

251.11mmol), drop wise via addition funnel. This was allowed to warm to room temperature over 3hr. The mixture was then filtered and the filtrate was concentrated in vaccu. The pale yellow solid (35.03g, 164.46mmol, 97%) was then rinsed with minimal amounts of DCM. ES-MS (M+Na)+=236.

5

10

15

20

Example 16

Production of (tert-butyl)(phenylsulfonyl)amine

To (tert-butyl)(phenylsulfonyl)amine (17.43g, 81.83mmol) in 180ml dry THF in an ice bath was added nBuLi (66ml, 2.5M in hexanes) via addition funnel. Then triisopropyl borate (33ml, 143.06mmol) was added via addition funnel. The mixture was warmed to room temperature and allowed to stir for 4hr. The reaction mixture was then cooled in an ice bath before HCL (82ml, 3M) was added drop wise. This was allowed to stir at room temperature for 3hr. The mixture was then put in the freezer over the weekend. The reaction was then warmed to room temperature and extracted with ether. The aqueous layers were washed twice more with ether. The combined organic layers were washed three times with 5M NaOH aqueous solution. The combined basic layers were acidified to pH=1 with 6M HCL solution. These acidified layers were then extracted three times with ether. These ether layers were then dried over MgSO4, filtered, then concentrated in vaccu to about 50ml solution. To this solution was added hexanes and a minimal amount of ethyl acetate. A white precipitate is observed and the mixture in stored in the freezer to allow for crystallization. The white solid is then filtered and collected (14.65g, 57mml, 70%) ES-MS(M+H)+=258.

25

Example 17

Production of {[2-(4-aminophenyl)phenyl]sulfonyl}(tert-butyl)amine

To a solution of 2-[(tert-butyl amino)sulfonyl] phenyl boronic acid (6.00g, 23.35mmol) in 120ml toluene was added water (16ml), isopropanol (60ml), and NaOH (40ml, 5M aqueous solution). To this were added 4-bromoaniline and Pd(Ph3P)4. This heterogeneous mixture is then refluxed for 6hr, then stirred at room temperature over night before refluxing for another 1.5hr. The reaction mixture is then extracted with water and ethyl acetate. The aqueous layer is extracted twice with ethyl acetate. The organic layers are then dried over MgSO4, filtered and concentrated in vaccu. The crude residue is purified by silica gel flash chromatography. The desired product can be eluded with 30% ethyl acetate in hexanes and concentrated to an orange solid (5.06g, 16.65, 71%). ES-MS(M+H)+=305.

Example 18

Step (a):

To a 0°C solution of 4-((2-N-t-butylamonisulfonyl)phenyl) aniline (74.1 mg, 0.3 mmol, 1.0 equiv) in 5 mL of CH₂Cl₂ was added a solution of AlMe₃ (2M in hexanes, 0.7 mL, 5 equiv). After 15min, methyl 2-(3-cyanophenyl)acrylate (56.1 mg, 1.0 equiv) was added. The resulting solution was stirred overnight, carefully quenched with water, diluted with ethyl acetate. The organic layer was dried, evaporated and

chromatographied on silica gel to give the product in 55% yield. LRMS found for $C_{23}H_{19}N_2O_3S$ (M+H)⁺: 403.1.

- 267 -

Step (b):

5

10

The compound obtained in step (a) (25 mg) was dissolved in 5 mL of methanol. The reaction mixture was cooled to 0°C and HCl gas was bubbled in until saturation. The mixture was stirred at rt overnight. The solvent was evaporated and the resulting residue was treated with ammonium acetate and 10 ml methanol at reflux temperature for 2 h. The solvent was removed at reduced pressure and the crude benzamidine was purified by HPLC (C18 reversed phase) eluting with 0.5% TFA in H₂O/CH₃CN to give the desired salt in 77% yield. LRMS found for C₂₃H₂₂N₃O₃S (M+H)⁺: 420.1.

Step (c):

The compound obtained in step (b) (8 mg) and 5 mg of 10% Pd/C was suspended in 1 mL of methanol. The reaction mixture was stirred under 1atm hydrogen balloon for 2h and filtered. The solvent was removed at reduced pressure and the crude benzamidine was purified by HPLC (C18 reversed phase) eluting with 0.5% TFA in H₂O/CH₃CN to give the desired salt in 63% yield. LRMS found for C₂₃H₂₄N₃O₃S (M+H)⁺: 422.1.

20

25

Example 19

2-Fluoro-5-methyl benzonitrile (1.26g, 9.32 mmol) was mixed with NBS (1.66 g, 9.32 mmol), benzoyl peroxide (79 mg, 0.33 mmol) in CCl₄ (45mL). The mixture was refluxed for 2.5 hrs. It was cooled to room temperature, filtered and concentrated *in vacuo* to give the title compound. ES-MS (M+H)+ = 213.1.

Example 20

To a solution of compound of example 19 (9.32 mmol) in CHCl₃ (50 mL), was added trimethylamino N-oxide (1.7 g, 23.3 mmol). The mixture was refluxed for 3 hrs. Water was added. The organic layer was dried over MgSO₄, filtered and filtrate was concentrated *in vacuo*. The residue was purified by silica gel column chromatography using solvent system 20% EtOAc in hexane as eluant to give the title compound. ES-MS (M+H)+ = 150.1.

10 <u>Example 21</u>

5

15

20

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl) phosphonate (0.12 mL, 0.58 mmol) and 18-crown-6 (770 mg, 2.92 mmol) in THF (5 mL) at – 78°C, was added potassium bis(trimethylsilyl)amide (1.17 mL, 0.57 mmol) dropwise. After the addition was complete, compound of example 2 (87 mg, 0.58 mmol) in THF (2 mL) was added. The mixture was stirred at –78°C for 1 hour. Aqueous NH₄Cl solution was added to quench the reaction. Water and EtOAc was added to the mixture. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. This was purified by silica gel column chromatography using solvent system 20% EtOAc in hexane as eluant to give the title compound (85 mg, 71%). ES-MS (M+H)+ = 206.1.

- 269 -

Example 22

To a solution of compound of example 3 (6.4 g, 25 mmol) in toluene (120 mL) was added water (15 mL), 5N NaOH solution (38.5 mL), isopropanol (60 mL) 4
5 bromoaniline and tetrakis(triphenylphosphine)palladium(0). The mixture was refluxed for six hours, cooled to room temperature, diluted with EtOAc. The organic layer was washed with water, dried with MgSO₄, filtered and concentrated. This was purified by silica gel column chromatography using solvent system 30% EtOAc in hexane as eluant to give the title compound (5g, 66%). ES-MS (M+H)+ = 305.1.

Example 23

To a solution of compound of example 22 (121.6 mg, 0.4 mmol) in DCM (3 mL) was added trimethylaluminum (0.6 mL, 2M in hexane) dropwise. The reaction mixture was stirred at room temperature for 30 min. Compound of example 21 (82 mg, 0.4 mmol) in DCM (2 mL) was added dropwise. The mixture was stirred at room temperature overnight. 2N HCl was added to pH 2. Water and DCM were added. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. It was purified by silica gel column chromatography using solvent system 50% EtOAc in hexane as eluant to give the title compound. ES-MS (M+Na)+ = 500.1.

Example 24

25

WO 00/71509

PCT/US00/14194

A solution of the compound of example 23 (99 mg, 0.208 mmol) in MeOH (10 mL) was treated with a stream of HCl gas for 10 min. at 0°C. The resulting solution was capped, stirred at room temperature overnight and evaporated *in vacuo*. The residue was reconstituted in MeOH (10 mL) and the mixture was treated with NH₄OAc (80 mg, 1.04 mmol). The reaction mixture was refluxed for 2 hrs. and concentrated *in vacuo*. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 439.1.

- 270 -

Example 25

10

5

The compound of example 24 (10 mg, 0.022 mmol) was dissolved in MeOH (5 mL) and 10% Pd/C (catalytic amount) was added. The mixture was hydrogenated under balloon overnight, filtered through Celite to remove the catalyst and the filtrate was evaporated. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+=441.1.

Example 26

20

25

15

To a solution of LDA (2.6 mL, 2N solution in hexane, 5.2 mmol) in THF (10 mL) at -78°C, was added 4-fluorobenzonitrile in THF (10 mL) dropwise. The mixture was stirred at -78°C for 1 hour. To this was added DMF (0.4 mL, 0.55 mmol). The mixture was stirred at -78°C for another 15 min., quenched rapidly with AcOH (2 mL) and water (10 mL), extracted with ether (50 mL). The ether extracts were washed with 1N HCl (10 mL), brine (10 mL), dried over MgSO₄, filtered and concentrated in vacuo to give the title compound. (M+H)+ = 150.

5

10

20

25

- 271 -

Example 27

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl)phosphonate (0.875 mL, 4.14 mmol) and 18-crown-6 (5.46 g, 20.7 mmol) in THF (20 mL) at – 78°C, was added potassium bis(trimethylsilyl)amide (8.3 mL, 4.15 mmol) dropwise. After the addition was complete, compound of example 26 (616 mg, 4.14 mmol) in THF (10 mL) was added. The mixture was stirred at –78°C for 1 hour. Aqueous NH₄Cl solution was added to quench the reaction. Water and EtOAc was added to the mixture. The organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. This was purified by silica gel column chromatography using solvent system 20% EtOAc in hexane as eluant to give the title compound (375 mg, 44%). ES-MS (M+H)+ = 206.1.

15 <u>Example 28</u>

To a solution of compound of example 22 (553 mg, 1.82 mmol) in DCM (9 mL) was added trimethylaluminum (2.73 mL, 2M in hexane, 5.46 mmol) dropwise. The reaction mixture was stirred at room temperature for 1 hour. Compound of example 27 (373 mg, 1.82 mmol) in DCM (5 mL) was added dropwise. The mixture was stirred at room temperature overnight. 2N HCl was added to pH 2. Water and DCM were added. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. It was purified by silica gel column chromatography using solvent system 50% EtOAc in hexane as eluant to give the title compound (283 mg). ES-MS (M+Na)+ = 500.1.

PCT/US00/14194

Example 29

A solution of the compound of example 28 (283 mg, 0.593 mmol) in MeOH (10 mL) was treated with a stream of HCl gas for 10 min. at 0°C. The resulting solution was capped, stirred at room temperature overnight and evaporated *in vacuo*. The residue was reconstituted in MeOH (10 mL) and the mixture was treated with NH₄OAc (228 mg, 2.97 mmol). The reaction mixture was refluxed for 2 hrs. and concentrated *in vacuo*. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 439.1.

Example 30

10

15

20

Compound of example 29 (12 mg, 0.027 mmol) was dissolved in MeOH (5 mL) and 10% Pd/C (catalytic amount) was added. The mixture was hydrogenated under balloon overnight, filtered through Celite to remove the catalyst and the filtrate was evaporated. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 441.1.

Example 31

HO OMe

- 273 -

To a solution of methyl-3-cyano-4-methoxybenzoate (5g, 26.2 mmol) in THF (50 mL) was added lithium borohydride (53 mL, 2.00M solution in THF, 105 mmol) at room temperature. The mixture was stirred at room temperature overnight. IN HCl was slowly added until bubbling stopped. THF was removed *in vacuo* and EtOAc and water were added. The organic layer was washed with water, saturated NaHCO₃ solution, brine, dried with Na₂SO₄ and solvent evaporated *in vacuo* to give the title compound (3.7 g, 86.7%).

Example 32

10

15

25

5

To a solution of compound of example 31 (2g, 12.3 mmol) in DMSO (50 mL) was added IBX (4.673g, 17.7 mmol) slowly. The mixture was stirred at room temperature overnight. EtOAc and water were added. The formed precipitate was removed. The organic layer was washed with 1N HCl, water, saturated NaHCO₃, brine, dried over Na₂SO₄ and concentrated *in vacuo*. The obtained residue was purified by silica gel column chromatography using DCM as eluant to give the title compound (1.1g, 56%). ES-MS (M+H)+ = 162.1.

20 Example 33

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl) phosphonate (1.39 mL, 6.57 mmol) in THF (130 mL) at -78°C was added 18-crown-6 (8.6, 33.9 mmol), potassium bis(trimethylsilyl)amide (14.4 mL, 7.22 mmol) dropwise. The mixture was stirred at at -78°C for 30 min. Compound of example 32 (1.06 g, 6.57 mmol) was then added. The mixture was warmed to room temperature and stirred for 1 hour. Aqueous NH₄Cl solution was added to quench the reaction. Water and EtOAc was added to the mixture. The organic layer was dried over

 $MgSO_4$, filtered and concentrated in vacuo to give the title compound (1.175g, 87%). ES-MS (M+H)+ = 218.1.

Example 34

5

10

15

SO₂NHtBu CN

To a solution of compound of example 22 (457 mg, 1.5 mmol) in DCM (4 mL) was added trimethylaluminum (0.9 mL, 2M in hexane, 1.8 mmol) dropwise. The reaction mixture was stirred at room temperature for 1 hour. Compound of example 33 (326 mg, 1.5 mmol) in DCM (5 mL) was added dropwise. The mixture was heated to reflux briefly. 1N HCl was added to pH 2. Water and DCM were added. The organic layer was washed with brine, dried over MgSO₄ and concentrated *in vacuo*. It was purified by silica gel column chromatography using solvent system 30-50% EtOAc in hexane as eluant to give the title compound (450 mg, 61.3%). ES-MS (M+H)+ = 490.1.

Example 35

A solution of the compound of example 34 (200 mg, 0.408 mmol) in MeOH (10 mL) was treated with a stream of HCl gas for 10 min. at 0°C. The resulting solution was capped, stirred at room temperature overnight and evaporated *in vacuo*. The residue was reconstituted in MeOH (10 mL) and the mixture was treated with NH₄OAc (650 mg, 8.16 mmol). The reaction mixture was refluxed for 2 hrs. and concentrated *in vacuo*. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 451.1.

- 275 -

Example 36

Compound of example 35 (6 mg, 0.027 mmol) was dissolved in MeOH (2 mL) and 10% Pd/C (catalytic amount) was added. The mixture was hydrogenated under balloon overnight, filtered through Celite to remove the catalyst and the filtrate was evaporated to give the title compound as a white powder. ES-MS (M+H)+ = 443.1.

Example37

10

15

Boc-m-CN-Phenylalanine -OH (200 mg, 0.69 mmol) and compound of example 22 (210 mg, 0.69 mmol) were dissolved in DMF (3 mL). DIEA (0.24 mL, 1.4 mmol) was added followed by the addition of the coupling reagent PyBOP (572 mg, 1.1 mmol). The solution was stirred at room temperature for 12 hours. The reaction mixture was diluted in a mixture of $EtOAc/H_2O$. The organic layer was washed with water, saturated Na_2CO_3 , water, 1M KHSO₄, brine, dried over $MgSO_4$, filtered and solvent evaporated to give the title compound. ES-MS (M+H)+=521.1.

20 <u>Example 38</u>

A solution of the compound of example 37 (132 mg, 0.23 mmol) in MeOH (10 mL) was treated with a stream of HCl gas for 10 min. at 0°C. The resulting solution was capped, stirred at room temperature overnight and evaporated *in vacuo*. The residue

- 276 -

PCT/US00/14194

was reconstituted in MeOH (10 mL) and the mixture was treated with NH₄OAc (540 mg, 7 mmol). The reaction mixture was refluxed for 2 hrs. and concentrated in vacuo. The obtained residue was purified by RP-HPLC to give the title compound as a white powder. ES-MS (M+H)+ = 438.1.

Example 39:

5

10

15

25

To a solution of ethyl 2-oxocyclopentane carboxylate (1.56g, 10mmol) in 20ml anhydrous dichloromethane was added triethylamine (1.06g, 10.5mmol). Reaction was cooled under argon to -78°C to which trifluoro-methanesulfonic anhydride (2.96g, 10.5mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room temperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml 1N HCl, dried over magnesium sulfate, filtered and concentrated to give ethyl 2-{[(trifluoromethyl)sulfonyl]oxy}-1-cyclopentene-1-carboxylate (2.8g, 97%) as a light brown oil after drying. H¹NMR (CDCl₃) : 1.27 – 1.56 (t, 3H); 1.97-2.01 (m, 2H); 2.6-2.74 (m, 4H); 4.21-4.26 (m, 2H).

20 Example 40:

To a solution of ethyl 2-{[(trifluoromethyl)sulfonyl]oxy}-1-cyclopentene-1-carboxylate (1.2g, 4.16mmol) in 10ml anhydrous dioxane was added potassium phosphate (1.32g, 6.2mmol), 3-cyanophenyl boronic acid (0.612g, 4.16mmol), and tetrakis (triphenylphosphine)palladium(0) (0.12g, 0.10mmol). Reaction mixture was

heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo. Residue was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give ethyl 2-(3-cyanophenyl)-1-cyclopentene-1-carboxylate (0.7g, 71%) as a light yellow oil after drying. ES-MS (M+H⁺): 242.15. H¹NMR (CDCl₃): 1.09-1.13 (t, 3H); 1.96-2.01 (m, 2H); 2.80-2.84 (m, 4H); 7.39-7.59 (m, 4H).

- 277 -

Example 41:

10

15

20

25

5

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (60mg, 0.197mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.3ml, 0.59mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl 2-(3-cyanophenyl)-1-cyclopentene-1-carboxylate (48mg, 0.197mmol) in 1ml anhydrous dichloromethane. Reaction was stirred at room temperature overnight. Reaction was quenched with 15ml 1N HCl after which an additional 10ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate and concentrated to give N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl)[2-(3-cyanophenyl)cyclopent-1-enyl]carboxamide (80mg, 80%) as a white powder which was sufficiently pure to be used without further purification.

To a solution of N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl][2-(3-cyanophenyl)cyclopent-1-enyl]carboxamide (70mg, 0.137mmol) in 5ml anhydrous methanol cooled in an ice bath was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The

reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The

- 278 -

reaction was concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-(2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}cyclopent-1-enyl)benzenecarboxamidine (40mg, 63%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 461.15

5

Example 42:

To a solution of the 3-(2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}cyclopent-1-enyl)benzenecarboxamidine (7mg, 0.015mmol) in 4ml methanol was added 10% Pd on carbon (1.5mg). Mixture was treated with 50psi hydrogen on the PARR apparatus for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give the 3-(2-{N-[4-(2-sulfamoylphenyl)phenyl]-carbamoyl}cyclopentyl)benzenecarboxamidine (5mg, 71%) as a fluffy white powder. ES-MS (M+H⁺): 463.15

15

20

10

Example 43:

To a solution of ethylacetoacetate (1.3g, 10mmol) in 10ml anhydrous dichloromethane was added triethylamine (1.46ml, 10.5mmol). The reaction was cooled to -78°C under argon to which trifluoromethanesulfonic anhydride (2.96g, 10.5mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room teperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml

- 279 -

PCT/US00/14194

1N HCl, dried over magnesium sulfate, filtered and concentrated. Crude oil was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give 1) ethyl (E)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (800mg, 60%) as a clear oil: H¹NMR (CDCl₃): 1.247-1.282 (t, 3H); 2.471 (s, H); 4.155-4.209 (m, 2H); 5.912 (s, H); and 2) ethyl (Z)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (450mg, 30%) as a clear oil: H¹NMR (CDCl₃): 1.247-1.283 (t, 3H); 2.131 (s, 3H); 4.18-4.233 (m, 2H); 5.736 (s, H).

Example 44:

10

15

20

5

To a solution of ethyl (E)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (390mg, 1.49mmol) in 5ml anhydrous dioxane was added potassium phosphate (474mg, 2.24mmol), 3-cyanophenyl boronic acid (217mg, 1.49mmol), and tetrakis (triphenylphosphine)palladium(0) (43mg, 0.038mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo. Residue was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give ethyl (E) 3-(3-cyanophenyl)-2-propenoate (240mg, 71%) as a clear yellow oil after drying. H¹NMR (CDCl₃): 1.2-1.32 (t, 3H); 2.547 (s, 3H); 4.18-4.24 (m, 2H); 6.113 (s, H); 7.47-7.725 (m, 4H). NOE confirmed stereo orientation.

Example 45:

To a solution of ethyl (Z)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (330mg, 1.25mmol) in 5ml anhydrous dioxane was added potassium phosphate (398mg, 1.88mmol), 3-cyanophenyl boronic acid (185mg, 1.25mmol), and tetrakis (triphenylphosphine)palladium(0) (36mg, 0.031mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo. Residue was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give ethyl (Z) 3-(3-cyanophenyl)-2-propenoate (240mg, 71%) as a clear oil after drying. ES-MS (M+H⁺): 216.05

15

20

Example 46:

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (79mg, 0.26mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.39ml, 0.78mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (E) 3-(3-cyanophenyl)-2-

propenoate (56mg, 0.26mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 10ml dichloromethane was added. Organic layer was washed with 2x20ml water, dried over magnesium sulfate, filtered and concentrated to give the (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)but-2-enamide (90mg, 72%) as an off-white powder which was sufficiently pure to be used without further purification.

- 281 -

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)but-2-enamide (90mg, 0.19mmol) in 5ml anhydrous methanol cooled in an ice bath was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1E)-1-methyl-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)benzene-carboxamidine (15mg, 20%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 435.1

20 Example 47:

5

10

15

25

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (198mg, 0.65mmol) in 5ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.98ml, 1.95mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (Z) 3-(3-cyanophenyl)-2-propenoate (140mg, 0.65mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with

5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x25ml water, dried over magnesium sulfate and concentrated to give (2Z)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)but-2-enamide (200mg, 65%) as a light brown residue which was sufficiently pure to be used without further purification.

PCT/US00/14194

To a solution of (2Z)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)but-2-enamide (90mg, 0.19mmol) in 5ml anhydrous methanol cooled in an ice bath was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (144mg, 2mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1Z)-1-methyl-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)-benzenecarboxamidine (35mg, 20%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 435.1

Example 48:

5

10

15

To a solution of the 3-((1Z)-1-methyl-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)-benzenecarboxamidine (5mg, 0.0115mmol) in 4ml methanol was added 10% Pd on carbon (2mg). Mixture was treated with 50psi hydrogen on the PARR apparatus for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give 3-(1-methyl-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}-ethyl)benzenecarboxamidine (3mg, 60%) as a fluffy white powder. ES-MS (M+H⁺): 437.1

PCT/US00/14194

Example 49:

To a solution of ethyl trifluoroacetoacetate (5g, 27.2mmol) in 20ml anhydrous dichloromethane was added triethylamine (5.7ml, 40.7mmol). Reaction was cooled under argon to -78°C to which trifluoro-methanesulfonic anhydride (11.5g, 10.5mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room temperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml 1N HCl, dried over magnesium sulfate, filtered and concentrated in vacuo. Crude oil was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give ethyl (Z)-4,4,4-trifluoro-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-butenoate (7.7g, 90%) as a clear light yellow oil after drying. H¹NMR (CDCl₃) : 1.31-1.35 (t, 3H); 4.33-4.35 (m, 2H); 6.535 (s, H).

- 283 -

Example 50:

5

10

15

20

25

To a solution of ethyl (Z)-4,4,4-trifluoro-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-butenoate (250mg, 0.79mmol) in 5ml anhydrous dioxane was added potassium phosphate (251mg, 1.19mmol), 3-cyanophenyl boronic acid (116mg, 0.79mmol), and tetrakis (triphenylphosphine)palladium(0) (23mg, 0.02mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo.

Residue was chromatographed on silica gel using 20% EtOAc in hexane as the

eluent to give ethyl (2E)-3-(3-cyanophenyl)-4,4,4-trifluorobut-2-enoate (150mg,

79%) as a yellow residue after drying. H¹NMR (CDCl₃): 1.107-1.142 (t, 3H); 4.05-

4.107 (m, 2H); 6.684 (s, H); 7.38-7.72 (m, 4H).

5 Example 51:

$$F_3C$$
 H_2N
 $O=S$
 O
 H_2N
 $O=S$
 O

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (79mg, 0.26mmol) in 5ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.39ml, 0.78mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (Z) 3-(3-cyanophenyl)-4,4,4-trifluoro-2-butenoate (70mg, 0.26mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x25ml water, dried over magnesium sulfate, filtered and concentrated to give (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-4,4,4-trifluorobut-2-enamide (120mg, 88%) as a yellow foam which was sufficiently pure to be used without further purification.

20

15

10

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-4,4,4-trifluorobut-2-enamide (90mg, 0.19mmol) in 10ml 1:1 ethyl acetate:anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was placed in the refrigerator at 0°C over the weekend.

The reaction was then concentrated in vacuo and dried under hi vacuum. The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (144mg, 2mmol) was added and the reaction heated to reflux for

2 hours. The reaction was concentrated then treated with 10ml trifluoroacetic acid for 2hrs, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1E)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}-1-

(trifluoromethyl)vinyl)benzenecarboxamidine (57mg, 47%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 489.15

Example 52:

To a solution of 3-((1E)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}-1(trifluoromethyl)vinyl)-benzenecarboxamidine (10mg, 0.02mmol) in 4ml methanol
was added 10% Pd on carbon (2mg). Mixture was treated with hydrogen at 1
atmosphere under balloon for 1hr. Reaction was filtered through a pad of Celite,
concentrated and lyophilized to give 3-[2,2,2-trifluoro-1-({N-[4-(2-

sulfamoylphenyl)phenyl]carbamoyl}-methyl)ethyl]benzenecarboxamidine (8mg, 82%) as a fluffy white powder. ES-MS (M+H⁺): 491.1

Example 53:

To a solution of ethyl (Z) 3-(3-cyanophenyl)-2-propenoate (2g, 9.3mmol) in 50ml carbon tetrachloride was added N-bromosuccinimide (1.74g, 9.77mmol) and benzoyl peroxide (40mg, 0.165mmol). Reaction mixture was heated to reflux and stirred over night. Reaction was allowed to cool to room temperature to which 50ml dichloromethane was added. Organic was washed with 2x50ml water, dried over magnesium sulfate, filtered and concentrated in vacuo. Crude residue was chromatographed on silica gel using 2.5% EtOAc in hexane as the eluent to give ethyl (Z) 3-(3-cyanophenyl)-4-bromo-2-butenoate (0.77g, 29%) as a clear oil (note: NOE experiment showed compound isomerized during bromination). H¹NMR (CDCl₃): 1.311-1.347 (t, 3H); 4.239-4.292 (m, 2H); 4.92 (s, 2H); 6.18 (s, H); 7.514-7.801 (m, 4H). ES-MS (M+H⁺): 293.95 and 296.0

15 Example 54:

10

To a solution of ethyl (Z) 3-(3-cyanophenyl)-4-bromo-2-butenoate (103mg, 0.35mmol) in 5ml anhydrous di-methylformamide was added pyrazole (24mg, 0.35mmol) and cesium carbonate (228mg, 0.7mmol). Reaction mixture was stirred for 1.5 hours at room temperature after which 25ml ethyl acetate was added.

- 287 -

Organic was washed with 3x25ml water, 3x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated to give ethyl (Z)-3-(3-cyanophenyl)-4-(1H-1-pyrazolyl)-2-butenoate (70mg, 71%) as a brown residue which was sufficiently pure to be used without further purification. ES-MS (M+H⁺): 282.1

10 Example 55:

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (76mg, 0.25mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.38ml, 0.75mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (Z)-3-(3-cyanophenyl)-4-(1H-1-pyrazolyl)-2-butenoate (70mg, 0.25mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate and concentrated to give the tButyl nitrile of the title compound (120mg, 89%) as a brown foam which was sufficiently pure to use in the next step.

WO 00/71509

To a solution of the above nitrile compound (120mg, 0.22mmol) in 10ml 1:1 ethyl acetate: anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum.

The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated, then treated with trifluoroacetic acid (10ml) for 2 hours, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1Z)-1-(pyrazolylmethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]-carbamoyl}vinyl)benzenecarboxamidine (10mg, 9%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 501.1

- 288 -

PCT/US00/14194

Example 56:

15

20

25

To a solution of 3-acetobenzonitrile (5g, 0.0344mol) in 45ml glacial acetic acid was added pyridinium tribromide (11.3g, 0.0355mol). Reaction was stirred at room temperature under argon overnight. Reaction was then quenched with a saturated sodium sulfite solution (20ml) and extracted with 3x25ml dichloromethane. Combined organic phases were washed with 2x25ml water, dried over magnesium sulfate, filtered and concentrated in vacuo. Crude oil was chromatographed on silica gel using 5% EtOAc in hexane as the eluent to give 3-(2-bromoacetyl) benzonitrile (4.5g, 58%) as a white solid. H¹NMR (CDCl₃): 4.371-4.403 (s, 2H); 7.613-7.664 (m, H); 7.838-7.888 (m, H); 8.192-8.261 (m, 2H).

PCT/US00/14194

To a solution of 3-(2-bromaceto)benzonitrile (500mg, 2.23mmol) in 5ml dichloromethane was added pyrazole (304mg, 4.46mmol) and triethylamine (0.31ml, 2.23mmol). Reaction was stirred at room temperature over night. Reaction was then diluted with 20ml dichloromethane, washed with 2x25ml water, 2x25ml 1N HCl, dried over magnesium sulfate, filtered and concentrated in vacuo. Crude residue was chromatographed on silica gel using 2.5% EtOAc in hexane to give 3-[2-(1H-1-pyrazolyl)acetyl]benzonitrile (330mg, 70%) as a clear oil after drying. ES-MS (M+H⁺): 212.05

10 Example 57:

15

20

25

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl)phosphonate (0.39ml, 1.87mmol) in 5ml anhydrous tetrahydrofuran was added a solution of 18-crown-6 (2g, 7.8mmol) in 5ml anhydrous tetrahydrofuran. Reaction was cooled to – 78° C to which a 0.5M solution of potassium bis(trimethylsilyl)amide in toluene (0.93ml, 1.87mmol) was added all at once. The reaction mixture was stirred at –78° C for 20 minutes after which a solution of 3-[2-(1H-1-pyrazolyl)acetyl]- benzonitrile (330mg, 1.56mmol) in 5ml anhydrous tetrahydrofuran was added dropwise over several minutes. Reaction was gradually allowed to warm to room temperature and stirred for 5 hours. Reaction was then quenched with a saturated ammonium chloride solution (10ml) and extracted with 2x25ml diethyl ether. Combined organic layers were washed with 2x25ml water, 2x25ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated to a brown residue. Crude residue was chromatographed on silica gel using a gradient of 5% EtOAc in hexane containing 0.1% triethylamine to 20% EtOAc in hexane containing 0.1% triethylamine to 20% EtOAc in hexane containing 0.1%

- 290 -

triethylamine to give methyl (E)-3-(3-cyanophenyl)-4-(1H-1-pyrazolyl)-2-butenoate (135mg, 32%) as a clear oil after drying. H¹NMR (CDCl₃): 3.521 (s, #H); 4.98 (s, 2H); 5.694 (s, H); 6.237-6.247 (t, H); 7.296-7.593 (m, 6H). NOE experiment confirmed stereoconfiguration.

5

10

15

20

25

Example 58:

To a solution of 2'-tert-butylaminosulfonyl-4-amino-[1,1']-biphenyl (105mg, 0.34mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.5ml, 1.02mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of methyl (E)-3-(3-cyanophenyl)-4-(1*H*-1-pyrazolyl)-2-butenoate (90mg, 0.34mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate, filtered and concentrated to give (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)but-2-enamide (155mg, 85%) as an off-white foam which was sufficiently pure to be used without further purification.

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)but-2-enamide (155mg, 0.287mmol) in 10ml 1:1 ethyl acetate:anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred

- 291 -

overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated, treated with trifluoroacetic acid (10ml) for 2hrs, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1E)-1-(pyrazolylmethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl} vinyl)benzenecarboxamidine (40mg, 28%) as a fluffy white powder after lyophilization. ES-MS (M+H⁺): 501.1

10 Example 59:

15

To a solution of 3-((1E)-1-(pyrazolylmethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)-benzenecarboxamidine (5mg, 0.01mmol) in 4ml methanol was added 10% Pd on carbon (1mg). Mixture was treated with hydrogen at 1 atmosphere under balloon for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give 3-(1-(pyrazolylmethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]-carbamoyl}ethyl)benzenecarboxamidine (5mg, 100%) as a fluffy white powder. ES-MS (M+H⁺): 503.1

Example 60:

To a solution of ethyl *B*-oxo-3-furanpropionate (1g, 5.49mmol) in 5ml anhydrous dichloromethane was added triethylamine (0.847ml, 6.04mmol). Reaction was cooled under argon to -78°C to which trifluoromethanesulfonic anhydride (1.02ml, 6.04mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room temperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml 1N HCl, dried over magnesium sulfate, filtered and concentrated in vacuo. The crude oil was chromatographed on silica gel using 20% EtOAc in hexane as the eluent to give ethyl (Z)-3-(2-furyl)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-propenoate (1.6g, 93%) as a light brown solid after drying. H¹NMR (CDCl₃): 1.31-1.35 (t, 3H); 4.26-4.314 (m, 2H); 6.065 (s, H); 6.522 (s, H); 7.47 (s, H); 7.76 (s, H).

Example 61:

To a solution of ethyl (Z)-3-(2-furyl)-3-{[(trifluoromethyl)sulfonyl]-oxy}-2propenoate (500mg, 1.59mmol) in 7ml anhydrous dioxane was added potassium phosphate (506mg, 2.4mmol), 3-cyanophenyl boronic acid (234mg, 1.59mmol), and

tetrakis (triphenylphosphine)palladium(0) (46mg, 0.04mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 50ml ethyl acetate, washed with 2x50ml water, 2x50ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo. The crude residue was chromatographed on silica gel using a gradient from 5% EtOAc in hexane to 10% EtOAc in hexane as the eluent to give ethyl (E) 3-(3-cyanophenyl)-3-(2-furyl)-2-propenoate (100mg, 24%) as a clear yellow oil after drying. H¹NMR (CDCl₃): 1.1-1.14 (t, 3H); 4,016-4.035 (m, 2H); 5.293 (s, H); 7.45-7.549 (m, 3H); 7.669 (m, H). ES-MS (M+H¹): 268.05

- 293 -

10

Example 62:

$$\begin{array}{c}
H_2N \\
O=S
\end{array}$$

$$\begin{array}{c}
H_2N \\
O=S
\end{array}$$

$$\begin{array}{c}
N\\
N\\
\end{array}$$

To a solution of 2'-tButylaminosulfonyl-4-amino-[1,1']-biphenyl (102mg, 0.336mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.5ml, 1.0mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of ethyl (E) 3-(3-cyanophenyl)-3-(2-furyl)-2-propenoate (90mg, 0.336mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate and concentrated to give (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-3-(2-furyl)prop-2-enamide (200mg, 112%) as a brown foam which was sufficiently pure to be used without further purification.

- 294 -

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-3-(2-furyl)prop-2-enamide (176mg, 0.336mmol) in 10ml 1:1 ethyl acetate:anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (144mg, 2mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated, treated with trifluoroacetic acid (10ml) for 2hrs, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to give 3-((1E)-1-(2-furyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl} vinyl)benzenecarboxamidine (60mg, (37%) as a fluffy off-white powder after lyophilization. ES-MS (M+H⁺): 487.15

Example 63:

15

20

25

10

To a solution of 3-((1E)-1-(2-furyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl} vinyl)benzenecarboxamidine (10mg, 0.02mmol) in 4ml methanol was added 10% Pd on carbon (2mg). Mixture was treated with hydrogen at 1 atmosphere under balloon for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give 3-(1-(2-furyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}ethyl)benzenecarboxamidine (9mg, 90%) as a fluffy white powder. ES-MS (M+H⁺): 489.15

Example 64:

To a solution of methyl 4-methoxy-3-oxobutanoate (5g, 34.2mmol) in 20ml anhydrous dichloromethane was added triethylamine (5.24ml, 37.6mmol). Reaction was cooled under argon to -78°C to which trifluoromethane-sulfonic anhydride (10.6gml, 37.6mmol) was added dropwise via syringe over 5 minutes. Reaction was allowed to warm to room temperature and stirred over night. Next morning the reaction was diluted with 25ml dichloromethane, organic was washed with 2x50ml water, 2x50ml 1N HCl, dried over magnesium sulfate, filtered and concentrated in vacuo. The crude oil was chromatographed on silica gel using a gradient of 5% EtOAc in hexane to 10% EtOAc in hexane as the eluent to give methyl (Z)-4-methoxy-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-butenoate (5.1g, 54%) as a clear colorless oil after drying. H¹NMR (CDCl₃): 3.342 (s, 3H); 3.711 (s, 3H); 3.99 (s, H); 6.02 (s, H).

PCT/US00/14194

Example 65:

15

To a solution of methyl (Z)-4-methoxy-3-{[(trifluoromethyl)sulfonyl]-oxy}-2-butenoate (246mg, 1.0mmol) in 5ml anhydrous dioxane was added potassium phosphate (318mg, 1.5mmol), 3-cyanophenyl boronic acid (162mg, 1.0mmol), and tetrakis (triphenylphosphine)palladium(0) (29mg, 0.0251mmol). Reaction mixture was heated to reflux and stirred overnight. Mixture was filtered through a pad of Celite, diluted with 20ml ethyl acetate. Organic was washed with 2x20ml water, 2x20ml saturated brine solution, dried over magnesium sulfate, filtered and concentrated in vacuo to give methyl (E)-3-(3-cyanophenyl)-4-methoxy-2-butenoate (220mg, 75%) as a clear brown oil which was sufficiently pure to be used without further purification. ES-MS (M+H⁺): 232.1

Example 66:

5

10

15

To a solution of 2'-tButylaminosulfonyl-4-amino-[1,1']-biphenyl (105mg, 0.35mmol) in 4ml anhydrous dichloromethane was added a solution of 2M trimethylaluminum in hexane (0.53ml, 1.05mmol). Reaction was stirred at room temperature for 20 minutes to which a solution of methyl (E) 3-(3-cyanophenyl)-4-methoxy-2-butenoate (80mg, 0.35mmol) in 1ml anhydrous dichloromethane was added. Reaction was stirred at room temperature overnight. Reaction was quenched with 5ml 1N HCl after which an additional 20ml dichloromethane was added. Organic was washed with 2x20ml water, dried over magnesium sulfate and concentrated to give (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-4-methoxybut-2-enamide (150mg, 85%) as a white foam after drying which was sufficiently pure to be used without further purification.

20

25

To a solution of (2E)-N-[4-(2-{[(tert-butyl)amino]sulfonyl}phenyl)phenyl]-3-(3-cyanophenyl)-4-methoxybut-2-enamide (150mg, 0.298mmol) in 10ml 1:1 ethyl acetate:anhydrous methanol cooled to -78°C was bubbled HCl gas until saturation was achieved. Reaction was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo and dried under hi vacuum. The dried methyl imidate residue was dissolved in 5ml anhydrous methanol to which ammonium acetate (77mg, 1mmol) was added and the reaction heated to reflux for 2 hours. The reaction was concentrated, treated with trifluoroacetic acid (10ml) for 2hrs, concentrated and purified on a 2x25cm Vydac C₁₈ HPLC column to

give 3-((1E)-1-(methoxymethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)benzenecarboxamidine (34mg, (25%) as a fluffy off-white powder after lyophilization. ES-MS (M+H⁺): 465.15

5 Example 67:

20

To a solution of 3-((1E)-1-(methoxymethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}vinyl)-benzenecarboxamidine (5mg, 0.01mmol) in 4ml methanol was added 10% Pd on carbon (1mg). Mixture was treated with hydrogen at 1 atmosphere under balloon for 1hr. Reaction was filtered through a pad of Celite, concentrated and lyophilized to give 3-(1-(methoxymethyl)-2-{N-[4-(2-sulfamoylphenyl)phenyl]carbamoyl}-ethyl)benzenecarboxamidine (5mg, 100%) as a fluffy white powder. ES-MS (M+H⁺): 467.15

BIOLOGICAL ACTIVITY EXAMPLES

Evaluation of the compounds of this invention is guided by in vitro protease activity assays (see below) and in vivo studies to evaluate antithrombotic efficacy, and effects on hemostasis and hematological parameters.

- 299 -

The compounds of the present invention are dissolved in buffer to give solutions containing concentrations such that assay concentrations range from 0 to 100 uM. In the assays for thrombin, prothrombinase and factor Xa, a synthetic chromogenic substrate is added to a solution containing test compound and the enzyme of interest and the residual catalytic activity of that enzyme is determined spectrophotometrically. The IC₅₀ of a compound is determined from the substrate turnover. The IC₅₀ is the concentration of test compound giving 50% inhibition of the substrate turnover. The compounds of the present invention desirably have an IC50 of less than 500 nM in the factor Xa assay, preferably less than 200 nM, and more preferred compounds have an IC₅₀ of about 100 nM or less in the factor Xa assay. The compounds of the present invention desirably have an IC50 of less than 4.0 uM in the prothrombinase assay, preferably less than 200 nM, and more preferred compounds have an IC50 of about 10 nM or less in the prothrombinase assay. The compounds of the present invention desirably have an IC50 of greater than 1.0 µM in the thrombin assay, preferably greater than 10.0 µM, and more preferred compounds have an IC50 of greater than 100.0 μM in the thrombin assay.

20 Amidolytic Assays for determining protease inhibition activity

10

15

25

The factor Xa and thrombin assays are performed at room temperature, in 0.02 M Tris-HCl buffer, pH 7.5, containing 0.15 M NaCl. The rates of hydrolysis of the para-nitroanilide substrate S-2765 (Chromogenix) for factor Xa, and the substrate Chromozym TH (Boehringer Mannheim) for thrombin following preincubation of the enzyme with inhibitor for 5 minutes at room temperature, and

were determined using the Softmax 96-well plate reader (Molecular Devices), monitored at 405 nm to measure the time dependent appearance of p-nitroaniline.

5

10

15

20

25

- 300 -

with modifications to the method described by Sinha, U. *et al.*, Thromb. Res., 75, 427-436 (1994). Specifically, the activity of the prothrombinase complex is determined by measuring the time course of thrombin generation using the p-nitroanilide substrate Chromozym TH. The assay consists of preincubation (5 minutes) of selected compounds to be tested as inhibitors with the complex formed from factor Xa (0.5 nM), factor Va (2 nM), phosphatidyl serine:phosphatidyl choline (25:75, 20 μM) in 20 mM Tris HCl buffer, pH 7.5, containing 0.15 M NaCl, 5 mM CaCl₂ and 0.1% bovine serum albumin. Aliquots from the complex-inhibitor mixture are added to prothrombin (1 nM) and Chromozym TH (0.1 mM). The rate of substrate cleavage is monitored at 405 nm for two minutes. Eight different concentrations of inhibitor are assayed in duplicate. A standard curve of thrombin generation by an equivalent amount of untreated complex are used for determination of percent inhibition.

Antithrombotic Efficacy in a Rabbit Model of Venous Thrombosis

A rabbit deep vein thrombosis model as described by Hollenbach, S. et al., Thromb. Haemost. 71, 357-362 (1994), is used to determine the in-vivo antithrombotic activity of the test compounds. Rabbits are anesthetized with I.M. injections of Ketamine, Xylazine, and Acepromazine cocktail. A standardized protocol consists of insertion of a thrombogenic cotton thread and copper wire apparatus into the abdominal vena cava of the anesthetized rabbit. A non-occlusive thrombus is allowed to develop in the central venous circulation and inhibition of thrombus growth is used as a measure of the antithrombotic activity of the studied compounds. Test agents or control saline are administered through a marginal ear vein catheter. A femoral vein catheter is used for

- 301 -

blood sampling prior to and during steady state infusion of test compound. Initiation of thrombus formation begins immediately after advancement of the cotton thread apparatus into the central venous circulation. Test compounds are administered from time = 30 min to time = 150 min at which the experiment is terminated. The rabbits are euthanized and the thrombus excised by surgical dissection and characterized by weight and histology. Blood samples are analyzed for changes in hematological and coagulation parameters.

Effects of Compounds in Rabbit Venous Thrombosis model

5

10

15

Administration of compounds in the rabbit venous thrombosis model demonstrates antithrombotic efficacy at the higher doses evaluated. There are no significant effects of the compound on the aPTT and PT prolongation with the highest dose (100 μ g/kg + 2.57 μ g/kg/min). Compounds have no significant effects on hematological parameters as compared to saline controls. All measurements are an average of all samples after steady state administration of vehicle or (D)-Arg-Gly-Arg-thiazole. Values are expressed as mean \pm SD.

Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods.

WHAT IS CLAIMED IS:

1. A compound according to the formula:

A-Y-D-E-G-J-K-L

- 302 -

wherein:

- 5 A is selected from:
 - (a) C_1 - C_6 -alkyl;
 - (b) C₃-C₈-cycloalkyl;
 - (c) phenyl, which is independently substituted with 0-2 R¹ substituents;
- (d) naphthyl, which is independently substituted with 0-2 R¹ substituents; and
 - (e) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;
- 15 R¹ is selected from:

20

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl,-CN, -NO₂, (CH₂)_mNR²R³, SO₂NR²R³, SO₂R², CF₃, OR², and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁-C₄-alkyl, -CN C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl and -NO₂;

R² and R³ are independently selected from the group consisting of:

H, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, C_{0.4}alkylphenyl and C_{0.4}alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, -CN, and -NO₂;

30 m is an integer of 0-2;

Y is a member selected from the group consisting of:

a direct link, -C(=O)-, $-N(R^4)$ -, -C(=O)- $N(R^4)$ -, $-N(R^4)$ -C(=O)-, $-SO_2$ -, -O-, $-SO_2$ - $N(R^4)$ - and $-N(R^4)$ - SO_2 -;

- 303 -

R⁴ is selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;.

D is a direct link or is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1a} substituents;
- (b) naphthyl, which is independently substituted with 0-2 R^{1a} substituents; and
- 15 (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

R^{1a} is selected from:

Halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, -CN, -NO₂, (CH₂)_mNR^{2a}R^{3a}, SO₂NR^{2a}R^{3a}, SO₂R^{2a}, CF₃, OR^{2a}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, -CN and -NO₂;

R^{2a} and R^{3a} are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on

- 304 -

the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CN and -NO₂;

5 E is a member selected from the group consisting of:

$$-N(R^5)-C(=O)-$$
, $-C(=O)-N(R^5)-$, $-N(R^5)-C(=O)-N(R^6)-$, $-SO_2-N(R^5)-$, $-N(R^5)-SO_2-N(R^6)-$ and $-N(R^5)-SO_2-N(R^6)-$ C(=O)-;

R⁵ and R⁶ are independently selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheteroaryl, C₁₋₄alkylCOOH and C₁₋₄alkylCOOC₁₋₄alkyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl, naphthyl and heteroaryl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;

G is selected from:

wherein R^7 , R^8 , R^{7a} , R^{8a} , R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, -OR⁹, -C₀₋₄alkylCOOR⁹, -C₀₋₄alkylC(=O)NR⁹R¹⁰, -C₀₋₄alkylC(=O)NR⁹-CH₂-CH₂-O-R¹⁰, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and a naturally occurring or synthetic amino acid side chain, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, -CN and -NO₂;

30 R⁹ and R¹⁰ are independently selected from:

- 305 -

H, C_{1.4}alkyl, C_{0.4}alkylphenyl and C_{0.4}alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, -CN and -NO₂, and wherein R⁹ and R¹⁰ taken together can form a 5-8 membered heterocylic ring;

J is a member selected from the group consisting of:

a direct link, -CH(R11)- and -CH(R11)-CH2-;

R¹¹ is a member selected from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheterocyclic ring having from 1 to 4 hetero ring atoms selected from the group consisting of N, O and S, CH₂COOC₁₋₄alkyl, CH₂COOC₁₋₄alkylphenyl and CH₂COOC₁₋₄alkylnaphthyl;

- 15 K is a member selected from the group consisting of:
 - (a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;
 - (b) naphthyl, which is independently substituted with 0-2 R^{1b} substituents; and
- a monocyclic or fused bicyclic heterocyclic ring system having from
 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are
 selected from N, O and S, and wherein the ring system may be
 substituted with 0-2 R^{1b} substituents;

R^{1b} is selected from:

5

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -NO₂, NR^{2b}R^{3b}, SO₂NR^{2b}R^{3b}, SO₂R^{2b}, CF₃, OR^{2b}, O-CH₂-CH₂-OR^{2b}, O-CH₂-COOR^{2b}, N(R^{2b})-CH₂-CH₂-OR^{2b}, N(-CH₂-CH₂-OR^{2b})₂, N(R^{2b})-C(=O)R^{3b}, N(R^{2b})-SO₂-R^{3b}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of

halo, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CN and -NO₂;

R^{2b} and R^{3b} are independently selected from the group consisting of:

H, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkylphenyl and $C_{0.4}$ alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN and -NO₂;

10 L is selected from:

5

25

H, -CN, C(=O)NR¹²R¹³, (CH₂)_nNR¹²R¹³, C(=NR¹²)NR¹²R¹³, NR¹²R¹³, OR¹², -NR¹²C(=NR¹²)NR¹²R¹³, and NR¹²C(=NR¹²)-R¹³;

R¹² and R¹³ are independently selected from:

hydrogen, -OR¹⁴, -NR¹⁴R¹⁵, C₁₋₄alkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, COOC₁₋₄alkyl, COO-C₀₋₄alkylphenyl and COO-C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;

20 R¹⁴ and R¹⁵ are independently selected from:

H, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, C_{0-4} alkylphenyl and C_{0-4} alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CN, and -NO₂;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

30 2. A compound of claim 1, wherein:

A is selected from:

- (a) C₁-C₆-alkyl;
- (b) C₃-C₈-cycloalkyl;
- (c) phenyl, which is independently substituted with 0-2 R¹ substituents;
- 5 (d) naphthyl, which is independently substituted with 0-2 R¹ substituents; and
 - (e) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;

10 R¹ is selected from:

15

Halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl,-CN, -NO₂, (CH₂)_mNR²R³, SO₂NR²R³, SO₂R², CF₃, OR², and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁-C₄-alkyl, -CN C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl and -NO₂;

R² and R³ are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;

25 m is an integer of 0-2;

Y is a member selected from the group consisting of:

a direct link, -C(=O)-, $-N(R^4)$ -, -C(=O)- $N(R^4)$ -, $-N(R^4)$ -C(=O)-, $-SO_2$ -, -O-, $-SO_2$ - $N(R^4)$ - and $-N(R^4)$ - SO_2 -;

R⁴ is selected from:

H, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkylphenyl and $C_{0.4}$ alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN, and -NO₂;.

D is a direct link or is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1a} substituents;
- (b) naphthyl, which is independently substituted with 0-2 R^{1a} substituents; and
- (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

15 R^{1a} is selected from:

5

10

20

Halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, -CN, -NO₂, (CH₂)_mNR^{2a}R^{3a}, SO₂NR^{2a}R^{3a}, SO₂R^{2a}, CF₃, OR^{2a}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, -CN and -NO₂:

R^{2a} and R^{3a} are independently selected from the group consisting of:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN and -NO₂;.

30 E is a member selected from the group consisting of:

- 309 -

 $-N(R^5)-C(=O)-$, $-C(=O)-N(R^5)-$, $-N(R^5)-C(=O)-N(R^6)-$, $-SO_2-N(R^5)-$, $-N(R^5)-SO_3-N(R^6)-$ and $-N(R^5)-SO_3-N(R^6)-$ C(=O)-;

R⁵ and R⁶ are independently selected from:

H, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, C_{0.4}alkylphenyl, C_{0.4}alkylnaphthyl, C_{0.4}alkylheteroaryl, C_{1.4}alkylCOOH and C_{1.4}alkylCOOC_{1.4}alkyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl, naphthyl and heteroaryl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkylC_{3.8}cycloalkyl, -CN and -NO₂;

G is selected from:

5

10

-CR7R8- and -CR7R8a-CR7bR8b-

wherein R⁷, R⁸, R^{7a}, R^{8a}, R^{7b} and R^{8b} are independently a member selected from from the group consisting of:

hydrogen, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, C_{0.4}alkylphenyl, C_{0.4}alkylnaphthyl, -OR⁹,-C_{0.4}alkylCOOR⁹, -C_{0.4}alkylC(=O)NR⁹R¹⁰, -C_{0.4}alkylC(=O)NR⁹-CH₂-CH₂-O-R¹⁰, -C_{0.4}alkylC(=O)NR⁹(-CH₂-CH₂-O-R¹⁰-)₂, -N(R⁹)COR¹⁰, -N(R⁹)C(=O)R¹⁰, -N(R⁹)SO₂R¹⁰, and a naturally occurring or synthetic amino acid side chain, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, -CN and -NO₂;

R⁹ and R¹⁰ are independently selected from:

H, C_{1.4}alkyl, C_{0.4}alkylphenyl and C_{0.4}alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1.4}alkyl, C_{2.6}alkenyl, C_{2.6}alkynyl, C_{3.8}cycloalkyl, C_{0.4}alkyl-C_{3.8}cycloalkyl, -CN and -NO₂, and wherein R⁹ and R¹⁰ taken together can form a 5-8 membered heterocylic ring;

J is a member selected from the group consisting of:

- 310 -

a direct link, -CH(R11)- and -CH(R11)-CH2-;

R¹¹ is a member selected from the group consisting of:

hydrogen, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkyl-C₃₋₈cycloalkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, C₀₋₄alkylheterocyclic ring having from 1 to 4 hetero ring atoms selected from the group consisting of N, O and S, CH₂COOC₁₋₄alkyl, CH₂COOC₁₋₄alkylphenyl and CH₂COOC₁₋₄alkylnaphthyl;

Z is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;
- 10 (b) naphthyl, which is independently substituted with 0-2 R^{1b} substituents; and
 - (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents;

R1b is selected from:

5

15

20

25

30

Halo, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN, -NO₂, NR^{2b}R^{3b}, SO₂NR^{2b}R^{3b}, SO₂R^{2b}, CF₃, OR^{2b}, O-CH₂-CH₂-OR^{2b}, O-CH₂-COOR^{2b}, N(R^{2b})-CH₂-CH₂-OR^{2b}, N(-CH₂-CH₂-OR^{2b})₂, N(R^{2b})-C(=O)R^{3b}, N(R^{2b})-SO₂-R^{3b}, and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, $C_{1.4}$ alkyl, $C_{2.6}$ alkenyl, $C_{2.6}$ alkynyl, $C_{3.8}$ cycloalkyl, $C_{0.4}$ alkyl $C_{3.8}$ cycloalkyl, -CN and -NO₂;

R^{2b} and R^{3b} are independently selected from the group consisting of:

H, C_{1-4} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, C_{0-4} alkylphenyl and C_{0-4} alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C_{1-4} alkyl,

WO 00/71509

- 311 -

 C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CN and -NO₂;

PCT/US00/14194

L is selected from:

5

10

20

H, -CN, C(=0)NR¹²R¹³, (CH₂)_nNR¹²R¹³, C(=NR¹²)NR¹²R¹³, NR¹²R¹³, OR¹², -NR¹²C(=NR¹²)NR¹²R¹³, and NR¹²C(=NR¹²)-R¹³;

R¹² and R¹³ are independently selected from:

hydrogen, -OR¹⁴, -NR¹⁴R¹⁵, C₁₋₄alkyl, C₀₋₄alkylphenyl, C₀₋₄alkylnaphthyl, COOC₁₋₄alkyl, COO-C₀₋₄alkylphenyl and COO-C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;

R¹⁴ and R¹⁵ are independently selected from:

H, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, C₀₋₄alkylphenyl and C₀₋₄alkylnaphthyl, wherein from 1-4 hydrogen atoms on the ring atoms of the phenyl and naphthyl moieties may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CN, and -NO₂;

and all pharmaceutically acceptable isomers, salts, hydrates, solvates and prodrug derivatives thereof.

3. A compound of claim 1, wherein:

A is selected from:

- (a) phenyl, which is independently substituted with 0-2 R¹ substituents;
- 25 (b) naphthyl, which is independently substituted with 0-2 R¹ substituents; and
 - (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected

- 312 -

from N, O and S, and wherein the ring system may be substituted with 0-2 R¹ substituents;

Y is a direct link;

5

10

D is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1a} substituents;
 - (b) naphthyl, which is independently substituted with 0-2 R^{1a} substituents; and
 - (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1a} substituents;

E is a member selected from the group consisting of:

G is -CHR^{7a}-CHR^{7b}-;

15 J is a direct link;

Z is a member selected from the group consisting of:

- (a) phenyl, which is independently substituted with 0-2 R^{1b} substituents;
- (b) naphthyl, which is independently substituted with 0-2 R^{1b} substituents; and
- 20 (c) a monocyclic or fused bicyclic heterocyclic ring system having from 5 to 10 ring atoms, wherein 1-4 ring atoms of the ring system are selected from N, O and S, and wherein the ring system may be substituted with 0-2 R^{1b} substituents;

R1b is selected from:

N(R^{2b})-C(=O)R^{3b} and a 5-6 membered aromatic heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the aromatic heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁₋₄alkyl,

- 313 -

 C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CN and -NO₂; and

L is H.

- 4. A pharmaceutical composition for preventing or treating a condition in a
 5 mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a compound of claim 1.
 - 5. A pharmaceutical composition for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a compound of claim 2.
- 10 6. A pharmaceutical composition for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a compound of claim 3.
- 7. A method for preventing or treating a condition in a mammal characterized
 15 by undesired thrombosis comprising the step of administering to said mammal a
 therapeutically effective amount of a compound of claim 1.
- 8. The method of claim 7, wherein the condition is selected from the group consisting of: acute coronary syndrome, myocardial infarction, unstable angina,
 20 refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia,

WO 00/71509 - 314 -

thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation such as cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve, and conditions requiring the fitting of prosthetic devices.

PCT/US00/14194

5

25

- 9. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising the step of administering to said mammal a therapeutically effective amount of a compound of claim 2.
- 10 10. The method of claim 9, wherein the condition is selected from the group consisting of: acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated 15 intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation such as cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve, and 20 conditions requiring the fitting of prosthetic devices.
 - 11. A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising the step of administering to said mammal a therapeutically effective amount of a compound of claim 3.

- 315 -

- 12. The method of claim 11, wherein the condition is selected from the group consisting of: acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome,
 5 embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation such as cardiac or other intravascular catheterization, intra-aortic balloon pump, coronary stent or cardiac valve, and conditions requiring the fitting of prosthetic devices.
- 13. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound of claim 1.
 - 14. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound of claim 2.
- 20 15. A method for inhibiting the coagulation of biological samples, comprising the step of administering a compound of claim 3.

INTERNATIONAL SEARCH REPORT

Intermediate Application No PCT/US 00/14194

A. CLASSII IPC 7	FICATION OF SUBJECT MATTER C07C311/46 A61K31/18 A61P7/02	?				
According to	International Patent Classification (IPC) or to both national classification	ation and IPC	······································			
	SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07C A61K						
Documentat	tion seamhed other than minimum documentation to the extent that s	such documents are included in the fields as	hadmee			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic da	ata base consulted during the international search (name of data base	se and, where practical, search terms used)			
EPO-Internal, CHEM ABS Data, WPI Data, PAJ						
C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with Indication, where appropriate, of the rele	evant passages	Relevant to claim No.			
		_				
X	US 5 886 191 A (DUFFY DANIEL EMMETT ET AL) 23 March 1999 (1999-03-23) claim 6		1-15			
х -	WO 98 01428 A (DU PONT MERCK PHARMA) 15 January 1998 (1998-01-15) claims 6,10,12		1–15			
		·				
Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.			
* Special categories of cited documents : "T' later document published after the international filing date or priority date and not in conflict with the application but						
consid	ent defining the general state of the art which is not lered to be of particular relevance	cited to understand the principle or the invention				
filing d	late	"X" document of particular relevance; the cl cannot be considered novel or cannot	be considered to			
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention			laimed invention			
"O" docume	citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "Cannot be considered to involve an inventive step when the document is combined with one or more other such document of the means. "Cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled					
other means ments, such combination being described prior to the international filing date but later than the priority date claimed and according to the same according to the same and according to the same acco			•			
Date of the	actual completion of the international search	Date of mailing of the international sea	irch report			
19	9 September 2000	3 %. 10. 00f				
Name and malling address of the ISA Authorized officer						
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk					
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Janus, S				

International application No. PCT/US 00/14194

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. 🗶	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
	Although claims 7-15 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.			
2. X	Claims Nos.: 1-15 (in part) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:			
	see FURTHER INFORMATION sheet PCT/ISA/210			
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)			
This Inte	emational Searching Authority found multiple inventions in this international application, as follows:			
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.			
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:			
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:			
Remark	The additional search fees were accompanied by the applicant's protest.			
	No protest accompanied the payment of additional search fees.			

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-15 (in part)

Present claims 1-3 relate to an extremely large number of possible compounds. The formula of claim 1 even includes simple compounds such as N-methyl-2-phenylacetamide. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed in the examples, namely those parts relating to the compounds of the formula given in claim 1 wherein A-Y-D-E- is 4-(2-aminosulfonylphenyl)phenylaminocarbonyl.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

information on patent family members

Interior nail Application No PCT/US 00/14194

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5886191 A	23-03-1999	US 6043257 A	28-03-2000
WO 9801428 A	15-01-1998	AU 3645697 A CA 2259573 A EP 0960102 A	02-02-1998 15-01-1998 01-12-1999

Form PCT/ISA/210 (patent family annex) (July 1992)