Data augmentation & transformations

- One of GaussianBlur and MedianBlur
- One of Sharpen
- Flip
- Rotation between (10, 20)deg

Performances

- Generate 5 transformed version of each image in original training set
- From 178 to 890 images

P	R	mAP50	MAP50 - 90
1.0	0.769	0.891	0.502

total videos extracted, then total videos with a least one detection by y_face, and number of images extracted by y_face 3
records[0].shape, records[0][records[0]['nfaces'] > 0].shape, records[1].shape

Yolo 0

Yolo last

Yolo 0

Yolo last

- 1349 Vidéos et 7687 Images
- Contenant 76 veaux uniques

- 1349 Vidéos et 7687 Images
- Contenant 76 veaux uniques

- 1349 Vidéos et 7687 Images
- Contenant 76 veaux uniques

- 1349 Vidéos et 7687 Images
- Contenant 76 veaux uniques

- 1349 Vidéos et 7687 Images
- Contenant 76 veaux uniques

- 1349 Vidéos et 7687 Images
- Contenant 76 veaux uniques

Number of videos containing each calf

Graph with Calf Ordered by Decreasing Training Value

Box Plot of Number of videos per calf (seen by yolo vs unseen)


```
w = stats.mannwhitneyu(join_df[join_df["count"] < 0]["count"].to_list(), join_df[join_df["count"] >= 0]["count"].to_list(), alternative='two-sided')
w.pvalue, w.pvalue < 0.05</pre>
```

Videos Training set details

Videos	Leave One Calf out	All
Training set	207	80% of 1215
Validation set	1008 (only use 10-20%)	20% of 1215
Test set	68	
Calf number in Train + Val set	44	
Calf number in Test set	24	

Images Training set details

Images	Leave One Calf out	All
Training set	213	80% of 7149
Validation set	6936 (only use 10-20%)	20% of 7149
Test set	283 from videos test set	
Calf number in Train + Val set	44	
Calf number in Test set	24	

Training details

Training details

Figure 1: **VideoMAE** performs the task of masking random cubes and reconstructing the missing ones with an asymmetric encoder-decoder architecture. Due to high redundancy and temporal correlation in videos, we present the customized design of tube masking with an extremely high ratio (90% to 95%). This simple design enables us to create a more challenging and meaningful self-supervised task to make the learned representations capture more useful spatiotemporal structures.

Figure 2: Slowness is a general prior in (a) video data [88]. This leads to two important characteristics in time: temporal redundancy and temporal correlation. Temporal redundancy makes it possible to recover pixels under an extremely high masking ratio. Temporal correlation leads to easily reconstruct the missing pixels by finding those corresponding patches in adjacent frames under plain (b) frame masking or (c) random masking. To avoid this simple task and encourage learning representative representation, we propose a (d) tube masking, where the masking map is the same for all frames.

VideoMAE

- Solution aux redondances entres les frames des vidéos de notre dataset
- Bonnes performances sur de petits datasets

Modèle VideoMAE

Training details

- Used a pretrained model on SSV2
- 10s of videos
- 16 frames per videos seperate by 15 frames each
- Balance each batch
- Use a weighted loss
- Train over 10 epochs

-	Two Class: Illness(Negatif) and Healthy (Positif)		Three class: Healthy, Pneumonie and Diarrhea	
-	Sample	Whole	Sample	Whole
Accuracy en %	45.59	48.53	33.82	29.41
F1-score en %	55.42	47.76	33.82	29.41
Balanced Accuracy en %	58.89	53.67	33.53	29.18

Modèle VideoMAE

Whole dataset					
In %	F1	Précision	Rappel		
Healthy	31.11	31.82	30.43		
Pneumonie	33.33	27.03	43.48		
Diarrhea	19.35	33.33	13.64		

Sample dataset					
In %	F1	Précision	Rappel		
Healthy	51.35	37.25	82.61		
Pneumonie	7.69	33.33	4.35		
Diarrhea	16.67	21.43	13.64		

-	Two Class: Illness (Negatif) and Healthy (Positif)		Three class: Healthy, Pneumonie and Diarrhea	
-	Sample	Whole	Sample	Whole
Accuracy en %	45.59	48.53	33.82	29.41
F1-score en %	55.42	47.76	33.82	29.41
Balanced Accuracy en %	58.89	53.67	33.53	29.18

Figure 7. Visualization of space-time attention from the output token to the input space on Something-Something-V2. Our model learns to focus on the relevant parts in the video in order to perform spatiotemporal reasoning.

Timesformer

- Faster to train than 3D CNN
- higher test efficiency (at a small drop in accuracy)

Modèle Timesformer

Training details

- Used a pretrained model on Kinetics dataset
- 10s of videos
- 16 frames per videos seperate by 15 frames each
- Balance each batch
- Use a weighted loss
- Train over 10 epochs

-	Two Class: Illness(Negatif) and Healthy (Positif)		Three class: Healthy, Pneumonie and Diarrhea	
-	Sample	Whole	Sample	Whole
Accuracy en %	44.12	51.47	39.71	32.35
F1-score en %	36.67	40.00	39.71	32.35
Balanced Accuracy en %	45.02	50.58	39.39	32.08

Modèle Timesformer

Whole dataset					
In %	F1	Précision	Rappel		
Healthy	34.62	31.03	39.13		
Pneumonie	36.36	31.25	43.48		
Diarrhea	20.69	42.86	13.64		

Sample dataset					
In %	F1	Précision	Rappel		
Healthy	56.72	43.18	82.61		
Pneumonie	24.24	40.00	17.39		
Diarrhea	22.22	28.57	18.18		

-	Two Class: Illness(Negati Healthy (Pos	•	Three class: F Pneumonie an	
-	Sample	Whole	Sample	Whole
Accuracy en %	44.12	51.47	39.71	32.35
F1-score en %	36.67	40.00	39.71	32.35
Balanced Accuracy en %	45.02	50.58	39.39	32.08

Modèles d'Image

Training details

- Balance each batch
- Use a weighted loss
- Train over 10 epochs with early stop
- Use the best model base on lower loss on training

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. In order to perform classification, we use the standard approach of adding an extra learnable "classification token" to the sequence. The illustration of the Transformer encoder was inspired by Vaswani et al. (2017).

Modèle VIT

Whole dataset

In %	Precision	Recall	F1
Healthy	49.59	55.05	52.17
Pneumonie	30.91	45.33	36.76
Diarrhea	53.85	28.28	37.09

Sample dataset

In %	Precision	Recall	F1
Healthy	49.06	71.56	58.21
Pneumonie	26.61	44.00	33.17
Diarrhea	0	0	0

-	Two Class: Illness(Negatif) and Healthy (Positif)		Three class: Healthy, Pneumonie and Diarrhea	
-	Sample	Whole	Sample	Whole
Accuracy en %	46.29	63.60	39.22	43.11
F1-score en %	54.76	58.63	31.21	42.81
Balanced Accuracy en %	53.41	64.23	38.52	42.89

Modèle VIT on Training: Best

Modèle VIT on Training: Whole dataset and multi-class problem

Epochs

InceptionV3

Modèle InceptionV3

Whole dataset

In %	Precision	Recall	F1
Healthy	44.72	66.06	53.33
Pneumonie	18.33	14.67	16.30
Diarrhea	53.23	33.33	40.99

Sample dataset

In %	F1	Précision	Rappel
Healthy	44.27	53.21	48.33
Pneumonie	22.94	33.33	27.17
Diarrhea	19.72	32.56	14.14

-	Two Class: Illness(Negatif) and Healthy (Positif)		Three class: Healthy, Pneumonie and Diarrhea	
-	Sample	Whole	Sample	Whole
Accuracy en %	41.70	53.36	34.28	40.99
F1-score en %	56.69	51.47	32.72	39.20
Balanced Accuracy en %	52.41	55.39	33.56	38.02

Modèle InceptionV3 on Training: Best

Modèle InceptionV3 on Training: Best 2

Efficientnet-b3

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

Modèle Efficientnet-b3

Whole dataset					
In %	Precisio n	Recall	F1		
Healthy	44.70	54.13	48.96		
Pneumonie	29.41	26.67	27.97		
Diarrhea	43.37	36.36	39.56		

Sampl	.e dataset
-------	------------

In %	Precisio n	Recall	F1
Healthy	45.52	60.55	51.97
Pneumonie	32.43	16.00	21.43
Diarrhea	41.58	42.42	42.00

-	Two Class: Illness(Negatif) and Healthy (Positif)		Three class: Healthy, Pneumonie and Diarrhea	
-	Sample	Whole	Sample	Whole
Accuracy en %	53.71	49.82	42.40	40.64
F1-score en %	58.93	56.17	40.39	40.11
Balanced Accuracy en %	59.79	56.11	39.66	39.05

Modèle Efficientnet-b3 on Training: Best

Loss 0.007 — Train Validation 0.006 0.005 0.004 0.003 0.002 Epochs Accuracy 0.9 -Train Validation Validation - Balanced Acc 0.8 0.7 Accuracy 9.0 0.5 0.4 Epochs

Modèle Efficientnet-b3 on Training: Best 2

Painted Bunting!! Do you see yourself? How do you interpret your decision?

Figure 1: Illustration of INTR. We show four images (row-wise) of the same bird species Painted Bunting and the eight-head cross-attention maps (column-wise) triggered by the query of the ground-truth class. Each head is learned to attend to a different (across columns) but consistent (across rows) semantic cue in the image that is useful to recognize this bird species (e.g., attributes). The exception is the last row, which shows inconsistent attention. Indeed, this is a misclassified case, showcasing how INTR interprets (wrong) predictions.

Modèle INTR

-	Two Class: Illness(Negatif) and Healthy (Positif)		Three class: Healthy, Pneumonie and Diarrhea	
-	Sample	Whole	Sample	Whole
Accuracy en %	44.16	55.12	40.98	42.40
F1-score en %	41.48	60.92	38.31	42.64
Balanced Accuracy en %	45.51	61.79	40.68	42.98

Modèle INTR

Species predicted by INTR is: Healthy Species class is: Healthy

Species predicted by INTR is: Healthy Species class is: Healthy

Species predicted by INTR is: Healthy Species class is: Illness

Modèle INTR

Species predicted by INTR is: Illness Species class is: Illness

Species predicted by INTR is: Illness Species class is: Illness

Species predicted by INTR is: Illness Species class is: Healthy

Modèle INTR on Training: Best

Modèle INTR on Training: Best 2

Epochs

Recap

	Modèle INTR – Whole set - Two Class	Modèle Efficientnet-b3 – Sampled set - Two Class	Modèle VIT – Whole set - Two Class	Modèle Timesformer – Whole set - Two Class – Video Model	Previous perfor mances (for multi-class and without LOC O)
Accuracy en %	55.12	53.71	63.60	51.47	66.66
F1-score en %	60.92	58.93	58.63	40.00	66.46
Balanced Accur acy en %	61.79	59.79	64.23	50.58	-

Leaving videos

- Duration doesn't match the real duration of the calf at feeder

Modèle VideoMAE

Kinetics dataset SSv2 dataset

Recap

	Modèle INTR – Whole set - Two Class	Modèle Efficientnet-b3 – Sampled set - Two Class	Modèle VIT – Whole set - Two Class	Modèle Timesformer – Whole set - Two Class – Video Model	Previous perfor mances (for multi-class and without LOC O)
Accuracy en %	39.39				
F1-score en %	50.0				
Balanced Accur acy en %	43.60				