This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 July 2001 (12.07.2001)

PCT

(10) International Publication Number WO 01/49832 A2

- (51) International Patent Classification7:
- ____

C12N 9/00

- (21) International Application Number: PCT/EP01/00060
- (22) International Filing Date: 5 January 2001 (05.01.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

00100351.6

7 January 2000 (07.01.2000) EI

- 00124595.0 10 November 2000 (10.11.2000) F
- (71) Applicant: ARTEMIS PHARMACEUTICALS GMBH [DE/DE]; Neurather Ring 1, 51063 Köln (DE).
- (72) Inventor: SCHWENK, Frieder; Kuseler Strasse 4, 50739 Köln (DE).
- (74) Agents: HELBING, Jörg et al.; Von Kreisler Selting Werner, Postfach 10 22 41, 50462 Köln (DE).

- (81) Designated States (national): AE, AG, AL, AM, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CN, CR, CU, CZ, DM, DZ, EE, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GII, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

832 A

(54) Title: TRANSDUCTION OF RECOMBINASES FOR INDUCIBLE GENE TARGETING

(57) Abstract: The present invention provides the use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for preparing an agent for inducing target gene alteration in a living organism or in cultured cells, suitable fusion proteins and a method for the production of said fusion proteins.

1

09/937837

Transduction of recombinases for inducible gene targeting

The present invention provides the use of a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain for preparing an agent for inducing target gene alteration in a living organism or in cultured cells, suitable fusion proteins and a method for the production of said fusion proteins.

Background

For some years targeted mutagenesis in totipotent mouse embryonic stem (ES) cells has been used to inactivate genes, for which cloned sequences were available (Capecchi, Trends in Genetics 5, 70 - 76 (1989)). Since ES cells can pass mutations induced in vitro to transgenic offspring *in vivo*, it is possible to analyze the consequences of gene disruption in the context of the entire organism. Thus, numerous mouse strains with functionally inactivated genes ("knock out mice") have been created by this technology and utilized to study the biological function of a variety of genes.

A refined method of targeted mutagenesis, referred to as conditional mutagenesis, employs a site-specific recombination system (e.g. Cre/loxP or Flp/frt – Sauer and Henderson, N. Proc. Natl. Acad. Sci. USA 85, 5166-5170 (1988); Senecoff et al., J. Mol. Biol., 201, 405 - 421 (1988)) which enables a temporally and/or spatially restricted alteration of target genes (Rajewsky et al., J. Clin. Invest., 98, 600 - 603 (1996)). The creation of conditional mouse mutants requires the generation of two mouse strains, i.e. the recombinase recognition strain and the recombinase expressing strain. The recombinase recognition strain is generated by homologous recombination in ES cells as described above except that the targeted

exon(s) is (are) flanked by two recombinase recognition sequences (hereinafter "RRS"; e.g. loxP or frt). The type of recombination event mediated by the recombinase depends on the disposition of the RRS, with deletions, inversions, translocations and integrations being possible (Torres and Kühn, Oxford University Press, Oxford, New York (1997)). By placing the RRS into introns, an interference with gene expression before recombination can be avoided. The recombinase expressing strain contains a recombinase transgene (e.g. Cre, Flp) whose expression is either restricted to certain cells and tissues or is inducible by external agents. Crossing of the recombinase recognition strain with the recombinase expressing strain recombines the RRS-flanked exons from the doubly transgenic offspring in a prespecified temporally and/or spatially restricted manner. Thus, the method allows the temporal analysis of gene function in particular cells and tissues of otherwise widely expressed genes. Moreover, it enables the analysis of gene function in the adult organism by circumventing embryonic lethality which is frequently the consequence of gene mutation. For pharmaceutical research, aiming to validate the utility of genes and their products as targets for drug development, inducible mutations provide an excellent genetic tool. However, the current systems for inducible recombinase expression in transgenic animals suffer from a certain degree of leakiness in the absence of the inducer (Kühn et al., Science 269(5229):1427-9 (1995); Schwenk et al., Nucleic Acids Res.; 26(6):1427-32 (1998)). Furthermore, the generation of conditional mutants is a time consuming and labor intensive procedure, since the recombinase recognition strain and the recombinase expressing strain have to be breed at least over two generations in order to obtain animals carrying both, the recombinase transgene and two copies of the RRS-flanked target gene sequence.

Protein tranduction domains (hereinafter shortly referred to as "PTD") that have the ability to cross cell membranes were identified, e.g. in the

Antennapedia protein from *Drosophila* (Vives et al., J. Biol. Chem, 272(25):16010-7 (1997)), Kaposi fibroblast growth factor (Kaposi FGF; Lin et al., J. Biol. Chem. 270: 14255-58 (1995)), VP22 from HSV (Elliott and O'Hare, Cell, 88(2):223-33 (1997)) and TAT from HIV (Green and Loewenstein, Cell, 55(6):1179-88 (1988); Frankel and Pabo, Cell, 55(6):1189-93 (1988)). WO 99/29721 moreover mentions TAT mutants having an enhanced activity as compared to the wild-type peptide.

Fusion of PTDs to heterologuous proteins conferred the ability to transduce into cultured cells (Fawell et al., Proc. Natl. Acad. Sci. USA, 91(2):664-8 (1994); Elliott and O'Hare (1997), Phelan et al., Nature Biotech. 16; 440-443 (1998) and Dilber et al., Gene Ther., 6(1):12-21 (1999)). Dalby and Bennett showed that a fusion protein consisting of VP22 and functional Flp recombinase translocated between cells in culture (from COS-1 cells transfected with VP22-Flp to CHO cells carrying Flp recognition sites (FRT sites); see Dalby and Bennett, Invitrogen, Expressions 6.2, page 13 (1999)). Further WO 99/11809 mentions a fusion protein Antp-Cre and emphasizes that it may be used to deliver the Cre into the cell which recombines inside the cell nucleus. It is mentioned that the fusion protein is suitable for manipulating genomic DNA at precise locations in a temporal regulated manner.

Furthermore, a recent report demonstrated that the ß-galactosidase protein fused to the 11 amino acids PTD from the HIV TAT protein can infiltrate all tissues of living mice reaching every single cell (Schwarze et al., Science, 285(5433):1569-72 (1999)). Finally, WO 99/60142 discloses vector constructs for gene therapy carrying a tumor cell sensitizing gene, a sensitizing gene expression regulatory system, a control gene and a control gene expression regulatory system, wherein the control gene can be a fusion gene consisting of a recombinase (viz. Cre or Flp) and a trafficking protein (viz. VP22).

With regard to the fusion protein Antp-Cre of WO 99/11809, it is however, general knowledge in the art that the Antennapedia PTD is not a generally applicable transducing protein, namely it has only a limited activity with proteins having more than 100 amino acid residues (Derossi et al., Trends Cell Biol. 8: 84-87, 1998). In view of the limited transducing activity of the Antp PTD and the size of the generally known recombinases (ranging from about 200 to about 600 amino acid residues), it was desirable to provide a more potent system for the transduction of recombinases. It was, however, not clear for a person skilled in the art whether PTDs would be effective at all with recombinases for the following reasons: (i) only a single example of PTD-mediated delivery of proteins (above 100 amino acid residues) *in vivo* has been reported so far (Schwarze et al., Sclence, 285(5433):1569-72 (1999); Fawell et al., PNAS, 91: 664-68 (1994); both references describing the TAT-mediated transduction of β-galactosidase in mice);

- (ii) It is known that due to defolding and refolding processes the transduction of native proteins into cells may result in a significant loss of protein activity (e.g., as described for TAT-GFP; Schwarze et al, Trends Cell Biol. 10: 290-95 (2000));
- (iii) neither the number of protein molecules that can be transferred into a cell by a given translocation domain has been systematically determined, nor the number of Cre molecules in the cell nucleus that is required for efficient recombination;
- (iv) the delivery of active proteins requires unfolding- and proper refolding which is unpredictable for a given protein (Bonifaci et al., AIDS 9: 995-1000 1995); and
- (v) the mechanism by which protein transduction domains facilitate protein transduction in unknown and several findings have been published that rule out classical receptor-, transporter-, endosome- or endocytosis-mediated processes in the transduction of Ant, TAT and VP22 (G. Eliott, P. O'Hare, Cell 88, 223-233 (1997); D.A. Mann, A.D. Frankel, EMBO. J. 10,

1733-1739 (1991); D. Derossi et al., J. Biol. Chem. 269, 10444-10450 (1994); D. Derossi et al., J. Biol. Chem. 271, 18188-18193 (1996); E. Vives et al., J. Biol. Chem. 272, 16010-16017 (1997)).

Moreover, there was still the need for a generally applicable method where the genetic manipulation can be performed in both, endogenous genes and transgenes.

Summary of the Invention

It was found that site-specific DNA recombinase proteins can be translocated into cells of a living organism when fused to specific protein transduction domains, namely transduction domains being derived from the VP22 protein of HSV or from the TAT protein of HIV. Thus, whenever a gene mutation is desired, recombination is induced upon the injection of the appropriate site-specific recombinase fused to a transduction domain into such a living organism (provided, however, that said organism carries at least one appropriate RRS integrated in the genome).

The present invention thus provides

- (1) the use of a fusion protein comprising
- (a) a site-specific DNA recombinase domain and
- (b) a protein transduction domain (PTD)
- for preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome;
- (2) a method for inducing gene alterations in a living organism which comprises administering to said living organism a fusion protein comprising a site-specific DNA recombinase domain and a PTD as defined in (1) above, wherein said living organism carries at least one or more

recognition sites for said site-specific DNA recombinase integrated in its genome;

- (3) a fusion protein comprising
- (a) a site-specific DNA recombinase domain and
- (b) a PTD being derived from the VP22 protein of HSV or from the TAT protein of HIV

provided that when the site-specific DNA recombinase domain is wild-type Cre or Flp then the PTD is not the full length VP22 PTD of HSV (i.e., the fusion protein is not identical to the fusion protein of Dalby and Bennett, Invitrogen, Expressions 6.2, page 13 (1999) and of WO 99/60142);

- (4) a DNA sequence coding for the fusion protein of (3) above;
- (5) a vector comprising the DNA sequence as defined in (4) above;
- (6) a host cell transformed with the vector of (5) above and/or comprising the DNA of (4) above;
- (7) a method for producing the fusion protein of (1) above which comprises culturing the transformed host cell of (6) above and isolating the fusion protein; and
- (8) an Injectable composition comprising the fusion protein as defined in (1) or (3) above.

The invention is further illustrated by the appended Figures and is explained in detail below.

Description of the Figures

<u>Fig. 1:</u> Generation of induced mouse mutants using purified fusion proteins.

A: Expression of the fusion protein consisting of the site-specific DNA recombinase (e.g. Cre) and the protein transduction domain (e.g. the HIV derived TAT peptide) in prokaryotic or eukaryotic cells.

B: Extraction and purification of the expressed fusion protein (e.g. as described in Nagahara et al., Nat. Med. 4 (12):1449-52 (1998)).

C: Injection of the purified fusion protein into mice carrying the RRS-flanked target sequence.

D: Analysis of the pattern of induced target gene recombination and the resulting phenotype.

Triangle: RRS.

Fig. 2: Scheme of the bacterial expression vector pT7-TACS (SEQ ID NO:16). The coding region of the 11 amino acid protein transduction domain of HIV TAT protein is fused to the N-terminus of the Cre recombinase protein sequence. The 10-amino-acid strep tag and the protease factor Xa recognition sequence are fused to the C-terminus. The T7 promoter permits expression of TAT-Cre protein in *E. coli*.

Fig. 3: Detection of purified TAT-Cre protein by Coomassie staining and Western blot analysis.

A: Coomassie stained SDS-PAGE gel. Lane 1: 10 kDa ladder (Life Technologies, Cat. No.: 10064-012), 2: 1000 ng BSA, 3: 750 ng BSA, 4: 500 ng BSA, 5: 100 ng BSA, 6: 50 ng BSA, 7: 5 µl TAT-Cre, 8: 1 µl TAT-Cre in Bicine buffer.

B: Western blot analysis using an alkaline phosphatase-conjugated antistrep tag antibody (IBA, Cat. No: 2-1503-001). Lane 1: MultiMark (Invitrogen, Cat. No.: LC5725), 2: 7 μl TAT-Cre, 3: 5 μl TAT-Cre, 4: 2,5 μl TAT-Cre, 5: 1,25 μl TAT-Cre in Blcine buffer.

<u>Fig. 4:</u> X-Gal staining of M5Pax8 cells treated with TAT-Cre protein. M5Pax8 fibroblasts where treated for 18 h with 3,5 (A), 6,9 (B) and 13,8 μg/ml TAT-Cre protein (C) in serum-free medium. Four days after treatment, cells were fixed and stained with X-Gal.

<u>Fig. 5:</u> Measurement of β-galactosidase activity in cell lysates. M5Pax8 fibroblasts where treated for 18 h with increasing concentrations of TAT-Cre, as indicated, or transiently transfected with either expression vectors

for Cre (pCMV-I-Cre-pA, see SEQ ID NO:29) or ß-galactosidase (pCMV-I-ß-pA, see SEQ ID NO:30). Four days after treatment, cells were lysed and the ß-galactosidase activities were determined.

Fig. 6: PCR detection of TAT-Cre mediated recombination in mice.

A: PCR-analysis of genomic DNA from duodenum (lane 2), liver (3), kidney (4), spleen (5), muscle (6), lung (7), tail (8) and brain (9) of a pln13 mouse treated three times with intraperitoneal injections of 75 μg TAT Cre protein at two-day-intervals. Deletion of the loxP-flanked DNA segment is indicated by the presence of the about 400 bp fragment. Lane 1: 1-kb-ladder (Life Technologies).

B: PCR strategy to detect Cre-mediated deletion of the loxP-flanked DNA segment. Arrows indicate the positions of the primers.

C: PCR-analysis of genomic DNA from spleen of a *pln13* mouse treated three times with intraperitoneal injections of 75 µg TAT Cre protein at two-day-intervals (lane 4). To confirm the presence of the BamH I restriction site, the PCR product was digested with BamH I which produces two diagnostic fragments of about 190 and about 210 bp (5). As a control, tail DNA from untreated mice carrying the loxP-flanked (lane 2) and the detected pln13 allele (3) was subjected to PCR amplification. Lane 1: 100 bp ladder (Life Technologies), lane 6: 1 kb ladder (Life Technologies).

<u>Fig. 7:</u> Scheme of the bacterial expression vectors pT7-VPCS (SEQ ID NO:17) and pCRT7- Δ VPCS (SEQ ID NO:15). The coding region of the 301 amino acid protein transduction domain of HSV VP22 protein (A) or the truncated 143 amino acid Δ VP22 domain (B) is fused to the N-terminus of the Cre recombinase protein sequence. The 10-amino-acid strep tag and the protease factor Xa recognition sequence are fused to the C-terminus. The T7 promoter allows the expression of VP22-Cre and Δ VP22-Cre fusion proteins in *E. coli*. The sequence in pCRT7- Δ VPCS encoding the 15 amino

acid N-terminal leader sequence is used for enhanced protein stability (Invitrogen).

<u>Fig. 8:</u> Detection of the purified VP22-Cre and Δ VP22-Cre fusion proteins by Coomassie staining and Western blot analysis.

A: Detection of VP22-Cre protein in a Coomassie-stained SDS-PAGE gel.
Lane 1: 10 kDa ladder, 2: 1000 ng BSA, 3: 500 ng BSA, 4: 100 ng BSA,
5: inclusion body protein extract before chromatography, 6: unbound
protein, 7: fraction 17, 8: fraction 18, 9: fraction 19, 10: fraction 20. The
position of the 75 kDa VP22-Cre protein is indicated by the arrow head.
B: Detection of VP22-Cre protein by Western blot analysis using an
alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 21503-001). Lane 1: MultiMark (Invitrogen), 2: inclusion body protein
extract before chromatography, 3: unbound protein, 4: fraction 10, 5:
fraction 11, 5: fraction 16, 6: fraction 17, 7: fraction 18, 8: fraction 19, 9:
fraction 19, 10: fraction 20.

C: Detection of $\Delta VP22$ -Cre protein in a Coomassie-stained SDS-PAGE gel. Lane 1: 10 kDa ladder, 2: inclusion body protein extract before chromatography, 3: unbound protein, 4: fraction 1, 5: fraction 8, 6: fraction 9, 7: fraction 15, 8: 100 ng BSA, 9: 500 ng BSA, 10: 1000 ng BSA. The position of the 60 kDa $\Delta VP22$ -Cre protein is indicated by the arrow head.

D: Detection of Δ VP22-Cre protein by Western blot analysis using a alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 2-1503-001). Lane 1: MultiMark (Invitrogen), 2: inclusion body protein extract before chromatography, 3: unbound protein, 4: fraction 4, 5: fraction 8, 6: fraction 10, 7: fraction 12, 8: soluble protein extract before chromatography, 9: unbound protein, 10: fraction 7.

Fig. 9: X-Gal staining of M5Pax8 cells treated with VP22-Cre and ΔVP22-Cre fusion proteins. M5Pax8 fibroblasts where treated for 18 h with either

Bicine buffer (A), 0.5 μ g/ml VP22-Cre (B) or 3.75 g/ml Δ VP22-Cre (C) in serum-free medium. Four days after treatment, cells were fixed and stained with X-Gal.

Fig. 10: Measurement of β-galactosidase activity in cell lysates. M5Pax8 fibroblasts where treated for 18 h with VP22-Cre, ΔVP22-Cre or Bicine buffer alone, as indicated or transiently transfected with expression vectors for Cre (pCMV-I-Cre-pA, see SEQ ID NO:29) or β-galactosidase (pCMV-I-β-pA, see SEQ ID NO:30). Four days after treatment, cells were lysed and the β-galactosidase activities were determined.

<u>Fig. 11:</u> PCR detection of Cre mediated recombination in cells treated with VP22-Cre and Δ VP22-Cre fusion proteins shown in SEQ ID NOs: 21 and 14, respectively).

A: PCR-analysis of genomic DNA isolated from M5Pax8 fibroblasts. Cells were transiently transfected with a Cre expression vector (lane 2) or treated for 18 h with either buffer alone (lane 3), 7.5 μg/ml VP22-Cre (4, 5) or 15 μg/ml ΔVP22-Cre (6, 7) in serum-free medium. Four days after treatment, genomic DNA was extracted and subjected to PCR amplification. Deletion of the loxP-flanked DNA segment is indicated by the presence of the 226 bp DNA fragment. To confirm the presence of the Nco I restriction site in the recombined allele, the PCR products were digested with Nco I which produces two diagnostic fragments of 85bp and 141bp (lanes 5 and 7). Lane 1: 100 bp ladder (Life Technologies), lane 8: 1 kb ladder (Life Technologies).

B: PCR strategy to detect Cre-mediated deletion of the loxP-flanked DNA segment. Arrows indicate the positions of the primers.

Detailed Description of the Inventi n

The expression "target sequences" according to the present invention means all kind of sequences which may be mutated (viz. deleted,

translocated, integrated and/or inverted) by the action of the recombinase. The number of RRS in the target sequence depends on the kind of mutation to be performed by the recombinase. For most of the mutations (especially for deletions and invertions) two RRS are required which are flanking the sequence to be mutated (deleted or inverted). For some kinds of integrations only one RRS may be necessary within the target sequence.

The "living organisms" according to the present invention are multi-cell organisms and can be vertebrates such as mammals (e.g., rodents such as mice or rats) or non-mammals (e.g., fish) or can be invertebrates such as insects or worms, or can be plants (higher plants, algi or fungi). Most preferred living organisms are mice and fish.

"Cell culture" according to the present invention include cells isolated from the above defined living organism and cultured *in vitro*. These cells can be transformed (immortalized) or untransformed (directly derived from the living organism; primary cell culture).

The site-specific DNA recombinase domain within the fusion protein of the invention of the present application is preferably selected from a recombinase protein derived from Cre, Flp, ϕ C31 recombinase (Thorpe and Smith, Proc. Natl. Acad. Sci, USA, vol. 95, 5505-5510 (1998)), $\gamma\delta$ resolvase (Schwickardi and Dröge, FEBS letters 471:147-150 (2000) and R recombinase (Araki et al., J. Mol. Biol., 182, 191-203 (1985)). The preferred recombinases are Cre and mutants thereof (preferably the Cre variant of aa 15 to 357 of SEQ ID NO: 2 or aa 325-667 of SEQ ID NO: 6) and Flp and variants thereof including Flpe (preferably the Flp variant of aa 15 to 437 of SEQ ID NO: 4 or aa 325 to 747 of SEQ ID NO: 8).

The protein transduction domain according to the present invention includes, but is not limited to, the PTDs mentioned in Background of the Invention. The PTD preferably is derived from the VP22 protein of HSV or from the TAT protein of HIV. Suitable TAT proteins include, but are not limited to, proteins comprising (i) the amino acid sequence shown in SEQ

ID NO: 10 and mutant thereof such as

(ii) proteins comprising the amino acid

AGRKKRRORRR (SEQ ID NO:22)

YARKARRQARR (SEQ ID NO:23)

YARAAARQARA (SEQ ID NO:24)

YARAARRAARR (SEQ ID NO:25)

YARAARRAARA (SEQ ID NO:26)

YARRRRRRRR (SEQ ID NO:27)

YAAARRRRRRR (SEQ ID NO:28)

as known from WO 99/29721. Preferred are transduction domains consisting of the TAT proteins (i) and (ii) above.

Suitable VP22 proteins include, but are not limited to, the wild-type VP22 protein, i.e., a protein comprising amino acids 1 to 302 of SEQ ID No:21, and truncated forms thereof. Truncated VP22 proteins in accordance with the present invention can be those lacking 1 to 158 amino acid residues at their N-terminal end. The most preferred VP22 protein is the truncated VP22 PTD comprising amino acid residues 16 to 157 of SEQ ID NO:14.

The fusion of the two domains of the fusion protein can occur at any possible position, i.e., the protein transduction domain can be fused to the N- or C-terminal of the site-specific DNA recombinase or can be fused to active sites within the site-specific DNA recombinase. Preferably the protein transfusion domain is fused to the N-terminal of the site-specific DNA recombinase domain.

The protein transduction domain can be fused to the site-specific DNA recombinase either through a direct chemical bond or through a linker molecule. Such linker molecule can be any bivalent chemical structure capable of linking the two domains. The preferred linker molecule according to the present invention is a short peptide, e.g., having 1 to 20, preferably 1 to 10, amino acid residues. Specifically preferred short peptides are essentially consisting of Gly, Ala and/or Leu.

The fusion protein of the invention of the present application may further comprise other functional sequences such as secretion conferring signals, nuclear localisation signals and/or signals conferring protein stabilisation.

Such a preferred DNA sequence is for instance shown in SEQ ID NO: 11. In said sequence the 3' terminal codon ggc codes for the linker Gly. The DNA sequence of a suitable recombinase may be directly attached to said codon ggc.

The fusion protein can be obtained by the following steps:

 Fusion of the recombinase coding region (e.g. encoding Cre: see amino acids 15 to 357 of SEQ ID NO: 2) with the sequence conferring protein translocation (e.g. the sequence encoding the TAT peptide YGRKKRRQRRR, SEQ ID NO: 10) using standard cloning protocols (Maniatis et al., Cold Spring Harbor Laboratory, New York (1989)) or chemical synthesis.

- Generation of a construct for the expression of the fusion protein in prokaryotic or eukaryotic cells, e.g. in E. coli DH5a (Hanahan, J. Mol. Biol.;166(4):557-80 (1983)) using the QIAexpress pQE vector (Qiagen, Hilden).
- 3. Expression of the above mentioned fusion protein in prokaryotic or eukaryotic cells, e.g. in E. coli DH5a (Hanahan, 1983)
- 4. Extraction and purification of the above mentioned fusion protein e.g. as described in Nagahara et al., Nat. Med., 4(12):1449-52 (1998).

In an experiment it was shown that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting both in cell lines and living organisms. In this experiment a vector for the expression of a TAT-Cre fusion protein in E. coli was constructed, TAT-Cre protein was expressed in E. coli and purified from bacterial lysates. To test the activity of the TAT-Cre protein *in vitro*, a reporter cell line that contains a loxP-containing reporter construct was used. This reporter, when recombined by Cre recombinase, allows the expression of a ß-galacosidase gene. Further, a transgenic mouse strain carrying a loxP-flanked target was used to invest the activity of the TAT-Cre protein *in vivo*.

In a second experiment it was shown that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting. In this experiment Bacterial expression vectors were constructed for the production of VP22-Cre fusion proteins in E. coli. The activity of purified VP22-Cre proteins were tested using a reporter fibroblast cell line containing a loxP-flanked reporter construct.

Thus, the injection of the purified fusion protein of the present invention into a living organism (e.g., a mouse) carrying a gene comprising the RRS-flanked target sequence (e.g., in an amount of 1 to 200, preferably 5

to 50 µg per g body weight). To demonstrate the feasibility of the invention, a reporter mouse strain carrying an RRS-flanked cassette was used (Thorey et al., Mol. Cell Biol., 18(10):6164 (1998)).

Analysis is achieved by determining the pattern of induced target gene recombination (e.g. through PCR analysis, Southern blot analysis or X-Gal staining on tissue sections; Maniatis et al., 1989; Gossler and Zachgo, Joyner AL (Ed.), Oxford University Press, Oxford, New York (1993)).

The procedure's advantages over current technology are as follows:

- (i) The absence of background recombination before administration of the fusion protein.
- (ii) The reduction of time and resources which are necessary to combine the recombinase transgene and two copies of the RRS-flanked target gene by conventional breeding.

In experiments it was shown the following: (a) With a suitable vector for the expression of a TAT-Cre fusion protein, a TAT-Cre fusion protein was expressed in *E. coli* and purified from bacterial lysates.

- (b) A reporter cell line containing a loxP-containing reporter construct was used to test the activity of the TAT-Cre protein *in vitro*. This reporter, when recombined by Cre recombinase, allows the expression of a B-galacosidase gene.
- (c) A transgenic mouse strain carrying a loxP-flanked target was used to invest the activity of the TAT-Cre protein *in vivo*.

These experiments demonstrate that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting both in cell lines and living organisms.

Furthermore, bacterial expression vectors were constructed for the production of VP22-Cre fusion proteins in E. coli. The activity of purified VP22-Cre proteins were tested using a reporter fibroblast cell line containing a loxP-flanked reporter construct. These experiments demonstrate that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting.

The invention is further illustrated by the following, non-limitative examples.

Examples

Materials and Methods

Construction of pT7-TACS: The TAT-Cre coding region was generated by PCR using Advantage-HF PCR Kit (Clontech), 20 pmol of the primers TATcre sense (5'-atq cca tgg qct acq qcc gca aga agc gcc gcc aac gcc gcc gcg gca tgt cca att tac tga ccg tac acc-3'; SEQ ID NO:31) and TATcre antisense (5'-ttt cgg atc cgc cgc ata acc agt g-3'; SEQ ID NO:32) and 10 ng pCMV-I-Cre-pA (see SEQ ID NO:29) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 4 x (30" 94 °C min, 30" 50 °C, 1' 72 °C), 12 x (30" 94 °C min, 30" 55 °C, 1' 72 °C) and 10' 72 °C. The resulting PCR fragment was digested with Nco I and BamH I, treated with Klenow enzyme and ligated into the plasmid pBSII KS+ which had been opened with restriction enzyme BamH I, treated with Klenow and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pBS TAT-5'cre was verified by DNA sequencing. The Plasmid pCMV-I-Cre-pA (SEQ ID NO:29) was digested with Age I and Sal I which released a 1,036 kb fragment containing the 3' part of the Cre coding region. This fragment was ligated into the plasmid pBS TAT-5'cre which had been opened with Age I and Sal I.

10 ng pBS-TATCre was subjected to PCR amplification using 20 pmol of primers FPA001 (5'-tat atc tag acc atg ggc tac ggc cgc aag aag c-3'; SEQ ID NO:33) and FPA002 (5'-gct acc acg acc ttc gat acc atc gcc atc ttc cag cag gcg c-3'; SEQ ID NO:34). PCR was performed using 2,5 U Platinum Pfx DNA polymerase (Gibco BRL) and 2 x Enhancer Solution (Gibco BRL) according to the manufacturers protocol. The following cycle profile was used: 2' 94 °C, 25 x (30" 94 °C min, 15" 54,6 °C, 2'30" 68 °C). The amplified PCR fragment was purified using GFX columns (Amersham -Pharmacia), digested with Xba I and ligated into the plasmid pASK57 (Skerra and Arne, Gene 151: 131-135 (1994)) which had been opened with restriction enzymes Xba I and Eco 47 III and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pASK75-TACS was digested with restriction enzymes Nco I and Hind III which released a 1,1 kb fragment. The fragment was subsequently ligated into the plasmid pT7-7 (Studier and Moffatt, J. Mol. Biol. 189: 113-130 (1986)) which had been opened with restriction enzymes Nco I and Hind III and dephosphorylated with calf intestinal phosphatase resulting in the plasmid pT7-TACS (SEQ ID NO:16).

Construction of pT7-VPCS: The Cre coding region was generated by PCR using Advantage-HF PCR Kit (Clontech), 20 pmol of the primers VP22cre sense (5'-taa cta gcg gcc gca tgt cca att tac tga ccg tac ac-3'; SEQ ID NO:35) and VP22cre antisense (5'-tcg agc ggc cgc cat cgc cat ctt cca gca ggc g-3'; SEQ ID NO:36) and 10 ng pgkcre-pA (SEQ ID NO:40) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 5 x (30" 94 °C, 30" 50 °C, 2' 72 °C), 15 x (30" 94 °C, 30" 55 °C, 2' 72 °C) and 10' 72 °C. The resulting PCR fragment was digested with Not I and ligated into the plasmid pVP22/Myc-His (Invitrogen), which had been opened with restriction enzyme NotI, dephosphorylated with calf intestinal phosphatase. The resulting plasmid pVP22-cre myc/His was verified by DNA sequencing.

10 ng pVP22-cre myc/HIs was subjected to PCR amplification using 20 pmol of primers FPA004 (5'-tat atc tag aca tat gac ctc tcg ccg ctc cq-3'; SEQ ID NO:37) and FPA002 (SEO ID NO:34). PCR was performed using 2,5 U Platinum Pfx DNA polymerase (Gibco BRL) and 2 x Enhancer Solution (Gibco BRL) according to the manufacturers protocol. The following cycle profile was used: 2' 94 °C, 25 x (30" 94 °C min, 15" 54,6 °C, 2'30" 68 °C). The amplified PCR fragment was purified using GFX columns (Amersham Pharmacia), digested with Xba I and ligated into the plasmid pASK57 (Skerra and Arne, Gene 151: 131-135 (1994)) which had been opened with restriction enzymes Xba I and Eco 47 III and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pASK75-VPCS was digested with restriction enzymes Nde I and Hind III which released a 2,0 kb fragment. The fragment was subsequently ligated into the plasmid pT7-7 (Studier and Moffatt, J. Mol. Biol. 189: 113-130 (1986)) which had been opened with restriction enzymes Nde I and Hind III and dephosphorylated with calf intestinal phosphatase resulting in the plasmid pT7-VPCS (SEQ ID NO:17).

Construction of pCRT7-ΔVPCS: The ΔVP22-Cre coding region was generated by PCR using Platinum Pfx DNA polymerase (Life Technologles), 20 pmol of the primers FPA007 (5'-ttc cga aga cga cga aac acc-3'; SEQ ID NO:38) and FPA008 (5'-tat att cga agc tta tta acc acc gaa ctg cg-3'; SEQ ID NO:39) and 30 ng pT7-VPCS (SEQ ID NO:17) as template. The PCR reaction was performed using the following cycle profile: 2' 94 °C, 25 x (30" 94 °C, 30" 61 °C, 2'30" 68 °C) and 7' 68 °C. The resulting 1,8 kb PCR fragment was digested with Nco I and Sfu I and ligated into the plasmid pCRT7/VP22-1 (Invitrogen), which had been opened with restriction enzymes Nco I and Sfu I, and dephosphorylated with calf intestinal phosphatase. The resulting plasmid pCRT7-ΔVPCS (SEQ ID NO:15) was verified by DNA sequencing.

Expression of the fusion proteins in E. coli: E. coli BL21(DE3)-RIL cells (Stratagene) were transformed with pT7-TACS and grown on LB agar plates containing 100 µg/ml ampicillin. E. coli BL21(DE3)-RP cells (Stratagene) were transformed with pT7-VPCS and grown on LB agar plates containing 100 µg/ml ampicillin. E. coli BL21(DE3)-pLysS (Invitrogen) were transformed with pCRT7- Δ VPCS and grown on LB agar plates containing 25 µg/ml kanamycine and 34 µg/ml chloramphenicol. Single colonies were isolated and used to prepare glycerol stocks. Eight 5ml LB (Lura Bertani) aliquots containing antibiotics were inoculated with stabs from the glycerol stocks and grown overnight at 37°C with shaking. Two 5ml overnight cultures were each used to inoculate one of four 1L LB aliquots containing antibiotics and grown at 37°C with shaking. Growth rate was monitored by spectrophotometry at 578nm. When the cultures had obtained an $OD_{578} = 0.5$ expression of the fusion proteins were induced by the addition of 0,5 mM Isopropyl-B-D-1-thiogalactopyranosid (IPTG). Two hours after induction cells were harvested by centrifugation at 12000xg and the pellet rapidly frozen in liquid nitrogen and stored immediately at -80°C.

Purification of the fusion proteins from bacterial lysates: Each 10g cell pellet was resuspended on ice in 30ml Bicine buffer (50mM Bicine, pH 8,5) including one protease inhibitor tablet (Complete, Roche). Cells were lysed through threefold treatment (1500psi, 5 minutes) with the cell disruption bomb (Parr Instrument). 30ml of Benzonase (10000U, Merck) was added and cell extracts were incubated for 30 minutes at 4°C. Cell extracts were then centrifuged at 12,000xg (4°C). The pellet was redissolved in 8M urea, 50mM Bicine, 100mM DTT, pH 8,5 by incubation for 16 hours at 4°C. Protein extract was centrifuged at 31000xg and supernatant harvested. Protein extract was diluted in an equal volume of Chromatography buffer A (50mM Bicine, pH 8,5). PH was adjusted to pH

8,5 and the extract was filtered through a 0,45µm filter (Millipore). FPLC (Akta Explorer, Amersham Pharmacia) was performed using a cation exchange column (Sepharose SP, Column body HR_5/5 (0.5 x 5cm), column volume (CV) 1ml, linear flow 300cm/hour, Amersham Pharmacia). After addition of sample to FPLC column, buffer was exchanged with Chromatography buffer A at 10 CV.

TAT-Cre and VP22-Cre fusion proteins were eluted from the column by gradient elution using chromatography buffer B (50mM Bicine, 1M NaCl, pH 8,5) using the following profile: 0 - 50 % buffer B, 0 CV; 50 % buffer B, 10 CV; 50 - 100 % buffer B (linear gradient), 20 CV; 100 % buffer B, 10 CV. ΔVP22-Cre protein was eluted from the column by gradient elution using the following profile: 0 - 10 % buffer B, 0 CV; 10 % buffer B, 10 CV; 10 - 30 % buffer B, 0 CV; 30 % buffer B, 10 CV; 30 - 100 % buffer B, 0 CV; 100 % buffer B, 10 CV. Three 1,5ml fractions each containing purified fusion proteins were collected. Purity and concentration of protein fractions were determined by Coomassie blue stained SDS-PAGE gels and Western blot analysis using dilutions of BSA standard solutions. In addition protein content was determined using a Bradford assay (Coomassie Plus protein assay, Pierce).

SDS-PAGE and Western blot analysis: SDS-PAGE and Coomassie staining was performed according to standard protocols (Maniatis et al., Cold Spring Harbor Laboratory, New York (1989)) using 4 - 12 % gradient SDS-polyacrylamide gels (NuPAGE, Invitrogen, cat. no.: NPO321). Western blot analysis was performed using a Semi-Try Blotting Chamber (Biorad) and nitrocellulose membranes (0,2 µm; Schleicher & Schuell) according to the manufacturers protocols. The fusion proteins were detected by using an alkaline phosphatase-conjugated anti-strep tag antibody (IBA, Cat. No.: 2-1503-001) according to the manufacturers protocol.

 \mathbb{H}

Generation of the M5Pax8 Cre reporter cell line: The SV40-transformed murine embryonic fibroblast line MEF5/5 (Schwenk et al., Nucl Acids Res 26(6), 1427-32 (1998)) was transfected with the vector pPGKpaX1 (Kellendonk et al., Nucl. Acids Res. 24, 1404-11 (1996)). 10⁶ MEF5/5 cells were electroporated with 20 μg pPGKpaX1 plasmid DNA linearised with Sca I and plated into 48-well-plates. The cells were cultured in DMEM/Glutamax medium (Life Technologies) supplemented with 10 % fetal calf serum at 37°C, 10 % CO₂ in humid atmosphere. Two days after transfection the medium was supplemented with 5 μg/ml puromycine (Calbiochem) for the selection of stable integrants. 14 puromycine-resistant clones were expanded and tested by transien transfection with the Cre expression vector pPGK-Cre-pA (SEQ ID NO: 40). In two out of the 14 puromycine-resistant clones, the expression of β-galactosidase could be detected by staining with X-Gal. One of these clones, M5Pax8, was used as Cre reporter cell line.

Transfection and measurement of β -galactosidase activity: Fibroblasts (10^6 cells per 24 well plate (Falcon)) were transfected with 25 ng pCMV-I-Cre-pA (see SEQ ID NO:29) or pCMV-I- β -pA (see SEQ ID NO:30) plasmids using the FuGene transfection reagent (Roche Diagnostics). After 2 days the cells were lysed and the β -galactosidase activities were determined with the β -galactosidase reporter gene assay (Roche Diagnostics) according to the manufacturers guidelines using a Lumistar luminometer (MWG).

Histochemical detection of ß-galactosidase activity: To quantitate ß-galactosidase expression, fibroblast cells were washed once with phosphate buffered saline (PBS), and the cells were fixed for 5 minutes at room temperature in a solution of 4% formaldehyde in PBS. Next, the cells were washed twice with PBS and finally incubated in staining solution for 24 hours at 37°C (staining solution: 5 mM K3(Fe(CN)6), 5mM

K4(Fe(CN)6), 2mM MgCl2, 1mg/ml X-Gal (BioMol) in PBS). Blue stained, β-galactosidase positive cells were detected and distinguished from negative (transparent) cells in a cell culture binocular microscope under 200x magnification. For each determination a minimum of 200 cells was counted.

PCR detection of Cre-mediated recombination: Genomic DNA extracted from tissue samples was subjected to PCR using Taq-polymerase (Gibco BRL Cat. No. 10342-020) using 20 pmol of each primer (sense: 5`-CAT CTC CGG GCC TTT CGA CCT G - 3', antisense: 5'-GCG ATC GGT GCG GGC CTC TTC - 3'; SEQ ID Nos: 41 and 42, respectively). PCR was performed using the following cycle profile: 2' 94°C, 35 x (30" 94°C, 30" 55 °C, 1' 72 °C), 10 min 72 °C. PCR products were separated on a 1,2 % agarose gel.

Example 1

The vector pT7-TACS (SEQ ID NO:16) was constructed for the expression of a TAT-Cre fusion protein in E. coli. The plasmid contains the coding region of the 11 amino acid protein transduction domain of the wild-type HIV TAT protein (Green and Loewenstein, Cell, 55(6):1179-88 (1988); Frankel and Pabo, Cell, 55(6): 1189-93 (1988); SEQ ID NO:10) fused to the N-terminus of Cre recombinase protein sequence. The 10-amino-acid strep tag at the C-terminus allows the detection and purification of the fusion protein using specific antibodies (Schmidt and Skerra, J. Chromatogr A 676: 337-345 (1994)). The protease factor Xa recognition site (Ile-Glu-Gly-Arg) permits the removal of the strep tag by proteolytic cleavage. The estimated molecular weight of the TAT-Cre fusion protein is 42 kDa. A scheme of the TAT-Cre expression vector is depicted in figure 2. For the expression of TAT-Cre, the E. coll strain BL21(DE3)-RIL (Stratagene) was used. This strain carries an IPTG-inducible T7 polymerase gene and additional copies of the tRNA genes for the 'rare

codons' argU, ileY and leuW.

E. coli BL21(DE3)-RIL cells were transformed with pT7-TACS and grown in LB medium containing 100 µg/ml ampicillin. The expression of the 40 kDa TAT-Cre fusion protein could be strongly induced by the addition of 0,5 mM IPTG to the culture medium. Analysis of protein lysates revealed that approximately 50 % of TAT-Cre protein accumulated as insoluble inclusion bodies. The inclusion bodies where extracted and dissolved in 8 M urea. TAT-Cre was subsequently purified from this fraction using ion exchange chromatography. The quantity and purity of TAT-Cre protein was determined using Coomassie stained SDS-PAGE gels and Western blot analysis (figure 3). The purification process yielded TAT-Cre protein extracts of 64 % purity and a concentration of 100 µg/ml. To analyse the ability of the purified TAT-Cre protein to transduce into cultured cells, we used the fibroblast cell line M5Pax8 (R. Kühn, unpublished) that contains a loxP-containing reporter construct. This reporter, when recombined by Cre recombinase, allows the expression of a B-galacosidase gene (Buchholz et al, Nucleic Acids Res. 24, 4256-4262, 1996). Cells were cultured for 18 h with increasing concentrations of TAT-Cre protein in serum-free medium and analysed 4 days later for B-Galacosidase activity. Staining with X-Gal showed that > 50 % of the cells treated with 13,8 µg/ml TAT-Cre protein expressed ß-galactosidase indicating recombination of the loxP-flanked reporter construct had occurred (figure 4). Measurement of β-galactosidase activity in cell lysates revealed an up to 30-fold higher level of B-galactosidase activity in comparison to cells which had been transiently transfected with an eukaryotic Cre expression vector (figure 5).

To investigate the activity of TAT-Cre protein in a living organism, we used a transgenic mouse strain carrying a loxP-flanked target for Cre-mediated recombination (Thorey et al., 1998, Mol. Cell. Biol. 18: 3081 – 3088). Mice where treated three times with intraperitoneal injections of 75 μ g TAT Cre protein at two-day-intervals and analysed 2 days later. Genomic DNA was

isolated from a variety of organs and subjected to PCR amplification which specifically amplifies a 400 bp fragment of the recombined allele. The deleted allele could be detected in multiple tissues from treated mice indicating TAT-Cre-mediated recombination in these organs (figure 6). This experiments demonstrates that TAT-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting in cell lines and in living organisms.

Example 2

The vectors pT7-VPCS (SEQ ID NO:17) and pCRT7-ΔVPCS (SEQ ID NO:15) were constructed for the expression of VP22-Cre and ΔVP22-Cre fusion proteins in E. coli. The VP22-Cre gene of pT7-VPCS contains the full length protein translocation domain of the HSV VP22 protein (Elliott and O'Hare, Cell, 88(2): 223-33 (1987), whereas the ΔVP22-Cre gene of pCRT7-ΔVPCS contains a truncated VP22 protein transduction domain (amino acids 159 – 301; Invitrogen; aa 16-157 of SEQ ID NO:14) fused to the N-terminus of Cre recombinase protein sequence. A 10-amino-acid strep tag at the C-terminus of Cre protein sequence allows the detection and purification of the fusion proteins using specific antibodies (Schmidt and Skerra, J. Chromatogr A 676: 337-345 (1994)). The protease factor Xa recognition site permits the removal of the Strep tag by proteolytic cleavage. The estimated molecular weight is 75 kDa for VP22-Cre protein and 60 kDa for ΔVP22-Cre protein. A scheme of the vectors pT7-VPCS and pCRT7-ΔVPCS is depicted in figure 7.

E. coll BL21(DE3)-RIP cells (Stratagene) were transformed with pT7-VPCS and cultured in LB medium containing 100 μ g/ml ampicillin. E. coli BL21(DE3)-pLysS cells (Stratagene) were transformed with pCRT7- Δ VPCS and cultured in LB medium containing 25 μ g/ml kanamycine and 34 μ g/ml chloramphenicol. Expression of the VP22-Cre and Δ VP22-Cre fusion proteins could be induced by the addition of 0,5 mM IPTG to the culture medium. Analysis of protein extracts using Coomassie staining and

17

Western blotting of SDS-PAGE gels revealed that 50 - 60 % of VP22-Cre and Δ VP22-Cre proteins accumulated as insoluble inclusion bodies. The inclusion bodies where extracted and dissolved in 8 M urea. VP22-Cre and Δ VP22-Cre fusion proteins were subsequently purified using ion exchange chromatography. The quantity and purity of the isolated VP22-Cre and Δ VP22-Cre fusion proteins was determined using Coomassie stained SDS-PAGE gels and Western blot analysis (figure 8).

To analyse the ability of the purified fusion proteins to transduce into cultured cells, we used the fibroblast cell line M5Pax8 that contains a loxPcontaining reporter construct. When recombined by Cre recombinase, the reporter allows the expression of a B-galacosidase gene (Buchholz et al, Nucleic Acids Res. 24, 4256-4262, 1996). The cells where cultured for 18 h with increasing concentrations of VP22-Cre and ΔVP22-Cre in serum-free medium and analysed 4 days later for \u03b3-Galacosidase activity. Staining with X-Gal showed ~2 % blue cells in the cultures treated with up to 15 μg/ml ΔVP22-Cre indicating recombination of the loxP-flanked reporter construct had occurred. In contrast, cell cultures treated with up to 0,5 ug/ml VP22-Cre did not show any X-gal staining (figure 9). Measurement of cell lysates revealed a strong increase of β -galactosidase activity upon Δ VP22-Cre treatment when compared to untreated cells (figure 10). Genomic DNA was isolated fand subjected to PCR amplification that specifically amplifies a 250 bp fragment of the recombined allele. The deleted allele could be detected in cells treated with both VP22-Cre and A VP22-Cre fusion proteins (figure 11).

This experiment demonstrates that VP22-mediated delivery of active Cre protein works with sufficient efficacy to facilitate inducible gene targeting.

26

SEQUENCE LISTING

•														
<110> ARTEMIS Pharmaceuticals GmbH														
> Transduction of recombinases for inducible gene targeting														
130> 010007wo/JH/ml														
140> 141>														
<160> 42														
<170> PatentIn Ver. 2.1														
<210> 1 <211> 1074 <212> DNA <213> Artificial Sequence														
<220> <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein TAT-Cre														
<220> <221> CDS <222> (1)(1071)														
<400> 1 atg ggc tac ggc cgc aag aag cgc cgc caa cgc cgc c														
aat tta ctg acc gta cac caa aat ttg cct gca tta ccg gtc gat gca Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala 20 25 30														
acg agt gat gag gtt cgc aag aac ctg atg gac atg ttc agg gat cgc Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg 35 40 45														
cag gcg ttt tct gag cat acc tgg aaa atg ctt ctg tcc gtt tgc cgg Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg 50 55 60														
tcg tgg gcg gca tgg tgc aag ttg aat aac cgg aaa tgg ttt ccc gca Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala 65 70 75 80														
gaa cct gaa gat gtt cgc gat tat ctt cta tat ctt cag gcg cgc ggt Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly 85 90 95														
ctg gca gta aaa act atc cag caa cat ttg ggc cag cta aac atg ctt Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu 100 105 110														
cat cgt cgg tcc ggg ctg cca cga cca agt gac agc aat gct gtt tca 384 His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser 115 120 125														

 $(_j$

				cgg Arg												432
				cta Leu :												480
				aat Asn 165												528
				gct Ala												576
agg Arg	atc Ile	agg Arg 195	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 200	cgt Arg	act Thr	gac Asp	ggt Gly	ggg Gly 205	aga Arg	atg Met	tta Leu	624
				aga Arg												672
aag Lys 225	gca Ala	ctt Leu	agc Ser	ctg Leu	ggg Gly 230	gta Val	act Thr	aaa Lys	ctg Leu	gtc Val 235	gag Glu	cga Arg	tgg Trp	att Ile	tcc Ser 240	720
				gct Ala 245						Tyr						768
				gtt Val												816
				ggg Gly												864
				tct Ser												912
				gcc Ala												960
				caa Gln 325												1008
				aac Asn												1056
			ggc Gly	gat Asp	tag											1074

<210> 2 <211> 357 <212> PRT <400> 2
Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser
1 10 15

Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala 20 25 30

Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg 35 40 45

Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg
50 60

Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe Pro Ala 65 70 75 80

Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly
85
90
95

Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu 100 105 110

His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser 115 120 125

Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg 130 135 140

Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Gln Val Arg 145 150 155

Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala 165 170 175

Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala 180 185 190

Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu 195 200 205

Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu 210 215 220

Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser 225 230 235 240

Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys Arg Val 245 250 255

Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu Ser Thr 260 265 270

Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile Tyr Gly
275 280 285

Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly His Ser 290 295 300

Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile 305 310 315

Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp 355 <210> 3 <211> 1317 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein TAT-Flpe <220> <221> CDS <222> (1)..(1311) <400> 3 Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser 10 caa ttt gat ata tta tgt aaa aca cca cct aag gtc ctg gtt cgt cag 96 Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val Arg Gln ttt gtg gaa agg ttt gaa aga cct tca ggg gaa aaa ata gca tca tgt Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala Ser Cys gct gct gaa cta acc tat tta tgt tgg atg att act cat aac gga aca 192 Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn Gly Thr 240 gca atc aag aga gcc aca ttc atg agc tat aat act atc ata agc aat Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile Ser Asn tog ctg agt ttc gat att gtc aac aaa tca ctc cag ttt aaa tac aag 288 Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gln Phe Lys Tyr Lys acg caa aaa gca aca att ctg gaa gcc tca tta aag aaa tta att cct Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu Ile Pro 100 384 gct tgg gaa ttt aca att att cct tac aat gga caa aaa cat caa tct Ala Trp Glu Phe Thr Ile Ile Pro Tyr Asn Gly Gln Lys His Gln Ser 115 432 gat atc act gat att gta agt agt ttg caa tta cag ttc gaa tca tcg Asp Ile Thr Asp Ile Val Ser Ser Leu Gln Leu Gln Phe Glu Ser Ser gaa gaa.gca gat aag gga aat agc cac agt aaa aaa atg ctt aaa gca

Glu Glu Ala Asp Lys Gly Asn Ser His Ser Lys Lys Met Leu Lys Ala

155

150

ctt Leu	cta Leu	agt Ser	gag Glu	ggt Gly 165	gaa Glu	agc Ser	atc Ile	tgg Trp	gag Glu 170	atc Ile	act Thr	gag Glu	aaa Lys	ata Ile 175	cta Leu	528
aat Asn	tcg Ser	ttt Phe	gag Glu 180	tat Tyr !	acc Thr	tcg Ser	aga Arg	ttt Phe 185	aca Thr	aaa Lys	aca Thr	aaa Lys	act Thr 190	tta Leu	tac Tyr	576
caa Gln	ttc Phe	ctc Leu 195	ttc Phe	cta Leu	gct Ala	act Thr	ttc Phe 200	atc Ile	aat Asn	tgt Cys	gga Gly	aga Arg 205	ttc Phe	agc Ser	gat Asp	624
												caa Gln				672
												aag Lys				720
agt Ser	agg Arg	cac His	ata Ile	tac Tyr 245	ttc Phe	ttt Phe	agc Ser	gca Ala	agg Arg 250	ggt Gly	agg Arg	atc Ile	gat Asp	cca Pro 255	ctt Leu	768
												gtc Val				816
												gaa Glu 285				864
												ttg Leu				912
												aaa Lys				960
												ggc Gly				1008
ttg Leu	act Thr	aat Asn	gtt Val 340	gtg Val	gga Gly	aat Asn	tgg Trp	agc Ser 345	gat Asp	aag Lys	cgt Arg	gct Ala	tct Ser 350	gcc Ala	gtg Val	1056
												cct Pro 365				1104
ttc Phe	gca Ala 370	cta Leu	gtt Val	tct Ser	cgg Arg	tac Tyr 375	tat Tyr	gca Ala	tat Tyr	gat Asp	cca Pro 380	ata Ile	tca Ser	aag Lys	gaa Glu	1152
atg Met 385	ata Ile	gca Ala	ttg Leu	aag Lys	gat Asp 390	gag Glu	act Thr	aat Asn	cca Pro	att Ile 395	gag Glu	gag Glu	tgg Trp	cag Gln	cat His 400	1200
ata Ile	gaa Glu	cag Gln	cta Leu	aag Lys 405	ggt Gly	agt Ser	gct Ala	gaa Glu	gga Gly 410	agc Ser	ata Ile	cga Arg	tac Tyr	ccc Pro 415	gca Ala	1248

1 _ {

tgg aat ggg ata ata tca cag gag gta cta gac tac ctt tca tcc tac 1296 Trp Asn Gly Ile Ile Ser Gln Glu Val Leu Asp Tyr Leu Ser Ser Tyr 425 ata aat aga cgc ata taatga 1317 Ile Asn Arg Arg Ile 435 <210> 4 <211> 437 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein TAT-Flpe Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser Gln Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val Arg Gln Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala Ser Cys Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn Gly Thr Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile Ser Asn Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gln Phe Lys Tyr Lys Thr Gln Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu Ile Pro Ala Trp Glu Phe Thr Ile Ile Pro Tyr Asn Gly Gln Lys His Gln Ser Asp Ile Thr Asp Ile Val Ser Ser Leu Gln Leu Gln Phe Glu Ser Ser 135 Glu Glu Ala Asp Lys Gly Asn Ser His Ser Lys Lys Met Leu Lys Ala Leu Leu Ser Glu Gly Glu Ser Ile Trp Glu Ile Thr Glu Lys Ile Leu Asn Ser Phe Glu Tyr Thr Ser Arg Phe Thr Lys Thr Lys Thr Leu Tyr Gln Phe Leu Phe Leu Ala Thr Phe Ile Asn Cys Gly Arg Phe Ser Asp Ile Lys Asn Val Asp Pro Lys Ser Phe Lys Leu Val Gln Asn Lys Tyr

Leu Gly Val Ile Ile Gln Cys Leu Val Thr Glu Thr Lys Thr Ser Val

235

230

32 Ser Arg His Ile Tyr Phe Phe Ser Ala Arg Gly Arg Ile Asp Pro Leu Val Tyr Leu Asp Glu Phe Leu Arg Asn Ser Glu Pro Val Leu Lys Arg Val Asn Arg Thr Gly Asn Ser Ser Ser Asn Lys Gln Glu Tyr Gln Leu 280 Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn Lys Ala Leu Lys Lys Asn 295 Ala Pro Tyr Pro Ile Phe Ala Ile Lys Asn Gly Pro Lys Ser His Ile 305 -Gly Arg His Leu Met Thr Ser Phe Leu Ser Met Lys Gly Leu Thr Glu 325 Leu Thr Asn Val Val Gly Asn Trp Ser Asp Lys Arg Ala Ser Ala Val Ala Arg Thr Thr Tyr Thr His Gln Ile Thr Ala Ile Pro Asp His Tyr Phe Ala Leu Val Ser Arg Tyr Tyr Ala Tyr Asp Pro Ile Ser Lys Glu 375 Met Ile Ala Leu Lys Asp Glu Thr Asn Pro Ile Glu Glu Trp Gln His 390 Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly Ser Ile Arg Tyr Pro Ala Trp Asn Gly Ile Ile Ser Gln Glu Val Leu Asp Tyr Leu Ser Ser Tyr Ile Asn Arg Arg Ile 435 <210> 5 <211> 2004 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein VP22-Cre <220> <221> CDS <222> (1)..(2001) <400> 5 atg acc tot ege ege toe gtg aag tog ggt eeg egg gag gtt eeg ege

atg acc tct cgc cgc tcc gtg aag tcg ggt ccg cgg gag gtt ccg cgc 48
Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
1 10 - 15

gat gag tac gag gat ctg tac tac acc ccg tct tca ggt atg gcg agt __96 Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser 20 25 30

	ccc Pro	gat Asp	agt Ser 35	ccg Pro	cct Pro	gac Asp	acc Thr	tcc Ser 40	cgc Arg	cgt Arg	ggc Gly	gcc Ala	cta Leu 45	Gln	aca Thr	cgc Arg	144 .
	tcg Ser	cgc Arg 50	cag Gln	agg Arg	ggc Gly	gag Glu	gtc Val 55	cgt Arg	ttc Phe	gtc Val	cag Gln	tac Tyr 60	gac Asp	gag Glu	tcg Ser	gat Asp	192
	tat Tyr 65	ATa	ctc Leu	tac Tyr	ggg	ggc Gly 70	Ser	tct Ser	tcc Ser	gaa Glu	gac Asp 75	Asp	gaa Glu	cac	ccg Pro	gag Glu 80	240
	gtc Val	ccc Pro	cgg	acg Thr	cgg Arg 85	cgt Arg	ccc Pro	gtt Val	tcc Ser	ggg Gly 90	gcg Ala	gtt Val	ttg Leu	tcc Ser	ggc Gly 95	ccg Pro	288
	Gly	cct Pro	gcg Ala	cgg Arg 100	gcg Ala	cct Pro	ccg Pro	cca Pro	ccc Pro 105	gct Ala	ggg Gly	tcc Ser	gga Gly	ggg Gly 110	gcc Ala	gga Gly	336
<u>.</u> []	cgc Arg	aca Thr	ccc Pro 115	acc Thr	acc Thr	gcc Ala	ccc Pro	cgg Arg 120	gcc Ala	ccc Pro	cga Arg	acc Thr	cag Gln 125	cgg Arg	gtg Val	gcg Ala	384
	act Thr	aag Lys 130	gcc Ala	ccc Pro	gcg Ala	gcc Ala	ccg Pro 135	gcg Ala	gcg Ala	gag Glu	acc Thr	acc Thr 140	cgc Arg	ggc Gly	agg Arg	aaa Lys	432
	tcg Ser 145	gcc Ala	cag Gln	cca Pro	gaa Glu	tcc Ser 150	gcc Ala	gca Ala	ctc Leu	cca Pro	gac Asp 155	gcc Ala	ccc Pro	gcg Ala	tcg Ser	acg Thr 160	480
	gcg Ala	cca Pro	acc Thr	cga Arg	tcc Ser 165	aag Lys	aca Thr	ccc Pro	gcg Ala	cag Gln 170	ggg Gly	ctg Leu	gcc Ala	aga Arg	aag Lys 175	ctg Leu	-528
	cac His	ttt Phe	agc Ser	acc Thr 180	gcc Ala	ccc Pro	cca Pro	aac Asn	ccc Pro 185	gać Asp	gcg Ala	cca Pro	tgg Trp	acc Thr 190	ccc Pro	cgg Arg	576
	gtg Val	gcc Ala	ggc Gly 195	ttt Phe	aac Asn	aag Lys	cgc Arg	gtc Val 200	ttc Phe	tgc Cys	gcc Ala	gcg Ala	gtc Val 205	ggg Gly	cgc Arg	ctg Leu	624
	gcg Ala	gcc Ala 210	atg Met	cat His	gcc Ala	cgg Arg	atg Met 215	gcg Ala	gcg Ala	gtc Val	Gln	ctc Leu 220	tgg Trp	gac Asp	atg Met	tcg Ser	67 2
	cgt Arg 225	ccg Pro	cgc Arg	aca Thr	gac Asp	gaa Glu 230	gac Asp	ctc Leu	aac Asn	gaa Glu	ctc Leu 235	ctt Leu	ggc Gly	atc Ile	acc Thr	acc Thr 240	720
	atc Ile	cgć Arg	gtg Val	acg Thr	gtc Val 245	tgc Cys	gag Glu	ggc Gly	aaa Lys	aac Asn 250	ctg Leu	ctt Leu	cag Gln	cgc Arg	gcc Ala 255	aac Asn	768
	gag Glu	ttg Leu	gtg Val	aat Asn 260	cca Pro	gac Asp	gtg Val	gtg Val	cag Gln 265	gac Asp	gtc Val	gac 'Asp	gcg Ala	gcc Ala 270	acg Thr	gcg Ala	816
	act Thr	cga Arg	ggg Gly 275	cgt Arg	tct Ser	gcg Ala	gcg Ala	tcg Ser 280	cgc Arg	ccc Pro	acc Thr	gag Glu	cga Arg 285	cct Pro	cga Arg	gcc Ala	864

34

P:	ca ro	gcc Ala 290	cgc Arg	tcc Ser	gct Ala	tct Ser	cgc Arg 295	ccc Pro	aga Arg	cgg Arg	ccc Pro	gtc Val 300	gag Glu	ggt Gly	acc Thr	gag Glu	912
L	tc eu 05	gga Gly	tcc Ser	act Thr	agt Ser	cca Pro 310	gtg Val	tgg Trp	tgg Trp	aat Asn	tct Ser 315	gca Ala	gat Asp	atc Ile	cag Gln	cac His 320	960
a e	gt er	Gly ggc	ggć Gly	cgc Arg	atg Met 325	tcc Ser	aat Asn	tta Leu	ctg Leu	acc Thr 330	gta Val	cac His	caa Gln	aat Asn	ttg Leu 335	cct Pro	1008
g A	ca la	tta Leu	ccg Pro	gtc Val 340	gat Asp	gca Ala	acg Thr	agt Ser	gat Asp 345	gag Glu	gtt Val	egc Arg	aag Lys	aac Asn 350	ctg Leu	atg Met	1056
g: A:	ac sp	atg Met	ttc Phe 355	agg Arg	gat Asp	cgc Arg	cag Gln	gcg Ala 360	ttt Phe	tct Ser	gag Glu	cat His	acc Thr 365	tgg Trp	aaa Lys	atg Met	1104
					tgc Cys												1152
A.					ccc Pro												1200
					cgc Arg 405												1248
					atg Met												1296
					gtt Val												1344
					gaa Glu			Lys									1392
A	at sp 55	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 470	tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 475	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 480	1440
					ctg Leu 485												1488
C)	gt	ata Ile	Ala	gaa Glu 500	att Ile	gcc Ala	agg Arg	atc Ile	agg Arg 505	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 510	cgt Arg	act Thr	1536
					atg Met												1584
					gta Val												1632

11 .

gto Val 545	gag Glu	cga Arg	tgg Trp	att Ile	Ser 550	gtc Val	tct Ser	Gly	gta Val	gct Ala 555	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 560	1680
tac Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 565 !	gtc Val	aga Arg	aaa Lys	aat Asn	ggt Gly 570	gtt Val	gcc Ala	gcg Ala	cca Pro	tct Ser 575	gcc Ala	1728
Thr	agc Ser	cag Gln	.cta Leu 580	tca Ser	act Thr	cgc Arg	gcc Ala	ctg Leu 585	gaa Glu	ggg Gly	att Ile	ttt Phe	gaa Glu 590	gca Ala	act Thr	1776
	cga Arg															1824
gcc	tgg Trp 610	tct Ser	gga Gly	cac His	agt Ser	gcc Ala 615	cgt Arg	gtc Val	ģga Gly	gcc Ala	gcg Ala 620	cga Arg	gat Asp	atg Met	gcc Ala	1872
cgc Arg 625	gct	gga Gly	gtt Val	tca Ser	ata Ile 630	ccg Pro	gag Glu:	atc Ile	atg Met	caa Gln 635	gct Ala	ggt Gly	ggc Gly	tgg Trp	acc Thr 640	1920
aat Asr	gta Val	aat Asn	att Ile	gtc Val 645	atg Met	aac Asn	tat Tyr	atc Ile	cgt Arg 650	aac Asn	ctg Leu	gat Asp	agt Ser	gaa Glu 655	aca Thr	1968
	gca Ala										tag					2004

<210> 6

<211> 667

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: DNA sequence
coding for a fusion protein VP22-Cre

<400> 6

Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg

1 10 15

Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser 20 25 30

Pro Asp Ser Pro Pro Asp Thr Ser Arg Arg Gly Ala Leu Gln Thr Arg

Ser Arg Gln Arg Glu Val Arg Phe Val Gln Tyr Asp Glu Ser Asp 50 60

Tyr Ala Leu Tyr Gly Gly Ser Ser Ser Glu Asp Asp Glu His Pro Glu 65 70 75 80

Val Pro Arg Thr Arg Arg Pro Val Ser Gly Ala Val Leu Ser Gly Pro

Gly Pro Ala Arg Ala Pro Pro Pro Pro Ala Gly Ser Gly Gly Ala Gly

Arg Thr Pro Thr Thr Ala Pro Arg Ala Pro Arg Thr Gln Arg Val Ala 115 120 125

Thr Lys Ala Pro Ala Ala Pro Ala Ala Glu Thr Thr Arg Gly Arg Lys Ser Ala Gln Pro Glu Ser Ala Ala Leu Pro Asp Ala Pro Ala Ser Thr 150 Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu 200 Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr 230 Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala 280 Pro Ala Arg Ser Ala Ser Arg Pro Arg Pro Val Glu Gly Thr Glu Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro 330 Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn 375 Arg Lys Trp Phe Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Gln Ala Arg Gly Leu Ala Val Lys Thr Ile Gln Gln His Leu Gly Gln Leu Asn Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly Glu Arg Ala Lys Gln Ala Leu Ala Phe Glu Arg Thr

96

Asp Phe Asp Gln Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Gln Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn 550 Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr 585 His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp 660 665 <210> 7 <211> 2247 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: DNA sequence coding for a fusion protein VP22-Flpe <220> <221> CDS <222> (1)..(2241) atg acc tot ege ege toe gtg aag tog ggt eeg egg gag gtt eeg ege Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg

gat gag tac gag gat ctg tac tac acc ccg tct tca ggt atg gcg agt

Asp Glu Tyr Glu Asp Leu Tyr Tyr Thr Pro Ser Ser Gly Met Ala Ser 25

Pro	gat Asp	agt Ser 35	ccg Pro	cct Pro	gac Asp	acc Thr	tcc Ser 40	cgc Arg	cgt Arg	ggc Gly	gcc Ala	cta Leu 45	cag Gln	aca Thr	cgc Arg	144
tcg Ser	cgc Arg 50	cag Gln	agg Arg	ggc Gly	gag Glu	gtc Val 55	cgt Arg	ttc Phe	gtc Val	cag Gln	tac Tyr 60	gac Asp	gag Glu	tcg Ser	gat Asp	192
tat Tyr 65	gcc Ala	ctc Leu	tac Tyr	ggg Gly	ggc Gly 70	tcg Ser	tct Ser	tcc Ser	gaa Glu	gac Asp 75	gac Asp	gaa Glu	cac His	ccg Pro	gag Glu 80	240
gtc Val	ccc Pro	cgg Arg	acg Thr	cgg Arg 85	cgt Arg	ccc Pro	gtt Val	tcc Ser	90 99 99	gcg Ala	gtt Val	ttg Leu	tcc Ser	ggc Gly 95	ccg Pro	288
ggg Gly	cct Pro	gcg Ala	cgg Arg 100	gcg Ala	cct Pro	ccg Pro	cca Pro	ccc Pro 105	gct Ala	ggg Gly	tcc Ser	gga Gly	333 Gly 110	gcc Ala	gga Gly	336
												cag Gln 125				384
act Thr	aag Lys 130	gcc Ala	ccc Pro	gcg Ala	gcc Ala	ccg Pro 135	gcg Ala	gcg Ala	gag Glu	acc Thr	acc Thr 140	cgc Arg	ggc	agg Arg	aaa Lys	432
tcg Ser 145	gcc Ala	cag Gln	cca Pro	gaa Glu	tcc Ser 150	gcc Ala	gca Ala	ctc Leu	cca Pro	gac Asp 155	gcc Ala	ccc Pro	gcg Ala	tcg Ser	acg Thr 160	480
gcg Ala	cca Pro	acc Thr	cga Arg	tcc Ser 165	aag Lys	aca Thr	ccc Pro	gcg Ala	cag Gln 170	Gly	ctg Leu	gcc Ala	aga Arg	aag Lys 175	ctg Leu	528
cac His	ttt Phe	agc Ser	acc Thr 180	gcc Ala	ccc Pro	cca Pro	aac Asn	ccc Pro 185	gac Asp	gcg Ala	cca Pro	tgg Trp	acc Thr 190	ccc Pro	cgg Arg	576
gtg Val	gcc Ala	ggc Gly	ttt	aac	aag	cgc	gtc									
		195	Phe	Asn	Lys	Arg	Val 200	Phe	tgc Cys	gcc Ala	gcg Ala	gtc Val 205	ggg Gly	cgc Arg	ctg Leu	624
gcg Ala	gcc Ala 210	195 atg	cat	gcc	cgg	atg	Val 200 gcg	Phe	Cys	Ala	Ala	Val	Gly gac	Arg	Leu	672
Ala cgt	Ala 210 ccg	195 atg Met	cat His	gcc Ala gac	cgg Arg gaa	atg Met 215 gac	Val 200 gcg Ala	Phe gcg Ala aac	Cys gtc Val gaa	Ala cag Gln ctc	Ala ctc Leu 220 ctt Leu	Val 205 tgg	Gly gac Asp	Arg atg Met acc	tcg Ser	
cgt Arg 225	Ala 210 ccg Pro	atg Met cgc Arg	cat His aca Thr	gcc Ala gac Asp	cgg Arg gaa Glu 230	atg Met 215 gac Asp	Val 200 gcg Ala ctc Leu	Phe gcg Ala aac Asn	Cys gtc Val gaa Glu	Ala cag Gln ctc Leu 235	Ala ctc Leu 220 ctt Leu	Val 205 tgg Trp	gac Asp atc Ile	Arg atg Met acc Thr	tcg Ser acc Thr 240	672
cgt Arg 225 atc Ile	Ala 210 ccg Pro cgc Arg	atg Met Cgc Arg gtg Val	cat His aca Thr acg Thr	gcc Ala gac Asp gtc Val 245 cca	cgg Arg gaa Glu 230 tgc Cys	atg Met 215 gac Asp gag Glu	Val 200 gcg Ala ctc Leu ggc Gly	gcg Ala aac Asn aaa Lys	gtc Val gaa Glu aac Asn 250	Ala cag Gln ctc Leu 235 ctg Leu	Ala ctc Leu 220 ctt Leu ctt Leu	Val 205 tgg Trp ggc Gly	Gly gac Asp atc Ile cgc Arg	atg Met acc Thr gcc Ala 255 acg	tcg Ser acc Thr 240 aac Asn	672 720

cca Pro	gcc Ala 290	cgc Arg	tcc Ser	gct Ala	tct Ser	cgc Arg 295	ccc Pro	aga Arg	cgg Arg	ccc Pro	gtc Val 300	gag Glu	ggt Gly	acc Thr	gag Glu	912
ctc Leu 305	gga Gly	tcc Ser	act Thr	agt Ser	cca Pro 310	gtg Val	tgg Trp	tgg Trp	aat Asn	tct Ser 315	gca Ala	gat Asp	atc Ile	cag Gln	cac His 320	960
agt Ser	ggc	ggc Gly	cgc Arg	atg Met 325	agt Ser	caa Gln	ttt Phe	gat Asp	ata Ile 330	tta Leu	tgt Cys	aaa Lys	aca Thr	cca Pro 335	cct Pro	1008
						ttt Phe										1056
						gct Ala										1104
						gca Ala 375									tat . Tyr	1152
						tcg Ser										1200
						acg Thr										1248
						gct Ala										1296
						gat Asp i										1344
						gaa Glu 455										1392
						ctt Leu										1440
						aat Asn										1488
						caa Gln										1536
						att Ile										1584
						ctg Leu 535										1632

gag Glu 545	aca Thr	aag Lys	aca Thr	agc Ser	gtt Val 550	agt Ser	agg Arg	cac His	ata Ile	tac Tyr 555	ttc Phe	ttt Phe	agc Ser	gca Ala	agg Arg 560	1680
ggt Gly	agg Arg	atc Ile	gat Asp	cca Pro 565	ctt Leu	gta Val	tat Tyr	ttg Leu	gat Asp 570	gaa Glu	ttt Phe	ttg Leu	agg Arg	aat Asn 575	tct Ser	1728
gaa Glu	cca Pro	gtc Val	cta Leu 580	aaa Lys	cga Arg	gta Val	aat Asn	agg Arg 585	acc Thr	ggc Gly	aat Asn	tct Ser	tca Ser 590	agc Ser	aac Asn	1776
aaa Lys	cag Gln	gaa Glu 595	tac Tyr	caa Gln	tta Leu	tta Leu	aaa Lys 600	gat Asp	aac Asn	tta Leu	gtc Val	aga Arg 605	tcg Ser	tac Tyr	aac Asn	1824
aag Lys	gct Ala 610	ttg Leu	aag Lys	aaa Lys	aat Asn	gcg Ala 615	cct Pro	tat Tyr	cca Pro	atc Ile	ttt Phe 620	gct Ala	ata Ile	aag Lys	aat Asn	1872
ggc Gly 625	cca Pro	aaa Lys	tct Ser	cac His	att Ile 630	gga Gly	aga Arg	cat His	ttg Leu	atg Met 635	acc Thr	tca Ser	ttt Phe	ctg Leu	tca Ser 640	1920
atg Met	aag Lys	ggc	cta Leu	acg Thr 645	Glu	ttg Leu	act Thr	aat Asn	gtt Val 650	gtg Val	gga Gly	aat Asn	tgg Trp	agc Ser 655	gat Asp	1968
aag Lys	cgt Arg	gct Ala	tct Ser 660	gcc Ala	gtg Val	gcc Ala	agg Arg	aca Thr 665	acg Thr	tat Tyr	act Thr	cat His	cag Gln 670	ata Ile	aca Thr	2016
gca Ala	ata Ile	cct Pro 675	gat Asp	cac His	tac Tyr	ttc Phe	gca Ala 680	Leu	gtt Val	tct Ser	cgg Arg	tac Tyr 685	tat Tyr	gca Ala	tat Tyr	2064
gat Asp	cca Pro 690	Ile	tca Ser	aag Lys	gaa Glu	atg Met 695	Ile	gca Ala	ttg Leu	aag Lys	gat Asp 700	Glu	act Thr	aat Asn	cca Pro	2112
att Ile 705	Glu	gag Glu	tgg Trp	cag Gln	cat His 710	Ile	gaa Glu	cag Gln	cta Leu	aag Lys 715	Gly	agt Ser	gct Ala	gaa Glu	gga Gly 720	2160
agc Ser	ata Ile	cga Arg	tac Tyr	Pro 725	Ala	tgg Trp	aat Asn	Gly	ata 711e 730	Ile	tca Ser	cag Gln	gag Glu	gta Val 735	cta Leu	2208
gac Asp	tac Tyr	ctt Leu	tca Ser 740	tcc Ser	tac Tyr	ata Ile	aat Asn	aga Arg 745	Arg	ata Ile	taa	itga				2247

<210> 8

<211> 747 <212> PRT

<400> 8 Met Thr Ser Arg Arg Ser Val Lys Ser Gly Pro Arg Glu Val Pro Arg
1 5 10 15

									41						
Asp	Glu	Tyr	Glu 20	Asp	Leu	Tyr	Tyr	Thr 25	Pro	Ser	Ser	Gly	Met 30	Ala	Ser
Pro	Asp	Ser 35	Pro	Pro	Asp	Thr	Ser 40	Arg	Arg	Gly	Ala	Leu 45	Gln	Thr	Arg
Ser	Arg 50	Gln	Arg	Gly	Glu	Val 55	Arg	Phe	Val	Gln	Tyr 60	Asp	Glu	Ser	Asp
Tyr 65	Ala	Leu	Tyr	Gly	Gly 70	Ser	Ser	Ser	Glu	Asp 75	Asp	Glu	His	Pro	Glu 80
Val	Pro	Arg	Thr	Arg 85	Arg	Pro	Val	Ser	Gly 90	Ala	Val	Leu	Ser	Gly 95	Pro
Gly	Pro	Ala	Arg 100	Ala	Pro	Pro	Pro	Pro 105	Ala	Gly	Ser	Gly	Gly 110	Ala	Gly
Arg	Thr	Pro 115	Thr	Thr	Ala	Pro	Arg 120	Ala	Pro	Arg	Thr	Gln 125	Arg	Val	Ala
Thr	Lys 130	Ala	Pro	Ala	Ala	Pro 135	Ala	Ala	Glu	Thr	Thr 140	Arg	Gly	Arg	Lys
Ser 145	Ala	Gln	Pro	Glu	Ser 150	Ala	Ala	Leu	Pro	Asp 155	Ala	Pro	Ala	Ser	Thr 160
Ala	Pro	Thr	Arg	Ser 165	Lys	Thr	Pro	Ala	Gln 170	Gly	Leu	Ala	Arg	Lys 175	Leu
His	Phe	Ser	Thr 180	Ala	Pro	Pro	Asn	Pro 185	Asp	Ala	Pro	Trp	Thr 190	Pro	Arg
Val	Ala	Gly 195		Aśn	Lys	Arg	Val 200	Phe	Cys	Ala	Ala	Val 205	Gly	Arg	Leu
Ala	Ala 210	Met	His	Ala	Arg	Met 215	Ala	Ala	Val	Gln	Leu 220	Trp	Asp	Met	Ser
Arg 225	Pro	Arg	Thr	Asp	Glu 230	Asp	Leu	Asn	Glu	Leu 235	Leu	Gly	Ile	Thr	Thr 240
Ile	Arg	Val	Thr	Val 245	Cys	Glu	Gly	Lys	Asn 250	Leu	Leu	Gln	Arg	Ala 255	Asn
Glu	Leu	Val	Asn 260	Pro	Asp	Val	Val	Gln 265	Asp	Val	Asp	Ala	Ala 270	Thr	Ala
Thr	Arg	Gly 275	_	Ser	Ala	Ala	Ser 280	Arg	Pro	Thr	Glu	Arg 285	Pro	Arg	Ala
Pro	Ala 290		Ser	Ala	Ser	Arg 295	Pro	Arg	Arg	Pro	Val 300		Gly	Thr	Glu
Leu 305		Ser	Thr	Ser	Pro 310	Val	Trp	Trp	Asn	Ser 315	Ala	Asp	Ile	Gln	His 320
Ser	Gly	Gly	Arg	Met 325		Gln	Phe	Asp	11e 330	Leu	Cys	Lys	Thr	Pro 335	Pro
Lys	Val	Leu	Val 340		Gln	Phe	Val	Ģlu 345		Phe	Glu	Arg	Pro 350		Gly

									42						
Glu	Lys	Ile 355	Ala	Ser	Cys	Ala	Ala 360	Glu	Lėu	Thr	Tyr	Leu 365	Cys	Trp	Met
Ile	Thr 370	His	Asn	Gly	Thr	Ala 375	Ile	Lys	Arg	Ala	Thr 380	Phe	Met	Ser	Tyr
Asn 385	Thr	Ile	Ile	Ser	Asn 390	Ser	Leu	Ser	Phe	Asp 395	Ile	Val	Asn	Lys	Ser 400
Leu	Gln	Phe	Ьуs	Tyr 405	Lуs	Thr	Gln	Lys	Ala 410	Thr	Ile	Leu	Glu	Ala 415	Ser
Leu	Lys	Lys	Leu 420	Ile	Pro	Ala	Trp	Glu 425	Phe	Thr	Ile	Ile	Pro 430	Tyr	Asn
Gly	Gln	Lys 435	His	Gln	Ser	Asp	Ile 440	Thr	Asp	Ile	Val	Ser 445	Ser	Leu	Gln
Leu	Gln 450	Phe	Glu	Ser	Ser	Glu 455	Glu	Ala	Asp	Lys	Gly 460	Asn	Ser	His	Ser
Lys 465	Lys	Met	Leu	Lys	Ala 470	Leu	Leu	Ser	Glu	Gly 475	Glu	Ser	Ile	Trp	Glu 480
Ile	Thr	Glu	Lys	Ile 485	Leu	Asn	Ser	Phe	Glu 490	Tyr	Thr	Ser	Arg	Phe 495	Thr
Lys	Thr	Lys	Thr 500	Leu	Tyr	Gln	Phe	Leu 505	Phe	Leu	Ala	Thr	Phe 510	Ile	Asn ·
Cys	Gly	Arg 515	Phe	Ser	Asp	Ile	Lys 520	Asn	Val	Asp	Pro	Lys 525	Ser	Phe	Lys
Leu	Val 530	Gln	Asn	ГÀЗ	Tyr	Leu 535	Gly	Val	Ile	Ile	Gln 540	Cys	Leu	Val	Thr
Glu 545		Lys	Thr	Ser	Val 550	Ser	Arg	His	Ile	Tyr 555	Phe	Phe	Ser	Ala	Arg 560
Gly	Arg	Ile	Asp	Pro 565		Val	Tyr	Leu	Asp 570	Glu	Phe	Leu	Arg	Asn 575	Ser
			Leu 580					585					590		
_		595					600					605			Asn
Lys	Ala 610		Lys	Lys	Asn	Ala 615	Pro	Tyr	Pro	Ile	Phe 620	Ala	Ile	Lys	Asn
Gly 625		Lys	Ser	His	11e 630		Arg	His	Leu	Met 635		Ser	Phe	Leu	Ser 640
	_	_		645					650					655 ·	Asp
_			660)				665					670		Thr
Ala	Ile	Pro 675		His	Tyr	Phe	Ala 680		Val	Ser	Arg	Tyr 685		Ala	Tyr

```
Asp Pro Ile Ser Lys Glu Met Ile Ala Leu Lys Asp Glu Thr Asn Pro
                        695
 Ile Glu Glu Trp Gln His Ile Glu Gln Leu Lys Gly Ser Ala Glu Gly
 Ser Ile Arg Tyr Pro Ala Trp Asn Gly Ile Ile Ser Gln Glu Val Leu
                 725
                                    730
 Asp Tyr Leu Ser Ser Tyr Ile Asn Arg Arg Ile
 <210> 9
 <211> 33
 <212> DNA
 <213> Human immunodeficiency virus
 <400> 9
                                                                 33
 tacggccgca agaagcgccg ccaacgccgc cgc
 <210> 10
 <211> 11
 <212> PRT
 <213> Human immunodeficiency virus
 <400> 10
 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
 <210> 11
 <211> 42
 <212> DNA
 <213> Human immunodeficiency virus
 <220>
 <221> CDS
 <222> (4)..(42)
 <400> 11
 42
     Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly
 <210> 12
 <211> 13
 <212> PRT
 <213> Human immunodeficiency virus
 <400> 12
 Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly
  <210> 13
 <211> 1623
<212> DNA
  <213> Artificial Sequence
<220>
```

<223>	Descrip	otion	ıo	f Artii	ficial	Sequence:	DNA	sequence
	coding	for	a	fusion	protei	n deltaVP	22cre	e-StrepTag

<220> <221> CDS <222> (1)..(1617) <400> 13 atq qct age atg act ggt gga cag caa atg ggt cgg gat ccg tcg acg Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Pro Ser Thr gcg cca acc cga tcc aag aca ccc gcg cag ggg ctg gcc aga aag ctg Ala Pro Thr Arg Ser Lys Thr Pro Ala Gln Gly Leu Ala Arg Lys Leu 20 cac ttt agc acc gcc ccc cca aac ccc gac gcg cca tgg acc ccc cgg His Phe Ser Thr Ala Pro Pro Asn Pro Asp Ala Pro Trp Thr Pro Arg gtg gcc ggc ttt aac aag cgc gtc ttc tgc gcc gcg gtc ggg cgc ctg Val Ala Gly Phe Asn Lys Arg Val Phe Cys Ala Ala Val Gly Arg Leu gcg gcc atg cat gcc cgg atg gcg gct gtc cag ctc tgg gac atg tcg Ala Ala Met His Ala Arg Met Ala Ala Val Gln Leu Trp Asp Met Ser 288 cqt ccq cqc aca gac gaa gac ctc aac gaa ctc ctt ggc atc acc acc Arg Pro Arg Thr Asp Glu Asp Leu Asn Glu Leu Leu Gly Ile Thr Thr atc cgc gtg acg gtc tgc gag ggc aaa aac ctg ctt cag cgc gcc aac Ile Arg Val Thr Val Cys Glu Gly Lys Asn Leu Leu Gln Arg Ala Asn 105 gag ttg gtg aat cca gac gtg gtg cag gac gtc gac gcg gcc acg gcg Glu Leu Val Asn Pro Asp Val Val Gln Asp Val Asp Ala Ala Thr Ala 115 120 act cga ggg cgt tct gcg gcg tcg cgc ccc acc gag cga cct cga gcc Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr Glu Arg Pro Arg Ala 135 130 cca qcc cqc tcc qct tct cgc ccc aga cgg ccc gtc gag ggt acc gag Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro Val Glu Gly Thr Glu 150 145 528 ctc gga tcc act agt cca gtg tgg tgg aat tct gca gat atc cag cac Leu Gly Ser Thr Ser Pro Val Trp Trp Asn Ser Ala Asp Ile Gln His agt ggc ggc cgc atg tcc aat tta ctg acc gta cac caa aat ttg cct Ser Gly Gly Arg Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro 185 gca tta ccg gtc gat gca acg agt gat gag gtt cgc aag aac ctg atg 624 Ala Leu Pro Val Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met 200 gac atg ttc agg gat cgc cag gcg ttt tct gag cat acc tgg aaa atg Asp Met Phe Arg Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met 215

									45						•	
													ttg Leu			720
													tat Tyr			768
tat Tyr	ctt Leu	cag Gln	gcg Ala 260	cgc Arg	ggt Gly	ctg Leu	gca Ala	gta Val 265	aaa Lys	act Thr	atc Ile	cag Gln	caa Gln 270	cat His	ttg Leu	816
													cga Arg			864
gac Asp	agc Ser 290	aat Asn	gct Ala	gtt Val	tca Ser	ctg Leu 295	gtt Val	atg Met	cgg Arg	cgg Arg	atc Ile 300	cga Arg	aaa Lys	gaa Glu	aac Asn	912
													gaa Glu			960
gat Asp	ttc Phe	gac Asp	cag Gln	gtt Val 325	cgt Arg	tca Ser	ctc Leu	atg Met	gaa Glu 330	aat Asn	agc Ser	gat Asp	cgc Arg	tgc Cys 335	cag Gln	1008
gat Asp	ata Ile	cgt Arg	aat Asn 340	ctg Leu	gca Ala	ttt Phe	ctg Leu	ggg Gly 345	att Ile	gct Ala	tat Tyr	aac Asn	acc Thr 350	ctg Leu	tta Leu	1056
cgt Arg	ata Ile	gcc Ala 355	gaa Glu	att Ile	gcc Ala	agg Arg	atc Ile 360	agg Arg	gtt Val	aaa Lys	gat Asp	atc Ile 365	tca Ser	cgt Arg	act Thr	1104
gac Asp	ggt Gly 370	G] À ààà	aga Arg	atg Met	tta Leu	atc Ile 375	cat His	att Ile	ggc Gly	aga Arg	acg Thr 380	aaa Lys	acg Thr	ctg Leu	gtt Val	1152
agc Ser 385	acc Thr	gca Ala	ggt Gly	gta Val	gag Glu 390	aag Lys	gca Ala	ctt Leu	agc Ser	ctg Leu 395	ggg	gta Val	act Thr	aaa Lys	ctg Leu 400	1200
													ccg Pro			1248
tac Tyr	ctg Leu	Phe	tgc Cys 420	cgg Arg	gtc Val	aga Arg	aaa Lys	aat Asn 425	ggt Gly	gtt Val	gcc Ala	gcg Ala	CCa Pro 430	tct Ser	gcc Ala	1296
acc Thr	agc Ser	cag Gln 435	cta Leu	tca Ser	act Thr	cgc Arg	gcc Ala 440	ctg Leu	gaa Glu	GJY	att Ile	ttt Phe 445	gaa Glu	gca Ala	act Thr	1344
cat His	cga Arg 450	ttg Leu	att Ile	tac Tyr	Gly	gct Ala 455	aag Lys	gat Asp	gac Asp	tct Ser	ggt Gly 460	cag Gln	aga Arg	tac Tyr	ctg Leu	1392
						Ăla							gat Asp			1440

cgc Arg	gct Ala	Gly	gtt Val	tca Ser 485	ata Ile	ccg Pro	gag Glu	atc Ile	atg Met 490	caa Gln	gct Ala	ggt Gly	ggc Gly	tgg Trp 495	acc Thr	1488
aat Asn	gta Val	aat Asn	att Ile 500	gtc Val	atg Met	aac Asn	tat Tyr	atc Ile 505	cgt Arg	aac Asn	ctg Leu	gat Asp	agt Ser 510	gaa Glu	aca Thr	1536
ggg Gly	gca Ala	atg Met 515	gtg Val	cgc Arg	ctg Leu	ctg Leu	gaa Glu 520	gat Asp	ggc Gly	gat Asp	ggt Gly	atc Ile 525	gaa Glu	ggt Gly	cgt Arg	1584
				cgt Arg							taat	aa				1623
<211 <212 <213	3> De	39 RT ctif: escr:	ipti	l Secon of	Ē Art	tifi	cial rote:	Sequ in de	uence elta	e: Di VP220	NA so	eque: Strej	nce pTag			
)> 1 Ala		Met	Thr 5	Gly	Gly	Gln	Gln	Met 10	Gly	Arg	Asp	Pro	Ser 15	Thr	
Ala	Pro	Thr	Arg 20	Ser	Lys	Thr	Pro	Ala 25	Gln	Gly	Leu	Ala	Arg 30	Lys	Leu	
His	Phe	Ser 35	Thr	Ala	Pro	Pro	Asn 40	Pro	Asp	Ala	Pro	Trp 45	Thr	Pro	Arg	
Val	Ala 50	Gly	Phe	Asn	Lys	Arg 55	Val	Phe	Суз	Ala	Ala 60	Val	Gly	Arg	Leu	
Ala 65	Ala	Met	His	Ala	Arg 70		Ala	Ala	Val	Gln 75	Leu	Trp	Asp	Met	Ser 80	
Arg	Pro	Arg	Thr	Asp 85	Glu	Asp	Leu	Asn	Glu 90		Leu	Gly	Ile	Thr 95	Thr	
Ile	Arg	Val	Thr 100	Val	Cys	Glu	Gly	Lys 105		Leu	Leu	Gln	Arg 110	Ala	Asn	
Glu	Leu	Val 115	Asn	Pro	Asp	Val	Val 120	Gln	Asp	Val	Asp	Ala 125	Ala	Thr	Ala	
Thr	Arg 130	-	Arg	Ser	Ala	Ala 135		Arg	Pro	Thr	Glu 140		Pro	Arg	Ala	
Pro 145	Ala	Arg	Ser	Ala	Ser 150		Pro	Arg	Arg	Pro 155		Glu	Gly	Thr	Glu 160	
Leu	Gly	Ser	Thr	Ser 165		Val	Trp	Trp	Asn 170		Ala	Asp	Ile	Gln 175	His	
Ser	Gly	Gly	Arg 180	Met	Ser	Asn	Leu	Leu 185		Val	His	Gln	Asn 190		Pro	
Ala	Leu	Pro 195		Asp	Ala	Thr	Ser 200		Glu	. Val	Arg	Lys 205	Asn	Leu	Met	

									7,						
Asp	Met 210	Phe	Arg	Asp	Arg	Gln 215	Ala	Phe	Ser	Glu	His 220	Thr	Trp	Lys	Met
Leu 225	Leu	Ser	Val	Cys	Arg 230	Ser	Trp	Ala	Ala	Trp 235	Суз	Lys	Leu	Asn	Asn 240
Arg	Lys	Trp	Phe	Pro 245	Ala	Glu	Pro	Glu	Asp 250	Val	Arg	Asp	Tyr	Leu 255	Leu
Tyr	Leu	Gln	Ala 260	Arg	Gly	Leu	Ala	Val 265	Lys	Thr	Ile	Gln	Gln 270	His	Leu
Gly	Gln	Leu 275	Asn	Met	Leu	His	Arg 280	Arg	Ser	Gly	Leu	Pro 285	Arg	Pro	Ser
Asp	Ser 290	Asn	Ala	Val	Ser	Leu 295	Val	Met	Arg	Arg	Ile 300	Arg	Lys	Glu	Asn
Val 305	Asp	Ala	Gly	Glu	Arg 310	Ala	Lys	Gln	Ala	Leu 315	Ala	Phe	Glu	Arg	Thr 320
Asp	Phe	Asp	Gln	Val 325	Arg	Ser	Leu	Met	Glu 330	Asn	Ser	Asp	Arg	Cys 335	Gln
Asp	Ile	Arg	Asn 340	Leu	Ala	Phe	Leu	Gly 345	Ile	Ala	Tyr	Asn	Thr 350	Leu	Leu
Arg	Ile	Ala 355	Glu	Ile	Ala	Arg	Ile 360	Arg	Val	Lys	Asp	Ile 365	Ser	Arg	Thr
Asp	Gly 370	Gly	Arg	Met	Leu	Ile 375	His	Ile	Gly	Arg	Thr 380	Lys	Thr	Leu	Val
Ser 385	Thr	Ala	Gly	Val	Glu 390		Ala	Leu	Ser	Leu 395	Gly	Val	Thr	Lys	Leu 400
Val	Glu	Arg	Trp	Ile 405	Ser	Val	Ser	Gly	Val 410	Ala	Asp	Asp	Pro	Asn 415	Asn
Tyr	Leu	Phe	Cys 420	Arg	Val	Arg	Lys	Asn 425	Gly	Val	Ala	Ala	Pro 430	Ser	Ala
Thr	Ser	Gln 435	Leu	Ser	Thr	Arg	Ala 440	Leu	Glu	Gly	Ile	Phe 445	Glu	Ala	Thr
His	Arg 450	Leu	Ile	Tyr	Gly	Ala 455	Lys	Asp	Asp	Ser	Gly .460		Arg	Tyr	Leu
Ala 465	Trp	Ser	Gly	His	Ser 470	Ala	Arg	Val	Gly	Ala 475	Ala	Arg	Asp	Met	Ala 480
Arg	Ala	Gly	Val	Ser 485			Glu	Ile	Met 490		Ala	Gly	Gly	Trp 495	Thr
Asn	Val	Asn	Ile 500	Val	Met	Asn	Tyr	Ile 505	Arg	Asn	Leu	Asp	Ser 510	Glu	Thr
Gly	Ala	Met 515		Arg	Leu	Leu	Glu 520		Gly	Asp	Gly	Ile 525	Glu	Gly	Arg
Gly	Ser 530		Trp	Arg	His	Pro 535		Phe	Gly	Gly					

<210> 15 <211> 5953

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
      pCRT7-deltaVPCS
<400> 15
cgatggattt ccgtctctgg tgtagctgat gatccgaata actacctgtt ttgccgggtc 60
agaaaaaatg gtgttgccgc gccatctgcc accagccagc tatcaactcg cgccctggaa 120
qggatttttg aagcaactca tcgattgatt tacggcgcta aggatgactc tggtcagaga 180
tacctggcct ggtctggaca cagtgcccgt gtcggagccg cgcgagatat ggcccgcgct 240
ggagtttcaa taccggagat catgcaagct ggtggctgga ccaatgtaaa tattgtcatg 300
aactatatee gtaacetgga tagtgaaaca ggggeaatgg tgegeetget ggaagatgge 360
gatggtatcg aaggtcgtgg tagcgcttgg cgtcacccgc agttcggtgg ttaataagct 420
tegaacaaaa aeteatetea gaagaggate tgaatatgea taceggteat eateaceate 480
accattgagt tttgagcaat aactagcata acceettggg geetetaaae gggtettgag 540
gggttttttg ctgaaaggag gaactatatc cggatatcca caggacgggt gtggtcgcca 600
tgatogogta gtogatagtg gotocaagta gogaagogag caggactggg oggoggocaa 660
agcggtcgga cagtgctccg agaacgggtg cgcatagaaa ttgcatcaac gcatatagcg 720
ctagcagcac gccatagtga ctggcgatgc tgtcggaatg gacgatatcc cgcaagaggc 780
ceggcagtac eggcataace aageetatge etacageate cagggtgaeg gtgeegagga 840
tgacgatgag egeattgtta gattteatae aeggtgeetg aetgegttag eaatttaaet 900
gtgataaact accgcattaa agcttatcga tgataagctg tcaaacatga gaattaattc 960
ttagaaaaac tcatcgagca tcaaatgaaa ctgcaattta ttcatatcag gattatcaat 1020
accatatttt tgaaaaagcc gtttctgtaa tgaaggagaa aactcaccga ggcagttcca 1080
taggatggca agatoctggt atcggtotgc gattccgact cgtccaacat caatacaacc 1140
tattaatttc ccctcgtcaa aaataaggtt atcaagtgag aaatcaccat gagtgacgac 1200
tgaatccggt gagaatggca aaagcttatg catttctttc cagacttgtt caacaggcca 1260
gccattacgc tcgtcatcaa aatcactcgc atcaaccaaa ccgttattca ttcgtgattg 1320
cgcctgagcg agacgaaata cgcgatcgct gttaaaagga caattacaaa caggaatcga 1380
atgcaacegg cgcaggaaca ctgccagege atcaacaata ttttcacctg aatcaggata 1440
ttcttctaat acctggaatg ctgttttccc ggggatcgca gtggtgagta accatgcatc 1500
atcaggagta eggataaaat gettgatggt eggaagagge ataaatteeg teagecagtt 1560
tagtotgacc atotoatotg taacatcatt ggcaacgcta cotttgccat gtttcagaaa 1620
caactotggc gcatcgggct toccatacaa togatagatt gtogcacctg attgcccgac 1680
attatcgcga gcccatttat acccatataa atcagcatcc atgttggaat ttaatcgcgg 1740
cctcgagcaa gacgtttccc gttgaatatg gctcataaca ccccttgtat tactgtttat 1800
gtaagcagac agttttattg ttcatgacca aaatccctta acgtgagttt tcgttccact 1860
gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcctttt tttctgcgcg 1920
taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc 1980
aagagctacc aactettttt ccgaaggtaa ctggetteag cagagegeag ataccaaata 2040
ctgtccttct agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta 2100
catacetege tetgetaate etgttaceag tggetgetge cagtggegat aagtegtgte 2160
ttaccgggtt ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg 2220
ggggttcgtg cacacagccc agettggage gaacgaccta caccgaactg agatacctac 2280
agogtgagot atgagaaago gocacgotto cogaagggag aaaggoggac aggtatoogg 2340
taagcggcag ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt 2400
atcittatag teetgieggg titegeeace tetgaetiga gegiegatit tigigatget 2460
cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg 2520
ccttttgctg gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata 2580
accgtattac cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca 2640
gcgagtcagt gagcgaggaa gcggaagagc gcctgatgcg gtattttctc cttacgcatc 2700 tgtgcggtat ttcacaccgc atatatggtg cactctcagt acaatctgct ctgatgccgc 2760
atagttaagc cagtatacac teegetateg ctacgtgact gggtcatggc tgcgccccga 2820
caccegecaa caccegetga egegecetga egggettgte tgeteeegge atcegettae 2880
agacaagetg tgaccgtete egggagetge atgtgteaga ggtttteace gteateaceg 2940
aaacgcgcga ggcagctgcg gtaaagctca tcagcgtggt cgtgaagcga ttcacagatg 3000
tetgeetgtt cateegegte eagetegttg agtiteteea gaagegttaa tgtetggett 3060 etgataaage gggeeatgtt aagggeggtt tttteetgtt tggteactga tgeeteegtg 3120
taagggggat ttctgttcat gggggtaatg ataccgatga aacgagagag gatgctcacg 3180
atacgggtta ctgatgatga acatgecegg ttactggaac gttgtgaggg taaacaactg 3240
```

geggtatgga tgeggeggga ecagagaaaa ateaeteagg gteaatgeea gegettegtt 3300

```
aatacagatg taggtgttcc acagggtagc cagcagcatc ctgcgatgca gatccggaac 3360
ataatggtgc agggcgctga cttccgcgtt tccagacttt acgaaacacg gaaaccgaag 3420
accatteatg tigitgetca ggtegeagae gttttgeage ageagteget teaegttege 3480
togogtatog gtgattcatt ctgctaacca gtaaggcaac cccgccagcc tagccgggtc 3540
ctcaacqaca qqaqcacqat catqcgcacc cqtqqccagg acccaacqct gcccgagatg 3600
cgccgcgtgc ggctgctgga gatggcggac gcgatggata tgttctgcca agggttggtt 3660
tgcgcattca cagttctccg caagaattga ttggctccaa ttcttggagt ggtgaatccg 3720 ttagcgaggt gccgccggct tccattcagg tcgaggtggc ccggctccat gcaccgcgac 3780
gcaacgeggg gaggcagaca aggtataggg cggcgcctac aatccatgcc aacccgttcc 3840
atgtgctcgc cgaggcggca taaatcgccg tgacgatcag cggtccagtg atcgaagtta 3900
ggctggtaag agccgcgagc gatccttgaa gctgtccctg atggtcgtca tctacctgcc 3960
tggacagcat ggcctgcaac gcgggcatcc cgatgccgcc ggaagcgaga agaatcataa 4020
tggggaaggc catccagcct cgcgtcgcga acgccagcaa gacgtagccc agcgcgtcgg 4080
cogcoatgoo ggogataatg gcctgcttct cgccgaaacg tttggtggcg ggaccagtga 4140 cgaaggettg agcgagggcg tgcaagatte cgaataccgc aagcgacagg ccgatcatcg 4200
tegegeteca gegaaagegg teetegeega aaatgaceca gagegetgee ggeacetgte 4260
ctacqaqttg catgataaag aagacagtca taagtgcggc gacgatagtc atgccccgcg 4320
cccaccggaa ggagctgact gggttgaagg ctctcaaggg catcggtcga cgctctccct 4380
tatgcgactc ctgcattagg aagcagccca gtagtaggtt gaggccgttg agcaccgccg 4440
ccgcaaggaa tggtgcatgc aaggagatgg cgcccaacag tcccccggcc acggggcctg 4500
ccaccatace caegoegaaa caagegetea tgageeegaa gtggegagee cgatetteee 4560
categgtgat gteggegata taggegeeag caacegeace tgtggegeeg gtgatgeegg 4620
ccacgatgcg tccggcgtag aggatcgaga tctcgatccc gcgaaattaa tacgactcac 4680
tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 4740
tatacatatg gctagcatga ctggtggaca gcaaatgggt cgggatccgt cgacggcgcc 4800
aacccgatcc aagacacccg cgcaggggct ggccagaaag ctgcacttta gcaccgcccc 4860
cccaaaccc gacgcgccat ggaccccccg ggtggccggc tttaacaagc gcgtcttctg 4920
cgccgcggtc gggcgcctgg cggccatgca tgcccggatg gcggctgtcc agctctggga 4980
catgtcgcgt ccgcgcacag acgaagacct caacgaactc cttggcatca ccaccatccg 5040
cgtgacggtc tgcgagggca aaaacctgct tcagcgcgcc aacgagttgg tgaatccaga 5100
cgtggtgcag gacgtcgacg cggccacggc gactcgaggg cgttctgcgg cgtcgcgccc 5160
caccgagega cetegagece cagecegete egettetege eccagaegge cegtegaggg 5220
taccgagete ggatecaeta gtecagtgtg gtggaattet geagatatee ageaeagtgg 5280
eggeegeatg tecaatttae tgacegtaca ecaaaatttg cetgeattae eggtegatge 5340
aacgagtgat gaggttcgca agaacctgat ggacatgttc agggatcgcc aggcgttttc 5400
tgagcatace tggaaaatge ttetgteegt ttgeeggteg tgggeggeat ggtgeaagtt 5460
gaataaccgg aaatggtttc ccgcagaacc tgaagatgtt cgcgattatc ttctatatct 5520
traggrander getraggrand taaaaaactat cragcaacat ttgggccage taaacatget 5580
tcatcgtcgg tccgggctgc cacgaccaag tgacagcaat gctgtttcac tggttatgcg 5640
gcggatccga aaagaaaacg ttgatgccgg tgaacgtgca aaacaggctc tagcgttcga 5700
acgcactgat ttcgaccagg ttcgttcact catggaaaat agcgatcgct gccaggatat 5760
acgtaatctg gcatttctgg ggattgctta taacaccctg ttacgtatag ccgaaattgc 5820 caggatcagg gttaaagata tctcacgtac tgacggtggg agaatgttaa tccatattgg 5880
cagaacgaaa acgctggtta gcaccgcagg tgtagagaag gcacttagcc tgggggtaac 5940
taaactggtc gag
<210> 16
<211> 4727
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
      pT7-TACS
<400> 16
atcoggatat agttoctoct ttoagoaaaa aaccoctoaa gaccogttta gaggooccaa 60
ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt 120
tgttagcage eggateteag tggtggtggt ggtggtgete gagtgeggee geaagettat 180
taaccaccga actgogggtg acgocaagcg ctaccacgac cttcgatacc atcgccatct 240
tocagoaggo geaccattgo coctgtttea ctatocaggt tacggatata gttcatgaca 300
atatttacat tggtccagcc accagcttgc atgatctccg gtattgaaac tccagcgcgg 360
```

occatatoto	acacaactec	gacacgggca	ctgtgtccag	accaggccag	gtatctctga	420
ccagagtcat	cettagegee	gtaaatcaat	coatgagtto	cttcaaaaat	cccttccagg	480 .
acacaaatta	atagetoget	ggtggcagat	oococoocaa	caccattttt	tctgacccgg	540
gogogageeg	agttattccc	atcatcagct	acaccadada	cogaaatcca	tegetegace	600
cadadagge	cccccaaact	aagtgccttc	totacaccta	contactase	cagcgttttc	660
agtitagita	tategattaa	cattatacas	coctcacteg	atgagatato	tttaacccto	720
gttetgecaa	tatggattaa	cattetecea	cogcoagrac	gradatate	2224444	700
atcctggcaa	tttcggctat	acgtaacagg	gegetataag	caatttttag	adatyctaga	700
ttacgtatat	cctggcagcg	atcgctattt	tecatgagtg	aacgaacctg	geegaaatea	040
gtgcgttcga	acgctagagc	ctgttttgca	cgttcaccgg	catcaacgtt	ttettttegg	900
atccgccgca	taaccagtga	aacagcattg	ctgtcacttg	gtcgtggcag	cccggaccga	960
cgatgaagca	tgtttagctg	gcccaaatgt	tġctggatag	tttttactgt	cagaccgcgc	1020
gcctgaagat	atagaagata	atcgcgaaca	tcttcaggtt	ctgcgggaaa	ccatttccgg	1080
ttattcaact	tgcaccatgc	cgcccacgac	cggcaaacgg	acagaagcat	tttccaggta	1140
toctcagaaa	acqcctqqcq	atccctgaac	atgtccatca	ggttcttgcg	aacctcatca	1200
ctcgttgcat	coaccootaa	tgcaggcaaa	ttttggtgta	cqqtcagtaa	attggacatg	1260
ccacaacaac	attagcagea	cttcttgcgg	ccataaccca	togtatatct	ccttcttaaa	1320
attasacasa	attatttcta	gagggaaacc	attataatet	ccctatagtg	agtcgtatta	1380
atttcacaaa	atcondatct	cgggcagcgt	taaateetaa	ccacagatac	gcatgatcgt	1440
acticegeggg	ttgaggaccc	ggctaggctg	acagaattac	cttactggtt	agcagaatga	1500
atacagata	ccdaddaccc	cgtgaagega	ctactactac	aaaacotcto	cgacctgage	1560
attactgata	cycyaycyaa	gtttccgtgt	ttoctana	ctacaaacac	agaaat caac	1620
aacaacatga	atggtetteg	geeeegege	cccgcaaagc	tactaactec	cctataaac	1680
gccctgcacc	attatgttee	ggatctgcat	egeaggatge	-t-c-t-t-t-c	tetaataaa	17/0
acctacatct	gtattaacga	agcgctggca	ttgaccctga	gegatette		1000
ccgcatccat	accgccagtt	gtttaccctc	acaacgttcc	agtaaccggg	catgiteate	1000
atcagtaacc	cgtatcgtga	gcatcctctc	tcgtttcatc	ggtatcatta	ccccatgaa	1860
cagaaatccc	ccttacacgg	aggcatcagt	gaccaaacag	gaaaaaaccg	cccttaacat	1920
ggcccgcttt	atcagaagcc	agacattaac	gcttctggag	aaactcaacg	agctggacgc	1980
ggatgaacag	gcagacatct	gtgaatcgct	tcacgaccac	gctgatgagc	tttaccgcag	2040
ctacctcaca	cgtttcggtg	atgacggtga	aaacctctga	cacatgcage	tcccggagac	2100
gotcacaget	tatctataag	cggatgccgg	gagcagacaa	gcccgtcagg	gcgcgteagc	2160
agatattagc	agatategag	gcgcagccat	gacccagtca	cgtagcgata	gcggagtgta	2220
tactggctta	actatgcggc	atcagagcag	attgtactga	gagtgcacca	tatatgcggt	2280
gtgaaatacc	gcacagatgc	gtaaggagaa	aataccgcat	caggcgctct	tccgcttcct	2340
cactcactaa	ctcqctqcqc	teggtegtte	ggctgcggcg	agcggtatca	gctcactcaa	2400
aggcggtaat	acggttatcc	acagaatcag	qggataacgc	aggaaagaac	atgtgagcaa	2460
aaggccagca	aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	2520
tecaccccc	tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	2580
caggactata	aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	2640
caaccetace	gettacegga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	2700
ctcatagete	acoctotago	tatctcagtt	caatataaat	cattegetee	aagctgggct	2760
atatacacaa	acceceatt	cagcccgacc	actacacctt	atcoggtaac	tatcgtcttg	2820
acticcaacic	ggtaagacac	gacttatcgc	cactogcage	agccactggt	aacaggatta	2880
agecoadece	gtatgtagc	ggtgctacag	agttcttgaa	ataataacct	aactacggct	2940
acactacaac	gacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcogaaaaa	3000
acactagaag	ctcttcatcc	ggcaaacaaa	ccaccactaa	tagcggtagt	ttttttattt	3060
dadeeddead	gattacgcgc	agaaaaaaag	gateteaaga	agateetttg	atcttttcta	3120
caagtagta	cactcagtag	aacgaaaact	cacottaago	gattttggtc	atgagattat	3180
cassascost	cttcacctag	atccttttaa	attaaaaato	aagttttaaa	tcaatctaaa	3240
caaaaaggac	ataaacttaa	tctgacagtt	accastactt	aatcagtgag	ocacctatct	3300
gracacacya	tetattteet	tcatccatag	ttacatasct	ccccatcata	tagataacta	3360
caycyattig		tetggececa	atactaceet	cottageogra	racccacact	3420
cgatacggga	gggcttacca	gcaataaacc	gegeegeaac	gacaccgoga	cacaaaaata	3480
caccygetee	agatttatta	tccatccagt	agecagecyg	ttaccaaaa	actagaataa	3540
gteetgeaac	ttateegee	ttgcgcaacg	ttattaacty	tactaceas	atcatagtat	3600
gragitegee	agttaatagt	ttgegeaacg	ttgttgetat	cgctgcaggc	accorgatta	3660
cacgetegte	gtttggtatg	gcttcattca	gereeggete	ccaacyated	ayyoyayota	3720
catgatecee	catgttgtgc	aaaaaagcgg	tragereerr	eggiceleeg	accyctytta	3700
gaagtaagtt	ggccgcagtg	ttatcactca	tggttatggc	agcactgcat	adilicitid	3040
ctgtcatgcc	atccgtaaga	tgcttttctg	rgactggtga	gtactcaacc	aaytcattet	2000
gagaatagtg	targeggega	ccgagttgct	cttgcccggc	greattacgg	gataataccg	3500
cgccacatag	cagaacttta	aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	7000
tctcaaggat	cttaccgctg	ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	4020
gatcttcago	atcttttact	ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	4140
atgccgcaaa	aaagggaata	agggcgacac	ggaaatgttg	aatactcata	CICITCCITT	4140
ttcaatatta	ttgaagcatt	tatcagggtt	attgtctcat	gagcggatac	atatttgaat	4200

```
gtatttagaa aaataaacaa ataggggttc cgcgcacatt tccccgaaaa gtgccacctg 4260
aaattgtaaa cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 4320
tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 4380
tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 4440
acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 4500
aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 4560
cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 4620
cgaaaggage gggcgctagg gegctggcaa gtgtageggt cacgetgege gtaaccacca 4680
caccegcege gettaatgeg cegetacagg gegegteeca ttegeca
<210> 17
<211> 4488
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
      pT7-VPCS
<400> 17
aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt 60
gaggeaceta teteagegat etgtetattt egtteateea tagttgeetg acteceegte 120
gtgtagataa ctacgatacg ggagggetta ccatetggee ccagtgetge aatgataceg 180
cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc 240
gagegeagaa gtggteetge aactttatee geeteeatee agtetattaa ttgttgeegg 300
quagetagag taagtagtte geeagttaat agtttgegea aegttgttge cattgetaca 360
ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg ttcccaacga 420
tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct 480 ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat ggcagcactg 540 cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca 600
accaagtcat totgagaata gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaaca 660
cgggataata ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct 720
teggggegaa aacteteaag gatettaceg etgttgagat ceagttegat gtaacceact 780
cgtgcaccca actgatette ageatetttt acttteacca gegtttetgg gtgagcaaaa 840
acaggaagge aaaatgeege aaaaaaggga ataagggega caeggaaatg ttgaatacte 900
atactettee ttttteaata ttattgaage atttateagg gttattgtet eatgagegga 960
tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga 1020
aaagtgccac ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg 1080
cgtatcacga ggccctttcg tcttcaagaa ttaaaaggat ctaggtgaag atcctttttg 1140
ataatctcat gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg 1200
tagaaaagat caaaggatct tottgagatc ctttttttct gcgcgtaatc tgctgcttgc 1260
aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc 1320
tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtc cttctagtgt 1380
agcogtagtt aggocaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc 1440
taatcctgtt accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact 1500
caagacgata gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac 1560
agcccagett ggagegaacg acctacaccg aactgagata cctacagcgt gagetatgag 1620
aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg 1680
gaacaggaga gcgcacgagg gagettccag ggggaaacgc ctggtatett tatagtcctg 1740
tegggttteg ceacetetga ettgagegte gatttttgtg atgetegtea ggggggggga 1800
gcctatggaa aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt 1860
ttgctcacat gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct 1920
ttgagtgagc tgataccgct cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg 1980
aggaagcgga agagcgcctg atgcggtatt ttctccttac gcatctgtgc ggtatttcac 2040
accgcatcag atctgatggt gcactctcag tacaatctgc tctgatgccg catagttaag 2100
ccagtatata cacteegeta tegetaegtg actgggteat ggetgegeec egacaecege 2160
caacaccege tgacgegeee tgacgggett gtetgeteee ggeateeget tacagacaag 2220
ctgtgaccgt ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg 2280
cgaggcccag cgattcgaac ttctgataga cttcgaaatt aatacgactc actataggga 2340
gaccacaacg gtttccctct agaaataatt ttgtttaact ttaagaagga gatatacata 2400
tgacctctcg ccgctccgtg aagtcgggtc cgcgggaggt tccgcgcgat gagtacgagg 2460
atotgtacta caccocgtot toaggtatgg cgagtoccga tagtocgcot gacacotocc 2520
geogtggege cetacagaca egetegegee agaggggega ggteegttte gteeagtacg 2580
```

```
acgagtegga ttatgeeete taeggggget egtetteega agaegaegaa caeceggagg 2640
teccequae geggegteee gttteegggg eggttttgte eggeeegggg eetgegeggg 2700
cycctccycc acccyctygy tecygayyyy ccygacycac acccaccacc ycccccygy 2760
coccegaac ccageggtt gegtetaagg ccceegegge cccggeggeg gagaccacce 2820
geggeaggaa ateggeeeag eeagaateeg eegeacteee agaegeeeee gegtegaegg 2880
cgccaacccg atccaagaca cccgcgcagg ggctggccag aaagctgcac tttagcaccg 2940
ccccccaaa ccccgacgcg ccatggaccc cccgggtggc cggctttaac aagcgcgtct 3000
tetgegeege ggtegggege etggeggeea tgeatgeeeg gatggegget gteeagetet 3060
gggacatgtc gcgtccgcgc acagacgaag acctcaacga actccttggc atcaccacca 3120
teegegtgae ggtetgegag ggeaaaaace tgetteageg egeeaacgag ttggtgaate 3180
cagacgtggt gcaggacgtc gacgcggcca cggcgactcg agggcgttct gcggcgtcgc 3240
gececacega gegacetega gececagece getecgette tegececaga eggecegteg 3300
agggtaccga gctcggatcc actagtccag tgtggtggaa ttctgcagat atccagcaca 3360
gtggcggccg catgtccaat ttactgaccg tacaccaaaa tttgcctgca ttaccggtcg 3420
atgcaacgag tgatgaggtt cgcaagaacc tgatggacat gttcagggat cgccaggcgt 3480
tttctgagca tacctggaaa atgettctgt ccgtttgccg gtcgtgggcg gcatggtgca 3540 agttgaataa ccggaaatgg tttcccgcag aacctgaaga tgttcgcgat tatcttctat 3600
atottcaggo gogoggtotg goagtaaaaa ctatocagca acatttgggo cagotaaaca 3660
tgcttcatcg tcggtccggg ctgccacgac caagtgacag caatgctgtt tcactggtta 3720
tgcggcggat ccgaaaagaa aacgttgatg ccggtgaacg tgcaaaacag gctctagcgt 3780
tegaaegeae tgatttegae eaggttegtt eacteatgga aaatagegat egetgeeagg 3840
atatacgtaa totggcattt otggggattg ottataacac cotgttacgt atagcogaaa 3900
ttgccaggat cagggttaaa gatatctcac gtactgacgg tgggagaatg ttaatccata 3960
ttggcagaac gaaaacgctg gttagcaccg caggtgtaga gaaggcactt agcctggggg 4020
taactaaact ggtcgagcga tggatttccg tctctggtgt agctgatgat ccgaataact 4080
acctgttttg ccgggtcaga aaaaatggtg ttgccgcgcc atctgccacc agccagctat 4140
caactcgcgc cctggaaggg atttttgaag caactcatcg attgatttac ggcgctaagg 4200
atgactctgg tcagagatac ctggcctggt ctggacacag tgcccgtgtc ggagccgcgc 4260
gagatatggc ccgcgctgga gtttcaatac cggagatcat gcaagctggt ggctggacca 4320
atgtamatat tgtcatgamc tatatocgta acctggatag tgamacaggg gcmatggtgc 4380
gcctgctgga agatggcgat ggtatcgaag gtcgtggtag cgcttggcgt cacccgcagt 4440
toggtggtta ataagottat cgatgataag otgtcaaaca tgagaatt
<210> 18
<211> 1125
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: DNA sequence
      coding for a fusion protein TATcreStrepTag
<220>
<221> CDS
<222> (1)..(1119)
<400> 18
48
Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Met Ser
aat tta ctg acc gta cac caa aat ttg cct gca tta ccg gtc gat gca
                                                                   96
Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val Asp Ala
                                                                   144
acg agt gat gag gtt cgc aag aac ctg atg gac atg ttc agg gat cgc
Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg Asp Arg
                                                                   192
cag gcg ttt tct gag cat acc tgg aaa atg ctt ctg tcc gtt tgc cgg
Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val Cys Arg
     50
                         . 55
```

tcg Ser 65	tgg Trp	gcg Ala	gca Ala	tgg Trp	tgc Cys 70	aag Lys	ttg Leu	aat Asn	aac Asn	cgg Arg 75	aaa Lys	tgg Trp	ttt Phe	ccc Pro	gca Ala 80	240
gaa Glu	cct Pro	gaa Glu	gat Asp	gtt Val 85	cgc Arg	gat Asp	tat Tyr	ctt Leu	cta Leu 90	tat Tyr	ctt Leu	cag Gln	gcg Ala	cgc Arg 95	ggt Gly	288
ctg Leu	aca Thr	gta Val	aaa Lys 100	act Thr	atc Ile	cag Gln	caa Gln	cat His 105	ttg Leu	ggc Gly	cag Gln	cta Leu	aac Asn 110	atg Met	ctt Leu	336
cat His	cgt Arg	cgg Arg 115	tcc Ser	GJÀ âââ	ctg Leu	cca Pro	cga Arg 120	cca Pro	agt Ser	gac Asp	agc Ser	aat Asn 125	gct Ala	gtt Val	tca Ser	384
ctg Leu	gtt Val 130	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 135	aaa Lys	gaa Glu	aac Asn	gtt Val	gat Asp 140	gcc Ala	ggt Gly	gaa Glu	cgt Arg	432
gca Ala 145	aaa Lys	cag Gln	gct Ala	cta Leu	gcg Ala 150	ttc Phe	gaa Glu	cgc Arg	act Thr	gat Asp 155	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 160	480
tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 165	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 170	gat Asp	ata Ile	cgt Arg	aat Asn	ctg Leu 175	gca Ala	528
ttt Phe	ctg Leu	ggg Gly	att Ile 180	gct Ala	tat Tyr	aac Asn	acc Thr	ctg Leu 185	tta Leu	cgt Arg	ata Ile	gcc Ala	gaa Glu 190	att Ile	gcc Ala	576
agg Arg	atc Ile	agg Arg 195	gtt Val	aaa Lys	gat Asp	atc Ile	tca Ser 200	cgt Arg	act Thr	gac Asp	ggt Gly	ggg Gly 205	aga Arg	atg Met	tta Leu	624
atc Ile	cat His 210	att Ile	Gly ggc	aga Arg	acg Thr	aaa Lys 215	acg Thr	ctg Leu	gtt Val	agc Ser	acc Thr 220	gca Ala	ggt Gly	gta Val	gag Glu	672
aag Lys 225	Ala	ctt Leu	agc Ser	ctg Leu	ggg Gly 230	gta Val	act Thr	aaa Lys	ctg Leu	gtc Val 235	gag Glu	cga Arg	tgg Trp	att Ile	tcc Ser 240	720
gtc Val	tct Ser	ggt Gly	gta Val	gct Ala 245	gat Asp	gat Asp	ccg Pro	aat Asn	aac Asn 250	Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 255	gtc Val	768
aga Arg	aaa Lys	aat Asn	ggt Gly 260	Val	gcc Ala	gcg Ala	cca Pro	tct Ser 265	gcc Ala	acc Thr	agc Ser	cag Gln	cta Leu 270	tca Ser	act Thr	816
cgc	gcc	Ctg Leu 275	gaa Glu	GJ y ggg	att Ile	ttt Phe	gaa Glu 280	Ala	act Thr	cat His	cga Arg	ttg Leu 285	Ile	tac	ggc Gly	864
gct Ala	aag Lys 290	Asp	gac Asp	tct Ser	ggt Gly	cag Gln 295	Arg	tac Tyr	ctg Leu	gcc Ala	tgg Trp 300	Ser	gga Gly	cac	agt Ser	912
gcc Ala 305	Arg	gto Val	gga Gly	gcc Ala	gcg Ala 310	Arg	gat Asp	atg Met	gcc	cgc Arg 315	Ala	gga Gly	gtt Val	tca Ser	ata Ile 320	960

	ag atc lu Ile														1008
aac ta Asn Ty	at atc yr Ile														1056
	aa gat Lu Asp 355														1104
Pro G	ag ttc In Phe 70			taat	aa										1125
	373	ipti	on of	f Art	ific							nce	. :		
<400> Met Gl	19 Ly Tyr	Gly	Arg 5	Lys	Lys	Arg	Arg	Gln 10	Arg	Arg	Arg	Gly	Met 15	Ser	
Asn Le	eu Leu	Thr 20	Val	His	Gln	Asn	Leu 25	Pro	Ala	Leu	Pro	Val 30	Asp	Ala	
Thr Se	er Asp 35	Glu	Val	Arg	Lys	Asn 40	Leu	Met	Asp	Met	Phe 45	Arg	Asp	Arg	
	la Phe 50	Ser	Glu	His	Thr 55	Trp	Lys	Met	Leu	Leu 60	Ser	Val	Cys	Arg	
Ser Ti 65	rp Ala	Ala	Trp	.Cys 70	Lys	Leu	Asn	Asn	Arg 75	Lys	Trp	Phe	Pro	Ala 80	
Glu Pı	ro Glu	Asp	Val 85	Arg	Asp	Tyr	Leu	Leu 90	Tyr	Leu	Gln	Ala	Arg 95	Gly	
Leu Ti	hr Val	Lys 100	Thr	Ile	Gln	Gln	His 105	Leu	Gly	Gln	Leu	Asn 110	Met	Leu	•
His A	rg Arg 115	Ser	Gly	Leu	Pro	Arg 120	Pro	Ser	Asp	Ser	Asn 125	Ala	Val	Ser	
	al Met 30	Arg	Arg	Ile	Arg 135	Lys	Glu	Asn	Val	Asp 140	Ala	Gly	Glu	Arg	
Ala Ly 145	ys Gln	Ala	Leu	Ala 150	Phe	Glu	Arg	Thr	Asp 155	Phe	Asp	Gln	Val	Arg 160	
Ser Le	eu Met	Glu	Asn 165	Ser	Asp	Arg	Cys	Gln 170	Asp	Ile	Arg	Asn	Leu 175	Ala	
Phe Le	eu Gly	Ile 180	Ala	Tyr	Asn	Thr	Leu 185	Leu	Arg	Ile	Ala	Glu 190	Ile	Ala	
Arg I	le Arg 195	Val	Lys	Asp	Ile	Ser 200	Arg	Thr	Asp	Gly	Gly 205	Arg	Met	Leu	

I	le	His 210	Ile	Gly	Arg	Thr	Lys 215	Thr	Leu	Val	Ser	Thr 220	Ala	Gly	Val	Glu	
	ys 25	Ala	Leu	Ser	Leu	Gly 230	Val	Thr	Lys	Leu	Val 235	Glu	Arg	Trp	Ile	Ser 240	
V	al	Ser	Gly	Val	Ala 245	Asp	Asp	Pro	Asn	Asn 250	Tyr	Leu	Phe	Cys	Arg 255	Val	
A	ırg	Lys	Asn	Gly 260	Val	Ala	Ala	Pro	Ser 265	Ala	Thr	Ser		Leu 270	Ser	Thr	
P	lrg	Ala	Leu 275	Glu	Gly	Ile	Phe	Glu 280	Ala	Thr	His	Arg			Tyr	Gly	
F	lla	Lys 290	Asp	Asp	Ser	Gly	Gln 295	Arg	Tyr	Leu	Ala	Trp 300	Ser	Gly	His	Ser	
	11a 305	Arg	Val	Gly	Ala	Ala 310	Arg	Asp	Met	Ala	Arg 315	Ala	Gly	Val	Ser	Ile 320	
E	Pro	Glu	Ile	Met _.	Gln 325	Ala	Gly	Gly	Trp	Thr 330	Asn	Val	Asn	Ile	Val 335	Met	
F	lsn	Tyr	Ile	Arg 340	Asn	Leu	Asp	Ser	Glu 345	Thr	Gly	Ala	Met	Val 350	Arg	Leu	
I	eu	Glu	Asp 355	Gly	Asp	Gly	Ile	Glu 360		Arg	Gly	Ser	Ala 365	Trp	Arg	His	
	?ro	Gln 370	Phe	Gly	Gly												
<	<21: <21:	0> 20 1> 20 2> DI 3> A:	055 NA	icia.	l Se	quen	ce	-						٠		-	
	<22) <22:	3> De		iptio										nce			•
4		1> C		(204	9)												
ä	atg	0> 20 acc Thr	tct	cgc Arg	cgc Arg 5	tcc Ser	gtg Val	aag Lys	tcg Ser	ggt Gly 10	ccg Pro	cgg Arg	gag Glu	gtt Val	ccg Pro 15	cgc Arg	48
				gag Glu 20													96
]	ccc Pro	gat Asp	agt Ser 35	ccg Pro	cct Pro	gac Asp	acc Thr	tcc Ser 40	cgc Arg	cgt Arg	ggc	gcc Ala	cta Leu 45	cag Gln	aca Thr	cgc Arg	144
			Gln	agg Arg									Asp				192

									50							
tat Tyr 65	gcc Ala	ctc Leu	tac Tyr	ggg Gly	ggc Gly 70	tcg Ser	tct Ser	tcc Ser	gaa Glu	gac Asp 75	gac Asp	gaa Glu	cac His	ccg Pro	gag Glu 80	240
gtc Val	ccc Pro	cgg Arg	acg Thr	cgg Arg 85	cgt Arg	ccc Pro	gtt Val	tcc Ser	ggg ggg	gcg Ala	gtt Val	ttg Leu	tcc Ser	ggc Gly 95	ccg Pro	288
ggg	cct Pro	gcg Ala	cgg Arg 100	gcg Ala	cct Pro	ccg Pro	cca Pro	ccc Pro 105	gct Ala	Gly ggg	tcc Ser	gga Gly	ggg Gly 110	gcc Ala	gga Gly	336
cgc Arg	aca Thr	ccc Pro 115	acc Thr	acc Thr	gcc Ala	ccc Pro	cgg Arg 120	gcc Ala	ccc Pro	cga Arg	acc Thr	cag Gln 125	cgg	gtg Val	gcg Ala	384
tct Ser	aag Lys 130	gcc Ala	ccc Pro	gcg Ala	gcc Ala	ccg Pro 135	gcg Ala	gcg Ala	gag Glu	acc Thr	acc Thr 140	cgc Arg	ggc Gly	agg Arg	aaa Lys	432
tcg Ser 145	gcc. Ala	cag Gln	cca Pro	gaa Glu	tca Ser 150	gcc Ala	gca Ala	ctc Leu	cca Pro	gac Asp 155	gcc Ala	ccc Pro	gcg	tcg Ser	acg Thr 160	480
gcg Ala	cca Pro	acc Thr	cga Arg	tcc Ser 165	aag Lys	aca Thr	ccc Pro	gcg Ala	cag Gln 170	GJ y ggg	ctg Leu	gcc Ala	aga Arg	aag Lys 175	ctg Leu	528
cac His	ttt Phe	agc Ser	acc Thr 180	gcc Ala	ccc Pro	cca Pro	aac Asn	ccc Pro 185	gac Asp	gcg Ala	cca Pro	tgg Trp	acc Thr 190	ccc Pro	cgg Arg	576
gtg Val	gcc Ala	ggc Gly 195	ttt Phe	aac Asn	aag Lys	cgc Arg	gtc Val 200	ttc Phe	tgc Cys	gcc Ala	gcg Ala	gtc Val 205	Gly	cgc	ctg Leu	624
gcg Ala	gcc Ala 210	atg Met	cat His	gcc Ala	cgg Arg	atg Met 215	gcg Ala	gct Ala	gtc Val	cag Gln	ctc Leu 220	tgg Trp	gac Asp	atg Met	tcg Ser	672
cgt Arg 225	ccg Pro	cgc Arg	aca Thr	gac Asp	gaa Glu 230	gac Asp	ctc Leu	aac Asn	gaa Glu	ctc Leu 235	ctt Leu	ggc	atc Ile	acc Thr	acc Thr 240	720
												cag Gln				768
gag Glu	ttg Leu	gtg Val	aat Asn 260	cca Pro	gac Asp	gtg Val	gtg Val	cag Gln 265	gac Asp	gtc Val	gac Asp	gcg Ala	gcc Ala 270	acg Thr	gcg Ala	816
act Thr	cga Arg	ggg Gly 275	cgt Arg	tct Ser	gcg Ala	gcg Ala	tcg Ser 280	cgc Arg	ccc	acc Thr	gag Glu	cga Arg 285	cct Pro	cga Arg	gcc Ala	864
cca Pro	gcc Ala 290	Arg	tcc Ser	gct Ala	tct Ser	cgc Arg 295	ccc Pro	aga Arg	cgg Arg	ccc Pro	gtc Val 300	gag Glu	ggt Gly	acc Thr	gag Glu	912
ctc Leu 305	Ğĺy	tcc Ser	act Thr	agt Ser	cca Pro 310	gtg Val	tgg Trp	tgg Trp	aat Asn	tct Ser 315	Ala	gat Asp	atc Ile	cag Gln	cac His 320	960

agt Ser	ggc	ggc Gly	cgc Arg	atg Met 325	tcc Ser	aat Asn	tta Leu	ctg Leu	acc Thr 330	gta Val	cac His	caa Gln	aat Asn	ttg Leu 335	cct Pro	1008
gca Ala	tta Leu	ccg Pro	gtc Val 340	Asp	gca Ala	acg Thr	agt Ser	gat Asp 345	gag Glu	gtt Val	cgc Arg	aag Lys	aac Asn 350	ctg Leu	atg Met	1056
gac Asp	atg Met	ttc Phe 355	agg Arg	gat Asp	cgc Arg	cag Gln	gcg Ala 360	ttt Phe	tct Ser	gag Glu	cat His	acc Thr 365	tgg Trp	aaa Lys	atg Met	1104
ctt Leu	ctg Leu 370	tcc Ser	gtt Val	tgc Cys	cgg Arg	tcg Ser 375	tgg Trp	gcg Ala	gca Ala	tgg Trp	tgc Cys 380	aag Lys	ttg Leu	aat Asn	aac Asn	1152
cgg Arg 385	aaa Lys	tgg Trp	ttt Phe	ccc Pro	gca Ala 390	gaa Glu	cct Pro	gaa Glu	gat Asp	gtt Val 395	cgc Arg	gat Asp	tat Tyr	ctt Leu	cta Leu 400	1200
tat Tyr	ctt Leu	cag Gln	gcg Ala	cgc Arg 405	ggt Gly	ctg Leu	gca Ala	gta Val	aaa Lys 410	act Thr	atc Ile	cag Gln	caa Gln	cat His 415	ttg Leu	1248
ggc Gly	cag Gln	cta Leu	aac Asn 420	atg Met	ctt Leu	cat His	cgt Arg	cgg Arg 425	tcc Ser	ggg	ctg Leu	cca Pro	cga Arg 430	cca Pro	agt Ser	1296
gac Asp	agc Ser	aat Asn 435	gct Ala	gtt Val	tca Ser	ctg Leu	gtt Val 440	atg Met	cgg Arg	cgg Arg	atc Ile	cga Arg 445	aaa Lys	gaa Glu	aac Asn	1344
gtt Val	gat Asp 450	gcc Ala	ggt Gly	gaa Glu	cgt	gca Ala 455	aaa Lys	cag Gln	gct Ala	cta Leu	gcg Ala 460	ttc Phe	gaa Glu	cgc Arg	act Thr	1392
gat Asp 465	ttc Phe	gac Asp	cag Gln	gtt Val	cgt Arg 470	tca Ser	ctc Leu	atg Met	gaa Glu	aat Asn 475	agc Ser	gat Asp	cgc Arg	tgc Cys	cag Gln 480	1440
gat Asp	ata Ile	cgt Arg	aat Asn	ctg Leu 485	gca Ala	ttt Phe	ctg Leu	ggg	att Ile 490	gct Ala	tat Tyr	aac Asn	acc Thr	ctg Leu 495	tta Leu	1488
													tca Ser 510			1536
gac Asp	ggt Gly	ggg Gly 515	aga Arg	atg Met	tta Leu	atc Ile	cat His 520	att Ile	ggc Gly	aga Arg	Thr	aaa Lys 525	acg Thr	ctg Leu	gtt Val	1584
agc Ser	acc Thr 530	gca Ala	ggt Gly	gta Val	gag Glu	aag Lys 535	gca Ala	ctt Leu	agc Ser	Leu	ggg Gly 540	gta Val	act Thr	aaa Lys	ctg Leu	1632
	Glu												ccg Pro			1680
tac Tyr	ctg Leu	ttt Phe	tgc Cys	cgg Arg 565	gtc Val	aga Arg	aaa Lys	aat Asn	ggt Gly 570	gtt Val	gcc Ala	gcg Ala	cca Pro	tct Ser 575	gcc Ala	1728

acc agc cag cta to Thr Ser Gln Leu Se 580	ea act cgc gcc er Thr Arg Ala	ctg gaa ggg att Leu Glu Gly Ile 585	ttt gaa gca act 17 Phe Glu Ala Thr 590	76
cat cga ttg att ta His Arg Leu Ile Ty 595				24
gcc tgg tct gga ca Ala Trp Ser Gly Hi 610	ac agt gcc cgt is Ser Ala Arg 615	gtc gga gcc gcg Val Gly Ala Ala 620	cga gat atg gcc 18 Arg Asp Met Ala	72
cgc gct gga gtt to Arg Ala Gly Val Se 625	ca ata ccg gag er Ile Pro Glu 630	atc atg caa gct Ile Met Gln Ala 635	ggt ggc tgg acc 19 Gly Gly Trp Thr 640	20
aat gta aat att gt Asn Val Asn Ile Va 64				68
ggg gca atg gtg co Gly Ala Met Val Ar 660				16
ggt agc gct tgg co Gly Ser Ala Trp Ai 675			taa 20	55
<210> 21 <211> 683 <212> PRT	·			
<213> Artificial S <223> Description	of Artificial	Sequence: DNA son VP22creStrepTo		
<213> Artificial S <223> Description	of Artificial a fusion prote	n VP22creStrepT	ag .	
<pre><213> Artificial S <223> Description coding for s <400> 21 Met Thr Ser Arg Arg</pre>	of Artificial a fusion prote rg Ser Val Lys 5	n VP22creStrepTo	Glu Val Pro Arg 15	
<pre><213> Artificial S <223> Description</pre>	of Artificial a fusion prote rg Ser Val Lys 5 sp Leu Tyr Tyr	Ser Gly Pro Arg 10 Thr Pro Ser Ser 25	Glu Val Pro Arg 15 Gly Met Ala Ser 30	
<pre><213> Artificial S <223> Description coding for s <400> 21 Met Thr Ser Arg Ar 1 Asp Glu Tyr Glu Ar 20 Pro Asp Ser Pro Pro</pre>	of Artificial a fusion protes rg Ser Val Lys 5 sp Leu Tyr Tyr ro Asp Thr Ser 40	n VP22creStrepT Ser Gly Pro Arg 10 Thr Pro Ser Ser 25 Arg Arg Gly Ala	Glu Val Pro Arg 15 Gly Met Ala Ser 30 Leu Gln Thr Arg	
<pre><213> Artificial S <223> Description coding for s <400> 21 Met Thr Ser Arg Ar 1 Asp Glu Tyr Glu Ar 20 Pro Asp Ser Pro Pr 35</pre> Ser Arg Gln Arg G	of Artificial a fusion protes rg Ser Val Lys sp Leu Tyr Tyr ro Asp Thr Ser 40 ly Glu Val Arg 55	Ser Gly Pro Arg 10' Thr Pro Ser Ser 25 Arg Arg Gly Ala Phe Val Gln Tyr 60	Glu Val Pro Arg 15 Gly Met Ala Ser 30 Leu Gln Thr Arg 45 Asp Glu Ser Asp	
<pre><213> Artificial 3 <223> Description coding for a <400> 21 Met Thr Ser Arg Ar 1 Asp Glu Tyr Glu Ar 20 Pro Asp Ser Pro Pr 35 Ser Arg Gln Arg Gr 50 Tyr Ala Leu Tyr Gr 65</pre> Val Pro Arg Thr Ar	of Artificial a fusion protes rg Ser Val Lys sp Leu Tyr Tyr ro Asp Thr Ser 40 ly Glu Val Arg 55 ly Gly Ser Ser 70	Ser Gly Pro Arg 10 Thr Pro Ser Ser 25 Arg Arg Gly Ala Phe Val Gln Tyr 60 Ser Glu Asp Asp 75	Glu Val Pro Arg 15 Gly Met Ala Ser 30 Leu Gln Thr Arg 45 Asp Glu Ser Asp Glu His Pro Glu 80	
<pre><213> Artificial 3 <223> Description coding for a <400> 21 Met Thr Ser Arg Ar 1 Asp Glu Tyr Glu Ar 20 Pro Asp Ser Pro Pr 35 Ser Arg Gln Arg Gr 50 Tyr Ala Leu Tyr Gr 65</pre> Val Pro Arg Thr Ar	of Artificial a fusion protes rg Ser Val Lys sp Leu Tyr Tyr ro Asp Thr Ser 40 ly Glu Val Arg 55 ly Gly Ser Ser 70 rg Arg Pro Val 85	Ser Gly Pro Arg 10 Thr Pro Ser Ser 25 Arg Arg Gly Ala Phe Val Gln Tyr 60 Ser Glu Asp Asp 75 Ser Gly Ala Val 90	Glu Val Pro Arg 15 Gly Met Ala Ser 30 Leu Gln Thr Arg 45 Asp Glu Ser Asp Glu His Pro Glu 80 Leu Ser Gly Pro	
<pre><213> Artificial S <223> Description coding for s <400> 21 Met Thr Ser Arg Ar 1 Asp Glu Tyr Glu Ar 20 Pro Asp Ser Pro Pr 35 Ser Arg Gln Arg Gr 50 Tyr Ala Leu Tyr Gr 65 Val Pro Arg Thr Arg Gly Pro Ala Arg Arg</pre>	of Artificial a fusion protes rg Ser Val Lys sp Leu Tyr Tyr ro Asp Thr Ser 40 ly Glu Val Arg 55 ly Gly Ser Ser 70 rg Arg Pro Val 85 la Pro Pro Pro	Ser Gly Pro Arg 10 Thr Pro Ser Ser 25 Arg Arg Gly Ala Phe Val Gln Tyr 60 Ser Glu Asp Asp 75 Ser Gly Ala Val 90 Pro Ala Gly Ser	Glu Val Pro Arg 15 Gly Met Ala Ser 30 Leu Gln Thr Arg 45 Asp Glu Ser Asp Glu His Pro Glu 80 Leu Ser Gly Pro 95 Gly Gly Ala Gly 110	

Ser 145	Ala	Gln	Pro	Glu	Ser 150	Ala	Ala	Leu	Pro	Asp 155	Ala	Pro	Ala	Ser	Thr -
Ala	Pro	Thr	Arg	Ser 165	Lys	Thr	Pro	Ala	Gln 170	Gly	Leu	Ala	Arg	Lys 175	Leu
His	Phe	Ser	Thr 180	Ala	Pro	Pro	Asn	Pro 185	Asp	Ala	Pro	Trp	Thr 190	Pro	Arg
Val	Ala	Gly 195	Phe	Asn	Lys	Arg	Val 200	Phe	Cys	Ala	Ala	Val 205	Gly -	Arg	Leu
Ala	Ala 210	Met	His	Ala	Arg	Met 215	Ala	Ala	Val	Gln	Leu 220	Trp	Asp	Met	Ser
Arg 225	Pro	Arg	Thr	Asp	Glu 230	Asp	Leu	Asn	Glu	Leu 235	Leu	Gly	Ile	Thr	Thr 240
Ile	Arg	Val	Thr	Val 245	Cys	Glu	Gly	Lys	Asn 250	Leu	Leu	Gln	Arg	Ala 255	Asn
Glu	Leu	Val	Asn 260	Pro	Asp	Val	Val	Gln 265	Asp	Val	Asp	Ala	Ala 270	Thr	Ala
Thr	Arg	Gly 275	Arg	Ser	Ala	Ala	Ser 280	Arg	Pro	Thr	Glu	Arg 285	Pro	Arg	Ala
Pro	Ala 290	Arg	Ser	Ala	Ser	Arg 295	Pro	Arg	Arg	Pro	Val 300	Glu	Gly	Thr	Glu
Leu 305	.Gly	Ser	Thr	Ser	Pro 310	Val	Trp	Trp	Asn	Ser 315	Ala	Asp	Ile	Gln	His 320
Ser	Gly	Gly	Arg	Met 325	Ser	Asn	Leu	Leu	Thr 330	Val	His	Gln	Asn	Leu 335	Pro
Ala	Leu	Pro	Val 340	Asp	Ala	Thr	Ser	Asp 345	Glu	Val	Arg	Lys	Asn 350	Leu	Met
Asp	Met	Phe 355	Arg	Asp	Arg	Gln	Ala 360	Phe	Ser	Glu	His	Thr 365	Trp	Lys	Met
	370					375					380				Asn
Arg 385	Lys	Trp	Phe	Pro	Ala 390		Pro	Glu	Asp	Val 395	Arg	Asp	Tyr	Leu	Leu 400
Tyr	Leu	Gln	Ala	Arg 405	СŢУ	Leu	Ala	Val	Lys 410	. Thr	Ile	Gln	Gln	His 415	Leu
Gly	Gln	Leu	Asn 420	Met	Leu	His	Arg	Arg 425		Gly	Leu	Pro	Arg 430	Pro	Ser
Asp	Ser	Asn 435		Val	Ser	Leu	Val 440		Arg	Arg	Ile	Arg 445	Lys	Glu	Asn
Val	Asp 450		Gly	Glu	Arg	Ala 455	-	Gln	Ala	Leu	Ala 460		Glu	Arg	Thr
Asp 465		Asp	Gln	Val	Arg 470		Leu	Met	Glu	Asn 475		Asp	Arg	Cys	Gln 480

- Asp Ile Arg Asn Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu 485 490 495
- Arg Ile Ala Glu Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr 500 505 510
- Asp Gly Gly Arg Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val 515 520 525
- Ser Thr Ala Gly Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu 530 540 _ _ _ _
- Val Glu Arg Trp Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn 545 550 555
- Tyr Leu Phe Cys Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala 565 570 575
- Thr Ser Gln Leu Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr 580 585 590
- His Arg Leu Ile Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu
 595 600 605
- Ala Trp Ser Gly His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala 610 615 620
- Arg Ala Gly Val Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr 625 635 640
- Asn Val Asn Ile Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr 645 650 655
- Gly Ala Met Val Arg Leu Leu Glu Asp Gly Asp Gly Ile Glu Gly Arg 660 665 670
- Gly Ser Ala Trp Arg His Pro Gln Phe Gly Gly 675 680
- <210> 22
- <211> 11
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence:synthetic TAT protein
- <400> 22
- Ala Gly Arg Lys Lys Arg Arg Gln Arg Arg 10
- <210> 23
- <211> 11
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: synthetic TAT
 protein

```
<400> 23
Tyr Ala Arg Lys Ala Arg Arg Gln Ala Arg Arg
<210> 24
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic TAT
     protein
<400> 24
Tyr Ala Arg Ala Ala Ala Arg Gln Ala Arg Ala
<210> 25
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic TAT
 protein
<400> 25
Tyr Ala Arg Ala Ala Arg Arg Ala Ala Arg Arg
                  5
<210> 26
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: synthetic TAT
     protein
<400> 26
Tyr Ala Arg Ala Ala Arg Arg Ala Ala Arg Ala
<210> 27
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic TAT
      protein
<400> 27
Tyr Ala Arg Arg Arg Arg Arg Arg Arg Arg
                                      10
<210> 28
<211> 11
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic TAT
<400> 28
Tyr Ala Ala Ala Arg Arg Arg Arg Arg Arg Arg
<210> 29
<211> 4960
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
      pCMV-I-Cre-pA
<400> 29
aaacagtccg atgtacgggc cagatatacg cgttgacatt gattattgac tagttattaa 60
tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 120
cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 180
atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggac 240
tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 300
cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 360
tgggactttc ctactiggca gtacatctac gtattagtca tcgctattac catggtgatg 420 cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 480
ctccaccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca 540
aaatgtogta acaactoogo occattgaog caaatgggog gtaggogtgt acggtgggag 600
gtctatataa gcagagctct ctggctaact agagaaccca ctgcttactg gcttatcgaa 660
attaatacga ctcactatag ggagacccaa gctgactcta gacttaatta agcgttgggg 720
tgagtactcc ctctcaaaag cgggcatgac ttctgcgcta agattgtcag tttccaaaaa 780
cgaggaggat ttgatattca cctggcccgc ggtgatgcct ttgagggtgg ccgcgtccat 840
ctggtcagaa aagacaatct ttttgttgtc aagcttgagg tgtggcaggc ttgagatctg 900
gccatacact tgagtgacat tgacatccac tttgcctttc tctccacagg tgtccactcc 960
cagggcggcc tcgaccatgc ccaagaagaa gaggaaggtg tccaatttac tgaccgtaca 1020
ccaaaatttg cctgcattac cggtcgatge aacgagtgat gaggttcgca agaacctgat 1080 ggacatgttc agggatcgcc aggcgttttc tgagcatacc tggaaaatgc ttctgtccgt 1140
ttgccggtcg tgggcggcat ggtgcaagtt gaataaccgg aaatggtttc ccgcagaacc 1200
tgaagatgtt cgcgattatc ttctatatct tcaggcgcgc ggtctggcag taaaaactat 1260
ccagcaacat ttgggccagc taaacatgct tcatcgtcgg tccgggctgc cacgaccaag 1320
tgacagcaat gctgtttcac tggttatgcg gcggatccga aaagaaaacg ttgatgccgg 1380
tgaacgtgca aaacaggctc tagcgttcga acgcactgat ttcgaccagg ttcgttcact 1440
catggaaaat agcgatcgct gccaggatat acgtaatctg gcatttctgg ggattgctta 1500
taacacctg ttacgtatag ccgaaattgc caggatcagg gttaaagata tctcacgtac 1560
tgacggtggg agaatgttaa tocatattgg cagaacgaaa acgctggtta gcaccgcagg 1620
tgtagagaag gcacttagcc tgggggtaac taaactggtc gagcgatgga tttccgtctc 1680
tggtgtaget gatgateega ataactacet gttttgeegg gteagaaaaa atggtgttgc 1740 egegeeatet geeaceagee agetateaac tegegeeetg gaagggattt ttgaageaac 1800
tcatcgattg atttacggcg ctaaggatga ctctggtcag agatacctgg cctggtctgg 1860
acacagtgcc cgtgtcggag ccgcgcgaga tatggcccgc gctggagttt caataccgga 1920
gatcatgcaa gctggtggct ggaccaatgt aaatattgtc atgaactata tccgtaacct 1980
ggatagtgaa acaggggcaa tggtgegeet getggaagat ggegattage eattaaegeg 2040
taaatgattg cagatccact agttctaggg ccgcgtcgac ctcgagatcc aggcgcggat 2100
caataaaaga tcattatttt caatagatct gtgtgttggt tttttgtgtgt ccttggggga 2160
gggggaggcc agaatgaggc gcggccaagg gggaggggga ggccagaatg accttggggg 2220
agggggagge cagaatgace ttgggggagg gggaggecag aatgaggege geeeeegggt 2280
accgageteg aatteactgg cegtegtttt acaacgtegt gaetgggaaa accetggegt 2340
tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta atagcgaaga 2400
ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat ggcgcctgat 2460
goggtatttt ctccttacgc atctgtgegg tatttcacac egcatatggt geacteteag 2520
```

tacaatetge tetgatgeeg catagttaag ceageceega caceegeeaa caceegetga 2580

```
egegeeetga egggettgte tgeteeegge atcegettae agacaagetg tgacegtete 2640
cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga gacgaaaggg 2700
cotogtgata egectatttt tataggttaa tgtcatgata ataatggttt cttagacgtc 2760
aggtggcact titcggggaa atgtgcgcgg aacccctatt tgtttatttt tctaaataca 2820
ttcaaatatg tatccgctca tgagacaata accetgataa atgettcaat aatattgaaa 2880
aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt 2940
ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca 3000
gtigggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag 3060
ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc 3120
ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca 3180
gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt 3240
aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct 3300
gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt 3360
aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga 3420
caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact 3480
tactctaget teceggeaac aattaataga etggatggag geggataaag ttgeaggace 3540 acttetgege teggeeette eggetggetg gtttattget gataaatetg gageeggtga 3600
gegtgggtet egeggtatea tigeageact ggggeeagat ggtaageeet eeegtategt 3660
agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga 3720
gataggtgcc tcactgatta agcattggta actgtcagac caagtttact catatatact 3780
ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga tcctttttga 3840
taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt cagaccccgt 3900
agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct gctgcttgca 3960
aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc taccaactct 4020
ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc ttctagtgta 4080
geogtagtta ggecaecaet teaagaaete tgtageaeeg cetaeataee tegetetget 4140
aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg ggttggactc 4200
aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt cgtgcacaca 4260
gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg agctatgaga 4320
aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg 4380
aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt atagtcctgt 4440
cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag gggggcggag 4500
cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt gctggccttt 4560
tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta ttaccgcctt 4620
tgagtgaget gatacegete geegeageeg aaegaeegag egeagegagt eagtgagega 4680
ggaageggaa gagegeecaa taegeaaace geeteteece gegegttgge egatteatta 4740
atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca acgcaattaa 4800
tgtgagttag ctcactcatt aggeacccca ggetttacac tttatgette eggetegtat 4860
gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg accatgatta 4920
cgccaageta gcccgggcta gcttgcatgc ctgcaggttt
<210> 30
<211> 7332
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: vector
       pCMV-I-beta-pA
<400> 30
aaacagtccg atgtacgggc cagatatacg cgttgacatt gattattgac tagttattaa 60
tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg cgttacataa 120
cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata 180
atgacgtatg ttoccatagt aacgccaata gggactttcc attgacgtca atgggtggac 240
tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc 300
cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 360
tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg 420
cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt 480
ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca 540 aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag 600 gtctatataa gcagagctct ctggctaact agagaaccca ctgcttactg gcttatcgaa 660
attaatacga ctcactatag ggagacccaa gctgactcta gacttaatta agcgttgggg 720
```

tgagtactcc	ctctcaaaag	cgggcatgac	ttctgcgcta	agattgtcag	tttccaaaaa	780
caaaaaaaat	ttgatattca	cctagcccac	ggtgatgcct	ttgagggtgg	ccgcgtccat	840
ctaatcaaaa	aagacaatct	ttttattatc	aagcttgagg	tatagcagge	ttgagatctg	900
ccggtoagas	tgagtgacat	tgacatccac	tttacctttc	tetecacagg	totccactcc	960
yccatacact	cgagtgacat	daataccac	anagetacta	220022222	gaattacca	1020
cagggeggee	gcaattcccg	gggaccgaaa	gageetgeta	aaytaaaaa	gaagttacta	1020
tgtcgtttac	tttgaccaac	aagaacgtga	ttttcgttgc	eggrerggga	ggcarrggre	1000
tggacaccag	caaggagctg	ctcaagcgcg	atcccgtcgt	tttacaacgt	cgrgacrggg	1140
aaaaccctgg	cgttacccaa	cttaatcgcc	ttgcagcaca	tccccctttc	gccagctggc	1200
gtaatagcga	agaggcccgc	accoatcocc	cttcccaaca	gttgcgcagc	ctgaatggcg	1260
aataacactt	tgcctggttt	ccaaccaa	aagcggtgcc	ggaaagetgg	ctagaataca	1320
atottocto	ggccgatact	atcatcatca	cctcaaacto	gcagatgcag	gottacgato	1380
acceccega	caccaacgta	acotatooca	ttaggtcaa	tecaccattt	atteceseas	1440
cgcccatcta	Caccaacyta	acceatocca	ttacygttaa	teegeegee	otacacacag	1500
agaatccgac	gggttgttac	tegeteacat	ttaatgttga	Lyadayetyg	ccacaggaag	1500
gccagacgcg	aattatttt	gatggcgtta	actcggcgtt	tcatctgtgg	Egcaacgggc	1200
gctgggtcgg	ttacggccag	gacagtcgtt	tgccgtctga	atttgacctg	agegeatttt	1620
tacgcgccgg	agaaaaccgc	ctcgcggtga	tggtgctgcg	ttggagtgac	ggcagttatc	1680
togaagatca	ggatatgtgg	cagatgagca	gcattttccg	tgacgtctcg	ttgctgcata	1740
aaccdactac	acaaatcagc	gatttccatg	ftgccactcg	ctttaatgat	gatttcagcc	1800
accepaciat	ggaggctgaa	atteamatat.	acaacaaatt	gegtgactac	ctacoootaa	1860
gegetgtact	atggcagggt	goccagacyc	terreserve	gogogeoect	ttcaacaata	1920
cagtttctt	arggcagggr	gaaacycayy	tegecagegg	cattgegete	cccggcggcg	1000
aaattatcga	tgagcgtggt	ggttatgccg	ategegteae	accacgicity	aacytogaaa	2040
acccgaaact	gtggagcgcc	gaaatcccga	atctctatcg	tgcggtggtt	gaactgcaca	2040
ccaccascaa	cacqctqatt	gaagcagaag	cctgcgatgt	cggtttccgc	gaggtgcgga	2100
ttgaaaatgg	tctqctgctg	ctgaacggca	agccgttgct	gattcgaggc	gttaaccgtc	2160
acqaqcatca	tcctctgcat	ggtcaggtca	togatoaoca	gacgatggtg	caggatatcc	2220
tactactac	gcagaacaac	tttaacqccq	tacactatta	gcattatccg	aaccatccgc	2280
teteetagae	gctgtgcgac	cactacaacc	tatatataat	ggat gaagee	aatattgaāa	2340
igiggiacac	ggtgccaatg	astastas	cgcacgcggc	acactaacta	ccaccatas	2400
cccacggcat	ggtgccaatg	aaccycciga	cogatgatee	gegeeggeea	atcatotoct	2460
gcgaacgcgt	aacgcgaatg	grgcagegeg	accycaacca	coccagegeg	teenteent	2520
cgctggggaa	tgaatcaggc	cacggcgcta	accacgacge	gergratege	Lygaccaaac	2520
ctgtcgatcc	ttcccgcccg	gtgcagtatg	aaggcggcgg	agccgacacc	acggccaccg	2500
atattatttg	cccgatgtac	gcgcgcgtgg	atgaagacca	gcccttcccg	gctgtgccga	2640
aatggtccat	caaaaaatgg	ctttcgctac	ctggagagac	gcgcccgctg	atcctttgcg	2700
aatacgccca	cgcgatgggt	aacagtcttg	gcggtttcgc	taaatactgg	caggcgtttc	2760
gtdagtatcc	ccgtttacag	ggeggetteg	tctgggactg	ggtggatcag	tcgctgatta	2820
aatatgatga	aaacggcaac	ccataatcaa	cttacqqcqq	tgattttggc	gatacgccga	2880
accatecce	gttctgtatg	aacogtctgg	tctttaccaa	ccgcacqccq	catccagcgc	2940
+090003300	aaaacaccag	carcarttt	tecantice	tttatccggg	caaaccatco	3000
cyacyyaayc	cgaatacctg	ttccctcata	acastescas	actactacea	tagatagtag	3060
aagtyattay	taagccgctg	eccegecata	gogacaacga	gastataat	ccacaaggta	3120
cgctggatgg	Laageegeeg	gcaageggeg	aagtgeetet	ggatgteget	ctataaggta	3100
aacagttgat	tgaactgcct	gaactacege	ageeggagag	egeegggeaa	-to-sees	2240
cagtacgcgt	agtgcaaccg	aacgcgaccg	catggtcaga	ageegggeae	accagegeet	3240
ggcagcagtg	gegtetggeg	gaaaacctca	gtgtgacgct	ccccaccaca	tcccacgcca	3300
tecegeatet	gaccaccage	gaaatggatt	tttgcatcga	gctgggtaat	aagcgttggc	3360
aatttaaccg	ccagtcagge	tttctttcac	agatgtggat	tggcgataaa	aaacaactgc	3420
tgacgccgct	gcgcgatcag	ttcacccgtg	caccgctgga	taacgacatt	ggcgtaagtg	3480
aagcgacccg	cattgaccct	aacgectggg	togaacgctg	gaaggcggcg	ggccattacc	3540
accccaacc	agcgttgttg	cagtgcacgg	cagatacact	tactgataca	gtgctgatta	3600
aggoogaaga	cgcgtggcag	catcaddda	aaaccttatt	tatcagccgg	aaaacctacc	3660
annthanta	tagtggtcaa	ataacaatta	ccattastat	tasataaca	anchatacac	3720
ggattgatgg	- cayegyeeaa	atggcgatta	acctecacce	capadcadea	caateaact	3780
cgcatccggc	geggattgge	Cigaacigee	agecggegea	ggcagcagag	tattta	3040
ggctcggatt	agggccgcaa	gaaaactatc	ccgaccgcct	tactgeegee	Lgttttgacc	2040
gctgggatct	gccattgtca	gacatgtata	ccccgtacgt	cttcccgagc	gaaaacggtc	3300
tgcgctgcgg	gacgcgcgaa	ttgaattatg	gcccacacca	gtggcgcggc	gacttccagt	3960
tcaacatcag	r ccgctacagt	caacagcaac	tgatggaaac	cagccatcgc	catctgctgc	4020
acgcggaaga	aggcacatgg	ctgaatatcg	acggtttcca	tatggggatt	ggtggcgacg	4080
actcctggag	r cccgtcagta	teggeggaat	tacagctgag	cgccggtcgc	taccattacc	4140
agttggtctc	gtgtcaaaaa	taataataac	cadacadacc	atgtctgccc	gtatttcgcg	4200
taaggaaat	cattatgtac	tatttaaaaa	acacaaactt	ttagatattc	ggtttattct	4260
++++*	ctttttato	atgggagggt	acttecentt	tttccccatt	togctacato	4320
acetoecce	tatcagcaaa	antratarro	ntattettt	taccactatt	tetetattet	4380
acaccaacca	ccaaccgctg	tttaatataa		actorgotate	gactetagge	4440
agecattatt	. ccaaccycty	congrue	. cttotyacaa	actoggeete	ttrastarat	4500
ggccgcgtc	acctcgagat	. ccaggegegg	attaaaa	gallallall	accorace:	4560
ctgtgtgtt	gttttttgtg	rycettgggg	gagggggagg	ccagaatgag	gegeggeeaa	1 7 0 U

```
gggggagggg gaggccagaa tgaccttggg ggagggggag gccagaatga ccttggggga 4620
gggggaggcc agaatgaggc gcgcccccgg gtaccgagct cgaattcact ggccgtcgtt 4680
ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct tgcagcacat 4740
cccctttcg ccagctggcg taatagcgaa gaggcccgca ccgatcgccc ttcccaacag 4800
ttgcgcagcc tgaatggcga atggcgcctg atgcggtatt ttctccttac gcatctgtgc 4860
ggtatttcac accgcatatg gtgcactctc agtacaatct gctctgatgc cgcatagtta 4920
agccagcccc gacacccgcc aacacccgct gacgcgccct gacgggcttg tctgctcccg 4980
gcatccgctt acagacaagc tgtgaccgtc tccgggagct gcatgtgtca gaggttttca 5040
ccgtcatcac cgaaacgcgc gagacgaaag ggcctcgtga tacgcctatt tttataggtt 5100
aatgtcatga taataatggt ttcttagacg tcaggtggca cttttcgggg aaatgtgcgc 5160
ggaaccccta tttgtttatt tttctaaata cattcaaata tgtatccgct catgagacaa 5220
taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat tcaacatttc 5280
cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgtittigc tcacccagaa 5340
acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg ttacatcgaa 5400
ctggatctca acagcggtaa gatccttgag agttttcgcc ccgaagaacg ttttccaatg 5460
atgagcactt ttaaagttct gctatgtggc gcggtattat cccgtattga cgccgggcaa 5520
gagcaactcg gtcgccgcat acactattct cagaatgact tggttgagta ctcaccagtc 5580
acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc 5640 atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc gaaggagcta 5700
accepttttt tgcacaacat gggggateat gtaactegee ttgategttg ggaaceggag 5760
ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgtagc aatggcaaca 5820
acgttgcgca aactattaac tggcgaacta cttactctag cttcccggca acaattaata 5880
gactggatgg aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc 5940
tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat cattgcagca 6000
ctggggccag atggtaagec etecegtate gtagttatet acacgaeggg gagteaggca 6060
actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat taagcattgg 6120
taactgtcag accaagttta ctcatatata ctttagattg atttaaaact tcatttttaa 6180
tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt 6240
gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc ttcttgagat 6300
cettetete tgcgcgtaat etgctgettg caaacaaaaa aaccaccgct accagcggtg 6360
gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg cttcagcaga 6420
gegeagatac caaatactgt cettetagtg tageegtagt taggecacca etteaagaac 6480
tetgtageae egectacata cetegetetg etaateetgt taccagtgge tgetgecagt 6540
ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga taaggcgcag 6600
cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac gacctacacc 6660
gaactgagat acctacageg tgagetatga gaaagegeea egetteeega agggagaaag 6720
geggacaggt atceggtaag eggeagggte ggaacaggag agegeacgag ggagetteea 6780
gggggaaacg cetggtatet ttatagteet gtegggttte gecacetetg acttgagegt 6840
cgatttttgt gatgctcgtc aggggggggg agcctatgga aaaacgccag caacgcggcc 6900
tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc tgcgttatcc 6960
cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc 7020
cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc aatacgcaaa 7080
cogcetetee eegegegttg geogatteat taatgeaget ggeacgacag gttteeegae 7140
tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca ttaggcaccc 7200
caggetttac actttatget teeggetegt atgttgtgtg gaattgtgag eggataacaa 7260
tttcacacag gaaacagcta tgaccatgat tacgccaagc tagcccgggc tagcttgcat 7320
                                                                    7332
gcctgcaggt tt
```

```
<210> 31
```

<220>

<400> 31

<211> 72

<212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: primer

atgccatggg ctacggccgc aagaagcgcc gccaacgccg ccgcggcatg tccaatttac 60 tgaccgtaca cc 72

<210> 32

<211> 25

```
<212> DNA
    <213> Artificial Sequence
    <223> Description of Artificial Sequence: primer
    <400> 32
                                                                        25
    tttcggatcc gccgcataac cagtg
    <210> 33
    <211> 34
    <212> DNA
    <213> Artificial Sequence
   . <220>
    <223> Description of Artificial Sequence: primer
    <400> 33
    tatatctaga ccatgggcta cggccgcaag aagc
                                                                        34
    <210> 34
     <211> 43
    <212> DNA
     <213> Artificial Sequence
     <223> Description of Artificial Sequence: primer
     gctaccacga ccttcgatac catcgccatc ttccagcagg cgc
                                                                        43
     <210> 35
     <211> 38
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence: primer
     taactagegg cegeatgtee aatttactga cegtacae
                                                                        38
     <210> 36
     <211> 34
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence: primer
     <400> 36
                                                                        34
     tegageggee gecategeea tettecagea ggeg
     <210> 37
     <211> 32
     <212> DNA
     <213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: primer
 <400> 37
                                                                      32
tatatctaga catatgacct ctcgccgctc cg
 <210> 38
 <211> 21
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: primer
 <400> 38
                                                                      21
 ttccgaagac gacgaaacac c
 <210> 39
 <211> 32
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: primer
 <400> 39
                                                                      32
 tatattcqaa gcttattaac caccgaactg cg
 <210> 40
 <211> 4847
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: vector
       pGK-cre-pA
 <400> 40
 aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt tctaaataca 60
 ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat aatattgaaa 120
 aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt 180
 ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca 240
 gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag 300
 ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc 360
 ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca 420 gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt 480
 aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct 540
 gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt 600
 aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga 660
 caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact 720
 tactctaget teceggeaac aattaataga etggatggag geggataaag ttgcaggace 780
 acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg gagccggtga 840
 gegtgggtet egeggtatea ttgeageaet ggggeeagat ggtaageeet eeegtategt 900
 agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga 960
 gataggtgcc tcactgatta agcattggta actgtcagac caagtttact catatatact 1020
 ttagattgat ttaaaacttc attittaatt taaaaggatc taggtgaaga tcctttttga 1080
 taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt cagaccccgt 1140
 agaaaagatc aaaggatett ettgagatee ttttttetg egegtaatet getgettgea 1200
 aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc taccaactct 1260
 ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc ttctagtgta 1320
 qccqtaqtta qgccaccact tcaaqaactc tgtagcaccg cctacatacc tcgctctgct 1380
: aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg ggttggactc 1440
```

```
aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt cgtgcacaca 1500
qcccaqcttg gagcgaacga cctacaccga actgagatac ctacagcgtg agctatgaga 1560
aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg 1620
aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt atagtcctgt 1680
egggtttege cacctetgae ttgagegteg atttttgtga tgetegteag gggggeggag 1740
cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt gctggccttt 1800
tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta ttaccgcctt 1860
tgagtgaget gatacegete geegeageeg aacgacegag egeagegagt cagtgagega 1920
ggaageggaa gagegeeeaa taegeaaaee geeteteeee gegegttgge egatteatta 1980
atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca acgcaattaa 2040
tgtgagttag ctcactcatt aggcaccca ggctttacac tttatgcttc cggctcgtat 2100
gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg accatgatta 2160 cgccaagcgc gcaattaacc ctcactaaag ggaacaaaag ctgggtaccg ggccccccct 2220
cqaqqtcgac ggtatcgata agcttgatat cgaattctac cgggtagggg aggcgctttt 2280
cccaaggcag totggagcat gcgctttagc agccccgctg gcacttggcg ctacacaagt 2340
ggcctctggc ctcgcacaca ttccacatcc accggtageg ccaaccggct ccgttctttg 2400
gtggcccctt cgcgccactt ctactcctcc cctagtcagg aagtttcccc cagcaagctc 2460
gcgtcgtgca ggacgtgaca aatggaagta gcacgtctca ctagtctcgt gcagatggac 2520
agcaccocty agcaatggaa gcgggtaggc ctttggggca gcggccaata gcagctttgt 2580
teettegett tetgggetea gaggetggga aggggtgggt eegggggegg geteaggge 2640 gggeteaggg gegggeggge geeegaaggt eeteeegagg eeeggeatte tgeaegette 2700
aaaagegeac gtctgeegeg etgtteteet etteeteate teegggeett tegaeetgea 2760
gctcgaggtc gaccatgccc aagaagaaga ggaaggtgtc caatttactg accgtacacc 2820
aaaatttgcc tgcattaccg gtcgatgcaa cgagtgatga ggttcgcaag aacctgatgg 2880
acatgttcag ggatcgccag gcgttttctg agcatacctg gaaaatgctt ctgtccgttt 2940
gccggtcgtg ggcggcatgg tgcaagttga ataaccggaa atggtttccc gcagaacctg 3000
aagatgttcg cgattatctt ctatatcttc aggcgcgcgg tctggcagta aaaactatcc 3060
agcaacattt gggccagcta aacatgcttc atcgtcggtc cgggctgcca cgaccaagtg 3120
acagcaatgc tgtttcactg gttatgcggc ggatccgaaa agaaaacgtt gatgccggtg 3180
aacgtgcaaa acaggcteta gcgttegaac gcactgattt cgaccaggtt cgtteactca 3240
tggaaaatag cgatcgctgc caggatatac gtaatctggc atttctgggg attgcttata 3300
acaccctgtt acgtatagec gaaattgcca ggatcagggt taaagatatc tcacgtactg 3360
acggtgggag aatgttaatc catattggca gaacgaaaac gctggttagc accgcaggtg 3420
tagagaaggc acttagcctg ggggtaacta aactggtcga gcgatggatt tccgtctctg 3480 gtgtagctga tgatccgaat aactacctgt tttgccgggt cagaaaaaat ggtgttgccg 3540
cgccatctgc caccagccag ctatcaactc gcgccctgga agggattttt gaagcaactc 3600
atcgattgat ttacggcgct aaggatgact ctggtcagag atacctggcc tggtctggac 3660
acagtgcccg tgtcggagcc gcgcgagata tggcccgcgc tggagtttca ataccggaga 3720
tcatgcaage tggtggctgg accaatgtaa atattgtcat gaactatate cgtaacetgg 3780
atagtgaaac aggggcaatg gtgcgcctgc tggaagatgg cgattagcca ttaacgcgta 3840 aatgattgca gatccactag ttctagagct cgctgatcag cctcgactgt gccttctagt 3900
tgccagccat ctgttgtttg cccctcccc gtgccttcct tgaccctgga aggtgccact 3960
cccactgtcc tttcctaata aaatgaggaa attgcatcgc attgtctgag taggtgtcat 4020
tctattctgg ggggtggggt ggggcaggac agcaaggggg aggattggga agacaatagc 4080
aggcatgctg gggatgcggt gggctctatg gcttctgagn nngaaagaac cagctggggc 4140 tcgagatcca ctagttctag cctcgaggct agagcggccg ccaccgcggt ggagctccaa 4200
ttcgccctat agtgagtcgt attacgcgcg ctcactggcc gtcgttttac aacgtcgtga 4260
ctgggaaaac cctggcgtta cccaacttaa tcgccttgca gcacatcccc ctttcgccag 4320
ctgcctaat accgaagagg cccccaccga tccccttcc caacagttgc gcagcctgaa 4380
tggcgaatgg gacgcgcct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 4440
cagogtgacc gctacacttg ccagogccct agogcccgct cctttcgctt tcttcccttc 4500
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 4560
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 4620
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 4680
ctttaatagt ggactettgt tecaaactgg aacaacacte aaccetatet eggtetatte 4740
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 4800
                                                                         4847
acaaaaattt aacgcgaatt ttaacaaaat attaacgctt acaattt
```

<210> 41

<211> 22

<212> DNA

<213> Artificial Sequence

<pre><220> <223> Description of Artificial Sequence: primer</pre>	
(400> 41 catctccggg cctttcgacc tg	22
<210> 42 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 42	21

Claims

- 1. Use of a fusion protein comprising
- (a) a site-specific DNA recombinase domain and
- (b) a protein transduction domain (PTD)

for preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in an endogenous gene.

- 2. The use of claim 1, wherein the PTD is not derived from Antennapedia and preferably is a PTD derived from the VP22 protein of HSV or from the TAT protein of HIV.
- 3. Use of a fusion protein comprising
- (a) a site-specific DNA recombinase domain and
- (b) a protein transduction domain (PTD) being not derived from Antennapedia and preferably being derived from the VP22 protein of HSV or from the TAT protein of HIV

for preparing an agent for inducing target gene alterations in a living organism or cell culture, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome.

- 4. The use of claim 3, wherein the recognition sites for said site specific recombinase is present within an endogenous gene or a transgene.
- 5. The use of any one of claims 2 to 4, wherein the TAT protein comprises
- (i) the amino acid sequence YGRKKRRQRRR (SEQ ID NO: 10) or a mutant thereof including
- (ii) peptides having the amino sequences

AGRKKRRQRRR (SEQ ID NO:22)

YARKARRQARR (SEQ ID NO:23)

YARAAARQARA (SEQ ID NO:24)

YARAARRAARR (SEQ ID NO:25)

YARAARRAARA (SEQ ID NO:26)

YARRRRRRRR (SEQ ID NO:27)

YAAARRRRRRR (SEQ ID NO:28);

preferably the TAT protein consists of one of the sequences shown in (i) or (ii) above.

- 6. The use of any one of claims 2 to 4, wherein the VP22 protein comprises the amino acid 16-157 of SEQ ID NO:14.
- 7. The use of any one of claims 1 to 6, wherein the site-specific DNA recombinase domain is selected from a recombinase protein derived from Cre, Flp, ϕ C31 recombinase, and R recombinase and preferably is Cre having amino acids 15 to 357 of SEQ ID NO: 2 or Flpe having amino acids 15 to 437 of SEQ ID NO: 4.
- 8. The use of any one of claims 1 to 7, wherein the protein transduction domain is fused to the N-terminal of the site-specific DNA recombinase domain.
- 9. The use of any one of claims 1 to 8, wherein the protein transduction domain is fused to the site-specific DNA recombinase domain through a direct chemical bond or through a linker molecule.
- 10. The use of any one of claim 9, wherein the linker molecule is a short peptide having 1 to 20, preferably 1 to 10 amino acid residues.

- 11. The use of any one of claims 1 to 10, wherein said fusion protein further comprises additional functional sequences.
- 12. The use of claim 1, wherein the fusion protein has the sequence shown in SEQ ID NOs: 2, 4, 6 or 8.
- 13. The use of any one of claims 1 to 12, wherein the living organism is a vertebrate, preferably a rodent or a fish.
- 14. A method for inducing gene alterations in a living organism which comprises administering to said living organism, a fusion protein comprising a site-specific DNA recombinase domain and a protein transduction domain as defined in claims 1 to 12, wherein said living organism carries at least one or more recognition sites for said site-specific DNA recombinase integrated in its genome.
- 15. A fusion protein comprising
- (a) a site-specific DNA recombinase domain as defined in claims 2 to 9 and
- (b) a protein transduction domain (PTD) as defined in claims 2 to 9 provided that when (a) is the wild-type Flp or Cre then (b) is not the full length VP22 protein of HSV.
- 16. The fusion of claim 15, wherein the (PTD) is derived from the TAT protein of HIV.
- 17. A DNA sequence coding for the fusion protein of claim 15 or 16, said DNA sequence preferably comprising the sequence shown in SEQ ID NOs:1, 3, 5, 7, 9, 11, 13, 18 and/or 20.
- 18. A vector comprising the DNA sequence of claim 17.

- 19. A host cell transformed with the vector of claim 18 and/or comprising the DNA of claim 17.
- 20. A method for producing the fusion protein of claim 15 which comprises culturing the transformed host cell of claim 19 and isolating the fusion protein.
- 21. An injectable composition comprising the fusion protein as defined in claims 1 to 12 or 15 to 16.

Fig. 1

SUBSTITUTE SHEET (RULE 26)

Coomassie

 α strep tag

Figure 3

Figure 4

Fig. 5

Figure 6

Fig. 7

Α

Figure 8

Figure 9

Fig. 10

Figure 11