

OPEN EDUCATIONAL RESOURCE

Course Code: INT422

Course Tittle: DEEP LEARNING

L.T.P: 3.0.0 Credit: 3

Course Code	Course Title	Unit mapped	Broad topic/Sub Topic	OER Type	Title of OER	*%age unit mapped with OER (approx)	Source URL
INT422/ D LEARNI		Unit 1	Building Models with TensorFlow	Weblink	TensorFlow basics, Install TensorFlow 2, Introduction to Tensors, tf.rank, Introduction to graphs and tf.function, Introduction to Variables, tf.keras.opti mizers.Opti mizer, transformin g tensors as multidimens ional data arrays, TensorBoar d: TensorFlow 's visualizatio	100%	https://www.tensorflow.org/guide/basics, https://www.tensorflow.org/install, https://www.tensorflow.org/guide/tensor, https://www.tensorflow.org/guide/tensorflow.org/api_docs/python/tf/rank, https://www.tensorflow.org/guide/intro_to_graph_s_, https://www.tensorflow.org/guide/variable, https://www.tensorflow.org/guide/variable, https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Optimize_r_, https://subscription.packt_pub.com/book/data/9781_787125933/14/ch14lvl1s_ec92/transforming-tensors-as-multidimensional-data-arrays,

Unit 2	Building Models with Keras	Weblinks	n toolkit, Introduction to Deep Learning, Top 25 Deep Learning Application s Used Across Industries Introduction to keras, Keras installation, keras layers and models, building a regression model, image classificatio n with keras, multi-layer Perceptron learning for classificatio n, building text classificatio n model, overfit and underfit, save and load model, hyperparam eter tuning	100%	https://www.tensorflow.org/tensorboard, https://www.geeksforgee ks.org/introduction- deep-learning/, https://www.simplilearn. com/tutorials/deep- learning-tutorial/deep- learning-applications https://keras.io/about/ https://keras.io/getting_s tarted/ https://keras.io/api/layers/ / https://keras.io/api/mode ls/model/ https://www.tensorflow. org/tutorials/keras/regres sion https://keras.io/examples /vision/image_classificat ion_from_scratch/ https://keras.io/examples /vision/mlp_image_class ification/ https://keras.io/examples /vision/mlp_image_class ification/ https://keras.io/examples /vision/mlp_image_class ification/ https://keras.io/examples /vision/mlp_image_class ification/ https://keras.io/examples /nlp/text_classification_f rom_scratch/ https://www.tensorflow. org/tutorials/keras/overfi t_and_underfit https://www.tensorflow.
			hyperparam		https://www.tensorflow. org/tutorials/keras/overfit and underfit
Unit 3	Classifying	Weblinks	Convolution	100%	https://keras.io/api/keras_tuner/hyperparameters/ https://pyimagesearch.co

	images with deep convolutional neural networks		al Neural Networks (CNNs) and Layer Types, Calculate output size of Convolution , 2-D Convolution Compute 2- D discrete convolution of two input		m/2021/05/14/convoluti onal-neural-networks- cnns-and-layer-types/ https://iq.opengenus.org/ output-size-of- convolution/#:~:text=Ou tput%20height%20%3D %20(Input%20height%2 0%2B,%2F%20(stride% 20width)%20%2B%201 https://in.mathworks.co m/help/vision/ref/2dconv olution.html
			matrices, Convolution al Neural Network (CNN), Transfer learning and fine-tuning, Data augmentatio n, Image segmentatio n		https://www.tensorflow.org/tutorials/images/cnn https://www.tensorflow.org/tutorials/images/transfer_learning https://www.tensorflow.org/tutorials/images/data_augmentation https://www.tensorflow.org/tutorials/images/segmentation
Unit 4	Autoencoders and Pre-trained CNN	Weblinks s	Autoencode rs -Machine Learning, Compressio n of data using Autoencode rs Variation al AutoEncode rs	100%	https://www.geeksforgeeks.org/auto-encoders/ https://theailearner.com/2019/01/01/compression-of-data-using-autoencoders/ https://www.geeksforgeeks.org/variational-autoencoders/
Unit 5	Modeling sequential data using recurrent neural networks	Weblink	The Sequential model, A Brief Overview of	95%	https://www.tensorflow. org/guide/keras/sequenti al_model, https://www.analyticsvid hya.com/blog/2022/03/a-

		T		Recurrent		brief-overview-of-
				Neural		recurrent-neural-
				Networks		networks-rnn/,
				(RNN),		https://towardsdatascienc
				How to		e.com/how-to-choose-
				Choose the		
						the-right-activation- function-for-neural-
				Right		
				Activation		networks-
				Function for		3941ff0e6f9c#:~:text=In
				Neural		%20RNN%20neural%20
				Networks,		network%20models,acti
				Implementi		vation%20functions%20
				ng a		are%20non%2Dlinear,
				multilayer		
				RNN for		https://www.oreilly.com/
				sequence		library/view/python-
				modeling in		<u>machine-</u>
				TensorFlow		<u>learning/9781787125933</u>
				, Text		<u>/ch16s03.html</u> ,
				classificatio		https://www.tensorflow.
				n with an		org/text/tutorials/text_cla
				RNN, Text		ssification_rnn
				generation		
				with an		https://www.tensorflow.
				RNN, Time		org/text/tutorials/text_ge
				series		neration
				forecasting,		
				tf.keras.laye		https://www.tensorflow.
				rs.LSTM,		org/tutorials/structured_
				Sequence		data/time_series
				Classificatio		
				n with		https://www.tensorflow.
				LSTM		org/api_docs/python/tf/k
				Recurrent		eras/layers/LSTM
				Neural		eras/rayers/LSTWI
				Networks in		1 // 1. 1
				Python with		https://machinelearning
				Keras,		mastery.com/sequence-
				Stacked		classification-lstm-
				LSTM for		recurrent-neural-
				Classificatio		networks-python-keras/
				n		
						https://www.kaggle.com/
						code/kmader/stacked-
						<u>lstm-for-classification</u>
	Unit 6	Generative	Weblink	Generative	100%	https://www.geeksforgee
		Adversarial		Adversarial		ks.org/generative-
		Networks		Network		adversarial-network-gan/
				(GAN),		
				CycleGAN,		https://www.tensorflow.
T .	l		1	1 - 1		

		Adversarial example using		org/tutorials/generative/c yclegan
		FGSM		https://www.tensorflow. org/tutorials/generative/a dversarial_fgsm
**Average % age of total syllabus mapped	 	 	Avg. =99%	