BER DIE INTERNATIONALE ZUSAMMENAR **AUF DEM GEBIET DES** PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. Oktober 2003 (23.10.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/088528 A1

(51) Internationale Patentklassifikation7:

(21) Internationales Aktenzeichen:

(22) Internationales Anmeldedatum:

[DE/DE]; Ursberger Strasse 7, 81673 München (DE). NEUMANN, Rene [DE/DE]; Mathildenstr. 42, 82152 Luisenstr. 17, 86415 Mering (DE).

- 1. April 2003 (01.04.2003) SELLSCHAFT; Postfach 22 16 34, 80506 München
 - Deutsch

H04B 10/08

PCT/DE03/01075

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

(30) Angaben zur Priorität: 102 16 279.4

12. April 2002 (12.04.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): GENTNER, Guido

Planegg (DE). THANHÄUSER, Gerhard [DE/DE]; (74) Gemeinsamer Vertreter: SIEMENS AKTIENGE-

- (81) Bestimmungsstaaten (national): AU, CN, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

(DE).

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR DETECTING A CHECK-BACK SIGNAL IN AN OPTICAL TRANSMISSION SYSTEM
- (54) Bezeichnung: VERFAHREN ZUR DETEKTION EINES KONTROLLSIGNALS IN EINEM OPTISCHEN ÜBERTRA-**GUNGSSYSTEM**

(57) Abstract: The invention relates to a method for detecting a check-back signal in a transmission system for optical signals. According to said method, a constant proportion of the output in a defined frequency range of the check-back signal is concentrated in a narrow-band spectral range and is determined after a transmission phase by means of a narrow-band detection of the concentrated energy around the spectral range. If no signal is identified during the narrow-band detection, a line interruption is determined and no pump source is switched on for safety reasons. The narrow-band detection of the check-back signal also allows the transmission attenuation of the transmission system to be measured.

[Fortsetzung auf der nächsten Seite]

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Ein Verfahren zur Detektion eines Kontrollsignals in einem Übertragungssystem für optische Signale ist beschrieben, bei dem ein konstanter Anteil der Leistung in einem festegelegten Frequenzbereich des Kontrollsignals in einem schmalbandigen Spektralbereich konzentriert wird und nach einem Übertragungsabschnitt mittels einer schmalbandigen Detektion der konzentrierten Energie um dem Spektralbereich ermittelt wird. Bei Abwesenheit eines Signals bei der schmalbandigen Detektion wird dadurch eine Leitungsunterbrechung festgestellt und damit keine Pumpquelle aus Sicherheitsgründen eingeschaltet. Weiterhin ermöglicht die schmalbandige Detektion des Kontrollsignals eine Messung der Übertragungsdämpfung des Übertragungssystems.

Beschreibung

5

15

20

Verfahren zur Detektion eines Kontrollsignals in einem optischen Übertragungssystem

Die Erfindung betrifft ein Verfahren zur Detektion eines Kontrollsignals in einem optischen Übertragungssystem nach dem Anspruch 1. Zwei Weiterbildungen der Erfindung werden als

10 Verwendung des Verfahrens gemäß Anspruch 1 zur Ermittlung einer Leitungsunterbrechung nach dem Anspruch 7 und als Verwendung des Verfahrens gemäß Anspruch 1 zur Messung der Übertragungsdämpfung nach dem Anspruch 9 angegeben.

Zur Durchführung der jeweiligen Verfahren gemäß eines der Ansprüche 1, 7 oder 9 werden auch Anordnungen als Weiterbildungen der Erfindung nach den Ansprüchen 10, 11, 12 angegeben.

In optischen Übertragungssystemen müssen in vielen Fällen Leitungsunterbrechungen erkannt werden und zum Abschalten von Lasern bzw. optischen Verstärkungen führen, um Personengefährdungen zu vermeiden. Solche Maßnahmen sind unter der Bezeichnung "automatic laser shutdown (ALS)" Bestandteil internationaler Standards.

Aus DE 10046104.2 sind ein Verfahren und eine Vorrichtung zur Erkennung von Leitungsunterbrechungen in einem optischen WDM-System mit mindestens einem optischen Verstärker auf einer optischen Übertragungsstrecke , wobei mindestens einem der zu übertragenden optischen Signale ein Pilotton aufmoduliert

30 ist, bekannt.

Die Verwendung von Verfahren mit Pilotton bleiben allerdings aufwendig. Außerdem können die Signale nachteilig beeinflusst werden, in dem sie eine spektrale Verbreiterung durch Modulation erfahren. Die Auswertung bei solchen Verfahren erfolgt

35 auch erst nach vorhandener Verstärkung.

35

Aus WO 99/48229 ist ein Verfahren zur Ersatzschaltung bei optischen Übertragungseinrichtungen bekannt, bei dem außer einem Working-Signal und einem Protection-Signal jeweils Kontroll-Signale mit Information über den Belegungszustand übertragen und empfangsseitig ausgewertet werden. Die Kontrollsignale werden über einen Überwachungskanal auch bei abgeschaltetem Nutzsignal übertragen. In Figur 6 dieser Veröffentlichung ist eine Anordnung für das Ein- oder Ausschalten einer Verstärkerstelle beschrieben, bei der ein Kontroll-Signal als Überwachungskanal und ein Nutzsignal mit einem De-10 multiplexer in zwei Zweige getrennt sind. Im Zweig des Kontroll-Signals wird eine Pegelregenerierung mittels eines opto-elektrischen Wandlers, eines Regenerators und eine elektro-optischen Wandlers durchgeführt. Im Zweig des Nutzsignals ist ein Verstärker mit einem nachgeschalteten Pegelab-15 schalter angeordnet, der bei fehlendem Nutzsignal das Ausgangssignal am Verstärker abschaltet. Hier ist das regenerierte Kontroll-Signal immer weiterhin mit geringem Pegel übertragen. Entscheidungslogikmodule sind auch vorgesehen, die die An- bzw.- Abwesenheit eines Nutzsignals überprüfen. In 20 Verbindung mit einem Kontrollsignal wird die Übertragung auf eine nicht abgeschaltete Übertragungsstrecke umgeleitet und die Laser in der unterbrochenen Leitung ausgeschaltet.

25 Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung anzugeben, die in einer unabhängigen Weise zu den Nutzsignalen eine Detektion eines Kontroll-Signals einfacher ermöglichen.

Da bei einer ausgeschalteten Pumpquelle in dem Übertragungssystem die optische Verstärkung entfällt, ist der SignalRauschabstand bei der Detektion des optisch übertragenen Kontroll-Signals entsprechend reduziert. Aufgabe der Erfindung
ist es daher auch bei reduziertem Signal-Rauschabstand eine
sichere Erkennung des Kontroll-Signals zu gewährleisten.

Eine Lösung der Aufgabe erfolgt hinsichtlich ihres Verfahrensaspekts durch ein Verfahren mit den Merkmalen des Patent-

20

25

30

35

anspruchs 1 und hinsichtlich ihres Vorrichtungsaspekts durch eine Anordnung mit den Merkmalen des Patentanspruchs 10.

Erfindungsgemäß wird ein Verfahren zur Detektion eines Kontroll-Signals in einem Übertragungssystem für optische Signale beschrieben, bei dem folgende Verfahrensschritte erfolgen:

- dass ein konstanter Anteil der Leistung in einem festgelegten Frequenzbereich des Kontrollsignals in einem möglichst schmalbandigen Spektralbereich konzentriert wird,
- dass das Kontrollsignal sendeseitig in das Übertragungssystem eingespeist wird,
 - dass nach einem Abschnitt des Übertragungssystems das Kontrollsignal ausgekoppelt wird,
 - dass das ausgekoppelte Kontrollsignal opto-elektrisch gewandelt, verstärkt und zur Isolierung der möglichst schmalbandigen Spektrallinie des Kontrollsignals gefiltert wird,
 - dass die Leistung der isolierten schmalbandigen Spektrallinie zur Detektion des Kontrollsignals ermittelt wird.

Als Kontrollsignal kann ein einfaches Signal eines Überwachungskanals für das Netzwerkmanagement verwendet werden. Von großem Vorteil ist die hohe Leistung des Kontrollsignals in einem möglichst schmalbandigen Spektralbereich durch die Konzentration eines konstanten Anteils seiner Leistung in einem festegelegten Frequenzbereich. Damit ist eine Detektion, das heißt lediglich die Erkennung des Vorhandenseins des Kontrollsignals auch dann noch möglich, wenn auf Grund eines zu hohen Rauschanteiles innerhalb der Bandbreite des Erkennungs-

signals eine Regeneration unmöglich ist.

Eine interessante Verwendung des Verfahrens ist die Methode zur Erkennung einer Leitungsunterbrechung, die voll unabhängig von den Nutzkanälen erfolgt. Dies bedeutet, dass auch eine oder mehrere Pumpquellen in dem Übertragungssystem ausgeschaltet bleiben können, solange das Kontrollsignal nicht detektiert wird. Jede Personengefährdung durch austretendes Laserlicht ist damit vorteilhaft ausgeschlossen.

Eine weitere Verwendung des Verfahrens ist eine Methode zur Messung der Übertragungsdämpfung bis zur Auskopplung des Kontrollsignals. Da die Leistung der isolierten schmalbandigen Spektrallinie zur Detektion des Kontrollsignals ermittelt wird, liefert das Verhältnis zwischen dieser ermittelten Leistung und der ursprünglichen konzentrierten festgelegten Anteil der Leistung die Dämpfung. Dabei muss auch eine mögliche Zwischenverstärkung des Kontrollsignals mit dem entsprechenden Wert der Verstärkung berücksichtigt werden.

10

15

20

25

30

35

Durch die hohe Leistung des Kontrollsignals in einem schmalbandigen Spektralbereich und bei einer der Auskopplung folgenden linearen und möglichst amplituden-unbegrenzten Verstärkung, ist das Kontrollsignal auch bei hohem Rauschen detektierbar. Das schmalbandige Filter eliminiert auch einen wesentlichen Teil des im Spektrum enthaltenden Rauschens.

Das erfindungsgemäße Verfahren und seiner Verwendungen werden mittels zur ihrer Durchführung entsprechender Anordnungen beschrieben.

Ein großer Vorteil ist die einfache Integrierbarkeit von neuen Komponenten in einem herkömmlichen Übertragungssystem zur Durchführung des Verfahrens. Hauptsächlich werden ein Kodierungsmodul zur Konzentration des festgelegten Anteils der Leistung des Kontrollsignals auf einen möglichst schmalbandigen Spektralbereich und ein Filter zur Isolierung einer dem Spektralbereich entsprechenden Spektrallinie für die Detektion des Kontrollsignals benötigt. Weitere notwendige Komponenten wie z. B. Überwachungskanal, Kanaleinkoppler- und auskoppler, opto-elektrischer Wandler mit einem amplitudengeregelten Verstärker zur vollständigen Durchführung des erfindungsgemäßen Verfahrens sind heutzutage in Übertragungssystemen schon eingesetzt. Der Aufwand zur Realisierung der Anordnungen zur Durchführung des erfindungsgemäßen Verfahrens sowie seiner Verwendungen ist dadurch in einer vorteilhaften Weise stark reduziert.

10

15

20

25

30

35

PCT/DE03/01075

Das Kontrollsignal kann an einer sowie mehreren Stellen bzw. Abschnitten des Übertragungssystems ausgekoppelt und detektiert werden, z.B. an herkömmlichen Schnittstellen zwischen Übertragungsstrecke und Netzwerkmanagement. Hier noch werden nur ein einziges Kodierungsmodul sendeseitig im Übertragungssystem mit entsprechenden Filtern zur Isolierung des schmalbandigen Anteils des Kontrollsignals an den Schnittstellen benötigt. Weiterhin wird das ausgekoppelte Kontrollsignal bei jeder Schnittstelle regeneriert und mit einer ausreichender Leistung in einen weiteren Abschnitt des Übertragungssystems eingekoppelt. Ein Dekodierungsmodul ist in der Schnittstelle angeordnet, z. B. einem Regenerator nachgeschaltet, damit eine Übermittlung von Informationen an das Netzwerkmanagement mit der dekodierten Datenform des Kontrollsignals ermöglicht ist. Für eine Weiterübertragung des Kontrollsignals mit konzentriertem Spektralbereich ist in diesem Fall ein weiteres Kodierungsmodul notwendig. Das Kodierungsmodul ist jedoch nicht nötig, wenn eine Datenschnittstelle zum Netzwerkmanagement mit der Möglichkeit zum Einfügen neuer Daten nicht vorgesehen ist.

Das Filter zur Isolierung des schmalbandigen Anteils des Kontrollsignals erzeugt eine schmale Bandpassfilterung. Dadurch ist auch eine Unterdrückung des weißen Rauschens z. B. durch verstärkte spontane Emission erreicht. Als schmalbandiger Spektralbereich für die Konzentration eines festgelegten Anteils des Kontrollsignals wird z.B. die Taktfrequenz gewählt. Dafür kann beispielsweise eine CMI- (Coded Mark Inversion) oder eine RZ-Kodierung (Return to Zero) des Kontrollsignals verwendet werden. Bei einer Gleichverteilung der Einsen und Nullen wird die Hälfte der gesamten Leistung des Kontrollsignals in einer Spektrallinie bei der Taktfrequenz konzentriert. Zur Vermeidung von Dauer-Einsen oder Dauer-Nullen im ursprünglichen Kontrollsignal ist eine zusätzliche Verscramblung der Daten im Kodierungsmodul vorgesehen, damit der schmalbandige Spektralbereich mit der halben Signalleistung sichergestellt wird.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Ein Ausführungsbeispiel der Erfindung wird im folgenden anband der Zeichnung näher erläutert.

Dabei zeigen:

15

- Fig. 1: eine Anordnung zur Ermittlung einer Leitungsunterbrechung gemäß des erfindungsgemäßen Verfahrens
 - Fig. 2: eine Anordnung zur Messung der Übertragungsdämpfung gemäß des erfindungsgemäßen Verfahrens

In Fig. 1 ist eine Anordnung zur Ermittlung einer Leitungsunterbrechung gemäß des erfindungsgemäßen Verfahrens zur Detektion eines Kontrollsignals dargestellt.

Aus einer Sendeeinheit Tx sind optische Signale

- 20 S1, S2, ..., Sn in einen Lichtwellenleiter LWL eines Übertragungssystems eingespeist, die z.B. als Wellenlängen- oder Polarisationsmultiplex-Signale vorgesehen sind. Im einem ersten Abschnitt des Lichtwellenleiters LWL ist ein erster Einkoppler K1 angeordnet. Dem Einkoppler K1 ist ein Kodierungs-
- modul COD vorgeschaltet, das aus einem Überwachungskanal OSC des Übertragungssystems ein Kontrollsignal Sosc so kodiert, dass ein festgelegter Anteil seiner Leistung in einen schmalbandigen Spektralbereich konzentriert wird. Dafür weist das Kodierungsmodul einen Verscrambler mit anschließender CMI-
- oder RZ-Kodierung auf. Als Zentrum des Spektralbereiches wird hier die Taktfrequenz des Kontrollsignals gewählt.

In einem weiteren Abschnitt sind ein zweiter Einkoppler K2 zur Einspeisung von mindestens einem Pumpsignal aus einer Pumpquelle PQ und ein dritter nachgeordneter Auskoppler K3

zum Abzweigen des Kontrollsignals $S_{\rm osc}$ aus dem Lichtwellenleiter LWL angeordnet. Es ist ebenfalls möglich, mehrere nachgeschaltete Einkoppler K2 zum Einspeisen von Pumpsignalen aus

10

15

20

25

30

35

mehreren Pumpquellen anzuordnen. Einer Messeinrichtung ME ist das ausgekoppelte Kontrollsignal Sosc zugeführt. Die Messeinrichtung ME weist einen opto-elektrischen Wandler OE mit nachgeschaltetem Verstärker AGC (automatic gain control) auf, die in einer Schnittstelle mit Auskopplung eines Kontrollsignals des Überwachungskanals zu dem Netzwerkmanagement üblicherweise verwendet sind. Die hier verwendeten Elementen OE und AGC weisen hier die Bandbreite des Kontrollsignals auf, sodass das Element AGC auch einen Regenerator REG mit nachgeordnetem Dekodierungsmodul DECOD mit Descrambler speisen kann. Im hier gewählten Ausführungsbeispiel kann daher das Kontrollsignal Sosc zur Auswertung dem Netzwerkmanagement zugeführt werden und neue Daten aus dem Netzwerkmanagement können über , ein weiteren Kodierungsmodul COD mit weiterem Verscrambler und eine elektrisch-optische Schnittstelle dem Einkoppler K4 in weiterführender Richtung zugeführt werden. Die opto-elektrische Wandlung und Verstärkung des ausgekoppelten Kontrollsignals Sosc erfolgt linear und nicht amplituden-begrenzt, damit der schmalbandigen Spektralbereich des ausgekoppelten Kontrollsignals Sosc durch Amplitudenbegrenzung im Rauschen nicht unterdrückt wird. Dem Verstärker AGC ist außerdem ein schmalbandiges Bandpassfilter BP nachgeschaltet, dessen relative Bandbreite etwa 5bis 10.10⁻⁵ der gesamten Bandbreite von, z.B. 2-3 MHz, des Kontrollsignals Sosc beträgt. Bei Abwesenheit des Spektrallinie aus dem ausgekoppelten gefilterten Kontrollsignals Sosc am Ausgang des Filters BP ist eine Leitungsunterbrechung unvermeidlich detektiert. Ein mit einer vorgegebenen Schwelle eingegebener Schwellwertdetektor CONTROL mit vorgeschalteten Verstärker und Gleichrichter als Messmodul MEAS zur Ermittlung eines Leistungspegels P steuert die Ein- und Ausschaltung der Pumpquelle PQ mittels eines Schalters ON/OFF. Bei Inbetriebnahme des Übertragungssystems sind alle Pumpquellen ausgeschaltet und werden nur bei einer Anwesenheit der Spektrallinie am Messmodul MEAS eingeschaltet.

Fig. 2 zeigt eine Anordnung zur Messung der Übertragungsdämpfung gemäß des erfindungsgemäßen Verfahrens zur Detektion eines Kontrollsignals.

nes Kontrollsignals.

Zur Detektion eines Kontrollsignals weist die Fig. 2 die

5 Merkmale gemäß Fig. 1 bis auf die Komponenten

K2, PQ, ON/OFF, CONTROL aus Klarheitsgründen auf.

An einer Auswerteeinheit PROC zur Messung der Übertragungsdämpfung anhand des ermittelten Werts des Leistungspegels P

und des eingestellten Gewinns am Verstärkungsregler AGC Signale RS1, RS2 von dem Messmodul MEAS und von dem Verstärkungsregler AGC abgegeben sind. Der Leistungswert P ist hier im Gegensatz zur Fig. 1 in einer analoger Weise ermittelt.

Zur Berechnung der Übertragungsdämpfung bildet die Auswerteeinheit das Verhältnis zwischen der ermittelten Leistung am

Ausgang des Auskopplers K3 und der Leistung des mit dem sen-

deseitigen Einkoppler K1 eingespeisten Kontrollsignals Sosc.

Patentansprüche

- 1. Verfahren zur Detektion eines Kontrollsignals (S_{OSC}) in einem optischen Übertragungssystem für optische Signale
- 5 (S1, S2, ...), bei dem folgende Verfahrensschritte erfolgen:
 - dass ein konstanter Anteil der Leistung in einem festegelegten Frequenzbereich des Kontrollsignals (Sosc) in einem möglichst schmalbandigen Spektralbereich konzentriert wird,
- 10 dass das Kontrollsignal ($S_{\rm osc}$) sendeseitig in das Übertragungssystem eingespeist wird,
 - dass nach einem Abschnitt des Übertragungssystems das Kontrollsignal (Sosc) ausgekoppelt wird,
 - dass das ausgekoppelte Kontrollsignal (S_{OSC}) opto-
- elektrisch gewandelt, verstärkt und zur Isolierung der möglichst schmalbandigen Spektrallinie des Kontrollsignals (Sosc) gefültert wird,
 - dass die Leistung der isolierten schmalbandigen Spektrallinie zur Detektion des Kontrollsignals (Sosc) ermittelt wird.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
- dass die Konzentration eines konstanten Anteils der Leistung des Kontrollsignals (Sosc) auf einen schmalbandigen Spektralbereich durch eine Gleichverteilung von Einsen und Nullen der Daten des Kontrollsignals (Sosc) mit einer nachfolgenden geeigneten Kodierung erzeugt ist.
- 30 3. Verfahren nach Anspruch 2,
 dadurch gekennzeichnet,
 dass zur Gleichverteilung von Einsen und Nullen der Daten des
 Kontrollsignals (Sosc) eine Verscramblung und anschließend zur
 Erzeugung einer Spektrallinie eine CMI- bzw.- RZ-Kodierung
 35 verwendet werden.

- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Verstärkung des vom Übertragungssystem ausgekoppelten Kontrollsignals (Sosc) linear und möglichst amplitudenunbegrenzt erfolgt, so dass bei hohem Rauschanteil im schmalbandigen Spektralbereich des Kontrollsignals (Sosc) noch detektiert wird.
- 5. Verfahren nach einem der Ansprüche 1 bis 4,

 10 dadurch gekennzeichnet,

 dass die opto-plektrische Wandlung und die Verstä

dass die opto-elektrische Wandlung und die Verstärkung des ausgekoppelten Signals wenigstens für die Daten-Bandbreite $(B_{\rm OSC})$ des Kontrollsignals vorgesehen sind.

15 6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass nach der opto-elektrischen Wandlung und der Verstärkung
des ausgekoppelten Signals eine zusätzliche Regenerierung des
Kontrollsignals vorgesehen ist.

7. Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 6 zur Ermittlung einer Leitungsunterbrechung im Übertragungssystem,

dadurch gekennzeichnet,

- dass ein Leistungspegel (P) des isolierten schmalbandigen Spektralbereiches des Kontrollsignals (Sosc) ermittelt wird, dass bei einem unterhalb einer vorgegebenen Schwelle liegenden Leistungspegels (P) eine Leitungsunterbrechung im Übertragungssystem detektiert wird,
- dass eine zur erforderlichen Verstärkung der optischen Signale (S1, S2, ...) im Abschnitt des Übertragungssystems angeordnete Pumpquelle (PQ) im Betrieb ausgeschaltet wird bzw.
 außer Betrieb ausgeschaltet bleibt und
 dass bei keiner ermittelten Leitungsunterbrechung die Pump-
- 35 quelle (PQ) eingeschaltet wird.

- 8. Verwendung des Verfahrens gemäß einem der Ansprüche 1 bis 6 nach Anspruch 7, dadurch gekennzeichnet, dass für zur Übertragungsrichtung kontra- bzw. ko- bzw. bidirektionale Pumpen der oder mehrerer Pumpquelle (PQ) Kontrollsignale aus einem kontra- bzw. ko- bzw. bidirektionalen Überwachungskanal des Übertragungssystems verwendet werden.
- 9. Verwendung des Verfahrens gemäß einem der Ansprü
 10 che 1 bis 6 zur Messung der Übertragungsdämpfung,
 dadurch gekennzeichnet,
 dass eine Ermittlung des Leistungspegels (P) des isolierten
 schmalbandigen Spektralbereiches des Kontrollsignals (Sosc)
 durchgeführt wird,
- dass eine Ermittlung eines Werts (G) einer der optoelektrischen Wandlung anschließenden Verstärkung durchgeführt
 wird und
 dass durch Abgabe des Leistungspegels (P) und des Werts (G)
 der Verstärkung an einer zusätzlichen Auswerteeinheit die
 Messung der Übertragungsdämpfung erfolgt.
 - 10. Anordnung zur Durchführung des vorgenannten Verfahrens gemäß einem der Ansprüche 1 bis 9 mit einem Lichtwellenleiter (LWL) zur Übertragung optischer Signale (S1, S2, ...),
- dass in einem ersten Abschnitt des Lichtwellenleiters (LWL) ein erster Koppler (K1) zur Einkopplung eines Kontrollsignals (Sosc) angeordnet ist, dem ein Kodierungsmodul (COD) zur Konzentration eines konstanten Anteils der Leistung des Kon-
- trollsignals (Sosc) auf einem möglichst schmalbandigen Spektralbereich vorgeschaltet ist, dass in einem weiteren Abschnitt des Lichtwellenleiters (LWL) ein Auskoppler (K3) zum Abzweigen des Kontrollsignals (Sosc) aus dem Lichtwellenleiter (LWL) angeordnet ist,
- dass das ausgekoppelte Kontrollsignal ($S_{\rm osc}$) über einen optoelektrischen Wandler (OE) und weiterhin einen Verstärkungsregler (AGC) einem schmalbandigen Bandpassfilter (BP) zur I-

solierung des schmalbandigen Spektralbereiches des ausgekoppelten Kontrollsignals (Sosc) zugeführt ist und dass dem Bandpassfilter (BP) ein Messmodul (MEAS) nachgeschaltet ist.

5

10

- 11. Anordnung zur Durchführung des vorgenannten Verfahrens gemäß einem der Ansprüche 7 oder 8, dadurch gekennzeichnet,
- dass in einem ersten Abschnitt des Lichtwellenleiters (LWL) ein erster Koppler (K1) zur Einkopplung eines Kontrollsignals (S_{OSC}) angeordnet ist, dem ein Kodierungsmodul (COD) zur Konzentration eines konstanten Anteils der Leistung des Kon-

trollsignals (Sosc) auf einem möglichst schmalbandigen Spekt-

ralbereich vorgeschaltet ist,

15 dass in einem weiteren Abschnitt des Lichtwellenleiters (LWL) ein Auskoppler (K3) zum Abzweigen des Kontrollsignals (Sosc) aus dem Lichtwellenleiter (LWL) angeordnet ist,

dass das ausgekoppelte Kontrollsignal ($S_{\rm osc}$) über einen optoelektrischen Wandler (OE) und weiterhin einen Verstärkungs-

- 20 regler (AGC) einem schmalbandigen Bandpassfilter (BP) zur Isolierung des schmalbandigen Spektralbereiches des ausgekoppelten Kontrollsignals (Sosc) zugeführt ist und dass dem Bandpassfilter (BP) ein Messmodul (MEAS) nachgeschaltet ist.
- dass dem Auskoppler (K3) mindestens ein zweiter Koppler (K2) 25 zur Einspeisung von mindestens einem Pumpsignal aus einer Pumpquelle (PQ) vorgeschaltet ist,

dass das Messmodul (MEAS) einen Verstärker und einen Gleichrichter zur Ermittlung eines Leistungspegels (P) nach wenigs-

tens zwei Pegelwerten des isolierten schmalbandigen Spektral-30 bereiches aufweist und

dass anschließend dem Gleichrichter ein Schwellwertdetektor (CONTROL) verbunden ist, dessen Ausgangssignal einem Schalter (ON/OFF) zur Ein- oder Ausschaltung des Pumpsignals der Pump-

35 quelle (PQ) zugeführt ist.

12. Anordnung zur Durchführung des vorgenannten Verfahrens gemäß Anspruch 9,

dadurch gekennzeichnet,

dass in einem ersten Abschnitt des Lichtwellenleiters (LWL)

- ein erster Koppler (K1) zur Einkopplung eines Kontrollsignals (S_{OSC}) angeordnet ist, dem ein Kodierungsmodul (COD) zur Konzentration eines konstanten Anteils der Leistung des Kontrollsignals (S_{OSC}) auf einem möglichst schmalbandigen Spektralbereich vorgeschaltet ist,
- dass in einem weiteren Abschnitt des Lichtwellenleiters (LWL) ein Auskoppler (K3) zum Abzweigen des Kontrollsignals (Sosc) aus dem Lichtwellenleiter (LWL) angeordnet ist, dass das ausgekoppelte Kontrollsignal (Sosc) über einen optoelektrischen Wandler (OE) und weiterhin einen Verstärkungs-
- regler (AGC) einem schmalbandigen Bandpassfilter (BP) zur Isolierung des schmalbandigen Spektralbereiches des ausgekoppelten Kontrollsignals (Sosc) zugeführt ist und
 dass dem Bandpassfilter (BP) ein Messmodul (MEAS) nachgeschaltet ist,
- dass das Messmodul (MEAS) einen Verstärker und einen Gleichrichter zur Ermittlung des Leistungspegels (P) des isolierten
 schmalbandigen Spektralbereiches aufweist und
 dass an einer Auswerteeinheit (PROC) zur Messung der Übertragungsdämpfung anhand des ermittelten Werts des Leistungspe-
- gels (P) und des eingestellten Verstärkungswertes (G) am Verstärkungsregler (AGC) Signale (RS1, RS2) von dem Messmodul (MEAS) und von dem Verstärkungsregler (AGC) abgegeben sind.
 - 13. Anordnung nach einem der Ansprüche 10 bis 12,
- dass an einem Ausgang des Verstärkungsreglers (AGC) zu einer Regenerierung des ausgekoppelten Signals (Sosc) ein Regenerator (REG) mit mit nachgeschaltetem und Dekodierungsmodul (DECOD) mit Descrambler angeschlossen ist.

14

- 14. Anordnung nach Anspruch 13, dadurch gekennzeichnet, dass ein Koppler (K4) zum Einspeisen des regenerierten ausgekoppelten Signals (S_{OSC}) in einen weiteren Abschnitt des Lichtwellenleiters (LWL) angeordnet ist.
- 15. Anordnung nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass die Komponenten (BP, MEAS) in einer oder mehreren Aus10 kopplungsleitungen (K3, OE, AGC, REG, K4) eines für Netzwerkmanagement verwendeten Überwachungskanals (OSC) mit Kontrollsignal (Sosc) integrierbar ist, wobei einerseits dem sendeseitig im Übertragungssystem angeordneten Einkoppler (K1) das Kodierungsmodul (COD) und anderseits dem Dekodierungsmodul
 15 (DECOD) der Regenerator (REG) vorgeschaltet sind.
- 16. Anordnung nach einem der Ansprüche 10 bis 15,
 dadurch gekennzeichnet,
 dass der schmalbandige Spektralbereich 50% der gesamten Leis20 tung des vom Kodierungsmodul (COD) ausgehenden Kontrollsignals (Sosc) aufweist.
- 17. Anordnung nach einem der Ansprüche 10 bis 16,
 25 dadurch gekennzeichnet,
 dass der Leistungspegel (P) bei einer im Lichtwellenleiter
 (LWL) angeordneten ein- oder ausgeschalteter Pumpquelle (PQ)
 detektierbar bzw. ermittelbar ist.

INTERNATIONAL SEARCH REPORT

Inte	onal	Application No
PCT	/D	3/01075

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04810/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 7 \qquad HO4B$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
Х	DE 100 46 104 A (SIEMENS AG) 4 April 2002 (2002-04-04) cited in the application	1,5,7,10			
Υ	column 1, paragraph 6 -column 2, paragraph 8; figure 1	2,3,6,8, 9,11-17			
Y	DE 100 24 238 A (HERTZ INST HEINRICH) 3 January 2002 (2002-01-03) column 2, paragraph 9 -column 4, paragraph 28	6,8,9, 11-17			
Y	US 2001/033406 A1 (OTA TAKESHI ET AL) 25 October 2001 (2001-10-25) page 3, paragraph 48 -page 4; figure 8	2,3,13,			

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.		
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the International filing date but later than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family 		
Date of the actual completion of the international search	Date of mailing of the international search report		
16 September 2003	24/09/2003		
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Shaalan, M		

INTERNATIONAL SEARCH REPORT

Int onal Application No PCT/[3/01075

Category Citation of document, with indication, where appropriate of the relevant passages Relevant to claim No. ROSSI G ET AL: "Optical performance monitoring in reconfigurable WDM optical networks using subcarrier multiplexing" JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE. NEW YORK, US, vol. 18, no. 12, December 2000 (2000-12), pages 1639-1648, XP002179167 ISSN: 0733-8724 the whole document	**************************************	
X ROSSI G ET AL: "Optical performance monitoring in reconfigurable WDM optical networks using subcarrier multiplexing" JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE. NEW YORK, US, vol. 18, no. 12, December 2000 (2000-12), pages 1639-1648, XP002179167 ISSN: 0733-8724 the whole document	JUMENTS CONSIDERED TO BE RELEVANT	
monitoring in reconfigurable WDM optical networks using subcarrier multiplexing" JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE. NEW YORK, US, vol. 18, no. 12, December 2000 (2000-12), pages 1639-1648, XP002179167 ISSN: 0733-8724 the whole document	of document, with indication, where appropriate, of the relevant passages Relevant to claim No.	to claim No.
	I,8,10 SSI G ET AL: "Optical performance 1,8,10 nitoring in reconfigurable WDM optical 2,8,10 Works using subcarrier multiplexing" 2,9,10 URNAL OF LIGHTWAVE TECHNOLOGY, IEEE. NEW 2,10 RK, US, 18, no. 12, December 2000 (2000-12), 2,9 ges 1639-1648, XP002179167 SN: 0733-8724 e whole document	

INTERNATIONAL SEARCH REPORT

Information on patent family members

	Ini	onal /	Application No	
	PCT		ρ3/01075	
mily			Publication	

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 10046104	Α	04-04-2002	DE	10046104 A1	04-04-2002
DE 10024238	Α	03-01-2002	DE WO	10024238 A1 0186847 A1	03-01-2002 15-11-2001
US 2001033406	A1	25-10-2001	JP	2001217778 A	10-08-2001

INTERNATIONAL RECHERCHENBERICHT

PCT/Valla 3/01075

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 H04B10/08

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \ H04B$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN						
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.				
X	DE 100 46 104 A (SIEMENS AG) 4. Apr11 2002 (2002-04-04) in der Anmeldung erwähnt	1,5,7,10				
Y	Spalte 1, Absatz 6 -Spalte 2, Absatz 8; Abbildung 1	2,3,6,8, 9,11-17				
Y	DE 100 24 238 A (HERTZ INST HEINRICH) 3. Januar 2002 (2002-01-03) Spalte 2, Absatz 9 -Spalte 4, Absatz 28	6,8,9, 11-17				
Y	US 2001/033406 A1 (OTA TAKESHI ET AL) 25. Oktober 2001 (2001-10-25) Seite 3, Absatz 48 -Seite 4; Abbildung 8/	2,3,13, 14				

<u>}</u>				
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie			
Besondere Kategorien von angegebenen Veröffentlichungen :	*T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum			
A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist	oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist			
"E" ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist				
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer	"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden			
anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)	*Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer T\u00e4tigkeit beruhend betrachtet werden, wenn die Ver\u00f6ffentlichung mit einer oder mehreren anderen Ver\u00f6ffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung f\u00fcr einen Fachmann naheliegend ist			
O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht				
'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	*8* Veröffentlichung, die Mitglied derselben Patentfamilie ist			
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts			
16. September 2003	24/09/2003			
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter			
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL ~ 2280 HV Rijswijk				
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Chaalan M			
Fax: (+31-70) 340-3016	Shaalan, M			

INTERNATIONALE

PCT/S03/01075

		Bots Appoint No
varedoue,	bezeichnung der veronentichung, soweit enorgenich unter Angabe der in Betracht kommenden Telle	beir. Anspruch Nr.
C.(Fortsetz Kategorie*	Bezeichnung der Veröffentlichung. soweit erforderlich unter Angabe der in Betracht kommenden Teile ROSSI G ET AL: "Optical performance monitoring in reconfigurable WDM optical networks using subcarrier multiplexing" JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE. NEW YORK, US, Bd. 18, Nr. 12, Dezember 2000 (2000-12), Seiten 1639-1648, XP002179167 ISSN: 0733-8724 das ganze Dokument	Betr. Anspruch Nr. 1,8,10

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröftentlichungen, die zur Patentlamitie gehören

Inte ales Aldenzeichen
PCT/DI /01075

					
Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 10046104	Α	04-04-2002	DE	10046104 A1	04-04-2002
DE 10024238	Α	03-01-2002	DE WO	10024238 A1 0186847 A1	03-01-2002 15-11-2001
US 2001033406	A1	25-10-2001	JP	2001217778 A	10-08-2001