or hoharanor

- From two normal populations with respective variances σ_1^2 and σ_2^2 , we observe independent sample variances S_1^2 and S_2^2 , with corresponding degrees of freedom $\nu_1 = n_1 1$ and $\nu_2 = n_2 1$. We wish to test $H_0: \sigma_1^2 = \sigma_2^2$ versus $H_a: \sigma_1^2 \neq \sigma_2^2$.
 - a Show that the rejection region given by

$$\left\{ F > F_{\nu_2,\alpha/2}^{\nu_1} \quad \text{or} \quad F < \left(F_{\nu_1,\alpha/2}^{\nu_2} \right)^{-1} \right\},$$

where $F = S_1^2/S_2^2$, is the same as the rejection region given by

$$\left\{ S_1^2/S_2^2 > F_{\nu_2,\alpha/2}^{\nu_1} \quad \text{or} \quad S_2^2/S_1^2 > F_{\nu_1,\alpha/2}^{\nu_2} \right\}.$$

b Let S_L^2 denote the larger of S_1^2 and S_2^2 and let S_S^2 denote the smaller of S_1^2 and S_2^2 . Let ν_L and ν_S denote the degrees of freedom associated with S_L^2 and S_S^2 , respectively. Use part (a) to show that, under H_0 ,

$$P\left(S_L^2/S_S^2 > F_{\nu_S,\alpha/2}^{\nu_L}\right) = \alpha.$$

Notice that this gives an equivalent method for testing the equality of two variances.

10.95 Suppose that we have a random sample of four observations from the density function

$$f(y \mid \theta) = \begin{cases} \left(\frac{1}{2\theta^3}\right) y^2 e^{-y/\theta}, & y > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

a Find the rejection region for the most powerful test of $H_0: \theta = \theta_0$ against $H_a: \theta = \theta_a$, assuming that $\theta_a > \theta_0$. [Hint: Make use of the χ^2 distribution.]

1 of the desired formation

b Is the test given in part (a) uniformly most powerful for the alternative $\theta > \theta_0$?