

Convolutional Neural Networks I

Semester 2, 2022 Kris Ehinger

Outline

- Image recognition
- Review of neural networks
- Convolutional neural networks

Learning outcomes

- Define image recognition as a computer vision problem
- Explain the differences between convolutional and fully-connected networks
- Implement convolutional layers

Image recognition

What is "recognition"?

Image: https://kabochan.blog.jp/archives/9733755.html

What is "recognition"?

- In this section, we'll define **image recognition** as category-level recognition of the whole image
- Category-level = group level
 - Groups may be more or less specific ("bird," "duck," "Australian wood duck")
 - Different from instance-level recognition, recognising a specific individual
- Whole image = one label per image
 - Different from **detection** = locate object in image
 - Different from segmentation = label individual pixels

Why is recognition difficult?

Inter-category similarity

Why is recognition difficult?

- Intra-category variability
 - Instances
 - Illumination
 - Scale
 - Viewpoint/pose
 - Background/occlusion

Goal of image recognition

Build a representation of the image that

- a) distinguishes different categories,
- b) but is invariant (or tolerant) to variation within a category

Visual encoding

Visual encoding – early vision

Hand-crafted features

4	
16	
128	

Ojala & Pietikäinen (1999) Leung & Malik (2001) Oliva & Torralba (2001) Dalal & Triggs (2005) Vedaldi & Zisserman (2012)

Deep learning "revolution"

- Neural networks have been used for computer vision problems since 1950s
- But they only became the state-of-the-art around 2010
- What changed?

Cornell University News Service records, #4-3-15. Division of Rare and Manuscript Collections, Cornell University Library. https://digital.library.cornell.edu/catalog/ss:550351

What changed?

- Graphics processing units (GPUs) for fast parallel computation
 - CUDA (Nvidia, 2007) platform for parallel processing on GPU
- Algorithm improvements:
 - Unsupervised pretraining, ReLU activation function, regularisation (e.g., dropout)
- The internet
 - Massive amounts of text, photos, etc. with humanannotated labels

ImageNet

- Based on WordNet, a database of English words organised by concepts
- Class images collected online, manually cleaned by human annotators (2.5 years of annotation work)
- Over 5,000 classes, but commonly-used dataset includes just 1000 of the classes with most exemplars

ImageNet

Large-scale image datasets

IM GENET

http://www.image-net.org/

1.2 million images 1000 object classes

Open images dataset

https://g.co/dataset/open-images 9 million images 19,700 classes

YouTube-8M

https://research.google.com/youtube8m/6 million videos
3800 object classes

Image recognition

- Supervised learning problem map image to class label
- Pre-2010: small number of classes (order of 10-100), hand-crafted features
- 2010-now: "large scale" image recognition (order of 1000-10,000 classes), millions of images, deep-learned features

Neural network review

Neural networks / MLPs

MLP = multilayer perceptron

Neural networks

- Multiple layers of neurons working in parallel on the same input
- Each neuron on layer L receives input from all neurons on layer L-1 (fully connected layer) and produces one output
- Neuron's output is a weighted sum of the input, followed by a non-linear activation function

$$y = f\left(\left[\sum_{i} \mathbf{w_{i}} x_{i}\right] + \mathbf{b}\right) = f(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

Weights and bias learned from data

Non-linear activation function?

• (logistic) sigmoid (σ):

$$f(x) = \frac{1}{1 + e^{-x}} \quad \stackrel{\geq}{=} \quad$$

hyperbolic tan (tanh):

$$f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \stackrel{\text{(2)}}{=} 0$$

rectified linear unit (ReLU):

$$f(x) = \max(0, x) \stackrel{\circ}{\geq} {}^{1}_{0}$$

Neural networks

- Train through backpropagation (a form of gradient descent)
- Compute gradient of the loss function with respect to network parameters, starting with output layer and propagating to earlier layers, and adjust weights to reduce loss
- Learning rate is a free parameter
- Loss function usually based on difference between ground truth and prediction (supervised learning)

Neural networks

Advantages

- Universal approximator able to approximate any continuous function on \mathbb{R}^n
- Feature embedding learns complex features
- Parallelisable within each layer, neurons are independent
- Disadvantages
 - Very large number of parameters high memory/time/data requirements, prone to overfitting

Convolutional neural network

"AlexNet": Krizhevsky, Sutskever, & Hinton (2012)

Why convolution?

- Regular neural networks can be used for image recognition
- But convolutional neural networks are more common for large images
- Why?

Why convolution?

This is how i felt while watching this film. I loved it. It was hilarious.

I loved it, it was fun and moved quickly, no boring drawn out scenes.

I just got it and
it is a great
movie!! I loved it!

Why convolution?

- Regular neural networks can be used for image recognition
- But convolutional neural networks are more common for large images
- Why?
 - More efficient learning of local, repeated patterns
 - However, limits what the network can learn

- Convolutions are defined by
 - A kernel, which is a matrix overlaid on the image and computes an element-wise product with the image pixels
 - A stride which defines how many positions in the image to advance the kernel on each iteration (stride = 1 means the kernel will operate on every pixel of the image)

"AlexNet": Krizhevsky, Sutskever, & Hinton (2012)

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Technically, most implementations do crosscorrelation, but we call it convolution anyway

32x32x3 image

Colour image = 3 colour channels Kernel also has 3 channels

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

The stack of outputs makes a new 6-channel image, which will be the input to the next layer 6 channels = outputs of 6 different convolution kernels

Convolutional layer output

Input = image

Neuron 1 kernel:

Output:

Neuron 2 kernel:

Output:

41

Week 4, Lecture 1 COMP90086 Computer Vision

Convolutional layer input/ouput

Convolutional layer input/ouput

Fully-connected vs. Convolutional

Fully-connected layer

- Each neuron is connected to every neuron in the input
- The neuron learns some combination of the input
- The output to the next layer is the neuron's response

- Each neuron is connected to a small patch of the input
- The neuron learns a convolutional kernel on the input
- The output to the next layer is the input convolved with the neuron's kernel

Fully-connected vs. Convolutional

Fully-connected vs. Convolutional

32x32x3 image

1 5x5x3 filter

How many learned parameters? pollev.com/krisehinger432

Convolution output size

- Valid convolution (with kernel larger than 1x1) results in output smaller than input
- If same-size output is needed, pad the input (zero padding is most common)

Convolutional neural network

"AlexNet": Krizhevsky, Sutskever, & Hinton (2012)

- What kernels do the convolutional layers learn?
- In layer 1, mostly edges
- In higher layers?

Layer 1

- Advantages of convolutional layers
 - Efficient learns to recognize the same features anywhere in the image, with fewer parameters compared to fully-connected layer
 - Preserves spatial relations output is an image with values indicating where features are present
- Disadvantages of convolutional layers
 - Limited kernel size means model is limited to learning local features

Summary

- Convolutional neural networks variation on standard (fully-connected) neural networks
- Each convolutional layer learns a set of kernels and outputs activation maps (= input convolved with learned kernel)