

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2002/0101807 A1

(43) Pub. Date: Aug. 1, 2002

METHOD AND APPARATUS FOR CONTROLLING HIGH-SPEED ROTATION OF OPTICAL DISC

(75) Inventor: Byung-Gyoo Kang, Kyunggido (KR)

Correspondence Address: **BIRCH STEWART KOLASCH & BIRCH PO BOX 747** FALLS CHURCH, VA 22040-0747 (US)

(73) Assignee: LG Electronics Inc.

(21) Appl. No.:

09/976,104

(22) Filed:

Oct. 15, 2001

Related U.S. Application Data

(62) Division of application No. 09/311,577, filed on May 14, 1999, now abandoned.

Foreign Application Priority Data (30)

May 15, 1998	(KR)	98-17704
May 29, 1998	(KR)	98-20746

Publication Classification

(51)	Int. Cl.7	G11B	7/00
(52)	U.S. Cl.		/53.3

(57)ABSTRACT

Method and apparatus for controlling high-speed rotation of optical disc, wherein the amount of disc vibrations caused by the disc rotation is calculated and the disc rotation speed is increased based on the calculated amount of disc vibrations to maximize the data transfer rate under given disc vibrations. The apparatus of the present invention comprises a pickup for retrieving data recorded on an optical disc, a drive unit for driving motors, an R/F unit for equalizing and shaping signals reproduced from the optical disc, a servo unit for controlling the drive unit and detecting sync signals from the output signal of the R/F unit, a digital signal processing unit for retrieving original digital data from the output signal of the R/F unit, a timer for measuring the elapse time between specific events, and a microprocessor for controlling the rotation speed of the optical disc based on the elapse time measured by the timer.

FIGURES

FIG. 1

Conventional Art

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

Conventional Art

FIG. 7

FIG. 8

FIG. 9

FIG. 10 Start optical disc inserted? No S91 rotate the inserted disc at a CAV **\$92** start timer detect level of high-frequency signals retrieved from the optical disc **S93** 594 check whether sync signals are detected for a predetermined time duration S100 8 consecutive sync signals are detected for a a predetermined No time duration? B 5101 stop timer S102 obtain the difference between the elapsed time and a reference time calculate the amount of disc vibrations based on the obtained difference S104 obtain the difference between the detected level and a reference level S105 the level diffence exceeds an allowable limit ? No modify the calculated amount of disc maintain the disc rotation speed 8106 S107 vibration based on the detected level adjust the disc rotation speed based on S108 the modified amount of disc vibration End

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

METHOD AND APPARATUS FOR CONTROLLING HIGH-SPEED ROTATION OF OPTICAL DISC

BACKGROUND OF THE INVENTION

[0001] This application is a divisional of co-pending Application No. 09/311,577, filed on May 14, 1999, the entire contents of which are hereby incorporated by reference and for which priority is claimed under 35 U.S.C. §120; and this application claims priority of Application Nos. 98-17704 and 98-20746 filed in Korea on May 15, 1998 and May 29, 1998, respectively, under 35 U.S.C. § 119.

FIELD OF THE INVENTION

[0002] The present invention relates to method and apparatus for controlling an optical disc device, and more particularly, but not by way of limitation, to method and apparatus for controlling high-speed rotation of optical disc that can calculate the amount of disc vibrations with a view to increasing the disc rotation speed for maximizing the data transfer rate under given disc vibrations.

DESCRIPTION OF THE RELATED ART

[0003] In conventional schemes for controlling the rotation speed of an optical disc, the initial rotation speed of the optical disc is set to a predetermined value ω O without regard to the amount of disc vibrations. The initial rotation speed ω o is less than the allowable maximum rotation speed ω_{max} as shown in FIG. 1, so that reliable playback of the optical disc is guaranteed against axial and radial vibrations of the optical disc.

[0004] In some optical discs like CD-ROM titles, the data recorded on an optical disc are commonly not enough to fill the optical disc and so data are recorded only in the inner peripheries of the optical disc as shown in FIG. 2. When an optical disc rotates at a constant angular velocity (CAV), the linear velocity of tracks increases from inner peripheries to outer peripheries. In an optical disc having only small amount of recorded data, therefore, the linear velocity of tracks having data recorded thereon is always less than the allowable maximum linear velocity VMAX. Accordingly, if an optical disc contains only small amount of data, conventional control schemes cannot amount of disc vibrations is calculated based on the elapsed time, and the rotations speed of the optical disc is adjusted based upon the calculated amount of disc vibrations. In another method for controlling high-speed rotation of an optical disc according to the present invention, the number of track traverse signals is counted after the rotation speed of the optical disc reaches over a threshold value and the elapse time is measured, the amount of disc vibrations is calculated based on the number of detected track traverse signals or the elapse time, and the rotations speed of the optical disc is adjusted based upon the calculated amount of disc vibrations.

[0005] In the method and apparatus according to the present invention, if an optical disc is loaded and driven to rotate at a constant angular velocity, the retrieving means retrieves recorded signals from the optical disc, the time measuring means measures the time that elapses after the optical disc begins to rotate, and the checking means checks whether the period of sync signals detected from the data being retrieved falls within a predetermined interval. If the period of sync signals belongs to the predetermined interval,

the adjusting means calculates the amount of disc vibrations based on the clapse time and adjusts the rotation speed of the optical disc based on the calculated amount of disc vibrations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The accompanying drawings, which are included to provide a further understanding of the invention, illustrate the preferred embodiment of this invention, and together with the description, serve to explain the principles of the present invention.

[0007] FIG. 1 is a graph illustrating the relation between the disc radius and rotation speed according to conventional control method;

[0008] FIG. 2 is a schematic diagram illustrating the data recording area of a CD-ROM;

[0009] FIG. 3 is a block diagram of an optical information reproducing apparatus in which a preferred embodiment of the invention may be practiced;

[0010] FIG. 4 is a flow diagram of a method for controlling high-speed rotation of optical disc according to a first embodiment of the present invention;

[0011] FIG. 5 is a table illustrating the format of a data frame which is the basic data recording unit;

[0012] FIG. 6 is a diagram illustrating the relation between the rotation speed of the optical disc and the time that elapses before the GFS signal is detected;

[0013] FIG. 7 is a diagram illustrating the typical waveform of a traverse signal;

[0014] FIG. 8 is a flow diagram of a method for controlling high-speed rotation of optical disc according to a second embodiment of the present invention;

[0015] FIG. 9 is a flow diagram of a method for controlling high-speed rotation of optical disc according to a third embodiment of the present invention;

[0016] FIG. 10 is a flow diagram of a method for controlling high-speed rotation of optical disc according to a forth embodiment of the present invention;

[0017] FIG. 11 is a block diagram of an optical information reproducing apparatus in which another preferred embodiment of the invention may be practiced;

[0018] FIG. 12 is a flow diagram of a method for controlling high-speed rotation of optical disc according to a fifth embodiment of the present invention;

[0019] FIG. 13 is a diagram illustrating the waveforms of traverse signals created by different disc vibrations;

[0020] FIG. 14 is a flow diagram of a method for controlling high-speed rotation of optical disc according to a sixth embodiment of the present invention; and

[0021] FIG. 15 is a graph illustrating the relation between the disc radius and rotation velocity according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0022] In order that the invention may be fully understood, preferred embodiments thereof will now be described with reference to the accompanying drawings.

. . .

[0023] FIG. 3 shows a block diagram of an optical information reproducing apparatus in which the present invention may be employed, comprising a pickup 11 for retrieving data recorded on an optical disc 10 using laser beams, a sled motor 12a for moving pickup 11 in the radial direction, a spindle motor 12b for rotating optical disc 10, a drive unit 30 for driving sled motor 12a and spindle motor 12b, an R/F unit 20 for equalizing and shaping signals reproduced from optical disc 10, a servo unit 40 for controlling drive unit 30 utilizing focus and tracking error signals created by pickup 11 and for detecting sync signals from the output of R/F unit 20, a digital signal processing unit 50 for retrieving original digital data from the output signal of R/F unit 20 using the detected sync signals, a timer 70 for measuring the elapse time between specific events, and a microprocessor 60 for controlling the rotation speed of optical disc 10 based on the elapse time measured by the timer 70.

[0024] FIG. 4 is a flow diagram of a method for controlling high-speed rotation of optical disc in accordance with a first embodiment of the present invention, which will be described in detail with reference to FIG. 3.

[0025] If optical disc 10 is inserted (S10), microprocessor 60 first rotates optical disc 10 at a constant angular velocity (CAV) by driving spindle motor 12b through servo unit 40 and drive unit 30 (S11). Also, microprocessor 60 controls pickup 11 to retrieve recorded data along tracks on optical disc 10 from its initial position and timer 70 to start measuring the time that elapses thereafter (S12).

[0026] R/F unit 20 equalizes and shapes high frequency signals received from pickup 11 to create binary signals and servo unit 40 detects sync signals from the binary signals. Utilizing the detected sync signals, digital signal processing unit 50 retrieves original digital data from the binary signals obtained from R/F unit 20.

[0027] The retrieved digital data comprise frames and one frame contains 588-bit data as depicted in FIG. 5. If the rotation speed of optical disc 10 reaches a steady-state value, the 24-bit sync signal in the data frame is detected at constant intervals. Digital signal processing unit 50 checks if eight consecutive sync signals are detected from the retrieved digital data for a predetermined time duration (S13). If confirmed so (S20), digital signal processing unit 50 generates a GFS (Good Frame Sync) signal and transmits the GFS signal to microprocessor 60. As shown in FIG. 6, the time that elapses until the GFS signal is generated is inversely proportional to the disc rotation speed. Receiving the GFS signal, microprocessor 60 stops timer 70 (S21).

[0028] As shown in FIG. 7, microprocessor 60 calculates the difference between the elapse time (T1) measured by timer 70 and a preset reference time (T0) (S22) and calculates the amount of disc vibrations based on the calculated difference (S23). Since the elapse time increases in proportion to the amount of disc vibrations, the difference is proportional to the amount of disc vibrations. Accordingly, microprocessor 60 can calculate the amount of

[0029] disc vibrations by

 $n=k_1\times(T_1-T_0)$

[0030] where n is the amount of disc vibrations and k1 is a constant obtained through experiments. If the calculated amount of disc vibrations is within an allowable vibration

limit, microprocessor 60 increases the drive voltage applied to spindle motor 12b through servo unit 40 and drive unit 30, thereby rotating optical disc 10 at a maximum speed obtainable under given disc vibrations.

[0031] FIG. 8 shows a flow diagram of a method for controlling high-speed rotation of optical disc in accordance with a second embodiment of the present invention, which will be described in detail with reference to FIG. 3.

[0032] After optical disc 10 is loaded (SI) and driven to rotate at a constant angular velocity (S2), microprocessor 60 measures the amplitude of highfrequency signals equalized by R/F unit 20 (S3) and compares the amplitude with a preset reference level (S4). If the difference between the measured amplitude and the reference level exceeds a predefined limit value (S5), microprocessor 60 maintains the initial rotation speed of optical disc 10 (S6). Otherwise, microprocessor 60 calculates the amount of disc vibrations referring to the difference (S7) and adjusts the rotation speed of optical disc 10 based upon the difference value (S8).

[0033] FIG. 9 shows a flow diagram of a method for controlling high-speed rotation of optical disc in accordance with a third embodiment of the present invention, which will be described in detail with reference to FIG. 3.

[0034] The method of adjusting the rotation speed of the optical disc is the same as that of the first embodiment shown in FIG. 4. In this embodiment, however, microprocessor 60 measures the amplitude of high-frequency signals equalized by R/F unit 20 and compares the measured amplitude with a reference level as in the second embodiment (S44). If the difference exceeds a preset bound (S45), microprocessor 60 regards the situation as caused by defects of optical disc 10 and maintains its rotation speed (S46). The detection of sync signals from frame data cannot be performed normally during disc defects, and therefore outputting the GFS signal is delayed until the defect area is passed. Consequently, the amount of disc vibrations cannot be precisely calculated by the foregoing equation. This is the reason that another step of investigating disc defects is introduced.

[0035] If the calculated difference is less than the preset bound in S45, microprocessor adjusts the rotation speed of optical disc 10 based on the amount of disc vibrations calculated by the foregoing equation (S47).

[0036] FIG. 10 shows a flow diagram of a method for controlling high-speed rotation of optical disc in accordance with a forth embodiment of the present invention. The method of adjusting the rotation speed of the optical disc is the same as that of the first embodiment shown in FIG. 4. In this embodiment, however, microprocessor 60 measures the amplitude of highfrequency signals equalized by R/F unit 20 and compares the amplitude with a preset reference level (S104). If the difference exceeds a preset bound D_{Th} (S105), microprocessor 60 maintains the rotation speed of optical disc 10 (S106). Otherwise, considering the difference, microprocessor 60 modifies the calculated amount of disc vibrations by

 $n'=D/D_{Tb}\times n$, or $n'=D_{Tb}/D\times n$,

[0037] where D is the difference value between the measured amplitude and the reference level and n is the calculated amount of disc vibrations. Finally, microprocessor 60 adjusts the rotation speed of optical disc 10 based on the modified value n' (S108)

. . , ,

[0038] FIG. 11 shows a block diagram of an optical information reproducing apparatus in which the present invention may be practiced. The apparatus is identical to the apparatus shown in FIG. 3 except a traverse counter 21 added for detecting traverse signals from the output of R/F unit 20 and counting the number of traverse signals. Microprocessor 60 contains a reference number of traverse signals to be detected for a predetermined time duration and time needed to detect a predetermined number of traverse signals.

[0039] FIG. 12 shows a flow diagram of a method for controlling high-speed rotation of optical disc in accordance with a fifth embodiment of the present invention, which will be described in detail with reference to FIG. 11.

[0040] After optical disc 10 is loaded and the optical information reproducing apparatus is initialized (S50), microprocessor 60 rotates optical disc 10 at a constant angular velocity by driving spindle motor 12b through servo unit 40 and drive unit 30 (S51) and begins track-following control.

[0041] If the rotation speed of optical disc 10 reaches over a threshold value and a GFS signal is generated by digital signal processing unit 50, microprocessor 60 activates only focusing control by suspending trackfollowing control. Without the track-following control, the laser beam spot traverses several tracks and thus a traverse signal is generated each time the laser beam spot traverses a track as shown in FIG. 13.

[0042] Traverse counter 21 begins counting the number of detected traverse signals (S52) and timer 70 begins measuring the elapse time thereafter (S53). Microprocessor 60 continues to compare the elapse time and a preset reference time Tc shown in FIG. 13 (S60). If the elapse time reaches the preset reference time, microprocessor 60 commands timer 70 to stop time measuring and compares the number of detected traverse signals and a preset reference value (S61). Microprocessor 60 calculates the amount of disc vibrations based on the comparison result (S62). If the counter value does not exceed the reference value, the amount of disc vibrations is considered 0. For example, if the reference value is 2 and the observed traverse signal is 1 in FIG. 13, the amount of disc vibrations is calculated to be 0. Otherwise, microprocessor 60 calculates the amount of disc vibrations

[0043] by

 $n=k_2\times(N-2)$,

[0044] where N is the number of detected traverse signals, n is the amount of disc vibrations, and k2 is a constant obtained through experiments. Based on the calculated amount of disc vibrations, microprocessor 60 increases or decreases the voltage applied to spindle motor 12b as before, thereby rotating optical disc 10 at a maximum speed obtainable under given disc vibrations (S63).

[0045] FIG. 14 shows a flow diagram of a method for controlling high-speed rotation of optical disc in accordance with a sixth embodiment of the present invention.

[0046] Steps S70 through S73 are preformed as done in FIG. 12. In this embodiment, however, microprocessor 60 compares the number of traverse signals counted by traverse counter 21 with a reference value (S80) instead of comparing the elapse time. If both values become identical, micro-

processor 60 commands timer 70 to stop measuring the clapse time and compares the clapse time t with the reference time Tc (S81).

[0047] If the elapse time exceeds the reference time, microprocessor 60 sets the amount of disc vibrations to 0. Otherwise, microprocessor 60 calculates the amount of disc vibrations by

 $n=-k_3\times(t\times Tc)$,

[0048] where n is the amount of disc vibrations, and k3 is a constant obtained through experiments (S82). If 2 and 3 in FIG. 13 are the observed traverse signals, the elapse times are Ta and Tb, respectively. Based on the calculated amount of disc vibrations, microprocessor 60 increases or decreases the voltage applied to spindle motor 12b, thereby rotating optical disc 10 at a maximum rotation speed under given disc vibrations (S83).

[0049] The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. For example, the preferred embodiments of FIG. 4 and FIG. 12 can be embodied as one embodiment. Also, the tracking error signal can be used instead of the traverse signal in the preferred embodiments. The present embodiments are therefore to be considered in all aspects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

What is claimed is:

- 1. A method for controlling high-speed rotation of an optical disc, comprising the steps of:
 - (a) measuring the amount of disc vibrations while accelerating the rotation of a loaded optical disc; and
- (b) adjusting the rotation speed of the optical disc based upon the measured amount of disc vibrations.
- 2. A method of claim 1, wherein said step (b) increases the rotation speed of the optical disc if the measured amount of disc vibrations is less than a preset allowable limit.
- 3. A method for controlling high-speed rotation of an optical disc, comprising the steps of:

measuring the time that elapses until a predetermined signal is detected from a loaded optical disc;

calculating the amount of disc vibrations based upon the measured time; and

adjusting the rotation speed of the optical disc based upon the calculated amount of disc vibrations.

- 4. A method of claim 3, wherein the predetermined signal is generated if sync signals recorded on the optical disc are normally detected.
- 5. A method for controlling high-speed rotation of an optical disc, comprising the steps of:
- (a) detecting the level of high-frequency signals reproduced from a loaded optical disc;
- (b) calculating the amount of disc vibrations by comparing the detected level with a reference level;
- (c) checking whether the calculated amount of disc vibrations is less than a preset allowable limit; and

. . . .

- (d) adjusting the rotation speed of the optical disc based upon said checking result.
- 6. A method of claim 5, wherein if the difference between the detected level and the reference level exceeds a preset limit, the rotation speed of the optical disc remains unchanged and otherwise the rotation speed of the optical disc is increased in said step (d).
- 7. A method for controlling high-speed rotation of an optical disc, comprising the steps of:
 - (a) checking whether a predetermined signal is detected from a loaded optical disc;
 - (b) measuring the time that elapses until the predetermined signal is detected;
 - (c) detecting the level of high-frequency signals reproduced from the optical disc;
 - (d) calculating the amount of disc vibrations based on the elapsed time and the detected level; and
 - (e) adjusting the rotation speed of the optical disc based upon the calculated amount of disc vibrations.
- 8. A method of claim 7, wherein said step (d) calculates the amount of disc vibrations using the difference between the elapsed time and a reference time, and modifies the calculated amount of disc vibrations based upon the detected level of high-frequency signals.
- 9. A method for controlling high-speed rotation of an optical disc, comprising the steps of:
 - (a) detecting track traverse signals after a predetermined signal is detected from a loaded optical disc;
 - (b) measuring the amount of disc vibrations based upon the detected track traverse signals; and
 - (c) adjusting the rotation speed of the optical disc based upon the measured amount of disc vibrations.
- 10. A method of claim 9, wherein said step (b) obtains a difference value between the number of track traverse signals detected for a predetermined time duration and a preset reference number, and calculates the amount of disc vibrations based upon the difference value.
- 11. An apparatus for controlling high-speed rotation of an optical disc, comprising:

- a means for generating a signal indicative of the normal detection of sync signals recorded on the optical disc;
- a means for measuring the time that elapses until the sync signal is normally detected;
- a means for calculating the amount of disc vibrations based upon the elapsed time; and
- a means for adjusting the rotation speed of the optical disc based upon the calculated amount of disc vibrations.
- 12. An apparatus for controlling high-speed rotation of an optical disc, comprising:
 - a means for generating a signal indicative of the normal detection of sync signals recorded on the optical disc;
 - a means for detecting track traverse signals after the sync signal is normally generated;
 - a means for calculating the amount of disc vibrations based on the detected track traverse signals; and
- a means for adjusting the rotation speed of the optical disc based upon the calculated amount of disc vibrations.
- 13. An apparatus for controlling high-speed rotation of an optical disc, comprising:
 - a means for retrieving data recoreded on the optical disc;
 - a means for checking whether the period of sync signals detected from the retrieved data falls within a pretermined interval;
 - a means for measuring the time that elapses after the optical disc begins to rotate; and
 - a means for adjusting the rotation speed of the optical disc based upon the measured time i the period of the sync signals falls within the predetermined interval.
- 14. An apparatus of claim 13, further comprising a means for detecting the level of high-frequency signals reproduced from the optical disc, wherein said adjusting means determines whether to change the rotation speed of the optical disc based upon the detected level of high-frequency signals and the measured time.

* * * * *