2001

Arbeitsplatz-Nr.:

Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben -

Fach: Informatik (nicht vertieft studiert)

Einzelprüfung: Theoretische Informatik

Anzahl der gestellten Themen (Aufgaben): 2

Anzahl der Druckseiten dieser Vorlage: 2

Thema Nr. 1

- (Automatentheorie) Für n ≥ 0 sei L_n =_{def} {a, b}*a{a, b}*a{a, b}* die Menge aller Wörter aus {a, b}*, in denen der Buchstabe a an zwei Stellen mit genau n dazwischenliegenden Buchstaben vorkommt. Geben Sie einen nichtdeterministischen endlichen Automaten mit n + 3 Zuständen an, der L_n akzeptiert (erkennt)!
- 2. (Formale Sprachen) Geben Sie eine kontextfreie Grammatik an, die die Sprache $L =_{def} \{a^n b^m : 0 \le n \le m\}$ erzeugt! Zeigen Sie weiter, dass diese Sprache nicht regulär ist!
- 3. (Berechenbarkeit) Zeigen Sie, dass die Sprache $\{(13n^3-17m)^2:n,m\in\mathbb{N}\}$ rekursiv aufzählbar ist!
- 4. (Komplexität) Es sei exp: $\mathbb{N}^2 \to \mathbb{N}$ mit exp $(x,y) =_{\text{def}} x^y$ die Exponentialfunktion.
 - a) Ist exp in polynomieller Zeit berechenbar?
 - b) Zeigen Sie durch Angabe eines geeigneten Algorithmus, dass die Menge $\{(x,y,z): x^y=z\}$ in polynomieller Zeit entscheidbar ist!

Alle Antworten sind zu begründen.

Thema Nr. 2

Aufgabe 1 (Automatentheorie)

Gegeben seien das Alphabet I = (A,B,C) und die regulären Mengen R_1 und R_2 über dem Alphabet I:

$$R_1 = \{\{AB\}^*\{C\}^*\}^* \text{ und } R_2 = \{\{AB\}^*\{C\}\}^*.$$

Beweisen Sie, dass $R_1 = R_2$ ist!

Hinweis: Für den Beweis empfiehlt es sich, endliche Automaten A_1 und A_2 zu konstruieren, deren akzeptierte Wortmengen $L(A_1) = R_1$ und $L(A_2) = R_2$ sind.

Aufgabe 2 (Formale Sprachen)

Gegeben seien das terminale Vokabular $V_T = (a,b,c)$ und die drei Wortmengen L_1, L_2, L_3 , über dem Vokabular V_T :

$$L_1 = \{a^{2n}b^nc^n\}_{n>0}, \quad L_2 = \{a^nb^{n+m}c^m\}_{n,m>0}, \quad L_3 = \{a^{n+m}b^nc^{n+m}\}_{n,m>0}.$$

- 1. Diese drei Wortmengen sind kontextabhängige Sprachen. Eine von ihnen ist darüber hinaus kontextfrei. Stellen Sie fest, welche das ist, und konstruieren Sie dafür eine CHOMSKY-2-Grammatik!
- 2. Beweisen Sie für eine der beiden anderen Sprachen, die Sie selbst auswählen können, dass sie nicht kontextfrei ist, und konstruieren Sie dafür eine CHOMSKY-1-Grammatik!

Aufgabe 3 (Berechenbarkeit)

Gegeben sei die Funktion $c: \mathbb{N}_0 \to \mathbb{N}_0$ mit $c(x) = \text{entier } (\sqrt[3]{x})^{-1}$.

1. Beweisen Sie, dass die Funktion c(x) primitiv rekursiv ist!

Hinweis: Für den Beweis können Sie anstelle des Modells der primitiv rekursiven Funktionen ein dazu äquivalentes Programmiermodell verwenden.

2. Geben Sie eine vollständige μ -rekursive Herleitung der Funktion c(x) an, in der eine Minimalisierung verwendet wird!

¹ entier(a) ist die größte ganze Zahl, die kleiner oder gleich a ist.