2024~2025 **学年高三** 10 **月测评(福建)**• 数学 参考答案、提示及评分细则

		V						
题号	1	2	3	4	5	6	7	8
答案	D	D	A	Α	В	В	С	A
题号	9	10	11					
答案	ВС	ACD	ABD					

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.【答案】D

【解析】因为 $M \cap N = \{4\}$,所以 $4 \in N$,代人 $x^2 - 3x - n = 0$,可得 n = 4,所以方程变为 $x^2 - 3x - 4 = 0$,可解得 x = -1 或 4,所以 $N = \{-1,4\}$,故选 D.

2.【答案】D

【解析】因为" $\exists x \in [-1,2]$, $\frac{1}{2}x^2 - a \le 0$ ",所以 $a \ge \left(\frac{1}{2}x^2\right)_{\min}$,所以 $a \ge 0$. 结合选项及充分不必要条件知 " $a \ge 3$ "是" $a \ge 0$ "的充分不必要条件. 故选 D.

3.【答案】A

【解析】 $f(-x) = (2^{-x} + m2^x)\cos(-x) = (2^{-x} + m2^x)\cos x$, f(x) = 6 函数, f(x) + 6 (f(x) = 6) f(x) = 6 函数, f(x) + 6 (f(x) = 6) f(x) = 6 (

4.【答案】A

【解析】 $h'(x) = \frac{1}{x} - 2a$,若函数 $h(x) = \ln x - 2ax$ 在[1,3]上不单调,则 $h'(x) = \frac{1}{x} - 2a = 0$ 时 $x = \frac{1}{2a}$,故 $1 < \frac{1}{2a} < 3$,则 $\frac{1}{6} < a < \frac{1}{2}$. 故选 A.

5.【答案】B

【解析】:
$$\sin \alpha + \sqrt{3}\cos \alpha = \frac{2}{3}$$
,.: $\sin \alpha + \sqrt{3}\cos \alpha = 2\sin(\alpha + \frac{\pi}{3}) = \frac{2}{3}$,.: $\sin(\alpha + \frac{\pi}{3}) = \frac{1}{3}$,.: $\cos(2\alpha + \frac{2\pi}{3}) = 1$
 $-2\sin^2(\alpha + \frac{\pi}{3}) = \frac{7}{9}$,.: $-\cos(4\alpha + \frac{\pi}{3}) = \cos(4\alpha + \frac{4}{3}\pi) = 2\cos^2(2\alpha + \frac{2\pi}{3}) - 1 = \frac{17}{81}$,.: $\cos(4\alpha + \frac{\pi}{3}) = -\frac{17}{81}$,故选 B.

6.【答案】B

【解析】 :
$$S_n = (2S_n + 1)S_{n+1}$$
 , : $S_n = S_{n+1} + 2S_n \cdot S_{n+1}$, $\frac{1}{S_{n+1}} - \frac{1}{S_n} = 2$, : $\left\{\frac{1}{S_n}\right\}$ 是以 1 为首项,公差为 2 的等 差数列, : $\frac{1}{S_n} = 2n - 1$, $S_n = \frac{1}{2n - 1}$, $S_{11} = \frac{1}{21}$, $a_5 = S_5 - S_4 = \frac{1}{9} - \frac{1}{7} = -\frac{2}{63}$, : $\frac{a_5}{S_{11}} = -\frac{2}{63} \times 21 = -\frac{2}{3}$, 故 选 B.

7.【答案】C

【解析】由 $f(x) = e^{2x} - 2ae^x - 4a^2x(a > 0)$,

有
$$f'(x) = 2e^{2x} - 2ae^x - 4a^2 = 2(e^x + a)(e^x - 2a)$$
.

当 a>0 时, $e^x+a>0$, f(x)在 $(-\infty, \ln 2a)$ 上单调递减,在 $(\ln 2a, +\infty)$ 上单调递增,

则
$$f(x)_{min} = f(\ln 2a) = -4a^2 \ln 2a$$
,故 $f(x)$ 的值域为 $[-4a^2 \ln 2a, +\infty)$,

令 t = f(x),则 $t \in [-4a^2 \ln 2a, +\infty)$,要使得 f(f(x))的值域也为 $[-4a^2 \ln 2a, +\infty)$,

则 $-4a^2 \ln 2a \leq \ln 2a$,即 $(1+4a^2) \ln 2a \geq 0$,故 $a \geq \frac{1}{2}$.故选 C.

【高三数学参考答案 第1页(共5页)】

【解析】设
$$h(x) = f(x) - g(x) = \sin \omega x - \cos \omega x = \sqrt{2} \sin \left(\omega x - \frac{\pi}{4}\right)$$
.

因为 h(x)在[π ,2 π]上最多有两个零点,故 2π - π < $\frac{3}{2}$ • $\frac{2\pi}{\omega}$,所以 0< ω <3.

由
$$x \in [\pi, 2\pi]$$
得 $\omega x - \frac{\pi}{4} \in \left[\pi \omega - \frac{\pi}{4}, 2\pi \omega - \frac{\pi}{4}\right]$.

(1)由
$$\begin{cases} \pi\omega - \frac{\pi}{4} \leqslant 0, \\ 2\pi\omega - \frac{\pi}{4} < 2\pi \end{cases}$$
 得 $0 < \omega \leqslant \frac{1}{4}$; (2)由
$$\begin{cases} 0 < \pi\omega - \frac{\pi}{4} \leqslant \pi, \\ 2\pi\omega - \frac{\pi}{4} < 3\pi \end{cases}$$
 得 $\frac{1}{4} < \omega \leqslant \frac{5}{4}$;

(3)由
$$\begin{cases} \pi < \pi \omega - \frac{\pi}{4} \le 2\pi, \\ 2\pi \omega - \frac{\pi}{4} < 4\pi \end{cases}$$
 得 $\frac{5}{4} < \omega < \frac{17}{8}$; (4)由
$$\begin{cases} 2\pi < \pi \omega - \frac{\pi}{4} \le 3\pi, \\ 2\pi \omega - \frac{\pi}{4} < 5\pi \end{cases}$$
 得 $\frac{9}{4} < \omega < \frac{21}{8}$;

(5)由
$$\begin{cases} 3\pi < \pi\omega - \frac{\pi}{4} \leqslant 4\pi, \\ & \text{得此时不等式组无实数解.} \\ 2\pi\omega - \frac{\pi}{4} < 6\pi \end{cases}$$

综上可得 $\omega \in \left(0, \frac{17}{8}\right) \cup \left(\frac{9}{4}, \frac{21}{8}\right)$,故选 A.

- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9.【答案】BC(全部选对得 6 分,选对 1 个得 3 分,有选错的得 0 分)

【解析】对选项 A,取 a=-1,b=1,满足 $ab\neq 0$ 且 a< b,则 $\frac{1}{a}<\frac{1}{b}$,错误;

对选项 B,因为函数 $y=x^3$ 单调递增,当 a < b 时, $a^3 < b^3$,正确;

对选项 C,因为函数
$$y=x \mid x \mid = \begin{cases} x^2, x \ge 0, \\ -x^2, x < 0 \end{cases}$$
 单调递增,当 $a \mid a \mid < b \mid b \mid$,则 $a < b$,正确;

对选项 D,a>b>0,要使 $\frac{b+1}{a+1}<\frac{b}{a}$,即 ab+a< ab+b,即 a< b,错误,故选 BC.

10.【答案】ACD(全部选对得 6 分,选对 1 个得 2 分,选对 2 个得 4 分,有选错的得 0 分)

【解析】对于 A,令 x=y=0,得 $\varphi(0)=t$,A 正确;

对于 B,令 y=-x 得, $\varphi(0)=\varphi(x)+\varphi(-x)-t$,结合 A 知 $\varphi(x)+\varphi(-x)=2t$, $\therefore \varphi(x)$ 图象关于点(0,t)中心 对称,B 错误;

对于 C,结合 B 知 $\varphi(x)+\varphi(-x)=2\iota$,取 x=2 024 得 $\varphi(2$ 024)+ $\varphi(-2$ 024)= 2ι ,C 正确;

对于 D,设 $x_1 < x_2$,则 $\varphi(x_2) - \varphi(x_1) = \varphi[(x_2 - x_1) + x_1] - \varphi(x_1) = \varphi(x_2 - x_1) + \varphi(x_1) - t - \varphi(x_1) = \varphi(x_2 - x_1) - t$,由于 $x_2 - x_1 > 0$, $\therefore \varphi(x_2 - x_1) < t$, $\therefore \varphi(x_2) - \varphi(x_1) < 0$. $\varphi(x_1) < 0$. $\varphi(x_2) > 0$. 所以答案为 ACD.

11.【答案】ABD(全部选对得 6 分,选对 1 个得 2 分,选对 2 个得 4 分,有选错的得 0 分)

【解析】依题意 $(3n+2)(S_n+a_{n+1})+(3n-1)(S_n-a_n)=(6n+1)S_n$, $\therefore (3n+2)a_{n+1}=(3n-1)a_n(n\geq 2)$,

$$\therefore (3n-1)a_n = \dots = 5a_2 = 1$$
, $\therefore a_n = \frac{1}{3n-1}$. $n=1$ 满足, $\therefore a_n = \frac{1}{3n-1}$, $a_5 = \frac{1}{14}$. $\therefore \frac{1}{a_5} = 3n-1$. \therefore A, B 正确;

$$\frac{a_n}{a_{n+1}^2} = \frac{(3n+2)^2}{3n-1} = \frac{(3n-1+3)^2}{3n-1} = (3n-1) + \frac{9}{3n-1} + 6, \pm 3n-1 > 3$$
 时递增, 当 0 < 3n-1 < 3 时递减, 当 n

=1 时,
$$\frac{a_n}{a_{n+1}^2} = \frac{25}{2}$$
, 当 $n=2$ 时, $\frac{a_n}{a_{n+1}^2} = \frac{64}{5}$, 最小值为 $\frac{25}{2}$. ∴ C 错;

【高三数学参考答案 第2页(共5页)】

$$\overline{m} \frac{(-1)^n}{a_n a_{n+1}} = (-1)^n (3n-1)(3n+2) = (-1)^n 9n^2 + (-1)^n (3n-2)$$
, $\therefore T_{2n} = 9(-1^2 + 2^2 - 3^2 + 4^2 - \dots - (2n-1)^2 + (2n)^2) + (-1+4-7+10-\dots - (6n-5)+(6n-2)) = 9(1+2+3+4+\dots + (2n-1)+2n) + 3n = \frac{9 \times 2n(2n+1)}{2} + 3n = 18n^2 + 12n$. \therefore D 正确. 故选 ABD.

三、填空题:本题共3小题,每小题5分,共15分.

12.【答案及评分细则】 $\left[0, \frac{1}{4}\right]$ (5分,写成不等式或集合形式,只要结果正确均给分)

【解析】当 a=0 时,符合题意;当 $a\neq 0$ 时,需 $\begin{cases} a>0 \\ \Delta \geqslant 0 \end{cases}$,解得 $0 < a \le \frac{1}{4}$.故 $a \in \left[0, \frac{1}{4}\right]$.

13.【答案及评分细则】1(5分,其他结果均不得分)

【解析】因为 $a_1 = 1$, $a_2 = 2$, 且 $a_{n+1} = a_n + a_{n+2}$, 所以 $a_3 = a_2 - a_1 = 1$, $a_4 = a_3 - a_2 = -1$, $a_5 = a_4 - a_3 = -2$, $a_6 = a_5 - a_4 = -1$, $a_7 = a_6 - a_5 = 1$, $a_8 = a_7 - a_6 = 2$, ..., 所以 $\{a_n\}$ 是以 6 为周期的数列,因为 2 029 = 6×338 + 1, 所以 $a_{2 029} = a_1 = 1$.

14. 【答案及评分细则】 $(-\infty,3]$ (5分,写成不等式或集合形式,只要结果正确均给分)

【解析】依题意有 $a-2 \le x^2 e^x - (2\ln x + x) = e^{x+2\ln x} - (x+2\ln x)$.

而 $e^{x+2\ln x} - (x+2\ln x) \geqslant x+2\ln x+1 - (x+2\ln x) = 1$, 当且仅当 $x+2\ln x = 0$ 时等号成立,即 $a-2 \leqslant 1$, $\therefore a \leqslant 3$.

四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.

15.【答案】(1) $x = \frac{k\pi}{2} + \frac{\pi}{24} (k \in \mathbb{Z}), \sqrt{2}$ (2)f(x)在区间 $\left(0, \frac{4\pi}{3}\right)$ 上有且仅有两个极值点

【解析及评分细则】(1)当
$$\omega$$
=2 时, $f(x) = \sin\left(2x + \frac{\pi}{6}\right) - \sin\left(2x - \frac{\pi}{3}\right) = \sin\left(2x + \frac{\pi}{6}\right) - \sin\left(2x + \frac{\pi}{6} - \frac{\pi}{2}\right)$

$$= \sin\left(2x + \frac{\pi}{6}\right) + \cos\left(2x + \frac{\pi}{6}\right) = \sqrt{2}\sin\left(2x + \frac{5\pi}{12}\right), \qquad 2$$

所以
$$f(x)$$
的最大值为 $\sqrt{2}$, …… 4 分

(2)易知
$$f(x) = \sqrt{2}\sin\left(\omega x + \frac{5\pi}{12}\right)$$
,

当
$$x \in \left(-\frac{\pi}{2}, 0\right)$$
时, $\omega x + \frac{5\pi}{12} \in \left(\frac{5\pi}{12} - \frac{\omega\pi}{2}, \frac{5\pi}{12}\right)$,

当
$$x \in (0, \frac{4\pi}{3})$$
时, $0 < k\pi + \frac{\pi}{12} < \frac{4\pi}{3}$,解得 $k = 0, 1, \dots$ 12 分

16.【答案】(1)0 $< x < \log_2 3$ (2) $a \ge -\frac{7}{3}$

$$(2) f(x) \geqslant x, \mathbb{B} \ f(x) = \log_{\mathbb{C}} [4' + (a+2)2' + a+1] \geqslant \log_{\mathbb{C}} (2'), \qquad 8 \ \beta \ \text{ % ff } 4' + (a+2)2' + a+1 \geqslant 2' \text{ y} \text{ ff } \underline{x} \in \mathbb{C} [1, +\infty) \text{ Id} \text{ ud} \underline{x}, \qquad 9 \ \beta' \text{ w} t^2 + 2' \geqslant 2, \text{ up } t^2 + (a+1)t + a+1 \geqslant 0 \text{ y} \text{ ff } \underline{x} \in \mathbb{C} [1, +\infty) \text{ Id} \text{ ud} \underline{x}, \qquad 9 \ \beta' \text{ w} t^2 + 2' \geqslant 2, \text{ up } t^2 + (a+1)t + a+1 \geqslant 0 \text{ y} \text{ ff } \underline{x} \in \mathbb{C} [1, +\infty) \text{ Id} \text{ ud} \underline{x}, \qquad 10 \ \beta' \text{ ud} t' + (a+1)t + a+1 \geqslant 0 \text{ y} \text{ ff } \underline{x} \in \mathbb{C} [1, +\infty) \text{ ud} \underline{x}, \qquad 10 \ \beta' \text{ ud} t' + (a+1)t + a+1 \geqslant 0, \text{ af } \overline{x} \text{ ud} \underline{x}, \qquad 12 \ \beta' \text{ ud} t' + (a+1)t + a+1 \geqslant 0, \text{ af } \overline{x} \text{ ud} \underline{x}, \qquad 12 \ \beta' \text{ ud} t' + (a+1)t + a+1 \geqslant 0, \text{ af } \overline{x} \text{ ud} \underline{x}, \qquad 12 \ \beta' \text{ ud} \underline{x} = \frac{a+1}{2} \ge 2 \text{ ud} \cdot (a+1)^2 - 4(a+1) \leqslant 0, \text{ af } \overline{x} \text{ ud}, \qquad 14 \ \beta' \text{ ud} \underline{x} + a \text{ ud} \underline{x} \text{ ud} \underline{x} \text{ ud} \underline{x} + a \text{ ud} \underline{x} \text{ ud} \underline{x}, \qquad 14 \ \beta' \text{ ud} \underline{x} + a \text{ ud} \underline{x} \text{ ud} \underline{x} + a \text{ ud} \underline{x} \text{ ud} \underline{x} + a \text{ ud}$$

当
$$n$$
 是偶数时,记 $c_n = \frac{2-T_n}{2-S_n} = \frac{4}{n+4} \left(\frac{4}{3}\right)^n$, $\frac{c_{n+2}}{c_n} = \frac{16}{9} \left(1 - \frac{2}{n+6}\right) \geqslant \frac{16}{9} \times \left(1 - \frac{2}{2+6}\right) = \frac{4}{3} > 1$, $\therefore \{c_n\}$ 单调递增, $c_n \ge c_2 = \frac{4}{6} \times \left(\frac{4}{3}\right)^2 = \frac{32}{27} > 1$, $\therefore 2 - T_n > 2 - S_n$, 所以 $S_n > T_n$. 15 分 综上,当 n 是商数时, $S_n < T_n$. 17 分 19. 【答案】(1) 详见解析 (2) 详见解析 (3) 经过 4 次迭代后, x_0 的近似值 x_2 与 x_0 的差值小于10⁻⁷ 【解析及评分细则】(1) $f'(x) = 3x^2 + 1 > 0$, 所以 $f(x)$ 单调递增, 1分 因为 $f\left(\frac{2}{3}\right) = \frac{8}{27} + \frac{2}{3} - 1 = -\frac{1}{27} < 0$, $f(1) = 1 + 1 - 1 = 1 > 0$, 3分 所以 $f(x)$ 存在唯一零点 x_0 ,且 $\frac{2}{3} < x_0 < 1$. 4分 (2) $f(x)$ 在点 $(x_n, f(x_n))$ 处的切线方程为 $y - f(x_n) = f'(x_n)(x - x_n)$, 5分 令 $y = 0$,解得 $x_{n+1} = x_n - \frac{f'(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 + x_n - 1}{3x_n^2 + 1} = \frac{2x_n^3 + 1}{3x_n^2 + 1}$, 6分 $|x_{n+1} - x_0| = \left|\frac{2x_n^3 - 1}{3x_n^2 + 1} - x_0\right| = \left|\frac{2x_n^3 - 3x_n^2 + 1 - x_0}{3x_n^2 + 1}\right| = (x_n - x_0)^2 \frac{2x_n + x_0}{3x_n^2 + 1}$, 9分 要证 $|x_{n+1} - x_0| < |x_n - x_0|^2$, 只需证 $\frac{2x_n + x_0}{3x_n^2 + 1} = (x_n - x_0)^2$ $\frac{2x_n + x_0}{3x_n^2 + 1}$, 9分 要证 $|x_{n+1} - x_0| < |x_n - x_0|^2$, 只需证 $\frac{2x_n + x_0}{3x_n^2 + 1} < (1 - \frac{2}{3})$ $\frac{1}{9}$, 13分 所以 $|x_2 - x_0| < |x_1 - x_0|^2 < \frac{1}{81}$, 14分 所以 $|x_3 - x_0| < |x_1 - x_0|^2 < \frac{1}{81}$, 14分 所以 $|x_4 - x_0| < |x_1 - x_0|^2 < \frac{1}{81}$, 14分 所以 $|x_4 - x_0| < |x_1 - x_0|^2 < \frac{1}{81}$, 14分 所以 $|x_4 - x_0| < |x_1 - x_0|^2 < \frac{1}{81}$, 15分 所以 $|x_5 - x_0| < |x_1 - x_0|^2 < \frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{$