L.J. Opalski, ISE PW

MOZA Projekt

ostatnia aktualizacja dn. 22.04.2022

Spis treści

Inf		cje organizacyjne
		gi ogólne
	Przek	bieg realizacji projektu
1.	Proje	ektowanie wzmacniaczy szerokopasmowych
	1.1.	Projekt Kask3. Kaskodowy wzmacniacz szerokopasmowy nr 3
		1.1.1. Wariant A
		1.1.2. Wariant B
	1.2.	Projekt Kask4. Kaskodowy wzmacniacz szerokopasmowy nr 4
		1.2.1. Wariant A
		1.2.2. Wariant B
	1.3.	Projekt DTK1. Dwójka tranzystorowa z korekcją nr 1.
		1.3.1. Wariant A
	1.4.	Projekt DTK2. Dwójka tranzystorowa z korekcją nr 2
		1.4.1. Wariant A
		1.4.2. Wariant B
	1.5.	Projekt WBAF. Wzmacniacz szerokopasmowy z tranzystorem FET
		1.5.1. Wariant A
2.	Proje	e <mark>ktowanie filtrów</mark>
	2.1.	Projekt URCLF. Filtr z linią RC
		2.1.1. Wariant A
		2.1.2. Wariant B
		2.1.3. Wariant C
	2.2.	Projekt BPFAA. Środkowoprzepustowy filtr ze sprzężeniem indukcyjnym
		2.2.1. Wariant A
		2.2.2. Wariant B
3.	Proje	ektowanie układów impulsowych
	3.1	Projekt ST. Przerzutnik Schmitta
	-	3.1.1. Wariant A
		3.1.2. Wariant B
1	Droid	ekty specjalne/indywidualne
→.	4.1.	Projekt XURCLF. Filtr z linią RC
	4.1.	Projekt XWKE. Wzmacniacz klasy E
	+.∠.	FIGURE ANNIE. NATURACINACE KLASY E

Informacje organizacyjne

Uwagi ogólne

- Zawartość niniejszego pliku może się zmieniać wskutek zmian w sformułowaniach projektów. Dzień ostatniej aktualizacji jest podany na pierwszej stronie.
- W korespondencji, w sprawie projektu, należy umieścić w tytule tekst [MOZA][P.id], gdzie id jest identyfikatorem projektu. Przykładowo, dla projektu OA1, wariant B należy użyć tekstu [MOZA][P.OA1B]. Korespondencję należy wysyłać ze swojego studenckiego adresu na PW i kierować na adres: leszek.opalski@pw.edu.pl
 Każde przesyłane e-pocztą archiwum plików oraz pliki z dokumentacją powinny mieć w nazwie nazwisko autora oraz datę: rok-miesiąc-dzień, np. Opalski 2021-12-18 raport v1.zip
- M-pliki powinny zawierać tylko kod wykorzystywany w projekcie. Jeżeli wykorzystywano wykładowy kod przykładowy
 plik należy stosownie oczyścić/edytować.
- Do wystawienia oceny z każdego etapu może być potrzebna rozmowa z wykonawcami.
- Ze względu na niepewność uwarunkować zewnętrznych, wszelkie terminy związane z MOZA mogą ulegać zmianie w trakcie semestru. Komunikaty o zmianach będą przekazywane studentom za pomocą poczty WEiTI.

Przebieg realizacji projektu

- 1. Część pierwsza (wstępna) projektu (maks. 18p).
 - Początek realizacji po zakończeniu przydziału tematów, w czasie konsultacji w dn. 27.04.2022 r. W ramach części pierwszej należy wykonać projekt inżynierski doboru wartości początkowych elementów układu tak, by spełniał swoją podstawową funkcję (wzmacniacza, filtru) prawidłowo. W razie trudności proszę o kontakt z prowadzącym.
 - Analiza własności układu może pokazać, że sformułowanie projektu (czy wymagań) trzeba/warto zmodyfikować. Proszę w takiej sytuacji o niezwłoczny kontakt z prowadzącym, aby uzgodnić zmiany. W sprawozdaniu należy krótko przedstawić uzasadnienie zmian jako swój wkład w rozwiązanie zadania projektowego.
 - Sprawozdanie wstępne oraz pliki użytych do realizacji projektu (*.m,*.asc itp.) powinny być przesłane prowadzącemu w archiwum za pomocą usługi Sprawozdania (studia), najpóźniej do 23.05.2022 r. (8:00).
 - Oczekiwana zawartość sprawozdania.
 - Raport
 - Sformułowanie matematyczne zadań optymalizacji, które będą wykorzystane do realizacji projektu. Do opisu koniecznie należy wykorzystać edytor formuł matematycznych. Należy zwrócić uwagę na specjalną strukturę, czy własności funkcji celu/ograniczeń (jak wypukłość, gładkość), gdyż może to wpływać na dokonywane dalej wybory (metody, algorytmu implementacji).
 - Propozycja sposobu numerycznego rozwiązania zadań optymalizacji, z argumentami przemawiającymi za dokonanymi wyborami (metody i algorytmu, sposobu skalowania).
 - Propozycja wyboru punktu startowego optymalizacji. Należy też pokazać (np. symulacyjnie), że wybór
 jest zgodny z zasadami sztuki (np. wzmacniacz wzmacnia), chociaż parametry robocze optymalizowanego obiektu jeszcze nie spełniają wymagań. Należy określić niedokładność obliczeń wartości funkcji
 - Archiwum (działających poprawnie) M-plików, które obliczają potrzebne charakterystyki/odpowiedzi układu i parametry robocze. Załączony M-plik testowy powinien wywoływać w/w funkcje, by zademonstrować poprawność obliczeń w punkcie startowym (j.w.), a także kluczowe własności numeryczne: gładkość, dokładność. Wyniki testowania powinny być udokumentowane i ocenione w raporcie. Archiwum powinno również zawierać M-pliki funkcji celu i ograniczeń w postaci właściwej dla proponowanego algorytmu optymalizacji i przyjętego sposobu skalowania zadania optymalizacji.
 - Informacje o zasadach oceniania podano w oddzielnym dokumencie: https://studia2.elka.pw.edu.pl/file/22L/103A-ELxxx-MSP-MOZA/priv/Priv/P/P_zasady_1.pdf dostępnym przez stronę Projektu.
- 2. Część druga projektu (maks. 18p)
 - Początek realizacji po zatwierdzeniu do realizacji pierwszej projektu przez prowadzącego. Przewiduje się, że sprawozdanie z cz. 1 projektu zostanie ocenione w ciągu 3 dni od przesłania sprawozdania.
 - W informacji zwrotnej przesyłana jest ocena i komentarze do sprawozdania z części wstępnej. Dla sprawozdań ocenionych pozytywnie ("pierwszy etap jest zatwierdzony") mogą być przesłane sugestie zmian. Sugestie nie są wiążące dla wykonawcy.
 - W niektórych przypadku proponowana jest korekta zakresu projektu, zwłaszcza gdy okazało się w pierwszym etapie, że realizacja pierwotnych założeń projektowych jest zbyt trudna, czy czasochłonna.
 - W niektórych przypadkach pierwszy etap pracy nie jest zatwierdzony do kontynuacji. Są wówczas sformułowane warunki konieczne, które trzeba spełnić, by móc kontynuować projekt.
 - Sprawozdanie końcowe z projektu (pdf) oraz archiwum (rar, zip, 7z itp.) plików użytych do realizacji projektu (*.m,*.asc itp.) powinny być przesłane prowadzącemu za pomocą usługi Sprawozdania (studia) do 13.06.2022 r. (8:00). Oceny projektów spóźnionych mogą zostać obniżone (do 2p za każdy dzień roboczy spóźnienia).
 - Oczekiwana zawartość sprawozdania:
 - Treść sprawozdania wstępnego z korektą wynikającą z uwag prowadzącego

- Opis przebiegu rozwiązywania zadania/zadań optymalizacji: użytych faktycznie algorytmów, niestandardowych opcji algorytmu (i przyczyn użycia), informacji o ew. skalowaniu zadania (zmiennych, ograniczeń, cząstkowych funkcji celu itd. itp.).
- Trzeba pokazać przebieg wartości miary jakości i przekroczenia ograniczeń w funkcji wykonanych wywołań funkcji celu. Jeśli jest to właściwe użyć skali półlogarytmicznej, by ocenić charakter zbieżności.
- Konieczne jest porównanie charakterystyk oraz wartości parametrów roboczych i parametrów optymalizowanych przed optymalizacją i po optymalizacji. Dla zadań projektowania trzeba na wykresach charakterystyk
 umieścić również wymagania projektowe i ew. ograniczenia. Trzeba też podać nakłady obliczeniowe (liczba
 wykonanych symulacji, orientacyjny czas obliczeń).
- Dokumentacja musi odpowiedzieć na pytania:
 - Czy zadanie optymalizacji sformułowano prawidłowo?
 - Czy wskutek użycia optymalizacji uzyskano widoczną poprawę własności obiektu (ilustracja graficzna, wartości liczbowe funkcji celu i ograniczeń)?
 - Jaka jest złożoność obliczeniowa procesu optymalizacji i jaki jest charakter zbieżności procesów iteracyjnych?
- Zawartość archiwum musi pozwalać na powtórzenie wszystkich optymalizacji projektu w środowisku: Matlab2022a/LTspice. W M-plikach nie może być bezwzględnych ścieżek dostępu do plików.

<u>Uwaga</u>. Jeżeli projekt zawiera więcej niż jedną część, to w etapie 1 projektu trzeba odnieść się do każdej z części. Przykładowo może chodzić o sformułowanie i rozwiązywanie zadania optymalizacji funkcji celu przy nieliniowych ograniczeniach, a także o zadanie optymalizacji dwukryterialnej i numeryczne wyznaczenie brzegu (frontu) zbioru Pareto.

— Informacje o zasadach oceniania podano w oddzielnym dokumencie: https://studia2.elka.pw. edu.pl/file/22L/103A-ELxxx-MSP-MOZA/priv/priv/P/P_zasady_2.pdf dostępnym przez stronę Projektu.

1. Projektowanie wzmacniaczy szerokopasmowych

1.1. Projekt Kask3. Kaskodowy wzmacniacz szerokopasmowy nr 3

Rysunek 1.1. Schemat wzmacniacza z kaskodą (wersja 3). Cewka L1 koryguje charakterystykę w zakresie wysokich częstotliwości.

1.1.1. Wariant A

- 1. Dla wzmacniacza z rys. 1.1 należy dobrać wartości elementów tak, by:
 - a) wzmocnienie napięciowe dla małych częstotliwości k_{u0} wynosiło co najmniej 26dB
 - b) dynamika sygnału wyjściowego (out) wynosiła co najmniej 4Vpp.
- 2. Korzystając z optymalizacji dobrać wartości parametrów tak, by uzyskać jak największe pasmo 3dB wzmocnienia napięciowego f_g (przy zachowaniu wymagań z p. 1). Podbicie charakterystyki względem k_{u0} nie powinno być większe niż 0.5dB.
- 3. Wyznaczyć krzywą Pareto dla parametrów roboczych f_q i k_{u0} . Zaznaczyć na krzywej rozwiązanie z p. 2.

1.1.2. Wariant B

- 1. Dla wzmacniacza z rys. 1.1 należy dobrać wartości elementów tak, by:
 - a) wzmocnienie napięciowe dla małych częstotliwości k_{u0} wynosiło co najmniej 30 $extsf{V/V}$
 - b) pasmo 3dB f_q było co najmniej równe $300 \mathrm{MHz}$.
- 2. Korzystając z optymalizacji dobrać wartości elementów układu tak, by uzyskać maksymalny iloczyn $GBW=k_{u0}f_g$, przy zachowaniu warunków jak w p. 1. Podbicie charakterystyki (względem k_{u0}) nie powinno być większe niż 1dB.
- 3. Wyznaczyć krzywą Pareto dla parametrów roboczych f_q i k_{u0} . Zaznaczyć na krzywej rozwiązanie z p. 2.

1.2. Projekt Kask4. Kaskodowy wzmacniacz szerokopasmowy nr 4

Rysunek 1.2. Schemat wzmacniacza z kaskodą (wersja 4). Elementy CEE,REE2 korygują charakterystykę w zakresie wysokich częstotliwości.

1.2.1. Wariant A

- 1. Dla wzmacniacza z rys. 1.2 należy dobrać wartości elementów tak, by:
 - a) wzmocnienie napięciowe dla małych częstotliwości k_{u0} wynosiło co najmniej 20dB
 - b) dynamika sygnału wyjściowego (out) wynosiła co najmniej 5Vpp.
- 2. Korzystając z optymalizacji dobrać wartości parametrów tak, by uzyskać jak największe pasmo 3dB wzmocnienia napięciowego f_g (przy zachowaniu wymagań z p. 1). Podbicie charakterystyki względem k_{u0} nie powinno być większe niż 0.5dB.
- 3. Wyznaczyć krzywą Pareto dla parametrów roboczych f_g i k_{u0} . Zaznaczyć na krzywej rozwiązanie z p. 2.

1.2.2. Wariant B

- 1. Dla wzmacniacza z rys. 1.2 należy dobrać wartości elementów tak, by:
 - a) wzmocnienie napięciowe dla małych częstotliwości k_{u0} wynosiło co najmniej $10 \; extsf{V/V}$
 - b) pasmo 3dB f_q było co najmniej równe $200\mathrm{MHz}$.
- 2. Korzystając z optymalizacji dobrać wartości elementów układu tak, by uzyskać maksymalny iloczyn $GBW=k_{u0}f_g$, przy zachowaniu warunków jak w p. 1. Podbicie charakterystyki (względem k_{u0}) nie powinno być większe niż 1dB.
- 3. Wyznaczyć krzywą Pareto dla parametrów roboczych f_g i k_{u0} . Zaznaczyć na krzywej rozwiązanie z p. 2.

1.3. Projekt DTK1. Dwójka tranzystorowa z korekcją nr 1.

Rysunek 1.3. Schemat dwójki tranzystorowej nr 1.

1.3.1. Wariant A

Dobierz parametry układu z rys. 1.3, by były spełnione następujące wymagania:

- 1. W zakresie częstotliwości $[f_L, f_U]$
 - a) moduł wzmocnienia skutecznego powinien wynosić A_0 z nierównomiernością do ± 0.5 dB .
 - b) moduł impedancji wejściowej układu powinien być nie mniejszy od $R_{inmin}=10k\Omega$ w zakresie częstotliwości $[f_L,\,f_U]$.
 - c) amplituda niezniekształconego sinusoidalnego napięcia wyjściowego powinna wynosić co najmniej 1V dla częstotliwości 1kHz.

W obliczeniach należy przyjąć $f_L=100~{\rm Hz}$, a $f_U=200{\rm kHz}$. Wartość A_0 można wybrać z przedziału $[30;\,50]{\rm dB}$. Uwaga. Pojemności C1 i C2 powinny być używane do zapewnienia odpowiedniego przebiegu charakterystyki w okolicach f_L , a C3 - w okolicach f_U .

- 2. Wykorzystaj optymalizację w środowisku Matlab dla znalezienia takich wartości elementów układu, by uzyskać jak największą wartość iloczynu $GBW=A_0f_{3dB}$, gdzie f_{3dB} , to 3dB górna częstotliwość graniczna, zachowując warunki z p. 1 (a,b,c).
- 3. Należy wyznaczyć krzywą Pareto dla parametrów roboczych A_0 i f_{3dB} . w okolicach rozwiązania znalezionego w p. 2. Na wykresie krzywej Pareto należy zaznaczyć rozwiązanie z p. 2.

1.4. Projekt DTK2. Dwójka tranzystorowa z korekcją nr 2

Rysunek 1.4. Schemat dwójki tranzystorowej nr 1.

Uwagi:

- Kondensatory C_1, C_2 , mają zapewniać małą dolną częstotliwość graniczną $f_L \leq 100$ Hz; wartości mogą być dobrane z niewielkim zapasem.
- C_E, C_F mogą być użyte do korekty charakterystyki w okolicach górnej częstotliwości granicznej f_U jeżeli okaże się to celowe.

1.4.1. Wariant A

- 1. Wykorzystaj optymalizację w środowisku Matlab dla znalezienia wartości elementów dwójki tranzystorowej z rys. 1.4 o jak największej wartości 3-dB górnej częstotliwości granicznej f_U (bez podbicia charakterystyki), spełniając też wymagania:
 - a) wzmocnienie skuteczne dla średnich częstotliwości: $k_{u0} \geq 20$ dB
 - b) dynamika sygnału wyjściowego (ΔU_{out}) to co najmniej $4V_{pp}$.
- 2. Korzystając z optymalizacji 2-kryterialnej określ krzywą optymalnego kompromisu (w sensie Pareto) pomiędzy parametrami roboczymi: f_U i k_{u0} . Zaznacz położenie rozwiązania z p. 1.

1.4.2. Wariant B

- 1. Wykorzystaj optymalizację w środowisku Matlab dla znalezienia wartości elementów dwójki tranzystorowej z rys. 1.4 o jak największej wartości iloczynu $GBW=k_{u0}f_U$, gdzie f_U , to 3dB górna częstotliwość graniczna wzmocnienia skutecznego, a k_{u0} wzmocnienie dla średnich częstotliwości. Należy też spełnić następujące wymagania:
 - a) wartość 3-dB górnej częstotliwości granicznej $f_g \ge 3$ MHz (podbicie charakterystyki co najwyżej 1dB)
 - b) dynamika sygnału wyjściowego (ΔU_{out}) to co najmniej $3V_{pp}$.
- 2. Korzystając z optymalizacji 2-kryterialnej określ krzywą optymalnego kompromisu (w sensie Pareto) pomiędzy parametrami roboczymi: k_{u0} i f_U . Zaznacz położenie rozwiązania z p. 1.

1.5. Projekt WBAF. Wzmacniacz szerokopasmowy z tranzystorem FET

Rysunek 1.5. Schemat wzmacniacza.

1.5.1. Wariant A

- 1. Dla wzmacniacza szerokopasmowego z powyższego schematu dobierz (korzystając z numerycznej optymalizacji) wartości elementów tak, by uzyskać maksymalną wartość 3dB górnej częstotliwości granicznej f_g przy wzmocnieniu dla średnich częstotliwości, ozn. k_{u0} , nie mniejszym od 10. Podbicie charakterystyki nie może przekraczać 0.5dB. Wzmacniacz powinien bez zniekształceń wzmacniać sygnały o amplitudzie do $U_{in}=0.1$ V w zakresie średnich częstotliwości.
- 2. Korzystając z optymalizacji 2-kryterialnej określ krzywą optymalnego kompromisu (w sensie Pareto) pomiędzy parametrami roboczymi: f_g i k_{u0} , zachowując wymagania na podbicie i dynamikę. Zaznacz na krzywej rozwiązanie z p. 1.

2. Projektowanie filtrów

2.1. Projekt URCLF. Filtr z linią RC.

.MODEL RCmod URC Rperl={R} Cperl={C}

Rysunek 2.1. Schemat filtru dolnoprzepustowego z rozłożoną linią RC.

Dla powyższego filtru określono pasmo przenoszenia: $f \in [0, f_1]$, częstotliwość zakłóceń f_2 oraz pasmo zaporowe: $f \in [f_3, f_4]$. Tłumienie względne filtru zdefiniowano następująco

$$T_r(f) = \frac{T(f)}{T(0)}, \qquad \text{gdzie} \quad T(f) = -20 \lg \frac{|V_{out}(f)|}{|V_{in}(f)|},$$

2.1.1. Wariant A

Wymagania projektowe: $f_1=25$ Hz, $f_2=50$ Hz $f_3=45$ Hz, $f_4=1$ kHz; tłumienie w paśmie przepustowym $0 \le T_r(f) \le 1$ dB; względne tłumienie w paśmie zaporowym: $T_r(f) \ge 18$ dB, względne tłumienie zakłóceń $T_r(f_2) \ge 32$ dB. Należy dobrać parametry układu tak, by spełnić wymagania projektowe z jak największym zapasem w paśmie przepustowym. Założyć, że wzmacniacz ma jeden dominujący biegun i pole wzmocnienia BW=1MHz.

- 1. Sformułuj zadanie projektowania w postaci zadania optymalizacji
- Rozwiąż zadanie optymalizacji przy pomocy bezgradientowego algorytmu Neldera-Meada oraz algorytmu gradientowego dopasowanego do postaci zadania optymalizacji. Porównaj szybkość zbieżności tych algorytmów.
- 3. Zbadaj wpływa skalowania na efektywność algorytmów.

2.1.2. Wariant B

Wymagania projektowe: $f_1=25$ Hz, $f_2=50$ Hz $f_3=45$ Hz, $f_4=1$ kHz; tłumienie w paśmie przepustowym $0 \le T_r(f) \le 1$ dB; względne tłumienie w paśmie zaporowym: $T_r(f) \ge 18$ dB, względne tłumienie zakłóceń $T_r(f_2) \ge 32$ dB. Należy dobrać parametry układy tak, by spełnić wymagania projektowe z jak największym zapasem w paśmie zaporowym. Założyć, że wzmacniacz ma jeden dominujący biegun i pole wzmocnienia BW=1MHz.

- 1. Sformułuj zadanie projektowania w postaci zadania optymalizacji
- 2. Rozwiąż zadanie optymalnego projektowania przy pomocy bezgradientowego algorytmu poszukiwań wg wzorca oraz algorytmu gradientowego dopasowanego do postaci zadania optymalizacji. Porównaj szybkość zbieżności tych algorytmów.
- 3. Zbadaj wpływa skalowania na efektywność algorytmów.

2.1.3. Wariant C

Wymagania projektowe: $2\pi f_1 = 0.7$, $2\pi f_3 = 1.415$, $2\pi f_4 = 3$; brak zakłóceń (f_2) . Względne tłumienie w paśmie przepustowym $0 \le T_r(f) \le 1$ dB; względne tłumienie w paśmie zaporowym: $T_r(f) \ge 30$ dB.

- 1. Sformułuj 3 zadania optymalizacji, dodając do powyższych wymagań:
 - a) uzyskać największy zapas zarówno w paśmie przepustowym, jak i zaporowym, albo
 - b) uzyskać możliwie duży zapas w paśmie przepustowym, albo
 - c) uzyskać możliwie duży zapas w paśmie zaporowym
- 2. Rozwiąż powyższe zadania za pomocą algorytmu z estymacją gradientu, wykorzystując symulator układów. Porównaj uzyskane rozwiązania. Przyjmij następujące początkowe wartości parametrów układu: A=1.142, R=17,786, C=0.427, $R_1=1$, $R_2=1$, $C_1=0.067$, $C_2=2.62$

Materialy

— Filtry aktywne RC, praca zbiorowa pod kierunkiem Michała Białki, WNT.

2.2. Projekt BPFAA. Środkowoprzepustowy filtr ze sprzężeniem indukcyjnym

Rysunek 2.2. Schemat i charakterystyki środkowoprzepustowego filtru ze sprzężeniem indukcyjnym (autor: prof. A. Abramowicz).

Filtr środkowo przepustowy ze sprzężeniami indukcyjnymi (rys. 2.2) jest obustronnie obciążony impedancjami Z0=1000 Ω . Są cztery zmienne projektowe: $L1=L3,C1=C2=C3,\ L12=L23,L13$ i następujące wymagania:

W1. $|S11| \le -20 \text{dB}$ w paśmie przepustowym

W2. $|S21| \ge -0.05 dB$ w paśmie przepustowym

W3. $|S21| \leq -40 \, \text{dB}$ na częstotliwościach większych niż 1.25 GHz

Uwagi:

- charakterystyka ma zero transmisji po jednej stronie częstotliwości środkowej.
- orientacyjne wartości elementów: L1=31 nH, L2=32nH, L12=188 nH, L13=605 nH, C=1 pF

2.2.1. Wariant A

- 1. Dobrać wartości zmiennych projektowyc tak, by spełnić wymagania W1, W2, W3, przy możliwie jak najmniejszym zafalowaniu |S21| w paśmie przepustowym: $[0.85,\ 1.15]$ GHz. Optymalizację przeprowadzić za pomocą algorytmu fminimax w dwóch wariantach:
 - a) pochodne obliczane są z wyrażeń (uzyskanych przy pomocy różniczkowania symbolicznych postaci transmitancji filtru)
 - b) pochodne są przybliżane przez użyty algorytm optymalizacji
- 2. Dla porównania wykonać optymalizację za pomocą algorytmu surrogateopt Matlaba.
- 3. Wykorzystując wyniki działania algorytmu fminimax określić wrażliwość funkcji celu względem stałych, występujących w wymaganiach W1 i W3.

2.2.2. Wariant B

- 1. Korzystając z gradientowej optymalizacji dobrać wartości zmiennych projektowych tak, by spełnić wymagania W1, W2, W3, przy możliwie jak najmniejszej maksymalnej wartości |S11| w paśmie przepustowym: $[0.85,\ 1.15]$ GHz.
- 2. Wyznaczyć przybliżenie zbioru Pareto w najbliższym sąsiedztwie rozwiązania z p. 1. Wykorzystać 2 miary jakości:
 - f1 zafalowanie |S21| w paśmie przepustowym
 - f2 maksymalna wartość |S11| w paśmie przepustowym oraz wymaganie W3. Zaznaczyć na krzywej Pareto rozwiązanie z p. 1.

3. Projektowanie układów impulsowych

3.1. Projekt ST. Przerzutnik Schmitta.

Rysunek 3.1. Schemat przerzutnika Schmitta

Dany jest układ przerzutnika Schmitta (rys. 3.1), przekształcający sinusoidalny sygnał wejściowy w falę prostokątną na wyjściu. Parametrami roboczymi są wartości czasów narastania (tr) i opadania (tf) napięcia wyjściowego. Dla poprawnego wyznaczania parametrów roboczych należy odpowiednio dobrać wartości parametrów przebiegu wejściowego (A0, f0, Vdc).

3.1.1. Wariant A

Zadania projektowe

- 1. Dobierz wartości parametrów układu tak, aby uzyskać jak najmniejsze wartości sumy: trf=tr+tf
- 2. Wyznacz krzywą Pareto (dla parametrów roboczych: tr i tf) w okolicach rozwiązania z p. 1. Na wykresie krzywej Pareto zaznacz rozwiązanie z p. 1.

Pamiętaj o ograniczeniach tranzystora na moc maksymalną wydzielaną w elemencie (Ptot) i prąd kolektora (Icmax). W obliczeniach inżynierskich i symulacji przyjmij typ tranzystorów zbliżony do BC547/2N2222.

3.1.2. Wariant B

Zadania projektowe

- 1. Dobierz wartości parametrów układu tak, aby uzyskać jak najmniejsze wartości: tmaxrf=max(tr,tf)
- 2. Wyznacz krzywą Pareto (dla parametrów roboczych: tr i tf) w okolicach rozwiązania z p. 1. Na wykresie krzywej Pareto zaznacz rozwiązanie z p. 1.

Pamiętaj o ograniczeniach tranzystora na moc maksymalną wydzielaną w elemencie (Ptot) i prąd kolektora (Icmax). W obliczeniach inżynierskich i symulacji przyjmij typ tranzystorów zbliżony do BC547/2N2222.

4. Projekty specjalne/indywidualne

4.1. Projekt XURCLF. Filtr z linią RC.

Rysunek 4.1. Schemat filtru dolnoprzepustowego z rozłożoną linią RC.

Dla powyższego filtru określono pasmo przenoszenia: $f \in [0, f_1]$, oraz pasmo zaporowe: $f \in [f_3, f_4]$. Tłumienie filtru zdefiniowano następująco

$$T(f) = -20 \lg \frac{|V_{out}(f)|}{|V_{in}(f)|},$$

a względne tłumienie $T_r(f) = T(f)/T(0)$

Wymagania projektowe: $2\pi f_1=0.7$, $2\pi f_3=1.415$, $2\pi f_4=3$. Względne tłumienie w paśmie przepustowym $0\leq T_r(f)\leq 1$ dB; względne tłumienie w paśmie zaporowym: $T_r(f)\geq 30$ dB.

- 1. Sformułuj zadanie optymalizacji tak by rozwiązanie spełniało powyższe wymagania i by uzyskać możliwie duże tłumienie w paśmie zaporowym.
- 2. Rozwiąż zadanie za pomocą algorytmu minimaks w dwóch wariantach: a) z pochodnymi estymowanymi przez algorytm optymalizacji, b) z dokładnymi gradientami. Do obliczeń odpowiedzi układu (oraz wrażliwości odpowiedzi względem parametrów optymalizacji) wykorzystaj układ równań metody potencjałów węzłowych:

$$\begin{bmatrix} Y_{22} + j\omega C_1 & -(Y_{12} + Y_{22}) & 0 \\ -\left(Y_{12} + Y_{22} + \frac{A}{R_1}\right) & \left(Y_{11} + Y_{12} + Y_{21} + Y_{22} + \frac{1}{R_1}\right) & 0 \\ -\frac{A}{R_2} & 0 & \frac{1}{R_2} + j\omega C_2 \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \\ V_{out} \end{bmatrix} = \begin{bmatrix} -Y_{12}V_{in} \\ (Y_{11} + Y_{12})V_{in} \\ 0 \end{bmatrix}$$

- 3. Porównaj uzyskane rozwiązania. Przyjmij następujące początkowe wartości parametrów układu: A=1.142, R=17,786, C=0.427, $R_1=1$, $R_2=1$, $C_1=0.067$, $C_2=2.62$. Uwagi
 - Jednorodną linię RC można symulować w programie SPICE za pomocą elementu "Uniform RC line", albo elementu "Stratna linia długa" (przyjmując L=0, G=0).
 - Elementy macierzy Y jednorodnej linii rozłożonej RC mają postać:

$$Y_{11}(\omega) = Y_{22}(\omega) = \frac{\sqrt{j\omega C}}{\sqrt{R}\tanh(j\omega RC)}$$

 $Y_{12}(\omega) = Y_{21}(\omega) = -\frac{\sqrt{j\omega C}}{\sqrt{R}\sinh(j\omega RC)}$

4.2. Projekt XWKE. Wzmacniacz klasy E.

Dla wzmacniacza klasy E, pokazanego na rysunku 4.2, należy dobrać wartości elementów L0, L1, C0, RL tak, by uzyskać jak największą moc sygnału w obciążeniu RL. Pełny opis wymagań, związanych z poprawną pracą w klasie E, można znaleźć w [2].

Rysunek 4.2. Uproszczony schemat wzmacniacza klasy E

Zakres projektu

- Uruchomienie programu ASCO w środowisku komputerowym wykorzystywanym przez studenta-wykonawce do realizacji zadań MOZA.
- Przeprowadenie optymalizacji numerycznej za pomocą programu ASCO [1]. Należy posłużyć się algorytmem DE, proponowanym przez [2].
- Przeprowadzić optymalizację numeryczną za pomocą algorytmu patternsearch Matlaba.
- Porównać przebieg optymalizacji i jakość uzyskanych wyników.

Materialy

- 1. ASCO (A Spice Circuit Optimizer). http://asco.sourceforge.net/index.html
- 2. ASCO tutorials, Tutorial #3 Class-E power amplifier. http://asco.sourceforge.net/doc/asco.html#cha:ASCO_Tutorials