Deckblatt für die Abgabe der Übungsaufgaben ${\bf IngMathC1}$

Name, Vorname:	Ruck, Julia
StudOn-Kennung:	CY 0618CO
Blatt-Nummer:	03
Übungsgruppen-Nr:	07
Die folgenden Aufgaben gebe ich zur Korrektur frei:	
A7 , A8 ,	

8/10*20=16

$$\begin{array}{c} A \neq \\ (i) \ \ \alpha_{N} = \frac{5 + (-1)^{N} + \frac{1}{N} \sin n}{n^{2}} \\ \\ \lim \alpha_{N} = \lim_{n \to \infty} \frac{5 + (-1)^{N} + \frac{1}{N} \sin n}{n^{2}} \\ \\ \frac{5 + 1 + \frac{1}{N} \cdot 1}{n^{2}} & \leq \frac{5 + (-1)^{N} + \frac{1}{N} \sin n}{n^{2}} \\ \\ \frac{6 + \frac{1}{N}}{n^{2}} & = \frac{5 + (-1)^{N} + \frac{1}{N} \sin n}{n^{2}} \\ \\ \frac{6 + \frac{1}{N}}{n^{2}} & = \frac{6 \cdot \frac{1}{N}}{n^{2}} \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5 + (-1)^{N} + \frac{1}{N} \sin n}{n^{2}} \\ \\ \frac{6 \cdot \frac{1}{N}}{n^{2}} & = \frac{4}{N} \cdot (4 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (6 + \frac{1}{N}) & \leq \frac{5}{N} \cdot (2 - \frac{1}{N}) \\ \\ \frac{1}{N^{2}} \cdot (2 - \frac{1$$

b) i)	M = 8 0, +00 3
	für ungerades n: lim inf = 0
	für gerades n: 11m sup = +00
ii)	M= \{ 1, - 1 \}
	lim sup = 1
	live inf = -1
iii	M= \{[-17,0], [18,+0)}
	$a_n = \begin{cases} -n & \text{falls} & n \leq 17 : \text{ lim inf} = -17 \\ n & \text{falls} & n \geq 17 : \text{ lim sup} = +\infty \end{cases}$
	(n falls N > 17: lim sup = +00
iv	1 M= \{ +00,0,1,-00\}
	q > 1: 1 im inf = a1 , 1 im sup = +00
	q - 1 :
	0 <q<1 an,="" inf="0</td" lim="" sup=""></q<1>
	0 = 0 -1< 9<0: $\lim \inf a_1 \lim \sup a_2$
	9=-1
	q < -1 \lim Sup= +00, \lim inf=-00

A8)

a)
$$\lim_{Z \to K} \frac{K}{|x|} = \lim_{K \to \infty} \frac{1}{|x|} = \frac{1}{|x|} =$$