

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1024292 A

3(51) В 29 D 23/04; В 29 F 3/08

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3341074/23-05
(22) 06.07.81
(46) 23.06.83. Бюл. № 23
(72) А. Д. Чернянский
(71) Воронежский завод строительных алюминиевых конструкций им. Ф. Б. Якубовского
(53) 678.057 (088.8)
(56) 1. Патент Великобритании № 1336178, кл. В 5 А, 1973.
2. Авторское свидетельство СССР № 806446, кл. В 29 D 23/04, 1978 (прототип).
(54) (57) УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛЫХ ПРОФИЛЬНЫХ ИЗДЕЛИЙ ИЗ ТЕРМОПЛАСТИЧНЫХ ПОЛИМЕРОВ, содержащее последовательно расположенные экструдер, профильную головку, внутри которой размещен дORN, выполненный с ка-

налом для подачи воздуха внутрь заготовки, двухсекционный калибратор с охлаждающей рубашкой, охлаждающую ванну и тяущий механизм, отличающееся тем, что, с целью повышения качества изделия путем интенсификации калибрования, дORN выполнен с овальным поперечным сечением, оси которого пропорциональны габаритным размерам поперечного сечения изделия, а вторая секция калибратора выполнена с калибрующими поверхностями, соответствующими поверхностям основных угловых элементов впадин сечения профильного изделия, причем расстояние между первой секцией калибратора и профильной головкой выбрано равным 0,1—0,15 максимального размера поперечного сечения рабочей полости первой секции калибратора.

Фиг. 1

(19) SU (11) 1024292 A

Изобретение относится к переработке пластмасс, в частности к области получения из термопластичных материалов, например из полиэтилена, профильных изделий сложной конфигурации с острыми угловыми элементами выступов и впадин, которые широко используются для различных элементов конструкций во многих отраслях промышленности.

Известно устройство для изготовления полых профильных изделий, содержащее последовательно расположенные экструдер с профильной головкой, выполненной с каналом для подачи воздуха внутрь заготовки, секционный калибратор с охлаждающей рубашкой, охлаждающую ванну и тянувший механизм [1].

Недостаток данного устройства состоит в том, что оно позволяет получать только профильные изделия несложной геометрической формы — трубы круглого, квадратного, овального и прямоугольного сечения, полые профильные изделия с выступающими элементами большой толщины, без высокой точности геометрии профиля и размеров.

Наиболее близким по технической сущности и достигаемому результату к изобретению является устройство для изготовления полых профильных изделий из термопластичных полимеров, содержащее последовательно расположенные экструдер, профильную головку, внутри которой размещен дон, выполненный с каналом для подачи воздуха внутрь заготовки, двухсекционный калибратор с охлаждающей рубашкой, охлаждающую ванну и тянущий механизм [2].

Недостаток известного устройства состоит в низком качестве изделий, поскольку при калибровании на первой стадии по всей поверхности в первую очередь остывают и фиксируются тонкие острые элементы выступов, а остальные поверхности имеют тонкую непрочную пленку. На второй стадии калибрования только по габаритным размерам основные угловые элементы «ласточкина хвоста» не ограничены, и под действием избыточного давления воздуха, подаваемого во внутреннюю полость, заготовки искажаются.

Кроме того, расстояние между профильной головкой и калибратором равно 0,15—1,0 максимального размера поперечного сечения рабочей полости первой секции калибратора. При указанных пределах заготовка раздувается воздухом давлением до 0,3 атм, что недостаточно для формирования острых элементов, а при увеличении давления воздуха, подаваемого вовнутрь заготовки, раздув заготовки в пространстве между профильной головкой и калибратором увеличивается, а это увеличивает угол трения

расплавленной массы полиэтилена относительно заходной части первой секции калибратора, что приводит к затору массы и обрыву заготовки.

Целью изобретения является повышение качества изделий путем интенсификации калибрования.

Для достижения поставленной цели в устройстве для изготовления полых профильных изделий из термопластичных полимеров, содержащем последовательно расположенные экструдер, профильную головку, внутри которой размещен дон, выполненный с каналом для подачи воздуха внутрь заготовки, двухсекционный калибратор с охлаждающей рубашкой, охлаждающую ванну и тянущий механизм, дон выполнен с овальным поперечным сечением, оси которого пропорциональны габаритным размерам поперечного сечения изделия, а вторая секция калибратора выполнена с калибрующими поверхностями, соответствующими поверхностям основных угловых элементов впадин сечения профильного изделия, причем расстояние между первой секцией калибратора и профильной головкой выбрано равным 0,1—0,15 максимального размера поперечного сечения рабочей полости первой секции калибратора.

На фиг. 1 показано устройство, общий вид; на фиг. 2 — разрез А—А на фиг. 1 (формирующая часть профильной головки экструдера); на фиг. 3 — разрез Б—Б на фиг. 2 (первая секция калибратора); на фиг. 4 — разрез В—В (вторая секция калибратора); на фиг. 5 — разрез Г—Г на фиг. 4 (сечение полного профильного изделия).

Устройство содержит экструдер 1, профильную головку 2, внутри которой размещен дон 3, выполненный с овальным поперечным сечением, оси которого пропорциональны габаритным размерам поперечного сечения изделия. Дон 3 выполнен с каналом 4 для подачи воздуха внутрь заготовки.

Калибратор выполнен в виде двух сечений 5 и 6, первая секция 5 которого снабжена водяной рубашкой 7, и с одной стороны размещена от профильной головки 2 экструдера 1 на расстоянии 0,1—0,15 максимального размера поперечного сечения рабочей полости, а с другой, — вплотную примыкает к охлаждающей ванне 8. Вторая секция 6 калибратора размещена в охлаждающей ванне 8 и вплотную примыкает к стенке ванны 8. За охлаждающей ванной 8 размещены тянущий механизм 9 и намоточный узел 10.

Первая секция 5 состоит из четырех плит: верхней 11, нижней 12 и двух боковых 13 и 14, образуя рабочую полость калибрования по всей поверхности сечения изделия. Каждая плита 11—14 имеет канал для подачи охлаждающей воды.

Вторая секция 6 калибратора состоит из четырех сплошных плит: верхней 15, нижней 16, и двух боковых 17 и 18. Калибрующая рабочая поверхность повторяет поверхность образующих основные элементы впадин сечения изделия.

Устройство работает следующим образом.

Расплав термопласта из экструдера 1 через профильную головку 2, снабженную дорном 3 овального поперечного сечения с каналом 4, поступает в свободное пространство между профильной головкой и калибратором с одновременной подачей воздуха через канал 4 внутрь профильной заготовки, который раздувает ее до размеров, превышающих размер поперечного сечения калибрующей рабочей полости первой секции 5 калибратора. Раздутая заготовка с овальным отверстием поступает в первую секцию 5 калибратора с циркулирующей в рубашке 7 водой. В первой секции 5 калибратора раздутая профильная заготовка плотно прижимается к стенкам рабочей полости, и благодаря обжатию заготовки стенками полости и пневматическому прижиму заготовки к стенкам секции 5 калибратора, профильная заготовка приобретает форму полого профильного изделия 19, что обусловлено охлаждением и фиксацией острых выступающих элементов профиля и частичным охлаждением остальных его элементов.

Оформленное и частично охлажденное профильное изделие 19 поступает во вторую секцию 6 калибратора, размещенную в охлаждающей ванне 8 с проточной охлаждающей водой.

Во второй секции 6 калибратора профильное изделие 19 дополнительно калибруется по поверхностям, образующим основные элементы впадин сечения профильного изделия 19, и охлаждается до необходимой температуры, при которой оно способно сохранять заданную форму на последующих стадиях, а затем поступает в охлаждающую ванну 8, где происходит окончательное охлаждение.

Протягивание профильного изделия 19 через калибрующую и охлаждающую систему осуществляется с помощью тяущего механизма 9.

Сформованное и остывшее профильное изделие 19 сматывается в бухту с помощью намоточного узла 10.

Пример 1. Полое профильное изделие (фиг. 5) сложной конфигурации с острыми угловыми элементами выступов и впадин с габаритами поперечного сечения 15 мм × 20 мм получают из полиэтилена низкого давления ПЭНД с плотностью 0,953 г/см³.

Устройство имеет следующие характеристики: диаметр шнека 63 мм; длина шнека

1250 мм; степень сжатия шнека 4,5; сечение дорна формующей части профильной головки — овальное с осями 9 и 12 мм; длина первой секции калибратора 300 мм; длина второй секции калибратора 300 мм; расстояние между профильной головкой и первой секцией калибратора составляло 2,5 мм; т.е. 0,125 максимального размера поперечного сечения рабочей полости первой секции калибратора (20 мм).

Температура по зонам экструдера, начиная от загрузки, 150—155—160—165°C; температура по зонам профильной головки 155—145°C; скорость вращения шнека 70—80 об/мин; давление воздуха внутри полой заготовки 0,5 атм.

Расплав ПЭНД поступает из экструдера через профильную головку в свободное пространство между профильной головкой и калибратором. Одновременно подают воздух под давлением 0,1—0,5 атм. (постепенно увеличивая его) через канал в дорне внутрь полой профильной заготовки.

Заготовка, разнутая до размеров, превышающих размер поперечного сечения калибрующей рабочей полости первой секции калибратора, поступает в калибратор. В первой секции калибратора разнутая профильная заготовка обжималась стенками рабочей полости, благодаря чему происходит фиксация острых выступающих элементов и частичное охлаждение остальных его элементов.

Оформленное и частично охлажденное профильное изделие, поступая во вторую секцию, калибруется по поверхностям, образующим основные элементы впадин сечения профиля, и охлаждается до температуры, при которой оно сохраняет форму, а затем поступает в охлаждающую ванну, где окончательно охлаждается. Одновременно с указанными стадиями протягивают профильное изделие со скоростью 2,5—3 м/мин с помощью тяущего устройства. Готовое изделие сматывается в бухту с помощью намоточного узла.

Размеры основных элементов сечения с острыми выступами и впадинами соответствуют 4—5 классу точности (ГОСТ—11710—71).

Пример 2. Полое профильное изделие получают из полиэтилена ПЭНД аналогично примеру 1.

Давление воздуха 0,3 атм, размеры острых выступающих элементов полученного профиля соответствуют 7—10 классу точности. (ГОСТ—11710—71).

Пример 3. Полое профильное изделие получают из полиэтилена ПЭНД аналогично примеру 1.

Расстояние между профильной головкой и первой секцией калибратора составляет

4 мм, т.е. 0,20 максимального размера по-
перечного сечения калибрующей рабочей
полости первой секции калибратора. При
таком расстоянии и давлении 0,5 атм за-
готовка разрывается между профильной
головкой экструдера и калибратором, что не
позволяет получать заданный профиль.

Данным способом можно получать рав-
нопрочное полое профильное изделие с раз-
личными острыми угловыми элементами высту-
пов и впадин с отношением габаритных
размеров сечения изделия более единицы
по 4—5 классу точности в зависимости от
природы и молекулярных характеристик при-
меняемых термопластов.

5

В качестве термопластичных материалов
могут использоваться полистиролы, полиоле-
фины, поливинилхлорид АБС—пластики и,
например, полиэтилен с различными пока-
зателями текучести расплава (ПТР).

10

Использование изобретения позволит из-
готавливать полые профильные изделия с
острыми угловыми элементами выступов и
впадин, которые могут найти широкое при-
менение в качестве уплотнительных, соеди-
нительных и других элементов конструкций
во многих отраслях промышленности и, в
частности, в строительстве при изготовле-
нии утепленных алюминиевых конструкций
(окон, витражей, дверей и т.д.) в качестве
термовкладыша (мостика холода).

A - A

Фиг. 2

B - B

Фиг. 3

B - B

Фиг. 4

F - F

Фиг. 5

Редактор Н. Пушненкова
Заказ 4298/14

Составитель М. Фитисова
Техред И. Верес
Тираж 647

Корректор А. Ильин
Подписьное

ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5
Филиал ППП «Патент», г. Ужгород, ул. Проектная, 4