Markov Decision Processes

Lecture outline

- Stochastic domains (e.g. Grid World)
- MDP definitions
 - Transition functions
 - Policy
 - Reward functions and discounting
- Solving MDPs
 - Value iteration
 - Bellman equations
 - Policy iteration

Stochastic domains

Example: stochastic grid world

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Reward function can be anything. For ex:
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize (discounted) sum of rewards

Stochastic actions

The transition function

Transition probabilities:

lacksquare	$P(s' \mid s_1, a)$
$oxed{S_2}$	0.1
$\overline{S_3}$	0.8
$oxed{S_4}$	0.1

The transition function

Transition function: $T(s,a,s^\prime)$

 defines transition probabilities for each state, action pair

Transition probabilities:

s'	$P(s' \mid s_1, a)$
$oxed{S_2}$	0.1
S_3	0.8
$\overline{S_4}$	0.1

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process) defines a stochastic control problem:

$$M = (S, A, T, R)$$

State set: $s \in S$

Action Set: $a \in A$

Transition function: $T: S \times A \times S \to \mathbb{R}_{\geq 0}$

Reward function: $R:S imes A o \mathbb{R}_{>0}$

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process) defines a stochastic control problem:

$$M = (S, A, T, R)$$

State set: $s \in S$

Action Set: $a \in A$

Transition function: $T: S \times A \times S \to \mathbb{R}_{\geq 0}$

Reward function: $R: S \times A \to \mathbb{R}_{\geq 0}$

Probability of going from s to s' when executing action a

$$\sum_{s' \in S} T(s, a, s') = 1$$

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process) defines a stochastic control problem:

$$M = (S, A, T, R)$$

State set: $s \in S$

Action Set: $a \in A$

Transition function: $T: S \times A \times S \to \mathbb{R}_{\geq 0}$

Reward function: $R:S imes A o \mathbb{R}_{>0}$

Probability of going from s to s' when executing action a

$$\sum_{s' \in S} T(s, a, s') = 1$$

But, what is the objective?

Technically, an MDP is a 4-tuple

An MDP (Markov Decision Process) defines a stochastic control problem:

$$M = (S, A, T, R)$$

State set: $s \in S$

Action Set: $a \in A$

Transition function: $T: S \times A \times S \to \mathbb{R}_{\geq 0}$

Reward function: $R:S imes A o \mathbb{R}_{>0}$

Probability of going from s to s' when executing action a

$$\sum_{s' \in S} T(s, a, s') = 1$$

Objective: calculate a strategy for acting so as to maximize the (discounted) sum of future rewards.

- we will calculate a *policy* that will tell us how to act

Example

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

What is a *policy*?

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy π^* : $S \to A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

This policy is optimal when R(s, a, s') = -0.03 for all nonterminal states

Why is it Markov?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$= P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Examples of optimal policies

How would we solve this using expectimax?

How would we solve this using expectimax?

Problems w/ this approach:

- how deep do we search?
- how do we deal w/ loops?

How would we solve this using expectimax?

Problems w/ this approach:

- how deep do we search?
- how do we deal w/ loops?

Is there a better way?

In general: how should we balance amount of reward vs how soon it is obtained?

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Where, for example: $\gamma \approx 0.9$

How to discount?

 Each time we descend a level, we multiply in the discount once

Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge

- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

Choosing a reward function

A few possibilities:

- all reward on goal/firepit
- negative reward everywhere except terminal states
- gradually increasing reward as you approach the goal

<u>In general:</u>

reward can be whatever you want

Discounting example

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

• Quiz 3: For which γ are West and East equally good when in state d?

Solving MDPs

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Snapshot of Demo – Gridworld V Values

Noise = 0.2 Discount = 0.9 Living reward = 0

Snapshot of Demo – Gridworld V Values

Noise = 0.2 Discount = 0.9 Living reward = 0

We're going to calculate V* and/or Q* by repeatedly doing one-step expectimax.

Notice that the V* and Q* can be defined recursively:

$$V^*(s) = \max_a Q^*(s,a)$$

$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]$$
 Called Bellman equations
$$V^*(s) = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]$$

– note that the above do not reference the optimal policy, π^*

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

Value of s at k timesteps to go: $V_k(s)$

Value iteration:

- 1. initialize $V_0(s)=0$
- 2. $V_1(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_0(s') \right]$ 3. $V_2(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_1(s') \right]$
- 4.
- 5. $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

Value of s at k timesteps to go: $V_k(s)$

Value iteration:

1. initialize
$$V_0(s)=0$$

- 3.
- $V_{k+1}(s)$
- $V_2(s) \leftarrow$ This iteration converges! The value of each state converges to a unique 4. optimal value.
 - policy typically converges before value function converges...
 - time complexity = O(S² A)

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

0

Noise = 0.2 Discount = 0.9 Living reward = 0

Proof sketch: convergence of value iteration

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max|R| different
 - So as k increases, the values converge

Bellman Equations and Value iteration

Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method ... though the V_k vectors are also interpretable as timelimited values

But, how do you compute a policy?

Suppose that we have run value iteration and now have a pretty good approximation of V* ...

But, how do you compute a policy?

The optimal policy is implied by the optimal value function...