ACT 1: Une bête machine

COMPETENCES TRAVAILLEES

<u> </u>		
ANA	Développer des capacités d'abstraction et de généralisation.	
REA	Faire preuve d'autonomie, d'initiative et de créativité	
APP	Comprendre et réutiliser les ressources existantes	

A voir : Documentaire vintage de 1994 (pour les 46s d'intro)

https://youtu.be/W20d8Pj2fy8?start=0&end=46

1. <u>Vu de l'intérieur</u>

A voir : Démontage PC https://youtu.be/Fk2kYo2E61A

EXPLOITATION:

1) Après avoir vu la vidéo ci dessus sur le démontage d'un PC, légender la photo ci-dessous avec les mots suivants :

RAM, Processeur(CPU), Carte graphique, Disque Dur, Alimentation

- 2) Quel est l'élément principal d'un ordinateur ?
- 3) Que veut dire R.A.M. et C.P.U. ? Pourquoi sont-ils proches physiquement ?

ACT1_la_base_de_la_machine page 1/3

2. A la base, le transistor

Tout ordinateur est conçu à partir de circuits intégrés qui ont tous une fonction spécialisée (ALU, mémoire, décodeurs d'instructions, d'adresses ... Ces circuits sont fait à partir de circuits logiques dont le but est d'exécuter des opérations sur des variables logiques (binaires). Ils sont élaborés à partir de composants électroniques appelés transistors.

CPU Transistor Counts 1971-2008 & Moore's Law

Le transistor est l'élément de base des **circuits logiques**. Un circuit logique prend en entrée E une ou des variables, et fournit une ou des variables en sortie S.

Chaque signal, entrée ou sortie, peut-être dans deux états possibles :

- un état « haut », symbolisé par un 1
- un état « bas », symbolisé par un 0

ACT1_la_base_de_la_machine page 2/3

MANIPULATIONS:

On se propose de simuler un circuit logique d'un ordinateur (à 1 transistor) à l'aide d'un interrupteur, d'une pile et d'une ampoule.

A A

Lorsque A est en état « haut », on a S en état « bas », et inversement.

En plaçant un interrupteur en série avec une lampe et une pile, on peut faire l'analogie suivante avec le transistor :

La lampe allumée correspond à l'état « haut » de S. L'interrupteur « ouvert » correspondrait donc à l'état « bas » pour S car la lampe est éteinte.

EXPLOITATION

- 1) Effectuer le montage proposé.
- 2) Justifier que l'interrupteur ouvert correspond à l'état « haut » de A.
- 3) En notant un état « haut » symbolisé par un 1 et un état « bas » symbolisé par un 0, compléter le tableau :

A	S
0	
1	

3. Un peu de branchements...

MANIPULATIONS:

On se propose de simuler deux circuits logiques fondamentaux utilisés en électronique (à 2 transistors, donc 2 entrées) à l'aide du même circuit que précédemment, en rajoutant un interrupteur.

2 transistors en série : porte logique NAND

2 transistors en parallèle : porte logique NOR

(Note: R1, R2 et R3 sont des résistances)

EXPLOITATION

- 1) Effectuer les 2 montages permettant de simuler le fonctionnement de ces 2 circuits logiques.
- 2) Compléter 2 tableaux du type :

A	В	Output = S

ACT1_la_base_de_la_machine page 3/3