

Lista 6 - Funções de Várias Variáveis

1) Calcule as integrais duplas e triplas a seguir:

a)
$$\int_1^4 \int_1^2 \left(\frac{x}{y} + \frac{y}{x} \right) dy \, dx$$

b)
$$\int_0^2 \int_{3y^2-6y}^{2y-y^2} 3y \, dx \, dy$$

c)
$$\iint_R (2x + y) dxdy$$
 onde R é a região delimitada por: $x = y^2 - 1$; $x = 5$; $y = -1$ e $y = 2$

d)
$$\int_0^2 \int_{\sqrt{y}}^1 \int_{z^2}^y xy^2 z^3 dx dz dy$$

e)
$$\int_0^{\pi} \int_0^1 \int_0^{\sqrt{1-y^2}} y sen x \, dz \, dy \, dx$$

f)
$$\iiint_E yz \cos x^5 dV$$
 onde E é a região dada por: $\{(x,y,z)|0 \le x \le 1; 0 \le y \le x; x \le z \le 2x\}$

- 2) Calcular a integral $\iint_D (x^3 + 3y) dA$, onde D é a região delimitada pelas curvas $y = x^2$ e y = 2x. (Fig. 1).
- 3) Calcular o volume do tetraedro delimitado pelo plano x + y + z = 1 e pelos eixos coordenados (Fig. 2).
- 4) Calcular, por integral dupla, a área da região D delimitada pelas curvas $x^2 + 2y = 16$ e x + 2y = 4 (Fig. 3).
- 5) Uma lâmina tem a forma de um retângulo cujos vértices são (0,0), (4,0), (0,2) e (4,2). Determine a massa da lâmina, medida em gramas, sabendo que a densidade de massa por área num ponto P é $\delta(x,y) = 3xy$.
- 6) Uma carga elétrica é distribuída sobre uma região D delimitada pelo retângulo de vértices (3,2), (0,2), (3,0) e (0,0) de modo que a densidade de carga num ponto (x,y) seja $\delta(x,y)=x^2y$, medida em Coulomb por metro quadrado (C/m^2) . Determine sua carga total.
- 7) Determine a massa de uma lâmina triangular com vértices (0,0), (1,0) e (0,2), sabendo que a função densidade é $\delta(x,y) = 1 + 3x + y$.
- 8) Calcule, por integral dupla, a área da região D do plano xy delimitada pelas curvas indicadas $y = x^3$; x + y = 2; y = 0. (Figura 4).
- 9) Determinar o volume da região R limitada pelo cilindro e pelo plano xy, que é limitado pelos planos x = 1; x = 0; y = -1 e y = 1. (Figura 5).
- 10) Determinar o volume da região delimitada pelas curvas apresentadas na Figura 6.
- 11) Calcule, por integral dupla, a área da região D do plano xy delimitada pelas curvas indicadas na Figura 7: x y = 1; $y = x^2$; x = -1 e x = 1.
- 12) Determine o volume do sólido delimitado pelos planos z = 0; y = 0; x = 0 e 2x + 4y + z = 8, ilustrado na Figura 8.
- 13) Utilizando integrais triplas, calcule o volume das regiões delimitadas pelas curvas nas Figuras 9, 10 e 11.

Lista 6 - Respostas

a) $R.:\approx 7,28$

b) R.: 16

c) $R.:\approx 76,65$

d) $R.: \approx -0.51$

e) $R.:\approx 0.66$

f) $R.:\approx 0.126$

2) $R.:\approx 8,53$

3) $R.:\approx 0.16$

4) $R.: \approx 28,58$

5) R.: 48 gramas

6) *R*.: 18 Coulombs

7) R.: 2,66 gramas

8) R.: 0,75

9) *R*.: 0,66

10) *R*.: **17,07**

11) *R*.: 2,67

12) *R*.: 10,67

13) R.: 0,4166

R.:0,0833

R.: 6,6667