- REGRESION - PRECIO DEL DIAMANTE

Integrantes de equipo:

- Julio César Choquehuayta Quenta 2018-119025
- Carlos Enrique Yufra Loza 2019-119051
- Pablo Moisés Aro Galindo 2019-119034
- Carlos Manuel Azañero Otoya 2015-119026
- Jose Angel Castro Caceres 2017-119054

DESCRIPCION DEL PROBLEMA

Cada diamante tiene una combinación única de atributos, como el peso en quilates, el corte, el color, la claridad y las dimensiones físicas (longitud, anchura y profundidad). Estos atributos influyen en el valor del diamante, y los compradores y vendedores de diamantes necesitan una forma precisa de determinar su precio.

Los joyeros y minoristas necesitan conocer el precio de compra y venta de los diamantes para establecer márgenes de beneficio adecuados. Los compradores de diamantes buscan información sobre el valor de un diamante específico para asegurarse de que están obteniendo un precio justo.

Por lo que se aplicara regresion con redes neuoranles para solucionar dicho problema, usando el conjunto de datos "Diamonds Prices" que nos proporciona una muestra grande y diversa de diamantes con sus respectivos precios y atributos.

Link del Dataset: https://www.kaggle.com/datasets/nancyalaswad90/diamonds-prices

ANALISIS EXPLORATORIO

Primero, nosotros necesitamos tener la dataset descargada y almacenada en una carpeta en drive para su proximo uso, ademas de importar las librerias necesarias.

- 1 import numpy as np
- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 import tensorflow as tf

- 5 from tensorflow import keras
- 6 from tensorflow.keras import layers
- 1 #Cargamos la dataset
- 2 dataset_original = pd.read_csv('https://drive.google.com/uc?id=1f7l-r51EO6DhMbMotrijyke6xI
- 3 dataset_original

	Unnamed: 0	carat	cut	color	clarity	depth	table	price	X	У	Z
0	1	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	2	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	3	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	4	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
53938	53939	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
53939	53940	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64
53940	53941	0.71	Premium	Е	SI1	60.5	55.0	2756	5.79	5.74	3.49
53941	53942	0.71	Premium	F	SI1	59.8	62.0	2756	5.74	5.73	3.43
53942	53943	0.70	Very Good	Е	VS2	60.5	59.0	2757	5.71	5.76	3.47

53943 rows × 11 columns

Exploramos un poco la dataset a usar, usando alguans sentencias para visualizar mejor las columnas, tipos de datos y otros.

```
1 dataset_original.shape
  (53943, 11)
```

1 dataset original.isnull().sum()

Unnamed:	0	0
carat		0
cut		0
color		0
clarity		0
depth		0
table		0
price		0
Χ		0
V		0

z dtype: int64

1 dataset_original.describe()

	Unnamed: 0	carat	depth	table	price	x
count	53943.000000	53943.000000	53943.000000	53943.000000	53943.000000	53943.000000
mean	26972.000000	0.797935	61.749322	57.457251	3932.734294	5.731158
std	15572.147122	0.473999	1.432626	2.234549	3989.338447	1.121730
min	1.000000	0.200000	43.000000	43.000000	326.000000	0.000000
25%	13486.500000	0.400000	61.000000	56.000000	950.000000	4.710000
50%	26972.000000	0.700000	61.800000	57.000000	2401.000000	5.700000
75%	40457.500000	1.040000	62.500000	59.000000	5324.000000	6.540000
max	53943.000000	5.010000	79.000000	95.000000	18823.000000	10.740000

1 dataset_original.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53943 entries, 0 to 53942
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	53943 non-null	int64
1	carat	53943 non-null	float64
2	cut	53943 non-null	object
3	color	53943 non-null	object
4	clarity	53943 non-null	object
5	depth	53943 non-null	float64
6	table	53943 non-null	float64
7	price	53943 non-null	int64
8	Χ	53943 non-null	float64
9	У	53943 non-null	float64
10	Z	53943 non-null	float64
1.6	C7 1 C4 /	c) * LC4/2\ - L	

dtypes: float64(6), int64(2), object(3)

memory usage: 4.5+ MB

```
1 #Aplicamos un backup y eliminamos la columna innecesaria
```

Convertimos los datos categoricos a numericos

² dataset copia = dataset original.copy()

³ columns_to_drop = ['Unnamed: 0']

⁴ dataset_copia.drop(columns=columns_to_drop, inplace=True)

```
1 cut_mapping = {'Fair': 0, 'Good': 1, 'Very Good': 2,'Premium':3,'Ideal':4}
2 color mapping = {'D': 6, 'E': 5, 'F': 4, 'G': 3, 'H': 2, 'I': 1, 'J': 0}
3 clarity_mapping = {'I1' : 0, 'SI2':1, 'SI1':2, 'VS2':3, 'VS1':4, 'VVS2':5, 'VVS1':6, 'IF':7}
4 dataset copia['cut numerica'] = dataset copia['cut'].map(cut mapping)
5 dataset_copia['color_numerica'] = dataset_copia['color'].map(color_mapping)
6 dataset copia['clarity numerica'] = dataset copia['clarity'].map(clarity mapping)
1 print(dataset copia)
2 print("Dimensiones del dataset_original:", dataset_original.shape)
3 print("Dimensiones del dataset_copia:", dataset_copia.shape)
4 print(dataset copia.info())
           carat
                        cut color clarity depth table price
                                                                    Х
                                                                          У
   0
            0.23
                      Ideal
                                Ε
                                      SI2
                                            61.5
                                                    55.0
                                                            326 3.95
                                                                       3.98
                                                                             2.43
   1
            0.21
                    Premium
                                Ε
                                      SI1
                                            59.8
                                                    61.0
                                                            326
                                                                 3.89
                                                                       3.84
                                                                             2.31
                       Good
    2
            0.23
                                Ε
                                      VS1
                                            56.9
                                                   65.0
                                                            327
                                                                 4.05
                                                                       4.07
                                                                             2.31
                                                  58.0
   3
            0.29
                    Premium
                                Ι
                                      VS2
                                            62.4
                                                            334
                                                                 4.20
                                                                       4.23 2.63
   4
            0.31
                       Good
                                J
                                      SI2
                                            63.3
                                                   58.0
                                                            335
                                                                 4.34
                                                                       4.35
                                                                             2.75
            . . .
                        . . .
                                             . . .
                              . . .
                                      . . .
                                                    . . .
                                                            . . .
                                                                  . . .
                                                                        . . .
                                                                              . . .
   53938
            0.86
                 Premium
                              Н
                                      SI2
                                            61.0
                                                   58.0
                                                           2757
                                                                 6.15
                                                                       6.12
                                                                             3.74
           0.75
   53939
                    Ideal
                                D
                                      SI2
                                            62.2
                                                   55.0
                                                           2757
                                                                 5.83
                                                                       5.87
                                                                             3.64
   53940
           0.71
                    Premium
                                Ε
                                      SI1
                                            60.5
                                                    55.0
                                                           2756
                                                                 5.79
                                                                       5.74
                                                                             3.49
   53941
          0.71
                    Premium
                                F
                                      SI1
                                            59.8
                                                                 5.74
                                                                       5.73 3.43
                                                    62.0
                                                           2756
   53942
          0.70 Very Good
                                Ε
                                      VS2
                                            60.5
                                                    59.0
                                                           2757
                                                                 5.71
                                                                       5.76
                                                                             3.47
           cut_numerica color_numerica clarity_numerica
   0
                                      5
                      4
                                                         1
                      3
                                      5
                                                         2
   1
    2
                      1
                                      5
                                                         4
    3
                                                         3
                      3
                                      1
   4
                      1
                                      0
                                                         1
                    . . .
                                     . . .
                                                       . . .
                      3
                                                         1
   53938
                                      2
   53939
                      4
                                      6
                                                         1
   53940
                      3
                                      5
                                                         2
                      3
                                      4
                                                         2
   53941
   53942
                      2
                                      5
                                                         3
   [53943 rows x 13 columns]
   Dimensiones del dataset original: (53943, 11)
   Dimensiones del dataset copia: (53943, 13)
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 53943 entries, 0 to 53942
   Data columns (total 13 columns):
    #
         Column
                           Non-Null Count Dtype
        _____
    - - -
                           _____
    0
                           53943 non-null float64
        carat
     1
                           53943 non-null object
        cut
                           53943 non-null object
     2
        color
     3
        clarity
                           53943 non-null object
     4
        depth
                           53943 non-null float64
     5
        table
                           53943 non-null float64
     6
         price
                           53943 non-null int64
```

53943 non-null float64

None

```
8 y 53943 non-null float64
9 z 53943 non-null float64
10 cut_numerica 53943 non-null int64
11 color_numerica 53943 non-null int64
12 clarity_numerica 53943 non-null int64
dtypes: float64(6), int64(4), object(3)
memory usage: 5.4+ MB
```

1 columns_to_drop = ['cut','color','clarity']

2 dataset copia.drop(columns=columns to drop, inplace=True)

1 dataset copia.sample(10)

	carat	depth	table	price	X	У	Z	cut_numerica	color_numerica	clarity
8771	1.01	64.6	59.0	4468	6.23	6.30	4.05	1	6	
26726	0.32	61.2	56.0	645	4.39	4.43	2.70	4	3	
25837	1.71	59.1	58.0	14882	7.76	7.80	4.60	3	5	
51612	0.73	62.1	58.0	2395	5.75	5.81	3.59	2	5	
36359	0.40	62.2	55.0	939	4.72	4.76	2.95	4	1	
7823	1.00	60.8	60.0	4295	6.45	6.41	3.91	3	6	
34137	0.32	61.6	55.0	854	4.42	4.44	2.73	4	4	
29111	0.34	63.2	55.0	689	4.50	4.46	2.83	2	2	
35932	0.35	61.9	61.0	919	4.54	4.50	2.80	3	5	
14920	1.50	64.9	58.0	6006	7.09	7.03	4.58	0	0	

```
1 # Dividir el conjunto de datos en conjuntos de entrenamiento y prueba
```

```
1 # Separe la variable objetivo (precio) de las características
```

² train dataset = dataset copia.sample(frac=0.8, random state=0)

³ test dataset = dataset copia.drop(train dataset.index)

² train features = train dataset.drop("price", axis=1)

³ train_labels = train_dataset["price"]

⁴ test features = test dataset.drop("price", axis=1)

⁵ test labels = test dataset["price"]

¹ train features

	carat	depth	table	X	У	Z	cut_numerica	color_numerica	clarity_numer:
34665	0.31	61.7	56.0	4.35	4.31	2.67	4	5	
36941	0.34	60.6	58.0	4.55	4.57	2.76	2	4	
14973	1.57	59.6	56.0	7.59	7.50	4.50	3	0	
19891	1.20	62.3	56.0	6.77	6.82	4.23	4	3	
41070	0.46	62.2	55.0	4.94	4.97	3.08	4	1	
22623	1.63	62.6	53.0	7.55	7.49	4.71	4	3	
11095	1.10	62.0	59.0	6.62	6.60	4.10	3	4	
10092	0.90	63.6	55.0	6.15	6.12	3.90	1	4	
26364	0.32	63.0	55.0	4.35	4.38	2.75	2	3	

```
1 # Normalizamos las caracteristicas
2 train_mean = train_features.mean()
3 train_std = train_features.std()
4 train_features = (train_features - train_mean) / train_std
5 test_features = (test_features - train_mean) / train_std

1 # Crear el boxplot
2 plt.boxplot(train_features.values)
3
4 # Agregar etiquetas y título
5 plt.xlabel("Variable")
6 plt.ylabel("Valores")
7 plt.title("Boxplot")
```

9 # Mostrar el gráfico

10 plt.show()

Boxplot

```
0
40 - 0
30 -
```

```
1 # Definimos el modelo de red neuronal
2 model = keras.Sequential([
      layers.Dense(1024, activation="relu", input_shape=[len(train_features.keys())]),
4
     layers.Dense(512, activation="relu"),
     layers.Dense(128, activation="relu"),
5
      layers.Dense(64, activation="relu"),
6
      layers.Dense(32, activation="relu"),
7
     layers.Dense(1)
8
9])
                       O
            I
                                                                               I
```

1 model.summary()

Model: "sequential_2"

Layer (type)	Output Shape	Param #						
dense_12 (Dense)	(None, 1024)	10240						
dense_13 (Dense)	(None, 512)	524800						
dense_14 (Dense)	(None, 128)	65664						
dense_15 (Dense)	(None, 64)	8256						
dense_16 (Dense)	(None, 32)	2080						
dense_17 (Dense)	(None, 1)	33						
======================================								

Total params: 611,073 Trainable params: 611,073 Non-trainable params: 0

```
1 # Compilamos el modelo
2 model.compile(loss="mse", optimizer='adam', metrics=["mae", "mse"])

1 # Entrenamos el modelo
2 history = model.fit(train features, train labels, epochs=50, validation data=(test feature)
```

```
Epoch 1/50
Epoch 2/50
Epoch 3/50
Epoch 4/50
Epoch 5/50
Epoch 6/50
Epoch 7/50
Epoch 8/50
Epoch 9/50
Epoch 10/50
Epoch 11/50
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 16/50
Epoch 17/50
Epoch 18/50
Epoch 19/50
Epoch 20/50
Epoch 21/50
Epoch 22/50
Epoch 23/50
Epoch 24/50
Epoch 25/50
Epoch 26/50
Epoch 27/50
Epoch 28/50
```

Epoch 29/50


```
1 predicciones = model.predict(test_features)
2 inicio = 50
3 fin=200
4 # Crear la gráfica de predicción por muestra
5 plt.figure(figsize=(10, 6))
6 a=plt.axes(aspect='equal')
7 plt.scatter(test_labels,predicciones)
8 plt.xlabel('Muestra')
9 plt.ylabel('Valor')
10 plt.title('Predicción por muestra del conjunto de pruebas')
11 _=plt.plot(test_labels,test_labels,color='orange')
12 plt.show()
```

338/338 [==========] - 1s 4ms/step

Predicción por muestra del conjunto de pruebas


```
1 plt.figure(figsize=(10, 6))
2 plt.plot(range(inicio,fin), test_labels[inicio:fin])
3 plt.plot(range(inicio,fin), predicciones[inicio:fin])
4 plt.xlabel('Muestra')
5 plt.ylabel('Valor')
```

6 plt.title('Valores de test_labels')
7 plt.show()


```
1 # Plot each feature along with the predicted values
2 fig, axs = plt.subplots(3, 4, figsize=(15, 10))
3 axs = axs.flatten()
4
5 for i, column in enumerate(train_features.columns):
6    axs[i].scatter(train_features[column], train_labels, s=2, color='black')
7    #axs[i].scatter(test_features[column], test_labels, s=2, color='red')
8    axs[i].scatter(train_features[column], model.predict(train_features), s=2, color='red')
9    #axs[i].plot(test_features[column], model.predict(test_features), linewidth=1)
```


0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0