Étude des circuits électriques I

Prérequis et constantes utiles

Lois des nœuds, loi des mailles, loi d'Ohm. Pour les AN, on prendra

- le nombre d'Avogadro $N_{\rm A}=6.0\cdot 10^{23}\,{\rm mol}^{-1}$; la charge élémentaire $e=1.6\cdot 10^{-19}\,{\rm C}.$

Le courant électrique

QCM	Entraı̂nement 1.1 — La bataille des courants.	000			
	Lequel de ces trois courants électriques présente la plus forte intensité?				
	$\stackrel{\frown}{(a)}$ 5 000 électrons durant 1 ms $\stackrel{\frown}{(c)}$ 20 milliards d'électrons durant 1	min			
	$\stackrel{\frown}{(\mathrm{b})} 0,\! 2 \mathrm{mol}$ d'électrons durant $1\mathrm{an}$				
A.N.	Entraînement 1.2 — Un certain nombre.	000			
	Combien d'électrons traversent la section d'un fil de fer si celui-ci est le siège d'un				
	électrique d'intensité $I=4\mathrm{mA}$ pendant $10\mathrm{s}?$				
6	Entraînement 1.3 — Loi des nœuds.	000			
	i B D D				
	On a indiqué certains courants algébriques dans le circuit ci-dessus. Déterminer en for	action			

de i les courants suivants (on note i_{AB} le courant qui va de A vers B, etc) :

b) $i_{\rm BC}$

A.N. Entraînement $1.4 - Bis \ repetita$.

On considère le circuit électrique représenté cicontre.

À partir de la loi des nœuds, calculer l'intensité des courants sans utiliser la calculatrice.

a)
$$i_1 :$$

b)
$$i_2 :$$

c)
$$i_3 : \dots$$

0000

La tension électrique

Entraînement 1.5 — Loi des mailles.

Un circuit électrique est formé d'une pile de f.é.m e et de 4 dipôles. Certaines tensions sont indiquées.

À partir de la loi des mailles, exprimer en fonction de e et U_1 les tensions suivantes :

b)
$$U_{AB} = V(A) - V(B)$$

c)
$$U_{\mathrm{DA}}$$

\blacksquare Entraînement 1.6 — Calculer une tension.

On considère le circuit électrique formé de deux piles et de quatre dipôles, comme représenté cicontre.

À partir de la loi des mailles, calculer les tensions :

b) $U_2 \ldots \ldots$

c) U_3

0000

Loi d'Ohm

A.N. Entraînement 1.7 — Caractéristique.

$$\begin{array}{c|c}
2R & i \\
\hline
u \\
\text{Dipôle 2}
\end{array}$$

Dans chaque cas, exprimer i en fonction de u et R.

- a) Dipôle 1 :
- b) Dipôle 2 :
- c) Dipôle 3 :

Entraînement 1.8 — Résistances associées.

Exprimer la résistance équivalente au dipôle formé de :

- a) 2 conducteurs en série, de résistances $\frac{R}{2}$ et $\frac{R}{3}$
- b) 2 conducteurs en parallèle, de résistances $\frac{R}{2}$ et $\frac{R}{3}$
- c) N conducteurs identiques de résistance R, associés en parallèle
- d) 3 conducteurs en parallèle, de résistance R, R(1+a) et R(1-a) avec |a| < 1.

A.N. Entraînement 1.9 — Résistance équivalente.

Sans utiliser la calculatrice, calculer la résistance équivalente :

a) du dipôle 1 :

b) du dipôle 2:

c) du dipôle 3:

Entraı̂nement 1.10 — Quelle résistance choisir.

On considère le dipôle AB constitué uniquement de conducteurs ohmiques.

Comment choisir R' afin que le dipôle soit équivalent à un conducteur ohmique de résistance :

b)
$$\frac{8}{3}R$$

Résoudre un circuit électrique

★ Entraînement 1.11 — Equation de maille.

Dans un circuit, la loi des mailles se traduit par la relation $R_1I + R_2(I_0 + I) = 2R_2I_0$

Exprimer I en fonction de R_1 , R_2 et I_0

Entraînement 1.12 — Circuit à 2 mailles.

On forme un circuit avec une pile et trois conducteurs ohmiques. On définit les courants algébriques i et i_1 comme indiqué ci-contre.

Exprimer e en fonction de i, i_1 et R en appliquant la loi des mailles dans la maille :

Éntraînement 1.13 ─ Résoudre le système d'équations.

Dans l'entraı̂nement précédent, les grandeurs i et i_1 vérifient le système $\begin{cases} Ri + 4Ri_1 = 4e \\ 13Ri - 12Ri_1 = 4e \end{cases}$

Diviseurs

Entraînement 1.14 — Diviseur de tension. On forme un circuit avec une pile et trois conducteurs ohmiques. On définit les tensions U_1 et U_2 comme indiqué ci-contre.

Après avoir reconnu un diviseur de tension, exprimer en fonction de e et R les tensions suivantes :

- a) U_1

Entraînement 1.15 — Diviseur de courant.

- a) Pour quelle valeur de α , a-t-on $i_1=i/3$?
- b) Pour quelle valeur de α , a-t-on $i_2 = 3i_1$?

Entraînement 1.16 — Exercice de synthèse.

0000

- a) Après avoir simplifié le circuit, calculer i en fonction de e et R
- b) En déduire i_1 à partir de la formule du diviseur de courant
- c) En déduire i_2

Réponses mélangées

$$-\frac{u}{R} - \frac{e}{4} + 2.5 \cdot 10^{17} + 1 \,\mathrm{k}\Omega + R \left(\frac{1-a^2}{3-a^2}\right) + \frac{u}{3R} + \frac{1}{4} \frac{e}{R} + 1 \,\mathrm{k}\Omega$$

$$2 - 350 \,\mathrm{mA} + \frac{e}{R} + R + U_1 - e + \infty + 2i + \frac{1}{4} Ri + Ri_1$$

$$e - U_1 + 2R + 0 + 7V + 80 \,\mathrm{mA} + 1V + \frac{R_2}{R_1 + R_2} I_0 + i$$

$$\frac{5}{6} R + 30 \,\mathrm{mA} + 3 + -\frac{e}{8R} + \frac{u}{2R} + \frac{13}{4} Ri - 3Ri_1 + 1 \,\mathrm{k}\Omega$$

$$\frac{3}{4} e - 6V + 0 + \frac{R}{5} + e - U_1 + \frac{3e}{8R} + \frac{3e}{4R} + \frac{R}{N}$$

► Réponses et corrigés page 7

Fiche nº 1. Étude des circuits électriques I

Réponses

Corrigés

- 1.1 Calculons l'ordre de grandeur du nombre d'électrons transférés pendant une seconde :
 - 5 000 électrons durant 1 ms correspond à $5 \cdot 10^6 \,\mathrm{s}^{-1}$;
 - 0,2 mol d'électrons durant 1 an correspond à 0,2 × 6 · $10^{23}/(365 \times 24 \times 3~600) \sim 1 \cdot 10^{23}/(400 \times 25 \times 4~000) \sim 1 \cdot 10^{15} \, \mathrm{s}^{-1}$;
 - 20 milliards d'électrons durant 1 min correspond à $20 \cdot 10^9/60 \sim 20 \cdot 10^9/100 = 2 \cdot 10^8 \text{ s}^{-1}$.

Par conséquent, c'est le courant (b) qui donne la plus grande intensité.

.....

La quantité de charge transférée vaut $q = I \times \Delta t = 4 \cdot 10^{-3} \times 10 = 40 \,\mathrm{mC}$. Cette quantité de charge correspond à un nombre d'électrons $N = q/e = 40 \cdot 10^{-3}/1, 6 \cdot 10^{-19} = 2, 5 \cdot 10^{17}$ électrons.

1.5 a) La loi des mailles donne la relation : $U + U_1 - e = 0$ soit $U = e - U_1$.

.....

1.5 b) Les points A et C sont au même potentiel, ainsi que les points B et D. Par conséquent, la tension $U_{AB} = U_{CD} = -U_{DC} = -U$. Donc, $U_{AB} = U_1 - e$.

.....

1.5 c) D est au même potentiel que B de sorte que $U_{\rm DA}=U_{\rm BA}=-U_{\rm AB}.$ On trouve donc $U_{\rm DA}=e-U_{1}.$

- **1.6** a) Dans la maille triangulaire, on a $6 = U_1 + 5$, soit $U_1 = 1 \text{ V}$.
- **1.6** b) Dans la grande maille rectangulaire, la loi des mailles donne $12+U_2-6=0$, soit $U_2=-6$ V.

- **1.6** c)

Dans la maille dessinée en rouge et parcouru dans le sens indiqué, on trouve la relation $12-U_3-5=0$, ce qui donne $U_3=7\,\mathrm{V}$.

.....

- 1.7 a) La loi d'Ohm s'écrit u = Ri en convention récepteur et u = -Ri en convention générateur. Ici on est en convention générateur. Ainsi, on trouve i = -u/R.
- 0...
- **1.7** b) La loi d'Ohm donne u = 2Ri soit $i = \frac{2u}{R}$.
- **1.7** c) Étant en convention générateur, on a $u = -(3R) \times (-i)$, d'où $i = \frac{u}{3R}$.
- **1.8** a) $R_{\text{eq}} = \frac{R}{2} + \frac{R}{3} = \frac{5}{6}R.$
- **1.8** b) $\frac{1}{R_{\text{eq}}} = \frac{2}{R} + \frac{3}{R} = \frac{5}{R}$, soit $R_{\text{eq}} = \frac{R}{5}$.

1.8 c)
$$\frac{1}{R_{\text{eq}}} = \underbrace{\frac{1}{R} + \ldots + \frac{1}{R}}_{N \text{ où } R_{\text{eq}}} = \frac{R}{N}.$$

IV 1015

1.8 d) La résistance équivalent a pour conductance la somme des conductances :

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R} + \frac{1}{R(1+a)} + \frac{1}{R(1-a)} = \frac{1}{R} \left(1 + \frac{1}{1+a} + \frac{1}{1-a} \right) = \frac{1}{R} \left(1 + \frac{2}{1-a^2} \right) = \frac{1}{R} \left(\frac{3-a^2}{1-a^2} \right)$$

On en déduit $R_{\rm eq} = R \left(\frac{1-a^2}{3-a^2} \right)$

1.9 a) En associant les deux résistance en série, on se ramène à deux résistances de $2 k\Omega$ en parallèle, ce qui est équivalent à une résistance de $1 k\Omega$.

.....

1.9 b) En répétant la méthode précédente plusieurs fois, on arrive au même résultat.

1.10 a) La résistance équivalente du dipôle AB vaut $R_{\rm eq} = 2R + \frac{2RR'}{2R+R'}$. Résoudre $R_{\rm eq} = 3R$ c'est résoudre $\frac{2RR'}{2R+R'} = R$ soit 2R' = 2R + R'. On en déduit R' = 2R.

216 | 16

1.10 b) Il faut donc résoudre $2R + \frac{2RR'}{2R+R'} = \frac{8}{3}R$, c'est-à-dire $\frac{2R'}{2R+R'} = \frac{2}{3}$. Un produit en croix donne 6R' = 4R + 2R', d'où R' = R.

1.10 c) Il faut que l'association $2R \parallel R$ soit équivalente à un conducteur de résistance 2R, ce qui se traduit par l'égalité $\frac{1}{2R} + \frac{1}{R'} = \frac{1}{2R}$. Par conséquent, on doit choisir $R' = \infty$ (un isolant parfait ou un interrupteur).

.....

1.11 Isolons I:

$$\begin{array}{rcl} R_1I + R_2(I_0 + I) & = & 2R_2I_0 \\ (R_1 + R_2)I + R_2I_0 & = & 2R_2I_0 \\ (R_1 + R_2)I & = & R_2I_0 \\ I & = & \frac{R_2}{R_1 + R_2}I_0 \end{array}$$

1.12 a) Appliquons la loi des mailles en parcourant la maille dans le sens ABCF :

$$e - \frac{1}{4}Ri - Ri_1 = 0$$
 soit $e = \frac{1}{4}Ri + Ri_1$

1.12 b) Appliquons la loi des mailles en parcourant la maille dans le sens ABDE:

$$e - \frac{1}{4}Ri - 3R(i - i_1) = 0$$
 d'où $e = \frac{13}{4}Ri - 3Ri_1$

.....

1.13 a) Additionnons les deux relations après avoir multiplié par 3 la première

$$\begin{cases} 3Ri + 12Ri_1 = 12e \\ 13Ri - 12Ri_1 = 4e \end{cases} + \implies 16Ri = 16e \text{ d'où } i = \frac{e}{R}$$

1.13 b) Dans la première relation, remplaçons i par e/R:

$$R\left(\frac{e}{R}\right) + 4Ri_1 = 4e \implies 4Ri_1 = 3e \text{ d'où } i_1 = \frac{3e}{4R}$$

1.14 a) Simplifions le montage en remplaçant l'association $(R \parallel 3R)$ par un conducteur de résistance $R_{\rm eq} = \frac{R \times 3R}{R+3R} = \frac{3}{4}R$.

On reconnaît un diviseur de tension. La formule du diviseur donne $U_1 = e^{\frac{3}{4}R} = \frac{3}{4}e^{\frac{3}{4}R}$

1.14 b) Là encore on peut utiliser la formule du diviseur de tension en faisant attention à l'orientation :

$$-U_2 = e^{\frac{1}{4}R} \frac{1}{4}R + \frac{3}{4}R$$
 soit $U_2 = -\frac{e}{4}$

Remarque: on peut aussi obtenir U_2 à l'aide de la loi des mailles: $e + U_2 - U_1 = 0$ avec $U_1 = \frac{3}{4}e$.

1.15 a) La formule du diviseur de courant donne $\frac{i_1}{i} = \frac{1/(\alpha R)}{1/(\alpha R) + 1/R}$. Par conséquent, α doit vérifier l'équation

$$\frac{1}{1+\alpha} = \frac{1}{3}$$
 c'est-à-dire $\alpha = 2$

1.15 b) On peut utiliser les formules du diviseur de courant :

$$i_1 = i \frac{1/(\alpha R)}{1/(\alpha R) + 1/R}$$
 et $i_2 = i \frac{1/R}{1/(\alpha R) + 1/R}$

ce qui permet de déduire $i_2/i_1 = \alpha$. La solution est donc $\alpha = 3$.

On peut aussi tout simplement écrire la loi des mailles : $\alpha Ri_1 = Ri_2$ pour aboutir plus immédiatement au résultat.

.....

1.16 a) Remplaçons l'association $(2R \parallel R)$ par un conducteur de résistance $R_{eq} = \frac{2R \times R}{2R + R} = \frac{2}{3}R$. On obtient le circuit à une maille suivant :

La loi des mailles donne alors $e-Ri-\frac{2}{3}Ri-Ri=0,$ d'où $i=\frac{3}{8}\frac{e}{R}$

1.16 b) La formule du diviseur donne

$$i_1 = \frac{G_1}{G_1 + G_2}i = \frac{1/R}{1/R + 1/(2R)}i = \frac{2}{3}i = \frac{1}{4}\frac{e}{R}$$

1.16 c) Le plus simple consiste à utiliser la loi des nœuds : $i+i_2=i_1$ ce qui donne $i_2=i_1-i=-\frac{e}{8R}$.

On peut aussi utiliser la formule du diviseur de courant en faisant attention à l'orientation des courants :

$$-i_2 = \frac{G_2}{G_1 + G_2}i = \frac{1/(2R)}{1/R + 1/(2R)}i = \frac{1}{3}i = \frac{e}{8R}$$

-1.-2 , -. , () -- --