### CH08-320201

# Algorithms and Data Structures ADS

Lecture 24

Dr. Kinga Lipskoch

Spring 2019

### Complexity Analysis

$$|V| \\ \text{times} \begin{cases} \textbf{while } \mathcal{Q} \neq \varnothing \\ \textbf{do } u \leftarrow \text{Extract-Min}(\mathcal{Q}) \\ S \leftarrow S \cup \{u\} \\ \textbf{for } \text{each } v \in Adj[u] \\ \textbf{do if } d[v] > d[u] + w(u, v) \\ \textbf{then } d[v] \leftarrow d[u] + w(u, v) \end{cases}$$

 Similar to Prim's minimum spanning tree algorithm, we get the computation time

$$\Theta(V \cdot T_{\text{EXTRACT-MIN}} + E \cdot T_{\text{DECREASE-Key}})$$

▶ Hence, depending on what data structure we use, we get the same computation times as for Prim's algorithm.

< 마 > 4 리 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 > 4 클 >

### **Unweighted Graphs**

- ▶ Suppose that we have an unweighted graph, i.e., the weights w(u, v) = 1 for all  $(u, v) \in E$ .
- ► Can we improve the performance of Dijkstra's algorithm?
- ▶ Observation: The vertices in our data structure *Q* are processed following the FIFO principle.
- ▶ Hence, we can replace the min-priority queue with a queue.
- This leads to a breadth-first search.

# BFS Algorithm

```
d[s] := 0
for each v e V\{s}
  d[v] := infinity
Enqueue (Q,s)
while 0 != \emptyset
  u := Dequeue(Q)
  for each v e Adj [u]
      if d[v] = infinity
      then d[v] := d[u] + 1
           pi[v] :=u
           Enqueue (O, v)
```

### Analysis: BFS Algorithm

#### Correctness:

- ► The FIFO queue *Q* mimics the min-priority queue in Dijkstra's algorithm.
- Invariant: If v follows u in Q, then d[v] = d[u] or d[v] = d[u] + 1.
- ightharpoonup Hence, we always dequeue the vertex with smallest d.

### Time complexity:

$$O(|V|T_{Dequeue} + |E|T_{Enqueue}) = O(|V| + |E|)$$

### Example: BFS Algorithm



Q: abdcegifh

### **Negative Weights**

- ▶ We had postulated that all weights are nonnegative.
- ► How can we extend the algorithm to also handle negative entries?
- ▶ The problems are caused by negative weight cycles.



▶ Goal: Find shortest-path lengths from a source vertex  $s \in V$  to all vertices  $v \in V$  or determine the existence of a negative-weight cycle.

# Bellmann-Ford Algorithm

```
d[s] := 0
for each v e V\{s}
 d[v] := infinity
for i:=1 to |V|-1
    for each (u,v) & E
        if d[v] > d[u] + w(u,v)
        then d[v] := d[u] + w(u,v)
              pi[v] :=u
for each (u,v) € E
  if d[v] > d[u] + w(u,v)
    report existence of negative-weight cycle
```

Time complexity:  $O(|V| \cdot |E|)$ 

### Example: Bellman-Ford Algorithm



pi[v] :=u

Shortest Paths Linear Programming

### Bellmann-Ford Algorithm: Correctness (1)

#### Theorem:

If G = (V, E) contains no negative-weight cycles, then the Bellman-Ford algorithm terminates with  $d[v] = \delta(s, v)$  for all  $v \in V$ .

#### Proof:

Let  $v \in V$  be any vertex.

Consider a shortest path  $p = (v_0, ..., v_k)$  from s to v.

Then,  $\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i)$  for i = 1, ..., k.



### Bellmann-Ford Algorithm: Correctness (2)

Initially,  $d[v_0] = 0 = \delta(s, v_0)$ .

According to our Lemma from Dijkstra's algorithm we have

 $d[v] \ge \delta(s, v)$ , i.e.,  $d[v_0]$  is not changed.

After the 1<sup>st</sup> pass, we have  $d[v_1] = \delta(s, v_1)$ .

After the 2<sup>nd</sup> pass, we have  $d[v_2] = \delta(s, v_2)$ .

. . .

After the  $k^{\text{th}}$  pass, we have  $d[v_k] = \delta(s, v_k)$ .

Since G has no negative-weight cycles, p is a simple path, i.e., it has  $\leq |V| - 1$  edges.

$$p: v_0$$
  $v_1$   $v_2$   $v_3$  ...  $v_k$ 

# Detecting Negative-Weight Cycles

#### Corollary:

If a value d[v] fails to converge after |V|-1 passes, there exists a negative-weight cycle in G reachable from s.

### **Excurse: Linear Programming**

#### Linear programming problem:

Let A be matrix of size  $m \times n$ , b a vector of size m, and c a vector of size n.

Find a vector x of size n that maximizes  $c^Tx$  subject to  $Ax \le b$ , or determine that no such solution exists.



### **Example: Difference Constraints**

Linear programming example, where each row of A contains exactly one 1 and one -1, other entries are 0.

Goal: Find 3-vector x that satisfies these inequations.

Solution:  $x_1 = 3$ ,  $x_2 = 0$ ,  $x_3 = 2$ .

Build constraint graph (matrix A of size  $|E| \times |V|$ ):

$$x_j - x_i \le w_{ij} \quad | \quad v_i \quad | \quad v_{ij} \quad | \quad v_j \quad$$

### Case 1: Unsatisfiable Constraints

#### Theorem:

If the constraint graph contains a negative-weight cycle, then the constraints are unsatisfiable.

#### Proof:

Suppose we have a negative-weight cycle:

Summing the inequations delivers: LHS = 0, RHS < 0.

Hence, no x exists that satisfies the inequations.

# Case 2: Satisfiable Constraints (1)

#### Theorem:

If no negative-weight cycle exists in the constraint graph, then the constraints are satisfiable.

#### Proof:

Add a vertex s with a 0-weight edge to all vertices. Note that this does not introduce a negative-weight cycle.





# Case 2: Satisfiable Constraints (2)

Show that the assignments  $x_i = \delta(s, v_i)$  for i = 1, ..., n solve the constraints.

Consider any constraint  $x_j - x_i \leq w_{ij}$ .

Then, consider the shortest path from s to  $v_j$  and  $v_i$ .

The triangle inequality delivers  $\delta(s, v_j) \leq \delta(s, v_i) + w_{ij}$ .

Since  $x_i = \delta(s, v_i)$  and  $x_j = \delta(s, v_j)$ , constraint  $x_j - x_i \le w_{ij}$  is satisfied.



# Bellmann-Ford for Linear Programming

#### Corollary:

The Bellman-Ford algorithm can solve a system of m difference constraints on n variables in  $O(m \cdot n)$  time.

#### Remark:

Single-source shortest paths is a simple linear programming problem.

### All-Pairs Shortest Paths

#### Problem:

- ▶ So far, we considered the (single-source) shortest paths problem of finding the shortest paths from a source vertex  $s \in V$ .
- ▶ Now, we would like to extend this to finding all-pairs shortest paths.
- ▶ The input is, again, a directed graph G = (V, E) with an edge-weight function  $w : E \to \mathbb{R}$ .
- ▶ Let  $V = \{1, ..., n\}$ .
- ▶ The output shall be an  $n \times n$ -matrix of shortest-path lengths  $\delta(i,j)$  for all  $i,j \in V$ .

### Use Single-Source Shortest Paths

#### ► Idea:

Run the single-source shortest paths algorithm for each vertex  $s \in V$  being the source once.

- ▶ Dijkstra's algorithm (for non-negative weights): Computation time =  $O(|V| \cdot (|E| + |V|) \cdot lg(|V|))$  [min-heap] Worst-case =  $\Theta(|V|^3 \cdot lg(|V|))$
- ▶ Bellman-Ford algorithm (for general case): Computation time =  $O(|V|^2 \cdot |E|)$ ) Worst-case =  $\Theta(|V|^4)$

# Dynamic Programming for All-Pairs Shortest Paths (1)

Consider the substructure:

 $d_{ij}^{(m)}$  = weight of a shortest path from i to j that uses at most m edges.

#### Theorem:

▶ Initially (m = 0), we have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

► Then, for m = 1, ..., n - 1, we have  $d_{ij}^{(m)} = \min_k \{d_{ik}^{(m-1)} + a_{kj}\}$  where  $A = (a_{ij})$  is the adjacency matrix

# Dynamic Programming for All-Pairs Shortest Paths (2)

Proof: 
$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}$$



### Remark

- ▶ The dynamic programming strategy is to start with m = 0 and successively increase m until we reach n 1.
- ▶ If we have no negative-weights cycles, we are done after n-1 steps, i.e.,

$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = \dots$$

### Implementation (1)

- ▶ The expression  $d_{ij}^{(m)} = \min_k \{d_{ik}^{(m-1)} + a_{kj}\}$  updates all entries of the  $n \times n$ -matrix  $D^{(m)} = (d_{ij}^{(m)})$  from the  $n \times n$ -matrices  $D^{(m-1)}$  and A.
- ▶ We can use a matrix multiplication notation  $D^{(m)} = D^{(m-1)} \cdot A$ , where the typical operations "+" and "·" are mapped to the operations "min" and "+".
- ▶ D<sup>(0)</sup> is the respective identity matrix

$$I = egin{pmatrix} 0 & \infty & \infty & \infty \ \infty & 0 & \infty & \infty \ \infty & \infty & 0 & \infty \ \infty & \infty & \infty & 0 \end{pmatrix} = D^{(0)} = (d_{ij}^{(0)})$$

### Implementation (2)

Shortest Paths

- ► The introduced matrix multiplication is associative and it can be shown that it forms a closed semi-ring (assuming real numbers).
- Hence, the dynamic programming algorithm executes the following computation steps:

$$D^{(1)} = D^{(0)} \cdot A = A^1$$
  
$$D^{(2)} = D^{(1)} \cdot A = A^2$$

. . .

$$D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1}$$
  
where the result is stored in

 $D^{(n-1)} = (\delta(i,j))$ 

### **Analysis**

- ▶ Since we are executing n-1 matrix multiplications for matrices of size  $n \times n$ , the computation time is  $\Theta(n \cdot n^3) = \Theta(n^4)$ .
- Since n = |V|, this is not better than running n times the Bellman-Ford algorithm.
- ▶ However, we can exploit the generalized power-of-a-number recursion, which reduces the time complexity to  $\Theta(n^3 \cdot \lg n)$ .
- Note that n does not need to be a power of 2, as  $A^{n-1} = A^n = A^{n+1} = \dots$

### Summary

- Directed and undirected graphs
- Adjacency matrix vs. adjacency lists
- ▶ Graph search: BFS or DFS in  $\Theta(|V| + |E|)$
- ▶ MST: Prim in  $O(|E| \lg(|V|))$  for min-heap
- Single-source Shortest Paths:
  - ▶ Dijkstra for non-negative weights in  $O((|V| + |E|) \lg(|V|))$  for min-heap
  - ▶ BFS for non-weighted edges in  $\Theta(|V| + |E|)$
  - ▶ Bellman-Ford for all cases in  $\Theta(|V| \cdot |E|)$