

System Simulation Notes

Rock Bed Heat Storage

Danie Els

2023/01/05

Department of Mechanical and Mechatronic Engineering Stellenbosch University Private Bag X1, Matieland 7602

Abstract

A rock bed is modeled as a porous medium ...

List of symbols

Variables

a	surface area	$[m^2]$
\boldsymbol{A}	area	$[m^2]$
c_p	specific heat capacity	$[J/(kg\cdot K)]$
ṁ	air mass flow rate	[kg/s]

1 Packed bed material properties

Consider the packed bed heat store shown in figure 1. It is filled with spherical stones. Define the average *void fraction* $\bar{\epsilon}$ as

$$\bar{\varepsilon} = \frac{\text{volume of empty space}}{\text{volume of solid media}} \tag{1}$$

Copyright @ 2023 Stellenbosch University. All rights reserved.

Figure 1: Packed bed heat store

Assume that the flow is uniform and one-dimensional through the bed. The projected flow area A_b perpendicular to the flow direction is

$$A_{\rm b} = W_{\rm b} H_{\rm b} \tag{2}$$

with W_b and H_b the bed width and height.

The different fractions of solids and air are given in table 1. Beasley and Clark (1984) give the average void fraction as a function of container diameter to particle diameter for uniform spheres.

Table 1: Fractions of air and solids in packed bed

	Air	Solids
Fraction	$ar{ar{arepsilon}}$	$(1-\bar{\varepsilon})$
Volume	$\bar{\varepsilon} A_{\mathrm{b}} L_{\mathrm{b}}$	$(1-\bar{\varepsilon}) A_{\rm b} L_{\rm b}$
Mass	$\bar{\varepsilon} A_{\rm b} L_{\rm b} \rho_{\rm r}$	$(1-\bar{\varepsilon}) A_{\rm b} L_{\rm b} \rho_{\rm p}$

2 Heat transfer between the bed and the air

3 Temperature change in the bed

4 Calculation procedure

References

Beasley, D.E. and Clark, J.A. (1984). Transient response of a packed bed for thermal energy storage. *International Journal of Heat and Mass Transfer*, vol. 21, no. 9, pp. 1659–1669.