UNIVERSITE DE THIES UFR SES/SET MASTER EN SCIENCES DE DONNEES ET APPLICATION PROJET DE TECHNIQUE DE SONDAGE

PROFESSEUR Mme Diop

Presente par
ABDOULAYE FALL
AWA WADE
NDEYE COUMBA
CISSE

Exercice 1 : Probabilité d'inclusion

Soit la population {1,2,3} et le plan de sondage suivant :

$$P \{1,2\} = 1/2$$
; $P \{1,3\} = 1/4$; $P \{2,3\} = 1/4$.

- 1) Ici on n'a pas un sondage aléatoire simple, car tous les échantillons n'ont pas la même probabilité d'^être sélectionné.
- 2) Calculons la probabilité d'inclusion d'ordre $1 \pi 1$, $\pi 2$ et $\pi 3$

$$\pi 1 = \sum P(S) = P(\{1,2\}) + P(\{1,3\}) = 3/4$$

$$\pi 2 = \sum P(S) = P(\{1,2\}) + P(\{2,3\}) = 3/4$$

$$\pi 3 = \sum P(S) = P(\{1,3\}) + P(\{2,3\}) = \frac{1}{2}$$

3) Calculons les probabilités d'inclusion d'ordre $2 \pi 12$ et $\pi 23$

$$\pi 12 = \sum P(S) = \underline{X}12 -$$

$$\pi 23 = \sum P(S) = \underline{X}$$

4) Le π -estimateur de \bar{y}

$$t^{\bar{y}}.\pi = 1/N \sum yk / \pi k = 1/3 (y1/\pi 1 + y2/\pi 2 + y3/\pi 3)$$

$$t^{\bar{y}}.\pi = 1/3[1.5/(3/4) + 2/(3/4) + 2.5/(1/2)]$$

$$t^{\bar{y}}.\pi=1/3(2+2.6+5)$$

t^ȳ.π=0,88

On note y1,y2,y3 les valeurs respectives de la variable y

- a) Si l'échantillon {1,2} est tiré?
- b) Si l'échantillon {1,3} est tiré?
- c) Si l'échantillon {2,3} est tiré ?
- 5) Vérifions que le π -estimateur est un estimateur sans biais

Théorème : Si $\pi k > 0$ pour tout $k \in U$, alors $t^{\Lambda} \bar{y} . \pi$ estime $t \bar{y}$ sans biais

Or on a:
$$\pi 1=3/4$$

$$\pi 2=3/4 => \pi 2 > 0 \ \forall \ k \in U.$$

 π 3=1/2 donc π -estimateur est un estimateur sans biais.

6) Dans le cas d'un sondage aléatoire simple à probabilité égales sans remise,

nous aurons :
$$P(\{1,2\}) = P(\{1,3\}) = P(\{2,3\}) = 1/3$$

Et pour les probabilités d'inclusion on aura :

$$\pi 1 = \pi 2 = \pi 3 = 2/3$$

EXERCICE 2

. Le paramètre d'intérêt est donné par

où les yk sont des indicatrices codant la présence ou non de la maladie. On estimera ce paramètre par p® =1/n ΣYk k € U

et la variance de cet estimateur est donnée par

 $Var(^p) = \beta^2 y/n$, avec remise,

 $Var(^p) = N-n/N *s^2y/n$, sans remise

mais puisque $yk^2 = yk$, la variance et la variance corrigée sur la population sont égales à

= 1/N
$$\Sigma$$
yk, k \in U -- (1/N Σ yk, k \in U)= P-P*P= P(1-P) ; S $_{y}^{2}=\frac{N}{N-1}p(1-p)$.

Ainsi on a donc

 $Var(^p) = p(1-p) n$, avec remise, $Var(^p) = N-n /N-1$. p(1-p)/n, sans remise.

Si l'on suppose que la taille de l'échantillon est su samment grande pour que l'approximation selon la loi normale soit acceptable, on a donc un intervalle de confiance à 95% de la forme

$$p^{\pm} 1.96 *racineVar(p^{\cdot}).$$

Ainsi on cherche donc la taille de l'échantillon n telle que

remise avec remise

$$\approx \Delta_n n \not O \not O 196196^{22p} N_p (1(1 \neq \neq^p)_p) / \{N \neq 1 + 196^2_p (1 \neq p)\}$$
 sans remise avec remise.

En prenant p = 3/10 et N = 1500 on trouve alors que

 Y^{1} [8067, avec remise n > 1

1264, sans remise.

Notons qu'avec remise la taille d'échantillon requise est supérieure à la taille de la population :-(

Exercice 3

1. Au 1^{er} degré, on a

$$M = 50$$
 colleges, $m = 5$ colleges, $f_1 = 0.1$.

Au 2eme` degré, on a

Observation	Ni	ni	y _i	S2i	\widehat{T}_i
1	40	10	12	1,5	480
2	20	10	8	1.2	160
3	60	10	10	1.6	600
4	40	10	12	1.3	480
5	48	10	11	2.0	528
Total	208	50			2248

Dans chaque collège, on estime la note totale T_i par

$$\widehat{T}_i = N_i \overline{y}_i$$

Ce qui donne avec les valeurs numériques Tb1 =

$$40 \cdot 12 = 480$$
, $T_{b2} = ...$

On estime la note totale dans le district par
$$\widehat{T} = \frac{M}{m} \sum_{i=1}^m \widehat{T}_i$$

$$= \frac{50}{5} \cdot 2248$$

$$= 22480.$$

2. Le nombre estimé d''élèves est égal a

$$\widehat{N} = \frac{M}{m} \sum_{i=1}^{m} N_i$$

$$= \frac{50}{5} \cdot (40 + 20 + \dots + 48)$$

$$= 2080.$$

3. Si l'on sait que N = 2000 alors

$$\widehat{\overline{Y}} = \frac{1}{N} \cdot \widehat{T}$$

$$= \frac{1}{2000} \cdot 22480$$

$$= 11.24.$$

Par conséquent la moyenne observée sur l'échantillon de taille 50 est égale a

$$\overline{y} = \frac{1}{50} \cdot (10 \cdot 12 + \dots + 10 \cdot 11) = 10, 6$$

En général y n'est pas un bon estimateur de Y. Il n'y a que dans le cas particulier ou` les taux de sondage $f_i = \frac{n_i/N_i}{\hat{}}$ sont constants et si toutes les unités primaires ont la même taille que Y = y.

4. Calculons la variance de l'estimateur du total. On ne peut pas la calculer. Donc on calculera une estimation de cette variance. Elle est égale a

$$\widehat{\text{Var}}\left(\widehat{T}\right) = M^2 (1 - f_1) \frac{s_1^2}{m} + \frac{M}{m} \sum_{i} N_i^2 (1 - f_{2,i}) \frac{s_{2,i}^2}{n_i}$$

Ou

$$s_1^2 = \frac{1}{m-1} \sum_{i=1}^m \left(\widehat{T}_i - \frac{\widehat{T}}{M} \right)^2$$

qui est la variance observée entre les unités primaires et

$$s_{2,i}^2 = \frac{1}{n_i - 1} \sum_{j} (y_{i,j} - \overline{y}_i)^2$$

qui est la variance observée dans les unités secondaires. $s_{2,i}^2$ est donnée dans le tableau. Il ne reste plus qu'a calculer s_1^2 .

$$s_1^2 = \frac{1}{4} \left[(480 - 449, 6)^2 + \ldots + (528 - 449, 6)^2 + \right] = 28620, 8$$

qui peut se calculer également grâce `a la formule d'développée suivante

$$\frac{1}{m-1} \sum_{i=1}^{m} \widehat{T}_{i}^{2} - \frac{m}{m-1} \widehat{T}^{2}$$

Maintenant, on peut calculer le premier terme de l'estimation de la variance de l'estimateur du total qui vaut alors

$$M^{2}(1-f_{1})\frac{s_{1}^{2}}{m} = 50^{2} \cdot 0, 9 \cdot \frac{28620, 8}{5} = 12879360$$

Maintenant en posant

$$V_{i} = N_{i}^{2} \left(1 - f_{2,i}\right) \frac{s_{2,i}^{2}}{n_{i}}$$

on peut calculer le second terme de l'estimation de la variance de l'estimateur du total qui vaudra alors la somme des quantités suivantes pondérée par la

quantite
$$M/m$$
,

$$V_1 = 40^2 \cdot \left(1 - \frac{10}{40}\right) \cdot \frac{1,5}{10} = 180$$

$$V_2 = 24,$$

$$V_3 = 480,$$

$$V_4 = 156$$

$$V_5 = 364, 8.$$

Ainsi en multipliant par M/m, on obtient que la quantité cherchée est égale a

$$\frac{M}{m} \sum_{i=1}^{5} V_i = \frac{50}{5} \cdot 1204, 8 = 12048$$

Finalement, l'estimation de la variance de l'estimateur du total est égale a

$$\widehat{\text{Var}}(\widehat{T}) = 12879360 + 12048 = 12891408$$

On en d'déduit la variance de la moyenne qui est égale `a

$$\widehat{\operatorname{Var}}(\overline{Y}) = \frac{1}{N^2} \widehat{\operatorname{Var}}(\overline{T})$$

$$= \frac{1}{(2000)^2} \cdot 12891408$$

$$= 3, 22.$$

On obtient ainsi la précision qui est égale a

et qui va nous permettre de calculer un intervalle de confiance de la moyenne, `a 95% qui vaut

$$11,2 \pm 3,5$$

autrement dit la précision est très mauvaise. Cela est du^ `a la grande dispersion des totaux.

5. Comparaison avec un sondage aléatoire simple `a probabilités égales sur les mêmes données.

On prend

$$\widehat{\overline{Y}} = \overline{y} = 10, 6, \quad n = 50 \quad \text{ et } \quad \textit{N} = 2000.$$

Donc le taux de sondage est égal `a

$$f = \frac{50}{2\,000} = 0,25$$

L'estimation de la variance de l'estimateur de la moyenne est égal a

$$\widehat{\operatorname{Var}}\left(\widehat{\overline{Y}}\right) = (1-f)\frac{s^2}{n}$$

ou' s^2 est la variance corrigée de l'échantillon.

Dans notre échantillon de taille 50, on a

variance totale = variance inter + variance intra

Calculons maintenant chaque terme qui compose la variance totale.

$$\frac{1}{50} \cdot \left(10 \cdot 12^2 + \ldots + 10 \cdot 11^2\right) - 10, 6^2$$
 • variance inter = $2, 24$ =

• variance intra =
$$\frac{1}{50}$$
 · $10 \cdot \frac{9}{10} \cdot 1, 5 + ... + 10 \cdot \frac{9}{10} \cdot 2, 0$

$$\frac{1}{s_i^2} \left\{ \frac{1}{s_i^2} \right\}$$

$$\frac{1}{s_i^2} \left\{ \frac{1}{s_i^2} \right\}$$

$$\frac{1}{s_i^2} \left\{ \frac{1}{s_i^2} \right\}$$

Donc la variance totale est égale a

$$2,24 + 1,368 = 3,608.$$

et par conséquent la variance corrigée est égale a

$$s^2 = \frac{50}{49} \cdot 3,608 = 3,68$$

On en déduit que

$$\widehat{\text{Var}}\left(\widehat{\overline{Y}}\right) = (1 - 0, 25) \cdot \frac{3,68}{50} = 0,07.$$

La précision est égale a

D'ou`

$$Y = 10.6 \pm 0.52.$$

Conclusion : La précision d'un sondage aléatoire simple `a probabilités égales sans remise est supérieure `a celle d'un sondage `a plusieurs degrés, surtout que les classes sont peu homogènes générant une grande variance au 1^{er} degré.

Exercice 4

1) le nombre maximum d'erreurs qu'on peut acceptation dans cet échantillon sans remettre en cause le niveau d'acceptation

on a Nombre d'erreurs=n*P

*POUR n=200 on a:

Nombre d'erreurs= 0,05*200=10 erreurs

Même question avec n=400, n=600 et n=1000

*POUR n=400 on a:

Nombre d'erreurs =0,05*400= 20 erreurs

*POUR n=600 on a:

Nombre d'erreurs =0,05*600= 30 erreurs

*POUR n=1000 on a:

Nombre d'erreurs = 0,05*1000= 50 erreurs

2) le nombre d'enregistrement supplémentaire qu'on doit effectuer pour que l'hypothèse soit acceptée

$$0,05*n=(7+4) => n=11/0,05=180$$

Donc on doit faire 180 enregistrements supplémentaires pour que l'hypothèse d'un niveau d'acceptation de 5% puisse être raisonnement raisonnablement retenue.

EXERCICE 5

1. Un intervalle de confiance de niveau 0.90 est donné par

$$IC_{0.90} = \left[\hat{\mu} - z_{0.95}\sqrt{\mathbf{V}(\hat{\mu})}, \hat{\mu} + z_{0.95}\sqrt{\mathbf{V}(\hat{\mu})}\right]$$

avec $z_{0.95} \simeq 1.64$. On calcule $V(\mu^{\hat{}})$ grâce à (B.3) et on obtient $V(\mu^{\hat{}})$ =

On calcule μ = 29.81 et on déduit

$$IC_{0.90} = [29.43;30.19].$$

2. (a) Pour une allocation proportionnelle $n_h=nrac{N_h}{N}$, donc

$$n_1 = 141.51$$
, $n_2 = 84.91$, $n_3 = 42.45$, $n_4 = 28.30$, $n_5 = 2.83$,

en arrondissant

$$n_1 = 142$$
, $n_2 = 85$, $n_3 = 42$, $n_4 = 28$, $n_5 = 3$.

(b) (plus difficile) Pour une allocation optimale

$$n_h = n \times \underline{\qquad}_{HNhSh}$$
,

ce qui donne
$$n_1$$
 = 58.57, n_2 = 57.39, n_3 = 40.58, n_4 = 95.64, n_5 = 47.82,

en arrondissant

$$n_1 = 59$$
, $n_2 = 57$, $n_3 = 40$, $n_4 = 96$, $n_5 = 48$.

On doit interroger 48 personnes dans la strate 5 alors qu'elle n'en contient que 10!!! C'est bien entendu impossible, on choisit donc d'interroger les 10 personnes de la strate 5 ($n_5 = 10$) et on recalcule les tailles d'échantillons pour les quatre autres strates avec n = 300 - 10 = 290. On a par exemple pour n_1

$$n_1 = 290 \frac{500\sqrt{1.5}}{500\sqrt{1.5} + 300\sqrt{4} + 150\sqrt{8} + 100\sqrt{100}} = 67.35,$$

de même n_2 = 65.99, n_3 = 46.66, n_4 = 109.98.

Encore une fois, on doit interroger n_4 = 110 individus dans la strate 4 qui en contient 100. On les interroge donc toutes (n_4 = 100) et on recalcule n_1 , n_2 et n_3 avec n = 290 – 100 = 190. On obtient après arrondi

$$n_1 = 71$$
, $n_2 = 70$, $n_3 = 49$.

Pour résumer

$$n_1 = 71$$
, $n_2 = 70$, $n_3 = 49$, $n_4 = 100$, $n_5 = 10$.

3. Pour l'allocation proportionnelle on obtient grâce à (B.3)

$$V(\mu^{\hat{}}) = 0.0819.$$

Pour l'allocation optimale, on obtient :

$$V(\mu^{\hat{}}) = 0.00974.$$