# Симетрични матрици



<del></del>В тази страница ще се запознаем с

<u> □определение</u> за симетрична матрица и основни примери;

- <u> ■Свойството 1</u>,че симетричните матрици образуват подпространство на пространството на всички квадратни оператори
- Свойство 2 и свойство 3 за обратна матрица и произведение на симетрични матрици.
- Свойство 4, чрез което можем да получаваме симетрична матрица от произволна матрица.
- <u>■Задача</u> за упражнение.

#### Определение за симетрична матрица:

Една квадратна матрица A се нарича **симетрична**, ако е изпълнено  $a_{i,j} = a_{j,i}$  за произволни стойности на индексите  $i, j \in \{1,...,n\}$ 

Примери на симетрични матрици:

$$\begin{pmatrix} 1 & -2 \\ -2 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 1 - 2 \\ -2 & 7 \end{pmatrix} \qquad \begin{pmatrix} 1 - 5 & 2 \\ -5 & 3 & \theta \\ 2 & \theta - 4 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 5 & 6 & 7 \\
3 & 6 & 8 & 9 \\
4 & 7 & 9 & 10
\end{pmatrix}$$



С други думи една квадратна матрица A е симетрична, точно когато съвпада със своята транспонирана, т.е.  $A = A^t$ . Това условие по-лесно се проверява отколкото условието от определението.

## Свойства на симетричните матрици:

#### Свойство 1:

Нека A и B са симетрични матрици, т.е.  $A=A^t$  и  $B=B^t$  , тогава:



 $\triangle A + B$ 

е симетрична, , защото  $(\lambda A)^t = \lambda A^t = \lambda A$ матрица

, защото  $(A+B)^t=A^t+B^t=A+B$ е симетрична, матрица

Това свойство означава, че множеството от всички симетрични матрици от фиксиран ред образуват подпространство на пространството от всички квадратни матрици от този ред.

## Свойство2:

Ако матрицата A е обратима и симетрична, то и нейната обратна  $A^{-1}$  е симетрична.

### Доказателство:

Нека да бележим с B обратната матрица  $A^{-1}$ , тогава от  $A = A^{t}$  имаме:

 $B^tA = B^tA^t = (AB)^t = E^t = E$  От това равенство се вижда, че  $B^t$  също е обратна

матрица за A, но всяка обратима матрица има единствена обратна, то  $B^t = B \Rightarrow$ 

 $A^{-1}$ е симетрична матрица.

# Свойство 3

Ако две симетрични матрици A и B комутират помежду си (A.B=B.A), то тяхното произведение също е симетрична матрица. Доказателство:  $(AB)^t = B^t A^t = B A = AB$ 

Пример: Да разгледаме следните симетрични матрици  $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$  ,  $B = \begin{pmatrix} \theta & I \\ I & \theta \end{pmatrix}$  и  $C = \begin{pmatrix} I & I \\ I & 2 \end{pmatrix}$ 

 $lullet_A$  и B не комутират и произведението им

 $AB = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$  не е симетрична матрица

lacktriangle матриците A и C комутират и за тях имаме

Като използвате, че  $(A.B)^t = B^t.A^t$  опитайте се да докажете следното свойство, чрез което можем да получаваме симетрични матрици.

**Свойство 4**:  $A.A^{t}$  е симетрична матрица, за произволна матрица A.

Пример: Нека  $A = \begin{pmatrix} I & 3 \\ -2 & \theta \\ 4 & -1 \end{pmatrix}$  , тогава  $A^t = \begin{pmatrix} I & -2 & 4 \\ 3 & \theta & -1 \end{pmatrix}$  и така получаваме следните

симетрични матрици:

$$AA^{t} = \begin{pmatrix} 1\theta & -2 & 1 \\ -2 & 4 & -8 \\ 1 & -8 & 17 \end{pmatrix} \quad \text{M} \quad A^{t}A = \begin{pmatrix} 21 & -1 \\ -1 & 1\theta \end{pmatrix} \quad .$$

# Симетричен оператор - определение и основни свойства



В тази страница ще се запознаем с:

<mark>■свойството,</mark> че симетричните оператори образуват подпространство на пространството на всички линейни оператори <u>■връзка между симетричен оператор в крайно-мерно пространство и симетрични матрици. Повече свойства на симетричните матрици са дадени в страницата <u>симетрични матрици</u>.</u>

■Задачи за симетричен оператор- зад.1, зад.2,

### Определение за симетричен оператор

Линейният оператор  $\varphi: E \to E$  , действащ в Евклидово пространство E, се нарича **симетричен**, ако за всеки два елемента  $x,y \in E$  е изпълнено равенството:

$$(\varphi(x), y) = (x, \varphi(y))$$

Пример: Във всяко Евклидово пространство нулевия и тъждествения оператор са тривиални примери на симетричен оператор

#### Свойство:

Нека  $\varphi$  и  $\psi$  са симетрични оператори в евклидово пространство E, тогава  $\varphi+\psi$  и  $\alpha.\varphi$  също са симетрични оператори за произволно реално число  $\alpha.$ 

Доказателство:  $((\alpha \varphi)(x), y) = (\alpha \varphi(x), y) = \alpha \cdot (\varphi(x), y) = \alpha \cdot (x, \varphi(y)) = (x, \alpha \varphi(y)) = (x, (\alpha \varphi)(y))$ 

$$((\varphi + \psi)(x), y) = (\varphi(x), y) + (\psi(x), y) = (x, \varphi(y)) + (x, \psi(y)) = (x, (\varphi + \psi)(y))$$

Това свойство ни задава, че множеството на всички симетрични оператори образува линейно подпространство на пространството от всички линейни оператори в едно Евклидово пространство.

**Пример:** В едномерно Евклидово пространство всеки линеен оператор може да се получи чрез умножаване на число по тъждествения оператор и следователно всеки линеен оператор в едномерно пространство е симетричен.

### Задача:



В n-мерно Евклидово пространство E са дадени два единични и ортогонални вектори a и b, т.е. |a|=1, |b|=1 и (a,b)=0 и изображението  $\varphi:E\to E$ , което е определено по следния начин :  $\varphi(x)=(a,x).b+(b,x).a$  за произволен вектор  $x\in E$ . Да се докаже, че  $\varphi$  е симетричен оператор в E и че  $\varphi^3=\varphi$ .

Решение.....

### Задача за упражнение:



Нека  $\varphi$  и  $\psi$  са симетрични оператори действащи в евклидово пространство E. Да се докаже, че  $\varphi \circ \psi + \psi \circ \varphi$  е симетричен оператор.

## Връзка между симетрични оператори и симетрични матрици

### Теорема 1:

Нека E е крайномерно евклидово пространство и  $\varphi$  е симетричен оператор в E. Тогава  $\varphi$  има <u>симетрична матрица</u> в кой да е ортонормиран базис на E .

### Доказателство:

Нека  $e_1,e_2,...,e_n$  е един ортонормиран базис на  $E \Rightarrow \{e_i,e_j\} = \begin{cases} 1 \text{ , за } i=j \\ \theta \text{ , } i \neq j \end{cases}$  , и нека  $\varphi$  има

матрица  $A = \{a_{i,j}\}_{n \times n}$  в този базис.  $\Rightarrow \varphi(e_i) = a_{1,i}e_1 + a_{2,i}e_2 + ... + a_{n,i}e_n = \sum_{k=1}^n a_{k,i}e_k$  .

$$\left(\!\!\left\langle e_i\right\rangle\!\!\right), e_j\!\!\right) = \!\!\left(\sum_k \!\!\!\left\langle a_{k,i} e_k, e_j\right\rangle\!\!\!\right) = \sum_k \!\!\!\left\langle a_{k,i} \left(\!\!\left\langle e_k, e_j\right\rangle\!\!\!\right) = \!\!\!\left\langle a_{j,i}\right\rangle\!\!\!\right\rangle = \!\!\!\left\langle e_i, \varphi\left(\!\!\left\langle e_j\right\rangle\!\!\!\right) = \!\!\!\left\langle \varphi\left(\!\!\left\langle e$$

Тъй като  $\varphi$  е симетричен, то  $\{\varphi(e_i), e_j\} = \{e_i, \varphi(e_j)\}$ . Така получаваме, че  $a_{i,j} = a_{j,i}$  за произволни индекси  $i, j \in \{1,...,n\}$  , т.е. A е симетрична матрица.

### Теорема 2

Нека E е крайномерно Евклидово пространство и  $e_1, e_2, ..., e_n$  е ортонормиран базис

24. Симетрични оператори в крайномерни евклидови пространства. Основни свойства. Теорема за диагонализация.

в E . Ако един линеен оператор  $\varphi: E \to E$  има симетрична матрица в  $e_1, e_2, ..., e_n$  , то оператора е симетричен.

Доказателство:

Нека  $x = \alpha_1 e_1 + ... + \alpha_n e_n$  и  $y = \beta_1 e_1 + ... + \beta_n e_n$  са два произволни вектори от E и  $A = (e_{i,j})_{n \times n}$ 

е матрицата на  $\varphi$  в базиса  $e_1, e_2, ..., e_n$ , тогава:

$$A \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} \implies \varphi(\mathbf{x}) = \mu_1 e_1 + \ldots + \mu_n e_n \qquad \text{if} \qquad A \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \implies \varphi(\mathbf{y}) = v_1 e_1 + \ldots + v_n e_n$$

Пресмятаме  $(\varphi(x), y)$  и  $(\varphi(y), x)$ 

$$(\varphi(\mathbf{x}), \mathbf{y}) = \mu_1 \beta_1 + \dots + \mu_n \beta_n = (\mu_1 \cdots \mu_n) \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \left( A \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \right)^t \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \left( \alpha \cdots \alpha \right) \cdot A^t \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$(\mathbf{x}, \varphi(\mathbf{y})) = \alpha_1 \nu_1 + \dots + \alpha_n \nu_n = (\alpha_1 \cdots \alpha_n) \cdot \begin{pmatrix} \nu_1 \\ \vdots \\ \nu_n \end{pmatrix} = (\alpha_1 \cdots \alpha_n) \cdot \left( A \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \right) = (\alpha \cdots \alpha) \cdot A \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

A е симетрична матрица  $\Rightarrow$   $A = A^t$  откъдето получаваме че  $(\varphi(x), y) = (x, \varphi(y))$ 



Горните две теореми могат да се обединят в една по следния начен:

В крайномерно Евклидово пространство един линеен оператор е симетричен, тогава и само тогава когато матрицата му в кой да е ортонормиран базис е симетрична.

Пример: Спрямо стандаретен ортонормиран базис на двумерното Евклидово пространство са дадени

векторите a=(1,1) и b=(1,2). Спрямо базиса a,b линейния оператор  $\emptyset$  има матрица  $A=\begin{pmatrix} I & I \\ I & \theta \end{pmatrix}$ .

Виждаме, че  $\varphi(a) = 1a + 1b = (2,3)$  и  $(\varphi(a),b) = 1.2 + 2.3 = 8$  . Аналогично  $(a,\varphi(b)) = 2$ 

и операторът не е симетричен въпреки, че има симетрична матрица в един базис, който не е ортонормиран.

# Собствени вектори на симетричен оператор



Тази страница е посветена на доказателството на съществуване на канонизация при симетричните оператори и тя включва:

<u>■Теорема</u> за съществуването на каноничен вид на симетричен оператор;

■Основни <u>следствия</u> от теоремата за канонизацията
Начина за прилагане на канонизацията е показан на <u>следващата страница...</u>

За да се намерят собствените вектори на един линеен оператор трябва първо да бъдат определени неговите собствени стойности, т.е. за матрицата на оператора в кой да е базис трябва да се определят характеристичните корени на матрицата и собствени стойности на оператора са тези характеристични корени на матрицата, които са реални числа. Доказахме Теорема, от която имаме, че в ортонормиран базис матрицата на симетричен оператор есиметрична и затова ще определим какви могат да са корените на симетрична матрица.



**Характеристиечен полином** на една квадратна матрица A  $f_A(\lambda) = det(A - \lambda E)$  .

Степента на характеристичния полином е равна на реда на матрицата и неговите корени се наричат **характеристични корени** на матрицата.

Известно е, че всеки полином с реални коефициенти има комплексни корени, но за реална симетрични матрици ще докажем, че всички характеристични корени са реални числа.

## Теорема 1.

Характеристичните корени на симетрична матрица с реални елементи са реални

Доказателството е изнесено на следната страница..



Един **ненулев** вектор  ${m g}$  се нарича **собствен вектор** за линейния оператор  $\phi$ , когато съществува число  $\lambda$  (което се нарича **собствена стойност**), такова че:  $\phi({m g}) = \lambda.{m g}$  .

Като следствие от теорема 1 непосредствено получаваме, че всеки симетричен оператор има собствени вектори.

## Теорема 2.

Нека  $\varphi$  е симетричен оператор в евклидовото пространство E и векторите a и b са собствени вектори за различни собствени стойности. Тогава a и b са ортогонални.

Доказателство:

24. Симетрични оператори в крайномерни евклидови пространства. Основни свойства. Теорема за диагонализация. Нека  $\varphi(a) = \lambda a$  и  $\varphi(b) = \mu b$  . Тогава е изпълнено  $\lambda \neq \mu$  и следователно:

$$\underbrace{\frac{(\varphi(a),b) = (\alpha,\varphi(b))}{\downarrow}}_{\downarrow}$$

$$\underbrace{\lambda(a,b) = (\lambda a,b) = (\alpha,\mu b) = \mu(\alpha,b)}_{\downarrow}$$

$$(\lambda - \mu).(a,b) = \theta \Rightarrow (a,b) = \theta$$

За да докажем теоремата за канонизация на симетричен оператор, ще ни е нужна следната лема:

#### Лема:

Ако g е собствен вектор на симетричния оператор  $\varphi$  и h е вектор перпендикулярен на g тогава  $\varphi(h)$  също е перпендикулярен на g .

#### Доказателство:

Векторът g е собствен  $\Rightarrow \varphi(h)g)=\lambda.g$  . Тогава от (g,h)=0 имаме:  $(g,\varphi(h))=(\varphi(g),h)=(\lambda.g,h)=\lambda(g,h)=\theta$ 

#### Теорема. ( канонизация на симетричен оператор):

За всеки симетричен оператор в крайномерно евклидово пространство съществува ортонормиран базис от собствени вектори на оператора.

#### Доказателство:

Доказателството се провежда по идукция онтосно n, размерността на пространството E

- $lue{lue}$ Нека твърдението е доказано за произволно (n 1) мерно евклидово пространство и нека E е произволно n мерно евклидово пространство.
  - Нека  $\lambda_I$  е реален характеристичен корен на матрицата на оператора (такъв съществува според <u>Теорема 1</u>) и нека a е собствен вектор, за който  $\varphi(a) = \lambda_I \cdot a$ .
  - <sup>■</sup>Нека бележим с U множеството от всички вектори на E, които са ортогонални на a, т.е.  $U = \{x \in E \mid (x, a) = 0\}$ . За U имаме:
    - $^{\blacksquare}U$  е подпространство на E с размерност n 1 (пространството U е ортогонално допълнение на линейната обвивка на вектора a);
    - <sup>■</sup>В <u>Лемата</u> доказахме, че за всеки вектор x от U е изпълнено  $\varphi(x) \in U$ , следователно можем да резглеждаме  $\varphi$  също и като симетричен оператор действащ в пространството U.
    - <sup> $\blacksquare$ </sup>Съгласно индукционното предположение за U съществува ортонормиран базис  $e_1, \dots, e_{n-1}$  от собствени вектори на оператора  $\varphi$ .
- Чека  $e_n$  е единичен вектор получен чрез нормиране от a, тогава ясно е че векторите  $e_1, \dots, e_n$  образуват ортонормиран базис на E и всички те са собствени вектори за оператора  $\varphi$ . Следователно твърдението е вярно и за пространството E. По индукция следва, че твърдението е вярно за произволно крайномерно евклидово пространство .

## Следствие 1:

За всеки симетричен оператор съществува ортонормиран базис, спямо който матрицата на оператора е диагонална. (това е базиса от собствени вектори на оператора)



Eдна квадратна матрица T се нарича **ортогонална**, когато нейната обратна съвпада с транспонираната и,  $T^I = T^I$ . В Eвклидово пространство матрицата на прехода от един ортонормиран базис към друг ортонормиран базис е ортогонална матрица.

Непосредствено от формулата за смяна на матрицата но оператор при смяна на базиса получаваме следното:

### Следствие 2:

За всяка симетрична матрица A съществува ортогонална матрица T, и диагонална матрица D, такава че  $D = T^{-1}AT$ .