Tópicos Especiais em Otimização

GRASP

Autora do material:

Prof. Luciana Brugiolo Gonçalves

Professora: Adria Lyra adrialyra@ufrrj.br

[Talbi]

- Roteiro
 - GRASP
 - Fase 1: Construção
 - Fase 2: Busca Local
 - Aperfeiçoando...
 - Construtivos Alternativos
 - GRASP Reativo
 - GRASP+PR e GRASP+evPR
 - GRASP Híbrido

Greedy Randomized Adaptive Search Procedure

Operations Research Letters 8 (1989) 67-71 North-Holland

A PROBABILISTIC HEURISTIC FOR A COMPUTATIONALLY DIFFICULT SET COVERING PROBLEM *

Thomas A. FEO
The University of Texas, Austin, TX 78712, USA

Mauricio G.C. RESENDE

University of California, Berkeley, CA 94720, USA

- Greedy Randomized Adaptive Search Procedure
 - Trabalhos relacionados
 - random multistart local search [e.g. Lin & Kernighan, 1973]
 - semi-greedy heuristics [e.g. Hart & Shogan, 1987]

Procedimento iterativo ou multi-start que combina

- Fase de Construção
 - Iterativamente, constrói uma solução, inserindo um elemento por vez.
- Fase de Busca Local
 - Analisar a vizinhança da solução construída até identificar um ótimo local.

MaxIter

GRASP - Algoritmo Básico

[MResende]

http://www2.research.att.com/~mgcr/talks/2010-11-copios2010-grasp-

Fase de Construção

- Procedimento iterativo onde uma solução viável é construída acrescentando-se um elemento por vez.
- Em cada iteração
 - Utilizando uma função gulosa, avaliar o benefício de incluir cada elemento na solução e ordenar os elementos;
 - Criar uma lista restrita com os elementos melhor avaliados;
 - De forma aleatória, selecionar um elemento da lista restrita;
 - Na próxima iteração, a/o função/problema é "adaptada" considerando o novo panorama (inclusão do último elemento).

- Fase de Construção:
 - Características
 - Gulosa
 - Aleatória
 - Apadtativa
 - Necessário definir:
 - Solução como conjunto de elementos
 - Função de avaliação
 - Parâmetro de aleatoriedade (α)

- Fase de Construção
 - Procedimento iterativo onde uma solução viável é construída acrescentando-se um elemento por vez.
 - Em cada iteração
 - Utilizando uma função gulosa, avaliar o benefício de incluir cada elemento na solução e ordenar os elementos;
 - Criar uma lista restrita com os elementos melhor avaliados;
 - De forma aleatória, selecionar um elemento da lista restrita;
 - Na próxima iteração, a/o função/problema é "adaptada" considerando o novo panorama (inclusão do último elemento).

Fase de Construção

[MResende]

http://www2.research.att.com/~mgcr/talks/2010-11-copios2010-grasp-

- Fase de Construção
 - Elementos na lista restrita de candidatos
 - Baseado na Cardinalidade
 - p elementos melhor avaliados (α * #candidatos);
 - Baseada na Qualidade
 - Parâmetro α define a qualidade dos elementos a serem inseridos na lista restrita;
 - Considerando c_{min} e c_{max} o valor mínimo e máximo, respectivamente, da função de avaliação para os candidatos, na LRC são inseridos os elementos e cuja função de avaliação c(e) esteja no intervalo:

$$c_{min} \leq c(e) \leq c_{min} + \alpha (c_{max} - c_{min})$$

$$\begin{cases} \alpha = 0 \rightarrow \text{guloso} \\ \alpha = 1 \rightarrow \text{totalmente aleatório} \end{cases}$$

- Fase de Busca Local
 - Fase de construção não necessariamente leva a uma solução ótima local.
 - Na maioria das vezes, a fase de busca local pode melhorar a solução.

- Benefícios
 - Fácil de implementar;
 - A partir de um algoritmo construtivo e um procedimento de busca local;
 - Poucos parâmetros
 - Fator de aleatoriedade: α
 - Número de iterações

 Incrementando/Aperfeiçoando/Evoluindo a versão básica do GRASP

- GRASP**
 - Construtivos alternativos;
 - Uso de filtros:
 - Inserir algum tipo de memória;
 - Ajuste automático do parâmetro de aleatoriedade;
 - Paralização do algoritmo.

- GRASP**
 - Construtivos alternativos

[MResende]

http://www2.research.att.com/~mgcr/talks/2010-11-copios2010-grasp-

- GRASP**
 - Construtivos alternativos

[MResende]

http://www2.research.att.com/~mgcr/talks/2010-11-copios2010-grasp-

- GRASP**
 - Construtivos alternativos Roleta
 - [Bresina, 1996]
 - Na versão tradicional, todos os elementos da lista restrita possuem a mesma chance de serem escolhidos;
 - Nesta proposta, a probabilidade de escolha varia de acordo com a avaliação de cada candidato.

- GRASP**
 - Construtivos alternativos Custos alterados
 - [Ribeiro, Uchoa, & Werneck, 2002];
 - Aplicar uma perturbação, introduzir algum tipo de ruído nos custos antes de aplicar uma heurística de construção.

- GRASP**
 - Uso de filtros:
 - Construir um conjunto de soluções e aplicar BL apenas na melhor delas;
 - A cada solução construída, aplicar algum critério de aceitação. Somente aplicar BL nas soluções aceitas.

GRASP com memória

- Etapa de construção
 - Como a intensificação da Busca Tabu;
 - Identificar atributos presentes nas melhores soluções e "incentivar ou forçar" a presença destes atributos nas próximas soluções
 - Memória de médio prazo → Conjunto soluções elite.

- GRASP com memória
 - Pós Busca Local
 - Path relinking (Reconexão por caminhos)
 - Estratégias de acionamento
 - Em cada iteração utilizando a solução da iteração atual e uma solução do conjunto elite;
 - Após as iterações do GRASP, aplicar PR entre todas as soluções do conjunto elite;

GRASP com memória

- Pós Busca Local
 - Path relinking

[Mresende] http://www2.research.att.com/~mgcr/talks/2010-11-copios2010-grasp-pr.pdf

- GRASP com memória
 - Path relinking Evolutivo (EV-PR)
 - Resende & Werneck, 2004, 2006
 - Pode ser utilizado como um procedimento de intensificação, ou como método de pós otimização;
 - Aplicado sobre um conjunto de soluções;
 - Aprimora as soluções de forma a ter um conjunto com soluções ainda melhores.

- GRASP com memória
 - Path relinking Evolutivo (EV-PR)
 - População inicial (P₀) → Pool de soluções elite
 - Inicialmente:
 - Conjunto X: Pequeno e com as melhores soluções (1 ou 2 soluções);
 - Conjunto Y: Todo o conjunto de soluções.

- GRASP com memória
 - Path relinking Evolutivo (EV-PR)
 - População inicial (P₀) → Pool de soluções elite
 - Inicialmente:
 - Conjunto X: Pequeno e com as melhores soluções (1 ou 2 soluções);
 - Conjunto Y: Todo o conjunto de soluções.

- GRASP com memória
 - Path relinking Evolutivo (EV-PR)
 - População inicial (P₀) → Pool de soluções elite
 - Aplicar PR entre todos os pares (x,y) de soluções elite onde x ∈ X e y
 ∈ Y
 - A solução resultante z = PR(x,y) é candidata a integrar a próxima população;
 - Regras para inclusão na próxima população é a mesma para PR

- ou z é melhor que a melhor solução
- ou z é melhor que a pior e suficientemente diferente as demais.

- GRASP com memória
 - Path relinking Evolutivo (EV-PR)
 - O algoritmo termina quando a melhor solução população atual possui o mesmo valor da melhor solução da população anterior.

- GRASP com memória
 - Path relinking Evolutivo (EV-PR)

Fonte: http://www2.research.att.com/~mgcr/talks/2010-11-copios2010-grasp-pr.pdf

- GRASP com memória
 - Path relinking Evolutivo (EV-PR)

- GRASP com memória
 - Path relinking Evolutivo (EV-PR)

- GRASP++
 - Opções de seleção do parâmetro α
 - Valor Fixo
 - Resultado vai depender do problema e do tamanho da instância;
 - Em cada iteração do GRASP, seleção aleatória do parâmetro
 - Conjunto discreto de valores $[\alpha_1, \alpha_2, \alpha_3, ..., \alpha_m]$
 - Mesma probabilidade de seleção.
 - GRASP Reativo

- GRASP++
 - GRASP Reativo [Prais & Ribeiro (2000)]
 - Conjunto discreto de valores $[\alpha_1, \alpha_2, \alpha_3, ..., \alpha_m]$
 - Probabilidade de escolha de α_m é p_m
 - Ajuste adaptativo da probabilidade, favorecendo valores de α que produziram melhores resultados.

- GRASP++
 - GRASP Reativo [Prais & Ribeiro (2000)]
 - Conjunto discreto de valores $[\alpha_1, \alpha_2, \alpha_3, ..., \alpha_m]$
 - Inicialmente $p_i = 1/i$, para $i = \{1, 2, ..., m\}$
 - Probabilidade ajustada a cada k iterações
 - Considerando:
 - f(s*) o valor custo da melhor solução;
 - A_i média das soluções obtidas com α_i;
 - A cada k iterações, atualizar probabilidade (prob. minimização):
 - $q_i = f(s^*) / A_i$
 - $p_i = q_i / i$

- GRASP++
 - Busca Local
 - Utilização de outras metaheurísticas na etapa de busca local do GRASP.
 - Exemplo: ILS, Tabu, Simulated Annealing entre outras que ainda serão vistas.

- Critério de parada
 - Número máximo de iterações (original);
 - Tempo de execução (comparação de diferentes abordagens);
 - Solução alvo (ttt plot);
 - •

- GRASP Paralelo
 - Paralelização simples e direta
 Dividir as iterações para os processadores disponíveis.

Dúvidas

Perguntas ou comentários?

Luciana Brugiolo Gonçalves Ibrugiolo@ufv.br

Referências

- EL-GHAZALI TALBI. Metaheuristics: From Design to Implementation, Wiley, 2009.
- Mauricio Resende AT&T
 - http://mauricio.resende.info/MiniCursoGRASP.pdf
 - http://www2.research.att.com/~mgcr/talks/2010-11-copios2010-grasppr.pdf