CS 435: Introduction to Cryptography

Fall 2020

Homework 3

Professor Somesh Jha

Due: October 26

1. Let G and F be PRGs. Prove that $F \circ G$ (where \circ is function composition) is also a PRG.

Solution:

Let G and F be pseudorandom generators (PRGs) with expansion factor l(n) = 2n and D be a PPTA distinguisher. Note that $F \circ G$ has expansion factor 4n. Let us consider the two worlds,

World 0: Generate an n-bit random seed s and give F(G(s)) to D (note that F(G(s)) has length 4n, which is the length of the string r in world 1.)

World 1: Generate a uniform bit string r of length 4n and give it to D.

Intermediate world, World I: Generate a 2n-bit random string z and provide F(z) to the distinguisher D(F(z)) is a 4n-bit string).

D outputs a 1 if it thinks it is in world 0.

Step 1 (difference between world 1 and I): Since F is a PRG, by definition (Definition 3.14) we have that there exists a negligible function $negl_1$ such that

$$|\Pr[D(r) = 1] - \Pr[D(F(z)) = 1]| \le negl_1(n).$$

Step 2 (difference between world I and 0): Consider $D_1 = D \circ F$. Since F is polynomial time, then D_1 is a PPT algorithm. In particular, D_1 is a distinguisher. Now, since G is a PRG, by definition we have that there exists a negligible function $negl_2$ such that

$$|\Pr[D_1(z) = 1] - \Pr[D_1(G(s)) = 1]| \le negl_2(n)$$

which is the same as

$$|\Pr[D(F(z)) = 1] - \Pr[D(F(G(s))) = 1]| \le negl_2(n).$$

Step 3: It follows from the triangle inequality $(|a-c|+|c-b| \ge |a-b|)$ that

$$|\Pr[D(r) = 1] - \Pr[D(F(G(s))) = 1]| \le$$

 $< |\Pr[D(r) = 1] - \Pr[D(F(z)) = 1]| + |\Pr[D(F(z)) - \Pr[D(F(G(s))) = 1]|.$

It follows from what we proved in Step 1 and 2 that

$$|\Pr[D(r) = 1] - \Pr[D(F(z)) = 1]| + |\Pr[D(F(z)) - \Pr[D(F(G(s))) = 1]| \le$$

 $\le negl_1(n) + negl_2(n).$

Therefore $|\Pr[D(r) = 1] - \Pr[D(F(G(s))) = 1]| \le negl_1(n) + negl_2(n)$. Since the sum of two negligible functions is negligible (Proposition 3.6), we have just proved that there exist a negligible function negl such that

$$|\Pr[D(r) = 1] - \Pr[D(F(G(s))) = 1]| \le negl(n).$$

That is, $F \circ G$ is a PRG.

2. Let G and F be PRGs. Is (F,G) a PRG? Note that (F,G)(s) is (F(s),G(s)). Please justify your answer.

Solution:

No. In general, (F, G) is not a PRG.

Consider the case when $F, G : \{0,1\}^n \to \{0,1\}^{2n}$ and F = G. An efficient distinguisher can be defined in the following way: on input a string $w = (w_1, w_2)$ from $\{0,1\}^{2n} \times \{0,1\}^{2n}$, D outputs 1 if and only if $w_1 = w_2$. Since this property holds for all the strings output by (F, G), we have

$$\Pr[D((F,G)(s))) = 1] = \Pr[D(F(s),G(s)) = 1] = 1.$$

On the other hand, if w is uniform, the probability of $w_1 = w_2$ is $1/2^{2n}$ (2^{2n} strings out of 2^{4n} possible strings). That is, $\Pr[D(w) = 1] = 1/2^{2n}$. Therefore

$$|\Pr[D(F(s), G(s)) = 1] - \Pr[D(w_1, w_2) = 1] = 1 - 1/2^{2n}$$

which is not a negligible function.

3. Exercise 3.6

Let G be a pseudorandon generator with expansion factor $\ell(n) > 2n$. In each of the following cases, say whether G' is necessarily a pseudorandom generator. If yes, give a proof; if not, show a counterexample.

- (a) Define $G'(s) \stackrel{\text{def}}{=} G(s_1 \cdots s_{\lceil n/2 \rceil})$, where $s = s_1 \cdots s_n$.
- (b) Define $G'(s) \stackrel{\text{def}}{=} G(0^{|s|} ||s|)$.
- (c) Define $G'(s) \stackrel{\text{def}}{=} G(s) \parallel G(s+1)$.

(Note that given a real number x, the ceiling function $\lceil x \rceil$ gives the least integer greater than or equal to x.)

Solution:

(a) Yes, G' is a PRG. First, since l(n) > 2n we have that |G'(s)| > (1/2).2n = n as required for any pseudorandom generator. Let l' be the expansion factor of G'; i.e. l' is such that |G'(s)| = l'(|s|). Fix a probabilistic polynomial time algorithm D and set

$$\varepsilon(n) \stackrel{\mathrm{def}}{=} |\operatorname{Pr}_{r \leftarrow \{0,1\}^{l'(n)}}[D(r) = 1] - \operatorname{Pr}_{s \leftarrow \{0,1\}^n}[D(G'(s)) = 1]|$$

By definition of G', we have that

$$\Pr_{s \leftarrow \{0,1\}^n}[D(G'(s)) = 1] = \Pr_{s \leftarrow \{0,1\}^{n/2}}[D(G(s)) = 1],$$

and thus

$$|\Pr_{r \leftarrow \{0,1\}^{l'(n)}}[D(r) = 1] - \Pr_{s \leftarrow \{0,1\}^{n/2}}[D(G(s)) = 1]| = \varepsilon(n) = \varepsilon'(n/2)$$

where $\varepsilon'(n) \stackrel{\text{def}}{=} \varepsilon(2n)$ (note the change in the length of s). Since ε' must be negligible (because G is a PRG), we conclude that ε is negligible as well.

(b) No, G' is not necessarily a PRG. To see this, let $H: \{0,1\}^n \to \{0,1\}^{3n}$ be a PRG and define $G(s_1||s_2) = H(s_1)$. It can be proven that G is a PRG, $G: \{0,1\}^{2n} \to \{0,1\}^{3n}$. But then $G'(s) = G(0^n||s) = H(0^n)$, and clearly G' is not a pseudorandom generator. On input a string w, an efficient distinguisher D outputs 1 if and only if $w = H(0^n)$. Then

$$|\Pr[D(G'(s)) = 1] - \Pr[D(w) = 1]| = 1 - 1/2^{3n}.$$

Fundamentally, the problem here is that G' runs G on an input that is not uniformly distributed.

(c) No, G' is not necessarily a PRG. To see this, let $H: \{0,1\}^{n-1} \to \{0,1\}^{2n}$ be a PRG and define $G(s) = H(s_1, \ldots, s_{n-1})$. It can be proven that G is a PRG. But then if the last bit of s is 0, we have

$$G'(s) = G(s)||G(s+1) = H(s_1, \dots, s_{n-1})||H(s_1, \dots, s_{n-1})||$$

because then s and s + 1 differ only in their final bit. So, with probability 1/2 the two halves of the output of G' are the same. This is clearly not a pseudorandom generator. On input $w = (w_1, w_2)$, an efficient distinguisher D outputs 1 if and only if $w_1 = w_2$. Then

$$|\Pr[D(G'(s)) = 1] - \Pr[D(w) = 1]| = 1/2 - 1/2^n.$$

Fundamentally, the problem here is that G' runs G on two correlated (rather than independent) inputs.

4. Exercise 3.13

Consider the following keyed function F: For security parameter n, the key is an $n \times n$ boolean matrix A and an n-bit boolean vector b. Define $F_{A,b} = \{0,1\}^n \to \{0,1\}^n$ by $F_{A,b}(x) \stackrel{\text{def}}{=} Ax + b$, where all operations are done modulo 2. Show that F is not a pseudorandom function.

Solution:

Let e_i denote the *n*-bit string with a 1 in position i (and 0s elsewhere). First of all, observe that $F_{A,b}(0^n) = b$ and $F_{A,b}(e_i) = a_i + b$, where a_i is the ith column of the matrix A.

Now consider the following distinguisher D:

1) D queries the oracle \mathcal{O} on the n+1 strings $0^n, e_1, \ldots, e_n$ (n+1) queries and then constructs the matrix A and the vector b as $b = \mathcal{O}(0^n)$ and $a_i = \mathcal{O}(e_i) - b$, where a_i is the *i*th column of the matrix A.

2) D queries the oracle \mathcal{O} on a new string x, let $y = \mathcal{O}(x)$. If y = Ax + b, then D outputs 1. Otherwise, D outputs 0.

D is PPTA since it performs only n+2 queries. Moreover, if $\mathcal{O}=F_{A,b}$, then for any key (A,b), D outputs 1. On the other hand, if $\mathcal{O}=f$ for f chosen uniformly from Func_n, then the probability that f(x)=Ax+b is $\frac{(2^n)^{2^n-1}}{(2^n)^{2^n}}=\frac{1}{2^n}$. Therefore

$$|\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1] = 1 - 1/2^n$$

which is not a negligible function.