MA 630 - Homework 8 (Module 4 - Section 2)

Solutions must be typeset in LaTeX and submitted to Canvas as a .pdf file. When applicable, write in complete sentences.

1. Prove directly (i.e. using only the definitions of *bijection*, one-to-one, and onto) that if $f: A \to B$ and $g: B \to C$ are bijections, then $g \circ f$ is a bijection.

Proof: (One-to-one:) Let $a, b \in X$ such that $g \circ f(a) = g \circ f(b)$. Then g(f(a)) = g(f(b)) and since g is one-to-one then f(a) = f(b). Since f is one-to-one then a = b. Hence $g \circ f$ is one-to-one.

(Onto:) Let $c \in C$, then since g is onto there must exist some $b \in B$ such that g(b) = c. Since f is onto B then there must exist some $a \in A$ such that f(a) = b. Hence

$$g \circ f(a) = g(f(a)) = g(b) = c$$

and therefore $g \circ f$ is onto.

Hence $g \circ f$ is a bijection.

2. Let $f:A\to A$ and $g:A\to A$ be one-to-one functions from A onto A. Prove that

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}.$$

Reminder: To prove that two functions, h_1 and h_2 , are equal, it must be shown that h_1 and h_2 have the same domain, X, and that $h_1(x) = h_2(x)$ for all $x \in X$.

Let $a \in A$, then $(f \circ g)^{-1}(a) = b$ is that element such that $(f \circ g)(b) = a$. This element is unique because $f \circ g$ is one-to-one as we demonstrated above. This is the same as f(g(b)) = a and let's call g(b) = c. Then by g being one-to-one, we have that $b = g^{-1}(c)$. In this notation we also have f(c) = a and $c = f^{-1}(a)$.

On the other hand

$$(g^{-1} \circ f^{-1})(a) = g^{-1}(f^{-1}(a))$$

= $g^{-1}(c)$
= b .

This shows that for every $a \in A$, the values $(f \circ g)^{-1}(a)$ and $(g^{-1} \circ f^{-1})(a)$ are both b. Therefore $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

3. Prove that the function $f: \mathbb{R} - \{2\} \to \mathbb{R} - \{5\}$ given by $f(x) = \frac{5x+1}{x-2}$ is a bijection.

Proof: Suppose $a, b \in \mathbb{R} - \{2\}$ are such that f(a) = f(b). Then

$$\frac{5a+1}{a-2} = \frac{5b+1}{b-2}$$

$$(5a+1)(b-2) = (5b+1)(a-2)$$

$$5ab-10a+b-2 = 5ab-10b+a-2$$

$$-10a+b = -10b+a$$

$$11b = 11a$$

$$b = a$$

which shows that f is one-to-one. To show f is onto, let $y \in \mathbb{R} - \{5\}$. Then the following are equivalent so long as $x \neq 2$.

$$\frac{5x+1}{x-2} = y$$

$$5x+1 = xy - 2y$$

$$5x - xy = -2y$$

$$x(5-y) = -2y$$

$$x = -\frac{2y}{5-y}.$$

Note that division by 5-y is valid since $y \neq 5$. Therefore we have $f\left(-\frac{2y}{5-y}\right) = y$ which shows that f is onto.

- 4. Let $f: X \to Y$, and let $A \subseteq X$.
 - (a) Prove that $A \subseteq f^{-1}(f(A))$.

- (b) Prove that if f is one-to-one, then $A = f^{-1}(f(A))$.
- (a) Proof: Let $a \in A$ and let y = f(a). Then $a \in f^{-1}(y)$. Since $y \in f(A)$ then $f^{-1}(y) \subseteq f^{-1}(f(A))$ by definition. But then $a \in f^{-1}(f(A))$ which shows $A \subseteq f^{-1}(f(A))$.
- (b) *Proof:* We already have the inclusion $A \subseteq f^{-1}(f(A))$ from above. To prove the reverse, let $a \in f^{-1}(f(A))$ so that by definition $f(a) \in f(A)$. Hence also by definition there is some $a' \in A$ such that f(a') = f(a). But since f is one-to-one, this requires a = a' and then $a \in A$. This shows $f^{-1}(f(A)) \subseteq A$.
- 5. Let $f: X \to Y$, and let $A, B \subseteq X$.
 - (a) Prove that $f(A \cup B) = f(A) \cup f(B)$.
 - (b) Is it true that $f(A \cap B) = f(A) \cap f(B)$? Either prove or provide a counterexample.
 - (a) Proof: Let $y \in f(A \cup B)$ so that there is some $c \in A \cup B$ such that f(c) = y. Therefore $c \in A$ or $c \in B$, and therefore either $f(c) \in f(A)$ or $f(c) \in f(B)$. Then $y = f(c) \in f(A) \cup f(B)$, so $f(A \cup B) \subseteq f(A) \cup f(B)$.

Now let $y \in f(A) \cup f(B)$ so either $y \in f(A)$ or $y \in f(B)$. Without loss of generality let $y \in f(A)$ so that there is some $a \in A$ such that y = f(a). Then $a \in A \cup B$ and therefore $y = f(a) \in f(A \cup B)$. Hence $f(A) \cup f(B) \subseteq f(A \cup B)$.

Since we have inclusion in both directions, $f(A \cup B) = f(A) \cup f(B)$.

(b) This is false, and a counterexample is $A = \{1\}$ and $B = \{2\}$ and f(x) = 1, the constant function 1. Then $A \cap B = \emptyset$ and $f(A \cap B) = \emptyset$. However, $f(A) = f(B) = \{1\}$ and so $f(A) \cap f(B) = \{1\}$.