SEE NAVIGATION

Mohamed Thebti 14 janvier 2024

Table des matières

1	Intro	oduction	3
2	Stea	lth ship	3
3	Sché	ma cinématique	6
	3.1	Articulations et pivots	6
	3.2	Degrés de liberté	6
	3.3	Repère global	6
	3.4	Repères locaux	6
	3.5	Passage d'un repère à un autre	7
		3.5.1 Matrice de rotation	7
4	Etud	e cinématique	8
	4.1	les vecteurs de position	8
	4.2	Position des pivots selon repère global	8
	4.3	Les quadrilatères du bras	9
		4.3.1 Q_1	9
		4.3.2 Q_2	10
		4.3.3 Q_3	10
		4.3.4 Q_4	10
		4.3.5 Q_5	10
		4.3.6 Q_6	10
		4.3.7 Q_6	10
5	La m	éthode de Newton-Raphson	11
6	vites	se accélération	11
7	Régu	ılation/contrôle	11
	7.1	méthode 1	11
	7 2	máthada 2	11

See navigation 2 STEALTH SHIP

1 Introduction

Due to the shape of Earth, ships can hide under the horizon if they are far enough. Using the mathematics formulas, it is possible to compute the minimal distance needed so that a ship in completely hidden under the horizon.

2 Stealth ship

put the schema here

Today is the 17 of June 1568, at 10 :35. In the middle of the Mideterrian see, a naval battle is happening between the Ottoman fleet of Algeria and pirates ships.

The pirates main ship is located in the position $[\phi_1,\lambda_1]$ and its captain is observing the horizon from an altitude of h_1 above the see level. He is trying to locate an Ottoman scout ship, situated in the position : $[\phi_2,\lambda_2]$, by detecting the tip of its mast with a height of h_2 .

Question is how much distance d the Ottoman scout ship must keep so that it is not be detected by the pirates captain? Angle difference : $[\Delta\phi, \Delta\lambda]$

Convert the angle differences to distance in meters. Distance difference : $[\Delta x, \Delta y]$ Compute the Earth radius at each position. For a first approximation, we can consider the radius as the same and constant.

$$b_1 = R_{Earth} + h_1 \tag{1}$$

$$b_2 = R_{Earth} + h_2 \tag{2}$$

Law of cosines:

$$S^{2} = b_{1}^{2} + b_{2}^{2} - 2 \cdot b_{1} \cdot b_{2} \cdot cos(\Delta \alpha)$$
(3)

$$\delta = 23.45^{\circ} \cdot \sin(360^{\circ} \frac{284 + N_d}{365}) \tag{4}$$

It is possible to convert the angle to radian:

$$\delta = \frac{23.45}{2\pi} \cdot \sin(2\pi \frac{284 + N_d}{365}) \tag{5}$$

See navigation 2 STEALTH SHIP

Solenoid radius:

Solenoid surface in 2D:

$$\vec{S} = \begin{bmatrix} r_z \\ 0 \\ z \end{bmatrix} = \vec{S} = \begin{bmatrix} r_0 + \frac{1}{z} \\ 0 \\ z \end{bmatrix} \tag{7}$$

Now, we can draw this solenoid in 3D using the cylindric coordinates:

$$R_{cul} = [\vec{e_r}; \vec{e_\theta}; \vec{e_z}] \tag{8}$$

Rotation matrix over z-axis:

$$Rot_{Z}^{\theta} = \begin{bmatrix} cos(\theta) & -sin(\theta & 0) \\ sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (9)

$$\vec{S}_{R_{cyl}} = \vec{S} \cdot Rot_Z^{\theta} = \begin{bmatrix} r_z \cdot cos(\theta) \\ r_z \cdot sin(\theta) \\ z \end{bmatrix}$$
 (10)

The surface is determined by two variables, θ and z.

$$\vec{S}_{R_{cyl}}(\theta,z) = egin{bmatrix} r_z \cdot cos(\theta) \\ r_z \cdot sin(\theta) \\ z \end{bmatrix}$$
 (11)

See navigation 2 STEALTH SHIP

a particule mass is moving in the solenoid with a vertical velocity v_z and an angular speed $\dot{\theta}$.

$$\theta = \dot{\theta} \cdot t \tag{12}$$

$$z = v_z \cdot t \tag{13}$$

$$\vec{S} = \begin{bmatrix} r_z \cdot \cos(\dot{\theta} \cdot t) \\ r_z \cdot \sin(\dot{\theta} \cdot t) \\ v_z \cdot t \end{bmatrix} \tag{14}$$

First step, surface of a cylinder, with a fixed radius:

$$\vec{S}_{R_{cyl}} = \begin{bmatrix} r_z \cdot cos(\theta) \\ r_z \cdot sin(\theta) \\ z \end{bmatrix}$$
 (15)

3 Schéma cinématique

La pelle complète est dessinée schématiquement, ce qui donne le résultat suivant : (mettre le schéma ici)

3.1 Articulations et pivots

les articulations : A,B,C, D, E, F

les pivots : ...

3.2 Degrés de liberté

 $ddl: \alpha_1, v_1 \ge v_7$. (v pour vérin)

— v_3 et v_4 sont interdépendants

3.3 Repère global

Il est placé à l'origine O. il se utilisé pour exprimer la position de chaque point, principalement l'extrémité du bras (le godet).

$$R = \{x, y, z\} \tag{16}$$

FIGURE 1 – Vue de dessus

3.4 Repères locaux

ce sont des repères mobiles, qui bougent avec les bras sur lesquels ils sont placés. Ainsi chacun dépend du repère précédent : le repère R_{i+1} se déplacent selon un axe du repère R_i .

Repère 1 : placé en A, rotation de α_1 autour de l'axe z.

$$R_1 = \{x_1, y_1, z_1\} \tag{17}$$

Repère 2 : placé en C, rotation de α_2 autour de l'axe y_1 .

$$R_2 = \{x_2, y_2, z_2\} \tag{18}$$

Repère 3 : placé en D, rotation de α_3 autour de l'axe y_2 .

$$R_3 = \{x_3, y_3, z_3\} \tag{19}$$

Repère 4 : placé en E_1 , rotation de α_4 autour de l'axe y_3 .

$$R_4 = \{x_4, y_4, z_4\} \tag{20}$$

Repère 5 : placé en F, rotation de α_5 autour de l'axe y_4 .

$$R_5 = \{x_5, y_5, z_5\} \tag{21}$$

Repère 6 : placé en G, rotation de α_6 autour de l'axe z_5 .

$$R_5 = \{x_5, y_5, z_5\} \tag{22}$$

3.5 Passage d'un repère à un autre

Matrice de transformation T_i du repère i + 1 à i:

$$\vec{A}_{R_i i+1} = T_i \cdot \vec{A}_{R_i} \tag{23}$$

Pour la suite, nous avons besoin d'exprimer la position d'un point par rapport au repère global. En partant de la relation précédente, on peut en déduire :

$$\vec{A}_R = T_1 \cdot T_2 \cdot \dots \cdot T_i \cdot \vec{A}_{R_i} \tag{24}$$

3.5.1 Matrice de rotation

Ci-dessous les matrices qui permettent de faire une rotation d'un angle quelconque α selon les axes X, Y et Z.

$$Rot_X^{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(\alpha) & -sin(\alpha) \\ 0 & sin(\alpha) & cos(\alpha) \end{bmatrix}$$
 (25)

$$Rot_Y^{\alpha} = \begin{bmatrix} cos(\alpha) & 0 & -sin(\alpha) \\ 0 & 1 & 0 \\ sin(\alpha) & 0 & cos(\alpha) \end{bmatrix}$$
 (26)

$$Rot_Z^{\alpha} = \begin{bmatrix} cos(\alpha) & -sin(\alpha & 0) \\ sin(\alpha) & cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (27)

4 Etude cinématique

4.1 les vecteurs de position

définir les vecteurs qui expriment les barres de la pelle mécanique, selon les repères définis précédemment.

$$\vec{OA}_{R} = \begin{bmatrix} 0 \\ 0 \\ a \end{bmatrix}_{R} \vec{AB}_{R_{1}} = \begin{bmatrix} -b \\ 0 \\ 0 \end{bmatrix}_{R_{1}} \vec{BB}_{1R_{1}} = \begin{bmatrix} b_{1} \cdot \cos(\beta_{1}) \\ 0 \\ b_{1} \cdot \sin(\beta_{1}) \end{bmatrix}_{R_{1}} \vec{BB}_{2R_{1}} = \begin{bmatrix} b_{2} \cdot \cos(\beta_{2}) \\ 0 \\ b_{2} \cdot \sin(\beta_{2}) \end{bmatrix}_{R_{1}}$$
(28)

$$\vec{B_1B_2}_{R_1} = \begin{bmatrix} v_1 \cdot \cos(\beta_4) \\ 0 \\ v_1 \cdot \sin(\beta_4) \end{bmatrix}_{R_1} \quad \vec{B_1C_1}_{R_1} = \begin{bmatrix} c_1 \cdot \cos(\beta_1) \\ 0 \\ c_1 \cdot \sin(\beta_1) \end{bmatrix}_{R_1} \quad \vec{C_1C_R}_1 = \begin{bmatrix} c \cdot \cos(\beta_1) \\ 0 \\ c \cdot \sin(\beta_1) \end{bmatrix}_{R_1}$$

$$(29)$$

$$\vec{C_1C_2} = \begin{bmatrix} v_2 \cdot \cos(\gamma_1) \\ 0 \\ v_2 \cdot \sin(\gamma_1) \end{bmatrix}_{R1} \quad \vec{C_2C_{R_1}} = \begin{bmatrix} -c_2 \\ 0 \\ 0 \end{bmatrix}_{R2} \quad \vec{C_2D_{R_2}} = \begin{bmatrix} -d \\ 0 \\ 0 \end{bmatrix}_{R2} \quad \vec{D_1C_{R_3}} = \begin{bmatrix} -d_1 \\ 0 \\ 0 \end{bmatrix}_{R_3}$$
(30)

$$\vec{D_1 D_2}_{R_3} = \begin{bmatrix} -d_2 \cdot \cos(\delta_1) \\ 0 \\ d_2 \cdot \sin(\delta_1) \end{bmatrix}_{R_3}$$
(31)

4.2 Position des pivots selon repère global

$$\vec{OA}_R =$$
 (32)

$$\vec{OB}_R = \vec{OA}_R + \vec{AB}_R \qquad \text{(33)}$$

$$\vec{OC}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R$$
 (34)

$$\vec{OD}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R$$
 (35)

$$\vec{OE}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R$$
(36)

$$\vec{OF}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R + \vec{EF}_R$$
(37)

$$\vec{OG_R} = \vec{OA_R} + \vec{AB_R} + \vec{BB_{1R}} + \vec{B_1C_{1R}} + \vec{C_1C_R} + \vec{CC_{2R}} + \vec{C_2D_R} + \vec{DD_{1R}} + \vec{D_1E_R} + \vec{EF_R} + \vec{FF_{3R}} + \vec{F_3G_R}$$
(38)

$$\vec{OH}_R = \vec{OA}_R + \vec{AB}_R + \vec{BB}_{1R} + \vec{B_1C}_{1R} + \vec{C_1C}_R + \vec{CC}_{2R} + \vec{C_2D}_R + \vec{DD}_{1R} + \vec{D_1E}_R + \vec{EF}_R + \vec{FF}_{3R} + \vec{F_3G}_R + \vec{GH}_R$$
(39)

4.3 Les quadrilatères du bras

il y en a six déterminés par :

- $-Q_1: B, B_1, B_2$
- $-Q_2:C_1,C,C_2$
- $Q_3:D$, D_4 , D_5 et D, D_3 , D_6 . (symétriques)
- $-Q_4:D_1,D_2,E_1,E$
- $-Q_5: E_1, E_2, F_1, F$
- $-Q_6: F, F_1, F_2, F_3$
- $-Q_7: G, G_1, G_2, G_3$

La relation qui donne les angles et les longueurs de bras pour chaque quadrilatère 1:

4.3.1 Q_1

$$\frac{v_1}{\sin(\beta_5)} = \frac{b_1}{\sin(\beta_4)} = \frac{b_2}{\sin(\beta_2)} \tag{40}$$

$$\beta_6 = \pi - \beta_1 \tag{41}$$

$$\beta_5 = 2\pi - \beta_3 - \beta_6 = 2\pi - \beta_3 - (\pi - \beta_1) = \pi + \beta_1 - \beta_3 \tag{42}$$

$$\pi = \beta_2 + \beta_4 + \beta_5 \tag{43}$$

$$b_2^2 = v_1^2 + b_1^2 - 2 \cdot v_1 \cdot b_1 \cdot \cos(\beta_5) \tag{44}$$

Les paramètres constants : β_2 , b_1 , b_2

^{1.} à l'aide des relations de Al-Kashi

4.3.2 Q_2

$$\frac{v_2}{\sin(\gamma_6)} = \frac{c}{\sin(\gamma_8)} = \frac{c_2}{\sin(\gamma_4)}$$

$$\gamma_2 = 2\pi - \gamma_1$$
(45)

$$\gamma_2 = 2\pi - \gamma_1 \tag{46}$$

$$\gamma_3 = \beta_1 \tag{47}$$

$$\gamma_4 = \gamma_1 - \beta_1 \tag{48}$$

$$\gamma_6 = 2\pi - \gamma_5 - \beta_6 = \pi + \beta_2 - \gamma_5 \tag{49}$$

$$\gamma_7 = \pi - \gamma_5 \tag{50}$$

$$\gamma_8 = 2\pi - \gamma_2 - \gamma_7 \tag{51}$$

$$\pi = \gamma_4 + \gamma_6 + \gamma_8 \tag{52}$$

$$c^{2} = v_{2}^{2} + c_{2}^{2} - 2 \cdot v_{2} \cdot c_{2} \cdot \cos(\gamma_{8})$$
(53)

- **4.3.3** Q_3
- **4.3.4** Q_4
- **4.3.5** Q_5
- **4.3.6** Q_6
- **4.3.7** Q_6

Pour résoudre ces quadrilatères et connaître les paramètres inconnus, on utilise la méthode suivante.

La méthode de Newton-Raphson 5

but : déterminer les inconnues dans chaque quadrilatère

vitesse accélération

expression générale de la vitesse et de l'accélération

$$v = \frac{dx}{dt} = \frac{dx}{d\omega} \cdot \frac{d\omega}{dt} = \frac{dx}{d\omega} \cdot \dot{\omega}$$

$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt}$$
(54)

$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} \tag{55}$$

Ce qui donne:

Régulation/contrôle

méthode 1 7.1

connaître le résultat à l'extrémité du bras quand une des variables et modifier :

$$\delta v o ec{\delta p}$$
 (56)

méthode 2 7.2

plus complexe : le but est de connaître les vérins à actionner si on veut que l'extrémité du bras, c'est-à-dire le ..., fasse un certain mouvement exemple:

- mouvement de translation selon un axe x,y ou z : typiquement imposer que 2 composantes sur les 3 restes constantes
- mouvement de rotation : plus complexe