Vorname Name:	Klasse:	FoTa Auflage:
Physik-Lehrkraft in der 2. Klasse:		Viel Erfolg!

Querschnittsprüfung Wärme

Fr. 31. August 2012

	Hilfsmittel: Taschenrechner, FoTa, ein A4-Blatt Spick Darstellung: formale Lösung herleiten - einsetzen mit Einheiten - ausrechnen, runden, Einheit dazu	frei lassen
1	Wenn ein Eisenband bei 10 °C die Erde am Äquator umspannte und anschliessend auf 35 °C erhitzt würde, wie hoch stünde das Band dann durchschnittlich über dem Boden?	
2	Die Firma Wartsila Sulzer baut für Containerschiffe den grössten Dieselmotor der Welt. Er heisst RTA96-C und erbringt eine Nutzleistung von 114'000 PS. Dafür müssen dem Motor stündlich etwas mehr als 13 Tonnen Diesel zugeführt werden.	
2a	Zeigen Sie mit einer Rechnung, dass der Wirkungsgrad wie vom Hersteller angegeben mehr als 50 % beträgt. Diesel darf dabei wie Heizöl behandelt werden.	
2b	Im Brennraum von Dieselmotoren werden Temperaturen bis zu 2500 °C gemessen. Wie gross ist die Abgastemperatur bei einem Wirkungsgrad von 50 % unter der Annahme, dass es sich um eine ideale Wärmekraftmaschine handelt?	/4
3	Das interstellare Gas enthalte an einer Stelle 75 Wasserstoffatome pro cm³ bei 75 K. Berechnen Sie die mittlere Geschwindigkeit der Wärmebewegung.	/3
4a	Sie stehen abgetrocknet in der Badehose bei Windstille im Schatten. Wie viel Wärme strahlt Ihr Körper ab? Die Hauttemperatur betrage ≈ 30 °C, die Hautfläche 1.8 m².	
4b	Warum ist der Verlust durch Strahlung in Wirklichkeit viel kleiner als in 4a) berechnet?	
5	Weltweit regnet es jeden Tag 1400 km³ Wasser. Wie viel Wärme wird durch die Kondensation des Wasserdampfs freigesetzt?	
6	Sie hauchen im Winter gegen eine eiskalte Fensterscheibe. Wie viel Gramm Wasserdampf kann maximal kondensieren? Rechnen Sie mit einem halben Liter Atem.	
7	Der Eigentümer eines alten Hauses stellt fest, dass bei einer Innentemperatur von 20 °C durch die einfach verglasten Fenster im Wohnzimmer pro Jahr eine Wärmemenge von 4'800 kWh entweicht. Die Fenster haben zusammen eine Fläche von 12 m².	
7a	Auf welchen Bruchteil könnte dieser Energieverbrauch gesenkt werden, wenn die einfach verglasten Fensterscheiben durch moderne Isolierverglasung ersetzt würden?	
7b	Beschreiben Sie je eine Situation, bei der in einem Haushalt Wärmestrahlung bzw. Konvektion auftritt.	
8	Nordamerikanische Indianer kochten, indem Sie nacheinander heisse Steine (700 °C, Wärmekapazität wie Fensterglas) in das Kochgeschirr warfen (mit 5.0 kg Wasser von 15 °C). Wie viel (kg) Steine sind nötig, bis die Siedetemperatur erreicht ist? Vernachlässigen Sie Verdampfung.	/5
	Vernaemaeoigen die Verdampiang.	

Bitte wenden!

Bitte wenden!

Lösungen zur Querschnittsprüfung Wärme 31. August 2012

1)
$$\Delta l \propto \Delta r = \alpha r \Delta \vartheta = 12 \cdot 10^{-6} \ K^{-1} \cdot 6.3781 \cdot 10^{6} \ m \cdot (35 - 10) \ ^{\circ}C = 1.9 \ \text{km}$$

2a)
$$\eta = \frac{W}{Q} = \frac{P \cdot \Delta t}{\Delta m \cdot H} = \frac{1.14 \cdot 10^5 \text{ PS} \cdot 735.5 \text{ W/PS} \cdot 3600 \text{ s}}{13 \cdot 10^3 \text{ kg} \cdot 42.7 \cdot 10^6 \text{ J/kg}} = \underline{0.54} > 50\%$$

2b)
$$\eta = \frac{T_w - T_k}{T_w} \Rightarrow T_k = T_w (1 - \eta) = (2500 + 273.15) \text{ K} \cdot (1 - 0.50) = 1387 \text{ K} = \underline{1.4 \cdot 10^3 \text{ K}}$$

3)
$$v = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3 \cdot 1.381 \cdot 10^{-23} \text{ J/K} \cdot 75 \text{ K}}{1.0079 \text{ u} \cdot 1.661 \cdot 10^{-27} \text{ kg/u}}} = \underline{1.4 \text{ km/s}}$$

4a)
$$P = JA = \sigma T^4 A = 5.670 \cdot 10^{-8} \text{ W/(m}^2 \text{K}^4) \cdot (273.14 + 30)^4 \text{K}^4 \cdot 1.8 \text{ m}^2 = \underline{0.86 \text{ kW}}$$

4b) Der Verlust ist kleiner, weil die Umgebung Sie anstrahlt.

5)
$$Q = mL_V = \rho VL_V = 997.047 \text{ kg/m}^3 \cdot 1400 \cdot 10^9 \text{ m}^3 \cdot 2.4419 \cdot 10^6 \text{ J/kg} = 3.409 \cdot 10^{21} \text{ J}$$

6)
$$m_D = \rho_D V = 0.03963 \text{ kg/m}^3 \cdot 5.0 \cdot 10^{-4} \text{ m}^3 = 20 \text{ mg}$$

7a)
$$Q \propto P = UA\Delta\vartheta \Rightarrow \frac{Q_2}{Q_1} = \frac{U_2}{U_1} = \frac{1.1 \text{ W}/(\text{m}^2\text{K})}{5.9 \text{ W}/(\text{m}^2\text{K})} = \underline{0.19}$$

7b) Glühlampe (Strahlung), Kerze (beides), Kaltluftfall am Fenster (Konvektion), ...

8)
$$c_S m_S (\vartheta_M - \vartheta_S) + c_W m_W (\vartheta_M - \vartheta_W) = 0 \Rightarrow m_S = \frac{c_W m_W (\vartheta_M - \vartheta_W)}{c_S m_S (\vartheta_S - \vartheta_M)}$$

$$m_S = \frac{4182 \text{ J/(kgK)} \cdot 5.0 \text{ kg} \cdot (100 \text{ °C} - 15 \text{ °C})}{800 \text{ J/(kgK)} \cdot (700 \text{ °C} - 100 \text{ °C})} = \frac{3.7 \text{ kg}}{200 \text{ mg}}$$

- 9a) Der Kreisprozess wird im Uhrzeigersinn durchlaufen, weil dann das Gas bei hohem Druck expandiert und Arbeit verrichtet, während es bei kleinem Druck wieder auf das Ausgangsvolumen komprimiert werden kann.
- 9b) Die eingeschlossene Fläche entspricht der netto abgegebenen Energie.

$$[pV] = \frac{N}{m^2} m^3 = Nm = J$$

9c)
$$pV = nRT \Rightarrow \frac{T_A}{T_B} = \frac{p_A V_A}{p_B V_B} = \frac{14.5 \text{ bar} \cdot 1100 \text{ mL}}{9.0 \text{ bar} \cdot 1420 \text{ mL}} = 1.2 \Rightarrow \underline{T_A > T_B}$$