Clase 28

IIC 1253

Prof. Pedro Bahamondes

Outline

Árboles

Aritmética modular

Teorema de Fermat

Epílogo

Árboles

Las siguientes definiciones se usan mucho en aplicaciones de los árboles en computación.

Definición

Sea T = (V, E) un árbol con raíz r y x un vértice cualquiera.

- La profundidad de x es el largo del camino que lo une con r (r tiene profundidad 0).
- La altura o profundidad del árbol es el máximo de las profundidades de sus vértices.
- Los ancestros de x son los vértices que aparecen en el camino entre él y r. Note que x es ancestro de sí mismo.
- El padre de x es su ancestro (propio) de mayor profundidad. Diremos que x es hijo de su padre.
- Dos vértices x e y con el mismo padre son hermanos.

Definición

Un árbol con raíz se dice binario si todo vértice tiene grado a lo más 3; o equivalentemente, si todo vértice tiene a lo más dos hijos.

Podemos distinguir entre hijos izquierdos y derechos

Teorema

La cantidad de vértices sin hijos de un árbol binario es la cantidad de vértices con exactamente dos hijos más 1.

Ejercicio

Demuestre el teorema.

Teorema

La cantidad de vértices sin hijos de un árbol binario es la cantidad de vértices con exactamente dos hijos más 1.

Demostración:

Por inducción en la cantidad de vértices del árbol binario.

- BI: El caso base es un árbol compuesto por sólo un vértice, la raíz. Un árbol de estas características tiene sólo una hoja y ningún vértice con dos hijos, luego cumple la propiedad.
- HI: Supongamos que un árbol binario con n vértices tiene una hoja más que vértices con dos hijos.
- TI: Sea T un árbol binario con n+1 vértices. Sea v una hoja de T, sabemos que T-v es también un árbol binario v tiene exactamente v vértices por lo que v cumple con HI, o sea tiene una hoja más que vértices con dos hijos. Supongamos que v tiene v vértices con dos hijos entonces por HI tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v tiene v vértices con dos hijos entonces por HI tiene v tiene v tiene v tiene v tiene v vértices con dos hijos entonces por HI tiene v tien

- Si v tiene un hermano en T, entonces el padre deV es un vérticee con dos hijos en T. Ahora, en el árbol T − v, el vértice que era padre de v tiene sólo un hijo. Lo anterior quiere decir que T tiene exactamente un vértice más con dos hijos que T − v, o sea que T tiene exactamente k + 1 vértices con dos hijos. Ahora también ocurre que T tiene exactamente una hoja más que T − v, o sea que T tiene k + 2 hojas. Hemos concluido que T tiene k + 2 hojas y k + 1 vértices con dos hijos y por lo tanto cumple con la propiedad.
- Si v no tiene hermano, entonces el vértice padre de v en T se convierte en una hoja en el árbol T − v, lo que quiere decir que T y T − v tienen exactamente la misma cantidad de hojas, k + 1. El único vértice que ve afectado su cantidad de hijos en T − v es el padre de v, este tiene exactamente un hijo en T y 0 hijos en T − v por lo que la cantidad de vértices con dos hijos en T es también la misma que en T − v e igual a k. Hemos concluido que T tiene k + 1 hojas y k vértices con dos hijos y por lo tanto cumple con la propiedad.

Teorema

La cantidad de vértices sin hijos de un árbol binario es la cantidad de vértices con exactamente dos hijos más 1.

Ejercicio

La ANFP está organizando la Copa Chile 2022. Si este año participan n equipos, ¿cuántos partidos se jugarán?

Respuesta: n-1

Finalmente, podemos tomar una clase de árboles binarios que se usan mucho para establecer cotas para las aplicaciones de ellos.

Definición

Un árbol binario completo es un árbol binario tal que:

- 1. Todas las hojas están a la misma profundidad.
- 2. Todos los vértices que no son hojas tienen exactamente dos hijos.

Teorema

- 1. Un árbol binario completo de altura H tiene exactamente 2^H hojas.
- 2. Un árbol binario completo de altura H tiene exactamente $2^{H+1} 1$ vértices.
- 3. Si H es la altura de un árbol binario completo con n vértices, entonces $H \le \log_2(n)$.

Ejercicio

Demuestre el teorema anterior.

Teorema

Un árbol binario completo de altura H tiene exactamente 2^H hojas.

Demostración:

Sea T = (V, E) un árbol binario completo, demostraremos la propiedad por inducción en la altura H.

- Bl: Si H = 0 entonces T corresponde un vértice sin aristas. Luego la cantidad de hojas es igual a $1 = 2^0 = 2^H$.
- HI: Suponemos que todo árbol de altura H tiene 2^H hojas.
- TI: Sea T un árbol de altura H+1 y raíz r. Si eliminamos r del árbol junto con sus aristas incidentes obtenemos un bosque de 2 árboles binarios completos de altura H. Luego, podemos aplicar la HI, con lo que cada árbol en T-r tiene 2^H hojas. Es claro que la cantidad de hojas de T es igual a la suma de todas las hojas de los arboles inducidos al remover r. Con lo que T tendrá una cantidad de hojas igual a $2^H + 2^H = 2 \cdot 2^H = 2^{H+1}$.

Teorema

Un árbol binario completo de altura H tiene exactamente $2^{H+1}-1$ vértices.

Demostración:

Sea T un árbol binario completo con altura H. Por el teorema anterior T debe tener 2^H hojas. Luego, por el otro teorema anterior sabemos que debe tener 2^H-1 vértices con exactamente 2 hijos. Dado que todo vértice en un árbol binario es hoja o tiene 2 hijos, concluimos que T debe tener $2^H+(2^H-1)=2\cdot 2^H-1=2^{H+1}-1$ vértices.

Teorema

Si H es la altura de un árbol binario completo con n vértices, entonces $H \le \log_2(n)$.

Demostración:

Sea T un árbol binario completo con n vértices y altura H. Sabemos que la cantidad de hojas (2^H) tiene que ser menor o igual a la cantidad total de vértices (n).

$$2^H \le n \Rightarrow H \le \log_2(n)$$

Objetivos de la clase

- Conocer propiedades básicas de aritmética modular
- Demostrar equivalencias modulares
- □ Demostrar teorema de Fermat para números primos

Outline

Árboles

Aritmética modular

Teorema de Fermat

Epílogo

Definición

La relación divide a, denotada por |, sobre los $\mathbb{Z} \setminus \{0\}$, es una relación tal que a está relacionado con b si y sólo si b es múltiplo de a:

$$a|b$$
 si y sólo si $\exists k \in \mathbb{Z}$ tal que $b=ka$. $3|9$ $18|72$ $7/9$ $2|-4$

Definición

La relación equivalencia módulo n, denotada por \equiv_n , sobre los enteros, es una relación tal que a está relacionado con b si y sólo si n|(b-a):

$$a \equiv_n b$$
 si y sólo si $n | (b - a)$
 $a \equiv_n b$ si y sólo si $\exists k \in \mathbb{Z}$ tal que $(b - a) = kn$.

Por ejemplo, dado n = 7:

$$2 \equiv_{7} 23$$
 $8 \equiv_{7} 1$ $19 \not\equiv_{7} 4$ $-3 \equiv_{7} 4$

- La relación \equiv_n es una relación de equivalencia.
- Podemos tomar el conjunto cuociente generado por ella sobre ℤ.
- Usando las clases de equivalencia, definimos la suma y la multiplicación.

Definición

Dado $n \in \mathbb{N}$, n > 0, definimos

$$\mathbb{Z}_n = \mathbb{Z}/\equiv_n$$

y sus operaciones

$$[i] + [j] = [i + j]$$
$$[i] \cdot [j] = [i \cdot j]$$

Por simplicidad, renombramos las clases de equivalencia como los números que representan.

Ejemplo

$$\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$$

Calcule 37 + 18 y 26 · 37.

Ejemplo

$$\mathbb{Z}_5 = \{0,1,2,3,4\}$$

Calcule $37 + 18 y 26 \cdot 37$.

$$37 + 18 = [37] + [18] = [37 + 18] = [55] = [0]$$

 $26 \cdot 37 = [26] \cdot [37] = [26 \cdot 37] = [962] = [2]$

Teorema (división con resto)

Dados dos enteros a y n, siempre podemos expresar a en términos de n como $a=\alpha\cdot n+\beta$, donde $\alpha=\left\lfloor\frac{a}{n}\right\rfloor$ es la división entera de a por n, y β es el resto de esa división, con $\alpha,\beta\in\mathbb{Z}$ y $\beta\geq0$.

Ejemplo

Dados a = 3 y n = 2, podemos escribir

$$a = \left| \frac{3}{2} \right| \cdot 2 + 1 = 1 \cdot 2 + 1$$

Llamamos a este resultado el **Teorema de división con resto.**Lo damos por demostrado

Definición

La operación módulo de n entrega el resto de la división por n. Se escribe $a \mod n$.

Ejemplo

 $3 \mod 2 = 1$

Con esta operación podemos redefinir la suma y la multiplicación en \mathbb{Z}_n :

$$[i] + [j] = (i + j) \mod n$$
$$[i] \cdot [j] = (i \cdot j) \mod n$$

Una observación importante es que siempre se cumple que $0 \le a \mod n < n$

Teorema

 $a \equiv_n b$ si y sólo si $a \mod n = b \mod n$.

Ejercicio

Demuestre el teorema.

Teorema

 $a \equiv_n b$ si y sólo si $a \mod n = b \mod n$.

En primer lugar, sabemos que podemos escribir a y b en términos de n:

$$a = \alpha \cdot n + a \mod n \tag{1}$$

$$b = \gamma \cdot n + b \mod n \tag{2}$$

donde $\alpha, \gamma \in \mathbb{Z}$ son los resultados de las divisiones enteras.

(\Leftarrow) Suponemos que a mod $n = b \mod n$. Por demostrar: $a \equiv_n b$.

Si restamos (2)-(1) obtenemos $b-a=(\gamma-\alpha)\cdot n$, de donde es claro que $n\mid (b-a)$, pues $(\gamma-\alpha)\in\mathbb{Z}$. Por lo tanto, se cumple que $a\equiv_n b$.

Teorema

 $a \equiv_n b$ si y sólo si $a \mod n = b \mod n$.

(⇒) Por contrapositivo, suponemos que $a \mod n \neq b \mod n$ (3). Por demostrar: $a \not\equiv_n b$.

Sin pérdida de generalidad, asumimos que $a \mod n < b \mod n$ (4). Si restamos (2) – (1) obtenemos $b - a = (\gamma - \alpha) \cdot n + (b \mod n - a \mod n)$. Como

 $0 \le a \mod n, b \mod n < n$

por (4) se tiene que $1 \le (b \mod n - a \mod n) \le b \mod n < n$. Por lo tanto, $n \not\mid (b-a)$, de donde concluimos que $a \not\equiv_n b$.

Corolario

 $a \equiv_n a \mod n$

Ejercicio

Demuestre el corolario.

Corolario

 $a \equiv_n a \mod n$

Como sabemos que $a \mod n < n$, se tiene que $\left\lfloor \frac{a \mod n}{n} \right\rfloor = 0$. Luego, si expresamos $a \mod n$ en términos de n:

$$a \mod n = 0 \cdot n + (a \mod n) \mod n$$

 $a \mod n = (a \mod n) \mod n$

y por el teorema anterior, $a \equiv_n a \mod n$.

Teorema

Si $a \equiv_n b$ y $c \equiv_n d$, entonces

$$(a+c) \equiv_n (b+d)$$

$$(a \cdot c) \equiv_n (b \cdot d)$$

Ejercicio

Demuestre el teorema.

Teorema

Si $a \equiv_n b$ y $c \equiv_n d$, entonces

- $(a+c) \equiv_n (b+d)$
- $(a \cdot c) \equiv_n (b \cdot d)$

Como $a \equiv_n b$, por definición sabemos que $n \mid (b-a)$, y nuevamente por definición tenemos que $b-a=k_1 \cdot n$. Si despejamos b, y procedemos análogamente desde $c \equiv_n d$:

$$b = a + k_1 \cdot n \tag{1}$$

$$d = c + k_2 \cdot n \tag{2}$$

Teorema

Si
$$a \equiv_n b$$
 y $c \equiv_n d$, entonces $(a + c) \equiv_n (b + d)$.

$$b = a + k_1 \cdot n \tag{1}$$

$$d = c + k_2 \cdot n \tag{2}$$

Sumamos (1) y (2):

$$b + d = a + c + (k_1 + k_2) \cdot n$$

$$\Leftrightarrow \qquad (b + d) - (a + c) = k_3 \cdot n$$

$$\Leftrightarrow \qquad n \mid (b + d) - (a + c)$$

$$\Leftrightarrow \qquad a + c \equiv_n b + d$$

Teorema

Si
$$a \equiv_n b$$
 y $c \equiv_n d$, entonces $(a \cdot c) \equiv_n (b \cdot d)$.

$$b = a + k_1 \cdot n \tag{1}$$

$$d = c + k_2 \cdot n \tag{2}$$

Multiplicamos (1) y (2):

$$b \cdot d = (a + k_1 \cdot n)(c + k_2 \cdot n)$$

$$\Rightarrow \qquad = a \cdot c + (a \cdot k_2 + c \cdot k_1 + n \cdot k_1 \cdot k_2) \cdot n$$

$$\Leftrightarrow \qquad b \cdot d - a \cdot c = k_4 \cdot n$$

$$\Leftrightarrow \qquad n \mid b \cdot d - a \cdot c$$

$$\Leftrightarrow \qquad a \cdot c \equiv_n b \cdot d$$

Corolario

- $(a+b) \bmod n = ((a \bmod n) + (b \bmod n)) \bmod n$
- $a \cdot b \mod n = ((a \mod n)(b \mod n)) \mod n$

Ejercicio

Demuestre el corolario.

Ejercicio

Demuestre que un número es divisible por 3 si y sólo si la suma de sus dígitos es divisible por 3.

Ejercicio

Calcule (55 · 26) mod 4.

- $(a+b) \bmod n = ((a \bmod n) + (b \bmod n)) \bmod n$
- $a \cdot b \mod n = ((a \mod n)(b \mod n)) \mod n$

Por teorema anterior sabemos que $a \equiv_n a \mod n$ y $b \equiv_n b \mod n$. Aplicando el teorema de sumas y multiplicaciones:

$$a + b \equiv_n (a \mod n) + (b \mod n)$$

$$\Leftrightarrow (a + b) \mod n = ((a \mod n) + (b \mod n)) \mod n$$

$$a \cdot b \equiv_n (a \mod n) \cdot (b \mod n)$$

$$\Leftrightarrow (a \cdot b) \mod n = ((a \mod n)(b \mod n)) \mod n$$

Ejercicio

Demuestre que un número es divisible por 3 si y sólo si la suma de sus dígitos es divisible por 3.

Sabemos que un número entero n se puede representar como

$$n = d_k \cdot 10^k + \dots + d_1 \cdot 10 + d_0 \tag{1}$$

donde d_i es el dígito i-ésimo de n. Por ejemplo:

$$1347 = 1 \cdot 10^3 + 3 \cdot 10^2 + 4 \cdot 10 + 7$$

Ahora, tenemos que n será divisible por 3 si y sólo si n mod 3 = 0.

Ejercicio

Demuestre que un número es divisible por 3 si y sólo si la suma de sus dígitos es divisible por 3.

Tomamos mod 3 en (1) y usamos el teorema de suma y multiplicación:

$$n \mod 3 = (d_k \cdot 10^k + \dots + d_1 \cdot 10 + d_0) \mod 3$$

$$= ((d_k \cdot 10^k) \mod 3 + \dots + (d_1 \cdot 10) \mod 3 + d_0 \mod 3) \mod 3$$

$$= ((d_k \mod 3 \cdot 10^k \mod 3) \mod 3 + \dots + (d_1 \mod 3 \cdot 10 \mod 3) \mod 3 + d_0 \mod 3) \mod 3$$

Ejercicio

Demuestre que un número es divisible por 3 si y sólo si la suma de sus dígitos es divisible por 3.

Notemos que $\forall k \ge 1, 10^k \mod 3 = 1$. Por lo tanto:

$$n \mod 3 = ((d_k \mod 3 \cdot 1) \mod 3 + \cdots + (d_1 \mod 3 \cdot 1) \mod 3 + d_0 \mod 3) \mod 3$$

= $((d_k \mod 3) \mod 3 + \cdots + (d_1 \mod 3) \mod 3 + d_0 \mod 3) \mod 3$
= $(d_k \mod 3 + \cdots + d_1 \mod 3 + d_0 \mod 3) \mod 3$
= $(d_k + \cdots + d_1 + d_0) \mod 3$

Luego, $n \mod 3 = 0$ si y sólo si $(d_k + \cdots + d_1 + d_0) \mod 3 = 0$; es decir, si la suma de los dígitos de n es divisible por 3.

Ejercicio

Calcule (55 · 26) mod 4.

```
(55 \cdot 26) \mod 4 = (55 \mod 4 \cdot 26 \mod 4) \mod 4
= (3 \cdot 2) \mod 4
= 6 \mod 4
= 2
```

Outline

Árboles

Aritmética modular

Teorema de Fermat

Epílogo

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

Ejercicio

Demuestre el teorema.

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

Nos pondremos en dos casos.

Caso 1: $a \ge 0$. Se hará la demostración por inducción sobre el valor de a.

BI:
$$a = 0 \to 0^p = 0 \equiv_p 0$$

 $a = 1 \to 1^p = 1 \equiv_p 1$

HI: Suponemos que $a^p \equiv_p a$. Notemos que esto implica que $p \mid a^p - a$.

TI: Por demostrar: $(a+1)^p \equiv_p (a+1)$, o equivalentemente, que

$$p \mid (a+1)^p - (a+1), \text{ con } 2 \le a+1$$
 (1)

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

PD:
$$p \mid (a+1)^p - (a+1)$$
, con $2 \le a+1$. (1)

Por el teorema del binomio, sabemos que $(a+1)^p = \sum\limits_{k=0}^p \binom{p}{k} a^k$, con $\binom{p}{k} = \frac{p!}{k!(p-k)!}$. Desarrollamos la parte derecha de (1):

$$(a+1)^{p} - (a+1) = \sum_{k=0}^{p} {p \choose k} a^{k} - (a+1)$$
$$= \sum_{k=1}^{p-1} {p \choose k} a^{k} + {p \choose 0} a^{0} + {p \choose p} a^{p} - (a+1)$$

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

$$(a+1)^{p} - (a+1) = \sum_{k=0}^{p} {p \choose k} a^{k} - (a+1)$$

$$= \sum_{k=1}^{p-1} {p \choose k} a^{k} + {p \choose 0} a^{0} + {p \choose p} a^{p} - (a+1)$$

$$= \sum_{k=1}^{p-1} {p \choose k} a^{k} + 1 + a^{p} - a - 1$$

$$= (a^{p} - a) + \sum_{k=1}^{p-1} {p \choose k} a^{k}$$

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

Tenemos entonces que

$$(a+1)^p - (a+1) = (a^p - a) + \sum_{k=1}^{p-1} {p \choose k} a^k$$

Por HI, sabemos que $p \mid a^p - a$. Por demostrar: $p \mid \sum_{k=1}^{p-1} {p \choose k} a^k$.

Demostraremos que $\forall k \in \{1, \dots, p-1\}, p \mid \binom{p}{k}$. Tenemos que

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)\cdots(p-k+1)(p-k)!}{k!(p-k)!} = \frac{p(p-1)\cdots(p-k+1)}{k!}$$

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

Tenemos entonces que

$$\binom{p}{k} = \frac{p(p-1)\cdots(p-k+1)}{k!}$$

Como los coeficientes binomiales son enteros, el numerador debe ser divisible por el denominador. Como p es primo y k < p, sabemos que entre los factores de k! no puede haber divisores de p, por lo que necesariamente

$$\frac{(p-1)\cdots(p-k+1)}{k!}\in\mathbb{Z}, \text{ y entonces}$$

$$\binom{p}{k} = p \cdot \alpha$$
, con $\alpha \in \mathbb{Z}$, y por lo tanto $p \mid \binom{p}{k}$.

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

En conclusión, tenemos que

$$p | (a+1)^p - (a+1)$$

y por lo tanto

$$(a+1)^p \equiv_p (a+1)$$

como queríamos demostrar.

Se sigue entonces por inducción el teorema planteado para $a \ge 0$.

Teorema (Fermat)

Si p es un número primo, para cualquier entero a se cumple que $a^p \equiv_p a$.

<u>Caso 2</u>: a < 0. Sabemos que $a \equiv_p a \mod p$, y por teorema de multiplicación $a^p \equiv_p (a \mod p)^p$. Ahora, como $a \mod p \ge 0$, corresponde al caso 1 recién demostrado, y por lo tanto $(a \mod p)^p \equiv_p a \mod p$. Finalmente, tenemos que

$$a^p \equiv_p (a \mod p)^p \equiv_p a \mod p \equiv_p a$$

y entonces $a^p \equiv_p a$.

Corolario (Fermat)

Si p es un número primo y a es un entero que no es múltiplo de p, entonces $a^{p-1} \equiv_p 1$.

Ejercicio

Demuestre el corolario.

Corolario (Fermat)

Si p es un número primo y a es un entero que no es múltiplo de p, entonces $a^{p-1} \equiv_p 1$.

Por el teorema anterior:

$$a^{p} \equiv_{p} a \Rightarrow p \mid a^{p} - a \Rightarrow a^{p} - a = k \cdot p \tag{1}$$

Notemos que $a \mid a^p - a$, y por lo tanto $a \mid k \cdot p$. Como p es primo y a no es múltiplo de p, necesariamente $a \mid k$. Dividiendo (1) por a:

$$a^{p-1}-1=\frac{k}{a}\cdot p$$
, con $\frac{k}{a}\in\mathbb{Z}$.

Por lo tanto:

$$p \mid a^{p-1} - 1 \Rightarrow 1 \equiv_p a^{p-1} \Rightarrow a^{p-1} \equiv_p 1$$

Outline

Árboles

Aritmética modular

Teorema de Fermat

Epílogo

Objetivos de la clase

- Conocer propiedades básicas de aritmética modular
- □ Demostrar equivalencias modulares
- □ Demostrar teorema de Fermat para números primos