

# Sistemas Digitais

#### Sistemas Sequenciais

# Estruturas elementares de memória

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro

Adaptado de R. Katz, "Contemporary Logic Design" e de J. Wakerly, "Digital Design Principles & practices"

Introdução aos Sistemas Digitais - AFS



#### Sumário

- · Lógica Sequencial
  - Realimentação
  - Memória
  - Conceito de estado
- · Estruturas elementares de memória
  - Latch
  - Flip-Flop
- Abordagens
  - Estrutural
  - Temporal
  - Analítica

Introdução aos Sistemas Digitais - AFS



# Lógica Sequencial versus Combinatória

- · Sem realimentação
- Saída depende apenas da entrada actual



$$y_i = f(x_{n-1}, ..., x_0), i = 0, ..., m-1$$

- · Realimentação (Feedback)
- Saída depende das entradas actuais mas também da informação passada (Memória)



Introdução aos Sistemas Digitais - AFS



#### Estruturas elementares de memória

 Inversores em cascata constituem uma célula de memória estática



- Problema: Escrita de informação?
- · Solução: Quebra selectiva da realimentação



Introdução aos Sistemas Digitais - AFS



#### Bi-Estável

· Forma usual de apresentação da cascata de inversores





- Em regime estável a variável Q designa-se como variável de estado do elemento de memória
- · 2 pontos de funcionamente estável com saídas complementares
- · Zona de meta-estabilidade

Introdução aos Sistemas Digitais - AFS





# Meta-estabilidade: analogias mecânicas

 Meta-estabilidade: estado seguinte é imprevisível e depende de estímulos aleatórios como o ruído eléctrico





Introdução aos Sistemas Digitais - AFS

,

















# Latch D - Parâmetros temporais

- · Tempos de propagação:
  - Enable para saída
  - Entrada para a saída
- Tempos de setup e hold



Introdução aos Sistemas Digitais - AFS

15



#### Clock, Setup time e Hold time

- · Relógio (Clock):
  - Evento periódico, que desencadeia uma alteração no estado do elemento de memória
  - flanco de subida, flanco de descida, nível alto, nível baixo
- Tempo de Setup (Tsu)
  - Tempo mínimo antes do clock dentro do qual entradas devem permanecer estáveis
- Tempo de Hold
  - Tempo mínimo depois do clock dentro do qual as entradas devem permanecer estáveis



Janela de estabilidade. Quando não respeitada pode levar a situações de meta-estabilidade

Introdução aos Sistemas Digitais - AFS



## Latches vs. Flip-flops

- · Latch:
  - analisa as suas entradas continuamente e muda as suas saídas em qualquer instante, independente de qualquer sinal de relógio.
- Flip-flop:
  - normalmente analisa as suas entradas e muda as suas saídas apenas em instantes determinados por um sinal de relógio.

Introdução aos Sistemas Digitais - AFS























#### Flip-Flops D em cascata

- Funcionamento viabilizado por correcta articulação dos parâmetros temporais
  - Atrasos de propagação excedem largamente os hold times;
  - Isto garante que o andar seguinte "guarda" o valor corrente antes que este seja substituido por um novo valor



Introdução aos Sistemas Digitais - AFS







### Caracterização analítica

- · Equação Característica
  - Tomando o estado seguinte como função booleana do estado presente e das entradas de excitação duma latch/flip-flop chegamos à respectiva equação característica
  - Exemplos a partir das tabelas de transição

| SR<br>Q | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 0       | 0  | 0  | ×  | 1  |
| 1       | 1  | 0  | ×  | 1  |

$$Q^+ = S + Q\overline{R}$$

| JK | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 0  | 0  | 0  | 1  | 1  |
| 1  | 1  | 0  | 0  | 1  |

$$Q^+ = \overline{Q}J + Q\overline{K}$$

Introdução aos Sistemas Digitais - AFS

21



#### Caracterização analítica

- · Equação Característica
  - Exemplos a partir das tabelas de transição

$$Q^+ = D$$



$$Q^+ = T \oplus Q$$

Exercício: a partir das equações características dos f/f SR,
JK, D e T elabore os respectivos diagramas de estado

Introdução aos Sistemas Digitais - AFS



# Tabelas de Excitação

- Para cada latch/flip-flop importa saber que estímulos devem ser aplicados para induzir uma determinada mudança de estado.
- A partir dos diagramas de estado constroem-se as tabelas de excitação

| Q→Q+   | SR  | JK  | D | Т |
|--------|-----|-----|---|---|
| 0 → 0  | 0 X | 0 X | 0 | 0 |
| 0 → 1  | 10  | 1 X | 1 | 1 |
| 1 → 0  | 0 1 | X 1 | 0 | 1 |
| 1 -> 1 | X 0 | Х0  | 1 | 0 |

Introdução aos Sistemas Digitais - AFS

22



## Latch vs Flip-Flop

· Comportamento Entrada/Saída de Latches e Flipflops

| Tipo                   | Amostragem das entradas  | Validade das saídas                                        |
|------------------------|--------------------------|------------------------------------------------------------|
| Latch                  | Sempre                   | Atraso de propagação desde a alteração da entrada          |
| Latch com<br>Clock (C) | C = 1                    | Atraso de propagação desde a alteração da entrada          |
| F/F Pos.<br>Edge T.    | C=0 para C=1<br>Tsu + Th | Atraso de propagação desde a flanco ascendente do relógio  |
| F/F Neg<br>Edge T.     | C=1 para C=0<br>Tsu + Th | Atraso de propagação desde a flanco descendente do relógio |
| F/F M.<br>Slave        | C=1<br>Tsu + Th          | Atraso de propagação desde a flanco descendente do relógio |

Introdução aos Sistemas Digitais - AFS