(worked with Joseph Sullivan, Gahl Shemy)

1 Exercise I.9

(a) Let G be a group and H a subgroup of finite index. Show that there exists a normal subgroup N of G contained in H and also of finite index. [Hint: If (G:H) = n, find a homomorphism of G into S_n whose kernel is contained in H.]

Proof. Consider the map $\varphi: G \to \operatorname{Perm}(G/H)$, where $\varphi(g) = \varphi_g: xH \mapsto gxH$. For $g, h \in G$,

$$\varphi_{gh}(xH) = ghxH = g\varphi_h(xH) = \varphi_g(\varphi_h(xH)) = (\varphi_g \circ \varphi_h)(xH),$$

so φ is in fact a group homomorphism. Then, $N = \ker \varphi$ is a normal subgroup of G, with

$$G/N \cong \operatorname{im} \varphi \leq \operatorname{Perm}(G/H).$$

Since |G/H| = [G:H] is finite, so is $[G:N] = |G/N| \le |\operatorname{Perm}(G/H)|$. If $n \in N$, then we have $nH = \varphi_n(eH) = H$, implying that $n \in H$. Hence, $N \subseteq H$, so N is as desired.

(b) Let G be a group and let H_1, H_2 be subgroups of finite index. Prove that $H_1 \cap H_2$ has finite index.

Proof. By part (a), there are normal subgroups of finite index $N_1, N_2 \subseteq G$ such that $N_1 \subseteq H_1$ and $N_2 \subseteq H_2$, then $N_1 \cap N_2$ is a normal subgroup of G contained in $H_1 \cap H_2$. By [some] isomorphism theorem,

$$N_1/(N_1 \cap N_2) \cong (N_1 N_2)/N_2,$$

so we deduce

$$[G: N_1 \cap N_2] = [G: N_1][N_1: N_1 \cap N_2]$$

= $[G: N_1][N_1N_2: N_2]$
\leq $[G: N_1][G: N_2].$

In particular, $N_1 \cap N_2$ is of finite index in G. Since $H_1 \cap H_2$ is contained in $N_1 \cap N_2$, we conclude $[G: H_1 \cap H_2] \leq [G: N_1 \cap N_2] < \infty$.

- **2 Exercise I.14** Let G be a finite group and let N be a normal subgroup such that N and G/N have relatively prime orders.
- (a) Let H be a subgroup of G having the same order as G/N. Prove that G = HN.

Proof. Since $H, N \leq HN \leq G$, then |H| and |N| divide |HN|, which divides |G|. Moreover, the least common multiple of |H| and |N|, which is |H||N| since they are coprime, must divide |HN|. Then

$$|H||N| \le |HN| \le |G| = |G/N||N| = |H||N|,$$

which implies |HN| = |G|. Since all orders are finite, we conclude that HN = G.

(b) Let g be an automorphism of G. Prove that g(N) = N.

Proof. By the diamond isomorphism theorem,

$$q(N)/(q(N) \cap N) \cong q(N)N/N < G/N.$$

In particular, |g(N)N/N| divides |G/N|. Additionally,

$$|N| = |g(N)| = |g(N)N/N||g(N) \cap N|,$$

which means that |g(N)N/N| also divides |N|. Since |N| and |G/N| are coprime, we must have |g(N)N/N| = 1. Hence, g(N)N = N, implying that g(N) = N.

3 Exercise I.15 Let G be a finite group operating on a finite set S with $\#(S) \geq 2$. Assume that there is only one orbit. Prove that there exists an element $x \in G$ which has no fixed point, i.e. $xs \neq s$ for all $s \in S$.

Proof. For all $s \in S$, we have $G \cdot s = S$. Then

$$|S| = |G \cdot s| = |G : G_s| = \frac{|G|}{|G_s|},$$

SO

$$|G| = |G| \sum_{s \in S} \frac{1}{|S|} = \sum_{s \in S} |G_s|.$$

Let $C = \{(x, s) \in G \times S \mid xs = s\}$. Then, applying Exercise I.17 (the next problem) both ways, we obtain

$$\sum_{x \in G} |S^x| = |C| = \sum_{s \in S} |G_s|,$$

where S^x is the subset of S fixed by g. So, we have found $|G| = \sum_{x \in G} S^x$. Since $S^e = S$, then $|S^e| = |S| \ge 2$. We deduce that there is some $x \in G$ with $|S^x| = 0$, i.e., x has no fixed points in S.

4 Exercise I.17 Let X, Y be finite sets and let C be a subset of $X \times Y$. For $x \in X$ let $\varphi(x) =$ number of elements $y \in Y$ such that $(x, y) \in C$. Verify that

$$\#(C) = \sum_{x \in X} \varphi(x).$$

Proof. For $x \in X$, let C_x be the subset of C with the first component equal to x. Then, C can be written as the disjoint union $C = \bigsqcup_{x \in X} C_x$. By construction, $|C_x| = \varphi(x)$, so

$$|C| = \left| \bigsqcup_{x \in X} C_x \right| = \sum_{x \in X} |C_x| = \sum_{x \in X} \varphi(x).$$