From the unit circle:

$$\theta_1 = -45^{\circ}$$

$$\theta_2 = 360^{\circ} + (-45^{\circ}) = 315^{\circ}$$

$$\theta_3 = 180^{\circ} - (-45^{\circ}) = 225^{\circ}$$

21.

From the unit circle:

$$\theta_1 = 60^{\circ}$$

$$\theta_2 = 180^{\circ} - (60^{\circ}) = 120^{\circ}$$

23.

Using your calculator:

$$\theta_1 = -40.54^{\circ}$$

$$\theta_2 = 360^{\circ} + (-40.54^{\circ}) = 319.46^{\circ}$$

$$\theta_3 = 180^{\circ} - (-40.54^{\circ}) = 220.54^{\circ}$$

25.

Using your calculator:

$$\theta_1 = 14.48^{\circ}$$

$$\theta_2 = 180^{\circ} - (14.48^{\circ}) = 119.54^{\circ}$$

27.

From the unit circle:

$$\theta_1 = 45^{\circ}$$

$$\theta_2 = 360^{\circ} - (45^{\circ}) = 315^{\circ}$$

29.

From the unit circle:

$$\theta_1 = 150^{\circ}$$

$$\theta_2 = 360^{\circ} - (150^{\circ}) = 210^{\circ}$$

31.

Using your calculator:

$$\theta_1 = 28.36^{\circ}$$

$$\theta_2 = 360^{\circ} - (28.36^{\circ}) = 331.63^{\circ}$$

33.

Using your calculator:

$$\theta_1 = 132.84^{\circ}$$

$$\theta_2 = 360^{\circ} - (132.84^{\circ}) = 227.16^{\circ}$$

35.

From the unit circle:

$$\theta_1 = 30^{\circ}$$

$$\theta_2 = 180^{\circ} + (30^{\circ}) = 210^{\circ}$$

Precalculus Solutions 6.2

37.

From the unit circle:

$$\theta_1 = -60^{\circ}$$

$$\theta_2 = 180^{\circ} + (-60^{\circ}) = 120^{\circ}$$

$$\theta_3 = 360^\circ + (-60^\circ) = 300^\circ$$

39.

Using your calculator:

$$\theta_1 = 70.35^{\circ}$$

$$\theta_2 = 180^{\circ} + (70.35^{\circ}) = 250.35^{\circ}$$

41.

Using your calculator:

$$\theta_1 = -60.95^{\circ}$$

$$\theta_2 = 180^{\circ} + (-60.95^{\circ}) = 119.05^{\circ}$$

$$\theta_3 = 360^{\circ} + (-60.95^{\circ}) = 299.05^{\circ}$$

49.

$$\cos\left(\sin^{-1}\left(\frac{1}{2}\right)\right)$$

$$\tan\left(\frac{\pi}{6}\right)$$

$$\frac{\sqrt{3}}{2}$$

51.

$$\sin^{-1}\left(\cos\left(\frac{2\pi}{3}\right)\right)$$

$$\sin^{-1}\left(\frac{-1}{2}\right)$$

$$\frac{-\pi}{6}$$

53.

$$\tan\!\left(\sin^{-1}\!\left(\frac{\sqrt{2}}{2}\right)\right)$$

$$\tan\left(\frac{\pi}{4}\right)$$

1

55.

cos(tan⁻¹(-1))

$$\cos\left(\frac{-\pi}{4}\right)$$

$$\frac{\sqrt{2}}{2}$$

$$\cos^{-1}\!\left(sin\!\left(\frac{-\pi}{6}\right)\right)$$

$$\cos^{-1}\left(\frac{-1}{2}\right)$$

$$\frac{2\pi}{3}$$

59.

$$\cot^{-1}\left(\tan\left(\frac{\pi}{3}\right)\right)$$

$$\cot^{-1}\left(\sqrt{3}\right)$$

$$\frac{\pi}{6}$$

61.

Show:
$$sec(tan^{-1}(w)) = \sqrt{1 + w^2}$$

Let
$$\theta = \tan^{-1}(w)$$
 then
 $\tan(\theta) = \tan(\tan^{-1}(w))$
thus $\tan(\theta) = w$

We then get the following triangle:

Now find $sec(\theta)$:

$$sec(\theta) = \frac{\sqrt{1 + w^2}}{1} = \sqrt{1 + w^2}$$

Therefore:

$$sec(\theta) = sec(tan^{-1}(w)) = \sqrt{1 + w^2}$$

Show:
$$\tan(\sin^{-1}(w)) = \frac{w\sqrt{1-w^2}}{1-w^2}$$

Let
$$\theta = \sin^{-1}(w)$$
, then
 $\sin(\theta) = \sin(\sin^{-1}(w))$
thus $\sin(\theta) = w$

We then get the following triangle:

Now find $tan(\theta)$:

$$tan\big(\theta\big) = \frac{w}{\sqrt{1 - w^2}}$$

Rationalize the denominator:

$$\frac{w}{\sqrt{1 - w^2}} = \frac{w}{\sqrt{1 - w^2}} \cdot \frac{\sqrt{1 - w^2}}{\sqrt{1 - w^2}}$$
$$= \frac{w\sqrt{1 - w^2}}{1 - w^2}$$

Therefore:

$$tan\big(\theta\big) = tan\big(sin^{-1}\big(w\big)\big) = \frac{w\sqrt{1-w^2}}{1-w^2}$$

65.

Show:
$$\cos^{-1}(w) + \sin^{-1}(w) = \frac{\pi}{2}$$

let
$$\theta_1 = \cos^{-1}(w)$$
 and $\theta_2 = \sin^{-1}(w)$
 $\cos(\theta_1) = \cos(\cos^{-1}(w))$
thus $\cos(\theta_1) = w$

also from
$$\theta_2 = \sin^{-1}(w)$$

 $\sin(\theta_2) = \sin(\sin^{-1}(w))$
thus $\sin(\theta_2) = w$

Knowing $cos(\theta_1) = w$ and $sin(\theta_2) = w$, we get the following triangle:

Since θ_1 and θ_2 are part of the same triangle, the sum of the three angles equals 180° . Since this is a right triangle, one of the angles is a 90° angle.

Therefore:
$$\theta_1 + \theta_2 = \frac{\pi}{2}$$

Therefore:
$$\cos^{-1}(w) + \sin^{-1}(w) = \frac{\pi}{2}$$

Show:
$$sec^{-1}(w) + csc^{-1}(w) = \frac{\pi}{2}$$

$$sec^{-1}(w) + csc^{-1}(w) = \frac{\pi}{2}$$

let
$$\theta_1 = \sec^{-1}(w)$$
 and $\theta_2 = \csc^{-1}(w)$
 $\sec(\theta_1) = \sec(\sec^{-1}(w))$
thus $\sec(\theta_1) = w$

also from
$$\theta_2 = \csc^{-1}(w)$$

 $\csc(\theta_2) = \csc(\csc^{-1}(w))$
thus $\csc(\theta_2) = w$

Knowing $sec(\theta_1) = w$ and $csc(\theta_2) = w$, we get the following triangle:

Since θ_1 and θ_2 are part of the same triangle, the sum of the three angles must equal 180° . Since this is a right triangle, one angle is a 90° angle.

Therefore:
$$\theta_1 + \theta_2 = 90^\circ = \frac{\pi}{2}$$

Therefore:
$$sec^{-1}(w) + csc^{-1}(w) = \frac{\pi}{2}$$