Einführung in die Algebra

Arthur Henninger

18. Oktober 2024

INHALTS VERZEICHNIS

KAPIIEL I	GRUPPEN	SEITEZ
1.1	Grundbegriffe	2
1.2	Normalteiler und Quotienten	8
1.3	Gruppenoperationen	15
1.4	Sylow-Sätze	18
KAPITEL 5	RINGE	Seite20
KAPITEL 6	Körper	SEITE21
Kapitel 7	GALOISTHEORIE	SEITE22

Gruppen

1.1 Grundbegriffe

Definition 1.1: (abelsche) Gruppe

Eine Gruppe ist eine Menge G zusammen mit einer Abbildung

sodass:

1) Assoziativität

$$\forall a, b, c \in G : (a \cdot b) \cdot c = a \cdot (b \cdot c).$$

2) Existenz eines linksneutralen Elements:

$$\exists e \in G : \forall a \in G : e \cdot a = a.$$

3) Existenz von Linksinversen:

$$\forall a \in G \exists b \in G : b \cdot a = e$$
.

Eine Gruppe G heißt abelsch oder kommutativ, wenn zusätzlich gilt:

4) Kommutativität:

$$\forall a,b \in G: a \cdot b = b \cdot a.$$

Notation 1.2

Wir schreiben $a \cdot b = ab$ und $a^n = \underbrace{a \cdot \ldots \cdot a}_{n \text{ mal}} \forall n \in \mathbb{N} \setminus \{0\}$ und falls G abelsch ist $a + b := a \cdot b$, $n \cdot a = a^n$

Lemma 1.3

Sei ${\cal G}$ eine Gruppe. Dann gilt

(1) $G \neq \emptyset$

(2) Linksinverse sind eindeutig und rechtsinvers, d.h.

$$\forall a, b, c \in G : ba = ca = e \implies b = c \text{ und } ab = e.$$

(3) Das linksneutrale Element ist eindeutig und rechtsneutral, d.h.

$$\forall e' \in G \text{ mit } e' \cdot a = a \forall a \in G \text{ gilt } e = e' \text{ und } a \cdot e = a \forall a \in G.$$

Beweis: (1) Da $e \in G$ ist $G \neq \emptyset$

(2) Seien $a,b \in G$ mit ba = e. Sei $a' \in G$ das Linksinverse zu b also a'b = e. Dann gilt

$$ab = eab = a'$$
 ba $b = a'eb = a'b = e$.

Also ist b rechtsinvers zu a.

Sind $b, c \in G$ mit ba = ca = e. Dann gilt

$$c = ec = bac = be = bab = eb = b$$
.

(3) Seien $a, b \in G$ mit ba = ab = e. Dann ist

$$ae = aba = ea = a$$
.

Also ist e rechtsneutral.

Ist $e' \in G$ ein linksneutrales Element, dann gilt e = e'e = e'.

Notation 1.4

Für $a \in G$ schreiben wir a^{-1} für das Inverse (rechts- und links-) von a und $a^{-n} = (a^{-1})^n$. Wir nennen das (links- und rechts-) Neutrale Element $e \in G$ auch Einheit oder Eins.

Fakt 1.5

Analog zu 1.3:

Sei G eine Gruppe. Dann gilt

- $(1) (a^{-1})^{-1} = a$
- (2) $(ab)^{-1} = b^{-1}a^{-1}$
- (3) Ist ab = ac, so ist b = c
- (4) Ist $a^2 = a$, so ist a = e.

Definition 1.6: Untergruppe

Sei G eine Gruppe. Eine Untergruppe von G ist eine Teilmenge $H\subseteq G$ sodass

- (1) $e \in H$
- (2) $\forall a \in H \text{ ist } a^{-1} \in H$
- (3) $\forall a, b \in H \text{ ist } ab \in H$.

Dann ist H mit $\cdot|_{H\times H}$ selbst eine Gruppe.

Bemerkung 1.7

Folgende Bedingung ist äquivalent zu denen der Definition: $\emptyset \neq H \subseteq G$ ist eine Untergruppe $\iff \forall a,b \in H : ab^{-1} \in H$.

Beweis: Offensichtlich erfüllen Untergruppen die Eigenschaft. Für die andere Implikation wähle $a \in H \implies e = aa^{-1} \in H$, also ist (1) erfüllt. Ist $a \in H$ beliebig, ist auch $a^{-1} = ea^{-1} \in H$, worduch (2) erfüllt ist. Schließlich ist für $a, b \in H$ auch $ab = a(b^{-1})^{-1} \in H$, wodurch (3) erfüllt ist.

Definition 1.8: Gruppenhomomorphismus und Gruppenisomorphismus

Eine Abbildung $\varphi:G_1\to G_2$ zwischen zwei Gruppen G_1 und G_2 heißt

1) Gruppenhomomorphismus (oder Homomorphismus oder Morphismus), falls

$$\varphi(ab) = \varphi(a) \cdot \varphi(b) \quad \forall a, b \in G_1.$$

2) Gruppenisomorphismus (oder Isomorphismus), falls φ ein bijektiver Homomorphismus ist. G_1 und G_2 heißen dann isomorph und wir schreiben $G_1 \cong G_2$, falls ein Isomorphismus zwischen den Gruppen existiert.

Bemerkung 1.9

Sei $\varphi:G_1\to G_2$ ein Homomorphismus. Dann gilt:

(1) φ ist ein Isomorphismus

$$\iff \exists \psi: G_2 \to G_1 \text{ Hom.}$$

$$\text{mit } \varphi \circ \psi = \text{Id,}$$

$$\varphi \circ \psi = \text{Id.}$$

Denn: Die Existenz von ψ impl
ziert, dass φ ein Isomorphismus ist. Umgekehrt kann man prüfen, dass für eine bijektive Abbildung φ auch die Umkehrabbildung $\psi := \varphi^{-1}$ ein Homomorphismus ist.

(2) $\varphi(e) = e$, denn mit Fakt 1.5 folgt:

$$\varphi(e)^2 = \varphi(e^2) = \varphi(e) \implies \varphi(e) = e.$$

(3) $\forall a \in G : \varphi(a^{-1}) = \varphi(a)^1$, denn

$$e = \varphi(e) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}).$$

(4) φ ist injektiv $\iff \varphi^{-1}(e) = \{e\}, \text{ denn:}$

Für
$$a \neq b \in G_1$$
 mit $\varphi(a) = \varphi(b)$ gilt $\varphi(\underbrace{ab^{-1}}_{\neq e}) = e$ aber $\varphi(ab^{-1}) = \varphi(a)\varphi(b)^{-1} = e$.

Definition 1.10: Kern und Bild

Sei $\varphi: G_1 \to G_2$ ein Homomorphismus.

(1) Der Kern von φ ist

$$Ker(\varphi) = \{ a \in G_1 : \varphi(a) = e \}.$$

(2) Das Bild von φ ist

$$\operatorname{Im}(\varphi) = \{ b \in G_2 : \exists a \in G_1, \varphi(a) = b \}.$$

Aus Bemerkung 1.9 (4) folgt dann: φ injektiv \iff Ker $(\varphi) = \{e\}$

Lemma 1.11

Sei $\varphi:G_1\to G_2$ ein Homomorphismus. Dann sind $\operatorname{Ker}(\varphi)\subseteq G_1,\operatorname{Im}(\varphi)\subseteq G_2$ Untergruppen.

Beweis: Klar ist $e \in \text{Ker}(\varphi), e \in \text{Im}(\varphi) \implies \text{Ker}(\varphi), \text{Im}(\varphi) \neq \emptyset$. Für $a, b \in \text{Ker}(\varphi)$ gilt:

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1})$$

$$= \varphi(a)\varphi(b)^{-1}$$

$$= ee^{-1}$$

$$= e$$

$$\implies ab^{-1} \in \text{Ker}(\varphi).$$

Für $c, d \in \text{Im}(\varphi)$, wähle $a, b \in G_1$ mit $\varphi(a) = c, \varphi(b) = d$. Dann gilt

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1})$$

$$= \varphi(a)\varphi(b)^{-1}$$

$$= cd^{-1}$$

$$\implies cd^{-1} \in \operatorname{Im}(\varphi).$$

Folglich sind $Ker(\varphi)$ und $Im(\varphi)$ nach Bemerkung 1.7 Untergruppen.

Beispiel 1.12

(1) Die triviale Gruppe ist $G = \{e\}$ mit der eindeutigen Abbildung

$$G \times G \rightarrow G$$
.

Bis auf Isomorphie gibt es nur diese Gruppe mit einem Element.

(2) Sind G_1 und G_2 Gruppen, so ist $G = G_1 \times G_2$ mit komponentenweiser Gruppenstruktur

$$G \times G \to G$$

 $(a_1, a_2), (b_1, b_2) \mapsto (a_1b_1, a_2b_2)$

eine Gruppe. Sind G_1, G_2 abelsch, dann schreiben wir

$$G_1 \oplus G_2 := G_1 \times G_2$$
.

(3) Ist K ein Körper, so sind

$$(K,+)$$
 und $(K \setminus \{0\},\cdot)$

Gruppen.

- (4) Die Paare $(\mathbb{N}, +)$, $(\mathbb{Z} \setminus \{0\}, \cdot)$ sind jeweils keine Gruppen, sondern sogenannte <u>Monoide</u> da lediglich Inverse fehlen.
- (5) Für jede Menge M ist

$$Bij(M) := \{ f : M \to M | f \text{ bijektiv } \}$$

mit Komposition als Verknüpfung eine Gruppe.

(6) Die symmetrische Gruppe aus n Elementen ist

$$S_n := S_n := \operatorname{Bij}(\{1,\ldots,n\}).$$

.

(7) Die Abbildung

$$\operatorname{sgn}: S_n \to \{\pm 1\}$$

ist ein Homomorphismus. Die alternierende Gruppe auf n Elementen ist

$$A_n := \operatorname{Ker}(\operatorname{sgn}) \subseteq S_n$$
.

- (8) Die linearen Gruppen $GL_n(K)$, $SL_n(K)$, $O_n(K)$, $SO_n(K)$, $U_n(K)$, etc. sind Gruppen (wobei teilweise nicht jeder Körper die Grundlage für die Gruppen bilden kann oder Skalarprodukte existieren müssen).
- (9) Ist K ein Körper, so ist die Automorphismengruppe von K

$$\operatorname{Aut}(K) = \{ \varphi : K \to K : \varphi \in \operatorname{Bij}(K), \varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a)\varphi(b) \quad \forall a,b \in K \}$$

eine Gruppe. Die Abbildungen $\varphi: K \to K$ heißen Körperautomorphismen.

(10) Allgemeiner: Ist C eine Kategorie, sodass $\forall A, B \in \mathrm{Ob}(C)$ die Abbildungen zwischen A und B eine Menge $\mathrm{Hom}_C(A,B)$ bilden. Dann ist für jedes $A \in C$

$$\operatorname{Aut}_{\mathcal{C}}(A) = \{ \varphi : A \to A : \varphi \text{ invertierbar} \} \subseteq \operatorname{Hom}(A, A)$$

eine Gruppe via Komposition. Spezialfälle sind

- Bij(M) mit C = Mengen
- $Gl_n(M)$ mit C = endlich dimensionale Vektorräume
- Aut(M) mit $C = K\ddot{o}rper$
- (11) Sei M eine Menge
 - \bullet Ein Wort w über M ist eine Sequenz

$$m_1^{n_1} \cdot \ldots \cdot m_k^{n_k}$$
 mit $m \in M$ und $n_i \in \mathbb{Z}$.

- Das leere Wort ist die leere Sequenz.
- Ein Wort w heißt reduziert, falls $m_i = m_{i+1}$ für alle i.
- Jedes Wort w über M kann via $m^n m^{n'} \rightsquigarrow m^{n+n'}$ reduziert werden.

$$abba \rightsquigarrow ab^2a$$

$$b^0 \rightsquigarrow -$$

$$aa^{-1} \rightsquigarrow -.$$

Die Menge F_M aller reduzierten Wörter über M mit "Hintereinanderschreiben & reduzierenïst eine Gruppe, die freie Gruppe über M. Es ist $F_{\{1,\dots,n\}} =: F_n \cong \mathbb{Z}$ durch $a^n \mapsto n$. Ist $M \subseteq G$ eine Teilmenge einer Gruppe G, so ist

$$\varphi_M: F_M \to G$$

$$m_1^{n_1} \dots m_k^{n_k} \mapsto m_1^{n_1} \cdot \dots \cdot m_k^{n_k}$$

ein Homomorphismus und wir können M zur Definition der Erzeuger nutzen.

Definition 1.13: erzeugte Untergruppe

Sei G eine Gruppe, $M \subseteq G$ Teilmenge. Die von M erzeugte Untergruppe von G ist

$$\langle M \rangle := \operatorname{Im} \varphi_M.$$

Ist $\langle M \rangle = G$, so sagen wir, dass M G erzeugt.

Definition 1.14: endlich erzeugte Gruppe, zyklische Gruppe

Sei G eine Gruppe.

- (1) G heißt endlich erzeugt, wenn sie von einer endlichen Teilmenge erzeugt wird.
- (2) G heißt zyklisch, wenn G von einem Element erzeugt wird.

Beispiel 1.15 (zyklische Gruppen)

Ist |M| = 1, dann ist $F_M \cong \mathbb{Z}$. \leadsto Ist G zyklisch, so $\exists \varphi : \mathbb{Z} \to G$ surjektiver Homomorphismus. $\Longrightarrow G$ ist abelsch. Setze $1 = \varphi(1)$ (abhängig von φ , i.A. nicht das neutrale Element). Nun sind zwei Fälle zu unterscheiden:

(1)

 $\not\equiv 0 \neq m \in \mathbb{Z}$ mit $m \cdot 1 = 0 \in G \iff \varphi$ injektiv $\iff \varphi$ Isomorphismus und daher $G \cong \mathbb{Z}$.

(2) $\exists 0 \neq m \in \mathbb{Z}$ mit $m \cdot 1 = 0$. Sei m > 0 minimal mit dieser Eigenschaft. Definiere:

$$C_m := \mathbb{Z}/m\mathbb{Z} := \{0,\ldots,m-1\}.$$

mit der Verknüpfung

$$ab = a + b \mod m$$
.

Dann ist

$$C_m \to G$$
$$n \mapsto n \cdot 1.$$

Ein Isomorphismus $\Longrightarrow \mathbb{Z}/m\mathbb{Z} \cong G$.

- Untergruppen: Ist $H \subseteq \mathbb{Z}$ eine Untergruppe, so $\exists n \in \mathbb{Z}$ mit $H = n\mathbb{Z}$ (Beweis via Division mit Rest).
- Ist $H \subseteq \mathbb{Z}/m\mathbb{Z}$, so ist auch $\varphi^{-1}(H) \subseteq \mathbb{Z}$ eine Untergruppe, also $\exists n \in \mathbb{Z} \text{ mit } H = n(\mathbb{Z}/m\mathbb{Z})$.
- kleine Übung: Für $n \neq 0$ gilt $n\mathbb{Z} \cong \mathbb{Z}$ und $(n(\mathbb{Z}/m\mathbb{Z})) \cong \mathbb{Z}/\left(\frac{m}{\operatorname{ggT}(n,m)}\right)\mathbb{Z}$. \Longrightarrow Untergruppen zyklischer Gruppen sind wieder zyklisch.

Definition 1.16: Ordnung von Gruppen und Elementen

Sei G eine Gruppe.

- (1) Die $Ordnung \ von \ G$ ist die Kardinalität der Menge G.
- (2) Die Ordnung von $a \in G$ ist

$$\operatorname{ord}(a) := |a| := \min \left\{ n \in \mathbb{N} | a^n = e \right\}.$$

Wir können die Ordnung des Erzeugers nutzen, um \mathbb{Z} und $\mathbb{Z}/m\mathbb{Z}$ fundamental zu unterscheiden.

1.2 Normalteiler und Quotienten

Für Vektorräume betrachtet man Unterräume $W \subseteq V$ und Quotienten V/W. Hier wollen wir nun analog Quotienten von Gruppen definieren und studieren.

Definition 2.1: Nebenklassen

Sei $H \subseteq G$ eine Untergruppe.

(1) Die Linksnebenklasse von H nach a ist

$$aH := \{ab|b \in H\} \subseteq G.$$

Für $a \in H$ ist aH = H wegen $aa^{-1}b = b$. (vgl. mit $v + W \subseteq V$ für UVR $W \subseteq V, v \in V$)

(2) Die Rechtsnebenklasse von H nach a ist

$$Ha = \{ba|b \in H\} \subseteq G.$$

(3) Die zu H via a konjugierte Untegruppe ist

$$aHa^{-1} = \left\{aba^{-1}|b \in H\right\} \subseteq G.$$

(4) Wir definieren G/H bzw. $H\backslash G$ als die Menge der Links- bzw. Rechtsnebenklassen von H

$$G/H = \{\text{Linksnebenklassen von } H \, \forall a \in G\}$$

 $H \setminus G = \{\text{Rechtsnebenklassen von } H \, \forall a \in G\}$.

Der Index von H in G ist

$$(G:H) := |G/H|$$
.

Naiv: $(aH, a'H) \mapsto aa'H$

Bemerkung 2.2

(1) Für jede Teilmenge $M \subseteq G$ und alle $a \in G$ sind

$$a \cdot : M \to aM$$

 $\cdot a : M \to Ma$

Bijektionen, wobei aM analog zu aH definiert ist.

(2) Erinnerung: aH = H für $a \in H \subseteq G$ Untergruppe. Allgemeiner: Für $a,b \in G$ äquivalent:

- (a) aH = bH
- (b) $\exists c \in H \text{ mit } a = bc$
- (c) $aH \cap bH \neq \emptyset$
- (d) $b^{-1}a \in H$

Zwei Linksnebenklassen sind daher entweder gleich oder disjunkt.

- (3) Analoge Kriterien gehlten fpr Ha = Hb.
- (4) Nach (2) gilt (nach (1) ist |aH| = |H|)

$$G = \bigcup_{aH \in G/H} aH.$$

Insbesondere: Ist G endlich, so ist $|G| = |H|(G:H) \implies |H|||G|(|H| \text{ teilt } |G|)$

Beweis von (2):

$$aH = bH \implies \exists c \in H \text{ mit } a = ae = bc$$

$$\implies aH \cap bH \neq \emptyset(\text{denn } a \in aH \cap bH)$$

$$\implies \exists c, d \in H \text{ mit } ac = bd$$

$$\implies b^{-1}a \in H(\text{denn } b^{-1}a = dc^{-1} \in H)$$

$$\implies b^{-1}aH = H$$

$$\implies bH = bb^{-1}aH = aH.$$
(Mult. ist Bijektion)

Nicht für jede Untergruppe $H\subseteq G$ trägt G/H eine offensichtliche Gruppenstruktur. Zu verstehen, wann dies der Fall ist, führt zum Begriff des Normalteilers.

Definition 2.3: Normalteiler

Eine Untergruppe $H\subseteq G$ heißt Normalteiler (normale Untergruppe, normal in G), wenn $aHa^{-1}=H\ \forall a\in G$. Wir schreiben $H\triangleleft G$.

Lemma 2.4

Sei $\varphi: G_1 \to G_2$ ein Homomorphismus. Dann ist $\operatorname{Ker}(\varphi) \subseteq G_1$ normal. Wir werden später sehen, dass diese Beispiel für eine normale Untegruppe universell ist.

Beweis: $\operatorname{Ker}(\varphi) \subseteq G_1$ ist Untergruppe. Sei $b \in \operatorname{Ker}(\varphi)$, $a \in G_1$. Dann ist

$$\varphi(aba^{-1}) = \varphi(a) \underbrace{\varphi(b)}_{=e} \varphi(a)^{-1} = e$$

$$\implies aba^{-1} \in \operatorname{Ker}(\varphi)$$

$$\implies a \operatorname{Ker}(\varphi)a^{-1} \subseteq \operatorname{Ker}(\varphi).$$

Da $Ker(\varphi) \supseteq a Ker(\varphi)a^{-1}$ folgt die Gleichheit.

Bemerkung 2.5

Im Gegensatz zum Kern ist das Bild eines Homomorphismus im Allgemeinen nicht normal. Für diese Feststellung genügt es, eine nicht-normale Untergruppe einer Gruppe zu finden (die Untergruppe ist dann das Bild der Inklusion). Beispielsweise ist

$$\langle (1 \quad 2) \rangle \subseteq S_3$$

nicht normal, denn

$$(1 \ 2 \ 3) (1 \ 2) (3 \ 2 \ 1) = (2 \ 3) \notin \langle (1 \ 2) \rangle.$$

Lemma 2.6

Sei $H \subseteq G$ eine Ungergruppe. Dann sind äquivalent:

- (1) H ist normal in G
- (2) $aH = Ha \forall a \in G$
- (3) Die Abbildung

$$: G/H \times G/H \rightarrow G/H$$

 $(aH, bH) \mapsto abH$

ist wohldefiniert.

Beweis: • $(1) \iff (2)$. Nach Bemerkung 2.2 (1) gilt

$$aHa^{-1} = H \iff aH = Ha$$
.

• (1) \iff (3). Die Abbildung in (3) ist nach 2.2 ist wohldefiniert

$$\iff \forall a,b \in G, \forall c,d \in H : \cdot (acH,bdH) = acbdH = abH = \cdot (aH,bH).$$

Das gilt nach 2.2 (2) genau dann, wenn

$$(ab)^{-1}acbd = b^{-1}a^{-1}acbd = b^{-1}cbd \in H.$$

Also genau dann, wenn

$$b^{-1}cb \in Hd^{-1} = H \iff H \text{ normal, da } b \in G, c \in H \text{ beliebig.}$$

Lemma 2.7

Sei $H \triangleleft G$ normale Untegruppe. Die Menge G/H mit

$$\cdot: G/H \times G/H \to G/H$$

 $(aH, bH) \mapsto abH$

ist eine Gruppe. Wir nennen diese Gruppe den Quotient von G nach H.

Beweis: Für $a, b, c \in G$ gilt

$$(aHbH)cH = (abH)cH = (ab)cH = a(bc)H = aH(bc)H = aH(bHcH)$$

 $aHa^{-1}H = aa^{-1}H = eH = H$
 $eHaH = eaH = aH$.

Bemerkung 2.8

Sei $H \triangleleft G$ eine normale Untergruppe.

(1) Die Quotientenabbildung

$$\pi: G \to G/H$$
$$a \mapsto aH$$

ist ein surjektiver Gruppenhomomorphismus mit $\operatorname{Ker}(\pi) = H$ (nach Bemerkung 2.2 (2) bzw. weil $aH = H \iff a \in H$).

(2) Definieren wir analog eine Gruppenstruktur auf $H\backslash G$ via

$$H\backslash G \times H\backslash G \to H\backslash G$$

 $(Ha, Hb) \mapsto Hab,$

so ist

$$\varphi: G/H \to H\backslash G$$
$$aH \mapsto Ha$$

ein Gruppenisomorphismus (es reicht, G/H zu betrachten). Nach Lemma 2.6 ist φ eine Bijektion und es gilt

$$\varphi(abH) = Hab = \varphi(aH)\varphi(bH).$$

Für Normalteiler müssen wir also, sogar für die Gruppenstruktur auf dem Quotienten nicht zwischen Links- und Rechtsnebenklassen unterscheiden.

Theorem 2.9

Sei $H \subseteq G$ eine Untergruppe. Dann sind äquivalent

- (1) H ist normal in G.
- (2) Es existiert ein Gruppenhomomorphismus $\varphi: G \to G'$ mit $H = \operatorname{Ker}(\varphi)$.

Beweis: • (1) \Longrightarrow (2): Nach Bemerkung 2.8 (1) können wir für φ die Quotientenabbildung $G \to G/H$ nehmen. DAnn ist $H = \text{Ker}(G \to G/H = G')$

• (2) \implies (1): Es reicht zu sehen, dass $Ker(\varphi)$ normal ist. Das ist Lemma 2.4.

Theorem 2.10 Satz von Lagrange

Sei G endliche Gruppe.

- (1) Für jede UG $H \subseteq G$ gilt |H| | |G|.
- (2) Für alle $a \in G$ gilt ord(a)||G|.
- (3) Für alle $a \in G$ gilt $a^{|G|} = e$.

Beweis: (1) Das Folgt direkt aus Bemerkung 2.2 (4).

- (2) Folgt aus (1) angewendet auf $\langle a \rangle \subseteq G$.
- (3) Folgt aus (2), da $a^{|G|} = (a^{\operatorname{ord}(a)})^{\frac{|G|}{\operatorname{ord}(a)}}$.

Korollar 2.11

Sei G eine Gruppe mit |G| = p prim. Dann ist G zyklisch.

Beweis: Wähle $a \in G$, $a \neq e \implies \operatorname{ord}(a) > 1$. Mit Lagrange folgt: $\operatorname{ord}(a) = p \implies \langle a \rangle = G$

Theorem 2.12 Homomorphiesatz

Sei $H \triangleleft G$ normale UG. Sei $\pi: G \to G/H$ die Quotientenabbildung. Sei $\varphi: G \to G'$ ein Homomorphismus. Dann sind äquivalent

- (1) φ faktorisiert durch π , d.h.. \exists Homomorphismus $\psi: G/H \to G'$ mit $\varphi = \psi \circ \pi$
- (2) $H \subseteq Ker(\varphi)$

Wir nennen diese Äquivalenz die universelle Eigenschaft Wir fragten uns:

Wann gibt es ψ .

Beweis: • (1) \Longrightarrow (2): $\forall a \in H$:

$$\varphi(a) = (\psi \circ \pi)(a)$$

= $\psi(\pi(a)) = \psi(e) = e \implies a \in \text{Ker}(\varrho).$

• $(2) \implies (1)$: Definiere:

$$\psi: G/H \to G'$$
$$aH \mapsto \varphi(a).$$

z.z.: ψ ist wohldefiniert (falls ja, dann offensichtlich ein Homomorphismus). Sei also $b \in G$ mit aH = bH. Dann ist $b^1a \in H$ und $a^{-1}b \in H \subseteq \mathrm{Ker}(\varrho)$ (Bemerkung 2.2). Also gilt

$$\varphi(a) = \varphi(a) \cdot \varphi(a^{-1}b) = \varphi(aa^{-1}b) = \varphi(b).$$

Es folgt nach Definition $\implies \psi(aH) = \psi(bH)$

Korollar 2.13

Jeder surjektive Homomorphismus $\varphi:G\to G'$ induziert einen Isomorphismus

$$\psi: G/\mathrm{Ker}(\varphi) \xrightarrow{\sim} G'.$$

Beweis: In 2.9 setze $H = \text{Ker}(\varphi)$.

 φ surjektiv $\Longrightarrow \psi$ surjektiv. φ injektiv: Es gilt

$$\psi(aH) = e \iff \varphi(a) = e \iff a \in \operatorname{Ker}(\varrho) = H \iff aH = H.$$

Korollar 2.14 Erster Isomorphiesatz

G Gruppe, $H \subseteq G$ Untergruppe, $N \triangleleft G$ normale Untergruppe. Dann

- (1) $HN := \langle H, N \rangle = \{ab | a \in H, b \in N\} \subseteq G$
- (2) *N ⊲ HN*
- (3) $H \cap N \triangleleft H$
- (4) Der Homomorphismus

$$\varphi: H \xrightarrow{\varphi_1} HN \xrightarrow{\varphi_2} HN/N$$

induziert einen Isomorphismus

$$H/H \cap N \cong HN/N$$
.

Dabei ist φ_1 die Inklusion und φ_2 die Projektion/Quotientenabbildung.

Bemerkung 2.15

Vergleiche: Sidn $V_1,V_2\subseteq V$ Untervektorräume, so gilt $V_1/V_1\cap V_2\cong (V_1+V_2)/V_2$

Beweis von 2.14: (1) Nach Definition gilt

$$\langle H, N \rangle = \left\{ a_1^{m_1} b_1^{n_1} \cdots a_k^{m_k} b_k^{n_k} \middle| a_i \in H, b_i \in N, m_i, n_i \in \mathbb{Z} \right\}.$$

Da $N \triangleleft G$ normal ist, gilt

$$a_ib_i = b_i'a_i' \qquad (a_ib_ia_i^{-1} \in N)$$

 $\implies \exists a \in H, b \in N$

$$a_1^{m_1}b_1^{n_1}\ldots a_k^{m_k}b_k^{n_k}=ab.$$

- (2) Klar, da $N \triangleleft G$
- (3)+(4) Nach 2.13 reicht es zu zeigen: φ surjektiv mit Ker $(\varphi)=H\cap N$. Da $H\subseteq HN$ gilt

$$\operatorname{Ker}(\varphi) = H \cap \underbrace{\operatorname{Ker}(HN \to HN/N)}_{=N \text{ nach } 2.8} = H \cap N.$$

Jedes Element in HN/N lässt sich schreiben als abN mit $a \in H, b \in N$. Es ist $abN = aN = \varphi(a)$ (da $b \in N$) $\implies \varphi$ surjektiv.

Korollar 2.16 zweiter Isomorphiesatz

G Gruppe, $H,N \triangleleft G$ normale Untergruppe, $N \subseteq H.$ Dann gilt

- (1) $H/N \triangleleft G/N$
- (2) Die Abbildung

$$\varphi: G \xrightarrow{\pi} G/N \xrightarrow{\pi'} (G/H)/(H/N)$$

induziert einen Isomorphismus

$$G/H \cong (G/N)/(H/N).$$

Beweis: (1) Nach Definition: $H/N \subseteq G/N$. Sei $aN \in H/N, bN \in G/N$

$$(bN) \cdot (aN) \cdot (bN)^{-1} = bab^{-1}N \in H/N \implies H/N \triangleleft G/N.$$

(2) φ surjektiv, da π und π' surjektiv

$$Ker(\varphi) = \pi^{-1}(Ker(\pi'))$$
$$= \pi^{-1}(H/N)$$
$$= H.$$

Bemerkung 2.17

Vergleiche: Sind $V_1, V_2 \subseteq V$ UVR mit $V_2 \subseteq V_1$, dann gilt

$$V/V_1 = (V/V_2)/(V_1/V_2).$$

Korollar 2.18

Für jede Gruppe G gibt es Mengen M und M' und einen Homomorphismus

$$\varphi \to F_{M'}$$
, sodass $\operatorname{Im}(\varphi) \subseteq F_{M'}$ normal und $G \cong F_{M'}/\operatorname{Im}(\varphi)$.

Beweis: Wähle Erzeuger $M' \subseteq G \rightsquigarrow \exists$ Surjektion $\varphi_{M'} : F_{M'} \rightarrow G$. Wähle Erzeuger $M \subseteq \text{Ker}(\varphi_{M'}) \rightsquigarrow \exists$ Homomorphismus $\varphi : F_M \rightarrow \text{Ker}(\varphi_{M'}) \rightarrow F_{M'}$ mit erster Abbildung surjektiv. Nach Konstruktion gilt

$$\operatorname{Im}(\varphi) = \operatorname{Ker}(\varphi_{M'}).$$

Nach 2.13

$$F_{M'}/\mathrm{Im}(\varphi) = F_{M'}/\mathrm{Ker}(\varphi_{M'}) \cong G.$$

Lemma 2.19

Sei $M \subseteq G$ eine Teilmenge einer Gruppe G. Dann \exists eine kleineste normale Untergruppe $N \subseteq G$ mit $M \subseteq N$. N heißt normaler Abschluss von M.

Beweis: Man setzt

$$N:=\bigcap_{M\subseteq N' \triangleleft G} N'.$$

Man prüft: N ist normal.

Definition 2.20: Gruppe aus Erzeugern und Relationen

Sei M eine Menge und $M' \subseteq F_M$ eine Teilmenge. Die Gruppe mit Erzeugern M und Relationen M'. ist definiert als

$$\langle M|M'\rangle = F_M/N$$
,

wobei N der normale Abschluss von M' in N ist.

Korollar 2.21

Jede Gruppe ist isomorph zu einer Gruppe der Form

 $\langle M|M'\rangle$.

Beispiel 2.22

1) Zyklische Gruppen sind von der Form

$$\langle a|a^m\rangle$$
.

- i) $\mathbb{Z} \cong \langle a | \emptyset \rangle$
- ii) $\mathbb{Z}/m\mathbb{Z} \cong \langle a|a^m\rangle$.

Man schreibt auch $\langle a|a^m=e\rangle$

- 2) Dyadische Symmsteriegruppe von dyadischen Quadern. Sie wird erzeugt durch
 - Rotation R um 90°
 - Spiegelung S

Also ist

$$\rightsquigarrow D_4 = \langle R, S | R^4 = S^2 = \operatorname{Id}, SRS = R^{-1} \rangle.$$

Hier ist $m' = \{R^4, S^2, SRSR\}$

3)

$$\langle a|\emptyset\rangle := F_1/\langle e\rangle \cong F_1 \cong \mathbb{Z} \quad (a^n \mapsto n).$$

1.3 Gruppenoperationen

Definition 3.1: Gruppenoperation

Sei G eine Gruppe und X eine Menge. Eine Operation (oder Aktion oder Wirkung) von G auf X ist eine Abbildung

$$\varrho: G \times X \to X$$
$$(a, x) \mapsto ax =: \varrho(a, x),$$

sodass

- (1) $ex = x \forall x \in X$
- $(2) \ a(bx)) = (ab)x \, \forall a,b \in G, x \in X$

Bemerkung 3.2

 $\varrho: G \times X \to X$ ist eine Operation $\iff G \to \operatorname{Bij}(X), a \mapsto (x \mapsto ax)$ ist ein Homomorphismus

Standardbeispuel: S_n -Operationen auf $\{1, \ldots, n\} = \mathrm{Id} : S_n \to S_n = \mathrm{Bij}(\{1, \ldots, n\})$

$$\varrho((i \ j), i) = j.$$

- $S_n 1 = \{1, \ldots, n\}$
- Stab(1) $\cong S_{n-1}$

Frage 1

Wie operiert die Dyedergruppe auf den Ecken $\{1, 2, 3, 4\}$ des Quadrats. (Untergruppe von S_4 ???)

Definition 3.3: Orbit, Stabilisator

Sei $\varrho:G\times X\to X$ eine Operation einer Gruppe G auf einer Menge X. Sei $x\in X$

(1) Der *Orbit* (oder die Bahn) von x (unter ρ) ist

$$G \cdot x = \{ax | a \in G\} \subseteq X.$$

(2) Der Stabilisator von x (unter p) ist

$$G_x:=\operatorname{Stab}_G(x):=\operatorname{Stab}(x)=\{a\in G|ax=x\}\subseteq G.$$

Intuitiv ist, dass Gx ist nicht größer als G sein kann.

Theorem 3.4 Orbit-Stabilisator-Theorem

Sei $\varrho: G \times X \to X$ eine Operation, $x \in X$

(1) $\operatorname{Stab}(x) \subseteq G$ ist eine UG

(2) Die Orbitabbildung

$$o_x: G \to Gx$$

 $a \mapsto ax$

induziert eine Bijektion zwischen den Linksnebenklassen

$$G/\operatorname{Stab}(x) \cong Gx$$
.

(3) Ist $|G| < \infty$, so gilt

$$|G| = |Gx| \cdot |\operatorname{Stab}(x)|$$
.

(4) Für $y \in Y$ gilt

$$Gx\cap Gy\neq\emptyset\iff Gx=Gy\quad \rightsquigarrow X=\bigcup_{o\text{ Orbits}}o=\bigcup_{o\in\{G:x\mid x\in X\}}o.$$

(5) Ist Gx = Gy, dann sind Stab(x) und Stab(y) konjugiert. $(H, H' \subset G \cup G \cap A)$ heißen konjugiert, falls $\exists \, a \in G : aHa^{-1} = H'$)

Beweis: (1) $e \in \text{Stab}(x)$. Sind $a, b \in \text{Stab}(x)$, so gilt

$$ab^{-1}x = ab^{-1}ab^{-1}bx = ax = x \implies ab^{-1} \in \operatorname{Stab}(x) \implies \operatorname{Stab}(x)$$
 ist UG.

(2) Für $a, b \in G$ gilt

$$ax = bx \iff b^{-1}ax = x$$

 $\iff b^{-1}a \in \operatorname{Stab}(a)$
 $\stackrel{??}{\iff} a\operatorname{Stab}(x) = b\operatorname{Stab}(x)$
 $\implies o_x^{-1}(ax) = a\operatorname{Stab}(x).$

Da o_x surjektiv ist, gilt (2)

(3) Nach 2.2 gilt:

$$|G| = |\operatorname{Stab}(x)| \cdot \underbrace{(G : \operatorname{Stab}(x))}_{=|G/\operatorname{Stab}(x)| = |Gx|}.$$

(4) $Gy = Gx \implies Gx \cap Gy \neq \emptyset$ Umgekehrt: Sei

$$z \in Gx \cap Gy \implies \exists a, b \in G : ax = z = by$$

$$\implies y = b^{-1}ax \in Gx \implies Gy \subseteq Gx.$$

Analog: $Gx \subseteq Gy$.

(5) Ist Gx = Gy so $\exists a \in G$ mit y = ax. Sei $b \in \text{Stab}(x)$. Dann gilt

$$aba^{-1}y = abx = ax = y.$$

Also $\implies a \operatorname{Stab}(x) a^{-1} \subseteq \operatorname{Stab}(y)$. Analog $a^{-1} \operatorname{Stab}(y) a \subseteq \operatorname{Stab}(x) \implies \operatorname{Stab}(y) \subseteq a \operatorname{Stab}(x) a^{-1}$.

Theorem 3.5 Bahngleichung

Sei $\varrho:G\times X\to X$ eine Operation einer endlichen Gruppe G auf einer endlichen Menge X. Sei $x_1,\ldots,x_n\in X$

ein Repräsentantensystem der Orbits (d.h. \forall Orbints $o \exists ! x_i \in \{x_1, \dots, x_n\}$, sodass $x_i \in O$). Dann gilt

$$|X| = \sum_{i=1}^{n} |Gx_i|$$
$$= \sum_{i=1}^{n} |G : \operatorname{Stab}(x_i)|.$$

Definition 3.6: frei, transitiv, treu

Sei $\varrho:G\times X\to X$ eine Operation

- (1) ϱ heißt frei, falls $\operatorname{Stab}(x) = \{e\} \ \forall x \in X$
- (2) ρ heißt transitiv, falls $Gx = X \forall x \in X$
- (3) Der Kern von ϱ ist

$$\operatorname{Ker}(\varrho) = \bigcap_{x \in X} \operatorname{Stab}(x) = \left\{ a \in G \middle| ax = x \, \forall x \in X \right\}.$$

(4) ρ heißt treu, wenn $Ker(\rho) = \{e\}$.

Beispiel 3.7

Zu einer Gruppe G gibt es (mindestens) drei natürliche assoziierte Operationen

- (1) Die Gruppenstruktur $: G \times G \to G$ definiert eine Operation von G auf sich selbst.
 - · ist transitiv, denn $(ba^{-1})a = b$, frei denn $ab = b \implies a = e$ und damit auch treu (es ist stets $a, b \in G$)
 - Beobachtung: Ist $|G| < \infty$, so ist G eine "transitive" UG von $S_{|G|}$.
- (2) Die Abbildung

$$G \times G \to G$$
$$(a,b) \mapsto ba^{-1}$$

ist auch eine freie, transitive und treue Operation. Achtung: $(a,b)\mapsto ba$ ist im Allgemeinen keine Operation.

(3) Die Konjugationsabbildung

$$\varrho:G\times G\to G$$
$$(a,b)\mapsto aba^{-1}$$

ist eine Operation. Für $b \in G$:

$$\operatorname{Stab}_G(b) = \left\{ a \in G | aba^{-1} = b \right\} = Z(b) \text{ und } \operatorname{Ker}(\varrho) = Z(G).$$

(4) Ist S die Menge der Untergruppen von G, so ist

$$\varrho: G \times S \to S$$
$$(a, H) \mapsto aHa^{-1}$$

eine Operation.

$$N(H):=\operatorname{Stab}(H)=\left\{a\in G|aHa^{-1}=H\right\}.$$

Normalisator von H in G.

Beobachtung: $N(H) \subseteq G$ ist die größte UG mit $H \triangleleft N(H) \leadsto H \subseteq G$ ist normal $\iff N(H) = G$

Beispiel 3.8

Ist $H \subseteq G$ eine UG, so ist

$$H \times G \to G$$

 $(a,b) \mapsto ab$

eine H-Operation. Die ϱ -Orbits sind genau die Rechtsnebenklassen von H in G.

Notation 3.9

Sei $\varrho:G\times X\to X$ eine Operation. Wir schreiben $G\backslash X$ für die Menge der G-Orbits.

Korollar 3.10

Sei G eine endliche Gruppe, $a_1, \ldots, a_n \in G - Z(G)$ ein R Epreäsentantensystem der Konjugationsoperation auf G - Z(G). Dann gilt

$$|G| = \underbrace{|Z(G)|}_{\text{1-elementige Orbits}} + \sum_{i=1}^{n} (G : Z(a_i)).$$

Beweis: Bahnengleichung angewendet auf Konjugation.

1.4 Sylow-Sätze

Definition 4.7: p-Gruppen, p-Sylow-Untergruppe

Sei G eine endliche Gruppe, p Primzahl, $|G| = p^n m$ mit $p \nmid m$

- (1) G heißt p-Gruppe, wenn m = 1
- (2) Eine UG $H \subseteq G$ heißt p-Sylow-Untergruppe, wenn $|H| = p^n$

Theorem 4.2 Sylow-Sätze

Sei G wie oben. Dann gilt

- (1) G hat eine p-Sylow-UG
- (2) Je zwei p-Sylow-UG sind konjugiert.
- (3) Ist s_p die Anzahl der p-Sylow UGs. Dann gilt
 - (a) $s_p = (G: N(H))$, wobe
i $H \subseteq G$ p-Sylow UG ist
 - (b) $s_p \mid m$
 - (c) $s_p \equiv 1 \mod p$

Korollar 4.3 Satz von Cauchy

Sei G eine endliche Gruppe und p prim mit $p \mid |G|$. Dann $\exists a \in G$ mit $\operatorname{ord}(a) = p$.

Beweis: Sylow: $\exists UG \ H \subseteq G \ \text{mit} \ |H| = p^n \ \text{für} \ n \ge 1$. Sei $e \ne b \in H \implies \text{ord}(b) = p^s \ \text{für ein} \ 1 \le s \le n$. Setze $a = b^{p^{s-1}} \implies \text{ord}(a) = p$.

Beispiel 4.4

Sei ${\cal G}$ eine Gruppe mit

$$|G| = 12 = 2^2 \cdot 3$$

und ohne Normalteiler von Ordnung 3. Dann gilt

$$G\cong A_4$$
.

Ringe

Körper

Galoistheorie