SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH THUẬN

ĐỀ CHÍNH THỨC (Đề này có 01 trang)

KỲ THI CHỌN HSG LỚP 12 CẤP TỈNH NĂM HỌC 2016 – 2017

Môn: Toán

Thời gian: 180 phút (không kể thời gian giao đề)

Bài 1. (5 điểm)

a) Cho hàm số
$$y = \frac{1}{3}x^3 + (m-1)x^2 - (6m+3)x + \frac{2}{3}$$
.

Với các giá trị nào của m, hàm số đồng biến trên khoảng $(4;+\infty)$?

b) Biện luận theo tham số m số nghiệm của phương trình $|x^2 - 4x + 3| = m$.

Bài 2. (3 điểm)

Cho các số dương x, y, z. Chứng minh rằng:

$$\frac{x^{2}}{y+z} + \frac{y^{2}}{z+x} + \frac{z^{2}}{x+y} \ge \frac{x+y+z}{2} \ge \frac{xy}{x+y} + \frac{yz}{y+z} + \frac{zx}{z+x}.$$

Bài 3. (4 điểm)

- a) Tìm $\lim u_n$ với $u_n = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \cdot \cdot \frac{2n+1}{2n+2}$.
- b) Cho dãy số (v_n) định bởi $v_1 = 1$ và $v_{n+1} = \frac{\sqrt{1 + v_n^2} 1}{v_n}$ với mọi $n \ge 1$.

Tìm công thức tính v_n theo n.

<u>**Bài 4.**</u> (4 điểm)

Trong một buổi tiệc có 10 chàng trai, mỗi chàng trai dẫn theo một cô gái.

- a) Có bao nhiều cách xếp họ ngồi thành một hàng ngang sao cho các cô gái ngồi cạnh nhau, các chàng trai ngồi cạnh nhau và có một chàng trai ngồi cạnh cô gái mà anh ta dẫn theo?
- b) Ký hiệu các cô gái là $G_1, G_2, ..., G_{10}$. Xếp hết 20 người ngồi thành một hàng ngang sao cho các điều kiện sau được đồng thời thỏa mãn:
 - 1. Thứ tự ngồi của các cô gái, xét từ trái sang phải là $G_1, G_2, ..., G_{10}$.
 - 2. Giữa G_1 và G_2 có ít nhất 2 chàng trai.
 - 3. Giữa G_8 và G_9 có ít nhất 1 chàng trai và nhiều nhất 3 chàng trai. Hỏi có tất cả bao nhiều cách xếp như vậy ?

Bài 5. (4 điểm)

Cho tam giác ABC với I là tâm đường tròn nội tiếp và M là một điểm nằm trong tam giác. Gọi A_1, B_1, C_1 là các điểm đối xứng với điểm M lần lượt qua các đường thẳng AI, BI, CI. Chứng minh rằng các đường thẳng AA_1, BB_1, CC_1 đồng quy.

Giám thị không giải thích gì the	HÉT m thị không giải thích gì thêm. và tên thí sinh:	
Ho và tên thí sinh:		Số báo danh:

ĐÁP ÁN KỲ THI CHỌN HSG LỚP 12 CẤP TỈNH - Năm học 2016 – 2017

LỜI GIẢI TÓM TẮT	ÐIỆM
Bài 1. (5 điểm)	
a) TXĐ: D = ℝ	0,25
$y' = x^2 + 2(m-1)x - (6m+3)$	0,5
Hàm số đồng biến trên khoảng (4;+∞) khi và chỉ khi	0,5
$x^{2} + 2(m-1)x - (6m+3) \ge 0 \forall x > 4$	
$\Leftrightarrow m \ge \frac{-5}{2}$	0,75
b) Vẽ đúng đồ thị (C): $y = x^2 - 4x + 3 $	0,75
Đường thẳng $y = m$ luôn vuông góc với Oy .	0,25
Dựa vào đồ thị, ta có:	
PT vô nghiệm khi và chỉ khi $m < 0$	0,5
PT có 2 nghiệm phân biệt khi và chỉ khi $m = 0$ hoặc $m > 1$	0,5
PT có 3 nghiệm phân biệt khi và chỉ khi $m=1$	
PT có 4 nghiệm phân biệt khi và chỉ khi $0 < m < 1$	0,5
Bài 2. (3 điểm)	
Ta có: $\frac{x^2}{y+z} + \frac{y+z}{4} \ge x, \frac{y^2}{z+x} + \frac{z+x}{4} \ge y, \frac{z^2}{x+y} + \frac{x+y}{4} \ge z$	0,25 x 3
Nên: $\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} \ge \frac{x+y+z}{2}$	0,5
Dấu "=" xảy ra khi và chỉ khi $x = y = z$	0.25
Ta có:	0,25
$\frac{x+y}{2} \ge \frac{2xy}{x+y}, \ \frac{y+z}{2} \ge \frac{2yz}{y+z}, \ \frac{z+x}{2} \ge \frac{2zx}{z+x}$	0,25 x 3
Nên: $\frac{x+y+z}{2} \ge \frac{xy}{x+y} + \frac{yz}{y+z} + \frac{zx}{z+x}$	
2 x+y y+z z+x Dấu "=" xảy ra khi và chỉ khi $x=y=z$	0,5 0,25
Bài 3. (4 diểm)	0,23
a) Bằng quy nạp ta chứng minh được $\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \cdot \cdot \frac{2n+1}{2n+2} < \frac{1}{\sqrt{3n+4}} \forall n \ge 1$	1,0
Mà $\lim \frac{1}{\sqrt{3n+4}} = 0$ nên $\lim \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \cdot \cdot \frac{2n+1}{2n+2} = 0$	0,5 x 2
b) Dự đoán $v_n = \tan \frac{\pi}{2^{n+1}} \forall n \ge 1.$	0,5
Chứng minh công thức đúng bằng quy nạp.	
Bài 4. (4 điểm)	

a) Có 2x10!x9! cách.	2,0
b) Giả sử có 20 chỗ ngồi được đánh số thứ tự từ trái sang phải là 1, 2,, 20. Gọi x_1 là số chàng trai được xếp bên trái G_1 , x_2 là số chàng trai được xếp ở giữa G_1 và G_2 , x_3 là số chàng trai được xếp ở giữa G_2 và G_3 ,, x_{10} là số chàng trai được xếp ở giữa G_9 và G_{10} , G_{10	0,25
Bộ số $(x_1, x_2,, x_{11})$ hoàn toàn xác định vị trí các cô gái và:	0,25
1) $x_1 + x_2 + + x_{11} = 10$ 2) $x_2 \ge 2$ 3) $1 \le x_9 \le 3$	
Đổi biến $y_2 = x_2 - 2$ ta có: $x_1 + y_2 + x_3 + + x_8 + x_{10} + x_{11} = 8 - x_9$. Trong đó các ẩn không âm và $1 \le x_9 \le 3$	0,25
Sử dụng kết quả bài toán chia kẹo Euler ta được số bộ $(x_1, x_2,, x_{11})$ là: $C_{16}^9 + C_{15}^9 + C_{14}^9 = 18447$	0,25x4
Vậy có 18447.10! cách xếp thỏa đề. Bài 5. (4 điểm)	0,25
Ma C	
Xét trường hợp M nằm trong góc BAI . Gọi M_a, M_b, M_c lần lượt là các điểm đối xứng với M qua BC, CA, AB .	0,5
Bằng biến đổi góc, ta chứng minh được $\widehat{M_cAA_1}=\widehat{M_bAA_1}$ nên AA_1 là đường trung trực của đoạn M_bM_c .	1,5
Trường hợp M nằm trong góc CAI hoặc M nằm trên AI ta cũng chứng minh được $AA_{\rm l}$ là đường trung trực của đoạn $M_{\it b}M_{\it c}$.	
Chứng minh tương tự, ta được BB_1 là đường trung trực của đoạn M_aM_c và CC_1 là đường trung trực của đoạn M_aM_b .	1,0
Vậy AA_1, BB_1, CC_1 đồng quy.	