Applied Type Theory

Лекция 1: введение в λ -исчисление

Воронов Михаил Сергеевич

ВМК МГУ

Осень 2025

План лекции

- Оргчасть и устройство курса
- Отивация
- \odot Введение в λ -исчисление
- Формальный синтаксис и нотация
- 5 Редукции и отношения эквивалетности
- 6 Комбинаторы и кодирование данных

План лекции

- Оргчасть и устройство курса
- 2 Мотивация
- \bigcirc Введение в λ -исчисление
- Формальный синтаксис и нотация
- 5 Редукции и отношения эквивалетности
- 6 Комбинаторы и кодирование данных

Теоретический план курса

- **①** Простое нетипизированное $\lambda \to \lambda_{ o} \to$ алгебра типов.
- Классические логики и исчисления (NJ/LK).
- ullet $\lambda 2$, $\lambda \omega$, зависимые типы (MLTT/HoTT).
- Оубструктурные типы: линейные/аффинные, связь с Rust и Haskell.

Практический план курса

- **1** Теоретические задачи на λ -исчисление
- ② Практические задачи на Coq/Agda/TLA+/OCaml
- Задачи вида "опишите условия и следствия теоремы на языке 7-летнего ребёнка"
- Практические задачи СТF-типа на sandbox escape
- Задачи на проектирование API на базе теории типов
- Каждое домашнее задание будет содержать обязательные задачи и задачи со звёздочкой, которые можно сдать до конца семестра

Критерий оценивания

На данный момент планируется 6 домашних заданий, за каждое можно получить 40-50 баллов. Также за экзамен можно получить до 150 баллов, критерии оценивания (могут немного поменяться к концу семестра):

- 0-79 2
- **2** 80−149 − 3
- **3** 150−199 4

Литература

- Pierce Types and Programming Languages.
- Nederpelt, Geuvers Type Theory and Formal Proof.
- Software Foundations (Vol. 1-2) https://softwarefoundations.cis.upenn.edu/.
- Bertot, Castéran Interactive Theorem Proving and Program Development.
- Mimram Program = Proof (lecture notes).
- Курс Москвитина Д. Н. *Функциональное программирование* (YouTube).

План лекции

- ① Оргчасть и устройство курса
- 2 Мотивация
- \bigcirc Введение в λ -исчисление
- Формальный синтаксис и нотация
- 5 Редукции и отношения эквивалетности
- 6 Комбинаторы и кодирование данных

Зачем это разработчику и специалисту ИБ

Инженерная максима

Свести классы ошибок к *невозможным по типам* и формально проверить и доказать критические свойства систем.

- Типы как контракты: сигнатуры фиксируют допустимые состояния и переходы, некорректные программы не компилируются.
- Раннее обнаружение дефектов: становятся невозможными целые классы уязвимостей (например, null deref, double free, data races, неправильные состояния протокола) на этапе компиляции.
- Формальная верификация: Coq/Agda/... доказывают инварианты безопасности и корректность алгоритмов, инвариант «ошибка не может произойти» выражается как теорема.
- Композиционная надёжность: свойства собираются из локальных «контрактов» модулей (ADT, parametricity, зависимые типы, сессионные типы).
- Знание ограничений подхода: при всех плюсах данный подход не является панацеей и имеет свои ограничения, которые нужно понимать перед использованием.

Примеры использования типовых техник

- Null dereference \Rightarrow Option/Maybe, исчерпывающий pattern matching.
- Use-after-free / double free \Rightarrow линейные/аффинные типы, владение/заимствование (ownership/borrowing), времена жизни (lifetimes).
- Data race \Rightarrow неизменяемость по умолчанию, типы эффектов, правила заимствования, сессионные типы.
- Out-of-bounds / Heartbleed-класс \Rightarrow индексированные по длине структуры (напр., Vec n α), безопасная индексация.
- Нарушение протокола / неправильный порядок шагов \Rightarrow typestate, сессионные типы (! τ .S, ? τ .S, end).
- $TOCTTOU \Rightarrow$ capability-токены как линейные ресурсы, атомарные переходы состояний.
- Инъекции (SQL/XSS) \Rightarrow типизированные AST/DSL вместо строк, параметризованные запросы, GADT-кодирование выражений.
- ullet Неполное покрытие вариантов \Rightarrow ADT + исчерпывающий pattern matching.
- Смешение единиц/домена \Rightarrow новые типы/фантомные параметры (Meters, Seconds); запрет неосмысленных операций.

10/52

API как контракт: typestate

Основная идея

Состояние системы выражается в (фантомных) типах, а нелегальные переходы не типизируются.

```
(* Phantom session state *)
type logged_out
type logged_in
type ('state) session
val login : creds -> logged_out session -> logged_in session
val logout : logged_in session -> logged_out session
val transfer : logged_in session -> amount -> account -> logged_in session
(* Attempt transfer without login: ill-typed *)
```

• Контролируем «правильность сценариев» \Rightarrow отсутствуют *целые классы ошибок* без ad-hoc проверок в коде.

Ресурсы и память: линейные типы

Контракты ресурсов

Субструктурные типы: ресурс потребляется ровно один раз или не более одного раза (например, $std::unique_ptr\ B\ C++$).

alloc : Unit \rightarrow Cap Buf

write: Cap Buf \longrightarrow Byte \rightarrow Cap Buf

free : Cap Buf \longrightarrow Unit

- free \circ free не типизируется \Rightarrow исключаем double free на уровне типов.
- Заимствование \Rightarrow одновременная запись из двух мест не проходит проверку типов \Rightarrow нет data race.

Протоколы как типы

Сессионные типы

Client: !Req.?Ack.end Server: ?Req.!Ack.end Композиция \Rightarrow корректное взаимодействие, отсутствие перепутанных сообщений и «зависаний». Можно сказать, что в типе кодируется машина состояний протокола.

TLA+ инвариант

 $Inv \triangleq \forall c \in Clients:$ $SentReq[c] \Rightarrow \neg RecvAck[c]$ **U** RecvAck[c]Проверка инварианта Inv model-чекером \Rightarrow (с высокой вероятностью) отсутствие нежелательных межсостояний.

Формальная верификация: что будем доказывать

- Инварианты API в Agda/Coq: сохранение размера очереди, отсутствие чтения удалённого, корректность ролей/прав.
- Свойства протокола в TLA+: безопасность (safety) и живость (liveness) для простых handshake/lock-free сценариев.
- Parametricity & free theorems: автоматические «бесплатные» законы корректности для полиморфного кода (напр., length(map f) = length).

Практический эффект

Свойства становятся частью артефакта сборки: если собрано, значит, проходит доказательства и проверки.

Ограничения и зона ответственности

- Типы и доказательства не заменяют криптографию, настройку ОС и операционные и административные регламенты.
- Канальные утечки и физические побочные каналы требуют дополнительных методик (профилирование времени, изоляция, TEE).
- Политика безопасности должна быть **корректно** *смоделирована*; неверная модель \Rightarrow корректная, но неверная система.
- На практике модели и доказательства часто имеют ограниченно смоделированный контекст предметной области.

Итог мотивации

- Типы это исполнимые спецификации: что запрещено не скомпилируется.
- ② С помощью Coq/Agda/TLA+ критические свойства становятся теоремами, а не надеждой на тесты.
- **⑤** Фокус курса перенести эти принципы в практику: от теории λ -исчисления до применения этого в API и описания протоколов с использованием типов.

План лекции

- 1 Оргчасть и устройство курса
- 2 Мотивация
- \odot Введение в λ -исчисление
- Формальный синтаксис и нотация
- 5 Редукции и отношения эквивалетности
- 6 Комбинаторы и кодирование данных

λ -исчисление

- λ -исчисление формальная система, разработанная Алонзо Чёрчем в 1930-х для формализации и анализа понятия вычислимости
- Имеет нетипизированную (untyped) и множество типовых версий
- Позволяет описывать семантику вычислительных процессов
- Является теоретической основой для многих пруверов

Поведение функций

Рассмотрим функцию $f(x): x^2 + 1$

- ullet эта функция имеет один "вход"(другими словами, зависит от одной переменной) и один "выход": $f:\mathbb{R} o \mathbb{R}$
- ullet в некотором смысле эту функцию можно рассматривать, как отображение $x o x^2 + 1$
- чтобы подчеркнуть "абстрактную"
роль x, используют специальный символ λ :
 $\lambda x.x^2+1$
- ullet данная нотация выражает то, что x это не конкретное число, а некоторая абстракция
- для конкретного значения можно "применить" данную функцию: $(\lambda x.x^2 + 1)(3)$

Введение в λ -исчисление

Из предыдущего слайда следует, что для работы с функциями достаточно двух способов построения выражений:

- Абстракция: из выражения M и переменной x можно составить новое выражение $\lambda x.M$ (абстракция x по M)
- f Q Применение: из двух выражений M и N можно составить новое выражение MN

Введение в λ -исчисление: абстракция

- lacktriangledown Пусть M=M[x] выражение, возможно содержащее x
- f O Тогда абстракция $\lambda x.M$ обозначает функцию x o M[x]
- Абстракция способ задать неименованную функцию
- lacktriangle Если x в M[x] отсутствует, то $\lambda x.M$ константная функция со значением M.

Введение в λ -исчисление: применение

- С точки зрения разработки ПО, применение F к X это применение алгоритма (F) к данным (X)
- ② Однако явного различия между алгоритмами и данными нет, в частности, возможно самоприменение: FF
- $oldsymbol{9}$ В общем случае применение это так называемое eta-преобразование:

$$(\lambda x.M)N \rightarrow_{\beta} M[x := N]$$

ullet M[x:=N] - это M, в котором свободные вхождения x заменены на N

Введение в λ -исчисление: примеры β -редукции

$$(\lambda x. x^2 + 1) 3 \rightarrow_{\beta} 3^2 + 1$$

 $(\lambda y. 5) 1 \rightarrow_{\beta} 5$
 $(\lambda x. x) (\lambda y. y) \rightarrow_{\beta} \lambda y. y$
 $\lambda z. ((\lambda x. x) (\lambda y. y)) \rightarrow_{\beta} \lambda z. \lambda y. y$

План лекции

- ① Оргчасть и устройство курса
- 2 Мотивация
- \bigcirc Введение в λ -исчисление
- Формальный синтаксис и нотация
- 5 Редукции и отношения эквивалетности
- 6 Комбинаторы и кодирование данных

Формальное построение λ -исчисления

Definition

Множество λ -термов Λ строится индуктивно:

$$x \in V \Rightarrow x \in \Lambda$$
 $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$ $M \in \Lambda, x \in V \Rightarrow (\lambda x. M) \in \Lambda$

- **Абстракция** $\lambda x. M$: анонимная функция.
- Применение MN: вызов функции M к аргументу N.
- Принятые соглашения: применение левоассоциативно, абстракция правоассоциативна, тело абстракции тянется максимально вправо.

Примеры термов

- X
- (xz)
- $(\lambda x.(xz))$
- $((\lambda x.(xz))y)$
- $(\lambda y.((\lambda x.(xz))y))$
- $((\lambda y.((\lambda x.(xz))y))w)$
- $(\lambda z.(\lambda w.((\lambda y.((\lambda x.(xz))y))w)))$

Термы (соглашения)

Общеприняты следующие соглашения:

- Внешние скобки опускаются
- Применение левоассоциативно:

$$FXYZ$$
 обозначает $(((FX)Y)Z)$

• Абстракция правоассоциативна:

$$\lambda xyz.M$$
 обозначает $(\lambda x.(\lambda y.(\lambda z.(M))))$

• Тело абстракции простирается вправо насколько это возможно

$$\lambda x.MNK$$
 обозначает $\lambda x.(MNK)$

Примеры термов

- \bullet x = x
- \bullet (xz) = xz
- $(\lambda x.(xz)) = \lambda x.xz$
- $\bullet ((\lambda x.(xz))y) = (\lambda x.xz)y$
- $(\lambda y.((\lambda x.(xz))y)) = \lambda y.(\lambda x.xz)y$
- $((\lambda y.((\lambda x.(xz))y))w) = (\lambda y.(\lambda x.xz)y)w$
- $(\lambda z.(\lambda w.((\lambda y.((\lambda x.(xz))y))w))) = \lambda zw.(\lambda y.(\lambda x.xz)y)w$

Свободные и связанные переменные

Definition

 $\mathsf{FV}(\cdot)$ и $\mathsf{BV}(\cdot)$ задаются рекурсивно:

$$\mathsf{FV}(x) = \{x\}, \quad \mathsf{FV}(MN) = \mathsf{FV}(M) \cup \mathsf{FV}(N), \quad \mathsf{FV}(\lambda x. M) = \mathsf{FV}(M) \setminus \{x\};$$

$$\mathsf{BV}(x) = \varnothing, \quad \mathsf{BV}(MN) = \mathsf{BV}(M) \cup \mathsf{BV}(N), \quad \mathsf{BV}(\lambda x.\, M) = \mathsf{BV}(M) \cup \{x\}.$$

Example

В $\lambda y.(\lambda x. xz) y w$ связаны x, y, свободны z, w.

Упражнение: свободные и связанные переменные

Для каждого терма определите множества $FV(\cdot)$ и $BV(\cdot)$. Обратите внимание на случаи затенения (shadowing) переменных!

- $\delta \lambda x.(\lambda x.xy)xz$
- **②** (λa. λb. a c (λc. b c)) d
- $\lambda p. \lambda q. p(\lambda p. qpr) s$

План лекции

- Оргчасть и устройство курса
- 2 Мотивация
- \odot Введение в λ -исчисление
- Формальный синтаксис и нотация
- 5 Редукции и отношения эквивалетности
- 6 Комбинаторы и кодирование данных

Бинарные отношения и отношение эквивалентности

Definition (Бинарное отношение)

Пусть A — множество. Бинарное отношение R на A — это подмножество $A \times A$. Пишем $a\,R\,b$, если $(a,b) \in R$.

Definition (Свойства отношений)

Для отношения $R \subseteq A \times A$:

- ullet Рефлексивность: $\forall a \in A \ a \ R \ a$
- ullet Симметричность: $\forall a,b\in A\ a\ R\ b\Rightarrow b\ R\ a$
- Транзитивность: $∀a, b, c ∈ A \ a \ R \ b \land b \ R \ c \Rightarrow a \ R \ c$

Definition (Отношение эквивалентности)

Эквивалентность — это отношение, которое одновременно рефлексивно, симметрично и транзитивно. Эквивалентности индуцируют разбиение множества на *классы эквивалентности*.

α -преобразование (шаг)

Definition (α -преобразование)

$$\lambda x. M \xrightarrow{\alpha} \lambda y. M[x \mapsto y]$$
 если $y \notin FV(M)$.

Замечание: Здесь $M[x \mapsto z]$ — *переименование* связанного параметра x в M на z (не подстановка терма).

lpha-преобразование: примеры

- $\lambda x. \lambda y. x(\lambda x. yx) =_{\alpha} \lambda u. \lambda v. u(\lambda x. vx)$
- $\lambda x. (\lambda x. xx) =_{\alpha} \lambda z. (\lambda u. u u)$
- ullet $\lambda y.\,x\,y\,
 eq_lpha\,\,\lambda x.\,x\,x\,-$ захват свободного x при y o x недопустим
- ullet $\lambda x. \, \lambda y. \, x \, y \,
 eq_lpha \, \lambda y. \, \lambda x. \, y \, x \, \,$ перестановка связок не lpha-эквивалентность
- $\lambda x. \lambda y. x(\lambda y. y) =_{\alpha} \lambda p. \lambda q. p(\lambda r. r)$

α -эквивалентность

Definition

Определим отношение $=_{\alpha}$ на Λ индукцией по структуре термов.

- Переменная $x =_{\alpha} x$.
- Применение Если $M_1 =_{\alpha} N_1$ и $M_2 =_{\alpha} N_2$, то $M_1 M_2 =_{\alpha} N_1 N_2$.
- Абстракция λx . $M =_{\alpha} \lambda y$. N тогда и только тогда, когда существует переменная z такая, что $z \notin \mathsf{FV}(M) \cup \mathsf{FV}(N)$ и

$$M[x \mapsto z] =_{\alpha} N[y \mapsto z].$$

Замечание 1: Здесь $M[x \mapsto z]$ — переименование связанного параметра x в M на z (не подстановка терма).

Замечание 2: Далее проверяется (нетрудно), что $=_{\alpha}$ — отношение эквивалентности.

Конвенция Барендрехта (формулировка)

Соглашение (BVC)

В рассуждениях об λ -термах мы по умолчанию работаем с α -эквивалентным представителем M' терма M таким, что:

- все связанные переменные используют попарно разные имена (нет затенения);
- ② ни одна связанная переменная не совпадает ни с одной *свободной* переменной: $\mathsf{BV}(M') \cap \mathsf{FV}(M') = \varnothing$.

Интуиция. Имена связанных переменных — «временные ярлыки». Их можно переименовать (α -переименованием) так, чтобы они не мешали подстановкам и доказательствам.

Почему конвенция применима всегда

- α -эквивалентность разрешает свободное переименование связанных переменных на свежие имена (не попадающие в FV).
- Алфавит переменных бесконечен \Rightarrow свежие имена всегда существуют.
- Значит, для любого M существует $M' =_{\alpha} M$, удовлетворяющий BVC, и рассуждать «с точностью до α » корректно.

Мини-следствие

Если $y \notin \mathsf{FV}(M)$, то $\lambda x.\ M =_{\alpha} \lambda y.\ M[x \mapsto y].$

Подстановка без захвата

Definition (Подстановка M[x:=N])

Обозначим через M[x:=N] подстановку терма N вместо свободных вхождений x в M, задаваемую правилами

$$x[x := N] = N, y[x := N] = y (y \neq x),$$

$$(PQ)[x := N] = (P[x := N]) (Q[x := N]),$$

$$(\lambda y. P)[x := N] = \begin{cases} \lambda y. P, & y = x; \\ \lambda y. (P[x := N]), & y \neq x, y \notin FV(N); \\ \lambda z. (P[y := z])[x := N], & y \neq x, y \in FV(N), z \notin FV(P) \cup FV(N). \end{cases}$$

eta-редукция

Definition (β -редукция)

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N].$$

Definition (Редекс)

Редекс (reducible expression) - это выражение вида $(\lambda x. M) N.$

- β -редукция основной механизм вычисления в λ -исчислении
- Моделирует применение функции к аргументу
- Подстановка должна избегать захвата переменных

Примеры β -редукции

$$(\lambda x. x)(\lambda y. y) \rightarrow_{\beta} \lambda y. y$$

$$(\lambda f. \lambda x. f x)(\lambda y. y) \rightarrow_{\beta} \lambda x. (\lambda y. y) x \rightarrow_{\beta} \lambda x. x$$

$$(\lambda f. \lambda g. \lambda x. f (g x))(\lambda y. y y)(\lambda z. z)$$

$$\rightarrow_{\beta} (\lambda g. \lambda x. (\lambda y. y y) (g x))(\lambda z. z)$$

$$\rightarrow_{\beta} \lambda x. (\lambda y. y y)((\lambda z. z) x)$$

$$\rightarrow_{\beta} \lambda x. (\lambda y. y y) x$$

$$\rightarrow_{\beta} \lambda x. x x$$

Замкнутость относительно контекстов

Понятие: «замкнутое относительно контекстов»

Под контекстом понимаем терм с одной «дыркой» $C[\,\cdot\,]$, строящийся по грамматике:

$$C ::= [\cdot] \mid CM \mid MC \mid \lambda x. C.$$

Замкнутость относительно контекстов означает: если $M \sim N$, то для любого C имеем $C[M] \sim C[N]$. Не путать с *замкнутым термом* (FV(M) = \varnothing).

Пусть
$$C = \lambda z$$
. $[\cdot] z$. Тогда

$$C[\lambda x. x] =_{\alpha} C[\lambda y. y]$$
 T.e. $\lambda z. (\lambda x. x) z =_{\alpha} \lambda z. (\lambda y. y) z.$

β -эквивалентность

Definition (β -эквивалентность)

 β -эквивалентность $=_{\beta}^{*}$ — наименьшее отношение эквивалентности, замкнутое относительно контекстов и содержащее β -преобразование:

- $lacksymbol{0}$ (Основа) $(\lambda x.\ M)\ N \rightarrow_{eta} M[x:=N] \Rightarrow (\lambda x.\ M)\ N =_{eta}^* M[x:=N]$
- ② (Рефлексивность) $M =_{\beta}^{*} M$
- **3** (Симметричность) $M =_{\beta}^* N \Rightarrow N =_{\beta}^* M$
- lacktriangle (Транзитивность) $M=^*_eta N,\ N=^*_eta L \Rightarrow M=^*_eta L$
- **⑤** (Совместимость) $M=^*_\beta\ N\Rightarrow \lambda x.\ M=^*_\beta\ \lambda x.\ N,\ ML=^*_\beta\ NL,\ LM=^*_\beta\ LN$

eta-эквивалентность: цепочки редукций

Definition («Конструктивное» определение)

Обозначим $M \leftrightarrow_{\beta} N$, если $M \to_{\beta} N$ или $N \to_{\beta} M$ (один шаг в любую сторону). Тогда $M =_{\beta} N$ тогда и только тогда, когда существует конечная цепочка

$$M_0 \leftrightarrow_{\beta} M_1 \leftrightarrow_{\beta} \cdots \leftrightarrow_{\beta} M_k$$
, $M_0 = M$, $M_k = N$.

Замечание

Эквивалентно: $=_{\beta}$ — рефлексивно—симметрично—транзитивное замыкание \to_{β} и наименьшая конгруэнция, содержащая \to_{β} .

β -эквивалентность: пример

Пусть
$$M \equiv (\lambda f. \, \lambda x. \, f \, (f \, x)) \, g \, x, \, N \equiv g \, (g \, x).$$
 Тогда

$$M \rightarrow_{\beta} (\lambda x. g(gx))x \rightarrow_{\beta} g(gx) = N,$$

откуда $M =_{\beta}^{*} N$.

Ещё цепочка (шаги в обе стороны \leftrightarrow_{β}):

$$(\lambda x. x)((\lambda y. y) t) \leftrightarrow_{\beta} (\lambda y. y) t \leftrightarrow_{\beta} t.$$

Эти примеры иллюстрируют конструктивное определение через конечные цепочки \leftrightarrow_{β} и существование общего редукта.

η -преобразование

Definition (η -преобразование)

 $(\lambda x. M) x =_{\eta} M$, если $x \notin FV(M)$.

Definition (η -эквивалентность)

 η -эквивалентность $=_{\eta}$ — это наименьшее отношение эквивалентности, замкнутое относительно контекстов и содержащее η -преобразование:

- lacksquare (Основа) $(\lambda x. M) x =_{\eta} M$, если $x \notin \mathsf{FV}(M)$
- **2** (Рефлексивность) $M =_{\eta} M$
- ullet (Симметричность) $M=_{\eta} N \Rightarrow N=_{\eta} M$
- lacktriangle (Транзитивность) $M=_{\eta}N, N=_{\eta}L\Rightarrow M=_{\eta}L$
- **⑤** (Совместимость) $M =_{\eta} N \Rightarrow \lambda x. M =_{\eta} \lambda x. N, ML =_{\eta} NL, LM =_{\eta} LN$

Примеры η -эквивалентности

Экстенсиональность функций

 η -эквивалентность выражает принцип **экстенсиональности**: две функции равны, если они дают одинаковые результаты для всех возможных аргументов.

$$(\lambda x. f) x =_{\eta} f \quad (\text{если } x \notin \mathsf{FV}(f))$$
 $(\lambda y. (\lambda z. z)) y =_{\eta} \lambda z. z$ $(\lambda a. (\lambda b. \lambda c. b)) a =_{\eta} \lambda b. \lambda c. b$ $(\lambda x. x. x) x \neq_{\eta} x \quad (x \in \mathsf{FV}(x. x))$

Отношения эквивалентности

Definition (Отношение эквивалентности)

Эквивалентность — это отношение, которое одновременно рефлексивно, симметрично и транзитивно. Эквивалентности индуцируют разбиение множества на *классы эквивалентности*.

Контекст лекции

 $=_{\alpha}$, $=_{\beta}$ и $=_{\eta}$ — *отношения эквивалентности* на термах. Мы работаем с термами *с точностью до* этих эквивалентностей:

- ullet по lpha: переименование связанных переменных несущественно;
- по β : вычисления/подстановки не меняют «смысл» терма;
- по η : функции, совпадающие по действию на всех аргументах, считаются одинаковыми (экстенсиональность).

Отсюда удобно рассуждать о классах эквивалентности $[M] = \{N \mid N \equiv M\}$ и формулировать свойства вроде «НФ единственна (с точностью до α)».

Отношения эквивалентности: пример

$$\lambda x. x \ =_{\alpha} \ \lambda y. \, y, \quad (\lambda x. \, x) \, t \ =_{\beta}^* \ t, \quad (\lambda x. \, f) \, x \ =_{\eta} \ f \ (x \notin \mathsf{FV}(f)).$$

План лекции

- 1 Оргчасть и устройство курса
- 2 Мотивация
- \odot Введение в λ -исчисление
- Формальный синтаксис и нотация
- 5 Редукции и отношения эквивалетности
- 6 Комбинаторы и кодирование данных

Комбинаторы

Definition

Комбинатор (замкнутый λ -**терм)** M - это такой λ -терм, что $FV(M)=\varnothing$. Множество всех замкнутых термов обозначается Λ^0 .

- $I = \lambda x.x$
- $\omega = \lambda x.xx$
- $\Omega = \omega \, \omega = (\lambda x.xx)(\lambda x.xx)$
- $K = \lambda xy.x$
- $KI = \lambda xy.y$
- $S = \lambda fgx.fx(gx)$
- $B = \lambda fgx.f(gx)$

Кодирование Чёрча: булеаны, пары, числа

Булеаны

true
$$\equiv \lambda t. \lambda f. t$$
, false $\equiv \lambda t. \lambda f. f$
if $\equiv \lambda b. \lambda x. \lambda y. b x y$

Пары

$$pair \equiv \lambda x. \, \lambda y. \, \lambda p. \, p \, x \, y$$

$$\pi_1 \equiv \lambda p. p(\lambda x. \lambda y. x), \quad \pi_2 \equiv \lambda p. p(\lambda x. \lambda y. y)$$

Натуральные (Чёрч)

$$0 \equiv \lambda f. \, \lambda x. \, x, \quad 1 \equiv \lambda f. \, \lambda x. \, f \, x, \dots$$

$$succ \equiv \lambda n. \, \lambda f. \, \lambda x. \, f \, (n \, f \, x)$$

$$plus \equiv \lambda m. \, \lambda n. \, \lambda f. \, \lambda x. \, m \, f \, (n \, f \, x)$$

Что почитать

- Pierce, гл. 5–7 (untyped λ);
- ullet Software Foundations: *LF*, главы о eta-редукции.
- Более продвинутое: Barendregt The Lambda Calculus.