The Sharing Economy: Impact of Ride Hailing

Principal Investigator: Liza Sakhaie

Email: liza.sakhaie@stern.nyu.edu

In this project, I will study how ride hailing apps have grown recently. I will use data over the past 5 years, since this is when ride sharing became particularly popular.

I will also explore the decline of the NYC taxi industry in contrast to the rise of ride-hailing apps.

The data holds the potential to portray a few different trends:

- The rise of Ride Hailing apps (using number of rides/year as a measurement) and the decline of NYC Yellow Taxis
- The Y-O-Y growth rates for each ride hailing app, in order to show the increase in popularity Uber's comeptition
- The growth in the number of drivers for each ride hailing app
- The increase in the trend for ride-sharing
- The seasonality of ride-hailing apps

The Data

The data used in this project comes from NYC open data (https://data.cityofnewyork.us/Transportation/FHV-Base-Aggregate-Report/2v9c-2k7f), which has aggregated ride information on many car companies including the four most popular ride hailing apps that I plan on including in this project: Uber, Lyft, Via and Juno.

The ride-hailing data is all on one data set and includes info from 2015-2018. The information includes the month/year for each brand, the total dispatched trips for that month, the total dispatched shared trips, and the unique dispatched vehicles.

The second data set I will pull in comes frmo the NYC Taxi and Limousine Commission (https://www1.nyc.gov/site/tlc/about/aggregated-reports.page). This includes monthly aggregated data for yellow and green cabs through 2018.

Access: I will use the BEA's API to download and access the data. Below I demonstrate that I have the ability to access the data.

Requisite Packages: Below I bring in the packages I need...

Importing all potentially necessary packages

```
In [131]: from IPython.display import display, Image # Displays things nicely import pandas as pd # Key tool import matplotlib.pyplot as plt # Helps plot import numpy as np # Numerical operations import os import csv import descartes

import geopandas as gpd from shapely.geometry import Point, Polygon

from mpl_toolkits.axes_gridl.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_gridl.inset_locator import mark_inset

%matplotlib inline
```

Bringing in my data

```
In [506]: ride_hailing= "/Users/rksaks/Desktop/Taxi idea/FHV_Base_Aggregate_repo
    rt-2.xls"
In [507]: ride_hailing=pd.read_excel(ride_hailing)
```

In [508]: ride_hailing.head(10)

Out[508]:

	Base License Number	Base Name	DBA	Year	Month	Month Name	Total Dispatched Trips	Dispa S
0	B02849	BROOKLYN RIDES CORP	NaN	2018	11	November	16493	192
1	B02686	STANDARD LIMOUSINE & CAR SERVICE GROUP LLC.	NaN	2018	7	July	61	0
2	B01741	MONACO LIMO & CAR SERVICES INC.	NaN	2016	9	September	1790	0
3	b00965	BEN JEVO MGT. INC.	NEWPORT CAR SERVICE	2016	1	January	7623	0
4	B02509	NY MINUTE CAR SERVICE INC.	NaN	2018	9	September	9284	0
5	B02790	LAN TIAN CAR SERVICE, INC	NaN	2018	11	November	6	0
6	B01381	CLASSIC CAR SERVICE CORP.	PAISA CLASSIC	2016	6	June	4173	0
7	B01876	QUALITY EXECUTIVE LIMOUSINE L.L.C	NaN	2018	5	May	35	0
8	B00202	EXCELSIOR CAR & LIMO, INC.	NaN	2018	9	September	228	0
9	B03105	MAZNA TRANSPORTATION CORPORATION	NaN	2018	10	October	142	0

In [509]: taxi_file_path= "/Users/rksaks/Desktop/taxi_dataset.csv"

In [510]: taxi_df= pd.read_csv(taxi_file_path)

```
In [511]: taxi_df.head()
```

Out[511]:

	Month/Year	License Class	Trips Per Day	Unique Drivers	Unique Vehicles	Vehicles Per Day
0	2019-03	Green	19,318	3,586	3,296	2,524
1	2019-03	Yellow	252,634	21,956	11,912	10,814
2	2019-03	FHV - High Volume	769,729	87,695	86,540	59,893
3	2019-02	Yellow	250,654	21,733	11,895	10,770
4	2019-02	Green	20,481	3,626	3,385	2,651

Let's work with our Yellow Taxi Data first

We want to eliminate all other data besides yellow cab data, and then we want to separate the year from the month.

```
In [512]: taxi_df = taxi_df[taxi_df["License Class"] == "Yellow"]
In [513]: taxi_df.head()
```

Out[513]:

	Month/Year	License Class	Trips Per Day	Unique Drivers	Unique Vehicles	Vehicles Per Day
1	2019-03	Yellow	252,634	21,956	11,912	10,814
3	2019-02	Yellow	250,654	21,733	11,895	10,770
6	2019-01	Yellow	247,315	22,085	11,867	10,582
12	2018-12	Yellow	263,609	23,042	11,938	10,803
18	2018-12	Yellow	263,609	23,042	11,938	10,803

Let's break up the month and year so we can group by each...

In [515]: taxi_df.head()

Out[515]:

	Month/Year	License Class	Trips Per Day	Unique Drivers	Unique Vehicles	Vehicles Per Day
1	[2019, 03]	Yellow	252,634	21,956	11,912	10,814
3	[2019, 02]	Yellow	250,654	21,733	11,895	10,770
6	[2019, 01]	Yellow	247,315	22,085	11,867	10,582
12	[2018, 12]	Yellow	263,609	23,042	11,938	10,803
18	[2018, 12]	Yellow	263,609	23,042	11,938	10,803

```
In [516]: taxi_df["Year"] = taxi_df["Month/Year"].str[0]
In [517]: taxi_df["Month"] = taxi_df["Month/Year"].str[1]
In [518]: taxi_df.head()
```

Out[518]:

	Month/Year	License Class	Trips Per Day	Unique Drivers	Unique Vehicles	Vehicles Per Day	Year	Month
1	[2019, 03]	Yellow	252,634	21,956	11,912	10,814	2019	03
3	[2019, 02]	Yellow	250,654	21,733	11,895	10,770	2019	02
6	[2019, 01]	Yellow	247,315	22,085	11,867	10,582	2019	01
12	[2018, 12]	Yellow	263,609	23,042	11,938	10,803	2018	12
18	[2018, 12]	Yellow	263,609	23,042	11,938	10,803	2018	12

Since our ride-hailing data set groups by the TOTAL number of trips in a month rather than the number of trips per day, we want multiply the "Trips Per Day" column by the number of days in each respective month so the data-sets can work together

```
In [519]: taxi_df["Days Per Month"] = taxi_df["Month"]
In [520]: taxi_df["Days Per Month"].replace({"01":31, "02":28, "03":31, "04":30, "05":31, "06":30, "07":31, "08":31, "09":30, "10":31, "11":30, "12":31}, value = None,inplace=True)
```

```
In [521]: taxi_df.head()
```

Out[521]:

	Month/Year	License Class	Trips Per Day	Unique Drivers	Unique Vehicles	Vehicles Per Day	Year	Month	Days Per Month
1	[2019, 03]	Yellow	252,634	21,956	11,912	10,814	2019	03	31
3	[2019, 02]	Yellow	250,654	21,733	11,895	10,770	2019	02	28
6	[2019, 01]	Yellow	247,315	22,085	11,867	10,582	2019	01	31
12	[2018, 12]	Yellow	263,609	23,042	11,938	10,803	2018	12	31
18	[2018, 12]	Yellow	263,609	23,042	11,938	10,803	2018	12	31

Our "Trips Per Day" column is a string and we need it to be an integer in order to multiply it by the number of days per month. First we must strip out the commas and then we can convert the type.

```
In [522]: taxi_df["Trips Per Day"] = taxi_df['Trips Per Day'].str.replace(',', '
')
    taxi_df["Trips Per Day"] = taxi_df["Trips Per Day"].astype('int64', co
py=False)
```

```
In [523]: taxi_df['Total Dispatched Trips'] = taxi_df["Trips Per Day"] * taxi_df
["Days Per Month"]
```

```
In [524]: taxi_df.head()
```

Out[524]:

	Month/Year	License Class	Trips Per Day	Unique Drivers	Unique Vehicles	Vehicles Per Day	Year	Month	Days Per Month	Dis
1	[2019, 03]	Yellow	252634	21,956	11,912	10,814	2019	03	31	783
3	[2019, 02]	Yellow	250654	21,733	11,895	10,770	2019	02	28	701
6	[2019, 01]	Yellow	247315	22,085	11,867	10,582	2019	01	31	766
12	[2018, 12]	Yellow	263609	23,042	11,938	10,803	2018	12	31	817
18	[2018, 12]	Yellow	263609	23,042	11,938	10,803	2018	12	31	817

Now we want to group it by year so we can graph it with our ride-hailing data

```
In [525]: taxi1=taxi_df.groupby("Year")
```

```
In [526]: taxi_sum=taxi1.sum()
In [527]: taxi_sum.head()
```

Out[527]:

	Trips Per Day	Days Per Month	Total Dispatched Trips
Year			
2015	9615402	730	292214136
2016	8607090	730	261578780
2017	7466992	730	226983294
2018	6763270	730	205561660
2019	750603	90	22516731

We want to drop 2019 since we don't have a full year's data

	Trips Per Day	Days Per Month	Total Dispatched Trips	
Year				
2015	9615402	730	292214136	
2016	8607090	730	261578780	
2017	7466992	730	226983294	
2018	6763270	730	205561660	

Now we can finally use this dataset to graph the expected decline in the total number of dispatched taxi trips in comparison to the rise of the total number of dispatched ride-hailing trips!

Now let's clean up our ride-hailing data set...

Defining a fuction to pull info for each ride-hailing app

Building DataFrames for each app

```
In [533]: uber=taxi_app(ride_hailing, "UBER")
In [534]: uber.head()
```

Out[534]:

	Base Name	Year	Month	Month Name	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
584	UBER	2018	10	October	14663999	4045741	75606
723	UBER	2015	10	October	4359759	0	26875
1428	UBER	2016	5	May	5391879	0	32505
1833	UBER	2017	5	May	8794695	0	54465
2103	UBER	2015	1	January	1871075	0	12544

```
In [535]: lyft=taxi_app(ride_hailing, "LYFT")
```

In [536]: lyft.head()

Out[536]:

	Base Name	Year	Month	Month Name	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
401	LYFT	2016	3	March	691455	0	9266
1148	LYFT	2018	6	June	3664808	602496	39519
1637	LYFT	2018	5	May	3400356	540029	38628
2228	LYFT	2016	10	October	1112748	0	15926
2991	LYFT	2016	8	August	1095428	0	15033

In [537]: juno=taxi_app(ride_hailing, "JUNO")

In [538]: juno.head()

Out[538]:

	Base Name	Year	Month	Month Name	Total Dispatched Trips		Total Dispatched Shared Trips	Unique Dispatched Vehicles
1149	JUNO	2017	1	January	950588	0		17808
1444	JUNO	2018	7	July	1018602	0		21380
1528	JUNO	2017	11	November	1163709	0		20714
1879	JUNO	2018	11	November	1048668	0		20750
2207	JUNO	2017	9	September	1069736	0		19059

In [539]: via=taxi_app(ride_hailing, "VIA")

```
In [540]: via.head()
```

Out[540]:

	Base Name	Year	Month	Month Name	Total Dispatched Trips	Total Dispatched	Unique Dispatched Vehicles
554	VIA	2018	1	January	1016794	662745	5697
799	VIA	2017	8	August	984296	649083	4693
882	VIA	2018	6	June	744501	496676	5752
1251	VIA	2016	10	October	655551	0	2851
1865	VIA	2015	6	June	155658	0	665

I will have to group data into years since it is currently divided up by month as you can see.

Grouping the data by Year

JUNO

```
In [541]: juno.set_index("Year", inplace=True)
In [542]: juno1=juno.groupby(['Year'])
In [543]: juno_sum=juno1.sum()
In [544]: juno_sum
```

Out[544]:

	Month	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Year				
2016	75	5083708	0	106748
2017	78	12537031	0	237889
2018	78	13813009	0	255375
2019	1	1235565	0	21768

```
In [545]: juno_sum=juno_sum.drop(juno_sum.index[3])
```

In [546]: juno_sum

Out[546]:

	Month	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Year				
2016	75	5083708	0	106748
2017	78	12537031	0	237889
2018	78	13813009	0	255375

Lyft

In [547]: lyft1=lyft.groupby('Year')

In [548]: lyft_sum=lyft1.sum()

In [549]: lyft_sum

Out[549]:

	Month	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Year				
2015	72	2615481	0	43196
2016	78	11415958	0	162843
2017	78	26361098	3261655	332211
2018	78	44823801	7776283	494968
2019	1	4623412	709716	50099

In [550]: lyft_sum=lyft_sum.drop(lyft_sum.index[4])

In [551]: lyft_sum

Out[551]:

	Month	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Year				
2015	72	2615481	0	43196
2016	78	11415958	0	162843
2017	78	26361098	3261655	332211
2018	78	44823801	7776283	494968

Uber

In [552]: uber1=uber.groupby("Year")

In [553]: uber_sum=uber1.sum()

In [554]: uber_sum

Out[554]:

	Month	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Year				
2015	78	36275937	0	239798
2016	78	70067854	0	441948
2017	78	109642713	11105091	675809
2018	78	163103265	42375713	854781
2019	1	14325492	3616477	78022

In [555]: uber_sum=uber_sum.drop(uber_sum.index[4])

In [556]: uber_sum

Out[556]:

	Month	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Year				
2015	78	36275937	0	239798
2016	78	70067854	0	441948
2017	78	109642713	11105091	675809
2018	78	163103265	42375713	854781

VIA

In [557]: vial=via.groupby("Year")

In [558]: via_sum=via1.sum()

In [559]: via_sum

Out[559]:

	Month	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Year				
2015	72	1767709	0	6932
2016	78	6085133	0	21580
2017	78	10324271	4340253	50269
2018	78	11345582	7684873	69460
2019	1	1006908	558233	6784

In [560]: via_sum=via_sum.drop(via_sum.index[4])

```
In [561]: via_sum
```

Out[561]:

	Month	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Year				
2015	72	1767709	0	6932
2016	78	6085133	0	21580
2017	78	10324271	4340253	50269
2018	78	11345582	7684873	69460

Let's compare the total number of dispatched trips for each company between 2015 and 2018

```
In [563]: uber_sum.index
Out[563]: Int64Index([2015, 2016, 2017, 2018], dtype='int64', name='Year')
In [564]: taxi_sum.index
Out[564]: Int64Index([2015, 2016, 2017, 2018], dtype='int64', name='Year')
```

```
plt.rcParams.update(plt.rcParamsDefault)
In [676]:
          plt.xkcd()
          fig, ax = plt.subplots(figsize = (7,6))
          ax.plot(uber sum.index, uber sum["Total Dispatched Trips"], color = 'b
          lack', linewidth = 3.0, label= "Uber")
          ax.plot(via sum.index, via sum["Total Dispatched Trips"], color = 'lig
          htblue', linewidth = 3.0, label= "Via")
          ax.plot(juno_sum.index, juno_sum["Total Dispatched Trips"], color = 'n
          avy', linewidth = 3.0, label= "Juno")
          ax.plot(lyft sum.index, lyft sum["Total Dispatched Trips"], color = 'm
          agenta', linewidth = 3.0, label= "Lyft")
          ax.plot(taxi sum.index, taxi sum["Total Dispatched Trips"], color = 'y
          ellow', linewidth = 3.0, label= "Yellow Taxi")
          ax.set title("Total Dispatched Trips over the Years", fontsize = 14, f
          ontweight = "bold")
          ax.set ylabel("Total Dispatched Trips", fontsize = 12)
          ax.set xlabel("Year", fontsize = 12)
          ax.set_xticks([2015,2016,2017,2018])
          ax.spines["right"].set visible(False)
          ax.spines["top"].set visible(False)
          ax.legend(loc='upper center', bbox to anchor=(0.5, -.15), shadow=True,
          ncol=5)
```


As we can see, the more dispatched trips our ride-hailing apps have, the less for NYC taxis. This makes sense as there is a limited population in NYC so as the competition continues to enter the market and grow, cabs will definitely lose a part of their market share.

Furthermore, we see that Uber has had the strongest performance out of all the apps and is slowly catching up to NYC taxis! We would expect that within the next one or two years, their lines will cross and Uber will surpass NYC Taxis as the most popular mode of transportation out of the options.

Next let's look at the Y-O-Y growth rates for each ride hailing app

First I have to build a function that normalizes all of the ride-hailing apps growth rates since they all launched at different times

This function will also calculate the growth rates for each and store them in a list that we can then build into a dictionary to ultimately plot a comparison

```
In [651]: def normalize(df):
    new_list=[]
    var=0
    for i in range(2016, 2019):
        var1=var
        var=df.loc[i]["Total Dispatched Trips"]/df.loc[2016]["Total Dispatched Trips"]
        growth_rate=var-var1
        new_list.append(growth_rate)
    return new_list
```

Now let's calculate for JUNO

```
In [567]: growth_rates_juno=normalize(juno_sum)
In [568]: growth_rates_juno
Out[568]: [1.0, 1.4661194151985124, 0.2509935661135536]
```

Now let's calculate for LYFT

```
In [569]: growth_rates_lyft=normalize(lyft_sum)
In [570]: growth_rates_lyft
Out[570]: [1.0, 1.309144620188687, 1.6172714545726254]
```

Now let's calculate for UBER

```
In [571]: growth_rates_uber=normalize(uber_sum)
```

```
In [572]: growth_rates_uber
Out[572]: [1.0, 0.5648076363234986, 0.7629825797148004]
```

Now let's calculate for VIA

```
In [573]: growth_rates_via=normalize(via_sum)
In [574]: growth_rates_via
Out[574]: [1.0, 0.6966385122560181, 0.16783708753777438]
```

Now let's calculate for TAXIS

```
In [575]: growth_rates_taxi=normalize(taxi_sum)
In [576]: growth_rates_taxi
Out[576]: [1.0, -0.1322564697335158, -0.08189362302247916]
```

Now we have to build a dictionary that holds all of the lists in order to convert it into a dataframe

```
In [580]: growth_rates_df
```

Out[580]:

	Uber	Lyft	Juno	Via	Taxi
0	1.000000	1.000000	1.000000	1.000000	1.000000
1	0.564808	1.309145	1.466119	0.696639	-0.132256
2	0.762983	1.617271	0.250994	0.167837	-0.081894

```
In [581]: Year=['2016', '2017', '2018']
```

```
In [582]: growth_rates_df['Year'] = Year
```

```
In [583]: growth_rates_df
```

Out[583]:

	Uber	Lyft	Juno	Via	Taxi	Year
0	1.000000	1.000000	1.000000	1.000000	1.000000	2016
1	0.564808	1.309145	1.466119	0.696639	-0.132256	2017
2	0.762983	1.617271	0.250994	0.167837	-0.081894	2018

```
In [584]: growth_rates_df=growth_rates_df.set_index(['Year'])
```

```
In [585]: growth_rates_df
```

Out[585]:

	Uber	Lyft	Juno	Via	Taxi
Year					
2016	1.000000	1.000000	1.000000	1.000000	1.000000
2017	0.564808	1.309145	1.466119	0.696639	-0.132256
2018	0.762983	1.617271	0.250994	0.167837	-0.081894

Now let's plot our results!

```
plt.rcParams.update(plt.rcParamsDefault)
In [668]:
          plt.xkcd()
          fig, ax = plt.subplots(figsize = (5,4))
          ax.plot(growth rates df.index, growth rates df["Uber"], color = 'black
          ', linewidth = 3.0, label= "Uber")
          ax.plot(growth rates df.index, growth rates df["Lyft"], color = 'magen
          ta', linewidth = 3.0, label= "Lyft")
          ax.plot(growth_rates_df.index, growth_rates_df["Juno"], color = 'navy'
          , linewidth = 3.0, label= "Juno")
          ax.plot(growth rates df.index, growth rates df["Via"], color = 'lightb
          lue', linewidth = 3.0, label= "Via")
          ax.plot(growth rates df.index, growth rates df["Taxi"], color = 'yello
          w', linewidth = 3.0, label= "Taxi")
          ax.set_title("Y-O-Y Growth Rate", fontsize = 14, fontweight = "bold")
          ax.set ylabel("Normalized Growth", fontsize = 12)
          ax.set xlabel("Year", fontsize = 12)
          ax.spines["right"].set visible(False)
          ax.spines["top"].set_visible(False)
          ax.legend(loc='upper center', bbox to anchor=(0.5, -.15), shadow=True,
          ncol=5)
```

Out[668]: <matplotlib.legend.Legend at 0x129258588>

In general, we can tell that taxis has a serious decline between 2016 and 2017 as ride-hailing apps began to really take a place in the market. The decline became less drastic between 2017 and 2018.

When comparing the ride-hailing apps to each other, we see that although initially in 2016, Juno had the most growth, Lyft is the only app that has consitently grown over the year. This could be because they branded themselves as a ride-sharing app from the very start and now ride-sharing has become extremely popular. We also see that via has been consistently declining since 2016. Lastly, we see that although Uber dropped off, it has begun to climb again. This could potentially be because they released a subscription service that motivated users to take more rides.

What about the number of dispatched vehicles?

I also wanted to discover whether the number of drivers for each company had been continually increasing over the years!

*** We will not include taxi data here since we do not have the data for the number of Unique Dispatched Vehicles in this dataset

```
In [666]: plt.rcParams.update(plt.rcParamsDefault)
          plt.xkcd()
          fig, ax = plt.subplots(figsize = (5,4))
          ax.plot(uber sum.index, uber sum["Unique Dispatched Vehicles"], color
          = 'black', linewidth = 2.0, label= "Uber")
          ax.plot(via sum.index, via sum["Unique Dispatched Vehicles"], color =
          'lightblue', linewidth = 2.0, label= "Via")
          ax.plot(juno sum.index, juno sum["Unique Dispatched Vehicles"], color
          = 'navy', linewidth = 2.0, label= "Juno")
          ax.plot(lyft sum.index, lyft sum["Unique Dispatched Vehicles"], color
          = 'magenta', linewidth = 2.0, label= "Lyft")
          ax.set title("Total Dispatched Vehicles over the Years", fontsize = 14
          , fontweight = "bold")
          ax.set ylabel("Unique Dispatched Vehicles", fontsize = 12)
          ax.set xlabel("Year", fontsize = 12)
          ax.set xticks([2015,2016,2017,2018])
          ax.spines["right"].set visible(False)
          ax.spines["top"].set visible(False)
          ax.legend(loc='upper center', bbox to anchor=(0.5, -.15), shadow=True,
          ncol=4)
```


This graph clearly proves that these applications have been bringing on more and more drivers and therefore registerning more and more vehicles. Just as we saw in the graph before, Juno's growth has definitely slown since 2017 which has affected the number of dispatched vehicles for the brand. Similarly, we see that Lyft has consistently grown since 2016 in the previous graph, and in turn we see them dispatching more and more vehicles each year.

How about the seasonality of choosing to take a car?

Now we need to group by month rather than year....

Start w/ JUNO

```
In [588]: juno2=juno.groupby(['Month'])
In [589]: juno_month_mean=juno2.mean()
```

In [590]: juno_month_mean

Out[590]:

	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Month			
1	1.188115e+06	0.0	20287.666667
2	1.166980e+06	0.0	20126.000000
3	8.660770e+05	0.0	13937.000000
4	7.570880e+05	0.0	15950.000000
5	7.397857e+05	0.0	16367.000000
6	7.822840e+05	0.0	17189.333333
7	7.996837e+05	0.0	17289.666667
8	8.660867e+05	0.0	17381.333333
9	9.114350e+05	0.0	17727.000000
10	1.041513e+06	0.0	18862.666667
11	1.028534e+06	0.0	19261.333333
12	1.131183e+06	0.0	19589.666667

Now LYFT

```
In [591]: lyft2=lyft.groupby(['Month'])
```

In [592]: lyft_month_mean=lyft2.mean()

In [593]: lyft_month_mean

Out[593]:

	Year	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Month				
1	2017.5	2.403548e+06	337744.250000	29104.750000
2	2017.0	1.810314e+06	219681.333333	22687.666667
3	2017.0	2.028991e+06	213809.000000	22793.666667
4	2016.5	1.497694e+06	139297.500000	18515.750000
5	2016.5	1.607581e+06	135007.250000	19811.500000
6	2016.5	1.715055e+06	242466.000000	21006.000000
7	2016.5	1.764211e+06	258947.750000	21875.750000
8	2016.5	1.933885e+06	258239.000000	22976.500000
9	2016.5	1.989284e+06	271668.250000	24017.000000
10	2016.5	2.174635e+06	396202.500000	25763.500000
11	2016.5	2.112750e+06	255893.250000	26563.500000
12	2016.5	2.381816e+06	316330.000000	27084.000000

Now UBER

```
In [594]:
          uber2=uber.groupby(['Month'])
```

In [595]: uber_month_mean=uber2.mean()

In [596]: uber_month_mean

Out[596]:

	Year	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Month				
1	2017.0	7981307.40	1245929.20	46773.80
2	2016.5	6439129.50	660847.25	39322.75
3	2016.5	7328283.25	880769.50	40170.50
4	2016.5	7196987.75	887343.00	41374.75
5	2016.5	7405314.25	829962.50	42374.00
6	2016.5	7585116.50	1067062.25	45199.00
7	2016.5	8008015.25	1249477.00	46858.00
8	2016.5	8065939.00	1329581.75	48704.25
9	2016.5	8441559.00	1348301.00	50606.50
10	2016.5	9041624.50	1407838.50	52042.50
11	2016.5	9100056.75	1491274.00	52972.75
12	2016.5	9765155.25	1564452.00	54497.25

Now VIA

```
In [597]: via2=via.groupby(['Month'])
```

In [598]: via_month_mean=via2.mean()

In [599]: via_month_mean

Out[599]:

	Year	Total Dispatched Trips	Total Dispatched Shared Trips	Unique Dispatched Vehicles
Month				
1	2017.5	762126.000000	305244.500000	4186.750000
2	2017.0	646205.000000	207396.666667	3258.333333
3	2017.0	728372.666667	230245.000000	3245.333333
4	2016.5	578563.250000	174610.500000	2783.000000
5	2016.5	612806.500000	192257.000000	2955.500000
6	2016.5	547652.750000	231805.250000	2978.500000
7	2016.5	612292.000000	286352.000000	3110.500000
8	2016.5	655796.000000	304123.500000	3147.500000
9	2016.5	669105.250000	319267.500000	3504.000000
10	2016.5	760198.500000	371100.750000	3761.750000
11	2016.5	694700.750000	322011.000000	3711.000000
12	2016.5	708226.500000	310836.500000	3740.000000

Now TAXIS

```
In [634]:
          taxi2=taxi_df.groupby(['Month'])
```

In [635]: taxi_month_mean=taxi2.mean()

In [636]: taxi_month_mean

Out[636]:

	Trips Per Day	Days Per Month	Total Dispatched Trips
Month			
01	329445.666667	31.0	1.021282e+07
02	354035.777778	28.0	9.913002e+06
03	352692.444444	31.0	1.093347e+07
04	369628.750000	30.0	1.108886e+07
05	357425.500000	31.0	1.108019e+07
06	348581.750000	30.0	1.045745e+07
07	308859.500000	31.0	9.574644e+06
08	301151.250000	31.0	9.335689e+06
09	319405.750000	30.0	9.582172e+06
10	336707.250000	31.0	1.043792e+07
11	323696.250000	30.0	9.710888e+06
12	319268.000000	31.0	9.897308e+06

We want the indexes for the taxis and the ride-hailing apps to be the same so we can plot them side by side, therefore we have to change the taxi months from 01 to 1 and so on

In [640]:

taxi_month_mean

Out[640]:

	Trips Per Day	Days Per Month	Total Dispatched Trips	Month_Corrected
Month				
01	329445.666667	31.0	1.021282e+07	1
02	354035.777778	28.0	9.913002e+06	2
03	352692.444444	31.0	1.093347e+07	3
04	369628.750000	30.0	1.108886e+07	4
05	357425.500000	31.0	1.108019e+07	5
06	348581.750000	30.0	1.045745e+07	6
07	308859.500000	31.0	9.574644e+06	7
08	301151.250000	31.0	9.335689e+06	8
09	319405.750000	30.0	9.582172e+06	9
10	336707.250000	31.0	1.043792e+07	10
11	323696.250000	30.0	9.710888e+06	11
12	319268.000000	31.0	9.897308e+06	12

Let's plot!

We will analyze taxis separately because its values are much larger and therefore dominate our ride-hailing data so we can't see it.

We also want to see if there is a difference in seasonality between ride-hailing apps and NYC Taxis

```
In [647]: fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (12,4))
          ax[0].bar(uber month mean.index, uber month mean["Total Dispatched Tri
          ps"], color = 'black', label= "Uber")
          ax[0].bar(via month mean.index, via month mean["Total Dispatched Trips
          "], color = 'lightblue', label= "Via")
          ax[0].bar(juno month mean.index, juno month mean["Total Dispatched Tri
          ps"], color = 'navy', label= "Juno")
          ax[0].bar(lyft month mean.index, lyft month mean["Total Dispatched Tri
          ps"], color = 'magenta', label= "Lyft")
          ax[1].bar(taxi month mean["Month Corrected"], taxi month mean["Total D
          ispatched Trips"], color = 'Yellow', label= "Taxi")
          ax[0].set title("Ride Hailing Seasonality", fontsize = 14, fontweight
          = "bold")
          ax[1].set title("NYC Taxi Seasonality", fontsize = 14, fontweight = "b
          old")
          ax[0].set ylabel("Total Dispatched Trips per Month", fontsize = 12)
          ax[0].set xlabel("Month", fontsize = 12)
          ax[0].set xticks([1,2,3,4,5,6,7,8,9,10,11,12])
          ax[1].set_ylabel("Total Dispatched Trips per Month", fontsize = 12)
          ax[1].set xlabel("Month", fontsize = 12)
          ax[0].spines["right"].set visible(False)
          ax[0].spines["top"].set visible(False)
          ax[0].legend(loc='upper center', bbox_to_anchor=(0.5, -.15), shadow=Tr
          ue, ncol=4)
          ax[1].spines["right"].set visible(False)
          ax[1].spines["top"].set visible(False)
          ax[1].legend(loc='upper center', bbox to anchor=(0.5, -.15), shadow=Tr
          ue)
```


Ride Hailing Apps: as expected, in the colder months of the year, people are more likely to use ride-hailing apps. However, we see this even more in October and November than we do in March and April, potentially because people are not yet adjusted to the cold and therefore are more likely to give in to paying for a car. We see a huge increase in December, which is probably due to the number of tourists in the city for the holidays.

Taxis: For taxis, we see that the most taxis are taken in March, April, and May. This is likely because these are the rainiest months of the year. When it starts raining, people hail a cab immediately rather than going inside somewhere and waiting to call a car from an app. Also, ride-hailing apps typically sur-charge when it is raining so people will choose to take taxis if they can since this will likely be the cheaper option as well as the quicker option.

Has ride sharing gotten more popular this year?

Via started the ride-sharing trend in 2016, before any other app was doing it. In order to compete, both Lyft and Uber incorporated ride sharing. Let's see if this has become an increasingly popular option on these ride-hailing apps

We are excluding Juno from this aspect of the study since it has yet to incorporate a ride-sharing feature to its application. We obviously exclude taxis as well since you cannot register as "ride sharing" when you enter a cab.

In [92]: ride_sharing_uber=ride_sharing(uber,2018)

In [105]: ride_sharing_uber=ride_sharing_uber.set_index("Month")

In [110]: ride_sharing_uber=ride_sharing_uber.reindex([1,2,3,4,5,6,7,8,9,10,11,1
2])
 ride_sharing_uber

Out[110]:

	Base Name	Year	Total Dispatched Shared Trips
Month			
1	UBER	2018	2613169
2	UBER	2018	2643389
3	UBER	2018	3523078
4	UBER	2018	3549372
5	UBER	2018	3319850
6	UBER	2018	3171911
7	UBER	2018	3877702
8	UBER	2018	4027450
9	UBER	2018	3943561
10	UBER	2018	4045741
11	UBER	2018	3858407
12	UBER	2018	3802083

```
In [93]: ride_sharing_lyft=ride_sharing(lyft,2018)
```

```
In [104]: ride_sharing_lyft=ride_sharing_lyft.set_index("Month")
```

In [111]: ride_sharing_lyft=ride_sharing_lyft.reindex([1,2,3,4,5,6,7,8,9,10,11,1
2])
 ride_sharing_lyft

Out[111]:

	Base Name	Year	Total Dispatched Shared Trips
Month			
1	LYFT	2018	641261
2	LYFT	2018	659044
3	LYFT	2018	641427
4	LYFT	2018	557190
5	LYFT	2018	540029
6	LYFT	2018	602496
7	LYFT	2018	615331
8	LYFT	2018	620932
9	LYFT	2018	641585
10	LYFT	2018	1024500
11	LYFT	2018	540745
12	LYFT	2018	691743

```
In [95]: ride_sharing_via=ride_sharing(via,2018)
```

```
In [103]: ride_sharing_via=ride_sharing_via.set_index("Month")
```

```
In [112]: ride_sharing_via=ride_sharing_via.reindex([1,2,3,4,5,6,7,8,9,10,11,12]
)
    ride_sharing_via
```

Out[112]:

	Base Name	Year	Total Dispatched Shared Trips
Month			
1	VIA	2018	662745
2	VIA	2018	622190
3	VIA	2018	690735
4	VIA	2018	698442
5	VIA	2018	703334
6	VIA	2018	496676
7	VIA	2018	562672
8	VIA	2018	567411
9	VIA	2018	651686
10	VIA	2018	766717
11	VIA	2018	656155
12	VIA	2018	606110

Now let's plot...

```
plt.rcParams.update(plt.rcParamsDefault)
In [664]:
          plt.xkcd()
          fig, ax = plt.subplots(figsize = (5,4))
          #ax.plot(usdata.index, usdata.gdp growth
          ax.plot(ride sharing uber.index, ride sharing uber["Total Dispatched S
          hared Trips"], color = 'black', linewidth = 3.0, label= "Uber")
          ax.plot(ride sharing via.index, ride sharing via["Total Dispatched Sha
          red Trips"], color = 'lightblue', linewidth = 3.0, label= "Via")
          ax.plot(ride sharing lyft.index, ride sharing lyft["Total Dispatched S
          hared Trips"], color = 'magenta', linewidth = 3.0, label= "Lyft")
          ax.set title("Growth in Ride Sharing Popularity, 2018", fontsize = 14,
          fontweight = "bold")
          ax.set ylabel("Total Dispatched Shared Trips", fontsize = 12)
          ax.set xlabel("Month", fontsize = 12)
          ax.set xticks([1,2,3,4,5,6,7,8,9,10,11,12])
          ax.spines["right"].set visible(False)
          ax.spines["top"].set_visible(False)
          ax.legend(loc='upper center', bbox to anchor=(0.5, -.15), shadow=True,
          ncol=3)
```

Out[664]: <matplotlib.legend.Legend at 0x126822c88>

As you can see, there is no consistent growth in ride-sharing popularity. However, we do see that Uber has the strongest growth in the number of dispatched shared trips, which is suprising considering that they launched the ride-sharing feature last out of all 3 apps.

CONCLUSION:

As a whole, we can confirm that the rise in the ride-hailing industry has had a major impact on the decline of the NYC Taxi industry. We see this through the number of dispatched vehicles, the number of dispatched rides and the year-over-year growth rate for each company.

However, our seasonality graphs prove to us that there are different times of year in which each mode of transportation dominate.