# Exercise 5 Answer Sheet — Logic Theory (2), 80424

May 13, 2025



#### Part a

Suppose that  $\varphi(z, y, t_0, \dots, t_{n-1})$  is a formula in the language of  $L_{PA}$ . We will show that,

$$PA \vdash \forall z \forall t_0 \dots \forall t_{n-1} (\forall x \le z \exists y \varphi \leftrightarrow \exists w \forall x \le z \exists y \le w \varphi)$$

*Proof.* Let us fix  $z, t_0, \ldots, t_{n-1}$ , then is suffice to show that  $PA \vdash \forall x \leq z \exists y \varphi \leftrightarrow \exists w \forall x \leq z \exists y \leq w \varphi$ . We assume toward a contradiction that the formula does not hold, then  $\forall x \leq z \exists y \varphi$  as well  $\neg \exists w \forall x \leq z \exists y \leq w \varphi$  holds as well. The latter is equivalent to  $\forall w \exists x \leq z \forall y \leq w (\neg \varphi)$ .

We want to show that there is an upper bound to y in the formula  $\forall x \leq z \exists y \varphi$ . This will be proven using induction over z. For the case z=0 there is only the case x=0 and the y that fulfills  $\exists y \varphi$  for x=0 is an upper bound. We assume that m is an upper bound, meaning that  $\forall x \leq z \exists y \leq m \varphi$  and check the case for  $\forall x \leq z+1 \exists y \varphi$ . There is y witnessing the case x=z+1, and either  $m \leq y$  or  $y \leq m$ , we define  $m'=\max\{y,m\}$  and it follows that it is an upper bound for the case z+1.

Back to the initial claim, there is m by the induction above such that it is a bound for y in the formula  $\forall x \leq z \exists y \varphi$ . We fix w = m and it derives that  $\exists x \leq z \forall y \leq w(\neg \varphi)$  holds, and we fix such  $x \leq z$ , then  $\forall \leq w(\neg \varphi)$ . But by the first formula  $\exists y \leq w \varphi$  in contradiction to this claim.

## Part b

Suppose that  $\psi(y_0, y_1, t_0, \dots, t_{n-1})$  is some formula in the language  $L_{PA}$ . We will show that,

$$PA \vdash \forall t_0 \dots \forall t_{n-1} (\exists y_0 \exists y_1 \psi \leftrightarrow \exists w \exists y_0 \leq w \exists y_1 \leq w \psi)$$

*Proof.* The proof is very similar to part a, Let  $t_0, \ldots, t_{n-1}$  be some values, and let us assume toward a contradiction that  $\exists y_0 \exists y_1 \psi$ , and that  $\neg \exists w \exists y_0 \leq w \exists y_1 \leq w \psi \equiv \forall w \forall y_0 \leq w \forall y_1 \leq w (\neg \psi)$  hold. We fix  $y_0, y_1$  such that  $\psi$  holds, and fix some  $w \geq \sup\{y_0, y_1\}$ , hence  $\neg \psi$  is derived by the second formula, resulting in a contradiction.

We define  $\Sigma_n(PA)$  as the set of formulas  $\psi(x_0,\ldots,x_{n-1})$ , such that for some  $\Sigma_n$  formula  $\psi'(x_0,\ldots,x_{n-1})$ ,

$$PA \vdash \forall x_0, \dots, \forall x_{n-1} (\psi \leftrightarrow \psi')$$

## Part a

We will show that the class of  $\Sigma_0(PA)$  formulas in PA is closed under boolean operations and bounded quantifiers.

*Proof.* Let  $\psi, \varphi \in \Sigma_0(PA)$  be some formulas. There exist  $\varphi', \psi'$  such that,

$$PA \vdash \forall x_0, \dots, \forall x_{n-1}(\psi \leftrightarrow \psi'), \forall x_0, \dots, \forall x_{n-1}(\varphi \leftrightarrow \varphi')$$

Then it follows that,

$$PA \vdash \forall x_0, \dots, \forall x_{n-1}((\psi \leftrightarrow \psi') \land (\varphi \leftrightarrow \varphi'))$$

Therefore by an identity from the previous course,

$$PA \vdash \forall x_0, \dots, \forall x_{n-1} ((\psi \land \varphi) \leftrightarrow (\psi' \land \varphi'))$$

Namely,  $\varphi \wedge \psi \in \Sigma_n(PA)$ .

By another identity it also derives that,

$$\varphi \leftrightarrow \varphi' \equiv (\neg \varphi) \leftrightarrow (\neg \varphi')$$

We deduce that  $\Sigma_n(PA)$  is closed under boolean operations.

We use the fact that  $\Sigma_0$  is closed under bounded quantifiers and deduce immediately that  $\Sigma_0(PA)$  is closed under bounded quantifiers as well.

## Part b

We will show that for some n > 0, the class of  $\Sigma_n(PA)$  formulas are closed under bounded quantifiers, existential quantifiers, disjunctions and conjunctions.

*Proof.* Let  $\varphi \in \Sigma_n(PA)$ , and suppose  $\varphi' \in \Sigma_n$  testifies to that.  $\forall v \leq w \varphi' \in \Sigma_n^0$ , then by the last exercise we deduce that there is  $\psi \in \Sigma_n$  such that  $\forall v \leq w \varphi \equiv \forall v \leq w \varphi' \equiv \psi$ .  $\varphi$  testifies to  $\forall v \leq w \varphi \in \Sigma_n(PA)$ . The proof is identical for bounded existential quantifier.

We will show that the class in closed under existential quantifiers. Suppose that  $\varphi \in \Sigma_n(PA)$ , and let this be testified by  $\varphi' \in \Sigma_n$ . There is  $\phi \in \Pi_{n-1}$  such that  $\varphi' = \exists v \phi$ . We define  $\psi = \exists u \varphi$ , then by the second part of the last question,

$$PA \vdash \forall t_0 \dots \forall t_{n-1} (\exists u \exists v \varphi \leftrightarrow \exists w \exists v \leq w \exists u \leq w \varphi)$$

Then  $\psi \in \Sigma_n(PA)$ .

We claim that  $\Sigma_n(PA)$  is also closed under disjunction and conjunction, as the proof is the same as the case of n=0.

# Part c

We will show that for n > 0, the class  $\Pi_n(PA)$  is closed under bounded quantifiers, universal quantifiers, disjunctions and conjunctions.

*Proof.* The proof for closeness under bounded quantifiers, as well disjunctions and conjunctions is the same as of the above, we move to show closeness under universal quantifiers. Let  $\varphi \in \Pi_n(PA)$  and  $\varphi' \in \Pi_n$  be the formula to testify that. We

define  $\psi = \forall v \varphi$ , note that  $\psi \equiv \forall v \varphi'$ .  $\varphi' = \forall u \phi$  for some  $\phi \in \Sigma_{n-1}$ . Using part a of question 1 we deduce that  $\forall u \psi \equiv \forall w \forall v \leq w \forall u \leq w \phi$ , it is implied that indeed  $\psi \in \Pi_n(\mathrm{PA})$ .

# Part d

We will show that the negation of a  $\Sigma_n(PA)$  formula is  $\Pi_n(PA)$ .

*Proof.* In the previous exercise we had shown that the negation of  $\Sigma_n^0$  formula is a  $\Pi_n^0$  formula and vice versa. We also know that every  $\Sigma_n$  formula is in particular a  $\Sigma_n^0$  formula. Let  $\varphi \in \Sigma_n(PA)$  and  $\varphi' \in \Sigma_n$  be formulas such that,

$$PA \vdash \forall x_0, \dots, \forall x_{n-1} (\varphi \leftrightarrow \varphi')$$

It follows that,

$$PA \vdash \forall x_0, \dots, \forall x_{n-1}((\neg \varphi) \leftrightarrow (\neg \varphi'))$$

But by the statement above,  $\neg \varphi' \in \Pi_n^0$  and there is  $\varphi'' \in \Pi_n$  such that  $\varphi' \equiv \neg \varphi''$ , which implies that,

$$PA \vdash \forall x_0, \dots, \forall x_{n-1} ((\neg \varphi) \leftrightarrow \varphi'')$$

We deduce that indeed  $\varphi \in \Pi_n(PA)$ .

## Part e

We will show that every formula is in  $\Sigma_n(PA)$  or in  $\Pi_n(PA)$  for some  $n \in \mathbb{N}$ .

*Proof.* Similarly to the last exercise, we will prove the claim by induction over the structure of the formula. For any atomic formula the claim holds for n=0 from part a. For negation we have shown in the last part that there is closeness, and in parts b and c we had shown closeness for conjunctions.

Lastly, for universal quantifiers we either use definition under  $\Sigma_n(PA)$ , and question 1 part a for formulas from  $\Pi_n(PA)$ . We handle existential quantifiers similarly.

#### Part a

We will show that PA proves that  $\forall x \exists y > 0 (\forall 0 < z \le x(z \mid y))$ .

*Proof.* Let us notate  $\varphi(x) = \exists y > 0 (\forall 0 < z \le x(z \mid y))$ , We want to prove that  $\forall x \varphi$  by induction over x. For x = 0 we will arbitrarily set y = 1, and the formula holds as there is not  $0 < z \le 0$ .

Let us assume that PA  $\models \varphi(x)$  for some x, we will show that  $\varphi(x+1)$  as well. There is y such that it satisfies the formula  $\varphi(x)$ , then we define  $y' = y \cdot (x+1)$ . Let  $0 < z \le x+1$ , then if z < x+1 by the induction hypothesis  $z \mid y$  and in particular  $z \mid y \cdot (x+1) = y'$ . If z = x+1 then  $z \mid x+1$  and in particular  $z \mid y'$  as well. Then y' satisfies  $\varphi(x+1)$ , and the induction step is concluded.

## Part b

We will show that PA proves that for all x, if y satisfies  $\varphi$  of the last part, and  $x' < x'' \le x$  then  $\alpha = (x'+1) \cdot y + 1$  and  $\beta = (x''+1) \cdot y + 1$  are co-primes ( $\gcd(\alpha,\beta) = 1$ ).

*Proof.*  $\alpha, \beta$  are co-primes in PA if and only if PA  $\vdash \forall n((n \mid \alpha \land n \mid \beta) \rightarrow n = 1)$ . By KE we assume otherwise, and let n > 1 be a number that divides both  $\alpha$  and  $\beta$ . Then  $n \mid \beta - \alpha = (x'' - x') \cdot y$ . x'' - x' < x and by part a it is implied that  $n \mid y$ . We infer that  $n \mid y \cdot (x' + 1)$  as well, and by the assumption in contradiction also  $n \mid (x' + 1) \cdot y + 1$ , then  $n \mid \alpha - (x' + 1) \cdot y = 1$ . We conclude that n = 1, but  $n \neq 1$ , a contradiction.

# Part c

We will prove that for every formula  $\psi(x, y_0, \dots, y_{n-1})$ , PA proves that for all  $y_0, \dots, y_{n-1}$  and all w, k, m such that m satisfies  $\varphi(k)$ , meaning that  $\forall 0 < z \le k(z \mid m)$ , and  $w \le k$ , then there is n such that,

- 1. If x < w then  $\psi(x, y_0, \dots, y_{n-1})$  if and only if  $(x+1) \cdot m + 1 \mid n$
- 2. If p is a prime and  $p \mid n$  then there is x < w such that  $\psi(x, y_0, \dots, y_{n-1})$  and  $p \mid (x+1) \cdot m + 1$ .

*Proof.* We will prove the claim by induction over w.

For the basis we set w = 0. In this case there is not x < 0, then the first statement is vacuously true. We fix n = 1 and thus the second statement is also vacuously true.

Let us assume that the statement holds for w, such that  $n_0$  satisfies both of the claims, and let us examine w+1. If we would choose  $n_0$  for w+1, then the first statement holds for any x < w, and it remains to examine x = w.  $(w+1) \cdot m+1 \nmid n_0$  by the induction hypothesis, then if  $\neg \psi(w, y_0, \dots, y_{n-1})$  we can choose  $n = n_0$ . If  $\psi(w, y_0, \dots, y_{n-1})$  then we choose  $n = n_0 \cdot (w+1) \cdot m+1$ .

For the second statement, let  $p \mid n$  for the n we found above. By the second part of the question, there is some unique x < w + 1 such that  $p \mid (x + 1) \cdot m + 1 \mid n$ . By the induction hypothesis  $(x + 1) \cdot m + 1 \mid n_0 \mid n$  then  $\psi(x, y_0, \dots, y_{n-1})$  is true, concluding the statement.

#### Part a

We will show that there is a coded empty set, namely exist n, m, k such that  $\neg FS(x, n, m, k)$  for all x.

*Proof.* By the last question it is suffice to fix n=0, as the formula to represent the empty set if  $\psi(x)=\perp$  (or some other sentence like 0=1). We also choose k=1.

# Part b

We will show that there are coded singletons, for all y there are n, m, k such that for all  $x, FS(x, m, n, k) \iff x = y$ .

*Proof.* We define  $\psi(x,y) = x = y$ , as well k > y some fixed value, then by question 3 part c, when y is playing the role of  $y_0$  of 3c, there is n such that  $\psi(x,y)$  is and only if  $x < k \land x = y$ , or more simply, x = y.

## Part c

We will show that PA proves that there are coded unions for coded finite sets. For all  $n_1, m_1, k_1$  and  $n_2, m_2, k_2$  there are n, m, k such that for all  $x, FS(x, m, n, k) \iff FS(x, m_1, n_1, k_1) \vee FS(x, m_2, n_2, k_2)$ .

 $\begin{array}{l} \textit{Proof.} \ \ \text{We define} \ k = \max\{k_1, k_2\}, \ \text{as well} \ m = k! \ \text{and} \ n = n_1 \cdot n_2. \ \text{It follows that} \ FS(x, m, n, k) \iff (x+1) \cdot m + 1 \mid n = n_1 \cdot n_2 \iff (x+1) \cdot m + 1 \mid n_1 \vee (x+1) \cdot m + 1 \mid n_2 \iff FS(x, m_1, n_1, k_1) \vee FS(x, m_2, n_2, k_2). \end{array}$ 

We could also define  $\psi(x) = FS(x, m_1, n_1, k_1) \vee FS(x, m_2, n_2, k_2)$  directly and use question 3 part c.

# Part d

We will show that PA proves that there are coded intersections for coded finite sets. For all  $n_1, m_1, k_1$  and  $n_2, m_2, k_2$  there are n, m, k such that for all  $x, FS(x, m, n, k) \iff FS(x, m_1, n_1, k_1) \land FS(x, m_2, n_2, k_2)$ .

*Proof.* We define  $k = \min\{k_1, k_2\}$  as well m = k! and  $n = \gcd(n_1, n_2)$ . The proof is almost identical to that of the last part.

We could also define  $\psi(x) = FS(x, m_1, n_1, k_1) \wedge FS(x, m_2, n_2, k_2)$  directly and use question 3 part c.