Chapter 25 Relations de comparaisons sur les **fonctions**

Comparaison des fonctions 25.1

Calcul avec les relations de comparaisons 25.2

Exercice 25.1

1. Déterminer une fonction simple équivalente à f en $+\infty$ et en 0.

(a)
$$f(x) = x^2 + x$$
.

(b)
$$f(x) = x + \sqrt{x}$$
.

(c)
$$f(x) = x + 1 + \ln x$$
.

(d)
$$f(x) = \ln x + (\ln x)^2$$

(e)
$$f(x) = e^x + \sin x$$
.

(d)
$$f(x) = \ln x + (\ln x)^2$$
.
(e) $f(x) = e^x + \sin x$.
(f) $f(x) = \sqrt{x+1} - \sqrt{x}$.

2. Déterminer un équivalent simple lorsque $x \to 0$.

(a)
$$f(x) = \sin(x^2)$$
.

(b)
$$f(x) = \ln(\cos x)$$
.

(c)
$$f(x) = \frac{(\tan x)(\ln(1+x))}{\sqrt{1+x^2}-1}$$
.

3. Déterminer un équivalent simple lorsque $x \to +\infty$.

(a)
$$f(x) = \ln(x^2 + x + 1)$$
.

(b)
$$f(x) = \sqrt{\ln(x+1)} - \sqrt{\ln x}$$
.

Exercice 25.2

Déterminer des équivalents simples lorsque $x \to 0$ de

$$1. \ \frac{1-\cos x}{\ln(1+x)}.$$

3.
$$a^{x} - 1$$
 où $a \in]0, +\infty[$.
4. $x^{x} - 1$.
5. $(8 + x)^{1/3} - 2$.

4.
$$x^x - 1$$

2.
$$\ln(\cos x)$$
.

5.
$$(8+x)^{1/3}-2$$
.

Exercice 25.3

Déterminer un équivalent simple pour les fonctions suivantes au voisinage du point considéré.

1.
$$f(x) = \frac{\ln(1 + \tan x)}{\sqrt{\sin x}}, x \to 0^+.$$

2.
$$f(x) = \frac{\sqrt{x^3 - 1}}{\sqrt[3]{x^2 + 2}}, x \to +\infty.$$

3.
$$f(x) = \frac{1}{\cos x} - \tan x, x \to \frac{\pi}{2}$$
.

4.
$$f(x) = \cos(\sin x), x \to 0$$

5.
$$f(x) = x^x - 1$$
, $x \to 0^+$

5.
$$f(x) = x^{x} - 1$$
, $x \to 0^{+}$.
6. $f(x) = \frac{\cos(\pi x) + 1}{\sqrt{x^{2} - 2x + 1}}$, $x \to 1$.

Exercice 25.4

En se servant éventuellement d'équivalents, déterminer les limites suivantes

1.
$$\lim_{x \to 0} \frac{\ln(\cos(x))}{x^2}$$
.

$$3. \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{\sqrt[3]{1+x} - 1}.$$

2.
$$\lim_{x\to 0} \frac{1-e^{-x}}{\sin x}$$
.

4. $\lim_{x\to 0} (1 + \tan x)^{1/\sin x}$.

Exercice 25.5

Déterminer les limites suivantes

1.
$$\lim_{x \to 3} \frac{1}{x^2 - 5x + 6} - \frac{2}{x^2 - 4x + 3}$$

2.
$$\lim_{x \to +\infty} \sqrt{(x-2)(x+1)} - \sqrt{(x-1)(x+2)}$$
.

3.
$$\lim_{x \to +\infty} (\tanh x)^{e^{2x} \ln x}$$
.

4.
$$\lim_{x \to +\infty} \left(\frac{2}{\pi} \arctan x \right)^{\operatorname{ch}(\ln x)}$$
.

Exercice 25.6

Déterminer les limites, lorsque x tend vers 0^+ de

$$f(x) = x^{(x^x)} - 1$$
, $g(x) = x^{(x^x - 1)}$, $h(x) = x^{(x^{(x - 1)})}$.

Exercice 25.7

Déterminer les limites des quantités f(x) suivantes en utilisant au besoin des équivalents

1.
$$\lim_{x\to 0+} (1+\sqrt{x})^{1/x}$$
;

4.
$$\lim_{x\to 0} \exp\left(\frac{(1-\cos x)\sin x}{x^3}\right)$$
;

2.
$$\lim_{x\to 0} \frac{\ln \cos x}{1-\cos(2x)}$$
;

5.
$$\lim_{x \to 1} \frac{\sqrt{2 - x^2} - 1}{\ln x}$$
;

3.
$$\lim_{x\to 0} \frac{\sin x \ln(1+2x^2)}{x \ln(1+x)}$$
;

6.
$$\lim_{x \to \pi/3} \frac{\sqrt{3} \cos x - \sin x}{x - \pi/3}.$$

Exemples avec les suites

Exercice 25.8

On considère la suite $(u_n)_{n\geq 1}$ définie par

$$\forall n \in \mathbb{N}^{\star}, u_n = \sqrt{n + \sqrt{(n-1) + \dots + \sqrt{2 + \sqrt{1}}}}.$$

2

1. Étudier la limite de $(u_n)_{n\geq 1}$.

2. Pour $n \in \mathbb{N}^*$, exprimer u_{n+1} en fonction de u_n .

3. Montrer que $u_n \le n$ pour tout $n \in \mathbb{N}$ puis que $u_n = o(n)$.

4. Donner un équivalent simple de (u_n) .

5. Étudier $\lim_{n \to +\infty} u_n - \sqrt{n}$.

25.3 La sympathique fonction ln