REMARKS

Claims 9-23 were rejected under 35 U.S.C.§102(b) as being anticipated by Hirota et al.(Hirota).

Reconsideration is requested.

The glass disclosed by Hirota contains 5 - 12wt.% of Li₂O for lowering the sag point without causing the chemical durability to deteriorate (col. 5, line 38). The amount of Li₂O in Example 10 of the Hirota patent is 7.3wt.%. In contrast, the glass of the present invention may include 0-3mass% of Li₂O in order to enhance the melting properties.

The amended claims point out a glass having the property of having a very small variation in the refractive index which is caused by the compaction phenomenon. For these reasons, the amended claims are not anticipated by Hirota and withdrawal of this ground of rejection is requested.

Claims 9-38 were rejected under 35 U.S.C.§102(b) as being anticipated by Danielson et al. (Danielson)

The Danielson patent discloses a glass composition having 5.6 - 11% of Al₂O₃ in the specification and 4 - 8% in the claims. In col. 2, lines 4-8 of Danielson, it was disclosed that increased fluoride release is observed in glasses with a lower Al₂O₃ content and therefore, the glasses will contain no more than about 8wt% of Al₂O₃. The amended claims of the present application point out that the Al₂O₃ content is a maximum of 2.3 mass % as disclosed in Example 25 which clearly distinguishes the claimed invention from the Danielson patent. The Al₂O₃ is added to the glass composition to improve the chemical durability and to adjust the viscosity of the glass and the refractive index. A Table is attached which shows the relationship between the weight % of Danielson and the conversion to mass % in order to allow a comparison of the Danielson patent with the claims of the present application. For these reasons, the amended claims of the present application are clearly distinguishable from the Danielson patent and it is requested that this ground of rejection be withdrawn.

Claims 9-11, 14-156, 19-21, 24-26 and 34-36 were rejected under 35 U.S.C.§102(b) as being anticipated by Kasori et al. (Kasori).

Reconsideration is requested.

Kasori discloses a optical fiber for optical communication. The patentee disclosed a composition for a glass fiber core and a composition for a glass fiber clad layer. In the core glass composition, 3 - 7wt.% of Al₂O₃ added to inhibit devitrification and improve water resistance. If the level of Al₂O₃ is lower than 3wt.%, no improvement in water resistance can be recognized and the glass is subject to devitrification. The composition of the glass fiber clad layer Al₂O₃ is added in an amount of 4 - 7wt%. At col. 3, lines 65- col. 4, line 1, the patentee teaches that the Al₂O₃ has no effect at a level of less than 4wt.%. For this reason, there is no motivation in Kasori to use less than 4wt.% of Al₂O₃. Kasori discloses samples 1, 2, 9, 26,

and 27 as having Al₂O₃ at a level of less than 2.3wt% but these samples all contain CaO at a level of 3.55wt% which are excluded from the amended claims of the present application which specify a maximum of no more than 2wt.% of CaO. For these reasons, the amended claims of the present application are not anticipated by Kasori and it is requested that this ground of rejection be withdrawn.

Claims 9-38 were rejected under 35 U.S.C.\\$102(b) as being anticipated by Faulstich.

Reconsideration is requested.

The Faulstich patent discloses an optical glass having an nd of 1.650±2X10⁻³ and vd of 55.5±1.0 which contains SiO₂ in an amount ranging from 32.5 - 33.5wt%. This patent does not disclose why the amount of the SiO₂ is limited. The amended claims of the present application point out that the amount of the SiO₂ is from 55.35 to 70mass%. The lower limit of 55.35mass% is based on Example 27 In addition, the glasses of all of the Examples of the present invention have an nd of 1.6056 or below and a vd of 58.7 which are outside of the ranges of the optical constants of Faulstich. The Faulstich patent does not disclose or suggest the composition and properties of the glass that is defined by the amended claims of the present application. For these reasons, it is requested that this ground of rejection be withdrawn.

The specification has been amended to delete Examples 28-30, 34, 35 and 38.

An early and favorable action is earnestly solicited.

Respectfully submitted,

ames V. Costigan

Registration No. 25,669

HEDMAN & COSTIGAN, P.C. 1185 Avenue of the Americas New York, NY 10036 (212) 302-8989

I hereby certify that this

correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to:

Commissioner for Patents P.O. Box 1450

Alexandria, VA 22313-1450 00

DEC 0 8 2004

		15	16	17	18	19	20	21	22	23	29	30	31
	Si02	49.100	51.700	45.900	49.300	43.600	55.900	49.700	53.300	47.300	48.600	50,300	52.200
	A1203	8.300	11,000	10.500	10.800	10.300	6.100	5.800	0000	5.700	8.100	8.400	8.700
	AIF3												
	B203	8.400	6.800	6.500	10.100	9.600	7.000	0.09	10.300	9.800	8.400	8.700	9.000
	BaO	4.300		8.300		8.200		8.500		8.300			
	BaF2	29.900	30.500	28.900	29.900	28.400	31.100	29.500	30.500	28.900	64.900	27.400	19.300
	SrO												
	ZnF2											5.200	10.700
	total	100.000	100.000	100.100	100.100	100.100	100.100	100.100	100.100	100.000	130.000	100.000	99.900
	mass%												
		15	16	17	18	19	20	21	22	23	59	30	31
60.08	SiO2	47.796	50.300	44.677	47.944	42.457	54.304	48.350	51.806	46.085	35.756	48.691	50.524
101.96	A1203	8.080	10.702	10.220	10.503	10.030	5.926	5.642	5.832	5.554	5.959	8.131	8.421
69.62	B203	8.177	6.616	6.327	9.822	9.348	6.800	6.421	10.011	9.548	6.180	8.422	8.711
153.33	BaO	29.640	25.951	32.679	25.429	32.171	26.422	33.367	25.926	32.711	41.757	23.196	16.337
103.62	SrO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
81.39	ZnO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.963	8.153
19.00	ш	6.308	6.431	960.9	6.302	5.994	6.548	6.220	6.425	6.102	10.348	7.598	7.855
	total	100 000	100 000	100 000	100 000	100 000	100 000	100.000	100 000	100 000	100 000	100 000	100 000

%
ght
wei

	32	33	34	35	36	37	38	39	40	41	42	43
Si02	54.200	56.700	46.700	49.300	52.200	55.400	47.400	47.400	47.400	46.900	46.900	46.900
A1203	9.100	9.500	5.600	5.900	6.200	0.600	8.000	8.000	8.000			
AIF3										13.600	13.600	13.600
B203	9.300	9.800	9.700	10.300	10.900	11.500	8.100	8.100	8.100	8.000	8.000	8.000
BaO										29.000	29.000	29.000
BaF2	10.600		37.900	26.800	14.000		33.600	33.600	33.600			
SrO										·		
ZnF2	16.700	24.100		7.800	16.700	26.500						
total	006.66	100.100	99.900	100.100	100.000	100.000	97.100	97.100	97.100	97.500	97.500	97.500
mass%												
	32	33	34	35	36	37	38	39	40	41	42	43
60.08 SiO2	52.392	54.609	45.182	47.517	50.259	53.218	47.321	47.321	47.321	46.259	46.259	46.259
101.96 AI2O3	8.796	9.150	5.418	5.687	5.969	6.340	7.987	7.987	7.987	8.143	8.143	8.143
69.62 B2O3	8.990	9.439	9.385	9.927	10.495	11.047	8.087	8.087	8.087	7.891	7.891	7.891
3.33 BaO	8.961	0000	32.068	22.590	11.788	0.000	29.336	29.336	29.336	28.603	28.603	28.603
103.62 SrO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
.39 ZnO	12.708	18.273	0.000	5.918	12.658	20.040	0.000	0.000	0.000	0.000	0.000	0.000
19.00 F	.8.153	8.531	7.947	8.361	8.831	9.356	7.270	7.270	7.270	9.104	9.104	9.104
total	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000

Danielson conversion of examples (weight %)