Test Tema 8 de Percepción

ETSINF, Universitat Politècnica de València, Mayo de 2018

Apellidos:	Nombre:
Profesor: ⊠Jorge Civera □Carlos Martínez	
Cuestiones (0.25 puntos, 15 minutos, con apu	untes)
$\overline{\mathbb{C}}$ Sea X_c el conjunto de prototipos de la contra ¿cuál de las siguientes reglas de conficador por el vecino más cercano?	- (' ')
A) $\hat{c}(y) = \underset{c \in X_c}{\arg \max} \underset{x \in X_c}{\min} d(y, x)$ B) $\hat{c}(y) = \underset{c \in X_c}{\arg \max} \underset{x \in X_c}{\max} d(y, x)$ C) $\hat{c}(y) = \underset{c \in X_c}{\arg \min} \underset{x \in X_c}{\min} d(y, x)$ D) $\hat{c}(y) = \underset{c \in X_c}{\arg \min} \underset{x \in X_c}{\min} d(y, x)$	
$\boxed{\mathrm{B}}$ En una tarea de clasificación de 20 clas mero infinito de muestras de entrenamies esperar de un clasificador k -NN si el erro	nto, ¿qué error mínimo se puede
A) 0.00 B) 0.25 C) 0.43 D) 0.50	
\mathbb{R} Dado al conjunto de protetinos $Y = \int x_1$	$-(0,0)$ $x_2-(1,1)$ $x_2-(1,0)$

B Dado el conjunto de prototipos $X = \{x_1 = (0,0), x_2 = (1,1), x_3 = (1,0), x_4 = (0,1)\}$ donde $c_1 = c_2 = A$ y $c_3 = c_4 = B$, ¿cuántos prototipos quedarán en el conjunto reducido tras aplicar el algoritmo de Wilson utilizando distancia Euclídea y recorrido de las muestras por índice creciente?

- A) 1
- B) 2
- C) 3
- D) 4

Test Tema 8 de Percepción

ETSINF, Universitat Politècnica de València, Mayo de 2018

Apellidos:	Nombre:	
Profesor: \Box Jorge Civera \boxtimes Carlos Martínez		
Cuestiones (0.25 puntos, 15 minutos, con apuntes)		
D Sea X_c el conjunto de prototipos de la clatancia ¿cuál de las siguientes reglas de clas del clasificador por el vecino más cercano?	ificación n	,
A) $\hat{c}(y) = \underset{c \in X_c}{\operatorname{arg min min}} \ d(y, x)$		
B) $\hat{c}(y) = \underset{c:x \in X_c}{\operatorname{arg min}} \ d(y, x)$		
C) $\hat{c}(y) = \arg\max -d(y, x)$		
D) $\hat{c}(y) = \underset{c:x \in X_c}{\operatorname{arg max}} \log d(y, x)$		

$\boxed{\mathbf{C}}$ Un clasificador k-NN:

- A) Se puede aplicar exclusivamente a datos no vectoriales.
- B) Puede mejorar al clasificador de Bayes.
- C) No emplea un modelo.
- D) Es un estimador de la probabilidad condicionada $(\hat{p}(x|c))$.
- A Dado el conjunto de prototipos $X = \{x_1 = (0,0), x_2 = (0,1), x_3 = (1,0), x_4 = (1,1)\}$ donde $c_1 = c_4 = A$ y $c_2 = c_3 = B$, ¿cuántos prototipos quedarán en el conjunto reducido tras aplicar el algoritmo de Wilson utilizando distancia Euclídea y recorrido de las muestras por índice creciente?
 - A) 1
 - B) 2
 - C) 3
 - D) 4