

Course > Final Exam > Final Exam > Section 1: Big-O No...

Section 1: Big-O Notation (7 Questions)

Recall that we write f(n) = O(g(n)) when f(n) grows no faster than g(n).

More formally, f(n) = O(g(n)) if there are constants c and n_0 such that for any $n \geq n_0$, $f(n) \leq c \cdot g(n)$.

These are the main rules for working with big-O notation:

- Multiplicative constants can be omitted: $7n^2 = O(n^2)$, 3n = O(n).
- Lower order terms can be omitted: 3n+5=O(n), $7n^2+3n+20=O(n^2)$.
- n^a grows slower than n^b for constants $0 < a \le b$: $n^a = O(n^b)$.
- Any logarithm grows slower than any polynomial: $(\log n)^a = O(n^b)$ for constants a,b>0.
- Any polynomial grows slower than any exponential function: $n^b = O(c^n)$ for constants b>0, c>1

In the following sequence of questions, your goal is to select correct statements about big-O. Examples of correct statements:

- $n \log n = O(n^2)$
- $n^2 \cdot (\log n)^3 = O(n^5)$
- $n^7 = O(3^n)$

Examples of incorrect statements:

- $\sqrt{n} = O(n^{0.3})$
- $\frac{n^2}{\log n} = O(n \log n)$
- $1.5^n = O(n^{10})$

Recall also the main rules for working with logarithms:

- $\log_a(n^k) = k \log_a n$
- $\log_a(nm) = \log_a n + \log_a m$

Incorrect

$ \bullet \ n^{\log_a b} = b^{\log_a n} $	Section 1: Big-O Notation (7 Questions) Final Exam ALGS200x Courseware edX					
$ullet \ \log_a n \cdot \log_b a = \log_b n$						
Correct or not?						
1/1 point (graded) $n\log_2 n = O(n)$						
○ Correct						
o Incorrect ✔						
Submit You have used ? Correct or not?	l of 1 attempt					
1/1 point (graded) $n^{1/2} = O(5^{\log_2 n})$						
○ Correct ✔						
Incorrect						
Submit						
Correct or not?						
1/1 point (graded) $2^n = O(2^{n+1})$						
○ Correct ✔						

Submit

									. ~
(റ	r	rΔ	ct	\sim	r	n	വ	Г/
L	U		ᆫ	LL	U			U	Li

1/1 point (graded)

$$(n+3)\cdot (n+7) = O(n\log n)$$

Correct

Submit

You have used 1 of 1 attempt

Correct or not?

1/1 point (graded)

$$n^2/\log_3 n = O(n(\log_2 n)^2)$$

Correct

Submit

You have used 1 of 1 attempt

Correct or not?

1/1 point (graded)

$$3^n = O(n^5)$$

Correct

Submit

You have used 1 of 1 attempt

Order by growth rate

1/1 point (graded)

You would like to order the given functions by their growth rate (starting from the function with the smallest growth rate: $f_1(n)=n^3$, $f_2(n)=n\log_2 n$, $f_3(n)=4^n$, $f_4(n)=n^{0.3}$, $f_5(n)=n(\log_2 n)^3$, $f_6(n)=\log_5 n$, $f_7(n)=\sqrt{n}$.

$$f_5(n) = n(\log_2 n)^3$$
 , $f_6(n) = \log_5 n$, $f_7(n) = \sqrt{n}$

Select the correct ordering.

- $\bigcirc f_4, f_6, f_7, f_2, f_5, f_1, f_3$
- $\bigcirc f_6, f_7, f_4, f_2, f_5, f_1, f_3$
- $\bigcirc f_6, f_4, f_2, f_7, f_5, f_1, f_3$
- $\bigcirc f_6, f_4, f_7, f_5, f_2, f_1, f_3$
- \circ $f_6, f_4, f_7, f_2, f_5, f_1, f_3 \checkmark$
- $\bigcirc f_6, f_4, f_7, f_2, f_1, f_5, f_3$
- $\bigcirc f_6, f_4, f_7, f_2, f_5, f_3, f_5$

Submit

You have used 1 of 1 attempt

© All Rights Reserved