Statistical Computing - Midterm

Wei-Chen Chang r12227118

2024-04-10

Consider the estimation of

$$\theta = \int_{1}^{\infty} \frac{x^2}{\sqrt{2\pi}} \exp(\frac{-x^2}{2}) dx$$

Using the following methods to estimate θ and make a comparison of them. For each method, drawing a plot to show the convergence of the approximation.

- 1. Direct Monte Carlo method (standard normal distribution as the sampling distribution).
- 2. Importance sampling method and the self-normalized importance sampling methods. Is there any difference between two methods? Which one is an unbiased estimator?
- 3. Variable transformation of the integrand to a interval of [0,1]
- 4. Two control variates.
- 5. Stratified Sampling (Divide the range of integration into n equal probable segments). Discuss the effect of n.
- 6. Use the tile density of standard normal distribution as the importance function given by

$$f_t(x) = \frac{e^{tx}\phi(x)}{M(t)},$$

where ϕ is the standard normal distribution and M(t) is the moment generating function of ϕ . Discuss the effect of t, $-\infty < t < \infty$.

Answer:

In the following simulation, for each estimator, total N=1500 MC samples were generated and repeated r=3 times. This enable us to visualize the convergence and efficient between different estimators in the trace plot.

1. Direct Monte Carlo

let $\phi(x)$ be the pdf of standard normal distribution, θ can be rewrite as:

$$\theta = \int_{1}^{\infty} x^{2} \phi(x) dx$$

$$= \int_{-\infty}^{\infty} I_{\{x \ge 1\}} x^{2} \phi(x) dx$$

$$= E_{\phi}[I_{\{X \ge 1\}} X^{2}]$$

And the MC estimator is: $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} I_{\{X_i \geq 1\}} X_i^2$, where $X_i \sim N(0, 1)$.

Direct Monte Carlo method

2. Importance Sampling and Self-Normalized Importance Sampling

Choose half-normal density shifted to start at 1 as importance function f(x):

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp(\frac{-(x-1)^2}{2}) / \int_1^\infty \frac{1}{\sqrt{2\pi}} \exp(\frac{-(x-1)^2}{2}) dx$$
$$= \frac{2}{\sqrt{2\pi}} \exp(\frac{-(x-1)^2}{2}),$$

And θ and its estimator $\hat{\theta}_{imp}$ can be expressed as:

$$\begin{split} \theta &= \int_{1}^{\infty} x^{2} \left[\frac{\phi(x)}{f(x)} \right] f(x) dx \\ &= E_{f} \left[X^{2} \frac{\phi(X)}{f(X)} \right], \\ \hat{\theta}_{imp} &= \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \frac{\phi(X_{i})}{f(X_{i})}, \text{where } X_{i} \sim f. \end{split}$$

 X_i can be generated by the following relationship: X = |Z| + 1, where $Z \sim N(0,1)$.

Self-Normalized Importance Sampling Estimator:

We wish to find some C such that $\int_1^\infty \frac{\phi(x)}{C} dx = 1$, then the integral can be self normalized. One can solve that $C = 1 - \Phi(1)$, where Φ is the cdf of standard normal distribution. Thus,

$$\theta = C \int_{1}^{\infty} x^{2} \frac{\phi(x)}{Cf(x)} f(x) dx$$

$$= C \int_{1}^{\infty} x^{2} \frac{\phi(x)}{Cf(x)} f(x) dx / \int_{1}^{\infty} \frac{\phi(x)}{Cf(x)} f(x) dx,$$

and the Self-Normalized Estimator is:

$$\hat{\theta}_{SN} = C \sum_{i=1}^{n} X_i^2 \left[\frac{\phi(X_i)}{f(X_i)} / \sum_{j=1}^{n} \frac{\phi(X_j)}{f(X_j)} \right], \text{ where } X_i \sim f$$

Note this is a biased estimator.

```
set.seed(.seed)
hNorm <- function(x){
  return( ifelse(x \ge 1, 2/sqrt(2*pi)*exp(-(<math>x-1)^2/2), 0))
target <- function(x){</pre>
  return(ifelse(x>=1, x^2*dnorm(x),0))
for (i in 1:r){
  hNorm_samp <- abs(rnorm(N))+1
  import_samp <- target(hNorm_samp)/hNorm(hNorm_samp)</pre>
  #self-normalized
  weight <- dnorm(hNorm_samp)/hNorm(hNorm_samp)</pre>
  SN_samp <- pnorm(1, lower.tail = F)* cumsum(hNorm_samp^2*weight)/cumsum(weight)</pre>
  if (i==1){
    plot(x= 1:N, y= cumsum(import_samp)/1:N, type = "l", lwd=1.5, col = 2,
         xlab = "N_sim", ylab = "theta_hat", ylim = c(.3,.6),
         main= "Importance Sampling method")
    lines(x=1:N, y=SN_samp, lwd=1.5, col = 3)
    lines(x=1:N, y=cumsum(import_samp)/1:N, lwd=1.5, col=2)
  }
}
legend("topright", c("Simple", "Self Norm."), col = c(2,3), lwd=1.5, lty=1)
```

Importance Sampling method

Surprisingly, the self-normalized estimator performs worse than simple one.

3. Variable Transformation

Consider such variable transformation: $u = \frac{1}{x}$, then $du = -x^{-2}dx$, the integral turns into:

$$\theta = \int_{1}^{\infty} \frac{x^{2}}{\sqrt{2\pi}} \exp(\frac{-x^{2}}{2}) dx$$

$$= \int_{0}^{1} \frac{1}{u^{4}\sqrt{2\pi}} \exp(\frac{-1}{2u^{2}}) du$$

$$= E_{U} \left[\frac{1}{u^{4}\sqrt{2\pi}} \exp(\frac{-1}{2u^{2}})\right]$$

$$= E_{U}[g(u)], \text{ where } U \sim \text{Unif}(0, 1).$$

And its MC estimator $\hat{\theta}_{vt}$ is:

$$\hat{\theta}_{vt} = \frac{1}{n} \sum_{i=1}^{n} g(U_i), \text{ where } U_i \sim \text{Unif}(0, 1)$$

```
main= "Variable Transformation method")
}else{
  lines(x= 1:N, y= cumsum(vtran_samp)/1:N, lty = 2)
  }
}
```

Variable Transformation method

4. 2 Control Variates

Following the the variable transformation and its MC estimator $\hat{\theta}_{vt} = E[g(u)]$, here we choose two control variates:

$$V_1 \sim \text{Unif}(0,1), \ V_2 = (V_1 - \frac{1}{2})^2.$$

Both expectation can be easily derived $(E(V_1) = \frac{1}{2}, E(V_2) = \frac{1}{12})$ and they can be generated by MC samples of $g(U_i)$. Furthermore, these two covariates should have low(linear) correlation. This make coefficient estimation in multiple regression estimation feasible.

Thus the Control Variate Estimator $\hat{\theta}_{cv}$ is :

$$\hat{\theta}_{cv} = \frac{1}{n} \sum_{i=1}^{n} \{ g(U_i) + c_1(U_i - \frac{1}{2}) + c_2[(U_i - \frac{1}{2})^2 - \frac{1}{12}] \},$$

where $U_i \sim \text{Unif}(0,1)$.

 c_1, c_2 can be estimated by the coefficients regressing $g(U_i)$ on both U_i and $(U_i - \frac{1}{2})^2$.

```
# N=1000
set.seed(.seed)
for (i in 1:r){
  v1 <- runif(N)
  gv1 <- target_tf(v1)</pre>
```

Variable Transformation with Control Variates

Note that No CV (red line) traces is just the variable transformed MC estimator in 3.

5. Stratified Sampling

As the integral range is unbounded, which is hard to divided into stratifies. Here apply the variable transformation in 3. first, setting the integral range to [0,1], then divided it in to n stratifies.

```
# N = 1000
set.seed(.seed)
n = c(1, 5, 10)
stra_samp = matrix(0, N, 3)
for (i in 1:r) {
   for (j in 1:length(n)){
     t <- c()</pre>
```

```
for (k in 1:n[j]) {
      .t <- target_tf(runif(N/n[j], (k-1)/n[j], k/n[j]))</pre>
      t \leftarrow c(t, .t)
    }
    stra_samp[, j] <- t</pre>
  str5 <- stra_samp[,2] %>% # 5 stratifies
    matrix(ncol = n[2]) \%>\%
    apply(MARGIN = 2, FUN = cumsum) %>% # each stratifies has N/n sample
    rowMeans() %>%
    \{./1:(N/n[2])\}
  str10 <- stra_samp[,3] %>% # 10 stratifies
    matrix(ncol = n[3]) %>%
    apply(MARGIN = 2, FUN = cumsum) %>% # each stratifies has N/n sample
    rowMeans() %>%
    {./1:(N/n[3])}
  if(i==1){
    plot(1:N, cumsum(stra_samp[,1])/1:N, type ="l",lty=1, col = 2,
          ylab = "theta_hat", xlab = "Nsim", ylim = c(.3,.6), lwd=1.5,
          main = "Stratified Sampling")
  }else{
    lines(1:N, cumsum(stra_samp[,1])/1:N,lty=1, col = 2,lwd=2)
  lines(seq(n[2],N, by=n[2]), str5, lty=1, col = 3,lwd=2)
  lines(seq(n[3],N, by=n[3]), str10, lty=1, col = 4,lwd=2)
  legend("topright", paste0("n=",n), col = 2:4,lty=1, lwd=1.5)
}
```

Stratified Sampling

Note that when n=1, the estimator is just variable transformed MC estimator in 3., but with different MC sample. As n increases, the estimator converges faster, more efficient.

6. Choose $f_t(x)$ as Importance Function

First note that $M(t) = e^{\frac{t^2}{2}}$, thus $f_t(x) = e^{t(x-\frac{t}{2})}\phi(x)$. One can see its is just pdf of N(t,1).

So θ can be rewrite as:

$$\theta = \int_{1}^{\infty} x^{2} \frac{\phi(x)}{f_{t}(x)} f_{t}(x) dx$$

$$= \int_{1}^{\infty} x^{2} e^{-t(x-\frac{t}{2})} f_{t}(x) dx$$

$$= \int_{-\infty}^{\infty} I_{x \ge 1} x^{2} e^{-t(x-\frac{t}{2})} f_{t}(x) dx.$$

$$\hat{\theta}_{t} = \frac{1}{n} \sum_{i=1}^{n} h(X_{i}),$$
where $X_{i} \sim f_{t}(x)$, $h(x) = I_{x \ge 1} x^{2} e^{-t(x-\frac{t}{2})}.$

```
# N = 5000
set.seed(.seed)
t.val = 1:3
.col = c("darkorange2", "darkcyan", "pink2")
for (i in 1:r){
  samp.mat <- matrix(rnorm(N*length(t.val), mean = t.val),</pre>
                     nrow =N, ncol=length(t.val), byrow = T) # gen f_t samples
  for (j in 1:length(t.val)){
   xi <- samp.mat[,j]</pre>
   samp.mat[,j] \leftarrow target(xi)/dnorm(xi, mean = t.val[j]) #x^2phi/f_t(x)
   if (i==1 & j==1){
     plot(1:N, cumsum(samp.mat[,j])/1:N, lwd=1.5, type = "l", col = .col[j],
          ylab = "theta_hat", xlab = "Nsim", ylim = c(.3,.6), lty= 1,
          main = "Tile Density as Importance Function")
   }else{
     lines(1:N, cumsum(samp.mat[,j])/1:N, lwd=1.5, lty= 1, col = .col[j])
 }
}
legend("topright", paste0("t=",t.val), col = .col,lwd=1.5, lty= 1)
```

Tile Density as Importance Function

One can see when t = 1,2 the estimate performs well (set t = 2 even better than t = 1), but when t = 3 the estimate start to become less efficient. It may related to these factors: (1) the shape of target function (2) the range of integral.

Brief Summary and Comparison Between Estimators

The Table below shows the mean and variance of each estimator. % latex table generated in R 4.2.3 by xtable 1.8-4 package % Tue Apr 9 16:37:41 2024

	est	var
SimpMC	0.4155	1.446
ImpSamp	0.3995	0.0019
ImpSamp(SN)	0.3973	NA
VarTran	0.3847	0.0901
CV	0.3925	0.0235
Stra(n=1)	0.4006	0.0948
Stra(n=5)	0.4003	0
Stra(n=10)	0.4009	0
TDens(t=1)	0.3959	0.1634
TDens(t=2)	0.403	0.1068
TDens(t=3)	0.4072	0.6013

Table 1: Summary of MC Estimators