EP1135512

Publication Title:

ARTIFICIAL MATRIX ATTACHMENT REGION FOR INCREASING EXPRESSION OF GENES INTRODUCED IN PLANT CELLS

Abstract:

Abstract not available for EP1135512 Abstract of corresponding document: WO0032800

Synthetic DNA molecule is useful as matrix attachment region to increase expression of genes introduced in transformed plants.

Data supplied from the esp@cenet database - Worldwide d30

Courtesy of http://v3.espacenet.com

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/82, 15/29, 15/67, 15/63, 5/10

(11) International Publication Number:

WO 00/32800

(43) International Publication Date:

8 June 2000 (08.06.00)

(21) International Application Number:

PCT/US99/28123

(22) International Filing Date:

30 November 1999 (30.11.99)

(30) Priority Data:

60/110,437

1 December 1998 (01.12.98) US

(71) Applicant: DOW AGROSCIENCES LLC [US/US]; 9330 Zionsville Road, Indianapolis, IN 46268 (US).

- (72) Inventors: VAN DER GEEST, Apolonia, H.M.; Roghorst 365, NL-6708 KX Wageningen (NL). AINLEY, W., Michael; 1474 Clearwater Court, Carmel, IN 46032 (US). COWEN, Neil, M.; 990 Tillson Drive, Zionsville, IN 46077 (US). WELTER, Mary, E.; 5333 Guilford Avenue, Indianapolis, IN 46220 (US). WOOSLEY, Aaron, T.; 8906 Tanner Drive, Fishers, IN 46038 (US).
- (74) Agent: STUART, Donald, R.; Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ARTIFICIAL MATRIX ATTACHMENT REGION FOR INCREASING EXPRESSION OF GENES INTRODUCED IN PLANT CELLS

(57) Abstract

Synthetic DNA molecule is useful as matrix attachment region to increase expression of genes introduced in transformed plants.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
$\mathbf{B}\mathbf{B}$	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	$\mathbf{U}\mathbf{Z}$	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ARTIFICIAL MATRIX ATTACHMENT REGION FOR INCREASING EXPRESSION OF GENES INTRODUCED IN PLANT CELLS

The present invention relates to plant molecular biology, and in particular to technology for enhancing the expression of genes introduced in transformed plant cells.

10

15

20

25

30

35

Through the use of recombinant DNA technology and genetic engineering, it has become possible to introduce desired DNA sequences into plant cells to allow for the expression of proteins of interest. Plants with genetically engineered traits, such as, for example, insect resistance, disease resistance, drought resistance, herbicide resistance, or metabolic alterations that increase or modify production of useful plant products, offer great promise of improving agriculture.

Obtaining desired levels of expression of DNA introduced into plant cells remains a challenge. One problem, referred to as "position effect" variation, is the variation in expression of the same gene in independent transformants. The use of naturally occurring DNA sequences called matrix attachment regions or scaffold attachment regions to combat this problem was proposed in U.S. Patent 5,773,689 and in WO 94/24293.

The present invention provides a novel synthetic DNA molecule comprising bp 11 to 309 of SEQ ID NO: 1 that is useful as a matrix attachment region to increase expression of genes introduced in transformed plants.

In another of its aspects, the invention provides a DNA construct comprising, in the 5' to 3' direction: a transcription initiation region functional in plant cells, a structural gene operatively associated with the transcription initiation region, a 3' untranslated region, and a matrix attachment region comprised of bp 11 to 309 of SEQ ID NO: 1 positioned either 5' to said transcription initiation region or 3' to said structural

gene. In a preferred embodiment, a first matrix attachment region comprised of bp 11 to 309 of SEQ ID NO: 1 is positioned 5' to said transcription initiation region and a second matrix attachment region comprised of bp 11 to 309 of SEQ ID NO: 1 is positioned 3' to said 3' untranslated region.

In a particularly preferred embodiment, the matrix attachment region of the invention comprises two or more tandem copies of bp 11 to 309 of SEQ ID NO:1.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram showing the strategy for assembling the artificial MAR of SEQ ID NO:1.

5

10

15

20

25

30

35

FIG. 2 is a schematic representation of the rice transformation construct ArGOS2Af, which contains the MAR dimer.

FIG. 3 is a graph comparing relative GUS activity for multiple rice transformation events using non-MAR containing construct GOS2 and construct ArGOS2Af, which contains an artificial MAR dimer.

FIG. 4 is a graph showing the effect of the artificial MAR on ranges of expression of the GUS reporter gene in transgenic rice plants.

FIG. 5 is a schematic representation of the Arabidopsis transformation constructs ArAct2Af and aaaaAfAct2Af. ArAct2Af contains copies of the MAR dimer in opposite orientations flanking the reporter gene. AfAct2Af contains copies of the MAR dimer in the same orientation flanking the reporter gene.

FIG. 6 is a graph comparing relative GUS activity for multiple *Arabidopsis* transformation events using non-MAR containing construct Act2 and constructs ArAct2Af and AfAct2Af, which contain an artificial MAR dimer.

FIG 7 is a graph showing the effect of the artificial MAR on the range of expression of the GUS reporter gene in transgenic *Arabidopsis* plants.

DESCRIPTION OF THE SEQUENCES

SEQ ID NO:1 describes the artificial MAR of the invention.

- SEQ ID NOS:2 to 4 describe ARBP sites.
- SEQ ID NO:5 describes an ATF site.
- 5 SEQ ID NO:6 describes a BEAF-32 site.
 - SEO ID NOS:7 to 9 describe topoisomerase II sites.
 - SEO ID NO:10 describes an unwinding sequence.
 - SEQ ID NOS:11 to 17 describe SATB I sites.
 - SEQ ID NO:18 describes exemplary bending DNA.
- 10 SEQ ID NO:19 describes an exemplary A/T tract.
 - SEQ ID NO:20 describes synthetic MAR-A.
 - SEO ID NO:21 describes synthetic MAR-B.
 - SEQ ID NO:22 describes synthetic MAR-C.
 - SEQ ID NO:23 describes synthetic MAR-D.
- 15 SEQ ID NO:24 describes synthetic MAR-E.
 - SEQ ID NO:25 describes synthetic MAR-F.
 - SEQ ID NO:26 describes the 3' MAR dimer in pArGOS2Af-hpt and ArAct2Af-bin
- SEQ ID NO:27 describes rice transformation vector 20 pGOS2-hpt.
 - SEQ ID NO:28 describes rice transformation vector pArGOS2Af-hpt.
 - SEQ ID NO:29 describes the 5' MAR dimer in pArGOS2Af-hpt and ArAct2Af-bin.
- 25 SEQ ID NO:30 describes dicot transformation vector pAct2-bin.
 - SEQ ID NO:31 describes dicot transformation vector pArAct2Af-bin.
- SEQ ID NO:32 describes dicot transformation vector 30 pAfAct2Af-bin.
 - SEQ ID NO:33 describes the 3' MAR dimer in pAfAct2Af-bin.
 - DETAILED DESCRIPTION OF THE INVENTION
- Eukaryotic nuclei are highly organized structures in 35 which the entire genetic information has to be accessible in an orderly manner for replication, transcription and

other cellular events (Lewin, 1994; Dillon and Grosveld, 1994; Jackson, 1995; Wolffe, 1994). Genes are typically organized in chromatin loops of various sizes that are attached to the proteinaceous nuclear matrix at locations known as matrix attachment regions (MARs). MARs are often 5 located in non-transcribed regions of genes and are thought to form the physical boundaries of individual DNA loops. In several cases, MARs were shown to reduce position effect in transgenic organisms. The chicken lysozyme MAR was shown to increase expression, reduce 10 variance and make expression of an adjacent gene copy number dependent in stably transfected cells (Stief et al., 1989) in transgenic mice (Bonifer et al., 1990, McKnight et al., 1992) and in transgenic tobacco plants (Mlynárová et al., 1994; Mlynárová et al., 1995). 15

However, not all MARs have these effects on gene expression. Two minimal Drosophila MARs (one located between the histone H1 and H3 genes, and the other near the heat shock HSP70 genes) stimulated expression more than 10-fold in stably transformed cells, but the presence of these MARs did not reduce position effect (Poljak et al., 1994). MARs from the apolipoprotein domain increased expression and reduced position effect in low-copy transformants, but expression in multicopy transformants was strongly repressed. (Kalos and Fournier, 1995). When a Drosophila ftz MAR was placed in a different chromosomal location, it did not reorganize chromatin structure and the chromatin fragment containing the MAR could be easily eluted from the nucleus, indicating that introduced MARs do not necessarily form chromatin domains (Eggert and Jack, 1991). In contrast, MARs flanking the immunoglobulin m heavy chain locus enhancer were required for high levels of expression and the formation of an extended DNase I sensitive domain in transgenic B lymphocytes, but not in stably transfected tissue culture cells (Forrester et al., 1994).

20

25

30

Results using MARs in transgenic plants have been similarly complex (Spiker and Thompson, 1996). A yeast MAR increased expression levels in stably transformed tobacco callus lines, but no correlation between copy number and expression level could be found (Allen et al., 1993). In contrast, the MAR element from the soybean heat shock gene Gmhsp17.6-L was shown to be capable of increasing expression levels but had little effect on variability (Schöffl et al., 1993). A soybean MAR flanking a reporter gene construct reduced variability of 10 expression when compared to a construct lacking MARs, but also reduced expression levels when present 5' and 3' of a reporter gene construct in transgenic tobacco callus (Breyne et al., 1992). It is possible that individual MARs can have different functional and structural 15 properties in addition to their matrix binding ability (Brevne et al., 1994).

MARs are usually 300 to 2000 base pairs in length, are rich in adenosine and thymine residues and often contain certain conserved sequence elements and structural features. Most MARs described in the literature are not obtained from plants, but it has been well documented that MARs from other organisms bind plant scaffolds and vice versa (Dietz et al., 1994; Breyne et al., 1992).

Table 1 describes sequence elements present in MARs described in the literature, including the following plant MARs: soybean heat shock protein gene MAR, (Schöffl et al., 1993); a petunia MAR (Dietz et al., 1994); the pea plastocyanin gene MAR (Slatter et al., 1991); the maize Adh1 gene 5' and 3' MARs (Avramova and Bennetzen, 1993; Avramova et al., 1995); the b-phaseolin gene 5' and 3' MARs (van der Geest et al., 1994.

30

Table 1

element	characteristics	sequence	SEQ	reported
			ID	in
		·	NO:	plant
				MARs
ARBP	ARBP (attachment-region	ATTTCASTTGTAAAA	2	no
	binding protein) from	TGCAGGTGTCCTT TGGGGGTGTAAAA	3 4	yes
	chicken which binds MARs	IGGGGIGIAAAA	4	yes
	from <i>Drosophila</i> , mouse, chicken and human genes			
	in a cooperative manner			-
	(von Kries et al., 1991;			
	Buhrmester et al., 1995)			
ATF	ATF sequences bind	TGACGTCCATG	5	no
AIL	transcription factors of			
	the ATF family, two of			
	which were shown to be			
	integral components of			
	the nuclear matrix (Stein			ł
	et al., 1991)			
BEAF-32	Beaf-32 (boundary	CGATA	6	yes
	element-associated factor			
	of 32 kDa molecular mass)			
	binds to the locus			
	boundary element scs'			
	from <i>Drosophila</i> , which can insulate reporter			
	can insulate reporter genes from position			
	effect variegation (Zhao			
	et al., 1995)			
topo-	Topoisomerase II is a	CNNGYNGKTNYNY	7	yes
isomerase	major component of the	ASMATGCGYWYATCRT	8	no
II	nuclear matrix and	GTNWAKATTNATNNR	9	yes
	topoisomerase II binding			
	sites have been found in			
	most MARs to date (Sander			
	and Hsieh, 1985;			
. , , .	Boulikas, 1995)	AATATATTT	10	1700
unwinding sequence	Unwinding sequences such as AATATATTT cause DNA	AAIAIAIII	10	yes
sequence	unwinding in vivo, which			
	is important for MAR			
	function (Bode et al.,			
	1992)			
SATB1	SATB1 is a protein	TTCTAATATAT	11	no
_	isolated from human	ATAATCTTC	12	no
	thymus tissue that	TTATTATTTA	13	yes
	selectively binds MAR	TATAAAAA	14	yes
	sequences consisting of	AAGATTATATA	15	no
	A's, T's and C's in one	TTTTAATGAGATAATAA	16	no
	strand (Dickinson et al.,	TATAATCTTC	17	no
	1992; Nagagomi et al.,			
la an di	1994) Curved DNA regions are	AAANNNNNNAAA	18	1700
bending DNA	often found in or near	CACAMINIANA INTO MANAGAMA	1 10	yes
MM	MARs (Bode et al., 1995)		1	
stem-loop	Stem loops create small		<u> </u>	yes
scem-roob	single-stranded regions			1,00
	which are important for			
	MAR function (Boulikas			
	and Kong, 1993)			
oligo A/T	These can create bent DNA	AAAAAA	19	yes
tracts	that may attract protein			
	complexes involved in			1
i	topoisomerization,		<u> </u>	

element	characteristics	sequence	SEQ ID NO:	reported in plant MARs
	recombination, transcription or replication (Travers, 1990)			

K: G or T, M: A or C, N: A, C, G or T, R: A or G, S: C or G, W: A or T, Y: C or T.

The present invention utilizes a subset of the features described in Table 1 in a novel artificial MAR. The sequence of the 327 bp artificial MAR is given in SEQ ID NO:1. The artificial MAR was designed as a sequence flanked by BgIII and BamHI restriction sites, which are included in SEQ ID NO:1, but which are not critical to the function of the MAR. The functional portion of the MAR comprises bp 11 to 309 of SEQ ID NO:1.

5

10

The following features are found in SEQ ID NO:1:

Feature	location (bp)
<i>Bgl</i> II	5-10
BEAF-32	11-15
SATBI	24-34
unwinding	28-36
topoisomerase II	44-59
ATF site	60-69
A/T tract	70-85
BEAF-32	86-90
stem-loop	93-101/117-124
unwinding	105-113
topoisomerase II	125-139
SATBI	149-159
unwinding	153-161
BEAF-32	164-168
SATBI	185-195
stem-loop	208-216/231-239
unwinding	219-227
A/T tract	241-253
topoisomerase II	268-283
curved (bending) DNA	284-294
ARBP site	295-309
BamHI	318-323

The 3' UTR, or 3' untranslated region, that is employed in constructs of the invention is one that confers efficient processing of the mRNA, maintains stability of the message and directs the addition of adenosine ribonucleotides to the 3' end of the transcribed mRNA sequence. The 3' UTR may be native with the promoter region, native with the structural gene, or may be derived from another source. Suitable 3' UTRs include, but are not limited to: the per5 3' UTR, and the 3' UTR of the nopaline synthase (nos) gene.

Example 1

Synthesis of artificial MAR

To construct the artificial MAR, six individual oligonucleotides were synthesized and assembled by PCR. The sequences for the six oligonucleotides, referred to hereinafter as MAR-A, MAR-B, MAR-C, MAR-D, MAR-E, and MAR-F, are given in the Sequence Listing as SEQ ID NOS: 20 through 25, respectively. A 15 bp overlap between adjacent oligonucleotides allowed assembly of the MAR by PCR, using the strategy shown in Figure 1.

8

50545-P

The GeneAmp™ PCR Reagent Kit with AmpliTaq DNA
Polymerase (Perkin Elmer, Norwalk, CT) was used for the
DNA amplification. Twenty cycles of PCR (denaturation:
30 sec at 94°C; annealing: 60 sec at 52°C and extension:
5 60 sec at 70°C) with primers MAR-C and MAR-D were followed
by 20 cycles of PCR with primers MAR-B and MAR-E, using
the product from the first reaction as template for the
second reaction. The 231 bp product of this reaction was
purified from a low melting point agarose gel and used as
10 a template for 20 cycles of PCR with primers MAR-A and
MAR-F. The 327 bp product from this reaction was
subcloned into pCR2.1 using the TA Cloning™ Kit
(Invitrogen, San Diego, CA) and the sequence was verified
by sequencing.

A dimer consisting of two tandem copies of the BgIII/BamHI fragment was constructed in the BamHI site of pBluescript SK- (Stratagene, La Jolla, CA). The sequence of the dimer is bp 5-630 of SEQ ID NO:26.

EXAMPLE 2

20 Binding of artificial MAR to nuclear scaffolds

A. Controls

25

30

Two DNA fragments of similar size and nucleotide composition as the artificial MAR were amplified from plant DNA to serve as controls in the binding assay.

These fragments were a 657 bp fragment from the 3' end of a maize gene Gpa1 (glyceraldehyde-3-phosphate dehydrogenase subunit A, GenBank accession number X15408, bases 4516 to 5173, Quigley et al., 1989), and a 488 bp fragment from the 5' flanking region of a 19 kD alpha zein gene (GenBank accession number X05911, bases 339 to 827, Kriz et al., 1987). Table 2 compares the features present in the artificial MAR and control fragments.

Table 2

element	Artificial	Gpal	zein
	MAR dimer	control	control
ARBP sites	2	0	0

	n 1161-1-1	C 1	zein
element	Artificial	Gpa1	
	MAR dimer	control	control
ATF sites	2	0	0
BEAF-32 sites	6	1	1
topoisomerase II	6	0	0
sites			
unwinding sequence	8	0	0
sites			
SATB1 sites	6	0	0
bending DNA sites	yes	yes	yes
stem-loop sites	4	1	0
oligo A/T tracts	2	0	1
fragment size in	632	657	488
binding assay			
% A + T	71	63	66
strength of binding	+++++	_	_
to nuclear scaffolds			

B. Preparation of nuclei from maize leaves

5

10

15

20

25

Nuclei for use in isolating nuclear scaffolds were prepared from young maize leaves by adaptation of a published protocol (Hall et al., 1991). Nuclei were counted and checked for integrity by microscopic examination of DAPI stained aliquots. Only high quality nuclei were used to prepare nuclear scaffolds by lithium diiodosalicylate extraction.

For nuclei purification, young maize leaves from V4 stage plants (fourth or fifth leaf) were harvested with a razor blade, washed and dried. After removing the midrib, leaves were frozen in liquid nitrogen, and ground to a fine powder with a mortar and pestle. The powdered leaf samples were transferred to a glass beaker, and 5 ml NIB1+PI (0.5 M hexylene glycol, 20 mM piperazine-N, N'-bis[2-ethanesulfonic acid] (PIPES), pH 6.5, 20 mM KCl, 7 mM 2-mercaptoethanol, 0.5 mM ethylenediaminetetraacetic acid (EDTA), 0.4 % Triton X-100™ [Rohm & Haas Company, Philadelphia, PA], 0.05 mM spermine, 0.125 mM spermidine, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 μ g/ml leupeptin, 1 μ g/ml aprotinin) was added per gram of leaf tissue. The leaf extract was filtered sequentially through 1900, 520, 125, 85 and 40 mm filters at 4°C and filters were rinsed with 1 ml NIB1+PI per gram leaf to collect any nuclei that were trapped in the debris. Fifteen ml crude nuclear extract was loaded onto Percoll™ (Pharmacia Biotech, Piscataway, NJ) gradients consisting of 7 ml 40% Percoll in NIB1 (0.5 M hexylene glycol, 20 mM PIPES, pH 6.5,

20 mM KCl, 7 mM 2-mercaptoethanol, 0.5 mM EDTA, 0.4 % Triton™ X-100, 0.05 mM spermine, 0.125 mM spermidine) and 5 ml 70% Percoll in NIB1. After centrifugation for 15 min at 500xg at 4°C the 40%/70% interface was collected with a sterile pasteur pipette and added to 2 volumes NIB2 (0.5 M hexylene glycol, 20 mM PIPES, pH 6.5, 20 mM KCl, 7 mM 2-mercaptoethanol, 0.5 mM EDTA, 0.05 mM spermine, 0.125 mM spermidine), taking care to avoid the pellet and other debris. Nuclei were concentrated by centrifugation at 600xg for 10 min at 4°C.

The nuclear pellet was resuspended in 20 ml NIB2 and centrifuged as before. This step was repeated one more time to wash away traces of Percoll. Nuclei were counted using a hemacytometer and resuspended in NIB2+PI/50% glycerol (0.5 M hexylene glycol, 20 mM PIPES, pH 6.5, 20 mM KCl, 7 mM 2-mercaptoethanol, 0.5 mM EDTA, 0.05 mM spermine, 0.125 mM spermidine, 50% glycerol, 1 mM PMSF, 1 μg/ml leupeptin, 1 μg/ml aprotinin) at 20 million nuclei/ml. Nuclei were stored at -80°C until used for scaffold preparation.

20 C. Preparation of nuclear scaffolds

5

25

Frozen nuclei were thawed and washed with 10 ml of NIB3+PI (0.5 M hexylene glycol, 20 mM PIPES, pH 6.5, 20 mM KCl, 7 mM 2-mercaptoethanol, 0.05 mM spermine, 0.125 mM spermidine, 1 mM PMSF, 1 μ g/ml leupeptin, 1 μ g/ml aprotinin) per 20 million nuclei. Nuclei were collected by centrifugation at 600xg for 10 minutes, resuspended in 200 ml NIB3+PI in the presence of 1 mM CuSO₄, and incubated for 10 min at 42° C to stabilize the nuclei.

Histones were extracted by incubation in 10 ml HIB+PI (20 mM HEPES, pH 7.4, 100 mM lithium acetate, 10 mM LIS (lithium diiodosalicylate), 0.1 % digitonin, 2 mM EDTA, 1 mM PMSF, 1 μ g/ml leupeptin, 1 μ g/ml aprotinin) for 15 minutes at room temperature. The resulting nuclear halos were transferred to a centrifuge tube and pelleted at 4000xg for 10 minutes.

11

35 Halos were washed twice with 10 ml HWB (20 mM Tris, pH 8, 70

mM NaCl, 20 mM KCl, 7 mM 2-mercaptoethanol, 0.1 % digitonin, 0.05 mM spermine, 0.125 mM spermidine) and once with D/BB+PI (HWB + 10 mM MgCl₂, 1 mM PMSF, 1 μ g/ml leupeptin, 1 μ g/ml aprotinin) to remove LIS. If halos did not pellet well, subsequent centrifugation steps were done at 6000xg using a slow brake setting. The quality of the halos was verified by SDS-PAGE gel to ensure that more than 95% of the histones were removed in the extraction procedure

5

10

15

Washed nuclear halos were resuspended in 400 μ l D/BB+PI and 200 units of restriction enzymes (100 u each of *Eco*RI and *Hind*III) were added, and incubated at 37°C for 2-3 hours on a rocking platform to keep the halos from settling. The restriction enzymes removed more than 70% of the nuclear DNA, producing nuclear scaffolds. Scaffolds were pelleted at 300 \times g and washed with HWB+PI (HWB + 1 mM PMSF, 1 μ g/ml leupeptin, 1 μ g/ml aprotinin). Nuclear scaffolds were resuspended in 400 μ l HWB+PI and separated into 100 μ l aliquots (containing 5 million nuclear equivalents).

Binding of artificial MAR to nuclear scaffolds 20 D. 100 μ l aliquots of scaffolds in HWB+PI were incubated with probe and $E.\ coli$ competitor DNA at 37°C for 2-3 hours in siliconized microfuge tubes on a rocking platform shaker. After incubation, the supernatant fraction (containing unbound DNA fragments) and pellet fraction (containing scaffolds and 25 bound DNA fragments) were separated via centrifugation in a horizontal microfuge at 3000xg for 5 min. The pellet was washed once with 200 μ l HWB to remove proteinase inhibitors, resuspended in 100 μl lysis buffer (10 mM Tris, pH 8, 10 mM EDTA, 0.5 % SDS, 0.5 mg/ml Proteinase K) and incubated 30 overnight at room temperature.

Equal fractions of the pellet and supernatant were separated on a 0.9% agarose gel, which was subsequently fixed, by soaking in 7% TCA for 20 min, dried and exposed to X-ray

film at room temperature and/or storage phosphor screens for the PhosphoImager $^{\text{TM}}$ SI (Molecular Dynamics, Sunnyvale, CA).

Plasmids containing the artificial MAR monomer or dimer or the control Gpal or zein sequences were digested with restriction enzymes that generate 5' overhang ends. Klenow subunit of DNA polymerase I was used to fill the overhang with [a-32P]dCTP (Amersham Life Science, Arlington Heights, IL). The end-labeled DNA fragments were used as probes in the binding assay, i.e. the fragments were incubated with purified maize nuclear scaffolds in the presence of unlabeled E.coli competitor DNA and the relative binding of the inserts was determined. Relative amounts of nuclei, probe and unlabeled E. coli competitor DNA used in the binding assay were optimized to obtain maximal discrimination between strongly and weakly binding MARs. The optimal relative amounts were 2, 5 or 10 μg of unlabeled *E. coli* competitor DNA, 5 million nuclear equivalents of nuclear scaffolds, and 1 fmole of digested and labeled plasmid per assay.

The artificial MAR dimer bound very strongly to the nuclear scaffold preparation, even in the presence of high levels of competitor DNA. The monomer MAR also bound to nuclear scaffold preparations, albeit at a lower affinity. Neither control sequence was retained in the pellet fraction, even though they were similar to the artificial MARs in size and relative AT content. This suggests that the elements included in the artificial MAR facilitate binding.

EXAMPLE 3

EVALUATION OF THE ARTIFICIAL MAR IN RICE

A. Rice Transformation Vectors

5

10

15

20

25

30

35

pGOS2-hpt (SEQ ID NO:27) is a rice transformation vector containing a hygromycin selectable marker driven by the 35S promoter and a GOS2/GUS/nos cassette (GOS2 transcription initiation region/GUS structural gene/nos 3' untranslated region). The GOS2 transcription initiation region in this construct is comprised of 1010 bp of promoter and 170 bp of

untranslated 5' leader interrupted by a 1100 bp intron (de Pater et al., 1992).

pArGOS2Af-hpt (SEQ ID NO:28) is a rice transformation vector identical to pGOS2-hpt except that it has the MAR dimer of SEQ ID NO:29 positioned 5' to the GOS2 transcription initiation region and the MAR dimer of SEQ ID NO:26 positioned 3' to the nos 3' UTR.

A schematic representation of the ArGOS2Af construct is shown in FIG 2.

10 B. Transformation of Rice

5

15

20

25

For initiation of embryogenic callus, mature seeds of a Japonica cultivar, Taipei 309, were dehusked and surfacesterilized in 70% ethanol for 5-7 min. followed by soaking 30-45 min in 25% commercial bleach (2.6% sodium hypochlorite) with 0.02% TweenTM 20 (ICI Americas, Inc.) under vacuum. The seeds were then rinsed 5 times in sterile distilled water and placed on filter paper before transferring to induction media (NB). The NB medium consisted of N6 macro elements (Chu, 1978), B5 micro elements and vitamins (Gamborg et al., 1968), 300 mg/l casein hydrolysate, 500 mg/l L-proline, 500 mg/l Lglutamine, 30 g/l sucrose, 2 mg/l 2,4-dichloro-phenoxyacetic acid (2,4-D), and 2.5 g/l Gelrite™ (Merck & Co., Rawhay, NJ) with the pH adjusted to 5.8. The mature seed cultured on induction media were incubated in the dark at 28° C for three weeks. Primary callus induced from the scutellar region of mature embryo was transferred to fresh NB medium for further maintenance and thereafter maintained on a two week subculture period.

To prepare DNA for blasting, about 140 μg of plasmid DNA (pGOS2-hpt or pArGOSAf-hpt) was precipitated onto 60 mg of gold particles. The plasmid DNA was precipitated onto 1.5-3.0 micron (Aldrich Chemical Co., Milwaukee, WI) or 1.0 micron gold particles (Bio-Rad Laboratories, Hercules, CA). The precipitation mixture included 60 mg of pre-washed gold particles, 300 μl of water/DNA (140 μg), 74 μl of 2.5 M CaCl₂, and 30 μl of 0.1 M spermidine. After adding the components in

the above order, the mixture was vortexed immediately, and allowed to settle for 2-3 min. The supernatant was pipetted off and discarded. The DNA-coated gold particles were resuspended in 1 ml of 100% ethanol and diluted to 17.5 mg DNA/7.5 mg gold per ml of ethanol for use in blasting experiments.

5

10

15

20

25

30

35

For helium blasting, actively growing embryogenic callus cultures, 2-4 mm in size, were subjected to a high osmoticum treatment by placing callus on NB medium with 0.2 M mannitol and 0.2 M sorbitol (Vain et al., 1993) for 4 hr before helium blasting. Following osmoticum treatment, callus cultures were transferred to blasting medium (NB+2% agar) and covered with a stainless steel screen (230 micron). Helium blasting involved accelerating the suspended DNA-coated gold particles towards and into the prepared tissue targets. The device used was an earlier prototype to the one described in US Patent No. 5,141,131, which is incorporated herein by reference, although both function in a similar manner. The callus cultures were blasted at different helium pressures (1750-2,250 psi) one to three times per target. After blasting, callus was transferred back to the high osmotic media overnight before placing on selection medium, which consisted of NB medium with 30 mg/l hygromycin. After 2 weeks, the cultures were transferred to fresh selection medium with higher concentrations of selection agent, i.e., NB+50 mg/l hygromycin (Li et al., 1993).

Compact, white-yellow, embryogenic callus cultures, recovered on NB+50 mg/l hygromycin, were regenerated by transferring to pre-regeneration (PR) medium+50 mg/l hygromycin. PR medium consisted of NB medium with 2 mg/l benzyl aminopurine (BAP), 1 mg/l naphthalene acetic acid (NAA), and 5 mg/l abscisic acid (ABA). After 2 weeks of culture in the dark, they were transferred to regeneration (RN) medium. The composition of RN medium is NB medium with 3 mg/l BAP, and 0.5 mg/l NAA. The cultures on RN medium were incubated for 2 weeks at 28° C under high fluorescent light

(325-ft-candles). The plantlets with 2 cm shoots were transferred to 1/2 MS medium (Murashige and Skoog, 1962) with 1/2 B5 vitamins, 10 g/l sucrose, 0.05 mg/l NAA, 50 mg/l hygromycin and 2.5 g/l Gelrite™ adjusted to pH 5.8 in GA7 vessels (Magenta Corp., Chicago, IL). When plantlets were established with well-developed root systems, they were transferred to soil [1 part Metro-Mix 360 (Scotts-Sierra Horticultural Products Co., Marysville, OH) and 1 part top soil) and raised in a growth chamber (29/24°C day/night cycle, 50-60% humidity, 12 h photoperiod) until they reached a height of 60 cm, at which point 2 leaves were harvested for quantitative GUS analysis, and the plants were transferred to the greenhouse to grow to maturity.

15 C. Southern analyses

Southern analysis was used to identify primary regenerate (R_0) rice lines lines that contained intact copies of the specific gene construct.

A DNA probe specific for the coding region of the β 20 glucuronidase (GUS) gene construct was gel purified with the Qiaex II DNA purification kit (Qiagen Inc., Chatsworth, CA). Radiolabeled probe was prepared using the Ready-To-GoTM DNA labeling beads (Pharmacia LKB, Piscataway, NJ) with 50 microcuries of $[\alpha^{32}P]dCTP$ (Amersham Life Science, Arlington Heights, IL).

Leaf material from R_0 rice plants was harvested from two representatives from each line. Genomic DNA from the R_0 plants was prepared from lyophilized tissue as described by Saghai-Maroof et al. (1984).

Four micrograms of rice DNA was digested with restriction enzyme to release the intact gene construct using conditions suggested by the manufacturer (Bethesda Research Laboratory, Gaithersburg, MD) and separated by agarose gel electrophoresis. The DNA was blotted onto nylon membranes as described by Southern (1975, 1989). Radiolabeled probe DNA was hybridized to the genomic DNA on the blots using 50 ml of

minimal hybridization buffer (10% polyethylene glycol, 7% sodium dodecyl sulfate, 0.6x SSC, 10 mM sodium phosphate, 5 mM EDTA and 100 mg/ml denatured salmon sperm DNA) heated to 60°C and mixed with the denatured radiolabeled probed prior to being added to the blots for overnight hybridization at 60°C. The blots were washed at 60°C in 0.25X SSC and 0.2% SDS for 45 minutes, blotted dry and exposed to XAR-5 film with two intensifying screens overnight.

Southern analysis was conducted on seventy ArGOS2Af Ro rice lines. The DNA from the R_0 plants was digested with the 10 restriction enzyme XbaI which, if the intact gene construct is present, should result in a 5.7 kb hybridization product when radiolabeled with a probe specific for the GUS coding region. The 5.7 kb fragment should consist of the artificial MAR in the reverse orientation, the GOS2 promoter, the GUS coding 15 region, the nos 3' UTR and the artificial MAR in the forward orientation. The expected 5.7 kb hybridization product was detected in twenty-five of the seventy rice lines. All of the twenty-five lines had multiple hybridization products and two of the lines had identical complex hybridization patterns 20 indicating that they are probably from the same transformation

The non-Mar control lines, GOS2, were also analyzed by Southern analysis. The DNA from forty-eight GOS2 R₀ lines was digested with the restriction enzymes *EcoRI* and *XbaI* which, if the intact gene is present, should result in a 4.4 kb hybridization product when radiolabeled with a probe specific for the GUS coding region. The 4.4 kb fragment would include 1.6 kb of the GOS2 promoter, the GUS coding region, the nos 3' UTR and the 35T promoter (the promoter used to drive the selectable marker gene). The expected 4.4 kb hybridization product was detected in twenty-eight of the forty-eight GOS2 lines. Two of the lines had identical hybridization patterns and must have resulted from the same transformation event. Two of the lines contained genetic chimeras.

25

30

D. GUS analysis

5

10

15

20

25

30

35

Analysis of rice was performed on young leaves of primary transformants, after plants had been grown 6-8 weeks in an environmentally controlled growth chamber and had reached a height of about 60 cm. Two independently regenerated rice plants were analyzed per transformation event. Individual transformants were analyzed by Southern blots to verify the presence of an intact copy of the transgene and determine whether each event displayed unique hybridization patterns, indicating independent transformation events. Plants lacking a complete copy of the transgene, chimeric events, or duplicated integration events were not included in the analysis.

Results of the analysis are reported in FIGS 4 and 5. In FIG 4, error bars represent the standard deviation between the plants for each transformation event. Two samples were independently processed for each plant. In general, the level of expression of GUS in independent rice plants from each transformation event was similar (as demonstrated by the standard deviation of the results shown in FIG 4).

FIG 5 reports the percent of transformation events expressing GUS in the indicated ranges.

EVALUATION OF ARTIFICIAL MAR IN ARABIDOPSIS

A. Arabidopsis Transformation Vectors

Act2/GUS/nos (Act2 transcription initiation region/GUS structural gene/nos 3' UTR) constructs were made for testing in a dicot system (Arabidopsis). Three vectors were made:

pAct2-bin (SEQ ID NO:30) is a binary vector containing a Act2/GUS/nos cassette, 19S/NPTII/orf25polyA as a selectable marker, and 35S/GFP/nos as an independent reporter gene.

pArAct2Af-bin(SEQ ID NO:31) is identical to pAct2-bin except that it has the MAR dimer of SEQ ID NO:29 positioned 5' to the Act2 transcription initiation region, and the MAR dimer of SEQ ID NO:26 positioned 3' to the nos 3' UTR.

pAfAct2Af-bin (SEQ ID NO:32) is identical to pAct2-bin except that it has the MAR dimer of SEQ ID NO:26 positioned 5'

to the Act2 transcription initiation region the MAR dimer of SEQ ID NO: 33 positioned 3' to the nos 3' UTR.

These vectors enabled testing of two orientations of the artificial MAR dimer in *Arabidopsis*. A schematic of the pArAct2Af-bin and pAfAct2Af-bin constructs is shown in Figure 3.

B. Arabidopsis transformation

5

10

35

Arabidopsis transformation was performed according to a protocol provided by Pam Green (van Hoof and Green 1996), which is an adaptation from protocols by Nicole Bechtold (Bechtold et al., 1993), Andrew Bent (Bent et al., 1994) and Takashi Araki (personal communication).

Seeds of ecotype Columbia were planted in 4 inch square pots, covered with window screen mesh, and grown under 15 conditions of 16 hours light/ 8 hours dark at 22°C, fertilizing by subirrigation once a week. The fertilizer consisted of 5 $mM \ KNO_3$, 2.5 $mM \ KPO_4$ (pH 5.5), 2 $mM \ MqSO_4$, 2 $mM \ Ca(NO_3)_2$, 0.05 mM Fe • EDTA, 0.07 mM boric acid, 0.014 mM MnCl₂, 0.005 mM CuSO4, 0.001 mM ZnSO_4 , $0.0002 \text{ mM NaMoO}_4$, and 0.01 mM NaCl. Plants 20 were thinned to 4 plants per pot and grown until several bolts emerged. When plants were ready to transform, the above soil parts were submerged in infiltration medium (2.2 g/l MS salts, 1X B5 vitamins, 50 g/l sucrose, 2.5 mM MES, pH 5.7, 0.044 M benzylaminopurine, 200 ml/l Silwet L-77™ [Osi Specialties, 25 Inc.] containing Agrobacterium cells, placed inside a vacuum desiccator under a vacuum of 400 mm Hg (about 17 inches) for 5 minutes. After quickly releasing the vacuum, pots were drained and placed on their sides in a tray covered with plastic wrap to maintain humidity for 24 hours. The next day 30 the pots were uncovered and set upright. Plants were staked individually and after 2 weeks watering was gradually reduced to allow plants to dry out. Seeds were harvested from each plant individually.

For selection of transformation events, 1-10 mg seeds per plant were surface sterilized by soaking in 10% bleach for 7

minutes while mixing vigorously, followed by three rinses in sterile water, and placed in a flask containing Arabidopsis germination medium (MS salts, MS vitamins, 10% sucrose, 2.5 mM 2-[N-morpholino]ethanesulfonic acid [MES], 30 mg/l kanamycin, 50 mg/l vancomycin and 0.1 % Bacto™-Agar [Difco Laboratories, Detroit, MI]). After shaking in continuous light at 90 rpm for 3 days, seeds germinated, and transformants were isolated as green seedlings between 7 and 12 days after germination. Nontransformed seeds produced small bleached seedlings.

10 Transformants were transferred to solid medium (MS salts, B5 vitamins, 10% sucrose, 2.5 mM MES, 15 g/l Phytagar™ [Gibco BRL, Gaithersburg, MD], 30 ml/l kanamycin, 50 mg/l vancomycin) in plates for further selection. After one to two weeks, true transformants were transferred to GA7 vessels (MS salts, B5 vitamins, 0.3 % sucrose, 2.5 mM MES) for one to two weeks prior to planting in soil for production of T1 seed.

C. Southern analyses

5

Southern analysis was used to identify primary regenerate 20 T2 Arabidopsis lines that contained intact copies of the specific gene construct.

Pooled samples of Arabidopsis leaf tissue were powdered in liquid nitrogen. The ground tissue was then incubated for three minutes in 500 μ l 2X extraction buffer (2% CTAB, 100 mM Tris-HCl, pH 8.0, 20 mM EDTA, 1.4 M NaCl and 2% 2-25 mercaptoethanol) at 65°C. Five hundred μ l of chloroform/octanol (24:1) was added, the samples were shaken for two minutes, and then spun at 14,000 'g in a microcentrifuge and the supernatant was removed. chloroform/octanol extraction was repeated. One ml of 30 precipitation buffer (1% CTAB, 50 mM Tris-HCl, pH 8.0, 10 mM EDTA, and 1% 2-mercaptoethanol) was added to the supernatant and then incubated at room temperature for 60 minutes. DNA was pelleted by centrifugation at 3500g for 5 minutes in a microcentrifuge. The pellet was drained and resuspended in 35 200 μ l 1.0 M NH₄OAc. One hundred μ l 7.5 M NH₄OAc and 1 ml

isopropanol were added, the samples incubated on ice for 5 minutes and then centrifuged at 14,000 $^{\prime}$ g for 5 minutes. The pellet was drained and resuspended in 200 μl TE. 100 μl 7.5 M NH₄OAc and 1 ml isopropanol were added and incubated on ice for 5 minutes then centrifuged at 14,000 $^{\prime}$ g for 5 minutes. The pellet was drained and rinsed with 70% ethanol and dried in a Speed Vac (Savant Instruments Inc., Farmingdale, NY). The dried pellet was resuspended in 20 μl TE (10 mM TRIS, 1 mM EDTA, pH 8.0).

5

10

15

20

25

30

35

Southern analysis was conducted on 29 ArAct2Af T2 lines and 24 AfAct2Af T2 lines. One microgram of DNA from the ArAct2Af plants was digested with the restriction enzyme XbaI using conditions suggested by the manufacturer (Bethesda Research Laboratory, Gaithersburg, MD) and separated by agarose gel electrophoresis, which should result in a 4.6 kb hybridization product, if the gene construct is intact, when radiolabeled with a probe specific for the GUS coding region. Similar to the ArGOS2Af rice plants, the 4.6 kb fragment should consist of the artificial MAR in the reverse orientation, the Act2 promoter, the GUS coding region, the nos 3' UTR and the artificial MAR in the forward orientation. DNA was blotted onto nylon membranes as described by Southern (1975, 1989). Radiolabeled probe DNA was hybridized to the genomic DNA on the blots using 50 ml of minimal hybridization buffer (10% polyethylene glycol, 7% sodium dodecyl sulfate, 0.6x SSC, 10 mM sodium phosphate, 5 mM EDTA and 100 mg/ml denatured salmon sperm DNA) was heated to 60°C and mixed with the denatured radiolabeled probed prior to being added to the blots for overnight hybridization at 60°C. The blots were washed at 60°C in 0.25X SSC and 0.2% SDS for 45 minutes, blotted dry and exposed to XAR-5 film with two intensifying screens overnight.

The expected 4.6 kb hybridization product was detected in twenty-six of the twenty-nine ArAct2Af lines. A second Southern blot was generated to determine the copy number of the ArAct2Af construct. The ArAct2Af DNA was digested with

the restriction enzymes *Sst*I and *Xho*I which cut the construct near the right and left borders of the T DNA. The blots were radiolabeled with probes specific for the artificial MAR and the DNA from the left border to the *Xho*I site 800 bp downstream. A single copy of the ArAct2Af construct will have three hybridization products: two fragments of unknown size, consisting of the left and right border DNA, and the 8.9 kb fragment which is the DNA internal to the borders. Twenty-two of the twenty-nine lines had three or fewer hybridization products, indicating that a single copy of the ArAct2Af construct was present.

The DNA from the AfAct2Af plants was digested with the restriction enzyme XbaI which, if the construct remains intact, should result in a 5.7 kb hybridization product when radiolabeled with a probe specific for the GUS coding region. The 5.7 kb fragment should consist of the artificial MAR in the forward orientation, the Act2 promoter, the GUS coding region, the nos 3' UTR and the artificial MAR in the forward orientation. It also includes the green fluorescent protein coding region and the nos 3' UTR. The expected 5.7 kb hybridization product was detected in all of the twenty-four AfAct2Af lines.

15

20

25

30

35

A second Southern blot was generated to determine the copy number of the AfAct2Af construct. The AfAct2Af DNA was digested with the restriction enzymes SstI and XhoI which cut the construct near the right and left borders of the T DNA. The blots were radiolabeled with probes specific for the artificial MAR and the DNA from the left border to the XhoI site 800 bp downstream. A single copy of the AfAct2Af construct will have three hybridization products: two fragments of unknown size, consisting of the left and right border DNA and the 8.9 kb fragment which is the DNA internal to the borders. Fifteen of the twenty-four lines had three or fewer hybridization products indicating that a single copy of the AfAct2Af construct was present.

The non-Mar control lines, Actbin, were also analyzed by Southern analysis. The DNA from thirty-four Actbin T2 lines was digested with the restriction enzyme PstI which should, if the construct remains intact, result in a 3.4 kb hybridization product when radiolabeled with a probe specific for the GUS 5 coding region. The 3.4 kb fragment should consist of the Act2 promoter, the GUS coding region, and the nos 3' UTR. expected 3.4 kb hybridization product was detected in thirty of the thirty-four Actbin lines. A second Southern blot was generated to determine the copy number of the Actbin 10 construct. The DNA from the Actbin lines was digested with the restriction enzymes SstI and XhoI which cut the construct near the right and left borders of the T DNA. The blots were radiolabeled with probes specific for the nos 3'UTR and the DNA from the left border to the XhoI site 800 bp downstream. 15 A single copy of the Actbin construct will have three hybridization products: two fragments of unknown size, consisting of the left and right border DNA and the 8.2 kb fragment which is the DNA internal to the borders. Nine of the thirty-four lines had three or fewer hybridization 20 products indicating that a single copy of the Actbin construct was present.

D. GUS analysis

30

35

25 For growing Arabidopsis, T2 seed was germinated in vitro on MS medium containing 90 mg/l kanamycin and 3 week old kanamycin resistant seedlings were harvested. Two batches of 30 seedlings per transformation event were used for GUS analysis and additional seedlings were used to extract DNA.

For analyses of GUS activity, leaf samples were powdered in liquid nitrogen and samples of approximately 400 ml of tissue were placed in microfuge tubes. Two independent samples from each leaf sample was processed. The tissue was either stored at -70°C or extracted immediately. GUS was extracted by mixing the powdered tissue with GUS lysis buffer (Jefferson et al., 1987) modified by the addition of 1%

polyvinylpolypyrrolidone (hydrated in the buffer for at least one hour) and 20% glycerol. After incubation on ice for at least 10 min, the samples were centrifuged at 16,000 'g for 10 The supernatants were recovered and centrifuged a second time as described above. The supernatants were recovered and 5 frozen on dry ice and stored at -70° C. Experiments showed that GUS activity was stable for at least 4 freeze-thaw cycles when stored in the buffer described above (W.M. Ainley, unpublished). GUS activity was measured using a GUS-Light™ kit (Tropix, Inc., Bedford, MA). Five ml samples of undiluted 10 extract or of extract diluted so that the luminescence was within the range measured by the luminometer was added to 195 ml of the GUS-Light™ Reaction Buffer. Luminescence was integrated for 5 sec after a 5 sec delay. Protein was measured with the assay developed by Bradford (1976) using 15 human serum albumin as the standard. GUS activity was normalized between experiments using a GUS standard obtained from SIGMA. The amount of plant protein in the standards and plant samples was the same; protein was adjusted where 20 necessary using extracts of nontransformed plants.

FIGS 6 and 7 report the results the GUS analysis. FIG 6 reports expression observed for independent transformation events expressing either the base, non-MAR construct (Actbin) or the base construct flanked by the artificial MAR in the indicated orientation (ArAct2Af or Af-Act-Af). Standard deviations indicate the variance between plants harvested from different plates. Arrows indicate the relative orientations of the MARs.

Ε.

25

35

In FIG 7, percent of transformation events expressing GUS in the indicated ranges is shown.

E. Characterization of transgenic plants expressing the reporter gene constructs

T2 Arabidopsis plants were analyzed. The plants were evaluated for segregation of kanamycin resistance to determine

insert copy number. A few events did not fall into either one or two insert categories as determined by chi square analyses. Of the remaining plants, 72% had a single insert. Most of the inserts had multiple copies of the transgene. Although the Arabidopsis transformation events were grown under controlled environments, there were some occasional differences in the relative growth of plants between the duplicate plates. In those cases, the events were either not used or were grown again. The coefficient of variance of the expression determined from duplicate plates range of between 1 and 46%, with 89 percent below 20 percent (Figure 6).

5

10

15

20

25

30

35

Generally, all *Arabidopsis* transformation events tested for a construct were grown and analyzed together. Although the growth of the plants was under controlled environments, the possibility remained that the differences observed between transformation events expressing the constructs was due to environmental differences occurring between different experiments. To eliminate this possibility, three of the highest expressing events from the three sets of *Arabidopsis* transformation events were grown together and reanalyzed. This analyses confirmed the earlier differences between the sets of transformation events.

SUMMARY OF EFFECTS OF THE ARTIFICIAL MAR ON TRANSGENE EXPRESSION

In both rice and Arabidopsis, the average expression level of transformation events expressing the MAR-containing constructs expressed at a higher level than those lacking the MAR elements (Table 3). In Arabidopsis, orientation of the MARs tested influenced the level of expression. Plants containing constructs in which the MARs were in the same orientation on either side of the GUS gene construct expressed GUS at higher levels than plants containing constructs in which the MARs were oriented in opposite orientations.

There appeared to be a proportionally higher expression level in the higher expressors than in the lower expressors in

each set of transformation events. To document this, expression of the upper quartile of the expressors was compared (Table 3). Based on this data, the upper quartile of the transformation events expressing the AfAct2Af construct produce GUS protein at levels 5.6 times higher than in the upper quartile of events expressing the Actbin construct. The artificial MARs in opposite orientations in both rice and Arabidopsis enhance expression approximately two-fold over the respective constructs lacking MARs.

10

15

20

5

Table 3

Comparison of the expression of transformation events expressing either the base constructs or base constructs flanked by the artificial MARs.

	CONSTRUCT				
	GOS2	ArGOS2Af	ActBin	Ar-Act-Af	Af-Act-Af
species transformed	rice	rice	Arabidopsis	Arabidopsis	Arabidopsis
method of transformation	particle bombardment	particle bombardment	Agrobacterium	Agrobacterium	Agrobacterium
number of transformation events analyzed	28	25	28	21	22
average	357	713	2,313	3,673	9,042
median	95	317	2,205	2,772	5,730
upper quartile range	258-3,076	1,674-2,661	3,047-5,311	6,240-10,614	15,595-27,179
upper quartile average	1,169	2,099	4,056	7,812	22,688
relative average expression	1.0	2.0	1.0	1.6	4.0
relative upper average quartile expression	1.0	1.8	1.0	1.9	5.6

averages for the upper quartile of transformation event expression levels were statistically different (p is less than or equal to 0.05) based on t-test analyses. (Gopal K. Kanji 1995)

Previous published studies (reviewed by Holmes-Davis and Comai, 1998) have shown that, with the exception of one MAR, all MARs tested to date enhance expression of reporter genes. This study represents the first report that a MAR constructed using elements found preferentially in MARs can enhance expression in plant species representing both monocotyledonous and dicotyledonous plants.

REFERENCES

Allen, G.C., Hall, G., Jr., Michalowski, S., Newman, W., Spiker, S., Weissinger, A.K. and Thompson, W.F. (1996) High-level transgene expression in plant cells: Effects of a strong scaffold attachment region from tobacco. *Plant Cell* 8, 899-913.

10

Allen, G.C., Hall, G.E., Jr., Childs, L.C., Weissinger, A.K., Spiker, S. and Thompson, W.F. (1993) Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. *Plant Cell* 5, 603-613.

15

An, Y.-Q., McDowell, J.M., Huang, S., McKinney, E.C., Chambliss, S. and Meagher, R.B. (1996) Strong constitutive expression of the *Arabidopsis ACT2/ACT8* actin subclass in vegetative tissues. *Plant J.* 10, 107-121.

20

Avramova, Z. and Bennetzen, J.L. (1993) Isolation of matrices from maize leaf nuclei: identification of a matrix-binding site adjacent to the Adh 1 gene. *Plant Mol. Biol.* 22, 1135-1143.

25

Avramova, Z., SanMiguel, P., Georgieva, E. and Bennetzen, J.L. (1995) Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adhl. Plant Cell 7, 1667-1680.

30

Bode, J., Kohwi, Y., Dickinson, L., Joh, Y., Klehr, D., Mielke, C. and Kohwi-Shigematsu, T. (1992) Biological significance of unwinding capability of nuclear matrix-associated DNAs. Science 255, 195-197.

Bode, J., Schlake, T., Rios-Ramirez, M., Mielke, C., Stengert, M., Kay, V. and Klehr-Wirth, D. (1995) Scaffold/matrix-attached regions: Structural properties creating transcriptionally active loci. *Int. Rev. of Cytol.* 162A, 389-454.

5

10

- Bonifer, C., Vidal, M., Grosveld, F. and Sippel, A.E. (1990) Tissue specific and position independent expression of the complete gene domain for chicken lysozyme in transgenic mice. *EMBO J.* 9, 2843-2848.
- Boulikas, T. (1995) Chromatin domains and the prediction of MAR sequences. Int. Rev. of Cytol. 162A, 279-388.
- Boulikas, T. and Kong, C.F. (1993) Multitude of inverted repeats characterize a class of anchorage sites of chromatin loops to the nuclear matrix. J. Cell. Biochem. 53, 1-12.
- Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
- Breyne, P., Van Montagu, M., Depicker, A. and Gheysen, G. (1992) Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. *Plant Cell* 4, 463-471.
- Breyne, P., Van Montagu, M. and Gheysen, G. (1994) The role of scaffold attachment regions in the structural and functional organization of plant chromatin. *Transgenic Res.* 3, 195-202.
 - Buhrmester, H., von Kries, J.P. and Stratling, W.H. (1995)
 Nuclear matrix protein ARBP recognizes a novel DNA sequence
 motif with high affinity. *Biochemistry* 34, 4108-4117.

De Pater, B.S., van der Mark, F., Rueb, S., Katagiri, F., Chua, N-H., Schilperoort, R.A. and Hensgens, L.A.M. (1992)

The promoter of the rice gene GOS2 is active in various

different monocot tissues and binds rice nuclear factor ASF-1.

Plant J. 2, 837-844.

Dennis, E.S., Gerlach, W.L., Pryor, A.J., Bennetzen, J.L., Inglis, A., Llewellyn, D., Sachs, M.M., Ferl, R.J. and

Peacock, W.J. (1984) Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucl. Acids Res. 12, 3983-4000.

Depicker, A., Stachel, S., Dhaese, P., Zambryski, P. and

Goodman, H.M. (1982) Nopaline synthase: Transcript mapping and DNA sequence. J. Mol. Appl. Genet. 1, 561-573.

Dickinson, L.A., Joh, T., Kohwi, Y. and Kohwi-Shigematsu, T. (1992) A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. *Cell* 70, 631-645.

Dillon, N. and Grosveld, F. (1994) Chromatin domains as potential units of eukaryotic gene function. *Curr Opinion Gen Dev* **4**, 260-264.

Eggert, H. and Jack, R.S. (1991) An ectopic copy of the Drosophila ftz associated SAR neither reorganizes local chromatin structure nor hinders elution of a chromatin fragment from isolated nuclei. EMBO J. 10, 1237-1243.

Forrester, W.C., van Genderen, C., Jenuwein, T. and Grosschedl, R. (1994) Dependence of enhancer-mediated transcription of the immunoglobulin m gene on nuclear matrix attachment regions. Science 265, 1221-1225.

30

20

Franck, A., Guilley, H., Jonard, G., Richards, K. and Hirth, L. (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21, 285-294.

- Gritz, L. and Davies, J. (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in *Escherichia coli* and *Saccharomyces cerevisiae*. Gene 25, 179-188.
- Hall, G., Jr., Allen, G.C., Loer, D.S., Thompson, W.F. and Spiker, S. (1991) Nuclear scaffolds and scaffold-attachment regions in higher plants. Proc. Natl Acad. Sci. USA 88, 9320-9324.
- Jackson, D.A. (1995) Nuclear organization: uniting replication foci, chromatin domains and chromosome structure. *Bioessays* 17, 587-591.
- Jefferson, R.A. (1987) Assaying chimeric genes in plants: The 20 GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387-405.
 - Jefferson, R.A., Burgess, S.M. and Hirsh, D. (1986) b-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl Acad. Sci. USA 83, 8447-8451.
 - Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. *EMBO J.* 6, 3901-3907.
- 30 Kanji, G. K., (1995) 100 Statistical Tests, Sage Publications Inc., Thousand Oaks CA

25

Kriz, A.L., Boston, R.S. and Larkins, B.A. (1987) Structural and transcriptional analysis of DNA sequences flanking genes

that encode 19 kilodalton zeins. *Mol. Gen. Genet.* **207(1)**, 90-98.

Lewin, B. (1994) Chromatin and gene expression: Constant questions, but changing answers. *Cell* **79**, 397-406.

10

15

20

25

McKnight, R.A., Shamay, A., Sankaran, L., Wall, R.J. and Hennighausen, L. (1992) Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. *Proc. Natl Acad. Sci. USA* 89, 6943-6947.

Mlynarova, L., Jansen, R.C., Conner, A.J., Stiekema, W.J. and Nap, J-P. (1995) The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. *Plant Cell* 7, 599-609.

Mlynarova, L., Loonen, A., Heldens, J., Jansen, R.C., Keizer, P., Stiekema, W.J. and Nap, J-P. (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-attachment region. *Plant Cell* 6, 417-426.

Morrison, D.A., Trombe, M.C., Hayden, M.K., Waszak, G.A. and Chen, J. (1984) Isolation of transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycin reistance determinant of pAMb1. J. Bacteriol. 159, 870-876.

Mullineaux, P.M., Donson, J., Morris-Krsinich, B.A.M.,

Boulton, M.I. and Davies, J.W. (1984) The nucleotide sequence of maize streak virus DNA. EMBO J. 3, 3063-3068.

Nagagomi, K., Kohwi, Y., Dickinson, L.A. and Kohwi-Shigematsu, T. (1994) A novel DNA binding motif in the nuclear

matrix attachment DNA-binding protein SATB1. Mol. Cell. Biol. 14. 1852-1860.

- Neznanov, N., Kohwi-Shigematsu, T. and Oshima, R.G. (1996)

 5 Contrasting effects of the SATB1 core nuclear matrix attachment region and flanking sequences of the keratin 18 gene in transgenic mice. Mol. Biol. Cell 7, 541-552.
- Quigley, F., Brinkmann, H., Martin, W.F. and Cerff, R. (1989)

 Strong functional GC pressure in a light-regulated maize gene encoding subunit GAPA of chloroplast glyceraldehyde-3-phosphate dehydrogenase: implications for the evolution of GAPA pseudogenes. J. Molec. Evol. 29(5), 412-421.
- 15 Sander, M. and Hsieh, T-S. (1985) Drosophila topoisomerase II double-strand cleavage: Analysis of DNA sequence homology at the cleavage site. *Nucl. Acids Res.* 13, 1057-1072.
- Schöffl, F., Schroder, G., Kliem, M. and Rieping, M. (1993)

 20 An SAR sequence containing 395 bp DNA fragment mediates enhanced, gene-dosage-correlated expression of a chimaeric heat shock gene in transgenic tobacco plants. Transgenic Res. 2, 93-100.
- 25 Siebert, P.D., Chenchik, A., Kellogg, D.E., Lukyanov, K.A. and Lukyanov, A.S. (1995) An improved PCR method for walking in uncloned genomic DNA. *Nucl. Acids Res.* 23, 1087-1088.
- Slatter, R.E., Dupree, P. and Gray, J.C. (1991) A scaffold-30 associated DNA region is located downstream of the pea plastocyanin gene. *Plant Cell* 3, 1239-1250.
- Southern, E. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 35 503.

Southern, E. (1979) Gel electrophoresis of restriction fragments. Methods of Enzymol. 68, 152.

- 5 Spiker, S. and Thompson, W.F. (1996) Nuclear matrix attachment regions and transgene expression in plants. *Plant Physiol.* 110, 15-21.
- Stein, G.S., Lian, J.B., Dworetzky, S.I., Owen, T.A., Bortell, R., Bidwell, J.P. and van Wijnen, A.J. (1991) Regulation of transcription-factor activity during growth and differentiation: Involvement of the nuclear matrix in concentration and localization of promoter binding proteins.

 J. Cell. Biochem. 47, 300-305.
- Stief, A., Winter, D.M., Stratling, W.H. and Sippel, A.E. (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity. *Nature* 341, 343-345.
- 20 Travers, A.A. (1990) Why bend DNA. Cell 60, 177-180.

15

- Van der Geest, A.H.M., Hall, G.E., Jr., Spiker, S. and Hall, T.C. (1994) The b-phaseolin gene is flanked by matrix attachment regions. *Plant J.* 6, 413-423.
- Van der Geest, A.H.M. and Petolino, J.F. (1998) Expression of a modified green fluorescent protein gene in transgenic maize plants and progeny. *Plant Cell Rep.* 17, 760-764.
- von Kries, J.P., Buhrmester, H. and Stratling, W.H. (1991) A
 matrix/scaffold attachment region binding protein;
 Identification, purification and mode of binding. Cell 64,
 123-135.

Wolffe, A.P. (1994) The transcription of chromatin templates. Curr Opinion Gen Dev 4, 245-254.

Yanisch-Perron, C., Vieira, J. and Messing, J. (1985)

5 Improved M13 phage cloning vectors and host strains:
Nucleotide sequences of the M13mp18 and pUC 19 vectors. Gene
33, 103-119.

Claims

1. An isolated DNA molecule comprising bp 11 to 309 of SEQ ID NO: 1.

5

10

- 2. A DNA construct comprising, in the 5' to 3' direction: a transcription initiation region functional in plant cells, a structural gene operatively associated with the transcription initiation region, a 3' untranslated region, and a matrix attachment region comprised of bp 11 to 309 of SEQ ID NO: 1 positioned either 5' to said transcription initiation region or 3' to said structural gene.
- 3. A DNA construct of claim 2 wherein said matrix attachment region comprises two or more tandem copies of bp 11 to 309 of SEO ID NO:1.
- 4. A DNA construct of claim 2 wherein a first matrix attachment region comprised of bp 11 to 309 of SEQ ID NO: 1 is positioned 5' to said transcription initiation region and a second matrix attachment region comprised of bp 11 to 309 of SEQ ID NO: 1 is positioned 3' to said structural gene.
- 5. A DNA construct of claim 4 wherein each of said matrix attachment regions is comprised of two or more tandem copies of bp 11 to 309 of SEQ ID NO:1.
- 6. A method of making recombinant plant cells having increased expression of structural genes introduced therein which comprises:

 transforming a plant cell capable of regeneration with a DNA construct of claim 2.
- 7. A method of claim 6 wherein the matrix attachment region in said DNA construct comprises two or more tandem copies of bp 11 to 309 of SEQ ID NO:1.

8. A method of claim 6 wherein the DNA construct includes a first matrix attachment region comprised of bp 11 to 309 of SEQ ID NO: 1 positioned 5' to said transcription initiation region and a second matrix attachment region comprised of bp 11 to 309 of SEQ ID NO: 1 positioned 3' to said structural gene.

5

- 9. A method of claim 8 wherein said first and second matrix

 10 attachment regions are each comprised of two or more tandem copies of bp 11 to 309 of SEQ ID NO:1.
 - 10. A transformed plant cell containing DNA of bp 11 to 309 of SEQ ID NO:1.

FIG 3

FIG 2

Range of Expression (RLU/µg Extractable Protein)

FIG 4

SUBSTITUTE SHEET (RULE26)

FIG 5

FIG 6

3/4

Range of Expression (RLU/µg Extractable Protein)

FIG 7

SEQUENCE LISTING

```
<110> van der Geest, Apolonia H. M.
      Ainley, W. Michael
      Cowen, Neil W.
      Welter, Mary E.
      Woosley, Aaron T
<120> ARTIFICIAL MATRIX ATTACHMENT REGION FOR INCREASING
      EXPRESSION OF GENES INTRODUCED IN PLANT CELLS
<130> 50545
<140>
<141>
<150> US 60/110,437
<151> 1998-12-01
<160> 33
<170> PatentIn Ver. 2.0
<210> 1
<211> 327
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificial MAR
ttccagatct cgatatcttt aatttctaat atatttagaa ggggtttaga tttatatatg 60
acgtccatga aaaaaaattt taaaacgata ggccagctcc aaagaatata tttccctgga 120
gctggtaaat attaattagt cctctccctt ctaatatatt tttcgatatt tttgattcct 180
ttttaagatt atatagctcc atgccaagct gacttcctaa tatattttat gaagtcagca 240
aaatttttaa aaagcacact tgacttggta tatatttata aatgtttaaa cttaatttca 300
cttgtaaaac tcttgcagga tccgtgc
                                                                   327
<210> 2
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: ARBP site
<400> 2
                                                                   15
atttcasttg taaaa
<210> 3
<211> 13
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: ARBP site
<400> 3
                                                                   13
tgcaggtgtc ctt
```

<210><211><211><212><213>	13	
<220> <223>	Description of Artificial Sequence: ARBP site	
<400> tggggg	4 gtgta aaa	13
<210> <211> <212> <213>	11	
<220> <223>	Description of Artificial Sequence: ATF site	
<400> tgacgt	5 ccat g	11
<210><211><211><212><213>	5	
<220> <223>	Description of Artificial Sequence: BEAF-32 site	
<400> cgata	6	5
<210><211><211><212><213>	13	
<220> <223>	Description of Artificial Sequence: topoisomerase II site	
<400> cnngyr	7 ngktn yny	13
<210><211><211><212><213>	16	
<220> <223>	Description of Artificial Sequence: topoisomerase II site	
<400>	8	
asmat	gegyw yatert	16
<210>	9	
<211>		
<212><213>	DNA Artificial Sequence	

<220> <223>	> > Description of Artificial Sequence: topoisomer II site	rase
<400> gtnwa}	> 9 akattn atnnr	15
<210><211><211><212><213>	> 9	
<220> <223>	> > Description of Artificial Sequence: unwinding sequence	
<400> aatata		9
<210> <211> <212> <213>	> 11	
<220> <223>	> > Description of Artificial Sequence: SATB1 site	•
<400> ttctaa	> 11 aatata t	11
<210><211><211><212><213>	> 9	
<220> <223>	> > Description of Artificial Sequence: SATB1 site	2
<400> ataato		9
<210> <211> <212> <213>	> 10	
<220> <223>	> > Description of Artificial Sequence: SATB1 site	2
<400> ttatta	> 13 tattta	10
<210><211><212><212><213>	> 8	
<220> <223>	> > Description of Artificial Sequence: SATB1 site	2

WO 00/32800	PCT/US99/28123
<400> 14 tataaaaa	8
<210> 15 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: SATB1 site	
<400> 15 aagattatat a	11
<210> 16 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: SATB1 site	
<400> 16 ttttaatgag ataataa	17
<210> 17 <211> 10 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: SATB1 site	
<400> 17 tataatcttc	10
<210> 18 <211> 13 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: bending DNA site	
<400> 18 aaannnnnn aaa	13
<210> 19 <211> 7 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: exemplary oligo A/T tract	·
<400> 19 aaaaaaa	7

<210> 20

(211> (212> (213>			
	Description of Artificial Sequence: MAR-A oligonucleotide		
(400> tccag	20 atct cgatatcttt aatttctaat atatttagaa ggggtttaga	ttta	54
<pre><210> <211> <212> <213></pre>	63		
	Description of Artificial Sequence: MAR-B oligonucleotide		
(400> gaaggg Ecc	21 gttt agatttatat atgacgtcca tgaaaaaaaa ttttaaaacg	ataggccagc	60 63
<210><211><211><212><212><213>	63		
	Description of Artificial Sequence: MAR-C oligonucleotide		
<400> cgatag	22 gcca gctccaaaga atatatttcc ctggagctgg taaatattaa	ttagtcctct	60 63
<210><211><211><212><212><213>	75		
<220> <223>	Description of Artificial Sequence: MAR-D oligonucleotide		
	23 catgg agctatataa tcttaaaaaag gaatcaaaaa tatcgaaaaa aggac taatt	tatattagaa	60 75
<210> <211> <212> <213>	74		
<220> <223>	Description of Artificial Sequence: MAR-E oligonucleotide		
<400>	24 caaq tqtqcttttt aaaaattttg ctgacttcat aaaatatatt	aggaagtcaq	60

```
74
cttggcatgg agct
<210> 25
<211> 74
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: MAR-F
      oligonucleotide
<400> 25
gcacggatcc tgcaagagtt ttacaagtga aattaagttt aaacatttat aaatatatac 60
caagtcaagt gtgc
<210> 26
<211> 668
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: 3' MAR in
      ArActAf
<400> 26
gggggatctc gatatcttta atttctaata tatttagaag gggtttagat ttatatatga 60
cgtccatgaa aaaaaatttt aaaacgatag gccagctcca aagaatatat ttccctggag 120
ctggtaaata ttaattagtc ctctcccttc taatatattt ttcgatattt ttgattcctt 180
tttaagatta tatageteea tgecaagetg actteetaat atattttatg aagteageaa 240
aatttttaaa aagcacactt gacttggtat atatttataa atgtttaaac ttaatttcac 300
ttgtaaaact cttgcaggat ctcgatatct ttaatttcta atatatttag aaggggttta 360
qatttatata tgacgtccat gaaaaaaat tttaaaacga taggccagct ccaaagaata 420
tatttccctg gagetggtaa atattaatta gteeteteee ttetaatata tttttcgata 480
tttttgattc ctttttaaga ttatatagct ccatgccaag ctgacttcct aatatattt 540
atqaaqtcaq caaaattttt aaaaagcaca cttgacttgg tatatattta taaatgttta 600
aacttaattt cacttqtaaa actcttqcag gatccactag ttctagagcg gccgccaccg 660
                                                                   668
cggtggag
<210> 27
<211> 9361
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:pGOS2-hpt
<400> 27
gshttcgcgc gtttcggtga tgacggtgaa aacctctgac acatgcagct cccggagacg 60
qtcacaqctt qtctqtaagc ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg 120
qqtqttqqcq qqtqtcqggg ctggcttaac tatgcggcat cagagcagat tgtactgaga 180
qtqcaccata tqcqqtqtga aataccgcac agatgcgtaa ggagaaaata ccgcatcagg 240
eqecattege catteagget gegeaactgt tgggaaggge gateggtgeg ggeetetteg 300
ctattacqcc aqctqqcqaa aqqqqqatqt gctgcaaggc gattaagttg ggtaacgcca 360
qqqttttccc aqtcacqacq ttqtaaaacg acggccagtg aattcccgat cgatctagta 420
acatagatga caccgcgcgc gataatttat cctagtttgc gcgctatatt ttgttttcta 480
tegegtatta aatgtataat tgegggacte taateataaa aaceeatete ataaataaeg 540
tcatgcatta catgttaatt attacatgct taacgtaatt caacagaaat tatatgataa 600
tcatcgcaag accggcaaca ggattcaatc ttaagaaact ttattgccaa atgtttgaac 660
gateggggaa attegagete ttaetattee tttgeeeteg gaegagtget ggggegtegg 720
tttccactat cggcgagtac ttctacacag ccatcggtcc agacggccgc gcttctgcgg 780
gcgatttgtg tacgcccgac agtcccggct ccggatcgga cgattgcgtc gcatcgaccc 840
```

						000
tgcgcccaag	ctgcatcatc	gaaattgccg	tcaaccaagc	tctgatagag	ttggtcaaga	900
ccaatgcgga	gcatatacgc	ccadaaccac	ggcgatcctg	caageteegg	atgcctccgc	960
tagaagtaga.	acatatacta	ctccatacaa	accaaccaca	acctccadaa	gaagatgttg	1020
	attgggaatc					
cggccattgt	ccgtcaggac	attgttggag	ccgaaatccg	cgtgcacgag	gtgccggact	1140
					ggacgcactg	
					cgcgcatatg	
					gaacccgctc	
gtctggctaa	gatcggccgc	agcgatcgca	tccatggcct	ccgcgaccgg	ctgcagaaca	1380
acaaacaatt	caatttcaaa	caggtcttgc	aacgtgacac	cctgtgcacg	gcgggagatg	1440
					cgggagcgcg	
						1560
	agtgccgata					
					ttcttcgccc	
tccgagagct	gcatcaggtc	ggagacgctg	tcgaactttt	cgatcagaaa	cttctcgaca	1680
ascatcacaa	taaattcaaa	ctttttcata	totcacgaga	tctgtatccc	gtgcctggaa	1740
gacgccgcgg	as as tagget	agangataga	caaatacaaa	aaaggaatgg	catagtcaag	1800
ctaaatcatc	aagatgcaaa	cttttcgccc	ttgctaaaca	cggtaaaatt	cgaatggaca	T800
tgtgtggagc	agcaaaggag	ctttccccaa	aattactcaa	cgaatcataa	accaagatta	1920
					ggggattgcc	
					cttgtccacc	
					ctagagtccc	
					gcgaaggata	
ataggattat	gcgtcatccc	ttacqtcaqt	ggagatatca	catcaatcca	cttgctttga	2220
					gtccatcttt	
agacgcggcc	†	antattanaa	ga = ga = a = a = a = a = a = a = a = a	actttataa	22+42+444	3340
gggaccactg	teggeagagg	Catcuttaac	gatggccttt	Collatogo	aatgatggca	2340
tttgtaggag	ccaccttcct	tttccactat	cttcacaata	aagtgacaga	tagctgggca	2400
atggaatccg	aggaggtttc	cggatattac	cctttgttga	aaagtctcca	tcgatgatca	2460
					gatgctcctc	
ataaataaa	atagatatt	adascascta	tagaaaaa	catcttcaac	gatggccttt	2580
gradaraaaa	giddaldiii	gggaccaccg	ccggcagagg	Liliania	gatggeette	2000
cctttatcgc	aatgatggca	tttgtaggag	ccaccttcct	tttccactat	cttcacaata	2040
aagtgacaga	tagctgggca	atggaatccg	aggaggtttc	cggatattac	cctttgttga	2700
aaagtctcca	cccatgcaga	tctqcaqqca	tgcaagctgc	gaccacattt	aaacaattcc	2760
castcastct	artaaratar	atracaccoc	acacaataat	ttatcctagt	ttgcgcgcta	2820
tattttgttt	tctatcgcgt	attaaatgta	Laallgeggg	acticiaatica	taaaaaccca	2000
					aattcaacag	
aaattatatg	ataatcatcg	caagaccggc	aacaggattc	aatcttaaga	aactttattg	3000
					ggctgtagcc	
					cggtttttca	
gacgatggtg	egecayyaya	grigitgati	Cattytttyt	ceccetycty	cggtttttta	2100
					cggtttgcgg	
tcgcgagtga	agatcccttt	cttgttaccg	ccaacgcgca	atatgccttg	cgaggtcgca	3240
aaatcggcga	aattccatac	ctqttcaccq	acqacqqcqc	tgacgcgatc	aaagacgcgg	3300
tastagatat	ccarccatrc	acactdatac	tetteactee	acatatcaat	gtacattgag	3360
tgatacatat	ccagccacge	acaccgatat	+ = = = + = = + = =	taataaaata	atacaattta	3/120
tgeageeegg	Claacglate	Cacyccycat	ccygryarya	taattyytty	atgcagtttc	3420
tcctgccagg	ccagaagttc	tttttccagt	accttctctg	ccgtttccaa	atcgccgctt	3480
tggacatacc	atccgtaata	acggttcagg	cacagcacat	caaagagatc	gctgatggta	3540
tcaatataaa	caticacagaà	cattacattq	acqcaqqtqa	toggacgcgt	cgggtcgagt	3600
					ggtatccggt	
Leacycyccy	Lettergerag		aret art to	tatasagaaa	+++====+	2720
tcgttggcaa	tactccacat	caccacgett	gggtggtttt	tgteaegege	tatcagctct	3720
ttaatcgcct	gtaagtgcgc	ttgctgagtt	tccccgttga	ctgcctcttc	gctgtacagt	3780
tctttcggct	tattacccac	ttcqaaacca	atgcctaaag	agaggttaaa	gccgacagca	3840
acaatttcat	caatcaccac	dataccatat	teatetgeee	agtcgagcat	ctcttcagcg	3900
b		gacgccatgc	gaaaaataa	2919292	tgcgtggtcg	3060
Laagggtaat	gegaggtaeg	graggagrig	goodaatoo	agriculation	- tangegueg	4000
tgcaccatca	gcacgttatc	gaatcctttg	ccacgtaagt	ccgcatcttc	atgacgacca	4020
aagccagtaa	agtagaacgg	tttgtggtta	atcaggaact	gttcgccctt	cactgccact	4080
gaccggatgc	cgacgcgaag	cgggtagata	tcacactctq	tctggctttt	ggctgtgacg	4140
cacacttcat	adadataadd	ttcaccccct	+accadadd+	acadattcac	cacttgcaaa	
	+ acettet	200000000000000000000000000000000000000	2922494	gaggattaac	anattanaa	1260
gtcccgctag	racerrated	agitycaacc	accigiligat	cogcatcacg	cagttcaacg	4200
					gtcttgcgcg	
					gagcattacg	4380
					tttcttgccg	4440
					gttgttcaca	
eccegeogg	Laattattat	cccayacyay	acagectyce	agricagill	gitgittata	3000

caaacggtga tacgtacact tttcccggca ataacatacg gcgtgacatc ggcttcaaat 45 ggcgtatage cgccctgatg ctccatcact tcctgattat tgacccacac ttttgccgtaa 46 tgagtgaccg catcgaaacg cagcacgata cgctggcctg cccaaccttt cggtataaag 46 acttcgcgct gataccagac gttgcccgca taattacgaa tatctgcatc ggcgaactga 47 tcgttaaaac tgcctggcac agcaattgec cggctttctt gtaacgcgct ttcccaccaa 48 tcgattcac gggttggggt ttctacagga cggaccatgg acctttgctg gtgaaagtgg 49 caagctacac caagaactgc acaaaggaaa tgaatcataa gaacaagcag tataactatc 49 ccgattacag cttcataaat ttctttctgt aatcaagcag tcaaggaata accaaaagga 50 aacttctaca ggtagataca agaggataat cgatagataa tcgatggag tatgaacaa 51 aaattgagga cagttcatgc cagactttca gctcagaata atgaagggt gagagctaat 51 agagaatcaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattatttg tagcaatcaa ttcattgaac 53 ctgaactacaa gctaggataa cgcaacaacaa gcaacaacaacaa ttcattgaac 53 ctgaacaacaacaacaacaacaacaacaacaacaacaacaac	20 80 40 00 60 20 80 40
tgagtgaccg catcgaaacg cagcacgata cgctggcctg cccaaccttt cggtataaag 46 acttcgcgct gataccagac gttgcccgca taattacgaa tatctgcatc ggcgaactga 47 tcgttaaaac tgcctggcac agcaattgcc cggctttctt gtaacgcgct ttcccaccaa 48 cgctgatcaa ttccacagtt ttcgcgatcc agactgaatg cccacaggcc gtcgagtttt 48 ttgattcac gggttggggt ttctacagga cggaccatgg aactttgctg gtgaaagtgg 49 caagctacac caagaactgc acaaaaggaaa tgaatcataa gaacaagcag tataactatc 49 ccgattacag cttcataaat ttcttctgt aatcaagcag tcaaggaata accaaaaaga 50 aacttctaca ggtagataca agaggataat cgatagataa tcgatggag ttgaaaaca 51 aaaaaaaata atccaaatga atactgctta gctcagaata atgaagggt gagagctaat 51 agaacaaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattattg tagcaatcaa ttcattgaac 53	80 40 00 60 20 80 40
tgagtgaccg catcgaaacg cagcacgata cgctggcctg cccaaccttt cggtataaag 46 acttcgcgct gataccagac gttgcccgca taattacgaa tatctgcatc ggcgaactga 47 tcgttaaaac tgcctggcac agcaattgcc cggctttctt gtaacgcgct ttcccaccaa 48 cgctgatcaa ttccacagtt ttcgcgatcc agactgaatg cccacaggcc gtcgagtttt 48 ttgattcac gggttggggt ttctacagga cggaccatgg aactttgctg gtgaaagtgg 49 caagctacac caagaactgc acaaaaggaaa tgaatcataa gaacaagcag tataactatc 49 ccgattacag cttcataaat ttcttctgt aatcaagcag tcaaggaata accaaaaaga 50 aacttctaca ggtagataca agaggataat cgatagataa tcgatggag ttgaaaaca 51 aaaaaaaata atccaaatga atactgctta gctcagaata atgaagggt gagagctaat 51 agaacaaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattattg tagcaatcaa ttcattgaac 53	80 40 00 60 20 80 40
acttegeget gataceagae gttgeeegea taattaegaa tatetgeate ggegaactga 47 tegttaaaae tgeetggeae ageaattgee eggetttett gtaaegeget tteeeaceaa 48 egetgateaa tteeacagtt ttegegatee agaetgaatg eeacaggee gtegagtttt 48 ttgattteae gggttggggt ttetaeagga eggaeeatgg aactttgetg gtgaaagtgg 49 caagetaeae caagaactge acaaaggaaa tgaateataa gaaeaageag tataaetate 49 cegattaeag etteataaat teetteetgt aateaageag teaaggaata aceaaaaaga 50 aaettetaea ggtagataea agaggataat egatagataa tegatgtgaa tttgaaaaea 51 aaaaaaaata ateeaaatga ataetgetta tgetaeagtt eattteatat aattaaaaat 52 ggagateaga aateggataa egetataaaa geattattg tageaateaa teeattaa 52 etgaactaea getaggataa egetataaaa geattattg tageaateaa teeattgaac 53	40 00 60 20 80 40
tegttaaaac tgeetggeac ageaattgee eggetttett gtaacgeget tteecaceaa 48 egetgateaa tteeacagtt ttegegatee agaetgaatg eecacaggee gtegagttt 48 ttgattteac gggttggggt ttetacagga eggaceatgg aactttgetg gtgaaagtgg 49 caagetacac caagaactge acaaaggaaa tgaateataa gaacaagcag tataactate 49 eegatteeaa eggagataac agaggataat egatgataa tegatgtgaa tttgaaaaca 51 aaattgagga cagtteatge eagaetttea geteagaata atgaaggggt gagagetaat 51 aaaaaaaata atceaaatga atactgetta tgetacagtt eattteatat aattaaaaat 52 ggagateaga aateggataa egetataaaa geattattg tageaatcaa tteattgaac 53 eetgaactaca getaggataa egetataaaa geattattg tageaatcaa tteattgaac 53 eetgaactaca getaggataa egetataaaa geattattg tageaatcaa tteattgaac 53	00 60 20 80 40
cgctgatcaa ttccacagtt ttcgcgatcc agactgaatg cccacaggcc gtcgagtttt 48 ttgatttcac gggttggggt ttctacagga cggaccatgg aactttgctg gtgaaagtgg 49 caagctacac caagaactgc acaaaggaaa tgaatcataa gaacaagcag tataactatc 49 ccgattacag cttcataaat ttctttctgt aatcaagcag tcaaaggaata accaaaaaga 50 aacttctaca ggtagataca agaggataat cgatagataa tcgatgtgaa tttgaaaaca 51 aaaaaaaata atccaaatga atactgctta tgctacagtt catttcatat aattaaaaat 52 ggagatcaga aatcggataa cgctataaaa gcattattg tagcaatcaa ttcattgaac 53 ctgaactaca gctaggataa cgctataaaa gcattattg tagcaatcaa ttcattgaac 53	60 20 80 40 00
tigatticae gggttggggt tictacagga eggaceatgg aactitigetg gtgaaagtgg 49 caagetacae caagaactge acaaaggaaa tgaateataa gaacaagcag tataactate 49 cegattacag etteataaat tictitietgi aateaagcag teaaggaata aceaaaaaga 50 aactitetaea ggtagataea agaggataat egatagataa tegatgtgaa titigaaaaca 51 aaaaaaaaata ateeaaatga atactgetta tgetacagti eatticatat aattaaaaat 52 ggagateaga aateggataa gtietitetee tgaetaaaet ataggggtat taeetattaa 52 etgaactaea getaggataa egetataaaa geattattig tageaateaa tieattgaac 53	20 80 40 00
caagctacac caagaactgc acaaaggaaa tgaatcataa gaacaagcag tataactatc 49 ccgattacag cttcataaat ttctttctgt aatcaagcag tcaaggaata accaaaaaga 50 aacttctaca ggtagataca agaggataat cgatagataa tcgatgtgaa tttgaaaaca 51 aaaattgagga cagttcatgc cagactttca gctcagaata atgaaggggt gagagctaat 51 aaaaaaaata atccaaatga atactgctta tgctacagtt catttcatat aattaaaaat 52 ggagatcaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattattg tagcaatcaa ttcattgaac 53	80 40 00
ccgattacag cttcataaat ttctttctgt aatcaagcag tcaaggaata accaaaaaga 50 aacttctaca ggtagataca agaggataat cgatagataa tcgatgtgaa tttgaaaaca 51 aaaattgagga cagttcatgc cagactttca gctcagaata atgaaggggt gagagctaat 51 aaaaaaaata atccaaatga atactgctta tgctacagtt catttcatat aattaaaaat 52 ggagatcaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattattg tagcaatcaa ttcattgaac 53	40 00
aacttctaca ggtagataca agaggataat cgatagataa tcgatgtgaa tttgaaaaca 51 aaattgagga cagttcatgc cagactttca gctcagaata atgaaggggt gagagctaat 51 aaaaaaaata atccaaatga atactgctta tgctacagtt catttcatat aattaaaaat 52 ggagatcaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattatttg tagcaatcaa ttcattgaac 53	00
aaattgagga cagttcatgc cagactttca gctcagaata atgaaggggt gagagctaat 51 aaaaaaaata atccaaatga atactgctta tgctacagtt catttcatat aattaaaaat 52 ggagatcaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattatttg tagcaatcaa ttcattgaac 53	
aaaaaaata atccaaatga atactgctta tgctacagtt catttcatat aattaaaaat 52 ggagatcaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattatttg tagcaatcaa ttcattgaac 53	60
ggagatcaga aatcggataa gttcttctcc tgactaaact ataggggtat tacctattaa 52 ctgaactaca gctaggataa cgctataaaa gcattatttg tagcaatcaa ttcattgaac 53	
ctgaactaca gctaggataa cgctataaaa gcattatttg tagcaatcaa ttcattgaac 53	20
ctgaactaca gctaggataa cgctataaaa gcattatttg tagcaatcaa ttcattgaac 53	80
	40
tgaaccagaa agtgactttt taagatattt gggaaaaaaa attctgggac taaagcaaat 54	00
cggaagaaca gggaatcccc tgttcctgag gattataact gtttccatga atttcgtgat 54	
ggggactact gtatctaaac aagccagctg cgaaattttg gacaggctta agaatcaatc 55	
attcaatctc atcaacggga ccgtcttcaa agttggatta tttttgttca atagggaata 55	80
aacaaaggat agcttcgtca aatcgagaag catcactacc agaatcgagg accaaacaac 56	
cqtactttta ttacaccaag caaaatcacc ggtgctctga ttttacctca aacaaaaggt 57	
actcacaaaa togcaagatt cogtaccota aaccatttoa tttocataga gototocaga 57	
cgattgaaaa ccatactact aatcaaaccg aaccgataac atgcaacatc aagaacccct 58	00
ctatcccaaa tccaagaaca ggaatcatca cagatacaga tcccctttcc taacatcaac 58	
gcccgtacta cacaacctag aacaataaat ccaagaacaa ccgaagggca cataccctgt 59	
gaggaggagg tggaggaggg aagagatcga ccaagaactc gaccggaaga tatggatcga 60	00
agaaggeggt egeteggett etgetagteg egtgteettg gtgeteteee tettettgge 60	60
ttggatgcct cctatataga gaggggaaaa ggggggagga atttatagat gggaggagga 61	20
ggatgettgg ttttetttge eteteeteet eteteetgge egeaaageet getgttaaaa 61	
ggttgttgcg gacttgctgt cctccgttag atcatcgttt tttgtgggtt gttctgtggg 62	40
caqccactct gttgttgcct gtgtgcccaa tatgggagat tggcgctcgc gcacgagcaa 63	00
aattottttt ttttttgtat gtgaaaaaco taaatagtto gtttoatact tttcatgcta 63	60
	20
tgcttgaatt cagatattgc tacctaaatg tattaaatag gcgagtgata ttagagatgt 64	80
gttgctagtt gaacgtgtat tgaggaggtg cactcacaca tgcacatgag cacaaagtgt 65	40
gtgcgtaagt accttgcatc taatcgaaaa aagataaata ataaaaataa gtcaattgtc 66	0.0
tttaattact aaataaaaat tgggatggag taagacatgt ccttaatgat gtgcgatatg 66	
acgaatgcac aaactataaa attatataat tatatgttta aatctttgcc aatacgttca 67	
gaatatette attetattit tttaaaaaaa atetetetet ttacecattg agtteageta 67	
gaaagatttt tttattcaag aagagtttga tgacaattat ggctacctcg aataatttaa 68	40
cttcatgaca gagatgtgaa cgtatattct aagcaataat gatttcattt tcccacttaa 69	00
ttactaaqqa aaacgaaact agtgtagcga ctctttttta tttagcccga ttgccactaa 69	60
ttactaagga aaacgaaact agtgtagcga ctctttttta tttagcccga ttgccactaa 69 agtaggtgga tgagtttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70	60 20
ttactaagga aaacgaaact agtgtagcga ctctttttta tttagcccga ttgccactaa 69 agtaggtgga tgagtttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70	60 20 80
ttactaagga aaacgaaact agtgtagcga ctctttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcgc cgcagctggc gtaatcatgg 71	60 20 80 40
ttactaagga aaacgaaact agtgtagcga ctctttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcgc cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72	60 20 80 40
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcg cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72	60 20 80 40
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcg cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73	160 120 180 140 100 160 120
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcg cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73	160 120 180 140 100 160 120
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gegctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcc cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73	160 120 180 140 100 160 160 180
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gegetacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa eggtgcagaa 70 actgcaggca tgcaagcttc cegggaatge ggeegegege egeagetgge gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat cegetcacaa ttccacacaa catacgagec 72 ggaagcataa agtgtaaage etggggtgee taatgagtga getaactcae attaattgeg 72 ttgegetcae tgceegettt ceagtegga aacetgtegt gecagetgea ttaatgaate 73 ggecaaegeg eggggagagg eggtttgegt attgggeget etteegette etegetcaet 73 gactegetge geteggtegt teggetgeg egageggtat cagetcaete aaaggeggta 74	160 120 180 140 100 160 160 180
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcgc cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73 gactcgctgc gctcggtcgt tcggctgcg cgagcggtat cagctcactc aaaggcggta 74 atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag 75	160 120 180 140 100 160 180 140 140
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcg cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73 gactcgctgc gctcggtcgt tcggctgcg cgagcggtat cagctcactc aaaggcggta 74 atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag 75 caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag gctccgccc 75	60 20 80 40 60 20 80 40 60 60
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcg cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73 gactcgctgc gctcggtcgt tcggctggg cgagcggtat cagctcactc aaaggcggta 74 atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag 75 cctgacgagc atcacaaaaa tcgacgctca agtcagagt ggcgaaaccc gacaggacta 76 cctgacgagc atcacaaaaa tcgacgctca agtcagagt ggcgaaaccc gacaggacta 76	60 20 80 40 60 80 80 80 80 60 60 60
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcc cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73 gactcgctgc gctcggtcgt tcggctggg cgagcggtat cagctcactc aaaggcggta 74 atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag 75 cctgacgagc atcacaaaaa tcgacgctca agtcagagt ggcgaaaccc gacaggacta 76 taaagatacc aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 76 cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta 76 taaagatacc aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 76 cctgacgac aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 76 cctgacgacacac aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 76 cctgacgacacacacacacacacacacacacacacacaca	60 20 80 40 60 20 80 40 60 60 60 60 60 60 60
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcgc cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73 gactcgctgc gctcggtcgt tcggctggg cgagcggtat cagctcactc aaaggcggta 74 atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag 75 cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta 76 ccgcttaccg gatacctgtc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 76 ccgcttaccg gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct ttctcaatgc	60 20 80 40 60 20 880 40 60 60 60 60 60 60 60 60 60 60 60 60 60
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gegetacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa eggtgcagaa 70 actgcaggca tgcaagcttc eegggaatge ggeegegege egeagetgge gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat eegetacaaa ttccacacaa catacgagec 72 ggaagcataa agtgtaaage etggggtgee taatgagtga getaactcae attaattgeg 72 ttgegeteac tgeeegettt eeagtegga aacetgtegt geeagetgea ttaatgaate 73 ggecaacgeg eggggagagg eggtttgegt attgggeget etteegette etegeteact 73 gactegetge geteggtegt teggetgeg egageggtat eageteacte aaaggeggta 74 atacggttat eeacagaate aggggataac geaggaaaga acatgtgage aaaaggeeag 75 eetgaegge ateacaaaaa tegaegeeg ttgetggegt tttteeatag geteegeece 75 eetgaegage ateacaaaaa tegaegetaa agteagaggt ggegaaaeee gacaggacta 76 eegettaeeg gatacetgte egeetteete eettegggaa gegtggeget tteteaatge 77 eegettaeeg ggtateteeag tteggtgtag gtegteege eegagetgge etgtgtgeae 78 eegettaeeg ggtateteeag tteggtgtag gtegteege eegagegge etgtgtgeae 78 eegettaeeg ggtateteeag tteggtgtag gtegteege eegagegge etgtgtgeae 78 eegettaeeg ggtateteeag tteggtgtag gtegteege eegagegge etgtgtgeae 78 eegettaeeg ggtateeteag tteggtgtag gtegteege eegagegge eggtgtgee eggtgtgee eggetgegee eggegegege	60 20 80 40 60 80 80 80 60 60 60 60 60 60 60 60 60 60 60 60 60
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gegetacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa eggtgcagaa 70 actgcaggca tgcaagcttc eegggaatge ggeegegege egeagetgge gtaatcatgg 71 tcatagetgt tteetgtgg aaattgttat eegeteacaa ttecaacaaa catacgagee 72 ggaagcataa agtgtaaage etggggtgee taatgagtga getaacteae attaattgeg 72 ttgegeteae tgeeegettt eeageegga aaectgtegt geeagetgea ttaatgaate 73 ggeeaaegge eggggagagg eggtttgegt attgggeget etteegette etegeteaet 73 gactegetge geteggtegt teggetgeg egageggtat eageteaete aaaggeggta 74 atacggttat eeacagaate aggggataae geaggaaaga acatgtgage aaaaggeeag 75 eetgaegge ateacaaaaa tegaegeeg ttgetggegt tttteeatag geteegeee 75 eetgaegage ateacaaaaa tegaegetea agteagaggt ggegaaaeee gacaggacta 76 eegettaeeg gatacetgte eeetgteee eeetggaage teeeteetgt teegaeeetg 76 eegettaeeg gatacetgte egeetttete eettegggaa gegtggeget tteteaatge 77 eegettaeeg gatacetgte egeetttete eettegggaa gegtggeget tteteaatge 77 eegettaeeg gatacetgte egeetttete eettegggaa gegtggeget tteteaatge 77 eegettaeeg ggtateteag tteggtgtag gtegtteget eeaagetggg etgtgtgeae 78 gaaceeeeg tteageega eegetgeee ttateeggta aetategtet tgagteeae 78 gaaceeeeg tteageega eegetgeee ttateeggta aetategtet tgagteeae 78 gaaceeeeg tteageega eegetgeee ttateeggta aetategtet tgagteeae 78 gaaceeeeg tteageeega eegetgeee ttateeggta aetateegtet tgagteeae 78 gaaceeeeeg tteageeega eegetgeee 18 eegetgeeeeeeeeeegeeeeeeeeeeeeeeeeeeeee	200 200 280 400 200 200 200 200 200 200 200 200 20
ttactaagga aaacgaaact agtgtagega ctcttttta tttagecega ttgecactaa 69 agtaggtgga tgagtttte ttgeatagtt ctagttatea gegetacata tataaaggtet 70 cattttatat ttageacacg tteestatat tgttagttag ggggtgaaaa eggtgeagaa 70 actgeaggea tgeaagette eegggaatge ggeegegege egeagetgge gtaateatgg 71 teatagetgt tteetgtgtg aaattgttat eegeteacaa tteeaacaaa cataegagee 72 ggaageataa agtgtaaage etggggtgee taatgagtga getaacteae attaattgeg 72 ttgegeteae tgeeegettt eeagtegga aacetgtegt geeagetgea ttaatgaate 73 ggeeaaegeg eggggagagg eggtttgegt attgggeget etteegette etegeteaet 73 gactegetge geteggtegt teggetgegg egageggtat eageteaete aaaggeeggt 74 ataeggttat eeacagaate aggggataae geaggaaaga acatgtgage aaaaggeegg 75 eetgaegge ateacaaaaa tegaegeeg ttgetggegt tttteeatag geteegeee 75 eetgaegage ateacaaaaa tegaegetea agteagaggt ggegaaaeee gacaggaeta 76 eegettaeeg gataeetgte egeetteete eetegggaa gegtggeget tteteaatge 77 eegettaeeg gataeetgte egeetteete eetegggaa gegtggeget tteteaatge 77 teaegetgta ggtateteag tteggtgtag gtegtteget eeaagetggg etgtgtgeae 78 gaaceeeeg tteageeega eegetggee ttateeggta actategtet tgagteeaa 78 gaaceeeegg tteageeega eegetggee ttateeggta actategtet tgagteeaae 78 gaaceeeegg tteageeega eegetggee ttateeggta actategtet tgagteeaae 78 eeggtaagae aegaettate geeactggea geageeactg gtaacaggat tageagage 79 eeggtaagae aegaettate geeactggea gacaeceeg gtaacaggat tageagagae 79 eeggtaagae aegaettate geeactggea gacaeceeg gtaacaeceega eeggtageaceegae 79 eeggtaagae 79 eegaetaeea 79 eeggtaagae 79 eegaetaeea 79	20 20 80 40 60 20 880 40 60 60 60 60 60 60 60 60 60 60 60 60 60
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcg cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73 gactcgctgc gctcggtcgt tcggctggg cgagcggtat cagctcactc aaaggccgg caaacggta acacggtaa aaaggccag ttgctggggaaaga acatgtgagc aaaaggccag 75 cctgacgagc atcacaaaaa tcgacgcca agtcagggta tccctcagtgg gctaaccc gacaggacta 76 cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta 76 ccgcttaccg gatacctgc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 76 ccgcttaccg gatacctgc cgcctttctc ccttcgggaa gcgtggcgct ttccaatgc 77 ccacgctgaa ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcac 78 gaaccccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct tgagtccaac 78 ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg 79 aaggtatgtag gcggtgctac agagttcttg aggtatcatcg ctaactaga 79 aaggtatgtag gcggtgcac acgacgtac agagttcttg aggtatgtag ctaactacgg ctacactaga 79 aaggtatgtag gcggtgcac aagagttcttg aggtaccccg ctaacctaga 79 aaggtatgtag gcggtgcac aagagttcttg aggtaccccg ctaacctaga 79 aaggtatgtag gcggtgccactag gcagcactag ctaacctaga 79 aaggtatgtag gcggtgcac aagagtactatc agagtatgtag gcagcactag gtaacaggat tagcagagc 79 aaggtatgtag gcggtgcac aagagtactaga acatacacaa agagtactata agagtatcttg aaggtagtgc ctaactacgg ctacactaga 79 aaggtatgtag gcggtgcacactag gcagcactag gcagcactag ctacactaga 79 aaggtatgtaga acatacacaa agagtactata agagtacccacactagacacacacacacacacacacacac	60 80 80 80 80 80 80 80 80 80 8
agtaggga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagettc ccgggaatgc ggccgcgcgc cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcgga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cgggggagag cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73 gactcgctgc gctcggtcgt tcggctgcg cgagcggtat cagctcact aaaaggccag 74 atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc aaaaggccag 75 ccaaaaggcca gtcacacaaaa tcgacgcca agtcagagg ggcgaaaccc gacaggacta 76 caaaaggcca atcacaaaaa tcgacgcca agtcagagg ggcgaaaccc gacaggacta 76 cctgacggg gatacctgtc ccctggaagc tccctcgtgc gctcctctgt tccgaccct 76 gacccccg gttagcg cgctttctc ccttcggaa gcgtggcgt ttccaatag 77 cacagctga ggtatctcag ttcggtgtag gtcgttcgct ccaagctggc cttccaatag 77 cacgcttaccg gatacctgtc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 76 gaaccccccg ttcagcccga ccgcttctc ccttcggaa gcgtggcgct ttctcaatgc 77 cacggtaagac acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg 78 aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg ctacactaga 79 aggacagtat ttggtatctg cgctctgctg aaggccactg gtaacaggat tagcagagcg 79 aggacagtat ttggtatctg agagccactg aaggccactg ctacactacg ctacactaga 79 aggacagtat ttggtatctg cgctctgctg aaggccactg aagagttgga aagagagaa aagagttgga aagagagaa aagagttgga aagagagaagaa aagagttgga aagagagaa aagagttgga aagagagaa aagagttgga aagagagaagaa aagagagaagaa aagagagaaga	60 60 60 60 60 60 60 60 60 60
ttactaagga aaacgaaact agtgtagcga ctcttttta tttagcccga ttgccactaa 69 agtaggtgga tgagttttc ttgcatagtt ctagttatca gcgctacata tataaaggtct 70 cattttatat ttagcacacg ttccctatat tgttagttag ggggtgaaaa cggtgcagaa 70 actgcaggca tgcaagcttc ccgggaatgc ggccgcgcg cgcagctggc gtaatcatgg 71 tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa ttccacacaa catacgagcc 72 ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 72 ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc 73 ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc ctcgctcact 73 gactcgctgc gctcggtcgt tcggctggg cgagcggtat cagctcactc aaaggccgg caaacggta acacggtaa aaaggccag ttgctggggaaaga acatgtgagc aaaaggccag 75 cctgacgagc atcacaaaaa tcgacgcca agtcagggta tccctcagtgg gctaaccc gacaggacta 76 cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta 76 ccgcttaccg gatacctgc ccctggaagc tccctcgtgc gctctcctgt tccgaccctg 76 ccgcttaccg gatacctgc cgcctttctc ccttcgggaa gcgtggcgct ttccaatgc 77 ccacgctgaa ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg ctgtgtgcac 78 gaaccccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct tgagtccaac 78 ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat tagcagagcg 79 aaggtatgtag gcggtgctac agagttcttg aggtatcatcg ctaactaga 79 aaggtatgtag gcggtgcac acgacgtac agagttcttg aggtatgtag ctaactacgg ctacactaga 79 aaggtatgtag gcggtgcac aagagttcttg aggtaccccg ctaacctaga 79 aaggtatgtag gcggtgcac aagagttcttg aggtaccccg ctaacctaga 79 aaggtatgtag gcggtgccactag gcagcactag ctaacctaga 79 aaggtatgtag gcggtgcac aagagtactatc agagtatgtag gcagcactag gtaacaggat tagcagagc 79 aaggtatgtag gcggtgcac aagagtactaga acatacacaa agagtactata agagtatcttg aaggtagtgc ctaactacgg ctacactaga 79 aaggtatgtag gcggtgcacactag gcagcactag gcagcactag ctacactaga 79 aaggtatgtaga acatacacaa agagtactata agagtacccacactagacacacacacacacacacacacac	20 20 20 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60

```
gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt atcaaaaagg 8220
atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta aagtatatat 8280
qaqtaaactt ggtctgacag ttaccaatgc ttaatcagtg aggcacctat ctcagcgatc 8340
tgtctatttc gttcatccat agttgcctga ctccccgtcg tgtagataac tacgatacgg 8400
gagggcttac catctggccc cagtgctgca atgataccgc gagacccacg ctcaccggct 8460
ccagatttat cagcaataaa ccagccagcc ggaagggccg agcgcagaag tggtcctgca 8520
actttatccq cctccatcca gtctattaat tgttgccggg aagctagagt aagtagttcg 8580
ccaqttaata gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt gtcacgctcg 8640
tegtttggta tggetteatt eageteeggt teceaacgat eaaggegagt tacatgatee 8700
cccatgttgt gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt cagaagtaag 8760
ttggccgcag tgttatcact catggttatg gcagcactgc ataattctct tactgtcatg 8820
ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt ctgagaatag 8880
tqtatgcggc gaccgagttg ctcttgcccg gcgtcaatac gggataatac cgcgccacat 8940
agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa actctcaagg 9000
atcttaccgc tgttgagatc cagttcgatg taacccactc gtgcacccaa ctgatcttca 9060
gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca aaatgccgca 9120
aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct ttttcaatat 9180
tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga atgtatttag 9240
aaaaataaac aaataggggt teegegeaca ttteeeegaa aagtgeeace tgaegtetaa 9300
gaaaccatta ttatcatgad attaacctat aaaaataggc gtatcacgag gccctttcgt 9360
<210> 28
<211> 10629
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:pArGOS2Af-hpt
<400> 28
tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcaggggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240
attogccatt caggotgcgc aactgttggg aagggcgatc ggtgcgggcc tottcgctat 300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cccgatcgat ctagtaacat 420
agatgacacc gcgcgcgata atttatccta gtttgcgcgc tatattttgt tttctatcgc 480
gtattaaatg tataattgcg ggactctaat cataaaaacc catctcataa ataacgtcat 540
qcattacatq ttaattatta catgettaac gtaattcaac agaaattata tgataatcat 600
cgcaagaccg gcaacaggat tcaatcttaa gaaactttat tgccaaatgt ttgaacgatc 660
ggggaaattc gagctcttac tattcctttg ccctcggacg agtgctgggg cgtcggtttc 720
cactategge gagtaettet acacageeat eggteeagae ggeegegett etgegggega 780
tttgtgtacg cccgacagtc ccggctccgg atcggacgat tgcgtcgcat cgaccctgcg 840
cccaagctgc atcatcgaaa ttgccgtcaa ccaagctctg atagagttgg tcaagaccaa 900
tgcggagcat atacgcccgg agccgcggcg atcctgcaag ctccggatgc ctccgctcga 960
agtaqcqcqt ctqctqctcc atacaagcca accacggcct ccagaagaag atgttggcga 1020
cctcgtattg ggaatccccg aacatcgcct cgctccagtc aatgaccgct gttatgcggc 1080
cattgtccgt caggacattg ttggagccga aatccgcgtg cacgaggtgc cggacttcgg 1140
qqcaqtcctc qqcccaaaqc atcaqctcat cgagagcctg cgcgacggac gcactgacgg 1200
tgtcgtccat cacaqtttgc cagtgataca catggggatc agcaatcgcg catatgaaat 1260
cacgccatgt agtgtattga ccgattcctt gcggtccgaa tgggccgaac ccgctcgtct 1320
ggctaagatc ggccgcageg atcgcatcca tggcctccgc gaccggctgc agaacagegg 1380
gcagttcggt ttcaggcagg tcttgcaacg tgacaccctg tgcacggcgg gagatgcaat 1440
aggtcaggct ctcgctgaat tccccaatgt caagcacttc cggaatcggg agcgcggccg 1500
atgcaaagtg ccgataaaca taacgatctt tgtagaaacc atcggcgcag ctatttaccc 1560
geaggacata tecaegeeet ectaeatega agetgaaage aegagattet tegeeeteeg 1620
agagetgeat caggteggag acgetgtega acttttegat cagaaactte tegacagaeg 1680
tcgcggtgag ttcaggcttt ttcatatctc acgagatctg tatcccgtgc ctggaacaaa 1740
tggccccaga tccgtccgca gctgcacggg tccaggaaag caatcgcata gtcaagctaa 1800
```

					+ + ~+ ~	1060
atcatcaaga	tgcaaacttt	tegecettge	taaacacggt	aaaattcgaa	tggacatgtg	1000
tggagcagca	aaggagcttt	ccccaaaatt	actcaacgaa	tcataaacca	agattagtca	1920
datcaadada	canaggagaa	acaaqqcqqa	cctttgcact	tgatctgggg	attgccctga	1980
attaataata	ctootatatt	aggataggg	ttgctcctat	ccacagettg	tccaccaaat	2040
at anget set	ccatagacta	ccttatcaaa	ccttcagctg	gatcctctag	agtcccccgt	2100
attagettee	ccgcggaeeg	acttccttat	atagaggaag	ggtcttgcga	aggatagtgg	2160
gttctctcca	aatgaaatga	attacataca	atagaggaag	aatccactto	ctttgaagac	2220
gattgtgcgt	catcccttac	greagragag	atattacatt	atracactes	atetttagga	2280
gtggttggaa	cgtcttcttt	ttccacgatg	eredregrag	gragagaraa	atctttggga	2240
ccactgtcgg	cagaggcatc	ttcaacgatg	gcctttcctt	tategeaatg	atggcatttg	2340
taggagccac	cttccttttc	cactatcttc	acaataaagt	gacagatagc	tgggcaatgg	2400
aatccgagga	ggtttccgga	tattaccctt	tgttgaaaag	tctccatcga	tgatcacatc	2460
aatccacttq	ctttgaagac	gtggttggaa	cgtcttcttt	ttccacgatg	ctcctcgtgg	2520
atagagatcc	atctttggga	ccactatcaa	cagaggcatc	ttcaacgatg	geettteett	2580
tatcacaata	atggcatttg	taggagccac	cttccttttc	cactatcttc	acaataaagt	2640
caccgcaacg	taaacaataa	aatccgagga	gatttccaaa	tattaccctt	tgttgaaaag	2700
gadagadage	tagageaucage	caddcatdca	auctacaacc	gctctagaac	tagtggatcc	2760
tetecaeeca	Lycagacceg	caggeacgea	agocgoggoo	aaatatatac	caagtcaagt	2820
tgcaagagtt	ttacaagtga	aaccaageee	aaacacccac	adacatacac	ttaacataa	2880
gtgcttttta	aaaattttgc	tgacticata	addiatatia	ggaagccagc	ttggcatgga	2940
gctatataat	cttaaaaagg	aatcaaaaat	atcgaaaaal	atattagaag	ggagaggact	2000
aattaatatt	taccagctcc	agggaaatat	attetttgga	gctggcctat	cgttttaaaa	3000
tttttttca	tggacgtcat	atataaatct	aaaccccttc	taaatatatt	agaaattaaa	3000
gatatcgaga	tactacaaga	gttttacaag	tgaaattaag	tttaaacatt	tataaatata	3120
taccaagtca	aatatacttt	ttaaaaattt	tgctgacttc	ataaaatata	ttaggaagtc	3180
adcttddcat	ggagetatat	aatcttaaaa	aggaatcaaa	aatatcgaaa	aatatattag	3240
aadddadadd	actaattaat	atttaccagc	tccagggaaa	tatattcttt	ggagctggcc	3300
tateettta	aaatttttt	tcatggacgt	catatataaa	tctaaacccc	ttctaaatat	3360
attagaaatt	aaacecccc	agatoccca	aacaattccc	gatcgatcta	gtaacataga	3420
attagaaatt	adagacaccg	tatcctagtt	tacacactat	attttattt	ctatcgcgta	3480
Lyacaccycy	cycyacaacc	ctctaatcat	aaaaacccat	ctcataaata	acgtcatgca	3540
ttaaalglal	aattytygga	gattaacata	attcaacada	aattatatga	taatcatcgc	3600
ttacatgtta	attattatat	gcctaacgca	actttattac	caaatattta	aacgatcggg	3660
aagaccggca	acaggattca	accetaayaa	actitating	accatactac	accadagaaa	3720
gaaattcgag	ctctccaatt	ceceaecegag	getgtageeg	acgacggcgc	gccaggagag	
ttgttgattc	attgtttgcc	tecetgetge	ggtttttdac	cgaageteat	gccagtccag	3840
cgtttttgca	gcagaaaagc	egeegaette	ggtttgeggt	cycyaycyaa	gatccctttc	3900
ttgttaccgc	caacgcgcaa	tatgccttgc	gaggtegeaa	aatcyycyaa	attccatacc	3960
tgttcaccga	cgacggcgct	gacgcgatca	aagacgcggt	gatacatate	cagccatgca	4020
cactgatact	cttcactcca	catgtcggtg	tacattgagt	gcagcccggc	taacgtatcc	4020
acgccgtatt	cggtgatgat	aatcggctga	tgcagtttct	cctgccaggc	cagaagttct	4110
ttttccagta	ccttctctgc	cgtttccaaa	tegeegettt	ggacatacca	tccgtaataa	4140
caattcaaac	acadcacatc	aaagagatcg	ctgatggtat	cggtgtgagc	gtcgcagaac	4200
attacattga	cacagatgat	cagacacatc	gggtcgagtt	tacgcgttgc	ttccgccagt	4260
ggggaaatat	tcccatacac	ttacaaacaa	gtatccggtt	cgttggcaat	actccacatc	4320
accacactta	- aataatttt	atcacacact	atcagctctt	taatcgcctg	taagtgeget	4300
tactasattt	ccccattaac	tacctettea	ctgtacagtt	ctttcggctt	gttgcccgct	4440
+ < < < > < < < < < < < < < < < < < < <	tacctaaaga	gaggttaaag	ccgacagcag	caqtttcatc	: aatcaccacg	4500
ataccatatt	catctgccca	gtcgagcatc	tetteagegt	aagggtaatg	cgaggtacgg	4560
taggedatged	: ccccaatcca	gtccattaat	acataatcat	gcaccatcag	cacgttatcg	4620
Laggagetgg	, ccccaaceca	cacatatta	tgacgaccaa	aαccaαtaaa	gtagaacggt	4680
aatccttgc	tacytaagto	ttegeaccette	actaccacta	accadatacc	gacgcgaagc	4740
ttgtggttaa	t caggaacts	atagetette	actataecae	, acceggacyce	gagataacct	4800
gggtagatat	cacacterge	. Crygetting	getgegaege	tcccactaat	gagataatca	4860
tcacccggtt	gccagaggtg	r eggalleace	actigcaaag	tanantana	gccttgtcca	4920
gttgcaacca	a cctgttgatc	: cgcatcacgc	agildaadgd	: tgacatcacc	attggccacc	1920
acctgccagt	: caacagacgo	gtggttacag	r tettgegega	Catgogical	cacggtgata	5040
tcgtccacco	aggtgttcgg	, cgtggtgtag	agcattacgc	gegatggat	tccggcatag	5100
ttaaagaaat	. catggaagta	agactgcttt	ttcttgccgt	: tttcgtcggt	aatcaccatt	2100
cccggcggga	a tagtctgcca	a gttcagttcg	, ttgttcacac	c aaacggtgat	acgtacactt	2TP0
ttcccaacaa	a taacatacqo	r cataacatco	gcttcaaatc	g gogtatagod	e gedetgatge	5220
tccatcactt	cctgattatt	gacccacact	: ttqccqtaat	: gagtgaccgo	c atcgaaacgc	5280
agcacgatag	r actaacctaa	c ccaacctttc	: ggtataaaga	a cttcgcgct	g ataccagacg	5340
ttacccacat	- aattacqaat	atctgcatco	, gcgaactgat	: cgttaaaact	: gcctggcaca	. 5400
gcaattgcc	c ggctttcttc	g taacgcgctt	tcccaccaac	c gctgatcaat	tccacagttt	5460
			1.0			

			+ ~ ~ ~ ~ + + + + +	+ ~ ~ + + ~ ~ ~ ~ ~	aattaaaatt	5520
					ggttggggtt	
					aagaactgca	
caaaggaaat	gaatcataag	aacaagcagt	ataactatcc	cgattacagc	ttcataaatt	5640
tetttetata	atcaagcagt	caaqqaataa	ccaaaaagaa	acttctacag	gtagatacaa	5700
gaggataatc	gatagataat	cgatgtgaat	ttgaaaacaa	aattgaggac	agttcatgcc	5760
2424444	gacagacaa	tassaaata	agaggtaata	aaaaaaataa	tccaaatgaa	5820
agactttcag	cccayaacaa	cgaaggggcg	agagecaaca	gagatgagaa	atagaataag	5000
tactgcttat	gctacagttc	atttcatata	attadadatg	gagatcagaa	atcggataag	5000
					ctaggataac	
					gtgacttttt	
aagatatttg	ggaaaaaaaa	ttctgggact	aaagcaaatc	ggaagaacag	ggaatcccct	6060
					tatctaaaca	
					tcaacgggac	
					gcttcgtcaa	
					tacaccaagc	
					cgcaagattc	
cgtaccctaa	accatttcat	ttccatagag	ctctccagac	gattgaaaac	catactacta	6420
atcaaaccga	accgataaca	tgcaacatca	agaacccctc	tatcccaaat	ccaagaacag	6480
					acaacctaga	
					ggaggaggga	
					gctcggcttc	
					ctatatagag	
					tttctttgcc	
tctcctcctc	tctcctggcc	gcaaagcctg	ctgttaaaag	gttgttgcgg	acttgctgtc	6840
					ttgttgcctg	
					tttttgtatg	
					tattttttgt	
					agatattgct	
					aacgtgtatt	
gaggaggtgc	actcacacat	gcacatgagc	acaaagtgtg	tgcgtaagta	ccttgcatct	7200
aatcgaaaaa	agataaataa	taaaaataag	tcaattgtct	ttaattacta	aataaaaatt	7260
					aactataaaa	
					ttctattttt	
					ttattcaaga	
					agatgtgaac	
					aacgaaacta	
					gagtttttct	
tgcatagttc	tagttatcag	cgctacatat	ataaggtctc	attttatatt	tagcacacgt	7680
					ggggatctcg	
atatotttaa	tttctaatat	atttagaagg	ggtttagatt	tatatatgac	gtccatgaaa	7800
					tggtaaatat	
taattagtee	teteeettet	aatatattt	logalatiti	' '	ttaagattat	7920
atagctccat	gccaagctga	cttcctaata	tattttatga	agtcagcaaa	atttttaaaa	7980
					tgtaaaactc	
ttgcaggatc	tcgatatctt	taatttctaa	tatatttaga	aggggtttag	atttatatat	8100
gacgtccatg	aaaaaaaatt	ttaaaacqat	aggccagctc	caaaqaatat	atttccctgg	8160
adctddtaaa	tattaattag	tectetecet	tctaatatat	ttttcgatat	ttttgattcc	8220
+++++	tatatagete	cataccaaac	taacttccta	atatattta	tgaagtcagc	8280
					acttaatttc	
					cagctggcgt	
aatcatggtc	atagctgttt	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	8460
tacgagccgg	aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	taactcacat	8520
					cagctgcatt	
					teegetteet	
					gctcactcaa	
					atgtgagcaa	
					ttccataggc	
					cgaaacccga	
					tctcctgttc	
					gtggcgcttt	
					aagctgggct	
					tatcgtcttg	
gryrydadya	accedency	caycocyacc	gorgogodit	acceggeade	carrything	J120

```
agtecaacce ggtaagacac gacttatege caetggcage agecactggt aacaggatta 9180
gcagagcgag gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct 9240
acactagaag gacagtattt ggtatctgeg ctetgetgaa geeagttace tteggaaaaa 9300
gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt 9360
qcaaqcagca gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta 9420
cggggtctga cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat 9480
caaaaaggat cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa 9540
gtatatatga gtaaacttgg totgacagtt accaatgett aatcagtgag gcacctatet 9600
caqcqatctg tctatttcgt tcatccatag ttgcctgact ccccgtcgtg tagataacta 9660
cgatacggga gggcttacca tctggcccca gtgctgcaat gataccgcga gacccacgct 9720
caccagetce agatttatea geaataaace ageeageegg aagggeegag egeagaagtg 9780
gtcctgcaac tttatccgcc tccatccagt ctattaattg ttgccgggaa gctagagtaa 9840
gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt 9900
cacqctcqtc gtttggtatg gcttcattca gctccggttc ccaacgatca aggcgagtta 9960
catgatecee catgttgtgc aaaaaagegg ttageteett eggteeteeg ategttgtea 10020
qaaqtaaqtt ggccgcagtg ttatcactca tggttatggc agcactgcat aattctctta 10080
ctgtcatgcc atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct 10140
qaqaatagtg tatgcggcga ccgagttgct cttgcccggc gtcaatacgg gataataccg 10200
cgccacatag cagaacttta aaagtgctca tcattggaaa acgttcttcg gggcgaaaac 10260
tctcaaqqat cttaccgctg ttgagatcca gttcgatgta acccactcgt gcacccaact 10320
gatetteage atetttaet tteaceageg tttetgggtg ageaaaaaca ggaaggeaaa 10380
atgccqcaaa aaaqqqaata aqqqcqacac ggaaatgttg aatactcata ctcttccttt 10440
ttcaatatta ttqaaqcatt tatcaqqqtt attqtctcat qaqcqqatac atatttqaat 10500
qtatttaqaa aaataaacaa ataggggttc cgcgcacatt tccccqaaaa gtgccacctg 10560
acqtctaaqa aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc 10620
                                                                  10629
cctttcgtc
<210> 29
<211> 676
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: 5' MAR in
      Ar-Act-Af
<400> 29
ctccaccqcq qtqqcqqccq ctctaqaact agtggatcct gcaagagttt tacaagtgaa 60
attaagttta aacatttata aatatatacc aagtcaagtg tgctttttaa aaattttgct 120
gacttcataa aatatattag gaagtcagct tggcatggag ctatataatc ttaaaaagga 180
atcaaaaata tcgaaaaata tattagaagg gagaggacta attaatattt accagctcca 240
gggaaatata ttetttggag etggeetate gttttaaaat tttttteat ggaegteata 300
tataaatcta aaccccttct aaatatatta gaaattaaag atatcgagat cctgcaagag 360
ttttacaagt qaaattaagt ttaaacattt ataaatatat accaagtcaa gtgtgctttt 420
taaaaatttt gctgacttca taaaatatat taggaagtca gcttggcatg gagctatata 480
atcttaaaaa ggaatcaaaa atatcgaaaa atatattaga agggagagga ctaattaata 540
tttaccagct ccagggaaat atattctttg gagctggcct atcgttttaa aatttttttt 600
catggacgtc atatataaat ctaaacccct tctaaatata ttagaaatta aagatatcga 660
                                                                  676
gatcccccgg gctgca
<210> 30
<211> 15676
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:pAct2-bin
<400> 30
gatctgcaag cgatcgcggc gcgccattta aatgcccggg cgtttaaacg cggccgcatt 60
cccgggaagc ttgcatgcct gcagaattcg gcttgttttg acgagttcgg atgtagtagt 120
```

	+++	actaateete	aataataaat	ataataaaaa	attgtatctt	180
					ctgaattaat	
	ttctaataga					300
					agttaaccac	
taaaaaaacg	gagctgtcat	gtaacacgcg	gatcgagcag	gtcacagtca	tgaagccatc	420
aaagcaaaag	aactaatcca	aggggctgag	atgattaatt	agtttaaaaa	ttagttaaca	480
					cgaaatgatt	
					aagagataaa	
					tgtcctcctc	
					gaagaagact	
					ttcctcaatc	
	_				actttatttg	
					aatttgggat	
					accgatcagt	
					atgttcatgt	
					tagattgaat	
					gaagtttgtg	
					agctatttct	
					agctgtagac	
catggtccgt	cctgtagaaa	ccccaacccg	tgaaatcaaa	aaactcgacg	gcctgtgggc	1320
attcagtctg	gatcgcgaaa	actgtggaat	tgatcagcgt	tggtgggaaa	gcgcgttaca	1380
agaaagccgg	gcaattgctg	tgccaggcag	ttttaacgat	cagttcgccg	atgcagatat	1440
					aaggttgggc	
					tgtgggtcaa	
					atgtcacgcc	
					aactgaactg	
					agcagtctta	
					acaccacgcc	
					gtaaccacgc	
					gtgatgcgga	
					tgaatccgca	
					aaagccagac	
					agggcgaaca	
					aagatgcgga	
					taatggactg	
					tgctcgactg	
					ttaacctctc	
tttaggcatt	ggtttcgaag	cgggcaacaa	gccgaaagaa	ctgtacagcg	aagaggcagt	2400
caacggggaa	actcagcaag	cgcacttaca	ggcgattaaa	gagctgatag	cgcgtgacaa	2460
aaaccaccca	agcgtggtga	tgtggagtat	tgccaacgaa	ccggataccc	gtccgcaagt	2520
					cgcgtccgat	
cacctgcgtc	aatgtaatgt	tctqcqacqc	tcacaccgat	accatcagcg	atctctttga	2640
tatactatac	ctgaaccgtt	attacqqatq	gtatgtccaa	agcggcgatt	tggaaacggc	2700
					agccgattat	
					ccgacatgtg	
					atcgcgtcag	
caccatcatc	aataaaaaa	tatqqaattt	caccatttt	acaacctcac	aaggcatatt	2940
					agtcggcggc	
					agcagggagg	
					cggtggggaa	
					cttaagattg	
aatcctgttg	ccggtcttgc	gatgattatc	atataatttc	igitgaatta	cgttaagcat	3∠4U
					gattagagtc	
					ctaggataaa	
					aacgcggccg	
					ggggggcatc	
					tcaattgcga	
					actggcagga	
					gtttgattgt	
ttctgttgga	gtgcagccca	tttcaccgga	caagtcggct	agattgattt	agccctgatg	3720
					gtacaacgag	
	-		10		_	

						2040
					aaggaaaatt	
attgtgccag	gcagttgaaa	gtcagcacct	tttaacgagt	gctgaaatga	cggctaaatg	3900
ggaaacgtat	ttaaaaaaaa	tcggtaaaag	agaaggcaat	caagagaact	ttattacgaa	3960
tatcaaaaaa	ttcattqttc	atttactgga			aaaaactaaa	4020
					taggaaaatg	
					caaattatcc	
					aaacaaatgt	
aaaagaatta	ctagagggaa	aagaaaccct	ggtaaaagga	atcaaaacga	aagatagaaa	4260
gtcctacaat	gccgttgtaa	aaatcggaga	aaagggatat	attgatttta	tatctttctc	4320
	taaaagccct				atcacttatc	
					aaatagaaag	
	agtgatttgt					
					tacaccaatc	
2 2	aagatataat				cttgcaccat	
					ggaaataaga	
cttagaagca	aacttaagag	tgtgttgata	gtgcagtatc	ttaaaatttt	gtataatagg	4680
					acatgaacaa	
					aaataataaa	
				_	aagggcattt	
					acagtcatct	
					ttcaccaaga	
tattctacag	tttcaattcc	ctaacaaaca	gaggtataaa	attgttggga	gtattcctta	5040
ccatttaagc	acacaaatta	ttaaaaaaadt	ggtttttgaa	agccatgcgt	ctgacatcta	5100
					cactagggtt	
					aatgctttca	
	-				cagatgttcc	
					gagaatatcg	
tcaactgttt	actaaaaatc	agtttcatca	agcaatgaaa	cacgccaaag	taaacaattt	5400
aagtaccgtt	acttatgagc	aagtattgtc	tatttttaat	agttatctat	tatttaacgg	5460
					gtcgcgagat	
					acgccaggcc	
					gctactggaa	
					ggcacgggag	
					gccaggcccg	
ctgcgacgcc	gacaggatct	agcgctgcgt	ttggtgtcaa	caccaacagc	gccacgcccg	5820
cagttccgca	aatagccccc	aggaccgcca	tcaatcgtat	cgggctacct	agcagagcgg	5880
					accegeeegg	5940
					gtgcgccgag	
					tcacgagcaa	
	ggcaacgccc					6120
ctccacgaaa	acgccggaca	gatgcgcctt	gtgagcgtcc	ttggggccgt	cctcctgttt	6180
gaagaccgac	agcccaatga	tctcgccgtc	gatgtaggcg	ccgaatgcca	cggcatctcg	6240
caaccqttca	gcgaacgcct	ccatgggctt	tttctcctcg	tgctcgtaaa	cggacccgaa	6300
_			_		gcacgtcggc	
					ctctgtttat	
					gtgcgtcgag	
					ccagccggaa	
ctgaccccac	aaggccctag	cgtttgcaat	gcaccaggtc	atcattgacc	caggcgtgtt	6600
ccaccaggcc	gctgcctcgc	aactcttcgc	aggcttcgcc	gacctgctcg	cgccacttct	6660
tcacacaaat	ggaatccgat	ccqcacatqa	ggcggaaggt	ttccaqcttq	agcgggtacg	6720
					agcttgcggt	
					atttcctcgt	
					aagcggtgca	
					gccgtcgcct	
					gaccagccca	
					gtgcgcttcg	
					tcgacgccgg	
					agcgcctcgc	
					tttggcatcg	
					tccttgatct	
					tttgccaggt	
cctcgccggc	ggtttttcgc	ttcttggtcg	tcatagttcc	tcgcgtgtcg	atggtcatcg	7440

						-
acttcgccaa	acctgccgcc	tcctqttcqa	gacgacgcga	acgctccacg	gcggccgatg	7500
	ggcaggggga					7560
	cgagccgacg					7620
ttacaataat	ttcggcatcc	toggoggaaa	accccacate	gatcagttct	tacctatata	7680
ccttccaatc	aaacgtccga	ttcattcacc	ctccttacaa	gattgccccg	actcacacca	7740
gaggaatata	cccttattcc	tgatttgacc	cacctaatac	cttaatatcc	agataatcca	7800
	aatgaagtcg			gtccttctcg	tacttggtat	7860
	gccctgcacg					7920
	gccaaaacac					7980
cygcctyaga	ccactcttca	ttaaccccta	tatcgaaaat	tacttacaac	ttattagaat	8040
	tacctcggtg					8100
					agctccgcga accccccggc	
					catcatgacc	
	cgtcctgctt					8340
						8400
	ccgtgcgcgg					8460
	cattgatgcg					8520
	cctggccgac					8580
	caatcgctct					
	ttggcttggt					8640 8700
	agcctcgcag					
	aggaacaccc					8760
	tacaccaagg					8820
	atggatatac					8880
	tccgtcgacc					8940
	tctatggccc					9000
	ggccgccggc					9060
	gacgttgaca					9120
	cgatttcggc					9180
	tacgcgagtt					9240
	cacttgaggg					9300
	agtgatgaca					9360
	tccagcattt					9420
cttttaacct	gcttttaaac	caatatttat	aaaccttgtt	tttaaccagg	gctgcgccct	9480
	cgcgcacgcc					9540
	ctcccatccc					9600
aaaaatggca	ggccaagctt	gcttggtcgt	tccgcgtgaa	cgtcggctcg	attgtacctg	9660
cgttcaaata	ctttgcgatc	gtgttgcgcg	cctgcccggt	gcgtcggctg	atctcacgga	9720
tcgactgctt	ctctcgcaac	gccatccgac	ggatgatgtt	taaaagtccc	atgtggatca	9780
ctccgttgcc	ccgtcgctca	ccgtgttggg	gggaaggtgc	acatggctca	gttctcaatg	9840
	gcctaaccgg					9900
					tccgggaaat	9960
	cagcaatgag					10020
atttttttc	aattcaaaaa	tgtagatgtc	cgcagcgtta	ttataaaatg	aaagtacatt	10080
	gacaaattac					10140
	aaatctttat					10200
	gtgaggtctg					10260
	atccagccag					10320
	ggtgattttg					10380
	ctgatccttc					10440
	tctctgatgt					10500
					caacgggaaa	10560
	gaggccgcga				gggtataaat	10620
	taatgtcggg				gggaagcccg	10680
	gttgtttctg				gttacagatg	
					aagcatttta	
	tgatgatgca					
					gcagtgttcc	
tacaccaatt	gcattcgatt	cctatttata	attgtccttt	taacagcgat	cgcgtatttc	10980
atctcactca	adcacaatca	cgaatgaata	acagtttaat	tgatgcgagt	gattttgatg	11040
					cttttgccat	
auguguguaa	-990099000	Jangaaaaa				

tctcaccgga	ttcagtcgtc	actcatggtg	atttctcact	tgataacctt	atttttgacg	11160
					cgataccagg	
					aaacggcttt	
					ttgatgctcg	
					attacgctga	
					aggatcagat	
cacgcatctt	cccgacaacg	cagaccgttc	cgtggcaaag	caaaagttca	aaatcaccaa	11520
					ggctggatga	
tagagcaatt	caggeetggt	atgagtcagc	aacaccttct	tcacgaggca	gacctcagcg	11640
cctgcaggtc	gacggatctg	ggggatctag	cagatccqcq	aggggatcga	gcccgacata	11700
taccccaatt	tcattacaac	taacatgagt	tcttggacaa	atttgattgg	acctgatgag	11760
atgatccaac	ccgaggatat	agcaaagctc	gttcgtgcag	caatqqaacq	gccaaaccgt	11820
acttttatcc	ccaagaatga	gatactatac	atgaaggaat	ctacccqttq	atgtccaaca	11880
atctcaggat	taatgtctat	gtatcttaaa	taatgttgtc	ggtattttgt	aatctcatat	11940
					acgtvttgat	
tagaretetae	tcaatattat	aataaaaata	tccattaaac	acgatttgat	acaaatgaca	12060
					tcgaatagaa	
gitaataatt	taasataa	aattaacaca	tactaataaa	tacatcaaat	atctttgcca	12180
aatactycac	cycaaacyaa	ctcatatcca	atctcaatta	caageedade	atccccgaag	12240
agattaageg	gagtgaggge	gagatagatg	gccccagcca	cactalage	attgcctacc	12300
					atatcctatc	
					gtgggcgaag	
aactccagca	tgagateeee	gegerggagg	attatteage	cggcgtcccg	gaaaacgatt	12540
ccgaagccca	acctttcata	gaaggeggeg	giggaaloga	aatotogtga	tggcaggttg	12540
ggcgtcgctt	ggtcggtcat	ttcgaacccc	agagteeege	tcagaagaac	tcgtcaagaa	12600
ggcgatagaa	ggcgatgcgc	tgcgaatcgg	gagcggcgat	accgtaaagc	acgaggaagc	12660
ggtcagccca	ttcgccgcca	agctcttcag	caatatcacg	ggtagccaac	gctatgtcct	12720
					cggccatttt	
					tcgccgtcgg	
					tgctcttcgt	
ccagatcatc	ctgatcgaca	agaccggctt	ccatccgagt	acgtgctcgc	tcgatgcgat	12960
gtttcgcttg	gtggtcgaat	gggcaggtag	ccggatcaag	cgtatgcagc	cgccgcattg	13020
					agatcctgcc	
					tcgagcacag	
ctgcgcaagg	aacgcccgtc	gtggccagcc	acgatagccg	cgctgcctcg	tcctgcagtt	13200
cattcagggc	accggacagg	tcggtcttga	caaaaagaac	cgggcgcccc	tgcgctgaca	13260
gccggaacac	ggcggcatca	gagcagccga	ttgtctgttg	tgcccagtca	tagccgaata	13320
					atcatgctaa	
aggatctcga	tccccgggct	gattttctca	gtctccagag	atgtgtttaa	ataggcagta	13440
gccttttgat	atcagccaca	agtgtgtggg	aatcttatct	tcggatttca	attaggaatt	13500
aaccttattg	aattctcttg	aaaggaagtc	cgcaaagtgg	ttgtcggttc	ctttaatgtg	13560
ttcaacatca	aatgaatagt	ggctaagcca	tgcttgccat	ctgatgtttc	ttccaagttt	13620
					ctgtcctaat	
cagaaaatga	acaggagtta	gataaatact	aaatttcttt	atagtattta	ttaccgccaa	13740
	tcattgctgt					13800
gtccccagat	tagccttttc	aatttcagaa	agaatgctaa	cccacagatg	gttagagagg	13860
cttacqcaqc	aggtctcatc	aagacgatct	acccgagcaa	taatctccag	gagatcaaat	13920
	gaaggttaaa					13980
	tatatttctc					14040
					gttcccactg	14100
aatcaaaggc	catggagtca	aagattcaaa	tagaggacct	aacagaactc	gccgtaaaga	14160
ctaacaaca	atteatacad	agtotottac	gactcaatga	caagaagaaa	atcttcgtca	14220
acatootoo	acacaacaca	cttatctact	ccaaaaatat	caaagataca	gtctcagaag	14280
accasaddd	aattgacacg	tttcaacaaa	aggtaatatc	cadagacaca	ctcggattcc	14340
attaccasca	tateteteae	tttattataa	agatagtage	aaannaannt	ggctcctaca	14400
actyccoayc	ttacastsss	adaaaddcca	tcattassas	tacctataca	gacagtggtc	14460
					ccaaccacgt	
					gcacaatccc	
					gagagaacac	
					cttttcactg	
gagttgtccc	aattettgtt	gaactagatg	gigaigitaa	rgggcacaaa	ttttctgtca	14/00

```
gtggagaggg tgaaggtgat gctacatacg gaaagcttac ccttaaattt atttgcacta 14820
ctggaaaact acctgttcca tggccaacac ttgtcactac tttctcttat ggtgttcaat 14880
gcttttcccg ttatccggat catatgaagc ggcacgactt cttcaagagc gccatgcctg 14940
agggatacgt gcaggagagg accatctctt tcaaggacga cgggaactac aagacgcgtg 15000
ctqaaqtcaa qtttqaggga gacaccctcg tcaacaggat cgagcttaag ggaatcgatt 15060
tcaaqqaqqa cqqaaacatc ctcggccaca agttggaata caactacaac tcccacaacg 15120
tatacatcac ggcagacaaa caaaagaatg gaatcaaagc taacttcaaa attcgccaca 15180
acattgaaga tggatccgtt caactagcag accattatca acaaaatact ccaattgqcg 15240
atggccctqt ccttttacca gacaaccatt acctgtcgac acaatctgcc ctttcgaaag 15300
atcccaacga aaagcgtgac cacatggtcc ttcttgagtt tgtaactgct gctgggatta 15360
cacatggcat ggatgagcta tacaaataaa gatcctcgaa tttccccgat cgttcaaaca 15420
tttqqcaata aaqtttctta agattgaatc ctgttgccgg tcttgcgatg attatcatat 15480
aatttctgtt gaattacgtt aagcatgtaa taattaacat gtaatgcatg acgttattta 15540
tqaqatqqqt ttttatgatt agagtcccqc aattatacat ttaatacqcg atagaaaaca 15600
aaatatagcg cgcaaactag gataaattat cgcgcgcggt gtcatctatg ttactagatc 15660
                                                                  15676
gatcgggaat tagatc
<210> 31
<211> 17111
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:pArActAf-bin
gatctgcaag cgatcgcggc gcgccattta aatgcccggg cgtttaaacg cggccgctct 60
agaactagtq qatcctqcaa gagttttaca agtgaaatta agtttaaaca tttataaata 120
tataccaagt caagtgtgct ttttaaaaat tttgctgact tcataaaata tattaggaag 180
tcagcttggc atggagctat ataatcttaa aaaggaatca aaaatatcga aaaatatatt 240
aqaaqqqaqa qqactaatta atatttacca gctccaggga aatatattct ttggagctgg 300
cctatcqttt taaaattttt tttcatggac gtcatatata aatctaaacc ccttctaaat 360
atattaqaaa ttaaaqatat cgagatcctg caagagtttt acaagtgaaa ttaagtttaa 420
acatttataa atatatacca agtcaagtgt gctttttaaa aattttgctg acttcataaa 480
atatattagg aagtcagctt ggcatggagc tatataatct taaaaaaggaa tcaaaaatat 540
cqaaaaatat attaqaaqqq agaggactaa ttaatattta ccagctccag ggaaatatat 600
tetttqqaqe tqqcetateq ttttaaaatt ttttttcatg gacgtcatat ataaatetaa 660
acceptteta aatatattag aaattaaaga tategagate eeeegggetg cagaattegg 720
cttgttttga cgagttcgga tgtagtagta gccattattt aatgtacata ctaatcgtga 780
atagtgaata tgatgaaaca ttgtatctta ttgtataaat atccataaac acatcatgaa 840
agacactttc tttcacqqtc tqaattaatt atgatacaat tctaatagaa aacgaattaa 900
attacgttga attgtatgaa atctaattga acaagccaac cacgacgacg actaacgttg 960
cctgqattqa ctcqqtttaa gttaaccact aaaaaaacgg agctgtcatg taacacgcgg 1020
atcgagcagg tcacagtcat gaagccatca aagcaaaaga actaatccaa ggggctgaga 1080
tgattaatta gtttaaaaat tagttaacac gagggaaaag gctgcctgac agccaggtca 1140
cgttatcttt acctgtggtc gaaatgattc gtgtctgtcg attttaatta tttttttgaa 1200
aggeegaaaa taaagttgta agagataaac eegeetatat aaatteatat atttteetet 1260
ccgctttgaa ttgtctcgtt gtcctcctca ctttcatcag ccgttttgaa tctccggcga 1320
cttgacagag aagaacaagg aagaagacta agagagaaag taagagataa tccaggagat 1380
tcattctccg ttttgaatct tcctcaatct catcttcttc cgctctttct ttccaaggta 1440
ataggaactt tetggateta etttatttge tggatetega tettgtttte teaattteet 1500
tgagatctgg aattcgttta atttgggatc tgtgaacctc cactaaatct tttggtttta 1560
ctaqaatcqa tctaaqttga ccgatcagtt agctcgatta tagctaccag aatttggctt 1620
qaccttqatq qaqaqatcca tgttcatgtt acctgggaaa tgatttgtat atgtgaaatg 1680
aaatctgaac tgttgaagtt agattgaatc tgaacactgt caatgttaga ttgaatctga 1740
acactgttta aggttagatg aagtttgtgt atagattctt cgaaacttta ggatttgtag 1800
tgtcgtacgt tgaacagaaa gctatttctg attcaatcag ggtttatttg actgtattga 1860
actetttttq tqtqtttgca getgtagaec atggteegte etgtagaaac eecaaceegt 1920
gaaatcaaaa aactcgacgg cctgtgggca ttcagtctgg atcgcgaaaa ctgtggaatt 1980
gatcagcgtt ggtgggaaag cgcgttacaa gaaagccggg caattgctgt gccaggcagt 2040
tttaacgatc agttcgccga tgcagatatt cgtaattatg cgggcaacgt ctggtatcag 2100
```

WO 00/32800	1				PC17US	99/28123
						- 01.60
cgcgaagtct	ttataccgaa	aggttgggca	ggccagcgta	tegtgetgeg	tttcgatgcg	2160
gtcactcatt	acggcaaagt	gtgggtcaat	aatcaggaag	tgatggagca	tcagggcggc	2220
tatacgccat	ttgaagccga	tgtcacgccg	tatgttattg	ccgggaaaag	tgtacgtatc	2280
accgtttgtg	tgaacaacga	actgaactgg	cagactatcc	cgccgggaat	ggtgattacc	2340
gacgaaaacg	gcaagaaaaa	gcagtcttac	ttccatgatt	tctttaacta	tgccggaatc	
catcgcagcg	taatgctcta	caccacgccg	aacacctggg	tggacgatat	caccgtggtg	2460
	cgcaagactg					2520
gatgtcagcg	ttgaactgcg	tgatgcggat		ttgcaactgg		2580
agcgggactt	tgcaagtggt	gaatccgcac	ctctggcaac	egggtgaagg	tracetetat	2640
	tcacagccaa					2700
atccggtcag	tggcagtgaa	gggcgaacag	ttcctgatta	accacaaacc	gitetaetti	2760
actggctttg	gtcgtcatga	agatgcggac	ttacgtggca	aaggattega	taacgigcig	2820 2880
atggtgcacg	accacgcatt	aatggactgg	attggggcca	actectaceg	actactegeat	
taccettacg	ctgaagagat	getegaetgg	gcagargaac	atggcategt	ggtgattgat	3000
gaaactgctg	ctgtcggctt	taacctctct	rraggearra	gtttegaage	gggcaacaag	
ccgaaagaac	tgtacagcga	agaggcagtc	aacggggaaa	gagtagtagt	gtacttacay	3120
	agctgatagc					3180
	cggatacccg					3240
	tcgacccgac					3300
	ccatcagcga gcggcgattt					3360
	aactgcatca					3420
				atcagtgtgc		3480
	caatgtacac gcgtctttga					
argrateacc	cgacctcgca	agggatatta	cacattaaca	gtgaacaggt	acquatcttc	3600
	gcaaaccgaa					
	aaaaaccgca					3720
aactteggtg	ctacagcctc	gcagggaggc	tagagaactc	gaatttcccc	gatcgttcaa	
agatttagga	ataaagtttc	ttaadattda	atcctattac	caatettaca	atgattatca	3840
tataatttct	attaaagttee	attaagacega	taataattaa	catgtaatgc	atgacgttat	3900
ttatgagatg	gattttata	attagagtcc	cacaattata	catttaatac	gcgatagaaa	
	gcgcgcaaac					4020
atcgatcggg				ttctaatata		4080
gtttagattt				aacgataggc		4140
gaatatattt					atatatttt	4200
cgatattttt	gattcctttt	taagattata	tagctccatg	ccaagctgac	ttcctaatat	4260
attttatgaa	gtcagcaaaa	tttttaaaaa	gcacacttga	cttggtatat	atttataaat	4320
	aatttcactt	gtaaaactct	tgcaggatct	cgatatcttt	aatttctaat	4380
atatttagaa	ggggtttaga	tttatatatg	acgtccatga	aaaaaaattt	taaaacgata	4440
ggccagctcc	aaagaatata	tttccctgga	gctggtaaat	attaattagt	cctctccctt	4500
ctaatatatt	tttcgatatt	tttgattcct	ttttaagatt	atatagctcc	atgccaagct	4560
	tatattttat					
	aatgtttaaa					
ctagagcggc	cgcttaatta	aggccggcct	gcaggcatgc	aagctcggat	ctcacctacg	4740
atggggggca	tcgcaccggt	gagtaatatt	gtacggctaa	gagcgaattt	ggcctgtaga	4800
	gagctttcta					
	gatatatacc					
ttgtttgatt	gtttctgttg	gagtgcagcc	catttcaccg	gacaagtcgg	ctagattgat	4980
	tgaactgccg					5040
ttgtacaacg	agacgacaga	acacccacgg	gaccgagctt	cgcaagcttg	ttgtaactga	5100
	ttattgtgcc					
	tgggaaacgt					
	aatatcaaaa					
	aatttttctg					
	tgtcctaagt					
	cctgaatgta					
	gtaaaagaat					
	aagtcctaca					
	tcaaaataaa					
	tcacaaatca					
agaaatagaa	agaagtgagt	gattgtggga	aatttaggcg	cacaaaaaga	aaaacgaaat	3/60

						F000
gatacaccaa	tcagtgcaaa	aaaagatata	atgggagata	agacggttcg	tgttegtget	
gacttgcacc	atatcataaa	aatcgaaaca	gcaaagaatg	gcggaaacgt	aaaagaagtt	5880
	gacttagaag					5940
	ggaattgaag					6000
	aaaaatataa					
						6120
	aaacaattga					
	ttaacgacga					
	ctattcaact					
aattcaccaa	gatattctac	agtttcaatt	ccctaacaaa	cagaggtata	aaattgttgg	6300
	taccatttaa					
	tatctgattg					
	ttgctcttgc					
	catcctaaac					
	ccagataaat					
	cgtcaactgt					
	ttaagtaccg					
attatttaac	gggaggaaat	aattctatga	gtcgcttttg	taaatttgga	aagttacacg	6780
	gaatgtagat					
	agcgcctacg					
	tgagaaagcc					
						7020
	ggaagtaggt					
	ctgtaggcat					7080
	cggccgccag					
cacttgcggg	tcagcacggt	tccgaacgcc	atggaaaccg	cccccgccag	gcccgctgcg	7200
acgccgacag	gatctagcgc	tgcgtttggt	gtcaacacca	acagcgccac	gcccgcagtt	7260
	ccccaggac					7320
	ccatcagcgg					7380
	aataaacaac					
	ccaccagatt					
ccgccggcaa	cgcccgcagc	agcataccgg	egaeeeeteg	geetegetgt	tegggeteea	7500
	ggacagatgc					
	aatgatctcg					
	cgcctccatg					
ctggagcttt	cttcagggcc	gacaatcgga	tctcgcggaa	atcctgcacg	tcggccgctc	7800
	aatctgagcc					
	cgcgccgtgc					
	cctgaaatgc					
	cctagcgttt					
	ctcgcaactc					
	ccgatccgca					
cggtgcgagc	tgaaatagtc	gaacatccgt	cgggccgtcg	gcgacagctt	gcggtacttc	8220
tcccatatga	atttcgtgta	gtggtcgcca	gcaaacagca	cgacgatttc	ctcgtcgatc	8280
aggacctggc	aacgggacgt	tttcttgcca	cggtccagga	cgcggaagcg	gtgcagcagc	8340
gacaccgatt	ccaggtgccc	aacgcggtcg	gacgtgaagc	ccatcgccgt	cgcctgtagg	8400
cacascsaac	attcctcggc	cttcgtgtaa	taccggccat	tgatcgacca	acceagatee	8460
taacaaaact	cgtagaacgt	assaatasta	aact caccas	tadddataca	cttcacatac	8520
tagcaaagct	cgtagaacgt	gaaggegaee	taatagaaa	gaagetagag	accaatataa	8580
tecaacacet	getgecacae	cagillogica	stancettet	gcagcccgac	geeggegeag	0.500
gtgatcttca	cgtccttgtt	gacgtggaaa	argaeerrgr	Litigicagege	cregegeggg	0700
attttcttgt	tgcgcgtggt	gaacagggca	gagcgggccg	tgtcgtttgg	catcgctcgc	8700
atcgtgtccg	gccacggcgc	aatatcgaac	aaggaaagct	gcatttcctt	gatctgctgc	8760
ttcgtgtgtt	tcagcaacgc	ggcctgcttg	gcctcgctga	cctgttttgc	caggtcctcg	8820
ccggcggttt	ttcgcttctt	ggtcgtcata	gttcctcgcg	tgtcgatggt	catcgacttc	8880
	ccgcctcctg					
adcadadcad	ggggagccag	ttgcacacta	togoactoga	tettaaccat	agettgetgg	9000
accatcgagg	cgacggactg	gaaggtttcg	-caaaacacsc	gcatgacggt	acaacttaca	9060
ataatttaa	catcctcggc	daaaaacccc	acatcastas	attettacet	atatacette	9120
acygeteegg	taggettest	+02000+00+	tacaaaa++~	gerergeer	gaacgaaaaa	9120
eggicaaacg	tccgattcat	toacccccct	cycyyyatty	tatagaetta	cyccygygca	2700
atgtgccctt	attcctgatt	ugacccgcct	ygracettaa	igiccagata	acceaectta	924U
tcggcaatga	agtcggtccc	gtagaccgtc	tggccgtcct	tctcgtactt	ggtattccga	9300
atcttgccct	gcacgaatac	cagcgacccc	ttgcccaaat	acttgccgtg	ggcctcggcc	9360
tgagagccaa	aacacttgat	gcggaagaag	tcggtgcgct	cctgcttgtc	gccggcatcg	9420

						-
ttgcgccact	cttcattaac	cgctatatcg	aaaattgctt	gcggcttgtt	agaattgcca	9480
	cggtgtcacg					9540
	cggtcttgcc					9600
	tggagcgcat					9660
	aaaagtcatg					9720
	tgcttctctt					9780
	cgcgggtcgt					9840
	atgcgggcca					9900
	ccgacggcca					9960
	gctcttcgtt					10020
	ttggtttcat					10080
	cgcagagcag					10140
	cacccgctcg					10200
	caaggaaagt					10260
	tataccgaaa					10320
	cgaccctttc					10380
	ggccctgcaa					10440
	ccggcgttgt					10500
	tgacacttga					10560
	teggeeggeg					10620
	gagtttccca					10680
	gaggggcgcg					10740
	tgacagatga					10800
	catttgcaag					10860
	taaaccaata					10920
	acgccgaagg					10980
	atcccccag					11040
	agcttgcttg					11100
	cgatcgtgtt					11160
	gcaacgccat					11220
	gctcaccgtg					11280
	accggctcag					11340
	gcggcaggat					11400
	atgagtatga					11460
	aaaaatgtag			aaatgaaagt		11520
aaaacgacaa	attacgatcc	gtcgtattta	taggcgaaag	caataaacaa	attattctaa	11580
	tttatttcga					11640
	gtctgcctcg					11700
ccatcatcca	gccagaaagt	gagggagcca	cggttgatga	gagctttgtt	gtaggtggac	11760
	ttttgaactt					11820
gtgatctgat	ccttcaactc	agcaaaagtt	cgatttattc	aacaaagcca	cgttgtgtct	11880
caaaatctct	gatgttacat	tgcacaagat	aaaaatatat	catcatgaac	aataaaactg	11940
tctgcttaca	taaacagtaa	tacaaggggt	gttatgagcc	atattcaacg	ggaaacgtct	12000
	cgcgattaaa					
	tegggcaate					
ccagagttgt	ttctgaaaca	tggcaaaggt	agcgttgcca	atgatgttac	agatgagatg	12180
gtcagactaa	actggctgac	ggaatttatg	cctcttccga	ccatcaagca	ttttatccgt	12240
	atgcatggtt					
ttagaagaat	atcctgattc	aggtgaaaat	attgttgatg	cgctggcagt	gttcctgcgc	12360
cggttgcatt	cgattcctgt	ttgtaattgt	ccttttaaca	gcgatcgcgt	atttcgtctc	12420
	aatcacgaat					
	ggcctgttga					
ccggattcag	tcgtcactca	tggtgatttc	tcacttgata	accttatttt	tgacgagggg	12600
aaattaatag	gttgtattga	tgttggacga	gtcggaatcg	cagaccgata		12660
gccagcctat	ggaactgcct	cggtgagtgt	tctccttcat	tacagaaacg	gctttttcaa	12720
	ttgataatcc					
	cagaattggt					
	gctttgttga					
atcttcccga	caacgcagac	cgttccgtgg	caaagcaaaa	gttcaaaatc	accaactggt	12960
	caaagctctc					
cgattcaggc	ctggtatgag	tcagcaacac	cttcttcacg	aggcagacct	cagcgcctgc	T3080

anatonacan	atctaaaaaa	tctagcagat	ccacaaaaaa	atcgagcccg	acatatocco	13140
aggicgacgg	~~~~~	tarattatta	acceptta	attggacctg	atgaaatgat	13200
				gaacggccaa		
				cgttgatgtc		
agggttaatg	tctatgtatc	ttaaataatg	ttgtcggtat	tttgtaatct	catatagatt	13380
				tatctacgtv		
tatcatcaat	attataataa	aaatatccat	taaacacgat	ttgatacaaa	tgacagtcaa	13500
taatctgatt	tgaatattta	ttaattgtaa	cgaattacat	aaagatcgaa	tagaaaatac	13560
				caaatatctt		
aadcagaata	adddcctcat	atccggtctc	agttacaagc	acggtatccc	caaaacacac	13680
tccaccaata	ccctccacat	agatgccggg	ctcgacgctg	aggacattgc	ctaccttgag	13740
antactatan	acaccaactt	taarctcaat	cccatcccaa	tctgaatatc	ctatcccaca	13800
				ttggggtggg		
cccagtccgg	tacagaacy	ggtctgtcca	ccaccaca	tcccggaaaa	casttccas	13920
cagcatgaga	teedegeget	ggaggatcat	atagaaatat	ccccggaaaa	agttagagat	13020
gcccaacctt	tcatagaagg	eggeggregga	accyaaaccc	cgtgatggca	ggttgggegt	14040
cgcttggtcg	gtcatttcga	accccagagt	eeegeteaga	agaactcgtc	aagaaggcga	14140
				aaagcacgag		
				ccaacgctat		
cggtccgcca	cacccagccg	gccacagtcg	atgaatccag	aaaagcggcc	attttccacc	14220
atgatattcg	gcaagcaggc	atcgccatgg	gtcacgacga	gatcctcgcc	gtcgggcatg	14280
cgcgccttga	gcctggcgaa	cagttcggct	ggcgcgagcc	cctgatgctc	ttcgtccaga	14340
tcatcctgat	cgacaagacc	ggcttccatc	cgagtacgtg	ctcgctcgat	gcgatgtttc	14400
acttaataat	caataaaca	ggtagccgga	tcaagcgtat	gcagccgccg	cattgcatca	14460
				acaggagatc		
acttcgccca	ataggagga	atacettece	gcttcagtga	caacgtcgag	cacagetgeg	14580
				cctcgtcctg		
caayyaacyc	agaggt	cttcacaaaa	ageogegees	gcccctgcgc	taacaaccaa	14700
				agtcatagcc		
tccacccaag	cggccggaga	accigegige	aatccatctt	gttcaatcat	gctaaaggat	14020
ctcgatcccc	gggctgattt	tctcagtctc	cagagatgtg	tttaaatagg	cagtageett	14000
ttgatatcag	ccacaagtgt	gtgggaatct	tatcttcgga	tttcaattag	gaattaacct	14940
tattgaattc	tcttgaaagg	aagtccgcaa	agtggttgtc	ggttccttta	atgtgttcaa	15000
catcaaatga	atagtggcta	agccatgctt	gccatctgat	gtttcttcca	agtttcgaat	15060
ctcctttgta	attgagatta	acgaaactct	tgaaatgagt	attatctgtc	ctaatcagaa	15120
aatgaacagg	agttagataa	atactaaatt	tctttatagt	atttattacc	gccaatgtct	15180
ctttqtcatt	gctgtggtaa	ttcttttctg	cagctttaaa	gctcagatct	tgcaggtccc	15240
cagattagcc	ttttcaattt	cagaaagaat	gctaacccac	agatggttag	agaggcttac	15300
acaacaaatc	tcatcaagac	gatctacccg	agcaataatc	tccaggagat	caaatacctt	15360
cccaadaadd	ttaaagatgc	agtcaaaaga	tťcaggacta	actgcatcaa	gaacacagag	15420
aaadatatat	ttctcaagat	cagaagtact	attccagtat	ggacgattca	aggettgett	15480
aaagatatat	acceaugae	agaagtaga	atctctaaaa	aggtagttcc	cactgaatca	15540
cacaaactaa	ggcaagcaac	taaaataaa	gecetaada	aactcgccgt	aaadactddc	15600
aaggccatgg	agccaaagac	attagagata	antanana	agaaaatctt	catcaacata	15660
gaacagttca	tacagagici	cttacgactc	aatgacaaga	ayaaaatttt	cyccaacacg	15720
gtggagcacg	acacgettgt	ctactccaaa	aatatcaaag	atacagtete	agaagaccaa	15720
agggcaattg	agacttttca	acaaagggta	atatccggaa	acctcctcgg	attecatige	15760
ccagctatct	gtcactttat	tgtgaagata	gtggaaaagg	aaggtggctc	ctacaaatgc	15840
catcattgcg	ataaaggaaa	ggccatcgtt	gaagatgcct	ctgccgacag	tggtcccaaa	15900
gatggacccc	cacccacgag	gagcatcgtg	gaaaaagaag	acgttccaac	cacgtcttca	15960
aagcaagtgg	attgatgtga	tatctccact	gacgtaaggg	atgacgcaca	atcccactat	16020
ccttcgcaag	accettecte	tatataagga	agttcatttc	atttggagag	aacacggggg	16080
actctagagg	atccggatcc	gtcgaccatg	agcaaaggag	aagaactttt	cactggagtt	16140
gtcccaattc	ttgttgaatt	agatggtgat	gttaatgggc	acaaattttc	tgtcagtgga	16200
gagggtgaag	gtgatgctac	atacggaaag	cttaccctta	aatttatttg	cactactgga	16260
aaactaccto	ttccatggcc	aacacttatc	actactttct	cttatggtgt	tcaatqcttt	16320
tcccattatc	cagatcatat	gaagcggcac	gacttettea	agagcgccat	gcctgaggga	16380
tacatacaca	agaggaggag	ctctttcaad	dacdacddda	actacaagac	acatactass	16440
at assattta	agaggaccac	cctcatcaac	addatcdadc	ttaagggaat	cdatttcaad	16500
gicaayiiig	agggagacac	ccacaaatta	raataceact	acaactccca	caacutatac	16560
gaggacggaa	acatectegg	ccacaayity	gaacacaact	tcaaaattcg	caacatat	16620
accacggcag	acaaacaaaa	yaaryyaarC	tataaaaa	atactccaat	tagaataa	16600
gaagatggat	CCGTTCAACT	aucauaccat	Latuaduada	alauluuddl	Luucualuuc	TOOOO
	togettaatt	agouguoous	+0000000-+	ctgccctttc	~2327C	16740

```
aacgaaaagc gtgaccacat ggtccttctt gagtttgtaa ctgctgctgg gattacacat 16800
ggcatggatg agctatacaa ataaagatcc tcgaatttcc ccgatcgttc aaacatttgg 16860
caataaagtt tettaagatt gaateetgtt geeggtettg egatgattat eatataattt 16920
ctgttgaatt acgttaagca tgtaataatt aacatgtaat gcatgacgtt atttatgaga 16980
tgggttttta tgattagagt cccgcaatta tacatttaat acgcgataga aaacaaaata 17040
tagogogoaa actaggataa attatogogo goggtgtoat otatgttact agatogatog 17100
                                                                  17111
ggaattagat c
<210> 32
<211> 17116
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:pAfActAf-bin
<400> 32
gatctgcaag cgatcqcqqc qcqccattta aatqcccqqq cgtttaaacg cggccgcatt 60
cccqqqqqat ctcqatatct ttaatttcta atatatttag aaggggttta gatttatata 120
tgacqtccat qaaaaaaat tttaaaacga taggccagct ccaaagaata tatttccctg 180
gagctggtaa atattaatta gtcctctccc ttctaatata tttttcgata tttttgattc 240
ctttttaaga ttatatagct ccatgccaag ctgacttcct aatatattt atgaagtcag 300
caaaattttt aaaaagcaca cttgacttgg tatatattta taaatgttta aacttaattt 360
cacttgtaaa actcttgcag gatctcgata tctttaattt ctaatatatt tagaaggggt 420
ttagatttat atatgacgtc catgaaaaaa aattttaaaa cgataggcca gctccaaaga 480
atatatttcc ctggagctgg taaatattaa ttagtcctct cccttctaat atatttttcg 540
atatttttga ttccttttta agattatata gctccatgcc aagctgactt cctaatatat 600
tttatgaagt cagcaaaatt tttaaaaagc acacttgact tggtatatat ttataaatgt 660
ttaaacttaa tttcacttgt aaaactcttg caggatccac tagttctagg ggctgcagaa 720
ttcqqcttqt tttqacqaqt tcqqatqtag taqtaqccat tatttaatqt acatactaat 780
cqtqaataqt qaatatgatg aaacattgta tcttattgta taaatatcca taaacacatc 840
atgaaaqaca ctttcttca cggtctgaat taattatgat acaattctaa tagaaaacga 900
attaaattac gttgaattgt atgaaatcta attgaacaag ccaaccacga cgacgactaa 960
cgttgcctgg attgactcgg tttaagttaa ccactaaaaa aacggagctg tcatgtaaca 1020
cgcggatcga gcaggtcaca gtcatgaagc catcaaagca aaagaactaa tccaaggggc 1080
tgaqatgatt aattagttta aaaattagtt aacacgaggg aaaaggctgc ctgacagcca 1140
ggtcacgtta tctttacctg tggtcgaaat gattcgtgtc tgtcgatttt aattattttt 1200
ttgaaaggcc gaaaataaag ttgtaagaga taaacccgcc tatataaatt catatttt 1260
ceteteeget ttgaattgte tegttgteet ecteaettte ateageegtt ttgaatetee 1320
ggcgacttga cagagaagaa caaggaagaa gactaagaga gaaagtaaga gataatccag 1380
gagatteatt eteegttttg aatetteete aateteatet tetteegete titettteea 1440
aggtaatagg aactttctgg atctacttta tttgctggat ctcgatcttg ttttctcaat 1500
ttccttqaqa tctggaattc gtttaatttg ggatctgtga acctccacta aatcttttgg 1560
ttttactaqa atcqatctaa gttgaccgat cagttagctc gattatagct accagaattt 1620
ggcttgacct tgatggagag atccatgttc atgttacctg ggaaatgatt tgtatatgtg 1680
aaatgaaatc tgaactgttg aagttagatt gaatctgaac actgtcaatg ttagattgaa 1740
tctgaacact gtttaaggtt agatgaagtt tgtgtataga ttcttcgaaa ctttaggatt 1800
tgtagtgtcg tacgttgaac agaaagctat ttctgattca atcagggttt atttgactgt 1860
attgaactct ttttgtgtgt ttgcagctgt agaccatggt ccgtcctgta gaaaccccaa 1920
cccgtgaaat caaaaaactc gacggcctgt gggcattcag tctggatcgc gaaaactgtg 1980
gaattgatca gcgttggtgg gaaagcgcgt tacaagaaag ccgggcaatt gctgtgccag 2040
gcagttttaa cgatcagttc gccgatgcag atattcgtaa ttatgcgggc aacgtctggt 2100
atcagegega agtetttata eegaaaggtt gggeaggeea gegtategtg etgegttteg 2160
atgcggtcac tcattacggc aaagtgtggg tcaataatca ggaagtgatg gagcatcagg 2220
qcqqctatac qccatttgaa qccgatgtca cgccgtatgt tattgccggg aaaagtgtac 2280
qtatcaccqt ttqtqtqaac aacgaactga actggcagac tatcccgccg ggaatggtga 2340
ttaccgacga aaacggcaag aaaaagcagt cttacttcca tgatttcttt aactatgccg 2400
gaatccatcg cagcgtaatg ctctacacca cgccgaacac ctgggtggac gatatcaccg 2460
tggtgacgca tgtcgcgcaa gactgtaacc acgcgtctgt tgactggcag gtggtggcca 2520
atggtgatgt cagcgttgaa ctgcgtgatg cggatcaaca ggtggttgca actggacaag 2580
gcactagcgg gactttgcaa gtggtgaatc cgcacctctg gcaaccgggt gaaggttatc 2640
```

tctatgaact	gtgcgtcaca	gccaaaagcc	agacagagtg	tgatatctac	ccgcttcgcg	2700
toggoatocg	atcagtagca	gtgaagggcg	aacagttcct	gattaaccac	aaaccgttct	2760
actttactqq	ctttaatcat	catgaagatg	cggacttacg	tggcaaagga	ttcgataacg	2820
tactaataat	gcacgaccac	gcattaatgg	actggattgg	ggccaactcc	taccgtacct	2880
					atcgtggtga	
ttgatgaaac	tactactate	gactttaacc	tctctttagg	cattagtitc	gaagcgggca	3000
acaacccaa	agaactgtac	adcdaadadd	cagtcaacgg	ggaaactcag	caagcgcact	3060
tacaggeggat	taaagagctg	atagggggtg	acaaaaacca	cccaagcgtg	gtgatgtgga	3120
					ccactggcgg	
grarracea	taaactcgac	ccaacacatc	castcaccta	catcaatata	atgttctgcg	3240
aagcaacgcg	caaacccgac	accastctct	ttaatatact	atacctasac	cgttattacg	3300
acgettatat	aganagaga	agegacecee	caacaaaaa	gatactagaa	aaagaacttc	3360
gatggtatgt	ccaaagcggc	gatteggaaa	ttatcatcac	castscaac	gtggatacgt	3420
taggeetggea	ggagaaactg	taccageega	tatagaataa	agagtatoag	tgtgcatggc	3480
tageeggget	tassassasta	tacaccyaca	tanagagaga	catcaataaa	caggtatgga	3540
tggatatgta	teacegegee	tagatagag	tattagagat	taacaataaa	caggiaigga	3600
atttcgccga	ttttgcgacc	Logoaaggoa	cattgegege	ratagaaaa	aagaaaggga	3660
					cgctggactg	
					aactctcctg	
gcgcaccatc	gtcggctaca	gcctcggtgg	ggaattggag	agctcgaatt	tccccgatcg	3780
ttcaaacatt	tggcaataaa	gtttcttaag	attgaatcct	gttgccggtc	ttgcgatgat	3840
tatcatataa	tttctgttga	attacgttaa	gcatgtaata	attaacatgt	aatgcatgac	3900
gttatttatg	agatgggttt	ttatgattag	agtcccgcaa	ttatacattt	aatacgcgat	3960
agaaaacaaa	atatagcgcg	caaactagga	taaattatcg	cgcgcggtgt	catctatgtt	4020
actagatcga	tcgggaattg	tttgggggat	ctcgatatct	ttaatttcta	atatatttag	4080
					taggccagct	
ccaaagaata	tatttccctg	gagctggtaa	atattaatta	gtcctctccc	ttctaatata	4200
tttttcgata	tttttgattc	ctttttaaga	ttatatagct	ccatgccaag	ctgacttcct	4260
aatatatttt	atqaaqtcag	caaaattttt	aaaaagcaca	cttgacttgg	tatatattta	4320
taaatottta	aacttaattt	cacttqtaaa	actcttgcag	gatctcgata	tctttaattt	4380
					aattttaaaa	
					ttagtcctct	
cccttctaat	atatttttcq	atatttttga	ttccttttta	agattatata	gctccatgcc	4560
					acacttgact	
					caggatccac	
					cggatctcac	
					aatttggcct	
atagacatca	attacaaact	ttctaatttc	aaactattcg	ggcctaactt	ttggtgtgat	4860
gatgatetta	accaggaget	ataccuttut	aatttgaggt	catataaata	agtcgctgtg	4920
tatattatt	tasttatta	tattagaata	carcccattt	caccadacaa	gtcggctaga	4980
targuitgu	catastassa	taccasaaaa	aagccatctt	gagggggaa	tgggaatgga	5040
ttgatttage	cotgatgaac	agacagagg	aagccatctt	agetteggaa	gcttgttgta	5100
tttcgttgta	caacgagacg	atagaacacc	cacgggaccg	agettegeaa	aacgagtgct	5160
					aggcaatcaa	
gagaacttta	ttacgaatat	CaaaaaattC	allyllcall	naciggaage	tgtacctaac	5240
gatatagaaa	aactaaattt	ttctgattac	caggaacaga	aagaaaaaga	agcagaaaaa	5340
agtattgtag	gaaaatgtcc	taagtgtggc	aacaatattg	tattaaaaaa	atcgttttat	5400
					aaagaaaaaa	
ctcaccaaaa	caaatgtaaa	agaattacta	gagggaaaag	aaaccctggt	aaaaggaatc	5520
aaaacgaaag	atagaaagtc	ctacaatgcc	gttgtaaaaa	tcggagaaaa	gggatatatt	5580
gattttatat	ctttctcaaa	ataaacataa	aagcccttta	aagagggctt	ttatatatta	5640
atcacaaatc	acttatcaca	aatcacaagt	gatttgtgat	tgttgatgat	aaaataagaa	5700
					aaagaaaaac	
					gttcgtgttc	
gtgctgactt	gcaccatatc	ataaaaatcg	aaacagcaaa	gaatggcgga	aacgtaaaag	5880
aagttatgga	aataagactt	agaagcaaac	ttaagagtgt	gttgatagtg	cagtatctta	5940
aaattttgta	taataggaat	tgaagttaaa	ttagatgcta	aaaatttgta	attaagaagg	6000
agtgattaca	tgaacaaaaa	tataaaatat	tctcaaaact	ttttaacgag	tgaaaaagta	6060
ctcaaccaaa	taataaaaca	attgaattta	aaagaaaccg	ataccgttta	cgaaattgga	6120
					aacgtctatt	
					tactcgtgtc	
					gtataaaatt	

WO 00/32800)				PCT/US	99/28123
						-
	ttccttacca					6360
	acatctatct					6420
	tagggttgct					6480
	gctttcatcc					6540
	atgttccaga					6600
	aatatcgtca					6660
gccaaagtaa	acaatttaag	taccgttact	tatgagcaag	tattgtctat	ttttaatagt	6720
tatctattat	ttaacgggag	gaaataattc	tatgagtcgc	ttttgtaaat	ttggaaagtt	6780
	aaagggaatg				cttccaagga	6840
	tccctagcgc				aaattcccac	6900
	ggggctgaga				agtcgcgaga	6960
	ccaaaggaag					7020
cgagaacatt	ggttcctgta	ggcatcggga	ttggcggatc	aaacactaaa	gctactggaa	7080
	tcctccggcc					7140
	gcgggtcagc				gccaggcccg	7200
	gacaggatct				gccacgcccg	7260
cagttccgca	aatagccccc	aggaccgcca	tcaatcgtat	cgggctacct	agcagagcgg	7320
	cacgaccatc					7380
	accgaaataa					7440
	cgcatccacc					7500
	ggcaacgccc					7560
ctccacgaaa	acgccggaca	gatgcgcctt	gtgagcgtcc	ttggggccgt	cctcctgttt	7620
gaagaccgac	agcccaatga	tctcgccgtc	gatgtaggcg	ccgaatgcca	cggcatctcg	7680
caaccgttca	gcgaacgcct	ccatgggctt	tttctcctcg	tgctcgtaaa	cggacccgaa	7740
catctctgga		gggccgacaa				7800
cgctccaagc		gagccttaat				7860
	tagagcgcgc					7920
cagtgcccgc	ttgttcctga					7980
ctgaccccac	aaggccctag	cgtttgcaat	gcaccaggtc	atcattgacc	caggcgtgtt	8040
ccaccaggcc					cgccacttct	8100
tcacgcgggt	ggaatccgat	ccgcacatga	ggcggaaggt	ttccagcttg	agcgggtacg	
gctcccggtg					agcttgcggt	8220
acttctccca	tatgaatttc					
cgatcaggac		gacgttttct				
gcagcgacac	cgattccagg	tgcccaacgc	ggtcggacgt	gaagcccatc	gccgtcgcct	8400
gtaggcgcga					gaccagccca	8460
ggtcctggca		aacgtgaagg				8520
cgtactccaa	cacctgctgc	cacaccagtt	cgtcatcgtc	ggcccgcagc	tcgacgccgg	8580
tgtaggtgat	cttcacgtcc	ttgttgacgt	ggaaaatgac	cttgttttgc	agcgcctcgc	8640
gcgggatttt					tttggcatcg	
	gtccggccac					
gctgcttcgt	gtgtttcagc	aacgcggcct	gcttggcctc	gctgacctgt	tttgccaggt	8820
cctcgccggc	ggtttttcgc	ttcttggtcg	tcatagttcc	tcgcgtgtcg	atggtcatcg	8880
acttcgccaa	acctgccgcc	tcctgttcga	gacgacgcga	acgctccacg	gcggccgatg	8940
gcgcgggcag	ggcaggggga	gccagttgca	cgctgtcgcg	ctcgatcttg	gccgtagctt	9000
gctggaccat	cgagccgacg	gactggaagg	tttcgcgggg	cgcacgcatg	acggtgcggc	9060
ttgcgatggt	ttcggcatcc	tcggcggaaa	accccgcgtc	gatcagttct	tgcctgtatg	9120
ccttccggtc	aaacgtccga	ttcattcacc	ctccttgcgg	gattgccccg	actcacgccg	9180
gggcaatgtg	cccttattcc	tgatttgacc	cgcctggtgc	cttggtgtcc	agataatcca	9240
ccttatcggc	aatgaagtcg	gtcccgtaga	ccgtctggcc	gtccttctcg	tacttggtat	9300
	gccctgcacg					
cggcctgaga	gccaaaacac	ttgatgcgga	agaagtcggt	gcgctcctgc	ttgtcgccgg	9420
catcgttgcg	ccactcttca	ttaaccgcta	tatcgaaaat	tgcttgcggc	ttgttagaat	9480
tgccatgacg	tacctcggtg	tcacgggtaa	gattaccgat	aaactggaac	tgattatggc	9540
nnctcgaaat	tccctcggtc	ttgccttgct	cgtcggtgat	gtacttcacc	agctccgcga	9600
agtcgctctt	cttgatggag	cgcatgggga	cgtgcttggc	aatcacgcgc	accccccggc	9660
cgttttagcg	gctaaaaaag	tcatggctct	gccctcgggc	ggaccacgcc	catcatgacc	9720
ttgccaagct	cgtcctgctt	ctcttcgatc	ttcgccagca	gggcgaggat	cgtggcatca	9780
ccgaaccgcg	ccgtgcgcgg	gtcgtcggtg	agccagagtt	tcagcaggcc	gcccaggcgg	9840
	cattgatgcg					
attttgtagc	cctggccgac	ggccagcagg	taggccgaca	ggctcatgcc	ggccgccgcc	9960
			2.4			

		++++	~~~~~~~			10020
					aggtgggctg	
					tacgccggcg	
gtagccggcc	agcctcgcag	agcaggattc	ccgttgagca	ccgccaggtg	cgaataaggg	10140
acagtgaaga	aggaacaccc	gctcgcaggt	gggcctactt	cacctatcct	gcccggctga	10200
					tgtatatcgt	
					gggttatgca	
					cgccgctggg	
					gtgtgcgaga	
caccgcggcc	ggccgccggc	gttgtggata	ccacgcggaa	aacttggccc	tcactgacag	10500
					tgacagatga	
					tcggcgaaaa	
					taagtgccct	
					ccttgacact	
					ggctgtccac	
					gctaacctgt	
					gctgcgccct	
ggcgcgtgac	cgcgcacgcc	gaaggggggt	gccccccctt	ctcgaaccct	cccggcccgc	10980
					gcctcacccc	
					attgtacctg	
					atctcacgga	
_	_					
					atgtggatca	
					gttctcaatg	
gaaattatct	gcctaaccgg	ctcagttctg	cgtagaaacc	aacatgcaag	ctccaccggg	11340
tgcaaagcgg	cagcggcggc	aggatatatt	caattgtaaa	tggcttcatg	tccgggaaat	11400
					gtaattacca	
a++++++	aattcaaaaa	tatanatato	cacaacatta	ttataaaatq	aaagtacatt	11520
					aacaaattat	
					gggagatccg	
					caggcctgaa	
					ttgttgtagg	
tggaccagtt	ggtgattttg	aacttttgct	ttgccacgga	acggtctgcg	ttgtcgggaa	11820
					agccacgttg	
					tgaacaataa	
					caacgggaaa	
					gggtataaat	
					gggaagcccg	
					gttacagatg	
					aagcatttta	
tccgtactcc	tgatgatgca	tggttactca	ccactgcgat	ccctgggaaa	acagcattcc	12300
					gcagtgttcc	
					cgcgtatttc	
					gattttgatg	
aggaggtaa	taggtaggat	attangana	tetagaaaaa	224462422	cttttgccat	12540
					atttttgacg	
					cgataccagg	
					aaacggcttt	
ttcaaaaata	tggtattgat	aatcctgata	tgaataaatt	gcagtttcat	ttgatgctcg	12780
atgagttttt	ctaatcagaa	ttggttaatt	ggttgtaaca	ctggcagagc	attacgctga	12840
					aggatcagat	
					aaatcaccaa	
					ggctggatga	
					gacctcagcg	
					gcccgacata	
					acctgatgag	
atgatccaac	ccgaggatat	agcaaagctc	gttcgtgcag	caatggaacg	gccaaaccgt	13260
					atgtccaaca	
	taatgtctat					13380
					acgtvttgat	
	tcaatattat					13500
						13560
	tgatttgaat					
aatactgcac	tgcaaatgaa	aattaacaca	ıactaataaa	tgcgtcaaat	atctttgcca	13620

agatcaagcg	gagtgagggc	ctcatatccg	gtctcagtta	caagcacggt	atccccgaag	13680
cacactccac	caatgccctc	gacatagatg	ccgggctcga	cgctgaggac	attgcctacc	13740
ttgagcatgg	teteagegee	ggctttaagc	tcaatcccat	cccaatctga	atatcctatc	13800
					gtgggcgaag	
aactccagca	tgagatccc	acactagaaga	atcatccaαc	caacatccca	gaaaacgatt	13920
					tggcaggttg	
aggatagett	agtcagtcat	ttcgaaccc	agagtcccgc	tcagaagaac	tcgtcaagaa	14040
					acgaggaagc	
					gctatgtcct	
					cggccatttt	
					tcgccgtcgg	
					tgctcttcgt	
					tcgatgcgat	
					cgccgcattg	
					agatcctgcc	
					tcgagcacag	
					tcctgcagtt	
					tgcgctgaca	
gccggaacac	ggcggcatca	gagcagccga	ttgtctgttg	tgcccagtca	tagccgaata	14/60
					atcatgctaa	
					ataggcagta	
					attaggaatt	
					ctttaatgtg	
					ttccaagttt	
					ctgtcctaat	
					ttaccgccaa	
tgtctctttg	tcattgctgt	ggtaattctt	ttctgcagct	ttaaagctca	gatcttgcag	15240
gtccccagat	tagccttttc	aatttcagaa	agaatgctaa	cccacagatg	gttagagagg	15300
cttacgcagc	aggtctcatc	aagacgatct	acccgagcaa	taatctccag	gagatcaaat	15360
					atcaagaaca	
					attcaaggct	
					gttcccactg	
aatcaaaggc	catggagtca	aagattcaaa	tagaggacct	aacagaactc	gccgtaaaga	15600
					atcttcgtca	
					gtctcagaag	
					ctcggattcc	
					ggctcctaca	
					gacagtggtc	
					ccaaccacgt	
					gcacaatccc	
					gagagaacac	
					cttttcactg	
					ttttctgtca	
					atttgcacta	
					ggtgttcaat	
					gccatgcctg	
gettteeeg	ccaccoggac	acatgaage	tanagaaaa	agganagtag	aagacgcgtg	16440
agggatacgt	gcaggagagg	accatectett	tcaaggacga	cgggaactac	ggaatcgatt	16500
					tcccacaacg	
					attcgccaca	
					ccaattggcg	
					ctttcgaaag	
					gctgggatta	
					cgttcaaaca	
					attatcatat	
					acgttattta	
					atagaaaaca	
	_	gataaattat	cgcgcgcggt	gtcatctatg	ttactagatc	
gatcgggaat	tagatc					17116

```
<211> 646
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: 3' MAR in
     pAf-Act2-Af
<400> 33
gggggatctc gatatcttta atttctaata tatttagaag gggtttagat ttatatatga 60
cqtccatgaa aaaaaatttt aaaacgatag gccagctcca aagaatatat ttccctggag 120
ctggtaaata ttaattagtc ctctcccttc taatatattt ttcgatattt ttgattcctt 180
tttaagatta tatageteea tgecaagetg actteetaat atattttatg aagteageaa 240
aatttttaaa aagcacactt gacttggtat atatttataa atgtttaaac ttaatttcac 300
ttgtaaaact cttgcaggat ctcgatatct ttaatttcta atatatttag aaggggttta 360
qatttatata tgacgtccat gaaaaaaaat tttaaaacga taggccagct ccaaagaata 420
tatttccctq qaqctggtaa atattaatta gtcctctccc ttctaatata tttttcgata 480
tttttgattc ctttttaaga ttatatagct ccatgccaag ctgacttcct aatatatttt 540
atqaaqtcaq caaaattttt aaaaagcaca cttgacttgg tatatattta taaatgttta 600
aacttaattt cacttgtaaa actcttgcag gatccactag ttctag
```

l vational Application No PCT/US 99/28123

A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER C12N15/82 C12N15/29 C12N15/6	57 C12N15/63 C12N5/10	
According to	International Patent Classification (IPC) or to both national classific	ation and IPC	
B. FIELDS			
	currentation searched (classification system followed by classification ${\tt C12N}$	on symbols)	
	on searched other than minimum documentation to the extent that s		
Electronic de	ata base consulted during the International search (name of data ba	se and, where practical, search terms used)	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages Releva	ant to claim No.
A	LIU J -W ET AL: "THE INFLUENCE (PLANT NUCLEAR MATRIX ATTACHMENT I (MARS) ON GENE EXPRESSION IN TRAIPLANTS" MOLECULAR AND GENERAL GENETICS, DIVERLAG, BERLIN, vol. 39, no. 1, 1 January 1998 (1998-01-01), page 115-123, XP002910494 ISSN: 0026-8925 the whole document	REGIONS NSGENIC E,SPRINGER	
X Furt	her documents are listed in the continuation of box C.	Patent family members are listed in annex.	
"A" docume consider affiling of "L" docume which citation "O" docume other to "P" docume of the to "P" docume of the to "P" docume of the to "P" docume to "	tegories of cited documents: ent defining the general state of the art which is not leved to be of particular relevance document but published on or after the international late ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date claimed	"T" later document published after the international filing or priority date and not in conflict with the application cited to understand the principle or theory underlyin invention "X" document of particular relevance; the claimed invent cannot be considered novel or cannot be considered involve an inventive step when the document is taken involve an inventive step when the document is taken cannot be considered to involve an inventive step with the considered to inventiv	in but ng the don d to en alone don when the n doou—
Date of the	actual completion of the international search	Date of malling of the international search report	
	9 March 2000	10/04/2000	
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Authorized officer ALCONADA RODRIG, A	

3

rational Application No PCT/US 99/28123

ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
BREYNE P ET AL: "Characterisation of a plant scaffold attachemt region in a DNA fragment that normalises transgene expression in tobacco" PLANT CELL,US,AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, no. 4, 1 April 1992 (1992-04-01), pages 463-471, XP002072399 ISSN: 1040-4651 the whole document	1-10
WO 97 27207 A (UNIV NORTH CAROLINA ;SPIKER STEVEN (US); ALLEN GEORGE C (US); HALL) 31 July 1997 (1997-07-31) the whole document	1–10
US 5 773 689 A (CHILDS LISA C ET AL) 30 June 1998 (1998-06-30) the whole document	1–10
RIPOLL P -J ET AL: "A new yeast artificial chromosome vector designed for gene transfer into mammalian cells" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, GB, ELSEVIER SCIENCE PUBLISHERS, BARKING, vol. 210, no. 1, 27 March 1998 (1998-03-27), pages 163-172, XP004117463 ISSN: 0378-1119 the whole document	1-10
VON KRIES J P ET AL: "A MATRIX-SCAFFOLD ATTACHMENT REGION BINDING PROTEIN IDENTIFICATION PURIFICATION AND MODE OF BINDING" CELL 1991, vol. 64, no. 1, 1991, pages 123-136, XP000891516 ISSN: 0092-8674 cited in the application	1-10
STEIN G S ET AL: "REGULATION OF TRANSCRIPTION-FACTOR ACTIVITY DURING GROWTH AND DIFFERENTIATION INVOLVEMENT OF THE NUCLEAR MATRIX IN CONCENTRATION AND LOCALIZATION OF PROMOTER BINDING PROTEINS" JOURNAL OF CELLULAR BIOCHEMISTRY 1991, vol. 47, no. 4, 1991, pages 300-305, XP000864497 ISSN: 0730-2312 cited in the application -/	1-10
	BREYNE P ET AL: "Characterisation of a plant scaffold attachemt region in a DNA fragment that normalises transgene expression in tobacco" PLANT CELL, US, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, no. 4, 1 April 1992 (1992–04–01), pages 463–471, XP002072399 ISSN: 1040–4651 the whole document W0 97 27207 A (UNIV NORTH CAROLINA; SPIKER STEVEN (US); ALLEN GEORGE C (US); HALL) 31 July 1997 (1997–07–31) the whole document US 5 773 689 A (CHILDS LISA C ET AL) 30 June 1998 (1998–06–30) the whole document RIPOLL P –J ET AL: "A new yeast artificial chromosome vector designed for gene transfer into mammalian cells" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES, GB, ELSEVIER SCIENCE PUBLISHERS, BARKING, vol. 210, no. 1, 27 March 1998 (1998–03–27), pages 163–172, XP004117463 ISSN: 0378–1119 the whole document VON KRIES J P ET AL: "A MATRIX-SCAFFOLD ATTACHMENT REGION BINDING PROTEIN IDENTIFICATION PURIFICATION AND MODE OF BINDING" CELL 1991, vol. 64, no. 1, 1991, pages 123–136, XP000891516 ISSN: 0092–8674 cited in the application STEIN G S ET AL: "REGULATION OF TRANSCRIPTION-FACTOR ACTIVITY DURING GROWTH AND DIFFERENTIATION INVOLVEMENT OF THE NUCLEAR MATRIX IN CONCENTRATION AND LOCALIZATION OF PROMOTER BINDING PROTEINS" JOURNAL OF CELLULAR BIOCHEMISTRY 1991, vol. 47, no. 4, 1991, pages 300–305, XP000864497 ISSN: 0730–2312 cited in the application

3

national Application No PCT/US 99/28123

	MION) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SANDER M ET AL: "Drosophila topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site." NUCLEIC ACIDS RESEARCH, (1985 FEB 25) 13 (4) 1057-72., XP000891514 cited in the application	1-10

Information on patent family members

It ational Application No PCT/US 99/28123

Patent document cited in search report		Publication date	1	Publication date	
WO 9727207	A	31-07-1997	US AU AU BR	5773695 A 716202 B 2246997 A 9707208 A	30-06-1998 24-02-2000 20-08-1997 06-04-1999
			CA EP	2244204 A 0904276 A	31-07-1997 31-03-1999
US 5773689	Α	30-06-1998	AU AU	673859 B 5165593 A	28-11-1996 26-04-1994
			CA EP WO	2147006 A 0663921 A 9407902 A	14-04-1994 26-07-1995 14-04-1994