Constructions With Monoidal Categories

The Clowder Project Authors

July 22, 2025

O1UF This chapter contains some material on constructions with monoidal categories.

Contents

	13	oduli Categories of Monoidal Structures	1
	Categor 13	y	
		oduli Categories of Closed Monoidal Structures	
	13.3 Moduli Categories of Refinements of Monoidal Structures		15
		her Chapters	
01UG	13.1	Moduli Categories of Monoidal Structures	
01UH	13.1.1	The Moduli Category of Monoidal Structures on a Cagory	te-

Definition 13.1.1.1.1. The moduli category of monoidal structures on C is the category $\mathcal{M}_{\mathbb{B}_1}(C)$ defined by

- 01UK Remark 13.1.1.1.2. In detail, the moduli category of monoidal structures on C is the category $\mathcal{M}_{\mathbb{B}_1}(C)$ where:
 - Objects. The objects of $\mathcal{M}_{\mathbb{B}_1}(C)$ are monoidal categories $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ whose underlying category is C.
 - *Morphisms*. A morphism from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$ is a strong monoidal functor structure

$$\operatorname{id}_{C}^{\otimes} \colon A \boxtimes_{C} B \xrightarrow{\sim} A \otimes_{C} B,$$
$$\operatorname{id}_{\mathbb{1}|C}^{\otimes} \colon \mathbb{1}'_{C} \xrightarrow{\sim} \mathbb{1}_{C}$$

on the identity functor $id_C : C \to C$ of C.

• *Identities*. For each $M \stackrel{\text{def}}{=} (C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C) \in \text{Obj}(\mathcal{M}_{\mathbb{E}_1}(C))$, the unit map

$$\mathbb{1}_{M,M}^{\mathcal{M}_{\mathbb{E}_1}(C)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathcal{M}_{\mathbb{E}_1}(C)}(M,M)$$

of $\mathcal{M}_{\mathbb{E}_1}(C)$ at M is defined by

$$\operatorname{id}_{M}^{\mathcal{M}_{\mathbb{E}_{1}}(C)} \stackrel{\operatorname{def}}{=} \left(\operatorname{id}_{C}^{\otimes}, \operatorname{id}_{\mathbb{1}|C}^{\otimes}\right),$$

where $\left(\operatorname{id}_{C}^{\otimes},\operatorname{id}_{1|C}^{\otimes}\right)$ is the identity monoidal functor of C of ??.

• Composition. For each $M,N,P\in \mathrm{Obj}ig(\mathcal{M}_{\mathbb{E}_1}(C)ig)$, the composition map

$$\circ_{M,N,P}^{\mathcal{M}_{\mathbb{B}_{1}}(C)} \colon \operatorname{Hom}_{\mathcal{M}_{\mathbb{B}_{1}}(C)}(N,P) \times \operatorname{Hom}_{\mathcal{M}_{\mathbb{B}_{1}}(C)}(M,N) \to \operatorname{Hom}_{\mathcal{M}_{\mathbb{B}_{1}}(C)}(M,P)$$
of $\mathcal{M}_{\mathbb{B}_{1}}(C)$ at (M,N,P) is defined by

$$\left(\operatorname{id}_{\mathcal{C}}^{\otimes,\prime},\operatorname{id}_{\mathbb{1}|\mathcal{C}}^{\otimes,\prime}\right)\circ_{M,N,P}^{\mathcal{M}_{\mathbb{H}_{1}}(\mathcal{C})}\left(\operatorname{id}_{\mathcal{C}}^{\otimes},\operatorname{id}_{\mathbb{1}|\mathcal{C}}^{\otimes}\right)\stackrel{\text{def}}{=}\left(\operatorname{id}_{\mathcal{C}}^{\otimes,\prime}\circ\operatorname{id}_{\mathcal{C}}^{\otimes},\operatorname{id}_{\mathbb{1}|\mathcal{C}}^{\otimes,\prime}\circ\operatorname{id}_{\mathbb{1}|\mathcal{C}}^{\otimes}\right).$$

- **Q1UL** Remark 13.1.1.1.3. In particular, a morphism in $\mathcal{M}_{\mathbb{B}_1}(C)$ from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$ satisfies the following conditions:
- 01UM 1. *Naturality*. For each pair $f: A \to X$ and $g: B \to Y$ of morphisms of C, the diagram

$$\begin{array}{ccccc} A \boxtimes_C B & \xrightarrow{f\boxtimes_C g} & X \boxtimes_C Y \\ \operatorname{id}_{A,B}^{\otimes} & & & & & & & & & & & \\ A \otimes_C B & \xrightarrow{f\otimes_C g} & X \otimes_C Y & & & & & & \end{array}$$

commutes.

Olum 2. *Monoidality.* For each $A, B, C \in Obj(C)$, the diagram

commutes.

01UP 3. Left Monoidal Unity. For each $A \in Obj(C)$, the diagram

commutes.

01UQ 4. *Right Monoidal Unity.* For each $A \in Obj(C)$, the diagram

$$A \boxtimes_{C} \mathbb{1}_{C} \xrightarrow{\operatorname{id}_{A,\mathbb{1}_{C}'}^{\otimes}} A \otimes_{C} \mathbb{1}_{C}$$

$$\operatorname{id}_{A} \boxtimes_{C} \operatorname{id}_{\mathbb{1}}^{\otimes} / \xrightarrow{\rho_{A}^{C}} A \otimes_{C} \mathbb{1}_{C}$$

$$A \boxtimes_{C} \mathbb{1}_{C}' \xrightarrow{\rho_{A}^{C,'}} A \otimes_{C} \mathbb{1}_{C}$$

commutes.

- **10 Proposition 13.1.1.1.4.** Let *C* be a category.
- 01US 1. Extra Monoidality Conditions. Let $(id_C^{\otimes}, id_{1|C}^{\otimes})$ be a morphism of $\mathcal{M}_{\mathbb{B}_1}(C)$ from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$.
- 01UT (a) The diagram

commutes.

01UU (b) The diagram

$$A\boxtimes_{C}(B\boxtimes_{C}C)\xrightarrow{\operatorname{id}_{A}\boxtimes_{C}\operatorname{id}_{B,C}^{\otimes}}A\boxtimes_{C}(B\otimes_{C}C)$$

$$\operatorname{id}_{A,B\boxtimes_{C}C}^{\otimes}\downarrow \qquad \qquad \qquad \downarrow \operatorname{id}_{A,B\otimes_{C}C}^{\otimes}$$

$$A\otimes_{C}(B\boxtimes_{C}C)\xrightarrow{\operatorname{id}_{A}\otimes_{C}\operatorname{id}_{B,C}^{\otimes}}A\otimes_{C}(B\otimes_{C}C)$$

commutes.

01WB 2. Extra Monoidal Unity Constraints. Let $(id_C^{\otimes}, id_{1|C}^{\otimes})$ be a morphism of $\mathcal{M}_{\mathbb{B}_1}(C)$ from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$.

01WC (a) The diagram

commutes.

01WD (b) The diagram

commutes.

01WE (c) The diagram

commutes.

01WF (d) The diagram

commutes.

01UV 3. Mixed Associators. Let $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ and $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$ be monoidal structures on C and let

$$\mathrm{id}_{-1,-2}^{\otimes} \colon -_1 \boxtimes_{\mathcal{C}} -_2 \longrightarrow -_1 \otimes_{\mathcal{C}} -_2$$

be a natural transformation.

01UW (a) If there exists a natural transformation

$$\alpha_{ABC}^{\otimes}: (A \otimes_C B) \boxtimes_C C \to A \otimes_C (B \boxtimes_C C)$$

making the diagrams

$$\begin{array}{c|c} (A \otimes_C B) \boxtimes_C C & \xrightarrow{\alpha_{A,B,C}^{\otimes}} A \otimes_C (B \boxtimes_C C) \\ id_{A \otimes_C B,C}^{\otimes} & & & \downarrow id_A \otimes_C id_{B,C}^{\otimes} \\ (A \otimes_C B) \otimes_C C & \xrightarrow{\alpha_{A,B,C}^{C}} A \otimes_C (B \otimes_C C) \end{array}$$

and

$$\begin{array}{cccc} (A \boxtimes_C B) \boxtimes_C C & \xrightarrow{\alpha_{A,B,C}^{C,\prime}} A \boxtimes_C (B \boxtimes_C C) \\ \operatorname{id}_{A,B}^{\otimes} \boxtimes_C \operatorname{id}_C & & & & & \operatorname{id}_{A,B \boxtimes_C C} \\ (A \otimes_C B) \boxtimes_C C & \xrightarrow{\alpha_{A,B,C}^{\otimes}} A \otimes_C (B \boxtimes_C C) \end{array}$$

commute, then the natural transformation id^{\otimes} satisfies the monoidality condition of Item 2 of Definition 13.1.1.1.3.

01UX (b) If there exists a natural transformation

$$\alpha_{A.B.C}^{\boxtimes} \colon (A \boxtimes_C B) \otimes_C C \to A \boxtimes_C (B \otimes_C C)$$

making the diagrams

$$\begin{array}{cccc} (A \boxtimes_C B) \otimes_C C & \xrightarrow{\alpha_{A,B,C}^{\boxtimes}} A \boxtimes_C (B \otimes_C C) \\ & \operatorname{id}_{A,B}^{\otimes} \otimes_C \operatorname{id}_C & & & & & \operatorname{id}_{A,B \otimes_C C}^{\otimes} \\ & (A \otimes_C B) \otimes_C C & \xrightarrow{\alpha_{A,B,C}^{C}} A \otimes_C (B \otimes_C C) \end{array}$$

and

$$(A \boxtimes_{C} B) \boxtimes_{C} C \xrightarrow{\alpha_{A,B,C}^{C,\prime}} A \boxtimes_{C} (B \boxtimes_{C} C)$$

$$id_{A\boxtimes_{C}B,C}^{\otimes} \downarrow \qquad \qquad \downarrow id_{A}\boxtimes_{C} id_{B,C}^{\otimes}$$

$$(A \boxtimes_{C} B) \otimes_{C} C \xrightarrow{\alpha_{A,B,C}^{\boxtimes}} A \boxtimes_{C} (B \otimes_{C} C)$$

commute, then the natural transformation id^{\otimes} satisfies the monoidality condition of Item 2 of Definition 13.1.1.1.3.

01UY (c) If there exists a natural transformation

$$\alpha_{ABC}^{\boxtimes,\otimes} \colon (A \boxtimes_C B) \otimes_C C \to A \otimes_C (B \boxtimes_C C)$$

making the diagrams

$$\begin{array}{cccc} (A \boxtimes_C B) \otimes_C C & \xrightarrow{\alpha_{A,B,C}^{\boxtimes,\otimes}} A \otimes_C (B \boxtimes_C C) \\ & \operatorname{id}_{A,B}^{\otimes} \otimes_C \operatorname{id}_C & & & & \operatorname{id}_{A,C}^{\otimes} \\ & (A \otimes_C B) \otimes_C C & \xrightarrow{\alpha_{A,B,C}^C} A \otimes_C (B \otimes_C C) \end{array}$$

and

$$(A \boxtimes_{C} B) \boxtimes_{C} C \xrightarrow{\alpha_{A,B,C}^{C,\prime}} A \boxtimes_{C} (B \boxtimes_{C} C)$$

$$\downarrow^{\operatorname{id}_{A\boxtimes_{C}B,C}^{\otimes}} \qquad \qquad \downarrow^{\operatorname{id}_{A,B\boxtimes_{C}C}^{\otimes}}$$

$$(A \boxtimes_{C} B) \otimes_{C} C \xrightarrow{\alpha_{A,B,C}^{\boxtimes,\otimes}} A \otimes_{C} (B \boxtimes_{C} C)$$

commute, then the natural transformation id^{\otimes} satisfies the monoidality condition of Item 2 of Definition 13.1.1.1.3.

Proof. Item **1**, *Extra Monoidality Conditions*: We claim that *Items* **1a** and **1b** are indeed true:

1. Proof of Item 1a: This follows from the naturality of id^{\otimes} with respect to the morphisms $id_{A,B}^{\otimes}$ and id_{C} .

2. *Proof of Item 1b*: This follows from the naturality of id^{\otimes} with respect to the morphisms id_A and id_{RC}^{\otimes} .

This finishes the proof.

Item **2**, *Extra Monoidal Unity Constraints*: We claim that *Items* **2a** and **2b** are indeed true:

1. Proof of Item 1a: Indeed, consider the diagram

whose boundary diagram is the diagram whose commutativity we wish to prove. Since:

- Subdiagram (1) commutes by the naturality of $\mathrm{id}_C^{\otimes,-1}$;
- Subdiagram (2) commutes trivially;
- Subdiagram (3) commutes by the naturality of λ^C , where the equality $\rho_{\mathbb{1}_C}^C = \lambda_{\mathbb{1}_C}^C$ comes from $\ref{eq:composition}$;
- Subdiagram (4) commutes by the right monoidal unity of $(id_C, id_C^{\otimes}, id_{C|1}^{\otimes})$;

so does the boundary diagram, and we are done.

whose boundary diagram is the diagram whose commutativity we wish to prove. Since:

- Subdiagram (1) commutes by the naturality of $\mathrm{id}_C^{\otimes,-1}$;
- Subdiagram (2) commutes trivially;

- Subdiagram (3) commutes by the naturality of ρ^C , where the equality $\rho_{\mathbb{1}_C}^C = \lambda_{\mathbb{1}_C}^C$ comes from $\ref{eq:composition}$;
- Subdiagram (4) commutes by the left monoidal unity of $(id_C, id_C^{\otimes}, id_{C|1}^{\otimes})$; so does the boundary diagram, and we are done.
- 3. Proof of Item 2c: Indeed, consider the diagram

Since:

- The boundary diagram commutes trivially;
- Subdiagram (1) commutes by Item 1b;

it follows that the diagram

commutes. But since $\mathrm{id}_{\mathbb{1}_C,\mathbb{1}'_C}^{\otimes,-1}$ is an isomorphism, it follows that the diagram (†) also commutes, and we are done.

4. Proof of Item 2d: Indeed, consider the diagram

Since:

- The boundary diagram commutes trivially;
- Subdiagram (1) commutes by Item 1a;

it follows that the diagram

$$\mathbb{1}_{C} \otimes_{C} \mathbb{1}'_{C} \xrightarrow{\operatorname{id}_{\mathbb{1}_{C},\mathbb{1}'_{C}}^{\otimes,-1}} \mathbb{1}_{C} \boxtimes_{C} \mathbb{1}'_{C} \xrightarrow{\operatorname{id}_{\mathbb{1}_{C},\mathbb{1}'_{C}}^{\otimes,-1}} \mathbb{1}_{C} \otimes_{C} \mathbb{1}'_{C}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \lambda_{\mathbb{1}'_{C}}^{C}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \lambda_{\mathbb{1}'_{C}}^{C}$$

$$\downarrow \qquad \qquad \downarrow \lambda_{\mathbb{1}'_{C}}^{C}$$

$$\downarrow \qquad \qquad \downarrow \lambda_{\mathbb{1}'_{C}}^{C}$$

$$\downarrow \qquad \qquad \downarrow \lambda_{\mathbb{1}'_{C}}^{C}$$

commutes. But since $id_{1}^{\otimes,-1}$ is an isomorphism, it follows that the diagram (†) also commutes, and we are done.

This finishes the proof.

Item 3, *Mixed Associators*: We claim that *Items 3a* to *3c* are indeed true:

01UZ 1. Proof of Item 3a: We may partition the monoidality diagram for id^{\otimes} of

Since:

- Subdiagram (1) commutes by Item 1a of Item 1.
- Subdiagram (2) commutes by assumption.
- Subdiagram (3) commutes by assumption.

it follows that the boundary diagram also commutes, i.e. id^{\otimes} satisfies the monoidality condition of Item 2 of Definition 13.1.1.1.3.

2. Proof of Item 3b: We may partition the monoidality diagram for id[®] of Item 2 of Definition 13.1.1.1.3 as follows:

Since:

- Subdiagram (1) commutes by assumption.
- Subdiagram (2) commutes by assumption.
- Subdiagram (3) commutes by Item 1b of Item 1.

it follows that the boundary diagram also commutes, i.e. id^{\otimes} satisfies the monoidality condition of Item 2 of Definition 13.1.1.1.3.

3. *Proof of Item 3c*: We may partition the monoidality diagram for id[⊗] of Item 2 of Definition 13.1.1.1.3 as follows:

Since subdiagrams (1) and (2) commute by assumption, it follows that the boundary diagram also commutes, i.e. id^{\otimes} satisfies the monoidality condition of Item 2 of Definition 13.1.1.1.3.

This finishes the proof.

- 01V2 13.1.2 The Moduli Category of Braided Monoidal Structures on a Category
- 01V3 13.1.3 The Moduli Category of Symmetric Monoidal Structures on a Category
- 01V4 13.2 Moduli Categories of Closed Monoidal Structures
- o1V5 13.3 Moduli Categories of Refinements of Monoidal Structures
- 01V6 13.3.1 The Moduli Category of Braided Refinements of a Monoidal Structure

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets

7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations
- 10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal gories
Categories

Bicategories

Extra Part

14. Types of Morphisms in Bicate- 15. Notes