Exercise 4

4.1 Textbook ElGamal encryption in Python (4pt)

Consider the sample Python code that implements the Diffie-Hellman key exchange, which is available in the file diffie_hellman.py.

Use this code as the basis to implement the textbook ElGamal encryption scheme for messages in \mathbb{Z}_p^* . You may use Python or any other language of your choice.

4.2 Additively homomorphic ElGamal encryption (6pt)

In class we have shown how to extend the ElGamal cryptosystem so that it becomes additively homomorphic for ciphertexts that are small numbers.

- a) Using the code of the first problem, implement additively homomorphic ElGamal public-key encryption. Test it with |q|=160 and |p|=1024 for numbers up to 10^6 (or 2^{20}).
- b) Measure and plot the decryption time for encrypting numbers in [1, max], where max ranges from ca. 256 to 10^6 (or 2^{20}). Use |q|=160 and |p|=1024. Try also with |q|=256 and |p|=2048, but stop with a smaller value of max if it would take too long on your platform. (On a Linux laptop that reports 4200 bogomips, decryption takes up to about 100 s for a domain of size 10^7 .)
- c) (Bonus question: +2pt) Describe different approaches to reduce the time taken for decryption.