Лабораторная работа 1

Вычисление определённых интегралов методом Монте-Карло

Игнашов Иван Вариант 8

1. Цель работы

Изучение метода Монте-Карло, определение точности вычисления определенных интегралов методом Монте-Карло.

Порядок работы:

1. Записать математически анализируемую функцию

$$f_{res} = \begin{cases} 5 * sin(2\pi t) + 1 & t < 1\\ 5 * sin(2\pi (t - 1)) + 1 & 1 \le t \le 2\\ 2, 5 * \frac{2}{(t - 2) + 1} & t > 2 \end{cases}$$
 (1)

- 2. Вычислить аналитически определенный интеграл $F=\int_0^3 f_{res}(t)dt$
- 3. Разработать программу, вычисляющую величину F методом Монте-Карло при заданном числе экспериментов
- 4. При помощи разработанной программы вычислить определенный интеграл \hat{F} при $N=2^i$ экспериментах, где $\mathbf{i}=0\dots 14$

2. График функции $f_{res}(t)$

Рис. 1: График функции $f_{res}(t)$

Можно заметить, что на интересующей области t=[0,3] функция принимает значения от 0 до 10

3. Аналитический расчет величины F

Проинтегрируем кусочно-заданную функцию отдельно для каждого участка

	$f_1(t)$	$f_2(t)$	$f_3(t)$		
Функция	$5*sin(2\pi t) + 1$	$5*sin(2\pi(t-1))+1$	$2,5*\frac{2}{(t-2)+1}$		
Неопр. интеграл	$5t - \frac{5\cos(2\pi t)}{2\pi}$	$5t - \frac{5\cos(2\pi t)}{2\pi}$			
Область	$0 \le t \le 1$	$1 \le t \le 2$	$2 \le t \le 3$		
Значение	5.0	5.0	3.46		

Просуммировав получим F = 13.46574

4. Описание разработанной программы

```
| MKsolve.m | piecewise_func_lab1.m | +
      % Функция для Варианта 8
 1 📮
 2
      % Кусочно-заданная функция:
 3
      % веса 5; 5; 2,5
 4 L
        номера 1; 1; 4
 5
 6 📮
      function y = piecewise_func_lab1(t)
 7 🖨
          function y = f1(t)
             y = \sin(2 * pi * t) + 1;
 8
 9
10
11 📮
          function y = f2(t)
             y = 2 * t - 1;
12
13
          end
14
15
          function y = f3(t)
16
              y = 4 * t^2 - 1;
17
18
19 📋
          function y = f4(t)
              y = 2 / (t + 1);
20
21
22
23
24
          if (t < 1)
25
             y = 5 * f1(t);
26
          elseif (1 <= t && t <= 2)
27
              y = 5 * f1(t - 1);
28
29
             y = 2.5 * f4(t - 2);
30
          end
      end
```

Рис. 2: Текст кусочно-заданной функции для Варианта 8

```
| labl.m | | MKsolve.m | | piecewise_func_labl.m | | + |
 1 🗔
       % Методы Монте-Карло для вычисления интеграла кусочно-заданной функции
 2
      % Принимает: N - количество экспериментов
 3 L
      % Возвращает: simple, precise - вычисленные значения для различных способов
 4
 5 🖃
       function [simple, precise] = MKsolve(N)
 6
           x_min = 0;
 7
           x_max = 3;
 8
 9
           % Простой способ
10
           y_min = 0;
11
           y_max = 10;
           xs = rand(1, N) * (x_max - x_min) + x_min;
12
13
           ys = rand(1, N) * (y_max - y_min) + y_min;
14
15
           [n_pos, n_neg] = deal(0, 0);
16 📥
           for i = 1:N
17
               func_yi = piecewise_func_lab1(xs(i));
18
               if func_yi < ys(i) && ys(i) < 0
19
                   n_neg = n_neg + 1;
20
               elseif 0 <= ys(i) && ys(i) <= func_yi
21
                   n_pos = n_pos + 1;
22
23
24
           points_portion = (n_pos - n_neg)/N;
25
26
           simple = points_portion * (x_max - x_min) * (y_max - y_min);
27
28
           % Повышенная точность
29
           xs = rand(1, N) * (x_max - x_min) + x_min;
30
           func_ys = arrayfun(@(x) piecewise_func_lab1(x), xs);
31
32
           precise = sum(func_ys)*(x_max - x_min) / N;
33 L
       end
```

Рис. 3: Текст функции вычисления интеграла

5. Табличное представление результатов моделирования ${\cal F}(N)$

Получим талицу значений для двух подходов:

```
    | piecewise_func_lab1.m
           × MKsolve.m
   lab1.m
                                                      +
      % Лабораторная работа 1
1 🗐
2 L
      % Вычисление определённых интегралов методом Монте-Карло
3
4 📮
       function lab1
5 🖹
           %x = linspace(0, 3);
6
           %plot(x, arrayfun(@(x) piecewise_func_lab1(x), x));
7
8
           MK_params = 1:14;
9
           [results_S, results_P] = arrayfun(@(i) MKsolve(2^i), MK_params)
           real_val = 5 + 5 + 3.46574;
10
11
12
           plot(MK_params, results_S, 'r', ...
13
               MK_params, results_P, 'g', ...
14
               MK_params, real_val*ones(size(MK_params)), 'm');
15
           title('Сравнение методов')
16
           legend('Простой МК', 'Точный МК', 'Реальная величина');
           xlabel('log(Количества точек)')
17
           ylabel('Вычисленное значение')
18
19
20
       end
```

Рис. 4: Текст процесса перебора экспериментов

Рис. 5: Вывод программы

2^i	1	2	3	4	5	6	7	8	9	10	11	1
Простой	0.00	7.50	7.50	16.87	13.12	15.47	11.95	13.48	15.12	14.00	13.88	13.
Точный	20.58	10.55	12.82	14.07	15.02	12.43	13.14	13.12	13.33	13.20	13.27	13.

6. График по рассчитанной таблице

Рис. 6: Сравнение графиков методов

7. Выводы

Целью данной лабораторной работы было изучение метода Монте-Карло и его применение. В процессе выполнения были реализованы 2 метода оценки интеграла функции:

- простой основанный на площадях фигур
- ullet с повышенной точностью вычисление функции на случайных величинах $a_1 \dots a_N$

На основе вывода программы были получены оценки инеграла функции двумя методами для различного количества случайных точек; построен график сравнения оценок с исходным, вычисленым аналитически, значением интеграла функции.