Bài toán tổng tập con

Time limit: 1s

Memory limit: 256MB

Cho một tập hợp S chứa n số nguyên dương $s_1, s_2, ..., s_n$ phân biệt nhau và một giá trị mục tiêu T. Gọi S' là một tập con của S, định nghĩa $B(S') = \sum c_i * 2^{n-i}$ với $c_i = 1$ nếu $s_i \in S'$, ngược lại $c_i = 0$.

Ví dụ:
$$S=\{1,2,5,6\}$$
 và $S'=\{1,2,6\}$, ta có $B(S')=1*2^3+1*2^2+0*2^1+1*2^0=1101_2=13.$

Hãy đếm số lượng các tập con S' và in ra B(S') theo thứ tự tăng dần với S' là tập con của S có tổng các phần tử bằng T. Biết rằng, tập con của một tập hợp S thu được bằng cách xoá một số (có thể không) phần tử trong tập hợp S.

Input

- Dòng đầu tiên chứa hai số nguyên dương n $(1 \le n \le 25)$ và T $(1 \le T \le 10^6)$ lần lượt là số lượng phần tử trong tập hợp S và giá trị mục tiêu.
- Dòng thứ hai chứa n số nguyên dương $1 \le s_1 < s_2 < ... < s_n \le 10^6$.

Output

- ullet Dòng đầu tiên chứa số nguyên dương là số lượng các tập con S'.
- \bullet Các dòng tiếp theo, mỗi dòng chứa số nguyên dương B(S') theo thứ tự tăng dần.

Examples

Input	Output
5 10	2
1 2 9 10 12	2
	20

Notes

Trong ví dụ, ta có 2 tập con thoả mãn là:

- $S' = \{10\}, B(S') = 2^1 = 2.$
- $S' = \{1, 9\}, B(S') = 2^4 + 2^2 = 20.$

Author: Hazzu