Accepted Manuscript

Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, *Apismellifera*.

Yanmei Liu, Sihong Liu, Hui Zhang, Yanping Gu, Xuesheng Li, Mingyuan He, Huihua Tan

PII: \$0045-6535(17)30947-5

DOI: 10.1016/j.chemosphere.2017.06.045

Reference: CHEM 19439

To appear in: Chemosphere

Received Date: 09 March 2017

Revised Date: 10 June 2017

Accepted Date: 12 June 2017

Please cite this article as: Yanmei Liu, Sihong Liu, Hui Zhang, Yanping Gu, Xuesheng Li, Mingyuan He, Huihua Tan, Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, *Apismellifera* ., *Chemosphere* (2017), doi: 10.1016/j.chemosphere.2017.06.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Application of the combination index (CI)-isobologram equation to research the
2	toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in
3	honeybee, Apismellifera.
4	
5	
6	
7	
8	
9	Yanmei Liu ^{1,2#} , Sihong Liu ^{1,2#} , Hui Zhang ^{1,2} , Yanping Gu ^{1,2} , Xuesheng Li ^{1,2} ,
10	Mingyuan He ³ , Huihua Tan ^{1,2*}
11 12	
13	
14	1 Institute of Pesticide & Environmental Toxicology, College of Agriculture, Guangxi
15	University, Nanning, Guangxi 530004, People's Republic of China
16	2 Guangxi key laboratory of Agric-Environment and Agric-products Safety,
17	Nanning, Guangxi 530004, People's Republic of China
18 19	3 Beijing ECO-SAF Technology Co., Ltd, Beijing 100085, People's Republic of China
20	Cilita
21	#These authors contributed equally to this work
22	*Correspondence to: Huihua Tan
23	Tel: 86-771-3235603;
24	Fax: +86 771-3231227;
25	E-mail: jeffthh@163.com.
26	
27	
28	
29	
30	
31	
32	
33	

34	
35	Abstract: Due to complex pest control scenarios and the needs of agricultural
36	production, different neonicotinoids may be used in certain agricultural applications.
37	Consequently, honeybees may be exposed to these substances through distribution
38	throughout plant tissues via the vascular system through several pathways, such as
39	surface water, the exudates excreted from plants, and air pollution via drift of dust as
40	well as contaminated pollen and nectar. In the current study, the single and combined
41	toxicity of clothianidin, dinotefuran, and thiamethoxam to honeybees was examined
42	after 48 h exposure by the acute oral method and combination index (CI)-isobologram
43	equation. At the 48 h interval, our results showed that 1) the order of toxicities for the
44	single insecticides was ranked as clothianidin > thiamethoxam > dinotefuran and that
45	2) all binary and ternary combinations showed synergism or additive effect at the
46	effect (fa) 0.5. Therefore, our results not only provided meaningful guidelines in
47	evaluating the safety risk of the mixtures of the three neonicotinoids towards
48	honeybees but also suggested that there is a significant interest in the study of mixture
49	toxicities of neonicotinoids against honeybees because risk assessment of
50	neonicotinoids against honeybees conducted only in individual insecticides may
51	underestimate the realistic toxicity.
52	Key words: combined toxicity, acute oral toxicity, clothianidin, dinotefuran,
53	thiamethoxam
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	

The honeybee, Apismellifera, plays a critical role in crop pollination. The

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

1. Introduction

pollination by honeybees commercially translates to billions of dollars yearly as pollination improves crop yield and maintains plant species in ecosystems (Klatt et al., 2014). The incidents of death of honeybees are of considerable concern since reductions in bee populations around the world may have adverse effects on agriculture and the environment. Therefore, numerous governments and research organizations have commenced programs and research to study the losses of bees to elucidate the underlying causes. It is suspected that numerous stress ingredients are implicated in the decrease of honeybee populations. The use of agricultural chemicals has frequently been identified as a factor impacting on bee health (Goulson et al., 2015; Sanchez et al., 2016). In particular, neonicotinoids, which are systemic, have specifically been singled out for blame in several countries because they can have a wide-ranging adverse impact on pollinators (Blacquière et al., 2012; Sandrock et al., 2014). Importantly, neonicotinoids are used to control sucking insect pests as they can distribute throughout plant tissues via the vascular system (Elbert et al., 2008). Consequently, neonicotinoids can appear in pollen and nectar as well as in guttation fluids (Chen et al., 2014; Elbert et al., 2008; Goulson, 2013). Hence, honeybees may come in to contact with these substances transdermally, orally, and internally, following which these substances are transported to the hive through several pathways (Desneux et al., 2007): via water (Samson et al., 2014), via the exudate that is secreted from plants (Girolami et al., 2009), via atmospheric pollution via drift of dust which coats seeds during seeding (Alix et al., 2009), and via contaminated nectar and pollen (Botias et al., 2015). To date, different neonicotinoids and metabolites have been identified in honeybees, honey, and bee bread, including clothianidin, thiamethoxam, dinotefuran, and imidacloprid (Chen et al., 2014; Kasiotis et al., 2014). Therefore, the possibility for synergistic interactions in the hive appears likely given the fact that

day or over a short period (Couvillon and Ratnieks, 2014), which results in
honeybees coming into contract with toxicants. Numerous studies have suggested that
neonicotinoids can seriously influence the health (Kasiotis et al., 2014) and
performance (Sandrock et al., 2014) of bees, the population development of a colony
(Rundlöf et al., 2015), and behaviors involved in foraging (Hladik et al., 2016),
learning, and homing (Williamson and Wright, 2013). It is possible that those adverse
influences on honeybees could result in damage of the colony structure as time passes.
Few past pesticide toxicity studies have evaluated the risks of orally transmitted
combined toxicity of neonicotinoids to adult bees (Christen et al., 2016; Zhu et al.,
2014); however, most assessments of neonicotinoid toxicity to honeybees were based
on exposing honeybees to single neonicotinoids, which might underestimate the real
toxicity of neonicotinoids in agriculture. The results of surveys have shown that
honeybees are unable to discriminate against neonicotinoids and have an appetite for
foods containing neonicotinoids (Kessler et al., 2015). Consequently, co-occurrences
of neonicotinoids might pose a higher risk to honeybees than single neonicotinoids or
other chemicals. Therefore, the purpose of present study was to evaluate the mixture
effect of ordinary neonicotinoids on adult bee survival. For the sake of simulating
realistic exposure scenarios of honeybees to polluted food, we selected the three most
continually detected neonicotinoids with which bees might come into contact: 1)
clothianidin; 2) thiamethoxam, and; 3) dinotefuran (Chen et al., 2014). We tested
these neonicotinoids solely and in total combinations through acute dietary exposure
at concentrations ranging from those causing complete deaths of exposed honeybees
to those concentrations that had little effect on survival.
Clothianidin with translaminar and root systemic activity can be used as soil, foliar,
paddy, and seed treatment for control of sucking and chewing insects, such as
planthoppers, stink bugs, aphids, and whiteflies in rice, maize, rape, fruit, vegetables,
and citrus (ePM, 2011). Thiamethoxam with systemic activity is rapidly assimilated
into the plant and transported acropetally in the xylem when it coming into contact
with plant. This pesticide can be used as foliar and soil treatments for the control of
flies, aphids, whiteflies, thrips, ricehoppers, and ricebugs, as well as some

124	lepidopterous species (ePM, 2011). Dinotefuran, which is a systemic pesticide with					
125	contact and oral action, can readily be assimilated into the plant and transported					
126	acropetally, and is used for controlling a series of sucking insects, including					
127	Coleopera, Diptera, and certain Lepidoptera in agriculture (ePM, 2011). In particular,					
128	the morality rate of honeybee was chosen as the toxicity endpoint. Moreover, for the					
129	purpose of identifying and quantifying the interactions between the three					
130	neonicotinoids, data were analyzed by the combination index (CI) equation (Chou,					
131	2006). Finally, our results will provide valuable information for the conservation of					
132	honeybees and will contribute to the development of appropriate guidelines for testing					
133	the effect of these neonicotinoids in agriculture.					
134	2. Materials and Methods					
135	2.1 Test organisms					
136	Young and healthy adult worker bees of the same colony, which were adequately					
137	fed, were gently captured from the same queen-right colony that had not been treated					
138	with chemical substances within 4 weeks. The collected bees were randomly assigned					
139	to wire mesh cages (dimensions: 12 cm × 8 cm × 8 cm) and randomly placed in an					
140	experimental room at 25 ± 2 °C and $60 \pm 10\%$ relative humidity in the dark. The bees					
141	were starved for 2 h prior to the beginning of the test.					
142	2.2 Test pesticides					
143	Dinotefuran (CAS-No. 165252-70-0, 95% TC), clothianidin (CAS-No. 210880-92-					
144	5, 96% TC), and thiamethoxam (CAS-No. 153719-23-4, 95% TC) were all supplied					
145	by the Hunan Research Institute of Chemical Industry (Changsha, China). Stock					
146	solutions of each of the aforementioned insecticides were dissolved in deionized					
147	water and diluted in 500 g/L (50% w/v) sucrose solution. Each stock solution was					
148	diluted to six test concentrations using calibrated micropipettes and volumetric flasks.					
149	2.3 Toxicity test methods					
150	The Organisation for Economic Co-operation and Development (OECD) guidelines					
151	for the testing of chemicals, honeybees, and acute oral toxicity tests were used					
152	(OECD, 1998). The procedure of the method is described below. First, six replicate					

154	Each test group of bees was then administered a 300 μL test solution by a glass tube
155	(dimensions: 40 mm long and 10 mm wide with the openendnarrowed to a diameter
156	of approximately 2 mm). In addition, the weight of the treated diet per test group was
157	recorded before providing the test solution to the groups. Once consumed, the feeder
158	was withdrawn from the test cage and the feeder was replaced with that consisting of
159	sufficient sucrose solution alone. For some groups, bees may have consumed little or
160	no food at higher concentrations. After a maximum of 6 h, unconsumed treated diets
161	were replaced with the sucrose solution alone. The weight of unconsumed treated diet
162	was measured at the end of exposure. The intake of neonicotinoids by the bees was
163	evaluated by measurement of the weight of treated food consumption, and finally
164	converted to dose in μg active ingredient/ bee when conducted dose and mortality
165	statistical analysis.
166	. The test duration of 48 h began with sucrose solution alone. If a rise in mortality
167	exceeded 10% after the first 24 h, the duration of the test was prolonged to 96 h at
168	most. Mortality was recorded at 24 h and 48 h after the administering of a given dose.
169	For a valid experiment, the average mortality of the control was required to be within
170	10% at the end of the experiment.
171	In a pilot experiment, bees were exposed to a series of concentrations of individual
172	insecticides to identify the range of concentration that produce 0-100% mortality at
173	48 h post exposure. Six desired concentrations and a control were then used for
174	determining the medial lethal concentration (LD ₅₀) value of each single insecticide at
175	48 h post exposure.
176	2.4 Mixture toxicity
177	The constant combination ratio LD_{50} : LD_{50} or LD_{50} : LD_{50} : LD_{50} was chosen to analyze
178	the binary and ternary toxicity, respectively, so that the effects of individual
179	insecticides within the combination would be approximately equal. In addition,
180	insecticides were conducted at six concentrations with a dilution factor of 1.65. Tests
181	with the same exposure duration were conducted simultaneously to avoid
182	experimental variability.

2.5 Experimental design for insecticide combinations

- Solutions of dinotefuran(D), clothianidin(C), and thiamethoxam(T), which were
- prepared as described above, were used in individual and binary combinations
- 186 (C + D; D + T; C + T) and ternary combinations (C + D + T). Bees were exposed to a
- series of dilutions of individual insecticides and their binary and ternary combinations
- with a constant combination ratio LD₅₀:LD₅₀ or LD₅₀:LD₅₀, respectively.
- 2.6 Median-effect and combination index (CI)-isobologram equation for determining
- individual and combined toxicities
- The individual and combined toxic effects of insecticides against honeybees were
- assessed using the median-effect equation given as follows (Chou and Talalay, 1984):

193
$$f_a / f_u = (D / D_m)^m$$
,

- where D is the dose of an insecticide, f_a is the mortality influenced by D (percentage
- mortality / 100), f_u is the survival rate uninfluenced $D(f_u = 1 f_a)$, D_m is the LD_{50} , m is
- the coefficient determining the shape of the dose-effect relationship, and m < 1,
- m > 1, and m = 1 signify flat sigmoidal, sigmoidal, and hyperbolic dose-effect curves,
- respectively. Rearranging Equation 1, we could obtain the following:

199
$$f_a = 1 / [1 + (D_m / D)^m]$$

200
$$D = D_m[f_a / (1 - f_a)]^{1/m}$$
 3

- Therefore, if we know the values for m and D_m, we can easily determine the effect (f_a)
- for any given dose (D) in Equation 2, and the dose (D) for any given effect (f_a) in
- Equation 3.
- In addition, by plotting x = log(D) versus $y = log(f_a / f_u)$ according to the logarithm
- form of Equation 1, we obtain the median-effect plot as follows:

$$\log(f_a / f_u) = m \log(D) - m \log(D_m)$$

- In the median-effect plot (Equation 4), we can easily determine the (D_m) and m
- because the (D_m) is the antilog of the x-intercept and m is the slope. As described
- above, m < 1, m > 1, and m = 1 signify flat sigmoidal, sigmoidal, andhyperbolic dose-
- effect curves, respectively. In addition, the linear correlation coefficient (r) of the

- 211 median-effect plot can manifest the conformity of the data to the median-effect plot,
- and r = 1 shows excellent conformity.
- Therefore, we can easily calculate the combination index (CI) values using the CI
- equation for a combination of n insecticides, which is given as

$${}^{215} \qquad {}^{n}(CI)_{x} = \sum_{J=1}^{n} \frac{(D)_{j}}{(D_{x})_{j}} = \sum_{J=1}^{n} \frac{(D_{x})_{1-n} \{[D]_{j} / \sum_{i}^{n} [D]\}}{(D_{m})_{j} \{(fax) j / [1 - (fax) j]^{1/mj}\}}$$

- where n (CI) $_{x}$ is the combination index for n insecticides at x% effect (f_a), (D_x) $_{1-n}$ is
- the sum of the doses of n insecticides causing x% effect (f_a) in combination, $[D]_i$
- \sum_{1}^{n} [D] is the proportionality of the dose of individual n insecticides causing x% effect
- 219 (f_a) in combination, $(Dm)j\{(fax)j/[1-(fax)j]^{1/mj}\}$ is the dose of individual
- insecticides causing x% effect (f_a), f_{ax} is the fractional effect (f_a) at x% effect (f_a), D_m
- 221 is the antilog of the x-intercept, and m is the slope of the median-effect plot
- mentioned above, where CI > 1, CI < 1, and CI = 1, indicating antagonism,
- synergism, and additive effect, respectively.
- 224 2.7 Analysis of results
- The computer program CompuSyn (Chou and Martin, 2005) was used to calculate
- 226 the parameters including the dose–response curve parameters, CI values, F_a-CI plot
- representing CI versus f_a, the fraction influenced by a special dose, and the
- 228 polygonogram, which is a polygonal graphic representation describing antagonism,
- additive effect, or synergism for the insecticide combination.

230 3 Results

- We studied the nature of interactions for a series of three neonicotinoids within the
- range of effect in total combinations in bees following the Honeybee Acute Oral
- toxicity test method and the CI-isobologram method (Chou and Talalay, 1984; Chou,
- 234 2006). The mortality rates of the controls were 6.67% in all acute toxicity tests, which
- demonstrated the reliability of the tests. The dose–response curve parameters (D_m, m,

236	and r) of the three neonicotinoids individually and their total combinations, and mean
237	CI values of total combinations were concisely summarized (Table 1). All single
238	neonicotinoids and their combinations could fit to the median-effect equation with
239	sigmoidal shape dose-response curves (Fig. 2). The parameter D_{m} , which is
240	analogously equal to the LD_{50} value, was the dose that produced a 50% mortality rate
241	in honeybees. On the basis of the D_{m} values, the order of toxicities for the three single
242	insecticides was ranked $C > T > D$ at 48 h post exposure. The m was the Hill
243	coefficient that is used for determining the shape of the dose-effect relationship:
244	sigmoidal ($m > 1$), negative sigmoidal ($m < 1$), or hyperbolic ($m = 1$). In the present
245	results, all single insecticides and their mixtures yielded sigmoidal shapes with
246	analytical parameters $m > 1$. The r values, representing the linear regression
247	correlation coefficient of the median-effect plots, exceeded 0.906, showing the good
248	conformity of the data to the median-effect principle.
249	The D_{m} and m of all single insecticides and their binary and ternary combinations
250	were used to calculate antagonism or synergism grounded on Equation (5) (Chou,
251	2006). CI values were recorded at LD_{10} , LD_{50} , and LD_{90} , indicating the doses required
252	for producing 10%, 50%, and 90% mortality rates of honeybees, respectively
253	(Table 1).
254	The F _a -CI plot, which depicts the CI values versus effect levels (f _a) affected by
255	single insecticides or in combination with respect to controls for all binary and ternary
256	combinations, also showed the interaction type of mixture insecticide(synergism,
257	antagonism, and additive effect) against bees, revealed at 48 h post exposure,
258	respectively (Fig. 2). The results of 48 h post exposure were described as follows:1)
259	the ternary $C + D + T$ combination exhibited antagonism at a effect (f_a) less than 0.25,
260	approaching additive effect at effect (fa) between 0.25 and 0.55, synergism at higher
261	effect (f_a) ; 2) the binary combination $C+T$ showed a additive effect at effect (f_a) less
262	than 0.35, which gradually became synergism at a higher effect (f_a) , and; 3) the binary
263	combination C+D exhibited a additive effect at effect (fa) less than 0.3, which
264	showed synergism at a higher effect (fa); 4) the binary D + T combination showed an
265	antagonism at effect (fa) less than 0.5, approaching additive effect beyond that effect 9

- (fa), synergism at effect (fa) more than 0.8. The combined effect and selected average
 CI values includingLD₁₀, LD₅₀, and LD₉₀ at three representative effects levels (f_a)
 were summarized at 48 h post exposure (Table 1).
 - The computer software CompuSyn is capable of simulating a graphic termed a polygonogram that can show combination results at any effect (f_a) by a semi-quantitative approach. In this way, we could intuitively inspect the effect of combinations of more insecticides before the experiments were conducted based on the combination results exhibited in the graphic. The trigonal polygonograms for the interactions of combinations were exhibited at 0.1, 0.5, and 0.9 representative effect levels (f_a), both at 48 h post exposure (Fig. 3). The polygonograms revealed interactions of all the binary and ternary combinations in the whole range of effect (f_a) at 48 h post exposure (Fig. 3).

4 Discussion

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

To date, few studies have investigated the joint toxicity of neonicotinoids on honeybees. The combination index (CI)-isobologram equation allows the prediction of the joint action at all effect levels for the combinations of several drugs without giving their chemical structure, mechanism of action, and any further information (Chou, 2006). Thus, this method has been widely used for studying pesticide interactions. For instance, the applications of the CI method in environmental risk assessment have been extended to different organisms, such as photosynthetic aquatic organisms, aquatic bioluminescent organisms, and earthworms (Chen et al., 2014; 2010; González-Pleiter et al., 2013; Rodea-Palomares et al., Wang et al., 2015). By using this method, we studied the nature of interactions for a series of effect levels of three neonicotinoids in total combinations in honeybees. The interaction of three neonicotinoids in bee workers has not previously been reported. The present results showed that the nature of all interactions indicated synergism or additive effect. This phenomenon was difficult to explain because the CI method only allows the quantitative determination of the interaction types, including synergism, additive effects, and antagonism; however, it does not elucidate how and why the interaction occurs and what the mechanism of the interaction is, which requires an alternative

296	method(Chou, 2006). To begin with, the phenomenon that antagonism and synergism
297	showed at effect (fa) 0.1 and effect (fa) 0.9 respectively is difficult to explain due to
298	the fact that it is difficult to observe an antagonism and a synergism when the
299	mortality is close to 0% and 100%, respectively. In addition, the additive effect
300	related to the binary combination D+T that exhibited nearly additive effect and
301	ternary combination C+D+T that showed nearly slight synergism, might be explained
302	by the competitive interaction between dinotefuran and thiamethoxam, suggesting
303	dinotefuran and thiamethoxam binding to the same site, but clotuianidin binding in a
304	way, or to a site different from that of dinotefuran and thiamethoxam (Kayser et al.,
305	2004). Moreover, the synergistic effect of a toxicant within honeybees may be
306	associated with the following described below.
307	First, it is plausible that a mixture of neonicotinoids in sugar might be more
308	attractive and consumed by honeybees than single neonicotinoids in sugar when
309	honeybees are first exposed to the toxicant. This hypothesis is supported by the study
310	of Kessler et al.(2015), who showed that honeybees preferred to consume sucrose
311	solutions including thiamethoxam and imidacloprid across a broad range of
312	concentrations over sucrose alone, in spite of the high concentrations of
313	thiamethoxam and imidacloprid that increase their morality. Consequently, honeybees
314	experienced more rapid poisoning with the accumulation of toxicants and experienced
315	greater mortality than by exposure to the single toxicants under the same conditions.
316	This does not reflect an enhancement of the consumption of the drug at the end of the
317	test because the consumption of these mixture compounds by honeybees accelerated
318	the process of poisoning, leading to a decrease in the food consumed. The preference
319	of the honeybees for solutions containing a mixture of neonicotinoids is perhaps
320	related to the pharmacological action of their compounds on nicotinic acetylcholine
321	receptors (nAChRs) in the brains of the honeybees.
322	Second, one rationale behind these synergistic interactions is that the parent of the
323	drugs might be quickly metabolized into other chemicals, which perhaps shows high
324	affinity to nAChRs in the brains of bees. For example, thiamethoxam was rapidly
325	metabolized to clothianidin, the predominant neonicotinoid, which showed a high

affinity to nAChRs when orally administered to 5th instar Spodopterafrugiperda

326

larvae (Nauen et al., 2003). Additionally, it is reported that thiamethoxam, at 327 concentration of 0.3 mM, exhibited no response to neurons isolated from the *Heliothis* 328 virescens nerve cord; whereas clothianidin exhibited high activity at concentration as 329 low as 30 nM (Nauen et al., 2003). This result indicated that clothianidin had a higher 330 agonist efficacy than thiamethoxam in H. virescens nAChRs. In addition, Brown et 331 al.(2006) found that clothianidin is a "super" agonist of Drosophila nAChR. 332 Therefore, when the thiamethoxam and clothianidin appeared concurrently in 333 combination in our present test, it was possible that thiamethoxam was gradually 334 metabolized into clothianidin. Consequently, with the concentrations of clothianidin 335 accumulated and improved in combination with thiamethoxam and clothianidin, it 336 could elicit its toxic response more quickly on honeybees within the same time as the 337 sum of thiamethoxam and clothianidin, and consequently expressed a synergistic 338 effect. The analogy to binary combinations C+D is that synergism can possibly exist 339 with similar mechanism. In future work, further relative studies are necessary to 340 341 comprehend the mechanism responsible for this phenomenon. Third, synergism may also be explained by "facilitating actions," meaning that the 342 secondary action of one insecticide can enhance the activity or level of the other 343 insecticide in combination, or alternatively, "complementary actions," which refers to 344 when insecticides influence the same target at different sites, at overlapping sites, or 345 at different targets of the same pathway (Jia et al., 2009). In previous studies on the 346 aphids Myzuspersicae and Aphiscraccivora, and the locust Locustamigratoria L, 347 results suggested that thiamethoxam and imidacloprid may combine with different 348 sites at the nicotinic receptor complex or in different modes (Wiesner and Kayser, 349 2000; Wellmann et al., 2004). Subsequently, when research about analyzing the mode 350 of inhibition by neonicotinoids was conducted on the aphids M. persicae and 351 A. craccivora Koch, it was discovered that the examined neonicotinoids of 352 [3H]imidacloprid binding can be split to two classes. One kind of compounds called 353 direct competitors of [3H]imidacloprid binding, which show competitive interaction 354 with imidacloprid, implying binding to the same site, ie to the site of imidacloprid, 355

such as imidacloprid, N-desmethyl thiamethoxam, nitenpyram, acetamiprid. The other kind of compounds defined as non-competitive compounds of [3H]imidacloprid binding, which do not directly compete with [3H]imidacloprid binding and bind to in a way or a site, different from that of imidacloprid, such as thiamethoxam and the chloropyridyl analogue of thiamethoxam. Moreover, two sub-classes of noncompetitive compounds of [3H]imidacloprid binding may be defined in accordance with Hill coefficients of a drug. In addition, low Hill coefficients indicate different features of neonicotinoid binding (Kayser et al., 2004). The pharmacophore may react with the structural information for the mode of inhibition of [3H]imidacloprid binding. For instance, the clothianidin with a-NH-methyl group and an acyclic pharmacophore displayed as a competitor of [3H]imidacloprid binding. However, two close analogues thereof exhibited differences. The N-methyl clothianidin with a -N-dimethyl group showed as a pure non-competitive compound of [3H]imidacloprid binding, whereas N-desmethyl clothianidin with a -NH₂ behaved as a mixed form of non-competitive compound of [3H]imidacloprid binding (Kayser et al., 2004). Furthermore, although dinotefuran had some differences in structure of other neonicotinoids, no relative reports currently exist that show whether it acts at the same mode of binding as some already-known neonicotinoids to the target receptor. As we know, a structural modification of the pharmacophore can change the affinity of a drug and thus, can alter its mode of binding. Therefore, it is possible that dinotefuran might act at the different mode of binding and ultimately lead to the combined toxicity increased.

Therefore, the synergistic interaction may be due to specific pharmacokinetic behavior, a different binding site on the nicotinic receptor, or receptor isoforms.

5 Conclusions

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

We studied the nature of interactions for a series of three neonicotinoids within the range of effect in total combinations in bees following the honeybee acute oral toxicity test method and the CI-isobologram method. At 48 h post exposure, our results showed that: 1) the order of toxicities for the single insecticides was ranked as clothianidin > thiamethoxam > dinotefuran; 2) all the binary and ternary combinations showed synergism or additive effect at the effect (fa) 0..5. Our present results

380	indicated that the synergistic combinations may pose a potential fisk to noneybees
387	whenever the neonicotinoids appeared concurrently in agriculture, and also indicated
388	that there is an urgent need to study the mixture toxicity of neonicotinoids in
389	honeybees because the assessment of the risk of insecticides towards honeybees,
390	conducted only in individual neonicotinoids, may underestimated the toxicity in
391	realistic conditions.
392	
393	
394	
395	Acknowledgments
396	This work was supported by National Natural Science Foundation of China
397	(31301689).
398	
399	
400	REFERENCES
401	
402	Alix, A., Vergnet, C., Mercier, T., Oomen, P.A., Thompson, H.M., 2009. Risks to bees from dusts
403	emitted at sowing of coated seeds: concerns, risk assessment and risk management. Hazards of
404	pesticides to bees – 10th International Symposium of the ICP-Bee Protection Group. France.
405 406	Blacquière, T., Smagghe, G., Gestel, C.A.M. van, Mommaerts, V., 2012. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicol. 21, 973-992.
407	Botías, C., David, A., Horwood, J., Abdul-Sada, A., Nicholls, E., Hill, E., Goulson, D., 2015.
408	Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci.
409	Technol. 49, 12731-12740.
410	Brown, L.A., Ihara, M., Buckingham, S.D., Matsuda, K., Sattelle, D.B., 2006. Neonicotinoid
411	insecticides display partial and super agonist actions on native insect nicotinic acetylcholine
412	receptors. J. Neurochem. 99, 608-615.
413	Chen, C., Wang, Y., Zhao, X., Qian, Y., Qiang, W., 2014. Combined toxicity of butachlor, atrazine and
414	λ -cyhalothrin on the earthworm Eisenia fetida by combination index (CI)-isobologram method.
415	Chemosphere. 112, 393-401.
416	Chen, M., Tao, L., Mclean, J., Lu, C., 2014. Quantitative analysis of neonicotinoid insecticide residues
417	in foods: implication for dietary exposures. J. Agric. Food Chem. 62, 6082-6090.
418	Chou, T.C., 2006. Theoretical basis, experimental design, and computerized simulation of synergism
419	and antagonism in drug combination studies. Pharmacol. Rev. 58, 621-681.
420	Chou, T.C., Martin, N., 2005. CompuSyn for Drug Combinations: PC Software and User's Guide: A
421	Computer Program for Quantification of Synergism and Antagonism in Drug Combinations and

the Determination of IC_{50} and ED_{50} and LD_{50} Values. ComboSyn Inc., Paramus, NJ.

- of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55.
- 425 Christen, V., Bachofer, S., Fent, K., 2016. Binary mixtures of neonicotinoids show different
- transcriptional changes than single neonicotinoids in honeybees (*Apis mellifera*). Environ. Pollut.
- 427 220 (part B), 1264-1270.
- Couvillon, M.J, Ratnieks, F.L., 2014. Dancing bees communicate a foraging preference for rural lands
- in high-level agri-environment schemes. Curr. Biol. 24, 1212-1215.
- Desneux, N., Decourtye, A., Delpuech, J.M., 2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81-106..
- Elbert, A., Haas, M., Springer, B., Thielert, W., Nauen, R., 2008. Applied aspects of neonicotinoid uses
- in crop protection. Pest Manag. Sci. 64, 1099-1105.
- ePM (The e-Pesticides Manual), 2011.
- 435 Girolami, V., Mazzon, L., Squartini, A., Mori, N., Marzaro, M., Di, Bernardo.A., Greatti, M., Giorio,
- 436 C., Tapparo, A., 2009. Translocation of neonicotinoid insecticides from coated seeds to seedling
- guttation drops: a novel way of intoxication for bees. J. Econ. Entomol. 102, 1808-1815.
- 438 González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Boltes, K., Marco, E.,
- Fernández-Pinas, F., 2013. Toxicity of five antibiotics and their mixtures towards photosynthetic
- aquatic organisms: Implications for environmental risk assessment. Water Res. 47, 2050-2064.
- Goulson, D., 2013. REVIEW: An overview of the environmental risks posed by neonicotinoid
- insecticides. J. Appl. Ecol. 50, 977-987.
- Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L., 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 347, 1255957.
- Hladik, M.L., Vandever, M., Smalling, K.L., 2016. Exposure of native bees foraging in an agricultural
 landscape to current-use pesticides. Sci. Total Environ. 542(Part A): 469-477.
- Jia, J., Zhu, F., Ma, X.H., Cao, Z.W.W, Li, Y.X.X., Chen, Y.Z., 2009. Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8, 111-128.
- 449 Kasiotis, K.M., Anagnostopoulos, C., Anastasiadou, P., Machera, K., 2014. Pesticide residues in
- 450 honeybees, honey and bee pollen by LC MS/MS screening: Reported death incidents in
- honeybees. Sci. Total Environ. 485, 633-642.
- 452 Kayser, H., Lee, C., Decock, A., Baur, M., Haettenschwiler, J., Maienfisch, P., 2004. Comparative
- 453 analysis of neonicotinoid binding to insect membranes: I. A structure activity study of the mode
- of [3H]imidacloprid displacement in Myzus persicae and Aphis craccivora. Pest Manag. Sci.. 60,
- 455 945-958.
- Kessler, S.C., Tiedeken, E.J., Simcock, K.L., Derveau, S., Mitchell, J., Softley, S., Stout, J.C., Wright,
- 457 G. A., 2015. Bees prefer foods containing neonicotinoid pesticides. Nature, 521, 74.-76.
- Klatt, B.K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., Pawelzik, E., Tscharntke, T., 2014. Bee
- pollination improves crop quality, shelf life and commercial value. Proc. Biol. Sci. 281, 20132440.
- 460 Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V.L., Kaussmann, M., 2003. Thiamethoxam is a
- 461 neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol.
- 462 76, 55-69.
- OECD.1998. OECD Guidelines for Testing of Chemicals: Honeybees, Acute Oral Toxicity Test.
- 464 OECD, Paris, France. No. 213.
- Rodea-Palomares, I., Petre, A.L., Boltes, K., Leganés, F., Perdigón-Melón, J.A., Rosal, R., Fernández-
- Pinas, F., 2010. Application of the combination index (CI)-isobologram equation to study the
- 467 toxicological interactions of lipid regulators in two aquatic bioluminescent organisms. Water Res.

468	44, 427-438.
469	Rundlöf, M., Andersson, G.K.S., Bommarco, R., Fries, I., Hederström, V., Herbertsson, L., Jonsson,
470	O., Klatt, B.K., Pedersen, T.R., Yourstone, J., Smith, H., 2015. Seed coating with a
471	neonicotinoid insecticide negatively affects wild bees. Nature. 521, 77-80.
472	Samson-Robert, O, Labrie, G., Chagnon, M., Fournier, V., 2014. Neonicotinoid-contaminated puddles
473	of water represent a risk of intoxication for honey bees. PLOS ONE. 9, e108443.
474	Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N., 2016. Are bee
475	diseases linked to pesticides? - A brief review. Environ. Int. 89 - 90: 7-11.
476	Sandrock, C., Tanadini, M., Tanadini, L.G., Fausermisslin, A., Potts, S.G., Neumann, P., 2014. Impact
477	of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLOS
478	ONE. 9, e103592.
479	Wang, Y.H., Chen, C., Qian, Y.Z., Zhao, X.P, Wang, Q., Kong, X.Z., 2015. Toxicity of mixtures of λ
480	-cyhalothrin, imidacloprid and cadmium on the earthworm Eisenia fetida by combination index
481	(CI)-isobologram method. Ecotoxicol. Environ. Saf. 111: 242-247.
482	Wellmann, H., Gomes, M., Lee, C., Kayser, H., 2004. Comparative analysis of neonicotinoid binding
483	to insect membranes: II. An unusual high affinity site for [3H]thiamethoxam in Myzus persicae
484	and Aphis craccivora. Pest Manag. Sci. 60, 959-970.
485	Wiesner, P., Kayser, H., 2000. Characterization of nicotinic acetylcholine receptors from insects Aphis
486 487	craccivora, Myzus persicae, and Locusta migratoria by radioligand binding assays: relation to thiamethoxam action J. Biochem. Mol. Toxicol. 14, 221-230.
488	Williamson, S.M., Wright, G.A., 2013. Exposure to multiple cholinergic pesticides impairs olfactory
489	learning and memory in honeybees. J. Exp. Biol. 216, 1799-1807.
490	Zhu, W.Y., Schmehl, D.R., Mullin, C.A., Frazier, J.L., 2014. Four common pesticides, their mixtures
491	and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae.
492	PLOS ONE. 9, e77547.
493	
.55	
494	
495	
496	
497	
498	
499	
433	
500	
501	
502	
503	
504	
505	

Table 1

Dose-effect relationship parameters and mean combination index (CI) values of dinotefuran (D), clothianidin(C), and thiamethoxam (T) singly and their binary and ternary combinations within honeybee tests after 48 h exposure.

Pesticides Dose-effect		t parameters		CI valu		ues at	
	D _m	m	r		LD ₁₀	LD ₅₀	LD ₉₀
D	0.0110	5.05	0.953				
С	0.00408	3.20	0.906		- (-		
Т	0.00411	2.31	0.952				
D+T	0.00760	4.97	0.978	4	1.51	1.09	0.841
C+D	0.00581	5.55	0.999		1.01	0.833	0.698
C+T	0.00352	3.28	0.978		1.01	0.860	0.746
C+D+T	0.00548	5.83	0.987		1.33	0.928	0.673

The computer software Compusyn was used for calculating the parameters of D_m , m, r, and CI values. The parameters of D_m , m, and r are the antilog of the x-intercept, the slope, and the linear correlation coefficient of the median-effect plot, which indicates the potency (LD_{50}), the shape of the dose-effect curve, and the conformity of the data to the mass-action law, respectively (Chou and Talalay, 1984; Chou, 2006). D_m and m values are used to calculate the CI values (Equation 4), and CI < 1, CI > 1, and CI = 1 represent synergism, antagonism and additive effect, respectively. LD_{10} , LD_{50} , and LD_{90} are the doses for producing 10%, 50%, and 90% mortality rate of

Dose in ug active ingredient/ bee

honeybees, respectively.

Fig.1. Dose-effect curves of dinotefuran (D), clothianidin(C), and thiamethoxam (T)and their total combinations for the mortality rate of honeybees after an exposure of 48 h.

Dose in µg active ingredient/ bee

Fig.2. Combination index Plot (f_a – CI plot) for total combinations of dinotefuran (D), clothianidin(C), and thiamethoxam (T) for the mortality rate of honeybees after an exposure of 48 h. CI values are plotted as a function of the fraction affected (f_a) by the simulation of the computer software Compusyn. CI < 1, CI > 1, and CI = 1 represent synergism, antagonism, and additive effect, respectively. Three specialty experiments with two repetitions were used for the analysis. On the basis of SDA (Sequential Deletion Analysis), the vertical bars indicate 95% confidence intervals for CI values (Chou and Martin, 2005).

552

553

Fig.3. Polygonograms showing the toxicological interactions of dinotefuran (D), clothianidin(C), and thiamethoxam (T) in total combinations when calculated by Compusyn for the mortality rate of honeybees at three representative effect levels (f_a) :

fa = 0.1, 0.5, and 0.9 after an exposure of 48 h. Solid line represents synergism, and

the strength of each synergism is indicated by the thickness of the line.

559

Highlights

- 1. A handy method was used for studying the nature of interactions of three neonicotinoids.
- 2. Honeybee assay was conducted in acute oral toxicity test.
- 3. Synergisms and additive effect were observed for the combinations.