À rendre le lundi 4 novembre.

Problème. Équations de Bernoulli et de Ricatti.

Préliminaires. Résoudre les deux équations différentielles ci-dessous :

1.
$$y' + \frac{x}{1+x^2}y = \frac{x}{1+x^2}$$
, sur \mathbb{R} .

2.
$$y' + \frac{1}{x}y = \frac{\ln(x)}{x}$$
, sur \mathbb{R}_+^* .

Partie A. Équations de Bernoulli.

On appelle équation de Bernoulli toute équation différentielle $\underline{\text{non linéaire}}$ de la forme

$$y' = a(x)y + b(x)y^p (B)$$

où p est un réel différent de 1, et a et b deux fonctions continues sur un intervalle I.

On va donner une méthode pour en déterminer les solutions strictement positives. Soit une fonction $y: I \to \mathbb{R}_+^*$ dérivable sur I et $z = y^{1-p}$.

- 1. Justifier que z est dérivable sur I et calculer z'.
- 2. Démontrer que y est solution de (B) si et seulement si z est solution de l'équation linéaire

$$z' = (1 - p)a(x)z + (1 - p)b(x) \quad (LB).$$

(LB) équation Linéaire associée à une équation de Bernoulli.

3. (a) Écrire l'équation (LB_1) associée à l'équation de Bernoulli

$$y' = -\frac{2x}{1+x^2}y + \frac{2x}{1+x^2}\sqrt{y} \qquad (B_1).$$

- (b) Quelles sont les solutions l'équation (LB_1) sur \mathbb{R} ?
- (c) Parmi ces solutions, préciser quelles sont celles qui prennent des valeurs strictement positives sur tout \mathbb{R} .
- (d) Donner alors les solutions de (B_1) strictement positives sur \mathbb{R} .

4. (a) Écrire l'équation (LB_2) associée à l'équation de Bernoulli

$$y' = \frac{1}{x}y - \frac{\ln(x)}{x}y^2$$
 (B₂).

- (b) Quelles sont les solutions l'équation (LB_2) sur \mathbb{R}_+^* ?
- (c) Parmi ces solutions, préciser quelles sont celles qui prennent des valeurs strictement positives sur tout \mathbb{R}_{+}^{*} .
- (d) Donner alors les solutions de (B_2) strictement positives sur \mathbb{R}_+^* .

Partie B. Équations de Ricatti.

On appelle équation de Ricatti toute équation différentielle <u>non linéaire</u> de la forme

$$y' = a(x) + b(x)y + c(x)y^2,$$
 (R)

où a, b, c sont des fonctions continues sur un intervalle I.

1. Supposons que l'on dispose d'une solution particulière de l'équation (R) et notons-la y_0 . Posons $z = y - y_0$, où y est une fonction dérivable sur I. Démontrer que y est solution de (R) si et seulement si z est solution d'une équation de Bernoulli de la forme

$$z' = \alpha(x)z(x) + c(x)z^2, \quad (BR)$$

où la fonction α sera exprimée à l'aide de b, c et y_0 .

2. Trouver une solution particulière de l'équation de Ricatti ci-dessous :

$$y' = -x \ln(x) + \left(2 \ln(x) + \frac{1}{x}\right) y - \frac{\ln(x)}{x} y^2$$
 (R₃)

Quelle est l'équation de Bernoulli (BR_3) associée? Écrire un ensemble contenant une infinité de solutions de (R_3) .