MI-PAA: Řešení problému batohu metodou hrubé síly a jednoduchou heuristikou

Specifikace úlohy

Viz edux.

Rozbor možných variant řešení

Řešení hrubou silou

Procházíme všechny možnosti. Máme zaručeno, že nalezneme optimální řešení. Složitost je O(2^n).

Řešení heuristikou poměr cena/váha

Nejprve si pro každou položku spočítáme poměr cena/váha. Poté setřídíme. Do batohu poté přidáváme položky, které mají nejlepší poměr. Složitost je O(nlogn), avšak algoritmus nezaručuje nalezení optimálního řešení.

Popis kostry algoritmu

Soubor main.php obsahuje prvotní logiku programu. Načte data ze souboru a řádek po řádku vytváří instanci třídy RuckSackProblemBrute (příp. RuckSackProblemRatio). Tyto třídy jsou potomky abstraktní třídy BaseRuckSackProblem, která má pomocné metody pro zpracování vstupu a výstupu. Také definuje abstraktní metodu solve(), která je zodpovědná za spočtení řešení.

RuckSackProblemBrute vytváří rekurzi o *n* větvích. V každé části provadíme jendo rekurzivní volání pro hodnotu TRUE a jedno pro FALSE. Tímto způsobem vygenerujeme všechny možné varianty. Pro každou tuto variantu voláme funkci check(), která spočítá váhu a cenu daného řešení. Pokud je váha validní (nepřesahuje hmotnost baťohu) a pokud je cena nejvyšší nalezená, uložíme tuto konfiguraci. Na závěr řešení vypíšeme.

RuckSackProblemRatio si nejdříve spočte poměr cena/váha ke každé položce. Poté tyto poměry seřadí. Následně se volá funkce add(), která podle seřazených hodnot postupně přidává položky do batohu.

Naměřené výsledky

Hrubá síla

Nameřené časy v ms za běh jedné instance problému v závislosti na n.

Tabulka:

n	čas [ms]
4	0,4
10	8,34
15	336,2
20	12357,0
22	52981,52
25	453796,22

Graf:

Heuresitika cena/výkon

Tabulka:

n	čas [ms]
4	0,06
10	0,2

15	0,34
20	0,34
22	0,36
25	0,34

Graf:

Relativní chyba

Průměrná relativní chyba:

n	průměrná rel. chyba [%]
4	2,17
10	1,29
15	0,48
20	0,60
22	0,69
25	0,64

Maximální relativní chyba:

n	maximální rel. chyba [%]
4	36,36
10	11,48
15	8,54
20	8,43
22	7,23
25	8,10

Měřeno na:

- PHP 5.6.14
- Linux 3.18.22 Manjaro distribution based on Arch Linux
- Intel(R) Core(TM) i7-3517U CPU @ 1.90GHz
- 4 GB RAM

Závěr

Vidíme, že naměřené časy u metody hrubou silou opravdu rostou exponenciálně. Rozdíl mezi časy hrubou silou a metodou cena/váha je s roustoucím *n* obrovský. Průměrná relativní chyba u vyšších *n* padá pod 1%. Pokud nám tedy tato chybovost nevadí, heurestika nabízí rychlé řešení problému.

Autor: Tomáš Sušánka (susantom)