ANALISIS FAKTOR

Analisis faktor merupakan studi tentang keterhubungan antar sekumpulan variabel dalam usaha menemukan sekumpulan variabel baru atau variabel laten atau faktor laten.

Analisis Faktor

- 1. Eksploratori
- 2. Konfirmatori

MODEL ANALISIS FAKTOR

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ \vdots \\ X_p \end{pmatrix}_{p \times 1} - \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \vdots \\ \mu_p \end{pmatrix}_{p \times 1} = \begin{pmatrix} l_{11} & l_{12} & l_{13} & \dots & l_{1m} \\ l_{21} & l_{22} & l_{23} & \dots & l_{2m} \\ l_{31} & l_{32} & l_{33} & \dots & l_{3m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{p1} & l_{p2} & l_{p3} & \dots & l_{pm} \end{pmatrix}_{p \times m} \begin{pmatrix} F_1 \\ F_2 \\ F_3 \\ \vdots \\ F_p \end{pmatrix}_{m \times 1} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \vdots \\ \varepsilon_p \end{pmatrix}_{p \times 1}$$

Atau

$$(X-\mu)_{p\times 1} = L_{p\times m} F_{m\times 1} + \varepsilon_{p\times 1}$$

 X_i : Variabel random ke-i yang teramati;

 μ_i : Rata-rata variabel random ke-i;

 ε_i : Faktorkhususke-i;

 F_i : Faktorumumke-j;

 l_{ij} : Loading darivariabelke-i padafaktorke-j.

LANGKAH-LANGKAH ANALISIS FAKTOR

- 1) Identifikasi Data
- 2) Pengambilan Data
- 3) Bentuk Matriks Korelasi

```
r_{12}
                                     r_{15}
                   r_{13}
                            r_{14}
                                              r_{16}
                                                        r_{17}
                                                                 r_{18}
                                                                          r_{19}
                                                                                  r_{110}
                   r_{23}
                            r_{24}
                                     r_{25}
                                              r_{26}
                                                        r_{27}
                                                                 r_{28}
                                                                          r_{29}
r_{21}
                                                                                  r_{210}
                            r_{34}
         r_{32}
                                     r_{35}
                                              r_{36}
                                                        r_{37}
                                                                 r_{38}
                                                                          r_{39}
                                                                                  r_{310}
                                     r_{45}
                                              r_{46}
                                                        r_{47}
                                                                 r_{48}
         r_{42}
                   r_{43}
                                                                          r_{49}
                                                                                  r_{410}
                                       1
r_{51}
                   r_{53}
                            r_{54}
                                              r_{56}
                                                        r_{57}
                                                                 r_{58}
                                                                          r_{59}
         r_{52}
                                                                                  r_{510}
                                                1
                                                        r_{67}
                                                                                  r_{610}
                                                                 r_{68}
                                                                          r_{69}
r_{61}
         r_{62}
                   r_{63}
                            r_{64}
                                     r_{65}
                                                        U
r_{71}
                                              r_{76}
                                                                 r_{78}
                                                                          r_{79}
                            r_{74}
                                     r_{75}
         r_{72}
                   r_{73}
                                                                                  r_{710}
r_{81}
                            r_{84}
                                     r_{85}
                                              r_{86}
                                                        r_{87}
                                                                          r_{89}
         r_{82}
                   r_{83}
                                                                                  r_{810}
                                                                 r_{98}
         r_{92}
                   r_{93}
                            r_{94}
                                     r_{95}
                                              r_{96}
                                                        r_{97}
                                                                                  r_{910}
r_{91}
        r_{102} r_{103} r_{104} r_{105} r_{106} r_{107} r_{108} r_{109}
```

LANGKAH-LANGKAH ANALISIS FAKTOR

- 1) Identifikasi Data
- 2) Pengambilan Data
- 3) Bentuk Matriks Korelasi
 - * A. Bartlett's test of sphericity
 - ❖ B. Kiser-Mayer-Olkin (KMO)
 - C. Measure of Sampling Adequacy(MSA)

MSA)
$$MSA_{i} = \frac{\sum \sum r_{ij}^{2}}{\sum \sum r_{ij}^{2} + \sum \sum a_{ij}^{2}} dengan i \neq j$$

LANGKAH-LANGKAH ANALISIS FAKTOR

- 1) Identifikasi Data
- 2) Pengambilan Data
- 3) Bentuk Matriks Korelasi
 - ❖ A. Bartlett's test of sphericity
 - ❖ B. Kiser-Mayer-Olkin (KMO)
 - C. Measure of Sampling Adequacy(MSA)
- 4) Menentukan Metode Analisis Faktor
 - Principal Components Analysis (PCA)
 - Common Factor Analysis (CFA)
- 5) Penentuan Banyaknya Faktor
 - Penentuan Berdasarkan Eigenvalues
 - Penentuan Berdasarkan Scree Plot
- 6) Rotasi Faktor
- 7) Interpretasi Faktor

- Penentuan Apriori
- Penentuan Berdasarkan padaPersentase Varian

Contoh penerapan analisis faktor

Kasus: Seorang peneliti ingin menerapkan analisis faktor untuk merumuskan faktor laten yang mempengaruhi mahasiswa memilih Universitas Pendidikan Ganesha, untuk itu peneliti memberikan 10 butir pertanyaan kepada 20 mahasiswa (responden).

1) Identifikasi Data

Variabel yang mempengaruhi Mahasiswa Memilih Undiksha

X1	Pengaruh Ajakan Teman
X2	Pergaulan Antar Mahasiswanya
Х3	Kelengkapan Fasilitas Belajar
X4	Tempat Tinggal/ Kos Strategis dan Murah
X5	Biaya Makan Murah
X6	Hotspot/Wifi Gratis
X7	Persepsi Terhadap Dosen
X8	Motivasi dari Orang Tua
Х9	Menawarkan Banyak Program Beasiswa
X10	Biaya Pendidikan Merakyat

2) Pengambilan Data

Jawaban 20 responden terhadap 10 butir pertanyaan

Responden					Nor	nor Buti	r			
	X1	X2	Х3	Х4	X5	Х6	X7	X8	Х9	X10
1	1	1	0	1	0	1	0	1	0	0
2	1	1	1	1	1	1	1	1	1	1
3	1	1	0	1	1	1	0	1	0	1
4	0	1	1	1	1	1	1	0	1	1
5	1	1	1	1	1	1	1	1	1	1
6	0	1	1	1	1	1	1	0	1	1
7	1	1	0	0	1	0	0	1	0	1
8	0	0	0	0	0	0	0	0	0	0
9	1	0	1	1	0	1	1	1	1	0
10	1	0	1	1	0	1	1	1	1	0
11	1	0	1	1	1	1	1	1	1	0
12	0	1	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	0	1	1	1
14	1	1	0	1	1	1	0	1	0	1
15	1	1	0	1	1	0	0	1	0	1
16	0	0	0	1	1	0	0	0	0	1
17	0	1	0	0	0	0	1	0	0	0
18	0	1	1	0	0	1	1	0	0	0
19	0	0	1	0	0	1	1	0	1	0
20	0	1	1	1	1	1	1	0	1	1

0 = tidak 1 = ya

3) Bentuk Matriks Korelasi Standarisasi Data

Responden	X1	X2	Х3	X4	X5	X6	X7	X8	Х9	X10
1	0.882	0.639	-1.194	0.563	-1.329	0.563	-1.194	0.796	-1.078	-1.194
2	0.882	0.639	0.796	0.563	0.716	0.563	0.796	0.796	0.882	0.796
3	0.882	0.639	-1.194	0.563	0.716	0.563	-1.194	0.796	-1.078	0.796
4	-1.078	0.639	0.796	0.563	0.716	0.563	0.796	-1.194	0.8822	0.796
5	0.882	0.639	0.796	0.563	0.716	0.563	0.796	0.796	0.882	0.796
6	-1.078	0.639	0.796	0.563	0.716	0.563	0.796	-1.194	0.882	0.796
7	0.882	0.639	-1.194	-1.689	0.716	-1.689	-1.194	0.796	-1.078	0.796
8	-1.078	-1.489	-1.194	-1.689	-1.329	-1.689	-1.194	-1.194	-1.078	-1.194
9	0.882	-1.489	0.796	0.563	-1.329	0.563	0.796	0.796	0.882	-1.194
10	0.882	-1.489	0.796	0.563	-1.329	0.563	0.796	0.796	0.882	-1.194
11	0.882	-1.489	0.796	0.563	0.716	0.563	0.796	0.796	0.882	-1.194
12	-1.078	0.639	0.796	0.563	0.716	0.563	0.796	0.796	0.882	0.796
13	0.882	0.639	0.796	0.563	0.716	0.563	-1.194	0.796	0.882	0.796
14	0.882	0.639	-1.194	0.563	0.716	0.563	-1.194	0.796	-1.078	0.796
15	0.882	0.639	-1.194	0.563	0.716	-1.689	-1.194	0.796	-1.078	0.796
16	-1.078	-1.489	-1.194	0.563	0.716	-1.689	-1.194	-1.194	-1.078	0.796
17	-1.078	0.639	-1.194	-1.689	-1.329	-1.689	0.796	-1.194	-1.078	-1.194
18	-1.078	0.639	0.796	-1.689	-1.329	0.563	0.796	-1.194	-1.078	-1.194
19	-1.078	-1.489	0.796	-1.689	-1.329	0.563	0.796	-1.194	0.882	-1.194
20	-1.078	0.639	0.796	0.563	0.716	0.563	0.796	-1.194	0.882	0.796

$$z_i = \frac{x_i - \bar{x}}{s}$$

3) Bentuk Matriks Korelasi Matriks Korelasi

									_
1	0.066	-0.123	0.406	0.179	0.174	-0.328	0.903	-0.010	0.082
0.066	1	-0.089	0.126	0.435	0.126	-0.089	0.134	-0.154	0.579
-0.123	-0.089	1	0.236	0.043	0.707	0.792	-0.042	0.903	-0.042
0.406	0.126	0.236	1	0.545	0.467	0.000	0.471	0.406	0.471
0.179	0.435	0.043	0.545	1	0.061	-0.171	0.257	0.179	0.899
0.174	0.126	0.707	0.467	0.061	1	0.471	0.236	0.638	0.000
-0.328	-0.089	0.792	0.000	-0.171	0.471	1	-0.250	0.698	-0.250
0.903	0.134	-0.042	0.471	0.257	0.236	-0.250	1	0.082	0.167
-0.010	-0.154	0.903	0.406	0.179	0.638	0.698	0.082	1	0.082
0.082	0.579	-0.042	0.471	0.899	0.000	-0.250	0.167	0.082	1

A. Bartlett's test of sphericity

Hipotesis:

 H_0 : tidak terdapat hubungan antar variabel dalam kasus multivariat

 H_1 : terdapat hubungan antar variabel dalam kasus multivariate

$$X^{2} = -\left[(N-1) - \frac{(2p+5)}{6} \right] ln|R|$$

$$= -\left[(20-1) - \frac{(2(10)+5)}{6} \right] ln|0.0000712075964403275|$$

$$= -\left[(19) - \frac{25}{6} \right] (-9.54991)$$

$$= 141.657$$

$$X^{2}_{tabel} = X^{2}_{\alpha, p(p-1)/2} = X^{2}_{\alpha, 10(10-1)/2} = X^{2}_{\alpha, 45}$$

$$X_{tabel}^2 = 61.66$$
. Tabel X^2 (Terlampir)

$$X^2_{hitung} > X^2_{tabel}$$

Kesimpulan:

Tolak Ho. Sehingga terdapat hubungan antar variabel dalam kasus

multivariate.

KMO and Bartlett's Test								
Kaiser-Meyer-Olkin Me	asure of Sampling Adequacy.	.636						
Bartlett's Test of	Approx. Chi-Square	141.657						
Sphericity	df	45						
	Sig.	.000						

SPSS

Kiser-Mayer-Olkin (KMO)

Hipotesis:

 H_0 : Jumlah data cukup untuk difaktorkan

 H_1 : Jumlah data tidak cukup untuk difaktorkan

$$KMO = \frac{\sum_{i}^{n} \sum_{j \neq i}^{n} r_{ij}^{2}}{\sum_{i}^{n} \sum_{j \neq i}^{n} r_{ij}^{2} + \sum_{i}^{n} \sum_{j \neq i}^{n} a_{ij}^{2}}$$
$$= \frac{14.3849}{14.3849 + 8.24269}$$
$$= 0.636$$

Ket:

$$i = 1,2,3,..., p \text{ dan } j = 1,2,3,..., p$$

 r_{ij} = Koofesien korelasi antara variabel i dan j

 a_{ij} = Koofesien korelasi parsial antara variabel *i* dan *j*

Kesimpulan:

Berdasarkan hasil perhitungan tersebut karena nilai KMO > 0.5 maka terima Ho. Kesimpulannya jumlah data cukup untuk difaktorkan.

к	KMO and Bartlett's Test									
Kaiser-Meyer-Olkin Me	asure of Sampling Adequacy.	.636								
Bartlett's Test of	Approx. Chi-Square	141.657								
Sphericity	df	45								
	Sig.	.000								

C. Measure of Sampling Adequacy (MSA))

$$MSA_{i} = \frac{\sum \sum r_{ij}^{2}}{\sum \sum r_{ij}^{2} + \sum \sum a_{ij}^{2}} dengan i \neq j$$

$$MSA_{1} = \frac{\sum \sum r_{1j}^{2}}{\sum \sum r_{1j}^{2} + \sum \sum a_{1j}^{2}}$$

$$= \frac{1.176}{1.176 + 0.810}$$

$$= 0.592$$

Kesimpulan:

Karenakoofesien MSA_2 < 0.5 makavariabel 2 dieliminasi, selanjutnyadilakukananalisisulang

Anti-image Correlation	X1	.592*	028	.000	064	092	025	.210	849	015	.178
	X2	028	.389	.019	.254	.188	401	410	124	.401	602
	Х3	.000	.019	.683ª	.314	057	503	342	.057	682	012
	X4	064	.254	.314	.716ª	139	493	084	095	232	198
	X5	092	.188	057	139	.6742	.070	125	038	.052	783
	X6	025	401	503	493	.070	.659ª	.201	016	.046	.213
1	Х7	.210	410	342	084	125	.201	.720°	.006	262	.405
	Х8	849	124	.057	095	038	016	.006	.626ª	113	.026
	Х9	015	.401	682	232	.052	.046	262	113	.702	244
	X10	.178	602	012	198	783	.213	.405	.026	244	.528

a. Measures of Sampling Adequacy(MSA)

SPSS

Analisis Ulang

Variabel 2 dieliminasi karena tidak memenuhi syarat pada Uji MSA

Berikut SPSS Matriks Korelasi, Uji Bartlett's, KMO dan MSA

	Correlation Matrix												
		X1	Х3	X4	X5	Х6	X7	Х8	X9	X10			
Correlation	X1	1.000	123	.406	.179	.174	328	.903	010	.082			
	Х3	123	1.000	.236	.043	.707	.792	042	.903	042			
	X4	.406	.236	1.000	.545	.467	.000	.471	.406	.471			
	X5	.179	.043	.545	1.000	.061	171	.257	.179	.899			
	Х6	.174	.707	.467	.061	1.000	.471	.236	.638	.000			
	X7	328	.792	.000	171	.471	1.000	250	.698	250			
	X8	.903	042	.471	.257	.236	250	1.000	.082	.167			
	Х9	010	.903	.406	.179	.638	.698	.082	1.000	.082			
	X10	.082	042	.471	.899	.000	250	.167	.082	1.000			

KMO	and	Rart	lett's	Tes

Kaiser-Meyer-Olkin Me	easure of Sampling Adequacy.	.671
Bartlett's Test of Sphericity	Approx. Chi-Square	129.388
	***	36
	Sig.	.000

Anti-image Correlation X1	.583*	.000	058	088	039	.217	859	004	.202
X3	.000	.647ª	.320	061	541	366	.060	753	.000
X4	058	.320	.733 °	197	442	.023	066	377	058
X5	088	061	197	.611ª	.162	053	015	026	853
X6	039	541	442	.162	.711⁼	.044	073	.247	039
X7	.217	366	.023	053	.044	.865°	050	117	.217
X8	859	.060	066	015	073	050	.622ª	069	061
X9	004	753	377	026	.247	117	069	.709=	004
X10	.202	.000	058	853	039	.217	061	004	.579⁼

a. Measures of Sampling Adequacy(MSA)

Semua Uji telah memenuhi kriteria atau syarat maka dengan demikian, analisis sudah bisa dilanjukan.

5) MenetukanBanyaknyaFaktor

A. Eigenvalue (eigenvalue ≥1)

$$Det (A - I\lambda) = 0$$

Total Variance Explained

	Initial Eigenvalues			Extractio	n Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.321	36.897	36.897	3.321	36.897	36.897
2	2.859	31.764	68.662	2.859	31.764	68.662
3	1.604	17.823	86.485	1.604	17.823	86.485
4	.465	5.170	91.655			
5	.318	3.528	95.184			
6	.200	2.227	97.410			
7	.097	1.076	98.486			
8	.079	.880	99.366			
9	.057	.634	100.000			

Extraction Method: Principal Component Analysis.

- 5) Menetukan Banyaknya Faktor
 - B. Scree Plot

Scree plot mulai mendatar pada ekstraksi variabel-variabel awal menjadi 3 faktor

5) Menetukan Banyaknya Faktor

Component Matriks

$$\widehat{L} = \left[\sqrt{\lambda_1} e_1 : \sqrt{\lambda_2} e_2 : \cdots : \sqrt{\lambda_m} e_m \right].$$

$$\hat{L}_{11} = \sqrt{\lambda_1} e_{11}$$

$$= \sqrt{3.321} \times 0.098$$

$$= 1.823 \times 0.098$$

$$= 0.179$$

Component Matrix^a

		Component	
	1	2	3
X1	.179	.698	.638
Х3	.867	421	014
X4	.630	.565	047
X5	.346	.670	597
X6	.819	091	.229
X7	.627	660	026
X8	.285	.709	.572
X9	.905	239	043
X10	.238	.649	675

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

 $\Rightarrow (A - \lambda I)e = 0$

6) Rotasi Faktor

Component Matrix^a

		Component	
	1	2	3
X1	.179	.698	.638
Х3	.867	421	014
X4	.630	.565	047
X5	.346	.670	597
X6	.819	091	.229
X7	.627	660	026
Х8	.285	.709	.572
X9	.905	239	043
X10	.238	.649	675

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

Rotated Component Matrix^a

	Component		
	1	2	3
X1	083	.045	.958
Х3	.961	.020	073
X4	.347	.590	.500
X5	.016	.955	.111
X6	.797	.041	.306
X7	.837	199	299
X8	.006	.133	.946
X9	.922	.167	.038
X10	079	.963	.016

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

7) Interpretasi Faktor

.

Faktor	Variabel
1	X3,X6,X7,X9
2	X4,X5,X10
3	X1,X8

7) Interpretasi Faktor

Penamaan Faktor

Variabel yang mempengaruhi Mahasiswa Memilih Undiksha

X3	Kelengkapan Fasilitas Belajar
X6	Hotspot/Wifi Gratis
X7	Persepsi Terhadap Dosen
X9	Menawarkan Banyak Program Beasiswa

Faktor 1 Kelengkapan fasilitas & sistem belajar

X4	Tempat Tinggal/ Kos Strategis dan Murah
X5	Biaya Makan Murah
X10	Biaya Pendidikan Merakyat

Faktor 2 Faktor biaya

X1	Pengaruh Ajakan Teman
X8	Motivasi dari Orang Tua

Faktor 3 Faktor motivasi

DISKUSI