Final Assessment Test - April 2019

Course: MAT3004 - Applied Linear Algebra

Class NBR(s): 0732 /0735 / 0736 / 0776 / 0777 / 0787 /

0788 / 0789 / 0790 / 0791 /0908 / 1759 / 1817 / 5189 /

Time: Three Hours

Slot: C1+TC1+TCC1+V2

[10]

Max. Marks: 100

$(5 \times 20 = 100 \text{ Marks})$ Answer any FIVE Questions

Find the LU factorization of the matrix $A = \begin{bmatrix} 2 & 8 & 0 \\ 2 & 2 & -3 \\ 1 & 2 & 7 \end{bmatrix}$ where L is a lower triangular matrix with [10]

diagonal entries 1 and U is an upper triangular matrix. Using this, solve $A\overline{x}=\overline{b}$, where $\overline{x}^T=[x\ y\ z]$ and $\bar{b}^T = [18312]$.

Find all values of a for which the following linear system has solutions.

 $x + 2y + z = a^2$ x + y + 3z = a3x + 4y + 7z = 8

Find the solutions for the system of equations for these values of a.

Let W be the subspace of R4 spanned by $w_1 = (2,0,3,-4), w_2 = (4,2,-5,1), w_3 = (2,-2,14,-13), w_4 = (6,2,-2,-3).$ Is $W = \mathbb{R}^4$? If not, [10] find a basis of W and extend it to a basis of \mathbb{R}^4 .

Prove that a vector space V is the direct sum of subspaces U and W, that is, $V=U \oplus W$ if and only [10] if for any $v \in V$ there exist unique $u \in U$ and $w \in W$ such that v = u + w.

Find a basis for the Row space, Column space and the null space of the matrix $A = \begin{bmatrix} -2 & 2 & 3 & 7 & 1 \\ -2 & 2 & 4 & 8 & 0 \\ -3 & 3 & 2 & 8 & 4 \\ 4 & -2 & 1 & -5 & 7 \end{bmatrix}.$ [10]

Is the polynomial $p(t)=3t^2-3t+1$ a linear combination of $p_1(t)=t^2-t$, $p_2(t)=t^2-2t+1$, $p_3(t)=-t^2+1$? Can you conclude that $\{p_1(t),p_2(t),p_3(t)\}$ is a basis of $P_2(\mathbb{R})$?

Let V and W be vector spaces. Let $\{v_1,v_2,\dots,v_n\}$ be a basis of V and let w_1,w_2,\dots,w_n be any vectors (possibly repeated) in W. Prove that there exists a unique linear transformation $T\colon V\longrightarrow W$ [10] such that $T(v_i) = w_i$, for i = 1, 2, ..., n.

Let T: on $\mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T(x_1,x_2,x_3)=(x_1+2x_2+x_3,-x_2,x_1+4x_3)$. Let $\alpha=\{e_1,e_2,e_3\}$ be the standard basis of [10] \mathbb{R}^3 and $eta=\{v_1,v_2,v_3\}$ be another ordered basis consisting of $v_1=(1,0,0), v_2=(1,1,0),$ and $v_3=(1,1,1)$ for \mathbb{R}^3 . Find the associated matrix of T with respect to lpha and the associated matrix of T with respect to eta. Are they similar?

Join @vitquestionpapers_2K19 On Telegram

ossession of Mobile Phone in the exam hall even in switched off condition is a malpractice.

- a) Prove that for $\mathbf{x}=(x_1,\ x_2,\ x_3)$ and $\mathbf{y}=(y_1,\ y_2,\ y_3)$, the function defined by < x, y> = x_1 y_1 + 3 x_2 y_2 + 5 x_3 y_3 is an inner product on \mathbb{R}^3 . Find the angle between the two [10] vectors (2,1,1) and (1,0,-1) with respect to this inner product.
 - Let W be the subspace of the Euclidean space \mathbb{R}^3 spanned by the vectors $v_1=(1,1,2)$ and b) [10] $v_2 = (1,1,-1).$
 - (i) Find the orthogonal projection $\operatorname{Proj}_{W}(\mathbf{b})$ of the vector $\mathbf{b} = (1,3,-2)$ onto the subspace W.
 - (ii) Also find the shortest distance between ${\bf b}$ and the subspace W.
- Find all the least squares solutions of $A \mathbf{x} = \mathbf{b}$ where $=\begin{bmatrix} 1 & 3 & -3 \\ 2 & 4 & -2 \\ 0 & -1 & 2 \\ 1 & 2 & -1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. [10]
 - Find the QR factorization of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 2 & 0 \\ -1 & -2 & 2 \end{bmatrix}$. [10]
- The alphabets A to Z are encoded using $A\leftrightarrow 0, B\leftrightarrow 1, ... Z\leftrightarrow 25$. The encrypted cipher text is the sequence of numbers 50, 33,26,34,22,22. The matrix used to encrypt is $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$. [10] Find the original message.
 - What is the geometric effect of each one of the matrices $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, D = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ on a vector } \begin{bmatrix} x \\ y \end{bmatrix} \text{ in } \mathbb{R}^2?$ [10]

