

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : C07F 17/00, C08F 10/00, C07F 7/08, 7/10, 7/22, 7/30, 5/06, 5/02, 9/28, C08F 110/00, 210/00, B32B 27/32		A1	(11) Internationale Veröffentlichungsnummer: WO 99/65923 (43) Internationales Veröffentlichungsdatum: 23. Dezember 1999 (23.12.99)
(21) Internationales Aktenzeichen: PCT/EP99/04056 (22) Internationales Anmeldedatum: 12. Juni 1999 (12.06.99)		(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: 198 26 403.8 15. Juni 1998 (15.06.98) DE		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).			
(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): KRISTEN, Marc, Oliver [DE/DE]; Römerweg 15, D-67117 Limburgerhof (DE). LANGHAUSER, Franz [DE/DE]; Haagweg 18, D-67152 Ruppertsberg (DE). SCHWEIER, Günther [DE/DE]; Friedrich-Pietzsch-Strasse 14, D-67159 Friedelsheim (DE). SITZMANN, Helmut [DE/DE]; Lothringer Dell 27, D-67659 Kaiserslautern (DE). KRAMMER, Ralf [DE/DE]; Limburgstrasse 37, D-67098 Bad Dürkheim (DE). SAURENZ, Dirk [DE/DE]; Lindenstrasse 13, D-67691 Hochspeyer (DE).			
(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).			
(54) Title: TRANSITION METAL COMPLEXES			
(54) Bezeichnung: ÜBERGANGSMETALLKOMPLEXE			
(57) Abstract			
<p>The invention relates to transition metal complexes of general formulas (Ia) or (Ib) in which the substituents and indices have the following meanings: M represents titanium, zirconium, hafnium, vanadium, niobium or tantalum or an element of the third subgroup of the periodic table or of the lanthanides; X represents fluorine, chlorine, bromine, iodine, hydrogen, C₁-C₁₀-alkyl, C₆-C₁₅-alkyl aryl having 1 to 10 C-atoms in the alkyl residue and 6 to 20 C-atoms in the aryl residue, -OR⁵ or -NR⁵R⁶; n represents 1, 2, or 3, whereby n corresponds to the valence of M minus the number 2; Y represents (a), (b), (c) or (d); Z represents a triple-linking binding group and; A and A¹ represent double-linking binding links. The invention also relates to a method for producing the transition metal complexes, to their production as compounds used as intermediate products, and to the use of transition metal complexes for the polymerization of olefins. Further, the invention relates to a method for the polymerization of olefins, homopolymerizes or copolymerizes of ethylene or of propylene having other C₂-C₁₂-alk-1-enes, to their use for producing films, fibers or shaped bodies, and to the films, fibers and shaped bodies made of these polymerizes.</p>			

(57) Zusammenfassung

Übergangsmetallkomplexe der Formeln (Ia) oder (Ib), in denen die Substituenten und Indizes folgende Bedeutung haben: M Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal oder ein Element der III. Nebengruppe des Periodensystems oder der Lanthanoiden; X Fluor, Chlor, Brom, Iod, Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR⁵ oder NR⁵R⁶, n 1, 2 oder 3, wobei n der Wertigkeit von M minus der Zahl 2 entspricht; Y (a), (b), (c), (d); Z eine dreifachverknüpfende Brückengruppe und A und A¹ zweifachverknüpfende Brückenglieder, Verfahren zur Herstellung der Übergangsmetallkomplexe, zu deren Herstellung als Zwischenprodukte eingesetzte Verbindungen, die Verwendung der Übergangsmetallkomplexe zur Polymerisation von Olefinen, Verfahren zur Polymerisation von Olefinen, Homo- oder Copolymerisate des Ethylen oder des Propylen mit anderen C₂-C₁₂-Alk-1-enen, deren Verwendung zur Herstellung von Folien, Fasern oder Formkörpern sowie die Folien, Fasern oder Formkörper aus diesen Polymerisaten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun			PT	Portugal		
CN	China	KR	Republik Korea	RO	Rumänien		
CU	Kuba	KZ	Kasachstan	RU	Russische Föderation		
CZ	Tschechische Republik	LC	St. Lucia	SD	Sudan		
DE	Deutschland	LI	Liechtenstein	SE	Schweden		
DK	Dänemark	LK	Sri Lanka	SG	Singapur		
EE	Estland	LR	Liberia				

Übergangsmetallkomplexe

Beschreibung

5

Die vorliegende Erfindung betrifft Übergangsmetallkomplexe der allgemeinen Formeln (Ia) oder (Ib),

10

15

20

25

30

in denen die Substituenten und Indizes folgende Bedeutung haben:

- | | |
|-----------------------------------|--|
| R ¹ bis R ³ | Wasserstoff, C ₁ -C ₁₀ -Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits durch C ₁ -C ₁₀ -Alkyl substituiert sein kann, C ₆ -C ₁₅ -Aryl oder Arylalkyl, wobei die Reste mit benachbarten Resten jeweils mit den sie verbindenden Atomen einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden können, oder Si(R ⁴) ₃ mit |
| 35 R ⁴ | C ₁ -C ₁₀ -Alkyl, C ₃ -C ₁₀ -Cycloalkyl oder C ₆ -C ₁₅ -Aryl, |
| 40 M | Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal oder ein Element der III. Nebengruppe des Periodensystems oder der Lanthanoiden, |
| 45 | |

2

X Fluor, Chlor, Brom, Iod, Wasserstoff,
 C_1-C_{10} -Alkyl, C_6-C_{15} -Aryl, Alkylaryl mit 1 bis
 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen
 im Arylrest, $-OR^5$ oder $-NR^5R^6$,

5

n 1, 2 oder 3, wobei n der Wertigkeit von M minus
 der Zahl 2 entspricht,

wobei

10

R^5 und R^6 C_1-C_{10} -Alkyl, C_6-C_{15} -Aryl, Alkylaryl, Arylalkyl,
 Fluoralkyl oder Fluoraryl mit jeweils 1 bis
 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen
 im Arylrest bedeuten und

15

die Reste X gleich oder verschieden sind,

Y

— O —, — S —, $\begin{array}{c} \diagup \\ NR^7 \end{array}$ oder $\begin{array}{c} \diagdown \\ PR^7 \end{array}$ bedeutet, wo-

20

bei

 R^7

C_1-C_{10} -Alkyl, C_6-C_{15} -Aryl, C_3-C_{10} -Cycloalkyl oder
 C_7-C_{18} -Alkylaryl oder einfach oder mehrfach mit

25

$Si(R^8)_3$, SR^8 , OR^8 , $-(\underset{\substack{| \\ R^8}}{(C)}_{n'}-O)_{m'}-R^8$, $OSi(R^8)_3$,

$N(R^8)_2$, $P(R^8)_2$ oder einer Kombination davon sub-
 stituierter C_1-C_{10} -Alkyl, C_6-C_{15} -Aryl, C_3-C_{10} -Cy-
 cloalkyl oder C_7-C_{18} -Alkylaryl oder $Si(R^8)_3$ ist
 mit

n' und m'

jeweils 1, 2, 3 oder 4 und

35 R^8

Wasserstoff, C_1-C_{10} -Alkyl, C_6-C_{15} -Aryl, das
 seinerseits mit C_1-C_4 -Alkylgruppen substituiert
 sein kann, oder C_3-C_{10} -Cycloalkyl,

wobei die Reste R^8 gleich oder verschieden sind,

40

Z eine dreifachverknüpfende Brückengruppe ist und

A und A^1

für zweifachverknüpfende Brückenglieder stehen.

45 Außerdem betrifft die Erfindung Verfahren zur Herstellung der
 Übergangsmetallkomplexe, zu deren Herstellung als Zwischenpro-
 dukte eingesetzte Verbindungen, die Verwendung der Übergangsme-

tallkomplexe zur Polymerisation von Olefinen, Verfahren zur Polymerisation von Olefinen, Homo- oder Copolymerisate des Ethylens oder des Propylens mit anderen C₂-C₁₂-Alk-1-enen, deren Verwendung zur Herstellung von Folien, Fasern oder Formkörpern sowie die Folien, Fasern oder Formkörper aus diesen Polymerisaten.

Metallocen-Katalysatoren werden in der letzten Zeit verstärkt zur Polymerisation oder Copolymerisation von Ethylen oder Propylen eingesetzt. Bei der Ethylenpolymerisation ist es häufig er-10 wünscht, einen hohen Gehalt an Comonomeren wie But-1-en, Hex-1-en oder Oct-1-en in den Ethylenpolymerisaten zu erhalten. Bei der Propylenpolymerisation wird in der Regel ein isotaktischer Aufbau der Polymerketten angestrebt. Mit Metallocen-Katalysatoren können über die Ligandenstruktur diese Eigenschaften gesteuert werden.

Allgemein wird angenommen, daß der Öffnungswinkel zwischen den Cyclopentadienytringen des Metallocens einen großen Einfluß auf das Einbauverhalten besitzt. Einen großen Öffnungswinkel kann man z.B. durch Verbrückung der Ringe durch eine SiMe₂- oder 15 C₂H₄-Brücke erreichen. Solche Metallocen-Katalysatoren sind beispielsweise in der EP-A 336 128 beschrieben. Durch die Verbrückung können diese Komplexe sowohl in racemischer als auch in meso-Form existieren. Die racemischen Metallocene eignen sich besonders für den Einsatz in der Propylenpolymerisation, da hier 20 stereo-selektive Katalysatoren notwendig sind. Ein Nachteil dieser Metallocene ist aber, daß bei der Synthese in der Regel ein Gemisch aus racemischer und meso-Form anfällt, aus dem die meso-Form aufwendig abgetrennt werden muß.

Bei anderen Metallocen-Katalysatoren ist ein Cyclopentadienyling 25 durch einen Heteroliganden, beispielsweise eine Amidgruppe, ersetzt. Die Amidgruppe ist bei diesen Metallocenen über eine Brücke (z.B. SiMe₂) kovalent mit dem Ringsystem verbunden. Verbindungen dieser Art sind beispielsweise in der EP-A 416 815 und 30 EP-A 420 436 beschrieben. Es ist bekannt, daß Metallocenkomplexe dieser Art besonders gut Comonomere bei der Ethylen- α -Olefin-Copolymerisation einbauen und eine hohe Molmasse liefern. Allerdings war es bisher nicht möglich, mit Komplexen dieses Typs isotaktisches Polypropylen zu erhalten, da das Metallzentrum keine 35 C₂-Symmetrie aufwies. Das erhaltene Polypropylen war ataktisch mit teilweise syndiotaktischen Anteilen (WO 94/00500, US-A 5 096 867, EP-A 520 732, US-A 5 504 169).

Neben den Metallocenen mit einem Cyclopentadienyling und einem 40 Heteroatom als Liganden sind auch komplexere Systeme z.B. mit einem Fluorenylsystem und einem Heteroatom bekannt (Okuda et al., Organometallics 1995, 14, 789-795). Auch hierbei erhält man aber

kein chirales Metallatom. Während in der US-A 5 026 798 die Synthese von teilweise isotaktischem Polypropylen mit Katalysatoren dieses Typs beschrieben, zeigen neuere Untersuchungen

(A.L. McKnight et al. Organometallics 1997, 16, 2879-2885), daß

5 mit den identischen Systemen lediglich Isotaktizitäten erzielt werden, die im Bereich des statistisch Erwarteten liegen. Das verwendete Ligandengerüst besitzt also keinen Einfluß auf die Isotaktizität.

10 Aufgabe der Erfindung war daher, den oben beschriebenen Nachteilen abzuhelfen und einen Metallocenkomplex zu entwickeln, der bei der Ethylenpolymerisation verfahrenstechnische Vorteile und insbesondere einen hohen Comonomereinbau zeigt und eine hohe Molmasse liefert. Weiterhin sollte das Metallocen in der Lage sein,

15 die Herstellung von isotaktischem Polypropylen zu katalysieren und auch dort eine hohe Molmasse zu liefern. Schließlich sollte die Struktur des Metallocens so beschaffen sein, daß es verfahrenstechnisch einfach herzustellen ist und insbesondere bei der Synthese keine meso-Form entstehen kann, die für viele Anwendungen sonst aufwendig abgetrennt werden müßte.

Demgemäß wurden die eingangs definierten Übergangsmetallkomplexe gefunden. Außerdem wurden Verfahren zu deren Herstellung, zu ihrer Herstellung als Zwischenprodukte eingesetzte Verbindungen,

25 die Verwendung der Übergangsmetallkomplexe zur Polymerisation von Olefinen, Verfahren zur Polymerisation von Olefinen, Homo- oder Copolymerivate des Ethylens oder des Propylens mit anderen C₂-C₁₂-Alk-1-enen, deren Verwendung zur Herstellung von Folien, Fasern oder Formkörpern sowie die Folien, Fasern oder Formkörper aus

30 diesen Polymerisaten gefunden.

Die Substituenten R¹ bis R³ sind vorzugsweise ein Wasserstoffatom, ein C₁-C₆-Alkylrest wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl oder tert.-Butyl sowie die verschiedenen Isomeren von Pentyl oder Hexyl, oder ein Arylreste wie Phenyl oder Naphtyl, die unsubstituiert oder mit Alkylreste aus der gerade genannten Gruppe substituiert sein können. Ebenfalls bevorzugt sind Substituenten R¹ bis R³, die mit benachbarten Substituenten R¹ bis R³ oder mit Substituenten des Brückenglieds A¹ jeweils mit den sie verbindenden Atomen einen 5 bis 10 C-Atome aufweisenden, gesättigten oder ungesättigten Ring bilden.

Unter den Übergangsmetallen M in den allgemeinen Formeln (Ia) und (Ib) sind die Elemente der 4. Nebengruppe des Periodensystems,

45 also Titan, Zirkonium und Hafnium, bevorzugt. Besonders bevorzugt sind Titan und Zirkonium.

Als Liganden X sind insbesondere die Halogene Fluor, Chlor, Brom und Iod zu nennen, besonders bevorzugt ist Chlor. Unter den C₁-C₁₀-Alkylresten kommen besonders Methyl, Ethyl, Propyl und Butyl in Betracht. Bevorzugter C₆-C₁₅-Arylrest ist der Phenylrest.

Die Zahl n entspricht der Wertigkeit von M minus der Zahl 2, d.h. für die Komplexe von Titan, Zirkonium oder Hafnium ist n = 2, für die Komplexe von Vanadium, Niob oder Tantal ist n = 3 und für die Elemente der III. Nebengruppe des Periodensystems, also Scandium, Yttrium und Lanthan, und der Lanthanoiden ist n = 1.

Von den Heteroliganden Y sind —O—, —S— und >NR⁷ bevorzugt, wobei als Substituenten am Stickstoffatom insbesondere Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, Cyclohexyl, Phenyl, Benzyl und Si(R⁸)₃ zu nennen sind. Bevorzugte Substituenten am Stickstoffatom sind auch Reste R⁷, die einfach oder mehrfach durch als Lewisbasen wirkende Gruppen wie Si(R⁸)₃, SR⁸,

OR⁸, —((C)_{n'}—O)_{m'}—R⁸, OSi(R⁸)₃, N(R⁸)₂, P(R⁸)₂ oder Kombinationen dieser Gruppen substituiert sind, wobei n' und m' jeweils für die Zahlen 1, 2, 3 oder 4 stehen. Besonders bevorzugte Gruppen sind hierbei OR⁸ und N(R⁸)₂. Besonders bevorzugte substituierte Reste R⁷ sind substituierte C₁-C₁₀-Alkylgruppen, insbesondere substituierte Methylgruppen, Ethylgruppen, n-Propylgruppen, iso-Propylgruppen, n-Butylgruppen, tert.-Butylgruppen und Cyclohexylgruppen.

Die Brückengruppe Z ist in der Regel eine dreifachverknüpfende organische oder metallorganische Atomgruppe, die die sowohl direkt als auch über die Brückenglieder A und A¹ an das Cyclopentadienyrringsystem sowie an den Heteroliganden Y gebunden ist.

Geeignete Brückengruppen Z sind beispielsweise

6

wobei

25 R^9 bis R^{12} jeweils ein Wasserstoffatom, ein Halogenatom, eine $\text{C}_1\text{-}\text{C}_{10}$ -Alkylgruppe, eine $\text{C}_1\text{-}\text{C}_{10}$ -Fluoralkylgruppe, eine $\text{C}_6\text{-}\text{C}_{10}$ -Fluorarylgruppe, eine $\text{C}_6\text{-}\text{C}_{10}$ -Arylgruppe, eine $\text{C}_1\text{-}\text{C}_{10}$ -Alkoxygruppe, eine $\text{C}_2\text{-}\text{C}_{10}$ -Alkenylgruppe, eine $\text{C}_7\text{-}\text{C}_{40}$ -Arylalkylgruppe, eine $\text{C}_8\text{-}\text{C}_{40}$ -Arylalkenylgruppe oder eine $\text{C}_7\text{-}\text{C}_{40}$ -Alkylarylgruppe bedeuten oder zwei Reste R^9 bis R^{12} mit den sie verbindenden Atomen einen 4 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, und

35 M^1 Silicium, Germanium oder Zinn ist,

Als Brückengruppe Z eignen sich insbesondere die Reste

40 $\begin{array}{c} | & | & | \\ \text{---} \text{Si} \text{---} & \text{oder} & \text{---} \text{C} \text{---} & \text{---} \text{C} \text{---} \\ | & & | & | \\ \text{R}^9 & & \text{R}^{10} & \text{R}^9 \end{array}$, in denen

R⁹ bis R¹¹ für Methyl, Ethyl, tert.-Butyl oder Phenyl stehen. Besonders bevorzugt handelt es sich bei der Brückengruppe Z um Si(Me), Si(Ph), Si(t-Bu) oder C(CH₃)₂C(CH₃)₂.

5 Die zweifachverknüpfenden Brückenglieder A und A¹ bewirken eine zweite Bindung der Brückengruppe Z an das Cyclopentadienyrring-System. Damit unterscheidet sich die "rechte" und die "linke" Seite des Metallocenkomplexes und die Generierung eines stereoselektiven Polymerisationszentrums ist möglich.

10

Das Brückenglied A kann wiederum aus mehreren zweifachverknüpfenden Brückengliedern A² bestehen, wobei A bevorzugt -(A²)_m- mit m von 1 bis 6 ist. Besonders bevorzugt umfaßt das Brückenglied A von 1 bis 3 Glieder A² und insbesondere 2 Glieder A².

15

Die Glieder A¹ oder A² sind in der Regel organische oder metallorganische Atomgruppen, die vorzugsweise entweder aus einem substituierten Brückenatom oder einem substituierten oder unsubstituierten aromatischen Ring bestehen. A¹ und A² sind beispielsweise

20

45

wobei A¹ und die einzelnen Glieder A² von A gleich oder verschieden sind, und

R¹³ bis R¹⁶ 5 gleich oder verschieden sind und jeweils ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder eine C₇-C₄₀-Alkylarylgruppe bedeuten, oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, oder

10 wobei ein Rest R¹³ bis R¹⁶ von A¹ zusammen mit einem benachbarten Rest R² oder R³ einen mit den sie verbindenden Atomen 5 bis 15 C-Atome aufweisendes, gesättigtes oder ungesättigtes Ringsystem 15 bilden.

20 Bevorzugt enthalten die Glieder A¹ oder A² als Brückennatome Kohlenstoff, Silicium, Stickstoff oder Sauerstoff. Als Substituenten an den Brückennatome sind Wasserstoff, Methyl, Ethyl und Phenyl 25 bevorzugt. Ebenfalls bevorzugt sind Phenytringe, die als bevorzugte Substituenten Methyl-, Ethyl- oder Phenylgruppen tragen können.

30 Besonders bevorzugt sind Übergangsmetallkomplexe der allgemeinen Formeln (Ia) oder (Ib), in denen die Gruppe A¹ mit einem benachbarten Rest R² oder R³ einen gesättigten oder ungesättigten Ring bildet. Ganz besonders bevorzugt sind hierbei Übergangsmetallkomplexe der allgemeinen Formel (Ia'),

35

in der die Gruppen A¹ und R³ der allgemeinen Formel (Ia) gemeinsam einen ungesättigten, 6 C-Atome aufweisenden Ring bilden und

R¹⁷ bis R¹⁹ jeweils ein Wasserstoffatom, eine C₁-C₁₀-Alkyl-
 5 gruppe, eine 5- bis 7-gliedrige Cycloalkylgruppe,
 die ihrerseits durch C₁-C₁₀-Alkyl substituiert
 sein kann, eine C₆-C₁₅-Arylgruppe oder eine Arylalkylgruppe bedeuten, oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, oder Si(R⁴)₃
 10 sind.

Die Substituenten R¹⁷ bis R¹⁹ sind vorzugsweise ein Wasserstoffatom, ein C₁-C₆-Alkylrest wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl oder tert.-Butyl sowie die verschiedenen Isomeren von Pentyl oder Hexyl, oder ein Arylreste wie Phenyl oder Naphtyl, die unsubstituiert oder mit Alkylresten aus der gerade genannten Gruppe substituiert sein können. Ebenfalls bevorzugt sind benachbarte Substituenten R¹⁷ bis R¹⁹, die jeweils mit den sie verbindenden Atomen einen 5 bis 10 C-Atome aufweisen, gesättigten oder ungesättigten Ring bilden.

Die erfindungsgemäßen Übergangsmetallkomplexe können als solche vorliegen. Es ist jedoch auch möglich, daß neben den Liganden X, Y und dem Cyclopentadienyrringsystem noch von 1 bis 3 neutrale Lewisbasen wie Tetrahydrofuran, Diethylether, Trimethylamin oder N,N-Dimethylanilin an das Übergangsmetallatom koordiniert sind. Es ist auch möglich, daß die Übergangsmetallkomplexe als Dimere vorliegen.

Für die Herstellung der erfindungsgemäßen Übergangsmetallkomplexe wurde ein Verfahren gefunden, daß dadurch gekennzeichnet ist, daß man Cyclopentadienverbindungen der allgemeinen Formel (IIa) oder 35 der allgemeinen Formel (IIb)

in denen

10

R¹ bis R³ und A¹ die oben genannte Bedeutung haben und

X¹ für Wasserstoff oder ein Halogen und

15 X²

für Wasserstoff oder einen Rest der Formel
M²R²⁰_(o-1) stehen, in der

M²

ein Element der 1. - 4. Hauptgruppe des Perioden-
systems,

20

R²⁰

ein Halogen, eine C₁-C₁₀-Alkylgruppe, eine
5- bis 7-gliedrige Cycloalkylgruppe, die ihrer-
seits durch C₁-C₁₀-Alkyl substituiert sein kann,
eine C₆-C₁₅-Arylgruppe oder eine Arylalkylgruppe,
wobei die Reste R²⁰ gleich oder verschieden sein
können, und

o

die Wertigkeit von M² bedeuten,

30 mit Verbindungen der allgemeinen Formel (III)

35

in denen

Z und A die oben genannte Bedeutung haben,

40

X³ und X⁴ jeweils für ein Halogen und

X⁵ für Wasserstoff, ein Halogen oder eine Gruppe

45

11

R²¹ und R²² jeweils Wasserstoff, C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₆-C₁₅-Aryl stehen,

zu Verbindungen der allgemeinen Formeln (IVa) oder (IVb) umgesetzt,

5

10

15

20

30

35

40

45

welche zu Verbindungen der allgemeinen Formeln (VIa) oder (VIb) umgesetzt werden,

5

(VIIa)

10

15

(VIIb)

in denen

20

X^6 für Wasserstoff oder einen Rest der Formel $M^3R^{23}(p-1)$ steht, in der

25

M^3 ein Element der 1. - 4. Hauptgruppe des Periodensystems,

30

R^{23} ein Halogen, eine C_1-C_{10} -Alkylgruppe, eine 5- bis 7-gliedrige Cycloalkylgruppe, die ihrerseits durch C_1-C_{10} -Alkyl substituiert sein kann, eine C_6-C_{15} -Arylgruppe oder eine Arylalkylgruppe, wobei die Reste R^{23} gleich oder verschieden sein können, und

35

p die Wertigkeit von M^3 bedeuten,

und die man dann in die Übergangsmetallkomplexe der allgemeinen Formeln (Ia) oder (Ib) überführt.

Ein bevorzugtes Verfahren zur Herstellung der erfindungsgemäßen
40 Übergangsmetallkomplexe besteht darin, daß man Indenverbindungen der allgemeinen Formel (IIa')

5

10

in der X¹, X², R¹, R² und R¹⁷ bis R¹⁹ die oben genannte Bedeutung haben,

15

mit einer Verbindung der allgemeinen Formel (III)

15

zu Verbindungen der allgemeinen Formel (IVa') umsetzt,

20

25

in der X³, X⁵, Z und A die oben genannte Bedeutung haben,

30

aus diesen durch intramolekularen Ringschluß die Verbindungen der allgemeinen Formel (Va') herstellt, ..

35

40

45 welche zu Verbindungen der allgemeinen Formel (VIa') umgesetzt werden,

5

10

in der X⁶ und Y die oben genannte Bedeutung haben,

und die man dann in die Übergangsmetallkomplexe der allgemeinen
15 Formel (Ia') überführt.

Die Ausgangsverbindungen (IIa), (IIa') und (IIb) sowie (III) sind bekannt oder können in bekannter Weise hergestellt werden. Teilweise sind sie kommerziell verfügbar.

20

Ihre Umsetzung kann nach den gängigen Methoden der Substitution an Cyclopentadiensystemen erfolgen und wird in der Regel in Lösung durchgeführt, wobei die Verwendung von etherischen Lösungsmitteln wie Diethylether oder THF bevorzugt ist. Die Reihenfolge 25 der Zugabe ist an sich unkritisch. Bevorzugt ist, die Verbindungen (IIa), (IIa') oder (IIb) im Lösungsmittel vorzulegen und die Verbindung oder die Verbindungen (III) unverdünnt oder in Lösung dazuzugeben. Dies kann bei Temperaturen von -100 bis +100°C, bevorzugt von -80 bis +30°C, erfolgen. Die Produkte (IVa), (IVa') 30 oder (IVb) können dann z.B. durch Extraktion (bei einem oder mehreren festen weiteren Reaktionsprodukten) oder durch Destillation (bei einem oder mehreren flüssigen weiteren Reaktionsprodukten) gewonnen werden.

35 Der intramolekulare Ringschluß zu den Verbindungen (Va), (Va') oder (Vb) kann allgemein nach den bekannten Methoden der C-C-, C-Heteroatom- oder Heteroatom-Heteroatom-Bindungsknüpfung durchgeführt werden, wie sie z.B. in Jerry March, Advanced Organic Chemistry, John Wiley & Sons, New York 1985 oder Organikum, VEB 40 Deutscher Verlag der Wissenschaften, Berlin 1977 beschrieben sind. Als besonders geeignete Reaktionen sind in Abhängigkeit von der Natur der Reste A¹, X¹, A und X⁵ Friedel-Crafts-Alkylierung, Friedel-Crafts-Acylierung, Azo-Kupplung, radikalische Bindungsknüpfung, Wurz-Reaktion, Addition einer Heteroatom-Wasserstoff-45 Bindung an eine C-C-, C-Heteroatom- oder Heteroatom-Heteroatom-Mehrfachbindung (z.B. Hydrosilylierung, Hydroborierung, Hydroamierung), Bildung von Schiffschen Basen, Bildung von Amiden, Ver-

15

esterung (auch organometallkatalysiert), Veretherung, Grignard-Reaktion, McMurry-Kupplung, Diels-Alder-Reaktion, Kreuzkupplungen von Aromaten, Heck-Reaktion, Suzuki-Kupplung, Reformatsky-Reaktion, Wittig-Reaktion, Ritter-Reaktion und Kondensationsreaktionen (z.B. Aldolkondensation, Knoevenagel-Kondensation, Perkin-Reaktion) zu nennen. Im Fall von Verbindungen der Formel (IVa') sind die Reaktionen Friedel-Crafts-Alkylierung oder Friedel-Crafts-Acylierung besonders bevorzugt. Die Friedel-Crafts-Alkylierung kann auch als zweistufige Synthese, ausgehend von der ungesättigten Verbindung und der in situ-Bildung der entsprechenden halogenierten Vorstufe, durchgeführt werden.

Die Verbindungen (Va), (Va') oder (Vb) werden anschließend mit Verbindungen der Formel YX^6X^7 umgesetzt, in denen

15

Y — O —, — S —, NR^7 oder PR^7 bedeutet,
wobei

20 R^7

$C_1\text{-}C_{10}$ -Alkyl, $C_6\text{-}C_{15}$ -Aryl, $C_3\text{-}C_{10}$ -Cycloalkyl oder $C_7\text{-}C_{18}$ -Alkylaryl oder einfach oder mehrfach mit

25

$\text{Si}(R^8)_3$, SR^8 , OR^8 , $-(\overset{\overset{R^8}{|}}{(\text{C})_n\text{-O})_m\text{-R}^8}$, $OSi(R^8)_3$,

30

n' und m' jeweils 1, 2, 3 oder 4 und

 R^8

Wasserstoff, $C_1\text{-}C_{10}$ -Alkyl, $C_6\text{-}C_{15}$ -Aryl, das seinerseits mit $C_1\text{-}C_4$ -Alkylgruppen substituiert

35

sein kann, oder $C_3\text{-}C_{10}$ -Cycloalkyl,

wobei die Reste R^8 gleich oder verschieden sind,

und

40

X^6 und X^7

für Wasserstoff oder einen Rest der Formel $M^3R^{23}_{(p-1)}$ steht, in der

 M^3

ein Element der 1. - 4. Hauptgruppe des Periodensystems,

45

R²³

ein Halogen, eine C₁-C₁₀-Alkylgruppe, eine 5- bis 7-gliedrige Cycloalkylgruppe, die ihrerseits durch C₁-C₁₀-Alkyl substituiert sein kann, eine C₆-C₁₅-Arylgruppe oder eine Arylalkylgruppe, wobei die Reste R²³ gleich oder verschieden sein können, und

5

p

die Wertigkeit von M³ bedeuten.

- 10 Durch die Reaktion von YX⁶X⁷ mit dem Rest X³ wird ein Äquivalent einer Verbindung mit der Formel X⁷X³ unter Knüpfung der Bindung zwischen Z und Y abgespalten. Bevorzugte Verbindungen der Formel YX⁶X⁷ sind monosubstituierte Amine und Alkohole bzw. deren Organometallderivate, besonders bevorzugt sind Methylamin, Ethylamin, 15 tert.-Butylamin und Phenylamin. Wird bei der Reaktion eine Säure frei (d.h. X⁷ ist ein Wasserstoff), so wird dem Reaktionsgemisch üblicherweise eine Base zugesetzt.

Die Reaktion wird in der Regel in Lösung durchgeführt, wobei die 20 Verwendung von etherischen Lösungsmitteln wie Diethylether oder THF bevorzugt ist. Die Reihenfolge der Zugabe ist an sich unkritisch. Bevorzugt ist, die Verbindung (Va), (Va') oder (Vb) im Lösungsmittel vorzulegen und die Verbindung YX⁶X⁷ in Substanz, in Lösung oder in Form eines Hydrosalzes (z.B. eines Hydrochlorids), 25 das dann durch eine starke Base in die korrespondierende Base umgewandelt wird, dazuzugeben. Dies kann bei Temperaturen von -100 bis +100°C, bevorzugt von -80 bis +70°C erfolgen. Bei der Verwendung von Aminen hat es sich als vorteilhaft erwiesen, das Amin in doppeltem Überschuß einzusetzen, da es dann gleichzeitig als 30 Base wirkt.

Die so erhaltenen Verbindungen (VIa), (VIa') oder (VIb) können nach bekannten Methoden zu den entsprechenden Metallkomplexen umgesetzt werden. Die Komplexierungsmethoden sind z.B. in 35 EP-A 416 815, EP-A 420 436 oder Okuda et al., Organometallics, 1995, 14, 789-795 beschrieben. Bevorzugt werden die Verbindungen (VIa), (VIa') oder (VIb) mit X⁶ = Li eingesetzt. Die Umsetzung kann beispielsweise mit vierfachsubstituierten Ti-, Zr- oder Hf-Verbindungen erfolgen. Bevorzugte Metalle sind hierbei Titan und 40 Zirkonium. Als Substituenten werden bevorzugt Halogene, insbesondere Chlor eingesetzt. Die Tetrahalogenide können auch in Form von Basenaddukten (z. B. mit THF) verwendet werden.

Die Reaktion wird in der Regel in Lösung durchgeführt, wobei die 45 Verwendung von etherischen Lösungsmitteln wie Diethylether oder THF bevorzugt ist. Die Reihenfolge der Zugabe ist an sich unkritisch. Bevorzugt ist, die Verbindung (VIa), (VIa') oder (VIb) im

Lösungsmittel vorzulegen und die Metallverbindung in Substanz oder in Lösung dazuzugeben. Dies kann bei Temperaturen von -100 bis +100°C, bevorzugt von -80 bis +30°C erfolgen.

- 5 Die erfindungsgemäßen Übergangsmetallkomplexe (Ia), (Ia') und (Ib) zeichnen sich durch eine asymmetrische Anordnung der Liganden am Metallatom aus. Bedingt durch diese Struktur können die Übergangsmetallkomplexe (Ia), (Ia') und (Ib) nicht in einer meso-Form vorliegen. Infolge der unsymmetrischen Substitution am
 10 Cyclopentadienylliganden erfolgt die Polymerisation jedoch stereoselektiv.

Weiterhin betrifft die vorliegende Erfindung die zur Herstellung der erfindungsgemäßen Übergangsmetallkomplexe (Ia') eingesetzten
 15 Zwischenprodukte der allgemeinen Formel (VIa')

in der die Substituenten und Indizes folgende Bedeutung haben:

30 R¹, R² und R¹⁷ bis R¹⁹ Wasserstoff, C₁-C₁₀-Alkyl,
 5- bis 7-gliedriges Cycloalkyl, das seinerseits
 durch C₁-C₁₀-Alkyl substituiert sein kann,
 C₆-C₁₅-Aryl oder Arylalkyl, wobei zwei benachbarte
 Reste jeweils mit den sie verbindenden Atomen
 35 einen 5 bis 15 C-Atome aufweisenden gesättigten
 oder ungesättigten Ring bilden können, oder
 Si(R⁴)₃ mit

40 R⁴ C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₆-C₁₅-Aryl,
 45 X⁶ Wasserstoff oder einen Rest der Formel M³R²³_(p-1),
 in der
 M³ ein Element der 1. - 4. Hauptgruppe des Perioden-
 systems,

18

R²³

ein Halogen, eine C₁-C₁₀-Alkylgruppe, eine 5- bis 7-gliedrige Cycloalkylgruppe, die ihrerseits durch C₁-C₁₀-Alkyl substituiert sein kann, eine C₆-C₁₅-Arylgruppe oder eine Arylalkylgruppe, wobei die Reste R²³ gleich oder verschieden sein können, und

5

p

die Wertigkeit von M³ bedeuten,

10

Y

für —O—, —S—, >NR⁷ oder >PR⁷ steht,

wobei

15

R⁷

C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, C₃-C₁₀-Cycloalkyl oder C₇-C₁₈-Alkylaryl oder einfach oder mehrfach mit

20

N(R⁸)₂, P(R⁸)₂ oder einer Kombination davon substituiertes C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, C₃-C₁₀-Cycloalkyl oder C₇-C₁₈-Alkylaryl oder Si(R⁸)₃ ist mit

25

n' und m'

jeweils 1, 2, 3 oder 4 und

R⁸

Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, das seinerseits mit C₁-C₄-Alkylgruppen substituiert sein kann, oder C₃-C₁₀-Cycloalkyl,

30

wobei die Reste R⁸ gleich oder verschieden sind,

35

40

45

19

wobei

25 R⁹ bis R¹² jeweils ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder eine C₇-C₄₀-Alkylarylgruppe bedeuten oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 4 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, und
 30
 35

M¹ Silicium, Germanium oder Zinn ist, und

A ein Brückenglied - $(A^2)_m$ - mit
40 von 1 bis 6 und
m

25 wobei die einzelnen Glieder A² von A gleich oder verschieden sind.

Ferner betrifft die vorliegende Erfindung auch die zur Herstellung der erfindungsgemäßen Übergangsmetallkomplexe Ia' eingesetzten Zwischenprodukte der allgemeinen Formel (IVa')

in der die Substituenten und Indizes folgende Bedeutung haben:

45 R¹, R² und R¹⁷ bis R¹⁹ Wasserstoff, C₁-C₁₀-Alkyl,
 5- bis 7-gliedriges Cycloalkyl, das seinerseits durch C₁-C₁₀-Alkyl substituiert sein kann,

C₆-C₁₅-Aryl oder Arylalkyl, wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden können, oder Si(R⁴)₃ mit

5

R^4 C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₆-C₁₅-Aryl,

x^1 Wasserstoff oder ein Halogen,

10

X^3 ein Halogen und

X^5 Wasserstoff, ein Halogen oder eine Gruppe

15

$$=C\begin{array}{l} \diagup \\[-1ex] \diagdown \end{array}\begin{array}{l} R^{22} \\[-1ex] R^{21} \end{array}$$

R²¹ und R²² jeweils Wasserstoff, C₁-C₁₀-Alkyl, C₃-C₁₀-Cyclo-alkyl oder C₆-C₁₅-Aryl,

20

26

35

40

wobei

45 R⁹ bis R¹²

jeweils ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine

22

5

C_6 - C_{10} -Arylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_2 - C_{10} -Alkenylgruppe, eine C_7 - C_{40} -Arylalkylgruppe, eine C_8 - C_{40} -Arylalkenylgruppe oder eine C_7 - C_{40} -Alkylarylgruppe bedeuten oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 4 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, und

10

M^1 Silicium, Germanium oder Zinn ist, und

15

A ein Brückenglied $-(A^2)_m-$ mit

20

m von 1 bis 6 und

25

20

25

30

35

$\begin{array}{c} O \\ || \\ -C-\end{array}$, $-O-$ oder $-S-$ bedeutet,

40 wobei die einzelnen Glieder A^2 von A gleich oder verschieden sind.

Die erfindungsgemäßen Übergangsmetallkomplexe eignen sich bei spielsweise zur Polymerisation von Olefinen und insbesondere zur Polymerisation von α -Olefine, d.h. Kohlenwasserstoffen mit endständigen Doppelbindungen. Geeignete Monomere können funktionalisierte olefinisch ungesättigte Verbindungen wie Ester- oder Amid-derivate der Acryl- oder Methacrylsäure, beispielsweise Acrylate,

Methacrylate oder Acrylnitril sein. Bevorzugt sind unpolare olefinische Verbindungen, worunter auch arylsubstituierte α -Olefine wie Styrol fallen. Besonders bevorzugte α -Olefine sind lineare oder verzweigte C₂-C₁₂-Alk-1-ene, insbesondere lineare C₂-C₁₀-Alk-1-ene wie Ethylen, Propylen, But-1-en, Pent-1-en, Hex-1-en, Hept-1-en, Oct-1-en, Non-1-en, Dec-1-en oder 4-Methyl-pent-1-en. Es können auch Gemische aus diesen Monomeren polymerisiert werden.

10 Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Polymerisation von Olefinen, das dadurch gekennzeichnet ist, daß die Polymerisation in Gegenwart von Übergangsmetallkomplexen der Formeln (Ia), (Ia') oder (Ib) und metalloceniumionenbildende Verbindungen durchgeführt wird.

15

Geeignete metalloceniumionenbildende Verbindungen sind beispielsweise starke, neutrale Lewissäuren, ionische Verbindungen mit lewissäuren Kationen oder ionische Verbindungen mit Brönsted-Säuren als Kationen.

20

Als starke, neutrale Lewissäuren sind Verbindungen der allgemeinen Formel (VII)

25 bevorzugt, in der

M⁴ ein Element der III. Hauptgruppe des Periodensystems bedeutet, insbesondere B, Al oder Ga, vorzugsweise B,

30

X⁸, X⁹ und X¹⁰ für Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl, Arylalkyl, Halogenalkyl oder Halogenaryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atome im Arylrest oder Fluor, Chlor, Brom oder Jod stehen, insbesondere für Halogenaryle, vorzugsweise für Pentafluorphenyl.

35

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (VII), in der X⁸, X⁹ und X¹⁰ gleich sind, vorzugsweise Tris(pentafluorphenyl)boran.

Als ionische Verbindungen mit lewissäuren Kationen sind Verbindungen der allgemeinen Formel (VIII)

45

geeignet, in denen

24

- Y₁ ein Element der I. bis VI. Hauptgruppe oder der I. bis VIII. Nebengruppe des Periodensystems bedeutet,
- 5 Q₁ bis Q_z für einfach negativ geladene Reste wie C₁-C₂₈-Alkyl, C₆-C₁₅-Aryl, Alkylaryl, Arylalkyl, Halogenalkyl, Halogenaryl mit jeweils 6 bis 20 C-Atomen im Aryl- und 1 bis 28 C-Atome im Alkylrest, C₃-C₁₀-Cycloalkyl, welches gegebenenfalls mit C₁-C₁₀-Alkylgruppen substituiert sein kann, Halogen, C₁-C₂₈-Alkoxy, C₆-C₁₅-Aryloxy, Silyl- oder Mercaptylgruppen
- 10 a für ganze Zahlen von 1 bis 6 und
- 15 z für ganze Zahlen von 0 bis 5 steht,
- d der Differenz a-z entspricht, wobei d jedoch größer oder gleich 1 ist.
- 20 Besonders geeignet sind Carboniumkationen, Oxoniumkationen und Sulfoniumkationen sowie kationische Übergangsmetallkomplexe. Insbesondere sind das Triphenylmethylkation, das Silberkation und das 1,1'-Dimethylferrocenylkation zu nennen. Bevorzugt besitzen sie nicht koordinierende Gegenionen, insbesondere Borverbindungen, wie sie auch in der WO 91/09882 genannt werden, bevorzugt Tetrakis(pentafluorophenyl)borat.
- 25 Ionische Verbindungen mit Brönsted-Säuren als Kationen und vorzugsweise ebenfalls nicht koordinierende Gegenionen sind in der WO 91/09882 genannt, bevorzugtes Kation ist das N,N-Dimethylanilinium.
- 30 Die Menge an im erfindungsgemäßen Verfahren eingesetzten starken, neutralen Lewissäuren, ionischen Verbindungen mit lewissauren Kationen oder ionischen Verbindungen mit Brönsted-Säuren als Kationen beträgt bevorzugt von 0,1 bis 10 Äquivalente, bezogen auf den Übergangsmetallkomplex (Ia), (Ia') oder (Ib).
- 35 40 Besonders geeignet als metalloceniumionenbildende Verbindungen sind offenkettige oder cyclische Alumoxanverbindungen der allgemeinen Formeln (IX) oder (X)

5

10

wobei R^{24} eine C_1-C_4 -Alkylgruppe bedeutet, bevorzugt eine Methyl- oder Ethylgruppe und m für eine ganze Zahl von 5 bis 30, bevorzugt 10 bis 25 steht.

15

Die Herstellung dieser oligomeren Alumoxanverbindungen erfolgt üblicherweise durch Umsetzung einer Lösung von Trialkylaluminium mit Wasser und ist u.a. in der EP-A 284 708 und der US-A 4 794 096 beschrieben.

20

In der Regel liegen die dabei erhaltenen oligomeren Alumoxanverbindungen als Gemische unterschiedlich langer, sowohl linearer als auch cyclischer Kettenmoleküle vor, so daß m als Mittelwert anzusehen ist. Die Alumoxanverbindungen können auch im Gemisch mit anderen Metallalkylen, bevorzugt mit Aluminiumalkylen vorliegen.

Es hat sich als vorteilhaft erwiesen, die Übergangsmetallkomplexe (Ia), (Ia') oder (Ib) und die oligomeren Alumoxanverbindungen der allgemeinen Formeln (IX) oder (X) in solchen Mengen zu verwenden, daß das atomare Verhältnis zwischen Aluminium aus den oligomeren-Alumoxanverbindungen und dem Übergangsmetall aus den Übergangsmetallkomplexen im Bereich von 10:1 bis $10^6:1$, insbesondere im Bereich von 10:1 bis $10^4:1$, liegt.

35

Weiterhin können als metalloceniumionenbildende Verbindungen anstelle der Alumoxanverbindungen der allgemeinen Formeln (IX) oder (X) Aryloxyalumoxane, wie in der US-A 5 391 793 beschrieben, Aminoalumininoxane, wie in der US-A 5 371 260 beschrieben, Aminoaluminoxanhydrochloride, wie in der EP-A 633 264 beschrieben, Siloxyalumininoxane, wie in der EP-A 621 279 beschrieben, oder Mischungen daraus eingesetzt werden.

Vorzugsweise werden im erfindungsgemäßen Verfahren sowohl die Übergangsmetallkomplexe (Ia), (Ia') oder (Ib) als auch die metalloceniumionenbildende Verbindungen in Lösung eingesetzt, wo-

26

bei aromatische Kohlenwasserstoffe mit 6 bis 20 C-Atomen, insbesondere Xylole und Toluol, besonders bevorzugt sind.

Als weitere Komponente können zusätzlich noch Metallverbindungen 5 der allgemeinen Formel (XI)

10 in der

M⁵ ein Alkali-, ein Erdalkalimetall oder ein Metall der III. Hauptgruppe des Periodensystems, d.h. Bor, Aluminium, Gallium, Indium oder Thallium bedeutet,

R²⁵ Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl oder Arylalkyl mit jeweils 1 bis 10 C-Atom im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

R²⁶ und R²⁷ Wasserstoff, Halogen, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl, Arylalkyl oder Alkoxy mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest,

r eine ganze Zahl von 1 bis 3

und

s und t ganze Zahlen von 0 bis 2 bedeuten, wobei die Summe r+s+t der Wertigkeit von M⁵ entspricht, eingesetzt werden.

Von den Metallverbindungen der allgemeinen Formel (XI) sind die-jenigen bevorzugt, in denen

M⁵ Lithium, Magnesium oder Aluminium bedeutet und

R²⁶ und R²⁷ für C₁-C₁₀-Alkyl stehen.

Besonders bevorzugte Metallverbindungen der Formel (XI) sind n-Butyl-Lithium, n-Butyl-n-octyl-Magnesium, n-Butyl-n-heptyl-Magnesium, Tri-n-hexyl-aluminium, Tri-iso-butyl-aluminium,

45 Triethylaluminium und Trimethylaluminium.

Wenn eine Metallverbindung der Formel (XI) eingesetzt wird, ist sie bevorzugt in einer solchen Menge im Katalysatorsystem enthalten, daß das molare Verhältnis von M^5 aus Formel (XI) zu Übergangsmetall M aus Formel (Ia), (Ia') oder (Ib) von 800:1 bis 1:1, 5 insbesondere 500:1 bis 50:1, beträgt.

Die Übergangsmetallkomplexe (Ia), (Ia') oder (Ib) können im erfindungsgemäßen Polymerisationsverfahren auch auf einem Trägermaterial eingesetzt werden.

10

Als Trägermaterialien werden vorzugsweise feinteilige Träger eingesetzt, die im allgemeinen einen Teilchendurchmesser im Bereich von 1 bis 300 μm aufweisen, insbesondere von 20 bis 90 μm . Geeignete Trägermaterialien sind beispielsweise anorganische Oxide des Siliciums, des Aluminiums, des Titans oder eines der Metalle der I. oder II. Hauptgruppe des Periodensystems oder Mischungen dieser Oxide, von denen außer Aluminiumoxid oder Magnesiumoxid oder einem Schichtsilikat insbesondere Kieselgel bevorzugt ist.

Der Träger kann einer thermischen Behandlung z.B. zur Entfernung von adsorbiertem Wasser unterzogen werden, wobei eine solche Behandlung in der Regel bei Temperaturen im Bereich von 80 bis 200°C, vorzugsweise von 100 bis 150°C, durchgeführt wird, oder er kann calciniert werden. Der Träger kann auch chemisch behandelt werden, wobei in der Regel übliche Trocknungsmittel wie Metallalkyle, bevorzugt Aluminiumalkyle, Chlorsilane oder SiCl_4 zum Einsatz kommen.

Geeignete Träger sind auch feinteilige Polyolefine, beispielsweise feinteiliges Polypropylen.

Das erfindungsgemäße Verfahren kann in den üblichen, für die Polymerisation von Olefinen verwendeten Reaktoren entweder diskontinuierlich oder vorzugsweise kontinuierlich erfolgen. Geeignete Reaktoren sind unter anderem kontinuierlich betriebene Rührkessel, gerührte Pulverbettreaktoren, Schleifen- oder Wirbelschichtreaktoren, wobei man gegebenenfalls auch eine Reihe von mehreren hintereinandergeschalteten, gleich- oder verschiedenartigen Reaktoren verwenden kann. Die Polymerisationsreaktionen lassen sich in der Gasphase, in Suspension, in flüssigen und in überkritischen Monomeren oder in inerten Lösungsmitteln durchführen.

Die Polymerisationsbedingungen sind an sich unkritisch. Drücke von 1 bis 3500 bar, vorzugsweise von 2 bis 100 bar und insbesondere von 10 bis 40 bar sowie Temperaturen von 0 bis 400°C, vor-

zugsweise von 20 bis 250°C und insbesondere von 50 bis 100°C haben sich als geeignet erwiesen.

Die mittlere Molmasse der Polymerisate kann mit den in der Polymerisationstechnik üblichen Methoden gesteuert werden, beispielsweise durch Zufuhr von Reglern wie Wasserstoff.

Besonders bevorzugt lassen sich mit den erfindungsgemäßen Übergangsmetallkomplexen Homo- oder Copolymerisate des Ethylens oder 10 des Propylens mit anderen C₂-C₁₂-Alk-1-enen herstellen.

Die mit den Übergangsmetallkomplexen (Ia), (Ia') oder (Ib) erhältlichen Homo- oder Copolymerisate des Propylens mit anderen C₂-C₁₂-Alk-1-enen sind besonders bevorzugt Homopolymerisate des 15 Propylens oder Copolymerisate des Propylens mit Ethylen und/oder But-1-en. Die Copolymerisate des Propylens können statistisch aufgebaut sein. Sie können jedoch auch in Form der sogenannten Block- oder Impactcopolymerisate vorliegen. Die Homo- oder Copolymerisate des Propylens zeichnen sich durch eine hohe Molmasse 20 und insbesondere durch einen isotaktischen Aufbau der Polymerketten aus.

Die mit den Übergangsmetallkomplexen (Ia), (Ia') oder (Ib) erhältlichen Homo- oder Copolymerisate des Ethylens mit anderen 25 C₂-C₁₂-Alk-1-enen sind besonders bevorzugt Homopolymerisate des Ethylens oder Copolymerisate des Ethylens mit Propylen, But-1-en, Hex-1-en und/oder Oct-1-en. Die Homo- oder Copolymerisate des Ethylens zeichnen sich durch eine sehr hohe Molmasse aus. Da bei ihrer Herstellung ein hoher Comonomereinbau zu beobachten ist, 30 sind Copolymerisate mit einem hohen Comonomergehalt zugänglich oder es ist möglich, mit einem Monomerengemisch, das einen relativ geringen Comonomergehalt aufweist und somit bei der Polymerisation verfahrenstechnische Vorteile bringt, zu den gewünschten Copolymerisaten zu gelangen.

35

Die mit den erfindungsgemäßen Übergangsmetallkomplexen erhältlichen Homo- oder Copolymerisate des Ethylens oder des Propylens mit anderen C₂-C₁₂-Alk-1-enen weisen gute anwendungstechnische Eigenschaften auf und eignen sich zur Herstellung von Fasern, Folien oder Formkörpern.

Beispiele

Beispiel 1

45

Liganden- und Metallocenkomplex-Synthese

Alle Synthesen wurden unter Ausschluß von Luft und Feuchtigkeit durchgeführt. Die Reagenzien, Lösungsmittel und Apparaturen waren entsprechend vorbereitet. Das Reaktionsschema ist in Fig. 1 dargestellt.

5

a) Synthese von Fluorenyllithium (Verbindung II)

Zu einer Lösung von 25 g (0,15 mol) Fluoren in 220 ml Diethyl-ether wurden unter Rühren 113 ml einer 1,6 M Lösung von n-Butyl-lithium in Hexan (0,18 mol) zugegeben. Zur vollständigen Reaktion wurde 6 h unter Rückfluß gekocht und dann über Nacht bei Zimmertemperatur gerührt. Anschließend entfernte man das Lösungsmittel im Vakuum, wusch das erhaltene gelbe Pulver mehrmals mit Petrolether und trocknete es im Vakuum. Man erhielt Fluorenyllithium (Verbindung II) in fast quantitativer Ausbeute.

b) Synthese von Allylchlorfluorenylmethyldisilan (Verbindung IV)

8,6 g (50 mmol) von Verbindung II wurden in 250 ml Diethylether gelöst. Dazu gab man bei Zimmertemperatur unter Rühren 11,1 g (72 mmol) Allyldichlorsilan (Verbindung III). Es wurde weitere 3 h bei Zimmertemperatur gerührt. Anschließend wurde das Lösungsmittel vollständig im Vakuum entfernt und der Rückstand in 200 ml Petrolether aufgenommen. Man zentrifugierte das Lithiumchlorid ab, engte die überstehende Lösung auf ein Volumen von ca. 20 ml ein und kristallisierte das Reaktionsprodukt bei -78 °C. Die Ausbeute betrug 8,59 g (60,4%).

¹H-NMR (CDCl₃) δ (ppm): 0.29 (s, 3H, Pos.1), 1.56 (AB-System, 2H, Pos.2), 4.16 (s, 1H, Pos.5), 4.83 (dm, 1H, Pos.4), 4.86 (dm, 1H, Pos.4), 5.49 (m, 1H, Pos.3), 7.35 (m, 2H, Pos.B,B',C,C'), 7.41 (t, 2H, Pos.B,B',C,C'), 7.69 (m, 2H, Pos.A,A',D,D'), 7.87 (d, 2H, Pos.A,A',D,D')

Die Zuordnung der NMR-Signale kann Fig. 2 entnommen werden.

35

c) Synthese von 10-Chlor-10,12-dimethyl-9,1-silapropanofluoren (Verbindung V)

8,59 g (30 mmol) von Verbindung IV wurden in 150 ml Benzol gelöst. Diese Lösung wurde unter Rühren zu einer Suspension aus 4,5 g (34 mmol) Aluminiumchlorid und 150 ml Benzol, die mit einem Tropfen 37%ige HCl versetzt war, zugegeben. Man rührte 3 h bei Zimmertemperatur und gab dann 6 ml (4,68 g, 40 mmol) Tetraethyl-methylendiamin (TMEDA) hinzu, worauf der sich bildende Aluminium-chlorid-TMEDA-Komplex ausfiel. Die überstehende Lösung wurde abdekantiert, das Lösungsmittel im Vakuum entfernt und der Rückstand in 200 ml Petrolether aufgenommen. Die ungelösten Bestand-

teile wurden durch Zentrifugieren abgetrennt, die überstehende Lösung auf ca. 30 ml eingeengt und bei -78 °C kristallisiert. Die erhaltene Substanz wurde aus Petrolether umkristallisiert. Man erhielt einen weißen Feststoff. Die Ausbeute betrug 2,31 g
5 (27 %).

¹H-NMR (CDCl₃) δ (ppm): -0.45 (s, 3H, Pos.5), 0.52-0.59 (m, 2H, Pos.4), 1.35 (s, 3H, Pos.3), 2.95 (sept, 1H, Pos.2), 3.75 (s, 1H, Pos.1), 7.05-7.85 (m, 7H, arom.H)

10 ¹³C-NMR (CDCl₃) δ (ppm): -2.41 (q, J=123.2Hz, Pos.A), 20.4 (q, J=125.9Hz, Pos.B), 25.5 (t, Pos.C), 31.7 (d, J=122.7Hz, Pos.D), 40.6 (d, J=129Hz, Pos.E), 118.4, 120.8, 121.9, 124.4, 126.6, 127.2, 128.0 (d, J=160Hz, Pos.F), 140.4, 140.5, 141.5, 142.1, 143.9 (s, quartäre C-Atome)

15 Die Zuordnung der NMR-Signale kann Fig. 3 entnommen werden.

Massenspektrometrie (EI, 1mA, 70 eV) (m/z, rel. Int.): [M⁺] (284, 43); [M- C₃H₆⁺] (242, 100)

CH-Analyse: C: ber.: 71.68, gef.: 71.75; H: ber.: 6.01, gef.: 5.94

20

d) Synthese von 10-Methyl-10-methylamino-12-methyl-9,1-silapropano-fluoren (Verbindung VI)

Durch eine Lösung von 2,31 g (8 mmol) der Verbindung V in 400 ml
25 Diethylether wurde unter Rühren bei Zimmertemperatur für 2 h Methylamin geleitet, das aus Methylammoniumhydrochlorid und Kaliumhydroxid erzeugt und mittels KOH-Plätzchen und Calciumoxid getrocknet wurde. Man rührte weitere 2 h und entfernte dann das Lösungsmittel im Vakuum. Der Rückstand wurde in 200 ml Petrolether
30 aufgenommen. Die ungelösten Bestandteile wurden durch zentrifugieren abgetrennt, die überstehende Lösung eingeengt und es wurde bei -78 °C kristallisiert. Die Ausbeute betrug 1,1 g (49 %).

35

e) Synthese des Metallocenkomplexes (Verbindung I)
1,03 g (3,7 mmol) von Verbindung VI wurden in 30 ml Diethylether gelöst und auf -78 °C temperiert. Innerhalb von 20 min gab man 4,62 ml (7,4 mmol) Butyllithium (1,6 M in Heptan) zu, rührte 2 h bei -78 °C und anschließend 2 h bei Zimmertemperatur. Anschließend 40 wurde das Lösungsmittel der orangen Lösung im Vakuum entfernt und der Rückstand in 30 ml THF aufgenommen. Hierzu gab man bei -78 °C innerhalb von 40 min insgesamt 1,79 g (4,75 mmol) festes Zirkoniumtetrachlorid*2THF hinzu. Unter Rühren ließ man langsam auf Zimmertemperatur erwärmen. Anschließend wurde das Lösungsmittel im Vakuum entfernt. Nach Zugabe von Toluol wurde Lithiumchlorid und überschüssiges Zirkoniumtetrachlorid*2THF abgetrennt. Zu der Lösung wurde Petrolether gegeben und es wurde bei -78 °C kristalli-

siert. Man erhielt einen orangen Feststoff. Die Ausbeute betrug 1,2 g (74 %).

Beispiel 2

5

Trägerung des Metallocenkomplexes

In einem 50 ml-Kolben mit Magnetrührer werden 20 ml Toluol vorgelegt. Dazu wurden 109 mg (0,14 mmol) N,N-Dimethylanilinium-tetra-
10 kis(pentafluorphenyl)borat, 60 mg (0,14 mmol) Verbindung I und 2,6 g mit Triisobutylaluminium desaktiviertes Kieselgel (ES 70X, Fa. Crosfield) gegeben. Die erhaltene Mischung wurde für 1 h auf 80 °C erwärmt. Anschließend wurde das Lösungsmittel im Vakuum entfernt. Man erhielt ca. 2,8 g geträgerten Katalysator.

15

Beispiel 3

Ethylenhomopolymerisation

20 In einem gerührten 1-l-Stahlautoklaven wurden nach sorgfältigem Spülen mit Stickstoff und Temperieren auf die Polymerisationstemperatur von 70°C 400 ml iso-Butan und 170 mg Triethylaluminium vorgelegt. Dann wurden 270 mg des in Beispiel 2 hergestellten, geträgerten Katalysators mit weiteren 6 ml iso-Butan eingespült
25 und Ethylen auf einen Gesamtdruck von 38 bar aufgepreßt. Der Druck im Autoklaven wurde durch Nachdosierung von Ethylen konstant gehalten. Nach 90 min wurde die Polymerisation durch Entspannen des Autoklaven abgebrochen. Es fielen 30 g Polymerisat in Form eines gut rieselfähigen Grießes an, der eine Viskosität
30 (η-Wert, bestimmt nach ISO 1628-3 bei 135°C in Dekalin) von 10,07 dl/g aufwies.

Beispiel 4

35 Ethylen-Hex-1-en-Copolymerisation

In einem gerührten 1-l-Stahlautoklaven wurden nach sorgfältigem Spülen mit Stickstoff und Temperieren auf die Polymerisationstemperatur von 70°C 500 ml iso-Butan, 120 mg Triethylaluminium und
40 40 ml Hex-1-en vorgelegt. Dann wurden 50 mg des geträgerten Katalysators mit weiteren 6 ml iso-Butan eingespült und Ethylen auf einen Gesamtdruck von 38 bar aufgepreßt. Der Druck im Autoklaven wurde durch Nachdosierung von Ethylen konstant gehalten. Nach 90 min wurde die Polymerisation durch Entspannen des Autoklaven abgebrochen. Es fielen 200 g Polymerisat in Form eines gut rieselfähigen Grießes an, der eine Viskosität (η-Wert, bestimmt nach

ISO 1628-3 bei 135°C in Dekalin) von 4,23 dl/g und eine Hex-1-en-gehalt (bestimmt durch IR-Spektroskopie) von 2,1 Gew.-% aufwies.

Beispiel 5

5

Propylenpolymerisation

In einem gerührten 1-l-Stahlautoklaven wurden nach sorgfältigem Spülen mit Stickstoff 500 ml flüssiges Propylen vorgelegt. Dazu 10 wurden 3 ml einer Methylalumoxanlösung (1,53 mol/l in Toluol) gegeben. Anschließend wurde eine Mischung von 5 mg des in Beispiel 1 hergestellten Metallocenkomplexes und weitere 6,5 ml der Methylalumoxanlösung zugegeben. Der Autoklav wurde dann auf 60 °C aufgeheizt. Es stellte sich ein Druck von 26 bar ein. Der Druck 15 wurde durch Nachdosieren von Propen konstant gehalten. Nach 90 min wurde die Polymerisation durch Entspannen des Autoklaven abgebrochen. Es fiel 1 g Polymerisat als weißes Pulver an. Die Schmelztemperatur (bestimmt durch DSC) betrug 148 °C, der mmmmm-Pentaden-Anteil (bestimmt durch ^{13}C -NMR-Spektroskopie) war 61 % 20 und die Viskosität (η -Wert, bestimmt nach ISO 1628-3 bei 135°C in Dekalin) betrug 3,01 dl/g.

Beispiel 6

25 Liganden und Metallocenkomplex-Synthese

Alle Synthesen wurden unter Ausschluß von Luft und Feuchtigkeit durchgeführt. Die Reagenzien, Lösungsmittel und Apparaturen waren entsprechend vorbereitet. Das Reaktionsschema ist in Fig. 4 dar- 30 gestellt.

a) Synthese von Dichlorfluorenyl- β -methallylsilan (Verbindung VIII)

35 13,01 g (75,14 mmol) Fluorenyllithium (Verbindung II; hergestellt wie in Beispiel 1a) wurden in 250 ml Diethylether gelöst und sehr schnell bei 0°C mit 22,40 g (118,18 mmol) Trichlor- β -methallylsilan (Verbindung VII) versetzt. Nach 30 minütiger Reaktionszeit bei 0°C wurde drei Stunden bei Zimmertemperatur gerührt, dann das 40 Lösungsmittel weitgehend durch Destillation entfernt, das LiCl mit 75 ml Pentan ausgefällt und abzentrifugiert. Die Lösung wurde auf die Hälfte ihres Volumens eingeengt und bei -78°C aufbewahrt. Dabei fiel das Produkt als gelber Feststoff aus, der beim Aufwärmen auf Zimmertemperatur zu einem orangefarbenen viskosen Öl 45 schmolz. Nach mehrfach wiederholter Kristallisation aus Pentan

33

erhielt man 7,1 g (22,24 mmol; 29,6 %) Dichlorfluorenyl- β -methallylsilan.

NMR-spektroskopische Daten

5

^1H -NMR (C_6D_6 , δ in ppm):

7,77 (d, $J = 7,6$ Hz)) 4H, Aromaten-H-Atome
7,66 (d, $J = 7,6$ Hz)) an C-1, C-4, C-5, C-8

10

7,29 ("t", 2H)) 4H, Aromaten-H-Atome
7,23 ("t", 2H)) an C-2, C-3, C-6, C-7

4,57 (s, 1H, Olefin-H in γ -Position)

15 4,31 (s, 1H, Olefin-H in γ -Position)

3,97 (s, 1H, Allyl-H an C-9)

1,41 (s, 2H, Methylen-H-Atome der Allylgruppe)

1,41 (s, 3H, Methyl-H-Atome)

20 ^{13}C -NMR (C_6D_6 , δ in ppm):

143,4 - 120,1 (Aromaten-C-Atome, Olefin-C-Atome)

113,4 (t, Olefin-C-Atom der Allylgruppe, $J = 155,9$ Hz)

44,3 (d, C-9)

25 27,2 (t, Methylen-C-Atom der Allylgruppe, $J = 122,5$ Hz)

24,4 (q, Methyl-C-Atom, $J = 126,1$ Hz)

CH-Analyse: C: ber.: 64,4, gef.: 67,0; H: ber.: 5,0; gef.: 5,2

30 b) Synthese von 10,10-Dichlor-12,12,-Dimethyl-9,1-(Silapropano)fluoren (Verbindung IX)

Zu einer Suspension von 1,77 g (13,27 mmol) AlCl_3 in 80 ml Benzol wurden 2 Tropfen einer 37 % HCl-Lösung gegeben. Dazu tropfte man 35 unter Rühren bei Zimmertemperatur eine Lösung von 4,2 g (13,15 mmol) Verbindung VIII in 100 ml Benzol. Nach beendeter Zugabe wurde 90 Minuten gerührt, dann zur Abtrennung des AlCl_3 , 2,03 g (17,45 mmol) TMEDA zugegeben. Man destillierte das Benzol aus der zentrifugierten Lösung in Vakuum ab. Der braune ölige 40 Rückstand wurde in 80 ml Petrolether aufgenommen und bei -25°C kristallisiert. Es fielen farblose nadelförmige Kristalle an, die sich aus Petrolether umkristallisieren ließen.

Ausbeute: 2,07 g (6,66 mmol; 50,2 %; Schmelzpunkt: 113-114°C).

45

NMR-spektroskopische Daten

¹H-NMR 8C₆D₆, δ in ppm):

7,69 (m, 2H, Aromaten-H-Atome)
7,56 (d, 1H, J = 7,5 Hz, Aromaten-H-Atome der Positionen 4, 5
5 oder 8)
7,25(m, 3H, Aromaten-H-Atome)
7,08 (d,1H, J = 7,7 Hz, Aromaten-H-Atome der Positionen 4, 5
oder 8)
3,95 (s,1H, Allyl-H an C-9)
10 1,21 (AB-System, 2H, diastereotope Methylen-H-Atome des
Sechsringes, J_{AB} = 15,5 Hz; v_A-v_B = 79,4 Hz)
1,22 (s,3H, Methyl-A-Atome)
1,15 (s,3H, Methyl-H-Atome)

15 ¹³C-NMR (C₆D₆, δ in ppm):

144,5)
142,1)
141,8) s, quartäre Aromaten-C-Atome
20 141,4)
137,9)

127,5)
127,0)
25 124,8) Dubletts der restlichen
123,0) Aromaten-C-Atome
120,8)
119,0)

30 CH-Analyse: C: ber.: 64,0; gef.: 64,5; H: ber.: 5,0; gef.: 5,4.

c) Umsetzung von Verbindung IX mit Phenylgrignard (C₆H₅-MgBr)

2,5 g (7,83 mmol) der Verbindung IX wurden in THF gelöst. Zu der
35 leicht gelblichen Lösung wurden unter Röhren der in THF gelöste
Phenylgrignard bei Raumtemperatur rasch hinzugegeben. Die Reaktionsmischung färbte sich sofort orange. Man ließ über Nacht rühren. Nach Entfernen des Lösungsmittels in Vakuum erhielt man einen orangefarbenen Kristallbrei, der in Petrolether aufgenommen
40 wurde. Es resultierte eine gelbe Petroletherphase, die von einem gelben petroletherunlöslichen Feststoff abzentrifugiert wurde. Die Petroletherphase wurde komplett eingeengt und lieferte ein oranges Öl.

45 Der unlösliche Feststoff wurde in Toluol aufgenommen und auf etwa 50°C erwärmt. Man erhielt eine gelbe Toluolphase, die von einem weißen Feststoff abzentrifugiert wurde. Aus der Toluolphase er-

hielt man nach Entfernen des Lösungsmittels ebenfalls ein hochviskoses oranges Öl. Aufnahme in Hexan und Erwärmen auf 50°C lieferte abermals eine gelbe Hexanphase und ein unlösliches weißes Pulver. Nach Abzentrifugieren und Einengen lieferte die Hexanphase ein oranges Öl.

Die beiden Produktöle (aus Petroletherphase und Hexanphase) wurde vereinigt und so insgesamt 1,9 g (5,26 mmol, 67,2 %) Verbindung X erhalten.

10

d) Umsetzung von Verbindung X mit tert.-Butylamin

Die 1,9 g (5,26 mmol) Verbindung X wurden in ca. 20 ml Diethylether gelöst und die klare gelbe Lösung unter Rühren rasch mit 15 1,1 ml (10,52 mmol) tert.-Butylamin versetzt. Die Reaktionsmis-
schung wurde dabei milchig trüb. Man ließ über Nacht röhren und entfernte dann den Ether in Vakuum. Aufnahme des Rückstands in Petrolether lieferte nach Zentrifugieren eine gelbe Lösung sowie ein weißes Pulver. Die Petroletherphase wurde komplett eingeengt
20 und lieferte 1,8 g (4,53 mmol, 86 %) Verbindung XI als orangege-
bes zähes Öl.

e) Synthese des Metallocenkomplexes (Verbindung XII)

25 1,8 g (4,53 mmol) Verbindung XI wurden in ca. 100 ml Ether gelöst und gerührt. Bei Raumtemperatur gab man 5,7 ml (9,1 mmol) n-BuLi hinzu und ließ über Nacht röhren. Die ursprünglich gelbe Etherlösung wurde tiefrot. Nach Entfernen des Ethers in Vakuum verblieb ein orangefarbener Schaum, der zur Reinigung mit Petrol-
30 ether gewaschen wurde. Man erhielt 750 mg eines orangege-
bigen Pulvers.

Die 750 mg (1,83 mmol) des Dilithiumsalzes von Verbindung XI wurden in 100 ml THF gelöst. Die dunkelbraune Lösung wurde auf -78°C abgekühlt und tropfenweise mit in 40 ml THF gelöstem Zirkoniumtetra-
35 chlorid * 2 THF (690 mg, 1,83 mmol) versetzt. Anschließend rührte man zwei Stunden bei tiefer Temperatur und ließ langsam auf Zimmertemperatur erwärmen.

40 Das Lösungsmittel wurde entfernt und der dunkle Rückstand in Toluol aufgenommen und zentrifugiert. Man erhielt eine tiefrot gefärbte Toluollösung sowie ein unlösliches helles Pulver. Einengen der Toluollösung lieferte ein Öl, welches mit Petrolether zur Reinigung verrührt wird. Nach Abtrennen der Waschphase erhielt
45 man 200 mg (0,35 mmol, 19,5 %) als gelbes Pulver.

Beispiel 7

Ethylen-Homopolymerisation

5 25 mg (0,05 mmol) von Verbindung XII wurden in 200 ml Toluol gelöst und anschließend mit 10,9 ml einer 30 %igen MAO-Lösung in Toluol (1000 Äquivalente) versetzt. Man ließ das Reaktionsgemisch für 30 min bei Zimmertemperatur röhren und leitete dann für 3 h Ethylen durch die Lösung. Man erhielt nach dem Abstoppen der
10 Reaktion mit methanolischer HCl, Waschen des organischen Rückstands mit Toluol und anschließendem Trocknen 0,5 g Polyethylen, das eine Viskosität (η -Wert, bestimmt nach ISO 1628-3 bei 135°C im Dekalin) von 8,95 dl/g aufwies.

15 Beispiel 8

Ethylen-Hex-1-en-Copolymerisation

25 ml (0,05 mmol) von Verbindung XII wurden in 200 ml Toluol gelöst und anschließend mit 10,9 ml einer 30 %igen MAO-Lösung in Toluol (1000 Äquivalente) und 20 ml 1-Hexen versetzt. Man ließ das Reaktionsgemisch für 30 min bei Zimmertemperatur röhren und leitete dann für 6 h Ethylen durch die Lösung. Man erhielt nach dem Abstoppen der Reaktion mit methanolischer HCl, Waschen des
25 organischen Rückstand mit Toluol und anschließendem Trocknen 2,2 g Polyethylen, das eine Viskosität (η -Wert, bestimmt nach ISO 1628-3 bei 135°C im Dekalin) von 8,95 dl/g und einen Hexengehalt (bestimmt durch IR-Spektroskopie) von 16,6 Gew.-% aufwies.

30

35

40

45

Patentansprüche

1. Übergangsmetallkomplexe der allgemeinen Formeln (Ia)
 5 oder (Ib),

10

15

20

25

30 in denen die Substituenten und Indizes folgende Bedeutung
 haben:

35 R¹ bis R³ Wasserstoff, C₁-C₁₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits durch C₁-C₁₀-Alkyl substituiert sein kann, C₆-C₁₅-Aryl oder Arylalkyl,
 wobei die Reste mit benachbarten Resten jeweils mit den sie verbindenden Atomen einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden können, oder Si(R⁴)₃ mit

40 R⁴ C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₆-C₁₅-Aryl,

M Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal oder ein Element der III. Nebengruppe des Periodensystems oder der Lanthanoiden,

45

38

X Fluor, Chlor, Brom, Iod, Wasserstoff,
 C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl mit 1 bis
 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen
 im Arylrest, -OR⁵ oder -NR⁵R⁶,

5

n 1, 2 oder 3, wobei n der Wertigkeit von M minus
 der Zahl 2 entspricht,

wobei

10

R⁵ und R⁶ C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, Alkylaryl, Arylalkyl,
 Fluoralkyl oder Fluoraryl mit jeweils 1 bis
 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen
 im Arylrest bedeuten und

15

die Reste X gleich oder verschieden sind,

Y — O —, — S —, > NR⁷ oder > PR⁷ bedeutet, wo-
 bei

R⁷ C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, C₃-C₁₀-Cycloalkyl oder
 C₇-C₁₈-Alkylaryl oder einfach oder mehrfach mit

25

Si(R⁸)₃, SR⁸, OR⁸, -(C_{n'}⁸)_{m'}-O-R⁸, OSi(R⁸)₃,
 R⁸

N(R⁸)₂, P(R⁸)₂ oder einer Kombination davon sub-
 stituiertes C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, C₃-C₁₀-Cy-
 cloalkyl oder C₇-C₁₈-Alkylaryl oder Si(R⁸)₃ ist
 mit

n' und m' jeweils 1, 2, 3 oder 4 und

35

R⁸ Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, das
 seinerseits mit C₁-C₄-Alkylgruppen substituiert
 sein kann, oder C₃-C₁₀-Cycloalkyl,

wobei die Reste R⁸ gleich oder verschieden sind,

40

Z eine dreifachverknüpfende Brückengruppe ist und

A und A¹ für zweifachverknüpfende Brückenglieder stehen.

45 2. Übergangsmetallkomplexe gemäß Anspruch 1, bei denen

wobei

25 R⁹ bis R¹² jeweils ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder eine C₇-C₄₀-Alkylarylgruppe bedeuten oder zwei Reste R⁹ bis R¹² mit den sie verbindenden Atomen einen 30 4 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, und
35

M¹ Silicium, Germanium oder Zinn ist,

A ein Brückenglied - $(A^2)_m$ mit
40 m von 1 bis 6 ist,

- 25
- wobei A¹ und die einzelnen Glieder A² von A gleich oder verschieden sind, und
- 30
- R¹³ bis R¹⁶ gleich oder verschieden sind und jeweils ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder eine C₇-C₄₀-Alkylarylgruppe bedeuten, oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, oder
- 35
- wobei ein Rest R¹³ bis R¹⁶ von A¹ zusammen mit einem benachbarten Rest R² oder R³ ein mit den sie verbindenden Atomen 5 bis 15 C-Atome aufweisendes, gesättigtes oder ungesättigtes
- 40
- Ringsystem bilden.
- 45

3. Übergangsmetallkomplexe gemäß Anspruch 1 oder 2, bei denen die Übergangsmetallkomplexe (Ia) der allgemeinen Formel (Ia') entsprechen

5

und

20 R^{17} bis R^{19} jeweils ein Wasserstoffatom, eine C₁-C₁₀-Alkylgruppe, eine 5- bis 7-gliedrige Cycloalkylgruppe, die ihrerseits durch C₁-C₁₀-Alkyl substituiert sein kann, eine C₆-C₁₅-Arylgruppe oder eine Arylalkylgruppe bedeuten, oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen
25 einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, oder Si(R⁴)₃ sind.

- 30 4. Verfahren zur Herstellung der Übergangsmetallkomplexe gemäß den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man Cyclopentadienverbindungen der allgemeinen Formeln (IIa) oder (IIb),

35

40

45

5

in denen

10

X¹ für Wasserstoff oder ein Halogen und

15

X² für Wasserstoff oder einen Rest der Formel
 $M^2R^{20}(o-1)$ stehen, in derM² ein Element der 1. - 4. Hauptgruppe des Perioden-
systems,

20

R²⁰ ein Halogen, eine C₁-C₁₀-Alkylgruppe, eine
5- bis 7-gliedrige Cycloalkylgruppe, die ihrer-
seits durch C₁-C₁₀-Alkyl substituiert sein kann,
eine C₆-C₁₅-Arylgruppe oder eine Arylalkylgruppe,
wobei die Reste R²⁰ gleich oder verschieden sein
können, und

25

o die Wertigkeit von M² bedeuten,

mit Verbindungen der allgemeinen Formel (III),

30

35 in denen

X³ und X⁴ jeweils für ein Halogen und

40

X⁵ für Wasserstoff, ein Halogen oder eine Gruppe
 $=C\begin{array}{c} R^{22} \\ | \\ R^{21} \end{array}$ mitR²¹ und R²² jeweils Wasserstoff, C₁-C₁₀-Alkyl, C₃-C₁₀-Cyclo-
alkyl oder C₆-C₁₅-Aryl stehen,

45

43

zu Verbindungen der allgemeinen Formeln (IVa) oder (IVb) umgesetzt,

5

10

15

20

aus diesen durch intramolekularen Ringschluß die Verbindungen der allgemeinen Formeln (Va) oder (Vb) herstellt,

25

30

35

40

(Va)

(Vb)

welche zu Verbindungen der allgemeinen Formeln (VIa) oder (VIb) umgesetzt werden,

45

in denen

20

x^6 für Wasserstoff oder einen Rest der Formel $M^3R^{23}_{(p-1)}$ steht, in der

M³ ein Element der 1. - 4. Hauptgruppe des Periodensystems,

R²³ ein Halogen, eine C₁-C₁₀-Alkylgruppe, eine 5- bis 7-gliedrige Cycloalkylgruppe, die ihrerseits durch C₁-C₁₀-Alkyl substituiert sein kann, eine C₆-C₁₅-Arylgruppe oder eine Arylalkylgruppe, wobei die Reste R²³ gleich oder verschieden sein können, und

25

n die Wertigkeit von M^3 bedeuten.

33

und die man dann in die Übergangsmetallkomplexe gemäß den Ansprüchen 1 bis 3 überführt.

5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man
 40 als Cyclopentadienverbindungen der allgemeinen Formel (IIa)
 Indenverbindungen der allgemeinen Formel (IIa'),

45

5

(IIa')

10

mit einer Verbindung der allgemeinen Formel (III)

zu Verbindungen der allgemeinen Formel (IVa') umgesetzt,

15

20

(IVa')

25

aus diesen durch intramolekularen Ringschluß die Verbindungen der allgemeinen Formel (Va') herstellt,

30

35

(Va')

40

welche zu Verbindungen der allgemeinen Formel (VIa') umgesetzt werden,

45

5

10

20
25

und die man dann in die Übergangsmetallkomplexe gemäß Anspruch 3 überführt.

15 6. Verbindungen der allgemeinen Formel (VIa'),

in denen die Substituenten und Indizes folgende Bedeutung haben:

30

R¹, R² und R¹⁷ bis R¹⁹ Wasserstoff, C₁-C₁₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits durch C₁-C₁₀-Alkyl substituiert sein kann, C₆-C₁₅-Aryl oder Arylalkyl, wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden können, oder Si(R⁴)₃ mit

40

R⁴ C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl oder C₆-C₁₅-Aryl,

X⁶ Wasserstoff oder einen Rest der Formel M³R²³_(p-1), in der

45

M³ ein Element der 1. - 4. Hauptgruppe des Periodensystems,

5 R²³ ein Halogen, eine C₁-C₁₀-Alkylgruppe, eine 5- bis 7-gliedrige Cycloalkylgruppe, die ihrerseits durch C₁-C₁₀-Alkyl substituiert sein kann, eine C₆-C₁₅-Arylgruppe oder eine Arylalkylgruppe, wobei die Reste R²³ gleich oder verschieden sein können, und

10 p die Wertigkeit von M³ bedeuten,

15 Y für —O—, —S—, >NR⁷ oder >PR⁷ steht, wobei

20 R⁷ C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, C₃-C₁₀-Cycloalkyl oder C₇-C₁₈-Alkylaryl oder einfach oder mehrfach mit

25 n' und m' jeweils 1, 2, 3 oder 4 und

30 R⁸ Wasserstoff, C₁-C₁₀-Alkyl, C₆-C₁₅-Aryl, das seinerseits mit C₁-C₄-Alkylgruppen substituiert sein kann, oder C₃-C₁₀-Cycloalkyl,

35 wobei die Reste R⁸ gleich oder verschieden sind,

40

45

wobei

25 R⁹ bis R¹² jeweils ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₈-C₄₀-Arylalkenylgruppe oder eine C₇-C₄₀-Alkylarylgruppe bedeuten oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 4 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden, und

30

35

M¹ Silicium, Germanium oder Zinn ist, und

A ein Brückenglied - $(A^2)_m$ - mit

m von 1 bis 6 und

25 wobei die einzelnen Glieder A^2 von A gleich oder verschieden sind

7. Verbindungen der allgemeinen Formel (IVa'),

in der die Substituenten und Indizes folgende Bedeutung haben:

45 R¹, R² und R¹⁷ bis R¹⁹ Wasserstoff, C₁-C₁₀-Alkyl,
5- bis 7-gliedriges Cycloalkyl, das seinerseits
durch C₁-C₁₀-Alkyl substituiert sein kann,

50

$C_6\text{-}C_{15}\text{-Aryl}$ oder $Arylalkyl$, wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen 5 bis 15 C-Atome aufweisenden gesättigten oder ungesättigten Ring bilden können, oder
5 $Si(R^4)_3$ mit

R^4 $C_1\text{-}C_{10}\text{-Alkyl}$, $C_3\text{-}C_{10}\text{-Cycloalkyl}$ oder $C_6\text{-}C_{15}\text{-Aryl}$,

10 X^1 Wasserstoff oder ein Halogen,

15 X^3 ein Halogen und

X^5 Wasserstoff, ein Halogen oder eine Gruppe
15 $=C \begin{array}{c} R^{22} \\ | \\ R^{21} \end{array}$ mit

R^{21} und R^{22} jeweils Wasserstoff, $C_1\text{-}C_{10}\text{-Alkyl}$, $C_3\text{-}C_{10}\text{-Cyclo-$
alkyl oder $C_6\text{-}C_{15}\text{-Aryl}$,

20

25

30

35

40

wobei

45 R^9 bis R^{12} jeweils ein Wasserstoffatom, ein Halogenatom,
eine $C_1\text{-}C_{10}\text{-Alkylgruppe}$, eine $C_1\text{-}C_{10}\text{-Fluoralkyl-$
gruppe, eine $C_6\text{-}C_{10}\text{-Fluorarylgruppe}$, eine

51

5 C₆-C₁₀-Arylgruppe, eine C₁-C₁₀-Alkoxygruppe, eine
 C₂-C₁₀-Alkenylgruppe, eine C₇-C₄₀-Arylalkylgruppe,
 eine C₈-C₄₀-Arylalkenylgruppe oder eine
 C₇-C₄₀-Alkylarylgruppe bedeuten oder wobei zwei
 benachbarte Reste jeweils mit den sie verbinden-
 den Atomen einen 4 bis 15 C-Atome aufweisenden
 gesättigten oder ungesättigten Ring bilden, und

10 M¹ Silicium, Germanium oder Zinn ist, und

15 A ein Brückenglied -(A²)_m- mit

20 m von 1 bis 6 und

25

30

35

40

wobei die einzelnen Glieder A² von A gleich oder verschieden sind.

8. Verwendung von Übergangsmetallkomplexen gemäß den Ansprüchen 1 bis 3 zur Polymerisation von Olefinen.

45

52

9. Verfahren zur Polymerisation von Olefinen, dadurch gekennzeichnet, daß die Polymerisation in Gegenwart von Übergangsmetallkomplexen gemäß den Ansprüchen 1 bis 3 und metallocenium-ionenbildenden Verbindungen durchgeführt wird.

5

10. Homo- oder Copolymerivate des Ethylens oder des Propylens mit anderen C₂-C₁₂-Alk-1-enen, erhältlich durch ein Verfahren gemäß Anspruch 9.

10 11. Verwendung der Homo- oder Copolymerivate des Ethylens oder des Propylens mit anderen C₂-C₁₂-Alk-1-enen gemäß Anspruch 10 zur Herstellung von Folien, Fasern oder Formkörpern.

12. Folien, Fasern oder Formkörper enthaltend Homo- oder Copolymerivate des Ethylens oder des Propylens mit anderen C₂-C₁₂-Alk-1-enen gemäß Anspruch 10.
15

20

25

30

35

40

45

FIG.1

FIG.2

5

10

15

20

25

30

35

40

45

FIG.3

5

10

15

20

25

30

35

40

45

FIG. 4

INTERNATIONAL SEARCH REPORT

In	International Application No PCT/EP 99/04056
----	---

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6	C07F17/00	C08F10/00	C07F7/08	C07F7/10	C07F7/22
	C07F7/30	C07F5/06	C07F5/02	C07F9/28	C08F110/00
	C08F210/00 B32B27/32				

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07F C07C C08F B32B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 416 815 A (THE DOW CHEMICAL COMPANY) 13 March 1991 (1991-03-13) cited in the application claims -----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

18 August 1999

Date of mailing of the international search report

27/08/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Rinkel, L

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int ional Application No

PCT/EP 99/04056

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 416815	A 13-03-1991	AT 156827 T		15-08-1997
		AU 645519 B		20-01-1994
		AU 6203990 A		07-03-1991
		CA 2024333 A		01-03-1991
		DE 69031255 D		18-09-1997
		DE 69031255 T		05-03-1998
		DE 774468 T		02-06-1999
		EP 0764653 A		26-03-1997
		EP 0764664 A		26-03-1997
		EP 0764654 A		26-03-1997
		EP 0774468 A		21-05-1997
		EP 0765888 A		02-04-1997
		ES 2106020 T		01-11-1997
		HK 1001918 A		17-07-1998
		HU 209316 B		28-04-1994
		JP 2684154 B		03-12-1997
		JP 7053618 A		28-02-1995
		JP 2623070 B		25-06-1997
		JP 7070223 A		14-03-1995
		JP 2535249 B		18-09-1996
		JP 3163088 A		15-07-1991
		NO 176964 B		20-03-1995
		NO 179043 B		15-04-1996
		NO 301376 B		20-10-1997
		NO 954469 A		01-03-1991
		RU 2073018 C		10-02-1997
		US 5703187 A		30-12-1997
		CN 1049849 A,B		13-03-1991
		US 5872201 A		16-02-1999
		PL 166689 B		30-06-1995

INTERNATIONALER RECHERCHENBERICHT

In' tionales Aktenzeichen

PCT/EP 99/04056

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6	C07F17/00	C08F10/00	C07F7/08	C07F7/10	C07F7/22
	C07F7/30	C07F5/06	C07F5/02	C07F9/28	C08F110/00
	C08F210/00	B32B27/32			

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C07F C07C C08F B32B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 416 815 A (THE DOW CHEMICAL COMPANY) 13. März 1991 (1991-03-13) in der Anmeldung erwähnt Ansprüche -----	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

18. August 1999

Absendedatum des internationalen Rechercheberichts

27/08/1999

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Rinkel, L

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 99/04056

Im Recherchenbericht angeführtes Patendokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 416815 A	13-03-1991	AT	156827 T	15-08-1997
		AU	645519 B	20-01-1994
		AU	6203990 A	07-03-1991
		CA	2024333 A	01-03-1991
		DE	69031255 D	18-09-1997
		DE	69031255 T	05-03-1998
		DE	774468 T	02-06-1999
		EP	0764653 A	26-03-1997
		EP	0764664 A	26-03-1997
		EP	0764654 A	26-03-1997
		EP	0774468 A	21-05-1997
		EP	0765888 A	02-04-1997
		ES	2106020 T	01-11-1997
		HK	1001918 A	17-07-1998
		HU	209316 B	28-04-1994
		JP	2684154 B	03-12-1997
		JP	7053618 A	28-02-1995
		JP	2623070 B	25-06-1997
		JP	7070223 A	14-03-1995
		JP	2535249 B	18-09-1996
		JP	3163088 A	15-07-1991
		NO	176964 B	20-03-1995
		NO	179043 B	15-04-1996
		NO	301376 B	20-10-1997
		NO	954469 A	01-03-1991
		RU	2073018 C	10-02-1997
		US	5703187 A	30-12-1997
		CN	1049849 A,B	13-03-1991
		US	5872201 A	16-02-1999
		PL	166689 B	30-06-1995