Введение в логику предикатов

Математическая логика и теория алгоритмов

Алексей Романов 19 сентября 2024 г.

ТЕИМ

• Вспомним примеры простых высказываний с прошлой лекции: 4 < 5, «Волга впадает в Балтийское море».

- Вспомним примеры простых высказываний с прошлой лекции: 4 < 5, «Волга впадает в Балтийское море».
- 4, 5, «Волга» и «Балтийское море» здесь *константы*, обозначающие какие-то объекты.
- < и «_ впадает в _» предикаты, обозначающие отношения между объектами. Оба предиката бинарные (или двухместные).

- Вспомним примеры простых высказываний с прошлой лекции: 4 < 5, «Волга впадает в Балтийское море».
- 4, 5, «Волга» и «Балтийское море» здесь *константы*, обозначающие какие-то объекты.
- < и «_ впадает в _» предикаты, обозначающие отношения между объектами. Оба предиката бинарные (или двухместные).
- Свойства (например «_ круглое» в «Земля круглая») тоже предикаты, но *унарные*.

- Вспомним примеры простых высказываний с прошлой лекции: 4 < 5, «Волга впадает в Балтийское море».
- 4, 5, «Волга» и «Балтийское море» здесь *константы*, обозначающие какие-то объекты.
- < и «_ впадает в _» предикаты, обозначающие отношения между объектами. Оба предиката бинарные (или двухместные).
- Свойства (например «_ круглое» в «Земля круглая») тоже предикаты, но *унарные*.
- Ещё пример: 2 + 2 = 5. Здесь 2 и 5 —

- Вспомним примеры простых высказываний с прошлой лекции: 4 < 5, «Волга впадает в Балтийское море».
- 4, 5, «Волга» и «Балтийское море» здесь *константы*, обозначающие какие-то объекты.
- < и «_ впадает в _» предикаты, обозначающие отношения между объектами. Оба предиката бинарные (или двухместные).
- Свойства (например «_ круглое» в «Земля круглая») тоже предикаты, но *унарные*.
- ullet Ещё пример: 2+2=5. Здесь 2 и 5 константы, = —

- Вспомним примеры простых высказываний с прошлой лекции: 4 < 5, «Волга впадает в Балтийское море».
- 4, 5, «Волга» и «Балтийское море» здесь *константы*, обозначающие какие-то объекты.
- < и «_ впадает в _» предикаты, обозначающие отношения между объектами. Оба предиката бинарные (или двухместные).
- Свойства (например «_ круглое» в «Земля круглая») тоже предикаты, но *унарные*.
- Ещё пример: 2+2=5. Здесь 2 и 5 константы, = предикат, а + —

- Вспомним примеры простых высказываний с прошлой лекции: 4 < 5, «Волга впадает в Балтийское море».
- 4, 5, «Волга» и «Балтийское море» здесь *константы*, обозначающие какие-то объекты.
- < и «_ впадает в _» предикаты, обозначающие отношения между объектами. Оба предиката бинарные (или двухместные).
- Свойства (например «_ круглое» в «Земля круглая») тоже предикаты, но *унарные*.
- Ещё пример: 2+2=5. Здесь 2 и 5 константы, = предикат, а + ϕ ункция.
- 2 + 2 терм, обозначает объект (как и константы).
- В n-местный предикат можно подставить n термов и получить высказывание.

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (aphoctb).
- Переменные —

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- *Переменные x*, *y*, *z*₃, Обозначают

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.
- Термы —

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.
- Tермы x, $(y+2) \cdot z$, ... Выражения, значения которых объекты. Строятся из переменных и константных символов применением функциональных. Множество термов над Σ : $Term_{\Sigma}$.

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.
- Tермы x, $(y + 2) \cdot z$, ... Выражения, значения которых объекты. Строятся из переменных и константных символов применением функциональных. Множество термов над Σ : $Term_{\Sigma}$.
- Формулы —

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.
- Tермы x, $(y+2) \cdot z$, ... Выражения, значения которых объекты. Строятся из переменных и константных символов применением функциональных. Множество термов над Σ : $Term_{\Sigma}$.
- Формулы x = y + 1; $\forall x \ x \neq x^2 \dots$ Вот их значения истина и ложь. *Атомарные формулы* строятся из термов применением предикатных символов, а остальные применением связок $\land \land \lor \land \ldots$ и кванторов \forall и \exists к формулам. Множество формул над Σ : $Form_{\Sigma}$.

- Модель M сигнатуры Σ состоит из:
 - Носитель (или универсум):

- Модель М сигнатуры Σ состоит из:
 - *Носитель* (или *универсум*): множество \bar{M} .
 - Для каждого символа $c: Const_{\Sigma}^{-1}$:

 $^{^{1}}$ Я пишу : вместо \in для объявления новой переменной.

- Модель М сигнатуры Σ состоит из:
 - *Носитель* (или *универсум*): множество \bar{M} .
 - Для каждого символа $c: Const_{\Sigma}^{-1}$: элемент $c_{M}: \bar{M}.$
 - Для f : Fun_∑:

¹Я пишу : вместо \in для объявления новой переменной.

- *Модель М* сигнатуры Σ состоит из:
 - *Носитель* (или *универсум*): множество \bar{M} .
 - Для каждого символа $c: Const_{\Sigma}^{-1}$: элемент $c_{M}: \bar{M}$.
 - Для $f: Fun_\Sigma$: функция $f_M: M^{arity(f)} o M$.
 - Для Р : Pred_Σ:

 $^{^{1}}$ Я пишу : вместо \in для объявления новой переменной.

- *Модель М* сигнатуры Σ состоит из:
 - *Носитель* (или *универсум*): множество \bar{M} .
 - Для каждого символа $c: Const_{\Sigma}^{-1}$: элемент $c_{M}: \bar{M}.$
 - Для $f: Fun_{\Sigma}$: функция $f_M: M^{arity(f)} \to M$.
 - Для $P: Pred_{\Sigma}$: предикат $P_M: M^{arity(P)}
 ightarrow \{0,1\}$.
- *Оценка* значение переменных в модели, $\sigma: Var \to \bar{M}.$ Или $V \to \bar{M}$, где $V \subset Var.$
- Важно: символы сигнатуры сами по себе ничего не говорят об их интерпретации! $+_M$ может быть или · или $x,y\mapsto \int_x^y tdt$.

¹Я пишу : вместо \in для объявления новой переменной.

- *Модель М* сигнатуры Σ состоит из:
 - *Носитель* (или *универсум*): множество \bar{M} .
 - Для каждого символа $c: Const_{\Sigma}^{-1}$: элемент $c_{M}: \bar{M}.$
 - Для $f: Fun_{\Sigma}$: функция $f_M: M^{arity(f)} \to M$.
 - Для $P: Pred_{\Sigma}$: предикат $P_M: M^{arity(P)}
 ightarrow \{0,1\}$.
- *Оценка* значение переменных в модели, $\sigma: Var \to \bar{M}.$ Или $V \to \bar{M}$, где $V \subset Var.$
- Важно: символы сигнатуры сами по себе ничего не говорят об их интерпретации! $+_M$ может быть или \cdot или $x,y\mapsto \int_{\cdot}^{y}tdt$.
- Одно исключение: если есть =, то $=_M$ это равенство на \bar{M} .

¹Я пишу : вместо \in для объявления новой переменной.

• σ расширяется на $\mathit{Term}_\Sigma \to ???$ и на $\mathit{Form}_\Sigma \to ???$ по индукции:

- σ расширяется на $\mathit{Term}_\Sigma o ar{\mathit{M}}$ и на $\mathit{Form}_\Sigma o \{0,1\}$ по индукции:
- $\sigma(c) = c_M$.
- $\sigma(f(t_1,\ldots,t_n)) = f_M(\sigma(t_1),\ldots,\sigma(t_n)).$

- σ расширяется на $\mathit{Term}_\Sigma o ar{\mathit{M}}$ и на $\mathit{Form}_\Sigma o \{0,1\}$ по индукции:
- $\sigma(c) = c_M$.
- $\sigma(f(t_1,\ldots,t_n))=f_M(\sigma(t_1),\ldots,\sigma(t_n)).$
- $\sigma(P(t_1,\ldots,t_n)) = P_M(\sigma(t_1),\ldots,\sigma(t_n)).$
- $\sigma(A \wedge B) = \sigma(A) \wedge \sigma(B)$ (аналогично для $\neg / \lor / \rightarrow$).

- σ расширяется на $\mathit{Term}_\Sigma o ar{\mathit{M}}$ и на $\mathit{Form}_\Sigma o \{0,1\}$ по индукции:
- $\sigma(c) = c_M$.
- $\sigma(f(t_1,\ldots,t_n))=f_M(\sigma(t_1),\ldots,\sigma(t_n)).$
- $\sigma(P(t_1,\ldots,t_n)) = P_M(\sigma(t_1),\ldots,\sigma(t_n)).$
- $\sigma(A \wedge B) = \sigma(A) \wedge \sigma(B)$ (аналогично для $\neg / \lor / \rightarrow$).
- Для кванторов нужно сначала определить $\sigma_{v\mapsto a}$ (где v переменная, а a объект из \bar{M}):

$$\sigma_{v\mapsto a}(v)=a$$
 $\sigma_{v\mapsto a}(u)=\sigma(u)$ для остальных переменных u .

- σ расширяется на $\mathit{Term}_\Sigma o ar{\mathit{M}}$ и на $\mathit{Form}_\Sigma o \{0,1\}$ по индукции:
- $\sigma(c) = c_M$.
- $\sigma(f(t_1,\ldots,t_n))=f_M(\sigma(t_1),\ldots,\sigma(t_n)).$
- $\sigma(P(t_1,\ldots,t_n)) = P_M(\sigma(t_1),\ldots,\sigma(t_n)).$
- $\sigma(A \wedge B) = \sigma(A) \wedge \sigma(B)$ (аналогично для $\neg / \lor / \rightarrow$).
- Для кванторов нужно сначала определить $\sigma_{v\mapsto a}$ (где v переменная, а a объект из \bar{M}):

$$\sigma_{v\mapsto a}(v)=a$$
 $\sigma_{v\mapsto a}(u)=\sigma(u)$ для остальных переменных u .

Теперь

$$\sigma(orall v \; A) = \left\{egin{array}{ll} 1, \; \mathsf{если} \; orall a : ar{M} \; \sigma_{v \mapsto a}(A) = 1 \ 0 \; \mathsf{иначe} \end{array}
ight.$$

и аналогично для \exists .

• Связанное вхождение переменной —

- Связанное вхождение переменной v под квантором по этой же переменной $\forall v/\exists v$.
- Свободное вхождение переменной —

- *Связанное вхождение переменной* v под квантором по этой же переменной $\forall v/\exists v$.
- Свободное вхождение переменной любое другое.
- Переменная свободна в формуле, если имеет какие-то свободные вхождения.
- Замкнутая формула (или предложение) формула без свободных переменных.
- Почему это важно? Какая между ними разница?

- Связанное вхождение переменной v под квантором по этой же переменной $\forall v/\exists v$.
- Свободное вхождение переменной любое другое.
- Переменная свободна в формуле, если имеет какие-то свободные вхождения.
- Замкнутая формула (или предложение) формула без свободных переменных.
- Почему это важно? Какая между ними разница?
- $\sigma(\forall/\exists v \ldots)$ не зависит от $\sigma(v)$.

- Связанное вхождение переменной v под квантором по этой же переменной $\forall v/\exists v$.
- Свободное вхождение переменной любое другое.
- Переменная свободна в формуле, если имеет какие-то свободные вхождения.
- Замкнутая формула (или предложение) формула без свободных переменных.
- Почему это важно? Какая между ними разница?
- $\sigma(\forall/\exists v \ldots)$ не зависит от $\sigma(v)$.
- Отсюда можно доказать, что значение формулы A зависит только от значений свободных переменных A, но не от связанных.

- Связанное вхождение переменной v под квантором по этой же переменной $\forall v/\exists v$.
- Свободное вхождение переменной любое другое.
- Переменная свободна в формуле, если имеет какие-то свободные вхождения.
- Замкнутая формула (или предложение) формула без свободных переменных.
- Почему это важно? Какая между ними разница?
- $\sigma(\forall/\exists v \ldots)$ не зависит от $\sigma(v)$.
- Отсюда можно доказать, что значение формулы *А* зависит только от значений свободных переменных *A*, но не от связанных.
- А значение замкнутой формулы?

- Связанное вхождение переменной v под квантором по этой же переменной $\forall v/\exists v$.
- Свободное вхождение переменной любое другое.
- Переменная свободна в формуле, если имеет какие-то свободные вхождения.
- Замкнутая формула (или предложение) формула без свободных переменных.
- Почему это важно? Какая между ними разница?
- $\sigma(\forall/\exists v \ldots)$ не зависит от $\sigma(v)$.
- Отсюда можно доказать, что значение формулы *А* зависит только от значений свободных переменных *A*, но не от связанных.
- А значение замкнутой формулы? Вообще не зависит от оценки, только от модели.

- Связанную переменную можно переименовать, не изменив смысла и значения формулы.
- Вместо свободной переменной можно подставить произвольный терм, вместо связанной нельзя.
- Переменные с одним названием, связанные разными кванторами, это по сути разные переменные. Пример: $x=3 \wedge (\exists x \ x=0) \wedge \forall x \ (x>0 \to x^2>0).$
- В математике переменные могут связываться не только кванторами:

- Связанную переменную можно переименовать, не изменив смысла и значения формулы.
- Вместо свободной переменной можно подставить произвольный терм, вместо связанной нельзя.
- Переменные с одним названием, связанные разными кванторами, это по сути разные переменные. Пример: $x=3 \wedge (\exists x \ x=0) \wedge \forall x \ (x>0 \to x^2>0).$
- В математике переменные могут связываться не только кванторами:

$$\lim_{x\to \dots} \int \dots dx \qquad \{x|\dots\}$$

все связывают X.

Примеры

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \ (P(x) \rightarrow Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты *P* и *Q*?

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \ (P(x) \to Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты Р и Q?

Х	0	1	2
P(x)	0	0	1
Q(x)	1	0	1

• Истинна ли формула?

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \; (P(x) \to Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты Р и Q?

Х	0	1	2
P(x)	0	0	1
Q(x)	1	0	1

• Истинна ли формула? Да.

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \; (P(x) \to Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты *P* и *Q*?

- Истинна ли формула? Да.
- Попробуем другую формулу на той же модели: $\exists x \; (P(x) \land Q(x)) \land \exists x \; \neg P(x)$. Истинна ли она?

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \; (P(x) \to Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты *P* и *Q*?

- Истинна ли формула? Да.
- Попробуем другую формулу на той же модели: $\exists x \; (P(x) \land Q(x)) \land \exists x \; \neg P(x)$. Истинна ли она? Да.

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \ (P(x) \to Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты *P* и *Q*?

- Истинна ли формула? Да.
- Попробуем другую формулу на той же модели: $\exists x \; (P(x) \land Q(x)) \land \exists x \; \neg P(x).$ Истинна ли она? Да.
- Как насчёт незамкнутой формулы $P(x) o orall x \ Q(x)$?

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \ (P(x) \to Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты *P* и *Q*?

- Истинна ли формула? Да.
- Попробуем другую формулу на той же модели: $\exists x \; (P(x) \land Q(x)) \land \exists x \; \neg P(x)$. Истинна ли она? Да.
- Как насчёт незамкнутой формулы $P(x) o orall x \ Q(x)$? Истинна при $\sigma(x)=0, \ \sigma(x)=1$, ложна при $\sigma(x)=2$.

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \ (P(x) \to Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты *P* и *Q*?

- Истинна ли формула? Да.
- Попробуем другую формулу на той же модели: $\exists x \; (P(x) \land Q(x)) \land \exists x \; \neg P(x)$. Истинна ли она? Да.
- Как насчёт незамкнутой формулы $P(x) \to \forall x \; Q(x)$? Истинна при $\sigma(x) = 0, \; \sigma(x) = 1$, ложна при $\sigma(x) = 2$.
- Для простоты можно писать x=0 вместо $\sigma(x)=0$.

- Рассмотрим пример.
- Формула (замкнутая): $\forall x \ (P(x) \to Q(x)).$
- Возьмём произвольную модель из 3 элементов: $\bar{M} = \{0,1,2\}.$
- Как можно задать предикаты Р и Q?

- Истинна ли формула? Да.
- Попробуем другую формулу на той же модели: $\exists x \; (P(x) \land Q(x)) \land \exists x \; \neg P(x)$. Истинна ли она? Да.
- Как насчёт незамкнутой формулы $P(x) o orall x \ Q(x)$? Истинна при $\sigma(x)=0, \ \sigma(x)=1$, ложна при $\sigma(x)=2$.
- Для простоты можно писать x=0 вместо $\sigma(x)=0$.
- Ничего не изменится, если $\bar{M} = \{a,b,c\}$, какие-то абстрактные объекты.

- Ещё пример с бинарным предикатом:
- Формула: $\forall x \exists y \ (P(x,y) \rightarrow P(x,x)).$
- Возьмём $\bar{M} = \{a, b, c\}.$
- Какой таблицей задаётся бинарный предикат?

- Ещё пример с бинарным предикатом:
- Формула: $\forall x \exists y \ (P(x,y) \rightarrow P(x,x)).$
- Возьмём $\bar{M} = \{a, b, c\}.$
- Какой таблицей задаётся бинарный предикат?

x y	а	b	С
а	0	1	1
b	0	1	0
С	1	1	0

• Истинна ли формула?

- Ещё пример с бинарным предикатом:
- Формула: $\forall x \exists y \ (P(x,y) \rightarrow P(x,x)).$
- Возьмём $\bar{M} = \{a, b, c\}.$
- Какой таблицей задаётся бинарный предикат?

x y	а	b	С
а	0	1	1
b	0	1	0
С	1	1	0

• Истинна ли формула? Да.

- Ещё пример с бинарным предикатом:
- Формула: $\forall x \exists y \ (P(x,y) \rightarrow P(x,x)).$
- Возьмём $\bar{M} = \{a, b, c\}.$
- Какой таблицей задаётся бинарный предикат?

x y	а	b	С
a	0	1	1
b	0	1	0
С	1	1	0

- Истинна ли формула? Да.
- Слегка поменяем: $\forall x\; ((\exists y\; P(x,y)) \to P(x,x)).$ Эта формула

- Ещё пример с бинарным предикатом:
- Формула: $\forall x \exists y \ (P(x,y) \rightarrow P(x,x)).$
- Возьмём $\bar{M} = \{a, b, c\}.$
- Какой таблицей задаётся бинарный предикат?

x y	а	b	С
а	0	1	1
b	0	1	0
С	1	1	0

- Истинна ли формула? Да.
- Слегка поменяем: $\forall x \; ((\exists y \; P(x,y)) \to P(x,x)).$ Эта формула ложна.

- Ещё пример с бинарным предикатом:
- Формула: $\forall x \exists y \ (P(x,y) \rightarrow P(x,x)).$
- Возьмём $\bar{M} = \{a, b, c\}.$
- Какой таблицей задаётся бинарный предикат?

x y	а	b	С
а	0	1	1
b	0	1	0
С	1	1	0

- Истинна ли формула? Да.
- Слегка поменяем: $\forall x \; ((\exists y \; P(x,y)) \to P(x,x))$. Эта формула ложна.
- На бесконечных моделях работает так же, но мы не можем просто перечислить все значения переменных, чтобы найти значение формулы!

- Ещё пример с бинарным предикатом:
- Формула: $\forall x \exists y \ (P(x,y) \rightarrow P(x,x)).$
- Возьмём $\bar{M} = \{a, b, c\}.$
- Какой таблицей задаётся бинарный предикат?

x y	а	b	С
a	0	1	1
b	0	1	0
С	1	1	0

- Истинна ли формула? Да.
- Слегка поменяем: $\forall x \; ((\exists y \; P(x,y)) \to P(x,x))$. Эта формула ложна.
- На бесконечных моделях работает так же, но мы не можем просто перечислить все значения переменных, чтобы найти значение формулы!
- Вместо механического процесса приходится думать.
- На практике для больших конечных тоже.

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит y

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv \exists x \ \forall y \ Loves(x,y)$.

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv \exists x \ \forall y \ Loves(x,y)$.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный):

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.
- Можно ли то же самое записать без -?

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.
- Можно ли то же самое записать без ? Да! $\exists y \ x = y + y$.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.
- Можно ли то же самое записать без \cdot ? Да! $\exists y \ x = y + y$.
- Вот «x делится на y» без \cdot записать уже не получится.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.
- Можно ли то же самое записать без \cdot ? Да! $\exists y \ x = y + y$.
- Вот «x делится на y» без \cdot записать уже не получится.

Формализация со свободными переменными

- У нас на предыдущих слайдах появлялись утверждения с переменными (например, «х любит всех на свете») в промежуточных результатах.
- Может и сразу быть дано такое утверждение.

Формализация со свободными переменными

- У нас на предыдущих слайдах появлялись утверждения с переменными (например, «х любит всех на свете») в промежуточных результатах.
- Может и сразу быть дано такое утверждение.
- В результате должна получиться формула с теми же свободными переменными (и какими угодно связанными).

Формализация со свободными переменными

- У нас на предыдущих слайдах появлялись утверждения с переменными (например, «х любит всех на свете») в промежуточных результатах.
- Может и сразу быть дано такое утверждение.
- В результате должна получиться формула с теми же **свободными** переменными (и какими угодно связанными).
- Если в формуле есть «лишние» свободные переменные или связана одна из тех, что есть в формализуемом утверждении, это заведомо неверный ответ.

Многосортная логика предикатов

- Часто удобно одновременно говорить о нескольких разных типах объектов. Пример: числа, множества чисел и функции в мат. анализе. Тогда
- К сигнатуре добавляется набор *сортов*. Каждый сорт обозначает какое-то множество объектов.
- У функциональных и предикатных символов кроме числа аргументов задан сорт каждого, у функциональных ещё и сорт результата.
- Применение символов к аргументам не тех сортов считается бессмысленным (т.е. его результат не является термом/формулой).
- Каждая переменная имеет сорт: *x* : *S*. Сорт термов определяется по индукции.
- В моделях есть носитель для каждого сорта.
- Многосортную логику можно свести к односортной, добавив по предикату для каждого сорта, но формулы при этом усложняются.

13/15

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

• Первые шаги очевидны:

$$v[v \mapsto t] = t$$

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

• Первые шаги очевидны:

$$v[v \mapsto t] = t$$
$$u[v \mapsto t] =$$

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

• Первые шаги очевидны:

$$v[v\mapsto t]=t$$
 $u[v\mapsto t]=u$ (u — переменная, кроме v) $c[v\mapsto t]=$

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

$$v[v\mapsto t]=t$$
 $u[v\mapsto t]=u\;(u-$ переменная, кроме $v)$ $c[v\mapsto t]=c\;(c-$ константа)

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

$$v[v\mapsto t]=t$$
 $u[v\mapsto t]=u\;(u-$ переменная, кроме $v)$ $c[v\mapsto t]=c\;(c-$ константа) $f(t_1,\ldots,t_n)[v\mapsto t]=$

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

$$egin{aligned} v[v\mapsto t] &= t \ u[v\mapsto t] &= u\;(u-\mbox{переменная, кроме }v) \ c[v\mapsto t] &= c\;(c-\mbox{константа}) \ f(t_1,\ldots,t_n)[v\mapsto t] &= f(t_1[v\mapsto t],\ldots,t_n[v\mapsto t]) \end{aligned}$$

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

$$egin{aligned} v[v\mapsto t] &= t \ u[v\mapsto t] &= u \; (u- \mbox{переменная, кроме } v) \ c[v\mapsto t] &= c \; (c- \mbox{константа}) \ f(t_1,\ldots,t_n)[v\mapsto t] &= f(t_1[v\mapsto t],\ldots,t_n[v\mapsto t]) \ P(t_1,\ldots,t_n)[v\mapsto t] &= \end{aligned}$$

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

$$egin{aligned} v[v\mapsto t] &= t \ u[v\mapsto t] &= u\;(u-\mbox{переменная, кроме v}) \ c[v\mapsto t] &= c\;(c-\mbox{константа}) \ f(t_1,\ldots,t_n)[v\mapsto t] &= f(t_1[v\mapsto t],\ldots,t_n[v\mapsto t]) \ P(t_1,\ldots,t_n)[v\mapsto t] &= P(t_1[v\mapsto t],\ldots,t_n[v\mapsto t]) \end{aligned}$$

• Попробуем определить результат замены переменной v на терм t в терм s и в формулу A: $s[v\mapsto t]$ и $A[v\mapsto t]$. Должно получиться

$$\sigma(s[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(s)$$

$$\sigma(A[v \mapsto t]) = \sigma_{v \mapsto \sigma(t)}(A)$$

(понятен ли смысл этого?).

$$v[v\mapsto t]=t$$
 $u[v\mapsto t]=u$ (u — переменная, кроме v) $c[v\mapsto t]=c$ (c — константа) $f(t_1,\ldots,t_n)[v\mapsto t]=f(t_1[v\mapsto t],\ldots,t_n[v\mapsto t])$ $P(t_1,\ldots,t_n)[v\mapsto t]=P(t_1[v\mapsto t],\ldots,t_n[v\mapsto t])$ $(\neg A)[v\mapsto t]=\neg (A[v\mapsto t])$ (аналогично для $\land /\lor /\to)$

- Для формул с кванторами всё сложнее.
- Если квантор по той же переменной:

$$(\forall v A)[v \mapsto t] =$$

- Для формул с кванторами всё сложнее.
- Если квантор по той же переменной:

$$(\forall v A)[v \mapsto t] = \forall v A$$

Формула не меняется!

- Для формул с кванторами всё сложнее.
- Если квантор по той же переменной:

$$(\forall v A)[v \mapsto t] = \forall v A$$

Формула не меняется!

• Если переменные разные, можно предположить

$$(\forall u \ A)[v \mapsto t] =$$

- Для формул с кванторами всё сложнее.
- Если квантор по той же переменной:

$$(\forall v A)[v \mapsto t] = \forall v A$$

Формула не меняется!

• Если переменные разные, можно предположить

$$(\forall u \ A)[v \mapsto t] = \forall u \ (A[v \mapsto t])$$

- Для формул с кванторами всё сложнее.
- Если квантор по той же переменной:

$$(\forall v A)[v \mapsto t] = \forall v A$$

Формула не меняется!

• Если переменные разные, можно предположить

$$(\forall u \ A)[v \mapsto t] = \forall u \ (A[v \mapsto t])$$

• Но рассмотрим пример «x делится на 2» $\equiv \exists y \ x = 2 \cdot y$. При замене x на y должно получиться

- Для формул с кванторами всё сложнее.
- Если квантор по той же переменной:

$$(\forall v A)[v \mapsto t] = \forall v A$$

Формула не меняется!

• Если переменные разные, можно предположить

$$(\forall u \ A)[v \mapsto t] = \forall u \ (A[v \mapsto t])$$

• Но рассмотрим пример «x делится на 2» $\equiv \exists y \ x = 2 \cdot y$. При замене x на y должно получиться «y делится на 2». Если попробуем правило выше, получится

- Для формул с кванторами всё сложнее.
- Если квантор по той же переменной:

$$(\forall v A)[v \mapsto t] = \forall v A$$

Формула не меняется!

• Если переменные разные, можно предположить

$$(\forall u \ A)[v \mapsto t] = \forall u \ (A[v \mapsto t])$$

• Но рассмотрим пример «x делится на 2» $\equiv \exists y \ x = 2 \cdot y$. При замене x на y должно получиться «y делится на 2». Если попробуем правило выше, получится $\exists y \ y = 2 \cdot y$,

- Для формул с кванторами всё сложнее.
- Если квантор по той же переменной:

$$(\forall v A)[v \mapsto t] = \forall v A$$

Формула не меняется!

• Если переменные разные, можно предположить

$$(\forall u \ A)[v \mapsto t] = \forall u \ (A[v \mapsto t])$$

- Но рассмотрим пример «x делится на 2» $\equiv \exists y \ x = 2 \cdot y$. При замене x на y должно получиться «y делится на 2». Если попробуем правило выше, получится $\exists y \ y = 2 \cdot y$, явно не выражающая «y делится на 2».
- Если в A связаны какие-то переменные терма t, то перед подстановкой их нужно сначала переименовать:

$$(\exists y \ x = 2 \cdot y)[x \mapsto y] = (\exists y' \ x = 2 \cdot y')[x \mapsto y] = \exists y' \ y = 2 \cdot y'$$