一般仕様書番号

LD-27807A

作成日 改定日 2015年9月11日

《<u>新規》</u>

参考仕様書

品名 TFT-LCDモジュール

型名 LQ170E1LW22

RoHs 規制対応済部品

【受領印欄】		27/10 VT 6 VT 22-17 2 - 1 V 17
1		
l		
1		

※この仕様書は、表紙・改訂履歴・目次・付属書を含めて全32頁で構成されております。 当仕様書について異議があれば、発注時点までにお申し出ください。

シャープ株式会社 ディスプレイデバイス第2事業本部

ディスプレイデバイス第3事業部 第1開発部

部長	副参事	係長	主事	担当
TE TE	1		(ik)	廣兼

改定記録表 RECORDS OF REVISION

機種名 Model No.: LQ170E1LW22

仕様書番号 SPEC No.	改定年月日 DATE	改定表示 REVISED		内容 SUMMARY	備考 NOTE
SFLO NO.	DAIL	No	PAGE	SOMMAN	NOTE
LD-27807A	2015/9/11			新規発行 First edition	
				* (A)	
				* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
				4 (C) *	
				XU	
,					
	4				
	<u> </u>				

注意 NOTICE

〇本仕様書は弊社の著作権にかかわる内容も含まれていますので、取り扱いには充分にご注意頂くと共に、 本仕様書の内容を弊社に無断で複製しないようお願い申し上げます。

This publication is the proprietary of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.

〇本製品のご使用に関しては、本仕様書に記載された使用条件及び注意事項を遵守願います。本仕様書記載の 使用条件あるいは注意事項等を逸脱した本製品の使用等に起因する損害に関して、弊社は一切その責任を 負いません。

When using the products covered herein, please observe the conditions and the precautions written herein. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.

○本製品は、一般民生用電子機器に使用されることを目的に開発・製造されたものです。

The devices in this publication are designed for general electronic equipment use.

〇本製品は、運送機器や安全装置(飛行機、電車、自動車など)、信号機、ガス漏れの検知遮断機、アラーム装置、各種安全機器などの機器に使用する場合は、適切な設計および充分な検証を実施し、信頼性・安全性をお客様にて確保するようにお願い致します。

The appropriate design measures should be taken to ensure reliability and safety when SHARP's devices are used for equipment such as:

- •Transportation control and safety equipment(i.e., aircraft, trains, automobiles, etc.)
- Traffic signals

• Gas leakage sensor breakers

Alarm equipment

Various safety devices etc.

〇本製品は、航空宇宙機器、幹線通信機器、原子力制御機器、生命維持にかかわる医療機器などの極めて高い 信頼性・安全性が必要とされる用途への使用は意図しておりませんので、これらの用途には使用にならないで下さい。

SHARP's devices shall not be used for equipment that requires extremely high level of reliability, such as:

Aerospace equipment

- Military and space applications
- Nuclear power control equipment
- Medical equipment for life support

○本製品において弊社が推奨する用途以外でご使用される場合、事前に弊社販売窓口までご連絡頂きますようお願い致します。

Contact a SHARP representative, in advance, when intending to use SHARP's devices for any "specific" applications other than those recommended by SHARP.

〇本LCDモジュールはRoHS指令11/65に準拠しております。また、RoHS指令物質及び塩化パラフィンの意図的 含有はありません。

The device in the production is based on RoHS instructions 11/65.

And RoHS instructions materials and chlorinated paraffin are not included intentionally.

〇オゾン層破壊化学物質は使用していません。

The ozone-depleting substances is not used.

○本仕様書に疑義が生じた場合は、双方の打合せにより解決するものとします。

If any problem occurs in relation to the description of this publication, it shall be resolved through discussion with spirit of cooperation.

O本製品につきご不明な点がありましたら、事前に弊社販売窓口までご連絡頂きますようお願い致します。
Contact and consult with a SHARP representative in advance, if there are any questions about the contents of this publication.

- 目次 Contents -

No		page
1	適用範囲 Applicable TFT-LCD module ····································	4
2	概要 Overview ····································	4
3	機械的仕様 Mechanical Specifications	5
4	入力端子名称および機能 Input Signal Assignment · · · · · · · · · · · · · · · · · · ·	6
5	絶対最大定格 Absolute Maximum Ratings	11
6	電気的特性 Electrical Characteristics	12
7	入力信号のタイミング特性 Timing Characteristics of Input Signals · · · · · · · · · · · · · · · · · · ·	16
8	入力信号と表示基本色及び各色の輝度階調 Input Signals, Basic Display Colors and Gray Scale of Each Color · · · · · · · · · · · · · · · · · · ·	18
9	光学的特性 Optical Characteristics · · · · · · · · · · · · · · · · · · ·	19
10	表示品位 Display Qualities ····································	20
11	モジュールの取り扱い Handling Instructions ······	21
12	出荷形態 Packing form ····································	26
13	製品型名表示 Marking of product name ····································	27
14	信頼性項目 Reliability Test Items	28
Fig.1	モジュール外形図 Outline Dimensions	29
Fig.3	包装形態図 Packing form	30

1. 適用範囲 Applicable TFT-LCD module

本仕様書は、カラーTFT-LCDモジュール LQ170E1LW22 に適用致します。

This specification applies to the color TFT-LCD module LQ170E1LW22.

2. 概要 Overview

本モジュールは、アモルファス・シリコン薄膜トランジスタ(TFT: Thin Film Transistor)を用いたカラー表示可能なアクティブ・マトリックス透過型液晶ディスプレイモジュールです。カラーTFT-LCDパネル、ドライバーIC、コントロール回路、電源回路及びバックライトユニット等により構成され、インターフェイスにLVDS(Low Voltage Differential Signaling)を使用し、+5VのLCD用電源

構成され、インターフェイスにLVDS(Low Voltage Differential Signaling)を使用し、+ 5VのLCD用電源 及びバックライト用電源(+12V)を供給することにより、1280×RGB×1024ドットのパネル上に約1677万色の 図形、文字の表示が可能です。

This module is a color active matrix LCD module incorporating amorphous silicon TFT(Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit and a White-LED Backlight unit. Graphics and texts can be displayed on a 1280 × RGB × 1024dots panel with about 16million colors by using LVDS (Low Voltage Differential Signaling) and supplying +12.0V DC supply voltages for TFT-LCD panel driving and +12.0V DC supply voltage for backlight.

また、本モデルのTFT-LCDパネルは、演色性が高いカラーフィルタを使用 しており、さらに、高輝度バックライトの搭載により明るく鮮やかな画像が得られ、マルチメディア用 途に最適なモジュールとなっておりま<mark>す</mark>。

また、本モジュールは広視野角仕様となっております。

The TFT-LCD panel used for this module is a high-luminance and high-contrast image. It is a wide viewing-angle-module.

バックライトを駆動する為のLEDドライバ回路をモジュールに内蔵しております。

The LED driver circuit is built into the module.

3. 機械的仕様 Mechanical Specifications

項 目 Items	仕 様 Specifications	単位 Unit
画面サイズ Display size	43.2 (17inch) Diagonal	cm
有 効 表 示 領 域 Active area	336.384(H) × 269.1072(V)	mm
絵 素 構 成 Pixel format	1280(H) × RGB × 1024(V) (1 pixel=R+G+B dot)	pixel
アスペクト比 Aspect ratio	5:4	
画 素ピッチ Pixel pitch	0.2628(H)×0.2628(V)	mm
絵 素 配 列 Pixel configuration	R,G,B 縦ストライプ R,G,B vertical stripe	
表 示 モ <i>ード</i> Display mode	ノーマリーブラック Normally black	
外形寸法 Unit outline dimensions	$358.5 (W) \times 296.5 (H) \times 12.9 (D)$	mm
質量(MAX) Mass(MAX)	1200	ъ
表面処理 Surface treatment	アンチグレ <mark>アハードコー</mark> ト処理:3H A <mark>nti-gl</mark> are and h <mark>a</mark> rd-coating 3H	

図1に外形寸法図を示します。

Outline dimensions are shown in Fig.1.

4. 入力端子名称および機能 Input Signal Assignment

4-1. TFT液晶パネル駆動部 TFT-LCD panel driving

CN1

使用コネクタ Using connector: FI-XB30SSRLA-HF16(JAE)

適合コネクタ Corresponding connector: FI-X30HL(connector)(JAE)

:FI-XC3A-1-15000(terminal)(JAE)

搭載LVDSレシーバ Using LVDS receiver:

コントロールIC内蔵タイプ(THC63LVDF84B(ザインエレクトロニクス製)同等性能品)

Building into cotrol IC (THC63LVDF84B (Thine electronics) compatible product)

適合LVDSトランスミッタ Corresponding LVDS transmitter:

THC63LVD823B(ザインエレクトロニクス(株)製) 又は 同等性能品

THC63LVD823B (Thine electronics) or Compatible product

端子 Pin	記号 Symbol	機能 Function	備考 Remark
1	RAIN0-	LVDS receiver signal Odd CH0 (-)	LVDS
2	RAIN0+	LVDS receiver signal Odd CH0 (+)	LVDS
3	RAIN1-	LVDS receiver signal Odd CH1 (-)	LVDS
4	RAIN1+	LVDS receiver signal Odd CH1 (+)	LVDS
5	RAIN2-	LVDS receiver signal Odd CH2 (-)	LVDS
6	RAIN2+	LVDS receiver signal Odd CH2 (+)	LVDS
7	GND	GND	
8	RACLKIN-	LVD <mark>S</mark> receive <mark>r</mark> signal Odd CK (-)	LVDS
9	RACLKIN+	LVDS receiver signal Odd CK (+)	LVDS
10	RAIN3-	LVDS receiver signal Odd CH3 (-)	LVDS
11	RAIN3+	LVDS receiver signal Odd CH3 (+)	LVDS
12	RBIN0-	LVDS receiver signal Even CH0 (-)	LVDS
13	RBIN0+	LVDS receiver signal Even CH0 (+)	LVDS
14	GND	GND	
15	RBIN1-	LVDS rec <mark>e</mark> iver signal Even CH1 (-)	LVDS
16	RBIN1+	LVDS receiver signal Even CH1 (+)	LVDS
→ 17	GND	GND	
18	RBIN2-	LVDS receiver signal Even CH2 (-)	LVDS
19	RBIN2+	LVDS receiver signal Even CH2 (+)	LVDS
20	RBCLKIN-	LVDS receiver signal Even CK (-)	LVDS
21	RBCLKIN+	LVDS receiver signal Even CK (+)	LVDS
22	RBIN3-	LVDS receiver signal Even CH3 (-)	LVDS
23	RBIN3+	LVDS receiver signal Even CH3 (+)	LVDS
24	GND	GND	
25	GND	GND	
26	GND	GND	
27	GND	GND	
28	VCC	+5.0V Power supply	
29	VCC	+5.0V Power supply	
30	VCC	+5.0V Power supply	

4-2. LVDSインターフェイスのブロック図 LVDS interface block diagram

ODD DATA

(Computer Side) (TFT-LCD side)

EVEN DATA

4-3. LVDSデータマッピング LVDS Data Mapping

Transmitter		Cimal		
Pin No	Data	Signal		
51	TA0	R0 (LSB)		
52	TA1	R1		
54	TA2	R2		
55	TA3	R3		
56	TA4	R4		
3	TA5	R5		
4	TA6	G0 (LSB)		
6	TB0	G1		
7	TB1	G2		
11	TB2	G3		
12	TB3	G4		
14	TB4	G 5		
15	TB5	B0 (LSB)		
19	TB6	B1		
20	TC0	B2		
22	TC1	В3		
23	TC2	B4		
24	TC3	B5		
27	TC4	[HS]		
28	TC5	[VS]		
30	TC6	DE		
50	TD0	R6		
2	TD1	R7 (MSB)		
8	TD2	G6		
10	TD3	G7 (MSB)		
16	TD4	В6		
18	TD5	B7 (MSB)		
25	TD6	[NA]		
31	CLK IN	CLK		

*:A or B

DE: DATA ENABLE

[HS]:Hsync [VS]:Vsync

[NA]: Non Available

本機種はENAB信号のみにて駆動する為、Hsync/Vsync信号は入力頂く必要はありません。 もし、Hsync/Vsyncが入力されても反応はしない為、誤動作に至ることはありません。 Hsync/Vsync need not be input so that this model may drive only by the ENAB signal. If Hsync/Vsync is input, it doesn't become a malfunction.

4-4. LEDバックライト部 LED backlight

CN2

使用コネクタ Using connector: SM10B-SHLS-TF(J.S.T. Mfg. Co. Ltd)

適合コネクタ Corresponding connector: SHLP-10V-S-B(J.S.T. Mfg. Co. Ltd)

コネクタNo. Connector No.	端子M. Pin No.	記号 Symbol	機能 Function
	1	VDD	+12V電源 +12V power supply
	2	VDD	+12V電源 +12V power supply
	3	VDD	+12V電源 +12V power sup <mark>ply</mark>
	4	VDD	+12V電源 +12V power <mark>supply</mark>
CN2	5	GND	GND
ONZ	6	GND	GND
	7	GND	GND
	8	GND	GND
	9	BL_EN	バックライトON/OFF制御信号入力端子 ON/OFF control signal for backlight
	10	PWM	バックライト輝度調整用PWM信号入力端子 PWM signa <mark>l for</mark> b <mark>acklig</mark> ht dimming

5. 絶対最大定格 Absolute Maximum Ratings

項目 Parameter	記号 Symbol	条件 Condition	端子名 Pin	定格值 Ratings	単位 Unit	備考 Remark
電源電圧	Vcc	Ta=25°C	VCC	−0.3 ~ +6.0	٧	【Note1,2】
Supply voltage	VDD	Ta=25°C	VDD	−0.3 ~ +15.0	٧	【Note1,2】
	V _{I 1}	Ta=25°C	RxINi-/+	-0.3 ∼ +VCC+0.3	V	i=0,1,2,3
入力電圧 Input voltage	V _{I 2}	Ta=25°C	RxCLKIN-/+	-0.3 ~ +VCC+0.3	V	x=A,B
	V _{I 4}	Ta=25°C	BL_EN,PWM	-0.3 ~ +VDD	V	
保存温度 Storage temperature	T _{STG}	_	_	-30 ~ +80	°C	[Note1,3]
動作温度 Operating temperature	T _{OPA}	_	-	0 ~ +80	°C	[Note1,3,4]

【Note1】 湿度:95%RH MAX.(Ta≦40°C) 静電気に注意すること。

最大湿球温度39℃以下(Ta>40℃) ただし、結露させないこと。

Humidity: 95%RH MAX.(Ta≤40°C) Note static electricity.

Maximum wet-bulb temperature at 39°C or less. (Ta>40°C) No condensation.

【Note2】 電源容量について、VCCは2.5A、VDDは5Aの電源容量を想定して回路<mark>設計(ヒューズ</mark>選定、LCD内部 電源設計)、設計検証(オープンショート試験)を行っております。

電流容量が小さい場合は、基板部品のショート等が発生した際、弊社基板側のヒューズが切れず発煙・発火を起こす可能性が懸念されます。セット側電源設計の際は、電源容量考慮の上、セット側にて過電流・過電圧を抑制する保護機能を設けて頂きます様お願い致します。

The VCC power supply capacity must use the one of 2.5A or more.

The VDD power supply capacity must use the one of 5A or more.

There is a possibility of causing smoking and the ignition without fusion of LCD fuse when abnormality occurs when the current capacity is smaller than regulated values.

Please install the protection function in which the over current and the excess voltage are controlled to the set side when you design the lower current supply.

【Note3】 動作温度項目において、65 ~ 80℃で使用される場合、液晶モジュールは破壊には至りませんが、 画面ムラ他、表示品位の劣化を招く可能性があります。

また(高温)多湿環境(6<mark>0%</mark>RH以上)での継続使用においても品位劣化を招く可能性があります。

There is a possibility of causing deterioration in the irregularity and others of the screen and the display fineness though the liquid crystal module doesn't arrive at destruction when using it at $65 \sim 80^{\circ}$ C.

There is a possibility of causing the fineness deterioration by the prolonged use in the (high temperature) humidity environment (60%RH or more).

【Note4】 動作温度項目において、低温側は周囲温度規定、高温側はパネル表面(表示領域)温度規定と致します。 In the operating temperature item, the low temperature side is the ambient temperature regulations. The high temperature side is the panel surface temperature regulations.

6. 電気的特性 Electrical Characteristics

6-1. TFT液晶パネル駆動部 TFT-LCD panel driving

Ta=+25°C

項目 Parameter		記号 Symbol	条件 Condition	最小 Min.	標準 Typ.	最大 Max.	単位 Unit	備考 Remark
電源電圧 Supply voltage)	V _{cc}		4.5	5.0	5.5	٧	【Note1】
消費電流 Current dissipati	on	I_{CC}	Vcc=5V		280	550	mA	【Note2】
LVDS入力電圧 Input voltage for LVDS r		V _L		0	_	2.4	٧	
許容入力リップルで Permissive input ripple	_	V_{RP}		_	_	200	mV_{P-P}	Vcc=5V
差動入力 スレッショルド電圧	High	V_{TH}		_	1	V _{CM} +100	mV	V _{CM} =+1.2V
Differential input threshold voltage	Low	V_{TL}		V _{CM} -100	1		mV	[Note3]
終端抵抗 Terminal resisto	or	R _T			100		Ω	差動信号間 Diff <mark>e</mark> rential input

【Note1】 入力電圧シーケンス Vcc turn-on/off conditions

 $20 \, \mu \, \text{s} < \qquad t_1 \qquad \leqq \quad 10 \, \text{ms}$ $0 \qquad < \qquad t_2 \qquad \leqq \quad 500 \, \text{ms}$ $0 \qquad < \qquad t_3 \qquad \leqq \quad 1 \, \text{s}$ $1 \, \text{s} \qquad \leq \qquad t_4$ $300 \, \text{ms} \leq \qquad t_5$ $200 \, \text{ms} \leq \qquad t_6$

t₇ ≦ 100ms

瞬時電圧降下 Vcc-dip conditions

- 1) $V_{TH} < V_{CC} \le V_{MIN}$ td \le 10ms
- 2) V_{cc} < V_{TH} 瞬時電圧降下条件は入力電圧シーケンス に順ずるものと致します。

Vcc-dip conditions should also follow the On-off conditions for supply voltage

データ入力とバックライト点灯との関係は、上記入力シーケンスを推奨致します。

パネル動作以前のバックライト点灯、あるいはパネル動作停止後のバックライト点灯にて、瞬間白表示あるいは正常でない表示を行う場合がありますが、これは入力信号の変動によるものであり、液晶モジュールにダメージを与えるものではありません。

The relation between the data input and the backlight lighting will recommend the above-mentioned input sequence. When the backlight is turned on before the panel operates, there is a possibility of abnormally displaying. The liquid crystal module is not damaged.

【Note2】 消費電流 Current dissipation

標準值:白黒縦階調表示時

 $\label{thm:continuity} \textbf{Typical current situation:-gray-bar pattern}$

(測定条件 Vcc=+5V、fck = 54MHz、Ta=25℃)

【Note3】 V_{CM}: LVDSドライバのコモンモード電圧

 V_{CM} : LVDS common mode voltage

6-2. LEDバックライト 駆動回路部 Backlight driving Section

 $Ta=+25^{\circ}C$

項目 Parameter		記号 Symbol	最小 Min.	標準 Typ.	最大 Max.	単位 Unit	備考 Remark
	電源電圧 Supply voltage	V _{DD}	10.8	12.0	13.2	٧	【Note1】
	消費電流	I DD1	_	900	1,200	mA	[Note2]
Cı	urrent dissipation	I DD5	-	-	100	μΑ	【Note3,4】
	F入力リップル電圧 ive input ripple voltage	VRP_BL	-	-	200	mVP-P	VDD=+12.0V
BL_EN	入力Hi電圧 High voltage	VIH_BLEN	3.0	_	VDD	٧	[Note3,5]
DL_EIN	入力Lo電圧 Low voltage	VIL_BLEN	-	-	0.4	٧	[Note3,5]
DWM	入力Hi電圧 High voltage	VIH_PWM	3.0	-	VDD	٧	[Note4]
PWM 入力Lo電圧 Low voltage		VIL_PWM	-	<u>-</u>	0.4	٧	[Note4]
ŀ	PWM周波数 PWM frequency	fрwм	200	-	1K	Hz	[Note6]
PWMデューティー比 PWM duty ratio		Dрwм	10	-	100	%	[Note6]
	寿命 Life time	L		(70,000) (Module)		h	【reference】 【Note7,8】

【Note1】入力電圧シーケンス On-off conditions for supply voltage

【Note2】消費電流 Current dissipation V_{DD}=+12.0V、PWM Duty=100%

【Note3】33k Ω のプルダウン抵抗が接続されています。

This terminal is connected to a 33K ohm pull-down resistor.

【Note4】33kΩのプルダウン抵抗が接続されています。

This terminal is connected to about 33K ohm pull-down resistors.

[Note5] High: Backlight ON

Low: Backlight OFF

【Note6】PWM調光信号

 $fPWM = 1/t_{15}$

Duty 10%: MIN. Luminance
Duty 100%: MAX. Luminance

デューティー比に応じて輝度が可変 (但し、t14≧500 µ sであること)

周波数が遅くなると、ちらつき等の表示品位の低下を招く場合があります。

Luminance changes in proportion to the duty ratio. (t14 \geq 500 μ s)

When the frequency slows, the display fineness might decrease.

【Note7】Ta=25℃ 調光MAXにて連続点灯した際、輝度が初期値の 50%になった時 Luminance becomes 50% of an initial value. (Ta=25℃, PWM=100%)

【Note8】本製品に使用しているLEDは温度に対して非常に敏感です。高温環境下で長時間あるいは繰り返し ご使用になられますと、急激に寿命が低下する可能性があります。

上記のような環境下でご使用になられる際には、弊社までご相談下さい。

The LED used in this LCD module is very sensitive to temperature change. If it operates for extremely long time under high temperature, it is possible rapidly to shorten the life time of LED.

In case of such a condition, consult with us.

【Note9】PWM信号を10msec以上OFFする場合は、BLEN信号をLowにリセットして下さい。

リセットされずにPWM信号を再投入した場合は、ソフトスタート機能が働かないため過電流が発生する場合があります。

When PWM signal is set "Low" more than 10ms, please turn off BL_EN.

If PWM signal is input without reset of BL_EN ,Soft start function of LED driving circuit is invalid and inrush current may occur.

7. 入力信号のタイミング特性 Timing Characteristics of Input Signals

7-1. タイミング特性 Timing characteristics

項目 Parameter		記号 Symbol	最小 Min.	標準 Typ.	最大 Max.	単位 Unit	備考 Remark
クロック CLK	周波数 Frequency	1/Tc	50.0	54	58.0	MHz	
	水平周期	TH	706	844	851	clock	
	Horizontal period	111	13.1	15.6	-	μs	
イネーブル DE	有効表示領域 Horizontal display period	THd	640	640	640	clock	
	垂直周期	TV	1029	1066	-	line	【Note1】
	Vertical period	1 V	-	16.66	-	ms	[Note1]
	有効表示領域 Vertical display period	TVd	1024	1024	1024	line	

【Note1】DE信号のTV-TVd期間が長くなると、フリッカ等の表示品位の低下を招く可能性があります。

In case of using the long vertical period, the deterioration of display quality, flicker etc. may occur.

7-2. 入力信号と画面表示 Input Data Signals and Display Position on the screen

8. 入力信号と表示基本色および各色の輝度階調

Input Signals, Basic Display Colors and Gray Scale of Each Color

	色・階調	データ信号 Data signal																								
	Colors & Gray scale	Gray Scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	В1	B2	ВЗ	В4	B5	В6	В7
基本色 Basic Color	Black	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Green	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Cyan	_	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	_	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	_	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D D	1	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
調 of Red	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
赤の階調 ′ Scale of	1	\downarrow	↓ ↓						1						Į į											
帯の ' Sca	<u> </u>	\downarrow				ļ	ļ _							,	,							,	l	1		
ءَ Gray	Brighter	GS250	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	<u> </u>	GS251	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS252	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	1	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
緑の階調 Scale of Green	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
り階 le of	1		1												↓											
為6 Sca	↓	000=5	,			,	ا ا					_	, 1		, , 1								l _	Γ_		
Gray		GS250		0					0	0		0	1	1	1		1		0		0				0	
	1	GS251	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS252	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
青の階調 Scale of Blue	1	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	1	+	1						1						↓ ↓											
ੂ Gray	Brighter	GS250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
6	\downarrow	GS251	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS252	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

0:Lowレベル電圧 Low level voltage 1:Highレベル電圧 High level voltage

各色表示用のデータ信号8ビット入力にて、赤256階調、緑256階調、青256階調を表示し、

合計24ビットのデータの組合せにより1677万色の表示が可能です。

Each basic color can be displayed in gray scales from bit data signals. According to the combination of, total 24 bit data signals, the 16.77-million-color display can be achieved on the screen. ©Copyright 2015 SHARP All rights reserved

9. 光学的特性 Optical specification

Ta=+25°C, Vcc=+5V

	[目 imeter	記号 Symbol	条件 Condition	最小 Min.	標準 Typ.	最大 Max.	単位 Unit	備考 Remark				
視角範囲 Viewing	水平 Horizontal	θ 3, θ 9	CR>10	70	85	1	Deg.	【Note1,2,4】				
angle range	垂直 Vertical	θ 6, θ 12		70	85	1	Deg.	[Note1,2,4]				
	ラスト比 ast ratio	CR	最適視角 optimized angle	450	1000	I	*	[Note2,4]				
応答速度(白黒) Response Time(White Black)		τr+τd		-	30	-	ms	[Note3,4]				
表示面白色色度 Chromaticity of White				0.286	0.316	0.366						
		Wy		0.304	0.334	0.384						
表示面赤色色度 Chromaticity of Red		Rx		-	0.679	(-)						
		Ry		-	0.318	_		[Note4,6]				
表示面	表示面緑色色度 Chromaticity of Green				<i>θ</i> =0°	-	0.272	-				
Chromatic					0 –0	_	0.676	0.676 –				
表示面	表示面青色色度		表示面青色色度Bx		表示面青色色度 Bx			1	0.147	-		
Chromaticity of Blue		Ву		-	0.081							
白色表面輝度 Luminance of white		Y _{L1}		280	400		cd/m²	[Note4]				
輝度分布 White Uniformity		δw		-		1.43		[Note5]				

※バックライト点灯後30分後に、PWMのデューティー比100%にて測定をします。

また光学的特性測定は、下記の図2の測定方法を用いて暗室あるいはこれと同等な状態にて行います。

The measurement shall be executed 30 minutes after lighting at rating.

The optical characteristics shall be measured in a dark room or equivalent state with the method shown in Fig.2 below.

図2 光学的特性測定方法

Fig.2 Optical characteristics measurement method

【Note1】視角範囲の定義 Definitions of viewing angle range

【Note2】コントラスト比の定義 Definition of contrast ratio 次式にてコントラスト比を定義します。

The contrast ratio is defined as the following.

コントラスト比(CR) Contrast Ratio(CR) 白表示の画面中央輝度 Luminance with all pixels white 黒表示の画面中央輝度 Luminance with all pixels black

【Note3】応答速度の定義 Definition of response time

下図に示すように「白」及び「黒」に変化する信号を入力し、受光器出力の変化時間にて定義します。

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

【Note4】画面中央部で測定します。

This shall be measured at center of the screen.

【Note5】輝度分布の定義 Definition of white uniformity

下図に示す5箇所(①~⑤)の測定値で、次の計算式にて定義します。

White uniformity is defined as the following with five measurements. (1~5)

①~⑤の最大輝度値 Maximum luminance of 5 points ⑤の最小輝度値 Minimum luminance of 5 points

【Note6】色度座標はCIE1931色度図に基づきます。

Chromaticity coordinate is based on CIE1931.

10. 表示品位 Display Qualities

別紙出荷検査基準書を参照してください。

Please refer to the Outgoing Inspection Standard.

11. モジュールの取り扱い Handling Instructions

【モジュール取り扱いに関する注意事項とお願い】

[Handling Precautions]

- a) モジュールの取り扱いはできる限り塵埃の少ない環境にて行って下さい。特に金属製の異物がモジュールに付着 すると内部回路がショートして故障する可能性があります。
 - Treat LCD module in dustless surroundings. Metal foreign material stuck to the circuit is possible to cause a short.
- b)ケーブルを入力コネクタに挿抜する時は、必ずモジュールに入力する電源や信号をOFFにしてから行って下さい。
 Be sure to turn off the power supply when insertion extraction the cable.
- c)ケーブルの抜き挿し時にはモジュール側の回路部やコネクタ部に強い外力が加わらないように注意して下さい。 破損や接触不良となる可能性があります。
 - Be careful not to give any physical stress onto the circuit and/or the connector of LCD module when you pull/plug a cable. Physical stress will cause a break or worse connection.
- d)パネル表面の偏光板は傷つき易いので、硬いものや鋭利なもので擦ったりしないよう取り扱いには十分注意して下さい。
 - Do not touch or scratch the polarizer with items harder than the surface rating or permanent damage can result.
- e)偏光板上のゴミは、静電対策が施されたイオン化エアガン等のN2ブローで吹き飛ばして下さい。
 Use N2-blower such as an ionized nitrogen has anti-electrostatic when you blow dusts on Polarizer.
- f)水滴等が長時間付着すると変色やシミの原因になりますので、すぐに、脱脂綿あるいは柔らかい布等で拭き取って下さい。
 - Since a long contact with water may cause discoloration or spots, wipe it with absorbent cotton or other soft cloth immediately.
- g) CMOS LSIを使用していますので、取り扱い時の静電気に十分<mark>注意し、人体アース</mark>などの配慮をして下さい。 その他、通常電子部品に対<mark>す</mark>る注意事項は遵守して下さい。
 - This module contains CMOS LSI. Please use appropriate anti-static protection methods for all contact with the LCD panel and its electrical circuits.
- h) モジュールには金属を使用しておりますので、取り扱いに時にはエッジ部に十分注意して下さい。 Be careful with the edge parts of the module which is made of metal.
- i)ガラス<mark>や微細配線部</mark>品を使用して<mark>おりま</mark>すので、落としたり固いものに当てたり、強い衝撃を加えると、ワレ,カケ や内部断線の原因になりますので、取り扱いには十分注意して下さい。
 - Since the LCD panel is made of glass, it may break or crack if dropped or bumped on hard surface. Always handle with care.
- j)パネル表示部が<mark>破損した場合、万が一切断面に触れますとケガをすることがあります。</mark> 破損部を手で触ら<mark>ないように</mark>十分注意して下さい。
 - When the panel is broken, do not touch the glass. Although the panel is difficult to be scattered, touching the broken part may hurt your hands.
- k)パネル表示部が破損した場合、パネル内の液晶が漏れる恐れがあります。もし誤って目や口に入った場合は 直ちに水で洗い落とし、医者の診断を受けて下さい。
 - Liquid crystal contained in the panel may leak if the LCD is broken. If LC material should accidently come in contact with the mouth or eyes rinse with water as soon as possible, following the instructions of the appropriate MSDS.

- I) 回路部品及びパターン部に触れないでください。回路が破損する可能性があります。
 Do not touch the circuit and the pattern of the board. If you touch it, the circuit may be broken.
- m) 直射日光など強い紫外線に長時間さらさないようにお願いします。
 Do not expose to strong ultraviolet rays such as direct sunlight for a long time.
- n)モジュールの廃棄については、地方自治体により規制を受ける場合があります。それぞれの自治体規制に 従って廃棄して下さい。

Follow the regulations when LCD module is scrapped. The government you stay may have some regulations about it.

- o) 本モジュールには、表偏光板上の傷防止用に保護フィルムを貼っております。保護フィルムを剥離する時は、 出来る限り使用直前に、静電気に注意しながらゆっくりと剥離下さい。 〈推奨条件〉
 - ・アースバンドを装着の上、剥離作業をする。
 - ・除電ブロアの風を剥離部分にあてながら一定速度で5秒以上かけて剥離する。

Protection film is attached to the module surface to prevent it from being scratched .Peel the film off slowly, just before the use, with strict attention to electrostatic charges. Blow off 'dust' on the polarizer by using an ionized nitrogen.

- p) フィルム剥離後は偏光板表面へフィルム等を貼り付けないで下さい。パネル表面偏光板の保護フィルムを 再び貼り付けて長期保管すると、偏光板表面が変質し、シミ状の外観不具合を生じる可能性があります。 After peeling laminate film off, please do not attached to the front polarizer. If you attach again and store it long time, surface of the front polarizer changes in quality and it may cause display non-uniformity issue.
- q) 本機種は金属部材を使用している為、錆が発生する可能性があります。 Because metal parts are used on this model, it has the potential of rust formation

【セット設計上のお願い】

[Set-Design Precautions]

- a)故障の原因となりますので、決してモジュールを分解しないで下さい。
 Disassembly of the LCD panel in any way voids the warranty and may permanently damage the LCD panel.
- b)取り付け穴を同一平面で固定し、モジュールに"ソリ"や"ネジレ"等のストレスが加わらないようにして下さい。
 Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- c) モジュール取り付け部はEMI、ESDや外来ノイズに対する安定化の為、アース接続をお奨めします。
 Consider grounding the bezel to reduce EMI, ESD and minimize electronic noise into the LCD panel.
- d) 筐体への取り付けはトルク値=0.294±0.02N·m MAXとなりますが、実機による確認を十分に行って下さい。 When install LCD modules in the cabinet, please tighten with ("torque=0.294±0.02N·m MAX"). Be sure to confirm it in the same condition as it is installed in your instrument.
- e)モジュール裏面には、回路基板がありますので、設計組み立て時にストレスが加わらない様にしてください。 ストレスが加わると回路部品が破損する恐れがあります。

When mounting the LCD panel, use all the provided mounting holes and maintain uniformity and coplanarity so as not to bend, bow or twist the LCD panel at any time.

If stress is added, there is a possibility that circuit parts may be damaged.

f) モジュール裏面に常時一定の圧力がかかると表示ムラ、表示不良などの原因となりますのでモジュール裏面を 圧迫するような構造にはしないで下さい。

It causes an irregular display and the defective indication, etc., when always put constant pressure on the back of the module. Please do not make the structure to press the back of the module.

- g) パネル表面に保護板等をつける場合は干渉縞など画質を劣化させる事の無いよう注意して下さい。
 In case of attaching a cover glass or touch panel to the front surface, use appropriate measures to avoid degrading optical performance.
- h)液晶モジュール内部に細かい異物等が入ると光学部材に付着し、経時とともにムラが発生することがあります。 筐体設計時、冷却等の空気孔及び強制対流させるファン使用時には、その吸入口にも目の細かいフィルタを 取り付ける等の配慮をお願い致します。

To prevent loss of uniformity and prevent the introduction of contamination to the optical path of the LCD panel, please use fine-pitch filters in the air flow of forced ventilation.

- i)モジュールに局所的な温度変化が生じないように、放熱性を考慮した部品配置・設計をお願いします。 Please design part arrangement to consider the heat dissipation not to change the local temperature for module.
- j)本仕様書に規定されている絶対最大定格は、必ず守ってください。これを超えて使用した場合、部品の焼損・破壊や特性の劣化の恐れがあります。周囲温度や入力信号変動、電気部品のバラツキ等も考慮の上、絶対最大定格を超えないように設計して下さい。

Be sure to follow the absolute maximum rating in the specification. The design should consider the surrounding temperature, the fluctuating input signal, and tolerance of the electronic parts. Exceeding values is possible to cause worse characteristic such as burn and/or broken of the parts on LCD module.

k)推奨動作条件範囲内にて使用して下さい。この範囲を超えた場合、絶対最大定格内であっても動作は保証されません。

Be sure to use LCD module within the recommended operating conditions. Operating module out of the recommended range is not guaranteed even if it is in the absolute maximum rating.

- I) モジュールへ電源投入後の入力信号の印加、切断については、本仕様書の電源・信号電圧のシーケンスに従って 設計して下さい。推奨外の条件で入力した場合、故障や表示劣化となる可能性があります。 Follow the power, signal, and supply voltage sequence which the specification indicates, regarding on-off input signal after power on of LCD module.
- m) セットの使用条件に合わせて、モジュール故障時の電源回路保護装置をご検討下さい。
 According to the using application, power circuit protection is recommended at module failure.
- n)モジュールからの不要輻射が周辺機器に妨害を与えないように製品化設計に際しては充分なシールド対策をお願いします。

Take enough shielding countermeasure not to interfere to peripheral electronic device by unnecessary radiation from the module.

o)本機種は防塵・防水対策は実施しておりません。

This product is not water-proof and dust-proof structure.

p) 故障の原因となりますので、基板カバー、ネジ、テープ類を外す等の分解は決して行なわないで下さい。

Notice: Never take to pieces the module, because it will cause failure.

Please do not peel off the Black tape pasted to the product.

- q) モジュールの取り付け時、LED FPCや配線ケーブルを引っ張ったり引っ掛けたりしないように注意して下さい。 Please do not pull, and do not hang LED_FPC and distibuting cable at the installation of the module.
- r) モジュールのボリュームは出荷時に最適に調整されていますので、調整値を変更しないで下さい。 調整値を変更されますと、本仕様を満足しない場合があります。

The VCOM potentionmeter is factory adjusted for optimum performance before shipment.Do not change the value. Changing the VCOM setting may affect the LCD panel's compliance to specifications.

【ご使用に関する注意事項とお願い】

[Operation Precautions]

- a)液晶パネルには、太陽光等の直射光を当てないよう使用ください。この様な環境下でご使用になる場合は、 遮光フードを設ける等ご配慮ください。液晶パネルに強い光が照射されますとパネル特性の劣化に繋がり、 表示品位が低下する事があります。
 - Avoid prolonged exposure to strong UV light as the panel may be permanently damaged. Apply sufficient protection to block UV radiation in strong UV environments.
- b) モジュールの取り扱い及び機器への組み込みに際して、酸化性または還元性ガス雰囲気中(SO2、H2Sなど)での長期ご使用や保管、また、これらの蒸気を発生する試薬、溶剤、接着剤、樹脂等の材料をLCDモジュールの周囲で使用した場合、腐食、変色、表示品位の劣化、動作異常等の原因となる為、保管・ご使用を避けて下さい。 When handling LCD modules and assembling them into cabinets, please avoid long—term storage in the environment of oxidization or deoxidization gas. The use of materials such as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the modules. Do not use the LCD module under such environment.
- c) セット側に使用している材料や包装材料から出てくるエポキシ樹脂(アミン系硬化剤)、シリコン接着剤 (脱アルコール系及びオキシム系)、トレイ発泡剤(アゾ化合物)等により、偏光板への接触・非接触にかかわらず、偏光板の変質による表示の異常が起きる場合があります。貴社の使用材料との適合性を御確認下さい。 To prevent reduction in optical quality and abnormal display, avoid exposure and contamination of the LCD panel from epoxy resin (mine system curing agent) that comes out from the material and the packaging material used for the set side, the silicon adhesive (dealcoholization system and oxime system), and the tray blowing agents (azo-compound), etc. Please confirm LCD panel compatibility with materials employed in your manufacturing and shipping processes.
- d) クロロプレンゴムは塩素ガスを発生しLCD パネルの接続部の信頼性に影響を与えるため、使用しないで下さい。
 Do not use polychloroprene (CR) with LCD module. It will generate chlorine gas, which will damage the reliability of the connection part on LCD panel.
- e)長時間の固定パターン表示での使用は、残像現象が起こる場合がありますのでご注意下さい。 (残像を避けるためスクリーンセーバーをご利用下さい。)
 - Do not drive the LCD panel for a prolonged time with a fixed pattern or image retention may result. (Please use a screen saver etc., in order to avoid an afterimage.)

- f) 定格保存温度以下では、内部の液晶が凝固しパネル破損の原因になります。また、定格保存温度を超えると液晶が等方性の液体となり、元の状態に戻らない事があります。出来るだけ室温での保存をお願いします。 If stored at the temperatures lower than the rated storage temperature, the LC may freeze and it may cause LCD panel damage. And If stored at the temperatures higher than the rated storage temperature, the LC will lose its characteristics, and it cannot recover. Please keep it at near room temperature.
- g)長時間、高温高湿環境で使用する場合は、結露防止の配慮をお願いいたします。
 Nature of dew consideration prevention is necessary when LCD is used for long time under high-temperature and high-humidity.
- h) 電源OFF時、最後に描いた映像が数秒間残って徐々に消えるといった残像現象が発生する場合がありますが、本症状は液晶パネルの特性によるものでありモジュールの品位に影響を与えるものではありません。
 When LCD is stopped, residual image may be occurd and disappear gradually.
 This is caused by attribute of LCD panel and it does not cause the damage to the LCD module.
- i) 残像が残った場合 (焼き付き) でも故障ではありません。 Even if the image sticking has occurred, it is not a malfunction.

12. 出荷形態 Packing form

12-1. 包装形態図 Packing form figure

図3.包装形態図に示す。

Packing form is shown in Fig 3.

12-2. カートン保管条件 Carton storage conditions

a) カートン積み上げ段数 Piling number of cartons : MAX. 5cartons

b) 最大収納台数 Package quantity in one carton : 10pcs

c) カートンサイズ Carton size(Typ.)

: $467mm(W) \times 343mm(D) \times 383mm(H)$

d) 総質量(10台収納時) Total mass (One carton filled with 10 modules) : 14kg

e) カートン保管環境 Carton store environment:

①温度 Temperature 0~40℃

②相対湿度 Relative humidity 95%RH以下

・保管湿度環境の平均値としては、下記条件を参考に管理願います。

Please refer below as average value of the environmental conditions.

夏場 温度:20~35℃ 湿度:85%RH以下 冬場 温度:5~15℃ 湿度:85%RH以下

Summer time Temperature: 20~35°C Humidity: 85%RH and below Winter time Temperature: 5~15°C Humidity: 85%RH and below

・40°C、95%RHの環境下で保管される時<mark>間が、累計で240時間以内に管</mark>理願います。

Please maintain within 240 hours of accumulated length of storage time, with conditions of 40 degrees Celsius and room humidity of 95%RH.

③直射日光 Direct sunlight

・製品に直射日光が直接当<mark>たらないように、包装状態か</mark>暗室で保管願います。 Please keep the product in a dark room or cover the product to protect from direct sunlight.

4雰囲気 Atmospheric condition

- 腐食性ガスや揮発溶剤の発生の危険性がある場所では保管しないでください。 Please refrain from keeping the product with possible corrosive gas or volatile flux.

⑤結露防止に対するお願い Prevention of dew

・結露を避けるため包装箱は直接床に置かず、必ずパレットか台の上に保管願います。 またパレット下側の通風を良くするために、一定方向に正しく並べてください。

Do not place directly on the floor, and please store the product carton either on a wooden pallet or a stand to avoid dew condensation. In order to obtain moderate ventilation in the pallet's bottom surfaces, arrange correctly in the fixed direction.

・保管倉庫の壁から離して保管願います。

Please place the product cartons away from the storage wall.

• 倉庫内は通風を良くするよう注意頂き、換気装置などの設置をご配慮下さい。
Be careful of the inside of a warehouse to ventilate well and please consider installation of a ventilator.

自然環境下以上の急激な温度変化が無きように管理願います。
 Manage to rapid temperature change under natural environment.

⑥振動 Vibration

常時振動が加わる様な場所では保管しないで下さい。

Please refrain from keeping the product in the place which always has vibration.

⑦保管期間 Storage period

・上記保管条件にて1年以内の保管としてください。

Within above mentioned conditions, maximum storage period should be one year.

13. 製品型名表示 Marking of product name

13-1. ラベル表示内容 Label indication

A) モジュールシリアルラベル Module serial label

モジュール裏面に、SHARPロゴ・製品型名(LQ170E1LW22)・製造番号を表示したラベルを貼付します。

The label that displays SHARP logo Model No. (LQ170E1LW22) Lot No. is stuck on the back of the module.

ロットNo表示方法(数字及びアルファベット)

B) バックライトシリアルラベル Backlight serial label

モジュール裏面に、バックライトの製品型名・製造番号を表示したラベルを貼付します。

The label that displays the model No. and lot No. for the backlight is stuck on the back of the module.

13-2. 包装箱表示 Packing box Label

包装箱に、①型名(LQ170E1LW22)②出荷日付及び社内管理品番③モジュール数量を表示した。 ラベルを貼付します。

また、バーコード表示もこれに準じます。

The label that displays \(\bar{1}\)Model number (LQ170E1LW22) \(\bar{2}\)Lot number and Discernment code

③Quantity of module is stuck on the packing box. Moreover, the display of bar code also applies to this.

RoHS規制対応済の梱包箱に対しては、右図の表記を行います。

※ R.C.(RoHS Compliance)とはRoHS指令に適合していることを意味します。 当モジュールは、1台目よりRoHS指令に対応しております。

A right picture is written to the packing box of module for the RoHS restriction.

** R.C.(RoHS Compliance) means these parts have corresponded with the RoHS directive. This module corresponds from the first sample to RoHS Directive.

生産国については包装箱のSHARPロゴ下に下図の表記を行います。

The figure below is written under the SHARP logo of the packing box about the production country.

OR MADE IN CHINA

14. 信頼性項目 Reliability Test Items

No.	試験項目 Test item	試験内容 Conditions	備考 Remark
1	高温保存 High temperature storage test	周囲温度 80°C の雰囲気中に 240H 放置 Ambient temperature 80°C 240H	【Note1】
2	低温保存 Low temperature storage test	周囲温度 −30°C の雰囲気中に 240H 放置 Ambient temperature −30°C 240H	【Note1】
3	高温高湿動作 High temperature & high humidity operation test	周囲温度 40℃、湿度 95% RHの雰囲気中に 240H 動作 Ambient temperature 40℃、Humidity 95% RH 240H (ただし結露がないこと) (No condensation.)	【Note1】
4	高温動作 High temperature operation test	パネル表面(表示領域)温度 80℃ の雰囲気中で 240H 動作 Panel surface[Active area] 80℃ 240H	[Note1]
5	低温動作 Low temperature operation test	周囲温度 0°C の雰囲気中で 240H 動作 Ambient temperature 0°C 240H	[Note1]
6	振動(非動作) Vibration test (non-operating)	<正弦波 Sin wave> 周波数範囲 Frequency : 10~57Hz/片振幅 Vibration width: 0.076mm : 57~500Hz/加速度 Acceleration: 9.8m/s2 掃引の割合 Sweep time: 11minutes 試験時間 Test period: 3H(X, Y, Z direction 1H)	[Note1] [Note2]
7	衝撃(非動作) Shock test (non-operating)	最高加速度 Max. acceleration :50G パルスPulse width:11ms 正弦半波方向 Half sine wave direction :±X,±Y,±Z 回数 Test period: Once for each direction	[Note1] [Note2]
8	熱衝撃(非動作) Thermal shock test (non- operating)	-30°C[0.5h]~+80°C[0.5h]∕50cycle	【Note1】

【Note1】評価方法 Result Evaluation Criteria

標準状態(*)において出荷検査基準書の検査条件下、実用上支障となる変化がない事とします。

(*)標準状態:温度:15~35℃,湿度:45~75%RH,気圧:86~106kpaの環境(JISZ8703準拠)

Under the display quality test conditions with normal operation state, these shall be no change which may affect practical display function.

(*)normal operation state: Temperature: 15~35°C, Humidity: 45~75%, Atmospheric pressure: 86~106kpa)

【Note2】X, Y, Z方向の定義を示す。

The directions of X, Y, Z are defined as below:

図1. 外形寸法図 Fig.1. Outline Dimensions

図3. 包装形態図

Fig.3. Packing form figure