ESERCITAZIONE STATISTICA

Lezione 4 - Teoria delle Distribuzioni

Teoria delle distribuzioni & Soluzioni in R

- 1. Sia $F_X(x) = (1 e^{-\lambda x})I_{[0,+\infty)}(x)$ con $\lambda > 0$. Calcolare la funzione di densità $f_X(x)$ e verificare che sia una funzione di densità. Sia X v.a che si distribuisce come $f_X(x)$, calcolare $P(5 \le X \le 10)$ nel caso in cui $\lambda = 1/5$. Calcolare il valore atteso $\mathbf{E}[X]$ e la varianza $\mathbf{V}[X]$.
- 2. Una variabile X è tale che $P(X \le 10) = \alpha$, $P(10 < X \le 20) = \beta$ e $P(X > 15) = \gamma$. Calcolare P(X > 10), $P(X \le 20)$, $P(10 < X \le 15)$ e $P(X \le 15|X \le 20)$.
- 3. Sia X una variabile discreta che può assumere i valori x = 1, 2, 3, 5 con probabilità P(X = x) = Kx. Determinare il valore della costante K. Calcolare la distribuzione di $Y = (X-2)^2$, la sua media e la sua varianza.
- 4. Sia X una v.a che esprime la somma del valore di due dadi lanciati. Determinare $\mathbf{E}[X]$ e $\mathbf{V}[X]$. Calcolare il quantile di ordine 0.40.
- 5. La variabile aleatoria X ha densità $f_X(x) = \frac{1}{2}e^{-|x|}I_{(-\infty,\infty)(x)}$. Calcolare media e quartili di X.
- 6. Determinare per quale valore della costante K la funzione $f_X(x) = x Kx^3$ è la densità di una variabile continua X con supporto 0 < x < 1. Quindi calcolare: media, varianza e quantili.
- 7. Sia $f_X(x) = 2x^{-3}I_{[1,+\infty)}(x)$ la densità continua di una variabile aleatoria X. Calcolare media e mediana di Y = ln(X).
- 8. Sia $f_X(x) = (sinx)/2$ la densità continua di una variabile casuale X con supporto $0 < x < \pi$. Verificare che $f_X(x)$ è davvero una densità continua. Calcolare media, moda, mediana e varianza di X. Calcolare $P(-\pi/6 < X < \pi/3)$. (Facoltativo) Usando R simulare $X \sim f_X(x)$, visualizzare l'istogramma e confrontare media, moda e mediana teoriche rispetto a quelle campionarie (cosa succede se $n \to \infty$?, con n il numero di prove indipendenti).
- 9. Sia X una variabile continua con funzione di ripartizione $F_X(x) = (1 x^{-\lambda})I_{[1,+\infty)}(x)$ con parametro $\lambda > 0$. Calcolare la funzione densità continua di X, i quantili $x_{\alpha}(0 < \alpha < 1)$ e la media μ . (Facoltativo), usando R simulare $X \sim f_X(x)$, visualizzare l'istogramma e confrontare la media teorica con quella campionaria (cosa succede se $n \to \infty$?, con n il numero di prove indipendenti).

Esercizi in R

- 1. Generare una variabile aleatoria $X \sim N(2, \sigma^2)$ con $\sigma^2 > 0$ parametro. Confrontare gli istogrammi empirici (distribuzione delle frequenze assolute).
- 2. Generare una variabile aleatoria $X \sim N(2,1)$. Calcolare $\mathbf{E}[\alpha X + (1-\alpha)X]$ e confrontare con la media teorica. Calcolare $\mathbf{V}[\alpha X + (1-\alpha)X]$ e confrontare con la varianza teorica. Calcolare i quantili x_{25}, x_{50}, x_{75} . Calcolare $P(-1 \le X \le 5)$ e confrontarla con il valore teorico.
- 3. Generare una variabile aleatoria $X \sim exp(\lambda)$ con $\lambda > 0$ parametro. Confrontare gli istogrammi empirici (distribuzione delle frequenze assolute).