

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M2 (6678/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024472 All the material in this publication is copyright © Edexcel Ltd 2010

Summer 2010 Mechanics M2 6678 Mark Scheme

Question Number	Scheme	Marks
Q1	3t+5	
	$\frac{dv}{dt} = 3t + 5$ $v = \int (3t + 5) dt$ $v = \frac{3}{2}t^2 + 5t (+c)$ $t = 0 v = 2 \implies c = 2$ $v = \frac{3}{2}t^2 + 5t + 2$	M1* A1 B1
	$t = T \qquad 6 = \frac{3}{2}T^{2} + 5T + 2$ $12 = 3T^{2} + 10T + 4$ $3T^{2} + 10T - 8 = 0$ $(3T - 2)(T + 4) = 0$	DM1*
	$T = \frac{2}{3} (T = -4)$ $\therefore T = \frac{2}{3} (\text{or } 0.67)$	A1 [6]

Question Number	Scheme	Marks	
Q2	0 m/s^{-1}		
	4 m s ⁻¹		
	R F 12 m		
	0.6g		
(a)	K.E gained = $\frac{1}{2} \times 0.6 \times 4^2$ P.E. lost = $0.6 \times g \times (12 \sin 30)$ Change in energy = P.E. lost - K.E. gained		
	$= 0.6 \times g \times 12 \sin 30 - \frac{1}{2} \times 0.6 \times 4^{2}$ $= 30.48$	M1 A1 A1	
	Work done against friction = 30 or 30.5 J	A1	(4)
(b)	$R(\uparrow) R = 0.6g\cos 30$	B1	
	$F = \frac{30.48}{12}$ $F = \mu P$	B1ft	
	$F = \mu R$ $\mu = \frac{30.48}{12 \times 0.6g \cos 30}$ $\mu = 0.4987$	M1	
	$\mu = 0.4987$ $\mu = 0.499$ or 0.50	A1	(4) [8]

						 Crici	
Question Number			Sch	neme		Mark	(S
Q3	10 c	^	10 c	cm C			
(a)		AB	AC	BC	frame		
	mass ratio	10	10	12	32	B1	
	dist. from BC	4	4	0	$\frac{\overline{x}}{\overline{x}}$	B1	
	Moments about I			$0 = 32\overline{x}$ $\overline{x} = \frac{80}{32}$ $\overline{x} = 2\frac{1}{2} (2)$.5)	M1 A1	(5)
(b)	Moments about I		D Mg M	Mg	$\stackrel{\searrow}{A}$		
	Tromonto do out 2		$12\sin\theta = \tan\theta =$	$\bar{x}\cos\theta$	$\cos \theta - 6 \sin \theta$) = 11.8°	M1 A1 A1	(4)
	Alternative metal C of M of loaded		tan	$\theta = \frac{\frac{1}{2}\overline{x}}{6}$	along <i>DA</i> = 11.8°	B1 M1 A1 A1	[9]

		CACCI	- 00
Question Number	Scheme	Marks	
Q4	$a \text{ m s}^{-2}$ $R \qquad \theta$ 750g		
(a)	$T = \frac{15000}{20} = 750$ R(parallel to road) $T = R + 750g \sin \theta$ $R = 750 - 750 \times 9.8 \times \frac{1}{15}$ $R = 260 *$	M1 M1 A1 A1	(4)
(b)	$750g$ $T' = \frac{18000}{20} = 900$ $T' - 260 - 750g \times \sin\theta = 750a$ $a = \frac{900 - 260 - 750 \times 9.8 \times \frac{1}{15}}{750}$ $a = 0.2$	M1 M1 A1	(4) [8]

			_
Question Number	Scheme	Marks	
Q5 (a)	$\mathbf{I} = m\mathbf{v} - m\mathbf{u}$ $= 0.5 \times 20\mathbf{i} - 0.5 (10\mathbf{i} + 24\mathbf{j})$ $= 5\mathbf{i} - 12\mathbf{j}$ $ 5\mathbf{i} - 12\mathbf{j} = 13 \text{ Ns}$	M1 A1 M1 A1	(4)
(b)	5 0 12		
	$\tan \theta = \frac{12}{5}$ $\theta = 67.38$	M1	
	$\theta = 67.38$ $\theta = 67.4^{\circ}$	A1	(2)
(c)	K.E.lost = $\frac{1}{2} \times 0.5 \left(10^2 + 24^2 \right) - \frac{1}{2} \times 0.5 \times 20^2$	M1 A1	
	= 69 J	A1	(3) [9]

		<u> </u>	-
Question Number	Scheme	Marks	
Q6 (a)	$D \qquad \theta$ $2a \qquad T$ $R \qquad 2a \qquad a \qquad a$ mg $M(A) \qquad 3a \times T \cos \theta = 2amg + 4amg$ $\cos \theta = \left(\frac{2}{\sqrt{9+4}} = \right) \frac{2}{\sqrt{13}}$ $\frac{6}{\sqrt{13}}T = 6mg$ $T = mg\sqrt{13} *$	M1 A1 A1 B1	(5)
(b)	$3a \times T \times \cos \theta = 2amg + 4aMg$ $T = \frac{(2mg + 4Mg)}{6} \sqrt{13} \le 2mg\sqrt{13}$ $mg + 2Mg \le 6mg$	M1 A1	
	$M \le \frac{5}{2}m$ cso	A1	(3)
			[8]

Question Number	Scheme		KS
Q7 (a)	Vertical motion: $v^2 = u^2 + 2as$ $(40 \sin \theta)^2 = 2 \times g \times 12$ $(\sin \theta)^2 = \frac{2 \times g \times 12}{40^2}$ $\theta = 22.54 = 22.5^\circ \text{ (accept 23)}$	M1 A1	(3)
(b)	Vert motion $P \to R$: $s = ut + \frac{1}{2}at^2$ $-36 = 40 \sin \theta t - \frac{g}{2}t^2$ $\frac{g}{2}t^2 - 40 \sin \theta t - 36 = 0$ $t = \frac{40 \sin 22.54 \pm \sqrt{(40 \sin 22.54)^2 + 4 \times 4.9 \times 36}}{9.8}$ $t = 4.694$ Horizontal P to R: $s = 40 \cos \theta t$ $= 173 \text{ m} \qquad (\text{ or } 170 \text{ m})$	M1 A1 A1 A1 A1 A1	(6)
(c)	Using Energy: $\frac{1}{2}mv^{2} - \frac{1}{2}m \times 40^{2} = m \times g \times 36$ $v^{2} = 2(9.8 \times 36 + \frac{1}{2} \times 40^{2})$ $v = 48.0$ $v = 48 \text{ m s}^{-1} \text{ (accept } 48.0)$	M1 A1	(3) [12]

		CACC	
Question Number	Scheme	Marks	
Q8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
(0)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
(a) (i)	Con. of Mom: $3mu - mu = 3mv + mw$ 2u = 3v + w (1) N.L.R: $\frac{1}{2}(u+u) = w - v$	M1# A1 M1# A1	
	(1) - (2) $u = w - v$ $u = w - v$ $v = \frac{1}{4}u$	DM1#	
(ii)	In (2) $u = w - \frac{1}{4}u$ $w = \frac{5}{4}u$	A1	(7)
(b)	B to wall: N.L.R: $\frac{5}{4}u \times \frac{2}{5} = V$ $V = \frac{1}{2}u$	M1 A1ft	(2)
(c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	B to wall: $ time = 4a \div \frac{5}{4}u = \frac{16a}{5u} $ Dist. Travelled by $A = \frac{1}{4}u \times \frac{16a}{5u} = \frac{4}{5}a$	B1ft B1ft	
	In t secs, A travels $\frac{1}{4}ut$, B travels $\frac{1}{2}ut$ Collide when speed of approach = $\frac{1}{2}ut + \frac{1}{4}ut$, distance to cover =		
	Collide when speed of approach = $\frac{2}{4}a + \frac{4}{4}a$, distance to cover = $4a - \frac{4}{5}a$	M1\$	
	$\therefore t = \frac{4a - \frac{4}{5}a}{\frac{3}{4}u} = \frac{16a}{5} \times \frac{4}{3u} = \frac{64a}{15u}$	DM1\$ A1	
	Total time $=\frac{16a}{5u} + \frac{64a}{15u} = \frac{112a}{15u} *$	A1	(6) 15
		1	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code UA024472 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH