Banco de Dados I

Modelo Relacional - Manipulação

- Duas categorias de linguagens
 - Formais : álgebra relacional e cálculo relacional
 - Alto Nível (Comerciais) baseadas nas linguagens formais SQL
- Linguagens Formais Características
 - Orientadas a Conjuntos
 - Linguagens de base: linguagens relacionais devem ter no mínimo um poder de expressão equivalente ao de uma linguagem formal
 - Fechamento: resultados de consultas são relações

- Álgebra desenvolvida para descrever operações sobre uma base de dados relacional
- O conjunto de objetos são as relações
- Possui operadores para consulta e alteração de relações
- Linguagem procedural
 - uma expressão na álgebra define uma execução sequencial de operadores
 - a execução de cada operador produz uma relação
- Os operadores da álgebra relacional recebem uma ou mais relações de entrada e geram uma nova relação de saída

- É uma linguagem formal para acesso ao banco de dados;
- Base para a SQL (Structured Query Language);
- Segundo (CONNOLLY, 2010), é uma linguagem procedural de alto nível;
- Usada para construir uma nova relação a partir de relações existentes;
- Uma expressão realiza operações sobre relações (tabelas) e o resultado é uma nova relação (tabela).
 - Isso **permite que as operações sejam aninhadas**, ou seja, o resultado de uma operação pode ser aplicado como entrada para outra e assim sucessivamente, da mesma forma como nas expressões aritméticas.
- As operações são:
 - Seleção, Projeção, Produto Cartesiano, União, Intersecção, Diferença e Junção Natural.

- Porque aprender:
 - Compreender álgebra relacional é base para SQL
 - Não há SGBD que implementa álgebra diretamente como DML (Data Manipulation Language), mas SQL incorpora conceitos de Álgebra Relacional
 - Algoritmos de otimização de consulta são definidos sobre Álgebra Relacional
 - Usados internamente no SGBD

- Operadores sobre conjuntos (uma tabela é um conjunto de linhas):
 - União
 - Interseção
 - Diferença
 - Produto Cartesiano
- Operadores específicos da Álgebra Relacional:
 - Seleção
 - Projeção
 - Junção
 - Divisão

Operações

Esquema Relacional: Exemplo

Seleção (σ)

- Retorna tuplas que satisfazem uma condição
- Age como um filtro que mantém somente as tuplas que satisfazem a condição
- O resultado:
 - É uma relação que contém as tuplas que satisfazem a condição
 - Possui os mesmos atributos da relação de entrada

Seleção (σ)

- - Sigma(σ): é o símbolo que representa a seleção
 - <condição> é uma expressão booleana que envolve literais e valores de atributos da relação
 - CLAUSULAS:

<nome do atributo> <operador de comparação> <valor constante> OU <nome do atributo> <operador de comparação> <nome do atributo>

- Nome do atributo: é um atributo de R;
- Operador de comparação: =, <, <=, >, >=, <>
- Valor constante: é um valor do domínio do atributo
- Podem ser ligadas pelos operadores OR (∨), AND (∧) e NOT (¬)
- <R> é o nome de uma relação (tabela) ou uma expressão da álgebra relacional de onde as tuplas serão buscadas

Seleção (σ) - Exemplo

• Selecionar os funcionários cuja categoria salarial tenha valor igual a 1.

Funcionario

id_func	nome_func	id_dep	id_categ
200	Pedro	1	1
201	Paulo	1	2
202	Maria	1	1
203	Ana	2	2

Resultado

id_func	nome_func	id_dep	id_categ
200	Pedro	1	1
202	Maria	1	1

Seleção (σ) - Exemplo

 Selecionar os funcionários cuja categoria salarial seja igual a 2 e que sejam do Departamento de Vendas

Funcionario

id_func	nome_func	id_dep	id_categ
200	Pedro	1	1
201	Paulo	1	2
202	Maria	1	1
203	Ana	2	2

Resultado

id_func	nome_func	id_dep	id_categ
203	Ana	2	2

Projeção (π)

- Recupera determinados atributos de uma relação (tabela), produzindo subconjunto vertical da relação.
- Retorna um ou mais atributos de interesse
- O resultado é uma relação que contém apenas as colunas selecionadas.

Projeção (π)

• Sintaxe:

 π < lista de atributos > (< R >)

onde:

- π (Pi) é o símbolo do operador de projeção.
- < lista de atributos > é uma lista que contém nomes de colunas de uma ou mais relações.
- <R> é o nome da relação ou uma expressão da álgebra relacional de onde a lista de atributos será buscada

Projeção (π) – Exemplo

• Selecionar o código e o nome de todos os functionários

$$\pi$$
 id_func, nome (Funcionario)

Funcionario

id_func	nome_func	id_dep	id_categ
200	Pedro	1	1
201	Paulo	1	2
202	Maria	1	1
203	Ana	2	2

Resultado

id_func	nome_func
200	Pedro
201	Paulo
202	Maria
203	Ana

Projeção e Seleção

- Operadores diferentes podem ser aninhados
 - Exemplo: Selecionar o código e nome dos funcionários do departamento contábil

$$\pi_{\text{id_func, nome_func}}(\sigma_{\text{id_dep = 1}}(\text{Funcionario}))$$

Funcionario

id_func	nome_func	id_dep	id_categ
200	Pedro	1	1
201	Paulo	1	2
202	Maria	1	1
203	Ana	2	2

Resultado

id_func	nome_func
200	Pedro
201	Paulo
202	Maria

Operações

Operações - Teoria dos Conjuntos

- A álgebra relacional utiliza 4 operadores da teoria dos conjuntos:
 - União, Intersecção, Diferença e Produto Cartesiano
- Todos os operadores utilizam ao menos DUAS relações
- As relações devem ser compatíveis:
 - possuir o mesmo número de atributos
 - o domínio da i-ésima coluna de uma relação deve ser idêntico ao domínio da i-ésima coluna da outra relação
- Quando os nomes dos atributos forem diferentes, adota-se a convenção de usar os nomes dos atributos da primeira relação

Intersecção (∩)

- É um **operador binário** (envolve duas relações como operandos de entrada) e **cria uma relação com apenas as tuplas que estão presentes nas duas relações envolvidas**.
- Tuplas duplicadas são removidas do resultado.
- As duas relações devem ser compatíveis, ou seja, devem ter o mesmo número de atributos, com aqueles de mesmo domínio dispostos nas mesmas posições.
- Notação: <relação 1> ∩ <relação 2>
 - Tanto relação1 quanto relação2 podem ser tabelas originais do banco de dados ou expressões da Álgebra Relacional.

Intersecção (∩)

- Retorna uma relação com as tuplas comuns a R e S
- Notação: R ∩ S

R			h L	S	
х	\boldsymbol{y}	z	х	y	z
1	1	1	1	1	1
1	2	2	1	2	1
2	2	3	3	1	1
3	1	1			

Intersecção (△) - Exemplo

 Recuperar a lista de descrições de projetos que são também descrições de departamentos.

$$\pi_{\mathsf{Descrição}}$$
 (Projeto) $\bigcap \pi_{\mathsf{Descrição}}$ (Departamento)

A avaliação desta expressão ocorre da seguinte forma: primeiro é executada a projeção sobre Projeto: π Descrição (Projeto); em seguida, a Projeção sobre Departamento: π Descrição (Departamento); e, por fim, é realizada a Intersecção.

- Para realizar esta consulta pode-se usar o operador de Intersecção, entretanto, antes de aplicar a operação, é preciso tornar os dois operandos compatíveis.
- Por isso, as projeções são realizadas em cada tabela, Projeto e Departamento.
- A seguir um exemplo passo a passo.

Intersecção (∩) – Exemplo passo a passo

Resultado de π _{Descrição} (Projeto)	Descrição Projeto de BD Implantação de ERP Contabilidade empresarial
• Resultado de π _{Descrição} (Departamento)	Descrição Contabilidade empresarial Marketing e vendas Capital Humano e treinamento
 Resultado de π _{Descrição} (Projeto) ∩ π _{Descrição} (Departamento) 	Descrição Contabilidade empresarial

União (∪)

- É um **operador binário** (envolve duas relações como operandos de entrada) e **cria uma relação que contém a união de todas as tuplas das duas relações** envolvidas;
- Tuplas duplicadas são removidas do resultado;
- As duas relações devem ser compatíveis, ou seja, devem ter o mesmo número de atributos, com aqueles de mesmo domínio dispostos nas mesmas posições;
- Notação: <relação 1> U <relação 2>
 - Tanto relação1 quanto relação2 podem ser tabelas originais do banco de dados ou expressões da Álgebra Relacional.

União (∪)

- Requer que as duas relações fornecidas como argumento tenham o mesmo esquema;
- Resulta em uma nova relação, com o mesmo esquema, cujo conjunto de linhas é a união dos conjuntos de linhas das relações dadas como argumento.
- Retorna a união das tuplas de duas relações R e S
- Eliminação automática de duplicatas
- Notação: R ∪ S

R				3	
\boldsymbol{x}	y	z	х	y	z
1	1	1	1	1	1
1	2	2	1	2	1
2	2	3	1	2	3
3	1	1			

União (∪)

- Exemplo:
 - Buscar o nome e o CPF dos médicos e dos pacientes cadastrados no hospital

 π nome, CPF (Medico) \cup π nome, CPF (Paciente)

Exemplos:

 Recuperar a lista de descrições de projetos e de departamentos empregados pela empresa.

 $\pi_{\mathsf{Descrição}}$ (Projeto) U $\pi_{\mathsf{Descrição}}$ (Departamento)

- Para realizar esta consulta pode-se usar o operador de União, entretanto, antes de aplicar a operação, é preciso tornar os dois operandos compatíveis.
- Por isso, as projeções são realizadas em cada tabela,
 Projeto e Departamento.
- A seguir um exemplo passo a passo.

•	Resultado de π _{Descrição} (Projeto)	Descrição Projeto de BD Implantação de ERP
•	Resultado de π _{Descrição} (Departamento)	Descrição Contabilidade empresarial Marketing e vendas Capital Humano e treinamento
•	Resultado de π _{Descrição} (Projeto) U π _{Descrição} (Departamento)	Descrição Projeto de BD Implantação de ERP Contabilidade empresarial Marketing e vendas Capital Humano e treinamento

- O operador de Diferença é um operador binário (envolve duas relações como operandos de entrada) e cria uma relação com as tuplas que fazem parte da relação1, mas não fazem parte da relação2.
- Tuplas duplicadas são removidas do resultado.
- As duas relações devem ser compatíveis, ou seja, devem ter o mesmo número de atributos, com aqueles de mesmo domínio dispostos nas mesmas posições.
- Notação: <relação 1> <relação 2>
 - Tanto relação1 quanto relação2 podem ser tabelas originais do banco de dados ou expressões da Álgebra Relacional.

- Requer que as duas relações fornecidas como argumento tenham o mesmo esquema.
- Resulta em uma nova relação, com o mesmo esquema, cujo conjunto de linhas é o conjunto de linhas da primeira relação menos as linhas existentes na segunda.

- Retorna as tuplas presentes em R e ausentes em S
- Notação:

$$R - S$$

R				S		
х	y	Z		х	y	z
1	1	1		1	1	1
1	2	2		1	2	1
2	2	3		3	1	1
3	1	1				

- Exemplo:
 - Buscar o número dos ambulatórios onde nenhum médico presta atendimento

 π numeroA (Ambulatorio) – π numeroA (Medico)

Diferença (-) - Exemplo:

 Recuperar a lista de descrições de projetos que não são descrições de departamentos

 $\pi_{\text{Descrição}}$ (Projeto) – $\pi_{\text{Descrição}}$ (Departamento)

```
A avaliação desta expressão ocorre da seguinte forma: primeiro é executada a projeção sobre Projeto: π Descrição (Projeto); em seguida, a Projeção sobre Departamento: π Descrição (Departamento); e, por fim, é realizada a Diferença.
```

- Para realizar esta consulta pode-se usar o operador de Intersecção, entretanto, antes de aplicar a operação, é preciso tornar os dois operandos compatíveis.
- Por isso, as projeções são realizadas em cada tabela, Projeto e Departamento.
- A seguir um exemplo passo a passo.

Diferença (-) - Exemplo:

• Resultado de π _{Descrição} (Projeto)	Descrição Projeto de BD Implantação de ERP Contabilidade empresarial
• Resultado de π _{Descrição} (Departamento)	Descrição Contabilidade empresarial Marketing e vendas Capital Humano e treinamento
• Resultado de π _{Descrição} (Projeto) — π _{Descrição} (Departamento)	Descrição Projeto de BD Implantação de ERP

Produto Cartesiano (x)

- Multiplica duas relações para definir uma nova que consiste de todas as combinações das tuplas das duas relações.
- Retorna todas as combinações de tuplas de duas relações R e S
- O resultado é uma relação cujas tuplas são a combinação das tuplas das relações R e S, tomando-se uma tupla de R e concatenando-a com uma tupla de S
- Notação: <Relação 1> X <Relação 2>, ou seja,
 R x S

Produto Cartesiano (x)

Total de atributos do produto cartesiano =

num. atributos de R +

num. atributos de S

Número de tuplas do produto cartesiano =

num. tuplas de R x

num. tuplas de S

Produto Cartesiano (x)

• Exemplo:

R			S	•
\boldsymbol{x}	y	Z	147	\boldsymbol{y}
1	1	1	1	1
2	2	2	2	2
3	3	3	,	

х	$R_{1}y$	z	w	R_2y
1	1	1	1	1
1	1	1	2	2
2	2	2	1	1
2	2	2	2	2
3	3	3	1	1
3	3	3	2	2

Produto Cartesiano – Exemplo 1

 Exemplo 1: Buscar o nome dos médicos que tem consulta marcada e as datas das suas consultas

```
\pi medico.nome, consulta.data (
\sigma medico.CRM = consulta.CRM (Medico x Consulta) )
```

Produto Cartesiano – Exemplo 2

 Exemplo 2: Buscar, para as consultas marcadas no período da manhã (7hs-12hs), o nome do médico, o nome do paciente e a data da consulta

```
π medico.nome, paciente.nome, consulta.data
(σ consulta.hora>=7 AND consulta.hora<=12 AND medico.CRM=consulta.CRM AND consulta.RG=paciente.RG</p>
(Medico x Consulta x Paciente))
```

Produto Cartesiano – Exemplo 3:

• Recuperar os dados dos funcionários e o valor dos seus salários

σ Funcionario.id_categ=Categoria.id_categ (Funcionario X Categoria)

Para realizar esta consulta é preciso usar a operação de produto cartesiano para colocar os dados das relações Funcionário e Categoria na mesma tabela, já que os dados necessários para resolver o problema estão nessas duas tabelas.

• A Figura abaixo apresenta, inicialmente, o resultado do produto cartesiano.

Funcionario

Categoria

id_func	nome_func	id_dep	id_categ	}
200	Pedro	1	1	
201	Paulo	1	2	
202	Maria	1	1	
203	Ana	2	2	

id_categ	salario
1	3.000
2	3.500

Resultado

Funcionario. id_func	Funcionario. nome_func	Funcionario. id_dep	Funcionario. id_categ	Categoria. id_categ	Categoria. salario
200	Pedro	1	1	1	3000
200	Pedro	1	1	2	3500
201	Paulo	1	2	1	3000
201	Paulo	1	2	2	3500
202	Maria	1	1	1	3000
202	Maria	1	1	2	3500
203	Ana	2	2	1	3000
203	Ana	2	2	2	3500

Dados das duas tabelas estão agrupados na mesma tabela, mas com todas combinações possíveis, inclusive aquelas que não tem resultado significativo; Tabela resultante tem atributos nomeados com prefixo, que é o nome da tabela de origem;

Atributos **Funcionario.id_categ** e **Categoria.id_categ** estão em outra cor porque estabelecem a relação entre as duas tabelas originais, pois são a **chave estrangeira** de Funcionário e a **chave primária** de Categoria, respectivamente;

Veja que as únicas tuplas que tem resultado significativo são aquelas onde o os valores dos atributos que estabelecem a relação entre as duas tabelas são os mesmos, ou seja, as tuplas onde o valor de **Funcionário.id_categ** é igual a **Categoria.id_categ**. Essas tuplas estão também pintadas de outra cor.

Produto Cartesiano – Exemplo 3:

A figura abaixo apresenta a tabela final, resultado de:

σ Funcionário.Categoria = Categoria.Categ (Funcionário X Categoria)

Resultado

Funcionario. id_func	Funcionario. nome_func	Funcionario. id_dep	Funcionario. id_categ	Categoria. id_categ	Categoria. salario
200	Pedro	1	1	1	3000
201	Paulo	1	2	2	3500
202	Maria	1	1	1	3000
203	Ana	2	2	2	3500

Junção Natural

- É um **operador binário** (envolve duas relações como operandos de entrada) e **cria uma relação com as tuplas que têm os mesmos valores nos atributos de ligação entre as duas relações**.
- Todos os atributos das duas relações envolvidas na junção são levados para a relação resultante, entretanto, apenas uma cópia de cada atributo de ligação aparece no resultado.
- Notação: <relação1> |X| <relação2>
 - Tanto relação1 quanto relação2 podem ser tabelas originais do banco de dados ou expressões da Álgebra Relacional.

Junção Natural – Exemplo:

Recuperar os dados dos funcionários e o valor dos seus salários.

Funcionario | X | Categoria

- Este mesmo problema pode ser resolvido com **Produto Cartesiano** e **Seleção**.
- Entretanto, é possível usar a operação de Junção Natural, que tem a mesma função do Produto Cartesiano mais a Seleção, já que recupera os dados que tem relação entre as duas tabelas, ou seja, busca as tuplas que têm os mesmos valores nos atributos de ligação.

Junção Natural – Exemplo:

O exemplo a seguir apresenta o resultado da Junção Natural entre Funcionario e Categoria

Note que o conjunto de atributos do resultado não contém os atributos repetidos (atributos de ligação) e eles também não são nomeados tendo como prefixo o nome da tabela de origem.

Funcionario

id_func	nome_func	id_dep	id_categ
200	Pedro	1	1
201	Paulo	1	2
202	Maria	1	1
203	Ana	2	2

Categoria

id_categ	salario
1	3.000
2	3.500

Resultado

id_func	nome_func	id_dep	id_categ	salario
200	Pedro	1	1	3000
201	Paulo	1	2	3500
202	Maria	1	1	3000
203	Ana	2	2	3500

Referências

- Bogorny, Vania. Instituto de Informática e Estatística. Universidade Federal de Santa Catarina. Modelo Entidade-Relacionamento, Notas de Aula.
- Muller, Gilberto. Universidade do Vale do Rio dos Sinos. Modelo ER, 2009.
 Notas de Aula.
- SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. **Sistemas de Banco de Dados**. 3.a Ed. São Paulo: Pearson, 2010.
- HEUSER, Carlos Alberto. **Projeto de Banco de Dados**. 6. ed. Bookman Companhia Ed, 2009.
- ELMASRI, R.; NAVATHE S. B. **Sistemas de Banco de Dados**. 4 ed. Editora Addison-Wesley. 2005.