Calcul Littéral

Seconde 9

1 Introduction: Lire un cours de maths

Définition 1. Une définition permet l'introduction d'un concept nouveau en mathématiques. Il utilise des définitions déjà connues pour construire quelque chose de nouveau.

Les définitions décrivent ce que sont les objets.

Proposition 1. Une proposition est un résultat à propos des objets introduits par le cours. La proposition est vraie parce qu'elle a été démontrée.

Les propositions décrivent ce que font les objets.

Exemple. Le nombre π est défini comme la rapport entre le périmètre et le diamètre de n'importe quel cercle. C'est une définition.

L'aire d'un disque de rayon r est donné par πr^2 . C'est une **proposition** : c'est un résultat que l'on démontre grâce à la définition de π .

Remarque. Pour bien apprendre un cours de maths, il faut identifier les différentes parties du cours :

- Les définitions sont à connaître par cœur.
- Les propositions sont à comprendre. Pour cela, il faut savoir refaire les exemples données par le cours.
- Les **théorèmes** sont des proposition importantes, elle nécessitent d'être connues.
- Les **remarques** permettent de mieux comprendre les concepts du cours, il ne faut pas les négliger lors de la lecture du cours.
- Les Exemples illustrent directement les notions introduites. Il faut savoir les refaire.

Calcul Littéral Seconde 9

2 Développement et factorisation

Définition 2.• Une expression littérale est sous forme développée si elle correspond à une somme de termes.

• Une expression littérale est sous forme factorisée si elle correspond à un produit de facteurs.

Exemple. L'aire du rectangle suivant

peut être calculée de deux façons.

• En multipliant sa largeur (a) et sa longueur (b+c):

$$a(b+c)$$

• En ajoutant les aires des deux rectangles :

$$ab + bc$$

2.1 Développement

Pour développer un produit, on utilise la distributivité de la multiplication sur l'addition.

$$\widehat{a(b+c)} = ab + ac$$

$$(a+b)(c+d) = ac + ad + bc + bd$$

Pour développer un produit de sommes, on « distribue » chaque terme de la somme de gauche vers chaque terme de la somme de droite.

Exemple. Développer chacune des expressions suivantes. On fera apparaître les traits de construction de la distributivité.

- a) $4x(2y+5z) = \dots$
- b) $3x(-10x+2) = \dots$
- c) $-(-4a+2b) = \dots$
- d) $(17x-5)(12x+7) = \dots$
- e) (l+L)(l-L) = ...

Calcul Littéral Seconde 9

2.2 Factorisation

Pour factoriser une somme, on peut chercher dans chaque terme de la somme un facteur commun.

$$\underline{a}b + \underline{a}c = \underline{a}(b+c)$$

Exemple. Factoriser les expressions suivantes :

- a) 5a + 10b =
- b) $-8y^2 + y = \dots$
- c) $21x 28x^2 =$
- d) $35p 42q = \dots$
- e) x(3x-2)+10(3x-2)=

3 Identités remarquables

Proposition 2. *Soient a et b deux nombre réels quelconques. Alors,*

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

Exemple. Développer les expression suivantes :

- a) $(c-1)(c+1) = \dots$
- b) $(x+4)^2 =$
- c) $(x-4)^2 = \dots$

Exemple. Factoriser l'expression suivante.

$$y^2 - 64 = \dots$$

Calcul Littéral Seconde 9

4 Expressions Fractionnaires

Définition 3 (Expression fractionnaire).

Expression Fractionnaire =
$$\frac{Num\acute{e}rateur}{D\acute{e}nominateur} \neq 0$$

Exemple. Les expressions $\frac{3}{4}$; $\frac{x}{3-x}$ et $\frac{a+b}{c-d}$ sont des expressions fractionnaires.

L'expression $\frac{x^2-1}{0}$ ne l'est pas à cause du 0.

4.1 Simplification de fractions

Exemple. Simplifier les fractions suivantes :

a)
$$\frac{35}{42} =$$

b)
$$\frac{10a^2(1+b)}{5a(2+b)} = \dots$$

c)
$$\frac{a^2 + 2a + 1}{a^2 + 1} = \dots$$

d)
$$\frac{49-x^2}{x^2-14x+49} = \dots$$

4.2 Dénominateurs communs

Proposition 3 (Formule universelle). Soient $\frac{a}{b}$ et $\frac{c}{d}$ deux expressions fractionnaires. Alors les expressions fractionnaires

$$\frac{ad}{bd}$$
 et $\frac{bc}{bd}$

ont le même dénominateur.

Remarque. Cette formule est à utiliser **en dernier recours**, si vous ne voyez pas comment mettre deux expressions fractionnaires au même dénominateur.

Exemple. Simplifier les expressions suivantes :

a)
$$\frac{2}{3} + \frac{13}{6} = \dots$$

b)
$$\frac{9}{15} - \frac{35}{25} = \dots$$

c)
$$\frac{3}{p(q-1)} + \frac{5}{(q-1)} = \dots$$

d)
$$\frac{y+1}{y-2} - \frac{y-3}{y^2 - 4y + 4} = \dots$$

4.3 Égalité d'expressions fractionnaires

Remarque. Pour comparer deux expressions fractionnaires $\frac{a}{b}$ et $\frac{c}{d}$:

- 1. On les mets au même dénominateur, et on compare les numérateurs;
- 2. On vérifie que ad = bc.