



## NLP to LLMs

Master ValDom

#### **NLP to LLMs**



#### fanny.jourdan@irt-saintexupery.com



**Fanny JOURDAN** 

CM1: NLP tasks and preprocessing

CM2: Text

vectorization

mouhcine.mendil@irt-saintexupery.com



**Mouhcine MENDIL** 

CM3: Classical ML techniques

TP 1 + TP2

#### joseba.dalmau@irt-saintexupery.com



Joseba DALMAU

CM4: Classical DL

techniques

CM5: Transformers

CM6: Feature space

TP3 + TP4 + TP5



#### **NLP to LLMs**



# Written Exam: March 3, 14h00-15h45 MCQs + course questions + exercises

- The students will be allowed a single A4 two-sided handwritten sheet of paper with the notes they deem useful for the exam.
- The instructors will provide the students with sample exercises so that they can train themselves for the exam.

#### Ressources



#### **GitHub**

https://github.com/jdalch/Valdom-NLP2LLM





# NLP Task and Preprocessing

Master ValDom - 07/01/2025

## Summary



- 1. NLP Tasks examples
  - 1. Text classification
  - Information extraction
  - 3. Text generation
- 2. Preprocessing for Traditional Methods
  - 1. Cleaning
  - 2. Tokenization
  - 3. Text Vectorization
- 3. Preprocessing for Modern Models
  - 1. Cleaning
  - 2. Tokenization, Padding, and Truncation
  - 3. Embeddings
- 4. Questions





## **NLP Tasks**

**Text Classification** 

#### **Text Classification**



**Goal:** Assign a single label to an entire text.

#### **Process:**

- The input text is transformed into numerical data (e.g., embeddings or tokenized vectors).
- The model processes the input as a whole to predict the most probable label (e.g., "positive," "negative," or "neutral").
- The final prediction corresponds to the label with the highest probability.

#### **Key Insight:**

The model considers the entire input text at once to make its decision.



## **Sentiment Analysis**



**Goal :** Determine whether a text expresses a positive, negative, or neutral opinion.

- *Text*: "I love this product!"
- Output: "Positive feeling"



## **Language Detection**



**Goal**: Identify the language of a text.

- Text. "Hello, how are you?"
- Output: "Language: French"



## **Topic Classification**



**Goal**: Identify a text's topic or theme.

- Text: "PSG won the match last night."
- Output: "Theme: Sport"



## **Grammaticality Classification**



Goal: Identify whether a sentence is grammatically correct.

- Text: "The cat eats mouse one."
- Output: "Incorrect sentence"



## **Text Classification (general)**



Goal: Assign a general category to a text (binary, multi-class or multi-label).

- Binary classification: Spam or non-spam in e-mails.
- Multi-class classification: Article categories (sport, politics, science).
- Multi-tag classification: Assign multiple tags (e.g. "politics" and "environment").





## **NLP Tasks**

**Information Extraction** 

#### **Information Extraction**



**Goal:** Assign a label to each token in a sequence.

#### **Process:**

- The input text is split into smaller units (tokens).
- For each token, the model predicts a label (e.g., "B-PER" for the beginning of a person's name, or "O" for outside any entity).
- Labels are combined to extract structured information (e.g., "John Doe" → person name).

#### **Key Insight:**

The model processes each token individually, but uses context from the entire sentence for predictions.



## **Named Entity Recognition - NER**



Goal: Identify specific entities in a text and classify them (People, Places, Organizations, etc.).

- Text. "Marie left for Paris yesterday."
- Output: {"Marie" : Person, "Paris" : Place, "yesterday" : Date}



## Part-of-Speech (POS) Tagging



Goal: Assign a grammatical class to each word (verb, noun, adjective, etc.).

- Text: "The cat eats a mouse."
- Output: {"The": Determiner, "cat": Noun, "eats": Verb, "mouse": Noun}



### **Relation Extraction**



**Goal**: Identify and classify relationships between entities in a text.

- Text. "Marie works at Google."
- Output. {"Marie", "employee", "Google"}





## **NLP Tasks**

**Text Generation** 

#### **Text Generation**



Goal: Generate coherent text one token at a time.

#### **Process:**

- The model predicts the next token based on the input and previously generated tokens.
- At each step, it selects the most probable token from the model's vocabulary.
- This process is repeated recursively until the text is complete (or a stop condition is reached).

#### **Key Insight:**

Text generation is a sequential process where each token depends on what has already been generated.



### **Machine Translation**



**Goal**: Translate a text from a source language to a target language.

- Text: "Hello, how are you?"
- Output: "Bonjour, comment ça va?"



#### **Text Summarization**



Goal: Generate a concise, informative summary from a longer text.

- Text: "Artificial intelligence is revolutionizing many sectors, especially medicine, where it
  is enabling better diagnostics."
- Output: "Al improves medical diagnostics."



## **Question Answering - QA**



**Goal:** Generate a text response based on a question and context.

- Context: "The Eiffel Tower was built in 1889."
- Question: "When was the Eiffel Tower built?"
- Output: "In 1889."



#### **Free Text Generation**



Goal: Generate fluid text from minimal input or a prompt.

- Text: "Tell a story about a magical cat."
- Output. "Once upon a time, there was a cat who lived in an enchanted forest and could talk to animals."



## **Image-to-Text**



**Goal**: Generate a text description from an image.

#### **Example:**

Input.



• Output: "A baby dog sleeping on a beige blanket."



### **Data-to-Text Generation**



Goal: Convert structured data into natural text.

#### **Example:**

• Input.

| Name | Age | Occupation |
|------|-----|------------|
| John | 30  | Doctor     |

• Output: "John is 30 and a doctor."



## **Data-to-Text Generation**



Goal: Convert structured data into natural text.

### **Example:**

• Input.



Output: "Hello everyone!"





# Preprocessing for Traditional Methods

## **Introduction to Traditional Approaches**



#### Simpler and rule-based methods:

Focused on breaking text into smaller components (e.g., words or characters). Relied heavily on word frequency and patterns in the text.

#### **Key Characteristics:**

Count-based techniques to measure how often words appear in text. Statistical methods to identify relationships between words and their contexts.

#### **Advantages:**

- **Simplicity**: Easy to implement and interpret. + Works well for small datasets or straightforward tasks.
- Computational Efficiency: Requires less processing power compared to neural models.
- Domain-Specific Customization: Rules can be tailored to specific applications (e.g., legal or medical texts).
- Explainability: Outputs are often easier to understand and debug.



## **Text Cleaning**



**Objective:** Enhance text data quality before vectorization.

#### Steps:

- Removing unnecessary characters: punctuation, emojis, special characters.
- Normalization:
  - Lowercasing text.
  - Removing accents.
- Stopword removal: Removing non-informative words (e.g., "the," "and").



## **Lemmatization, and Stemming**



**Stemming:** Reduces a word to its root (e.g., "running" → "run").

**Lemmatization:** Converts a word to its base form, considering context (e.g., "was" → "be").

#### **Comparison:**

- Stemming: faster but less precise.
- Lemmatization: more accurate.



#### **Tokenization**



#### **Whitespace Tokenization:**

Splits text at spaces.

Example: "I can't play outside because it's raining."→ ["I", "can't", "play", "outside", "because", "it's", "raining."]

Limitations: Treats punctuation as part of tokens, can't handle contractions like "don't".



#### **Tokenization**



#### **Word-based Tokenization:**

Divides text into words while applying additional rules to handle punctuation, contractions, etc.

Example: "I can't play outside because it's raining." → ["I", "ca", "n't", "play", "outside", "because", "it", "'s", "raining", "."]

Limitations: Slower due to additional rules.



#### **Tokenization**



#### **Character-based Tokenization:**

Treats each character as a token.

Example: "can't" → ["c", "a", "n", " ' ", "t"]

Use cases: Rarely used alone; mostly for simple or low-resource setups.



#### **Text Vectorization**



#### What Is Text Vectorization?

The process of converting **text into numerical representations** so it can be used by machine learning models.

**Key Idea**: Words or documents are transformed into **vectors** (arrays of numbers) that encode their features.

#### **Example:**

Sentence Tokenized: ["I", "love", "NLP", "and", "I", "love", "AI"]

#### Bag of Words:

- Vocabulary: ["I", "love", "like", "NLP", "and", "AI", "ML"]
- Vector: [1,1,0,1,1,1,0]

#### Frequency-Based Representations:

- Vocabulary: ["I", "love", "like", "NLP", "and", "AI", "ML"]
- Vector: [2,2,0,1,1,1,0]



## **Text Vectorization - Challenges**



#### No Context:

Cannot capture the relationship between words in a sentence (e.g., "good" vs. "not good").

#### **High Dimensionality**:

Large vocabularies lead to very high-dimensional vectors.

#### **Sparse Representations:**

Most vector entries are zero, leading to inefficiency in computation





# Preprocessing for Modern Models

# **Introduction to Modern Approaches**



**Embedding-based techniques:** Words or phrases are represented as numerical vectors, capturing their meaning in context.

**Deep Learning:** Models learn patterns and relationships in text using neural networks. + Incorporates attention mechanisms to focus on important parts of the input text.

#### **Key Characteristics:**

- Words are no longer isolated; meaning is determined by the context in which they appear.
- Use large datasets and powerful algorithms to learn patterns without manual intervention.

#### **Advantages**

- Contextual Understanding: Captures the meaning of words based on their usage in sentences. Example: "bank" in "I sat by the bank" vs. "I visited the bank."
- Scalability: Handles large datasets and multilingual text efficiently.
- **End-to-End Learning**: Reduces manual feature engineering, as models learn features automatically.



# **Cleaning**



#### **Differences from traditional approaches:**

- Lighter cleaning to preserve context.
- No stopword removal or stemming.

#### Why minimal cleaning is sufficient:

Models like BERT handle tokenization and normalization internally.

#### **Recommended steps:**

- Remove unnecessary characters (punctuation, emojis) depending on the task.
- Simple normalization (lowercasing, accent removal).



#### **Tokenization**



#### **Subword Tokenization:**

Words are divided into smaller units called subwords.

#### Example:

- Rare word: "unbelievable" → ["un", "believ", "able"]
- Frequent word: "cat" → ["cat"] (remains intact).

A fixed vocabulary (e.g., 30k-50k tokens) is created before model training. Includes frequent subwords, characters, and special symbols (e.g., [CLS], [SEP]).

Note: The token [CLS] is placed at the beginning of each sentence. It is used to perform classification tasks.





#### 1) Byte Pair Encoding (BPE)

Used in models like GPT and GPT-2.

#### How it works:

1. Start with each character as a token.

Example: "hello"  $\rightarrow$  ["h", "e", "l", "l", "o"].

2. Merge the most frequent pairs of characters to form new tokens.

Example:

["h", "e", "l", "o"]  $\rightarrow$  "h" + "e" : 10 occ ; "e" + "l": 4 occ ; "l" + "l" : 18 occ ; "l" + "o" ; 6 occ. So, we create: ["h", "e", "ll", "o"]  $\rightarrow$  "h" + "e" : 10 occ ; "e" + "ll": 2 occ ; "ll" + "o" ; 3 occ. So we create: ["he", "ll", "o"]. Etc...

3. Continue until reaching a fixed vocabulary size (e.g., 50k tokens).

#### Advantages:

Efficiently handles rare words.

Reduces vocabulary size.





#### 2) WordPiece

Used in models like BERT.

#### How it works:

1. Start with each character as a token.

Example: "hello"  $\rightarrow$  ["h", "e", "I", "o"].

2. Breaks words into subwords based on statistical likelihoods (rather than frequency like BPE).

Example:

$$P("h","e","llo") = 0.15$$
  
 $P("he","llo") = 0.35$ 

P("hel","lo") = 0.21 etc...

"hello"  $\rightarrow$  ["he", "##llo"]. (## indicates that the token continues a previous word.)

#### Advantages:

Avoids excessive fragmentation.

Well-suited for complex languages (e.g., Korean, Turkish).





### 3) SentencePiece (with Unigram)

Used in models like T5 and GPT-3.

#### How it works:

- Processes raw text without requiring initial segmentation (no splitting by spaces).
   Example: "I can't play." → "I\_can't\_play"
- 1. Tokenize a sentence by minimizing the number of tokens while maximizing the overall probability Example: "l\_can't\_play" → ["\_l", "\_can", "'t", "\_play"] (\_ denotes the start of a new word.)

Advantages:
Language-agnostic.
Flexible for different scripts or languages.





| Aspect        | BPE                                    | WordPiece                             | SentencePiece                                              |
|---------------|----------------------------------------|---------------------------------------|------------------------------------------------------------|
| Principe      | Merges the most frequent subword pairs | Merges the most likely subword pairs  | Probabilistic model based on a global vocabulary (Unigram) |
| Spaces        | Prior segmentation required            | Prior segmentation required           | Treats spaces as characters                                |
| Indicators    | No                                     | Uses indicators (e.g., ##)            | Prefix _ for new words                                     |
| Advantages    | Simple and fast                        | Better at capturing context           | Flexible, suitable for any language                        |
| Disadvantages | Ignores global context                 | Less suitable for unsegmented corpora | More complex to train                                      |
| Current use   | GPT-2, RoBERTa                         | BERT, DistilBERT                      | T5, GPT-3                                                  |



# **Padding, and Truncation**



Input sequences must have the same length to form a consistent batch. Models cannot handle sequences of varying lengths directly.

#### 1. Padding

Adds special tokens ([PAD]) to shorter sequences to match the length of the longest sequence in a batch.

Attention masking to ignore padding tokens.

#### Example:

Sequence 1: ["I", "love", "studying", "transformers", "."]

Sequence 2: ["AI", "is", "fun"]

After Padding:

Sequence 1: ["I", "love", "studying", "transformers ", "."]

Sequence 2: ["AI", "is", "fun", "[PAD]", "[PAD]", "[PAD]"]



# **Padding, and Truncation**



Input sequences must have the same length to form a consistent batch. Models cannot handle sequences of varying lengths directly.

#### 2. Truncation

Cuts sequences that exceed a predefined maximum length.

Example:

Sequence 1: ["I", "love", "studying", "transformers", "."]

Sequence 2: ["AI", "is", "fun"]

Max Length: 4

After Truncation:

Sequence 1: ["I", "love", "studying", "transformers"]

Sequence 2: ["AI", "is", "fun"]



# **Padding, and Truncation**



In practice, we use a mix of both techniques:

Example:

Sequence 1: ["I", "love", "studying", "transformers", "."]

Sequence 2: ["AI", "is", "fun"]

Max Length: 4

After Truncation & Padding:

Sequence 1: ["I", "love", "studying", "transformers"]

Sequence 2: ["AI", "is", "fun", "[PAD]", "[PAD]"]



# **Embeddings**



#### **Mapping to IDs:**

Tokens are converted into numeric IDs based on the vocabulary.

Example: ["un", "believ", "able"] → [1234, 5678, 910].

#### Feeding to the Model:

These IDs are transformed into dense vectors via an embedding layer before being processed by the LLM.

Example:  $[1234, 5678, 910] \rightarrow [[0.2, 0.45, 1.23, 1.01], [2.54, 0.03, 0.42, 2.3], [0.11, 0.4, 0.1, 2.54]]$ 





# Questions