Total boundedness

 $E \subset S$ is totally bounded if $\forall \varepsilon > 0 \ \exists s_1, \dots, s_n \in S$ s.t. $E \subset \bigcup_{i=1}^n \mathbf{B}_{\varepsilon}^o(s_i)$.

Proposition (not in textbook)

E is totally bounded iff any sequence in E has a Cauchy subsequence.

Proof: E t.b. \Rightarrow any sequence in E has a Cauchy subsequence.

Suppose $(s_i) \subset EE$; find Cauchy subsequence.

Find $x_{11}, \ldots x_{1N_1} \in S$ so that $E \subset \bigcup_{j=1}^{N_1} \mathbf{B}_{2^{-2}}^o(x_{1j})$. Find $j_1 \in \{1, \ldots, N_1\}$ so that $I_1 = \{i : s_i \in \mathbf{B}_{2^{-2}}^o(x_{1j_1})\}$ is infinite. Pick $i_1 := \min I_1$.

Find $x_{21}, \ldots x_{2N_2} \in S$ so that $E \cap \mathbf{B}_{2^{-2}}^o(x_{1j_1}) \subset \bigcup_{j=1}^{N_2} \mathbf{B}_{2^{-3}}^o(x_{2j})$. Find $j_2 \in \{1, \ldots, N_2\}$ so that $I_2 = \{i \in I_1 : s_i \in \mathbf{B}_{2^{-3}}^o(x_{2j_2})\}$ is infinite. Pick $i_2 := \min(I_2 \setminus \{i_1\})$.

Note: $s_{i_1} \in \mathbf{B}_{2^{-2}}^o(x_{1j_1}), \ s_{i_2} \in \mathbf{B}_{2^{-2}}^o(x_{1j_1}) \cap \mathbf{B}_{2^{-3}}^0(x_{2j_2}).$

Proceed to obtain $i_1 < i_2 < \dots$ s.t. $s_{i_k} \in \mathbf{B}^o_{2^{-1-\ell}}(x_{\ell j_\ell})$ for $k \geqslant \ell$. For $k \geqslant \ell$, $d(s_{i_k}, s_{i_\ell}) \leqslant d(s_{i_k}, x_{\ell j_\ell}) + d(x_{\ell j_\ell}, s_{i_\ell}) < 2 \cdot 2^{-1-\ell} = 2^{-\ell}$. Thus, (s_{i_k}) is Cauchy.

Compactness versus convergence of sequences

Theorem (Characterization of compactness; not in textbook)

For a subset E of a metric space, the following are equivalent:

- E is compact.
- 2 E is complete and totally bounded.
- Any sequence in E has a subsequence with a limit in E.

Proof of $(1) \Rightarrow (2)$ **.** Last lecture.

Proof of (2) \Rightarrow (3). Suppose *E* is totally bounded and complete. Any sequence has a Cauchy subsequence (total boundedness), which has limit in *E* (completeness).

Proof of (3) \Rightarrow (2). If *E* is not totally bounded, then it contains a sequence with no Cauchy subsequences, hence no convergent subsequences. If *E* is not complete, then it has a Cauchy sequence with no limit in *E*, hence with no convergent subsequences (Homework 4).

Proof of (3) \Rightarrow (1) (or (2) \Rightarrow (1)): omitted for lack of time.

Compactness and convergence of sequences (redundant)

Lemma (Established for \mathbb{R} , true for any metric space)

A sequence (s_n) in a metric space (S,d) has a subsequence converging to s iff, for any $\varepsilon > 0$, $|\{n \in \mathbb{N} : d(s_n,s) < \varepsilon\}| = \infty$.

Proof of Characterization of Compactness, $(1) \Rightarrow (3)$. Shall show the contrapositive: $\neg(3) \Rightarrow \neg(1)$.

Suppose a sequence $(s_n) \subset E$ has no subsequence converging to a limit in E. Construct an open cover for E without a finite subcover.

For each $x \in E$, find r(x) > 0 s.t. $|\mathbf{B}_{r(x)}^o(x) \cap \{s_n : n \in \mathbb{N}\}| < \infty$. Then $\{\mathbf{B}_{r(x)}^o(x) : x \in E\}$ is an open cover for E. There is no finite subcover: for any finite collection $(x_i)_{i=1}^m$, $\bigcup_{i=1}^m \mathbf{B}_{r(x_i)}^o(x_i)$ contains only finitely many s_n 's.

Compact subsets of \mathbb{R}^n

Theorem (13.13 - Heine-Borel)

A subset of \mathbb{R}^n is compact iff it is closed and bounded.

Proof of HB: closed and bounded \Rightarrow **compact.** Recall: compact \Leftrightarrow complete and totally bounded.

Suppose $E \subset \mathbb{R}^n$ is closed and bounded.

 \mathbb{R}^n is complete, E is closed $\Rightarrow E$ is complete (Homework 4).

Remains to show: E is totally bounded – that is,

$$\forall \ \varepsilon > 0 \ \exists \ \vec{x}^{(1)}, \dots, \vec{x}^{(k)} \ \text{s.t.} \ E \subset \cup_{j=1}^k \mathbf{B}_{\varepsilon}^o(\vec{x}^{(j)}).$$

Pick
$$A > 0$$
 s.t. $\forall \vec{x} = (x_i)_{i=1}^n \in E$ we have $||\vec{x}|| < A$. Write

$$\vec{x} = (x_i)_{i=1}^n \in E$$
, then $|x_i| < A$. Find $N \in \mathbb{N}$ s.t. $\frac{A}{N} < \frac{\varepsilon}{\sqrt{n}}$. Let $\vec{x}^{(j)}$ be

vectors with coordinates $p \frac{A}{N}$, with $p \in \{-N, ..., N\}$.

For $\vec{x} \in E$, find j s.t. $|x_i^{(j)} - x_i| < \frac{\varepsilon}{\sqrt{n}}$, for $1 \leqslant i \leqslant n$. Then

$$d(\vec{x}, \vec{x}^{(j)}) = \left(\sum_{i=1}^{n} (x_i^{(j)} - x_i)^2\right)^{1/2} < \varepsilon.$$

Remark. \mathbb{N} , with 0-1 metric, is closed and bounded, but not compact.

Series (Section 14)

Goal: make sense of infinite sums $\sum_{i=k_0}^{\infty} a_i = a_{k_0} + a_{k_0+1} + \dots$

Definition (p. 95 of textbook)

n-th partial sum: $s_n = \sum_{i=k_0}^n a_i$. The series $\sum_{j=k_0}^{\infty} a_j$ converges (diverges) if (s_n) does. $\sum_{i=k_0}^{\infty} a_i = \lim_n s_n$ (if $\lim s_n$ exists).

Example: $\sum_{i=0}^{\infty} r^{i}$. Partial sums: $s_n = \sum_{i=0}^{n} r^{i}$.

If r=1, then $s_n=n+1$, hence the series diverges. If $r\neq 1$, then $s_n=\frac{1-r^{n+1}}{1-r}$. If |r|<1, then $\lim s_n=\frac{1}{1-r}$. Otherwise, (s_n) diverges.

If $r \ge 1$, then $s_n \ge n$ for any n, hence $\lim s_n = +\infty$.

If $r \leq -1$, then $s_n \leq 0$ when *n* is odd (since $r^{n+1} \geq 1$). For *n* even, $-r^{n+1} \geqslant -r \geqslant 0$, hence $s_n \geqslant 1$. Thus, $\lim s_n$ does not exist.

Summary: $\sum_{i=0}^{\infty} r^{i} = \frac{1}{1-r}$ for |r| < 1; $\sum_{i=0}^{\infty} r^{i} = +\infty$ for $r \ge 1$; $\lim s_n$ does not exist if $r \leq -1$.

Cauchy Criterion for convergence

Definition (14.3)

A series $\sum_{j} a_{j}$ satisfies Cauchy Criterion if $\forall \varepsilon > 0 \ \exists N \ \text{s.t.} \ \left| \sum_{j=m}^{n} a_{j} \right| < \varepsilon$ whenever $n \geqslant m > N$.

Theorem (14.4)

A series converges iff it satisfies the Cauchy Criterion.

Proof. Let $s_n = \sum_{j=k_0}^n a_j$. $\sum_{j=k_0}^\infty a_j$ converges \Leftrightarrow (s_n) converges \Leftrightarrow (s_n) is Cauchy \Leftrightarrow $\forall \varepsilon > 0 \ \exists N$ s.t. $|s_n - s_k| < \varepsilon$ when $n > k \geqslant N$. $s_n - s_k = \sum_{j=k_0}^n a_j - \sum_{j=k_0}^k a_j = \sum_{j=m}^n a_j$, where m = k+1. So: $\sum_j a_j$ satisfies Cauchy Criterion \Leftrightarrow (s_n) is Cauchy \Leftrightarrow (s_n) converges.

More about convergence

Corollary (14.5)

If $\sum_{j} a_{j}$ converges, then $\lim_{n} a_{n} = 0$.

Proof. Suppose $\sum_j a_j$ converges. Fix $\varepsilon > 0$. Need to find N s.t. $|a_n| < \varepsilon$ for n > N. Find N s.t. $\left|\sum_{j=m}^n a_j\right| < \varepsilon$ when $n \geqslant m > N$ (Cauchy Criterion). Now take m = n.

If $\lim_n a_n = 0$, does $\sum_j a_j$ converge? **No!** Let $a_n = \frac{1}{n}$; $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, since the sequence of partial sums (s_n) is unbounded (Lecture 6).

Comparison test for convergence

Theorem (14.6 – Comparison test)

- (i) If $a_n \geqslant |b_n|$ for any n, and $\sum_n a_n$ converges, then $\sum_n b_n$ converges.
- (ii) If $0 \leqslant a_n \leqslant b_n$ for any n, and $\sum_n a_n = +\infty$, then $\sum_n b_n = +\infty$.

Proof of (i). Need to check Cauchy Criterion for $\sum_{n} b_{n}$:

$$\forall \varepsilon > 0 \ \exists N \ \text{s.t.} \ \left| \sum_{j=m}^{n} b_{j} \right| < \varepsilon \ \text{if} \ n \geqslant m > N.$$

$$\sum_{n} a_{n}$$
 converges, hence $\exists N$ s.t. $\sum_{j=m}^{n} a_{j} < \varepsilon$ if $n \geqslant m > N$.

By Triangle Inequality,
$$\left|\sum_{i=m}^{n}b_{j}\right|\leqslant\sum_{i=m}^{n}\left|b_{j}\right|\leqslant\sum_{i=m}^{n}a_{j}<\varepsilon$$
.