

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO							
Disciplina:				Código da Disciplina:			
Propulsão Veicular				EMC505			
Course:							
Vehicle Propulsion							
Materia:							
Propulsión vehicular							
Periodicidade: Anual	Carga horária total:	80	Carga horária sen	nanal: 00 - 00 - 02			
Curso/Habilitação/Ênfase:			Série:	Período:			
Engenharia Mecânica			5	Noturno			
Engenharia Mecânica			4	Diurno			
Engenharia Mecânica			4	Noturno			
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação			
Clayton Barcelos Zabeu		Engenheiro Me	cânico	Doutor			
Professores:		Titulação - Graduaç	ção	Pós-Graduação			
Clayton Barcelos Zabeu		Engenheiro Me	cânico	Doutor			
Fernando Malvezzi		Engenheiro Me	cânico	Doutor			
Renato Romio		Engenheiro Me	cânico	Mestre			
MODALIDADE DE ENSINO							

Presencial: 90%

Mediada por tecnologia: 10%

 \star Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

A DISCIPLINA NÃO CONTEMPLA ATIVIDADES DE EXTENSÃO.

EMENTA

Motores de combustão interna: ciclos padrão a ar, curvas características de motores, combustão em motores a pistão, formação de mistura, sistemas de injeção de combustível & ignição e emissões. Sistemas de propulsão híbridos, elétricos.

SYLLABUS

Internal combustion engines: thermodynamic analysis of the combustion and gas exchange processes, engine performance curves, combustion, air-fuel mixture requirements/formation, ignition/Injection and emissions/aftertreatment. Hybrid and electric propulsion systems.

2021-EMC505 página 1 de 9

TEMARIO

Motores de combustión interna alternativos: análisis termodinámico de la combustión y los procesos de intercambio de gases, las curvas características del motor de combustión interna, los requisitos de mezcla, sistemas de encendido y emisiones. Sistemas de propulsión híbridos y eléctricos.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

MATEMÁTICA: Cálculo diferencial e integral, álgebra linear, análise vetorial.

FÍSICA: Mecânica Geral, Eletricidade Básica.

QUÍMICA: Combustíveis, lubrificantes, estequiometria.

FENÔMENOS DE TRANSPORTE: Mecânica dos Fluidos, Transmissão de Calor.

TERMODINÂMICA: gás perfeito, ciclos, Primeira Lei, Segunda Lei.

ELEMENTOS DE MÁQUINAS.

MECANISMOS E DINÂMICA DOS SISTEMAS.

LÍNGUA INGLESA: desejável para a leitura de textos técnicos.

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

Dominar o ciclo completo de investigação dos aspectos analítico, numérico e experimental de um mesmo fenômeno, aprendendo a conciliar as diferenças encontradas no conhecimento interdisciplinar coordenado entre as disciplinas do Curso de Engenharia Mecânica. Analisar e compreender os fenômenos físicos e químicos por meio de modelos matemáticos, computacionais ou físicos, validados por experimentação.

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

CONHECIMENTOS

- C1 Princípios de funcionamento dos motores de combustão interna(MCI).
- C2 Associação dos conhecimentos de Termodinâmica à máquina térmica MCI.
- C3 Ensaios, propriedades e curvas características.
- C4 Combustão em MCI. Pós-tratamento de gases visando abater emissões de poluentes ambientais.
- C5 A alimentação de ar e combustível dos motores.
- C6 A ignição.
- C7 Sistemas eletrônicos de gerenciamento de motores.
- C8 Sistemas convencionais e alternativos de propulsão.

HABILIDADES

- H1 Conhecer os motores alternativos e suas partes.
- H2 Comparar desempenho e curvas características de motores.
- H3 Calibrar sistemas de gerenciamento eletrônicos de MCIs.
- H4 Analisar resultados obtidos com modelos matemáticos e ensaios experimentais.

ATITUDES

- Al Desenvolver a consciência de que o aluno é o elemento central no processo de ensino-aprendizagem.
- A2 Manter uma atitude crítica e participativa durante as aulas.
- A3 Ter motivação para enfrentar problemas de engenharia automotiva.

2021-EMC505 página 2 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

- A4 Valorizar o rigor conceitual.
- A5 Trabalhar em equipes e em rede para solucionar problemas de engenharia.
- A6 Proatividade.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Não

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Project Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas onde são apresentados os conceitos básicos do conjunto de conhecimento da disciplina, eventualmente apresentados com o uso de projetor multimídia e componentes reais de motores e veículos;

Atividades experimentais no laboratório de engenharia automobilística, onde o aluno, por meio de PBL (problem based learning), consolida o conhecimento adquirido participando de competições acadêmicas:

- avaliação experimental de desempenho de motor de combustão interna por meio de ensaios em bancada dinamométrica;
- ensaios de fluxo em cabeçotes;
- aumento de potência/torque de um motor monocilíndro, aplicado a um mini-veículo, objetivando adequação a uma competição tipo "arrancada".

Durante as atividades de PBL os alunos interagem com profissionais da área automotiva que atuam como mentores das equipes.

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIACAO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 k_2: 1,0$

Peso de $MP(k_{_{T}})$: 0,7 Peso de $MT(k_{_{T}})$: 0,3

2021-EMC505 página 3 de 9

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

- Introduzir os fundamentos de motores e máquinas térmicas aplicados a sistemas

de propulsão veicular;

- Desenvolver a capacidade do aluno para elaborar modelos matemáticos aplicados a sistemas veiculares.
- Exercitar a análise de resultados do desempenho de motores e sistemas veiculares, obtidos por meio de modelos matemáticos e ensaios experimentais.
- Interação com profissionais da área automotiva que atuam como mentores das equipes.

BIBLIOGRAFIA

Bibliografia Básica:

BRUNETTI, Franco. Motores de combustão interna. São Paulo: Blucher, 2012. v. 1. 553 p. ISBN 9788521207085.

BRUNETTI, Franco. Motores de combustão interna. São Paulo: Blucher, 2012. v. 2. 485 p. ISBN 97885212007092.

DENTON, T.

Veículos Elétricos e Híbridos Editora Blücher (em parceria com SENAI) ISBN-10: 8521213018

Bibliografia Complementar:

BOSCH, Robert. Manual de tecnologia automotiva. Tradução de Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2005. 1232 p. ISBN 8521203780.

EHSANI, M. et al. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles - Fundamentals, Theory and Design. 3a ed, CRC Press, 2018.

HEYWOOD, John B. Internal combustion engine fundamentals. New York: McGraw-Hill, 1988. 930 p. (McGraw-Hill Series in Mechanical Engineering). ISBN 0-07-100499-8.

HEYWOOD, John B. Internal combustion engine fundamentals. 2a edição. New York: McGraw-Hill, 2018. 930 p. (McGraw-Hill Series in Mechanical Engineering). ASIN: B07BYM9RL4

TAYLOR, Charles Fayette. Análise dos motores de combustão interna. Trad. de Mauro O. C. Amorelli. São Paulo, SP: Edgard Blücher, 1988. v. 1.

2021-EMC505 página 4 de 9

TAYLOR, Charles Fayette. Análise dos motores de combustão interna. Trad. de Mauro O. C. Amorelli. São Paulo, SP: Edgard Blücher, 1988. v. 2.

TAYLOR, Charles Fayette. Effect of size on the design and performance of internal combustion engines. s.l.p: ASME, [s.d.].

TAYLOR, Charles Fayette; MIT. The internal combustion engine in theory and practice. Massachussets: MIT, 1960. v. 1.

TAYLOR, Charles Fayette; TAYLOR, Edward S. The internal-combustion engine. Scranton, Pen: International Textbook, 1961. 668 p.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

AVL Boost

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

PROVAS

As provas semestrais P1 e P2 versarão sobre o conteúdo visto em cada semestre. A prova substitutiva PS versará sobre todo o conteúdo desenvolvido no curso. A aplicação das provas seguirá o calendário oficial da Escola.

A média de provas MP é calculada segundo a expressão MP = (2*P1 + 3*P2)/5.

***** IMPORTANTE ***** Como reza o artigo 13 da Res. Normativa, a nota da prova substitutiva poderá substituir qualquer uma das notas das provas ou ambas as notas das provas do ano letivo, de modo a resultar a maior média das provas (MP).

TRABALHOS

Os trabalhos T1 e T2 serão aplicados ao longo do primeiro e segundo semestres, respectivamente. Esses trabalhos podem conter problemas aplicados, questões dissertativas, de múltipla escolha e questões de resposta numérica. Tais atividades podem ser realizadas presencialmente e/ou no formato online, via Open LMS. As notas T1 e T2 serão as médias aritméticas das atividades requisitadas durante os respectivos semestres.

A média dos trabalhos MT é calculada segundo a expressão MT=(T1+T2)/2.

MÉDIA FINAL

A média FINAL MF é calculada segundo a expressão MF = 0.7*MP + 0.3*MT. O aluno estará aprovado se a MF for maior ou igual a 6.0(seis).

2021-EMC505 página 5 de 9

OUTRAS INFORMAÇÕES

Dara	2021 =	ag at	ividade	e n	rege	enciai	e eetar	ão	vincu	ladas às di	retrizes	impogtag
										epidêmica.	.ICCIIZCB	Imposcas
1										o <u>r</u> =		

2021-EMC505 página 6 de 9

2021-EMC505 página 7 de 9

	DDOODAMA DA DIOOIDI INA	
	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana		
1 L	Aulas somente para a la série.	
2 L	Introdução ao curso. Introdução aos MCI. Definição e comparação	
	com motores de combustão externa. Classificação dos MCIs quanto à	
	forma construtiva e quanto ao desenvolvimento da combustão.	
3 L	Combustíveis. Números de octano e de cetano. Entes geométricos e	
	cinemáticos de MCIs. Planilha de cálculo.	
4 L	Ciclos padrão ar - Otto e Diesel.Ciclos reais de motores	
	alternativos de 2T e 4T. Comparações.	
5 L	Exercícios e desmontagem de motores.Lista de alterações dos	
	motores.	
6 L	Exercícios sobre ciclos termodinâmicos. Planilha de cálculo.	
7 L	Parâmetros característicos em MCIs. Curvas de desempenho de MCIs.	
	Dinamômetro de motor.	
8 L	Feriado - dia não letivo.	
9 L	Revisão e exercícios.	
10 L	Atividade de avaliação.	
11 L	Combustão MIF e anomalias (demonstração em dinamômetro)	
12 L	Combustão MIE e anomalias.	
13 L	Atividade de preparação de motores (1).	
14 L	Levantamento experimental de curvas de desempenho (T, N, Ce,	
	rendimentos térmico, volumétrico, global)	
15 L	SMILE - dia não letivo.	
16 L	Atividade de preparação de motores (2).	
17 L	Dinâmica longitudinal de veículos - acoplamento motor-veículo.	
18 L	Provas P1.	
19 L	Provas P1.	
20 L	Ensaios em dinamômetro de rolos veículos com motores modificados.	
21 L	Atividade de avaliação de veículos modificados.	
22 L	Sistemas de injeção/gerenciamento eletrônico.	
23 L	Atividade de preparação de motores (3).	
24 L	Sistemas de injeção em MIE.	
25 L	Consumo de ar em MC 4T.	
26 L	Ensaios bancada de fluxo.	
27 L	Emissões e pós-tratamento de gases de escapamento de MCIs.	
28 L	Revisão e exercícios.	
29 L	Atividade de avaliação.	
30 L	Atividade de preparação dos motores (4)/ Sistemas de ignição em	
01 -	MIF.	
31 L	Atividade de preparação dos motores (4)/ Sistemas de ignição em	
	MIF.	
32 L	Sistemas de lubrificação e de arrefecimento em MCI.	
33 L	Eureka - exercícios	
34 L	Sistemas de sobrealimentação em MCI.	

2021-EMC505 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

35 L	Sistemas alternativos de propulsão - híbridos, elétrico a bateria
	e fuel cell.
36 L	Revisão e exercícios.
37 L	Provas P2.
38 L	Provas P2.
39 L	Atividade de preparação dos motores e veículos.
40 L	Atividade de preparação dos motores e veículos.
41 L	Provas substitutivas PS.
Legenda	: T = Teoria, E = Exercício, L = Laboratório

2021-EMC505 página 9 de 9