Estructuras Algebraicas Segundo examen parcial	1 ^{er} Apellido:	24 de mayo de 2016 Tiempo 2 h.
Departamento Matem. aplic. TIC ETS de Ingenieros Informáticos Universidad Politécnica de Madrid	Nombre: Número de matrícula:	Calificación:

1. (2,5 puntos)

- a) Sea $(R, +, \cdot)$ un anillo y sea $S \subseteq R$. ¿Qué propiedades debe verificar S para ser un subanillo de R?
- $b) \ \ \text{Demostrar que} \quad T = \{ \left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array} \right) \, : \, a \in \mathbb{Q} \} \quad \text{es un subanillo de} \quad (\mathbb{Q}^{2 \times 2}, +, \cdot). \ \text{¿Es un ideal?}$
- c) ¿Es T un subanillo conmutativo? Marca la opción correcta y justifica la respuesta.
- d) ¿Es T un cuerpo? Marca la opción correcta y justifica la respuesta.
- e) Estudiar si T es isomorfo a $(\mathbb{Q}, +, \cdot)$
- 2. (2,5 puntos) Los siguientes conjuntos, con las operaciones usuales en cada uno de ellos, son anillos conmutativos con identidad:

$$R_1 = \mathbb{Z}_5, \qquad R_2 = \mathbb{Z}_6 \times \mathbb{Z}_4, \qquad R_3 = \mathbb{Z}[x], \qquad R_4 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{Q} \right\}$$

- a) Dar la identidad de cada uno de los anillos R_1 , R_2 , R_3 , R_4 .
- b) Encontrar la característica de cada uno de los anillos R_1 , R_2 , R_3 , R_4 .
- c) Describir las unidades de cada uno de los anillos R_1 , R_2 , R_3 , R_4 .
- d) Indicar si algunos de los anillos R_1 , R_2 , R_3 , R_4 tienen divisores de cero. En caso afirmativo dar un ejemplo.
- e) ¿Es alguno de ellos dominio de integridad? ¿Es alguno de ellos cuerpo? En caso afirmativo indicar cuáles. Justificar la respuesta

3. (2,5 puntos)

- a) Estudiar si $\mathbb{Q}(\sqrt{2}, \sqrt{6})$ es una extensión simple de \mathbb{Q} .
- b) Se considera el polinomio $p = x^4 2x^3 + 6x 10 \in \mathbb{Q}[x]$. Demostrar que es irreducible.
- c) El teorema de Kronecker garantiza la existencia de una raíz α de p. ¿En qué cuerpo asegura el teorema de Kronecker que existe una raíz de p?
- d) En el cuerpo y para la raíz α citados en el apartado anterior, realizar las siguientes operaciones:

1)
$$(\alpha^2 - 1)(\alpha^2 - \alpha + 1)$$

2)
$$(\alpha^2 - 2\alpha + 3)^{-1}$$

4. (2,5 puntos)

- a) Calcular el polinomio mínimo de $\beta = \sqrt[3]{2} + \sqrt[3]{4}$ sobre \mathbb{Q} .
- b) Calcular una base y el grado de extensión de $\mathbb{Q}(\sqrt{5}, \sqrt[6]{5})$ sobre \mathbb{Q} .
- c) Demostrar que $h = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$ es irreducible en $\mathbb{Z}_2[x]$.
- d) Estudiar si h es un polinomio primitivo. Justificar la respuesta.
- e) Indicar qué elementos del cuerpo $\mathbb{Z}_2[x]/\langle h \rangle$ tienen raíz cuadrada.

$$\begin{array}{lll} 1. & a) & (i) \ T \neq \emptyset, \operatorname{porque} \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right) \in T \quad \text{y} \quad (ii) \ \operatorname{Para} \operatorname{todos} \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right), \left(\begin{array}{c} b & 0 \\ -b & 0 \end{array} \right) \in T \ \operatorname{es} \ a-b \in \mathbb{Q} \\ & \text{y} \quad a \cdot b \in \mathbb{Q}, \ \Rightarrow \quad \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) - \left(\begin{array}{c} b & 0 \\ -b & 0 \end{array} \right) = \left(\begin{array}{c} a-b & 0 \\ -(a-b) & 0 \end{array} \right) \in T \quad \text{y} \\ & \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c} a & 0 \\ -a & 0 \end{array} \right) \cdot \left(\begin{array}{c}$$

b)
$$T$$
 es un subanillo conmutativo: $\begin{pmatrix} a & 0 \\ -a & 0 \end{pmatrix} \cdot \begin{pmatrix} b & 0 \\ -b & 0 \end{pmatrix} = \begin{pmatrix} ab & 0 \\ -ab & 0 \end{pmatrix} = \begin{pmatrix} b & 0 \\ -b & 0 \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ -a & 0 \end{pmatrix}$

c)
$$T$$
 es un cuerpo: Es conmutativo, tiene identidad: $\begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$ y es de división: $\forall \begin{pmatrix} a & 0 \\ -a & 0 \end{pmatrix} \in T$ no nulo, es $a \neq 0 \Rightarrow \frac{1}{a} \in \mathbb{Q} \Rightarrow \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{1}{a} & 0 \end{pmatrix} \in T$ y es $\begin{pmatrix} a & 0 \\ -a & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{1}{a} & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$

$$d) \ \ T \ \text{es isomorfo a} \ (\mathbb{Q},+,\cdot) \colon \quad \varphi:T \to \mathbb{Q} \ \text{tal que} \ \varphi(\left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array}\right)) = a$$

$$(i) \ \varphi \ \text{es biyectiva:} \ \varphi(\left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array} \right)) = \varphi(\left(\begin{array}{cc} b & 0 \\ -b & 0 \end{array} \right)) \Leftrightarrow a = b \Leftrightarrow \left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array} \right) = \left(\begin{array}{cc} b & 0 \\ -b & 0 \end{array} \right) \mathbf{y}$$

$$\forall a \in \mathbb{Q} \ \text{existe} \ \left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array} \right) \in T \ \text{tal que} \ \varphi(\left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array} \right)) = a$$

$$(i) \ \varphi \text{ es homomorfismo de anillos: } \forall \left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array} \right), \left(\begin{array}{cc} b & 0 \\ -b & 0 \end{array} \right) \in T \text{ es }$$

$$\varphi(\left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array}\right) + \left(\begin{array}{cc} b & 0 \\ -b & 0 \end{array}\right)) = \varphi(\left(\begin{array}{cc} a+b & 0 \\ -a-b & 0 \end{array}\right)) = a+b = \varphi(\left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array}\right)) + \varphi(\left(\begin{array}{cc} b & 0 \\ -b & 0 \end{array}\right)),$$

$$y \quad \varphi(\left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array}\right) \left(\begin{array}{cc} b & 0 \\ -b & 0 \end{array}\right)) = \varphi(\left(\begin{array}{cc} ab & 0 \\ -ab & 0 \end{array}\right)) = ab = \varphi(\left(\begin{array}{cc} a & 0 \\ -a & 0 \end{array}\right)) \cdot \varphi(\left(\begin{array}{cc} b & 0 \\ -b & 0 \end{array}\right))$$

	Identidad de R_1	Identidad de R_2	Identidad de R_3	Identidad de R_4
2.	$[1]_5$	$([1]_6, [1]_4)$	1	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

	Característica de R_1	Característica de R_2	Característica de R_3	Característica de R_4
ſ	5	12	0	0

Unidades de R_1	Unidades de R_2	Unidades de R_3	Unidades de R_4
$\{[1]_5, [2]_5, [3]_5, [4]_5\}$	$\{([1]_6,[1]_4),([1]_6,[3]_4),$	$\{1, -1\}$	$\left(\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right) \forall a, b \in \mathbb{Q}^*$
	$([5]_6, [1]_4), ([5]_6, [3]_4)$		

Divisor de cero en R_1	Divisor de cero en R_2	Divisor de cero en R_3	Divisor de cero en R_4
No tiene	Sí tiene	No tiene	Sí tiene
	por ejemplo: $([3]_6, [2]_4)$		por ejemplo: $\begin{pmatrix} 7 & 0 \\ 0 & 0 \end{pmatrix}$

Son dominios de integridad los anillos: R_1 y R_3 . El único cuerpo es: R_1

- 3. *a*) Sí es simple: $\mathbb{Q}(\sqrt{2} + \sqrt{6}) = \mathbb{Q}(\sqrt{2}, \sqrt{6})$.
 - b) Por el criterio de Eisenstein: $p=2\in\mathbb{N}$
 - c) $\mathbb{Q}[x]/\langle p \rangle \approx \mathbb{Q}(\alpha)$
 - d) 1) $\alpha^3 5\alpha + 9$
 - 2) $\alpha^2 3$
- 4. a) $x^3 6x 6$
 - b) $B = \{1, 5^{\frac{1}{6}}, 5^{\frac{1}{3}}, 5^{\frac{1}{2}}, 5^{\frac{2}{3}}, 5^{\frac{5}{6}}\},$ $[\mathbb{Q}(\sqrt{5}, \sqrt[6]{5}) : \mathbb{Q}] = 6$
 - $c)\,$ Es un polinomio de grado 3 y no tiene raíces en \mathbb{Z}_2
 - d) $\langle x \rangle = \{1, x, x^2, x^3 = x^2 + 1, x^4 = x^2 + x + 1, x^5 = x + 1, x^6 = x^2 + x\} = (\mathbb{Z}_2[x]/\langle h \rangle)^*$
 - e) x^2 , $x^2 + 1 = x^{10} = (x+1)^2$, $x^2 + x = x^6 = (x^2 + 1)^2$, $x^2 + x + 1 = x^4$.