OASIS INFOBYTE: Data Science

Author: Sujata Gaikwad

Task1: Unemployment Analysis With Python

In [1]: import pandas as pd
import numpy as np

Out[2]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	longitude	lat
0	Andhra Pradesh	31- 01- 2020	М	5.48	16635535	41.02	South	15.9129	7
1	Andhra Pradesh	29- 02- 2020	М	5.83	16545652	40.90	South	15.9129	7
2	Andhra Pradesh	31- 03- 2020	М	5.79	15881197	39.18	South	15.9129	7
3	Andhra Pradesh	30- 04- 2020	М	20.51	11336911	33.10	South	15.9129	7
4	Andhra Pradesh	31- 05- 2020	М	17.43	12988845	36.46	South	15.9129	7
262	West Bengal	30- 06- 2020	M	7.29	30726310	40.39	East	22.9868	8
263	West Bengal	31- 07- 2020	М	6.83	35372506	46.17	East	22.9868	8
264	West Bengal	31- 08- 2020	M	14.87	33298644	47.48	East	22.9868	8
265	West Bengal	30- 09- 2020	M	9.35	35707239	47.73	East	22.9868	8
266	West Bengal	31- 10- 2020	М	9.98	33962549	45.63	East	22.9868	8

267 rows × 9 columns

```
In [3]: data.isnull().sum()
Out[3]: Region
                                                     0
                                                     0
         Date
         Frequency
                                                     0
         Estimated Unemployment Rate (%)
                                                     0
         Estimated Employed
         Estimated Labour Participation Rate (%)
                                                     0
        Region.1
                                                     0
        longitude
                                                     0
        latitude
                                                     0
        dtype: int64
In [4]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 267 entries, 0 to 266
        Data columns (total 9 columns):
             Column
                                                        Non-Null Count Dtype
             ----
         0
             Region
                                                                        object
                                                        267 non-null
         1
              Date
                                                        267 non-null
                                                                        object
              Frequency
         2
                                                        267 non-null
                                                                        object
              Estimated Unemployment Rate (%)
         3
                                                        267 non-null
                                                                        float64
         4
              Estimated Employed
                                                        267 non-null
                                                                        int64
         5
              Estimated Labour Participation Rate (%) 267 non-null
                                                                        float64
         6
             Region.1
                                                        267 non-null
                                                                        object
         7
             longitude
                                                        267 non-null
                                                                        float64
         8
             latitude
                                                        267 non-null
                                                                        float64
        dtypes: float64(4), int64(1), object(4)
        memory usage: 18.9+ KB
In [5]: data["Region"].unique()
Out[5]: array(['Andhra Pradesh', 'Assam', 'Bihar', 'Chhattisgarh', 'Delhi', 'Goa',
                'Gujarat', 'Haryana', 'Himachal Pradesh', 'Jammu & Kashmir',
                'Jharkhand', 'Karnataka', 'Kerala', 'Madhya Pradesh',
                'Maharashtra', 'Meghalaya', 'Odisha', 'Puducherry', 'Punjab',
                'Rajasthan', 'Sikkim', 'Tamil Nadu', 'Telangana', 'Tripura',
                'Uttar Pradesh', 'Uttarakhand', 'West Bengal'], dtype=object)
```

In [6]: data.corr()

Out[6]:

	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	longitude	latitude
Estimated Unemployment Rate (%)	1.000000	-0.245176	-0.073540	0.149976	-0.023976
Estimated Employed	-0.245176	1.000000	-0.047948	-0.113664	-0.119321
Estimated Labour Participation Rate (%)	-0.073540	-0.047948	1.000000	0.080372	0.397836
longitude	0.149976	-0.113664	0.080372	1.000000	0.125895
latitude	-0.023976	-0.119321	0.397836	0.125895	1.000000

In [7]: data.describe()

Out[7]:

	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	longitude	latitude
count	267.000000	2.670000e+02	267.000000	267.000000	267.000000
mean	12.236929	1.396211e+07	41.681573	22.826048	80.532425
std	10.803283	1.336632e+07	7.845419	6.270731	5.831738
min	0.500000	1.175420e+05	16.770000	10.850500	71.192400
25%	4.845000	2.838930e+06	37.265000	18.112400	76.085600
50%	9.650000	9.732417e+06	40.390000	23.610200	79.019300
75%	16.755000	2.187869e+07	44.055000	27.278400	85.279900
max	75.850000	5.943376e+07	69.690000	33.778200	92.937600

In [8]: import seaborn as sns
sns.pairplot(data, hue='Region.1')

Out[8]: <seaborn.axisgrid.PairGrid at 0x1c48d20ecd0>

In [9]: import matplotlib.pyplot as plt
 plt.figure(figsize=(10,8))
 sns.heatmap(data.corr(),annot=True)
 plt.title("Correlation Heatmap")
 plt.show()


```
In [10]: # pie chart of unemployment rate distribution by region
    region_unemployment= data.groupby("Region")["longitude"].sum().reset_index()
    plt.figure(figsize=(8,6))
    plt.pie(region_unemployment["longitude"],labels=region_unemployment["Region"],
    plt.title("Unemployment longitude by Region")
    plt.show()
```

Unemployment longitude by Region

In []: