ELIMINAÇÃO DE ELEMENTOS OCLUSOS

Prof. Dr. Bianchi Serique Meiguins

Prof. Dr. Carlos Gustavo Resque dos Santos

Motivação

- □ Existem quatro casos base:
 - □ Eliminação de faces oclusas (backface)
 - □ Eliminação de objetos oclusos
 - □ Eliminação por campo de visão
 - Eliminação de superfícies oclusas

Tipos

- □ Existem quatro casos base:
 - □ Eliminação de faces oclusas (backface)
 - □ Eliminação de objetos oclusos
 - □ Eliminação por campo de visão
 - □ Eliminação de superfícies oclusas

ELIMINAÇÃO DE FACES OCLUSAS (BACKFACE)

- Objetiva Eliminar faces ocultas por faces do mesmo objeto.
 - Na prática as faces que estão de costa para a câmera são eliminadas
 - Úteis para objetos fechados
 - □ Reduz ~50% de faces de um objeto

Cuidado com os objetos que não estão totalmente fechados

□ Se

□ Então descarte a face

Obs: "·" é o produto interno ou produto escalar. *Veja em Álgebra Linear

- □ Cálculo da Normal:
 - A normal pode ser obtida pelo produto vetorial de dois vetores pertencentes ao plano.
 - O produto vetorial pode ser calculado pelo determinante da matriz M:
 - $\widehat{v} \times \widehat{w} = \det(M) = \begin{vmatrix} i & j & k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \qquad \widehat{v} = (v_1, v_2, v_3)$ $\widehat{w} = (w_1, w_2, w_3)$

Sendo:

$$\hat{v} \times \hat{w} = (v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1)$$

□ Cálculo da Normal:

□ O produto vetorial é anticomutativo, ou seja:

$$\hat{v} \times \hat{w} = -\hat{w} \times \hat{v}$$

Esta propriedade "decide" a direção da normal

- □ Em termos de computação gráfica.
 - decide a frente da face (plano)

□ <u>Dica</u>: use a regra da mão direita

□ Agora basta verificar a condição de 90°

 $\theta > 90^{\circ}$, logo está de costa

$$\hat{z} \cdot \hat{n} = z_1 n_1 + z_2 n_2 + z_3 n_3$$

Se $\hat{\pmb{z}}\cdot \widehat{\pmb{n}} < \pmb{0}$, então $\pmb{ heta} > \pmb{90}^{\underline{o}}$

Faces do Cubo

ELIMINAÇÃO POR CAMPO DE VISÃO (FRUSTUM CULLING)

 Elimina os objetos que não estão no alcance da câmera.

Frustrum, (View Polygon – Polígono de Visão)

- Os algoritmos de recorte 2D podem ser expandidos para 3D.
 - □ Interseção entre linha e plano
 - □ Teste de contém

 Pode ser realizado de forma hierárquica, evitando a comparação desnecessárias com objetos complexos.

- Exemplo: Cohen-Sutherland
 - \square 1° bit: 1 se $z > z_{\text{max}}$, 0 caso contrário
 - \square 2° bit: 1 se $z < z_{\min}$, 0 caso contrário
 - \square 3° bit: 1 se $y > y_{\text{max}}$, 0 caso contrário
 - \blacksquare 4° bit: 1 se $y < y_{\min}$, 0 caso contrário
 - \square 5° bit: 1 se $x > x_{\text{max}}$, 0 caso contrário
 - lacksquare 6° bit: 1 se $x < x_{\min}$, 0 caso contrário

□ Exemplo 2: Sutherland-Hodgman

- No caso da câmera perspectiva, é possível aplicar a projeção e manter o valor original do eixo z (profundidade)
- Assim, podem ser utilizados testes simples na etapa de recorte.

Exemplos (Vídeos)

https://www.youtube.com/watch?v=tHrJICq1e3Q

https://www.youtube.com/watch?v=Y7qVYPBmGz4

https://www.youtube.com/watch?v=XBYWh-Ukcfk

https://www.youtube.com/watch?v=XLXJY-bk82U

https://www.youtube.com/watch?v=9141wkkh7sg

ELIMINAÇÃO OBJETOS OCLUSOS

 Elimina os objetos totalmente oclusos por outros objetos

 O objetivo é minimizar a quantidade de cálculo necessário na etapa de Eliminação de Superfície

□ É eficiente em tempo de processamento

□ O(P), sendo P a quantidade de polígonos

□ Ambiente Indoor:

A	\boldsymbol{B}	\boldsymbol{C}		D		E	
1	1		١	100		1	
D	Ċ	\boldsymbol{B}	\boldsymbol{E}	\boldsymbol{A}	E	C	D
1	1		1		1	1	1
E	E		D		Ċ	B	A

(b)

	\boldsymbol{A}	В	C	D	E
A	1			1	1
В		1	1		1
C		1	1	1	1
D	1		1	1	1
E	1	1	1	1	1

□ Ambiente Outdoor:

□ Ambiente Outdoor:

ELIMINAÇÃO SUPERFÍCIES OCLUSAS

Eliminação de Superfícies Oclusas

 É necessário cortar superfícies oclusas para poupar processamentos de cor, iluminação, textura, etc.

□ Algoritmo clássico na área de computação gráfica.

- Trabalha no espaço da imagem digital
 - Tem a mesma ideia que o frame buffer, só que ao invés de cores são armazenados os valores de Z (profundidade).

 □ Este algoritmo tira proveito da coerência das primitivas (planos → triângulos) para calcular o Z de forma incremental.

$$F'(x+1,y) = z = -\frac{d}{c} - \frac{a}{c}(x+1) - \frac{b}{c}y$$

□ Fórmula do plano.

$$F(x,y,z) = ax + by + cz + d = 0$$

 \square Como estamos interessados no Z

$$\square F'(x,y) = z = -\frac{d}{c} - \frac{a}{c}x - \frac{b}{c}y$$

Aplicando a recursividade

$$F'(x+1,y) = F'(x,y) - \frac{a}{c}$$

$$\Box F'(x, y + 1) = F'(x, y) - \frac{b}{c}$$

- $\ \square$ Inicializa z_buffer com $Frustrum_{z_max}$
- \square Para cada pixel do Frame $\rightarrow x, y$
 - \square Para cada polígono $\rightarrow p$
 - $z_p = incrementaZ(p, x, y) / Igual ao bresenham (3D)$
 - $\blacksquare \text{ Se } z_p < z_buffer[x,y]$
 - $\blacksquare Z_buffer[x,y] = z_p$

(a) Frame Buffer

- (b) Z-Buffer
- (c) Cena

 Ordena os objetos em relação a sua distância do observador e pinta na ordem inversa.

Também é conhecido como o algoritmo do pintor.

□ Analogia do pintor

□ Problema....

□ Problema.... Uma solução.

- □ Para cada polígono
 - \blacksquare Encontrar o z_{\min} e o z_{\max} de cada p
- \square Ordenar de acordo com o Z_{\min}

 Resolver sobreposições entre Z_{min} e Z_{max} para cada par de polígonos

■ Mostrar polígonos na ordem inversa

Extras

- □ Melhorias no desempenho:
 - Bounding Boxes:

Extras

- □ Melhorias no desempenho:
 - Progressive Hull:

