SMS Spam Classifier using Naive Bayes

Rabiul Hassan Hangzhou Dianzi University

May 2025

Contents

1	Introduction	2			
2	Mathematical Foundations2.1 Bayes' Theorem2.2 Multinomial Naive Bayes2.3 Strengths and Weaknesses				
3	Real-World Applications	3			
	3.1 Common Use Cases	3			
	3.2 Dataset Description	3			
	3.3 Label Distribution	3			
4	Implementation	3			
	4.1 Tools and Libraries	3			
	4.2 Pipeline Overview	4			
	4.3 Sample Code	4			
5	Model Evaluation	4			
	5.1 Performance Report	4			
	5.2 Accuracy	4			
6	Web Interface	5			
7	Conclusion				

1 Introduction

With the rapid growth of digital communication, especially via mobile messaging, identifying and filtering out spam messages has become a crucial task. This project applies the Naive Bayes algorithm to detect spam in SMS messages with high accuracy and efficiency. It culminates in a lightweight, interactive web-based tool that allows end users to test their own messages for spam detection. The full project, including code and documentation, is available on my GitHub: github.com/rabiulhassandev/ML-SMS-Spam-Detector.git.

2 Mathematical Foundations

2.1 Bayes' Theorem

Naive Bayes is built on Bayes' Theorem, which describes the probability of a class C given some data X:

$$P(C|X) = \frac{P(X|C) \cdot P(C)}{P(X)}$$

In this context:

- P(C|X) is the posterior probability of class C (spam or ham) given the text X
- P(X|C) is the likelihood of observing text X given class C
- P(C) is the prior probability of class C
- P(X) is the prior probability of text X

2.2 Multinomial Naive Bayes

This variant of Naive Bayes is especially suited for text classification where input features represent frequencies of words. For each message, the model calculates:

$$P(C)\prod_{i=1}^{n}P(x_{i}|C)$$

Where x_i represents word occurrences in a message. Laplace smoothing is used to avoid zero probabilities.

2.3 Strengths and Weaknesses

- Advantages: Fast training, scalable, simple to implement, works well with text data.
- Limitations: Assumes feature independence, which may not hold true in natural language.

3 Real-World Applications

3.1 Common Use Cases

- Spam detection in SMS and email systems
- News categorization
- Sentiment analysis of customer reviews
- Topic classification in blogs or forums

3.2 Dataset Description

This project uses the publicly available SMS Spam Collection Dataset from UCI Machine Learning Repository. It includes:

- 5,572 total SMS messages
- 4,825 labeled as **ham** (non-spam)
- 747 labeled as **spam**

3.3 Label Distribution

Figure 1: Label distribution showing class imbalance

4 Implementation

4.1 Tools and Libraries

- Python and Flask for backend and web app
- scikit-learn for machine learning
- Pandas, Matplotlib, Seaborn for data processing and visualization

4.2 Pipeline Overview

- 1. Load and clean the dataset
- 2. Convert labels to binary form (0 for ham, 1 for spam)
- 3. Split the data into training and test sets
- 4. Vectorize messages using CountVectorizer
- 5. Train the Naive Bayes classifier
- 6. Evaluate with classification metrics
- 7. Build a Flask-based web UI for real-time testing

4.3 Sample Code

```
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB

vectorizer = CountVectorizer()
X = vectorizer.fit_transform(messages)
model = MultinomialNB()
model.fit(X_train, y_train)
```

5 Model Evaluation

5.1 Performance Report

	precision	recall	f1-score	support
0	0.96	1.00	0.98	966
1	1.00	0.74	0.85	149
accuracy			0.97	1115
macro avg	0.98	0.87	0.92	1115
weighted avg	0.97	0.97	0.96	1115

5.2 Accuracy

Accuracy = 96.6%

This demonstrates excellent performance, particularly in identifying ham messages. The slightly lower recall for spam is expected due to class imbalance.

6 Web Interface

The deployed Flask web application allows users to:

- Explore summary statistics and charts
- View the classification report
- Enter their own SMS message and receive instant spam/ham prediction

Figure 2: Web Interface Screenshot

7 Conclusion

This project successfully implements and deploys a machine learning solution for spam classification using Naive Bayes. It showcases how a classic algorithm, combined with modern tools like Flask and scikit-learn, can deliver a powerful real-world application. The classifier achieved over 96% accuracy and is capable of real-time spam detection through a browser.

For complete source code and documentation, visit my GitHub repository: https://github.com/rabiulhassandev/ML-SMS-Spam-Detector.git