Плоскость в пространстве

Теорема (об общем уравнении плоскости)

Поверхность S является плоскостью тогда и только тогда, когда она описывается уравнением первой степени Ax + By + Cz + D = 0, где коэффициенты A, B и C не равны нулю одновременно.

Уравнение Ax + By + Cz + D = 0 называется общим уравнением плоскости; если все коэффициенты уравнения не равны нулю, то оно называется полным общим уравнением плоскости.

Вектор $\mathbf{n} = \{A, B, C\}$ ортогонален плоскости S и называется нормальным вектором плоскости.

Замечание

Если уравнения $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ описывают одну и ту же плоскость S, то существует число λ такое, что $A_1 = \lambda A_2$, $B_1 = \lambda B_2$, $C_1 = \lambda C_2$ и $D_1 = \lambda D_2$.

Другие способы описания плоскости

Уравнение плоскости, проходящей через заданную точку $M_0(x_0,y_0,z_0)$ ортогонально вектору $n=\{A,B,C\}$, имеет вид

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
.

Векторное уравнение плоскости имеет вид

$$(\mathbf{n}, \overline{M_0 M}) = 0$$
 или $(\mathbf{n}, \mathbf{r}) = (\mathbf{n}, \mathbf{r}_0)$.

Уравнение плоскости в отрезках имеет вид

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,$$

где коэффициенты a , b и c – величины отрезков, которые плоскость S отсекает на осях координат Ox , Oy и Oz соответственно.

Уравнение плоскости, проходящей через три заданные точки $M_0(x_0,y_0,z_0)$, $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$, имеет вид

$$([\overline{M_0M_1},\overline{M_0M_2}],\overline{M_0M}) = 0$$

или

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0.$$

Параметрическое уравнение плоскости имеет вид

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t_1 + \mathbf{b}t_2$$
 или
$$\begin{cases} x = x_0 + a_x t_1 + b_x t_2 \\ y = y_0 + a_y t_1 + b_y t_2 \\ z = z_0 + a_z t_1 + b_z t_2 \end{cases}$$

где t_1 , t_2 – *параметры*, принимающие любые значения, $M_0(x_0,y_0,z_0)$ – *начальная точка плоскости*, векторы $\mathbf{a}=\{a_x,a_y,a_z\}$ и $\mathbf{b}=\{b_x,b_y,b_z\}$ – *направляющие векторы плоскости*.

Hормированное уравнение плоскости имеет вид $x\cos(\alpha) + y\cos(\beta) + z\cos(\gamma) - \rho = 0$,

где α , β и γ – углы между единичным вектором \mathbf{n} , исходящим из начала координат, ортогонально плоскости S, и осями Ox, Oy и Oz соответственно, ρ – расстояние от точки O до точки P – точки пересечения плоскости S с прямой линией L', проходящей через точку O в направлении вектора \mathbf{n} .

Пучок плоскостей

Совокупность плоскостей, пересекающихся вдоль одной прямой линии $\,L\,$, называется $\,$ пучком плоскостей $\,$ с центром $\,$ в $\,$ $\,$ $\,$.

Теорема (о пучке плоскостей)

Пусть $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ – уравнения двух различных плоскостей, пересекающихся вдоль прямой линии L, тогда справедливы утверждения:

- 1. Для любых не равных одновременно нулю чисел λ_1 и λ_2 , уравнение $\lambda_1 (A_1x+B_1y+C_1z+D_1)+\lambda_2 (A_2x+B_2y+C_2z+D_2)=0$ является уравнением плоскости, проходящей через прямую линию L.
- 2. Для любой плоскости S , проходящей через прямую линию L , найдутся числа λ_1 и λ_2 такие, что уравнение $\lambda_1 (A_1x + B_1y + C_1z + D_1) + \lambda_2 (A_2x + B_2y + C_2z + D_2) = 0$ будет уравнением этой плоскости.

Связка плоскостей

Совокупность плоскостей, пересекающихся в точке $M_0(x_0,y_0,z_0)$, называется связкой плоскостей с центром в точке M_0 .

Очевидно, что все плоскости, принадлежащие связке плоскостей с центром в точке $M_0(x_0,y_0,z_0)$, могут быть описаны уравнением $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$, где A, B и C – произвольные не равные одновременно нулю числа.

22.09.2014 19:46:30

Прямая линия в пространстве

Каноническое уравнение прямой линии имеет вид

$$\frac{x - x_0}{a_x} = \frac{y - y_0}{a_y} = \frac{z - z_0}{a_z} \,,$$

где $M_0(x_0,y_0,z_0)$ – начальная точка прямой, вектор $\mathbf{a}=\{a_x,a_y,a_z\}$ – направляющий вектор прямой.

Если одна из координат направляющего вектора, например, a_x равна нулю, то уравнение переписывается в виде

$$x = x_0 \text{ M} \frac{y - y_0}{a_y} = \frac{z - z_0}{a_z}.$$

Если у направляющего вектора две координаты, например, a_x и a_y равны нулю, то уравнение переписывается в виде

$$x = x_0$$
 и $y = y_0$.

Уравнение *прямой линии, проходящей через две* заданные *точки* $M_0(x_0, y_0, z_0)$ *и* $M_1(x_1, y_1, z_1)$, имеет вид

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}.$$

Параметрическое уравнение прямой линии имеет вид

$$\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t \quad \text{или} \quad \begin{cases} x = x_0 + a_x t \\ y = y_0 + a_y t \\ z = z_0 + a_z t \end{cases}$$

Прямая линия в пространстве, определяемая двумя пересекающимися плоскостями, описывается системой

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

где $A_1x + B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$ – уравнения этих плоскостей.

22.09.2014 19:46:30 стр. 3 из 3