Continuité des fonctions vectorielles – Démonstrations

Exemple : ★

1) Pour une fonction constante.

Soit
$$C \in F$$
. Soit $f : E \to F$

$$x \mapsto C \in F$$

Soit $a \in E$.

Soit $\varepsilon > 0$, pour tout $\eta > 0$, alors

$$\forall x \in E, \|x-a\|_E \leq \eta \Longrightarrow \|f(x)-C\|_F = \|C-C\|_F = 0 < \varepsilon$$

C'est toujours vrai, donc $\lim_{x \to a} f(x) = C$

2) Soit $i \in [1, n]$, considérons $p_i : \mathbb{R}^n \to \mathbb{R}$

$$(x_1, \dots, x_n) \mapsto x_i$$

Soit
$$a = (a_1, \dots, a_n) \in \mathbb{R}^n$$

Soit $\varepsilon > 0$

Posons $\eta=\varepsilon>0$ (on a complété après)

Alors $\forall x = (x_1, ..., x_n) \in \mathbb{R}^n$

$$\max_{1 \le k \le n} |x_k - a_k| = \|x - a\|_{\infty} \le \eta$$

$$\Rightarrow |p_i(x) - a_i| = |x_i - a_i| \le ||x - a||_{\infty} \le \eta = \varepsilon$$

Donc $p_i(x) \xrightarrow[x \to a]{} a_i$