Tutorial - 5 Solutions

1 De Moorie machine - Non-overlapped fatterns" 1001"

Reset $\rightarrow A$ $1 \rightarrow B$ $10 \rightarrow C$ $100 \rightarrow S$

2) Moore machine - Overlapped feathern "1001"

Reset $\rightarrow 9$ $1 \rightarrow B$ $10 \rightarrow C$ $100 \rightarrow 3$ $1001 \rightarrow E$

3 Mealy machine - Non-overlapped feathern "1001"

Reset $\rightarrow A$ $1 \rightarrow B$ $10 \rightarrow C$ $100 \rightarrow 3$ $1001 \rightarrow A$

9 Mealy machine - Overlapped fathern "1001"

Reset -> A

1/0 B 1/0 0/0 C

10 -> C

100 -> S

100 -> S

Present state, 527, 50 Next Setate, Ye Y, You

	Pare	ien Toite			Ne W=	_	Si	tate w:	-	Output			
	#2	31	80	1/2	71	Yo	You	Y	Yo	1 2			
4->	0	0	0	000		D	0	0	1	D			
B>	0	0	1	0	1	0	0	0	1	D			
$C \rightarrow$	b	1	0	01		1	D	0	1	O			
2-	0	1	1	0	0	0	1	D	D	0			
E→	1	0	0	D	1	0	0	D	1				
	1	0	1	X	×	×	×	×	×	×			
	1	1	Ö	X	×	X	X	×	×	×			
	1 1 1		1	×	X	X	X	×	×	X			

0	0	1	0	- 1	0	0	0	1	D	Yes.	0	0	1	1	10	1	0	0
b	1	0	0	1	1	D	0	1	O		0	1	0	0	0	0	1	0
0	1	1	0	0	0	1	D	D	O		0	-1	0	1	0	0	1	0
1	0	0	D	1	0	0	D	1	1	==	0	1		0	0	0	0	0
F	0	- 1	X	×	×	×	×	×	×		D	1)		1		0	0
1	1	Ö	×	×	×	X	×	×	×			0	0	0	0		0	0
1	1	1	×	X	X	X	×	×	X			0	0	1	0	D	1	1
		Ste	xte	To	able	2					1 1 1		0	0 7	× ; × , × ,	x	()	× × × × ×
Y2		18	ow.	•	•	1	-	4	170	(\		. 4	ı					

y2

0

0

y,

0

0

40

0

0

Y2

0

Yo

Z

Y2 = y, yo. W

y, yo + y, w

Y, = y, y', w' + y2w' + y' . yo. w'

Z = 42

(2)		Pare	sent tale					w=		t s	tate		Output			
	74 73 72 71 70						Y3	Ye	Y,	Yo	Yy	Y2	2			
A	0	0	D	O	1	0	0	0 °	D	1.	0	0	0	1	70	0
B	0	0	0	1	0	0	0	1 -	0	0	0	0	D	1	0	0
C	0	0	1	0	0	0	1	0	D	D	0	0	0	1	0	0
2	0	J	0	0	0	0	0	0	0	14	1	0	0	D	0	0
E	[1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
					1										0	- 1

Since the expressions are simply, we can figure out the expressions for Dr. the next state, by observations

can be reinfred as thown in the following sheet.

3 (3) The one hot encoding requires more flip-flops & hence the cost in terms of the number of gates is higher for one-hot encoding when compared with the foot encoding method.

Howevery, the one-hot encoding enables faster circuit because of the simple combinational circuits evequence to generate the next state as compared to the minimum encoding method.