1

Supplementary Materials

Haotian Zhang, Jialong Shi, Jianyong Sun, Senior Member, IEEE and Zongben Xu, Member, IEEE

I. DETAILS

In the Supplementary Materials, we first describe how to embed GNN into PPLS/D. Second, we talk about the techniques for using PPLS/D_{GNN} for 3 and more objective problems. Then the algorithm PPLS/D is summarized in Alg. 1. Finally, the ablation study of PLS_{GNN} is presented.

A. Embedding networks into PPLS/D for 2-obj

Fig. 1. The preferring vector $[\psi(v_i,\theta),1-\psi(v_i,\theta)]$ w.r.t. $\frac{FEs}{budget}$ in PLS.

For PLS, the range of the output of network $\psi(\cdot,\theta)$ is (0,1). Then $h_i=\psi(v_i,\theta)f_1^i+(1-\psi(v_i,\theta))f_2^i$ is to calculate feature for each solution. Thus the vector $[\psi(v_i,\theta),1-\psi(v_i,\theta)]$ can cover the first quadrant. Just as shown in Section IV-D.5, the vector scans the first quadrant (Fig. 1) when $\frac{FEs}{budget}$ varies from 0 to 1. However, PPLS/D decomposes the problem by setting several preference weight, which means for each sub-problem, we do not need to scan the whole the first quadrant. Notice that we use **preferring vector** to represent $[\psi(v_i,\theta),1-\psi(v_i,\theta)]$ which is different from the **preference weight** $\{\lambda_l\}_{l=1}^L$ in PPLS/D.

For instance, if the preference weights for PPLS/D are:

$$\begin{pmatrix} \mathbf{1} : & 0 & 1 \\ \mathbf{2} : & 0.2 & 0.8 \\ \mathbf{3} : & 0.4 & 0.6 \\ \mathbf{4} : & 0.6 & 0.4 \\ \mathbf{5} : & 0.8 & 0.2 \\ \mathbf{6} : & 1 & 0 \end{pmatrix}$$

In PPLS/D, for one sub-problem, one preference weight is used. Then the solutions are classified based on the distance to these weights. A new solution which does not belong to current

class will be discarded. It implies that, for a sub-problem in PPLS/D, only part of space is searched.

Actually, we can know the boundary of search space of each sub-problem, that is: the angular bisector of the angle constructing by the adjacent preference weights:

$$\begin{pmatrix} \mathbf{1} : & 0.1096 & 0.8904 \\ \mathbf{2} : & 0.3067 & 0.6933 \\ \mathbf{3} : & 0.5 & 0.5 \\ \mathbf{4} : & 0.6933 & 0.3067 \\ \mathbf{5} : & 0.8904 & 01096 \end{pmatrix}$$

which is shown in Fig. 2. Then we show the solutions obtained by PPLS/D in Fig. 3. Thus we can find that for the first subproblem, the boundary is: [0,1] and [0.1096,0.8904]. For the second sub-problem, the boundary is that: [0.1096,0.8904] and [0.3067,0.6933]. For the last sub-problem, the boundary is: [0.8904,0.1096] and [1,0].

Notice that h_i can be re-written as $h_i = [\psi(v_i,\theta), 1-\psi(v_i,\theta)]^\intercal \cdot [f_1^i,f_2^i]$. Thus for each sub-problem, the preferring vector $[\psi(v_i,\theta), 1-\psi(v_i,\theta)]$ cannot be out of the boundary. Thus we just need to constrain $\psi(v_i,\theta)$ to make it in the boundary: Mathematically, we denote two boundaries for one sub-problem as low_b and up_b . up_{bx} and low_{bx} denote the first dimension of up_b and low_b respectively. Then we constrain:

$$\begin{array}{rcl} h_i &=& [\tilde{\psi}(v_i,\theta),1-\tilde{\psi}(v_i,\theta)]^\intercal \cdot [f_1^i,f_2^i] \\ \tilde{\psi}(v_i,\theta) &=& \psi(v_i,\theta) \times (up_{bx}-low_{bx}) + low_{bx} \end{array}$$

For instance, for the second sub-problem, we set $h_i = [\tilde{\psi}(v_i,\theta),1-\tilde{\psi}(v_i,\theta)]^\intercal \cdot [f_1^i,f_2^i]$ where $\tilde{\psi}(v_i,\theta)=\psi(v_i,\theta)\times (0.3067-0.1096)+0.1096$.

Fig. 2. Preference weight and angular bisector for PPLS/D.

Fig. 3. Preference weight, angular bisector and solutions for PPLS/D.

Notice that the preferring vector varies from [0,1] to [1,0](shown in Fig. 1) in PLS when $\frac{FEs}{budget}$ varies from 0 to 1. Thus for each subproblem, the preferring vector varies from $[low_{bx}, 1 - low_{bx}]$ to $[up_{bx}, 1 - up_{bx}]$ after embedding into PPLS/D, which is shown in Fig. 4.

Fig. 4. The preferring vector after embedding.

B. Embedding networks into PPLS/D for 3 and more-obj

The main problems here are that: $h = \psi(v,\theta)f_1 +$ $(1-\psi(v,\theta))f_2$ and the input of ψ contains $\arctan(\frac{f_2-z_2^*}{f_1-z_*^*})$. Thus for 3-objective, how to define f_1 and f_2 . Notice that the preference weight of an m-objective problem ($\{w_i =$ $[w_{1,i},\cdots,w_{m,i}]\}_{i=1}^M$) are in a simplex $S=\{w_i\in\mathbb{R}^m|\sum_{j=1}^mw_{j,i}=1\}\subseteq\mathbb{R}^{m-1}$. The core idea is degenerating the problem into 2-objective.

Here we denote the input of ψ as $arctan(\frac{I_2 - \tilde{z}_2^*}{I_1 - \tilde{z}_1^*})$ and h = $\psi(v,\theta)I_1 + (1-\psi(v,\theta))I_2$. For 2-objective problems, $I_1 =$ $f_1, I_2 = f_2, \tilde{z}_1^* = z_1^*, \tilde{z}_2^* = z_2^*$. For 3-objective, we can discuss in different cases:

- The preference weight has one zero (such as w =[0.5, 0, 0.5]). We can discard the dimension which is zero, and the weight is regarded as [0.5, 0.5] and $I_1 =$ $f_1, I_2 = f_3, \tilde{z}_1^* = z_1^*, \tilde{z}_2^* = z_3^*.$
- The preference weight has more than one zero (such as w = [0, 0, 1]). We can discard one dimension which is zero randomly, and the weight is regarded as [0, 1] and $I_1 = f_2, I_2 = f_3, \tilde{z}_1^* = z_2^*, \tilde{z}_2^* = z_3^*.$
- ullet The preference weight has no zero (such as w= $[\frac{1}{4},\frac{1}{2},\frac{1}{4}]$). We fix f_3 and aggregate f_2 and f_1 : $I_1=\frac{w_1f_1+w_2f_2}{w_1+w_2},I_2=f_3,\tilde{z}_1^*=\frac{w_1z_1^*+w_2z_2^*}{w_1+w_2},\tilde{z}_2^*=z_3^*.$

After degenerating into 2-objective problem, we can embed network as the last subsection.

For instance, the preference weights for 3-objective is:

$$\begin{pmatrix} \mathbf{1}: & 0 & 0 & 1 \\ \mathbf{2}: & 0 & \frac{1}{3} & \frac{2}{3} \\ \mathbf{3}: & 0 & \frac{2}{3} & \frac{1}{3} \\ \mathbf{4}: & 0 & 1 & 0 \\ \mathbf{5}: & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \mathbf{6}: & \frac{1}{3} & 0 & \frac{2}{3} \\ \mathbf{7}: & \frac{2}{3} & 0 & \frac{1}{3} \\ \mathbf{8}: & 1 & 0 & 0 \\ \mathbf{9}: & \frac{2}{3} & \frac{1}{3} & 0 \\ \mathbf{10}: & \frac{1}{3} & \frac{2}{3} & 0 \end{pmatrix}$$

which is shown in Fig. 5. The right figure of Fig. 5 represents the preference weights are in a simplex. When there is a zero in the weight (such as the first 4 rows), the weight can be degenerated into

$$\left(\begin{array}{cc}
0 & 1 \\
\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} \\
1 & 0
\end{array}\right)$$

and $I_1 = f_2, I_2 = f_3, \tilde{z}_1^* = z_2^*, \tilde{z}_2^* = z_3^*$. The boundary can be obtained by calculating the angular bisector:

$$\left(\begin{array}{ccc}
0.191 & 0.809 \\
0.5 & 0.5 \\
0.809 & 0.191
\end{array}\right)$$

Then the embedding is the same as the last section. In some words, we have:

- 1-st row: $I_1 = f_2, I_2 = f_3, \tilde{z}_1^* = z_2^*, \tilde{z}_2^* = z_3^*$ and $low_{bx} = 0 \ up_{bx} = 0.191;$
- 2-nd row: $I_1 = f_2, I_2 = f_3, \tilde{z}_1^* = z_2^*, \tilde{z}_2^* = z_3^*$ and $low_{bx} = 0.191 \ up_{bx} = 0.5;$
- 3-rd row: $I_1 = f_2, I_2 = f_3, \tilde{z}_1^* = z_2^*, \tilde{z}_2^* = z_3^*$ and $low_{bx} = 0.5 \ up_{bx} = 0.809;$
- 4-th row: $I_1 = f_2, I_2 = f_3, \tilde{z}_1^* = z_2^*, \tilde{z}_2^* = z_3^*$ and
- $low_{bx} = 0.809 \ up_{bx} = 1;$ 5-th row: $I_1 = \frac{\frac{1}{3}f_1 + \frac{1}{3}f_2}{\frac{1}{3} + \frac{1}{3}}, I_2 = f_3, \tilde{z}_1^* = \frac{\frac{1}{3}z_1^* + \frac{1}{3}z_2^*}{\frac{1}{3} + \frac{1}{3}}, \tilde{z}_2^* = z_3^* \text{ and } low_{bx} = 0.5 \ up_{bx} = 0.809;$
- 6-th row: $I_1 = f_1, I_2 = f_3, \tilde{z}_1^* = z_1^*, \tilde{z}_2^* = z_3^*$ and $low_{bx} = 0.191 \ up_{bx} = 0.5;$
- 7-th row: $I_1 = f_1, I_2 = f_3, \tilde{z}_1^* = z_1^*, \tilde{z}_2^* = z_3^*$ and $low_{bx} = 0.5 \ up_{bx} = 0.809;$
- 8-th row: $I_1 = f_1, I_2 = f_2, \tilde{z}_1^* = z_1^*, \tilde{z}_2^* = z_2^*$ and $low_{bx} = 0.809 \ up_{bx} = 1;$

- 9-th row: $I_1=f_1, I_2=f_2, \tilde{z}_1^*=z_1^*, \tilde{z}_2^*=z_2^*$ and $low_{bx}=0.5\ up_{bx}=0.809;$
- 10-th row: $I_1=f_1, I_2=f_2, \tilde{z}_1^*=z_1^*, \tilde{z}_2^*=z_2^*$ and $low_{bx}=0.191\ up_{bx}=0.5;$

Fig. 5. Space division for 3-objective.

Fig. 6. Preferring vectors after embedding in PPLS/D for 3-objective problems.

Then the preferring vectors are shown in Fig. 6. Notice that for 5-th row, we do not cover all the sub space, thus in practice, we use $low_{bx} = 0.191 \ up_{bx} = 0.809$ for better coverage.

Notice that for more-objective problems, such as m-objective we can also discuss in two cases: First if the preference weight has zeros, then we discard the zero and degenerate into (m-1)-objective problems. Second if no zeros in the preference weight, we set: $I_1 = \frac{\sum_{i=1}^{m-1} w_i f_i}{\sum_{i=1}^{m-1} w_i}, I_2 = f_m, \tilde{z}_1^* = \frac{\sum_{i=1}^{m-1} w_i z_i^*}{\sum_{i=1}^{m-1} w_i}, \tilde{z}_2^* = z_m^*.$

C. PPLS/D

PPLS/D is summarized in Alg. 1.

D. Ablation Study

We now study the effectiveness of different parts of PLS_{GNN} . To show the effectiveness of GNN in PLS_{GNN} , we compare it with several algorithms:

• PLS_{NN}: PLS with MLP $\phi(\cdot, \mathbf{w})$ to control K, but selection is random selection;

Algorithm 1: Parallel Pareto Local Search Based on Decomposition (PPLS/D)

maximum budget budget, and L the process

Input: An initial set of non-dominated solutions S_0 ,

number and preference weight $\{\lambda_l\}_{l=1}^L$. 1 For each process $l \in \{1, \dots, L\}$, do independently in parallel: **2** For $\forall x \in S_0$, $explore(x) \leftarrow$ false; $S_l \leftarrow S_0; S_l \leftarrow S_l'; FEs \leftarrow 0;$ 4 while S'_l is not empty and $FEs \leq budget$ do $x \leftarrow argmax_{x \in S'_l} f^{te}(x|\lambda_l, z^*)$ $SuccessFlag \leftarrow FALSE;$ 6 **for** each x' in the neighborhood of x **do** 7 Evaluate x'; $FEs \leftarrow FEs + 1$; 8 if $f^{te}(x'|\lambda_l, z^*) > max_{x \in S_l} f^{te}(x|\lambda_l, z^*)$ then $S_l \leftarrow S_l \bigcup \{x'\}; explore(x') \leftarrow false;$ 10 Remove the dominated solutions from S_l ; 11 $SuccessFlag \leftarrow TURE;$ 12 Break; 13 14 end end 15 if SuccessFlag == FALSE then 16 **for** each x' in the neighborhood of x **do** 17 **if** x' is not dominated by any solution of S_l 18 $S_l \leftarrow S_l \bigcup \{x'\}; explore(x') \leftarrow false;$ 19 Remove the dominated solutions from S_l ; 20 21 22 end 23 end $explore(x) \leftarrow \text{true};$ 24 $S'_{l} \leftarrow \{x \in S_{l} | explore(x) = false\};$ 25

• PLS_{NN}-H1: PLS with MLP $\phi(\cdot, \mathbf{w})$ to control K; for selection part, for each solution x_i , the feature $h_i = \frac{1}{2}(f_1^i + f_2^i)$ is used and then aggregate as $y_i = \frac{\sum_{j=1}^{|S'|} e_{ij}h_j}{\sum_{j=1}^{|S'|} e_{ij}}$, as in PLS_{GNN}, where $e_{ij} = \frac{1}{1+dis(x_i,x_j)}$; then, the solution with the largest y_i is selected; and

26 end

27 return $S \leftarrow \bigcup_{l=1}^{L} S_l$.

• PLS_{NN}-H2: the setting is the same as for PLS_{NN}-H1 except for $E = \{e_{ij}\}$ being the identity matrix.

Here PLS_{NN} aims to study the effectiveness of ϕ and PLS_{NN} -H1, PLS_{NN} -H2 aim to study the effectiveness of ψ . Table I shows the results on the two-objective UBQPs. The last line summarizes the average of percentages of improvement comparing with the PLS. PLS_{NN} improves the performance of PLS, and PLS_{NN} -H performs better than PLS_{NN} by adding the heuristic strategy for selection. However, PLS_{GNN} still delivers the best performance. The results show that MLP and GNN both improve performance.

Instance	Bud	PLS	PLS_{NN}	PLS _{NN} -H1	PLS _{NN} -H2	$\begin{array}{c} \text{PLS}_{\text{GNN}}\text{-}1\\ N_d=1, C_d=+\infty \end{array}$	$\begin{array}{c} \text{PLS}_{\text{GNN}}\text{-}2\\ N_d=1, C_d=+\infty \end{array}$	$\begin{array}{c} \text{PLS}_{\text{GNN}}\text{-}1\\ N_d = 5, C_d = 10 \end{array}$	$\begin{array}{c} \text{PLS}_{\text{GNN}}\text{-}2\\ N_d = 5, C_d = 10 \end{array}$
200-0.8	5e4	1.092	1.091	1.104	1.106	1.108	1.112	1.107	1.107
	1e5	1.103	1.105	1.112	1.111	1.119	1.123	1.115	1.115
300-0.8	3e5	1.206	1.211	1.209	1.212	1.228	1.239	1.219	1.223
	5e5	1.216	1.222	1.214	1.214	1.235	1.240	1.229	1.227
500-0.8	8e5	1.395	1.397	1.417	1.425	1.452	1.493	1.418	1.415
	1e6	1.409	1.414	1.424	1.423	1.460	1.495	1.435	1.422
Avg. of Per. of imp.		0%	0.25%	0.77%	0.91%	2.33%	3.58%	1.35%	1.18%