Prove that every unhappy number ends up in the loop containing 4.

By induction on
$$n \ge 1$$
, prove that either n reduces to 1 or n enters the $loop$ involving U .

Show thin for $1 \le n \le 99$.

For $n \ge 100$, $Sosd(n) \le n$.

 $n = (abc)_{10}$
 $n = (abc)$

Clarification about the iterated logarithm function

1. Consider the language

 $L = \{a^n b^n c^n \mid n \ge 0\}$

over the alphabet {a,b,c}. Characterize all the strings in the complement ~L.

2. Give an example of two infinite languages A and B over the alphabet $\{a,b\}$ such that $A \cap B = \emptyset$ and AB = BA, or prove that no such languages exist.

$$A = \left\{ x \in \left\{ a, 6 \right\}^{\frac{1}{3}} \mid |x| \text{ in even} \right\}$$

$$B = \left\{ x \in \left\{ a, 6 \right\}^{\frac{1}{3}} \mid |x| \text{ in odd} \right\}$$

$$AB = BA = B$$

3. Give an example of a language L (over any alphabet of your choice) such that

$$\sim$$
(L*) = (\sim L)*,

or prove that no such language can exist.

For any language A, we have
$$E \in A^{+}$$

(Even if $A = \emptyset$)

L* contains $E = \sum_{i=1}^{k} n_i(E^{+})$ does not contain E
($n_i L$)* contains E
Can never be equal

4. For two languages A and B over the same alphabet, define the language

 $A / B = \{x \mid xy \in A \text{ for some } y \in B\}.$

Give examples of infinite languages A and B over the alphabet {a,b} such that:

(a)
$$A / B = A$$

$$A = B = \sum_{A/B=\Sigma}^{X} any \Sigma$$

$$A = \{ab, b\}$$
 $B = \{b\}$
 $A/B = \{a, e\}$

(b) $A / B \neq A$

$$\Sigma = \{a,b\}$$

$$A = \{a^n \mid n > 0\}, \quad B = \{a^n \mid n > 0\}$$

$$A/B = \emptyset \neq A.$$

5. Let A be a language over the alphabet {a,b}. Define the language

$$B = \{xy \mid xay \in A\}.$$

X Not correct

If A is non-empty and not contained in $\{a\}^*$, prove that $B \neq A$.

Care 1:
$$A \subseteq \{b\}^{*} \Rightarrow B = \emptyset \neq A$$

Care 2: A contains strings containing a .

Take a string $w \in A$ st. $\#(w)$ is the bot a small as possible.

 $A = \{ba^n \mid n \ge 0\}$
 $B = A$

6. Let B be a language over some alphabet. We call B transitive if BB \subseteq B. We call B reflexive if $\epsilon \in$ B. Prove that for any language A, the smallest transitive and reflexive language containing A is A*.

$$A \subseteq B \implies A \subseteq B \implies \text{for all } n > 0 \implies A \subseteq B$$