"Programozás" beadandó feladat

Készítette: Vida Levente Neptun-azonosító: DLNINP

Kurzuskód: IT-18PROGEG Gyakorlatvezető neve: Lipták Attila

2024. január 21.

Tartalom

Felhasználói dokumentáció	3
Feladat	3
Futási környezet	3
Használat	3
A program indítása	3
A program használata billentyűzetről való b	evitel esetén3
A program használata fájlból való bevitel es	setén3
A program kimenete	4
Minta bemenet és kimenet	4
Hibalehetőségek	4
Fejlesztői dokumentáció	5
Feladat	5
Tervezés	5
Specifikáció	5
Visszavezetés	5
Algoritmus	6
Fejlesztői környezet	6
Forráskód	6
Megoldás	7
Függvénystruktúra	Error! Bookmark not defined.
	7
Tesztelés	9
Érvényes tesztesetek	9
	10
Feilesztési lehetőségek	Error! Rookmark not defined

Felhasználói dokumentáció

Feladat

Település valamikor minimális hőmérséklettel

A meteorológiai intézet az ország N településére adott M napos időjárás előrejelzést, az adott településen az adott napra várt legmagasabb hőmérsékletet.

Készíts programot, amely megadja azokat a településeket, amelyeken előfordul valamelyik napi előrejelzések minimuma!

Futási környezet

IBM PC, exe futtatására alkalmas, 64-bites operációs rendszer (pl. Windows 11). Nem igényel egeret.

Használat

A program indítása

A program az telepules\bin\Debug\telepules.exe néven található a tömörített állományban.

A program használata billentyűzetről való bevitel esetén

Az telepules. exe fájl elindításával a program az adatokat a **billentyűzet**ről olvassa be a következő sorrendben:

#	Adat	Magyarázat
1.	Települések száma (n)	Nemnegatív egész szám
2.	Napok száma (m)	Nemnegatív egész szám
3.	1. településen az 1. nap hőmérséklete	Egész szám innentől
4.	1. településen az 2. nap hőmérséklete	
•••		
	1. településen az m. nap hőmérséklete	
	2. településen az 1. nap hőmérséklete	
	n. településen az m. nap hőmérséklete	

A program használata fájlból való bevitel esetén

Lehetőségünk van az adatokat **fájl**ban is megadni. Ekkor a programot *parancssorban* a következőképpen kell indítani, feltételezve, hogy a bemeneti fájlok mellette helyezkednek el:

```
telepules.exe < bel.txt</pre>
```

A standard bemenet első sorában a települések száma (1≤N≤1000) és a napok száma (1≤M≤1000) van. Az ezt követő N sorban az egyes napokra jósolt M hőmérséklet értéke találha-tó (-50≤Hi,j≤50). Például:

```
3 5
10 15 12 10 10
11 11 11 11 20
12 16 16 16 20
```

A program kimenete

A standard kimenet első sorába azon települések T száma van, amelyeken előfordul valamelyik napi előrejelzések minimuma. Ezt követi ezen települések sorszáma, növekvő sorrendben. Például:

2 1 2

Minta bemenet és kimenet

```
×
 © C:\Users\User\Desktop\ELTE-I ×
Települések száma = 3
Napok száma = 3
1. település 1. napjának hőmérséklete = 10
1. település 2. napjának hőmérséklete = 15
1. település 3. napjának hőmérséklete
2. település 1. napjának hőmérséklete = 17
2. település 2. napjának hőmérséklete = 11
2. település 3. napjának hőmérséklete =
3. település 1. napjának hőmérséklete =
3. település 2. napjának hőmérséklete = 22
3. település 3. napjának hőmérséklete = 10
3 darab feltételnek megfelelő település van, sorszáma(ik
Kérem, nyomjon ENTER-t a folytatáshoz!
```

Hibalehetőségek

Az egyes bemeneti adatokat a fenti mintának megfelelően kell megadni. Hiba, ha bármelyik megadandó adat nem természetes szám. Hiba esetén a program azzal jelzi a hibát, hogy újra kérdezi azt.

Mintafutás hibás bemeneti adatok esetén:

```
©\ C:\Users\User\Desktop\ELTE-I ×
Települések száma = egy
Helytelen input! (1 <= n <= 1000)
Települések száma = −1
Helytelen input! (1 <= n <= 1000)
Települések száma = 1
Napok száma = egy
Helytelen input!
Napok száma = −1
Helytelen input! (1 <= m <= 1000)
Napok száma = 1
1. település 1. napjának hőmérséklete = egy
Helytelen input! (-50 <= hő <= 50
1. település 1. napjának hőmérséklete = −1
Helytelen input! (-50 <= hő <= 50)
1. település 1. napjának hőmérséklete = 0
1 darab feltételnek megfelelő település van, sorszáma(ik):
Kérem, nyomjon ENTER-t a folytatáshoz!
```

Fejlesztői dokumentáció

Feladat

Település valamikor minimális hőmérséklettel

A meteorológiai intézet az ország N településére adott M napos időjárás előrejelzést, az adott településen az adott napra várt legmagasabb hőmérsékletet.

Készíts programot, amely megadja azokat a településeket, amelyeken előfordul valamelyik napi előrejelzések minimuma!

Tervezés

Specifikáció

Visszavezetés

Vissaveretés	
V 03220 0 20005	
1, Tetel : Kivalogata's	eu ~ 1n
Be: e & 72, u & 72	de, y ~ de, vavos
Ki: db ε N, y εH[db]	T(i) ~ VAN(j:=1m, ho [i, j]
{ []: -	= OszlopMin(j))
Uf: (db, y) = KIVALOGAT (i = eu, T(i), f((i) f(i)~ i
- t (00/3) (100/500) (0 - 5 0) (5)	0)/ (10)
2, Tetel Eldontes	
Be: e & TL, u & TL	ea ~ 1m
ki, vane L	ban ~ ban
{ 1	$T(i) \sim ho[i,j] = OyzlopMin(j)$
Uf: ban = VAN(i:=eu, T(i))	,
Mf: Gan = 04/0 (c:= e a, 1 (c))	
	`
3, Tetel : Minimumbivalasztás (függve	ring)
Be: e E TL, a ETL	c u ~ L n
ki: minind E72, minest EH	£(¿) ~ ho [€, ¿]
	tro) wo [18]
{f: e ≤ u	
Uf: (minind, minert) = MIN(i = e. a	, ((i))

Algoritmus

Fejlesztői környezet

IBM PC, exe futtatására alkalmas operációs rendszer (pl. Windows 11 Home). Visual Studio 2022 (Version 17.2.3) fejlesztői környezet.

Forráskód

A teljes fejlesztői anyag –kicsomagolás után– a telepules nevű könyvtárban található meg. A fejlesztés során használt könyvtár-struktúra:

Állomány	Magyarázat
telepules\bin\Debug\net8.0\telepules.exe	futtatható kód (a futtatáshoz szükséges fájlokkal)
telepules\obj\	mappa fordításhoz szükséges kódokkal
telepules\Program.cs	C# forráskód
telepules\teszt1.txt	teszt-bemeneti fájl ₁
telepules\teszt2.txt	teszt-bemeneti fájl ₂
telepules\teszt3.txt	teszt-bemeneti fájl ₃
telepules\teszt4.txt	teszt-bemeneti fájl ₄
telepules\teszt5.txt	teszt-bemeneti fájl ₅
telepules\dlninp.docx	dokumentációk (ez a fájl)

Megoldás

A kód

```
A Program.cs fájl tartalma:
using System;
using System.Collections.Generic;
namespace telepules
    internal class Program
         static void Main(string[] args)
             //Deklarálás
             int n, m;
             int[,] ho;
             int db = 0;
             List<int> varos = new List<int>();
             //Beolvasás
             (n,m,ho) = beolvas();
             // Kiválogatás
             for (int i = 0; i < n; i++)
                 // Eldöntés
                 bool van = false;
                 int j = 0;
                 while (!van && j < m)
                     if (ho[i, j] == oszlopMin(ho, j, n))
                         van = true;
                     else
                         j++;
                 }
                 if (van)
                 {
                     db++;
                     varos.Add(i+1);
             }
             // Kiírás
             kiir(db, varos);
         }
         public static int oszlopMin(int[,] ho, int j, int n)
             int minert = ho[0, j];
             for (int i = 1; i < n; i++)
                 \quad \quad \text{if } (ho[i,\,j] < minert) \\
                     minert = ho[i, j];
             return minert;
         }
         public static (int n, int m, int[,] ho) beolvas()
             if (Console.IsInputRedirected)
                 return beolvas_biro();
```

```
else
       return beolvas_kezi();
static (int n, int m, int[,] ho) beolvas_biro()
    string[] row = Console.ReadLine().Split('');
   int n = int.Parse(row[0]);
   int m = int.Parse(row[1]);
   int[,] ho = new int[n, m];
   for (int i = 0; i < n; i++)
        row = Console.ReadLine().Split(" ");
        for (int j = 0; j < m; j++)
            ho[i, j] = int.Parse(row[j]);
   return (n, m, ho);
}
static (int n, int m, int[,] ho) beolvas_kezi()
    int n, m;
   bool jo;
   do
        Console.ResetColor();
       Console.Write("Települések száma = ");
       jo = int.TryParse(Console.ReadLine(), out n) && n >= 1 && n <= 1000;
       if (!jo)
        {
            Console.ForegroundColor = ConsoleColor.Red;
            Console. WriteLine("Helytelen input! (1 \le n \le 1000)");
    } while (!jo);
    do
        Console.ResetColor();
       Console.Write("Napok száma = ");
       jo = int.TryParse(Console.ReadLine(), out m) && m >= 1 && m <= 1000;
       if (!jo)
            Console.ForegroundColor = ConsoleColor.Red;
            Console.WriteLine("Helytelen input! (1 <= m <= 1000)");
    } while (!jo);
   int[,] ho = new int[n, m];
   for (int i = 0; i < n; i++)
       for (int j = 0; j < m; j++)
            do
                Console.ResetColor();
                Console.Write("\{0\}. település \{1\}. napjának hőmérséklete = ", i + 1, j + 1);
                jo = int.TryParse(Console.ReadLine(), out ho[i, j]) && ho[i, j] >= 0;
                if (!jo)
                    Console.ForegroundColor = ConsoleColor.Red;
                    Console. WriteLine("Helytelen input! (-50 \le h\ddot{o} \le 50)");
            } while (!jo);
```

```
return (n, m, ho);
static void kiir(int db, List<int> varos)
   if (Console.IsOutputRedirected)
       Console.Write(db + " ");
       for (int i = 0; i < db; i++)
           Console.Write(varos[i] + " ");
    }
   else
       Console.ForegroundColor = ConsoleColor.Green;
           Console. WriteLine("Nincs a feltételnek megfelelő település!");
       else
           Console. WriteLine("{0} darab feltételnek megfelelő település van, sorszáma(ik):", db);
           for (int i = 0; i < db - 1; i++)
               Console.Write("{0}, ", varos[i]);
           Console.WriteLine(varos[db - 1]);
       Console.ForegroundColor = ConsoleColor.Black;
       Console.BackgroundColor = ConsoleColor.Gray;
       Console.WriteLine("Kérem, nyomjon ENTER-t a folytatáshoz!");
       Console.ResetColor();
       Console.ReadLine();
```

Tesztelés

Érvényes tesztesetek

1. teszteset: teszt1.txt

2. teszteset: teszt2.txt

	Bemenet – 2 település, 1 nap, 20 fok, 20 fok
2 1	
20	
20	
	Kimenet
2 1 2	

3. teszteset: teszt3.txt

Bemenet – saját kitalált bemenet
4 3

15 16 17
15 16 17 18 11 14 16 19 12 10 13 20
16 19 12
10 13 20
Kimenet
3 2 3 4

4. teszteset: teszt4.txt

Bemenet – saját kitalált bemenet	
2 5	
10 15 12 13 10	
11 10 13 12 14	
	Kimenet
2 1 2	

5. teszteset: teszt5.txt

	Bemenet – saját kitalált bemenet
4 3	
30 31 32	
29 30 30	
31 33 27	
26 25 28	
	Kimenet
2 3 4	

Érvénytelen tesztesetek

Billentyűzetes bevitel esetén

6. teszteset

Bemenet – szöveges adat	
Települések száma = egy	
Kimenet	
Helytelen input! $(1 \le n \le 1000)$	
Települések száma =	

7. teszteset

Bemenet – Túl kicsi hőmérséklet	
Települések száma = -51	
Kimenet	
Helytelen input! $(1 \le n \le 1000)$	
Települések száma =	