MLFA LAB MidSemester Test

Name: Aryan Satpathy

Roll: 20EC10014

Experiment 1

Effect of K on Accuracy of KNN Model:

Figure 1: Effect of K

Remarks:

- At high values of K, the Decision Boundary is over smoothened. This results in a steady decline of accuracy. This is a sign of Underfitting.
- 2. At lower values of K the accuracy is good.
- 3. Optimal value of K is 3 (I chose the higher K in case the accuracies are equal).

Experiment 2

Effect of Noise on KNN model's performance

Figure 2: Percentage Accuracy v/s Noise

Percentage Accuracy for the noise values:

Noise %	Accuracy %
10	96.67
20	96.67
30	96.67
40	93.33
50	93.33
60	86.7
70	93.33
80	86.7
90	86.67

Table 1: Percent Accuracy

Remarks:

- We notice a consistent pattern of high accuracy when a small percentage of the Train Set is noisy.
- 2. However, there is an unexpected increase in the accuracy when 70% of the Train Set is noisy. This is purely random and by changing the seed, one can notice that this effect is no longer visible.
- 3. We can notice that KNN is very robust to noise, as we see a model accuracy of 96.67 % for up-to 30% of noisy Train Set(Almost one-thirds of the set is noisy). Note that 96.67 % is the Percentage Accuracy obtained in the noiseless case too.