

WHAT IS CLAIMED IS:

1 A computer system coupled with a pipelined network comprising:
2 a plurality of initiator nodes coupled to send packets, into the network;
3 a plurality of target nodes coupled to receive packets sent into the network;
4 and
5 a plurality of pipeline stages for transmitting data across the network, each
6 pipeline stage consuming a predetermined time period, thereby
7 providing for a predetermined time period for transmission for each
8 packet successfully sent between one of the initiator nodes and one of
9 the target nodes.

1 2. The computer system as recited in claim 1 wherein the pipelined
2 network is synchronous in that boundaries of all the pipeline stages are aligned.

1 3. The computer system as recited in claim 1, wherein the pipeline stages
2 include an arbitration stage, a transfer stage, an acknowledge stage, the stages being in
3 a fixed time relation to each other.

1 4. The computer system as recited in claim 3, the pipeline stages having
2 equal length.

1 5. The computer system as recited in claim 3 further comprising a check
2 stage in which an initiator node checks if transmission of a sent packet was
3 successful.

1 6. The computer system as recited in claim 3 further comprising
2 arbitration logic coupled to the initiator nodes, the pipelined network, and the target
3 nodes, the initiator nodes supplying requests to the arbitration logic for transmission
4 of respective packets to respective target nodes during respective arbitration stages,
5 the arbitration logic responsive to the initiator node requests to schedule packet
6 transmission across the network.

Sub A7

1 7. The computer system as recited in claim 6 wherein for a particular
2 transfer, the arbitration logic is coupled to receive an indication from a particular
3 target node for the particular transfer as to whether the particular transfer can be
4 supported in the particular target node.

1 8. The computer system as recited in claim 3 wherein during the transfer
2 stage the packet supplied by the initiator traverses the network.

1 9. The computer system as recited in claim 3 wherein during the
2 acknowledge stage, an acknowledge packet is returned by the target node to the
3 initiator node.

1 10. The computer system as recited in claim 9 wherein the acknowledge
2 packet is checked by the initiator during the check stage.

1 11. The computer system as recited in claim 10 wherein the check stage is
2 fixed in time in relation to the arbitration stage, thereby allowing the initiator node to
3 check for successful completion of sending the packet a fixed time after the
4 arbitration stage.

1 12. The computer system as recited in claim 3 wherein the transfer stage
2 includes multiple pipeline stages to transmit the transfer packet across the network.

1 13. The computer system as recited in claim 3 wherein the acknowledge
2 stage includes multiple stages to transmit the acknowledge packet across the network.

1 14. The computer system as recited in claim 3 wherein the number of
2 bytes transferred per request during the transfer stage is fixed.

1 15. The computer system as recited in claim 3 wherein outstanding
2 transactions across the pipelined network are delivered in order.

Suy A

1 16. The computer system as recited in claim 1 further comprising a switch
2 coupling the nodes on the pipelined network.

1 17. The computer system as recited in claim 16 wherein the pipelined
2 network comprises a plurality of cascaded switches.

1 18. A method for transmitting information across a pipelined computer
2 network, comprising:
3 transmitting the information from an initiator node to a target node using a
4 plurality of pipeline stages in the computer network, each pipeline
5 stage having a fixed forwarding delay; and
6 overlapping an operation in one pipeline stage with another operation in
7 another pipeline stage.

1 19. The method as recited in claim 18 further comprising:
2 requesting a path through the network from the initiator node to the target
3 node during an arbitration stage from arbitration logic;
4 sending at least one data packet containing the information from the initiator
5 node to the target node during one or more transfer stages; and
6 sending an acknowledge packet containing status of receipt of the data packet
7 from the target to the initiator during one or more acknowledge
8 pipeline stages.

1 20. The method as recited in claim 19 further comprising during the
2 arbitration stage:
3 the arbitration logic communicating with the target node to determine if the
4 target node can accept a packet from the initiator node; and
5 wherein during the arbitration stage, the arbitration logic provides a grant
6 indication to the initiator node to indicate that the initiator node can
7 transmit the packet during a subsequent transfer stage.

1 21. The method as recited in claim 19 wherein at least one of the
2 arbitration stage, the transfer stage and the acknowledge stage are overlapped.

S-1A7

22. The method as recited in claim 19 wherein the pipelined network
2 includes a first switching circuit coupling the initiator node and the target node, the
3 first switching circuit carrying information transmitted during the transfer stage.

1 23. The method as recited in claim 22 wherein the pipelined network
2 includes a second switching circuit coupling the initiator node and the target node, the
3 second switching circuit being independent of the first switching circuit and wherein
4 information for at least a portion of pipeline operations are carried over the second
5 switching circuit simultaneously with operations for the transfer stage carried over the
6 first switching circuit.

1 24. The method as recited in claim 23 wherein information for the
2 arbitration and acknowledge stages are carried over the second switching circuit
3 during arbitration and acknowledge pipeline stages, respectively.

1 25. The method as recited in claim 19 further comprising generating a
2 schedule for traversing the pipeline stages of the network in the arbiter, the schedule
3 determining for each slot on the pipeline, each slot being a length of a pipeline stage,
4 which input port is connected to which output port.

1 26. A method as recited in claim 19 wherein each initiator node of a
2 plurality of initiator nodes provides a request vector indicating one or more desired
3 target nodes, to the arbitration logic, the request vectors for at least some of the
4 initiator nodes including multiple target nodes and wherein the arbitration logic
5 schedules a future pipeline slot to avoid conflicts, the arbitration logic globally
6 scheduling use of the network.

1 27. The method as recited in claim 19 further comprising the initiator node
2 checking the acknowledge packet a fixed number of pipeline stages after sending the
3 transfer packet, to determine whether transmission of the information was successful.

1 28. The method as recited in claim 18 further comprising:

Claims 27
3
4

scheduling usage of the network using an arbiter in response to requests from initiator nodes to allocate each stage of the pipeline so as to avoid conflicts for network resources.

1 29. The method as recited in claim 28 wherein the scheduling includes
2 accounting for prescheduled requests, the prescheduled requests requesting periodic
3 slots on the network.

1 30. The method as recited in claim 18 further comprising sending all
2 information across the network in order.

1 31. A networked computer system comprising:
2 a plurality of processing nodes, each processing node including at least one
3 processor; and
4 a synchronous pipelined switched network coupling the plurality of processing
5 nodes, the pipelined network having a plurality of pipeline stages, the
6 pipeline including at least an arbitration stage to obtain a path through
7 the pipelined switched network, a transfer stage transferring data over
8 the path and an acknowledge stage, each stage being of equal length.

1 32. The networked computer system as recited in claim 31 wherein the
2 pipelined switched network comprises a first switching circuit coupling the plurality
3 of processing nodes, the first switching circuit carrying information transmitted
4 during the transfer stage.

1 33. The networked computer system as recited in claim 32 wherein the
2 pipelined switched network comprises a second switching circuit coupling the
3 processing nodes, the second switching circuit being independent of the first
4 switching circuit and wherein at least a portion of pipeline operations are carried over
5 the second switching circuit simultaneous with operations for the transfer stage
6 carried over the first switching circuit.

Sub A'7

1 34. The networked computer system as recited in claim 31 wherein at least
2 one of arbitration and acknowledge information for respective arbitration and
3 acknowledge stages are transmitted over the second switching circuit.

1 35. The networked computer system as recited in claim 31 wherein the
2 networked computer system further includes at least one storage node coupled to the
3 plurality of processing nodes through the synchronous pipelined switched network.

1 36. The networked computer system as recited in claim 31 wherein the
2 networked computer system further includes at least an input/output node coupled to
3 the plurality of processing nodes through the synchronous pipelined switched
4 network.