Lab 4 Portfolio

Lab manual

4) [40] Consider the following sequential circuit with two positive-edge-triggered JK flip-flops.

4.a) [4] Trace the timing diagram for the above circuit by hand.

CLR

Clock

X

J1

K1

Q1

J2

K2

Q2

Z

Flip

Reat

Holl

Name: Juan Olivera

Grade:

/100

4.c) [8] Verify the circuit design/behavior by implementing the circuit using Quartus and the CD4027BE J-K Flip Flop. Review the PowerPoint in this section know how set the value of CLR and X to a value within a time period. SET1 and SET2 are active high so disable them by connecting permanently to low so see how to set a constant (0) throughout the time period, and how to set the fluctuating value of the clock. Turn in a picture of your Schematic and a picture of the VectorWaveForm generated to match the given timing diagram

4.b) [16] Build the above circuit using the CD4027BE dual JK flip-flop logic chip on your breadboard and then connect it to your test platform to test it. Use the chip block diagram below to plan for your wiring. Use 2 logic switches for inputs X and CLR (Reset), and one pulse switch for the Clock. Use 4 LEDs to observe X=J=K1, Q1=J2=K2*, Q2, and Z=Q1*+Q2*. Tie the SET inputs to low as they are active high. Plan your circuit below.

Observation: If X is kept high, Q1 will toggle at every positive Clock transition because J1=K1=X=1 (toggle mode).

•	CDA3201	• Intro	to Logic	Design •
-				

Lab Assignment

nt 4

Name:	Tray	Oliveras

Grade:

/100

4.d) [12]	From the analysis	of the circuit	above,	draw the Sta	e Tabl	e and the	State	Diagram.
State Diagr	am:		r =					

CHeck Back

Present State		Input	Output	Next State	Flip Flop Transition	
State	Q	i	. Z/.	Q+		
						
		+				
					1	

4.e) [60] Build a "Waltz Counter", the Waltz is a dance where you keep time by counting 1, 2, 3, 1, 2, 3, 1, 2, 3, 1...

[10] Draw the State Diagram and Table
State Diagram: (Hock pl. back

Present State		input	Output	Next State	Flip Flop Transition	
State	Q	ı	Z	Q÷		

	· · · · · · · · · · · · · · · · · · ·			***************************************		

[10] Figure out the simplest Boolean Algebra Expression for 2 Output bits Z_2 and Z_1

Zz Col Collo

[10] Figure out the simplest Boolean Algebra Expression for JK Flip Flop Inputs J2 K2 and J1 K1

[10] Simulate it in Quartus. Turn in picture of Schematic and its generated VectorWaveForm

[20] Plan vour wiring below using template below as a guide and wire it using a second CD4027BE J-K Flip

Pres	eut St	ate in	Pat	Output	Nex	ot Sta	te	F.F.	Transitio	24	
A	0	0	1/	2(01)	BI	0 1		ta Ki		+	
B	0	1		2(10)	C	10		IX	(X		
C) (0 /		3(11)	A	0 0		XI	OX		
X		and the same of th		X	X	XX		X/	XX		

Q → Q · J K Q × Q · 0 × Q ×

0,6-2 6,02 Present State Next state Input Output F.F. Transition Name Q1Q7 00 04 01 B 0 6 Without CLK DOST So CLK DOST

Quartus Schematics and Waveform

Photos of Lab 4 done in infrastructure

