,	NÍ PRAKTIKUM	Jméno	Matyá	š Peroutík	Kód 256371		
	stav fyziky TVUT BRNO	Ročník	Obor	Skupina	Lab. skup.		
Spolupracoval	VOI DIMO	2023/2024 Měřeno dne	AMT	Odevzdáno (dne		
	Štěpán Pavlica		28. 2. 2024		13. 2. 2024		
Příprava	Opravy	Učitel		Hodnocení			
Název úlohy Vlastnosti ručkových měřících přístrojů							

Úkol měření

Zobrazte na osciloskopu a změřte zadané hodnoty napětí s harmonickým průběhem, a to neusměrněné a jednocestně i dvoucestně usměrněné. Využijte podle možnosti všechny voltmetry u úlohy.

Teoretický rozbor

Efektivní hodnota elektrických veličin

Efektivní hodnota elektrické veličiny je hodnota stejnosměrné stálé veličiny, která by za dobu jedné periody signálu na stejném ideálním rezistoru vyzářila stejné teplo. Z této definice vyplývají následující vztahy:

$$U_{ef} = \sqrt{\frac{1}{T} \int_0^T u^2(t)dt} \tag{1}$$

$$I_{ef} = \sqrt{\frac{1}{T} \int_0^T i^2(t)dt} \tag{2}$$

kde u(t) je okamžitá hodnota napětí a i(t) je okamžitá hodnota proudu.

Střední hodnota elektrických veličin

Efektivní hodnota elektrické veličiny je hodnota stejnosměrné stálé veličiny, která by za dobu jedné periody signálu umožnila přenos stejně velkého náboje. Taky se jí občasně říká stejnosměrná složka signálu. Z definice vyplývají následující vztahy:

$$U_s = \frac{1}{T} \int_0^T u^2(t)dt \tag{3}$$

$$I_s = \frac{1}{T} \int_0^T i^2(t)dt \tag{4}$$

kde u(t) je okamžitá hodnota napětí a i(t) je okamžitá hodnota proudu.

Střídavé napětí

Tímto termínem se většinou myslí střídavé napětí harmonického sinusového průběhu. V laboratořích se používá zmenšené napětí síťě, které je transformováno v přípravku s transformátorem. Průběh tohoto napětí je popsán vzorcem:

$$u(t) = U_M \cdot \sin(\omega t) = U_M \cdot \sin(2\pi f t) \tag{5}$$

kde u(t) je okamžitá hodnota napětí v čase t
, U_M je amplituda, ω je úhlová rychlost dána vz
tahem:

$$\omega = 2\pi f = \frac{2\pi}{T} \tag{6}$$

kde f je frekvence signálu a T je perioda signálu. Stejné vztahy platí pro proud.

Průběh střídavého harmonického napětí v čase

Pro tento průběh je možno použít zjednoduššené verze vzorců (1) a (2). Jejich tvar poté bude následující:

$$U_{ef} = \frac{U_M}{\sqrt{2}} \tag{7}$$

$$I_{ef} = \frac{I_M}{\sqrt{2}} \tag{8}$$

Střední hodnoty proudů (4) a napětí (3) jsou u harmonického signálu rovny nule.

Jednocestně usměrněné střídavé napětí

Pokud pustíme výše definovaný signál střídavého harmonického napětí přes jednocestný usměrňovač (obvykle tvořen polovodičovou diodou) dostaneme nový signál, který nazýváme jednocestně usměrněné střídave napětí (proud). Tento průběh bude mít následující průběh:

Průběh jendocestně usměrněného střídavého harmonického napětí v čase

Po jednocestném usměrnění můžeme signál popsat následujícím vztahem

$$u(t) = U_M \sin(2\pi f t)......\text{pro } \sin(2\pi f t) > 0$$

 $u(t) = 0......\text{pro } \sin(2\pi f t) < 0$
(9)

Po dosazení průběhu (9) do rovnic (1) (2) (3) a (4) dostaneme následující vztahy pro proudy a napětí tohoto signálu.

$$U_{ef} = \frac{U_M}{2} \qquad U_S = \frac{U_M}{\pi} \tag{10}$$

$$I_{ef} = \frac{I_M}{2} \qquad I_S = \frac{I_M}{\pi} \tag{11}$$

Dvoucestně usměrněné střídavé napětí

Pokud bychom na signál místo jednocestného usměrňovače, jak tomu bylo v minulé sekci, použili dvojcestný usměrňovač (obvykle realizován pomocí Gretzova oboucestného usměrňovače, resp. Gretzova můstku) dostaneme signál, který oproti jednocestně usměrněmu nemá nulovou hodnotu signálu po dobu půlky periody. Signál, který je na výstupu tohoto můstku je tedy absolutní hodnotou vstupního signálu, tudíž můžeme napsat následující vztah:

$$u(t) = U_M \cdot |\sin(2\pi f t)| \tag{12}$$

Tento signál bude mít podle vztahů (1) (2) (3) a (4) vyšší efektivní, i střední hodnoty. Po dosazení vztahu (12 a jeho proudovou verzí do zmíněných vztahů dostaneme následující vztahy popisující efektivní a střední hodnoty těchto veličin:

$$U_{ef} = \frac{U_M}{\sqrt{2}} \qquad U_S = \frac{2 \cdot U_M}{\pi} \tag{13}$$

$$I_{ef} = \frac{I_M}{\sqrt{2}} \qquad I_S = \frac{2 \cdot I_M}{\pi} \tag{14}$$

U těchto vztahů si můžeme všimnout, že vztahy pro efektivní hodnoty jsou stejné jako u střídavého harmonického signálu, a že střední hodnoty jsou dvojnásobkem jednosměrně usměrněného harmonického signálu. Toto je taky patrné z definic středních a efektivních hodnot. Průběh tohoto signálu je vidět na následujícím grafu.

Měřící soustavy elektrických analogových přístrojů a měření osciloskopem

Analogové měřící přístroje měří základní elektrické veličiny (proud, napětí, odpor, činný výkon). Tyto přístroje jsou většinou konstruovány tak, že měří na principu vychýlení ručičky ciferníku působením magnetických silových polí. Tyto pole jsou většinou generovány přímo procházejícím proudem, nebo proudem, které v přístroji vytvoří měřené napětí. Pokud se jedná o stejnosměrný měřící přístroj, nesmí se zanedbat polarita. Analogové měřící přístroje mají většinou vnitřní odpor, který oproti digitálním měřícím přístrojům nemůžeme zanedbat.

Třída přesnosti

Třída přesnosti je parametr, který udává maximální chybu analogových přístrojů. Třída přesnosti se vyjadřuje v procentech a má označení T_P . Pro určení mezní absolutní chyby platí následující vztah:

$$\delta(U) = \frac{T_P}{100} \cdot U_R \tag{15}$$

kde U_R je zvolený rozsah voltmetru

Tato chyba je na celém zvoleném rozsahu stejná. Pokud chceme vypočítat relativní chybu, což je v procentech vyjádřený poměr absolutní chyby a naměřené hodnoty napětí, m;žeme použít následující vztah.

$$\delta_r(U) = \frac{\delta(U)}{U_M} \cdot 100 \tag{16}$$

Z tohoto plyne, že chyba měření je výrazně nižší při měření ke konci stupnice. Proto se většinou snažíme docílit toho, aby se naměřená hodnota pohybovala v horní třetině rozsahu.

Měřící přístroje s jedním rozsahem

U tohoto typu měřících přístrojů ukazuje ručička na stupnici přímo hodnotu měřené veličiny. Tyto stupnice mohou být lineární, logaritmické či jinak nelineární, a také mohou mít potlačenou nulu, nebo prodlouženou stupnici. Pokud má přístroj prodlouženou stupnici, tak od místa označeným tečkou jsou hodnoty orientační - neodpovídají T_p přístroje.

Měřící přístroje s více rozsahy

Tyto měřící přístroje mají jednu stupnici, ale více možných rozsahů. Ručička tudíž neudává přímo hodnotu měřené veličiny. Pro to, abychom získali skutečnou hodnotu měřené veličiny můžeme využít následující vztah. V tomto vztahu pro demonstraci použiji napětí.

$$U = k \cdot \alpha;$$
 $k = \frac{U_R}{\alpha_{max}}$ (17)

kde α je naměřený počet dílků stupnice, α_{max} je maximální počet dílků na stupnici a U_R je zvolený rozsah napětí. Obdobně se počítájí hodnoty libovoné měřené veličiny.

Měřící soustavy

Analogové měřící přístroje mají různě principy měření. Na základě toho, co potřebujeme měřit je tedy nutné si vybrat příslušný typ měřícího přístroje.

Přístroje magnetoelektrické

Výchylka ručičky těchto přístrojů je přímo úměřná střední hodnotě měřené veličiny. Tyto přístroje reagují pouze na stejnosměřné proudy, a proto je nutné dbát na polaritu, Připojíme-li tento měřící přístroj na střídavý proud nízké frekvence, ručička se bude snažit sledovat změnu polarity proudu. Pokud zvýšíme dostatečně frekvenci, ručička již stíhat nebude a ustálí se na nule. Pokud se takto stane, a měřená veličina je dostatečně vysoká, může dojít ke zničení měřícího přístroje, nebo k ohrožení obsluhy tohot přístroje.

Přístroje magnetoelektrické s usměrňovačem

Tato soustava má velmi podobnou konstrukci jako mají přístroje magnetoelektrické, akorát mají předřazený usměrňovač, což jim umožňuje měřit i střídavé veličiny. Výchylka ručičky tohoto přístroje je [měrná střední hodnotě usměřněného průběhu měřené veličiny. Nevýhodou tohoto měřícího přístroje je to, že nemá lineární propustnost, což znamená že při jiných parametrech vstupního signálu, než na který byl konstruován, změřené hodnoty nemusí vypovídat skutečné hodnoty. Většina techto přístrojů je konstruována pro harmonický průběh při frekvenci 50Hz. Stupnice těchto přístrojů bývá cejchována v efektivních hodnotách, tudíž tato soustava měří efektivní hodnotu daného průběhu. Tudíž pokud chceme zjistit střední hodnotu průběhu, musíme měřenou hodnotu vydělit činitelem tvaru.

Přístroje ferromagnetické (elektromagnetické)

U těchto přístrojů je výchylka ručičky přímo [měrná efektivní hodnotě měřené veličiny, a stejně tak je i cejchována stupnice. Elektromagnetické přístroje jsou na výrobu nejjednodušší, ale jsou méňě citlivé a mohou zanechávat zkreslenější signál kvůli přechodným dějům než například přístroje magnetoelektrické.

Osciloskop jako univerzální měřící přístroj

Osciloskop je univerzální měřící přístroj, který na svém displeji ukazuje časové průběhy signálů, které jsou přivedeny na jeho kanály. Osciloskopy se dělí na digitální a analogové, dvoukanálové a vícekanálove. V této úloze využijeme digitální dvoukanálový osciloskop. Nastavení tohoto osciloskopu je oproti analogovému jednoduché, jelikož digitální osciloskopy bývají vybaveny tlačítkem autoscale.

Princip metody měření

Pro měření této úlohy jsme měli k dispozici přípravek, jehož zapojení je zobrazeno níže, dva uzly o 5-ti možných připojených zařízeních, digitální osciloskop a 3 analogové měřící přístroje (magnetoelektrický, magnetoelektrický s usměrnovačem a ferromagnetický).

Schéma uspořádání prvku

Z tohoto přípravku jsme během měření využili napětí 25V (mezi svorkami 30V a 5V), které jsme nejprve připojili na všechny měřící přístroje, až na magnetoelektricý. Dále jsme jeden přívodní vodič přípojili přes jednocestný usměrňovač realizovaný jednou diodou na všechny měřící přístroje. Nakonec jsme připojili všechny měřící přístroje na dvojcestný usměrňovač realizovaný Gretzovým můstkem napájeným transformátorem. Osciloskop jsme připojovali přes dělič 1:10.

Naměřené hodnoty

Jmenovitá hodnota				V1			V2		V3			
napětí na výstupu transformátoru 25V		tační měření iloskopem	Magnetoelektrický voltmetr TP 0.5%			Magnetoelektrický voltmetr s usměrňovačem TP 0.5%			Ferromagtenický voltmetr TP 0.5%			
			U_s				U_{ef}		U_{ef}			
Měňaný nuůběh	u	u	α	k	$Umer = \alpha^*k$	α	k	$Umer = \alpha^*k$	α	k	$Umer = \alpha^*k$	
Měřený průběh	[V]	[V]	[dílek]	[V/dílek]	[V]	[dílek]	[V/dílek]	[V]	[dílek]	[V/dílek]	[V]	
Harmonický neusměřněný	64.3	32.15	-	-	-	49	60/120	24.5	117	26/130	23.4	
Jednocestně usměrněný	31.8	31.1	53	24/120	10.6	62	24/120	12.4	82.5	26/130	16.5	
Dvoucestně usměrněný	31.0	30.5	105	24/120	21	114	24/120	22.8	113	26/130	22.6	

Tabulka naměřených a vypočtených hodnot

Zpracování hodnot

Harmonický neusměrněný průběh

Měřidlo	$\begin{bmatrix} U_{mer} \\ [V] \end{bmatrix}$	$\begin{bmatrix} \delta(U_{mer}) \\ [V] \end{bmatrix}$	U_{ef} [V]	$\begin{bmatrix} U_s \\ [V] \end{bmatrix}$	$\begin{bmatrix} U_M \\ [V] \end{bmatrix}$	$ \begin{array}{c} \delta(U_M) \\ [V] \end{array} $	$\begin{bmatrix} \delta_r(U_M) \\ [V] \end{bmatrix}$	pozn.
Magnetoelektrický								Rozsah: -V
Voltmetr	_	_	_	_	_	-	-	TP: 0.5%
Magnetoelektrický voltmetr	24.5	0.9	24.5	0	34.6	1.3	3.8	Rozsah: 60V
s usměrňovačem	24.0	0.9	24.0	U	34.0	1.0	3.0	TP: 1.5%
Elektromagnetický	23.4	0.13	23.4	0	33.1	0.18	0.5	Rozsah: 26V
(ferromagnetický) voltmetr	23.4	0.13	25.4	U	0 33.1	0.10	0.5	TP: 0.5%

Průběh napětí: harmonický

Ukázka výpočtů pro magnetoelektrický voltmetr s usměrňovačem

Mezní absolutní chyba

$$\delta(U) = \frac{T_p}{100} \cdot U_R = \frac{1.5}{100} \cdot 60 = 0.9V \tag{18}$$

Amplituda vstupního signálu

$$U_M = U_{ef} \cdot \sqrt{2} = 24.5 \cdot \sqrt{2} = 34.6V \tag{19}$$

Absolutní chyba měření amplitudy

$$\delta(U_M) = \delta(U_{mer}) \cdot \sqrt{2} = 0.9 \cdot \sqrt{2} = 1.3V$$
 (20)

Relativní chyba měření amplitudy

$$\delta_r(U_M) = \frac{\delta(U_M)}{U_M} \cdot 100 = \frac{1.3}{34.6} \cdot 100 = 3.8\%$$
 (21)

Jednocestně usměrněný harmonický průběh

Měřidlo	$\begin{bmatrix} U_{mer} \\ [V] \end{bmatrix}$	$\begin{bmatrix} \delta(U_{mer}) \\ [V] \end{bmatrix}$	U_{ef} [V]	U_s [V]	U_M [V]	$ \begin{array}{c c} \delta(U_M) \\ [V] \end{array} $	$\begin{bmatrix} \delta_r(U_M) \\ [V] \end{bmatrix}$	pozn.
Magnetoelektrický Voltmetr	10.6	0.12	-	10.6	33.3	0.4	1.2	Rozsah: 24V TP: 0.5%
Magnetoelektrický voltmetr s usměrňovačem	12.4	0.4	17.5	-	35.1	1.13	3.2	Rozsah: 24V TP: 1.5%
Elektromagnetický (ferromagnetický) voltmetr	16.5	0.13	16.5	-	33.0	0.26	0.8	Rozsah: 26V TP: 0.5%

Průběh napětí: jednocestně usměrněný

Ukázka výpočtů pro magnetoelektrický voltmetr s usměřňovačem

Mezní absolutní chyba

$$\delta(U) = \frac{T_p}{100} \cdot U_R = \frac{1.5}{100} \cdot 24 = 0.4V \tag{22}$$

Efektivni hodnota napětí

$$U_{ef} = U_{mer} \cdot \sqrt{2} = 12.4 \cdot \sqrt{2} = 17.5V \tag{23}$$

Amplituda vstupního signálu

$$U_M = U_{mer} \cdot 2\sqrt{2} = 12.4 \cdot 2\sqrt{2} = 35.1V \tag{24}$$

Absolutní chyba měření amplitudy

$$\delta(U_M) = \delta(U_{mer}) \cdot 2\sqrt{2} = 0.4 \cdot 2\sqrt{2} = 1.13V \tag{25}$$

Relativní chyba měření amplitudy

$$\delta_r(U_M) = \frac{\delta(U_M)}{U_M} \cdot 100 = \frac{1.13}{35.1} \cdot 100 = 3.8\%$$
 (26)

Dvojcestně usměrněný harmonický průběh

Měřidlo	$\begin{bmatrix} U_{mer} \\ [\mathbf{V}] \end{bmatrix}$	$\begin{array}{c} \delta(U_{mer}) \\ [\mathrm{V}] \end{array}$	U_{ef} [V]	U_s [V]	$\begin{bmatrix} U_M \\ [\mathrm{V}] \end{bmatrix}$	$ \begin{array}{c c} \delta(U_M) \\ [V] \end{array} $	$ \begin{array}{c} \delta_r(U_M) \\ [V] \end{array} $	pozn.
Magnetoelektrický Voltmetr	21	0.12	-	21	33.0	0.19	0.6	Rozsah: 24V TP: 0.5%
Magnetoelektrický voltmetr s usměrňovačem	22.8	0.4	22.8	-	32.2	0.6	1.8	Rozsah: 24V TP: 1.5%
Elektromagnetický (ferromagnetický) voltmetr	22.6	0.13	22.6	-	32.0	0.18	0.6	Rozsah: 26V TP: 0.5%

Průběh napětí: dvojcestně usměrněný

Ukázka výpočtů pro elektromagnetický (ferromagnetický) voltmetr

Mezní absolutní chyba

$$\delta(U) = \frac{T_p}{100} \cdot U_R = \frac{0.5}{100} \cdot 26 = 0.13V \tag{27}$$

Amplituda vstupního signálu

$$U_M = U_{ef} \cdot \sqrt{2} = 22.6 \cdot \sqrt{2} = 32.0V \tag{28}$$

Absolutní chyba měření amplitudy

$$\delta(U_M) = \delta(U_{mer}) \cdot \sqrt{2} = 0.13 \cdot \sqrt{2} = 0.18V \tag{29}$$

Relativní chyba měření amplitudy

$$\delta_r(U_M) = \frac{\delta(U_M)}{U_M} \cdot 100 = \frac{0.18}{32.0} \cdot 100 = 0.6\%$$
(30)

Shrnutí vypočtených hodnot

Jmenovitý výstup	Osciloskop	Magr	Magnetoelektrický voltmetr			etoelekti	rický voltmetr	Elektromagnetický voltmetr			
transformátoru	orientačně		TP (0.5%	s usi	měrňovač	em TP 1.5%	(ferromagnetický) TP 0.5%			
25V	U_M	U_{M}	$\delta(U_M)$	$\delta(U_M)$	U_{M}	$\delta(U_M)$	$\delta(U_M)$	U_{M}	$\delta(U_M)$	$\delta(U_M)$	
Měřený průběh	[V]	[V]	[V]	[%]	[V]	[V]	[%]	[V]	[V]	[%]	
Harmonické	32.15	_			34.6	1.3	3.8	33.1	0.18	0.5	
(neusměrněné)	32.13	_	_	_	34.0	1.0	3.0	00.1	0.10	0.5	
Jednocestně	31.1	33.3	0.4	1.2	35.1	1.13	3.2	33.0	0.26	0.8	
usměrněné	51.1	55.5	0.4	1.2	35.1	1.10	0.2	33.0	0.20	0.0	
Dvoucestně	30.5	33.0	0.19	0.6	32.2	0.6	1.8	32.0	0.18	0.6	
usměrněné	50.5	55.0	0.13	0.0	92.2	0.0	1.0	02.0	0.10	0.0	

Přehledná tabulka velikostí amplitud a jejich absolutních a relativních chyb

Použité přístroje

Označení	Název	Identifikace	Doplňkové
ve schématu	Nazev	(výrobní číslo)	údaje
V1	DKP661	1000004877	TP 0,5% DC, ELP2, horizont. poloha
V2	DKP850	1060005264	TP 1,5% AC, ELP2, horizont. poloha
V3	DKP536	1000004433	TP 0,5% AC, ELP2, horizont. poloha
Osciloskop	Keysight EDUX 1002 A	CN57350373	50 MHz, 16 GSa/s

Tabulka použitých přístrojů

Závěr

Z naměřených hodnot amplitud napětí (viz. sekce Shrnutí vypočtených hodnot) lze vypozorovat na základě porovnání vypočtených amplitud ve všech měřených průbězích na jednotlivých voltmetrech, že nejméně kolísala hodnota napětí u elektromagnetického voltmetru. Pokud bychom se omezili pouze na usměrněné průběhy, lepší výsledky by měl magnetoelektrický voltmetr bez usměrňovače. Vyšší odchylky magnetoelektrického voltmetru s usměrňovačem mohly být zapříčiňeny úbytkem napětí na diodách.

Hodnoty měřené osciloskopem mají výrazně vyšší odchylku, než hodnoty měřené analogovými přístroji. Tato chyba mohla být hlavně způsobena nepřesnou děličkou 1:10, která nebyla proměřována. Další chyba mohla být způsobena vlivem ostatních měřících přístrojů.