Sparse Black-box Video Attack with Reinforcement Learning

Introduction

Reward from the threat model

Methodology

Key frame selection

 $R_{rep} = exp(-\frac{1}{T}\sum_{t=1}^{T}min_{t'\in K}||v_t - v_{t'}||_2),$ (5)

$$R_{div} = \frac{1}{|K|(|K|-1)} \sum_{t \in K} \sum_{t' \in K, t' \neq t} d(v_t, v_{t'}), \quad (6)$$

$$x_{adv} = x + \alpha \cdot sign(\nabla_x l_{adv}(x))$$

$$x_{adv} = x + \alpha \cdot sign(\nabla_x l_{adv}(x))$$

$$\nabla E[F(x)] \approx \frac{1}{\sigma n} \sum_{i=1}^{n} \delta_i P(y|x + \sigma \cdot \delta_i)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T} (R_n - b) \nabla_{\theta} log \pi_{\theta}(a_t | h_t)$$

$$R_{attack} = \begin{cases} 0.999 \times exp(\frac{-\mathbb{P}}{0.05}) & 30000 > Q > 15000 \\ exp(\frac{-\mathbb{P}}{0.05}) & Q \leqslant 15000 \\ -1 & Q > 30000, \end{cases}$$

Methodology

```
Algorithm 1: Our SVA targeted attack
                        : The classifier F(\cdot), target class y_{adv} and
    Input
                          clean video x.
                       : Adversarial video x_{adv}.
     Output
     Parameters: Perturbation bound \epsilon_{adv}, epsilon decay
                          \triangle_{\epsilon}, FGSM step size \alpha.
 1 for i=1 to epochs do
          M \leftarrow Agent(x), \epsilon \leftarrow 1, x_{adv} \leftarrow \text{video of the}
            target y_{adv}.
          x_{adv} \leftarrow x \times (1 - M) + x_{adv} * M.
          while \epsilon > \epsilon_{adv} do
               v = 0, h = \phi(x_{adv}).
               \widehat{v} = v + \nabla_v l_{adv}(x_{adv} + h),
                  \widehat{q} = sign(\widehat{v} \times M), \widehat{\epsilon} \leftarrow \epsilon - \triangle_{\epsilon}.
                \widehat{x}_{adv} \leftarrow CLIP(x_{adv} - \alpha \cdot \widehat{g}, x - \widehat{\epsilon}, x + \widehat{\epsilon}).
                if y_{adv} = F(\widehat{x}_{adv}) then
                      x_{adv} \leftarrow \widehat{x}_{adv}, \epsilon \leftarrow \widehat{\epsilon}.
10
                      \widehat{x}_{adv} \leftarrow CLIP(x_{adv} - \alpha \cdot \widehat{g}, x - \epsilon, x + \epsilon).
11
                      if y_{adv} = F(\widehat{x}_{adv}) then
12
                            x_{adv} \leftarrow \widehat{x}_{adv}.
13
                      end
14
                end
15
                Adjust \triangle_{\epsilon} according to the current situation.
16
17
          Compute rewards R_{div}, R_{rep} and R_{attack} and
18
            update Agent.
19 end
20 return x_{adv}
```

Experiment

Table 2. The results of SVAL on C3D with UCF-101 under different sparsity (S).

		S(%)						
	Metrics	10	20	30	40	50	60	70
Un-targeted	MAP	5.5395	5.3805	5.3550	-	3.2895	_	=
Attack	FR(%)	100.0	100.00	100.00	80.0	100.00	80.0	60.0
Targeted	MAP	8.7538	6.6218	-	-	-	-	-
Attack	FR(%)	100.0	100.0	60.0	60.0	40.0	20.0	0.0

Table 3. The video attack results of four attack algorithms in the un-targeted mode.

Dataset	Target	Attack Model	Metrics & Un-targeted Attack				
	Model	Attack Woder	MAP	S(%)	Q	FR(%)	
	C3D	Opt-attack	4.2540	0.00	15076.23	74.0	
		Heuristic-attack	3.2980	22.08	13609.91	79.0	
		SVAL(ours)	3.1765	50.00	8367.78	83.0	
UCF-101		SVA(ours)	2.4450	63.14	9402.28	86.0	
0CF-101	LRCN	Opt-attack	2.8320	0.00	9032.68	57.0	
		Heuristic-attack	2.6940	17.19	9460.38	49.0	
		SVAL(ours)	2.4976	60.00	4131.57	68.0	
		SVA(ours)	2.396	62.14	6132.38	63.0	
HMDB-51	C3D	Opt-attack	2.8930	0.00	13274.14	76.0	
		Heuristic-attack	2.4960	25.68	11870.69	78.0	
		SVAL(ours)	2.4482	60.00	10727.93	94.0	
		SVA(ours)	2.3940	51.37	24948.67	98.0	
	LRCN	Opt-attack	2.7586	0.00	18207.11	62.0	
		Heuristic-attack	2.6110	27.32	15663.41	66.0	
		SVAL(ours)	1.9479	70.00	10891.67	68.0	
		SVA(ours)	3.1570	62.50	18868.09	64.0	

Experiment

Dataset	Target	Attack Model	Metrics & Targeted Attack				
	Model		MAP	S(%)	Q	FR(%)	
	C3D	Opt-attack	-	-	> 60000	-	
		Heuristic-attack	-	-	> 60000	-	
		SVAL(ours)	6.7672	20.00	43797.0	38.0	
UCF-101		SVA(ours)	3.6450	57.24	36497.5	32.0	
UCF-101	LRCN	Opt-attack	-	-	> 60000	-	
		Heuristic-attack	-	-	> 60000	-	
		SVAL(ours)	5.8834	20.00	49065.3	39.0	
		SVA(ours)	3.270	56.64	57850.4	41.0	
HMDB-51	C3D	Opt-attack	-	-	> 60000	-	
		Heuristic-attack	-	-	> 60000	-	
		SVAL(ours)	6.9279	30.00	47190.3	40.0	
		SVA(ours)	3.8960	62.15	42900.3	38.0	
	LRCN	Opt-attack	-	-	> 60000	-	
		Heuristic-attack	-	-	> 60000	-	
		SVAL(ours)	6.2861	20.00	43880.5	32.0	
		SVA(ours)	3.5170	66.77	47681.9	36.0	

Table 5. The ablation study of the proposed method SVA in untargeted setting.

Metrics	Modules						
	No RL	$SVA_{R_{attack}}$	$SVA_{R_{attack+rep}}$	SVA			
MAP	6.5037	2.3723	2.0321	1.8624			
S(%)	0.00	62.35	68.75	74.65			

Conclusion

Advantages:

Reduced the query times Lower Mean Absolute Perturbation(MAP) Fewer frames perturbated

Disadvantages:

Weak transferability
Several frames are directly replaced for targeted attack, which is easy to percept.