## 1.1 Number representation

(To be done over 2 week)

(1) Give the *decimal* equivalent value of the 8-bit binary numbers using both the *unsigned magnitude* and *2's complement* number representations.

The binary numbers are:

(a) **0111 1111**<sub>2</sub>

(b) 1111 1111<sub>2</sub>

 $(c) 0000 0000_2$ 

(d) 1000 0000<sub>2</sub>

(e) 1111 1110<sub>2</sub>

NOTE: If you wish, you can use this website or any other equivalent to check your answer: <a href="https://www.rapidtables.com/convert/number/binary-to-decimal.html">https://www.rapidtables.com/convert/number/binary-to-decimal.html</a>

- (2) For each of the number representation in part (1), determine its range by stating what is the **largest** and **smallest** decimal numbers you can represent using only eight binary digits.
- (3) Give the numeric range of variables declared with the following ANSI C data types:

(a) unsigned char

(b) short int

(c) unsigned short int

- (d) long int
- (4) What would be the **most efficient** ANSI C data type to assign to a variable in your C program that represents the following:
  - (a) current temperature (°C) as a whole number at any selected city in the world.
  - (b) total undergraduate population in NTU at any given moment.
  - (c) current total US national debt in US\$ (check: <a href="http://www.usdebtclock.org/">http://www.usdebtclock.org/</a>).
  - (d) whether a person is male or female.

# 1.2 Hexadecimal number representation

Below are 8-bit hexadecimal numbers:

(b) 0x0F = 0000 (11)

(c) 0x4D = 0100 1101

(d) 0xC0 - 1100 0000

(e) 0x30 -0011 0000

**Note:** the '0x' prefix is used to signify that the number is in hexadecimal notation.

| LS MS                        | 0   | 1   | 2  | 3 | 4 | 5 | 6      | 7   |  |  |
|------------------------------|-----|-----|----|---|---|---|--------|-----|--|--|
| 0                            | NUL | DLE | SP | 0 | 0 | P | ,      | р   |  |  |
| 1                            | SOH | DC1 | !  | 1 | A | Q | a      | q   |  |  |
| 2                            | STX | DC2 | "  | 2 | В | R | b      | r   |  |  |
| 3                            | ETX | DC3 | #  | 3 | С | S | С      | s   |  |  |
| 4                            | EOT | DC4 | \$ | 4 | D | Т | d      | t   |  |  |
| 5                            | ENQ | NAK | %  | 5 | E | U | е      | u   |  |  |
| 6                            | ACK | SYN | &  | 6 | F | V | f      | v   |  |  |
| 7                            | BEL | ETB | ,  | 7 | G | W | g      | W   |  |  |
| 8                            | BS  | CAN | (  | 8 | Н | X | h      | x   |  |  |
| 9                            | HT  | EM  | )  | 9 | I | Y | i<br>j | У   |  |  |
| A                            | LF  | SUB | *  | : | J | Z | j      | z   |  |  |
| В                            | VT  | ESC | +  | ; | K | [ | k      | {   |  |  |
| С                            | FF  | FS  | ,  | < | L | \ | 1      | - 1 |  |  |
| D                            | CR  | GS  | -  | = | M | ] | m      | }   |  |  |
| E                            | SO  | RS  |    | > | N | ^ | n      | ~   |  |  |
| F                            | SI  | US  | /  | ? | 0 | _ | 0      | DEL |  |  |
| A COH OL 4 C-4 (7 D24 C- 1-) |     |     |    |   |   |   |        |     |  |  |

**ASCII Character Set (7-Bit Code)** 

- (1) Which of these numbers are negative in 2's complement representation?  $\alpha_1 d$
- (2) Which of these numbers are valid ASCII alpha-numeric characters?  $b_1 c_1 e_2$
- (3) Give the decimal equivalent values of the 2's complement numbers in (a) and (b)?
- (5) With reference from part (4), device a simple technique to convert any 8-bit sized number to its 32-bit sized equivalent number without changing its 2's complement value (e.g. convert the decimal value -3 given by the 8-bit hexadecimal value 0xFD to its 32-bit equivalent).

| ( | (1) Give the <i>decimal</i> equivalent value of the 8-bit binary numbers using both the <i>unsigned magnitude</i> and <i>2's complement</i> number representations. |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|-----------------|-------|--------------|------------|----------------|----------------|--------------|----------------------------------|-------------|--------|--------|-------|---------|------|-----------------|-------|-----|--|--|--|--|--|--|--|
|   | The                                                                                                                                                                 | bina       | ary nu                     | ımbe            | rs ar | e:           |            | 0.             | T 0 0          | 0 6 6        |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   | (a)<br>(d)                                                                                                                                                          | 01:<br>100 | 11 11<br>00 00<br>7/<br>8/ | 11 <sub>2</sub> |       |              | (b<br>(e   | o) 11<br>e) 11 | .11 :<br>.11 : | 111:<br>111( | L <sub>2</sub><br>) <sub>2</sub> | 001         | 0      | (c) C  | 000   | 0 0 0   | 002  |                 |       |     |  |  |  |  |  |  |  |
|   | a)                                                                                                                                                                  | 12         | 7/                         | 12              | 7     |              | 6)         | 2              | 55             | <i>J</i> -1  |                                  |             |        | c)     | 0     | 10      |      |                 |       |     |  |  |  |  |  |  |  |
|   | d)                                                                                                                                                                  | (2         | .8/                        | -12             | 8     |              | e)         | 25             | 4/             | - 7          | )                                |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            | <u> </u>                   |                 |       |              |            |                | ,              |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   | (2) For                                                                                                                                                             |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         | what | is the          | large | est |  |  |  |  |  |  |  |
|   | and                                                                                                                                                                 | sma        | allest o                   |                 |       | mber         |            |                |                | esent        | usıng                            | gonly       | eigh   | t bina | ary d | ıgıts.  |      |                 |       |     |  |  |  |  |  |  |  |
|   | L)                                                                                                                                                                  | ΙΛ C       | 1.0.                       |                 |       |              | +          | 0 1            | 7              |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     | 113        | ign<br>v                   |                 | 0     |              | _          | 7.3            | 5              |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   | 3                                                                                                                                                                   | 'Lg        | V                          | -               | 12    | 8            | 1          | 2              | 7              |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   | (3)                                                                                                                                                                 | Give       | e the nu                   | ımerio          | rang  | ge of v      | /ariab     | oles d         | eclare         | ed wit       | h the                            | follov      | ving A | ANSI   | C da  | ıta typ | es:  |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            | (a)                        | unsi            | .gne  | d ch<br>d sh | ar         |                |                |              | (b) s                            | hort<br>ong | int    |        |       | 71      |      |                 |       |     |  |  |  |  |  |  |  |
|   | 2                                                                                                                                                                   | 6)         | ( )                        |                 |       |              |            |                |                |              |                                  | _           |        | 26 K   | -3:   | 276     | 7    |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            | 0 -                        |                 |       |              |            |                |                | 2            | ) _                              | 214         | +74    | rs     | 648   | -       | 210  | <del>1</del> 74 | F16   | 47_ |  |  |  |  |  |  |  |
|   | (4) W                                                                                                                                                               | /hat       | would                      | be the          | e mos | st effic     |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   | (a                                                                                                                                                                  | cu)        | ents th                    | emper           | ature | (°C)         |            |                |                |              |                                  |             |        | ty in  | the w | orld.   |      |                 |       |     |  |  |  |  |  |  |  |
|   | (0                                                                                                                                                                  | c) cu      | tal und                    | otal U          | S nat | ional        | debt       | in US          | S\$ (ch        |              |                                  |             |        | btclo  | ck.oı | rg/ ).  |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            | nether :                   |                 |       |              |            | maie.          |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   | 4                                                                                                                                                                   | a)<br>h1   | CV<br>UNS                  | (1) N P         | d     | iv           | <b>λ</b> † |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     | :)         | UVIS                       | gric            |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   | 6                                                                                                                                                                   | 1) _       | . bo                       | ٦١              |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |
|   |                                                                                                                                                                     |            |                            |                 |       |              |            |                |                |              |                                  |             |        |        |       |         |      |                 |       |     |  |  |  |  |  |  |  |

# 1.3 Data representation in memory

Various variables and constants of different ANSI C data types have been declared and stored in memory. Figure 1.3 shows the byte-sized contents in memory where they can be found. Based on these memory contents, answer the following questions:

| Address | Contents      |               |
|---------|---------------|---------------|
| 0x0000  | 80x0          |               |
| 0x0001  | 0x35          | E             |
| 0x0002  | 0xFF          | /             |
| 0x0003  | 0x01          | /             |
| 0x0004  | 0xA8          | /_            |
| 0x0005  | 0x2A          | *             |
| 0x0006  | 0x4C          | 2             |
| 0x0007  | 0x6F          | D             |
| 0x0008  | 0x67          | 9             |
| 0x0009  | 0x69          | 5             |
| 0x000A  | 0x6E          | <b>^</b>      |
| 0x000B  | 0x3A          | 1             |
| 0x000C  | 0x00          | /             |
| 0x000D  | 0x61          | 0             |
| 0x000E  | 0x62          | 6             |
| 0x000F  | 0 <b>x</b> 63 | $\mathcal{C}$ |

Figure 1.3 – Contents in memory

- (1) Find the start address of a 2-byte integer with the decimal value of 511. Is this integer in big or little endian format?

  Ox 155, Ox 0002, little endian
- (2) Find a possible C string among the memory contents. "\* Login;
- (3) A structure and variable declaration is given below:

```
struct rec {
   unsigned char i; | byte
   long int j; 4 byte
   char a[3]; 4 byte
};
struct rec r;
```

Assume the starting address of variable  $\mathbf{r}$  is 0x0008 and the **big endian** format has been adopted, give (in hexadecimal) the values of following:

```
(a) r.i (b) r.j (c) r.a[0] (d) r.a[2] 0x0000 0 0x0010 0x0010
```

Note: Assume no data alignment is required for multi-byte variables

#### 1.4 Data and Address Busses

Figure 1.4 shows the pin out of the MC68000 microprocessor. The data pins are labeled **Dn** and the address pins are labeled **An**.

(1) Based on the address pin labeling, what is the maximum memory capacity addressable by this processor (in Mbytes)? Assume the missing address pin **A0** can be derived from the **UDS\*** and **LDS\*** pins.

24 pin, 224/220 = 16 MB

(2) Based on the data pin labeling, what is the maximum number of bytes can this processor transfer within one memory cycle?

16 Pin, 2 bytes

(3) With reference to the data structure in Question 1.3 part (3), re-design the structure rec to make it more efficient for use within a computing system supported by a MC68000 processor? Give a reason for your re-design.



Figure 1.4 – MC68000 processor pin out

Struct rec {

long into

unsign char i

char a[3]

J gtrιct τι ©A/P Goh Wooi Boon & Asst. Prof. Mohamed M. Sabry Aly, Jan 2022 2

## 1.5 ARM Programmer's Model and Instruction Execution

Figures 1.5 show the display of the VisUAL ARM simulator and the ARM assembly program example "*Tutorial 1 5*" found in the NTULearn Tutorial 1 folder.

Note: You can download the VisUAL ARM emulator from: <a href="https://salmanarif.bitbucket.io/visual/">https://salmanarif.bitbucket.io/visual/</a>



Figure 1.5 – View on the VisUAL ARM simulator after loading the program "Tutorial\_1\_5".

- (1) What size (in number of bits) are the registers in the ARM processor? 32 by
- (2) With reference to question 1.1 part (2), state what are the **largest** and **smallest hexadecimal values** you can find in register **R0** if you are using **unsigned magnitude** and **2's complement** number representations interpretation.  $\frac{\Box}{\zeta} \frac{\partial_x \ FFFFFFFF}{\partial_x \ \partial_{000} \ \partial_{000}} \frac{\partial_x \ FFFFFFFF}{\partial_x \ \partial_x \ \partial_{000} \ \partial_{000}}$
- (3) What are the available registers shown in VisUAL user interface in Figure 1.5? Is this the complete set of usable registers in the ARM User Mode Programmer's Model?
- (4) Briefly describe what each of the ARM instructions will do when they are executed?
- (5) Will executing MOVS R1, #0xFFFFFFFF change the state of any of the N, Z, V, C flags in the Current Program Status Register (CPSR)? If so, why?
- (6) Will executing MOVS R2, #0x7FFFFFF immediately after the instruction in part (5) change the state of any of the N, Z, V, C flags? If so, why?
- (7) The instruction ADDS R3,R0,R1 adds the 32-bit content in registers R0 and R1 and put the result into the destination register R3. Answer the following questions related to this instruction:
  - a) Give the 32-bit result in destination register **R3** after the execution of this instruction?  $O \times O$
  - b) Is the answer correct for the addition of the numbers 0x0000001 and 0xffffffff?
  - c) What are the values of the N, Z, V, C flags immediately after the execution of this instruction? () \ 0 \
  - d) Explain the reason why each of the flags are set.
- (8) Now do the same as in part (7) but now for the instruction **ADDS R4**, **R0**, **R2**. What can you say is the difference between the interpretation of C and V flags when they are set?
- (9) Give an example of two 32-bit numbers when added will set both the C and V flags simultaneously? **Note:** You can test to see if your answer is correct by editing the *Tutorial 1 5* program.