教師なし学習

機械学習の種類 (ざっくり)

機械学習 教師あり学習 連続値の予測 種類の判別 教師なし学習 クラスタリング_(後述) データをグループ化していく 次元削減(後述) データの特徴量の次元を減らす

強化学習 報酬を最大化するために行動する方法を学ぶ

教師あり学習との違い

教師あり学習	教師なし学習
正解が示されている	正解が示されていない
入力から正しい出力を 予測することが得意	データ内のパターンや構造を 発見することが得意
回帰や分類に強い	次元削減やクラスタリングに強い

教師なし学習のメリット・デメリット

メリット

- 正解・不正解が不明瞭な場合にも利用できる
- 人間が発見できていない新たなパターンを見つけることができる

デメリット

- 正解がないため、学習結果の精度が低くなる傾向がある
- 発見したパターンが役に立たない可能性がある

機械学習の種類 (ざっくり)

機械学習

教師あり学習

- 回帰

分類

連続値の予測

種類の判別

教師なし学習

- クラスタリング_(後述) データをグループ化していく

次元削減(後述)

データの特徴量の次元を減らす

強化学習

報酬を最大化するために行動する方法を学ぶ

クラスタリングとは?

グループを作って振り分ける

目的

- パターンの発見
- ・ 類似性の特定
- データの構造を理解する

クラス分類とクラスタリングの違い (概要)

・クラスタリング

できたグループに対する解釈は人間次第 正しいかどうかも不明 例). 尻尾がついてるかついてないか? 生き物かどうか?

グループ1

グループ2

クラス分類とクラスタリングの違い (概要)

・クラス分類

クラス分類とクラスタリングの違い (概要)

・クラス分類

・クラスタリング

機械学習の種類 (ざっくり)

機械学習

教師あり学習

— 回帰

分類

連続値の予測

種類の判別

教師なし学習

- クラスタリング_(後述) データをグループ化していく

次元削減(後述)

データの特徴量の次元を減らす

強化学習

報酬を最大化するために行動する方法を学ぶ

次元削減とは?

高次元からなる情報を、その意味を保ったまま 低次元の情報に落とし込むこと

2次元から1次元への次元削減

次元削減を行う目的

- 特徴抽出
- データの可視化と理解
- 計算効率の向上
- ノイズや冗長性を減らす

次元削減のデメリット

• **情報の損失** 元のデータの特徴が失われる

• 選択バイアス 手法の選択によって結果や精度が変わる

• **解釈の難しさ** 元のデータとどのように関連しているか判別が困難

教師なし学習の手法の一例

主成分分析 (PCA)

- ・次元削減(可視化)の最も基本的な手法
- ・最も情報量の多い「軸」を取り出し圧縮

例えば

さきほどのこれも主成分分析だと捉えられる

主成分分析 (方法の流れ)

主成分 (軸) の決め方 第1主成分

> 射影したデータの 分散を最大化

第2主成分以降

他の主成分に 直交しつつ 分散を最大化

第1主成分

射影したデータの分散が最大になるような軸を探す

なぜ分散を最大化するのか①

2次元のデータを1次元に圧縮することを考える

縦軸の情報の損失

横軸の情報の損失

なぜ分散を最大化するのか②

射影したデータのばらつきが大きいほど 元のデータの情報を多く含んでいると考えられる

なぜ分散を最大化するのか③

元データの情報の損失が できるだけ小さくなる軸を探したい 情報の損失が少ない 情報の損失が多い

射影したデータの分散が最大となる軸を探す!

射影したデータの分散が最大になるような軸を探す

$$Z_1 = a_{11}x_1 + a_{12}x_2$$

Z: 主成分

a:係数

x:成分

第1主成分と直交する軸の中で、 軸上に射影したデータの分散が最大となる軸を探す

計算で軸を決める手法(超重要!)

主成分の軸

$$Z_1 = \sum_{K=1}^p a_{1k} x_k \quad \bullet \bullet \quad Z_m = \sum_{K=1}^p a_{mk} x_k$$

主成分の分散が最大の時の係数a₁,a₂を求める→主成分分析

主成分の分散の値は説明変数の 分散共分散行列の固有値λの値と一致

最大固有値に属する固有ベクトル[a¹,a²]tを求めれば 主成分分析ができる

多変数の場合の主成分分析の例

個体と変数	X ₁	X ₂		X _p
1	X ₁₁	x ₂₁	• • •	x _{p1}
2	X ₁₂	X ₂₂	• • •	x _{p2}
• • •	• • •	• • •		
n	X _{1n}	X _{2n}	• • •	X _{pn}

多変数の場合の主成分分析の例

Sの固有値λを求める

$$\begin{vmatrix} s_1^2 - \lambda & s_{12} & \cdots & s_{1p} \\ s_{12} & s_2^2 - \lambda & \cdots & s_{2p} \\ \vdots & & & \vdots \\ s_{1p} & s_{2p} & \cdots & s_p^2 - \lambda \end{vmatrix} = 0$$

 λ はp個の解を持つ

$$\lambda_1 \ge \lambda_2 \ge \lambda_3 \cdots \ge \lambda_p \ge 0$$

大きいものから順に第一主成分の係数、第二主成分の固有値…というかたち

多変数の場合の主成分分析の例

$$\begin{bmatrix} s_1^2 & s_{12} & \dots & s_{1p} \\ s_{12} & s_2^2 & \dots & s_{2p} \\ \vdots & \ddots & \vdots \\ s_{1p} & s_{2p} & \dots & s_p^2 \end{bmatrix} \begin{bmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{ip} \end{bmatrix} = \lambda_i \begin{bmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{ip} \end{bmatrix}$$

$$\underset{\text{$\times a_{i1}^2 + a_{i2}^2 + \dots + a_{ip}^2 = 1$}}{**}$$

固有値を代入 固有ベクトルを導出

第一主成分
$$Z_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1p}x_p$$

が得られ、 λ_2 、 λ_3 で行うと、第二、第三主成分が求められる

寄与率 累積寄与率

寄与率

その主成分によってデータ全体の何%を説明できるか

$$\frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

寄与率

第1主成分

第2主成分

第3主成分

5

寄与率 累積寄与率

累積寄与率

第一主成分からその主成分によってデータ全体の何%を説明できるか

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

累積寄与率

第1主成分 第2主成分 第3主成分 45

主成分分析(ざっくりイメージ)

<全データ>

要素A

要素B

要素C

要素D

要素E

主成分分析

<全データ> 寄与率

第1主成分

第2主成分

第3主成分

A~E全ての要素が 大きかれ小さかれ入っている

4と5は全体への影響が小さいので無視する と、第1~3だけで全体のほとんどを表せる。 →次元削減

PCAの弱点

類似しているデータを

低次元上でも近くに保つこと

→異なるデータを低次元上でも遠くに保つこと (分散を大きくする)に焦点を当てたアルゴリズムだから

そこで!

データの局所的な構造の維持を 目的とした次元削減技術が発展

· 主成分分析(PCA) SNE 次元削減 クラスタリング **k-mean**

SNE

局所構造を保持しつつ 次元削減するアルゴリズム

概要

- ・データポイント間の「近さ」を「確率」で表す
- ・高次元空間でも低次元空間でも 点の分布はガウス分布に従うと仮定

SNEの方法(流れ)

- ①近傍の確率の計算
- ②低次元での確率の計算
- ③損失関数の設計
- ④Perplexity(困惑度)
- ⑤損失関数の最適化

何故確率で表すのか?

・次元削減した後でも元の密度を保つため

- ・高次元では距離だけでは不十分
 - →密度が不均一だから

・最適化に勾配降下法等のアプローチが可能

SNEの方法

- ①近傍の確率の計算
- ②低次元での確率の計算
- ③損失関数の設計
- 4 Perplexity(困惑度)
- 5損失関数の最適化

前提知識

ガウス分布

 $\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-(x-\mu)^2/2\sigma^2)$

σ :標準偏差

 σ^2 :分散

μ : 平均

(1)近傍の確率の計算

データポイント間の距離 → 条件付き確率. に変換 データポイント x_i と x_i の類似度を、条件付き確率 p_{ili} として表現 x_i は x_i を中心とした**正規分布**に基づいて選択されると仮定

$$p_{j|i} = rac{ \exp(-rac{\left\|x_i - x_j
ight\|^2}{2\sigma_i^2})}{\sum_{k
eq i} \exp(-rac{\left\|x_i - x_j
ight\|^2}{2\sigma_i^2})} ^{ ext{ jが近傍である確率}}$$

 x_i, x_i : データポイント 分散 σ_i^2 は後述で調整 $p_{i|i} = 0$

②低次元での確率の計算

次元削減後のデータポイントも条件付き確率に変換 データポイント y_i と y_j の類似度を、条件付き確率 $q_{j|i}$ として表現 y_i は y_i を中心とした**正規分布**に基づいて選択されると仮定

$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

 y_i, y_j :データポイント σ_i^2 は $1/\sqrt{2}$ で固定 $q_{i|i}=0$

SNEの方法

- ①近傍の確率の計算
- ②低次元での確率の計算
- ③損失関数の設計
- ④Perplexity(困惑度)
- ⑤損失関数の最適化

③損失関数の設計

KLダイバージェンス 確率分布どうしの差異(距離)を測る

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

①近傍の確率の計算

データポイント間の距離 \to 条件付き確率. に変換 データポイント x_i と x_j の類似度を、条件付き確率 $p_{j|i}$ として表現 x_i は x_i を中心とした**正規分布**に基づいて選択されると仮定

$$p_{j|i} = rac{\exp(-rac{\|x_i - x_j\|^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(-rac{\|x_i - x_k\|^2}{2\sigma_i^2})}$$
 全体の確率 σ_i^2 は後述で調整 $p_{i|i} = 0$

④Perplexity σ^2 の決定

Perplexity (困惑度) の定義

$$Perp(P_i) = 2^{H(P_i)}$$

一般的にPerplexityは10~50

$$H(P_i) = -\sum_{i} p_{j|i} \log_2 p_{j|i}$$

シャノン・エントロピーを介して σ^2 を求める

 $ag{Ferplexity}$ 大 σ^2 も大きくなる 小 σ^2 も小さくなる

なぜ σ^2 が大事なのか

 $oldsymbol{x}_k$ の全体に占める割合が大きくなる

分散を変えると

- ・近い点を重視(分散小)するか
- ・遠い点を重視(分散大)するかを切り替えられるから

⑤損失関数の最適化

勾配降下法

$$\frac{\delta C}{\delta y_i} = 2 \sum_{j} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$
 勾配

$$Y^{(t)} = Y^{(t-1)} + \eta \frac{\delta C}{\delta Y} + \alpha(t)(Y^{(t-1)} - Y^{(t-2)})$$
 更新式

SNEとの相違点

1. 対称なコスト関数を使用

条件付き確率では非対称なコスト関数となり

同時確率を使用することで解決

2. 圧縮後の計算に Student - t 分布を使用

ガウス分布では近い部分を重視しすぎる必要以上に点が「混み合って」しまうStudent - t 分布を使用し緩和

最適化が困難になる

 p_{ji} には変化なし、平均を取るような処理

$$p_{ji} = rac{p_{i|j} + p_{j|i}}{2n}$$
 nはサンプル数

で同時確率にすることで対称化

t分布を使用するのでqは変化する

$$q_{ji} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k,k \neq i} (1 + \|y_i - y_j\|^2)^{-1}}$$

$$C = \sum_{i} KL(P||Q) = \sum_{i} \sum_{j} p_{ji} \log \frac{p_{ji}}{q_{ji}}$$

勾配降下法

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ji} - q_{ji})(y_i - y_j) (1 + ||y_i - y_j||^2)^{-1} \text{ and}$$

$$Y^{(t)} = Y^{(t-1)} + \eta \frac{\delta C}{\delta Y} + \alpha(t)(Y^{(t-1)} - Y^{(t-2)})$$
 更新式

SNEとの相違点

1. 対称なコスト関数を使用

条件付き確率では非対称なコスト関数となり

同時確率を使用することで解決

2. 圧縮後の計算に Student - t 分布を使用

ガウス分布では近い部分を重視しすぎる必要以上に点が「混み合って」しまうStudent - t 分布を使用し緩和

最適化が困難になる

K-means (k平均法)

クラスタリングアルゴリズムの中で 最も基本的なアルゴリズム

理想的なクラスタリング(そもそも)

クラスタの分散の測り方

クラスタの分散の測り方

k-meansではこれの 局所解を求める

k-meansのアルゴリズム

事前に幾つに分けるか(K)だけ指示を与えておく

k-meansのアルゴリズム

k-meansの注意点

①最適な結果が得られるとは限らない (局所解)

②K(クラスタ数)の決め方がとても重要

解決策

①最適な結果に近づけるために

複数回試行を行って

最も分散の合計が少ないものを採用

②Kを決めるために

データの性質等の観点から仮説を立てて決める

②それでもKを決められない時は

Elbow method

損失が急に下がり

それ以降緩やか

になる部分を採用

K-neighbor (k近傍法)

教師なし学習より分類等の

教師あり学習に向いている

k-neighborのアルゴリズム

- ①Kの値を決める
- ②距離が近いものを求める
- ③多数決
 - ※Kとは最近傍点の数のこと

1ユークリッド距離

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

②マンハッタン距離

$$d(x,y) = \sum_{k=1}^{N} |x_k - y_k|$$

k-neighbor

使い所

- 1分類問題
- ②データ前処理

欠点

- ①データ数が多くなると計算コストが爆増
- ②次元の呪い

まとめ. 教師なし学習

次元削減

多次元データを少数の主成分に圧縮する分析手法

· SNE

データポイントの類似性を保ちながら次元削減する手法 発展系:t-SNE

クラスタリング・

k-mear

データを最も近いクラスタの中心に割り当てて クラスタリングする手法

k-neighbor

最も近いk個のデータポイントに基づいて分類する手法