Detector induced assymetry in CP violation measurements

Eugenia Spedicato, Lina Maria Ortiz Parra, Jonah Blank

December 23, 2019

Comments - efficiencies

- tried with two different errors
 - first error assuming Poisson distribution
 - second error assuming binomial distribution
 - binomial error more accurate, but leading to very small errors in $D=\frac{\epsilon_+-\epsilon_-}{\epsilon_++\epsilon_-}$ $\to D=1$ out of 5σ -range
- smaller error for UP-polarity due to higher statistics
- no difference between UP and DOWN within scope of the error
- in the MC: $\epsilon_{D^*}=0$ (Dst reconstructed always 0) in our computation: $\epsilon_{D^*}=\epsilon_{\pi.s}\cdot\epsilon_{D^0}$

Comments - plots

- lacksquare structure of $\epsilon(\phi)$ probably due to rectangular detector shape
- huge errorbars are due to under-/overflow bins
- lacksquare peak in $\epsilon_{D^*}(\theta)$ may also be caused by this
 - \rightarrow within range of error peak could also be flat

Total

Efficiencies

Polarity	ϵ_{π}	ϵ_K	$\epsilon_{\pi,s}$	ϵ_{D^0}	ϵ_{D^*}
UP	$86.61 \pm 0.15 \pm 0.04$	$84.65 \pm 0.14 \pm 0.04$	$76.61 \pm 0.13 \pm 0.05$	$73.33 \pm 0.13 \pm 0.05$	$56.26 \pm 0.11 \pm 0.06$
DOWN	$86.61 \pm 0.17 \pm 0.04$	$84.67 \pm 0.16 \pm 0.05$	$76.54 \pm 0.15 \pm 0.06$	$73.33 \pm 0.15 \pm 0.06$	$56.23 \pm 0.12 \pm 0.07$

π -efficiency

K-efficiency

soft π -efficiency

D⁰-efficiency

D*-efficiency

Charge: +

Efficiencies

Polarity	ϵ_{π}	ϵ_K	$\epsilon_{\pi,s}$	ϵ_{D^0}	ϵ_{D^*}
UP	$86.63 \pm 0.21 \pm 0.06$	$85.01 \pm 0.21 \pm 0.06$	$76.26 \pm 0.19 \pm 0.07$	$73.00 \pm 0.18 \pm 0.07$	$55.71 \pm 0.15 \pm 0.08$
DOWN	$86.57 \pm 0.24 \pm 0.06$	$85.38 \pm 0.23 \pm 0.07$	$76.71 \pm 0.22 \pm 0.08$	$72.92 \pm 0.21 \pm 0.08$	$56.09 \pm 0.17 \pm 0.09$

π -efficiency

K-efficiency

soft π -efficiency

D^0 -efficiency

D*-efficiency

Charge: -

Efficiencies

Polarity	ϵ_{π}	ϵ_K	$\epsilon_{\pi,s}$	ϵ_{D^0}	ϵ_{D^*}
UP	$86.60 \pm 0.21 \pm 0.06$	$84.30 \pm 0.20 \pm 0.06$	$76.97 \pm 0.19 \pm 0.07$	$73.65 \pm 0.19 \pm 0.07$	$56.81 \pm 0.15 \pm 0.08$
DOWN	$86.64 \pm 0.24 \pm 0.06$	$83.95 \pm 0.23 \pm 0.07$	$76.36 \pm 0.22 \pm 0.07$	$73.74 \pm 0.21 \pm 0.08$	$56.38 \pm 0.17 \pm 0.09$

π -efficiency

K-efficiency

soft π -efficiency

D⁰-efficiency

D*-efficiency

Deviation

Table: The deviation
$$\frac{\epsilon_+ - \epsilon_-}{\epsilon_+ + \epsilon_-}/10^{-3}$$

Polarity	π	K			$soft\pi$		D^0		D*
UP	$0.2\pm2.9\pm0.8$	4	± 3	± 0.8 -	-5 ± 3	± 1.0 −4	± 3	± 1	$-9.8 \pm 1.8 \pm 1.1$
DOWN -	$-0.4 \pm 3.3 \pm 0.9$	8	± 3	±0.9	2.3 ± 3.0	$0 \pm 1.1 - 6$	± 3	± 1.2	$2-2.5\pm 2.4\pm 1.3$