clusterProfiler 4.0: A universal enrichment tool for interpreting omics data

Tianzhi Wu[§], Erqiang Hu[§], Shuangbin Xu, Meijun Chen, Pingfan Guo, Zehan Dai, Tingze Feng, Lang Zhou, Wenli Tang, Li Zhan, Xiaocong Fu, Shanshan Liu, Xiaochen Bo^{*} and Guangchuang Yu^{*}

1 Installation

To install clusterProfiler package, please enter the following command in R:

```
if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
BiocManager::install("clusterProfiler")
```

To reproduce examples in this document, you need to install several extra packages:

2 Docker image

To help users to build the computing environment, we also provided a docker image¹. Users can pull and run it according to the following commands. They don't need to install the dependency packages.

1. Install Docker (https://www.docker.com/). For example:

```
# Terminal of Ubuntu sudo apt-get install docker.io
```

2. Pull the Docker image from Docker Hub:

```
# Terminal of Ubuntu
sudo docker pull xushuangbin/clusterprofilerdocker:latest
```

3. Run the image:

```
# Terminal of Ubuntu
sudo docker run -e PASSWORD=yourpassword -p 8787:8787 xushuangbin/clusterprofilerdocker
```

4. Log in to RStudio at http://localhost:8787 using username rstudio and password yourpassword. For Windows users, you also need to provide your IP address, you can find it using docker-machine ip default. Inside the RStudio, you can run the examples provided in this document.

Besides, the clusterProfiler package can be installed in virtual environment using conda, see also https://anaconda.org/bioconda/bioconductor-clusterprofiler.

3 Bioinformatics tools that depends on clusterProfiler

The clusterProfiler library is one of the fundamental packages and it had been incorporated in more than thirty R packages (in CRAN or Bioconductor) to perform functional enrichment analysis for different topics, especially for cancer research (Table S1).

```
## [1] "AutoPipe" "bioCancer" "CEMiTool" "CeTF"
## [5] "conclus" "DAPAR" "debrowser" "eegc"
## [9] "enrichTF" "esATAC" "ExpHunterSuite" "famat"
```

^{*}correspondence: Guangchuang Yu <gcyu1@smu.edu.cn> and Xiaochen Bo <boxc@bmi.ac.cn>

 $^{^{1} \}rm https://hub.docker.com/r/xushuangbin/clusterprofilerdocker$

##	[13]	"fcoex"	"GDCRNATools"	"immcp"	"IRISFGM"
##	[17]	"maEndToEnd"	"MAGeCKFlute"	"methylGSA"	"miRspongeR"
##	[21]	"MoonlightR"	"multiSight"	"netboxr"	"PFP"

[25] "recountWorkflow" "RNASeqR" "RVA" "signatureSearch"

[29] "TCGAbiolinksGUI" "TCGAWorkflow" "TimiRGeN"

Table S1: R packages that rely on clusterProfiler to perform functional analysis.

Package	Description
AutoPipe bioCancer CEMiTool CeTF conclus	Automated Transcriptome Classifier Pipeline: Comprehensive Transcriptome Analysis Interactive Multi-Omics Cancers Data Visualization and Analysis Co-expression Modules identification Tool Coexpression for Transcription Factors using Regulatory Impact Factors and Partial Correlation and Information Theory analysis ScRNA-seq Workflow CONCLUS - From CONsensus CLUSters To A Meaningful CONCLUSion
DAPAR debrowser eegc enrichTF esATAC	Tools for the Differential Analysis of Proteins Abundance with R Interactive Differential Expresion Analysis Browser Engineering Evaluation by Gene Categorization (eegc) Transcription Factors Enrichment Analysis An Easy-to-use Systematic pipeline for ATACseq data analysis
ExpHunterSuite famat fcoex GDCRNATools immcp	Package For The Comprehensive Analysis Of Transcriptomic Data Functional analysis of metabolic and transcriptomic data FCBF-based Co-Expression Networks for Single Cells an R/Bioconductor package for integrative analysis of lncRNA, mRNA, and miRNA data in GDC Candidate Prescriptions Discovery Based on Pathway Fingerprint
IRISFGM maEndToEnd MAGeCKFlute methylGSA miRspongeR	Comprehensive Analysis of Gene Interactivity Networks Based on Single-Cell RNA-Seq An end to end workflow for differential gene expression using Affymetrix microarrays Integrative Analysis Pipeline for Pooled CRISPR Functional Genetic Screens Gene Set Analysis Using the Outcome of Differential Methylation Identification and analysis of miRNA sponge interaction networks and modules
MoonlightR multiSight netboxr PFP recountWorkflow	Identify oncogenes and tumor suppressor genes from omics data Multi-omics Classification, Functional Enrichment and Network Inference analysis netboxr Pathway Fingerprint Framework in R recount workflow: accessing over 70,000 human RNA-seq samples with Bioconductor
RNASeqR RVA signatureSearch TCGAbiolinksGUI TCGAWorkflow	an R package for automated two-group RNA-Seq analysis workflow RNAseq Visualization Automation Environment for Gene Expression Searching Combined with Functional Enrichment Analysis TCGAbiolinksGUI: A Graphical User Interface to analyze cancer molecular and clinical data TCGA Workflow Analyze cancer genomics and epigenomics data using Bioconductor packages
TimiRGeN	Time sensitive microRNA-mRNA integration, analysis and network generation tool

Moreover, clusterProfiler has been incorporated into different workflows and analysis websites (including shiny apps).

Workflows that incorporates clusterProfiler:

- TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages²
- Microbe-Flow: a comprehensive workflow for bacterial genomics, pathogenomics and genomic epidemiology³
- ViralLink: An integrated workflow to investigate the effect of SARS-CoV-2 on intracellular signalling and regulatory pathways⁴
- Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute⁵
- MUSIC: Model-based Understanding of SIngle-cell CRISPR screening⁶
- An end to end workflow for differential gene expression using Affymetrix microarrays⁷
- recount workflow: Accessing over 70,000 human RNA-seq samples with Bioconductor⁸
- RNAseq workflow⁹
- RNAseq Analysis 10

 $^{^2 \}rm https://f1000 research.com/articles/5-1542$

 $^{^3} https://neatseq-flow.readthedocs.io/projects/neatseq-flow-modules/en/latest/Workflow_docs/Microbe-Flow.html$

⁴https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008685

⁵https://www.nature.com/articles/s41596-018-0113-7

⁶https://github.com/bm2-lab/MUSIC

⁷https://f1000research.com/articles/5-1384/v2

 $^{^8 \}rm https://f1000 research.com/articles/6-1558$

 $^{^9 \}rm https://github.com/twbattaglia/RNA seq-workflow$

¹⁰ https://learn.gencore.bio.nyu.edu/rna-seq-analysis/gene-set-enrichment-analysis/

Automated transcriptomics data analysis workflow using pathway and network analysis approaches¹¹

Analysis websites (or shiny apps) that incorporates clusterProfiler:

- NASQAR: a web-based platform for high-throughput sequencing data analysis and visualization¹²
- Shiny-Seq: advanced guided transcriptome analysis 13
- ProteoRE: A biologist-oriented Galaxy platform for proteomics data exploration 14
- Netpredictor: R and Shiny package to perform drug-target network analysis and prediction of missing links¹⁵
- ABioTrans: A Biostatistical Tool for Transcriptomics Analysis 16
- SigBio-Shiny: A standalone interactive application for detecting biological significance on a set of genes¹⁷

4 Comparing clusterProfiler with other tools

Here, we compare clusterProfiler with other R packages that also can perform functional enrichment analysis (Table S2). The packages in Table S2 were ordered by monthly download stats (April 2021).

Download stats

Focus on the R ecosystem, clusterProfiler is the most popular package for functional enrichment analysis. Compare to other tools, clusterProfiler has many good features. It internally supports GO and KEGG for thousands of species, allows users to specify background gene set, provides general interface for external annotation data, works with GMT files, and supports comparing functional profiles among different conditions.

Several R packages output tabular result (e.g., data frame). Data frame is simple and easy to process and visualize using tidy tools (e.g., dplyr) and ggplot2. However, many useful information including input data, parameter setting and gene set, are missing. These information maybe useful for further interpretation and visualization. Instead, most of the R packages

¹¹https://fairdomhub.org/studies/837

 $^{^{12} \}rm https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03577-4$

 $^{^{13} \}rm https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-019-4471-1$

¹⁴https://github.com/vloux/ProteoRE

¹⁶https://www.frontiersin.org/articles/10.3389/fgene.2019.00499/full

¹⁷https://github.com/sk-sahu/sig-bio-shiny

encapsulate enrichment result into more complicated R object (S3, S4 or R6) to include enrichment result with associated data. This will prevent users to explore the result using tidy tools and ggplot2. The clusterProfiler and its sub-packages (including DOSE and ReactomePA) provide tidy interface to process enrichment result and directly supports of visualizing enrichment result in ggplot2. To our knowledge, this feature cannot be found in other R packages that also output enrichment result as complicated R object.

Table S2: Comparing clusterProfiler with other tools

			Input and annotation					Method			Interpretation				
Software	Repo	Annotation	Supported organisms	ID con- version	Updated KEGG	d External annota- tion data	Support GMT file	Algorithm	Selection of back- ground set	Profile compari- son	Output	Tidy interface	Support ggplot2	Visualization methods	Remove redundant terms
clusterProfiler	2	GO, KEGG, WikiPathways	plenty	Y	Y	Y	Y	ORA, GSEA	Y	Y	enrichResult, gseaResult, com- pareClusterResult	Y	Y	11	Y
DOSE	2	DisGeNE, DO, NCG	1	N	NA	N	N	ORA, GSEA	Y	N	(S4) enrichResult, gseaResult (S4)	Y	Y	11	Y
fgsea ReactomePA	2 2	NA Reactome	NA 7	Y N	NA NA	Y N	Y N	ORA, GSEA ORA, GSEA	Y Y	N N	data.table enrichResult,	$_{ m Y}^{ m Y}$	\mathbf{Y} \mathbf{Y}		N N
GOstats	2	NA	NA	N	NA	Y	N	ORA	Y	N	gseaResult (S4) GOHyperGResult	N	N	1	N
enrichR	1	GO, KEGG, WikiPathways, BioCarta, Reactome, GEO, GeneSigDB, HPO, KEA, MSigDB, COVID-19 Related Gene	5	Y	N	N	N	ORA	N	N	(S4) list	N	N	3	N
GSA	1	Sets NA	NA	N	NA	Y	Y	Gene set analysis	N	N	GSA (S3)	N	N		N
globaltest	2	GO, KEGG, MSigDB, Anni	21	N	N	N	N	regression analysis	N	N	gt (S4)	N	N	2	N
gage gprofiler2	2 1	GO, KEGG GO, KEGG, Reac- tome, WikiPathway miRTarBase, TRANSFAC, Human Protein Atlas, protein complexes from CORUM, HPO	plenty plenty rs,	Y Y	Y N	Y	N Y	GSEA ORA	N N	N Y	list list	N N	N N	0 1	Y N
SPIA	2	KEGG	plenty	N	Y	N	N	Signaling Pathway Impact	Y	N	data.frame	Y	Y	1	N
safe	2	GO, KEGG, PFAM, Reactome	20	N	N	Y	N	Analysis ORA, Wilcoxon rank sum, Pearson's chi-squared type statistic,	N	N	SAFE (S4)	N	N	2	N
CePa	1	NCI_Nature, KEGG, BioCarta,	1	N	N	N	N	t-statistic CePa	Y	N	cepa (S3)	N	N	3	N
GANPA	1	Reactome NA	NA	N	NA	Y	N	GANPA	N	N	.csv files	N	N	0	
PADOG	2	KEGG	1	N	Y	Y	N	PADOG	N	Y	data.frame	Y	Y		N
ViSEAGO	2	GO	21	N	N	N	N	ORA, GSEA	N	Y	fgsea, enrich_GO_terms (S4)	N	N	2	N
GOGANPA	1	NA	NA	N	NA	Y	N	GO-Functional- Network-based Gene-Set- Analysis	N	N	.csv file	N	N	0	N
GSAR	2	NA	NA	N	NA	Y	N	two-sample Nnparametric multivariate test	N	N	list	N	N	0	
netgsa sigPathway	1 2	NA NA	NA NA	N N	NA NA	Y Y	N N	netgsa GSEA, sigPathway	N N	N N	list list	N N	N N	3	N N
SeqGSEA	2	NA	NA	Y	NA	Y	Y	GSEA	N	N	SeqGeneSet (S4)	N	N	0	
hypeR	2	MSigDB, KEGG, Reactome, MetaboAnalyst	11	N	N	Y	N	ORA, GSEA	Y	N	hyp (R6)	N	N	3	N
escape methylGSA	2 2	MSigDB GO, KEGG,	11 1	N Y	N N	Y N	N N	GSEA ORA, GSEA	N N	N N	data.frame data.frame	N Y	N Y	6 0	N N
enrichTF	2	Reactome Transcription factor information	2	N	NA	N	N	t-tests, ORA	N	N	list	N	N	0	N
DEGraph famat	2 2	KEGG GO, KEGG, Wikipathways, Reactome	plenty 1	N N	Y Y	Y N	N N	t-tests ORA	N N	N N	list list	N N	N N	1 0	

Reactome

1 Repo: 1 for CRAN and 2 for Bioconductor

5 Data sets

Three data sets were used in this document, including:

² Supported organisms: 'NA' for not applicable as there is no species annotation data internally supported by the package; 'plenty' for hundreds or thousands species supported (mostly for KEGG and/or GO)

³ Tidy interface: whether the output object can be processed directly using tidy tools such as dplyr

 $^{^4}$ Support ggplot2: whether the output object can be visualized directly using ggplot2 command 5 Y for supported, N for not supported and NA for not applicable

- geneList provided by the DOSE package
- DE_GSE8057 provided by the clusterProfiler package
- GSM1295076_CBX6_BF_ChipSeq_mergedReps_peaks.bed.gz provided by the ChIPseeker package

The geneList was derived from the R package breastCancerMAINZ that contains 200 breast cancer samples, including 29 samples in grade I, 136 samples in grade II and 35 samples in grade III. The ratio of geometric mean of grade III samples versue geometric mean of grade I samples for each gene was computed. The geneList data set contains logarithm of these ratios (base 2).

The DE_GSE8057 data set was derived from the GSE8057 data set which can be downloaded in GEO and the expreimental design was documented in https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8057. All the treated samples were compared with control samples by different conditions using the limma package. The DE_GSE8057 data set contains differential expressed genes (DEGs) for each condition and the DEGs were selected in case of expression values with fold change > 1 or adjusted p value < 0.05.

The GSM1295076_CBX6_BF_ChipSeq_mergedReps_peaks.bed.gz file can be accessed via ChIPseeker::getSampleFiles()[[4]] or downloaded using the command ChIPseeker::downloadGSMbedFiles("GSM1295076"). The experimental design was documented in https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1295076.

In addition to GO and KEGG, two additional gene sets were used in the manuscript, including:

- ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X
- WikiPathways

The ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X was downloaded from https://maayanlab.cloud/Enrichr/geneSetLibra ry?mode=text&libraryName=ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X. This gene set was used to identify transcriptional factors associated with genomic regions obtained from a ChIPseq experiment.

The WikiPathways, wikipathways-20210310-gmt-Homo_sapiens.gmt was downloaded from https://wikipathways-data.wmc loud.org/current/gmt/. This gene set was used to identify biological pathways using community curated knowledge.

6 Examples of using clusterProfiler

This session provides source codes to reproduce the figures presented in the manuscript.

6.1 GO enrichment analysis

```
library(clusterProfiler)
library(enrichplot)
## geneList for GSEA examples
data(geneList, package="DOSE")
## fold change > 2 as DE genes, for ORA examples
de <- names(geneList)[abs(geneList) > 2]
ego <- enrichGO(de, OrgDb = "org.Hs.eg.db", ont="BP", readable=TRUE)
## use simplify to remove redundant terms
ego2 <- simplify(ego, cutoff=0.7, by="p.adjust", select_fun=min)
## visualization
ego <- pairwise_termsim(ego)
ego2 <- pairwise_termsim(ego2)
p1 <- emapplot(ego, cex_label_category=.8, cex_line=.5) + coord_cartesian()
p2 <- emapplot(ego2, cex_label_category=.8, cex_line=.5) + coord_cartesian()
p1 <- p1 + scale_fill_continuous(low = "#e06663", high = "#327eba", name = "p.adjust",
                              guide = guide_colorbar(reverse = TRUE, order=1), trans='log10')
p2 <- p2 + scale_fill_continuous(low = "#e06663", high = "#327eba", name = "p.adjust",
```

```
guide = guide_colorbar(reverse = TRUE, order=1), trans='log10')
cowplot::plot_grid(p1, p2, labels=c("A", "B"), rel_widths=c(1, 1.2))
```


Fig. 1: Gene ontology enrichment analysis.

6.2 KEGG enrichment analysis

```
data(geneList, package="DOSE")
kk <- gseKEGG(geneList, organism = "hsa", eps=0)

## sorted by absolute values of NES
kk2 <- arrange(kk, desc(abs(NES)))

## visualization
color <- c("#f7ca64", "#43a5bf", "#86c697", "#a670d6", "#ef998a")
kp1 <- gseaplot2(kk2, 1:5, color = color, pvalue_table=F, base_size=14)
kp2 <- upsetplot(kk2, n=5)
cowplot::plot_grid(kp1, kp2, rel_widths=c(1, .5), labels=c("A", "B"))</pre>

A

Biosynthesis of amino acids

B

Cell cycle
```


6.3 Functional interpretation of genomic regions of interest

```
library(ChIPseeker)
## the file can be downloaded using `downloadGSMbedFiles("GSM1295076")`
file <- "GSM1295076_CBX6_BF_ChipSeq_mergedReps_peaks.bed.gz"</pre>
gr <- readPeakFile(file)</pre>
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
genes <- seq2gene(gr, tssRegion=c(-1000, 1000), flankDistance = 3000, TxDb)</pre>
library(clusterProfiler)
## downloaded from 'https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=
## text&libraryName=ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X'
encode <- read.gmt("ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X.txt")</pre>
g <- bitr(genes, 'ENTREZID', 'SYMBOL', 'org.Hs.eg.db')
## Warning in bitr(genes, "ENTREZID", "SYMBOL", "org.Hs.eg.db"): 5.32% of input
## gene IDs are fail to map...
x <- enricher(g$SYMBOL, TERM2GENE=encode)
cnetplot(x, cex_label_gene=0.6,
        color_category = "#97c497", color_gene = "#c4c4c4") +
        guides(size = guide_legend(override.aes=list(shape=1)))
                        MAD1L1 LL6ST
                                        CDCA7
                                                                               BAMBI
                                   TBC1D13
                                                          DLL1 MED14
                                        NKX2-2
                                                                                      MECOM
              DAB1
                                                                                  GDF6
       NODAL
                  NRARP
                                                                                               IGERP2
           HOXD11
                                      POU5F1 CHEA
                                                                                                 ACSL3 RGS20
                                                                       TRIM28 CHEA
                                                                                                        FOX D3
                                                                                                  UNC5B
                           NEFL ZIC2
                                               NR2F1
                                                                     OTX2
           PRDM6 EBF2
                       LBX1
                                                    OLIG2 NEUROG2
                                     TRIL
                                                                                                                size
```


Fig. 2: Functional enrichment analysis of genomic regions of interest.

6.4 Comparison for different conditions

Fig. 3: Comparing functional profiles among different levels of conditions.

6.5 Visualization using ggplot2

```
library(forcats)
library(ggplot2)
ewp <- GSEA(geneList, TERM2GENE=wp[,c("wpid", "gene")], TERM2NAME=wp[,c("wpid", "name")])</pre>
ewp2 <- arrange(ewp, desc(abs(NES))) %>%
        group_by(sign(NES)) %>%
        slice(1:5)
ego3 <- mutate(ego, richFactor = Count / as.numeric(sub("/\\d+", "", BgRatio)))
mytheme <- theme(panel.border=element_blank(),</pre>
        panel.grid.major=element_line(linetype='dotted', colour='#808080'),
        panel.grid.major.y=element_blank(),
        panel.grid.minor=element_blank(),
        axis.line.x = element_line())
g1 <- ggplot(ego3, showCategory = 10,
  aes(richFactor, fct_reorder(Description, richFactor))) +
  geom segment(aes(xend=0, yend = Description)) +
  geom_point(aes(color=p.adjust, size = Count)) +
  scale_color_gradientn(colours=c("#f7ca64", "#46bac2", "#7e62a3"),
                      trans = "log10",
                      guide=guide_colorbar(reverse=TRUE, order=1)) +
  scale_size_continuous(range=c(2, 10)) +
  scale_x_continuous(expand=c(0,0)) +
  theme_dose(12) +
  mytheme +
  xlim(NA, 0.15) +
  guides(size = guide_legend(override.aes=list(shape=1))) +
  xlab("Rich Factor") +
  ylab(NULL) +
  ggtitle("Biological Processes")
g2 <- ggplot(ewp2, showCategory=10,</pre>
        aes(NES, fct_reorder(Description, NES), fill=qvalues)) +
    geom col() +
    geom_segment(mapping=aes(x=-2.1,
                               xend=ifelse(sign(NES)>0, 0, NES),
                               yend=Description)) +
    scale_x_continuous(expand=c(0,0)) +
    scale_fill_gradientn(colours=c('#b3eebe', "#46bac2", '#371ea3'),
                    guide=guide_colorbar(reverse=TRUE)) +
    theme_dose(12) +
    mytheme +
    xlab("Normalized Enrichment Score") +
    ylab(NULL) +
    ggtitle("WikiPathways")
cowplot::plot_grid(g1, g2, labels=c("A", "B"))
```


NOTE:

- 1. source codes and datasets to produce this file can be obtained online 18 .
- 2. setting font and adding rounded rectangular as background for each of the legends, as presented in the manuscript, can be done by the ggfun¹⁹ package.

¹⁸https://github.com/YuLab-SMU/supplemental-clusterProfiler-v4

¹⁹https://cran.r-project.org/package=ggfun

7 Session information

Here is the output of sessionInfo() of the system on which the Supplemental file was compiled:

```
## - Session info ------
## setting value
## version R version 4.1.0 (2021-05-18)
##
     os
                  Arch Linux
##
    system x86_64, linux-gnu
    ui X11
##
## language (EN)
    collate en_US.UTF-8
##
## ctype en_US.UTF-8
## tz Asia/Chongqing
              2021-07-02
##
    date
##
## - Packages ------
                                                     * version date lib source

* 1.54.0 2021-05-19 [1] Bioconductor

5.5 2021-04-25 [1] CRAN (R 4.1.0)
## package
## AnnotationDbi
     ape
                                                       0.0.6 2020-09-03 [1] CRAN (R 4.1.0)
0.2.1 2019-03-21 [1] CRAN (R 4.1.0)
* 2.52.0 2021-05-19 [1] Bioconductor
2.0.0 2021-05-19 [1] Bioconductor
##
    aplot
     assertthat
##
## Biobase
## BiocFileCache
                                                     * 0.38.0 2021-05-19 [1] Bioconductor
## BiocGenerics
                                                       1.2.0 2021-05-19 [1] Bioconductor

1.30.15 2021-05-11 [1] CRAN (R 4.1.0)

1.26.0 2021-05-19 [1] Bioconductor

2.48.0 2021-05-19 [1] Bioconductor
## BiocIO
##
     BiocManager
## BiocParallel
## biomaRt
## Biostrings
                                                         2.60.0 2021-05-19 [1] Bioconductor
                                                          4.0.4 2020-08-04 [1] CRAN (R 4.1.0)
4.0.5 2020-08-30 [1] CRAN (R 4.1.0)
1.0-7 2021-04-24 [1] CRAN (R 4.1.0)
## bit
##
     bit64
## bitops
                                                          1.2.1 2020-01-20 [1] CRAN (R 4.1.0)
## blob
## bookdown
                                                         0.22
                                                                         2021-04-22 [1] CRAN (R 4.1.0)
                                                         1.3-28 2021-05-03 [1] CRAN (R 4.1.0)
1.0.5 2021-05-15 [1] CRAN (R 4.1.0)
## boot
##
     cachem
                                                          1.18.2 2021-03-28 [1] CRAN (R 4.1.0)
## caTools
                                                     * 1.28.3 2021-05-21 [1] Bioconductor
## ChIPseeker
                                                 * 1.28.3 2021-05-21 [1] Bioconductor
2.5.0 2021-04-26 [1] CRAN (R 4.1.0)

* 4.0.0 2021-05-19 [1] Bioconductor
2.0-1 2021-05-04 [1] CRAN (R 4.1.0)

* 1.0.4 2019-06-21 [1] CRAN (R 4.1.0)

1.1.1 2020-12-30 [1] CRAN (R 4.1.0)

1.4.1 2021-02-08 [1] CRAN (R 4.1.0)

4.3.1 2021-04-30 [1] CRAN (R 4.1.0)

1.14.0 2021-02-21 [1] CRAN (R 4.1.0)

1.1.1 2021-01-15 [1] CRAN (R 4.1.0)

2.1.1 2021-04-06 [1] CRAN (R 4.1.0)

0.18.0 2021-05-19 [1] Bioconductor
## cli
    clusterProfiler
##
    colorspace
##
## conflicted
## cowplot
## crayon
##
     curl
##
      data.table
##
     DBT
     dbplyr
                                                        0.18.0 2021-05-19 [1] Bioconductor
0.6.27 2020-10-24 [1] CRAN (R 4.1.0)
2.9 2021-05-22 [1] Bioconductor
##
     DelayedArray
##
     digest
## DO.db
                                                        * 3.19.1 2021-06-13 [1] Bioconductor
## DOSE
                                                        0.4 2015-07-09 [1] CRAN (R 4.1.0)
1.0.6 2021-05-05 [1] CRAN (R 4.1.0)
0.3.2 2021-04-29 [1] CRAN (R 4.1.0)
    downloader
##
     dplyr
##
     ellipsis
                                                       0.3.2 2021-04-29 [1] CRAN (R 4.1.0)

* 1.13.1 2021-06-30 [1] Bioconductor

0.14 2019-05-28 [1] CRAN (R 4.1.0)

0.5.0 2021-05-25 [1] CRAN (R 4.1.0)

2.1.0 2021-02-28 [1] CRAN (R 4.1.0)

1.1.0 2021-01-25 [1] CRAN (R 4.1.0)

1.1-0 2017-01-28 [1] CRAN (R 4.1.0)
##
    enrichplot
##
    evaluate
## fansi
##
    farver
##
     fastmap
##
    fastmatch
## fgsea
                                                        1.18.0 2021-05-19 [1] Bioconductor
                                                     1.0.2 2018-10-05 [1] CRAN (R 4.1.0)
* 0.5.1 2021-01-27 [1] CRAN (R 4.1.0)
0.1.0 2020-10-31 [1] CRAN (R 4.1.0)
## filelock
## forcats
                                                     * 1.28.0 2021-05-19 [1] Bioconductor
## GenomeInfoDb
                                                      1.2.6 2021-05-21 [1] Bioconductor
1.28.0 2021-05-19 [1] Bioconductor
## GenomeInfoDbData
## GenomicAlignments
                                                       * 1.44.0 2021-05-19 [1] Bioconductor

* 1.44.0 2021-05-19 [1] Bioconductor

0.3.3 2021-03-05 [1] CRAN (R 4.1.0)

0.4.5 2021-01-11 [1] CRAN (R 4.1.0)
     GenomicFeatures
##
##
     GenomicRanges
## ggforce
## ggnewscale
                                                        * 3.3.4 2021-06-16 [1] CRAN (R 4.1.0)
2.0.5 2021-02-23 [1] CRAN (R 4.1.0)
0.9.1 2021-01-15 [1] CRAN (R 4.1.0)
## ggplot2
## ggraph
##
     ggrepel
```

##	ggtree		3.1.1.992	2021-06-13	Γ 1]	Bioconductor
##	glue		1.4.2			CRAN (R 4.1.0)
##	GO.db		3.13.0	2021-05-22	[1]	Bioconductor
##	GOSemSim		2.18.0	2021-05-19	[1]	Bioconductor
##	gplots		3.1.1	2020-11-28	[1]	CRAN (R 4.1.0)
##	graphlayouts		0.7.1			CRAN (R 4.1.0)
##	gridExtra		2.3			CRAN (R 4.1.0)
##	gtable		0.3.0			CRAN (R 4.1.0)
##	gtools		3.8.2			CRAN (R 4.1.0)
##	hms		1.1.0 0.5.1.1			CRAN (R 4.1.0)
## ##	htmltools httr		1.4.2			CRAN (R 4.1.0) CRAN (R 4.1.0)
##	igraph		1.2.6			CRAN (R 4.1.0)
##	IRanges	*	2.26.0			Bioconductor
##	jsonlite		1.7.2			CRAN (R 4.1.0)
##	kableExtra	*	1.3.4			CRAN (R 4.1.0)
##	KEGGREST		1.32.0	2021-05-19	[1]	Bioconductor
##	KernSmooth		2.23-20	2021-05-03	[1]	CRAN (R 4.1.0)
##	knitr		1.33			CRAN (R 4.1.0)
##	labeling		0.4.2			CRAN (R 4.1.0)
##	lattice		0.20-44			CRAN (R 4.1.0)
##	lazyeval		0.2.2			CRAN (R 4.1.0)
## ##	lifecycle	Ψ.	1.0.0 2.0.1			CRAN (R 4.1.0) CRAN (R 4.1.0)
##	magrittr MASS	т	7.3-54			CRAN (R 4.1.0)
##	Matrix		1.3-3			CRAN (R 4.1.0)
##	MatrixGenerics		1.4.0			Bioconductor
##	matrixStats		0.58.0			CRAN (R 4.1.0)
##	memoise		2.0.0	2021-01-26	[1]	CRAN (R 4.1.0)
##	munsell		0.5.0	2018-06-12	[1]	CRAN (R 4.1.0)
##	nlme		3.1-152	2021-02-04	[1]	CRAN (R 4.1.0)
##	org.Hs.eg.db	*	3.13.0			Bioconductor
##	patchwork		1.1.1			CRAN (R 4.1.0)
##	pillar		1.6.1			CRAN (R 4.1.0)
## ##	pkgconfig		2.0.3 3.8-1			CRAN (R 4.1.0) CRAN (R 4.1.0)
##	plotrix plyr		1.8.6			CRAN (R 4.1.0)
##	png		0.1-7			CRAN (R 4.1.0)
##	polyclip		1.10-0			CRAN (R 4.1.0)
##	prettyunits		1.1.1			CRAN (R 4.1.0)
##	progress		1.2.2	2019-05-16	[1]	CRAN (R 4.1.0)
##	purrr		0.3.4	2020-04-17	[1]	CRAN (R 4.1.0)
##	qvalue		2.24.0			Bioconductor
##	R6		2.5.0			CRAN (R 4.1.0)
##	rappdirs		0.3.3			CRAN (R 4.1.0)
## ##	RColorBrewer		1.1-2			CRAN (R 4.1.0)
##	Rcpp RCurl		1.0.6 1.98-1.3			CRAN (R 4.1.0) CRAN (R 4.1.0)
##	reshape2		1.4.4			CRAN (R 4.1.0)
##	restfulr		0.0.13			CRAN (R 4.1.0)
##	rjson		0.2.20			CRAN (R 4.1.0)
##	rlang		0.4.11	2021-04-30	[1]	CRAN (R 4.1.0)
##	rmarkdown	*	2.8	2021-05-07	[1]	CRAN (R 4.1.0)
##	Rsamtools		2.8.0			Bioconductor
##	RSQLite		2.2.7			CRAN (R 4.1.0)
##	rstudioapi		0.13			CRAN (R 4.1.0) Bioconductor
## ##	rtracklayer rvcheck	.	1.52.0 0.1.8			CRAN (R 4.1.0)
##	rvest	т	1.0.0			CRAN (R 4.1.0)
##	S4Vectors	*	0.30.0			Bioconductor
##	scales		1.1.1			CRAN (R 4.1.0)
##	scatterpie		0.1.6	2021-04-23	[1]	CRAN (R 4.1.0)
##	sessioninfo		1.1.1	2018-11-05	[1]	CRAN (R 4.1.0)
##	shadowtext		0.0.8	2021-04-23	[1]	CRAN (R 4.1.0)
##	stringi		1.6.2			CRAN (R 4.1.0)
##	stringr		1.4.0			CRAN (R 4.1.0)
##	SummarizedExperiment		1.22.0			Bioconductor
##	svglite		2.0.0			CRAN (R 4.1.0)
## ##	systemfonts tibble		1.0.2			CRAN (R 4.1.0) CRAN (R 4.1.0)
##	tidygraph		3.1.2 1.2.0			CRAN (R 4.1.0) CRAN (R 4.1.0)
##	tidyr		1.1.3			CRAN (R 4.1.0)
##	tidyselect		1.1.1			CRAN (R 4.1.0)
##	tidytree		0.3.4			CRAN (R 4.1.0)
##	tinytex		0.31			CRAN (R 4.1.0)
##	treeio		1.17.1.992	2021-06-13	[1]	Bioconductor

```
## tweenr
                                     1.0.2
                                                2021-03-23 [1] CRAN (R 4.1.0)
## TxDb.Hsapiens.UCSC.hg19.knownGene * 3.2.2
                                                2021-05-22 [1] Bioconductor
##
                                                2021-03-12 [1] CRAN (R 4.1.0)
   utf8
                                     1.2.1
## vctrs
                                     0.3.8
                                                2021-04-29 [1] CRAN (R 4.1.0)
                                                2021-05-11 [1] CRAN (R 4.1.0)
## viridis
                                     0.6.1
## viridisLite
                                     0.4.0
                                                2021-04-13 [1] CRAN (R 4.1.0)
                                                2019-11-22 [1] CRAN (R 4.1.0)
## webshot
                                     0.5.2
                                   * 0.0.1
                                                2020-04-27 [1] local
## wget
##
   withr
                                     2.4.2
                                                2021-04-18 [1] CRAN (R 4.1.0)
                                                2021-05-15 [1] CRAN (R 4.1.0)
## xfun
                                     0.23
## XML
                                     3.99-0.6 2021-03-16 [1] CRAN (R 4.1.0)
                                                2020-04-23 [1] CRAN (R 4.1.0)
## xml2
                                     1.3.2
##
   XVector
                                     0.32.0
                                                2021-05-19 [1] Bioconductor
                                                2020-02-01 [1] CRAN (R 4.1.0)
## yaml
                                     2.2.1
## zlibbioc
                                     1.38.0
                                                2021-05-19 [1] Bioconductor
```

[1] /home/ygc/R/library

[2] /usr/lib/R/library