Si 基板上のスズ

平松信義

2019年3月8日

まず α スズ結晶における銅の特性 X 線 (K α 1: λ =1.5405Å; K α 2: λ =1.5443Å) の回折を考える。先行研究 [1] から α スズ (粉末) を格子定数 a=6.4892Å のダイアモンド構造とすると、スズの結晶面 (111) の格子面間隔は $d=a/\sqrt{1^2+1^2+1^2}=3.7465$ Å であり、結晶面 (111) で回折されたピークは 2θ =23.730°(K α 1) と 2θ =23.788°(K α 2) に現れる (図 1 赤色左端のピーク)。ここで Bragg の回折公式 $2dsin\theta=n\lambda$ を用いた。

図 1 の Si 基板上のスズメッキ試料 (灰色と黒色) で α スズに起因する回折ピークは 2θ =22.4° に現れており、Bragg の回折公式より格子面間隔 d=3.96Å に対応する。これを粉末 α スズの結晶面 (111) の格子面間隔 d=3.7465Å と比較すると 5.8% 大きく、Si 基板上の α スズが数 % 歪んでいることを示唆する。

一方 β スズの歪みは 0.5% 以下である。図 1 の Si 基板を研磨後メッキした試料 (灰色) は β スズに起因する回折 ピークが現れている $(2\theta=30.7^\circ;~32.0^\circ)$ が、粉末 β スズのピーク $(2\theta=30.64^\circ,~30.72^\circ;~32.03^\circ,~32.10^\circ)[2]$ と比較 すると、その差は高々 $\Delta(2\theta)=0.2^\circ$ 程度だった。これから格子面間隔の差 (歪み) を計算すると $\frac{\Delta d}{d}=\cot\theta\Delta\theta=0.003$ だった。

図1 Si 基板上のスズの X 線回折強度

参考文献

- [1] J. Thewlis, and A. R. Davey, Thermal Expansion of Grey Tin, Nature 174, 1011 (1954)
- [2] M. Wolcyrz , R. Kubiak, and S. Maciejewski, X ray investigation of thermal expansion and atomic thermal vibrations of tin, indium, and their alloys. Phys. Stat. Sol. (b) 107, 245 (1981)