Übungsblatt 2

Aufgabe 1 (Digitale Datenspeicher)

- 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet.
- 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher.
- 3. Nennen Sie zwei nichtrotierende magnetische digitale Datenspeicher.
- 4. Nennen Sie vier Vorteile von Datenspeicher ohne bewegliche Teile gegenüber Datenspeichern mit beweglichen Teilen.
- 5. Beschreiben Sie was wahlfreier Zugriff ist.
- 6. Nennen Sie einen nicht-persistenten Datenspeicher.
- 7. Der Speicher eines Computersystems wird in die Kategorien Primärspeicher, Sekundärspeicher und Tertiärspeicher unterschieden. Auf welche Kategorie(n) kann der Prozessor direkt zugreifen?
- 8. Nennen Sie die Kategorie(n) aus Teilaufgabe 7, auf die der Prozessor nur über einen Controller zugreifen kann.
- 9. Nennen Sie für jede Kategorie aus Teilaufgabe 7 zwei Beispiele.
- 10. Erklären Sie, warum Speicherseiten in den oberen Schichten der Speicherhierarchie ständig ersetzt werden.

Aufgabe 2 (Cache-Schreibstrategien)

- 1. Nennen Sie die beiden grundsätzlichen Cache-Schreibstrategien.
- 2. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der es zu Inkonsistenzen kommen kann.
- 3. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der die System-Geschwindigkeit geringer ist.
- 4. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der sogenannte "Dirty Bits" zum Einsatz kommen.
- 5. Beschreiben Sie die Aufgabe der "Dirty Bits".

Inhalt: Themen aus Foliensatz 2 Seite 1 von 9

Prof. Dr. Christian Baun	FB 2: Inform	natik und	Ingenie	ırwissen	schaften
Betriebssysteme und Rechnernetze	(SS2022)	Frankfurt	Univ. c	of Appl.	Sciences

Aufgabe 3 (Speicherverwaltung)

1.	tierung?	nzepten der Spei	icnerpartitioniei	ung entstent interne Fragmen-
	☐ Statische Pa ☐ Dynamische ☐ Buddy-Algor	Partitionierung		
2.	Bei welchen Ko tierung?	nzepten der Spei	cherpartitionier	ung entsteht externe Fragmen-
	☐ Statische Pa ☐ Dynamische ☐ Buddy-Algor	Partitionierung		
3.	Welches Konzep passt?	pt zur Speicherve	erwaltung sucht	den freien Block, der am besten
	☐ First Fit	☐ Next Fit	\square Best fit	\square Random
4.		pt zur Speicherv ssenden freien B	~	t ab dem Anfang des Adress-
	\square First Fit	☐ Next Fit	\square Best fit	\square Random
5.		pt zur Speicherv eicher am Ende d	_	sückelt schnell den großen Be- s?
	\square First Fit	\square Next Fit	\square Best fit	\square Random
6.	Welches Konzeg senden Block?	pt zur Speicherv	erwaltung wähl	t zufällig einen freien und pas-
	\square First Fit	☐ Next Fit	\square Best fit	\square Random
7.	_	pt zur Speicherve n passenden freie	_	ab der Stelle der letzten Block-
	\square First Fit	☐ Next Fit	\square Best fit	\square Random
8.	Welches Konzej arbeitet am lan	-	erwaltung prod	uziert viele Minifragmente und
	☐ First Fit	□ Next Fit	\square Best fit	\square Random
9.				Speicher mit dynamischer Par- ithmen First Fit, Next Fit und

Inhalt: Themen aus Foliensatz 2

Best Fit die Nummer der freien Partition an, die der entsprechende Algorithmus verwendet, um einen Prozess einzufügen, der 21 MB Speicher benötigt.

a) First Fit: b) Next	Fit:		c) Best Fit:
,			,
	10 MB	0	
	$22\mathrm{MB}$	1	
	30 MB	2	
letzter zugewiesener Bereich \longrightarrow	$2\mathrm{MB}$	3	
	$7\mathrm{MB}$	4	
	17 MB	5	
	12 MB	6	
	45 MB	7	frei
	21 MB	8	belegt
	39 MB	9	

Aufgabe 4 (Buddy-Verfahren)

Das Buddy-Verfahren zur Zuweisung von Speicher an Prozesse soll für einen $1024\,\mathrm{kB}$ großen Speicher verwendet werden. Führen Sie die angegeben Aktionen durch und geben Sie den Belegungszustand des Speichers nach jeder Anforderung oder Freigabe an.

	0	128	256	384	512	640	768	896	1024
Anfangszustand					1024 KB				
65 KB Anforderung => A									
30 KB Anforderung => B									
90 KB Anforderung => C									
34 KB Anforderung => D									
130 KB Anforderung => E									
Freigabe C									
Freigabe B									
275 KB Anforderung => F									
145 KB Anforderung => G									
Freigabe D									
Freigabe A									
Freigabe G									
Freigabe E									

Aufgabe 5 (Real Mode und Protected Mode)

1. Beschreiben Sie wie der Real Mode arbeitet.

Inhalt: Themen aus Foliensatz 2

- 2. Beschreiben Sie warum der Real Mode für Mehrprogrammbetrieb (Multitasking) ungeeignet ist.
- 3. Beschreiben Sie wie der Protected Mode arbeitet.
- 4. Beschreiben Sie was virtueller Speicher ist.
- 5. Erklären Sie, warum mit virtuellem Speicher der Hauptspeicher besser ausgenutzt wird.
- 6. Beschreiben Sie was Mapping ist.
- 7. Beschreiben Sie was Swapping ist.
- 8. Nennen Sie die Komponente der CPU, die virtuellen Speicher ermöglicht.
- 9. Beschreiben Sie die Aufgabe der Komponente aus Teilaufgabe 8.
- 10. Beschreiben Sie das Konzept des virtuellen Speichers mit dem Namen Paging.
- 11. Beschreiben Sie wo beim Paging interne Fragmentierung entsteht.
- 12. Geben Sie die maximale Anzahl von Speicheradressen an, die mit einem 32-Bit-Computersystem adressiert werden können.
- 13. Erklären Sie, warum in 32-Bit- und 64-Bit-Systemen mehrstufiges Paging und nicht einstufiges Paging verwendet wird.
- 14. Berechnen Sie die physische 16-Bit-Speicheradresse unter Verwendung der Adressumrechnung mit einstufigem Paging. Ergänzen Sie die einzelnen Bits in der physischen 16-Bit-Adresse.

Virtuelle (logische) 16 Bit Adresse

0	0	0	1	\mid C		1	1	1	0	-	L	1	1	. (0	1	. (0	1
							Sei	ten	tak	ell	e								
	•	•																	
0 0	0 1	1 0		Р	D F	₹	Wei Steu	tere erbits		1	0) ()	1	()	1		
0 0	0 1	0 1		Р	D F	₹		tere erbits		1	1	. [:	l	0]	L	0		
•	•	•				T			T										
0 0	0 0	1 0		Р	D F	₹	Wei Steu	tere erbits		0	0) [1	0]	L	1		
0 0	0 0	0 1		Р	D F	₹		tere erbits		0	1	. -	1	0]	L	1		
0 0	0 0	0 0		Р	D F	₹		tere erbits		0	1	. [.	1	1	() [1		
				F	Phy	ysi	sch	e 16	5 B	it /	٩dr	es	se				Ī		

_	 		 			 		
- 1								
- 1								
- 1								
- 1								

15. Beschreiben Sie den Zweck des Page-Table Base Register (PTBR).

Inhalt: Themen aus Foliensatz 2 Seite 4 von 9

Prof. Dr. Christian Baun	FB 2: Inforr	natik und	Ingenie	eurwisser	nschaften
Betriebssysteme und Rechnernetze	(SS2022)	Frankfurt	Univ.	of Appl.	Sciences

- 16. Beschreiben Sie wie eine Page Fault Ausnahme (Exception) entsteht.
- 17. Beschreiben Sie wie das Betriebssystem auf eine Page Fault Ausnahme (Exception) reagiert.
- 18. Beschreiben Sie wie eine Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception) entsteht.
- 19. Beschreiben Sie die Auswirkung einer Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception).

Aufgabe 6 (Speicherverwaltung)

Kreuzen Sie bei jeder Aussage zur Speicherverwaltung an, ob die Aussage wahr oder falsch ist.

1.	Real Mode ist	für Multitasking-Systeme geeignet.
	\square Wahr	☐ Falsch
2.		d Mode läuft jeder Prozess in seiner eigenen, von anderen Pro- otteten Kopie des physischen Adressraums.
	\square Wahr	☐ Falsch
3.	Bei statischer I	Partitionierung entsteht interne Fragmentierung.
	\square Wahr	☐ Falsch
4.	Bei dynamische	er Partitionierung ist externe Fragmentierung unmöglich.
	\square Wahr	☐ Falsch
5.	Beim Paging h	aben alle Seiten die gleiche Länge.
	\square Wahr	☐ Falsch
6.	Ein Vorteil lan	ger Seiten beim Paging ist geringe interne Fragmentierung.
	\square Wahr	☐ Falsch
7.	Ein Nachteil kwerden kann.	urzer Seiten beim Paging ist, dass die Seitentabelle sehr groß
	\square Wahr	☐ Falsch
8.	Die MMU über belle in physiso	rsetzt beim Paging logische Speicheradressen mit der Seitentache Adressen.
	\square Wahr	☐ Falsch

Inhalt: Themen aus Foliensatz 2 Seite 5 von 9

	Dr. Christia iebssysteme				ner	net	ze										_		rwi Al						
9.	Moderne B den Paging		ebs	sys	ten	ne	(fü:	r x	86)	ar	beit	ten	im	Pı	rote	ecte	ed l	Mo	de	une	d v	erw	æn-	-	
	\square Wahr] Fa	lsc	h																			
Au	fgabe 7		(5	Sei	itε	en	-E	Crs	se	tz	ur	ıg	\mathbf{s}	tr	at	æ	gie	en)						
1.	Die beste S wie sie funk				zur	ıgs	stra	ateg	gie	ist	die	op	an	ıale	s St	rat	egi	e. E	3es	chr	eib	en	Sie	,	
2.	Begründen tiert werde				n d	lie (opt	ima	ale	Ers	setz	zun	gss	tra	teg	ie ()P	Τn	nich	ıt iı	mp	lem	ien-	-	
3.	Beschreiber reich ist.	n Si	e ei	in S	Szei	nar	io,	in	der	n d	ie o	opti	ima	ale	Str	ate	gie	in	dei	r P	rax	is l	nilf-	-	
4.	Führen Sie LRU, LFU 4 Seiten un die Missrat	und id e	d F inn	IF(nal	Эе mi		nal Se	mi ite	t e	ine	m l	Dat	ene	cac	he	mit	ei	ner	· K	apa	ızit	ät	vor	1	
	Optimale E	erse	tzu	ngs	str	ate	gie	(C	РΊ	7):															
	Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
	Seite 1:																								
	Seite 2:																								
	Seite 3:																								
	Seite 4:																								
		Hit	-rat																						
				.e. ate																					
		1*11.	ادد	acc	•																				
	Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
	Seite 1:																								
	Seite 2:																								
	Seite 3:																								

Hitrate: Missrate:

Seite 4: Seite 5: Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2022) Frankfurt Univ. of Appl. Sciences

Ersetzungsstrategie Least Recently Used (LRU):

Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
Seite 1:																								
Seite 2:																								
Seite 3:																								
Seite 4:																								
Queue:																								
	Hit Mis			:																				
Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
Seite 1:																								
Seite 2:																								
Seite 3:																								
Seite 4:																								
Seite 5:																								
Queue:																								
	Hit Mis	rat ssr		:																				

Inhalt: Themen aus Foliensatz 2

Ersetzungsstrategie Least Frequently Used (LFU):

Hitrate: Missrate:

Hitrate: Missrate:

Ersetzungsstrategie FIFO:

Hitrate: Missrate:

Hitrate: Missrate:

- 5. Beschreiben Sie die Kernaussage der Anomalie von Laszlo Belady.
- 6. Zeigen Sie Belady's Anomalie, indem sie die gegebene Zugriffsfolge mit der Ersetzungsstrategie FIFO einmal mit einem Datencache mit einer Kapazität

Inhalt: Themen aus Foliensatz 2 Seite 8 von 9

Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2022) Frankfurt Univ. of Appl. Sciences

von 3 Seiten und einmal mit 4 Seiten durchführen. Berechnen Sie auch die Hitrate und die Missrate für beide Szenarien.

Anfragen:	3	2	1	0	3	2	4	3	2	1	0	4
Seite 1:												
Seite 2:												
Seite 3:												
		rat ssr	e: ate	:								
Anfragen:	3	2	1	0	3	2	4	3	2	1	0	4
Anfragen: Seite 1:	3	2	1	0	3	2	4	3	2	1	0	4
	3	2	1	0	3	2	4	3	2	1	0	4
Seite 1:	3	2	1	0	3	2	4	3	2	1	0	4
Seite 1: Seite 2:	3	2	1	0	3	2	4	3	2	1	0	4

Hitrate:

Missrate: