VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

POKROČILÉ INFORMAČNÍ SYSTÉMY / INTERNETOVÉ APLIKACE 2023/2024

Návrh projektu

Evidence řidičů včetně dopravních přestupků, evidence motorových vozidel

Tým xdrtil03

Brno, 25. března 2024

Obsah

Složení týmu	2
Zvolená architektura systému	3
Implementační platforma	3
Analýza požadavků	4
Neformální specifikace	5
Prvotní analýza požadavků	6
Diagram případů užití	7
Specifikace vybraných případů užití	8
Systémový diagram sekvence (SSD)	18
Kontrakty systémových operací (OCs)	19
Systémový diagram sekvence (SSD)	20
Kontrakty systémových operací (OCs)	21
Návrh systému	22
Doménový model (DM) užití	23
Určení zodpovědnosti tříd (CRC)	24
Návrhový diagram tříd	26
Návrhové diagramy interakce	28

Složení týmu

Jméno	Login	Předmět
Bc. David Drtil	xdrtil03	PIS+WAP
Bc. Dominik Pop	xpopdo00	PIS+WAP
Bc. Tomáš Bártů	xbartu11	PIS
Bc. Matej Koreň	xkoren10	PIS
Bc. Adam Hos	xhosad00	WAP

Zvolená architektura systému

- Systém bude implementován pomocí třívrstvé architektury.

Implementační platforma

- Při vývoji informačního systému použijeme:
 - ASP.NET Core business vrstva
 - Entity framework datová vrstva
 - React.js prezentační vrstva
 - MSSQL databáze
 - CSS + Bootstrap 5 styly, základní JavaScript prvky
 - Visual Studio vývojové prostředí
 - GitHub verzování
 - Discord komunikační platforma

Část I

Analýza požadavků

Neformální specifikace

Oddělení evidence řidičů a vozidel úřadu města Přerova přechází z papírové databáze do elektronické podoby. Je tedy v rámci tohoto přechodu nutno vytvořit informační systém, ve kterém budou moci úředníci vést standardní údaje o řidičích a vozidlech. K tomuto systému musí mít také přístup policejní oddělení, tak aby si policisté mohli informace o řidičích a jejich vozidlech v případě potřeby zobrazit. V rámci integrace s policejním oddělením umožňuje systém správu kradených vozidel, o kterou se starají úředníci na základě hlášení podaných policejním oddělením. Na tomto principu funguje také správa dopravních přestupků jednotlivých řidičů založená na bodovém systému.

Systém musí umožňovat úředníkům spravovat řidiče a vozidla. V rámci řidičů musí být úředníkovi umožněno přidat nového řidiče, aktualizovat jeho informace v případě rozšíření řidičského průkazu, či například změny jména a také zpracovávat řidičovy přestupky a udělovat za tyto přestupky body. Body uděluje úředník, ale o jejich mazání se stará pouze v speciálním případě, že byl přestupek soudem zamítnut, jelikož za normálních okolností body mizí po určitém časovém úseku samy. Dále musí být úředníkovi umožněno přidat do systému nové vozidlo, provádět aktualizace o vozidle, přidat jej na listinu kradených vozidel, anebo vozidlo odebrat ze systému v případě likvidace.

Policista musí mít v systému možnost zobrazení informací o řidiči a historii jeho přestupků. Stejně tak si může zobrazit informace o vozidle či zkontrolovat, zdali není vozidlo na listině kradených vozidel. V rámci systému může policista také ohlásit přestupek nebo kradené vozidlo a tyto ohlášení pak zpracovává úředník.

Úředníci budou k systému přistupovat pomocí pracovních počítačů poskytnutých úřadem v rámci svého zaměstnaneckého účtu. Policistům bude v rámci jejich služebních účtů přístupný i z palubních počítačů jejich vozidel.

Prvotní analýza požadavků

Z neformální specifikace vyplývá, že v systému budou operovat uživatelé s následujícími rolemi:

- 1. Správce Provádí správu účtů úředníků a nastavování jejich oprávnění. Zároveň je schopen vykonávat akce aktéra úředník pro opravení možných chyb.
- 2. Úředník Eviduje a spravuje vozidla včetně jeho vlastníka, který se může v průběhu let měnit. Spravuje také řidiče a nahlášené přestupky, kterých se dopustili. Během správního řízení se mohou přestupky přehodnotit, proto také má možnost měnit přestupky a udělené body. Podle právních postupů zadává a odebírá kradená vozidla.
- 3. Policista Nahlašuje nelegální činnosti ve formě přestupků, které se odehrávají na silničním provozu. Zobrazuje si výpis o vozidle, řidiči a jeho přestupcích pro zjištění opakovaného spáchání přestupku. Řidiči podle typu závažnosti zadává u přestupku počet bodů a nebo výši pokuty. Dále si zobrazuje výpis kradených vozidel na základě, kterého nahlašuje krádež nebo nález vozidla.
- 4. Čas Po uplynutí časového intervalu se automaticky řidiči vymažou body.

Diagram případů užití je vyobrazen na obrázku č. 1.

Diagram případů užití

Obrázek č. 1 – Diagram případu užití

Specifikace vybraných případů užití

1. Případ užití správa účtů

1.1. Vytvoření účtu

Správa účtů zahrnuje možnost vytvoření, editace a smazání účtů úředníků a policistů. Ve specifikaci je popsáno vytvoření takového účtu.

ID: 1

Název: Správa účtu: Vytvoření účtu

Stručný popis: Vytvoření úřednického/policejního účtu v rámci systému.

Primární aktéři: Správce.

Sekundární aktéři: -

Zainteresované strany:

- Správce: Chce jednoduše a rychle přidat nový účet do systému.

- Úředník/policista: Chce aby jeho účet byl přidán se správnými údaji a oprávněními.

- Úřad: Chce aby jeho pracovníci měli správně nastavené účty.

Předpoklady: Nadřazená autorita je přihlášena na správcovském účtu.

Následný stav: Byl vytvořen nový uživatelský účet.

Hlavní tok:

- 1. Systém nabídne možnost zadání potřebných údajů pro vytvoření účtu.
- 2. Do ukončení se opakuje:
 - a. Uživatel vyplní potřebné údaje.
 - b. Systém ověří správnost údajů.
 - c. Pokud je některý údaj špatně, pak systém oznámí chybu a operace se opakuje. Pokud jsou správně operace se úspěšně ukončí a je vytvořen nový účet.

Alternativní toky:

- a) Správa účtů: Úředník/policista se již v systému nachází
 - 1. Systém upozorní uživatele, že úředník/policista, kterého se pokouší přidat do systému, se zde již nachází.
 - 2. Provede se návrat k 1. bodu hlavního toku.

Výjimky:

- a) Správa účtů: Selhání systému
 - 1. Systém oznámí uživateli důvod selhání.
 - 2. Provede se ukončení systému.
- b) Správa účtů: Selhání operace
 - 1. Systém oznámí uživateli selhání operace a důvod tohoto selhání.
 - 2. Systém provede návrat na místo odkud byla zavolána stornovaná operace.
- c) Správa účtů: Storno

1. Systém provede návrat na místo odkud byla zavolána stornovaná operace.

Technické požadavky:

- Počítač, na kterém bude správce pracovat.

Častost provedení: Zřídka.

2. Případ užití správa řidičů

2.1. Přidání řidiče do systému

Správa řidičů zahrnuje možnost přidání řidiče do systému, editaci nebo smazání řidiče. Ve specifikaci je popsáno proces přidání řidiče.

ID: 2

Název: Správa řidičů: Přidání řidiče

Stručný popis: Přidání řidiče do systému.

Primární aktéři: Úředník.

Sekundární aktéři: -

Zainteresované strany:

- Řidič: Chce aby informace o jeho osobě byly v systému vyplněny správně.

- Úředník: Chce jednoduše a spolehlivě přidat řidiče do systému.

Úřad: Chce spolehlivě uchovávat informace o řidičích.

Předpoklady: Uživatel je přihlášen jako úředník.

Následný stav: Řidič byl přidán do systému.

Hlavní tok:

- 1. Systém nabídne možnost zadání potřebných údajů týkajících se přidávaného řidiče.
- 2. Do ukončení se opakuje:
 - a. Uživatel vyplní potřebné údaje.
 - b. Systém ověří správnost údajů.
 - c. Pokud jsou údaje správně, operace se úspěšně ukončí a řidič je přidán do systému.
 V opačném případě proběhne alternativní tok b).
- 3. Systém nabídne možnost přidat řidičské oprávnění.
- 4. Uživatel vybere druh řidičského oprávnění.
- 5. Do ukončení se opakuje:
 - a. Uživatel vyplní datum a popis pro řidičské oprávnění.
 - b. Systém ověří správnost údajů.
 - c. Pokud jsou údaje správně, operace se úspěšně ukončí a řidičské oprávnění je přidáno řidiči, jinak se opakuje.
- 6. Uživatel potvrdí přidání řidiče do systému.

Alternativní toky:

- a) Správa řidičů: Řidič se již v systému nachází
 - 1. Systém upozorní uživatele, že řidič, kterého se pokouší přidat do systému, se zde již nachází.
 - 2. Provede se návrat k 1. bodu hlavního toku.
- b) Správa řidičů: Některý údaj byl vynechán nebo byl vyplněn špatně
 - 1. Systém upozorní uživatele, že některý z povinných údajů chybí nebo je špatně a označí jej.
 - 2. Provede se návrat k bodu 2.a. hlavního toku.

Výjimky:

- a) Správa řidičů: Selhání systému
 - 1. Systém oznámí uživateli důvod selhání.
 - 2. Provede se ukončení systému.
- b) Správa řidičů: Selhání operace
 - 1. Systém oznámí uživateli selhání operace a důvod tohoto selhání.
 - 2. Systém provede návrat na místo odkud byla zavolána stornovaná operace.
- c) Správa řidičů: Storno
 - 1. Systém provede návrat na místo odkud byla zavolána stornovaná operace.

Nefunkční požadavky:

- Kontrola na existenci řidiče v systému by neměla trvat více než 20s.

Technické požadavky:

- Počítač, na kterém úředník bude vyplňovat informace.
- Tablet s perem, aby se řidič mohl podepsat.

Častost provedení: Velmi často.

Otevřené otázky:

Jaké dokumenty sebou musí mít osoba žádající o řidičské oprávnění?

3. Případ užití správa vozidel

3.1. Přidání vozidla do systému

Správa řidičů zahrnuje možnost přidání vozidla do systému, editaci nebo smazání vozidla. Ve specifikaci je popsán proces přidání vozidla.

ID: 3

Název: Správa vozidel: Přidání vozidla

Stručný popis: Přidání vozidla do systému.

Primární aktéři: Úředník.

Sekundární aktéři: -

Zainteresované strany:

- Vlastník vozidla: Chce aby bylo jeho vozidlo přidáno do systému se správnými údaji.

- Úředník: Chce jednoduše a spolehlivě přidat vozidlo do systému.

- Úřad: Chce v systému spolehlivě uchovávat informace o vozidlech.

Předpoklady: Uživatel je přihlášen jako úředník.

Následný stav: Vozidlo bylo přidáno do systému.

Hlavní tok:

- 1. Systém nabídne možnost zvolení typu vozidla.
- 2. Uživatel zvolí typ vozidla.
- 3. Systém nabídne možnost zadání potřebných údajů týkajících se přidávaného vozidla.
- 4. Do ukončení se opakuje:
 - a. Uživatel vyplní potřebné údaje.
 - b. Systém ověří správnost údajů.
 - c. Pokud jsou údaje správně, pak systém vybídne uživatele k přiřazení vlastníka. Jinak se provede alternativní tok b).
- 5. Uživatel přiřadí vlastníka k vozidlu. Pokud se vlastník v systému nenachází, pak se provede alternativní tok c).
- 6. Systém potvrdí přiřazení vlastníka k vozidlu.
- 7. Uživatel potvrdí přidání vozidla a vozidlo je přidáno do systému.

Alternativní toky:

- a) Správa vozidel: Vozidlo se již v systému nachází
 - Systém upozorní uživatele, že vozidlo, které se pokouší přidat do systému, se zde již nachází.
 - 2. Provede se návrat k 1. bodu hlavního toku.
- b) Správa vozidel: Některý údaj byl vynechán nebo byl špatně vyplněn
 - 1. Systém upozorní uživatele, že některý z povinných údajů chybí a označí jej.
 - 2. Provede se návrat k bodu 4.a. hlavního toku.

- c) Správa vlastníků: Vlastník neexistuje v systému.
 - 1. Systém upozorní uživatele, že vlastník se v systému nenachází a nabídne možnost jeho přidání.
 - 2. Uživatel zvolí tuto možnost.
 - 3. Systém nabídne možnost zadání potřebných údajů týkajících se přidávaného vlastníka.
 - 4. Do ukončení se opakuje:
 - a. Uživatel vyplní potřebné údaje.
 - b. Systém ověří správnost údajů.
 - c. Pokud jsou údaje správně, pak se pokračuje. Jinak se opakuje.
 - 5. Uživatel potvrdí přidání vlastníka do systému.

Výjimky:

- a) Správa vozidel: Selhání systému
 - 1. Systém oznámí uživateli důvod selhání.
 - 2. Provede se ukončení systému.
- b) Správa vozidel: Selhání operace
 - 1. Systém oznámí uživateli selhání operace a důvod tohoto selhání.
 - 2. Systém provede návrat na místo odkud byla zavolána stornovaná operace.
- c) Správa vozidel: Storno
 - 1. Systém provede návrat na místo odkud byla zavolána stornovaná operace.

Nefunkční požadavky:

- Kontrola na existenci vozidla v systému by neměla trvat více než 20s.

Technické požadavky:

- Počítač, na kterém úředník bude vyplňovat informace.
- Tablet s perem, aby se řidič mohl podepsat.

Častost provedení: Velmi často.

Otevřené otázky:

- Jaké dokumenty musí sebou osoba žádající o přidání vozidla mít?

4. Případ užití správa přestupků

4.1. Zpracování přestupku

Správa přestupků zahrnuje možnost zpracování, editace a smazání přestupku. Ve specifikaci je popsáno zpracování takového přestupku.

ID: 4

Název: Správa přestupků: Zpracování přestupku

Stručný popis: Kontrola přestupku, přidělení trestných bodů a potvrzení přestupku.

Primární aktéři: Úředník.

Sekundární aktéři: -

Zainteresované strany:

- Řidič: Týká se jej přestupek.

- Vlastník vozidla: Týká se jej přestupek.

Úředník: Chce jednoduše a rychle zpracovat přestupek.

- Policista: Chce aby jím nahlášený přestupek byl správně zpracován.

Předpoklady: Uživatel je přihlášen jako úředník a obdržel oznámení o vytvořeném přestupku.

Následný stav: Přestupek byl zpracován.

Hlavní tok:

- 1. Systém zašle oznámení uživateli o vytvořeném přestupku.
- 2. Systém nabídne uživateli možnost zpracovat přestupek
- 3. Uživatel zvolí tuto možnost.
- 4. Systém zobrazí uživateli přestupek.
- 5. Uživatel zkontroluje přestupek a potvrdí jeho platnost.
- 6. Systém nabídne možnost přiřadit řidiči trestné body.
- 7. Uživatel přiřadí řidiči vhodný počet trestných bodů v rozmezí 0-12.
- 8. Uživatel potvrdí zpracování přestupku.

Alternativní toky:

- a) Správa přestupků: Úředník nalezne chybu v přestupku.
 - 1. Úředník zvolí možnost editace přestupku.
 - 2. Systém zobrazí editační pole přestupku.
 - 3. Úředník opraví nalezenou chybu.
 - 4. Úředník potvrdí úpravu.
 - 5. Pokračuje se krokem 5. hlavního toku.

Výjimky:

- a) Správa vozidel: Selhání systému
 - 1. Systém oznámí uživateli důvod selhání.
 - 2. Provede se ukončení systému.
- b) Správa vozidel: Selhání operace
 - 1. Systém oznámí uživateli selhání operace a důvod tohoto selhání.
 - 2. Systém provede návrat na místo odkud byla zavolána stornovaná operace.
- c) Správa vozidel: Storno
 - 1. Systém provede návrat na místo odkud byla zavolána stornovaná operace.

Technické požadavky:

- Počítač, na kterém úředník bude vyplňovat informace.

Častost provedení: Poměrně často.

Otevřené otázky:

- Je potřeba zpracovat přestupek, který byl vyřešen na místě?

5. Případ užití nahlásit přestupek

5.1. Nahlášení přestupku

ID: 5

Název: Nahlásit přestupek: Nahlášení přestupku

Stručný popis: Oznámení o spáchání přestupku.

Primární aktéři: Policista.

Sekundární aktéři: -

Zainteresované strany:

- Řidič: V systému jsou uchovány jeho spáchané přestupky.

- Vlastník vozidla: V systému jsou uchovány jeho spáchané přestupky.
- Policista: Chce jednoduše a spolehlivě nahlásit přestupek.
- Úřad: Chce mít spolehlivě uchované informace o spáchaných přestupcích.

Předpoklady: Uživatel je přihlášen pod policejním účtem.

Následný stav: Byl vytvořen přestupek.

Hlavní tok:

- 1. Uživatel zvolí možnost nahlášení přestupku.
- 2. Systém nabídne možnost zadání potřebných údajů týkajících se přestupku.
- 3. Do ukončení se opakuje:
 - a. Uživatel vyplní potřebné údaje.
 - b. Systém ověří správnost údajů.
 - c. Pokud nejsou údaje v pořádku, pak se proces opakuje. Jinak se pokračuje.
- 4. Systém vybídne uživatele k přiřazení vozidla, které se zúčastnilo přestupku.
- 5. Uživatel přiřadí vozidlo.
- 6. Systém vybídne uživatele k přiřazení řidiče, který spáchal přestupek.
- 7. Uživatel přiřadí řidiče.
- 8. Uživatel zkontroluje, zdali se vozidlo nachází v seznamu kradených vozidel. Pokud ano, pak se provede alternativní krok c).
- 9. Uživatel potvrdí nahlášení přestupku.

Alternativní toky:

- a) Nahlásit přestupek: Přestupek bez řidiče.
 - 6.a. Systém vybídne uživatele k přiřazení vlastníka vozidla.
 - 7.a. Uživatel přiřadí vlastníka.
- b) Nahlásit přestupek: Řidič neexistuje v systému.
 - 6.b. Systém upozorní uživatele, že řidič, kterého se snaží v systému nalézt se zde nenachází.
 - 7.b. Uživatel přiřadí vlastníka vozidla, ve kterém byl přestupek spáchán.
- c) Nahlásit přestupek: Vozidlo se nachází v ukradených vozidlech.
 - 1. Systém nabídne uživateli možnost nahlásit nález ukradeného vozidla.
 - 2. Uživatel oznámí nález.
 - 3. Tok pokračuje krokem 9. z hlavního toku.

Výjimky:

- a) Nahlásit přestupek: Selhání systému
 - 1. Systém oznámí uživateli důvod selhání.
 - 2. Provede se ukončení systému.
- b) Nahlásit přestupek: Selhání operace
 - 1. Systém oznámí uživateli selhání operace a důvod tohoto selhání.
 - 2. Systém provede návrat na místo odkud byla zavolána stornovaná operace.
- c) Nahlásit přestupek: Storno
 - 1. Systém provede návrat na místo odkud byla zavolána stornovaná operace.

Nefunkční požadavky:

- Výběr vlastníka/řidiče z databáze by neměl trvat déle než 15s.

Technické požadavky:

- Policista disponuje palubním počítačem či tabletem.

Častost provedení: Poměrně často.

Otevřené otázky:

1. Alternativní tok b) - Co když byl přestupek spáchán neřidičem v ukradeném vozidle?

Systémový diagram sekvence (SSD)

Obrázek č. 2 – Systémový diagram pro případ užití ID 3

Kontrakty systémových operací (OCs)

získejTypyVozidel() : List<typVozidla>

- o pre-condition: Uživatel je přihlášen jako úředník.
- o post-condition: Uživateli je zobrazen seznam typů vozidel.

- vybratTyp(typ) : void

- o pre-condition: Uživatel zvolil typ vozidla.
- o post-condition: Vytvořilo se vozidlo a uživateli jsou zobrazeny atributy, které je potřeba vyplnit, pro daný typ vozidla.

- vyplnitAtributy(atributy): boolean

- o pre-condition: Vozidlo bylo vytvořeno.
- o post-condition: Atributy byly přiřazeny vozidlu a uživatel byl vybídnut k přiřazení vlastníka.

- přidatVlastníka(atributy) : Vlastník

- o pre-condition: Vlastník neexistuje v systému.
- o post-condition: Vlastník byl přidán do systému.

- asociovatVlastníka(vlastník : Vlastník) : boolean

- o pre-condition: Uživatel zvolil vlastníka, vlastník existuje v systému a vozidlo bylo vytvořeno.
- o post-condition: Vlastník byl asociován k vozidlu.

- potvrditPřidání(): Vozidlo

- o pre-condition: Vozidlo bylo vytvořeno, atributy a vlastník přiřazeny.
- o post-condition: Vozidlo bylo přidáno do sys

Systémový diagram sekvence (SSD)

Obrázek č. 3 – Systémový diagram pro případ užití ID 5

Kontrakty systémových operací (OCs)

- nahlásitPřestupek(): void

- o pre-condition: Uživatel je přihlášen jako policista.
- o **post-condition:** Byl vytvořen přestupek a uživateli jsou zobrazeny atributy, které je potřeba vyplnit, pro daný přestupek.

- vyplnitAtributy(atributy): boolean

- o pre-condition: Přestupek byl vytvořen.
- o **post-condition:** Atributy byly přiřazeny přestupku a uživatel byl vybídnut k přiřazení vozidla.

- asociovatVozidlo(vozidlo: Vozidlo): boolean

- o pre-condition: Uživatel zvolil vozidlo, vozidlo existuje v systému a přestupek byl vytvořen.
- o post-condition: Vozidlo bylo asociováno k přestupku.

- asociovatŘidiče(řidič: Řidič): boolean

- o pre-condition: Uživatel zvolil řidiče, řidič existuje v systému a přestupek byl vytvořen.
- o post-condition: Řidič byl asociován k vozidlu.

- asociovatVlastníka(vlastník : Vlastník) : boolean

- o **pre-condition:** Uživatel zvolil vlastníka, vlastník existuje v systému a přestupek byl vytvořen.
- o post-condition: Vlastník byl asociován k vozidlu.

- zkont<u>rolovatKradenáVozidla</u>(vozidlo : Vozidlo) : boolean

- o pre-condition: Uživatel zvolil vozidlo nacházející se v systému.
- o post-condition: Byla provedena kontrola zda bylo vozidlo ukradeno.

- nahlásitNálezVozidla(vozidlo : Vozidlo) : boolean

- o pre-condition: Uživatel zvolil vozidlo a to se nachází v seznamu kradených vozidel.
- o post-condition: Vozidlo bylo označeno za nalezené.

- potvrditNahlášení(): Přestupek

- o pre-condition: Přestupek byl vytvořen, atributy, řidič/vlastník a vozidlo přiřazeny.
- o post-condition: Přestupek byl přidán do systému.

Část II

Návrh systému

Doménový model (DM) užití

Obrázek č. 4 – Doménový diagram

Určení zodpovědnosti tříd (CRC)

- Určení zodpovědnosti tříd, anglicky Class Responsibility Collaborator, se popisuje pomocí tabulky nebo CRC štítků/kartiček.
- U zdůvodnění přiřazení zodpovědnosti každé operace je uvedena v závorce zkratka vzoru podle GRASP (General Responsibility Assignment Software Patterns):
 - · Information Expert (IE)
 - · Creator (CRE)
 - · Controller (CTR)
- Návratová hodnota operace získej Vlastníka (rodné_číslo: int): Vlastník? je tzv. nullable, může nabývat null v případě, že vlastník nebyl nalezen.
- Prázdná instance třídy Vozidla se vytváří pro účely průběžného ukládání informací o vozidle ještě před samotným potvrzením přidání přestupku.

Popis zodpovědnosti, Operace	Třída	Zdůvodnění přiřazení zodpovědnosti dané třídy	Spolupracující třídy
Přidání nového vozidla, přidatVozidlo() : void	VozidloController	Je již vybrán jako řadič případu užití, je použit ke zpracování této operace pocházející z uživatelského rozhraní (CTR).	VozidloRepository, Vozidlo
Získání seznamu typů vozidel, ziskejTypyVozidel() : List <typvozidla></typvozidla>	VozidloRepository	Třída zná seznam typů vozidel (IE).	Vozidlo
Vybrání typu vozidla ze seznamu, které se má později přidat, vyberTypVozidla(): TypVozidla	VozidloController	Musí být nabídnut k vybrání typ vozidla, který se bude vytvářet (CTR).	TypVozidla
Vytvoření prázdné instance třídy podle typu vozidla, vytvořVozidlo(typVozidla) : Vozidlo	Vozidlo	Bude používat vytvořená vozidla pro uchování informací (CRE).	TypVozidla
Ověří atributy vozidla, ověřAtributy(vozidlo : Vozidlo)	VozidloController	Umí ověřit správnost vyplněných informací daného vozidla (CTR).	Vozidlo
Zobrazí chybné sloupce a specifikaci chyby, zobrazChybnéSloupce(List <tuple<string, string="">>)</tuple<string,>	VozidloController	Umí zobrazit chybné sloupce daného vozidla (CTR).	
Asociuje vlastníka k právě vytvořenému vozidlu, asociovatVlastníka(rodnéČíslo : int) : Vlastník	VlastníkController	Vybrán jako řadič pro tento případ užití (CTR).	VlastníkRepository Vlastník
Vyhledá vlastníka v systému, získejVlastníka(rodnéČíslo : int) : Vlastník?	VlastníkRepository	Má informace o vlastníkovi (IE).	Vlastník

Vytvoření instance třídy Vlastník, vytvořVlastníka(rodnéČíslo : int,) : Vlastník	Vlastník	Vytvoří instanci Vlastníka pro osobu žádající o přidání vozidla (CRE).	Vlastník
Uložení vlastníka, uložVlastníka(vlastník : Vlastník) : boolean	VlastníkRepository	Má informace o vlastníkovi, které má uložit (IE).	
Potvrdí přidání vozidla, potvrď Přidání() : Vozidlo	VozidloController	Umí indikovat finální potvrzení o přidání vozidla s vlastníkem (CTR).	Vozidlo
Nahlášení přestupku dopravní policií, nahlásitPřestupek(policista: Policista, čísloŘP: int, VIN: String): void	PřestupekController	Je již vybrán jako řadič případu užití (CTR).	ŘidičRepository, VozidloRepository, PřestupekRepository, KrádežRepository, Přestupek
Získá základní informace o řidiči, získejŘidiče(čísloŘP : int) : Řidič	ŘidičRepository	Má informace o řidičích (IE).	Řidič
Získá informace o vozidle, získejVozidlo(VIN : String) : Vozidlo	VozidloRepository	Má informace o vozidlech (IE).	Vozidlo
Získá přestupky, který se řidič dopustil, získejPřestupky(čísloŘP: int) : List <přestupek></přestupek>	PřestupekRepository	Má informace o přestupcích všech řidičů (IE).	Přestupek
Zjistí, zda vozidlo je nahlášené jako kradené, získejAktuálníKrádež(VIN : String) : Krádež?	KrádežRepository	Má k dispozici informaci, zda je vozidlo momentálně nahlášené jako kradené (IE).	Krádež
Nahlásí nález daného vozidla, nahlásitNálezVozidla(VIN : String) : boolean	KrádežRepository	Má k dispozici všechny krádeže a tedy má možnost u konkrétní krádeže nahlásit informaci o nálezu (IE).	
Vytvoří novou instanci přestupku, vytvořPřestupek(policista : Policista, řidič : Řidič, vozidlo : Vozidlo)	Přestupek	Vytvoří instanci třídy Přestupek s navázanými instancemi řidiče a vozidla (CRE).	Policista, Řidič, Vozidlo
Ověří policistou zadané povinné atributy přestupku, ověřAtributy(přestupek : Přestupek) : List <tuple<string, string="">></tuple<string,>	PřestupekController	Umí ověřit správnost vyplněných informací vytvářeného přestupku (CTR).	Přestupek
Zobrazí chybné sloupce a specifikaci chyb, zobrazChybnéAtributy(atributy: List <tuple<string, string="">>): void</tuple<string,>	PřestupekController	Umí zobrazit chybné atributy právě vytvářeného přestupku (CTR).	
Ukáže potvrzení náhlášení přestupku, potvrditNahlášeníPřestupku() : Přestupek	PřestupekController	Umí indikovat finální potvrzení o přidání přestupku uživateli (CTR).	Přestupek

Návrhový diagram tříd

- Trestné body se sčítají a v momentě, kdy řidič obdrží 12 bodů, dojde k zadržení řidičského průkazu a ztrácí řidičské oprávnění na dobu jednoho roku. Po uplynutí 1 roku od spáchání bodovaného přestupku jsou řidiči automaticky odečteny 4 trestné body, pokud však nedojde k žádnému dalšímu přestupku.
- U řidičů si stačí, proto pamatovat pouze počet trestných bodů a datum posledního spáchaného přestupku. Na základě těchto hodnot jsou body pak automaticky mazány / odečítány pomocí plánovače, vždy na začátku pracovního týdne. Další parametry jako
- Přestupek lze zneplatnit, ale nelze jej z bezpečnostních důvodů upravovat či vymazat z databáze, přestupky je potřeba archivovat.
- Úroveň oprávnění uživatele slouží pro nastavení přístupnosti ke skupinám metod řadičů.

Obrázek č. 5 – Návrhový diagram tříd

Návrhové diagramy interakce

1. Sekvenční diagram

Obrázek č. 6 – Návrhový diagram interakce pro přidání vozidla (případ užití ID 3)

2. Sekvenční diagram

Obrázek č. 7 – Sekvenční diagram pro nahlášení přestupku (případ užití ID 5)