Métodos para solucionar sistemas lineares

11 de abril de 2017

Raquel Lopes de Oliveira Vinícius Campos Tinoco Ribeiro Vitor Rodrigues Greati

Instituto Metrópole Digital Universidade Federal do Rio Grande do Norte Natal-RN

Agenda

Objetivo

Contexto

Descrição

Desenvolvimento

LU

Cholesky

Jacobi

Gauss-Seidel

Resultados

Métodos direto

Métodos Indireto

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky

Jacobi Gauss-Seidel

Resultados

Objetivo Contexto

Resolver um sistema linear possível e determinado Ax = b, ou seja, encontrar o vetor x que, transformado por A, produz b.

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

Raquel, Vinícius e Vitor

Objetivo

Descrição

Desenvolvimento

LU

Cholesky Jacobi

Gauss-Seidel

Resultados

Objetivo Descrição

Implementações dos métodos diretos e indiretos para solucionar sistemas linears possíveis e determinados:

- ► LU com pivotamento parcial
- ► Cholesky
- ▶ Jacobi
- ► Gauss-Seidel

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTAÇÃO

Raquel, Vinícius e Vitor

Objetivo

Contexto

Desenvolvimento

Cholesky

Jacobi

Gauss-Seidel

Resultados

LU com matriz de pivotação I

Objetivo

Fatorar uma matriz A em PA = LU armazenando os efeitos da pivotação parcial em uma matriz P, para resolver novos sistemas lineares de mesma A usando a **mesma fatoração com pivotação**.

Como sabemos, a pivotação parcial consiste em uma troca de linhas a cada iteração (considerando os casos em que não trocar uma linha é trocar uma linha consigo própria). Essa operação possui uma matriz associada, chamada de **matriz de permutação**.

Lembrando o processo da fatoração LU, temos uma matriz A, a partir da qual calculamos a primeira transformada de Gauss, L_1 . Se não quiséssemos realizar a pivotação, faríamos simplesmente

$$U_1 = L_1 A$$

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LI

Cholesky Jacobi

Gauss-Seidel

Resultados Métodos direto

Métodos Indireto

UFRN Natal-RN

LU com matriz de pivotação II

Entretanto, quando a pivotação é desejada, utilizamos uma matriz P_1 de permutação, e U_1 é, então, dada por

$$U_1 = L_1 P_1 A$$

onde L_1 é computada sobre a matriz P_1A .

Assim, considerando as demais iterações, podemos escrever ${\it U}$ da forma

$$U = L_{m-1}P_{m-1} \dots L_2P_2L_1P_1A$$

Contudo, o produto

$$L_{m-1}P_{m-1}\ldots L_2P_2L_1P_1$$

não é necessariamente triangular superior, e, com isso, não temos ainda uma fatoração LU. Porém, podemos, para cada L_k ,

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Descrição

Desenvolvimento

Cholesky

Jacobi Gauss-Seidel

Resultados

Métodos direto Métodos Indireto

> UFRN Natal-RN

LU com matriz de pivotação III

encontrar uma L_k' , que é uma permutação da subdiagonal da primeira, escrita como

$$L'_{k} = P_{m-1} \dots P_{k+1} L_{k} P_{k+1}^{-1} \dots P_{m-1}^{-1}$$

O cálculo das L'_k nos permite escrever

$$U = (L'_{m-1} \dots L'_1)(P_{m-1} \dots P_1)A$$

Fazendo

$$L = (L'_{m-1} \dots L'_1)^{-1}$$
 e

$$P=(P_{m-1}\ldots P_2P_1),$$

chegamos à fatoração

$$PA = LU$$

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

Cholesky

Jacobi

Gauss-Seidel

Resultados

LU com matriz de pivotação IV

Pensando no sistema linear, note que

$$Ax = b \iff PAx = Pb \iff LUx = Pb$$

Fazendo y = Ux, resolvemos facilmente Ly = Pb e, depois, Ux = y, assim como na fatoração LU sem pivotação.

Dessa maneira, com L, U e P, podemos resolver *qualquer* sistema linear que tenha a matriz A como coeficientes, com erros de arrendondamento controlados graças à pivotação.

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky

Jacobi

Gauss-Seidel

Resultados

LU melhorada


```
Input: Matriz A_{n\times n}
Output: Matrizes U, L, P
begin
     U \leftarrow A
      L \leftarrow I_{n \times n}
     P \leftarrow I_{n \times n}
      for k = 1 to n-1 do
            i \leftarrow argmax_{k \le m \le n} |u_{mk}|
            u_{k,k:n} \leftrightarrow u_{i,k:n}
            l_{k \cdot 1 \cdot k-1} \leftrightarrow l_{i \cdot 1 \cdot k-1}
            p_k \leftrightarrow p_i.
            for j = k + 1 to n do
                 l_{jk} \leftarrow u_{jk}/u_{kk}
                u_{j,k:n} \leftarrow u_{j,k:n} - l_{jk}u_{k,k:n}
            end
      end
end
```

Figura: Fatoração LU, seguindo o algoritmo no livro "Numerical Linear Algebra", de Trefethen.

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU

Cholesky Jacobi Gauss-Seidel

Resultados

Cholesky - Intuição I

Vamos usar uma $A_{3\times3}$ para obter uma intuição sobre o funcionamento do algoritmo de Cholesky. O objetivo é encontrar R tal que

$$A = RR^T$$

Ou seja, queremos o seguinte:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} r_{11} & 0 & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \cdot \begin{pmatrix} r_{11} & r_{21} & r_{31} \\ 0 & r_{22} & r_{32} \\ 0 & 0 & r_{33} \end{pmatrix}$$

Multiplicando o lado direito, temos:

$$\begin{pmatrix} r_{11}^2 & r_{11} \cdot r_{21} & r_{11} \cdot r_{31} \\ r_{11} \cdot r_{21} & r_{21}^2 + r_{22}^2 & r_{21} \cdot r_{31} + r_{22} \cdot r_{32} \\ r_{11} \cdot r_{31} & r_{21} \cdot r_{31} + r_{22} \cdot r_{32} & r_{31}^2 + r_{32}^2 + r_{33}^2 \end{pmatrix}$$

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Descrição

Desenvolvimento

Jacobi Gauss-Seidel

Resultados

Cholesky - Intuição II

Para encontrar R, temos de encontrar todos os r_{ij} . Agora, sabemos como: a partir de elementos de A, já conhecidos, e de elementos da própria R!

Começamos por r_{11} . Comparando com a_{11} , temos a relação:

$$a_{11} = r_{11}^2 \iff r_{11} = \sqrt{a_{11}}$$

Para os outros elementos da primeira coluna $(j=1,2\leq i\leq 3)$, note que:

$$a_{i1} = r_{11} \cdot r_{i1} \iff r_{i1} = a_{i1}/r_{11}$$

Note que temos, agora, os ingredientes para calcular r_{22} :

$$a_{22} = r_{21}^2 + r_{22}^2 \Longleftrightarrow r_{22} = \sqrt{a_{22} - r_{21}^2}$$

Com r_{22} , podemos calcular r_{32} :

$$a_{32} = r_{21} \cdot r_{31} + r_{22} \cdot r_{32} \iff r_{32} = (a_{32} - r_{21} \cdot r_{31})/r_{22}$$

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Descrição

Desenvolvimento

Jacobi Gauss-Seidel

Resultados

Cholesky - Intuição III

Finalmente, só nos resta calcular r_{33} :

$$a_{33} = r_{31}^2 + r_{32}^2 + r_{33}^2 \iff r_{33} = \sqrt{a_{33} - r_{31}^2 + r_{32}^2}$$

E para matrizes $A_{n\times n}$? Como generalizar? Observando os cálculos anteriores, o algoritmo geral é:

- 1. Faça $r_{11} = \sqrt{a_{11}}$
- 2. Calcule a primeira coluna de R, fazendo $r_{i1} = a_{i1}/r_{11}$
- 3. Para cada coluna $2 \le j \le n-1$
 - 3.1 Calcule o elemento da diagonal: $r_{jj} = \sqrt{a_{jj} \sum_{k=1}^{j-1} r_{jk}^2}$
 - 3.2 Calcule os demais elementos da coluna j: $r_{ii} = (a_{ii} \sum_{k=1}^{j-1} r_{ik} \cdot r_{ik})/r_{ii}$
- 4. Para a última coluna de R, só precisamos calcular r_{nn} :

$$r_{nn} = \sqrt{a_{nn} - \sum_{k=1}^{n-1} r_{nk}^2}$$

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Descrição Desenvolvimento

LU

Jacobi Gauss-Seidel

Resultados

Métodos direto Métodos Indireto

> UFRN Natal-RN

Cholesky - Algoritmo


```
Input: Matriz A_{n\times n}, simétrica positiva definida
Output: Matriz L, tal que A = LL^T
begin
    l_{11} \leftarrow \sqrt{a_{11}}
     for i = 2 to n-1 do
     l_{i1} \leftarrow a_{i1}/l_{11}
     for i = 2 to n-1 do
          l_{ii} \leftarrow \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}
          for j = i + 1 to n do
           l_{ji} \leftarrow \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}}{l_{ik}}
           end
     end
    l_{nn} \leftarrow \sqrt{a_{nn} - \sum_{k=1}^{n-1} l_{nk}^2}
end
```

Figura: Método de Cholesky, implementado a partir do algoritmo no livro "Numerical Analysis", de Burden.

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU

Jacobi Gauss-Seidel

Resultados

Métodos indiretos

Partimos de

$$Ax = b$$
.

Fazendo

$$A = M + N$$

e supondo *M* invertível, temos:

$$(M+N)x = b$$
$$x = M^{-1}b - M^{-1}Nx$$

Dagui podemos tirar um método iterativo tal que:

Iteração

Escolher um vetor inicial: x⁰ Iterar: $x^{k+1} = M^{-1}b - M^{-1}Nx^k$ DIMO404 - CALCIII O NUMERICO PARA CIENCIA DA COMPLITAÇÃO

> Raquel, Vinícius e Vitor

Obietivo

Contexto

Descrição

Desenvolvimento

lacobi Gauss-Seidel

Resultados

Jacobi Método Indireto

Seja: M = D e N = L + U

Iteração - Método Iterativo

Escolher um vetor inicial: x^0

Iterar: $x^{k+1} = M^{-1}b - M^{-1}Nx^k$

Îteração - Jacobi

Escolher um vetor inicial: x⁰

Iterar: $x^{k+1} = D^{-1}b - D^{-1}(L+U)x^k$

 $x_i^{k+1} = \frac{b_i - \sum_{j=i}^n a_{ij} x_j^k}{a_{ii}}$

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

Cholesky

Cholesky

Gauss-Seidel

Resultados

Métodos direto

Jacobi Método Indireto


```
Input: Matriz A_{n \times n}, vetor b, vetor x^e, \varepsilon
Output: Aproximação para x
checkConvergence();
begin

repeat
x^{aux} \leftarrow x^e
x^s \leftarrow Tx^e
x^e \leftarrow x^s
until ||x^e - x^{aux}|| < \varepsilon;
return x^s
end
```

Figura: Método de Jacobi

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

Cholesky

Gauss-Seidel

Resultados

Gauss-Seidel

Seja: M = L + D e N = U

Iteração - Método Iterativo

Escolher um vetor inicial: x⁰

Iterar: $x^{k+1} = M^{-1}b - M^{-1}Nx^k$

Îteração - Gauss

Escolher um vetor inicial: x⁰

Iterar: $x^{k+1} = D^{-1}b - D^{-1}Lx^{k+1} - D^{-1}Ux^k$

$$x_i^{k+1} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{n} a_{ij} x_j^k}{a_{ii}}$$

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

Cholesky Jacobi

Resultados

Resultados

Métodos direto Métodos Indireto

> UFRN Natal-RN

Gauss-Seidel


```
Input: Matriz A_{n\times n}, vetor b, vetor x^e, \varepsilon
Output: Aproximação para x
begin
     checkConvergence(A);
     repeat
          x^{aux} \leftarrow x^e
          for i = 1 to n do
                x_i^s \leftarrow -\frac{\sum\limits_{j=1, j \neq i}^{i} a_{ij} x_j^s + \sum\limits_{j=i+1}^{n} a_{ij} x_j^e - b_i}{a_{ii}}
           end
         x^e \leftarrow x^s
     until ||x^e - x^{aux}|| < \varepsilon;
     return x^s
end
```

Figura: Pseudo código: Gauss-Seidel

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

Cholesky

Jacobi

Resultados

Dimensão LU		Cholesky	Didático LU	Didático Cholesky
5×5	0.015286	0.012809	0.050517	0.040998
10×10	0.038966	0.026361	0.464253	0.869828
20x20	0.134158	0.05492	16.0118	6.89225
30x30	0.360649	0.128106	32.9281	-
40×40	0.747341	0.251166	102.131	103.648
50x50	1.33657	0.432224	249.097	251.084
60×60	2.20472	0.690858	514.509	517.351
70×70	3.3237	1.023	946.277	-
80×80	4.82391	1.72569	1616.41	1696.81
90×90	6.73681	2.03473	2620.9	2599

Tabela: Tempo de execução em milissegundos

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky

Jacobi Gauss-Seidel

Resultados Métodos direto

Dimensão	LU	Cholesky	Didático LU	Didático Cholesky
100×100	9.25865	2.85575	3970.46	3950.56
150×150	29.2534	8.17796	20035.2	-
200x200	66.4677	18.548	69281.5	67986.9
250x250	127.024	34.8935	164388	-
300x300	217.056	59.2172	343029	369484
350x350	342.593	92.778	636412	630656
400×400	511.915	137.945	+15min	+15 min
450×450	721.025	192.795	$+15 \mathrm{min}$	+15 min

Tabela: Tempo de execução em milissegundos

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky Jacobi

Gauss-Seidel

Resultados

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTAÇÃO Raquel, Vinícius e

Vitor

Objetivo Contexto

Descrição

Desenvolvimento

Cholesky lacobi

Gauss-Seidel Resultados

Métodos direto

Métodos Indireto

UFRN Natal-RN

Matriz	Vetor Inicial	Jacobi	Iterações	Gauss-Seidel	Iterações
1 (3x3)	0	0.070105	4	0.011437	3
2 (3x3)	0	0.037312	4	0.009241	3
3 (4x4)	0	0.08077	6	0.019188	5
4 (2x2)	0	0.029007	5	0.01726	3
5 (2x2)	0	0.041	4	0.012726	3

Tabela: Tempo de execução em milissegundos e iterações

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky

Jacobi Gauss-Seidel

Resultados

Matriz	Vetor Inicial	Jacobi	Iterações	Gauss-Seidel	Iterações
1 (3x3)	5	0.030223	5	0.005229	4
2 (3x3)	5	0.018607	6	0.003728	3
3 (4x4)	5	0.044471	7	0.007003	5
4 (2x2)	5	0.013156	6	0.003506	4
5 (2x2)	5	0.011672	6	0.003193	4

Tabela: Tempo de execução em milissegundos e iterações

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky

Jacobi Gauss-Seidel

Resultados

Métodos direto

Matriz	Vetor Inicial	Jacobi	Iterações	Gauss-Seidel	Iterações
1 (3x3) 2 (3x3) 3 (4x4) 4 (2x2) 5 (2x2)	10 10 10 10	0.091356 0.063236 0.123886 0.044007 0.039837	6 7 9 7 7	0.017651 0.014118 0.027253 0.012765 0.011702	4 4 6 5

Tabela: Tempo de execução em milissegundos e iterações

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky

Jacobi Gauss-Seidel

Resultados

Matriz	Vetor Inicial	Jacobi	Iterações	Gauss-Seidel	Iterações
1 (3x3) 2 (3x3) 3 (4x4) 4 (2x2)	50 50 50 50	0.101314 0.072548 0.138285 0.052632	7 9 11 9	0.019505 0.016688 0.034124 0.012408	5 5 8 5
5 (2x2)	50	0.052052	9	0.012408	6

Tabela: Tempo de execução em milissegundos e iterações

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky

Jacobi

Gauss-Seidel

Resultados

Matriz	Vetor Inicial	Jacobi	Iterações	Gauss-Seidel	Iterações
1 (3x3)	100	0.101298	8	0.022492	6
2 (3x3)	100	0.115226		0.017085	5
3 (4x4)	100	0.175004	13	0.034043	8
4 (2x2)	100	0.087302	10	0.014584	6
5 (2x2)	100	0.075164	10	0.013837	6
1 (3x3)	1000	0.116178	10	0.022372	6
2 (3x3)	1000	0.090088	12	0.020001	6
3 (4x4)	1000	0.177455	16	0.041847	10
4 (2x2)	1000	0.064203	12	0.016232	7
5 (2x2)	1000	0.059864	12	0.015376	7
1 (3x3)	100000	0.068154	14	0.013407	9
2 (3x3)	100000	0.052454	17	0.010834	8
3 (4x4)	100000	0.109593	25	0.026044	15
4 (2x2)	100000	0.0362	17	0.009444	10
5 (2x2)	100000	0.034481	17	0.009338	10
1 (3x3) 2 (3x3) 3 (4x4) 4 (2x2) 5 (2x2)	1000000 1000000 1000000 1000000 1000000	0.049761 0.060622 0.102968 0.040368 0.047839	16 19 30 20 20	0.010497 0.00893 0.021374 0.007645 0.006955	10 9 17 11

Tabela: Tempo de execução em milissegundos e iterações

DIM0404 - CALCULO NUMERICO PARA CIENCIA DA COMPUTACAO

> Raquel, Vinícius e Vitor

Objetivo

Contexto Descrição

Desenvolvimento

LU Cholesky

Jacobi Gauss-Seidel

Resultados

esultados