Code ▼

R Finals

Shai Vaz. Maisa Fraiz

Introdução

O seguinte projeto é o trabalho final da disciplina de Introdução ao R Aplicado em Ciência de Dados, da EPGE.

Utilizaremos dados estatísticos da Secretaria de Segurança Pública do Estado de São Paulo, disponíveis para download em https://basedosdados.org/dataset/br-sp-gov-ssp), e a planilha de informações dos municípios do estado de São Paulo, elaborada pelo IBGE e disponível em https://www.ibge.gov.br/cidades-e-estados/sp/sao-paulo.html (https://www.ibge.gov.br/cidades-e-estados/sp/sao-paulo.html). Ambos com acessos em 07/05/2022. Os dois arquivos .csv baixados já estão no repositório GitHub desse projeto, e portanto, tendo-o clonado na sua máquina, não é necessário realizar o download nas fontes.

Preparação

Importando os pacotes

```
# Descomente se você não tiver os pacotes:
# install.packages("tidyverse")
# install.packages("psych")
# devtools::install_github("teunbrand/ggh4x")

library(tidyverse)
library(readxl) #apesar de ser baixado no pacote "tidyverse", precisamos carregar separadamente
library(psych) #usamos para a função describe
library(lubridate) # tambem parte do tidyverse
library(ggh4x)
```

Importando a base de dados

Lendo duas linhas do arquivo para verificar o formato do CSV (evitando assim erros com o delimitador no momento de salvar os dados, por exemplo)

```
Hide

read_lines("ocorrencias_registradas.csv", n_max = 2)

[1] "ano,mes,id_municipio,regiao_ssp,homicidio_doloso,numero_de_vitimas_em_homicidio_doloso,homicidio_doloso_por_acidente_de_transito,numero_de_vitimas_em_homicidio_doloso_por_acidente_de_transito,homicidio_culposo_por_acidente_de_transito,homicidio o_culposo_outros,tentativa_de_homicidio,lesao_corporal_seguida_de_morte,lesao_corporal_dolosa,lesao_corporal_culposa_por_acidente_de_transito,lesao_corporal_culposa_outras,latrocinio,numero_de_vitimas_em_latrocinio,total_de_estupro,estupro_de_vulneravel,total_de_roubo_outros,roubo_de_veiculo,roubo_a_banco,roubo_de_carga,furto_outros,furto_de_veiculo"

[2] "2002,1,3500105,Presidente Prudente,0,0,0,0,0,0,0,0,24,13,2,0,0,0,,,0,0,0,0,21,0"
```

Já podemos reparar que teremos dados NA na nossa base, porém resolveremos isso mais a diante. Como o separador é vírgula, podemos utilizar o leitor de CSV padrão.

```
ssp <- read_csv("ocorrencias_registradas.csv")

Rows: 153876 Columns: 27
-- Column specification --------
Delimiter: ","
chr (1): regiao_ssp
db1 (26): ano, mes, id_municipio, homicidio_doloso, numero_de_vitimas_em_hom...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.</pre>
```

Também utilizaremos a planilha do IBGE com os municípios do estado de São Paulo. Analisando os dados, percebemos que as duas primeiras linhas não contém dados, e após a linha 645, temos metadados e fontes da base. Também reparamos que o símbolo "-" é utilizado para representar NA. Todos esses detalhes foram considerados ao ler o arquivo no projeto.

```
mun <- read_excel("sp-municipios.xlsx", na="-", skip = 2, n_max = 645)</pre>
```

Primeiras olhadas nos DFs

Vamos verificar se estamos utilizando dataframes do tipo Tibble.

```
class(ssp)
```

```
[1] "spec_tbl_df" "tbl_df" "data.frame"

Hide

class(mun)

[1] "tbl_df" "tbl" "data.frame"
```

Dataframe principal (SSP)

Vamos qverificar os nomes das colunas e o tipo do dado de cada uma.

```
Hide
spec(ssp)
cols(
 ano = col_double(),
 mes = col_double(),
 id_municipio = col_double(),
 regiao_ssp = col_character(),
 homicidio_doloso = col_double(),
 numero_de_vitimas_em_homicidio_doloso = col_double(),
 homicidio_doloso_por_acidente_de_transito = col_double(),
 numero_de_vitimas_em_homicidio_doloso_por_acidente_de_transito = col_double(),
 homicidio_culposo_por_acidente_de_transito = col_double(),
 homicidio_culposo_outros = col_double(),
 tentativa_de_homicidio = col_double(),
 lesao_corporal_seguida_de_morte = col_double(),
 lesao corporal dolosa = col double(),
 lesao\_corporal\_culposa\_por\_acidente\_de\_transito = col\_double(),
 lesao_corporal_culposa_outras = col_double(),
 latrocinio = col_double(),
 numero_de_vitimas_em_latrocinio = col_double(),
 total_de_estupro = col_double(),
 estupro = col_double(),
 estupro_de_vulneravel = col_double(),
 total_de_roubo_outros = col_double(),
 roubo outros = col double().
 roubo_de_veiculo = col_double(),
 roubo_a_banco = col_double(),
 roubo_de_carga = col_double(),
 furto_outros = col_double(),
 furto_de_veiculo = col_double()
```

Vamos imprimir os nomes das colunas do dataframe.

names(ssp) [1] "ano" [2] "mes" [3] "id_municipio" [4] "regiao_ssp" [5] "homicidio doloso" $\hbox{\tt [6] "numero_de_vitimas_em_homicidio_doloso"}}\\$ $\hbox{\tt [7] "homicidio_doloso_por_acidente_de_transito"}$ [8] "numero_de_vitimas_em_homicidio_doloso_por_acidente_de_transito" [9] "homicidio_culposo_por_acidente_de_transito" [10] "homicidio_culposo_outros" [11] "tentativa_de_homicidio" [12] "lesao_corporal_seguida_de_morte" [13] "lesao_corporal_dolosa" [14] "lesao_corporal_culposa_por_acidente_de_transito" [15] "lesao_corporal_culposa_outras"
[16] "latrocinio" [17] "numero_de_vitimas_em_latrocinio" [18] "total_de_estupro" [19] "estupro" [20] "estupro_de_vulneravel" [21] "total_de_roubo_outros" [22] "roubo_outros" [23] "roubo_de_veiculo" [24] "roubo_a_banco" [25] "roubo_de_carga" [26] "furto_outros' [27] "furto_de_veiculo"

E olharemos os primeiros 6 registros de nossa tabela.

Hide

head(ssp)

ano <dbl></dbl>	 <dbl></dbl>	id_municipio <dbl></dbl>		homicidio_doloso <dbl></dbl>	numero_de_vitimas_em_homicidio_doloso
2002	1	3500105	Presidente Prudente	0	0
2002	2	3500105	Presidente Prudente	0	0
2002	3	3500105	Presidente Prudente	0	0
2002	4	3500105	Presidente Prudente	0	0
2002	5	3500105	Presidente Prudente	0	0
2002	6	3500105	Presidente Prudente	0	0
6 rows	1-6 c	f 27 columns			

Por fim, daremos uma olhada em dados estatísticos (desvio padrão, média, mediana, mínimo, máximo e outros) de nossas colunas.

Hide

describe(ssp)

	vars <dbl></dbl>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>
ano	1	153876	2011.50	5.77
mes	2	153876	6.50	3.45
id_municipio	3	153876	3528670.39	16732.51
regiao_ssp*	4	153876	7.08	3.50
homicidio_doloso	5	151296	0.67	6.78
numero_de_vitimas_em_homicidio_doloso	6	151296	0.71	7.21
homicidio_doloso_por_acidente_de_transito	7	143700	0.00	0.07
numero_de_vitimas_em_homicidio_doloso_por_acidente_de_transito	8	143700	0.00	0.09
homicidio_culposo_por_acidente_de_transito	9	151296	0.54	2.36
homicidio_culposo_outros	10	151296	0.03	0.32
1-10 of 27 rows 1-5 of 13 columns			Previous 1	2 3 Next

A análise desses dados estatísticos não faz sentido para todas as varíaveis (por exemplo, não faz sentido calcular a média, desvio padrão, etc, de ano e mês) e, como há muitos dados, para outras faria mais sentido fazer uma investigação anual (é muito mais relevante comparar a média de crimes por ano e se ela está crescendo ou diminuindo do que apenas ver a média do dataset completo). Análises mais complexas serão feitas na seção de Visualização de Dados do projeto.

Dataframe secundário (MUN)

Seguiremos o mesmo processo para esse dataframe.

Hide

names(mun)

- [1] "Município [-]"
- [2] "Código [-]"
- [3] "Gentílico [-]"
- [4] "Prefeito [2021]"
- [5] "Área Territorial km² [2021]"
- [6] "População estimada pessoas [2021]"
- [7] "Densidade demográfica hab/km² [2010]"
- [8] "Escolarização 6 a 14 anos % [2010]"
 [9] "IDHM Índice de desenvolvimento humano municipal [2010]"
- [10] "Mortalidade infantil óbitos por mil nascidos vivos [2020]"
- [11] "Receitas realizadas R\$ (×1000) [2017]"
- [12] "Despesas empenhadas R\$ (\times 1000) [2017]"
- [13] "PIB per capita R\$ [2019]"

Hide

head(mun)

Município [-] <chr></chr>	Código [-] <dbl></dbl>		Prefeito [2021] <chr></chr>
Adamantina	3500105	NA	MARCIO CARDIM
Adolfo	3500204	NA	IZAEL ANTONIO FERNANDES
Aguaí	3500303	NA	JOSÉ ALEXANDRE PEREIRA DE ARAÚJO
Águas da Prata	3500402	NA	REGINA HELENA JANIZELO MORAES

Município [-] <chr></chr>	Código [-] <dbl></dbl>		Prefeito [2021] <chr></chr>	•
Águas de Lindóia	3500501	NA	GILBERTO ABDOU HELOU	
Águas de Santa Bárbara	3500550	NA	AROLDO JOSE CAETANO	
6 rows 1-4 of 13 columns				

describe(mun)

Hide

```
Warning in FUN(newX[, i], ...):

no non-missing arguments to min; returning Inf
Warning in FUN(newX[, i], ...):

no non-missing arguments to max; returning -Inf
```

	vars <dbl></dbl>	n <dbl></dbl>		an bl>
Município [-]*	1	645	323	.00
Código [-]	2	645	3528697	.88
Gentílico [-]	3	0	N	aN
Prefeito [2021]*	4	645	323	.00
Área Territorial - km² [2021]	5	645	384	.84
População estimada - pessoas [2021]	6	645	72324	.24
Densidade demográfica - hab/km² [2010]	7	645	301	.98
Escolarização 6 a 14 anos - % [2010]	8	645	97	.94
IDHM Índice de desenvolvimento humano municipal [2010]	9	645	0	.74
Mortalidade infantil - óbitos por mil nascidos vivos [2020]	10	455	13	.52
1-10 of 13 rows 1-4 of 13 columns	F	revious	1 2	Next

Limpando os dados

Primeiro, retiramos algumas colunas que consideramos desnecessárias para a nossa análise na tabela mun (Gentílico, Prefeito, Receitas e Despesas)

```
Hide

mun2 <- mun %>%
    select(!c(3,4,11,12))

names(mun2)
```

```
[1] "Município [-]"
[2] "Código [-]"
[3] "Área Territorial - km² [2021]"
[4] "População estimada - pessoas [2021]"
[5] "Densidade demográfica - hab/km² [2010]"
[6] "Escolarização <span>6 a 14 anos</span> - % [2010]"
[7] "IDHM <span>Índice de desenvolvimento humano municipal</span> [2010]"
[8] "Mortalidade infantil - óbitos por mil nascidos vivos [2020]"
[9] "PIB per capita - R$ [2019]"
```

Depois, renomeamos as colunas por questão de simplificação, abreviando os nomes originais. Além disso, a coluna código é alterada para id_município de forma a manter o mesmo nome nos dois DFs, para que seja possível um join.

Para o dataset principal, podemos trocar o ID do município pelo seu nome. Mas primeiro, será que temos os mesmos municípios nos dois datasets?

```
Hide

all((unique(ssp$id_municipio)), (mun2$id_municipio))

Warning in all((unique(ssp$id_municipio)), (mun2$id_municipio)):
    coercing argument of type 'double' to logical
Warning in all((unique(ssp$id_municipio)), (mun2$id_municipio)):
    coercing argument of type 'double' to logical
```

```
[1] TRUE
```

Sim! Podemos prosseguir com a limpeza do dataframe. Utilizamos a função de inner join para substituir o id do município em SSP pelo seu nome, que está presente apenas no dataset MUN2. Colocamos uma coluna nova, utilizando as colunas de ano e mes, criando uma com a data completa no formato lubridate, deixando 1 como o dia padrão. Também percebemos que a partir da data 09/2021, todas as entradas são NA, então retiramos esses registros.

Hide

inner_join(mun2[,c("nome","id_municipio")],by = "id_municipio") %>% # faz o inner join
relocate("nome", .before = "id_municipio") %>% # reposiciona a coluna nome
select(!id_municipio) %>% # remove a coluna id
mutate(data = make_date(ano,mes,1),.before=ano) %>% # transforma as colunas mes e ano em uma de data
filter(data < ymd("2021-09-01")) # remove os registros após 09/2021</pre>

head(ssp2)

ssp2 <- ssp %>%

data <date></date>	ano <dbl></dbl>		nome <chr></chr>	regiao_ssp <chr></chr>	homicidio_doloso <dbl></dbl>
2002-01-01	2002	1	Adamantina	Presidente Prudente	0
2002-02-01	2002	2	Adamantina	Presidente Prudente	0
2002-03-01	2002	3	Adamantina	Presidente Prudente	0
2002-04-01	2002	4	Adamantina	Presidente Prudente	0
2002-05-01	2002	5	Adamantina	Presidente Prudente	0
2002-06-01	2002	6	Adamantina	Presidente Prudente	0
6 rows 1-6 of 28 colum	nns				

Glossário de Variáveis

Agora que já limpamos os dados, podemos fazer um glossário de nossas variáveis.

Dataframe SSP2

Variável	Descrição
data	Ano e mês no formato lubridate, usando 1 como dia padrão
nome	Nome do município
regiao_ssp	Região definida pela Secretaria de Segurança Pública
homicidio_doloso	Homicídio quando se tem a intenção de matar (inclui acidente de trânsito)
numero_de_vitimas_em_homicidio_doloso	Vítimas de homicídio doloso (inclui acidente de trânsito)
homicidio_doloso_por_acidente_de_transito	Homicídio por acidentes de trânsito com intenção de matar
numero_de_vitimas_em_homicidio_doloso_por_acidente_de_transito	Vítimas de homicídio doloso em acidentes de trânsito
homicidio_culposo_por_acidente_de_transito	Homicídio por acidentes de trânsito sem intenção de matar
homicidio_culposo_outros	Homicídio culposo (exclui acidente de trânsito)
tentativa_de_homicidio	Tentativa de homicídio
lesao_corporal_seguida_de_morte	Lesão corporal dolosa seguida de homicídio culposo
lesao_corporal_dolosa	Lesão corporal dolosa sem resultado em morte
lesao_corporal_culposa_por_acidente_de_transito	Lesão corporal sem intenção de ferir ocorrida por acidente de trânsito
lesao_corporal_culposa_outras	Lesão corporal sem inteção de ferir (exclui acidente de trânsito)
latrocinio	Roubo seguido de morte
numero_de_vitimas_em_latrocinio	Vítimas de roubo seguido de morte
total_de_estupro	Soma das variáveis de estupro e estupro de vulnerável
estupro	Estupro
estupro_de_vulneravel	Estupro de vítima vulnerável
total_de_roubo_outros	Soma das variáveis roubo_outros, roubo_a_banco e roubo_de_carga
roubo_outros	Subtração patrimonial com ameaça ou violência (não inclui veículo, banco ou cargas)
roubo_de_veiculo	Roubo de veículos
roubo_a_banco	Roubo a banco
roubo_de_carga	Roubo de carga
furto_outros	Subtração patrimonial sem ameaça ou violência (não inclui veículo)

Variável Descrição

furto_de_veiculo Furto de veículo

Dataframe MUN2

Variável	Descrição
nome	Nome do município do estado de São Paulo
id_municipio	ID do município no banco de dados do IBGE
area	Área territorial em km² em 2021
pop	População estimada em 2021
den	Densidade demográfica em habitantes por km² em 2010
escol	Porcentagem de escolarização em pessoas entre 6 e 14 anos em 2010
idh	IDHM - Índice de desenvolvimento humano municipal em 2010
mort_inf	Mortalidade infantil em óbitos por mil nascidos vivos em 2020
PIB_percap	PIB per capita em reais em 2019

Análise e Visualização de dados

```
Hide
unique(ssp2$regiao_ssp)
[1] "Presidente Prudente"
                                           "Ribeirão Preto"
[3] "Sorocaba"
                                           "Araçatuba'
[5] "Grande São Paulo (exclui a Capital)" "São José do Rio Preto"
[7] "Bauru"
                                           "Campinas"
[9] "Piracicaba"
                                           "São José dos Campos"
[11] "Santos"
                                           "Capital"
                                                                                                                           Hide
maisPop4 <- mun2 %>%
 arrange(desc(pop)) %>%
 head(4) %>%
 pull(nome)
maisPop4
[1] "São Paulo"
                            "Guarulhos"
                                                    "Campinas"
[4] "São Bernardo do Campo"
```

Séries Históricas

Gráfico da taxa de homicídio doloso nas 4 maiores cidades, facetado.

```
ssp2 %>%
filter(nome == maisPop4) %>%
ggplot(aes(x=data,y=homicidio_doloso)) +
geom_area(color="red", fill="red", alpha=0.3) +
geom_smooth(color="brown")+
facet_wrap(vars(nome), scales="free") +
labs(x = "Data", y = "Homicidio Doloso",
    title = "Homocidio doloso nas quatro maiores cidades de SP")
`geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

Homocídio doloso nas quatro maiores cidades de SP

Percebemos uma tendência forte de queda da taxa de homicídios nas maiores cidades do estado quando analisamos a dinâmica de longo prazo.

```
ssp2 %>%
filter(nome == "Sāo Paulo") %>%
ggplot(aes(x=data))+
geom_line(aes(y=total_de_roubo_outros, color = "Total de Roubos"))+
geom_line(aes(y=furto_outros, color = "Total de Furtos")) +
labs(x = "Data", y = "Total",
    title = "Total de roubos e furtos na cidade de São Paulo") +
scale_color_manual(name = "Colors",
    values = c("Total de Roubos" = "blue", "Total de Furtos" = "red"))
```

Total de roubos e furtos na cidade de São Paulo

Vemos que tanto os roubos (menos numerosos) quanto os furtos (mais numerosos) têm tido uma tendência de crescimento durante a série histórica. Notamos também a queda brusca com o lockdown no início de 2020, com retorno à tendência de crescimentos após alguns meses.

Pensamos na existência de um trade-off entre furto e roubo de veículos, dada a necessidade de uma logística para desmonte, venda de peças, etc. Qual o tipo de crime mais recorrente entre os dois?

```
ssp2 %>%

filter(nome == "São Paulo") %>%

ggplot(aes(x=data))+
geom_line(aes(y=roubo_de_veiculo, color = "Roubo de Veículos"))+
geom_line(aes(y=furto_de_veiculo, color="Furto de Veículos")) +
labs(x = "Data", y = "Total",
    title = "Total de roubos e furtos de veículo na cidade de São Paulo") +
scale_color_manual(name = "Colors",
    values = c("Roubo de Veículos" = "blue", "Furto de Veículos" = "red"))
```

Total de roubos e furtos de veículo na cidade de São Paulo

Podemos tentar deixar os dados anualizados, para simplificar os gráficos?

```
Ssp_anual <- ssp2 %>%
group_by(nome,ano) %>%
summarise(across(where(is.numeric),sum)) %>%
select(-mes)

`summarise()` has grouped output by 'nome'. You can override using the
`.groups` argument.
```

Simplificamos o gráfico com as taxas anualizadas.

ssp_anual %%

filter(nome == "São Paulo") %>%

ggplot(aes(x=ano))+

geom_line(aes(y=roubo_de_veiculo, color = "Roubo de Veículos"))+

geom_line(aes(y=furto_de_veiculo, color="Furto de Veículos")) +

labs(x = "Data", y = "Total",

title = "Área da diferença entre roubos e furtos de veículo na cidade de São Paulo") +

scale_color_manual(name = "Colors",

values = c("Roubo de Veículos" = "blue", "Furto de Veículos" = "red")) +

ggh4x::stat_difference(aes(ymin = roubo_de_veiculo, ymax = furto_de_veiculo), alpha = 0.3, show.legend = FALSE) #da biblio

teca ggh4x

Área da diferença entre roubos e furtos de veículo na cidade de São Paulo

Utilizando as taxas anualizadas, criamos outro df apenas com os dados de 2020 das variáveis furto_outros e homicidio_doloso, realizando um inner join com a tabela mun2 pela variável nome (semelhante ao que fizemos anteriormente para inserir o nome na tabela ssp2). Além disso, criamos novas variáveis com as taxas de roubo e homicídio doloso por 100mil habitantes.

```
ssp_taxas2020 <- ssp_anual %>%
filter(ano == 2020) %>%
select(furto_outros, homicidio_doloso) %>%
inner_join(mun2, by = "nome") %>%
mutate(furto_taxa = furto_outros/pop*100000, homicidio_taxa = homicidio_doloso/pop*100000)
```

Adding missing grouping variables: `nome`

Gráficos de Dispersão

Furto vs IDH e PIB

Comparando furto e IDH municipal.

```
ggplot(ssp_taxas2020, aes(x=idh, y=furto_taxa)) +
   geom_point() +
   labs(x="IDH Municipal", y="Furtos / 100mil hab",
        title = "Dispersão IDH vs Furtos por 100mil hab")
```

Dispersão IDH vs Furtos por 100mil hab

Removemos o outlier:

Hide

ssp_taxas2020 %>%

filter(furto_taxa>4000)

nome <chr></chr>	furto_outros <dbl></dbl>	homicidio_doloso <dbl></dbl>	id_municipio <dbl></dbl>	area <dbl></dbl>	pop <dbl></dbl>	den <dbl></dbl>	escol <dbl></dbl>	idh <dbl></dbl>	mort_inf <dbl></dbl>
Ilha Comprida	684	0	3520426	196.567	11552	47.01	98.2	0.725	13.79
1 row 1-10 of 13 co	lumns								

Em 2020 a cidade com maior número de roubos por 100 mil habitantes foi "Ilha Comprida".

```
Ssp_taxas2020 %>%

filter(nome != "Ilha Comprida") %>%

ggplot(aes(x=idh, y=furto_taxa)) +

geom_point() +

labs(x="IDH Municipal", y="Furtos / 100mil hab",

title = "Dispersão IDH vs Furtos por 100mil hab s/ Outlier")
```

Dispersão IDH vs Furtos por 100mil hab s/ Outlier

Comparamos furto contra PIB per capita.

```
ggplot(ssp_taxas2020, aes(x=pib_percap, y=furto_taxa)) +
   geom_point() +
   labs(x="PIB per capita", y="Furtos / 100mil hab",
        title = "Dispersão PIB vs Furtos por 100mil hab")
```

Dispersão PIB vs Furtos por 100mil hab

Retiramos outliers.

```
Ssp_taxas2020 %>%

filter(pib_percap < 1.5*10^5 & furto_taxa <4000) %>%

ggplot(aes(x=pib_percap, y=furto_taxa)) +

geom_point() +

labs(x="PIB per capita", y="Furtos / 100mil hab",

title = "Dispersão IDH vs Furtos por 100mil hab s/ Outliers")
```

Dispersão IDH vs Furtos por 100mil hab s/ Outliers

Homicídio vs IDH e PIB

Homicídio doloso contra IDH.

```
Ssp_taxas2020 %>%

filter(homicidio_doloso > 0) %>% #apenas os valores positivos

ggplot(aes(x=idh, y=homicidio_taxa)) +

geom_point()
```


Homicídio doloso contra PIB per capita.

```
ssp_taxas2020 %>%
filter(homicidio_taxa > 0) %>%
ggplot(aes(x=pib_percap, y=homicidio_taxa)) +
geom_point()
```



```
ssp_taxas2020 %>%
filter(pib_percap < 1.5*10^5 & homicidio_taxa > 0) %>%
ggplot(aes(x=pib_percap, y=homicidio_taxa)) +
geom_point() +
geom_smooth(method = "gam")
```

```
'geom\_smooth()' using formula 'y ~ s(x, bs = "cs")'
```


Referências

Fontes de tecnicas de programação em R

- https://github.com/swirldev/swirl_courses/tree/master/R_Programming
 (https://github.com/swirldev/swirl_courses/tree/master/R_Programming). Acessos durante o semestre.
- https://github.com/sysilviakim/swirl-tidy (https://github.com/sysilviakim/swirl-tidy) , acessos durante o semestre.
- Wickhan & Grolemund, R for Data Science. Disponível em https://r4ds.had.co.nz/ (https://r4ds.had.co.nz/). Acessos durante o semestre.
- Cheat Sheets Rstudio https://www.rstudio.com/resources/cheatsheets/ (https://www.rstudio.com/resources/cheatsheets/). Utilizamos as de Ggplot2, Dplyr, Lubridate e RMarkdown.
- Aprendendo a usar Rstudio aliado ao Github https://happygitwithr.com/index.html (https://happygitwithr.com/index.html). Acesso em 30/05/2022.

Fontes específicas de código

- Legendas para múltiplos geom_line https://stackoverflow.com/questions/34379268/ggplot-and-two-different-geom-line-the-legend-does-not-appear (https://stackoverflow.com/questions/34379268/ggplot-and-two-different-geom-line-the-legend-does-not-appear) acesso em 13/06/2022
- Scatterplot https://r-graph-gallery.com/272-basic-scatterplot-with-ggplot2.html (https://r-graph-gallery.com/272-basic-scatterplot-with-ggplot2.html) acesso em 13/06/2022
- Time series with conditional area fill https://r-graph-gallery.com/web-time-series-and-facetting.html (https://r-graph-gallery.com/web-time-series-and-facetting.html). Acesso 13/06/2022.
- Soma de varáveis por grupo (uso do helper "where") com dplyr https://stackoverflow.com/questions/1660124/how-to-sum-a-variable-by-group (https://stackoverflow.com/questions/1660124/how-to-sum-a-variable-by-group). Acesso em 12/06/2022.

- Uso de faceting https://r-graph-gallery.com/223-faceting-with-ggplot2.html (https://r-graph-gallery.com/223-faceting-with-ggplot2.html). Acesso em 06/06/2022.
- Uso de joins https://rpubs.com/odenipinedo/joining-data-with-dplyr (https://rpubs.com/odenipinedo/joining-data-with-dplyr). Acesso em 06/06/2022.
- Uso da função psych::describe https://www.rdocumentation.org/packages/psych/versions/1.0-17/topics/describe (https://www.rdocumentation.org/packages/psych/versions/1.0-17/topics/describe) acesso em 06/06/2022.