Insertion Sort Merge Sort

SWE2016-44

INSERTION-SORT (A, n)	T(n)
for $j \leftarrow 2$ to n	n-1
do key ← A[j]	n-1
i ← j − 1	n-1
while i > 0 and A[i] > key	Best: $\sum_{j=2}^{n} 1$, Worst: $\sum_{j=2}^{n} j$, Avg: $\frac{1}{2} \sum_{j=2}^{n} (j+1)$
do A[i+1] ← A[i]	Best: $\sum_{j=2}^{n} (1-1)$, Worst: $\sum_{j=2}^{n} (j-1)$, Avg: $\frac{1}{2} \sum_{j=2}^{n} (j-1)$
i ← i − 1	Best: $\sum_{j=2}^{n} (1-1)$, Worst: $\sum_{j=2}^{n} (j-1)$, Avg: $\frac{1}{2} \sum_{j=2}^{n} (j-1)$
A[i+1] = key	n-1

- Best Case: T(n) = 4(n-1) + (n-1) = 5n 5
- Worst Case: $T(n) = 4(n-1) + \left\{ \frac{n(n-1)}{2} + 2\left(\frac{n(n-1)}{2} (n-1)\right) \right\} = \frac{3}{2}n^2 + \frac{1}{2}n 2$
- Average Case: $T(n) = 4(n-1) + \frac{1}{2}(n-1) + \frac{1}{2}\left(\frac{n(n-1)}{2} + 2\left(\frac{n(n-1)}{2} (n-1)\right)\right) = \frac{3}{4}n^2 + \frac{11}{4}n \frac{7}{2}$

- Best Case: T(n) = 5n 5

•
$$\Theta$$
 notation: $\Theta(n)$ \longleftarrow $4n \le T(n) \le 5n$ for $n \ge 5$

- Worst Case: $T(n) = \frac{3}{2}n^2 + \frac{1}{2}n 2$

•
$$\Theta$$
 notation: $\Theta(n^2)$ $\leftarrow \frac{3}{2}n^2 \le T(n) \le 2n^2 \text{ for } n \ge 4$

- Average Case: $T(n) = \frac{3}{4}n^2 + \frac{11}{4}n \frac{7}{2}$

•
$$\Theta$$
 notation: $\Theta(n^2)$ $\qquad \qquad \bullet \frac{3}{4}n^2 \le T(n) \le n^2 \text{ for } n \ge 6$

•
$$T(n) = \frac{3}{4}n^2 + \frac{11}{4}n - \frac{7}{2}$$

•
$$T(n) = \frac{3}{4}n^2 + \frac{11}{4}n - \frac{7}{2} \le \frac{3}{4}n^2 + \frac{11}{4}n \le \frac{3}{4}n^2 + \frac{11}{4}n^2 = \frac{7}{2}n^2$$

•
$$T(n) = \frac{3}{4}n^2 + \frac{11}{4}n - \frac{7}{2} \ge \frac{3}{4}n^2 - \frac{7}{2} = \frac{3}{8}n^2 + \frac{3}{8}n^2 - \frac{7}{2} \ge \frac{3}{8}n^2$$
 for all $n \ge 4$

$$\Rightarrow \frac{3}{8}$$
 n² \leq T(n) $\leq \frac{7}{2}$ n² for n \geq 4

$$\rightarrow$$
 T(n) = $\Theta(n^2)$

Merge two sorted arrays

Merge two sorted arrays

* Best Case Assumption: A[i] < B[j] for all i, j

MERGE (A, B, m, n)	T(m, n)
i = 1, j = 1	1
while $i < m + 1$ and $j < n + 1$	Best: m + 1, Worst: m + n, Avg: $\frac{1}{2}$ (m + 1) + $\frac{1}{2}$ (m + n)
if $A[i] < B[j]$	Best: 3m , Worst: $3(m + n - 1)$, Avg: $\frac{3}{2}m + \frac{3}{2}(m + n - 1)$
do Z[i+j-1] = A[i]	
i = i + 1	
else	
do Z[i + j - 1] = B[j]	
j = j + 1	
for k = i to m	Best: n, Worst: 1, Avg: $\frac{1}{2}$ n + $\frac{1}{2}$
Z[k+n] = A[k]	
for k = j to n	
Z[m+k] = B[k]	

- Best Case: T(n) = 4m + n + 2
- Worst Case: T(n) = 4m + 4n 1
- Average Case: $T(n) = 4m + \frac{5}{2}n + \frac{1}{2}$

Merge two sorted arrays

- Best Case: T(n) = 4m + n + 2

 - Θ notation: $\Theta(m+n)$ $\longleftarrow m+n \le T(n) \le 4(m+n)$ for $m \ge 1$, $n \ge 1$
- Worst Case: T(n) = 4m + 4n 1

 - Θ notation: $\Theta(m+n)$ \longleftarrow $m+n \leq T(n) \leq 4(m+n)$ for $m \geq 1$, $n \geq 1$
- Average Case: $T(n) = 4m + \frac{5}{2}n + \frac{1}{2}$

 - Θ notation: $\Theta(m+n)$ $\leftarrow 2(m+n) \le T(n) \le 4(m+n)$ for $m \ge 1$, $n \ge 1$


```
func mergesort( var a as array )
  if ( n == 1 ) return a

  var I1 as array = a[0] ... a[n/2]
  var I2 as array = a[n/2+1] ... a[n]

  I1 = mergesort( I1 )
  I2 = mergesort( I2 )

  return merge( I1, I2 )
end func
```

```
func merge( var a as array, var b as array )
    var c as array
    while ( a and b have elements )
          if ( a[0] > b[0] )
               add b[0] to the end of c
               remove b[O] from b
          else
               add a[0] to the end of c
              remove a[O] from a
    while ( a has elements )
         add a[0] to the end of c
         remove a[O] from a
    while ( b has elements )
          add b[0] to the end of c
         remove b[O] from b
    return c
end func
```

```
func mergesort( var a as array )
   if ( n == 1 ) return a

  var I1 as array = a[0] ... a[n/2]
  var I2 as array = a[n/2+1] ... a[n]

  I1 = mergesort( I1 )
  I2 = mergesort( I2 )

  return merge( I1, I2 )
end func
```



```
func mergesort( var a as array )
  if ( n == 1 ) return a

  var I1 as array = a[0] ... a[n/2]
  var I2 as array = a[n/2+1] ... a[n]

  I1 = mergesort( I1 )
  I2 = mergesort( I2 )

  return merge( I1, I2 )
end func
```



```
func mergesort( var a as array )
  if ( n == 1 ) return a

  var I1 as array = a[0] ... a[n/2]
  var I2 as array = a[n/2+1] ... a[n]

  I1 = mergesort( I1 )
  I2 = mergesort( I2 )

  return merge( I1, I2 )
end func
```



```
func mergesort( var a as array )
  if ( n == 1 ) return a

  var I1 as array = a[0] ... a[n/2]
  var I2 as array = a[n/2+1] ... a[n]

  I1 = mergesort( I1 )
  I2 = mergesort( I2 )

  return merge( I1, I2 )
end func
```



```
func mergesort( var a as array )
   if ( n == 1 ) return a

  var I1 as array = a[0] ... a[n/2]
  var I2 as array = a[n/2+1] ... a[n]

  I1 = mergesort( I1 )
  I2 = mergesort( I2 )

  return merge( I1, I2 )
end func
```



```
func mergesort( var a as array ) T(n) T(n) if ( n == 1 ) return a T(n) O(1)

var I1 as array = a[0] ... a[n/2] var I2 as array = a[n/2+1] ... a[n]

T(n) O(1)

T(n) O(1)

T(n) O(1)

T(n) O(1)

T(n) O(1)

T(n) O(1)
```

→
$$T(n) = \begin{cases} \Theta(1) & \text{if } \mathbf{n} = \mathbf{1} \\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } \mathbf{n} > \mathbf{1} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } n > 1 \end{cases} \qquad \Theta(n) \approx cn$$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } n > 1 \end{cases} \qquad \Theta(n) \approx \text{cn}$$

$$T(n) = \begin{cases} \Theta(1) & \text{if } \mathbf{n} = \mathbf{1} \\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{if } \mathbf{n} > \mathbf{1} \end{cases} \qquad \Theta(n) \approx \text{cn}$$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } n > 1 \end{cases} \qquad \Theta(n) \approx \text{cn}$$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(\frac{n}{2}) + \Theta(n) & \text{if } n > 1 \end{cases} \qquad \Theta(n) \approx \text{cn}$$

$$T(n) = \begin{cases} \Theta(1) & \text{if } \mathbf{n} = \mathbf{1} \\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{if } \mathbf{n} > \mathbf{1} \end{cases} \qquad \Theta(n) \approx \text{cn}$$

Reference

• Charles Leiserson and Piotr Indyk, "Introduction to Algorithms", September 29, 2004

https://www.geeksforgeeks.org