ARCH and GARCH models

Taylor R. Brown

Definitions

- ▶ P_t: the closing price on day/week/month t of stock/stock index
- $X_t = \log P_t$: log-price... observed paths look very much like those of a random walk
- $ightharpoonup Z_t = \nabla X_t$: the log return
- ▶ $100Z_t$: percentage returns
- $ightharpoonup h_t = \mathsf{Var}(Z_t|Z_{1:t-1})$: the conditional variance aka volatility

Motivation

Motivation

We would like models that take into account *stylized features* that appear in real-world data such as

- tail-heaviness
- asymmetry
- volatility clustering
- serial dependence without correlation

We introduce AutoRegressive Conditional Heteroscedasticity (ARCH) models, Generalized AutoRegressive Conditional Heteroscedasticity (GARCH), and stochastic volatility (SVOL) models in this slide deck.

Definition: ARCH(p)

ARCH(p) (Engle 1982)

$$Z_t = \sqrt{h_t}e_t, \qquad \{e_t\} \sim IID(0,1)$$

$$h_t = \alpha_0 + \sum_{i=1}^p \alpha_i Z_{t-i}^2.$$

$$\alpha_0 > 0$$
, $a_i \geq 0$, $p \in \mathbb{N}$

- volatility increases if we have observed big movements
- \triangleright setting a_i to 0 gives us white noise model
- $ightharpoonup \{e_t\}$ is sometimes but not always assumed to be Normal

Definition: GARCH(p,q) model

GARCH(p,q)

$$Z_t = \sqrt{h_t} e_t,$$
 $\{e_t\} \sim IID(0,1)$
 $h_t = \alpha_0 + \sum_{i=1}^p \alpha_i Z_{t-i}^2 + \sum_{j=1}^q \beta_j h_{t-j}.$

$$\alpha_0 > 0$$
, $a_i \ge 0$, $\beta_j \ge 0$, $p \in \mathbb{N}$

- now volatility is a function of its own past values, in addition to the past observations
- $lackbox\{e_t\}$ may or may not be normal

Definition: Stochastic Volatility model

Stochastic Volatility Model

$$egin{align} Z_t &= \sqrt{h_t} \mathrm{e}_t, & \{e_t\} \sim \mathit{IID}(0,1) \ &\ln h_t &= \gamma_0 + \gamma_1 \ln h_{t-1} + \eta_t, & \{\eta_t\} \sim \mathit{IID}(0,\sigma^2). \ \end{pmatrix}$$

where $\{\eta_t\}$ and $\{e_t\}$ are independent.

- ▶ log-volatility is an AR(1) process.
- \triangleright γ_1 is usually around .95.
- more difficult to estimate (intractable likelihood)

In the case of ARCH(1), $h_t = \alpha_0 + \alpha_1 Z_{t-1}^2$ and

$$\begin{split} Z_t^2 &= h_t e_t^2 \\ &= [\alpha_0 + \alpha_1 Z_{t-1}^2] e_t^2 \\ &= \alpha_0 e_t^2 + \alpha_1 h_{t-1} e_{t-1}^2 e_t^2 \\ &= \alpha_0 e_t^2 + \alpha_1 [\alpha_0 + \alpha_1 Z_{t-2}^2] e_{t-1}^2 e_t^2 \\ &= \alpha_0 e_t^2 + \alpha_1 \alpha_0 e_{t-1}^2 e_t^2 + \alpha_1^2 Z_{t-2}^2 e_{t-1}^2 e_t^2 \\ &= \alpha_0 e_t^2 + \alpha_1 \alpha_0 e_{t-1}^2 e_t^2 + \alpha_1^2 [h_{t-2} e_{t-2}^2] e_{t-1}^2 e_t^2 \\ &= \alpha_0 e_t^2 + \alpha_1 \alpha_0 e_{t-1}^2 e_t^2 + \alpha_1^2 [n_{t-2} e_{t-2}^2] e_{t-1}^2 e_t^2 \\ &= \alpha_0 e_t^2 + \alpha_1 \alpha_0 e_{t-1}^2 e_t^2 + \alpha_1^2 [\alpha_0 + \alpha_1 Z_{t-3}^2] e_{t-2}^2 e_{t-1}^2 e_t^2 \\ &= \left\{ \alpha_0 e_t^2 + \alpha_1 \alpha_0 e_{t-1}^2 e_t^2 + \alpha_1^2 \alpha_0 e_{t-2}^2 e_{t-1}^2 e_t^2 \right\} + \left\{ \alpha_1^3 Z_{t-3}^2 e_{t-2}^2 e_{t-1}^2 e_t^2 \right\} \\ &= \alpha_0 \sum_{j=0}^n \alpha_1^j e_t^2 e_{t-1}^2 \cdots e_{t-j}^2 + a_1^{n+1} Z_{t-n-1}^2 e_t^2 e_{t-1}^2 \cdots e_{t-n}^2 \end{split}$$

$$Z_{t}^{2} = \left(\alpha_{0} \sum_{j=0}^{n} \alpha_{1}^{j} e_{t}^{2} e_{t-1}^{2} \cdots e_{t-j}^{2}\right) + \left(a_{1}^{n+1} Z_{t-n-1}^{2} e_{t}^{2} e_{t-1}^{2} \cdots e_{t-n}^{2}\right)$$

If $\alpha_1 < 1$:

- **>** second term goes to 0 as $n \to \infty$
- first term has a limit, let's call it $\alpha_0 \sum_{j=0}^{\infty} \alpha_1^j (e_t^2 \times \cdots \times e_{t-j}^2)$

so

$$Z_t^2 = \alpha_0 \sum_{i=0}^{\infty} \alpha_1^j e_t^2 e_{t-1}^2 \cdots e_{t-j}^2$$

if we're looking at an infinitely long sequence.

Weakly-stationary!

$$E[Z_t] = E[\sqrt{h_t}e_t] = E[\sqrt{h_t}]E[e_t] = 0$$

Marginal variance

$$\begin{aligned} \operatorname{Var}[Z_t] &= E[Z_t^2] \\ &= E[\alpha_0 \sum_{j=0}^{\infty} \alpha_1^j e_t^2 e_{t-1}^2 \cdots e_{t-j}^2] \end{aligned} \qquad \text{(previous slide)} \\ &= \alpha_0 \sum_{j=0}^{\infty} \alpha_1^j = \alpha_0/(1-\alpha_1) \end{aligned}$$
 (linearity, independence, geom. series)

Autocovariance

$$\gamma_{Z}(h) = E[Z_{t+h}Z_{t}] = E[E(Z_{t+h}Z_{t}|e_{s}, s < t + h)]$$

$$= E[Z_{t}E(Z_{t+h}|e_{s}, s < t + h)] = 0$$
(LTE)

But remember that volatility in this case is the conditional

The ARCH(1) model is white noise, but not IID noise.

$$E[Z_t^2|Z_{1:t-1}] = E[(\alpha_0 + \alpha_1 Z_{t-1}^2)e_t^2|Z_{1:t-1}]$$

= $(\alpha_0 + \alpha_1 Z_{t-1}^2)E[e_t^2|Z_{1:t-1}]$
= $(\alpha_0 + \alpha_1 Z_{t-1}^2)$

This depends on Z_{t-1} . It is **not** $E[Z_t^2] = \alpha_0/(1-\alpha_1)$.

$$E[Z_t^2|Z_{1:t-1}] = (\alpha_0 + \alpha_1 Z_{t-1}^2)$$

So

$$\gamma(1)_{Z^{2}} = \mathbb{E}[Z_{t}^{2}Z_{t-1}^{2}]
= E\left[Z_{t-1}^{2}E\left(Z_{t}^{2} \mid Z_{1:t-1}\right)\right]
= E\left[Z_{t-1}^{2}(\alpha_{0} + \alpha_{1}Z_{t-1}^{2})\right]
= \alpha_{0} + \alpha_{1}\gamma(0)_{Z^{2}}$$

This is why we look at autocorrelation of the squared return process.

TODO: homework generalize to lag greater than 1

TODO this can be made into a hw question ^

Fake data or real data?

Another example
$$ARMA(1,1) + GARCH(1,1)$$
:

$$X_t - \mu = \phi(X_{t-1} - \mu) + Z_t + \theta Z_{t-1}$$
$$Z_t = \sqrt{h_t} e_t$$
$$h_t = \alpha_0 + \alpha_1 Z_{t-1}^2 + \beta_1 h_{t-1}$$

Forecast Rolling Sigma vs |Series|

Horizon: 20

Sources:

Chapters 7.1,7.2 of Introduction to Time Series and Forecasting $\ensuremath{\mathsf{Brockwell}}\xspace/\mathsf{Davis}$