Infinite and Non-Rigid Reconstruction Theory

Or: Reconstruction for lax module monads Based on joint work with Matti Stroiński: arXiv:2409.00793

2025-07-17

Tony Zorman

tony.zorman@tu-dresden.de

1

1

The setup

Let ${\mathscr C}$ be a monoidal, and ${\mathscr M}$, ${\mathscr N}$ (left) ${\mathscr C}$ -module categories.

2

The setup

Let \mathscr{C} be a monoidal, and \mathscr{M} , \mathscr{N} (left) \mathscr{C} -module categories.

$$\otimes\colon \mathscr{C}\times\mathscr{C}\longrightarrow\mathscr{C}, \qquad \qquad \triangleright\colon \mathscr{C}\times\mathscr{M}\longrightarrow\mathscr{M}.$$

$$\triangleright : \mathscr{C} \times \mathscr{M} \longrightarrow \mathscr{M}.$$

The setup

Let \mathscr{C} be a monoidal, and \mathscr{M} , \mathscr{N} (left) \mathscr{C} -module categories.

$$\otimes \colon \mathscr{C} \times \mathscr{C} \longrightarrow \mathscr{C}, \qquad \qquad \triangleright \colon \mathscr{C} \times \mathscr{M} \longrightarrow \mathscr{M}.$$

$$\triangleright \colon \mathscr{C} \times \mathscr{M} \longrightarrow \mathscr{M}$$

such that for all $x, y, z \in \mathcal{C}$ and $m \in \mathcal{M}$, e.g.,

$$(x \otimes y) \otimes z \cong x \otimes (y \otimes z)$$
 and $(x \otimes y) \triangleright m \cong x \triangleright (y \triangleright m)$.

$$(x \otimes y) \triangleright m \cong x \triangleright (y \triangleright m)$$

Module categories as deloopings

The **delooping** of a monoidal category is a bicategory with one object.

Module categories as deloopings

The **delooping** of a module category is a bicategory with two objects.

Given a monoidal category %, are all left

C-module categories equivalent to the

modules of an algebra object in %?

• C finite tensor category;

- C finite tensor category;
- M finite abelian C-module category; and

- C finite tensor category;
- M finite abelian C-module category; and
- the functor $\triangleright m : \mathcal{C} \longrightarrow \mathcal{M}$ is exact for all $m \in \mathcal{M}$.

- C finite tensor category;
- M finite abelian &-module category; and
- the functor $\triangleright m : \mathscr{C} \longrightarrow \mathscr{M}$ is exact for all $m \in \mathscr{M}$.

Then there exists an algebra object $A \in \mathcal{C}$ such that there is an equivalence of \mathcal{C} -module categories $\operatorname{mod}_{\mathcal{C}} A \simeq \mathcal{M}$.

- *C finite tensor category*;
- M finite abelian C-module category; and
- the functor $\triangleright m : \mathscr{C} \longrightarrow \mathscr{M}$ is exact for all $m \in \mathscr{M}$.

Then there exists an algebra object $A \in \mathcal{C}$ such that there is an equivalence of \mathcal{C} -module categories $\text{mod}_{\mathcal{C}} A \simeq \mathcal{M}$.

- *C finite tensor category*;
- M finite abelian C-module category; and
- the functor $\triangleright m : \mathscr{C} \longrightarrow \mathscr{M}$ is exact for all $m \in \mathscr{M}$.

Then there exists an algebra object $A \in \mathcal{C}$ such that there is an equivalence of \mathcal{C} -module categories $\text{mod}_{\mathcal{C}} A \simeq \mathcal{M}$.

- C finite tensor category;
- M finite abelian C-module category; and
- the functor $\triangleright m : \mathscr{C} \longrightarrow \mathscr{M}$ is exact for all $m \in \mathscr{M}$.

Then there exists an algebra object $A \in \mathcal{C}$ such that there is an equivalence of \mathcal{C} -module categories $\text{mod}_{\mathcal{C}} A \simeq \mathcal{M}$.

Proposition (Douglas-Schommer-Pries-Snyder)

In the absence of rigidity, there are finite abelian C-module categories that cannot be realised as the modules of an algebra object in C.

Given a monoidal category %, are all left

modules of a monad on %?

Given a monoidal category C, are all lef C-module categories equivalent to the

A functor $F: \mathcal{M} \longrightarrow \mathcal{N}$ is a **lax** %-module functor if there exists an associative and unital natural transformation

$$F_2$$
: $- \triangleright F(=) \Longrightarrow F(- \triangleright =)$.

A functor $F: \mathcal{M} \longrightarrow \mathcal{N}$ is a **lax** %-module functor if there exists an associative and unital natural transformation

$$F_2: - \triangleright F(=) \Longrightarrow F(- \triangleright =).$$

$$G(-) \otimes G(=) \Longrightarrow G(- \otimes =)$$

A functor $F: \mathcal{M} \longrightarrow \mathcal{N}$ is a **lax** %-module functor if there exists an associative and unital natural transformation

A functor $F: \mathcal{M} \longrightarrow \mathcal{N}$ is a **lax** %-module functor if there exists an associative and unital natural transformation

$$F_2: - \triangleright F(=) \Longrightarrow F(- \triangleright =).$$

F can also be...

• oplax:
$$F(-\triangleright =) \Longrightarrow -\triangleright F(=)$$
;

A functor $F: \mathcal{M} \longrightarrow \mathcal{N}$ is a **lax** %-module functor if there exists an associative and unital natural transformation

$$F_2$$
: $- \triangleright F(=) \Longrightarrow F(- \triangleright =)$.

F can also be...

- oplax: $F(-\triangleright =) \Longrightarrow -\triangleright F(=)$;
- strong: $\triangleright F(=) \stackrel{\sim}{\Longrightarrow} F(- \triangleright =)$.

The Yoneda lemma™

Proposition

There is an equivalence of &-module categories

$$\mathcal{M} \simeq \mathsf{Str}\mathscr{C}\mathsf{Mod}(\mathscr{C}, \mathcal{M}),$$

The Yoneda lemma™

Proposition

There is an equivalence of &-module categories

$$\mathcal{M} \simeq \mathsf{Str}\mathscr{C}\mathsf{Mod}(\mathscr{C}, \mathcal{M}), \qquad m \longmapsto - \triangleright m,$$

The Yoneda lemma™

Proposition

There is an equivalence of &-module categories

$$\mathcal{M} \simeq \mathsf{Str}\mathscr{C}\mathsf{Mod}(\mathscr{C}, \mathcal{M}), \qquad m \longmapsto - \triangleright m, \qquad F1 \longleftrightarrow F.$$

The Yoneda lemmaTM

Proposition

There is an equivalence of &-module categories

$$\mathcal{M} \simeq \operatorname{Str} \operatorname{\mathscr{C}Mod}(\mathcal{C}, \mathcal{M}), \qquad m \longmapsto - \triangleright m, \qquad F1 \longleftrightarrow F.$$

In particular, $\mathscr{C}^{\text{rev}} \simeq \mathsf{Str}\mathscr{C}\mathsf{Mod}(\mathscr{C},\mathscr{C}).$

The Yoneda lemmaTM

Proposition

There is an equivalence of C-module categories

$$\mathcal{M} \simeq \operatorname{Str} \operatorname{\mathscr{C}Mod}(\mathcal{C}, \mathcal{M}), \qquad m \longmapsto - \triangleright m, \qquad F1 \longleftrightarrow F.$$

In particular, $\mathscr{C}^{\text{rev}} \simeq \mathsf{Str}\mathscr{C}\mathsf{Mod}(\mathscr{C},\mathscr{C}).$

Study cases in which - > m admits a right

adjoint.

Study cases in which $- \triangleright m$ admits a right

adjoint. The resulting monad canonically has a lax %-module structure.

Study cases in which $- \triangleright m$ admits a right

adjoint. The resulting monad canonically

has a lax %-module structure. Then apply

Beck's monadicity theorem.

Study cases in which $- \triangleright m$ admits a right adjoint. The resulting monad canonically has a lax \mathscr{C} -module structure. Then apply Beck's monadicity theorem.

To Kelly and Beck

Theorem (Kelly)

Given an adjunction $F \colon \mathscr{C} \rightleftarrows \mathfrak{D} \colon U$ between monoidal categories, oplax monoidal structures on F are in bijective correspondence with lax monoidal structures on U.

To Kelly and Beck

Theorem (Kelly)

Given an adjunction $F: \mathscr{C} \rightleftarrows \mathfrak{D}: U$ between monoidal categories, oplax monoidal structures on F are in bijective correspondence with lax monoidal structures on U.

To Kelly and Beck

Theorem (Kelly, Halbig–Z)

Given an adjunction $F: \mathcal{M} \rightleftarrows \mathcal{N} : U$ between \mathscr{C} -module categories, oplax \mathscr{C} -module structures on F are in bijective correspondence with lax \mathscr{C} -module structures on U.

To Kelly and Beck

Theorem (Kelly, Halbig–Z)

Given an adjunction $F: \mathcal{M} \rightleftarrows \mathcal{N} : U$ between C-module categories, oplax C-module structures on F are in bijective correspondence with lax C-module structures on U.

To Kelly and Beck

Theorem (Kelly, Halbig-Z)

Given an adjunction $F: \mathcal{M} \rightleftarrows \mathcal{N}: U$ between C-module categories, oplax C-module structures on F are in bijective correspondence with lax C-module structures on U.

Theorem (Beck's monadicity theorem)

An adjunction $F: \mathcal{C} \rightleftharpoons \mathfrak{D}: U$ is monadic if and only if U is conservative, \mathfrak{D} has coequalisers of U-split pairs, and U preserves them.

To Kelly and Beck

Theorem (Kelly, Halbig-Z)

Given an adjunction $F: \mathcal{M} \rightleftarrows \mathcal{N} : U$ between C-module categories, oplax C-module structures on F are in bijective correspondence with lax C-module structures on U.

Theorem (Abelian monadicity)

An adjunction $F \colon \mathscr{C} \rightleftarrows \mathfrak{D} \colon U$ is monadic if U is exact and reflects zero objects.

Let $\mathscr C$ and $\mathscr M$ be abelian.

Let $\mathscr C$ and $\mathscr M$ be abelian. An object $\ell \in \mathscr M$ is **closed** if there is an adjunction

$$- \triangleright \ell \colon \mathscr{C} \rightleftarrows \mathscr{M} : \lfloor \ell, - \rfloor.$$

Let $\mathscr C$ and $\mathscr M$ be abelian. An object $\ell \in \mathscr M$ is **closed** if there is an adjunction

$$- \triangleright \ell : \mathscr{C} \rightleftharpoons \mathscr{M} : \lfloor \ell, - \rfloor.$$

A closed object is called **\mathscr{C}-projective** if $\lfloor \ell, - \rfloor$ is (right) exact.

Let $\mathscr C$ and $\mathscr M$ be abelian. An object $\ell \in \mathscr M$ is **closed** if there is an adjunction

$$- \triangleright \ell : \mathscr{C} \rightleftharpoons \mathscr{M} : \lfloor \ell, - \rfloor.$$

A closed object is called **%-projective** if $\lfloor \ell, - \rfloor$ is (right) exact and a **%-generator** if $\lfloor \ell, - \rfloor$ is faithful.

Let \mathscr{C} and \mathscr{M} be abelian. An object $\ell \in \mathscr{M}$ is **closed** if there is an adjunction

$$-\otimes x \colon \mathscr{C} \rightleftarrows \mathscr{C} : -\otimes {}^{\vee}x$$

A closed object is called **%-projective** if $\lfloor \ell, - \rfloor$ is (right) exact and a **%-generator** if $\lfloor \ell, - \rfloor$ is faithful.

Example

• Every object in a rigid monoidal category $\mathscr C$ is $\mathscr C$ -projective.

8

Let $\mathscr C$ and $\mathscr M$ be abelian. An object $\ell \in \mathscr M$ is **closed** if there is an adjunction

$$- \triangleright \ell : \mathscr{C} \rightleftharpoons \mathscr{M} : \lfloor \ell, - \rfloor.$$

A closed object is called **C-projective** if $\lfloor \ell, - \rfloor$ is (right) exact and a **C-generator** if $\lfloor \ell, - \rfloor$ is faithful.

Example

- Every object in a rigid monoidal category ${\mathscr C}$ is ${\mathscr C}$ -projective.
- Finite C-module categories over finite tensor categories always admit C-projective C-generators.

The Eilenberg–Moore category of a lax

C-module monad does not carry a

canonical &-module structure.

A module structure for the Eilenberg–Moore category

Theorem (Linton, Day, Aguiar-Haim-López Franco, Stroiński-Z)

The Eilenberg–Moore category of any right exact lax &-module monad can be equipped with a canonical &-module structure by means of Linton coequalisers.

A module structure for the Eilenberg–Moore category

Theorem (Linton, Day, Aguiar-Haim-López Franco, Stroiński-Z)

The Eilenberg–Moore category of any right exact lax C-module monad can be equipped with a canonical C-module structure by means of Linton coequalisers.

Definition

The **Linton coequaliser** of $x \in \mathcal{C}$ and $(m, \nabla_m) \in \mathcal{M}^T$ is:

$$T(x \triangleright Tm) \underset{\mu_{x \triangleright m} \circ TT_{2;x,m}}{\overset{T(x \triangleright \nabla_m)}{\longrightarrow}} T(x \triangleright m) \longrightarrow x \blacktriangleright m.$$

The reconstruction result

Theorem (Stroiński–Z)

Let \mathcal{C} be an abelian monoidal category, \mathcal{M} an abelian \mathcal{C} -module category, and assume that $\ell \in \mathcal{M}$ is a closed \mathcal{C} -projective \mathcal{C} -generator.

The reconstruction result

Theorem (Stroiński–Z)

Let \mathcal{C} be an abelian monoidal category, \mathcal{M} an abelian \mathcal{C} -module category, and assume that $\ell \in \mathcal{M}$ is a closed \mathcal{C} -projective \mathcal{C} -generator. Then

$$\mathcal{M} \simeq_{\triangleright} \mathscr{C}^{\lfloor \ell, - \triangleright \ell \rfloor}.$$

The reconstruction result

Theorem (Stroiński-Z)

Let \mathcal{C} be an abelian monoidal category, \mathcal{M} an abelian \mathcal{C} -module category, and assume that $\ell \in \mathcal{M}$ is a closed \mathcal{C} -projective \mathcal{C} -generator. Then

$$\mathcal{M} \simeq_{\triangleright} \mathscr{C}^{\lfloor \ell, - \triangleright \ell \rfloor}.$$

Furthermore, there is a bijection

$$\{(\mathcal{M}, \ell) \text{ as above}\}_{\mathcal{M}} \simeq \mathcal{N} \stackrel{\cong}{\longleftrightarrow} \begin{cases} \text{Right exact lax \mathfrak{C}-module} \\ \text{monads on \mathfrak{C}} \end{cases} / \mathfrak{C}^T \simeq \mathfrak{C}^S$$

Thanks!

tony-zorman.com/ct2025

Reconstruction of module categories in the infinite and non-rigid settings. arXiv: 2409.00793

Hopf trimodules

Theorem (Stroiński-Z)

Let B be a bialgebra, and define $V := {}^{B}Vect$.

Hopf trimodules

Theorem (Stroiński-Z)

Let B be a bialgebra, and define $\mathcal{V} := {}^{B}\mathbf{Vect}$ *. There is a monoidal equivalence*

$${}^{B}_{B}\mathsf{Vect}^{B}\longrightarrow \mathsf{LexfLax}\mathcal{V}\mathsf{Mod}(\mathcal{V},\mathcal{V})$$
$$X\longmapsto (X\;\square_{B}\;-,\chi)$$

between the category of Hopf trimodules, and the category of left exact finitary lax V-module endofunctors on V.

The Yetter-Drinfeld braiding

For all $M, N \in {}^{B}\text{Vect}$, the arrow

$$\chi_{M,N}: M \otimes_{\Bbbk} (X \square_B N) \longrightarrow X \square_B (M \otimes_{\Bbbk} N)$$

The Yetter-Drinfeld braiding

For all $M, N \in {}^{B}\text{Vect}$, the arrow

$$\chi_{M,N} \colon M \otimes_{\Bbbk} (X \square_B N) \longrightarrow X \square_B (M \otimes_{\Bbbk} N)$$

is defined by

Deducing a theorem for Hopf trimodules

Proposition

Let ${\mathcal C}$ be a left closed monoidal category such that the canonical embedding

$$\mathsf{Str}\mathscr{C}\mathsf{Mod}(\mathscr{C},\mathscr{C}) \hookrightarrow \mathsf{Lax}\mathscr{C}\mathsf{Mod}(\mathscr{C},\mathscr{C})$$

is an equivalence.

Deducing a theorem for Hopf trimodules

Proposition

Let & be a left closed monoidal category such that the canonical embedding

$$\mathsf{Str}\mathscr{C}\mathsf{Mod}(\mathscr{C},\mathscr{C}) \hookrightarrow \mathsf{Lax}\mathscr{C}\mathsf{Mod}(\mathscr{C},\mathscr{C})$$

is an equivalence. Then & is left rigid.

Deducing a theorem for Hopf trimodules

Proposition

Let & be a left closed monoidal category such that the canonical embedding

$$Str \mathscr{C}Mod(\mathscr{C},\mathscr{C}) \hookrightarrow Lax \mathscr{C}Mod(\mathscr{C},\mathscr{C})$$

is an equivalence. Then & is left rigid.

Corollary (Stroiński-Z)

A bialgebra B admits a twisted antipode if and only if the canonical functor $B \otimes_{\mathbb{k}} -: {}^{B}\text{Vect}^{B}$ is an equivalence.

Fusion operators for Hopf monads

Proposition (Stroiński-Z)

The bimonad T := UF of an oplax monoidal adjunction $F : \mathscr{C} \rightleftharpoons \mathfrak{D} : U$ is canonically an oplax \mathfrak{D} -module monad.

Fusion operators for Hopf monads

Proposition (Stroiński-Z)

The bimonad T := UF of an oplax monoidal adjunction $F : \mathscr{C} \rightleftharpoons \mathfrak{D} : U$ is canonically an oplax \mathfrak{D} -module monad.

The right fusion operator is the "free part" of the coherence morphism:

$$T_{2;F,\mathrm{Id}} = T_{\mathsf{rf}} \colon T(T \otimes \mathrm{Id}) \Longrightarrow T \otimes T.$$

Fusion operators for Hopf monads

Proposition (Stroiński-Z)

The bimonad T := UF of an oplax monoidal adjunction $F : \mathscr{C} \rightleftharpoons \mathfrak{D} : U$ is canonically an oplax \mathfrak{D} -module monad.

The right fusion operator is the "free part" of the coherence morphism:

$$T_{2;F,\mathrm{Id}} = T_{\mathrm{rf}} \colon T(T \otimes \mathrm{Id}) \Longrightarrow T \otimes T,$$

and T_{rf} is an isomorphism if and only if T_2 is.

References i

[AHLF18]	Marcelo Aguiar, Mariana Haim, and Ignacio López Franco. Monads on higher monoidal categories. In: Appl. Categ. Struct. 26.3 (2018), pp. 413–458. ISSN: 0927-2852. DOI: 10.1007/s10485-017-9497-8.
[BLV11]	Alain Bruguières, Steve Lack, and Alexis Virelizier. Hopf monads on monoidal categories. In: Advances in Mathematics 227.2 (2011), pp. 745–800. ISSN: 0001-8708. DOI: 10.1016/j.aim.2011.02.008.
[Day77]	B. J. Day. Note on monoidal monads. English. In: J. Aust. Math. Soc., Ser. A 23 (1977), pp. 292–311. ISSN: 0263-6115.
[Del02]	Pierre Deligne. Catégories tensorielles. (Tensor categories). French. In: Mosc. Math. J. 2.2 (2002), pp. 227–248. ISSN: 1609-3321.
[DSPS19]	Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder. The balanced tensor product of module categories . In: Kyoto J. Math. 59.1 (2019), pp. 167–179. ISSN: 2156-2261. DOI: 10.1215/21562261-2018-0006.
[EGNO15]	Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories. Vol. 205. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015, pp. xvi+343. ISBN: 978-1-4704-2024-6. DOI: 10.1090/surv/205.
[HN99]	Frank Hausser and Florian Nill. Integral Theory for Quasi-Hopf Algebras. In: arXiv e-prints (1999). arXiv: math/9904164 [math.QA].

References ii

[HZ24]	Sebastian Halbig and Tony Zorman. Diagrammatics for Comodule Monads. In: Appl. Categ. Struct. 32 (2024). Id/No 27, p. 17. ISSN: 0927-2852. DOI: 10.1017/CB09781139542333.
[Kel74]	Gregory M. Kelly. Doctrinal adjunction. Proceedings Sydney Category Seminar, 1972/1973, Lect. Notes Math. 420, 257–280 (1974). 1974.
[Lin69]	F. E. J. Linton. Coequalizers in categories of algebras. English. Semin. Triples categor. Homology Theory, ETH 1966/67, Lect. Notes Math. 80, 75–90 (1969). 1969.
[Moe02]	Ieke Moerdijk. Monads on tensor categories. In: J. Pure Appl. Algebra 168.2-3 (2002). Category theory 1999 (Coimbra), pp. 189–208. ISSN: 0022-4049. DOI: 10.1016/S0022-4049(01)00096-2.
[Ost03]	Viktor Ostrik. Module categories, weak Hopf algebras and modular invariants. In: Transform. Groups 8.2 (2003), pp. 177–206. ISSN: 1083-4362. DOI: 10.1007/s00031-003-0515-6.
[Ost04]	Victor Ostrik. Tensor categories (after P. Deligne). In: arXiv e-prints (2004). arXiv: math/0401347 [math.CT].
[Sar17]	Paolo Saracco. On the structure theorem for quasi-Hopf bimodules. In: Appl. Categ. Struct. 25.1 (2017), pp. 3–28. ISSN: $0927-2852$. DOI: $10.1007/s10485-015-9408-9$.
[SZ24]	Mateusz Stroiński and Tony Zorman. Reconstruction of module categories in the infinite and non-rigid settings. In: arXiv e-prints (2024). arXiv: 2409.00793 [math.QA].