Raum, topologischer Menge, offene Menge, abgeschlossene	Umgebung lokal
Inneres Kern, offener Abschluss Rand dicht	Basis Subbasis
Spurtopologie Teilraum Teilraumtopologie Unterraumtopologie	${\bf Produkt topologie}$
Quotiententopologie	Metrik Raum, metrischer

Sei (X, \mathfrak{T}) ein topologischer Raum und $x \in X$.

Eine Teilmenge $U \subseteq X$ heißt **Umgebung** von x, wenn es ein $U_0 \in \mathfrak{T}$ gibt mit $x \in U_0$ und $U_0 \subseteq U$.

Gilt eine Eigenschaft in einer Umgebung, so sagt man, dass die Eigenschaft lokal gilt.

Ein **topologischer Raum** ist ein Paar (X, \mathfrak{T}) bestehend aus einer Menge X und $\mathfrak{T} \subseteq \mathcal{P}(X)$ mit folgenden Eigenschaften

- (i) $\emptyset, X \in \mathfrak{T}$
- (ii) Sind $U_1, U_2 \in \mathfrak{T}$, so ist $U_1 \cap U_2 \in \mathfrak{T}$
- (iii) Ist I eine Menge und $U_i \in \mathfrak{T}$ für jedes $i \in I$, so ist $\bigcup_{i \in I} U_i \in \mathfrak{T}$

Die Elemente von $\mathfrak T$ heißen offene Teilmengen von X. $A\subseteq X$ heißt abgeschlossen, wenn $X\setminus A$ offen ist.

Sei (X, \mathfrak{T}) ein topologischer Raum.

- a) $\mathfrak{B} \subseteq \mathfrak{T}$ heißt **Basis** der Topologie \mathfrak{T} , wenn jedes $U \in \mathfrak{T}$ Vereinigung von Elementen aus \mathfrak{B} ist.
- b) $\mathcal{S} \subseteq \mathfrak{T}$ heißt **Subbasis** der Topologie \mathfrak{T} , wenn jedes $U \in \mathfrak{T}$ Vereinigung von endlichen Durchschnitten von Elementen aus \mathcal{S} ist.

Sei (X, \mathfrak{T}) ein topologischer Raum und $M \subseteq X$ eine Teilmenge.

a) $M^{\circ} := \{ x \in M \mid M \text{ ist Umgebung von } x \} = \bigcup_{\substack{U \subseteq M \\ U \in \mathfrak{T}}} U$

heißt Inneres oder offener Kern von M.

b) $\overline{M}:=\bigcap_{\substack{M\subseteq A\\A\text{ abgeschlossen}}}A$ heißt abgeschlossene Hülle oder Ab-

schluss von M.

- c) $\partial M := \overline{M} \setminus M^{\circ}$ heißt **Rand** von M.
- d) M heißt **dicht** in X, wenn $\overline{M} = X$ ist.

Seien X_1, X_2 topologische Räume.

 $U \subseteq X_1 \times X_2$ sei offen, wenn es zu jedem $x = (x_1, x_2) \in U$ Umgebungen U_i um x_i mit i = 1, 2 gibt, sodass $U_1 \times U_2 \subseteq U$ gilt.

 $\mathfrak{T} = \{ U \subseteq X_1 \times X_2 \mid U \text{ offen } \}$ ist eine Topologie auf $X_1 \times X_2$. Sie heißt **Produkttopologie**. $\mathfrak{B} = \{ U_1 \times U_2 \mid U_i \text{ offen in } X_i, i = 1, 2 \}$ ist eine Basis von \mathfrak{T} .

Sei (X,\mathfrak{T}) ein topologischer Raum und $Y\subseteq X$. $\mathfrak{T}_Y:=\{U\cap Y\mid U\in\mathfrak{T}\}$ ist eine Topologie auf Y. \mathfrak{T}_Y heißt **Teilraumtopologie** und (Y,\mathfrak{T}_Y) heißt ein **Teilraum** von (X,\mathfrak{T}) .

Sei X eine Menge. Eine Abbildung $d: X \times X \to \mathbb{R}_0^+$ heißt **Metrik**, wenn gilt:

(i) Definitheit: X

 $d(x,y)=0 \Leftrightarrow x=y \quad \forall x,y \in$

(ii) Symmetrie:

 $d(x,y) = d(y,x) \quad \forall x, y \in X$

(iii) Dreiecksungleichung: $d(y, z) \quad \forall x, y, z \in X$

 $d(x,z) \leq d(x,y) +$

Das Paar (X, d) heißt ein **metrischer Raum**.

Sei X ein topologischer Raum, \sim eine Äquivalenzrelation auf $X, \overline{X} = X/_{\sim}$ sei die Menge der Äquivalenzklassen, $\pi: x \to \overline{x}, \quad x \mapsto [x]_{\sim}$.

$$\mathfrak{T}_{\overline{X}} := \left\{ U \subseteq \overline{X} \mid \pi^{-1}(U) \in \mathfrak{T}_X \right\}$$

 $(\overline{X}, \mathfrak{T}_{\overline{X}})$ heißt Quotiententopologie.

Isometrie	Raum, hausdorffscher
Grenzwert Limes	Abbildung, stetige Homöomorphismus
zusammenhängend	Zusammenhangskomponente
Uberdeckung	Raum, kompakter

Ein topologischer Raum X heißt **hausdorffsch**, wenn es für je zwei Punkte $x \neq y$ in X Umgebungen U_x um x und U_y um y gibt, sodass $U_x \cap U_y = \emptyset$.

Seien (X, d_X) und (Y, d_Y) metrische Räume und $\varphi : X \to Y$ eine Abbildung mit

$$\forall x_1, x_2 \in X : d_X(x_1, x_2) = d_Y(\varphi(x_1), \varphi(x_2))$$

Dann heißt φ eine **Isometrie** von X nach Y.

Seien $(X, \mathfrak{T}_X), (Y, \mathfrak{T}_Y)$ topologische Räume und $f: X \to Y$ eine Abbildung.

- a) f heißt **stetig** : $\Leftrightarrow \forall U \in \mathfrak{T}_Y : f^{-1}(U) \in \mathfrak{T}_X$.
- b) f heißt **Homöomorphismus**, wenn f stetig ist und es eine stetige Abbildung $g: Y \to X$ gibt, sodass $g \circ f = \mathrm{id}_X$ und $f \circ g = \mathrm{id}_Y$.

Sei X ein topologischer Raum und $(x)_{n\in\mathbb{N}}$ eine Folge in X. $x\in X$ heißt **Grenzwert** oder **Limes** von (x_n) , wenn es für jede Umgebung U von x ein n_0 gibt, sodass $x_n\in U$ für alle $n\geq n_0$.

Sei X ein topologischer Raum.

Für $x \in X$ sei $Z(x) \subseteq X$ definiert durch

$$Z(x) := \bigcup_{\substack{A \subseteq X \text{zhgd.} \\ x \in A}} A$$

Z(x) heißt **Zusammenhangskomponente**.

Ein Raum X heißt **zusammenhängend**, wenn es keine offenen, nichtleeren Teilmengen U_1, U_2 von X gibt mit $U_1 \cap U_2 = \emptyset$ und $U_1 \cup U_2 = X$.

Ein topologischer Raum Xheißt $\mathbf{kompakt},$ wenn jede offene Überdeckung von X

$$\mathfrak{U} = \{ U_i \}_{i \in I} \text{ mit } U_i \text{ offen in } X$$

eine endliche Teilüberdeckung

$$\bigcup_{i \in J \subset I} U_i = X \text{ mit } |J| \in \mathbb{N}$$

besitzt.

Sei X eine Menge und $\mathfrak{U} \subseteq \mathcal{P}(X)$. \mathfrak{U} heißt eine **Überdeckung** von X, wenn gilt:

$$\forall x \in X : \exists M \in \mathfrak{U} : x \in M$$

Weg Weg, geschlossener Weg, einfacher	Wegzusammenhang
Jordankurve Jordankurve, geschlossene	Knoten
Knoten, äquivalente Isotopie	Knotendiagramm
Färbbarkeit	Karte Atlas Mannigfaltigkeit

Ein topologischer Raum X heißt wegzusammenhängend, wenn es zu je zwei Punkten $x, y \in X$ einen Weg $\gamma : [0, 1] \to X$ gibt mit $\gamma(0) = x$ und $\gamma(1) = y$.

Sei X ein topologischer Raum.

- a) Ein **Weg** in X ist eine stetige Abbildung $\gamma:[0,1]\to X$.
- b) γ heißt **geschlossen**, wenn $\gamma(1) = \gamma(0)$ gilt.
- c) γ heißt **einfach**, wenn $\gamma|_{[0,1)}$ injektiv ist.

Eine geschlossene Jordankurve in \mathbb{R}^3 heißt **Knoten**.

Sei X ein topologischer Raum. Eine (geschlossene) **Jordan-kurve** in X ist ein Homöomorphismus $\gamma:[0,1]\to C\subseteq X$ bzw. $\gamma:S^1\to C\subseteq X$.

Sei $\gamma:[0,1]\to\mathbb{R}^3$ ein Knoten, E eine Ebene und $\pi:\mathbb{R}^3\to E$ eine Projektion auf E.

 π heißt **Knotendiagramm** von γ , wenn gilt:

$$\left|\pi^{-1}(x)\right| \le 2 \quad \forall x \in \pi(\gamma)$$

Ist $(\pi|_{\gamma([0,1])})^{-1}(x) = \{y_1, y_2\}$, so **liegt** y_1 **über** y_2 , wenn gilt:

$$\exists \lambda > 1 : (y_1 - x) = \lambda (y_2 - x)$$

Zwei Knoten $\gamma_1, \gamma_2: S^1 \to \mathbb{R}^3$ heißen **äquivalent**, wenn es eine stetige Abbildung

$$H: S^1 \times [0,1] \to \mathbb{R}^3$$

gibt mit

$$H(z,0) = \gamma_1(z) \quad \forall z \in S^1$$

$$H(z,1) = \gamma_2(z) \quad \forall z \in S^1$$

und für jedes feste $t \in [0, 1]$ ist

$$H_z: S^1 \to \mathbb{R}^3, z \mapsto H(z,t)$$

ein Knoten. Die Abbildung H heißt **Isotopie** zwischen γ_1 und γ_2 .

Sei (X, \mathfrak{T}) ein topologischer Raum und $n \in \mathbb{N}$.

- a) Eine n-dimensionale **Karte** auf X ist ein Paar (U, φ) , wobei $U \in \mathfrak{T}$ und $\varphi : U \to V$ Homöomorphismus von U auf eine offene Teilmenge $V \subset \mathbb{R}^n$.
- b) Ein *n*-dimensionaler **Atlas** \mathcal{A} auf X ist eine Familie $(U_i, \varphi_i)_{i \in I}$ von Karten auf X, sodass $\bigcup_{i \in I} U_i = X$.
- c) X heißt (topologische) n-dimensionale **Mannigfaltigkeit**, wenn X hausdorffsch ist, eine abzählbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

Ein Knotendiagramm heißt **3-färbbar**, wenn jeder Bogen von D so mit einer Farbe gefärbt werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben auftreten.

Verklebung	Mannigfaltigkeit, mit Rand
Rand	Ubergangsfunktion
Mannigfaltigkeit, differenzierbare Mannigfaltigkeit, glatte	$\begin{array}{c} \textbf{vertr\"{a}glich} \\ C^k\textbf{-Struktur} \\ \textbf{Struktur, differenzierbare} \end{array}$
Abbildung, differenzierbare Diffeomorphismus	Fläche, reguläre Parametrisierung, reguläre

Sei X ein Hausdorffraum mit abzählbarer Basis der Topologie. X heißt n-dimensionale **Mannigfaltigkeit mit Rand**, wenn es einen Atlas (U_i, φ_i) gibt, wobei $U_i \subseteq X_i$ offen und φ_i ein Homöomorphismus auf eine offene Teilmenge von

$$\mathbb{R}^n_{+,0} := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \ge 0 \}$$

ist.

Seien X,Y n-dimensionale Mannigfaltigkeiten, $U\subseteq X$ und $V\subseteq Y$ offen, $\Phi:U\to V$ ein Homöomorphismus $Z=(X\dot{\cup} Y)/_{\sim}$ mit der von $u\sim\Phi(u)\ \forall u\in U$ erzeugten Äquivalenzrelation und der von \sim induzierten Quotiententopologie. Z heißt **Verklebung** von X und Y längs U und V. Z besitzt einen Atlas aus n-dimensionalen Karten. Falls Z hausdorffsch ist, ist Z eine n-dimensionale Mannigfaltigkeit.

Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$

Für $i, j \in I$ mit $U_i \cap U_j \neq \emptyset$ heißt

$$\varphi_{ij} := \varphi_j \circ \varphi_i^{-1}$$
$$\varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$$

Kartenwechsel oder Übergangsfunktion.

Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas \mathcal{A} . Dann heißt

$$\partial X := \bigcup_{(U,\varphi) \in \mathcal{A}} \{ x \in U \mid \varphi(x) = 0 \}$$

Rand von X.

Sei X eine differenzierbare Mannigfaltigkeit der Klasse C^k $(k \in \mathbb{N} \cup \{\infty\})$ mit Atlas $\mathcal{A} = (U_i, \varphi_i)_{i \in I}$.

- a) Eine Karte (U, φ) auf X heißt **verträglich** mit \mathcal{A} , wenn alle Kartenwechsel $\varphi \circ \varphi_i^{-1}$ und $\varphi_i \circ \varphi^{-1}$ $(i \in I \text{ mit } U_i \cap U \neq \emptyset)$ differenzierbar von Klasse C^k sind.
- b) Die Menge aller mit \mathcal{A} verträglichen Karten auf X bildet einen maximalen Atlas der Klasse C^k . Er heißt C^k -Struktur auf X.

Eine C^{∞} -Struktur heißt auch **differenzierbare** Struktur auf X.

Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$.

- a) X heißt differenzierbare Mannigfaltigkeit der Klasse C^k , wenn jede Kartenwechselabbildung $\varphi_{ij},\ i,j\in I$ k-mal stetig differenzierbar ist.
- b) X heißt differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannigfaltigkeit der Klasse C^{∞} ist.

 $S\subseteq\mathbb{R}^3$ heißt **reguläre Fläche** : $\Leftrightarrow \forall s\in S$ \exists Umgebung $V(s)\subseteq\mathbb{R}^3$ $\exists U\subseteq\mathbb{R}^2$ offen: \exists differenzierbare Abbildung $F:U\to V\cap S$: $\operatorname{Rg}(J_F(u))=2$ $\forall u\in U$.

F heißt (lokale) **reguläre Parametrisierung** von S.

$$F(u,v) = (x(u,v), y(u,v), z(u,v))$$

$$J_F(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u}(p) & \frac{\partial x}{\partial v}(p) \\ \frac{\partial y}{\partial u}(p) & \frac{\partial y}{\partial v}(p) \\ \frac{\partial z}{\partial u}(p) & \frac{\partial z}{\partial v}(p) \end{pmatrix}$$

Seien X, Y differenzierbare Mannigfaltigkeiten der Dimension n bzw. $m, x \in X$.

- a) Eine stetige Abbildung $f: X \to Y$ heißt **differenzier-bar** in x (von Klasse C^k), wenn es Karten (U, φ) von X mit $x \in U$ und (V, ψ) von Y mit $f(U) \subseteq V$ gibt, sodass $\psi \circ f \circ \varphi^{-1}$ stetig differenzierbar von Klasse C^k in $\varphi(x)$ ist
- b) f heißt **differenzierbar** (von Klasse C^k), wenn f in jedem $x \in X$ differenzierbar ist.
- c) f heißt **Diffeomorphismus**, wenn f differenzierbar von Klasse C^{∞} ist und es eine differenzierbare Abbildung $g:Y\to X$ von Klasse C^{∞} gibt mit $g\circ f=\mathrm{id}_X$ und $f\circ g=\mathrm{id}_Y$.

Gruppe, topologische Lie-Gruppe	Lage, allgemeine Punkt Hülle, konvexe
Standard-Simplex Simplex Teilsimplex Seite	Simplizialkomplex Realisierung, geometrische Dimension
Abbildung, simpliziale	Eulerzahl
Graph Kreis Baum	Homologiegruppe Betti-Zahl

Seien $v_0, \ldots, v_k \in \mathbb{R}^n$ Punkte.

- a) v_0, \ldots, v_k sind **in allgemeiner Lage** \Leftrightarrow es gibt keinen (k-1)-dimensionalen affinen Untervektorraum, der v_0, \ldots, v_k enthält $\Leftrightarrow v_1 v_0, \ldots, v_k v_0$ sind linear unabhängig.
- b) $\operatorname{conv}(v_0, \dots, v_k) := \left\{ \sum_{i=0}^k \lambda_i v_i \mid \lambda_i \ge 0, \sum_{i=0}^k \lambda_i = 1 \right\}$ heißt die **konvexe Hülle** von v_0, \dots, v_k .

Sei G eine Mannigfaltigkeit und (G, \circ) eine Gruppe.

a) G heißt **topologische Gruppe**, wenn die Abbildungen $\circ: G \times G \to G$ und $\iota: G \to G$ definiert durch

$$g \circ h := g \cdot h \text{ und } \iota(g) := g^{-1}$$

stetig sind.

b) Ist G eine differenzierbare Mannigfaltigkeit, so heißt G **Lie-Gruppe**, wenn (G, \circ) und (G, ι) differenzierbar sind.

- a) Eine endliche Menge K von Simplizes im \mathbb{R}^n heißt (endlicher) **Simplizialkomplex**, wenn gilt:
 - (i) Für $\Delta \in K$ und $S \subseteq \Delta$ Teilsimplex ist $S \in K$.
 - (ii) Für $\Delta_1, \Delta_2 \in K$ ist $\Delta_1 \cap \Delta_2$ leer oder ein Teilsimplex von Δ_1 und von Δ_2 .
- b) $|K| := \bigcup_{\Delta \in K} \Delta$ (mit Teilraumtopologie) heißt **geometrische Realisierung** von K.
- c) Ist $d = \max \{ k \in \mathbb{N}_0 \mid K \text{ enthält } k\text{-Simplex } \}$, so heißt d die **Dimension** von K.
- a) Sei $\Delta^n=\text{conv}(e_0,\dots,e_n)\subseteq\mathbb{R}^{n+1}$ die konvexe Hülle der Standard-Basisvektoren $e_0,\dots,e_n.$
 - Dann heißt Δ^n Standard-Simplex und n die Dimension des Simplex.
- b) Für Punkte v_0, \ldots, v_k im \mathbb{R}^n in allgemeiner Lage heißt $\Delta(v_0, \ldots, v_k) = \operatorname{conv}(v_0, \ldots, v_k)$ ein k-Simplex in \mathbb{R}^n .
- c) Ist $\Delta(v_0, \ldots, v_k)$ ein k-Simplex und $I = \{i_0, \ldots, i_r\} \subseteq \{0, \ldots, k\}$, so ist $s_{i_0, \ldots, i_r} := \operatorname{conv}(v_{i_0}, \ldots, v_{i_r})$ ein r-Simplex und heißt **Teilsimplex** oder **Seite** von Δ .

Sei K ein endlicher Simplizialkomplex. Für $n \geq 0$ sei $a_n(K)$ die Anzahl der n-Simplizes in K.

Dann heißt

$$\chi(K) := \sum_{n=0}^{\dim K} (-1)^n a_n(K)$$

Euler-Charakteristik) von K.

Seien K, L Simplizialkomplexe. Eine stetige Abbildung

$$f: |K| \to |L|$$

heißt **simplizial**, wenn für jedes $\Delta \in K$ gilt:

- a) $f(\Delta) \in L$
- b) $f|_{\Delta}: \Delta \to f(\Delta)$ ist eine affine Abbildung.

Sei K ein Simplizialkomplex, $Z_n := \operatorname{Kern}(d_n) \subseteq C_n$ und $B_n := \operatorname{Bild}(d_{n+1}) \subseteq C_n$.

- a) $H_n = H_n(K, \mathbb{R}) := Z_n/B_n$ heißt n-te **Homologie-** gruppe von K.
- b) $b_n(K) := \dim_{\mathbb{R}} H_n$ heißt n-te **Betti-Zahl** von K.
- a) Ein 1D-Simplizialkomplex heißt Graph.
- b) Ein Graph, der homö
omorph zu S^1 ist, heißt **Kreis**.
- c) Ein zusammenhängender Graph heißt Baum, wenn er keinen Kreis enthält.

Weg, homotope Homotopie	Weg, zusammengesetzter
Inklusionsabbildung Retraktion Deformationsretrakt	Fundamentalgruppe
einfach zusammenhängend	Abbildung, homotope
Uberlagerung	Abbildung, offene

Seien γ_1, γ_2 Wege in X mit $\gamma_1(1) = \gamma_2(0)$. Dann ist

$$\gamma(t) = \begin{cases} \gamma_1(2t) & \text{falls } 0 \le t < \frac{1}{2} \\ \gamma_2(2t-1) & \text{falls } \frac{1}{2} \le t \le 1 \end{cases}$$

ein Weg in X. Er heißt zusammengesetzter Weg und man schreibt $\gamma = \gamma_1 * \gamma_2$.

Sei X ein topologischer Raum, $a, b \in X$, $\gamma_1, \gamma_2 : I \to X$ Wege von a nach b, d. h. $\gamma_1(0) = \gamma_2(0) = a$, $\gamma_1(1) = \gamma_2(1) = b$

 γ_1 und γ_2 heißen **homotop**, wenn es eine stetige Abbildung $H:I\times I\to X$ mit

$$H(t,0) = \gamma_1(t) \ \forall t \in I$$

$$H(t,1) = \gamma_2(t) \ \forall t \in I$$

und H(0,s)=a und H(1,s)=b für alle $s\in I$ gibt. Dann schreibt man: $\gamma_1\sim\gamma_2$

H heißt **Homotopie** zwischen γ_1 und γ_2 .

Sei X ein topologischer Raum und $x \in X$. Sei außerdem

$$\pi_1(X,x) := \{ [\gamma] \mid \gamma \text{ ist Weg in } X \text{ mit } \gamma(0) = \gamma(1) = x \}$$

Durch $[\gamma_1] *_G [\gamma_2] := [\gamma_1 * \gamma_2]$ wird $\pi_1(X, x)$ zu einer Gruppe. Diese Gruppe heißt **Fundamentalgruppe** von X im Basispunkt x.

Sei X ein topologischer Raum, $A \subseteq X$, $r: X \to A$ eine stetige Abbildung und $\iota = (\mathrm{id}_X)|_A$.

- a) $\iota: A \to X$ mit $\iota(x) = x$ heißt die Inklusionsabbildung und man schreibt: $\iota: A \hookrightarrow X$.
- b) r heißt **Retraktion**, wenn $r|_A = id_A$ ist.
- c) A heißt **Deformationsretrakt**, wenn es eine Retraktion r auf A mit $\iota \circ r \sim \mathrm{id}_X$ gibt.

Seien X, Y topologische Räume, $x_0 \in X, y_0 \in Y, f, g : X \to Y$ stetig mit $f(x_0) = y_0 = g(x_0)$.

f und gheißen **homotop** $(f \sim g),$ wenn es eine stetige Abbildung $H: X \times I \to Y$ mit

$$H(x,0) = f(x) \ \forall x \in X$$

$$H(x,1) = g(x) \ \forall x \in X$$

$$H(x_0,s) = y_0 \ \forall s \in I$$

gibt.

Ein wegzusammenhängender topologischer Raum X heißt **einfach zusammenhängend**, wenn $\pi_1(X, x) = \{e\}$ für ein $x \in X$.

Seien $(X, \mathfrak{T}_X), (Y, \mathfrak{T}_Y)$ topologische Räume und $f: X \to Y$ eine Abbildung.

f heißt **offen** : $\Leftrightarrow \forall U \in \mathfrak{T}_X : f(U) \in \mathfrak{T}_Y$.

Es seien X,Y zusammenhängende topologische Räume und $p:Y\to X$ eine stetige Abbildung.

p heißt **Überlagerung**, wenn jedes $x \in X$ eine offene Umgebung $U = U(x) \subseteq X$ besitzt, sodass $p^{-1}(U)$ disjunkte Vereinigung von offenen Teilmengen $V_j \subseteq Y$ ist $(j \in I)$ und $p|_{V_i}: V_j \to U$ ein Homöomorphismus ist.

diskret	Liftung
Uberlagerung, universelle	Decktransformation Decktransformation, reguläre
Gruppenoperation	Gruppe operiert durch Homöomorphismen Gruppenoperation, stetige
Geometrie Gerade	Ebene, euklidische Inzidenzaxiome Abstandsaxiom

Es seien X, Y, Z topologische Räume, $p: Y \to X$ eine Überlagerung und $f: Z \to X$ stetig.

Eine stetige Abbildung $\tilde{f}:Z\to Y$ heißt **Liftung** von f, wenn $p\circ \tilde{f}=f$ ist.

Sei X ein topologischer Raum und $M \subseteq X$. M heißt **diskret** in X, wenn M in X keinen Häufungspunkt hat.

Es sei $p:Y\to X$ eine Überlagerung und $f:Y\to Y$ ein Homö
omorphismus.

- a) f heißt **Decktransformation** von $p :\Leftrightarrow p \circ f = p$.
- b) Ist p eine Decktransformation und $|\operatorname{Deck}(Y/X)| = \deg p$, so heißt p regulär.

Eine Überlagerung $p: \tilde{X} \to X$ heißt **universell**, wenn \tilde{X} einfach zusammenhängend ist.

Sei G eine Gruppe, X ein topologischer Raum und $\circ: G \times X \to X$ eine Gruppenoperation.

a) G operiert durch Homöomorphismen, wenn für jedes $g \in G$ die Abbildung

$$m_q: X \to X, x \mapsto g \circ x$$

ein Homöomorphismus ist.

b) Ist G eine topologische Gruppe, so heißt die Gruppenoperation \circ **stetig**, wenn $\circ: G \times X \to X$ stetig ist. Sei (G, \cdot) eine Gruppe und X eine Menge.

Eine **Gruppenoperation** von G auf X ist eine Abbildung \circ :

$$\circ: G \times X \to X, \quad (g, x) \mapsto g \cdot x,$$

für die gilt:

- a) $1_G \circ x = x \quad \forall x \in X$
- b) $(g \cdot h) \circ x = g \circ (h \circ x) \quad \forall g, h \in G \forall x \in X$

Eine **euklidische Ebene** ist eine Geometrie (X, d, G), die Axiome §1 - §5 erfüllt:

- §1) Inzidenzaxiome:
 - (i) Zu $P \neq Q \in X$ gibt es genau ein $g \in G$ mit $\{P,Q\} \subseteq g$.
 - (ii) $|g| \ge 2 \quad \forall g \in G$
 - (iii) $X \notin G$
- §2) **Abstandsaxiom**: Zu $P,Q,R\in X$ gibt es genau dann ein $g\in G$ mit $\{P,Q,R\}\subseteq g$, wenn gilt:
 - d(P,R) = d(P,Q) + d(Q,R) oder
 - d(P,Q) = d(P,R) + d(R,Q) oder
 - d(Q,R) = d(Q,P) + d(P,R)

Das Tripel (X, d, G) heißt genau dann eine **Geometrie**, wenn (X, d) ein metrischer Raum und $\emptyset \neq G \subseteq \mathcal{P}(X)$ gilt. Dann heißt G die Menge aller **Geraden**.

kollinear liegt zwischen Strecke Halbgerade	Anordnungsaxiome Halbebene Bewegungsaxiom Parallele
Winkel Innenwinkel Außenwinkel	Simplizialkomplexe, flächengleiche
Gerade, hyperbolische	Möbiustransformation
Doppelverhältnis	Metrik, hyperbolische

§3) Anordnungsaxiome

- (i) Zu jeder Halbgerade H mit Anfangspunkt $P \in X$ und jedem $r \in \mathbb{R}_{\geq 0}$ gibt es genau ein $Q \in H$ mit d(P,Q) = r.
- (ii) Jede Gerade zerlegt $X \setminus g = H_1 \dot{\cup} H_2$ in zwei nichtleere Teilmengen H_1, H_2 , sodass für alle $A \in H_i$, $B \in H_j$ mit $i, j \in \{1, 2\}$ gilt: $\overline{AB} \cap g \neq \emptyset \Leftrightarrow i \neq j$.

Diese Teilmengen H_i heißen **Halbebenen** bzgl. g.

- §4) Bewegungsaxiom: Zu $P, Q, P', Q' \in X$ mit d(P, Q) = d(P', Q') gibt es mindestens 2 Isometrien φ_1, φ_2 mit $\varphi_i(P) = P'$ und $\varphi_i(Q) = Q'$ mit i = 1, 2.
- §5) **Parallelenaxiom**: Zu jeder Geraden $g \in G$ und jedem Punkt $P \in X \setminus g$ gibt es höchstens ein $h \in G$ mit $P \in h$ und $h \cap g = \emptyset$. h heißt **Parallele zu** g **durch** P.

"Die "Verschiebung" von P'Q' nach PQ und die Isometrie, die zusätzlich an der Gerade durch P und Q spiegelt.

"Simplizialkomplexe" in euklidischer Ebene (X,d) heißen flächengleich, wenn sie sich in kongruente Dreiecke zerlegen lassen.

Sei (X, d, G) eine Geometrie und seien $P, Q, R \in X$.

- a) P, Q, R liegen **kollinear**, wenn es $g \in G$ gibt mit $\{P, Q, R\} \subseteq g$.
- b) Q liegt zwischen P und R, wenn d(P,R) = d(P,Q) + d(Q,R)
- c) Strecke $\overline{PR} := \{ Q \in X \mid Q \text{ liegt zwischen } P \text{ und } R \}$
- d) Halbgeraden:

 $PR^+ := \{ Q \in X \mid Q \text{ liegt zwischen } P \text{ und } R \text{ oder } R \text{ liegt zwischen } Q \text{ und } R \}$

- a) Ein **Winkel** ist ein Punkt $P \in X$ zusammen mit 2 Halbgeraden mit Anfangspunkt P.

 Man schreibt: $\angle R_1 P R_2$ bzw. $\angle R_2 P R_1^a$
- b) Zwei Winkel sind **gleich**, wenn es eine Isometrie gibt, die den einen Winkel auf den anderen abbildet.
- c) $\angle R_1'P'R_2'$ heißt **kleiner** als $\angle R_1PR_2$, wenn es eine Isometrie φ gibt, mit $\varphi(P) = P'$, $\varphi(PR_1'^+) = P'R_1^+$ und $\varphi(R_2')$ liegt in der gleichen Halbebene bzgl. PR_1 wie R_2 und in der gleichen Halbebene bzgl. PR_2 wie R_1
- d) Im Dreieck $\triangle PQR$ gibt es Innenwinkel und Außenwinkel.

 $^a \mbox{F\"{u}r}$ dieses Skript gilt: $\angle R_1 P R_2 = \angle R_2 P R_1.$ Also sind insbesondere alle Winkel $\leq 180^\circ.$

Es seien $a, b, c, d \in \mathbb{C}$ mit $ad - bc \neq 0$ und $\sigma : \mathbb{C} \to \mathbb{C}$ eine Abbildung definiert durch

$$\sigma(z) := \frac{az+b}{cz+d}$$

 σ heißt Möbiustransformation.

Sei

$$\mathbb{H} := \{ z \in \mathbb{C} \mid \Im(z) > 0 \} = \{ (x, y) \in \mathbb{R}^2 \mid y > 0 \}$$

die obere Halbebene bzw. Poincaré-Halbebene und $G=G_1\cup G_2$ mit

$$G_{1} = \{ g_{1} \subseteq \mathbb{H} \mid \exists m \in \mathbb{R}, r \in \mathbb{R}_{>0} : g_{1} = \{ z \in \mathbb{H} : |z - m| = r \} \}$$

$$G_{2} = \{ g_{2} \subseteq \mathbb{H} \mid \exists x \in \mathbb{R} : g_{2} = \{ z \in \mathbb{H} : \Re(z) = x \} \}$$

Die Elemente aus G heißen hyperbolische Geraden.

Für $z_1, z_2 \in \mathbb{H}$ sei g_{z_1, z_2} die eindeutige hyperbolische Gerade durch z_1 und z_2 und a_1, a_2 die "Schnittpunkte" von g_{z_1, z_2} mit $\mathbb{R} \cup \{\infty\}$.

Dann sei $d_{\mathbb{H}}(z_1, z_2) := \frac{1}{2} |\ln \mathrm{DV}(a_1, z_1, a_2, z_2)|$ und heiße **hyperbolische Metrik**.

Seien $z_1, z_2, z_3, z_4 \in \mathbb{C}$ paarweise verschieden. Dann heißt

$$DV(z_1, z_2, z_3, z_4) := \frac{\frac{z_1 - z_4}{z_1 - z_2}}{\frac{z_3 - z_4}{z_2 - z_2}} = \frac{(z_1 - z_4) \cdot (z_3 - z_2)}{(z_1 - z_2) \cdot (z_3 - z_4)}$$

Doppelverhältnis von z_1, \ldots, z_4 .

Kurve	parametrisiert, durch Bogenlänge Kurve, Länge einer
Normalenvektor Krümmung	Krümmung Normalenvektor Binormalenvektor Dreibein, begreitendes
Tangentialebene	Normalenfeld Fläche, orientierbare
Normalkrümmung	Normalkrümmung

Sei $\gamma: I = [a, b] \to \mathbb{R}^n$ eine C^{∞} -Funktion.

a) Die Kurve γ heißt durch Bogenlänge parametrisiert, wenn gilt:

$$\|\gamma'(t)\|_2 = 1 \quad \forall t \in I$$

Dabei ist $\gamma'(t) = (\gamma'_1(t), \gamma'_2(t), \dots, \gamma'_n(t)).$

b) $l(\gamma) = \int_a^b ||\gamma'(t)|| dt$ heißt **Länge von** γ .

Sei $f:[a,b]\to\mathbb{R}^n$ eine eine Funktion aus C^∞ . Dann heißt f Kurve

Sei $\gamma: I \to \mathbb{R}^3$ eine durch Bogenlänge parametrisierte Kurve.

- a) Für $t \in I$ heißt $\kappa(t) := \|\gamma''(t)\|$ die **Krümmung** von γ
- b) Ist für $t \in I$ die Ableitung $\gamma''(t) \neq 0$, so heißt $\frac{\gamma''(t)}{\|\gamma''(t)\|}$ Normalenvektor an γ in t.
- c) b(t) sei ein Vektor, der $\gamma'(t), n(t)$ zu einer orientierten Orthonormalbasis von \mathbb{R}^3 ergänzt. Also gilt:

$$\det(\gamma'(t), n(t), b(t)) = 1$$

b(t) heißt **Binormalenvektor**, die Orthonormalbasis

$$\{ \gamma'(t), n(t), b(t) \}$$

heißt begleitendes Dreibein.

- a) Ein Normalenfeld auf der Fläche $S \subseteq \mathbb{R}^3$ ist eine Abbildung $n: S \to S^2 \subseteq \mathbb{R}^3$ mit $n(s) \in T_s S^{\perp}$ für jedes
- b) S heißt **orientierbar**, wenn es ein stetiges Normalenfeld auf S gibt.

Sei $\gamma: I \to \mathbb{R}^2$ eine durch Bogenlänge parametrisierte Kurve.

a) Für $t \in I$ sei n(t) Normalenvektor an γ in t wenn

$$\langle n(t), \gamma'(t) \rangle = 0, ||n(t)|| = 1 \text{ und } \det((\gamma'_1(t), n(t))) = +1$$

b) Seit $\kappa: I \to \mathbb{R}$ so, dass gilt:

$$\gamma''(t) = \kappa(t) \cdot n(t)$$

Dann heißt $\kappa(t)$ Krümmung von γ in t.

Sei $S \subseteq \mathbb{R}^3$ eine reguläre Fläche, $s \in S$, $F: U \to V \cap S$ eine lokale Parametrisierung um s (d. h. $s \in V$)

$$(u,v) \mapsto (x(u,v),y(u,v),z(u,v))$$

Für $p = F^{-1}(s) \in U$ sei

$$J_F(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u}(p) & \frac{\partial x}{\partial v}(p) \\ \frac{\partial y}{\partial u}(p) & \frac{\partial y}{\partial v}(p) \\ \frac{\partial z}{\partial u}(p) & \frac{\partial z}{\partial v}(p) \end{pmatrix}$$

und $D_P F: \mathbb{R}^2 \to \mathbb{R}^3$ die durch $J_F(p)$ definierte lineare Abbildung.

Dann heißt $T_sS := \text{Bild}(D_nF)$ die **Tangentialebene** an $s \in$

Sei $S \subseteq \mathbb{R}^3$ eine reguläre Fläche, $s \in S$, (n ein stetiges Normalenfeld auf S)

 $\gamma: [-\varepsilon, \varepsilon] \to S$ eine nach Bogenlänge parametrisierte Kurve $(\varepsilon > 0)$ mit $\gamma(0) = s$ und $\gamma''(0) \neq 0$. Sei $n(0) := \frac{\gamma''(0)}{\|\gamma''(0)\|}$. Zerlege

 $n(0) = n(0)^T + n(0)^{\perp} \text{ mit } n(0)^T \in T_s S \text{ und } n(0)^{\perp} \in (T_s S)^{\perp}$

Dann ist $n(0)^{\perp} = \langle n(0), n(s) \rangle \cdot n(s)$

 $\kappa_{\text{Nor}}(s,\gamma) := \langle \gamma''(0), n(s) \rangle$ die **Normalkrümmung**.

In der Situation aus ?? heißt die Krümmung $\kappa_{\gamma}(0)$ der Kurve γ in der Ebene (s+E) im Punkt s die **Normalkrümmung**¹ von S in s in Richtung $x = \gamma'(0)$.

Man scheibt: $\kappa_{\gamma}(0) := \kappa_{Nor}(s, x)$

Hauptkrümmung Gauß-Krümmung	Flächenelement
Fundamentalform, zweite	

- a) Das Differential $dA = \sqrt{\det(I)} du_1 du_2$ heißt **Flächenelement** von S bzgl. der Parametrisierung F.
- b) Für eine Funktion $f:V\to\mathbb{R}$ heißt

$$\int_V f \mathrm{d}A := \int_U f(\underbrace{F(u_1, u_2)}_{=:s}) \sqrt{\det I(s)} \mathrm{d}u_1 \mathrm{d}u_2$$

der Wert des Integrals von f über V, falls das Integral rechts existiert.

Sei S eine reguläre Fläche und n=n(s) ein Normalenvektor an S in s.

- a) $\kappa_1^n(s) := \min \left\{ \left. \kappa_{\mathrm{Nor}}^n(s,x) \mid x \in T_s^1 S \right. \right\} \text{ und }$ $\kappa_2^n(s) := \max \left\{ \left. \kappa_{\mathrm{Nor}}^n(s,x) \mid x \in T_s^1 S \right. \right\} \text{ heißen Haupt-krümmungen von } S \text{ in } s.$
- b) $K(s) := \kappa_1^n(s) \cdot \kappa_2^n(s)$ heißt **Gauß-Krümmung** von S in s.

Die durch $-d_s n$ definierte symmetrische Bilinearform auf $T_s S$ heißt **zweite Fundamentalform** von S in s bzgl. F. Man schreibt: $II_s(x,y) = \langle -d_s n(x), y \rangle = I_s(-d_s n(x), y)$