Introduction to Optimization

Lecture 03: Optimality conditions. Examples. Convex functions.

First order optimality condition

Theorem (Fermat's Rule)

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ and let $\emptyset \neq C \subset A$ be convex. If $\hat{x} \in C$ is such that $f(\hat{x}) \leq f(y)$ for all $y \in C$, and if f is differentiable at \hat{x} , then

$$\nabla f(\hat{x}) \cdot (y - \hat{x}) \ge 0$$

for all $y \in C$. If, moreover, $\hat{x} \in \text{int}(C)$, then $\nabla f(\hat{x}) = 0$.

First order optimality condition

Theorem (Fermat's Rule)

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ and let $\emptyset \neq C \subset A$ be convex. If $\hat{x} \in C$ is such that $f(\hat{x}) \leq f(y)$ for all $y \in C$, and if f is differentiable at \hat{x} , then

$$\nabla f(\hat{x}) \cdot (y - \hat{x}) \ge 0$$

for all $y \in C$. If, moreover, $\hat{x} \in \text{int}(C)$, then $\nabla f(\hat{x}) = 0$.

Question

What if C is affine?

Example

Compute the maximum value of the expression

$$\sum_{i=1}^{N} \alpha_i \ln(x_i)$$

subject to the constraint that

$$\sum_{i=1}^{N} x_i = b,$$

where $\alpha_1, \ldots, \alpha_N, b > 0$.

Juan PEYPOUQUET

Second order conditions

Theorem (Second order optimality conditions)

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ be twice differentiable at $\hat{x} \in \text{int}(A)$.

- i) If \hat{x} is a local minimizer of f, then $\nabla f(\hat{x}) = 0$ and $\nabla^2 f(\hat{x})$ is positive semidefinite $(\nabla^2 f(\hat{x})d \cdot d \geq 0$ for all $d \in \mathbb{R}^N$).
- ii) If $\nabla f(\hat{x}) = 0$ and $\nabla^2 f(\hat{x})$ is positive definite $(\nabla^2 f(\hat{x})d \cdot d > 0$ for all $d \neq 0$), then \hat{x} is a strict local minimizer of f.

Lemma (Taylor's Approximation)

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ be of class C^2 , and let $x \in A$. For each $d \in \mathbb{R}^N$,

$$\lim_{t\to 0} \frac{1}{t^2} \left| f(x+td) - f(x) - t\nabla f(x) \cdot d - \frac{t^2}{2} \nabla^2 f(x) d \cdot d \right| = 0.$$

Juan PEYPOUQUET Optimization 2022-2023

Break

Convex functions

A function $f:D\subset\mathbb{R}^N\to\mathbb{R}$ is convex if D is convex and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in D$ and all $\lambda \in (0,1)$ (or [0,1], if you prefer).

Convex functions

A function $f: D \subset \mathbb{R}^N \to \mathbb{R}$ is convex if D is convex and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in D$ and all $\lambda \in (0,1)$ (or [0,1], if you prefer).

Ø

Proposition

The function $f(x) = \frac{1}{2} ||Ax - b||^2$ is convex.

Convex functions

A function $f: D \subset \mathbb{R}^N \to \mathbb{R}$ is convex if D is convex and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in D$ and all $\lambda \in (0,1)$ (or [0,1], if you prefer).

Ø

Proposition

The function $f(x) = \frac{1}{2} ||Ax - b||^2$ is convex.

Proposition

Local minimizers of convex functions are global minimizers.

Juan PEYPOUQUET

Characterizations of differentiable convex functions

Proposition

Let $f:D\subset\mathbb{R}^N\to\mathbb{R}$ be differentiable. The following are equivalent:

- f is convex;

If f is twice differentiable, the three statements above are equivalent to

• for all $x \in D$, $\nabla^2 f(x)$ is positive semidefinite.

Ø

Strict and strong convexity

A function $f: D \subset \mathbb{R}^N \to \mathbb{R}$ is strictly convex if D is convex and

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

for all $x,y\in D$ and all $\lambda\in(0,1)$

Strict and strong convexity

A function $f:D\subset\mathbb{R}^N\to\mathbb{R}$ is strictly convex if D is convex and

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

for all $x,y\in D$ and all $\lambda\in(0,1)$, and it is strongly convex if D is convex and

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \frac{\alpha}{2}\lambda(1-\lambda)||x-y||^2$$

for all $x, y \in D$ and all $\lambda \in (0, 1)$.

Exercises

- Find examples of: a function that is convex, but not strictly convex; and a function that is strictly convex, but not strongly convex.
- **②** When is the function $f(x) = \frac{1}{2} ||Ax y||^2$ strictly/strongly convex?
- **②** Prove that every strictly convex function $f: \mathbb{R}^N \to \mathbb{R}$ has at most one minimizer, and every strongly convex function $f: \mathbb{R}^N \to \mathbb{R}$ has exactly one minimizer.
- **3** Can you obtain characterizations of strict and strong convexity of f in terms of properties of ∇f and $\nabla^2 f$?

4日 → 4周 → 4 差 → 4 差 → 9 9 9