Dynamics

Hsiu-Chin Lin

September 10, 2020

⁰ This lecture will be recorded. By attending the live sessions, you agree to the recording, and you understand that your image, voice, and name may be disclosed to classmates.

Welcome

Lecture Recordings This lecture will be recorded. By attending the live sessions, you agree to the recording, and you understand that your image, voice, and name may be disclosed to classmates

During the lecture

I will mute the audience Ask questions through 'Chat'

What is Dynamics

Kinematics

Describe state and geometric path

What is Dynamics

Kinematics

Describe state and geometric path

Dynamics

How much torques to apply so we can achieve the desired task? How does a system move as a reaction of torques?

Why do we care about Dynamics

Forward Dynamics (for forward simulation)

- Given
 - $-\mathbf{q},\dot{\mathbf{q}}$: current positions and velocities
 - $-\tau$: torques applied at each motor
- ▶ Find
 - **q**: resulting accelerations

$$\ddot{\mathbf{q}} = f(\mathbf{q}, \dot{\mathbf{q}}, \tau)$$

Why do we care about Dynamics

Forward Dynamics (for forward simulation)

- ▶ Given
 - $-\mathbf{q},\dot{\mathbf{q}}$: current positions and velocities
 - $-\tau$: torques applied at each motor
- Find
 - q: resulting accelerations

$$\ddot{\mathbf{q}} = f(\mathbf{q}, \dot{\mathbf{q}}, \tau)$$

Inverse Dynamics (for control)

- ► Given
 - q, q: positions, velocities
 - \(\bar{q}^*\): accelerations to achieve the desired task
- ▶ Find
 - $-\tau$: torques needed to achieve the desired task

$$au = g(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}^*)$$

Outline

RIGID-BODY DYNAMICS

INVERS DYNAMICS CONTROLLER

TASK-SPACE DYNAMICS

Outline

RIGID-BODY DYNAMICS

INVERS DYNAMICS CONTROLLER

TASK-SPACE DYNAMICS

Dynamics

- $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}} \in \mathbb{R}^{\mathscr{N}}$: positions, velocities, accelerations
- $\mathbf{r} \in \mathbb{R}^{\mathcal{N}}$: torques

Dynamics

- $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}} \in \mathbb{R}^{\mathscr{N}}$: positions, velocities, accelerations
- $\tau \in \mathbb{R}^{\mathcal{N}}$: torques

Dynamics

- $ightharpoonup \mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}} \in \mathbb{R}^{\mathscr{N}}$: positions, velocities, accelerations
- $\mathbf{\tau} \in \mathbb{R}^{\mathcal{N}}$: torques

$$\tau(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) = \mathsf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathsf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{g}(\mathbf{q})$$

Dynamics

- ightharpoonup $\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}} \in \mathbb{R}^{\mathcal{N}}$: positions, velocities, accelerations
- $\mathbf{\tau} \in \mathbb{R}^{\mathcal{N}}$: torques

Equation of Motion

$$\tau(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) = M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{g}(\mathbf{q})$$

where $M(q) \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$: masss matrix

Dynamics

- $ightharpoonup \mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}} \in \mathbb{R}^{\mathcal{N}}$: positions, velocities, accelerations
- $\mathbf{\tau} \in \mathbb{R}^{\mathcal{N}}$: torques

$$\begin{split} \tau(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) &= \mathsf{M}(\mathbf{q}) \ddot{\mathbf{q}} + \mathsf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} + \mathsf{g}(\mathbf{q}) \\ \text{where } & \mathsf{M}(\mathbf{q}) \in \mathbb{R}^{\mathscr{N} \times \mathscr{N}} \text{: masss matrix} \\ & \mathsf{C}(\mathbf{q}, \dot{\mathbf{q}}) \in \mathbb{R}^{\mathscr{N} \times \mathscr{N}} \text{: centrifugal and Coriolis force} \end{split}$$

Dynamics

- $ightharpoonup \mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}} \in \mathbb{R}^{\mathcal{N}}$: positions, velocities, accelerations
- $\mathbf{r} \in \mathbb{R}^{\mathscr{N}}$: torques

$$\begin{split} \tau(\mathbf{q},\dot{\mathbf{q}},\ddot{\mathbf{q}}) &= \mathsf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathsf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathsf{g}(\mathbf{q}) \\ \text{where } & \mathsf{M}(\mathbf{q}) \in \mathbb{R}^{\mathscr{N} \times \mathscr{N}} \text{: masss matrix} \\ & \mathsf{C}(\mathbf{q},\dot{\mathbf{q}}) \in \mathbb{R}^{\mathscr{N} \times \mathscr{N}} \text{: centrifugal and Coriolis force} \\ & \mathsf{g}(\mathbf{q}) \in \mathbb{R}^{\mathscr{N}} \text{: gravity vector} \end{split}$$

Dynamics

- $ightharpoonup \mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}} \in \mathbb{R}^{\mathscr{N}}$: positions, velocities, accelerations
- $\mathbf{\tau} \in \mathbb{R}^{\mathcal{N}}$: torques

$$\begin{split} \tau(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) &= \mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} + \mathbf{g}(\mathbf{q}) \\ \text{where } \mathbf{M}(\mathbf{q}) &\in \mathbb{R}^{\mathscr{N} \times \mathscr{N}} \text{: masss matrix} \\ \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) &\in \mathbb{R}^{\mathscr{N} \times \mathscr{N}} \text{: centrifugal and Coriolis force} \\ \underline{\mathbf{g}(\mathbf{q}) \in \mathbb{R}^{\mathscr{N}} \text{: gravity vector}} \\ \underline{\mathbf{g}(\mathbf{q}) \in \mathbb{R}^{\mathscr{N}} \text{: gravity vector}} \\ \text{(shorter version) } \tau &= \mathbf{M} \ddot{\mathbf{q}} + \mathbf{h} \\ \text{where } \mathbf{h} \in \mathbb{R}^{\mathscr{N}} &= \mathbf{C} \dot{\mathbf{q}} + \mathbf{g} \end{split}$$

What are $M(q), C(q, \dot{q}), g(q)$? Again, most robotics libraries provide functions for these values

Why do we care about Dynamics

Inverse Dynamics (for control)

- ▶ Given
 - $-\mathbf{q},\dot{\mathbf{q}}$: current positions, velocities
 - $-\ddot{\mathbf{q}}^*$: desired accelerations to achieve the desired task
- ► Find
 - τ : torques needed to achieve the desired task

$$au = \mathsf{M}\ddot{\mathsf{q}}^* + \mathsf{h}$$

Why do we care about Dynamics

Inverse Dynamics (for control)

- ▶ Given
 - q, q: current positions, velocities
 - $-\ddot{\mathbf{q}}^*$: desired accelerations to achieve the desired task
- ► Find
 - τ : torques needed to achieve the desired task

$$au = \mathsf{M}\ddot{\mathsf{q}}^* + \mathsf{h}$$

Forward Dynamics (for forward simulation)

- ▶ Given
 - $-\mathbf{q},\dot{\mathbf{q}}$: current positions and velocities
 - $-\tau$: torques applied on the system
- ▶ Find
 - $\ddot{\mathbf{q}}$: expected accelerations after applying au

$$\ddot{\mathsf{q}} = \mathsf{M}^{-1}(\tau - \mathsf{h})$$

Kinetic Energy

The work needed to move a body with mass m from rest to its stated linear velocity $\dot{\mathbf{p}}$ and angular velocity ω

$$\mathsf{K}(\mathsf{q},\dot{\mathsf{q}}) = \frac{1}{2}m\dot{\mathsf{p}}^2 + \frac{1}{2}\omega^\top \omega$$

Kinetic Energy

The work needed to move a body with mass m from rest to its stated linear velocity $\dot{\mathbf{p}}$ and angular velocity ω

$$\mathsf{K}(\mathsf{q},\dot{\mathsf{q}}) = \frac{1}{2}m\dot{\mathsf{p}}^2 + \frac{1}{2}\omega^\top l\omega$$

(Gravitational) Potential Energy

Energy held by an object becuase of its position relative to other object (e.g., gravitational field)

$$P(q) = mgh$$

Total energy

Lagrangian function

$$L(q,\dot{q}) = K(q,\dot{q}) - P(q,\dot{q})$$

Total energy

Lagrangian function

$$L(q,\dot{q}) = K(q,\dot{q}) - P(q,\dot{q})$$

The euler-lagrange equation

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\mathbf{q}}} - \frac{\partial L}{\partial \mathbf{q}} = c$$

EXAMPLE (2D PENDULUM)

configuration $\, heta\,$ mass m length I

EXAMPLE (2D PENDULUM)

configuration θ mass m length I

Position and Velocity

$$\mathbf{x} = \begin{bmatrix} /\sin(\theta) \\ /\cos(\theta) \end{bmatrix} \quad \dot{\mathbf{x}} = \begin{bmatrix} /\dot{\theta}\cos(\theta) \\ /\dot{\theta}\sin(\theta) \end{bmatrix}$$

EXAMPLE (2D PENDULUM)

configuration θ mass m length I

Position and Velocity

$$\mathbf{x} = \begin{bmatrix} /\sin(\theta) \\ /\cos(\theta) \end{bmatrix} \quad \dot{\mathbf{x}} = \begin{bmatrix} /\dot{\theta}\cos(\theta) \\ /\dot{\theta}\sin(\theta) \end{bmatrix}$$

Kinetic energy
$$\mathbf{K}(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\mathbf{x}}^2 = \frac{1}{2}mI^2\dot{\theta}^2$$

EXAMPLE (2D PENDULUM)

configuration θ mass m length I

Position and Velocity

$$\mathbf{x} = \begin{bmatrix} I\sin(\theta) \\ I\cos(\theta) \end{bmatrix} \quad \dot{\mathbf{x}} = \begin{bmatrix} I\dot{\theta}\cos(\theta) \\ I\dot{\theta}\sin(\theta) \end{bmatrix}$$

Kinetic energy
$$\mathbf{K}(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\mathbf{x}}^2 = \frac{1}{2}mI^2\dot{\theta}^2$$

Potential Energy
$$P(\theta) = -mgh = -mgl\cos(\theta)$$

EXAMPLE (2D PENDULUM)

Position and Velocity configuration θ

mass m

length /

$$\mathbf{x} = \begin{bmatrix} /\sin(\theta) \\ /\cos(\theta) \end{bmatrix} \quad \dot{\mathbf{x}} = \begin{bmatrix} /\dot{\theta}\cos(\theta) \\ /\dot{\theta}\sin(\theta) \end{bmatrix}$$

Kinetic energy
$$\mathbf{K}(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\mathbf{x}}^2 = \frac{1}{2}ml^2\dot{\theta}^2$$

Potential Energy $P(\theta) = -mgh = -mgl\cos(\theta)$

Total Energy
$$L(\theta, \dot{\theta}) = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos(\theta)$$

EXAMPLE (2D PENDULUM)

 $\begin{array}{c} \quad \quad \text{Position and Velocity} \\ \text{configuration} \ \ \theta \end{array}$

$$\mathbf{x} = \begin{bmatrix} /\sin(\theta) \\ /\cos(\theta) \end{bmatrix} \quad \dot{\mathbf{x}} = \begin{bmatrix} /\dot{\theta}\cos(\theta) \\ /\dot{\theta}\sin(\theta) \end{bmatrix}$$

Kinetic energy
$$\mathbf{K}(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\mathbf{x}}^2 = \frac{1}{2}ml^2\dot{\theta}^2$$

Potential Energy
$$P(\theta) = -mgh = -mgl\cos(\theta)$$

Total Energy
$$L(\theta, \dot{\theta}) = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos(\theta)$$

$$\frac{\partial \mathsf{L}(\theta,\dot{\theta})}{\partial \dot{\theta}} = m l^2 \dot{\theta},$$

EXAMPLE (2D PENDULUM)

configuration θ mass m

length /

Position and Velocity

$$\mathbf{x} = \begin{bmatrix} /\sin(\theta) \\ /\cos(\theta) \end{bmatrix} \quad \dot{\mathbf{x}} = \begin{bmatrix} /\dot{\theta}\cos(\theta) \\ /\dot{\theta}\sin(\theta) \end{bmatrix}$$

Kinetic energy
$$K(\theta, \dot{\theta}) = \frac{1}{2}m\dot{x}^2 = \frac{1}{2}ml^2\dot{\theta}^2$$

Potential Energy $P(\theta) = -mgh = -mgl\cos(\theta)$

Total Energy
$$\mathbf{L}(\theta, \dot{\theta}) = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos(\theta)$$

$$\frac{\partial \mathbf{L}(\theta, \dot{\theta})}{\partial \dot{\theta}} = ml^2\dot{\theta}, \ \frac{\partial \mathbf{L}(\theta, \dot{\theta})}{\partial \theta} = -mgl\sin(\theta)$$

EXAMPLE (2D PENDULUM)

Position and Velocity

configuration θ mass m length I

 $\mathbf{x} = \begin{bmatrix} /\sin(\theta) \\ /\cos(\theta) \end{bmatrix} \quad \dot{\mathbf{x}} = \begin{bmatrix} /\dot{\theta}\cos(\theta) \\ /\dot{\theta}\sin(\theta) \end{bmatrix}$

Kinetic energy
$$\mathbf{K}(\theta, \dot{\theta}) = \frac{1}{2}m\dot{\mathbf{x}}^2 = \frac{1}{2}ml^2\dot{\theta}^2$$

Potential Energy
$$P(\theta) = -mgh = -mgl\cos(\theta)$$

Total Energy
$$\mathbf{L}(\theta, \dot{\theta}) = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos(\theta)$$

$$\frac{\partial \mathbf{L}(\theta, \dot{\theta})}{\partial \dot{\theta}} = ml^2\dot{\theta}, \quad \frac{\partial \mathbf{L}(\theta, \dot{\theta})}{\partial \theta} = -mgl\sin(\theta)$$

$$\tau = \frac{d}{dt} \frac{\partial \mathbf{L}(\theta, \dot{\theta})}{\partial \dot{\theta}} - \frac{\partial \mathbf{L}(\theta, \dot{\theta})}{\partial \theta} = ml^2 \ddot{\theta} + mgl\sin(\theta)$$

Outline

RIGID-BODY DYNAMICS

INVERS DYNAMICS CONTROLLER

TASK-SPACE DYNAMICS

Kinematic v.s. Dynamic Control

Inverse Kinematic Control

- ► Inputs: desired end-effector velocity
- Outputs: joint velocity

Kinematic v.s. Dynamic Control

Inverse Kinematic Control

- ► Inputs: desired end-effector velocity
- Outputs: joint velocity

Inverse Dynamic Control

- Inputs: current position, current velocity, desired acceleration
- Outputs: joint torque

Inverse Dynamic Control

Question: How could we find the desired accelerations?

Assuming that we have a nice and smooth trajectory $\mathbf{q}_1^{ref}, \mathbf{q}_2^{ref}, \dots, \mathbf{q}_T^{ref}$ At each time step t, we can find desired accelerations $\ddot{\mathbf{q}}_t^{ref}$

$$\dot{\mathbf{q}}_t^{ref} = rac{\mathbf{q}_t^{ref} - \mathbf{q}_{t-1}^{ref}}{\triangle t}$$
 my desired velocity $\ddot{\mathbf{q}}_t^{ref} = rac{\dot{\mathbf{q}}_t^{ref} - \dot{\mathbf{q}}_{t-1}^{ref}}{\triangle t}$ my desired accelerations

Inverse Dynamic Control

Question: How could we find the desired accelerations?

Assuming that we have a nice and smooth trajectory $\mathbf{q}_1^{ref}, \mathbf{q}_2^{ref}, \dots, \mathbf{q}_T^{ref}$ At each time step t, we can find desired accelerations $\ddot{\mathbf{q}}_t^{ref}$

$$\dot{\mathbf{q}}_t^{ref} = rac{\mathbf{q}_t^{ref} - \mathbf{q}_{t-1}^{ref}}{\triangle t}$$
 my desired velocity $\ddot{\mathbf{q}}_t^{ref} = rac{\dot{\mathbf{q}}_t^{ref} - \dot{\mathbf{q}}_{t-1}^{ref}}{\triangle t}$ my desired accelerations

No, this is unstable

No, in practice, errors will accumulate over time.

We need to have to some **feedback**

Inverse Dynamic Control

Desired Accelerations with Feedback

$$\ddot{\mathbf{q}}_t^* = \ddot{\mathbf{q}}_t^{ref} + \mathsf{D}(\dot{\mathbf{q}}^{ref} - \dot{\mathbf{q}}) + \mathsf{K}(\mathbf{q}^{ref} - \mathbf{q})$$

 $\mathbf{K} \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$: stiffness matrix

 $\textbf{D} \in \mathbb{R}^{\mathscr{N} \times \mathscr{N}}$: damping matrix

Inverse Dynamic Control

Desired Accelerations with Feedback

$$\ddot{\mathsf{q}}_t^* = \ddot{\mathsf{q}}_t^{\mathit{ref}} + \mathsf{D}(\dot{\mathsf{q}}^{\mathit{ref}} - \dot{\mathsf{q}}) + \mathsf{K}(\mathsf{q}^{\mathit{ref}} - \mathsf{q})$$

 $\mathbf{K} \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$: stiffness matrix

 $\mathbf{D} \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$: damping matrix

This is a standard!

What is Stiffness?

Stiffness K

A matrix of coefficient that specifies how hard the robot should react to position errors

Low Stiffness High Stiffness 17/28

What is Damping?

Damping D

A matrix of coefficient that specifies how hard the robot should react to velocity errors

Assuming that we have only 1 joint

What are K and D such that

$$\label{eq:mass_eq} \mathsf{M}(\ddot{\mathsf{q}}^\mathit{ref} - \ddot{\mathsf{q}}) + \mathsf{D}(\dot{\mathsf{q}}^\mathit{ref} - \dot{\mathsf{q}}) + \mathsf{K}(\mathsf{q}^\mathit{ref} - \mathsf{q}) = 0$$

Assuming that we have only 1 joint

What are K and D such that

$$\mathsf{M}(\ddot{\mathsf{q}}^\mathit{ref} - \ddot{\mathsf{q}}) + \mathsf{D}(\dot{\mathsf{q}}^\mathit{ref} - \dot{\mathsf{q}}) + \mathsf{K}(\mathsf{q}^\mathit{ref} - \mathsf{q}) = 0$$

Choose your stiffness K, by tuning

Assuming that we have only 1 joint

What are K and D such that

$$\mathsf{M}(\ddot{\mathsf{q}}^{\mathit{ref}} - \ddot{\mathsf{q}}) + \mathsf{D}(\dot{\mathsf{q}}^{\mathit{ref}} - \dot{\mathsf{q}}) + \mathsf{K}(\mathsf{q}^{\mathit{ref}} - \mathsf{q}) = 0$$

Choose your stiffness **K**, by tuning Choose your damping **D** by

$$D = 2\sqrt{KM}$$

Natural frequency of a system

Assuming that we have only 1 joint

What are K and D such that

$$\label{eq:mass_eq} \mathsf{M}(\ddot{\mathsf{q}}^\mathit{ref} - \ddot{\mathsf{q}}) + \mathsf{D}(\dot{\mathsf{q}}^\mathit{ref} - \dot{\mathsf{q}}) + \mathsf{K}(\mathsf{q}^\mathit{ref} - \mathsf{q}) = 0$$

Choose your stiffness **K**, by tuning Choose your damping **D** by

$$D = 2\sqrt{KM}$$

Natural frequency of a system

In practice, it is a <u>trial and error</u> process

Inverse Dynamic Control

Let's try

Outline

RIGID-BODY DYNAMICS

INVERS DYNAMICS CONTROLLER

TASK-SPACE DYNAMICS

Question: Given Task-space trajectory, how to find the torques?

Can we describe the equation of motion in terms of the task-space positions, velocities, and accelerations

Task space

$$\mathbf{x} \in \mathbb{R}^6 = egin{bmatrix} m{ heta} \\ m{p} \end{bmatrix}, \quad \dot{\mathbf{x}} \in \mathbb{R}^6 = egin{bmatrix} m{\omega} \\ \dot{m{p}} \end{bmatrix}, \quad \ddot{\mathbf{x}} \in \mathbb{R}^6 = egin{bmatrix} \dot{m{\omega}} \\ \ddot{m{p}} \end{bmatrix}$$

Task space

$$\mathbf{x} \in \mathbb{R}^6 = \begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{p} \end{bmatrix}, \quad \dot{\mathbf{x}} \in \mathbb{R}^6 = \begin{bmatrix} \boldsymbol{\omega} \\ \dot{\mathbf{p}} \end{bmatrix}, \quad \ddot{\mathbf{x}} \in \mathbb{R}^6 = \begin{bmatrix} \dot{\boldsymbol{\omega}} \\ \ddot{\mathbf{p}} \end{bmatrix}$$

Spatial Force/ Wrench

$$\mathbf{F} \in \mathbb{R}^6 = egin{bmatrix} \mathbf{m} \\ \mathbf{f} \end{bmatrix}$$
 $\mathbf{m} \in \mathbb{R}^3$ angular force / moment $\mathbf{f} \in \mathbb{R}^3$ linear force

Relationship with au

$$egin{cases} au = \mathsf{J}^{ op}\mathsf{F} \ \mathsf{F} = (\mathsf{J}^{ op})^{\dagger} au \end{cases}$$

Question: Can we describe the dynamics in terms of \boldsymbol{f} and $\ddot{\boldsymbol{x}}$

$\textbf{Configuration} \rightarrow \textbf{Task-space}$

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$$

$$\begin{split} \dot{x} &= J\dot{q} \\ \ddot{x} &= J\ddot{q} + \dot{J}\dot{q} \end{split}$$

$\textbf{Configuration} \rightarrow \textbf{Task-space}$

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$$

$$\ddot{\mathbf{x}} = \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}}$$

$\textbf{Task-space} \rightarrow \textbf{Configuration}$

$$\dot{\mathbf{q}} = \mathbf{J}^\dagger \dot{\mathbf{x}}$$

$$\begin{split} \dot{q} &= J^{\dagger}\dot{x} \\ \ddot{q} &= J^{\dagger}\ddot{x} - J^{\dagger}\dot{J}\dot{q} \end{split}$$

Configuration \rightarrow Task-space

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$$

$$\ddot{\mathbf{p}}\dot{\mathbf{L}} = \ddot{\mathbf{J}}\ddot{\mathbf{q}} + \dot{\ddot{\mathbf{J}}}\dot{\mathbf{q}}$$

Task-space → **Configuration**

$$\dot{\mathbf{q}} = \mathbf{J}^{\dagger}\dot{\mathbf{x}}$$

$$\begin{split} \dot{q} &= J^{\dagger} \dot{x} \\ \ddot{q} &= J^{\dagger} \ddot{x} - J^{\dagger} \dot{J} \dot{q} \end{split}$$

Substitute $\dot{\mathbf{q}}$ and $\ddot{\mathbf{q}}$ into the equation of motion $\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$

$$au = \mathsf{M}(\mathsf{J}^\dagger \ddot{\mathsf{x}} - \mathsf{J}^\dagger \dot{\mathsf{J}} \dot{\mathsf{q}}) + \mathsf{h}$$

$\textbf{Configuration} \rightarrow \textbf{Task-space}$

$$\dot{\mathbf{x}} = \mathbf{J}\dot{\mathbf{q}}$$
 $\ddot{\mathbf{x}} = \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}}$

Task-space → **Configuration**

$$\begin{split} \dot{q} &= J^{\dagger} \dot{x} \\ \ddot{q} &= J^{\dagger} \ddot{x} - J^{\dagger} \dot{J} \dot{q} \end{split}$$

Substitute $\dot{\mathbf{q}}$ and $\ddot{\mathbf{q}}$ into the equation of motion $\tau = \mathbf{M}\ddot{\mathbf{q}} + \mathbf{h}$

$$au = \mathsf{M}(\mathsf{J}^\dagger \ddot{\mathsf{x}} - \mathsf{J}^\dagger \dot{\mathsf{J}} \dot{\mathsf{q}}) + \mathsf{h}$$

Premultiply both sides by $(\mathbf{J}^{\top})^{\dagger}$, we get

$$(\mathbf{J}^{\top})^{\dagger} \tau = (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \ddot{\mathbf{x}} - (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \dot{\mathbf{J}} \dot{\mathbf{q}} + (\mathbf{J}^{\top})^{\dagger} \mathbf{h}$$

$$(\mathbf{J}^{\top})^{\dagger} \tau = (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \ddot{\mathbf{x}} - (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \dot{\mathbf{J}} \dot{\mathbf{q}} + (\mathbf{J}^{\top})^{\dagger} \mathbf{h}$$

$$(\mathbf{J}^{\top})^{\dagger} \tau = (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \ddot{\mathbf{x}} - (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger} \dot{\mathbf{J}} \dot{\mathbf{q}} + (\mathbf{J}^{\top})^{\dagger} \mathbf{h}$$

Expressing
$$\mathbf{F} = (\mathbf{J}^{ op})^{\dagger} \mathbf{ au}$$

$$(\mathbf{J}^\top)^\dagger \boldsymbol{\tau} = (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \ddot{\mathbf{x}} - (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \dot{\mathbf{J}} \dot{\mathbf{q}} + (\mathbf{J}^\top)^\dagger \mathbf{h}$$

Expressing
$$\mathbf{F} = (\mathbf{J}^{\top})^{\dagger} \mathbf{\tau}$$

Dynamics equation expressed in taskspace

$$\mathbf{F} = \mathbf{\Lambda}\ddot{\mathbf{x}} + \boldsymbol{\eta}$$
 where $\mathbf{\Lambda} = (\mathbf{J}^{ op})^{\dagger}\mathbf{M}\mathbf{J}^{\dagger}$ $\boldsymbol{\eta} = (\mathbf{J}^{ op})^{\dagger}\mathbf{h} - \mathbf{\Lambda}\dot{\mathbf{J}}\dot{\mathbf{q}}$

from our plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$

from our plannar: x^{ref} , \dot{x}^{ref} , \ddot{x}^{ref} from forward kineamtics: x, \dot{x}

from our plannar: x^{ref} , \dot{x}^{ref} , \ddot{x}^{ref} from forward kineamtics: x, \dot{x}

Task-space Inverse Dynamics Controller			

from our plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$ from forward kineamtics: \mathbf{x} , $\dot{\mathbf{x}}$

Task-space Inverse Dynamics Controller

$$\ddot{\mathsf{x}}^* = \ddot{\mathsf{x}}^{ref} + \mathsf{D}(\dot{\mathsf{x}}^{ref} - \dot{\mathsf{x}}) + \mathsf{K}(\mathsf{x}^{ref} - \mathsf{x})$$

with feedback

from our plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$ from forward kineamtics: \mathbf{x} , $\dot{\mathbf{x}}$

Task-space Inverse Dynamics Controller

$$\ddot{\mathbf{x}}^* = \ddot{\mathbf{x}}^{ref} + \mathbf{D}(\dot{\mathbf{x}}^{ref} - \dot{\mathbf{x}}) + \mathbf{K}(\mathbf{x}^{ref} - \mathbf{x}) \qquad \text{with feedback}$$

$$\mathbf{\Lambda} = (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \qquad \text{task-space mass matrix}$$

from our plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$ from forward kineamtics: \mathbf{x} , $\dot{\mathbf{x}}$

Task-space Inverse Dynamics Controller

$$\ddot{\mathbf{x}}^* = \ddot{\mathbf{x}}^{ref} + \mathbf{D}(\dot{\mathbf{x}}^{ref} - \dot{\mathbf{x}}) + \mathbf{K}(\mathbf{x}^{ref} - \mathbf{x})$$
 $\mathbf{\Lambda} = (\mathbf{J}^{\top})^{\dagger} \mathbf{M} \mathbf{J}^{\dagger}$
 $\mathbf{\eta} = (\mathbf{J}^{\top})^{\dagger} \mathbf{h} - \mathbf{\Lambda} \dot{\mathbf{J}} \dot{\mathbf{q}}$

with feedback task-space mass matrix task-space \mathbf{h}

from our plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$ from forward kineamtics: \mathbf{x} , $\dot{\mathbf{x}}$

Task-space Inverse Dynamics Controller

$$\ddot{\mathbf{x}}^* = \ddot{\mathbf{x}}^{ref} + \mathbf{D}(\dot{\mathbf{x}}^{ref} - \dot{\mathbf{x}}) + \mathbf{K}(\mathbf{x}^{ref} - \mathbf{x}) \qquad \text{with feedback}$$

$$\mathbf{\Lambda} = (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \qquad \text{task-space mass matrix}$$

$$\boldsymbol{\eta} = (\mathbf{J}^\top)^\dagger \mathbf{h} - \mathbf{\Lambda} \dot{\mathbf{J}} \dot{\mathbf{q}} \qquad \text{task-space h}$$

$$\mathbf{F} = \mathbf{\Lambda} \ddot{\mathbf{x}}^* + \boldsymbol{\eta} \qquad \text{task-space force to achieve } \ddot{\mathbf{x}}^*$$

from our plannar: \mathbf{x}^{ref} , $\dot{\mathbf{x}}^{ref}$, $\ddot{\mathbf{x}}^{ref}$ from forward kineamtics: \mathbf{x} , $\dot{\mathbf{x}}$

Task-space Inverse Dynamics Controller

$$\ddot{\mathbf{x}}^* = \ddot{\mathbf{x}}^{ref} + \mathbf{D}(\dot{\mathbf{x}}^{ref} - \dot{\mathbf{x}}) + \mathbf{K}(\mathbf{x}^{ref} - \mathbf{x}) \qquad \text{with feedback}$$

$$\mathbf{\Lambda} = (\mathbf{J}^\top)^\dagger \mathbf{M} \mathbf{J}^\dagger \qquad \text{task-space mass matrix}$$

$$\boldsymbol{\eta} = (\mathbf{J}^\top)^\dagger \mathbf{h} - \mathbf{\Lambda} \dot{\mathbf{J}} \dot{\mathbf{q}} \qquad \text{task-space h}$$

$$\mathbf{F} = \mathbf{\Lambda} \ddot{\mathbf{x}}^* + \boldsymbol{\eta} \qquad \text{task-space force to achieve } \ddot{\mathbf{x}}^*$$

$$\boldsymbol{\tau} = \mathbf{J}^\top \mathbf{F} \qquad \text{torque to achieve } \ddot{\mathbf{x}}^*$$

Inverse Dynamic Control

Let's try