Zadanie 2

Návrh spojitých PID regulátorov z charakteristík riadeného systému

Ciel' cvičenia:

Návrh PID regulátora pre zadaný systém vybranými metódami na báze prechodovej a frekvenčnej charakteristiky riadeného procesu. Simulačné porovnanie jednotlivých návrhov z hľadiska dosiahnutej kvality riadenia uzavretého regulačného obvodu (maximálne preregulovanie, čas regulácie, integrálna plocha), overenie stability, výpočet ustálených hodnôt veličín.

Úlohy

- 1. Vykreslite prechodovú charakteristiku svojho systému.
- 2. Na základe získaných hodnôt parametrov prechodovej a frekvenčnej charakteristiky navrhnite konštanty PID regulátora (resp. vhodne vybranej štruktúry) týmito metódami:
 - a. Ziegler-Nichols (open loop)
 - b. Metóda inverzie dynamiky
 - c. Metóda Zieglera-Nicholsa (frekvenčná metóda)
 - d. V prípade, že z metód a,b,c je pre Váš systém vhodná len jedna metóda, nastavte konštanty regulátora ladením v bloku PID v Simulinku.
- 3. Simulujte prechodové charakteristiky URO s jednotlivými regulátormi. Simulačnú schému rozšírte o výpočet kvadratickej plochy I_{ITAE}.
- 4. Do jedného obrázka vykreslite priebehy riadenej veličiny y(t) a vyberte "najlepší" priebeh z hľadiska dosiahnutej kvality regulačného pochodu (dosiahnutú kvalitu aj kvantifikujte konkrétnymi hodnotami η_{max}, t_{reg} a I_{ITAE}). Rovnako vykreslite do ďalšieho obrázka aj priebehy príslušných akčných zásahov u(t).
- 5. Použitím Vety o konečnej hodnote overte konvergenciu jednotlivých veličín k ich ustáleným hodnotám.
- 6. Overte stabilitu výpočtom pólov URO a pomocou frekvenčných kritérií stability (Nyquist, Bode). Výsledky vyšetrenia stability slovne odôvodnite.

a. Výpočet koeficientov regulátora metóodou Zieglera Nicholsa (Z-N open-loop)

Regulator $G_{p}(s) = P(1 + \frac{1}{T_{i}s} + T_{d}s)$	Zosilnenie regulátora P	Integračná konštanta T _i	Derivačná konštanta T _d
Тур Р	$\frac{1}{K_p} \frac{ au}{lpha}$	-	-
Typ PI	$\frac{0.8}{K_p} \frac{\tau}{\alpha}$	3α	-
Typ PD	$\frac{1.2}{K_p} \frac{\tau}{\alpha}$	-	0.25α
Typ PID	$\frac{1.2}{K_p} \frac{\tau}{\alpha}$	2α	0.5 α

Metóda inverzie dynamiky

Model procesu	Тур	Časové one	skorenie		
G _p (s)	regulátora	D = 0 D > 0			
		Р	Р	T_{i}	T_d
$\frac{K}{s}e^{-Ds}$	Р	$\frac{2}{K(2T_w + T_v)}$	$\frac{a}{K}$	-	-
$\frac{K}{T_{I}s+I}e^{-Ds}$	PI	$\frac{2T_i}{K(2T_w + T_v)}$	$\frac{a}{K}T_i$	T ₁ -T _v /2	-
$\frac{K}{s(T_l s + 1)} e^{-Ds}$	PD	$\frac{2}{K(2T_w + T_v)}$	$\frac{a}{K}$		T ₁ -T _v /2
$\frac{K}{(T_1s+1)(T_2s+1)}e^{-Ds}$	PID	$\frac{2T_i}{K(2T_w + T_v)}$	$\frac{a}{K}T_i$	$T_1+T_2-T_v$	$\frac{T_1 T_2}{T_1 + T_2} - \frac{T_v}{4}$
$\frac{K}{(T^2s^2 + 2bTs + 1)}e^{-Ds}$	PID	$\frac{2T_i}{K(2T_w + T_v)}$	$\frac{a}{K}T_i$	2bT-T _v	$\frac{T}{2b} - \frac{T_v}{4}$

Maximálne preregulovanie η a príslušné α a β

η	0	0.05	0.1	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
α	1.282	0.984	0.884	0.832	0.763	0.697	0.669	0.640	0.618	0.599	0.577
β	2.718	1.944	1.720	1.561	1.437	1.337	1.248	1.172	1.104	1.045	0.992

Výpočet a

$$a = \frac{1}{\alpha T_v + \beta D}$$

Poznámka: T_V je perióda vzorkovania pre návrh diskrétneho PID regulátora, T_w je časová konštanta prechodovej charakteristiky URO (želaná).