第3回 確率・確率変数・確率分布(3.1-3.2, 3.4)

村澤 康友

2023年4月25日

今日のポイント

1. 試行において起こりうる結果を標本点,標本点全体の集合を標本空間,標本空間の部分集合を事象という.事象に対して定義され,確率の公理を満たす関数を確率という.

- 2. B が起こったという条件の下での A の条件つき確率は $P(A|B) := P(A \cap B)/P(B)$. P(A|B) = P(A) なら A と B は独立という. $P(A \cap B) = P(A)P(B)$ で定義してもよい.
- 3. 試行の結果によって値が決まる変数を確率変数という. 確率変数の分布を確率分布という.
- 4. 任意の x に対して $\Pr[X \leq x]$ を与える関数を X の累積分布関数 (cdf), $\Pr[X = x]$ を与える関数を X の確率質量関数 (pmf), 積分すると累積分布関数が得られる関数 (累積分布関数の導関数) を確率密度関数 (pdf) という. それぞれ $F_X(.)$, $p_X(.)$, $f_X(.)$ で表す.
- 5. 確率変数 X の期待値は,離散なら $\mathrm{E}(X):=\sum_x xp_X(x)$,連続なら $\mathrm{E}(X):=\int_{-\infty}^\infty xf_X(x)\,\mathrm{d}x$.
- 6. 確率変数の特徴は積率で表せる. X の k 次の積率は $E\left(X^k\right)$, 中心積率は $E\left((X-\mu_X)^k\right)$. 1次の積率を平均, 2次の中心積率を分散という.

目次

1	確率	1
1.1	標本空間(p. 33)	1
1.2	事象(p. 33)	2
1.3	集合算(p. 36)	2
1.4	確率 (p. 34)	2
2	条件つき確率と事象の独立性	3
2.1	条件つき確率(p. 39)	3
2.2	事象の独立性(p. 41)	3
3	確率分布	3
3.1	確率変数 (p. 42)	3
3.2	累積分布関数(p. 46)	3
3.3	離散分布の確率質量関数(p. 44)	4
3.4	連続分布の確率密度関数(p. 58)	4
4	期待值	5
4.1	期待値(p. 46)	5
4.2	確率変数の関数の期待値	5
4.3	期待値の線形性(p. 55)	5
5	積率	5
5.1	積率	5
5.2	中心積率(p. 48)	6
6	今日のキーワード	6
7	次回までの準備	6
4 Thata		

1 確率

1.1 標本空間 (p. 33)

定義 1. 結果が偶然に支配される実験を試行という.

例 1. コイントス, サイコロ, 電球の寿命, 明日の 天気.

定義 2. 試行において起こりうる結果を**標本点**という.

定義 3. 標本点全体の集合を標本空間という.

例 2. コイントスなら $\{H,T\}$, サイコロなら $\{1,\ldots,6\}$, 電球の寿命なら $(0,\infty)$.

注 1. 標本点を ω , 標本空間を Ω で表すことが多い.

1.2 事象 (p. 33)

定義 4. 標本空間の部分集合を事象という.

例 3. コイントスの事象は \emptyset , $\{H\}$, $\{T\}$, Ω .

定義 5. 空集合の事象を**空事象**という.

定義 6. 標本空間全体の事象を全事象という.

定義 7. ただ 1 つの標本点から成る事象を**根元事 象**という.

定義 8. 複数の標本点から成る事象を**複合事象**という.

1.3 集合算 (p. 36)

ある試行の事象をA, B, Cとする.

定義 9. $A \cup B$ を $A \land B$ の和事象という.

定義 10. $A \cap B$ を $A \setminus B$ の積事象という.

定義 11. $A \cap B = \emptyset$ なら $A \land B$ は排反という.

定義 12. A^c を A の余事象という.

定理 1 (交換法則).

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

定理 2 (結合法則).

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

定理 3 (分配法則).

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

定理 4 (ド・モルガンの法則).

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

1.4 確率 (p. 34)

定義 13. 事象に対して定義され、以下の公理を満たす関数 P(.) を確率という.

- 1. $0 \le P(.) \le 1$
- 2. $P(\Omega) = 1$
- 3. (σ 加法性) A_1, A_2, \ldots が排反なら

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

例 4. 公正なコイントスなら

$$P(A) := \begin{cases} 0 & \text{for } A = \emptyset \\ 1/2 & \text{for } A = \{H\}, \{T\} \\ 1 & \text{for } A = \Omega \end{cases}$$

定理 5.

$$P(A) + P(A^c) = 1$$

証明. 省略.

定理 6.

$$P(\emptyset) = 0$$

証明. 省略.

定理 7.

$$A \subset B \Longrightarrow P(A) \leq P(B)$$

証明. 省略.

定理 8 (加法定理).

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

証明. ベン図で確認できる.

2 条件つき確率と事象の独立性

2.1 条件つき確率 (p. 39)

ある試行の事象をA, Bとする.

定義 14. B が起こったという条件の下での A の条件のき確率は

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

ただし P(B) > 0.

注 2. B を標本空間としたときの $A \cap B$ の確率.

定理 9 (乗法定理).

$$P(A \cap B) = P(A|B)P(B)$$
$$= P(B|A)P(A)$$

証明. 条件つき確率の定義より明らか.

2.2 事象の独立性 (p. 41)

定義 15. P(A|B) = P(A) なら A と B は独立という.

注 3.~B において $A\cap B$ が起こる確率と, Ω において A が起こる確率が等しい.そのため B が起こったという情報が,A が起こる確率に影響しない.

注 4. 乗法定理より、以下の3つは同値.

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

3 確率分布

3.1 確率変数 (p. 42)

定義 16. 試行の結果によって値が決まる変数を**確 率変数**という.

例 5. コイントスに対して

$$X := \begin{cases} 1 & (\texttt{\texttt{x}}) \\ 0 & (\texttt{\texttt{\texttt{y}}}) \end{cases}$$

とすれば X は確率変数.

定義 17. 確率変数の分布を確率分布という.

注 5. 度数分布と似た概念.

3.2 累積分布関数 (p. 46)

確率変数 X の確率分布を表現する.

定義 18. 任意の x に対して $\Pr[X \leq x]$ を与える 関数を X の累積分布関数 (cumulative distribution function, cdf) という.

注 6. $F_X(.)$ で表す. すなわち $F_X(x) := \Pr[X \leq x]$.

注 7. 弱い不等号 ≤ で定義する.

注 8. 度数分布の累積相対度数に相当.

 $\bf M$ 6. X をサイコロの目の数とすると

$$X := \begin{cases} 1 & \text{with pr. } 1/6 \\ \vdots \\ 6 & \text{with pr. } 1/6 \end{cases}$$

Xの cdf は

$$F_X(x) = \begin{cases} 0 & \text{for } x < 1\\ 1/6 & \text{for } 1 \le x < 2\\ \vdots\\ 5/6 & \text{for } 5 \le x < 6\\ 1 & \text{for } 6 \le x \end{cases}$$

 $F_X(.)$ のグラフは図1の通り.

 $F_X(.)$ は以下の性質をもつ.

定理 10 (増加関数).

$$x_1 < x_2 \Longrightarrow F_X(x_1) \le F_X(x_2)$$

 \Box

証明. 省略.

定理 11.

$$\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to \infty} F_X(x) = 1$$

証明. 省略.

定理 12 (右連続). 任意の x_0 において

$$\lim_{x \downarrow x_0} F_X(x) = F_X(x_0)$$

証明. 省略.

図1 サイコロの目の cdf

注 9. 左連続とは限らない.

注 10. 逆に以上の性質をもつ F(.) は cdf.

3.3 離散分布の確率質量関数 (p. 44)

定義 19. 取りうる値の集合が可算である確率変数 を**離散確率変数**という.

定義 20. 離散確率変数の確率分布を離散分布という.

定義 21. 任意の x に対して $\Pr[X = x]$ を与える関数を X の確率質量関数 (probability mass function, pmf) という.

注 11. $p_X(.)$ で表す. すなわち $p_X(x) := \Pr[X = x]$.

注 12. 度数分布の相対度数に相当.

注 13. cdf の定義より

$$F_X(x) := \Pr[X \le x]$$

$$= \sum_{x' \le x} \Pr[X = x']$$

$$= \sum_{x' \le x} p_X(x')$$

また

$$\sum_{x} p_X(x) = 1$$

逆にこれを満たす非負の p(.) は pmf.

例 7. X をサイコロの目の数とすると, X の pmf は

$$p_X(x) = \begin{cases} 1/6 & \text{for } x = 1, \dots, 6 \\ 0 & \text{elsewhere} \end{cases}$$

 $p_X(.)$ のグラフは図 2 の通り.

3.4 連続分布の確率密度関数 (p. 58)

ルーレットの円周は非可算無限個の点から成る. この場合,個々の点で止まる確率は0 (無限小)なので,pmf は役に立たない.

定義 22. 連続な cdf をもつ確率変数を**連続確率変 数**という.

定義 23. 連続確率変数の確率分布を連続分布という.

定義 24. 任意の x について

$$F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t$$

となる $f_X(.)$ を X の確率密度関数 (probability density function, pdf) という.

注 14. 任意の a,b について

$$\Pr[a < X \le b] = \int_a^b f_X(x) \, \mathrm{d}x$$

図2 サイコロの目の pmf

図3を参照.また

$$\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$$

逆にこれを満たす非負の f(.) は pdf.

注 15. $F_X(.)$ が微分可能なら、微分積分学の基本定理より

$$f_X(x) := F_X'(x)$$

4 期待値

4.1 期待値 (p. 46)

X を確率変数とする.

定義 25. X の期待値は

$$E(X) := \begin{cases} \sum_{x} x p_X(x) & (\text{im th}) \\ \int_{-\infty}^{\infty} x f_X(x) dx & (\text{im th}) \end{cases}$$

注 16. pmf・pdf を重みとした加重平均.

例 8. 次の確率変数を考える.

$$X := \begin{cases} 1 & \text{with pr. } p \\ 0 & \text{with pr. } 1-p \end{cases}$$

X の期待値は

$$E(X) := 1 \cdot p + 0 \cdot (1 - p)$$
$$= p$$

4.2 確率変数の関数の期待値

定義 26. g(X) の期待値は

$$E(g(X)) := \begin{cases} \sum_{x} g(x) p_X(x) & (\text{in the partial of } x) \\ \int_{-\infty}^{\infty} g(x) f_X(x) \, \mathrm{d}x & (\text{in the partial of } x) \end{cases}$$

4.3 期待値の線形性 (p. 55)

定理 13. 任意の *a, b* について

$$E(aX + b) = aE(X) + b$$

証明.復習テスト.

注 17. より一般的に (X,Y) の 2 変量分布について

$$E(aX + bY) = a E(X) + b E(Y)$$

5 積率

5.1 積率

定義 27. $X \circ k$ 次の積率は

$$\mu_{X,k} := \mathrm{E}\left(X^k\right)$$

定義 28. 1 次の積率を**平均**という.

注 18. μ_X と表す.

注 19. 確率変数の平均は期待値であり、データの (算術) 平均とは異なる.

図3 pdfによる確率の評価

5.2 中心積率 (p. 48)

定義 29. X の k 次の中心積率は

$$\mu'_{X,k} := \mathrm{E}\left((X - \mu_X)^k\right)$$

定義 30. 2 次の中心積率を**分散**という.

注 20. var(X) と書く. すなわち

$$var(X) := E\left((X - \mu_X)^2\right)$$

定義 31. 分散の平方根を標準偏差という.

注 $21. \sigma_X$ と表す.

例 9. 次の確率変数を考える.

$$X := \begin{cases} 1 & \text{with pr. } p \\ 0 & \text{with pr. } 1-p \end{cases}$$

 $\mu_X = p$ より X の分散は

$$var(X) := (1 - p)^{2} \cdot p + (0 - p)^{2} \cdot (1 - p)$$
$$= p(1 - p)^{2} + p^{2}(1 - p)$$
$$= p(1 - p)$$

定理 14.

$$var(X) = E(X^2) - \mu_X^2$$

証明.復習テスト.

定理 15. 任意の *a, b* について

$$var(aX + b) = a^2 var(X)$$

証明.復習テスト.

6 今日のキーワード

試行,標本点,標本空間,事象,空事象,全事象, 根元事象,複合事象,和事象,積事象,排反,余事 象,確率,条件つき確率,独立,確率変数,確率分 布,累積分布関数 (cdf),離散確率変数,離散分布, 確率質量関数 (pmf),連続確率変数,連続分布,確 率密度関数 (pdf),期待値,積率,平均,中心積率, 分散,標準偏差

7 次回までの準備

復習 教科書第 3 章 1-2, 4 節, 復習テスト 3 **予習** 教科書第 3 章 3, 5 節