Návrh analogových integrovaných obvodů Ústav mikroelektroniky FEKT VUT v Brně		Jméno Tomáš	Vavrinec	ID 240893	
		Ročník 3.	Obor MET	Skupina MET/3	
Spolupracoval –	Měřeno dne –	Odevzdáno o	lne –	Hodnocen	
Název zadání Extrakce parametrů tranzistorů MOSFET ze SPICE modelu				Č. úlohy 1	

ZADÁNÍ ÚLOHY

Detailní popis jednotlivých úloh s návodem najdete v NAO_PC.pdf, který je dostupný v E-learningu.

- Navrhněte jednoduché proudové zrcadlo s tranzistory NMOS (proudová nora), kdy proud vstupní větve je $25[\mu A]$ a výstupní proud $50[\mu A]$. Požadovaný výstupní dynamický rozsah je 1.6[0] (od 0.2[V] až k napájecímu napětí).
 - Vypočítejte rozměry W a L obou tranzistorů a odpor pro nastavení vstupního proudu. Vypočítejte výstupní dynamický odpor r_{OUT} .
 - Simulacemi ověřte zadané i vypočítané parametry.
- Navrhněte kaskodové proudové zrcadlo s tranzistory PMOS (proudový zdroj), kdy proud vstupní větve je $50[\mu A]$ a výstupní proud $100[\mu A]$. Zvolte $U_{GS} U_{TH} (= UOV) = 0.2[V]$.
 - Vypočítejte rozměry W a L všech tranzistorů a vstupní odpor pro nastavení vstupního proudu. Vypočítejte výstupní dynamický odpor rOUT a výstupní rozsah, kdy obvod dosahuje maximálního výstupního odporu (tj. všechny tranzistory jsou v saturaci).
 - Simulacemi ověřte zadané i vypočítané parametry.
- Navrhněte modifikované Wilsonovo proudové zrcadlo s tranzistory NMOS (proudový zdroj), kdy proud vstupní větve je $50[\mu A]$ a výstupní proud $100[\mu A]$. Zvolte $U_{GS} U_{TH} (= U_{OV}) = 0.25[V]$.
 - Vypočítejte rozměry W a L všech tranzistorů a vstupní odpor pro nastavení vstupního proudu. Vypočítejte výstupní dynamický odpor r_{OUT} a výstupní rozsah, kdy obvod dosahuje maximálního výstupního odporu (tj. všechny tranzistory jsou v saturaci).
 - Simulacemi ověřte zadané i vypočítané parametry.

Bonusové otázky (1 b.)

• Navrhněte modifikované kaskádové proudové zrcadlo s tranzistory PMOS tak, aby bylo dosaženo většího výstupního dynamického rozsahu - úbytek na tranzistorech pouze 0.4[V], tj. $2 \cdot 0.2[V]$. Nakreslete schéma a vypočítejte rozměry všech součástek.

1 Jednoduché proudové zrcadlo

Obr. 1: Schéma zapojení, s výslednými hodnotami

Proud tranzistorem v saturaci můžeme určit jako:

$$I_D = \frac{1}{2} \cdot KP_n \cdot \frac{W}{L} \left(U_{GS} - U_{TH} \right)^2 \tag{1}$$

Tranzistorem M_1 má téct proud $I_{M1}=25[\mu A]$ a tranzistorem M_2 proud $I_{M2}=50[\mu A]$. Můžeme tedy říct:

$$I_{M1} = \frac{I_{M2}}{2} \tag{2}$$

Tedy:

$$\frac{1}{2} \cdot K_{M1} P_{nM1} \cdot \frac{W_{M1}}{L_{M1}} \left(U_{GSM1} - U_{THM1} \right)^2 = \left(\frac{1}{2} \cdot K_{M2} P_{nM2} \cdot \frac{W_{M2}}{L_{M2}} \left(U_{GSM1} - U_{THM1} \right)^2 \right) \tag{3}$$

Protože tranzistory se můžou lišit jen parametry L a W (rozměry), můžeme prohlásit:

$$\frac{W_{M2}}{L_{M2}} = \frac{I_{M1}}{I_{M2}} \cdot \frac{W_{M1}}{L_{M1}} \tag{4}$$

Protože U_{TH} tranzistoru je ovlivněno víc rozměrem W než L, zvolíme pro oba tranzistory stejnou délku kanálu L a měnit budeme jen šířku kanálu W. To proto, aby měly oba tranzistory stejné prahové napětí U_{TH} .

Z toho nám tedy plyne:

$$\frac{W_{M2}}{W_{M1}} = \frac{I_{M1}}{I_{M2}} \tag{5}$$

Obr. 2: Závislost modulované délky kanálu λ na délce kanálu L pro NMOS tranzistor

Na grafu 2 je vidět, že pokles modulované délky kanálu λ je zpočátku velký, ale okolo $\lambda = 2[\mu m]$ se již téměř nemění. Abychom tedy dosáhli malé modulované délky kanálu λ a zároveň malých rozměrů tranzistoru, zvolíme délku kanálu na $L = 2[\mu m]$.

Z rovnice 5 nám tedy plyne, že poměr proudů I_{M1} a I_{M2} je roven poměru šířek kanálů W_{M1} a W_{M2} . V našem případě tedy tranzistor M_1 bude mít šířku kanálu oproti M_2 poloviční. W_{M1} tedy zvolím na základě požadovaného proudu I_{M1} a vztahy 1 takto:

$$W_{M1} = \frac{2 \cdot I_D \cdot L}{K P_{NM1} \left(U_{GSM1} - U_{THM1} \right)^2} \tag{6}$$

Kde:

$$U_{GSM1} - U_{THM1} = U_{OV} = 0.2[V] (7)$$

a tedy:

$$W_{M1} = \frac{2 \cdot I_D \cdot L}{KP_{NM1}U_{OV}^2} = \frac{2 \cdot 25 \cdot 10^{-6} \cdot 2 \cdot 10^{-6}}{220 \cdot 10^{-6} \cdot 0.2^2} [m] = 11.4 \cdot 10^{-6} [m] = 11.4 [\mu m]$$
 (8)

Hodnotu rezistoru R_1 zvolíme tak, aby $I_{M1}=25[\mu A]$. Napájecí napětí $U_{CC}=1.8[V]$ a pro transistor M_1 platí $U_{TH0}=0.368009[V]$, U_{R1} tedy určíme jako:

$$U_{R1} = U_{CC} - (U_{TH0} + U_{OV}) = (1.8 - (0.368009 + 0.2))[V] = 1.131991[V]$$
 (9)

Tedy:

$$R_1 = \frac{U_{R1}}{I_{M1}} = \frac{1.131991}{25 \cdot 10^{-6}} [\Omega] = 45279.64 [\Omega]$$
 (10)

Výsledek simulace s rozměry 1 je na grafu 3.

	$L[\mu m]$	$W[\mu m]$
M_1	2	11.4
M_2	2	22.8

Tabulka 1: Rozměry tranzistorů

Výstupní odpor lze teoreticky určit jako:

$$R_{OUT} = \frac{1}{\lambda \cdot I_{M2}} \tag{11}$$

Tedy:

$$R_{OUT} = \frac{1}{0.0438342 \cdot 50 \cdot 10^{-6}} [\Omega] = 456265 [\Omega] = 456[k\Omega]$$
 (12)

Obr. 3: Závislost proudu tranzistorem ${\cal I}_{M2}$ na napětí na zrcadle ${\cal U}_{OUT}$

Z grafu 3 plyne, že saturaci dosáhneme při napětí cca $U_{OUT}=0.4[V]$, při kterém tranzistorem M_2 teče proud $I_{M2}=48.4[\mu A]$.

Nakonec výstupní odpor R_{OUT} určíme jako:

$$R_{OUT} = \frac{1}{\lambda \cdot I_{M2}} = \frac{1}{0.0438342 \cdot 50 \cdot 10^{-6}} [\Omega] = 456265 [\Omega] = 456[k\Omega]$$
 (13)

2 Kaskodové proudové zrcadlo

Obr. 4: Schéma zapojení, s výslednými hodnotami

Rozměry L a W můžeme určit stejně jako v předchozím příkladu $L=2[\mu m]$ a W podle vztahu $\ref{eq:posterior}$?

$$W_{M1} = \frac{2 \cdot I_D \cdot L}{K P_{PM1} U_{OV}^2} = \frac{2 \cdot 25 \cdot 10^{-6} \cdot 2 \cdot 10^{-6}}{60 \cdot 10^{-6} \cdot 0.2^2} [m] = 41.7 [\mu m]$$
 (14)

	$L[\mu m]$	$W[\mu m]$
M_1	2	41.7
M_2	2	83.4
M_3	2	41.7
M_4	2	83.4

Tabulka 2: Rozměry tranzistorů pro Kaskodové proudové zrcadlo

Hodnotu odporu R_1 můžeme určit podobně jako v předchozím příkladu, ale s tím rozdílem že nyní započítáváme úbytek napětí na dvou tranzistorech M_1 a M_3 . Tedy:

$$R_1 = \frac{V_{CC} - (U_{GSM1} + U_{GSM3})}{I_{M1,3}} \tag{15}$$

Kde:

$$U_{GSM1} = U_{TH0} + U_{OV} = (0.432227 + 0.2) [V] = 0.632227 [V]$$
(16)

U M_3 musíme započítat bulk efekt a tedy hodnotu U_{TH} odečteme z grafu z předchozí ulohy, tedy $U_{TH,M3}=1.257[V]$.

V této části extrakce parametrů jsem pravděpodobně udělal nějakou chybu, bohužel ji nemohu najít. Pokud by totiž U_{TH} PMOS tranzistoru, zatížené buklefektem $U_{SB}=0.63[V]$ bylo $U_{TH}=1.257[V]$ znamenalo by to:

$$U_{GSM3} = U_{TH} + U_{OV} = (1.257 + 0.2)[V] = 1.457[V]$$
(17)

a tedy:

$$U_{CC} = 1.8[V] < U_{GSM1} + U_{GSM3} = (0.632227 + 1.457)[V] = 2.089227[V]$$
 (18)

Což by znamenalo, že napájecí napětí U_{CC} je menší než napěťový úbytek na tranzistorech a tedy nedostačuje k provozu tohoto zrcadla.

Každopádně když přesto provedeme simulaci s iteračně určenou hodnotou $R_1 = 4[k\Omega]$, dostaneme graf 9.

Výstupní odpor pak můžeme určit jako:

$$r_{OUT} = \frac{1}{\lambda I_{out}} = \frac{1}{\lambda I_{M2}} = \frac{1}{0.0787029 \cdot 100 \cdot 10^{-6}} [\Omega] = 127060 [\Omega] = 127[k\Omega]$$
 (19)

Obr. 5: Závislost proudu tranzistorem I_{M2} a I_{M1} na napětí na zrcadle U_{OUT}

Výstupní odpor pak můžeme určit jako:

$$r_{OUT} = \frac{dU_{OUT}}{dI_{M2}} = \frac{U_{M2-1.8} - U_{M2-1}}{I_{M2-1.8} - I_{M2-1}} = \frac{1.8 - 1}{(99.98384 - 99.78091) \cdot 10^{-6}} [\Omega] = 3463353[\Omega] = 3.5[M\Omega]$$
(20)

3 Wilsonovo proudové zrcadlo

Obr. 6: Schéma zapojení s výslednými hodnotami

Rozměry La Wmůžeme určit stejně jako v předchozím příkladu $L=2[\mu m]$ a W podle vztahu ${\color{red}21}.$

$$W_{M1-3} = \frac{2 \cdot I_D \cdot L}{KP_{PM1}U_{OV}^2} = \frac{2 \cdot 50 \cdot 10^{-6} \cdot 2 \cdot 10^{-6}}{220 \cdot 10^{-6} \cdot 0.2^2} [m] = 22.7[\mu m]$$
 (21)

Protože poměr proudu výstupního proudu k vstupnímu proudu je 2, můžeme určit W_{M2-4} jako $W_{M2-4}=2\cdot W_{M1}=45.4[\mu m].$

	$L[\mu m]$	$W[\mu m]$
M_1	2	22.7
M_2	2	45.4
M_3	2	22.7
M_4	2	45.4

Tabulka 3: Rozměry tranzistorů pro Wilsonovo proudové zrcadlo

Stejně jako v předchozím příkladu můžeme určit výstupní odpor r_{OUT} jako:

$$R_1 = \frac{V_{CC} - (U_{GSM1} + U_{GSM3})}{I_{M1,3}} \tag{22}$$

Kde:

$$U_{GSM1} = U_{TH0} + U_{OV} = (0.368024 + 0.25) [V] = 0.518024 [V]$$
(23)

U M_3 musíme započítat bulk efekt a tedy hodnotu U_{TH} odečteme z grafu z předchozího protokolu, tedy $U_{TH,M3}=1.0481[V]$.

V této části extrakce parametrů jsem pravděpodobně udělal nějakou chybu, bohužel ji nemohu najít. Pokud by totiž U_{TH} PMOS tranzistoru, zatížené buklefektrm $U_{SB}=0.52[V]$ bylo $U_{TH}=1.0481[V]$ znamenalo by to:

$$U_{GSM3} = U_{TH} + U_{OV} = (1.0481 + 0.25) [V] = 1.2981 [V]$$
(24)

a tedy:

$$U_{CC} = 1.8[V] < U_{GSM1} + U_{GSM3} = (0.518024 + 1.2981)[V] = 1.816124[V]$$
 (25)

Což by znamenalo, že napájecí napětí U_{CC} je menší než napětový úbytek na tranzistorech a tedy nedostačuje k provozu tohoto zrcadla.

Každopádně když přesto provedeme simulaci s iteračně určenou hodnotou $R_1 = 9.42[k\Omega]$, dostaneme graf 9.

Obr. 7: Závislost proudu tranzistorem I_{M2} a I_{M1} na napětí na zrcadle U_{OUT}

$$g_{m} = KP_{N} \cdot \frac{W}{L} \cdot (U_{GS} - U_{TH}) = \left(220 \cdot 10^{-6} \cdot \frac{45.4 \cdot 10^{-6}}{2 \cdot 10^{-6}} \cdot 0.25\right) [S] = 0.0049939[S] = 5[mS]$$

$$r_{T} = r_{o1} \parallel \left(R_{1} + \frac{1}{g_{m3}}\right) = \frac{1}{\lambda \cdot I_{M}} \parallel \left(R_{1} + \frac{1}{g_{m3}}\right) = \left(\frac{1}{0.0438342 \cdot 100 \cdot 10^{-6}} \parallel \left(9.42 \cdot 10^{3} \frac{1}{0.0049939}\right)\right) [\Omega] =$$

$$= (228132 \parallel 1886301) [\Omega] = 203518[\Omega] = 204[k\Omega]$$

$$r_{out} = \frac{1}{\lambda \cdot I_M} \cdot KP_N \cdot \frac{W}{L} \cdot U_{OV} \cdot r_T =$$

$$\left(\frac{1}{0.0438342 \cdot 100 \cdot 10^{-6}} \cdot 220 \cdot 10^{-6} \cdot \frac{45.4 \cdot 10^{-6}}{2 \cdot 10^{-6}} \cdot 0.25 \cdot 204 \cdot 10^3\right) [\omega] = 58103946 [\Omega] = 58[M\Omega]$$

Výstupní odpor pak můžeme určit jako:

$$r_{OUT} = \frac{dU_{OUT}}{dI_{M2}} = \frac{U_{M2-1.8} - U_{M2-0.8}}{I_{M2-1.8} - I_{M2-0.8}} = \frac{1.8 - 0.8}{(100.0119 - 99.78091) \cdot 10^{-6}} = 4.3[M\Omega] \quad (26)$$

Obr. 8: Schéma zapojení, s výslednými hodnotami

Rozměry L a W jsem přebral z návrhu obyčejného kaskádového proudového zrcadla, tedy:

	$L[\mu m]$	$W[\mu m]$
M_1	2	41.7
M_2	2	83.4
M_3	2	41.7
M_4	2	83.4

Tabulka 4: Rozměry tranzistorů pro Modifikované Kaskádové proudové zrcadlo

Úbytek napětí na tranzistorech M_1 a M_3 bude trochu složitější, než v předchozích případech. Úbytek na M_3 bude stejný jako v předchozím případě, tedy $U_{GSM3} = U_{TH} + U_{OV}$. Pro jeho určení ale kvůli bulkefektu potřebujeme znát ubytek na M_1 , který je $U_{M1} = 0.1[V]$. Z toho tedy $U_{TH3} = 0.574707[V]$ a $U_{GSM3} = 0.774707[V]$.

Odpor R_1 pak můžeme určit jako:

$$R_1 = \frac{V_{CC} - (U_{M1} + U_{GSM3})}{I_{M1,3}} \tag{27}$$

Tedy:

$$R_1 = \frac{1.8 - (0.1 + 0.774707)}{50 \cdot 10^{-6}} [\Omega] = 18506 [\Omega] = 19[k\Omega]$$
 (28)

Výstupní odpor pak můžeme určit jako:

$$r_{OUT} = \frac{1}{\lambda I_{out}} = \frac{1}{\lambda I_{M2}} = \frac{1}{0.0787029 \cdot 100 \cdot 10^{-6}} [\Omega] = 127060 [\Omega] = 127[k\Omega]$$
 (29)

Obr. 9: Závislost proudu tranzistorem I_{M2} a I_{M1} na napětí na zrcadle U_{OUT}

Výstupní odpor pak můžeme určit jako:

$$r_{OUT} = \frac{dU_{OUT}}{dI_{M2}} = \frac{U_{M2-1.8} - U_{M2-0.5}}{I_{M2-1.8} - I_{M2-0.5}} = \frac{1.8 - 0.5}{(104.1794 - 100.1333) \cdot 10^{-6}} [\Omega] = 321297 [\Omega] = 321[k\Omega]$$
(30)

4 Závěr

Podle zadání jsem provedl ruční návrh tří proudových zrcadel (Jednoduché, Kaskodové a Wilsonovo). Všechny tři zrcadla jsem následně odsimuloval a uvedl výsledky simulací. Následující tabulka 1 porovnává výstupní odpor jednotlivých zrcadel.

Typ zrcadla	výpočet $R_{out}[M\Omega]$	simulace $R_{out}[M\Omega]$
Jednoduché	0.456	0.456
Kaskodové	0.127	3.5
Wilsonovo	58	4.3
Modifikované Kaskodové	0.127	0.321

Tabulka 1: Porovnání vypočítaného a odsimulovaného výstupního odporu