Variables Difusas

J.Proaño

Contenido

Definición

Operaciones de conjuntos difusos

Propiedades

Objetivos

Conocer la forma de representar las variables difusas

Estudiar los operaciones básicas con conjuntos difusos

Entender las propiedades de los conjuntos difusos

Definición

"Un conjunto difuso puede definirse como una clase en la que hay una progresión gradual desde la pertenencia al conjunto hasta la no pertenencia" (C.Gonzalez, sf p15)

Se puede expresar un conjunto difuso en función de sus límites.

$$\mu_A = X \rightarrow [0,1]$$

Ejemplo

Variable L.: Temperatura; U=[0,50]

$$\mu_{cold}(x) = \begin{cases} 1, & \text{if } x \le 10 \\ 1 - (x - 10)/5, & \text{if } 10 < x < 15 \\ 0, & \text{otherwise} \end{cases}$$

$$\mu_{moderate}(x) = \begin{cases} 1 - |x - 15|/5, & \text{if } 10 < x < 20 \\ 0, & \text{otherwise} \end{cases}$$

$$\mu_{warm}(x) = \begin{cases} 1 - |x - 20|/5, & \text{if } 15 < x < 25 \\ 0, & \text{otherwise} \end{cases}$$

$$\mu_{hot}(x) = \begin{cases} 1, & \text{if } x \ge 25\\ 1 - (x - 30)/5, & \text{if } 20 < x < 25\\ 0, & \text{otherwise} \end{cases}$$

Gráficamente

Operaciones con Conjuntos Difusos

Existen 3 operaciones básicas: Unión, Intersección, Complemento.

$$\mu_{\overline{A}}(x) = 1 - \mu_A(x)$$
 $\mu_{A \cap B}(x) = \perp [\mu_A(x), \mu_B(x)]$
 $\mu_{A \cup B}(x) = T [\mu_A(x), \mu_B(x)]$

Unión

La forma generalizada de la unión es la T-conorma.

Para que una función se pueda considerar como una unión difusa, debe satisfacer los siguientes axiomas:

- U1) Elemento Neutro: $\perp(a,0)=a$
- U2) Conmutatividad: $\perp(a,b) = \perp(b,a)$
- U3) Monotonicidad: Si $a \le c$ y $b \le d$ entonces $\bot(a,b) = \bot(c,d)$
- U4) Asociatividad: $\bot(\bot(a,b),c)=\bot(a,\bot(b,c))$

Las T-normas más utilizadas son:

- Máximo: $\bot(a,b) = max(a,b)$
- Producto: $\bot(a,b) = (a+b) (a \times b)$
- Suma limitada (o de Lukasiewick): $\bot(a,b) = min(a+b,1)$

Intersección

La forma generalizada de la intersección se denomina T-norma.

Una T-norma satisface los siguientes axiomas

- I1) Elemento unidad: T(a, 1) = a
- I2) Conmutatividad: T(a, b) = T(b, a)
- I3) Monotonicidad: Si $a \le c$ y $b \le d$ entonces T(a,b) = T(c,d)
- I4) Asociatividad: T(T(a,b),c) = T(a,T(b,c))

Algunas T-normas son:

- Mínimo: T(a,b) = min(a,b)
- Producto algebraico: T(a,b) = ab
- Diferencia limitada (o de Lukasiewick): T(a,b) = max(0,a+b-1)

Complemento

El complemento \overline{A} de un conjunto difuso A, se denota por cA.

Tiene que satisfacer los siguientes axiomas:

- C1) Condiciones límite o frontera: c(0) = 1 y c(1) = 0.
- C2) Monotonicidad: $\forall a, b \in [0,1]$ si a < b entonces $c(a) \ge c(b)$.
- C3) c es una función contínua.
- C4) c es involutiva $\forall a \in [0,1]$ tenemos c(c(a)) = a.

Complemento de Sugeno

$$\mu_{\overline{A^{\lambda}}}(x) = \frac{1 - \mu_A(x)}{1 + \lambda \mu_A(x)} \quad con \ \lambda \in (-1, \infty)$$

Ejemplos

Ejemplos

Intersección (MIN)

Ejemplos

Ejercicio

Dados los siguientes conjuntos Difusos

```
ua=[0/0, 1/2, 0/4]
```

$$ub = [0/2, 1/4, 1/6, 0/8]$$

$$uc = [0/6, 1/8, 1/10]$$

Encontrar y graficar:

- **1.**AUB **4.**B∩C
- $2.A \cap B$ 5.Complemento de A, B, C
- 3.GUB

Conclusiones

Los conjuntos difusos son una generalización de los conjuntos nítidos (crisp)

Las operaciones principales con Unión, Intersección, Complemento

Las propiedades de los conjuntos crips se aplican también para conjuntos difusos

Referencias

P. Aurrand-Lions, L. Fournier, P. Jarri, et al. Application of fuzzy control for ISIS vehicule braking. In Proceedings of Fuzzy and Neuronal Systems, and Vehicule applications'91, 1991.

L.A. Zadeh. Fuzzy set. Information and Control, 8:338–353, 1965.

L.A. Zadeh. Outline of a new approach to the analysis of complex system. IEEE Transaction on System Man and Cybernetics, 1:28–44, 1973.