GEOMETRÍA III

(Doble Grado en Ingeniería Informática y Matemáticas)

Respuestas Primer Control (02/12/2020)

- 1. Consideremos dos rectas distintas R_1, R_2 en un espacio afín $(\mathcal{A}, \overrightarrow{\mathcal{A}}, \overrightarrow{\rightarrow})$ con dim $\mathcal{A} = 3$. Probar que los siguientes enunciados son equivalentes:
 - a) Existen un plano S y una recta R suplementarios afines en A con $R_2 \subset S$ y $\pi_{S,R}(R_1) = R_2$, donde $\pi_{S,R}$ denota la proyección afín sobre S en la dirección de R.
 - b) Las rectas R_1, R_2 son coplanarias (están contenidas en un mismo plano de A).

Como aplicación, dadas las rectas

$$R_1 = (1,0,0) + L(\{(0,1,1)\}, \quad R_2 = \{(x,y,z) \in \mathbb{R}^3 : x+y-z+1 = y-z-1 = 0\}$$

y el plano $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2 = 0\}$ en \mathbb{R}^3 probar que:

- R_1, R_2 son coplanarias $y R_2 \subset S$.
- La recta $R = \langle (1,0,0), (-2,1,0) \rangle$ es suplementaria afín de S.
- $\pi_{S,R}((1,0,0)) = (-2,1,0) \ y \ \pi_{S,R}(R_1) = R_2.$

Calcular también $M(\pi_{S,R}, \mathcal{R}_0)$, donde \mathcal{R}_0 es el sistema de referencia usual de \mathbb{R}^3 .

Respuesta:

$$a) \Longrightarrow b)$$

Escribamos $R_1 = p + \overrightarrow{R}_1$ para un $p \in R_1$ tal que $p \notin R_2 = \pi_{S,R}(R_1)$, y observemos que de la definición de $\pi_{S,R}$ el vector

$$\overrightarrow{0} \neq \overrightarrow{p\pi_{S,R}(p)} \in \overrightarrow{R}.$$

Como $R_2 = \pi_{S,R}(R_1)$ y $\overrightarrow{\pi_{S,R}} = \overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}$, donde $\overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}} : \overrightarrow{A} \to \overrightarrow{A}$ es la proyección lineal sobre \overrightarrow{S} en la dirección de \overrightarrow{R} , se deduce que $\overrightarrow{R}_2 = \overrightarrow{\pi_{S,R}}(\overrightarrow{R}_1) = \overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(\overrightarrow{R}_1)$ y por tanto

$$R_2 = \pi_{S,R}(p) + \overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(\overrightarrow{R}_1).$$

Nuestro objetivo será demostrar que el menor subespacio $R_1 \vee R_2$ que contiene a $R_1 \vee R_2$ es un plano. Para ello, observemos que

$$\overrightarrow{R_1 \vee R_2} = L(\overrightarrow{p\pi_{S,R}(p)}) + \overrightarrow{R}_1 + \overrightarrow{R}_2 = L(\overrightarrow{p\pi_{S,R}(p)}) + \overrightarrow{R}_1 + \overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(\overrightarrow{R}_1) = \overrightarrow{R} + \overrightarrow{R}_1 + \overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(\overrightarrow{R}_1),$$

donde hemos tenido en cuenta que $L(\overrightarrow{p\pi_{S,R}(p)}) = \overrightarrow{R}$ al ser $\overrightarrow{0} \neq \overrightarrow{p\pi_{S,R}(p)} \in \overrightarrow{R}$ y dim $\overrightarrow{R} = 1$.

De la definición de $\overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}$ sabemos que $v - \overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(v) \in \overrightarrow{R}$ para todo $v \in \overrightarrow{A}$, de donde

$$v = \left(v - \overrightarrow{\pi}_{\overrightarrow{S}, \overrightarrow{R}}(v)\right) + \overrightarrow{\pi}_{\overrightarrow{S}, \overrightarrow{R}}(v) \in \overrightarrow{R} + \overrightarrow{\pi}_{\overrightarrow{S}, \overrightarrow{R}}(\overrightarrow{R}_1)$$

para todo $v \in \overrightarrow{R}_1$ y $\overrightarrow{R}_1 \subseteq \overrightarrow{R} + \overrightarrow{\pi}_{\overrightarrow{S}, \overrightarrow{R}}(\overrightarrow{R}_1)$. De aquí se concluye que

$$\overrightarrow{R_1 \vee R_2} = \overrightarrow{R} + \overrightarrow{R}_1 + \overrightarrow{\pi}_{\overrightarrow{S}.\overrightarrow{R}}(\overrightarrow{R}_1) = \overrightarrow{R} + \overrightarrow{\pi}_{\overrightarrow{S}.\overrightarrow{R}}(\overrightarrow{R}_1) = \overrightarrow{R} + \overrightarrow{R}_2$$

es un subespacio vectorial de \overrightarrow{A} con dim $R_1 \vee R_2 = \dim(\overrightarrow{R} + \overrightarrow{R}_2) = 2$ (téngase en cuenta que $R_1 \neq R_2$), lo que prueba a).

Otra forma alternativa de probar que a) \Longrightarrow b) sería tomar dos puntos $q_1, q_2 \in R_2$ distintos, y utilizando que $R_2 = \pi_{S,R}(R_1)$ elegir $p_1, p_2 \in R_1$ tales que $\pi_{S,R}(p_j) = q_j, j = 1, 2$. Claramente

$$R_1 = \langle p_1, p_2 \rangle$$
 y $R_2 = \langle q_1, q_2 \rangle$,

y por tanto

$$R_1 \vee R_2 = p_1 + L\big(\{\overrightarrow{p_1p_2}, \overrightarrow{p_1q_1}, \overrightarrow{p_1q_2}\}\big) = p_1 + L\big(\{\overrightarrow{p_1p_2}, \overrightarrow{p_1q_1}, \overrightarrow{p_2q_2}\}\big),$$

donde para la última igualdad hemos usado que $\overrightarrow{p_1q_2} = \overrightarrow{p_1p_2} + \overrightarrow{p_2q_2}$. Finalmente, usando que $\overrightarrow{p\pi_{S,R}(p)} \in \overrightarrow{R}$ para todo $p \in \mathcal{A}$ y que \overrightarrow{R} es una recta vectorial, deducimos que

$$\{\overrightarrow{p_1\pi_{S,R}(p_1)} = \overrightarrow{p_1q_1}, \overrightarrow{p_2\pi_{S,R}(p_2)} = \overrightarrow{p_2q_2}\}$$

son linealmente dependientes, y por tanto

$$\dim R_1 \vee R_2 = \dim L(\{\overrightarrow{p_1p_2}, \overrightarrow{p_1q_1}, \overrightarrow{p_2q_2}\}) < 3.$$

Esto prueba que $R_1 \vee R_2$ ha de ser un plano.

$$b) \Longrightarrow a)$$

Supongamos ahora que R_1, R_2 son coplanarias y distintas y escribamos

$$R_j = p_j + L(\{v_j\}), \quad j = 1, 2.$$

donde elegiremos $p_1 \in R_1 \setminus R_2$ y $p_2 \in R_2 \setminus R_1$. De nuestras hipótesis

- $\Pi := R_1 \vee R_2 = p_1 + L(\{\overrightarrow{p_1p_2}, v_1, v_2\}) = p_2 + L(\{\overrightarrow{p_1p_2}, v_1, v_2\})$ es un plano, esto es, dim $L(\{\overrightarrow{p_1p_2}, v_1, v_2\}) = 2$.
- $u = \overrightarrow{p_1p_2} \notin L(\{v_j\}), j = 1, 2$ (en particular, $u \neq \overrightarrow{0}$), ya que $R_1 \neq R_2$.

Tomaremos R cualquier recta afín con

$$\overrightarrow{R} = L(\{u\}).$$

Por otro lado, usando que dim $\mathcal{A}=3$ elijamos $v\in\overrightarrow{\mathcal{A}}\setminus\overrightarrow{\Pi}$ y consideremos el plano afín

$$S = p_2 + L(\{v_2, v\}),$$

obviamente conteniendo a $R_2 = p_2 + L(\{v_2\})$. Con esta elección de R y S se tiene que

$$\overrightarrow{R} \cap \overrightarrow{S} = L(\{u\}) \cap L(\{v_2, v\}) = \{\overrightarrow{0}\}\$$

ya que $\{v_2, u\}$ son linealmente independientes (recordar que $u \notin L(\{v_2\})$) y $v \notin L(\{v_2, u\}) = \overrightarrow{\Pi}$. De aquí que R y S sean subespacios afines suplementarios en A.

Claramente $S \cap \Pi \neq \emptyset$ ya que $p_2 \in R_2 \subseteq S \cap \Pi$, y de hecho

$$S\cap\Pi=p_2+(\overrightarrow{S}\cap\overrightarrow{\Pi})=p_2+\left(L(\{v_2,v\})\cap L(\{\overrightarrow{p_1p_2},v_1,v_2\})\right)=p_2+L(\{v_2\})=R_2;$$

para la igualdad $L(\{v_2, v\}) \cap L(\{\overline{p_1p_2}, v_1, v_2\}) = L(\{v_2\})$ usar que $v \notin \overrightarrow{\Pi} = L(\{\overline{p_1p_2}, v_1, v_2\})$. Consideremos la proyección afín $\pi_{S,R} \colon \mathcal{A} \to \mathcal{A}$ sobre S en la dirección de R. Es claro que si $p \in R_1 \subset \Pi$ entonces la recta

$$R_p := p + \overrightarrow{R} \subset p + \overrightarrow{\Pi} = \Pi,$$

de donde por definición se tiene que

$$\{\pi_{S,R}(p)\} = S \cap R_p = (S \cap \Pi) \cap R_p = R_2 \cap R_p \subset R_2.$$

Esto prueba que $\pi_{S,R}(R_1) \subseteq R_2$. Para comprobar que $\pi_{S,R}(R_1) = R_2$ basta con ver que $\pi_{S,R}(R_1)$ es una recta afín. Esto se deduce de las identidades

$$\overrightarrow{\pi_{S,R}(R_1)} = \overrightarrow{(\pi_{S,R})}(\overrightarrow{R_1}) = \overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(\overrightarrow{R}_1) = \overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(L(\{v_1\})) = L(\{\overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(v_1)\}),$$

y el hecho de que $L(\{\overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(v_1)\})$ es una recta vectorial; para la \widetilde{A}° ltima afirmación, usar que $\overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}}(v_1) \neq \overrightarrow{0}$ al ser $v_1 \notin L(\{u\}) = \overrightarrow{R} = \operatorname{Ker}(\overrightarrow{\pi}_{\overrightarrow{S},\overrightarrow{R}})$ (recuérdese que $u = \overrightarrow{p_1p_2} \notin L(\{v_j\})$, j = 1, 2).

En relación con la parte práctica del ejercicio, consideremos las rectas en el enunciado

$$R_1 = (1,0,0) + L(\{(0,1,1)\}, \quad R_2 = \{(x,y,z) \in \mathbb{R}^3 : x+y-z+1 = y-z-1 = 0\}$$

y el plano $S = \{(x, y, z) \in \mathbb{R}^3 \colon x + 2 = 0\}$ en \mathbb{R}^3 .

Claramente $R_2 = (-2, 1, 0) + L(\{(0, 1, 1)\})$, por lo que R_1 y R_2 son paralelas y distintas,

$$\overrightarrow{R_1 \vee R_2} = L(\{(-3,1,0)\}) + \overrightarrow{R}_1 + \overrightarrow{R}_2 = L(\{(-3,1,0)\}) + L(\{(0,1,1)\}) = L(\{(-3,1,0),(0,1,1)\}).$$

es un plano vectorial, y R_1, R_2 son coplanarias. Para ver que $R_2 \subset S$ basta con observar que

$$(-2,1,0) \in S \quad \text{y} \quad \overrightarrow{R}_2 = L(\{(0,1,1)\}) \subset \overrightarrow{S} = L(\{(0,1,0),(0,0,1)\}).$$

La recta $R = \langle (1,0,0), (-2,1,0) \rangle$ tiene $\overrightarrow{R} = L(\{(-3,1,0)\})$ y claramente

$$\overrightarrow{R} + \overrightarrow{S} = L(\{(-3, 1, 0)\}) \oplus L(\{(0, 1, 0), (0, 0, 1)\}) = \mathbb{R}^3,$$

por lo que R y S son suplementarios afines en \mathbb{R}^3 .

Además, tras pasar a implícitas

$$R = \{(x, y, z) \in \mathbb{R}^3 \colon z = x + 3y - 1 = 0\}$$

Como $(1,0,0) \in R$, por definición de $\pi_{S,R}$ concluimos que

$$\pi_{S,R}((1,0,0)) = R \cap S = (-2,1,0).$$

Para calcular $M(\pi_{S,R}, \mathcal{R}_0)$, donde \mathcal{R}_0 es el sistema de referencia usual de \mathbb{R}^3 , usemos la definición de $\pi_{S,R} \colon \mathbb{R}^3 \to \mathbb{R}^3$. Tomemos $(x,y,z) \in \mathbb{R}^3$ arbitrario y llamemos $(a,b,c) = \pi_{S,R}(x,y,z)$. Sabemos de la definición de $\pi_{S,R}$ que

- $(a, b, c) \in S = \{(x, y, z) \in \mathbb{R}^3 : x + 2 = 0\}$
- $\bullet (x-a,y-b,z-c) = \overrightarrow{(a,b,c)(x,y,z)} \in \overrightarrow{R} = \{(x,y,z) \in \mathbb{R}^3 \colon z = x + 3y = 0\}.$

Por tanto a = -2, b = y + x/3 + 2/3, c = z y

$$M(\pi_{S,R}, \mathcal{R}_0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 2/3 & 1/3 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

2. Clasifica el movimiento rígido del espacio euclidiano \mathbb{R}^3

$$f_{\alpha} \colon \mathbb{R}^{3} \to \mathbb{R}^{3}, \quad f_{\alpha} \begin{pmatrix} \frac{1}{x} \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{0} & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \alpha & 0 & 1 & 0 \\ \sqrt{2} & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{x} \\ y \\ z \end{pmatrix}$$

en función de los valores del parámetro $\alpha \in \mathbb{R}$ y describe sus elementos geométricos.

Respuesta: Denotemos $\mathcal{R}_0 = \{(0,0,0), B_0\}$ el sistema de referencia usual de \mathbb{R}^3 , que es rectangular respecto de la métrica euclidiana \langle , \rangle estándar. Como

$$M(\overrightarrow{f}_{\alpha}, B_0) = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \in \mathcal{O}(3, \mathbb{R})$$

tiene determinante 1 > 0, deducimos que f es un movimiento directo para todo α . Al ser $\overrightarrow{f}_{\alpha} \neq \mathrm{Id}_{\mathbb{R}^3}$, concluimos que f_{α} es un giro o un movimiento helicoidal.

La ecuación $f_{\alpha}(x,y,x)=(x,y,z)$ que determina el conjunto de puntos fijos de f_{α} nos da

$$\mathcal{P}_{f_{\alpha}} = \{(x, y, z) \in \mathbb{R}^3 : (\alpha, \left(\frac{1}{\sqrt{2}} - 1\right)x - \frac{z}{\sqrt{2}}, \frac{x}{\sqrt{2}} + \left(\frac{1}{\sqrt{2}} - 1\right)z + \sqrt{2}) = (0, 0, 0)\},\$$

por lo que $\mathcal{P}_{f_{\alpha}} \neq \emptyset$ si y sólo si $\alpha = 0$, y en este caso

$$\mathcal{P}_{f_0} = \{(x, y, z) \in \mathbb{R}^3 : \left(\frac{1}{\sqrt{2}} - 1\right) x - \frac{z}{\sqrt{2}} = \frac{x}{\sqrt{2}} + \left(\frac{1}{\sqrt{2}} - 1\right) z + \sqrt{2} = 0\},$$

esto es.

$$\mathcal{P}_{f_0} = (\frac{1}{\sqrt{2} - 2}, 0, \frac{1}{\sqrt{2}}) + L(\{(0, 1, 0)\}).$$

Concluimos que f_0 es un giro con eje \mathcal{P}_{f_0} . Obsérvese que

$$\overrightarrow{P}_{f_0}^{\perp} = L(\{(1,0,0),(0,0,1)\})$$

y fijemos la orientación que induce la base $B = \{(1,0,0),(0,0,1)\}$ como positiva en $\overrightarrow{\mathcal{P}}_{f_0}^{\perp}$.

Para determinar el ángulo orientado $\theta \in]0, 2\pi[$ de f_0 respecto de esta orientación fijada en $\overrightarrow{\mathcal{P}}_{f_0}^{\perp}$, consideremos

$$\overrightarrow{f}_0|_{\overrightarrow{\mathcal{P}}_{f_0}^{\perp}} \colon \overrightarrow{\mathcal{P}}_{f_0}^{\perp} \to \overrightarrow{\mathcal{P}}_{f_0}^{\perp},$$

y calculemos

$$M(\overrightarrow{f}_0|_{\overrightarrow{\mathcal{P}}_{f_0}^{\perp}}, B) = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Finalmente queda $\theta = \pi/4$.

Discutamos ahora el caso $\alpha \neq 0$, en el que f_{α} es un movimiento helicoidal.

Los puntos del eje R de de f_{α} son

$$R = \{ p = (x, y, z) \in \mathbb{R}^3 \colon \overrightarrow{pf(p)} \in \operatorname{Ker}(\overrightarrow{f}_{\alpha} - \operatorname{Id}_{\mathbb{R}^3}) \}.$$

Como

$$\operatorname{Ker}(\overrightarrow{f}_{\alpha} - \operatorname{Id}_{\mathbb{R}^{3}}) = \{(x, y, z) \in \mathbb{R}^{3} : \begin{pmatrix} \frac{1}{\sqrt{2}} - 1 & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} - 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \} = L(\{(0, 1, 0)\}),$$

inferimos que

$$\begin{split} R &= \left\{ (x,y,z) \in \mathbb{R}^3 \colon \left(\left(\frac{1}{\sqrt{2}} - 1 \right) x - \frac{z}{\sqrt{2}}, \alpha, \frac{x}{\sqrt{2}} + \left(\frac{1}{\sqrt{2}} - 1 \right) z + \sqrt{2} \right) \in L(\{(0,1,0)\}) \right\} = \\ &= \left\{ (x,y,z) \in \mathbb{R}^3 \colon \left(\frac{1}{\sqrt{2}} - 1 \right) x - \frac{z}{\sqrt{2}} = \frac{x}{\sqrt{2}} + \left(\frac{1}{\sqrt{2}} - 1 \right) z + \sqrt{2} = 0 \right\} = \\ &= \left(\frac{1}{\sqrt{2} - 2}, 0, \frac{1}{\sqrt{2}} \right) + L(\{(0,1,0)\}). \end{split}$$

Obsérvese que

$$\overrightarrow{R}^{\perp} = L(\{(1,0,0),(0,0,1)\})$$

y fijemos la orientación que induce la base $B = \{(1,0,0),(0,0,1)\}$ como positiva en $\overrightarrow{R}^{\perp}$. Igual que antes, para determinar el ángulo orientado $\theta \in]0,2\pi[$ de f_{α} respecto de esta orientación fijada en R^{\perp} , consideremos

$$\overrightarrow{f}_{\alpha}|_{\overrightarrow{R}^{\perp}} \colon \overrightarrow{R}^{\perp} \to \overrightarrow{R}^{\perp},$$

y calculemos

$$M(\overrightarrow{f}_{\alpha}|_{\overrightarrow{R}^{\perp}}, B) = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

Finalmente queda $\theta = \pi/4$.

Por $\tilde{\mathbf{A}}^{\mathrm{o}}$ ltimo para determinar el vector de deslizamiento u_{α} de f_{α} elijamos un punto arbitrario de R, por ejemplo $p_0=(\frac{1}{\sqrt{2}-2},0,\frac{1}{\sqrt{2}})$, y calculemos

$$u_{\alpha} = \overrightarrow{p_0 f_{\alpha}(p_0)} = (0, \alpha, 0).$$

- 3. Sea $T = \{a_1, a_2, a_3\}$ un triángulo en un plano euclidiano $(\mathcal{A}, \overrightarrow{\mathcal{A}}, {}^{\rightarrow}, \langle , \rangle)$, y llamemos B a su baricentro, C a su circuncentro y O a su ortocentro. Probar que si los puntos a_1, B, C no están alineados entonces:
 - a) La recta afín $\langle \{a_2, a_3\} \rangle := a_2 + L(\{\overline{a_2a_3}\})$ está univocamente determinada por los puntos a_1, B, C, O .
 - b) El vértice $a_3 \in T$ está univocamente determinado por por los puntos a_1, a_2, B, C, O .

Como aplicación, dado $T = \{a_1, a_2, a_3\}$ triángulo en \mathbb{R}^2 con datos

$$a_1 = (1,0), \quad B = \frac{1}{6} \left(1 - \sqrt{2}, \sqrt{2} - \sqrt{3} \right), \quad C = (0,0), \quad O = \left(\frac{1}{2} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2} \right),$$

- determinar la recta afín $\langle \{a_2, a_3\} \rangle$,
- $y \ si \ además \ a_2 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), \ calcular \ el \ v\'ertice \ a_3.$

Respuesta:

Los puntos a_2, a_3 son desconocidos, pero sabemos quienes son a_1, B, C, O . Recordemos que el punto medio $m_{a_2a_3}$ del segmento $[a_2, a_3]$ está en la mediana M_{a_1} del vértice a_1 y en la mediatriz R_{a_1} del vértice a_1 , esto es

$$m_{a_2a_3} \in M_{a_1} = a_1 + L(\{\overrightarrow{a_1B}\}), \quad m_{a_2a_3} \in R_{a_1}.$$

Nuestra estrategia pasa por demostrar que $m_{a_2a_3}$ está determinado por los puntos a_1, B, C, O . En efecto, llamemos H_{a_1} a la altura del vértice a_1 y recordemos que por definición de altura, mediatriz y ortocentro tenemos que

$$\overrightarrow{H}_{a_1} = \overrightarrow{R}_{a_1} = L(\{\overrightarrow{a_2a_3}\})^{\perp} = L(\{\overrightarrow{a_1O}\}),$$

y como $C \in R_{a_1}$, también que

$$R_{a_1} = C + L(\{\overrightarrow{a_1O}\}).$$

La no alineación de los puntos a_1, B, C implica que M_{a_1}, R_{a_1} no pueden ser coincidentes, y por tanto han de ser secantes en el punto $m_{a_2a_3} \in M_{a_1} \cap R_{a_1}$. Resumiendo, el punto

$$\{m_{a_2a_3}\}=M_{a_1}\cap R_{a_1}=\left(C+L(\{\overrightarrow{a_1O}\})\right)\cap \left(a_1+L(\{\overrightarrow{a_1B}\})\right)$$

está determinado por los puntos a_1, B, C, O . De aquí que la recta

$$\langle \{a_2, a_3\} \rangle = m_{a_2 a_3} + L(\{\overrightarrow{a_2 a_3}\}) = m_{a_2 a_3} + L(\{\overrightarrow{a_1 O}\})^{\perp}$$

esté también determina por los puntos a_1, B, C, O como queríamos demostrar.

Si además conocemos a_2 , la fórmula $a_3 = a_2 + 2\overrightarrow{a_2m_{a_2a_3}}$ determina a_3 en función de a_1, B, C, O, a_2 .

Nota: Es interesante observar que es suficiente con conocer los puntos a_1, B, O para determinar la recta $\langle \{a_2, a_3\} \rangle$ (el circuncentro C es pues redundante), y sin necesidad de ninguna suposición sobre la alineación de a_1, B, C .

En efecto, recordemos que

$$B = o + \frac{1}{3}(\overrightarrow{oa_1} + \overrightarrow{oa_2} + \overrightarrow{oa_3}), \quad m_{a_2a_3} = o + \frac{1}{2}(\overrightarrow{oa_2} + \overrightarrow{oa_3})$$

para cualquier punto $o \in \mathcal{A}$. Eligiendo como punto auxiliar para el cálculo $o = a_1$, observamos que $\overrightarrow{a_1 m_{a2a3}} = \frac{1}{2}(\overrightarrow{a_1 a_2} + \overrightarrow{a_1 a_3}) = \frac{3}{2}\overrightarrow{a_1 B}$, por lo que el punto

$$m_{a_2 a_3} = a_1 + \frac{3}{2} \overrightarrow{a_1 B}$$

está determinado por a_1 y B. Como

$$\langle \{a_2, a_3\} \rangle = m_{a_2 a_3} + L(\{\overrightarrow{a_1 O}\})^{\perp},$$

la recta $\langle \{a_2, a_3\} \rangle$ está determinada por a_1, B, O como habíamos afirmado. Razonando como arriba, el vértice a_3 está igualmente determinado por a_1, a_2, B, O .

Para la parte práctica del ejercicio, consideremos $T = \{a_1, a_2, a_3\}$ un triángulo en \mathbb{R}^2 con datos

$$a_1 = (1,0), \quad B = \frac{1}{6} (1 - \sqrt{2}, \sqrt{2} - \sqrt{3}), \quad C = (0,0), \quad O = (\frac{1}{2} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2}),$$

La mediatriz de vértice a_1 es la recta

$$M_{a_1} = (1,0) + L\left\{\frac{1}{6}\left(-5 - \sqrt{2}, \sqrt{2} - \sqrt{3}\right)\right\}.$$

Como

$$\overrightarrow{a_1O} = \left(-\frac{1}{2} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2}\right)$$

entonces

$$R_{a_1} = C + L(\{\overrightarrow{a_1O}\}) = \left(-\frac{1}{2} - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2}\right)$$

Por tanto

$$m_{a2a3} = M_{a_1} \cap R_{a_1} = \frac{1}{4} (-\sqrt{2} - 1, \sqrt{2} - \sqrt{3}).$$

A la misma conclusión hubiésemos llegado usando directamente la fórmula $m_{a_2a_3} = a_1 + \frac{3}{2}\overrightarrow{a_1B}$ que explicamos en la Nota anterior.

Por tanto,

$$\langle \{a_2, a_3\} \rangle = m_{a_2 a_3} + L(\{\overrightarrow{a_1 O}\})^{\perp} = \frac{1}{4} \left(-\sqrt{2} - 1, \sqrt{2} - \sqrt{3} \right) + L\left\{ \left(\frac{1}{\sqrt{2}} - \frac{1}{2}, -\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \right) \right\}.$$

Si
$$a_2 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$
 entonces $a_3 = a_3 = a_2 + 2\overrightarrow{a_2m_{a_2a_3}} = (-\frac{1}{2}, -\frac{\sqrt{3}}{2}).$