

Report # 31851514.003

Day 0

Page 1 of 31

Electromagnetic Compatibility Test Report

Prepared in accordance with

FCC Part 15 Subpart B:2017

On

HSA-15

Prepared for:

Harman International Industries Incorporated 636 Ellis St Mountain View CA 94043

Prepared by:

TUV Rheinland of North America, Inc. 1279 Quarry Lane, Ste. A Pleasanton, CA 94566 U.S.A.

Report # 31851514.003

Rev. 0

Page 2 of 31

Revisions

Revision No.	Date	Reason for Change	Author
1	May 29, 2018	Original Document	N/A
	_		

Note: Latest revision report will replace all previous reports.

Report # 31851514.003

Rev. 0

Page 3 of 31

ATTESTATION OF TEST RESULTS						
Client:	Harman International Industries Incorp 633 Ellis St. Palo Alto, CA 94303 U.S.A			rated	Sireesha Mallipeddi Tel. (408) 318 8245	
Model Name:	HSA-15			Serio	ıl Number:	bd41b8ac
Model Numbers:	HSA-15	Date(s) Tested: April 12		e(s) Tested:	April 12, 2018	
Test Location:	1279 Quarry Pleasanton,	TUV Rheinland of North America 1279 Quarry Lane, Ste. A Pleasanton, CA 94566 U.S.A. Tel. (925) 249-9123				
Test Specifications:	Emissions:	ns: FCC Part 15 Subpart B:2017				
Test Specifications.	Immunity:	Immunity: N/A				
Test Result:	The abov	e product was found	d to be	Comp	liant to the	above test standard(s)
Prepared by: Isaac	Aguilar		Reviewed by: Arndt Stocker			
May 24, 2017 Date Name Signature			<u>Ma</u> Date	y 24, 2	017 Name	Signature
Other aspects:	None					
PLEASANTON						
US1131 Testing Cer		g Cert #3331.02	Econ	omic É Canada	Science and Developmen (ISED) 2M-1	11

Report # 31851514.003

Rev. 0

Page 4 of 31

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	5
	1.1 1.2 1.3	SCOPE	5
2	LA	BORATORY INFORMATION	7
	2.1 2.2 2.3 2.4 2.5	ACCREDITATIONS & ENDORSEMENTS TEST FACILITIES AND EMC SOFTWARE MEASUREMENT UNCERTAINTY CALIBRATION TRACEABILITY MEASUREMENT EQUIPMENT USED.	8 10 11
3	PR	ODUCT INFORMATION	13
	3.1 3.2 3.3 3.4	PRODUCT DESCRIPTION EQUIPMENT MODIFICATIONS TEST PLAN EXTERNAL PHOTOS	13 13
4	EM	USSIONS	17
	4.1 4.2	RADIATED EMISSIONS	
A	PPEN	DIX A	25
5	TES	ST PLAN	25
	5.1 5.2 5.3	GENERAL INFORMATION	25
	5.4 5.5 5.6	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	26 26
	5.7 5.8 5.9	EUT ELECTRICAL POWER INFORMATION	28
	5.10 5.11	NON - ELECTRICAL SUPPORT EQUIPMENT	29 29
	5.125.135.14	EUT TEST PROGRAM EUT MODES OF OPERATION MONITORING OF EUT DURING TESTING – N/A	29 29
	5.15 5.16	EUT CONFIGURATION	

Project #0000156908 Report # 31851514.003 Report Date: May 29, 2018

Page 5 of 31 Rev. 0

General Information

1.1 Scope

This report is intended to document the status of conformance with the listed standards based on the results of testing performed on April 12th 2018 Model: HSA-15, manufactured by Harman International Industries Incorporated. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 **Purpose**

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

Report # 31851514.003

Rev. 0

Page 6 of 31

1.3 Sur	1.3 Summary of Test Results				
Applicant	Harman International Industries Incorpated 633 Ellis St Mountain View CA 94043				
Contact	Sireesha Mallipeddi				
Tel.	+1 (408) 318 - 8245				
E-mail	N/a				
Description	OBD II Sensor				
Model Name	HSA-15				
Model Number	HSA-15				
Serial Number	bd41b8ac				
Input Power	12 VDC				
Test Date(s)	April 12 th s2018				
Environment	Nominal Voltage/Nominal Temperature				

Standards	Description	Severity Level or Limit	Criteria	Test Result
FCC Part 15 Subpart B:2017	Radiated Emissions	Class B 30 MHz - 18 GHz	Limit	Complies
FCC Part 15 Subpart B:2017	Conducted Emissions	Class B 150 kHz - 30 MHz	Limit	N/AError! Reference source not found.

Project #0000156908Report Date: May 29, 2018

Report # 31851514.003
Rev. 0

Page 7 of 31

Rev. 0

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 2305 5015 Brandin ct, Fremont CA 94538 are recognized by the Commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Pleasanton/Fremont Registration No. US1131). The laboratory Scopes of Accreditation include Title 47 CFR Parts 15, 18 and 90. The accreditations are updated every three years.

2.1.2 A2LA

TUV Rheinland of North America EMC test facilities are accredited by the American Association for Laboratory Accreditation (A2LA). The laboratories have been assessed and accredited by A2LA in accordance with ISO Standard 17025:2005 (Testing Certificate #3331.02). The Scope of Laboratory Accreditation includes emission and immunity testing. The accreditations are

updated annually.

2.1.3 Innovation, Science and Economic Development Canada (ISED)

*

Industry

Industrie Canada The Pleasanton 5-meter Semi-Anechoic Chamber, Registration No. 2932M-1, has been accepted by Industry Canada to perform testing to 3 and 5 meters

based on the test procedures described in ANSI C63.4-2009. The Santa Clara 10-meter Semi-Anechoic Chamber, Registration No. 2932D-1, has been accepted by Industry Canada to perform testing to 3 and 10 meters based on the test procedures described in ANSI C63.4-2009.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology

Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America EMC test facilities located at 1279 Quarry Lane, Ste. A, Pleasanton, CA, 94566, and 2305 Mission College Blvd, Ste. 105, Santa Clara, CA 95054, have been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0261

VCCI Registration No. for Santa Clara: A-0032

Project #0000156908Report Date: May 29, 2018

Report # 31851514.003

Rev. 0

31851514.003 Page 8 of 31

2.2 Test Facilities and EMC Software

Test facilities are located at 1279 Quarry Lane, Ste. A, Pleasanton, California 94566, U.S.A. and 5015 Brandin Ct, Fremont CA 94538 U.S.A. (Fremont is the Pleasanton Annex).

2.2.1 Emission Test Facility

The Semi-Anechoic Chambers and AC Line Conducted measurement facilities used to collect radiated and conducted emissions data have been constructed in accordance with ANSI C63.7:1992. The Fremont 10 meter semi-anechoic chamber has been measured in accordance with and verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04), at test distances of 3 and 10 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate #3331.02). The Pleasanton 5 meter semi-anechoic chamber has been verified to comply with the theoretical volumetric normalized site attenuation of ANSI C63.4:2009 and SVSWR requirements of CISPR 16-1-4 Consol. Ed. 3.0 (2010-04) at a test distance of 3 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by A2LA (Testing Certificate #3331.02).

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 3.7 m x 3.175 mm thick aluminum floor connected to PE ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. For each of the other tests, the HCP is removed.

RF Field Immunity testing is performed in a 10m semi-anechoic chamber with absorber added to floor.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.9 m x 3.7 m x 3.175 mm thick aluminum ground plane which is connected to one end of the anechoic chamber.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.2.3 EMC Software – Fremont

Manufacturer	Name	Version	Test Type
Hewlett-Packard	HP85876B	A.01.00 970825	Radiated & Conducted Emissions
EMISoft	Vasona	5.0	Radiated & Conducted Emissions
ETS-Lindgren	TILE	4.2.A	Radiated Emissions > 1 GHz

Report # 31851514.003

Rev. 0

Page 9 of 31

Manufacturer	Name	Version	Test Type	
ETS-Lindgren	TILE	V.3.4.K.22	Radiated & Conducted	
Haefely	WinFEAT	1.6.3	Immunity Surge	
Thermo Electron -	CEWare32	3.0	EFT/Surge/Voltage	
Keytek	CL Wares2	3.0	Dips & Interrupt	
Voltech	IEC61000-3	1.15.07RC	Harmonic & Flicker	

2.2.4 EMC Software - Pleasanton

Manufacturer Name		Version	Test Type
ETS-Lindgren	TILE	3.4.K.14 @ 4.0.A.5	Radiated & Conducted Emissions
EMISoft	Vasona	5.0	Radiated & Conducted Emissions
Agilent	Agilent MXE	A.11.02	Radiated & Conducted Emissions
ETS-Lindgren	TILE	3.4.K.14	Radiated & Conducted Immunity
Thermo Electron - Keytek	CEWare32	4.00	EFT/Surge/Voltage Dips & Interrupt
Voltech	IEC61000-3	1.21.07RC2	Harmonic & Flicker

Project #0000156908 Report # 31851514.003

Page 10 of 31 Report Date: May 29, 2018 Rev. 0

2.3 **Measurement Uncertainty**

Two types of measurement uncertainty are expressed in this report, per ISO Guide To The Expression Of Uncertainty In Measurement, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = RAW - AMP + CBL + ACF$

Where: $RAW = Measured level before correction (dB<math>\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

Report # 31851514.003

Rev O

Page 11 of 31

2.3.2 Measurement Uncertainty Emissions

Per CISPR 16-4-2	$\mathbf{U_{lab}}$	$ m U_{cispr}$			
Radiated Disturbance @ 10 meters					
30 – 1,000 MHz	2.25 dB	4.51 dB			
Radiated Disturbance @ 3 mete	ers				
30 – 1,000 MHz	2.26 dB	4.52 dB			
1 – 6 GHz	2.12 dB	4.25 dB			
6 – 18 GHz	2.47 dB	4.93 dB			
Conducted Disturbance @ Mains Terminals					
150 kHz – 30 MHz	1.09 dB	2.18 dB			
Disturbance Power					

Voltech PM6000A

The estimated combined standard uncertainty for harmonic current and flicked measurements is $\pm 5.0\%$.	Per CISPR 16-4-2
--	------------------

2.3.3 Measurement Uncertainty Immunity

The estimated expanded uncertainty for ESD immunity measurements is \pm 8.2%.	Per IEC 61000-4-2
The estimated expanded uncertainty for radiated immunity measurements is $\pm 4.10 \text{ dB}$.	Per IEC 61000-4-3
The estimated expanded uncertainty for EFT fast transient immunity measurements is \pm 5.84%.	Per IEC 61000-4-4
The estimated expanded uncertainty for surge immunity measurements is \pm 5.84 %.	Per IEC 61000-4-4
The estimated expanded uncertainty for conducted immunity measurements with CDN is \pm 3.66 dB	Per IEC 61000-4-6
The estimated expanded uncertainty for power frequency magnetic field immunity is \pm 11.6%.	Per IEC 61000-4-8
The estimated expanded uncertainty for voltage variation and interruption measurements is $\pm 3.48\%$.	Per IEC 61000-4-11

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

Report # 31851514.003

. 0

Page 12 of 31

Rev. 0

2.5 Measurement Equipment Used

E4	Manager	M. 1.1.4	C - 2 - 1/T 4 #	Last Cal	Next Cal	TT 4
Equipment	Manufacturer	Model #	Serial/Inst #	mm/dd/yy	mm/dd/yy	Test
EMI Receiver	Rohde & Schwarz	ESIB40	839283/005	01/16/2017	01/16/2018	CE
Transient Limiter	HP	11947A	2820A00154	01/16/2017	01/16/2018	CE
LISN	Com-Power	LI-215	12111	01/16/2017	01/16/2018	CE
EMI Receiver	Agilent	N9038A	MY52260210	01/16/2017	01/16/2018	RE
Preamplifier	Sonoma Instruments	310	185516	01/16/2017	01/16/2018	RE
Bilog Antenna	Sunol Sciences	JB3	A102606	06/15/2016	06/15/2018	RE
Signal Generator	HP	8648C	3642U01274	01/16/2017	01/16/2018	RI
Bilog Antenna	EMCO	3142	9701-1117	NCR	NCR	RI
Antenna, Horn	A.H. Systems	SAS-571	725	NCR	NCR	RI
Amp. System, , 10 kHz - 1 GHz, 500 W	IFI	SMX5005	K332-1106	NCR	NCR	RI
AR Wide Band Amplifier	AR	60S1G3	27207	NCR	NCR	RI
RF Power Meter	Agilent	E4418A	MY45103902	01/19/2017	01/19/2018	RI
Power Sensor	Agilent	8482A	US37292296	01/19/2017	01/19/2018	RI
Field Probe	Holaday	4455	104653	06/30/2016	06/30/2017	RI
ESD Simulator	Schaffner	NSG 435	005185 1437.215.204	01/20/2017	01/20/2018	ESD
EMC-Test System	TESEQ	NSG 3060	1437.215.204	01/19/2017	01/19/2018	EFT/SI/VDSI
Capacitive Clamp	Haefely	093506.1	082039-02	01/19/2016	01/19/2017	EFT
Signal Generator	HP	8656B	2630A4476	01/18/2016	01/18/2017	CI
RF Power Amplifier	IFI	404P	A017-0297	NCR	NCR	CI
Directional Coupler	Werlatone	C5086-10	38507	01/18/2017	01/18/2018	CI
6dB High Power Attenuator	Aeroflex/Weinschel	40-6-33	PZ638	01/18/2017	01/18/2018	CI
RF Power Meter	Agilent	E4418B	MY45103859	01/19/2017	01/19/2018	CI
Power Sensor	HP	8481A	US37295801	01/19/2017	01/19/2018	CI
CDN	FCC	FCC-801-M3-32A	06069	01/16/2017	01/16/2018	CI
Injection Probe	Fischer	F-120-9B	12	01/17/2017	01/17/2018	CI
Current Probe	Fischer	F-35	382	01/17/2017	01/17/2018	CI
Magnetic field generator	FCC	F1000-4-8-G-125 A	06025	CBU	VBU	MF
Mag Field Immunity Loop	FCC	F1000-4-8/9/10-L- 1M	06015	CBU	VBU	MF
Electromagnetic field meter	Walker Scientific	ELF-60D/66D	K72488050605	01/26/2017	01/26/2018	MF

Note: CE=Conducted Emissions, CI=Conducted Immunity, DP=Disturbance Power, EFT=Electrical Fast Transients, ESD=Electrostatic Discharge, FLI=Flicker, HAR=Harmonics, MF=Magnetic Field Immunity, NCR=No Calibration Required, RE=Radiated Emissions, RI=Radiated Immunity, SI=Surge Immunity, VDSI=Voltage Dips and Short Interruptions

Project #0000156908 Report # 31851514.003 Page 13 of 31
Report Date: May 29, 2018

3 Product Information

3.1 Product Description

See Section 6.4.

3.2 Equipment Modifications

None

3.3 Test Plan

The EUT product information, test configuration, mode of operation, test types, test procedures, test levels, pass/failure criteria, in this report were carried out per the product test plan located in Appendix A of this report.

3.4 External Photos

Figure 1: External Photo (Front)

Project #0000156908Report Date: May 29, 2018

Report # 5

Report # 31851514.003Rev. 0

Page 14 of 31

Figure 2: External Photo (Bottom)

Figure 3: External Photo (Side 1)

Report # 31851514.003

Rev. 0

Page 15 of 31

Figure 4: External Photo (Side 2)

Figure 5: External Photo (Side 3)

Report # 31851514.003

Rev. 0

Page 16 of 31

Figure 6: External Photo (side 4)

Report # 31851514.003

Rev. 0

Page 17 of 31

4 Emissions

4.1 Radiated Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

4.1.1 Overview of Test

Results	Complies (as tested]	per this re	eport)	Test Date(s)	s) April 12, 2018		
Standard	FCC Part 15 Subpart B:2017							
Model Number	HAS-15			Serial #	bd41b	8ac		
Configuration	See test plan for deta	ils.						
Test Setup	Tested in the 5-meter	Tested in the 5-meter chamber, placed on turntable: see test plan for details.						
EUT Powered By	12VDC							
Environmental Conditions	April 12, 2018	Temp	21° C	Humidity	34%	Pressure	1002 mbar	
	April 12, 2017	Temp	21° C	Humidity	34%	Pressure	1003 mbar	
Frequency Range	30 - 18000 MHz							
Perf. Criteria	Class B Perf. Verification R				Readi	Readings Under Limit		
Mod. to EUT	Refer to Section 3.2		Test Per	formed By	Isaac	Aguilar		

4.1.2 Test Procedure

Radiated emissions tests were performed using the procedures of ANSI C63.4:2014 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 30 - 18000 MHz was investigated for radiated emissions.

4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

4.1.4 Final Test

All final radiated emissions measurements were below the specification limits.

Report # 31851514.003

Rev. 0

Page 18 of 31

4.1.5 Plots

Report # 31851514.003

Rev. 0

Page 19 of 31

Report # 31851514.003

Rev. 0

Page 20 of 31

4.1.6 Final Tabulated Data – **30 - 1000** MHz

Frequency MHz	Raw dBµV/m	Cable Loss	AF dB	Level dBµ/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB
593.39781	51.05	3.35	-9	45.4	Quasi Max	V	138	107	46	-0.6
85.895313	57.29	2.5	-20.95	38.84	Quasi Max	Н	243	35	40	-1.16
57.080625	49.79	2.41	-20.87	31.33	Quasi Max	V	212	0	40	-8.67
41.865938	42.07	2.34	-15.29	29.12	Quasi Max	V	122	0	40	-10.88
148.42156	32.15	2.66	-15.64	19.17	Quasi Max	Н	147	179	43.5	-24.33
445.05156	27.11	3.16	-11.24	19.04	Quasi Max	Н	193	314	46	-26.96

Report # 31851514.003

Rev. 0

Page 21 of 31

4.1.7 Final Tabulated Data – Above 1 GHz

Frequency MHz	Raw dBµV/m	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB
4450.51	65.17	3.4	-19.12	49.45	Average Max	Н	236	8	54	-4.56
1631.74	69.36	2.06	-26.02	45.4	Average Max	V	242	152	54	-8.6
2966.95	63.55	2.8	-21.52	44.83	Average Max	Н	126	124	54	-9.17
5933.96	58.58	3.9	-17.67	44.81	Average Max	V	172	300	54	-9.19
1928.65	65.18	2.26	-24.08	43.36	Average Max	V	220	148	54	-10.65
1780.23	65.81	2.16	-24.76	43.21	Average Max	Н	103	152	54	-10.79
2077.04	62.92	2.3	-23.84	41.37	Average Max	Н	104	224	54	-12.63
2225.14	61.23	2.4	-23.75	39.88	Average Max	V	100	226	54	-14.12
17841.59	35.74	6.8	-3.69	38.85	Average Max	V	207	196	54	-15.15
1780.23	78.17	2.16	-24.76	55.56	Peak Max	Н	103	152	74	-18.44
4450.51	70.96	3.4	-19.12	55.24	Peak Max	Н	236	8	74	-18.76
2225.14	75.42	2.4	-23.75	54.07	Peak Max	V	100	226	74	-19.93
2077.04	75.59	2.3	-23.84	54.04	Peak Max	Н	104	224	74	-19.96
1928.65	75.69	2.26	-24.08	53.87	Peak Max	V	220	148	74	-20.13
3708.77	49.03	3.1	-19.41	32.72	Average Max	Н	248	112	54	-21.28
1631.74	75.74	2.06	-26.02	51.79	Peak Max	V	242	152	74	-22.21
5933.96	64.59	3.9	-17.67	50.82	Peak Max	V	172	300	74	-23.18
2966.95	69.37	2.8	-21.52	50.65	Peak Max	Н	126	124	74	-23.35
3708.77	66.79	3.1	-19.41	50.48	Peak Max	Н	248	112	74	-23.52
17841.59	47.13	6.8	-3.69	50.24	Peak Max	V	207	196	74	-23.76

Report # 31851514.003

Rev. 0

Page 22 of 31

4.1.8 Photos

Figure 2: 30 - 1000 MHz Radiated Emissions Test Setup - Front

Figure 3: 30 - 1000 MHz Radiated Emissions Test Setup – Back

Report # 31851514.003

Rev. 0

Page 23 of 31

Figure 4: Above 1 GHz Radiated Emissions Test Setup - Front

Figure 5: Above 1 GHz Radiated Emissions Test Setup – Back

Project #0000156908 Report # 31851514.003

Page 24 of 31 Report Date: May 29, 2018 Rev. 0

Conducted Emissions 4.2

This test measures the electromagnetic levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other nearby electronic equipment.

4.2.1 Final Test

N/A since source is DC power from a motor vehicle.

Report # 31851514.003

Rev. 0

Page 25 of 31

Appendix A

5 Test Plan

This test report is intended to follow this test plan outlined here in unless otherwise stated in this here report. The following test plan will give details on product information, standards to be used, test set ups and refer to TUV test procedures. The test procedures will give the steps to be taken when performing the stated test. The product information below came via client, product manual, product itself and or the internet.

5.1 General Information

Client	Suitable Technologies, Inc.		
Address	921 E. Charleston Road		
Address	Palo Alto, CA 94303 U.S.A		
Contact Person	Conrad Schapira		
Telephone	(650) 293-0545		
e-mail	cschapira@suitabletech.com		

5.2 EUT Designation

Model Name	HSA-15
Model Number(s)	HSA-15

5.3 EUT Description

Smart Presence System	n	

Project #0000156908 Report # 31851514.003 Report Date: May 29, 2018

Page 26 of 31

Equipment Under Test (EUT) Description 5.4

The HSA-15 OBD II Sensor is and OBD to monitor the statistics of a motor vehicle. The sensor contains radios which operate using the following technologies: WCDMA Bands 2/5, LTE Bands 2/4/5/12 and 802.11 b/g/n (only 20 MHz modulation).

5.5 **Product Environment(s)**

	Domestic/R	esidential	Hospital
	Light Indus	strial/Commercial	Small Clinic
	Industrial		Doctor's office
	Telecommunications Center		Other than Telecommunications Center
\boxtimes	Other	Motor Vehicle	

^{*}Check all that apply

Report # 31851514.003

Rev. 0

Page 27 of 31

Applicable Documents 5.6

Standards	Description
FCC Part 15 Subpart B:2017	Radiated Emissions
FCC Part 15 Subpart B:2017	Conducted Emissions

Report # 31851514.003

Doy 0

Page 28 of 31

5.7 EUT Electrical Power Information

Name	# of	Tymo	Type Input V		AC Voltage	Current	Power
Name	Phases	Туре	Min	Max	Frequency	Max.	1 Ower
Wall Charger	1 □ 3 □ None ⊠	AC □ DC □ Host □ Batteries □			to Hz	A	1
Battery	1 □ 3 □ None ⊠	AC □ DC ☒ Host □ Batteries □			NA	A	
Notes None							

5.8 EUT Clock/Oscillator Frequencies

Reference Designation	Speed (MHz)	Туре
Block Diagram	19.8 MHz	

5.8.1 Radiated Emissions, Upper Frequency

	Less than 108 MHz	Scan to 1 GHz
	Less than 500 MHz	Scan to 2 GHz
	Less than 1000 MHz	Scan to 5 GHz
\boxtimes	Greater than 1000 MHz	Scan to 5 th Harmonic or 40 GHz (whichever is lower)

Project #0000156908

Report # 31851514.003

Page 29 of 31 Report Date: May 29, 2018 Rev. 0

5.9 **Electrical Support Equipment**

Reference Designation	Manufacturer	Model	Serial Number	BSMI #
N/A				

5.10 Non - Electrical Support Equipment

Reference Designation	Manufacturer	Model	Serial Number or Description (e.g., Type of Gas or Liquid)
N/A			

5.11 **EUT Equipment/Cabling Information**

		Cable Type					
EUT Port	Connected To	Length (Meters)		lded / No		ead / No	
DC Power	Testing System Charger	>3		\boxtimes		\boxtimes	

5.12 **EUT Test Program**

N/A

5.13 **EUT Modes of Operation**

All radios in idle mode and EUT side 1 orientation.

5.14 Monitoring of EUT during Testing - N/A

A call will be established from the test computer running the beam client software to the test device. During the test the client application will display two video feeds from the devices cameras. This should be monitored for any interference or signal loss. Furthermore the 2 way audio can be monitored for any interference.

Since the connection from the computer to the Beam device is routed out to the internet and back there are chances that the call can experience interference from sources outside or beyond what is being tested ie. Internet bandwidth degradation.

In some cases of call loss or signal degradation, the test may need to be executed again.

Project #0000156908

Report # 31851514.003

Page 30 of 31 Report Date: May 29, 2018 Rev. 0

EUT Configuration 5.15

5.15.1 Description

Configuration	Description
1	All radios in idle mode
Notes None.	

5.16 Emissions

5.16.1 Radiated Emissions

5.16.1.1 Final Radiated Emissions Test Setup

Standard	FCC Part 15 Subpart B:2017		TUV Test Procedure			MS-0005192	
Limit	Class B	Emissions Verification Emi			Emissi	ssions Under Limit	
Frequency Range	30 - 18000 MHz						
Scan #1	30 – 1000 MHz at	Antenna Distance	1 3 m	Detector		Quasi Peak	
Scan #2	1 – 18 GHz	Antenna Distance	1 3 m	Detector		Average	
Configuration	See Section 6.15						
Notes	None						

Project #0000156908

Report # 31851514.003

Page 31 of 31 Report Date: May 29, 2018 Rev. 0

5.16.2 Conducted Emissions - N/A

5.16.2.1 Final Conducted Emissions Test Setup

Standard	FCC Part 15 Subpart B:2017	TUV Test Procedure	MS-0005180	
Limit(s)	Class B: Quasi Peak Average	Emissions Verification	Emissions Under Limit	
AC Mains Line	1 AC Line	LAN Cable(s)	NA	
Frequency Range	Class B 150 kHz - 30 MHz	Detectors	Quasi Peak Average	
Scan #1	100 Vac, 50 Hz	EUT Powered By	See Section 6.8	
Scan #2	110 Vac, 60 Hz	EUT Powered By	See Section 6.8	
Scan #3	220 Vac, 60 Hz	EUT Powered By	See Section 6.8	
Scan #4 230 Vac, 50 Hz EU		EUT Powered By	See Section 6.8	
Configuration	See Section 6.15			
Notes	Test Not Applicable sense device doesn't connect to AC Mains.			