AlphaGo

Mastering the game of Go with deep neural networks and tree search

By Ilan Godik

Background: Go history

- Created 3,000 years ago
- Considered as poetry and art.
- Taught at schools in Korea & Japan.

Background: Go in Al

- Huge branching factor: ~200 vs. ~20 in chess.
- Huge state space: 10¹⁷⁰ positions
- Hard to evaluate states
- Infamous in Al literature: Grand challenge, "at least 10 years until solved"
- Literature Pre-AlphaGo & Post-AlphaGo

Rules of Go

- Black starts
- 19x19 board
- Each player places a stone in his turn

Go: Rule #1

0 Liberties => Stone removed

Go: Rule #2

No repeating boards

Go: Winner

Stones + Territory

Perfect information Games

- Optimal value function: $v^*(s)$
 - Represents the winner under perfect play
- Can be obtained by exhaustive minimax search.
 - Infeasible

Solution: Reduce Depth

- 1. Reduce depth:
 - Approximate $v^*(s)$ with v(s)
 - Up until now: heuristics
 - Success in Chess, Checkers & Reversi
 - Go is to complex for human-curated heuristics
 - Called "Value Function"

Solution: Reduce Breadth

- 2. Reduce breadth:
- Sample from a probability distribution

- What nodes to explore
- Guiding rollouts

Solution: MCTS

- 3. MCTS: Monte Carlo Tree Search
- A solution to the multi-arm bandit problem
- Balance Exploration vs. Exploitation
- Average rollouts to the end of the game
 - Converges to $v^*(s)$
- Visited paths converge to optimal play

Previous attempts

Policies & Value functions were heuristic

Linear combinations of hand-crafted features

Deep Convolutional Neural Networks

- Huge success:
 - Image classification
 - Face recognition
 - Playing Atari games
- Many layers of neurons
- Overlapping patterns, convolutional layers
- Increasingly abstract & localized representation of the input

AlphaGo overview

- 1. Policy Networks
- 2. Value Network
- 3. MCTS
- 4. Distributed Computation & Time management

Policy Networks

- 1. Supervised Learning (SL) Policy Network P_{σ}
 - Trained by predicting expert games
- 2. Fast Policy Network P_{π}
 - For rollouts
- 3. Reinforcement Learning (RL) Policy Network P_{ρ}
 - Trained by playing against itself from P_{σ}

Value Network

- Learn the winner from the self-play games of P_{ρ}
 - (The Reinforcement Learning policy network)
 - Outputs a single scalar: $v_{\theta}(s)$

Policy & Value Networks

Training Overview

Supervised Learning Policy Network P_{σ}

- Learns $P_{\sigma}(a|s)$ for all valid moves a in state s.
 - The probability of a player to choose the move a
- Alternates between:
 - Convolutional layers
 - Rectified Linear Functions
- With a final layer of softmax
- Outputs probabilities for all legal moves a.

Supervised Learning Policy Network P_{σ}

- Trained by Stochastic Gradient Ascent
 - On random pairs (s,a) to $\underline{\text{maximize}}$ the likelihood that the human selected a in position s:

$$\Delta \sigma \propto \frac{\partial \log P_{\sigma}(a|s)}{\partial \sigma}$$

Supervised Learning Policy Network P_{σ}

- 13 Layer neural network
- Dataset: 30 Million games from the KGS Go Server
 - Augmented with Rotations & Reflections
- ~3 weeks to train on 50 GPUs

SL Policy Network: Features

- Features:
 - Stone colors
 - Liberties before & after
 - Number of stones captured
 - 3 other basic move properties

SL Policy Network Evaluation

- Accuracy in predicting player moves:
 - 57.0% success on all features
 - 55.7% success on board + move history only
- Improved the state-of-the-art of 44.4%

SL Policy Network Evaluation

Every percent gives HUGE playing power

Rollout Policy Network P_{π}

- Larger networks predict better,
 - But are slower to evaluate during search
- Rollout network $P_{\pi}(a|s)$ trained on small local features/heuristics
 - 24.2% accuracy
- Much faster:
 - $2\mu s$ to evaluate P_{π}
 - 3ms to evaluate P_{σ}

Reinforcement Learning Policy Network P_{ρ}

- Same structure as P_{σ} , initialized to the weights of P_{σ} .
- Plays against a random previous iteration of itself, to avoid overfitting to the last one.
- Play by sampling from the Policy Distribution P_{ρ}

Reinforcement Learning Policy Network P_{ρ}

- Reward function z_t :
 - +1 for winning
 - -1 for losing
- Update all weights by Stochastic Gradient Ascent:

•
$$\forall t. \ \Delta \rho \propto \frac{\partial \log P_{\rho}(a_t|s_t)}{\partial \rho} z_t$$

RL Policy Network P_{ρ} : Evaluation

- P_{ρ} won 80% of the time against P_{σ}
- Won 85% of games vs Open Source Go player Pachi
 - Amateur 2-dan, uses 100,000 simulations per move.
- Previous State-of-the-art Supervised Learning network won 11% of the time against Pachi.

Dan & Elo scale

+1 Dan ~ +230 Elo

+230 Elo wins 79% of the time ⇒ Exponential Scale

Reinforcement Learning Value Network v_{θ}

- Goal: Estimate $v^P(s)$
 - The mean of the outcome from \underline{s} by using the policy \underline{P} for both players.
 - If P is optimal play, $v^P(s) = v^*(s)$.

$$^{\bullet}v^{P}(s) = \mathbb{E}[z_{t}|s_{t} = s, a_{t,T} \sim P]$$

• Approximate $v^P(s)$ with $v_{\theta}(s)$.

Reinforcement Learning Value Network v_{θ}

- Network structure similar to the Policy Network P_{σ}
 - But outputs a single scalar.
- Train by regression on state-outcome pairs, (s, z) using Stochastic Gradient Descent to minimize the mean-squared-error between $v_{\theta}(s_t)$ and z_T

$$\Delta\theta \propto \frac{\partial v_{\theta}(s)}{\partial \theta} (z - v_{\theta}(s))$$

Value Network v_{θ} : Training

- Naïve training leads to overfitting
 - Successive boards very similar, with same result.
 - <u>Training</u>: MSE = 0.19

Test: MSE = 0.37

- Solution: Train on larger set, generated by self-play.
 - 1 State sampled per game.
 - <u>Training</u>: MSE = 0.226

Not much overfitting

Test: MSE = 0.234

Value Network v_{θ} : Quality

- $v_{ heta}$ was consistently more accurate than rollouts with P_{π}
- A single evaluation of v_{θ} approached the accuracy of rollouts with P_{ρ}
 - But with 15,000 times less computation

MCTS - Monte Carlo Tree Search

- Build an assymetric search tree
- Use more time on promising subtrees
- But explore too: maybe there is a hidden treasure somewhere.
- Proven to converge to true minimax value asymptotically

MCTS - Monte Carlo Tree Search

- Each edge contains:
 - 1. N(s,a) = # of visits to the edge
 - 2. $Q(s,a) = \text{Mean of } V(s_L^i)$ values of leafs in the subtree
 - 3. P(s, a) = Prior probability of choosing the move a
- u(s, a) = bonus for exploration

MCTS - Monte Carlo Tree Search

MCTS - Monte Carlo Tree Search

b Expansion

MCTS - Monte Carlo Tree Search

MCTS - Monte Carlo Tree Search

1. Selection:

Run from the root to a leaf by:

$$-argmax_a(Q(s,a) + u(s,a))$$

• Were u(s, a) is a bonus, which starts with P(s, a) and decays to 0 to encourage exploration.

$$u(s,a) \propto \frac{P(s,a)}{1+N(s,a)}$$

2. Expansion:

- Open valid moves a from a leaf s_L
- Process the leaf s_L by the Supervised Learning Policy Network P_σ
- Set the prior probabilities to the outputs:

$$P(s_t, a) = P_{\sigma}(a|s_t)$$

3. Evaluation:

- 1. By the Value Network $v_{\theta}(s_L)$
- 2. By the outcome z_L of a rollout by P_{π}
- 3. Mixed together linearly:

$$V(s_L) = (1 - \lambda)v_{\theta}(s_L) + \lambda z_L$$

• λ was chosen to be 0.5

- 4. Backup / Backpropagation:
 - Update N(s, a)
 - Update Q(s, a)
 - For all nodes in the path to the leaf

- 5. Final selection:
- Select action with most visits from the root.
 - More stable than best Q
 - Allocate more time until they agree

Notes:

- The SL Policy Network P_{σ} performed better for Prior Probabilities than the RL Network P_{ρ}
- The RL Policy Network P_{ρ} was used in training the Value Network v_{θ} , which estimates the strong play of P_{ρ} .
- This is because the SL Network gave more diverse probabilities, vs the RL Network, that was focused on the single best move.

AlphaGo Execution

- Distributed Execution:
- 1. Master CPU: The search tree
- 2. Slave CPUs: Rollouts
- 3. Slave GPUs: Value & Policy Networks
- Virtual loss: To prevent different threads traversing the same paths

AlphaGo Execution

- Time management:
 - Give more time for mid-game
- Ethics:
 - Resign if winning probability low (<20%)

AlphaGo performance

Discussion

- Beat Lee Sedol, 9-Dan Go player, world champion
 - 4/5 games
- Evaluated thousands of times less positions than DeepBlue
- No hand-crafted evaluation function

Discussion

- MCTS led to many advances in:
 - General Game Playing (GGP)
 - Planning
 - Scheduling
 - Constraint Satisfaction
 - Feature Selection
 - & Many more!

Discussion

- Al Grand Challenge Completed
- Starcraft next up!
 - Partial information
 - Continuous
 - Real-time

Resources

- Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.
- Browne, Cameron B., et al. "A survey of monte carlo tree search methods." Computational Intelligence and AI in Games, IEEE Transactions on 4.1 (2012): 1-43.
- Artificial Intelligence and The Future

Thank you!