min
$$(x_1-2)^2 + x_2$$

St. $x_3^2 \le x_2$
 $x_1 + x_2 \le 2$

$$g_1(\underline{x}) = x_1^2 - x_2$$

 $g_2(\underline{x}) = x_1 + x_2 - 2$

i) Draw the feasible region.

- ii) At which point of the feesible region CQ assumptions are datisfied? Both $g_1(x)$ and $g_2(x)$ are convex. Moreover $\exists x^*: g_1(x^*) < 0$ and $g_2(x^*) < 0$ for instance $x^* = \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} \longrightarrow g_1(x^*) = \frac{1}{4} 1 = -\frac{3}{4} < 0$ $g_2(x^*) = -2 < 0$
 - Thanks to Mater YX & feasible region is s.t. CQ holds
- iii) Give a statement for the first order opt. conditions.
- iv) Explain why the above conditions are necessary/sufficient
- V) Determine all coundidates points for the above conditions and identity the global optimal solution.

$$\begin{cases} \nabla f(\bar{x}) + \sum_{i \in I} u_i \nabla g_i(\bar{x}) = 0 \\ u_i g_i(\bar{x}) = 0 & \forall i \in I \\ g_i(\bar{x}) \leq 0 & \forall i \in I \\ u_i \geq 0 & \forall i \in I \end{cases}$$

$$\nabla f(\underline{x}) = \begin{bmatrix} z(x_1 - 2) \\ 1 \end{bmatrix}, \quad \nabla g_1(\underline{x}) = \begin{bmatrix} 2x_1 \\ -1 \end{bmatrix}, \quad \nabla g_2(\underline{y}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} z (x_1 - z) \\ 1 \end{bmatrix} + u_1 \begin{bmatrix} 2x_1 \\ -1 \end{bmatrix} + u_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

$$\Rightarrow \begin{cases} 2(x_1-2) + 2u_1x_1 + u_2 = 0 \\ 1 - u_1 + u_2 = 0 \end{cases} \qquad \Rightarrow \begin{cases} u_1(x_1^2 - x_2) = 0 \\ u_2(x_1 + x_2 - 2) = 0 \end{cases}$$

We can have 4 cases:

1.
$$u_1 = u_2 = 0$$
 -> Impossible because of 1-u1+u2=0

3.
$$u_1 = 0$$
, $u_2 > 0$ \Rightarrow impossible: $1 - u_1 + u_2 = 0 \Rightarrow u_2 = -1 \times 0$
4. $u_1 > 0$, $u_2 > 0$

2.
$$u_{170}$$
, $u_{2} = 0$:
 $1 - u_{1} = 0 \implies u_{1} = 1$
 $2(x_{1} - z) + z u_{1} = 0 \implies 2(x_{1} - z) + z = 0 \implies 2x_{1} = 2 \implies x_{1} = 1$
 $x_{1} + x_{2} - z = 0 \implies x_{2} = 1$
 $[x_{1}, x_{2}] = [1, 1]$ is acceptable with $[u_{1}, u_{2}] = [1, 0]$

$$\begin{cases} x_1^2 - x_2 = 0 \\ x_1 + x_2 - 2 = 0 \end{cases} \longrightarrow x_1^2 + x_1^2 - 2 = 0 \implies x_1 = \begin{cases} -2 \\ 1 \end{cases} \longrightarrow x_2 = \begin{cases} 4 \\ 1 \end{cases}$$

$$2(x_1-2) + 2u_1x_1 + u_2 = 0$$
 $\longrightarrow -8 - 4u_1 + u_2 = 0$
 $u_2 = u_1 - 1$ $\longrightarrow -8 - 4u_1 + u_1 - 1 = 0$
 $\longrightarrow -3u_1 - 9 = 0$ $\longrightarrow u_1 = -3$ not acc.

If
$$[x_1, x_2] = [1, 1]$$
:
 $2(x_1-2) + 2u_1x_1 + u_2 = 0 \implies -2 + 2u_1 + u_2 = 0$
 $\implies -2 + 2u_1 + u_1 - 1 = 0 \implies 3u_1 = 3 \implies u_1 = 1$, $u_2 = 0$ not acc.

vi) Write the hagnongian dual and indicate the connection between the primal problem and the dual problem.

$$L(\underline{x},\underline{u}) = (\underline{x}_1 - 2)^2 + \underline{x}_2 + \underline{u}_3(\underline{x}_1^2 - \underline{x}_2) + \underline{u}_2(\underline{x}_1 + \underline{x}_2 - 2)$$

$$W(\underline{u}) = \min_{\underline{x} \in \mathbb{R}^2} L(\underline{x},\underline{u})$$

Dual problem: max w(4)

[- notice that this is a convex problem ..]

min
$$x^2 + 4x + y^2 + 4y + 8$$

s.t. $x^2 + y^2 - 2 \le 0$
 $y-1 \le 0$

$$g_1(\underline{x}) = x^2 + y^2 - 2$$

$$g_2(\underline{x}) = y - 1$$

i) Drow the feasible region

ii) Poluts for CQ?

Both
$$g_1(\underline{x})$$
 and $g_2(\underline{x})$ are convex and $\exists \underline{x}^*: g_1(\underline{x}^*) < 0$ and $g_2(\underline{x}^*) < 0$ for instance $\underline{x}^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow g_1(\underline{x}^*) = -2 < 0$ $g_2(\underline{x}^*) = -1 < 0$

Thanks to Slater YXE teasible region is s.t. CQ holds

iii), iv) theorical tike 19/06/2020

V) Caudidate points?

$$\nabla f(\underline{x}) = \begin{bmatrix} 2x + 4 \\ 2y + 4 \end{bmatrix}$$
 $\nabla g_1(\underline{x}) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$ $\nabla g_2(\underline{x}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$\begin{cases} \nabla f(\bar{x}) + \sum_{i \in I} u_i \nabla g_i(\bar{x}) = Q \\ u_i g_i(\bar{x}) = Q & \forall i \\ g_i(\bar{x}) \leq Q & \forall i \\ u_i \geq Q & \forall i \end{cases}$$

$$\Rightarrow \begin{cases} 2x+4+2u_{1}x=0\\ 2y+4+2u_{1}y+u_{2}=0 \end{cases} \land \begin{cases} u_{1}(x^{2}+y^{2}-2)=0\\ u_{2}(y-1)=0 \end{cases}$$

Cases:

1.
$$u_1 = u_2 = 0$$

 $2x + 4 = 0$ \Rightarrow $\begin{cases} x = -2 \\ y = -2 \end{cases}$ not acceptable

2.
$$u_{1} > 0$$
, $u_{2} = 0$

$$\begin{cases}
2x + 4 + 2u_{1} \times = 0 \\
2y + 4 + 2u_{1} y = 0
\end{cases}$$

$$x = -\frac{2}{1 + u_{1}}, \quad y = -\frac{2}{1 + u_{1}}$$

$$x^{2} + y^{2} - z = 0 \implies \frac{4}{(1 + u_{1})^{2}} + \frac{4}{(1 + u_{1})^{2}} - 2 = 0$$

$$\Rightarrow 4 + 4 - z(u_{1} + 1)^{2} = 0$$

$$\Rightarrow 8 - zu_{1}^{2} - z - 4u_{1} = 0$$

$$\Rightarrow u_{1}^{2} + zu_{1} - 3 = 0 \implies u_{1/2} = -\frac{2 \pm \sqrt{4 + 4 \cdot 3}}{2} = -\frac{2 \pm \sqrt{4}}{2} = -\frac{2 \pm \sqrt{4}}{2}$$

$$u_{1} = 1 \implies [x, y] = [-1, -1]$$

$$u_{1} = 1 \implies [x, y] = [-1, -1]$$

3.
$$u_1 = 0$$
, $u_2 > 0$
 $2x + 4 = 0 \implies x = -2$
 $y - 1 = 0 \implies y = 1$
 $2y + 4 + u_2 = 0 \implies 2 + 4 + u_2 = 0 \implies u_2 = -6$ not occ.

4.
$$u_{1} > 0$$
, $u_{2} > 0$
 $y = 1$
 $x^{2} + 1 - 2 = 0 \implies x^{2} = 1 \implies x_{1/2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
 $\begin{bmatrix} x_{1}y \end{bmatrix} = \begin{bmatrix} 1,1 \end{bmatrix}$; $2(1) + 4 + 2u_{1}(1) = 0 \implies u_{1} = -3 \text{ not acc.}$
 $\begin{bmatrix} x_{1}y \end{bmatrix} = \begin{bmatrix} -1,1 \end{bmatrix}$; $-2 + 4 - 2u_{1} = 0 \implies u_{1} = 1$
 $2 + 4 + 2u_{1} + u_{2} = 0 \implies u_{2} = -8 \text{ uot acc.}$

(vi) langrangian and & [..]?

$$L(\underline{x},\underline{u}) = x^2 + 4x + y^2 + 4y + 8 + u_1(x^2 + y^2 - z) + u_2(y-1)$$

$$W(\underline{u}) = \min_{\underline{x} \in \mathbb{R}^2} L(\underline{x},\underline{u})$$

$$L(\underline{x},\underline{u}) = \max_{\underline{x} \in \mathbb{R}^2} L(\underline{x},\underline{u})$$

$$L(\underline{x},\underline{u}) = \max_{\underline{x} \in \mathbb{R}^2} L(\underline{x},\underline{u})$$

win Xz

S.t.
$$(x_1-1)^3 + (x_2-2) \le 0$$

 $(x_1-1)^3 - (x_2-2) \le 0$
 $x_1 \ge 0$

$$g_{1}(\underline{x}) = (x_{1}-1)^{3} + (x_{2}-2)$$

 $g_{2}(\underline{x}) = (x_{1}-1)^{3} - (x_{2}-2)$
 $g_{3}(\underline{x}) = -x_{1}$

i) Draw the feasible region and check the points for which CQ holds.

$$\nabla g_1(\underline{x}) = \begin{bmatrix} 3(x_1-1)^2 \\ 1 \end{bmatrix}$$

$$\nabla g_2(\underline{x}) = \begin{bmatrix} 3(x_1-1)^2 \\ -1 \end{bmatrix}$$

$$\nabla q_3(\underline{x}) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\nabla f(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\nabla g_1(x) \stackrel{?}{\coprod} \nabla g_2(x) : \begin{cases} a \ 3(x_1-1)^2 + b \ 3(x_2-1)^2 = 0 \end{cases} \xrightarrow{\chi_1 = 1} \chi_2 = 2 \text{ (the only one)}$$

 $[x_1, x_2] = [1, 2]$ does not satisfy the sufficient condition

 $\nabla g_1(\underline{x})$ ii $\nabla g_3(\underline{x})$; yes $\nabla g_2(\underline{x})$ ii $\nabla g_3(\underline{x})$; yes

What with $[x_1, x_2] = [1, 2]$? We check with the definition:

 $D(\bar{X}) = \{ [\alpha, 0] \mid \alpha \in \mathbb{R}^{-1} \}, \quad D(\bar{x}) = \{ [\alpha, 0] : \alpha \in \mathbb{R} \}$ (#)

-> the CQ holds everywhere but in [1]

(ii) State the opt. coud. Are they necessary/triticient?

KKT one necessary and not bufficient in a the problem is not convex.

$$\begin{cases} u_1 3(x_1-1)^2 + u_2 3(x_1-1)^2 - u_3 = 0 \\ 1 + u_1 - u_2 = 0 \end{cases} = 0$$

$$\begin{cases} u_1 (x_1-1)^3 + (x_2-2) = 0 \\ u_2 (x_1-1)^3 - (x_2-2) = 0 \\ u_3 (-x_1) = 0 \end{cases}$$

Couses:

1. $u_1 = u_2 = u_3 = 0$ \times 6. $u_1 = 0$, $u_2 > 0$, $u_3 > 0$

3. 4170, 4270, 43=0 7. 41=0, 42=0, 43 >0 X(4)

4. 4170, uz=0, u370 X(*) 8. 4170, u270, u370

3.
$$u_{1}>0$$
, $u_{2}>0$, $u_{3}=0$

$$u_{2}=1+u_{1}$$

$$(u_{1}+u_{2})(3(x_{1}-1)^{2})=0$$

$$\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ wot}$$

$$\text{ occeptable}$$
Since KKT wot valid

6.
$$u_1 = 0$$
, $u_2 \neq 0$, $u_3 = 0$
 $u_2 = 1$
 $x_1 = 1$ and acceptable
 $x_2 = 2$ kKT not valid

5.
$$u_1 = 0$$
, $u_2 = 70$, $u_3 = 70$
 $u_2 = 1$, $u_1 = 0$
 $(-1)^3 - (x_2 - 2) = 0 \implies x_2 = 1$
 $3 - u_3 = 0 \implies u_3 = 3$
 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ acceptable

8.
$$u_1 70$$
, $u_2 70$, $u_3 70$
 $x_4 = 0$
 $-1 + x_2 - z = 0$ | not feasible

iv) Write the lagrangian dual and [..].
$$L(\underline{x},\underline{u}) = \underline{x}_2 + u_1((\underline{x}_1-1)^3 + (\underline{x}_2-2)) + u_2((\underline{x}_1-1)^3 - (\underline{x}_2-2)) + u_3(-\underline{x}_1)$$

$$w(\underline{u}) = \min_{\underline{x} \in \mathbb{R}^2} L(\underline{x},\underline{u})$$

Dual problem: min w(4)

[.. this time the problem is not convex ...]

win
$$X_1 + X_2$$

s.t. $X_1^2 + X_2^2 \le 2$
 $X_2 > 0$

$$q_1(\underline{x}) = x_1^2 + x_2^2 - z$$

 $q_2(\underline{x}) = -x_2$

i) Feasible region and points for CQ?

Since both
$$g_1(\underline{x})$$
 and $g_2(\underline{x})$ are convex and $\underline{\exists}\underline{x}*: g_1(\underline{x}*)<0$ and $g_2(\underline{x}*)<0$ i.e. $\underline{x}*=\begin{bmatrix}0\\1\end{bmatrix} \xrightarrow{g_1(\underline{x}*)} g_1(\underline{x}*)=-1<0$

→ thanks to Slatar ∀x ∈ Feasible region is such that CQ holds.

ii) State the optimality would [...] and find all the countidate points.

$$\begin{cases}
\nabla f(\bar{x}) + \sum_{i \in I} u_i \nabla g_i(\bar{y}) = 0 \\
g_i(\bar{x}) \cdot u_i = 0 \quad \forall i \\
g_i(\bar{x}) \leq 0 \quad \forall i
\end{cases}$$

$$\nabla f(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \nabla g_1(x) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}, \quad \nabla g_2(x) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{cases} 1 + 2u_1x_1 = 0 \\ 1 + 2u_1x_2 - u_2 = 0 \end{cases}$$

$$\downarrow u_1(x_1^2 + x_2^2 - z) = 0$$

$$\downarrow u_2(x_2) = 0$$

Cares:

2.
$$u_{1} > 0, u_{2} = 0$$

 $X_{1} = -\frac{1}{2u_{1}} = X_{2}$
 $X_{1}^{2} + X_{2}^{2} - z = 0$
 $\Rightarrow 1 + 1 - 2(4u_{1}^{2}) = 0$
 $\Rightarrow 2 - 8u_{1}^{2} = 0$
 $\Rightarrow u_{1} = \frac{1}{2}$
 $X_{2} = -1 \Rightarrow \text{ not acc.}$

3.
$$u_1 = 0$$
, $u_2 > 0$
 $u_2 = 1$
 $x_2 = 0$
but $1 + ... = 0$ impossible

4. $u_1 > 0$, $u_2 > 0$ $x_2 = 0$ $x_1^2 = 2 \implies x_4 = \pm \sqrt{2}$ $1 - u_2 = 0 \implies u_2 = 1$ $x_1 = \sqrt{2} \implies 1 + 2\sqrt{2} u_4 = 0 \implies u_4 < 0 \text{ not } 2\alpha$. $x_1 = -\sqrt{2} \implies 1 - 2\sqrt{2} u_4 = 0 \implies u_4 = \frac{1}{2\sqrt{2}}$ $x_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\sqrt{2} \\ 0 \end{bmatrix}$; $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1/2\sqrt{2} \\ 1 \end{bmatrix}$ iii) Dual problem and properties [..]? $L(\underline{x},\underline{u}) = x_1 + x_2 + u_1(x_1^2 + x_2^2 - z) + u_2(-x_2)$ $W(\underline{u}) = \min_{\underline{x} \in \mathbb{R}^2} L(\underline{x},\underline{u})$

Oral problem: max W(4)

[... this is a convex problem ...]

min
$$(x_1+1)^2 + x_2$$

5.t. $-(x_1-1)^2 - x_2 \le -2$
 $x_1 > 0$

$$g_1(x) = -(x_1-1)^2 - x_2 + z$$

 $g_2(x) = -x_1$

$$\nabla q_1(\underline{x}) = \begin{bmatrix} -2(x_1-1) \\ -1 \end{bmatrix}$$
, $\nabla q_2(\underline{x}) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

$$\nabla g_1(x) \stackrel{?}{\coprod} \nabla g_2(x) : \begin{cases} -2a(x_1-1) - b = 0 \\ -a = 0 \end{cases}$$

they're linearly 1 + x

-> Ca holds everywhere in the feasible region

iv) caucholate points:

$$\nabla f(\underline{x}) = \begin{bmatrix} 2(x_1 + 1) \\ 1 \end{bmatrix}$$

$$\nabla f(\underline{x}) = \begin{bmatrix} 2(x_1+1) \\ 1 \end{bmatrix} \qquad \nabla g_1(\underline{x}) = \begin{bmatrix} -2(x_1-1) \\ -1 \end{bmatrix} \qquad \nabla g_2(\underline{x}) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\nabla g_{z}(x) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

2.
$$u_1 > 0$$
, $u_2 = 0$
 $u_1 = 1$
 $2(x_1 + 1) - 2(x_1 - 1) = 0$

$$2 + 2 - u_2 = 0 \implies u_2 = 4$$

$$L(\underline{x}_{1}\underline{u}) = (x_{1}+1)^{2} + x_{2} + u_{1}(-(x_{1}-1)^{2} - x_{2}+z) + u_{2}(-x_{4})$$

$$W(\underline{u}) = \min_{\underline{x} \in \underline{u}^{2}} L(\underline{x}, \underline{u})$$