CHAPTER 9

Affine transformations and complex numbers

Contents

6.1	\mathbb{C} and \mathbb{E}^2
	6.1.1 Lines
	6.1.2 Scalar product and oriented area
6.2	Affine transformations in dimension 2 2
	6.2.1 Translations, Reflections, Rotations
	6.2.2 Chasles' classification
6.3	Exercises

9.1 \mathbb{C} and \mathbb{E}^2

The field of complex numbers is a 2-dimensional real vector space with basis $(1, \mathbf{i})$. Choosing an orthonormal basis (\mathbf{u}, \mathbf{v}) for the Euclidean plane \mathbb{E}^2 we may identify it with \mathbb{R}^2

$$\mathbb{C} \leftrightarrow \mathbb{R}^2 \leftrightarrow \mathbb{E}^2$$
 with $a + bi \leftrightarrow (a, b) \leftrightarrow a\mathbf{u} + b\mathbf{v}$.

Using this identification and the additional algebraic structure of $\mathbb C$ we obtain a more flexible framework for 2-dimensional geometry.

9.1.1 Lines

Proposition 9.1. *The equation of a (real) line in* \mathbb{C} *is*

$$\overline{\alpha}\,\overline{z} + \alpha z + \beta = 0$$

with $\alpha \in \mathbb{C}^*$ and $\beta \in \mathbb{R}$.

Proof.

9.1.2 Scalar product and oriented area

From the identification $\mathbb{C} \cong \mathbb{E}^2$ and $\mathbb{C} \cong D(\mathbb{E}^2)$ it is easy to see that the scalar product can be expressed as

$$\langle z_1, z_2 \rangle = \frac{1}{2} (\overline{z_1} z_2 + z_1 \overline{z_2})$$

and the distance between two points is

$$d(z_1, z_2) = |z_1 - z_2| = \sqrt{\langle z_1 - z_2, z_1 - z_2 \rangle}.$$

Because of the identification, all known properties for the scalar product and the distance hold.

Clearly, since we are in dimension 2 we don't have a well defined vector product. However we do have the notion of oriented area. If we view \mathbb{E}^2 in \mathbb{E}^3 then, the norm of the vector product

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \cdot \|\mathbf{b}\| \cdot \sin \angle (\mathbf{a}, \mathbf{b})$$

is the oriented area of the parallelogram spanned by the vectors $\mathbf{a}, \mathbf{b} \in D(\mathbb{E}^2)$.

In \mathbb{C} , consider now the product

$$z_1 \wedge z_2 = \frac{1}{2} (\overline{z_1} z_2 - z_1 \overline{z_2})$$

Then

$$z_1 \wedge z_2 = \varepsilon \mathbf{i} |z_1| \cdot |z_2| \cdot \sin \angle (z_1, z_2) = \varepsilon \mathbf{i} \cdot ||z_1 \times z_2||.$$

Where the last equality is to be understood in \mathbb{E}^3 , and where

$$\varepsilon = \begin{cases} 1 & \text{if the basis } (z_1, z_2) \text{ is right oriented,} \\ -1 & \text{if the basis } (z_1, z_2) \text{ is left oriented.} \end{cases}$$

A relation between the two products is given by

$$\langle z_1, z_2 \rangle^2 + |z_1 \wedge z_2|^2 = |z_1|^2 \cdot |z_2|^2.$$

9.2 Affine transformations in dimension 2

9.2.1 Translations, Reflections, Rotations

It is clear what translations are, namely maps of the form

$$z \mapsto z + c$$

for some $c \in \mathbb{C}$. They are affine maps and they are isometries.

Next we consider *orthogonal reflections*. We have seen reflections along a certain affine subspace. Here we restrict to reflections in a line l along the orthogonal direction to l and denote them (as before) by Ref_l.

Proposition 9.2. For the line $l: \overline{\alpha}\overline{z} + \alpha z + \beta = 0$ the orthogonal reflection Ref₁: $\mathbb{C} \to \mathbb{C}$ is given by

$$\operatorname{Ref}_{l}(z) = -\frac{\overline{\alpha}}{\alpha}\overline{z} - \frac{\beta}{\alpha}.$$

Proof.

Next, Rotations. These are particularly easy to describe due to the geometric interpretation of multiplication in \mathbb{C} . The rotation of angle θ around z_0 is

$$\operatorname{Rot}_{z_0,\theta}:\mathbb{C}\to\mathbb{C}$$
, given by $\operatorname{Rot}_{z_0,\theta}(z)=\varepsilon(z-z_0)+z_0$

where $\varepsilon = \cos \theta + \mathbf{i} \sin \theta$, so $\theta = \arg \varepsilon$. Notice that for a map

$$f: z \mapsto az + b$$
, with $|a| = 1$ and $a \ne 1$,

the center of rotation is

$$z_0 = \frac{b}{1 - a}.$$

Proposition 9.3. *The composition of two rotations is a rotation or a translation.*

Proof.

Remark 9.4. Compositions of rotations with distinct centers is not commutative.

Retruning to isometries in general we can give a shorter proof of the following result.

Proposition 9.5. An isometry $f : \mathbb{C} \to \mathbb{C}$ is of the form

$$f(x) = az + b$$
 or $f(x) = a\overline{z} + b$

where $a, b \in \mathbb{C}$ and |a| = 1.

Proof. \Box

9.2.2 Chasles' classification

For a fixed point $z_0 \in \mathbb{C}$ and a $k \in \mathbb{R}^*$, the homothety with center z_0 and dilation factor k is

$$H_{z_0,k}:\mathbb{C}\to\mathbb{C}$$
, $H_{z_0,k}(z)=k(z-z_0)+z_0$.

Homotheties are also called *homogeneous dilations* since they are dilations of with the same dilation factor in all directions.

Remark 9.6. When $z_0 = \mathbf{0}$, the transformation is just multiplication by a non-zero scalar in subfield \mathbb{R} of \mathbb{C} .

Clearly if k = 1 then $H_{z_0,1} = \mathrm{Id}_{\mathbb{C}}$. If k = -1, then $H_{z_0,-1}(z) = 2z_0 - z$ is the reflection in the point z_0 .

Consider the maps $f,g:\mathbb{C}\to\mathbb{C}$ given by

$$f(z) = az + b \quad g(z) = a\overline{z} + b \tag{9.1}$$

for $a \in \mathbb{C}^*$ and $b \in \mathbb{C}$. We have seen in proposition 6.5 that if |a| = 1, then these are isometries. In general $(a \in \mathbb{C}^*)$ we can factor these transformations into products of translations, rotations, homotheties and reflections.

Theorem 9.7. For f in (6.1) the following statements hold

1. If $z_0 \in \mathbb{C}$ is a fixed by f then

$$f = H_{z_0,|a|} \circ \operatorname{Rot}_{z_0,\arg a}$$
.

2. If $z_0 \in \mathbb{C}$ is not fixed by f then

$$f = T_{v_0 - z_0} \circ H_{z_0, |a|} \circ \operatorname{Rot}_{z_0, \arg a} = H_{z', |a|} \circ \operatorname{Rot}_{z_0, \arg a}$$

were $v_0 = f(z_0)$ and $z'_0 = \frac{v_0 - |a| z_0}{1 - |a|}$.

Remark 9.8. A similar decomposition can be given for g in (6.1) (see [1, Theorem 3.8.24]).

Proof of theorem 6.7. □

9.3 Exercises

Exercise 1. Find the fixed points of the transformation $f: \mathbb{C} \to \mathbb{C}$ given by

- 1. $f(z) = 2i\overline{z} + 3 + i$
- 2. $f(z) = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\overline{z} \frac{\sqrt{3}}{3} + i$
- 3. $\left(\frac{1}{3} + \mathbf{i} \frac{2\sqrt{2}}{3}\right) \overline{z} + \mathbf{i}$
- 4. $f(z) = \overline{z} + 2 \mathbf{i}$
- 5. $f(z) = \overline{z} + 9i$
- 6. $f(z) = \overline{z}$

Exercise 2. Consider the lines

$$l_1: \overline{\alpha}_1 \overline{z} + \alpha_1 z + \beta_1 = 0$$
 and $l_2: \overline{\alpha}_2 \overline{z} + \alpha_2 z + \beta_2 = 0$.

Show that

- 1. $l_1 \parallel l_2$ if and only if $\frac{\overline{\alpha}_1}{\alpha_1} = \frac{\overline{\alpha}_2}{\alpha_2}$,
- 2. $l_1 \perp l_2$ if and only if $\frac{\overline{\alpha}_1}{\alpha_1} + \frac{\overline{\alpha}_2}{\alpha_2} = 0$.

Exercise 3. For a line $l: \overline{\alpha}\overline{z} + \alpha z + \beta = 0$ show that the line passing through $z_0 \in \mathbb{C}$ and orthogonal to l is

$$z - z_0 = \frac{\overline{\alpha}}{\alpha} (\overline{z} - \overline{z}_0).$$

Exercise 4. For a line $l: \overline{\alpha}\overline{z} + \alpha z + \beta = 0$ show that the orthogonal reflection $\operatorname{Ref}_l: \mathbb{C} \to \mathbb{C}$ is given by

$$\operatorname{Ref}_l(z) = -\frac{\overline{\alpha}}{\alpha}\overline{z} - \frac{\beta}{\alpha}.$$

Do this using the previous exercise and separately with the formulas for reflections deduced previously.

Further use this form of Ref_l to calculate $\operatorname{Ref}_l^2 = \operatorname{Ref}_l \circ \operatorname{Ref}_l$.

Exercise 5. Show that the lines invariant under homotheties $H_{z_0,k}$ are the lines passing through z_0 .

Exercise 6. Consider the homothety $H_{z_0,k}$. Show that the image of a line l which doesn't pass through z_0 is parallel to l and doesn't pass through z_0 .

Exercise 7. Show that the set of homotheties with center z_0 is a group isomorphic to (\mathbb{R}^*,\cdot) .

Bibliography

- [1] D. Andrica, Geometrie, Cluj-Napoca, 2017.
- [2] P.A. Blaga, Geometrie și grafică pe calculator note de curs, Cluj-Napoca, 2016.
- [3] M. Craioveanu, I.D. Albu, Geometrie afină și euclidiană, Timișoara, 1982.
- [4] GH. Galbură, F. Radó, Geometrie, București, 1979.
- [5] P. Michele, Géométrie notes de cours, Lausanne, 2016.
- [6] A. Paffenholz, Polyhedral Geometry and Linear Optimization, Darmstadt, 2013.
- [7] C.S. Pintea, Geometrie afină note de curs, Cluj-Napoca, 2017.
- [8] I.P. Popescu, Geometrie afină si euclidiană, Timișoara, 1984.
- [9] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culegere de probleme de geometrie, Cluj-Napoca, 1979.
- [10] M. Troyanov, Cours de géométrie, Lausanne, 2011.