Resolução da <u>Lista 5</u> da disciplina de Matemática Discreta

Feita por Guilherme de Abreu Barreto¹

3. Formas disjuntivas mínimas

1.

a.
$$\{\alpha = ab' + abc' + a'bc', \pi = ac' : \alpha = abc + ab'c' + abc' + a'bc' \}$$

Mapa de Karnaugh:

\	bc	bc'	b'c'	b'c
a		\checkmark	V	\checkmark
a'		V		

Logo,
$$\alpha = ab' + bc' : \pi \not\subset \alpha$$

b.
$$\{\alpha = ab + ab'c' + a'b'c', \pi = ab' : \alpha = abc + abc' + ab'c' + a'b'c' \}$$

\	bc	bc'	b'c'	b'c
a	V	\checkmark	V	
a'				V

Logo,
$$\alpha = ab + ac' + a'b'c$$
 $\therefore \pi \not\subset \alpha$

c.
$$\{\alpha = c + abc + abc', \pi = ab$$

 $\therefore \alpha = ab'c + a'bc + a'b'c + abc + abc'$

	bc	bc'	b'c'	b'c
a	V	\checkmark		\checkmark
a'	V			V

Logo,
$$\alpha = c + ab = c + \pi$$
 . . $\pi \subset \alpha$

d.
$$\{lpha=a'bc+ab'c+abc,\pi=abc:\pi\subsetlpha$$

2.

a.
$$\alpha = abc + abc' + a'c' + a'b'c + a'bc'$$

$$= abc + abc' + a'b'c' + a'b'c + a'bc'$$

São **duas** as possíveis formas disjuntivas mínimas:

$$\alpha = b'c' + a'b' + ab$$

$$\alpha = ab + ac' + a'b'$$

$$\mathbf{b.}\,\beta = ab + a'(b'+c') + bc' = \underline{ab + a'b' + a'c' + bc'} = abc + abc' + a'b'c + a'b'c' + a'bc'$$

São **duas** as possíveis formas disjuntivas mínimas:

$$\beta = a'b' + ac + ab$$

$$\beta = a'b' + b'c + ab$$

c.
$$\gamma=a+bc+a'b'c'=abc+abc'+ab'c+ab'c'+a'bc+a'b'c'$$

	bc	bc'	b'c'	b'c
a		\checkmark		\checkmark
a'	V		V	

$$\gamma = a + bc + b'c'$$

d.
$$\delta = abc' + ab'c + ab'c' + a'bc' + a'b'c$$

Existem duas formas disjuntivas mínimas possíveis:

$$\delta = ab' + bc' + b'c$$

$$\delta = ac' + bc' + b'c$$

e.
$$\eta = abc + abc' + ab'c' + a'b'c$$

	bc	bc'	b'c'	b'c
a	V	\checkmark		
a'				V

$$\eta = ab + ac' + a'b'c$$

f.
$$\mu=abc+abc'+ab'c+ab'c'+a'bc+a'bc'+a'b'c+a'b'c'$$

\	bc	bc'	b'c'	b'c
a	V	V		\
a'	V	V	\checkmark	

Existe apenas **uma** forma disjuntiva mínima possível:

$$\mu = 1$$

g.
$$\nu = ab + a'bc' + a'b'c = abc + abc' + a'bc' + a'b'c$$

\	bc	bc'	b'c'	b'c
a	V			
a'				

$$\therefore \nu = ab + bc' + a'b'c$$

h.
$$ho=ac+abc'+a'bc+a'b'c=abc+ab'c+abc'+a'bc+a'b'c$$

\	bc	bc'	b'c'	b'c
a	V		V	V
a'	V			

Existe apenas **uma** forma disjuntiva mínima possível:

$$\rho = ab' + c$$

3.

a.
$$lpha = \sum m(3,5,7,13,14,15) = 0011,0101,0111,1101,1110,1111$$

\	*00 (z'w') *	01 (z'w)	11 (zw)	10 (zw')
00 (x'y')			V	
01(x'y)		V	V	
11 (xy)		V	V	V
10 (xy')				

Existe apenas **uma** forma disjuntiva mínima possível:

$$\alpha(x, y, z, w) = yw + x'zw + xyz$$

b.
$$\beta = \sum m(3,4,5,6,7,8,12) = 0011,0100,0101,0110,0111,1000,1100$$

\	00 (z'w')	01 (z'w)	11 (zw)	10 (zw')
00 (x'y')			V	
01 (x'y)	V	V	V	V
11 (xy)	V			
10 (xy')	V			

Existe apenas **uma** forma disjuntiva mínima possível:

$$eta(x,y,z,w) = xz'w' + x'y + x'zw$$

c.
$$\gamma = \sum m(0,1,2,3,4,5,6,7) = 000,001,010,011,100,101,110,111$$

\	00 (y'z')	01 (y'z)	11 (yz)	10 (yz')
0 (x')	V	\checkmark	V	~
1 (x)	V	V	V	V

$$\gamma(x,y,z,w)=1$$

d.
$$\delta = \sum m(4,6,8,10,13,14) = 0100,0110,1000,1010,1101,1110$$

\	00 (z'w')	01 (z'w)	11 (zw)	10 (zw')
00 (x'y')				
01 (x'y)	V			
11 (xy)		V		V
10 (x'y)	V			V

Existem **duas** formas disjuntivas mínimas possíveis:

$$\delta(x,y,z,w) = xyz'w + xy'w' + x'yw' + yzw'$$

$$\delta(x,y,z,w)=xyz'w+xy'w'+x'yw'+xzw'$$
 e. $\eta=\sum m(1,2,3,4,6,9)=0001,0010,0011,0100,0110,1001$

\	00 (z'w')	01 (z'w)	11 (zw)	10 (zw')
00 (x'y')		V	V	
01 (x'y)	V			V
11 (xy)				
10 (xy')		V		

Existem **duas** formas disjuntivas mínimas possíveis:

 $\eta(x,y,z,w) = x'yw' + x'y'z + y'z'w$

$$\eta(x,y,z,w) = x'yw' + x'y'w + x'zw' + y'z'w$$

f.
$$\mu = \sum m(0,1,2,4,8) = 0000,0001,0010,0100,1000$$

\	00 (z'w')	01 (z'w)	11 (zw)	10 (zw')
00 (x'y')	V	V		V
01 (x'y)	V			
11 (xy)				
10 (xy')	V			

Existe apenas **uma** forma disjuntiva mínima possível:

$$\mu(x,y,z,w)=y'z'w'+x'y'w'+x'y'z'+x'z'w'$$

4.

$$\mathbf{a.}~ab'+c$$

b.
$$ab + b'c' + a'b'$$

c.
$$bc + a'b + ab'$$

$$\mathbf{d}. a' + c$$

5.

a.
$$a'c + abc + ac'd' + a'b'$$

b.
$$a'cd + b'cd' + ab'd' + abc'd$$

c.
$$a'c + a'd' + cd' + ab'c'$$

d.
$$bc + ab' + b'c'$$

1. nUSP: 12543033; Turma 04

4