# A Project Report On "Airline Fare Prediction"

#### Prepared by

MITI NAYAK (17DCS034) DHRUMIL PATEL(17DCS040) JAHNAVI SHAH (17DCS058)

Under the guidance of Assistant Prof. Phenil Buch

A Report Submitted to
Charotar University of Science and Technology
for Partial Fulfillment of the Requirements for the
7<sup>th</sup> Semester Data Science And Analytics Project (CS442)
Submitted at



(CSE)

**DEPSTAR** 

At: Changa, Dist: Anand – 388421 Oct 2020



This is to certify that the report entitled "Airline Fare Prediction" is a bonafied work carried out by Ms. Miti Nayak (17DCS034) under the guidance and supervision of Assistant Prof. Phenil Buch for the subject CS442 Data Science And Analytics (CSE) of 7<sup>th</sup> Semester of Bachelor of Technology in DEPSTAR at Faculty of Technology & Engineering – CHARUSAT, Gujarat.

To the best of my knowledge and belief, this work embodies the work of candidate himself, has duly been completed, and fulfills the requirement of the ordinance relating to the B.Tech. Degree of the University and is up to the standard in respect of content, presentation and language for being referred to the examiner.

Phenil Buch Prof. Parth Goel
Assistant Professor HOD
Branch Name(CE/CSE/IT) Branch Name(CE/CSE/IT)
DEPSTAR, Changa, Gujarat. DEPSTAR, Changa, Gujarat

Dr. Amit Ganatra Principal, DEPSTAR Dean, FTE CHARUSAT, Changa, Gujarat.

Devang Patel Institute of Advance Technology And Research At: Changa, Ta. Petlad, Dist.

Anand, PIN: 388 421. Gujarat



This is to certify that the report entitled "Airline Fare Prediction" is a bonafied work carried out by Ms. Jahnavi Shah (17DCS058) under the guidance and supervision of Assistant Prof. Phenil Buch for the subject CS442 Data Science And Analytics (CSE) of 7<sup>th</sup> Semester of Bachelor of Technology in DEPSTAR at Faculty of Technology & Engineering – CHARUSAT, Gujarat.

To the best of my knowledge and belief, this work embodies the work of candidate himself, has duly been completed, and fulfills the requirement of the ordinance relating to the B.Tech. Degree of the University and is up to the standard in respect of content, presentation and language for being referred to the examiner.

Phenil Buch Assistant Professor Branch Name(CE/CSE/IT) DEPSTAR, Changa, Gujarat. Prof. Parth Goel HOD Branch Name(CE/CSE/IT) DEPSTAR, Changa, Gujarat

Dr. Amit Ganatra Principal, DEPSTAR Dean, FTE CHARUSAT, Changa, Gujarat.

Devang Patel Institute of Advance Technology And Research At: Changa, Ta. Petlad, Dist.

Anand, PIN: 388 421. Gujarat



This is to certify that the report entitled "Airline Fare Prediction" is a bonafied work carried out by Mr. Dhrumil Patel (17DCS040) under the guidance and supervision of Assistant Prof. Phenil Buch for the subject CS442 Data Science And Analytics (CSE) of 7<sup>th</sup> Semester of Bachelor of Technology in DEPSTAR at Faculty of Technology & Engineering – CHARUSAT, Gujarat.

To the best of my knowledge and belief, this work embodies the work of candidate himself, has duly been completed, and fulfills the requirement of the ordinance relating to the B.Tech. Degree of the University and is up to the standard in respect of content, presentation and language for being referred to the examiner.

Phenil Buch
Assistant Professor
Branch Name(CE/CSE/IT)
DEPSTAR, Changa, Gujarat.

Prof. Parth Goel
HOD
Branch Name(CE/CSE/IT)
DEPSTAR, Changa, Gujarat

Dr. Amit Ganatra Principal, DEPSTAR Dean, FTE CHARUSAT, Changa, Gujarat.

Devang Patel Institute of Advance Technology And Research At: Changa, Ta. Petlad, Dist.

Anand, PIN: 388 421. Gujarat

#### **ACKNOWLEDGEMENT**

We have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals and organizations. I would like to extend my sincere thanks to all of them.

I am highly indebted to Asst Prof. Phenil Buch for their guidance and constant supervision as well as for providing necessary information regarding the project & also for their support in completing the project.

I would like to express my gratitude towards member of DEPSTAR for their kind cooperation and encouragement which help me in completion of this project.

#### **ABSTRACT**

The airline implements dynamic pricing for the flight ticket. According to the survey, flight ticket prices change during the morning and evening time of the day. Also, it changes with the holidays or festival season. There are several different factors on which the price of the flight ticket depends. The seller has information about all the factors, but buyers are able to access limited information only which is not enough to predict the airfare prices.

Considering the features such as departure time, the number of days left for departure and time of the day it will give the best time to buy the ticket. The purpose of the paper is to study the factors which influence the fluctuations in the airfare prices and how they are related to the change in the prices. Then using this information, build a system that can help buyers whether to buy a ticket or not.

# LIST OF FIGURES

| Fig 5.1 User case diagram | 12 |
|---------------------------|----|
| Fig 5.2 Data Flow diagram | 13 |
| Fig 5.3 Sequence diagram  | 14 |

# TABLE OF CONTENTS

| Acknowledgement                                              | viii  |
|--------------------------------------------------------------|-------|
| Abstract                                                     | viii  |
| List of Figure                                               | viii  |
| Chapter 1 Introduction                                       | 1     |
| 1.1 Project Definition                                       | 2     |
| Chapter 2 Description                                        | 3     |
| 2.1 Data Collection.                                         |       |
| 2.2 Data Preprocessing                                       |       |
| 2.3 Model                                                    |       |
| Chapter 3 Systems Requirements Study                         | 7     |
| 3.1 User Characteristics                                     | 8     |
| 3.2 Hardware Requirements                                    | 8     |
| 3.3 Software Requirements                                    | 8     |
| Chapter 4 System Analysis and Requirements                   | 9     |
| 4.1 Study of Current Analysis                                | 10    |
| 4.2 Functional and Non-Functional Requirements               | 10    |
| Chapter 5 Diagrams                                           | 11    |
| 5.1 Diagrams                                                 | 12    |
| Chapter 6 Screen Shots                                       | 15    |
| 6.1 Screen shots                                             | 16    |
| Chapter 7 Practical Outcome                                  | 18    |
| 7.1 Practical Outcome.                                       | 19    |
| Chapter 8 Limitations and Future Enhancement 8.1 Limitations |       |
| 8.2 Future Enhancement                                       | 21    |
| Chapter 9 References                                         | 22-23 |

| CS442 Data Science And Analytics | 17dcs034, 17dcs040,17dcs058 |
|----------------------------------|-----------------------------|
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  | D 4                         |
| CHAPTEI                          | K 1                         |
| INTRODUC                         | CTION                       |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
| Page 1                           |                             |

#### 1.1PROJECT DEFINITON

Flight ticket prices can be something hard to guess, today we might see a price, check out the price of the same flight tomorrow, it will be a different story. We might have often heard travelers saying that flight ticket prices are so unpredictable. Almost all airline companies base their ticket price on demand estimation models and implement various dynamic pricing strategies in order to regulate seats demand and maximize their revenue. These corporations are said to use some proprietary software to evaluate ticket price per seat on a given day for a particular flight but the algorithms used are guarded with commercial secrets. These companies usually tie up with various online ticket sale channels (yatra.com, makemytrip.com, paytm.com) which maintains real time data on ticket price and constantly updates this price per seat over time. These channels are usually available over the internet where the traveler can book the ticket conveniently paying some convenience charges. This constant updating of prices results in high fluctuation which often confuses consumers as to when book their flight tickets to get best of the deals. This project deal with prediction of the best prices for the customers as they are the most affected due to the fluctuation in ticket price. So in this project we are using various machine learning model analyzing them and finding the most suitable one. Then the prediction for the given dataset is carried out.

| CS442 Data Science And Analytics       | 17dcs034, 17dcs040,17dcs058 |  |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|--|--|--|
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
| CHAPTER                                | 2                           |  |  |  |  |  |  |  |  |  |  |  |
| DESCRIPTION                            |                             |  |  |  |  |  |  |  |  |  |  |  |
| DESCRII I                              |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
|                                        |                             |  |  |  |  |  |  |  |  |  |  |  |
| —————————————————————————————————————— |                             |  |  |  |  |  |  |  |  |  |  |  |

#### 2.1 Data Collection

Data Collection is one of the most important aspect of this project. There are various sources of airfare data on the Web, which we could use to train our models. A multitude of consumer travel sites supply fare information for multiple routes, times, and airlines. We are using the Excel dataset which have all the attributes required for the correct prediction of the value.

Now an important aspect is to decide the parameters that might be needed for the flight prediction algorithm.

| 4  | Α           | В               | С        | D           | E                                     | F        | G            | Н        | 1           | J                          | K     |
|----|-------------|-----------------|----------|-------------|---------------------------------------|----------|--------------|----------|-------------|----------------------------|-------|
| 1  | Airline     | Date_of_Journey | Source   | Destination | Route                                 | Dep_Time | Arrival_Time | Duration | Total_Stops | Additional_Info            | Price |
| 2  | IndiGo      | 24/03/2019      | Banglore | New Delhi   | $BLR \rightarrow DEL$                 | 22:20    | 01:10 22 Mar | 2h 50m   | non-stop    | No info                    | 3897  |
| 3  | Air India   | 1/05/2019       | Kolkata  | Banglore    | $CCU \rightarrow IXR \rightarrow BBI$ | 05:50    | 13:15        | 7h 25m   | 2 stops     | No info                    | 7662  |
| 4  | Jet Airway  | 9/06/2019       | Delhi    | Cochin      | $DEL \rightarrow LKO \rightarrow BOM$ | 09:25    | 04:25 10 Jun | 19h      | 2 stops     | No info                    | 13882 |
| 5  | IndiGo      | 12/05/2019      | Kolkata  | Banglore    | $CCU \rightarrow NAG \rightarrow BL$  | 18:05    | 23:30        | 5h 25m   | 1 stop      | No info                    | 6218  |
| 6  | IndiGo      | 01/03/2019      | Banglore | New Delhi   | $BLR \rightarrow NAG \rightarrow DEI$ | 16:50    | 21:35        | 4h 45m   | 1 stop      | No info                    | 13302 |
| 7  | SpiceJet    | 24/06/2019      | Kolkata  | Banglore    | CCU → BLR                             | 09:00    | 11:25        | 2h 25m   | non-stop    | No info                    | 3873  |
| 8  | Jet Airway  | 12/03/2019      | Banglore | New Delhi   | $BLR \rightarrow BOM \rightarrow DE$  | 18:55    | 10:25 13 Mar | 15h 30m  | 1 stop      | In-flight meal not include | 11087 |
| 9  | Jet Airway  | 01/03/2019      | Banglore | New Delhi   | $BLR \rightarrow BOM \rightarrow DE$  | 08:00    | 05:05 02 Mar | 21h 5m   | 1 stop      | No info                    | 22270 |
| 10 | Jet Airway  | 12/03/2019      | Banglore | New Delhi   | $BLR \rightarrow BOM \rightarrow DE$  | 08:55    | 10:25 13 Mar | 25h 30m  | 1 stop      | In-flight meal not include | 11087 |
| 11 | Multiple ca | 27/05/2019      | Delhi    | Cochin      | $DEL \rightarrow BOM \rightarrow CC$  | 11:25    | 19:15        | 7h 50m   | 1 stop      | No info                    | 8625  |
| 12 | Air India   | 1/06/2019       | Delhi    | Cochin      | $DEL \rightarrow BLR \rightarrow COK$ | 09:45    | 23:00        | 13h 15m  | 1 stop      | No info                    | 8907  |
| 13 | IndiGo      | 18/04/2019      | Kolkata  | Banglore    | CCU → BLR                             | 20:20    | 22:55        | 2h 35m   | non-stop    | No info                    | 4174  |
| 14 | Air India   | 24/06/2019      | Chennai  | Kolkata     | MAA → CCU                             | 11:40    | 13:55        | 2h 15m   | non-stop    | No info                    | 4667  |
| 15 | Jet Airway  | 9/05/2019       | Kolkata  | Banglore    | $CCU \rightarrow BOM \rightarrow BL$  | 21:10    | 09:20 10 May | 12h 10m  | 1 stop      | In-flight meal not include | 9663  |
| 16 | IndiGo      | 24/04/2019      | Kolkata  | Banglore    | CCU → BLR                             | 17:15    | 19:50        | 2h 35m   | non-stop    | No info                    | 4804  |
| 17 | Air India   | 3/03/2019       | Delhi    | Cochin      | $DEL \rightarrow AMD \rightarrow BO$  | 16:40    | 19:15 04 Mar | 26h 35m  | 2 stops     | No info                    | 14011 |
| 18 | SpiceJet    | 15/04/2019      | Delhi    | Cochin      | $DEL \rightarrow PNQ \rightarrow CO$  | 08:45    | 13:15        | 4h 30m   | 1 stop      | No info                    | 5830  |
| 19 | Jet Airway  | 12/06/2019      | Delhi    | Cochin      | $DEL \rightarrow BOM \rightarrow CC$  | 14:00    | 12:35 13 Jun | 22h 35m  | 1 stop      | In-flight meal not include | 10262 |
| 20 | Air India   | 12/06/2019      | Delhi    | Cochin      | DEL → CCU → BO                        | 20:15    | 19:15 13 Jun | 23h      | 2 stops     | No info                    | 13381 |
| 21 | Jet Airway  | 27/05/2019      | Delhi    | Cochin      | $DEL \rightarrow BOM \rightarrow CC$  | 16:00    | 12:35 28 May | 20h 35m  | 1 stop      | In-flight meal not include | 12898 |
| 22 | GoAir       | 6/03/2019       | Delhi    | Cochin      | $DEL \rightarrow BOM \rightarrow CC$  | 14:10    | 19:20        | 5h 10m   | 1 stop      | No info                    | 19495 |

#### 2.2 Data Preparation

All the collected data needed a lot of work so after the collection of data, it is needed to be clean and prepare according to the model requirements. All the unnecessary data is removed like duplicates and null values. In all machine learning this technology, this is the most important and time consuming step. Various statistical techniques and logic built in python are used to clean and prepare the data.

#### Append

Appending of the data set is done to work together with both train and test at a same time and don't have to make changes separately. After we apply the transformation then we can separate them again into test and train

#### • Feature Engineering

Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data. Feature engineering turn inputs into things the algorithm can understand.

#### Converting Categorical into Integer values

Many machine learning tools will only accept numbers as input. This may be a problem if you want to use such tool but your data includes categorical features. To convert categorical text data into model-understandable numerical data, we use the Label Encoder class. So all we have to do, to label encode a column is import the Label Encoder class from the sklearn library, fit and transform the column of the data, and then replace the existing text data with the new encoded data.

#### • Missing Value Validation

Missing data treatment is very important to avoid biased results. Generally, missing data in training data set can reduce the power of the model which can lead to wrong classification/prediction.

#### • Split into Test Set and Train Set

The data we use is usually split into training data and test data. The training set contains a known output and the model learns on this data in order to be generalized to other data later on. We have the test dataset (or subset) in order to test our model's prediction on this subset.

#### 2.3 Our Model

To develop the model for the flight price prediction, many conventional machine learning algorithms are evaluated.

| Algorithm         | RMS       |
|-------------------|-----------|
| Linear Regression | 3238.316  |
| Ridge Regression  | 3238.153  |
| Lasso Regression  | 3238.3169 |
| Light GBM         | 1395.095  |

#### • Comparative Analysis

From the above different Regression Technique we can see Light GBM is performing really good in regards to all .Finally we will use this to predict our test data.

| CS442 Data Science A | And Analy | /tics |
|----------------------|-----------|-------|
|----------------------|-----------|-------|

17dcs034, 17dcs040,17dcs058

# CHAPTER 3 SYSTEM REQUIRNMENT STUDY

#### 3.1 User Characteristics

User should know how to run a program .The user should know how to respond to the code.

#### 3.2 Hardware Requirements

Processor: Intel dual core or aboveProcessor Speed:1.0GHZ or above

o RAM: 2 GB RAM or above

o Hard Disk: 10 GB hard disk or above

#### 3.3 Software Requirements

The computer should have Windows operating system. Software used is Google Collaboratory.

| CS442 Data Science And Analytics | 17dcs034, 17dcs040,17dcs058 |  |  |  |  |  |
|----------------------------------|-----------------------------|--|--|--|--|--|
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
| CHAPT                            | ER 4                        |  |  |  |  |  |
| SYSTEM A                         | VAI VSIS                    |  |  |  |  |  |
| SISIEM III                       |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
|                                  |                             |  |  |  |  |  |
| Page 9                           |                             |  |  |  |  |  |

#### 4.1 Functional and Non-Functional Requirements

#### • Functional Requirements—

- Customer should be able to search flights for a specific date for one-way trips.
- Customer should be able to search flights for specific dates for round trips.
- Customer should be able to search flights for multiple destinations.
- Customer should be able to manually enter the names of departure and arrival cities.
- Customer should be able to sort the list of possible flights by price.
- Customer should be able to sort the list of possible flights by flight duration.
- System should allow a customer to specify only departure date for one-way trips.
- System should allow a customer to specify both departure and arrival dates for round trips.
- System should provide the list of possible flights matching criterion of user inputs.

#### **Other Non-functional Requirements:**

#### **Performance Requirements**

- The system shall accommodate high number of items and users without any fault.
- Responses to view information shall take no longer than 5 seconds to appear on the screen.

#### **Safety Requirements**

• System use shall not cause any harm to human users.

#### **Security Requirements**

- System will use secured database.
- Normal users can just read information but they cannot edit or modify anything expect their personal and some other information.
- System will have different types of users and every user has access constraints.

#### **Error handling**

• System shall handle expected and non expected errors in ways that prevent loss in information and long downtime period.



## **Uses Case Diagram**



Fig 5.1 Use case diagram

# **DFD** (Data Flow Data)



Fig 5.2 Data Flow diagram

# Sequence diagram



Fig 5.3 Sequence diagram



# 6.1 Screen shots for the project:



Fig 6.1 Predicted price

[] [14338.88748533 12268.5033573 16735.26450856 ... 17546.13017498 16853.38208565 13616.99574516] 
/usr/local/lib/python3.6/dist-packages/ipykernel\_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. 
Try using .loc[row\_indexer,col\_indexer] = value instead

Fig 6.2 final project outcome

| CS442 Data Science And Analytics | 17dcs034, 17dcs040,17dcs058 |
|----------------------------------|-----------------------------|
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
| СНАРТЕ                           | R 7                         |
|                                  |                             |
| PRACTICAL O                      | <u>UTCOME</u>               |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
|                                  |                             |
| Page<br>18                       | _                           |

#### 7.1 PRACTICAL OUTCOME

- Since the rsme of **LIGHT GBM** (1395.153) machine learning algorithm is lowest of the different models implemented i.e. Linear regression (3238.316),Ridge Regression (3238.153),Lasso Regression(3238.169).
- Thus the airline fare is predicted using LIGHT GBM model.

### Training set

| Airline    | e_of_Jour | Source   | Destination | Route                | Dep_Time | rrival_Tim | Duration | otal_Stop | ditional_Ir | Price |
|------------|-----------|----------|-------------|----------------------|----------|------------|----------|-----------|-------------|-------|
| IndiGo     | 24/03/20: | Banglore | New Delh    | $BLR \rightarrow DE$ | 22:20    | 01:10 22   | 2h 50m   | non-stop  | No info     | 3897  |
| Air India  | 1/05/2019 | Kolkata  | Banglore    | CCU → IXI            | 05:50    | 13:15      | 7h 25m   | 2 stops   | No info     | 7662  |
| Jet Airway | 9/06/2019 | Delhi    | Cochin      | DEL → LK             | 09:25    | 04:25 10   | 19h      | 2 stops   | No info     | 13882 |

#### Test set

| 1 | Airline    | e_of_Jour | Source  | Destination | Route               | Dep_Time | rrival_Tim | Duration | otal_Stop | ditional_Ir |
|---|------------|-----------|---------|-------------|---------------------|----------|------------|----------|-----------|-------------|
| 2 | Jet Airway | 6/06/2019 | Delhi   | Cochin      | DEL → BC            | 17:30    | 04:25 07   | 10h 55m  | 1 stop    | No info     |
| 3 | IndiGo     | 12/05/20  | Kolkata | Banglore    | $CCU \rightarrow M$ | 06:20    | 10:20      | 4h       | 1 stop    | No info     |

#### Prediction

|   | Additional_Info | Airline | Destination | Source | Date | Month | Year | Stop | Arrival_Hour | Arrival_Min | l Dep_Hou | Dep_Minu | Route_1 | Route_2 | Route_3 | Route_4 | Route_5 | Price       |
|---|-----------------|---------|-------------|--------|------|-------|------|------|--------------|-------------|-----------|----------|---------|---------|---------|---------|---------|-------------|
| 0 | 8               | 4       | 1           | 2      | 6    | 6     | 2019 | 1    | 4            | 25          | 17        | 30       | 3       | 7       | 6       | 12      | 4       | 14338.88749 |
| 1 | 8               | 3       | 0           | 3      | 12   | 5     | 2019 | 1    | 10           | 20          | 6         | 20       | 2       | 33      | 3       | 12      | 4       | 12268.50336 |

| CHAPTER 8              |
|------------------------|
| LIMITATIONS AND FUTURE |
| <b>ENHANCEMENT</b>     |
|                        |
|                        |
|                        |
|                        |

Page 20 17dcs034, 17dcs040,17dcs058

CS442 Data Science And Analytics

#### 8.1 Limitations

- This project predicts airlines fare of the dates given in the dataset only.
- Limited availability of the data.

#### **8.2** Future Enhancement

- Live data can be used by using web scrapping to improve usability of the project.
- UI/UX design can be created for better user experience.

| CS442 Data Science And Analytics | 17dc      | es034, 17dcs040,17dcs058 |
|----------------------------------|-----------|--------------------------|
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  | CHAPTER 9 |                          |
| RI                               | EFERENCES |                          |
| <u></u>                          |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  |           |                          |
|                                  | Page      |                          |

#### 9. 1 References:

- <a href="https://www.semanticscholar.org/paper/Airfare-prices-prediction-using-machine-learning-Tziridis-Kalampokas/124250a5ff813e30d9305c26db8896c2278dca8d">https://www.semanticscholar.org/paper/Airfare-prices-prediction-using-machine-learning-Tziridis-Kalampokas/124250a5ff813e30d9305c26db8896c2278dca8d</a>
- https://youtu.be/jxKg65AimSI
- <a href="https://youtu.be/72hlr-E7KA0">https://youtu.be/72hlr-E7KA0</a>
- <a href="https://analyticsindiamag.com/flight-ticket-price-prediction-hackathon-use-these-resources-to-crack-our-machinehack-data-science-challenge/">https://analyticsindiamag.com/flight-ticket-price-prediction-hackathon-use-these-resources-to-crack-our-machinehack-data-science-challenge/</a>
- https://ieeexplore.ieee.org/document/8081365