西南民族大學

本科生毕业设计(论文)

题目:智能手表的非接触式备择交互模式的设计 Designing Alternative Contact-free Control Modalities for Smart Watches

教字.	毕 位	
姓	名	欧长坤
学	号	201231102123
年	级	2012
专	业	计算机科学与技术
		副教授
		Andreas Butz
*		
职	椒	Professor

目录

摘要					
Abstrac	et				
第一章	概述				
1.1	目的、背景及意义				
1.2	相关工作				
第二章	手表上交互				
2.1	传统交互				
	2.1.1 点击				
	2.1.2 滑动				
2.2	特有交互				
	2.2.1 Digital Crown				
	2.2.2 Force Touch 和 Taptic Engine				
2.3	其他交互				
	2.3.1 侧面按钮				
	2.3.2 常规手势				
	2.3.3 语音控制				
第三章	非接触备择设计				
3.1	相关工作				
3.2	技术可行性				
3.3	交互方法				
	3.3.1 点击				
	3.3.2 滑动				
	3.3.3 Digital Crown				
	3.3.4 Force Touch 仿真				
	3.3.5 其他				
第四章	系统设计				
4.1	总体设计				
4.2					
4.3	架构设计				
44	海元程序				

第五章	编码实现	8		
5.1	环境搭建	8		
5.2	关键编码	8		
	5.2.1 桌面端	8		
	5.2.2 服务端	8		
	5.2.3 手表端	8		
第六章	章 用户调研与测试			
6.1	用户调研	9		
6.2	测试方法	9		
第七章	进一步工作	10		
7.1	缺陷	10		
7.2	改进方向	10		
参考文		11		
致谢		14		

摘要

本文设计了一套用于智能手表上的择备交互模式,能够释放双手。

关键词 智能手表; 手势交互

Abstract

This paper try to introduce a alternative interaction on smart watches, which can be contact-free.

Keywords Smart Watches; Gesture Interaction

第一章 概述

- 1.1 目的、背景及意义
- 1.2 相关工作

第二章 手表上交互

在 Apple Watch 中,由于触摸屏的存在,大部分手表中的交互方式沿袭自带有触摸屏幕的智能手机。 为了对手表中的交互方式进行备择设计,我们必须分析并且明确在 Apple Watch 中现存的交互方式及其 优缺点。

- 2.1 传统交互
- 2.1.1 点击
- 2.1.2 滑动
- 2.2 特有交互
- 2.2.1 Digital Crown
- 2.2.2 Force Touch 和 Taptic Engine
- 2.3 其他交互
- 2.3.1 侧面按钮
- 2.3.2 常规手势
- 2.3.3 语音控制

第三章 非接触备择设计

- 3.1 相关工作
- 3.2 技术可行性
- 3.3 交互方法
- 3.3.1 点击
- 3.3.2 滑动
- 3.3.3 Digital Crown
- 3.3.4 Force Touch 仿真

对 Force Touch 进行仿真, 我们需要定义两个常量: DELAY 表示触发 Force Touch 的时间延时。DURATION 表示 Force Touch 从最小值到最大值的持续时间。其中 DELAY 的值为 200,DURATION 则为 1000,两者单位为毫秒 (ms)。

设在一次按压中的按压时间为 t_{press} ,则 Force Touch 可以使用公式3.1进行模拟:

$$v_F = \begin{cases} \frac{t_{\text{press}} - \text{DELAY}}{\text{DURATION}} & \text{if } t_{\text{press}} - \text{DELAY} < \text{DURATION} \\ 1 & \text{Otherwise} \end{cases}$$
(3.1)

3.3.5 其他

第四章 系统设计

- 4.1 总体设计
- 4.2 框架选型
- 4.3 架构设计
- 4.4 演示程序

第五章 编码实现

- 5.1 环境搭建
- 5.2 关键编码
- 5.2.1 桌面端
- 5.2.2 服务端
- 5.2.3 手表端

第六章 用户调研与测试

- 6.1 用户调研
- 6.2 测试方法

第七章 进一步工作

7.1 缺陷

讲解技术上的困难。

7.2 改进方向

讲解可能的改进方向。

参考文献

- [1] Bi X, Li Y, Zhai S. FFitts Law: Modeling Finger Touch with Fitts' Law [C/OL]. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA, 2013: 1363–1372. http://doi.acm.org/10.1145/2470654.2466180.
- [2] Yang Y, Chae S, Shim J, et al. EMG Sensor-based Two-Hand Smart Watch Interaction [C/OL]. In Adjunct Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. New York, NY, USA, 2015: 73–74. http://doi.acm.org/10.1145/2815585.2815724.
- [3] Vatavu R-D, Zaiti I-A. Leap Gestures for TV: Insights from an Elicitation Study [C/OL]. In Proceedings of the 2014 ACM International Conference on Interactive Experiences for TV and Online Video. New York, NY, USA, 2014: 131–138. http://doi.acm.org/10.1145/2602299.2602316.
- [4] Perrault S T, Lecolinet E, Eagan J, et al. Watchit: Simple Gestures and Eyes-free Interaction for Wristwatches and Bracelets [C/OL]. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA, 2013: 1451–1460. http://doi.acm.org/10.1145/2470654.2466192.
- [5] Yang F, Li S, Huang R, et al. MagicWatch: Interacting & Segueing [C/OL]. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication. New York, NY, USA, 2014: 315–318. http://doi.acm.org/10.1145/2638728.2638848.
- [6] Chen X A, Grossman T, Wigdor D J, et al. Duet: Exploring Joint Interactions on a Smart Phone and a Smart Watch [C/OL]. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA, 2014: 159–168. http://doi.acm.org/10.1145/2556288.2556955.
- [7] Ogata M, Imai M. SkinWatch: Skin Gesture Interaction for Smart Watch [C/OL]. In Proceedings of the 6th Augmented Human International Conference. New York, NY, USA, 2015: 21–24. http://doi.acm.org/10.1145/2735711.2735830.
- [8] Knibbe J, Martinez Plasencia D, Bainbridge C, et al. Extending Interaction for Smart Watches: Enabling Bimanual Around Device Control [C/OL]. In CHI '14 Extended Abstracts on Human Factors in Computing Systems. New York, NY, USA, 2014: 1891–1896. http://doi.acm.org/10.1145/2559206.2581315.
- [9] Loclair C, Gustafson S, Baudisch P. PinchWatch: a wearable device for one-handed microinteractions [C]. In MobileHCI Workshop on Ensembles of On-Body Devices. 2010.
- [10] Kim J, He J, Lyons K, et al. The gesture watch: A wireless contact-free gesture based wrist interface [C]. In Wearable Computers, 2007 11th IEEE International Symposium on. 2007: 15–22.
- [11] Bailly G, Müller J, Rohs M, et al. ShoeSense: A New Perspective on Gestural Interaction and Wearable Applications [C/OL]. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA, 2012: 1239–1248. http://doi.acm.org/10.1145/2207676.2208576.

- [12] Kerber F, Schardt P, Löchtefeld M. WristRotate: A Personalized Motion Gesture Delimiter for Wrist-worn Devices [C/OL]. In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia. New York, NY, USA, 2015: 218–222. http://doi.acm.org/10.1145/2836041.2836063.
- [13] Kratz S, Rohs M. Hoverflow: Exploring Around-device Interaction with IR Distance Sensors [C/OL]. In Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services. New York, NY, USA, 2009: 42:1–42:4. http://doi.acm.org/10.1145/1613858.1613912.
- [14] Lv Z, Feng S, Feng L, et al. Extending touch-less interaction on vision based wearable device [C]. In Virtual Reality (VR), 2015 iEEE. 2015: 231–232.
- [15] Vogel D, Baudisch P. Shift: A Technique for Operating Pen-based Interfaces Using Touch [C/OL]. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA, 2007: 657–666. http://doi.acm.org/10.1145/1240624.1240727.
- [16] 侯文君, 吴春京. 基于数据分析的智能手表手势直觉化交互研究 [J]. 包装工程. 2015, 36 (22): 13-16.
- [17] 程时伟. 基于上下文感知的移动设备自适应用户界面设计研究 [D]. [S. 1.]: 浙江大学, 2009.
- [18] 扶爱名. 基于可穿戴计算的设备维护辅助系统自适应用户界面研究 [D]. [S. 1.]: 电子科技大学, 2006.
- [19] 傅泉俊. 穿戴式体感交互平台的研究与实现 [D]. [S. 1.]: 电子科技大学, 2015.
- [20] 朱子健. 情境因素对智能手表使用行为影响研究 [J]. 中国新技术新产品. 2015 (7): 10-12.
- [21] 刘珩. 智能手表交互设计研究 [J]. 科技与创新. 2015 (8): 73-73.
- [22] 孙效华, 冯泽西. 可穿戴设备交互设计研究 [J]. 装饰. 2014 (2): 28-33.
- [23] 寇利敏, 常交法, 魏玲. 智能可穿戴设备专利分析 [J]. 电声技术. 2015 (39): 7-9.
- [24] 董士海. 人机交互的进展及面临的挑战 [J]. 计算机辅助设计与图形学学报. 2004, 16 (1): 1-13.
- [25] 岳玮宁, 董士海, 王悦, et al. 普适计算的人机交互框架研究 [J]. 计算机学报. 2004, 27 (12): 1657–1664.
- [26] Hudson S E, Mankoff J. Concepts, Values, and Methods for Technical Human–Computer Interaction Research [M] // Judith S Olson W A K. Ways of Knowing in HCI. Springer, 2014: 2014: 69–93.
- [27] Billinghurst M, Buxton B. Gesture based interaction [M] // Microsoft. Haptic input. 2011, 2011:.
- [28] Jiang H, Chen X, Zhang S, et al. Software for Wearable Devices: Challenges and Opportunities [J/OL]. CoRR. 2015, abs/1504.00747. http://arxiv.org/abs/1504.00747.
- [29] 李清水, 方志刚, 沈模卫, et al. 手势识别技术及其在人机交互中的应用 [J]. 人类工效学. 2002, 8 (1): 27–29.
- [30] 陈雅茜, 欧长坤, 郭凶阳. 基于单目视觉和简单手势的空间交互技术 [J]. 西南民族大学学报: 自然科学版. 2014, 40 (6): 871-876.
- [31] 刘平和. 基于手指的人机交互系统研究与实现 [D]. [S. 1.]: 西北师范大学, 2014.

- [32] 狄海进. 基于三维视觉的手势跟踪及人机交互中的应用 [D]. [S. l.]: 南京大学, 2011.
- [33] Wobbrock J O, Wilson A D, Li Y. Gestures without libraries, toolkits or training: a \$1 recognizer for user interface prototypes [C]. In Proceedings of the 20th annual ACM symposium on User interface software and technology. 2007: 159–168.
- [34] Anthony L, Wobbrock J O. A lightweight multistroke recognizer for user interface prototypes [C]. In Proceedings of Graphics Interface 2010. 2010: 245–252.
- [35] 徐崇斌, 周明全, 沈俊辰, et al. 一种基于 Leap Motion 的直观体交互技术 [J]. 电子与信息学报. 2015, 37 (2): 353-359.
- [36] 潘佳佳, 徐昆. 基于 Leap Motion 的三维自由手势操作 [J]. 中国科技论文. 2015 (2): 207-212.
- [37] 胡弘, 晁建刚, 杨进, et al. Leap Motion 关键点模型手姿态估计方法 [J]. 计算机辅助设计与图形学学报. 2015, 27 (7): 1211–1216.
- [38] Weichert F, Bachmann D, Rudak B, et al. Analysis of the Accuracy and Robustness of the Leap Motion Controller [J]. Sensors. 2013, 13: 6380–6393.
- [39] Marin G, Dominio F, Zanuttigh P. Hand gesture recognition with leap motion and kinect devices [C]. In Image Processing (ICIP), 2014 IEEE International Conference on. 2014: 1565–1569.
- [40] Garber L. Gestural technology: Moving interfaces in a new direction [technology news] [J]. Computer. 2013, 46 (10): 22–25.
- [41] Zaiţi I-A, Pentiuc Ş-G, Vatavu R-D. On free-hand TV control: experimental results on user-elicited gestures with Leap Motion [J]. Personal and Ubiquitous Computing. 2015, 19 (5-6): 821–838.
- [42] Du G, Zhang P, Liu X. Markerless Human-Manipulator Interface Using Leap Motion with Interval Kalman Filter and Improved Particle Filter [J]. IEEE Transactions on Industrial Informatics. 2016, PP (99): 1–1.
- [43] Huxpro. Forcify [EB/OL]. [2016-03-16]. https://github.com/huxpro/forcify.
- [44] Leap Motion Inc. Leap Python SDK Documentation [EB/OL]. [2016-03-17]. https://developer.leapmotion.com/documentation/python/index.html.
- [45] Apple Inc. Apple Watch Human Interface Guidelines [EB/OL]. [2016-03-17]. https://developer.apple.com/watch/human-interface-guidelines/.
- [46] Apple Inc. Watch Connectivity Framework Reference [EB/OL]. [2016-03-17]. https://developer.apple.com/library/watchos/documentation/WatchConnectivity/Reference/WatchConnectivity_framework/.
- [47] Apple Inc. The Swift Programming Language(Swift 2.2 Prerelease) [M/OL]. Apple Inc., 2016. https://itunes.apple.com/cn/book/swift-programming-language/id1002622538.
- [48] Apple Inc. Using Swift with Cocoa and Objective-C(Swift 2.2 Prerelease) [M/OL]. Apple Inc., 2016. https://itunes.apple.com/cn/book/using-swift-cocoa-objective/id1002624212.

致谢

感谢亲人感谢朋友。