

Norwegian University of Life Sciences

Raw Data Inspection

DAT200 - Applied Machine Learning

Department of Data Science, Faculty of Science of Technology

Lecture Agenda

- Data inspection/Data exploration/Exploratory Data Analysis (EDA)
 - Visualization with matplotlib and seaborn
- Two basic ML classification algorithms
 - Perceptron
 - Adeline
- Learning as an optimization problem
 - Gradient Descent
 - Feature scaling to improve Gradient Descent

Exploratory Data Analysis

- Understand your data if you want to obtain best possible results with ML models
- Data Visualization -> the most effective way to learn more about your data
- Absolutely necessary to do this before training your machine learning models
- NOTE: your compulsory assignment submissions will not be accepted without EDA
- Examples using diabetes-dataset included in scikit-learn.

Exploratory Data Analysis: The data

- Dataset has 10 input columns and one target column (Diabetes progression score)
- Input:
 - Age
 - Sex
 - BMI

	age	sex	bmi	bp	tc	ldl	hdl	tch	ltg	glu	Diabetes progression
0	59	male	32.1	101	157	93.2	38	4.00	4.8598	87	151
1	48	female	21.6	87	183	103.2	70	3.00	3.8918	69	75
2	72	male	30.5	93	156	93.6	41	4.00	4.6728	85	141
3	24	female	25.3	84	198	131.4	40	5.00	4.8903	89	206

- Blood pressure
- Six different measures of blood cholesterol

- Compute descriptive statistics
- Histograms
 - Inspect distribution of each attribute
 - Groups data into bins
 - Count number of observations in each bin

- Can also be used for categorical data
- Can be helpful to add numbers on the bars

- Density plots
 - Another way of inspecting the distribution
 - Uses a smooth continuous curve

- Box and Whisker plots
 - Another way of inspecting the univariate distribution
 - Instead of showing a complete distribution they give a short summary
 - Use a line to represent the median sample/entry
 - The box encompasses the middle 50% of the data. From the 25th to the 75th percentile
 - The "whiskers" are 1.5 times greater than the size of the spread of the middle 50% of the data
 - The dots are potential candidates for outlier values

- Violin plots: A better alternative to Box and whisker plots
 - Another way of inspecting the univariate distribution
 - Give a more complete/precise description of the data

- Seaborn allows for splitting using the parameter hue.
- Note that the *violins* are symmetrical, so the information can be compressed further

- Seaborn allows for *splitting* using the parameter hue.
- Note that the violins are symmetrical, so the information can be compressed further

- Heatmap of correlations
 - Indicates how related two variables are
 - Positive correlation: Two variables change in the same direction
 - Negative correlation: Two variables change in opposite directions

- Scatter Plot Matrix
 - Shows relationship between two variables as dots in two dimensions
 - Useful for spotting structured relationships between variables
 - Structural relationships may also be correlalated and good candidats for removal from the dataset

- To see more about why data visualization is important, and summary statistics alone are not enough check out <u>this article</u>
- The code used to generate the plots can be found in the file:
 - 01 raw data inspection.ipynb under the folder for this lecture on Canvas
 - Check it out after the lecture

Learning as a concept (Ch. 2 in Raschka)

DAT200 - Applied Machine Learning

Department of Data Science, Faculty of Science of Technology

- The first ML models where modeled after the neurons in the human brain
- Neurons are interconnected nerve cells in the brain
- Neurons are involved in processing and transmitting:
 - Chemical signals
 - Electrical signals
- Neuron acts as a simple logic gate with binary output

¹⁹ **[1]** Figure from S. Rascka, V. Mirjalili. *Python Machine learning - 3rd Ed.* (2019), page 20

- Multiple signals arrive at dendrites
- Signals are integrated into cell body
- If accumulated signal exceeds a specific threshold → output signal is generated and passed on to axon
- McCullock-Pitts (MCP) neuron: first simplified concept of brain cell (1943)

- Perceptron (first model of artificial neuron) learning rule based on MCP neuron model published in 1957
- Algorithm learns automatically optimal weight coefficients for input features
- Product of optimal weight and input feature decides whether neuron fires or not
- Can be used to predict whether an instance belongs to one class or another

Perceptron Concept

- Each perceptron is a set of weights which are multiplied with the set of inputs and summed
- The sum is passed through a threshold function to yield a binary output 1 or -1.
- This is then called a *binary classification function*.
- The training algorithm computes a decision function based on weights and features.
- The goal is to find the optimal values for weights for best possible classification performance

- Binary classification task (two class problem)
 - First class coded as 1 (positive class)
 - Other class: -1 (negative class)
- Decision function $(\phi(z))$:
 - takes linear combinations of
 - values in vector x
 - corresponding weights in weight vector w
- z: net input

$$\boldsymbol{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

$$m \times 1$$
 $m \times 1$

$$z = w_1 x_1 + \ldots + w_m x_m$$

- Binary classification task (two class problem)
 - First class coded as 1 (positive class)
 - Other class: -1 (negative class)
- Decision function $(\phi(z))$:
 - takes linear combinations of
 - values in vector x
 - corresponding weights in weight vector w
- z: dot product of x and w

$$\boldsymbol{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$

$$m \times 1$$
 $m \times 1$

$$z = w_1 x_1 + \ldots + w_m x_m$$

- Given a specific sample $x^{(i)}$
 - If net input $z \ge \theta \rightarrow \text{predict class 1 for } x^{(i)}$
 - − If net input $z < \theta$ → predict class -1 for $x^{(i)}$
 - θ represents threshold: at which level/value should sum of all weighted input signals be to predict class 1?
- For perceptron algorithm $\phi(\cdot)$ is a variant of unit step function

• For simplicity bring θ to the left side of the equation

$$z \ge \theta$$

$$w_1 x_1 + w_2 x_2 + \dots + w_m x_m \ge \theta$$

$$-\theta + w_1 x_1 + w_2 x_2 + \dots + w_m x_m \ge 0$$

$$-\theta \cdot 1 + w_1 x_1 + w_2 x_2 + \dots + w_m x_m \ge 0$$

$$w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_m x_m \ge 0$$

where
$$w_0 = -\theta$$

 $x_0 = 1$

z now can be written in a more compact form

$$z = w_0 x_0 + w_1 x_1 + \dots + w_m x_m = \sum_{j=0}^m x_j w_j = w^T x$$

$$1 \times (m+1) \quad (m+1) \times 1$$

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

- In ML literature $w_0 = -\theta$ is often called the bias unit
- Summarised:
 - from input values x and weights w \rightarrow compute net input z
 - from net input z and decision function $\phi(z) \rightarrow$ to classification outputs -1 and 1

[3]

• The value of net input $z = w^T x$ decides whether decision function of the perceptron produces output 1 og -1.

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

 $\begin{array}{c|c} \phi(\textbf{\textit{w}}^{\intercal}\textbf{\textit{x}}) \\ \hline \\ \downarrow \\ \hline \\ z = w_1x_1 + \ldots + w_mx_m \end{array} \qquad \qquad \begin{array}{c|c} \\ \hline \\ \hline \\ z = w_0x_0 + w_1x_1 + w_2x_2 + \cdots + w_mx_m \end{array}$

• The value of net input $z = w^T x$ decides whether decision function of the perceptron produces output 1 og -1.

- Idea behind MCP neuron and Rosenblatt's thresholded perceptron model
 - Reductionist approach to mimic how a single neuron in the brain works
 - the neuron either fires or not
- Initial perceptron rule:
 - 1. Initialise the weights to 0 or small random numbers
 - 2. For each training sample $x^{(i)}$
 - 2a. Compute output value $\widehat{\mathcal{Y}}$ (prediction of true class label y)
 - ullet 2b. Compare true class label y and predicted output $oldsymbol{\widehat{y}}$
 - 2c. If different from one another, update weights
- How to update the weights?

- Weights w_j in weight vector w are updated simultaneously
 Update of each weight w_j can be more formally written as

$$w_j := w_j + \Delta w_j$$

• Value of Δw_i , which is used to update the weight w_i is calculated by the **perceptron** learning rule

$$\Delta w_j = \eta \left(y^{(i)} - \hat{y}^{(i)} \right) x_j^{(i)}$$

 η : Learning rate (typically constant between 0.0 and 1.0)

 $y^{(i)}$: true class label

 $\hat{\mathbf{y}}^{(i)}$: predicted class label

 $x^{(i)}$: value of feature j in sample vector i

• For a two-dimensional (two variables: x_1 and x_2) dataset:

$$\Delta w_0 = \eta \left(y^{(i)} - output^{(i)} \right)$$

$$\Delta w_1 = \eta \left(y^{(i)} - output^{(i)} \right) x_1^{(i)}$$

$$\Delta w_2 = \eta \left(y^{(i)} - output^{(i)} \right) x_2^{(i)}$$

- Correct class label predictions:
 - Negative class predicted correctly: $\Delta w_j = \eta \left(-1 (-1)\right) x_j^{(i)} = 0$
 - Positive class predicted correctly: $\Delta w_i = \eta (1-1) x_i^{(i)} = 0$

- Incorrect class label predictions
 - Positive class predicted incorrectly
 - Negative class predicted incorrectly

$$\Delta w_j = \eta (1 - 1) x_j^{(i)} = \eta (2) x_j^{(i)}$$

$$\Delta w_j = \eta (-1 - 1) x_j^{(i)} = \eta (-2) x_j^{(i)}$$

• Intuition for multiplicative factor $x^{(i)}$ in $\Delta w_j = \eta \left(y^{(i)} - \hat{y}^{(i)} \right) x_j^{(i)}$

$$\Delta w_j = \eta \left(y^{(i)} - \hat{y}^{(i)} \right) x_j^{(i)}$$

- Example: $\hat{y}^{(i)} = -1$, $y^{(i)} = +1$, $\eta = 1$
- Assume: $x_i^{(i)} = 0.5$ and sample j has been misclassified as -1
- Consequently, weight update will be: $\Delta w_i = (1-1)0.5 = (2)0.5 = 1$
- We see that weight update Δw is proportional to value of $x^{(i)}$
- Now assume: $\chi_i^{(i)} = 2$ sample j has been misclassified as -1
- Consequently, weight update will be $\Delta w_i = (1-1)2 = (2)2 = 4$

Important Notes on Perceptron Training Algorithm

- Convergence of perceptron algorithm guaranteed only if
 - Two classes are linearly separable
 - Learning rate is sufficiently small
- If classes cannot be separated by a linear decision boundary take at least one of the following two measures
 - Set maximum number of iterations (epochs) over training samples
 - Set threshold for maximum number of tolerated misclassifications.
- If classes **not** linearly separable **AND** none of the two measures above were taken
- ☐ perceptron **never stops** updating weights

Important Notes on Perceptron Training Algorithm

Goal: Find optimal values for weights for best possible classification performance

Important Notes on Perceptron Training Algorithm

- The perceptron class: perceptron.py
- Training perceptron class on iris data: Ch02_01_iris_perceptron_alt1.py
- Same as Ch02 01 iris perceptron alt1.py, but using package mlxtend for plotting:
- Ch02_01_iris_perceptron_alt2.py
- Understanding random seed: Ch 02 play with random.py
- Extended version of perceptron.py that collects values of weights across all epochs:
- perceptron ext.py
- Extended version of Ch02_01_iris_perceptron_alt1.py visualising weight updates on iris data: Ch02_03_iris_perceptron_weightPlotting.py

Exercise: Understand Code in perceptron.py

- Open file: perceptron.py
- Identify where in the code the following is computed
 - Net input
 - Weight updates
 - Threshold function

- Where are the weights initialised?
- What are the dimensions of the prediction?
- How often are the weights updated?
- How often is the net input computed?
- How is the error checked for?

- ADAptive Linear NEuron (Adaline)
- Published in 1960
- Considered to be an improvement over Perceptron algorithm
- **Key concept** of Adaline algorithm **defining** and **minimising** cost functions
- The concept lays **foundation** for **more advanced machine learning algorithms**
 - Classification models (e.g. logistic regression, Support vector machines (SVM))
 - Regression models
- Introduces concept of activation functions
 - Various activation functions used in artificial neural networks
 - Logistic, hyperbolic tangent (tanh), rectified linear unit (RELU), etc.

Illustration of the Perceptron and Adeline algorithms

Adaptive Linear Neuron (Adaline)

- Common properties of Perceptron and Adaline algorithms
 - Both are classifiers for binary classification (two-class problems)
 - Both have a linear decision boundary
 - Both use threshold function

input variables

More than three

Linear decision boundary for two input variables

a straight line

Key differences between the Adaline and Perceptron algorithms

• Perceptron:

- \circ Weights are updated using a **step function** $\phi(z)$ (serves as an activation function)
- Computation of error: compares true class labels to predicted class labels
- Updates weights immediately after a misclassification. Updates happen multiple times during a full set of iterations (epoch)

• Adaline:

- \circ Weights are updated based on a **linear activation function** $\phi(z)$
- The linear activation function is simply an identity function of the net input
- Computation of error: compares **true class labels** to the **continuous output** from the activation function
- Updates weights only at the end of each epoch (batch-wise updates)

Linear activation function

$$\phi(z) = \phi(\mathbf{w}^T \mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

- Linear activation function is used for learning of the weights
- However, a threshold function is still used to make final prediction
- Figure below illustrates main differences between the Perceptron and Adaline algorithms

Adaptive Linear Neuron (Adaline)

- One key ingredient in many machine learning algorithms: a defined objective function (loss function; cost function)
- Goal of using objective/loss/cost function:
 - Capture the performance of the model, how well the model is predicting classes (quality of the output)
 - Doing so by computing error or distance score between the true class label and the output of activation function
 - Compute weights such that loss function is minimised (find global cost minimum where error is as small as possible)
- <u>Learning</u> means finding a combination of weights that minimizes a loss function for a given set of training samples and their corresponding targets (true class labels)

Adeline algorithm:

 Cost function J learns weights as the Sum of Squared Errors (SSE) between outputs (from activation function) and true class labels

Use <u>optimisation</u> algorithm named **gradient descent** to find global minimum of cost function J(w).

Adeline algorithm:

 Cost function J learns weights as the Sum of Squared Errors (SSE) between outputs (from activation function) and true class labels

Use <u>optimisation</u> algorithm named **gradient descent** to find global minimum of cost function J(w).

- Main advantage of linear activation function over the unit step function is that cost function becomes differentiable
 - This allows us to derive the gradient of loss function (important information for moving in right direction towards global cost minimum)
- A convenient property of SSE cost function: it is convex
 - This in turn enables the gradient descent algorithm to move towards weights result in a global cost minimum

Examples of loss landscapes (not Adaline)

49

- Adeline algorithm:
 - Cost function J learns weights as the Sum of Squared Errors (SSE) between calculated outcome and true
 class label

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i} \left(y^{(i)} - \phi(z^{(i)}) \right)^{2}$$

• Using gradient descent update weights by taking step in opposite direction of the gradient of the cost function $\nabla J(w)$

$$w := w + \Delta w$$

• The weight change Δw is defined as the negative gradient ∇J (w) multiplied by the learning rate η

$$\Delta w = -\eta \nabla J(w)$$

• Update of the weights

$$\Delta w_{j} = -\eta \frac{\partial J}{\partial w_{j}} = \eta \sum_{i} \left(y^{(i)} - \phi \left(z^{(i)} \right) \right) x_{j}^{(i)}$$

$$\frac{\partial J}{\partial w_j} = -\sum_i \left(y^{(i)} - \phi(z^{(i)}) \right) x_j^{(i)}$$

The squared error derivative

If you are familiar with calculus, the partial derivative of the SSE cost function with respect to the *j*th weight can be obtained as follows:

$$\frac{\partial J}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right)^2$$

$$= \frac{1}{2} \frac{\partial}{\partial w_j} \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right)^2$$

$$= \frac{1}{2} \sum_i 2 \left(y^{(i)} - \phi(z^{(i)}) \right) \frac{\partial}{\partial w_j} \left(y^{(i)} - \phi(z^{(i)}) \right)$$

$$= \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right) \frac{\partial}{\partial w_j} \left(y^{(i)} - \sum_i \left(w_j^{(i)} x_j^{(i)} \right) \right)$$

$$= \sum_i \left(y^{(i)} - \phi(z^{(i)}) \right) \left(-x_j^{(i)} \right)$$

$$= -\sum_i \left(y^{(i)} - \phi(z^{(i)}) \right) x_j^{(i)}$$

- Adaline algorithm:
 - Update of the weights

$$\Delta w_{j} = -\eta \frac{\partial J}{\partial w_{j}} = \eta \sum_{i} \left(y^{(i)} - \phi \left(z^{(i)} \right) \right) x_{j}^{(i)}$$

- A single weight update is computed based on all samples in the training set (instead of incrementally after each sample as with Perceptron algorithm) □ therefore referred to as **batch gradient descent**
- Note the similarity with the weight updates of the Perceptron algorithm
 - Perceptron: $\phi(z)$ takes values -1 or 1
 - Adeline: $\phi(z)$ takes continuous values $w^T x$

• Error over number of epochs – important to find appropriate learning rate η for weight updates Δw

adaline.py
Ch02_04_iris_adaline.py

$$\Delta w_{j} = -\eta \frac{\partial J}{\partial w_{j}} = \eta \sum_{i} \left(y^{(i)} - \phi \left(z^{(i)} \right) \right) x_{j}^{(i)}$$

- Many machine learning algorithms require some sort of feature scaling for optimal performance (also called standardisation)
- Gradient descent is one of the many algorithms that benefit from feature scaling
- Scaling (standardisation) gives the data some specific properties
 - Standard distribution

 helps the gradient descent learning to converge more quickly
 - Shifts the mean of each feature so that it is centered at zero
 - Each feature has a standard deviation of 1

$$\mathbf{x}_j' = \frac{\mathbf{x}_j - \mu_j}{\sigma_j}$$

 x_i : feature vector (variable or column in data)

 μ_i : mean of feature vector

 σ_i : standard deviation of feature vector

 x_{i}^{\prime} : scaled feature vector

Person	Height (cm)	Weight (kg)	Shoe size
Person A	174	55	46
Person B	188	92	45
Person C	158	65	42
Person D	202	110	49
Person E	171	96	44
Person F	193	79	48
Mean	181	82.833333	45.6667
STD	16.198765	20.507722	2.58199

Person	Height (cm)	Weight (kg)	Shoe size
Person A	-7	-27.833333	0.33333
Person B	7	9.1666667	-0.66667
Person C	-23	-17.833333	-3.66667
Person D	21	27.166667	3.33333
Person E	-10	13.166667	-1.66667
Person F	12	-3.8333333	2.33333
Mean	0.00	0.00	0.00
STD	16.198765	20.507722	2.58199

Person	Height (cm)	Weight (kg)	Shoe size
Person A	-0.4321317	-1.3572123	0.1291
Person B	0.4321317	0.4469861	-0.2582
Person C	-1.4198613	-0.8695911	-1.42009
Person D	1.2963951	1.3247043	1.29099
Person E	-0.617331	0.6420346	-0.6455
Person F	0.7407972	-0.1869215	0.9037
Mean	0.00	0.00	0.00
STD	1	1	1

Original data

Centred data (Zero-mean)

Standardised (scaled) data

Number of objects (rows):

$$\circ$$
 $i = 1 \dots N$

• Number of variables (columns):

$$\circ$$
 $j=1...K$

- Observed value x_{ij} for
 - o i'th sample
 - o j'th variable

$$x_{ij,cent} = x_{ij} - \bar{x}_j$$

standardise

center

$$x_{ij,stand} = \frac{x_{ij} - \bar{x}_j}{\sigma_j}$$

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1K} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{NK} \end{pmatrix}$$

$$\bar{x}_j = \frac{1}{N} \sum_{j=1}^{N} x_{ij}$$

$$\sigma_j = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{ij} - \bar{x}_j)^2}$$

centre data

$$x_{ij,cent} = x_{ij} - \bar{x}_j$$

Equal variance of x_1 and x_2

- Feature scaling (standardisation) helps gradient descent (our optimiser) to find good or optimal solution in fewer steps
- Note that SSE (cost function) may remain non-zero even though all samples were classified correctly

Feature scaling with numpy – one feature at a time

```
99 # Standardise X one feature at a time (not very efficient)
100 X_sc = X.copy()
101 X_sc[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
102 X_sc[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()
```

Feature scaling with numpy – all variables at once

```
105 # Standardise X (all features at once)
106 X_sc = X.copy()
107 X_sc = (X_sc - np.mean(X_sc, axis=0)) / np.std(X_sc, axis=0)
```

```
Ch02_05_iris_perceptron_weightPlotting_selectClasses_scaling.py
Ch02_06_iris_adaline_weightPlotting_selectClasses_scaling.py
Ch02_07_scaling_examples.py
```


Thank you for coming!

