Отчёта по лабораторной работе № 5

Математическое моделирование

Адебайо Ридвануллахи Айофе

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	ç
5	Выводы	15
6	Список литературы	16

Список иллюстраций

4.1	График численности жертв от времени(OpenModelica)	9
4.2	График численности хищников от времени(OpenModelica)	10
4.3	График численности хищников от численности жертв(OpenModelica)	10
4.4	График численности жертв от времени(Julia)	12
4.5	График численности хищников от времени(Julia)	13
4.6	График численности хищников от численности жертв(Julia)	13

Список таблиц

1 Цель работы

- Построить Модель хищник-жертва.
- Построить фазовый портрет для модели.
- Отработать навыки решения систем дифференциальных уравнений на языке Julia, Openmodelica

2 Задание

Для модели «хищник-жертва»:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -0.12x(t) + 0.041x(t)y(t),\\ \frac{\mathrm{d}y}{\mathrm{d}t} = 0.32y(t) - 0.029x(t)y(t). \end{cases} \label{eq:delta_x}$$

- Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=6, y_0=11.$
- Найдите стационарное состояние системы.

3 Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - **мо- дель Лотки-Вольтерры**. Данная двувидовая модель основывается на следующих предположениях:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = ax(t) - bx(t)y(t), \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -cy(t) + dx(t)y(t). \end{cases}$$

В этой модели x – число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность

взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены - bxy и dxy в правой части уравнения)

Стационарное состояние системы (1) (положение равновесия, не зависящее от времени решение) будет в точке: $x_0=\frac{c}{d}, y_0=\frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0)=x_0,y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет.

4 Выполнение лабораторной работы

1. Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0=6, y_0=11.$

Code on OpenModelica

```
model Mlab5

Real x(start =6);
Real y(start =11);

equation
der(x) = -0.12*x+0.041*x*y;
der(y) = 0.32*y-0.029*x*y;
end Mlab5;
```


Рис. 4.1: График численности жертв от времени(OpenModelica)

Рис. 4.2: График численности хищников от времени(OpenModelica)

Рис. 4.3: График численности хищников от численности жертв(OpenModelica)

Code on Julia

```
using DifferentialEquations
using Plots

x0=6
y0=11

u0=[x0,y0]

t0=0
tmax=50
```

tspan = (t0, tmax)

```
t= collect(LinRange(t0,tmax,500))
function F(du, u, p, t)
    du[1]=-0.12*u[1]+0.041*u[1]*u[2]
    du[2]=0.32*u[2]-0.029*u[1]*u[2]
end
prob = ODEProblem(F, u0, tspan)
sol = solve(prob, saveat=t)
plt1 = plot( t,sol[1, :],
    title="Модель хищник-жертва",
    xaxis="время",
    yaxis="число жертв",
    label="x(t)",
    linewidth=3
    )
savefig(plt1, "lab51.png")
plt2 = plot(t, sol[2, :],
    title="Модель хищник-жертва",
    xaxis="время",
    yaxis="число хищников",
    # xlabel = "t",
    # ylabel = "y(t)",
    label="y(t)",
    linewidth=3
    )
savefig(plt2, "lab52.png")
plt3 = plot(sol, idxs=(1,2),
    title="Модель хищник-жертва",
```

```
xaxis="число жертв",
yaxis="число хищников",
label="y(x)",
linewidth=3
)
savefig(plt3, "lab53.png")
```


Рис. 4.4: График численности жертв от времени(Julia)

Рис. 4.5: График численности хищников от времени(Julia)

Рис. 4.6: График численности хищников от численности жертв(Julia)

2. Найдем стационарное состояние системы

$$\begin{cases} x_0 = \frac{c}{d} \\ y_0 = \frac{a}{b} \end{cases}$$

Поставяем значения переменные:

$$\begin{cases} x_0 = \frac{0.32}{0.029} \\ y_0 = \frac{0.12}{0.04} \end{cases}$$

Получим:

$$\begin{cases} x_0 = 11.03 \\ y_0 = 3 \end{cases}$$

5 Выводы

В ходе выполнения лабораторной работы я научился строить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при заданных начальных условиях. Я нашел стационарное состояние системы

6 Список литературы

- 1. Кулябов Д. С. *Лабораторная работа N^{o}4* : https://esystem.rudn.ru/course/view.php?id=5930
- 2. https://habr.com/ru/post/499582/
- 3. http://profil.adu.by/mod/book/tool/print/index.php?id=4187
- 4. https://docs.juliaplots.org/latest/tutorial/