Modulo 7 – Princípios básicos de Scilab (3)

Prof: Rafael Lima

Gráficos no Scilab

- Scilab é uma uma poderosa ferramenta para o desenho de gráficos:
 - Gráficos x-y
 - Contornos
 - Gráficos 3D
 - Histogramas
 - Gráficos em barras
 - E muito mais …

- Este tipo de gráfico pode ser desenhado através do comando plot
- Existem diversas formas de usar o comando plot
- Vejamos alguns exemplos
- Desenhar uma senoide:

```
-->x = 0:0.01:(2*%pi);

-->y = sin(x);

-->plot(x,y)
```

Abscissas

Ordenadas

- Adicionando titulo, nome do eixo das abscissas e eixo das ordenadas através do comando xtitle:
- -->xtitle('Onda senoidal','Tempo em segundos','Amplitude da onda em Volts')

 Desenhando múltiplos gráficos na mesma janela e incluindo legenda:

```
--->x = 0:0.01:(2*%pi);

--->y = sin(x);

--->z = cos(x);

--->plot(x,y,x,z)

--->legend('Seno','Cosseno');
```


- Podemos personalizar a forma da linha nos gráficos em Scilab
- Isso é realizado através de uma seqüência de caracteres definidos dentro da função plot
- Podemos mudar:
 - O estilo da linha
 - A cor da linha
 - O estilo do marcador

• Estilo da linha:

Especificador	Estilo de linha
_	linha sólida (padrão)
	linha tracejada
:	linha pontilhada
	linha tracejada-pontilhada

• Cor da linha:

Especificador	Cor
r	vermelho
g	verde
ь	azul
с	ciano
III.	magenta
У	amarelo
k	preto
$\boldsymbol{\omega}$	branco

Tipo de marcador:

Especificador	Tipo de marcador
+	sinal de mais
o	círculo
*	asterísco
-	ponto
ж	cruz
'square' 0U 's'	quadrado
'diamond' 04 'd'	rombo (ou diamante)
^	triângulo para cima
v	triângulo para baixo
Α	triângulo para a direita
<	triângulo para a esquerda
'pentagram'	estrela de cinco pontas (pentagrama)
'none'	nenhum marcador (padrão)

Exemplo:

```
-->x = 1:6;

-->y = x^2;

-->z = 2*x^2;

-->plot(x,y,'--ko',x,z,'-.gpentagram')
```


- Por padrão, sempre que o comando plot é invocado há uma superposição de gráficos na mesma janela
- Exemplo:

```
-->x = -2:0.1:2;

-->y = x^2;

-->plot(x,y,'r')

-->z = x;

-->plot(x,z)
```


- Existem algumas possíveis funções no Scilab que desenham figuras 3D
- Veremos a seguir as funções: plot3d e mesh
- Gráficos 3D ou superfícies são caracterizados por funções z = f(x,y) em função de variáveis independentes x e y
- Exemplo: z = f(x,y) = cos(x).sen(y)

Notação do comando plot3d:

```
plot3d(x,y,Z)
```

- x Vetor com os valores do eixo x
- y Vetor com os valores do eixo y
- Z Matriz cujo elemento na i-ésima linha e j-ésima coluna é o valor da função f(x,y) quando x assume o i-ésimo valor do vetor x e y assume o j-ésimo valor do vetor y

• Exemplo: esboçar $f(x,y) = x^2 + y^2 + xy$ para os valores de x = [1 2 3 4] e y = [3 4 5 6]

```
x = 1:4;
y = 3:6;
for iterX = 1:length(x)
  for iterY = 1:length(y)
       Z(iterX,iterY) = x(iterX)^2 +
      y(iterY)^2 + x(iterX)*y(iterY);
  end
end
plot3d(x,y,Z)
```


• Exemplo: esboçar f(x,y) = cos(x).sin(y) para $x \in y$ no intervalo $[0,2\pi]$

```
x = 0:0.1:(2*%pi);
y = x;
for iterX = 1:length(x)
   for iterY = 1:length(y)
        Z(iterX,iterY) =
   cos(x(iterX))*sin(y(iterY));
   end
end
plot3d(x,y,Z)
```


- O comando mesh deve ser utilizado em conjunto com o comando meshgrid
- Para esboçar uma função z = f(x,y) devemos primeiramente definir os valores que x e y podem assumir e passá-los a função meshgrid

Exemplo:

```
-->x = 0:0.1:(2*%pi);

-->y = x;

-->[X Y] = meshgrid(x,y);
```

- Com as saídas das matrizes da função meshgrid fazemos o calculo do valor da função
- Observação: as operações devem ser realizadas ponto a ponto e não matriciais
- Exemplo:

```
-->Z = X.*cos(Y);
-->mesh(X,Y,Z)
```


Exercícios

- Encontre os zeros e mínimos da função $f(x) = 2 \cdot x^3 \cdot (x+2)^5$ no intervalo de -1 a 0,2.
- Encontre os pontos de inflexão da função f(x) = sin(x/3) + 2x/9 no intervalo de -20 a 20.
- Encontre os pontos de máximo e mínimo da função $f(x,y) = x \cdot e^{-x^2 y^2}$ no intervalo de -2 a 2 para x e y.
- Plote a função $f(x,y) = 0.75/(e^{(5x)^2(5y)^2})$ para o interval de -2 a 2 para x e y
- Plote a função $f(x,y) = sin(10.(x^2 + y^2))/10$ para o intervalo de -1 a 1 para x e y