Homotetia e Derivados :D

Yvens Ian

Treinamento EGMO - 29 de março de 2024

1 Leminhas de Homotetia

Definição 1 (Homotetia) Uma homotetia de centro O e razão $k \in \mathbb{R}$ é uma transformação geométrica que leva pontos P do plano em outros pontos P' do plano de forma que

$$\overrightarrow{OP'} = \overrightarrow{OP} \cdot k.$$

Dizemos que duas figuras são homotéticas se existe uma homotetia que leva uma na outra.

Perceba que é possível que k < 0. Nesse caso, o vetor estaria ao contrário, ou seja, é a composição de uma homotetia de razão |k| com uma reflexão por O.

Além disso, como a homotetia é uma ampliação/redução, ela mantém todas as propriedades da figura original, como ângulos, colinearidades, concorrências, razão entre segmentos, etc.

Exemplo 1 Quaisquer duas circunferências são homotéticas. Se não possuem o mesmo raio, elas são homotéticas, tanto por uma razão positiva, quanto por uma negativa. Se tiverem o mesmo raio, a razão positiva terá centro no ponto do infinito, e será, na realidade, uma translação, já a negativa será uma simples homotetia de razão -1, que é, na realidade, somente uma reflexão por O.

Teorema 1 Sejam ABC e XYZ triângulos não congruentes tais que $AB \parallel XY$, $BC \parallel YZ$ e $CA \parallel ZX$. Então, AX, BY, CZ concorrem em um ponto O, que será o centro de uma homotetia que leva ABC em XYZ.

Teorema 2 (Círculo de 9 Pontos) Seja ABC um triângulo de circuncentro O e ortocentro H. Seja N_9 o ponto médio de OH. Então, os pontos médios de AB, BC, CA, AH, BH, CH e os pés das alturas de ABC pertencem à uma mesma circunferência, centrada em N_9 . Além disso, o raio dessa circunferência é metade do raio de (ABC).

Teorema 3 (Reta de Euler) Em um triângulo ABC, o ortocentro H, o baricentro G e o circuncentro O são colineares, e além disso, G divide OH na razão O: 1.

Lema 1 (Estrela da Morte) Dadas duas circunferências ω_1 e ω_2 , com ω_2 interna a ω_1 , tangentes em P e AB uma corda de ω_1 tal que AB é tangente a ω_2 em D, temos que PD é bissetriz o ângulo $\angle APB$.

Algo muito interessante e útil acontece quando invertemos pelo ponto médio do arco AB que não contém P. Tente descobrir o quê!

Lema 2 (Estrela da Morte Generalizada) Dadas duas circunferências ω_1 e ω_2 , com ω_2 interna a ω_1 , tangentes em P e AB uma corda de ω_1 que corta ω_2 em C e D, temos que $\angle APC = \angle DPB$.

Lema 3 (Diâmetro do Incírculo) Seja ABC um triângulo cujo incírculo é tangente a BC em D. Se DE é diâmetro do incírculo e a reta AE encontra BC em X, então, BD = CX e X é o ponto de tangência do A-exincírculo com BC.

Lema 4 (Ponto Médio das Alturas) Seja ABC um triângulo de incentro I e A-exincentro I_A , e sejam D, X suas projeções à BC, respectivamente. Então, as retas DI_A e XI concorrem no ponto médio da altura por A.

1.1 Problemas

Problema 1 (Teste Cone 2022) Uma circunferência Γ de centro A passa pelos vértices B e E do pentágono regular ABCDE. A reta BC intersecta Γ novamente no ponto F. O ponto G é escolhido sobre a circunferência Γ de modo que FB = FG e $B \neq G$. Prove que as retas AB, EF e DG são concorrentes.

Problema 2 (EGMO 2013) Seja Ω o circuncírculo do triângulo ABC. A circunferência ω é tangente aos lados AC e BC, é internamente tangente à Ω no ponto P. Uma reta paralela à AB que intersecta o interior do triângulo ABC é tangente à ω em Q. Prove que $\angle ACP = \angle QCB$.

Problema 3 (USATSTST 2011) O triângulo acutângulo ABC está inscrito em uma circunferência ω . Sejam H e O seu ortocentro e circuncentro, respectivamente. Sejam M e N os pontos médios dos lados AB e AC, respectivamente. As semirretas MH e NH encontram ω em P e Q, respectivamente. As retas MN e PQ se encontram em R. Prove que $OA \perp RA$.

Problema 4 (EGMO 2016) Duas circunferências ω_1 e ω_2 , de raios iguais se intersectam em pontos distintos X_1 e X_2 . Considere uma circunferência ω externamente tangente à ω_1 em T_1 e internamente tangente à ω_2 em T_2 . Prove que as retas X_1T_1 e X_2T_2 se intersectam em um ponto em ω .

Problema 5 (OBM 2012) Sejam I_A , I_B e I_C os exincentros do triângulo escaleno ABC relativos a A, B e C, respectivamente, e X, Y e Z os pontos médios de I_BI_C , I_CI_A e I_AI_B , respectivamente. O incírculo do triângulo ABC toca os lados BC, CA e AB nos pontos D, E e F, respectivamente. Prove que as retas DX, EY e FZ têm um ponto em comum pertencente à reta IO, sendo I e O o incentro e o circuncentro do triângulo ABC, respectivamente.

Problema 6 (EGMO 2018) Seja Γ o circuncírculo do triângulo ABC. Uma circunferência Ω é tangente ao segmento AB e tangente à Γ em um ponto pertencendo ao mesmo lado da reta AB que C. A bissetriz de $\angle BCA$ intersecta Ω em dois pontos distintos P and Q. Prove que $\angle ABP = \angle QBC$.

Problema 7 (EGMO 2017) Seja ABC um triângulo acutângulo no qual não há dois lados iguais. As reflexões do baricentro G e do circuncentro O de ABC por BC, CA, AB são denotadas por G_1, G_2, G_3 e O_1, O_2, O_3 , respectivamente. Mostre que os circuncírculos dos triângulos $G_1G_2C, G_1G_3B, G_2G_3A, O_1O_2C, O_1O_3B, O_2O_3A$ e ABC possuem um ponto em comum.

Problema 8 (OBM 2017) No triângulo ABC, seja r_A a reta que passa pelo ponto médio de BC e é perpendicular à bissetriz interna de $\angle BAC$. Defina r_B e r_C da mesma forma. Sejam H e I o ortocentro e o incentro de ABC, respectivamente. Suponha que as três retas r_A, r_B, r_C definam um triângulo. Prove que o circuncentro desse triângulo é o ponto médio de HI.

Problema 9 (USAMO 2015) O quadrilátero APBQ está inscrito em uma circunferência ω com $\angle P = \angle Q = 90^\circ$ e AP = AQ < BP. Seja X um ponto variável no segmento \overline{PQ} . A reta AX encontra ω novamente em S. O ponto T pertence ao arco AQB de ω de forma que \overline{XT} é perpendicular à \overline{AX} . Tome M como o ponto médio da corda \overline{ST} . Conforme X varia no segmento \overline{PQ} , mostre que M varia em uma circunferência.

Problema 10 (EGMO 2023) Seja ABC um triângulo de circuncírculo Ω . Sejam S_b e S_c os pontos médios dos arcos AC e AB que não contém o terceiro vértice. Defina N_a como o ponto médio do arco BAC e I como o incentro de ABC. Seja ω_b a circunferência tangente à AB e internamente tangente à Ω em S_b , e ω_c a circunferência tangente à AC e internamente tangente à Ω em S_c . Mostre que a reta IN_a , e as retas passando pelas interseções de ω_b e ω_c , se encontram em Ω .

Problema 11 (OBM 2014) Seja ABC um triângulo com incentro I e incírculo ω . O círculo ω_A tangencia externamente ω e toca os lados AB e AC em A_1 e A_2 , respectivamente. Seja r_A a reta A_1A_2 . Defina r_B e r_C de modo análogo. As retas r_A, r_B e r_C determinam um triângulo XYZ. Prove que o incentro de XYZ, o circuncentro de XYZ e I são colineares.

2 Algumas propriedades dos centros de Homotetia

Como dito na primeira sessão, quaisquer duas circunferências ω_1 e ω_2 , de centros O_1 e O_2 têm dois centros de homotetia. Chamaremos o centro interno, ou seja, aquele que pertence ao segmento O_1O_2 , e que possui razão negativa, de insimilicentro (internal similitude center) e o denotaremos por I_{ω_1,ω_2} , já o externo, de razão positiva, chamaremos de exsimilicentro (external similitude center) e o denotaremos por E_{ω_1,ω_2} .

Teorema 4 (Teorema de Monge) Sejam $\omega_1, \omega_2, \omega_3$ circunferências no plano. Temos que:

- E_{ω_1,ω_2} , E_{ω_2,ω_3} e E_{ω_3,ω_1} são colineares;
- $O_3I_{\omega_1,\omega_2}$, $O_1E_{\omega_2,\omega_3}$ e $O_2E_{\omega_3,\omega_1}$ são concorrentes;
- I_{ω_1,ω_2} , I_{ω_2,ω_3} e E_{ω_3,ω_1} são colineares;
- $O_3I_{\omega_1,\omega_2}$, $O_1I_{\omega_2,\omega_3}$ e $O_2I_{\omega_3,\omega_1}$ são concorrentes.

Lema 5 Dadas circunferências ω_1 e ω_2 de centros O_1 e O_2 e raios r_1, r_2 , temos que

$$E_{\omega_1,\omega_2} = \frac{r_1 O_2 - r_2 O_1}{r_1 - r_2} \in I_{\omega_1,\omega_2} = \frac{r_1 O_2 + r_2 O_1}{r_1 + r_2},$$

tratando os pontos como números complexos (ou vetores, é equivalente).

Lema 6 Dadas circunferências ω_1 e ω_2 de centros O_1 e O_2 , temos que O_1 , O_2 , I_{ω_1,ω_2} e E_{ω_1,ω_2} formam uma quádrupla harmônica.

Lema 7 Uma imagem vale mais do que mil palavras (chato demais escrever tanto ponto):

Exemplo 2 (Canadá 2007) O incírculo de ABC toca os lados BC, CA e AB em D, E e F, respectivamente. Sejam ω , ω_1 , ω_2 e ω_3 os circuncírculos dos triângulos ABC, AEF, BDF e CDE respectivamente. Além disso, ω e ω_1 intersectam em A e P, ω e ω_2 intersectam em B e Q, ω e ω_3 intersectam em C e R.

Mostre que PD, QE e RF concorrem.

Prova: Seja M o ponto médio do arco BC de (ABC) que não contém A. Como P é o Shark-Devil Point, temos um lema que diz que P, D e M são colineares, isso pode ser provado com inversão pela circunferência (BIC).

Defina $\Gamma = (DEF)$ o incírculo. Note, então, que $ID \parallel OM \perp BC \implies E_{\omega,\Gamma} = IO \cap DM = IO \cap PD$. Assim, concluímos que $E_{\omega,\Gamma} \in IO, PD, QE, RF$.

2.1 Problemas

Problema 12 Mostre os seguintes fatos

- a) O incentro I, o baricentro G e o ponto de Nagel N são colineares e $\frac{NG}{IG}=2$.
- b) O conjugado isogonal do ponto de Nagel é o exsimilicentro do circuncírculo e do incírculo.
- c) O conjugado isogonal do ponto de Gergonne é o insimilicentro do circuncírculo e do incírculo.

Problema 13 Considere duas circunferências ω_1 e ω_2 de centros O_1 e O_2 , respectivamente. Seja R o ponto na reta O_1O_2 com potência igual a ω_1 e ω_2 . Seja Q o insimilicentro de ω_1 e ω_2 . Suponha que uma tangente comum externa de ω_1 e ω_2 os tocam em X, Y, respectivamente. Mostre que RQXY é cíclico.

Problema 14 (USA TSTST 2017) Seja ABC um triângulo de incentro I. Seja D um ponto no lado BC e sejam ω_B e ω_C os incírculos de $\triangle ABD$ e $\triangle ACD$, respectivamente. Suponha que ω_B e ω_C sejam tangentes ao segmento BC nos pontos E e F, respectivamente. Defina P como a interseção do segmento AD com a reta ligando os centros de ω_B e ω_C . Seja X o ponto de interseção das retas BI e CP e Y o ponto de interseção das retas CI e BP. Prove que as retas EX e FY se encontram no incírculo de $\triangle ABC$.

Problema 15 (ELMO SL 2011) Seja ABC um triângulo. Desenho as circunferências ω_A , ω_B , e ω_C de forma que ω_A é tangente a AB e AC, e ω_B e ω_C são definidas de forma análoga. Seja P_A um insimilicentro de ω_B e ω_C . Defina P_B e P_C de forma análoga. Prove que AP_A , BP_B , e CP_C concorrem.

Problema 16 (Olimphiada SL 2021) Seja P um ponto dentro do triângulo ABC e sejam D, E, F as interseções de AP, BP, CP com os lados do triângulo. Sejam $\omega_D, \omega_E, \omega_F$ os incírculos de FEP, DPF, PED. Se as tangentes comuns externas de ω_E e ω_F se encontram em X_A , as de ω_D e ω_F em X_B e as de ω_D e ω_E em X_C , mostre que X_A pertence a BC, X_B a AC e X_C a AB P se, e somente se, P é o ortocentro de ABC.

Problema 17 (ISL 2020) Seja ABCD um quadrilátero cíclico. Pontos K, L, M, N são escolhidos em AB, BC, CD, DA de forma que KLMN é um losango onde $KL \parallel AC$ e $LM \parallel BD$. Sejam $\omega_A, \omega_B, \omega_C, \omega_D$ incírculos de $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$.

Prove que as tangentes internas comuns a ω_A e ω_C e as tangentes internas comuns a ω_B e ω_D concorrem.

Problema 18 (IMOSL 2007) Ponto P pertence ao lado AB de um quadrilátero convexo ABCD. Seja ω o incírculo do triângulo CPD, e seja I seu incentro. Suponha que ω é tangente aos incírculos dos triângulos APD e BPC nos pontos K e L, respectivamente. Seja E o ponto de encontro das retas AC e BD, e F das retas AK e BL. Prove que os pontos E, I, e F são colineares.

Problema 19 (IMO 2008) Seja ABCD um quadrilátero convexo com $BA \neq BC$. Defina ω_1 e ω_2 como os incírculos dos triângulos ABC e ADC, respectivamente. Suponha que exista uma circunferências ω tangente à semirreta BA após A e à semirreta BC após C, que também é tangente às retas AD e CD. Prove que as tangentes externas comuns a ω_1 e ω_2 se intersectam em ω .

Problema 20 (IGO 2019) Dado um triângulo agudo não isósceles ABC de circuncírculo Γ. M é o ponto médio do segmento BC e N é o ponto médio do arco BC de Γ que não contém A. X e Y são pontos em Γ de forma que $BX \parallel CY \parallel AM$. Assuma que existe um ponto Z no segmento BC de forma que o circuncírculo de XYZ é tangente à BC. Seja ω o circuncírculo de ZMN. A reta AM encontra ω pela segunda vez em P. Seja K um ponto em ω tal que $KN \parallel AM$, ω_b um círculo que passa por B, X e é tangente à BC e ω_c um círculo que passa por C, Y e é tangente à BC. Prove que a circunferência de centro K e raio KP ié tangente às 3 circunferências ω_b , ω_c e Γ .