An Introduction to Approximation Algorithm

Agenda

1

Brief Introduction

2

Set Cover Problem

3

Travel Salesman

Presenter: Ming-Yu Liu Date: 2015 / 7 / 20

Approximation

[Why We Need It]

For NP Hard Problems

C { Fast, Cheap, Reliable }

Solutions

 α – approximation algorithm

 α > 1 for min problem, < 1 for max

[Weighted Set Cover]

Universe

$$U = \{ u_1 , u_2 ... u_m \}$$

Subsets / Costs

$$S_1$$
, $S_2 \dots S_n \subseteq U$; c_1 , $c_2 \dots c_n$

Objective

$$\begin{aligned} &\text{Min} \quad \sum_{j \in I} c_j \; \; ; \; \; I \subseteq \{\mathbf{1} \; , \; \mathbf{2} \; ... \; n\} \\ &\text{S.T.} \; \cup_{j \in I} S_j = \mathbf{\textit{U}} \end{aligned}$$

[Integer Programming]

$$\mathbf{Min} \quad \sum_{j=1}^m c_j x_j$$

S.T.
$$\sum_{j:u_i\in S_j}x_j\geq 1$$
 , $i=1,...,n$ $x_j\in\{0,1\}$, $j=1,...,m$

Where x_j = Subset S_j is chosen or not n = Number of Constraints m = Number of Subsets

 $x_1 + x_4 \geq 1$

[Universe] = { 1, 2, 3, 4, 5 }

$$S_{1} = \{1, 5\} \quad S_{3} = \{2, 3, 4\}$$

$$S_{2} = \{1, 3\} \quad S_{4} = \{2, 4, 5\}$$

$$x_{j} \text{ for } S_{j} = \begin{cases} 1 \text{ if select } S_{j} \\ 0 \text{ if not} \end{cases}$$

$$S.T. \quad x_{1} + x_{2} \geq 1$$

$$x_{3} + x_{4} \geq 1$$

$$x_{2} + x_{3} \geq 1$$

$$x_{j} \in \{0, 1\}, j = 1, ..., m$$

[Integer Programming]

 $Min \quad \sum_{i=1}^m c_i x_i$

S.T.
$$\sum_{j:u_i\in S_j}x_j\geq 1$$
 , $i=1,...,n$ $x_j\in\{0,1\}$, $j=1,...,m$

Where x_i = Subset S_i is chosen or not

n = Number of Constraints

m = Number of Subsets

[Linear Programming]

$$\mathbf{Min} \quad \sum_{j=1}^m c_j x_j$$

S.T.
$$\sum_{j:u_i \in S_j} x_j \geq 1$$
 , $i=1,...,n$ $x_j \geq 0$, $j=1,...,m$

Where x_j = Subset S_j is chosen or not n = Number of Constraints m = Number of Subsets

Deterministic Rounding

[LP Solution] =
$$x_i^*$$

IP Solution
$$x_j^*$$
 for $S_j = \begin{cases} 1 & \text{if } x_j^* \ge 1 / f \\ 0 & \text{if not} \end{cases}$

Where
$$f = max_{i=1,...,n} f_i$$

$$f_i = |\{j: u_i \in S_j\}|$$

Deterministic Rounding

[Optimal Solution Upper Bound]

Claim It's a f – approximation for set cover

Where $Z_{LP}^* \leq Z_{IP}^* = \sum_{j=1}^m c_j x_j$

 Z^* = optimal solution for the linear and integer problem respectively

Proof It's a f – approximation for set cover

$$Z_{LP}^* \le Z_{IP}^* = \sum_{j=1}^m c_j x_j$$
; x_j^* for $S_j = \begin{cases} 1 & \text{if } x_j^* \ge 1 / f \\ 0 & \text{if not} \end{cases}$

Step 1: Transposition

$$f \cdot x_i^* \geq 1$$

Step 2: Plug in answer to the set cover problem

$$\sum_{j=1}^{m} c_{j} \cdot (f \cdot x_{j}^{*}) = f \sum_{j=1}^{m} c_{j} x_{j}^{*}$$

$$f . Z_{LP}^* \le f . Z_{IP}^* = f \sum_{j=1}^m c_j x_j$$

[Plain English]

" Making a series of decisions to get to a solution, while the decisions at each step are made by choosing the one that leads to the most obvious benefits "

Advantage

Easy to implement

Disadvantage

No solution promise

[Unweighted Set Cover]

Universe

$$U = \{ u_1 , u_2 ... u_m \}$$

Subsets

$$S_1$$
, $S_2 \dots S_n \subseteq U$

Objective

Min
$$|I|$$
; $I \subseteq \{1, 2...n\}$
S.T. $\bigcup_{j \in I} S_j = U$

[Set Cover Example]

Universe

Subsets

$$S_1 = \{ 0, 1, 2, 7, 8, 9 \}$$

 $S_2 = \{ 0, 1, 2, 3, 4 \} S_3 = \{ 3, 4, 6 \}$
 $S_4 = \{ 5, 6, 7, 8, 9 \} S_5 = \{ 4, 5, 6 \}$

Solution

$$S_2 \cup S_4 = U$$
; $I = 2$

[Optimal Solution Upper Bound]

Claim Set Cover with at most $mlog_e n$ sets

Where m = Optimal solution's size n = # of universe's points

Proof Set Cover with at most $mlog_e n$ sets

n = # of universe's points; m = Optimal solution's size

Iteration 1 : n_1 = elements left

$$n_1 \leq n - n / m = n(1 - 1 / m)$$

Iteration 2:

$$n_2 \le n_1 (1 - 1/(m - 1)) \le n_1 (1 - 1/m)$$

 $\le n (1 - 1/m)^2$

Iteration k:

$$n_k \le n (1-1/m)^k < 1$$

Proof Set Cover with at most $mlog_e n$ sets

n = # of universe's points; m = Optimal solution's size

Step 1: Transposition

$$n (1-1/m)^k < 1 \Rightarrow (1-1/m)^{m\frac{k}{m}} < 1/n$$

Step 2: Given $(1 - x)^{1/x} \approx 1/e$

$$e^{-\frac{k}{m}}<1/n$$

Step 3: Take log for both side;

Transposition

$$k/m > log_e n \Rightarrow k > mlog_e n$$

Local Search

Definition

[Algorithm Metaphor]

Local Search

[Random Hill Climbing]

Initial Search

Random

Select Move

Random

Acceptable Move

Not Worsening

Stop Search Idle Iteration

Local Search

Problem

[Travel Salesman]

City Order

Cost Matrix

Symmetric
$$C = (c_{ij})$$

Objective

Min
$$\sum_{i=1}^{n-1} c_{k(i)k(i+1)} + c_{k(n)k(1)}$$