Modern Algebra

Rings and Subrings

Orville D. Hombrebueno odhombrebueno@nvsu.edu.ph

Saint Mary's University March 30, 2019

The most general algebraic structure with two binary operations is called a ring.

Definition

A ring $\langle R, +, \cdot \rangle$ is a set R together with two binary operations + and \cdot , which we call addition and multiplication defined on R such that the following axioms are satisfied $\forall a, b, c \in R$:

- 1. $\langle R, + \rangle$ is an abelian group.
 - a. $a + b \in R$. (Closure)
 - b. a + (b + c) = (a + b) + c. (Associative)
 - c. $\exists \ 0 \in R \text{ s.t. } a + 0 = 0 + a = a. \text{ (Identity)}$
 - d. $\forall a \in R, \exists -a \in R \text{ s.t. } a+-a=-a+a=0. \text{ (Inverse)}$
 - e. a + b = b + a. (Commutative)
- 2. R is closed under \cdot , $a \cdot b \in R$.
- 3. Multiplication is associative, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 4. $\forall a, b, c \in R$, the **left distributive law**, $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ and the **right distributive law** $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ hold. \blacksquare

Examples

For example, $\langle \mathbb{Z}, +, \cdot \rangle$, $\langle \mathbb{Q}, +, \cdot \rangle$, $\langle \mathbb{R}, +, \cdot \rangle$, and $\langle \mathbb{C}, +, \cdot \rangle$ are rings.

Let R be any ring and let $M_n(R)$ be the collection of all $n \times n$ matrices having elements of R as entries. $M_n(R)$ is a ring. In particular, we have the rings $M_n(\mathbb{Z})$, $M_n(\mathbb{Q})$, $M_n(\mathbb{R})$, and $M_n(\mathbb{C})$. Note that multiplication is not a commutative operation in any of these rings for $n \geq 2$.

Let F be the set of all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$. F is a ring.

Recall that in group theory, $n\mathbb{Z}$ is the cyclic subgroup of \mathbb{Z} under addition consisting of all integer multiples of the integer n. $n\mathbb{Z}$ is a ring.

 \mathbb{Z}_n is a ring.

If R_1, R_2, \dots, R_n are rings, we can form the set $R_1 \times R_2 \times \dots \times R_n$ of all ordered *n*-tuples (r_1, r_2, \dots, r_n) , where $r_i \in R_i$. The set of all these *n*-tuples forms a ring under addition and multiplication by components. The ring $R_1 \times R_2 \times \dots \times R_n$ is the **direct product** of the rings R_i .

Remarks

- A ring that is commutative under multiplication is called a *commutative ring*.
- R is a ring with unity if $\forall a \in R, \exists 1 \in R \text{ s.t. } 1 \cdot a = a \cdot 1 = a$.
- R is a ring with a unit if $\forall a \in R, \exists a^{-1} \in R \text{ s.t. } a \cdot a^{-1} = a^{-1} \cdot a = 1.$

Properties of a Ring

Suppose R is a ring, $\forall a, b \in R$ the following holds:

- 1. $0 \cdot a = 0$,
- 2. $0 \neq 1$ (unless $R = \{0\}$),
- 3. $a \cdot (-b) = -(a \cdot b),$
- 4. $(-a) \cdot (-b) = a \cdot b$,
- 5. $(-1) \cdot a = -a$.

Definition

Suppose R is a ring. A set S is a **subring** of R if:

- 1. $S \subseteq R$,
- 2. S is a ring under the operations of R.

Subring Test

 $S \leq R$ if the following holds for S:

- 1. Closure(+).
- 2. Closure(\cdot).
- 3. $0 \in S$.
- $4. \ \forall a \in S, \exists -a \in S.$

Example

Subring Proof:

$$S = \{\cdots, -6, -3, 0, 3, 6, \cdots\} \le \mathbb{Z}$$

$$S = \{3 \cdot m \mid m \in \mathbb{Z}\}$$

1. Closure(+).

Let a, b in