VE401 Probabilistic Methods in Eng. RC 1

CHEN Xiwen

UM-SJTU Joint Institute

March 11, 2020

Table of contents

Discrete Random Variables

Random Variables and Probability Density Function Cumulative Distribution Function Expectation and Variance Moment-Generating Function

Common Distributions of Discrete Random Variables

Binomial Distribution
Geometric Distribution
Negative Binomial (Pascal) Distribution
Poisson Distribution

Random Variables and Probability Density Function

Cumulative Distribution Function
Expectation and Variance
Moment-Generating Function

Common Distributions of Discrete Random Variables

Binomial Distribution
Geometric Distribution
Negative Binomial (Pascal) Distribution
Poisson Distribution

Random Variables and Probability Density Function

Definition. Let S be a sample space and Ω a <u>countable</u> subset of \mathbb{R} . A *discrete random variable* is a map

$$X:S\to\Omega$$

together with a function

$$f_X:\Omega\to\mathbb{R}$$

having the properties that

- (i) $f_X(x) \ge 0$ for all $x \in \Omega$ and
- (ii) $\sum_{x \in \Omega} f_X(x) = 1.$

The function f_X is called the *probability density function* or *probability distribution* of X. A random variable is given by the pair (X, f_X) .

Random Variables and Probability Density Function

Cumulative Distribution Function

Expectation and Variance Moment-Generating Function

Common Distributions of Discrete Random Variables

Geometric Distribution

Negative Binomial (Pascal) Distribution

Poisson Distribution

Cumulative Distribution Function

Definition. The *cumulative distribution function* of a random variable is defined as

$$F_X: \mathbb{R} \to \mathbb{R}, \qquad F_X(x) := P[X \le x].$$

For a discrete random variable,

$$F_X(x) = \sum_{y \le x} f_X(y).$$

Random Variables and Probability Density Function
Cumulative Distribution Function

Expectation and Variance

Moment-Generating Function

Common Distributions of Discrete Random Variables

Geometric Distribution

Negative Binomial (Pascal) Distribution

Poisson Distribution

Expectation and Variance

Definition. Let (X, f_X) be a discrete random variable.

► The *expected value* or *expectation* of *X* is

$$\mu_X = \mathsf{E}[X] := \sum_{x \in \Omega} x \cdot f_X(x),$$

provided that the sum (possibly series, if Ω is infinite) on the right converges absolutely.

► The *variance* is defined by

$$\sigma_X^2 = \operatorname{Var}[X] := \operatorname{E}\left[(X - \operatorname{E}[X])^2\right]$$

which is defined as long as the right-hand side exists.

▶ The *standard deviation* is $\sigma_X = \sqrt{\text{Var}[X]}$.

Properties

- Expectation.
 - (a). Suppose $\varphi:\Omega\to\mathbb{R}$ is some function, then

$$\mathsf{E}[\varphi \circ X] = \sum_{x \in \Omega} \varphi(x) \cdot f_X(x).$$

- (b). E[aX + bY + c] = aE[X] + bE[Y] + c, where $a, b, c \in \mathbb{R}$ and X, Y are random variables.
- (c). $E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}].$
- (d). If X_1, \ldots, X_n are independent random variables, and $g_i, i = 1, \ldots, n$ are functions, then

$$\mathsf{E}\left[\prod_{i=1}^n X_i\right] = \prod_{i=1}^n \mathsf{E}[X_i], \quad \mathsf{E}\left[\prod_{i=1}^n g_i(X_i)\right] = \prod_{i=1}^n \mathsf{E}[g_i(X_i)].$$

Properties

Variance.

- (a). $Var[X] = E[X^2] E[X]^2$.
- (b). $Var[aX + b] = a^2Var[X]$, where $a, b \in \mathbb{R}$.
- (c). If X_1, \ldots, X_n are independent random variables, then

$$\operatorname{Var}\left[\sum_{i=1}^{n}a_{i}X_{i}\right]=\sum_{i=1}^{n}a_{i}^{2}\operatorname{Var}[X_{i}].$$

Note. If X and Y are not independent, then according to definitions,

$$Var[X + Y] = E\left[(X + Y - (\mu_X + \mu_Y))^2\right]$$

$$= E\left[(X - \mu_X)^2\right] + E\left[(Y - \mu_Y)^2\right] +$$

$$+ 2E\left[(X - \mu_X)(Y - \mu_Y)\right]$$

$$\neq Var[X] + Var[Y].$$

Random Variables and Probability Density Function Cumulative Distribution Function Expectation and Variance Moment-Generating Function

Common Distributions of Discrete Random Variables

Geometric Distribution

Negative Binomial (Pascal) Distribution

Poisson Distribution

Ordinary and Central Moments

Definition. The n^{th} (ordinary) moments of a random variable X is given by

$$E[X^n], n \in \mathbb{N}.$$

The n^{th} central moments of X is given by

$$\mathsf{E}\left[\left(\frac{X-\mu}{\sigma}\right)^n\right], \qquad \mathsf{where} \ n=3,4,5,\ldots$$

Moment-Generating Function

Definition. Let (X, f_X) be a random variable and such that the sequence of moments $E[X^n]$, $n \in \mathbb{N}$, exists. If the power series

$$m_X(t) := \sum_{k=0}^{\infty} \frac{\mathsf{E}[X^k]}{k!} t^k$$

has radius of convergence $\varepsilon > 0$, the thereby defined function

$$m_X(t):(-\varepsilon,\varepsilon)\to\mathbb{R}$$

is called the moment-generating function for X.

Moment-Generating Function

Theorem. Let $\varepsilon>0$ be given such that $\mathrm{E}[e^{tX}]$ exists and has a power series expansion in t that converges for $|t|<\varepsilon$. Then the moment-generating function exists and

$$m_X(t) = \mathsf{E}[\mathrm{e}^{tX}] \qquad \text{for } |t| < \varepsilon.$$

Furthermore,

$$E[X^k] = \frac{\mathrm{d}^k m_X(t)}{\mathrm{d} t^k} \bigg|_{t=0}.$$

We can hence calculate the moments of \boldsymbol{X} by differentiating the moment-generating function.

Random Variables and Probability Density Function Cumulative Distribution Function Expectation and Variance Moment-Generating Function

Common Distributions of Discrete Random Variables Binomial Distribution

Geometric Distribution
Negative Binomial (Pascal) Distribution
Poisson Distribution

Bernoulli Random Variable

Definition. Let S be a sample space and

$$X: S \to \{0,1\} \subset \mathbb{R}$$
.

Let 0 and define the density function

$$f_X: \{0,1\} \to \mathbb{R}, \qquad f_X(x) = \left\{ egin{array}{ll} 1-p & ext{for } x=0, \\ p & ext{for } x=1. \end{array}
ight.$$

Then X is said to be a **Bernoulli random variable** or follow a **Bernoulli distribution** with parameter p, denoted by

$$X \sim \text{Bernoulli}(p)$$
.

Bernoulli Random Variable

Mean, variance, and M.G.F.

► <u>Mean</u>.

$$E[X] = 0 \cdot (1 - p) + 1 \cdot p = p.$$

► <u>Variance</u>.

$$Var[X] = E[X^2] - E[X]^2 = p - p^2 = p(1 - p).$$

► <u>M.G.F.</u>

$$m_X:\mathbb{R} o\mathbb{R}, \qquad m_X(t)=(1-
ho)+e^t
ho.$$

Binomial Random Variable

Definition. Let S be a sample space, $n \in \mathbb{N} \setminus \{0\}$, and

$$X: S \to \Omega = \{0, \ldots, n\} \subset \mathbb{R}.$$

Let 0 and define the density function

$$f_X: \Omega \to \mathbb{R}, \qquad f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

Then X is said to be a **binomial random variable** with parameters n and p, denoted by

$$X \sim B(n, p),$$

and particularly, B(1, p) = Bernoulli(p).

Binomial Distribution

Mean, variance and M.G.F.

► <u>Mean</u>.

$$E[X] = \sum_{x=0}^{n} \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \cdot x$$
$$= np \sum_{x=0}^{n} \frac{(n-1)!}{x!(n-1-x)!} p^{x} (1-p)^{n-1-x} = np.$$

Variance.

$$\mathsf{Var}[X] = np(1-p).$$

► <u>M.G.F.</u>

$$m_X: \mathbb{R} \to \mathbb{R}, \qquad m_X(t) = (1 - p + pe^t)^n.$$

Random Variables and Probability Density Function Cumulative Distribution Function Expectation and Variance Moment-Generating Function

Common Distributions of Discrete Random Variables

Binomial Distribution

Geometric Distribution

Negative Binomial (Pascal) Distribution

Poisson Distribution

Geometric Random Variable

Definition. Let S be a sample space and

$$X: S \to \Omega = \mathbb{N} \setminus \{0\}.$$

Let $0 and define the density function <math>f_X : \mathbb{N} \setminus \{0\} \to \mathbb{R}$ given by

$$f_X(x) = (1-p)^{x-1}p.$$

Then X is a **geometric random variable** with parameter p, denoted by

$$X \sim \text{Geom}(p)$$
.

Geometric Distribution

Mean, variance and M.G.F.

Mean.

$$\mathsf{E}[X] = \frac{1}{p}.$$

► <u>Variance</u>.

$$Var[X] = \frac{1-p}{p^2}.$$

► <u>M.G.F.</u>

$$m_X: (-\infty, -\ln(1-p)) o \mathbb{R}, \qquad m_X(t) = rac{pe^t}{1-(1-p)e^t}.$$

Random Variables and Probability Density Function Cumulative Distribution Function Expectation and Variance Moment-Generating Function

Common Distributions of Discrete Random Variables

Geometric Distribution

Negative Binomial (Pascal) Distribution

Poisson Distribution

Pascal Random Variable

Definition. Let S be a sample space and

$$X: S \rightarrow \Omega = \mathbb{N}$$
.

Let $0 and define the density function <math>f_X : \mathbb{N} \to \mathbb{R}$ given by

$$f_X(x) = \frac{(x+r-1)!}{x!(r-1)!} p^x (1-p)^r.$$

Then X is a **Pascal random variable** with parameter r, p, denoted by

$$X \sim \mathsf{Pascal}(r, p)$$
.

Pascal Distribution

Mean, variance and M.G.F.

Mean.

$$\mathsf{E}[X] = \frac{rp}{1-p}.$$

Variance.

$$\operatorname{Var}[X] = \frac{rp}{(1-p)^2}.$$

► <u>M.G.F.</u>

 m_X :

Common Distributions of Discrete Random Variables

Poisson Distribution

Poisson Random Variable

Poisson Distribution

Thanks for your attention!