Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER (CMOS)

PART NUMBER: NJU7040

MANUFACTURER: NEW JAPAN RADIO

Bee Technologies Inc.

Spice Model


```
*PART NUMBER: NJU7040
*MANUFACTURER: NEW JAPAN RADIO
*CMOS OPAMP WITH SHUTDOWN
*All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
.SUBCKT NJU7040 IN+ V- IN- OUT V+
m1 3 IN- 6 V- nix I=6u w=20.813u
m2 4 7 6 V- nix I=6u w=25u
m3 8 IN- 5 5 pix l=6u w=25u
m4 9 7 5 5 pix l=6u w=27.75u
eos 7 IN+ poly(1) 25 98 5e-3 0.451
iin1 IN+ 98 1.5p
iin2 IN- 98 1.5p
ios IN- IN+ 0.5p
i1 V+ 5 50u
i2 6 V- 50u
r1 V+ 3 4.833k
r2 V+ 4 4.833k
r3 8 V- 4.833k
r4 9 V- 4.833k
d3 5 V+ dx
d4 V- 6 dx
eref 98 0 poly(2) V+ 0 V- 0 0 0.5 0.5
g1 98 21 poly(2) 4 3 9 8 0 145u 145u
rg 21 98 53.2e6
cc 21 OUT 9.4p
d1 21 22 dx
d2 23 21 dx
v1 V+ 22 1.37
v2 23 V- 1.37
ecm 24 98 poly(2) IN+ 98 IN- 98 0 0.5 0.5
r5 24 25 1e6
r6 25 98 2.25k
c1 24 25 0.75p
isy V+ V- 390u
```

```
gsy V+ V- poly(1) V+ V- -3.334e-4 6.667e-5
ep V+ 39 poly(1) 98 21 0.78925 1
en 38 V- poly(1) 21 98 0.78925 1
m15 OUT 39 V+ V+ pox I=1.5u w=270u
m16 OUT 38 V- V- nox I=1.5u w=271u
c15 OUT 39 1p
c16 OUT 38 1p
c17 5 9 10p
c18 out 9 30p
.model dx d(rs=1 cjo=0.1p)
.model nix nmos(vto=.75 kp=205.5u rd=1 rs=1 rg=1 rb=1
+ cgso=4e-9 cgdo=4e-9 cgbo=16.667e-9 cbs=100.5e-7
+ cbd = 100.5e-7
.model nox nmos(vto=.75 kp=195u rd=.5 rs=.5 rg=1 rb=1
+ cgso=66.667e-12 cgdo=66.667e-12 cgbo=125e-9
+ cbs=2.34e-13 cbd=2.34e-13)
.model pix pmos(vto=-.75 kp=205.5u rd=1 rs=1 rg=1 rb=1
+ cgso=4e-12 cgdo=4e-12 cgbo=16.667e-9 cbs=2.534e-12
+ cbd=10.534e-12)
.model pox pmos(vto=-.75 kp=195u rd=.5 rs=.5 rg=1 rb=1
+ cgso=66.667e-12 cgdo=66.667e-12 cgbo=125e-9
                      cbd=2.538e-11)
+ cbs=2.538e-11
.ends
```

MOSFET MODEL

Pspice model	Model description		
parameter	·		
LEVEL			
L	Channel Length		
W	Channel Width		
KP	Transconductance		
RS	Source Ohmic Resistance		
RD	Ohmic Drain Resistance		
VTO	Zero-bias Threshold Voltage		
RDS	Drain-Source Shunt Resistance		
TOX	Gate Oxide Thickness		
CGSO	Zero-bias Gate-Source Capacitance		
CGDO	Zero-bias Gate-Drain Capacitance		
CBD	Zero-bias Bulk-Drain Junction Capacitance		
MJ	Bulk Junction Grading Coefficient		
PB	Bulk Junction Potential		
FC	Bulk Junction Forward-bias Capacitance Coefficient		
RG	Gate Ohmic Resistance		
IS	Bulk Junction Saturation Current		
N	Bulk Junction Emission Coefficient		
RB	Bulk Series Resistance		
PHI	Surface Inversion Potential		
GAMMA	Body-effect Parameter		
DELTA	Width effect on Threshold Voltage		
ETA	Static Feedback on Threshold Voltage		
THETA	Modility Modulation		
KAPPA	Saturation Field Factor		
VMAX	Maximum Drift Velocity of Carriers		
XJ	Metallurgical Junction Depth		
UO	Surface Mobility		

Output Voltage Swing (V_{OH1})

Simulation result

Evaluation Circuit

Comparison Table

R _L =10 kΩ to 2.5 V	Measurement	Simulation	%Error
V _{OH1 (min)} (V)	4.95	4.9957	-

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Output Voltage Swing (V_{OL1})

Simulation result

Evaluation Circuit

Comparison Table

R_L =10 k Ω to 2.5 V	Measurement	Simulation	%Error
V _{OL1 (MAX)} (mV)	50	4.3511	-

Input Current

Simulation result

Evaluation Circuit

Comparison Table

	Measurement	Simulation	% Error
I _b (pA)	1	1	0
I _{IO} (pA)	1	1	0

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Input Offset Voltage

Simulation result

Evaluation Circuit

Comparison Table

	Measurement	Simulation	%Error
Vos (mV)	10	9.812	-1.88

Open loop Voltage Gain

Simulation result

Evaluation Circuit

Comparison Table

	Measurement	Simulation	%Error
AV(dB)	90	89.996	-0.004
F0-db (MHz)	0.8	0.799840	-0.020

All Rights Reserved Copyright (c) Bee Technologies Inc. 2006

Common-Mode Rejection Ratio

Simulation result

Evaluation Circuit

CMRR = AV/ACM

= 20* LOG(31608.217/(3.1961m/100u))

Comparison Table

	Measurement	Simulation	%Error
CMRR (dB)	60	59.903	-0.162

Slew Rate

Simulation result

Evaluation Circuit

Comparison Table

	Measurement	Simulation	%Error
SR (V/us)	0.8	0.792	-1