CS 39: Theory of Computation

Winter '23

Mid-Term Exam 1 — 02/13/2023

Prof. Chakrabarti Student; Amittai Siavava

Credit Statement

All work on the mid-term is my own. I referred to class notes and the following books:

(i) Introduction to the Theory of Computation by Michael Sipser.

Problem 1.

Let $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be the alphabet of all decimal digits. A string $x \in D^*$ is said to be stable if, for each pair of adjacent digits in x, those two digits have a numerical difference of at most 1. For example:

Stable: 433321001012, 556677654, 7, 0000, ε .

Unstable: 6554667, 1213141516, 7890123.

Give a formal description of a DFA that recognizes $L_1 = \{x \in D^* : x \text{ is stable}\}$. Provide a high-level explanation of your design idea (no formal completeness and soundness proofs are required).

$$M = (Q, D, \delta, s, F), \text{ where}$$

$$Q = \{s, r\} \cup \{q_i : i \in D\}$$

$$\delta(q, x) = \begin{cases} q_x & \text{if } x \in D \text{ and } q \in \{s, q_{x-1}, q_x, q_{x+1}\}. \\ r & \text{otherwise.} \end{cases}$$

$$F = \{s\} \cup \{q_i : i \in D\} = Q \setminus \{r\}.$$

Design Idea:

We maintain a start state, a trapping reject state, and one state for each digit.

Here is how we handle transitions:

- If we are in the start state and read a digit, we transition to the corresponding digit state.
- If we are in a digit state q_x (for the digit x) and read a digit y, then:
 - if y = x, we loop to the same state q_x .
 - if $y = x \pm 1$, we transition to the corresponding digit state q_y .
 - if $y \neq x$ and $y \neq x \pm 1$, we transition to the reject state r.
- If we are in the reject state r and read any symbol, we stay in the reject state.

Finally, we accept if after processing a string we are still in the start state (meaning the string is empty) or in a digit state (meaning all the adjacent digits had a difference of at most 1).

Problem 2.

For each CFG G_i ;

- Describe $\mathcal{L}(G_i)$ using set notation, as simply as possible.
- Either *draw* an NFA that recognizes $\mathcal{L}(G_i)$ or *prove* that $\mathcal{L}(G_i)$ is not regular.
- (a) G_1

$$S \Rightarrow 0T0 \mid 1T1$$

$$T \Rightarrow 0T0 \mid 1T1 \mid X$$

$$X \Rightarrow AX \mid A$$

$$A \Rightarrow 0 \mid 1$$

- (i) $\mathcal{L}(G_1) = \{xwx^R : x, w \in \{0, 1\}^* \text{ and } |x| > 0, |w| > 0\}$
- (ii) Draw an NFA that recognizes $\mathcal{L}(G_1)$.

(b) G_2

$$S \Rightarrow 0X \mid 1Y$$

$$X \Rightarrow AXA \mid 0$$

$$Y \Rightarrow AYA \mid 1$$

$$A \Rightarrow 0 \mid 1$$

- (i) $\mathcal{L}(G_2) = \{aw : a \in \{0,1\}, w \in \{0,1\}^* \text{ and the middle symbol of } w \text{ is } a\}$
- (ii) *Prove* that $\mathcal{L}(G_2)$ is not regular or draw an NFA.

Claim 2.1. $L_2 = \mathcal{L}(G_2)$ is not regular.

Proof. Suppose L_2 is regular, and let p be the pumping length for L_2 . Take $s = 10^p 10^p$, then clearly $s \in L_2$. By the pumping lemma, there exists $u, v, w \in \{0, 1\}^*$ such that s = uvw and:

- $|uv| \le p$
- |v| > 0

This gives us two possibilities:

- If $u = \varepsilon$, then $v = 10^a$ for some $0 \le a \le p 1$, and $w = 0^{p-a} 10^p$.
- If $u \neq \varepsilon$, then $u = 10^a$, $v = 0^b$, and $w = 0^{p-a-b}10^p$, where $a + b \le p 1$.
- $uv^k w \in L_2$ for all $k \ge 0$

In the first case, pumping up the string tells us that $uv^2w = 10^b 10^b 0^{p-b} 10^p \in L_2$.

This implies that the middle symbol of $0^b 10^p 10^p$ is 1.

For this to happen, either:

- -b=2p+1. This contradicts the condition that $b=|v| \le p$ (which follows from PL1).
- -b+p+1=p. This implies that b=-1, which contradicts the fact that we cannot have negative-length strings.

Therefore, in the first case L_2 must not be regular.

In the second case, pumping down the string tells us that $uw = 10^a 0^{p-a-b} 10^p \in L_2$.

This implies that the middle symbol of $0^{p-b}10^p$ is 1.

For this to happen, we must have that p - b = p, meaning b = 0, contradicting rule PL2 which says that b = |v| > 0.

Therefore, in the second case \mathcal{L}_2 must also not be regular.

(c) G₃

$$S \Rightarrow AAT \mid BBT$$

$$T \Rightarrow AAT \mid BBT \mid A \mid B$$

$$A \Rightarrow 0$$

$$B \Rightarrow 1$$

Problem 3.

Give a simple CFG that generates the language $L_3 = \{x \in \{0,1\}^* : x \neq x^R\}$.

Formally prove that your CFG is sound and complete.

$$S \rightarrow 0S0 \mid 0B1 \mid 1B0 \mid 1S1$$

$$B \Rightarrow 0B0 \mid 0B1 \mid 1B0 \mid 1B1 \mid \varepsilon$$

Problem 4.

For each $x \in \{0,1\}^*$, define grow(x) to be the string obtained by replacing every occurrence of '0' in x with '00'. For example:

$$grow(10110) = 1001100$$
, $grow(000) = 000000$, $grow(\varepsilon) = \varepsilon$, $grow(11) = 11$.

Let $P = (Q, \{0, 1\}, \Gamma, \delta, q_0, F)$ be a PDA. Formally describe a PDA that recognizes $\{\text{grow}(x) : x \in \mathcal{L}(P)\}$. Do not assume anything about the design of P.

Give a high-level explanation of your construction (no formal completeness and soundness proofs are required).

Define a new PDA

$$P_2 = (Q_2, \{0,1\}, \Gamma, \delta_2, q_0, F)$$

where:

$$Q_2 = \bigcup_{q \in Q} \left\{ q, q' \right\}$$

$$\delta_2(q, x, \gamma) = \begin{cases} \delta(q, x, \gamma) & \text{if } q \in Q \text{ and } x \neq 0 \\ r' & \text{where } r = \delta(q, x, \gamma), \text{if } q \in Q \text{ and } x = 0 \end{cases}$$

$$r & \text{if } q = r' \text{ for some } r \in Q, \text{ and } x = 0, \gamma = \varepsilon$$

Main Idea:

- (i) We start at the same state. We also maintain the same accepting states.
- (ii) We create a duplicate state q' for each state $q \in Q$.
- (iii) Whenever there is an incoming transition $q \to r$ with a reading x = 0, we instead transition to r'. r' then only transitions to r if the next symbol is a 0. The transition from q to r' pushes to or pops from the stack as it would if transitioning directly from q to r in the original PDA. However, the transition from r' to r does not push or pop anything, making sure the stack remains consistent as it would if only the first transition had occurred.
- (iv) All other transitions are handled the same way as in the original PDA.

Problem 5.

For a language L, define unique(L) := $\{x \in L : \nexists y \in L \text{ such that } |y| = |x|\}.$

In other words, UNIQUE(L) is the set of all strings $x \in L$ such that x is the only string in L that has length |x|.

Is the class of regular languages closed under the operation UNIQUE? Prove your answer.

Problem 6.

Every language falls into into one of the following three categories:

- (i) regular
- (ii) context-free but not regular
- (iii) not context-free

Which of these categories is the following language in?

$$L_6 = \left\{ x \in \left\{ 0, 1 \right\}^* : \exists y, z \in \left\{ 0, 1 \right\}^* \text{ such that } x = yz, |y| = |z|, \text{ and } \beta(y) \equiv 0 \pmod{3} \right\}.$$

Reminder: For a string $x \in \{0,1\}^*$, $\beta(x)$ is the string x interpreted as a binary number. For instance, $\beta(11001) = 25$ and $\beta(0011) = 3$. We also define $\beta(\varepsilon) = 0$.