Mineração de Dados

Sumário

- 1 Avaliação e Seleção de Modelos de Classificação
- Métodos Auxiliares
- Oesbalanceamento dos Dados
- 4 Avaliação de Modelos: scikit-learn

Avaliação e Seleção de Modelos de Classificação

Introdução

- Etapas do desenvolvimento do modelo
 - Treinamento ou geração de modelos
 - Seleção de modelos
 - Avaliação e análise de modelos
- Comparação
 - Entre modelos iguais: quais parâmetros são melhores?
 - Entre os diferentes modelos: qual o melhor modelo?
- Métricas de avaliação
- Comparando classificadores
 - Acurácia/Erro
 - Intervalos de confiança/análise estatística
 - Curva ROC

Introdução

- É apropriado utilizar um conjunto de validação/teste para avaliar os modelos candidatos
 - Não deve-se utilizar os dados de treinamento
- Métodos para apoiar a avaliação dos modelos
 - Holdout
 - Validação cruzada
 - Bootstrap

Acurácia/Erro

- Avaliar a capacidade do modelo em predizer o valor da supervisão sobre um novo conjunto de dados
- Dados diferentes daqueles usados para a geração dos modelos!
- Métodos auxiliares de avaliação
 - Holdout
 - Validação cruzada
 - Bootstrap

Acurácia/Erro

- Define-se as instâncias marcadas como sendo da classe de interesse como positivas
- As tuplas da outra classe são ditas negativas
- Por exemplo
 - buys-computer = yes: Positiva
 - buys-computer = no: Negativa
- Com essa definição e um modelo de classificação, 4 possibilidades podem ocorrer ao avaliar o modelo sobre novos dados

- Verdadeiros-positivos (TP): Instâncias positivas e que são classificadas (corretamente) pelo modelo como positivas
- Verdadeiros-negativos (TN): Instâncias negativas e que são classificadas (corretamente) pelo modelo como negativas
- Falsos-positivos (FP): Instâncias que são negativas mas que são classificadas (incorretamente) pelo modelo como positivas
- ► Falsos-negativos (FN): Instâncias que são positivas mas que são classificadas (incorretamente) pelo modelo como negativas

Predicted class

Actual class

		yes	no
s	yes	TP	FN
	по	FP	TN
	Total	P'	N'

Total
P
N

Matriz de Confusão

Matriz de confusão

Predicted class

		yes	по	Total
Actual class	yes	TP	FN	P
	по	FP	TN	N
	Total	P'	N'	P+N

Exemplo:

Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Matriz de Confusão

- A acurácia (classificação correta) pode ser contabilizada usando a diagonal principal
- Deseja-se que se tenha pequenas quantidades "falsas"
- No caso multiclasse, MC_{ij} indica a quantidade de instâncias da classe i que foi classificada como sendo da classe j
- ► A matriz de confusão pode conter linhas e colunas adicionais para contagem de valores totais

Acurácia/Erro

Predicted class

Actual class

	yes	по	Total
yes	TP	FN	P
no	FP	TN	N
Total	P'	N'	P+N

Acurácia: porcentagem das instâncias classificadas corretamente

▶ Porcentagem de Erro: 1— acurácia

$$1 - \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{P} + \mathsf{N}} = \frac{\mathsf{FP} + \mathsf{FN}}{\mathsf{P} + \mathsf{N}}$$

Problema de Desbalanceamento dos Dados

- Uma das classes pode ser rara
 - Fraude
 - Indivíduo com uma dada doença

Predicted class

- Sensitividade: porcentagem das instâncias positivas classificadas corretamente
 - $ightharpoonup \frac{1P}{P}$
- Especificidade: porcentagem das classes negativas classificadas corretamente
 - $\frac{1 \text{ N}}{\text{N}}$

Outras Medidas Comuns

Predicted class

Actual class

	yes	по	Total
yes	TP	FN	P
no	FP	TN	N
Total	P'	N'	P+N

- Precisão: porcentagem das instâncias classificadas como positivas que são realmente positivas
 - $\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$
 - Indica a exatidão do modelo
- ► Abrangência (*Recall*): porcentagem das classes positivas classificadas corretamente
 - <u>TP</u>
 - P Indica a comi
 - Indica a completude do modelo
 - Igual à sensitividade

Precisão e Abrangência

relevant elements

How many selected items are relevant?

How many relevant items are selected?

Outras Medidas Comuns

- ▶ Medida-F: *F-measure*, F₁ ou F-*score*
 - $F = \frac{2 \times \mathsf{Precis\~ao} \times \mathsf{Abrang\^encia}}{\mathsf{Precis\~ao} + \mathsf{Abrang\^encia}}$
 - Média harmônica entre precisão e abrangência
- ightharpoonup F_{eta}
 - $F = \frac{(1 \beta^2) \times \operatorname{Precisão} \times \operatorname{Abrangência}}{\beta^2 \operatorname{Precisão} + \operatorname{Abrangência}}$
 - F₂ é uma medida comum e que enfatiza abrangência sobre precisão
 - ightharpoonup $F_{0.5}$ é uma medida comum e que enfatiza precisão sobre a abrangência

Measure	Formula
accuracy, recognition rate	$\frac{TP+TN}{P+N}$
error rate, misclassification rate	$\frac{FP + FN}{P + N}$
sensitivity, true positive rate, recall	$\frac{TP}{P}$
specificity, true negative rate	$\frac{TN}{N}$
precision	$\frac{TP}{TP + FP}$
F, F_1, F -score, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$
F_{β} , where β is a non-negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

Precision = 90/230 = 39.13%

Recall = 90/300 = 30.00%

Matriz de Confusão

- Essas formas de avaliação são suficientes?
- As instâncias podem não ser classificadas unicamente
 - Neste caso, é mais apropriado que se tenha uma distribuição de probabilidade
- As instâncias podem não ter o mesmo peso na avaliação
 - ou erros diferentes podem ter pesos diferentes
- Velocidade
- Robustez: o modelo é acurado sobre dados com ruído ou com valores ausentes?
- Escalabilidade
- ► Interpretabilidade

Métodos Auxiliares

Holdout

► Holdout

- Os dados são divididos em 2 conjuntos independentes
- Dados de treinamento: construção do modelo (por exemplo, 2/3)
- ▶ Dados de teste: estimação da acurácia (por exemplo, 1/3)
- Pode-se repetir o holdout k vezes e a acurácia pode ser calculada pela média das acurácias obtidas

Validação Cruzada

- ► Validação Cruzada
 - Particiona os dados em k mutuamente exclusivos conjuntos
 - Os k conjuntos tem aproximadamente o mesmo número de elementos
 - Na i-ésima iteração, utilize D_i como conjunto de teste e os demais conjuntos como dados de treinamento
 - \blacktriangleright k-fold com k=10 é o mais popular
 - O menor conjunto de dados resulta no leave-one-out
 - A versão que busca manter as proporções dos dados é chamada de Validação Cruzada Estratificada
 - Sugere-se a utilização do stratified 10-fold cross-validation

Validação Cruzada

Bootstrap

- ► Funciona bem com poucos dados
- Amostra-se os dados de treinamento uniformemente e com reposição
- Existem diversas variantes e a mais comum é o *bootstrap* .632
 - Um conjunto de dados com m tuplas é amostrado m vezes (com reposição), resultando em um conjunto de treinamento de m elementos
 - As instâncias que não foram selecionadas para o treinamento irão compor o conjunto de teste
 - Aproximadamente 63.2% dos dados fazem parte dos dados de treinamento, e os demais 36.8% do conjunto de teste
 - A chance de uma instância ser sorteada ao acaso é 1/m, então $(1-1/m)^m \approx e^{-1} = 0.368$ é a chance total dela não ser sorteada
 - O procedimento é repetido por *k* vezes
 - ► A qualidade do modelo é então definida como:

$$\mathsf{Q}_{bootstrap}(D) = \frac{1}{k} \sum_{i=1}^{k} \left[0.632 \times \mathsf{Acur}(D_{i,\mathsf{teste}}) + 0.368 \times \mathsf{Acur}(D_{i,\mathsf{treinamento}}) \right]$$

Significância Estatística

- Os k testes realizados via Validação Cruzada (por exemplo) possuem variância
- A diferença média observada pode não ter significância
- Uma forma de avaliar a significância é
 - Teste-t
 - Hipótese nula de que as amostras são similares
 - Comparação pareada
 - ► Tipicamente usa-se 5% de nível de significância
 - ► Se o p-valor é menor 0.05 então rejeita-se a hipótese nula
- ► Testes não paramétricos também podem ser usados
 - Teste de Wilcoxon
 - ► Teste de Mann–Whitney
 - ► Teste de Friedman

Curva ROC

- Curva ROC: Receiver Operating Characteristics
- Comparação visual de classificadores
- Mostra o trade-off entre a taxa de verdadeiros positivos e de falsos positivos
 - O eixo vertical representa a taxa de verdadeiros positivos
 - O eixo horizontal representa a taxa de falsos positivos
 - A diagonal principal é um limiar para o caso aleatório
- A área sob a curva ROC é uma métrica de qualidade do modelo

Curva ROC

- Construção da Curva ROC
 - Ordene as tuplas em ordem decrescente da certeza dada pelo modelo da instância pertencer à classe positiva
 - ► Tuplas com maior chance de serem classificadas como positivas aparecem no início da lista
 - Deslocar em relação ao eixo vertical se a classe for realmente positiva
 - Deslocar em relação ao eixo horizontal se a tupla for um falso positivo
- Quanto mais próximo da diagonal, menor a qualidade do modelo
- O melhor modelo é aquele com área sob a curva igual a 1

Tuple #	Class	Prob.
1	P	0.90
2	P	0.80
3	N	0.70
4	P	0.60
5	P	0.55
6	N	0.54
7	N	0.53
8	N	0.51
9	P	0.50
10	N	0.40

_	TP	FP	TN	FN	TPR	FPR
	1	0	5	4	0.2	0
	2	0	5	3	0.4	0
	2	1	4	3	0.4	0.2
	3	1	4	2	0.6	0.2
	4	1	4	1	0.8	0.2
	4	2	3	1	0.8	0.4
	4	3	2	1	0.8	0.6
	4	4	1	1	0.8	0.8
	5	4	0	1	1.0	0.8
	5	5	0	0	1.0	1.0

TP: sensibilidade FP: 1— especificidade

O modelo M_1 é o melhor segundo essa avaliação.

Curva ROC

Desbalanceamento dos Dados

Desbalanceamento dos Dados

- Desbalanceamento
 - Classe majoritária: muitas instâncias
 - Classe minoritária: poucas instâncias
- Exemplos
 - Casos de câncer em bases médicas
 - Representações de invasores em sistemas
- Está relacionado ao caso de atribuição de pesos às instâncias
- Normalmente, os métodos buscam minimizar o erro considerando que os pesos dos falsos positivos e falsos negativos são iguais

Desbalanceamento dos Dados

- Sensitividade (taxa de verdadeiros positivos) e especificidade (taxa de verdadeiros negativos) ajudam a avaliar a classificação em bases desbalanceadas
- A curva ROC também ajuda pois avalia a sensitividade (verdadeiros positivos) e 1 — especificidade (falsos positivos)
- Alguns meios de tratar o desbalanceamento dos dados
 - Oversampling: re-amostra dados da classe minoritária a fim de equilibrar os dados de treinamento (SMOTE é um exemplo)
 - Undersampling: decrementa a quantidade de dados da classe majoritária no treinamento
 - Mover o limiar de separação: altera o parâmetro que indica a classe predita
 - ► Técnicas de comitê (*ensemble*)

Avaliação de Modelos: scikit-learn

- ➤ A biblioteca scikit-learn disponibiliza diversos mecanismos para avaliação de modelos
 - http://scikit-learn.org/stable/modules/classes.html#module-
 - Acurácia (accuracy_score)
 - ► Matriz de Confusão (confusion_matrix)
 - $ightharpoonup F_{eta}$ score (fbeta_score)
 - Curva ROC (roc_curve)
 - Área Sob a Curva ROC (roc_auc_score)

- ► Há também implementações de métodos auxiliares para a avaliação
 - http://scikit-learn.org/stable/modules/classes.html#module-sklear
 - ► Separação dos dados/holdout (train_test_split e ShuffleSplit)
 - ► Validação Cruzada (GroupKFold, cross_validate e cross_val_score)
 - Validação Cruzada Estratificada (StratifiedKFold)
- Métodos para determinação de parâmetros dos modelos
 - ▶ Busca em Grade (GridSearchCV)
 - Busca Aleatória (RandomizedSearchCV)
- Pode-se implementar uma estratégia
- Análise estatística
 - ► Teste-t (scipy.stats.ttest_ind e scipy.stats.ttest_rel)
 - ► Teste de Wilcoxon (scipy.stats.wilcoxon)

- ► Há também implementações de métodos auxiliares para a avaliação
 - http://scikit-learn.org/stable/modules/classes.html#module-sklear
 - Separação dos dados/holdout (train_test_split e ShuffleSplit)
 - ▶ Validação Cruzada (GroupKFold, cross_validate e cross_val_score)
 - Validação Cruzada Estratificada (StratifiedKFold)
- Métodos para determinação de parâmetros dos modelos
 - Busca em Grade (GridSearchCV)
 - Busca Aleatória (RandomizedSearchCV)
- Pode-se implementar uma estratégia
- Análise estatística
 - ► Teste-t (scipy.stats.ttest_ind e scipy.stats.ttest_rel)
 - ► Teste de Wilcoxon (scipy.stats.wilcoxon)

- ► Há também implementações de métodos auxiliares para a avaliação
 - http://scikit-learn.org/stable/modules/classes.html#module-sklear
 - Separação dos dados/holdout (train_test_split e ShuffleSplit)
 - ► Validação Cruzada (GroupKFold, cross_validate e cross_val_score)
 - Validação Cruzada Estratificada (StratifiedKFold)
- Métodos para determinação de parâmetros dos modelos
 - Busca em Grade (GridSearchCV)
 - Busca Aleatória (RandomizedSearchCV)
- Pode-se implementar uma estratégia
- Análise estatística
 - Teste-t (scipy.stats.ttest_ind e scipy.stats.ttest_rel)
 - ► Teste de Wilcoxon (scipy.stats.wilcoxon)