Maoyuan 'Raymond' Song

Department of Computer Science, Purdue University) 305 N. University St, West Lafayette, IN 47907

CONTACT

Email:

- MaoyuanRS (at) gmail (dot) com (Preferred)
- song683 (at) purdue (dot) edu

Personal Page: maoyuans.github.io

RESEARCH INTERESTS

Theoretical computer science, specifically: Online algorithms; Learning-augmented algorithms; Sublinear-time and sublinear-space algorithms; Computational complexity; Learning theory.

EDUCATION

Ph.D. Student in Computer Science

August 2020 - Present

Purdue University, West Lafayette, IN

• Advisor: Elena Grigorescu, Paul Valiant.

M.S. in Computer Science

May 2019 - May 2020

Carnegie Mellon University, Pittsburgh, PA

- Advisor: Carleton Kingsford.
- Thesis: Linear Time Addition of Fibonacci Encodings.

B.S. in Computer Science

Aug 2015 - May 2020

Carnegie Mellon University, Pittsburgh, PA

- Minor: Discrete Mathematics and Logic.
- Graduated with University Honors.

EMPLOYMENT Senior Project Member, Content Manager

January 2018 - May 2020

Carnegie Mellon University Computer Science Academy, Pittsburgh, PA

- Participated as a senior member in the development of CMU Computer Science Academy, a university-sponsored non-profit organization aiming to provide accessible and effective experiences with CS for highschool students and educators.
- Created and managed contents including student exercises, quality assurance, and support resources for educators.

PUBLICATIONS

4. Neighborhood Optimality in Mean Estimation: Beyond Worst-Case, Beyond Sub-Gaussian, Beyond $1 + \alpha$ Moments.

Trung Dang, Jasper C.H. Lee, Maoyuan Song, Paul Valiant. In submission.

3. Learning-Augmented Algorithms for Online Linear and Semidefinite Program-

Elena Grigorescu, Young-San Lin, Sandeep Silwal, Maoyuan Song, Samson Zhou.

Conference on Neural Information Processing Systems (NeurIPS) (2022). Selected for spotlight presentation.

2. Linear Time Addition of Fibonacci Encodings.

Maoyuan (Raymond) Song.

Master's Thesis (2020).

1. Application of Convolutional Neural Networks in Accent Identification.

Kevin Chionh, Maoyuan Song, Yue Yin.

Project Report (2018).

TEACHING

Purdue University, Department of Computer Science

Graduate Teaching Assistant

• CS588 Randomized Algorithms

Spring 2022

• CS584 Theory of Computation

Fall 2021

• CS381 Introduction to the Analysis of Algorithms

Spring 2021

• CS251 Data Structures and Algorithms

Fall 2020

Carnegie Mellon University, Department of Computer Science

Graduate Teaching Assistant

• 15-451 Algorithm Design and Analysis

Spring 2020, Fall 2019

AWARDS

• Supported by Purdue Research Fundation Ross-Lynn Research Scholars Grant, Fall 2022.

PROFESSIONAL External Conference Reviewer

SERVICE

- Innovations in Theoretical Computer Science (ITCS) 2023, 2022.
- Conference on Neural Information Processing Systems (NeurIPS) 2022, 2021.
- International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) 2022.
- Journal of Artificial Intelligence Research (JAIR) 2022.

Organizer

- Theoretical Computer Science Seminar at Purdue, Fall 2022.
- Advanced Algorithm Reading Group at Purdue, Fall 2020.

TALKS and PRESENTATIONS

- Learning-Augmented Algorithms for Online General Covering LPs. Theory Reading Group at Purdue, November 2022.
- On 'The Primal-Dual Method for Learning Augmented Algorithms'. Theory Reading Group at Purdue, February 2022.
- On 'PROPm Allocations of Indivisible Goods to Multiple Agents'.
 Theory Reading Group at Purdue, November 2021.
- On 'Online Facility Location Problem with Recourse'. Theory Reading Group at Purdue, March 2021.
- Fields and Polynomials, based on 15-751 TCS Toolkit.
 Advanced Algorithm Reading Group at Purdue, October 2020.
- Fast Multiplication using Discrete Fourier Transform, based on 15-751 TCS Toolkit.

Advanced Algorithm Reading Group at Purdue, September 2020.

• Linear Time Addition of Fibonacci Encodings. Master's Thesis Defense, April 2020.