Feuille 1: Quelques exemples de groupes et application à $\mathbb{Z}/n\mathbb{Z}$

Exemples de Groupes

Exercice 1. Les ensembles $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{R}_+, \mathbb{R}_+^*, \mathbb{C}, \mathbb{C}^*, S^1 := \{z \in \mathbb{C}, |z| = 1\}$ munis des lois + ou \times sont-ils des groupes ? Si oui, sont-ils abéliens ?

Exercice 2. On considère les ensemble suivants:

- 1. E est l'ensemble de toutes les applications $f: \{1,2,3\} \rightarrow \{1,2,3\}$;
- 2. F est le sous-ensemble de E constitué des bijections;
- 3. G est le sous-ensemble de E constitué des applications telles que f(1) = 1;
- 4. G' est le sous-ensemble de E constitué des applications telles que f(1) = 3;
- 5. $H = G \cap F$.

Ces ensembles munis de la composition sont-ils des groupes? Si oui, sont-ils abéliens?

Exercice 3. Soit X un ensemble et $\mathcal{F}(X,\mathbb{R})$ l'ensemble des applications de X dans \mathbb{R} . Pour $f,g \in \mathcal{F}(X,\mathbb{R})$, on définit l'application f+g par

$$\forall x \in X, (f+g)(x) = f(x) + g(x).$$

Montrer que $\mathcal{F}(X,\mathbb{R})$ muni de la loi + est un groupe abélien.

Exercice 4. Soient G, H deux groupes. On munit $G \times H$ de l'opération

$$\forall g, g' \in G, \forall h, h' \in H, (g, h) \cdot (g', h') = (gg', hh').$$

Montrer que $G \times H$ muni de la loi · est un groupe. On l'appelle le groupe produit.

Exercice 5. Déterminer si les ensembles et lois suivantes forment un groupe. Et si oui, s'il est abélien.

- 1. L'ensemble $M_n(\mathbb{R})$ des matrices carrées de taille n muni de l'addition.
- 2. L'ensemble $M_n(\mathbb{R}) \{0\}$ muni de la multiplication des matrices.
- 3. L'ensemble $GL_n(\mathbb{R})$ des matrices de déterminant non-nul muni de la multiplication des matrices.
- 4. l'ensemble $GL_n(\mathbb{R})$ des matrices de déterminant non-nul muni de l'addition des matrices.
- 5. L'ensemble des matrices de déterminant 1 muni de la multiplication.

Exercice 6. L'ensemble $\{x \in \mathbb{R} \mapsto ax + b : a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}\}$ muni de la loi de composition des applications est-il un groupe?

Exercice 7. On considère l'ensemble des applications bijectives $f: \mathbb{R}^2 \to \mathbb{R}^2$ qui préservent le bord du carré : $f(\partial[0,1]^2) = \partial[0,1]^2$.

- 1. Démontrer que c'est un groupe pour la loi de compositon des applications.
- 2. En considérant des rotation et symétries, donner des exemples d'éléments de ce groupe.
- 3. En déduire que ce groupe n'est pas abélien.

Quelques propriétés

Exercice 8. Soit G un groupe.

- 1. Montrer que G est abélien si et seulement si pour tout $a,b\in G,\,(ab)^2=a^2b^2.$
- 2. On suppose que pour tout $x \in G$, $x^2 = e$. Montrer que G est abélien.

Exercice 9. Soit H un sous-ensemble d'un groupe G. On considère la relation

$$x\mathcal{R}_H y \iff y^{-1}x \in H.$$

- 1. Démontrer que \mathcal{R}_H est réflexive si et seulement si l'unité e de G est dans H.
- 2. Démontrer que \mathcal{R}_H est symétrique si et seulement si pour tout $h \in H$, on a $h^{-1} \in H$.
- 3. Démontrer que \mathcal{R}_H est transitive si et seulement si $\forall h, k \in H$ on a que $h \cdot k \in H$.

En déduire que \mathcal{R}_H est une relation d'équivalence si et seulement si H est un sous-groupe de G.

Cas de $\mathbb{Z}/n\mathbb{Z}$

Exercice 10. Soit H un sous-groupe d'un groupe abélien G muni de la relation d'équivalence \mathcal{R}_H de l'exercice précédent. On note G/H l'ensemble quotient de G par la relation \mathcal{R}_H .

- 1. Démontrer que pour tout $g \in G$, la classe d'équivalence C_g de g est égale à $g \cdot H$. À quelle condition $C_x = C_y$?
- 2. Démontrer la règle $C_x \star C_y := C_{x \cdot y}$ est bien définie et munit l'ensemble G/H des classes d'équivalence d'une structure de groupe abélien.
- 3. Démontrer que l'application quotient $g\mapsto C_g$ est un morphisme de groupes $G\to G/H$ et est surjectif. Quel est son noyau ?
- 4. Soit $d \in \mathbb{Z}$. Montrer que l'ensemble $d\mathbb{Z}$ muni de la loi d'addition des entiers relatifs est un groupe et en déduire une structure de groupe abélien sur $\mathbb{Z}/d\mathbb{Z}$. A quelle structure vue en arithmétique cette structure de groupe correspond-elle ?

Exercice 11. Écrire les tables d'additions de $\mathbb{Z}/1\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/4\mathbb{Z}$.

Exercice 12. Comparer les groupes $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/4\mathbb{Z}$.