

Рис. 1:

4.1.1. Изучение центрированных оптических систем

Цель работы: изучить методы определения фокусных расстояний линз и сложных оптических систем; определить характеристики оптической системы, составленной из тонких линз; изучить недостатки реальных линз – сферическую и хроматическую аберрации.

Оборудование: оптическая скамья с набором рейтеров, положительные и отрицательные линзы, экран, осветитель с ирисовой диафрагмой, зрительная труба, светофильтры, кольцевые диафрагмы, линейка.

Теоретическая часть

Измерение фокусного расстояния по методу Аббе основано на определении поперечного увеличения для нескольких (не менее двух) различных положений предмета, находящегося на оптической оси исследуемой оптической системы. На рис. 1 представлена соответствующая схема эксперимента. фокусное расстояние системы можно выразить через положения предмета и соответствующие увеличения следующим образом:

$$f = \frac{\Delta x}{\Delta(y/y')} = -\frac{\Delta x'}{\Delta(y'/y)}.$$

Здесь $\Delta x = x_2 - x_1$ – смещение предмета, $\Delta x' = x_2' - x_1'$ – соответствующее ему перемещение изображения, $\Delta(y'/y) = y_2/y_2' - y_1/y_1'$ – приращение поперечного увеличения, а $\Delta(y/y')$ — приращение величины, обратной поперечному увеличению. Для повышения точности измерений следует выбирать такие смещения Δx , чтобы увеличения заметно отличались друг от друга. С целью уменьшения случайной ошибки, возникающей при фокусировке изображения, измерения следует проводить несколько раз, усредняя полученные данные.

Определение фокусного расстояния собирающих линз и сложных оптических систем по методу Бесселя. Схема метода Бесселя для случая, когда n=n' и f'=-f, представлена на рис. 2. Она основана на том, что при заданном расстоянии L между предметом и экраном представляет собой квадратное уравнение относительно

1 Ho. 2

расстояния s от главной плоскости пространства предметов до предмета (s < 0):

$$-\frac{1}{s} + \frac{1}{L-\delta+s} = \frac{1}{f},$$

имеющее при условии $L>4f+\delta$ решения s_1 и s_2 , показанные на рис. 2, где δ – расстояние между главными плоскостями системы (линзы).

С учётом симметрии и направлений измерения расстояний, положения предметов определяются соотношениями $s_2' = -s_1$ и $s_1' = -s_2$. Для расстояния L между предметом и экраном и расстояния l между двумя положениями системы (линзы) получаем: $L - \delta = s'1 - s1$, $l = -s_2 + s_1 = s_1 + s_1'$. Отсюда следует, что

$$s_1 = -\frac{1}{2}(L - \delta - l), \quad s_1' = \frac{1}{2}(L - \delta + l).$$

После несложных преобразований находим выражение

$$f = \frac{(L-\delta)^2 - l^2}{4(L-\delta)}$$

Экспериментальная установка

Рис. 3:

Результаты и обработка

1.

Выводы

ullet