D={
$$f \in C[0,1]$$
 : $\int_0^1 f = b \ delta$, $b \in \mathbb{R}$.

D in a subspace of $\mathbb{R}^{[0,1]}$ (=) $b = 0$

Assume D in a subspace of $\mathbb{R}^{[0,1]}$ =) $d = 0$
 $f = f(x) \in D$ s.t. $f(x) = 0 + f(x) = 0$

So, if D is a subspace of $\mathbb{R}^{[0,1]}$ =) $f = 0$ (s)

Assume $f = 0 \Rightarrow f = f \in C[0,1]$: $f = 0$ delta $f = 0$ for $f = 0$ fo

Let
$$f \in D$$
, $a \in \mathbb{R} \implies \int_0^1 f = 0$.

$$\int_0^1 (a f x) = \int_0^1 a f \alpha$$

$$= a \cdot 0$$

$$= a$$