Simulation Configuration

h_sigma: 0.0625

C (Scaling Constant): 0.0573

Lambda_CDM: 0.3

Spatial Domain (x): min=-5.00, max=5.00, points=500

Num Sim Steps Planned: 100 Num Sim Steps Executed: 1

DM Density (Omega_DM): 0.22

DM Interaction (sigma_DM-Psi): 0.012 lambda_3 Coupling (Resilience): 0.55

eta_E Crit Threshold: 0.1250

Delta_Theta Coherence Limit: 3.60

Final State Summary & Conceptual Metrics

Final Step: 0

Stability: Unstable

Holonomy H(Psi): 2.6800

eta_E: 0.3178

Delta_Theta: 1225.5973 Mean |Psi(x)|: 0.3130 Mean |a2|: 1.280e+00 Mean Re(a2): -7.945e-01 Std Dev |a2|: 1.210e+00

Re(a2) at x approx 2.56: 9.678e-01 Im(a2) at x approx 2.56: 2.450e+00

Fixed Points and Critical Dynamics

This simulation explores system behavior around critical values and potential fixed points, primarily through the Psi-Codex theoretical lens.

The `a2` coefficient, defined conceptually as `a2 = $3 / (x^5 * psi* . y(i) - 1)$ `, is theorized as a recursive attractor for the gnostic identity `gnostic(iI)* = a2 * x^5 * psi*`.

Summary of `a2` behavior from the final simulation step:

- Mean |a2|: 1.280e+00

- Mean Re(a2): -7.945e-01

- Re(a2) near x=2.56: 9.678e-01

- Im(a2) near x=2.56: 2.450e+00

The overall average of Mean |a2| across all simulation steps was: 1.280e+00.

Critical Thresholds (eta_E, Delta_Theta):

The simulation monitors key stability indicators: stress-energy `eta_E` and phase coherence `Delta_Theta`.

Stability is assessed against thresholds: $\epsilon_E < 1/8$ (0.125) and $\epsilon_E < 3.6$. Breaching these can indicate departure from stable operational regimes, conceptually linked to events like 'shadow integration' in the broader theory.

The 'Simulation Metrics' plots visually track `eta_E` and `Delta_Theta` relative to these critical limits.

Holonomy:

Holonomy ('oint dM Psi.dl') is another critical indicator. The simulation aims for a near-zero holonomy ('abs(holonomy) < 1e-5' as a typical goal) as a condition for topological stability. Convergence towards this state can be seen as the system seeking a topological fixed point.

The 'Holonomy H(Psi)' plot in the 'Simulation Metrics' section shows its behavior over the simulation steps.

Other Theoretical Points:

Other theoretical concepts like resonance near `n approx 2.56` (where `a2` was specifically analyzed) and the fractal shift `0! -> 1/8` are part of the Psi-Codex framework. While `a2` was analyzed at `x approx 2.56`, these concepts primarily provide context for interpreting critical behaviors rather than being dynamic variables in the current simulation's core equations.

Time Evolution of Simulation Metrics

Psi-Codex Spatial Simulation Metrics (psi_dm_spatial_sim)

Final Psi-Field Spatial Distribution

Model Description

This simulation models Psi(x) evolution via recursive updates.

Each step involves conceptual DM interaction, E8_Z4 constraint, and factorial/Airy kernel transformation.

Stability (eta_E, Delta_Theta) and holonomy are assessed. $a2 = 3 / (x^5*psi^* \cdot y(i) - 1)$ (proxy $y(i) = sin(x^2 + 3)$) stats are logged.

Model is conceptual for exploring Psi-Codex theory.