Introduction to (Spark) BigData Processing (Distributed Operations)

cours 2024

arnaud.nauwynck@gmail.com

This document: https://github.com/Arnaud-Nauwynck/Presentations/bigdata

Outline

- from List<T> to distributed Dataset<T>
- Immutability, Functional API
- processing workflow:
 Input -> Transformations -> Output
- narrow operations (=per partitions)
- wide operations (=shuffled)

Distributed Processing Goal: Handle Tera << Peta Bytes << ... of Data but on Commodity hardwares cluster (Giga of RAM)

What are the Top #4 Challenges?

Challenge #1 (most difficult) =

Manage Failures (be Safe/Resilient) in a Fragile Distributed Sub-Systems Challenge #2 (most obvious) =

Scale to Huge Data limits even with restricted Resources

Challenge #3 (most differenciating) =

Be Fast / Efficient at using & sharing resources

Scale to CPUs at clusters level

Make compromises CPU/RAM/Network/Disk

Challenge #4 (for success) =

Keep Things Simple

Architecture for Open / Powerfull / Wide / Simple

become a Standard

Traditional Databases vs BigData

Traditional OLTP Databases

BigData Processing

Interactive ACID Transactions

Batches
NO "per-row" Transactions (NO Update/Delete)

Use SAN disks mostly Scale vertically expensive single hardware

Use HDFS (distributed storage),
Scale Horyzontally
cluster of N x commodity hardwares

Tables = optimized structures by DB

B-Tree

avoid full scans, use cache
proprietary binary storage format
Single Server, Closed - SPOF

Tables = basic directory + files basic Lists (i.e. Datasets) no cache but parallelize reads parquet "columnar" file format Distributed & Open

How can you eat an Elephant?

https://www.azquotes.com/quote/529521 (African Proverb)

split into pieces (partitions),

and then

iterate one partition at a time (or parallelize + iterate if possible)

Outline

- from List<T> to distributed **Dataset<T>**
 - Immutability, Functional API
 - processing workflow: Input -> Transformations -> Output
 - narrow operations (=per partitions)
 - wide operations (=shuffled)

java.util.ArrayList<T>

List<T> Java VM Restrictions

Restriction 1/ array are indexed by "int" (32 bits)

number of elements : N < 2 ^32 - 1 ~ 2 Billions

Restriction 2/ objects are in heap memory (-Xmx)

total memory size (in bytes) < -Xmx (ex: -Xmx128g)

Splitting List<T> in sub-list List<Partition<T>>

List< Partition<T> > restrictions

NO MORE Restriction on number of elements

rows are indexed by [partitionIndex][indexWithinPartition] can be > 2^32

STILL Restriction 2/ objects are in heap memory (-Xmx)

total memory size (in bytes) < -Xmx (ex: -Xmx128g)

Practical API for Iterating on List<List<T>>?

Old-School Imperative Code Style

```
int partitionCount = ds.partitionCount();
for( int i = 0; i < partitionCount; i++) {
    List<T> currPartition = ds.partition(i);
    int currPartitionLen = currPartition.size();

    for (int j = 0; j < currPartitionLen; j++) {
        T row = currPartition.rowAt(j);

        someUserFunction( row );
    }
}</pre>
```

Object-Oriented Style using Iterator pattern

```
Iterator<T> iter = ds.iterator();
while(iter.hasNext() {
    T row = iter.next();

someUserFunction( row )
}
```

Functional Style using Lambda, callbacks

```
ds.forEach( someUserFunction );
// lambda equivalent
ds.forEach(x => someUserFunction(x));
```

BAD ... UGLY, INNEFICIENT

Does not scale on distributed code NOT even on Multi-Threads

BAD

Does not scale on distributed code NOT even on Multi-Threads

OK

(callbacks must be serializable)

Sample Easy Parallelizable Operations: dataset.count()

Sample Easy Parallelizable Operations: dataset .count() .find() .first() .min() .max() .sample()

(Hadoop) Map-Reduce ... legacy

Spark Faster save Intermediate Tasks Results

WRONG schema!!

Urban Legend: Spark would be faster because it caches shuffle data in-memory ??? WRONG!!!!

Spark save all shuffle files to Local Disk

- .. even maybe several File writes per shuffle ("Spill To Disk")
- => faster than Hdfs, but Less tolerant to failures

Split: Distribute on Multi JVMs Cluster

Distributed in-memory Dataset<T> restrictions

Dataset NO more limited by

- number of elements
- single host node RAM

STILL Restrictions:

partition(s) memory size < RAM of a executor holding partition(s)

total memory size < total RAM of cluster

Dataset must be "equally split and distributed" (not skewed)

Swap Partition RAM to Local Disk

Parallelize on cluster : use N(>=100) CPUs?

How to process with multi-threads? (use CPU cores)

How many partitions can be processed concurrently?

1 Partition on 1 Thread = 1 Task


```
1 Task = 1 Partition processed by 1 Thread

for(row : rows) {
   process(row)
}
```

Life of a Task

How Many Concurrent Threads?

Compromise:

use as many as possible? thread need cputhreads ~= vcore

avoid unused iddle CPU while waiting for In-Out in general **threads = vcore = 2 x core - 1**

can't use too much concurrently:
 each task need RAM memory, so
 threads * taskMemory < total RAM

Successive Tasks Timeline for 1 Thread

Timeline for N(100) Partitions - P(4) Threads

Distributed in-memory Dataset<T> restrictions

Dataset NO more limited by

- number of elements
- single host node RAM
- total RAM of cluster

STILL Restrictions:

- Dataset must be "equally split and distributed" (not skewed)
- dependent of local disk(s) of each nodes
- no ephemeral executor / nodes (compute linked to storage)

persistent Disk attached to Host / always served by Executor ...

How to handle Failures (Disk/Executor/Host)?

How to dynamically scale Up & Down??

ShuffleService: to re-Read from Disk when Executor is gone / lost

Distributed Dataset<T> restrictions

with **dynamicAllocation**: executor can scale up&down => allows to share resources in cluster

STILL Restrictions:

hosts and disks can still NOT scale no ephemeral nodes (compute linked to storage)

Current Developments in Spark... using Local Disk + Object Storage: "Remote Shuffle Service"

DynamicAllocation & Using Ephemeral Compute Resources (Kubarnatas)

Dataset<T> Restrictions Summaries

Dataset NOT limited by

- number of elements
- single host node RAM
- total RAM of cluster
- local disk(s) of each nodes
- dynamicAllocation: executor can be scale up/down
- compute resource: node can be scale up/down

STILL Restrictions:

Dataset must be "equally split and distributed" (not skewed) NOT all partitions can be processed simultaneously Cpu <-> Memory <-> Disk IO <-> Network are trade-off

Outline

from List<T> to distributed Dataset<T>

- Immutability, Functional API
- processing workflow:
 Input -> Transformations -> Output
- narrow operations (=per partitions)
- wide operations (=shuffled)

Immutability: getter(s), new, NO setter

instead of **modifying** existing objects just **create** new ones!

Functional API

NO Iterative Code

```
ds2 = new ..; for(int i =0; i <N; i++) { ds2.add(ds1.get(i));}
```

use Functions (Lambda)

```
ds2 = dataset1.map(row -> new Row(...))
.filter(), .flatMap(), .mapPartition(), .reduceByKey(), etc.
```

Example of CRUD API Replacements "C" = Create

```
No ds=new Dataset()
for(..) { ds.addRow( row); }
```

```
use ds=spark.createDataset( list)
  or ds=spark.read.format(...).load("path/files/")
  or ds=spark.sql("SELECT * FROM .. WHERE ..")
```

```
Example of CRUD API Replacements

"R" = Read
```

```
No
   for(int i=0; i<ds.partitionCount(); i++) {
    for(int j=0; j< ds.part(i).count(); j++) {
       ds.getRow(i, j); }}
use ds.map(row -> {.. })
  or ds.mapPartitions(rowlter -> {
          while(rowlter.hasNext() { .. }
```

```
Example of CRUD API Replacements
         NO "U" = Update !!
No
   ds.setRow(row); row.set(col, value)
   Sql "UPDATE TABLE .. SET .. WHERE .."
use
```

ds2 = ds1.map(row -> new Row(copy with ..));
or install Iceberg or DeltaLake Extension
"UPDATE ..", "UPSERT ..", "SELECT asof version"

```
Example of CRUD API Replacements
          NO "D" = Delete !!
No
   ds.removeRow()
   Sql "DELETE FROM TABLE .. WHERE .."
just use
 ds2 = ds1.filter(row -> { true/false });
or install Iceberg or DeltaLake Extension
 "DELETE.."
```

Outline

- from List<T> to distributed Dataset<T>
- Immutability, Functional API

- processing workflow:
 Input -> Transformations -> Output
- narrow operations (=per partitions)
- wide operations (=shuffled)

External Input - Internal Dataset API - External Output

or other IO reads

or other IO writes

Challenge for Distributed Programming

```
How to ?
Distributed read Input files ?
Distributed write result files ?
transform ?
Concurrency between threads & nodes (Dataset Immutable => OK)
result on 1 node memory is not "available" on other nodes => need network copy + sync
```

all "iterative style" programming is impossible

Inputs: Distributed Read Files

Sample Spark ".read()" Code

```
Dataset<Row> ds = sparkSession
  .read()
  .format("parquet")
  .option("compression", "snappy")
  .load("hdfs://path/dir")
Dataset<Row> ds = sparkSession
  .sql("SELECT * FROM .. WHERE ..");
```

Read dir, not files?

```
sparkSession.read() ..
.load("hdfs://path/dir") // implicitly "**/*.parquet" files
```

```
Spark will discover all sub-dirs filter out all "_*" and ".*" considered as Hidden files
```

example: "_SUCCESS", ".part-*.crc" are excluded

Dirs should contain only homogeneous files type

Outputs: Distributed Write Files

Sample Spark ".write()" Code

```
Dataset<Row> ds = ...
ds.write()
  .format("parquet")
  .option("compression", "snappy")
  .save("hdfs://path/dir")
sparkSession
  .sql("INSERT ... SELECT .. ");
```

Write ... UUID Generated filenames 1 File per Partition

to write in a Distributed way, Spark generates random UUID filename, and "part-000xx" index for each partition
"_SUCCESS" is an empty marker file

example:

Nom	Modifié le	Туре
	04/10/2023 18:54	Fichier
part-00000-9e585549-fad3-40f7-aff5-e271a81ef1d8-c000.snappy.parquet	04/10/2023 18:54	Fichier PARQUET
part-00001-9e585549-fad3-40f7-aff5-e271a81ef1d8-c000.snappy.parquet	04/10/2023 18:54	Fichier PARQUET

(Input ->) Transformations (-> Outputs)

[3/3] transformation Tasks

can change partitions topology (change count/size)

can redistribute data on cluster

Outline

- from List<T> to distributed Dataset<T>
- Immutability, Functional API
- processing workflow:
 Input -> Transformations -> Output

- narrow operations (=per partitions)
- wide operations (=shuffled)

"Narrow"?

https://www.wordreference.com/enfr/narrow

<u>Anglais</u>		<u>Français</u>	
narrow adj	(not wide)	étroit <i>adj</i>	

Narrow Transformations

ds2 = ds1.narrowTransform(..)

locally independent (parallelisable) transformations for each partition

not necessarily "row by row", but partition by partition

NO network data movement between partition

Narrow Transformation

[2/4] assign Tasks

[1/4] knows

Dataset partitions

[4/4] wait result status .. register new dataset

[3/4] transformation Tasks

on each executor,
if there were N src partition(s),
=> there will be N result partition(s)

Narrow Transformations

https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-operations

Transformations

The following table lists some of the common transformations supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R) and pair RDD functions doc (Scala, Java) for details.

Transformation	Meaning
map(func)	Return a new distributed dataset formed by passing each element of the source through a function <i>func</i> .
filter(func)	Return a new dataset formed by selecting those elements of the source on which <i>func</i> returns true.
flatMap(func)	Similar to map, but each input item can be mapped to 0 or more output items (so <i>func</i> should return a Seq rather than a single item).
mapPartitions(func)	Similar to map, but runs separately on each partition (block) of the RDD, so <i>func</i> must be of type Iterator <t> => Iterator<u> when running on an RDD of type T.</u></t>
mapPartitionsWithIndex(func)	Similar to mapPartitions, but also provides <i>func</i> with an integer value representing the index of the partition, so <i>func</i> must be of type (Int, Iterator <t>) => Iterator<u> when running on an RDD of type T.</u></t>
sample(withReplacement, fraction, seed)	Sample a fraction <i>fraction</i> of the data, with or without replacement, using a given random number generator seed.

.map(
$$x => f(x)$$
)

as in any functional langage

example in JavaScript (use Chrome DevTools: F12)

dataset.map(rowFunction: T => U)

```
Dataset<T> ds = ...
 def f (row: T): U = \{ ... \}
  Dataset<U> mappedDs = ds.map( row => f(row) )
                          // idem = ds.map(f)
                                                      mappedDs
                                             .map(f)
                                     ds
f: Function T -> U
```

.map() Row columns <=> sql: "SELECT <...>" columns managment

```
Dataset<T> ds = ...
Dataset<U> mappedDs = ds.map(f)
```

```
when T=U=Row .. columns
```



```
ds.select("col1", col2", "colX")
.withColumn("computed", ...expr)
.withColumnRename("computed", "col3"
.drop("colX")
```

```
SELECT col1, col2, colX,
...expr as computed,
computed as col3,
FROM ...
```

.filter(row => booleanFunc(row))

as in any functional langage

example in JavaScript (use Chrome DevTools: F12)

dataset.filter(rowPredicate : T => boolean)

```
Dataset<T> ds = ...

def f (row: T): boolean = { ... }

Dataset<T> filteredDs = ds.filter( row => f(row) )

// idem = ds.filter(f)
```

f: Function $T \rightarrow$ boolean true/false

dataset.filter(sqlWhere: String) dataset.filter(columnExpr: Column)

```
Dataset<T> ds = ...

Dataset<T> filteredDs = ds.filter("col = 123") // in SQL

// ~ ds.filter( ds.col("col").eq(lit(123)) // Column api
```


Optim: Avoid reading useless Dir / Files/ blocks

```
SELECT *

FROM ...

WHERE

.filter("col1 == 1")

.filter( col("col2").eq (lit(2))

.filter(x => pred(x))

SELECT *

FROM ...

and ...

year

and col1 = 2

and ... ??
```

.flatMap(row => listFunc(row))

as in any functional langage

example in JavaScript (use Chrome DevTools: F12)

dataset.flatMap(rowFunction : T => Iterator<U>)

```
Dataset<T> ds = ...
def f (row: T): Iterator<U> = \{ ... \}
Dataset<U> flatMappedDs = ds.flatMap( row => f(row) )
                         // idem = ds.flatMap(f)
                                                 .flatMap(f)
                                                              flatMappedDs
                                      ds
f: Function T -> U
```

dataset.mapPartitions(rowlter => f(rowlter))

```
Dataset<T> ds = ...
```

def f (iter: Iterator<T>): Iterator<U> = { ... }

Dataset<T> mappedDs = ds.mapPartitions(f)

Remarks on mapPartitions() vs .flatMap(), .map(), .filter()

```
Both .map() and .filter() can be implemented using .flatMap
.map(f) <==> .flatMap( row => [ f(row) ] )
.filter(pred) <==> .flatMap( row => pred(row)? [ row] : [ ] )
```

Even .flatMap() can be implemented using .mapPartitions()

Outline

- from List<T> to distributed Dataset<T>
- Immutability, Functional API
- processing workflow:
 Input -> Transformations -> Output
- narrow operations (=per partitions)

Wide Transformations

ds2 = ds1.wideTransform(..)

Shuffle are all inter-dependent

not necessarily preserving partition topology (count/sizes)

network data movements between mapped/reduced partitions

Wide Transformations

https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-operations

intersection(otherDataset)	Return a new RDD that contains the intersection of elements in the source dataset and the argument.	sortByKey([asc	
distinct([numPartitions]))	Return a new dataset that contains the distinct elements of the source dataset.		
groupByKey([numPartitions])	When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable <v>) pairs. Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using reduceByKey or</v>	join(otherDatas	
	aggregateByKey will yield much better performance. Note: By default, the level of parallelism in the output depends on the number of partitions of the parent RDD. You can pass an optional numPartitions argument to set a different number of tasks.	cogroup(other[
reduceByKey(func, [numPartitions])	When called on a dataset of (K, V) pairs, returns a dataset of (K, V)	cartesian(other	
	pairs where the values for each key are aggregated using the given reduce function <i>func</i> , which must be of type (V,V) => V. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.	pipe(command	
aggregateByKey(zeroValue)(seqOp, combOp, [numPartitions])	When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type,	coalesce(numF	
	while avoiding unnecessary allocations. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.	repartition(nur	

sortByKey([ascending], [numPartitions])	When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument.
join(otherDataset, [numPartitions])	When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer joins are supported through leftouterJoin, rightouterJoin, and fullouterJoin.
<pre>cogroup(otherDataset, [numPartitions])</pre>	When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable <v>, Iterable<w>)) tuples. This operation is also called groupWith.</w></v>
cartesian(otherDataset)	When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements).
pipe(command, [envVars])	Pipe each partition of the RDD through a shell command, e.g. a Perl or bash script. RDD elements are written to the process's stdin and lines output to its stdout are returned as an RDD of strings.
coalesce(numPartitions)	Decrease the number of partitions in the RDD to numPartitions. Useful for running operations more efficiently after filtering down a large dataset.
repartition(numPartitions)	Reshuffle the data in the RDD randomly to create either more or fewer partitions and balance it across them. This always shuffles all data over the network.

Wide Transformations... focus on

```
.sortByKey( [col1, col2.. ] )
.repartition( N )
.repartition( [col1,col2..], N)
.join( otherDataset, joinedCols)
```

Local Sorting

non-distributed sorting algorithms are classical best "local" complexity = **N x log(N) ops / N memory size** ex: QuickSort, TimSort, MergeSort, CountingSort, RadixSort, ...

Problem: how to distribute?

Name +	Best +	Average +	Worst ◆	Memory +	Stable +	Method +	Other notes +
In-place merge sort	_	_	$n\log^2 n$	1	Yes	Merging	Can be implemented as a stable sort based on stable in-place merging. ^[5]
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No	Selection	
Introsort	$n \log n$	$n \log n$	$n \log n$	$\log n$	No	Partitioning & Selection	Used in several STL implementations.
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes	Merging	Highly parallelizable (up to $O(\log n)$ using the Three Hungarians' Algorithm). [6]
Tournament sort	$n \log n$	$n \log n$	$n \log n$	n ^[7]	No	Selection	Variation of Heapsort.
Tree sort	$n \log n$	$n \log n$	$n\log n$ (balanced)	n	Yes	Insertion	When using a self-balancing binary search tree.
Block sort	n	$n \log n$	$n \log n$	1	Yes	Insertion & Merging	Combine a block-based $O(n)$ in- place merge algorithm ^[8] with a bottom-up merge sort.
Smoothsort	n	$n \log n$	$n \log n$	1	No	Selection	An adaptive variant of heapsort based upon the Leonardo sequence rather than a traditional binary heap.
Timsort	п	$n \log n$	$n \log n$	п	Yes	Insertion & Merging	Makes <i>n-1</i> comparisons when the data is already sorted or reverse sorted.

https://en.wikipedia.org/wiki/Sorting algorithm

Dataset Sort

!= Narrow (Local) .sortWithinPartitions()

example values: output values: (same partition topology)

API: .sort(col1, ... colN) synonym: .orderBy()

NOTICE: no lambda, nor "comparator" objects

Internal Sort Algorithm = Sampling values + Determine Split limits + Repartition by Range + TimSort


```
ds
.sort(col("col1"),
    col("col2").descending )

SELECT *
FROM ...
ORDER BY col1, col2 DESC

(Standard SQL)
```

ds
.sortWithinPartitions("col3")
FROM ...
SORT BY col3

NON-standard !! SQL Extension !!

.repartition(N) Round-Robin Repartition

same as **Dealing Cards** to N players (repeated in parallel from P heaps)

.repartition(N) = round-robin Map + Reduce

.repartition(columns) groupBy

.repartition (cardColor [red/black]) => 2

.repartition (cardValue[1,2,3..]) => 13

.repartition (cardFamily, cardValue) => 52 = 4*13

.repartition ([cardFamily, cardValue], 20) => 20

.repartition(column) = Mapper groupBy - Reduce

.repartition(col) <=> sql: "GROUP BY <...>"

```
SELECT col1, col2,
sum(*),count(*),min(*), distinct
<<analytical>>(..)
ds
.repartition("col1", "col2") GROUP BY col1, col2
.mapPartitions(..)
```

.repartition(col1..colP, hashModuloN)

```
when col1,col2,..colP give too many repartition groups (millions of groups?)
```

=> spark will compute hashCode, then modulo default=200

You can change globally "spark.shuffle.partitions" (200) or specifically by call

.repartition(col1, col2)

```
equivalent: .repartition(col1, col2, N=200)
```

partitioner function:
 func(row) { abs(hash(row.col1 ^ row.col2)) % N }

Transformations to Skewed or Well-Balanced Partitions?

Transformations to Skewed or Well-Balanced Partitions?

```
.sort() => sampling randomness might produce unbalanced data
           but generally ok
.repartition(N) => exactly N x equi-distributed +/-1 x P rows
.repartition(col1, col2) => most probably SKEWED DATA !!
                            ( must choose [col1,col2] carefully )
.repartition( highCardinalityCol, N ) => most probably N x equi-distributed
.repartition( highCardinalityCol ) => most probably 200 x equi-distributed
```

Joins

Dataset<T> ds1 = ...

Dataset<U> ds2 = ...

Dataset<Pair<T,U>> joinedDs = ds1.join(ds2, joinExpr, joinType)

Join - SQL "FROM .. JOIN .. ON .."

```
Typical Star(*) Schema: 1 Big Fact table, N small Dimensions Tables
Dataset<Row> sellDs = .. // FACT table (big) has foreign key to "productId"
Dataset<Row> productDs = .. // Dimension table (small) .. has primaryKey "id"
Dataset<Row> sellEnrichedDs = sellDs.join(productDs,
                                       sellDs.col("productId") == productDs.col("id"),
                                       "left-outer"):
                        SELECT s.*, p.*
                        FROM Sell s
                          LEFT OUTER JOIN Product p ON s.productId = p.id
```

Local Join Algorithm using right HashMap

Spark .. BroadcastHashJoin

Step 3/3: foreach item in ds1, lookup corresponding ds2 in HashMap by joinId

Problem ... How to Join 2 Big Datasets?

```
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space at java.util.IdentityHashMap.resize(IdentityHashMap.java:469) at java.util.IdentityHashMap.put(IdentityHashMap.java:445) at org.apache.spark.util.SizeEstimator$SearchState.enqueue(SizeEstimator.scala:229)
```

can NOT **collect** data to a single driver so can not **broadcast**

& can not have **copy** of data on each N x executors

spark conf:

10485760 (10 MB) Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1, broadcasting can be disabled.

Sort Merge Join Algorithm

(Distributed) Sort Merge Join

Outline

- from List<T> to distributed Dataset<T>
- Immutability, Functional API
- processing workflow:
 Input -> Transformations -> Output
- narrow operations (=per partitions)
- wide operations (=shuffled)

Conclusion

Only a "Short" Introduction to "Big Data" Distributed operations challenges

Dataset = distributed List on a cluster,

the sky is the limit

Immutable and using Functional API

implements basic operators (narrow and wide)

The core fondamentals of Spark for processings

Next Steps

cf Lessons 2, 3

- Spark Architecture
- Parquet file Format (Dir & Files, partitions, columnar, Optims..)

- ...