高三第一次阶段性考试数学试题

一、单选题(本大题共8小题,共40分.在每小题列出的选项中,选出符合题目的一项)

1. 已知集合 $A = \{x | x^2 - x - 2 < 0\}$, 则 $C_R A = ($

A. $\{x | -1 < x < 2\}$

B. $\{x | -1 \le x \le 2\}$

C. $\{x | x < -1\} \cup \{x | x > 2\}$

 $D. \{x | x \le -1\} \cup \{x | x \ge 2\}$

2. 设z = i(2-i), 则 $\overline{z} = ($).

A. 1 + 2i

B. -1+2i

C. 1-2i

D. -1-2i

3. 2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采 样返回,标志着中国航天向前又迈出了一大步. 月球距离地球约38万千米,有人说:在理想状态下,若将一张厚 度约为 0.1 毫米的纸对折 n 次其厚度就可以超过到达月球的距离,那么至少对折的次数 n 是

). $(\lg 2 \approx 0.3, \lg 3.8 \approx 0.6)$

A. 40

B. 41

C. 42

D. 43

4. 如图,八面体的每一个面都是正三角形,并且 A,B,C,D 四个顶点在同一平面内,下列结论: ① AE // 平面 CDF; ②平面 ABE // 平面 CDF; ③ $AB \perp AD$; ④平面 $ACE \perp$ 平面 BDF. 正确命题的个数为(

A. 1

B. 2

C. 3

D. 4

5. 过抛物线 $C: y = 4x^2$,焦点 F 倾斜角为 30° 的直线交抛物线于 A, B,则 |AB| = (

6. 为了迎接"第32届菏泽国际牡丹文化旅游节",某宣传团体的六名工作人员需要制作宣传海报,每人承担一项 工作,现需要一名总负责,两名美工,三名文案,但甲,乙不参与美工,丙不能书写文案,则不同的分工方法种 数为(

A. 9种

B. 11种

C. 15 种

D. 30种

7. 设实数 x, y 满足 x + y = 1, y > 0, |x| > 0, 则 $\frac{2}{|x|} + \frac{|x|}{v}$ 的最小值为 ().

A. $2\sqrt{2}-2$ B. $2\sqrt{2}+2$ C. $\sqrt{2}-1$ D. $\sqrt{2}+1$

8. 已知曲线 $y = ae^x + x \ln x$ 在点(1, ae)处的切线方程为 y = 2x + b ,则().

A. a = e, b = -1

B. a = e, b = 1

C. $a = e^{-1}$, b = 1

D. $a = e^{-1}$, b = -1

二、多选题(本大题共4小题,共20分.在每小题有多项符合题目要求)

9. 为了解学生的身体状况,某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:千克)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则().

- A. 频率分布直方图中 a 的值为 0.04
- B. 这 100 名学生中体重不低于 60 千克的人数为 20
- C. 这 100 名学生体重的众数约为 52.5
- D. 据此可以估计该校学生体重的 75%分位数约为 61.25
- 10. 已知圆 $O: x^2 + y^2 = 4$,下列说法正确有 ().
- A. 对于 $\forall m \in \mathbb{R}$, 直线 (2m+1)x + (m+y)y 7m 4 = 0 与圆 O 有两个公共点
- B. 圆 O 与动圆 $C:(x-k)^2+(y-\sqrt{3}k)^2=4$ 有四条公切线的充要条件是|k|>2
- C. 过直线 x+y-4=0 上任意一点 P 作圆 O 的两条切线 PA , PB (A , B 切点),则四边形 PAOB 的面积的最小值为 4
- D. 圆 O 上存在三点到直线 x+y-2=0 距离均为 1
- 11. 已知函数 $f_n(x) = \sin^n x + \cos^n x (n \in \mathbf{N}^*)$,下列命题正确的有().
- A. $f_1(2x)$ 在区间 $[0,\pi]$ 上有 3 个零点
- B. 要得到 $f_1(2x)$ 的图象,可将函数 $y = \sqrt{2}\cos 2x$ 图象上的所有点向右平移 $\frac{\pi}{8}$ 个单位长度
- C. $f_4(x)$ 的最小正周期为 $\frac{\pi}{2}$,最大值为1
- D. $f_3(x)$ 的值域为[-2,2]
- 12. 设椭圆的方程为 $\frac{x^2}{2} + \frac{y^2}{4} = 1$,斜率为 k 的直线不经过原点 O,而且与椭圆相交于 A, B 两点, M 为线段 AB

的中点. 下列结论正确的是().

- A. 直线 AB 与 OM 垂直
- B. 若点 M 坐标为(1,1),则直线方程为2x+y-3=0
- C. 若直线方程为 y = x+1,则点 M 坐标为 $\left(\frac{1}{3}, \frac{4}{3}\right)$
- D. 若直线方程为 y = x + 2 , 则 $|AB| = \frac{4\sqrt{2}}{3}$

三、填空题(本大题共4小题,共20分)

- 13. 已知夹角为 60° 的非零向量 \vec{a} , \vec{b} 满足 $|\vec{a}|=2|\vec{b}|$, $(2\vec{a}-t\vec{b})$ 上 \vec{b} ,则t=______
- 14. 定义在 \mathbf{R} 上的函数 f(x), g(x), 满足 f(2x+3) 为偶函数, g(x+5)-1 为奇函数, 若 f(1)+g(1)=3,

则
$$f(5)-g(9)=$$
_____.

15. 设
$$x$$
, y 均为非零实数,且满足 $\frac{x\sin\frac{\pi}{5} + y\cos\frac{\pi}{5}}{x\cos\frac{\pi}{5} - y\sin\frac{\pi}{5}} = \tan\frac{9\pi}{20}$,则 $\frac{y}{x} =$ ______.

16. 正三棱锥 P-ABC 的高为 PO, M 为 PO 中点,过 AM 作与棱 BC 平行的平面,将三棱锥分为上下两部分,

设上、下两部分的体积分别为
$$V_1$$
、 V_2 ,则 $\frac{V_1}{V_2}=$ ______.

四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)

17. (本小题 10 分)

已知各项均不相等的等差数列 $\{a_n\}$ 的前五项和 $S_5 = 20$,且 a_1 , a_3 , a_7 成等比数列.

- (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 若 T_n 为数列 $\left\{\frac{1}{a_n a_{n+1}}\right\}$ 的前项和,求 T_n .

18. (本小题 12 分)

为了促进学生德、智、体、美、劳全面发展,某校成立了生物科技小组,在同一块试验田内交替种植 A、B、C 三种农作物(该试验田每次只能种植一种农作物),为了保持土壤肥度,每种农作物都不连续种植,共种植三次.在每次种植 A 后,会有 $\frac{1}{3}$ 的可能性种植 B, $\frac{2}{3}$ 的可能性种植 C;在每次种植 B 的前提下再种植 A 的概率为 $\frac{1}{4}$,种植 C 的概率为 $\frac{3}{4}$,在每次种植 C 的前提下再种植 A 的概率为 $\frac{3}{5}$.

- (1) 在第一次种植 B 的前提下, 求第三次种植 A 的概率;
- (2) 在第一次种植 A 的前提下,求种植 A 作物次数 X 的分布列及期望.
- 19. (本小题 12 分)

如图,在平面四边形 ABCD 中, $\angle ABC = \theta(0 < \theta < \pi)$, AB = BC = CD = 1, $AC \perp CD$.

- (1) 试用 θ 表示BD的长;
- (2) 求 $AC^2 + BD^2$ 的最大值.

20. (本小题 12分)

在长方体 $ABCD-A_iB_iC_iD_i$ 中, AD=1 , $AA_i=AB=2$. 点 E 是线段 AB 上的动点,点 M 为 D_iC 的中点.

- (1) 当 E 点是 AB 中点时,求证: 直线 ME // 平面 ADD_1A_1 ;
- (2) 若二面角 $A-D_{\rm l}E-C$ 的余弦值为 $\frac{4\sqrt{15}}{15}$, 求线段 AE 的长.

21. (本小题 12分)

若
$$f(x) = \frac{1}{2}x^2 + bx + 2a \ln x$$
.

- (1) 当a > 0, b = -a 2时, 讨论函数 f(x)的单调性;
- (2) 若b=-2, 且f(x)有两个极值点 x_1 , x_2 , 证明: $f(x_1)+f(x_2)>-3$.

22. (本小题 12分)

如图,椭圆
$$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
的焦点分别为 $F_1(-\sqrt{3},0)$, $F_2(\sqrt{3},0)$, A 为椭圆 C 上一点, $\triangle F_1 A F_2$ 的

面积最大值为 $\sqrt{3}$.

- (1) 求椭圆 C 的方程;
- (2)若 B、D 分别为椭圆 C 的上、下顶点,不垂直坐标轴的直线 l 交椭圆 C 于 P、Q(P 在上方,Q 在下方,且均不与 B,D 重合)两点,直线 PB,QD 的斜率分别为 k_1 , k_2 ,且 $k_2 = -3k_1$,求 $\triangle PBQ$ 面积的最大值.