서울 지능형 사물인터넷 해귀톤

팀 Mechanics

한양대학교 응용물리학과 이규현

한양대학교 응용물리학과 이민성

한양대학교 응용물리학과 박민혁

한강 사망 대학생 사건 `미궁`..CCTV 분석·휴대폰 수색

닫기

"아들이 잠실대교 부근에서 연락을 끊었다"... 유서도 없이 한강에 서 숨진 채 발견

2023-09-07 21:41 이근수 기자

9시간 시차 두고 성인 여자, 남자 극단적 선택 현장서 유서 발견 안돼...경찰 "범죄 혐의점 없어"

성인 여성과 남성이 9시간 시차를 두고 극단적 선택을 했다.

글로벌이코노믹 기사 프린트하기 프린트하기

김기덕 시의원 "한강 교량 투신자살 시도 5년 전보다 2배 증가"

기사입력 2023.02.26 15:06

료'를 분석한 결과. 5년 전 추진한 2020년 행정사무감사에서 지적한 마포대교의 높은 자살 시도율이 현재까지 최고 수치를 기록하고 있어, 서울시에 대책 마련을 요구했다.

한강 대학생 사망 사건을 아시나요? 꽃다운 나이 22세에 너무 안타까운 사건이라고 생각합니다. 이 뿐만 아니라 여러 한강 교량 투신자살 사건이 증가하고 있으며, 위의 기사를 보시면 아시다시피 서울시에서는 대책을 마련하려고 여러 생각을 하고 있습니다.

AIOT를 이용한 한강의 유체 흐름 파악 → 이상이 있다면 관할 소방서에 연락

: 자살 예방 가능

사람이 자살을 하려고 다리 밑에 떨어지게 된다 면 다리 밑에 설치된 파동 센서가 순간적인 파동의 변화(△wave)를 감지하 여 그때부터 n 시간 동안 유체의 흐름을 관찰하고 기록하며 관할 소방서에 경보가 전송됩니다. 이때 유체의 흐름에 따라 경보 1~5단계의 사이 로 전송 됩니다.

HOW?

센서 네트워크 설치

한강의 유체 흐름을 모니터링하기 위해서는 센서 네트워크를 구축해야 합니다. 이 센서는 수위, 수온, 유속, 수질 등과 같은 정보를 수집해야 합니다.

데이터 분석 및 패턴 인식

수집된 데이터를 분석하여 정상적인 강의 유체 흐름 패턴을 정의하고, 비정상적인 상황을 감지할 수 있는 알고리즘을 개발해야 합니다.

데이터 통합과 통신

센서 데이터와 사람 감지 데이터를 통합하고 중앙 서버 또는 클라우드로 전송하여 실시간으로 분석하고 대응할 수 있어야 합니다.

알림 및 조치

사람이 강에서 떨어질 경우 즉각적으로 경고를 보내고 구조나 구호 작업을 조치해야 합니다. 이를 위한 통보 시스템 및 대응 프로토콜을 구축해야 합니다.

데이터 분석 및 패턴 인식

1. 데이터 전처리 및 특성 추출

데이터 전처리는 윈시 파동 센서 데이터를 분석 가능한 형태로 변환하는 과정입니다.

아래는 이 과정을 단계별로 나타낸 코드입니다.

```
import numpy as np
import pandas as pd

# 가정: raw_data는 원시 파동 센서 데이터를 포함하는 pandas DataFrame이며,
# 'wave_height'라는 column에 파도 높이 정보가 있음.
raw_data = pd.read_csv('sensor_data.csv')

# 일정 시간 동안의 평균, 최대, 최소 파도 높이 등 다양한 통계치를 계산할 수 있습니다.
data = raw_data.copy()
data['mean_wave_height'] = data['wave_height'].rolling(window=10).mean()
data['max_wave_height'] = data['wave_height'].rolling(window=10).max()
data['min_wave_height'] = data['wave_height'].rolling(window=10).min()

# NaN 값 처리
data.fillna(method='bfill', inplace=True)
```

2. 이상 탐지 알고리즘 구현

비정상적인 상황을 감지하기 위해 이상 탐지(Anomaly Detection) 알고리 즘이 주로 사용됩니다.

여기에서는 Isolation Forest라는 기법을 사용해보겠습니다.

```
from sklearn.ensemble import IsolationForest

# 학습용 데이터 준비 (일부 시간만 사용하여 정상 상태 학습)

train_data = data[data.index < '2023-06-01']

# Isolation Forest 모델 생성 및 학습

model = IsolationForest(contamination=0.01)

model.fit(train_data[['mean_wave_height', 'max_wave_height', 'min_wave_height']])

# 모든 데이터에 대한 예측 수행 (1: 정상, -1: 비정상)

data['anomaly'] = model.predict(data[['mean_wave_height', 'max_wave_height', 'min_wave_height']])
```

위 코드에서 contamination 매개변수는 비정상적인 데이터의 비율을 가정한 것으로, 이를 조절하면서 최적의 값을 찾아야 합니다.

이제 anomaly colum에서 -1 값을 가지는 데이터가 감지된 이상 상황으로 판단할 수 있습니다. 이 경우에는 해당 정보를 소방서에 보고하는 코드를 추가 하면 됩니다.

이러한 방식은 단순화된 예시로, 실제 시스템에서는 다양한 요소와 상황을 고려하여 알고리즘을 개선 및 최적화해야 할 수 있습니다. 또한 파동 센서 외에도 여러 다른 종류의 센서(예: 온도, 습도 등)를 함께 사용하여 더욱 정확한 판단을 내릴 수 있습니다.

데이터 통합과 통신

데이터 수집 및 통합: 센서에서 생성된 데이터를 실시간으로 수집하고, 필요한 경우 다른 데이터 소스(예: 사람 감지 센서)와 통합해야 합니다. 이를 위해 IoT 기반의 솔루션을 사용할 수 있습니다. 예를 들어, MQTT(MQ Telemetry Transport) 프로토콜 등을 사용하여 센서에서 생성된 데이터를 실시간으로 수집하고 중앙 서버나 클라우드로 전송할 수 있습니다.

데이터 저장 및 처리: 수집된 데이터는 중앙 서버나 클라우드에 저장되어야 합니다. 여기에는 다양한 DBMS(Database Management System)나 빅데이터 처리 시스템(Hadoop, Spark 등)이 사용될 수 있습니다.

실시간 분석 및 대응: 저장된 데이터는 실시간으로 분석되어야 합니다. 스크립트 언어(Python 등) 또는 스트림 처리 엔진(Apache Flink, Apache Storm 등)을 활용하여 실시간 분석을 실행할 수 있습니다. 이상 징후가 탐지되면 즉각적인 알림이나 대응 조치가 이루어져야 하는데, 이 부분은 API 호출, 메일 발송 등의 방식으로 구현될 수 있습니다.

모니터링 및 관리: 마지막으로 전체 시스템의 작동 상태와 성능을 모니터링하며 필요한 경우 관리 및 최적화 작업이 진행되어야 합니다.

위 과정들은 크게 보면 IoT(Internet of Things), Big Data, Cloud Computing 기술들이 결합된 형태입니다.

알림 및 조치

사람이 강에서 떨어질 경우 즉각적으로 경고를 보내고 구조나 구호 작업을 조치하기 위한 통보 시스템 및 대응 프로토콜을 구축하는 것은 크게 두 부분으로 나누어 볼 수 있습니다.

- 1. 경고 알림 시스템: 이상 징후가 탐지되면 즉시 관련 당국에 알림을 보내는 시스템이 필요합니다. 이를 위해 API, SMS, 이메일 등 다양한 방법을 사용할 수 있습니다.
- 2. 구조/구호 대응 프로토콜: 감지된 이상 상황에 따라 적절하게 대응할 수 있는 프로토콜이 필요합니다. 이는 사전에 소방서, 경찰서 등과 협의하여 정해두어야 합니다.

아래는 파이썬에서 Twilio API를 사용하여 SMS 알림을 보내는 예시입니다. 아래 코드에서 your_account_sid, your_auth_token, twilio_phone_number, 'destination_phone_number' 부분은 실제 Twilio 계정의 SID와 토큰, 그리고 발신자 및 수신자 번호로 변경해야 합니다.

```
from twilio.rest import Client

def send_alert(message):
    # Twilio 계정 정보 설정
    account_sid = 'your_account_sid'
    auth_token = 'your_auth_token'
    client = Client(account_sid, auth_token)

# SMS 메시지 전송
    message = client.messages.create(
        body=message,
        from_='twilio_phone_number',
        to='destination_phone_number'
)
```

그리고 아래와 같이 비정황 상황 감지 시 send_alert 함수를 호출할 수 있습니다.

```
# 모든 데이터에 대한 예측 수행 (1: 정상, -1: 비정상)

data['anomaly'] = model.predict(data[['mean_wave_height', 'max_wave_height', 'min_wave_height']])

# 비정상 상황 발생 시 알림 전송

if data['anomaly'].iloc[-1] == -1:

    send_alert("비정상 상황 발생! 확인 요망.")
```

다만 실제 운영 환경에서는 세부적인 로직과 에러 처리 등 고려해야 할 요소가 많으므로 위 코드들은 단순한 예시에 불과하다는 점을 유의해야 합니다