## Računarska statistika

Snježana Lubura Strunjak

Zagreb, 13. svibnja 2021.

1/7

Metode ponovnog uzorkovanja (re-sampling)

## Jackknife metoda

Koristi se za eliminaciju pristranosti (biasa) procjenitelja nekog parametra.

Razvila se sredinom prošlog stoljeća (Quenouille, Miller, Tuckey), i pojavom bootstrap metode se prestala koristiti.

Opis metode:

- ullet Neka je  $ar{ heta}$  procjenitelj parametra heta definiran na slučajnom uzorku  $X_1,\dots,X_n$ .
- Podijelimo taj uzorak na N poduzoraka iste duljine M tako da vrijedi n = NM.
- Za svaki  $i=1,\ldots,N$  definirajmo novi uzorak na način da iz početnog uzorka izbacimo i-ti po redu poduzorak duljine M. Na osnovu novog uzorka definirajmo procjenitelj  $\bar{\theta}_{-i}$  parametra  $\theta$ .
- ullet Tada je Jackknife procjena parametra u oznaci  $J(ar{ heta})$  definirana s

$$J_{-i}(\bar{\theta}) = N\bar{\theta} - (N-1)\bar{\theta}_{-i}, \quad i = 1, ..., N$$
 
$$J(\bar{\theta}) = \sum_{i=1}^{N} \frac{J_{-i}(\bar{\theta})}{N}.$$



Kada je M=1, onda se metoda zove complete Jackknife (važan poseban slučaj). Svojstva Jackknife procjenitelja:

- Ako  $\bar{\theta}$  ima pristranost (bias) reda  $\frac{1}{n}$ , onda  $J(\bar{\theta})$  ima pristranost reda  $\frac{1}{n^2}$ .
- Omogućava kreiranje robusnih intervala pouzdanosti koji se baziraju na Jackknife procjeni standardne pogreške:

$$se_{J(\bar{\theta})} = \sqrt{\frac{\sum_{i=1}^{N}(J(\bar{\theta}) - J_{-i}(\bar{\theta}))^2}{N(N-1)}}.$$

 Ne ponaša se dobro na podacima s outlierima (transformacije podataka možda mogu pomoći), niti za procjenitelje koji se ne mogu linearno aproksimirati (npr. medijan). Primjer (Jackknife procjena varijance)

Koristiti programe:

CHAPTER1\_3\_JACKKNIFE.SAS, JACKBOOT.SAS i data set law.sas7bdat iz foldera Data. Prije izvođenja programa pomoću naredbe LIBNAME definirati library reference lib.

## Primjer (Jackknife procjena korelac. koef. Bivarijatnog normalnog uzorka)

Program CHAPTER1\_3\_NORMAL2\_BOOT.SAS i

CHAPTER1\_3\_JACKKNIFE CORR.SAS

Generirajte 15 parova točaka  $(X_i, Y_i)$  po bivarijatnoj normalnoj distribuciji (n=15) sa vrijednosti korelacijskog koeficijenta (Pearsonovog) uzorka = 0.562. Izračunajte Jaccknife procjene za

- Koeficijent korelacije,
- Standardnu pogrešku,
- Pristranost (bias),
- 95% interval pouzdanosti.

## Zadaća

7. zadaća: rok za predaju 20.05.

Zadaća se nalazi u folderu Zadaće na MERLINU.

UPUTE: Svaki zadatak iz zadaće mora biti u svom .sas programu. Sve .sas programe nazovite na način *prezime\_ime\_zad1.sas*, ako je npr. 1.zadatak u pitanju, itd. Sve što radite u zadaćama mora biti u obliku koda (možete koristiti sve dostupne materijale da dobijete tražene rezultate, ali sve mora biti napisano u obliku koda).