Работа 4.3.2

Дифракция света на ультразвуковой волне в жидкости

Стрижак Даниил

1 Аннотация

В работе изучается дифракция света на синусоидальной акустической решетке и наблюдается фазовая решетка методом темного поля.

С помощью оптической скамьи, осветителя, двух длиннофокусных объективов, кюветы с жидкостью, кварцевого излучателя с микрометрическим винтом, генератора звуковой частоты, линзы, вертикальной нити на рейтере и микроскопа.

2 Теоретические сведения

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{2.1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции $n\ (m\ll 1).$

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2.2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{2.3}$$

Этот эффект проиллюстрирован на рисунке 1.

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{2.4}$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

рис. 1. Дифракция световых волн на акустической решетке

$$v = \Lambda \nu \tag{2.5}$$

3 Результаты измерений и обработка данных

3.1 Определение скорости ультразвука по дифракционной картине

Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

рис. 2. Схема для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива O_2 F=30 см, одно деление винта микроскопа составляет 4 мкм, погрешность измерений примем равной $\sigma=2$ деления, или 8 мкм.

Исследуем изменения дифракционной картины на зеленом свете. При увеличении частоты УЗ-генератора и приближении к 1,17 МГц проявляется дифракционная решетка: расстояние между максимумами растет.

Измерим положения x_m дифракционных максимумов с помощью микроскопического винта для четырех частот. Результаты измерений занесены в таблицы 1-4 ниже. На

основе каждой таблицы построены графики зависимости $x_m(m)$, они изображены на рисунках 3-6. Коэффициенты углов наклонов прямых для всех зависимостей сведены в таблицу 5.

График зависимости $x_m(m)$ при частоте генератора $\nu=1{,}17~{\rm M}\Gamma{\rm m}$

\overline{m}	-4	-3	-2	-1	0	1	2	3	4
x_m , MKM	450	730	1080	1370	1730	2060	2360	2700	2950

Таблица 1. Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1,17~{\rm M}\Gamma{\rm q}$

Полученная картина

График зависимости $x_m(m)$ при частоте генератора $\nu=1,82~{
m M}\Gamma{
m H}$

m	-3	-2	-1	0	1	2	3
x_m , MKM	50	460	1150	1590	2110	2710	3280

Таблица 2. Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1,\!82~{\rm M}\Gamma{\rm q}$

генератора $\nu=1.55~\mathrm{M}\Gamma$ ц

Полученная картина

m	-3	-2	-1	0	1	2	3	
x_m , MKM	460	790	1230	1610	2030	2540	3000	

3,000

 $\overset{\mathbb{M}}{\underset{x}{\mathbb{M}}}2,000$

1,000

Таблица 3. Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=1,55~{\rm M}\Gamma{\rm q}$

Полученная картина

5,000																	/	
0,000	H														/	_		
4,000													_	Z				
₩3,000 \$\tilde{\tilde										_	/							
m, m									/									
82,000							/											
1,000	H		/	/	_													
0		1																7
0	-3	 -2			_	1		()			1	L		2	2		3
								η	n									

График зависимости $x_m(m)$ при частоте генератора $\nu=3.96~\mathrm{M}\Gamma$ ц

m	-2	-1	0	1	2		
x_m , MKM	440	1500	2790	3730	5070		

Таблица 4. Измерение координаты m-ого максимума x_m дифракционной картины при частоте генератора $\nu=3.96~{\rm M}\Gamma{\rm q}$

Из зависимости наклона графиков от частоты рассчитаем скорость звука в воде по формулам (2.4) и (2.5). Откуда получаем, что скорость звука равна

$$1513 \pm 35 \text{ m/c},$$

что соответствует табличным данным в пределах погрешности измерений и эксперимента — $1490~\mathrm{m/c}$.

График зависимости $b_m(\nu)$

4 Определение скорости ультразвука методом темного поля

Для наблюдения акустической решетки используется метод темного поля, который заключается в устранении центрального дифракционного максимума с помощью непрозрачного экрана. Схема установки показана на рисунке.

Схема для наблюдения дифракции методом темного поля

Приставим к задней стенке (для светового луча) кюветы стеклянную пластинку с миллиметровыми делениями; сфокусируем микроскоп на изображение пластинки. Определим цену деления окулярной шкалы микроскопа, совместив ее с миллиметровыми делениями: в 1 делении миллиметровой шкалы убирается 1 большое деление окулярной. Значит, цена деления окулярной шкалы: $C=1\,\mathrm{mm}$.

Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум горизонтальной нитью. Таким образом, осевая составляющая фазовомодулированной волны поглощается, а боковые остаются без изменения. Получившееся поле:

$$f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{-i\Omega x} = im\cos\Omega x I(x) = m^2\cos^2\Omega x = m^2\frac{1+\cos^22\Omega x}{2}$$
(4.1)

Отсюда получаем, что расстояние между темными полосами есть $\Lambda/2$.

Проведем измерение длины ультразвуковой волны, приняв ошибку равной цене деления окулярной шкалы. В таблице 6 содержатся количество маленьких делений окулярной шкалы N (цена деления C=1), соответствующее n темным полосам акустической решетки. Формулы для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1), \qquad v = \nu\Lambda \tag{4.2}$$

Картины наблюдения получились на другой установке, и только при частотах $\nu_1=1.22~\mathrm{M}\Gamma$ ц и $\nu_2=2.97~\mathrm{M}\Gamma$ ц, с помощью этих данных можно определить скорость звука и длину волны.

В первом случае: $\Lambda = 1.29 \pm 0.04$ мм и $v = 1570 \pm 60$ м/с. Во втором случае: $\Lambda = 0.53 \pm 0.04$ мм и $v = 1510 \pm 60$ м/с

Наблюдаемая картина при частоте $1.22~\mathrm{M}\Gamma\mathrm{_{II}}$

Наблюдаемая картина при частоте $2.97~\mathrm{M}\Gamma\mathrm{_{II}}$

5 Вывод

В работе изучена дифракция света на акустической решетки, рассчитаны длина волны ультразвука и скорость его распространения в воде. Решетка наблюдалась методом темного поля.

Ошибка при определении Λ и v не превышает 2%. Согласно справочным данным, при комнатной температуре скорость ультразвуковой волны в воде составляет примерно 1490 м/с. Значения, полученные экспериментально, с достаточной точностью соотносятся с ними.

Ошибка при таком определении скорости звука больше, чем в первой части работы, и составляет около 5%. Сами значения тоже получились больше.