SCIENCES SORBONNE UNIVERSITÉ

Vue d'ensemble

- Compatible avec deux thermistances CTN (5kΩ à 20°C)
- Mesure analogique du sens du flux d'air avec un éclairage LED
- Conversion numérique de deux tensions analogiques (0-5V)
- Connexion USB-C pour communiquer avec le microcontrôleur
- Traçage en temps réel des températures des deux CTN
- Faible consommation électrique (~ 55mA)
- Grande plage de mesure (de -80°C à +150°C)
- Fréquence de lecture du CAN jusqu'à 500kHz
- Possibilité d'exporter les données mesurées au format CSV

Présentation

Ce module permet de déterminer le sens du flux d'air dans un tube, une fonction essentielle pour de nombreuses applications industrielles, notamment la sécurisation des systèmes critiques. La mesure repose sur le chauffage d'une résistance placée au centre du tube, accompagné de deux thermistances dont la résistance varie en fonction de la température. Cette configuration permet d'identifier la direction du flux d'air avec une grande précision et en temps réel.

Deux borniers assurent la connexion aux thermistances, tandis qu'un troisième est dédié à l'alimentation de la résistance chauffante. Un convertisseur analogique-numérique (CAN), associé à un multiplexeur analogique, permet de mesurer alternativement la tension aux bornes de chaque thermistance. Enfin, un microcontrôleur RP2040, relié aux sorties du CAN, assure l'interface avec un ordinateur chargé de tracer les courbes d'évolution des températures grâce à la relation de Steinhart-Hart.

Diagramme fonctionnel

Caractéristiques détaillées

Caractéristiques électriques :

Tension d'alimentation	± 12 (traitement analogique), 5 (traitement numérique)	VDC
Courant nominal (traitement analogique)	30	mA
Courant nominal (traitement numérique)	25	mA
Puissance au repos (aucune LED allumée)	250	mW
Plage de tensions d'entrée	0 - 5	V
Relation donnant V en fonction de la sortie numérique	$V = \left(\sum_{i=0}^{7} 2^i \cdot bit_i\right) \cdot \frac{5}{255}$	N.A.
Fréquence d'échantillonnage maximale	500	kHz

Caractéristiques physiques :

Dimensions de la carte	5 × 10	cm
Dimension du module complet (boitier de protection inclus)	6 × 11	cm
Masse du circuit	50	g
Masse du module complet (boitier de protection inclus)	100	g
Température de fonctionnement minimale	- 80	°C
Température de fonctionnement maximale	150	°C
Incertitude sur la température	± 0.1	°C
Type de connecteurs	Fiches Bananes, Borniers, USB-C	N.A.
Matériau du PCB	FR-4	N.A.
Matériau du boitier de protection	PLA (impression 3D)	N.A.
Coût des composants	25	€
Délai d'approvisionnement	7	Jours

Interfaces et connectivité :

Signaux lumineux	L1 (verte) : Flux vers CTN2 L2 (rouge) : Flux vers CTN1 Aucune : Pas de flux	N.A.
Type de communication	GPIO, USB	N.A.
Nombre d'entrées analogiques	2	Borniers
Nombre de sorties numériques	1	USB 1.1
Environnement de développement du RP2040	MicroPython, C / C++	N.A.

Boitier de protection

Conception puis impression 3D d'un boitier de protection pour la carte, laissant accessibles toutes les interfaces pour les connexions et intégrant un motif hexagonal qui laisse visibles les éléments principaux du circuit, notamment les LED

Application de traitement des données

Une application de bureau, compatible avec n'importe quel ordinateur disposant de Python, permet l'acquisition des mesures dès que le circuit est branché en USB. Elle offre diverses fonctionnalités, telles que la modification de la résolution de lecture du CAN, l'exportation des données, le traçage les courbes d'évolution des températures.

Améliorations possibles pour les versions futures

- Réduction de la plage de mesure du CAN (par exemple 2-3V) pour une meilleure précision des mesures
- Gestion plus personnalisable des seuils pour l'allumage des LED (en utilisant un potentiomètre numérique plutôt qu'un pont diviseur de tension)
- Ajout d'une batterie pour rendre le système entièrement autonome
- Réduction et optimisation des coûts

Fichiers sources

Tous les fichiers sources (conception électronique et mécanique, codes de l'application et du microcontrôleur, datasheets des composants...) sont accessibles librement sur GitHub:

https://github.com/AstroNolan/LU2EE20A_RefluxDansLesSoupapes

Annexe n°1 : Schéma électrique (traitement analogique)

Annexe n°2 : Schéma électrique (traitement numérique)

Annexe n°3: Disposition du PCB

