Bayesian Statistics

1. Bayes' Theorem:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

2. Law of Total Probability:

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

3. Bayes' Theorem in continuous case:

$$\pi(\theta|\boldsymbol{x}) = \frac{f(\boldsymbol{x}|\theta)p(\theta)}{f(\boldsymbol{x})} \propto f(\boldsymbol{x}|\theta)p(\theta)$$

Likelihood: $f(\boldsymbol{x}|\theta) = \prod_{i=1}^{n} f(x_i|\theta)$

$$f(\boldsymbol{x}) = \int_{\Theta} f(\boldsymbol{x}|\theta) p(\theta) d\theta$$

- 4. Non-informative prior: bad when transformation
- 5. Jeffrey's prior:

$$p(\theta) \propto \sqrt{I(\theta|\mathbf{x})} \propto \sqrt{I(\theta|\mathbf{x})}$$

$$I(\theta|\boldsymbol{x}) = -\mathbb{E}\left[\frac{d^2 \log f(\boldsymbol{x}|\theta)}{d\theta^2}\right]$$

6. Transformation of variables:

$$g(y) = f(x) \left| \frac{dx}{dy} \right|$$

- 7. HDPI, CI: choose prior backwards
- 8. Bayes estimate w.r.t. the quadratic loss function $L(\theta, a) = (\theta a)^2$ is the MEAN of the posterior distribution.
- 9. Bayes estimate w.r.t. the absolute error loss function $L(\theta, a) = |\theta a|$ is the MEDIAN of the posterior distribution.
- 10. Bayes factor for H_0 against H_1 is

$$B_{01} = \frac{\mathbb{P}(\theta \in \Theta_0|\boldsymbol{x})/\mathbb{P}(\theta \in \Theta_1|\boldsymbol{x})}{n_0/n_1}$$

 $B_{01} < 3$: No evidence of H_0 over H_1

 $B_{01} > 3$: Positive evidence for H_0

 $B_{01} > 20$: Strong evidence for H_0

 $B_{01} > 150$: Very strong evidence for H_0

11. $H_0: \theta = \theta_0 \text{ vs } H_1: \theta = \theta_1$:

$$B_{01} = \frac{f(\boldsymbol{x}|\theta_0)}{f(\boldsymbol{x}|\theta_1)}$$

Author: s1680642

12. $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$:

$$B_{01} = \frac{f(\boldsymbol{x}|\theta_0)}{\int_{-\infty}^{\infty} f(\boldsymbol{x}|\theta) p_1(\theta) d\theta}$$

13. $H_0: \theta \in \Theta_0 \text{ vs } H_1: \theta \in \Theta_1$:

$$B_{01} = \frac{\int_{\Theta_0} f(\boldsymbol{x}|\theta) p_0(\theta) d\theta}{\int_{\Theta_1} f(\boldsymbol{x}|\theta) p_1(\theta) d\theta}$$

14. Prior predictive distribution:

$$f(\boldsymbol{x}) = \int_{\theta \in \Theta} f(\boldsymbol{x}|\theta) p(\theta) d\theta$$

15. Posterior predictive distribution:

$$f(\boldsymbol{y}|\boldsymbol{x}) = \int_{\Omega} f(\boldsymbol{y}|\theta) \pi(\theta|\boldsymbol{x}) d\theta$$

Bayesian Computation

16. Monte Carlo integration:

$$\mathbb{E}_{\pi}(\theta) \approx \frac{1}{n} \sum_{i=1}^{n} \theta^{i}, \, \mathbb{E}_{\pi}\left(f(\theta)\right) \approx \frac{1}{n} \sum_{i=1}^{n} f(\theta^{i})$$

$$\operatorname{Var}_{\pi}(\theta) \approx \frac{1}{n-1} \sum_{i=1}^{n} \left(\theta^{i} - \mathbb{E}_{\pi}(\theta^{i}) \right)^{2}$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} (\theta^{i})^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} \theta^{i} \right)^{2} \right]$$

- 17. Method of Inversion:
 - Calculate cdf F(x)
 - Let F(x) = u, calculate $x = F^{-1}(u)$

Algorithm:

Step 1: Simulate $U \sim U[0,1]$

STEP 2: SET $X = F^{-1}(U)$

Discrete case: (check WS4 Q2)

18. Rejection Sampling:

• Calculate
$$M = \sup_{p} \left(\frac{\pi(\theta|\mathbf{x})}{h(\theta)} \right)$$

Algorithm:

STEP 1: SIMULATE $\theta \sim h(\theta)$

Step 2: Generate $Y \sim U[0, Mh(\theta)]$

Step 3: Accept θ iff $Y \leq \pi(\theta|\boldsymbol{x})$

19. Importance Sampling:

STEP 1: SIMULATE $\theta \sim g(\theta)$

STEP 2: CALCULATE WEIGHT

$$w_i = \frac{\pi(\theta^i | \boldsymbol{x})}{q(\theta^i)}$$

STEP 3: CALCULATE ESTIMATOR

$$\hat{\theta}_g = \frac{1}{n} \sum_{i=1}^n w(\theta^i) \theta^i$$

20. Sampling Importance Resampling (SIR):

STEP 1: SIMULATE $\theta \sim g(\theta)$

STEP 2: CALCULATE WEIGHT

$$w_i = \frac{\pi(\theta^i | \boldsymbol{x})}{g(\theta^i)}$$

STEP 3: CALCULATE UPDATED WEIGHT

$$w_i^* = \frac{w_i}{\sum_{j=1}^n w_j}$$

Step 4: Resample these values from THESE WEIGHT WITH REPLACEMENT, WITH RESAMPLING PROBABILITY w_i^*

21. Gibbs Sampler:

STEP 1: SET INITIAL PARAMETER VALUE

Author: s1680642

FOR θ_1 and θ_2 DENOTED BY θ_1^0 and θ_2^0 STEP 2: GENERATE $\theta_1^{t+1} \sim \pi(\theta_1^{t+1} | \boldsymbol{x}, \theta_2^t)$ STEP 3: GENERATE $\theta_2^{t+1} \sim \pi(\theta_2^{t+1} | \boldsymbol{x}, \theta_1^{t+1})$

Step 4: Increase t by one and return TO STEP 2

Step 5: Discard $\boldsymbol{\theta}^0, \dots, \boldsymbol{\theta}^N$ as burn-in

22. Metropolis-Hastings:

STEP 1: SET INITIAL PARAMETER VALUE FOR $\boldsymbol{\theta}$ DENOTED BY $\boldsymbol{\theta}^0$

STEP 2: GIVEN THE CURRENT POSITION, $\boldsymbol{\theta}^t = \boldsymbol{\theta}$, generate a new value $\boldsymbol{\theta}'$ from THE DISTRIBUTION $q(\boldsymbol{\theta}'|\boldsymbol{\theta})$

STEP 3: CALCULATE

$$\alpha(\boldsymbol{\theta}, \boldsymbol{\theta}') = \min\left(1, \frac{\pi(\boldsymbol{\theta})q(\boldsymbol{\theta}'|\boldsymbol{\theta})}{\pi(\boldsymbol{\theta}')q(\boldsymbol{\theta}|\boldsymbol{\theta}')}\right)$$

STEP 4: WITH PROBABILITY $\alpha(\boldsymbol{\theta}, \boldsymbol{\theta}')$, set $\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}'$, else set $\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}$

Step 5: Discard $\boldsymbol{\theta}^0, \dots, \boldsymbol{\theta}^N$ as burn-in