SAMB for "Te"

Generated on 2023-09-27 01:33 by MultiPie $1.1.14\,$

- Group: No. 152 D_3^4 $P3_121$ [trigonal]
- Associated point group: No. 18 $D_3 1$ 321 (321 setting) [trigonal]
- Generation condition
 - model type: tight_bindingtime-reversal type: electric
 - irrep: [A1]
 - spinless
- Unit cell:

$$a=4.458,\ b=4.458,\ c=5.925,\ \alpha=90.0,\ \beta=90.0,\ \gamma=120.0$$

• Lattice vectors:

$$a_1 = (4.458 \quad 0 \quad 0)$$

 $a_2 = (-2.229 \quad 3.86074125007103 \quad 0)$
 $a_3 = (0 \quad 0 \quad 5.925)$

Table 1: High-symmetry line: A- Γ -H-A-L-H-K- Γ -M-K.

symbol	position		symbol	position		symbol	position			
Γ	(0	0	0)	A	(0	0	$\frac{1}{2}$	M	$\left(\frac{1}{2}\right)$	0)
 K	$\left(\frac{1}{3}\right)$	$\frac{1}{3}$	0	Н	$\left(\frac{1}{3}\right)$	$\frac{1}{3}$	$\frac{1}{2}$	L	$\left(\frac{1}{2}\right)$	$\left(\frac{1}{2}\right)$

• Kets: dimension = 9

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	$p_x@A_1$	2	$p_y@A_1$	3	$p_z@A_1$	4	$p_x@A_2$	5	p_y @A ₂
6	$p_z@\mathrm{A}_2$	7	$p_x@A_3$	8	$p_y@A_3$	9	$p_z@A_3$		

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1 [3a: .2.]	A_1	$\begin{pmatrix} 0.274 & 0 & \frac{1}{3} \end{pmatrix}$	[1,2]
	A_2	(0.726 0.726 0)	[3,6]
	A_3	$\left(0 0.274 \frac{2}{3}\right)'$	[4,5]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
$B_1 [3b: .2.]$	b_1	A_2	A_1	1	1	$\begin{pmatrix} -0.548 & -0.274 & -\frac{1}{3} \end{pmatrix}$ @ $\begin{pmatrix} 0 & 0.863 & \frac{1}{6} \end{pmatrix}$	[1,-3]
	b_2	A_3	A_1	1	1	$\left(-0.274 0.274 \frac{1}{3}\right)$ @ $\left(0.137 0.137 \frac{1}{2}\right)$	[2,-5]
	b_3	A_3	A_2	1	1	$\left(0.274 0.548 -\frac{1}{3}\right) @ \left(0.863 0 \frac{5}{6}\right)$	[-4,6]

• SAMB:

$$\begin{split} & \begin{bmatrix} \text{No. 1} \end{bmatrix} \ \hat{\mathbb{Q}}_0^{(A_1)} \ [M_1, S_1] \\ & \hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s, A_1)}] \end{split}$$

No. 3
$$\hat{\mathbb{G}}_{2}^{(A_{1})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_3 = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{1,0}^{(s,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_4[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 4
$$\hat{\mathbb{Q}}_3^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{1,0}^{(s,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{1,1}^{(s,E)}]}{2}$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_5 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_1)}]$$

No. 6
$$\hat{\mathbb{Q}}_2^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_2[\mathbb{Q}_2^{(a,A_1)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_1)}]$$

No. 7
$$\hat{\mathbb{G}}_2^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_7 = -\frac{\sqrt{2}\mathbb{X}_3[\mathbb{Q}_{2,0}^{(a,E,1)}] \otimes \mathbb{Y}_5[\mathbb{Q}_{1,0}^{(b,E)}]}{2} - \frac{\sqrt{2}\mathbb{X}_4[\mathbb{Q}_{2,1}^{(a,E,1)}] \otimes \mathbb{Y}_6[\mathbb{Q}_{1,1}^{(b,E)}]}{2}$$

No. 8
$$\hat{\mathbb{Q}}_3^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_8 = \frac{\sqrt{2}\mathbb{X}_5[\mathbb{Q}_{2,0}^{(a,E,2)}] \otimes \mathbb{Y}_5[\mathbb{Q}_{1,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_6[\mathbb{Q}_{2,1}^{(a,E,2)}] \otimes \mathbb{Y}_6[\mathbb{Q}_{1,1}^{(b,E)}]}{2}$$

No. 9
$$\hat{\mathbb{G}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_9 = \frac{\sqrt{3}\mathbb{X}_7[\mathbb{M}_1^{(a,A_2)}] \otimes \mathbb{Y}_7[\mathbb{T}_1^{(b,A_2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_8[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{Y}_9[\mathbb{T}_{1,1}^{(b,E)}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{Y}_8[\mathbb{T}_{1,0}^{(b,E)}]}{3}$$

No. 10
$$\hat{\mathbb{G}}_2^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_{10} = \frac{\sqrt{6}\mathbb{X}_{7}[\mathbb{M}_{1}^{(a,A_{2})}] \otimes \mathbb{Y}_{7}[\mathbb{T}_{1}^{(b,A_{2})}]}{3} + \frac{\sqrt{6}\mathbb{X}_{8}[\mathbb{M}_{1,0}^{(a,E)}] \otimes \mathbb{Y}_{9}[\mathbb{T}_{1,1}^{(b,E)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{9}[\mathbb{M}_{1,1}^{(a,E)}] \otimes \mathbb{Y}_{8}[\mathbb{T}_{1,0}^{(b,E)}]}{6}$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	p_x, p_y, p_z	p_x, p_y, p_z

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	M_1	$ \begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & 0 \\ 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} $
\mathbb{X}_2	$\mathbb{Q}_2^{(a,A_1)}$	$ m M_1$	$ \begin{pmatrix} -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & \frac{\sqrt{6}}{3} \end{pmatrix} $
\mathbb{X}_3	$\mathbb{Q}_{2,0}^{(a,E,1)}$	$ m M_1$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{Q}_{2,1}^{(a,E,1)}$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 0 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{5}	$\mathbb{Q}_{2,0}^{(a,E,2)}$	$ m M_1$	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0\\ 0 & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_6	$\mathbb{Q}_{2,1}^{(a,E,2)}$	M_1	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_7	$\mathbb{M}_1^{(a,A_2)}$	M_1	$ \begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} & 0 \\ \frac{\sqrt{2}i}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $

 $continued\ \dots$

Table 6

symbol	type	group	form
\mathbb{X}_8	$\mathbb{M}_{1,0}^{(a,E)}$	M_1	$ \begin{pmatrix} 0 & 0 & -\frac{\sqrt{2}i}{2} \\ 0 & 0 & 0 \\ \frac{\sqrt{2}i}{2} & 0 & 0 \end{pmatrix} $
\mathbb{X}_9	$\mathbb{M}_{1,1}^{(a,E)}$	$ m M_1$	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{2}i}{2} \\ 0 & \frac{\sqrt{2}i}{2} & 0 \end{pmatrix} $

Table 7: Cluster SAMB.

symbol	type	cluster	form
	(s A1)		· ·
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	$\left(\begin{array}{ccc} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{array}\right)$
\mathbb{Y}_2	$\mathbb{Q}_{1,0}^{(s,E)}$	S_1	$\left(\begin{array}{ccc} \frac{\sqrt{6}}{3} & -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} \end{array}\right)$
\mathbb{Y}_3	$\mathbb{Q}_{1,1}^{(s,E)}$	S_1	$\left(0 -\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}\right)$
\mathbb{Y}_4	$\mathbb{O}_{0}^{(b,A_{1})}$	B_1	$\begin{pmatrix} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 3 & 3 & 3 \end{pmatrix}$
\mathbb{Y}_5	$\mathbb{O}^{(b,E)}$	B_1	$\left(\begin{array}{ccc} \sqrt{6} & \sqrt{6} & -\sqrt{6} \\ 6 & 6 & -\end{array}\right)$
\mathbb{Y}_6	$\mathbb{Q}_{1,1}^{(b,E)}$	B_1	$\left(-\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} 0\right)$
\mathbb{Y}_7	$\mathbb{T}_1^{(b,A_2)}$	B_1	$\left(\begin{array}{ccc} \sqrt{3}i & -\sqrt{3}i & \sqrt{3}i \\ 3 & \end{array}\right)$
\mathbb{Y}_8	$\mathbb{T}_{1,0}^{(b,E)}$	B_1	$\left(\begin{array}{ccc} \sqrt{2}i & \sqrt{2}i & 0 \end{array}\right)$
\mathbb{Y}_9	$\mathbb{T}_{1,1}^{(b,E)}$	B_1	$\left(\begin{array}{ccc} \frac{\sqrt{6}i}{6} & -\frac{\sqrt{6}i}{6} & -\frac{\sqrt{6}i}{3} \end{array}\right)$

Table 8: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{Q}_1^{(A_2)}$	1	A_2	_	_	z
3	$\mathbb{Q}_{1,0}^{(E)}$	1	E	_	0	x
4	$\mathbb{Q}_{1,1}^{(E)}$	1	E	_	1	y
5	$\mathbb{Q}_2^{(A_1)}$	2	A_1	_	_	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,0}^{(E,1)}$	2	E	1	0	$\sqrt{3}yz$
7	$\mathbb{Q}_{2,1}^{(E,1)}$	2	E	1	1	$-\sqrt{3}xz$
8	$\mathbb{Q}_{2,0}^{(E,2)}$	2	E	2	0	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
9	$\mathbb{Q}_{2,1}^{(E,2)}$	2	E	2	1	$-\sqrt{3}xy$

Table 9: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_1^{(A_2)}$	1	A_2	_	_	Z
2	$\mathbb{G}_{1,0}^{(E)}$	1	E	_	0	-Y
3	$\mathbb{G}_{1,1}^{(E)}$	1	E	_	1	X

 \bullet Group info.: Generator = $\{3^{+}_{\ 001}|00\frac{1}{3}\},\ \{2_{110}|0\}$

Table 10: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{100} 00\frac{2}{3}\}$	$\{2_{100} 00\frac{2}{3}\}, \{2_{010} 00\frac{1}{3}\}, \{2_{110} 0\}$

 $continued \dots$

Table 10

rep. SO	symmetry operations
$\{3^{+}_{001} 00^{\frac{1}{3}}\}$	$\{3^{+}_{001} 00\frac{1}{3}\}, \{3^{-}_{001} 00\frac{2}{3}\}$

Table 11: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	{1 0}	2	$\{2_{100} 00\frac{2}{3}\}$	3	$\{2_{010} 00\frac{1}{3}\}$	4	$\{2_{110} 0\}$	5	$\{3^{+}_{001} 00^{\frac{1}{3}}\}$
 6	$\{3^{-}_{001} 00\frac{2}{3}\}$								

Table 12: Character table (point-group part).

	1	2_{100}	3 ⁺ ₀₀₁
A_1	1	1	1
A_2	1	-1	1
E	2	0	-1

Table 13: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_1 (A_1)$	$A_2 (A_2)$	E(E)

Table 14: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	E
A_1	A_1	A_2	E
A_2		A_1	E
E			$A_1 + E$

Table 15: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-$.

A_1	A_2	E
_	_	A_2

Table 16: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$	2	$\begin{pmatrix} 2 & 1 & -1 \end{pmatrix}$	3	$\begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$	4	(-1 1 -1)
5	$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$	6	$\begin{pmatrix} -2 & -1 & 1 \end{pmatrix}$				

Table 17: Virtual-cluster basis.

symbol	1	2	3	4	5	6
$\mathbb{Q}_0^{(A_1)}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_1^{(A_2)}$	$\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$-\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$	$\frac{\sqrt{6}}{6}$
$\mathbb{Q}_{1,0}^{(E)}$	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$-\frac{1}{2}$
$\mathbb{Q}_{1,1}^{(E)}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{3}$	$\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$

 $continued\ \dots$

Table 17

symbol	1	2	3	4	5	6
$\mathbb{Q}_{2,0}^{(E,1)}$	$-\frac{\sqrt{3}}{6}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$	$\frac{\sqrt{3}}{3}$	$-\frac{\sqrt{3}}{6}$
$\mathbb{Q}_{2,1}^{(E,1)}$	$-\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$