ΘΕΜΑ 4

Σωματίδιο (Σ_1) , με μάζα $m_1=4\cdot 10^{-13}~{\rm kg}$ και θετικό φορτίο $q_1=10^{-8}~{\rm C}$, αφήνεται χωρίς αρχική ταχύτητα πολύ κοντά στο θετικό οπλισμό φορτισμένου πυκνωτή και στο εσωτερικό του ομογενούς ηλεκτρικού πεδίου που έχει δημιουργηθεί μεταξύ των οπλισμών του.

Η τάση φόρτισης του πυκνωτή είναι $V=2.000~{
m V}$ και η απόσταση μεταξύ των οπλισμών του $d=8~{
m cm}$. Η κίνηση του σωματιδίου (Σ_1) είναι ευθύγραμμη, παράλληλη με τις δυναμικές γραμμές του ομογενούς πεδίου του πυκνωτή και

ακριβώς πάνω στην ευθεία της τροχιάς αυτής, υπάρχει μια τρύπα στον αρνητικό οπλισμό του πυκνωτή. Από το άνοιγμα αυτό, το σωματίδιο εξέρχεται από το ηλεκτρικό πεδίο του πυκνωτή με την ταχύτητα \vec{v}_0 που απέκτησε στο τέλος της κίνησής του μέσα σε αυτό το πεδίο. Στην ευθεία της κίνησης του σωματιδίου (Σ_1) και σε μεγάλη απόσταση από το σημείο εξόδου του από τον πυκνωτή, υπάρχει άλλο σωματίδιο (Σ_2) της ίδια μάζας $(m_1=m_2)$ αλλά διπλάσιου θετικού φορτίου $(q_2=2q_1)$ από το (Σ_1) . Το σωματίδιο (Σ_2) είναι αρχικά ακίνητο, αλλά είναι ελεύθερο να κινηθεί.

4.1. Να υπολογίσετε την επιτάχυνση του σωματιδίου (Σ_1) κατά την κίνησή του στο ομογενές πεδίο του πυκνωτή.

Μονάδες 6

4.2. Να υπολογίσετε το χρόνο κίνησης του σωματιδίου (Σ_1) στο ομογενές ηλεκτρικό πεδίο του πυκνωτή και το μέτρο v_0 της ταχύτητάς του καθώς εξέρχεται μέσω της τρύπας του αρνητικού οπλισμού από το πεδίο αυτό.

Μονάδες 6

4.3. Να εξηγήσετε, καθώς το σωματίδιο (Σ_1) κινείται προς το σωματίδιο (Σ_2) , ποια είναι η συνθήκη ώστε να μειώνεται η μεταξύ τους απόσταση, και να υπολογίσετε το μέτρο της ταχύτητας του σωματιδίου (Σ_1) , όταν βρεθεί στην ελάχιστη απόσταση από το (Σ_2) .

Μονάδες 6

4.4. Να υπολογίσετε την ελάχιστη απόσταση μεταξύ των δύο σωματιδίων.

Μονάδες 7

Να θεωρήσετε το ηλεκτρικό πεδίο του πυκνωτή ομογενές και σημαντικό μόνο μεταξύ των οπλισμών του, δηλαδή να θεωρήσετε ασήμαντη τη δράση του στο σωματίδιο (Σ_1) , μετά την έξοδό του από αυτό. Να θεωρήσετε επίσης ότι οι βαρυτικές δυνάμεις μπορούν να αγνοηθούν και ότι οι πάσης φύσης

Δίνεται η σταθερά $k_c = 9 \cdot 10^9 \, \mathrm{N} \cdot \frac{\mathrm{m}^2}{\mathrm{c}^2}$.

αντιστάσεις στην κίνηση των σωματιδίων είναι ασήμαντες.