Digitaltechnik

Einheitspräfixe

Deka	Hekto	Kilo	Mega	Giga	Tera	Peta	Exa	Zetta	Yotta
da	h	k	M	G	T	P	E	Z	Y
1	2	3	6	9	12	15	18	21	24
d	c	m	μ	n	p	f	a	z	У
Dezi	Zenti	Milli	Mikro	Nano	Piko	Femto	Atto	Zepto	Yokto

$$Bit \xrightarrow{\cdot 8} Byte \xrightarrow{\cdot 1024} kByte \xrightarrow{\cdot 1024} MByte$$

Moores Law: alle 18-24 verdoppelt sich die Anzahl der Chips pro Fläche. Probleme: hohe Verlusleistungsdichte, Komplex bei der Herstellung (von kleinen Strukturen), höhere Störanfälligkeit da weniger e- an Operation beteiligt sind (heisenbergsche Unschärfe etc)

RISC-Prozessor: Speicher, Ein- und Ausgangsystem, Rechenwerk, Bussystem

Zahlensysteme

Größte darstellbare Zahl nach Anzahl der Ziffern

b: Basis; p: Anz. Vorkommast.; n: Anz. Nachkommast.

$$Z_{max} = b^p - b^{-n}$$

3.1 Umrechnung

Z>1 $ Z<1$	В	
	С	Г
$r \to 10 \begin{vmatrix} Z_{10} = \sum r^{i} \cdot d_{i} \\ 101_{2} \to 1 \cdot 1 + 0 \cdot 2 + 1 \cdot 4 \end{vmatrix} \begin{aligned} Z_{10} = \sum r^{-i} \cdot d_{-i} \\ 0.11_{2} \to 1 \cdot 0.5 + 1 \cdot 0.25 \end{aligned}$	D	
$101_2 \rightarrow 1 \cdot 1 + 0 \cdot 2 + 1 \cdot 4$ $0.11_2 \rightarrow 1 \cdot 0.5 + 1 \cdot 0.25$	E	-
$10 \rightarrow r$ $d_i = Z_{10}\%r^i$	F	-
$egin{aligned} 10 ightarrow r & d_i = Z_{10}\% r^i \ 58/8 = 7 ext{Rest } 2(LSB) & 0.4 \cdot 2 = 0.8 \ ext{\"{U}} ext{bertrag } 0(M) \end{aligned}$	SB)	
$7/8 = 0 \text{ Rest } 7(MSB)$ $0.8 \cdot 2 = 1.6 \text{ Übertrag } 1$		

Anzahl der benötigten Ziffern n bezüglich der Basis r, um Z_{10} darstellen zu können:

$$n = \lfloor \log_r(Z) \rfloor + 1$$

3.2 Zweierkomplement Wertebereich: $-2^{n-1} < Z < 2^{n-1} - 1$

Wandle 2 in -2 um:

- 1. Invertieren aller Bits
- 2. Addition von 1
- 3. Ignoriere Überträge beim MSB

 $0010 \Rightarrow 1101$

1101 + 1 = 1110 \Rightarrow $-2_{10} = 1110_2$

Allgemein: $K(Z)=r^{n}-Z=(r^{n}-1)-Z+1; r^{n}:$ Basis des Zahlensystems

Radix-Komplement

binäre Rechenoperaionen (max. Stellen)

Addition: $n_E=max(n_1, n_2)+1$; Multiplikation: $n_E=n_1+n_2$

IEEE 754 (Gleitkommadarstellung)

	95	
s(1)	e(8/11)	f(23/52)

Sonderdarstellung: e=0 ist 0 und e=255 ist ∞

Dezimal-->IEEE 754

$$e_{10} = \lfloor \log_2 |Z_{10}| \rfloor + 127$$
 $m_{10} = \lfloor (\frac{|Z_{10}|}{2^{e_{10} - 127}} - 1) \cdot 2^{23} \rfloor$

in die Form 1,m2*2x bringen und dann entsprechend anpassen: e=x+127, martisse mit 0er am Ende auffüllen IEEE 754-->Dezimal

$$Z_{10} = (-1)^v \cdot (\frac{m_{10}}{2^{23}} + 1) \cdot 2^{e_{10} - 127}$$

manuelles umwandeln geht schneller $Z_2 = (-1)^v \cdot (1, m_2) \cdot 2^{e_{10}-127}$

Exponent umwandel, komma um die entsprechenden Stellen verschieben und dann in Dezimalumwandeln

boolsche Algebra

Resolutionsgesetz: $x \cdot a + \bar{x} \cdot b = x \cdot a + \bar{x} \cdot b + a \cdot b$

 $a XOR b = a\overline{b} + b\overline{a}$

Gatter:

0 0

	S	chaltungssymb	ool	Verknüpfung,	
	amerika- nisch	deutsch	DIN-Norm 40900	Abbildungs- vorschrift	Funktion, Eins-Menge
UND AND			<u>&</u>	$y = f(x_1, x_2)$ $= x_1 \cdot x_2$	$f = \{11\}$
ODER OR	⊅ -	1	≥1	$y = f(x_1, x_2)$ $= x_1 + x_2$	$f = \{01, 10, 11\}$
NICHT NOT	->>-	-Do-	10-	$y = f(x)$ $= \overline{x}$	$f = \{0\}$
NAND		100-	& o-	$y = f(x_1, x_2)$ $= \overline{x_1 \cdot x_2}$	$f = \{00, 01, 10\}$
NOR	_>~	D ~	≥10-	$y = f(x_1, x_2)$ $= \overline{x_1 + x_2}$	$f = \{00\}$
XOR (exkl. ODER)	***		=1	$y = f(x_1, x_2)$ $= x_1 \oplus x_2$	$f = \{01, 10\}$
XNOR (Äquivalenz)	***************************************	□⊕>-		$y = f(x_1, x_2)$ $= \overline{x_1 \oplus x_2}$	$f = \{00, 11\}$
Subjunktion (Implikation)	-	- D-	<u>-</u> 0≥1	$y = f(x_1, x_2)$ $= x_1 \to x_2$ $= \overline{x}_1 + x_2$	$f = \{00, 01, 11\}$
MUX	$ \begin{array}{cccc} x & & \\ a & M \\ b & X \end{array} - y $		ktoreingang eneingänge	$y = \beta(x, a, b)$ $= x \cdot a + \overline{x} \cdot b$	$\beta = \{001, 011, \\ 110, 111\} \\ = \{0*1, 11*\}$

MOSFET-Transitor

Metal Oxide Semiconductor Field Effekt Transisto

5.1 Bauteilparameter

 $U_{GS}=6V$

 $U_{GS}=4V$ U_{GS} =2V

- große Kanalweite ⇒ große Drain-Störme \Rightarrow schnelle Schaltgeschwindigkeit (da $i_d \propto \beta \propto \frac{W}{T}$) Kanalweite W zur Kompensation der Aber: große Fläche.
- nMos schaltet schneller als pMOS niedrigeren Löcherbeweglichkeit

t_{DHL}: steigend mit: der p-mos: $K'_p*(W_p/L_p)=K'_n*(W_n/L_n)$

Schalungskomplexität C_L, Oxiddicke, Kanallänge, Schwellspannung Uth; fallend mit: Kanalweite W, Ladungsträgerbewglichkeit, Oxiddielektrizität,

Versorgungsspannung

CMOS-Verlustleistung:

CMOS-Inverter

Kapazitive Verluste Kurzschlussstrom

Schalthäufigkeit

Dynamische (50%) Statische -Kapazitiver -Leckstrom Anteil (~80%) (Diodensperrstrom) -Kurzschluss -Gate Strom Anteil -->parasitäre Effekte ->mit -->abhängig von V_{dd} und Uth Schaltfunktion verknüft -wird größer, wegen ->abh. von immer kleineren Strukturen Signalflanken $P_{dyn} = P_{cap} + (Solierschichten)$ $P_{cap} = \alpha_{01} f C_L V_{DD}^2$ $P_{short} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_{tn})^3$ τ : Anstiegs-/Abfallszeit von A $\alpha_{0 \to 1} = \frac{\text{Schallopsinge}(\text{pos. Flanke})}{\# \text{Retrachtete Takte}}$

Abhängig von den Signalflanken, mit Schaltfunktionen verknüpft $\approx~V_{DD}1/\propto$ Schaltzeit: $\frac{V_{DD2}}{V_{DD1}}=\frac{t_{D1}}{t_{D2}}$ (bei Schaltnetzen t_{log}) Verzögerungszeit $\propto \frac{1}{V_{DD} - V_{th}}$

Vdd.

UTF-8: Codewörter mit Länge 8- ,16- , 24- , 32-Bit (1-4 Byte) MSB = 0 -> 1 Byte (restliche 7 Bits: ASCII)

MSB = 1 -> 2-4 Byte -> ersten 3/4/5 Bit geben Länge an(110, 1110, 11110). Bytes 2-4 beginnen mit 10 um nicht als neues 1Byte Zeichen erkannt zu werden

bsp: "110xxxxx 10xxxxxx"

nMOS

Guter Pull-Down

Source am niedrigeren Potential $(U_{DS} > 0)$

$$I_D = \begin{cases} 0 & U_{GS} < U_t(aus) \\ & \wedge U_{DS} \ge 0 \\ \beta \left(U_{GS} - U_t - \frac{U_{DS}}{2}\right) U_{DS} & U_{GS} > U_t \text{ (linear)} \\ & \wedge 0 < U_{DS} < U_{GS} - U_t \\ \frac{\beta}{2} \left(U_{GS} - U_t\right)^2 & U_{GS} > U_t \text{ (S\"{attigung)}} \\ & \wedge 0 < U_{GS} - U_t < U_{DS} \end{cases}$$

pMOS

Guter Pull-Up Source am höheren Potential $(U_{DS} < 0)$

$$I_D = \begin{cases} 0 & U_{GS} > U_t(aus) \\ & \wedge U_{DS} \leq 0 \\ -\beta \left(U_{GS} - U_t - \frac{U_{DS}}{2}\right) U_{DS} & U_{GS} < U_t \text{ (linear)} \\ & \wedge 0 > U_{DS} > U_{GS} - U_t \\ \frac{-\beta}{2} \left(U_{GS} - U_t\right)^2 & U_{GS} < U_t \text{ (S\"{attigung)}} \\ & \wedge 0 > U_{GS} - U_t > U_{DS} \end{cases}$$

CMOS-Gatterentwurf

CMOS-Logik ist invertierend!! INVERTER NICHT VERGESSEN!!!

Vorteil: (Fast)	nur bei Schaltv	orgängen Verlustleistung	-	wenig	statische	Verluste	
Netzwerk	Pull-Down	Pull-Up					
Transistoren	nMos	pMos					
AND	Serienschaltung	Parallelschaltung					
OR	Parallelschaltung	Serienschaltung					
		or die Eingänge und Ausgän	ge sc	halten.			

Möglichkeit: Mit bullshit Algebra die Funktion nur mit NAND und NOR darstellen.

Logikminimierung:

Effizienz des Terms: L(z)= Summe der Literale in Teilterme+ Anzahl der Teilterme

Karnaugh Tabelle:

Zyklische G	ray-Coc	dierung:	2dim:0	00, 01	, 11, 10 3dim:000, 001, 011, 010, 110, 111, 101, 100
	00				
0	1	0	0	0	Gleiche Zellen zusammenfassen: z.B. $\overline{xy} + y \cdot z$
1	×	1	1	0	
Don't Care	Werte:	aucnuta	enl		

Gray Kodierung: benachbarte Matrixen Felder unterscheiden sich in nur einer Binärstelle

möglichst viele Felder zusammenfassen, auch mehrere mehrmals benutzen, wenn dann besser zusammengefasst werden kann Don't cares ausnützen!!!

Quines Methode:

Gegeben: DNF, gesucht: MinSUP

1. DNF unf KDNF erweitern: $abc + \overline{a}\overline{b} = abc + \overline{a}\overline{b}(c + \overline{c})$

2. Bestimmung der Primimplikanten durch spezielles Resolulutionsgesetz ($a\overline{x}+xa=a$) und Absobtionsgesetz (a+ab=a)

Nachteil: man braucht VollSOP! 1. schritt liefert teils sehr viele Mintterme (Worst Case 2ⁿ)

Beispiel:

m_0	0-Kubus	A	1-Kubus	R	Α	2-Kubus	A	
m_1	$\overline{x}_1\overline{x}_2x_3$	✓	\overline{x}_2x_3	$m_1 \& m_5$	p_1			
m_4	$x_1\overline{x}_2\overline{x}_3$	V	$x_1\overline{x}_2$	$m_4 \& m_5$	√	x_1	p_2	
m_5	$x_1\overline{x}_2x_3$	V	$x_1\overline{x}_3$	$m_4 \& m_6$	√			
m_6	$x_1x_2\overline{x}_3$	V	$x_{1}x_{3}$	$m_5 \& m_7$	√			
m_7	$x_1x_2x_3$	V	$x_{1}x_{2}$	$m_6 \& m_7$	√			

Resolventenmathode:

Gesetze: allgemeines Resolutionsgesetz($ax + b\overline{x} = ax + b\overline{x} + ab$) und Absobtionsgesetz:

f	Schicht
$\overline{x} \cdot y + \underline{x} \cdot \underline{y} \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot \overline{z}$	0
$+y\cdot z + \overline{x}\cdot \overline{z}$	1

Überdeckungstabelle (quine-McCluskey):

Problem: welche Primimplikanten werden minimal benötigt um f(x) vollständig darzustellen

Methode:

- 1. Markieren der Überdeckungen
- 2. Auswertung der Dominazrelationen

Zeilen und Spalten, die dominiert werden streichen

$p \backslash m$	m_0	m_2	m_3	m_7	Kosten	L(p1):= Länge des
p_1	1	1	0	0	L(p ₁)	" , "
p_2	0	1	1	0	L(p ₂)	Primimplikanten (Anzahl der
p_3	0	0	1	1	L(p ₃)	Literale)
	SOP :	f = j	$p_1 + p_1$	$3 = \overline{x}$	$\overline{z} + y \cdot z$	Literate

Kombinatorisches Schaltnetz: (ohne Gedächtnis)

MUX und DeMUX

- Serielle Übertragung besser als parallele Übertragung, da zu kostenintensiv
- -Mehrfachverwenung von Gleisen

DNF:
$$x_1 * \overline{a0} * ... * \overline{aM} + ... + x_n * a_0 * ... * a_m = 1$$

Wenn Logik-Gleichung fertig optimiert wurde: DNF:

$$z = a_2 * (a_1 * (a_0 * x_7 + \overline{a_0} * x_6) + \overline{a_1} * (a_0 * x_5 + \overline{a_0} * x_4)) + \overline{a_2} * (a_1 * (a_0 * x_3 + \overline{a_0} * x_2) + \overline{a_1} * (a_0 * x_1 + \overline{a_0} * x_0))$$

Ripple-Carry-Adder: (28 Transistoren pro VA)

Volladdierer

АВ] /	S	\mathbf{C}_{out}	\mathbf{C}_{in}	В	A
VA VA		0	0	0	0	0
7 📥 🔨		1	0	1	0	0
/ (1	0	0	1	0
P=A⊕B C	G=AB ()	0	1	1	1	0
		1	0	0	0	1
$\vee \Psi$	Cout	0	1	1	0	1
		0	1	0	1	1
S	1	1	1	1	1	1

$$S = P \oplus C_{in}$$
, $C_{out} = G + P \cdot C_{in}$

Ripple-Carry-Adder

Verzögerungszeit wird vom Carry-Übertrag dominiert! Maximale Verzögerungszeit, wenn beim LSB das Signal von G wechselt und bei allen anderen Gattern gilt: P = 1.

Propergate: P=A XOR B: falls 1, kann der Carry weitergeleitet

weden zum Carry-Ausgang

Generate: G=AB=1: generiert eine 1 am Carryausgang

Problem: Es dauert seine Zeit bis der Carry vom ersten VA stabil ist und der zweite VA beginnen kann zu rechnen (t_{max} wenn der Carry durch alle VAs geht)

Lösung: Carry-Bypass-Adder

Einfügen von DeMUX, die eine Verundung der Propergates der einzelnen A_i und B_i sind--> wenn diese Propergatebedingung auf 1 ist, dann kann der Carry vom ersten VA zum letzten weitergereicht werden

Realisierung von Subtrahierer:

Muliplizierer:

Multiplikation als Summe einer Summe

Array Multiplizierer: Parallele Generierung der patiellen Proukte und shift-Operation durch geschickte Verschaltung der Stufen, Nachteil: Kostenintensiv

"Kasten" entspricht steuerbaren Addierer, der die Werte addiert, wenn y=1

Multiplikation mit 2^n ; kanonisch: einfache shift Operation Logarithischer Barrel Shifter: kMUX Reihen/Zeilen (k: Wortbreite) mit $\lceil \log(n) \rceil$ Stufen/Spalten, wenn n die maximale Verschiebung ist. Nachteil: große Fläche und kostenintensiv Komparatoren/Vergleichoperationen:

Zeitanalyse kombinatorischer Schaltnetze:

UND: 0 dominant: wenn ein Eingang 0, dann ist der Ausgang auch 0 OR: 1 dominant: wenn ein Eingang 1, dann auch der Ausgang ein XOR: sensitiv auf beiden Eingängen, d.h. Ausgang hängt von beiden Eingängen ab

Allgemein: schauen wann der gewünschte Ausgang spätestens stabil ist.

Sequentielle Logik: (mit Gedächtnis)

Basic Speicherzelle: Ring aus 2 Invertern um den Wert stabil zu halten. <u>Problem</u>: Änderung des Wertes welcher in dem Register gespeichert ist

Lösung: Set-Reset Latch/ Enable Lat

Level-Controled

übernimmt den Eingangswert auf D solange e=1

Taktflanken gesteuerter Regster: Flip-Flop

Timing

 t_{setup} : Zeit, in der der Eingangswert vor aktiver Taktflanke stabil sein muss

 t_{hold} : Zeit, in der der Eingangswert nach aktiver Taktflanke stabil bleiben muss

 t_{c2q} : Zeit, nach der der Eingangswert nach der Taktflanke stabil an Q anliegt (=Ausgangslatenz des Registers)

 t_{clk} : Clock

 $t_{l\ddot{u}ngsterPfad}$: (=kritischer Pfad) Längste Verzögerungszeit zwischen zwei Registerstufen

 $Gesamtlatenz = (Maximale Anzahl hintereinander geschalteter Register <math>-1) \cdot t_{clk}$

Pipelining

Aufteilen langer kombinatorischer Pfade durch Einfügen zusätzlicher Registerstufen, um die Taktfrequenz erhöhen zu können (Gesamtlatenz wird allerdings nicht kleiner).

- ⇒ Möglichst Halbierung des längsten Pfades!
- ⇒ Evtl. müssen sog. "Dummy-Gatter" eingefügt werden!

Gesamtlatenz wird bei Pipelining gößer!! Durchsatz: $\frac{1\,sample}{tclk}$

 $t_{clk,pipe}$ = max ($t_{clk,Stufe}$), Latenz=#Stufen* $t_{clk,pipe}$

Möglichkeiten ohne Pipelining Registerzeiten nicht zu verletzen: tclk↓, schnellere Register&Gatter, Logikoptimierung

Parallele Verarbeitungseinheiten

- Paralleles, gleichzeitiges Verwenden mehrere identischer Schaltnetze
- Zusätzliche Kontrolllogik nötig (Multiplexer)
- Taktfrequenz und Latenz bleiben konstant
- Durchsatz steigt mit der Zahl der Verarbeitungseinheiten
- ABER: deutlich höherer Ressourcenverbrauch

 T_{clk} von Register am Ende: $t_{clk,parallel} = \frac{tclk,Module}{\#Module}$ Kosten= #Modul*(Kosten Logik)+Steuerlogik

Tests:

Fehlermodell: Stuck-at-x

Gatteranschluss ständig auf gnd/V_{dd}; Es ist nur ein Fehler s-a-x 2+r mögliche Fehler

(r=#Gatteranschlüsse=#Eingänge+#Ausgäne+#Verbindungen im Gatter≈#Anzahl Gatter*#mittlerer Fan-out)

<u>Fehlergruppe</u>: Alle Fehler, die mit einen Test t_v erkennbar sind bilden die Fehlergruppe des Test t_v

<u>Testgruppe:</u> Alle Tests die den Fehler e_x und e_y erkennen bilden Testgruppe

Automaten:

Test-Fehler-Relationstabelle:

jede Eingangsbelegung testen welches y idealerweise rauskommt, dann für jeden Ausgang testen was rauskommt wenn er stuck-at-0/1 ist.

<u>Gleiche Spalten:</u> Fehler sind nicht zu unterscheiden, <u>gleiche Zeilen:</u> Tests erkennen gleichen Fehler

Fehlerüberdeckungstabelle:

- -gleiche Spalten gruppieren
- -Fehler suchen, die nur von einem Test erkannt werden--> Aufnahme des Tests in die Testauswahl, dann die Tabelle vervollständigen

Einzeltestgenierieung (D-Algoithmus):

<u>Fehler annehmen</u> und dann die Eingangsvariablen so geschickt wählen (<u>durch Vorwärts- und Rückwärtsimplikation</u>), dass sich der <u>Fehler bis zum</u> Ende durchpropagiert

 $\underline{Sensitivit\"{a}t\ eines\ Pfades:}\ Ein\ Pfad\ ist\ bei\ t_v\ sensitiv\ auf\ einen\ Fehler\ ey,\ wenn\ alle\ Leitungen\ sensitiv\ sind$

Fan-out-freie Schaltungen: Eingangsvariablen die zu einem gemeinsamen Signalwert beitragen sind verschieden; Jedes Einstellungsproblem kann unabhängig voneinander gelöst werden

Allgemein:

Persistente Fehler: Designfehler; Fehler im Fertigungsprozess

Dvnamische Fehler: Alterung

DNF: $z=a\overline{b}c+abc+\overline{a}b\overline{c}=1$; **KNF:** z=(a+b+c)*(...)=0

Umwandlung: durch Wahrheitstabelle oder alles doppelt negieren und deMorgan anwenden

Mintterm: alle n Variablen kommen in einer UND-Verknüpfung vor

Maxterm: alle n Variablen in einer ODER-Verknüpfung

gebundene Variable: $x_1+x_2x_3$: x_1 ist freie Variable, x_2 und x_3 sind gebunden

Implikant: Produkt bzw. UND-Term: überdeckt mindestens einen Mintterm

Primimplikant: Implikant, der nicht mehr weiter vereinfacht werden kann

Fan-out: Anzahl der nachfolgenden Gatter. Ist der Fan-out größer, so wird die Verzögerungszeit größer

Fan-in: Anzahl der Eingänge eines Logikgatters

Parity-Prüfsumme: Ergänzung der Bytes, so, dass geradzahlig viele 1en drin vorkommen

	POS	. /1/81		(DNF) eine Summe von Produkttermen					Terme sind ODER-verknüpft			
-		(KIV	F)	ein Pro	dukt von S	ummenter	Terme	sind UND-verknüpft				
C	SO	P (nu	ır 1)	Menge	aller Minte	erme	analog CPOS					
V	VollSOP (nur 1) Menge aller Primimplikanten						Bestimmung siehe Quine M oder Schichtenalgorithmus					
N	/lins	SOP ((min. 1)	Minima	le Summe	v. Primim	durch Überdeckungstabelle					
	x	у	AND	OR	XOR	NAND	NOR	EQV				
_			$x \cdot y$	x + y	$x \oplus y$	$\overline{x \cdot y}$	$\overline{x+y}$	$x \oplus y$				
	0	0	0	0	0	1	1	1	•			
1	0	1	0	1	1	1	0	0	•			
	1	0	0	1	1	1	0	0				
	1	1	1	1	0	0	0	1	•			

Boolsche Funktionen:

Kofaktor

$$\begin{split} &-f|_{x_{i}=1}=f_{x_{i}}\ ,\ f|_{x_{i}=0}=f_{\overline{x}_{i}}\\ &-(f_{x_{i}})_{x_{j}}=(f_{x_{j}})_{x_{i}}=f_{x_{i}x_{j}}\\ &-x_{i}\cdot f=x_{i}\cdot f_{x_{i}}\ ,\ \overline{x}_{i}\cdot f=\overline{x}_{i}\cdot f_{\overline{x}_{i}} \end{split}$$

$$x_i \quad f = x_i \quad f_{x_j}, \quad x_i \quad f = x_i \quad f_{x_j}$$
$$-x_i + f = x_i + f_{\overline{x}_i}, \quad \overline{x}_i + f = \overline{x}_i + f_{x_i}$$

Entwicklungssätze

$$- f = x_i \cdot f_{x_i} + \overline{x}_i \cdot f_{\overline{x}_i} = \beta(x_i, f_{x_i}, f_{\overline{x}_i})$$

$$- \overline{f} = x_i \cdot \overline{f_{x_i}} + \overline{x}_i \cdot \overline{f_{\overline{x}_i}}$$

Sonstiges

- f unabhängig von $x_i \Leftrightarrow f_{x_i} = f_{\overline{x}_i} \Leftrightarrow f_{x_i} \oplus f_{\overline{x}_i} = 0$
- f abhängig von $x_i \Leftrightarrow f_{x_i} \neq f_{\overline{x}_i} \Leftrightarrow f_{x_i} \oplus f_{\overline{x}_i} = 1$
- f positiv symmetrisch in x_i und $x_j \Leftrightarrow f_{x_i \overline{x}_i} = f_{\overline{x}_i x_i}$
- f negativ symmetrisch in x_i und $x_j \Leftrightarrow f_{x_i x_j} = f_{\overline{x_i} \overline{x_j}}$