

Flexible covariate representations for extremes

Slides at www.lancs.ac.uk/~jonathan

Elena Zanini, Emma Eastoe, Matthew Jones, David Randell, Philip Jonathan Shell & Lancaster University

Copyright of Shell Shell & Lancaster University September 2019 1

Thanks

- Colleagues at Shell: Vadim Anokhin, Graham Feld, Emma Ross
- Colleagues at Lancaster: Jonathan Tawn

2 / 33

Structural damage

Ike, Gulf of Mexico, 2008 (Joe Richard)

North Sea, Winter 2015-16 (The Inertia)

Motivation

- Rational and consistent design and assessment of marine structures
 - Reduce bias and uncertainty in estimation of structural integrity
 - Quantify uncertainty as well as possible
- Non-stationary marginal, conditional, spatial and temporal extremes
 - Multiple locations, multiple variables, time-series
 - Multidimensional covariates.
- Improved understanding and communication of risk
 - Incorporation within established engineering design practices
 - Knock-on effects of improved inference

The ocean environment is an amazing thing to study ... especially if you like to combine beautiful physics, measurement and statistical modelling!

4 / 33

Motivation

- Environmental extremes vary smoothly with multidimensional covariates
 - Model parameters are non-stationary
- Environmental extremes exhibit spatial and temporal dependence
 - Characterise these appropriately
- Uncertainty quantification for whole inference
 - Data acquisition (simulator or measurement)
 - Data pre-processing (storm peak identification)
 - Hyper-parameters (extreme value threshold)
 - Model form (marginal measurement scale effect, spatial extremal dependence)
- Statistical and computational efficiency
 - Slick algorithms
 - Parallel computation
 - Bayesian inference

This work

Directional models for storm peak H_S

- Different covariate representations
 - Penalised B-splines (or P-splines)
 - Bayesian adaptive regression splines
 - Voronoi partition
- Generic modelling framework
- Bayesian inference
- Northern North Sea case study as motivation
- Simulation study for comparison
- Focus on the generalised Pareto (GP) inference
- Extensions to multidimensional covariates

Motivating application

Typical data for northern North Sea. Storm peak H_S on direction, with au=0.8 extreme value threshold.

Model

Observational model

- Sample of peaks Y over threshold ψ , with covariates θ
 - lacksquare θ is 1D in current work : directional
 - lacktriangledown is nD later : e.g. 4D spatio-directional-seasonal
- lacktriangle Extreme value threshold ψ assumed known
 - lacktriangle Estimated as the au=0.8 quantile of a directional gamma model to full data
 - lacktriangle Essential in general to capture uncertainty in ψ
- Y assumed to follow generalised Pareto distribution with shape ξ , (modified) scale ν (= $\sigma(1+\xi)$)
 - \blacksquare ξ , ν are functions of θ
- Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al. [2011], Randell et al. [2016], Northrop et al. [2017]

Generalised Pareto

$$f_{\mathsf{GP}}(y|\xi,\nu) = \frac{1}{\sigma} \left(1 + \frac{\xi}{\sigma} (y - \psi)^{-1/\xi - 1} \right)$$

- $\nu = \sigma(1+\xi)$
- $y > \psi, \ \psi \in (-\infty, \infty)$
- lacksquare Shape parameter $\xi\in(-\infty,\infty)$ and scale parameter $u\in(0,\infty)$

September 2019

10 / 33

Copyright of Shell & Lancaster University

Covariate representations

- Index set $\mathcal{I}_{\theta} = \{\theta_s\}_{s=1}^m$ on **periodic** covariate domain \mathcal{D}_{θ}
- Each observation belongs to exactly one θ_s
- \blacksquare On \mathcal{I}_{θ} , assume

$$\eta_s = \sum_{k=1}^n B_{sk} \beta_k, s = 1, 2, ..., m, \text{ or }$$
 $\eta = B\beta \text{ in vector terms}$

- $\eta \in (\xi, \nu)$
- **B** $= \{B_{sk}\}_{s=1\cdot k=1}^{m;n}$ basis for \mathcal{D}_{θ}
- $\beta = \{\beta_k\}_{k=1}^n$ basis coefficients
- Inference reduces to estimating n_{ξ} , n_{ν} , B_{ξ} , B_{ν} , β_{ξ} and β_{ν}
- P-splines, BARS and Voronoi are different forms of B

Copyright of Shell Shell & Lancaster University September 2019 11 / 33

P-splines

- \blacksquare *n* **regularly**-spaced knots on \mathcal{D}_{θ}
- \blacksquare B consists of n B-spline bases
 - Order d
 - Each using d + 1 consecutive knot locations
 - Local support
 - lacksquare Wrapped on $\mathcal{D}_{ heta}$
 - Cox de Boor recursion formula
- n is fixed and "over-specified"
- Knot locations $\{r_k\}_{k=1}^n$ fixed
- Local roughness of β penalised

Periodic P-splines

BARS basis

- *n* irregularly-spaced knots on \mathcal{D}_{θ}
- \blacksquare B consists of n B-spline bases
- Knot locations $\{r_k\}_{k=1}^n$ can change
- \blacksquare Number of knots n can change

Periodic BARS knot birth and death

Voronoi partition

- \blacksquare *n* **irregularly**-spaced centroids on \mathcal{D}_{θ}
 - Define *n* neighbourhoods or "cells"
- \blacksquare B consists of n basis functions
 - lacksquare Piecewise constant on $\mathcal{D}_{ heta}$
 - \blacksquare = 1 "within cell", = 0 "outside"
- Centroid locations $\{r_k\}_{k=1}^n$ can change
- Number of centroids *n* can change

Periodic Voronoi centroid birth and death

Prior for β (all representations)

prior density of
$$eta \propto \exp\left(-\frac{1}{2}eta' m{P}eta
ight)$$

- **P** = $\lambda D'D$, **D** is a $n \times n$ (wrapped) differencing matrix
- P-splines: D represents first-difference; prior equivalent to local roughness penalty
- **BARS** and Voronoi: D is I_n ; prior is "ridge-type" for Bayesian regression

Prior for λ (all representations)

$$\lambda \sim \text{gamma}$$

Prior for *n* (BARS and Voronoi)

$$n \sim \text{Poisson}$$

Prior for r_k , k = 1, 2, ..., n (BARS and Voronoi)

$$r_k \sim \text{uniform}$$

Parameter set Ω

- P-splines: $\Omega = \{\beta_{\xi}, \lambda_{\xi}, \beta_{\nu}, \lambda_{\nu}\}$ with n_{ξ} , r_{ξ} , n_{ν} and r_{ν} pre-specified
- BARS and Voronoi: $\Omega = \{n_{\xi}, r_{\xi}, \beta_{\xi}, \lambda_{\xi}, n_{\nu}, r_{\nu}, \beta_{\nu}, \lambda_{\nu}\}$
- where $r = \{r_k\}_{k=1}^n$, $\beta = \{\beta_k\}_{k=1}^n$,

16 / 33

Updating β , λ (all representations) and r (BARS and Voronoi)

- Gibbs sampling when full conditionals available
- Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal mechanisms, mMALA where possible
- Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al. [2014]

Conditional structure

$$f(\beta_{\eta}|\mathbf{y}, \Omega \setminus \beta_{\eta}) \propto f(\mathbf{y}|\beta_{\eta}, \Omega \setminus \beta_{\eta}) \times f(\beta_{\eta}|\lambda_{\eta})$$

$$f(\lambda_{\eta}|\mathbf{y}, \Omega \setminus \lambda_{\eta}) \propto f(\beta_{\eta}|\lambda_{\eta}) \times f(\lambda_{\eta})$$

$$f(\mathbf{r}_{\eta}|\mathbf{y}, \Omega \setminus \mathbf{r}_{\eta}) \propto f(\mathbf{y}|\mathbf{r}_{\eta}, \Omega \setminus \mathbf{r}_{\eta}) \times f(\mathbf{r}_{\eta}),$$

 \blacksquare where $\eta \in (\xi, \nu)$

Dimension-jumping (BARS and Voronoi)

- Update n, and birth or death elements of r, β using reversible-jump MCMC
- Green [1995], Richardson and Green [1997], Biller [2000], Zhou and Shen [2001], DiMatteo et al. [2001], Wallstrom et al. [2008], Costain [2008], Bodin and Sambridge [2009]

Birth-death Metropolis-Hastings acceptance probability

- Jump from current $\Omega = (n_n, \mathbf{r}_n, \lambda_n, \beta_n)$ to proposed $\Omega^* (=(\Omega \setminus \omega, \omega^*))$
- ullet $\omega = (n_n, eta_n, m{r}_n)$ in current and $\omega^* = (n_n^*, eta_n^*, m{r}_n^*)$ in proposed

$$\min\left(1, \frac{f(\mathbf{y}|\Omega^*)}{f(\mathbf{y}|\Omega)} \frac{f(\omega^*)}{f(\omega)} \frac{q(\omega|\omega^*)}{q(\omega^*|\omega)} \left| \frac{\partial(\omega^{a*})}{\partial(\omega^a)} \right| \right)$$

- $f(\mathbf{y}|\Omega)/f(\mathbf{y}|\Omega^*)$ sample lik. ratio
- $f(\omega)/f(\omega^*)$ prior ratio
- - Sample from prior!

$$= q(\omega^*|\omega)/q(\omega|\omega^*)$$
 proposal ratio

■ Final term Jacobian for transformation

18 / 33

Dimension-jumping birth for β

- Location r^+ of the new knot is sampled uniformly on \mathcal{D}_{θ}
- Current knot locations $\mathbf{r} = \{r_k\}_{k=1}^n$ and proposed $\mathbf{r}^* = (\{r_k\}_{k=1}^n, r^+)$
- Establish bijection between augmented coefficient vector $\boldsymbol{\beta}^a = (\boldsymbol{\beta}, u_{\beta})$ $(u_{\beta} \sim N(0, \bullet))$ for current state, and vector $\boldsymbol{\beta}^*$ for proposed
- lacksquare Motivation: make Beta and B^*eta^* as similar as possible
- lacksquare Regression solution is $\hat{eta}^* = \left[(B^{*\prime}B^*)^{-1}B^{*\prime}B \right]eta = m{G}_jeta$
- Set

$$oldsymbol{eta}_j^* = egin{bmatrix} oldsymbol{G}_j & egin{bmatrix} 0 \ dots \ 0 \ 1 \end{bmatrix} imes egin{bmatrix} eta_j \ u_eta \end{bmatrix} = oldsymbol{F}_j eta_j^a.$$

- Jacobian for a birth is |G|
- For death transition, essentially use F^{-1}
- Zanini et al. [2019]

Copyright of Shell Shell & Lancaster University September 2019 19 / 33

North Sea application

September 2019

20 / 33

Posterior parameter estimates for ξ , ν and ρ for northern North Sea

- Note colour scheme
- Rate ρ and ν very similar
- Voronoi gives almost constant ξ
- Voronoi piecewise constant
- Land shadow effects
- General agreement

Posterior densities for locations r and numbers n

- Knot placement uniform for ξ , clear effect for ρ
- n close to 1 for Voronoi ξ
- General agreement
- Effect of different priors on n checked

Posterior densities for penalty coefficients λ

- Ridge penalties for BARS and Voronoi, but roughness for P-splines
- \blacksquare λ somewhat lower for Voronoi, but also this has smaller n
- General consistency

Directional posterior predictive distribution of T=1000-year maximum

- Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles
- Uncertainties larger for P-splines?
- General consistency

Fit diagnostic

- Empirical tail (blue)
- Posterior means and 95% credible intervals for quantile levels from different models
- General consistency

Simulation study

September 2019

Set-up

- $n_S = 100$ samples, each containing exactly $n_O = 1000$ observations of threshold exceedances with a generalised Pareto distribution
- True Poisson rate ρ , shape ξ and scale ν vary systematically with covariate θ .
- Functional forms of $\xi(\theta)$, $\nu(\theta)$ and $\rho(\theta)$ generated using sum of 10 weighted (wrapped) Gaussian kernels of standard deviation 30°, randomly located on the periodic covariate domain
- Weights drawn at random from suitable distributions, so that $\xi(\theta)$, $\nu(\theta)$ and $\rho(\theta)$ like North Sea sample
- lacktriangle Distribution of T-year maxima (T=10 imes the period of sample, T_O) estimated

Illustrative realisation

- True $\xi(\theta)$, $\nu(\theta)$ and $\rho(\theta)$ for typical realisation
- Directional distribution of 10 T_O-year maximum for 8 octants, and "omni"

Performance summary

- Compare posterior predictive distribution for $10\,T_O$ -year maximum with truth
- Median offset small
- KL divergence more variable for Voronoi
- BARS slightly better?
- General consistency

Where next?

2D covariates: a qualitative comparison for the South China Sea

P-splines: $n_{\mathcal{E}} = 6 \times 6$, $n_{\nu} = 6 \times 6$

BARS: $n_{\varepsilon}^{mo} = 3 \times 3$, $n_{\nu}^{mo} = 4 \times 4$

Voronoi: $n_{\varepsilon}^{mo} = 1, n_{\nu}^{mo} = 7$

Direction

Summary

- Covariate effects important in environmental extremes
- Need to tackle big problems ⇒ need efficient models
- Need to provide solutions as "end-user" software ⇒ stable inference
- P-splines: straightforward, global roughness per dimension
- BARS: optimally-placed knots
- All splines: nD basis is tensor product of marginal bases
- Voronoi: piecewise constant, naturally nD
- Combinations useful
- Conditional, spatial and temporal extremes

References

- C N Behrens, H F Lopes, and D Gamerman. Bayesian analysis of extreme events with threshold estimation. Stat. Modelling, 4:227-244, 2004.
- C. Biller. Adaptive Bayesian regression splines in semiparametric generalized linear models. J. Comput. Graph. Statist., 9:122-140, 2000.
- Thomas Bodin and Malcolm Sambridge. Seismic tomography with the reversible jump algorithm. Geophysical Journal International, 178:1411-1436, 2009.
- D. A. Costain. Bayesian partitioning for modeling and mapping spatial case-control data. Biometrics, 65:1123-1132, 2008.
- I. DiMatteo, C. R. Genovese, and R. E. Kass. Bayesian curve-fitting with free-knot splines. Biometrika, 88:1055-1071, 2001.
- A. Frigessi, O. Haug, and H. Rue. A dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes, 5:219-235, 2002.
- M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. Roy. Statist. Soc. B, 73:123-214, 2011.
- P.J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82:711-732, 1995.
- A. MacDonald, C. J. Scarrott, D. Lee, B. Darlow, M. Reale, and G. Russell. A flexible extreme value mixture model. Comput. Statist. Data Anal., 55:2137-2157, 2011.
- P. Northrop, N. Attalides, and P. Jonathan. Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity. J. Roy. Statist. Soc. C, 66: 93–120, 2017.
- D. Randell, K. Turnbull, K. Ewans, and P. Jonathan. Bayesian inference for non-stationary marginal extremes. Environmetrics, 27:439-450, 2016.
- S Richardson and P. J. Green. On bayesian analysis of mixtures with an unknown number of components (with discussion). J. Roy. Statist. Soc. B, 59(4):731-792, 1997.
- G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodology and Computing in Applied Probability, 4:337–358, 2002.
- G. Wallstrom, J. Liebner, and R. E. Kass. An implementation of Bayesian adaptive regression splines (BARS) in C with S and R wrappers. Journal of Statistical Software, 26, 2008.
- T. Xifara, C. Sherlock, S. Livingstone, S. Byrne, and M Girolami. Langevin diffusions and the Metropolis-adjusted Langevin algorithm. Stat. Probabil. Lett., 91(2002):14-19, 2014.
- E. Zanini, E. Eastoe, M. Jones, D. Randell, and P. Jonathan. Covariate representations for non-stationary extremes. Environmetrics (draft at www.lancs.ac.uk/~jonathan), 2019.
- S. Zhou and X. Shen. Spatially adaptive regression splines and accurate knot selection schemes. J. Am. Statist. Soc., 96:247-259, 2001.

33 / 33

Copyright of Shell Shell & Lancaster University September 2019