1. Storage Technologies

本部分主要考查DRAM的结构与计算,DRAM 模块的组织问题,与其他存储技术的概念问题.

Figure 6.21 The memory hierarchy.

1.1 RAM(Random Access Memory)

1.1.1 SRAM(Static Random Access Memory)

SRAM存储是一种存储阵列结构的简单集成电路,通常有一个读写端口。虽然读写操作的访问时间不同,但对于任意位置的数据,SRAM的访问时间是固定的。

SRAM不需要刷新电路,所以访问时间可以和处理器的时钟周期接近。为防止读操作时信息丢失,**典型的** SRAM每比特采用6个或8个晶体管来实现。在待机模式下,SRAM只需要最小的功率来保持电荷。

1.1.2 DRAM(Dynamic Random Access Memory)

在SRAM中,只要提供电源,数值会被一直保存。而**在DRAM中,使用电容保存电荷的方式来存储数据。 采用单个晶体管来访问存储的电荷,或者读取它,或者改写它。**

DRAM的每个比特仅使用单个晶体管来存储数据,它比SRAM的密度更高,每比特价格更低廉。由于DRAM在单个晶体管上存储电荷,**因此不能长久保持数据,必须进行周期性的刷新**。与SRAM相比,这也是该结构被称为动态的原因。

1.1.2.1 常见DRAM

- SDRAM(Synchronous DRAM)
- DDR-SDRAM(Double Data-Rate Synchronous DRAM)

1.1.2.2 Organization of DRAM Chip

Figure 6.3 High-level view of a 128-bit 16×8 DRAM chip.

1.1.2.3 Memory Modules

Figure 6.5
Reading the contents of a memory module.

1.1.2.4 交叉编址

Figure C.2 Interleaved Memory

上图展示了一个低位交叉编址的内存模块组织。LSB用于bank select。MSB用于match data(tag is word address)

交叉编址分为低位交叉编址,与高位交叉变址。

Figure 6.31 Why caches index with the middle bits.

为什么用中间的位来做索引?

你也许会奇怪,为什么高速缓存用中间的位来作为组索引,而不是用高位。为什么用中间的位更好,是有很好的原因的。图6.31说明了原因。

如果高位用做索引,那么一些连续的内存块就会映射到相同的高速缓存块。例如,在图中,头四个块映射到第一个高速缓存组,第二个四个块映射到第二个组,依此类推。

如果一个程序有良好的空间局部性,顺序扫描一个数组的元素,那么在任何时刻,高速缓存都只保存着一个块大小的数组内容。这样对高速缓存的使用效率很低。相比较而言,以中间位作为索引,相邻的块总是映射到不同的高速缓存行。在这里的情况中,高速缓存能够存放整个大小为C的数组片,这里C是高速缓存的大小。

例题

某计算机主存按字节编址,由4个64Mx8位的DRAM芯片采用**交叉编址方式**构成,并与宽度为32位的存储器总线相连,主存每次最多读写32位数据。若double型变量x的主存地址为804001AH,则读取x需要的存储周期数是。

A. 1 B. 2 C. 3 D. 4

1.1.3 DIFF SRAM, DRAM

	Transistors per bit	Relative access time	Persistent?	Sensitive?	Relative cost	Applications
SRAM	6	1×	Yes	No	1,000×	Cache memory
DRAM	1	$10 \times$	No	Yes	$1 \times$	Main memory, frame buffers

Figure 6.2 Characteristics of DRAM and SRAM memory.

1.2 ROM(Read-Only Memory)

• 可编程ROM- Programmable ROM, PROM

- 可擦写可编程ROM Erasable Programmable ROM, EPROM PROM每个存储单元有一种熔丝,只能用高电流熔断一次,所以只能被编程一次,通过紫外线照射擦除。
- 电子可擦写ROM Electrically Erasable PROM, EEPROM
- 闪存- Flash Memory, 例如: 固态硬盘, 手机存储等等

1.2.1 Flash Memory

闪存读会比写快, 因为写需要先擦除, 再写入。

1.3 Disk

 $Time_{ar{e}pq} = Time_{ar{e}jlplu} + Time_{other} + Time_{ar{e}plu}$

例题1: 某磁盘的转速为10000转/分,平均寻道时间是6ms,磁盘传输速率是20MB/s,磁盘控制器延迟为0.2ms,读取一个4KB的扇区所需的平均时间约为()。

- A. 9ms
- B. 9.4ms
- C. 12ms
- D. 12.4ms

```
60/100000*1/2 = 3ms result = 3ms + 6ms + 4KB/20MB*10^{3}ms + 0.2ms
```

例题2: 若磁盘转速为7200转/分,平均寻道时间为8ms,每个磁道包含1000个扇区,则访问一个扇区的平均存取时间大约是()。

- A. 8.1ms
- B. 12.2ms
- C. 16.3ms
- D. 20.5ms

result = 8ms + 60/7200 * 1/2ms

1.4 Summary

某计算机存储器按字节编址,主存地址空间大小为64MB,现用4MBx8位的RAM芯片组成32MB的主存储器,则存储器地址寄存器MAR的位数至少是。

A. 22位 B. 23位 C. 25位 D. 26位

MAR只与主存的地址空间大小有关

Figure 1.6 IAS Structure

2. Cache System

Figure 6.24

Typical bus structure for cache memories.

2.1 Organization of Cache System(S, E, m, B)

Figure 6.25

General organization of cache (S, E, B, m). (a) A cache is an array of sets. Each set contains one or more lines. Each line contains a valid bit, some tag bits, and a block of data. (b) The cache organization induces a partition of the m address bits into t tag bits, s set index bits, and b block offset bits.

一个内存地址,被解释成

而一个cache Block 被组织成

```
1   CacheBlock{
2    valid;
3    Tag;
4    Block_data;
5 }
```

2.1.1 Direct-Mapped Caches

Figure 6.27

Direct-mapped cache (E = 1). There is exactly one line per set.

从Cache中读取数据需要三个步骤:

- 1. 组选择;
- 2. 行匹配;
- 3. 字抽取;

下图是一个直接映射缓存的三步走例子.

Figure 6.28

Set selection in a direct-mapped cache.

Figure 6.29

Line matching and word selection in a direct-mapped cache. Within the cache block, w_0 denotes the low-order byte of the word w, w_1 the next byte, and so on.

直接映射高速缓存中不命中时的行替换

如果缓存不命中,那么它需要从存储器层次结构中的下一层取出被请求的块,然后将新的块存储在组索引位指示的组中的一个高速缓存行中。

一般而言,如果组中都是有效高速缓存行了,那么必须要驱逐出一个现存的行。对于直接映射高速缓存来说,每个组只包含有一行,**替换策略非常简单:用新取出的行替换当前的行。**

直接映射的缺点是会带来一些不必要的冲突不命中。通过在每个组中添加多个行可以解决问题。

2.1.2 Set Associative Caches

与直接映射相比,每个组中存在多个行,需要逐一匹配.

Read Miss

由于一个组中存在多个行,因此发生miss时的替换策略成为了一个问题,不好的策略通常....

通常采用LRU(Least Recently Used)策略.LRU算法需要额外的LRU位.一般来说 $LRU\ bits = log_2(LineCount\ per\ Set)$.

2.1.3 Fully Associative Caches

只有一个组,因此无需进行组选择, 匹配需要对所有条目匹配一次.

2.2 Issues With Writes

Write Hit (写命中)

- write-through (写穿透)
- write-back (写回)

Write Miss (写不命中)

- write-allocate (写分配)
- no-write-allocate (写不分配)

若采用写回+写分配模型,则需要在cache line中多一个dirty位,来表示line被替换时,是否需要写回内存.

写回法指的是若写cache则仅修改cache中的内容直到cache被换出时才修改主存中的内容;

而写直达法是修改cache时同时修改主存。

写分配法是把这个未在cache中的块加载到cache中后在进行写;

而非写分配法指的是直接把这个块在主存中写入。

2.3 Evaluation of Cache Performance(?)

暂不考察?

3. Virtual Memory

Q&A and Potpourri and Summary

1. 错题1

某计算机的存储器总线中有24位地址线和32位数据线,按字编址,字长为32位。如果 00 0000H-3F FFFFH为RAM区,那么需要512Kx8位的RAM芯片数为()。

- A. 8
- B. 16
- C. 32
- D. 64

00 0000H - 3F FFFFH 需要22bit.

2. 错题2: 注意编址方式

假定主存地址为32位,按字节编址,主存和Cache之间采用直接映射方式,主存块大小为4个字,每字32位,采用回写 (Write Back) 方式,则能存放4K字数据的Cache的总容量的位数至少是。

- A. 146K
- B. 147K
- C. 148K
- D. 158K

3. 考点,关于cache system与virtual memory的综合大题

热身题1

假设计算机M的主存地址为24位,按字节编址;采用分页存储管理方式,虚拟地址为30位,页大小为4KB;TLB采用二路组相联方式和LRU替换策略,共8组。请回答下列问题。

- 1. 虚拟地址中哪几位表示虚页号? 哪几位表示页内地址?
- 2. 已知访问TLB时虚页号高位部分用作TLB标记,低位部分用作TLB组号,M的虚拟地址中哪几位是TLB标记?哪几位是TLB组号?
- 3. 假设TLB初始时为空,访问的虚页号依次为10,12,16,7,26,4,12和20,在此过程中,哪一个虚页号对应的TLB表项被替换?说明理由。
- 4. 若将M中的虚拟地址位数增加到32位,则TLB表项的位数增加几位?

热身题2

某计算机采用页式虚拟存储管理方式,按字节编址。CPU进行存储访问的过程如下图所示。根据该图回答下列问题。

- 1. 主存物理地址占多少位?
- 2. TLB采用什么映射方式? TLB是用SRAM还是用DRAM实现?
- 3. Cache 采用什么映射方式? 若Cache采用LRU替换算法和回写策略,则Cache 每行中除数据 (Data)、Tag和有效位外,还应有哪些附加位? Cache总容量是多少? Cache中**有效位的作用**是什么?
- 4. 若CPU给出的虚拟地址为0008 C040H,则对应的物理地址是多少?是否在Cache中命中?说明理由。若CPU给出的虚拟地址为0007 C260H,则该地址所在主存块映射到的Cache组号是多少?
- 5. 简单叙述CPU访问cache中的指令部分的过程,(包括缺失处理)。
- 6. 若每个int大小为4B, 计算运行下列程序的cache缺失率。

```
1 | for(int i = 0; i < 1024; i++)
2 | s[k] = 2 * s[k]
```

