Aircraft conflict resolution

Introduction

Our problem concerns resolving air conflicts, with the objective of avoiding collisions between aircrafts while keeping them out of danger zones. To address this problem, a hybrid control system combining discrete and continuous control elements was implemented.

Control input event

Cruise

 $Imit = \{q_1 \times (x_r^2 + y_r^2 \ge 25)\}$

91

 $\tau \coloneqq 0$ $\begin{pmatrix} \mathcal{X}_r \\ \mathcal{V}_r \end{pmatrix} \coloneqq R \begin{pmatrix} \overline{\mathcal{X}} \\ \overline{2} \end{pmatrix} \begin{pmatrix} \mathcal{X}_r \\ \mathcal{V}_r \end{pmatrix}$

$$\dot{x}_r(t) = -v + v \cdot \cos[\phi_r(0)]$$

$$\dot{y}_r(t) = v \cdot \sin[\phi_r(0)]$$

$$\dot{\phi}_r(t) = 0$$

 Q_2

$$\tau \coloneqq \pi/\omega$$

$$\begin{pmatrix} x_r \\ y_r \end{pmatrix} \coloneqq R \begin{pmatrix} \overline{\pi} \\ \overline{2} \end{pmatrix} \begin{pmatrix} x_r \\ y_r \end{pmatrix}$$

Cruise

 Q_3

$$\dot{x}_r(t) = -v + v \cdot \cos[\phi_r(0)] + \omega y_r(t)$$

$$\dot{y}_r(t) = v \cdot \sin[\phi_r(0)] - \omega x_r(t)$$

$$\dot{\phi}_r(t) = 0$$

$$\dot{\tau}(t) = 1$$

$$\phi_r(t) = 180^{\circ}$$

$$\phi_r(t) = 180^{\circ}$$

Conflict Zone

tmin calculation

 t_{min} :

Consider a collision at t = 0 in q_1

Backward
integration until
we exit the
unsafe zone $\Rightarrow x(t_{min}) y(t_{min})$

Rmin calculation

Radius
Relation:

Consider a collision at t = 0 in q_1

Backward
integration until
we exit the unsafe
zone

$$x(t_0)$$
 $y(t_0)$

Forward integration in q_2 to avoid the collision

$$x^2(t) + y^2(t) \ge r^2 \ge$$

$$(4R - vt_0)^2 \ge \frac{r^2}{2(1 - \cos(\phi_r))}$$

Case I: Last Second Manouver

Maximum time for collision avoidance:

 $t_{max} = 8.75 s$

Miniumum curvature radius:

 $R_{min} = 2.5 miles$

o forced

 $t = t_{max}$ R = 5 miles

Distance: 34.8 miles

time: 0.05 s

Aircraft 1

Aircraft 2

Case II: Early Manouver

Maximum time for collision avoidance:

 $t_{max} = 8.75 s$

Miniumum curvature radius:

 $R_{min} = 2.5 miles$

Case:

 $t = t_{min} = 6.25 s$ R = 5 miles

Distance: 34.76 miles

time: 0.06 s

Aircraft 1

Aircraft 2

Case III: Extreme Manouver

Distance: 34.6 miles

time: 0.1 s

Aircraft 1

Aircraft 2

Maximum time for collision avoidance:

$$t_{max} = 8.75 s$$

Miniumum curvature radius:

$$R_{min} = 2.5 \, miles$$

σ forced with minimum curvature radius

$$t = t_{max}$$

$$R = R_{min}$$

Case IV: Aircraft crash

Distance: 34.6 miles

time: 0.1 s

Maximum time for collision avoidance:

$$t_{max} = 8.75 s$$

Miniumum curvature radius:

$$R_{min} = 2.5 miles$$

σ given too soon

Case:

R = 5 miles

