24.10.2015

- Графы множество моделей теории с парой предикатных символов.
- Группы множество моделей теории с чуть большим количеством предикатных и функциональных символов.

Мысль первая: много моделей можно описать какими-то равенствами (кванторы всеобщности можно убрать, ибо из φ выводится $\forall \varphi$. Также всегда считаем, что всегда есть бинарный предикатный символ равенства.

Поэтому рассматриваем $peшёm \kappa u - \mathcal{L} = (L \neq \varnothing, \land, \lor, =)$. Что делает решётку решеткой:

- L1. Коммутативность
- L2. Ассоциативность
- L3. Рефлексивность (можно получить из остальных)
- L4. Идемпотентность

Примеры

- Булевы функции (В, ∧, ∨)
- Подмножества $(2^X, \cap, \cup)$
- $(\mathbb{N}_+, (\cdot, \cdot), [\cdot, \cdot])$
- Нормальные подгруппы $(N(G), \cap, \cdot)$

Порой (во всех предыдущих случаях) можно сопоставить решетке какойто порядок.

Пусть (A,\leqslant) — ч.у.м. Говорим, что a — верхняя (нижняя) грань $P\subset A$, если $\forall x\in Px\leqslant a(x\geqslant a)$. Ясно, что можно определить $\sup P$.

Говорим, что $a \prec b$ (покрывает), если $\forall c (a \leqslant b \leqslant c \Rightarrow c = a \land c = b)$. Диаграммы Хасса — изображения порядков.

Теорема 1. (L, \wedge, \vee) — решётка тогда и только тогда, когда $\exists \leqslant \subset L^2$ — u.y.м. $u \ a \wedge b = \inf\{a,b\}, a \vee b = \sup\{a,b\}.$

Доказательство.

- $\Longrightarrow a\leqslant b\stackrel{def}{=}a\wedge b=a.$ Формально проверяем конструкцию.
- \longleftarrow Определим $a \wedge b = \inf\{a,b\}, a \vee b = \sup\{a,b\}$ и снова всё проверим. \square

Изоморфизм решёток: $(L_1,\wedge_1,\vee_1)\stackrel{\alpha}{\cong} (L_2,\wedge_2,\vee_2)$. При этом α — биекция, сохраняет \wedge,\vee .

Теорема 2. $L_1 \stackrel{\alpha}{\cong} L_2$ тогда и только тогда, когда $L_1 \stackrel{\alpha}{\sim} L_2$ и α, α^{-1} — монотонные отображения, то есть являются изоморфизмами упорядоченных множеств.

Доказательство.

 $\Longrightarrow a \leqslant_1 b \Rightarrow a = a \land_1 b \Rightarrow \alpha(a) = \alpha(a \land_1 b) = \alpha(a) \land_2 \alpha(b) \Rightarrow \alpha(a) \leqslant_2 \alpha(b) \land \alpha^{-1}$ — тоже изоморфизм.

$$\Leftarrow$$
 Хотим: $\alpha(a \vee_1 b) = \alpha(a) \vee_2 \alpha(b)$. Пишем: $a \leqslant_1 a \vee_1 b, b \leqslant_1 a \vee_1 b \Rightarrow \alpha(a), \alpha(b) \leqslant_2 \alpha(a \vee_1 b)$, то есть верхняя грань. $\alpha(a) \leqslant_2 c, \alpha(b) \leqslant_2 c \Rightarrow a \leqslant_1 \alpha^{-1}(c), b \leqslant_1 \alpha^{-1}(c) \Rightarrow \alpha(a \vee_1 b) \leqslant_2 c$, что и нужно.

(Изомофрное) вложение $\eta: \mathcal{L}_1 \to \mathcal{L}_2$, причём η сохраняет порядок и инъективно. Подрешётка — когда носители вложены, причем $\eta = id_{L_1}: L_1 \to L_2$ — вложение (NB: подмодель \neq подрешётка).

31.10.2015

Давайте посмотрим на дистрибутивные решётки. Это вот такие:

$$D \wedge : x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z),$$

$$D \vee : x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$$

Теорема 3. Достаточно любого из свойств выше.

Ещё бывают модулярные решётки:

$$M: x \leqslant y \Rightarrow x \lor (y \land z) = y \land (x \lor z).$$

Теорема 4. Любая дистрибутивная решётка модулярна.

Решётка M_5 $(d \to a, b, c \to e)$ недистрибутивна. Решётка N_5 $(d \to (a \to b), c \to e)$ даже не модулярна. В некотром смысле она внезапно оказывается единственной немодулярной.

Утверждение 1. $L \models x \leqslant y \Rightarrow L \models x \lor (y \land z) \leqslant y \land (x \lor z)$.

Теорема 5 (Дедекинд). $L \not\models M \iff N_5$ вкладывается в L.

Доказательство. В одну сторону проверено. Если решётка не модулярна, то есть $a,b,c,a\leqslant b:\underbrace{a\vee(b\wedge c)}_{a_1}<\underbrace{b\wedge(a\vee c)}_{b_1}$. Можно убедиться, что элемен-

ты $a_1 \wedge c \to (a_1 \to b_1), c \to a_1 \vee c$ образуют N_5 . Придётся попотеть, доказать все неравенства, а ещё нужно, чтобы никакие два не совпадали.

Теорема 6 (Биркгоф). $L \not\models D \land \iff N_5$ или M_5 вкладывается в L.

Доказательство. В одну сторону снова ясно. Если решётка не дистрибутивна, то $\exists a,b,c: a \land (b \lor c) > (a \land b) \lor (a \land c)$, ибо нестрогое неравенство выполнено в любой решётке, а равенства нет. Тогда скажем, что

$$d = (a \land b) \lor (a \land c) \lor (b \land c),$$

$$e = (a \lor b) \land (a \lor c) \land (b \lor c),$$

$$a_1 = (a \land e) \lor d,$$

$$b_1 = (b \land e) \lor d,$$

$$c_1 = (c \land e) \lor d.$$

07.11.2015

Упорядоченное множество *полно*, если у любого подмножества есть супремум и инфимум. Решётка полна, если соответствующее упорядоченное множество полно.

Теорема 7. Решётка полна тогда и только тогда, когда у любого подмножества существует супремум.

Доказательство. Возьмем A — множество нижних граней B. У него есть супремум, он будет инфимумом B.

Рассмотрим Eq(A) — множество всех отношений эквивалентности на A.

Утверждение 2. $(Eq(A),\subseteq)$ — полная решётка.

Доказательство. Легко показать, что $\bigcap_{i\in I}E_i=\bigwedge_{i\in I}E_i$. То есть инфимумом будет пересечение. \square

 $\bigvee_{i\in I}E_i=igcup ig\{E_{i_1}\circ\ldots\circ E_{i_k}\mid (i_1,\ldots,i_k)\in I^k, k\in\mathbb Nig\},$ где \circ есть композиция отношений.

C- оператор замыкания, если выпонены

C1. $X \subset C(X)$.

C2. C(C(X)) = C(X).

C3.
$$X \subset Y \Rightarrow C(X) \subset C(Y)$$
.

Пример — замкнутые классы булевых функций, дедуктивное замыкание: $C(\Gamma) = \{ \varphi \in Formulas \mid \Gamma \vdash \varphi \}.$

Есть ещё четвертое свойтсво (не входит в определение): $C(X) = \bigcup \{C(Y) \mid Y \subset X\}$. Обратное включение верно всегда. Прямое можно вывести из теоремы о полноте, если она есть.

Закнутое множество совпадает со своим замыканием. Пересечение замыканий равно замыканию пересечений. То есть замкнутые множества образуют полную решётку. Следствие: множество замкнутых классов булевых функций образует полную решётку (решётку Поста).

Теорема 8. Любая полная решётка $\mathcal{L} = (L, \leqslant)$ изоморфна решётке (L_c, \subset) для некоторого оператора замыкания C.

Доказательство. $X \subset L, C(X) = \{a \in L \mid a \leqslant \bigvee X\}$. Тогда элементу a сопоставим замкнутый класс $\{b \in L \mid b \leqslant a\}$.

 $a \in L \ \textit{компактен}, \, \text{если} \, \, \forall A \subset L (\exists \vee A, a \leqslant \vee A \Rightarrow \exists A' \stackrel{fin}{\subset} A : a \leqslant \vee A' \}.$

b компактно порождённый, если $\exists C \subset L, b = \lor C, \forall x \in C, x$ — компактен.

Решётка L — алгебраическая, если она полна и любой её элемент компактно порождён.

В частности, конечная решётка алгебраическая и решётка всех подмножеств алгебраическая (компакты в ней это в точности конечные подмножества).

14.11.2015

Замыкание: $C: P(A) \to P(A)$.

$$(C4) \ \forall X \subseteq A \to C(X) = \bigcup \{C(Y) \mid Y \subseteq X\}$$

(C1) - (C4) дают *алгебраичность* оператора замыкания.

Теорема 9. Если C — алгебраический оператор замыкания, то $(L_c = \{X \subseteq A \mid X = C(X)\}, \subseteq)$ есть алгебраическая решётка, причём элементы есть в точности C(X), где X — конечно.

Доказательство. Пусть $X \subseteq A$, тогда докажем, что C(X) компактно:

$$X = \{x_1, \dots, x_k\}, X \subseteq C(X) \subseteq \bigvee_{i \in I} C(A_i) = C(\bigcup_{i \in I} A_i),$$

$$\forall x_k \in X \to x_k \in C(A_{i_1} \cup \dots \cup A_{i_{s_k}}),$$

$$X \subset \bigcup_{1 \leqslant k \leqslant n} C(A_{i_1} \cup \dots \cup A_{i_{s_k}}),$$

$$C(X) \subset C(\bigcup_{1 \leqslant k \leqslant n} C(A_{i_1} \cup \dots \cup A_{i_{s_k}})).$$

Далее, (C4):
$$C(X)=\bigcup\{C(Z)\mid Z\overset{f}{\subseteq}X\}\subseteq C(\bigcup\limits_{Z\overset{f}{\subseteq}X}C(Z))\subset\bigvee\limits_{Z\overset{f}{\subseteq}X}C(Z)\subseteq C(\bigcup_fC(Z))\subseteq C(\bigcup_fZ).$$

Алгебраичность:
$$C(X)\subseteq \{C(Y)\mid Y\stackrel{f}{\subseteq} X\}\subseteq \bigvee_{Y\stackrel{f}{\subseteq} X}C(Y)\subseteq C(X).$$

Теорема 10. Пусть L — алгебраическая решётка. Тогда $L \cong L_C$ для некоторго алгебрическаого оператора замыкания C.

Доказательство. Пусть A — множество компактных элементов $X\subseteq A$ решётки L, а C(X) задано как $C(X)=\{b\in A\mid b\leqslant\bigvee X\}.$

Проверяем все свойства оператора замыкания и отображаем элемент $a \mapsto \{b \in A \mid b \leqslant a\}$, то есть во множество компактов, которые его не превосходят.

Рассмотрим структуру $\mathcal{A}=(A\neq\varnothing,\mathcal{F})$, притом $\forall f\in\mathcal{F}\to\exists n\in\mathbb{N}\ f:A^n\to A.$ Это, собственно, алгебра.

Решётка — булева алгебра с двумя функциями. Булева алгебра — дистрибутивная решётка, в которой есть 0,1, с тождетсвами $x \wedge 0 = 0, x \vee 1 = 1, x \wedge x' = 0, x \vee x' = 1$ (из этого всё выводится).