# CS232: End-sem solution (Monsoon 2021)

## Q.1.

R=100Mbps d\_prop=5us d\_proc=2us L=500bits

 $d_{trans} = L/R = 500b/100Mbps = 5us [1mark]$ 

t= d\_trans + d\_prop + d\_proc + d\_trans + d\_prop = 5 + 5 + 2 + 5 + 5 = 22us [2 marks]

### **Ans:** 22

## Q.2.

Q.2.

$$M = 1010101101 \dots d = 10 bits$$
 $G = 110101 \dots rt = 6 bits$ 
 $r = 5 bits$ 
 $T = < M, R > = M * 2^r + Rem(  $\frac{M * 2^r}{G}$ )

 $CRC \Rightarrow r bits$$ 





. Since Rem (R) \$0; Frame is in error

## Ans:

- (a) 01001 [2 marks]
- (b) T = 101010110101001 [1 mark]
- (c) Rem(R/G) = 11010. Since Rem(R/G) != 0, frame is in error [2 marks]

## Q.3.



### Ans:

| Frame sent with<br>src MAC, dest MAC | New entry in S1:<br>MAC, interface | S1's action          | New entry in S2:<br>MAC, interface | S2's action          | New entry in S3:<br>MAC, interface | S3's action          |
|--------------------------------------|------------------------------------|----------------------|------------------------------------|----------------------|------------------------------------|----------------------|
| A, B                                 | (a) A, p1                          | (b) flood            | (c) A, p1                          | (d) flood            | (e) A, p1                          | (f) flood            |
| F, D                                 | (g) F, p2                          | (h) flood            | (i) F, p1                          | (j) flood            | (k) F, p1                          | (I) flood            |
| E, F                                 | (m) E, p2                          | (n) discard          | (o) E, p2                          | (p) forward to<br>p1 | (q) E, p3                          | (r) forward<br>to p1 |
| A, E                                 | (s)                                | (t) forward to<br>p2 | (u)                                | (v) forward to<br>p2 | (w)                                | (x) forward<br>to p3 |

When a switch receives a frame, it parses the source and destination MAC addresses, identifies the incoming switch port, and performs the following.

- 1. Learning algorithm: Make an entry for source MAC address and incoming switch port in the switch forwarding table. Update the TTL.
- 2. Look up for the destination MAC address into the forwarding table.
  - a. If match is found
    - i. If (source/incoming port == interface in the matching entry)
      - 1. Discard the frame
    - ii. Else:
      - forward the frame to the corresponding interface
  - b. If match is not found; flood the frame (i.e., send copy of the frame to all switch interfaces except the interface from where the frame was received)

# [0.25 for each correct entry in the table for 24 entries]

Q.4.



## Ans:

**Slow start:** 1-4, 11-14, 35-38

**Congestion avoidance (AIMD):** 4-10, 14-19, 20-31, 32-34, 38-40 (also allow 5-10, 15-19, 20-31, 32-34, 39-40 as we had approved this representation for one of the queries during exam)

Fast recovery (Three DUP ACKs): 19-20, 31-32

Time out: 10-11, 34-35 (this is not a state, hence neither award marks nor deduct if they mention this)

[1 mark for mentioning the names of all 3 states, 0.5 for writing each entry per state (max 1 mark per state, i.e. 1 mark for >=2 correct entries]

Q.5.



## Ans:

a) U, Y, A, E, F, J, K, O, S1-S5, R1's port connected to S5 will receive the DHCP discover message, i.e., all nodes except P and T.

DHCP discover message is a local broadcast message, hence the message is not forwarded by the router.

- b) Source ethernet address = Z; destination Ethernet address = FF:FF:FF:FF:FF:FF (next hop from Z is unknown, therefore broadcast)
- c) Source IP address = 0.0.0.0 (source IP is unknown); destination IP address = 255.255.255.255 (next hop from Z is unknown, therefore broadcast)

[ 1 marks, dont give marks if their answers include P & T + 1 +1]







# If periodic updates are not considered



#### Ans:

(a) Now, the cost of the link B-E changes to 1. Write updated routing table entry for destination E after the first exchange, post link cost changes.

```
A: E, B, 2;
B: E, E, 1;
C: E, A, 7;
D: E, C, 8;
E: E, -, 0
```

## [ 2 marks, 0.5 for each node except E]

(b) Write the converged routing table for each node.

```
Shown in figure (b)
```

#### [1 mark]

(c) Assume that the routes have converged after the update in (a). Now, the cost of the link C-D changes to 20. Write updated routing table entry for destination D after the first exchange, post link cost changes.

If periodic updates are also considered

```
A: D, B, 4;
B: D, A, 3;
C: D, A, 3;
D: D, -, 0;
E: D, B, 4

OR

If periodic updates are not considered
A: D, C, 21;
B: D, C, 32;
C: D, D, 20;
D: D, -, 0;
E: D, B, 4
```

# [2 marks, 0.5 mark for each node except D]

## Q.7.

| Destination | Subnet mask     | Interface |
|-------------|-----------------|-----------|
| 145.85.15.0 | 255.255.255.0   | Eth0      |
| 145.85.15.0 | 255.255.255.128 | Eth1      |
| 195.12.16.0 | 255.255.255.0   | Eth2      |
| 195.12.16.0 | 255.255.248.0   | Eth3      |
| 195.12.17.5 | 255.255.255.255 | Eth4      |
| default     |                 | Eth5      |

For every IP packet, parse the destination IP address and do the following:

- 1. For each entry in the routing table
  - a. N = Destination IP **AND** subnet mask
  - b. If N == destination field in the routing table => routing table entry is matched
- 2. If multiple routing table entries match, choose the interface with the network that has the longest prefix (Longest Prefix Match)
- 3. If no match is found, choose the interface with the default entry

(a) 145.85.15.16

Matches 1st and 2nd entry; choose second; Eth1

(b) 95.12.17.10

No match; choose default entry; Eth5

(c) 195.12.17.15

Matches only the 4th entry; Eth3

#### Ans:

(a) Eth1; (b) Eth5; (c) Eth3

# [1+1+1, they must do the computation in the rough sheet]

## Q.8.

Number of bits for the sequence number, k = 10

Stop & wait: sender and receiver window size is 1

Go-back-N: Sender window = 2<sup>k</sup> - 1; receiver window size = 1

#### Ans:

- (a) 1, 1 [1 + 1]
- (b) 1023, 1 [1 + 1]

## Q.9.



## Ans:

Host A generates a packet for the server with (a) 142.250.192.46 as the destination IP address and (b) 1b:1b:1b:1b:1b:1b as the destination MAC address.

After receiving the packet from host A, the NAT router performs address translation and generates a packet with (c) 101.101.101 as the source IP address, (d) 142.250.192.46 as the destination IP address, (e) 2a:2a:2a:2a:2a:2a as the source MAC address, and (f) 2b:2b:2b:2b:2b:2b as the destination MAC address.

# [3 marks, 0.5 for each correct answer]

Q.10.

Ans:

Option A: A & C are TRUE

Q.11.

Ans:

Option D: B is FALSE

Q.12.

Ans:

(C) A, B, and C are FALSE; D is TRUE

Q.13.

Ans:

Only A is TRUE

Q.14.

Ans:

Only A is FALSE