Universität Potsdam Institut für Physik und Astronomie Abgabe Mi 15 Uhr/Do 10 Uhr am 18./19. Dezember 2019

Übungsaufgaben zur Elektrodynamik²

26 Punkte

Übung: Schwarz¹

WS2019/20: Übung 10

Vorlesung: Feldmeier

1. Magnetische Energie eines gestreckten Koaxialkabels

5 Punkte

Gegeben sei ein gerades langes Koaxialkabel: Innenzylinderradius a, Außenzylinderradius b. Längs der Innenzylinderoberfläche fließe der Strom I die eine Richtung und längs der Außenzylinderoberfläche fließe der gleiche Strom in die entgegengesetzte Richtung. Bestimmen Sie die magnetische Energie pro Längeneinheit l des Koaxialkabels.

<u>2.</u> Magnetischer Fluss durch lange Spule

6 Punkte

Betrachten Sie eine kleine Spule der Windungszahl n_1 , des Radius a und der Länge l auf der Achse innerhalb einer unendlich langen Spule der Windungszahl n_2 mit dem Radius b. Die kleine Spule wird vom Strom I durchflossen. Bestimmen Sie den magnetischen Fluss Φ durch die lange Spule.

<u>3.</u> Selbstinduktivität einer Ringspule

5 Punkte

Bestimmen Sie die Selbstinduktivität einer Ringspule rechteckigem Querschnitts mit Innenzylinderradius a und Außenzylinderradius b. Die Höhe der Spule sei h. Die Spule enthält N Windungen.

<u>4.</u> Energieerhaltung im Transformator

6 Punkte

An einem Transformator mit den Primär- bzw. Sekundärwindungszahlen N_1 und N_2 liege die Eingangsspannung $V_{\rm in} = V_1 \cos(\omega t)$ und an der Sekundärseite (Ausgangsspannung $V_{\rm out}$) liege ein Widerstand R. Führen Sie die folgenden Berechnungen aus, um die Energieerhaltung zu zeigen (je 2 Punkte).

- a) Im idealen Transformator durchsetzt identischer magnetischer Fluß alle Primärund Sekundärwindungen. Zeigen Sie, dass dann $M^2 = L_1L_2$, wobei M die gegenseitige Induktivität und L_1 , L_2 die Selbstinduktivitäten der beiden Spulen sind.
- b) Zeigen Sie, dass die Ströme gegeben sind durch

$$L_1(dI_1/dt) + M(dI_2/dt) = V_1 \cos(\omega t); \quad L_2(dI_2/dt) + M(dI_1/dt) = -I_2R.$$

- c) Bestimmen Sie $I_1(t)$ und $I_2(t)$ (I_1 sei frei von Gleichstromanteilen).
- d) Zeigen Sie, dass $V_{\text{out}}/V_{\text{in}} = N_2/N_1$.
- e) Zeigen Sie die Gleichheit der mittleren Ausgangs- und Eingangsleistungen.

¹udo.schwarz@uni-potsdam.de

 $^{^2} http://www.agnld.uni-potsdam.de/~shw/Lehre/lehrangebot/2019WSEDynamik/2019WSEDynamik.html~shunder/2019WSEDynamik/2019WSEDynamik.html~shunder/2019WSEDynamik/2019WSEDyn$

Maxwell'scher Verschiebungsstrom

4 Punkte

Ein Wechselstrom $I = I_0 \cos(\omega t)$ fließt durch einen langen geraden Draht und kehrt durch ein koaxiales Rohr mit Radius R zurück. Das elektrische Feld zur Zeit t im Abstand s vom Draht ist $\vec{E}(s,t) = \frac{\mu_0 I_0 \omega}{2\pi} \sin(\omega t) \ln\left(\frac{R}{s}\right) \hat{z}$.

a) Bestimmen Sie die Verschiebungsstromdichte $\vec{j}_D = \epsilon_0 \frac{\partial \vec{E}}{\partial t}$

<u>5.</u>

b) Berechnen Sie den Verschiebungsstrom im Rohr $I_D = \int_A d\vec{a} \cdot \vec{j}_D$ c) Vergleichen Sie Strom I und Verschiebungsstrom I_D , indem Sie das Verhältnis $\frac{\dot{I}_D}{I}$ diskutieren. Wie groß müsste die Frequenz ω bei einem Rohrradius von 2mm sein, damit I_D 1% des Stroms I beträgt?