МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 4.3.2 Дифракция света на ультразвуковой волне в жидкости

Салтыкова Дарья Б04-105

Введение 1

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

2 Теоретические сведения

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x)$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n $(m\ll 1)$.

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x)$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda$$

Этот эффект проиллюстрирован на рисунке 1.

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx$ $\theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

ковых волн в жидкости, где ний излучателя:
 Рис. 1. Дифракция световых волн на
$$v=\Lambda
u$$
 акустической решетке

П

Экспериментальная установка 3

3.1Определение скорости ультразвука по дифракционной картине Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор

К освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету С перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа \mathcal{M} .

Настройку установки будем произведить с зеленым фильтром, далее в работе будем использовать красный.

Рис. 2. Установка для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива O_2 F=30 см, одно деление винта микроскопа составляет 4 мкм, погрешность измерений примем равной $\sigma=2$ деления, или 8 мкм.

3.2 Определение скорости ультразвука методом темного поля

Для наблюдения акустической решетки используется метод темного поля, который заключается в устранении центрального дифракционного максимума с помощью непрозрачного экрана. Схема установки показана на рисунке.

Рис. 3. Установка для наблюдения дифракции методом темного поля

4 Ход работы

4.1 Определение скорости ультразвука по дифракционной картине

- 1. Проведя предварительную настройку, получим в поле зрения микроскопа систему дифракционных полос.
- 2. Определим положение нескольких дифракционных максимумов с помощью микрометрического винта отсчетного устройства. Повторим измерения для нескольких рабочих частот.

$\nu = 1{,}227~\mathrm{M}\Gamma$ ц						
m	0	1	2	3	4	5
x_m, MKM	0	164	344	500	676	844

$\nu = 2,881 \ \mathrm{M}\Gamma$ ц					
m	0	1	2	3	4
x_m, MKM	0	340	680	1120	1528

$\nu = 4,60 \ \mathrm{M}\Gamma$ ц				
m	0	1	2	
x_m, MKM	0	560	1440	

3. По данным таблиц построим график зависимости координаты x_m от порядка m.

4. Рассчитаем длину Λ УЗ-волны по приведенной выше формуле.

ν , М Γ ц	1,227	2,881	4,6
k	168,9	383,6	720,0
σ_k	1,2	12,7	92,4
Λ, м	0,00118	0,00052	0,000276
σ_{Λ} , M	2,1E-05	1,9E-05	3,57E-05

5. Построим график зависимости $\Lambda(1/\nu)$ и определим скорость ультразвука в воде.

Полученное значение скорости: $v = 1448 \pm 73 \; \text{м/c}$.

4.2 Определение скорости ультразвука методом темного поля

- 1. Введем в поле зрения микроскопа вертикальную нить. Проведем настройку и добьемся полного затемнения поля зрения.
- 2. Включим генератор и найдем изображение акустической решетки. (К сожалению, сделать это на своей установке нам не удалось, поэтому далее будем использовать данные с чужой установки).
- 3. С помощью окулярной шкалы измерим расстояние между самыми дальними из хорошо видимых темных полос и просчитаем число промежутков между ними.

Определим длину УЗ-волны в воде.

4. Определим скорость ультразвука по графику $\Lambda(1/\nu)$.

ν , М Γ ц	1,1	1,3	1,6
n, дел	90	93	58
m, линий	9	12	11
Λ , mkm	900,0	697,5	474,5
σ_{Λ} , MKM	20,0	15,0	16,4

Полученное значение скорости: $v=1502\pm32~{\rm m/c}.$

5 Вывод

В ходе работы была изучена дифракция света на синусоидальной акустической решетке. Получено значение скорости ультразвука в воде двумя способами: по дифракционной картине ($1448\pm73~\mathrm{m/c}$) и методом темного поля ($1502\pm32~\mathrm{m/c}$). В обоих случаях значения в пределах погрешности совпадают с табличным: $v_{\mathrm{табл}}=1490~\mathrm{m/c}$.