Sprawozdanie 11.

Aproksymacja sygnału okresowego przy użyciu FFT

Mirosław Kołodziej

20.05.2021

1. Wstęp teoretyczny

1.1 Szybka transformacja Fouriera (FFT)

Szybka transformacja Fouriera to algorytm wyznaczania dyskretnej transformaty Fouriera oraz transformaty do niej odwrotnej.

Najprostszym algorytmem FFT jest radix-2, czyli algorytm Cooley-Tukey. Został on opracowany w latach 60. dwudziestego wieku. Powstał on w celu szybkiej analizy danych sejsmologicznych.

Algorytm polega na znalezieniu współczynników transformaty Fouriera (DFT) c_k wykonując jak najmniejszą ilość obliczeń. Zakładamy, że całkowita liczba węzłów to potęga liczby 2:

$$x_j = \frac{2\pi}{N}j$$
, $j = 0, 1, 2, ..., N - 1$, $N = 2^r$, $r \in N$

Zatem:

$$c_k = \sum_{j=0}^{N-1} f_j exp\left(-I\frac{2\pi}{N}jk\right)$$

Grupujemy osobno składniki:

• parzyste (j = 2m):

$$c_k = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} \exp\left(-I\frac{2\pi}{N}(2m)k\right) + \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} exp\left(-I\frac{2\pi}{N}(2m+1)k\right)$$

• nieparzyste (j = 2m + 1):

$$c_{k} = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} exp\left(-I\frac{2\pi}{\frac{N}{2}}mk\right) + \exp\left(-I\frac{2\pi}{N}k\right) \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} exp\left(-I\frac{2\pi}{\frac{N}{2}}mk\right)$$

Można zauważyć, że $p_k=\sum_{m=0}^{N/_2-1}f_{2m}exp\left(-I\frac{2\pi}{N/_2}mk\right)$ i $q_k=\sum_{m=0}^{N/_2-1}f_{2m+1}exp\left(-I\frac{2\pi}{N/_2}mk\right)$ są okresowe, więc:

$$p_{k+N/2} = p_k, \qquad q_{k+N/2} = q_k$$

czyli mamy do wyznaczenia o połowę mniej współczynników. Natomiast czynnik fazowy $\varphi_k=exp\left(-I\frac{2\pi}{N}k\right)$ ma następującą własność:

$$\varphi_{k+\frac{N}{2}} = exp\left(-I\frac{2\pi}{N}\left(k+\frac{N}{2}\right)\right) = -exp\left(-I\frac{2\pi}{N}k\right) = -\varphi_k$$

2. Problem

Naszym zadaniem było zastosowanie FFT do odszumienia sygnału periodycznego. Sygnał zaszumiony generowaliśmy zgodnie z poniższym wzorem:

$$y(i) = \sin(\omega \cdot i) + \sin(2\omega \cdot i) + \sin(3\omega \cdot i) + \Delta$$

gdzie: i=0,1,2,...,N-1 to numer próbki sygnału, $\omega=2\frac{2\pi}{N},N=2^k$ to ilość wygenerowanych próbek sygnału, $\Delta=2\cdot\left(\frac{rand()}{RAND_MAX+1.0}\right)-1$ to liczba pseudolosowa o rozkładzie równomiernym w przedziale (-1,1].

Najpierw musieliśmy wygenerować zaszumiony sygnał (część rzeczywistą) i zapisać go do wektora typu double. Długość wektora wynosiła N=2k, kolejno dla k=8,10,12. Następnie wyznaczyliśmy transformatę sygnału korzystając z funkcji biblioteki GSL:

Później, dla każdego k przeprowadziliśmy dyskryminację sygnału na poziomie $\max \frac{|c_k|}{2}$, czyli wyzerowaliśmy te współczynniki transformaty (części rzeczywiste i urojone), które nie przekraczają tego progu. Po dyskryminacji wyznaczyliśmy transformatę odwrotną. Skorzystaliśmy przy tym z funkcji:

Otrzymany sygnał unormowaliśmy dzieląc go przez N. Na koniec, dla każdego k wykonaliśmy po dwa rysunki: sygnału zaburzonego i odszumionego oraz sygnału niezaburzonego i odszumionego. Dodatkowo, dla k=8 sporządziliśmy dwa rysunki: pierwszy pokazujący część rzeczywistą i urojoną transformaty oraz drugi pokazujący wartości modułów współczynników transformaty.

3. Wyniki

3.1 Część rzeczywista i urojona transformaty dla k=8

3.2 Wartości modułów współczynników transformaty dla k=8

3.3 Sygnał zaburzony i odszumiony dla k=8

3.4 Sygnał niezaburzony i odszumiony dla k=8

3.5 Sygnał zaburzony i odszumiony dla k=10

3.6 Sygnał niezaburzony i odszumiony dla k=10

3.7 Sygnał zaburzony i odszumiony dla k=12

3.8 Sygnał niezaburzony i odszumiony dla k=12

4. Wnioski

Odszumiliśmy sygnał za pomocą FFT. Możemy zauważyć, że dla większej ilości wygenerowanych próbek sygnału otrzymane wyniki pokrywają się bardziej z sygnałem niezaburzonym. Częstotliwość próbkowania ma zatem wpływ na dokładność otrzymywanych wyników.