# САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

# Институт компьютерных наук и технологий Кафедра «Распределенные вычисления и компьютерные сети»

# КУРСОВОЙ ПРОЕКТ

на тему: Построение оптимального маршрута

| Выполнил студент гр. |      | В.Б.Борисов   |
|----------------------|------|---------------|
| гр. 43507/1          |      |               |
| Руководитель         |      |               |
| доц.                 |      | А.В.Самочадин |
|                      | «» _ | 2016 г.       |

Санкт-Петербург

2016

# Оглавление

| Введение                                   | 3  |
|--------------------------------------------|----|
| 1.1 Актуальность проблемы                  | 3  |
| 1.2 Постановка задачи                      | 3  |
| Основная часть                             | 4  |
| 2.1 Механизм маршрутизации                 | 4  |
| 2.2 Выбор алгоритма построения маршрута    | 5  |
| 3 Реализация приложения                    | 8  |
| 3.1 Выбор средств разработки               | 8  |
| 3.2 Интерфейс и функциональные возможности | 10 |
| 3.2.1 Валидация приложения                 | 10 |
| 3.2.2 Панель управления                    | 11 |
| Заключение                                 | 15 |
| Список литературы                          | 16 |

#### Введение

### 1.1 Актуальность проблемы

Данная тема без преувеличения является актуальной. Все мы хотя бы раз в жизни прокладывали маршрут, будь эта поездка в другой город или просто мы хотим попасть из одного района города в другой. У всех у нас возникает естественное желание достичь место назначения за минимальные затраты. Именно поэтому различные компании активно участвуют в решении этой задачи, улучшая старые алгоритмы или изобретая новые.

Всего каких-то десять-пятнадцать лет назад в бардачке каждого водителя лежал атлас дорог. Он и был главным помощником при планировании маршрута. Сейчас вместо атласа люди всё чаще используют электронные карты или мобильные приложения, и умные алгоритмы сами строят для них наилучший маршрут.

#### 1.2 Постановка задачи

В рамках данной работы была поставлена задача проложить оптимальный маршрут и оценить время выполнения заказа курьера (который развозит почту). Надо оценить время поездки на машине от точки до точки плюс время от парковки до офиса внутри здания и обратно. При этом, считается что планы зданий есть. В результате должна быть получена оценка времени на выполнение всего заказа, с учетом всех передвижений.

### 2.1 Механизм маршрутизации

Главные составляющие механизма маршрутизации — это дорожный граф и алгоритм, который рассчитывает путь.

Дорожный граф — это сетка дорог. Она состоит из множества фрагментов, которые состыкованы между собой. Например, дорожный граф Саратова (население — около 840 тысяч человек) состоит из 7592 фрагментов. Каждый из них несёт информацию о своём участке дороги: географические координаты, направление движения, средняя скорость, с которой машины обычно едут на этом участке, и другие параметры. Кроме того, каждый фрагмент содержит данные о том, как он стыкуется с соседними участками — есть ли в этом месте поворот направо или налево, можно ли там развернуться в обратную сторону или разрешается ехать только прямо.

Само собой, дорожный граф нельзя сделать раз и навсегда. Транспортная система города имеет обыкновение меняться. Появляются новые дороги и развязки, меняется направление движения. А там, где ещё недавно был поворот, может висеть «кирпич». Чтобы не отставать от жизни, такие именитые компании как Яндекс, Google, 2ГИС, между которыми есть здоровая конкуренция, регулярно обновляют данные.

Во-первых, постоянно обрабатываются сообщения о неточностях в графе, которые пользователи присылают с помощью мобильных приложений и веб-сервиса. С этими сообщениями работают эксперты, которые используют также открытые источники информации о транспортной системе (например, сайты местных администраций).

Во-вторых, для определения неточностей на карте дорог существует специальная система. Она фиксирует все случаи, когда данные о движении машин, которые анонимно передают водители, не совпадают с имеющейся сеткой дорог. Если это не случайный нарушитель, который выехал на газон или развернулся в неположенном месте, возможно, на этом участке изменилась схема движения. Все такие случаи разбираются, и при необходимости в граф вносятся изменения.

Дорожный граф хранится на серверах Яндекса в нескольких экземплярах — если какой-то из серверов будет временно недоступен, маршрутизация все равно будет работать.

#### 2.2 Выбор алгоритма построения маршрута

Маршрут будем рассчитывать по алгоритму Дейкстры. С его помощью приложение будит вычислять самый быстрый вариант проезда — исходя из длины каждого отрезка графа и скорости движения на этом участке. Если пользователь строит маршрут проезда без учёта пробок, то алгоритм использует среднюю скорость движения на участке. А если пользователь хочет знать, как быстрее всего добраться до места с учётом ситуации на дороге, то алгоритм задействует данные о текущей ситуации на дороге.

Как это происходит, можно разобрать на примере. Представим, что нужно проложить маршрут из точки А в точку В. Алгоритм начинает методично перебирать все возможные варианты. Первым делом он прокладывает маршрут на один шаг (фрагмент графа) во все стороны от точки А. И затем вычисляет, сколько времени потребуется на преодоление этих участков (тут все просто — расстояние делится на скорость). Дальше он выбирает точку, до которой удалось бы добраться быстрее всего. Это точка С.



# Рисунок 1

Затем алгоритм строит маршрут ещё на один шаг — во все стороны от точки С. И снова анализирует, в какую из точек можно было бы попасть быстрее всего. На этот раз это точка D. На следующем шаге алгоритм будет строить маршрут уже от неё.



Рисунок 2

Продолжая в том же духе, маршрутизатор находит вариант проезда, который оказывается самым коротким по времени.



Рисунок 3

### 3 Реализация приложения

## 3.1 Выбор средств разработки

Для того чтобы решить данную задачу, а именно мы хотим проложить оптимальный маршрут и оценить весь путь курьера. Для начала нам понадобится карта, на которой и будем строить маршрут. На российском рынке картографических и справочных сервисов можно выделить трех основных игроков:

- 1. Яндекс.Карты;
- 2. 2ГИС;
- 3. Google Maps.

Возникает вопрос: какой выбрать сервис? Я решил составить таблицу, в которой отметил, как мне кажется, главные критерии.

| Критерии            | Яндекс.Карты    | 2ГИС            | Google Maps    |
|---------------------|-----------------|-----------------|----------------|
| Покрытие            | Лучшее          | Уступает        | Лучшее         |
|                     | покрытие        | конкурентам в   | покрытие всего |
|                     | России,         | покрытии как в  | мира           |
|                     | уступает Google | России, так и в |                |
|                     | в покрытии      | других странах  |                |
|                     | мира            |                 |                |
| Отображение пробок  | Да.             | Не все города   | Практически    |
| в крупных городах   | Отображение     |                 | все города по  |
|                     | доп.            |                 | всему миру     |
|                     | информации о    |                 |                |
|                     | дорожной        |                 |                |
|                     | обстановке      |                 |                |
| Возможность         | Присутствует    | Присутствует    | Присутствует   |
| загрузки и          |                 |                 |                |
| использования       |                 |                 |                |
| онлайн              |                 |                 |                |
| Редактирования карт | Да              | Да              | Да             |
| Построение          | Автомобиль,     | Автомобиль,     | Автомобиль,    |
| маршрута            | общественный    | общественный    | общественный   |
|                     | транспорт.      | транспорт.      | транспорт,     |
|                     | Строит с учетом | Возможность     | пешеходный     |
|                     | пробок. Требует | отдельно        | маршрут.       |
|                     | интернет для    | выбрать вариант | Возможность    |
|                     | построения      | «Метро». Не     | выбрать только |
|                     |                 | требует         | один из видов  |
|                     |                 | интернета для   | транспорта или |

|              |              | построения    | вариант       |
|--------------|--------------|---------------|---------------|
|              |              | маршрута      | пешком.       |
|              |              |               | Строит с      |
|              |              |               | учетом пробок |
|              |              |               | и расписания  |
|              |              |               | общественного |
|              |              |               | транспорта.   |
|              |              |               | Требует       |
|              |              |               | интернет для  |
|              |              |               | построения    |
| Документация | Хорошая,     | Хуже чем у    | Наглядная и   |
|              | немного хуже | Яндекс.Карт и | понятная      |
|              | чем y google | Google maps   |               |
|              | maps         |               |               |

После составления таблицы был сделан вывод, что для нашей задачи подходят все 3 картографических сервисов, поэтому можно выбрать любой. Для формирования и обработки запросов, создания интерактивного и независимого от браузера интерфейса был выбран язык javascript, потому что он используется в клиентской части веб-приложений: клиент-серверных программ, в котором клиентом является браузер, а сервером — веб-сервер, имеющих распределённую между сервером и клиентом логику. Обмен информацией в веб-приложениях происходит по сети. Одним из преимуществ такого подхода является тот факт, что клиенты не зависят от конкретной операционной системы пользователя, поэтому веб-приложения являются кроссплатформенными сервисами. Для реализации GUI были выбраны HTML и CSS.

### 3.2 Интерфейс и функциональные возможности

После запуска веб-приложения мы видим слева панель управления, с которой можно взаимодействовать, а остальную часть экрана занимает карта Санкт-Петербурга. (см. рис. 4)



Рисунок 4

### 3.2.1 Валидация приложения

Перед непосредственно запуском приложения, стоит сказать при каких сценариях приложение не будет работать. (см. рис. 5)

Здесь реализована простейшая валидация. Приложение не построит маршрут если:

- В списке адресов меньше двух мест
- Не указана начальная и конечная точки
- Адрес, который вы ввели не был найден на карте. Чтобы эта ошибка не возникала, было принято решение использовать строку быстрой навигации. (см. рис. 6)



Рисунок 5

### 3.2.2 Панель управления

На панели управления мы видим поле ввода адреса. (см. рис. 6)



Рисунок 6

В нем мы пишем все интересующиеся нас адреса (например, начальный и конечный) и заносим в список адресов. После этого мы указываем (см. рис 7 и 8) начальный и конечный адрес.



Рисунок 7



Рисунок 8

При этом если мы хотим проложить не просто маршрут из точки A в точку B, а еще и хотим вернуться назад, посчитав все расстояние и путь, то нужно поставить галочку напротив «Back to the start».

Заполнив все необходимые поля, мы нажимаем кнопку «Get directions» и на карте появляется оптимальный маршрут. (см. рис. 9)



Рисунок 9

Помимо прокладки маршрута, появляется еще и таблица всех передвижений курьера, где написан адрес, поворот и расстояние. (см. рис. 10)

| 12,9 кі         | м. примерно 28 мин.                                                  |        |
|-----------------|----------------------------------------------------------------------|--------|
| 1.              | Направляйтесь на юг по пр. Литейный в сторону пер.<br>Артиллерийский | 0,6 км |
| <b>1</b> 2.     | Поверните налево на ул. Жуковского                                   | 0,9 км |
| <b>r→</b> 3.    | Поверните направо на пр. Лиговский                                   | 3,3 км |
| <b>4</b> .      | Поверните налево на ул. Расстанная                                   | 0,6 км |
| <b>戊</b> 5.     | Поверните направо на ул. Камчатская                                  | 0,9 км |
| 6.              | Продолжайте движение по ул. Касимовская                              | 0,4 км |
| <b>7</b> .      | Поверните направо на пр. Волковский                                  | 0,4 км |
| 8.              | Продолжайте движение по ул. Бухарестская                             | 1,2 км |
| <b>1</b> 9.     | Поверните налево на ул. Салова                                       | 1,0 км |
| <b>r</b> 10.    | Поверните направо на ул. Софийская                                   | 2,9 км |
| <b>P</b> 11.    | Сверните на съезд в сторону ул. Турку                                | 0,1 км |
| <b>r</b> 12.    | Поверните направо на ул. Турку                                       | 0,6 км |
| <b>r</b> 13.    | Поверните направо                                                    | 37 м   |
| <b>r</b> 14.    | Поверните направо                                                    | 74 м   |
| B <sub>vn</sub> | Турку, 26, Санкт-Петербург, Россия, 192241                           |        |

| 1.           | Направляйтесь на запад                                                             | 74 м   |
|--------------|------------------------------------------------------------------------------------|--------|
| <b>1</b> 2.  | Поверните налево в сторону ул. Турку                                               | 37 м   |
| ▶ 3.         | Поверните направо на ул. Турку                                                     | 1,4 км |
| <b>4</b> .   | Поверните направо на ул. Бухарестская                                              | 0,2 км |
| 5.           | Продолжайте движение прямо по ул. Бухарестская                                     | 2,7 км |
| 6.           | Продолжайте движение по пр. Волковский                                             | 1,0 км |
| 7.           | Продолжайте движение по наб. реки Волковки                                         | 1,3 км |
| ▶ 8.         | Поверните направо на ул. Днепропетровская                                          | 1,0 км |
| 9.           | Продолжайте движение по пер. Транспортный                                          | 0,5 км |
| 10.          | Продолжайте движение по ул. Разъезжая                                              | 0,3 км |
| <b>1</b> 1.  | Поверните направо на ул. Марата                                                    | 1,0 км |
| <b>1</b> 12. | Поверните налево на пр. Невский                                                    | 0,5 км |
| <b>1</b> 3.  | Поверните направо на пр. Литейный                                                  | 1,5 км |
| <b>1</b> 14. | Поверните налево на ул. Чайковского                                                | 11 м   |
| <b>1</b> 15. | На перекрестке 1 поверните налево на пр. Литейный<br>Пункт назначения будет справа | 0,5 км |

Рисунок 10

И как результат получаем весь пройденный путь и все время. (см. рис. 11)

Trip Distance: 24.9 km

Trip Duration:59.6 min

# Рисунок 11

### Заключение

В результате выполнения научно-исследовательской работы было реализовано web-приложение с полным функционалом. Данное приложение может не только прокладывать маршрут по всему городу, но и выводить таблицу всех передвижений пользователя, с последующим подсчетом всего пройденного пути и времени.

#### Список литературы

- 1 Google Maps JavaScript API. [Электронный ресурс]. Режим доступа:https://developers.google.com/maps/documentation/javascript/tutorial? hl=ru
- 2 Причины ошибок в системе GPS // Paraclub.ru. [Электронный ресурс]. Режим доступа: http://www.paraclub.ru/NB/pogrshnost\_GPS.shtml
- 3 Stack Overflow. [Электронный ресурс]. Режим доступа:http://ru.stackoverflow.com/questions/tagged/google-maps-api
- 4 Google Maps API. [Электронный ресурс]. Режим доступа:https://habrahabr.ru/post/110460/
- 5 Решение задачи коммивояжера с привязкой к географическим координатам. [Электронный ресурс]. Режим доступа: http://www.market-journal.com/ekoproces/42.html
- 6 Задача коммивояжера. [Электронный ресурс]. Режим доступа: http://www.math.nsc.ru/LBRT/k5/OR-MMF/TSPr.pdf
- 7 Маршрутизация. [Электронный ресурс]. Режим доступа: https://yandex.ru/company/technologies/routes/