

Repetitorium – Teil 1

Computergrafik

360 Grad Panorama

Realitätserfassung

Computergrafik

360 Grad Panorama

2:1

Equirektanguläre Projektion ("Plattkarte)

Processed: Für jedes Pixel die beste Zuordnung im Raw Image schätzen. Injektiv Abbildung.

Abbildungen Urbild Beispiel Bild Injektiv (linkseindeutig) Bildvergrößerung "Alle Urbilder haben Bilder." Surjektiv (rechtseindeutig) Bildverkleinerung "Alle Bilder haben eines oder mehrere Urbilder."

Bijektiv (eineindeutig)

"Eindeutige Beziehung zwischen Urbildern und Bildern."

Grauwerte

"Equi-" = Abstandstreu, "-rectangle" = Sphärisch nach flach

Algorithmus

```
private static double[] ReverseCalculation(double x0, double y0)
    // 2d equirectangular
    var longitude = x0 * Math.PI;
    var latitude = y0 * Math.PI / 2;
    // 3d coords on unit sphere
    var px = Math.Cos(latitude) * Math.Cos(longitude);
    var py = Math.Cos(latitude) * Math.Sin(longitude);
    var pz = Math.Sin(latitude);
    // 2d fisheye polar coords
    var r = 2 * Math.Atan2 (Math.Sqrt(px * px + pz * pz), py) / _aperture;
    var theta = Math.Atan2(pz, px);
    // return 2d fisheye coords as integer
    return new[] {(r * Math.Cos(theta)), (r * Math.Sin(theta))};
```

Aufgaben

Ist der Algorithmus injektiv?

Umrechung 2x 190 Grad Bilder

Transformation

- + Stitching
- + Verzeichnungen
- + Farbabgleich

Ergebnis: Projektion auf Kugel

Aufgaben

- Woher weiß die Kugel, wie sie das Bild anzeigen muss?
 - Texturen
 - UV Map
- Warum wird das Bild nur auf der Außenseite angezeigt?
- Was ist "die Außenseite"?

Bilder sind in Unity Texturen

(Quelle: Wikipedia)

Aufkleben von Texturen

UV Map einer Polygon-Kugel (Unity)

3-D Model

p=(x,y,z)

UV Map

$$p = (u, v)$$

Texture

Innenseite / Außenseite

"Auf der anderen Seite sein" =

Textur wird nicht verarbeitet.

Aufgaben

Wo wird der Normalenvektor verwendet?

- Laufzeitmessung
- Interfessenzmessung
- Photogrammetrie

Realitätserfassung

Computergrafik

Realität (links) und Modell (rechts)

Laufzeitmessung

"Time-of-Flight", ToF

Auswertung von reflektierten Lichtpulsen

hier: naher IR Bereich

Abtastrate

~60kHz

Genauigkeit

1cm

(Quelle: Wikipedia)

Pulslänge = welchen Bereich erfassen?

Bopw. D = 7,5m

danu: $\Delta t = \frac{D}{2 \times C} \approx 50 \text{ ns}$

Umschaltzeit = Pulslänge

d.a. je weiter clas Objet t entfernt ist, umso grøßer der Pulsanteil, der noch "auf der Strecke" est

Für Abstand > D'immo gleiches Ergestuis

Interferenzmessung

Laserscanner; Continuous Wave Verfahren (CW)

Abtastung über Raumwinkel, Bestimmung der Phasendifferenz

Object		
		Transmitter Receiver

(Quelle: Jamtsho, Sonam. (2018). Geometric Modelling of 3D Range Cameras and their Application for Structural Deformation Measurement.) Abtastrate 1MHz Genauigkeit 1mm

i.d.R. mehrere Wellenlängen

(Quelle: http://www.geoinformation.net)

Photogrammetrie

Nahbereich

Bildkoordinaten aus n Ansichten

3D Koordinaten

n äußere Orientierungen

Stahlrehonstruktur Triangulation

> Kameraposition und -orientiernez in Weltzoordinaten

Photogrammetrie

Nahbereich

Aufgaben

- Welche Methoden der 3D Erfassung gibt es?
- Worin unterscheiden sich die Methoden?
- Was ist mit innerer Orientierung der Kamera gemeint?

CG Grundbegriffe

Computergrafik

Vertex

Raumpunkt (dimensionslos) mit x/y/z Koordinate; Plural: Vertices

Weltkoordinaten

Allgemeines Koordinatensystem, auf dessen Ursprung sich alle Objekte referenzieren.

Objektkoordinaten

Objektspezifisches Koordinatensystem, dessen Ursprung meist im Schwerpunkt liegt. Der Ursprung wird auch Pivot-Punkt genannt.

Gittermodell (engl. Mesh)

Benachbarte Vertices, die auf einer gemeinsamen Objektfläche liegen, werden über Kanten verbunden.

Dadurch werden i.d.R. Dreiecke (Triangles) oder Vierecke (Quads) gebildet. Wichtig: beide Elemente bilden Planflächen (Rechenzeit!)

Die Berechnung eines Mesh aus einer Anzahl Vertices wird Vermaschung genannt.

Facette

Einzelnes Triangle oder Quad im Mesh.

Normalenvektor

Vektor senkrecht zur Fläche. Wichtig für Beleuchtung und Strukturierung.

- pro Facette, vgl. Flat-Shading
- pro Vertex

Die Gesamtheit der Normalenvektoren heißt Normalenvektorfeld. Das Normalenvektorfeld beschreibt die Topologie des Objekts.

Die Außenseite zeigt in Richtung der Normalenvektoren.

UV Map

Transformation von 3D Objektkoordinaten auf 2D "Textur"-Koordinaten.

Gleiches Prinzip wie bei Projektion Fisheye-Aufnahme nach Merkator-Darstellung. Zur Erinnerung: Die UV Map einer Sphäre in Unity ist die Merkator-Darstellung.

(Quelle: blenderartist.org)

Bildschirmkoordinaten

2D Koordinaten im gerenderten Bild.

Rendering

Berechnung des 2D Bildes auf Basis der 3D Szene.

Aufgaben

Definitionen wiedergeben

Bool'sche Operationen

Modellieren

Computergrafik

Modellieren

Generatives Modellieren, Bool'sche Operationen

ProBuilder: Sculpting

Face Mode: Shift + Manipulatoren

ProBuilder: Boolean CSG Tool

Aufgaben

Welche Art von Bool'scher Operation ist im Bild xyz dargestellt?

Transformationen

Computergrafik

Kamera

- Kamera Transformation
 - Transformation von Weltkoordinaten nach Kamerakoordinaten
- Perspektive
 - In Unity: Eigenschaft der "Kamera"
 - In Unity: "Perspective", "Orthographic"
- Clipping
 - Beschränkung der Objekte auf Kamera-Blickwinkel
 - Beschränkung der Objekte auf z-Tiefe (Unity: "near clipping plane", "far clipping plane")
- Viewport Transformation
 - o 16:9 etc.

Kamera Transformation

(Quelle: Wikipedia)

Wdh: Homogene Koordinaten

$$\frac{20}{2}$$
 $\begin{pmatrix} x \\ y \\ 2 \end{pmatrix}$ $2 \neq 0$, SelieSig
 $2 = 1 : x, y = kartesiseGe$
Roordinateur

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \cdot \begin{pmatrix} A \\ A \\ t_{x} t_{y} A \end{pmatrix} = \begin{pmatrix} x + t_{x} \\ y + t_{y} \\ 1 \end{pmatrix}$$

Wdh: Homogene Koordinaten

$$\frac{Skalierung}{\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}}, \begin{pmatrix} S_x \\ S_y \\ 1 \end{pmatrix} = \begin{pmatrix} S_x \cdot x \\ S_y \cdot y \\ 1 \end{pmatrix}$$

$$\frac{\text{Rotation}}{\left(\begin{array}{c} X \\ Y \\ 1 \end{array}\right)}, \left(\begin{array}{c} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{array}\right) = \left(\begin{array}{c} X \cos \varphi - y \sin \varphi \\ X \sin \varphi + y \cos \varphi \end{array}\right)$$

Perspektive in Unity

"Perspective"

"Orthographic"

Perspektive (mathematisch)

Zentralprojektion:

Verkleinerung, abhängig von z Abstand "x,y rücken ein"

Homogene Transformation nach 2D Bildkoordinaten Augpunkt (0, 0, d)

 $\mathbf{P}_{\mathrm{zp}} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & -rac{1}{d} & 1 \end{pmatrix}, \quad \mathbf{P}_{\mathrm{zp}} \; (x,y,z,1)^T = (x,y,0,rac{d-z}{d})^T$

Orthogonale Projektion:
$$\mathbf{P}_{\mathrm{op}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \mathbf{P}_{\mathrm{op}} \; (x,y,z,1)^T = (x,y,0,1)^T$$

$$\mathbf{P}_{ ext{op}} \; (x,y,z,1)^T = (x,y,0,1)^T$$

(Quelle: Wikipedia)

Licht

Computergrafik

Cornell Box

- Aufbau? Zweck?
- Drei-Punkt-Beleuchtung?

3-Punkt-Beleuchtung

- Führungslicht (key light)
 - höchste Intensität
 - 45° zu Kamera
- Aufhellungslicht (fill light)
 - schräg gegenüber Führungslicht
- Kantenlicht (bump light)
 - von oben, Kopfpartie
 - Kantenaufhellung
- Optional: Hintergrundausleuchtung

(Quelle: Wikipedia)

Arten von Lichtquellen in Unity

Direct Lighting

- Directional Light Point Light
- Spot Light
- Area Light

Unterschiede? Wirkungsweise?

Global Illumination

Direct Lightingvon Lichtquellen

- Indirect Lighting
 - Reflektionen von Objekten
 - nur möglich für statische Objekte (vorab berechnet)

Global Illumination

Non-static Capsule vs. Static Capsule

Lightmap

Unity erzeugt für statische Objekte eine Lightmap Texture ("Light baking")

Global Illumination

Global Illumination

Indirekte Beleuchtung nicht-statischer Objekte

- In Unity: Lightprobe Group
 - Punktweise Erfassen der Beleuchtungsverhältnisse
 - Interpolation des Zwischenraums
- Interessante Bereiche können mit höherer Anzahl Lightprobes beschrieben werden (Add, Duplicate)

Selbstleuchtende Objekte

Farbe

Computergrafik

Farbrepräsentationen: Systeme, kalibriert

- CIE XYZ, CIE Luv
 - Normalbetrachter (2°, 10°)
 - Standardbeleuchtung (D50, D65 ...)

MacAdams Ellipsen

CIE XYZ

- Weißpunkt: 1/3, 1/3
- Farbabstände nicht gleichabständig
- Gesucht: Transformation, um aus Ellipsen Kreise zu machen

CIE Luv

Gleichabständig

Aufgaben

- Welche Farbsysteme kennen Sie?
- Was bedeutet "gleichabständig"?