Sprawozdanie z ćwiczenia Projekt bramki NAND

Sprawozdanie wykonał:

Adam Cypliński

Prowadzący: dr inż. Ireneusz Brzozowski

1. CEL ĆWICZENIA 1.1

Zapoznanie się studenta z pracą podstawowych bramek CMOS. Poznanie wpływu sposobu sterownia i wymiarów tranzystorów na ch-ki przejściowe bramek. Nabycie umiejętności przeprowadzania symulacji parametrycznych. Półautomatyczne generowanie topografii

2. Realizacja zadania

Ścieżka do zadania: us0508 ZAD_1/NAND

Schemat symbol i symulacja dla bramki NAND

Narysowany wyżej symbol poprawiono pod koniec wykonywania ćwiczenia. Na początku symbol nie posiadał okręgu oznaczającego negacje.

Za pomocą charakterystyk przejściowych dobrałem odpowiednią szerokość tranzystorów PMOS : 570nm.

Do symulacji wykorzystano analizę parametryczną na następującym schemacie:

Dzięki niemu zbadano wszystkie możliwe przypadki sterowania bramki NAND:

A=1, B=pulse; A=pulse, B=1; A=B=pulse

W kolejnym kroku wykanano półautomatyczną generację topografii oraz zminimalizowano layout:

Margines zakłóceń

Do wyznaczenia marinesu zakłóceń skorzystałem z charakterystyki przejściowej oraz kalkulatora

Marginesy zakłóceń:

Wysoki: $M_H = V_{OH} - V_{IH} = 1,67V - 0,65V = 1,02V$

Niski: $M_L = V_{IL} - V_{OL} = 1,01V - 0,12V = 0,89V$

Czasy w bramce NAND

Do uzyskania odpowiedniego przebiegu wykorzystano trzy impulsowe źródła napięcia.

Jedno podłączone do wejścia IN_A o parametrach:

Vstart = 1.8V

Vstop = 0V

Period 20ns

Delay: 30ns

Drugie podłączone do wejścia IN_B o parametrach:

Vstart = 1.8V

Vstop = 0V

Period 20ns

Delay: 10ns

Trzecie podłączone szerogowo z drugim o parametrach:

Vstart = 0V

Vstop = 1.8V

Period 70ns

Delay: 30ns

Pulse width: 10ns

Analiza transient o czasie symulacji = 70ns

weA	1	1	\downarrow	↑	\	\uparrow
weB	\downarrow	 	1	1	\downarrow	\uparrow
Wyj	↑	\	↑	\	↑	\downarrow
Czas	140	146	132	140	86	160
propagacji[ps]						

weA	1	\	\
weB	\	1	\downarrow
Wyj	↑	↑	\uparrow
Czas narastania	221	213	129
[ps]			

weA	1	↑	\uparrow
weB	 	1	↑
Wyj	\downarrow	\	<u> </u>
Czas opadania[ps]	244	246	246

Następnie obliczono czasy za pomocą Edge Browser

weA	1	\downarrow	\rightarrow
weB	\downarrow	1	\rightarrow
Wyj	\uparrow	↑	\uparrow
Czas narastania	142.8	135.4	81.22
[ps]			

weA	1	↑	↑
weB	↑	1	↑
Wyj	↓	\	\downarrow
Czas opadania[ps]	162.8	162.8	163

Za pomocą kalkulatora obliczyłem średni pobór mocy

Ze wzoru obliczono średni pobór mocy który jest równy 2.371W

