MINISTRY OF EDUCATION UNIVERSITY OF TECHNOLOGY (YATANARPON CYBER CITY) FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

Urban Change Detection of Patheingyi Township Based on Random Forest Classifier

(Second Seminar) 1.12.2017

SUPERVISED BY DR.SHWE THINZAR AUNG PRESENTED BY
MA HNIN PHYU PHYU AUNG

ME-IST-31

Outline

- Abstract
- Objectives
- Introduction
- Study Area
- Background Theory
- System Flow
- Conclusion

Abstract

- Urbanization is one of the most important components of global environmental change.
- The proposed system aims to detect changes that have taken place particularly in the built-up land and subsequently to analyze the urban sprawl of the different time periods in Patheingyi Township.
- The proposed system compares the urban area growth over a given period (2000,2005,2010 and 2015) in Patheingyi Township.

Objectives

- To develop the change detection system of urban area in Patheingyi
 Township
- To study the application and work flow of google earth engine and ArcGIS Desktop 10
- To identify urban growth changes by observing it at different times
- To assess the impacts of landscape transformations on ecosystems and resources

Introduction

- The world is becoming rapidly urbanized and this process needs to be monitored.
- One way of monitoring this process is to perform change detection in urban areas using satellite images.
- Change detection is the process of identifying differences in the state of an object or phenomenon by observing it at different times.
- Change detection is not only used for urban applications but is used for detecting forest or landscape change, disaster monitoring and in many more applications.

- Nowadays, urban research is shifting towards the use of digital, and towards the development of remote-sensing image classification.
- The main purpose of the system is to detect changes that have taken place particularly in the built-up land and to predict the urban area growth in four years period(2000, 2005, 2010 and 2015).
- In this proposed system, Random Forest classifier is used to detect urban change area.

Study Area

- The proposed system aims to detect urban growth changes in Patheingyi township.
- Patheingyi township is located in the eastern part of Mandalay,
 Myanmar.
- Mandalay is incoporated with townships such as Patheingyi, Aungmyethazan, Chanayethazan, Pyigyitagon, Amarapua and Chanmyathazi.
- Patheingyi township is bounded by Aungmyethazan Township and Chanayethazan Township in the west.
- The study area is one that experienced a fast increase of urban population in the recent decades in Mandalay region.

Background Theory

- Classification is a general process related to categorization.
- There are two types of classification:
 - supervised classification
 - unsupervised classification
- The system uses supervised classification; Random Forest Classifier.

Steps of Random Forest Classifier

- First, the random forest classifier randomly selects features and a combination of features at each node to grow a tree.
- Features are randomly selected with replacement.
- Gini index is used as an attribute selection measure.
- In dataset T, gini index is defined as

$$Gini(T) = 1 - \sum_{j=1}^{n} (p_j)^2$$

where, Pi is the relative frequency of class j in T

- After the calculation of gini index for selecting attribute, select the lowest gini index value.
- Mid point of every pair of consecutive values is chosen as the best split point for the attribute.
- The procedure is repeated for the remaining attribute in the dataset.
- Each tree is fully grown for the training dataset.
- Finally, the decision tree is taken the most popular voted class from all the tree predictors in the forest.

- In this system, the training data are polygons representing homogenous regions, every pixel in each polygon is a training point.
- To collect training data interactively in Earth Engine, use the geometry drawing tools.
- The training data is a Feature Collection with a property storing the class label and properties storing predictor variables.
- Then, the training sample is used to train the classifier.
- Finally, the resulted image is generated and changing area is represented with a map.
- Hand calculation

Random Forest Algorithm

Benefits of Random Forest Classifier

- It is one of the most accurate learning algorithms available.
- For many data sets, it produces a highly accurate classifier.
- It runs efficiently on large databases.
- It can handle thousands of input variables.
- It gives estimates of what variables are important in the classification.
- It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing.

System Flow

Dataset

- Dataset gets from Myanmar Information Management Unit.
- Dataset link,

Myanmar Region Dataset

Original Image

Patheingyi Region Map in 2000 and 2005

Patheingyi Region Map in 2010 and 2015

Classification of area using Random Forest Classifier

Patheingyi Township in 2000 and 2005

Patheingyi Township in 2010 and 2015

Classified map by using ArcGIS Software

Patheingyi Township in 2000 and 2005

Patheingyi Township in 2010 and 2015

Area of Classified Maps

Suburban buildup area is increased 1.28 times from 2010 to 2015.
 During the same period, urbanized open land is increased by 600 hectares.

Urbanized Area of Patheingyi Township

New Development Area

2000-2005 2005-2010 2010-2015

• From 2000 to 2015, increasing in the new development area could be attributed to extension that accounts for more than 71.47 % of new developments. Leapfrog 28.37 % and infill 0.16 % are contributed to new development area.

Urban Growth Areas of Patheingyi Township

Conclusion

- In the proposed system, random forest classifier is used to classify land use area; water, buildup and nonbuildup.
- In post classification, six classes; urban buildup, suburban buildup, rural buildup, urbanized open land, captured open land and water are classified with ArcGIS desktop 10.
- The system compares the changes of urbanized areas and new development areas of Patheingyi Township in a period (2000,2005,2010 and 2015).

Thank You