Modelagem estrutural

Análise da xilanase RcXyn30 8

RcXyn30_8

Indicadores de confiabilidade da predição da estrutura - pIDDT e PAE

pIDDT:

Modelos utilizados para comparação

EcXyn30A/XynA (1.39 Å)

Domínios (PFAM)	e-value		
Glyco_hydro_30C	9.0e-12		
Glyco_hydro_30	4.9e-09		

Dominios (PFAM)	e-value		
Glyco_hydro_30C	3.4e-05		
Glyco_hydro_30	0.0001		

Ligantes:

Ligantes:

MeGlcA-(1-2)-Xyl-Xyl

Organismo: E. chrysanthemi

MeGlcA-(1-2)-[Xyl]₂-Xyl-Xyl

PDB: 2Y24 (Vrsanska, M. et al, 2011)

R - 1.39 Å

Organismo: B. subtilis

PDB: 3KL5 (St. John, F. J. et al, 2011)

R - 2.59 Å

RcXyn30 possui sítio catalítico com aminoácidos conservados em relação à enzima XynC, já previamente caracterizada e com estrutura resolvida.

Figura 1 - Visão do sítio catalítico da RcXyn30_8 a partir do terminal não redutor, contatos hidrofóbicos são coloridos na figura.

Um dos sítios é responsável pela interação com a ramificação. Na RcXyn30 todos os aminoácidos do sítio são conservados. Ele já foi reportado em trabalhos anteriores

Figura 2 - Visão do sítio de interação com a ramificação da RcXyn30_8, contatos hidrofóbicos são coloridos na figura.

Figura 3 - Visão do sítio catalítico da RcXyn30_8 visto do terminal redutor do ligante, contatos hidrofóbicos são coloridos na figura.

Comparação XynC-RcXyn30

Vemos aqui que embora a maioria dos aminoácidos do sítio catalítico se corservem, os arredores do sítio carregam mutações na RcXyn30 em relação a XynC

Figura 5 - RcXyn30_8 é mostrada. Esferas em vermelho representam as mutações em relação a enzima XynC. Observa-se que o sítio catálitico ao redor do ligante parece bem conservado, com várias mutações nos bordos.

Figura 4 - Visão da XynC(a esquerda) RcXyn30_8(a direita) coloridas pelo potencial eletrostático com o ligante. Vemos que, embora os aminoácidos sejam conservados a mudança nos arredores do sítio catalítico faz com que as cavidades sejam diferentes.

Comparação XynC-RcXyn30

Figura 6 - Motivo estrutural na borda do sítio catalítico da RcXyn30 que guarda mutações em relação a XynC. A figura 2 mostra o motivo na enzima XynC em vermelho(Beta-hairpin), e amarelo para RcXyn(loop). Comprimento das pontes de hidrogênio dos glutamatos é mostrado.

E possível que a flexibilidade proporcionada pelo loop mais longo no motivo anterior para a RcXyn30 permita uma abertura maior da cavidade onde entraria o ligante. Vemos que as mutações localizadas acima do sítio catalítico próximo ao terminal redutor do ligante causam o surgimento de uma cavidade na RcXyn30. Dessa forma poderíamos esperar que a RcXyn30 seja apta a digerir substratos maiores

Figura 7 - RcXyn30_8 é mostrada. Esferas em vermelho representam as mutações em relação a enzima EcXyn30. Observa-se que o sítio catálitico carrega mutações, assim como boa parte do N-terminal.

Figura 8 - Sítio catalítico da RcXyn30 é mostrado. Aminoácidos em vermelho são da EcXyn30 e representam as diferenças entre as enzimas. Uma das mutações marcadas em vermelho (Leu-Phe) pode promover interações de stacking com carboidratos na RcXyn30

Figura 9 - Sítio catalítico da RcXyn30 é mostrado. Aminoácidos em vermelho são da EcXyn30 e representam as diferenças entre as enzimas. Pontes de hidrogênio são mostradas.

A imagem mostra o sítio catalítico da RcXyn30 com um loop marcado em verde que representa uma inserção em relação a EcXyn30. Essa inserção pode servir para expansão da cavidade a partir da região de stacking promovida pelo par de aminoácidos (Phe-Tvr)

Energias de ligação dos ligantes

Afim de observar o efeito da ramificação na afinidade da enzima pelo ligante, foram feitos testes para simular o valor da energia livre de ligação.

Vemos abaixo que a predição da energia livre mostra-se menor para substratos não ramificados, indicando uma preferência da enzima por esses substratos

Kdeep(José Jiménez et. al)

	Mol. weight	dG (kcal/mol) (std)	LIgand Efficiency (kcal/mol) (std)	pKd(std)	pkl(std)
MeGlcA ² Xyl ₃	606.53	-7.57 (-0.81)	-0.18 (-0.02)	5.61(0.60)	6.14(0.57)
Xyl ₃	414.36	-6.77 (-0.69)	-0.24(-0.02)	5.02(0.51)	5.12(0.56)
MeGlcA ² Xyl ₂ ^(a)	474.41	-6.23(-0.64)	-0.19(-0.02)	4.62 (0.48)	5.15(0.53)
MeXyl ² Xyl ₃ ^(b)	560.50	-7.17(-0.85)	-0.19(-0.02)	5.31(0.63)	5.83(0.48)

Tabela 1 - Cálculo das energias de ligação utilizando o software Kdeep para diferentes ligantes. Observa-se que o pKd (log[dissociation constant]) é menor para o ligante com uma unidade de xilose a menos. A afinidade é maior para o ligante original.