Special Relativity 3

Length Contraction

- 1. Now put two observers on either end of the ship and one on the ground.
- 2. The observers on the ship each note the time that they pass the observer on the ground and they calculate t_s as the difference between the two.
- 3. The observer on the ground notes the time between the passage of the two ends of the ship and calls that t_g .
- 4. The "events" here are the times that each end of the ship passed the observer on the ground. So that observer sees the proper time: $t_g = t_0$.
- 5. Hence $t_s = \frac{t_g}{\sqrt{1 \frac{v^2}{c^2}}}$.
- 6. The observers on the ship calculate $L_s = v \times t_s$ and the one on the ground calculates $L_g = v \times t_g$.
- 7. You might think that L_g would be the "proper" length because it was calculated with the proper time, but no. The *proper length* is defined as the length of the object measured in *that object's own frame of reference* (which makes sense when you think about it, since this is the only way of defining it uniquely).
- 8. We want to find the multiplier which will take us from the proper lentgh $L_0 = L_s$ to the other length L_g .
- 9. So we want: $v \frac{t_g}{\sqrt{1 \frac{v^2}{c^2}}} \times (?) = vt_g$
- 10. Cancel vt_g from both sides and it's obvious that we have to multiply by $\sqrt{1-\frac{v^2}{c^2}}$.
- 11. So: $L = L_0 \sqrt{1 \frac{v^2}{c^2}}$.

Summary

- 1. The proper time between two events, t_0 , is the time measured by an observer who is present at both events.
- 2. The proper length of an object, L_0 , is the length as measured in the object's own frame of reference.

1

$$3. \ t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}.$$

4.
$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$
.

Invariance and the spacetime "interval"

I might want to start with the observation that the extensions in time and space are not "real" and so, what it real? \dots the "interval."