1. What is the Prefix Sum Pattern?

The **Prefix Sum** of an array is a technique where you create a new array (or use a data structure) to store cumulative sums of elements from the start up to each index. Formally, for an array arr[] of size n, its prefix sum array prefix[] is defined as:

```
prefix[i]=arr[0]+arr[1]+...+arr[i]
```

for 0≤i<n0

2. Why use Prefix Sum?

Prefix sums help quickly compute the sum of elements in any contiguous subarray in O(1) time after an O(n) preprocessing step.

- Without prefix sums: Sum of elements from index i to j is computed by looping from i to j, which is O(j i + 1).
- With prefix sums: Sum of elements from index i to j is:

```
sum(i,j) = prefix[j] - prefix[i-1]. \qquad (i>0) or simply prefix[j] \quad (i=0) which is O(1).
```

3. How to Compute Prefix Sum?

Given an array arr of size n:

```
int[] prefix = new int[n];
prefix[0] = arr[0];
for (int i = 1; i < n; i++) {
    prefix[i] = prefix[i - 1] + arr[i];
}</pre>
```

4. Where can Prefix Sum be applied?

Prefix sums are useful in many types of problems such as:

- Range sum queries: Quickly compute sum of elements in subarrays multiple times.
- Number of elements in a range satisfying a condition.
- Finding subarrays with a certain sum.
- 2D prefix sums for matrix sub-rectangle sums.
- Difference arrays and range update queries.
- Problems involving cumulative frequencies, histograms, or quick summation checks.

5. How to identify problems where Prefix Sum applies?

Look for questions that:

- Ask for sum of elements in a range/subarray multiple times.
- Need **fast repeated sum queries** after an initial array is given.
- Need to find number of subarrays satisfying certain sum-related properties.
- Involve **checking sums quickly** without recalculating sums for overlapping parts.
- Deal with prefix-based conditions, such as count of elements or cumulative constraints.

6. Benefits of Prefix Sum Pattern

- Reduces repeated work in sum calculations.
- Transforms $O(n^2)$ range sum queries into O(n) preprocessing + O(1) query.
- Simplifies problem logic by leveraging precomputed cumulative data.
- Helps in solving problems related to subarray sums, histogram calculations, and range queries efficiently.

#	Problem Name	LeetCode Link
1	Range Sum Query - Immutable	https://leetcode.com/
		<u>problems/range-sum-</u> <u>query-immutable/</u>
2	Subarray Sum Equals	https://leetcode.com/
	K	problems/subarray-
		sum-equals-k/
3	Maximum Size	https://leetcode.com/
	Subarray Sum Equals	problems/maximum-
	k	size-subarray-sum-
		equals-k/
4	Find Pivot Index	https://leetcode.com/
		problems/find-pivot-
		index/
5	Count Number of Nice	https://leetcode.com/
	Subarrays	problems/count-
		number-of-nice-
		subarrays/
6	Binary Subarrays With	https://leetcode.com/
	Sum	problems/binary-

		subarrays-with-sum/
7	Minimum Size	https://leetcode.com/
	Subarray Sum	problems/minimum-
		size-subarray-sum/
8	Maximum Average	https://leetcode.com/
	Subarray I	problems/maximum-
		average-subarray-i/
9	Number of Subarrays	https://leetcode.com/
	with Bounded	problems/number-of-
	Maximum	subarrays-with-
		bounded-maximum/
10	Prefix and Suffix	https://leetcode.com/
	Search	problems/prefix-and-
		suffix-search/
11	Continuous Subarray	https://leetcode.com/
	Sum	problems/continuous-
		subarray-sum/
12	Longest Subarray of	https://leetcode.com/
	1's After Deleting One	problems/longest-
	Element	subarray-of-1s-after-
		<u>deleting-one-element/</u>
13	Number of Subarrays with Odd Sum	https://leetcode.com/
		problems/number-of-
		subarrays-with-odd-
		sum/
14	Longest Subarray	https://leetcode.com/
	With Sum at Most K	problems/longest-
		subarray-with-sum-
		at-most-k/
15	Find the Longest	https://leetcode.com/

Balanced Substring of Parentheses

problems/longestvalid-parentheses/