Departamento de Matemática

Universidade do Minho

Tópicos de Matemática

Nome

 2° teste – 16 nov 2023

duração: 1h45m

Lic. em Ciências de Computação - 1º ano

Número _____

Grupo 1. [10 valores] Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

1.1. Se
$$A = \{\emptyset\}$$
 e $B = \{\{\emptyset\}\}$, então, $A \in B$ e $A \subseteq B$.

1.1. Se
$$A = \{\emptyset, \{\emptyset\}\}\}$$
 e $B = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\}$, então, $A \in B$ e $A \subseteq B$.

1.1. Se
$$A = \{\{\emptyset\}\}\$$
 e $B = \{\{\emptyset\}, \{\{\emptyset\}\}\}\}$, então, $A \in B$ e $A \subseteq B$.

1.2. Se
$$A = \{1, 2, 3, 4, 5\}$$
 e $B = \{2n \mid n \in \mathbb{N}\}$, então $(A \setminus B) \cap B = \{1, 3, 5\}$.

1.2. Se
$$A=\{1,2,3,4,5\}$$
 e $B=\{2n\mid n\in\mathbb{N}\}$, então $(A\backslash B)\cap B=\emptyset$.

1.2. Se
$$A = \{1, 2, 3, 4, 5\}$$
 e $B = \{2n \mid n \in \mathbb{N}\}$, então $(A \setminus B) \cap A = \{1, 3, 5\}$.

1.3. Para todos os conjuntos
$$A, B \in C$$
, se $A \subseteq B$, então $A \setminus C \subseteq B \setminus C$.

1.3. Para todos os conjuntos
$$A, B \in C$$
, se $A \subseteq B$, então $C \setminus A \subseteq C \setminus B$.

1.3. Para todos os conjuntos
$$A$$
, B e C , se $A \subseteq B$, então $C \setminus B \subseteq C \setminus A$.

1.4. Para todo o conjunto
$$A$$
, se $A \neq \emptyset$, então $(A \times \{1, 2\}) \cap (A \times \{1, 3\}) \neq \emptyset$.

1.4. Para todo o conjunto
$$A$$
, se $(A \times \{1, 2\}) \cap (A \times \{1, 3\}) = \emptyset$, então $A = \emptyset$.

1.4. Para todo o conjunto
$$A$$
, se $(A \times \{1,2\}) \cap (A \times \{2,4\}) = \emptyset$, então $A = \emptyset$.

1.5.
$$\mathbb{N} \times \{3n : n \in \mathbb{N}\} = \{(n, 3n) : n \in \mathbb{N}\}.$$

1.5.
$$\{x : x \in \mathbb{R}\} \times \{x^2 : x \in \mathbb{R}\} = \{(x, x^2) : x \in \mathbb{R}\}.$$

$$1.5. \ \{n \in \mathbb{N} : n \text{ \'e par}\} \times \{n \in \mathbb{N} : n \text{ \'e impar}\} = \{(2n, 2n - 1) : n \in \mathbb{N}\}$$

- 1.6. Existe um conjunto A para o qual $\mathcal{P}(A)$ tem exatamente 64 elementos. $V \boxtimes \mathsf{F} \square$
- 1.6. Existe um conjunto A para o qual $\mathcal{P}(A)$ tem exatamente 68 elementos. $V \square F \boxtimes$
- 1.6. Existe um conjunto A para o qual $\mathcal{P}(A)$ tem exatamente 72 elementos. $V \square F \boxtimes$
- 1.7. Para qualquer conjunto $A, \mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) \neq \emptyset$.
- 1.7. Para qualquer conjunto $A, \emptyset \in \mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A))$.
- 1.7. Para qualquer conjunto $A, \{\emptyset\} \subseteq \mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A))$.

1.8. Se
$$S = \{(1,2)\}$$
 e $R = \{(2,3)\}$ são relações binárias em \mathbb{N} , $S \circ R = \{(1,3)\}$.

1.8. Se
$$S=\{(1,2)\}$$
 e $R=\{(2,3)\}$ são relações binárias em $\mathbb{N},\ R\circ S=\emptyset.$ $\mathsf{V}\Box\ \mathsf{F}\boxtimes$

1.8. Se
$$S = \{(1,2)\}$$
 e $R = \{(2,3)\}$ são relações binárias em \mathbb{N} , $R \circ S = \{(1,3)\}$.

1.9. Existem 256 relações binárias diferentes de
$$A = \{1, 2, 3, 4\}$$
 em $B = \{5, 6\}$.

1.9. Existem 256 relações binárias diferentes de
$$A = \{1, 2, 3, 4\}$$
 em $B = \{5, 6, 7, 8\}$.

1.9. Existem 256 relações binárias diferentes de
$$A = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
 em $B = \{9\}$. $V \boxtimes F \square$

1.10. Para
$$A=\{1,2\}$$
 e $B=\{3,4,5\}$, existe uma relação binária R de A em B tal que $R^{-1}\circ R=\mathrm{id}_A$. $V\boxtimes \mathsf{F}\square$

1.10. Para
$$A=\{1,2,3\}$$
 e $B=\{4,5\}$, existe uma relação binária R de A em B tal que $R^{-1}\circ R=\mathrm{id}_A$. $V\square$ $F\boxtimes$

					iria R de A em B t		$=\mathrm{id}_B.$ $V\boxtimes F\square$	
				ses seguintes, ass	sinale a(s) opção(õe	s) correta(s):		
2.1.	Seja A um conju	-						
	$\boxtimes \emptyset$	$\subseteq A$	$\boxtimes \emptyset \subseteq \{A\}$	$\Box \{\emptyset,$	$A\} \in \{A, \{\emptyset\}\}$	$\boxtimes \{\emptyset, A\}$	$\in \{A, \{\emptyset, A\}\}$	
2.1.	$Seja\ A\ um\ conju$	ınto qualqı	uer. Então:					
	$\boxtimes \emptyset \subseteq \{A, \{\emptyset$	$(A, \{A\})$	$\boxtimes \emptyset$	$\in \{\emptyset,A\}$	$\square\ \{\emptyset\} \in \{A, \{\emptyset,$	$A, \{A\}\}\}$	$\boxtimes \{\emptyset\} \in \{A, \{\emptyset\}\}$	
2.1.	2.1. Seja A um conjunto qualquer. Então:							
	$\square \; \emptyset \in \{A\}$		$\emptyset\subseteq\{A,\emptyset\}$	$\boxtimes \{\emptyset, A\}$	$\in \{\emptyset, A, \{\emptyset, A\}\}$	$\square\ \{\emptyset,A$	$\} \in \{A, \{\emptyset, A, \{A\}\}\}$	
2.2. Sejam $A = \{1,2\}$ e $B = \{1,\{2\}\}$. Então:								
	$\Box A$	$\square \ A \times B = \{(1,1),(1,2),(2,1),(2,2)\} \qquad \square \ A \times B = \{(1,1),\{(1,2)\},(2,1),\{(2,2)\}\}$						
$\boxtimes A \times B = \{(1,1), (1,\{2\}), (2,1), (2,\{2\})\} \Box A \times B = \{(1,1), (2,\{2\})\}$						$1), (2, \{2\})\}$		
2.2.	Sejam $A=\{1,2$	$\}$ e $B=\{$	$\{1\},2\}$. Então	0:				
	$\Box A$	$\square \ A \times B = \{(1,1),(1,2),(2,1),(2,2)\} \\ \boxtimes \ A \times B = \{(1,\{1\}),(1,2),(2,\{1\}),(2,2)\}$						
	$\Box A$	$\times B = \{\{$	$(1,1)$ }, $(1,2)$.	$\{(2,1)\},(2,2)\}$	$\Box \ A \times B = \{(1,$	$\{1\}), (2,2)\}$		
2.3.	2.3. Sejam A , B e C conjuntos. Então: $\Box \ A \backslash (B \cup C) \text{ \'e o menor conjunto que cont\'em } A \backslash B \text{ e } A \backslash C.$ $\boxtimes \ A \backslash (B \cap C) \text{ \'e o menor conjunto que cont\'em } A \backslash B \text{ e } A \backslash C.$ $\boxtimes \ A \cup (B \cap C) \text{ \'e o maior conjunto simultaneamente contido em } A \cup B \text{ e em } A \cup C.$							
$\square \ A \cap (B \cup C) \text{ \'e o maior conjunto simultaneamente contido em } A \cup B \text{ e em } A \cup C.$								
2.3. Sejam $A, B \in C$ conjuntos. Então: $ \square \ A \backslash (B \cap C) \ \text{\'e o maior conjunto simultaneamente contido em } A \backslash B \ \text{\'e em } A \backslash C. $								
$\boxtimes A \backslash (B \cup C)$ é o maior conjunto simultaneamente contido em $A \backslash B$ e em $A \backslash C$.								
	$\square \ A \cup (B \cap C)$ é o menor conjunto que contém $A \cup B$ e $A \cup C.$							
	$\square \ A \cap (B \cup C)$ é o menor conjunto que contém $A \cup B$ e $A \cup C.$							
2.3.	2.3. Sejam A , B e C conjuntos. Então: $\boxtimes A \setminus (B \cap C)$ é o menor conjunto que contém $A \setminus B$ e $A \setminus C$.							
	\Box $A \setminus (B \cup C)$ é o menor conjunto que contém $A \setminus B$ e $A \setminus C$. \Box $A \cup (B \cap C)$ é o maior conjunto simultaneamente contido em $A \cup B$ e em $A \cup C$. \Box $A \cap (B \cup C)$ é o maior conjunto simultaneamente contido em $A \cup B$ e em $A \cup C$.							
2.4.	4. Sejam $X=\{1,2,3,4,5,6\}$ e R a relação binária em X definida por							
	$R = \{(1,2), (1,4), (1,6), (2,4), (4,5), (4,6), (6,3)\}.$							
	Então,	6	/ (5					
	$\boxtimes R(\{2,3,4\}) = \{4,5,6\} \text{ e } R^{\leftarrow}(\{2,3,4\}) = \{1,2,6\}.$							
$\square R(\{2,3,4\}) = \{1,2,6\} \text{ e } R^{\leftarrow}(\{2,3,4\}) = \{4,5,6\}.$ $\boxtimes (R \circ R)(\{2,4\}) = \{3,5,6\} \text{ e } (R^{-1} \circ R^{-1})^{\leftarrow}(\{2,4\}) = \{3,5,6\}.$ $\square (R \circ R)(\{2,4\}) = \{3,5,6\} \text{ e } (R^{-1} \circ R^{-1})(\{3,5,6\}) = \{2,4\}.$								
2.4. Sejam $X = \{1, 2, 3, 4, 5, 6\}$ e R a relação binária em X definida por								
	$R = \{(1,2), (1,4), (1,6), (2,4), (4,5), (4,6), (6,3)\}.$							
	Então,			, ,, (, ,, (, ,	, (, ,, (, ,, (, ,	, (, , ,		
	$\boxtimes R(\{2,3,4\}) = \{4,5,6\} \ \mathrm{e} \ R^{\leftarrow}(\{2,3,4\}) = \{1,2,6\}.$							
	$\square \ R(\{2,3,4\}) = \{1,2,6\} \ e \ R^{\leftarrow}(\{2,3,4\}) = \{4,5,6\}.$							
	$\boxtimes (R \circ R)(\{1,4\})$,, , ,	, , ,	/((/ / / /	,, (,,,,			
	$\square \ (R \circ R)(\{1,4\}) = \{3,4,5,6\} \ e \ (R^{-1} \circ R^{-1})^{\leftarrow} (\{3,4,5,6\}) = \{1,4\}.$							

2.5. Sejam $R = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$ e $S = \{(x,y) \in \mathbb{R}^2 : y^2 = x^2\}$. Então,

$$\bowtie R \circ R = S$$

$$\boxtimes R \circ R = S$$
 $\boxtimes R \circ S = R$ $\square S \circ R = S$ $\boxtimes S \circ S = S$

$$\square S \circ R = S$$

$$\boxtimes S \circ S = S$$

2.5. Sejam $R = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$ e $S = \{(x,y) \in \mathbb{R}^2 : y^2 = x^2\}$. Então,

$$\square R \circ R = R$$

$$\square R \circ S = S$$

$$\square \ R \circ R = R$$
 $\square \ R \circ S = S$ $\boxtimes \ S \circ R = R$

$$\boxtimes S \circ S = S$$

2.5. Sejam $R = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$ e $S = \{(x,y) \in \mathbb{R}^2 : y^2 = x^2\}$. Então,

$$\square R \circ R = R$$
 $\boxtimes R \circ S = R$ $\square S \circ R = S$

$$\boxtimes R \circ S = R$$

$$\square S \circ R = S$$

$$\boxtimes S \circ S = S$$

Grupo 3. [5 valores] Responda a cada uma das questões, de forma detalhada e justificada.

3.1. Seja
$$A = \{1, 2, \{1\}, \{1, \{1\}\}, \{\{1\}\}\}$$
. Determine (a) $A \cap \mathcal{P}(A)$;

Qualquer elemento de $\mathcal{P}(A)$ é um conjunto, pelo que qualquer elemento de $A \cap \mathcal{P}(A)$ é um conjunto. Mais ainda, temos que:

$$X \in A \cap \mathcal{P}(A) \iff X \in A \land X \in \mathcal{P}(A) \iff X \in A \land X \subseteq A.$$

Assim, um elemento de $A \cap \mathcal{P}(A)$ é um conjunto que é simultaneamente um elemento e um subconjunto de A. Como

- $-\{1\} \in A \in \{1\} \subseteq A \text{ (pois } 1 \in A), \text{ temos que } \{1\} \in A \cap \mathcal{P}(A);$
- $\{-1, \{1\}\} \in A \in \{1, \{1\}\} \subseteq A \text{ (pois } 1 \in A \in \{1\} \in A), \text{ temos que } \{1, \{1\}\} \in A \cap \mathcal{P}(A);$
- $\{\{1\}\} \in A \text{ e } \{\{1\}\} \subseteq A \text{ (pois } \{1\} \in A), \text{ temos que } \{\{1\}\} \in A \cap \mathcal{P}(A)$

Logo,
$$A \cap \mathcal{P}(A) = \{\{1\}, \{1, \{1\}\}, \{\{1\}\}\}.$$

(b)
$$A \cap \mathcal{P}(\mathcal{P}(A))$$
;

Qualquer elemento de $\mathcal{P}(\mathcal{P}(A))$ é um conjunto, pelo que qualquer elemento de $A \cap \mathcal{P}(\mathcal{P}(A))$ é um conjunto. Mais ainda, temos que:

$$X \in A \cap \mathcal{P}(\mathcal{P}(A)) \iff X \in A \land X \in \mathcal{P}(\mathcal{P}(A)) \iff X \in A \land X \subseteq \mathcal{P}(A).$$

Assim, um elemento de $A \cap \mathcal{P}(\mathcal{P}(A))$ é um conjunto que é simultaneamente um elemento de A e um subconjunto de A cujos elementos são conjuntos. O único elemento de A que é um seu subconjunto cujos elementos são conjuntos $\{\{1\}\}$. Logo, $A \cap \mathcal{P}(\mathcal{P}(A)) = \{\{\{1\}\}\}$.

(c) O número de elementos de $\mathcal{P}(A \times \mathcal{P}(A))$.

O conjunto A tem 5 elementos, pelo que o conjunto $\mathcal{P}(A)$ tem 2^5 elementos, ou seja, tem 32 elementos. Assim, podemos concluir que o produto cartesiano $A \times \mathcal{P}(A)$ tem 5×32 elementos, ou seja, tem 160 elementos. Finalmente, estamos em condições de concluir que $\mathcal{P}(A \times \mathcal{P}(A))$ tem 2^{160} elementos.

3.1. Seja $A = \{1, 2, \{2\}, \{1\}, \{1, \{2\}\}, \{\{2\}\}\}\}$. Determine (a) $A \cap \mathcal{P}(A)$;

Qualquer elemento de $\mathcal{P}(A)$ é um conjunto, pelo que qualquer elemento de $A \cap \mathcal{P}(A)$ é um conjunto. Mais ainda, temos que:

$$X \in A \cap \mathcal{P}(A) \iff X \in A \land X \in \mathcal{P}(A) \iff X \in A \land X \subseteq A.$$

Assim, um elemento de $A \cap \mathcal{P}(A)$ é um conjunto que é simultaneamente um elemento e um subconjunto de A. Como

- $-\{1\} \in A \in \{1\} \subseteq A \text{ (pois } 1 \in A), \text{ temos que } \{1\} \in A \cap \mathcal{P}(A);$
- $-\{2\} \in A \in \{2\} \subseteq A \text{ (pois } 2 \in A), \text{ temos que } \{2\} \in A \cap \mathcal{P}(A);$
- $-\{1,\{2\}\}\in A \text{ e } \{1,\{2\}\}\subseteq A \text{ (pois } 1\in A \text{ e } \{2\}\in A), \text{ temos que } \{1,\{2\}\}\in A\cap \mathcal{P}(A);$
- $\{\{2\}\} \in A \text{ e } \{\{2\}\} \subseteq A \text{ (pois } \{2\} \in A), \text{ temos que } \{\{2\}\} \in A \cap \mathcal{P}(A)$

```
Logo, A \cap \mathcal{P}(A) = \{\{1\}, \{2\}, \{1, \{2\}\}, \{\{2\}\}\}.
```

(b) $A \cap \mathcal{P}(\mathcal{P}(A))$;

Qualquer elemento de $\mathcal{P}(\mathcal{P}(A))$ é um conjunto, pelo que qualquer elemento de $A \cap \mathcal{P}(\mathcal{P}(A))$ é um conjunto. Mais ainda, temos que:

$$X \in A \cap \mathcal{P}(\mathcal{P}(A)) \iff X \in A \land X \in \mathcal{P}(\mathcal{P}(A)) \iff X \in A \land X \subseteq \mathcal{P}(A).$$

Assim, um elemento de $A \cap \mathcal{P}(\mathcal{P}(A))$ é um conjunto que é simultaneamente um elemento de A e um subconjunto de A cujos elementos são conjuntos. O único elemento de A que é um seu subconjunto cujos elementos são conjuntos é $\{\{2\}\}$. Logo, $A \cap \mathcal{P}(\mathcal{P}(A)) = \{\{\{2\}\}\}$.

(c) O número de elementos de $\mathcal{P}(\mathcal{P}(A) \times A^2)$.

O conjunto A tem 6 elementos, pelo que o conjunto $\mathcal{P}(A)$ tem 2^6 elementos, ou seja, tem 64 elementos e o conjunto A^2 tem 6^2 elementos, ou seja, 36 elementos. Assim, podemos concluir que o produto cartesiano $\mathcal{P}(A) \times A^2$ tem 64×36 elementos, ou seja, tem 2304 elementos. Finalmente, estamos em condições de concluir que $\mathcal{P}(\mathcal{P}(A) \times A^2)$ tem 2^{2304} elementos.

- 3.2. Sejam A um conjunto qualquer e R, S e T relações binárias em A.
 - (a) Mostre que $T \cap (S \circ R) \subseteq T \circ (R^{-1} \circ R)$.

Sejam $x, y \in A$. Então:

$$\begin{split} (x,y) \in T \cap (S \circ R) & \Leftrightarrow (x,y) \in T \ \land \ (x,y) \in S \circ R \\ & \Leftrightarrow (x,y) \in T \ \land \ (\exists z \in A : (x,z) \in R \ \land \ (z,y) \in S) \\ & \Rightarrow (x,y) \in T \ \land \ (\exists z \in A : \ (x,z) \in R \ \land \ (z,x) \in R^{-1}) \\ & \Leftrightarrow (x,y) \in T \ \land \ (x,x) \in R^{-1} \circ R \\ & \Leftrightarrow (x,y) \in T \circ (R^1 \circ R), \end{split}$$

o que prova o pretendido.

(b) Dê exemplo de um conjunto A e relações binárias R, S e T em A tais que $T \cap (S \circ R) \neq T \circ (R^{-1} \circ R)$. Seja, por exemplo, $A = \{1, 2\}$, $R = \{(1, 2)\}$, $S = \{(1, 2)\}$ e $T = \{(1, 1), (1, 2)\}$. Então:

```
-T \cap (S \circ R) = T \cap \emptyset = \emptyset;
- R^{-1} \circ R = \{(1,1)\};
- T \circ (R^{-1} \circ R) = \{(1,1), (1,2)\}.
```

- 3.2. Sejam A um conjunto qualquer e R, S e T relações binárias em A.
 - (a) Mostre que, se $T^{-1} \circ S \subseteq S$, então $S \cap (T \circ R) \subseteq T \circ (S \cap R)$.

Sabendo que $T^{-1} \circ S \subseteq S$, queremos provar que $S \cap (T \circ R) \subseteq T \circ (S \cap R)$. Sejam $x,y \in A$. Então:

$$(x,y) \in S \cap (T \circ R) \quad \Leftrightarrow (x,y) \in S \ \land \ (x,y) \in T \circ R$$

$$\Leftrightarrow (x,y) \in S \ \land \ (\exists z \in A : (x,z) \in R \ \land (z,y) \in T)$$

$$\Leftrightarrow \exists z \in A : \ (x,y) \in S \ \land \ (x,z) \in R \ \land (z,y) \in T$$

$$\Leftrightarrow \exists z \in A : \ (x,y) \in S \ \land \ (y,z) \in T^{-1} \ \land \ (x,z) \in R \ \land (z,y) \in T$$

$$\Leftrightarrow \exists z \in A : \ (x,z) \in T^{-1} \circ S \ \land \ (x,z) \in R \ \land (z,y) \in T$$

$$\Rightarrow \exists z \in A : \ (x,z) \in S \ \land \ (x,z) \in R \ \land (z,y) \in T$$

$$\Leftrightarrow \exists z \in A : \ (x,z) \in S \cap R \ \land (z,y) \in T$$

$$\Leftrightarrow (x,y) \in T \circ (S \cap R),$$

o que prova o pretendido.

(b) Dê exemplo de um conjunto A e relações binárias R, S e T em A tais que $T^{-1} \circ S \subseteq S$ e $S \cap (T \circ R) \neq T \circ (S \cap R)$.

```
Seja, por exemplo, A=\{1,2\},\ R=\{(1,2),(1,1)\},\ S=\{(1,2)\} e T=\{(2,1)\}. Então: -\ T^{-1}=\{(1,2)\}; -\ T^{-1}\circ S=\emptyset\subseteq S; -\ S\cap (T\circ R)=S\cap \{(1,1)\}=\emptyset;
```

 $- T \circ (S \cap R) = T \circ \{(1,2)\} = \{(1,1)\}.$