Économétrie des données de panel Modèles dynamiques

Thomas Chuffart

thomas.chuffart@univ-fcomte.fr

Introduction

Definition

On considère désormais un modèle de panel dynamique, i.e la variable expliquée retardée est incluse dans les variables explicatives :

$$y_{it} = \gamma y_{i,t-1} + \beta' x_{it} + \alpha_i^* + \varepsilon_{it}$$
 (1)

pour $i=1,\ldots,N$ et $t=1,\ldots,T$. α_i^* modélise les effets individuels. $E\left[\varepsilon_{it}\right]=0$, $E\left[\varepsilon_{it}\varepsilon_{js}\right]=\sigma_\varepsilon^2$ pour j=i et t=s.

Le choix entre effets fixes et aléatoires a des implications sur l'estimation du modèle encore différentes que précédemment.

Introduction

Remarques

- Valeur initiale, quel choix? On verra que dans le modèle à effets aléatoires, l'interprétation dépend de l'hypothèse de la valeur de départ.
- La convergence de l'estimateur MCG est vérifiée uniquement dans certains cas.
- L'hypothèse de stricte exogénéité des variables explicative n'est plus vérifiée. L'estimateur LSDV n'est plus convergent quand T est fini.

Outline

- Introduction
- Biais dynamique
- L'approche par variables instrumentales
- GMM

- L'estimateur LSDV est convergent dans le cadre statique pour les deux types d'effets, fixes ou random.
- L'estimateur LSDV ne converge plus quand on introduit de la dynamique dans le modèle de panel.

Definition

Le biais de l'estimateur LSDV dans un modèle dynamique de panel est généralement connu sous le nom du biais de Nickell (1981)

Definition

Le modèle de panel autoregressif d'ordre 1 est défini par :

$$y_{it} = \gamma y_{i,t-1} + \alpha_i + \alpha + \varepsilon_{it}$$
 (2)

Avec $|\gamma|$ < 1, y_{i0} est observable et ε_{it} satisfait les conditions usuelles.

Theorem

$$\operatorname{plim} \hat{\gamma}_{LSDV} \neq \gamma \quad \text{et} \quad \operatorname{plim}_{n,t \to \infty} \hat{\gamma}_{LSDV} = \gamma$$

$$\hat{\gamma}_{LSDV} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1})^{2}\right)^{-1}$$
$$\left(\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1}) (y_{it} - \bar{y}_{i})\right)$$

Le biais de γ_{LSDV} est donc :

$$\hat{\gamma}_{LSDV} = \gamma + \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1})^{2}\right)^{-1}$$
$$\left(\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \bar{y}_{i,-1}) (\varepsilon_{it} - \bar{\varepsilon}_{i})\right)$$

Le deuxième terme peut s'écrire :

$$\frac{(1/nT)\sum_{i=1}^{N}\sum_{t=1}^{T}\bar{y}_{i,t-1}\varepsilon_{it} - \sum_{i=1}^{N}\sum_{t=1}^{T}\bar{y}_{i,t-1}\bar{\varepsilon}_{i} - \sum_{i=1}^{N}\sum_{t=1}^{T}\bar{y}_{i,-1}\varepsilon_{it} + \sum_{i=1}^{N}\sum_{t=1}^{T}\bar{y}_{i,-1}\bar{\varepsilon}_{i}}{(1/nT)\left(\sum_{i=1}^{N}\sum_{t=1}^{T}\left(y_{i,t-1} - \bar{y}_{i,-1}\right)^{2}\right)}$$

Le biais dépend donc du numérateur

- Si un des terme ne converge pas vers 0 en probabilité
- Il faut donc étudier chaque terme un à un.
- Dans ce cours, on ne prouvera pas la convergence de chaque terme.

- **p** plim du 1er terme = 0 car ε_{it} non corrélé avec $y_{i,-1}$
- Le 2ème terme : $\frac{1}{nT}\sum_{i=1}^{N}\sum_{t=1}^{T}y_{i,t-1}\bar{\varepsilon}_i \Rightarrow \frac{1}{n}\sum_{i=1}^{N}\bar{y}_{i,-1}\bar{\varepsilon}_i$
- Le 4ème terme : $\frac{1}{nT}\sum_{i=1}^{N}\sum_{t=1}^{T}\bar{y}_{i,-1}\bar{\varepsilon}_{i}\Rightarrow \frac{1}{n}\sum_{i=1}^{N}\bar{y}_{i,-1}\bar{\varepsilon}_{i}$
- Donc ces deux termes s'annulent

Remarque

L'expression du biais asymptotique de l'estimateur LSDV s'écrit :

$$-\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{N}\bar{y}_{i,-1}\bar{\varepsilon}_{i}$$
(3)

Theorem

Si les ε_{it} sont IID, alors le biais est égale à :

$$\underset{n\to\infty}{\mathsf{plim}}(\gamma - \gamma_{LSDV}) = -\frac{(1-\gamma)\left(T - T\gamma - 1 + \gamma^{T}\right)}{(1-\gamma)\left(T - T^{2} - \frac{2\gamma}{(1-\gamma)^{2}}\left(T - T\gamma - 1 - \gamma^{T}\right)\right)} \tag{4}$$

Mais, qu'est-ce que cela signifie concrètement?

- Si $T \to \infty$, le biais tend vers une constante non nulle. L'estimateur est alors convergent
- Sinon, l'estimateur LSDV est biaisé et ne converge pas!!!
- Le biais est causé par l'élimination des effets individuels α pour chaque observation ce qui crée une corrélation d'ordre $\frac{1}{T}$ entre les variables explicatives et les résidus.

Biais dynamique

```
# Fonction permettant de créer l'index temporel
get_year <- function(t,n){
 return(rep(1:t,n))
# Fonction permettant de créer l'index individuel
get_id <- function(t,n){
  id <- rep(0,(t*n))
 for (i in 1:n){
   id[(1+(t*(i-1))):(t*i)] \leftarrow rep(i,t)
 return(id)
# Fonction simulant les données
coeff_lsdv_arsim <- function(t,n,g){</pre>
  alpha <- runif(n,-1,1) # Simulation des paramètres non-observés
 y <- array(rep(0, (t+1)*n), dim=c(t+1, n)) # Initialisation de la variable dépendante
 e <- array(rnorm((t+1)*n), dim=c(t+1, n)) # Simulation des erreurs
 for (t in 2:(t+1)){ # On simule la variable expliqué
    y[t,] \leftarrow alpha + g*y[t-1,] + e[t,]
 y0 <- y[2:t,] # y0 est la variable dépendante
 v1 <- v[1:(t-1).] # v1 est le lag de la variable dépendante
 v0 < -c(v0)
 v1 < -c(v1)
 df <- data.frame(id,year,y0,y1) # Construction du dataframe
  # Estimateur LSDV
 lsdv <- plm(y0 ~ y1, index = c("id", "year"), data = df, model = "within")</pre>
 gam_hat <- lsdv$coefficients
 return(gam_hat)
```

Biais dynamique

```
g = (0:7)/10
t = c(10,20,50,100)
R = 500 ## Nombre de réplications
biais_g <- matrix(0, nrow = length(g), ncol = length(t))
biais_gam_hat <- rep(NA,R)
for (1 in 1:length(t)){
    for (k in 1:length(g)){
        G <- g[k] ## Paramètre autorégressif
        T <- t[l] ## Nombre de périodes
    N <- 100 ## Nombre d'individus
    year <- get_year(T,N) ## Construction de l'index temporel
    id <- get_id(T,N)
    for (r in 1:R){ ## Boucle sur les réplications
        biais_gam_hat[r] <- coeff_lsdv_arsim(T,N,G) - G
    }
    biais_g[k,l] <- mean(biais_gam_hat)
}
</pre>
```

Biais Dynamique

```
col_set <- rainbow(4)
matplot(g,biais_g, type = 'l', col = col_set)
legend("bottomleft", c("T=10", "T=30", "T=50", "T=100"), col
</pre>
```


	Τ	n	γ	$ar{\hat{\gamma}}_{\mathit{LSDV}}$	biais
Expérience de Monte-Carlo	10	10	0.4	0.238	-0.162
	10	100	0.4	0.246	-0.154
	100	10	0.4	0.386	-0.014
	100	100	0.4	0.386	-0.014
	10	10	0.1	-0.0251	-0.125
	10	100	0.1	-0.017	-0.120
	100	10	0.1	0.0895	-0.011
	100	100	0.1	0.089	-0.011

Que faire?

- ML et MCG mais nécessite une hypothèse supplémentaire (on aime pas ça) sur la valeur initiale
- LSDV corrigé du biais
- Variables instrumentales (Anderson and Hsiao, 1982)
- GMM (Arenallo and Bond, 1985)

Outline

- Introduction
- Biais dynamique
- L'approche par variables instrumentales
- GMM

Vous ne l'appliquerai pas dans votre projet mais vous devez la connaître :

- Permet de faire une rappel sur les variables instrumentales
- Retour sur l'estimation 2SLS (two stage least square)

Rappels

Soit le modèle suivant :

$$y = X\beta + \varepsilon$$

- y est de taille N
- \blacksquare X est une matrice de variables explicatives $N \times K$
- \blacksquare β est un vecteur $K \times 1$
- ε est un vecteur $N \times 1$ avec $E[\varepsilon] = \mathbf{0}$ et $V[\varepsilon|X] = \sigma_{\varepsilon}^2 I_N$

Rappels

Que se passe-t'il l'hypothèse d'exogénéité n'est pas respectée ?

$$E\left[\varepsilon|X\right] \neq \mathbf{0}, \quad \underset{n \to \infty}{\text{plim}} \frac{1}{N} X' \varepsilon = \gamma \neq \mathbf{0}$$

- $\qquad \operatorname{plim} \hat{\beta} = \beta + Q^{-1} \gamma$

Rappels

Definition

Soit $z_h \in \mathcal{R}^N$, un ensemble de H variables. Ces variables sont des instruments si elles sont **exogènes** aux erreurs $E\left[\varepsilon|Z\right]=0$ et corrélées aux variables explicatives $E\left[x_{ik}z_{ih}\right]\neq0$.

Example

On veut estimer l'impact de l'éducation et de l'expérience sur le salaire.

- On suspecte l'éducation d'être endogène. ie. l'éducation peut-être expliquée par diverses choses qui pourraient aussi avoir un impact sur le salaire.
- On introduit l'éducation du père : généralement corrélée avec l'éducation du fils mais non corrélé avec la variable expliquée.

Rappels

Hypothèses:

- plim $\frac{1}{N}Z'Z = Q_{ZZ}$
- plim $\frac{1}{N}Z'X = Q_{ZX}$
- plim $\frac{1}{N}Z'\varepsilon = \mathbf{0}$ ou $E[z_i(y_i x_i'\beta)] = 0$

Rappels

La troisième hypothèse signifie donc que l'on a H équations et K paramètres inconnus :

- Si H > K le modèle est sur-identifié, on utilise la méthode 2SLS
- ullet Si H < K le modèle est sous-identifié, on ne peut rien faire
- H = K le modèle est identifié, on utilise la méthode IV classique $\beta_{IV} = (Z'X)^{-1}Z'y$

Rappels

Si H > K, la matrice Z'X ne peut pas s'inverser. Il faut utiliser le 2SLS.

Definition

L'estimateur $\hat{\beta}_{2SLS}$ est donné par :

$$\hat{\beta}_{2SLS} = (\hat{X}'X)^{-1}\hat{X}'y \tag{5}$$

avec
$$\hat{X} = Z(Z'Z)^{-1}Z'X$$

Rappels

Stage 1 : On régresse chaque variable explicative sur chaque instrument :

$$x_{ki} = \alpha_1 z_{1i} + \dots + \alpha_h z_{hi} + u_i$$

On construit ensuite \hat{x}_{ki}

■ Stage 2 : On régresse y_i sur \hat{x}_{ki} :

$$y_i = \beta_1 \hat{x}_{1i} + \dots + \beta_k \hat{x}_{ki} + \varepsilon_i$$

IV dans le panel

Soit le modèle dynamique suivant :

$$y_{it} = \gamma y_{i,t-1} + \alpha_i + \beta' x_{it} + \rho' \omega_i + \varepsilon_{it}$$

Hypothèses:

- $E[\varepsilon_{it}] = 0$, $E[\alpha_i] = 0$, $E[\varepsilon_{it}\varepsilon_{js}] = \sigma_{\varepsilon}^2$, j = i, t = s
- $E[\alpha_i \alpha_j] = \sigma_{\alpha}^2$, $E[\alpha_i x_{it}] = [\alpha_i \omega_i] = 0$

IV dans le panel

$$y_i = y_{i,-1}\gamma + \alpha_i e + x_i \beta + \omega_i' \rho e + \varepsilon_i$$

Anderson and Hsiao, 1982:

- Étape 1 : Transformation différence première
- ullet Étape 2 : Sélection des instruments et estimation de γ et eta
- lacktriangle Étape 3 : Estimation de ho
- Étape 4 : Estimation de σ_{ε}^2 et σ_{α}^2

IV dans le panel

Étape 1 : Transformation différence première

$$\Delta y_{it} = y_{it} - y_{i.t-1} = \gamma \Delta y_{i,t-1} + \beta' \Delta x_{it} + \Delta \varepsilon_{it}$$

Comme la transformation Within, cette transformation permet de retirer les effets individuels.

IV dans le panel

Étape 2 : Sélection des instruments et estimation de γ et β

- $E[z_{it}(\varepsilon_{it} \varepsilon_{i,t-1})] = 0$
- $E[z_{it}(y_{i,t-1}-y_{i,t-2})] \neq 0$

Deux choix possible : $z_{it} = y_{i,t-2}$ et $z_{it} = y_{i,t-2} - y_{i,t-3}$.

IV dans le panel

Étape 3 : Estimation de ρ

$$\bar{y}_i - \hat{\gamma}_{IV} \bar{y}_{i,-1} - \hat{\beta}_{IV} \bar{x}_i = \rho_i' \bar{\omega}_i + u_i$$

Étape 4 : Estimation de σ_{ε}^2 et σ_{α}^2

Outline

- Introduction
- Biais dynamique
- L'approche par variables instrumentales
- GMM

GMM Le concept

Lars Peter Hansen (1982) : Generalised Method of Moments

- Theory-driven : croyance dans la modélisation paramétrique
- mais des hypothèses peuvent ne pas être vérifiées
- Adrian Pagan (2003) : la modélisation doit être un mix entre la cohérence théorique et empirique

GMM Le concept

Les estimateurs GMM utilisent des hypothèses sur les moments des variables aléatoires pour dériver une fonction objective :

- Les moments présumés des variables aléatoires fournissent des conditions sur les moments de la population
- Les données sont utilisées pour calculer les moments empiriques
- L'estimations des paramètres se fait en respectant au mieux les conditions sur les moments
- Minimisation d'une fonction objective.

Le concept

La méthode des moments, Pearson (1895) :

- On cherche à estimer la moyenne d'une distribution par la moyenne empirique,
- La variance par sa variance empirique, ect...
- $\blacksquare \ \mu = \mathbb{E}\left[y\right]$
 - La condition sur ce moment est : $\mathbb{E}[y] \mu = 0$
 - Soit $\frac{1}{N} \sum y_i \mu = 0$

Le concept

Soit $y_i = x_i \beta + \varepsilon_i$:

- $\blacksquare \ \mathbb{E}\left[\varepsilon|x\right] = 0 \Rightarrow \mathbb{E}\left[x\varepsilon\right] = 0$
- Population condition $\mathbb{E}\left[x\left(y-x\beta\right)\right]=0$
- Échantillon condition : $\frac{1}{N} \sum_{i=1}^{N} (x_i (y_i x_i \beta)) = 0$

Le concept

- La MM fonctionne uniquement quand le nombre de conditions est égale au nombre de paramètre à estimer.
- Si il y en a plus, le système est sur-identifié et ne peut se résoudre
- Les GMM minimisent une fonction sur les conditions des moments. Si la condition d'exogénéité n'est pas respectée, on peut écrire les conditions comme :

$$\mathbb{E}\left[z\left(y-x\beta\right)\right]=0\tag{6}$$

Le panel dynamique

Soit le modèle de panel dynamique :

$$y_{it} = \gamma y_{i,t-1} + \beta' x_{it} + \rho' \omega_i + \alpha_i + v_{it}$$
 (7)

- lacksquare α_i sont les effets individuels non-observés
- x_{it} est un vecteur de k_1 variables explicatives
- ω_i est un vecteur de k_2 variables explicatives invariantes

Le panel dynamique

Hypothèses:

- $\mathbf{v}_{it} = \varepsilon_{it} + \alpha_i$, $\mathbb{E}(\alpha_i) = 0$ et $\mathbb{E}(\varepsilon_{it}) = 0$
- $\blacksquare \mathbb{E}\left(\varepsilon_{it}\varepsilon_{js}\right) = \sigma_{\varepsilon}^{2} \text{ et } \mathbb{E}\left(\alpha_{i}\alpha_{j}\right) = \sigma_{\alpha}^{2}$
- $\mathbb{E}\left(\alpha_{i}x_{it}\right)=0 \text{ et } \mathbb{E}\left(\alpha_{i}\omega_{i}\right)=0$

Definition

L'estimation GMM est basé sur un modèle en différence première pour éliminer les α_i et les ω_i :

$$(y_{it} - y_{i,t-1}) = \beta'(x_{it} - x_{i,t-1}) + \varepsilon_{it} - \varepsilon_{i,t-1} + \gamma(y_{i,t-1} - y_{i,t-2})$$
(8)

Le panel dynamique

Intuition sur les moment conditions :

- $y_{i,t-2}$ et $y_{i,t-2} y_{i,t-3}$ ne sont pas les seuls instruments valident.
- Toutes les variables retardées $y_{i,t-2-j}$ valident :

$$\mathbb{E}\left(y_{i,t-2-j}\left(\varepsilon_{i,t}-\varepsilon_{i,t-1}\right)\right)=0$$

$$\mathbb{E}\left(y_{i,t-2-j}\left(y_{i,t-1}-y_{i,t-2}\right)\right)\neq0$$

Le panel dynamique

Remarque

Intuition : les m + 1 conditions

$$\mathbb{E}(y_{i,t-2-j}\left(\varepsilon_{it}-\varepsilon_{i,t-1}\right))=0\tag{9}$$

peuvent être utilisées pour estimer le vecteur de paramètres $\theta = \{\beta, \gamma, \rho, \sigma_{\alpha}^2, \sigma_{\varepsilon}^2\}$

M. Arellano et S. Bond (1991). « Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations ». In: Review of Economic Studies 58.3, p. 277-297. DOI: 10.3982/ECTA11319

Le panel dynamique

Definition

A chaque période, on a ces conditions orthogonales :

$$\mathbb{E}\left(q_{it}\Delta\varepsilon_{it}\right)=0,\quad q_{it}=\left\{y_{i0},y_{i1},\ldots,y_{it-2},x_{i}'\right\}$$
(10)

Période	Nombre de conditions
t = 2	$1+Tk_1$
t = 3	$2 + Tk_1$
:	:
t=T	$(T-1) Tk_1$
Total	$T(T-1)(\frac{k_1+1}{2})$

Le panel dynamique

Definition

L'estimateur GMM minimise le critère suivant :

$$\hat{\theta} = \operatorname{argmin} \quad q(y, \theta) = \operatorname{argmin} \quad \hat{m}(y, \theta)' S^{-1} \hat{m}(y, \theta)$$
 (11)

avec S^{-1} est une matrice de poids.