

Como interpretar!

Balanço Hídrico

O Balanço Hídrico é facilmente entendido como um método climático utilizado para estimar o teor de água existente no solo, disponível à comunidade vegetal, sendo estabelecido como a relação entre a precipitação e a evapotranspiração. A variação dessa relação possibilita quantificar a água armazenada no interior do solo, mediante o saldo do que entrou e do que saiu nas diferentes épocas do ano (Figura 1).

Para realização da estimativa do balanço hídrico é necessário estabelecer a capacidade de água disponível (CAD), a qual corresponde o intervalo entre o máximo (CC) e o mínimo (PMP) teor de água de um solo, dado pela seguinte equação:

$$CAD = 0.01 \bullet (CC - PMP) \bullet d \bullet z \tag{1}$$

Onde **CAD** é a capacidade de água disponível (mm); **CC** é a capacidade de campo; **PMP** é o ponto de murchamento permanente; **d** é densidade global do solo e **z** é a profundidade efetiva do solo.

Figura 1. Representação gráfica do Balanço Hídrico mediante as entradas e saídas de água de um volume de

Entradas:

P = Precipitação;

I = Irrigação;

O = Orvalho;

Ri = Escoamento superficial de entrada (Run in);

DLi = Drenagem lateral de entrada;

AC = Ascensão Capilar.

Saídas:

ET = Evapotranspiração;

Ro = Escoamento superficial de saída (Run off);

DLo = Drenagem lateral de saída;

DP = Drenagem profunda.

Mesmo se tratando de uma informação pontual, o Balanço Hídrico Climatológico oferece dados para diferentes aplicações de planejamento e de desenvolvimento regional, tornado-se uma ferramenta muito importante na realização de estudos da caracterização climática.

Para a agricultura, as informações do Balanço Hídrico Climatológico estão relacionadas ao conhecimento do regime hídrico de uma região; da época mais

apropriada ao longo do ano, para o preparo do solo, semeadura e plantio e a viabilidade de implantação de sistemas de irrigação ou drenagem. O balanço hídrico permite também definir os períodos de déficit hídrico em que há necessidade de irrigação e a identificação dos períodos de excesso, os quais poderão ser aproveitados no armazenamento superficial da água da chuva.

Precipitação Pluviométrica (P)

Conforme o Manual de Observações Meteorológicas (1999), a precipitação é definida como o conjunto de partículas líquidas ou sólidas, provenientes da condensação do vapor d'água, que cai das nuvens (chuva, chuvisco, neve ou granizo); como partículas mais ou menos suspensas na atmosfera (nevoeiro ou bruma) e partículas depositadas (geada e orvalho).

O total de chuvas precipitadas foi coletado utilizando-se o pluviômetro tipo "Ville de Paris", sendo processada pelo somatório dos valores obtidos nas observações das 15:00 e 21:00h local do dia anterior, acrescida da observação das 9:00h local do dia em questão, sendo expressa em milímetros (mm).

Para o balanço hídrico, a primeira coluna representa o suprimento natural de água ao solo realizado através da precipitação de cada mês, desconsiderando as contribuições do orvalho e da ascensão capilar, uma vez que representam valores muito pequenos.

Evapotranspiração Potencial (ETP)

A evapotranspiração potencial, representada pela segunda coluna do balanço hídrico, expressa a quantidade máxima de água susceptível à perda, de uma extensa superfície vegetada com grama, em crescimento ativo e sem restrição de água no solo, na forma de vapor e sob determinada condição de clima reinante, ou seja, é o que a atmosfera demanda. A evapotranspiração potencial é expressa em mm (milímetros).

Diferença entre Precipitação e Evapotranspiração (P-ETP)

Este componente representa a terceira coluna do balanço e resulta da subtração da precipitação contra a evapotranspiração potencial. Os valores positivos indicam a ocorrência de maior entrada de água, através da precipitação ou irrigação suplementar; ou maior demanda pela atmosfera (ETP), quando os valores forem negativos, demonstrando que a precipitação não foi capaz de suprir a evapotranspiração.

Negativo acumulado (NEG-AC)

O negativo acumulado (NEG-AC), coluna de número quatro do balanço hídrico, representa uma acumulada perda hipotética de água do solo devido à precipitação não atender a demanda atmosférica (ETP).

Armazenamento (ARM)

O armazenamento (ARM), quinta coluna, representa o volume de água existente no solo disponível às plantas em um determinado instante. O armazenamento é máximo quando o valor apresentado é igual à capacidade de água disponível (CAD), podendo oscilar entre totalmente seco (ponto de murchamento permanente - PMP) e totalmente suprido de água (capacidade de campo - CC).

Alteração no Armazenamento (ALT)

A alteração no armazenamento (ALT), apresentada na coluna de número seis, representa a variação da quantidade de água existente no solo em relação ao período anterior. Seu valor é positivo quando há reabastecimento de água ao solo indicando a quantidade adicionada e, negativo quando ocorre diminuição do volume disponível no interior do solo.

Evapotranspiração real (ETR)

A coluna número sete, evapotranspiração real (ETR), representa a quantidade de água perdida, na forma de vapor, pelo solo e pelas plantas em função da umidade existente no solo, ou seja, é o que a atmosfera realmente consegue retirar do sistema solo-planta.

Deficiência hídrica (DEF)

A deficiência hídrica (DEF), apresentada na coluna de número oito do balanço hídrico, representa quanto o sistema solo-planta deixou de evapotranspirar para ter seu crescimento e desenvolvimento se realizando em condições normais, devido à falta de água no solo.

Excedente hídrico (EXC)

O excedente hídrico (EXC), coluna nove, representa a quantidade de água que ultrapassou o limite máximo de retenção de água do solo causando escoamento superficial que irá abastecer rios, lagos e oceanos, e drenagem profunda que irá abastecer o lençol freático e os agüíferos subterrâneos.

INMET QUALIDADE	INSTITUTO NACIONAL DE METEOROLOGIA								
	Localidade	Brasília			Estado Distrito Federal			Latitude (S.)	15°47'
ISO 9001	Altitude (m)	1159.54						Longitude (W.)	47°56'
Colunas	1	2	3	4	5	6	7	8	9
Tempo	P	ETP	P-ETP	NEG-AC	ARM	ALT	ETR	DEF	EXC
Mês	mm	mm	mm	NEG-AC	mm	mm	mm	mm	mm
Jan	241.4	91.9	149.5	0.0	100.0	0.0	91.9	0.0	149.5
Fev	214.7	82.1	132.6	0.0	100.0	0.0	82.1	0.0	132.6
Mar	188.9	89.7	99.2	0.0	100.0	0.0	89.7	0.0	99.2
Abr	123.8	78.3	45.5	0.0	100.0	0.0	78.3	0.0	45.5
Mai	39.3	68.8	-29.5	-29.5	74.4	-25.6	64.9	4.0	0.0
Jun	8.8	58.1	-49.3	-78.8	45.5	-29.0	37.8	20.3	0.0
Jul	11.8	61.2	-49.4	-128.1	27.8	-17.7	29.5	31.6	0.0
Ago	12.8	81.0	-68.2	-196.3	14.0	-13.7	26.5	54.5	0.0
Set	51.9	93.8	-41.9	-238.3	9.2	-4.8	56.7	37.1	0.0
Out	172.1	96.1	76.0	-16.0	85.2	76.0	96.1	0.0	0.0
Nov	238.0	91.2	146.8	0.0	100.0	14.8	91.2	0.0	131.9
Dez	248.6	92.5	156.1	0.0	100.0	0.0	92.5	0.0	156.1
Total/Ano	1552.1	984.7	567.4	-	-	0.0	837.2	147.5	714.8

Tabela 1: Estimativa do balanço hídrico pelo método de Thornthwaite & Mather para Brasília, DF.

Gráfico 1. Balanço Hídrico Climatológico.

O Gráfico 1 apresenta o curso anual do balanço hídrico com ocorrência de excesso de novembro a abril e déficit de maio a setembro. Nem toda água que ultrapassa a necessidade das plantas constitui excedente hídrico (área azul), podendo ser armazenada no solo (área verde) e utilizada pelas plantas à medida que as chuvas cessam (área laranja). Desta forma, as áreas em verde, azul e laranja, demonstram que existe umidade no solo para ser utilizada por algumas culturas. O período de deficiência (área vermelha) inicia-se em maio e vai até setembro, se caracterizando como um período de estiagem prolongada. Nesse período, o estoque de água do solo é rapidamente esgotado causando sérios problemas às culturas, além de corresponder ao período de vazante dos rios, cessando totalmente alguns cursos d'água o que implica na impossibilidade de uso da irrigação suplementar.

5

Gráfico 2. Armazenamento de água no solo.

O Gráfico 2 demonstra o comportamento da umidade do solo ao longo do ano. A linha azul representa a capacidade máxima de estocagem de água no solo e a linha vermelha, a variação do armazenamento ocorrida em função do excesso (meses de novembro a abril) e do déficit hídrico (maio a setembro). Cabe ressaltar que a variação da umidade do solo representa uma deficiência diferenciada para cada tipo de cultura e, a depender do estádio de desenvolvimento de uma mesma cultura, essa deficiência pode ser severa ou não.