

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 DIGITAL ELECTRONICS SEMESTER - 1

Time	:	3	Hours	1
------	---	---	-------	---

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

1.	Cho	ose th	e correct alternatives for any	ten of the	e following :	10 x 1 = 10
\$ 4	, 1)	(11	$(00.1011)_2 = (?)_{10}$	•		
•		a)	10-6785	b)	11.6578	
		c)	12.6875	d)	13-6785.	
	ii)	2's	complement of 10101100 is			•
	,	a)	11001010	b)	01010011	
		c)	01010100	d)	01011001.	
	: iii }	(24	7·36) ₈ = (?) ₁₆		_	
		a)	A7·78	b)-	1A7·36	•
		c)	B7·87	d)	1B7·36.	
	iv)	MB	R, in reference to memory ma	nagemen	t is	
		a)	Memory Broad Register	b)	Memory Buffer Relay	
		c}	Memory Buffer Register	d)	None of these.	
	v)	Qut	put of NAND gate is 1, if and	only if		
		a)	all inputs are 1	b)	any input is 1	
	,	c)	all inputs are 0	d)	any input is 0.	

CS/BCA/	SEM-1	/BCA-	101	/08	/(09

4

	1
S	

vi)
$$A + \overline{A} = ?$$

a)

b) (

c) A

- d) \overline{A} .
- vii) If the no. of states of a counter is 8, then the no. of flip-flops is
 - a) 8

b) 3

c) 4

- d) 6.
- viii) $(A.B + \overline{A}.B + \overline{A}.\overline{B})$ is equal to
 - a) A+B

b) **A**+B

c) A+B

- d) 1.
- ix) Karnaugh Map is used to
 - a) simplify Boolean function
 - b) design Boolean function
 - c) evaluate Boolean function
 - d) none of these.
- x) A multiplexer has
 - a) single input

b) multiple output

c) no output

- d) single output.
- xi) Output of R-S (NAND) flip-flop, for R = 1 & S = 1 is
 - 'a) set

b) reset

c) race

- d) no change.
- xii) Subtracting 1111 from 11000 will result to
 - a) 1000

b) 1100

c) 1001

d) 1011.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Apply K-map to obtain the minimal form for the function :

$$F(A, B, C, D) = \Sigma(0, 4, 5, 7, 8, 9, 13, 15)$$

 $d(A, B, C, D) = \Sigma(1, 2, 6, 10)$

- 3. Draw a half-adder circuit and describe its operations.
- 4. Design a 4-bit up-down counter.
- 5. Prove the following logical equation using Boolean algebra:

$$(A+BC) \cdot (B+A\overline{C}) = BC + A\overline{C}$$

- 6. i) Subtract $(7489)_{10}$ $(2485)_{10}$ using 10's complement method.
 - ii) What is a Multiplexer? Why is it called "Data selector"?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) Represent the decimal number "27" in
 - i) BCD code
 - ii) Octal code
 - tit) Gray code.
 - b) Draw the block diagram of a digital multiplexer and explain its function.
 - c) Give the functional truth table of a 4:1 multiplexer and realize it using basic gates AND, OR and NOT.
 - d) Implement the expression using a multiplexer :

$$f(A, B, C, D) = \Sigma m(0, 2, 3, 6, 8, 9, 12, 14)$$

3 + 4 + 4 + 4

- 8. a) What do you mean by a sequential circuit?
 - b) What are synchronous & asynchronous sequential circuits?
 - c) Explain the functionality of D-flip-flop. Give the truth table, State diagram.
 - d) What do you mean by Edge-triggering & Level-triggering in flip-flops?

2 + 3 + 5 + 5

- 9. a) What is a flip-flop?
 - b) What are the uses of flip-flops?
 - c) Give the circuit diagram of a J-K flip-flop.
 - d) Give the truth tables of S-R & J-K flip-flops.

2+3+4+6

10. a) Given the following truth table:

17,21-1	Inputs	Outp	uts	
x	у	z	+ Je F1 A+8	F2
0	June 10 Omstrane	e O O O au Ma	act (7480)-(248	0
0	0	1	1	0
0	1 .	0	1 .	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	introduction and	0	0 290/8 0	1
1	1	1	1	1

- i) Obtain the simplified functions in sum of products.
- ii) Obtain the simplified functions in product of sums.
- b) Design a BCD to Exess-3 Code converter.

8 + 3

- 11. a) Explain different types of RAM and ROM.
 - b) Write short notes on any two of the following:
 - i) Parity checker
 - ii) Ring counter
 - iii) Magnitude comparator.

 $7 + (2 \times 4)$

Fins: TO D

					The second secon
	me:.		••••••	•••••••	***************************************
Rol	l No. :		•••••••	•••••••	Market J. W.
Inv	igil ate	r's S	ignature :		
					L/BCA-101/2009-10
			2	009	
			DIGITAL E	LECTRO	NICS
Ttr	e All	otted	: 3 Hours		Full Marks : 70
		Ti	ne figures in the ma	rgin indica	te full marks.
C	andid	ates		their ansu as practica	vers in their own words ble.
			GRO (Multiple Choic	UP – A e Type Qu	estions)
1.	Cho	ose	the correct alterna	tives for th	e following:
					$10 \times 1 = 10$
	ŋ	A :	3-bit synchronov	s counter	r uses flip-flops with
		pro	pagation delay ti	me of 20 r	ns each. The maximum
		pos	sible time required	d for chang	
		a)	60 ns	b)	40 ns
		c)	20 ns	d)	none of these.
	ii)		•	-	ed by using which
			nplement represen		
		a)	l's	b)	2's
		c)	10's	d)	9's.
	iii) ˈ				ion is most suitable for
		des	signing logic circuit	s using on	ly
		a)	XOR gates	b)	NOR gates

d)

OR gates.

[Turn over

NAND gates

`c)

BCA	/SEI	M-1/BCA-101/2009-10							
iv)	The dual of a Boolean function is obtained by								
	a)	interchanging all 0s a	nd 1s	only					
	b)	changing 0s to 1s onl	y .	-					
	c)	changing 1s to 0s onl	y						
	d)	interchanging all Os a	nd ls	and '+' and '.' signs.					
v) `			the	following code the					
	a)	Excess-3	b)	Gray.					
	c)	BCD	ď)	Hexadecimal.					
vi)	In a	a J - K flip-flop when J	= 1 a	and $K = 1$ and clock = 1					
	the output will be								
	a)	toggle							
	b)	1							
	c)	0							
	d)	recalls previous outpu	it.						
vii)	(AE	3 + A'B + A'B) is equal	to						
	a)	A + B	b)	A' + B					
	c)	A + B	d)	1.					
viii)	2's complement of 1010101 is								
	a)	0101011	b)	10101010					
•	c)	1100000	d)	1000001.					
tx)	The	basic fuse technologies	usec	i in PROM are					
	a)	metal links	b)	silicon links					
	c)	p-n junctions	d)	all of these.					
x)		general, a boolean exp be implemented using a		on of $(n + 1)$ variable tiplexer with					

b)

d)

 2^{n-1} inputs

None of these.

 2^{n+1} inputs

 2^{n} inputs

c)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. Draw the neat diagram of 3-bits Bi-directional Shift Register using mode control (M). When M is logic zero then left shift and right shift for M is logic one.
- 3. Design 2-bit Gray-Binary converter using basic logic gates with proper truth table.
- 4. Draw the logic diagram and truth table of J Kf/f. Why is J KF/F much more versatile that S RF/F?
- 5. What is a full subtractor? Explain its basic structure with proper logic diagrams & truth tables. 1 + 4
- 6. Realize the function $f(A, B, C) = \sum m(1, 3, 5, 6)$ by a multiplexer. Discuss the operation logic.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. a) Using K-map method minimize the following expression:

 $F(w, x, y, z) = m \Sigma (1, 5, 6, 12, 13, 14) + d \Sigma (2, 4).$

8

- b) Implement Ex-OR gate using NAND Gate and NAND gate using NOR gate. $3\frac{1}{2} + 3\frac{1}{2}$
- 8. a) Design and implement Mod-6 synchronous counter considering lock out problem. Is the counter self-starting?
 8 + 1
 - b) Explain the difference between Ring and Johnson Counter with proper state diagram and circuit diagram.

6

11006 3

[Turn over

- Explain the concept of parity checking.
 - Discuss about the design of an odd parity generator. b)
 - What is biased exponent in relation to Floating Point Representation (FPR)?
 - **d**) Represent (- 1101011) in Floating Representation (FPR) for a 32-bit CPU.
- 10. What do you mean by race condition in flip-flop? Design a j - k flip-flop and discuss its operation. Design and explain the functioning of the 4-bit adder-subtractor circuit.

3 + 5 + 7

- 11. Write short notes on any three of the following:
 - 3×5
 - Universal gates a)
 - Decoder b)
 - c) Shift Register
 - d) Flip-flop excitation table
 - e) Ripple counter.

			· · · · · · · · · · · · · · · · · · ·	**************	*************	•
Rol	l No.	·	******************************		• • • • • • • • • • • • • • • • • • • •	••
	_		Stgnature :			•••
			2	/BCA/SEM 010-11 ELECTRO)1/2010-11
Tin	ie All	otted	: 3 Hours		Fu	ll Marks : 70
		T	te figures in the	nargin indic	ate full mark	s.
Co	andia	lates	are required to g as f	ive their ans ar as practic	•	own words
		.•	G	ROUP - A		
			(Multiple Cho	oice Type Q	uestions)	
i.		oose	the correct	alternatives	for any	ten of the $10 \times 1 = 10$
	i).		which of the follomber ? Base 5 Base 16	wing base s	ystems is 78	
		c) d)	Base 8 Base 3.			
	ii)	Sto	rage of 1 kB mea	ns the what	number of l	oytes?
		a) ,	1000	b)	964 /	
		c)	1024	d)	1064.	

1004

[Turn over

- (ii) Pick out the correct statement:
 - a) In a positional fumber system, each symbol represents the same value irrespective of its position
 - b) The highest symbol in a position number system is a value equal to the number of symbols in the system
 - c) It is not always possible to find the exact binary
 - d) Each hexadecimal digit can be represented as a sequence of three binary symbols.
- iv) The binary code of $(21.125)_{10}$ is
 - a) 10101.001
- b) 10100.001
- c) 10101.010
- d) 10100.111
- v) Race condition is avoided by
 - a) J-K flip-flop
- b) S-R flip-flop
- c) master-slave flip-flop
- none of these.
- vi) Which one is sequential circuit?
 - a) multiplexer
- b) decoder
- c) priority encoder
- d) counter.
- vii) Which is correct?
 - a) $A + \overline{A}B = A + B$
- b) A+1=A
- c) $A + \overline{A} = A$
- d) $\overline{A}/A = A$
- viii) Decimal digits can be converted to binary code using
 - a) Decoder

b) Encoder

c) Mux

d) DeMux.

		· · · · · · · · · · · · · · · · · · ·	-	
ix)	Car	rry of a full adder is a		
	a)	dual function		
	b)	self dual function		· ·
٠.	c)	non-symmetric functi	on	
	d)	none of these.		
x)	Eve	ery flip-flop is defined by	7	
	a)	characteristic equatio	n	
	b)	excitation table		
	c)	both of these		
	d)	none of these.		
(ix	Imn	nediate Access Storage	Devic	e is the name of
	a)	primary memory	b)	secondary memory
	c)	hard disk	d)	pen drive.
xii)	Con	trol unit does not proce	ss da	ita.
	a)	False	b)	True
	c)	Unpredictable	d) .	None of these,
xiii)	If the	here are three inputs binations will be	then	the number of input
	a):	four	b)	eight
	c)	six	d)	two.
xiv)	Exce	ess-3 Code representati	on of	decimal 59 is
	a) .	01100110	b)	10001100
	c)-	01011001	d)	11000110.
xv)	Hexa	adecimal equivalent of (26.25) ₁₀ is
	a)	A6.4	b)	1A.4
	c)	FA.4	d)	1A.25

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Implement XOR operation using four 2-input NAND gates.
 Verify the output for different combinations of inputs.
- Write down the BCD code of (9612)₁₀. Add two numbers (6952)₁₀ and (1589)₁₀ using BCD codes and obtain the result also in BCD.
- 4. a) Find out the dual and the complement of the following Boolean function:

$$F = ABC + \overline{A}BC + \overline{A}BC + AB\overline{C}$$

b) Simplify the following Boolean expression

$$(X+Y)(\overline{X}+Y+Z)(\overline{X}+Y+\overline{Z})$$

to minimum number of literals using algebraic method.

- 5. a) Prove that the multiplexer is a universal logic module.
 - b) Use 4-to-1 MUX and other necessary logic gate to design a full-subtractor.
- 6. a) What is the advantage of JK flip-flop over SR flip-flop?
 - b) Write the Maxterm form of the following function :

$$F = XY + \overline{XZ}$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Draw the truth table for a three input adder. Explain clearly the meaning of the input and the output symbols in the truth table. Write the Boolean expressions for the sum and carry.
 - b) Use a Karnaugh map to find the minimum sum of products for the expression $X = A^{l}B^{l}C + AB^{l}C + A^{l}BC + ABC^{l}$ 5
 - c) Simplify the following expressions using Boolean algebra:
 - i) AB+A(B+C)+B(B+C)
 - ii) $A^{\prime}BC + B^{\prime}CD + AC + A^{\prime}B^{\prime}CD^{\prime}$
- 8. a) State the main differences between sequential and combinational circuits.
 - b) Draw the truth table and logic circuit of a Full Subtractor. Using Karnaugh map find out the expression for difference (D) and borrow (B). 4+3
 - c) Implement the Boolean function $F = (A, B, C, D) = \sum_{i=0}^{\infty} (0, 1, 3, 4, 8, 9, 15)$ using 8×1 multiplexer with A, B and D connected to select lines s_2, s_1, s_0 respectively.

9. a) Define flip-flop and its propagation delay.

4

- b) Using the logic diagram convert a J-K flip-flop to a D flip-flop and T flip-flop. 5
- Design a J-K master-slave flip-flop with circuit diagram and give the truth table.
- 10. a) What is the usefulness of excitation table of the flip-flop?
 - b) The 4-bit shift register is initialised to 001. After how many clock pulses is the register re-initialied to same value?

c) Determine the modulus of the following counter. 6

- 11. Write short notes on any three of the following: $3 \times$
 - a) Decoder
 - b) Shift register
 - c) PROM
 - d) Priority Checker
 - e) Ring counter.

Name :	
Roll No.:	
Invigilator's Signature :	

DIGITAL ELECTRONICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1.	Choose	the	correct	alternatives	for	anv	ten	of the	e following

 $10 \times 1 = 10$

i)	(A + A'B + B') is equal to			
	a) A	b)	${\rm B}'$	
	c) 1	d)	0.	
ii)	(10110) is equivalent to			
	a) 20	b)	22	

- iii) A BCD counter is an example of
 - a) a decade counter

24

c)

- b) a full modules counter
- c) both (a) and (b)
- d) none of these.

1004 [Turn over

d)

18.

iv)	The output of a gate is LOW if and only if all its inputs are HIGH. It is true for						
	a)	AND	b)	XNOR			
	c)	NOR	d)	NAND.			
v)	De-N	Morgan's law states that	-				
	a)	$(A + B)' = A' \cdot B'$	b)	(A + B)' = A' + B'			
	c)	$(A \cdot B)' = A' \cdot B'$	d)	both (a) and (c).			
vi)	The	complement of a variab	le is	always			
	a)	0					
	b)	1					
	c)	equal to the variable					
	d)	the inverse of the varia	able.				
vii)	2's complement of '101011' is						
	a)	010100	b)	010011			
	c)	101001	d)	010101.			
viii)	What is the ASCII code of 'A' ?						
	a)	98	b)	0100			
	c)	1100	d)	none of these.			
ix)	4-bit register can store						
	a)	a bit at a time	b)	a byte at a time			
	c)	a nibble at a time	d)	none of these.			
x)	In toggle state of JK Flip-Flop						
	a)	present output is oppo	site o	of previous output			
	b)	present output is same	e as p	orevious output			
	c)	both (a) and (b)					
	d)	none of these.					
1004		2					

- xi) Full adder can add
 - two binary numbers three binary numbers b)
 - four binary numbers none of these. c) d)
- xii) MOD 10 counter can count up to
 - 9 a)

b) 10

c) 8

none of these. d)

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. State and prove De-Morgan's theorems.
- 3. Express the Boolean function $F = AB + \overline{A} C$ in a product of maxterm form.
- Define multiplexer. Why is it called "Data Selector"? 4.
- Use 4:1 MUX and other necessary logic gates to design a 5. full adder.
- What is flip-flop? What is meant by race condition? 6. 1 + 4

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. Using K-map method, simplify the following Boolean a) function and obtain minimal SOP expression:
 - $Y = \sum m (0, 2, 3, 6, 7) + \sum d (8, 10, 11, 15).$
 - Implement the Boolean Function F = (A, B, C, D) = b) $\sum m$ (0, 1, 3, 8, 9, 15) using two 4 - to-1 multiplexer and one OR gate.
 - c) Design a gray code to binary converter circuit of 5 bits. What is nibble? 5 + 5 + (4 + 1)

- 8. a) Design a half adder circuit using minimum number of 2-input NOR gates only. Write Down the truth table and Boolean functions also.
 - b) Convert a *D* flip-flop to a J-K flip-flop. You can use additional circuiting if required.
 - c) What is full subtractor? Explain its basic structure with proper logic diagrams and truth tables. 5 + 5 + 5
- 9. a) Convert the following:
 - i) $(AC15)_{16} = (?)_{10}$
 - ii) $(1011001)_2 = (?)_{10}$
 - b) Discuss about the design of an odd parity generator.
 - c) Explain the concept of parity checking.
 - d) What is the advantage of J-K flip-flop over SR flip-flop.

$$5 + 5 + 2 + 3$$

- 10. a) What is the difference between sequential and combinational circuit?
 - b) Describe the propagation delay of a flip-flop.
 - c) Express the Boolean function F = AB + A'C in a product of maxterm form. 5 + 5 + 5
- 11. a) Draw a block diagram and write truth table of a D flip-flop.
 - b) Compare asynchronous and synchronous counter.
 - c) Use 4 to 1 MUX and other necessary logic gate to design a full adder. 5 + 5 + 5
- 12. Write short notes on any *three* of the following: 3×5
 - a) EPROM
 - b) D flip-flop
 - c) Ripple counter
 - d) Encoder
 - e) 4-bit parallel Adder.

Nam	ıe :				
Roll	<i>No.</i> :				
Invig	gilato	r's Si	ignature :		
			CS/BCA/S	SEM-	-1/BCA-101/2012-13
			2012		
			DIGITAL ELEC	TRO	NICS
Time	e Allo	tted :	3 Hours		Full Marks : 70
		Th	e figures in the margin i	ndico	ite full marks
Ca	ndida				vers in their own words
Cu	riaiai	ilco (as far as pract		
			GROUP -		
			Multiple Choice Ty	pe Q	uestions)
1.	Cho	ose t	he correct alternatives o	of the	following:
					$10 \times 1 = 10$
	i)	The	Boolean equation of AN	ID op	eration is
		a)	$Y = \overline{A}$	b)	Y = AB
		c)	Y = A + B	d)	None of these.
	ii)	The	logical expression $Y = A$	$A + \overline{A}$	B is equivalent to
		a)	Y = AB	b)	$Y = \overline{A}B$
		c)	$Y = A + \overline{B}$	d)	Y = A + B.
	iii)	The	BCD equivalent of 57 is	3	
		a)	111001	b)	01010111
		c)	101111	d)	10001010.
	iv)	In tl	he BCD code, the decim	al nu	amber 123 is written as
		a)	11011	b)	C3
		c)	001010011	d)	000100100011.

[Turn over

v)		carry look-ahead adder is frequently used for lition, because it
	a)	is faster b) is more accurate
	c)	uses fewer gates d) costs less.
vi)		combinational circuit is one in which the output ends on the
	a)	input combination at a time
	b)	previous output and input combination
	c)	previous input and input combination at a time
	d)	present output and previous output.
vii)	Eac	ch individual term in standard SOP form is called as
	a)	Maxterm b) Minterm
	c)	Midterm d) None of these.
viii)	A d	ecoder with 64 output lines has data inputs.
	a)	64 b) 1
	c)	d) None of these.
ix)		number of flip-flops required to build a Mod-15
	cou	nter is
	a)	4 b) 5
	c)	6 d) 7.
x)	The	full form of CCD is
	a)	Charged-couple disk b) Charge-coupled device
	c)	Cache coupled device d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Draw a full adder circuit as combination of 2 half adders.
- 3. State Demorgan's law and prove it for 2 variables.
- 4. a) Evaluate $(7352)_{10}$ $(9456)_{10}$ using 9's compliment.
 - b) State Duality principle.
- 5. Minimize the following Boolean expression using K-map. $F(A,B,C,D) = \Sigma(0,1,3,6,8,10,11,13,15)$
- 6. Design a 4 bit parallel-in parallel-out (PIPO) shift register.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Represent the decimal number 45 in
 - i) Hexadecimal code
 - ii) Gray code
 - iii) BCD code.
 - b) Which gates are called universal gates and why?
 - c) Design a 2×4 decoder. Give truth table and draw circuit diagram using basic gates.
 - d) Implement the expression using a Multiplexer.

 $F(A,B,C,D) = \sum (0,1,4,5,7,9,11,13,15)$ 3 + 5 + 4 + 3

8. a) What is combinational circuit?

- b) Differentiate between combinational and sequential circuit.
- c) Explain the functionality of clocked JK flip-flop. Give truth table and diagram.

d) Convert SR to JK flip-flop.

2 + 3 + 5 + 5

9. a) What is register?

b) Design a decimal to binary encoder.

c) What do you mean by Johnson counter?

3 + 6 + 6

10. a) Given the following truth table.

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Obtain the SOP and POS form and draw the circuit diagram.

- b) Express the following Boolean expressions:
 - i) f = AB + A'C in POS form.
 - ii) f = (A + BC)(B + C' A) in SOP form.

8 + 7

- 11. a) What is the difference between synchronous and asynchronous counter?
 - b) Write short notes on the following:
 - i) EPROM
 - ii) DRAM.
 - c) What is the difference between SRAM and DRAM?

4 + 6 + 5

Na	me:.	• • • • • • •	***************************************	•••••••	

Inν	igilat	or's S	Signature :	• • • • • • • • • • •	
			CS/BC	A/SEM	I-1/BCA-101/2013-14
			201	3	•
			DIGITAL ELE	CTR	ONICS
Tim	ie All	otted	: 3 Hours		Full Marks: 70
		T	he figures in the margi	n indic	ate full marks.
Ca	andia			eir ans	wers in their own words
	•		GROUI	P – A	
		•	(Multiple Choice 1	Гуре Q	uestions)
1.	Che	oose	the correct alternative	s for th	ne following: $10 \times 1 = 10$
	i)	Exc	cess-3 code representa	ation of	decimal 984 is
		a) ့	1011 1010 1101	b)	1100 1011 0111
		c)	1110 1001 1010	' d)	1101 1111 0111
	ii)	Hex	kadecimal equivalent	of (1586	5) ₁₀ is
		a)	(362) 16	b)	(623) ₁₆
		c)	(632) ₁₆	d)	(263) ₁₆ .
	iii)	2's	compliment of 10101	11 is	
:		a)	0101001	b)	0110110
		c)	0101100	d)	0101101.

[Turn over

iv)	A function of three variables								
	F(A)	$A, B, C) = \Sigma (1, 3, 5, 6)$	is gi	ven by					
	a)	an 8-to-1 multiplexer							
	b)	two 4-to-1 multiplexer							
	c)	one 4-to-1 multipexer							
	d)	none of these.							
v)	Mul	ti <mark>plexer is al</mark> so known a	s						
	a)*	Data selector	b)	Data distributor					
	c)	Multiplexer	d)	Encoder.					
vi)	Para	illel Binary Adders are							
	a) combinational logic circuit								
	b } .	sequential logic circuit							
	c)	both (a) and (b)							
	, d)	none of these.		÷.					
vii)	A Ha	alf Adder adds	bits	S.					
	a)	16	b)	10					
	c)	8	d)	2.					
viii)	Con	trol Unit does not proce	ss da	ata.					
	a)	true	b)	false					
	·c)	unpredictable	d)	none of these.					
ix)	(AB	$C + A\overline{B}C + AB\overline{C}$) is equal	l to						
	a)	A(B+C)	b)	$\overline{A}(B+C)$					
ن	c)	$A(B+\overline{C})$	d)	$A(\overline{B}+C)$					
x)	Race	Condition is avoided b	y						
,	a)	J-K flip-flop	b)	Master-Slave flip-flop					
	c)	D flip-flop	d)	S-R flip-flop.					

GROUP - B

(Short Answer Type Questions) Answer any three of the following.

 Draw the logic symbol, Boolean expression and truth table of NOR and NAND gates.
 1 + 2 + 2

3. State and prove De Morgan's theorem in Boolean algebra.

2 + 3

 $3 \times 5 = 15$

- 4. Represent the decimal number '27' in
 - a) Binary code
 - b) BCD code
 - c) Octal code
 - d) Hexadecimal code
 - e). Gray code.

1+1+1+1+1

- 5. Prove the following logical equation using Boolean algebra : $(A+BC) \cdot (B+A\overline{C}) = BC + A\overline{C}$
- Realize the EX-OR logic operation using either NAND gate or NOR gate.
- 7. Discuss the function of T-type flip-flop with the help of graphic symbol and characteristic table. 3+2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Write down the truth table and logic symbol of a 3-input OR gate.
 - b) Using NOR gates, design Full Adder and describe with diagram.
 - c) Explain Universal Gate.
 - d) Express the function $Y = A + \overline{BC}$ in a canonical SOP form.

2 + 5 + 5 + 3

- 9. a) Using K-map method simplify the following Boolean function and obtain minimal SOP expression: $Y = \sum_{m} (0.2, 3.6, 7) + \sum_{d} (8.10, 11, 15).$
 - b) Implement the Boolean function $F = (A, B, C, D) = \sum_{m} \{0, 1, 3, 8, 9, 15\}$ using two 4-to-1 multiplexer and one OR gate.
 - c) Describe the application of Data Distributor.
 - d) What is Decoder?

6 + 6 + 2 + 1

- 10. a) Explain the concept of parity checking.
 - b) Write down the 4-bit gray code in the ascending order of its decimal value.
 - c) Design a synchronous Mod-12 down-counter using J-K flip-flops. 5 + 5 + 5
- 11. a) Design and implement Mod-6 synchronous counter considering lock-out problem. Is the counter selfstarting?
 - b) Using the logic diagram convert a J-K flip-flop to a D flip-flop and T flip-flop.
 - c) Explain the difference between Ring and Johnson counter with proper state and a circuit diagram.

7+5+3

- 12. a) What do you mean by race condition in flip-flop?
 - b) Design a Master-Slave flip-flop and discuss its operation.
 - c) Design and explain 4 bit Parallel Adder/Subtractor.

3 + 5 + 7

BCA-101

DIGITAL ELECTRONICS

Time Allotted: 3 Hours Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

		OUP A ce Type Questions)
l.	Answer any ten questions.	$10 \times 1 = 10$
(i)	The 10's complement of 03250 is	
	(A) 03251	(B) 96749
	(C) 96750	(D) 32140
(ii)	(AB+BC+CA+1) is equal to	
	(A) 0	(B) 1
	(C) A+B+C	(D) ABC
(iii)	The addition of 3 bits is done by	
	(A) half adder	(B) full adder
	(C) half subtractor	(D) full subtractor
(iv)	(A.A').(A+B+C+D) is	
	(A) 1	(B) 0
	(C) A	(D) $A+B+C+D$
(v)	A decoder is a combinational circular from n input lines to a maximum of	it that converts binary information
	(A) 2n	(B)2+n
	$(C) 2^n$	(D) n output lines

[Turn over]

CS/BCA/Odd/Sem-1st/BCA-101/2014-15 -

(vi)	In a J-K flip flop when $J=1$ and $K=1$	and clock = 1 the output will be					
	(A) toggle	(B) 1					
	(C) 0	(D) recalls previous output					
(vii)	(AB + A'B + A'B')is equal to						
	(A) A + B'	(B) A' + B					
	(C) A + B	(D) 1					
(viii)	A BCD counter is a						
	(A) decade counter	(B) a full modules counter					
	(C) both (A) and (B)	(D) none of these					
(ix)	X + XY = X. The given expression follows						
	(A) De Morgan's Law	(B) Associative law					
	(C) Distributive law	(D) Absorption law					
(x)	The output of a sequential circuit depends on						
	(A) present input only	(B) past input only					
	(C) both present and past inputs	(D) present output only					
(xi)	Subtracting 1111 from 11000 will result to						
	(A) 1000	(B) 1100					
	(C) 1001	(D) 1011					

CS/BCA/Odd/Sem-1st/BCA-101/2014-15

GROUP B (Short Answer Type Questions)

	Answer any three questions.	$3\times5=15$
2.	What is flip flop? Draw a block diagram and state the excitation and characteristics table of D flip flop	. 5
3. (a)	$(AC15)_{16} = (?)_{10}$	2.5
(b)	$(1011001)_2 = (?)_{10}$	2.5
4.	Draw the truth table and logic circuit of a full-Subtractor. Using Karnaugh map find out the expression for difference (d) and borrow (B).	5
5. (a)	Design a J- K master slave Flip-Flop with circuit diagram and give the truth table.	3
(b)	Define Flip-Flop and its propagation delay.	2
6. (a)	Prove that the multiplexer is a universal logic module.	2
(b)	Use 4-to-1 MUX and other necessary logic gate to design a Full-Subtractor.	3
	GROUP C (Long Answer Type Questions)	
	Answer any three questions.	3×15 = 45
7. (a)	Briefly discuss the function of a full adder.	3
(b)	Make a truth table for a full adder.	3
(c)	Simplify the outputs of a full adder using K-map.	5
(d)	Realize the simplified logic equations using NAND gate.	4
8. (a)	What is Multiplexer? Why is it called "Data selector"?	3
(b)	Draw the block diagram of a digital multiplexer and explain the function.	4
1057	3	Turn over]

CS/BCA/Odd/Sem-1st/BCA-101/2014-15

(c)	basic gates (AND, OR, and NOT).	4
(d)	Implement the expression using a multiplexer $f(A,B,C,D) = \sum m(0,2,3,6,8,9,12,14)$	4
9. (a)	Design a 4-bit up down counter.	5
(b)	Design a Ring Counter	5
(c)	Design a Mod 3 Counter	5
10.(a)	What do you mean race condition in flip-flop?	3
(b).	Design a Master-Slave Flip-flop and discuss its operation.	5
(c)	Design and explain 4 bit Parallel Adder/Subtractor	7
11.	Write short notes on any three of the following:	3×5
(a)	Ripple Counter	
(b)	Encoder	
(c)	Demultiplexer	
(d)	Flip-Flop excitation table	
(e)	Priority checker	

CS/BCA/ODD/SEM-1/BCA-101/2017-18

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCA-101
DIGITAL ELECTRONICS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

i)	The Boolean	equation	of AND	oneration	ie
1)	THE DOOLEAN	equation	OI WIND	operauon	13

a)
$$Y = \overline{A}$$

b)
$$Y = AB$$

c)
$$Y = A + B$$

d) None of these.

ii) The logical expression
$$Y = A + AB$$
 is equivalent to

a)
$$Y = A$$

b)
$$Y = AB$$

c)
$$Y = \overline{AB}$$

d)
$$Y = A + B$$
.

10008

[Turn over

iv)				code,	the	deci	mal	number	123 is	
		ten a		•			~~			
	a)	110	11	1		b)	C3			
	c)	001	0100	11		d)	000	10010001	11.	
V)	A c	arry	look-	ah ead	add	er is	free	quently u	used for	
	add	ition,	beca	use it						
	a)	is fa	ster			b)	is m	ore accui	rate	
	c)	uses	s fewe	r gates	}	d)	cost	s less.		•
vi)	A c	ombi	Inatio	nal cir	cuit i	s on	e in v	which the	output	
	dep	ends	on th	ie						
	a) input combination at a time									
•	b) previous output and input combination									
	c)									
	time									
	d)	pres	ent o	utput a	and p	revi	ous o	utput.		
vii)	Eac	h in	dividu	ual ter	m u	ı sta	anda	rd SOP	form is	
	calle	ed as	1							
	a)	Max	-term	ı ,		b)	Min	-term		
	c)	Mid	-term			d)	Non	e of these	: .	
vili)	A d	ecode	er wit	h 64 o	utpu	t lin	es ha	as	data	
	inpu	uts.								
	a)	64				b)	1			
	c)	6				d)	non	e of these	•	
ix)	The	num	ıber o	f flip-fl	ops i	equi	red t	o build a	Mod-15	
	cou	nter i	is						-	
	a)	4				b)	5			
	c)	6				d)	7.		-	

- x) The race around condition will be avoided by
 - a) J-K flip-flop
 - b) S-R flip-flop
 - c) Master-Slave flip-flop
 - d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. Draw a full adder circuit as combination of 2 half adders.
- 3. State De Morgan's law and prove it for 2 variables.
- 4. a) Evaluate (7352)₁₀-(9456)₁₀ using 9's complement.
 - b) State Duality principle.
- 5. Minimize the following Boolean expression using K-map.

 $F(A, B, C, D) = \sum (0, 1, 3, 6, 8, 10, 11, 13, 15).$

 Design a 4-bit parallel-in parallel-out (PIPO) shift register.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Represent the decimal number 45 in
 - (i) Hexadecimal code
 - (ii) Gray code
 - (iii) BCD code.
 - b) Which gates are called universal gates and why?
 - c) Design a 2 × 4 decoder. Giver truth table and draw circuit diagram using basic gates.

10008

3

[Turn over

d) Implement the expression using a Multiplexer. $F(A, B, C, D) = \sum_{i=0}^{\infty} (0, 1, 4, 5, 7, 9, 11, 13, 15).$

3 + 5 + 4 + 3

- 8. a) What is combinational circuit?
 - b) Differentiate between combinational and sequential circuits.
 - c) Explain the functionality of clocked JK flip-flop. Give truth table and diagram.
 - d) Convert SR to JK flip-flop.

2 + 3 + 5 + 5

- 9. a) What is register?
 - b) Design an decimal to binary encoder.
 - c) What do you mean by Johnson counter?
- What do you mean by race around condition in flip-flop? Design a J-K flip-flop and discuss its operation.
 Design and explain the functioning of BCD adder circuit.
- 11. Write short notes on any three of the following: 3×5
 - a) Universal Gate
 - b) Multiplexer
 - c) PAL and PLA
 - d) Excitation Table
 - e) Full adder using Half-adder.

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCAN-101
DIGITAL ELECTRONICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

$\begin{aligned} & Group - A \\ & (Multiple \ Choice \ Type \ Questions) \end{aligned}$

Choos	se the correct alternative for any ten of the following	g:		1×10=10			
(i)	In a multiplexer, the output depends on its						
	(a) Data inputs ·	(b)	Select inputs				
	(c) Select outputs	(d)	None of these				
(ii)	Which of the following condition is not allowed in SR flip-flop?						
	(a) $S=0 R=0$	(b)	S=0 R=1				
	(c) $S=1 R=0$	(d)	S=1 $R=1$				
(iii)	The logical expression $Y=A+AB+AB'C+A'BC'D+1$ is equivalent to						
	(a) A + C'	(b)	1				
	(c) A'	(d)	A				
(iv)	A flip-flop has						
	(a) one stable state	(b)	no stable states				
	(c) two stable states	(d)	None of these				

8481

1.

CS/BCAN/Odd/SEM-1/BCAN-101(New)/2018-19

	(v) The dual of a Boolean expression is obtained by							
	(a) interchanging all 0s and 1s							
	(b) interchanging all 0s and 1s, all + and '.' signs							
	(c) interchanging all 0s and 1s, all + and '.' signs and complementing all the variables							
	(d) interchanging all + and '.' signs and complementing all the variables							
	(vi) A + A' B is equal to							
	(a) A + B	(b) A						
	(c) B	(d) $A' + B$						
	(vii) 11101÷1100 is equal to							
	(a) 10.1101	(b) 100.1101						
	(c) 10.01101	(d) None of these						
	(viii) In general, a sequential logic circuit consists of							
	(a) only flip-flops	(b) only gates						
	(c) flip-flops and combinational logic circuits	(d) only combinational logic circuits						
	(ix) Race condition arises in	(b) S-R F/F						
	(a) S-R Latch	(d) T F/F						
	(c) J-K F/F	NEW TON						
	(x) When two n bit binary numbers are added, the sum will contain at most							
	(a) n bits .	(b) $n+1$ bits						
	(c) $n+2$ bits	(d) $n + n$ bits						
	(xi) While performing BCD addition, if the value of each 4-bit group becomes we add 6							
	with that group.							
	(a) greater than 9	(b) greater or equal to 9						
	(c) greater than 6							
	Group – B							
	(Short Answer Type Questions)							
	Answer <i>any three</i> of the following. $5\times 3=15$							
2.	Difference between Synchronous and Asynchronous counters.							
3.	Simplify the expressions:							
	(i) $A = XYZ + XY'Z + XZ$		2:2.5					
	(ii) $B = P + P'Q + P'Q'R + P'Q'R'S$		2+3=5					

4. Subtract (-33) from (-57) using 2's complement method. Convert (4536)10 to (i) 2421 code 3+2=5(ii) 5421 code 5. Draw the truth table and logic circuit of a full-subtractor. Using K-map find out the expression for difference (D) and borrow (B). 1+4=5What is flip-flop? What is race condition? Group - C (Long Answer Type Questions) $15 \times 3 = 45$ Answer any three of the following. (a) Using K-map method minimize the following expression: 7. $F(w,x,y,x) = m\Sigma(1,5,6,12,13,14) + d\Sigma(2,4).$ Implement the logic circuit using NAND gates only. (b) Implement Ex-OR gate using NAND Gate and NAND gate using NOR gate. (5+4)+(3+3)=15(a) Define excitation table of flip-flop and propagation delay. 8. (b) Using the logic diagram convert a J-K flip-flop D flip-flop and T flip-flop. (c) Design a J-K master-slave flip-flop with circuit diagram and give the truth table. 5+5+5=15 (a) Write down the simplified Boolean expression in 9. (i) sum of product form and (ii) product of sum form for $Y(A,B,C,D)=\Pi M(0,1,3,5,6,7,9,10,11,12,13,15)$ (4+4)+7=15(b) Implement a full adder using 2 half adders. (a) Design a carry look ahead adder. 10. (b) Design a combinational logic circuit to implement 4-bit odd parity checker. 9+6=15 $5 \times 3 = 15$ 11. Write short notes on any three of the following: (i) PIPO (ii) Ripple Counter (iii) 4-bit parallel adder (iv) Gray Code

(v) Master slave J-K flip-flop

CS/BCAN/Odd/SEM-1/BCAN-101(New)/2018-19

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BCAN-101

DIGITAL ELECTRONICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

1.	Choose	the co	rrect a	diernative	tor	un)	ten of	ine	tollow	ເມຣ

1×10=10

http://www.makaut.com

- (i) In a multiplexer, the output depends on its
 - (a) Data inputs

(b) Select inputs

(c) Select outputs

- (d) None of these
- (ii) Which of the following condition is not allowed in SR flip-flop?
 - (a) S=0 R=0

(b) S=0 R=1

(c) S=1 R=0

- (d) S=1 R=1
- (iii) The logical expression Y=A+AB+AB'C+A'BC'D+1 is equivalent to
 - (a) A + C'

(b) 1

(c) A'

(d) A

- (iv) A flip-flop has ______.
 - (a) one stable state

(b) no stable states

(c) two stable states

(d) None of these

8481 Turn Over

CS/BCAN/Odd/SEM-1/BCAN-101(New)/2018-19

	The dual of a Boolean expression is obtained by	7						
	(a) interchanging all 0s and 1s							
	(b) interchanging all 0s and 1s, all + and ".' signs							
	(c) interchanging all 0s and 1s, all + and ' sign	ns and o	complementing all the variables					
	(d) interchanging all + and '.' signs and comple							
	A + A' B is equal to							
	(a) A+B	(b)	A					
	(c) B	(d)	A' +B					
(vii)	11101+1100 is equal to							
	(a) 10.1101 ·	(b)	100.1101					
	(c) 10.01101 ·	(b)	None of these					
viii)	In general, a sequential logic circuit consists of							
	(a) only flip-flops		only gates					
	(c) flip-flops and combinational logic circuits	(वं।	only combinational logic circuits					
(ix)	Race condition arises in							
	(a) S-R Latch		S-R F/F					
	(c) J-K F/F	(d)	TEF					
(x)	When two n bit binary munibers are added, the sum will contain at most							
,,,,	(a) n bits	(b)	n+1 bits					
	(e) n+2 bits	(d)	n+n bits					
(xi)	While performing BCD addition, if the value of each 4-bit group becomes							
	(a) greuter than 9	(b)	greater or equal to 9					
	(e) greater than 6							
	Group - E	3						
	(Short Answer Type		ions)					

Answer any three of the following.

5×3=15

http://www.makaut.com

- Difference between Synchronous and Asynchronous counters.
- Simplify the expressions:

(i)
$$A = XYZ + XY'Z + XD$$

(ii)
$$B = P + P'Q + P'Q'R + P'Q'R'S$$

2+3=5

http://www.makaut.com

CS/BCAN/Odd/SEM-1/BCAN-101(New)/2018-19

4. Subtract (-33) from (-57) using 2's complement method.

Convert (4536)₁₀ to

- (i) 2421 code
- (ii) 5421 code

3+2=5

- Draw the truth table and logic circuit of a full-subtractor. Using K-map find out the expression for difference (D) and borrow (B).
- 6. What is flip-flop? What is race condition?

1+4=5

Group - C

(Long Answer Type Questions)

Answer any three of the following.

15×3=45

7. (a) Using K-map method minimize the following expression:

 $F(w,x,y,x) = m\Sigma(1,5,6,12,13,14) + d\Sigma(2,4).$

Implement the logic circuit using NAND gates only.

- (b) Implement Ex-OR gate using NAND Gate and NAND gate using NOR gate. (5+4)+(3+3)=15
- 8. (a) Define excitation table of flip-flop and propagation delay.
 - (b) Using the logic diagram convert a J-K nip-flop D flip-flop and T flip-flop.
 - (c) Design a J-K master-slave flip flop with circuit diagram and give the truth table. 5+5+5=15
- 9. (a) Write down the simplified Boolean expression in
 - (i) sum of product form and
 - (ii) product of sum form for

 $Y(A,B,C,D)=\Pi M(0,1,3,5,6,7,9,10,11,12,13,15)$

(b) Implement a full adder using 2 half adders.

(4+4)+7=15

- 10. (a) Design a curry look ahead adder. http://www.makaut.com
 - (b) Design a combinational logic circuit to implement 4-bit odd parity checker.

9+6=15

11. Write short notes on any three of the following:

 $5 \times 3 = 15$

(i) PIPO

http://www.makaut.com

- (ii) Ripple Counter
- (iii) 4-bit parallel adder
- (iv) Gray Code
- (v) Master slave J-K flip-flop

http://www.makaut.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रूपये पार्ये, Paytm or Google Pay से