3) Mixture Mudel on Bernoulli

X: 20000 X 784

Bemoulli

X > 784 pixels

0; > 784 dimensional

$$p(x|\phi_i) = \frac{784}{|I|} \phi_{i,j} (1-\phi_{i,j})$$

$$j=j$$

Total Data Likelihood

$$P(D|0;) = \frac{N}{1!} \frac{784}{0!} \times i \frac{1-x}{1-0!}$$
 $j=1$ $j=1$

20000 data -> 786 pixels

Alternative matrix operation that
gives whole thing at once

 $\begin{bmatrix} 1-x_{11} & 1-x_{12} \\ 1-\theta_{11} & (1-\theta_{12}) & --- \end{bmatrix}$

(1-0) (1-0) (1-0) (1-0)

matrix 2=

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{$$

$$\sum_{m=1}^{\infty} \sum_{m} P(x; | z=m; \theta_m)$$

$$P(X; | Z = K; O_{K})$$

$$= O_{K} (1 - O_{K})$$

		. —				1
2 x	$\times (0)$	Kmuo .T	+ np	Sum (nf	·multiply	(Komus, Komus),
					Oxis=	1). T). T
					7. 10	
				^	0 ± . /	(x, x)
		T np- 9	Sum ($n \beta, mu$	ulliply	'x x) axis-l
						o