Linear Dynamical Systems

Stephen Boyd

EE103 Stanford University

October 28, 2017

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

State sequence

- ightharpoonup sequence of n-vectors x_1, x_2, \ldots ,
- ▶ t denotes time or period
- $ightharpoonup x_t$ is called *state* at time t; sequence is called *state trajectory*
- (assuming t is current time)
 - x_t is current state
 - x_{t-1} is previous state
 - x_{t+1} is next state
- ightharpoonup examples: x_t represents
 - age distribution in a population
 - economic output in n sectors
 - mechanical variables

Linear dynamics

- ▶ linear dynamical system: $x_{t+1} = A_t x_t$
- ▶ A_t are $n \times n$ dynamics matrices
- $(A_t)_{ij}(x_t)_j$ is contribution to $(x_{t+1})_i$ from $(x_t)_j$
- lacktriangle called *time-invariant* if $A_t=A$ doesn't depend on time
- ightharpoonup can simulate evolution of x_t using recursion $x_{t+1} = A_t x_t$

Variations

- - u_t is an input m-vector
 - B_t is $n \times m$ input matrix
 - c_t is offset
- used in many application areas

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

Population distribution

- $x_t \in \mathbf{R}^{100}$ gives population distribution in year $t = 1, \dots, T$
- $(x_t)_i$ is the number of people with age i-1 in year t (say, on January 1)
- ▶ total population in year t: $\mathbf{1}^T x_t$
- lacktriangle number of people age 70 or older in year t: $(0_{70}, \mathbf{1}_{30})^T x_t$

Population distribution of the U.S.

(from 2010 census)

Birth and death rates

- ▶ birth rate $b \in \mathbf{R}^{100}$, death (or mortality) rate $d \in \mathbf{R}^{100}$
- \blacktriangleright b_i is the number of births per person with age i-1
- d_i is the portion of those aged i-1 who will die this year (we'll take $d_{100}=1$)
- $lackbox{ }b$ and d can vary with time, but we'll assume they are constant

Birth rate in the U.S.

Death rate in the U.S.

Dynamics

- ▶ let's find next year's population distribution x_{t+1} (ignoring immigration; we'll add that later)
- ▶ number of 0-year-olds next year is total births this year:

$$(x_{t+1})_1 = b^T x_t$$

▶ number of i-year-olds next year is number of (i-1)-year-olds this year, minus those who die:

$$(x_{t+1})_{i+1} = (1 - d_i)(x_t)_i, \quad i = 1, \dots, 99$$

 $\triangleright x_{t+1} = Ax_t$, where

$$A = \begin{bmatrix} b_1 & b_2 & \cdots & b_{99} & b_{100} \\ 1 - d_1 & & \cdots & 0 \\ 0 & 1 - d_2 & & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \cdots & & 1 - d_{99} & 0 \end{bmatrix}$$

Predicting future population distributions

predicting U.S. 2015 distribution from 2010 (ignoring immigration)

Predicting population growth

predicted population growth (ignoring immigration)

Initial population distributions

- ightharpoonup what if we changed x_0 ?
- ▶ instead of U.S. Census data, let's use a "college nation"

$$(x_0)_i = \begin{cases} 2200 & i = 19, 20, \dots, 27 \\ 0 & \text{otherwise} \end{cases}$$

(approximate population distribution of Stanford students)

Predicting future population distributions

predict s years into the future

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

SIR model

- ▶ 4-vector x_t gives proportion of population in 4 infection states:
 - Susceptible: can acquire the disease the next day
 - Infected: have the disease
 - Recovered: had the disease, recovered, now immune
 - Deceased: had the disease, and unfortunately died (sometimes called SIR model)
- e.g., $x_t = (0.75, 0.10, 0.10, 0.05)$

Epidemic dynamics

over each day,

- among susceptible population,
 - 5% acquires the disease
 - 95% remain susceptible
- among infected population,
 - 1% dies
 - 10% recovers with immunity
 - 4% recover without immunity (i.e., become susceptible)
 - -~85% remain infected
- ▶ (100% of immune and dead people remain in their state)

Epidemic dynamics as linear dynamical system

$$x_{t+1} = \begin{bmatrix} 0.95 & 0.04 & 0 & 0\\ 0.05 & 0.85 & 0 & 0\\ 0 & 0.10 & 1 & 0\\ 0 & 0.01 & 0 & 1 \end{bmatrix} x_t$$

Simulation from $x_1 = (1, 0, 0, 0)$

