

Lecture 4 Roots of Non-Linear Equation Using Bisection Method

Objectives

 Solve an algebraic or transcendental equation using Bisection method

Establish an algorithm to implement Bisection method

Roots of an Equation

 The root of an equation is a value of the variable that makes the equation true

For the equation

$$x^2 - 4 = 0$$

If we solve it

$$x^2 = 4 = x = \pm 2$$

So, the roots are x = 2 and x = -2

• An equation f(x) = 0 belong to one of the following types

- Algebraic equations
- Polynomial equations
- Transcendental equations

Algebraic equations

- O General syntax $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0$
- O Examples: Linear (n = 1):

$$a_1x + a_0 = 0$$

• Quadratic (n = 2):

$$a_2 x^2 + a_1 x + a_0 = 0$$

• Cubic (n = 3):

$$a_3x^3 + a_2x^2 + a_1x + a_0 = 0$$

• Quartic (n = 4):

$$a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0$$

- Polynomial equations
 - General syntax

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 = 0$$

• Examples: $2x^3 - 3x^2 + 4x - 5 = 0$

- Transcendental equations
 - A transcendental equation is **not algebraic**, meaning it **cannot** be written in the form of a polynomial equation
 - O Examples: $e^x=5 o ext{Exponential equation}$ $\log(x)+x=3 o ext{Logarithmic} + ext{linear}$ $\sin(x)=x-1 o ext{Trigonometric} + ext{linear}$ $x^2=\ln(x) o ext{Polynomial} = ext{logarithmic}$ $\cos(x)=x o ext{Trigonometric}$ equation $x^x=10 o ext{Power with variable exponent}$

- There are number of ways to find the roots on nonlinear equations
 - Direct analytical methods
 - Graphical methods
 - Trial and error methods

Iterative methods

- There are number of ways to find the roots on nonlinear equations
 - Direct analytical methods

$$- f(x) = ax^2 + bx + c = 0$$
 where $a \neq 0$

- Root:
$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

- How about $2\sin(x) - x = 0$

 There are number of ways to find the roots on nonlinear equations

Graphical methods

The idea is to plot the **graph** of the function f(x)=0 (or rearranged as f(x)=g(x)) and visually identify the **points of intersection** with the **x-axis**. These intersections represent the approximate **roots** of the equation.

Time-Consuming, Lack of precision, difficult for complex equations

 There are number of ways to find the roots on nonlinear equations

Trial and error methods

In this method, you **guess** values for x and **substitute** them into the equation to check if they satisfy the equation f(x) = 0.

You start by choosing a range of values, test them, and **refine your guesses** based on the results.

Time-Consuming, Lack of precision, difficult for complex equations

 There are number of ways to find the roots on nonlinear equations

- Iterative methods
 - With the advent of computers, algorithmic approaches known as methods iterative have become popular
 - These methods start with an initial guess and iteratively refine the solution until it converges to a desired level of accuracy.

Iterative methods

 Based on the number of guesses they use, can he grouped into two categories:

- Bracketing methods
- Open end methods

Iterative methods

Bracketing methods

- \circ Enclose the root within a specific interval [a,b]
- Iteratively reduces the interval size until the root is found with sufficient accuracy
- o Examples:
 - Bisection Method
 - False Position

Iterative methods

Open end methods

- Used when we have an initial guess or approximation for the root but do not necessarily know the bounds
- When the function may not have a sign change over an interval
- Examples:
 - Newton-Raphson Method
 - Secant Method
 - Fixed-Point Iteration Method
 - Muller's Method

Bisection Method

Basis of Bisection Method

An equation f(x)=0, where f(x) is a real continuous function, has at least one root between x_l and x_u if $f(x_l)$ $f(x_u)$ < 0.

Step 1

• Choose x_{ℓ} and x_{u} as two guesses for the root such that $f(x_{\ell})$ $f(x_{u}) < o$, or in other words, f(x) changes sign between x_{ℓ} and x_{u} .

Step 2

Estimate the root, x_m of the equation f(x) = 0 as the mid-point between x_ℓ and x_n as

$$x_{m} = \frac{x_{\ell} + x_{u}}{2}$$

Step 4

New estimate

$$x_{m} = \frac{x_{\ell} + x_{u}}{2}$$

Absolute Relative Approximate Error

$$\left| \in_{a} \right| = \left| \frac{x_{m}^{new} - x_{m}^{old}}{x_{m}^{new}} \right| \times 100$$

 x_m^{old} = previous estimate of root

 x_m^{new} = current estimate of root

Example

Search Bracket

Cauchy's Bound

Let a_n be the leading coefficient (assumed \neq 0), and all coefficients are real.

The absolute value of **all real roots** of f(x)=0 is less than or equal to:

$$R = 1 + rac{\max\left\{|a_0|, |a_1|, \ldots, |a_{n-1}|
ight\}}{|a_n|}$$

This means all real roots lie in:

$$x \in [-R,R]$$

Search Bracket

Cauchy's Bound

Assume a function

$$f(x) = 2x^3 - 4x^2 + 5x - 10$$

- $a_n=2$
- $\max\{|a_0|, |a_1|, |a_2|\} = \max\{10, 5, 4\} = 10$

Then:

$$R = 1 + rac{10}{2} = 6$$

Task

Find a root of
$$f(x) = x^3 - 3x + 1$$
,

In the interval [0,1]

f(x) is continuous

$$f(0) = 1$$
, $f(1)=-1 ==> f(0)f(1)<0$

We can use Bisection Method

Bisection Method – Example

•
$$f(x) = x^3 - 3x + 1$$

- Search bracket
 - By applying Cauchy's boundary

$$\max\{1, 3, 0\} = 3$$

$$R = 1 + \frac{3}{1} = 4$$

Bracket = [-4,4]

Bisection Method – Example

•
$$f(x) = x^3 - 3x + 1$$

- Check for Sign Change
 - By applying Cauchy's boundary

$$f(-4) = (-4)^3 - 3(-4) + 1 = -64 + 12 + 1 = -51$$

 $f(4) = (4)^3 - 3(4) + 1 = 64 - 12 + 1 = 53$

Sign changes. So, at least one root exists in [-4,4]

Bisection Method – Example

•
$$f(x) = x^3 - 3x + 1$$

Let the interval be:

$$a = -4, \quad b = 4$$

We compute midpoint:

$$c = \frac{a+b}{2}$$

And check sign of f(c) to decide the new interval.

Bisection Method – $f(x) = x^3 - 3x + 1$

Iter	а	b	c (midpoint)	f(c)	Sign of $f(c)$	New Interval
1	-4	4	0.0	f(0)=1f(0)=1f(0)=1	+	[-4, 0]
2	-4	0	-2.0	f(-2)=-1f(-2)=-1	_	[-2, 0]
3	-2	0	-1.0	f(-1)=3f(-1)=3f(-1)=3	+	[-2, -1]
4	-2	-1	-1.5	f≈2.125f ≈ 2.125f≈2.125	+	[-2, -1.5]
5	-2	-1.5	-1.75	f≈0.89f ≈ 0.89f≈0.89	+	[-2, -1.75]
6	-2	-1.75	-1.875	f≈0.035f ≈ 0.035f≈0.035	+	[-2, -1.875]
7	-2	-1.875	-1.9375	f≈-0.457f ≈ -0.457f≈-0.457	_	[-1.9375, -1.875]
8	-1.9375	-1.875	-1.90625	f≈-0.21f ≈ -0.21f≈-0.21	_	[-1.90625, -1.875]
9	-1.90625	-1.875	-1.890625	f≈-0.088f ≈ -0.088f≈-0.088	_	[-1.890625, -1.875]
10	-1.890625	-1.875	-1.8828	f≈-0.026f ≈ -0.026f≈-0.026	_	[-1.8828, -1.875]
11	-1.8828	-1.875	-1.8789	f≈0.004f ≈ 0.004f≈0.004	+	[-1.8828, -1.8789]
12	-1.8828	-1.8789	-1.8809	f≈-0.011f ≈ -0.011f≈-0.011	_	[-1.8809, -1.8789]
13	-1.8809	-1.8789	-1.8799	f≈-0.0036f ≈ -0.0036f≈-0.0036	_	[-1.8799, -1.8789]
14	-1.8799	-1.8789	-1.8794	f≈0.0002f ≈ 0.0002f≈0.0002	+	[-1.8799, -1.8794]
15	-1.8799	-1.8794	-1.8796	f≈-0.0017f ≈ -0.0017f≈-0.0017	_	[-1.8796, -1.8794]
16	-1.8796	-1.8794	-1.8795	f≈-0.0007f ≈ -0.0007f≈-0.0007	_	[-1.8795, -1.8794]
17	-1.8795	-1.8794	-1.87945	f≈-0.0002f ≈ -0.0002f≈-0.0002	_	[-1.87945, -1.8794]
18	-1.87945	-1.8794	-1.87943	f≈-0.00001f ≈ -0.00001f≈-0.00001	-	Stop — desired precision

Thank you

Question and Suggestion

