Unidad I

Introducción a la Inteligencia Artificial

Raúl I. Navarro

Universidad Autónoma de Baja California Facultad de Ciencias Químicas e Ingeniería

Inteligencia Artificial, 2018-2

Contenido

- 1 Áreas de la Inteligencia Artificial
- Sistemas Expertos
- Aprendizaje automático
- 4 Búsqueda

Contenido

- 1 Áreas de la Inteligencia Artificial
- 2 Sistemas Expertos
- Aprendizaje automático
- 4 Búsqueda

Áreas relacionadas a la Inteligencia Artificial

Ámbito de la Inteligencia Artificial

Habilidades requeridas para ser ML Engineer

TYPES OF ARTIFICIAL INTELLIGENCE

DEEP LEARNING MACHINE LEARNING PREDICTIVE ANALYTICS TRANSLATION NATURAL LANGUAGE PROCESSING CLASSIFICATION, CLUSTERING INFORMATION EXTRACTION SPEECH SPEECH TO TEXT TEXT TO SPEECH INFERENCE ENGINE **EXPERT SYSTEMS** KNOWLEDGE BASE REDUCTION PLANNING, SCHEDULING, OPTIMIZATION CLASSICAL PROBABILISTIC, TEMPORAL REACTIVE MACHINES ROBOTICS LIMITED MEMORY THEORY OF MIND, SELF-AWARE IMAGE RECOGNITION VISION MACHINE VISION

Contenido

- Áreas de la Inteligencia Artificia
- 2 Sistemas Expertos
- Aprendizaje automático
- 4 Búsqueda

Sistemas Expertos

Figure 2: Diagrama de un Sistema Experto

Representación de conocimiento e inferencia

Formas de representación de conocimiento

- Lógica de primer orden
- Sistemas basados en reglas
- Redes semánticas y marcos
- Ontologías
- Sistemas basados en modelos probabilísticos
- Conjuntos borrosos

Conocimiento basado en reglas

Figure 3: Reglas IF-THEN para representación de conocimiento

Inference in First-Order Logic

Premises:

- 1. If x is a parent of y, then x is older than y
- 2. If x is the mother of y, then x is a parent of y
- 3. Lulu is the mother of Fifi

Conclusion:

Lulu is older than Fifi

Mapping to first-order logic:

Premises in first-order logic:

- 1. $\forall x \forall y. Parent(x,y) \Rightarrow Older(x, y)$
- 2. $\forall x \forall y. Mother(x,y) \Rightarrow Parent(x, y)$
- 3. Mother(Lulu, Fifi)

Conclusion:

Therefore, Older(x, y)

Marcos como base de conocimiento

Figure 4: "Frames" como base de conocimiento

Ontologías como base de conocimiento

Sistemas de inferencia difusos

Figure 5: Sistema de Inferencia Difuso

Reglas difusas como base de conocimiento

The General Case...

A Specific Example...

The GUI Editors...

Figure 6: Ejemplo de reglas difusas

Contenido

- Áreas de la Inteligencia Artificia
- Sistemas Expertos
- Aprendizaje automático
- 4 Búsqueda

"Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel, 1959

Programación tradicional vs Aprendizaje Automático

Programación Tradicional

Aprendizaje Automático

Aprendizaje automático

Tipos de aprendizaje

Principales tipos de problemas que ataca

- Supervisado
 - Clasificiación
 - Regresión
- No supervisado
 - Agrupamiento
- Reforzamiento

Aprendizaje supervisado

Regresión

Aprendizaje supervisado

Clasificación

Aprendizaje no supervisado

T-shirt sizing

T-shirt sizing

Aprendizaje por reforzamiento

Aplicaciones de ML

The learning diagram

Explosión de información

Explosión de información

Problemas más complejos

Figure 8: Vehículo autónomo

Auge del Aprendizaje Profundo

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Big-O Complexity Chart

Figure 10: Complejidad de algoritmos

Why deep learning

How do data science techniques scale with amount of data?

Contenido

- 1 Áreas de la Inteligencia Artificia
- 2 Sistemas Expertos
- Aprendizaje automático
- 4 Búsqueda

Búsqueda

Técnicas

- Búsqueda sin información
- Basadas en búsquedas heurísticas
- Problemas de satisfacción de restricciones
- Computación evolutiva

Parámetros a encontrar

Regresión

Clasificación

Búsqueda sin información

Depth first traversal of above graph can be :40,20,50,70,60,30,10

Figure 12: Ejemplo de grafo sin información.

Basadas en búsquedas heurísticas

7	6	5	6	7	8	9	10	11		19	20	21	22
6	5	4	5	6	7	8	9	10		18	19	20	21
5	4	3	4	5	6	7	8	9		17	18	19	20
4	3	2	3	4	5	6	7	8		16	17	18	19
3	2	1	2	3	4	5	6	7		15	16	17	18
2	1	0	1	2	3	4	5	6		14	15	16	17
3	2	1	2	3	4	5	6	7		13	14	15	16
4	3	2	3	4	5	6	7	8		12	13	14	15
5	4	3	4	5	6	7	8	9	10	11	12	13	14
6	5	4	5	6	7	8	9	10	11	12	13	14	15

Figure 13: Ejemplo de algoritmo de búsqueda A*

Problemas de satisfacción de restricciones

Constraint Satisfaction Problems

Figure 14: Problemas de satisfacción de restricciones

Computación evolutiva

Figure 15: Algoritmos Genéticos