

DPR: Dense Passage Retrieval for Open-Domain Question Answering

JUHYEONG LEE, KNUAIR

Contents

Karpukhin, Vladimir, et al. "Dense P assage Retrieval for Open-Domain Question Answering." EMNLP, 2020.

I. Introduction

- What is Open-Domain QA
- Brief History of Open-Domain QA
- II. Dense Passage Retriever
- III. DPR: Training
- IV. Experiments

Question Answering

Question Answering

Open-domain QA

Open-domain Question Answering

• Retrieval + Machine Reading

Answers factoid questions using a large collection of docs

Open-domain QA

Challenges in Open-domain Question Answering

 Given a factoid question, a system is required to answer it using a large corpus of diversified topics

 needs to include efficient retriever component that can select a small set of relevant texts

- Early QA Systems
 - Complicated and consist of multiple components
 - Question Analysis + Document Retreival + Answer Extraction
- Modern QA Systems
 - Context Retriever + Machine Reader

- Performance of both systems have dependency for previous components
 - → Pipelining

Traditional Approach

• TF-IDF or BM25(upgraded ver. of TF-IDF)

• Sparse vector space models

Statistical approach(count-based)

Sparse Representation

Represent sequence in high dimension

Dense Representation

Represent sequence in lower dimension

Sparse Representation

- Represent sequence in high dimension
- Synonyms, paraphrases mapped independently

Dense Representation

- Represent sequence in lower dimension
- Synonyms, paraphrases –
 mapped closely

Sparse Representation

- Represent sequence in high dimension
- Synonyms, paraphrases –
 mapped independently
- Always provides same representations

Dense Representation

- Represent sequence in lower dimension
- Synonyms, paraphrases –
 mapped closely
- Learnable by adjusting the embedding functions, and provid es additional flexibility to have a task-specific representation

• Then, does dense representations always outperform sparse one?

Answer : NO (until 2019)

- Learning a good dense vector representation
 - Needs a large number of labeled examples

- ORQA : Open-Retrieval QA using *dense representation*
 - Outperforms BM25 for the first time
 - Proposal : Inverse Cloze Training
 - predicting the blocks that contain the masked sentence, for additional pretraining
 - Two Weeknesses
 - ICT pretraining: consumes intensive computation
 - Context encoder is not fine-tuned

Lee, Kenton, Ming-Wei Chang, and Kristina Toutanova. "Latent Retrieval for Weakly Supervised Open Domain Question An swering." Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019.

Introduction

Question: Can we train a better dense embedding model
 using ① only (a few) pairs of questions and passages,
 ② without additional pretraining?

Introduction

- Question: Can we train a better dense embedding model
 using ① only (a few) pairs of questions and passages,
 ② without additional pretraining?
- Answer :
 - Objective maximizing inner products of
 question and relevant passage vectors
 by comparing all pairs of questions and passages
 in a batch

Introduction

- Proposal: retrieval can be practically implemented using dense representations alone
 - Embeddings are learned from a small number of questions and passages by simple dual-encoder framework

Dual-Encoder vs Cross-Encoder

Reference: Humeau, Samuel, et al. "Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multisentence Scoring." ICLR. 2019.

Dual-Encoder vs Cross-Encoder

- Cross-Encoder
 - Perform full (cross)self-attention over a given input and label c andidate
 - Higher accuracy, but slower than dual-encoder

Dual-Encoder vs Cross-Encoder

- Cross-Encoder
 - Perform **full (cross)self-attention** over a given input and label c andidate
 - Higher accuracy, but slower than dual-encoder
- (Bi)Dual-Encoder
 - Perform self-attention over the input and candidate label separately
 - Able to cache the encoded candidates,
 and reuse these representations → fast prediction

Reference: Humeau, Samuel, et al. "Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring." ICLR. 2019.

Contribution

- Fine-tuning the question and passage encoders on existing question-passage pairs is sufficient to outperform BM25
 - And additional pretraining may not be needed

Contribution

- Fine-tuning the question and passage encoders on existing question-passage pairs is sufficient to outperform BM25
 - And additional pretraining may not be needed

 Verify that a higher retrieval precision translates to a higher end-to-end QA accuracy

Dense Passage Retriever

- The goal of DPR:
 - Given a collection of M text passages,
 - Index all the passages in a low-dimensional and continuous space,
 - Then the top k passages can be retrieved efficiently
 - ⇒ Find optimal representations of passages
- M can be very large (about 20M), and k is usually small (about 20 \sim 100)

• The dense encoder $E_P(\cdot)$

- ullet Maps any passages to a d-dimensional real-valued vectors
- Build an index for all the M passages that are used for retrieval

- Another dense encoder $E_O(\cdot)$
 - ullet Maps the questions to a d-dimensional real-valued vectors
 - \bullet Retrieves k passages of which vectors are the closest to the question vector

- Similarity Measure : Dot Product
- $sim(q, p) = E_Q(q)^T E_P(P)$

- Similarity Measure : Dot Product
- $sim(q, p) = E_Q(q)^T E_P(P)$
- Why Dot Product?
 - Needs to be *decomposable*
 - Another decomposable sim. func. : L2 Distance, Cosine Distance
 - So that the representations of the passages can be pre-computed

• Encoder architecture : BERT_(base, uncased)

• Inference time : top k passages retrieval with FAISS

• FAISS: library for similarity search and clustering of dense vectors

- Goal : Create a vector space such that
 - Relevant pairs of questions and passages
 will have smaller distance than the irrelevant ones

Training data

$$\mathcal{D} = \left\{ \left\langle q_i, p_i^+, p_{i,1}^-, \cdots, p_{i,n}^- \right\rangle \right\}_{i=1}^m$$
 question one relevant passage

• Loss function : NLL Loss

$$L(q_i, p_i^+, p_{i,1}^-, \cdots, p_{i,n}^-) = -\log \frac{e^{\sin(q_i, p_i^+)}}{e^{\sin(q_i, p_i^+)} + \sum_{j=1}^n e^{\sin(q_i, p_{i,j}^-)}}$$

• Minimize $\sum_{j=1}^n e^{\sin(q_i,\,p_{i,j}^-)}$, maximize $e^{\sin(q_i,\,p_i^+)}$

- Selecting negative examples
 - Assume that there exists 100,000 q-p pairs.

• For each questions, there are one positive passage

Rest of 99,999 passages are not positive passage

- : There exists *99,999 negative passages* per question.
 - Need to be selected from an extremely large pool

- Selecting negative examples
 - Could be decisive for learning a high-quality encoder
 - Method 1: Random
 - Method 2 : BM25
 - top passages from BM25 which do not contain the answer but match most question tokens
 - Method 3: Gold
 - positive passages paired with other questions which appear in the training set

• In-batch Negative

• DPR vs BM25

Training	Retriever	Top-20				Top-100					
		NQ	TriviaQA	WQ	TREC	SQuAD	NQ	TriviaQA	WQ	TREC	SQuAD
None	BM25	59.1	66.9	55.0	70.9	68.8	73.7	76.7	71.1	84.1	80.0
Single	DPR BM25 + DPR	78.4 76.6	79.4 79.8	73.2 71.0	79.8 85.2	63.2 71.5	85.4 83.8	85.0 84.5	81.4 80.5	89.1 92.7	77.2 81.3
Multi	DPR BM25 + DPR	79.4 78.0	78.8 79.9	75.0 74.7	89.1 88.5	51.6 66.2	86.0 83.9	84.7 84.4	82.9 82.3	93.9 94.1	67.6 78.6

Table 2: Top-20 & Top-100 retrieval accuracy on test sets, measured as the percentage of top 20/100 retrieved passages that contain the answer. *Single* and *Multi* denote that our Dense Passage Retriever (DPR) was trained using individial or combined training datasets (all the datasets excluding SQuAD). See text for more details.

• DPR vs BM25

- Sample efficiency
 - DPR using only 1K examples already outperforms BM25
 - With a general pretrained LM(like BERT),
 it is possible to train a high-quality dense retriever
 with a small number of examples

- In-batch negative training
 - Adding a single BM25
 negative passage
 improves the result
 substantially

Type	#N	IB	Top-5	Top-20	Top-100	
Random	7	X	47.0	64.3	77.8	
BM25	7	X	50.0	63.3	74.8	
Gold	7	X	42.6	63.1	78.3	
Gold	7	1	51.1	69.1	80.8	
Gold	31	1	52.1	70.8	82.1	
Gold	127	✓	55.8	73.0	83.1	
G.+BM25 ⁽¹⁾	31+32	√	65.0	77.3	84.4	
$G.+BM25^{(2)}$	31+64	1	64.5	76.4	84.0	
G.+BM25 ⁽¹⁾	127+128	✓	65.8	78.0	84.9	

Table 3: Comparison of different training schemes, measured as top-k retrieval accuracy on Natural Questions (development set). #N: number of negative examples, IB: in-batch training. G.+BM25⁽¹⁾ and G.+BM25⁽²⁾ denote in-batch training with 1 or 2 additional BM25 negatives, which serve as negative passages for all questions in the batch.

- Similarity and Loss
 - Similarity
 - DP ≈ L2 > Cosine
 - Loss
 - NLL ≈ Triplet

- c.f.) Triplet Loss
 - anchor-positive-negative

Sim	Loss Retrieval Accuracy					
		Top-1	Top-5	Top-20	Top-100	
DP	NLL Triplet	44.9 41.6	66.8 65.0	78.1 77.2	85.0 84.5	
L2	NLL Triplet	43.5 42.2	64.7 66.0	76.1 78.1	83.1 84.9	

Table 6: Retrieval Top-k accuracy on the development set of Natural Questions using different similarity and loss functions.

Experiments: End-to-End QA

Training	Model	NQ	TriviaQA	WQ	TREC	SQuAD
Single	BM25+BERT (Lee et al., 2019)		47.1	17.7	21.3	33.2
Single	ORQA (Lee et al., 2019)		45.0	36.4	30.1	20.2
Single	HardEM (Min et al., 2019a)		50.9	-	-	-
Single	GraphRetriever (Min et al., 2019b)		56.0	36.4	-	-
Single	PathRetriever (Asai et al., 2020)		-	-	-	56.5
Single	REALM _{Wiki} (Guu et al., 2020)		-	40.2	46.8	-
Single	REALM _{News} (Guu et al., 2020)	40.4	-	40.7	42.9	-
Single	BM25	32.6	52.4	29.9	24.9	38.1
	DPR	41.5	56.8	34.6	25.9	29.8
	BM25+DPR	39.0	57.0	35.2	28.0	36.7
Multi	DPR	41.5	56.8	42.4	49.4	24.1
	BM25+DPR	38.8	57.9	41.1	50.6	35.8

Table 4: End-to-end QA (Exact Match) Accuracy. The first block of results are copied from their cited papers. REALM_{Wiki} and REALM_{News} are the same model but pretrained on Wikipedia and CC-News, respectively. *Single* and *Multi* denote that our Dense Passage Retriever (DPR) is trained using individual or combined training datasets (all except SQuAD). For WQ and TREC in the *Multi* setting, we fine-tune the reader trained on NQ.

Conclusion

- Dense retrieval can outperform and potentially replace the traditional sparse retrieval component in open-domain QA
- Dual-encoder
- In-batch negative approach
- Indicate that more complex model frameworks or sim. func do not necessarily provide additional values

Q&A

