NASA TECHNICAL MEMORANDUM

N73-14983 NASA TM X-2658

CASE FILE COPY

PERFORMANCE OF A SINGLE-STAGE AXIAL-FLOW TRANSONIC COMPRESSOR STAGE WITH A BLADE TIP SOLIDITY OF 1.7

by Royce D. Moore and Lonnie Reid Lewis Research Center Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • DECEMBER 1972

	_ • _	_	•
1. Report No.	2. Government Accession No.	3. Recipient's Catalog	No.
NASA TM X-2658		ļ <u></u>	
4. Title and Subtitle PERFORMANCE OF A SINGLE	-STAGE AXIAL-FLOW TRANSON	5. Report Date December 19	972
IC COMPRESSOR STAGE. WITH	A BLADE TIP SOLIDITY OF 1.7	6. Performing Organi	zation Code
7. Author(s)		8. Performing Organiz	ation Report No.
Royce D. Moore and Lonnie Re	id .	E-6730	
		10. Work Unit No.	
Performing Organization Name and Address Lewis Research Center		501-24	· ·
National Aeronautics and Space	Administration	11. Contract or Grant	No.
Cleveland, Ohio 44135			· · · · · · · · · · · · · · · · · · ·
		13. Type of Report ar	
12. Sponsoring Agency Name and Address	Administration	Technical M	emorandum
National Aeronautics and Space	Administration	14. Sponsoring Agency	Code
Washington, D.C. 20546			
15. Supplementary Notes			·
peak efficiency of 0.784 was ob (194.9 kg/sec/m ² of annulus ar speed was 11.4 percent. The p was attributed to (1) the stator than design, (2) the losses and	performance of a transonic compositative speeds from 50 to 100 percentained at a weight flow of 28.6 kilorea) and a pressure ratio of 1.706 peak efficiency being significantly closs and the radial gradient of lost blockages associated with the rotogn, and (3) the mismatch of the rotogn, and (3)	ent of design speed ograms per second Stall margin at a less than design ed ses being much his or part-span dampe	d. Stage design fficiency gher ers not
17. Key Words (Suggested by Author(s))	18. Distribution Statem	ent	
Compressor	Unclassified	- unlimited	
Solidity			
Transonic compressor			
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22, Price*
Unclassified	Unclassified	112	\$3.00

 $^{^{*}}$ For sale by the National Technical Information Service, Springfield, Virginia 22151

CONTENTS

P	age
SUMMARY	1
INTRODUCTION	1
AERODYNAMIC DESIGN	2
APPARATUS AND PROCEDURE	3
Compressor Test Facility	_3
Test Stage	3
Instrumentation	4
Test Procedure	[*] 5
Calculation Procedure	5
RESULTS AND DISCUSSION	6
Overall Performance	6
Radial Distributions	7
Rotor	7
Stator	7
Variations with Incidence Angle	8
Rotor	8
Stator	8
Discussion of Performance	8
SUMMARY OF RESULTS	9
APPENDIX	
A - SYMBOLS	11
B - EQUATIONS	13
C - ABBREVIATIONS AND UNITS USED IN TABLES	16
REFERENCES	19

PERFORMANCE OF A SINGLE-STAGE AXIAL-FLOW TRANSONIC COMPRESSOR STAGE WITH A BLADE TIP SOLIDITY OF 1.7

by Royce D. Moore and Lonnie Reid

Lewis Research Center

SUMMARY

The overall and blade-element performance of a transonic compressor stage is presented. This stage has a blade tip solidity of 1.7 for both rotor and stator. Detailed radial and circumferential (behind stators) surveys of the flow conditions were made over the stable operating range at rotative speeds from 50 to 100 percent of design speed. Stage peak efficiency of 0.784 was obtained at a pressure ratio of 1.706 and a weight flow of 28.6 kilograms per second (194.9 kg/sec/m² of annulus area). This compares to design weight flow of 29.5 kilograms per second, efficiency of 0.843, and pressure ratio of 1.750. The rotor peak efficiency of 0.838 was also less than the design efficiency of 0.890. At peak efficiency the losses were greater than the design values over the entire blade span for both rotor and stator. Stall margin at design speed was 11.4 percent for the stage, based on weight flow and total pressure ratio at peak efficiency and stall.

The peak efficiency being significantly less than design efficiency was attributed to (1) the stator losses and the radial gradient of losses being much higher than design, (2) the losses and blockages associated with the rotor part-span dampers not being incorporated into the design, and (3) the mismatch of the rotor and stator blade elements.

INTRODUCTION

A research program on axial-flow fans and compressors for advanced airbreathing engines is currently being conducted at the NASA Lewis Research Center. This program is primarily directed towards providing technology to permit reducing the size and weight of fans and compressors while maintaining high levels of performance. In support of this program, experimental studies are being conducted on the effect on efficiency and stall margin of blade solidity, blade aspect ratio, blade loading, area margin

above choke, different blade shapes, weight flow per unit annular area, velocity ratio, and blade spacing (refs. 1 to 6).

In one series of tests, the results showed that the efficiency and pressure ratio were higher for a rotor with a blade tip solidity of 1.5 than for a rotor with a solidity of 1.1 (ref. 6). To increase the blade tip solidity the subsonic (rearward) portion of the blade was lengthened. Since the number of blades was the same for both rotors, other parameters such as blade aspect ratio were also affected.

Another series of tests is being conducted involving the effect of blade solidity on the performance of axial-flow compressor stages. The blade tip solidities of 1.3, 1.5, and 1.7 are being changed by varying the number of blades while maintaining the same velocity diagrams and flow path. These stages were designed such that the tip solidity of both the rotor and stator blades would be the same.

In the present investigation, the axial-flow compressor stage with the tip solidity of 1.7 was tested. This report presents the aerodynamic design parameters, along with the overall and blade-element performance, of the stage. Data were obtained over the stable operating range of the stage for six rotative speeds from 50 to 100 percent of design speed. Blade-element survey data were obtained at 11 radial positions. The stage presented in this report has been designated stage 12-5, with the rotor being rotor 12 and the stator being stator 5. The data presented in this report are in tabular form as well as in machine-plotted form. The symbols and equations are defined in appendixes A and B. The abbreviations and units used for the tabular data are defined in appendix C.

AERODYNAMIC DESIGN

Several computer programs have been developed to aid in the design of compressors and fans. The programs used in the design of this compressor stage were a streamline analysis program, a blade geometry program, and a blade coordinates program. These programs are presented in detail in references 1, 2, and 7; thus, only a brief description of each is presented in this report.

The streamline analysis program (ref. 1) calculates the velocity vector diagrams at several axial locations, including planes approximating the blade leading and trailing edges. This program accounts for both streamline curvatures and entropy gradients. Boundary layer blockage factors are also included. Weight flow, rotor speed, flow path geometry, and radial distributions of total pressure and temperature are the inputs to this program.

The calculated velocity vectors and total pressure and temperature distributions from the streamline analysis program are then used in the blade geometry program (ref. 1). This program calculates the blade geometry which will satisfy the vector

diagrams. Losses are calculated within the program. They are based on a calculated shock loss (as related to the particular blade shape) and a profile loss. The losses used for this stage are based on the loss - diffusion-factor correlations that include the data presented in reference 2 for the rotor and in reference 8 for the stator.

After the blade geometry is defined for both the rotor and the stator, the blade coordinate program presented in reference 7 is used to compute the blade elements on conical surfaces approximating the stream surfaces passing through the blade. The program then stacks these blade elements on a radial line about their center of gravity and computes the Cartesian blade coordinates for fabrication.

The overall design parameters for stage 12-5 are listed in table I, and the flow path is shown in figure 1. This stage was designed for an overall pressure ratio of 1.750 and an efficiency of 0.843 at a weight flow of 29.5 kilograms per second (200.6 kg/sec/m² of annulus area). The design tip speed was 422.9 meters per second. This stage was designed for a tip solidity of 1.7 (both rotor and stator). This resulted in 56 rotor blades with an aspect ratio of 2.4 and 62 stator blades with an aspect ratio 2.0.

The blade-element design parameters for rotor 12 are presented in table II. This rotor was designed for a radially constant total pressure ratio of 1.8. The stator blade-element design parameters are given in table III. The blade geometry is presented in table IV for rotor 12 and in table V for stator 5. Both the rotor and stator used multiple-circular-arc blade shapes.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor test facility is the same as that described in reference 1. A schematic view of the facility is shown in figure 2. The drive system consists of an electric motor with a variable-frequency speed control. The drive motor is coupled to a 5.521:1 ratio speed-increaser gearbox that drives the test rotor. Atmospheric air enters from a line on the roof of the building and flows through the orifice and into the plenum chamber just upstream of the test rotor. The air then passes through the compressor stage and the collector valve and exhausts to the atmosphere.

Test Stage

Rotor 12 is shown in figure 3. The rotor, which has 56 blades, has a tip diameter of 50.8 centimeters. Each blade is made with a vibration damper located at about 48 percent of span from the tip. The stator blades (stator 5) are shown mounted in the

Instrumentation

The compressor weight flow was determined from measurements on a calibrated thin-plate orifice that was 38.9 centimeters in diameter. The orifice temperature was determined from an average of two Chromel-Alumel thermocouples. Orifices pressures were measured by calibrated transducers.

Radial surveys of the flow were made at three axial locations: upstream of the rotor, between the rotor and the stator, and downstream of the stator (see fig. 1). Two combination probes (fig. 5(a)) and two 8° wedge probes (fig. 5(b)) were used at each axial measuring station. The probes were located approximately 90° apart, with the two like probes located opposite each other (fig. 6). The combination probes at station 3 were circumferentially traversed 5.8° (1 stator blade gap) counterclockwise from the nominal values shown in figure 6. The wedge probes were used to determine static pressure; and the combination probes were used to determine total pressure, total temperature, and flow angle. Each probe had associated null-balancing equipment that automatically alined the probe to the direction of flow. Iron-constantan thermocouples were used in the combination probes to determine stream temperatures. Calibrated transducers were used to measure all pressures.

Static pressure taps were also installed on both the outer and inner walls of the compressor casing. These pressure taps were at the same axial location as the probes but were offset in the circumferential direction (see fig. 6). The rotative speed of the test rotor was determined by an electronic speed counter. The test data were recorded by a central data recording system.

The estimated errors of the data, based on inherent accuracies of the instrumentation and recording system are as follows:

Weight flow, kg/sec	±0.3
Rotative speed, rpm	±30
Flow angle, deg	±1
Temperature, K	±0.6
Rotor-inlet total pressure, N/cm ²	±0.01
Rotor-outlet total pressure, N/cm ²	±0.10
Stator-outlet total pressure, N/cm^2	±0.10
Rotor-inlet static pressure, N/cm ²	
Rotor-outlet static pressure, N/cm^2	±0.07
Stator-outlet static pressure, N/cm ²	±0.07

Test Procedure

The stage survey data were taken over a range of weight flows from maximum flow to the near-stall conditions. At 70, 90, and 100 percent of design speed, surveys were made at five weight flows. At 50, 60, and 80 percent of design speed, surveys were made at the near-stall weight flow only. Data were recorded at 11 radial positions for each speed and weight flow. At each radial position the two combination probes behind the stator were circumferentially traversed to nine different locations across the stator gap. The wedge probes were set at mid-gap because preliminary studies showed that the static pressure across the stator gap was constant. Values of pressure, temperature, and flow angle were recorded at each circumferential position. At the last circumferential position, values of pressure, temperature, and flow angle were also recorded for stations 1 and 2. All probes were then traversed to the next radial position and the circumferential-traverse procedure repeated.

At each of the six rotative speeds, the back pressure on the stage was increased (by closing the sleeve valve in the collector) until a stalled condition was evident. Stall was detected by a sudden drop in stage-outlet total pressure, which was measured by a probe located at midpassage and recorded on an X-Y plotter. Stall was also correlated by large increases in blade stresses on both rotor and stator, along with a sudden increase in noise level. The weight flow at stall was obtained in the following manner: From a condition near stall, the sleeve valve was slowly closed in small increments. At each increment, the weight flow was obtained. The weight flow obtained just before stall occurred is called the stall weight flow. The pressure ratio at stall was obtained by extrapolating the total pressure obtained from the survey data to the stall weight flow.

Calculation Procedure

All the data shown herein have been corrected to standard-day conditions at the rotor inlet. The blade-element data have been translated from the measuring stations to correspond to conditions at the blade edges. The translation procedure described in reference 2 was used.

Due to the physical construction of the 8° wedge probe, static pressure could not be measured at the 5-, 10-, and 95-percent-span locations. Thus, a linear interpolation between the outer-wall static pressure and the value of static pressure at 30-percent span was used to obtain static pressure at 5- and 10-percent span. At 95-percent span, an interpolation between the static pressures at 90-percent span and the inner wall was used to obtain the static pressure.

At each radial survey position, nine circumferential values of pressure, tempera-

ture, and flow angle were measured downstream of the stator (station 3). The nine values of total temperature were mass-averaged to obtain the stator-outlet total temperature. The nine values of total pressure were energy-averaged. The flow angle presented for each radial position is calculated based on mass-averaged axial and tangential velocities. All the blade-element data presented at the stator outlet are based on these averaged values of pressure, temperature, and flow angle.

To obtain the overall performance, the radial values of total temperature were mass-averaged and the values of total pressure were energy-averaged. At each measuring station, the integrated weight flow was computed based on the radial survey data. The agreement between the integrated weight flow at each station and the orifice weight flow is shown in figure 7 to indicate the consistency of the data. Except at the low-speed - low-weight-flow conditions at the stator outlet (fig. 7(c)), the integrated weight flows are within 5 percent of the orifice weight flow. At the low-speed - low-weight-flow condition, the stator-outlet integrated weight flow is approximately 10 percent lower than the orifice weight flow.

RESULTS AND DISCUSSION

The overall performances for the rotor and the stage are presented first. Radial distributions of several performance parameters are then presented for both the rotor and the stator, followed by the blade-element data. Finally, a brief discussion of the data is given.

All the plotted data, together with some additional performance parameters, are listed in tabular form. The overall performance data are presented in table VI. The blade-element data are given first for the rotor and then for the stator in tables VII to XVIII. The abbreviations and units used for the tabular data are defined in appendix C.

Overall Performance

The overall performance for rotor 12 is presented in figure 8, and the overall performance for stage 12-5 is presented in figure 9. For both machine-plotted figures, data are presented for speeds from 50 to 100 percent of design speed. For 50, 60, and 80 percent of design speed, the overall performance is presented for the near-stall condition only. For 70, 90, and 100 percent of design speed, data are presented at several weight flows from choke to the near-stall conditions. Design-point values are shown as solid symbols in both figures. The stall line (dashed line) shown in figure 9 was determined based on the method discussed in the section Test Procedure.

The peak efficiency for rotor 12 at design speed was 0.838, compared to the design value of 0.890. The peak efficiency occurred at a weight flow of 28.6 kilograms per second. This corresponds to a weight flow per unit annulus area of 194.9 kilograms per second per square meter. The measured total pressure ratio was 1.787 and the temperature ratio was 1.215. These compare to design values of 1.800 and 1.205, respectively.

The stage overall performance trends with respect to design values were similar to those for the rotor. The stage peak efficiency was 0.784, compared to the design value of 0.843. At peak efficiency, the weight flow was 28.6 kilograms per second, compared to the design value of 29.5 kilograms per second. The measured pressure ratio of 1.706 was less than the design value of 1.750, but the temperature ratio of 1.211 was higher than the design value of 1.205. The maximum-flow condition of the stage was experienced before the design weight flow was obtained.

At the lower speeds, efficiencies as high as 0.880 and 0.796 were measured for the rotor and stage, respectively. At design speed, the stall margin was 11.4 percent for the stage.

Radial Distributions

The radial distributions of several parameters for 100 percent of design speed are presented in figure 10 for rotor 12 and in figure 11 for stator 5. In each figure, data are presented for three weight flows: near choke, peak efficiency, and near stall. The design values are shown by the solid symbols. Temperature-rise efficiency, temperature ratio, pressure ratio, suction-surface incidence angle, meridional velocity ratio, deviation angle, total-loss parameter, total-loss coefficient, and diffusion factor are presented as functions of percent span from the blade tip.

Rotor. - As the weight flow was reduced, the pressure ratio and temperature ratio increased across the entire rotor blade span. The blade loading (diffusion factor) also continued to increase with decreasing weight flow. The rotor losses increased in the tip region but were relatively unaffected from the region of the damper to the hub.

At the peak efficiency weight flow of 28.6 kilograms per second, the blade loading was just slightly higher than the design values. However, the losses in the damper and hub region were much greater than the design values. In the tip region the losses were only slightly greater than design. The deviation angles were less than design values in the tip region and at the hub, and were higher than design values from the damper to 90 percent of span.

Stator. - At the peak efficiency weight flow of 28.6 kilograms per second, the stator blade loading (diffusion factor) agreed reasonably well with the design values. However,

the measured losses were considerably larger than the design values. Except in the damper region, the incidence angles agreed within 2° of the design values. The measured deviation angles were greater than design over the entire blade span.

Variations with Incidence Angle

The variations of selected blade-element parameters with suction-surface incidence angle are presented in figure 12 for the rotor and in figure 13 for the stator. The data are presented for 70, 90, and 100 percent of design speed for blade-element locations of 5, 10, 30, 52.5, 70, 90, and 95 percent of span from the blade tip. Design values are shown by solid symbols. In addition to all the parameters which were shown in the radial distribution plots, inlet relative Mach number is also presented. The various curves as a function of incidence angle are presented primarily for future correlation in comparing the performance of these blades with other blade designs. Thus, only a few brief observations will be made from the curves.

Rotor. - The rotor blades were designed for minimum loss to occur at zero incidence angle. The incidence angle associated with minimum loss was not obtained for the 5-, 10-, 30-, and 70-percent spans. At each of these spans, the losses continued to decrease as the flow was increased (decreasing incidence angle) to the maximum-flow condition. At 52.5-, 90-, and 95-percent span, the suction-surface incidence angle corresponding to minimum loss was about 1°. At 5-, 10-, 30-, and 95-percent spans, the deviation angles were less than design, whereas at the other locations they were greater than design. The effect of the damper is evident at the 52.5-percent-span location. The rotor pressure ratio and efficiency are considerably less than design, while the losses are much greater than the design values.

Stator. - The suction-surface incidence angle corresponding to minimum loss was within 2^{0} of the design incidence angle, except at 52.5-percent span. At 52.5-percent span, the minimum-loss incidence angle is 4^{0} . The minimum losses were considerably greater than design, except at the 52.5- and 70-percent-span locations: For those two locations, minimum losses were about the same as design. The deviation angle was greater than design for all percent-span locations.

Discussion of Performance

The maximum flow for this high-solidity stage is somewhat less than the design flow. At the maximum-flow conditions, the stator losses are substantially greater than both the design and minimum-loss values for all the blade elements. Except in the

region behind the rotor dampers, the stator incidence angles are also less than the design values. Thus, it appears that the stator blading and its mismatch with the rotor could be limiting the stage flow.

The data indicated that the minimum loss for the rotor was not attained for the 5-, 10-, 30-, and 70-percent-span locations. If the stator had not been limiting the maximum flow, the rotor overall efficiency would probably be higher and occur at a higher flow. However, the rotor would not have achieved the design efficiency even if each element was reset to its minimum-loss condition because no allowances were made for the damper losses and blockage due to the dampers in the design of this stage.

The stator minimum losses are higher than the design values for all elements. The difference between minimum loss and design decreases from the tip to the 70-percent-span location and then increases to the hub. Thus, the radial gradients of losses are also greater than design. These higher loss levels and higher radial loss gradients are probably related to the high blade surface area, radial boundary flows, and secondary flows of the high-solidity blading. Adjusting the stator elements for these higher losses and loss gradients and resetting the rotor elements would probably result in some improvement in the stage efficiency. However, at the high level of blade solidity, this stage could not be expected to achieve the design performance.

SUMMARY OF RESULTS

This report presents both the aerodynamic design parameters and the overall and blade-element performance of a transonic compressor stage. This stage, which is one of a series designed to investigate blade solidity, has a tip solidity of 1.7 for both rotor and stator. Detailed radial surveys of the flow conditions in front of and behind the rotor and behind the stator were made over the stable operating flow range of the stage at rotative speeds from 50 to 100 percent of design speed. Flow and performance parameters were calculated across 11 blade elements. The following principal results were obtained from this investigation:

- 1. Stage peak efficiency of 0.784 was significantly less than the design efficiency of 0.843. This decrease is attributed to (1) the stator losses and radial gradient of losses being much greater than design, (2) losses and blockages associated with the rotor part-span damper not being incorporated into the design, and (3) the mismatch of the rotor and stator blade elements.
- 2. Stage peak efficiency was obtained at a weight flow of 28.6 kilograms per second and a pressure ratio of 1.706. This compares to the design weight flow of 29.5 kilograms per second and the design pressure ratio of 1.750.
 - 3. Stall margin for this stage at design speed was 11.4 percent, based on weight

flow and total pressure at peak efficiency and stall.

- 4. Rotor peak efficiency of 0.838 occurred at a pressure ratio of 1.787. Design efficiency was 0.890 and design pressure ratio was 1.800.
- 5. The maximum flow for this high-solidity stage was less than the design weight flow.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, July 27, 1972, 501-24.

APPENDIX A

SYMBOLS

A _{an}	annulus area at rotor leading edge, 0.147 m ²
$A_{\mathbf{f}}$	frontal area at rotor leading edge, 0.198 m ²
C _p	specific heat at constant pressure, 1004 J/(kg)(K)
c	aerodynamic chord, cm
D	diffusion factor
g	acceleration of gravity, 9.8 m/sec ²
ⁱ mc	mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
i _{ss}	suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
J	mechanical equivalent of heat
N	rotative speed, rpm
P	total pressure, N/cm ²
p	static pressure, N/cm ²
r	radius, cm
SM	stall margin
T	total temperature, K
U	wheel speed, m/sec
v	air velocity, m/sec
w	weight flow, kg/sec
${f z}$	axial distance referenced from rotor-blade-hub leading edge, cm
$\alpha_{\mathbf{c}}$	cone angle, deg
$\alpha_{\mathbf{s}}$	slope of streamline, deg
β	air angle, angle between air velocity and axial direction, deg
$eta_{f c}^{m{'}}$	relative meridional air angle based on cone angle, arctan (tan $\beta_{\rm m}'$ cos $\alpha_{\rm c}/{\cos\alpha_{\rm s}}$), deg
γ	ratio of specific heats (1.40)

δ	ratio of rotor-inlet total pressure to standard pressure of 10.13 newtons per square centimeter	
$\delta^{\mathbf{O}}$	deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg	n
η	efficiency	
θ	ratio of rotor-inlet total temperature to standard temperature of 288.2 K	
$\kappa_{ m mc}$	angle between blade mean camber line and meridional plane, deg	
κ. ss	angle between blade suction-surface camber line at leading edge and meridional plane, deg	
σ	solidity, ratio of chord to spacing	
$\overline{\omega}$	total-loss coefficient	
$\overline{\omega}_{ m p}$	profile-loss coefficient	
-	shock-loss coefficient	
Subscripts:		
ad	adiabatic (temperature rise)	
id	ideal	
LE	blade leading edge	•
m	meridional direction	
mom	momentum rise	
p	polytropic	-
TE	blade trailing edge	
Z	axial direction	3
θ	tangential direction	
1 .	instrumentation plane upstream of rotor	
2	instrumentation plane between rotor and stator	
3	instrumentation plane downstream of stator	
Superscript:		٠
ş	relative to blade	

APPENDIX B

EQUATIONS

Suction-surface incidence angle:

$$i_{SS} = (\beta_C^*)_{LE} - \kappa_{SS}$$
 (B1)

Mean incidence angle:

$$i_{mc} = (\beta_c')_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle:

$$\delta^{O} = (\beta_{c}')_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor:

$$D = 1 - \frac{V_{TE}^{\prime}}{V_{LE}^{\prime}} + \left| \frac{(rV_{\theta})^{-}(rV_{\theta})^{-}(LE)}{(rV_{TE} + rV_{LE})\sigma(V_{LE}^{\prime})} \right|$$
(B4)

Total-loss coefficient:

$$\overline{\omega} = \frac{(P'_{id})_{TE} - (P')_{TE}}{(P')_{LE} - (p)_{LE}}$$
(B5)

Profile-loss coefficient:

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{s}$$
 (B6)

Total-loss parameter:

$$\frac{\overline{\omega}\cos\left(\beta_{\mathrm{m}}^{\prime}\right)_{\mathrm{TE}}}{2\sigma}\tag{B7}$$

Profile-loss parameter:

$$\frac{\overline{\omega}_{p} \cos (\beta'_{m})_{TE}}{2\sigma}$$
 (B8)

Adiabatic (temperature rise) efficiency:

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1} \tag{B9}$$

Momentum-rise efficiency:

$$\eta_{\text{mom}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{(UV_{\theta})_{\text{TE}} - (UV_{\theta})_{\text{LE}}}{T_{\text{LE}}gJC_{p}}}$$
(B10)

Equivalent weight flow:

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta} \tag{B11}$$

Equivalent rotative speed:

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area:

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta}$$

$$\mathbf{A}_{an}$$
(B13)

Weight flow per unit frontal area:

$$\frac{W\sqrt{\theta}}{\delta}$$

$$\frac{A_{f}}{A_{f}}$$
(B14)

Head-rise coefficient:

$$\frac{gJC_{p}T_{LE}}{U_{tip}^{2}}\left[\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}-1\right]$$
(B15)

Flow coefficient:

$$\left(\frac{V_z}{U_{tip}}\right)_{LE}$$
 (B16)

Stall margin:

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}}\right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}}\right)_{ref}} \times \frac{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{ref}}{\left(\frac{W\sqrt{\theta}}{\delta}\right)_{stall}} - 1 \right] \times 100$$
(B17)

Polytropic efficiency:

$$\eta_{\rm p} = \exp\left[\frac{\left(P_{\rm TE}/P_{\rm LE}\right)^{(\gamma-1)/\gamma}}{T_{\rm TE}/T_{\rm LE}}\right]$$
(B18)

APPENDIX C

ABBREVIATIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach number

is 1)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing

blade element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean

defined by eq. (B2)), deg

KIC angle between blade mean camber line at leading edge and merid-

ional plane, deg

KOC angle between blade mean camber line at trailing edge and merid-

ional plane, deg

KTC angle between blade mean camber line at transition point and

meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

16

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, revolutions per minute

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE slope of streamline, deg

SLOPE

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines, deg

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock location

of a multiple-circular-arc blade section to that of a double-

circular-arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

REFERENCES

- Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet per Second. NASA TM X-2484, 1972.
- 2. Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380-Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.5. NASA TM X-2379, 1972.
- 3. Hager, Roy D.; Janetzke, David C.; and Reid, Lonnie: Performance of a 1380-Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor with a Blade Tip Solidity of 1.3. NASA TM X-2448, 1972.
- 4. Janetzke, David C.; Ball, Calvin L.; and Hager, Roy D.: Performance of 1380-Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.1. NASA TM X-2449, 1972.
- 5. Lewis, George W., Jr.; and Urasek, Donald C.: Comparison of the Effect of Two Damper Sizes on the Performance of a Low-Solidity Axial-Flow Transonic Compressor Rotor. NASA TM X-2536, 1972.
- 6. Hartmann, Melvin J.; Benser, William A.; Hauser, Cavour H.; and Ruggeri, Robert S.: Fan and Compressor Technology. Aircraft Propulsion. NASA SP-259, 1971, pp. 1-36.
- 7. Crouse, James E.; Janetzke, David C.; and Schwirian, Richard E.: A Computer Program for Composing Compressor Blading from Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-5437, 1969.
- 8. Keenan, M. J.; Harley, K. G.; and Bogardus, G. A.: Experimental Evaluation of Transonic Stators, Data and Performance Report, Multiple-Circular-Arc Stator A. Rep. PWA-3260, Pratt & Whitney Aircraft (NASA CR-54621), 1968.

TABLE I. - DESIGN OVERALL PARAMETERS FOR STAGE 12-5

ROTOR TOTAL PRESSURE RATIO	1.800
STAGE TOTAL PRESSURE RATIO	1.750
ROTOR TOTAL TEMPERATURE RATIO	1.205
STAGE TOTAL TEMPERATURE RATIO	1.205
ROTOR ADIABATIC EFFICIENCY	0.890
STAGE ADIABATIC EFFICIENCY	0.843
ROTOR POLYTROPIC EFFICIENCY	0.898
STAGE POLYTROPIC EFFICIENCY	0.855
ROTOR HEAD RISE COEFFICIENT	0.296
STAGE HEAD RISE COEFFICIENT	0.281
FLOW COEFFICIENT	0.473
WT FLOW PER UNIT FRONTAL AREA	49.172
MT FLOW PER UNIT ANNULUS AREA 2	200.600
WT FLOW	29.484
RPM	
TIP SPEED	22.888

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 12

RP. TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	RAD IN 25.082 24.574 24.026 21.755 20.286 19.988 19.687 19.385 19.081 16.881 14.154 13.423 12.700	0UT 24.701 24.193 23.685 21.653 20.129 19.875 19.621 19.367 17.589 15.557 15.049	ABS IN 0. -0. 0. 0. 0. 0. 0. 0.	BETAM OUT 50.1 47.8 46.2 45.0 45.6 45.8 46.0 46.4 48.4 52.2 53.6 55.1	REL IN 65.6 64.6 63.5 60.0 58.2 57.9 57.2 56.7 52.2 51.6 50.9	BETAM OUT 58.7 57.6 56.5 51.1 46.7 44.6 43.5 42.3 32.5 15.7 9.9 3.4	TOTA IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	L TEMP RATIO 1.252 1.237 1.225 1.206 1.200 1.199 1.198 1.197 1.194 1.195 1.197 1.199	IN 10.13 10.13 10.13 10.13 10.13 10.13	1.800 1.800 1.800
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 191.9 196.9 201.6 211.5 211.9 211.6 211.1 210.5 209.8 201.7 185.0 179.6	VEL 0UT 228.6 226.7 226.1 230.7 236.0 237.2 238.6 240.0 241.5 253.2 272.4 279.2 286.9	REL IN 464.4 458.7 452.5 423.4 402.3 397.9 393.4 388.8 384.1 348.8 301.9 288.9 275.9	VEL 0UT 282.3 284.1 283.2 259.5 240.7 236.8 232.9 225.1 199.5 173.4 168.1 164.3	MERI 191.9 196.9 201.6 211.5 211.9 211.6 211.1 210.5 209.8 201.7 185.0 179.6	D VEL 0UT 146.8 152.3 156.4 163.1 165.5 165.8 166.1 166.2 166.9 165.6	IN 0. -0. 0. 0. 0. 0.	G VEL 0UT 175.3 168.0 163.3 163.2 168.6 170.0 171.5 173.2 174.9 189.2 215.3 224.8 235.4	WHEEL 10 422.9 414.3 405.1 366.8 342.0 337.0 331.9 326.8 321.7 284.6 226.3 214.1	407.9 399.3 365.1 343.7 339.4 335.1 330.8 326.5 296.6
RP PP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS M 0.583 0.599 0.614 0.644 0.647 0.644 0.644 0.645 0.563 0.525	0.623 0.623 0.623 0.623 0.664 0.664 0.668 0.673 0.775 0.775 0.796 0.820	IN 1.411 1.396 1.379 1.296 1.231 1.217 1.203 1.189 1.174 1.063 0.915 0.874	0UT 0.770 0.779 0.781 0.723 0.673 0.663 0.653 0.653 0.632 0.632 0.564 0.493 0.479	1N 0.583 0.599 0.614 0.647 0.648 0.647 0.644 0.642 0.615 0.560 0.543	0UT 0.400 0.418 0.431 0.454 0.463 0.465 0.465 0.467 0.475 0.475	STREAML IN IN -6.69 -5.94 -5.03 -0.49 2.76 3.44 4.14 4.85 5.58 11.26 20.03 22.97 26.11	0UT -6.65 -5.61 -4.54 0.09 3.16 3.79 4.44 5.10 5.77 10.88 17.86 19.81 21.84	VEL R 0.765 0.773 0.776 0.771 0.779 0.782 0.785 0.789 0.793 0.834 0.903	PEAK SS MACH NO 1.604 1.591 1.580 1.548 1.525 1.525 1.525 1.521 1.517 1.482 1.342 1.272
RP TIP 1	PERCENT , SPAN 0.	INCI MEAN 2.5	DENCE SS 0.0	DEV 4.9	D-FACT	EFF 0.725	LOSS C TOT 0.256		LOSS P TOT 0.039	PROF 0.023

RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	RAD IN 24.384 23.946 23.507 21.742 20.634 20.412 20.191 19.970 19.750 18.217 16.514 16.103 15.697	OUT 24.384 23.950 23.541 21.902 20.883 20.681 20.278 20.278 20.278 18.711 17.246 16.897	ABS IN 45.2 42.9 41.4 40.0 40.4 40.6 40.7 40.9 41.0 42.3 44.9 46.9	BETAM OUT 0. -0. 0. 0. 0. 0. 0.	RELL IN 45.2 42.9 41.4 40.0 40.4 40.6 40.7 40.9 41.0 42.3 44.9 45.9	BETAM OUT 0. 0. 0. 0. 0. 0. 0.	IN 360.8 356.4	L TEMP RATIO 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 18.24 18.24 18.24 18.24 18.24 18.24 18.24 18.24 18.24	0.973 0.980 0.978 0.978 0.978 0.977 0.977
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	ABS IN 250.5 249.2 248.9 252.7 256.8 257.8 258.9 260.1 261.3 271.4 292.7 298.5	VEL 0UT 176.5 181.1 184.5 190.3 191.6 191.9 192.3 192.7 193.1 196.8 194.9 192.1	REL IN 250.5 248.9 252.7 256.8 257.8 258.9 260.1 261.4 287.4 292.7 298.5	VEL 0UT 176.5 181.1 184.5 190.3 191.6 191.9 192.3 192.7 193.1 197.0 196.8 194.9 192.1	MERI 1N 176.6 182.4 186.8 193.5 195.5 195.9 196.3 196.7 197.1 200.7 203.8 203.8	D VEL 0UT 176.5 181.1 190.3 191.6 191.9 192.3 192.7 193.1 196.8 194.9 192.1	IN 177.6 169.8 164.5 162.6 166.5 167.6 170.1 171.5 182.7 202.8	OVEL OUT O.	MHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP P 1 2345678911HUB	IN 0.688 0.689 0.692 0.710 0.724 0.731 0.735 0.739 0.772 0.823 0.840	NO 0.474 0.474 0.502 0.523 0.528 0.529 0.531 0.532 0.533 0.535 0.545 0.539 0.530	NELL M. 0.688 0.689 0.692 0.710 0.724 0.728 0.735 0.735 0.735 0.772 0.823 0.840 0.858	OUT 0.474 0.490 0.502 0.523 0.528 0.529 0.531 0.532 0.535 0.545 0.545 0.539	MERID M IN 0.485 0.504 0.519 0.543 0.551 0.553 0.554 0.556 0.558 0.571 0.585 0.586	OUT 0.474 0.490 0.502 0.523 0.528 0.529 0.531 0.532 0.533 0.546 0.545	STREAML IN -0.32 0.30 0.88 3.13 4,77 5.12 5.50 5.89 9.61 14.80 16.39 18.06	0UT -0.25 0.06 0.36 1.55 2.29 2.44 2.73 2.88 3.93 5.02 5.16	VEL R 0.999 0.993 0.987 0.984 0.980 0.980 0.979 0.979 0.967 0.957	PEAK SS MACH NO 1.008 0.985 0.970 0.968 0.982 0.986 0.990 1.000 1.079 1.200 1.244 1.296
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	PERCENT SPAN 0. 5.00 10.00 30.00 42.50 45.00 47.50 50.00 95.00 100.00	INCI MEAN 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.0 6.0	DENCE SS -0.0 0.0 -0.0 0.0 -0.0 0.0 0.0	DEV 10.7 9.7 8.9 8.0 7.8 7.7 7.7 7.7 7.7 7.4 7.4 7.5 7.6	D-FACT 0.504 0.471 0.447 0.416 0.415 0.416 0.417 0.421 0.454 0.471 0.493	EFF 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.169 0.124 0.098 0.070 0.073 0.074 0.075 0.076 0.076 0.082 0.126 0.157	0EFF PR0F 0.169 0.124 0.098 0.070 0.073 0.074 0.075 0.076 0.076 0.082 0.126 0.157	LOSS P TOT 0.050 0.036 0.028 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	PROF 0.050 0.036 0.028 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.025 0.031

TABLE IV. - BLADE GEOMETRY FOR ROTOR 12

	PERCEN'	T RAD	110	BLA	DE ANGL	ĖS	DELTA	CONE
RP	SPAN	RI	R0	KIC	KTC	KOC	INC	ANGLE
TIP		25.082			59.88	53.63	2.48	-9.153
1	5.	24.574		61.72	58.75	53.00	2.71	-8.837
2	10.	24.026			57.49	52.18	2.97	-7.649
3	30.	21.755			52.11	47.29	4.05	-1.993
4	43.	20.286			48.61	42.81	4.72	1,777
5 6	45.	19.988			47.88	41.76	4.86	2.547
6	48.	19.687		52.57	47.18	40.61	4,99	3.330
7	50.	19.385			46.48	39.39	5.13	4.118
8	53.	19.081			45.78	38.10	5.26	4.912
9	70.	16.881			41.34	27.00	6.15	10.867
10	90.	14.154			37.53	7.52	6.98	18.794
11	95.	13.423				0.79	7.13	21.014
HUB	100.	12.700	14.541	44.32	36.83	-6.63	7.23	22.968
				_				
	BLADE			716	XIAL DI			
RP TIP	TI	TM	TO	ZIC	ZMC	ZTC	ZOC	
1	0.051	0.153	0.051	1.032	2.136	2.188	3.397	
2	0.051 0.051	0.162	0.051	0.986 0.938	2.136 2.136	2.152	3.435 3.474	
3	0.051	0.216	0.051	0.744	2.127	1.901	3.648	
4	0.051	0.244	0.051	0.626	2.118	1.741	3.766	
5	0.051	0.250	0.051		2.116	1.706	3.791	
6	0.051	0.256	0.051	0.579	2.113	1.671	3.816	
7	0.051	0.262	0.051		2.110	1.634	3.842	
8	0.051	0.267	0.051	0.531	2.107	1.596	3.868	
9	0.051	0.309	0.051	0.362	2.079	1.312	4.054	
10	0.051	0.360	0.051		2.026	0.921	4.260	
11	0.051	0.373	0.051		2.007	0.809		
HUB	0.051	0.387	0.051	0.000	1.986	0.694	4.345	
	AERO	SETTING			X		AREA	
RP	CHORD			SOLIDITY			RATIO	
TIP	4,727	59.19	9.31	1.693	0.798	5.65	1.051	
1	4,737	58.08	8.72		0.833	5.72	1.049	
254567	4.733	56.86	8.27	1.768	0.871	5.86	1.045	
3	4.722	51.53	8.68	1.939	1.024	7.26	1.032	
4	4.722	47.74	10.70	2.070	1.091	8.47	1.028	
2	4.723	46.91	11.28	2.099	1.111	8.74	1.028	
9	4,725 4,727	46.06 45,19	12.72	2.129 2.160	1,116	8.99 9.23	1.026	
, B	4.730	44.28	13.56	2.193	1.119	9.47	1.025	
9	4,775	37.27	21.55	2.469	1.091	10.69	1.015	
10	4.928	26.75	37.94	2.956	0.965	10.94	1.007	
11	4.996	23.48	44.06	3.128	0.910	10.63	1.008	
HUB	5.072	19.98	50.95		0.847	10.16	1.010	
		,5	30.00			••••		

TABLE V. - BLADE GEOMETRY FOR STATOR 5

RP T 1 2 3 4 5 6 7 8 9 11 HUB	5. 10. 30. 43. 45. 48. 50. 53. 70. 95.	RAD RI 24.384 23.946 23.507 21.742 20.634 20.412 20.191 19.970 19.970 18.217 16.514 16.103 15.697	R0 24.384 23.950 23.541 21.902 20.883 20.681 20.479 20.278 20.078 18.711 17.246	KIC 39.06 36.81 35.22 33.91 34.33 34.47 34.63 34.79 34.98 36.43 39.41 40.56	DE ANGL KTC 32.28 30.88 29.91 29.32 29.84 29.99 30.14 30.49 30.45 31.43 31.83 32.28	K0C -10.69 -9.66 -8.95 -7.97 -7.77 -7.74 -7.72 -7.70 -7.68 -7.41	6.14 6.13 6.13 6.13 6.12 6.06 5.95 5.91	CONE ANGLE 0.057 0.064 0.492 2.315 3.596 3.870 4.151 4.440 4.736 7.110 10.502 11.400
RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	BLADE TI 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051	THICKN TM 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279	TO 0.051 0.051 0.051 0.051 0.051	Z1C 7.679 7.652 7.633 7.616 7.618 7.619 7.621 7.622 7.622 7.623 7.622 7.634 7.640	XIAL DI ZMC 9.468 9.478 9.480 9.480 9.480 9.480 9.479 9.479 9.479 9.478 9.473 9.471	ZTC 8.849 8.774 8.714 8.602 8.563 8.557 8.550 8.544 8.538 8.476 8.428	ZOC 11.587 11.587 11.587 11.586 11.585 11.584 11.584 11.583 11.582 11.579 11.577	
RP TIP 1 23 4 5 6 7 8 9 11 HUB	AERO S CHORD 4.190 4.189 4.193 4.198 4.199 4.200 4.202 4.203 4.203 4.266 4.264	SETTING ANGLE 19.21 18.01 17.17 16.42 16.59 16.66 16.73 16.80 16.82 17.38 17.65 17.94		SOLIDITY 1.696 1.726 1.758 1.896 1.995 2.017 2.038 2.060 2.083 2.255 2.487 2.551 2.615	X FACTOR 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.707 0.826 0.864 0.903	PHISS 10.87 9.81 9.03 7.74 7.71 7.68 7.66 7.65 8.88 10.64 11.33 12.10	AREA RATIO 1.148 1.130 1.115 1.084 1.067 1.064 1.061 1.058 1.049 1.055 1.061	

TABLE VI. - OVERALL PERFORMANCE FOR STAGE 12-5. SI UNITS.

(a) 100 Percent design speed

PARAMETER			READING		
	310	311	305	313	314
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT WIT FLOW PER UNIT FRONTAL AREA WIT FLOW PER UNIT ANNULUS AREA WIT FLOW AT ROTOR INLET WIT FLOW AT ROTOR OUTLET WIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.708 1.603 1.198 1.193 0.834 0.747 0.811 0.263 0.229 0.418 148.31 199.45 29.31 30.03 29.22 30.62 16246.6	1.748 1.664 1.207 1.201 0.837 0.778 0.824 0.274 0.248 0.412 147.19 197.94 29.09 29.80 28.97 29.73 16275.9	1.787 1.706 1.215 1.211 0.838 0.784 0.836 0.293 0.268 0.406 144.90 194.86 28.64 29.19 28.21 29.17 16067.0 99.8	1.843 1.740 1.229 1.223 0.833 0.770 0.843 0.306 0.275 0.378 137.33 184.69 27.14 27.85 27.29 27.31	1.850 1.741 1.235 1.227 0.817 0.757 0.822 0.304 0.271 0.368 135.38 182.07 26.76 27.37 26.17 26.75 16286.8 101.2

(b) 90 Percent design speed

PARAMETER	READING						
·	315	316	319	320	321		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT WIT FLOW PER UNIT FRONTAL AREA WIT FLOW PER UNIT ANNULUS AREA WIT FLOW AT ROTOR INLET WIT FLOW AT ROTOR OUTLET WIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.533 1.414 1.153 1.149 0.848 0.699 0.830 0.259 0.208 0.419 136.96 184.19 27.07 27.70 26.89 27.94 14500.8	1.567 1.486 1.161 1.156 0.851 0.768 0.845 0.273 0.239 0.411 134.84 181.33 26.65 27.28 26.53 26.50 14508.6	1.593 1.534 1.167 1.163 0.850 0.796 0.849 0.284 0.260 0.400 132.06 177.59 26.10 26.69 25.91 26.61 14489.5 90.0	1.628 1.563 1.176 1.171 0.849 0.795 0.852 0.300 0.273 0.378 126.02 169.47 24.91 25.47 24.71 25.08 14457.2 89.8	1.644 1.573 1.184 1.179 0.831 0.771 0.833 0.307 0.278 0.354 119.55 160.77 23.63 24.10 23.66 14450.8 89.8		

TABLE VI. - Continued. OVERALL PERFORMANCE FOR STAGE 12-5. SI UNITS.

(c) 80 Percent design speed

PARAMETER	READING
	322
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR MEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HIT FLOM PER UNIT FRONTAL AREA HIT FLOM PER UNIT ANNULUS AREA HIT FLOM AT ROTOR INLET HIT FLOM AT ROTOR DUTLET HIT FLOM AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.472 1.415 1.145 1.141 0.807 0.739 0.807 0.298 0.266 0.322 99.52 133.84 19.67 20.02 19.07 19.37

(d) 70 Percent désign speed

PARAMETER			READING		
	323	324	325	326	327
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT FLOM COEFFICIENT FLOM COEFFICIENT HITCHOM PER UNIT ANNULUS AREA HITCHOM PER UNIT ANNULUS AREA HITCHOM AT ROTOR INLET HITCHOM AT ROTOR OUTLET HITCHOM AT STATOR OUTLET ROTATIVE SPEED. PERCENT OF DESIGN SPEED	1.259 1.206 1.078 1.076 0.874 0.723 0.855 0.226 0.183 0.424 112.83 151.74 22.30 22.71 22.14 22.30 69.8	1.286 1.241 1.085 0.880 0.773 0.868 0.248 0.212 0.40,73 145.75 21.42 21.87 21.33 21.04 11223.2	1.314 1.270 1.093 1.091 0.869 0.780 0.269 0.234 0.383 102.97 138.48 20.35 20.81 20.23 19.81 11256.5	1.340 1.295 1.104 1.100 0.842 0.767 0.840 0.287 0.253 0.347 94.90 127.62 18.76 19.11 18.52 18.07 11280.7	1.350 1.302 1.111 1.08 0.803 0.726 0.805 0.294 0.257 0.314 86.71 116.61 17.14 16.56 16.39 11302.0 70.2

TABLE VI. - Concluded. OVERALL PERFORMANCE FOR STAGE 12-5. SI UNITS.

(e) 60 Percent design speed

PARAMETER	READING
	328
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT ANNULUS AREA HIT FLOW AT ORIFICE HIT FLOW AT ROTOR OUTLET HIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.246 1.210 1.080 1.078 0.806 0.716 0.803 0.292 0.253 0.306 73.09 98.29 14.45 14.69 13.81 13.41 9643.7 59.9

(f) 50 Percent design speed

PARAMETER	READING
	3 29
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT WIT FLOW PER UNIT FRONTAL AREA WIT FLOW PER UNIT ANNULUS AREA WIT FLOW AT ORIFICE WIT FLOW AT ROTOR OUTLET WIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	1.165 1.140 1.055 1.054 0.816 0.710 0.804 0.290 0.247 0.306 61.42 82.59 12.14 12.36 11.55 10.95 8046.4 50.0

TABLE VII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 100 PERCENT DESIGN SPEED. SI UNITS.

(a) Reading 310

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.574 24.026 21.755 20.287 19.987 19.688 19.385 19.080 16.881 14.155 13.424	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 44.8 40.4 41.2 47.7 48.6 48.9 49.4 45.7 45.8 49.5 53.2	IN 64.9 62.9 59.3 57.5 57.2 56.9 56.6 56.2 54.1	BETAM OUT 53.9 53.6 49.5 46.5 47.4 48.8 47.8 45.6 35.2 18.4 5.6	1N 288.7 288.5 288.1 288.0 287.8 288.1	L TEMP RATIO 1.239 1.219 1.198 1.197 1.195 1.190 1.188 1.187 1.174 1.183 1.204	TOTAL IN 9.97 10.15 10.15 10.15 10.15 10.15 10.15	1.725 1.650 1.617 1.581 1.585 1.605 1.671
RP 1 2 3 4 5 6 7 8 9	ABS IN 194.8 207.5 217.9 219.5 218.8 218.6 218.1 218.0 209.4 192.0 186.4	VEL 0UT 244.4 237.5 237.5 238.7 232.7 225.1 226.8 232.1 249.5 272.9 298.0	REL 1N 459.5 455.2 427.2 408.3 403.9 400.3 396.3 396.3 392.1 357.1 309.3 295.0	VEL 0UT 294.3 305.2 275.3 233.2 227.3 224.6 219.7 219.0 212.8 186.9 179.3	MERI IN 194.8 207.5 217.9 219.5 218.6 218.1 218.0 209.4 192.0 186.4	D VEL 0UT 173.5 181.0 178.8 160.5 153.8 147.6 153.2 174.0 177.3 178.4	TAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	G VEL OUT 172.1 153.8 156.4 176.7 174.6 169.6 169.6 172.2 174.3 178.9 207.5 238.7	WHEEL {N 416.2 405.2 367.5 344.3 339.5 4331.0 325.9 289.4 242.5 228.6	SPEED 0UT 409.8 399.5 365.8 345.9 331.9 335.0 330.8 301.5 266.6 256.3
B - 354561-8901	ABS M 1N 0.592 0.633 0.664 0.671 0.669 0.669 0.583 0.565	0.673 0.659 0.666 0.669 0.652 0.636 0.652 0.711 0.781	REL M IN 1.395 1.390 1.311 1.253 1.240 1.228 1.216 1.202 1.092 0.940 0.895	ACH NO OUT 0.811 0.846 0.772 0.654 0.637 0.629 0.616 0.615 0.606 0.535	MERID MA IN 0.592 0.633 0.668 0.674 0.672 0.669 0.669 0.640 0.583 0.565	OUT 0.478 0.502 0.501 0.450 0.431 0.414 0.414 0.430 0.495 0.507			MERIO VEL R 0.891 0.872 0.820 0.731 0.703 0.677 0.677 0.677 0.703 0.923 0.923	PEAK SS MACH NG 1.602 1.567 1.538 1.525 1.525 1.524 1.523 1.517 1.480 1.360 1.279
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00	INCI MEAN 3.1 2.3 3.3 4.0 4.2 4.4 4.5 5.6	DENCE SS 0.3 -0.7 -0.7 -0.7 -0.6 -0.6 -0.7 -0.6	DEV 0.7 1.3 2.2 3.7 5.7 8.2 8.5 7.5 8.2	D-FACT 0.467 0.425 0.450 0.534 0.540 0.539 0.547 0.544	EFF 0.772 0.801 0.853 0.779 0.757 0.756 0.748 0.774 0.907	LOSS C TOT 0.208 0.172 0.127 0.199 0.218 0.226 0.206 0.094	PR0F	LOSS F TOT 0.035 0.029 0.021 0.035 0.035 0.035 0.033	PARAM PROF 0.018 0.013 0.009 0.022 0.025 0.027 0.027 0.026 0.024

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 100 PERCENT DESIGN SPEED. SI UNITS.

(b) Reading 311

RP 1 2 3 4 5 6 7 8 9 10 1 1 RP 1 2 3 .	IN 192.8 204.6 215.1	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557 15.049 VEL 0UT 245.1 239.7 237.2	IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8EL IN 462.4 457.9 427.9	BETAM OUT 47.1 42.2 43.7 49.5 50.2 49.5 51.1 53.8 VEL OUT 287.7 300.9 266.6	IN 65.4 63.5 59.8 58.1 57.0 56.9 56.5 51.9 51.2 MERI 192.8 204.6 215.1	BETAM OUT 54.5 53.8 50.0 46.2 46.8 46.9 47.2 45.7 35.0 18.2 6.2 D VEL OUT 166.9 177.6 171.4	IN 288.8 288.6 288.1 288.0 287.6 288.2 287.9 288.0 287.8 288.0	L TEMP RATIO 1.255 1.233 1.206 1.207 1.199 1.197 1.193 1.179 1.186 1.205 4G VEL OUT 179.5 161.0 164.0	TOTAL IN 9.98 10.12 10.15 10.15 10.15 10.14 10.15 10.14 WHEEL IN 420.4 409.7 369.9	RA 1 1 1 1 1 1 1 1.
4 5 6 7 8 9 10 11 RP 1 2 3	IN 0.585 0.624	242.7 236.5 231.3 229.9 231.2 247.6 269.6 293.3	IN 1.403 1.396	232.4 225.8 219.8 216.5 216.5 206.2 178.3 174.2 ACH NO OUT 0.787 0.830	216.7 216.0 216.4 216.2 215.1 206.8 189.3 183.3 MERID M. IN 0.585 0.624	0UT 0.457 0.490	0.0 0.0 0.0 0.0 0.0 0.0	181.7 178.9 176.0 176.5 175.7 181.1 209.8 236.7	347.7 341.0 333.4 331.3 325.0 287.7 227.8 MER15 VEL R 0.866 0.868	34 33 33 32 29 26 25 PEAR MACH
5 6 7 8 9 10 11 RP 1	0.659 0.664 0.663 0.663 0.659 0.632 0.575 0.555 PERCENT SPAN 5.00	MEAN 3.5	1.212 1.195 1.082 0.932 0.885 DENCE SS 0.8	0.744 0.650 0.631 0.614 0.605 0.585 0.509 0.498	0.659 0.664 0.663 0.663 0.659 0.632 0.575 0.555	_	LOSS C TOT 0.230	OEFF PROF 0.121	0.797 0.743 0.716 0.694 0.681 0.699 0.817 0.894 0.945	PR
2 3 4 5 6 7 8 9	10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 95.00	2.9 3.8 4.6 4.5 4.8 4.9 5.7 6.7	-0.1 -0.2 -0.1 -0.2 -0.5 -0.3 -0.4 -0.3	1.5 2.7 3.4 5.0 6.4 7.8 7.7 8.0 10.6 5.3	0.442 0.476 0.540 0.547 0.551 0.557 0.551 0.523 0.540	0.800 0.856 0.809 0.784 0.774 0.770 0.787 0.905 0.920 0.934	0.180 0.129 0.180 0.203 0.212 0.216 0.201 0.098 0.108	0.080 0.051 0.111 0.139 0.154 0.157 0.147 0.065 0.101 0.103	0.030 0.021 0.030 0.033 0.034 0.034 0.032 0.016 0.017	0.0 0.0 0.0 0.0 0.0 0.0

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 100 PERCENT DESIGN SPEED. SI UNITS.

(c) Reading 305

PERCENT RP SPAN 1 5.00 2 10.00 3 30.00 4 42.50 5 45.00 6 47.50 7 50.00 8 52.50 9 70.00	2 0.601 3 0.636 4 0.641 5 0.639 6 0.640 7 0.638 8 0.636 9 0.611	2 197.5 3 208.2 4 209.7 5 209.0 6 209.3 7 208.8 8 208.0 9 200.4 10 182.8	RADI RP IN 1 24.574 2 2 24.026 2 3 21.755 2 4 20.287 2 5 19.987 2 6 19.688 1 7 19.385 1 8 19.080 1 9 16.881 1 10 14.155 1 11 13.424 1
INCIDENCE MEAN SS 3.8 1.1 3.4 0.4 4.7 0.7 5.1 0.3 5.3 0.4 5.2 0.2 5.2 0.1	CH NO REL NO OUT IN 0.666 1.368 0.658 1.368 0.660 1.299 0.684 1.229 0.677 1.216 0.661 1.198 0.655 1.182 0.659 1.164 0.695 1.055 0.752 0.908 0.834 0.867	VEL REI OUT IN 244.7 451.8 239.7 449.8 237.8 425.2 245.3 402.0 243.0 397.9 237.5 391.7 234.8 386.7 235.9 380.7 245.7 346.2 264.5 299.7 292.0 286.8	OUT IN 4.193 0.0 3.685 0.0 1.653 0.0 0.383 0.0 0.129 0.0 9.875 0.0 9.621 0.0 9.367 0.0 7.589 0.0 5.557 0.0
DEV 1.0 1.3 2.9 2.1 3.0 4.5 5.6	NACH NO OUT 0.730 0.769 0.710 0.620 0.610 0.590 0.572 0.561 0.547 0.485	VEL 0UT 268.3 280.4 255.6 222.6 219.0 211.9 205.2 200.8 193.5 171.1 169.9	BETAM OUT 50.1 46.1 49.9 50.2 50.9 51.8 51.9 49.2 52.0 54.6
D-FACT EFF 0.525 0.747 0.484 0.790 0.503 0.846 0.559 0.824 0.562 0.812 0.570 0.794 0.581 0.790	MERID MACH NO 1N OUT 0.563 0.427 0.601 0.456 0.636 0.454 0.641 0.440 0.639 0.433 0.640 0.417 0.638 0.405 0.636 0.407 0.611 0.454 0.554 0.463 0.537 0.483	MERID VEL IN OUT 185.9 156.9 197.5 166.3 208.2 163.6 209.7 157.8 209.0 155.5 209.3 149.7 208.8 145.2 208.0 145.7 200.4 160.4 182.8 162.8 177.7 169.2	58.6 44.8 58.3 44.8 57.7 45.0 57.3 44.9 56.9 43.5 54.6 34.0 52.4 17.9
LOSS COEFF TOT PROF 0.253 0.155 0.200 0.107 0.144 0.064 0.176 0.112 0.188 0.127 0.207 0.151 0.212 0.159		0.1 172.7 0.0 172.6 0.0 187.8 0.0 186.8 0.1 184.3 0.0 184.5 0.0 185.5 0.0 186.1 0.1 208.5	288.0 1.215 288.0 1.211 287.9 1.208 287.9 1.204 287.9 1.185 287.9 1.189
LOSS PARAM TOT PROF 0.043 0.026 0.034 0.018 0.024 0.011 0.030 0.019 0.032 0.021 0.034 0.025 0.035 0.026	MERID PEAK SS YEL R MACH NO 0.844 1.612 0.842 1.582 0.786 1.573 0.753 1.541 0.744 1.542 0.715 1.525 0.695 1.519 0.700 1.508 0.801 1.477 0.890 1.338 0.952 1.267	WHEEL SPEED IN OUT 411.8 405.4 404.1 398.4 370.8 369.1 343.0 344.7 338.6 341.0 331.1 334.3 325.5 329.5 318.9 323.7 282.4 294.2 237.6 261.1 225.1 252.4	TOTAL PRESS IN RATIO 9.97 1.887 10.12 1.854 10.15 1.806 10.15 1.774 10.15 1.755 10.15 1.701 10.15 1.701 10.15 1.702 10.15 1.720 10.15 1.757 10.15 1.880

TABLE VII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 100 PERCENT DESIGN SPEED. SI UNITS.

(d) Reading 313

RP 1 2 3 4 5 6 7 8 9 10	RAD IN 24.574 24.026 21.755 20.287 19.987 19.688 19.385 19.080 16.881 14.155 13.424	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 51.8 51.2 49.9 51.9 52.5 53.8 55.0 54.3 51.2 53.0 55.6	1N 67.8 66.0 62.4 60.6 60.1 59.8 59.5 59.1 56.3 54.3	BETAM OUT 55.0 54.1 50.5 45.8 44.9 45.3 45.1 43.1 35.6 20.1 6.2	TOTA 1N 288.7 288.5 288.0 288.0 288.0 288.0 288.0 288.0	L TEMP RAT10 1.277 1.267 1.233 1.227 1.226 1.223 1.220 1.196 1.197 1.215	TOTAL IN 10.00 10.12 10.15 10.15 10.15 10.15 10.15	1.922 1.855 1.830 1.823 1.798 1.780 1.787
RP 1 2 3 4 5 6 7 8 9 10	ABS IN 170.3 181.3 192.8 194.0 194.4 194.7 193.6 193.7 189.8 172.1	VEL 0UT 246.0 244.5 237.5 243.4 243.5 240.8 238.7 241.3 241.1 258.4 287.8	REL IN 450.4 446.5 416.2 395.0 390.2 387.4 381.6 376.7 341.7 295.0 282.1	VEL 0UT 265.1 261.4 240.4 215.4 208.9 202.3 194.0 192.8 185.7 165.6 163.6	MERI IN 170.3 181.3 192.8 194.0 194.4 194.7 193.7 193.7 189.8 172.1	D VEL 0UT 152.0 153.2 153.0 150.3 148.1 142.3 136.9 140.7 151.0 155.4 162.7	TAN 1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		WHEEL IN 417.0 408.1 368.9 344.1 338.3 335.0 328.9 328.1 284.2 239.7 227.4	402.3 367.2 345.8 340.7 338.1 332.9 328.0 296.1
RP 1234567891011	ABS M IN 0.5.3 0.548 0.586 0.590 0.591 0.592 0.588 0.589 0.576 0.519	0.667 0.666 0.655 0.675 0.667 0.662 0.671 0.677 0.730 0.817	REL M 1N 1.357 1.350 1.265 1.201 1.186 1.178 1.160 1.145 1.037 0.890 0.850	ACH NO OUT 0.719 0.712 0.663 0.597 0.579 0.560 0.538 0.536 0.521 0.464	MERID M IN 0.513 0.548 0.586 0.590 0.591 0.592 0.588 0.576 0.519 0.503	0UT 0.412			MER 10 VEL R 0.892 0.794 0.775 0.762 0.731 0.707 0.726 0.795 0.974	MACH N 1.652 1.636 1.600 1.585 1.577
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	MEAN 5.9	DENCE 5S 3.2 2.5 2.4 2.2 2.3 2.3 2.2 1.6 2.1	DEV 1.8 1.8 3.2 3.0 3.1 4.7 5.7 5.1 8.6 12.5 5.3		0.761	LOSS C TOT 0.250 0.256 0.175 0.179 0.188 0.215 0.198 0.121 0.116 0.096	PROF 0.140	LOSS P TOT 0.041 0.039 0.039 0.035 0.035 0.035 0.035 0.035	PROF 0.023

TABLE VII. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 100 PERCENT DESIGN SPEED. SI UNITS.

(e) Reading 314

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0UT 24.574 24.193 24.026 23.685 21.755 21.653 20.287 20.129 19.688 19.875 19.385 19.621 19.080 19.367 16.881 17.589 14.155 15.557 13.424 15.049	ABS EIN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0UT 57.7 55.3 51.0 53.1 53.4 54.2 54.5 54.8	IN 000 68.3 55. 67.1 55. 63.4 50. 61.6 46. 61.0 46. 60.1 45. 60.1 46. 59.6 44. 57.0 35. 54.9 20.	9 288.7 1.304 3 288.5 1.284 8 288.1 1.239 9 288.1 1.230 1 288.2 1.230 5 287.7 1.228 0 288.3 1.227 3 287.8 1.222 9 288.0 1.199 3 287.9 1.199	TOTAL PRESS IN RATIO 10.00 1.960 10.12 1.938 10.15 1.868 10.15 1.826 10.15 1.800 10.14 1.788 10.15 1.788 10.15 1.788 10.15 1.788 10.15 1.788 10.15 1.788 10.15 1.788 10.15 1.794 10.15 1.806 10.14 1.904
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 164.6 249.3 174.2 247.2 185.5 237.8 188.1 242.1 188.2 240.7 192.1 239.9 192.2 238.8 191.9 240.3 186.3 242.3 170.9 260.1 165.7 286.5	447.7 2 413.7 3 394.9 3 388.4 3 385.3 3 385.5 3 78.8 3 42.2 2 297.1	VEL 0UT 237.5 247.4 236.8 212.8 206.9 200.1 199.7 193.6 181.5 162.5 158.8	MERID VEL IN OUT 164.6 133. 174.2 140. 185.5 149. 188.1 145. 188.2 143. 192.1 140. 192.2 138. 191.9 138. 186.3 147. 170.9 152. 165.7 157.	IN OUT 1 0.0 210.8 8 0.0 203.2 7 0.0 184.7 5 0.0 193.6 6 0.0 193.3 3 0.0 194.5 5 0.0 196.3 0 0.0 192.6 4 0.0 210.8	WHEEL SPEED IN OUT 413.9 407.4 412.5 406.6 369.8 368.1 347.2 348.9 339.8 342.2 334.0 337.2 334.2 338.3 326.7 331.6 287.1 299.2 243.1 267.1 227.9 255.5
RP : 234567-891011	ABS MACH NO IN OUT 0.495 0.669 0.526 0.654 0.671 0.665 0.584 0.664 0.584 0.661 0.583 0.667 0.565 0.680 0.516 0.735 0.499 0.813	1.339 0 1.351 0 1.254 0 1.198 0 1.178 0 1.171 0 1.171 0 1.151 0 1.038 0 0.896 0	H NO OUT 1.637 1.669 1.651 1.589 1.572 1.553 1.537 1.509 1.459	MERID MACH N IN OUT 0.495 0.35 0.526 0.38 0.562 0.41 0.571 0.40 0.571 0.39 0.584 0.38 0.584 0.38 0.583 0.38 0.565 0.41 0.516 0.43 0.499 0.44	7 1 2 2 2 7 8 8 4 4 2	MERIO PEAK SS VEL R MACH NO 0.809 1.663 0.808 1.673 0.807 1.622 0.773 1.605 0.731 1.585 0.721 1.603 0.722 1.590 0.789 1.549 0.892 1.396 0.953 1.305
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 6.5 10.00 6.5 30.00 7.4 42.50 8.1 45.00 8.0 47.50 7.6 50.00 8.0 52.50 7.9 70.00 8.5 90.00 9.6	IDENCE \$5 3.8 3.6 3.3 3.1 2.6 2.9 2.7 2.3 2.6	DEV 2.7 3.0 3.5 4.1 4.3 4.9 6.7 6.3 8.9 12.7 5.1	D-FACT EFF 0.602 0.69 0.575 0.73 0.543 0.81 0.586 0.81 0.600 0.80 0.599 0.79 0.608 0.81 0.586 0.89 0.579 0.92 0.580 0.94	TOT PROF 8 0.335 0.227 3 0.283 0.171 8 0.190 0.106 6 0.187 0.113 5 0.203 0.135 5 0.218 0.154 17 0.222 0.154 3 0.207 0.145 16 0.128 0.089 16 0.112 0.104	LOSS PARAM TOT PROF 0.054 0.037 0.045 0.028 0.031 0.017 0.031 0.019 0.034 0.022 0.036 0.025 0.036 0.025 0.034 0.024 0.021 0.015 0.018 0.017 0.016 0.016

TABLE VIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 90 PERCENT DESIGN SPEED. SI UNITS.

(a) Reading 315

RP 1 2 3 4 5 6 7 8 9 10	RADII IN 0 24.574 24. 24.026 23. 21.755 21. 20.287 20. 19.987 20. 19.688 19. 19.385 19. 19.080 19. 16.881 17. 14.155 15.	UT IN 193 0.0 685 0.0 653 0.0 383 0.0 129 0.0 875 0.0 621 0.0 367 0.0 589 0.0 557 0.0	BETAM OUT 38.4 37.9 39.0 43.3 43.4 44.9 44.3 45.3 44.0 48.0 51.7	1N 65.3 63.5 59.9 58.0 57.6 57.2 56.9 56.5	BETAM OUT 54.0 53.3 49.8 44.8 44.9 44.8 45.2 43.4 33.8 16.2 6.2	TOTA IN 288.5 288.6 288.1 287.9 287.8 288.0 288.1 288.1 288.0 287.9	RATIO 1.178 1.164 1.149 1.153 1.152 1.151 1.149 1.147 1.147	10.01 10.11 10.15 10.14 10.15 10.15 10.15	PRESS R4T10 1.573 1.550 1.522 1.513 1.493 1.479 1.465 1.475 1.573 1.636
RP 1 2 3 4 5 6 7 8 9 10 11	171.8 21 182.1 21 191.7 21 192.7 21 192.4 21 192.3 21 192.0 21 191.7 21 185.0 22 170.8 25	L REL UT IN 6.1 411.0 5.0 407.8 2.0 381.8 9.9 363.4 6.2 358.8 4.1 355.3 0.1 351.5 3.6 347.4 7.1 316.2 2.3 274.8 8.2 262.9	VEL 0UT 288.2 283.8 255.4 225.5 221.8 213.4 207.1 196.5 175.8 167.2	MERII IN 171.8 182.1 191.7 192.7 192.4 192.3 192.0 191.7 185.0 170.8 166.0	0 VEL 0UT 169.3 169.6 164.7 160.1 157.2 151.8 150.5 150.3 168.8 166.2	TAN IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OVEL OUT 134.3 132.2 133.5 150.8 148.5 151.0 146.7 151.8 157.8 187.5 210.5	WHEEL IN 373.4 364.9 3308.1 302.9 298.7 294.4 289.8 256.5 215.2 203.8	SPEED 0UT 367.6 359.7 309.6 305.0 301.6 298.0 294.2 267.3 236.6 228.5
RP 1 23456789011	0.518 0.6 0.551 0.6 0.582 0.6 0.585 0.6 0.585 0.6 0.584 0.6 0.583 0.5 0.582 0.6 0.561 0.6	NO REL M UT IN 606 1.239 606 1.233 602 1.159 625 1.104 614 1.091 608 1.079 596 1.067 607 1.055 651 0.958 728 0.829 774 0.792	0.808	MERID MA IN 0.518 0.551 0.582 0.586 0.585 0.584 0.583 0.582 0.561 0.515	0.475 0.478 0.468 0.455 0.447 0.427 0.427 0.427 0.428 0.480			MERID F VEL R N 0.985 0.932 0.859 0.831 0.789 0.784 0.784 0.883 0.988	1.469
RP 1 2 3 4 5 6 7 8 9 10	SPAN F	INCIDENCE MEAN SS 3.4 0.7 2.9 -0.1 3.9 -0.2 4.5 -0.2 4.6 -0.3 4.7 -0.3 4.8 -0.3 4.9 -0.4 5.7 -0.5 6.3 -0.7 6.4 -0.8	DEV 0.8 1.0 2.5 2.0 3.2 4.2 5.8 5.4 6.8 8.6	D-FACT 0.392 0.395 0.421 0.480 0.481 0.498 0.490 0.504 0.482 0.481 0.499	0.777	LOSS CO TOT 0.182 0.146 0.113 0.149 0.171 0.185 0.194 0.178 0.093 0.077 0.096	PROF 0.131	LOSS P TOT 0.031 0.025 0.019 0.026 0.029 0.031 0.032 0.029 0.016 0.012 0.015	PROF 0.022

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 90 PERCENT DESIGN SPEED. SI UNITS.

(b) Reading 316

RP 1 23 4 5 6 7 8 9 10 11	RAD IN 24.574 24.026 221.755 2 20.287 2 19.987 2 19.688 1 19.385 1 19.080 1 16.881 1 14.155 1 13.424 1	OUT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM 0UT 41.8 40.7 40.6 44.6 45.7 46.3 47.0 45.5 49.1 52.5	IN 65.7 64.0 60.4 58.5 58.1 57.8 57.4 57.1 54.7 52.2	BETAM OUT 54.1 53.2 50.0 44.7 44.5 44.5 44.4 43.0 16.5 5.8	IN 288.8 288.7 288.0 288.1 288.2 287.8	RATIO 1.192 1.176 1.157 1.160 1.159 1.157 1.155 1.155 1.144 1.151	TOTAL IN 10.01 10.15 10.15 10.15 10.15 10.15 10.15	PRESS RATIO 1.613 1.597 1.559 1.552 1.538 1.521 1.515 1.537 1.588 1.657
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 168.1 178.0 187.1 188.7 188.6 188.4 188.3 187.8 181.3 166.9 162.5	VEL 0UT 216.4 215.9 211.1 220.0 218.0 215.2 213.3 215.4 225.2 249.2 267.7	REL IN 409.1 406.0 379.3 361.1 357.4 353.4 349.9 345.7 314.1 272.4 260.9	VEL 0UT 275.3 273.5 249.3 220.5 213.5 208.4 206.2 200.9 190.5 170.2 163.8	MERI IN 168.1 178.0 187.1 188.6 188.4 188.3 187.8 181.3 166.9	D VEL 0UT 161.4 163.8 160.2 156.8 152.3 148.6 147.3 146.9 157.8 163.2 162.9	TAN 0.0 0.0 0.0 0.0 0.0 0.0	G VEL 0UT 144.1 140.7 137.5 154.4 156.0 155.7 154.2 157.6 160.7 188.3 212.4	1N 373.0 365.0 330.0 307.9 303.6 299.0 294.9 290.3	SPEED OUT 367.2 359.8 328.4 309.4 305.7 301.9 298.5 294.7 267.3 236.6 228.8
R 1 234 5 67 8 9 10 11	ABS MAIN 0.506 0.538 0.567 0.573 0.572 0.577 0.570 0.549 0.503 0.489	0.603 0.603 0.606 0.597 0.623 0.617 0.609 0.603 0.611 0.644 0.717	REL MA 1.231 1.226 1.150 1.096 1.084 1.073 1.061 1.049 0.951 0.821 0.785	0.767 0.767 0.767 0.705 0.625 0.604 0.590 0.583 0.570 0.545 0.490	MERID M/ IN 0.506 0.538 0.567 0.573 0.572 0.572 0.571 0.570 0.549 0.503 0.489	0.449 0.459 0.453 0.453 0.451 0.421 0.417 0.416 0.451 0.470 0.469				PEAK SS MACH NG 1.477 1.453 1.437 1.435 1.437 1.438 1.439 1.440 1.389 1.204 1.141
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INC I MEAN 3.9 3.4 5.0 5.2 5.2 7.0	DENCE SS 1.2 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.1 -0.0	DEV 0.9 0.9 2.7 1.9 2.8 4.0 5.0 7.0 8.9	D-FACT 0.428 0.424 0.436 0.507 0.514 0.513 0.524 0.499 0.498 0.510	_	LOSS C TOT 0.207 0.153 0.112 0.144 0.166 0.180 0.187 0.171 0.095 0.087	OEFF PROF 0.156 0.106 0.077 0.116 0.139 0.153 0.161 0.147 0.084 0.087	LOSS P TOT 0.035 0.026 0.019 0.025 0.028 0.030 0.031 0.029 0.016 0.014	ARAM PROF 0.026 0.018 0.013 0.020 0.024 0.026 0.027 0.025 0.014 0.014

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 90 PERCENT DESIGN S PEED. SI UNITS.

(c) Reading 319

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 001 24.574 24.19 24.026 23.68 21.755 21.65 20.287 20.38 19.987 20.12 19.688 19.85 19.385 19.62 19.080 19.36 16.881 17.56 14.155 15.55 13.424 15.04	IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	BETAM OUT 46.1 42.4 43.5 46.7 47.2 48.4 48.5 47.9 47.0 50.5 53.9	IN 66.5 64.7 61.2 59.3 59.0 58.5 58.2 57.8 55.4 52.9	BETAM OUT 54.5 53.6 50.0 44.5 44.2 43.7 43.5 42.4 34.2 16.2	TOTAL TEMP IN RATIO 289.2 1.202 288.9 1.186 288.0 1.167 287.9 1.166 287.8 1.164 287.8 1.164 287.8 1.161 287.9 1.147 287.8 1.154 287.9 1.167	IN RATIO 10.01 1.640 10.11 1.628 10.14 1.595 10.15 1.588 10.15 1.563 10.15 1.563 10.15 1.550 10.15 1.550 10.15 1.551 10.15 1.599
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 162.5 217, 172.2 214, 181.4 211, 182.7 220, 182.8 218, 182.8 218, 182.3 216, 182.0 217, 176.3 223, 162.2 246, 157.8 266,	IN 406.8 403.5 9 376.9 358.1 0 353.7 350.4 345.7 0 341.9 269.2	VEL 0UT 258.8 266.9 239.1 212.4 207.3 200.6 197.2 196.9 184.2 163.4 157.5	MERI IN 162.5 172.2 181.4 182.7 182.4 182.8 182.3 182.0 176.3 162.2 157.8	D VEL OUT 150.4 158.5 153.8 151.4 148.7 145.0 143.2 145.4 152.3 157.0	TANG VEL IN OUT 0.0 156.5 0.0 145.0 0.0 160.5 0.0 160.5 0.0 163.1 0.0 161.1 0.0 163.2 0.0 190.5	364.9 359.7 330.4 328.9 308.0 309.5 303.1 305.2 298.9 301.8 293.8 297.3 289.5 293.8 256.0 266.7 214.8 236.1
RP: 2345678910	ABS MACH N IN 0.40 0.488 0.60 0.519 0.59 0.549 0.59 0.553 0.62 0.553 0.61 0.552 0.61 0.551 0.61 0.553 0.63 0.488 0.70	IN 1.222 99 1.216 97 1.141 1.285 9 1.072 6 1.061 0 1.047 4 1.036 97 0.939 99 0.810	0.717 0.717 0.745 0.674 0.600 0.586 0.567 0.557 0.557 0.526 0.469	MERID M/ IN 0.488 0.519 0.549 0.553 0.553 0.554 0.552 0.551 0.533 0.488 0.474	OUT 0.417 0.442 0.433 0.428 0.420 0.410 0.405 0.412 0.435 0.451		MERID PEAK SS VEL R MACH NO 0.925 1.493 0.920 1.469 0.848 1.457 0.829 1.457 0.793 1.457 0.793 1.457 0.785 1.457 0.789 1.459 0.864 1.395 0.967 1.208 0.995 1.144
RP 1 2 3 4 5 6 7 8 9 10 11	SPAN ME 5.00 4 10.00 5 30.00 5 42.50 5 45.00 5 52.50 6 52.50 6 70.00 6	NCIDENCE AN SS .6 1.9 .2 1.2 .2 1.2 .8 1.1 .9 1.1 .0 1.0 .1 1.0 .2 0.9 .9 0.8 .7 0.7	DEV 1.3 1.2 2.7 1.8 2.4 3.1 4.3 7.2 8.6 3.9	D-FACT 0.474 0.439 0.465 0.515 0.523 0.537 0.538 0.532 0.516 0.518		LOSS COEFF TOT PROF 0.226 0.173 0.170 0.122 0.125 0.014 0.144 0.114 0.157 0.128 0.174 0.146 0.183 0.156 0.164 0.138 0.094 0.084 0.091 0.091 0.095 0.095	0.029 0.020 0.021 0.015 0.025 0.020 0.027 0.022 0.030 0.025 0.031 0.026 0.028 0.023 0.016 0.014 0.015 0.015

TABLE VIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 90 PERCENT DESIGN SPEED. SI UNITS.

(d) Reading 320

TABLE VIII. ~ Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 90 PERCENT DESIGN SPEED. SI UNITS.

(e) Reading 321

RP 1 2 3 4 5 6 7 8 9 10 11	RADIII IN 24.574 24 24.026 23 21.755 21 20.287 20 19.987 20 19.688 19 19.385 19 16.881 17 14.155 15 13.424 15	0UT 1.193 5.685 1.653 1.383 1.129 9.875 9.621 9.367 7.589 5.557	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM 0UT 57.3 52.4 49.6 51.1 52.1 53.4 54.6 54.4 53.1 54.4 56.7	REL IN 69.3 67.6 64.4 62.5 61.8 61.4 61.1 58.9 56.3	BETAM OUT 56.3 54.1 50.8 45.9 45.2 44.5 43.3 42.2 35.9 18.4 4.6	TOTAL IN 289.4 289.3 287.8 287.9 288.0 287.5 287.5 287.9 287.8 288.0	TEMF RATIO 1.229 1.216 1.185 1.179 1.180 1.182 1.177 1.159 1.157	TOTAL IN 10.03 10.11 10.15 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.718 1.702 1.650 1.639 1.623 1.621 1.621 1.582 1.612 1.691
RP 1 2 3 4 5 6 7 8 9 10 11	149.6 158.1 159.6 159.8 159.6 159.7 159.6 154.4 142.9	/EL OUT 2222.0 219.4 210.7 216.1 216.1 216.3 218.4 218.8 215.6 233.7 259.1	REL IN 397.7 393.4 365.2 345.8 341.7 337.6 334.2 329.9 298.4 257.4 246.6	VEL 0UT 215.9 228.3 216.0 195.0 195.0 173.7 171.6 159.9 143.2 142.7	MERI IN 140.5 149.6 159.6 159.6 159.7 159.6 154.4 142.9 139.4	0 VEL 0UT 119.9 133.9 136.6 135.7 132.9 129.1 126.5 127.2 129.5 135.9 142.3	TAN 1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0	G VEL OUT 186.8 173.7 160.4 168.2 170.4 173.6 178.1 177.9 172.4 190.1 216.6	WHEEL IN 372.1 363.8 329.3 306.8 302.1 297.5 293.5 288.8 255.4 214.2 203.5	SPEED OUT 366.3 358.7 327.7 308.3 304.2 300.4 297.1 293.1 266.1 235.4 228.1
RP 1 2 3 4 5 6 7 8 9 10 11	0.448 (0.475 (0.480 (0.481 (0.480 (0.480 (0.480 (0.480 (0.483 (0.483 (0.483 (0.428 (0.	CH NO OUT 0.609 0.604 0.606 0.606 0.607 0.612 0.615 0.667 0.742	REL M/ IN 1.187 1.177 1.098 1.040 1.028 1.016 1.004 0.993 0.896 0.771 0.737	OUT 0.592 0.629 0.629 0.547 0.529 0.508 0.487 0.483 0.453 0.409	MERID MA IN 0.419 0.448 0.475 0.480 0.481 0.480 0.480 0.480 0.463 0.428 0.417	ACH NO OUT 0.329 0.369 0.382 0.381 0.373 0.362 0.354 0.358 0.367 0.388 0.407				PEAK SS MACH NO 1.561 1.536 1.533 1.541 1.543 1.548 1.548 1.548 1.434 1.237 1.174
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00	INCI MEAN 7.5 7.1 8.4 9.0 9.1 9.2 9.4 10.3 11.0	DENCE SS 4.8 4.1 4.3 4.3 4.2 4.3 4.2 4.2 4.1 4.0	DEV 3.1 1.8 3.5 3.1 3.5 3.9 4.1 8.9 10.8 3.8	D-FACT 0.592 0.544 0.522 0.554 0.567 0.586 0.604 0.604 0.584 0.574	0.730 0.759 0.832 0.846 0.839 0.826 0.814 0.835 0.881 0.928 0.953	LOSS C TOT 0.279 0.243 0.167 0.161 0.171 0.188 0.205 0.183 0.142 0.110	PR0F	LOSS P TOT 0.045 0.040 0.027 0.027 0.027 0.031 0.035 0.031 0.023	PROF

TABLE IX. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 80 PERCENT DESIGN SPEED. SI UNITS. READING 322.

RP 1 23 4 5 6 7 8 9 10	RADII IN OUT 24.574 24.193 24.026 23.685 21.755 21.653 20.287 20.383 19.987 20.129 19.688 19.875 19.385 19.621 19.080 19.367 16.881 17.589 14.155 15.557 13.424 15.049	0.0 0.0 0.0 0.0 0.0 0.0 0.0	TAM REL OUT IN 57.3 71.0 52.5 69.6 51.8 66.8 53.7 65.1 54.5 64.8 55.6 64.5 57.7 63.8 57.7 63.8 55.5 57.6		IN 289.8 289.0 287.9 287.9	1.148 1.144 1.143 1.142 1.141 1.125 1.122	IN 10.07 10.13 10.14 10.14 10.14 10.14 10.14 10.14	1.470 1.466 1.455
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 113.7 193.7 120.2 193.4 125.8 184.9 126.3 191.7 126.1 189.9 126.1 188.3 126.1 189.6 123.7 192.2 116.2 205.8 113.9 229.7	349.7 19 345.1 20 318.8 18 300.2 16 296.9 15 292.9 15 289.2 14 285.5 14 257.9 14	NOT IN 13.7 120.2 120.2 120.2 125.5 125.8 126.3 126.3 126.1	117.9 114.2 113.5 111.1 107.4 101.6 101.2 117.0 122.1	IN	OVEL 0UT 163.0 153.4 145.4 155.8 156.6 158.5 160.3 152.5 165.7 189.4	WHEEL IN 330.7 323.5 293.0 272.4 268.7 264.4 260.3 256.1 226.4 189.8	291.6 273.7 270.6 266.9 263.4 260.0
R 1 234567 8 9 10 11	ABS MACH NO IN OUT 0.337 0.538 0.357 0.540 0.521 0.376 0.541 0.376 0.537 0.376 0.537 0.376 0.537 0.368 0.549 0.346 0.591 0.339 0.662	1.036 0. 1.026 0. 0.950 0. 0.895 0. 0.885 0. 0.873 0. 0.862 0. 0.769 0. 0.662 0.	UT IN 537 0.337 567 0.357 523 0.375 466 0.376 452 0.376 413 0.376 410 0.368 372 0.346	0UT 0.291 0.329 0.322 0.321 0.314 0.304 0.287 0.287 0.334			VEL R 3 0.925 0.981 0.908 0.899 0.879 0.852 0.806	PEAK SS MACH NO 1.52: 1.508 1.493 1.448 1.448 1.447 1.417 1.406 1.295 1.112
RP 1 2 3 4 5 6 7 8 9 10	SPAN MEAN 5.00 9.2	55 6.5 6.7 6.9 7.0 6.9 6.9 6.7 6.3	DEV D-FACT 4.1 0.581 2.2 0.536 4.7 0.535 3.6 0.576 4.2 0.588 5.2 0.601 6.6 0.623 6.5 0.631 8.5 0.565 1.7 0.550 4.5 0.537	0.715	LOSS CO TOT 0.282 0.262 0.209 0.206 0.211 0.227 0.247 0.243 0.144 0.118 0.077	PR0F 0.247		PROF 0.039

TABLE X. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12,

70 PERCENT DESIGN SPEED. SI UNITS.

(a) Reading 323

RP 1 2 3 4 5 6 7 8 9 10 11 RP 1 2	24.574 24.026 21.755 20.287 19.987 19.688 19.385 19.080 16.881 14.155 13.424 ABS IN 133.6	0UT 24.193 23.685 21.653 20.383 20.383 20.383 19.875 19.621 19.367 17.589 15.557 15.049 VEL 0UT 165.9	IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8EL IN 318.6	BETAM OUT 28.7 28.3 29.7 34.7 36.5 38.2 37.7 37.6 47.2 VEL OUT 251.6	IN 65.2 63.6 60.1 58.2 57.5 57.1 56.8 54.4 51.6 50.9 MERI IN 133.6	BETAM OUT 54.6 53.8 46.3 45.3 45.3 42.6 41.7 33.9 16.8 8.3	IN 288.7 288.5 288.1 287.9 288.2 288.1 287.9 288.0 287.9 288.0	L TEMP RATIO 1.081 1.076 1.071 1.075 1.079 1.082 1.080 1.076 1.085 1.094	TOTAL IN 10.05 10.12 10.14 10.14 10.15 10.14 10.15 10.14 WHEEL IN 289.2	RAA 1 1 1 1 1 1 1 1
2345678910	148.1 147.8 147.8 147.7 147.1 142.0 132.0 128.8	166.1 165.4 168.4 168.8 171.2 172.5 173.3 181.3 201.7 213.3	315.6 295.5 281.1 277.5 275.2 275.2 276.4 244.2 212.6 204.1	247.8 225.0 203.6 197.4 191.2 184.2 183.5 173.0 152.6 146.5 ACH NO OUT	132.0	146.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	78.7 82.0 92.8 96.2 101.7 106.6 106.0 110.6 139.1 156.5	282.7 256.3 239.0 234.9 232.1 228.4 224.5 166.7 158.4 MERIO I VEL R	255 240 236 234 231 227 207 183 177
1 23 4 5 6 1 - 8	0.398 0.419 0.441 0.444 0.443 0.443 0.442 0.441 0.425 0.394 0.384	0.479 0.481 0.480 0.489 0.490 0.500 0.502 0.528 0.528 0.622	0.950 0.943 0.885 0.842 0.832 0.824 0.815 0.804 0.731 0.635 0.609	0.727 0.718 0.654 0.591 0.573 0.554 0.533 0.532 0.504 0.445	0.398 0.419 0.441 0.444 0.443 0.443 0.442 0.441 0.425 0.394 0.384	0.421 0.424 0.417 0.408 0.403 0.399 0.393 0.398 0.418			1.090	1.2 1.2 1.1 1.1 1.1 1.1 1.0 0.9
RP 1 2 3	PERCENT SPAN 5.00 10.00 30.00	MEAN 3.3	DENCE SS 0.6 0.0	DEV 1.4 1.5 3.0	D-FACT 0.282 0.285 0.310 0.356	0.814	LOSS C TOT 0.107 0.093 0.056 0.086	0EFF PROF 0.105 0.092 0.056 0.086	LOSS P TOT 0.018 0.016 0.009 0.014	PRO

TABLE X. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 70 PERCENT DESIGN SPEED. SI UNITS.

(b) Reading 324

RP 1 2 3 4 5 6 7 8 9 10	RAD IN 24.574 24.026 21.755 20.287 19.987 19.688 19.385 19.080 16.881 14.155 13.424	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 34.0 32.1 33.8 37.1 38.3 39.9 41.9 40.8 46.2 49.1	RELL IN 66.0 64.5 61.2 59.4 59.0 58.3 58.3 55.8 52.1	BETAM OUT 54.2 53.8 50.6 46.0 43.6 42.3 41.3 34.1 16.0 7.0	TOTA IN 288.5 288.4 288.2 288.0 288.0 288.1 288.0 288.1 288.0 287.9 288.0	L TEMP RAT10 1.092 1.087 1.080 1.081 1.082 1.086 1.087 1.086 1.080 1.087	TOTAL IN 10.06 10.12 10.14 10.14 10.14 10.14 10.14 10.14	PRESS RAT10 1.287 1.278 1.271 1.275 1.274 1.275 1.274 1.277 1.284 1.320 1.352
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 128.3 135.0 140.8 141.3 140.9 141.1 140.5 140.2 135.3 125.7 122.6	VEL 0UT 166.0 165.1 162.6 167.8 168.4 170.2 171.4 177.6 198.9 210.8	REL IN 315.7 313.1 292.0 277.4 273.9 271.0 267.6 264.5 240.4 208.5 199.4	VEL 0UT 235.5 236.7 212.7 192.6 186.9 180.5 172.4 172.2 162.4 143.3 139.0	MERI IN 128.3 135.0 140.8 141.3 140.5 140.5 140.2 135.3 125.7	D VEL OUT 137.6 139.9 135.1 133.8 132.2 130.6 127.5 129.4 134.5 137.8 138.0	TAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	G VEL 0UT 92.9 87.6 90.4 101.3 104.4 109.1 114.5 113.9 116.0 143.5 159.4	WHEEL IN 288.4 282.5 255.8 238.7 234.9 227.8 227.8 224.3 198.7 166.4 157.3	SPEED 0UT 284.0 278.5 254.6 239.8 236.6 230.6 227.7 207.1 182.9 176.4
RP 1 23 4 5 6 7 8 9 10 11	ABS M IN 0.382 0.403 0.421 0.423 0.422 0.422 0.420 0.419 0.375 0.365	ACH NO OUT 0.477 0.476 0.470 0.485 0.487 0.491 0.495 0.498 0.515 0.579 0.614	REL M IN 0.941 0.935 0.873 0.830 0.819 0.811 0.800 0.718 0.622 0.594	ACH NO OUT 0.677 0.682 0.615 0.557 0.541 0.521 0.498 0.498 0.471 0.417	MERID MA IN 0.382 0.403 0.421 0.423 0.422 0.422 0.420 0.419 0.404 0.375 0.365	ACH NO OUT 0.395 0.403 0.391 0.387 0.382 0.377 0.368 0.368 0.374 0.390 0.401			MERID F YEL R N 1.073 1.037 0.960 0.947 0.938 0.926 0.928 0.923 0.994 1.096 1.126	
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN 4.2 3.9 5.2 5.9 6.0 6.1 6.2 7.7 7.6	DENCE SS 1.4 0.9 1.1 1.2 1.2 1.1 1.1 1.1 0.7	DEV 1.0 1.4 3.2 3.3 3.1 3.0 3.3 7.1 8.4 6.2	D-FACT 0.338 0.323 0.351 0.394 0.409 0.429 0.455 0.448 0.424 0.435	0.810 0.839 0.890 0.886 0.869 0.869 0.842 0.922 0.950 0.944	LOSS C TOT 0.125 0.101 0.072 0.082 0.097 0.129 0.147 0.128 0.071 0.063 0.083	OEFF PROF 0.122 0.100 0.072 0.082 0.097 0.129 0.147 0.128 0.071 0.063 0.083	LOSS P TOT 0.021 0.017 0.012 0.014 0.016 0.022 0.025 0.022 0.012 0.010 0.013	ARAM PROF 0.021 0.017 0.012 0.016 0.022 0.025 0.022 0.012 0.010 0.013

TABLE X. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 70 PERCENT DESIGN SPEED. SI UNITS.

(c) Reading 325

RP 1 2 3 4 5 6 7 8 9	RADII IN 00 24.574 24.1 24.026 23.6 21.755 21.6 20.287 20.3 19.987 20.1 19.688 19.8 19.385 19.6 19.080 19.3 16.881 17.5 14.155 15.5	93 0.0 85 0.0 85 0.0 53 0.0 683 0.0 29 0.0 775 0.0 667 0.0 689 0.0 657 0.0	BETAM 0UT 39.7 38.2 38.7 41.3 42.5 43.7 45.8 45.4 44.8 48.5 51.5	IN 67.2 65.8 62.6 60.9 60.6 60.3 59.9 59.6 57.3	BETAM OUT 54.5 53.6 50.4 44.6 43.5 42.6 41.7 33.9 16.1 6.0	TOTAL IN 288.5 288.4 288.1 288.2 288.0 288.2 287.9 288.0 288.0 287.9	TEMP RATIO 1.106 1.099 1.090 1.091 1.094 1.096 1.093 1.086 1.091	IN 10.08 10.12 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.322 1.318 1.305 1.305 1.307 1.302 1.301 1.302 1.335 1.370
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN 00 121.8 165 127.2 165 132.6 162 132.9 167 132.8 169 132.2 169 132.5 170 131.9 170 127.5 175 118.7 195 115.9 209	IN 5.8 314.1 5.7 310.7 288.4 7.0 273.7 9.1 270.4 9.8 266.8 9.4 264.1 1.5 260.5 5.2 236.1 5.5 205.1	VEL 0UT 220.1 219.7 199.1 180.7 175.2 169.5 161.5 160.2 149.9 134.8	MERI 18 127.2 132.6 132.9 132.8 132.2 132.5 131.9 127.5 118.7	D VEL OUT 127.7 130.3 126.8 125.4 124.8 122.9 118.9 119.7 124.4 129.5	IN 0.0 0.0 0.0 0.0 0.0 0.0	G VEL OUT 105.8 102.4 101.4 110.3 114.2 117.3 122.1 121.5 123.4 146.4 164.1	289.5 283.4 256.1 239.3 235.5 231.8 228.5 224.6 198.7	254.9 240.4 237.2 234.0 231.3
R - 234561-89011	ABS MACH IN OU 0.362 0.4 0.379 0.4 0.396 0.4 0.395 0.4 0.395 0.4 0.395 0.4 0.395 0.5 0.345 0.6	T IN 0.935 0.926 0.926 0.861 0.817 0.807 0.807 0.796 0.788 9.777 0.704 0.668 0.610	ACH NO 0UT 0.628 0.629 0.573 0.520 0.505 0.488 0.464 0.461 0.434 0.391 0.381	MERID MA IN 0.362 0.379 0.396 0.397 0.396 0.395 0.395 0.394 0.380 0.353	0.364 0.365 0.365 0.365 0.365 0.369 0.363 0.342 0.344 0.360 0.376			VEL R 1 1.048 1.024 0.957 0.943 0.940 0.929 0.897	PE4K SS MACH NO 1.287 1.269 1.231 1.206 1.198 1.190 1.183 1.173 1.090 0.946 0.896
RP 1 2 3 4 5 6 7 8 9 10	SPAN M 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00	INCIDENCE IEAN SS 5.3 2.6 5.3 2.3 6.6 2.6 7.5 2.7 7.6 2.7 7.7 2.8 7.8 2.7 7.9 2.7 8.8 2.6 9.4 2.4 9.4 2.3	DEV 1.3 1.3 3.1 3.3 2.9 3.0 3.2 3.6 6.9 8.5	D-FACT 0.396 0.385 0.400 0.437 0.453 0.469 0.496 0.492 0.473 0.469	0.783	LOSS CONTOT 0.163 0.125 0.088 0.100 0.104 0.134 0.162 0.145 0.092 0.075 0.090	PROF 0.159 0.153 0.188 0.100 0.104 0.134 0.162 0.145 0.092 0.075 0.090	LOSS P TOT 0.027 0.021 0.015 0.017 0.018 0.023 0.025 0.015 0.012	PR0F

TABLE X. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 70 PERCENT DESIGN SPEED. SI UNITS.

(d) Reading 326

RP 1 23 4 5 6 7 8 9 10 11 RP 1 2	RAD IN 24.574 24.026 21.755 20.287 19.987 19.688 19.385 19.080 16.881 14.155 13.424 ABS IN 107.8 115.3	0UT 24.193 23.685 21.653 20.383 20.383 21.621 19.875 19.621 19.367 17.589 15.557 15.049 VEL 0UT 165.3	IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8EL IN 309.1	0UT 199.6	IN 69.6 67.9 65.0 63.5 62.7 62.4 62.1 59.7 57.1 56.1 MERI IN 107.8	BETAM OUT 55.5 53.9 51.2 45.8 44.5 44.5 43.7 42.6 33.2 16.4 5.3 D VEL OUT 112.9	IN 288.5 288.4 288.2 288.0 288.1 288.0 288.0 288.0 287.8 TAN IN 0.0	RAT [0 1.121 1.115 1.102 1.102 1.103 1.103 1.103 1.103 1.103 1.103 1.101 G VEL OUT	TOTAL IN 10.07 10.13 10.14 10.14 10.14 10.14 10.14 10.14 10.14	RA11.31.31.31.31.31.31.31.31.31.31.31.31.3
234567891011	119.7 119.7 120.2 120.1 119.5 116.6 108.7 106.6	167.1 161.3 167.9 169.6 168.8 168.0 168.8 175.4 191.0 205.8	306.4 283.5 267.7 264.9 258.1 255.2 230.9 199.8 191.0 REL M	199.2 181.2 164.0 159.2 153.9 145.9 143.4 137.0 124.2 121.4	115.3 119.7 119.7 120.2 120.1 119.5 116.6 108.7 106.6 MERID M	120.9	0.0 0.0 0.0 0.0 0.0 0.0	118.9 114.6 123.0 126.1 127.8 130.8 131.8 132.7 149.3 166.6	283.9 257.0 239.5 236.0 232.8 228.8 225.5 199.3 167.7 158.5	255 240 237 235 231 228 207 184 177
1 23 4 5 6 7	0.320 0.343 0.356 0.356 0.358 0.357 0.356	0.469 0.475 0.461 0.481 0.486 0.483	0.917 0.911 0.844 0.797 0.788 0.780	0.566 0.567 0.518 0.470 0.456 0.440	0.320 0.343 0.356 0.356 0.358 0.357	0.320 0.334 0.325 0.327 0.325 0.316		,	YEL R 1.048 1.018 0.949 0.955 0.944 0.919	1.3
8 9 10 11	0.356 0.347 0.323 0.316	0.483 0.505 0.553 0.597	0.768 0.759 0.687 0.593 0.567	0.417 0.411 0.395 0.360 0.352	0.356 0.356 0.347 0.323 0.316	0.302 0.302 0.330 0.345 0.351			0.882 0.883 0.984 1.097 1.135	1.2

TABLE X. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 70 PERCENT DESIGN SPEED. SI UNITS.

(e) Reading 327

RP 1 2 3 4 5 6 7 8 9 10 11	R = 2334507-89011	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	ABS M IN 0.288 0.304 0.317 0.320 0.321 0.321 0.320 0.319 0.316 0.297 0.291	ABS IN 97.2 102.5 106.9 107.8 108.0 107.9 107.6 106.3 100.3 98.1	RAD IN 24.574 24.026 21.755 20.287 19.987 19.688 19.385 19.080 16.881 14.155 13.424
INCI MEAN 9.7 9.6 11.5 12.3 12.4 12.5 12.7 12.9 13.5 13.9	0.481 0.481 0.472 0.461 0.479 0.478 0.476 0.475 0.475 0.495 0.538	VEL 0UT 171.2 167.2 162.0 167.7 167.6 166.8 165.4 166.3 172.3 186.3 204.2	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557
DENCE SS 6.9 6.6 7.6 7.6 7.6 7.6 7.6 7.6 6.9 6.8	REL M 1N 0.906 0.895 0.780 0.772 0.762 0.753 0.743 0.672 0.580 0.555	REL IN 306.0 301.9 279.0 262.7 259.9 256.6 253.5 250.1 226.5 195.6 187.0	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DEV 5.0 3.8 4.6 3.5 4.0 4.8 6.2 6.3 7.4 10.2 4.6	0.453 0.453 0.487 0.477 0.436 0.425 0.407 0.386 0.378 0.370 0.341	VEL 0UT 161.4 172.7 167.5 152.7 148.7 142.6 135.3 132.3 128.6 118.1	BETAM 0UT 60.2 54.8 50.4 51.0 51.7 53.1 55.1 55.3 52.0 52.9 55.1
D-FACT 0.612 0.555 0.515 0.539 0.549 0.567 0.591 0.597 0.556 0.531	MERID M. 1N 0.288 0.304 0.317 0.320 0.321 0.321 0.320 0.319 0.316 0.297	MERI 1N 97.2 102.5 106.9 107.8 108.0 107.9 107.6 106.3 100.3	IN 71.5 70.2 67.5 65.8 65.5 65.1 64.8 64.5 62.0
0.656 0.695 0.790 0.815 0.815 0.801 0.788 0.791 0.880 0.936 0.963	OLT 0.239 0.272 0.294 0.301 0.296 0.286 0.270 0.270 0.305 0.325 0.338	D VEL OUT 85.1 96.3 103.4 105.5 103.7 100.1 94.6 106.1 112.5 116.8	BETAM OUT 58.2 56.1 51.9 46.3 45.8 45.4 45.6 44.3 34.4 17.8 5.4
LOSS C TOT 0.345 0.292 0.198 0.188 0.192 0.210 0.227 0.227 0.144 0.099 0.066		TAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TOTA IN 288.6 288.4 288.1 288.1 288.2 288.1 288.0 287.9 287.9
0EFF PROF 0.338 0.287 0.197 0.188 0.192 0.210 0.227 0.227 0.144 0.099 0.066		148.6 136.7 124.8 130.3 131.6 133.4 135.6 136.8 135.7 148.5	L TEMP RATIO 1.145 1.133 1.112 1.109 1.109 1.109 1.108 1.107 1.098 1.096 1.103
LOSS P TOT 0.053 0.046 0.032 0.031 0.032 0.035 0.037 0.037 0.037		WHEEL IN 290.2 284.0 257.8 239.6 236.5 232.8 229.5 225.8 200.0 167.9 159.3	TOTAL IN 10.09 10.13 10.14 10.14 10.14 10.14 10.14 10.14
ARAM PROF 0.051 0.045 0.031 0.032 0.035 0.037 0.037 0.024 0.016 0.011	PEAK SS MACH NO 1.383 1.360 1.321 1.279 1.273 1.262 1.255 1.245 1.148 0.987 0.935	SPEED 0UT 285.7 280.0 256.6 240.7 238.1 235.0 232.3 229.2 208.4 184.6 178.6	PRESS RATIO 1.374 1.362 1.345 1.348 1.346 1.339 1.332 1.329 1.336 1.352 1.391

TABLE XI. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 60 PERCENT DESIGN SPEED. SI UNITS. READING 328.

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 24.574 24.193 24.026 23.685 21.755 21.653 20.287 20.383 19.987 20.129 19.688 19.875 19.385 19.621 19.080 19.367 16.881 17.589 14.155 15.557 13.424 15.049	ABS BETAM IN OUT 0.0 59.9 0.0 55.8 0.0 50.3 0.0 51.0 0.0 52.4 0.0 54.7 0.0 52.5 0.0 54.9	70.8 56.4 68.0 52.2 66.4 46.4 66.0 45.9 65.7 45.9 65.3 45.5 65.1 44.2 62.7 34.8 59.7 17.6	TOTAL TEMP IN RATIO 288.6 1.105 288.5 1.096 288.2 1.080 288.1 1.079 288.0 1.079 288.1 1.078 288.1 1.078 288.1 1.077 288.0 1.071 287.9 1.069 287.9 1.074	TOTAL PRESS IN RATIO 10.10 1.266 10.13 1.256 10.14 1.247 10.14 1.243 10.15 1.238 10.14 1.233 10.15 1.234 10.15 1.234 10.15 1.248 10.14 1.271
RP 1 2 3 4 5 6 7 8 9 10 1 1	ABS VEL IN OUT 80.2 146.8 84.4 142.8 88.8 137.1 89.8 143.1 89.7 142.4 89.8 141.5 89.8 140.8 89.5 142.0 88.3 146.3 83.6 159.3 81.8 173.4	REL VEL IN OUT 260.6 138.3 256.7 145.1 236.6 142.8 223.8 132.5 220.8 128.7 218.4 123.8 215.3 117.0 212.5 114.4 192.2 108.5 165.7 101.7 158.2 100.3	MERID VEL IN OUT 80.2 73.5 84.4 80.2 88.8 87.6 89.8 91.4 89.7 89.5 89.8 86.2 89.8 82.0 89.5 82.0 88.3 89.1 83.6 96.9 81.8 99.7	TANG VEL IN OUT 0.0 127.0 0.0 118.1 0.0 105.5 0.0 110.0 0.0 110.7 0.0 112.1 0.0 114.5 0.0 116.0 0.0 126.5 0.0 141.8	WHEEL SPEED IN OUT 248.0 244.2 239.0 219.3 205.0 206.0 201.7 203.2 199.1 201.0 195.7 198.1 192.8 195.7 170.8 177.9 143.1 157.2 135.5 151.9
R - 234567 8 9 111	ABS MACH NO IN OUT 0.237 0.417 0.250 0.407 0.266 0.412 0.266 0.407 0.266 0.405 0.265 0.409 0.261 0.423 0.247 0.463 0.242 0.504	REL MACH NO IN OUT 0.770 0.393 0.759 0.414 0.700 0.410 0.662 0.381 0.653 0.370 0.647 0.356 0.637 0.337 0.629 0.329 0.569 0.314 0.490 0.295 0.468 0.292	MERID MACH NO IN OUT 0.237 0.209 0.250 0.259 0.263 0.252 0.266 0.263 0.265 0.258 0.266 0.248 0.266 0.236 0.265 0.236 0.261 0.258 0.247 0.281 0.242 0.290		MERID PEAK SS VEL R MACH NO 0.917 1.190 0.950 1.170 0.986 1.28 1.019 1.099 0.998 1.090 0.960 1.085 0.913 1.073 0.916 1.066 1.010 0.984 1.160 0.843 1.220 0.797
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCL SPAN MEAN 5.00 10.3 10.00 10.2 30.00 12.0 42.50 12.9 45.00 13.0 47.50 13.2 50.00 13.3 52.50 13.5 70.00 14.1 90.00 14.4	TOENCE DEV SS 7.5 4.7 7.3 4.1 7.9 4.9 8.1 3.6 8.1 4.2 8.2 5.3 8.1 6.2 8.2 6.1 8.0 7.8 7.5 10.0 7.3 4.9	D-FACT EFF 0.609 0.664 0.564 0.698 0.511 0.793 0.527 0.822 0.537 0.813 0.554 0.805 0.580 0.792 0.587 0.798 0.560 0.874 0.521 0.959	LOSS COEFF TOT PROF 0.327 0.327 0.281 0.281 0.188 0.188 0.177 0.177 0.189 0.189 0.199 0.199 0.218 0.218 0.214 0.214 0.149 0.149 0.093 0.093 0.073 0.073	LOSS PARAM TOT PROF 0.050 0.050 0.044 0.044 0.030 0.030 0.029 0.029 0.031 0.031 0.033 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.025 0.025 0.015 0.015 0.012 0.012

TABLE XII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 12, 50 PERCENT DESIGN SPEED. SI UNITS. READING 329.

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 24.574 24.026 21.755 20.287 19.987 19.688 19.385 19.080 16.881 14.155 13.424	0UT 24.193 23.685 21.653 20.383 20.129 19.875 19.621 19.367 17.589 15.557	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 56.2 54.8 49.9 49.9 50.8 53.1 53.4 52.3 52.4 54.5	REL IN 72.1 70.7 67.9 66.5 66.1 65.8 65.4 65.2 62.8 59.1	BETAM OUT 57.6 56.4 51.9 46.2 45.6 45.3 44.9 43.8 17.6 5.1	TOTA IN 288.6 288.4 288.3 288.0 288.1 288.1 288.1 288.0 287.9	L TEMP RATIO 1.069 1.065 1.054 1.054 1.053 1.054 1.053 1.054 1.053	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RATIO 1.176 1.172 1.162 1.167 1.165 1.161 1.158 1.158 1.157 1.165 1.185
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 67.1 71.2 74.1 74.5 74.5 74.6 74.5 73.0 69.3 67.8	VEL 0UT 119.5 118.6 119.8 119.1 118.2 118.1 118.9 121.9 132.8 146.5	REL IN 218.0 215.0 197.2 186.8 184.0 181.5 179.4 177.4 159.9 137.8 131.9	VEL 0UT 124.3 123.7 119.6 111.4 109.6 3 100.2 98.2 90.8 85.0 85.5	MERI IN 67.1 71.2 74.1 74.5 74.5 74.6 74.5 74.6 74.5 73.0 69.3 67.8	D VEL 0UT 66.5 68.5 73.8 77.1 76.7 74.7 71.0 70.8 74.5 81.0 85.1	TAN 1N 0.0 0.0 0.0 0.0 0.0 0.0	99.2 96.9 87.7 91.7 91.6 94.4 95.5 96.4 105.2	IN 207.5 202.8 182.7 171.3 168.3 165.5 163.2 161.0 142.3 119.2	131.0
R 234567891011	ABS M IN 0.198 0.219 0.220 0.220 0.220 0.220 0.220 0.216 0.205 0.200	ACH NO OUT 0.343 0.342 0.332 0.347 0.345 0.342 0.342 0.344 0.354 0.387	REL M. IN 0.643 0.582 0.552 0.543 0.536 0.530 0.524 0.472 0.407 0.389	OUT 0.357 0.356 0.346 0.323 0.318 0.308 0.290 0.285 0.264 0.248	MERID MA IN 0.198 0.210 0.219 0.220 0.220 0.220 0.220 0.220 0.216 0.205 0.200	ACH NO OUT 0.191 0.197 0.213 0.223 0.227 0.217 0.206 0.205 0.217 0.236 0.248				PEAK SS MACH NG 0.993 0.975 0.937 0.901 0.895 0.890 0.820 0.701 0.665
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00	INCI MEAN 10.2 10.1 11.9 13.1 13.2 13.4 13.5	DENCE SS 7.5 7.1 7.9 8.3 8.2 8.2 8.2 8.3 8.1	DEV 4.5 4.1 4.6 3.4 5.6 5.8 7.8	D-FACT 0.560 0.551 0.508 0.522 0.523 0.534 0.564 0.570		LOSS C TOT 0.283 0.250 0.159 0.161 0.168 0.180 0.204 0.202	PR0F	LOSS P TOT 0.044 0.039 0.025 0.027 0.028 0.030 0.033 0.033	PR0F

TABLE XIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 100 PERCENT DESIGN SPEED. SI UNITS.

(a) Reading 310

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	ABS BETAM IN OUT 39.4 7.4 35.0 4.0 35.9 2.3 42.7 2.0 43.6 1.2 44.0 0.6 44.4 0.2 43.6 -0.0 39.5 -0.0 41.7 4.3 45.2 6.6	35.0 4.0 35.9 2.3 42.7 2.0 43.6 1.2 44.0 0.6 44.4 0.2 43.6 -0.0 39.5 -0.0 41.7 4.3	TOTAL TEMP IN RATIO 357.6 0.996 351.6 0.995 345.1 0.997 344.9 0.992 343.8 0.993 342.8 0.994 342.1 0.994 342.2 0.993 338.0 0.998 340.8 1.006 346.5 0.998	TOTAL PRESS IN RATIO 18.01 0.908 17.81 0.935 17.50 0.951 16.75 0.964 16.41 0.973 16.05 0.988 16.09 0.984 16.29 0.974 16.95 0.961 17.43 0.907 18.68 0.822
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL IN OUT 273.9 219.5 270.1 225.5 265.7 224.8 257.5 217.3 249.5 216.1 240.5 214.5 241.7 215.3 248.1 217.6 271.3 242.8 293.9 259.7 314.6 255.6	REL VEL IN OUT 273.9 219.5 270.1 225.5 265.7 224.8 257.5 217.3 249.5 214.5 241.7 215.3 248.1 217.6 271.3 242.8 293.9 255.6	MERID VEL IN OUT 211.7 217.7 221.2 225.0 215.2 224.6 189.3 217.2 180.6 216.1 173.1 214.5 172.6 215.3 179.8 217.6 209.2 242.8 219.5 258.9 221.9 253.9	TANG VEL IN OUT 173.9 28.3 155.0 15.9 155.8 8.8 174.5 7.7 172.2 4.6 167.0 2.1 169.2 0.7 171.0 -0.1 172.7 -0.0 195.5 19.4 223.1 29.5	HHEEL SPEED IN OUT 0.
R 12345678911	ABS MACH NO IN OUT 0.764 0.601 0.759 0.624 0.753 0.628 0.727 0.607 0.704 0.604 0.677 0.600 0.682 0.603 0.701 0.610 0.780 0.690 0.850 0.737 0.910 0.720	REL MACH NO IN OUT 0.764 0.601 0.759 0.624 0.753 0.628 0.727 0.607 0.704 0.604 0.677 0.600 0.682 0.603 0.701 0.610 0.780 0.690 0.850 0.737 0.910 0.720	MERID MACH NO IN OUT 0.590 0.596 0.622 0.623 0.610 0.628 0.535 0.607 0.509 0.604 0.487 0.600 0.487 0.603 0.508 0.610 0.601 0.690 0.635 0.735 0.642 0.716		MERID PEAK SS VEL R MACH NO 1.028 0.996 1.017 0.883 1.044 0.911 1.147 1.043 1.196 1.029 1.239 0.993 1.247 1.007 1.210 1.011 1.160 1.012 1.180 1.144 1.144 1.326
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 2.6 10.00 -0.2 30.00 2.0 42.50 8.4 45.00 9.2 47.50 9.4 50.00 9.7 52.50 8.6 70.00 3.3 90.00 2.8 95.00 5.2	DENCE DEV SS -3.5 17.1 -6.3 13.0 -4.2 10.2 2.2 9.8 3.1 9.0 3.3 8.3 3.6 7.9 2.5 7.7 -2.8 7.4 -3.2 11.6 -0.7 14.0	D-FACT EFF 0.353 0. 0.311 0. 0.299 0. 0.317 0. 0.299 0. 0.275 0. 0.277 0. 0.287 0. 0.245 0. 0.234 0. 0.304 0.	LOSS COEFF TOT PROF 0.287 0.287 0.205 0.205 0.157 0.157 0.122 0.122 0.097 0.097 0.045 0.045 0.059 0.059 0.092 0.092 0.117 0.117 0.248 0.248 0.430 0.425	LOSS PARAM TOT PROF 0.083 0.083 0.058 0.058 0.041 0.041 0.031 0.031 0.024 0.024 0.011 0.011 0.014 0.014 0.022 0.022 0.026 0.026 0.050 0.050 0.084 0.083

TABLE XIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 100 PERCENT DESIGN SPEED. SI UNITS.

(b) Reading 311

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	ABS BETAM IN OUT 41.9 7. 36.9 4. 38.6 2. 43.4 2. 44.6 0. 45.2 0. 44.4 0. 40.9 0. 43.6 3. 46.0 5.	IN OUT 5 41.9 7.5 5 36.9 4.5 0 38.6 2.0 2 43.4 2.2 8 44.2 1.8 44.6 0.8 4 45.2 0.4 3 44.4 0.3 7 40.9 0.7 7 43.6 3.7	TOTAL TEMP IN RATIO 362.4 0.991 355.9 0.994 347.5 0.998 347.6 0.992 346.1 0.994 345.5 0.994 344.9 0.993 343.6 0.996 339.5 0.997 341.3 1.005 347.1 0.998	TOTAL PRESS IN RATIO 18.51 0.926 18.43 0.941 17.93 0.968 17.44 0.961 17.05 0.970 16.76 0.985 16.62 0.985 16.65 0.983 17.16 0.969 17.63 0.931 18.73 0.875
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 271.6 203.0 270.2 207.4 261.9 207.8 261.2 199.4 253.2 195.0 246.7 193.3 244.4 193.2 246.4 194.7 267.1 213.2 286.5 227.5 307.7 235.2	REL VEL IN 0UT 271.6 203.0 270.2 207.8 261.9 207.8 261.2 199.4 253.2 195.0 246.7 193.3 244.4 193.2 246.4 194.3 267.1 213.2 286.5 227.5 307.7 235.2	1 216.1 206.7 204.7 207.7 1 189.8 199.3 1 181.6 194.9 1 175.7 193.3 2 172.1 193.2 7 176.1 194.7 2 202.0 213.2 207.5 227.0	TANG VEL IN OUT 181.4 26.5 162.3 16.3 4 7.3 179.5 7.8 176.5 6.0 173.2 2.8 173.5 1.3 172.3 0.9 174.9 2.8 197.6 14.8 221.2 22.9	HHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.751 0.550 0.754 0.568 0.738 0.575 0.736 0.552 0.713 0.540 0.693 0.535 0.694 0.540 0.764 0.598 0.825 0.637 0.886 0.657	REL MACH NO IN OUT 0.751 0.550 0.754 0.568 0.738 0.575 0.736 0.552 0.713 0.540 0.693 0.535 0.694 0.540 0.764 0.598 0.825 0.637 0.886 0.657	IN OUT 0.559 0.546 0.603 0.566 0.577 0.574 0.535 0.552 0.511 0.539 0.494 0.535 0.494 0.535 0.496 0.540 0.578 0.598 0.597 0.636		MERIC PEAK SS VEL R MACH NO 0.996 1.046 0.957 0.935 1.014 0.969 1.050 1.074 1.073 1.055 1.100 1.032 1.123 1.033 1.106 1.020 1.056 1.029 1.094 1.165 1.094 1.315
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 5.1 10.00 1.7 30.00 4.7 42.50 9.1 45.00 9.8 47.50 10.0 50.00 10.5 52.50 9.5 70.00 4.6 90.00 4.7 95.00 6.0	DENCE DEV SS -1.0 17.1 -4.5 13.5 -1.5 10.0 3.6 9.5 3.9 8.5 4.4 8.1 3.4 8.0 -1.4 8.2 -1.3 11.1	0.418 0. 0.386 0. 0.363 0. 0.400 0. 0.396 0. 0.385 0. 0.379 0. 0.375 0. 0.343 0. 0.531 0.	LOSS COEFF TOT PROF 0.236 0.236 0.188 0.188 0.105 0.105 0.129 0.129 0.103 0.103 0.069 0.069 0.056 0.056 0.062 0.062 0.097 0.097 0.191 0.191 0.311 0.309	LOSS PARAM TOT PROF 0.068 0.068 0.053 0.053 0.028 0.028 0.032 0.032 0.025 0.025 0.017 0.017 0.014 0.014 0.015 0.015 0.022 0.022 0.038 0.038 0.061 0.060

TABLE XIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 100 PERCENT DESIGN SPEED. SI UNITS.

(c) Reading 305

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	ABS BETAM IN OUT 45.2 7.1 41.0 4.8 41.5 2.4 45.0 2.8 45.3 2.1 46.0 1.5 46.9 1.1 43.4 1.3 44.7 3.6 46.9 5.3	REL BETAM IN OUT 45.2 7.1 41.0 4.8 41.5 2.4 45.0 2.8 45.3 2.1 46.0 1.5 46.9 1.1 46.9 1.1 43.4 1.3 44.7 3.6 46.9 5.3	TOTAL TEMP IN RATIO 365.7 0.992 359.1 0.995 350.8 0.997 350.3 0.992 349.9 0.992 347.7 0.992 346.7 0.993 341.2 0.997 342.3 1.006 347.6 0.998	TOTAL PRESS IN RATIO 18.81 0.938 18.77 0.956 18.33 0.968 18.00 0.959 17.81 0.959 17.27 0.979 17.28 0.977 17.28 0.977 17.46 0.969 17.84 0.935 19.07 0.874
RP 1 2 3 4 5 6 7 8 9 10 1 1	ABS VEL IN OUT 267.4 195.5 265.2 201.7 259.2 197.3 262.4 191.3 259.3 187.8 252.2 186.4 248.2 185.9 249.0 186.0 261.7 197.0 279.0 207.2 304.4 213.0	REL VEL IN OUT 267.4 195.5 265.2 201.7 259.2 197.3 262.4 191.3 259.3 187.8 252.2 186.4 248.2 185.9 249.0 186.0 261.7 197.0 279.0 207.2 304.4 213.0	MERID VEL IN OUT 188.5 194.0 200.1 201.0 194.0 197.1 185.6 191.1 182.5 187.7 175.1 186.3 169.4 185.9 170.1 186.0 190.3 196.9 198.1 206.8 208.0 212.1	TANG VEL IN OUT 189.7 24.3 174.0 16.8 171.9 8.3 185.5 9.3 184.2 7.0 181.4 4.8 181.3 3.5 181.9 3.7 179.7 4.5 196.4 13.0 222.3 19.7	WHEEL SPEED IN OUT 0.
R : 2334561-890111	ABS MACH NO IN OUT 0.734 0.526 0.735 0.548 0.726 0.526 0.727 0.516 0.727 0.513 0.695 0.512 0.699 0.513 0.745 0.548 0.799 0.575 0.875 0.590	REL MACH NO IN OUT 0.734 0.526 0.735 0.548 0.726 0.526 0.727 0.516 0.706 0.513 0.695 0.512 0.699 0.513 0.745 0.548 0.799 0.575 0.875 0.590	MERID MACH NO IN OUT 0.518 0.522 0.555 0.546 0.543 0.541 0.521 0.525 0.512 0.516 0.491 0.513 0.475 0.512 0.477 0.513 0.542 0.548 0.567 0.574 0.598 0.588		MERID PEAK SS VEL R MACH NO 1.029 1.105 1.004 1.021 1.016 1.028 1.030 1.114 1.029 1.103 1.064 1.086 1.097 1.086 1.093 1.088 1.035 1.067 1.044 1.160 1.020 1.326
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN MEAN 5.00 8.4 10.00 5.8 95.00 10.7 42.50 10.8 47.50 11.4 50.00 12.2 52.50 70.00 7.1 90.00 5.8 95.00 7.0	DENCE DEV SS 2.2 16.8 -0.4 13.7 1.5 10.4 4.5 10.5 4.7 9.9 5.3 9.2 6.1 8.8 5.9 8.8 1.0 8.7 -0.1 10.9 1.1 12.7	D-FACT EFF 0.448 0. 0.408 0. 0.405 0. 0.438 0. 0.444 0. 0.432 0. 0.423 0. 0.423 0. 0.394 0. 0.386 0. 0.427 0.	LOSS COEFF TOT PROF 0.206 0.206 0.147 0.147 0.107 0.107 0.136 0.136 0.138 0.138 0.097 0.097 0.076 0.076 0.084 0.084 0.100 0.100 0.189 0.189 0.320 0.317	LOSS PARAM TOT PROF 0.059 0.059 0.042 0.042 0.028 0.028 0.034 0.034 0.034 0.034 0.024 0.024 0.018 0.018 0.020 0.020 0.022 0.022 0.038 0.038 0.063 0.062

TABLE XIII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 100 PERCENT DESIGN SPEED. SI UNITS.

(d) Reading 313

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN (23.947 23. 23.508 23. 21.742 21. 20.635 20. 20.411 20. 19.969 20. 19.748 20. 18.217 18. 16.515 17.	DUT IN .950 47.0, .541 46902 45884 47681 47681 47681 49277 50079 49.6 .712 45.6 .247 46	4.8 2.2 1.6 1.4 1.3 1.4 1.5 0.8 3.8	1N 47.0 46.4 45.1 47.1 47.8 49.1 50.4 49.6 45.6 45.6	BETAM OUT 6.0 4.8 2.2 1.6 1.4 1.3 1.2 1.5 0.8 3.8 4.6	TOTA IN 368.7 365.4 355.2 353.4 353.4 352.2 351.2 344.5 344.8	RAT10 1.000 0.995 0.995 0.989 0.989 0.988 0.989 0.989 0.992 1.001	TOTAL IN 19.54 19.45 18.82 18.57 18.50 18.25 18.14 17.91 18.21	PRESS RATIO 0.927 0.949 0.960 0.943 0.952 0.958 0.953 0.953 0.953
RP 1 2 3 4 5 6 7 8 9 10	267.0 18 264.9 19 255.2 18 258.2 17 257.4 10 253.0 16 249.4 16 252.5 16 254.1 16 270.5 17	EL REDUT IN 183.8 267.192.2 264.80.6 255.72.0 258.69.5 257.68.6 253.67.5 249.77.0 270.185.2 297.	9 192.2 2 180.6 2 172.0 4 169.5 0 168.6 4 167.5 5 167.8 1 169.0 177.0	MERI IN 182.0 182.6 180.0 175.8 172.9 165.6 158.9 167.8 188.0 198.5	D VEL 0UT 182.8 191.5 180.5 171.9 169.4 168.6 167.5 167.8 169.0 176.6 184.6	TAN IN 195.4 192.0 181.0 189.2 190.6 191.3 192.1 192.3 181.5 194.5 221.8	G VEL OUT 19.2 16.2 7.1 4.7 4.2 3.8 3.6 4.5 2.3 11.7	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0.
R + 23456789	0.750 0. 0.727 0. 0.709 0. 720 0. 717 0. 0.704 0. 0.694 0. 0.705 0. 0.717 0. 0.768 0.	H NO REL 1N 1489 0.730 1516 0.727 1491 0.709 1468 0.720 1460 0.704 1457 0.694 1459 0.705 1466 0.717 1486 0.768 1508 0.849	7 0.516 0.491 0.468 7 0.462 3 0.460 0.457 6 0.459 7 0.466 0.486	MERID MA IN 0.497 0.501 0.490 0.482 0.461 0.442 0.457 0.502 0.534 0.566	0.486 0.514 0.486 0.514 0.468 0.462 0.460 0.457 0.458 0.466 0.485 0.506				PEAK 3S MACH NG 1,144 1,145 1,091 1,141 1,149 1,156 1,165 1,160 1,082 1,148 1,324
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCIDENCE MEAN SS 10.2 4.1 11.2 5.1 11.3 5.1 12.8 6.1 13.4 7.2 14.5 8.4 15.7 9.5 14.7 8.6 9.3 3.3 7.0 1.1 8.2 2.3	13.8 10.2 7 9.3 2 9.2 9.0 8.9 9.2 8.9 9.2 11.1	D-FACT 0.503 0.463 0.471 0.512 0.520 0.514 0.510 0.512 0.489 0.478 0.510	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.243 0.172 0.142 0.185 0.196 0.170 0.154 0.168 0.163 0.241 0.338	PROF	LOSS P TOT 0.070 0.049 0.037 0.046 0.042 0.037 0.040 0.036 0.048	PROF 0.070 0.049 0.037 0.046 0.049 0.042 0.037 0.040 0.036 0.048 0.066

TABLE XIII. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 100 PERCENT DESIGN SPEED. SI UNITS.

(e) Reading 314

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	ABS BETAM IN OUT 53.5 6.4 50.9 4.8 46.3 2.2 48.4 1.7 48.7 1.5 49.6 1.3 49.9 1.3 50.1 1.7 47.1 0.8 47.2 3.9 49.3 4.7	50.9 4.8 46.3 2.2 48.4 1.7 48.7 1.5 49.6 1.3 49.9 1.3 50.1 1.7 47.1 0.8 47.2 3.9	TOTAL TEMP IN RATIO 376.4 0.986 370.4 0.989 356.9 0.994 354.5 0.990 354.6 0.988 353.4 0.988 353.4 0.989 353.6 0.986 351.8 0.989 345.4 0.990 345.2 1.001 349.8 0.996	TOTAL PRESS IN RATIO 19.60 0.931 19.60 0.942 18.96 0.953 18.53 0.945 18.27 0.952 18.14 0.956 18.14 0.954 18.00 0.947 18.33 0.916 19.31 0.878
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N OUT 265.0 182.2 263.9 187.2 254.5 174.8 255.6 165.6 253.6 164.3 251.6 165.9 249.9 165.2 250.9 165.2 253.7 164.6 270.4 173.2 294.4 183.1	REL VEL 1N OUT 265.0 182.2 263.9 187.2 254.5 174.8 255.6 165.6 253.6 164.3 251.6 165.9 249.9 165.2 250.9 165.2 253.7 164.6 270.4 173.2 294.4 183.1	MERID VEL IN OUT 157.7 181.0 166.5 186.6 175.8 174.6 169.7 165.5 167.2 164.2 163.1 165.8 161.1 165.1 160.9 165.2 172.6 164.6 183.6 172.8 191.8 182.4	TANG VEL IN OUT 213.0 20.4 204.7 15.8 184.0 6.8 191.2 4.9 190.6 4.4 191.5 3.8 191.1 3.8 192.5 4.9 186.0 2.2 198.5 11.9 223.4 15.0	WHEEL SPEED IN OUT 0.
RP 1 2334 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.715 0.483 0.718 0.500 0.705 0.473 0.711 0.450 0.704 0.446 0.700 0.452 0.694 0.450 0.694 0.451 0.715 0.453 0.768 0.475 0.839 0.502	REL MACH NO IN OUT 0.715 0.483 0.718 0.500 0.705 0.473 0.711 0.450 0.704 0.446 0.700 0.452 0.694 0.450 0.699 0.451 0.715 0.453 0.768 0.475 0.839 0.502	MERID MACH NO IN OUT 0.426 0.480 0.453 0.498 0.487 0.473 0.472 0.450 0.465 0.446 0.454 0.451 0.447 0.450 0.449 0.451 0.486 0.453 0.521 0.474 0.546 0.500		MERID PEAK SS VEL R MACH NG 1.148 1.279 1.120 1.239 0.993 1.112 0.976 1.158 0.982 1.151 1.016 1.159 1.025 1.154 1.026 1.163 0.954 1.116 0.951 1.341
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 16.7 10.00 15.7 30.00 12.4 42.50 14.1 45.00 14.3 47.50 15.0 50.00 15.2 52.50 15.2 70.00 90.00 93.00 9.4	10.6 16.1 9.5 13.8 6.3 10.2 8.0 9.5 8.2 9.3 8.9 9.0 9.0 9.0 9.1 9.4 4.8 8.2	D-FACT EFF 0.523 0. 0.494 0. 0.496 0. 0.534 0. 0.533 0. 0.522 0. 0.519 0. 0.519 0. 0.510 0. 0.495 0. 0.513 0.	LOSS COEFF TOT PROF 0.239 0.239 0.200 0.200 0.168 0.168 0.206 0.206 0.196 0.196 0.171 0.171 0.159 0.159 0.166 0.166 0.184 0.184 0.260 0.260 0.331 0.328	LOSS PARAM TOT PROF 0.069 0.069 0.057 0.057 0.044 0.044 0.052 0.052 0.049 0.049 0.042 0.042 0.039 0.039 0.040 0.041 0.052 0.052 0.065 0.064

TABLE XIV. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 90 PERCENT DESIGN SPEED. SI UNITS.

(a) Reading 315

RP 1 2 3 4 5 6 7 8 9 10 11 RP	IN 23.947 2 23.508 2 21.742 2 20.635 2 20.411 2 20.190 2 19.969 2 19.748 1 18.217 16.515 16.104	23.541 21.902 20.884 20.681 20.480 20.277 20.079 18.712 17.247 16.896	IN 33.4 33.0 34.1 38.2 38.3 39.8 39.2 40.1 38.0 40.3 43.7	BETAM OUT 6.0.3 2.3 2.2 1.9 1.6 1.3 1.0 0.4 5.0 7.8	IN 33.4 33.0 34.1 38.2 38.3 39.8 39.2 40.1 38.0 43.7 MERI	BETAM OUT 6.0 3.3 2.3 2.2 1.9 1.6 1.3 1.0 0.4 5.0 7.8	IN 339.9 336.0 331.1 331.9 331.5 331.5 331.6 328.2 330.2 334.2	0.996 0.997 0.994 0.995 0.994 0.995 0.995 1.005 1.001	IN 15.74 15.68 15.45 15.35 15.16 15.02 14.87 14.96 15.39 15.96 16.60	0.93 0.93 0.93 0.94 0.95 0.95 0.94 0.87
1 2 3 4 5 6 7 8 9 10	1N 246.7 244.7 237.0 240.8 236.3 232.2 228.0 231.0 247.6 273.1 284.7	0UT 213.3 225.9 217.8 221.6 220.5 220.1 222.7 225.7 247.5 272.8 268.0	IN 246.7 244.7 237.0 240.8 236.3 232.2 228.0 231.0 247.6 273.1 284.7	0UT 213.3 225.9 217.8 221.6 220.5 220.1 222.7 225.7 247.5 272.8 268.0	196.2	OUT 212.1 225.5 217.6 221.4 220.0 222.7 225.7 247.5 271.7 265.5	18 135.7 133.2 132.9 148.9 148.6 144.1 148.8 152.4 176.6 196.7	3.9 1.9 23.8		OUT 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS M/ 1N 0.699 0.698 0.679 0.690 0.664 0.651 0.716 0.796 0.829	ACH NO OUT 0.599 0.641 0.620 0.632 0.629 0.629 0.637 0.646 0.717 0.793	REL M IN 0.699 0.698 0.679 0.690 0.676 0.664 0.651 0.716 0.716 0.796	ACH NO OUT 0.599 0.641 0.620 0.632 0.629 0.637 0.637 0.717 0.793 0.774	MERID M IN 0.584 0.585 0.562 0.542 0.531 0.510 0.505 0.505 0.505 0.505	0.620 0.620 0.620 0.629 0.629 0.628 0.637 0.646 0.717 0.790 0.766			MERID VEL R 1.030 1.098 1.109 1.170 1.189 1.234 1.260 1.278 1.268 1.304 1.290	MACH N 0.722 0.740 0.770 0.880 0.861 0.873 0.843
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	MEAN -3.4	DENCE SS -9.6 -8.4 -5.9 -2.2 -2.3 -0.9 -1.7 -0.9 -4.3 -4.6 -2.2	DEV 15.6 12.2 10.3 10.0 9.7 9.3 9.0 8.7 7.8 12.3 15.2	D-FACT 0.269 0.217 0.219 0.225 0.212 0.170 0.172 0.133 0.111 0.165	0.	LOSS C TOT 0.357 0.223 0.255 0.251 0.233 0.222 0.178 0.185 0.205 0.359 0.522	PR0F 0.357	LOSS F TOT 0.103 0.063 0.063 0.054 0.054 0.043 0.044 0.045 0.072	PROF 0.103

TABLE XIV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 90 PERCENT DESIGN SPEED. SI UNITS.

(b) Reading 316

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 23.947 23.508 21.742 20.635 20.411 20.190 19.969 19.748 18.217 16.515 16.104	OUT 23.950 23.541 21.902 20.884 20.681 20.480 20.277 20.079 18.712 17.247	ABS IN 36.8 35.7 35.8 39.5 40.7 41.4 41.9 39.6 41.6 44.7	BETAM OUT 7.4 5.1 1.6 2.2 2.1 1.6 1.4 1.2 0.6 3.4 5.4	RELL IN 36.8 35.7 35.8 39.5 40.7 41.4 41.9 39.6 41.6 44.7	BETAM OUT 7.4 5.1 1.6 2.2 2.1 1.6 1.4 1.2 0.6 3.4 5.4	TOTA IN 344.2 339.4 333.1 334.1 334.4 333.6 332.6 332.6 332.4 331.4	RATIO 0.991 0.995 0.998 0.995 0.995 0.995 0.995 0.996 1.004		PRESS RAT10 0.929 0.942 0.965 0.965 0.965 0.971 0.968 0.961 0.931 0.883
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 243.2 242.8 234.2 239.6 235.9 232.0 229.7 231.3 243.5 267.4 282.4	VEL 0UT 185.7 191.5 192.4 192.6 190.9 188.9 189.8 190.9 203.4 228.6	REL IN 243.2 242.8 234.2 239.6 235.9 232.0 229.7 231.3 243.5 267.4 282.4	VEL 0UT 185.7 191.5 192.4 192.6 190.9 188.9 189.8 190.9 203.4 225.4 228.6	MERI 194.9 197.1 190.1 184.9 178.9 174.2 172.6 172.1 187.7 200.9	D VEL OUT 184.2 190.7 192.4 192.5 190.8 188.8 189.7 190.8 203.4 225.0 227.6	TAN IN 145.6 141.8 136.9 152.5 153.9 153.3 151.5 154.6 155.2 177.4	G VEL OUT 24.1 17.1 5.4 7.5 7.0 5.2 4.6 4.2 2.3 13.4 21.6	WHEEL IN - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 67 8 9 10 11	ABS M IN 0.684 0.668 0.668 0.672 0.661 0.654 0.660 0.702 0.776 0.819	ACH NO OUT 0.515 0.534 0.542 0.537 0.532 0.535 0.538 0.538 0.549	REL MA 0.684 0.688 0.668 0.672 0.661 0.654 0.6560 0.702 0.776 0.819	OUT 0.515 0.534 0.542 0.542 0.537 0.532 0.538 0.538 0.579 0.649	MERID MA IN 0.548 0.558 0.542 0.528 0.510 0.496 0.491 0.541 0.580 0.583	ACH NO 0UT 0.511 0.532 0.541 0.542 0.537 0.535 0.535 0.538 0.640 0.646	·			PEAK SS MACH NG 0.825 0.825 0.805 0.906 0.914 0.910 0.894 0.911 1.179
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN -0.0 0.5 1.9 5.2 6.8 6.6 7.0 3.3 2.6	DENCE SS -6.2 -5.6 -4.3 -0.9 0.1 0.6 0.4 0.9 -2.7 -3.3 -1.2	DEV 17.1 14.1 9.6 10.0 9.9 9.3 9.1 8.9 8.1 10.8 12.8	D-FACT 0.381 0.357 0.326 0.347 0.344 0.341 0.328 0.330 0.302 0.277 0.310	EFF 0. 0. 0. 0. 0. 0.	LOSS COTOT 0.264 0.214 0.136 0.155 0.148 0.139 0.116 0.126 0.140 0.209 0.328	0EFF PROF 0.264 0.214 0.136 0.155 0.148 0.116 0.126 0.140 0.209 0.328	LOSS P TOT 0.076 0.061 0.036 0.037 0.037 0.028 0.030 0.031 0.042	ARAM PROF 0.076 0.061 0.036 0.039 0.037 0.034 0.028 0.030 0.031 0.042

TABLE XIV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 90 PERCENT DESIGN SPEED. SI UNITS.

(c) Reading 319

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 23.947 23.508 21.742 20.635 20.411 20.190 19.969 19.748 18.217 16.515 16.104	0UT 23.950 23.541 21.902 20.884 20.681 20.480 20.277 20.079 18.712 17.247	ABS IN 41.3 37.6 38.7 41.7 42.3 43.5 42.9 41.2 46.3	BETAM OUT 7.3 5.0 1.5 2.4 2.1 1.6 1.4 1.2 0.5 3.1	IN 41.3 37.6 38.7 41.7 42.3 43.4 43.5 42.9	BETAM OUT 7.3 5.0 1.5 2.4 2.1 1.6 1.4 1.2 0.5 3.1	TOTA IN 347.5 342.5 336.0 335.2 335.0 335.0 334.0 330.1 332.0	TEMP RATIO 0.995 0.998 0.995 0.995 0.997 0.993 0.994 0.996 1.002 0.997	TOTAL IN 16.41 16.46 16.11 15.98 15.86 15.71 15.73 15.74 16.22 16.92	0.977 0.970 0.971 0.973 0.980 0.978 0.974 0.940
RP 1 23 4 5 6 7 8 9 10 11	ABS 1N 239.6 239.5 232.5 238.1 235.6 233.5 230.7 232.2 239.5 262.2 278.1	VEL 0UT 182.1 189.0 187.7 186.5 185.1 185.6 186.0 194.1 210.4 216.5	REL IN 239.6 239.5 232.5 238.1 235.6 233.5 230.7 232.2 239.5 262.2 278.1	VEL 0UT 182.1 189.0 187.9 187.7 186.5 185.6 186.0 194.1 210.4 216.5	MERI IN 180.0 189.8 181.6 177.7 174.2 169.6 167.3 170.1 180.3 191.1	D VEL OUT 180.6 188.3 187.9 187.5 186.4 185.0 185.5 186.0 194.1 210.1 215.6	IN 158.1 146.1 145.2	OVEL OUT 23.0 16.4 5.0 7.7 6.7 5.3 4.6 3.8 1.6	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R: 234567891011	ABS M 1N 0.669 0.674 0.660 0.677 0.663 0.665 0.665 0.688 0.758 0.804	ACH NO OUT 0.501 0.524 0.526 0.526 0.523 0.519 0.521 0.523 0.550 0.595 0.612	REL MA IN 0.669 0.674 0.660 0.677 0.663 0.655 0.661 0.688 0.758 0.804	ACH NO OUT 0.501 0.524 0.526 0.526 0.527 0.519 0.521 0.523 0.550 0.595	MERID MA	ACH NO OUT 0.497 0.522 0.526 0.526 0.529 0.519 0.521 0.523 0.550 0.594 0.609				PEAK SS MACH NG 0.918 0.959 0.967 0.949 0.949 0.948 0.937 0.933 1.203
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN 4.5 2.4 4.8 7.9 8.8 8.0 4.3 6.3	DENCE SS -1.6 -3.8 -1.4 1.3 1.8 2.7 2.7 1.8 -1.2 -1.7 0.4	DEV 16.9 13.9 9.5 10.1 9.8 9.4 9.1 8.8 7.9 10.5 12.5	D-FACT 0.403 0.365 0.350 0.357 0.367 0.369 0.357 0.357 0.332 0.323 0.346	EFF 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.191 0.145 0.090 0.115 0.105 0.080 0.089 0.095 0.191 0.292	OEFF PROF 0.191 0.145 0.090 0.115 0.105 0.080 0.089 0.095 0.191 0.292	LOSS F TOT 0.055 0.041 0.024 0.029 0.027 0.026 0.019 0.021 0.038 0.057	PARAM PROF 0.055 0.041 0.024 0.029 0.027 0.026 0.019 0.021 0.021 0.038 0.057

TABLE XIV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 90 PERCENT DESIGN SPEED. S1 UNITS.

(d) Reading 320

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 23.947 23.508 21.742 20.635 20.411 20.190 19.969 19.748 18.217 16.515 16.104	OUT 23.950 23.541 21.902 20.884 20.681 20.480 20.277 20.079 18.712 17.247	ABS IN 47.0 41.8 42.1 44.1 45.0 46.1 47.1 46.6 47.1	BETAM OUT 6.5 4.9 1.7 2.1 1.9 1.8 1.5 0.1 3.1	1N 47.0 41.8 42.1 44.1 45.0 46.1 47.1 46.1 43.7 46.6	BETAM OUT 6.5 4.9 1.7 2.1 1.9 1.8 1.5 0.1 3.1 4.5	TOTA IN 351.4 346.6 339.0 337.4 338.3 337.1 336.9 331.8 332.8 336.2	TEMP RATIO 0.993 0.995 0.995 0.995 0.995 0.991 0.992 0.993 0.996 1.001 0.998	TOTAL IN 16.96 16.92 16.56 16.40 16.35 16.23 16.23 16.21 15.96 16.28	PRESS RATIO 0.948 0.963 0.974 0.970 0.965 0.969 0.969 0.969 0.940 0.892
RP 1 23 4 5 6 7 8 9 10 11	ABS 1N 237.7 237.4 229.3 232.3 232.8 232.6 231.0 231.3 231.9 248.4 272.7	VEL OUT 173.0 179.3 174.0 171.6 170.2 169.9 170.0 170.2 168.7 178.7 183.8	REL IN 237.7 237.4 229.3 232.8 232.6 231.0 231.3 231.9 248.4 272.7	VEL 0UT 173.0 179.3 174.0 171.6 170.2 169.9 170.0 170.2 168.7 178.7 183.8	MERI (N 162.0 176.8 170.2 166.7 164.6 157.3 160.3 167.6 170.6	0 VEL 0UT 171.9 178.7 174.0 171.5 170.1 169.8 169.9 170.1 168.7 178.4 183.2	TAN IN 173.9 158.4 153.6 164.6 167.5 169.1 166.7 160.2 180.6 199.8	G VEL OUT 19.6 15.3 5.0 6.2 5.7 5.3 4.6 0.4 9.8 14.4	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.
R 1 23 4 5 6 7 8 9 10 11	ABS M 1N 0.659 0.663 0.647 0.657 0.658 0.658 0.658 0.655 0.662 0.713 0.786	ACH NO OUT 0.472 0.493 0.483 0.474 0.474 0.474 0.474 0.473 0.514	REL M IN. 0.659 0.663 0.647 0.657 0.658 0.654 0.655 0.662 0.713 0.786	ACH NO OUT 0.472 0.493 0.483 0.478 0.474 0.473 0.474 0.473 0.501	MERID MA (N 0.450 0.494 0.480 0.472 0.466 0.456 0.454 0.479 0.490 0.535	OUT 0.469 0.491 0.483 0.477 0.473				PEAK SS. MACH NO 1.334 1.334 0.928 0.976 0.994 1.012 1.001 0.956 1.001 1.198
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00 95.00	INCI MEAN 10.2 6.6 8.2 9.8 10.6 11.5 12.4 11.2 7.4 7.7	DENCE SS 4.1 0.5 2.0 3.7 4.4 5.4 6.2 5.1 1.4 1.8	DEV 16.2 13.8 9.6 9.8 9.6 9.5 9.5 10.5	D-FACT 0.460 0.416 0.411 0.428 0.436 0.439 0.435 0.431 0.423 0.416	EFF 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.207 0.146 0.105 0.119 0.139 0.140 0.123 0.125 0.125 0.123 0.209 0.323	OEFF PROF 0.207 0.146 0.105 0.119 0.139 0.140 0.123 0.125 0.123 0.209 0.323	LOSS F TOT 0.059 0.041 0.028 0.034 0.034 0.034 0.030 0.037 0.042	PR0F

TABLE XIV. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 90 PERCENT DESIGN SPEED. SI UNITS.

(e) Reading 321

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	IN 53.2 48.0 45.0 46.5 47.4 48.8 50.1 49.8 47.8 47.7 49.6	BETAM OUT 6.3 4.9 1.5 2.0 2.0 2.0 1.9 1.8 0.1 3.3	1N 53.2 48.0 45.0 46.5 47.4 48.8 50.1 49.8 47.7 49.6	BETAM OUT 6.3 4.9 1.5 2.0 2.0 1.9 1.8 0.1 3.3	1N 355.6 351.8 341.0 339.5 339.5 339.1 340.7 338.5 333.7 333.7	RATIO 0.994 0.997 0.995 0.995 0.994 0.992 0.989 0.992 0.994 1.002	TOTAL IN 17.23 17.21 16.74 16.63 16.55 16.46 16.44 16.05 16.35	PRES RAT I 0.94 0.95 0.96 0.96 0.96 0.96 0.95 0.95
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 235.7 166.5 225.8 163.6 229.2 158.4 228.1 157.5 227.1 156.4 228.4 154.9 224.8 152.5 242.0 160.5 265.6 166.9	235.7 225.8 229.2 228.1 227.1 228.1 228.4 224.8 242.0	VEL 0UT 166.5 172.5 163.6 158.4 157.5 156.6 156.4 154.9 152.5 166.9	MERI IN 141.3 157.9 159.5 157.8 154.3 146.4 147.4 151.2 162.8 172.0	D VEL 0UT 165.5 171.9 163.5 157.4 156.5 156.4 154.8 152.5 160.2	TAN IN 188.7 175.1 159.8 166.2 168.0 170.9 175.0 174.5 166.4 179.1 202.4	G VEL 0UT 18.2 14.7 4.4 5.7 5.5 5.3 4.8 0.1 9.2 12.3	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	O. O
R 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.649 0.451 0.653 0.470 0.634 0.451 0.646 0.438 0.643 0.436 0.641 0.433 0.645 0.429 0.639 0.425 0.693 0.447 0.763 0.464	IN 0.649 0.653 0.634 0.645 0.643 0.641 0.645 0.639 0.693	CH NO OUT 0.451 0.470 0.451 0.438 0.436 0.434 0.433 0.429 0.425 0.447	MERID MA IN 0.389 0.437 0.448 0.445 0.435 0.421 0.412 0.416 0.429 0.466 0.494	0.448 0.448 0.469 0.451 0.438 0.435 0.433 0.429 0.425 0.463			MER: 5 1 VEL R 1 1.025 1.025 1.020 1.020 1.046 1.068 1.051 1.009 0.968	
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT IN SPAN MEA 5.00 16.10.00 12.30.00 11.42.50 12.45.00 13.47.50 14.50.00 15.52.50 14.70.00 11.90.00 8.95.00 9.	4 10.3 7 6.6 2 5.0 2 6.1 0 8.1 9.2 9 8.8 5 5.4 8 2.8	DEV 15.9 13.8 9.5 9.8 9.7 9.6 9.4 7.5	D-FACT 0.503 0.461 0.456 0.483 0.485 0.493 0.499 0.484 0.475 0.508	EFF 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.218 0.164 0.124 0.160 0.159 0.155 0.173 0.144 0.239 0.328	0EFF PROF 0.218 0.164 0.164 0.159 0.159 0.159 0.173 0.144 0.239 0.328	LOSS P TOT 0.063 0.046 0.033 0.040 0.039 0.038 0.038 0.041 0.032 0.048 0.064	ARAM PROF 0.063 0.046 0.033 0.046 0.038 0.038 0.041 0.032 0.046

TABLE XV. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR.5, 80 PERCENT DESIGN SPEED. SI UNITS. READING 322.

RP 1 2 3 4 5 6 7 8 9 10 11	RADI IN 23.947 2 23.508 2 21.742 2 20.635 2 20.411 2 20.190 2 19.969 2 19.968 2 18.217 1 16.515 1	0UT 23.950 23.541 1.902 20.884 20.681 20.480 20.277 20.079 8.712 7.247	IN 53.4 48.2 47.6 49.3 50.2 51.3 53.2	BETAM OUT 6.6 5.3 2.0 2.2 1.9 1.8 1.7 1.7 0.5 3.0	IN 53.4 48.2 47.6 49.3 50.2 51.3 53.2 53.5 47.2 46.9	BETAM OUT 6.6 5.3 2.0 2.2 1.9 1.8 1.7 0.5 3.0	IN 340.7 338.2 330.4 329.4 329.1 328.9 328.9 328.1 323.8	0.993 0.997 0.995 0.994 0.994 0.992 0.994 0.998	TOTAL 1N 15.24 15.29 14.89 14.91 14.86 14.75 14.62 14.62 14.75 15.38	0.970 0.956 0.956 0.961 0.967 0.967 0.971
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 205.2 207.2 196.1 201.1 200.0 197.6 194.7 195.6 200.6 213.7 236.6	VEL 0UT 142.1 147.9 137.3 131.7 130.4 129.7 128.9 129.3 137.0 145.9 149.4	REL IN 205.2 207.2 196.1 201.1 200.0 197.6 194.7 195.6 200.6 213.7 236.6	VEL 0UT 142.1 147.9 137.3 131.7 130.4 129.7 128.9 129.3 137.0 145.9 149.4	MERI IN 122.5 138.0 132.3 131.0 128.0 123.6 116.7 116.3 136.1 145.9 157.0	147.3 137.2 131.6 130.3 129.6	TAN IN 164.7 154.5 144.8 152.6 153.7 154.2 155.8 157.2 147.3 156.1	7.5	WHEEL IN 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R 1 23 4 5 6 7 8 9 0 1 1 1	0.570 0.567 0.560 0.552 0.555 0.574 0.615	OH NO OUT 0.391 0.409 0.383 0.368 0.364 0.362 0.361 0.362 0.386 0.411 0.420	REL MI 1N 0.573 0.581 0.555 0.570 0.567 0.560 0.552 0.555 0.574 0.615 0.684	ACH NO OUT 0.391 0.409 0.383 0.368 0.364 0.362 0.361 0.362 0.386 0.411	MERID MA IN 0.342 0.387 0.374 0.372 0.363 0.350 0.331 0.330 0.420 0.454	0UT 0.388 0.408 0.383 0.368 0.364 0.362 0.360 0.362 0.362			VEL R 1 1.152 1.067 1.037	0.961 0.978 0.987 0.898 0.939
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 42.50 45.00 47.50 50.00 52.50 70.00 90.00	MEAN 16.6	DENCE 55 10.4 6.9 7.6 8.9 9.7 10.6 12.3 12.5 4.9 2.0	DEV 16.3 14.2 10.0 10.0 9.7 9.5 9.4 7.9 10.3	D-FACT 0.517 0.479 0.487 0.528 0.532 0.529 0.526 0.525 0.476 0.454	0.	LOSS COTOT 0.224 0.187 0.157 0.220 0.223 0.175 0.175 0.172 0.144 0.199	PROF		ARAM PROF 0.064 0.053 0.041 0.055 0.055 0.049 0.043 0.041 0.032

TABLE XVI. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 70 PERCENT DESIGN SPEED. SI UNITS.

(a) Reading 323

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	24.8 24.5 25.8 29.1 30.3 31.9 33.5 32.9 32.1 36.3	AM REL 1N 5.3 24.8 3.2 24.5 0.3 25.8 0.6 29.1 0.9 30.3 1.2 31.9 1.5 33.5 1.3 32.9 0.2 32.1 2.5 36.3 5.4 39.3	0.3 0.6 0.9 1.2 1.5 1.3 0.2 2.5	TOTAL IN 312.0 310.5 308.5 309.4 309.5 311.0 311.6 310.8 310.0 312.3 315.0	0.998 0.998 0.998 0.998 0.994 0.995 0.995 0.998	IN 12.55	0.958 0.963 0.968 0.970 0.969 0.971 0.969 0.967 0.958
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 191.8 157.2 191.3 179.3 187.8 180.9 188.5 186.1 188.6 187.2 189.6 188.6 190.0 190.6 191.1 190.9 201.0 204.1 221.3 232.3 230.9 227.6	REL VEL IN OU 191.8 157 191.3 179 187.8 188.5 188.1 187 189.6 188.1 190.0 190.191.1 190.201.0 204.221.3 232.230.9 227	IN 174.1 1.2 174.1 1.3 174.1 1.9 169.1 1.1 164.7 1.2 162.4 1.6 161.0 1.6 158.5 1.9 160.4 1.1 170.3 1.3 178.4	179.1 180.9 186.1 187.2	IN 80.4 79.3 81.6 91.7 94.8 100.1 104.8 103.9 106.8	4.9 4.4 0.5 9.9	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.558 0.453 0.558 0.522 0.549 0.528 0.551 0.544 0.549 0.547 0.552 0.551 0.553 0.556 0.557 0.558 0.589 0.599 0.651 0.684 0.678 0.667	REL MACH IN OU 0.558 0.4 0.558 0.5 0.549 0.5 0.551 0.5 0.552 0.5 0.553 0.5 0.557 0.5 0.589 0.5 0.678 0.6	T IN 0.507 22 0.508 28 0.494 44 0.481 51 0.469 56 0.461 58 0.498 84 0.524	0UT 0.451 0.521 0.528 0.544 0.547 0.551 0.556 0.558 0.599			VEL R 1 0.899 1.028	0.552 0.572 0.557 0.589
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT NEAN 5.00 -12.0 10.00 -10.7 30.00 -8.1 42.50 -5.2 45.00 -4.1 47.50 -2.7 50.00 -1.3 52.50 -2.0 70.00 -4.2 90.00 -2.7 95.00 -0.6	SS -18.2 14 -16.9 12 -14.3 8 -11.3 8 -10.3 8 -7.4 9 -8.1 9 -10.2 7 -8.6 9		0.	LOSS CO TOT 0.471 0.223 0.201 0.173 0.163 0.163 0.153 0.157 0.157	PROF 0.471	LOSS P TOT 0.136 0.063 0.053 0.043 0.041 0.040 0.037 0.039 0.035 0.034	PROF 0.136

TABLE XVI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 70 PERCENT DESIGN SPEED. SI UNITS.

(b) Reading 324

RP 1 2 3 4 5 6 7 8 9 10 11	RADII 1N 0UT 23.947 23.95 23.508 23.54 21.742 21.90 20.635 20.88 20.411 20.68 20.190 20.48 19.969 20.27 19.748 20.07 18.217 18.71 16.515 17.24 16.104 16.89	IN 0 29.8 1 28.0 2 29.6 4 32.6 1 33.7 0 35.2 7 37.2 9 36.6 2 35.3 7 39.0	BETAM OUT 5.8 3.7 0.0 0.1 0.6 1.3 1.2 -0.1 2.1	28.0 3. 29.6 0. 32.6 0. 33.7 0. 35.2 1. 37.2 1. 36.6 1. 35.3 -0. 39.0 2.	T [N F F S S S S S S S S S S S S S S S S S	TEMP RAT10 0.997 0.998 0.997 0.995 0.995 0.995 0.995 0.998	TOTAL IN 12.95 12.94 12.93 12.92 12.93 12.92 12.94 13.02 13.38 13.71	PRESS RATIO 0.938 0.965 0.973 0.970 0.971 0.972 0.974 0.972 0.973 0.962 0.923
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N OUT 188.7 147. 187.8 162. 182.0 162. 185.4 165. 185.3 166. 186.2 167. 186.2 169. 187.6 169. 194.0 178. 214.8 201. 225.2 200.	1N 5 188.7 1 187.8 5 182.0 1 185.4 1 185.3 6 186.2 1 186.2 6 187.6 6 194.0 6 214.8	VEL 0UT 147.5 162.1 162.5 165.1 166.1 167.6 169.1 169.6 178.6 201.6 200.0	MERID VEL IN OUT 163.7 146. 165.8 161. 158.2 165. 156.1 165. 154.1 166. 152.1 167. 148.4 169. 150.7 169. 158.4 178. 167.0 201. 168.9 199.	IN 8 93.8 7 88.3 5 90.0 1 100.0 1 102.9 6 107.4 1 112.5 5 111.7 6 112.0 5 135.1	VEL OUT 14.9 10.4 0.4 1.7 3.1 3.9 3.5 -0.3 7.5	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R: 2334567-89111	ABS MACH N iN OUT 0.546 0.42 0.545 0.46 0.529 0.47 0.539 0.47 0.539 0.48 0.540 0.48 0.540 0.48 0.540 0.48 0.545 0.49 0.566 0.51 0.629 0.58 0.659 0.58	IN 2 0.546 7 0.545 0 0.529 8 0.539 1 0.539 1 0.540 9 0.540 9 0.545 9 0.566 7 0.629		MERID MACH NI 1N OUT 0.474 0.46 0.481 0.46 0.460 0.47 0.454 0.47 0.448 0.48 0.441 0.48 0.430 0.48 0.437 0.49 0.462 0.51 0.489 0.58 0.495 0.57	0 6 0 8 8 1 5 9 1	1	MER:D P VEL R M 0.897 0.975 1.027 1.078 1.102 1.140 1.125 1.127 1.206 1.179	
RP 1 2 3 4 5 6 7 8 9 10 11	SPAN ME 5.00 -7 10.00 -7 30.00 -4 42.50 -1 45.00 -0 47.50 0 50.00 2 70.00 -1 90.00 0	NCIDENCE AN SS .0 -13.1 .2 -13.3 .3 -10.4 .6 -7.8 .7 -6.8 .6 -5.5 .4 -3.7 .6 -4.5 .0 -7.1 .0 -5.9 .5 -4.4	DEV 15.5 12.6 8.0 7.9 8.8 9.0 8.8 7.3 9.5	D-FACT EFF 0.339 0. 0.255 0. 0.237 0. 0.243 0. 0.238 0. 0.236 0. 0.232 0. 0.233 0. 0.206 0. 0.178 0. 0.223 0.	TOT 0.338 0.193 0.155 0.168 0.162 0.154 0.152 0.136 0.163	EFF PROF 0.338 0.193 0.155 0.168 0.162 0.154 0.142 0.152 0.152 0.136 0.163	LOSS P TOT 0.097 0.055 0.041 0.042 0.040 0.038 0.035 0.035 0.030 0.033	PR0F

TABLE XVI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 70 PERCENT DESIGN SPEED. SI UNITS.

(c) Reading 325

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN 0 23.947 23. 23.508 23. 21.742 21. 20.635 20. 20.411 20. 20.190 20. 19.969 20. 19.748 20. 18.217 18. 16.515 17. 16.104 16.	DUT IN 950 35.3 541 33.9 902 34.4 884 36.8 681 37.9 480 39.0 277 41.1 079 40.7 712 39.3 247 41.5	-0.1 2.2	IN 35.3 33.9 34.4 36.8 37.9 39.0 41.1 40.7 39.3 41.5	BETAM OUT 6.2 4.0 0.2 0.5 1.0 1.3 1.4 1.1 -0.1 2.2 4.6	TOTA IN 319.1 317.0 314.0 314.2 314.4 315.7 314.8 312.9 314.2 316.7		TOTAL IN 13.32 13.34 13.24 13.27 13.27 13.25 13.20 13.19 13.20 13.53 13.89	0.968 0.973 0.972 0.970 0.971 0.974 0.975 0.958
RP 1 2 3 4 5 6 7 8 9 10 11	185.0 14 185.0 15 179.0 14 181.9 15 183.5 15 183.4 15 182.6 15 182.9 15 188.2 15 208.3 17	CL REI 10.0 185.0 10.0 185.0 17.9 179.0 10.1 183.5 10.1 183.5 10.1 183.5 10.2 182.6 10.3 182.6 10.4 182.9 10.5 183.4 10.6 182.9 10.7 188.2	VEL 0UT 140.0 150.5 147.9 150.3 151.0 151.5 151.8 152.0 158.7 175.9 179.1	153.5 147.8 145.6 144.9 142.5 137.7 138.7 145.7	VEL 0UT 139.2 150.1 147.9 150.3 151.5 151.7 151.9 158.7 175.7 178.6	TAN IN 106.9 103.2 101.0 108.9 112.6 115.4 119.9 119.2 119.2 138.0 153.4	OUT 15.1 10.6 0.6 1.2 2.6 3.4 3.7 3.0 -0.2 6.7	IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4	0.531 0. 0.533 0.	NO REL M 10T IN 397 0.531 430 0.533 424 0.517	0.430 0.424	0.442	0UT 0.395				PEAK SS MACH NG 0.606 0.593
5 6 7 8 9 10	0.526 0. 0.531 0. 0.530 0. 0.527 0. 0.528 0. 0.546 0. 0.607 0.	431 0.526 433 0.531 435 0.530 435 0.527 436 0.528 457 0.546 507 0.607 516 0.644	0.431 0.433 0.435 0.435 0.436 0.457 0.507	0.421 0.419 0.412 0.397 0.401 0.423 0.455	0.431 0.433 0.435 0.435 0.436 0.457 0.507			1.001 1.032 1.042 1.063 1.102 1.095 1.089 1.126 1.125	0.643 0.667 0.685 0.717 0.708 0.704 0.813

TABLE XVI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 70 PERCENT DESIGN SPEED. SI UNITS.

(d) Reading 326

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	ABS BETAM IN OUT 42.6 5.9 41.1 4.5 41.0 0.2 42.6 1.3 43.5 1.3 44.6 1.1 46.6 1.0 46.8 0.9 43.8 -0.2 44.6 2.4 46.8 4.1	44.6 1.1 46.6 1.0 46.8 0.9 43.8 -0.2 44.6 2.4	TOTAL TEMP IN RATIO 323.3 0.997 317.4 0.997 317.5 0.996 317.7 0.995 318.0 0.994 317.9 0.993 317.6 0.994 315.3 0.995 315.2 1.002 316.8 1.001	TOTAL PRESS IN RATIO 13.62 0.962 13.71 0.968 13.50 0.974 13.54 0.970 13.41 0.974 13.41 0.974 13.41 0.973 13.46 0.969 13.65 0.958 13.99 0.935
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 180.2 129.5 182.4 138.2 174.1 131.4 179.4 133.0 180.7 132.4 179.0 131.8 176.8 131.6 177.5 131.1 185.1 137.0 200.3 150.2 213.5 154.1	REL VEL IN OUT 180.2 129.5 182.4 138.2 174.1 131.4 179.4 133.0 180.7 132.4 179.0 131.8 176.8 131.6 177.5 131.1 185.1 137.0 200.3 150.2 213.5 154.1	MERID VEL IN OUT 132.6 128.9 137.5 137.8 131.5 131.4 132.0 133.0 131.1 132.3 127.4 131.8 121.4 131.6 121.6 131.1 133.6 137.0 142.6 150.1 146.1 153.7	TANG VEL IN OUT 122.0 13.2 119.8 10.8 114.2 0.6 121.5 3.1 124.3 2.9 125.8 2.6 128.5 2.4 129.3 2.0 128.1 -0.5 140.6 6.2 155.7 10.9	WHEEL SPEED IN OUT 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.513 0.365 0.521 0.391 0.500 0.374 0.515 0.377 0.514 0.375 0.507 0.375 0.509 0.373 0.535 0.392 0.582 0.429 0.621 0.440	REL MACH NO IN OUT 0.513 0.365 0.521 0.391 0.500 0.374 0.515 0.379 0.514 0.375 0.507 0.375 0.509 0.375 0.509 0.373 0.535 0.392 0.582 0.429 0.621 0.440	MERID MACH NO IN OUT 0.378 0.363 0.393 0.390 0.377 0.374 0.379 0.377 0.376 0.366 0.375 0.348 0.375 0.349 0.373 0.386 0.392 0.414 0.429 0.425 0.439		MERID PEAK SS VEL R MACH NO 0.972 0.727 1.002 0.725 1.000 0.698 1.007 0.738 1.010 0.756 1.035 0.766 1.084 0.787 1.078 0.790 1.026 0.774 1.052 0.842 1.052 0.940
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 5.8 10.00 5.9 30.00 7.1 42.50 8.3 45.00 9.1 47.50 10.1 50.00 11.9 52.50 11.8 70.00 7.6 90.00 5.7 95.00 6.9	DENCE DEV SS -0.3 15.5 -0.3 13.4 0.9 8.2 2.2 9.1 2.9 9.0 3.9 8.9 5.8 8.7 5.7 8.6 1.5 7.2 -0.3 9.7 1.0 11.5	D-FACT EFF 0.456 0. 0.412 0. 0.417 0. 0.423 0. 0.433 0. 0.431 0. 0.427 0. 0.432 0. 0.412 0. 0.382 0. 0.407 0.	LOSS COEFF TOT PROF 0.234 0.234 0.186 0.186 0.163 0.183 0.183 0.183 0.199 0.199 0.185 0.185 0.160 0.160 0.169 0.169 0.173 0.173 0.206 0.206 0.282 0.282	LOSS PARAM TOT PROF 0.067 0.067 0.053 0.053 0.043 0.043 0.046 0.046 0.049 0.049 0.045 0.045 0.039 0.039 0.041 0.041 0.038 0.038 0.041 0.041 0.055 0.055

TABLE XVI. - Concluded. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 70 PERCENT DESIGN SPEED. SI UNITS.

(e) Reading 327

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	46.2 1. 46.6 1. 47.4 1. 48.8 1. 50.8 1. 51.0 1. 46.8 0. 46.2 2.	IN OUT 55.6.6 6.5 8 50.9 4.8 2 46.2 1.2 9 46.6 1.9	IN RATIO 330.4 0.989 326.8 0.993 320.4 0.997 319.5 0.996 319.4 0.995 319.5 0.994 319.3 0.994 318.8 0.994 316.2 0.997	TOTAL PRESS IN RATIO 13.86 0.956 13.80 0.964 13.63 0.964 13.57 0.967 13.50 0.971 13.48 0.971 13.54 0.970 13.70 0.957 14.10 0.933
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 179.9 119.3 177.5 123.8 172.3 120.3 177.0 117.9 176.3 116.9 174.6 115.8 172.0 115.3 172.6 115.2 179.9 122.1 193.8 131.9 210.5 136.9	REL VEL IN OUT 179.9 119.1 177.5 123.8 172.3 120.1 177.0 117.6 176.3 116.6 174.6 115.6 172.0 115.1 172.6 115.2 179.9 122.1 193.8 131.6	3 112.0 123.4 5 119.3 120.3 9 121.6 117.8 9 119.4 116.8 115.1 115.8 5 108.8 115.3 2 108.7 115.2 1 123.2 122.1 9 134.2 131.8	131.3 3.2 133.2 2.9 134.1 2.8 131.0 1.1 139.9 5.9	HHEEL SPEED IN OUT 0.
RP 1 23 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.506 0.333 0.502 0.347 0.492 0.340 0.507 0.333 0.505 0.331 0.499 0.328 0.492 0.326 0.494 0.326 0.518 0.347 0.561 0.375 0.611 0.389	REL MACH NO IN OUT 0.506 0.333 0.502 0.347 0.492 0.340 0.505 0.331 0.499 0.326 0.494 0.326 0.518 0.347 0.561 0.389	. IN OUT 0.279 0.331 0.317 0.346 0.340 0.340 0.348 0.333 0.342 0.333 0.342 0.329 0.329 0.328 0.311 0.326 0.311 0.326 0.311 0.326 0.315 0.347 0.388 0.375		MERID PEAK ST VEL R MACH NI 1.197 0.866 1.008 0.774 0.969 0.795 0.978 0.802 1.006 0.814 1.060 0.832 1.060 0.832 0.991 0.802 0.982 0.843 0.971 0.950
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 19.8 10.00 15.7 30.00 12.3 42.50 12.3 45.00 16.0 52.50 16.1 70.00 10.5 90.00 7.3 95.00 8.1	13.6 16.2 9.5 13.6 6.1 9.1 6.2 9.7 6.8 9.5 8.1 9.3 9.9 9.1 10.0 9.1	2 0.556 0. 3 0.506 0. 4 0.487 0. 7 0.510 0. 5 0.515 0. 0.515 0. 0.512 0. 0.513 0. 0.479 0. 0.455 0.	LOSS COEFF TOT PROF 0.274 0.274 0.214 0.214 0.173 0.173 0.224 0.224 0.227 0.227 0.212 0.212 0.193 0.193 0.186 0.186 0.181 0.181 0.225 0.225 0.299 0.299	LOSS PARAM TOT PROF 0.079 0.079 0.061 0.061 0.046 0.046 0.056 0.056 0.052 0.052 0.052 0.052 0.047 0.047 0.045 0.045 0.045 0.045 0.045 0.045

TABLE XVII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 60 PERCENT DESIGN SPEED. SI UNITS. READING 328.

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 23.947 23.950 23.508 23.541 21.742 21.902 20.635 20.884 20.411 20.681 20.190 20.480 19.969 20.277 19.748 20.079 18.217 18.712 16.515 17.247 16.104 16.896	56.4 52.0 46.2 46.0 46.7 48.2 50.2 50.4 47.4 46.0	AM REI UT IN 6.7 56.4 4.5 52.0 1.0 46.2 1.6 46.0 1.9 46.7 1.8 48.2 1.5 50.2 1.2 50.4 0.4 47.4 2.1 46.0 3.3 47.9	1.9 1.8 1.5 1.2 0.4 2.1	TOTAL IN 318.9 316.3 311.2 310.9 310.7 310.6 310.6 310.3 308.4 307.9 309.2	TEMP RATIO 0.993 0.995 0.997 0.997 0.996 0.996 0.996 1.003	IN	PRESS RATIO 0.963 0.972 0.979 0.971 0.974 0.976 0.976 0.966 0.947
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N OUT 154.1 101.6 150.9 104.6 145.5 100.9 151.1 100.3 149.9 99.0 148.2 98.1 146.6 97.1 147.5 96.7 152.3 102.5 165.7 112.0 178.7 112.9	148.2 98 146.6 97	1N .6 85.3 .6 92.9 1.9 100.7 1.3 104.9 1.0 102.7 1.1 98.9 1.1 93.9 1.7 94.0 1.5 103.1 1.6 115.2	104.3 100.9 100.3 99.0 98.0 97.1 96.7 102.5	TAN(IN 128.4 119.0 105.1 108.7 109.2 110.4 112.5 113.7 112.0 119.1 132.5	VEL OUT 11.9 8.3 1.8 2.8 3.3 3.1 2.5 2.0 0.7 4.1 6.4	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R 1 234567891011	ABS MACH NO IN OUT 0.439 0.287 0.431 0.297 0.4436 0.287 0.432 0.283 0.427 0.280 0.422 0.278 0.425 0.277 0.441 0.294 0.482 0.321 0.520 0.323	REL MACH IN OU 0.439 0.2 0.431 0.2 0.419 0.2 0.436 0.2 0.432 0.2 0.427 0.2 0.425 0.2 0.425 0.2 0.441 0.2 0.482 0.3 0.520 0.3	T IN 87 0.243 97 0.265 88 0.290 87 0.303 83 0.296 80 0.285 78 0.271 77 0.271 94 0.299 21 0.335	OUT 0.285 0.296 0.288 0.287 0.283 0.283 0.277 0.277 0.277 0.294 0.321				PEAK SS MACH NG 0.829 0.761 0.660 0.674 0.677 0.706 0.712 0.692 0.720 0.806
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 19.6 10.00 16.8 30.00 12.3 42.50 11.7 45.00 12.3 47.50 13.6 50.00 15.4 52.50 15.5 70.00 11.1 90.00 7.0	SS 13.5 16 10.7 13 6.2 9 5.6 6.2 9 9.3 9 9.4 8 5.1 7	EV D-FAC .4 0.560 .5 0.515 .0 0.493 .4 0.510 .7 0.513 .5 0.515 .2 0.518 .9 0.525 .8 0.487 .5 0.460	O. O	LOSS CO TOT 0.295 0.233 0.184 0.240 0.236 0.224 0.209 0.211 0.193 0.230	DEFF PROF 0.295 0.233 0.184 0.240 0.236 0.236 0.224 0.209 0.211 0.193 0.230	LOSS F TOT 0.085 0.066 0.049 0.059 0.051 0.051 0.043	PROF 0.085 0.066 0.049 0.060 0.059 0.055 0.051 0.051

TABLE XVIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 5, 50 PERCENT DESIGN SPEED. SI UNITS. READING 329.

RP 1 2 3 4 5 6 7 8 9 10 11	23.947 23.9 23.508 23.5 21.742 21.9 20.635 20.8 20.411 20.6 20.190 20.4 19.969 20.2	T IN 50 52.4 41 51.0 02 45.9 84 45.7 81 45.7 80 46.5 77 48.8 79 49.1 12 47.3 47.9	BETAM OUT 6.3 4.3 0.6 1.6 1.7 1.3 1.5 -0.0 1.9	IN 52.4 51.0 45.9 45.7 45.7	-0.0 1.9	IN 308.5 307.1	0.998 0.998 0.997 0.997 0.999	IN 11.89 11.87	0.978 0.980 0.981 0.980 0.982 0.978
RP 1 2 3 4 5 6 7 8 9 10 11	125.6 86 121.6 84 126.5 84 125.6 83 124.3 33 123.3 82 123.8 82 126.7 86 138.1 96		VEL OUT 81.2 86.9 84.5 83.7 83.1 82.0 82.1 86.4 96.5 91.4	MERIC IN 77.1 79.0 84.5 88.3 87.8 85.5 31.2 81.1 86.0 96.1	0UT 80.7 86.7 84.5 84.7 83.7 83.1 81.9 82.1 86.4 96.5	TAN IN 100.3 97.6 87.4 90.6 89.9 90.1 92.8 93.6 93.1 99.1	2.4 1.9 2.1 -0.0 3.2	IN 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	ABS MACH	NO REL M	ACH NO	MERID MA	רש אח			MED IN	
RP 1 2 3 4 5 6 7 8 9 10 11	IN 0U 0.364 0.2 0.362 0.2 0.352 0.2 0.367 0.2 0.364 0.2 0.368 0.2 0.358 0.2 0.359 0.2 0.403 0.2 0.442 0.2	IT IN 132 0.364 149 0.362 143 0.352 144 0.367 141 0.364 140 0.360 136 0.358 137 0.359 150 0.369 179 0.403	0UT 0.232 0.249 0.243 0.244 0.241 0.240 0.236 0.237 0.250 0.279 0.264	IN 0.222 0.228	OUT 0.231 0.249 0.243 0.244 0.241 0.240 0.236			VEL R 1 1.047 1.097 1.000 0.959 0.954 0.971 1.009	

Figure 1. - Flow path for stage 12-5, showing axial location of instrumentation.

Figure 2. - Compressor test facility.

Figure 3. - Rotor 12.

Figure 4. - Stator 5.

(a) Combination total pressure, total temperature, and flow angle probe (double barrel probe).

(b) Static pressure probe (80 wedge).

Figure 5. - Sensing probes.

Figure 6. - Circumferential location of instrumentation at measuring stations - facing downstream.

Figure 7. - Comparison of integrated weight flows with weight flow measured at orifice.

FIGURE 8. - OVERALL PERFORMANCE FOR ROTOR 12.

FIGURE 9. - OVERALL PERFORMANCE FOR STAGE 12 - 5.

FIGURE 10 .-RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 12. 100 PERCENT DESIGN SPEED.

FIGURE 10 .-CONTINUED. RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 12. 100 PERCENT DESIGN SPEED.

FIGURE 10 .-CONCLUDED. RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 12. 100 PERCENT DESIGN SPEED.

FIGURE 11 .-RADIAL DISTRIBUTION OF PERFORMANCE FOR STATOR 5. 100 PERCENT DESIGN SPEED.

FIGURE 11 .-CONCLUDED. RADIAL DISTRIBUTION OF PERFORMANCE FOR STATOR 5. 100 PERCENT DESIGN SPEED.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE, 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 12. - BLADE ELEMENT PERFORMANCE FOR ROTOR 12.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

FIGURE 13. - BLADE ELEMENT PERFORMANCE FOR STATOR 5.

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

FIRST CLASS MAIL

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958.

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546