Quantum Computing

Exercises for Lecture 01-05

Paolo Zuliani

Dipartimento di Informatica Universita di Roma "La Sapienza"

Exercise 1

An operator T on a Hilbert space $\mathcal H$ is unitary iff $TT^\dagger=T^\dagger T=I.$ Show that T is unitary iff:

- 1. T is bijective, and
- 2. $\forall u, v \in \mathcal{H}, \langle Tu|Tv \rangle = \langle u|v \rangle.$

Exercise 2

Given a vector space V and a basis set $S=\{e_1,\ldots,e_n\}$ such that [S]=V, prove that any $v\in V$ can be written as:

$$v = \sum_{i=1}^{n} \alpha_i e_i$$

where the coefficients α_i 's are complex. Also, prove that the α_i 's are unique (wrt a basis set). [Hint: start by noticing that the vectors $\{e_1,\ldots,e_n,v\}$ are linearly dependent.]

Exercise 3

Prove the triangular inequality.

Exercise 4

Let H be the Hadamard matrix. Using the definition of unitary transformation via adjoint given in the lecture notes, verify that $H\otimes H\otimes H$ is unitary. [Hints:

- 1. for any two matrices M_1, M_2 we have $(M_1 \otimes M_2)^\dagger = M_1^\dagger \otimes M_2^\dagger$. (This can be proved by writing down (the elements of) the matrix corresponding to $M_1 \otimes M_2$ and then apply the adjoint operation to it.)
- 2. if the dimensions of matrices A,B,C, and D are such that the products CA and BD are possible, then $(C\otimes D)(A\otimes B)=CA\otimes DB$. (It is easy to understand why this is true: if A,B,C, and D are single-qubit quantum gates applied in the circuit below then the action of the gates

A,B on the two qubits is described by $A\otimes B$. Next, the action of C,D on the circuit is described by $C\otimes D$. The action of the overall circuit can be then described as the sequential composition of $A\otimes B$ followed by $C\otimes D$, which is $(C\otimes D)(A\otimes B)$.)

1

Exercise 5

Let V be a complex vector space. Show that for any $v,w\in V$ and $\alpha,\beta\in\mathbb{C}$ we have

$$\langle \alpha u + \beta v, w \rangle = \alpha^* \langle u, w \rangle + \beta^* \langle v, w \rangle.$$

Exercise 6

If $\lambda \in \mathbb{C}$ is a non-degenerate eigenvalue of operator A, with notation abuse we write $A |\lambda\rangle = \lambda |\lambda\rangle$. Show that

$$\langle \lambda | A^{\dagger} = \lambda^* \langle \lambda |.$$

Exercise 7

Let W be a closed subspace an Hilbert space \mathcal{H} , and f_i be an orthonormal basis for W. The projection v_W of $v \in \mathcal{H}$ on W is defined as

$$v_W = \sum_i \langle f_i | v \rangle f_i.$$

Show that v_W does not depend on the choice of basis f_i .

Exercise 8

If P and Q are two orthogonal projectors, show that P+Q is also a projector.

Exercise 9

Given a self-adjoint operator, show that

- Its eigenvalues are real numbers;
- Eigenvectors associated to different eigenvalues are orthogonal.

Exercise 10

Let A be a self-adjoint operator with eigenvalues $\lambda_1, \ldots, \lambda_m$. Show that

$$A = \sum_{i=1}^{m} \lambda_i P_i$$

where P_i is the projector on the eigenspace of λ_i .

Exercise 11

Let A be a self-adjoint operator and $f: \mathbb{R} \to \mathbb{R}$. Define the operator f(A) as:

$$f(A) = \sum_{j=1}^{m} f(\lambda_j) P_j$$

where $\{\lambda_1, \ldots, \lambda_m\}$ are the eigenvalues of A and P_j is the projector on the j-th eigenspace. Prove that f(A) is self-adjoint.

Exercise 12

Let A be a self-adjoint operator and $f: \mathbb{R} \to \mathbb{C}$. Define the operator f(A) as:

$$f(A) = \sum_{j=1}^{m} f(\lambda_j) P_j$$

where $\{\lambda_1,\ldots,\lambda_m\}$ are the eigenvalues of A and P_j is the projector on the j-th eigenspace. Prove that e^{iA} is unitary (and therefore any solution of the Schrödinger equation is unitary - see the notes for Lecture 05).