Confronti craniometrici tra lupi (Canis lupus) dell'Italia continentale e della Spagna: primi dati

CONFRONTI CRANIOMETRICI TRA LUPI (*CANIS LUPUS*) DELL'ITALIA CONTINENTALE E DELLA SPAGNA: PRIMI DATI

AGATINO MAURIZIO SIRACUSA¹, MARIO LO VALVO²

¹ Dipartimento di Biologia Animale "M. La Greca", via Androne 81, 95100 Catania, E-mail: amsira@unict.it

ABSTRACT - Craniometric comparison between two samples of Mediterranean populations of gray wolf (Canis lupus) from Itay and Spain: preliminary data. Craniometric variation between two Mediterranean populations of gray wolf (Canis lupus) from Italian Appennine and Spain were compared using univariate and multivariate statistical analyses. Nineteen standard craniometric measurements were recorded on 50 skulls of adult wolf (20 Italian specimens and 30 Spanish specimens). Sexual dimorphism in cranial size and shape were found in the two samples; univariate analyses (t-test) evidenced differences (p<0.05) in 9 and 16 variables in Italian and Spanish populations respectively; in addition, the comparison between males and females of the two populations differed significantly in 10 and 6 variables. Principal Component Analysis (PCA) and Discriminat Function Analyses (DA) showed that differences in morphological measurements of the teeth existed between the two populations and sexes. This evidence could depend on the food selection in terms of prey size of the Italian and Spanish populations.

Key words: Canis lupus, Italy, Spain, cranial variation, univariate and multivariate analyses

RIASSUNTO - E' stata studiata la craniometria di due campioni appartenenti a popolazioni mediterranee di Lupo (italiana e spagnola) mediante tecniche di analisi univariata e multivariata. Sono state pertanto identificate 19 variabili e misurati 50 crani di lupo, di cui 20 italiani ($10 \, \&appartenente \&appartenente e analisi univariata (t-test) ha evidenziato differenze significative (p<0,05) in 10 e 6 variabili mediante il confronto tra maschi e femmine delle due popolazioni. Dal confronto tra i sessi sono invece emerse differenze significative per 9 variabili per i lupi italiani e per 16 per i lupi spagnoli. I modelli di ordinamento ottenuti con l'Analisi delle Componenti Principali (PCA) e con l'Analisi Discriminante (DA), entrambi statisticamente significativi, hanno mostrato una distinzione sia tra i sessi sia tra le due popolazioni. Le differenze tra clusters, evidenziate sia dalla PCA sia dalla DA, sono da imputare a variabili legate alla morfometria dei denti. Ciò farebbe supporre l'esistenza di adattamenti alimentari differenti tra la popolazione spagnola e quella italiana, riferibili molto probabilmente alle dimensioni delle prede.$

Parole chiave: Canis lupus, Italia, Spagna, craniometria, analisi univariate e multivariate

² Dipartimento di Biologia Animale, Laboratorio di Zoologia applicata, via Archirafi 18, 90123 Palermo, E-mail: mlovalvo@unipa.it

INTRODUZIONE

Fino a non molti anni fa per il Lupo (*Canis lupus* Linnaeus, 1758) presente in Europa erano state descritte sei forme sottospecifiche. In particolare la popolazione iberica e la popolazione dell'Italia continentale erano state attribuite rispettivamente alle sottospecie *signatus* (Cabrera, 1914) ed *italicus* (Altobello, 1921).

Più recentemente Nowak (1995), a seguito di una revisione sistematica, ritenne che queste due forme fossero in realtà sinonimo della sottospecie nominale. Ciò venne confermato anche da Wayne *et al.* (1995), i quali, dopo analisi del DNA mitocondriale, effettuate su 14 campioni di popolazioni eurasiatiche, non trovarono differenze sufficienti da giustificare il rango di sottospecie per nessuna di esse.

Boitani *et al.* (2003), sulla base di dati craniometrici e genetici relativi a campioni di maggiori dimensioni, considerano invece la sottospecie *italicus* valida. Scopo di questa indagine è quello di mettere a confronto la biometria del cranio e della mandibola delle due popolazioni europee.

MATERIALI E METODI

Per il confronto biometrico sono stati utilizzati in totale 50 crani ed altrettante mandibole, di cui 20 ($10 \ \delta \ \delta \ e \ 10 \ \)$ appartenenti a popolazioni della penisola italiana e 30 ($15 \ \delta \ \delta \ e \ 15 \ \ \)$ alle popolazioni spagnole, conservati rispettivamente presso l'Istituto Nazionale della Fauna Selvatica (I.N.F.S.) e presso il Museo National de Ciencias Naturales (Madrid). Tutti i crani misurati appartengono ad individui vissuti in natura e d'età superiore ai due anni. Per il campio-

ne spagnolo l'età è stata stimata mediante osservazione delle suture ossee del cranio e delle ossa postcraniali (Bolognini, 2001), mentre per il campione italiano l'età era già stata stimata con il metodo dell'analisi del cemento dentario (Bolognini, 2001).

Su ogni cranio e su ogni mandibola, utilizzando un calibro digitale, sono state misurate 19 variabili (Tab. 1).

E' stato inoltre verificato il dimorfismo sessuale mediante l'indice di Storer (1966):

$$x_{m} - x_{f} / (x_{m} + x_{f}) : 2 \times 100$$

dove x_m è il valore medio di un carattere per i maschi e x_f il valore medio dello stesso carattere per le femmine. Il valore dell'indice è negativo quando la femmina è di maggiori dimensioni rispetto al maschio, è uguale a zero quando non esistono differenze tra i sessi ed è positivo quando il maschio è di maggiori dimensioni rispetto alla femmina.

I dati raccolti sono stati utilizzati per il calcolo di parametri di statistica descrittiva, mentre per analizzare differenze dimensionali tra i diversi campioni è stata utilizzata la statistica univariata (t test). Differenze di forma sono state verificate con l'uso dell'Analisi delle Componenti Principali (PCA), applicata alla matrice di correlazione, che, standardizzando le variabili, elimina l'effetto dimensionale nelle componenti successive alla prima (Chessel e Auda, 1986; Camussi et al., 1991). E' stata infine impiegata l'Analisi Discriminante (DA) che permette di selezionare le variabili significativamente utili alla discriminazione tra i gruppi e che produce funzioni lineari (equazioni predittive) attraverso la combinazione delle variabili, che rendono massima la varianza tra gruppi (Legendre e Legendre, 1979; Digby e Kempton, 1987, Sokal e Rohlf, 1989).

Sui piani fattoriali ottenuti con le analisi multivariate sono state infine realizzate le ellissi di equiprobabilità al 95% (Lagonegro e Feoli, 1985) relative ad ogni cluster.

Craniometria del Lupo

Tabella 1- Elenco delle 19 variabili misurate sui crani e sulle mandibole di esemplari di Lupo italiano e spagnolo e relative abbreviazioni.

	Variabile		Descrizione			
	C1P4	lunghezza della fila dei denti della guancia	distanza tra i margini posteriori degli alveoli C1 e P4			
	CBL	lunghezza condilo-basale	distanza dall'inion al condilo occipitale			
	CL	lunghezza antero-posteriore del	lunghezza dell'alveolo del canino			
Cranio	CW	cranio superiore ampiezza mediolaterale del canino superiore	superiore ampiezza massima dell'alveolo del canino superiore			
Cra	LCS	lunghzza canino superiore	lunghezza del canino superiore dall'alveolo alla punta			
	MWC1	ampiezza massillare	distanza massima tra gli alveoli dei canini nella mascella			
	PLM2	ampiezza del palato	distanza tra i margini interni degli alveoli M2			
	TLS	lunghezza totale del cranio	distanza dall'inion al prosthion			
	ZB	larghezza zigomatica	distanza massima tra gli zigomi			
	BL	lunghezza della lama	lunghezza della parte piatta del carnassiale			
	LIC	lunghezza canino inferiore	lunghezza del canino inferiore dall'alveolo alla punta			
	LMTC1	lunghezza della fila dei denti della mandibola da C1	distanza tra il margine posteriore dell'alveolo di C1 e quello posteriore di M3			
	LMTP1	lunghezza della fila dei denti della mandibola da P1	distanza tra il margine anteriore dell'alveolo di P1 e quello posteriore di M3			
ibola	M1L	lunghezza del carnassiale	lunghezza massima (antero-posteriore) del carnassiale			
Mandibola	MAM	lunghezza condilo-base della mandibola	distanza tra il condilo mandibolare e il processo angolare			
	MAR	lunghezza della mandibila	lunghezza della mandibola dal condilo mandibolare			
	MAT	lunghezza condilo-processo coronide	distanza tra il processo coronoide e il condilo mandibolare			
	PML	lunghezza antero-posteriore del premolare	lunghezza dell'alveolo del premolare inferiore			
	PMW	ampiezza mediolaterale del premolare	ampiezza massima degli alveoli del premolare inferiore			

RISULTATI E DISCUSSIONE

La comparazione tra i sessi dei dati biometrici evidenzia differenze significative (P<0,05) per 9 variabili nella popolazione italiana e per 16 in quella spagnola (Tab. 2). Il confronto effettuato tra le due popolazioni, tenendo separati i sessi, mostra invece differenze

(P<0,005) per 10 variabili nel caso dei maschi e per 6 nel caso delle femmine (Tab. 3).

Il modello di ordinamento degli individui sul piano fattoriale, ottenuto con la PCA (Fig. 1), mostra una chiara distinzione sia tra i sessi (asse fattoriale PC1) sia tra l'origine dei due campioni (asse fattoriale PC2). Dal modello di ordina-

siracusa e Lo Valvo

Tabella 2 - Medie e deviazioni standard relative a 19 variabili biometriche (in mm) del cranio e della mandibola delle popolazioni italiana e spagnola di Lupo e confronto statistico tra sessi (in grassetto P<0,05). Per la denominazione estesa delle variabili vedi Tab. 1.

		Italia			Spagna				
		Maschi (n=10)	Femmine (n=10)	t	P	Maschi (n=10)	Femmine (n=10)	t	P
	C1-P4	64.2 ± 5.7	$62,4 \pm 4,9$	0,77	0,453	66.0 ± 3.3	$60,4 \pm 6,4$	2,99	0,006
	CBL	$223,8 \pm 6,4$	$212,7 \pm 5,7$	4,09	0,001	$228,7 \pm 6,4$	$215,3 \pm 4,6$	6,60	0,000
0	CL	$14,0 \pm 1,1$	$12,6 \pm 1,8$	2,00	0,061	$14,2 \pm 0,9$	$13,1 \pm 0,8$	3,69	0,001
Cranio	CW	$8,9 \pm 1,0$	$7,7 \pm 1,6$	1,95	0,066	$8,5 \pm 0,9$	$8,0 \pm 1,0$	1,34	0,192
Cr	LCS	$31,2 \pm 3,2$	$27,8 \pm 2,7$	2,59	0,018	$28,7 \pm 2,0$	26.8 ± 2.0	2,60	0,015
	MWC1	$26,4 \pm 2,0$	$24,2 \pm 3,0$	1,95	0,067	$29,2 \pm 2,4$	$26,0 \pm 2,8$	3,33	0,002
	PLM2	40.8 ± 2.2	$38,0 \pm 4,1$	1,93	0,070	$43,1 \pm 2,7$	$40,3 \pm 2,0$	3,16	0,004
	TLS	$241,7 \pm 5,8$	$227,2 \pm 6,5$	5,26	0,000	$247,6 \pm 9,3$	$232,2 \pm 5,9$	5,38	0,000
	ZB	$136,8 \pm 4,7$	$127,0 \pm 4,5$	4,79	0,000	$140,5 \pm 9,0$	$128,1 \pm 4,5$	4,76	0,000
	BL	$19,3 \pm 1,2$	$18,5 \pm 1,3$	1,42	0,172	$17,2 \pm 0,7$	$16,2 \pm 0,7$	3,66	0,001
	LIC	$28,1 \pm 2,3$	$25,3 \pm 1,3$	3,36	0,003	$24,9 \pm 1,9$	$23,4 \pm 1,9$	2,12	0,043
	LMTC1	$97,4 \pm 2,0$	$94,5 \pm 3,4$	2,37	0,029	$99,4 \pm 4,0$	$94,6 \pm 2,7$	3,85	0,001
Mandibola	LMTP1	$89,9 \pm 3,3$	$87,4 \pm 3,0$	1,77	0,094	$92,6 \pm 3,0$	$89,0 \pm 2,1$	3,79	0,001
	M1L	$26,0 \pm 1,2$	$25,1 \pm 1,6$	1,39	0,181	$24,4 \pm 1,0$	$23,5 \pm 1,0$	2,58	0,016
	MAM	$33,7 \pm 1,3$	$31,4 \pm 1,4$	3,86	0,001	$35,4 \pm 3,4$	$31,5 \pm 2,1$	3,76	0,001
	MAR	$174,3 \pm 4,6$	$165,4 \pm 5,7$	3,86	0,001	$180,4 \pm 7,5$	$168,1 \pm 3,5$	5,72	0,000
\geq	MAT	$43,3 \pm 1,7$	$39,8 \pm 2,7$	3,47	0,003	$48,3 \pm 2,7$	$43,3 \pm 2,1$	5,69	0,000
	PML	$14,5 \pm 0,6$	$13,5 \pm 1,5$	1,93	0,070	$13,2 \pm 0,8$	$12,7 \pm 0,5$	2,00	0,056
	PMW	$7,0 \pm 0,3$	$6,3 \pm 1,1$	1,88	0,076	$7,0 \pm 0,5$	$6,6 \pm 0,5$	1,72	0,098

Craniometria del Lupo

Tabella 3 - Valori del t-test ottenuti dalla comparazione di 19 variabili tra maschi e tra femmine di Lupo (con asterisco P<0,05). Per la denominazione estesa delle variabili vedi Tab. 1.

Variabili	Italia-Spagna o'o'	Italia-Spagna ♀♀
TLS	-1,78	-2,01
CBL	-1,89	-1,24
ZB	-1,19	-0,61
LCS	2,39*	1,08
CL	-0,65	-0,77
CW	0,95	-0,55
MWC1	-3,04*	-1,57
PLM2	-2,23*	-1,92*
C1P4	-0,98	0,83
LIC	3,87*	2,76*
PML	4,26*	2,06*
PMW	0,05	-1,08
M1L	3,74*	3,09*
BL	5,57*	5,72*
LMTP1	-2,13*	-1,62
LMTC1	-1,43	-0,09
MAR	-2,26*	-1,47
MAT	-5,22*	-3,64*
MAM	-1,49	-0,10

mento delle variabili (Fig. 2), che mostra il grado di correlazione di queste ultime con gli assi fattoriali PC1 e PC2, si osserva come le variabili maggiormente correlate con l'asse PC2 (che quindi distinguono meglio l'origine geografica delle due popolazioni) siano quelle legate ai denti della mandibola. La DA ha separato significativamente gli individui dei due sessi e delle due popolazioni. (λ di Wilks = 0,018; $F_{(45,89)}$ = 5,69 P< 0,0001) (Fig. 3), selezionando 15 variabili utili per la distinzione dei gruppi e identificato 2 funzioni discriminanti significative (Tab. 4). L'uso di queste funzioni classifica correttamente il 93,8% degli individui da noi esaminati (Tab. 5). L'indice di dimorfismo sessuale è risultato molto

simile: $1,77 \pm 0,79$ per la popolazione dell'Italia continentale e $1,75 \pm 0,60$ per la popolazione spagnola. Il campione italiano mostra inoltre una maggiore dimensione della lama del carnassiale rispetto alla lunghezza dello stesso (t=5,25 g.l.=47 P<0,001).

Le dimensioni del cranio e della mandibola dei maschi sono risultate significativamente maggiori di quelle delle femmine in entrambi i campioni, così come tendenzialmente riscontrato per il campione spagnolo rispetto a quello italiano. I dati inoltre non confermano l'elevato dimorfismo sessuale dei lupi spagnoli così come riportato da Valverde e Hidalgo (1974).

Le differenze significative tra clusters, evidenziate sia dalla PCA sia dalla DA,

Siracusa e Lo Valvo

Figura 1 - Ordinamento dei maschi e delle femmine di Lupo, appartenenti alla popolazione italiana e spagnola, sul piano realizzato con i primi due assi fattoriali (PC1 e PC2), ottenuti con l'Analisi delle Componenti Principali, ed ellissi di equiprobabilità al 95%.

Figura 2 - Ordinamento delle 19 variabili biometriche relative al cranio ed alla mandibola di Lupo sul piano realizzato con i primi due assi fattoriali (PC1 e PC2), ottenuti con l'Analisi delle Componenti Principali.

Craniometria del Lupo

Figura 3 - Ordinamento dei maschi e delle femmine di Lupo, appartenenti ad aree geografiche differenti, sul piano realizzato con i primi due assi fattoriali (DA1 e DA2), ottenuti con l'Analisi Discriminante, ed ellissi di equiprobabilità al 95%.

sono da imputare a variabili legate alla morfometria dei denti. Ciò farebbe supporre l'esistenza di differenti strategie alimentari tra la popolazione spagnola e quella italiana. A tale riguardo, Meriggi e Lovari (1996) evidenziano differenze nella dieta per quanto concerne la dimensione delle prede: nella penisola italiana, rispetto a quanto avviene nella penisola iberica, il Lupo, anche se in maniera non statisticamente significativa, cattura più cinghiali (Sus scrofa), mentre, in maniera significativa, preda meno caprioli (Capreolus capreolus) e più cervi (Cervus elaphus).

RINGRAZIAMENTI

Desideriamo ringraziare Josephina Barreiro (Museo National De Ciencias Naturales di Madrid), Marco Zenatello (I.N.F.S.) e Marco Bolognini (I.N.F.S.), per la cortesia e l'aiuto durante la visita

Tabella 4 - Funzioni discriminanti non standardizzate risultate significative (test di Wilks) estratte con l'Analisi Discriminante. Per la denominazione estesa delle variabili vedi Tab. 1.

Variabili	DA1	DA2	
MAT	-0,18	0,05	
BL	0,95	0,54	
LMTP1	-0,31	0,00	
MAM	0,09	0,19	
PML	0,74	-0,02	
PMW	-0,40	-0,32	
LCS	0,33	0,03	
CW	0,00	-0,63	
CL	-0,83	0,73	
ZB	-0,13	0,06	
LMTC1	0,26	-0,27	
TLS	0,05	0,00	
LIC	0,13	0,11	
CBL	-0,12	0,11	
PLM2	0,11	-0,02	
Costante	11,20	-30,40	
Autovalore	8,46	2,50	
% varianza	72,90	21,50	

Siracusa e Lo Valvo

Tabella 5 - Percentuale di corretta classificazione degli individui di Lupo con l'uso delle funzioni discriminanti.

	%	Italia ♂♂	Italia ♀♀	Spagna 💬	Spagna 💬
Italia o' o'	100,00	10	0	0	0
Italia ♂♂	90,0	1	9	0	0
Spagna 👓	92,9	0	0	13	1
Spagna 👓	92,9	0	0	1	13
Totale	93,8	11	9	14	14

alle collezioni, e Fernando Palacios (Museo National De Ciencias Naturales di Madrid) per i suoi incoraggiamenti.

OPERE CITATE

- Altobello G. 1921. Mammiferi. IV, Carnivori. In: Fauna Abruzzo e Molise. Colitti, Campobasso, 38-45.
- Andersone Z. e Ozolins J. 2000. Craniometrical characteristics and dental anomalies in wolwes *Canis lupus* from Latvia. *Acta Theriol.*, 45: 549-558.
- Boitani L., Lovari S. e Vigna Taglianti A. 2003. Fauna d'Italia Mammalia III Carnivora – Artiodactyla. Vol. XXXVIII, Calderini, 434 pp..
- Bolognini M. 2001. E' possibile stabilire l'età di un lupo (*Canis lupus* L.) dal cranio? Confronto metodologico tra tecniche istologiche e morfologiche. Tesi di Laurea Università di Bologna, 194 pp.
- Cabrera A. 1914. Fauna Ibérica. Mammiferos. Museo Nacional de Ciencias Naturales, 441 pp.
- Camussi A., Möller F., Ottaviano E. e Sari Gorla M. 1991. Metodi statistici per la sperimentazione biologica. Zanichelli, 500 pp.
- Chessel D. e Auda Y. 1986. Analyse en composantes principales sur matrice de corrélation. (ACPN). Institut d'Analyse des Systemes Biologiques et Socio-Economiques. Universitè de Lion, 1: 1-39.
- Digby P.G.N. e Kempton R.A. 1987. Multivariate analysis of ecological com-

- munities. Chapman and Hall, London. 206 pp.
- Lagonegro M. e. Feoli E. 1985. The use of ellipses of equal concentration to analyse ordination vegetation patterns. *Studia Geobotanica*, 5: 143-165.
- Legendre L. e Legendre P. 1979. Ecologie numerique. Vol. II - Masson, Paris,. 247 pp.
- Meriggi A. e Lovari S. 1996. A review of wolf predation in southern Europe: does the wolf prefer wild prey to livestock?. *J. Appl. Ecol.*, 33: 1561-1571.
- Nowak R.M. 1995. Another look at wolf taxonomy. In: Carbyn L.N.,. Fritts S.H,. Seip D.R (eds), Ecology and Conservation of wolf in a changing world. Canadian Circumpolar Institute, Occasional publication, Edmonton, Canada, 35: 375-397.
- Sokal R.R. e Rohlf F.J. 1989. Biometry. W.H. Freeman, New York, 859 pp.
- Storer R.W. 1966. Sexual dimorphism and food habits in three North American accipiters. *Auk*, 83: 423-436.
- Wayne R.K., Lehmen N. e Fuller T. 1995.
 Conservation genetics of the gray wolf.
 In: Carbyn L.N., Fritts S.H., Seip D.R., (eds), Ecology and Conservation of wolf in a changing world. Canadian Circumpolar Institute, Occasional publication n., Edmonton, Canada, 35: 399-407.
- Valverde J.A. e Hidalgo A. 1974. Sobre el Lobo (*Canis lupus*) iberico: I. Dimorfismo sexual en craneos. *Donana Acta Vertebrata*, I (2): 233-244.