```
\mathbf{a}, \mathbf{b}, \dots Vectors over the reals, i.e. \mathbf{a} \in \mathbb{R}^m.
```

 $\mathbf{A}, \mathbf{B}, \dots$ Matrices over the reals, *i.e.* $\mathbf{A} \in \mathbb{R}^{m \times n}$.

 $[\mathbf{a}]_i$ Vector indexing: $[\mathbf{a}]_i \in \mathbb{R}$ for $1 \le i \le m$.

[a; b] Vector concatenation: $\mathbf{a} \in \mathbb{R}^m$, $\mathbf{b} \in \mathbb{R}^n$, $[\mathbf{a}; \mathbf{b}] \in \mathbb{R}^{m+n}$.

 $[\mathbf{a}, \mathbf{b}]$ Vertical vector stacking: $\mathbf{a}, \mathbf{b} \in \mathbb{R}^m$, $[\mathbf{a}, \mathbf{b}] \in \mathbb{R}^{m \times 2}$.

 \mathcal{X} Finite vocabulary of words x.

 $\mathcal{Y}(x)$ Finite set of trees y that are compatible with x.

 $\mathcal{V}(x)$ Finite set of labeled spans v over x.

 X, Y, \dots Random variables with sample spaces $\mathcal{X}, \mathcal{Y}, \dots$

x A word from \mathcal{X} , outcome of random variable X.

y A tree from $\mathcal{Y}(x)$, outcome of random variable Y.

 x_1^m A sequence of words $\langle x_1, \ldots, x_m \rangle$ from \mathcal{X}^m .

 $x_{\leq i}$ The sequence x_1^{i-1} preceding x_i .

 P_X Probability distribution.

 p_X Probability mass function.

p(x) Probability P(X = x).

 p_{θ}, q_{λ} Probability mass functions emphasizing parameters.

 $\mathbb{E}[g(X)]$ Expectation of g(X) with respect to distribution P_X .

 $H(P_X)$ Entropy of random variable X with distribution P

 Λ Finite set of nonterminal labels.

 A, B, \ldots Nonterminal labels from Λ .

 S^{\dagger} Special root label not in Λ .

 2^A The poweset of set A.

 $\mathbf{1}_{\{p\}}$ Indicator function of predicate p.