Statistiques inférentielles

Pierre-Henri WUILLEMIN

Licence d'Informatique - Université Paris 6

Les tests: introduction

Grâce aux estimateurs et aux intervalles de confiance, en statistique, on se pose souvent des questions sur la valeur des paramètres $p,\ \mu,\ \sigma^2\dots$ et il n'est pas rare que l'on ait des décisions à prendre concernant ces valeurs.Les tests d'hypothèses sont des outils pour répondre à ce type de question.

▶ Définition

Un test d'hypothèse est une règle de décision permettant de déterminer laquelle parmi deux hypothèses concernant la valeur d'un paramètre $(p, \mu, \sigma^2, \dots)$ est la plus plausible.

La première étape dans la construction d'un test d'hypothèse, et peut-être la plus compliquée, consiste à identifier les deux hypothèses et à les formuler dans le langage statistique.

Les deux hypothèses à confronter seront toujours notées :

- H₀: hypothèse nulle et
- H₁: contre-hypothèse

Ces deux hypothèses doivent impérativement être mutuellement exclusives.

En principe, H_0 est l'hypothèse que l'on essaye de vérifier.

Statistiques inférentielles

2 / 19

Les tests

problématique

Soit X suivant une loi P_{θ} sur \mathcal{X} , paramétrée par $\theta \in \Theta$. On dispose d'un échantillon X_1, \cdots, X_n , toutes i.i.d. de loi P_{θ} .

Soit une partition de $\Theta=\theta_0\cup\theta_1.$ Il s'agit de tester, sur l'échantillon, les 2 hypothèses :

$$H_0: \theta \in \theta_0$$
 $H_1: \theta \in \theta_1$

Exemple

Dans une assemblée de 100 personnes, on demande à chacun de donner un chiffre au hasard compris entre 0 et 9. On note $x_i \in \{0, \cdots, 9\}$ le chiffre donné par l'individu i et n_j le nombre d'individus ayant donné le chiffre j. Les résultats (c'est a dire l'ensemble des (j, n_j) où $j = 0, \cdots, 9$) sont les suivants : (0, 10), (1, 8), (2, 9), (3, 14), (4, 8), (5, 9), (6, 11), (7, 9), (8, 12), (9, 10)

Peut-on considérer que ces chiffres ont été effectivement donnés au hasard, au sens où les x_i sont des réalisations de variables aléatoires i.i.d. distribuées selon une loi uniforme sur $\{0, \dots, 9\}$? Il s'agit donc de tester :

 $H_0: X \text{ uniforme sur } \{0, \cdots, 9\}$ $H_1: \text{non}$

Tests d'hypothèses en statistique classique

Hypothèses

- $oldsymbol{\Theta} = ext{ensemble des valeurs du paramètre } oldsymbol{\theta}$
- Θ partitionné en Θ_0 et Θ_1
- hypothèses = assertions $H_0 = "\theta \in \Theta_0$ "et $H_1 = "\theta \in \Theta_1$ "
- H_0 = hypothèse nulle, H_1 = contre-hypothèse
- hypothèse H_i est simple si Θ_i est un singleton; sinon elle est multiple
- test unilatéral = valeurs dans Θ_1 toutes soit plus grandes, soit plus petites, que celles dans Θ_0 ; sinon test bilatéral

	hypothèse	test	
$H_0: \mu = 4$	simple	unilatéral	
$H_1: \mu = 6$	simple		
$H_0: \mu = 4$	simple	test unilatéral	
$H_1: \mu > 4$	composée	test unhateral	
$H_0: \mu = 4$	simple	test bilatéral	
$H_1: \mu \neq 4$	composée		
$H_0: \mu = 4$	simple	formulation incorrecte : les hypothèses	
$H_1: \mu > 3$	composée	ne sont pas mutuellement exclusives	

Statistiques inférentielles

Exemples pratiques d'hypothèses

Vir

Une association de consommateurs examine un échantillon de 100 bouteilles de Bordeaux afin de déterminer si la quantité de vin est bien égale à 75cl

- paramètre θ étudié = $\mu = E(X)$
- X = quantité de vin dans les bouteilles
- rôle de l'association $\Longrightarrow H_0: \mu = 75$ cl et $H_1: \mu < 75$ cl

Chômage

Enquête, sur un échantillon de 400 individus de la population active, pour savoir si le taux de chômage, qui était de 10% le mois dernier, s'est modifié

- paramètre étudié = p, la proportion de chômeurs
- $H_0: p = 10\%$ et $H_1: p \neq 10\%$

Statistiques inférentielles

5 / 19

Règle de décision

- La règle de décision du test est fondée sur les résultats de l'échantillonnage.
- Les résultats de l'échantillonnage sont examinés après la formulation des hypothèses, et non avant.
- Les valeurs du paramètre sous les différentes hypothèses ne doivent pas être fixées à partir du résultat observé à partir de l'échantillon.
- Construire la règle de décision, c'est déterminer quelles sont les valeurs qu'il est peu probable que le paramètre étudié (par exemple \overline{x}) prenne dans l'échantillon si l'hypothèse H_0 est vraie.
- Il faut examiner la distribution de l'estimateur du paramètre dans l'échantillon lorsque H_0 est vraie et déterminer une région critique, ou région de rejet de H_0 , telle que si la valeur prise par l'estimateur est dans cette région, il est peu probable que H_0 soit vraie.
- ullet La région critique doit tenir compte de la forme de la contre-hypothèse pour que le rejet de H_0 signifie que H_1 est un choix plausible.

Régions critiques

Régions critiques

Hypothèses	Règle de décision
$H_0: \mu = \mu_0$	«rejeter H_0 si $\overline{x} > c$ », où c est un nombre plus
$H_1: \mu > \mu_0$	grand que μ_0
$H_0: \mu = \mu_0$	«rejeter H_0 si $\overline{x} < c$ », où c est un nombre plus
$H_1: \mu < \mu_0$	petit que μ_0
$H_0: \mu = \mu_0$	«rejeter H_0 si $\overline{x} < c_1$ ou $c_2 < \overline{x} >$, où c_1 et c_2 sont
$H_1: \mu \neq \mu_0$	des nombres respectivement plus petit et plus grand que μ_0 , et également éloignés de celui-ci

Statistiques inférentielles

Erreurs dans les décisions

Réalité Décision prise	H_0 est vraie	H_1 est vraie	
H₀ est rejetée	mauvaise décision : erreur de type l	bonne décision	
H ₀ n'est pas rejetée	bonne décision	mauvaise décision : erreur de type II	

 α = risque de première espèce

- = probabilité de réaliser une erreur de type l
- = probabilité de rejeter H_0 sachant que H_0 est vraie
- $= P(\text{rejeter } H_0|H_0 \text{ est vraie}),$

 β = risque de deuxième espèce

- = probabilité de réaliser une erreur de type II
- = probabilité de rejeter H_1 sachant que H_1 est vraie
- = $P(\text{rejeter } H_1|H_1 \text{ est vraie}).$

Statistiques inférentielles

8 / 19

Exemple de calcul de α (1/2)

exemple

- échantillon de taille 25
- paramètre estimé : μ d'une variable $X \sim \mathcal{N}(\mu; 100)$
- $\quad \text{hypothèses}: \ H_0: \mu = 10 \qquad H_1: \mu > 10$

Sous
$$H_0: \quad \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 10}{10/5} = \frac{\overline{X} - 10}{2} \sim \mathcal{N}(0; 1)$$

Sous H_0 : peu probable que \overline{X} éloignée de plus de 2 écart-types de μ (4,56% de chance)

- \Longrightarrow peu probable que $\overline{X} <$ 6 ou $\overline{X} >$ 14
- \Longrightarrow région critique pourrait être «rejeter H_0 si $\overline{x}>14$ »

Exemple de calcul de α (2/2)

Exemple

- échantillon de taille 25
- paramètre estimé : μ d'une variable $X \sim \mathcal{N}(\mu; 100)$
- $\quad \text{o hypoth\`eses}: \ \textit{H}_{0}: \mu = 10 \qquad \textit{H}_{1}: \mu > 10 \\$
- région critique : «rejeter H_0 si $\overline{x} > 14$ »

$$\begin{split} &\alpha = P(\text{rejeter } \textit{H}_0|\textit{H}_0 \text{ est vraie}) \\ &= P(\overline{X} > 14|\mu = 10) \\ &= P\left(\frac{\overline{X} - 10}{2} > \frac{14 - 10}{2} \middle| \mu = 10\right) \\ &= P\left(\frac{\overline{X} - 10}{2} > 2\right) = 0,0228 \end{split}$$

en principe α est fixé et on cherche la région critique

Statistiques inférentielles

Puissance du test

$$\alpha = P(\text{rejeter } H_0|H_0 \text{ est vraie})$$

$$\beta = P(\text{rejeter } H_1|H_1 \text{ est vraie})$$

 α et β varient en sens inverse l'un de l'autre

⇒ test = compromis entre les deux risques

 $H_0=$ hypothèse privilégiée, vérifiée jusqu'à présent et que l'on n'aimerait pas abandonner à tort

 \Longrightarrow on fixe un *seuil* α_0 :

- α doit être $\leq \alpha_0$
- test minimisant β sous cette contrainte
- min $\beta = \max 1 \beta$
- 1β = puissance du test

Statistiques inférentielles

11 / 19

Exemple de calcul de β (1/2)

Exemple

- échantillon de taille 25
- paramètre estimé : μ d'une variable $X \sim \mathcal{N}(\mu; 100)$
- $\quad \text{hypothèses}: \ \textit{H}_0: \mu = 10 \quad \ \ \textit{H}_1: \mu > 10 \\$
- région critique : «rejeter H_0 si $\overline{x} > 14$ »

sous H_1 : plusieurs valeurs de μ sont possibles

 \Longrightarrow courbe de puissance du test en fonction de μ

Supposons que $\mu=11$:

$$\mu = 11 \Longrightarrow \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 11}{2} \sim \mathcal{N}(0; 1)$$

Exemple de calcul de β (2/2)

$$\begin{split} 1 - \beta(11) &= \ \textit{P}(\text{rejeter} \ \textit{H}_0|\textit{H}_1: \mu = 11 \ \text{est vraie}) \\ &= \ \textit{P}(\overline{X} > 14|\mu = 11) \\ &= \ \textit{P}\left(\frac{\overline{X} - 11}{2} > \frac{14 - 11}{2}|\mu = 11\right) \\ &= \ \textit{P}\left(\frac{\overline{X} - 11}{2} > 1,5\right) = 0,0668 \end{split}$$

μ_1	$z_1 = \frac{14-\mu_1}{2}$	$1-\beta(\mu_1)=P(Z>z_1)$	$\beta(\mu_1)$
10	2,0	0,0228	0,9772
11	1,5	0,0668	0,9332
12	1,0	0,1587	0,8413
13	0,5	0,3085	0,6915
14	0,0	0,5000	0,5000
15	-0,5	0,6915	0,3085
16	-1,0	0,8413	0,1587
17	-1,5	0,9332	0,0668

Statistiques inférentielles

Courbe de puissance du test

Interprétation de α et β

Rappel: vraisemblance

On se souvient que :

 $P(X \mid Y) = \frac{P(Y \mid X) \cdot P(X)}{P(Y)}$

Ou encore :

 $P(X \mid Y) \propto P(Y \mid X) \cdot P(X)$

En notant θ le paramètre que l'on veut estimer et d l'observation que l'on fait :

➡ Définition (Vraisemblance)

$$P(\theta \mid d) \propto P(d \mid \theta) \cdot P(\theta)$$

On nomme:

- $P(\theta)$ la probabilité a priori sur θ .
- $P(\theta \mid d)$ la probabilité a posteriori sur θ .
- $P(d \mid \theta) = L(d, \theta) = L(\theta : d)$ la vraisemblance.

Statistiques inférentielle

Maximisation de la vraisemblance (MLE)

Soit une variable binaire X. Avec $\theta = P(X = 1)$:

$$\Theta = \{\theta, 1 - \theta\}$$

$$D = (1, 0, 0, 1, 1)$$

$$\prod P(X = d_m \mid \Theta)$$

$$L(\Theta:D) = P(D \mid \Theta) = \prod_{m} P(X = d_m \mid \Theta)$$

$$\mathsf{lci}: L(\Theta:D) = \theta \cdot (1-\theta) \cdot (1-\theta) \cdot \theta \cdot \theta.$$

Estimation de la probabilité par la fréquence

Pour des données qui font apparaître p fois 1 et q = n - p fois 0 :

$$L(\Theta:D) = \theta^p \cdot (1-\theta)^q$$

D'où :
$$\frac{d(\Theta:D)}{d\theta} = p\theta^{p-1}(1-\theta)^q - q(1-\theta)^{q-1}\theta^p \\ \frac{d(\Theta:D)}{d\theta} = 0 \iff p(1-\theta) - q\theta = 0 \\ \widehat{\theta} = \frac{p}{p+q}$$
 finalement :
$$\widehat{\theta} = \frac{p}{p+q}$$

$$\frac{d(\Theta;D)}{d\Theta} = 0 \iff p(1-\theta) - q\theta = 0$$

finalement:

Statistiques inférentielles

Évaluation des risques pour des tests simples

$$\mathsf{Cas}:\Theta_0=\{\theta_0\}\quad \ \Theta_1=\{\theta_1\}$$

$$\alpha = P(\text{rejeter } H_0 | H_0 \text{ est vraie})$$
$$= P(x \in W | \theta = \theta_0)$$
$$= \int_W L(x, \theta) dx$$

$$\beta = P(\text{rejeter } H_1 | H_1 \text{ est vraie})$$

$$= P(x \in A | \theta = \theta_1)$$

$$= \int_A L(x, \theta) dx$$

Lemme de Neyman-Pearson

$$\mathsf{cas}:\Theta_0=\{\theta_0\}\quad \ \Theta_1=\{\theta_1\}$$

Lemme de Neyman-Pearson

- ullet il existe toujours un test (aléatoire) le plus puissant de seuil donné $lpha_0$
- c'est un test du rapport de

$$\frac{L(x,\theta_0)}{L(x,\theta_1)} > k \Rightarrow x \in A \text{ (accepter } H_0)$$
 vraisemblance
$$\frac{L(x,\theta_0)}{L(x,\theta_1)} < k \Rightarrow x \in W \text{ (rejeter } H_0)$$

$$\frac{L(x,\theta_0)}{L(x,\theta_1)} = k \Rightarrow \delta(x) = \rho \text{ (accepter } H_0 \text{ avec proba } 1 - \rho$$

 H_1 avec proba ρ)

ullet k et ho déterminés de façon unique par $lpha=lpha_0$

