From this websiet this dataset is collected

https://cpcb.nic.in/

Import Necessary Libraries

In [359... import pandas as pd import numpy as np import seaborn as sns

import matplotlib.pyplot as plt

Load the dataset

In [360... df = pd.read_csv('city_day.csv') df.head()

Out[360]:

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	CO	SO2	О3	Benzene	Toluene	Xylene	AQI	AQI_Bucket
0	Ahmedabad	2015-01-01	NaN	NaN	0.92	18.22	17.15	NaN	0.92	27.64	133.36	0.00	0.02	0.00	NaN	NaN
1	Ahmedabad	2015-01-02	NaN	NaN	0.97	15.69	16.46	NaN	0.97	24.55	34.06	3.68	5.50	3.77	NaN	NaN
2	Ahmedabad	2015-01-03	NaN	NaN	17.40	19.30	29.70	NaN	17.40	29.07	30.70	6.80	16.40	2.25	NaN	NaN
3	Ahmedabad	2015-01-04	NaN	NaN	1.70	18.48	17.97	NaN	1.70	18.59	36.08	4.43	10.14	1.00	NaN	NaN
4	Ahmedabad	2015-01-05	NaN	NaN	22.10	21.42	37.76	NaN	22.10	39.33	39.31	7.01	18.89	2.78	NaN	NaN

df.shape In [361...

(29531, 16) Out[361]:

In [362... df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 29531 entries, 0 to 29530 Data columns (total 16 columns): Non-Null Count Dtype # Column 0 City 29531 non-null object 1 Date 29531 non-null object 2 PM2.5 24933 non-null float64 3 PM10 18391 non-null float64 4 NO 25949 non-null float64 5 NO2 25946 non-null float64 6 NOx 25346 non-null float64 7 NH3 19203 non-null float64 8 CO 27472 non-null float64 9 S02 25677 non-null float64 10 03 25509 non-null float64 11 Benzene 23908 non-null float64 12 Toluene 21490 non-null float64 13 Xylene 11422 non-null float64 14 AQI 24850 non-null float64 15 AQI_Bucket 24850 non-null object

dtypes: float64(13), object(3)

memory usage: 3.6+ MB

Removing Null value rows

In [363... df = df.dropna(axis=0)

In [364... df

Out[36

]:		City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	О3	Benzene	Toluene	Xylene	AQI	AQI_Bucket
21	23	Amaravati	2017-11-25	81.40	124.50	1.44	20.50	12.08	10.72	0.12	15.24	127.09	0.20	6.50	0.06	184.0	Moderate
21	24	Amaravati	2017-11-26	78.32	129.06	1.26	26.00	14.85	10.28	0.14	26.96	117.44	0.22	7.95	0.08	197.0	Moderate
21	25	Amaravati	2017-11-27	88.76	135.32	6.60	30.85	21.77	12.91	0.11	33.59	111.81	0.29	7.63	0.12	198.0	Moderate
21	26	Amaravati	2017-11-28	64.18	104.09	2.56	28.07	17.01	11.42	0.09	19.00	138.18	0.17	5.02	0.07	188.0	Moderate
21	27	Amaravati	2017-11-29	72.47	114.84	5.23	23.20	16.59	12.25	0.16	10.55	109.74	0.21	4.71	80.0	173.0	Moderate
	•••			•••			•••					•••					
295	25 ∨	/isakhapatnam	2020-06-26	7.63	32.27	5.91	23.27	17.19	11.15	0.46	6.87	19.90	1.45	5.37	1.45	47.0	Good
295	26 \	/isakhapatnam	2020-06-27	15.02	50.94	7.68	25.06	19.54	12.47	0.47	8.55	23.30	2.24	12.07	0.73	41.0	Good
295	27 \	/isakhapatnam	2020-06-28	24.38	74.09	3.42	26.06	16.53	11.99	0.52	12.72	30.14	0.74	2.21	0.38	70.0	Satisfactory
295	28 \	/isakhapatnam	2020-06-29	22.91	65.73	3.45	29.53	18.33	10.71	0.48	8.42	30.96	0.01	0.01	0.00	68.0	Satisfactory
295	29 \	/isakhapatnam	2020-06-30	16.64	49.97	4.05	29.26	18.80	10.03	0.52	9.84	28.30	0.00	0.00	0.00	54.0	Satisfactory

6236 rows × 16 columns

Checking! Now all null value rows are removed

```
In [365... df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 6236 entries, 2123 to 29529
         Data columns (total 16 columns):
                        Non-Null Count Dtype
         # Column
                        -----
                        6236 non-null
         0
             City
                                       object
             Date
         1
                        6236 non-null
                                       object
         2
             PM2.5
                        6236 non-null
                                       float64
         3
             PM10
                        6236 non-null
                                       float64
         4
             NO
                        6236 non-null
                                       float64
         5
             NO2
                        6236 non-null
                                       float64
                        6236 non-null
                                       float64
         6
             NOx
                        6236 non-null
         7
             NH3
                                       float64
         8
             CO
                        6236 non-null
                                       float64
         9
             S02
                        6236 non-null
                                       float64
         10 03
                        6236 non-null
                                       float64
                                       float64
                        6236 non-null
         11 Benzene
         12 Toluene
                        6236 non-null
                                       float64
                        6236 non-null
                                       float64
         13 Xylene
         14 AQI
                        6236 non-null
                                       float64
         15 AQI_Bucket 6236 non-null
                                        object
         dtypes: float64(13), object(3)
```

memory usage: 828.2+ KB

Removing date column because it has all unique values which is not useful for decision tree

Visualizing Correlation Matrix

• #### from above chart it is clear that AQI is highly dependent on PM2.5 and PM10

Final Dataframe

```
In [371...
```

Out[371]:		City	PM2.5	PM10	NO	NO2	NOx	NH3	со	SO2	О3	Benzene	Toluene	Xylene	AQI	AQI_Bucket
	2123	Amaravati	81.40	124.50	1.44	20.50	12.08	10.72	0.12	15.24	127.09	0.20	6.50	0.06	184.0	Moderate
	2124	Amaravati	78.32	129.06	1.26	26.00	14.85	10.28	0.14	26.96	117.44	0.22	7.95	0.08	197.0	Moderate
	2125	Amaravati	88.76	135.32	6.60	30.85	21.77	12.91	0.11	33.59	111.81	0.29	7.63	0.12	198.0	Moderate
	2126	Amaravati	64.18	104.09	2.56	28.07	17.01	11.42	0.09	19.00	138.18	0.17	5.02	0.07	188.0	Moderate
	2127	Amaravati	72.47	114.84	5.23	23.20	16.59	12.25	0.16	10.55	109.74	0.21	4.71	0.08	173.0	Moderate
	•••		•••	•••	•••	•••	•••	•••		•••	•••	•••	•••		•••	
	29525	Visakhapatnam	7.63	32.27	5.91	23.27	17.19	11.15	0.46	6.87	19.90	1.45	5.37	1.45	47.0	Good
	29526	Visakhapatnam	15.02	50.94	7.68	25.06	19.54	12.47	0.47	8.55	23.30	2.24	12.07	0.73	41.0	Good
	29527	Visakhapatnam	24.38	74.09	3.42	26.06	16.53	11.99	0.52	12.72	30.14	0.74	2.21	0.38	70.0	Satisfactory
	29528	Visakhapatnam	22.91	65.73	3.45	29.53	18.33	10.71	0.48	8.42	30.96	0.01	0.01	0.00	68.0	Satisfactory
	29529	Visakhapatnam	16.64	49.97	4.05	29.26	18.80	10.03	0.52	9.84	28.30	0.00	0.00	0.00	54.0	Satisfactory

6236 rows × 15 columns

Seperating Input and output columns

```
In [372... X = df.iloc[:,:-1]
y = df.iloc[:,-1]
```

Converting Categorical data into numerical data

Train test split

```
In [375... from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
```

Decision Tree

```
In [376... from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier()
tree.fit(X_train,y_train)

Out[376]: DecisionTreeClassifier()

In [377... pred = tree.predict(X_test)

In [378... accuracy_score(y_test, pred)

Out[378]: 1.0
```

Confusion Matrix

0, 123]], dtype=int64)

Classification Report

```
In [380... print(classification_report(y_test, pred, digits=3))
```

```
precision
                            recall f1-score
                                                 support
           0
                   1.000
                             1.000
                                        1.000
                                                     145
           1
                   1.000
                             1.000
                                        1.000
                                                     742
           2
                   1.000
                             1.000
                                        1.000
                                                     189
           3
                   1.000
                             1.000
                                        1.000
                                                     635
           4
                             1.000
                   1.000
                                        1.000
                                                      37
           5
                   1.000
                             1.000
                                        1.000
                                                     123
                                        1.000
                                                    1871
    accuracy
   macro avg
                   1.000
                             1.000
                                        1.000
                                                    1871
weighted avg
                   1.000
                             1.000
                                        1.000
                                                    1871
```

Saving the model

```
In [381... import pickle
In [382... with open('model_pkl', 'wb') as files:
        pickle.dump(tree, files)
```

Test Your Inputs

```
with open('model_pkl' , 'rb') as f:
In [383...
              tree = pickle.load(f)
In [385... inps = []
          inps.append(float(input("PM2.5:- ")))
          inps.append(float(input('PM10:- ')))
          inps.append(float(input('NO:- ')))
          inps.append(float(input('NO2:- ')))
          inps.append(float(input( 'NOx:- ')))
          inps.append(float(input('NH3:- ')))
          inps.append(float(input('CO:- ')))
          inps.append(float(input('SO2:- ')))
          inps.append(float(input('03:- ')))
          inps.append(float(input('Benzene:- ')))
          inps.append(float(input('Toluene:- ')))
          inps.append(float(input('Xylene:- ')))
          inps.append(float(input('AQI:- ')))
          city = int(input("Select You City 0=Amaravati, 1=Amritsar, 2=Chandigarh, 3=Delhi, 4=Gurugram,5=Hyderabad, 6=Kolkata, 7=Patna, 8s=V
          if city==0:
              inps+=[0.,0.,0.,0.,0.,0.,0.,0.]
          elif city==1:
              inps+=[1.,0.,0.,0.,0.,0.,0.,0.]
          elif city==2:
              inps+=[0.,1.,0.,0.,0.,0.,0.,0.]
          elif city==3:
              inps+=[0.,0.,1.,0.,0.,0.,0.,0.]
          elif city==4:
              inps+=[0.,0.,0.,1.,0.,0.,0.,0.]
          elif city==5:
              inps+=[0.,0.,0.,0.,1.,0.,0.,0.]
          elif city==6:
              inps+=[0.,0.,0.,0.,0.,1.,0.,0.]
          elif city==7:
              inps+=[0.,0.,0.,0.,0.,0.,1.,0.]
          elif city==8:
              inps+=[0.,0.,0.,0.,0.,0.,0.,1.]
          arr = ['Good', 'Moderate', 'Poor', 'Satisfactory', 'Severe', 'Very Poor']
          arr[tree.predict([inps])[0]]
          PM2.5:- 0
          PM10:- 0
          NO:- 0
          NO2:- 0
          NOx:- 0
          NH3:-
          CO:- 0
          S02:- 0
          03:- 0
          Benzene:- 0
          Toluene:- 0
          Xvlene:- 0
          AQI:- 0
          Select You City 0=Amaravati, 1=Amritsar, 2=Chandigarh, 3=Delhi, 4=Gurugram,5=Hyderabad, 6=Kolkata, 7=Patna, 8s=Visakhapatnam: 0
          C:\Users\SBS05\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid
          feature names, but DecisionTreeClassifier was fitted with feature names
           'Good'
Out[385]:
```

Direct Predict

```
C:\Users\SBS05\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid
feature names, but DecisionTreeClassifier was fitted with feature names
    warnings.warn(
Out[391]:
Out[391]:
```

0. , 0. , 0. , 0. , 1.

C:\Users\SBS05\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names

warnings.warn(

Out[389]: 'Moderate'