

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Hello Python!

The INFDEV Team @ HR

Hogeschool Rotterdam Rotterdam, Netherlands

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basi syntax and semantics

Introduction

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Lecture topics

- We introduce Python
- We bridge what we have seen in the previous lecture with actual Python elements

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

- Low-level vs high-level
- Statically-typed vs dynamically-typed
- Compiled vs interpreted
- Imperative vs functional vs logic vs declarative vs object-oriented
- Safe vs unsafe
- Fast vs slow
- ...

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

- The set of all problems is a complex, fractal-looking shape
- The programming language we choose shifts our focus on these problems
- Some become more visible and obvious to solve...

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

- The set of all problems is a complex, fractal-looking shape
- The programming language we choose shifts our focus on these problems
- Some become more visible and obvious to solve...
- ...others become hidden, obstructed, or harder to solve

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

- Not all languages are equal
- There is improvement and an ordering
 - For low-level programming C is in most cases better than assembly
 - For data transformation SQL is in most cases better than Java
 - \bullet For algorithmic work on trees F# is in most cases better than C#

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

- Not all languages are comparable
- There are perfectly valid differences in balance and features
 - Most languages are better than assembly in most scenarios
 - For data transformation SQL is as good as F# on algorithmic work on trees

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Early programming languages

- Analytical Engine/Difference Engine: hypothetical mechanical computers (1840's, Charles Babbage and Ada Lovelace)
- Assembly language: programming close to the machine (1940's)
- Fortran, ALGOL, and COBOL: various forms of imperative programming (1950's)
- LISP: functional and meta-programming (1950's, still in use)
- Simula: object-oriented programming (1950's)
- C: high-level low-level programming (1970's, still in use)
- Smalltalk: everything-is-an-object programming (1970's)

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Early programming languages

- Prolog: logic programming (1970's)
- ML: statically typed, polymorphic functional programming (1970's, still in use)
- SQL: query language (1970's, still in use)

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

1980's

- C++: C with classes (still in use)
- Matlab and Mathematica: mathematics and simulations (still in use)
- Erlang: concurrency and telecommunications (still in use)

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

1990's: the Internet Age

- Haskell: functional programming (still in use)
- Python, Ruby, Lua: concise, dynamic programming (still in use)
- JavaScript: webpage dynamics (still in use)
- Java: objects and portability (still in use)

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

2000's: the Modern Age

- C#: objects and portability (still in use)
- F# and Scala: hybrid, functional-first programming and portability (still in use)
- Go and Swift: native, safe development (getting traction?)

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

The Python Programming Language

The Python Programming Language

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

The Python Zen

- Beautiful is better than ugly
- Explicit is better than implicit
- Simple is better than complex
- Complex is better than complicated
- Readability counts

The Python Programming Language

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Python introduction

- General-purpose language
- High-level
- Concise on purpose
- Dynamically typed
- Hybrid paradigm, imperative/procedural first

The Python Programming Language

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Why Python?

- Used a lot as a beginning languages in higher education
- Adequate for expressing the basics of computational thinking
- High signal to noise ratio of syntax

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Python basic syntax and semantics

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Variables

- Variables are not declared
- Just initialize and subsequently use

Python basic syntax and semantics

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Variable names

- Variables may begin with any letter or the _ sign
- Followed by any sequence of letters, numbers, and the _

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

```
x
y
_x
customer_name
_x1
```

_x1_customer

Python basic syntax and semantics

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Variable names

- Python supports integers and other sorts of numbers
- Any sequence of numeric characters (we call it an integer literal) is a number

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

100

0

| -

79228162514264337593543950336L

Python basic syntax and semantics

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Variable names

- We can assign a value to a variable
- variableName = expression
- What does this do to the memory of the program?
 Discuss.

Python basic syntax and semantics

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Variable names

- We can assign a value to a variable
- variableName = expression
- What does this do to the memory of the program?
 Discuss.
- If the variable did not exist, then we add it to memory
- If the variable existed, then we change its value in memory

$$\begin{cases} (PC,S) \stackrel{x=e}{\rightarrow} (PC+1,S'[x \mapsto e]) & when \quad x \notin S \land S' = S - \{x\} \\ (PC,S) \stackrel{x=e}{\rightarrow} (PC+1,S[x \mapsto e]) & when \quad x \in S \end{cases}$$

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

PC 1

x = 100

y = 200

z = 50

what changes while running the current instruction? **Try to guess and discuss!**

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics PC 1

x = 100

y = 200

z = 50

The Python Programming Language

Python basic syntax and semantics

PC 1

$$z = 50$$

PC	X
2	100

The INFDEV Team @ HR

Introduction

The Python Programming Language

PC	х
2	100

$$x = 100$$

$$z = 50$$

The INFDEV Team @ HR

Introduction

The Python Programming Language

PC	x
2	100

$$z = 50$$

PC	Х	y
3	100	200

The INFDEV Team @ HR

Introduction

The Python Programming Language

PC	х	у
3	100	200

$$x = 100$$

$$z = 50$$

The Python Programming Language

PC	х	у
3	100	200

$$x = 100$$

 $y = 200$
 $z = 50$

PC	X	у	Z
4	100	200	50

Python basic syntax and semantics

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Variable names

- We can assign a value to a variable
- variableName = expression
- What does this do to the memory of the program?
 Discuss.

Python basic syntax and semantics

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

Variable names

- We can assign a value to a variable
- variableName = expression
- What does this do to the memory of the program?
 Discuss.
- If the variable did not exist, then we add it to memory
- If the variable existed, then we change its value in memory

$$\left\{ \begin{array}{ll} (PC,S) \stackrel{x \to e}{\to} (PC+1,S'[x \mapsto e]) & when \quad x \not \in S \land S' = S - \{x\} \\ (PC,S) \stackrel{x \to e}{\to} (PC+1,S[x \mapsto e]) & when \quad x \in S \end{array} \right.$$

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

PC	х	У	Z
1	0	-1	5

$$x = 100$$

$$z = 50$$

what changes while running the current instruction? **Try to guess and discuss!**

The INFDEV Team @ HR

Introduction

Python basic
syntax and
emantics

PC	х	У	Z
1	0	-1	5

$$x = 100$$

 $y = 200$
 $z = 50$

The INFDEV Team @ HR

Introduction

Language
Python basic
syntax and
semantics

PC	х	У	Z
1	0	-1	5

$$x = 100$$

 $y = 200$
 $z = 50$

 ${\sf Hello\ Python!}$

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

PC	х	У	z
2	100	-1	5

x = 100 y = 200z = 50

The INFDEV Team @ HR

Introduction

The Python Programming Language

PC	х	У	z
2	100	-1	5

$$x = 100$$

 $y = 200$
 $z = 50$

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

PC	х	У	Z
3	100	200	5

$$x = 100$$

 $y = 200$

z = 50

The INFDEV Team @ HR

Introduction

The Python Programming Language

PC	х	У	z
3	100	200	5

$$x = 100$$

 $y = 200$
 $z = 50$

This is it!

Hello Python!

The INFDEV Team @ HR

Introduction

The Python Programming Language

Python basic syntax and semantics

The best of luck, and thanks for the attention!