1. A) Simplify the expression F(q, r, s, t) = (r!s+!qt)(q!r+s!t)

```
(r!s+!qt) (q!r+s!t)
(q!r+s!t) r!s+ (q!r+s!t) !qt
r!sq!r+r!ss!t+ (q!r+s!t) !qt
r!ss!t+ (q!r+s!t) !qt
(q!r+s!t) !qt
!qtq!r+!qts!t
!qts!t
```

B) Simplify the expression F(q,r) = !(q+r)!(!q+!r)

C) Simplify the expression F(q,r,s) = !q(!rs+rs)+qrs

```
!q(!rs+rs)+qrs
!qs(!r+r)+qrs
!qs(1)+qrs
!qs+qrs
s(qr+!q)
sr+s!q
```

2. A) (We could also say that !x!x= !x but I chose to keep it as !x!x)

X	Y	!X	XY	!X!X	F = (XY + !X!X)
0	0	1	0	1	1
0	1	1	0	1	1
1	0	0	0	0	0
1	1	0	1	0	1

×1.5 ラ XXZ

 \mathbf{F} = XYZ + X!X!Z + !XY!Z + !X!XZ

XYZ	!X	! Z	X!X!Z	!XY!Z	!X!XZ
000	1	1	011	101	110
001	1	0	010	100	111
010	1	1	011	111	110
011	1	0	010	110	111
100	1	1	101	001	000
101	0	0	100	000	001
110	0	1	101	011	000
111	0	0	100	010	001

X	Y	Z	!x	! Z	XYZ	X!X!Z	!ZY!Z	!X!XZ	F=(XYZ +
									X!X!Z+!XY!Z+!X!XZ
0	0	0	1	1	0	0	0	1	1
0	0	1	1	0	0	0	0	0	0
0	1	0	1	1	0	0	1	1	1
0	1	1	1	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	1

3. Combinational Circuit for (x+y+z)(x'y'z')

4. A) Describe F in sum of products form

 $F(x,y,z) = \sum (m2, m3, m6, m7)$

Х	Y	Z	F	
M (0)0	0	0	0	
M (1)0	0	1	0	
M (2)0	1	0	1	
M (3)0	1	1	1	
M (4)1	0	0	0	
M (5)1	0	1	0	
M (7)1	1	1	1	

M2= !xy!z

M3= !xyz

M6= xy!z

M7= xyz

F = M2 + M3 + M6 + M7

 \mathbf{F} = !XY!Z + !XYZ + XY!Z + XYZ

B) Simplify the function

F= !xy!z + !xyz + xy!z + xyz

F= !xy(!z+z)+xy(!z+z)

!z+z = 1

F= !xy+xy

 $\mathbf{F} = y(!x+x)$

F= y

5. A) Drawing the circuit AND using only NOR

The reason why we ended up with X.Y is because X'+Y'=(X'+Y')'=X.Y using Demorgan's law.

B) Drawing the circuit OR using only NOR

The reason why we ended up with X+Y is because !(X+Y) = !X!Y = !(!X!Y) = X+Y

J= !(XM)

K=!(XM)

D= !M+N

JK Truthtable:

CLK	J	K	Qn+1
0	X	X	Qn
1	0	0	Qn
1	0	1	0
1	1	0	1
1	1	1	!Qn

Current State Input J.K (States) Next State

M	N	Х	J= !(XM)	K= !(XM)	D= !M+N	M(t+1)	N(t+1)
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	1	0	0	0
1	0	1	0	0	0	1	0
1	1	0	1	1	1	0	1
1	1	1	0	0	1	1	1