

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

9,10-Dioxo-9,10-dihydroanthracene-1,4-diyl diacetate

Jing-Jing Zhang, a Cai-Xia Yina* and Fang-Jun Huob

^aInstitute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of Education Ministry, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China, and ^bResearch Institute of Applied Chemistry, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China Correspondence e-mail: yincx@sxu.edu.cn

Received 12 March 2013; accepted 18 April 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.004$ Å; R factor = 0.049; wR factor = 0.152; data-to-parameter ratio = 11.9.

In the title compound, $C_{18}H_{12}O_6$, the anthraquinone ring system is nearly planar [maximum deviation = 0.161 (3) Å] and both acetate groups are located on the same side of the ring plane. A supramolecular architecture arises in the crystal owing to π – π stacking between parallel benzene rings of adjacent molecules [centroid–centroid distance = 3.883 (4) Å] and weak intermolecular $C-H\cdots O$ hydrogen bonding.

Related literature

For applications of the title compound, see: Mal *et al.* (2007). For related compounds, see: Gianneschi *et al.* (2005); Thomas (2007); Lee & Lin (2008); Han *et al.* (2009, 2010); Lusby (2012).

Experimental

Crystal data

$$\begin{array}{lll} {\rm C_{18}H_{12}O_6} & & c = 9.902 \; (8) \; {\rm \mathring{A}} \\ M_r = 324.28 & & \alpha = 73.257 \; (16)^\circ \\ {\rm Triclinic}, P\overline{1} & & \beta = 79.986 \; (14)^\circ \\ a = 8.208 \; (7) \; {\rm \mathring{A}} & & \gamma = 80.770 \; (14)^\circ \\ b = 9.730 \; (8) \; {\rm \mathring{A}} & & V = 740.7 \; (10) \; {\rm \mathring{A}}^3 \end{array}$$

Z = 2Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 296 K $0.20 \times 0.15 \times 0.12 \text{ mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.978$, $T_{\max} = 0.987$

4006 measured reflections 2610 independent reflections 1616 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.152$ S = 1.012610 reflections

219 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.25 \ {\rm e \ \AA^{-3}}$ $\Delta \rho_{\rm min} = -0.20 \ {\rm e \ \AA^{-3}}$

Table 1Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
C18—H18A···O2i	0.96	2.51	3.425 (4)	159

Symmetry code: (i) -x + 3, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (grant Nos. 21072119, 21102086), Shanxi Provincial Natural Science Foundation (grant No. 2012021009–4), Shanxi Province Foundation for Returnee (grant No. 2012–007), the Taiyuan Technology star special (grant No. 12024703) and CAS Key Laboratory of Analytical Chemistry for Living Biosystems Open Foundation (grant No. ACL201304).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5688).

References

Bruker (2001). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Gianneschi, N. C., Masar, M. S. & Mirkin, C. A. (2005). Acc. Chem. Res. 38, 825–837.

Han, Y.-F., Jia, W.-G., Yu, W.-B. & Jin, G.-X. (2009). Chem. Soc. Rev. 38, 3419–3434.

Han, Y.-F., Li, H. & Jin, G.-X. (2010). Chem. Commun. 46, 6879-6890.

Lee, S. J. & Lin, W. (2008). Acc. Chem. Res. 41, 521-537.

Lusby, P. J. (2012). Inorg. Chem. 108, 292-314.

Mal, D., Ray, S. & Sharma, I. J. (2007). J. Org. Chem. 72, 4981–4984.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Thomas, J. A. (2007). Chem. Soc. Rev. 36, 856-868.

supplementary materials

Acta Cryst. (2013). E69, o788 [doi:10.1107/S1600536813010635]

9,10-Dioxo-9,10-dihydroanthracene-1,4-diyl diacetate

Jing-Jing Zhang, Cai-Xia Yin and Fang-Jun Huo

Comment

The title compound has symmetry space structure and obvious color. It can be used to synthesize various dyes and are common structural subunits of many biologically active quinonoids (Mal *et al.*, 2007). It also can be modified into synthetic dyes intermediates, 1,4-diamino anthraquinone. Its readily deprotection of acetate groups forms 1,4-dihydroxy-anthraquinone (1,4-DHA), which can be induced to self-assembly to form a metallo-supramolecular coordination polymers under certain condition (Gianneschi *et al.*, 2005; Thomas, 2007; Lee & Lin, 2008) and demonstrate good selectivity and binding for planar aromatic guests, small organic molecules and transitional metal ions, such as dichloromethane and iridium (Han *et al.*, 2009; Lusby, 2012; Han *et al.*, 2010)

The molecular conformation is illustrated in Fig. 1. In the title compound, $C_{18}H_{12}O_6$, the anthraquinone ring system is nearly planar [the maximum deviation being 0.161 (3) Å], both acetate groups are located on the same side of the ring plane. A three-dimensional supramolecular architecture arises in the crystal owing to π - π stacking between centrosymmetrically related benzene rings [centroid-centroid distance 3.883 (4) Å] and weak intermolecular C—H···O hydrogen bondig.

Experimental

To a stirred solution of 1,4-dihydrory-9,10-anthraquinone (4.6 g, 19.1 mmoL) in CH_2Cl_2 (50 ml), Ac_2O (2 ml) and pyridine (one drop) were added. After the solution was stirred overnight at room temperature, it was evaporated under vacuum. The crude products were dissolved in water and then extracted with EtOAc. The combinded organic layer was washed with brine, and then dried with Na_2SO_4 . The solvent was removed under the reduced pressure and the residue was purified by column chromatography using petroleum ether/ethyl acetate (v/v 2:1, R_f = 0.50) as an eluent to afford 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate as a white solid. Colorless single crystals were obtained from the ethyl acetate solution.

Refinement

All H atoms were initially lacated in a difference Fourier map. H atoms on Csp^3 were treated as riding with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ of the parent atom. The H atoms on Csp^2 were treated as riding with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Computing details

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1
A view of the molecular structure of (I) with the atom-numbering scheme.

9,10-Dioxo-9,10-dihydroanthracene-1,4-diyl diacetate

Crystal data	
$C_{18}H_{12}O_6$	$\gamma = 80.770 \ (14)^{\circ}$
$M_r = 324.28$	$V = 740.7 (10) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z=2
Hall symbol: -P 1	F(000) = 336
a = 8.208 (7) Å	$D_{\rm x} = 1.454 \; {\rm Mg \; m^{-3}}$
b = 9.730 (8) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
c = 9.902 (8) Å	Cell parameters from 1029 reflections
$\alpha = 73.257 (16)^{\circ}$	$\theta = 2.5 - 25.9^{\circ}$
$\beta = 79.986 (14)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$

T = 296 KBlock, colorless

Data collection

Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.152$ S = 1.012610 reflections 219 parameters 0 restraints Primary atom site location: structure-invariant

 $T_{\min} = 0.978$, $T_{\max} = 0.987$

direct methods

 $0.20 \times 0.15 \times 0.12 \text{ mm}$

4006 measured reflections 2610 independent reflections 1616 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$ $\theta_{\text{max}} = 25.1^{\circ}, \, \theta_{\text{min}} = 2.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 9$ $l = -8 \rightarrow 11$

Secondary atom site location: difference Fourier

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0852P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.25 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.20 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ $\sigma(F^2)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.6269(2)	0.7129 (2)	0.92996 (18)	0.0591 (6)	
O2	1.1612(2)	0.4505 (2)	0.66625 (19)	0.0548 (5)	
O3	0.5808(2)	0.92058 (19)	0.69178 (18)	0.0484 (5)	
O4	0.7230(2)	1.0267 (2)	0.80172 (19)	0.0571 (5)	
O5	1.1375 (2)	0.6552(2)	0.42121 (16)	0.0470 (5)	
O6	1.3324 (2)	0.7313 (2)	0.50884 (19)	0.0557 (5)	
C1	0.7353 (3)	0.6484 (3)	0.8615 (2)	0.0402 (6)	
C2	0.8032(3)	0.4978 (3)	0.9257 (2)	0.0396 (6)	
C3	0.7287 (3)	0.4235 (3)	1.0597 (3)	0.0495 (7)	
Н3	0.6371	0.4686	1.1067	0.059*	
C4	0.7911 (4)	0.2837 (3)	1.1216 (3)	0.0611 (8)	
H4	0.7402	0.2340	1.2097	0.073*	
C5	0.9294 (4)	0.2166 (3)	1.0533 (3)	0.0622 (8)	
H5	0.9717	0.1225	1.0965	0.075*	
C6	1.0048 (3)	0.2884(3)	0.9218 (3)	0.0513 (7)	

supplementary materials

H6	1.0975	0.2428	0.8765	0.062*
C7	0.9425 (3)	0.4288 (3)	0.8570(2)	0.0391 (6)
C8	1.0286 (3)	0.5067 (3)	0.7161 (2)	0.0397 (6)
C9	0.9476 (3)	0.6507(3)	0.6424 (2)	0.0368 (6)
C10	0.8044 (3)	0.7199 (3)	0.7110 (2)	0.0368 (6)
C11	0.7303(3)	0.8527(3)	0.6356(3)	0.0404 (6)
C12	0.7934(3)	0.9195 (3)	0.4973 (3)	0.0499 (7)
H12	0.7422	1.0084	0.4494	0.060*
C13	0.9328 (3)	0.8533 (3)	0.4309(3)	0.0499 (7)
H13	0.9762	0.8979	0.3381	0.060*
C14	1.0076 (3)	0.7220(3)	0.5014 (2)	0.0401 (6)
C15	0.5922 (3)	1.0057 (3)	0.7771 (3)	0.0452 (6)
C16	0.4227 (3)	1.0665 (3)	0.8308(3)	0.0611 (8)
H16A	0.4327	1.1330	0.8834	0.092*
H16B	0.3629	0.9895	0.8918	0.092*
H16C	0.3634	1.1162	0.7518	0.092*
C17	1.2978 (3)	0.6659(3)	0.4340(3)	0.0429 (6)
C18	1.4156 (3)	0.5881 (3)	0.3400(3)	0.0576 (8)
H18A	1.5278	0.6028	0.3427	0.086*
H18B	1.3903	0.6249	0.2441	0.086*
H18C	1.4044	0.4867	0.3726	0.086*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0493 (11)	0.0585 (13)	0.0589 (12)	0.0042 (9)	0.0220 (9)	-0.0221 (10)
O2	0.0333 (10)	0.0549 (12)	0.0680 (12)	0.0058 (9)	0.0123 (8)	-0.0209(9)
O3	0.0339 (10)	0.0549 (12)	0.0566 (11)	0.0094(8)	0.0009(8)	-0.0273(9)
O4	0.0466 (11)	0.0685 (14)	0.0596 (12)	-0.0058(10)	0.0038 (9)	-0.0296(10)
O5	0.0340 (10)	0.0652 (12)	0.0453 (10)	-0.0015(8)	0.0077 (7)	-0.0302(9)
O6	0.0452 (11)	0.0624 (13)	0.0653 (12)	-0.0046(9)	-0.0026(9)	-0.0298 (10)
C1	0.0283 (12)	0.0511 (16)	0.0434 (14)	-0.0036 (11)	0.0039 (10)	-0.0219 (12)
C2	0.0325 (13)	0.0483 (16)	0.0408 (14)	-0.0068 (11)	-0.0009 (10)	-0.0178 (11)
C3	0.0435 (15)	0.0585 (19)	0.0464 (15)	-0.0107 (13)	0.0052 (11)	-0.0182 (13)
C4	0.066(2)	0.064(2)	0.0482 (16)	-0.0156 (16)	0.0012 (14)	-0.0086 (14)
C5	0.065(2)	0.0511 (19)	0.0637 (19)	-0.0023 (15)	-0.0097 (15)	-0.0069(14)
C6	0.0441 (15)	0.0508 (18)	0.0564 (17)	0.0030 (13)	-0.0045(12)	-0.0162 (14)
C7	0.0315 (13)	0.0452 (15)	0.0429 (14)	-0.0041 (11)	-0.0026 (10)	-0.0171 (11)
C8	0.0275 (12)	0.0465 (15)	0.0486 (14)	0.0001 (11)	-0.0018 (10)	-0.0226 (12)
C9	0.0274 (12)	0.0437 (15)	0.0425 (14)	-0.0022 (10)	0.0013 (10)	-0.0213 (11)
C10	0.0284 (12)	0.0454 (15)	0.0397 (13)	-0.0009(11)	0.0013 (10)	-0.0215 (11)
C11	0.0289 (13)	0.0473 (16)	0.0471 (14)	0.0024 (11)	0.0023 (10)	-0.0240 (12)
C12	0.0510 (16)	0.0488 (16)	0.0455 (15)	0.0042 (13)	-0.0015 (12)	-0.0140 (12)
C13	0.0499 (16)	0.0553 (18)	0.0388 (14)	-0.0027(13)	0.0054 (11)	-0.0125 (12)
C14	0.0287 (13)	0.0532 (17)	0.0416 (14)	-0.0038(11)	0.0050 (10)	-0.0238 (12)
C15	0.0437 (16)	0.0456 (16)	0.0422 (14)	0.0037 (13)	0.0030 (11)	-0.0152 (12)
C16	0.0473 (17)	0.067(2)	0.0661 (19)	0.0093 (15)	0.0079 (13)	-0.0304 (15)
C17	0.0333 (14)	0.0476 (16)	0.0444 (14)	0.0007 (12)	0.0014 (11)	-0.0137 (12)
C18	0.0386 (15)	0.071(2)	0.0622 (18)	0.0051 (14)	0.0064 (12)	-0.0307(15)

Geometric p	parameters	(Å.	0)
-------------	------------	-----	----

Geometric parameters (A,)			
O1—C1	1.226 (3)	C6—H6	0.9300
O2—C8	1.227 (3)	C7—C8	1.497 (3)
O3—C15	1.365 (3)	C8—C9	1.489 (3)
O3—C11	1.402 (3)	C9—C14	1.409 (3)
O4—C15	1.202 (3)	C9—C10	1.424 (3)
O5—C17	1.366 (3)	C10—C11	1.395 (3)
O5—C14	1.404 (3)	C11—C12	1.384 (4)
O6—C17	1.199 (3)	C12—C13	1.379 (3)
C1—C2	1.478 (4)	C12—H12	0.9300
C1—C10	1.504 (3)	C13—C14	1.371 (4)
C2—C3	1.401 (3)	C13—H13	0.9300
C2—C7	1.403 (3)	C15—C16	1.494 (3)
C3—C4	1.376 (4)	C16—H16A	0.9600
C3—H3	0.9300	C16—H16B	0.9600
C4—C5	1.386 (4)	C16—H16C	0.9600
C4—H4	0.9300	C17—C18	1.494 (3)
C5—C6	1.379 (4)	C18—H18A	0.9600
C5—H5	0.9300	C18—H18B	0.9600
C6—C7	1.387 (3)	C18—H18C	0.9600
C15—O3—C11	117.07 (19)	C9—C10—C1	119.7 (2)
C17—O5—C14	118.35 (18)	C12—C11—C10	121.9 (2)
O1—C1—C2	120.6 (2)	C12—C11—O3	116.2 (2)
O1—C1—C10	121.2 (2)	C10—C11—O3	121.8 (2)
C2—C1—C10	118.13 (19)	C13—C12—C11	119.5 (3)
C3—C2—C7	119.3 (2)	C13—C12—H12	120.3
C3—C2—C1	119.2 (2)	C11—C12—H12	120.3
C7—C2—C1	121.5 (2)	C14—C13—C12	120.1 (2)
C4—C3—C2	120.0 (2)	C14—C13—H13	119.9
C4—C3—H3	120.0	C12—C13—H13	119.9
C2—C3—H3	120.0	C13—C14—O5	116.3 (2)
C3—C4—C5	120.4 (3)	C13—C14—C9	122.1 (2)
C3—C4—H4	119.8	O5—C14—C9	121.3 (2)
C5—C4—H4	119.8	O4—C15—O3	122.9 (2)
C6—C5—C4	120.4 (3)	O4—C15—C16	126.7 (2)
C6—C5—H5	119.8	O3—C15—C16	110.3 (2)
C4—C5—H5	119.8	C15—C16—H16A	109.5
C5—C6—C7	120.0 (2)	C15—C16—H16B	109.5
C5—C6—H6	120.0	H16A—C16—H16B	109.5
C7—C6—H6	120.0	C15—C16—H16C	109.5
C6—C7—C2	119.9 (2)	H16A—C16—H16C	109.5
C6—C7—C8	119.3 (2)	H16B—C16—H16C	109.5
C2—C7—C8	120.7 (2)	O6—C17—O5	123.0 (2)
O2—C8—C9	122.9 (2)	O6—C17—C18	127.4 (2)
O2—C8—C7	119.4 (2)	O5—C17—C18	109.6 (2)
C9—C8—C7	117.76 (19)	C17—C18—H18A	109.5
C14—C9—C10	117.6 (2)	C17—C18—H18B	109.5
C14—C9—C8	121.31 (19)	H18A—C18—H18B	109.5

Acta Cryst. (2013). E**69**, o788

supplementary materials

C10—C9—C8	121.1 (2)	C17—C18—H18C	109.5
C11—C10—C9	118.8 (2)	H18A—C18—H18C	109.5
C11—C10—C1	121.5 (2)	H18B—C18—H18C	109.5

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	$D \cdots A$	D— H ··· A
C18—H18A···O2 ⁱ	0.96	2.51	3.425 (4)	159

Symmetry code: (i) -x+3, -y+1, -z+1.