Assignment 8

Vishal Kumar, MIT2019090

Question

$$\min_{x_1, x_2 \in \mathbb{R}^2} \frac{1}{2} x_1^2 - x_2^2 \ \ subject \ to \ 1 - x_1^2 - x_2^2 \geq 0$$

Or, we can write it as:

$$\min_{x_1, x_2 \in \mathbb{R}^2} \frac{1}{2} x_1^2 - x_2^2 \ \ subject \ to \ x_1^2 + x_2^2 - 1 \leq 0$$

Now, the Lagrangian is:

$$\mathcal{L}(x1,x2,\lambda) = \frac{1}{2}x_1^2 - x_2^2 + \lambda(x_1^2 + x_2^2 - 1)$$

a.) Ans.-

KKT conditions are:

$$i.) \quad \frac{\partial \mathcal{L}}{\partial x_1} = x_1(2\lambda + 1) = 0$$

$$ii.$$
) $\frac{\partial \mathcal{L}}{\partial x_2} = x_2(2\lambda - 2) = 0$

iii.)
$$\lambda(x_1^2 + x_2^2 - 1) = 0$$

$$iv.$$
) $\lambda \geq 0$

$$v.) \quad x_1^2 + x_2^2 - 1 \ge 0$$

From (i), either $x_1=0$ or $2\lambda+1=0$ i.e. $\lambda=-1/2$ which does not satisfy (iv) condition. So, we can say that $x_1=0$.

From (ii), either $x_2 = 0$ or $2\lambda - 2 = 0$ i.e. $\lambda = 1$ which satisfy KKT conditions.

From (iii), either $\lambda = 0$ or $x_1^2 + x_2^2 - 1 = 0$. Let's consider $\lambda = 1$, then $x_1 = 0$ and $x_1^2 + x_2^2 - 1 = 0$ i.e. $x_2 = 1/-1$

If $\lambda = 0$, then from (i) and (ii), $x_1 = 0$ and $x_2 = 0$

Now, the solution set:

For
$$\lambda = 0$$
 then $(x_1, x_2) = (0, 0)$
For $\lambda = 1$ then $(x_1, x_2) = (0, 1)$ or $(0, -1)$

b.) Ans.-

Slater's Equation

$$x_1^2 + x_2^2 - 1 < 0$$
; for any $x_1, x_2 \in \mathbb{R}^2$

In this problem, this condition holds true for $(x_1, x_2) = (0, 0)$

Now, we have to find out local minima with first order necessary conditions:

$$f(x) = \frac{1}{2}x_1^2 - x_2^2$$

$$\frac{\partial f}{\partial x_1} = x_1 = 0 \tag{1}$$

$$\frac{\partial f}{\partial x_2} = 2x_2 = 0 \tag{2}$$

From (1) and (2), we get local minima as (0,0) which is one of the KKT points.

c.) Ans.-

For x^* to be a global minimizer, we have to check if x^* satisfies these two conditions:

$$\mathcal{L}(x^*, \lambda^*) \leq \mathcal{L}(x, \lambda^*)$$
; for all x

$$\mathcal{L}(x^*, \lambda^*) \leq \mathcal{L}(x, \lambda)$$
; for all $\lambda \geq 0$

$$\mathcal{L}(x^*, \lambda^*) = -1$$
; for $(x_1, x_2, \lambda) = (0, 1, 1)$ and $(0, -1, 1)$

For any x_1, x_2 that satisfy $x_1^2 + x_2^2 - 1 = 0$, we will get minimum value for $\mathcal{L}(x, \lambda), \mathcal{L}(x, \lambda^*) = -1$, which is equal to $\mathcal{L}(x^*, \lambda^*)$

Thus, we can say that the points (0,1),(0,-1) are global minimizers of original equation.

d.) Ans.-

The constraint is as follows:

$$x_1^2 + x_2^2 - 1 \le 0$$

For point (0, 1):

$$x_1^2 + x_2^2 - 1 = 0 \le 0$$

For point (0, -1):

$$x_1^2 + x_2^2 - 1 = 0 \le 0$$

For point (0, 0):

$$x_1^2 + x_2^2 - 1 = -1 \le 0$$

So, all the points in the solution satisfies the constraint.