MATH23 REVIEW.

What method is heeded (or best) to solve the following?

(don't actually solve, until chosen all the methods).

9
$$x' = 2y$$
, $y' = -x + y$

d)
$$y'' + y' = \frac{1}{1-t}$$
 for $t < 1$, $y(0) = 1$, $y'(0) = 0$

e)
$$y'' + y = t$$
, $y(0) = 0$, $y(\pi) = 0$

$$f) \quad y' = - \frac{xy^2 + y}{x^2y + x}$$

g)
$$y_{xx} = -y_{zz}$$
, $y(x,0) = y(x,\pi) = 0$ $y(0,z) = 0$ $y(1,z) = x\pi x$

$$y' = -\frac{y}{x}$$

$$\frac{d^2u}{dx^2} + u = \left(e^{-x} \sin x\right) \left(1 + x\right)$$

k)
$$\left(\frac{d^2}{dx^2} + 1\right)y + \sin x = 0$$

MATH23 REVIEW.

12/2/03

What method is heeded (or best) to solve the following?

Under Ander Ander Strain Chosen all the methods). a) y'' + 4y + 3 = t is rearrange: y'' + 4y = t - 3all is part of g.

Const. could r = t2: polycomial

Meth. Und. Collis. w/ Y = At + B1st order lines: $y = f(S \times g) + f(S \times$ 9) x' = 2y, y' = -x + y $\vec{x} = \begin{pmatrix} 0 & 2 \\ -1 & 1 \end{pmatrix} \vec{x}$ And eigner, eignls. y" + y = 1-t for t<1, y(0)=1, y'(0)=0

std. const. creft. 2 Morder fin.

not in M. Und, Coeffs. form => ned Var. of Params. e) y'' + y = t, y(0) = 0, $y(\overline{t}) = 0$ $f^2 = -1$ so $f = \pm i$ (1) today poly => Y = At + B. M. Val. Conff. f) $y' = -\frac{xy^2 + iy}{x^2y + x}$ we M, N, check if exact \Rightarrow impliest eqn.

g) $y_{xx} = -y_{zz}$, $y(x_i0) = y(x_i, tt) = 0$ y(0, z) = 0 $y(1, z) = x_i t_i t_i$ h) $y' = -\frac{y}{x}$ separable 1st order. $y' = -\frac{y}{x}$ int. $y = -\frac{y}{x}$ $y = -\frac{y}{x}$ separable 1st order. $y' = -\frac{y}{x}$ int. $y' = -\frac{y}{x}$ $y' = -\frac{y}{x}$ separable 1st order. $y' = -\frac{y}{x}$ int. $y' = -\frac{y}{x}$ $y' = -\frac{y}{x}$ is actually in M. Unit. Coeffs form.

1) $y' = -\frac{y}{x}$ separable 2st order. $y' = -\frac{y}{x}$ is actually in M. Unit. Coeffs form.

1) $y' = -\frac{y}{x}$ separable 2st order. $y' = -\frac{y}{x}$ is actually in M. Unit. Coeffs form.

1) $y' = -\frac{y}{x}$ separable 2st order. $y' = -\frac{y}{x}$ form. $y' = -\frac{y}{x}$ sinx $y' = -\frac{y}{x}$ sinx y' =Y - le x sinx (A+Bx) + e x cosx (C+Dx) k) $\left(\frac{d^2}{dx^2} + 1\right)y + \sin x = 0$ M. U.J. a differential operator. Je, y" + y = - sinx on-resonant driving.

= + :

The Und. Coeffs.

On-resonant driving.

= + :

The Second of the Beas of the Second of the Secon