

MATEMÁTICAS

GEOMETRÍA EUCLIDIANA

Demostración

Teorema pertenecia de punto en rayo

Alexander Mendoza June 12, 2023

Contents

1 Demostración 2

Chapter 1

Demostración

Si $C \in \mathcal{S}_{\overleftarrow{AB},D}$, $C \in \mathcal{S}_{\overleftarrow{AD},\neg B}$ y $\overrightarrow{CB} \cap \overleftarrow{AD} = \{X\}$, entonces, $X \in \overrightarrow{AD} - A$.

Demostracion. Sea \overleftrightarrow{AB} y sean C y D dos puntos distintos tales que $C \in \mathcal{S}_{\overleftrightarrow{AB},D}$, $C \in \mathcal{S}_{\overleftarrow{AD}, \neg B}$ y $\overrightarrow{CB} \cap \overleftarrow{AD} = \{X\}$. Luego, por definción de intersección, $X \in \overrightarrow{CB}$ y $X \in \overleftarrow{AD}$. Así, o X = C o C - X - B o X = B, por definición de segmento.

Si X=C, entonces $X\in\mathcal{S}_{\overrightarrow{AD},\neg B}$, lo cual contradice $X\in \overrightarrow{AD}$, esto por el postulado de separación del plano.

Si X=B, entonces $D\in \overleftrightarrow{AB}$, lo cual contradice $C\in \mathcal{S}_{\overleftrightarrow{AB},D}$, esto por el postulado de separación del plano. Así tenemos que C-X-B lo cual implica que C y X están del mismo lado de \overleftrightarrow{AB} esto debido al teorema de interestancia puntos en el mismo semiplano.

Luego como $X \in \overleftrightarrow{AD}$, entonces o A-X-D o X=A o $X \in \overrightarrow{A}-A$.

Si X-A-D, entonces $X\mathcal{S}_{\overleftrightarrow{AB},\neg D}$ pero esto produce una contradicción ya que sabemos que $C\in\mathcal{S}_{\overleftrightarrow{AB},D}$ y que $X\in\mathcal{S}_{\overleftrightarrow{AB},C}$.

Si X = A, entonces $C \in \overrightarrow{AB}$, lo cual contradice $C \in \mathcal{S}_{\overrightarrow{AB},D}$. Por lo tanto $X \in \overrightarrow{A} - A$.