TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2075 Chaitra

Exam.	* Regula	r / Back	
Level	BE	Full Marks	80
Programme	BEL, BEX, BEI, BCT, BAM, BIE, BAG, BAS	Pass Marks	32
Year / Part	I/I ·	Time	3 hrs.

Subject: - Engineering Physics (SH 402)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions:
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.
- 1. Define torsional pendulum. Derive an expression for its time period. Explain why the time period of the torsional pendulum remains unaffected even if the amplitude is large.

OR

What is a damped EM oscillations? Which factor in the circuit is responsible to produce such a motion? Derive a differential equation for this motion and write its solution. What will be the remedy of such motion to make it smooth?

- 2. A meter stick swings as a compound pendulum when suspended from one of its end. Calculate (a) period of the oscillations and (b) equivalent length of the simple pendulum that would have the same period.
- 3. Mention the conditions for good acoustics of a hall and derive an expression for reverberation time.
- 4. Why Newton's interference fringes are circular? Derive an expression for radius of the Newton's ring due to the transmitted light.

OR

Define dispersive and resolving power of a diffraction grating. Derive an expression for the resolving power of the grating having N slits.

- 5. A plane transmission grating having 5000 lines/cm is used to obtain a spectrum of light from a sodium lamp in the second order. Calculate the angular separation between the two sodium lines whose wavelengths are 589 nm and 589.6 nm.
- 6. Calculate the specific rotation if the plane of polarization is turned through 30.5° traversing 25 cm length of 10% sugar solution.
- 7. Define an optical fiber and mention its types. Explain the numerical aperture and acceptance angle for the optical fiber and derive the expression to establish a relationship between them.
- 8. Dispersive powers for crown and flint glass lenses are 0.015 and 0.030 respectively. How can you design an achromatic contact of the lenses of focal length 50 cm?
- 9. What is an electric Quadrupole? Derive an expression for the electric potential at any point on the axial line at a distance 'r' from the centre of a short Quadrupole. Also, show that the electric potential at that point is inversely proportional to r³.

OR

Discuss the modification of Gauss law due to the presence of the dielectrics and derive a relation among displacement vector, polarization vector and the electric field.

- 10. A particle of charge $-\mathbf{q}$ and mass m is placed midway between two equal positive charges \mathbf{q}_0 of separation d. If the negative charge executes SHM between the positive charges, then derive an expression for the time period of the oscillations,
- 11. Calculate the mean free time and mean free path between the collisions for the free electrons in copper with number density of the electron 8.5×10^{28} m⁻³ and resistivity 1.7×10^{-8} ohm-m.(e = 1.6×10^{-19} C, m_e = 9.1×10^{-31} kg and effective speed of the electron = 1.6×10^6 m/s)
- 12. Define the cyclotron and cyclotron frequency. show that energy of a charged particle in a cyclotron is independent to the oscillating electric field.

OR

State Ampere's law in magnetism. Calculate the magnetic field outside and inside a current carrying long straight conductor.

- 13. An inductance of an inductor L connected to a battery of emf ε through a resistor of resistance R. Show that the p.d. across the inductor after time t is $V_L = \varepsilon e^{-(R/L)t}$. At what time the p.d. across the inductor is equal to the p.d. across the resistor such that $i = i_0/2$.
- 14. What is magnetic flux density at the center of a circular coil of radius 2 cm and with 20 turns carrying current of 10 A?
- 15. Write Maxwell equations in differential form. State and explain the pointing vector and theorem.
- 16. What is the physical significance of wave function? Derive the relation of Schrodinger wave equation in time dependent form.
