

MXD6助力汽车 轻量化方案

Automotive Lightweight Solutions Based on MXD6 Products

汇报人: 李嫣然

01MXD6材料介绍

Introduction to MXD6 Material

MXD6的结构与性能

$$\frac{1}{n} = \frac{1}{n} = \frac{1}$$

● MXD6化学结构式

是以己二酸与间苯二甲胺 (MXDA) 为单体, 经缩聚或熔融聚合反应合成的一种尼龙树脂, 有着较高的力学强度、较低的尺寸收缩率、 优良阻隔性等优点的新型高分子材料。

MXD6 核心特性

卓越机械性能:

具有弯曲模量和弯曲强度 成型收缩率小,尺寸稳定性好

突出阻隔性能:

对O₂、CO₂等气体具有优异阻隔性 吸水率低,防潮性能好 可延长食品保质周期

突出的热性能:

热变形温度高于PA6与PA66 加工温度范围宽(240°c-280°c)

加工兼容性:

可与聚酯(PET)共混挤出(相容性好) 可与PA6和PA66共混注塑

MXD6应用领域

饮料瓶

主要分为单层瓶和 多层瓶两个方向,在 内容物上主要是阻隔 氧气和二氧化碳。

食品包装膜

食品包装膜分为双向拉伸膜(BOPA)和多层共挤膜,主要应用在肉类熟食和玉米等包装。

工程塑料

以塑代钢等轻量 化汽车结构件和 电子精密注塑件 是MXD6的主要 应用。

Application of MXD6 in Automotive Lightweighting

汽车轻量化的意义

HIFICHEN more than Yellow and Orange

减轻汽车10%重量

10%

● 更多续航

油耗减少6%-8% 电车续航里程增加 5%-8%

环保减排排放量减少10%

- 操控升级加速时间减少8%转向力减少6%
- 可持续降本轮胎寿命提高7%原材料成本降低

汽车轻量化对新能源汽车续航里程的影响

试验车总重 量 (kg)	行驶里程 (km)	备注(MXD6改性系列应用部位及减重效果)
1900	400	基准组:传统材料车身(发动机罩用冷轧钢、电池壳体用铸铁、座椅框架用普通钢)。
1820	422	MXD6 系列初级应用:发动机罩替换为 MXD6-30(含 30% 玻纤增强),减重 80kg(钢罩重 120kg→MXD6 罩重 40kg),保持同等抗冲击强度。
1750	445	MXD6 系列扩展应用:新增电池壳体用 MXD6-50(含 50% 矿物填充),相比铸铁壳体减重 70kg(铸铁壳重 150kg→MXD6 壳重 80kg),耐温性达 120℃以上。
1680	470	MXD6 系列深度应用:座椅框架替换为 MXD6-40(玻纤 + 矿物复合增强),单座减重 4.5kg(全车 5 座共减重 22.5kg),配合车门内板用 MXD6-20(轻量化改性)再减重 47.5kg。
1600	498	MXD6 系列集成应用:底盘护板、前端模块等 5 处部件改用 MXD6系列,累计再减重 80kg;整车较基准组总减重 300kg,材料成本较碳纤维降低 40%。

MXD6改性材料的特性

- 较宽温度范围下具有优异的机械强度、弹性系数
- 吸水率低、吸水引起的尺寸变化及机械强度下降较小
- 负载变形温度高、呈现出与合金相似的线膨胀率
- ●最适于成型收缩率、缩水、翘曲小的精密成型
- 不含PFAS,符合日益严格的环保法规与可持续发展趋势

MXD6在汽车零部件上的应用

空调出风口水平叶片

汽车空调出风口叶片通常可以分为水平叶片和垂直叶片,由于汽车内饰的设计越来越趋于科技化,垂直叶片的长度从以往的120mm增加到了200mm,即使50%,60%的高玻纤增强材料也满足不了实验对材料刚性和木梁的要求。

同时这个部件出于乘客的可视范围之内,零件的视觉舒适性也是对材料的一种挑战,在免喷涂步骤的前提下,要达到最优的表面外观。

采用MXD6为基材,来满足免喷涂的超高表面要求。 40%碳纤维增强MXD6的模量可达50GP。

发动机引擎盖

发动机舱部件必须**耐受高温**,同时**不可避免地会接触到腐蚀性介质**,而且部件还必须能够**拆卸和重新组装**,这些因素决定必须使用**结实耐用的材料**来制造该部件。

目前,通常使用纯矿物填充或玻纤矿物共混增强的聚酰胺,他们易于加工并满足机械要求,但是部件的表面质量不易控制,有时无法满足设计师对视觉的要求。

MXD6 50%玻纤和矿物填充具有超高刚性。其高刚性特质使得在满足发动机罩盖强度要求的情况下,能够减重20%,进而降低发动机罩乃至整车的重量。同时,该材料在高温环境下表现出比传统材料更强的稳定性,可保障发动机罩盖在发动机舱的极端条件下可靠工作。

底盘液压减震衬套

▶ 液压衬套通常采用尼龙限位块来起到位移控制的作用,当液 压衬套承受较大的Z向冲击力时,尼龙限位块能控制主簧的位 移,从而使主簧得到一定的保护,不致疲劳破坏。

当该液压衬套承受较大的Z向力时主簧与尼龙限位块直接接触,这对尼龙限位块的强度提出了很高的要求。

橡胶老化后,限位块在工作时,会接触液压衬套内壁,这对限位块的摩擦性也提出了要求。

同时液压衬套内封装了醇类阻尼液,普通玻纤增强的尼龙在长期浸泡醇类溶液后,表面会发生开裂。

基于上述的三点要求,MXD6碳纤维增强材料成为了最佳的选材。

应用领域与案例分析

后视镜支架

MXD6改性 材料用于汽车后视镜支架优势显著,含有 50%-60% 玻璃纤维增强的MXD6,具备高强度与高刚性,能承受后视镜重量、振动及冲击,确保安装稳定,减少晃动以保障视野清晰;且模具收缩率、线性热膨胀系数低(近金属),温变下尺寸变化小,可保证安装精度,避免松动或间隙增大。同时,它耐受雨水、油污等多种化学品侵蚀,能防止腐蚀损坏以延长寿命,高玻纤含量下仍有良好光泽,无需复杂处理即可满足外观需求,还便于后续加工;此外,其密度低于传统金属,可减轻车重,提升续航,符合轻量化趋势。

应用领域与案例分析

中控台支架

• 质量更轻: 替代压铸镁, 重量减低25% 采用PA66/MXD6 40%碳纤维。

• 更高刚性和低蠕变: 动态负载能力更高。

03MXD6技术优势

Technical Advantages of MXD6

七彩化学MXD6具备完整的产业链

MXD6与传统材料对比

强度与重量比

MXD6的强度重量比优于传统塑料,使汽车部件更轻且更耐用。

成本效益

虽然MXD6成本高于某些传统 材料,但其优异性能和长寿命 降低了整体使用成本。

耐热性能

MXD6在高温环境下保持性能稳定,相比传统材料具有更好的耐热性。

高强度与轻量化

MXD6材料通过优化分子结构,实现了高 强度与轻量化并存,有效降低汽车重量。

耐高温性能

MXD6技术改进了材料的耐高温性能, 使其在高温环境下仍能保持良好的机械 性能。

轻量化评估结果

能耗降低

采用MXD6材料的汽车部件减轻了整车重量,从而降低了能耗,节省用户成本。

排放量降低

轻量化设计减少了发动机 负荷,进而降低了汽车尾 气排放,符合环保标准。

碰撞安全性增强

MXD6材料在保持轻量化的同时,还提供了良好的能量吸收性能,提升了车辆的碰撞安全性。

感谢观看

