14. ASYMPTOTIC RULES

Asymptotic rules are useful for manipulating asymptotic notations and extracting new information about the behaviour of the functions.

1. REFLEXIVITY RULE: For any general complexity function f(n), the reflexive property is given as follows:

$$f(n) = O(g(n))$$

$$f(n) = O(g(n))$$

$$f(n) = O(g(n))$$

2. TRANSITIVITY RULE: The transitive property is defined as follows:

if
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$,
then $f(n) = O(h(n))$

Where f(n), h(n) and g(n) are complexity functions of two algorithms.

This property holds good for other notations also:

$$2. f(n) = \Omega(g(n)) \ and \ g(n) = \Omega(h(n))$$

then, $f(n) = \Omega(h(n))$.

$$3. f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$
then, $f(n) = \Theta(h(n))$.

3. **LAW OF COMPOSITION:** By law of composition, we mean that:

$$1. O(O(g(n)) = O(g(n))$$

2.
$$\Omega(\Omega(g(n)) = \Theta(g(n))$$

3.
$$\Theta(\Theta(g(n)) = \Theta(g(n))$$

Hence, we can say:

$$O\left(O\left(\dots \left(O(g(n)\right)\right)\dots\right)\right) = O(g(n))$$

Therefore, we can say that for other notations also=

$$\Omega\left(\Omega\left(\ldots \cup \left(\Omega(g(n))\right)\ldots\right)\right) = \Omega(g(n))$$

$$\Theta\left(\Theta\left(\ldots\ldots\left(\Theta\big(g(n)\big)\right)\ldots\right)\right)=\Theta\big(g(n)\big)$$

4. SUMMATION RULE:

Assume that an algorithm A is written in such a way that some portions of it have complexity n, some portions have complexity have logn, and complexity n^2 :

Algorithm segment with complexity nAlgorithm segment with complexity logn. Algorithm segment with complexity n^2 . Then what is the overall complexity of the algorithm A? The answer is provided by the summation rule.

The final complexity of the preceding segment is $n + log n + n^2$.

This is one of the most important rules. The law of addition states the following:

$$f(n) + g(n) = O(\max\{f(n), g(n)\})$$

 $f(n) + g(n) = \Omega(\max\{f(n), g(n)\})$
 $f(n) + g(n) = O(\max\{f(n), g(n)\})$

As per this rule, the final complexity of this algorithm segment is:

$$\max \{n, \log (n), n^2\} = n^2.$$

The proof of this rule is given as follows:

Let
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$

if so,

$$f_1(n) \le c_1 g_1(n)$$
 for $n \ge n_1$ and $f_2(n) \le c_2 g_2(n)$ for $n \ge n_2$

Choose a number k bigger than c_1, c_2

Choose a number n bigger than n_1 , $n_2 \Rightarrow n_0 = \max\{n_1, n_2\}$

This implies:

$$\Rightarrow f_1(n) + f_2(n) \le c_1 g_1(n) + c_2 g_2(n)$$

$$\Rightarrow f_1(n) + f_2(n) \le k g_1(n) + k g_2(n) [k \ge \{c_1, c_2\}]$$

$$\Rightarrow f_1(n) + f_2(n) \le k g(n) + k g(n) [n \ge \{n_1, n_2\}, hence$$

$$g(n) \ge \{g_1(n), g_2(n)\}]$$

$$\Rightarrow$$
 $f_1(n) + f_2(n) \le 2kg(n)$
Thus, $f_1(n) + f_2(n) = O(g(n))$
And $g(n) \ge \{g_1(n), g_2(n)\}$

Therefore,
$$f_1(n) + f_2(n) = 0(\max\{g_1(n), g_2(n)\})$$

Again,

As
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$

Therefore,
$$f_1(n) + f_2(n) = 0(\max\{f_1(n), f_2(n)\})$$

4. MULTIPLICATION RULE:

Consider the following segment:

$$for \ i = 1 \ to \ n \ do \overset{\mathsf{Executed} \ n \ \mathsf{times.}}{\underset{\mathsf{executed} \ n \ \mathsf{times.}}{\mathsf{loop} \ \mathsf{body} \ \mathsf{getting}}}$$

$$perform \ operation \ \mathbf{O}(1) \overset{\mathsf{executed} \ n \ \mathsf{times.}}{\mathsf{End} \ for}$$

It is evident for that the loop is executed $\sum_{i=0}^n O(1) = O(n)$ times. i.e., $1 \times 2 \times 3 \times 4 \times ... \times n - 1 \times n$ times.

Now if there are two loops:

Then the inner loop would be executed $n \times n$ times.

This is called the <u>multiplication rule</u>.

In general, the multiplication of complexity of two functions equals the product of two complexity functions.

Let
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$ if so,

 $f_1(n) \le c_1 g_1(n)$ for $n \ge n_1$ and $f_2(n) \le c_2 g_2(n)$ for $n \ge n_2$ Let k be a number greater than $c_1 \times c_2$ and $n_0 = \max\{n_1, n_2\}$

$$\Rightarrow f_1(n) \times f_2(n) \le c_1 g_1(n) \times c_2 g_2(n)$$

$$\Rightarrow f_1(n) \times f_2(n) \le k g_1(n) \times k g_2(n) [k \ge \{c_1, c_2\}]$$

$$\Rightarrow f_1(n) \times f_2(n) = k^2 (g_1(n) \times g_2(n)), where n \ge n_0$$

Therefore, resultant is :
$$O(g_1(n) \times g_2(n))$$

Thus, we can write:

1.
$$f_1(n) \times f_2(n) = O(g_1(n) \times g_2(n))$$

$$2. f_1(n) \times f_2(n) = \Omega(g_1(n) \times g_2(n))$$

3.
$$f_1(n) \times f_2(n) = \Theta(g_1(n) \times g_2(n))$$

That is:

$$for i = 1 to n do \leftarrow \frac{runn times}{for i = 1 to n do \leftarrow \frac{runn times}{for i}}$$
Statement

End for

Therefore, we have $time\ complexity: O(n^2)$

4. TRANSPOSE SYMMETRY:

1.
$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$.

$$2. f(n) = \Omega(g(n)) \text{ if and only if } g(n) = 0(f(n)).$$

$$3. f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

6. CONSTANT RULE:

- 1. If f(n) is in $O(c \times g(n))$ for any c > 0, then f(n) is in O(n).
- 2. If f(n) is in $\Omega(c \times g(n))$ for any c > 0, then f(n) is in $\Omega(n)$.
- 3. If f(n) is in $\Theta(c \times g(n))$ for any c > 0, then f(n) is in $\Theta(n)$.
