概率模型

概率模型	概率分布 $p(x)$	数学期望 Εξ	方差 Dξ	特征函数 $f(t)$
退化分布 $I_c(x)$	$p(x) = egin{cases} 1, & x = c \ 0, & x eq c \end{cases}$	c	0	e^{ict}
Bernoulli分布	$p(x) = egin{cases} 1-p, & x=0 \ p, & x=1 \ 0$	p	p(1-p)	$p\mathrm{e}^{it}+1-p$
二项分布 $B(n,p)$	$b(k;n,p) = \binom{n}{k} p^k (1-p)^{n-k}$ $k = 0, \cdots, n; 0$	np	np(1-p)	$(p\mathrm{e}^{it}+1-p)^n$
Poisson分布 $P(\lambda)$	$p(k;\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$ $k = 0, 1, \dots; \lambda > 0$	λ	λ	$\mathrm{e}^{\lambda(\mathrm{e}^{\mathit{u}}-1)}$
几何分布	$g(k;p) = p(1-p)^{k-1} \ k = 1, 2, \cdots; 0$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{p\mathrm{e}^{it}}{1-(1-p)\mathrm{e}^{it}}$
超几何分布	$p_k = rac{{M\choose k}{N-M\choose n-k}}{{N\choose k}} \ M,n \leq N;M,N,n \in N^* \ k = 0,\cdots,\min(M,n)$	$\frac{nM}{N}$	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$	$\sum_{k=0}^{n} \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}} e^{ikt}$
Pascal分布	$p_k = inom{k-1}{r-1} p^r (1-p)^{k-r} \ k = r, r+1, \cdots; 0$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{(1-p)\mathrm{e}^{it}}{1-(1-p)\mathrm{e}^{it}}\right)^p$
负二项分布	$p_k = inom{-r}{k} p^r (p-1)^k \ k = 0, 1, \cdots; 0 0$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1-(1-p)\mathrm{e}^{it}}\right)^{p}$
正态分布 $N(\mu, \sigma^2)$	$p(x) = rac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}} onumber \ -\infty < x < \infty$	μ	σ^2	$\mathrm{e}^{i\mu t - \frac{1}{2}\sigma^2 t^2}$
均匀分布 $U[a,b]$	$p(x) = egin{cases} rac{1}{b-a}, & a \leq x \leq b \ 0, & 其他 \ a < b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{\mathrm{e}^{ibt} - \mathrm{e}^{iat}}{i(b-a)t}$
指数分布 $\mathrm{Exp}(\lambda)$	$p(x) = egin{cases} \lambda \mathrm{e}^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases}$ $\lambda > 0$	λ^{-1}	λ^{-2}	$(1-rac{it}{\lambda})^{-1}$
χ^2 分布	$p(x) = egin{cases} rac{1}{2^{rac{n}{2}}\Gamma(rac{n}{2})} x^{rac{n}{2}-1} \mathrm{e}^{-rac{x}{2}}, & x \geq 0 \ 0, & x < 0 \end{cases}$	n	2n	$(1-2it)^{-\frac{n}{2}}$
Γ 分布 $\Gamma(r,\lambda)$ $(r\in N^*$ 时为 Erlang 分布)	$p(x) = egin{cases} rac{\lambda^r}{\Gamma(r)} x^{r-1} \mathrm{e}^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases}$	$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$	$(1-\frac{it}{\lambda})^{-r}$
Cauchy分布	$p(x) = rac{1}{\pi} rac{\lambda}{\lambda^2 + (x - \mu)^2} \ -\infty < x, \mu < \infty; \lambda > 0$	不存在	不存在	$\mathrm{e}^{i\mu t-\lambda t }$
纷布	$egin{align} p(x) &= rac{\Gamma\left(rac{n+1}{2} ight)}{\sqrt{n\pi}\Gamma\left(rac{n}{2} ight)}(1+rac{x^2}{n})^{-rac{n+1}{2}} \ &-\infty < x < \infty; n \in N^* \ \end{cases}$	0(n>1)	$rac{n}{n-2}(n>2)$	
Pareto分布	$p(x) = egin{cases} rA^r rac{1}{x^{r+1}}, & x \geq A \ 0, & x < A \end{cases}$ $r,A>0$	(r>1时存在)	(r > 2时存在)	
F分布	$p(x) = egin{cases} rac{\Gamma(rac{m+n}{2})}{\Gamma(rac{m}{2})\Gamma(rac{m}{2})\Gamma(rac{m}{2})} m^{rac{m}{2}} n^{rac{n}{2}} rac{x^{rac{m}{2}-1}}{(n+mx)^{rac{m+n}{2}}}, & x \geq 0 \ 0, & x < 0 \end{cases} \ n, n \in N^*$	$\frac{n}{n-2}(n>2)$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}(n>4)$	
β分布	$p(x) = egin{cases} rac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^{p-1} (1-x)^{q-1}, & 0 < x < 1 \ 0, & ext{ \sharp the } \end{cases}$	$\frac{p}{p+q}$	$\frac{pq}{(p+q)^2(p+q+1)}$	$\frac{\Gamma(p+q)}{\Gamma(p)} \sum_{k=0}^{\infty} \frac{\Gamma(p+k)(it)^k}{\Gamma(p+q+k)\Gamma(k+1)}$

概率模型	概率分布 $p(x)$	数学期望 Εξ	方差 Dξ	特征函数 $f(t)$
对数正态分布	$p(x) = egin{cases} rac{1}{\sqrt{2\pi} \sigma x} e^{rac{(0 n x - \phi)^2}{2 \sigma^2}}, & x > 0 \ 0, & x \leq 0 \end{cases}$ $lpha, \sigma > 0$	$\mathrm{e}^{\alpha+\frac{c^2}{2}}$	${\rm e}^{2\alpha+\sigma^2}({\rm e}^{\sigma^2}-1)$	
Weibull分布	$p(x) = egin{cases} lpha \lambda x^{lpha - 1} \mathrm{e}^{-\lambda x^{lpha}}, & x > 0 \ 0, & x \le 0 \end{cases}$ $\lambda, lpha > 0$	$\Gamma(rac{1}{lpha}+1)\lambda^{-rac{1}{lpha}}$	$\lambda^{-\frac{2}{\alpha}}(\Gamma(\tfrac{2}{\alpha}+1)-(\Gamma(\tfrac{1}{\alpha}+1))^2)$	
Rayleigh分布	$p(x) = egin{cases} x\mathrm{e}^{-rac{x^2}{2}}, & x \geq 0 \ 0, & x < 0 \end{cases}$	$\sqrt{\frac{\pi}{2}}$	$2-rac{\pi}{2}$	
Laplace分布	$egin{aligned} p(x) &= rac{1}{2lpha} \mathrm{e}^{-rac{\ x\ }{lpha}} \ &-\infty < x < \infty, lpha > 0 \end{aligned}$	0	$2lpha^2$	$rac{ilpha t}{1+lpha^2t^2}$