

Domaine Sciences et Technologies LICENCE 3 INFORMATIQUE

Algorithmique 2 : TD 6 Code UE : SIN5U03C

Année 2020-2021

Diviser pour régner, enveloppes convexes

Exercice 1 (Relations de récurrence)

Trouver les complexités asymptotiques induites par les relations de récurrence suivantes.

$$T(n) = 2T\left(\frac{n}{2}\right) + n^4$$

$$T(n) = 16T\left(\frac{n}{4}\right) + n^2$$

$$T(n) = 2T\left(\frac{n}{4}\right) + 1$$

$$T(n) = 2T\left(\frac{n}{4}\right) + n$$

$$T(n) = 2T\left(\frac{n}{4}\right) + n$$

$$T(n) = 2T\left(\frac{n}{4}\right) + n^2$$

$$T(n) = 2T\left(\frac{n}{4}\right) + n^2$$

Exercice 2 (Tri des complexités) Trier les fonctions $n^3 + \sqrt{n}$, $n^2 + \log n$, $n \log n$, 3^n , $\sqrt{n} + \log n$, 4^n suivant leur ordre de grandeur asymptotique : f sera avant g si $f \in O(g)$.

Exercice 3 (Nombre d'inversions dans un tableau d'entiers)

Une inversion dans un tableau d'entiers T indicé de 0 à n-1 est une paire d'indices $i, j \in [0, n-1]$ telle que i < j et T[i] > T[j]. On se propose de calculer le nombre d'inversions d'un tableau par différentes méthodes.

- (a) Quel est le nombre d'inversions dans [1, 5, 4, 3, 6, 2]?
- (b) Proposer un algorithme non-récursif et donner sa complexité.
- (c) Proposer un algorithme récursif tel qu'un appel sur un tableau de taille n fait au plus un appel récursif, sur un tableau de taille n-1. Analyser sa complexité.
- (d) Proposer un algorithme récursif tel que chaque appel sur un tableau de taille n fait au plus deux appels récursifs, sur des tableaux de taille $\frac{n}{2}$. À nouveau, analyser sa complexité.

Exercice 4 Un tableau à n elements contient des 1 suivis par des 0 (par example, $\{1,1,1,1,1,0,0,0,0,0,0,0\}$). Calculer le nombre des 0 dans ce tableau en $O(\log n)$ temps.

Exercice 5 (Sous-tableau maximum) Soit T un tableau de n nombres positifs ou négatifs (indicés de 1 à n). Nous cherchons à trouver un sous-tableau qui maximise la somme de ses éléments. De manière plus précise, nous cherchons 2 indices $i, j \in \{1, \ldots, n\}$, avec $i \leq j$, et tels que $s_{i,j}$ soit maximal:

$$s_{i,j} = T_i + T_{i+1} + \dots + T_j = \sum_{k=i}^{j} T_k$$

Par exemple si T=[-2,-4,3,-1,5,6,-7,-2,4,-3,2] alors le résultat est (3,6), car $s_{3,6}=[3,-1,5,6]$ est de somme 13, ce qui est le maximum possible. Dans tout ce qui suit on s'intéressera à la complexité en nombre d'additions

Une méthode naïve Décrire une méthode naïve (donc simple) pour résoudre ce problème. Quelle est sa complexité asymptotique (en nombre d'additions) en fonction de n?

Diviser pour régner Un première idée pour améliorer la méthode naïve consiste à découper le tableau en deux et à chercher la plus grande somme sur chacun des sous-tableaux. Nous pouvons le décrire ainsi :

 ${\tt SousTableauMaximum}(T,1..n) = \max\{{\tt SousTableauMaximum}(T,1..n/2-1),\\ {\tt SousTableauMaximum}(T,n/2+1..n),\\ {\tt SousTableauMaximumContenantLaCaseDuMilieu}(T,1..n)\}$

La fonction SousTableauMaximumContenantLaCaseDuMilieu doit trouver le sous-tableau (i, j) maximisant $s_{i,j}$, et tel que $i \leq n/2 \leq j$.

- (a) Écrire le pseudo code réalisant SousTableauMaximumContenantLaCaseDuMilieu. Quel est sa complexité asymptotique en nombre d'additions?
- (b) Donner l'équation de récurrence permettant de trouver la complexité totale de la recherche du sous-tableau maximum avec cette méthode. Cela ressemble à la complexité d'un algoritme connu, lequel? Résoudre cette équation pour trouver une formule asymptotique de la complexité de cet algorithme.

Programmation dynamique On va essayer de faire mieux en utilisant la programmation dynamique. Pour cela considérons :

$$M_i = \max_{j \ge i} s_{i,j} = \max\{s_{i,i}, s_{i,i+1}, \dots, s_{i,n}\}$$

 M_i représente donc la somme maximale que l'on peut atteindre pour un sous-tableau commençant à l'indice i.

- (a) Supposons que nous avons calculé le tableau $M = [M_1, M_2, \dots, M_n]$. Comment résoudre le problème du sous-tableau maximum de T en utilisant M?
- (b) Exprimer la valeur de M_i en fonction de $M_{i+1}, M_{i+2}, \ldots, M_n$ et de la valeur T_i .
- (c) En déduire un pseudocode permettant de calculer M_i pour tout i. Quelle est sa complexité?
- (d) Écrire l'algorithme complet permettant de calculer les indices (i, j) du sous-tableau maximum d'un tableau T, et donner sa complexité.
- (e) Que se passe-t-il si toutes les valeurs du tableau T sont négatives?

Exercice 6 (L'élément médian de deux tableaux triés) Etant données deux tableaux triés A[n] et B[n] de taille n chacun, trouver l'élément médian du tableau de taille 2n résultant de la fusion des tableaux A et B.

- (i) Proposer d'abord un algorithme en O(n).
- (ii) En utilisant la méthode diviser-pour-regner proposer et justifier un algorithme en $O(\log n)$.

Rappel : L'élément médian d'un tableau C[m] de taille m est l'élément de rang $\lfloor m/2 \rfloor$ du tableau trié à partir de C.

Exercice 7 Un tableau T à n éléments contient les éléments d'une suite arithmétique avec un élément manquant. En utilisant la méthode diviser-pour-regner proposer un algorithme en $O(\log n)$ pour trouver cet élément. Par example, si $T = \{2, 4, 6, 10, 12, 14, 16\}$, alors l'algorithme doit retourner 8.

Exercice 8 (Enveloppes convexes en \mathbb{R}^2) L'enveloppe convexe conv(P) d'un ensemble de points $P = \{p_1, p_2, \dots, p_n\}$ de \mathbb{R}^2 est le plus petit polygone convexe qui les contient tous. Les sommets de conv(P) sont les points extrémaux de P.

- (a) Quelle est la structure des données appropriée pour représenter conv(P)?
- (b) Comment trouver rapidement (en O(n)) un point extrémal de P?
- (c) Comment, en partant d'un point extrémal, construire l'intégralité de conv(P)? Quelle est la complexité de l'algorithme?

Exercice 9 (Enveloppes convexes en \mathbb{R}^2 par la méthode incrementale) Supposons qu'on souhaite construire $\operatorname{conv}(P)$ de façon incrémentale. Pour cela on trie les points de P par abscisse croissante. Supposons, sans perte de généralité, que p_1, p_2, \ldots, p_n est la liste triée des points de P. Soit $Q_i = \operatorname{conv}(p_1, \ldots, p_i)$.

- (a) Comment construire Q_{i+1} à partir de Q_i et p_{i+1} ?
- (b) Quelle est la complexité de construction de $conv(P) = Q_n$ en utilisant cette méthode?

Exercice 10 (Enveloppes convexes en \mathbb{R}^2 par diviser-pour-régner) Supposons maintenant qu'on souhaite construire $\operatorname{conv}(P)$ par la méthode diviser-pour-régner. Pour cela, de nouveau, on trie les points de P par abscisse croissante.

- (a) Comment utiliser le tri pour pouvoir séparer P en deux ensembles P_1 et P_2 de même taille en utilisant une droite verticale (c'est-à-dire par abscisse)?
- (b) Etant donnés $Q_1 = \text{conv}(P_1)$ et $Q_2 = \text{conv}(P_2)$, comment construire $\text{conv}(P) = \text{conv}(Q_1 \cup Q_2)$?
- (b) Décrire en pseudocode un algorithme diviser-pour-régner pour construire $\operatorname{conv}(P)$. Quelle est sa complexité?