

Пусть прямая ℓ_1 — ГМТ точек, равноудалённых от прямых AB и CD, а прямая ℓ_2 — ГМТ точек, равноудалённых от прямых BC и AD, причём $\ell_1 \cap \ell_2 = M$. Точки, симметричные B и C относительно ℓ_1 , обозначим через B_1 и C_1 соответственно. Ясно, что они попадут на прямые CD и AB соответственно. Точки, симметричные B и A относительно ℓ_2 , обозначим через B_2 и A_2 соответственно. Ясно, что они попадут на прямые AD и BC соответственно.

Очевидно, что $S_{ABCD}=S_{AC_1B_1D}$ ($\triangle BC_1B_1=\triangle B_1CB$). Из равенства треугольников AMB_2 и A_2MB следует, что $S_{B_2MD}+S_{A_2MC}=S_{AMD}+S_{MBC}=S_{AMD}+S_{MB_1C_1}$.

Пусть теперь $\angle DMB_1 = \beta_1, \ \angle DMB_2 = \beta_2, \ \angle AMC_1 = \alpha_1, \ \angle A_2MC = \alpha_2.$ Тогда $S_{AC_1B_1D} = S_{DMB_1} + S_{AMC_1} + S_{AMD} + S_{MB_1C_1} = S_{DMB_1} + S_{AMC_1} + S_{B_2MD} + S_{A_2MC} = \left(\frac{\sin\alpha_1 + \sin\alpha_2}{2}\right)AM \cdot MC + \left(\frac{\sin\beta_1 + \sin\beta_2}{2}\right)BM \cdot MD.$ Из равенств $S_{AC_1B_1D} = S_{ABCD} = AM \cdot MC + BM \cdot MD$, получаем, что $\angle \beta_1 = \angle \beta_2 = \angle \alpha_1 = \angle \alpha_2 = 90^\circ.$

Прямоугольные треугольники DMB_1 и DMB_2 равны по двум катетам, откуда следует, что MD – биссектриса угла $\angle ADC$. Следовательно, ABCD – описанный, ведь точка M равноудалена от всех его сторон. Из того, что DM является биссектрисой и $\angle DMC = 90^\circ$, следует, что $AD \parallel B_1C_1$, что равносильно вписанности четырёхугольника ABCD.