CS 6140 - Assignment # 2

2.1: Gradient Descent for Linear Regression

Housing Data:

Fo	old #	Train SSE	Train RMSE	Test SSE	Test RMSE			
Θ	1	9968.563143	4.675562	1648.580287	5.685517			
1	2	9692.914584	4.610465	2121.960398	6.450354			
1 2	3	10604.737575	4.822448	895.040299	4.189249			
3	4	10613.832752	4.824515	922.459235	4.252933			
4		10898.738818						
5		10437.696303						
		9877.987279						
		10269.091178						
		10461.740051						
9		10542.678651						
Ü		100 12 10 10001	41102011	301.121011	11.402111			
Trair	data	SSE Mean over	folds: 1033	6.79803343875	8			
	Train data SSE Mean over folds: 10336.798033438758 Train data SSE Standard Deviation over folds: 360.2456707924791							
Train data 33E Standard Deviation Over Tolds. 300.2430707924791								
Train data BMSE Moon over folds: 4 750022772524602								
Train data RMSE Mean over folds: 4.758833772534603								
Train data RMSE Standard Deviation over folds: 0.08250341530395643								
Took data 005 Name aven faller 4005 4004000700005								
Test data SSE Mean over folds: 1235.1381232766305								
Test data SSE Standard Deviation per fold: 444.2121612672998								
Test data RMSE Mean over folds: 4.858607889792944								
Test data RMSE Standard Deviation over folds: 0.8537681797169672								

Yacht Data:

	Fold #	Train SSE	Train RMSE	Test SSE	Test RMSE		
Θ	1	21469.008821	8.803718	2870.250317	9.622303		
1	2	22559.288012	9.024493	1685.392777	7.373433		
1 2 3	3	19452.806499	8.380140	4983.823073	12.679451		
	4	21615.391901	8.833680	2630.158245	9.211070		
4 5	5	21527.564495	8.815715	2682.377029	9.302058		
5		21828.616006			8.826378		
6	7	22448.582945	9.002323	1780.686351	7.579017		
7	8	21831.410905	8.877711	2443.278256	8.877805		
8	9	21697.791324	8.850501	2489.958761	8.962212		
9	10	22370.318333	8.954348	1836.179344	7.957168		
		SSE Mean over					
Train data SSE Standard Deviation over folds: 831.7483970141404							
Train data RMSE Mean over folds: 8.84197727460605							
Train data RMSE Standard Deviation over folds: 0.17022118869384428							
Test data SSE Mean over folds: 2581.7157568042367							
Test data SSE Standard Deviation per fold: 890.0606313434498							
Test data RMSE Mean over folds: 9.03908967738749							
Test data RMSE Standard Deviation over folds: 1.4087245953588408							

Concrete Data:

Fold #	Train SSE	Train RMSE	Test SSE	Test RMSE		
0 1	97111.419739	10.235175	13563.555580	11.475409		
1 2	99486.391868	10.359576	11086.657080	10.374847		
2 3	98161.787966	10.290379	12359.891945	10.954403		
	98543.396759	10.310362	12167.444883	10.868787		
4 5	101369.257575	10.457148	9163.922628	9.432398		
5 6	101118.334187	10.444198	9414.272006	9.560371		
	98208.179859	10.292810	12341.268714	10.946147		
	100228.950803	10.398165	10285.958980	9.993182		
	100873.125317	10.431527	9796.439483	9.752490		
9 10	97934.946712	10.278482	12632.931166	11.074738		
Train data SSE Mean over folds: 99303.5790785517 Train data SSE Standard Deviation over folds: 1437.837027436863						
Train data RMSE Mean over folds: 10.349782183526294						
Train data RMSE Standard Deviation over folds: 0.0749051403229818						
Test data SSE Mean over folds: 11281.234246645665 Test data SSE Standard Deviation per fold: 1459.802217419942						
Test data RMSE Mean over folds: 10.44327716630253 Test data RMSE Standard Deviation over folds: 0.6815483194335292						

3: Least Squares Regression using Normal Equations

Housing Data:

Comparing Normal Equation results to Gradient Descent:

This is data on the right is comparing the first fold of the 10-fold cross validation, one using Normal Equations to calculate the weights, and the other using Gradient Descent. As we can see, the RMSE for both training and testing data is only minorly improved by using the Normal Equation and the corresponding weights are very similar. This indicates to me that given enough iterations of Gradient Descent, the weights and RMSEs will approach, but may not reach, the weights and RMSEs of the Normal Equations. This pattern persists through all 10 folds, where the average train and test RMSE over 10 folds for Normal Equations is just slightly lower than for Gradient Descent.

Weights using Normal Equations:

[22.63118102]
[-1.07717059]
[1.12067134]
[0.04632201]
[0.67275866]
[-1.94811184]
[-2.07057184]
[-2.08883418]
[-2.0947837]
[-2.0947837]
[-3.56260497]]

Training SSE: 9324.297755950205
Training RMSE: 4.52194884918302
Testing SSE: 1822.40016895513
Testing RMSE: 5.977736749487971

```
Weights using Normal Equations:
[[22.63118102]
  -1.07717059]
   1.12067134]
   0.04632201
   0.67275866
   1.94811184]
   2.77057184]
  -0.14887108]
   -3.15812557<sup>°</sup>
   2.68606407
   2.05883418]
  -2.0947837
   0.79545757
 [-3.56260497]]
Testing SSE: 1822.40016895513
Testing RMSE: 5.977736749487971
Weights for normalized data using Gradient Descent:
[[22.53280989]
  -0.80163686
   0.62307637
   -0.41526375
   0.75728635
  -0.99648829
   3.25825463
  -0.29624198
  -2.18485004
   0.97996429]
  -0.56833437
  -1.87057759
   0.8272415
  -3.27530159]]
Training SSE: 9684.794292193466
Training RMSE: 4.608533820436656
Testing SSE: 1884.5230968438573
Testing RMSE: 6.078769058900674
```

Yacht Data:

This is data on the right is comparing the first fold of the 10-fold cross validation, one using Normal Equations to calculate the weights, and the other using Gradient Descent. Very similarly to the Housing data Normal Equation results, the RMSE values are slightly improved compared to when using Gradient Descent. The weights are also similar, although the some weights are very different (like w_3 and w_4) while the RMSEs are still comparable; this could indicate a feature which has little bearing on the target prediction. The pattern of w_3 and w_4 being significantly different between using Normal Equations vs Gradient descent persists throughout the 10-folds.

```
Weights using Normal Equations:
[[10.40931331]
  -0.0274754
  -0.27344196]
   0.98151392]
  [-1.00423309]
 [-1.30546709]
 [12.09823922]]
Training SSE: 21590.534996502898
Training RMSE: 8.828599530076406
Testing SSE: 2644.8462579041643
Testing RMSE: 9.23675382494927
Weights for normalized data using Gradient Descent:
[[10.32886419]
  -0.02920245]
  -0.54596422]
 [-0.11225574]
  [-0.08640988]
  [-0.23014175]
 [12.00059425]]
Training SSE: 21601.62175923975
Training RMSE: 8.830865986791885
Testing SSE: 2657.4929400384985
Testing RMSE: 9.258810869162373
```

5.1: Polynomial Regression using Normal Equations

Sinusoid Data:

Polynomial Degree	Train Mean SSE	Train RMSE	Test Mean SSE	Test RMSE
1	23.861100	4.884782	17.490095	4.182116
- 2	17.639727	4.199967	12.925608	3.595220
3	4.571774	2.138171	1.394250	1.180784
4	3.481763	1.865948	0.876392	0.936158
5	2.751402	1.658735	0.369769	0.608086
6	2.654626	1.629302	0.408871	0.639430
7	2.602123	1.613110	0.639689	0.799805
. 8	2.602072	1.613094	0.641988	0.801241
9	2.589897	1.609316	0.616145	0.784949
10	2.559947	1.599983	0.711988	0.843794
11	3.882091	1.970302	5.678733	2.383009
12	2.664466	1.632319	0.963790	0.981728
13	2.588912	1.609010	0.658033	0.811192
13	2.578215	1.605682	0.762671	0.873311
15	2.587556	1.608588	0.790020	0.888831

As we can see from this data, the best fit for the data is when using a Polynomial Degree of 5 because it has the lowest Testing Mean SSE.

Because there is only one feature, and because it is a Sin graph, it is not massively impacted by an increase in Polynomial Degree, unless you get to polynomial degree >20 which is generally not used anyhow.

5.1 cont...

Yacht Data:

Polynomial	Degree	Train RMSE	Test RMSE
	1	8.841490	9.011309
	2	4.071190	4.268255
	3	1.813776	1.939529
	4	2.233009	2.377268
	5	20.293248	20.228107
	6	47.464602	46.691472
	7	93.952099	88.502518

We can clearly see from this data that the best polynomial degree for this data is polynomial degree 3. The Train and Test RMSE is the lowest, and once the degree is >4, the error increases rapidly.

7: Programming Ridge Regression

Data for Polynomial degree 5 and 9 are below, and the graphs for both are immediately following on the next page.

Pol	ynomial Degree:	5		Pol	ynomial Degree:	9	
	Lambda Values	Train RMSE	Test RMSE		Lambda Values	Train RMSE	Test RMSE
Θ	0.0	1.651230	1.738041	Θ	0.0	1.598622	1.760834
1	0.2	1.990620	2.066267	1	0.2	1.799556	1.850490
2	0.4	2.220797	2.294594	2	0.4	2.014822	2.061146
3	0.6	2.362604	2.432205	3	0.6	2.201663	2.254777
4	0.8	2.465250	2.529510	4	0.8	2.356686	2.416621
5	1.0	2.547827	2.606486	5	1.0	2.485093	2.550232
6	1.2	2.618714	2.671937	6	1.2	2.592499	2.661315
7	1.4	2.682030	2.730173	7	1.4	2.683478	2.754766
8	1.6	2.739994	2.783489	8	1.6	2.761522	2.834373
9	1.8	2.793890	2.833185	9	1.8	2.829267	2.902998
10	2.0	2.844511	2.880042	10	2.0	2.888711	2.962808
11	2.2	2.892376	2.924549	11	2.2	2.941384	3.015455
12	2.4	2.937844	2.967034	12	2.4	2.988471	3.062217
13	2.6	2.981178	3.007722	13	2.6	3.030899	3.104092
14	2.8	3.022577	3.046777	14	2.8	3.069406	3.141868
15	3.0	3.062199	3.084327	15	3.0	3.104583	3.176177
16	3.2	3.100177	3.120472	16	3.2	3.136909	3.207528
17	3.4	3.136622	3.155297	17	3.4	3.166774	3.236339
18	3.6	3.171631	3.188875	18	3.6	3.194504	3.262951
19	3.8	3.205291	3.221270	19	3.8	3.220365	3.287649
20	4.0	3.237678	3.252542	20	4.0	3.244586	3.310671
21	4.2	3.268864	3.282742	21	4.2	3.267354	3.332217
22	4.4	3.298913	3.311921	22	4.4	3.288834	3.352457
23	4.6	3.327885	3.340125	23	4.6	3.309162	3.371535
24	4.8	3.355834	3.367399	24	4.8	3.328457	3.389577
25	5.0	3.382813	3.393783	25	5.0	3.346823	3.406689
26	5.2	3.408870	3.419316	26	5.2	3.364349	3.422963
27	5.4	3.434050	3.444035	27	5.4	3.381112	3.438481
28	5.6	3.458393	3.467975	28	5.6	3.397181	3.453314
29	5.8	3.481942	3.491170	29	5.8	3.412616	3.467522
30	6.0	3.504731	3.513650	30	6.0	3.427468	3.481161
31	6.2	3.526797	3.535447	31	6.2	3.441787	3.494279
32	6.4	3.548171	3.556589	32	6.4	3.455612	3.506918
33	6.6	3.568886	3.577102	33	6.6	3.468982	3.519117
34	6.8	3.588971	3.597012	34	6.8	3.481929	3.530910
35	7.0	3.608452	3.616345	35	7.0	3.494483	3.542326
36	7.2	3.627357	3.635123	36	7.2	3.506673	3.553393
37	7.4	3.645710	3.653369	37	7.4	3.518520	3.564137
38	7.6	3.663533	3.671104	38	7.6	3.530049	3.574578
39	7.8	3.680850	3.688348	39	7.8	3.541277	3.584737
40	8.0	3.697681	3.705119	40	8.0	3.552225	3.594632
41	8.2	3.714047	3.721438	41	8.2	3.562907	3.604280
42	8.4	3.729965	3.737319	42	8.4	3.573340	3.613695
43	8.6	3.745453	3.752781	43	8.6	3.583536	3.622891
44	8.8	3.760529	3.767840	44	8.8	3.593509	3.631882
45	9.0	3.775209	3.782509	45	9.0	3.603270	3.640677
46	9.2	3.789508	3.796804	46	9.2	3.612830	3.649288
47	9.4	3.803440	3.810737	47	9.4	3.622199	3.657724
48	9.6	3.817019	3.824323	48	9.6	3.631385	3.665995
49	9.8	3.830258	3.837574	49	9.8	3.640398	3.674108
50	10.0	3.843171	3.850502	50	10.0	3.649244	3.682070
							

Graph Below is the same model implementation but using lambda values between 0 and 0.0125. It is referenced in 7.1 Interpretation below:

7.1: Interpretation

Graphing the test and train RMSE at the values of lambda (between 0 and 10 at .2 intervals) given by the exercise looks like at all values of lambda, the RMSE increases, leading to worse predictions using test data. This is very unexpected as we would expect the RMSE to decrease before increasing and that there would be an optimal value of lambda which improves the testing RMSE.

Because of this unusual result, I ran the model again, but this time using lambda values between 0 and 0.0125 at both polynomial degree 5 and 9. The result in this case was far more convincing. At polynomial degree 5, the mean RMSE value for test data decreases until lambda \approx 0.003 (by less than 0.001 RMSE), before increasing again. Similarly, at polynomial degree 9, the mean RMSE value for test data decreases until lambda \approx 0.0095 before increasing again.

For both synthetic datasets, we can see that as the value of lambda increases, the model complexity decreases and reduces overfitting, but once the optimal lambda threshold is crossed, it can cause significant underfitting which can be seen in this case due to increasing RMSE and leveling off at around a limit value of 4. which is essentially making random predictions unrelated to the training data.

Comparing the two synthetic datasets, we can see that the optimal lambda value at the higher, less-optimal polynomial degree of 9 is impacted by reducing the RMSE by about 0.5. The polynomial degree of 5, is much less impacted and at the optimal lambda the RMSE is only decreased by about 0.0005. Thus we can make an obvious conclusion that the polynomial degree used to fit the data has far more of an impact on the RMSE than the lambda value.

Another benefit of using ridge regression, is that, if ANY value of lambda is used (although an unnecessarily high value will still be very underfit) the RMSE is limited regardless of polynomial degree, even absurdly high polynomial degrees like 100. This demonstrates the ability of ridge regression to prevent overfitting in a model versus just the linear regression (aka lambda = 0).