BROUILLON - CANDIDAT - NOMBRE DE SOUS-ENSEMBLES D'UN ENSEMBLE FINI UNE PREUVE TRÈS ÉLÉMENTAIRE.

CHRISTOPHE BAL

Document, avec son source L^AT_EX, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Voici comment expliquer rapidement à un lycéen 1 qu'un ensemble $\mathscr E$ de n éléments permet de fabriquer 2^n sous-ensembles ayant de 0 à n éléments. Sans entrer dans le détail d'une récurrence, ni même faire appel à la notion de suite géométrique, voici comment faire.

- (1) \emptyset est le seul ensemble à 0 élément. Son seul sous-ensemble est \emptyset . On a bien $1=2^{\circ}$.
- (2) Soit $\mathscr{E} = \{ \spadesuit \}$ un ensemble avec un seul élément. Cet ensemble contient 2 sous-ensembles, à savoir \emptyset et $\{ \spadesuit \}$. On a bien $2 = 2^1$.
- (3) Soit $\mathscr{E} = \{ \spadesuit_1; \spadesuit_2 \}$ un ensemble avec deux éléments. Cet ensemble contient les $4 = 2^2$ sous-ensembles \emptyset , $\{ \spadesuit_1 \}$, $\{ \spadesuit_2 \}$ et $\{ \spadesuit_1; \spadesuit_2 \}$. Le point clé est de noter que $\{ \spadesuit_2 \} = \emptyset \cup \{ \spadesuit_2 \}$ et $\{ \spadesuit_1; \spadesuit_2 \} = \{ \spadesuit_1 \} \cup \{ \spadesuit_2 \}$.
- (4) Soit maintenant $\mathscr{E} = \{ \spadesuit_1; \dots; \spadesuit_{n+1} \}$ un ensemble avec (n+1) éléments. Les sous-ensembles de \mathscr{E} se classent en deux catégories.
 - (a) Catégorie 1 : les sous-ensembles ne contenant pas \spadesuit_{n+1} . Il y en a autant que de sous-ensembles de $\mathscr{F} = \{ \spadesuit_1; \ldots; \spadesuit_n \}$.
 - (b) Catégorie 2 : les sous-ensembles contenant \spadesuit_{n+1} . De tels sous-ensembles s'obtiennent à partir de sous-ensembles de \mathscr{F} en leur adjoignant \spadesuit_{n+1} . Ceci démontre qu'il y a autant de sous-ensembles de catégorie 2 que de sous-ensembles de \mathscr{F} .

Donc le nombre de sous-ensembles de $\mathscr E$ est deux fois plus grand que celui de $\mathscr F$.

(5) Finalement de proche en proche 2 nous avons sans effort qu'un ensemble $\mathscr E$ de n éléments permet de fabriquer 2^n sous-ensembles ayant de 0 à n éléments.

Date: 19 Octobre 2020 - 27 Octobre 2020.

^{1.} Bien entendu on adaptera le formalisme pour rendre digeste les principes élémentaires utilisés et surtout faire apparaître la formule sans la parachuter!

^{2.} En toute rigueur, il faudrait soit faire une récurrence, soit s'appuyer sur la notion de suite géométrique.