

Wojciech Barczyński [Head of Engineering] SMACC.io | Hypatos.ai

Wojtek Barczynski

- Software Developer
- System Engineer
- Head of Engineering at hypatos.ai and SMACC.io

Hypatos / SMACC.io

- Fintech MachineLearing
- Data capturing from document
- Validation
- Automation
- Deep learning

Hypatos / SMACC.io

CloudNative: Prometheus, Grafana, Fluentd, Grafana Loki

Machine Learning

Big Companies

Machine Learning

ML pipeline

Look a lot like
Continuous Integration / Deployment

ML pipeline

What did we lean from XX years of CD/CI?

What we leant from XX years of CD/CI?

Nobody likes it

- Easy the pain
- Unified experience
- One to rule them all
- Low bar; High ceiling

Focus

- Scalability
- Composition
- Portability

Focus

Enable Dev(ML)ops culture

DEMO

Heart: pipelines

Gears: component

User Experience: notebook

User Experience: notebook

```
View Run Kernel Tabs Settings Help
                                5_ Terminal 1
                                                       --server-name, tt_server_name,
                                164
                                165
                                                 '--pvc-name', pvc_name,
                  Last Modified
                                166
                                167
                                            pvolumes=pvolumes
data
                   13 hours ago
                                168
pipelines
                   13 hours ago
                                169
                                170
                   13 hours ago
📌 tfx-chicago..
                                171 @dsl.pipeline(
tfx-chicago...
                   13 hours ago
                                        name='Taxi Cab on-prem',
                                173
                                        description='Example pipeline that does classification with model analysis based on a
                                174 )
                                     def taxi_cab_classification(
                                175
                                            rok_url,
                                176
                                177
                                            pvc_size='1Gi',
                                            project='tfx-taxi-pipeline-on-prem',
                                178
                                            column_names='taxi-cab-classification/column-names.json',
                                179
                                            key_columns='trip_start_timestamp',
                                180
                                            train='taxi-cab-classification/train.csv',
                                181
                                            evaluation='taxi-cab-classification/eval.csv',
                                182
                                            mode='local',
                                183
                                            preprocess_module='taxi-cab-classification/preprocessing.py',
                                184
                                185
                                            learning_rate=0.1,
                                186
                                            hidden_layer_size=1500,
                                187
                                            steps=3000,
                                188
                                            analyze_slice_column='trip_start_hour'):
                                189
                                        tf_server_name = 'taxi-cab-classification-model-{{workflow.name}}'
                                190
                                191
                                192
                                        vop = dsl.VolumeOp(
                                193
                                            name='create-volume',
                                            resource_name='taxi-cab-data',
                                194
                                            annotations={"rok/origin": rok_url},
                                195
                                196
                                            size=pvc_size
                                197
                                198
                                199
                                        validation = dataflow_tf_data_validation_op(
                                            '/mnt/%s' % train,
                                200
                                            '/mnt/%s' % evaluation,
                                201
                                            '/mnt/%s' % column_names,
                                202
                                            key_columns,
                                203
                                204
                                            project,
                                            mode,
                                205
                                            '/mnt',
                                206
```

Python SDK

• Let data scientist and engineers work together

Kubeflow User story

YAML vs Python SDK

```
apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
   generateName: charts-of-accounts-
spec:
   arguments:
   parameters:
        - name: aws-cli-image
        value: "pbsmacc/aws-cli:latest"
        - name: prepare-dataset-image
        value: "smaccio/accounting-charts-prepare-dataset:v0.2
        - name: trainer-image
        value: "smaccio/accounting-charts-classifier:v0.2.0"
        - name: minio-client-image
```

Python SDK

```
@dsl.pipeline(
    name='Taxi Cab on-prem',
    description='Exar.'
)

def taxi_cab_classification(
    training = tf_train_op(
        preprocess.output,
        validation.outputs['schema'],
        learning_rate,
        hidden_layer_size,
        steps,
        'tips',
        '/mnt/%s' % preprocess_module,
        '/mnt',
```

Python SDK

More Python: Fairing SDK

- All power of kubeflow from your local jupyter notebook
- For hybird cloud

https://github.com/kubeflow/fairing

User Experience: Tensorboard

Tracking: Artifacts

Emitted by steps as metadata

Tracking: Artifacts

- Emitted by steps as metadata
- mlpipeline-uimetadata.json

Focus on Data Scientist

- Self-service
- Provide familiar user experience and tools
- Share the knowledge
- Hide the engineering complexity

Batteries Included

Scale trainings

- TFJobs
- MPI Training
- PyTorch Training
- MXNet Training

Machine Learning

- How to serve the model
- Operating service
- Observability, e.g., metric collection

- Operating service
- Observability, e.g., metric collection
- Deployment strategies

•

One CloudNative project comes to mind - Istio.

Serving

- ML Model servers
- seldon.io
- kfserving

ML Model Servers

- TFserving
- PyTorch Serving
- •

ML Model Servers

- Minimum configuration
- Serve a given trained ML model

with Istio integration if needed

Seldon.io

More complex use cases

seldon.io

Istio

- Observability Grafana
- Deployment strategies

Istio

• All served models are available with Istio

kfserving

kfserving

```
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "KFService"
metadata:
  name: "xgboost-iris"
spec:
  default:
    predictor:
       xgboost:
       storageUri: "gs://kfserving-samples/models/xgboost/iri
```

Architecture

Architecture

Libraries and CLIs - Focus on end users		
Arena kfctl kubectl fairing		IAM
Systems - Combine multiple services		
katib pipelines Model DB		0
kube bench notebooks TFX	Metadata	rchestration
Low Level APIs / Services (single function)	data	ration
TFJob PyTorch Pipelines CR		
Argo Jupyter CR MPI CR		Scheduling
Seldon CR Study Job Job		Jling
Developed By Kubeflow Outside Kubeflow		
* Not all components shown		

What did we decided?

- Large project with many moving parts
- Take bits that we need and keep delivering
- Invest more time into observability

We do not have such a large team

What did we pick?

- 1. Mostly Model + Code as Software Components
- 2. Automation project:
 - Argo in YAML
 - tfserving
 - tensorflow_transform.beam

Deployment?

- Git-driven deployment
- Version the model and the code

we might use argo here as well

Observability

- Prometheus + Grafana
- Dedicated metric collector

Keep an eye on kubeflow

- Enterprise client projects on-prem
- Growing team

Summary

- Enable Dev(ML)Ops culture
- Hide the engineering complexity

Summary

- The learning part is the most compelling
- and self-service

QUESTIONS?

Big thanks to Piotr Brzostowski and whole BER+WAW team.

BACKUP

Development

- How to handover to engineering?
- How did I trained the model X?
- Lineage and Metadata

Operation

- How the model performs in production
- Is it better?
- Which data should I add to the next training?
- Low performance → roll back
- Keep the TCO reasonable

Operation

- Observability: Prometheus, Grafana
- A/B testing: service mesh
- Serving model?