Stability Analysis of Switched DC-DC Boost Converters for Integrated Circuits

Kevin Fronczak

Advisor: Dr. Robert Bowman

Overview

Switched DC-DC Converters

- Why does stability matter?
- How does the architecture affect instability?
- How does component variability affect stability?
- What methods are used to minimize instability?
- How can stability be measured?

Switched Converter Block Diagram

Importance of Stability

Switched DC-DC Converters

- Supply oscillations can couple into signal paths
 - Sensitive circuits suffer
- Unstable supply = inaccurate supply
- Inaccurate supply = performance degradation

Switched Converter Block Diagram

Importance of Stability

Display Driver Block Diagram

Importance of Stability

Boost Converter Architecture

- Feedback loop
 - Chance of oscillation at output

Causes of Instability

Operating Modes

- Operating Mode
 - CCM (Continuous Conduction Mode)
 - DCM (Discontinuous Conduction Mode)

Causes of Instability

Small-Signal Modeling

Average PWM Switch

Vorperian (1990)

Continuous Mode

Discontinuous Mode

Causes of Instability (CCM)

Bode Plot for Continuous Mode

- CCM has conjugate pole
 - LC Resonance

Causes of Instability (CCM)

Input Step Response for Continuous Mode

Causes of Instability (DCM)

Bode Plot for Discontinuous Mode

DCM Appears 1st order at low frequencies

Causes of Instability (DCM)

Change in Gain for Discontinuous Mode

Causes of Instability (DCM)

Input Step Response for Discontinuous Mode

Parasitic Component Effects

Non-ideal Converter Schematic

- Inductor has series resistance
 - Lowers height of resonant peak (CCM)
- Capacitor has series resistance
 - Adds high-frequency zero
 - Less attenuation at frequencies > Fs

Parasitic Component Effects

Continuous Mode: Expected Behavior

$$G_{d0} = \frac{V_O}{1 - D} \frac{R(1 - D)^2 - r_L}{R(1 - D)^2 + r_L}$$

$$Q = \sqrt{LC} \frac{\sqrt{(R+r_C)(R(1-D)^2 + r_L)}}{Rr_C C(1-D)^2 + Rr_L C + r_C r_L C + L}$$

Parasitic Effects (CCM)

Bode Plot for Continuous Mode

Bode Plot

Parasitic Effects (DCM)

Bode Plot for Discontinuous Mode

Bode Plot

Component Variation

Effect on Phase Margin

- Input Voltage, Load Current, Inductance
 - Vo/Vs = [3.3, 2, 1.4]
 - Io = [6 mA, 30 mA, 54 mA] (DCM); [150 mA, 300 mA, 450 mA] (CCM)
 - L = [15 uH, 20 uH, 25 uH] (DCM); [170 uH, 200 uH, 230 uH] (CCM)

Phase Margin for Corners of DCM Boost

Phase Margin for Corners of CCM Boost

^{*}Note – all values calculated for converter WITH control

Component Variation

Effect on DC-Gain

- Input Voltage, Load Current, Inductance
 - Vo/Vs = [3.3, 2, 1.4]
 - Io = [6 mA, 30 mA, 54 mA] (DCM); [150 mA, 300 mA, 450 mA] (CCM)
 - L = [15 uH, 20 uH, 25 uH] (DCM); [170 uH, 200 uH, 230 uH] (CCM)

^{*}Note – all values calculated for converter WITH control

Control of Converters

Error Amplifier Requirements

- Control needs to help provide stable output
 - Requires feedback loop → source of instability
 - Needs to minimize output error (large gain)
 - Needs to minimize instability (large phase margin)
 - Needs to maximize speed (large bandwidth)
- Op Amps/OTAs
 - Op Amps
 - Voltage buffer → Slows down performance
 - Can drive low impedances
 - OTAs
 - Can't drive resistive loads
 - Fast → does not have voltage buffer (response limited by load capacitance)

Control of Converters (CCM)

Proportial-Integral-Derivative Architecture

Derivative

- PID Required for CCM
 - Two poles, two zeros

Minimizes conjugate pair effect

Control of Converters (CCM)

Bode Plot and Step Response

- Difficult to achieve all three requirements
 - Gain, Phase Margin, Bandwidth

Control of Converters (DCM)

Lag Controller Architecture

- Lag Controller suitable for DCM
 - Zero to cancel converter Pole
 - Pole to attenuate switching noise

$$\frac{V_c}{V_o} = K \frac{sR_ZC_Z + 1}{s^2R_OR_ZC_CC_Z + sR_OC_Z + 1}$$

$$K = g_m R_O \frac{R_B}{R_T + R_B}$$

Control of Converters (DCM)

Bode Plot and Step Response

- Easier control compared to CCM
- More stable with fewer components

Stability Measurement Requirements and Possibilities

- Cannot "break the loop"
 - High loop gain
- Observe step response
- Superimpose voltage (Middlebrook's Method)
- Cross-correlation

Load Step Response

- Converter reaches steady state
 - Step the load current
- Composite Response of System
 - No pole/zero information

Overdamped Response

Underdamped Response

Middlebrook's Method (1975)

Conventional Approach

- Voltage Injection

Middlebrook's Method

- Superposition

Implementation of Middlebrook's Method

- Can measure with Network Analyzer
- Bode plot can be compared to simulations
- Gives information on overall stability
 - Pole/Zero migration can be directly observed

Cross Correlation with White Noise

- Inject white noise in control signal path
 - White noise has autocorrelation of delta function
 - Yields impulse response
 - FFT yield frequency response

(1)
$$R_{xy}[m] = \sum_{n=1}^{\infty} h[n] R_{xx}[m-n] + R_{xv}[m]$$

$$(2) R_{xx}[m] = \delta[m] \longrightarrow (3) R_{xy}[m] = h[m]$$

"White Noise" Circuit Implementation

- PRBS (Pseudo-Random Binary Sequence)
 - Periodic noise
 - Cross-correlation can only happen within one period
 - Period can be made larger by adding more bits to sequence
 - PRBS amplitude must be small percentage of control signal
 - Can be superimposed over Vref

PRBS Autocorrelation

- Single period PRBS (a) has small autocorrelation value
 - Ideally infinite
- Multi-period PRBS (b) has larger value
 - Can sample the converter response multiple times
 - Average of results gives more accurate frequency response

Frequency Response Method Comparison

- Frequency Response gives most information on circuit
 - Can directly compare bode plot to simulations
 - Can see effect of resonance (for CCM)
 - Can see effect of filter capacitor ESR zero
- Methods
 - Middlebrook's Method
 - + Simple
 - Requires Manual Capture
 - Cross-correlation (PRBS)
 - + Allows for Built-In Self-Test (BIST)
 - Adds complexity

Summary

- DCM = Easier to Control
- Controller Design = Simple for DCM, Complex for CCM
- Frequency Response = Vital in determining stability
 - Two techniques: Middlebrook, Cross Correlation

Future Work

- Controller design via optimization algorithms
 - Genetic Algorithms, Particle Swarm Optimization
- More in-depth exploration of PRBS
 - On-chip Supply Testing

Thank You

Comments/Questions?