1

EE5609: Matrix Theory Assignment-11

Major Saurabh Joshi MTech Artificial Intelligence AI20MTECH13002

Abstract

This document solves problem on Eigen values and properties.

Download all solutions from

https://github.com/saurabh13002/EE5609/tree/master/Assignment11

1 Problem

Let **A** be a real symmetric matrix and $\mathbf{B} = \mathbf{I} + i\mathbf{A}$, where $i^2 = -1$. Then

- 1. **B** is invertible if and only if **A** is invertible.
- 2. All eigenvalues of **B** are necessarily real.
- 3. $\mathbf{B} \mathbf{I}$ is necessarily invertible.
- 4. **B** is necessarily invertible.

2 solution

Given	Let A be a real symmetric matrix, and $\mathbf{B} = \mathbf{I} + i\mathbf{A}$, where $i^2 = -1$.
To find	The correct option.
Proof	Let us assume, λ be the eigen value of \mathbf{A} , as \mathbf{A} is symmetric matrix. $\Rightarrow \lambda \in \mathbb{R}$ Then, $i\lambda$ is an eigen value of $i\mathbf{A}$ $\Rightarrow 1 + i\lambda$ is an eigen value of $\mathbf{I} + i\mathbf{A}$

	Given, $\mathbf{B} = \mathbf{I} + i\mathbf{A}$
	Therefore, $1 + i\lambda$ is an eigen value of B .
	Hence, 0 can not be the eigen value of B
Property : det B is equals to product of eigen values of B	\implies det $\mathbf{B} \neq 0$ Therefore, \mathbf{B} is necessarily invertible.
Correct option	The correct option is 4 .