

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 04091138 A

(43) Date of publication of application: 24.03.92

(51) Int. Cl C08J 5/18

(21) Application number: 02208835

(71) Applicant: FUJIMORI KOGYO KK

(22) Date of filing: 08.08.90

(72) Inventor: ICHIKAWA RINJIRO ARAI KOZO KAMEDA TAKAO

(54) PRODUCTION OF KERATIN FILM

(57) Abstract:

PURPOSE: To produce a high-quality keratin film having suppressed hydrolysis of wool protein by dissolving wool in thioglycollic acid, making the solution into a film, drying and then cleaning the prepared film with water under an unheated state.

CONSTITUTION: Wool is dissolved in 100% thioghycollic acid into 0.1-30wt.% solution at 40-90°C, optionally an

insoluble content is removed by a means such as filtration, the solution is made into a film, which is dried, for example, under a little reduced pressure at 40-90°C for 1-2 hours to vaporize thioglycollic acid, the prepared film is washed with water under an unheated state to give a high-quality keratin film having suppressed hydrolysis of wool protein, high molecular weight and high strength free from deterioration.

COPYRIGHT: (C)1992, JPO&Japio

⑲ 日本国特許庁(JP)

① 特許出願公開

② 公開特許公報(A) 平4-91138

⑤Int.Cl. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)3月24日

C 08 J 5/18

CFJ

8517-4F

審査請求 未請求 請求項の数 1 (全3頁)

60発明の名称

ケラチンフイルムの製造方法

②特 願 平2-208835

②出 願 平2(1990)8月6日

特許法第30条第 1 項適用 1990年2月7日 CHRISTCHURCH NEW ZEALAND 発行の ABSTRACTS「THE 8th INTERNATIONAL WOOL TEXTILE RESEARCH CONFERENCE」に発表

@発明者

市川

林次郎

東京都中央区日本橋馬喰町1丁目4番16号 藤森工業株式

会社内

饱発 明 者 新

f 井 幸

幸三隆夫

群馬県桐生市相生町1-498-13

@発 明 者

群馬県桐生市東久方町3-4-25

⑪出 顋 人 藤森工業株式会社

東京都中央区日本橋馬喰町1丁目4番16号

個代 理 人 弁理士 小島 隆司

明 細 書

1. 発明の名称

ケラチンフィルムの製造方法

2. 特許請求の範囲

1. 羊毛を100%チオグリコール酸に溶解し、 これを成膜し、乾燥してチオグリコール酸を揮発 させた後、得られたフィルムを非加熱下に水で洗 浄してフィルム中の残存チオグリコール酸を除去 することを特徴とするケラチンフィルムの製造方 法。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、羊毛からケラチンフィルムを製造する方法に関する。

しかし、羊毛繊維をこのようにチオグリコール

酸の水溶液で還元処理すると、ジサルファイド結合のみではなくアミド結合をも開裂させ、羊毛蛋白質の加水分解が進行するため、被処理物がかなり低分子化し、これから得られるフィルム等の強度などを損なうことが生じる。

このような点から、従来チオグリコール酸ナトリウムの水溶液を酸化剤で処理して一部がジチオグリコール酸ナトリウム水溶液で羽毛類を処理したり、特関昭53-119900号公報)、得られたケラチン膜に脂肪族多価アルコールを含有公公でであるが、羊毛をより簡単に処理しているが、羊毛をより簡単に処理して方法が要領される。

[課題を解決するための手段及び作用]

本発明者らは、上記要望に応えるため 般意検討 を行った結果、チオグリコール酸を水に溶解した 水溶液として使用するのではなく、チオグリコー 従って、本発明は、羊毛を100%チオグリコール酸に溶解し、これを成膜し、乾燥してチオグリコール酸を揮散させた後、得られたフィルムを非加熱下に水で洗浄してフィルム中の残存チオグリコール酸を除去することを特徴とするケラチン

フィルムの製造方法を提供する。

以下、本発明につき更に詳しく説明する。

本発明は出発原料として羊毛を使用するものであるが、羊毛の種類は特に制限されず、例えばリンカーン種羊毛、メリノ種羊毛などを用いることができる。また、原料としてくず羊毛を用いることにより、くず羊毛の有効利用を計ることができる。

本発明においては、かかる羊毛原料をまずチオ グリコール酸に溶解する。

ここで用いるチオグリコール酸は実質的に水を含まない100%濃度のもので、水を含むチオグリコール酸を使用すると羊毛蛋白質の加水分解、 劣化が速むため、好ましくない。

なお、チオグリコール酸に羊毛を溶解させる場合、チオグリコール酸を加熱することができるが、加熱温度は40~90℃程度とすることが好ましい。また、チオグリコール酸中の羊毛濃度は種々選定されるが、通常0.1~30重量%の範囲である。

チオグリコール酸に羊毛を溶解した後は、必要により汚過等の手段で不溶分を除去し、次いで成膜する。成膜方法としては公知の方法を採用でき、例えばテフロン、ポリエチレンテレフタレート等の基材に羊毛を溶解したチオグリコール酸溶液を塗布するなどの方法を採用することができる。

このように成膜した後、乾燥してチオグリコール酸を揮発させ、フィルムを得る。この場合、乾燥条件は適宜選定され、例えば若干の減圧下に40~90℃で1~20時間乾燥するという条件を採用することができる。なお、このように高温、長時間の乾燥を施しても、チオグリコール酸は水を含んでいないため、羊毛蛋白質の加水分解が避けられる。

次に、乾燥して得られたフィルムは、なおチオグリコール酸が残存しているため、水で洗浄し、チオグリコール酸を除去する。この「合、水の洗浄は、加熱下に行なうと加水分解が促進され、フィルムの劣化、低分子化が進むため、非加熱下、即ち宝温下に行うものであり、これによって加水

分解が抑制され、フィルムの劣化が可及的に防止される。なお、宝温以下の冷水による洗浄も、加水分解が生じ難いので、勿論採用し得る。洗浄は水にフィルムを浸漬することによって行ってもよく、或いは流水下に洗浄するようにしてもよい。洗浄時間は特に制限されないが、通常數分~数時間程度である。

なお、水で洗浄したフィルムは、常法により乾燥することができる。

〔発明の効果〕

本発明によれば、水を含まないチオグリコールを含まないチオグルより、水を含まないチオグリより、砂糖を羊毛の溶解剤として使用したいでは、温、解が、温、解が、自動の条件を採用しても羊毛蛋白質の加水分には、水のに、大きの大きの大きの大きの大きの大きの大きの大きのカインフェルムが製造される。使って、高分子とフィルムが製造される。は、高品質のケラチンフィルムが製造される。

以下、実施例と実験例を示し、本発明を更に具

体的に説明する。

(実施例)

メリノ種羊毛繊維を60℃,24時間でチオグリコール酸に5%濃度となるように溶解した後、不溶分(最初の羊毛量の約1%)を沪過により除去した。次いで、ガラス板上に成膜し、80~90℃で20時間乾燥し、得られたフィルムを室温下の水中に一夜浸漬し、これを乾燥して、約10μm厚さの透明のケラチンフィルムを得た。

得られたフィルムの25℃水中における初期弾性率は2.5×10° N / m ²、引っ張り強さは7.3×10° N / m ²、引っ張り歪は3.3%であった。また、フィルムの架橋結合密度は0.41m m o 1 / c m ²であり、成膜、乾燥時にかなりの分子間架橋結合が生じていることが認められた。

〔実験例1〕

羊毛蛋白質をチオグリコール酸に1.00 g/d L及び0.50g/d L濃度で80℃において約3時間で溶解させた。

間、後者は120℃で1時間乾燥した。

その結果、100%のチオグリコール酸を使用したものは強度も強く、フィルムとして使用耐液を使用したものであったが、チオグリコール酸水溶液を使用したものは、テフロン板上で強度を保つ。 かかなかった。これは受けていると思れるのに対し、手オグリコール酸水溶液を用いると、羊毛蛋白の下酸の下で加水分解反応が生じ、重合度がかコールを保でいると思われるのに対し、チオグリコールのの使用では、水が存在しないことから解しているのでが抑制され、羊毛自体の分子量を保持しているためと考える。

4. 図面の簡単な説明

図面は羊毛を溶解したチオグリコール酸溶液の 経時的な粘度変化を示すグラフである。 次に、得られた榕被を80℃で更に所定時間放 置したときの粘度変化を調べた。結果を図面に示 す

図面の結果より、羊毛を溶解したチオグリコール酸溶液の粘度は最初の10時間程度までは低下するが、その後は粘度低下がなく、むしろ若干粘度上昇することが認められる。この場合、初期の粘度低下はジサルファイド結合の還元であり、その後の粘度上昇は蛋白質分子の凝集に帰因するものと考えられ、チオグリコール酸が80℃と向のと考えられ、チオグリコール酸が80℃と向のと考えられ、チオグリコール酸が80℃と向のと考えられ、チオグリコール酸が80℃と可能が配

〔実験例2〕

羊毛蛋白質をチオグリコール酸(100%濃度、 14.3モル)に10%濃度で溶解させたもの及び羊毛蛋白質をチオグリコール酸水溶液(チオグリコール酸6モル)に5%濃度で溶解させたもの (いずれも溶解条件は60℃、24時間)をそれ ぞれテフロン板上に成膜し、前者は80℃で1時

