ONU: 1 let the vertices are A (3,5,-4) B(-1,1,2) c(-5,5,2)

D'R's of Side A13 au: -1-3, 1-5, 2+4 = -4, -4, 6

Divisy Side AB are = $\frac{-4}{\sqrt{16+16+36}}$, $\frac{6}{\sqrt{16+16+36}}$, $\frac{6}{\sqrt{16+16+36}}$

 $= \frac{-\frac{14}{\sqrt{68}}}{\sqrt{17}}, \frac{-\frac{7}{\sqrt{18}}}{\sqrt{17}}, \frac{6}{\sqrt{18}}$ $= -\frac{2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}$

D'R's of Side BC au = -5+1, -5-1, -2-2 = -4, -6, -4

D'c's of Side BC au = $\frac{-4}{\sqrt{68}}$, $\frac{-6}{\sqrt{68}}$, $\frac{-4}{\sqrt{68}}$

一一一,一一

D'R'sy Side EA au = 3+5, 5+5, -4+2 = 8, 10, -2

Dies of side (A au = 8 , 10 , -2)

Very Hooty, Very Hooty, Very Hooty

 $=\frac{8}{\sqrt{168}}$, $\frac{10}{\sqrt{168}}$, $\frac{-2}{\sqrt{168}}$

= $\frac{4}{\sqrt{42}}$, $\frac{8}{\sqrt{42}}$, $-\frac{1}{\sqrt{42}}$

x = 90', B= 135', Y= 45°

1 = caa = cos (90) = 0

m= cap= (a(135)= cos(180-45)= -1/5

n= (9/= cos(45)=

- Dois are 0, -1/2, 1/2]

ONE 3 - Given
$$x = \beta = \gamma$$

$$\Rightarrow (\alpha \alpha = c\alpha \beta = (\alpha \gamma))$$

$$\Rightarrow d = m = n$$

$$\text{Ne han, } d^2 + m^2 + n^2 = 1$$

$$\Rightarrow 3\ell^2 = 1 \quad --- \quad \text{fine } \ell = m = n$$

$$\Rightarrow \ell = \pm \frac{1}{\sqrt{3}}$$

$$\therefore m = \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}$$

$$\Rightarrow m = \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}$$

$$\Rightarrow m = \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}$$

$$\Rightarrow m = \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}, \quad \pm \frac{1}{\sqrt{3}}$$

Oni 4+ Given points:
$$(-1,0,1)$$
 & $(3,14,6)$

We position vector of these points are
 $\vec{a} = -1+0$; $+3\hat{k}$ & $\vec{b} = 3\hat{i}+4\hat{j}+6\hat{k}$

Now, vector of water of line is given by
$$\vec{A} = \vec{a} + \lambda (\vec{b} - \vec{d})$$

$$\vec{A} = -\hat{i} + 2\hat{k} + \lambda ((3\hat{i}+4\hat{j}) + 6\hat{k}) - (-\hat{i}+2\hat{k})$$

$$\vec{A} = -\hat{i} + 2\hat{k} + \lambda (4\hat{i} + 4\hat{j} + 4\hat{k})$$
Ans

ONI 5-1 91ven: equatory life $\frac{3\chi - 1}{\delta} = \frac{3 - 2\gamma}{8} = Z - 1$ (i) Standard form: $\chi - \frac{1}{3} = \frac{y - \frac{3}{2}}{-\gamma} = \frac{Z - 1}{1}$

(2) fræd ponton tuline: ({\frac{1}{3}}, 3/2, 1)

(3) D. Ris of line: 2, -4, 1

(4) Dist line = $\frac{2}{\sqrt{1+16+1}}$, $\frac{-4}{\sqrt{1+16+1}}$, $\frac{1}{\sqrt{1+16+1}} = \frac{2}{\sqrt{21}}$, $\frac{-4}{\sqrt{21}}$, $\frac{1}{\sqrt{21}}$

(5) vector flamy live: $\vec{x} = (\frac{1}{3}i + \frac{3}{2}i) + ik) + \lambda(21 - 4i) + ik)$

(6) Any point on turler e

let $\frac{\chi - 1/3}{2} = \frac{y - 3/2}{-4} = \frac{z - 1}{1} = \lambda$

-3 $\chi = 2\lambda + 1/3$; $\chi = -4\lambda + 3/2$; $z = \lambda + 1$

i- Any point on ten line is (21+1, -41+2, 1+1)

-x-

OMS 6 + gruen lines. $\frac{\chi_{+3}}{3} = \frac{y-1}{5} = \frac{z+3}{4}$ and

x+1 = y-y = z-s

heu $q_1 = 3$, $b_1 = 5$, $c_1 = 4$ $q_2 = 1$, $b_2 = 1$, $c_2 = 2$

orga Hwo lives is 91 un by

 $\frac{(080)}{\sqrt{9_1^2 + b_1^2 + q^2}} = \frac{|9_19_2 + b_1b_2 + q^2|}{\sqrt{9_1^2 + b_1^2 + q^2}} = \frac{|9_19_2 + q^2|}{\sqrt{9_1^2 + b_1^$

 $Ca0 = \frac{13 + 5 + 81}{\sqrt{9 + 25 + 16}}$

Out
$$\frac{7}{4}$$
 given less $\frac{7}{4} = (\frac{1}{1} + \frac{1}{1}) + \lambda(\frac{2}{1} - \frac{1}{1} + \frac{1}{2})$

and $\frac{7}{4} = \frac{2}{1} + \frac{1}{1} - \frac{1}{2} + \lambda(\frac{3}{1} - \frac{1}{1} + \frac{1}{2})$

have, $\frac{7}{4} = \frac{7}{4} + \frac{1}{1} +$

$$= \frac{1}{\sqrt{59}}$$

$$\frac{1}{\sqrt{59}}$$

$$\frac{10}{\sqrt{59}} \text{ units}$$

$$\vec{A} = (1-1)\hat{1} + (1-2)\hat{1} + (3-21)\hat{k}$$
 and $\vec{A} = (4+1)\hat{1} + (24-1)\hat{1} - (24+1)\hat{k}$

leastanging these equations in Standard farm

ond
$$\vec{z}' = (\hat{i} - \hat{j} - \hat{k}) + 4(\hat{i} + 2\hat{j} - 2\hat{k})$$

from
$$\vec{a_1} = \vec{1} - 2\hat{j} + 3\hat{k}$$
; $\vec{b_1} = -\hat{i} + \hat{j} - 2\hat{k}$
 $\vec{a_2} = \vec{1} - \hat{j} - \hat{k}$; $\vec{b_2} = \vec{1} + 2\hat{j} - 2\hat{k}$

$$\vec{b_1} \times \vec{b_2} = \begin{vmatrix} \vec{1} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} = 2\vec{1} - 4\vec{j} - 3\hat{k}$$

$$= \frac{10-4+121}{\sqrt{29}}$$

: Distance =
$$\frac{8}{\sqrt{29}}$$
 units Am

$$\frac{1-x}{3} = \frac{7y-1y}{3p} = \frac{Z-3}{2}$$
 and $\frac{7-7x-y-5-6-z}{3p}$

Converting in to Standard form

$$\frac{2(-1)}{-3} = \frac{y-2}{\frac{2}{7}} = \frac{z-3}{2}$$
 and $\frac{x-1}{-\frac{3}{7}} = \frac{y-5}{1} = \frac{z-6}{-5}$

hau
$$q_1 = -3$$
, $b_1 = \frac{2p}{7}$, $c_1 = 2$

$$q_2 = -\frac{3p}{7}$$
, $b_2 = 1$, $c_2 = -5$

$$\frac{-9}{7}$$
 $\frac{9p}{7}$ $+\frac{2p}{7}$ $-10 = 0$

Pant on I'l line: (1,-1,2) 2 (3,4,-2) Diring their line: $q_1 = 3-1, y+1, -2-2$ $=19_1=2$; $b_1=5$, $c_1=-4$

Points on 2rd lerre. (0,3,2) & (3,5,6)

D'R's y this less e. $b_2 = 5-3$, $c_2 = 6-2$ 92 = 3 - 09z=3, $b_2=2$, 6z=4

Man $9,92+b,52+c,c_2=6+10-16=0$

Hence, Siun lines au perpendicular J Ans

Ont 12 A D. P's of I'm leng

 $q_1 = 2-4$, $b_1 = 3-k$, $c_1 = 4-8$ $a_1 = -2$, $b_1 = 3-k$, $c_1 = -4$

Digsy 2nd line.

 $9_2 = 1+1, \quad b_2 = 2+2,$

 $9_2 = 2$, $b_2 = 4$, $c_2 = 4$

9run that lines ay parallel

 $\frac{Q_1}{Q_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{3-k}{2} = \frac{-2}{4}$

⇒ 3+k=-1 ⇒ [k=#] AM