

AD-A088 343

TENNESSEE UNIV KNOXVILLE DEPT OF MATHEMATICS F/G 12/1
A ZERO-ONE DICOTOMY THEOREM FOR R-SEMI-STABLE LAWS ON INFINITE--ETC(U)
OCT 78 D LOUIE, B S RAJPUT, A TORTRAT N00014-78-C-0468
78-7903 NL

UNCLASSIFIED TR-7903

NL

END
DATE
FILED
9 80
DTIC

AD A088343

18

A ZERO-ONE DICHOTOMY THEOREM FOR
r-SEMI-STABLE LAWS ON INFINITE
DIMENSIONAL LINEAR SPACES.

by

Donald /Louie and Balram S./Rajput

The University of Tennessee, Knoxville

and

Albert/Tortrat

The University of Paris, France

DTIC
ELECTED
AUG 21 1980
S C D

This document contains neither recommendations nor conclusions of the Defense Technical Information Center. It has been approved for public release and sale; its distribution is unlimited.

A ZERO-ONE DICHOTOMY THEOREM FOR r -SEMI-STABLE LAWS
ON INFINITE DIMENSIONAL LINEAR SPACES

by

Donald Louie
The University of Tennessee, Knoxville

Balram S. Rajput*
The University of Tennessee, Knoxville

and

Indian Statistical Institute
New Delhi

and

Albert Tortrat
The University of Paris, France

ABSTRACT

Let μ be an r -semistable probability measure on a real linear space E . It is shown that the μ -measure of any translate of an arbitrary measurable linear subspace over certain countable subfield of reals is 0 or 1. This result yields immediately the 0 - 1 laws for stable measures of Dudley-Kanter (Proc. Amer. Math. Soc., 45(1974), 245 - 252) and also a more recent 0 - 1 law of Fernique for quasi-stable measures which is included in his ISI lectures of September, 1978. It is also shown that r -semi-stable measures - like stable ones - are continuous, i.e., they assign zero mass to singletons.

*The research of this author was partially supported by the Office of Naval Research under contract No. N 00014 - 78 - C - 0468.

I. INTRODUCTION

Let (E, \mathcal{F}) be a measurable vector space in the sense of [2], and μ a stable probability measure (p. m.) on E . Recently, Dudley-Kanter [2] have shown that the μ -measure of certain measurable subspaces of E is 0 or 1. More recently Fernique exhibited a similar 0 - 1 law for what he calls quasi-stable p. measures. A natural and nontrivial generalization of stable p. measures is the class of r-semi-stable p. measures, which was first introduced and studied on the real line R by P. Lévy [6]. Later Kruglov [3] obtained a quite explicit form of the characteristic function of r semistable p. measures on R and showed that this class have many properties similar to those exhibited by stable probability measures. (This in Hilbert space setting is also shown in Kruglov [4] and Kumar [5]). Partly motivated from these papers we raised and completely answered the question whether r-semi-stable p. measures share with stable measures the 0 - 1 dichotomy results obtained in [2]. Explicitly we prove that if (E, \mathcal{F}) is a measurable vector space over R , μ a r-semi-stable p.m. (see §2) on (E, \mathcal{F}) and G a measurable subspace over the field $Q(c)$, the smallest subfield containing Q , the rationals, and $c = c(r)$, then $\mu(G - z) = 0$ or 1, for every $z \in E$ (Theorem 3.1). This result includes and, in fact, extends the 0 - 1 theorems for stable p. measures obtained in [2] (Corollary 3.2); also the method of proof of the result includes a recent 0 - 1 dichotomy theorem

Accession For	
NTIS GENLA DDC TAB	
Unannounced Justification	
By _____	
Distribution _____	
Available _____	
Dist	Available Special
<i>X</i>	

of Fernique (ISI Calcutta, Lectures '78) for quasi-stable p. measures (Corollary 3.3). Further, we also show that, like stable p. measures, non-degenerate r-semistable p. measures are continuous; that is, they assign zero mass to singletons (Corollary 3.4). Our proof of the 0 - 1 dichotomy theorem seems new as well as simpler than those in [2] (we use only the definition of convolution and Fubini's theorem); in particular, we do not require any number theory results which was not the case in the proofs of [2].

2. PRELIMINARIES

Let (E, \mathcal{F}) be a measurable vector space and μ be a p.m. on \mathcal{F} . Let $r \in (0, 1)$; then μ is called r-semistable if there is a constant $c(r) = c$ with $0 < c \neq 1$ and a semigroup $\{\mu^s; s > 0\}$ of p. measures on \mathcal{F} and a sequence $\{x_m\}$ in E such that the following hold

$$\mu^1 = \mu \quad (2.1)$$

$$\mu^{r^m} = T_{c^m} \mu * \delta_{x_m}, \quad (2.2)$$

for each $m = 1, 2, \dots$, where for $a > 0$, $T_a \mu$ denotes the measure $T_a \mu(B) = \mu(a^{-1} B)$, for every $B \in \mathcal{F}$ and $*$ denotes the usual convolution.

The above definition is motivated from a characterization of a class of measures also called r-semistable on locally convex

topological vector spaces (LCTVS) obtained in [1]. It follows from [1] that our results are applicable for r -semistable (and hence stable and Gaussian) measures studied in [1].

3. 0 - 1 DICHOTOMY THEOREM FOR r -SEMI-STABLE MEASURES

The main result we propose to prove is the following:

Theorem 3.1. Let μ be a r -semistable p.m. on a measurable vector space (E, \mathcal{F}) over R and let G be a subspace over the subfield $Q(c)$ such that $G \in \mathcal{F}$ (c is the constant appearing in (2.2)). Then $\mu(G - z) = 0$ or 1, for all $z \in E$.

Proof. Let $z_1 \in E$ and assume that $\mu(G - z_1) > 0$. We will show that $\mu(G - z_1) = 1$. Choose an integer n_r so that $0 < 1/n_r < 1-r$. Let

$$\mathcal{X} = \{G - x \mid \mu(G - x) > 0 \text{ or } \mu^{1/r}(G - x) > 0\} \subseteq E/G,$$

$\mathcal{X}' = \text{linear span of } \mathcal{X} \text{ in } E/G \text{ over the field } Q[c]$, and

$G_0 = \text{inverse image of } \mathcal{X}' \text{ under natural projection} = \bigcup \langle \mathcal{X} \rangle$.

Then G_0 is a vector subspace of E over $Q(c)$ and clearly, $G_0 \in \mathcal{F}$, since G_0 is a countable union of sets in \mathcal{F} .

For the sake of clarity, the remainder of the proof will be divided into seven parts.

$$(i) \mu^{1-r} * \delta_{x(1)}(G_0) = 1.$$

Proof of (i). Observe that $\mu(G_0 - r^{-1/\alpha} y) = 0$, for all $y \in G_0^c$, and that $\mu = \mu^r * \mu^{1-r} = T_c \cdot \mu * \mu^{1-r} * \delta_{x(1)}$.

Thus

$$\begin{aligned} 0 < \mu(G_0) &= \int_E T_c \cdot \mu(G_0 - y) \mu^{1-r} * \delta_{x(1)}(dy) \\ &= \int_{G_0} \mu(G_0 - c^{-1}y) \mu^{1-r} * \delta_{x(1)}(dy) \\ &= \mu(G_0) \mu^{1-r} * \delta_{x(1)}(G_0). \end{aligned}$$

Consequently, $\mu^{1-r} * \delta_{x(1)}(G_0) = 1$.

$$(ii) \mu^{1/nr}(G_0) = 1.$$

Proof of (ii). Since $\mu = \mu^{1/nr} * (\mu^{1/nr})^{*(nr-1)}$, we have

$$0 < \mu(G-z_1) = \int_E \mu^{1/nr}(G - z_1 - y) (\mu^{1/nr})^{*(nr-1)}(dy).$$

Thus there exists $y \in E$ so that $\mu^{1/nr}(G-z_1-y) > 0$, and hence $\mu^{1/nr}(G_0) > 0$.

Now $\mu^{1-r} * \delta_{x(1)} = \mu^{1/nr} * \mu^{1-r-1/nr} * \delta_{x(1)}$, and so, from (i),

$$1 = \mu^{1-r} * \delta_{x(1)}(G_0) = \int_E \mu^{1-r-1/nr} * \delta_{x(1)}(G_0-y) \mu^{1/nr}(dy),$$

which implies that $\mu^{1-r-1/nr} * \delta_{x(1)}(G_0-y) = 1$ a.s. [$\mu^{1/nr}$]. Since

$\mu^{1/nr}(G_0) > 0$, it follows that $\mu^{1-r-1/nr} * \delta_{x(1)}(G_0) = 1$.

Consequently,

$$\begin{aligned} 1 &= \mu^{1-r} * \delta_{x(1)}(G_0) = \int_{G_0} \mu^{1/nr}(G_0-y) \mu^{1-r-1/nr} * \delta_{x(1)}(dy) \\ &= \mu^{1/nr}(G_0) \mu^{1-r-1/nr} * \delta_{x(1)}(G_0) \\ &= \mu^{1/nr}(G_0). \end{aligned}$$

$$(iii) \mu(G_0) = 1.$$

Proof of (iii). It follows from (ii) that

$$\begin{aligned} \mu(G_0) &= \int_{G_0} (\mu^{1/nr})^{*(nr-1)}(G_0-y) \mu^{1/nr}(dy) \\ &= (\mu^{1/nr})^{*(nr-1)}(G_0) \mu^{1/nr}(G_0) \\ &= (\mu^{1/nr})^{*(nr-1)}(G_0) \\ &= (\mu^{1/nr}(G_0))^{nr-1} \\ &= 1. \end{aligned}$$

We will use the fact that $\mu(G_0) = 1$ to conclude that $\mu(G-z_1) = 1$ (see (vii)).

To this end, we proceed.

Recall that G_0 is a countable (possibly finite) union of disjoint cosets of G . Let $\{x_1, x_2, \dots\}$ be a sequence of distinct points in E so that

$G_0 = \bigcup_k G-x_k$ (disjoint union). Clearly, we may assume, without loss of generality, that $\mu(G-x_1) \geq \mu(G-x_2) \geq \dots$. Let N_1 be the largest integer so that $\mu(G-x_1) = \mu(G-x_{N_1})$. For the sake of simplicity of notation, let $t = t(m) = c^m$, $m = 1, 2, \dots$ and let $v_t = \mu^{1-r^m} * \delta_{x(m)}$. Then $\mu = T_t \mu * v_t$, for any t .

(iv) For each t , $v_t(\bigcup_{k=1}^{N_1} G-x_n + tx_k) = 1$, for $1 \leq n \leq N_1$.

Proof of (iv). Observe that if $y \in G-x_k$, then $G-x_n - ty = G-x_n + tx_k$, for all n and k . Thus.

$$\begin{aligned}\mu(G-x_n) &= \int_{G_0} v_t(G-x_n - ty) \mu(dy) \\ &= \sum_k v_t(G-x_n + tx_k) \mu(G-x_k),\end{aligned}\quad (3.1)$$

for $n = 1, 2, \dots$. Now, for $1 < n < N_1$, we have

$$\begin{aligned}\mu(G-x_n) &= \sum_k v_t(G-x_n + tx_k) \mu(G-x_k) \\ &\leq \mu(G-x_n) \sum_k v_t(G-x_n + tx_k) \\ &= \mu(G-x_n) v_t(\bigcup_k G-x_n + tx_k) \\ &\leq \mu(G-x_n).\end{aligned}$$

Thus

$$\mu(G-x_n) v_t(G-x_n + tx_k) = \mu(G-x_k) v_t(G-x_n + tx_k),$$

for $1 \leq n \leq N_1$ and any k , which implies that $v_t(G-x_n + tx_k) = 0$ for $1 \leq n \leq N_1$ and $k > N_1$.

Thus

$$\begin{aligned}\mu(G-x_n) &= \sum_{k=1}^{N_1} v_t(G-x_n + tx_k) \mu(G-x_k), \\ &= \mu(G-x_n) \sum_{k=1}^{N_1} v_t(G-x_n + tx_k) \\ &= \mu(G-x_n) v_t(\bigcup_{k=1}^{N_1} G-x_n + tx_k),\end{aligned}$$

for $1 \leq n \leq N_1$.

Hence

$$1 = v_t \left(\bigcup_{k=1}^{N_1} G - x_n + tx_k \right),$$

for $1 \leq n \leq N_1$, since $\mu(G - x_n) = \mu(G - x_1) > 0$ for $1 \leq n \leq N_1$.

(v) $N_1 = 1$ or, equivalently, $(G - x_1) > \mu(G - x_k)$,

for all $k > 1$.

Proof of (v). Suppose $N_1 \geq 2$ and consider the $2 \times N_1$ array M_1 :

$$G - x_1 + tx_1 \quad G - x_1 + tx_2 \quad G - x_1 + tx_3 \dots G - x_1 + tx_{N_1}$$

$$G - x_2 + tx_1 \quad G - x_2 + tx_2 \quad G - x_2 + tx_3 \dots G - x_2 + tx_{N_1} .$$

By (iv), the v_t -measure of row 1 of M_1 is 1. Thus there is an integer k_1 , $1 \leq k_1 \leq N_1$, so that $v_t(G - x_1 + tx_{k_1}) > 0$, for infinitely many values of t . Now, the v_t -measure of row 2 is also 1 (by (iv) again), which implies that $G - x_1 + tx_{k_1}$ intersects row 2, for infinitely many values of t . Thus there is an integer k_2 , $1 \leq k_2 \leq N_1$, so that $G - x_1 + tx_{k_1} = G - x_2 + tx_{k_2}$, for infinitely many values of t . Consequently, there are integers k_1 and k_2 , $1 \leq k_1 \leq N_1$, $1 \leq k_2 \leq N_1$, so that

$$G - x_1 + x_2 = G - t(x_{k_2} - x_{k_1}), \quad (3.2)$$

for infinitely many values of t . In particular, there exist t_1 and t_2 , $t_1 \neq t_2$, so that $G - t_1(x_{k_2} - x_{k_1}) = G - t_2(x_{k_2} - x_{k_1})$ which implies that $G = G + (t_1 - t_2)(x_{k_2} - x_{k_1})$ and so, $(t_1 - t_2)(x_{k_2} - x_{k_1}) \in G$ from which it follows that

$$G - x_{k_1} = G - x_{k_2}. \quad \text{Consequently, since } G_0 \text{ is a disjoint union, we have } k_1 = k_2$$

which implies, from (3.2), that $G - x_1 = G - x_2$. But $G - x_1 \neq G - x_2$.

Hence (v) follows.

(vi) For each t , $v_t(G-x_1+tx_1) = 1$.

Proof of (vi). This is immediate from (iv) and (v)

(vii) $\mu(G-z_1) = \mu(G_0)$.

Proof of (vii). Suppose $\mu(G-z_1) < \mu(G_0)$

Then $\mu(G-x_2) > 0$. Let N_2 be the largest integer so that $\mu(G-x_2) = \mu(G-x_{N_2})$.

Observe that, by (vi), we have that for each t , $v_t(G-x_n+tx_1) = 0$, for all $n \geq 2$; otherwise, we get $G-x_n = G-x_1$, for some $n \geq 2$.

Thus, by (3.1), for $2 \leq n \leq N_2$,

$$\begin{aligned}\mu(G-x_n) &= v_t(G-x_n+tx_1) + \sum_{k \geq 2} v_t(G-x_n+tx_k) \mu(G-x_k) \\ &= \sum_{k \geq 2} v_t(G-x_n+tx_k) \mu(G-x_k) \\ &\leq \mu(G-x_n) \sum_{k \geq 2} v_t(G-x_n+tx_k) \\ &= \mu(G-x_n) v_t\left(\bigcup_{k \geq 2} G-x_n+tx_k\right) \\ &\leq \mu(G-x_n).\end{aligned}$$

It follows that

$\mu(G-x_n) v_t(G-x_n+tx_k) = \mu(G-x_k) v_t(G-x_n+tx_k)$, for $2 \leq n \leq N_2$ and any $k \geq 2$, which implies that $v_t(G-x_n+tx_k) = 0$, for $2 \leq n \leq N_2$ and $k > N_2$.

Consequently,

$$\begin{aligned}\mu(G-x_n) &= \sum_{k=2}^{N_2} v_t(G-x_n+tx_k) \mu(G-x_k) \\ &= \mu(G-x_n) \sum_{k=2}^{N_2} v_t(G-x_n+tx_k) \\ &= \mu(G-x_n) v_t\left(\bigcup_{k=2}^{N_2} G-x_n+tx_k\right),\end{aligned}$$

for $2 \leq n \leq N_2$.

Hence, for all t ,

$$1 = v_t\left(\bigcup_{k=2}^{N_2} G-x_n+tx_k\right), \quad (3.3)$$

for $2 \leq n \leq N_2$, since $\mu(G-x_n) = \mu(G-x_2) > 0$, for $2 \leq n \leq N_2$.

Observe that, by (vi), $v_t(G-x_2+tx_2) = 0$; otherwise, $G-x_2+tx_2 = G-x_1+tx_1$ which implies that $G-x_1 = G-x_2$. Consequently, from (3.3), $N_2 \geq 3$, and so, G_0 contains at least three disjoint cosets of G . Now consider the $2 \times (N_2-1)$ array M_2 :

$$\begin{array}{cccccc} G-x_2+tx_2 & G-x_2+tx_3 & G-x_2+tx_4 & \dots & G-x_2+tx_{N_2} \\ G-x_3+tx_2 & G-x_3+tx_3 & G-x_3+tx_4 & \dots & G-x_3+tx_{N_2} \end{array}$$

Observe that the v_t -measure of each row of M_2 is equal to 1. Now proceed, as in (v), to show that there exist integers k_1 and k_2 , $2 \leq k_1 \leq N_2$, $2 \leq k_2 \leq N_2$, $k_1 \neq k_2$, so that

$$G-x_2+x_3 = G-t(x_{k_2}-x_{k_1}), \quad (3.4)$$

for infinitely many values of t . It follows, from (3.4), like in (v), that $k_1 = k_2$. Consequently, by (3.4), $G-x_2 = G-x_3$. This is a contradiction! Hence our initial assumption must be false and it follows that $\mu(G-z_1) = \mu(G_0)$.

To complete the proof of the theorem, observe that, by (iii) and (vii), we have $\mu(G-z_1) = \mu(G_0) = 1$.

In view of the last sentence of the previous section, we have the analogue of Theorem 3.1 for stable and Gaussian measures if the measures are K -regular and are defined on the Borel σ -algebra of a complete LCTVS. In the following corollary, we show, however, that the same result can be recovered from Theorem 3.1 even if the stable measures μ is defined on a measurable vector space (E, \mathcal{F}) provided μ has the index; i.e. there exists an $\alpha > 0$ such that for every $a > 0$, $b > 0$, $T_a \mu * T_b \mu = T_{(a^\alpha + b^\alpha)^{1/\alpha}} \mu * \delta_x$, for some $x \in E$. This corollary contains and extends various results of [2]; we do not, however, deal with 0-1

laws when G belongs to the completed σ -algebra.

Corollary 3.2: Let (E, \mathcal{F}) be a measurable vector space and let G be a rational subspace of E , $G \in \mathcal{F}$. Then

(i) If μ is a strictly stable p.m. of index α on (E, \mathcal{F}) , then for all $z \in E$, $\mu(G - z) = 0$ or 1.

(ii) If μ is a stable p.m. of index α on (E, \mathcal{F}) , then $\mu(G) = 0$ or 1.

Proof: (i) Assume μ is strictly stable of index α and set $\mu^s = T_s^{1/\alpha} \mu$. Then $\{\mu^s | s > 0\}$ is a semigroup with $\mu^1 = \mu$ and (2.1), (2.2) are satisfied for all $r > 0$, with $x(m) = \theta$, and $c = s^{1/\alpha}$. Then, it is easy to see that μ is a r -semistable p.m. for all $0 < r < 1$. Choose r_0 , $0 < r_0 < 1$, so that $r_0^{1/\alpha}$ is rational. Then $Q(r_0^{1/\alpha}) = Q$. Now apply Theorem 3.1 to obtain the desired result.

(ii) Let μ be a stable p.m. of index α and assume that $\mu(G) > 0$. Let $v = \mu * T_{-1} \mu$ be the symmetrization of μ . Then v is a strictly stable p.m. of index α . Observe that

$$\begin{aligned} v(G) &= \int_E \mu(G + y) \mu(dy) \\ &\geq \int_G \mu(G + y) \mu(dy) \\ &= (\mu(G))^2 > 0. \end{aligned}$$

Thus, by (i), $v(G) = 1$, and so $\mu(G + y) = 1$ a.s. (μ) which implies that $\mu(G) = 1$.

The following corollary shows that the method of proof of Theorem 3.1 also yields the 0 - 1 dichotomy theorem for quasi-stable measures recently obtained by Fernique who uses a non-trivial inequality of Kantor for his proof. Our proof, as we noted earlier, uses only elementary facts about convolution. Now we recall the definition of quasi-stable as introduced by Fernique. Let μ be a p. measure on a measurable vector space (E, \mathcal{F}) , then μ is said to be quasi-stable if $\mu^{*2} = T_c \mu$, for some $c > 0$, $c \neq 1$.

Corollary 3.3: Let (E, \mathcal{F}) be a measurable vector space and μ be quasi-stable on E . Let G be $Q(c)$ vector space which belongs to \mathcal{F} . Then $\mu(G - z) = 0$ or 1, for every $z \in E$.

Proof: Let $\mu(G - z_1) > 0$ and let $\mathcal{A}' = \{G - x: \mu(G - x) > 0\}$ and define G_0 as in the beginning of the proof of Theorem 3.1 with \mathcal{A} replaced by \mathcal{A}' . Since

$$0 < \mu(G_0) = T_c \mu(G_0) = \mu^{*2}(G_0) = \int_{G_0} \mu(G_0 - x) \mu(dx)$$

(as $x \in G_0^c$ implies $\mu(G_0 - x) = 0$), we have $\mu(G_0) = 1$. Now the definition of quasi-stability implies $\mu^{*2^m} = T_c^{m \mu}$; hence $\mu = T_{(1/c)^m} \mu^{*2^m} = T_{(1/c)^m} \mu^{*2^{m-1}} * T_{(1/c)^m} \mu$. Setting $(1/c)^m = t(m)$ and $T_{(1/c)^m} \mu^{*2^{m-1}} = v_t$, we see that $\mu = v_t * T_t \mu$. Now repeating the proof of (iv) to (vii) of Theorem 3.1 without any change at all, one shows $\mu(G - z_1) = 1$. Completing the proof.

The following corollary shows that nondegenerate r -semistable μ measures cannot have positive point mass.

Corollary 3.4: Let μ be a nondegenerate r -semistable measure of index α on a measurable vector space (E, \mathcal{F}) . Assume that $\{\{x\}\} \in \mathcal{F}$, for all $x \in E$. Then $\mu\{\{x\}\} = 0$, for all $x \in E$.

Proof: Let $G = \{\emptyset\}$ and $x \in E$. If $\mu\{G + x\} = \mu\{x\} > 0$, then, by Theorem 3.1, $\mu\{x\} = 1$. Hence μ is degenerate, a contradiction.

REFERENCES

1. D.M. Chung, B.S. Rajput, and Albert Tortrat, Semistable laws on topological vector space, to appear.
2. R.M. Dudley and M. Kanter, Zero-one laws for stable measures, Proc. Amer. Math. Soc., 45(1974), 245 - 252.
3. V.M. Kruglov, On the extension of the class of stable distributions, Theory Prob. Applications, 17(1972), 685 - 694.
4. _____, On a class of limit laws in a Hilbert space, Lit. Mat. Sbornik, 12(1972), 85 - 88 (in Russian).
5. A. Kumar, Semistable probability measures on Hilbert spaces, J. Multivariate Anal., 6(1976), 309 - 318.
6. P. Lévy, Theorie de l'Addition Variables Aleatoires, Bautier-Villars, Paris, France, 1937.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER TECHNICAL REPORT #7903	2. GOVT ACCESSION NO. <i>AD-A058 343</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A 0-1 DICHOTOMY THEOREM FOR r -SEMISTABLE LAWS ON INFINITE DIMENSIONAL LINEAR SPACES	5. TYPE OF REPORT & PERIOD COVERED INTERIM	
7. AUTHOR(s) DONALD LOUIE, BALRAM S. RAJPUT, AND ALBERT TORTRAT, UNIVERSITY OF PARIS, FRANCE	8. PERFORMING ORG. REPORT NUMBER N00014-78-C-0468	
9. PERFORMING ORGANIZATION NAME AND ADDRESS MATHEMATICS DEPARTMENT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37916	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 042-400	
11. CONTROLLING OFFICE NAME AND ADDRESS STATISTICS AND PROBABILITY PROGRAM, OFFICE OF NAVAL RESEARCH, ARLINGTON, VA 22217	12. REPORT DATE OCTOBER '78	13. NUMBER OF PAGES 16
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) SEMISTABLE, STABLE AND GAUSSIAN LAWS, LINEAR SPACES, ZERO ONE LAW		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) LET μ BE AN r -SEMISTABLE PROBABILITY MEASURE ON A REAL LINEAR SPACE E . IT IS SHOWN THAT THE μ -MEASURE OF ANY TRANSLATE OF AN ARBITRARY MEASURABLE LINEAR SUBSPACE OVER CERTAIN COUNTABLE SUBFIELD OF REALS IS 0 OR 1. THIS RESULT YIELDS DUDLEY-KANTOR 0-1 LAWS FOR STABLE LAWS AND FERNIQUE 0-1 LAW FOR QUASISTABLE LAWS. IT IS ALSO SHOWN THAT THE r -SEMISTABLE LAWS - LIKE STABLE ONES - ARE CONTINUOUS: i.e. THEY ASSIGN ZERO MASS TO SINGLETONS.		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE

S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)