

Question 40:

Let A, B, C, D be the centres of these circles Join AB, BC, CD and DA Side of square = 10 cm Area of square ABCD = (10×10) cm² = 100 cm²

Area of each sector = $\left(\pi r^2 \times \frac{\theta}{360}\right) = 3.14 \times 5 \times 5 \times \frac{90}{360}$

 $= 19.625 \text{ cm}^2$

Required area = [area of sq. ABCD - 4(area of each sector)]

 $= (100 - 4 \times 19.625) \text{ cm}^2$

 $= (100 - 78.5) = 21.5 \text{ cm}^2$

Question 41:

Required area = [area of square - areas of quadrants of circles] Let the side = 2a unit and radius = a units Area of square = (side \times side) = (2a \times 2a) sq. units = 4a² sq.units Area of quadrant = $\frac{1}{4}\pi r^2$ Area of 4 quadrants = $4 \times \frac{1}{4} \pi r^2 = \pi r^2 = \frac{22}{7} \times a \times a = \frac{22}{7} a^2$ sq.unit Required area = $\left(4a^2 - \frac{22}{7}a^2\right)$ sq. unit = $\frac{6a^2}{7}$

Question 42:

Let the side of square = a m Area of square = $(a \times a)$ cm = a^2m^2

∴
$$a^2 = 1600$$

 $a = \sqrt{1600}$ m
 $a = 40$ m

Side of square = 40 m

Therefore, radius of semi circle = 20 m

Area of semi circle =
$$\frac{1}{2}\pi r^2 = \left(\frac{1}{2} \times 3.14 \times 20 \times 20\right) m^2$$

 $= 628 \text{ m}^2$

Area of four semi circles = (4×628) m² = 2512 m²

Cost of turfing the plot of of area 1 m^2 = Rs. 1.25

Cost of turfing the plot of area 2512 m^2 = Rs. (1.25 × 2512)

= Rs. 3140

******* END *******