Quiz - 5 (Makeup) Elementary Stochastic Process (MTH-212a)

Name (Roll Number)

Time: 20 mins.

Maximum Marks: 10

We are using the same notation as we have used in the class.

Let a Markov Chain have the state space $S = \{1, 2, 3, 4, 5, 6\}$ and the transition proba-

(i) Find $\lim_{n\to\infty} p_{11}^{(n)}$ (ii) Find $\lim_{n\to\infty} p_{14}^{(n)}$ (iii) Find $\lim_{n\to\infty} p_{21}^{(n)}$ (iv) If $i\in T$ find $\pi_i(C_k)$ for all $i\in T$ and for all k. (v) Suppose for $i\in T$, the discrete random variable $N_i=j$ if $X_j\in T$, $X_{j+1}\not\in T$, given that $X_0=i$. Find $E(N_i)$ for all $i\in T$. (2+2+2+2+2=10)

Solution: If we rewrite the state space as $S = \{1, 4, 3, 6, 2, 5\}$, then the transition probability matrix becomes:

$$\mathbf{P} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 \\ \frac{2}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 \end{bmatrix}.$$

Here, there are three equivalent classes $C_1 = \{1, 4\}$, $C_2 = \{3, 6\}$ and $T = \{2, 5\}$. Hence, here $(\mathbf{I} - \mathbf{Q})^{-1} = \frac{3}{2}\mathbf{I}$. All the required elements can be obtained from this. $\lim_{n \to \infty} p_{11}^{(n)} = \frac{1}{2} = \lim_{n \to \infty} p_{14}^{(n)}$. $\pi_2(C_1) = \pi_2(C_2) = \pi_5(C_1) = \pi_5(C_2) = \frac{1}{2}$. Hence, $\lim_{n \to \infty} p_{21}^{(n)} = \frac{1}{4}$. $P(N_2 = k) = (1/3)^k (2/3)$, for $k = 0, 1, \ldots$

$$\lim_{N\to\infty} p_{21}^{(n)} = \prod_{2} (C_{2}) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{2} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left(C_{1} \right) \left(C_{1} \right) = \int_{2}^{\infty} \sum_{j=1}^{2} \left($$