Лабораторная работа №6

Абдуллина Ляйсан Раисовна 11 марта 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Решить задачу об эпидемии.

Задачи

1. Постройте графики изменения числа особей в каждой из трех групп.

Условие варианта 39

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12 800) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=180, А число здоровых людей с иммунитетом к болезни R(0)=58. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)- R(0).

Условие варианта 39

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: 1) если $I(0) \le I^*$ 2) если $I(0) > I^*$

Julia

Для $I(0) \le I^*$ получим следующий график (Рис.1):

Julia

Для $I(0) > I^*$ получим следующий график (Рис.2):

OpenModelica

Для $I(0) \le I^*$ получим следующий график (Рис.1):

Рис. 3: Динамика изменения числа людей в каждой из трех групп в случае, $I(0) <= I^*$

OpenModelica

Для $I(0) > I^*$ получим следующий график (Рис.2):

Рис. 4: Динамика изменения числа людей в каждой из трех групп в случае, $I(0) <= I^*$

Анализ и сравнение результатов

В ходе выполнения лабораторной работы были построены графики изменения числа особей в каждой из трех груп при заданных начальных условиях на языках Julia и с помощью ПО Open Modelica. Результаты графиков совпадают (не учитывая разности в масштабах).

Выводы

Мы решили задачу об эпидемии. и выполнили все поставленне перед нами задачи.

Список литературы

- 1. Документация по Julia: https://docs.julialang.org/en/v1/
- 2. Документация по OpenModelica: https://openmodelica.org/
- 3. Решение дифференциальных уравнений: https://www.wolframalpha.com/