Delay Test

- Introduction and delay fault models
- Path Delay Fault
- Transition Delay Fault
 - Fault Simulation
 - Test Generation
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

TDF Detection

- How to detect A STR fault ?
 - V₁: Control A to 0
 - V₂: Detect A stuck-at 0
- How to detect A STF fault ?
 - V₁: Control A to 1
 - V₂: Detect A stuck-at 1
- TDF assumes delay fault size very large
 - No requirement about propagation path

V ₁	V ₂ AB	Detected input TDF
0X	11	A STR
1X	01	A STF
X0	11	B STR
X1	10	B STF

TDF Very Similar to SSF

TDF Fault Simulation

- Transition delay fault simulation can be built on SSF simulation
 - Just add additional check for V₁
 - V₂ is same as SSF simulation
- Example: V₁ ABC = 010, V₂ ABC = 000
 - V₂ detects B SA1, C SA1, E SA1, G SA1, J SA0, K SA0
 - {V₁, V₂} Detected transition faults
 - * BSTF, ESTF, G, STF, JSTR, KSTR
 - C STF not detected because no transition
 - Q STF not detected because Q SA1 not detected by V₂

Quiz

Q: Given this 2-patter test, which transition faults are detected? V_1 ABC= 010 V_2 ABC= 111 considers A STR, H STR, C STR faults A:

Delay Test

- Introduction and delay fault models
- Path Delay Fault
- Transition Delay Fault
 - Fault Simulation
 - Test Generation
- Delay Test Application
- Circuit Model for Delay Test ATPG
- Experimental Results* (not in exam)
- Issues of Delay Tests* (not in exam)
- Conclusions

TDF ATPG

- First SSF for V₂, then control V₁
- Example: use PODEM for G slow-to-fall (STF) fault
 - V_2 objective: detect G stuck-at 1 \Rightarrow $B_2=0$
 - V_2 objective: detect G stuck-at 1 \rightarrow C_2 =0, V_2 generated
 - V₁ objective: G = 1 → B₁=1
 - Test generated: V₁ ABC = X1X, V₂ ABC = X00

Quiz

Q: Generate a test for H STR fault

A:

V₁ ABC= V₂ ABC=

Pros and Cons of TDF

- Advantages:
 - Leverage on mature SSF ATPG algorithm
 - High coverage
 - ATPG easy because no attention to path
- Disadvantages
 - SSF ATPG tends to trace short paths
 - may not effective for small delay defect (SDD)
- TDF test patterns currently "most basic" delay testing

Summary

- Transition Delay Fault
 - Fault Simulation
 - Based on SSF fault simulation, check V₁
 - Test Generation
 - Generate SSF for V₂
 - Then control opposite value at V₁

FFT

- Q: why generate V_2 first, then V_1 . (why not V_1 first, then V_2)
- Example: use PODEM for G slow-to-fall (STF) fault
 - V_2 objective: detect G stuck-at 1 \rightarrow B_2 =0
 - V_2 objective: detect G stuck-at 1 \rightarrow $C_2=0$, V_2 generated
 - V₁ objective: G = 1 → B₁=1
 - Test generated: V₁ ABC = X1X, V₂ ABC = X00

