Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

Filen 1A/Oppgave1AFigur_E.png

Figur E 4060.000 4050.000 4040.000 4030.000 Radiell fart m/s 4020.000 4010.000 4000.000 3990.000 3980.000 ò 500 1000 2000 1500 2500 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 6.00e+08.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) det finnes noe jern i kjernen

STJERNE B) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE C) stjerna er bare noen hundretusen år gammel men skal allerede snart begynne sin første heliumfusjon

STJERNE D) massen til stjerna er 5 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 9.299e+06 kg/m3̂ og temperatur 37 millioner K.

Kjernen i stjerne B har massetet
thet 2.384e+06 kg/m3 og temperatur 16 millioner K.

Kjernen i stjerne C har massetet
thet 8.479e+06 kg/m3̂ og temperatur 39 millioner K.

Kjernen i stjerne D har massetet
thet 1.089e+07 kg/m3̂ og temperatur 19 millioner K.

Kjernen i stjerne E har massetet
thet 6.640e+06 kg/m3̂ og temperatur 29 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 3: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den absolutte størrelseklassen (magnitude) med UV filter er betydelig mindre enn den absolutte størrelseklassen i blått filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

21.10

Figure 15: Figur fra filen 1L/1L_Figure_C.png

21.20

Bølgelgende (cm)

21.25

21.30

21.15

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet $4.820\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 25.67 millioner K.

Kjernen i stjerne B har massetet
thet 1.024e+05 kg/m3̂ og temperatur 19.27 millioner K.

Kjernen i stjerne C har massetet
thet 1.376e+05 kg/m3̂ og temperatur 33.60

millioner K.

Kjernen i stjerne D har massetet
thet 1.232e+05 kg/m3̂ og temperatur 21.07 millioner K.

Kjernen i stjerne E har massetet
thet 2.896e+05 kg/m3̂ og temperatur 31.40 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 1.84 buesekunder i løpet av et millisekund.

47.36

42.10

36.84

31.57

26.31

15.79

10.52

5.26

0.00

0.00

5.26

10.52

15.79

21.05

26.31

31.57

33.84

42.10

47.36

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Bodø som ligger i en avstand av 1000 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.14130 km/t.

Filen 3E.txt

Tog1 veier 108500.00000 kg og tog2 veier 64000.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 511 km/s.

Filen 4E.txt

Massen til gassklumpene er 2000000.00 kg.

Hastigheten til G1 i x-retning er 48000.00 km/s.

Hastigheten til G2 i x-retning er 53520.00 km/s.

Filen 4G.txt

Massen til stjerna er 29.45 solmasser og radien er 1.35 solradier.