# AA203 Optimal and Learning-based Control

HJB, HJI, and reachability analysis







### Agenda

Previous lectures: focus on discrete-time setting

This lecture: focus on continuous-time setting

- dynamic programming approach leads to HJB / HJI equation: non-linear partial differential equation
- HJB application: solution to continuous LQR problem
- HJI application: reachability analysis

#### Readings: lecture notes and references therein, in particular:

- Bansal S., Chen M., Herbert S., Tomlin C. J." Hamilton-Jacobi reachability: A brief overview and recent advances," 2017.
- Chen M., Tomlin C. J. "Hamilton-Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management," 2018.

#### Continuous-time model

#### Last time:

- Model:  $\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k, k)$ ,
- Cost:  $J(\mathbf{x}_0) = h_N(\mathbf{x}_N) + \sum_{k=0}^{N-1} g(\mathbf{x}_k, \mathbf{u}_k, k)$

#### This time:

- Model:  $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), t)$ ,
- Cost:  $J(\mathbf{x}(t_0)) = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau$

where  $t_0$  and  $t_f$  are fixed

### Two-person, zero-sum differential games

• What if there is another player (e.g., nature) that interferes with the fulfillment of our objective?

#### Two-person differential game:

- Model:  $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t))$  (joint system dynamics),
- Cost:  $J(\mathbf{x}(t_0)) = h(\mathbf{x}(0)) + \int_{t_0}^0 g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau$
- Player 1, with control  $\mathbf{u}(\tau)$ , will attempt to maximize J, while Player 2, with control  $\mathbf{d}(t)$ , will aim to minimize J, subject to the joint system dynamics
- $\mathbf{x}(\tau)$  is the *joint* system state

### Information pattern

- To fully specify the game, we need to specify the information pattern
- "Open-loop" strategies
  - Player 1, with control  $\mathbf{u}(\tau)$ , declares entire plan
  - Player 2, with control  $\mathbf{d}(\tau)$ , responds optimally
  - Conservative, unrealistic, but computationally cheap
- "Non-anticipative" strategies
  - Other robot acts based on state and control trajectory up to current time
  - Notation:  $\mathbf{d}(\cdot) = \Gamma[\mathbf{u}](\cdot)$
  - Disturbance still has the advantage: it gets to react to the control!

Key idea: apply principle of optimality

The "truncated" problem is

$$J(\mathbf{x}(t),t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[ \int_{t}^{0} g(\mathbf{x}(\tau),\mathbf{u}(\tau),\mathbf{d}(\tau)) d\tau + h(\mathbf{x}(0)) \right]$$

Worst-case disturbance -- does the opposite of the control

Dynamic programming principle:

Dynamic programming principle: 
$$J_{ab_1} = \int_{b_2}^{b_1} \int_{b_2}^{b_2} \int_{b_3d}^{b_3} \int_{a}^{b_3} \int_{ab_3}^{b_3} \int_{a}^{b_3} \int_{ab_3}^{b_3} \int_{a}^{b_3} \int_{ab_3}^{b_3} \int_{a}^{b_3} \int_{ab_3}^{b_3} \int_{ab_$$

- Approximate integral and Taylor expand  $J(\mathbf{x}(t + \Delta t), t + \Delta t)$
- Derive Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE)

• Approximations for small  $\Delta t$ :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small 
$$\Delta t$$
:  $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$ 

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[ \int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and  $d \rightarrow$  Optimization over vectors, not functions!
- Order of max and min reverse (proof given in references)
- $J(\mathbf{x},t)$  does not depend on  $\mathbf{u}$  or  $\mathbf{d}$

$$J(\mathbf{x},t) = J(\mathbf{x},t) + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

• Approximations for small  $\Delta t$ :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small 
$$\Delta t$$
:  $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$ 

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[ \int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and  $d \rightarrow$  Optimization over vectors, not functions!
- Order of max and min reverse (proof given in references)
- $J(\mathbf{x},t)$  does not depend on  $\mathbf{u}$  or  $\mathbf{d}$

$$J(\mathbf{x},t) = J(\mathbf{x},t) + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

• Approximations for small  $\Delta t$ :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small 
$$\Delta t$$
:  $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$ 

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[ \int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$

- Assume constant u and  $d \rightarrow$  Optimization over vectors, not functions!
- Order of max and min reverse (proof given in references)
- $J(\mathbf{x},t)$  does not depend on  $\mathbf{u}$  or  $\mathbf{d}$

$$0 = \frac{\partial J}{\partial t} \Delta t + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x}, \mathbf{u}, \mathbf{d}) \Delta t + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

• Approximations for small  $\Delta t$ :

$$\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

roximations for small 
$$\Delta t$$
:  $\mathbf{x}(t) + \Delta t f(\mathbf{x}, \mathbf{u}, \mathbf{d})$ 

$$J(\mathbf{x}(t), t) = \min_{\Gamma[\mathbf{u}](\cdot)} \max_{\mathbf{u}(\cdot)} \left[ \int_{t}^{t+\Delta t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \mathbf{d}(\tau)) d\tau + J(\mathbf{x}(t+\Delta t), t+\Delta t) \right]$$

$$g(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) \Delta t \qquad J(\mathbf{x}(t), t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{d}(t)) + \frac{\partial J}{\partial t} \Delta t$$

$$J(\mathbf{x},t) = \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x},\mathbf{u},\mathbf{d}) \Delta t + J(\mathbf{x},t) + \frac{\partial J}{\partial \mathbf{x}} \cdot \Delta t f(\mathbf{x},\mathbf{u},\mathbf{d}) + \frac{\partial J}{\partial t} \Delta t \right]$$
• Assume constant  $u$  and  $d \rightarrow$  Optimization over vectors, not functions!

- Order of max and min reverse (proof given in references)
- $J(\mathbf{x},t)$  does not depend on  $\mathbf{u}$  or  $\mathbf{d}$

$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

The end result is the Hamilton-Jacobi-Isaacs (HJI) equation

$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right]$$

with boundary condition

$$J(\mathbf{x},0) = h(\mathbf{x})$$

• Given the cost-to-go function, the optimal control for Player 1 is

$$\mathbf{u}^*(\mathbf{x}, t) = \arg \max_{\mathbf{u}} \min_{\mathbf{d}} g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

In case there is no disturbance, end result is the Hamilton-Jacobi-

Bellman (HJB) equation

Without a disturbance, **u** is usually selected to minimize cost

$$0 = \frac{\partial J}{\partial t} + \min_{\mathbf{u}} \left[ g(\mathbf{x}, \mathbf{u}, t) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, t) \right]$$

with boundary condition 
$$J(\mathbf{x}(t_f), t_f) = h(\mathbf{x}(t_f), t_f)$$

Given the cost-to-go function, the optimal control is

$$\mathbf{u}^*(\mathbf{x}, t) = \arg\min_{\mathbf{u}} g(\mathbf{x}, \mathbf{u}, t) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, t)$$

#### Continuous LQR

Continuous LQR: select control inputs to minimize

$$J(\mathbf{x}_0) = \frac{1}{2}\mathbf{x}(t_f)'H\mathbf{x}(t_f) + \frac{1}{2}\int_{t_0}^{t_f} \left[\mathbf{x}(t)'Q(t)\mathbf{x}(t) + \mathbf{u}(t)'R(t)\mathbf{u}(t)\right] dt$$

subject to the dynamics

$$\dot{\mathbf{x}}(t) = A(t)\mathbf{x}(t) + B(t)\mathbf{u}(t)$$

#### Assumptions:

- $H = H' \ge 0$ ,  $Q(t) = Q(t)' \ge 0$ , R(t) = R(t)' > 0
- $t_0$  and  $t_f$  specified
- $\mathbf{x}(t)$  and  $\mathbf{u}(t)$  unconstrained

#### Continuous LQR

The HJB equation reduces to a set of differential equation (the Riccati equation):

$$-\dot{K}(t) = Q(t) - K(t)B(t)R(t)^{-1}B(t)'K(t) + K(t)A(t) + A(t)'K(t)$$

- Riccati equation is integrated backwards, with boundary condition  $K(t_f) = H$
- Once we find K(t), the control policy is

$$\mathbf{u}^*(t) = -R(t)^{-1}B(t)'K(t)\mathbf{x}(t)$$

- Analogously to the discrete case, under some additional assumptions,
   K(t) → constant in the infinite horizon setting
- LQG generalization is presented in the lecture notes

## Applications of differential games

- Pursuit-evasion games
  - homicidal chauffeur problem
  - the lady in the lake
- Reachability analysis

And many more (e.g., in economics)

### Applications of differential games

- Pursuit-evasion games
  - homicidal chauffeur problem
  - the lady in the lake
- Reachability analysis

And many more (e.g., in economics)

## Reachability analysis: avoidance



#### **Assumptions:**

- Model of robot
- Unsafe region: e.g., obstacle

Control policy

Backward reachable set (States leading to danger)

## Reachability analysis: goal reaching



## Reachability analysis

- Model of robot
- Unsafe region



• *J* 

- Model of robot
- Goal region



•  $\mathcal{A}(t) = \{\bar{\mathbf{x}}: \exists \Gamma[\mathbf{u}](\cdot), \forall \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$ 

Backward reachable set (states leading to danger)



#### Control policy

•  $\mathbf{u}^*(\mathbf{x},t)$ 





•  $\mathcal{R}(t) = \{\bar{x}: \forall \Gamma[\mathbf{u}](\cdot), \exists \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$ 



## Reachability analysis

States at time *t* satisfying the following:

there exists a disturbance such that for all control, system enters target set at t=0

• 
$$\mathcal{A}(t) = \{\bar{\mathbf{x}}: \exists \Gamma[\mathbf{u}](\cdot), \forall \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$$

- Model of robot
- Unsafe region



Backward reachable set (States leading to danger)



- Control policy
- $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d})$
- *T*

•  $\mathbf{u}^*(\mathbf{x},t)$ 

- Model of robot
- Goal region



Control policy



•  $\mathcal{R}(t) = \{\bar{\mathbf{x}}: \forall \Gamma[\mathbf{u}](\cdot), \exists \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), x(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$ 



States at time *t* satisfying the following:

for all disturbances, there exists a control such that system enters target set at t=0

22

### From HJI to reachability analysis

- Computation of the BRS entails solving a differential *game of kind*, where the outcome is Boolean (the system either reaches the target set or not)
- One can "encode" this Boolean outcome by (1) removing the running cost and (2) picking the final cost intelligently

## From HJI to reachability analysis

• Hamilton-Jacobi Equation

• 
$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{d}} \min_{\mathbf{u}} \left[ g(\mathbf{x}, \mathbf{u}, \mathbf{d}) + \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], J(\mathbf{x}, 0) = h(\mathbf{x})$$

Remove running cost

• 
$$0 = \frac{\partial J}{\partial t} + \max_{\mathbf{d}} \min_{\mathbf{u}} \left[ \frac{\partial J}{\partial \mathbf{x}} \cdot f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], J(\mathbf{x}, 0) = h(\mathbf{x})$$



- Pick final cost such that
  - $\mathbf{x} \in \mathcal{T} \Leftrightarrow h(\mathbf{x}) \leq 0$
  - Example: If  $\mathcal{T} = \left\{ \mathbf{x} : \sqrt{x_r^2 + y_r^2} \le R \right\} \subseteq \mathbb{R}^3$ , we can pick  $h(x_r, y_r, \theta_r) = \sqrt{x_r^2 + y_r^2} R$

#### Pick Final Cost

- Pick final cost such that
  - $x \in \mathcal{T} \Leftrightarrow h(\mathbf{x}) \leq 0$
  - If  $\mathcal{T} = \left\{x: \sqrt{x_r^2 + y_r^2} \le R\right\} \subseteq \mathbb{R}^3$ , we can pick  $h(x_r, y_r, \theta_r) = \sqrt{x_r^2 + y_r^2} R$
- Why is this correct?
  - Final state  $\mathbf{x}(0)$  is in  $\mathcal{T}$  if and only if  $h(\mathbf{x}(0)) \leq 0$
  - To avoid  $\mathcal{T}$ , control should maximize  $h(\mathbf{x}(0))$ 
    - Worst-case disturbance would minimize
  - $J(\mathbf{x}, t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} h(\mathbf{x}(0))$



## Reaching vs. Avoiding

Avoiding danger



- BRS definition  $\mathcal{A}(t) = \{\bar{\mathbf{x}}: \exists \Gamma[\mathbf{u}](\cdot), \forall \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T}\}$ 
  - Value function  $J(\mathbf{x},t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} h(\mathbf{x}(0))$
  - HJI  $\frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ \left( \frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$
  - Optimal control  $\mathbf{u}^* = \arg \max_{\mathbf{u}} \min_{\mathbf{d}} \left( \frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d})$

• Reaching a goal



BRS definition

$$\mathcal{R}(t) = \{ \bar{\mathbf{x}} : \forall \Gamma[\mathbf{u}](\cdot), \exists \mathbf{u}(\cdot), \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, \mathbf{d}), \mathbf{x}(t) = \bar{\mathbf{x}}, \mathbf{x}(0) \in \mathcal{T} \}$$

Value function

$$J(\mathbf{x},t) = \max_{\Gamma[\mathbf{u}]} \min_{\mathbf{u}} h(\mathbf{x}(0))$$

HJI

$$\frac{\partial J}{\partial t} + \min_{\mathbf{u}} \max_{\mathbf{d}} \left[ \left( \frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$$

Optimal control

$$\mathbf{u}^* = \arg\min_{\mathbf{u}} \max_{\mathbf{d}} \left(\frac{\partial J}{\partial \mathbf{x}}\right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d})$$

#### "Sets" vs. "Tubes"

- Backward reachable set (BRS)
  - Only final time matters
  - Initial states that pass through target are not necessarily in BRS
  - Not ideal for safety



- Backward reachable tube (BRT)
  - Keep track of entire time duration
  - Initial states that pass through target are in BRT
  - Used to make safety guarantees



#### "Sets" vs. "Tubes"

Backward reachable set (BRS)



Value function definition

• 
$$J(\mathbf{x}, t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} h(\mathbf{x}(0))$$

Value function obtained from

$$\frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ \left( \frac{\partial J}{\partial \mathbf{x}} \right)' f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right] = 0$$

Backward reachable tube (BRT)



Value function definition

• 
$$J(\mathbf{x}, t) = \min_{\Gamma[\mathbf{u}]} \max_{\mathbf{u}} \min_{\tau \in [t, 0]} h(\mathbf{x}(\tau))$$

Value function obtained from

$$\min \left\{ \frac{\partial J}{\partial t} + \max_{\mathbf{u}} \min_{\mathbf{d}} \left[ \left( \frac{\partial J}{\partial \mathbf{x}} \right)^{\mathsf{T}} f(\mathbf{x}, \mathbf{u}, \mathbf{d}) \right], \frac{h(\mathbf{x}) - J(\mathbf{x}, t)}{h(\mathbf{x})} \right\} = 0$$

4/27/20

### Computational aspects

6D: intractable!

- Computational complexity
  - $I(\mathbf{x},t)$  is computed on an (n+1)-dimensional grid
  - Currently,  $n \leq 5$  is possible. GPU acceleration under-way
  - Dimensionality reduction methods sometimes help

5D: days gigabytes

- Related approaches
  - Sacrifice global optimality
  - Give up guarantees
  - Sampling-based methods
  - Reinforcement learning



#### Numerical toolboxes

- helperOC Matlab toolbox
  - <a href="https://github.com/HJReachability/helperOC.git">https://github.com/HJReachability/helperOC.git</a>
  - Reachability wrapper around the level set toolbox
  - Requires level set toolbox
    - Hamilton-Jacobi PDE solver by Ian Mitchell, UBC
    - https://bitbucket.org/ian\_mitchell/toolboxls
- C++ and CUDA version in development, beta also available
  - C++: 5+ times faster than Matlab
  - CUDA: Up to 100 times faster than Matlab
  - https://github.com/HJReachability/beacls

## Example – waypoint reaching with Dubins Car

#### **Dubins Car Model**

$$\begin{cases} \dot{x} = v \cos \theta + \mathbf{d}_{x} \\ \dot{y} = v \sin \theta \\ \dot{\theta} = k \mathbf{u} \end{cases}$$



Control: u

Disturbance:  $d_{r}$ 

#### Target set:

$$\mathcal{T} = \{(x, y, \theta) \in \mathbb{R}^3 : h(x, y, \theta) \coloneqq \max\left[(x - x_{max}), (y - y_{max}), (\theta - \theta_{max}), (x_{min} - x), (y_{min} - y), (\theta_{min} - \theta)\right] \le 0\}$$

HJI equation:

$$\frac{\partial J}{\partial t}(x, y, \theta, t) + \min_{|u| \le u_{max}} \max_{|d_x| \le d_{max}^x} \nabla J(x, y, \theta, t)' f(x, y, \theta, u, d) = 0$$

Optimal quantities:

$$u^*(x, y, \theta, t) = \arg\min_{\substack{|u| \le u_{max} \ |d_x| \le d_{max}^x}} \nabla J(x, y, \theta, t)^{\mathsf{T}} f(x, y, \theta, u, d)$$
$$d^*(x, y, \theta, t) = \arg\max_{\substack{|d_x| \le d_{max}^x}} \nabla J(x, y, \theta, t)^{\mathsf{T}} f(x, y, \theta, u^*, d)$$



$$u = -u_{max} \operatorname{sign}\left(\frac{\partial J}{\partial \theta}\right)$$

$$d_x = d_{max}^x \operatorname{sign}\left(\frac{\partial J}{\partial x}\right)$$

#### Next time

• Direct methods for optimal control