

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 20/02/2004

Nombre:		

Carnet: _____ Sección: ____

MA-1111— Examen de Segundo Parcial (30 ptos.) - Tipo A — Justifique todas sus respuestas.

- Calcule los siguientes límites y en caso que alguno de ellos no exista, explique porque no. (9 ptos.)
 - a) $\lim_{x \to 0} \frac{|x|}{\operatorname{sen}(x)}$

- b) $\lim_{x\to 0} \frac{x \sin(2x)}{x + \sin(3x)}$
- c) $\lim_{x \to \infty} \sqrt{x(x+a)} x$

2. Responda las siguientes preguntas:

(8 ptos.)

- a) Enuncie el teorema de estricción, también llamado del sandwich.
- b) Sean F(x) y G(x) funciones definidas en un intervalo abierto I alrededor del punto 5. Suponga que la siguiente desigualdad se cumple en I:

$$\left| \frac{F(x)}{G(x)} + 2 \right| \le 3(5 - x)^4$$

Calcule usando el teorema de estricción: $\lim_{x \to 5} \left(\frac{F(x)}{G(x)} + 2 \right)$

- c) Suponga que $\lim_{x\to 5}\frac{1}{G(x)}=2$ y que $\lim_{x\to 5}F(x)$ existe. Usando el resultado obtenido en el literal anterior calcule: $\lim_{x\to 5}F(x)$
- 3. Sea la F(x) la función definida por:

(9 ptos.)

$$F(x) = \begin{cases} 2x+1 & \text{si } x < 2 \\ ax^2 + bx & \text{si } x \ge 2 \end{cases}.$$

Halle valores para las constantes a y b, de manera que F(x) sea continua y derivable en x=2.

4. Responda las siguientes preguntas:

(4 ptos.)

- a) Enuncie el teorema del valor intermedio.
- b) Verifique que la ecuación $X^5 + 4X^3 7X + 14 = 0$ tiene al menos una solución real.