Relatório 3º projecto ASA 2023/2024

Grupo: AL061

Alunos: Miguel Casimiro Barbosa (106064) e Diogo Miguel dos Santos Almada (106630)

Descrição do Problema e da Solução

Variáveis do problema:

Para clarificação, no código do projeto, as variáveis x e y são o número de brinquedos, Toy, e o número de pacotes especiais, Package, respetivamente.

- x_1^n : representa o número de brinquedos produzidos para cada brinquedo diferente, de 1 a n.
- y_1^p : representa o número de pacotes especiais produzidos para cada pacote diferente, de 1 a p.

Função objetivo do problema:

$$\sum_{i=1}^{n} x_{i}Lt_{i} + \sum_{i=1}^{p} y_{i}Lp_{i}$$
, com: Lt sendo o lucro de cada brinquedo, Lp o lucro de cada

pacote especial e f a função que maximiza o lucro diário que se pode obter.

Restrições do problema:

- $(x_i \ge 0)_{i=1}^n$: número de cada brinquedo produzido é maior ou igual a zero;
- $(y_i \ge 0)_{i=1}^p$: número de cada pacote especial produzido é maior ou igual a zero;
- Sendo u_n o array com os índices dos pacotes aos quais o brinquedo n pertence e l o tamanho do vetor 1 caso o tamanho seja maior que zero, ou zero c.c :

$$\left(x_{j} + \sum_{i=0}^{l} y_{u_{n}[i]} \leq max_single_toy_capacity\right)_{j=1}^{n} : para cada brinquedo, a soma da$$

quantidade produzida individualmente mais a quantidade desse brinquedo presente nos pacotes produzidos é menor ou igual à capacidade de produção máxima do brinquedo (max single toy capacity).;

• $\sum\limits_{i=1}^{n}x_{i}^{}+\sum\limits_{i=1}^{p}3y_{i}^{}\leq$ max_toys: a soma de todos os brinquedos e pacotes * 3 (cada pacote tem 3 brinquedos) produzidos é menor ou igual ao máximo de brinquedos que podem ser produzidos por dia (max_toys).

Análise Teórica

Sendo n o número de brinquedos e p o número de pacotes:

- Leitura dos dados de entrada: leitura do input correspondente ao número dos diferentes brinquedos passíveis a serem produzidos, ao número de pacotes especiais e ao número máximo de brinquedos que podem ser produzidos por dia. Logo, O(1);
- Leitura dos dados de entrada: leitura do input correspondente à capacidade de produção e ao lucro de cada brinquedo. Logo, O(n);
- Leitura dos dados de entrada: leitura do input correspondente ao lucro de cada pacote e os brinquedos que o constituem. Logo, O(p);
- O número de variáveis do programa linear é O(n + p);
- O número de restrições do programa linear é O(n + 1) ou simplificando, O(n);
- Assim, a complexidade global, sem considerar a leitura de input, será O(2n + p).

Relatório 3º projecto ASA 2023/2024

Grupo: AL061

Alunos: Miguel Casimiro Barbosa (106064) e Diogo Miguel dos Santos Almada (106630)

Avaliação Experimental dos Resultados

Gráfico 1

A regressão linear abaixo foi construída colocando o eixo dos XX a variar com o tamanho do programa linear (número de variáveis + número de restrições) e o eixo dos YY a variar com o tempo calculado pela execução do algoritmo.

	4
tempo(s)	2
	0 1000 15000 20000 25000 30000 35000 2n + p

Como se pode averiguar, é observada uma relação praticamente linear entre o tamanho do programa linear e os tempos registados, confirmando que a implementação está de acordo com a análise teórica.

tempo(s)	brinquedos(n)	pacotes(p)
0,134	1000	500
0,169	2000	1000
0,278	3000	1500
0,416	4000	2000
0,615	5000	2500
0,858	6000	3000
1,172	7000	3500
1,507	8000	4000
1,942	9000	4500
2,357	10000	5000
2,971	11000	5500
3,522	12000	6000
4,125	13000	6500
4,711	14000	7000
5,339	15000	7500

Gráfico 2

A regressão linear abaixo foi construída colocando o eixo dos XX a variar com a soma do número de brinquedos com o número de pacotes e o eixo dos YY a variar com o tempo calculado pela execução do algoritmo.

Como se pode verificar, o gráfico 2 tem proporções bastante semelhantes ao do gráfico 1, concluindo, assim, que também existe uma relação praticamente linear entre os dois eixos.