Technische Universität Berlin

Master Arbeit

Grapheneinbettungen und Optimierung

Autor: Betreuer und Erstgutachter: Jonas Neukamm Prof. Dr. Stefan Felsner

Matrikelnummer: Zweitgutachter: 324283 Dr. Frank Lutz

Masterarbeit zur Prüfung zum Master of Science an der

> Technische Universität Berlin Institut für Mathematik

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt habe.

Ionas Neukamm			

Zusammenfassung

To Do

Inhaltsverzeichnis

1	Gru	ındlagen		1
	1.1	Geradlinige	Dreiecks Darstellungen (SLTRs)	. 2
	1.2	Schnyder V	Voods	. 3
2		ıptteil		7
	2.1	SLTRs dure	ch harmonische Funktionen	. 8
		2.1.1 Har	monische Funktionen auf planaren Graphen	. 10
	2.2	Ecken kom	patible Paare	. 12
3	\mathbf{Alg}	orithmen z	ur Erkennung von SLTRs	13
	3.1	SLTR via Z	Zwei-Fluss	. 13
		3.1.1 Sch	nyder-Wood-Fluss	. 13
			A-Fluss	
		3.1.3 Gra	phen mit wenigen FAAs oder Schnyder Woods	. 16
			Zwei-Fluss Netzwerk zur Erkennung von SLTRs	
Li	terat	urverzeich	nis	19

1 Grundlagen

Wir werden uns in dieser Arbeit hauptsächlich mit einfachen planeren Graphen beschäftigen, also solchen die keine Mehrfachkanten und Schleifen besitzen und für die kreuzungsfreie Zeichnungen, beziehungsweise Einbettungen, in der Ebene existieren. Sei G=(V,E) ein Graph bestehend aus der Menge der Knoten V und Kanten $E\subseteq (V\times V)$. Eine Kante uv verbindet die beiden Knoten u und v. Einen planeren Graphen zusammen mit einer möglichen kreuzungsfreien Einbettung in der Ebene bezeichnen wir als planen Graphen. Sei Für einen planaren Graphen können wir, zusätzlich zu den Knoten und Kanten, auch die Menge der Gebiete (engl. faces) F betrachten. Bei einem planen Graph wird das unbeschränkte als das $\ddot{a}ussere$ Gebiet definiert. Für die weiteren Betrachtungen macht es oft Sinn drei Knoten a_1, a_2, a_3 im $\ddot{a}usseren$ Gebiet gesondert zu betrachten und diese die Aufhängungen von G zu nennen.

Planare Graphen haben, durch die Existenz kreuzungsfreier Einbettungen, in gewissem Sinne besonders schöne Zeichnungen und so ist einer der Fragen mit der sich schon viele Mathematiker auseinander gesetzt haben: "How to draw a Graph?" [Tut63]

Bei topologische Zeichnung eines planaren Graphen werden die Kanten als Kurven dargestellt die sich nur in den Knoten treffen. In den Fünfzigern wurde unter anderem von István Fáry gezeigt, dass für jeden planaren Graphen mit einem beliebigen äusseren Gebiet eine geradlinige Zeichnung existiert. [Fár48]

Definition 1.1 (intern zusammenhängend). Ein Graph G ist zusammenhängen falls für alle Knoten u, v ein Pfad von u nach v exisitert. G ist k-zusammenhängend, falls er nach der Entfernung von k-1 beliebigen Knoten weiterhin zusammanhängend ist. Sei G plan mit den Aufhängungen a_1, s_2, a_3 , weiter sei a_∞ ein zusätzlicher Knoten im äusseren Gebiet. Dann ist G intern k-zusammenhängend, falls $G \cup \{a_1 a_\infty, a_2 a_\infty, a_a s_\infty\}$ k-zusammenhängend ist.

Abbildung 1.1: Planarer Graph mit einer topologischen, einer geradlinigen und einer konvexen Zeichnung.

In den Siebzigern betrachtete William Thomas Tutte die Unterklasse der dreizusammenhängenden planaren Graphen und zeigte, dass für diese nicht nur geradlinige, sondern sogar konvexe Zeichnungen existieren, bei denen alle Gebiete die konvexe Polygone umranden. [Tut63]

1.1 Geradlinige Dreiecks Darstellungen (SLTRs)

Ausgehend von der konvexen Darstellung nach Tutte, kann man sich die Frage stellen unter welchen Vorraussetzungen wir einen planaren Graphen so zeichnen können, dass alle Gebiete, inklusive dem Äusseren Dreiecken umranden. Bei der Formalisierung dieser Darstellung und ersten Feststellungen halten wir uns an Nieke Aerts und Stefan Felsner [AF13b].

Definition 1.2 (SLTR). Eine Zeichnung eines planen Graphen G wird Gradlinige Dreiecks Darstellung, im weiteren kurz SLTR (für die englische Bezeichnung Staight Line Triangle Representation), genannt falls gilt:

- S1 Alle Kanten Segmente von Geraden
- S2 Alle Gebiete, inklusive dem äusseren, sind nicht degenerierte Dreiecke.

Abbildung 1.2: Links einer der beiden drei-zusammenhängenden Graphen auf acht Knoten ohne SLTR und rechts ein Graph mit einer möglichen SLTR.

Um die Problemstellung greifbarer zu machen werden wir planare Graphen zusammen mit den drei Aufhängungen a_1, a_2 und a_3 als designierten Ecken einer möglichen SLTR betrachten. Einen Graphen zusammen mit einem äusseren Gebiet bzw. Aufhängungen zu betrachten, macht auch in sofern Sinn, dass kombinatorische Graphen existieren, von denen manche Einbettungen SLTRs zulassen, andere jedoch nicht, so wie in Abbildung \ref{loop} zu sehen.

Proposition 1.3. Sei G ein Graph mit Aufhängungen a_1, a_2, a_3 als äusseren Ecken einer SLTR. Weiter gebe es keinen Knoten von Grad zwei der in beiden angrenzenden Gebieten den Winkel π hat¹. Dann ist G intern-drei-zusammenhängend1.1.

Wir werden also von nun an, der Einfachheit halber intern-drei-zusammenhängende Graphen mit Aufhängungen betrachten, da alle anderen Graphen mit SLTR auf diese

 $^{^1}$ Ein solcher Knoten ist keine Aufhängung, da der Aussenwinkel grösser als π ist. Alle anderen Knoten haben $\leq \pi$ Winkel. Somit können wir ihn durch eine gerade Kante zwischen seinen Nachbarn ersetzen und den resultierenden Graphen betrachten.

Abbildung 1.3: Der kleinste drei-zusammenhängende kombinatorische Graph mit einer Wahl der Aufhängungen die eine SLTR zulässt und einer Auswahl ohne SLTR.

reduziert werden können.

Zu den Fragen, welche notwendigen und hinreichenden Bedingungen es für die Existenz von SLTRs gibt und welche algorithmischen Ansätze es bei der Suche nach einer spezifischen Darstellung gibt haben Aerts und Felsner in [AF13b], [AF13a] und [AF15] schon einige Antworten geliefert, mit denen wir uns in den nächsten beidem Kapiteln beschäftigen werden. Zuerst müssen aber in diesem Kapitel noch ein paar notwendige Konzepte eingeführt werden.

1.2 Schnyder Woods

Schnyder Wälder, im weiteren Schnyder Woods, wurden zuerst von Walter Schnyder zur Betrachtung der Ordnungs-Dimension planarer Graphen, als eine Färbung und Orientierung auf den inneren Kanten einer Triangulierung, betrachtet [Sch89]. In einem weiteren Resultat dienten sie zur Erlangung einer planaren Einbettung auf einem $n-2 \times n-2$ Netz[Sch90]. Im Folgenden werden wir die Verallgemeinerung auf 3-zusammenhängende plane Graphen durch Felsner [Fel01] und die zu ihnen in Bijektion stehenden Schnyder Labelings einführen und uns dabei an [Fel04] orientieren.

Für den Rest dieses Kapitels meinen wir mit G, wenn nicht weiter spezifiziert, einen 3-zusammenhängenden planen Graphen mit Aufhängungen a_1, s_2, a_3 .

Definition 1.4 (Schnyder Woods). Ein Schnyder Wood ist eine Orientierung und Beschriftung der Kanten von G mit den Labeln 1, 2 und 3, unter Berücksichtigung der folgenden Regeln²:

²Alternativ wird hier auch anschaulicher von rot, grün und blau als Platzhalter für 1, 2 und 3 gesprochen. Es wird davon ausgegangen, dass die Label zyklisch sortiert sind, sodass i + 1 und i - 1 immer definiert sind.

- W1 Jede Kante ist entweder un- oder bigerichtet. Falls sie bigerichtet ist haben beide Richtungen unterschiedliche Label.
- W2 An jeder Aufhängung a_i existiert eine nach aussen gerichtete Kante ohne Endpunkt mit Label i.
- W3 Jeder Knoten v hat hat Ausgangsgrad eins zu jedem Label. Um v existieren im Uhrzeigersinn eine Auskante mit Label 1, null oder mehr eingehende Kanten mit Label 3, eine Auskante mit Label 2, null oder mehr eingehende Kanten mit Label 1, eine Auskante mit Label 2 und null oder mehr eingehende Kanten mit Label 2.
- W4 Es existiert inneres Gebiet mit gerichteten Zykel in einer Farbe als Rand.

Die Existenz von Schnyder Wood für jeden 3-zusammenhängenden planen Graphen werden wir weiter unten zeigen. Zunächst wollten wir uns mit Resultaten im Bezug auf Einbettungen befassen. Wir wollen hier kurz, das face-counting[Fel01] erläutern. Betrachten wir also G zusammen mit einem Schnyder Wald T_1, T_2, T_3 . Nach [Fel04, Korollar 2.5] handelt es sich bei den T_i um gerichtete Bäume mit Wurzeln in a_i . Zu jedem Knoten v existierten also eindeutige Pfade $P_i(v)$ zu den Aufhängungen a_i . Die Pfade von v zu den Aufhängungen treffen sich nach [Fel04, Lemma 2.4] nur in v. Somit können wir zu jedem Knoten v die von den Pfaden $P_{i-i}(v)$ und P_{i+1} und dem äusseren Gebiet begrenzte Region R_i betrachten. Durch das Zählen der Gebiete in den diesen Regionen lässt sich nun eine konvexe Zeichnung von G erzeugen.

Abbildung 1.4: Regionen zu v und die Inklusion von $R_i(u)$ in $R_i(v)$ falls $u \in R_i(v)$.

Hierzu ordnet man jedem Knoten v seien Gebiets Vektor (v_1, v_2, v_3) zu, wobei v_i die Anzahl der inneren Gebiete in R_i beschreibt. Nun gilt für jeden Knoten $v_1 + v_2 + v_3 = |F| - 1$. Seien $\alpha_1 = (0, 1), \alpha_2 = (1, 0)$ und $\alpha_3 = (0, 0)$, dann erhalten wir die Zeichnung durch die Funktion

$$\mu: v \to v_1\alpha_1 + v_2\alpha_2 + v_3\alpha_3.$$

Nach [Fel04, Theorem 2.7] ist die mit diesen Koordinaten erzeugte Zeichnung planar und konvex. Sie hat sogar noch die schöne Eigenschaft, dass sich die Knoten an jedem innern Gebiet auf dem Rand eines Dreiecks befinden, wie in Abbildung ?? illustriert. // TODO Schnyder Triangle Bild ?!

Eine weitere Methode um aus Schnyder Woods, über geodätische Einbettung, zu einer konvexen Zeichnung zu gelangen, wird ebenfalls in [Fel04] beschrieben.

Definition 1.5 (Schnyder Labeling). Ein Schnyder Labeling ist eine Beschriftung Winkel von G mit den Labeln 1, 2 und 3 unter Berücksichtigung der folgenden Regeln:

- L1 Um jedes innere Gebiet bilden die Label im Uhrzeigersinn nichtleere Intervalle von 1en, 2en und 3en. Am äusseren Gebiet gilt dies gegen den Uhrzeigersinn.
- L2 Um jeden inneren Knoten bilden die Label im Uhrzeigersinn nichtleere Intervalle von 1en, 2en und 3en.
- L3 An Aufhängung a_i haben äusseren Winkel die Label i-1 und i+1 im Uhrzeigersinn mit der halben Auskante dazwischen und die inneren Winkel das Label i.

Abbildung 1.5: Aus L1 und L2 folgt, dass es in einem Schnyder Labeling nur Kanten von Typ A oder B, siehe Abbildung ??, gibt.

Durch Abbildung ?? wird eine Verbindung zwischen Schnyder Woods und Schnyder Labelings geschaffen. Wenn wir uns auf drei-zusammenhängende planare Graphen beschränken, dann ist die dargestellte Abbildung nach [Fel04, Theorem 2.3] eine Bijektion.

Mithilfe der Schnyder Labelings können wir kurz auf die Existenz einer Schnyder Woods, bzw. Schnyder Labelings, für einen beliebigen 3-zusammenhängenden planen Graphen eingehen. Der

// TODO

2 Hauptteil

Sei G ein planer intern 3-zusammenhängender Graph mit Aufhängungen $\{a_1, a_2, a_3\}$. Nehmen wir für einen Moment an, dass wir schon ein SLTR für G gefunden haben, dann hat jeder Knoten v in maximal einen inzidenten Gebiet f einen flachen Winkel, den wir mit (f, v) bezeichnen, und liegt auf einer Geraden. Jedes Gebiet f hat genau drei Ecken, also |f| - 3 flache Winkel. Dies liefert im Umkehrschluss eine notwendige Bedingung für die Existent einer SLTR, indem wir die Knoten den Gebieten zuordnen.

Definition 2.1 (FAA). Sei G = (V, E, F) ein planer Graph, dann ist eine Flache Winkel Zuordnung, im weiteren (nach dem englischen *flat-angle-assignment*) mit FAA bezeichnet, ein Matching zwischen Knoten und Gebieten, sodass:

- F1 Jedem Gebiet f sind genau |f| 3 Knoten zugeordnet.
- F2 Jeder Knoten v ist höchstens einem Gebiet zugeordnet.

Für den Fall, dass Aufhängungen gegeben sind fordern wir zusätzlich:

F3 Die inzidenten Knoten des äusseren Gebietes, die keine Aufhängungen sind, müssen dem äusseren Gebiet zugeordnet werden.

Abbildung 2.1: Ein planer Graph mit einer SLTR und einem FAA, dass keine SLTR induziert. Die Pfeile stellen hier die Zuweisung der Knoten zu den inneren Gebieten da.

Ein planer Graph kann also nur dann eine SLTR besitzen, falls mindestens ein FAA existiert, jedoch liefert nicht jedes FAA sofort ein SLTR. Um hinreichende Konditionen für SLTRs zu erhalten werden wir uns in den nächsten beiden Abschnitten mit zwei Ansätzen nach Aerts und Felsner beschäftigen. Der erste Ansatz aus [AF13b] liefert ein System aus harmonischen Gleichungen dessen Lösung eine SLTR liefert. In Teilen darauf basierend stellt der zweite Ansatz aus [AF15] einen Zusammenhang zwischen Schnyder Woods und FAAs her und die Existenz passender Paare impliziert wieder die Existenz von SLTRs.

2.1 SLTRs durch harmonische Funktionen

Wir werden die Beweise zu den in diesem Abschnitt aufgestellten Präpositionen und Theoremen übergehen. Der interessierte Leser sei, sofern nicht anders angegeben auf [AF13b] verwiesen. Im Verlauf des Abschnitts werdendes weiteren eine kurze Einführung in harmonische Funktionen auf planaren Graphen geben. Zum Einstieg formulieren wir eine weitere Definition um dann eine Beobachtung zu SLTRs festzuhalten.

Definition 2.2 (Begrenzende Zykel und kombinatorisch konvexe Ecken). Sei G ein planer Graph mit Aufhängungen $\{a_1, a_2, a_3\}$ und einem FAA ϕ von G. Sei H ein zusammenhängender Teilgraph von G und $\gamma = \gamma(H)$ der H umrandende Weg in G, also die Kanten und Knoten des äusseren Gebiets von H, wobei hier Knoten und Kanten mehrfach vorkommen können. Wir werden so erhaltene γ als begrenzende Zykel bezeichnen. $int(\gamma)$ sei die Menge aller Knoten, Kanten und Gebiete aus G die im inneren von γ oder auf γ liegen. Einen Knoten v aus γ bezeichnen wir als kombinatorisch konvexe Ecke von γ im Bezug auf ϕ , falls gilt:

 $E1 \ v$ ist eine Aufhängung, oder

E2 v ist nicht durch ϕ zugeordnet und es existiert eine Kante e = (v, w) mit $e \notin int(\gamma)$, oder

E3 v ist einem Gebiet f zugeordnet, $f \notin int(\gamma)$ und es existiert eine Kante e = (v, w), sodass $e \notin int(\gamma)$.

Abbildung 2.2: Auf der linken Seite zwei Beispiele für begrenzende Zykel und rechts für kombinatorisch konvexe Ecken mit und ohne zugewiesenem Knoten.

Es lässt sich für SLTRs leicht zeigen, dass für jeden begrenzenden Zykel γ , der nicht von einem Pfad induziert wird, gilt, dass er mindestens drei kombinatorisch konvexe Ecken besitzt. Die folgende Präposition nach [AF13b, Prop 2.2, Prop 2.4] verallgemeinert diese Beobachtung.

Proposition 2.3. Sei G ein planer Graph der eine SLTR Γ zulässt. Sei weiter ϕ das von Γ induzierte FAA und H ein zusammenhängender Teilgraph von G. Falls v eine geometrisch konvexe Ecke in Γ ist, dann ist v auch eine kombinatorisch konvexe Ecke hinsichtlich ϕ . Somit gilt:

E4 Jeder begrenzende Zykel γ , der nicht von einem Pfad induziert wird, hat hinsichtlich ϕ mindestens drei kombinatorisch konvexe Ecken.

Proposition 2.3 liefert also eine notwendige Bedingung damit ein FAA von einer SLTR induziert sein kann. Dies ist sogar eine hinreichende Bedingung wie im Verlauf des Abschnittes in Theorem 2.10 gezeigt werden wird. Wir nennen ein FAA das [E4] erfüllt im Weiteren Gutes-FAA oder kurz GFAA. Aerts und Felsner zeigen, dass ein Gutes-FAA eine Kontaktfamilie von Pseudosegmenten induziert die dehnbar ist und sich somit geradlinig darstellen lässt.

Definition 2.4 (Kontaktfamilie von Pseudosegmenten). Eine Kontaktfamilie von Pseudosegmenten ist eine Familie $\Sigma = \{c_i\}_i$ von einfachen Kurven

$$c_i: [0,1] \to \mathbb{R}^2$$
, mit $c_i(0) \neq c_i(1)$,

sodass alle Kurven c_i, c_j mit $i \neq j$ maximal einen gemeinsamen Punkt haben. Dieser Punkt muss dann ein Endpunkt von mindestens einer der Kurven sein.

Ein GFAA ϕ liefert eine Relation ρ auf den Kanten von G. Zwei Kanten (v,w),(v,u), beide adjazent zu f, stehen genau dann in Relation, falls $\phi(v)=f$, wenn also (v,w) und (v,u) auf der selben Seite von f in der SLTR liegen. Der transitive Abschluss dieser Relation liefert eine Äquivalenzrelation ρ . Die Aquivalenzklassen von ρ bilden eine Kontaktfamilie von Pseudosegmenten. Nennen wir die Äquivalenzklassen von ρ Kurven, dann liefert F2, dass jeder Knoten nur im inneren von einer Kurve liegt und sich die Kurven nicht kreuzen. Weiter hat jede Kurve unterschiedliche Anfangs- und Endpunkte und kann sich nicht selbst berühren, da der resultierende begrenzende Zykel γ nur eine beziehungsweise zwei kombinatorisch konvexe Ecken, was ein Widerspruch zu E4 wäre. Analog können zwei Kurven nicht ihre Anfangs- und Endpunkte teilen. Für eine von einem FAA ϕ induzierte Kontaktfamilie schreiben wir auch Σ_{ϕ} .

Abbildung 2.3: Die Kanten von G als Kontaktfamilie von Pseudosegmenten induziert durch die Äquivalenzrelation. In rot und grün die beiden Äquivalenzklassen bzw. Kurven, die mehr als eine Kante beinhalten.

Definition 2.5. Sei Σ ein Kontaktfamilie von Pseudosegmenten und $S \subseteq \Sigma$. Wir nennen einen Punkt $p \in S$ einen freien Punkt, falls

- p ist ein Endpunkt eines Pseudosegmentes aus S.
- p liegt nicht im Inneren eines Pseudosegmentes aus S.
- p liegt am äusseren Rand von S.

• p ist entweder eine Aufhängung von G, oder berührt ein Pseudosegment, welchen nicht zu S gehört.

Lemma 2.6. [AF13b, Lemma 2.8] Sei ϕ ein Gutes-FAA auf einem planen und intern 3-zusammenhängenden Graphen. Dann hat gilt:

E5 jede Teilmenge $S \subseteq \Sigma_{\phi}$ mit $|S| \ge 2$ hat mindestens 3 freie Punkte.

Betrachten wir also einen planen, intern 3-zusammenhängenden Graphen G mit Aufhängungen $\{a_1, a_2, a_3\}$ und einem GFAA ϕ . Wenn wir die von ϕ induzierte Kontaktfamilie Σ_{ϕ} mit geradlinigen Segmenten darstellen können, dann haben wir eine zu ϕ passende SLTR für G gefunden. Für den Fall, dass eine solche Darstellung $f: G \to \mathbb{R}^2$ existiert, können wir für die Koordinaten der Segmente und somit auch der Knoten f(v) von G Gleichungen aufstellen, die diese erfüllen müssen. Das resultierende Gleichungssystem beinhaltet harmonische Funktionen, über die wir hier einen (sehr) kurzen Überblick geben.

2.1.1 Harmonische Funktionen auf planaren Graphen

Die Theorie zu harmonischen Funktionen auf planaren Graphen und ihre Anwendung werden in [LV99] ausführlich behandelt.

Wir beginnen mit der Definition.

Definition 2.7 (Harmonische Funktionen). Sei G = (V, E) ein planarer zusammenhängender Graph und $S \subseteq V$. Eine Funktion $f: V \to \mathbb{R}$ nennen wir am Knoten $v \in V$ harmonisch, falls gilt:

H1
$$\frac{1}{d_v} \sum_{u \in N(v)} (f(u) - f(v)) = 0 \quad \forall v \in V \setminus S$$

Wir können H1 durch das hinzufügen einer nichtnegativen Gewichtsfunktion $\lambda: E \to \mathbb{R}_+$ verallgemeinern:

H2
$$\frac{1}{d_v} \sum_{u \in N(v)} \lambda_{uv}(f(u) - f(v)) = 0 \quad \forall v \in V \backslash S$$

Ein Knoten für den f nicht harmonisch ist nennt man Pol.

Theorem 2.8. [LV99, Theorem 3.1.2] Für jede nichtleere Teilmenge $S \subseteq V$ und jede Funktion $f_S: S \to \mathbb{R}$ existiert genau eine Funktion $f: V \to \mathbb{R}$, die f_S auf V fortsetzt, sodass f in jedem Knoten $v \in V \setminus S$ harmonisch ist. Wir nennen sie die harmonische Fortsetzung.

Ein bekanntes Resultat, dass sich in Form harmonischer Funktionen darstellen Lässt, ist Tuttes *rubber-band-representation* aus [Tut63], die konvexe Zeichnungen für planare Graphen liefert. Man stelle sich einen planaren Graphen vor bei dem jede Kante

duch ein idealisiertes Gummiband¹ ersetzt wird. Nun wählen wir ein äusseres Gebiet und fixieren die dieses Gebiet umrandenden Knoten $S \subseteq$ in zyklischer Reihenfolge auf einem gleichmäßigen Polygon $f_S: S \to \mathbb{R}^2$. Das resultierende Gleichgewicht auf den restlichen Knoten, dass genau dann entsteht, wenn H1 erfüllt ist, entspricht der harmonischen Fortsetzung von f_S auf V, wobei f(v) genau der Position von v in der resultierenden Einbettung entspricht und S die Menge der Pole von f ist. Das folgende Theorem ist das Hauptresultat aus [Tut63].

Theorem 2.9. Sei G ein planarer Graph, dann ist eine Gummiband-Representation (rubber-band-representation) von G eine planare Einbettung in der Ebene.

Hiermit beenden wir den kurzen Exkurs und kommen zurück zu unserer Problemstellung. Nehmen wir für den Moment an, dass wir eine Darstellung gefunden haben. Wir haben also eine geradlinige Darstellung f der von ϕ induzierten Segmente. Dann gilt für jeden Knoten v im inneren eines Segmentes, also für jeden zugewiesenen Knoten, dass er auf einer Gerade zwischen seinen beiden benachbarten Knoten u, w auf dem Segment liegen muss. Diese Eigenschaft liefert

$$f(v) = \lambda_v f(u) + (1 - \lambda_v) f(w), \text{ mit } \lambda_v \in (0, 1).$$
 (2.1)

Für die nicht zugewiesenen Knoten aus G muss in einer SLTR gelten, dass sie sich in der konvexen Hülle ihrer Nachbarn befinden. Wir bilden einen (gewichteten) Schwerpunkt und erhalten

$$f(v) = \sum_{u \in N(v)} \lambda_{uv} f(u), \text{ mit } \sum_{u \in N(v)} \lambda_{uv} = 1 \text{ und } \lambda_{uv} > 0.$$
 (2.2)

Somit erfüllt die so gegebene Funktion $f: V \to \mathbb{R}^2$ mit einem passend Gewählten λ wegen (2.1) und (2.2) H2. Es handelt sich somit um eine harmonische Funktion, mit den Polen $\{a_1, a_2, a_3\}$. Nach Theorem 2.8, existiert für jede den Beschränkungen entsprechende Wahl von λ genau eine Funktion f, die die Gleichungen erfüllt. Dies führt uns zum Hauptresultat aus [AF13b]:

Theorem 2.10. Sei G ein intern 3-zusammenhängender, planarer Graph und Σ eine Familie von Pseudosegmenten, induziert von einem FAA, sodass jede Teilfamilie $S \subset \Sigma$ entweder mindestens drei freie Punkte, oder Kardinalität kleiner gleich eins hat. Die eindeutige Lösung des aus Σ folgenden Gleichungssystems ist eine SLTR.

Bemerkung. Dies bedeutet, dass die weiter oben in Lemma 2.6 festgehaltene notwendige Bedingung auch eine hinreichende ist. Falls wir schon ein Gutes-FAA gefunden haben, dann können wir mit Hilfe des obrigen Ansatzes auch eine Einbettung in der Ebene erhalten, jedoch gibt es Graphen mit polynominell vielen FAA und es dauert polynominell lange um E4 zu überprüfen. Wir erlangen also auf diesem Weg keinen Algorithmus in \mathcal{P} .

 $^{^1\}mathrm{Die}$ Gummibänder müssen das Hook'sche Gesetzt erfüllen, sodass eine Streckung auf Länge lgenau Kraft lbenötigt.

Aerts und Felsner werfen die Frage nach einer "guten" Wahl der λ auf, und wie diese die resultierenden Einbettungen beeinflussen. Mit diesem Thema, wollen wir uns am Ende des nächsten Kapitels kurz beschäftigen.

2.2 Ecken kompatible Paare

In diesem Abschnitt werden wir uns mit einer zweiten Charakterisierung von SLTRs auf planaren Graphen nach [AF15] beschäftigen, die eine Verbindung zwischen Schnyder Woods und FAAs herstellt.

Definition 2.11 (Ecken Kompatibilität). Ein Paar (σ, ϕ) aus einem Schnyder Labeling σ und einem FAA ϕ nenne wir *Ecken kompatibel*, falls:

- C1 Das Schnyder Labeling σ und das FAA ϕ nutzen die selben Aufhängungen.
- C2 In jedem inneren Gebiet haben die drei Ecken aus ϕ genau drei unterschiedliche Label in σ .

3 Algorithmen zur Erkennung von SLTRs

Im vorherigen Kapitel wurden Kriterien für die Existenz einer SLTR erarbeitet, die allerdings nicht sofort einen Algorithmus, sowohl zur Frage nach der Existenz, als auch zum erlangen einer spezifischen SLTR liefern. Diesem Thema wollen wir uns nun im folgenden Kapitel zuwenden und dafür zum Einstieg einen von Aerts und Felsner in [AF13b] erarbeiteten Algorithmus betrachten.

3.1 SLTR via Zwei-Fluss

Wir betrachten im folgenden gerichtete Graphen. Das Ziel ist es, für einen gegebenen Graphen sowohl einen Schnyder Wood als auch ein FAA jeweils als Lösung eines Fluss-Problems zu erhalten und diese beiden dann in einem Zwei-Fluss-Problem zu kombinieren, sodass eine Lösung ein Ecken-Kompatibles-Paar gibt und wir somit eine SLTR erhalten. Wir beschäftigen uns also mit der folgenden Problemstellung.

Definition 3.1 (Gerichtetes-Multi-Fluss-Problem). Sei D = (V, E) ein gerichteter Graph, im Weiteren auch Netzwerk genannt, mit den Kapaziäten $c: E \mapsto \mathbb{R}_+$, Paaren von ausgezeichneten Knoten $\{(s_1, t_1), ..., (s_n, t_n)\}$ und positiven Bedarfen $\{d_1, ..., d_n\}$, dann ist $\varphi = (\varphi_1, ..., \varphi_n)$ ein zulässiger Fluss, falls

F1
$$\forall (u, v) \in E : \sum_{i=1}^{n} \varphi_i(u, v) \leq c(u, v)$$

F2 $\forall u \neq s_i, t_i : \sum_{w \in V} \varphi_i(u, w) - \sum_{w \in V} \varphi_i(w, u)$
F3 $\forall s_i : \sum_{w \in V} \varphi_i(s_i, w) - \sum_{w \in V} \varphi_i(w, s_i) = d_i$
F4 $\forall t_i : \sum_{w \in V} \varphi_i(w, s_i) - \sum_{w \in V} \varphi_i(s_i, w) = d_i$

Bemerkung. Im Fall n=1 und Kapazitäten $c: E \mapsto \mathbb{N}$ impliziert die Existenz eines zulässigen Flusses die Existenz einer ganzzahligen Lösung, sowohl für gerichtete als auch ungerichtete Graphen, und diese lässt sich in polynomineller Zeit bestimmen. Für n=2 und ungerichtete Graphen gilt dies nach [?] ebenfalls. Für uns im Folgenden interessant wäre jedoch, wie wir sehen werden, der Fall n=2 für gerichtete Graphen. Leider ist hier im Allgemeinen die Lösung nur über Lineare Programmierung möglich und befindet sich somit in \mathcal{NP} .

3.1.1 Schnyder-Wood-Fluss

Um einen Schnyder Wood zu erhalten folgen wir [Fel04]. Wir betrachten den Primal-Dual Graphen $G + G^*$ eines planen Graphen G. Hier ist G^* der schwache duale Graph zusammen mit einer Halbkante ins äussere Gebiet von jeder inzidenten Kante aus. Die Menge der Knoten von $G+G^*$ besteht aus Knoten-Knoten, Kanten-Knoten und Gebiets-Knoten, mit Kanten in $G+G^*$, sowohl zwischen inzidenten Kanten und Knoten, als auch Kanten und Gebieten in G. Somit ist $G+G^*$ bipartit. Falls wir einen Knoten f_{∞} für das äussere Gebiet einsetzten und die Halbkanten verlängern sprechen wir vom Abschluss von $G+G^*$. Wir bezeichnen diesen mit \tilde{G} .

Sei G = (V, E) ein Graph und $\alpha : V \mapsto \mathbb{N}$ eine Funktion auf G. Eine $\alpha - Orientierung$ ist eine Orientierung auf G, sodass der Ausgrad eines jeden Knoten $\alpha(v)$ entspricht. Das folgende Theorem stammt ebenfalls aus [?].

Theorem 3.2. Sei G ein planer Graph mit Aufhängungen $\{a_1, a_2, a_3\}$, dann sind die folgenden Strukturen in Bijektion:

- Die Schnyder Wälder auf G.
- Die Schnyder Wälder auf dem (schwachen) dualen Graph G*.
- Die α_s Orientierungen des Abschlusses von $G+G^+$ mit $\alpha_s(v)=3$ für jeden Knoten- und Gebiets-Knoten, $\alpha_s(e)=1$ für jeden Kanten-Knoten und $\alpha_s(f_\infty)=0$.

Fusy zeigt in [Fus07] im Zuge der Untersuchung spezifischer α -Funktionen, dass sich α_s -Orientierungen von $G+G^*$ in linearer Zeit berechnen lassen.

Machen wir uns also an die Konstruktion eines Netzwerks \mathcal{N}_S mit einer Quelle und Senke, sodass eine zulässige Lösung φ einer α_s – Orientierung von \tilde{G} entspricht, und somit auch einen Schnyder Wald auf G liefert. Besonderes Augenmerk ist hier auf die Möglichkeit einer späteren Kombination mit einem FAA Fluss gelegt, um ein Zwei-Fluss-Problem zu erstellen, und nicht unbedingt auf Effizienz.

Wie oben schon erwähnt ist G bipartit, Kanten-Knoten haben Grad 4, Knoten-Knoten Grad deg(v) und Gebiets-Knoten Grad |f|. Für eine α_s -Orientierung muss jeder Kanten-Knoten Ausgrad 1, jeder Knoten-Knoten Eingrad deg(v) - 3 und jeder Gebiets-Knoten Eingrad |f| - 3 haben. Die Kanten-Knoten am äusseren Gebiet sind in \tilde{G} immer nach aussen orientiert. Somit müssen wir nur die inneren Kanten-Kanten E_{in} betrachten.

Sei \mathcal{N}_S ein Netzwerk mit jeweils einer Quelle s und Senke t, Kanten von der Quelle zu jedem $e \in E_{in}$ mit Kapazität 1, Kanten von den Kanten-Knoten e zu inzidenten Knoten-Knoten v und (inneren) Gebiets-Knoten $f \in F_{in}$ in G ebenfalls mit Kapazität 1, Kanten von $f \in F_{in}$ zur Senke mit Kapazitäten |f| - 3, Kanten von den (inneren)

Knoten-Knoten $v \in V_{in} = V \setminus \{a_1, a_2, a_3\}$ zur Senke mit Kapazitäten deg(v) - 3 und Kanten von den Aufhängungen a_i zur Senke mit Kapazitäten deg(v) - 2. Die letzte Kapazität resultiert aus dem Fakt, dass die Halbkante in $G + G^*$ immer nach aussen orientiert ist und wir somit nur noch zwei andere Kanten nach aussen orientieren müssen.

Der Bedarf des Netzwerkes entspricht der Anzahl der inneren Kanten von G. Sei nun φ eine zulässige ganzzahlige Lösung, dann hat jeder Kanten-Knoten e Ausgrad 1. Der Fluss entlang einer Auskante von $e \in E_{in}$ in \mathcal{N}_S entspricht dann genau der hin zu e orientierten Kante in $G+G^*$ und die Knoten-Knoten und Gebiets-Knoten haben genau deg(v)-3 bzw. |f|-3 zu ihnen hin orientierte Kanten. Eine zulässiger ganzzahliger Fluss kodiert also eine α_s -Orientierung auf $G+G^*$. Somit liefert uns φ nach Theorem 3.2 auch einen Schnyder Wald auf G.

3.1.2 FAA-Fluss

Um ein FAA für einen planaren Graphen G zu erhalten müssen wir jedem Gebiet $f \in F$ genau drei Ecken und |f|-3 flache Winkel zuordnen und jeder Knoten darf maximal einem Gebiet zugeordnet werden, also in diesem flach sein. Falls eine Einbettung und die Aufhängungen $\{a_1, a_2, a_3\}$ gegeben sind, müssen wir jedem inneren Gebiet $f \in F_{in}$ drei Ecken und |f|-3 flache Winkel zuweisen und jeder innere Knoten $v \in V_{in}$ darf maximal einem Gebiet zugeordnet werden. Wir konstruieren ein Netzwerk für den zweiten Fall, dass sich leicht verallgemeinern lässt.

Sei also wieder \mathcal{N}_F ein Netzwerk mit einer Quelle und Senke, einem Knoten für jeden inneren Winkel (f, v) für $v \in V, f \in F_{in}$, Knoten für alle inneren Gebiete f und alle inneren Knoten v. Von der Quelle existiert eine Kante mit Kapazität 1 zu jedem inneren Winkel (f, v), von jedem inneren Winkel (f, v) jeweils eine Kante zu f und zu v mit Kapazität 1, von jedem inneren Gebiet f eine Kante mit Kapazität 3 zur Senke und zuletzt noch eine Kante von jedem inneren Knoten v zur Senke mit Kapazität 1.

Der Bedarf des Netzwerks ist $\sum_{f \in F_{in}} |f|$, die Anzahl der inneren Winkel von G. Sei φ ein zulässiger ganzzahlige Fluss, dann entspricht Fluss auf einer Kante ((f,v),f) einer Ecke, von f und Fluss auf ((f,v),u) einem flachen Winkel, zur Vereinfachung sprechen wir im Weitern auch von Ecken- respektive Zuweisungs-Fluss. Somit wird jeder innere Winkel entweder dem Gebiet zugewiesen oder als Ecke ausgezeichnet und es kann nur jeweils ein Winkel an jedem inneren Knoten zugewiesen werden. Somit respektiert φ die Bedingungen aus Definition ?? und es existieren nur dann FAAs auf G, falls mindestens eine ganzzahlige Lösung auf \mathcal{N}_F existiert.

Bemerkung. Das oben konstruierte Netzwerk zur Bestimmung von FAAs lässt sich auch als Zwei-Fluss Problem konstruieren, wenn wir für Ecken- und Zuweisungs-Fluss

getrennte Quellen und Senken einführen. Der Bedarf des Ecken-Flusses ist dann $3|F_{in}|$ und der Bedarf des Zuweisung-Flusses $\sum_{f \in F_{in}} |f| - 3$.

Eine zulässige ganzzahlige Lösung $\varphi = (\varphi_2, \varphi_3)$ entspricht dann wieder einem FAA auf G, da aus der Ganzzahligkeit folgt, dass ein Winkel entweder von φ_2 oder φ_3 genutzt wird und somit eine Definition ?? respektierende Beschriftung der Winkel vorliegt.

3.1.3 Graphen mit wenigen FAAs oder Schnyder Woods

Sei G ein planer Graph mit nur polynominell vielen Schnyder Woods bzw. FAAs, dann liefern die oben angegebenen Algorithmen auch einen polynominellen Ansatz zur Bestimmung einer SLTR. Wir TODO

Bemerkung. Für Graphen mit wenigen FAAs oder wenigen Schnyder Woods, womit hier maximal polynominell viel gemeint sind, liefern die Ansätze oben jeweils Wege in polynomineller Zeit zu verifizieren, ob SLTRs existieren und ein Gutes-FAA zu erhalten. Die Graphen mit nur genau einen Schnyder Wood wurden von Felsner und ... TODO

3.1.4 Ein Zwei-Fluss Netzwerk zur Erkennung von SLTRs

Nachdem wir nun sowohl für Schnyder Woods als auch für FAAs ein Netzwerk betrachtet haben, für das eine ganzzahlige Lösung eine einen Schnyder Wood bzw. ein FAA für einen planen Graphen G liefert, wollen wir jetzt eine Kombination aus beiden erstellen die ein Ecken-Kompatibles-Paar kodiert, um ein Gutes-FAA bzw. eine SLTR für G zu finden. Wir konstruieren nun ein 3-Fluss Netzwerk, nur leicht abgewandelt zu demjenigen aus [AF15], um danach zu zeigen, dass jede beliebige 2-1 Kombination auch ein mögliches 2-Fluss Problem für unsere Zwecke wäre.

Wie oben in Abschnitt ?? erwähnt lässt sich ein FAA auch mit einem Zwei-Fluss kodieren und wir können Ecken- und Zuweisungs-Fluss mit den passenden Bedarfen getrennt betrachten. Wi müssen jetzt diese drei Flüsse, also Schnyder Wood-, Ecken- und Zuteilungs-Fluss in einem Netzwerk kombinieren. Eine erste Skizze ist in Abbildung ?? zu sehen. Wir können zu weiten Teilen die beiden Netzwerke Bei diesem neuen Netzwerk $\mathcal N$ muss sicher gestellt werden, dass eine ganzzahlige Lösung ein Ecken-Kompatibles-Paar aus FAA und Schnyder Wood kodiert. ...

TODO

Abbildung 3.1: Skizze für das kombinierte Netzwerk auf einem inneren Gebiet mit $|f| \geq 4$.

Literaturverzeichnis

- [AF13a] Nieke Aerts and Stefan Felsner, Henneberg steps for triangle representations, The Seventh European Conference on Combinatorics, Graph Theory and Applications, Springer, 2013, pp. 503–509.
- [AF13b] ______, Straight line triangle representations, International Symposium on Graph Drawing, Springer, 2013, pp. 119–130.
- [AF15] _____, Straight line triangle representations via schnyder labelings, J. Graph Algorithms Appl. 19 (2015), no. 1, 467–505.
- [Fár48] István Fáry, On straight-line representation of planar graphs, Acta Sci. Math. 11 (1948), 229–233.
- [Fel01] Stefan Felsner, Convex drawings of planar graphs and the order dimension of 3-polytopes, Order 18 (2001), no. 1, pp. 19–37.
- [Fel04] _____, Lattice structures from planar graphs, the electronic journal of combinatorics 11 (2004), no. 1, 15.
- [Fus07] Éric Fusy, Combinatoire des cartes planaires et applications algorithmiques, Ph.D. thesis, Citeseer, 2007.
- [LV99] László Lovász and Katalin Vesztergombi, Geometric representations of graphs, Paul Erdos and his Mathematics (1999).
- [Sch89] Walter Schnyder, *Planar graphs and poset dimension*, Order **5** (1989), no. 4, pp. 323–343.
- [Sch90] _____, Embedding planar graphs on the grid, pp. 138–148.
- [Tut63] William Thomas Tutte, *How to draw a graph*, Proceedings of the London Mathematical Society **3** (1963), no. 1, 743–767.