2008 Mathematical Methods 3/4 Trial Exam 1 Solutions Free download and print from www.itute.com Do not photocopy ©Copyright 2008 itute.com

1a.
$$f(x) = \sqrt{x} + \frac{x}{2}$$
, $f(x+1) = \sqrt{x+1} + \frac{x+1}{2}$,
 $\therefore g(x) = 2f(x+1) = 2\sqrt{x+1} + x + 1$.

1b.
$$g(x) = 0$$
. $\therefore 2\sqrt{x+1} + x + 1 = 0$, $2\sqrt{x+1} = -(x+1)$, $\therefore 4(x+1) = (x+1)^2$, $4(x+1) - (x+1)^2 = 0$, $(x+1)[4-(x+1)] = 0$, $(x+1)(3-x) = 0$.
Only $x = -1$ satisfies $g(x) = 0$.

2.
$$y = 1 + 3\log_e\left(\frac{2x - b}{a}\right)$$
 and $y = -2$ when $x = b$.

$$\therefore -2 = 1 + 3\log_e\left(\frac{b}{a}\right), \ \therefore \log_e\left(\frac{b}{a}\right) = -1, \ \therefore \log_e\left(\frac{a}{b}\right) = 1.$$
Hence $\frac{a}{b} = e$, $\therefore a = be$.

3.
$$f(x) = \frac{\log_e(ax)}{ax},$$

$$f'(x) = \frac{(ax)\left(\frac{1}{x}\right) - (a)(\log_e(ax))}{(ax)^2} = \frac{1 - \log_e(ax)}{ax^2}.$$

$$f'(a^{-1}) = \frac{1 - \log_e(1)}{a^{-1}} = \frac{1}{a^{-1}} = a.$$

4a.
$$y = f'(x) = \frac{1}{2}x + \frac{3}{2}$$
 for $-1 \le x < 1$.

$$\therefore f(x) = \frac{1}{4}x^2 + \frac{3}{2}x + c$$
.
Given $f(-1) = -1$, $\therefore \frac{1}{4}(-1)^2 + \frac{3}{2}(-1) + c = -1$, $\therefore c = \frac{1}{4}$.

$$\therefore f(x) = \frac{1}{4}x^2 + \frac{3}{2}x + \frac{1}{4}$$
 for $-1 \le x < 1$.
Hence $y = \frac{1}{4}x^2 + \frac{3}{2}x + \frac{1}{4}$ for $-1 \le x < 1$.

4b. For
$$-1 \le x < 1$$
, if $f(-1) = 0$, then $\frac{1}{4}(-1)^2 + \frac{3}{2}(-1) + c = 0$,
 $\therefore c = \frac{5}{4}$. Hence $y = \frac{1}{4}x^2 + \frac{3}{2}x + \frac{5}{4} = \frac{1}{4}(x+1)(x+5)$.
Similarly, for $x \in (-\infty, -1)$,
 $y = -\frac{1}{4}x^2 + \frac{1}{2}x + \frac{3}{4} = -\frac{1}{4}(x+1)(x-3)$.
For $x \in [1, \infty)$, $y = 2x + 1$.

5a.
$$y = 1 + \cos \frac{x}{2}, x \in [0, 2\pi].$$

Coordinates of the inflection point are $(\pi,1)$.

$$\frac{dy}{dx} = -\frac{1}{2}\sin\frac{x}{2},$$

 \therefore gradient of the tangent at $(\pi,1) = -\frac{1}{2}\sin\frac{\pi}{2} = -\frac{1}{2}$.

Equation of the tangent: $y-1=-\frac{1}{2}(x-\pi)$, $y=-\frac{1}{2}x+\left(1+\frac{\pi}{2}\right)$

5b.

Shaded area $= \int_{0}^{\pi} \left\{ \left(-\frac{1}{2}x + \left(1 + \frac{\pi}{2} \right) \right) - \left(1 + \cos \frac{x}{2} \right) \right\} dx + \int_{\pi}^{2\pi} \left(1 + \cos \frac{x}{2} \right) dx - \frac{1}{2} (2)(1)$ $= \int_{0}^{\pi} \left(-\frac{1}{2}x + \frac{\pi}{2} - \cos \frac{x}{2} \right) dx + \int_{\pi}^{2\pi} \left(1 + \cos \frac{x}{2} \right) dx - 1$ $= \left[-\frac{x^{2}}{4} + \frac{\pi x}{2} - 2\sin \frac{x}{2} \right]_{0}^{\pi} + \left[x + 2\sin \frac{x}{2} \right]_{\pi}^{2\pi} - 1$ $= \left(\frac{\pi^{2}}{4} - 2 \right) + (\pi - 2) - 1$ $= \frac{\pi^{2}}{4} + \pi - 5.$

6.
$$g(x) = a \sin x + b \cos x$$
, $g\left(\frac{\pi}{4}\right) = 2\sqrt{2}$, $g\left(-\frac{\pi}{6}\right) = -1$.

$$g\left(\frac{\pi}{4}\right) = a\sin\frac{\pi}{4} + b\cos\frac{\pi}{4} = 2\sqrt{2}, :: a\left(\frac{1}{\sqrt{2}}\right) + b\left(\frac{1}{\sqrt{2}}\right) = 2\sqrt{2},$$

$$a + b = 4$$
(1)

$$g\left(-\frac{\pi}{6}\right) = a\sin\left(-\frac{\pi}{6}\right) + b\cos\left(-\frac{\pi}{6}\right) = -1,$$

$$\therefore a \left(-\frac{1}{2} \right) + b \left(\frac{\sqrt{3}}{2} \right) = -1 \; , \; \therefore a - \sqrt{3}b = 2 \; \dots (2)$$

$$(1) - (2), b + \sqrt{3}b = 2, b(\sqrt{3} + 1) = 2,$$

$$\therefore b = \frac{2}{\sqrt{3} + 1} = \sqrt{3} - 1 \dots (3)$$

Substitute (3) in (1), $a = 4 - (\sqrt{3} - 1) = 5 - \sqrt{3}$.

7.
$$f'(x) = \frac{1}{1 - 6x + 9x^2} = \frac{1}{(1 - 3x)^2}$$
,
 $f(x) = \int \frac{1}{(1 - 3x)^2} dx = \int (1 - 3x)^{-2} dx = \frac{(1 - 3x)^{-1}}{3} + c$
 $= \frac{1}{3(1 - 3x)} + c$.
 $[f(x)]_{-\frac{1}{3}}^0 = \left[\frac{1}{3(1 - 3x)} + c\right]_{-\frac{1}{2}}^0 = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$.

8a.
$$g:(-\infty,-3] \to R$$
, $g(x)=1-\frac{1}{2}|x+2|$.

g is an increasing function. Its range is $(-\infty, g(-3)]$,

i.e.
$$\left(-\infty, \frac{1}{2}\right]$$
.

Equation of g(x):

$$y = 1 - \frac{1}{2}|x+2| = 1 - \frac{1}{2}(-(x+2)) = \frac{1}{2}x + 2$$

Equation of $g^{-1}(x)$:

$$x = \frac{1}{2}y + 2$$
, $\therefore y = 2(x - 2)$.

$$\therefore g^{-1}(x) = 2(x-2).$$

8b. Domain of g^{-1} is the same as the range of g, i.e. $\left(-\infty, \frac{1}{2}\right]$.

9. Let
$$f(x) = \sqrt{\tan x}$$
,

$$f'(x) = \frac{\sec^2 x}{2\sqrt{\tan x}} = \frac{1}{2\sqrt{\tan x}(\cos^2 x)},$$

$$f'\left(\frac{\pi}{4}\right) = \frac{1}{2\sqrt{\tan\frac{\pi}{4}\left(\cos\frac{\pi}{4}\right)^2}} = 1.$$

$$\frac{\sqrt{\tan 1} - \sqrt{\tan \frac{\pi}{4}}}{1 - \frac{\pi}{4}} \approx f\left(\frac{\pi}{4}\right), \ \therefore \sqrt{\tan 1} - \sqrt{\tan \frac{\pi}{4}} \approx 1 - \frac{\pi}{4}.$$

10a.
$${}^{6}C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{3} = 20\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{3}$$
.

10b. Random variable *X* has a binomial distribution,

$$n = 6$$
, $p = \frac{1}{3}$, $q = \frac{2}{3}$.

$$E(X) = np = 2$$
, $Var(X) = npq = \frac{4}{3}$

11a.
$$\frac{1}{2}p(2-4)=1$$
, $\therefore 3p=1$, $p=\frac{1}{3}$.

11b.
$$f(0) = \frac{1}{2}p = \frac{1}{2}(\frac{1}{3}) = \frac{1}{6}$$
.

$$\Pr(X \le 0) = 1 - \Pr(X > 0) = 1 - \frac{1}{2} (2) \left(\frac{1}{6}\right) = \frac{5}{6}$$

12a.

$$Pr(Z < 1) = 1 - \frac{1}{2}(1 - 0.68) = 0.84$$
.

12b.
$$\mu = 72$$
, $\sigma = 6$.
 $Pr(Z < 1) = Pr(Z > -1)$, $\therefore Pr(X \ge x) = Pr(Z < 1) = Pr(Z > -1)$.
 $\therefore \frac{x - 72}{6} = -1$, $\therefore x = 66$.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors