Лабораторная работа № 7

Тема: Исследование диода

Цель работы: Изучение основных характеристик и свойств полупроводникового диода.

Краткая теория.

Полупроводниковые диоды - это устройства, которые имеют два слоя полупроводников с разными типами проводимости (р-тип и п-тип), соединенные в области, называемой переходом. Основные принципы работы полупроводниковых диодов включают в себя следующее:

Переход p-n:

• Диод состоит из р-типа (дырочная проводимость) и п-типа (электронная проводимость) полупроводников, соединенных в области, называемой переходом или рп-переходом.

2. Перенос носителей заряда:

• При создании pn-перехода происходит диффузия носителей заряда (электронов из n-области и дырок из p-области) через переход.

3. Формирование зоны около pn-перехода:

• Носители заряда, проникая через переход, создают зону около pn-перехода с зарядом. Эта область называется обедненной областью.

4. Обедненная область:

• В обедненной области электроны и дырки рекомбинируют друг с другом, создавая зону с низким уровнем носителей.

5. Образование потенциального барьера:

• Рекомбинация носителей приводит к образованию потенциального барьера, который предотвращает дальнейшую диффузию носителей через переход.

6. Прохождение тока в одном направлении:

• Если к полупроводниковому диоду приложить положительное напряжение на р-область и отрицательное на n-область, то потенциальный барьер уменьшится, и диод станет проводящим. Этот режим называется прямым смещением.

7. Протекание тока в обратном направлении:

• Если приложить отрицательное напряжение на р-область и положительное на п-область, потенциальный барьер увеличится, предотвращая прохождение большого тока. Этот режим называется обратным смещением.

8. Пробой:

• При дальнейшем увеличении обратного напряжения может произойти пробой диода, когда потенциальный барьер разрушается, и ток начинает протекать в обратном направлении.

Таким образом, полупроводниковые диоды обладают свойством пропускать ток в одном направлении (прямое смещение) и блокировать ток в другом направлении (обратное смещение). Это свойство делает их важными элементами в электронике для выпрямления, детектирования, и других приложений.

Вольт-амперная характеристика (ВАХ) диода — это график зависимости тока через диод от напряжения на нем. Вольт-амперная характеристика диода описывает, как ток через диод изменяется при изменении напряжения на нем.

Практика. Изучение ВАХ диода. Определение напряжения пробития.

1.Исследование ВАХ диода при прямом подключении.

Соберите схему, как на рисунке:

Диод выберите, согласно своему варианту:

№ варианта	Маркировка диода	U пробития, В
1,5,9,13	1N4001	50
2,6,10,14	1N4002	100
3,7,11,15	1N4148	75
4,8,12,16	1N4003	200

Это схема с прямым подключением диода, анод подключен к плюсу источника питания. Изменяя напряжение на источнике питания, убедитесь, что ток изменяется пропорционально. Заполните таблицу:

U, B	I, A
10	
20	
30	

40	
50	

1.Исследование ВАХ диода при обратном подключении.

Определение напряжения пробоя.

Пробитие диода происходит, когда обратное напряжение на диоде превышает его напряжение пробоя. На практике пробитие диода может проявляться в виде тока, который резко возрастает при превышении напряжения пробоя.

Поменяйте полярность подключения диода:

Установите на источнике питания напряжение сначала ниже напряжения пробития на 20 вольт, затем постепенно увеличивайте на 10 вольт с каждым шагом. Определите при каком напряжении произошло пробитие

Заполните таблицу:

U, B	I, A

Отчет по лабораторной работе должен содержать:

- скриншоты рабочего пространства программы Proteus со схемами;
- таблицы с результатами измерений;
- выводы.