# Scaling Hidden Markov Language Models

Anonymous

2020

#### Motivation for HMMs

- ► Generative process separates the generation of the latent representations from the observed
  - LSTMs couple the two
- Discrete latent representations
  - ► May improves data efficiency (Jin et al., 2020)

#### **HMM LMs**

- Previously thought to be very poor language models
  - ▶ Past work improved performance by departing from HMM structure and turning them into RNNs (Buys et al., 2018)
- ► HMMs performance can be vastly improved by scaling the number of hidden states

#### **HMMs**



Joint distribution

$$p(\mathbf{x}, \mathbf{z}; \theta) = \prod_{t=1}^{T} p(x_t \mid z_t) p(z_t \mid z_{t-1})$$

We refer to the emission / observation matrix  $p(x_t \mid z_t)$  as **O**.

## Training HMMs

- ► Computing the likelihood of the observed sentence is  $O(T|\mathcal{Z}|^2)$ , scaling poorly in the number of states
- ► Tabular parameterizations of distributions are difficult to optimize
- We present three tricks to mitigate these issues

## 3 Tricks 4 Scaling HMMs

- ► A block-sparse emission matrix reduces the computational cost of computing the likelihood
- A compact (neural) parameterization of the transitions and emissions aides optimization
- State dropout further reduces computational cost and reduces overfitting

## Block-sparse Emissions

Constrain emissions to

$$\mathbf{O} = \begin{bmatrix} \mathbf{O}^1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \mathbf{O}^M \end{bmatrix}$$

- Each block O<sub>m</sub> contains k latent states and a variable number of tokens
- ▶ Results in a serial complexity of  $O(Tk^2)$  for computing the likelihood

### Block-sparse Emissions



After observing  $\mathbf{x}$ , only the states that emit each  $x_t$  have nonzero probability of occurring

#### **Neural Parameterization**

- Compute transition and emission parameters using a neural network
  - lackbox State embeddings  $oldsymbol{\mathsf{E}}_z \in \mathbb{R}^{|\mathcal{Z}| imes h/2}$
  - ▶ Token embeddings  $\mathbf{E}_{x} \in \mathbb{R}^{|\mathcal{X}| \times h}$
  - ▶ Block embeddings  $\mathbf{E}_m \in \mathbb{R}^{M \times h/2}$



### State Dropout

- Sample a dropout mask  $\mathbf{b}_m \in \{0,1\}^k$  for each block  $\mathbf{O}_m$
- ightharpoonup Concatenate into a global vector  $\mathbf{b} = \langle \mathbf{b}_1, \dots, \mathbf{b}_M \rangle$



### Results on PTB

| Model                                | # Params | Val PPL | Test PPL |
|--------------------------------------|----------|---------|----------|
| KN 5-gram                            | 2M       | -       | 141.2    |
| AWD-LSTM                             | 24M      | 60.0    | 57.3     |
| 256 FF 5-gram                        | 2.9M     | 159.9   | 152.0    |
| 2x256 dim LSTM                       | 3.6M     | 93.6    | 88.8     |
| HMM + RNN                            | 10M      | 142.3   | _        |
| HMM ( $ \mathcal{Z} $ =900)          | 10M      | 284.6   | _        |
| VL-NHMM ( $ \mathcal{Z}  = 2^{15}$ ) | 7.7M     | 125.0   | 115.8    |
|                                      |          |         |          |

### Results on WikiText2

| Model                              | # Param | Val PPL | Test PPL |
|------------------------------------|---------|---------|----------|
| KN 5-gram                          | 5.7M    | 248.7   | 234.3    |
| AWD-LSTM                           | 33M     | 68.6    | 65.8     |
| 256 FF 5-gram                      | 8.8M    | 210.9   | 195.0    |
| 2×256 LSTM                         | 9.6M    | 124.5   | 117.5    |
| VL-NHMM ( $ \mathcal{Z} =2^{15}$ ) | 13.7M   | 169.0   | 158.2    |

#### State Size Ablation



Perplexity on PTB by state size  $|\mathcal{Z}|$  ( $\lambda=0.5$  and M=128)

#### Citations

Jan Buys, Yonatan Bisk, and Yejin Choi. 2018. Bridging hmms and rnns through architectural transformations.

Shuning Jin, Sam Wiseman, Karl Stratos, and Karen Livescu. 2020. Discrete latent variable representations for low-resource text classification. In *ACL*.