Markov Process: Stationary Distribution

Suppose that we run the process of Example 2 for a very large number of steps, and wonder what the probability will be of observing an ${\bf a}$ at the next step. Given the initial distribution and the state diagram, we can compute the probability distribution for every X_i . In the figure above, $P_{X_i}({\bf a})$ is plotted for several values of i. The probability to observe an ${\bf a}$ seems to stabilize. This leads us to the following definition:

Definition: Stationary distribution

A stationary distribution for a time-invariant Markov chain is a distribution P_{X_n} such that $P_{X_{n+1}}=P_{X_n}$.

created: 2019-10-21

Markov Process: Stationary Distribution | Information Theory

If the initial distribution of a time-invariant Markov process is stationary, then the entire process is stationary as defined previously.

Proposition

Every time-invariant finite-state Markov process has a stationary distribution.

Proof

Let $k:=|\mathcal{X}|$. The $k\times k$ transition matrix R with entries $R_{ij}=P_{X_{n+1}|X_n}(j|i)$ is a stochastic matrix, as for every row i, the sum over columns is $\sum_{j=1}^k R_{ij}=1$. We are interested in finding a vector $v\in\mathbb{R}^k_{\geq 0}$ such that $\|v\|=1$ and $R^Tv=v$. This vector then represents the stationary distribution. Clearly, a possible eigenvector for R is the all-1 vector $w=(1,\dots,1)^T$ because Rw=w by definition of a stochastic matrix. Hence, 1 is an eigenvalue of R. As R and R^T have the same eigenvalues, 1 is also an eigenvalue of R^T ; let $v\in\mathbb{R}^k$ be the corresponding eigenvector such that $R^Tv=v$. If all coordinates of v are non-negative, one can verify that we have found a stationary distribution by renormalizing $v/\sum_{i=1}^k v_i$. Otherwise, let us write $v=v^+-v^-$ with $v^+,v^-\in\mathbb{R}^k_{\geq 0}$, where we put all positive coordinates of v in v^+ and all negative coordinates of v in v^- . Note that $v^+v^-=v^-=v^-$ and $v^-=v^-=v^-$ and $v^-=v^-=v^-$ and $v^-=v^-=v^-$ and $v^-=v^-=v^-$. As all entries of $v^-=v^-=v^-$ and $v^-=v^-=v^-$. As either $v^+=v^-=v^-=v^-$ (otherwise $v^-=v^-=v^-$), which cannot be the case for an eigenvector), renormalizing that non-zero vector as above yields the stationary distribution.

Given the transition matrix R of a finite-state Markov process, one can find the stationary distribution μ by solving the linear equation $\mu R = \mu$ under the constraint that $\sum_i \mu_i = 1$.

Example 2: A finite-state time-invariant Markov process, continued

The matrix representation of the process above is given by

$$R = \begin{bmatrix} 0.7 & 0.3 \\ 0.5 & 0.5 \end{bmatrix}$$

. Writing out $(\mu_a,\mu_b)R=(\mu_a,\mu_b)$ results in

$$\begin{cases} 0.7\mu_a + 0.5\mu_b = \mu_a \\ 0.3\mu_a + 0.5\mu_b = \mu_b \end{cases}$$

. These are linearly dependent equations, but together with the constraint $\mu_a + \mu_b = 1$, they can be solved to $(\mu_a, \mu_b) = (5/8, 3/8)$.

created: 2019-10-21