Corrigé du TD3 - Vérification du dimensionnement des câbles de la tour Eiffel

Question 1

- il y a 4 câbles
- l'ensemble des câbles soutient : le chariot tracteur, les cabines et les passagers.
- la résistance au glissement est négligée

On obtient donc
$$T = \frac{(M_c + M_p).g.\sin(54^\circ)}{4} = 41700N$$

Question 2

Quand les passagers quittent les cabines, M_p passe à 0 dans la formule précédente.

d'où
$$\Delta T = T_{avec-passagers} - T_{sans-passagers} = \frac{M_p.g.\sin(54^\circ)}{4} = 18200$$
N

Question 3

Le critère de résistance des câbles est :
$$\sigma < R_e$$

En traction : $\sigma_N = \frac{T}{S_{cable}} = 77$ MPa< 350 MPa.
Le câble supporte donc la contrainte

Question 4

L'allongement de chaque câble est obtenu par $\Delta L = \int_0^L \varepsilon dl$. Ici ε est constant, donc $\Delta L = L.\varepsilon = L\frac{\Delta\sigma}{E} = \frac{\Delta T.L_c}{S_u.E} = 105 \text{ mm} \text{ (Attention aux unités)}$

Question 5

Pour enrouler ΔL_c , il faut une rotation de l'ensemble réducteur et machine à courant continue de $\Theta = \frac{\Delta L_C}{R_{poulie}} = \frac{2\Delta L_c}{\phi_{pm}} = 0,08 \text{ rd} = 4,33^{\circ} < 5^{\circ}$ Le vérin d'isonivelage permet de compenser la variation de longueur des câbles du

chariot tracteur.