${ m MA~232}$ - Linear Algebra

Homework 1 (Solutions)

Problem 1 [20pts] Draw $u = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $w = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ and (u+w), (u-w) in the plane.

Problem 2 [20pts] Find vectors
$$u$$
 and w such that $u+w=\begin{bmatrix} 4\\5\\6\end{bmatrix}$ and $u-w=\begin{bmatrix} 2\\5\\8\end{bmatrix}$.

$$(u+w) + (u-w) = \begin{bmatrix} 6 \\ 10 \\ 14 \end{bmatrix}$$

$$= > 2u = \begin{bmatrix} 4 \\ 14 \end{bmatrix} = > U = \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$$

$$W = \begin{bmatrix} 4 \\ 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

Problem 3 [20pts] Find two vectors u and w which are perpendicular

to
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and to each other.

Let
$$u = \begin{bmatrix} 3_1 \\ 3_2 \\ 3_3 \end{bmatrix}$$
 and $w = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$
 $u \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 0 = > d_1 + d_3 = 0$
 $u \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 0 = > d_1 + d_2 b_2 + d_3 b_3 = 0$
 $u \cdot w = 0 = > d_1 b_1 + d_2 b_2 + d_3 b_3 = 0$

Choose vandomly $d_1 = d_3 = 0$

Then $b_1 + b_3 = 0$ & $d_2 b_3 = 0$

Since we don't want the trivial vector we choose $d_3 = 1$, $b_3 = 0$
 $d_1 = d_3 = 0$

Then $d_2 + d_3 = 0$
 $d_3 = d_3 = 0$
 $d_4 = d_3 = 0$
 $d_4 = d_3 = 0$
 $d_5 = d_5 =$

Problem 4 [20pts] How long is the vector
$$u = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
?

$$\|u\| = \sqrt{u \cdot u} = \sqrt{1^2 + 1^2 + 1^2 + 1^2 + 1^2}$$

Problem 5 [20 pts] Consider the following system of equations:
$$\begin{cases} 2x + 3y + z = 8 \\ 4x + 7y + 5z = 20 \\ -2y + 2z = 0 \end{cases}$$

- (i) Apply Gauss Elimination in order to solve it;
- (ii) Transform the above system of equations in matrix form and apply the Gauss Elimination in matrix form (indicate all matrices you used in the process).