UNIVERSIDAD SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA

MSc. Ing. Edgar Darío Álvarez Cotí, Coordinador Guatemala 16 octubre del año 2021

SEGUNDO EXAMEN PARCIAL FISICA 2

INSTRUCCIONES GENERALES:

El examen consta de siete problemas. Durante los cálculos realizados en el examen se pide utilizar el concepto de cifras significas. Debe dejar constancia en sus cálculos, suposiciones y referencias en la solución de cada problema. El problema que no tenga el procedimiento de solución será anulado. Debe enviar su procedimiento al correo indicado. Tiempo de examen 110 minutos.

NOMBRE	CARNE
--------	-------

PROBLEMA 1: (10 puntos, 5 puntos cada inciso)

Un capacitor C₁ de placas planas paralelas y aire en las placas, se coloca en serie con un capacitor C₂, que tiene un área de 0.100 m², una distancia de separación de placas de 1.00 mm y contiene un dieléctrico de constante 5.40. Si se desea una capacitancia equivalente de los capacitores de 2.75 nF.

- a) ¿Que tamaño de capacitor C_1 (en nF) deberá colocarse para mantener la relación de la capacitancia equivalente? Respuesta: 6.50 tolerancia = \pm 0.05
- b) Si el voltaje en el capacitor C₁ es 8750 V, y la distancia de separación de placas 2.50 mm, cuál sería su densidad de energía (en J/m³)

Respuesta: 54.2 tolerancia = ± 0.5

Problema 2 (15 puntos, 5 puntos cada inciso)

En el circuito que se muestra ε= 10.0 V, C₁= 5.00 μ F, C₂= 2.00 μ F, C₃= 3.00 μ F, C₄= 4.00 μ F, C₅= 1.00 μ F

a) Calcular la capacitancia equivalente del circuito (en μF)

Respuesta: 2.90 tolerancia = ± 0.05

b) La carga en el capacitor C_5 es de: (en μ C)

Respuesta: 8.00 tolerancia = ± 0.05

c) ¿Qué cantidad de energía almacena (en μJ) el capacitor C_1 ?

Respuesta: 22.5 tolerancia = ± 0.5

<u>Problema 3</u> (10 puntos, 5 puntos cada inciso

En los extremos de un conductor de cobre, cuya resistividad es 1.70 x 10 $^{-8}$ Ω .m, se le aplican 55.5 V y pasan 12.5 x 10 21 electrones durante 15.0 minutos.

a) ¿Cuál es la resistencia, en Ω, del conductor?

Respuesta: 25.0 tolerancia = ± 0.5

b) Si el conductor tiene un área de sección 0.18 m² y la velocidad de arrastre de los electrones es 1.00 x 10⁻⁴ m/s, cuál es la densidad de electrones libres en el metal (en electrones/m³)

Respuesta: 7.71×10^{23} tolerancia = ± 0.5

PROBLEMA 4: (10 puntos, 5 puntos cada inciso)

Un calentador eléctrico se ha construido con alambre de cobre. El consumo del calentador cuando se alimenta con un voltaje V_0 = 120 V es 3000 W. El coeficiente de resistividad del cobre es 1.72 x 10 $^{-8}$ Ω m y el coeficiente de temperatura de la resistividad calculado alrededor de T_0 = 20 °C es de 0.003 °C $^{-1}$.

a) Calcular el valor de la resistencia del calentador (en Ω) debido al aumento de temperatura a 120 °C, a partir de su temperatura de 20 °C

Respuesta: 6.24 tolerancia = ± 0.5

b) Si el voltaje de alimentación fuera constante, ¿cuál sería la tarifa de funcionamiento del calentador cuando está a 120 °C?, funcionando por 4.00 horas diarias en un mes de 30 días, tomar el costo de energía eléctrica de Q 1.50 /kWh

Respuesta: 415.40 tolerancia = ± 1.5

Problema 5 (25 puntos)

a) En el circuito que se muestra contiene 2 fem y 6 resistencias. La corriente (en A) que pasa a través de la resistencia \mathbf{R}_2 es (10 puntos)

Respuesta: 3.64 tolerancia = ± 0.05

b) Calcular la potencia (en W) entregada al circuito (05 puntos)

Respuesta: 82.8 tolerancia = ± 5

c) La diferencia de potencial $V_a - V_b$ (en V) (05 puntos)

Respuesta: - 4.09 tolerancia = ± 0.05

d) Que potencia consume R₆ (en W) (05 puntos)

Respuesta: $1.0 \text{ tolerancia} = \pm 0.05$

<u>Problema 6</u> (10 puntos, 5 puntos cada inciso)

Un bloque de silicio cuya resistividad es $8.70 \times 10^{-4} \Omega$ m, tiene una sección rectangular, se conecta a una batería de 0.50 V y disipa una potencia de 5.00 mW. Como se indica en la figura las dimensiones del bloque de silicio son:

L=20.0~cm: a=2.00~mm y la densidad de portadores de carga en el silicio es 1.23×10^{23} electrones por metro cúbico.

a) ¿Cuál es el grosor **b**, del bloque? (en mm)

Respuesta: 1.74 tolerancia = ± 0.05

b) ¿Cuál es la intensidad del campo eléctrico en el bloque de silicio? Respuesta: 2.50 tolerancia = ± 0.05

<u>Problema 7</u> (20 puntos, 10 puntos cada inciso)

En el circuito de la figura, en t = 0 s, el interruptor S se conecta en el punto A para el proceso de carga. Después de un tiempo suficientemente largo para suponer que el capacitor C esta complementa cargado, el interruptor se conecta al punto B para el proceso de descarga.

Si $R_1 = R_2 = 20.0 \text{ k}\Omega$, $C = 10.0 \mu\text{F y } V_0 = 10.0 \text{ V}$

a) El valor de la caga que adquiere el capacitor cuando han transcurrido tres constantes de tiempo durante el proceso de carga (en μ C) es de

Respuesta: 95.0 tolerancia = ± 0.50

b) Durante el proceso de descarga ¿Qué tiempo transcurre para que la corriente alcance el valor de 125 μ A? (en ms)

Respuesta: 277 tolerancia = ± 0.50

