Interactive Classical Ciphers for Cybersecurity Education

SNEHA & YASHASHRI | 10TH MAY 2025

Agenda

- 1. Introduction & Problem
 - ▶ 2. Solution & Objectives
 - ▶ 3. Architecture & Tech Stack
 - ▶ 4. Implementation Details
 - ▶ 5. Cipher Deep Dives
 - ▶ 6. Evaluation & Results
 - ▶ 7. Use Cases & Benefits
 - ▶ 8. Future Scope & References

Introduction

- Cryptography as cornerstone of cybersecurity
 - Secures confidentiality, integrity, authenticity
 - Critical against threats: eavesdropping, tampering, replay
 - Foundational for protocols: TLS, VPN, secure messaging

Problem Statement

- Traditional teaching is theory-heavy
 - Abstract math concepts hard to visualize
 - ► Limited hands-on practice with real ciphers
 - ► Low engagement and retention rates

Solution & Objectives

- Web-based interactive platform
 - ▶ Implement Caesar, Playfair, Hill, Affine ciphers
 - ► Enable real-time key generation & visualization
 - ► Enhance engagement through interactive UI
 - Evaluate learning gains and usability

Architecture & Tech Stack

- Client-side application
 - ► HTML5 & CSS3 (Grid, Flexbox) for responsive design
 - Vanilla JavaScript for cipher logic
 - ▶ No server dependencies preserves privacy
 - Modular codebase for easy extension

Implementation Overview

- Card-based homepage for cipher selection
 - Interactive matrix display for Playfair
 - Animated transitions for clarity
 - Responsive layout for mobile & desktop
 - Clean and neat design

Caesar Cipher Deep Dive

- Shift-based substitution cipher
 - letterToNumber() & numberToLetter() helpers
 - ► Encryption: (x + shift) % 26
 - ▶ Decryption: (x shift + 26) % 26
 - ▶ Use case: Demonstrates basic substitution

Playfair Cipher Deep Dive

- Bigram substitution using 5x5 matrix
 - generateKeyMatrix(keyword) function
 - ▶ prepareText(): handles J→I, duplicate letters, padding
 - ► Encrypt/decrypt rules for rows, columns, rectangles
 - Visualization of matrix and letter pair movements

Hill Cipher Deep Dive

- Matrix-based polygraphic cipher
 - 2x2 key matrix input & determinant coprimality check
 - encrypt: multiply plaintext vector by key matrix mod26
 - decrypt: compute inverseMatrix() via adjugate & mod inverse
 - Illustrates linear algebra in cryptography

Affine Cipher Deep Dive

- Linear function cipher
 - ► Encryption: $E(x) = (a*x + b) \mod 26$
 - ▶ Decryption: $D(y) = a^{-1} * (y b) \mod 26$
 - Valid 'a' values must be coprime with 26
 - Demonstrates modular arithmetic concepts

Evaluation & Results

- Mixed-methods study with 30 students
 - ▶ 35% average improvement in pre/post tests
 - SUS score of 82 (above 68 benchmark)
 - Positive qualitative feedback on engagement
 - Observed deeper conceptual understanding

Real-World Use Cases

- Educational Environments
 - University and secondary school curricula
 - Corporate cybersecurity training programs
 - MOOCs and self-paced online courses
 - Capture The Flag (CTF) competition warm-ups

Benefits to Cybersecurity

- Strengthens core cryptographic skills
 - Prepares learners for modern encryption algorithms
 - Encourages secure implementation practices
 - ▶ Improves problem-solving and analytical skills
 - Builds confidence in handling real-world security tasks

Future Scope & References

- Future Enhancements
 - ▶ Integrate RSA, AES modules with visual steps
 - Add gamified quizzes and achievement badges
 - Develop instructor dashboards & progress tracking
 - Convert to PWA for offline/mobile use
 - References available in full paper