5.Schedu	ling d	ella CPU.	Eserc	izi
• (5.1) <u>Processo</u>	Durata	<u>priorità</u>		
P_I	10	3		
P_2	1	1		
P_3	2	3		
P_4	1	4		
P_5	5	2		
P_1	$ P_2 $	P_3 P_4	P ₅	FCFS

5.Schedu	ıling de	lla CPU.	Esercizi
• (5.1) <u>Processo</u>	Durata	priorità	
P_{I}	10	3	
P_2	1	1	
P_3	2	3	
P_4	1	4	
P_5	5	2	
$P_2 P_4 P_3$	P_5	P_1	SJF

5.Scheduling della CPU. Esercizi							
		\mathcal{C}					
• (5.1)	<u>Processo</u>	<u>Durata</u>	priorità				
	P_I	10	3				
	P_2	1	1				
	P_3	2	3				
	P_4	1	4				
	P_5	5	2				
P_2	P_5		P_1	P_3	P_4	Prior.	

5. Scheduling della CPU. Esercizi

• (5.1) <u>Processo</u>	<u>Durata</u>	<u>priorità</u>
P_I	10	3
P_2	1	1
P_3	2	3
P_{4}	1	4
P_5	5	2

P_1	P_2	P_3	P_4	P_5	P_1	P_3	P_5	P_1		\Rightarrow		RR
				\Rightarrow	P	P	P	P_1	P_5		P_1	

5. Scheduling della CPU. Esercizi

 (5.1) Calcolare il tempo di turnaround per ciascun processo e per ciascun algoritmo di scheduling indicato (notate che basta fare la differenza tra il tempo in cui P lascia la CPU e quando è arrivato)

•		<u>FCFS</u>	RR	SJF	Prior.
	P_I	10	19	19	16
	P_2	11	2	1	1
	P_3	13	7	4	18
	P_4	14	4	2	19
	P_5	19	14	9	6

5. Scheduling della CPU. Esercizi

 (5.1) Calcolare il tempo di attesa per processo e per ciascun algoritmo di scheduling indicato. (notate che questo valore si può calcolare come il tempo di turnaround meno il burst time)

•	<u>FCFS</u>	RR	SJF	Prior.
P_I	0	9	9	6
P_2	10	1	0	0
P_3	11	5	2	16
P_4	13	3	1	18
P_5	14	9	4	1
	9.6	5.4	3.2	8.2

5. Scheduling della CPU. Esercizi

• (5.2) Si supponga che i seguenti processi arrivino in esecuzione al tempo indicato e che consumeranno la quantità di tempo indicata. Si supponga uno scheduling non pre-emptive e di decidere sulla base delle informazioni disponibili al momento in cui le decisioni vanno prese.

Processo	t. di arrivo	burst time
P_I	0.0	8
P_2	0.4	4
P_3	1.0	1

5. Scheduling della CPU. Esercizi

- 1. (5.2) Calcolare il turnaround medio dei processi usando gli algoritmi di scheduling FCFS e SJF:
 - FCFS: 10.53 (attenzione, 11 è sbagliato...)
 - SJF: 9.53 (occhio! P_3 passa prima di P_2)
- quale è il turnaround medio se si lascia inattiva la CPU
 per la prima unità di tempo e poi si usa SJF? (l'idea è di
 non assegnare la CPU fino a che non sono presenti tutti i
 processi per prendere la decisione migliore: Future
 Knowledge Scheduling)
 - FKS: 6.86

5. Scheduling della CPU. Esercizi

- (5.3) Dire se esiste, e quale è, la relazione fra le seguenti coppie di algoritmi di scheduling:
 - priorità e SJF
 - code multiple con retroazione e FCFS
 - priorità e FCFS
 - RR e SJF

5. Scheduling della CPU. Esercizi • (5.3) priorità e SJF: - Il job più corto ha la priorità più alta (5.3) code multiple con retroazione e FCFS: - di solito, la coda con priorità peggiore è gestita FCFS (5.3) priorità e FCFS: - FCFS assegna la priorità più alta al job che esiste da più tempo (e quindi è arrivato per primo in coda...) (5.3) *RR e SJF*: nessuna relazione 5. Scheduling della CPU. Esercizi (5.4) Si consideri un algoritmo di scheduling a breve termine che favorisce i processi che hanno usato poco la CPU di recente. Perché questo algoritmo favorisce i processi I/O bound, ma non provoca starvation nei processi CPU bound? l'algoritmo favorirà i processi I/O bound perchè questi richiedono relativamente poca CPU. Per questa ragione, la CPU sarà spesso libera per essere utilizzata dai processi CPU bound. 5. Scheduling della CPU. Esercizi • (5.5) Spiegate le differenze tra i seguenti algoritmi di scheduling rispetto al livello di discriminazione in favore (o a sfavore) dei processi brevi: - FCFS - RR - code multiple con retroazione

5. Scheduling della CPU. Esercizi

- (5.5) FCFS:
 - è sfavorevole ai job corti perchè qualsiasi job corto che arrivi dopo job lunghi dovrà aspettare molto tempo per avere la CPU
- (5.5) RR:
 - tratta tutti i job allo stesso modo. Quindi i job corti termineranno prima di quelli lunghi, perchè richiedono meno CPU
- (5.5) code multiple con retroazione:
 - funzionano in modo simile al RR, favorendo di fatto i job corti