Exemplos de Circuitos Combinacionais

Prof. Walter Silva Oliveira walter.oliveira@unisantos.br

Circuitos Digitais

Santos - 2024

Introdução

Já vimos até o momento todas as ferramentas necessárias para realizar o projeto de circuitos combinacionais. A partir de agora, vamos utilizar essas ferramentas para resolver problemas mais complexos.

Entre as principais aplicações de circuitos combinacionais estão: multiplexadores e demultiplexadores, codificadores e decodificadores, e sistemas aritméticos (somadores, subtratores e comparadores).

Antes de analisarmos esses circuitos, vamos fazer um exemplos de problemas "reais"

Exercícios

Exercício 1: Semáforo

O cruzamento entre a Rua A e a Rua B com dois semáforos, deve seguir as seguintes regras:

- 1. Se houver apenas carros na rua A, o semáforo da rua A deve estar em verde, enquanto o da rua B vermelho.
- 2. Se houver apenas carros na rua B, o semáforo da rua B deve estar em verde, enquanto o da rua A vermelho.
- 3. Caso tenha carro nas duas ruas, a preferência é da rua A

Desenvolva o circuito digital para controlar os semáforos.

Exercício 2: Fila de prioridade

Queremos conectar 3 aparelhos em um amplificador de áudio, obedecendo a seguinte prioridade

- 1. Televisão
- 2. Computador
- 3. Alexa

Desenvolva o circuito digital para controlar o amplificador de áudio.

Exercício 3: Sistema de Alarme Residencial

Um sistema de alarme deve ser ativado quando uma das seguintes condições for verdadeira:

- 1. A porta da frente (P) está aberta e o sistema de segurança está ativado (S).
- 2. A janela (W) está aberta e o sistema de segurança está ativado (S).
- 3. O sensor de movimento (M) detecta movimento, independentemente do estado do sistema de segurança.

Entradas:

- ullet P: Porta da frente (0 = Fechada, 1 = Aberta)
- W: Janela (0 = Fechada, 1 = Aberta)
- M: Sensor de movimento (0 = Sem movimento, 1 = Movimento detectado)
- S: Sistema de segurança (0 = Desativado, 1 = Ativado)

Saída:

• A: Alarme (0 = Desligado, 1 = Ligado)

MUX e DEMUX

7/33

Santos - 2024

Multiplexador

- Um multiplexador (MUX) é um circuito combinacional que seleciona um dos vários sinais de entrada e o encaminha para a saída única, com base em sinais de controle (ou seleção).
- Se o MUX tem n entradas de dados, são necessárias m linhas de seleção, onde $m = \log_2(n)$

S1	S0	Υ
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Função lógica de MUX 4:1

Sendo assim, temos a seguinte função lógica associada ao MUX:

$$Y = D_0 \overline{S_0 S_1} + D_1 \overline{S_1} S_0 + D_2 S_1 \overline{S_0} + D_3 S_0 S_1$$

A partir da expressão lógica, é possível obter o seguinte circuito equivalente.

Demultiplexador

- O circuito demultiplexador (ou DEMUX) realiza a função inversa do MUX. Ou seja, a partir de uma entrada, uma ou mais entradas de seleção e diversas saídas. Desta forma, a saída do DEMUX corresponde em 0, para as saídas não selecionadas, e D, na saída selecionada.
- \bullet Se o MUX tem n saídas de dados, são necessárias m linhas de seleção, onde $m=\log_2(n)$

	S1	S0	Y0	Y1	Y2	Y 3
Ì	0	0	D	0	0	0
Ì	0	1	0	D	0	0
Ì	1	0	0	0	D	0
Ì	1	1	0	0	0	D

Função lógica do DEMUX 1:4

Sendo assim, temos a seguinte função lógica associada ao DEMUX para cada saída:

$$Y0=D\overline{S_0S_1}$$
, $Y1=D\overline{S_1}S_0$, $Y2=DS_1\overline{S_0}$, $Y3=DS_0S_1$

A partir da expressão lógica, é possível obter o seguinte circuito equivalente.

Codificadores e Decodificadores

Diferença entre codificadores e decodificadores

- Chamamos de codificadores circuitos que passam de um código conhecido para um desconhecido
 - Exemplo: Calculadora que transforma entrada em decimal para binário, para que as operações possam ser realizadas
- Já os decodificadores realizam o processo inverso, ou seja, de um código desconhecido, para um conhecido.
 - Exemplo: Circuito que converte um sinal binário para decimal.
- Vamos ver alguns códigos conhecidos na utilização de circuitos digitais.

Código Gray

- Já vimos o Código Gray! Ele é utilizado na criação do Mapa de Karnaugh
- Ele também é utilizado em diversos sistema de comunicação digital

Decimal		Gr	ay	
	Α	В	С	D
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	0	1	0
4	0	1	1	0
5	0	1	1	1
6	0	1	0	1
7	0	1	0	0
8	1	1	0	0
9	1	1	0	1
10	1	1	1	1
11	1	1	1	0
12	1	0	1	0
13	1	0	1	1
14	1	0	0	1
15	1	0	0	0

Códigos BCD

- Existem diversos códigos BCD (Binary Coded Decimal)
- Eles foram utilizados em circuitos para realizar a conversão de binário para decimal, para visualização, como em displays ou relógios.
- Ao lado, como exemplo está o BCD 8421
- Em uma das práticas, faremos um codificador BCD para display de 7

Decimal	E	3CD	842	1
Decimal	Α	В	С	D
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Decodificadores

- Os Decoders s\u00e3o amplamente utilzados em toda a circuitaria digital. Veremos alguns exemplos de decoders.
- Normalmente, é realizada a decodificação do BCD 8421 para algum outro sistema conhecido

Decodificador Binário/Decimal

Podemos realizar a decodificação do BCD 8421 para decimal com a seguinte Tabela-Verdade

E	3CD	842	1		Código 9876543210								
Α	В	С	D	S9	S8	S7	S6	S5	S4	S 3	S2	S1	S0
0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0		0
1	0	0	1	1	0	0	0	0	0	0	0	0	0

Circuito Equivalente ao Decodificador

Decodificadores de Linha

Os decodificadores de linha são bastante utilizados para realizar a ativação de certos barramentos os blocos do circuito, como por exemplo em células de memória. Exemplo: Decoder 3 para 8

A 2	A1	A 0	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Construção de decoders a partir do 3 por 8

Podemos utilizar o decoder 3x8 para criar outros decoders, com a utilização de um

ENABLE

A 2	A 1	A 0	EN	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1	0
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1	0	0	0	0
1	0	1	1	0	0	1	0	0	0	0	0
1	1	0	1	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0
X	Χ	Χ	0	0	0	0	0	0	0	0	0

Circuitos Aritméticos

21/33

Unidade Lógica e Aritmética

- Os circuitos aritméticos se destacam, principalmente, para a criação da ULA unidade lógica e aritmética
- A ULA é o principal bloco do processador, responsável por realizar todas operações no processador.
- Além disso, o tema do PCG de vocês é realizar o projeto de uma ULA em Verilog, para isso, precisarão dos circuitos que discutiremos a seguir.

Meio Somador (Half Adder)

Relembrando da aula das operações básicas em binário:

$$\begin{array}{c} 0 \\ + 0 \\ \hline 0 \end{array}$$

$$\begin{array}{c} 0 \\ + 1 \\ \hline 1 \end{array}$$

$$\begin{array}{c} 1 \\ + 0 \end{array}$$

Temos a seguinte Tabela Verdade para a operação de soma

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Circuito Meio Somador

$$S = A \oplus B$$
$$C = AB$$

No meio somador não consideramos o caso em que temos o carry na entrada

Somador Completo - Full Adder

A Tabela Verdade para o Somador Completo é apresentada a seguir, considerando se há a presença do carry na entrada:

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = BC_{in} + AC_{in} + AB$$

Α	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Circuito Somador Completo

Circuito Somador com mais bits

Usando o meio somador e o somador completo é possível realizar a soma de um número maior de bits

Meio Subtrator (Half Subtractor)

Relembrando da aula das operações básicas em binário:

$$\frac{0}{0}$$

$$\begin{array}{r} 1 \\ - 1 \\ \hline 0 \end{array}$$

No caso 0-1 também ocorre o transporte do carry para a próxima coluna:

Temos a seguinte Tabela Verdade para a operação de subtração

Α	В	S	С
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Circuito Meio Subtrator

No meio somador não consideramos o caso em que temos o carry na entrada

$$S = A \oplus B$$

$$C = \overline{A}B$$

$$A$$

$$B$$

$$A$$

$$B$$

$$A$$

$$B$$

$$Subtractor$$

Subtrator Completo - Full Subtractor

A Tabela Verdade para o Subtrator Completo é apresentada a seguir, considerando se há a presença do carry na entrada:

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = \bar{A}C_{in} + \bar{B}C_{in} + BC_{in}$$

Α	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Circuito Subtrator Completo

Circuito Somador com mais bits

Usando o meio subtrator e o subtrator completo é possível realizar a soma de um número maior de bits

Referências

Ivan V Idoeta and Francisco Gabriel Capuano.

Elementos de eletrônica digital.

Livros Erica, 1982.

Exercícios para estudo: Problemas 4.3.1 até 4.3.8.

Exercícios para estudo: Decoders 5.6.1 até 5.6.9

Exercícios para estudo: Circuitos Aritméticos 5.6.10 até 5.6.17