Calculate Gas Consumption

Context:

In a steel manufacturing plant, steel coils are produced through a multi-stage process starting from molten metal generation, chemical composition adjustment, casting into ~12 m slabs, reheating, and sequential processing through roughing and finishing mills. These slabs are eventually rolled into coils ~1200 m in length and further processed via APL lines (e.g., CRM, APL, coil prep) to achieve final coil lengths of ~1500–3000 m.

The objective of this assignment is to **analyze the gas consumption per coil** using data given. Each production line contains a set of **gas flow sensors**, which vary in **number and type** depending on the production line (domain).

NOTE: In steel making, each step (for example melting, casting or rolling) is called a production line—in our data we call that step the 'Domain.

User had provided specific **formulas for calculating gas usage** from these sensors. The task is to:

- Apply these formulas to the sensor data.
- Aggregate the total gas consumed per ProductId (coil) per production line.

Input Table:

Lengthbased_table- Timeseries Sensor Data

- a. per-second readings for every sensor by coil and production line (domain)
- b. columns include:

Tagld- sensor name,

Timestamp,

Value- instant reading value,

Date,

unix_timestamp- Process start timestamp of the product,

Domain- Production Line,

ProductId- coil ID,

ProductPosition- Coil's instantaneous start position wrt coil,

Length- Total coil length

2. Master UDM table- Sensor Metadata

- a. details for each sensor in the given production line
- b. columns include:

Identifier- Sensor Name (Tagid in Timeseries data),

Description_EN,

Description Local,

Domain- Production Line,

Type,

Type_Parquet,

Unit-Scientific unit in which the sensor value is being measured,

Range_Lower_Limit,

Range_Upper_Limit,

Sampling_Frequency,

Application,

Technology,

Sensor_Position_Relative- Position of sensor wrt a given reference point,

Sensor_Position_Absolute- Position of sensor wrt the beginning of the coil

These tables let you filter out the gas-measurement sensors and aggregate their readings by coil and domain.

Output Table:

The output table is "metal_carbon_footprint" table.

productid	total_gas (Nm3)	gas_per_ton
Productid Number (coil)	Total gas consumption for the product (during all its process time in the line) with unit as Nm3	Total_gas divided by the weight of the product (to have the gas_per_ton)

Calculation Logic:

total_gas= Gas consumed by each coil= sum of all gas flow sensor readings during its processing.

= Value(GasFlowRate1_Z01) + Value(GasFlowRate1_Z02) + + Value(GasFlowRate1_Z12) + Value(GasFlowRate1_Z13)

For GN-CR-APL2 domain- There are 13 gas flow sensor which fetches gas flow value, and their names have some pattern as given below:

for eg.

GasFlowRate1_Z01 is called "GN_CR_APL4_Oven_Debiet_gas_Z01_ist" (as Identifier or Tagid) and similar for the other zones just change Z01 as Z02 and so on.

Steps to Complete the assignment:

- Fetch the list of gas flow sensors(which are relevant for gas consumption) from Metadata.
- 2. Using the list of gas-flow sensors, pull their values from the per-coil time series. Calculate each coil's gas consumption by summing those readings during its processing, and write the results to the output table.
- 3. Create an IPython notebook that clearly outlines each step of the process. The code should be self-explanatory and well-structured. Ensure that the final output table is displayed at the end of the notebook
- 4. <u>Bonus step</u>: There can be missing timestamps in between, use the standard best practices to impute those missing gaps and then calculate the gas consumption per coil.

NOTE: The Unit of "value" column in the lengthbased table can be seen using the metadata. For eg the sensor "GN_CR_APL3_Oven_Debiet_gas_Z01_ist" has unit of Nm3/h and the total_gas is in Nm3. Please take care of the unit while calculating the gas consumption.

PFA the Data Set: First try to use the complete Dataset: Complete dataset

If unable to download then try with: sample dataset