Answer to Tutorial questions – 02

ME4252 Nanomaterial for Energy Engineering

1. Figure shows the directions of electron diffusion flux and current densities in a rectangular bar of Silicon and x is measured in μm . The electron concentration varies linearly from 1×10^{17} to 7×10^{16} cm^{-3} between the two ends at T=300 K. Calculate the diffusion current density, if the electron mobility is, $\mu_n=9.62\times10^3$ cm^2 $v^{-1}sec^{-1}$

Answer:

$$J_n|_{diff} = 480A/cm^2$$

2. The intrinsic carrier density at 300 K in silicon is $1.5 \times 10^{16} \, m^{-3}$. If the electron and hole motilities are 0.13 and 0.05 $m^2 V^{-1} s^{-1}$, respectively, calculate the conductivity of (a) intrinsic silicon and (b) silicon containing 1 donor impurity atom per 10^8 silicon atoms. The atomic weight of Si is $28.09 \, g/mole$ and its density $= 2.33 \times 10^3 \, kg/m^3$.

Answer:

(a)
$$\sigma_i = 0.432 \times 10^{-3} \,\Omega^{-1} \text{m}^{-1}$$

(b)
$$\sigma_{\text{ext}} = 10.4 \ \Omega^{-1} m^{-1}$$

3. The intrinsic carrier concentration in Si is found to be no greater than 1×10^{12} cm⁻³. Assume $E_g=1.12~eV$. Determine the maximum temperature allowed for Si. Given: $N_C\approx~2.8\times10^{19} cm^{-3}$ and $N_V=1.04\times10^{19}~cm^{-3}$.

Answer:

$$T_{max} = 390 \ K$$

4. Germanium has the same crystal structure as silicon but its band gap is 0.67 eV. If the total density of states in the conduction band (N_c) and in the valence band (N_v) are the same as they are for silicon, what value of n_i would you expect for Ge at 300K? Assume $n_i = 10^{10}/cm^3$ and $E_g = 1.12eV$.

Answer:
For Ge:
$n_i = 6.1 \times 10^{13} \text{ cm}^{-3}$
This is 6000 times larger because the band-gap is smaller.