PROJECT REPORT

Team ID	PNT2022TMID13026
Project Name	Smart Waste Management System For Metropolitan Cities
Team Members	Ajay C Gopinath P Guhan T Khoushik C S

Table of contents

1.INTRODUTION

- 1.1 Project Overview
- 1.2 Purpose

2.LITRERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & amp; SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule

7. WORKING WITH THE DATASET & DATA VISUALIZATION

- 7.1 Understanding the Dataset
- 7.2 Loading the Dataset
- 7.3 Visualization Chart

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9.RESULTS

- 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 12. SOURCE CODE
- 13. GITHUB LINK

1. INTRODUCTION

1.1 Project Overview

The amount of waste produced everyday by the industries and the households is increasing at an appalling rate, and the major reason for this is soaring use of packaged items, textiles, paper, food, plastics, metals, glass etc, thus management of this refuse becomes a crucial part in our everyday life.in most of the developed countries there are many efficient techniques which are used for the proper management of this waste, but in some countries especially the developing ones the careless attitude of people towards maintaining clean surroundings, along with this many issues such as no stringent laws for using the biodegradable materials, no proper environ policies ,no laws for sustainable development are the seed for the fatal results of waste management. Due to the increasing waste, the public bins which are used for collecting this waste are overflowing, the locality is jumbled of trash, causing not only malodorous streets but also a negative impact on the health and environment. We segregate the waste at our homes for ease at processing and recycling. We observed trash vans come irregular to homes creating a despoliation of households. Due to this many civilians empty their overloaded dustbins in open spaces. This in turn increases environmental pollution. The waste is a great hassle for our health and the environment it has many effects which are dreadful.

Trash is breeding ground for bacteria, insects, flies these flies are the same that roam around the eatable and drop the off springs. Thus they increase the risk with food poisoning, typhoid, gastroentetritis, salmonella, the insects cause malaria dengue etc. Here a waste management system is introduced in which each dumpster is embedded in a monitoring system which will notify the corresponding personal if the dumpster is full. In this system, it is also possible to separate wet and dry waste into two separate containers. This system provides an effective solution to waste management problem.

1.2 Purpose

- 1. To ensure the protection of the environment through effective waste management.
- 2. Ensure separation at source in all metropolitan and local municipalities.
- 3. Preventing pollution and ecological degradation.
- 4. To protect the health and wellbeing of people by providing an affordable waste collection service.

2.LITERATURE SURVEY:

S.	TITLE	AUTHOR	YEAR OF		
N	OF THE	NAME	PUBLICATION	REMARKS	OUTPUT
O	PAPER				
1	IOT	Muhammed	4-June/2020	Environmental	Collect
	based smart	irfan,		Pollution.	the waste
	waste	Abdullah		Improper	effectively.
	in monitoring	saeed, Al		collector and	Detection
	nd municipal	wadie,		disposal	of fire in
	olid waste	adam		mechanism	waste material.
	nagement				Wirelessly
	ystem				connected
	for smart cities				with
					he
					central hub
					Of
					ransmit the info
					about the bins
					filling level
					with existing
					collection.
					Avoid
					the
					overflow
					of bins.

2	Smart	Mrigank	05-March/2021	All wet waste	It segregates
	garbage	goel, Amogh		are not used	the metallic
	segregator and	harsh goyal,		for urban	dry and wet
	IOT	Preeti		agriculture,	waste.
		dhiman,		organic	It also
	based waste	Vikas deep,		farming.	convert that it
	collector	Purshottam			can be further
	system	sharma			used in urban
					agriculture,
					organic
					farming.
					It alert the
					waste
					management
					Center
					through
					IOT system
					whenever any
					of the metallic
					or dry garbage
					Bins is full to
					avoid serious
					environment
					hazards

3	A	G.Uganya,	10-Feb/2022	Low	Automatic
	novel	D.Rajalakshm		cost	method,
	strategy	i, Arun		Method	predicting the
		Radhakrishnan		High	possibility of
	for waste	Ramya,		accuracy	waste things.
	prediction	Yuvaraja		Complicated	The
	using machine	teeka, -raman		method	waste capacity
	Learning			Because of	
	algorithm			using	
	with IOT			machine	,gas level,
	based			learning	metal level
	intelligent			algorithm	monitored
	waste				continuously
	management				Using
	system				
					IOT based
					dustbins.
					Tested
					by random
					forest
					algorithm
					gives
					the
					accuracy
					of
					92.15%
					and give time
					consumptions
					of 0.2 ms.

4	System	Arafat ali khan	7-Jan/2021	Good enough	Microcontroll
	waste	Farhana shetu		to prevent the	er,
	management	Saimum bari		garbage	sensor, GSM
		Lawshik		overflow and	are used in the
		shikder		ensures the	system. This
				partial	proposed
					system would
				is perfect	have
				waste	an automated
				management	waste level
				and	detection
				monitoring	process and
				system	also a smart
					monitoring
					and
					overall
					management
					process.
5	Real	Dominic	23-Oct/2021	Fuzzy logic is	This
	time smart garbage	Abuga		applied	mechanism
	bin mechanism	N.S.Ragava		Hence real	proposed

Т

_

for solid waste		time dec	cision	accesses
management in		making a	avoid	
smart cities		real	time	
		monitori	ng	real time
				information of
				any
				smart garbage
				bin deployed
				across the city
				and helps to
				resolve
				the problem of
				waste overflow
				from garbage
				bins and keeps
				cities clean

6	Smart	V.Pavan	3-Nov/2019	Easy process	The server
	waste	sankeeth		but garbage	monitors
	management	V.Bhavana		truck driven	garbage bins
	system using	V.Santhosh		must have	that are spread
	IOT	Markandeya		cell phones	across the city
					at
					multiple
					location sever
					sends SMS to
					assigned
					mobile
					number which
					provide route
					to the driver
					based on all
					the
					data collected
					from
					bins

7	Automated	Aarati medehal	1-Oct/2020	Using of	This purpose
	waste garbage	Aniruddha		machine	of this system
	monitoring	Annaiuru		learning	is
	system	Shalini		algorithm	use powerful
		T.S.Chander		improve the	tools of
	with optimal			redundant	IOT for
	route			inefficient	completely
	generation for				automated the
	collection				process
					of garbage
					monitoring
					using
					ultrasonic
					sensor
					and
					node MCU
					And provide
					an optimal
					route
					for garbage
					collection
					using cluster
					first
					route several
					ml algorithm

8	An IOT based	T.M.N Vamsi	10-	Consumption	This system
	garbage	G.Kalyan	April/2021	of	monitors garbage
	monitoring	chakravathi		fuel	bins
	a disposal	B.Divakar			located
	support	Protibha			at different
	system.			in garbage	locations and
				truck is	notifies about the
				reduced but	level of garbage
				clean personal	accumulated in
				must	garbage bins
					through android
				have smart	application to
				phone to	cleaning
				active	personnel and
					provides shortest
				this process	path to
					the garbage bin
					location

9	IOT	Md.humaun	21-Oct/2020	Project	It enables real
		Kabir, sujit roy,		costs	time monitoring
	based solar	Md.tofail		complicated	of solar powered
	powered smart	ahmed,		but this can be	several smart
		Mahmudul		suitable for any	bins located in
	waste	alam		kind of cities	different point in
	management			or town and	the
	system			ensures proper	city
	-			collection and	which
				disposal of	
	with			garbage	are connected
	real				
	time				
	monitoring an				to control system
	advancement				through
	for smart city				long range
	planning				(LDRA)
					Communicati on
					device and also
					supervises the
					waste collection
					and disposal
					time using
					automated
					vehicles
					locating
					system

10 Intelligent	Chinmai	1-Nov/2020	Intelligent	Sensor
sensor	shetty		sensor	helps is identify
based waste	B.Dhenanya		makes a	the quality
disposal	ya Deepa		person to	
system	N.Rashmi		through	of garbage and
			garbage the	real collected
for smart			bins	information the
cities				info
				is send to
				the
				drivers
				and the
				garbage
				collected
				information is
				updated
				on the web
				page this
				system also
				ensure that
				there is no waste
				thrown
				around the
				trash bin the
				intelligent sender
				should make
				beeping sound if
				any person
				through
				around
				the

		trash bin and
		not into the
		trash bin

2.3 PROBLEM STATEMENTS

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation&Brainstorming:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	 Rubbish and waste can cause air and water pollution. Rotting garbage is also known to produce harmful gases mix with the air and cause breathing problem in people. Due to improper waste disposal, we may face several problems like unpleasant odour and health problems

2.	Idea / Solution description	 ❖ To solve this problem of waste management for disposal using a smart refuse bin built with technologies like Sensors, Arduino Yun. ❖ Garbage truck Weighing Mechanisms. ❖ Al Recycling Robots
3.	Novelty / Uniqueness	 Identify potential waste streams. Create a waste management- focused community outreach plane
4.	Social Impact / Customer Satisfaction	 Neighbourhood of landfills to communities, breeding of pests and loss in property values. The IOT solution uses the data and selects optimum routes for waste collection trucks
5.	Business Model (Revenue Model)	 It generates revenue through the provision of various waste management and disposal services. Recycling solutions to residential, commercial, industrial and municipal clients

6.	Scalability of the Solution	Installing more bins fire collecting
		recyclables like paper, glass, plastic.
		Recycling not only save energy
		but also prevent the material from
		going to landfills & Incineration and
		provides raw materials for new
		products.

4.REQUIREMENT ANALYSIS:

4.1 Functional Requirement

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)
No.	(Epic)	
FR-1	Detailed bin inventory	All monitored bins and stands can be seen on the map, and you can visit them at any
		time via the Street View feature from
		Google.
		Bins or stands are visible on the map as
		green, orange or red circles.
		You can see bin details in the Dashboard –
		capacity, waste type, last measurement,
		GPS location and collection schedule or
		pick recognition

FR-2	Real time bin monitoring	The Dashboard displays real-time data on fill-levels of bins monitored by smart sensors. In addition to the % of fill-level, based on the historical data, the tool predicts when the bin will become full, one of the functionalities that are not included even in the best waste management software Sensors recognize picks as well; so you can check when the bin was last collected. With real-time data and predictions, you can eliminate the overflowing bins and stop collecting half-empty
FR-3	Expensive bins.	We help you identify bins that drive up your collection costs. The tool calculates a rating for each bin in terms of collection costs. The tool considers the average distance depo-bin-discharge in the area. The tool assigns bin a rating (1-10) and calculates distance from depobin discharge.
FR-4	Adjust bin distribution.	Ensure the most optimal distribution of bins. Identify areas with either dense or sparse bin distribution. Make sure all trash types are represented within a stand. Based on the historical data, you can adjust bin capacity or location where necessary

FR5	Eliminate unefficient picks	Eliminate the collection of half-empty bins. The sensors recognize picks. By using real-time data on fill-levels and pick recognition, we can show you how full the bins you collect are. The report shows how full the bin was when picked. You immediately see any inefficient picks below 80% full.
FR6	Plan waste collection routes.	The tool semi-automates waste collection route planning. Based on current bin fill-levels and predictions of reaching full capacity, you are ready to respond and schedule waste collection. You can compare planned vs. executed routes to identify any inconsistencies

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description
No.	Requirement	

NFR-	Usability	IoT device verifies that usability is a	
	Usability	•	
1		special and important perspective to	
		analyze user requirements, which can	
		further improve the design quality. In	
		the design process with user experience	
		as the core, the analysis of users'	
		product usability can indeed help	
		designers better understand users'	
		potential needs in waste management,	
		behavior and experience.	
NFR-	Security	Use a reusable bottles	
2		Use reusable grocery bags	
		Purchase wisely and recycle	
		Avoid single use food and drink	
		containers	
NFR-	Reliability	Smart waste management is also about	
3		creating better working conditions for	
		waste collectors and drivers. Instead of	
		driving the same collection routes and	
		servicing empty bins, waste collectors	
		will spend their time more efficiently,	
		taking care of bins that need servicing.	

NFR-	Performance	The Smart Sensors use ultrasound	
4		technology to measure the fill levels	
		(along with other data) in bins several	
		times a day. Using a variety of IoT	
		networks ((NB-IoT,GPRS), the sensors	
		send the data to Sensoneo's Smart	
		Waste Management Software System, a	
		powerful cloud-based platform, for	
		data-driven daily operations, available	
		also as a waste management app.	
		Customers are hence provided data-	
		driven decision making, and	
		optimization of waste collection routes,	
		frequencies, and vehicle loads resulting	
		in route reduction by at least 30%.	
NFR-	Availability	By developing & deploying resilient	
5		hardware and beautiful software we	
		empower cities, businesses, and	
		countries to manage waste smarter	
NFR-	Scalability	Using smart waste bins reduce the	
6		number of bins inside town, cities coz	
		we able to monitor the	
		garbage 24/7 more cost effect and	
		scalability when we moves to smarter.	

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS:

5.2 SOLUTION&TECHNICAL ARCHITECTURE:

S.No	Component	Description	Technology
1.	User Interface	Web User	HTML, CSS, JavaScript / Angular Js / React Js etc.
2.	Application Logic-1	To calculate the distance of dreck and show the real time level in web portal, information getting via ultra sonic sensor and the alert message activate with python script to web portal.	Java / Python
3.	Application Logic-2	To calculate the weight of the garbage and show the real time weight in web portal, this info getting via load cell and the alert	Load cell/Python.

		message activate with python to	
4.	Application Logic-3	Getting location of the Garbage.	GSM/GPS.
5.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration:localhost Cloud Server Configuration:localhost,Firebase	Localhost,Web portal.
6.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
7.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
8.	Ultrasonic sensor	To throw alert message when garbage is getting full.	Distance Recognition model

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks		Technology of Opensource framework
2.	Security Implementations	Raspberry Pi is connected to the internet and for example used to broadcast live data, further security measures are recommended and use the UFW(uncomplicated	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture		Technology used
4.	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	Technology used

5.	Performance	Design consideration for the	Technology used
		performance of the application	
		(number of requests per sec,	
		use of Cache, use of CDN's)	
		etc.	

5.3 User Stories:

User Type	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Priori ty	Relea se
Web server	Login	USN-1	As a user, I give a user id and password for every workers and manage them.	I can manage web account	High	Sprint-1
Co admin	Login	USN-2	As a co admin, I monitor how wastes are filtering if garbage full, i give id to truck driver.	I monitor the garbage.	High	Sprint-1
Truck driver	Login	USN-3	As a truck driver, i follow te route send by co admin to collect the garbage.	I go to garbage filled place.	Low	Sprint-2

Local g	Login	USN-4	As a garbage	I collect	Medi	Sprint-1
arbage			collector, i	wastes and	um	
collector			collect trash	send off to		
			from garbage	landfill.		
			and load into			
			truck and get			
			them into			
			landfill.			
Municipali	Login	USN-5	As a	I will	High	Sprint-1
ty			municipality, i	manage all		
			enquire te	these		
			process are	process are		
			done	going		
			properly.	correctly.		

6.PROJECT PLANNING AND SCHEDULING:

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional	User	User Story /	Story	Priority	Team
	Requireme	Story	Task	Points		Members
	nt (Epic)	Numb				
		er				
Sprint-	Login	USN-1	As a user, I give	20	High	Guhan T
1			a user id and			
			password for			
			every workers			
			and manage			
			them.			
Sprint-	Login	USN-2	As a co admin, I	10	High	Guhan T
1			monitor how			
			wastes are			
			filtering if			
			garbage full, i			
			give id to truck			
			driver.			

Sprint-2	Login	USN-3	As a truck driver, i follow te route send by co admin to collect the garbage.	10	Low	Ajay C
Sprint-	Login	USN-4	As a garbage collector, i collect trash from garbage and load into truck and get them into landfill.	20	Medium	Gopinath P
Sprint-4	Login	USN-5	As a municipality, i enquire te process are done properly.	20	High	Khoshik C S

7.CODING&SOLUTIONING:

PROGRAM CODE:

#set GPIO direction (IN / OUT)

GPIO.setup(GPIO_TRIGGER, GPIO.OUT)

GPIO.setup(GPIO_ECHO, GPIO.IN)

def distance():

set Trigger to HIGH

GPIO.output(GPIO_TRIGGER, True)

set Trigger after 0.01ms to LOW

time.sleep(0.00001)

GPIO.output(GPIO_TRIGGER, False)

StartTime = time.time()

StopTime = time.time()

save StartTime

while GPIO.input(GPIO_ECHO) == 0:

```
StartTime = time.time()
# save time of arrival
while GPIO.input(GPIO_ECHO) == 1:
StopTime = time.time()
# time difference between start and arrival
TimeElapsed = StopTime - StartTime
# multiply with the sonic speed (34300 cm/s)
# and divide by 2, because there and back
distance = (TimeElapsed * 34300) / 2
return distance
23
if__name___== '_main__':
try:
while True:
dist = distance()
print ("Measured Distance = %.1f cm" % dist)
percent = (100.0 - (dist * 100/40.0))
url =
"http://localhost:80/demoaddbin.php?bin_id=1&percent_filled="+str(percent)x=
urllib.urlopen(url)
print(x.read)
time.sleep(5)
# Reset by pressing CTRL + C
except KeyboardInterrupt:
print("Measurement stopped by User")
GPIO.cleanup()
PROGRAM CODE FOR ACCESS DATABASE:
package com.bin;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;
import android.media.RingtoneManager;
import android.net.Uri;
import android.os.AsyncTask;
import android.os.Handler;
import android.os.IBinder;
import android.support.annotation.Nullable;
import android.support.v4.app.NotificationCompat;
```

```
import android.util.Log;
import android.widget.Toast;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
27
public class GetData extends Service {
String BASE_URL = "http://dustbin.000webhostapp.com/";
String POPMOVIES_BASE_URL = BASE_URL + "getresponsefrombin.php";
SharedPreferences preferences;
SharedPreferences.Editor editor;
@Override
public void onCreate() {
Toast.makeText(this, "Service Called", Toast.LENGTH_SHORT).show();Log.d("Create:","called");
/ addNotification();
super.onCreate();
}
@Override
public int onStartCommand(Intent intent, int flags, int startId) {
Log.d("onStartCommand:","called");
preferences = getSharedPreferences("DustBin",MODE_PRIVATE);
final Handler handler = new Handler();
Runnable runnable = new Runnable() {
@Override
public void run() {
Log.d("handler","run();");
new DustbinTask().execute();
handler.postDelayed(this, 5000);
} };
/ Start
handler.postDelayed(runnable, 1000);
return START_STICKY;
}
@Override
```

```
public void onDestroy() {
Log.d("Destroy:","called");
28
super.onDestroy();
@Nullable
@Override
public IBinder onBind(Intent intent) {
Log.d("Bind:","called");
return null;
public class DustbinTask extends AsyncTask<Void, Void, Void>{
@Override
protected void onPreExecute() {
Log.d("onPreExecute","initiate");
try {
if (!new Network(GetData.this).isConnected()) {
Log.d("onPreExecute","No Internet Available!!");
cancel(true);
}}
catch (InterruptedException | IOException e) {
e.printStackTrace();
}
@Override
protected Void doInBackground(Void... params) {
HttpURLConnection urlConnection = null;
BufferedReader reader = null;
URL url;
String MoviesJsonStr;
try {
url = new URL(POPMOVIES_BASE_URL);
urlConnection = (HttpURLConnection) url.openConnection();
urlConnection.setRequestMethod("GET");
urlConnection.connect();
InputStream inputStream = urlConnection.getInputStream();29
StringBuilder buffer = new StringBuilder()
reader = new BufferedReader(new InputStreamReader(inputStream));
String line;
while ((line = reader.readLine()) != null) {
buffer.append(line).append("\n");
```

```
MoviesJsonStr = buffer.toString();
getMovieNames(MoviesJsonStr);
} catch (IOException | JSONException e1) {
e1.printStackTrace();
} finally {
if (urlConnection != null) {
urlConnection.disconnect();
} if (
reader != null) {
try {
reader.close();
} catch (final IOException ignored) {}
}} return null;
}}
private void getMovieNames(String MovieJsonStr) throws JSONException {
JSONObject MovieJson = new JSONObject(MovieJsonStr);
JSONArray movieLists = MovieJson.getJSONArray("bin_info");for
(int i = 0; i < movieLists.length(); i++) {
JSONObject iMovieDetails = movieLists.getJSONObject(i);
String name = jMovieDetails.getString("bin_id");
int id = jMovieDetails.getInt("percent_filled");
Log.d("DATA", name + " " + id);
MainActivity.percent = id;
if(id >= 80){
30
addNotification(id);
}} / Log.v("Length: ", String.valueOf(movieLists.length()));
/ Show a notification
private void addNotification(int id) {
int min, max;
int percentage = preferences.getInt("last_percent",0);min
= percentage - 5;
max = percentage + 5;
if (min > id || id > max) {
Intent intent = new Intent(this, MainActivity.class
intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
editor = preferences.edit();
editor.putInt("last_percent",id);
editor.apply();
```

```
PendingIntent pendingIntent = PendingIntent.getActivity(this, 0/*Request code*/,intent,
PendingIntent.FLAG_ONE_SHOT);
/ Set sound of notification
Uri notificationSound =
RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);
NotificationCompat.Builder notifiBuilder = new NotificationCompat.Builder(this)
.setSmalllcon(R.mipmap.ic_launcher
.setContentTitle(id + "% Dustbin Full")
.setContentText("Please clear your trash")
.setAutoCancel(true)
.setSound(notificationSound)
.setContentIntent(pendingIntent);
NotificationManager notificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);
notificationManager.notify(999 /*ID of notification*/, notifiBuilder.build());
/ stopSelf()
PROGRAM FOR CONNECTING APPLICATION TO INTERNET:
package com.bin;
import android.content.Context;
import android.net.ConnectivityManager;
import android.util.Log;
import java.io.IOException;
/**
* Created by Sylvester on 03-Mar-17.
class Network {
private Context mContext;
Network(Context mContext) {
this.mContext = mContext;
}
private boolean isNetworkAvailable() {
final ConnectivityManager connectivityManager = ((ConnectivityManager)
mContext.getSystemService(Context.CONNECTIVITY_SERVICE));
return connectivityManager.getActiveNetworkInfo() != null &&
connectivityManager.getActiveNetworkInfo().isConnected();
boolean isConnected() throws InterruptedException, IOException
{ if (
isNetworkAvailable()) {
String command = "ping -c 1 google.com";
return (Runtime.getRuntime().exec (command).waitFor() == 0
```

8.TESTING:

8.1 TEST CASES:

TEST CASE ID	FEATU RE TYPE	COMPON ENT	TEST SCENARIO	PRERE QUISI TE	STEPS TO EXECUTE	TEST DATA	EXPECTED RESULT	ACTUAL RESULT	STAT US	COMMENTS
LOGIN PAGE_TC_ 001	FUNCTI ONAL	HOME PAGE	VERIFY THE USER IS ABLE TO SEE THE LOGIN/SIGN UP WEN USER CLICK ON MY ACCOUNT BUTTON		1.ENTER URL AND CLICK GO 2.VERIFY LOGIN/SIGN UP	https://169.51.204. 219.30106	L0gin page is visible	Working as expected	PASS	Successful
LOGIN PAGE_TC_ 002	UI	HOME PAGE	VERIFY THE USER IS ABLE TO SEE THE LOGIN/SIGN UP WEN USER CLICK ON MY ACCOUNT BUTTON		1.ENTER URL AND CLICK GO 2.VERIFY LOGIN/SIGN UP Elements a.ID text box B. password text box clogin button D.new user E.already have an account	https://169.51.204. 219.30106	Application should show below UI element	Working as expected	PASS	Successful
LOGIN PAGE_TC_ 003	FUNCTI ONAL	LOGIN PAGE	VERIFY THE USER IS ABLE TO SEE THE LOGIN/SIGN UP WEN USER CLICK ON MY ACCOUNT BUTTON		1.enter url and click go 2.click on my account 3.Enter valid ID 4.Enter valid password 5.click on login button	Id:1111 password:5678	User should navigate your home page.	Working as expected	PASS	Successful
LOGIN PAGE_TC_ 004	FUNCTI ONAL	LOGIN PAGE	VERIFY THE USER IS ABLE TO SEE THE LOGIN/SIGN UP WEN USER CLICK ON MY ACCOUNT BUTTON		1.enter url and click go 2.click on my account 3.Enter valid ID 4.Enter valid password 5.click on login butvton	Id:1111 password:5678	Confirmation message sent	Working as expected	PASS	Successful

LOGIN PAGE_TC_ 005	UI	LOGIN PAGE	VERIFY THE USER IS ABLE TO SEE THE LOGIN/SIGN UP WEN USER CLICK ON MY ACCOUNT BUTTON	1.enter url and click go 2.click on my account 3.Enter valid ID 4.Enter valid password 5.click on login button	Id:1111 password:5678	Confirmation message sent	Working as expected	PASS	Successful
LOGIN PAGE_TC_ 006	FUNCTI ONAL	LOGIN PAGE FOR ADMIN	VERIFY THE USER IS ABLE TO SEE THE LOGIN/SIGN UP WEN USER CLICK ON MY ACCOUNT BUTTON	1.enter url and click go 2.click on my account 3.Enter valid ID 4.Enter valid password 5.click on login button	Id:1111 password:5678	Customer database is visible	Working as expected	PASS	Successful

8.2 USER ACCEPTANCE TESTING:

1. Purpose of DocumentThe purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resoluti on	Severi ty 1	Severi ty 2	Severi ty 3	Severi ty 4	Subtot al
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1

Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	7

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fa il	Pa ss
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9.RESULTS:

10.ADVANTAGES:

- 1.It saves time and money by using smart waste collection bins and systems equipped with fill level sensors. As smart transport vehicles go only to the filled containers or bins. It reduces infrastructure, operating and maintenance costs by upto 30%.
- 2. It decreases traffic flow and consecutively noise due to less air pollution as result of less waste collection vehicles on the roads. This has become possible

due to two way communication between smart dustbins and service operators.

- 3.It keeps our surroundings clean and green and free from bad odour of wastes, emphasizes on healthy environment and keep cities more beautiful.
- 4. It further reduces manpower requirements to handle the garbage collection process.
- 5. Applying smart waste management process to the city optimizes management, resources and costs which makes it a "smart city".

DISADVANTAGES:

- 1. System requires more number of waste bins for separate waste collection as per population in the city. This results into high initial cost due to expensive smart dustbins compare to other methods.
- 2. Sensor nodes used in the dustbins have limited memory size.
- 3. Wireless technologies used in the system such as zigbee and wifi have shorter range and lower data speed. In RFID based systems, RFID tags are affected by surrounding metal objects (if any).
- 4. It reduces man power requirements which results into increase in unemployments for unskilled people.
- 5. The training has to be provided to the people involved in the smart waste management system.

11.Conclusion:

The smart waste management system using IoT is successfully built. This proposed method aims at building a prototype model which is able to provide a technical solution to the waste management problem which will effectively separate dry and wet wastes. This model,

Smart Waste Management System (SWM) effectively employs IR sensor to identify dry waste items, and capacitive soil moisture sensor along with IR sensor to differentiate between dry and wet wastes. This system is integrated with ESP8266 Wi-Fi module for IoT applications so as to access information through internet to help higher authorities in better 45th Series Student Project Programme (SPP) – 2021-22 4 monitoring. This system can be effectively deployed at source in all metropolitan and local municipalities.

12. Scope for future work:

- 1. More numbers of separations can be done like metals, plastics, glass etc., with appropriate technology. GSM contraption to intimate to the nearest industry to use the metals collected.
- 2. Further, plastic can be segregated from the collected dry waste and can be processed based on their types, grades and colors.
- 3. Solar panels can be fixed to the body of the dustbin for power requirement.
- 4. By using this proposed scheme will be helpful to easily achieve our mission clean India.
- 5. Provisions can be made for on spot decomposition of wet wastes.

13.APPENDIX:

Source code:

https://github.com/IBM-EPBL/IBM-Project-14756-1659589659