Foundations of Data Science & Analytics: Naive Bayes Classifier

Ezgi Siir Kibris

Introduction to Data Mining, 2nd Edition bν

Tan, Steinbach, Karpatne, Kumar

Tasks

Predictive Modeling

	Output
Classification:	Classes / Categories
Regression:	Continuous Values

Classification: Definition

- Given a collection of data instances (training set)
 - Each instance is characterized by a tuple (x, y),
 where x is the feature set and y is the class label
 - x: feature, attribute, independent variable, input
 - y: class, response, dependent variable, output
- Task:
 - Learn a model that maps each feature set x into one of the predefined class labels y

x: feature set

y: class

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Medium	100K	?
12	Yes	Medium	80K	?
13	No	Small	95K	?

Test Set

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Medium	100K	?
12	Yes	Medium	80K	?
13	No	Small	95K	?

Test Set

We found the exact same data instance in the training set, so we classify Instance 11 as "No". Classification is easy?!

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Medium	100K	?
12	Yes	Medium	80K	?
13	No	Small	95K	?

Test Set

We don't see an exact matching data instance in the training set. The closest is Instance 4, but that instance's Attrib3 value is much larger than Instance 12.

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Medium	100K	?
12	Yes	Medium	80K	?
13	No	Small	95K	?

Test Set

No exactly matching instance but Instance 10 is very close, as is Instance 8. Both of those have a class value of "Yes", so maybe it's ok to classify Instance 13 as "Yes"?

Classification Techniques

Base Classifiers

- Decision Tree based Methods
- Rule-based Methods
- Instance-based Methods (Nearest-Neighbor)
- Naïve Bayes
- Support Vector Machines
- Neural Networks and Deep Learning

Ensemble Classifiers

Boosting, Bagging, Random Forests

Bayes Classifier

Conditional Probability:

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes' theorem:

Likelihood

Bayes Classifier

Bayes theorem:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

 We want to choose Y that is maximal P(Y | X1, X2, ..., Xd)

 Equivalent to maximizing P(X1, X2, ..., Xd | Y) P(Y)

Naive Bayes Independence Assumption

Assume conditional independence among features X; when class is given:

$$P(X1, X2, ..., Xd | Y) = P(X1 | Y) P(X2 | Y)... P(Xd | Y)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Given a test data point:

X = (Refund = No, Divorced, Income = 120K)

Can we estimate:

P(Evade=Yes | X) and P(Evade=No | X)?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$X = (Refund = No, Divorced, Income = 120K)$$

Maximize:

P(X1, X2, ..., Xd|Y) P(Y)

• P(Y):

$$P(Evade=No) =$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

$$X = (Refund = No, Divorced, Income = 120K)$$

Maximize: P(X1, X2, ..., Xd | Y) P(Y)

• P(X1, X2, ..., Xd | Y): How to compute?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Now:

P(Refund=No, Divorced, Income=120K | Yes)

= P(Refund=No | Yes) P(Divorced | Yes) P(Income=120K | Yes)

= 3/3 * 1/3 * P(Income=120K | Yes)

Continuous Features

 We cannot directly use continuous features with Naïve Bayes. The easiest way to deal with continuous features is to discretize them!

Discretize the Continuous Feature

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	High	No
2	No	Married	High	No
3	No	Single	Med	No
4	Yes	Married	High	No
5	No	Divorced	Med	Yes
6	No	Married	Low	No
7	Yes	Divorced	High	No
8	No	Single	Med	Yes
9	No	Married	Med	No
10	No	Single	Med	Yes

Basic discretization scheme for Taxable Income

- [100K, 300K] = High
- [70K, 100K) = Med
- (0K, 70K) = Low

	Tid	Refund	Marital Status	Taxable Income	Evade
	1	Yes	Single	High	No
	2	No	Married	High	No
	3	No	Single	Med	No
	4	Yes	Married	High	No
	5	No	Divorced	Med	Yes
	6	No	Married	Low	No
	7	Yes	Divorced	High	No
	8	No	Single	Med	Yes
	9	No	Married	Med	No
Ц	10	No	Single	Med	Yes

P(Refund=No, Divorced, Income=90K | Yes)

= P(Refund=No, Divorced, Income=Med | Yes)

= P(No | Yes) * (Divorced | Yes) * (Med | Yes)

= 3/3 * 1/3 * 3/3 = 0.333

	Tid	Refund	Marital Status	Taxable Income	Evade
	1	Yes	Single	High	No
	2	No	Married	High	No
	3	No	Single	Med	No
L	4	Yes	Married	High	No
	5	No	Divorced	Med	Yes
Г	6	No	Married	Low	No
	7	Yes	Divorced	High	No
	8	No	Single	Med	Yes
	9	No	Married	Med	No
	10	No	Single	Med	Yes

P(Refund=No, Divorced, Income=Med | Yes)

= 3/3 * 1/3 * 3/3 = 0.333

P(Refund=No, Divorced, Income=Med | No)

= P(No | No) * P(Divorced | No) * P(Med | No)

= 4/7 * 1/7 * 2/7 = 0.0233

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	High	No
2	No	Married	High	No
3	No	Single	Med	No
4	Yes	Married	High	No
5	No	Divorced	Med	Yes
6	No	Married	Low	No
7	Yes	Divorced	High	No
8	No	Single	Med	Yes
9	No	Married	Med	No
10	No	Single	Med	Yes

$$P(Yes | X) = P(X | Yes) * P(Yes)$$

= 0.333 * 3/10 = 0.0999

$$P(No | X) = P(X | No) * P(No)$$

= 0.0233 * 7/10 = 0.01631

Predict:

Evade = Yes

Major Issue with Naive Bayes

If one of the conditional probabilities is zero, then the entire expression becomes zero

original:
$$P(X_i = c | y) = \frac{n_c}{n}$$

Laplace Estimate:
$$P(X_i = c|y) = \frac{n_c + 1}{n + v}$$

n: number of training instances belonging to class v

 n_c : number of instances with $X_i = c$ and Y = v

v: total number of attribute values that X_i can take

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class	
human	yes	no	no	yes	mammals	
python	no	no	no	no	non-mammals	Γ
salmon	no	no	yes	no	non-mammals	
whale	yes	no	yes	no	mammals	
frog	no	no	sometimes	yes	non-mammals	Γ
komodo	no	no	no	yes	non-mammals	
bat	yes	yes	no	yes	mammals	
pigeon	no	yes	no	yes	non-mammals	
cat	yes	no	no	yes	mammals	
leopard shark	yes	no	yes	no	non-mammals	Γ
turtle	no	no	sometimes	yes	non-mammals	
penguin	no	no	sometimes	yes	non-mammals	
porcupine	yes	no	no	yes	mammals	
eel	no	no	yes	no	non-mammals	
salamander	no	no	sometimes	yes	non-mammals	
gila monster	no	no	no	yes	non-mammals	
platypus	no	no	no	yes	mammals	
 owl	no	yes	no	yes	non-mammals	
dolphin	yes	no	yes	no	mammals	
eagle	no	yes	no	yes	non-mammals	Γ

A: attributes

M: mammals

Original

N: non-mammals

$$P(A | M) =$$

$$P(A | N) =$$

$$P(A \mid M)P(M) =$$

$$P(A | N)P(N) =$$

$$\left|P(M|A)=rac{P(A|M)P(M)}{P(A|M)P(M)+P(A|N)P(N)}=0.886
ight|$$

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class	L
human	yes	no	no	yes	mammals	
python	no	no	no	no	non-mammals	Г
salmon	no	no	yes	no	non-mammals	
whale	yes	no	yes	no	mammals	
frog	no	no	sometimes	yes	non-mammals	Г
komodo	no	no	no	yes	non-mammals	
bat	yes	yes	no	yes	mammals	
pigeon	no	yes	no	yes	non-mammals	
cat	yes	no	no	yes	mammals	
leopard shark	yes	no	yes	no	non-mammals	
turtle	no	no	sometimes	yes	non-mammals	
penguin	no	no	sometimes	yes	non-mammals	
porcupine	yes	no	no	yes	mammals	
eel	no	no	yes	no	non-mammals	Г
salamander	no	no	sometimes	yes	non-mammals	
gila monster	no	no	no	yes	non-mammals	
platypus	no	no	no	yes	mammals	
owl	no	yes	no	yes	non-mammals	
dolphin	yes	no	yes	no	mammals	
eagle	no	yes	no	yes	non-mammals	

Laplace Estimate:
$$P(X_i = c | y) = \frac{n_c + 1}{n + v}$$

$$P(A|M) = \frac{7}{9} imes \frac{7}{9} imes \frac{3}{10} imes \frac{3}{9} = 0.06$$

$$P(A|N) = rac{2}{15} imes rac{11}{15} imes rac{4}{16} imes rac{5}{15} = 0.008$$

$$P(A|M)P(M) = 0.06 imes rac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.008 imes rac{13}{20} = 0.005$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

$$ig| P(M|A) = rac{P(A|M)P(M)}{P(A|M)P(M) + P(A|N)P(N)} = 0.808$$

Naïve Bayes easily handles missing values

Predict for

$$P(X|No) = 3/6 \times 1/7$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	?	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training a Naive Bayes Model

• Pre-calculate:

- P(y) for y in Y (these are our "prior" probabilities)
- \circ P(X_i | y) for y in Y, for X_i in X
 - If X_i is discrete, pre-calculate P(x_i | y) for x_i in X_i
 - Else if X_i is continuous, discretize the feature to create categories, then pre-calculate $P(x_i | y)$ for x_i in X_i

Assignment 4