CS5226 Lecture 4

Index Tuning

Index Tuning

- Input:
 - a workload $W = \{Q_1, \dots, Q_n\}$, each Q_i is a query
 - a storage bound B
- ▶ **Output**: An index configuration $C = \{l_1, \dots, l_k\}$ such that
 - $\sum_{i=1}^k \operatorname{size}(I_i) \leq B, \text{ and }$
 - $\sum_{j=1}^{n} cost(Q_{j}, C)$ is minimized
- size(I) = size of an index
- cost(Q, C) = execution cost of the optimal plan for Q wrt C

2

B⁺-tree index

Clustered index on (age)

Relation R						
name	age	weight	height			
Moe	10	55	180			
Curly	10	65	171			
Larry	12	70	175			
Bob	15	60	178			
Alice	17	48	175			
Lucy	17	45	170			
John	18	59	182			
Charlie	20	69	173			
Marcie	22	50	165			
Linus	23	60	166			
Sally	24	48	169			
Tom	25	56	176			

Unclustered index on (weight)

Index access methods

- Index scan
- Index seek [+ RID lookup]
- Index intersection [+ RID lookup]

Index scan

select height
from Student

Index on (height, weight)

Index seek

select weight
from Student

where weight between 55 and 65

Index on (weight)

Index seek + RID lookups

select name from

Student

where weight between 55 and 59 select

weight from Student

where weight **between** 55 **and** 59

and age \geq 20

Index intersection

select where and height, weight from Student height between 164 and 170 weight between 50 and 59

Index on (height)

Index on (weight)

(175,48)

Sargable predicates

- ► A selection predicate is a sargable predicate if it is of the form "column comparison-operator value"
 - "sarg" = search argument
- Examples of sargable predicates:
 - year = 2012
 - ▶ cost < 2000</p>
- Examples of non-sargable predicates:
 - midterm + final > 50
 - quantity * price = 1000

Selectivity factor

- ► sf(p) = selectivity factor of a predicate p
 - proportion of records that satisfy p
- Example:

$$\begin{array}{ll} \text{SELECT} & \text{D, E} \\ \text{FROM} & \text{R} \\ \text{WHERE} & \text{A} < 10 \\ \text{AND} & \text{B} = 20 \\ \end{array}$$

$$sf(A < 10) = \frac{\text{number of records that satisfy } A < 10}{\text{number of records in R}}$$

CS5226: Sem 2, 2012/13 Review: B⁺-tree index 10

Covering index

- ► An index I is a covering index for a query Q if all the columns referenced in Q are part of I
 - Q can be evaluated using / without any RID lookup

B⁺-tree with suffix columns

- Additional columns in leaf node entries
 - ► I = (K|S)
 - ► K = sequence of key columns
 - ► S = set of included columns (only in leaf nodes)
 - Example: I = (A, B | C, D)
- Supported in IBM DB2 & Microsoft SQL Server
- Also known as included columns

B⁺-tree with suffix columns (cont.)

Example:

IdxHtWtAge = (height|weight, age)

Access Path Selection

- Find the optimal physical plans for a single relation
- Depends on
 - available indexes
 - selectivity factors of predicates
 - ordering of retrieved tuples

Access Path Selection (cont.)

Query: $\pi_{D,E}(\sigma_{A<10 \ \land \ B<20 \ \land \ A+C=8}(R))$

Available indexes: $I_R(A)$, $I_R(B)$, $I_R(D, A, B, C, E)$

Plan 3

Issues in Automated Index Tuning

- Search space of candidate indexes
- Cost model to evaluate index configurations
- Enumeration strategy to search index configurations

Techniques in Automated Index Tuning

What-if API

- Hypothetical indexes are not materialized but simulated inside optimizer
- Add index meta-data & statistics to DB catalogs

Dependence on query optimizer

- Index tuning is kept "in sync" with optimizer
- Uses optimizer's cost model to evaluate candidates

SQL Server's Approach

- Top-down strategy for searching index configurations
- First, obtain an initial optimal index configuration C $(B = \infty)$
- Progressively "relax" C to reduce its size using index transformations
- size(C) = storage requirement for index configurationC
- cost(C) = expected execution cost for workload W given index configuration C

Optimal index configurations

Instrument the query optimizer with a "tuning mode"

Classification of query attributes

- Query attributes can be partitioned into 5 categories:
 - S_{eq}: attributes in equality sargable predicates
 - S_{range}: attributes in range sargable predicates
 - N: attributes in non-sargable predicates
 - O: ordering attributes
 - A: other referenced attributes

Classification of query attributes (cont.)

Classification of query attributes (cont.)

- Query: $\pi_{D,E}(\sigma_{A=10 \ \land \ B<20 \ \land \ A+C=8}(R))$
- $S_{eq} = \{A\}$
- $S_{range} = \{B\}$
- N = {C}
- ► O = ∅
- $A = \{D, E\}$

Classification of optimal index configurations

Case 1: $O = \emptyset$, $N = \emptyset$, $|S_{range}| \le 1$

- Optimal index = (K|S)
- $K = K_1, K_2$
 - K_1 = attributes in S_{eq} in any order
 - $ightharpoonup K_2 = S_{range}$
- S = A
- Example:

SELECT D, E
FROM R
WHERE
$$A = 10$$

AND $B < 20$

Optimal index =
$$(A, B|D, E)$$

Why not $K = (K_2, K_1)$?

select name from Student

where height between 165 and 180

and weight = 60

Index on (weight, height)

Why not $K = (K_2, K_1)$? (cont.)

select name

from Student

where height between 165 and 180

and weight = 60

Index on (height, weight)

Case 2: $O = \emptyset$, $N = \emptyset$, $|S_{range}| > 1$

- ▶ Optimal index = I or I'
- ▶ Index I = (K|S)
 - $K = K_1, K_2$
 - K_1 = attributes in S_{eq} in any order
 - K₂ = the attribute in S_{range} with smallest predicate selectivity factor
 - $S = (S_{range} \cup A) \{K_2\}$
- ▶ Index I' = (K'|S')
 - ► K' = K
 - ► L = sequence of attributes in $(S_{range} K_2)$ ordered in non-descending order of predicates' selectivity factor
 - S' = an optimal prefix of L

Case 2: Example

SELECT	N
FROM	R
WHERE	$W \geq 50$
AND	$H \ge 180$
AND	A > 40

Relation R					
N	Α	W	Н		
Moe	10	55	180		
Curly	10	65	171		
Larry	12	70	175		
Bob	15	62	178		
Alice	17	48	175		
Lucy	17	45	170		
John	20	59	182		
Charlie	20	69	173		
Marcie	22	50	180		
Linus	23	60	166		
Sally	24	48	169		
Tom	25	56	176		

- ▶ Assume $sf(W \ge 50) < sf(H \ge 180) < sf(A \ge 20)$
- Candidate indexes:
 - $I_1 = (W|H,A,N)$
 - ▶ $I_2 = (W)$
 - ▶ $I_3 = (W|H)$
 - $I_4 = (W|H,A)$

Case 2: Example (cont.)

(45,170,17,RID32) (48,169,24,RID61) (48,175,17,RID31) (50,180,22,RID51) (55,180,10,RID11) (56,176,25,RID62) (59,182,20,RID41) (60,166,23,RID52) (62,178,15,RID22) (65,171,10,RID12) (69,173,20,RID42) (70,175,12,RID21) $I_4 = (W|H,A)$

CS5226: Sem 2, 2012/13

Optimal Index Configurations

29

Case 3: $O = \emptyset$, $N \neq \emptyset$

Similar to case 2 except the following:

- $S = (S_{range} \cup A \cup N) \{K_2\}$
- ► L = sequence of attributes in $(S_{range} \cup N) \{K_2\}$ in non-descending order of predicates' selectivity factor

$$\begin{array}{lll} \text{SELECT} & \text{F} \\ \text{FROM} & \text{R} \\ \text{WHERE} & \text{A} > 20 \\ \text{AND} & \text{B} \geq 40 \\ \text{AND} & \text{B} + \text{C} \leq 100 \\ \text{AND} & \text{D} * \text{E} = 80 \\ \end{array}$$

- ► Assume $sf(A > 20) < sf(B \ge 40)$ < $sf(B + C \le 100) < sf(D * E = 80)$
- Candidate indexes:

$$I_1 = (A|B, C, D, E, F)$$

$$I_2 = (A|B)$$

•
$$I_3 = (A|B,C)$$

•
$$I_4 = (A|B, C, D, E)$$

Case 4: $O \neq \emptyset$

- Let lopt be the optimal index obtained under case 3
- ▶ Let P be the query plan using I_{opt}
- ▶ If the results produced by P are ordered wrt O, then the optimal plan is to evaluate using I_{opt}
- Otherwise, the optimal plan is one of the following:
 - 1. P followed by sorting on O, or
 - 2. Evaluate using index $I = (K_1, K_2|S)$
 - ★ K_1 = attributes in S_{eq} in any order
 - ★ K_2 = attributes in $(O S_{eq})$
 - ★ S is determined as in case 3

Case 4: Example 1

 $\begin{array}{lll} \text{SELECT} & \text{A} \\ \text{FROM} & \text{R} \\ \text{WHERE} & \text{A} > 20 \\ \text{AND} & \text{B} \geq 40 \\ \text{AND} & \text{B} + \text{C} \leq 100 \\ \text{ORDER BY} & \text{A} \end{array}$

- ► Assume $sf(A > 20) < sf(B \ge 40) < sf(B + C \le 100)$
- Candidate indexes under case 3:
 - $I_1 = (A|B,C)$
 - $I_2 = (A|B)$
- The optimal index = optimal index under case 3

Case 4: Example 2

SELECT	D, E
FROM	R
WHERE	A = 20
AND	$B \geq 40$
AND	C ≤ 100
ORDER BY	D

- Assume $sf(B \ge 40) < sf(C \le 100)$
- Candidate indexes under case 3:

$$I_1 = (A, B|C, D, E)$$

$$I_2 = (A, B|C)$$

- Suppose the optimal index under case 3 is I₁
- Optimal index (with sorting): I₁
- Candidate indexes (without sorting):

•
$$I_3 = (A, D, E|B, C)$$

$$I_4 = (A, D, E|B)$$

Handling space constraint

Q1: SELECT A, B, C FROM R

WHERE 10 < A < 20

Q2: SELECT A, B, D

FROM R

WHERE 50 < A < 100

Relaxing index configurations

- An index configuration C can be relaxed if C can be transformed to C' by some index transformation operation such that size(C') < size(C)</p>
- Index transformations
 - Merging: merges two indexes into a single index
 - Splitting: splits two indexes into a set of up to 3 indexes
 - Prefixing: reduces the key width of an index
 - Promotion: changes an index to a clustered index
 - Removal: removes an index

Operations on Sequences

- ▶ Let S₁ and S₂ be sequences
- ▶ S_1 ∩ S_2 returns the sequence that has elements in the intersection of S_1 and S_2 and in the same order as they appear in S_1
- S₁ S₂ returns the sequence that has elements in the difference of S₁ and S₂ and in the same order as they appear in S₁

- $S_1 = [a, b, c, d, e]$
- $S_2 = [e, f, c, a, g]$
- $S_2 \cap S_1 = [e, c, a]$
- $S_1 S_2 = [b, d]$
- $S_2 S_1 = [f, g]$

Merging, $I_1 \oplus I_2$

▶ Let $I_1 = (K_1|S_1)$ and $I_2 = (K_2|S_2)$

$$I_1 \ \oplus \ I_2 = \left\{ \begin{array}{ll} (K_2 | (S_1 \cup S_2) - K_2) & \text{if } K_1 \text{ is a prefix of } K_2 \\ (K_1 | (S_1 \cup K_2 \cup S_2) - K_1) & \text{otherwise} \end{array} \right.$$

- $I_1 = (a, b, c | d, e, f)$
- $I_2 = (c, d, g|e)$
- $I_3 = (a|c, e, h)$
- \downarrow $I_1 \oplus I_2 = (a, b, c | d, e, f, g)$
- $I_2 \oplus I_1 = (c, d, g|a, b, e, f)$
- $I_1 \oplus I_3 = (a, b, c | d, e, f, h)$
- $I_3 \oplus I_1 = (a, b, c | d, e, f, h)$

Splitting, $I_1 \otimes I_2$

▶ Let $I_1 = (K_1|S_1)$ and $I_2 = (K_2|S_2)$

$$I_{1} \otimes I_{2} = \{I_{C}|K_{1} \cap K_{2} \neq \emptyset\} \cup \{I_{R1}|K_{1} - K_{2} \neq \emptyset\} \cup \{I_{R2}|K_{2} - K_{1} \neq \emptyset\}$$

$$I_{C} = (K_{1} \cap K_{2}|S_{1} \cap S_{2})$$

$$I_{R1} = (K_{1} - K_{2}|S_{1} - S_{2})$$

$$I_{R2} = (K_{2} - K_{1}|S_{2} - S_{1})$$

- $I_1 = (a, b, c | d, e, f)$
- $I_2 = (c, a|e)$
- $I_3 = (a, b|d, g)$
- $I_1 \otimes I_2 = \{I_C, I_{R1}\}, I_C = (a, c|e), I_{R1} = (b|d, f)$
- $I_2 \otimes I_1 = \{I_C, I_{R2}\}, I_C = (c, a|e), I_{R2} = (b|d, f)$
- $I_2 \otimes I_3 = \{I_C, I_{R1}, I_{R2}\}, \ I_C = (a), \ I_{R1} = (c|e), \\ I_{R2} = (b|d, g)$

Prefixing, $\rho(I, K')$

- ▶ Let I = (K|S) and K' be a non-empty prefix of K
- $\rho(I,K') = (K')$
- Example:
 - $I_1 = (a, b, c | d, e, f)$
 - $\rho(I_1, ab) = (ab)$
 - $\rho(I_1, a) = (a)$

Promotion, $\tau(I)$

- Let I = (K|S) be an index on table R, where R has no clustered index

Index Transformation Penalty

- Let C be relaxed to C' using transformation t
- ▶ Reduction in space, $\Delta S_t = size(C) size(C')$
- Maximum increase in cost, ∆T_t = cost(C') − cost(C)
- ► Transformation penalty, $penalty(t) = \frac{\Delta T_t}{\Delta S_t}$
- Refined penalty:

$$penalty(t) = \frac{\Delta T_t}{\min\{size(C) - B, \Delta S_t\}}$$

Cost Model

- size(C) can be estimated quite easily
- ▶ But cost(C) is costly to compute
 - ► Approximate by computing an upper bound costBound(C)

Search strategy

Input: Workload W & space constraint B **Output**: A valid index configuration C for W, size(C) < B

```
01.
        Find optimal configuration C_i for each q_i \in W
02. C_{best} = \bigcup_{\alpha \in W} \{C_i\}
03. S = \{C_{best}\}; C_{best} = null; cost(C_{best}) = \infty;
04.
       while (time limit is not exceeded)
05.
               pick C \in S that can be relaxed
               relax C into C' using transformation t that minimizes
06.
               penalty(t)
               S = S \cup \{C'\}
07.
               if (\operatorname{size}(C') \leq B) and (\operatorname{cost}(C') < \operatorname{cost}(C_{hest}))
08.
                C_{hest} = C'
09.
10.
       return C<sub>hest</sub>
```

How to pick configuration to relax?

- ▶ Let C_k be the last relaxed configuration
- ▶ Case 1: $size(C_k) > B$
 - ▶ Pick C_k
- ► Case 2: size(C_k) ≤ B
 - ▶ Let $P = \{C_0, C_1, \dots, C_k\}$ where
 - \star C_0 is the initial optimal configuration
 - ★ each C_{i-1} is relaxed to C_i using transformation t_{i-1}
 - ▶ Let $P' = \{C_i \in P \mid C_i \text{ can be further relaxed}\}$
 - Case 2a: P' ≠ ∅
 - ★ Pick the configuration $C_i \in P'$ where $penalty(t_i) = \max_{C_i \in P'} \{penalty(t_i)\}$
 - ► Case 2b: P' = ∅
 - Pick the configuration with the miniumum cost that can be further relaxed

References

Required Readings

▶ N. Bruno and S. Chaudhuri, Automatic Physical Database Tuning: A Relaxation-based Approach, SIGMOD 2005.

Additional Readings

- Chapters 3, 4, 5, & 6 of Bruno's book
- G. Valentin, M. Zuliani, D.C. Zilio, G.M. Lohman, A. Skelley, DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes, ICDE 2000.