DIVING INTO THE MACHINE ROOM

Lecture 2

MAL2, Spring 2025

Today's Goals:

Understanding the how's and the why's of building a good neural network.

DIVING INTO THE MACHINE ROOM

- How training a neural network works
- Activation functions
- Faster optimizers
- Learning rate scheduling
- Regularization
- General suggestions

GRADIENT DESCENT

 $\nabla L(\theta) = \left(\frac{\partial L}{\partial \theta_0}, \frac{\partial L}{\partial \theta_1}, \frac{\partial L}{\partial \theta_2}, \frac{\partial L}{\partial \theta_n}\right) \leftarrow \text{how do we calculate}$ this? Onew=Oold-yV1(0)
repeat until $71(0) \approx 0$

GRADIENT DESCENT - IDEA #1

$$\frac{\partial L}{\partial Q_2} \approx \frac{L(Q_2 + \varepsilon) - L(Q_2)}{\varepsilon}$$

INTRACTABLE

This procedure must then be repeated for all parameters at every single training step ... and there may be hundreds of thousands of parameters!

GRADIENT DESCENT – IDEA #2

Use the chain rule

we want $\frac{\partial 1}{\partial w}$ for all parameters in the model

GRADIENT DESCENT – IDEA #2

$$\nabla L = \begin{pmatrix} \partial L/\partial w_{11}^{(1)} \\ \partial L/\partial w_{21}^{(1)} \\ \partial L/\partial b_{1}^{(1)} \\ \partial L/\partial w_{12}^{(1)} \\ \partial L/\partial w_{22}^{(1)} \\ \partial L/\partial b_{2}^{(1)} \\ \partial L/\partial w_{11}^{(2)} \\ \partial L/\partial w_{21}^{(2)} \\ \partial L/\partial b_{1}^{(2)} \end{pmatrix} = \begin{pmatrix} -40 \\ 16 \\ 8 \\ 0 \\ 0 \\ 0 \\ 24 \\ 0 \\ 4 \end{pmatrix}$$

$$\frac{\partial 1}{\partial x_{11}} = 2(10-8) \cdot 2 \cdot 1 \cdot 2 = 16$$

$$\begin{pmatrix} w_{11}^{(1)} \\ w_{21}^{(1)} \\ b_{1}^{(1)} \\ w_{12}^{(1)} \\ w_{22}^{(1)} \\ b_{2}^{(1)} \\ w_{11}^{(2)} \\ w_{21}^{(2)} \\ b_{1}^{(2)} \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ -2 \\ 2 \\ 3 \\ -2 \end{pmatrix} - 0.002 \begin{pmatrix} -40 \\ 16 \\ 8 \\ 0 \\ 0 \\ 0 \\ 24 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 1.08 \\ 3.968 \\ 2.984 \\ 2 \\ 1 \\ -2 \\ 1.952 \\ 3 \\ -2.008 \end{pmatrix}$$

WHY DID WE JUST DO THIS?

$$\nabla L = \begin{pmatrix} \frac{\partial L}{\partial w_{11}^{(1)}} \\ \frac{\partial L}{\partial w_{21}^{(1)}} \\ \frac{\partial L}{\partial w_{21}^{(2)}} \\ \frac{\partial L}{\partial w_$$

"dying ReLU"
heeps outputiting
zero, killing the neuron

VANISHING & EXPLODING GRADIENTS

DIVING INTO THE MACHINE ROOM

- How training a neural network works
- Activation functions
- Faster optimizers
- Learning rate scheduling
- Regularization
- General suggestions

ACTIVATION FUNCTIONS

BETTER ACTIVATION FUNCTIONS

RECOMMENDATIONS

Try ReLU for shallow networks and Swish for deep networks

```
layer = Dense(100, activation="relu", kernel_initializer="he_normal")
layer = Dense(100, activation="swish", kernel_initializer="he_normal")
```

how the values of weights and biases are initialized

for reference

Initialization method	Activation function
Glorot (default)	tanh, sigmoid, softmax
He	ReLU, Leaky ReLU, ELU, GELU, Swish, Mish
LeCun	SELU

DIVING INTO THE MACHINE ROOM

- How training a neural network works
- Activation functions
- Faster optimizers
- Learning rate scheduling
- Regularization
- General suggestions

FASTER OPTIMIZERS

#GradientDescent UpdatingParameters

#GradientDescent FinishingAnEpoch

#GradientDescent WhenItConverges

The point is: Gradient descent can be painfully slow

FASTER OPTIMIZERS

momentum

MOMENTUM

"the step we just took probably wasn't a terrible idea"

Monentum mentum $m = \beta m - \eta \nabla L(\theta)$ 9 e 0 t m

The trick works because m generally points in the right direction, so the gradient here is slightly more accurate

momentum

Nesterov trick

adaptive learning rate scaling decay weight decay

THE NESTEROV TRICK

momentum
Nesterov trick
adaptive learning rate

ADAPTIVE LEARNING RATES

Observation: Loss functions often resemble elongated bowls

momentum
Nesterov trick
adaptive learning rate
scaling decay
weight decay

SCALING DECAY

add decay to 5 so it doesn't explode

$$s \leftarrow s + \nabla L(\theta) \otimes \nabla L(\theta)$$

$$\theta \leftarrow \theta - \eta \nabla L(\theta) \oslash \sqrt{s + \varepsilon}$$

momentum
Nesterov trick
adaptive learning rate
scaling decay
weight decay

WEIGHT DECAY

At each training step, multiply all weights by, say 0.55

-> built-in regularization

RECOMMENDATIONS

RECOMMENDATIONS SGD Stochastic gradient descent + adaptive learning rate + momentum really good ... **AdaGrad** Momentum Adaptive gradient + scaling decay **RMSProp** Nesterov accelerated grad Root mean squared propagation Adam **Nadam** Nesterov + Adam Adaptive moment estimation + weight decay **AdamW** Adam + weight decay

DIVING INTO THE MACHINE ROOM

- How training a neural network works
- Activation functions
- Faster optimizers
- Learning rate scheduling
- Regularization
- General suggestions

LEARNING RATE SCHEDULING

LEARNING RATE SCHEDULING

Power

9(t) = 1+t/5, iteration # after 5 steps: 1/2 25 1/2 35 1/4

Exponential

Piecewise constant

Performance

measure volid.

error every

N steps, divide

y by h when

error steps

dropping

CODING A LEARNING RATE SCHEDULE

```
#power scheduling
optimizer = SGD(learning rate=0.01, decay=1e-4)
#exponential scheduling
def exp_decay_fn(epoch):
    return 0.01 * 0.1 ** (epoch/20)
lr scheduler = tf.keras.callbacks.LearningRateScheduler(exp decay fn)
history = model.fit([...], callbacks = [lr scheduler])
#piecewise constant scheduling
def piece fn(epoch):
    if epoch < 5:</pre>
         return 0.01
    elif epoch < 15:</pre>
         [...]
         and so on - use LearningRateScheduler callback with piece fn
#performance scheduling
lr scheduler = tf.keras.callbacks.ReduceLROnPlateau(factor = 0.5, patience = 5)
history = model.fit([...], callbacks = [lr scheduler])
```

DIVING INTO THE MACHINE ROOM

- How training a neural network works
- Activation functions
- Faster optimizers
- Learning rate scheduling
- Regularization
- General suggestions

LI AND L2 REGULARIZATION

Remember Lasso and Ridge regression?

Les Mour Mour

DROPOUT REGULARIZATION

At every training step, every neuron has a probability p of being entirely ignored!

So the model court
rely too much or
any particular neuron,
making it were robust

BUT THE BEST WAY TO PREVENT OVERFITTING IS USUALLY ...

early_stopping_cb = EarlyStopping(monitor='val_loss', patience=5)
history = model.fit([...], callbacks = [early_stopping_cb])

DIVING INTO THE MACHINE ROOM

- How training a neural network works
- Activation functions
- Faster optimizers
- Learning rate scheduling
- Regularization
- General suggestions

GENERAL SUGGESTIONS

Hyperparameter	Recommendations
Activation function	ReLU if shallow. Swish if deep (Leaky ReLU as a faster alternative).
Optimizer	Start with Adam or AdamW, but switch to NAG if it doesn't work out. Never use SGD or AdaGrad.
Learning rate schedule	Performance scheduling is pretty good and requires very little hyperparameter tuning, but others may do better if you do it right.
Regularization	EarlyStopping and weight decay will usually do the trick, but look at others if you can't get rid of overfitting. Never use L1/L2 with Adam-type optimizers.

TWO TASKS

Find your neural network from last week

and make it better now that you are cleverer

Scan this QR code

and tell me about something you are still unsure about