Appunti Elettronica Digitale

Leonardo Toccafondi

2024-04-12

Indice

1	\mathbf{Dispo}	itivi elettronici 1
	1.1 S	miconduttori
		1.1 Giunzione p-n
	1.2 I	liodi
	1.	2.1 Polarizzazione
	1.	2.2 Equazione caratteristica e breakdown
	1.	2.3 Diodi Speciali
2		istor 7 troduzione
\mathbf{A}	Eserci	zi 9
	A.1 E	ercizi capitolo 1
В	Varie	11
	B.1 S	miconduttori e bande \dots \dots 11

iv INDICE

Capitolo 1

Dispositivi elettronici

1.1 Semiconduttori

I semiconduttori sono i materiali con cui sono composti i circuiti integrati. Sono, come suggerisce il nome, materiali in cui il flusso di corrente non è libero (non è un conduttore), ma è **presente** (non è un'isolante).

In particolare, conducono in particolari situazioni. Quali sono però i materiali con queste condizioni?

- Elementi semiconduttori: Silicio (Si), Germanio (Ge) (Carbonio (C), ma composto)
- Elementi composti: GaAs, GaN (Gallio-Arsenico/Azoto) In generale sono gli elementi della 14° colonna della tavola periodica o composti a numero medio di elettroni liberi pari a 4 (dai 3 ai 4).

Silicio

Il silicio è il materiale semiconduttore sicuramente più diffuso.

Un atomo presenta 4 elettroni (detti di valenza) nello strato più esterno, ma sua forma cristallina pura del silicio ogni atomo forma un legame covalente a con i suoi vicini "più prossimi". Il cristallo di silicio puro ha inoltre una struttura cristallina matriciale, che blocca il passaggio di carica.

È da notare che all'aumentare della temperatura, qualche elettrone può rompere il legame e muoversi liberamente nel cristallo.

Per dotare un materiale semiconduttore di conduttività *selettiva* è necessario "drogare" il materiale stesso. Il drogaggio, quindi, va a **modificare** la concentrazione di elettroni e di lacune ¹, attraverso questo inserimento di impurità sostituzionali (ovvero atomi di elementi diversi, i quali si sostituiscono ad alcuni degli atomi di silicio.) In pratica andiamo ad aggiungere, in piccole dosi, nel reticolo cristallino materiali della 5° colonna (drogaggio di tipo **n**, hanno 5 elettroni di valenza, sono detti **donatori**, ad esempio il fosforo), o elementi della 3° colonna (tipo **p**, hanno 3 elettroni di valenza e sono detti **accettori**, ad esempio il boro).

Tale discrepanza induce la formazione di livelli energetici aggiuntivi all'interno della banda proibita² o "gap" del semiconduttore. Nel primo caso si genera un eccesso di lacune, le quali si comportano come particelle cariche *positivamente*, mentre nel secondo si ha un eccesso di elettroni liberi, determinando così una variazione della conducibilità elettrica intrinseca del materiale.

Non solo, sia le lacune che gli elettroni liberi sono quindi liberi di muoversi all'interno del semiconduttore!

La qualità del semiconduttore è influenzata dal materiale usato (per esempio Ge è meglio del Si, ma è più raro), che è a sua volta influenzato dal goal³ (elettronica digitale usa Si, l'elettronica di potenza il GaN o SiC).

Vediamo ora degli elementi in silicio.

1.1.1 Giunzione p-n

Una giunzione p
n (o p-n) si forma quando una del materiale semiconduttore intrinsec
o 4 drogato con un drogaggio p (con una percentuale N_A , n. accettori) viene posta a contatto con altro materiale semiconduttore

 $[^]a\mathrm{legame}$ chimico in cui due atomi mettono in comune delle coppie di elettroni.

¹Assenza di elettroni dovuta alla **rottura** di un legame. È insieme all'elettrone, un portatore di carica nei semiconduttori.

²Intervallo di energia interdetto agli elettroni, distanza tra la banda di valenza di conduzione (nei semiconduttori distanti 1eV). ³(penso voglia dire "obiettivo perseguito").

⁴Puro, quindi privo di un quantitativo significativo di drogaggio.

drogato con un drogaggio n (con una percentuale N_D , n. donatori). La concentrazione di ioni dalle seguenti "formule":

$$N_A = \frac{\#acceptors}{vol.unit} \in N_D = \frac{\#donors}{vol.unit}$$

dove N_a indica il numero di ioni di tipo p:'positivo', mentre N_d il numero di ioni di tipo n:'negativo'.

Collegando un blocco drogato tipo p ed uno tipo n abbiamo (idealmente)⁶

Figura 1.1: Giunzione pn

Il materiale quindi è separato in due zone *nettamente distinte*, senza alterazione della struttura cristallina all'interfaccia delle due zone.

L'abbondanza di lacune in p è, come sappiamo, corrispondente ad una carenza di elettroni, di cui n abbonda. In altre parole questa diversa densità di portatori di carica genera una **migrazione** di elettroni da N verso P, detta anche diffusione⁷ (elettrica) I_D oppure anche corrente di diffusione, che consiste quindi in

- lacune che si diffondono dalla regione (dal semiconduttore) drogata con p alla regione n;
- elettroni che si diffondono dalla regione drogata con n alla regione p.

N.B.: Nella zona n i **portatori maggioritari** di carica sono le cariche negative, mentre nella zona p sono le cariche positive

Tale fenomeno carica in modo positivo il semiconduttore drogato n (meno elettroni), e in modo negativo il semiconduttore drogato p (più elettroni).

Le lacune che si diffondono dalla regione/zona p alla n si ricombinano con gli elettroni liberi, scomparendo. Di conseguenza, il numero di elettroni liberi nella zona n diminuisce, quindi non saranno più neutralizzate alcune cariche fisse positive (atomi donatori). Dal momento che questa ricombinazione avviene in prossimità della giunzione, accanto a questa si svilupperà una regione **svuotata** di elettroni, con cariche fisse positive non compensate.

Analogamente nella zona p otterremo una zona svuotata dalle lacune e che comprende delle cariche fisse (in questo caso negative) non compensate.

Entrambe queste zone danno luogo alla **regione di svuotamento**⁸ (o di carica spaziale, in inglese depletion layer). Inoltre lo spostamento delle cariche crea a cavallo della giunzione un campo elettrico, con la zona n positiva rispetto alla zona p. La presenza del campo elettrico comporta la presenza di una differenza di potenziale. Questa è anche detta **barriera di potenziale**⁹, in quanto si oppone ad un'ulterore diffusione ai portatori di carica soggetti alla spinta della diffusione (si oppone al movimento di elettroni nella regione p e lacune nella regione n). Una volta che la corrente di diffusione equivale la corrente di trascinamento¹⁰ I_S raggiungiamo un **equilibrio** (dinamico): La presenza del campo elettrico comporta la presenza di una differenza di potenziale.

⁵Oppure densità di ioni, o concentrazione...

⁶Nella pratica parto da un blocco puro di silicio, per poi iniettare a *strati* il drogaggio.

⁷Fenomeno che si ritrova in natura qualora vi sia uno squilibrio nella distribuzione nello spazio di particelle simili.

 $^{^8 \}mathrm{Svuotata}$ di portatori **mobili**

⁹È possibile superarla, ma deve essere fornita una differenza di potenziale **esterna**.

¹⁰Detta anche corrente di deriva (drift), in questo caso i portatori si muovono perché spinti dal campo elettrico dovuto allo squilibrio di carica.

1.2. I DIODI 3

In genere la regione di svuotamento non è simmetrica: la seguente equazione regola la larghezza della regione:

$$x_p N_A = x_N N_D$$

dove x_p e x_n sono rispettivamente le **larghezze** della regione di svuotamento entro il semiconduttore drogato p e drogato n.

Figura 1.3: Grafici relativi al potenziale, al campo elettrico e alla carica nella giunzione pn

Come si vede nella @fig:1.3:

• $N_A > N_D \to {\rm più}$ è drogata la regione più la regione di svuotamento è piccola.

1.2 I diodi

Il simbolo circuitale della giunzione p-n, detta \mathbf{diodo}^{11} è

dove a sinistra abbiamo un **anodo** A (dal greco salita), e a destra un **catodo** K (dal greco discesa).

 $^{^{11} \}mathrm{II}$ diodo ideale è un dispositivo che lascia passare corrente solo in un senso, con resistenza nulla, e non lascia passare corrente nell'altro senso. Il diodo a giunzione approssima molto bene un diodo ideale, ed è l'elemento circuitale non lineare più importante.

Figura 1.4: Diodo

Sia la zone p che la zona n sono munite di un contatto elettrico (detto reoforo), in modo tale che sia possibile applicarvi una tensione.

1.2.1 Polarizzazione

L'applicazione di un potenziale sul diodo viene detta polarizzazione, e si distingue la:

- Polarizzazione diretta (forward bias): applico un potenziale positivo sull'anodo A (lato p) e negativo sul catodo K (lato n). La differenza di potenziale applicata ha la polarità concorde con la barriera di potenziale.
 - L'aumento della tensione determina una riduzione della barriera di potenziale, e di conseguenza della larghezza della regione di svuotamento. In questo modo aumenta il numero di elettroni e di lacune capaci di attraversare la giunzione tramite la diffusione.
 - La corrente di diffusione, rispetto a quella di deriva, aumenta rapidamente di svariati ordini di grandezza.

Figura 1.5: Diodo polarizzato direttamente

- Polarizzazione indiretta (reverse bias): applico un potenziale negativo sull'anodo e positivo sul catodo. In questo caso la polarità della tensione applicata è discorde rispetto a quella della barriera di potenziale.
 - La regione di svuotamento si allarga, e la tensione di polarizzazione richiama le lacune verso il terminale negativo e gli elettroni verso il terminale positivo. Quindi l'ampiezza della barriera di potenziale aumenta.
 - La corrente di diffusione diminuisce fino ad annullarsi, mentre quella di deriva rimane (anche se è molto piccola e varia con la temperatura). Quindi quasi nessuna corrente riesce a scorrere.
 - Il campo elettrico incrementa fino ad ottenere il breakdown.

Figura 1.6: Diodo polarizzato indirettamente

Equazione caratteristica e breakdown

In generale, la giunzione pn ha un'equazione caratteristica

$$i = I_S(e^{\frac{V_d}{nV_t}} - 1)$$

detta equazione di Shockley:

- V_d indica la differenza di potenziale applicati ai capi del diodo; nV_t è il potenziale nativo dei diodi (pari a 0.7 V), o tensione termica, pari a 26 mV. I_S (o I_0) è una costante detta corrente di saturazione (per il Si ha valori tra 10^{-15} e 10^{-19} A)

In condizioni di polarizzazione diretta la corrente è trascurabile per tensioni al di sotto di 0, 5-0, 6V (per diodi al silicio) e dopo aver superato la tensione di soglia cresce molto repentinamente¹².

Quando il diodo è in polarizzazione inversa, aumentando la tensione la corrente rimane costante finché non si raggiunge la cosiddetta tensione di breakdown (o di rottura). Una volta oltrepassata la corrente aumenta (forse in questo caso diminuisce) in maniera drastica a tensione praticamente costante.

 $^{^{12}}$ Per un aumento di corrente di un fattore mille è sufficiente un aumento di tensione pari a $0.8\,\mathrm{V}$. Infatti viene assunta $0.6\,\mathrm{V}$ come tensione di soglia e $0.8\,\mathrm{V}$ come tensione massima.

1.2. I DIODI 5

Il breakdown

Il fenomeno del breakdown è dovuto a:

1. Effetto Zener: prevalente per tensioni di breakdown inferiori alla decina di volt. Quando il diodo è polarizzato inversamente e la tensione è compresa tra 0V e V_Z (inferiore a zero), si comporta quasi come un circuito aperto, seppur continui a scorrere una piccola corrente di saturazione inversa, oltre V_Z la banda di valenza della regione p si avvicina talmente tanto alla banda di conduzione che alcuni elettroni si spostano dall'una all'altra;

2. Effetto valanga (avalanche): prevalente per tensioni di breakdown superiori alla decina di volt. Si manifesta in presenza di campi elettrici molto elevati, dovuti alla presenza di una tensione "moderata", ma imposta su distanze molto corte.

Solitamente il processo del breakdown è irreversibile, tranne per i diodi Zener, i quali sono ideati per andare in breakdown.

Figura 1.7: Una tipica caratteristica I-V di un diodo a giunzione PN [diodeMS]

1.2.3 Diodi Speciali

1.2.3.1 Fotodiodi

I fotodiodi sono diodi in cui la giunzione è "scoperta", o incapsulata in un materiale trasparente, in quanto vogliamo che sia in grado di **emettere** una corrente elettrica sfruttando l'effetto fotoelettrico. Difatti è un $trasduttore^{13}$ da un segnale ottico ad un elettrico.

L'equazione caratteristica del fotodiodo è pari a quella di un diodo normale, con l'aggiunta di un termine I_{ph} , che rappresenta la corrente $fotogenerata^{14}$:

$$i = I_S(e^{\frac{V_d}{nV_t}} - 1) - I_{ph}$$
 + Diodo normale Fotodiodo

I fotodiodi p-n possono essere utilizzati senza essere polarizzati: sono adatti per "applicazioni" in situazioni di bassa luminosità. Quando sono illuminati, il campo elettrico nella regione di deplezione aumenta, producendo

 $^{^{13}\}mathrm{Dispositivo}$ in grado di convertire una forma di energia in una diversa.

¹⁴Risulta proporzionale al flusso di fotoni che colpiscono il fotodiodo

la corrente fotogenerata la quale è cresce all'aumentare del flusso di fotoni.

Altrimenti i fotodiodi operano in *polarizzazione inversa*, in modo tale che i fotoni (del colore "giusto") possedano energia sufficiente ad oltrepassare la barriera di potenziale e a condurre quindi corrente elettrica.

1.2.3.2 Led

I led (*light emitting diode*) è un tipo di diodo che **converte** energia elettrica in luce. Sono formati da sottili strati di materiali semiconduttori fortemente drogati, i quali caratterizzano i diversi colori emessi quando viene applicata una polarizzazione *diretta*.

Da un punto di vista *costruttivo* i led sono ricoperti da uno strato spesso di resina¹⁵ **trasparente** di forma emisferica, sia per proteggere il led stesso sia per convogliare la luce emessa.

Figura 1.8: Simbolo circuitale di un led

Applicando quindi una tensione positiva all'anodo, riduciamo la barriera di potenziale, in modo tale che elettroni e lacune ricombinandosi generino fotoni pari al gap tra la banda di conduzione e quella di valenza.

Come si può vedere nella tabella sottostante, al fine di generare un colore visibile, deve essere fornita una tensione almeno pari a 1,5V

Semiconduttore composto	V_F a 20 mA	Banda di lunghezza d'onda	Colore
GaInN	4.0V	450 nm	Bianco
SiC	3.6V	430-505 nm	Blu
GaAsP	22V	585-595 mm	Giallo
GaAsP	2.0V	605-620nm	Ambra
GaAsP	1.8V	630-660nm	Rosso
GaAs	1.2V	850-940nm	Infrarosso

Tabella 1.1: Diverse tipologie di led in base al colore prodotto

1.2.3.3 Diodo Schottky

In questa tipologia di diodo la giunzione p-n è data dall'unione del metallo (che svolge il ruolo della regione p) con un materiale semiconduttore drogato n. In questo modo si viene a creare una "barriera Schottky": questa, a differenza della giunzione p-n standard, ha una bassa tensione di giunzione (o tensione di soglia). Infatti ai capi di un diodo Schottky si misura solitamente una differenza di potenziale tra i 0.15V e i 0,45V: così facendo abbiamo una maggior efficienza e una maggior velocità di commutazione, riducendo i tempi di turnoff¹⁶! Inoltre, nella zona della giunzione del metallo, la zona di svuotamento è **nulla o quasi inesistente**¹⁷.

Figura 1.9: Simbolo circuitale di un diodo Schottky

 $^{^{15}}$ Epossidica, in inglese *epoxy*.

 $^{^{16}}$ Tempo che passa tra la fine dell'influenza esterna (forward bias) ed il momento in cui smette di fluire corrente. È un ritardo causato dalla carenza di lacune ($N_D >> N_A$), causando un accumulo extra di carica in p, la quale sarà rilasciata durante il turnoff. 17 Dal lato p.

Capitolo 2

I transistor

2.1 Introduzione

Un transistor è un dispositivo a semiconduttori utilizzato per interrompere (commutare) o amplificare segnali elettrici, come se fosse una **valvola**¹: in pratica regola la corrente che scorre in una maglia (quella in uscita al circuito) tramite la tensione applicata ad un'altra (ovvero quella in ingresso al circuito).

Quando viene utilizzato come interruttore, un transistor è un dispositivo logico a *due stati*: ON e OFF (binario 1 e 0). Sulla base di questo vengono realizzate *porte logiche* più complesse, quali AND, OR, NOT, le quali a loro volta sono impiegate per realizzare tutti quei dispositivi che compongono la parte **digitale** dell'elettronica (famiglie logiche, memorie etc.).

Invece, quando viene utilizzato come modulatore di corrente, un transistor è a "semplicemente" un **amplifica-**tore².

2.2 Bipolar Junction Transistor: i BJT

A differenza dei diodi a giunzione, i transistor bipolari utilizzano tre strati di materiali semiconduttori, in pratica otteniamo due diodi posti in antiserie³, in modo tale da "condividere" uno strato.⁴

Ad ogni strato sarà associato un *terminale*⁵: quello che sarà detto **base**, che a sua volta separa due terminali drogati con gli stessi materiali, che saranno detti rispettivamente **collettore** ed **emettitore**.

I dispositivi BJT sono dispositivi bipolari in quanto il processo di conduzione coinvolge portatori di entrambe $le\ polarit\`{a}$.

Possiamo quindi distinguere due diverse tipologie di BJT: quello \mathbf{npn} e quello \mathbf{pnp} . È importante notare come in un transistore la zona di emettitore è significativamente più drogata di quelle di base e di collettore; si indica infatti con $\mathbf{p+}$ nei transistori \mathbf{pnp} e con $\mathbf{n+}$ nei transistori \mathbf{npn} .

Figura 2.1: Transistor BJT

¹Infatti sono andate a sostituire le valvole termoioniche, o tubo a vuoto.

 $^{^2\}mathrm{Pu}\grave{\mathrm{o}}$ essere sia un amplificatore di potenza che di tensione.

³Antiserie indica, per bipoli **polarizzati**, una connessione in serie (quindi un solo punto di contatto), in cui le polarità dei terminali vengono accoppiate per segni uguali

⁴Oppure possiamo anche dire che sono due giunzioni p-n poste l'una di seguito all'altra e orientata in senso inverso, andando poi a costituire tre regioni *consecutive*.

 $^{^5\}mathrm{Si}$ può esprimere anche come elettrodo

Figura 2.2: Overall caption for the figure

Come è possibile notare dalle figure precedenti, da un punto di vista circuitale i transistor BJT sono rappresentati utilizzando 3 terminali: \rightarrow nel simbolo indica la giunzione (e ne è riportata solo una), mentre le frecce indicano i versi delle tensioni (dove sono maggiori). Parlando del transistor npn, per quanto riguarda le correnti abbiamo che all'equilibrio $I_B + I_C = I_E$, ed I_B, I_C sono entranti, mentre I_E è uscente.

Per entrambe le tipologie di BJT, da un punto di vista costruttivo valgono queste regole:

- 1. La regione dell'emettitore è altamente drogata e ha il compito di emettere o iniettare portatori di corrente nella regione di base. Nei transistor npn, l'emettitore di tipo n immette elettroni liberi nella base, mentre nei transistor pnp, l'emettitore di tipo p introduce lacune nella base.
- 2. La base è sottile e leggermente drogata. La maggior parte dei portatori di corrente iniettati nella regione di base si muove verso il collettore senza fuoriuscire dal conduttore della base.
- 3. La regione del collettore è moderatamente drogata ed è la più grande all'interno del transistor. La sua funzione consiste nel raccogliere o attrarre i portatori di corrente iniettati nella regione di base.

Appendice A

Esercizi

Le leggi di Kirchoff

- 1. Legge di Kirchoff alle correnti: la somma delle correnti in un nodo è pari a 0.
- 2. Legge di Kirchoff alle tensioni: la somma delle tensioni lungo un percorso chiuso è pari a0.

A.1 Esercizi capitolo 1

Appendice B

Varie

B.1 Semiconduttori e bande

Gli elettroni in un solido allo stato fondamentale e a temperatura 0 kelvin, in obbedienza alla loro natura fermionica e al principio di Pauli che preclude ai fermioni il fatto di potersi trovare in due nello stesso stato, riempiono gli stati elettronici loro consentiti partendo dal livello energetico più basso via via su, fino a che tutti gli elettroni del solido hanno trovato un'accomodazione. Si distribuiscono cioè rispettando la distribuzione di Fermi-Dirac calcolata a temperatura 0 kelvin. Nei metalli, il livello energetico più alto occupato si definisce livello di Fermi.

Figura B.1: Schema semplificato della struttura elettronica a bande per metalli, semiconduttori e isolanti.

A questo punto possono verificarsi diverse possibilità:

- Vi è una banda, o più di una fra le ultime riempite da elettroni, che è parzialmente riempita e restano degli stati vuoti. In tal caso si ha a che fare con un metallo, cioè un sistema in cui gli ultimi elettroni hanno la possibilità di spostarsi in livelli energetici molto vicini, infinitesimalmente più alti in energia, e dunque hanno la possibilità di una mobilità elevata che porta il sistema ad essere un buon conduttore di elettricità
- L'ultima banda è stata riempita completamente in modo tale che il prossimo stato elettronico consentito si trovi sulla banda successiva e fra questa banda e la banda completamente riempita c'è una banda proibita (band gap) di energie. In tal caso il solido è un dielettrico.
- Si parla infine di semiconduttore nel caso di un isolante in cui la banda proibita è talmente piccola che a temperatura ambiente c'è una certa probabilità che gli elettroni si trovino a saltare la banda proibita per agitazione termica, e dunque il sistema si trovi in una situazione prossima a quella di un metallo, con valori di conducibilità elettrica non nulli.

(N.B paragrafo proveniente da Wikipedia)

12 APPENDICE B. VARIE