DUAL OF BASS NUMBERS AND DUALIZING MODULES

MOHAMMAD RAHMANI AND ABDOLJAVAD TAHERIZADEH

ABSTRACT. Let R be a Noetherian ring and let C be a semidualizing R-module. In this paper, we impose various conditions on C to be dualizing. For example, as a generalization of Xu [22, Theorem 3.2], we show that C is dualizing if and only if for an R-module M, the necessary and sufficient condition for M to be C-injective is that $\pi_i(\mathfrak{p}, M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and all $i \neq \operatorname{ht}(\mathfrak{p})$, where π_i is the invariant dual to the Bass numbers defined by E.Enochs and J.Xu [8].

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with non-zero identity. A finitely generated R-module C is semidualizing if the natural homothety map $R \longrightarrow \operatorname{Hom}_R(C,C)$ is an isomorphism and $\operatorname{Ext}^i_R(C,C)=0$ for all i>0. Semidualizing modules have been studied by Foxby [9], Vasconcelos [20] and Golod [10] who used the name suitable for these modules. Dualizing complexes, introduced by A.Grothendieck, is a powerful tool for investigating cohomology theories in algebraic geometry. A bounded complex of R-modules D with finitely generated homologies is said to be a dualizing complex for R, if the natural homothety morphism $R \to \mathbf{R}\operatorname{Hom}_R(D,D)$ is quasiisomorphism, and $\operatorname{id}_R(D) < \infty$. These notion has been extended to semidualizing complexes by L.W. Christensen [5]. A bounded complex of R-modules C with finitely generated homologies is semidualizing for R if the natural homothety morphism $R \to \mathbf{R}\operatorname{Hom}_R(C,C)$ is quasiisomorphism. He used these notion to define a new homological dimension for complexes, namely G_C -dimension, which is a generalization of Yassemi's G-dimension [23]. The following, is the translation of a part of [5, Proposition 8.4] to the language of modules:

Theorem 1. Let (R, \mathfrak{m}, k) be a Noetherian local ring and let C be a semidualizing R-module. The following are equivalent:

- (i) C is dualizing.
- (ii) G_C -dim $R(M) < \infty$ for all finite R-modules M.
- (iii) G_C -dim $R(k) < \infty$.

In particular, the above theorem recovers [4, 1.4.9]. Note that k is a Cohen-macaulay R-module of type 1. R.Takahashi, in [17, Theorem 2.3], replaced the condition G-dim $R(k) < \infty$ in [4, 1.4.9] by weaker conditions and obtained a nice characterization for Gorenstein rings.

1

²⁰⁰⁰ Mathematics Subject Classification. 13C05, 13D05, 13D07, 13H10.

Key words and phrases. Semidualizing modules, dualizing modules, G_C -dimension, Bass numbers, dual of Bass numbers, minimal flat resolution, local cohomology.

Indeed, he showed that R is Gorenstein, provided that either R admits an ideal I of finite G-dimension such that R/I is Gorenstein, or there exists a Cohen-Macaulay R-module of type 1 and of finite G-dimension. The following is the main result of section 3, which generalizes Theorem 1 as well as [17, Theorem 2.3]. See Theorem 3.4 below.

Theorem 2. Let (R, \mathfrak{m}) be a Noetherian local ring and let C be a semidualizing R-module. The following are equivalent:

- (i) C is dualizing.
- (ii) There exists an ideal \mathfrak{a} with G_C -dim $R(\mathfrak{a}C) < \infty$ such that $C/\mathfrak{a}C$ is dualizing for R/\mathfrak{a} .
- (iii) There exists a Cohen-Macaulay R-module M with $r_R(M)=1$ and G_C -dim $R(M)<\infty$.
- (iv) $r_R(C) = 1$ and there exists a Cohen-Macaulay R-module M with G_C -dim $R(M) < \infty$.

E.Enochs et al. [1], solved a long standing conjecture about the existence of flat covers. Indeed, they showed that if R is any ring, then all R-modules have flat covers. E.Enochs [6], determined the structure of flat cotorsion modules. Also, E.Enochs and J.Xu [8, Definition 1.2], defined a new invariant π_i , dual to the Bass numbers, for modules related to flat resolutions. J.Xu [22], studied the minimal injective resolution of flat R-modules and minimal flat resolution of injective R-modules. He characterized Gorenstein rings in terms of vanishing of Buss numbers of flat modules, and vanishing of dual of Bass numbers of injective modules. More precisely, the following theorem is [22, Theorems 2.1 and 3.2].

Theorem 3. Let R be a Noetherian ring. The following are equivalent:

- (i) R is Gorenstein.
- (ii) An R-module F is flat if and only if $\mu^{i}(\mathfrak{p}, F) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$.
- (iii) An R-module E is injective if and only if $\pi_i(\mathfrak{p}, E) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$.

In section 4, we give a generalization of Theorem 3. Indeed, in Theorem 4.3, we prove the following result.

Theorem 4. Let R be a Noetherian ring and let C be a semidualizing R-module. The following are equivalent:

- (i) C is pointwise dualizing.
- (ii) An R-module M is C-injective if and only if $\pi_i(\mathfrak{p}, M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$.
- (iii) An R-module M is injective if and only if $\pi_i(\mathfrak{p}, \operatorname{Hom}_R(C, M)) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$.

Theorem 4 has several applications. Let (R, \mathfrak{m}) be a d-dimensional Cohen-Macaulay local ring possessing a canonical module. In this section, we give the structure of the minimal flat resolution of $H^d_{\mathfrak{m}}(R)$, the top local cohomology of R. More precisely, the following theorem is Corollary 4.7.

Theorem 5. Let (R, \mathfrak{m}) be a d-dimensional Cohen-Macaulay local ring possessing a canonical module. The minimal flat resolution of $H_m^d(R)$ is of the form

$$0 \longrightarrow \widehat{R_{\mathfrak{m}}} \longrightarrow \cdots \longrightarrow \prod_{\substack{\text{ht } (\mathfrak{p})=1}} T_{\mathfrak{p}} \longrightarrow \prod_{\substack{\text{ht } (\mathfrak{p})=0}} T_{\mathfrak{p}} \longrightarrow \operatorname{H}^{d}_{\mathfrak{m}}(R) \longrightarrow 0,$$
 in which $T_{\mathfrak{p}}$ is the completion of a free $R_{\mathfrak{p}}$ -module with respect to $\mathfrak{p}R_{\mathfrak{p}}$ -adic topology.

In this section, by using the above resolution, we obtain the following isomorphism for a d-dimensional Cohen-Macaulay local ring (See Corollary 4.8).

$$\operatorname{Tor}_{i}^{R}(\operatorname{H}_{\mathfrak{m}}^{d}(R), \operatorname{H}_{\mathfrak{m}}^{d}(R)) \cong \begin{cases} \operatorname{H}_{\mathfrak{m}}^{d}(R) & i = d, \\ 0 & i \neq d. \end{cases}$$

2. Preliminaries

In this section, we recall some definitions and facts which are needed throughout this paper. By an injective cogenerator, we always mean an injective R-module E for which $\operatorname{Hom}_R(M,E)\neq 0$ whenever M is a nonzero R-module. For an R-module M, the injective hull of M, is always denoted by E(M).

Definition 2.1. Let \mathcal{X} be a class of R-modules and M an R-module. An \mathcal{X} -resolution of M is a complex of R-modules in \mathcal{X} of the form

$$X = \ldots \longrightarrow X_n \xrightarrow{\partial_n^X} X_{n-1} \longrightarrow \ldots \longrightarrow X_1 \xrightarrow{\partial_1^X} X_0 \longrightarrow 0$$

such that $H_0(X) \cong M$ and $H_n(X) = 0$ for all $n \geq 1$. Also the \mathcal{X} -projective dimension of Mis the quantity

$$\mathcal{X}$$
-pd $R(M) := \inf \{ \sup \{ n \ge 0 | X_n \ne 0 \} \mid X \text{ is an } \mathcal{X}\text{-resolution of } M \}$

So that in particular \mathcal{X} -pd $_{R}(0)=-\infty$. The modules of \mathcal{X} -projective dimension zero are precisely the non-zero modules in \mathcal{X} . The terms of \mathcal{X} -coresolution and \mathcal{X} -id are defined dually.

Definition 2.2. A finitely generated R-module C is semidualizing if it satisfies the following conditions:

- (i) The natural homothety map $R \longrightarrow \operatorname{Hom}_R(C,C)$ is an isomorphism.
- (ii) Ext $_{R}^{i}(C,C)=0$ for all i>0.

For example a finitely generated projective R-module of rank 1 is semidualizing. If R is Cohen-Macaulay, then an R-module D is dualizing if it is semidualizing and that $\operatorname{id}_{R}(D) < \infty$. For example the canonical module of a Cohen-Macaulay local ring, if exists, is dualizing.

Definition 2.3. Following [12], let C be a semidualizing R-module. We set

 $\mathcal{F}_C(R)$ = the subcategory of R-modules $C \otimes_R F$ where F is a flat R-module.

 $\mathcal{I}_C(R)$ = the subcategory of R-modules $\operatorname{Hom}_R(C,I)$ where I is an injective Rmodule.

The R-modules in $\mathcal{F}_C(R)$ and $\mathcal{I}_C(R)$ are called C-flat and C-injective, respectively. If C = R, then it recovers the classes of flat and injective modules, respectively. We use the notations C-fd and C-id instead of \mathcal{F}_C -pd and \mathcal{I}_C -id, respectively.

Proposition 2.4. Let C be a semidualizing R-module. Then we have the following:

- (i) Supp (C) = Spec(R), $\dim(C) = \dim(R)$ and $\operatorname{Ass}(C) = \operatorname{Ass}(R)$.
- (ii) If $R \to S$ is a flat ring homomorphism, then $C \otimes_R S$ is a semidualizing S-module.
- (iii) If $x \in R$ is R-regular, then C/xC is a semidualizing R/xR-module.
- (iv) If, in addition, R is local, then depth $_{R}(C) = \operatorname{depth}(R)$.

Proof. The parts (i), (ii) and (iii) follow from the definition of semidualizing modules. For (iv), note that an element of R is R-regular if and only if it is C-regular since Ass(C) = Ass(R). Now an easy induction yields the equality.

Definition 2.5. Let C be a semidualizing R-module. A finitely generated R-module M is said to be totally C-reflexive if the following conditions are satisfied:

- (i) The natural evaluation map $M \longrightarrow \operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C)$ is an isomorphism.
- (ii) $\operatorname{Ext}_{R}^{i}(M,C) = 0 = \operatorname{Ext}_{R}^{i}(\operatorname{Hom}_{R}(M,C),C)$ for all i > 0.

For an R-module M, if there exists an exact sequence $0 \to G_n \to \cdots \to G_1 \to G_0 \to M \to 0$, of R-modules such that each G_i is totally C-reflexive, then we say that M has G_C -dimension at most n, and write G_C -dim $R(M) \le n$. If there is no shorter such sequence, we set G_C -dim R(M) = n. Also, if such an integer n does not exist, then we say that M has infinite G_C -dimension, and write G_C -dim $R(M) = \infty$.

The next proposition collects basic properties of G_C -dimension. For the proof, see [10].

Proposition 2.6. Let (R, \mathfrak{m}) be local, M a finitely generated R-module and let C be a semidualizing R-module. The following statements hold:

(i) If G_C -dim $_R(M) < \infty$, and $x \in \mathfrak{m}$ is M-regular, then

$$G_C$$
-dim $_R(M) = G_C$ -dim $_R(M/xM) - 1$.

If, also, x is R-regular, then

$$G_C$$
-dim $_R(M) = G_{C/xC}$ -dim $_{R/xR}(M/xM)$.

(ii) If G_C -dim $R(M) < \infty$ and x is an R-regular element in $Ann_R(M)$, then

$$G_C$$
-dim $_R(M) = G_{C/xC}$ -dim $_{R/xR}(M) + 1$.

- (iii) Let $0 \to K \to L \to N \to 0$ be a short exact sequence of R-modules. If two of L, K, N are of finite G_C -dimension, then so is the third.
- (iv) If G_C -dim $R(M) < \infty$, then

$$G_C$$
-dim $_R(M) = \sup\{i \ge 0 \mid \operatorname{Ext}_R^i(M, C) \ne 0\}$
= depth (R) - depth $_R(M)$.

Definition 2.7. Let C be a semidualizing R-module. The Auslander class with respect to C is the class $\mathcal{A}_C(R)$ of R-modules M such that:

(i)
$$\operatorname{Tor}_{i}^{R}(C, M) = 0 = \operatorname{Ext}_{R}^{i}(C, C \otimes_{R} M)$$
 for all $i \geq 1$, and

(ii) The natural map $M \to \operatorname{Hom}_R(C, C \otimes_R M)$ is an isomorphism.

The Bass class with respect to C is the class $\mathcal{B}_C(R)$ of R-modules M such that:

- (i) Ext $_R^i(C, M) = 0 = \operatorname{Tor}_i^R(C, \operatorname{Hom}_R(C, M))$ for all $i \geq 1$, and
- (ii) The natural map $C \otimes_R \operatorname{Hom}_R(C, M) \to M$ is an isomorphism.

The class $\mathcal{A}_{C}(R)$ contains all R-modules of finite projective dimension and those of finite C-injective dimension. Also the class $\mathcal{B}_{C}(R)$ contains all R-modules of finite injective dimension and those of finite C-projective dimension (see [18, Corollary 2.9]). Also, if any two R-modules in a short exact sequence are in $\mathcal{A}_{C}(R)$ (resp. $\mathcal{B}_{C}(R)$), then so is the third (see [13]).

Proposition 2.8. Let (R, \mathfrak{m}) be a local ring and let C be a semidualizing R-module.

- (i) C is a dualizing R-module if and only if $C \otimes_R \widehat{R}$ is a dualizing \widehat{R} -module.
- (ii) Let $x \in \mathfrak{m}$ be R-regular. Then C is a dualizing R-module if and only if C/xC is a dualizing R/xR-module.

Proof. Just use the definition of dualizing modules.

Theorem 2.9. Let C be a semidualizing R-module and let M be an R-module.

- (i) C-id $_R(M) = \operatorname{id}_R(C \otimes_R M)$ and id $_R(M) = C$ -id $_R(\operatorname{Hom}_R(C, M))$.
- (ii) C-fd R(M) = fd R(Hom R(C, M)) and fd R(M) = C-fd $R(C \otimes_R M)$.

Proof. For (i), see [18, Theorem 2.11] and for (ii), see [19, Proposition 5.2]. \Box

Lemma 2.10. Let C be a semidualizing R-module, E be an injective cogenerator and M be an R-module.

- (i) One has C-id R(M) = C-fd $R(\operatorname{Hom}_R(M, E))$.
- (ii) One has C-fd R(M) = C-id $R(\operatorname{Hom}_R(M, E))$.

Proof. (i). We have the following equalities

$$\begin{split} C\text{-}\mathrm{id}\,_R(M) &= \mathrm{id}\,_R(C\otimes_R M) \\ &= \mathrm{fd}\,_R(\mathrm{Hom}\,_R(C\otimes_R M, E)) \\ &= \mathrm{fd}\,_R(\mathrm{Hom}\,_R(C, \mathrm{Hom}\,_R(M, E)) \\ &= C\text{-}\mathrm{fd}\,_R(\mathrm{Hom}\,_R(M, E)), \end{split}$$

in which the first equality is from Theorem 2.9(i), and the last one is from Theorem 2.9(ii).

(ii). Is similar to (i).
$$\Box$$

Remark 2.11. Let (R, \mathfrak{m}) be a local ring and let M be a finitely generated R-module. We use $\nu_R(M)$ to denote the minimal number of generators of M. More precisely, $\nu_R(M) = \operatorname{vdim}_{R/\mathfrak{m}}(M \otimes_R R/\mathfrak{m})$. It is easy to see that if $x \in \mathfrak{m}$, then $\nu_R(M) = \nu_{R/xR}(M/xM)$. In particular, if $x \in \operatorname{Ann}_R(M)$, then $\nu_R(M) = \nu_{R/xR}(M)$. Assume that depth $\kappa_R(M) = n$. The type of M, denoted by $\kappa_R(M)$, is defined to be $\kappa_R(M)$. Assume that $\kappa_R(M)$. If $\kappa_R(M)$ if $\kappa_R(M)$ by [2, Exercise 1.2.26]. Also, if $\kappa_R(M)$ is $\kappa_R(M)$ and $\kappa_R(M)$ then $\kappa_R(M) = \kappa_{R/xR}(M/xM)$ by [2, Lemma 3.1.16]. Assuma that $\kappa_R(M)$ is a semidualizing

R-module. Then $r_R(C) \mid r_R(R)$. Indeed, by reduction modulo a maximal R-sequence, we can assume that depth $r_R(C) = 0 = \operatorname{depth}(R)$. Then we have

$$\begin{split} r_R(R) &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_R(R/\mathfrak{m}, R) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_R(R/\mathfrak{m}, \operatorname{Hom}_R(C, C)) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_R(R/\mathfrak{m} \otimes_R C, C) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_R(R/\mathfrak{m} \otimes_R C \otimes_{R/\mathfrak{m}} R/\mathfrak{m}, C) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_{R/\mathfrak{m}}(R/\mathfrak{m} \otimes_R C, \operatorname{Hom}_R(R/\mathfrak{m}, C)) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_{R/\mathfrak{m}}(R/\mathfrak{m} \otimes_R C, \operatorname{Hom}_R(R/\mathfrak{m}, C)) \\ &= \nu_R(C) r_R(C). \end{split}$$

In particular, if $r_R(R) = 1$ (e.g. R is Gorenstein local), then $\nu_R(C) = 1$ and then $C \cong R$.

Definition 2.12. Let M be an R-module and let \mathcal{X} be a class of R-modules. Following [7], a \mathcal{X} -precover of M is a homomorphism $\varphi: X \to M$, with $X \in \mathcal{X}$, such that every homomorphism $Y \to M$ with $Y \in \mathcal{X}$, factors through ϕ ; i.e., the homomorphism

$$\operatorname{Hom}_R(Y,\varphi):\operatorname{Hom}_R(Y,X)\to\operatorname{Hom}_R(Y,M)$$

is surjective for each module Y in \mathcal{X} . A \mathcal{X} -precover $\varphi: X \to M$ is a \mathcal{X} -cover if every $\psi \in \operatorname{Hom}_R(X,X)$ with $\varphi \psi = \varphi$ is an automorphism.

Definition 2.13. Following [6], an R-module M is called *cotorsion* if $\operatorname{Ext}_R^1(F, M) = 0$ for any flat R-module F.

Remark 2.14. In [1], E. Enochs et al. showed that if R is any ring, then every R-module has a flat cover. It is easy to see that flat cover must be surjective. By [6, Lemma 2.2], the kernel of a flat cover is always cotorsion. So that if $F \to M$ is flat cover and M is cotorsion, then so is F. Therefore for an R-module M, one can iteratively take flat covers to construct a flat resolution of M. Since flat cover is unique up to isomorphism, this resolution is unique up to isomorphism of complexes. Such a resolution is called the minimal flat resolution of M. Note that the minimal flat resolution of M is a direct summand of any other flat resolution of M. Assume that

$$\cdots \to F_i \to \cdots \to F_1 \to F_0 \to M \to 0$$
,

is the minimal flat resolution of M. Then F_i is cotorsion for all $i \geq 1$. If, in addition, M is cotorsion, then all the flat modules in the minimal flat resolution of M are cotorsion. E. Enochs [6], determined the structure of flat cotorsion modules. He showed that if F is flat and cotorsion, then $F \cong \prod_{\mathfrak{p}} T_{\mathfrak{p}}$ where $T_{\mathfrak{p}}$ is the completion of a free $R_{\mathfrak{p}}$ -module with respect to $\mathfrak{p}R_{\mathfrak{p}}$ -adic topology. So that we can determine the structure of the minimal flat resolution of cotorsion modules.

Definition 2.15. Let M be a cotorsion R-module and let

$$\cdots \to F_i \to \cdots \to F_1 \to F_0 \to M \to 0$$
,

be the minimal flat resolution of M. Following [8], for a prime ideal \mathfrak{p} of R and an integer $i \geq 0$, the invariant $\pi_i(\mathfrak{p}, M)$ is defined to be the cardinality of the basis of a free $R_{\mathfrak{p}}$ -module whose completion is $T_{\mathfrak{p}}$ in the product $F_i \cong \prod T_{\mathfrak{p}}$. By [8, theorem 2.2], for each $i \geq 0$,

$$\pi_i(\mathfrak{p}, M) = \operatorname{vdim}_{R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}} \operatorname{Tor}_i^{\mathfrak{p}_{\mathfrak{p}}} (R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}, \operatorname{Hom}_R(R_{\mathfrak{p}}, M)).$$

Remark 2.16. Let M be a finitely generated R-module. There are isomorphisms

```
\operatorname{Hom}_{R}(M, E(R/\mathfrak{p})) \cong \operatorname{Hom}_{R}(M, E(R/\mathfrak{p}) \otimes_{R} R_{\mathfrak{p}})
\cong \operatorname{Hom}_{R}(M, E(R/\mathfrak{p})) \otimes_{R} R_{\mathfrak{p}}
\cong \operatorname{Hom}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}, E_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}})),
```

where the first isomorphism holds because $E(R/\mathfrak{p}) \cong E_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}})$, and the second isomorphism is tensor-evaluation [7, Theorem 3.2.14].

3. Finiteness of G_C -dimension

Throughout this section, C is a semidualizing R-module. We begin with three lemmas that are needed for the main result of this section. It is well-known that a local ring over which there exists a non-zero finitely generated injective module, must be Artinian. Our first lemma generalizes this fact by replacing the injectivity condition with weaker assumption.

Lemma 3.1. Let (R, \mathfrak{m}) be local and let M be a finitely generated R-module with depth (M) = 0. If $\operatorname{Ext}_{R}^{1}(R/\mathfrak{m}, M) = 0$, then R is Artinian. In particular, M is injective.

Proof. We show that $\dim(R) = 0$. Assume, on the contrary, that $\dim(R) > 0$. Note that if N is an R-module of finite length, then by using a composition series for N in conjunction with the assumption, we have $\operatorname{Ext}^1_R(N,M) = 0$. Now an easy induction on $\ell_R(N)$ yields the equality $\ell_R(\operatorname{Hom}_R(N,M)) = \ell_R(N)\ell_R(\operatorname{Hom}_R(R/\mathfrak{m},M))$. Next, note that $\ell_R(R/\mathfrak{m}^i) < \infty$ for any $i \geq 1$, and that the sequence $\{\ell_R(R/\mathfrak{m}^i)\}_{i=1}^\infty$ is not bounded since $\mathfrak{m}^i \neq \mathfrak{m}^{i+1}$ for any $i \geq 1$. Hence $\{\ell_R(\operatorname{Hom}_R(R/\mathfrak{m}^i,M))\}_{i=1}^\infty$ is not bounded. But $0:_M \mathfrak{m} \subseteq 0:_M \mathfrak{m}^2 \subseteq \cdots$ is a chain of submodules of M, and hence is eventually stationary. This is a contradiction. Therefore R is Artinian. Finally, the assumption $\operatorname{Ext}^1_R(R/\mathfrak{m},M) = 0$ implies that M is injective.

Lemma 3.2. Let (R, \mathfrak{m}) be a local ring and let M be a Cohen-Macaulay R-module with G_C - $\dim_R(M) < \infty$. Then $r_R(C) \mid r_R(M)$.

Proof. We use induction on $n = \operatorname{depth}(R)$. If n = 0, then by Proposition 2.6(iv), we have G_C -dim R(M) = 0, and hence there is an isomorphism $M \cong \operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C)$, and the equalities depth $R(C) = 0 = \operatorname{depth}_R(M)$. Hence we have

```
\begin{split} r_R(M) &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_R(R/\mathfrak{m}, M) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_R(R/\mathfrak{m}, \operatorname{Hom}_R(\operatorname{Hom}_R(M, C), C)) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_R(R/\mathfrak{m} \otimes_R \operatorname{Hom}_R(M, C), C) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_R(R/\mathfrak{m} \otimes_R \operatorname{Hom}_R(M, C) \otimes_{R/\mathfrak{m}} R/\mathfrak{m}, C) \\ &= \operatorname{vdim}_{R/\mathfrak{m}} \operatorname{Hom}_{R/\mathfrak{m}}(R/\mathfrak{m} \otimes_R \operatorname{Hom}_R(M, C), \operatorname{Hom}_R(R/\mathfrak{m}, C)) \\ &= \nu_R(\operatorname{Hom}_R(M, C)) r_R(C). \end{split}
```

Therefore $r_R(C) \mid r_R(M)$. Now, assume inductively that n > 0. We consider two cases:

Case 1. If depth $_R(M)=0$, then M is of finite length since it is Cohen-Macaulay. Hence we can take an R-regular element x such that xM=0. Set $\overline{(-)}=(-)\otimes_R R/xR$. Then by

Proposition 2.6(ii), we have $G_{\overline{C}}$ -dim $_{\overline{R}}(M) < \infty$. Also, note that M is a Cohen-Macaulay \overline{R} -module. Hence by induction hypothesis we have $r_{\overline{R}}(\overline{C}) \mid r_{\overline{R}}(M)$. Thus $r_R(C) \mid r_R(M)$.

Case 2. If depth $_R(M) > 0$, then we can take an element $y \in \mathfrak{m}$ to be M- and R-regular. Set $\overline{(-)} = (-) \otimes_R R/yR$. Now \overline{M} is a Cohen-Macaulay \overline{R} -module, and that

$$G_{\overline{C}}$$
-dim $_{\overline{R}}(\overline{M}) = G_{C}$ -dim $_{R}(M) < \infty$,

by Proposition 2.6(i). Therefore, by induction hypothesis, we have $r_{\overline{R}}(\overline{C}) \mid r_{\overline{R}}(\overline{M})$, whence $r_{R}(C) \mid r_{R}(M)$. This complete the inductive step.

Lemma 3.3. Let (R, \mathfrak{m}) be local and that $r_R(C) = 1$. If there exists a totally C-reflexive R-module of finite length, then C is dualizing.

Proof. Assume that M is a finite length C-reflexive R-module. Then $\operatorname{depth}_R(M) = 0$, and hence $\operatorname{depth}(R) = \operatorname{G}_C$ -dim(M) = 0 by Proposition 2.6(iv). Therefore, we have $\operatorname{depth}_R(C) = 0$ by Proposition 2.4(iv). Now assume, on the contrary, that C is not dualizing. Hence, by Lemma 3.1, we have $\operatorname{Ext}_R^1(R/\mathfrak{m}, C) \neq 0$. Let

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M,$$

be a composition series for M. Thus the factors are all isomorphic to R/\mathfrak{m} , and we have exact sequences

$$0 \to M_{i-1} \to M_i \to R/\mathfrak{m} \to 0$$
,

for all $1 \le i \le r$. Applying the functor $\operatorname{Hom}_{R}(-,C)$, we get the exact sequence

$$0 \to \operatorname{Hom}_R(R/\mathfrak{m}, C) \to \operatorname{Hom}_R(M_i, C) \to \operatorname{Hom}_R(M_{i-1}, C),$$

for each $1 \leq i \leq r-1$. Now since depth $_R(C) = 0$ and $r_R(C) = 1$, we have $\operatorname{Hom}_R(R/\mathfrak{m}, C) \cong R/\mathfrak{m}$. Hence we have the inequality $\ell_R(\operatorname{Hom}_R(M_i, C)) \leq \ell_R(\operatorname{Hom}_R(M_{i-1}, C)) + 1$ for each $1 \leq i \leq r-1$. On the other hand, application of the functor $\operatorname{Hom}_R(-, C)$ on the exact sequence $0 \to M_{r-1} \to M \to R/\mathfrak{m} \to 0$, yields an exact sequence

$$0 \to \operatorname{Hom}_R(R/\mathfrak{m},C) \to \operatorname{Hom}_R(M,C) \to \operatorname{Hom}_R(M_{r-1},C)$$
$$\to \operatorname{Ext}_R^1(R/\mathfrak{m},C) \to \operatorname{Ext}_R^1(M,C) = 0.$$

Therefore $\ell_R(\operatorname{Hom}_R(M,C)) = \ell_R(\operatorname{Hom}_R(M_{r-1},C)) + 1 - \ell_R(\operatorname{Ext}^1_R(R/\mathfrak{m},C))$. But since $\ell_R(\operatorname{Ext}^1_R(R/\mathfrak{m},C)) > 0$, we have

$$\begin{array}{ll} \ell_R(\operatorname{Hom}_R(M,C)) &< \ell_R(\operatorname{Hom}_R(M_{r-1},C)) + 1 \\ &\leq \ell_R(\operatorname{Hom}_R(M_{r-2},C)) + 2 \\ &\leq \cdots \\ &\leq \ell_R(\operatorname{Hom}_R(M_0,C)) + r \\ &= r \\ &= \ell_R(M). \end{array}$$

Now since $\operatorname{Hom}_R(M,C)$ is again a totally C-reflexive R-module of finite length, the same argument shows that $\ell_R(\operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C)) \leq \ell_R(\operatorname{Hom}_R(M,C))$. But since M is totally C-reflexive, we have $M \cong \operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C)$, which implies that $\ell_R(M) < \ell_R(M)$, a contradiction. Hence C is dualizing.

The following theorem is a generalization of [17, Theorem 2.3].

Theorem 3.4. Let (R, \mathfrak{m}) be local. The following are equivalent:

- (i) C is dualizing.
- (ii) There exists an ideal \mathfrak{a} with G_C -dim $_R(\mathfrak{a}C) < \infty$ such that $C/\mathfrak{a}C$ is dualizing for R/\mathfrak{a} .
- (iii) There exists a Cohen-Macaulay R-module M with $r_R(M) = 1$ and G_C -dim $_R(M) < \infty$.
- (iv) $r_R(C) = 1$ and there exists a Cohen-Macaulay R-module M of finite G_C -dimension.

Proof. (i) \Longrightarrow (ii). Choose $\mathfrak{a} = 0$.

(ii) \Longrightarrow (iii). We show that $C/\mathfrak{a}C$ has the desired properties. First, the exact sequence $0 \to \mathfrak{a}C \to C \to C/\mathfrak{a}C \to 0$,

in conjunction with Proposition 2.6(iii), show that G_C -dim $R(C/\mathfrak{a}C) < \infty$. On the other hand, $C/\mathfrak{a}C$ is a Cohen-Macaulay $R/\mathfrak{a}R$ -module and hence is a Cohen-Macaulay R-module. Finally, by [2, Exercise 1.2.26], we have $r_R(C/\mathfrak{a}C) = r_{R/\mathfrak{a}}(C/\mathfrak{a}C) = 1$.

- (iii) \Longrightarrow (iv). By Lemma 3.2, we have $r_R(C) = 1$.
- (iv) \Longrightarrow (i). Assume that M is a Cohen-Macaulay R-module with G_C -dim $_R(M) < \infty$. We use induction on $m = \operatorname{depth}_R(M)$. If m = 0, then M is of finite length since it is Cohen-Macaulay. Since $\sqrt{\operatorname{Ann}_R(M)} = \mathfrak{m}$, we can choose a maximal R-sequence from elements of $\operatorname{Ann}_R(M)$, say \mathbf{x} . In view of Proposition 2.8(ii) and Proposition 2.6(ii), we can replace C by $C/\mathbf{x}C$ and R by $R/\mathbf{x}R$, and assume that M is totally C-reflexive. In this case, C is dualizing by Lemma 3.3. Now assume inductively that m > 0. Hence $\operatorname{depth}(R) > 0$ by Proposition 2.6(iv), and we can take an element $x \in \mathfrak{m}$ to be M- and R-regular. Set $\overline{(-)} = (-) \otimes_R R/xR$. Now \overline{M} is a Cohen-Macaulay \overline{R} -module and $r_{\overline{R}}(\overline{C}) = r_R(C) = 1$. Also, by Proposition 2.6(i), we have $G_{\overline{C}}$ -dim $\overline{R}(\overline{M}) = G_C$ -dim $\overline{R}(M) < \infty$. Hence, by induction hypothesis, \overline{C} is dualizing for \overline{R} , whence C is dualizing for R by Proposition 2.8(ii).

It is well-known that the existence of a finitely generated (resp. Cohen-Macaulay) module of finite injective (resp. projective) dimension implies Cohen-Macaulyness of the ring. But, in the special case that C is dualizing, the proof is easy, as the following relations show

$$\dim(R) = \dim_R(C) < \operatorname{id}_R(C) = \operatorname{depth}(R),$$

where the first equality is from Proposition 2.4(i), and the remaining parts are from [2, Theorem 3.1.17]. Therefore, in view of Theorem 3.4, we can state the following corollary.

Corollary 3.5. Let (R, \mathfrak{m}) be local. If there exists a Cohen-Macaulay R-module of type 1 and of finite G_C -dimension, then R is Cohen-Macaulay.

4. C-injective modules

In this section, our aim is to extend two nice results of J.Xu [22]. It is well-known that a Noetherian ring R is Gorenstein if and only if $\mu^i(\mathfrak{p}, R) = \delta_{i,ht(\mathfrak{p})}$ (the Kronecker δ). As a generalization, J.Xu [22, Theorem 2.1], showed that R is Gorenstein if and only if for any R-module F, the necessary and sufficient condition for F to be flat is that $\mu^i(\mathfrak{p}, F) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and all $i \neq \operatorname{ht}(\mathfrak{p})$. Next, in [22, Theorem 3.2], he proved a dual for this theorem. Indeed, he proved that R is Gorenstein if and only if for any R-module E, the necessary and sufficient condition for E to be injective is that $\pi_i(\mathfrak{p}, E) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and

all $i \neq \text{ht}(\mathfrak{p})$. In the present section, first we generalize the mentioned results. Next, we use our new results to determine the minimal flat resolution of some top local cohomology of a Cohen-Macaulay local rings and their torsion products.

Lemma 4.1. The followings are equivalent:

- (i) C is pointwise dualizing.
- (ii) C-fd $_R(E(R/\mathfrak{m})) = \operatorname{ht}(\mathfrak{m})$ for any $\mathfrak{m} \in \operatorname{Max}(R)$.
- (iii) C-fd $_R(E(R/\mathfrak{m})) < \infty$ for any $\mathfrak{m} \in \operatorname{Max}(R)$.
- (iv) C-fd $_R(E(R/\mathfrak{p})) = \operatorname{ht}(\mathfrak{p})$ for any $\mathfrak{p} \in \operatorname{Spec}(R)$.
- (v) C-fd $_R(E(R/\mathfrak{p})) < \infty$ for any $\mathfrak{p} \in \operatorname{Spec}(R)$.
- (vi) C-id $_R(T_{\mathfrak{m}})=\operatorname{ht}(\mathfrak{m})$ for any $\mathfrak{m}\in\operatorname{Max}(R)$.
- (vii) C-id $_R(T_{\mathfrak{m}}) < \infty$ for any $\mathfrak{m} \in \operatorname{Max}(R)$.
- (viii) C-id $_R(T_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p})$ for any $\mathfrak{p} \in \operatorname{Spec}(R)$.
- (ix) C-id $_R(T_{\mathfrak{p}}) < \infty$ for any $\mathfrak{p} \in \operatorname{Spec}(R)$.

Proof. (i) \Longrightarrow (ii). Assume that $\mathfrak{m} \in \text{Max}(R)$. There are equalities

$$\begin{split} C\text{-fd}\,_R(E(R/\mathfrak{m})) &= \operatorname{fd}\,_R(\operatorname{Hom}\,_R(C,E(R/\mathfrak{m}))) \\ &= \operatorname{fd}\,_{R_\mathfrak{m}}(\operatorname{Hom}\,_{R_\mathfrak{m}}(C_\mathfrak{m},E_{R_\mathfrak{m}}(R_\mathfrak{m}/\mathfrak{m}R_\mathfrak{m})) \\ &= \operatorname{id}\,_{R_\mathfrak{m}}(C_\mathfrak{m}) \\ &= \operatorname{dim}\,(R_\mathfrak{m}) \\ &= \operatorname{ht}\,(\mathfrak{m}), \end{split}$$

in which the first equality is from Theorem 2.9(ii), and the second one is from Remark 2.16.

- $(ii) \Longrightarrow (iii)$. Is clear.
- (iii) \Longrightarrow (i). We can assume that (R, \mathfrak{m}) is local. Now one can use Theorem 2.9(ii), to see that

$$\operatorname{id}_{R}(C) = \operatorname{fd}_{R}(\operatorname{Hom}_{R}(C, E(R/\mathfrak{m})))$$

= $C\operatorname{-fd}_{R}(E(R/\mathfrak{m})) < \infty$,

whence C is dualizing.

- (i) \Longrightarrow (iv). Let \mathfrak{p} be a prime ideal of R. Note that $E(R/\mathfrak{p})_{\mathfrak{q}} \neq 0$ if and only if $\mathfrak{q} \subseteq \mathfrak{p}$. Now as in (i) \Longrightarrow (ii), we have C-fd $_R(E(R/\mathfrak{p})) = \dim(R_\mathfrak{p}) = \operatorname{ht}(\mathfrak{p})$.
 - $(iv) \Longrightarrow (v)$. Is clear.
- $(v)\Longrightarrow(i)$. Again, we can assume that R is local. Now the proof is similar to that of $(iii)\Longrightarrow(i)$.
- (ii) \iff (vi) and (iii) \iff (vii). Note that $T_{\mathfrak{m}} = \operatorname{Hom}_{R}(E(R/\mathfrak{m}), E(R/\mathfrak{m})^{(X)})$ for some set X. Now we have the equalities

$$\begin{aligned} C\text{-}\mathrm{id}_{R}(T_{\mathfrak{m}}) &= \mathrm{id}_{R}(C \otimes_{R} T_{\mathfrak{m}}) \\ &= \mathrm{id}_{R} \left(C \otimes_{R} \operatorname{Hom}_{R} \left(E(R/\mathfrak{m}), E(R/\mathfrak{m})^{(X)} \right) \right) \\ &= \mathrm{id}_{R} \left(\operatorname{Hom}_{R} \left(\operatorname{Hom}_{R}(C, E(R/\mathfrak{m})), E(R/\mathfrak{m})^{(X)} \right) \right) \\ &= \mathrm{fd}_{R} \left(\operatorname{Hom}_{R}(C, E(R/\mathfrak{m})) \right) \\ &= C\text{-}\mathrm{fd}_{R} \left(E(R/\mathfrak{m}) \right), \end{aligned}$$

in which the first equality is from Theorem 2.9(i), the fourth equality is from Remark 2.16 and the fact that $E(R/\mathfrak{m})^{(X)}$ is an injective cogenerator in the category of $R_{\mathfrak{m}}$ -modules, and the last one is from Theorem 2.9(ii).

$$(iv) \iff (viii) \text{ and } (v) \iff (ix).$$
 Are similar to $(ii) \iff (vi).$

The following theorem is a generalization of [21, theorem 2.1].

Theorem 4.2. The following are equivalent:

- (i) C is pointwise dualizing.
- (ii) An R-module M is C-flat if and only if $\mu^i(\mathfrak{p}, M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$.
- (iii) An R-module M is flat if and only if $\mu^i(\mathfrak{p}, C \otimes_R M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$.

Proof. (i) \Longrightarrow (ii). First assume that M is C-flat. Set $M = C \otimes_R F$, where F is a flat R-module. Since C is pointwise dualizing, we have $\mu^i(\mathfrak{p}, C) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ with $i \neq \operatorname{ht}(\mathfrak{p})$. Assume that

$$0 \to C \to E^0(C) \to E^1(C) \to \dots \to E^i(C) \to \dots$$

is the minimal injective resolution of C. By applying the exact functor $-\otimes_R F$ to this resolution, we find an exact complex

 $0 \to M = C \otimes_R F \to E^0(C) \otimes_R F \to E^1(C) \otimes_R F \to \dots \to E^i(C) \otimes_R F \to \dots, (*)$ which is an injective resolution for M. By [7, Theorem 3.3.12] the injective R-module $E(R/\mathfrak{p}) \otimes_R F$ is a direct sum of copies of $E(R/\mathfrak{p})$ for each $\mathfrak{p} \in \operatorname{Spec}(R)$. Now, since the minimal injective resolution of M is a direct summand of the complex (*), we get the result. Conversely, suppose that M is an R-module such that $\mu^{i}(\mathfrak{p}, M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \text{ht}(\mathfrak{p})$. In order to show that M is C-flat, it is enough to prove that $M_{\mathfrak{m}}$ is $C_{\mathfrak{m}}$ flat $R_{\mathfrak{m}}$ -module for all $\mathfrak{m} \in \operatorname{Max}(R)$. For if $M_{\mathfrak{m}}$ is $C_{\mathfrak{m}}$ -flat $R_{\mathfrak{m}}$ -module for all $\mathfrak{m} \in \operatorname{Max}(R)$, then $\operatorname{Hom}_R(C,M)_{\mathfrak{m}} \cong \operatorname{Hom}_{R_{\mathfrak{m}}}(C_{\mathfrak{m}},M_{\mathfrak{m}})$ is flat as an $R_{\mathfrak{m}}$ -module for all $\mathfrak{m} \in \operatorname{Max}(R)$ by Theorem 2.9(ii). Hence $\operatorname{Hom}_R(C,M)$ is a flat R-module and thus M is C-flat by Theorem 2.9(ii). Hence, replacing R by $R_{\mathfrak{m}}$, we can assume that (R,\mathfrak{m}) is local. Clearly we may assume that $M \neq 0$. In this case we have id $R(M) < \infty$ since by assumption $\mu^{i}(\mathfrak{p}, M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and all $i > \dim(R)$. Hence the assumption in conjunction with Lemma 4.1, imply that M has a bounded injective resolution all of whose terms have finite C-flat dimensions. More precisely, by Lemma 4.1, if E^{i} is the i-th term in the minimal injective resolution of M, then C-fd_R $(E^i) = i$ for all $0 \le i \le id(M)$. Breaking up this resolution to short exact sequences and using [19, Corollary 5.7], we can conclude that C-fd_R(M) = 0. Hence M is C-flat, as wanted.

(ii) \Longrightarrow (iii). Assume that M is a flat R-module. Then $C \otimes_R M \in \mathcal{F}_C$ and $\mu^i(\mathfrak{p}, C \otimes_R M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$ by assumption. Conversely, suppose that $\mu^i(\mathfrak{p}, C \otimes_R M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$. Then, by assumption, $C \otimes_R M$ is C-flat. Set $C \otimes_R M = C \otimes_R F$, where F is flat. Therefore $C \otimes_R M \in \mathcal{B}_C(R)$, whence

 $M \in \mathcal{A}_C(R)$ by [18, Theorem 2.8(b)]. Thus we have the isomorphisms

$$M \cong \operatorname{Hom}_{R}(C, C \otimes_{R} M)$$
$$\cong \operatorname{Hom}_{R}(C, C \otimes_{R} F)$$
$$\cong F,$$

where the first and the last isomorphism hold since both M and F are in $\mathcal{A}_{C}(R)$.

(iii) \Longrightarrow (i). Note that R is a flat R-module. Hence by assumption, if $\mathfrak{m} \in \operatorname{Max}(R)$, then $\mu^{i}(\mathfrak{m}, C \otimes_{R} R) = 0$ for all $i > \operatorname{ht}(\mathfrak{m})$. Thus $\operatorname{id}_{R_{\mathfrak{m}}}(C_{\mathfrak{m}}) < \infty$, as wanted.

Theorem 4.3. The following are equivalent:

- (i) C is pointwise dualizing.
- (ii) An R-module M is C-injective if and only if $\pi_i(\mathfrak{p},M)=0$ for all $\mathfrak{p}\in \operatorname{Spec}(R)$ whenever $i \neq ht(\mathfrak{p})$.
- (iii) An R-module M is injective if and only if $\pi_i(\mathfrak{p}, \operatorname{Hom}_R(C, M)) = 0$ for all $\mathfrak{p} \in$ Spec (R) whenever $i \neq ht(\mathfrak{p})$.

Proof. (i) \Longrightarrow (ii). Assume that M is a nonzero C-injective R-module. Set $M = \operatorname{Hom}_{R}(C, E)$ with E is injective. First, we show that M is cotorsion. Assume that F is a flat R-module. Then, by [7, Theorem 3.2.1], we have $\operatorname{Ext}_R^1(F,\operatorname{Hom}_R(C,E)) \cong \operatorname{Hom}_R(\operatorname{Tor}_1^R(F,C),E) = 0$, and hence M is cotorsion. Fix a prime ideal \mathfrak{p} of R and set $k(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$. Note that $\operatorname{Hom}_R(R_{\mathfrak{p}}, E)$ is an injective R-module and that $\operatorname{Hom}_R(R_{\mathfrak{p}}, E) \cong \bigoplus_{\mathfrak{g} \in X} E(R/\mathfrak{g})$, where $X \subseteq \mathrm{Ass}_{R}(E)$ and each element of X is a subset of \mathfrak{p} . There are isomorphisms

$$\begin{split} \operatorname{Tor}_{i}^{R_{\mathfrak{p}}} \left(k(\mathfrak{p}), \operatorname{Hom}_{R}(R_{\mathfrak{p}}, \operatorname{Hom}_{R}(C, E)) \right) & \cong \operatorname{Tor}_{i}^{R_{\mathfrak{p}}} \left(k(\mathfrak{p}), \operatorname{Hom}_{R}(C_{\mathfrak{p}}, E) \right) \\ & \cong \operatorname{Tor}_{i}^{R_{\mathfrak{p}}} \left(k(\mathfrak{p}), \operatorname{Hom}_{R_{\mathfrak{p}}} (C_{\mathfrak{p}}, \operatorname{Hom}_{R}(R_{\mathfrak{p}}, E) \right) \\ & \cong \operatorname{Tor}_{i}^{R_{\mathfrak{p}}} \left(k(\mathfrak{p}), \operatorname{Hom}_{R_{\mathfrak{p}}} (C_{\mathfrak{p}}, \underset{\mathfrak{q} \in X}{\oplus} E(R/\mathfrak{q}) \right) \\ & \cong \operatorname{Hom}_{R_{\mathfrak{p}}} \left(\operatorname{Ext}_{R_{\mathfrak{p}}}^{i} (k(\mathfrak{p}), C_{\mathfrak{p}}), \underset{\mathfrak{q} \in X}{\oplus} E(R/\mathfrak{q}) \right), \end{split}$$

where the last isomorphism is from [7, Theorem 3.2.13]. Now since $C_{\mathfrak{p}}$ is dualizing for $R_{\mathfrak{p}}$, we have $\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(k(\mathfrak{p}), C_{\mathfrak{p}}) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{p})$. Therefore $\pi_{i}(\mathfrak{p}, M) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{p})$. Conversely, assume that M is a non-zero R-module with $\pi_i(\mathfrak{p}, M) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{p})$. By assumption, the minimal flat resolution of M is of the form

$$\cdots \longrightarrow F_i \longrightarrow \cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0,$$

in which $F_i = \prod_{\mathfrak{p}} T_{\mathfrak{p}}$ for all $i \geq 1$. Also, in view of [22, Lemma 3.1], we have

 $F_0 = \prod T_{\mathfrak{p}}$. Hence the minimal flat resolution of M is of the form

$$\begin{array}{c}
\Pi & \downarrow \downarrow \\
\text{ht } (\mathfrak{p})=0 \\
\cdots & \longrightarrow \prod_{\text{ht } (\mathfrak{p})=i} T_{\mathfrak{p}} \longrightarrow \cdots \longrightarrow \prod_{\text{ht } (\mathfrak{p})=1} T_{\mathfrak{p}} \longrightarrow \prod_{\text{ht } (\mathfrak{p})=0} T_{\mathfrak{p}} \longrightarrow M \longrightarrow 0. \ (*)
\end{array}$$
E be an injective cogenerator. According to Lemma 2.10(i), it is enough

Let E be an injective cogenerator. According to Lemma 2.10(i), it is enough to show that $\operatorname{Hom}_{R}(M, E)$ is C-flat. In fact, by Theorem 4.2, we need only to show that $\mu^{i}(\mathfrak{p}, \operatorname{Hom}_{R}(M, E)) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{p})$ and all $i \geq 0$. Applying the exact functor $\operatorname{Hom}_{R}(-,E)$ on (*), we get an injective resolution

, we get an injective resolution
$$0 \longrightarrow \operatorname{Hom}_R(M, E) \longrightarrow \operatorname{Hom}_R\left(\prod_{\operatorname{ht}(\mathfrak{p})=0} T_{\mathfrak{p}}, E\right) \longrightarrow$$

$$\operatorname{Hom}_{R}\left(\prod_{\operatorname{ht}(\mathfrak{p})=1}T_{\mathfrak{p}},E\right)\longrightarrow\cdots\longrightarrow\operatorname{Hom}_{R}\left(\prod_{\operatorname{ht}(\mathfrak{p})=i}T_{\mathfrak{p}},E\right)\longrightarrow\cdots,$$

 $\operatorname{Hom}_R\Big(\prod_{\operatorname{ht}\,(\mathfrak{p})=1}T_{\mathfrak{p}},E\Big)\longrightarrow\cdots\longrightarrow\operatorname{Hom}_R\Big(\prod_{\operatorname{ht}\,(\mathfrak{p})=i}T_{\mathfrak{p}},E\Big)\longrightarrow\cdots,$ for $\operatorname{Hom}_R(M,E)$. Note that $\operatorname{Hom}_R\Big(\prod_{\operatorname{ht}\,(\mathfrak{p})=i}T_{\mathfrak{p}},E\Big)$ is an injective R-module for all $i\geq 0$. Set $\operatorname{Hom}_R\Big(\prod_{\operatorname{ht}\,(\mathfrak{p})=i}T_{\mathfrak{p}},E\Big)\cong\oplus E(R/\mathfrak{q}).$ We show that $\operatorname{ht}\,(\mathfrak{q})=i.$ Since C is pointwise

dualizing, by Lemma 4.1, we have C-fd $R(E(R/\mathfrak{q})) = \operatorname{ht}(\mathfrak{q})$. On the other hand, we have

the equalities

$$C\operatorname{-fd}_{R}(E(R/\mathfrak{q})) = C\operatorname{-fd}_{R}(\oplus E(R/\mathfrak{q}))$$

$$= C\operatorname{-fd}_{R}\left(\operatorname{Hom}_{R}\left(\prod_{\operatorname{ht}\,(\mathfrak{p})=i}T_{\mathfrak{p}},E\right)\right)$$

$$= C\operatorname{-id}_{R}\left(\prod_{\operatorname{ht}\,(\mathfrak{p})=i}T_{\mathfrak{p}}\right)$$

$$= i,$$

in which the third equality is from Lemma 2.10(i), and the last one is from Lemma 4.1. Hence $\mu^i(\mathfrak{p}, \operatorname{Hom}_R(M, E)) = 0$ for all $i \geq 0$ with $i \neq \operatorname{ht}(\mathfrak{p})$, as wanted.

(ii) \Longrightarrow (iii). Assume that M is an injective R-module. Then $\operatorname{Hom}_R(C,M) \in \mathcal{I}_C$ and $\mu^{i}(\mathfrak{p}, \operatorname{Hom}_{R}(C, M)) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$ by assumption. Conversely, suppose that $\mu^{i}(\mathfrak{p}, \operatorname{Hom}_{R}(C, M)) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $i \neq \operatorname{ht}(\mathfrak{p})$. Then, by assumption, $\operatorname{Hom}_R(C,M)$ is C-injective. Set $\operatorname{Hom}_R(C,M) = \operatorname{Hom}_R(C,I)$, where I is injective. Therefore $\operatorname{Hom}_R(C,M) \in \mathcal{A}_C(R)$, whence $M \in \mathcal{B}_C(R)$ by [18, Theorem 2.8(a)]. Thus we have the isomorphisms

$$M \cong C \otimes_R \operatorname{Hom}_R(C, M)$$

$$\cong C \otimes_R \operatorname{Hom}_R(C, I)$$

$$\cong I,$$

where the first and the last isomorphism hold since both M and I are in $\mathcal{B}_{C}(R)$.

(iii) \Longrightarrow (i). Assume that \mathfrak{m} is a maximal ideal of R. Set $k(\mathfrak{m}) = R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}}$. Since $E(R/\mathfrak{m})$ is injective, by assumption, we have $\pi_i(\mathfrak{m}, \operatorname{Hom}_R(C, E(R/\mathfrak{m}))) = 0$ fo all $i \neq \operatorname{ht}(\mathfrak{m})$. On the other hand, there are isomorphisms

$$\operatorname{Hom}_{R_{\mathfrak{m}}} \left(\operatorname{Ext}_{R_{\mathfrak{m}}}^{i}(k(\mathfrak{m}), C_{\mathfrak{m}}), E(k(\mathfrak{m})) \right) \cong \operatorname{Tor}_{i}^{R_{\mathfrak{m}}} \left(k(\mathfrak{m}), \operatorname{Hom}_{R_{\mathfrak{m}}} (C_{\mathfrak{m}}, E(k(\mathfrak{m})) \right)$$

$$\cong \operatorname{Tor}_{i}^{R_{\mathfrak{m}}} \left(k(\mathfrak{m}), \operatorname{Hom}_{R_{\mathfrak{m}}} (C_{\mathfrak{m}} \otimes_{R_{\mathfrak{m}}} R_{\mathfrak{m}}, E(k(\mathfrak{m})) \right)$$

$$\cong \operatorname{Tor}_{i}^{R_{\mathfrak{m}}} \left(k(\mathfrak{m}), \operatorname{Hom}_{R} (R_{\mathfrak{m}}, \operatorname{Hom}_{R_{\mathfrak{m}}} (C_{\mathfrak{m}}, E(k(\mathfrak{m})) \right)$$

$$\cong \operatorname{Tor}_{i}^{R_{\mathfrak{m}}} \left(k(\mathfrak{m}), \operatorname{Hom}_{R} (R_{\mathfrak{m}}, \operatorname{Hom}_{R} (C, E(R/\mathfrak{m})) \right) ,$$

where the first isomorphism is from [7, Theorem 3.2.13], and the last one is from Remark 2.16. From this isomorphisms, it follows that $\operatorname{Hom}_{R_{\mathfrak{m}}}(\operatorname{Ext}_{R_{\mathfrak{m}}}^{i}(k(\mathfrak{m}), C_{\mathfrak{m}}), E(k(\mathfrak{m}))) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{m})$, from which we conclude that $\operatorname{Ext}_{R_{\mathfrak{m}}}^{i}(k(\mathfrak{m}), C_{\mathfrak{m}}) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{m})$, since $E(k(\mathfrak{m}))$ is an injective cogenerator in the category of $R_{\mathfrak{m}}$ -modules. Thus $C_{\mathfrak{m}}$ is dualizing for $R_{\mathfrak{m}}$, as required.

Corollary 4.4. Let C be pointwise dualizing. Then flat cover of any C-injective R-module is C-injective.

Proof. By Lemma 4.1, C-id $_R(T_{\mathfrak{p}})=0$ for any prime ideal \mathfrak{p} with $\operatorname{ht}(\mathfrak{p})=0$. Hence $T_{\mathfrak{p}}$ is C-injective for any prime ideal \mathfrak{p} with $\operatorname{ht}(\mathfrak{p})=0$. Assume that M is a C-injective R-module. By Theorem 4.3, we have $F(M)=\prod_{\operatorname{ht}(\mathfrak{p})=0}T_{\mathfrak{p}}$. Now the result follows since the class \mathcal{I}_C closed under arbitrary direct product.

Corollary 4.5. The R-module C is pointwise dualizing if and only if for any prime ideal \mathfrak{p} of R,

$$\pi_i(\mathfrak{p}, \operatorname{Hom}_R(C, E(R/\mathfrak{p}))) = \begin{cases} 1 & i = \operatorname{ht}(\mathfrak{p}), \\ 0 & i \neq \operatorname{ht}(\mathfrak{p}). \end{cases}$$

Proof. Assume that $\mathfrak{p} \in \operatorname{Spec}(R)$. Set $k(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$. We have the following equalities

$$\begin{split} \pi_i \big(\mathfrak{p}, \operatorname{Hom}_R(C, E(R/\mathfrak{p})) \big) &= \operatorname{vdim}_{k(\mathfrak{p})} \operatorname{Tor}_i^{R_\mathfrak{p}} \big(k(\mathfrak{p}), \operatorname{Hom}_R(R_\mathfrak{p}, \operatorname{Hom}_R(C, E(R/\mathfrak{p})) \big) \\ &= \operatorname{vdim}_{k(\mathfrak{p})} \operatorname{Tor}_i^{R_\mathfrak{p}} \big(k(\mathfrak{p}), \operatorname{Hom}_R(C_\mathfrak{p}, \operatorname{Hom}_{R_\mathfrak{p}}(R_\mathfrak{p}, E(R/\mathfrak{p})) \big) \\ &= \operatorname{vdim}_{k(\mathfrak{p})} \operatorname{Tor}_i^{R_\mathfrak{p}} \big(k(\mathfrak{p}), \operatorname{Hom}_R(C_\mathfrak{p}, E(R/\mathfrak{p})) \big) \\ &= \operatorname{vdim}_{k(\mathfrak{p})} \operatorname{Hom}_{R_\mathfrak{p}} \big(\operatorname{Ext}_{R_\mathfrak{p}}^i \big(k(\mathfrak{p}), C_\mathfrak{p} \big), E(R/\mathfrak{p}) \big), \end{split}$$

where the second equality is from Remark 2.16, and the last equality is from [7, Theorem 3.2.13]. Now, C is pointwise dualizing if and only if $C_{\mathfrak{p}}$ is the dualizing module of $R_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$, and this is the case if and only if

$$\operatorname{Ext}_{R_{\mathfrak{p}}}^{i}(k(\mathfrak{p}), C_{\mathfrak{p}}) \cong \begin{cases} k(\mathfrak{p}) & i = \operatorname{ht}(\mathfrak{p}), \\ 0 & i \neq \operatorname{ht}(\mathfrak{p}). \end{cases}$$

for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Thus we are done by the above equalities and the fact that $\operatorname{Hom}_{R_{\mathfrak{p}}}(k(\mathfrak{p}), E(R/\mathfrak{p})) \cong k(\mathfrak{p})$.

In the following corollaries, we are concerned with the local cohomology. For an Rmodule M, the i-th local cohomology module of M with respect to an ideal \mathfrak{a} of R, denoted
by $\mathrm{H}^i_{\mathfrak{a}}(M)$, is defined to be

$$\mathrm{H}^{i}_{\mathfrak{a}}(M) = \lim_{\substack{n > 1 \ n > 1}} \mathrm{Ext}^{i}_{R}(R/\mathfrak{a}^{n}, M).$$

For the basic properties of local cohomology modules, please see the textbook [3].

Corollary 4.6. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring with $\dim(R) = d$ possessing a canonical module ω_R . Then $\pi_i(\mathfrak{m}, H^d_{\mathfrak{m}}(R)) = \delta_{i,d}$, and $\pi_i(\mathfrak{q}, H^d_{\mathfrak{m}}(R)) = 0$ for any non-maximal prime ideal \mathfrak{q} whenever $i \neq \operatorname{ht}(\mathfrak{q})$.

Proof. By [3, Theorem 11.2.8], we have $\operatorname{H}^d_{\mathfrak{m}}(R) \cong \operatorname{Hom}_R(\omega_R, E(R/\mathfrak{m}))$, and hence $\operatorname{H}^d_{\mathfrak{m}}(R)$ is ω_R -injective. Assume that \mathfrak{q} is a non-maximal prime ideal of R. Then by the Theorem 4.3, we have $\pi_i(\mathfrak{q}, \operatorname{H}^d_{\mathfrak{m}}(R)) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{q})$. Finally, by corollary 4.5, we have $\pi_i(\mathfrak{m}, \operatorname{H}^d_{\mathfrak{m}}(R)) = 0$ for all $i \neq d$ and that $\pi_d(\mathfrak{m}, \operatorname{H}^d_{\mathfrak{m}}(R)) = 1$, as wanted.

If (R, \mathfrak{m}) is a Cohen-Macaulay local ring with dim (R) = d, then by [3, Corollary 6.2.9] the only non-vanishing local cohomology of R with respect to \mathfrak{m} is $\mathrm{H}^d_{\mathfrak{m}}(R)$. Also, if R admits a

canonical module, then by [7, Proposition 9.5.22], we have $\operatorname{fd}_R(H^d_{\mathfrak{m}}(R)) = d$. The following corollary describes the structure of the minimal flat resolution of $H_m^d(R)$.

Corollary 4.7. Let (R, \mathfrak{m}) be a d-dimensional Cohen-Macaulay local ring possessing a canonical module. The minimal flat resolution of $H^d_{\mathfrak{m}}(R)$ is of the form

$$0 \longrightarrow \widehat{R_{\mathfrak{m}}} \longrightarrow \cdots \longrightarrow \prod_{\operatorname{ht}(\mathfrak{p})=1} T_{\mathfrak{p}} \longrightarrow \prod_{\operatorname{ht}(\mathfrak{p})=0} T_{\mathfrak{p}} \longrightarrow \operatorname{H}^{d}_{\mathfrak{m}}(R) \longrightarrow 0.$$

In the following corollary, we give another proof of [16, Corollary 3.7]. Our approach is direct, and uses the well-known fact that the homology functor Tor can be computed by a flat resolution.

Corollary 4.8. Let (R, \mathfrak{m}) be a d-dimensional Cohen-Macaulay local ring. Then

$$\operatorname{Tor}_{i}^{R}(\operatorname{H}_{\mathfrak{m}}^{d}(R), \operatorname{H}_{\mathfrak{m}}^{d}(R)) \cong \left\{ \begin{array}{ll} \operatorname{H}_{\mathfrak{m}}^{d}(R) & i = d, \\ 0 & i \neq d. \end{array} \right.$$

Proof. Note that \widehat{R} is a d-dimensional complete Cohen-Macaulay local ring, and hence admits a canonical module $\omega_{\widehat{R}}$. The R-module $H^d_{\mathfrak{m}}(R)$ is Artinian by [3, Theorem 7.1.6], and thus naturally has a \widehat{R} -module structure by [3, Remark 10.2.9]. Hence Tor $_i^R(\mathcal{H}^d_{\mathfrak{m}}(R),\mathcal{H}^d_{\mathfrak{m}}(R))$ is Artinian for all $i \ge 0$ by [14, Corollary 3.2]. Thus there are isomorphisms

$$\begin{aligned} \operatorname{Tor}_{i}^{R}(\operatorname{H}^{d}_{\mathfrak{m}}(R), \operatorname{H}^{d}_{\mathfrak{m}}(R)) &&\cong \operatorname{Tor}_{i}^{R}(\operatorname{H}^{d}_{\mathfrak{m}}(R), \operatorname{H}^{d}_{\mathfrak{m}}(R)) \otimes_{R} \widehat{R} \\ &&\cong \operatorname{Tor}_{i}^{\widehat{R}}(\operatorname{H}^{d}_{\mathfrak{m}}(R) \otimes_{R} \widehat{R}, \operatorname{H}^{d}_{\mathfrak{m}}(R) \otimes_{R} \widehat{R}) \\ &&\cong \operatorname{Tor}_{i}^{\widehat{R}}(\operatorname{H}^{d}_{\mathfrak{m}\widehat{R}}(\widehat{R}), \operatorname{H}^{d}_{\mathfrak{m}\widehat{R}}(\widehat{R})), \end{aligned}$$

in which the second isomorphism is from [7, Theorem 2.1.11], and the last one is flat base change [3, Theorem 4.3.2]. Also, we have the isomorphisms

$$\begin{split} \mathrm{H}^d_{\mathfrak{m}}(R) & \cong \mathrm{H}^d_{\mathfrak{m}}(R) \otimes_R \widehat{R} \\ & \cong \mathrm{H}^d_{\mathfrak{m}\widehat{R}}(\widehat{R}) \\ & \cong \mathrm{Hom}_{\widehat{R}}\big(\omega_{\widehat{R}}, E_{\widehat{R}}(\widehat{R}/\mathfrak{m}\widehat{R})\big), \end{split}$$

in which the first isomorphism holds because $\mathrm{H}^d_{\mathfrak{m}}(R)$ is Artinian, the second isomorphism is the flat base change, and the last one is local duality [3, Theorem 11.2.8]. Thus $\mathrm{H}^d_{\mathfrak{m}}(R)$ is a $\omega_{\widehat{R}}$ -injective \widehat{R} -module. Hence, by Corollary 4.7, the minimal flat resolution of $H^d_{\mathfrak{m}}(R)$, as an \widehat{R} -module, is of the form

$$0 \longrightarrow \widehat{\widehat{R}_{\mathfrak{m}\widehat{R}}} \longrightarrow \cdots \longrightarrow \prod_{\operatorname{ht}(Q)=1} T_Q \longrightarrow \prod_{\operatorname{ht}(Q)=0} T_Q \longrightarrow \operatorname{H}^d_{\mathfrak{m}}(R) \longrightarrow 0.$$

 $0 \longrightarrow \widehat{\widehat{R}_{\mathfrak{m}\widehat{R}}} \longrightarrow \cdots \longrightarrow \prod_{\text{ht } (Q)=1} T_Q \longrightarrow \prod_{\text{ht } (Q)=0} T_Q \longrightarrow \operatorname{H}^d_{\mathfrak{m}}(R) \longrightarrow 0,$ in which T_Q is the completion of a free \widehat{R}_Q -module with respect to $Q\widehat{R}_Q$ -adic topology, for $Q \in \operatorname{Spec}(\widehat{R})$. Observe that the above resolution is a flat resolution of $\operatorname{H}^d_{\mathfrak{m}}(R)$ as an R-module since the modules in the above resolution are all flat R-modules. Therefore, we can replace R by \widehat{R} , and assume that R is complete. So that, the minimal flat resolution of $H_m^d(R)$ is of the form

$$0 \longrightarrow \widehat{R_{\mathfrak{m}}} \longrightarrow \cdots \longrightarrow \prod_{\operatorname{ht}(\mathfrak{p})=1} T_{\mathfrak{p}} \longrightarrow \prod_{\operatorname{ht}(\mathfrak{p})=0} T_{\mathfrak{p}} \longrightarrow \operatorname{H}^{d}_{\mathfrak{m}}(R) \longrightarrow 0,$$

in which $T_{\mathfrak{p}}$ is the completion of a free $R_{\mathfrak{p}}$ -module with respect to $\mathfrak{p}R_{\mathfrak{p}}$ -adic topology, for $\mathfrak{p} \in \operatorname{Spec}(R)$. Next, note that for each prime ideal \mathfrak{p} with $\mathfrak{p} \neq \mathfrak{m}$, we have $\operatorname{H}^d_{\mathfrak{m}}(R) \otimes_R \left(\prod T_{\mathfrak{p}}\right) = 0$. Indeed, we can write $\operatorname{H}^d_{\mathfrak{m}}(R) = \lim_{\alpha \in I} M_{\alpha}$, where M_{α} is a finitely generated submodule of $\operatorname{H}^d_{\mathfrak{m}}(R)$. Also $T_{\mathfrak{p}} = \operatorname{Hom}_R \left(E(R/\mathfrak{p}), E(R/\mathfrak{p})^{(X)}\right)$ for some set X. Now since M_{α} is of finite length by [3, Theorem 7.1.3], we can take an element $x \in \mathfrak{m} \setminus \mathfrak{q}$ such that $xM_{\alpha} = 0$. But multiplication of x induces an automorphism on $E(R/\mathfrak{p})$ and hence on $\prod T_{\mathfrak{p}}$. Consequently, multiplication of x on $M_{\alpha} \otimes_R \left(\prod T_{\mathfrak{p}}\right)$ is both an isomorphism and zero. Hence $M_{\alpha} \otimes_R \left(\prod T_{\mathfrak{p}}\right) = 0$, from which we conclude that $\operatorname{H}^d_{\mathfrak{m}}(R) \otimes_R \left(\prod T_{\mathfrak{p}}\right) = 0$ since tensor commutes with direct limit. Thus $\operatorname{Tor}_i^R(\operatorname{H}^d_{\mathfrak{m}}(R),\operatorname{H}^d_{\mathfrak{m}}(R)) = 0$ for $i \neq d$. Finally, we have

$$\begin{split} \operatorname{Tor}_{d}^{R}(\operatorname{H}_{\mathfrak{m}}^{d}(R), \operatorname{H}_{\mathfrak{m}}^{d}(R)) &&\cong \widehat{R_{\mathfrak{m}}} \otimes_{R} \operatorname{H}_{\mathfrak{m}}^{d}(R) \\ &&\cong \operatorname{H}_{\mathfrak{m} \widehat{R_{\mathfrak{m}}}}^{d}(\widehat{R_{\mathfrak{m}}}) \\ &&\cong \operatorname{Hom}_{\widehat{R_{\mathfrak{m}}}}(\widehat{\omega_{R_{\mathfrak{m}}}}, E_{\widehat{R_{\mathfrak{m}}}}(\widehat{R_{\mathfrak{m}}}/\mathfrak{m}\widehat{R_{\mathfrak{m}}})) \\ &&\cong \operatorname{Hom}_{R_{\mathfrak{m}}}(\omega_{R_{\mathfrak{m}}}, E_{R_{\mathfrak{m}}}(R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}})) \otimes_{R_{\mathfrak{m}}} \widehat{R_{\mathfrak{m}}} \\ &&\cong \operatorname{Hom}_{R_{\mathfrak{m}}}(\omega_{R_{\mathfrak{m}}}, E_{R_{\mathfrak{m}}}(R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}})) \\ &\cong \operatorname{Hom}_{R}(\omega_{R}, E(R/\mathfrak{m})) \otimes_{R} R_{\mathfrak{m}} \\ &\cong \operatorname{Hom}_{R}(\omega_{R}, E(R/\mathfrak{m})) \otimes_{R} R_{\mathfrak{m}}) \\ &\cong \operatorname{Hom}_{R}(\omega_{R}, E(R/\mathfrak{m})) \\ &\cong \operatorname{Hom}_{R}(\omega_{R}, E(R/\mathfrak{m})) \\ &\cong \operatorname{Hom}_{R}(\omega_{R}, E(R/\mathfrak{m})) \end{split}$$

in which the second isomorphism is the flat base change [3, Theorem 4.3.2], the third isomorphism is local duality [3, Theorem 11.2.8], and the fifth one is from [3, Remark 10.2.9], since $\operatorname{Hom}_{R_{\mathfrak{m}}}(\omega_{R_{\mathfrak{m}}}, E_{R_{\mathfrak{m}}}(R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}}))$ is an Artinian $R_{\mathfrak{m}}$ -module and hence has a natural structure as an $\widehat{R_{\mathfrak{m}}}$ -module.

The following theorem is a slight generalization of [22, Theorem 3.3].

Theorem 4.9. The following are equivalent:

- (i) C is pointwise dualizing.
- (ii) If M is a cotorsion R-module such that C-id $_R(M) = n < \infty$, then M admits a minimal flat resolution such that $\pi_i(\mathfrak{p}, M) = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$ whenever $\operatorname{ht}(\mathfrak{p}) \notin \{i, ..., i+n\}$.

Proof. (i) \Longrightarrow (ii). We use induction on n. If n=0, then we are done by Theorem 4.3. Now assume inductively that n>0 and the case n is settled. Fix a prime ideal \mathfrak{p} of R. Assume that M is a cotorsion R-module with C-id R(M)=n+1. Hence $M\in\mathcal{A}_C(R)$, and so the \mathcal{I}_C -preenvelope of M is injective by [18, Corollary 2.4(b)]. Thus there exists an exact sequence

$$0 \to M \to \operatorname{Hom}_R(C, I) \to L \to 0, (*)$$

in which I is injective, and $L = \operatorname{Coker}(M \to \operatorname{Hom}_R(C,I))$. Note that L is cotorsion since both M and $\operatorname{Hom}_R(C,I)$ are cotorsion. Also, since both M and $\operatorname{Hom}_R(C,I)$ are in $\mathcal{A}_C(R)$, we have $L \in \mathcal{A}_C(R)$, and therefore $\operatorname{Tor}_1^R(C,L) = 0$. On the other hand

 $C \otimes_R \operatorname{Hom}_R(C,I) \cong I$, by [7, Theorem 3.2.11]. Hence application of $C \otimes_R -$ on (*) yields an exact sequence

$$0 \to C \otimes_R M \to I \to C \otimes_R L \to 0.$$

By Theorem 2.9(i), we have $\operatorname{id}_R(C \otimes_R M) = n + 1$. Therefore $\operatorname{id}_R(C \otimes_R L) = n$, whence C-id $_R(L) = n$. Now induction hypothesis applied to $\operatorname{Hom}_R(C, I)$ and L yields that $\pi_i(\mathfrak{p}, \operatorname{Hom}_R(C, I)) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{p})$, and that $\pi_i(\mathfrak{p}, L) = 0$ fo all $\operatorname{ht}(\mathfrak{p}) \notin \{i, ..., i + n\}$. Note that $\operatorname{Ext}^1_R(R_{\mathfrak{p}}, M) = 0$ since M is cotorsion. Hence the exact sequence (*) yields an exact sequence

 $0 \to \operatorname{Hom}_R(R_{\mathfrak{p}}, M) \to \operatorname{Hom}_R(R_{\mathfrak{p}}, \operatorname{Hom}_R(C, I)) \to \operatorname{Hom}_R(R_{\mathfrak{p}}, L) \to 0,$ and the later exact sequence, by applying $k(\mathfrak{p}) \otimes_{R_{\mathfrak{p}}} -$, yields the long exact sequence $\cdots \to \operatorname{Tor}_{i+1}^{R_{\mathfrak{p}}} \big(k(\mathfrak{p}), \operatorname{Hom}_R(R_{\mathfrak{p}}, \operatorname{Hom}_R(C, E)) \big) \to \operatorname{Tor}_{i+1}^{R_{\mathfrak{p}}} \big(k(\mathfrak{p}), \operatorname{Hom}_R(R_{\mathfrak{p}}, L) \big) \to$

 $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}\left(k(\mathfrak{p}),\operatorname{Hom}_{R}(R_{\mathfrak{p}},M)\right)\to\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}\left(k(\mathfrak{p}),\operatorname{Hom}_{R}(R_{\mathfrak{p}},\operatorname{Hom}_{R}(C,E))\right)\to\cdots.$ From the above long exact sequence, it follows that $\operatorname{Tor}_{i}^{R_{\mathfrak{p}}}\left(k(\mathfrak{p}),\operatorname{Hom}_{R}(R_{\mathfrak{p}},M)\right)=0$ for all $\operatorname{ht}\left(\mathfrak{p}\right)\notin\{i,...,i+n+1\}$, as wanted. This completes the inductive step.

(ii) \Longrightarrow (i). Let \mathfrak{m} be a maximal ideal of R. Now $\operatorname{Hom}_R(C, E(R/\mathfrak{m}))$ is C-injective and hence by assumption $\pi_i(\mathfrak{m}, \operatorname{Hom}_R(C, E(R/\mathfrak{m}))) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{m})$. Now by the same argument as in the proof of Theorem 4.3, we have $\operatorname{Ext}^i_{R_\mathfrak{m}}(k(\mathfrak{m}), C_\mathfrak{m}) = 0$ for all $i \neq \operatorname{ht}(\mathfrak{m})$, whence $C_\mathfrak{m}$ is dualizing for $R_\mathfrak{m}$.

Corollary 4.10. The following statements hold true:

- (i) If C is pointwise dualizing, then $C\text{-id }_R(F(M)) \leq C\text{-id }_R(M)$ for any cotorsion R-module M.
- (ii) If C-id $R(F(M)) \leq C$ -id R(M) for any R-module M, then C is pointwise dualizing.
- *Proof.* (i). Assume that M is a cotorsion R-module. If C-id $R(M) = \infty$, then we are done. So assume that C-id $R(M) = n < \infty$. Then by Theorem 4.9, we have $F(M) = \prod T_{\mathfrak{p}}$ where $0 \le \operatorname{ht}(\mathfrak{p}) \le n$. Now the result follows by Lemma 4.1.
- (ii). Assume that \mathfrak{m} is a maximal ideal of R. We have to show that $C_{\mathfrak{m}}$ is dualizing for $R_{\mathfrak{m}}$. Assume that \mathbf{x} is a maximal R-sequence in \mathfrak{m} . Then $\operatorname{fd}_R(R/\mathbf{x}R) < \infty$, and $\operatorname{Ass}_R(C/\mathbf{x}C) = \{\mathfrak{m}\}$ since \mathbf{x} is also a maximal C-sequence. Hence we have the equalities

$$\begin{split} C\text{-fd}\left(C/\mathbf{x}C\right) &= \operatorname{fd}_{R}(\operatorname{Hom}_{R}(C,C/\mathbf{x}C)) \\ &= \operatorname{fd}_{R}(\operatorname{Hom}_{R}(C,C\otimes_{R}R/\mathbf{x}R)) \\ &= \operatorname{fd}_{R}(R/\mathbf{x}R) \\ &< \infty, \end{split}$$

in which the first equality is from Theorem 2.9(ii), and the third one holds because $R/\mathbf{x}R \in \mathcal{A}_C(R)$. Assume that E is an injective cogenerator. Set $(-)^\vee = \operatorname{Hom}_R(-, E)$. Then C-id $R((C/\mathbf{x}C)^\vee) < \infty$ by Lemma 2.10(ii). Now if F is the flat cover of $(C/\mathbf{x}C)^\vee$, then by assumption, we have C-id $R(F) < \infty$. Therefore, we have C-fd $R(F) < \infty$ by Lemma 2.10(i). Next, note that we have

$$C/\mathbf{x}C \hookrightarrow (C/\mathbf{x}C)^{\vee\vee} \hookrightarrow F^{\vee}.$$

Hence, the injective envelope of $C/\mathbf{x}C$ is a direct summand of F^{\vee} . Thus, in fact, $E(R/\mathfrak{m})$

is a direct summand of F^{\vee} , since $R/\mathfrak{m} \hookrightarrow C/\mathbf{x}C$. It follows that C-fd $R(E(R/\mathfrak{m})) < \infty$, and hence we are done by Lemma 4.1, since \mathfrak{m} was arbitrary.

Acknowledgments. We thank the referee for very careful reading of the manuscript and also for his/her useful suggestions.

References

- L. Bican, R. El Bashir and E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), 385–390.
- 2. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1993.
- M.P. Brodmann and R.Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
- 4. L.W. Christensen, Gorenstien Dimensions, Lecture Notes in Math., vol. 1747, Springer, Berlin, 2000.
- L.W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 5 (2001), 1839–1883.
- 6. E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), 179-184.
- 7. E. Enochs and O. Jenda, Relative Homological Algebra, de Gruyter Expositions in Mathematics 30, 2000.
- E. Enochs and J. Xu, On invariants dual to the Bass numbers, Proc. Amer. Math. Soc. 125 (1997), 951–960.
- 9. H.-B. Foxby, $Gorenstein\ modules\ and\ related\ modules$, Math. Scand. ${\bf 31}\ (1973),\ 267-284$.
- E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. Algebraic geometry and its applications 165 (1984), 62–66.
- R. Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin, 1967.
- H. Holm, P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra, 205(2006) 423–445.
- H. Holm, D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 no.4, (2007), 781–808.
- B. Kubik, M. J. Leamer, and S. Sather-Wagstaff, Homology of artinian and Matlis reflexive modules I, J. Pure Appl. Algebra, 215 (2011), no. 10, 2486–2503.
- B. Kubik, M. J. Leamer, and S. Sather-Wagstaff, Homology of artinian and mini-max modules, J. Algebra. 403 (2014), no.1, 229–272.
- M. Rahmani and A.-J. Taherizadeh, Tensor product of C-injective modules, preprint, 2015, available from http://arxiv.org/abs/1503.05492.
- 17. R. Takahashi, Some characterizations of Gorenstein local rings in terms of G-dimension, Acta Math. Hungar. 104 no. 4, (2004), 315–322.
- R. Takahashi and D.White, Homological aspects of semidualizing modules, Math. Scand. 106 (2010)
 5–10.
- M. Salimi, E. Tavasoli, S. Sather-Wagstaff and S. Yassemi, Relative tor functor with respect to a semidualizing module, Algebras and Representation Theory, 17, no.1, (2014), 103–120.
- 20. W. V. Vasconcelos, *Divisor theory in module categories*, North-Holland Math. Stud. 14, North-Holland Publishing Co., Amsterdam (1974).
- 21. J. Xu, Flat covers of modules, Lecture Notes in Mathematics, Vol. 1634, Springer, New York, (1996).
- J. Xu, Minimal injective and flat resolutions of modules over Gorenstein rings, J. Algebra 175 (1995), 451–477.
- 23. S. Yassemi, G-dimension, Math. Scand. 77 (1995), no. 2, 161-174.

FACULTY OF MATHEMATICAL SCIENCES AND COMPUTER, KHARAZMI UNIVERSITY, TEHRAN, IRAN.

 $E ext{-}mail\ address: m.rahmani.math@gmail.com}$

E-mail address: taheri@khu.ac.ir