

Early Assessment of Geostationary Lightning Mapper Observations

Geoffrey T. Stano^{1,2}, Paul Meyer³, Kevin M. McGrath^{1,4}, and Christopher J. Schultz³

¹NASA Short-term Prediction Research and Transition Center (SPoRT), Marshall Space Flight Center, Huntsville, Alabama, United States

²ENSCO, Inc.,

³NASA Marshall Space Flight Center, Earth Science Office,

⁴Jacobs Technology, ESSA Group

98th Annual American Meteorological Society Conference

Austin, Texas

11 January 2018

A Short Outline

- Role with the GOES-R Proving Ground
- Status of the Geostationary Lightning Mapper (GLM) to operations
- Goals of an operational assessment
- Early, potential uses (examples)
- Future Work

Role With the GOES-R Proving Ground

Sample of GLM event density with flash centroid points. (Preliminary, non-operational)

- Liaison to the U.S. National Weather Service for NASA SPoRT
 - Work with multiple operational partners
- Serve as GLM liaison for GOES-R
 - Focus on training
 - Focus on operational applications
- Work to advocate for operational needs
- Greatly supported by co-authors in developing quality training material

Status of the GLM to Operations

- Primary concerns include:
 - Geolocation error
 - Corrections to the United States' National Weather Service viewing system (AWIPS)
- Fixes to be applied!
- Main result is that operational users are not yet receiving these data
- Have been able to speak with forecasters post-event in case-by-case style

13 June 2017 from 1719-1819 UTC (Preliminary, non-operational)

Goals of the Operational Assessment

- Provide initial training
- Variety of geographic and forecast needs
- Evaluate GLM in day-to-day operations
- Compliment other Proving Ground work
- Identify uses (more than just severe weather)
- Identify forecaster-requested training
- Identify forecaster-requested “products”
- Incorporate forecaster examples into an applications library for training

Examples of initial training material.

Key to Success: Show GLM's Relevance

- Physical reasoning for total lightning
 - If in the mixed phase region ...
 - Stronger updrafts = more total lightning
- Build on work with lightning mapping arrays
 - Reinforce physical reasoning
 - Examples for safety, aviation, severe weather

- Connect GLM with radar observations
 - Creates “trust” in data
 - Allows for use in data sparse locations

Early GLM Display

Event: Any illuminated pixel in 2 μ s period.

Group Centroid: Optically weighted cluster of events in time and space. Equivalent to return strokes.

Flash Centroid: Optically weighted cluster of groups (based on events) in time and space.

(Preliminary, non-operational)

- Identify lightning location / extent (events)
- Color highlights intensification
- Flash centroids allow for total counts

Comparison With Available Ground Networks

Radar

Courtesy of
Hazardous
Weather Testbed

Recommended
HWT display with
SPoRT color curve

Vaisala National Lightning
Detection Network Density
and Cloud-to-Ground Points

(Preliminary,
non-
operational)

GLM Event Density
and Flash Centroids

Earth Networks Total Density
with Cloud-to-Ground and
Intra-Cloud Points

Data Sparse Region (Gulf of Mexico)

Convective Monitoring (Animation)

Convective Monitoring (Still Image)

Convective Monitoring (Still Image)

GLM identifies strongest cores,
but also spatial extent

Lightning may further indicate
turbulence

Long Flash Example (Lightning Safety)

ABI Daytime Convection RGB (EUMETSAT recipe
with GLM Groups (Preliminary, non-operational))

1717 UTC

SPORT
Short-term Prediction Research and Transition Center

Long Flash Example Animation (Lightning Safety)

Future Activities / Acknowledgements

GLM event density with flash centroid points
(top) with ABI 11.2 micron IR (bottom)
(Preliminary, non-operational)

- Continue developing Proving Ground training
- Conduct GLM assessment (Spring 2018)
- Conduct assessment with local emergency managers
- Collaborate on GLM uses with aviation partners
- Develop GLM applications library examples (from forecasters!)
- Additional visualizations (flash extent density)
- Investigate using optical energy observations
- Many thanks to the GOES-R Proving Ground for funding

Questions?

Dr. Geoffrey Stano

geoffrey.stano@nasa.gov

NASA SPoRT

<https://weather.msfc.nasa.gov/sport>

NASA SPoRT Blog

<https://nasasport.wordpress.com>

GOES-R

<http://www.goes-r.gov/>

5 minute GLM event density with 5 minute ABI 11.2 micron infrared of Hurricane Irma from 0200 UTC, 9 September 2017 through 0000 UTC 11 September 2017 (Preliminary, non-operational)

