器官生理学8

2024.9.24 (Tsu)

呼吸器系I《呼吸器系の構造とガス運搬》

吉岡 和晃 (第一生理学)

出典: 「人体の正常構造と機能」 | 呼吸器 日本医事新報社

肺の機能とは

"肺胞と肺毛細血管との間で、 O_2 と CO_2 のガス交換を効率よく実現することである。"

(学習項目)

- L. 呼吸器系の構造 (図1-9) 標準生理学 第9版 p711-
 - A. 鼻腔 (nasal cavity)、咽頭 (pharynx)、喉頭 (larynx)、気管 (trachea)、気管支 (bronchi)、 **肺 (lung)** (図 1)
 - B. 外呼吸(肺胞でのガス交換) と内呼吸(組織内ガス交換) (図2) 肺胞気・血液ガスの標準値

標準生理学 第9版 p726

- II. ガス交換 (図8 10) 標準生理学 第9版 p725-
 - A. 肺腔 (alveoli)の微細構造がガス交換にとって、どんな意味を持っているか? (図8&9)
 - B. 肺胞における表面活性物質 (surfactant)の重要性は? (図10)
 - C. ガス交換は拡散によって行われる。ガス交換を拡散させる駆動力は何か?(図9)
- **III. 血液によるガス運搬(図11-15)** 標準生理学 第9版 p730-

酸素は体内で貯蔵できないので、絶えず供給し続けなければならない。

成人では安静呼気時に肺内に約500mLの酸素があり、1分間に約250mLの酸素を消費するので、常に換気していないと約2分で無くなってしまう。

標準生理学 第9版 p712

標準生理学 第9版 p720

ガス交換に関与しない導管 部の容積を解剖学的死腔と 呼ぶ 約150 ml (安静時換気量の約30%) 肺胞の壁には毛細血管網が張り巡らされている。

少なく見積もっても、100~200 mLの血液が一度にガス交換を行っている。 肺胞上皮細胞は極めて薄く、ここをガスが拡散する。

Ⅱ. ガス交換 (肺胞と毛細血管との間での、O₂とCO₂のガス交換)

血管内皮細胞と肺胞上皮細胞を 隔てて、血液と空気が出会う。

肺胞内のO。は毛細血管へ、毛細血管内の CO。は肺胞へ、濃度勾配(ガス分圧差)に よって移動する。 ガス交換の駆動力

表面活性物質は様々な大きさの肺胞を安定に保つ。

脂質とタンパク質の複合体

標準生理学 第9版 p713-714

リン脂質(レシチンの一種dipalmitoylphosphatidylcholine; DPPC)・・・ 80%

糖タンパク surfactant protein(SP)-A, SP-D 表面活性物質関連タンパク質

脂質親和性タンパク SP-B.SP-C

図10 肺腔表面活性物質の働き 表面活性物質分子は、リン脂質の親水性部分を水中に

表面活性物質がなかったら肺は縮んでしまう(肺胞を虚脱から守る)

Ⅲ. 血液によるガス運搬

・酸素(O2) 運搬の主役は赤血球中のヘモグロビンである。

・ヘモグロビンの <u>酸素解離曲線がS字状</u> (シグモイド曲線)	であ
るメリットは?	

- ・代謝が活発な組織では、酸素解離曲線が右寄りにシフトする。 → その生理的意義は?
- ・二酸化炭素 (CO2) は主に<u>重炭酸イオン (HCO</u>3-)の形で血中 を運搬さて、肺で再びCO2となって排出される。
- · O2とCO2の相互運搬は、"機能的連関" により効率よく行われる。

標準生理学 第9版 p730-

	CO ₂		O ₂	
肺	0.2 ℓ	肺内気の炭酸ガス, 肺組織中の重炭酸イオン	0.5 ℓ	肺内気の酸素
血液	2.7 ℓ	溶存ガス、重炭酸イオン、 カルバミノ化合物	1.2ℓ	溶存酸素、 オキシヘモグロビン
組織	120 ℓ	溶存ガス、重炭酸イオン、 炭酸イオン(骨)、カルバミノ化合物	0.3 ℓ	溶存酸素、 オキシミオグロビン
Rt	123 ℓ		2.0 ℓ	

アロステリック効果 allosteric effect

「アロステリック」とは、allo(異なる)-steric(立体構造の)という意味である。 いくつかの異なる意味に用いるが、ここではエフェクター(この場合O2やCO)が ヘムに結合することによりタンパク質(ここではヘモグロビン)の立体構造が変わ り、その機能(ここでは酸素親和性)が変化すること(ホモトロピック効果)。 ヘム以外の部分に結合して、立体構造や酸素親和性を変化させる場合はヘテロトロ ピック効果という (H+, CO₂, 2,3-DPGの作用、次項参照)。

ボーア効果 Bohr effect

標準生理学 第9版 p732

血液中の水素イオン(H⁺)濃度が高くなると(すなわちpHが低くなると)、 H⁺はヘモグロビン(Hb)に結合し、下式の反応は右向きに進む。

$H^+ + HbO_2 \rightarrow H \cdot Hb + O_2$

H⁺の結合したへ<mark>モグロビンは立体構造が変化して、酸素親</mark>和性が低下する(ヘテロ トロピックーアロステリック効果)。その結果、酸素解離曲線は右にシフトする。

また、血液中のCO2濃度が高くなると、赤血球中に存在する炭酸脱水酵素の働きで H⁺とHCO3⁻が生成され、H⁺が増加する。また、CO2分子自身は4量体のグロビン分子 のいずれかのN末端バリンにカルバミル結合し、アロステリック効果により酸素解離 曲線を右にシフトさせる。

このボーア効果により、同じ酸素分圧でも酸素飽和度は低下し、酸素はヘモグロビ ンから離れやすくなる。

ホールデン効果 Haldane effect

標準生理学 第9版 p736

ボーア効果でみたように $[H^+ + HbO_2 \rightarrow H \cdot Hb + O_2]$ から、血中にデオキシヘモグ ロビンが多くなるほど、水素イオン濃度は減る。そのため $[CO_2 + H_2O \rightarrow H^+ +$ HCO3-]の反応が起こり、同じCO2分圧でより多くのHCO3-を運搬出来るようにな る。また、ヘモグロビンにカルバミノ結合するCO2量も増加する。

すなわち、Hbの酸素化により総CO2含量やカルバミノCO2は低下し、脱酸素化で増加 する。 このホールデン効果により、末梢組織において酸素分圧の低下した静脈血は 動脈血に比べより多くのCO2を取り込むことができ、肺においてはCO2の放出が促進 され、CO2の運搬が効率的に行われる。

ヘモグロビン1分子は酸素4分子と結合できる。

煙進牛理学 第9版 p543-

血液 1 dlあたり約 1 5 g のヘモグロビンが存在 → 約 2 0 ml/dlの酸素を運搬

(37°Cの水蒸気で飽和した空気中の酸素は、約17 ml/dl)

図12 酸素解離曲線

標準生理学 第9版 p731-

肺毛細血管でのヘモグロビンの酸素飽和度は、混合静脈血 (PV) か ら終末毛細管血 (Pc) まで、増加する。酸果解離曲線が上に凸であ るために、肺器から肺毛細血管への拡散の駆動圧を高く保てる。低 酸素状態の組織においても同様に、駆動圧を高く保てる。胎児へモ グロビンの解離曲線は母親のヘモグロビンよりも左方にあり、酸素 総和度は脂帯動脈 (Pug) から脂帯静脈 (Puv) へと増加するが、酸 素と結合しても酸素分圧は低いため、母親の胎盤血からの拡散の軽

動圧を高く保つことができる。 胎児ヘモグロビンHbFは酸素を結合しやすく離にくい 脑布動脈 脂布粉原 蒜藤 经末毛辐管 随照気 PERSONAL PUR PUR PV 100

胎児ヘモグロビン (HbF)

成人のヘモグロビンA(HbA)と比べ て酸素解離曲線が左側にシフトしてい る。これにより胎盤という末梢組織に も関わらず、母胎ヘモグロビンは酸素 を多く離し、胎児はそれを効率よく受 け取ることができる。

メトヘモグロビン血症

アミノ酸変異の結果、Fe3+となり 酸素親和性↑ 酸素運搬能↓

一酸化炭素(CO)中毒

ヘモグロビンとCOの親和性はO2の200倍以 上あり、CO存在下での酸素解離曲線は左に シフトするために、組織でO2がヘモグロビ ンから解離しにくくなる。その結果、CO中 毒では血液の酸素運搬能が低下する。

同程度の動脈血酸素含量を有する「貧血*」 の場合よりも、組織における低酸素症はよ り重篤となる。

ただし、ガス交換は障害されないので、動 脈血酸素分圧は正常値である。

*貧血 (Anemia)とはHbが低下した状態 (→酸素運搬能低下、PaO2は不変)

標準生理学 第9版 p732

血液の CO_2 増加、 $pH低下 (H+増加) や体温上昇はヘモグロビンから<math>O_2$ を離れやすくする。

 $H^+ + HbO_2 \iff H \cdot Hb + O_2$ 図13 職業解離曲線に与えるpH、CO2の影響 図14 末梢組織への酸素の供給 血液中のpHの低下、あるいはPCO。の増加による酸素解離曲線の右 方移動をボーア効果と呼ぶ。つまり, 同じ酸素分圧で酸素飽和度は 2,3-diphosphoglycerate(t) 活動中の筋肉 低下し、Hbに結合していた酸素は放出される。Pco。の増加によるボ 赤血球内の解糖系中間産物であ ーア効果は、同時に起こるpH低下によるものと、CO。のヘモグロビ るが、これがHbと結合する ンへの直接作用の双方による。 代期 と、酸素親和性が低下する 標準生理学 第9版 p732 - 733 (ヘテロトロピック効果)。 標準牛理学 動脈血 肺胞気 _ 第9版 p732 100 放出された酸素は CO 2.3-DPG ミオグロビン ミオグロビンが保持する 90 組織温度上昇(2,3-BPG) 80 pH7.4 (Pcos=40 Torr) pH低下 70pH7.2 (PCO2=60 Torr) 60-Point in check! 50 -ヘモグロビンの酸素親和性低下 40 ヘンダーソン・ 30 酸素放出 pH低下によるO2放出分 ハッセルバルヒの式 pH = 6.10 + loa20 30 40 50 60 70 80 90 100 110

CO2の大部分は血漿HCO3-又はカルバミノ化合物として運搬される。

図 10-43 二酸化炭素(炭酸ガス)運搬の概略(まとめ)

(Schmidt, R. F., and Thews, G. (eds.) : Human physiology, 2nd ed., p.587, Springer-Verlag, Berlin, Heidelberg, 1989 を改変)

- ① CO₂が組織の細胞から血漿、さらに赤血球内に拡散する。
- ② 赤血球内に豊富に存在する炭酸脱水酵素の作用によって、 CO₂の水和反応が著しく促進される(約10,000倍)。
- ③ 形成された炭酸 (H₂CO₃)は、直ちに解離し、
- ④ H+は主にヘモグロビン (Hb)に結合して中和される (H·Hb)。 脱酸素化されたHb (デオキシHb) のほうが酸素化Hb (オキシHb) よりこの緩衝作用が強い。したがって、静脈血ではより多くのH+ (間接的にCO₂) がHbと結合できる。 → ボーア効果
- ⑤ 赤血球内で形成された大量の HCO_3 -は、濃度勾配に従って血漿中へ拡散する。運搬される CO_2 のうち、この HCO_3 -の形で運ばれるものが最も多い(約80%)。
- ⑥ CO_2 の一部は、Hb分子中のN末バリン残基のTミノ基と反応して、カルバミノ CO_2 が形成される。

- ⑦ CO₂はわずかな濃度勾配に従って、血漿中から肺胞内に拡散する。
- 8 この結果、肺毛細血管では③で示した反応は急速に左向きに進行する。
- ⑨ また、Hbの酸素化に伴ってHbと結合していたH+や、カルバミノ CO_2 の CO_2 も放出されやすくなるので、肺における CO_2 の排出はいっそう促進される。 → ホールデン効果

ホールデンHaldane, J.S. が1914年に発表した「ホールデン効果」の論文の二酸化炭素解離曲線の図。黒丸は酸素化血液で、白丸は還元血液である。「ボーア効果」と「ホールデン効果」は、「酸素と二酸化炭素はヘモグロビンと結合する際に、互いに競合する」という同一の現象を二つの面からみたものである。図は原論文より。

(諏訪先生の血液ガス博物館より) https://www.acute-care.jp/ja-jp/ document/bloodgas-museum