Milnor fibrations and oriented matroids

Paul Mücksch¹

(joint work with Masahiko Yoshinaga²)

¹ Technical University Berlin, Germany; ² Osaka University, Japan

Motivation

An important instance of a most non-isolated singularity is a hyperplane arrangement \mathcal{A} in $V = \mathbb{C}^{\ell}$.

- Let $\alpha_H \in (\mathbb{C}^{\ell})^*$ $(H = \ker(\alpha_H) \in \mathcal{A})$ be defining linear forms for \mathcal{A} ,
- $Q = \prod_{H \in \mathcal{A}} \alpha_H \in \mathbb{C}[x_1, \dots, x_\ell]$ the corresponding **defining polynomial** of \mathcal{A} ,
- $\mathfrak{X} = V \setminus \bigcup H$ the arrangement **complement**.

The **Milnor fibration** of \mathcal{A} is

$$Q|_{\mathfrak{X}}: \mathfrak{X}
ightarrow \mathbb{C}^{ imes}, v \mapsto Q(v),$$

and its **Milnor fiber** we denote by $\mathfrak{F} := Q^{-1}(1)$.

For the complement $\boldsymbol{\mathfrak{X}}$ of a complexified real arrangement, the foundational work of Salvetti provided a combinatorial model in the form of the **Salvetti complex**, a finite regular CW complex whose homotopy type depends only on the oriented matroid of the arrangement (see below).

In contrast, a concrete model for the homotopy type of \mathfrak{F} is available only in the special cases of real reflection arrangements, thanks to Brady, Falk, and Watt and the generic case due to Orlik and Randell.

The Salvetti complex

Let \mathcal{L} be the covectors poset of an oriented matroid \mathcal{M} and \mathcal{T} its topes, i.e. maximal elements of \mathcal{L} . Then the (face poest of the) Salvetti complex \mathcal{S} of \mathcal{M} is defined as

$$\mathcal{S} := \{(\sigma,T) \mid T \in \mathcal{T} \text{ and } \sigma \in \mathcal{L}_{\leq T}\} \subseteq \mathcal{L} imes \mathcal{T},$$

with partial order

$$(\sigma,T)\leq_{\mathcal{S}} (au,R):\iff \sigma\geq_{\mathcal{L}} au ext{ and } \sigma\circ R=T.$$

Theorem [Salvetti 1987].

The Salvetti complex of $\mathcal{M}(\mathcal{A})$ is homotopy equivalent to the complement of the complexified arrangement:

$$|\mathcal{S}|\cong V\otimes\mathbb{C}\setminus\left(igcup_{H\in\mathcal{A}}H\otimes\mathbb{C}
ight).$$

The Salvetti complex ${\cal S}$ has

- one vertex for each of chamber (or tope),
- two edges connecting each pair of adjacent chambers, represented by two arrows pointing in opposite directions,
- and one k-cell for each $\sigma \in \mathcal{L}^{\vee}$ of codimension k and tope T adjacent to σ , PL homeomorphic to $|\mathcal{L}_{\leq \sigma}^{\vee}|$, whose boundary cells are identified with k-1 cells with the same edges oriented away $\overline{\text{from }} T$.

 $rk_B = 3$

 ${
m rk}_B=2$

 ${
m rk}_B=1$

 $rk_B = 0$

Definition – The tope rank subdivision

Let $B \in \mathcal{T}$ be a tope. We define a partial order on \mathcal{T} by $R \leq_B T : \iff S(B,R) \subseteq S(B,T)$, where S(B,R) denotes the set of (pseudo-)hyperplanes separating B and R. The resulting ranked poset $\mathcal{T}_B = (\mathcal{T}, \leq_B)$ with rank function $\mathrm{rk}_B(T) := |S(B,T)|$ is called the **tope poset** with respect to B.

Let $\sigma \in \mathcal{L}^{\vee}$ be a cell in the dual covector complex and $B \in \mathcal{T}$ a tope. Recall that we set

 $\mathcal{T}(\sigma) := \mathcal{T} \cap \mathcal{L}_{\leq \sigma}^{\vee}$ which can be identified with $\operatorname{vert}(\sigma)$ and define

- $ullet \ \sigma_k^B := \{T \in \mathcal{T}(\sigma) \mid \mathrm{rk}_B(T) = k\},$
- $ullet \ \sigma^B_{[k,k+1]} := \sigma^B_k \cup \sigma^B_{k+1},$
- \bullet define the **(B-)**rank subdivision of σ as:

$$\operatorname{rk}_B\operatorname{sd}(\sigma):=$$

 $\{\sigma_k^B \mid k \in \mathrm{rk}_B(\mathcal{T}(\sigma))\}$

 $\cup \{\sigma^B_{[k,k+1]} \mid k \in \mathrm{rk}_B(\mathcal{T}(\sigma)) \setminus \{\mathrm{rk}_B(\sigma \circ (-B))\}\}.$ Then the $(B ext{-})$ rank subdivision of \mathcal{L}^ee is the poset defined by: $\operatorname{rk}_B\operatorname{sd}\mathcal{L}^ee := \bigcup \operatorname{rk}_B\operatorname{sd}(\sigma)\subseteq 2^{\mathcal{T}}$

with partial order by inclusion.

We further have a poset map to the original complex: $p_B := p|_{\operatorname{rk}_B \operatorname{sd} \mathcal{L}^{\vee}} : \operatorname{rk}_B \operatorname{sd} \mathcal{L}^{\vee} \to \mathcal{L}^{\vee}, \mathcal{T} \supseteq \mathfrak{a} \mapsto \min \{ \sigma \in \mathcal{L}^{\vee} \mid \mathfrak{a} \subseteq \mathcal{T}(\sigma) \}.$

 $\mathrm{rk}_T \, \mathrm{sd}(\sigma)$), and the **tope-rank subdivision** of $\mathcal S$ is defined by $\mathrm{rksd}\mathcal S := \bigcup \mathrm{rk} \, \mathrm{sd}(x)$, with

partial order given by $(\mathfrak{a},T) \leq (\mathfrak{b},R) : \iff \mathfrak{a} \subseteq \mathfrak{b}$ and $p_T(\mathfrak{a}) \circ R = T$. We have a poset map $\widetilde{p}: \mathrm{rksd}\mathcal{S} o \mathcal{S}, (\mathfrak{a},T) \mapsto (p_T(\mathfrak{a}),T)$.

Combinatorial models of fibrations

For a poset map $f: P \to Q$ we write $(f \downarrow q) := f^{-1}(Q_{\leq q})$ for **poset fibers** of $f \ (q \in Q)$ Theorem [Quillen's Theorem B for posets 1973].

If for all $a \leq b$ $(a, b \in Q)$ the inclusion $(f \downarrow a) \hookrightarrow (f \downarrow b)$ is a homotopy equivalence, the homotopy fiber $\operatorname{HoFib}(|\Delta(f)|, a)$ is homotopy equivalent to $|\Delta(f \downarrow a)|$.

If for all $a \leq b$ $(a, b \in Q)$ the inclusion $(f \downarrow a) \hookrightarrow (f \downarrow b)$ is a homotopy equivalence, then fis called a **poset quasi-fibration**. Let $\varphi: X \to Y$ be a topological fibration. Then we say that f is a **combinatorial model** for φ if f is a poset quasi-fibration and a (homotopy) commutative diagram:

$$|\Delta(P)| \xrightarrow{|\Delta(f)|} |\Delta(Q)|$$
 $\simeq \downarrow \qquad \qquad \downarrow \simeq$
 $X \xrightarrow{\varphi} Y.$

where the vertical maps are homotopy equivalences.

Definition – combinatorial Milnor fibration

Let \mathcal{C} denote the Salvetti complex of the rank 1 oriented matroid with covectors $\{+,-,0\}$, i.e. the face poset of \mathcal{C} is given by the set $\{(+,+),(0,+),(-,-),(0,-)\}$, a regular cell decomposition of the circle

Define the map $Q: \mathcal{T} \to \{+, -\}, T \mapsto \prod_{e \in E} T_e$, and the poset map $\widetilde{Q}: \mathrm{rksd}\mathcal{S} \to \mathcal{C}$ by:

$$\widetilde{Q}((\sigma_k^T,T)) := egin{cases} (+,+) & ext{if } Q(\sigma_k^T) = \{+\}, \ (-,-) & ext{if } Q(\sigma_k^T) = \{-\}, \end{cases}$$

and

$$\widetilde{Q}((\sigma_{[k,k+1]}^T,T)) := egin{cases} (0,+) & ext{if } Q(\sigma_k^T) = \{+\}, \ (0,-) & ext{if } Q(\sigma_k^T) = \{-\}. \end{cases}$$

We define the (combinatorial) Milnor fiber of \mathcal{M} by $\widetilde{\mathfrak{F}}(\mathcal{M}) := \widetilde{Q}^{-1}((+,+))$.

Main results in [MY25]

Theorem 1.

The poset $\mathbf{rksd}\mathcal{S}$ is the face poset of a regular cell complex PL-homeomorphic to \mathcal{S} and if $\mathcal{S}=$ $\mathcal{S}(\mathcal{A})$ is the Salvetti-complex of a real arrangement \mathcal{A} , then $|\mathbf{rksd}\mathcal{S}|$ is homotopy equivalent to the complexified complement $\mathfrak{X}(\mathcal{A})$.

Theorem 2.

The map $Q: \mathbf{rksd}\mathcal{S} \to \mathcal{C}$ is a poset quasi-fibration.

Theorem 3.

There is a (homotopy) commutative square

$$egin{array}{ll} |\operatorname{rksd}\mathcal{S}(\mathcal{A})| & \stackrel{|\widetilde{Q}|}{\longrightarrow} |\mathcal{C}| \ & \cong \downarrow & \downarrow \simeq \ \mathfrak{X}(\mathcal{A}) & \stackrel{Q}{\longrightarrow} \mathbb{C}^{ imes}, \end{array}$$

where the vertical maps are homotopy equivalences, i.e. $\hat{\boldsymbol{Q}}$ is a combinatorial model for the Milnor fibration of A.

Theorem 4.

The combinatorial Milnor fiber \mathfrak{F} is homotopy equivalent to the geometric Milnor fiber \mathfrak{F} .

About the proofs

Theorem 1: consider the covector complex \mathcal{L} together with its dual \mathcal{L}^{\vee} . We construct a new complex $\Sigma_{[k,k+1]}$ with respect to $B \in \mathcal{T}$ from a certain subcomplex of $\mathcal{L} \setminus \{0\}$ which is the face poset of a regular cell decomposition of the PL (d-1)-sphere.

Then, by construction, $\mathcal{F}(\Sigma_{[k,k+1]}^{\vee})$ is isomorphic to $\operatorname{rk}_{B}\operatorname{sd}\mathcal{L}_{<0}^{\vee}$ which is also a PL (d-1)sphere.

Theorem 2: we use Forman's **Discrete Morse Theory**. We construct an acyclic matching $\underline{\mathbf{M}}$ on $(Q \downarrow (0,+))$ giving a first homotopy equivalence. Then, "pushing in" remaining cones over contractible subcomplexes of $(Q \downarrow (+,+))$ with vertices in $(Q \downarrow (-,-))$ concludes our argument:

Theorem 3: assume that $|\mathcal{A}| = n$ and let \mathcal{B}_n be the Boolean arrangement of rank n. We split up the diagram into smaller parts as follows, each of which commutes (up to homotopy):

Contact Information

Main Reference

• Web: https://paulmuecksch.github.io/

- Email: paul.muecksch+uni@gmail.com

