18.7.2022 העבודה: 18.7.2022

שם המרצה: ד"ר קובי טודרוס

שם הקורס: נושאים באנליזה סטטיסטית מרובת משתנים

מספר הקורס: 361.2.2130

שנה: 2022, סמסטר: ב׳

משך העבודה: שמונה ימים

עבודה בקורס נושאים באנליזה סטטיסטית מרובת משתנים

יש לענות באופן מפורט על כל השאלות. תשובות לא מנומקות לא תקבלנה ניקוד.

בהצלחה!!!

שאלה 1: הרחבה אורתונורמלית של וקטור אקראי (15 נקי)

נתון וקטור אקראי $\mathbf{x} \in \mathbb{R}^N$ המקיים את המודל הבא:

$$x = As + w$$

. הפירוק הפירוק את המקיימת את-סינגולרית לא-סינגולרית המקיימת את הפירוק הבא: $\mathbf{A} \in \mathbb{R}^{N imes N}$

$$A = BCF$$

כאשר מורכבות מסט וקטורי הוניטריות אשר א $\mathbf{F} \! \triangleq \! \left[\mathbf{f}_{\!_{1}}, \ldots \mathbf{f}_{\!_{N}} \right]$ ו- ו $\mathbf{B} \! \triangleq \! \left[\mathbf{b}_{\!_{1}}, \ldots \mathbf{b}_{\!_{N}} \right]$ כאשר

הם וקטורים $\mathbf{w}\in\mathbb{R}^N$ -ו $\mathbf{s}\in\mathbb{R}^N$ הוקטורים . $\left|c_1\right|>\ldots>\left|c_N\right|$ המשיים על האלכסון הראשי כך שמתקיים , $\Sigma_{\mathbf{w}}=\sigma_{\mathbf{w}}^2\mathbf{I}_N$ וומטריצות קווריאנס $\mathbf{0}$ ומטריצות מטריצת יחידה. באשר $\mathbf{I}_N\in\mathbb{R}^{N\times N}$ מסמנת מטריצת יחידה.

- א. (3 נקי) מצאו באופן מפורש את וקטורי הבסיס של הרחבת אובוען מפורש א.
- ב. (4 נקי) מצאו באופן מפורש את הוריאנסים של מקדמי הרחבת מפורש את הוריאנסים.
- ג. M < N, $\mathbf{y} \triangleq T \Big[\mathbf{x} \Big] \in \mathbb{R}^M$ גון וקטור אקראי אופרטור, $\mathbf{H} \triangleq [\mathbf{h}_1, ..., \mathbf{h}_M] \in \mathbb{R}^{N \times M}$ גו נקי) נתון וקטור אקראי אופרטור אקראי אופרטור אקראי לא מטריצה המכילה $\mathbf{H} \triangleq [\mathbf{h}_1, ..., \mathbf{h}_M] \in \mathbb{R}^{N \times M}$

בסיס אורתונורמליים הפורשים תת-מרחב לינארי של $\mathbf{z}\in\mathbb{R}^M$ ו- \mathbb{R}^N הוא וקטור אקראי עם בסיס אורתונורמליים הפורשים תת-מרחב לינארי של \mathbf{z} ו באופן \mathbf{z} ומטריצת קווריאנס ב \mathbf{z} ו \mathbf{z} מניחים כי \mathbf{z} ו הם חסרי קורלציה. מצאו באופן מפורש את המטריצה שעבורה אנרגית הוקטור הדחוס $\mathbf{E}\left[\|\mathbf{y}\|^2\right]$ תהיה מקסימאלית. מצאו באופן מפורש את האנרגיה המתקבלת עבור מטריצה זו.

שאלה 2: Canonical Correlation Analysis (15 נק')

יהיו עם מטריצות ממשיים עם מטריצות, $p \leq q$, $\mathbf{y} \triangleq \begin{bmatrix} y_1, y_2, \dots, y_q \end{bmatrix}^T$ ו- $\mathbf{x} \triangleq \begin{bmatrix} x_1, x_2, \dots, x_p \end{bmatrix}^T$ יהיו יהיו $\mathbf{x} = \mathbf{y} = \mathbf{y}$ ו- $\mathbf{y} = \mathbf{y} = \mathbf{y}$, בהתאמה. מטריצת הקרוס-קווריאנס נתונה לפי בנוסף, $\mathbf{z} = \mathbf{y} = \mathbf{y}$ ו- $\mathbf{y} = \mathbf{y}$ ו- \mathbf

- את כיווני $\left\{ \left(\mathbf{a}_k, \mathbf{b}_k \right) \right\}_{k=1}^p$ את הקנוניים וב- $\left\{ \left(\mathbf{a}_k, \mathbf{b}_k \right) \right\}_{k=1}^p$ את כיווני \mathbf{h} ו \mathbf{g} , $\Sigma_{\mathbf{y}}$, $\Sigma_{\mathbf{x}}$ ביטויים מפורשים בתלות ב- $\left(\mathbf{x}, \mathbf{y} \right)$ ו \mathbf{h} עבור הקנוניים של $\left(\mathbf{x}, \mathbf{y} \right)$. כאשר \mathbf{r} הוא מספר מקדמי הקורלציה הקנוניים ששונים מאפס. $\left\{ \left(\mathbf{a}_k, \mathbf{b}_k \right) \right\}_{k=1}^r$ ו ρ_1, \ldots, ρ_r
- ב. $\{(\mathbf{a}_k',\mathbf{b}_k')\}_{k=1}^p$ נסמן ב- ρ_1',\dots,ρ_p' את מקדמי הקורלציה הקנוניים וב- ρ_1',\dots,ρ_p' את כיווני , $\mathbf{G},\mathbf{H},\mathbf{h},\Sigma_{\mathbf{y}}$ כתבו ביטויים מפורשים בתלות ב- (\mathbf{w},\mathbf{z}) , כתבו ביטויים מפורשים \mathbf{f} ו- $\{(\mathbf{a}_k',\mathbf{b}_k')\}_{k=1}^p$ בור $\{(\mathbf{a}_k',\mathbf{b}_k')\}_{k=1}^p$ כאשר $\{(\mathbf{a}_k',\mathbf{b}_k)\}_{k=1}^p$ ו- $\{(\mathbf{a}_k',\mathbf{b}_k')\}_{k=1}^p$ בקורלציה הקנוניים ששונים מאפס.
- ג. (5 נקי) מצאו תנאי על \mathbf{H} ו-m (מספר השורות של \mathbf{H}) שעבורו מקדמי הקורלציה הקנוניים שנמצאו בסעיפים א' ו-ב' מתלכדים.

שאלה 3: אלגוריתם ה-EM (20 נקי)

. מדרת את המקיימת המקיימת מדידות/תצפיות סדרת $\mathbf{x}^N \triangleq \left\{\mathbf{x}_n \in \mathbb{R}^p\right\}_{n=1}^N$ הבא

$$\mathbf{x}_n = (1 - u_n)\mathbf{s}_n + u_n\mathbf{w}_n$$

כאשר $\mathbf{w}^N \triangleq \left\{\mathbf{w}_n \in \mathbb{R}^p\right\}_{n=1}^N$ -ו $\mathbf{s}^N \triangleq \left\{\mathbf{s}_n \in \mathbb{R}^p\right\}_{n=1}^N$, $u^N \triangleq \left\{u_n \in \mathbb{R}\right\}_{n=1}^N$ הן הוא u_n - u_n בעם ו.i.i.d. נתון כי כל אחת מהסדרות \mathbf{s}^N , u^N ו- \mathbf{s}^N ו- \mathbf{s}^N היא סדרה אקראית. כל אחת מהסדרות אקראי בינארי המקבל ערך של u_n או וומטריצת קווריאנס u_n אידועים ו- u_n הוא וקטור אקראי עם פונקצית צפיפות פילוג עם תוחלת u_n וומטריצת קווריאנס u_n לא ידועים ו- u_n הוא וקטור אקראי עם פונקצית צפיפות פילוג ידועה u_n בנוסף, נתון כי הסדרות הסדרות u_n ו- u_n מתוך סדרת התצפיות u_n יש לרשום משוואות אלגוריתם ה-EM לשיערוך u_n הוא וווא מפורשות ללא תוחלות.

שאלה 4: Multivariate Kernel Density Estimation (בק')

נתונה סדרה $\mathbf{x} \in \mathbb{R}^p$ עם אקראי וקטור מהפילוג של i.i.d. של דגימות עפיפות סדרה $\left\{\mathbf{x}_n\right\}_{n=1}^N$

. כדלקמן: , $\mathbf{r} \in \mathbb{R}^p$, $f_{\mathbf{x}}(\mathbf{r})$ של המשערך את המשערן. פרציפות מעל \mathbb{R}^p , כדלקמן:

$$\hat{f}_{\mathbf{x}}(\mathbf{r}) \triangleq \frac{1}{Nw_N^p} \sum_{n=1}^N K\left(\frac{\mathbf{r} - \mathbf{x}_n}{w_N}\right)$$

באות: הרכונות התכונות גרעין המקיימת את התכונות הבאות: $K(\cdot)$

$$\int_{\mathbb{R}^p} K(\mathbf{r}) d\mathbf{r} = 1 \quad .1$$

$$\int_{\mathbb{R}^p} K^2(\mathbf{r}) d\mathbf{r} < \infty \quad .2$$

. N אשר תלוי במספר הדגימות הפרמטר אוא פרמטר הדגימות הפרמטר אוא הפרמטר האוא א

$$E\left[\left|\hat{f}_{\mathbf{x}}(\mathbf{r})-f_{\mathbf{x}}(\mathbf{r})\right|^{2}
ight]<\infty$$
 א. מצאו האם לכל N סופי מתקיים אם (3) א.

: מתקיים $\mathbf{r} \in \mathbb{R}^p$ ולכל $\varepsilon > 0$ ולכל שעבורו מספיק על מספיק על מצאו (6) ב.

$$\Pr\left[\left|\hat{f}_{\mathbf{x}}(\mathbf{r}) - f_{\mathbf{x}}(\mathbf{r})\right| > \varepsilon\right] \xrightarrow{N \to \infty} 0$$

ג. (6 נק') ידוע כי פרמטר רוחב החלון האופטימלי במובן AMISE נתון לפי:

$$w_{o,N} = \left(\frac{p \int_{\mathbb{R}^p} K^2(\mathbf{r}) d\mathbf{r}}{N \left(\int_{\mathbb{R}^p} (\mathbf{e}_1^T \mathbf{r})^2 K(\mathbf{r}) d\mathbf{r}\right)^2 \int_{\mathbb{R}^p} tr^2 \left[\nabla^2 f_{\mathbf{x}}(\mathbf{r})\right] d\mathbf{r}}\right)^{\frac{1}{p+4}}$$

:כאשר און עבור עבור אים און וקטור היחידה וקטור פוא פון אוא וקטור פוא האם אוא פון פאשר פוא וקטור פאשר פוא ווא פוא כאשר ו

$$\Pr\left[\left|\hat{f}_{\mathbf{x}}(\mathbf{r}) - f_{\mathbf{x}}(\mathbf{r})\right| > \varepsilon\right] \xrightarrow{N \to \infty} 0$$

 $\mathbf{r} \in \mathbb{R}^p$ לכל $\varepsilon > 0$ לכל

שאלה 5: גילוי אותות ברעש גאוסי באמצעות Mardia's tests שאלה 5: גילוי אותות ברעש גאוסי

נתונה בעיית ההחלטה הבאה עבור גילוי אות אקראי ברעש גאוסי:

$$H_0$$
: $\mathbf{x}_n = \mathbf{w}_n$, $n = 1,...,N$ (signal does not exist)
 H_1 : $\mathbf{x}_n = \mathbf{s}_n + \mathbf{w}_n$, $n = 1,...,N$ (signal exists)

i.i.d. היא סדרת תצפיות אקראיות. התהליך $\left\{\mathbf{s}_n \in \mathbb{R}^p\right\}$ הוא תהליך סיגנל אקראי $\left\{\mathbf{x}_n \in \mathbb{R}^p\right\}$ הוא תהליך רעש $\left\{\mathbf{w}_n \in \mathbb{R}^p\right\}$ הוא תהליך רעש הימטרי מסביב לראשית. התהליך $\left\{\mathbf{w}_n \in \mathbb{R}^p\right\}$ הוא תהליך רעש בלתי-נצפה עם פילוג גאוסי. מניחים כי:

- .1 התהליכים $\left\{\mathbf{w}_n \in \mathbb{R}^p
 ight\}$ ו- $\left\{\mathbf{s}_n \in \mathbb{R}^p
 ight\}$ הם בת״ס.
- . $\sigma_{\rm s}^2$ הם וריאנס במשותף במ"ס במשותף ${\bf s} \!\triangleq\! \left[s_1, \ldots, s_p\right]^{\! T}$ איברי וקטור הסיגנל .2
- . $\sigma_{\mathbf{w}}^2$ הם זהה ווריאנס ווריאנס ווריאנס הם $\mathbf{w} \triangleq \left[w_1, ..., w_p\right]^T$ איברי וקטור הרעש. 3
 - . $E\Big[\left| \left| \mathbf{x} \right| \right|^g \Big] < \infty$ תחת שתי ההיפוטזות מתקיים. 4

מעוניינים לגלות את האות באמצעות מבחני הנורמליות של Mardia.

- א. עבור איז הסתברות הסתברות אילוי השווא N_{α} ומספר סופי ומספר החלטה איז פיות, הסתברות גילוי השווא א. (2 נק') נתון כי עבור סף החלטה א. מצאו את ה- א. ווא א. מצאו את ה- א. ווא א. מצאו את הראשר בפקטור א. מבקטור בפקטור הרעש מוכפל בפקטור א. ווא מוכפל בפקטור ישנו א. ווא מוכפל בפקטור ישנו א. ווא א.
- (PD) ב. N_{β} נתון כי עבור סף החלטה בהלטה ומספר סופי אל תצפיות, הסתברות הגילוי (PD) ב. של מצאו את ה- N_{β} ו- N_{β} ו- N_{β} ו- N_{β} ו- N_{β} ו- N_{β} ו- N_{β} באור את ה- N_{β} ו- N_{β} באור את ה- N_{β} ו- N_{β} באור את ה- N_{β} ו- N_{β} ו- N_{β} באור מוכפלים בפקטור N_{β} .
- 0.01על ($N\to\infty)$ אסימפטוטית PFA שעבורו תתקבל שעבורו את סף ההחלטה את נק') ג. או את את משים ב- Mardia's skewness test כאשר משתמשים ב-
- 0.01של ($N \rightarrow \infty$) אסימפטוטית PFA שעבורו תתקבל tההחלטה את מצאו (נק') ד. $p = 10 1 \; \text{Mardia's kurtosis test}$

Mardia's kurtosis test שעבורו שעבורן
$$r \triangleq \frac{1}{p\sigma_s^4} \sum_{k=1}^p \mathrm{E} \left[s_k^4 \right]$$
 ה. מצאו תנאי מספיק על היחס

הוא קונסיסטנטי.

שאלה 6: מבחן לחוסר תלות-סטטיסטית (20 נק')

יהי וקטורים אקראיים יהי $P_{\mathbf{x},\mathbf{y}}$ של שני וקטורים אקראיים יהי יהי יהי $(\mathbf{x},\mathbf{y})^N \triangleq \{(\mathbf{x}_n,\mathbf{y}_n)\}_{n=1}^N$ מהפילוג המשותף $\mathbf{y} = \mathbf{y}$ ו. $\mathbf{x} \in \mathbb{R}^p$ מעוניינים לבחון את ההשערה ש- $\mathbf{x} \in \mathbb{R}^p$ הם בת"ס במשותף אל מול ההשערה הנגדית (היפותזה (H_1)). לשם כך, מגדירים את היפותזה (H_2) אל מול ההשערה הנגדית (היפותזה (H_2)) לשם כך, מגדירים את הבצחרוכים של הבא $(\hat{\rho}_k)_{k=1}^p$ ווניים, $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ הם שיערוכים של מקדמי הקורלציה הקנוניים, אשר מתקבלים באמצעות משערכי ה- $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ ונניח כי $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ ונניח כי $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ ונניח כי $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ ווניח כי $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ ווניח כי $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ ווניח כי $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ לסף $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ וההיפך עבור $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ תמיד מתקיים: $(\mathbf{x},\mathbf{y})^N = \mathbf{y}$ תמיד מתקיים:

$$\lim_{N \to \infty} \Pr \left[T \left[\left(\mathbf{x}, \mathbf{y} \right)^{N} \right] > t \right] \le 0.01$$

נוסחאות עזר

:Markov אי-שיוויון

:יהי אזי מתקיים: סקלר חיובי. אזי משתנה אי-שלילי עם תוחלת סופית יהי משתנה אקראי אי-שלילי אי

$$\Pr[X \ge \alpha] \le \frac{E[X]}{\alpha}$$

משפט עזר לשאלה 4:

$$v_{t}(\mathbf{r}) \triangleq \frac{1}{t^{p}} v \left(\frac{\mathbf{r}}{t} \right)$$
 נגדיר נגדיר . $\int_{\mathbb{R}^{p}} v(\mathbf{r}) d\mathbf{r} = a$ כך שמתקיים \mathbb{R}^{p} כך כך שמתקיים $v(\mathbf{x})$

:מתקיים $\mathbf{r} \in \mathbb{R}^p$ אזי לכל \mathbb{R}^p אזי מעל $\mathbf{r} \in \mathbb{R}^p$ מתקיים היא פונקציה חסומה וגזירה ברציפות מעל

$$\lim_{t\to 0} (v_t * g)(\mathbf{r}) = ag(\mathbf{r})$$

 $(v_t * g)(\mathbf{r}) \triangleq \int\limits_{\mathbb{R}^p} v_t(\mathbf{r} - \mathbf{y}) g(\mathbf{y}) d\mathbf{y}$ ו- \mathbb{R}^p -באשר ההתכנסות היא יוניפורמית ב

 $:\!\sigma^2$ ווריאנס חוחלת עם גאוסי אקראי משתנה משתנה מומנט רביעי של משתנה אקראי אוסי

$$E[X^4] = 3\sigma^4$$

תוחלת של משתנה אקראי מפולג chi-squared עם קרגות חופש:

$$E[X] = p$$