AM 213A HW1

Joseph Moore

Winter 2022

1. We can write A as $QUQ^{-1} = QUQ^{T}$ where Q and U are real matrices. If we

Recovered with who you are actually $Q^tAQ = \begin{pmatrix} q_1^T \\ q_2^T \\ \vdots \\ q_m^T \end{pmatrix} (Aq_1 \ Aq_2 \ \dots \ Aq_m)$ Then bring In eigen south. How do you know $Q + ron Schw = \begin{pmatrix} q_1^T \\ q_2^T \\ \vdots \\ q_m^T \end{pmatrix} \begin{pmatrix} \lambda_1 q_1 & \lambda_2 q_2 & \dots & \lambda_m q_m \end{pmatrix}$ relates to eight $= \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$

$$Q^{t}AQ = \begin{pmatrix} q_{1}^{T} \\ q_{2}^{T} \\ \vdots \\ q_{m}^{T} \end{pmatrix} \begin{pmatrix} Aq_{1} & Aq_{2} & \dots & Aq_{m} \end{pmatrix}$$

$$= \begin{pmatrix} q_{1}^{T} \\ q_{2}^{T} \\ \vdots \\ q_{m}^{T} \end{pmatrix} \begin{pmatrix} \lambda_{1}q_{1} & \lambda_{2}q_{2} & \dots & \lambda_{m}q_{m} \end{pmatrix}$$

$$= \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_m \end{pmatrix}$$

2. Using $\epsilon = 1e - 17$ and c = 1e18 resulted in x = 0.00000 and y = 1.00000, which

is wrong. We should get (1,1). After multiplying the row by a large c, the algorithm pivots this row to the top and we get

$$\begin{pmatrix} c\epsilon & c & c \\ 1 & 1 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} c\epsilon & c & c \\ 1 - \frac{c\epsilon}{c\epsilon} & 1 - \frac{c}{c\epsilon} & 2 - \frac{c}{c\epsilon} \end{pmatrix} = \begin{pmatrix} c\epsilon & c & c \\ 0 & 1 - \frac{1}{\epsilon} & 2 - \frac{1}{\epsilon} \end{pmatrix}$$

operforming back substitution gets us y = 1 from the bottom row and now the top row will give us x = 0. If we don't multiply by some very large constant then ϵ won't be ϵ deprivated to the top and we won't run into this problem. By leaving ϵ on the bottom row we can zero it out by subtracting a very small multiply of the first row from the second row. This will leave all the other elements at play virtually unchanged.

3. We know that $x^T A x > 0$ for all vectors. Then it must be the case that $e_i^T A e_i > 0$ for each i. But $e_i^T A e_i$ is just the i'th diagonal element of A and therefore each diagonal

element of A must be positive.

4. expend, demonstrate

4. expend, demonstrate

Language 12th

Needle 90 be Shown.

- (a) We need to show that $A_{21} A_{21}A_{11}^{-1}A_{11} = 0$. Which is obvious since $A_{21}A_{11}^{-1}A_{11} = A_{21} A_{21}I = A_{21} A_{21} = 0$
- (b) A can be upper triangularized by applying a lower triangular matrix to A or $L^{-}1A = U$. From this we can write

$$L^{-1} = \begin{pmatrix} Y & 0 \\ X & W \end{pmatrix}$$

From this we know that $YA_{11} = U_{11}$, where U_{11} is A_{11} upper triangularized and thus $Y = L_{11}^{-1}$ and

$$L^{-1} = \begin{pmatrix} L_{11}^{-1} & 0 \\ X & W \end{pmatrix}$$

$$L^{-1}A = \begin{pmatrix} U_{11} & L_{11}^{-1}A_{12} \\ XA_{11} + WA_{21} & XA_{12} + WA_{22} \end{pmatrix}$$

Now we set $XA_{11} + WA_{21} = 0$ and solving for X we get $X = -WA_{21}A_{11}^{-1}$. From this we have

we have $XA_{12} + WA_{22} = -WA_{21}A_{11}^{-1}A_{12} + WA_{22}$ Which is exactly what we want if we set W = I. Police of a few Norths. **5**.

(a) If we decompose A into $A_1 + iA_2$ then we have

$$Ax = (A_1 + iA_2)x = A_1x + iA_2x = b_1 + ib_2$$

Which becomes

$$A_1 x = b_1$$
$$A_2 x = b_2$$

Which can be written as in matrix form

Who hoppers W/ e.S. (Az) (ixe) is real.

$$A_1 \quad A_2) x = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

 $(A_1 \quad A_2) x = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ Which is not square but looks correct. It really needs to be square -1

(b) Performing Gaussian elimination on a square 2m matrix is $O(\frac{8m^3}{3})$. For complex algebra, each multiplication will be quadrupled resulting in a $O(\frac{4m^3}{3})$, which is slightly cheaper slightly cheaper.

Sorual costs?