Data Structures Level Order Traversal 1

Mostafa S. Ibrahim
Teaching, Training and Coaching since more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / Msc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

Level Order Traversal

- We learned 3 recursive traversal methods that each go as deep as possible
 - We call them depth first (go deeper)
 - o Inorder here is: 8 4 2 6 3 5
- In level order traversal, we print the tree level by level
 - Level 0: 2
 - Level 1: 4 3
 - o Level 2: 8 6 5
 - We call it: breadth first
- Depth vs Breadth

- Although we can use recursion to find the levels one by one, it will be very impractical
- One of the great applications of the queue is to iterate on a tree level by level
- Start a queue with the root.
- Pop the root node, then immediately push the root node's children - and then repeat this process with each child node!
- Can you finish this idea, and implement it by yourself?

- Add the root node to the queue
- While not empty
 - Get node
 - Print it
 - Add its available children

2		

• Pop: Tree(2)

• Add children: 4, 3

• Printed so far: 2

4	3			
---	---	--	--	--

• Pop: Tree(4)

Add children: 8

Printed so far: 2 4

|--|

• Pop: Tree(3)

• Add children: 6, 5

• Printed so far: 2 4 3

8 6 5

• Pop: Tree(8)

Add children: None

Printed so far: 2 4 3 8

6	5			
---	---	--	--	--

• Pop: Tree(6)

Add children: None

• Printed so far: 2 4 3 8 6

5		
9		

- Pop: Tree(5)
- Add children: None
- Empty: queue: stop
- Printed so far: 2 4 3 8 6 5

The queue content

- What is happening? We iterate through the nodes one by one, adding each node's child/children to the current queue
- The queue will be in 1 of 2 cases
 - Either all current nodes are at 1 specific level
 - OR it will contain nodes from 2 consecutive levels

3	8		
8	6	5	

Let's check the queue

A1

B2, B3

B3, C4

C4, C5, C6

C5, C6, D7

C6, D7

D7, D8

D8, E9

E10, E11, F12

F12

G13

: remove A1, add B2, B3

: remove B2, add C4

: remove B3, add C5, C6

: remove C4, add D7

: remove C5, add nothing

: remove C6, add D8

: remove D7, add E9

: remove D8, add E10, E11

E9, E10, E11 : remove E9, add F12

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."