Homework 1

Kai Qu kq4ff

September 24, 2019

1 Let E be the event of the classifier making an error.

$$P(Y = 0|X = 0) = \frac{P(Y = 1)P(X = 0|Y = 1)}{\sum_{y \in \{0,1\}} P(X = 0, Y = y)}$$

$$= (1 - \beta)/(1 - \beta + \alpha)$$

$$P(Y = 0|X = 1) = \frac{P(Y = 0)P(X = 1|Y = 0)}{\sum_{y \in \{0,1\}} P(X = 1, Y = y)}$$

$$= (1 - \alpha)/(1 - \alpha + \beta)$$

$$P(E) = P(Y = 0|X = 1) + P(Y = 1|X = 0)$$

$$= (1 - \beta)/(1 - \beta + \alpha) + (1 - \alpha)/(1 - \alpha + \beta)$$

 $\mathbf{2}$

Proof. Let D_1 , D_2 be the two datasets, and $D_1 \cup D_2$ be the union of the two datasets (keep two copies of the sample even if both datasets contain the identical sample). Let $L_1(\theta)$, θ_1 , $L_2(\theta)$, θ_2 be the negative log-likelihood functions and unregularized logistic regression coefficients for D_1 and D_2 respectively. Let $L(\theta)$, θ^* be the negative log-likelihood function and the unregularized logistic regression coefficients for $D_1 \cup D_2$. Let θ_j be a particular feature.

Since $D_1 \cup D_2$ is the union of D_1 and D_2 , we have

$$L(\theta) = L_1(\theta) + L_2(\theta)$$
$$\frac{\partial}{\partial \theta_i} L(\theta) = \frac{\partial}{\partial \theta_i} L_1(\theta) + \frac{\partial}{\partial \theta_i} L_2(\theta)$$

When $\theta = \theta_1$, $\frac{\partial}{\partial \theta_j} L_1(\theta) = 0$

$$\frac{\partial}{\partial \theta_j} L(\theta_1) = \frac{\partial}{\partial \theta_j} L_2(\theta_1)$$

When $\theta = \theta_2$, $\frac{\partial}{\partial \theta_i} L_2(\theta) = 0$

$$\frac{\partial}{\partial \theta_j} L(\theta_2) = \frac{\partial}{\partial \theta_j} L_1(\theta_2)$$

Case 1: When $\theta_j^{(1)} < \theta_j^{(2)}$:

Since the loss function is convex, $\frac{\partial}{\partial \theta_j} L(\theta_2) = \frac{\partial}{\partial \theta_j} L_2(\theta_2)$ achieves minimum at θ_2 . Because θ_1 is at the left of θ_2 ,

$$\frac{\partial}{\partial \theta_j} L(\theta_2) = \frac{\partial}{\partial \theta_j} L_1(\theta_2) > 0$$

Similarly, $\frac{\partial}{\partial \theta_j} L(\theta_1) = \frac{\partial}{\partial \theta_j} L_1(\theta_1)$ achieves the minimum at θ_1 . Because θ_2 is at the right of θ_1 ,

$$\frac{\partial}{\partial \theta_j} L(\theta_1) = \frac{\partial}{\partial \theta_j} L_2(\theta_1) < 0$$

Since $\frac{\partial}{\partial \theta_j} L(\theta)$ is the partial derivative of $L(\theta)$, which is convex, $\frac{\partial}{\partial \theta_j} L(\theta)$ is continuous. Moreover, we have $\theta_j^2 > \theta_j^1$ and $\frac{\partial}{\partial \theta_j} L(\theta_1) = \frac{\partial}{\partial \theta_j} L_2(\theta_1) < 0$ and $\frac{\partial}{\partial \theta_j} L(\theta_2) = \frac{\partial}{\partial \theta_j} L_1(\theta_2) > 0$. By Intermediate Value Theorem, there exists $\theta_j^1 \leq \theta_j^* \leq \theta_j^2$ such that $\frac{\partial}{\partial \theta_j} L(\theta) = 0$. Since L is convex, θ_1^* is the solution for feature j. Also, $min(\theta_j^1, \theta_j^2) \leq \theta_j^* \leq max(\theta_j^1, \theta_j^2)$.

Case 2: When $\theta_{j}^{(1)} > \theta_{j}^{(2)}$:

Since the loss function is convex, $\frac{\partial}{\partial \theta_j} L(\theta_1) = \frac{\partial}{\partial \theta_j} L_2(\theta_1)$ achieves minimum at θ_2 . Because θ_1 is at the right of θ_2 ,

$$\frac{\partial}{\partial \theta_j} L(\theta_1) = \frac{\partial}{\partial \theta_j} L_2(\theta_1) > 0$$

Similarly, $\frac{\partial}{\partial \theta_j} L(\theta_2) = \frac{\partial}{\partial \theta_j} L_1(\theta_2)$ achieves the minimum at θ_1 . Because θ_1 is at the right of θ_2 ,

$$\frac{\partial}{\partial \theta_j} L(\theta_2) = \frac{\partial}{\partial \theta_j} L_1(\theta_2) < 0$$

Since $\frac{\partial}{\partial \theta_j} L(\theta)$ is the partial derivative of $L(\theta)$, which is convex, $\frac{\partial}{\partial \theta_j} L(\theta)$ is continuous. Moreover, we have $\theta_j^1 > \theta_j^2$ and $\frac{\partial}{\partial \theta_j} L(\theta_1) = \frac{\partial}{\partial \theta_j} L_2(\theta_1) > 0$ and $\frac{\partial}{\partial \theta_j} L(\theta_2) = \frac{\partial}{\partial \theta_j} L_1(\theta_2) < 0$. By Intermediate Value Theorem, there exists $\theta_j^2 \leq \theta_j^* \leq \theta_j^1$ such that $\frac{\partial}{\partial \theta_j} L(\theta) = 0$. Since L is convex, θ_1^* is the solution for feature j. Also, $min(\theta_j^1, \theta_j^2) \leq \theta_j^* \leq max(\theta_j^1, \theta_j^2)$.

Therefore, by the two cases above, we can conclude that $min(\theta_j^1, \theta_j^2) \leq \theta_j^* \leq max(\theta_j^1, \theta_j^2)$.

Proof. Let $\hat{\theta} = \arg\min_{\theta} L(\theta)$, where L is the negative log likelihood function. Let $\theta^* = \arg\min_{\theta} L(\theta) + \lambda ||\theta||_2^2, \lambda > 0$. Given the conditions above, we have:

$$\begin{split} L(\theta^*) + \lambda ||\theta^*||_2^2 &\leq L(\hat{\theta}) + \lambda ||\hat{\theta}||_2^2 \\ L(\hat{\theta}) &\leq L(\theta^*) \\ L(\hat{\theta}) + \lambda ||\theta^*||_2^2 &\leq L(\hat{\theta}) + \lambda ||\hat{\theta}||_2^2 \\ \lambda ||\theta^*||_2^2 &\leq \lambda ||\hat{\theta}||_2^2 \\ ||\theta^*||_2^2 &\leq ||\hat{\theta}||_2^2 \end{split}$$

Therefore, the conclusion $||\theta^*||_2^2 \le ||\hat{\theta}||_2^2$ is proved.

4 Let y be the ground truth values and \hat{y} be the predicted values. First, we prove that the F-measure $F(y,\hat{y})=2pr/(p+r)$ is less than or equal to (p+r)/2, where p and r are the precision and the recall of the logistic regression. Assume that the count of the True Positive (TP) is greater than 0. Otherwise, p=r=0 and F-measure $F(y,\hat{y})=2pr/(p+r)$ will not be defined.

Proof. When p>0, r>0, in order to prove $2pr/(p+r)\leq (p+r)/2$, we can prove its equivalence $(p+r)^2-4pr\geq 0$

$$(p+r)^{2} - 4pr = p^{2} + 2pr + r^{2} - 4pr$$

$$= p^{2} - 2pr + r^{2}$$

$$= (p-r)^{2}$$

$$\geq 0$$

Therefore, since $2pr/(p+r) \le (p+r)/2$ for all possible values of p and r, we conclude that $2pr/(p+r) \le (p+r)/2$.

Next, we try to prove that 2pr/(p+r) = (p+r)/2 if and only if p=r.

Proof. \Rightarrow if 2pr/(p+r) = (p+r)/2,

$$2pr/(p+r) = (p+r)/2$$
$$(p+r)^2 - 4pr = 0$$
$$(p-r)^2 = 0$$
$$p = r$$

 \Leftarrow if p = r,

$$2pr/(p+r) = 2 * r * r/2r$$
$$= r$$
$$= (r+r)/2$$
$$= (p+r)/2$$

Thus, we conclude that 2pr/(p+r) = (p+r)/2 if and only if p=r.

 ${f 5}$ I tried three different sets of parameters for CountVectorizer and $Logistic \, regression$. The parameters and results are as below:

1. $vectorizer = CountVectorizer(lowercase = True, min_df = 7e-5, ngram_range = (1, 2), max_features = 10000)$

 $classifier = LogisticRegression(solver = "saga", multi_class = "multinomial", penalty = "l2")$

Training Set Accuracy: 0.811650 Development Set Accuracy: 0.6502

 $2.\ vectorizer = CountVectorizer (lowercase = True, min_df = 7e - 5) \\ classifier = LogisticRegression (solver = "sag", multi_class = "multinomial", penalty = "l2")$

Training Set Accuracy: 0.767

Development Set Accuracy: 0.6396

 $3.\ vectorizer = CountVectorizer (lowercase = True, min_df = 7e - 5) \\ classifier = LogisticRegression (solver = "saga", multi_class = "multinomial", penalty = "l2")$

Training Set Accuracy: 0.7342 Development Set Accuracy: 0.642

The first set of parameters gave the best result regarding to the Development Set Accuracy.