

SEQUENCE LISTING

<110> Rosen, Craig A.
Sadeghi, Homa
Prior, Christopher P.
Turner, Andrew J.

<120> Albumin Fusion Proteins

<130> PFb43

<140> Unassigned
<141> 2001-04-12

<150> 60/229,358
<151> 2000-04-12

<150> 60/256,931
<151> 2000-12-21

<150> 60/199,384
<151> 2000-04-25

<160> 36

<170> PatentIn Ver. 2.1

<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> primer useful to clone human growth hormone cDNA

<400> 1
cccaagaatt cccttatcca ggc

23

<210> 2
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<221> primer bind
<223> primer useful to clone human growth hormone cDNA

<400> 2
gggaaacctta gaagccacag gatccctcca cag

33

<210> 3
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_structure

<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.

<400> 3
gataaaagatt cccaaac

16

<210> 4
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.

<400> 4
aattgttggg aatcttt.

17

<210> 5
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.

<400> 5
tttaggcttat tcccaac

17

<210> 6
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.

<400> 6
aattgttggg aataagcc

18

<210> 7
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<221> SITE
<222> 1)...(19)
<223> invertase leader sequence

<220>

<221> SITE
<222> 20 .. (24)
<223> first 5 amino acids of mature human serum albumin

<400> 7
Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys
1 5 10 15
Ile Ser Ala Asp Ala His Lys Ser
20

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.

<400> 8
gagatgcaca cctgagttag g 21

<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non-cohesive ends.

<400> 9
gatcctgtgg cttcgatgca cacaaga 27

<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments with non cohesive ends.

<400> 10
cttttgtgtg catcgaaqcc acag 24

<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence

<220>

<221> misc_structure		
<223> synthetic oligonucleotide used to join DNA		
fragments with non-cohesive ends.		
<400> 11		
tgtggaaqag cctcagaattt tattcccaac		30
<210> 12		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_structure		
<223> synthetic oligonucleotide used to join DNA		
fragments with non-cohesive ends.		
<400> 12		
aattgttggg aataaaattctt gaggttttc c		31
<210> 13		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_structure		
<223> synthetic oligonucleotide used to join DNA		
fragments with non-cohesive ends.		
<400> 13		
ttaggcttag gtggcggtgg atccggcggt ggtggatctt tcccaac		47
<210> 14		
<211> 48		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_structure		
<223> synthetic oligonucleotide used to join DNA		
fragments with non-cohesive ends.		
<400> 14		
aattgttggg aaagatccac caccggcgga tccaccggca cctaagcc		48
<210> 15		
<211> 62		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> misc_structure		
<223> synthetic oligonucleotide used to join DNA		
fragments with non-cohesive ends.		

<400> 15
 ttaggtttag ggcgtgttgtt atctgtgtgc ggccatcttg gtggatgg atccttccca 60
 ac 62

<210> 16
 <211> 63
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> misc structure
 <223> synthetic oligonucleotide used to join DNA fragments with non cohesive ends.

<400> 16
 aattgttggg aaggatccac cgccaccaga tccggcgcca ccagatccac caccgcctaa 60
 gcc 63

<210> 17
 <211> 1782
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (1)..(1755)

<400> 17
 gat gca cac aag agt gag gtc cat cgg ttt aaa gat ttg gga gaa 48
 Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu
 1 5 10 15

gaa aat ttc aaa gcc ttg gtg att gcc ttt gct cag tat ctt cag 96
 Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
 20 25 30

cag tgc cca ttt gaa gat cat gta aaa tta gtg aat gaa gta act gaa 144
 Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu
 35 40 45

ttt gca aaa aca tgc gtt gct gat gag tca gct gaa aat tgc gac aaa 192
 Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
 50 55 60

tca ctt cat acc ctt ttt gga gac aaa tta tgc aca gtt gca act ctt 240
 Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu
 65 70 75 80

cgt gaa acc tat ggt gaa atg gct gac tgc tgc gca aaa caa gaa cct 288
 Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro
 85 90 95

gag aga aat gaa tgc ttc ttg caa cac aaa gat gac aac cca aac ctc 336
 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu
 100 105 110

ccc cga ttg gtg aga cca gag gtt gat gtg atg tgc act gct ttt cat 384

Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His			
115	120	125	
gat aat gaa gag aca ttt ttg aad aca tac tta tat gaa att gcc aca			432
Asp Asn Gln Glu Thr Phe Leu Lys Tyr Leu Tyr Glu Ile Ala Arg			
130	135	140	
aga cat cct tac ttt tat gcc ccg gaa ctc ctt ttc ttt gct aaa agg			480
Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Ala Lys Arg			
145	150	155	160
tat aaa gct gct ttt aca gaa tgt tgc caa gct gct gat aaa gct gcc			528
Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala			
165	170	175	
tgc ctg ttg cca aag ctc gat gaa ctt ccg gat gaa ggg aag gct tcg			576
Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser			
180	185	190	
tct gcc aaa cag aga ctc aaa tgt gcc agt ctc caa aaa ttt gga gaa			624
Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Iys Phe Gly Glu			
195	200	205	
aga gct ttc aaa gca tgg gca gtg gct cgc ctg agc cag aga ttt ccc			672
Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro			
210	215	220	
aaa gct gag ttt gca gaa gtt tcc aag tta gtg aca gat ctt acc aaa			720
Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys			
225	230	235	240
gtc cac acg gaa tgc tgc cat gga gat ctg ctt gaa tgt gct gat gac			768
Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp			
245	250	255	
agg gcg gac ctt gcc aag tat atc tgt gaa aat cag gat tcg atc tcc			816
Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser			
260	265	270	
agt aaa ctg aag gaa tgc tgt gaa aaa cct ctg ttg gaa aaa tcc cac			864
Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His			
275	280	285	
tgc att gcc gaa gtg gaa aat gat gag atg cct gct gac ttg cct tca			912
Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser			
290	295	300	
tta gct gct gat ttt gtt gaa agt aag gat gtt tgc aaa aac tat gct			960
Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala			
305	310	315	320
gag gca aag gat gtc ttc ctg ggc atg ttt ttg tat gaa tat gca aga			1008
Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg			
325	330	335	
agg cat cct gat tac tct gtc gtg ctg ctg aga ctt gcc aag aca			1056
Arg His Pro Asp Tyr Ser Val Val Leu Leu Arg Leu Ala Lys Thr			
340	345	350	
tat gaa acc act cta gag aag tgc tgt gcc gct gca gat cct cat gaa			1104

Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Gln
 355 360 365

tgc tat gcc aaa gtc ttc gat gaa ttt aaa cct ctt gtg gaa gag cct 1152
 Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro
 370 375 380

cag aat tta atc aaa caa aac tgt gag ctt ttt gag cag ctt gga gag 1200
 Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu
 385 390 395 400

tac aaa ttc cag aat gcg cta tta tgt cgt tac acc aag aaa gta ccc 1248
 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro
 405 410 415

caa gtg tca act cca act ctt gta gag gtc tca aga aac cta gga aaa 1296
 Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
 420 425 430

gtg ggc agc aaa tgt tgt aaa cat cct gaa gca aaa aga atg ccc tgt 1344
 Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys
 435 440 445

gca gaa gac tat cta tcc gtg gtc ctg aac cag tta tgt gtg ttg cat 1392
 Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His
 450 455 460

gag aaa acg cca gta agt gac aga gtc aca aaa tgc tgc aca gag tcc 1440
 Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser
 465 470 475 480

ttg gtg aac agg cga cca tgc ttt tca gct ctg gaa gtc gat gaa aca 1488
 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
 485 490 495

tac gtt ccc aaa gag ttt aat gct gaa aca ttc acc ttc cat gca gat 1536
 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp
 500 505 510

ata tgc aca ctt tct gag aag gag aga caa atc aag aaa caa act gca 1584
 Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala
 515 520 525

ctt gtt gag ctt gtg aaa cac aag ccc aag gca aca aaa gag caa ctg 1632
 Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu
 530 535 540

aaa gct gtt atg gat gat ttc gca gct ttt gta gag aag tgc tgc aag 1680
 Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys
 545 550 555 560

gct gac gat aag gag acc tgc ttt gcc gag gag ggt aaa aaa ctt gtt 1728
 Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val
 565 570 575

gct gca aqt caa gct gcc tta ggc tta taacatctac atttaaaaagc atctca 1782
 Ala Ala Ser Gln Ala Ala Leu Gly Leu
 580 585

<210> 18
<211> 985
<212> PRT
<213> Homo Sapiens

<400> 18
Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu
1 5 10 15
Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
20 25 30
Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu
35 40 45
Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
50 55 60
Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu
65 70 75 80
Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro
85 90 95
Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu
100 105 110
Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His
115 120 125
Asp Asn Glu Glu Thr Phe Leu Lys Tyr Leu Tyr Glu Ile Ala Arg
130 135 140
Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Ile Phe Phe Ala Lys Arg
145 150 155 160
Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala
165 170 175
Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser
180 185 190
Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu
195 200 205
Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro
210 215 220
Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys
225 230 235 240
Val His Thr Glu Cys Cys His Gly Asp Leu Ile Glu Cys Ala Asp Asp
245 250 255
Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
260 265 270
Ser Lys Leu Lys Gln Cys Cys Glu Lys Pro Ile Leu Glu Lys Ser His
275 280 285

Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser
 290 295 300
 Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala
 305 310 315 320
 Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg
 325 330 335
 Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr
 340 345 350
 Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Asp Pro His Glu
 355 360 365
 Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro
 370 375 380
 Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu
 385 390 395 400
 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro
 405 410 415
 Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
 420 425 430
 Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys
 435 440 445
 Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His
 450 455 460
 Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser
 465 470 475 480
 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
 485 490 495
 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp
 500 505 510
 Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala
 515 520 525
 Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu
 530 535 540
 Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys
 545 550 555 560
 Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val
 565 570 575
 Ala Ala Ser Gln Ala Ala Leu Gly Leu
 580 585

<211> 5'
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> primer used to generate XhoI and ClaI site in pPPC0006

<400> 19
gcctcgagaaa aagagatgca cacaagagtg aggttgtca tcgattttaaa gatttgg 57

<210> 20
<211> 58
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI site in pPPC0006

<400> 20
aatcgatgag caacctcact cttgtgtgca tctctttct cgaggctct ggaataaag 58

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI site in pPPC0006

<400> 21
tacaaactta agagtccaaat tagc 24

<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI site in pPPC0006

<400> 22
cacttctcta gagtggttcc atatgtctt 29

<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<221> Misc_Structure
<223> Synthetic oligonucleotide used to alter restriction sites in pPPC0007

<400> 23
aagctgcgtt aggtttataa taaggcgcgcg cggccggccg tttaactaa gcttaattct 60

<210> 24
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<221> Misc_Structure
<223> Synthetic oligonucleotide used to alter restriction sites in pPPC0007

<400> 24
agaattaagg ttagttaaa cggccggccg ggcgcgtta ttataaggct aaggcagctt 60

<210> 25
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> forward primer useful for generation of albumin fusion protein in which the albumin moiety is N-terminal of the Therapeutic Protein

<220>
<221> misc_feature
<222> (18)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (19)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (20)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (21)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<223> n equals a,t,g, or c

<220>
<221> misc_feature

<220> (23)
<221> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (24)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (25)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (26)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (27)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (28)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (29)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (30)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (31)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (32)
<223> n equals a,t,g, or c

<400> 25
aagcttccattt aggttttannnn nnnnnnnnnn nn

<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<221> primer bind
<223> reverse primer useful for generation of albumin fusion protein in which the albumin moiety is N-terminal

32

of the Therapeutic Protein

<220>
<221> misc_feature
<222> (37)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (38)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (39)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (40)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (41)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (42)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (43)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (44)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (45)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (46)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (47)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (48)

<223> n equals a,t,g, or c
<220>
<221> misc_feature
<222> (49)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (50)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (51)
<223> n equals a,t,g, or c

<400> 26
gacggcggtt aaacggccgg ccggcgcc ttattannnn nnnnnnnnnn n

51

<210> 27
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<221> forward primer useful for generation of albumin fusion protein in which the albumin moiety is c terminal of the Therapeutic Protein

<220>
<221> misc_feature
<222> (19)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (20)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (21)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (22)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (23)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (24)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (25)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (26)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (27)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (28)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (29)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (30)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (31)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (32)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (33)
<223> n equals a,t,g, or c

<400> 27
aggagcqtcg acaaaaagann nnnnnnnnnn nnn

<210> 28
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> reverse primer useful for generation of albumin fusion protein in which the albumin moiety is c-terminal of the Therapeutic Protein

<220>
<221> misc_feature
<222> (38)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (39)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (40)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (41)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (42)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (43)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (44)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (45)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (46)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (47)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (48)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (49)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (50)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (51)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (52)
<223> n equals a,t,g, or c

<400> 28

cutttaatacg atgagcaacc tcaactttgt gtgcattnn nnnnnnnnn nn

52

<210> 29
<211> 24
<212> PRT
<213> Artificial Sequence

<220>

<221> signal

<223> signal peptide of natural human serum albumin protein

<400> 29

Met Lys Trp Val Ser Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala
1 5 10 15

Tyr Ser Arg Ser Leu Asp Lys Arg
20

<210> 30
<211> 114
<212> DNA
<213> Artificial Sequence

<220>

<221> primer_bind

<223> forward primer useful for generation of PC4:HSA
albumin fusion VECTOR

<220>
<221> misc_feature
<222> (5)..(10)
<223> BamHI restriction site

<220>
<221> misc_feature
<222> (11)..(16)
<223> Hind III restriction site

<220>
<221> misc_feature
<222> (17)..(27)
<223> Kozak sequence

```

<220>
<221> misc_feature
<222> (25)..(97)
<223> cds natural signal sequence of human serum albumin

<220>
<221> misc_feature
<222> (75)..(81)
<223> XbaI restriction site

<220>
<221> misc_feature
<222> (98)..(114)
<223> cds first six amino acids of human serum albumin

<400> 30
tcaggatcc aagttccgc caccatgaag tggtaacct ttatttccct tcttttctc 60
tttagtcgg cttaactcgag ggttgtatcc ctttcgatcg cacacaagag tgag      114

<210> 31
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> reverse primer useful for generation of
PC4:HSA albumin fusion VECTOR

<220>
<221> misc_feature
<222> (6)..(11)
<223> Asp718 restriction site

<220>
<221> misc_feature
<222> (12)..(17)
<223> EcoRI restriction site

<220>
<221> misc_feature
<222> (15)..(17)
<223> reverse complement of stop codon

<220>
<221> misc_feature
<222> (18)..(25)
<223> AscI restriction site

<220>
<221> misc_feature
<222> (18)..(43)
<223> reverse complement of DNA sequence encoding last 9 amino acids

<400> 31
gcacgcgttac cgtatccggc ggcgcattata agccaaaggc agc      43

```

<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<223> forward primer useful for inserting Therapeutic protein into pC4:HSA vector

<220>
<221> misc_feature
<222> (29)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (30)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (31)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (32)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (33)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (34)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (35)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (36)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (37)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (38)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (39)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (40)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (41)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (42)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (43)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (44)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (45)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (46)
<223> n equals a,t,g, or c

<400> 32
ccggcgctcg aggggtgtgt ttcgtcgann nnnnnnnnnn nnnnnn

<210> 33
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<221> primer bind
<223> reverse primer useful for inserting Therapeutic protein into pC4:HSA vector

<220>
<221> misc_feature
<222> (38)
<223> n equals a,t,g, or c

<220>
<221> misc_feature

<222> (37)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (40)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (41)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (42)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (43)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (44)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (45)
<223> n equals a,c,g, or c

<220>
<221> misc_feature
<222> (46)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (47)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (48)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (49)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (50)
<223> n equals a,t,g, or c

<220>
<221> misc_feature

<220> (51)
<221> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (52)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (53)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (54)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (55)
<223> n equals a,t,g, or c

<400> 33
agtcccatcg atgagcaacc tcactcttgt gtgcattttt nnnnnnnnnn nnnnn 55

<210> 34
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<221> signal
<223> Stanniocalcin signal peptide

<400> 34
Met Leu Gln Asn Ser Ala Val Leu Leu Leu Val Ile Ser Ala Ser
1 5 10 15

Ala

<210> 35
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<221> signal
<223> Synthetic signal peptide

<400> 35
Met Pro Thr Trp Ala Trp Trp Leu Phe Leu Val Leu Leu Ala Leu
1 5 10 15

Trp Ala Pro Ala Arg Gly
20

<210> 36
<211> 402
<212> DNA

<213> Homo sapiens

<400> 36

gctccaacctt ct.tctttctac taagaagact caattgcaat tggAACACTT gttgttggac 60
ttgcaaatga tcttaaacgg tataaaacaac tataaaaacc caaAGTTGAC tagaatgttg 120
actttcaagt tctacatgcc aaagaaaagct actgaattga agcacttgca atgtttggaa 180
gaagaattga agccattgga agaagtttg aacttggctc aatctaagaa cttccacttg 240
agacccaagag atttgatttc taacatTAAC gttattgtt tggAAATTGAA gggttctgaa 300
actacTTTA TGTGCGAGTA CGCAGACGAA ACTGCTACTA TCgttgagtt cttaaatagg 360
tggatcactt tctgccaatc tattatttct acTTtgacat aa 402

REF ID: A1VAILABLE COPY