

Destination Assignment Problem (DAP)

Agenda

- 1. Einführung
- 2. Modell
- 3. Genetischer Algorithmus
- 4. Fragen

Einordnung

Beschaffung Produktion Distribution Absatz

Destination Assignment Problem "Zielzuweisungsproblem"

Distributions netze

"Nabe Speiche System"

Transportnetzstruktur

Sterntopologie

Multi-Hub Netz

Vor- und Nachteile der Hub & Spoke Netze

Vorteil Nachteil

- + Bündelungseffekt
- + geringere Transportkosten
- + Erschließung strukturschwacher Regionen möglich
- + Sammel- und Verteiltouren über mehrere Anbieter bündelbar
- + Hubs außerhalb der Ballungsräume

- Längere Transportwege
- Koordinationsaufwand
- Kosten für Errichtung und Betrieb der Hubs

Beispiel DHL-Hub Leipzig

Hub Aufbau

Hub Aufbau

Hub Aufbau

FRIEDRICH-SCHILLER-UNIVERSITÄT

Destination Assignment Problem

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

bio Number of parcels to be shipped from inbound destination i to outbound destination o Inbound trailer

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables $z_{isos} = x_{is} * y_{os}$

Outbound trailer

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

D_sⁱⁿ Number of inbound doors in segment s

D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables $z_{isos} = x_{is} * y_{os}$

$$|I| \le \sum_{S=1}^n D_S^{in}$$

$$|0| \le \sum_{s=1}^{n} D_s^{out}$$

0 Set of outbound destinations

S Set of door segments S $= \{1, ..., n\}$

 D_s^{in} *Number of inbound doors* in segment s

 D_s^{out} Number of outbound doors in segment s

Number of parcels to be shipped b_{io} from inbound destination i to outbound destination o

Binary variables: χ_{is} 1 if inbound destination i is assigned to door segment s, 0 otherwise

Binary variables: y_{os} 1 if outbound destination o is assigned to door segment s, 0 otherwise

Auxiliary variables Z_{isos} $z_{isos'} = x_{is} * y_{os'}$

$$\rightarrow b_{11} = 2$$

$$\rightarrow b_{13}^{-1} = 0$$

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

I Set of inbound destinat.	ations
----------------------------	--------

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables:
1 if outbound destination o is
assigned to door segment s,
0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

D_sⁱⁿ Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

bio Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables:
1 if outbound destination o is
assigned to door segment s,
0 otherwise

 z_{isos} , Auxiliary variables $z_{isos} = x_{is} * y_{os}$,

$$z_{isos'} = x_{is} * y_{os'}$$

$$S$$
 Set of door segments S
= $\{1, ..., n\}$

$$D_s^{out}$$
 Number of outbound doors in segment s

$$x_{is}$$
 Binary variables:

1 if inbound destination i is assigned to door segment s, 0 otherwise

1 if outbound destination o is assigned to door segment s, 0 otherwise

z_{isos}, Auxiliary variables

$$z_{isos'} = x_{is} * y_{os'}$$

$$(ZF) \sum_{i \in I} \sum_{o \in O} b_{io} \cdot \left(\sum_{s=1}^{n} \sum_{s'=1}^{s-1} (n - (s - s')) \cdot z_{isos'} + \sum_{s=1}^{n} \sum_{s'=s}^{n} (s' - s) \cdot z_{isos'} + 1 \right) \to min$$

$$(1)\sum_{s=0}^{\infty}x_{is}=1 \ \forall i\in I$$

$$(2)\sum_{s=0}^{\infty}y_{os}=1 \ \forall o\in O$$

$$(3)\sum_{i\in I}x_{is}\leq D_s^{in}\ \forall\,s\in S$$

$$(4)\sum_{o \in O} y_{os} \le D_s^{out} \ \forall \ s \in S$$

$$(5) \ 2 \cdot z_{isos'} \leq x_{is} + y_{os'} \ \forall \ i \in I; o \in O; s, s' \in S$$

(6)
$$z_{isos'} \le x_{is} + y_{os'} - 1 \ \forall i \in I; o \in O; s, s' \in S$$

$$(7) x_{is}, y_{os'}, z_{isos'} \in \{0,1\}$$

I Set of inbound destinations

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

D_s^{out} Number of outbound doors in segment s

bio Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

 $(7) x_{is}, y_{os'}, z_{isos'} \in \{0,1\}$

Binärbedingungen für alle Entscheidungsvariablen

I Set of inbound destinations

O Set of outbound destinations

S Set of door segments S= $\{1, ..., n\}$

D_sⁱⁿ Number of inbound doors in segment s

D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables:
 1 if outbound destination o is assigned to door segment s,
 0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

(5) $2 \cdot z_{isos'} \le x_{is} + y_{os'} \ \forall i \in I; o \in O; s, s' \in S$

(6) $z_{isos'} \le x_{is} + y_{os'} - 1 \ \forall \ i \in I; o \in O; s, s' \in S$

 $x + y \neq 2 \rightarrow z = 0$

 $2*0 \le 0 + 1$ $2*0 \le 1 + 0$ $2*0 \le 0 + 0$

Zulässig: $2*1 \le 1 + 1$ $2*0 \le 1 + 1$

I Set of inbound destinations

O Set of outbound destinations

S Set of door segments S= $\{1, ..., n\}$

D_sⁱⁿ Number of inbound doors in segment s

D_s^{out} Number of outbound doors in segment s

bio Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables:
1 if outbound destination o is assigned to door segment s,
0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

(5) $2 \cdot z_{isos'} \le x_{is} + y_{os'} \ \forall \ i \in I; o \in O; s, s' \in S$

 $(6) \ z_{isos'} \ \geq \ x_{is} + y_{os'} - 1 \ \forall \ i \in I; o \in O; s, s' \in S$

$$x + y = 2 \rightarrow z = 1$$

$$0 \ge 1 + 1 - 1$$

 $0 \ge 1$ Unzulässig!

 \rightarrow Sicherstellung: z = 1 wenn x + y = 2

- Set of inbound destinations
- 0 Set of outbound destinations
- S Set of door segments S $= \{1, ..., n\}$
- $D_{\rm s}^{in}$ Number of inbound doors in segment s
- D_s^{out} Number of outbound doors in segment s
- Number of parcels to be shipped b_{io} from inbound destination i to outbound destination o
- Binary variables: χ_{is} 1 if inbound destination i is assigned to door segment s, 0 otherwise
- Binary variables: y_{os} 1 if outbound destination o is assigned to door segment s, 0 otherwise
- Auxiliary variables Z_{isosi} $z_{isos'} = x_{is} * y_{os'}$

$$(3)\sum_{i\in I}x_{is}\leq D_s^{in}\ \forall\ s\in S$$

$$(4)\sum_{o\in O}y_{os}\leq D_s^{out}\ \forall\ s\in S$$

$$D_1^{out}=6$$

- I Set of inbound destinations
- O Set of outbound destinations
- S Set of door segments S = $\{1, ..., n\}$
- D_s^{in} Number of inbound doors in segment s
- D_s^{out} Number of outbound doors in segment s
- bio Number of parcels to be shipped from inbound destination i to outbound destination o
- x_{is} Binary variables:
 1 if inbound destination i is
 assigned to door segment s,
 0 otherwise
- y_{os} Binary variables:
 1 if outbound destination o is assigned to door segment s,
 0 otherwise
- z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

$$(1)\sum_{s\in S}x_{is}=1\ \forall\,i\in I$$

$$(2)\sum_{s\in S}y_{os}=1\ \forall\,o\in O$$

→ Jeder (1) in- / (2) outbound destination wird genau einem Segment zugeordnet

O Set of outbound destinations

S Set of door segments S= $\{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

$$(ZF) \sum_{i \in I} \sum_{o \in O} b_{io} \cdot \left(\sum_{s=1}^{n} \sum_{s'=1}^{s-1} (n - (s - s')) \cdot z_{isos'} + \sum_{s=1}^{n} \sum_{s'=s}^{n} (s' - s) \cdot z_{isos'} + 1 \right) \to min$$

I Set of inbound destinations

O Set of outbound destinations

S Set of door segments S $= \{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

D_s^{out} Number of outbound doors in segment s

bio Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables:
1 if outbound destination o is
assigned to door segment s,
0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

Gewichtung

 $\sum_{i \in I} \sum_{o \in O} b_{io} \cdot (\dots) \to min$

→ Minimiere die Summe der gewichteten Pakete

$$S$$
 Set of door segments S
= $\{1, ..., n\}$

$$D_s^{out}$$
 Number of outbound doors in segment s

$$z_{isos}$$
, Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

$$(ZF) \sum_{i \in I} \sum_{o \in O} b_{io} \cdot \left(\sum_{s=1}^{n} \sum_{s'=1}^{s-1} \left(n - (s - s') \right) \cdot \mathbf{z}_{isos'} \right) + \sum_{s=1}^{n} \sum_{s'=s}^{n} \left(s' - s \right) \cdot \mathbf{z}_{isos'} + 1 \rightarrow min$$

Gewichtung entsprechend dem zurückgelegten **Weg der Pakete** von **i zu o**

↑ Anzahl der Pakete & ↑ Weg der Pakete→ ↑ ZFW

I Set of inbound destinations

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

D_sⁱⁿ Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

bio Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables:
 1 if outbound destination o is assigned to door segment s,
 0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

$$\sum_{s=1}^{n} \sum_{s'=1}^{s-1} (n - (s - s')) \cdot z_{isos'}$$

wird einbezogen wenn: s > s'

Beispiel: n=2, s=2, s'=1

$$(2-(2-1))=1$$

$$S$$
 Set of door segments S = $\{1, ..., n\}$

$$D_s^{out}$$
 Number of outbound doors in segment s

$$z_{isos'}$$
 Auxiliary variables $z_{isos'} = x_{is} * y_{os'}$

$$\sum_{s=1}^{n} \sum_{s'=s}^{n} (s'-s) \cdot z_{isos'}$$

wird einbezogen wenn: s ≤ s'

$$(1-1)=0$$

$$(2-1)=1$$

O Set of outbound destinations

S Set of door segments S = $\{1, ..., n\}$

 D_s^{in} Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

bio Number of parcels to be shipped from inbound destination i to outbound destination o

 x_{is} Binary variables: 1 if inbound destination i is assigned to door segment s, 0 otherwise

y_{os} Binary variables:
1 if outbound destination o is
assigned to door segment s,
0 otherwise

 z_{isos} , Auxiliary variables $z_{isos} = x_{is} * y_{os}$

$(ZF) \sum_{i \in I} \sum_{o \in O} b_{io} \cdot \left(\sum_{s=1}^{n} \sum_{s'=1}^{s'} (n - (s - s')) \cdot z_{isos'} + \sum_{s=1}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'=s}^{n} (n - (s - s')) \cdot z_{isos'} + \sum_{s'$	$(s'-s)\cdot z_{isos'}+1$	$_{i'}+1$
--	---------------------------	-----------

n=3 s s'	(n - (s - s'))	(s'-s)	1	Σ	
2 1	2-(2-1)=1		1	2	
1 1		(1-1)=0	1	1	
1 2		(2-1)=1	1	2	

I	Set of inbound destinations

O Set of outbound destinations

S Set of door segments S= $\{1, ..., n\}$

D_sⁱⁿ Number of inbound doors in segment s

 D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables $z_{isos} = x_{is} * y_{os}$

n=3 s s'	(n - (s - s'))	(s'-s)	1	Σ
2 1	2-(2-1)=1		1	2
1 1		(1-1)=0	1	1
1 2		(2-1)=1	1	2

O Set of outbound destinations

S Set of door segments S= $\{1, ..., n\}$

D_sⁱⁿ Number of inbound doors in segment s

D_s^{out} Number of outbound doors in segment s

b_{io} Number of parcels to be shipped from inbound destination i to outbound destination o

x_{is} Binary variables:
1 if inbound destination i is
assigned to door segment s,
0 otherwise

y_{os} Binary variables: 1 if outbound destination o is assigned to door segment s, 0 otherwise

 z_{isos} , Auxiliary variables z_{isos} , $= x_{is} * y_{os}$,

$$(ZF) \sum_{i \in I} \sum_{o \in O} b_{io} \cdot \left(\sum_{s=1}^{n} \sum_{s'=1}^{s-1} (n - (s - s')) \cdot z_{isos'} + \sum_{s=1}^{n} \sum_{s'=s}^{n} (s' - s) \cdot z_{isos'} + 1 \right) \to min$$

Genetischer Algorithmus

Natur als Vorbild

Beispiel

$$I = \{1,2,3\}$$

 $O = \{1,2,3,4,5,6\}$

$$n = 2$$

$$\pi_i = [1,2,1] \rightarrow fix!$$

$$D_1^{out} = 4$$
$$D_2^{out} = 2$$

$$\mu_o \rightarrow optimieren$$

b _{io}	1	2	3	4	5	6
1	2	3	0	2	0	4
2	0	1	0	3	2	0
3	2	0	4	3	2	0

Startlösung

1. generieren von Ausgangslösungen(Zufall), der Größe N = 4

Outbound destination o:

1	2	3	4	5	6		
Lösung 1:							
1	1	1	1	2	2		
Lösung 2:							
1	2	2	1	1	1		
Lösung 3:							
2	1	1	1	2	1		
Lösung 4:							
1	2	1	2	1	1		

Lösungen bewerten (Fitnesswert)

Fitness

ZFW berechnen:
$$Z(\mu) = \sum_{i \in I} \sum_{o \in O} b_{io} \cdot \left(\left((\mu_o - \pi_i) mod \ n \right) + 1 \right) \rightarrow min$$

$$Z^{1} = 2 \cdot \left(\left((1-1)mod \ 2 \right) + 1 \right) + 3 \cdot \left(\left((1-1)mod \ 2 \right) + 1 \right) + 0 \cdot \left(\left((1-1)mod \ 2 \right) + 1 \right) + 2 \cdot \left(\left((1-1)mod \ 2 \right) + 1 \right) + 0 \cdot \left(\left((2-1)mod \ 2 \right) + 1 \right) + 4 \cdot \left(\left((2-1)mod \ 2 \right) + 1 \right) + 1 \cdot \left(\left((1-2)mod \ 2 \right) + 1 \right) + \cdots + 2 \cdot 1 + 0 \cdot 1 + \cdots$$

$$Z^{1} = 38$$

$$\pi_{i} = \begin{bmatrix} 1.2.1 \end{bmatrix}$$

Lösung 1:

 $\pi_i = [1,2,1]$

0	1	2	3	4	5	6
S	1	1	1	1	2	2

Fitness

Lösung 1:							
1	1	1	1	2	2		
Lösung 2:							
1	2	2	1	1	1		
Lösung 3:							
2	1	1	1	2	1		
Lösung 4:							
1	2	1	2	1	1		

$$Z^{1} = 38$$
 $Z^{2} = 40$
 $Z^{3} = 38$
 $Z^{4} = 40$

Selektion: Rangbasierte Selektion

Erstelle eine Rangliste der Individuen bzgl. ihrer Fitness Sei I_1 das beste und I_N das schlechteste Individuum Wähle I_k mit Wahrscheinlichkeit:

$$Pr[I_k] = \frac{2}{N} \cdot \left(1 - \frac{k-1}{N-1}\right)$$

$$Z^{1} = 38$$

$$Z^{2} = 40$$

$$Z^{3} = 38$$

$$Z^{4} = 40$$

$$I_{1}$$

$$I_{2}$$

$$I_{4}$$

$$I_{1} = \frac{2}{4} \cdot \left(1 - \frac{1-1}{4-1}\right) = \frac{1}{2}$$

$$Pr[I_{1}] = \frac{2}{4} \cdot \left(1 - \frac{3-1}{4-1}\right) = \frac{1}{6}$$

$$Pr[I_{2}] = \frac{2}{4} \cdot \left(1 - \frac{2-1}{4-1}\right) = \frac{1}{3}$$

$$Pr[I_{4}] = \frac{2}{4} \cdot \left(1 - \frac{4-1}{4-1}\right) = \mathbf{0}$$

Selektion 1

Kreuzung

 One-Point crossover: Bestimme Cross-Over-Point(COP) und kombiniere die Eltern

Zufällige Auswahl des Crossover-Points

Kreuzung

Nach CP → auffüllen nach Index des 2 Elternteils

Mutation: Bestimme Mutationspunkt (MP) und verändere die Nachkommen

Erstellung Nachbarschaftsliste:

→Unterscheidung der Elemente

Egde recombination crossover (ERX):

- Starte mit dem Anfangswert eines zufälligen Elternteils
- Lösche gewählten Knoten aus allen Nachbarschaften

Egde recombination crossover(ERX):

Solange das Kind nicht fertig ist:

 Wähle als Nachfolger den Nachbar mit der kürzesten Nachbarliste (zufällige Wahl falls mehrere solche existieren)

1'	1"			
1'	1"	2"	2'	
1"	1'	1"'		
1""	1"	1""	2"	
1''''	1'''	2'	2"	
2'	1'''	2"	1'	
2"	2'	1'	1""	1""

Egde recombination crossover(ERX):

Solange das Kind nicht fertig ist:

 Wähle als Nachfolger den Nachbar mit der kürzesten Nachbarliste (zufällige Wahl falls mehrere solche existieren)

1'	1"			
1'	1"	2"	2'	
1"	1'	1'''		
1""	1"	1""	2"	
1''''	1"'	2'	2"	
2'	1""	2"	1'	
2"	2'	1'	1"'	1""

Egde recombination crossover(ERX):

Solange das Kind nicht fertig ist:

Wähle als Nachfolger den Nachbar mit der kürzesten
 Nachbarliste (zufällige Wahl falls mehrere solche existieren)

1'	1" 2	2'		
1'	1"	2"	2'	
1"	1'	1'''		
1""	1"	1''''	2"	
1""	1'''	2'	2"	
2'	1""	2"	1'	
2"	2'	1'	1""	1""

Egde recombination crossover(ERX):

Solange das Kind nicht fertig ist:

Wähle als Nachfolger den Nachbar mit der kürzesten
 Nachbarliste (zufällige Wahl falls mehrere solche existieren)

1'	1"	2'	1""		
1'	1"	2"	1	2'	
1"	1'	1"	11		
1""	1"	1"	111	2"	
1	1111	2'		2"	
2'	1''''	2"	1	1'	
2"	2'	1'		1'''	1'''

Egde recombination crossover(ERX):

Solange das Kind nicht fertig ist:

Wähle als Nachfolger den Nachbar mit der kürzesten
 Nachbarliste (zufällige Wahl falls mehrere solche existieren)

1'	1"	2'	1''''	1'''	2"
1'	1"	2"		2'	
1"	1'	1'''	_		
1'''	1"	1'''	,	2"	
1""	1"	2'		2"_	
2'	1''''	2"		1′_	
2"	2'	1'	\equiv	1 ""	1'''

Neue Individuen

crossover

$$Z^{1a} = 38$$

$$M \le N$$

$$Z^2 = 42$$

$$Z^3 = 40$$

Selektion 2

■ Nur neue Individuen (M=4)

■ Neue Individuen (M=3) & Individuen aus vorheriger Generation (fittestes Individuum)

Kind 2:

Kind 2:

Kind 3:

Kind 3:

Kind 4:

2. edge recombination crossover

Lösung 1:

4	1	4	4	

Fragen

