Stock Price Prediction Report

★ Introduction

This report provides an overview of the stock price prediction model, detailing data preprocessing, feature engineering, model selection, and performance evaluation.

📌 Data Preprocessing

- Converted Date column to datetime format and set it as the index.
- Addressed missing values using interpolation and KNN imputation.
- Applied one-hot encoding to categorical variables (Ticker).
- Scaled numerical features using StandardScaler.

Feature Engineering

Implemented key financial indicators:

- Moving Averages (MA5, MA10): Captures short-term and long-term price trends.
- Relative Strength Index (RSI): Measures momentum of price movements.
- MACD & MACD Signal: Identifies bullish and bearish trends.
- Bollinger Bands: Detects market volatility.
- Sin-Cos transformation: Applied to time-based features (day, month) to account for cyclic behavior.

Model Selection & Performance Evaluation

The following models were trained and evaluated:

- Linear Regression

 ✓ (Selected as the final model)
- XGBoost
- LightGBM

Decision Tree

★ Model Performance Comparison

Model	MAE	RMSE	R ² Score
Linear Regression	3.28	4.81	0.9971
XGBoost	6.05	13.99	0.9761
LightGBM	3.92	5.70	0.9960
Decision Tree	3.93	5.99	0.9956

★ Why Linear Regression?

- Minimal Overfitting: The training and test results are closely aligned.
- High Interpretability: Feature weights can be analyzed and understood.
- **Best Generalization Performance:** The model consistently performs well on unseen data.

★ Conclusion & Future Work

The Linear Regression model was chosen due to its balance of accuracy, simplicity, and generalizability. Possible improvements include:

- **Incorporating additional financial features**, such as sentiment analysis from financial news.
- Experimenting with deep learning techniques, like LSTMs, for sequential modeling.