

Winning Space Race with Data Science

Jay Min Divakar

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

Project background and context

Space X offers Falcon 9 rocket launches for \$62 million; other companies charge up to \$165 million apiece. Space X saves money by reusing the first stage. Therefore, if I know whether the first stage will land, I can calculate the launch cost. This information may be utilized by a competitor to Space X for a rocket launch. The goal of this project is to construct a machine learning pipeline to predict if the first stage will land successfully.

Aim of study.

Research Questions

- 1. What aspects of the rocket's flight affect whether or not it will safely touch down?
- 2. To understand the complex interaction between the many factors that go into calculating the probability of a landing being successful.
- 3. Which operational requirements absolutely need to be met in order to guarantee a successful landing program.
- 4. To test the feasibility of data analytics in predicting advanced scientific probabilities.

Methodology

Executive Summary

- Methodology for gathering data:
 - Data was collected using SpaceX API and web scraping.
- Perform data wrangling
 - The application of one-hot encoding was performed on the categorical characteristics.
 - How to build, tune, evaluate classification models
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

Data Collection

- The data was collected using various methods
 - Data collection was done using get request to the SpaceX API.
 - Next, I decoded the response content as a Json using .json() function call and turn it into a pandas dataframe using .json_normalize().
 - I then cleaned the data, checked for missing values and fill in missing values where necessary.
 - In addition, I performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
 - The objective was to extract the launch records as HTML table, parse the table and convert it to a pandas dataframe for future analysis.

Data Collection – SpaceX API

- I used the get request to the SpaceX API to collect data, clean the requested data and did some basic data wrangling and formatting.
- https://github.com/seolestti/ibmcapstone-project-/blob/main/data%20collection%2 Ocapstone%20.ipynb

```
1. Get request for rocket launch data using API
          spacex url="https://api.spacexdata.com/v4/launches/past"
          response = requests.get(spacex url)
   2. Use json normalize method to convert json result to dataframe
In [12]:
           # Use json normalize method to convert the json result into a dataframe
           # decode response content as json
           static json df = res.json()
In [13]:
           # apply json normalize
           data = pd.json_normalize(static_json_df)
   3. We then performed data cleaning and filling in the missing values
In [30]:
          rows = data falcon9['PayloadMass'].values.tolist()[0]
           df rows = pd.DataFrame(rows)
          df rows = df rows.replace(np.nan, PayloadMass)
          data falcon9['PayloadMass'][0] = df rows.values
           data_falcon9
```

Data Collection - Scraping

```
1. Apply HTTP Get method to request the Falcon 9 rocket launch page
In [4]: static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1927686922"
In [5]: # use requests.get() method with the provided static_url
          # assign the response to a object
          html data = requests.get(static url)
          html_data.status_code
Out[5]: 200
    2. Create a BeautifulSoup object from the HTML response
           # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
           soup = BeautifulSoup(html_data.text, 'html.parser')
         Print the page title to verify if the BeautifulSoup object was created properly
          # Use soup.title attribute
           soup.title
          <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
    3. Extract all column names from the HTML table header
         column_names = []
         # Apply find all() function with "th" element on first launch table
         # Iterate each th element and apply the provided extract column from header() to get a column name
         # Append the Non-empty column name ('if name is not None and Len(name) > 0') into a list called column_names
          element = soup.find_all('th')
          for row in range(len(element)):
                 name = extract_column_from_header(element[row])
                 if (name is not None and len(name) > 0):
                    column names.append(name)
    4. Create a dataframe by parsing the launch HTML tables
    5. Export data to csv
```

- I applied web scrapping to webscrap Falcon 9 launch records with BeautifulSoup
- I parsed the table and converted it into a pandas dataframe.

Data Wrangling

- I did an exploratory analysis of the data to figure out the training labels.
- I counted how many times each site was used to launch a rocket and how many times each orbit was used.
- I made the landing outcome label from the outcome column and exported the results to csv.
- https://github.com/seolestti/ibmcapstone-project-/blob/main/data%20wrangling%20.ipynb

Build an Interactive Map with Folium

- I marked all launch sites and added map objects like markers, circles, and lines to show whether a launch was successful or not at each site.
- I gave class 0 and 1 the outcomes of the feature launch (failure or success). That is,
 O means failure and 1 means success.
- I figured out which launch sites have a high success rate by looking at the clusters of colored markers. I worked out how far a launch site was from its neighbors.
- I gave answers to some questions, such as:
 - Are launch sites near railways, highways and coastlines.
 - Do launch sites keep certain distance away from cities.

Build a Dashboard with Plotly Dash

- I built an interactive dashboard with Plotly dash
- I plotted pie charts showing the total launches by a certain sites
- I plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.

Predictive Analysis (Classification)

- I used numpy and pandas to load the data, changed the data, and split our data into training and testing sets.
- GridSearchCV helped us build different machine learning models and tune different hyperparameters.
- I measured our model by how accurate it was, and I made it better by using feature engineering and algorithm tuning.
- I found the classification model that worked best.

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• From the plot, I found that the larger the flight amount at a launch site, the greater the success rate at a launch site.

Payload vs. Launch Site

The greater the payload mass for launch site CCAFS SLC 40 the higher the success rate for the rocket.

Success Rate vs. Orbit Type

• From the plot, I can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

Flight Number vs. Orbit Type

The plot below shows the Flight Number vs.
 Orbit type. I observe that in the LEO orbit,
 success is related to the number of flights
 whereas in the GTO orbit, there is no
 relationship between flight number and the
 orbit.

Payload vs. Orbit Type

• I can observe that with heavy payloads, the successful landing are more for PO, LEO and ISS orbits.

Launch Success Yearly Trend

 From the plot, I can observe that success rate since 2013 kept on increasing till 2020.

All Launch Site Names

• I used the key word **DISTINCT** to show only unique launch sites from the SpaceX data.

Display the names of the unique launch sites in the space mission

Out[10]:	launchsite		
	0	KSC LC-39A	
	1	CCAFS LC-40	
	2	CCAFS SLC-40	
	3	VAFB SLC-4E	

Launch Site Names Begin with 'CCA'

In [11]:	Display 5 records where launch sites begin with the string 'CCA' task_2 = ''' SELECT * FROM SpaceX WHERE LaunchSite LIKE 'CCA%' LIMIT 5 create_pandas_df(task_2, database=conn)										
Out[11]:		date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcome
	0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	1	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	3	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	4	2013-01- 03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

• I used the query above to display 5 records where launch sites begin with `CCA`

Total Payload Mass

 I calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]:

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'
'''

create_pandas_df(task_3, database=conn)

Out[12]:

total_payloadmass

0 45596
```

Average Payload Mass by F9 v1.1

 I calculated the average payload mass carried by booster version F9 v1.1 as 2928.4

Display average payload mass carried by booster version F9 v1.1

First Successful Ground Landing Date

 I observed that the dates of the first successful landing outcome on ground pad was 22nd December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

• I used the WHERE clause to filter for boosters which have successfully landed on drone ship and applied the AND condition to determine successful landing with payload mass greater than 4000 but less than 6000

Out[15]:	boosterversion		
	0	F9 FT B1022	
	1	F9 FT B1026	
	2	F9 FT B1021.2	
	3	F9 FT B1031.2	
		F9 FT B1021.2	

Total Number of Successful and Failure Mission Outcomes

 I used wildcard like '%' to filter for WHERE Mission Outcome was a success or a failure. List the total number of successful and failure mission outcomes

```
In [16]:
          task 7a = '''
                  SELECT COUNT(MissionOutcome) AS SuccessOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Success%'
          task 7b = '''
                  SELECT COUNT(MissionOutcome) AS FailureOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Failure%'
          print('The total number of successful mission outcome is:')
          display(create_pandas_df(task_7a, database=conn))
          print()
          print('The total number of failed mission outcome is:')
          create pandas df(task 7b, database=conn)
         The total number of successful mission outcome is:
            successoutcome
         0
                      100
         The total number of failed mission outcome is:
Out[16]:
            failureoutcome
```

Boosters Carried Maximum Payload

 I determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function. List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

ut[17]:		boosterversion	payloadmasskg
	0	F9 B5 B1048.4	15600
	1	F9 B5 B1048.5	15600
	2	F9 B5 B1049.4	15600
	3	F9 B5 B1049.5	15600
	4	F9 B5 B1049.7	15600
	5	F9 B5 B1051.3	15600
	6	F9 B5 B1051.4	15600
	7	F9 B5 B1051.6	15600
	8	F9 B5 B1056.4	15600
	9	F9 B5 B1058.3	15600
	10	F9 B5 B1060.2	15600
	11	F9 B5 B1060.3	15600

2015 Launch Records

 I used a combinations of the WHERE clause, LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015 List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))

```
In [19]:
    task_10 = '''
        SELECT LandingOutcome, COUNT(LandingOutcome)
        FROM SpaceX
        WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
        GROUP BY LandingOutcome
        ORDER BY COUNT(LandingOutcome) DESC
        '''
    create_pandas_df(task_10, database=conn)
```

Out[19]:		landingoutcome	count
	0	No attempt	10
	1	Success (drone ship)	6
	2	Failure (drone ship)	5
	3	Success (ground pad)	5
	4	Controlled (ocean)	3
	5	Uncontrolled (ocean)	2
	6	Precluded (drone ship)	1
	7	Failure (parachute)	1

- I selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.
- I applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.

All launch sites global map markers

Markers showing launch sites with color labels

Launch Site distance to landmarks

Pie chart showing the success percentage achieved by each launch site

This pie chart shows which launch site has the best success rate.

KSC LC-39A achieved a 76.9% success rate while getting a 23.1% failure rate

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads

Classification Accuracy

 The decision tree classifier is the model with the highest classification accuracy

```
models = {'KNeighbors':knn cv.best score ,
              'DecisionTree':tree cv.best score ,
              'LogisticRegression':logreg cv.best score ,
               'SupportVector': svm_cv.best_score_}
bestalgorithm = max(models, key=models.get)
print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
if bestalgorithm == 'DecisionTree':
    print('Best params is :', tree cv.best params )
if bestalgorithm == 'KNeighbors':
    print('Best params is :', knn cv.best params )
if bestalgorithm == 'LogisticRegression':
    print('Best params is :', logreg cv.best params )
if bestalgorithm == 'SupportVector':
    print('Best params is :', svm cv.best params )
Best model is DecisionTree with a score of 0.8732142857142856
Best params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'auto', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}
```

Confusion Matrix

 The confusion matrix for the decision tree classifier shows that the classifier can distinguish between the different classes.
 The major problem is the false positives .i.e., unsuccessful landing marked as successful landing by the classifier.

Conclusions

I can conclude that:

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.

