Random Walk & Variance Ratio Test

Christopher Ting

http://www.mysmu.edu/faculty/christophert/

⊠: christophert@smu.edu.sg

6828 0364 否: G: LKCSB 5036

January 20, 2017

Table of Contents

- Learning Objectives
- Random Walk Models
- Variance Ratio Test

Learning Objectives

- ⁶ Understand the concept of random walk and its application on the study of return time series.
- **o** Describe variance ratio test of random walk and calculate the test statistics for inferences.

Random Walk

A random walk is a walk where the direction of each step is chosen at random.

lacktriangle Let Z_1, Z_2, \ldots, Z_t be a time series of i.i.d. random variables with mean μ and standard deviation σ . Let S_0 be any starting point.

$$S_t = S_0 + Z_1 + \dots + Z_t, \qquad t \ge 1.$$

 \odot Conditional mean and variance are proportional to t.

$$\mathbb{E}(S_t|S_0) = S_0 + \mu t$$

$$\mathbb{V}(S_t|S_0) = \sigma^2 t$$

 \bullet The parameter μ is called the drift, and the parameter σ is called the volatility, which is responsible for diffusion.

Geometric Random Walk

 \Re Recall that $\ln \left(1 + R_t(q)\right) = r_t + r_{t-1} + \cdots + r_{t-q+1}$. So

$$\frac{P_t}{P_{t-q}} = 1 + R_t(q) = \exp(r_t + \dots + r_{t-q+1}).$$

 \Re Let q = t, we have

$$P_t = P_0 \exp(r_t + r_{t-1} + \dots + r_1)$$

 \Re If r_1, r_2, \ldots, r_t are i.i.d. and for time t,

$$r_t \sim N(\mu, \sigma^2),$$

then P_t is lognormal for all t. This stochastic process is known as geometric random walk with parameters μ and σ^2 .

Lognormal Geometric Random Walk

- Big Assumptions
- i.i.d.
- 2 Each r_t is a normally distributed random variable

- Consequences
 - Log returns are uncorrelated.
 - 2 Log returns cannot be forecasted.

Mean and Variance of Lognormal Random Variable

* Mean

The expected value of price is

$$\mathbb{E}(P_t|P_0) = P_0 \exp\left(\left(\mu + \frac{\sigma^2}{2}\right)t\right)$$

* Variance

The price variance is

$$V(P_t|P_0) = P_0^2 e^{(2\mu + \sigma^2)t} (e^{\sigma^2 t} - 1)$$

Information Set and Random Walk

 \leadsto A better forecast of next-period price P_{t+1} is obtainable as the conditional expectation based on information ϕ_t available at t:

$$\mathbb{E}_t(P_{t+1}) \equiv \mathbb{E}(P_{t+1} | \phi_t)$$

→ A random walk is a process that exhibits no preference in the direction it is taking for the next time step. Thus, no "pattern" can be deciphered from a time series of random walks.

→ If the price process is a random walk, i.e, the probability of up move is the same as the probability of down move:

$$P_{t+1} = P_t + e_{t+1}$$

where e_{t+1} is a noise process with zero mean.

 \leadsto The noise e_{t+1} is not correlated with P_t , i.e., $\mathbb{E}\big(e_{t+1}\big|P_t\big)=0$. Then

$$\mathbb{E}_t(P_{t+1}) = \mathbb{E}_t(P_t + e_{t+1}) = P_t.$$

Log Price and Random Walk

 \succ Consider a random variable $\xi_{t+1}>0$ such that $\mathbb{E}_tig(\xi_{t+1}ig)=1$ and

$$P_{t+1} = P_t \xi_{t+1}$$

Then

$$\mathbb{E}_t(P_{t+1}) = P_t$$

$$r_{t+1} = \ln P_{t+1} - \ln P_t = \ln P_t + \ln \xi_{t+1} - \ln P_t$$

= $\ln \xi_{t+1}$

Assumptions

 $\ \square$ If the daily log return r_t is treated as a random variable, the variance of a sum of q daily log returns in sequel is

$$\mathbb{V}\left(\sum_{t=1}^{q} r_t\right) = \sum_{t=1}^{q} \mathbb{V}(r_t) + 2\sum_{t=1}^{q} \sum_{s < t} \mathbb{C}(r_s, r_t).$$

- Two assumptions are made
 - **1** Zero covariance: $\mathbb{C}(r_s, r_t) = 0$ for any $s \neq t$
 - 2 Homoskedasticity: $\mathbb{V}(r_t) = \sigma^2$
- Under these two assumptions,

$$\mathbb{V}(r_t(q)) := \mathbb{V}\left(\sum_{t=1}^q r_t\right) = q\sigma^2.$$

Variance Ratio

Definition of variance ratio

$$VR(q) := \frac{\mathbb{V}(r_t(q))}{q\sigma^2},$$

- \square VR(q) should be equal to one when the conditions of log returns being serially uncorrelated and homoskedastic are satisfied.
- ☐ The variance ratio test is a test of

$$H_0: VR(q) - 1 = 0$$
 versus $H_1: VR(q) - 1 \neq 0$

 $\ \square$ If the null hypothesis cannot be rejected, then it means that the two assumptions are consistent with the reality. Conversely, a rejection of H_0 implies that at least one of the two assumptions is inconsistent with reality.

Sample Mean and Variance of Daily Log Returns

☐ To set up the framework for inference, we recall a few definitions and facts. The sample mean of daily log returns is estimated as usual,

$$\widehat{r}_1 = \frac{1}{T} \sum_{t=1}^{T} r_t.$$

But the sample variance of daily log returns is instead estimated as

$$\widehat{\sigma}_1^2 = \frac{1}{T} \sum_{t=1}^T \left(r_t - \widehat{r}_1 \right)^2.$$

The subscript of 1 in \hat{r}_1 and $\hat{\sigma}_1^2$ is meant to indicate that these estimates are for daily log returns.

Distribution of Variance Estimate

 $oldsymbol{\square}$ By the law of large numbers, as $T\longrightarrow \infty$,

$$\mathbb{E}(\widehat{\sigma}_{1}^{2}) = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left(\left(r_{t} - \widehat{r}_{1}\right)^{2}\right) \longrightarrow \sigma^{2}$$

$$\mathbb{V}(\widehat{\sigma}_{1}^{2}) = \frac{1}{T^{2}} \sum_{t=1}^{T} \mathbb{V}\left(\left(r_{t} - \widehat{r}_{1}\right)^{2}\right) \longrightarrow \frac{1}{T} \mathbb{V}(\sigma^{2}x^{2}) = \frac{\sigma^{4}}{T} \mathbb{V}(x^{2}),$$

where $x \sim N(0,1)$, and $\mathbb{V}\big(x^2\big)$ is the variance of the chi-square random variable with 1 degree of freedom, which equals 2.

 $lue{}$ By the central limit theorem, as $T\longrightarrow \infty$,

$$\sqrt{T}(\hat{\sigma}_1^2 - \sigma^2) \sim N(0, 2\sigma^4)$$

Estimation of *q***-Daily Log Return and Variance**

 \Box The q-daily return is

$$r_{qj}(q) = \ln P_{qj} - \ln P_{q(j-1)},$$

for $j=1,2,\ldots,M$, where M is the maximum number of non-overlapping q-daily returns that are obtainable from T+1 prices starting from P_0 .

- $f \square$ The sample average of $r_{qj}(q)$ is simply q times of \widehat{r}_1 , i.e., $q\widehat{r}_1$.
- ☐ The sample variance is estimated as

$$\hat{\sigma}_q^2 = \frac{1}{M} \sum_{j=1}^{M} (r_{qj}(q) - q\hat{r}_1)^2.$$

Asymptotic Limits

 \blacktriangle The asymptotic limits of the expected value and variance of $\widehat{\sigma}_q^2$ are as follows:

$$\mathbb{E}(\widehat{\sigma}_q^2) = \frac{1}{M} \sum_{j=1}^M \mathbb{E}\left(\left(r_{qj}(q) - q\widehat{r}_1\right)^2\right) \longrightarrow q\sigma^2;$$

$$\mathbb{V}\left(\frac{\widehat{\sigma}_q^2}{q}\right) = \frac{1}{M^2 q^2} \sum_{j=1}^M \mathbb{V}\left(\left(r_{qj}(q) - q\widehat{r}_1\right)^2\right) \longrightarrow \frac{1}{Mq^2} \mathbb{V}\left(q\sigma^2 x^2\right) = \frac{1}{M}\sigma^4 \mathbb{V}(x^2).$$

- ▲ As in Slide 13,
- \blacktriangle By the central limit theorem, as $M \longrightarrow \infty$,

$$\sqrt{Mq} \left(\frac{\widehat{\sigma}_q^2}{q} - \sigma^2 \right) \sim N(0, 2q\sigma^4).$$

Test Statistics

▼ To perform the test, we define the test statistics

$$J_d(q) := \frac{\widehat{\sigma}_q^2}{q} - \widehat{\sigma}_1^2;$$

$$J_r(q) := \frac{\widehat{\sigma}_q^2}{q\widehat{\sigma}_1^2} - 1 = \widehat{VR}(q) - 1.$$

▼ Note that $J_r(q) = \frac{J_d(q)}{\widehat{\sigma}_1^2}$

Asymptotic Distributions

Theorem 3.1

The asymptotic distributions of $\sqrt{Mq}J_d(q)$ and $\sqrt{Mq}J_r(q)$ are normal with mean 0 and variances of, respectively, $2(q-1)\sigma^4$ and 2(q-1):

$$\sqrt{Mq}J_d(q) \sim N(0, 2(q-1)\sigma^4);$$

$$\sqrt{Mq}J_r(q) \sim N(0,2(q-1)).$$

• In light of this theorem, for q > 2, the z score is computed as

$$Z_q = \sqrt{Mq} \frac{J_r(q)}{\sqrt{2(q-1)}} \sim N(0,1).$$

Case Study: Variance Tests on GE

\overline{q}		2								10
Obs	22,776	11,388	7,592	5,694	4,555	3,796	3,253	2,847	2,530	2,277
$\widehat{\operatorname{VR}}(q)$	1	1.002	0.946	0.939	0.916	0.926	0.968	0.933	0.871	0.920
Z_q	_	0.20	-4.08	-3.74	-4.46	-3.53	-1.40	-2.69	-4.85	-2.86

Table: Results of variance ratio tests based on GE's daily log returns.

- Looking at Z_2 , what can you infer?
- 2 Looking at Z_5 , what can you infer?

Takeaways

- Asset returns are likely to be not normally distributed
- The variance of return increases with the holding period
- > Statistical arbitrage is difficult but possible because prices are not strictly random walks.