```
import numpy as np
In [1]:
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import LabelEncoder
        from sklearn.metrics import precision_score,recall_score,accuracy_score,confusion_matrix
        from sklearn.svm import SVC
        from sklearn.linear_model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import BaggingClassifier,AdaBoostClassifier,RandomForestClassifier,Gradie
        df=pd.read_csv("D:/Project/Air.csv")
In [2]:
```

In [3]: df

t[3]:	id		Airline	Flight AirportFrom		AirportTo	DayOfWeek	Length	Price	Total Stop	Delay
	0	1	Jet Airways	269	Delhi	Cochin	3	205	3898	non-stop	1
	1	2	IndiGo	1558	Kolkata	Banglore	3	222	7663	1 stop	1
	2	3	Jet Airways	2400	Delhi	Cochin	3	165	13883	1 stop	1
	3	4	Multiple carriers	2466	Delhi	Cochin	3	195	6219	1 stop	1
	4	5	Air Asia	108	Banglore	Delhi	3	202	13303	1 stop	0
	•••										
	311	312	Air India	5479	Kolkata	Banglore	3	120	14715	1 stop	0
	312	313	Air India	5491	Kolkata	Banglore	3	98	9900	1 stop	0
	313	314	Jet Airways	5507	Kolkata	Banglore	3	102	14872	1 stop	0
	314	315	Air India	5564	Mumbai	Hyderabad	3	88	7296	non-stop	1
	315	316	Air India	5605	Delhi	Cochin	3	86	13466	1 stop	0

316 rows × 10 columns

In [4]: df.head()

Out[4]:	: id		id Airline		AirportFrom	AirportTo	DayOfWeek	Length	Price	Total Stop	Delay
	0	1	Jet Airways	269	Delhi	Cochin	3	205	3898	non-stop	1
	1	2	IndiGo	1558	Kolkata	Banglore	3	222	7663	1 stop	1
	2	3	Jet Airways	2400	Delhi	Cochin	3	165	13883	1 stop	1
	3	4	Multiple carriers	2466	Delhi	Cochin	3	195	6219	1 stop	1
	4	5	Air Asia	108	Banglore	Delhi	3	202	13303	1 stop	0

```
In [5]: df.columns
```

In [6]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 316 entries, 0 to 315
         Data columns (total 10 columns):
              Column
                           Non-Null Count
                                           Dtype
          0
              id
                           316 non-null
                                            int64
                                           object
          1
             Airline
                           316 non-null
          2
             Flight
                           316 non-null
                                            int64
              AirportFrom 316 non-null
                                            object
              AirportTo
                           316 non-null
                                            object
          5
              DayOfWeek
                           316 non-null
                                            int64
              Length
                           316 non-null
                                            int64
          7
              Price
                           316 non-null
                                            int64
          8
              Total Stop 316 non-null
                                            object
              Delay
                           316 non-null
                                            int64
         dtypes: int64(6), object(4)
         memory usage: 24.8+ KB
         df.size # Size of DataSet Total Number Present in Dataset
 In [7]:
         3160
Out[7]:
         df.shape # Shape of Dataset Total Row And Columns Present In Dataset
 In [8]:
         (316, 10)
Out[8]:
 In [9]:
         df.isnull().sum() #Checking Null Values Of Dataset
         id
 Out[9]:
         Airline
                        0
         Flight
                        0
                        0
         AirportFrom
         AirportTo
         DayOfWeek
                        0
         Length
                        0
         Price
         Total Stop
                        0
         Delay
         dtype: int64
         df.isnull().sum().sum() #Total Null Value
Out[10]:
```

Performing LabelEncoding On DataSet

```
In [11]: le=LabelEncoder() # To convert categorical data into numerical data for model building
In [12]: df
```

Out[12]:		id	Airline	Flight	AirportFrom	AirportTo	DayOfWeek	Length	Price	Total Stop	Delay	
	0	1	Jet Airways	269	Delhi	Cochin	3	205	3898	non-stop	1	
	1	2	IndiGo	1558	Kolkata	Banglore	3	222	7663	1 stop	1	
	2	3	Jet Airways	2400	Delhi	Cochin	3	165	13883	1 stop	1	
	3	4	Multiple carriers	2466	Delhi	Cochin	3	195	6219	1 stop	1	
	4	5	Air Asia	108	Banglore	Delhi	3	202	13303	1 stop	0	
	•••							•••				
	311	312	Air India	5479	Kolkata	Banglore	3	120	14715	1 stop	0	
	312	313	Air India	5491	Kolkata	Banglore	3	98	9900	1 stop	0	
	313	314	Jet Airways	5507	Kolkata	Banglore	3	102	14872	1 stop	0	
	314	315	Air India	5564	Mumbai	Hyderabad	3	88	7296	non-stop	1	
	315	316	Air India	5605	Delhi	Cochin	3	86	13466	1 stop	0	
	316 rows × 10 columns											
In [13]:	<pre>df["Airline"]=le.fit_transform(df["Airline"]) df["AirportFrom"]=le.fit_transform(df["AirportFrom"]) df["AirportTo"]=le.fit_transform(df["AirportTo"]) df["Total Stop"]=le.fit_transform(df["Total Stop"])</pre>											
In [14]:	df.h	nead()									
2 3												

Flight AirportFrom AirportTo DayOfWeek Length Price Total Stop Delay Out[14]: id Airline 0 269 2 3 205 3898 1 1 3 3 1558 3 222 7663 1 2 3 4 2400 2 1 3 165 13883 0 1 5 2 3 195 1 4 2466 1 6219 0 3 0 2 3 0 202 0 0 5 108 13303

df.describe().T # Statistical Summary Of Dataset In [15]:

> 25% **50**% **75**% count std min mean max 91.365566 id 316.0 79.75 158.5 237.25 316.0 158.500000 1.0 **Airline** 316.0 0.0 3.00 4.0 5.00 3.645570 1.769498 8.0 Flight 316.0 2712.158228 2022.387751 17.0 1127.75 2214.0 4034.00 7781.0 AirportFrom 316.0 1.981013 1.200378 0.0 2.00 2.0 3.00 4.0 0.0 2.00 **AirportTo** 316.0 1.398734 1.492584 0.00 1.0 5.0 DayOfWeek 316.0 3.000000 0.000000 3.0 3.00 3.0 3.00 3.0 316.0 32.0 76.00 115.0 165.00 380.0 Length 125.348101 61.116587 316.0 5118.00 **Price** 8888.636076 4215.393097 1966.0 8243.0 12374.00 27431.0 **Total Stop** 316.0 0.338608 0.473987 0.0 0.00 0.0 1.00 1.0 316.0 0.215190 0.411606 0.0 0.00 0.0 0.00 1.0 Delay

Out[15]:

```
int64
Out[16]:
         Airline
                         int32
         Flight
                         int64
         AirportFrom
                         int32
         AirportTo
                         int32
         DayOfWeek
                         int64
         Length
                         int64
         Price
                         int64
         Total Stop
                         int32
         Delay
                         int64
         dtype: object
```

#Steps to Remove Outliers

Q1=df.quantile(q=0.25)

Q3=df.quantile(q=0.75)

In [18]:

In [19]:

Removing Outliers present in Dataset

```
In [17]:
           plt.figure(figsize=(20,20))
                                                     # Ploting Boxplot to detect outliers
           sns.boxplot(data=df)
           <Axes: >
Out[17]:
           25000
           20000
           15000
           10000
                                                                        DayOfWeek
                                                                                                         Total Stop
```

finding Q1 value

Finding Q3 value

```
IQR=Q3-Q1
                                # Finding IQR Value i.e(InterQuantileRange)
upper=Q3+(1.5*IQR)
                                # to detect upper outliers
                                # to detect lower outliers
lower=Q1-(1.5*IQR)
```

```
df1=df[~((df>upper)|(df<lower))]</pre>
In [20]:
```

plt.figure(figsize=(20,20)) # Boxplot after removing Outliers In [21]: sns.boxplot(data=df1)

<Axes: > Out[21]:


```
In [22]:
           df1.isnull().sum()
         id
                          0
Out[22]:
         Airline
                          0
         Flight
                          0
         AirportFrom
                         67
```

AirportTo 0 DayOfWeek 0 Length 4 Price 1 Total Stop 0 Delay 68

dtype: int64

In [23]: df1

Out[23]:

	id	Airline	Flight	AirportFrom	AirportTo	DayOfWeek	Length	Price	Total Stop	Delay
0	1	4	269	2.0	1	3	205.0	3898.0	1	NaN
1	2	3	1558	3.0	0	3	222.0	7663.0	0	NaN
2	3	4	2400	2.0	1	3	165.0	13883.0	0	NaN
3	4	5	2466	2.0	1	3	195.0	6219.0	0	NaN
4	5	0	108	NaN	2	3	202.0	13303.0	0	0.0
•••										
311	312	1	5479	3.0	0	3	120.0	14715.0	0	0.0
312	313	1	5491	3.0	0	3	98.0	9900.0	0	0.0
313	314	4	5507	3.0	0	3	102.0	14872.0	0	0.0
314	315	1	5564	4.0	3	3	88.0	7296.0	1	NaN
315	316	1	5605	2.0	1	3	86.0	13466.0	0	0.0

316 rows × 10 columns

In [24]: df2=df1.dropna() # removing that nan values

In [25]: df2

Out[25]:

	id	Airline	Flight	AirportFrom	AirportTo	DayOfWeek	Length	Price	Total Stop	Delay
	7 8	3	2722	3.0	0	3	228.0	22271.0	0	0.0
1	2 13	5	2055	2.0	1	3	210.0	4668.0	1	0.0
1	4 15	4	132	2.0	1	3	215.0	4805.0	1	0.0
1	6 17	5	98	2.0	1	3	213.0	5831.0	0	0.0
1	7 18	7	1496	3.0	0	3	162.0	10263.0	0	0.0
	••						•••			
30	6 307	4	5366	3.0	0	3	119.0	9135.0	0	0.0
31	1 312	1	5479	3.0	0	3	120.0	14715.0	0	0.0
31	2 313	1	5491	3.0	0	3	98.0	9900.0	0	0.0
31	3 314	4	5507	3.0	0	3	102.0	14872.0	0	0.0
31	5 316	1	5605	2.0	1	3	86.0	13466.0	0	0.0

193 rows × 10 columns

In [26]: df2.drop(["Delay"],axis=1,inplace=True)

C:\Users\PC\AppData\Local\Temp\ipykernel_12224\591671106.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df2.drop(["Delay"],axis=1,inplace=True)

In [27]: df2.head()

Out[27]:		id	Airline	Flight	AirportFrom	AirportTo	DayOfWeek	Length	Price	Total Stop
	7	8	3	2722	3.0	0	3	228.0	22271.0	0
	12	13	5	2055	2.0	1	3	210.0	4668.0	1
	14	15	4	132	2.0	1	3	215.0	4805.0	1
	16	17	5	98	2.0	1	3	213.0	5831.0	0
	17	18	7	1496	3.0	0	3	162.0	10263.0	0

```
df2.isnull().sum().sum()
In [28]:
```

Out[28]:

HeatMap To Show Corelation between Data

	id	Airline	Flight	AirportFrom	AirportTo	DayOfWeek	Length	Price	Total Stop
7	8	3	2722	3.0	0	3	228.0	22271.0	0
12	13	5	2055	2.0	1	3	210.0	4668.0	1
14	15	4	132	2.0	1	3	215.0	4805.0	1
16	17	5	98	2.0	1	3	213.0	5831.0	0
17	18	7	1496	3.0	0	3	162.0	10263.0	0
•••									
306	307	4	5366	3.0	0	3	119.0	9135.0	0
311	312	1	5479	3.0	0	3	120.0	14715.0	0
312	313	1	5491	3.0	0	3	98.0	9900.0	0
313	314	4	5507	3.0	0	3	102.0	14872.0	0
315	316	1	5605	2.0	1	3	86.0	13466.0	0

193 rows × 9 columns

Out[30]:

[Text(-0.5705443762240192, 0.9404674979812674, 'Non Stop'), Text(0.5705444642769384, -0.9404674445630435, '1 stop')])

Model Building for DataSet

```
In [34]: x=df2.drop(["Total Stop"],axis=1)
y=df2["Total Stop"]

In [35]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1) # splliting

In [36]: print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(135, 8)
(58, 8)
(135,)
(58,)
```

LOGISTIC REGRESSION ALGORITHM

```
lr=LogisticRegression()
In [37]:
         lr.fit(x_train,y_train)
         C:\Users\PC\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:460: ConvergenceWarni
         ng: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
           n_iter_i = _check_optimize_result(
Out[37]: ▼ LogisticRegression
         LogisticRegression()
         y_true,y_pred=y_test,lr.predict(x_test)
In [38]:
         lr.score(x_train,y_train)*100
In [39]:
         90.37037037037037
Out[39]:
In [40]:
         lr.score(x_test,y_test)*100
         81.03448275862068
Out[40]:
         print(precision_score(y_true,y_pred)*100)
In [41]:
         print(recall_score(y_true,y_pred)*100)
         print(accuracy_score(y_true,y_pred)*100)
         63.636363636363
         82.35294117647058
```

RandomForestClassifier

81.03448275862068

```
rf=RandomForestClassifier(n_estimators=6, random_state=1)
In [42]:
         rf.fit(x_train,y_train)
Out[42]:
                           RandomForestClassifier
         RandomForestClassifier(n_estimators=6, random_state=1)
         y_true,y_pred=y_test,rf.predict(x_test)
In [43]:
In [44]:
         rf.score(x_train,y_train)*100
         97.777777777777
Out[44]:
In [45]:
         rf.score(x_test,y_test)*100
         87.93103448275862
Out[45]:
In [46]:
         print(precision_score(y_true,y_pred)*100)
         print(recall_score(y_true,y_pred)*100)
         print(accuracy_score(y_true,y_pred)*100)
         85.71428571428571
         70.58823529411765
         87.93103448275862
         DecisionTreeClassifier
In [47]:
         dt=DecisionTreeClassifier(criterion="gini",max_depth=4,random_state=1)
         dt.fit(x_train,y_train)
Out[47]:
                          DecisionTreeClassifier
         DecisionTreeClassifier(max_depth=4, random_state=1)
         y_true,y_pred=y_test,dt.predict(x_test)
In [48]:
In [49]:
         dt.score(x_train,y_train)*100
         91.85185185185
Out[49]:
In [50]:
         dt.score(x_test,y_test)*100
         87.93103448275862
Out[50]:
         print(precision_score(y_true,y_pred)*100)
In [51]:
         print(recall_score(y_true,y_pred)*100)
         print(accuracy_score(y_true,y_pred)*100)
         77.77777777779
         82.35294117647058
         87.93103448275862
```

GRADIENT BOOSTING CLASSIFIER ALGORITHM

In [52]: gb=GradientBoostingClassifier(n_estimators=20)
 gb.fit(x_train,y_train)

```
Out[52]:
                  GradientBoostingClassifier
        GradientBoostingClassifier(n_estimators=20)
         y_true,y_pred=y_test,gb.predict(x_test)
In [53]:
         gb.score(x_train,y_train)*100
In [54]:
         94.81481481482
Out[54]:
In [55]:
         gb.score(x_test,y_test)*100
         84.48275862068965
Out[55]:
         print(precision_score(y_true,y_pred)*100)
In [56]:
         print(recall_score(y_true,y_pred)*100)
         print(accuracy_score(y_true,y_pred)*100)
         82.35294117647058
         84.48275862068965
         BAGGING CLASSIFIER ALGORITHM
In [57]:
         bg=BaggingClassifier(n_estimators=20)
         bg.fit(x_train,y_train)
Out[57]: •
                  BaggingClassifier
        BaggingClassifier(n_estimators=20)
        y_true,y_pred=y_test,bg.predict(x_test)
In [58]:
         bg.score(x_train,y_train)*100
In [59]:
         100.0
Out[59]:
In [60]:
         bg.score(x_test,y_test)*100
```

ADABOOST CLASSIFIER ALGORITHM

In [62]: ad=AdaBoostClassifier(n_estimators=20,estimator=dt,random_state=1)
 ad.fit(x_train,y_train)

87.93103448275862

88.23529411764706 87.93103448275862

print(precision_score(y_true,y_pred)*100)

print(recall_score(y_true,y_pred)*100)
print(accuracy_score(y_true,y_pred)*100)

Out[60]:

In [61]:

75.0

```
AdaBoostClassifier
Out[62]:
         ▶ estimator: DecisionTreeClassifier
               ▶ DecisionTreeClassifier
         y_true,y_pred=y_test,ad.predict(x_test)
In [63]:
In [64]:
         ad.score(x_train,y_train)*100
         100.0
Out[64]:
In [65]:
         ad.score(x_test,y_test)*100
         81.03448275862068
Out[65]:
In [66]:
         print(precision_score(y_true,y_pred)*100)
         print(recall_score(y_true,y_pred)*100)
         print(accuracy_score(y_true,y_pred)*100)
         65.0
         76.47058823529412
         81.03448275862068
         KNeighbors CLASSIFIER ALGORITHM
         kn=KNeighborsClassifier(weights="distance")
In [67]:
         kn.fit(x_train,y_train)
Out[67]:
                    KNeighborsClassifier
        KNeighborsClassifier(weights='distance')
         y_true,y_pred=y_test,kn.predict(x_test)
In [68]:
In [69]:
```

kn.score(x_train,y_train)*100

100.0 Out[69]:

In [70]: kn.score(x_test,y_test)*100

79.3103448275862 Out[70]:

In [71]: print(precision_score(y_true,y_pred)*100) print(recall_score(y_true,y_pred)*100) print(accuracy_score(y_true,y_pred)*100)

> 61.904761904761905 76.47058823529412 79.3103448275862

SVC (SUPPORT VECTOR CLASSIFIER) ALGORITHM

```
svc=SVC(C=1.0,kernel="linear")
In [72]:
         svc.fit(x_train,y_train)
```

```
SVC(kernel='linear')
         y_true,y_pred=y_test,svc.predict(x_test)
In [73]:
         svc.score(x_train,y_train)*100
In [74]:
         88.8888888888889
Out[74]:
In [75]:
         svc.score(x_test,y_test)*100
         81.03448275862068
Out[75]:
In [76]:
         print(precision_score(y_true,y_pred)*100)
         print(recall_score(y_true,y_pred)*100)
         print(accuracy_score(y_true,y_pred)*100)
         65.0
         76.47058823529412
         81.03448275862068
 In [ ]:
 In [ ]:
 In [ ]:
 In [ ]:
```

Out[72]: ▼

SVC