21. Probar las identidades de Green

$$\iint_{\partial W} f \nabla g \cdot \mathbf{n} \, dS = \iiint_{W} (f \nabla^{2} g + \nabla f \cdot \nabla g) \, dV$$

$$\iint_{\partial W} (f \nabla g - g \nabla f) \cdot \mathbf{n} \, dS = \iiint_{W} (f \nabla^{2} g - g \nabla^{2} f) \, dV.$$

- **22.** Supongamos que \mathbf{F} satisface div $\mathbf{F} = 0$ y rot $\mathbf{F} = \mathbf{0}$ en todo \mathbb{R}^3 . Demostrar que podemos escribir $\mathbf{F} = \nabla f$, donde $\nabla^2 f = 0$.
- **23.** Sea ρ una función continua en \mathbb{R}^3 tal que $\rho(\mathbf{q}) = 0$ excepto para \mathbf{q} en alguna región W. Sea $\mathbf{q} \in W$ denotada por $\mathbf{q} = (x, y, z)$. El **potencial** de ρ se define como la función

$$\phi(\mathbf{p}) = \iiint_W \frac{\rho(\mathbf{q})}{4\pi ||\mathbf{p} - \mathbf{q}||} \ dV(\mathbf{q}),$$

donde $\|\mathbf{p} - \mathbf{q}\|$ es la distancia entre \mathbf{p} y \mathbf{q} .

(a) Utilizando el método del Teorema 10, demostrar que

$$\iint_{\partial W} \nabla \phi \cdot \mathbf{n} \, dS = - \iiint_{W} \rho \, dV$$

para aquellas regiones W que puedan ser divididas en una unión finita de regiones elementales simétricas.

(b) Demostrar que ϕ satisface la ecuación de Poisson

$$\nabla^2 \phi = -\rho.$$

[SUGERENCIA: utilizar el apartado (a)]. (Obsérvese que si ρ es una densidad de carga, entonces la integral que define ϕ puede interpretarse como la suma de los potenciales en \mathbf{p} debidos a las cargas puntuales distribuidas sobre W según la densidad ρ).

24. Supóngase que \mathbf{F} es tangente a la superficie cerrada $S = \partial W$ de una región W. Demostrar que

$$\iiint_{W} (\text{div } \mathbf{F}) \, dV = 0.$$

25. Usar la ley de Gauss y la simetría para probar que el campo eléctrico debido a una carga Q distribuida uniformemente sobre la superficie de una esfera es el mismo en el exterior de la superficie que el campo producido por una carga puntual Q situada en el centro de la esfera. ¿Cuál es el campo en el interior de la esfera?

- **26.** Reformular el Ejercicio 25 en términos de campos gravitatorios.
- **27.** Mostrar cómo se puede usar la ley de Gauss para resolver el apartado (b) del Ejercicio 29 de la Sección 8.3.
- **28.** Sea S una superficie cerrada. Utilizar el teorema de Gauss para demostrar que si \mathbf{F} es un campo vectorial de clase C^2 , entonces tenemos $\iint_{\mathbf{S}} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = 0.$
- **29.** Sea S la superficie de la región W. Demostrar que

$$\iint_{S} \mathbf{r} \cdot \mathbf{n} \, dS = 3 \text{ volumen } (W).$$

Explicar esto geométricamente.

30. Para una distribución de carga estacionaria y una distribución de corriente de divergencia cero, los campos eléctrico y magnético $\mathbf{E}(x,y,z)$ y $\mathbf{H}(x,y,z)$ satisfacen

$$\begin{split} & \nabla \times \mathbf{E} = \mathbf{0}, & \nabla \cdot \mathbf{H} = 0, & \nabla \cdot \mathbf{J} = 0, \\ & \nabla \cdot \mathbf{E} = \rho & \text{y} & \nabla \times \mathbf{H} = \mathbf{J}. \end{split}$$

Aquí, suponemos que $\rho = \rho(x,y,z)$ y $\mathbf{J}(x,y,z)$ son conocidos. La radiación que los campos producen a través de la superficie S está determinada por un campo vectorial de densidad del flujo de radiación, denominado campo vectorial de Poynting,

$$P = E \times H$$
.

(a) Si S es una superficie cerrada, demostrar que el flujo de radiación —es decir, el flujo de \mathbf{P} a través de S— está dado por

$$\iint_{S} \mathbf{P} \cdot d\mathbf{S} = -\iiint_{V} \mathbf{E} \cdot \mathbf{J} \ dV,$$

donde V es la región encerrada por S.

- (b) Ejemplos de tales campos son $\mathbf{E}(x,y,z) = z\mathbf{j} + y\mathbf{k}$ y $\mathbf{H}(x,y,z) = -xy\mathbf{i} + x\mathbf{j} + yz\mathbf{k}$. En este caso, hallar el flujo del vector de Poynting a través de la superficie semiesférica mostrada en la Figura 8.4.9. (Obsérvese que se trata de una superficie *abierta*).
- (c) Los campos del apartado (b) producen un vector de Poynting que pasa a través de la superficie toroidal mostrada en la Figura 8.4.10. ¿Cuál es el flujo a través de este toro?