Contents

1	The	e Classical Foundations
	1.1	Lecture 0: Introduction
	1.2	Lecture 1: Basic statistics
	1.3	Lecture 2: Kinetic theory of gases
	1.4	Lecture 3: Transport
2	Qua	antum Mechanics: Blurred Lines Between Particles and Waves
	2.1	Lecture 4: Duality and demise of classical physics
	2.2	Lecture 5: Postulates of quantum mechanics
	2.3	Lecture 6: Particle in a box model
	2.4	Lecture 7: Harmonic oscillator
	2.5	Lecture 8: Rigid Rotor
	2.6	Lecture 11: Hydrogen atom
	2.7	Lecture 12: Many-electron atoms
	2.8	Lecture 13: Qualitative models of bonding
	2.9	Lecture 14: Quantitative Models of Bonding
3	Stat	tistical Mechanics: The Bridge from the Tiny to the Many 40
•	3.1	Lecture 17: Statistical mechanics
	3.2	Lecture 18: Canonical (NVT) ensemble
	3.3	Lecture 19: Molecular Partition Functions
	3.4	Lecture 20: Chemical reactions and equilibria
	3.5	Lecture 21: Chemical kinetics
	3.6	Lecture 22: Conclusion
1	\mathbf{T}	he Classical Foundations
1.	1 I	ecture 0: Introduction
		urning lighter
	1. D	urning lighter
	2. Fo	oundations of Physical Chemistry
	(a) Quantum mechanics
	(b) Statistical mechanics
	(c) Thermodynamics, kinetics, spectroscopy
	(d) Physical and chemical properties of matter
1.	2 L	Lecture 1: Basic statistics
1.	2.1	Discrete probability distributions—Coin flip
	1. E	xample of Bernoulli trial, 2^n possible outcomes from n flips
		umber of ways to get <i>i</i> heads in <i>n</i> flips, ${}_{n}C_{i}=n!/i!(n-i)!$
	ა. Pi	robability of i heads $P_i \propto {}_n C_i$

 $\overline{\mathrm{mol}^{-1}}$ 6.02214×10^{23} $N_{\rm Av}$: 1.6605×10^{-27} 1 amu: kg 1.38065×10^{-23} $\rm J~K^{-1}$ 8.61734×10^{-5} eV K⁻¹ $k_{\rm B}$: $\rm J~K^{-1}~mol^{-1}$ 8.2057×10^{-2} l atm mol⁻¹ K⁻¹ R: 8.314472 ${
m J}~{
m s}^{-1}~{
m m}^{-2}~{
m K}^{-4}$ 5.6704×10^{-8} σ_{SB} : $\rm m\ s^{-1}$ 2.99792458×10^{8} c: 6.62607×10^{-34} h: J s 4.13566×10^{-15} eV s 1.05457×10^{-34} 6.58212×10^{-16} eV s J s \hbar : hc: 1239.8 eV nm 1.60218×10^{-19} \mathbf{C} e: $9.10938215 \times 10^{-31}$ $MeV c^{-2}$ kg 1: 0.5109989 m_e : 5.52635×10^{-3} $e^2 \text{ Å}^{-1} \text{ eV}^{-1}$ $C^2 J^{-1} m^{-1}$ 8.85419×10^{-12} $e^2/4\pi\epsilon_0$: 2.30708×10^{-28} 14.39964 eV ÅJ m 0.529177×10^{-10} 0.529177Å \mathbf{m} a_0 : 27.212 $E_{\rm H}$: Ha eV

Table 1: Key units in Physical Chemistry

- 4. Normalized probability, $\tilde{P}_i = P_i / \sum_i P_i = {}_{n}C_i / 2^n$
- 5. Expectation value $\langle i \rangle = \sum_i i \tilde{P}_i$

1.2.2 Continuous distributions—temperature

- 1. Probability density $\phi(x)$ has units 1/x
- 2. Normalized $\tilde{\phi}(x) = \phi(x) / \int \phi(x) dx$
- 3. (Unitless) probability $a < x < b = \int_a^b \tilde{\phi}(x) dx$
- 4. Expectation value $\langle f(x) \rangle = \int f(x)\tilde{\phi}(x)dx$
- 5. Mean = $\langle x \rangle$
- 6. Mean squared = $\langle x^2 \rangle$
- 7. Variance $\sigma^2 = \langle x^2 \rangle \langle x \rangle^2$
- 8. Standard deviation $\Delta x = \sigma$

1.2.3 Temperature example

https://colab.research.google.com/github/wmfschneider/CHE30324/blob/master/Resources/Probability.ipynb

1.2.4 Boltzmann distribution

- 1. $P(E) \propto e^{-E/k_BT}$, in some sense the definition of temperature (Figure 1)
- 2. Energy and its units

- 3. Absolute temperature and its units
- 4. k_BT as an energy scale, 0.026 eV at 298 K
- 5. Equipartition energy freely exchanged within and between all degrees of freedom

1.2.5 Boltzmann distribution: Gravity example

- 1. E(h) = mgh, linear, continuous energy spectrum
- 2. Exponential distribution

$$P(h) = \frac{1}{\int_0^\infty \exp\left(-mgh/k_BT\right)dh} \exp\left(\frac{-mgh}{k_BT}\right) = \frac{mg}{k_BT} \exp\left(\frac{-mgh}{k_BT}\right)$$

- 3. molecule vs car in a gravitational field (Table 2)
- 4. Implies exponential decrease in gas density with altitude
- 5. Barometric law for gases, $P = P_0 e^{-mgh/k_BT}$

1.2.6 Boltzmann distribution: Kinetic energy in 1-D example

- 1. $KE = \frac{1}{2}mv_x^2$, $P(v_x) \propto \exp\left(-mv_x^2/2k_BT\right)$
- 2. Standard Normalized Gaussian distribution of mean μ and variance σ^2

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- 3. By inspection, $\mu = \langle v_x \rangle = 0$, $\sigma^2 = \langle v_x^2 \rangle = k_B T/m$
- 4. Normalized velocity distribution

$$P_{1D}(v_x) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} \exp\left(-\frac{m|v_x|^2}{2k_B T}\right)$$

5. Molecule vs car again (Table 2)

1.3 Lecture 2: Kinetic theory of gases

- 1. Postulates
 - (a) Gas is composed of molecules in constant random, thermal motion
 - (b) Molecules only interact by perfectly elastic collisions
 - (c) Volume of molecules is << total volume
- 2. Maxwell-Boltzmann distribution of molecular speeds (Figure 3)

Table 2: Car vs gas molecule at the earth's surface

	car	gas molecule
m	$1000\mathrm{kg}$	$1 \times 10^{-26} \mathrm{kg}$
h	$1\mathrm{m}$	$1\mathrm{m}$
mgh	$9800\mathrm{J}$	$9.8 \times 10^{-26} \mathrm{J}$
	$6.1\times10^{22}\mathrm{eV}$	$6.1 \times 10^{-7} \mathrm{eV}$
T	$298\mathrm{K}$	$298\mathrm{K}$
k_BT	$0.026\mathrm{eV}$	$0.026\mathrm{eV}$
mgh/k_BT	2.4×10^{24}	2.3×10^{-5}
$P(1{\rm m})/P(0)$	$e^{-2.4 \times 10^{-24}}$	0.99998
$\langle h \rangle$	$0\mathrm{m}$	$42\mathrm{km}$
$\langle v_x \rangle^{1/2}$	$2 \times 10^{-12} \mathrm{m/s}$	$640\mathrm{m/s}$

Table 3: Energy conversions and correspondences

	J	eV	Hartree	$kJ \text{ mol}^{-1}$	cm^{-1}
1 J =	1	6.2415×10^{18}	2.2937×10^{17}	6.0221×10^{20}	5.0340×10^{22}
1 eV =	1.6022×10^{-19}	1	0.036748	96.485	8065.5
1 Ha =	4.3598×10^{-18}	27.212	1	2625.6	219474.6
$1 \text{ kJ mol}^{-1} =$	1.6605×10^{-21}	0.010364	3.8087×10^{-4}	1	83.5935
$1 \text{ cm}^{-1} =$	1.986410^{-23}	1.23984×10^{-4}	4.55623×10^{-6}	0.011963	1

Figure 1: Boltzmann distribution at various temperatures

Figure 2: One-dimensional (Gaussian) velocities of N_2 gas

Figure 3: Maxwell-Boltzmann speed distribution of N_2 gas

(a) Speed $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$, spherical coordinates

$$P_{\text{MB}}(v) = \int \int P_{1D}(v_x) P_{1D}(v_y) P_{1D}(v_z) v^2 \sin(\theta) d\theta d\phi$$
$$= 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right)$$

- (b) mean speeds $\langle v \rangle = \int_0^\infty v P_{MB}(v) dv \propto \sqrt{T}$
- (c) mean kinetic energy $\langle U \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} RT$
- (d) heat capacity $C_v = dU/dT = \frac{3}{2}R$
- 3. Flux and pressure
 - (a) Velocity flux $j(v_x)dv_x = v_x \frac{N}{V} P(v_x) dv_x$, molecules /area /time / v_x
 - (b) Wall collisions, $J_w = \int j(v_x) dv_x$, total collisions /area /time
 - (c) Momentum change with wall collisions (Δ momentum/area/time):

$$P = \int_0^\infty 2mv_x j_x(v_x) dv_x = m(N/V) \langle v_x^2 \rangle = Nk_B T/V$$

- 4. Collisions and mean free path
 - (a) Collision cross section $\sigma = \pi d^2$, area swept by molecule
 - (b) Molecular collisions per molecule = volume swept * density of targets = $z = \sigma \langle v \rangle (N/V) \sqrt{2}$
 - (c) Total collisions per volume = $z_{AA} = z(N/V)(1/2)$
 - (d) Mean free path, $\lambda = \langle v \rangle / z$, mean distance between collisions

Table 4: N_2 at $298 \,\mathrm{K}$ and $25 \,\mathrm{L} \,\mathrm{mol}^{-1}$

1.4 Lecture 3: Transport

- 1. Transport of energy, momentum, mass across a gradient.
- 2. Infinite gradient: effusion and Graham's law, effusion rate $\propto MW^{-1/2}$
- 3. Finite gradient: Fick's first law
 - (a) net flux proportional to concentration gradient

Table 5: Kinetic theory of gases key equations

Boltzmann distribution $(g(E))$: degeneracy of E)	$P(E) = g(E)e^{-E/k_BT}$
Maxwell-Boltzmann distribution	$P_{\text{MB}}(v) = 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right)$
Mean and RMS speeds	$\langle v \rangle = \left(\frac{8k_BT}{\pi m}\right)^{1/2} \qquad \langle v^2 \rangle^{1/2} = \left(\frac{3k_BT}{m}\right)^{1/2}$
Pressure	$\langle P \rangle = \frac{\Delta p}{\Delta t} = m \frac{N}{V} \frac{1}{3} \langle v^2 \rangle = \frac{N k_B T}{V} = \frac{nRT}{V}$
Wall collision frequency	$J_W = \frac{1}{4} \frac{N}{V} \langle v \rangle = \frac{P}{(2\pi m k_B T)^{1/2}}$
Molecular collision frequency	$z = \sqrt{2}\sigma \langle v \rangle \frac{N}{V} = \frac{4\sigma P}{(\pi m k_B T)^{1/2}}$
Total collisions	$z_{AA}=rac{1}{2}rac{N}{V}z$
Mean free path	$\lambda = \frac{\langle v \rangle}{z} = \frac{V}{\sqrt{2}\sigma N}$
Graham's effusion law	$\frac{dN}{dt} = \text{Area} \cdot J_w \propto 1/m^{1/2}$
Self-diffusion constant	$D_{11} = \frac{1}{3} \langle v \rangle \lambda$
Diffusion rate	$\langle x^2 \rangle^{1/2} = \sqrt{2Dt} \langle r^2 \rangle^{1/2} = \sqrt{6Dt}$
Einstein-Smoluchowski equation	$D_{11} = \frac{\delta^2}{2\tau}$
Stokes-Einstein equation for liquids	$D_{11} = \frac{k_B T}{4\pi \eta r}$ "Slip" boundary
	$D_{\mathrm{Brownian}} = \frac{k_B T}{6\pi \eta r}$ "Stick" boundary

- (b) $j_x = -D\frac{dc}{dx}$
- (c) Self-diffusion constant, $D = \frac{1}{3}\lambda \langle v \rangle$
- 4. Fick's second law: time evolution of concentration gradient
 - (a) Continuity with no advection: $\frac{\partial c}{\partial t} = -\nabla \cdot \vec{j} + \mathrm{gen}$
 - (b) One-dimension, point source: $\frac{dc}{dt} = D \frac{d^2c}{dx^2}$, $c(x,t=0) = c_0$
 - (c) Separate variables c(x,t) = X(x)t(t)
 - (d) Diffusion has Gaussian probability distribution: $c(x,t)/c_0 = [2\sqrt{\pi Dt}]^{-1} \exp(-x^2/4Dt)$
- 5. Random walk model of diffusion
 - (a) N steps, $n = n_r n_l$ net to the right, $P(n) = \binom{N}{n_r} 2^{-N}$
 - (b) Large N and Stirling approximation, $N! \approx (2\pi N)^{1/2} N^N e^{-N}$
 - (c) Let $x = \delta(n_r n_l)$, $N = t/\tau$, Gaussian reappears!

$$P(x,t) = \left(\frac{2\tau}{\pi t}\right)^{1/2} e^{-x^2\tau/2t\delta^2}$$

- (d) Einstein-Smoluchowski relation $D = \delta^2/2\tau$
- 6. Knudsen diffusion, $\delta = (3/2)l$, $\delta/\tau = \langle v \rangle$, $D = \frac{1}{3}l\langle v \rangle$
- 7. Seeing is believing—Brownian motion
 - (a) Seemingly random motion of large particles ("dust") due to "kicks" from invisible molecules
 - (b) Einstein in one of his four 1905 Annus Mirabilis papers shows
 - i. Motion of particles suspened in a fluid of molecules must follow same Gaussian diffusion behavior
 - ii. From steady-state arguments in a field, diffusion constant is Boltzmann energy, k_BT , times mobility
 - iii. Mobility inversely related to viscosity
 - (c) Stokes-Einstein equation
 - (d) Allows measurement of Avogadro's number, final proof of kinetic theory of matter
 - (e) Similar model for diffusion of liquid molecules, slip boundary

2 Quantum Mechanics: Blurred Lines Between Particles and Waves

2.1 Lecture 4: Duality and demise of classical physics

2.1.1 Properties of waves

- 1. Characterized by frequency, wavelength, amplitude, ...
- 2. Traveling waves, standing waves
- 3. Interference, diffraction
- 4. Characteristic of light, among other thing
- 5. Expected energy of a classical wave, $\langle \epsilon \rangle_{\nu} = k_B T$ for all ν

Figure 4: Diffusional spreading, $\sqrt{\langle x^2 \rangle} = \sqrt{2Dt}$

Table 6: Classical waves

The free wave equation	$\frac{\partial^2 \Psi(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi(x,t)}{\partial t^2}$
General solution	$\Psi(x,t) = A\sin(kx - \omega t)$
Wavelength (distance)	$\lambda = 2\pi/k$
Frequency (/time)	$ u = \omega/2\pi$
Speed	$v = \lambda \nu$
Amplitude (distance)	A
Energy	$E \propto A^2$
Standing wave	$\Psi(x,t) = A\sin(kx)\cos(\omega t), k = n\pi/a$

2.1.2 Blackbody radiation - light emitted by all bodies due to their temperature

- 1. Blackbody/Hohlraum spectrum (like the sun)
 - (a) Stefan-Boltzmann law, total irradiance $I(\lambda, T)$
 - (b) Wien's displacement law, $\lambda_{\text{text}}T = \text{constant}$
- 2. Rayleigh-Jeans predicts spectrum using classical physics
 - (a) standing waves + classical wave energy \rightarrow ultraviolet catastrophe
 - (b) $I(\lambda, T) = (8\pi/\lambda^4) \cdot k_B T \cdot c$
- 3. Planck model, 1900
 - (a) Energy spectrum of waves are quantized, $\epsilon_{\nu} = nh\nu$, n = 0, 1, 2, ...
 - (b) Expected energy of a quantized wave:

$$\langle \epsilon \rangle_{\nu} = \sum_{n=0}^{\infty} nh\nu e^{-nh\nu/k_BT} = h\nu/\left(e^{h\nu/k_BT} - 1\right)$$

(c) Intensity:

$$I(\lambda, T) = \frac{8\pi}{\lambda^4} \cdot \langle \epsilon \rangle_{\nu} \cdot c$$

(d) Correctly reproduces Stefan-Boltzmann and Wien Laws!

2.1.3 Heat capacities of solids

- 1. Law of DuLong and Pettite, $C_v = 3R$, fails at low T
- 2. Einstein model
 - (a) Energy of atomic vibrations ν are quantized, $\epsilon_{\nu} = nh\nu$, n = 0, 1, 2, ...
 - (b) Expected energy of vibration exactly same as Planck's quantized waves
 - (c) Heat capacity = derivative of energy wrt temperature goes to zero at low T

2.1.4 Photoelectric effect - electrons emitted when light shined on a metal

- 1. Energy of most weakly bound electrons to a material defined as work function, W
- 2. Shine light on metal, observe kinetic energy of electrons $E_{\rm kinetic} = h\nu W$
- 3. Kinetic energy varies with light frequency, number of electrons varies with light intensity
- 4. Einstein model, 1905 (Nobel prize)
 - (a) Light is both wave-like and composed of particle-like "photons"
 - (b) Photon energy related to frequency: $\epsilon = h\nu = hc/\lambda$
 - (c) Light intensity related to number of photons

2.1.5 Special theory of relative (Einstein, 1905)

- 1. speed of light c in a vacuum is a constant for all observes, independent of ν
- 2. photons carry momentum $p = h/\lambda$
- 3. demonstrated by Compton effect, light scattering off electrons changes λ

2.1.6 Rutherford, planetary model of atom

1. Inconsistent with Maxwell's equations

2.1.7 Bohr model of H atom

- 1. Bohr model (the old quantum mechanics)
 - (a) Stable electron "orbits," quantized angular momentum
 - (b) Light emission corresponds to orbital jumps, $\nu = \Delta E/h$
 - (c) Bohr equations
 - (d) Comparison with Rydberg formula
 - (e) Failure for larger atoms
- 2. Explains discrete H energy spectrum and Rydberg formala

2.1.8 de Broglie relation

- 1. $\lambda = h/p$ universally
- 2. Relation to Bohr orbits
- 3. Davison and Germer experiment, e^- diffraction off Ni
- 4. Basis of modern electron diffraction to observe structure of materials

2.1.9 Wave-particle duality

None

2.2 Lecture 5: Postulates of quantum mechanics

2.2.1 Schrödinger equation describes wave-like properties of matter

- 1. Attempt to mathematically elaborate de'Broglie idea
- 2. Statement of conservation of energy, kinetic + potential = total
- 3. One-dimensional, time-independent, single particle Schrödinger equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

- 4. Second-order differential equation, solutions are steady-states of the system, discrete eigenvalues E and eigenvectors $\psi(x)$
- 5. Applied to H atom by Schrödinger to recover Bohr energies

Figure 5: Blackbody irradiance

Figure 6: Average energy of a Planck quantized oscillator

Table 7: The new physics

Stefan-Boltzmann Law	$\int I(\lambda, T) d\lambda = \sigma_{\rm SB} T^4$
Wien's Law	$\lambda_{\rm max}T=2897768~{\rm nm~K}$
Rayleigh-Jeans eq	$I(\lambda, T) = \frac{8\pi}{\lambda^4} k_B T c$
Blackbody irradiance	$I(\lambda, T) = \frac{8\pi}{\lambda^5} \frac{hc^2}{e^{hc/\lambda k_B T} - 1}$
Einstein crystal	$C_v = 3R \left(\frac{h\nu}{k_B T}\right)^2 \frac{e^{h\nu/k_B T}}{\left(e^{h\nu/k_B T} - 1\right)^2}$
Photon energy	$\epsilon = h u = h c / \lambda$
Rydberg equation	$\nu = R_H c \left(1/n^2 - 1/k^2 \right)$
Bohr equations	$l_n = n\hbar$
$n=1,2,\ldots$	$r_n = n^2 \left(\frac{4\pi\epsilon_0 \hbar^2}{e^2 m_e} \right) = n^2 a_0$
	$E_n = -\frac{m_e e^4}{8\epsilon_0^2 h^2} \frac{1}{n^2} = -\frac{E_H}{2} \frac{1}{n^2}$ $p_n = \frac{e^2}{4\pi\epsilon_0} \frac{m_e}{\hbar} \frac{1}{n} = p_0 \frac{1}{n}$
de Broglie equation	$\lambda = \frac{h}{p}$

2.2.2 Born interpretation

- 1. wavefunction $\psi(x)$ is a probability amplitude
- 2. wavefunction squared $|\psi(x)|^2$ is probability density

2.2.3 Postulates

- 1. Wavefunction contains all information about a system
- 2. Operators used to extract that information
 - (a) QM operators are Hermitian
 - (b) Have eigenvectors and real eigenvalues, $\hat{O}\psi_i = o\psi_i$
 - (c) Are orthogonal, $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - (d) Always observe an eigenvalue when making an observation
- 3. Expectation values
- 4. Energy-invariant wavefunctions given by Schröodinger equation
- 5. Uncertainty principle

2.2.4 Particle in a box illustrations

2.3 Lecture 6: Particle in a box model

2.3.1 Particle between infinite walls, electron confined in a wire

1. Classical solution, either stationary or uniform bouncing back and forth

2.3.2 One-dimesional QM solutions

- 1. Schrödinder equation and boundary conditions
- 2. discrete, quantized solutions
- 3. standing waves, $\lambda = 2L/n$, n-1 nodes, non-uniform probability
- 4. Ho paper, STM of Pd wire
- 5. zero point energy and uncertainty
- 6. correspondence principle
- 7. superpositions

2.3.3 Multiple dimensions

- 1. separation of variables, one quantum number for each dimension
- 2. $\Psi_{lmn}(x,y,z) = \psi_l(x)\psi_m(y)\psi_n(z)$, 3dbox notebook
- 3. $E_{lmn} = (l^2 + m^2 + n^2)\pi^2\hbar^2/2L^2 \longrightarrow degeneracies$

Table 8: Postulates of Non-relativistic Quantum Mechanics

Postulate 1: The physical state of a system is completely described by its wavefunction Ψ . In general, Ψ is a complex function of the spatial coordinates and time. Ψ is required to be:

- I. Single-valued
- II. continuous and twice differentiable
- III. square-integrable ($\int \Psi^* \Psi d\tau$ is defined over all finite domains)
- IV. For bound systems, Ψ can always be normalized such that $\int \Psi^* \Psi d\tau = 1$

Postulate 2: To every physical observable quantity M there corresponds a Hermitian operator \hat{M} . The only observable values of M are the eignevalues of \hat{M} .

Physical quantity	Operator	Expression
Position x, y, z	\hat{x},\hat{y},\hat{z}	$x\cdot,y\cdot,z\cdot$
		a
Linear momentum p_x, \ldots	\hat{p}_x,\dots	$-i\hbar \frac{\partial}{\partial x}, \dots$ $-i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right), \dots$ \hbar^{2}
Angular momentum I	\hat{p}_x,\dots	$i\hbar \left(u \partial \frac{\partial x}{\partial x} \partial \right)$
Angular momentum l_x, \ldots	p_x, \dots	$-iii\left(y\overline{\partial z}-z\overline{\partial y}\right),\cdots$
Kinetic energy T	\hat{T}	$-rac{\hbar^2}{2m} abla^2$
Potential energy V	\hat{V}	$V(\mathbf{r},t)$
	Ar	\hbar^2
Total energy E	H	$V(\mathbf{r},t) = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r},t)$

Postulate 3: If a particular observable M is measured many times on many identical systems is a state Ψ , the average resuts with be the expectation value of the operator \hat{M} :

$$\langle M \rangle = \int \Psi^*(\hat{M}\Psi) d\tau$$

Postulate 4: The energy-invariant states of a system are solutions of the equation

$$\hat{H}\Psi(\mathbf{r},t) = i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t)$$

$$\hat{H} = \hat{T} + \hat{V}$$

The time-independent, stationary states of the system are solutions to the equation

$$\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Postulate 5: (The uncertainty principle.) Operators that do not commute $(\hat{A}(\hat{B}\Psi) \neq \hat{B}(\hat{A}\Psi))$ are called *conjugate*. Conjugate observables cannot be determined simultaneously to arbitrary accuracy. For example, the standard deviation in the measured positions and momenta of particles all described by the same Ψ must satisfy $\Delta x \Delta p_x \geq \hbar/2$.

Table 9: Particle-in-a-box model

$$V(x) = \begin{cases} 0 & 0 < x < L \\ \infty & x \le 0 \text{ or } x \ge L \end{cases}$$

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

$$E_n = \frac{n^2\pi^2\hbar^2}{2mL^2}, n = 1, 2, \dots$$

$$\frac{\text{Absorption Selection Rule}}{\Delta n = \text{odd}}$$
 Energies and wavefunctions of an electron confined to a 1 nm box
$$\frac{10}{10} = \frac{1}{10} = \frac{1}{10}$$

$$\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$$

2.3.4 Finite walls and tunneling

- 1. Potential well of finite depth V_0
- 2. Finite number of bound states
- 3. Classical region, $\psi(x)$ $e^{ikx} + e^{-ikx}$, $k = \sqrt{2mE}/\hbar$
- 4. "Forbidden" region, $\psi(x)$ $e^{\kappa x} + e^{-\kappa x}$, $\kappa = \sqrt{2m(V_0 E)}/\hbar$
- 5. Non-zero probability to "tunnel" into forbidden region
- 6. Tunneling between two adjacent wells: chemical bonding, STM, nanoelectronics
- 7. H atom tunneling: NH₃ inversion, H transfer, kinetic isotope effect

2.3.5 Pauli principle for fermions

Table 10: Three-dimensional particle-in-a-box s-like, p-like, d-like, and f-like wavefunctions

2.4 Lecture 7: Harmonic oscillator

2.4.1 Classical harmonic oscillator

- 1. Hooke's law, $F = -k(x x_0)$, k spring constant
- 2. Continuous sinusoidal motion
- 3. $x(t) = A\sin(\frac{k}{\mu})^{1/2}t, \nu = \frac{1}{2\pi}(\frac{k}{\mu})^{1/2}, E = \frac{1}{2}kA^2$
- 4. Exchanging kinetic and potential energies

2.4.2 Quantum harmonic oscillator

- 1. Schrödinger equation and boundary conditions
- 2. Solutions like P-I-A-B + tunneling at boundaries (see Table 10)
- 3. Zero-point energy and uniform energy ladder
- 4. Parity operator and even/odd symmetry: $\langle x \rangle = 0$
- 5. Recursion relations: $\langle x^2 \rangle = \alpha^2(v+1/2), \langle V(x) \rangle = \frac{1}{2}h\nu(v+\frac{1}{2})$
- 6. Virial theorem: $V(x) \propto x^n \to \langle T \rangle = \frac{n}{2} \langle V \rangle$
- 7. Classical turning point and tunneling
- 8. Classical limiting behavior: large

2.4.3 HCl example

- 1. Reduced mass, $\frac{1}{\mu} = \frac{1}{m_A} + \frac{1}{m_B}$
- 2. ZPE, energy spacing in IR, Boltzmann probabilities

2.4.4 Diatomic vibrational spectroscopy

- 1. Apply harmonic oscillator model
- 2. Vibrational constant $\tilde{\nu} = (\sqrt{k/\mu}/2\pi)/hc \text{ cm}^{-1}$
- 3. Gross selection rule: dynamic dipole $d\mu/dx$ non-zero (heteronuclear, non homonuclear)
- 4. Specific selection rule: dipole integral $\langle \psi_v | \hat{\mu} | \psi_{v'} \rangle = 0$ unless $\Delta v = \pm 1$
- 5. Allowed $\Delta \tilde{E}_v = \tilde{\nu} \text{ cm}^{-1}$
- 6. Boltzmann distribution implies v = 0 states dominate at normal T

2.4.5 Polyatomic vibrational spectroscopy

- 1. Polyatomics, 3n-6 (3n-5 for linear polyatomic) vibrational modes
- 2. Selection rules and degeneracies affect number of observed features
- 3. CO_2 example

Table 11: Harmonic oscillator model

$$V(x) = \frac{1}{2}kx^2, -\infty < x < \infty$$

$$\psi_v(x) = N_v H_v(x/\alpha) e^{-x^2/2\alpha^2}, v = 0, 1, 2, \dots$$

$$\alpha = (\hbar^2/\mu k)^{1/4}, N_v = (2^v v! \alpha \sqrt{\pi})^{-1/2}$$

$$\frac{\text{Hermite polynomials}}{H_0(y) = 1}$$

$$H_1(y) = 2y$$

$$H_2(y) = 4y^2 - 2$$

$$H_{n+1}(y) = 2yH_n(y) - 2nH_{n-1}(y)$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

$$E_v = (v + \frac{1}{2})h\nu, v = 0, 1, 2, \dots$$

$$\frac{\text{Specific Selection Rule for Absorption}}{\Delta v = \pm 1}$$

$$\frac{\Delta v}{4}$$

$$\frac{\Delta v}{3.5}$$

$$\frac{\Delta$$

2.5 Lecture 8: Rigid Rotor

2.5.1 Classical rigid rotor

- 1. Compare rotation about an axis vs linear motion
- 2. Moment of intertia $I = \mu r^2$
- 3. Angular momentum, $\mathbf{l}=I\omega=\mathbf{r}\times\mathbf{p},\,T=l^2/2I$
 - (a) Angular momentum and energy continuous variables

2.5.2 Quantum rotor in a plane

- 1. Angular momentum and kinetic energy operators in polar coordinates, $\hat{l}_z=-i\hbar\frac{d}{d\phi}$
- 2. Eigenfunctions degenerate, cw and ccw rotation
- 3. No zero point energy
- 4. Angular momentum eignefunctions, $l_z=m_l\hbar$
- 5. Energy superpositions and localization

Table 12: 2-D rigid rotor model

$$V(\phi) = 0, 0 \le \phi \le 2\pi$$

$$\hat{H} = -\frac{\hbar^2}{2I} \frac{\partial^2}{\partial \phi^2}, \qquad I = \mu R^2$$

$$\psi_{m_l}(\phi) = \frac{1}{\sqrt{2\pi}} e^{-im_l \phi}, m_l = 0, \pm 1, \pm 2, \dots$$

$$E_{m_l} = \frac{\hbar^2}{2I} m_l^2$$

$$L_z = m_l \hbar$$
Absorption Selection Rules: $\Delta m_l = \pm 1$

2.5.3 Quantum rotor in 3-D

- 1. Angular momentum and kinetic energy operators in spherical coordinates
- 2. Spherical harmonic solutions, Y_{lm_l}
- 3. Azimuthal QN $l = 0, 1, \dots$
- 4. Magnetic QN $m_l = -l, -l+1, ..., l$
- 5. Energy spectrum, 2l + 1 degeneracy

- 6. Vector model can only know total total |L| and L_z
- 7. Wavefunctions look like atomic orbitals, l nodes

Table 13: 3-D rigid rotor model

$$V(\theta, \phi) = 0, 0 \le \phi \le 2\pi, 0 \le \theta < \pi$$

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right]$$

$$\hat{H}_{rot} = \frac{1}{2I} \hat{L}^2$$

$$Y_{lm_l}(\theta, \phi) = N_l^{|m|} P_l^{|m|} (\cos(\theta)) e^{im_l \phi}$$

$$l = 0, 1, 2, \dots, \qquad m_l = 0, \pm 1, \dots, \pm l$$

$$E_l = \frac{\hbar^2}{2I} l(l+1)$$

$$|L| = \hbar \sqrt{l(l+1)}, L_z = m_l \hbar$$

$$\frac{\text{Selection Rules}}{\Delta l = \pm 1} \Delta m_l = 0, \pm 1$$

None

2.5.4 Particle angular momentum

- 1. Fermions, mass, half-integer spin
 - (a) Electron, $s = 1/2, m_s = \pm 1/2$
- 2. Bosons, force-carrying, integer spin

2.5.5 Diatomic rotational spectroscopy

- 1. Apply rigid rotor model
- 2. Rotational constant $\tilde{B} = (\hbar^2/2I)/hc = \hbar/4\pi Ic \text{ cm}^{-1}$, $I = \mu R_{\text{eq}}^2$
- 3. Gross selection rule: dynamic dipole moment non-zero (heteronuclear, not homonuclear)
- 4. Specific selection rule: $\Delta l = \pm 1, \, \Delta m_l = 0, \pm 1$
- 5. $\Delta \tilde{E}_l = 2\tilde{B}(l+1) \text{ cm}^{-1}$
- 6. Rotational state populations

2.6 Lecture 11: Hydrogen atom

2.6.1 Schrödinger equation

- 1. Spherical coordinates and separation of variables
- 2. Coulomb potential $v_{\text{Coulomb}}(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$
- 3. Centripetal potential $v = \hbar^2 \frac{l(l+1)}{2\mu r^2}$

2.6.2 Solutions

- 1. $\psi(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$
- 2. Principle quantum number n = 1, 2, ...
 - (a) K, L, M, N, \ldots shells
 - (b) n-1 radial nodes
- 3. Azimuthal quantum number l = 0, 1, ..., n 1
 - (a) s, p, d, \ldots orbital sub-shells
 - (b) l angular nodes
- 4. Magnetic quantum number $m_l = -l, -l+1, ..., l$
- 5. Spin quantum number $m_s = \pm 1/2$
- 6. Energy spectrum and populations
- 7. Electronic selection rules

(a)
$$\Delta l = \pm 1$$
 $\Delta m_s = 0$ $\Delta m_l = 0, \pm 1$

- 8. Wavefunctions = "orbitals", 3d H atom notebook
- 9. Integrate out angular components to get radial probability function $P_{nl}(r) = r^2 R_{nl}^2(r)$

(a)
$$\langle r \rangle = \int r P_{nl}(r) dr = \left(\frac{3}{2}n^2 - l(l+1)\right) a_0$$

None

Figure 7: H atom wavefunctions

Figure 8: H atom radial probability

2.6.3 Variational principle

- 1. Solutions of Schrödinger equation always form a complete set
- 2. True wavefunction energy is therefore lower bound on energy of any trial wavefunction

$$\langle \psi_{\text{trial}}^{\lambda} | \hat{H} | \psi_{\text{trial}}^{\lambda} \rangle = E_{\text{trial}}^{\lambda} \geq E_0$$

3. Optimize wavefunction with respect to variational parameter

$$\left(\frac{\partial \langle \psi_{\rm trial}^{\lambda} | \hat{H} | \psi_{\rm trial}^{\lambda} \rangle}{\partial \lambda}\right) = 0 \rightarrow \lambda_{\rm opt}$$

Table 14: Hydrogen atom

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}, 0 < r < \infty$$

$$\hat{H} = -\frac{\hbar^2}{2m_e} \frac{1}{r^2} \left[\frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \hat{L}^2 \right] + V(r)$$

$$\psi(r, \theta, \phi) = R(r) Y_{l,m_l}(\theta, \phi)$$

$$\left\{ -\frac{\hbar^2}{2m_e} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) + \frac{\hbar^2 l(l+1)}{2m_e r^2} - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r} \right\} R(r) = ER(r)$$

$$R_{nl}(r) = N_{nl} e^{-x/2} x^l L_{nl}(x), \quad x = \frac{2r}{na_0}$$

$$P_{nl}(r) = r^2 R_{nl}^2$$

$$n = 1, 2, \dots, \quad l = 0, \dots, n-1 \quad m_l = 0, \pm 1, \dots, \pm l$$

$$N_{nl} = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}}$$

$$L_{10} = L_{21} = L_{32} = \dots = 1 \quad L_{20} = 2 - x \quad L_{31} = 4 - x$$

$$E_n = -\frac{1}{2} \frac{\hbar^2}{m_e a_0^2} \frac{1}{n^2} = -\frac{E_H}{2} \frac{1}{n^2}$$

$$|L| = \hbar \sqrt{l(l+1)}, L_z = m_l \hbar$$

$$\langle r \rangle = \left\{ \frac{3}{2} n^2 - \frac{1}{2} l(l+1) \right\} \frac{a_0}{Z}$$
Selection Rules: $\Delta l = \pm 1, \quad \Delta m_l = 0, \pm 1 \quad \Delta m_s = 0$

2.7 Lecture 12: Many-electron atoms

2.7.1 Many-electron problem, Schrödinger equation not exactly solvable (Sad!)

- 1. $e^- e^-$ interaction terms prevent separation of variables
- 2. Independent electron model basis of all solutions, describes each electron (pair) by its own wavefunction, or "orbital," ψ_i

$$\left\{ -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{Z}{r} + v_{\text{ee}} \right\} \psi_i = \epsilon_i \psi_i$$

2.7.2 Qualitative solutions

- 1. ψ_i look like H atom orbitals, labeled by same quantum numbers
- 2. Aufbau principle: "Build-up" electron configuration by adding electrons into H-atom-like orbitals, from bottom up
- 3. Pauli exclusion principle: Every electron in atom must have a unique set of quantum numbers, so only two per orbital (with opposite spin)
- 4. Pauli exclusion principle (formally): The wavefunction of a multi-particle system must be anti-symmetric to coordinate exchange if the particles are fermions, and symmetric to coordinate exchange if the particles are bosons
- 5. *Hund's rule*: Electrons in degenerate orbitals prefer to be spin-aligned. Configuration with highest *spin multiplicity* is the most preferred

S	2S + 1	multiplicity
0	1	singlet
1/2	2	doublet
1	3	triplet
3/2	4	quartet

2.7.3 Structure of the periodic table

- 1. Electrons in different subshells experience different effective nuclear charge $Z_{\rm eff} = Z \sigma_{nl}$
- 2. Inner ("core") shells not shielded well, decrease precipitously in energy with increasing Z
- 3. Inner shell electrons "shield" outer electrons well
- 4. Within a family (column), outmost n increases, further from nucleus, energy goes up
- 5. Within a period (row), s shielded less than p less than $d \dots$, causes degeneracy to break down
- 6. Electrons in same subshell shield each other poorly, causing ionization energy to increase across the subshell

2.7.4 Quantitative solutions

1. Schrödinger equation

$$\hat{H}\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots) = E\Psi(\mathbf{r}_1, \mathbf{r}_2, \dots)$$

$$\hat{H} = \sum_{i} \hat{h}_i + \frac{e^2}{4\pi\epsilon_0} \sum_{i} \sum_{j>i} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

$$\hat{h}_i = -\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{Ze^2}{4\pi\epsilon_0} \frac{1}{|\mathbf{r}_i|}$$

2. Construct candidate many-electron wavefunction Ψ from one electron wavefunctions (mathematical details vary with exact approach)

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, ...) \approx \psi_1(\mathbf{r}_1)\psi_2(\mathbf{r}_2)...\psi_n(\mathbf{r}_n)$$

3. Calculate expectation value of E of approximate model and apply variational principle to find equations that describe "best" (lowest total energy) set of ψ_i

$$\begin{split} \frac{\partial E}{\partial \psi_i} &= 0 \quad \forall i \\ \hat{f}\psi &= \left\{ \hat{h} + \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i] \right\} \psi = \epsilon \psi \\ E &= \sum_i \epsilon_i - \frac{1}{2} \langle \Psi | \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i] | \Psi \rangle \end{split}$$

4. Motivate as equation for an electron moving in a "field" of other electrons, adding an electron to a known set of ψ_i

2.7.5 Electron-electron interactions

- 1. Coulomb (\hat{v}_{Coul}) : classical repulsion between distinguishable electron "clouds"
- 2. Exchange (\hat{v}_{ex}) : accounts for electron indistinguishability (Pauli principle for fermions). Decreases Coulomb repulsion because electrons of like spin intrinsically avoid one another
- 3. Correlation (\hat{v}_{corr}): decrease in Coulomb repulsion due to dynamic ability of electrons to avoid one another; "fixes" orbital approximation
- 4. General form of exchange potential is expensive to calculate; general form of correlation potential is unknown

2.7.6 Popular models

- 1. Hartree model: Include only classical Coulomb repulsion \hat{v}_{Coul}
- 2. Hartree-Fock model: Include Coulomb and exchange
- 3. Density-functional theory (DFT): Include Coulomb and approximate expressions for exchange and correlation

2.7.7 Numerical solution

- 1. All potential terms \hat{v} depend on the solutions, so equations must be solved *iteratively* to self-consistency
- 2. Solved numerically on a grid or by expanding solutions in a basis set

2.7.8 DFT calculations on atoms

1. See README at ../Resources/fda

H Orbital Summary

nl	occ	E	KE	<1/r>	<r></r>
1s	1.00	-0.5002	0.5003	1.0005	1.4994

Energy Summary

kinetic energy = 0.5003 potential energy = -1.0005 one-electron energy = -0.5001 two-electron energy = -0.0000

total energy = -0.5002 virial ratio = -1.9996

He Orbital Summary

nl	occ	E	KE	<1/r>	<r></r>
1s	2.00	-0.8998	1.5175	1.7352	0.9133

Energy Summary

kinetic energy = 3.0349
potential energy = -5.8876
one-electron energy = -3.9058
two-electron energy = 1.0531

total energy = -2.8527virial ratio = -1.9399

Li Orbital Summary

nl	occ	E	KE	<1/r>	<r></r>
1s	2.00	-2.2989	3.9238	2.7994	0.5490
2s	1.00	-0.2044	0.2483	0.3695	3.7083

Energy Summary

kinetic energy = 8.0959 potential energy = -15.4017 one-electron energy = -9.8094 two-electron energy = 2.5036

total energy = -7.3058virial ratio = -1.9024

Na Orbital Summary

nl	occ	E	KE	<1/r>	<r></r>
1s	2.00	-39.3997	57.1958	10.6955	0.1417
2s	2.00	-2.4534	7.2764	1.9224	0.7596

2p	6.00	-1.4174	6.5643	1.7927	0.7529
3s	1.00	-0.1925	0.3691	0.3310	3.9570

Energy Summary

kinetic energy = 168.6993 potential energy = -330.3286 one-electron energy = -230.8553 two-electron energy = 69.2261

total energy = -161.6293 virial ratio = -1.9581

B Orbital Summary

nl	occ	E	KE	<1/r>	<r></r>
1s	2.00	-7.3382	11.3935	4.7725	0.3195
2s	2.00	-0.4862	1.1651	0.7749	1.8633
2σ	1.00	-0.2627	0.8572	0.6432	2.1503

Energy Summary

kinetic energy = 25.9745 potential energy = -50.2880 one-electron energy = -32.7155 two-electron energy = 8.4020

total energy = -24.3135 virial ratio = -1.9361

C Orbital Summary

nl	occ	E	KE	<1/r>	<r></r>
1s	2.00	-10.8710	16.5840	5.7583	0.2643
2s	2.00	-0.6769	1.8255	0.9670	1.5010
2p	2.00	-0.3555	1.4282	0.8313	1.6628

Energy Summary

kinetic energy = 39.6755 potential energy = -77.0810 one-electron energy = -51.0043 two-electron energy = 13.5987

total energy = -37.4055 virial ratio = -1.9428

N Orbital Summary

nl	occ	E	KE	<1/r>	<r></r>
1s	2 00	-15 0801	22 7490	6 7446	0 2254

2s	2.00	-0.8883	2.5980	1.1518	1.2645
2p	3.00	-0.4550	2.1076	1.0101	1.3691

Energy Summary

kinetic energy = 57.0168 potential energy = -111.0407 one-electron energy = -74.7460 two-electron energy = 20.7221

total energy = -54.0239virial ratio = -1.9475

O Orbital Summary

nl	occ	E	KE	<1/r>	<r></r>
1s	2.00	-19.9695	29.8903	7.7313	0.1964
2s	2.00	-1.1208	3.4852	1.3328	1.0956
2σ	4.00	-0.5609	2.8966	1.1841	1.1696

Energy Summary

kinetic energy = 78.3376 potential energy = -152.8395 one-electron energy = -104.5798 two-electron energy = 30.0778

total energy = -74.5019virial ratio = -1.9510

Ar	${\tt Orbital}$	Summary			
nl	occ	E	KE	<1/r>	<r></r>
1s	2.00	-116.9366	155.6552	17.6458	0.0856
2s	2.00	-11.6037	25.6407	3.5930	0.4087
2p	6.00	-9.2721	25.0012	3.5259	0.3675
3s	2.00	-1.1022	4.4193	1.0227	1.3584
Зр	6.00	-0.5735	3.4406	0.8812	1.5596

Energy Summary

kinetic energy 542.0811 potential energy = -1068.9087one-electron energy = -735.2963two-electron energy = 208.4688

total energy = -526.8275 virial ratio = -1.9719

Lecture 13: Qualitative models of bonding

2.8.1Qualtitative bonding

- 1. What does a molecule (or a solid) have that an atom doesn't?... more nuclei!
- 2. Why might those atoms clump together to form molecules or solids?...tunneling! Electrons are happier (lower in energy) when they can wander out of their local potential well
- 3. Recall particle in a finite well. What matters? Depths of wells and distance between them.

Clamped nucleus ("Born-Oppenheimer") approximation 2.8.2

1. Write one-electron equations parametrically in terms of positions of all atoms

$$\hat{h} = -\frac{\hbar^2}{2m_e} \nabla^2 - \sum_{\alpha} \frac{Z_{\alpha} e^2}{4\pi \epsilon_0} \frac{1}{|\mathbf{r} - \mathbf{R}_{\alpha}|}$$

$$\hat{f}\psi = \left\{ \hat{h} + \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i] \right\} \psi = \epsilon \psi$$
(2)

$$\hat{f}\psi = \left\{\hat{h} + \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i]\right\}\psi = \epsilon\psi$$
(2)

Table 15: Numerical DFT Solutions for Atoms

- 2. Solve as for atoms, using some model for electron-electron interactions
- 3. Potential energy surface (PES)

$$E(\mathbf{R}_{\alpha}, \mathbf{R}_{\beta}, ...) = E_{\text{elec}} + \frac{e^2}{4\pi\epsilon_0} \sum_{\alpha} \sum_{\beta > \alpha} \frac{Z_{\alpha} Z_{\beta}}{|\mathbf{R}_{\alpha} - \mathbf{R}_{\beta}|}$$

2.8.3 H₂ molecule as perturbation on two H atoms brought from infinite distance

- 1. "Bonding" orbital, $\sigma_g(\mathbf{r}) = 1s_A + 1s_B$
- 2. "Anti-bonding" orbital, $\sigma_u(\mathbf{r}) = 1s_A 1s_B$
- 3. Interaction scales with "overlap" $S = \langle 1s_A | 1s_B \rangle$
- 4. Normalize

$$\sigma_g = \frac{1}{\sqrt{2(1-S)}} (1s_A + 1s_B)$$
 $\sigma_u = \frac{1}{\sqrt{2(1+S)}} (1s_A - 1s_B)$

5. Energy expectation value

$$\epsilon_{g} = \langle \sigma_{g} | \hat{f} | \sigma_{g} \rangle = \frac{1}{2(1+S)} \left\{ \langle 1s_{A} | \hat{f} | 1s_{A} \rangle + \langle 1s_{B} | \hat{f} | 1s_{B} \rangle + 2 \langle 1s_{A} | \hat{f} | 1s_{B} \rangle \right\}$$

$$= \frac{1}{1+S} \left(F_{AA} + F_{AB} \right)$$

$$\epsilon_{u} = \langle \sigma_{u} | \hat{f} | \sigma_{u} \rangle = \frac{1}{2(1+S)} \left\{ \langle 1s_{A} | \hat{f} | 1s_{A} \rangle + \langle 1s_{B} | \hat{f} | 1s_{B} \rangle - 2 \langle 1s_{A} | \hat{f} | 1s_{B} \rangle \right\}$$

$$= \frac{1}{1-S} \left(F_{AA} - F_{AB} \right)$$

6. Matrix elements

$$F_{\rm AA} = F_{\rm BB} \approx \epsilon_{\rm 1s} = \alpha$$

 $F_{\rm AB} = F_{\rm BA} = \beta$
 $\alpha < \beta < 0$ typically

7. From Taylor expansion get picture of atomic orbitals destabilized by electron repulsion βS and split by interaction β

$$\epsilon_{+} \approx \alpha - \beta S + \beta$$
 $\epsilon_{-} \approx \alpha - \beta S - \beta$

- 8. Makes clear that bonding stabilization < anti-bonding destabilization
- 9. Ground configuration = σ_g^2
- 10. Bond order = $\frac{1}{2}(n n^*)$
- 11. Electron-driven bonding in competetition with 1/R repulsion between nuclei.

None

2.8.4 Heteronuclear diatomic: LiH, HF, BH example

1. Only AOs of appropriate symmetry, overlap, and energy match can combine to form MOs

$$\epsilon_{+} \approx \alpha_{1} - \beta S - \beta^{2}/|\alpha_{1} - \alpha_{2}|$$

 $\epsilon_{-} \approx \alpha_{2} - \beta S + \beta^{2}/|\alpha_{1} - \alpha_{2}|$

- 2. LiH: H 1s + Li 2s, bond polarized towards H
- 3. HF: H 1s + F 2p, bond polarized towards F, lots of non-bonding orbitals
- 4. BH: H 1s, B 2s and $2p_z \rightarrow$ bonding, non-bonding, anti-bonding orbitals

2.8.5 Homonuclear diatomic: O_2

- 1. Assign aos, 1s, 2s, 2p for each atom (10 total)
- 2. In principle, solve 10×10 secular matrix
- 3. In practice, matrix elements rules mean only a few off-diagonal elements survive

- (a) 1s + 1s do nothing
- (b) 2s + 2s form σ bond and anti-bond
- (c) $2p_z + 2p_z$ form second bond and anti-bond
- (d) $2p_{x,y} + 2p_{x,y}$ form degenerate π bonds and anti-bonds
- (e) O_2 is a triplet, consistent with experiment!

2.8.6 The $H\ddot{u}ckel/\#+title$:

ght binding model: Roberts, Notes on Molecular Orbital Theory

- 1. $F_{ii} = \alpha, S_{ij} = \delta_{ij}, F_{ij} = \beta$ iff i adjacent to j
- 2. Ethylene example
- 3. Butadiene example
- 4. Benzene example
- 5. Infinite chain example

Huckel model for pi orbitals of cyclobutadiene

 $0 \quad 0 \quad 0$

Energy state, degeneracy alpha 2

alpha - 2*beta 1

alpha + 2*beta 1

Eigenvectors Eigenvector(s) of state 2 : [Matrix([[1], [1], [1])]

Eigenvector(s) of state 1 : [Matrix([[-1], [1], [-1], [1]])]

Eigenvector(s) of state 0 : [Matrix([[-1], [0], [1], [0]]), Matrix([[0], [-1], [0], [1]])]

2.8.7 Band structure of solids

- 1. Discrete molecular orbitals transform into continuous bands
- 2. Results in rich range of physical and chemical properties

Discrete energy states

Continuous energy bands: insulators, conductors, semiconductors, ...

2.8.8 Non-bonding interactions

- 1. Chemical covalent bonds have energies on the order of several eV
- 2. Even things that are not "bonded" still attract one another
 - (a) permanent dipoles (~0.1 eV)
 - (b) induced dipoles (dispersion)—scales with number of electrons
- 3. Results in physical properties, eg trends in boiling point (He < Ne < Kr < Xe; $\rm CH_4 < C_2H_6$ < $\rm C_3H_8$)

2.9 Lecture 14: Quantitative Models of Bonding

2.9.1 Numerical Schrödinger equation solvers for discrete (molecule) and periodic (solids/liquids/interfaces) readily available today

2.9.2 Have to specify:

- 1. Identity of atoms
- 2. Positions of atoms (distances, angles, ...)
- 3. (spin multiplicity)
- 4. exact theoretical model (how are Coulomb, exchange, and correlation described?)
 - (a) Hartree, Hartree-Fock, DFT (various flavors), ...
- 5. basis set to express wavefunctions in terms of
- 6. initial guess of wavefunction coefficients (often guessed for you)

2.9.3 Secular equations solved iteratively until input coefficients = output coefficients

- 1. "self-consistent field"
- 2. Output
 - (a) energies of molecular orbitals
 - (b) occupancies of molecular orbitals
 - (c) coefficients describing molecular orbitals
 - (d) total electron wavefunction, total electron density, dipole moment, ...
 - (e) total molecular energy
 - (f) derivatives ("gradients") of total energy w.r.t. atom positions
- 3. Plot total energy vs internal coordinates: potential energy surface (PES)
- 4. Search iteratively for minimum point on PES (by hand or using gradient-driven search): equilibrium geometry
- 5. Find second derivative of energy at minimum point on PES: harmonic vibrational frequency
- 6. Find energy at minimum relative to atoms (or other molecules): reaction energy

2.9.4 H_2 example

- 1. Choose "B3LYP" model for Coulomb, exchange, and correlation potentials
- 2. Choose "6-31G(d)" basis set
- 3. Compute total energy vs distance
- 4. Fit energies to quadratic near minimum
- 5. Predict minimum from fit
- 6. Extract harmonic force constant k from second derivative of fit
- 7. Compute harmonic frequency from force constant
- 8. Compute zero point vibrational energy from frequency, $ZPE = 0.5h\nu$.

		B3LYP	EXPT
	(Ang): cm-1):	0.747 4768	0.742 4401
E H2 ZPE H2 2*E H E Dissoc	(eV): (eV): (eV):	-31.81 0.29 -27.04 4.47	4.48

2.9.5 Polyatomic molecules

- 1. Gradient-driven optimizations, 3n-6 degrees of freedom
- 2. Hessian matrix for frequencies
- 3. Computational Chemistry Comparison and Benchmark Database

2.9.6 Solids

- 1. Materials project
- 2. OQMD

3 Statistical Mechanics: The Bridge from the Tiny to the Many

3.1 Lecture 17: Statistical mechanics

3.1.1 Need machinary to average QM information over macroscopic systems

3.1.2 Equal a priori probabilities

1. Any way to distribute energy amongst elements of a system are as likely as any other

3.1.3 Two-state model

- 1. Box of particles, each of which can have energy 0 or ϵ
- 2. Thermodynamic state defined by number of elements N, and number of quanta q, $U = q\epsilon$
- 3. Degeneracy of given N and q given by binomial distribution:

$$\Omega(N,q) = \frac{N!}{q!(N-q)!}$$

- 4. Allow energy (heat!) to exchange between two such systems
 - (a) Energy of composite system is sum of individual systems (first law, $q_1 + q_2 = q$)
 - (b) Degeneracy of composite system is always \geq degeneracy of the starting parts!

$$\Omega(N_1 + N_2, q_1 + q_2) > \Omega(N_1, q_1) \cdot \Omega(N_2, q_2)$$

- (c) Boltzmann's tombstone, $S = k_B \ln \Omega$
- (d) Second Law:

Die Energie der Welt ist constant. Die Entropie der Welt strebt einem Maximum zu. - Clausius

3.1.4 Large two-state system

1. Stirling's approximation:

$$\Omega(N,q) \approx N^N/(N-q)^{(N-q)}$$

2. Composite system

$$\Omega(N,q) = \sum_{i \le q} \Omega(N_1, i) \cdot \Omega(N_2, q - i)$$

3. For large N, one term overwhelmingly dominates sum

3.1.5 Consequences of energy flow between two large systems

- 1. Each subsystem has energy U_i and degeneracy $\Omega_i(U_i)$
- 2. Bring in thermal contact, $U = U_1 + U_2$, $\Omega = \sum_{U_1} \Omega_1(U_1)\Omega_2(U U_1)$
- 3. If systems are very large, one combination of U_1 , U_2 will dominate Ω sum. Find largest term.

$$\begin{split} \left(\frac{\partial\Omega}{\partial U_1}\right)_N &= 0\\ \left(\frac{\partial\ln\Omega_1}{\partial U_1}\right)_N &= \left(\frac{\partial\ln\Omega_2}{\partial U_2}\right)_N\\ \left(\frac{\partial S_1}{\partial U_1}\right)_N &= \left(\frac{\partial S_2}{\partial U_2}\right)_N \end{split}$$

4. Thermal equilibrium is determined by equal temperature!

$$\frac{1}{T} = \left(\frac{\partial S}{\partial U}\right)_N$$

- 5. Equal temperatures \rightarrow most probable distribution of energy between subsystems.
- 6. (Same arguments lead to requirement that equal pressures (P_i) and equal chemical potentials (μ_i) maximize entropy when volumes or particles are exchanged)

3.1.6 Two-state model in limit of large N

- 1. Large N and Stirling's approximation
- 2. Fundamental thermodynamic equation of two-state system:

$$S(U) = k_B \ln \Omega(N, q) = \dots = -k_B (x \ln x + (1-x) \ln(1-x))$$
, where $x = q/N = U/N\epsilon$

3. Temperature is derivative of entropy wrt energy, yields

$$\left(\frac{\partial S}{\partial U}\right)_N = T \to U(T) = \frac{N\epsilon e^{-\epsilon/k_B T}}{1 + e^{-\epsilon/k_B T}}$$

- 4. $T \rightarrow 0, U \rightarrow 0, S \rightarrow 0$, minimum degeneracy, only 1 possible state
- 5. $T \to \infty, U \to N\epsilon/2, S \to k_B \ln 2$, maximum degeneracy, $NC_{N/2} = 2^N$ possible states
- 6. Differentiate again to get heat capacity

$$C_N = \left(\frac{\partial U}{\partial T}\right)_N = \frac{(\epsilon/k_B T)^2 e^{-\epsilon/k_B T}}{(1 + e^{-\epsilon/k_B T})^2}$$

3.1.7 Example of microcanonical ("NVE") ensemble

1. Direct evaluation of S(U) is generally intractable, so seek simpler approach

3.2 Lecture 18: Canonical (NVT) ensemble

3.2.1 Partition function

- 1. Imagine a system brought into thermal equilibrium with a much larger "reservoir" of constant T, such that the aggregate has a total energy U
- 2. Degeneracy of a given system microstate j with energy U_i is $\Omega_{res}(U-U_i)$

$$T = \frac{dU_{res}}{k_B d \ln \Omega_{res}}$$
$$\Omega_{res}(U - U_j) \propto e^{-U_j/k_B T}$$

3. Probability for system to be in a microstate with energy U_i given by Boltzmann distribution!

$$P(U_i) \propto e^{-U_j/k_B T} = e^{-U_j \beta}$$

- 4. Partition function "normalizes" distribution, $Q(T,V) = \sum_j e^{-U_j\beta}$
- 5. Partition function counts the number of states accessible to a system at a given V and in equilibrium with a reservoir at T

Two-state system partition function

Two-state system probabilities

1.0 State 1 State 2 1.8 0.8 Probability 6.0 9.0 1.2 0.2 1.0 0.0 750 1000 12 Temperature (K) 250 1750 2000 250 500 1250 1500 1750 2000 1000 1250 1500 Temperature (K) Two-state system Helmholtz free energy Two-state system internal energy 0.012 0.00 0.010 -0.02 l energy (eV/particle) Internal 0.002 -0.10 0.000 50 1000 1250 Temperature (K) 1500 1750 2000 50 1000 12: Temperature (K) 1500 1750 2000 250 500 750 250 500 1250 Two-state system heat capacity Two-state system entropy 0.4 Heat capacity (eV/T) Entropy (eV/T) 0.1 0.0 750 1000 1250 1500 1750 2000 750 1000 1250 1500 1750 2000 250 500 250 Temperature (K) Temperature (K)

Table 16: Two-state system thermodynamics

3.2.2 Energy factoring (sidebar)

- 1. If system is large, how to determine it's energy states U_j ? There would be many, many of them!
- 2. One simplification is if we can write energy as sum of energies of individual elements (atoms, molecules, degrees of freedom) of system:

$$U_j = \epsilon_j(1) + \epsilon_j(2) + \dots + \epsilon_j(N) \tag{3}$$

$$Q(N, V, T) = \sum_{j} e^{-U_{j}\beta} \tag{4}$$

$$=\sum_{j}^{3} e^{-(\epsilon_{j}(1)+\epsilon_{j}(2)+\ldots+\epsilon_{j}(N))\beta}$$
(5)

3. If molecules/elements of system can be distinguished from each other (like atoms in a fixed lattice), expression can be factored:

$$Q(N, V, T) = \left(\sum_{j} e^{-\epsilon_{j}(1)\beta}\right) \cdots \left(\sum_{j} e^{-\epsilon_{j}(N)\beta}\right)$$
 (6)

$$= q(1) \cdots q(N) \tag{7}$$

Assuming all the elements are the same:

$$=q^{N} \tag{9}$$

$$q = \sum_{i} e^{-\epsilon_{i}\beta}$$
: molecular partition function (10)

- 4. If not distinguishable (like molecules in a liquid or gas, or electrons in a solid), problem is difficult, because identical arrangements of energy amongst elements should only be counted once.
- 5. Approximate solution, good almost all the time:

$$Q(N, V, T) = q^N / N! \tag{11}$$

6. Sidebar: "Correct" factoring depends on whether individual elements are fermions or bosons, leads to funny things like superconductivity and superfluidity.

3.2.3 Distinguishable vs. indistinguishable particles

- 1. q(V,T) counts states available to a single element of a system, like a molecule in a gas or in a solid
- 2. Distinguishable (e.g., in a solid): $Q(N, V, T) = q(V, T)^N$
- 3. Indistinguishable (e.g., a gas): $Q(N, V, T) \approx q(V, T)^N/N!$

(8)

3.2.4 Two-state system again

- 1. Partition function, $q(T) = 1 + e^{-\epsilon \beta}$
- 2. State probabilities
- 3. Internal energy U(T)

$$U(T) = -N\left(\frac{\partial \ln(1 + e^{-\epsilon\beta})}{\partial \beta}\right) = \frac{N\epsilon e^{-\epsilon\beta}}{1 + e^{-\epsilon\beta}}$$
(12)

- 4. Heat capacity C_v
 - (a) Minimum when change in states with T is small
 - (b) Maximize when chagne in states with T is large
- 5. Helmholtz energy, $A = -\ln q/\beta$, decreasing function of T
- 6. Entropy

3.2.5 Thermodynamic functions in canonical ensemble

3.3 Lecture 19: Molecular Partition Functions

3.3.1 Ideal gas of molecules

$$Q_{ig}(N, V, T) = \frac{(q_{\text{trans}}q_{\text{rot}}q_{\text{vib}})^{N}}{N!}$$

3.3.2 Particle-in-a-box (translational states of a gas)

- 1. Energy states $\epsilon_n = n^2 \epsilon_0, n = 1, 2, ..., \epsilon_0$ tiny for macroscopic V
- 2. $\Theta_{\rm trans} = \epsilon_0/k_B$ translational temperature
- 3. $\Theta_{\rm trans} << T \rightarrow {\rm many\ states\ contribute\ to\ } q_{\rm trans} \rightarrow {\rm integral\ approximation}$

$$q_{
m trans,1D} pprox \int_0^\infty e^{-x^2eta\epsilon_0} dx = L/\Lambda$$

$$\Lambda = \left(\frac{h^2eta}{2\pi m}\right)^{1/2} \ {
m thermal \ wavelength}$$

- 4. Internal energy
- 5. Heat capacity
- 6. Equation of state (!)
- 7. Entropy: Sackur-Tetrode equation

Table 17: Equations of the Canoncial (NVT) Ensemble

$\beta = 1/k_B T$	Full Ensemble	Distinguishable particles	Indistinguishable particles
$\beta = 1/mB1$	Tun Ensemble	(e.g. atoms in a lattice)	(e.g. molecules in a fluid)
Single particle partition function		$q(V,T) = \sum_{i} e^{-\epsilon_{i}\beta}$	$q(V,T) = \sum_{i} e^{-\epsilon_{i}\beta}$
Full partition function	$Q(N, V, T) = \sum_{j} e^{-U_{j}\beta}$ $\ln Q$	$Q = q(V, T)^N$	$Q = q(V, T)^N / N!$
Log partition function	$\ln Q^{-J}$	$N \ln q$	$N \ln q - \ln N!$ $\approx N(\ln q - \ln N + 1)$
Helmholtz energy $(A = U - TS)$	$-rac{\ln Q}{eta}$	$-\frac{N\ln q}{\beta}$	$-\frac{N}{\beta} \left(\ln \frac{q}{N} + 1 \right)$
Internal energy (U)	$-\left(\frac{\partial \ln Q}{\partial \beta}\right)_{NV}$	$-N\left(\frac{\partial \ln q}{\partial \beta}\right)_V$	$-N\left(\frac{\partial \ln q}{\partial \beta}\right)_V$
Pressure (P)	$\frac{1}{\beta} \left(\frac{\partial \ln Q}{\partial V} \right)_{N\beta}$	$\frac{N}{\beta} \left(\frac{\partial \ln q}{\partial V} \right)_{\beta}$	$\frac{N}{\beta} \left(\frac{\partial \ln q}{\partial V} \right)_{\beta}$
Entropy (S/k_B)	$\beta U + \ln Q$	$\beta U + N \ln q$	$\beta U + N\left(\ln(q/N) + 1\right)$
Chemical potential (μ)	$-\frac{1}{\beta} \left(\frac{\partial \ln Q}{\partial N} \right)_{VT}$	$-\frac{\ln q}{\beta}$	$-\frac{\ln(q/N)}{\beta}$

NOTE! All energies are referenced to their values at 0 K. Enthalpy H = U + PV, Gibb's Energy G = A + PV.

3.3.3 Rigid rotor (rotational states of a gas)

- 1. sum over rigid energy states and degeneracies of rigid rotor
- 2. $\Theta_{\rm rot} = \hbar^2/2Ik_B$
- 3. "High" T $q_{\rm rot}(T) \approx \sigma \Theta_{\rm rot}/T$, most often true

3.3.4 Harmonic oscillator (vibrational states of a gas)

- 1. sum over harmonic oscillator energy states
- 2. $\Theta_{\rm vib} = h\nu/k_B$, typically 100's to 1000's K
- 3. introduce strong non-linear T dependence to thermodynamic properties

3.3.5 Electronic partition functions \rightarrow spin multiplicity

3.3.6 Many-particle molecule

1. partition function is a product of all degrees of freedom

$$q(T, V) = q_{\text{trans}} \left(\prod_{i=1}^{3} q_{\text{rot}}^{(i)} \right) \left(\prod_{i=1}^{3N-6} q_{\text{vib}}^{(i)} \right) q_{\text{elec}}$$

2. thermodynamic quantities are sums of all degrees of freedom

3.3.7 Non-ideality

- 1. Real molecules interact through vdW interactions
- 2. Particle-in-a-box model is a start, have to elaborate to get at properties of liquids, solutions,
- 3. See Hill, J. Chem. Ed. 1948, 25, p. 347 http://dx.doi.org/10.1021/ed025p347

3.4 Lecture 20: Chemical reactions and equilibria

3.4.1 Isothermal, isbaric separation for ideal gas mixture

$$A/B(N_A, N_B, V, T) \rightarrow A(N_A, x_A V, T) + B(N_B, x_B, V, T)$$

- 1. Apply ideal gas expressions to all parts and compute a difference!
- 2. Internal energy, $\Delta U(T) = 0$
- 3. Entropy, $\Delta S(T)/(N_A + N_B) = k_B(x_A \ln(A) + x_B \ln(x_B))$
- 4. Minimum work of separation, $\Delta A(T) = \Delta U T\Delta S > 0$

Table 18: Statistical Thermodynamics of an Ideal Gas

Translational DOFs 3-D particle in a box model

$$\begin{split} \theta_{\rm trans} &= \frac{\pi^2 \hbar^2}{2mL^2 k_B}, \ \Lambda = h \left(\frac{\beta}{2\pi m}\right)^{1/2} \\ \text{For } T >> \Theta_{\rm trans}, \ \Lambda << L, \ q_{\rm trans} = V/\Lambda^3 \ \text{(essentially always true)} \\ U_{\rm trans} &= \frac{3}{2}RT \quad C_{\rm v,trans} = \frac{3}{2}R \quad S_{\rm trans}^{\circ} = R \ln \left(\frac{e^{5/2}V^{\circ}}{N^{\circ}\Lambda^3}\right) = R \ln \left(\frac{e^{5/2}k_BT}{P^{\circ}\Lambda^3}\right) \end{split}$$

Rotational DOFs Rigid rotor model

Linear molecule $\theta_{\rm rot} = hcB/k_B$

$$q_{\rm rot} = \frac{1}{\sigma} \sum_{l=0}^{\infty} (2l+1) e^{-l(l+1)\theta_{\rm rot}/T}, \approx \frac{1}{\sigma} \frac{T}{\theta_{\rm rot}}, \quad T >> \theta_{\rm rot} \quad \sigma = \left\{ \begin{array}{ll} 1, & {\rm unsymmetric} \\ 2, & {\rm symmetric} \end{array} \right.$$

$$U_{\rm rot} = RT \quad C_{\rm v,rot} = R \quad S_{\rm rot}^{\circ} = R(1 - \ln(\sigma\theta_{\rm rot}/T))$$

Non-linear molecule $\theta_{\text{rot},\alpha} = hcB_{\alpha}/k_B$

$$q_{\rm rot} \approx \frac{1}{\sigma} \left(\frac{\pi T^3}{\theta_{{
m rot},\alpha} \theta_{{
m rot},\beta} \theta_{{
m rot},\gamma}} \right)^{1/2}, \quad T >> \theta_{{
m rot},\alpha,\beta,\gamma} \quad \sigma = {
m rotational \ symmetry \ number}$$

$$U_{\rm rot} = \frac{3}{2}RT \quad C_{\rm v,rot} = \frac{3}{2}R \quad S_{\rm rot}^{\circ} = \frac{R}{2}\left(3 - \ln\frac{\sigma\theta_{\rm rot,\alpha}\theta_{\rm rot,\beta}\theta_{\rm rot,\gamma}}{\pi T^3}\right)$$

Vibrational DOFs Harmonic oscillator model

Single harmonic mode $\theta_{\rm vib} = h\nu/k_B$

$$q_{\rm vib} = \frac{1}{1 - e^{-\theta_{\rm vib}/T}} \approx \frac{T}{\theta_{\rm vib}}, \quad T >> \theta_{\rm vib}$$

$$U_{\text{vib}} = C_{\text{v,vib}} = S_{\text{vib},i}^{\circ} = R \frac{\theta_{\text{vib}}}{e^{\theta_{\text{vib}}/T} - 1} R \left(\frac{\theta_{\text{vib}}}{T} \frac{e^{\theta_{\text{vib}}/2T}}{e^{\theta_{\text{vib}}/T} - 1} \right)^{2} R \left(\frac{\theta_{\text{vib}}/T}{e^{\theta_{\text{vib}}/T} - 1} - \ln(1 - e^{-\theta_{\text{vib}}/T}) \right)$$

Multiple harmonic modes $\theta_{\text{vib},i} = h\nu_i/k_B$

$$q_{\rm vib} = \prod_{i} \frac{1}{1 - e^{-\theta_{\rm vib}, i/T}}$$

$$U_{\text{vib}} = C_{\text{v,vib}} = S_{\text{vib},i}^{\circ} = R \sum_{i} \frac{\theta_{\text{vib},i}}{e^{\theta_{\text{vib},i}/T} - 1} R \sum_{i} \left(\frac{\theta_{\text{vib},i}}{T} \frac{e^{\theta_{\text{vib},i}/2T}}{e^{\theta_{\text{vib},i}/T} - 1} \right)^{2} R \left(\frac{\theta_{\text{vib},i}/T}{e^{\theta_{\text{vib},i}/T} - 1} - \ln(1 - e^{-\theta_{\text{vib},i}/T}) \right)$$

Electronic DOFs $q_{\text{elec}} = \text{spin multiplicity}$

Table 19: Contributions to ideal gas thermodynamics

	Characteristic Energy (cm ⁻¹)	Characteristic Temperature (K)	States @ RT	
translational	$\hbar^2/2mL^2 \approx 10^{-21}$	10^{-21}	10^{30}	classical limit
rotational	≈ 1	≈ 1	100's	semi-classical
vibrational	≈ 1000	≈ 1000	1	non-classical
electronic	$\approx 10,000$	$\approx 10,000$	1	non-classical

Table 20: Ethane thermodynamics

3.4.2 Chemical reaction

- 1. General chemical reaction $\sum_{i} \nu_{i} A_{i} = 0$, ν_{i} stoichiometric coefficients
- 2. Thermodynamic change $\Delta W^{\circ}(T) = \sum_{i} \nu_{i} W_{i}^{\circ}(T)$, where $W = A, U, S, G, \dots$
- 3. Example: vinyl alcohol to acetal dehyde, ${\rm H_2C}{=}{\rm CH(OH)} \longrightarrow {\rm CH_3CH(O)}$
- 4. Reaction entropy captures contributions of all degrees of freedom

$$\Delta S^{\circ}(T) = \Delta S_{\text{trans}}^{\circ}(T) + \Delta S_{\text{rot}}(T) + \Delta S_{\text{vib}}(T)$$

5. Reaction energy (internal, Helmholtz, ...) must also capture difference in $0\,\mathrm{K}$ electronic energy

$$\Delta U^{\circ}(T) = \Delta U_{\text{trans}}^{\circ}(T) + \Delta U_{\text{rot}}(T) + \Delta U_{\text{vib}}(T) + \Delta E_{\text{elec}}(0) + \Delta ZPE$$

- 6. "Standard state" derives from concentration dependence of entropy
- 7. "Standard state" corresponds to some standard choice, $(N/V)^{\circ} = c^{\circ}$, e.g. 1 mol/l (T-independent), or $(N/V)^{\circ} = P^{\circ}/RT$, e.g. 1 bar (T-dependent)
- 8. Permits functions to be easily computed at other concentrations, e.g.

$$A(T, N/V) = A^{\circ}(T) + kT \ln ((N/V)/(N/V)^{\circ}) = A^{\circ}(T) + kT \ln (c/c^{\circ})$$

- 9. Tabulations a common source of standard state H and S, eg http://webbook.nist.gov
 - (a) $S^{\circ}(T)$ referenced to 0 K, because S(0) = 0 (Third law)

$$S^{\circ}(T') = S^{\circ}(T) + \int_{T}^{T'} \frac{C_{p}^{\circ}(T)}{T} dT$$

- (b) Enthalpies of elements in their most stable form at $T=298\,\mathrm{K},\,P=1\,\mathrm{bar}$ defined to be zero
- (c) Enthalpies of substances tabulated as formation enthalpies relative to constiuent elements

$$\Delta H^{\circ}(T) = \sum_{i} \nu_{i} \Delta H_{f,i}^{\circ}(T)$$

$$\Delta H^{\circ}(T') = \Delta H^{\circ}(T) + \int_{T}^{T'} \Delta C_{p}^{\circ}(T) dT$$

10. Example: ethane dehydrogenation, $C_2H_6 \longrightarrow C_2H_4 + H_2$, 1 bar standard state

3.4.3 Chemical equilibrium

1. At chemical equilbrium, total free energy minimized with respect to reaction advancement ξ

$$G(T,\xi) = \xi(\Delta G^{\circ} + kT \sum_{i} \nu_{i} \ln P_{i}/P^{\circ})$$

2. Convolution of energy and entropy effects

Table 21: Ethane to ethylene plus hydrogen standard state (1 bar) thermodynamcs

3. Equilibrium condition—equate chemical potentials

$$\begin{array}{rcl} \mu_A(N,V,T) & = & \mu_B(N,V,T) \\ E_A(0) - kT \ln(q_A/N_A) & = & E_B(0) - kT \ln(q_B/N_B) \\ \frac{N_B}{N_A} = \frac{N_B/V}{N_A/V} & = & \frac{q_B(T,V)/V}{q_A(T,V)/V} e^{-\Delta E(0)/kT} \end{array}$$

- 4. $q/V = 1/\Lambda^3$ has units of number/volume, or concentration
- 5. Equilibrium constant—convert units to some standard concentration c° or pressure P°

$$\begin{array}{rcl} q_A^{\circ}(T) & = & (q_A(T,V)/V)(1/c^{\circ}) \\ q_A^{\circ}(T) & = & (q_A(T,V)/V)(RT/P^{\circ}) \\ K_{eq}(T) & = & \frac{q_B^{\circ}(T)}{q_A^{\circ}(T)}e^{-\Delta E(0)/kT} = e^{-\Delta G^{\circ}(T)/kT} \end{array}$$

3.4.4 Le'Chatlier's principle

- 1. Example: ethane dehydrogenation, $C_2H_6 \longrightarrow C_2H_4 + H_2$, endothermic, positive entropy
- 2. Equilibrium composition starting from C₂H₆, at constant pressure

$$K_p(T) = \frac{q_{\mathrm{C_2H_4}}^{\circ}(T)q_{\mathrm{H_2}}^{\circ}(T)}{q_{\mathrm{C_2H_6}}^{\circ}(T)}e^{-\Delta E(0)/k_BT} = \frac{P_{\mathrm{C_2H_4}}P_{\mathrm{H_2}}}{P_{\mathrm{C_2H_6}}}\frac{1}{P^{\circ}} = \frac{P}{P^{\circ}}\frac{x^2}{(1-x)(1+x)}$$

- 3. Response to temperature: Boltzmann distribution favors higher energy things as T increases
- 4. Response to pressure change: translational DOFs increasingly favor side with more molecules as volume increases/pressure decreases

3.5 Lecture 21: Chemical kinetics

3.5.1 Kinetics and reaction rates

1. Rate: number per unit time per unit something

3.5.2 Empirical chemical kinetics

- 1. Rate laws, rate orders, and rate constants
- 2. Functions of T, P, composition C_i
- 3. differential vs integrated rate laws
- 4. Arrhenius expression, $k = Ae^{-E_a/k_BT}$
 - (a) Arrhenius plot, $\ln k \text{ vs } 1/T$

Table 22: Basic kinetic rate laws

	differential rate	integrated rate	half-life
First order	$r = kC_A$	$C_A = C_{A0}e^{-k\tau}$	$\ln 2/k$
Second order	$r = kC_A^2$	$1/C_A = 1/C_{A0} + k\tau$	$1/kC_{A0}$

3.5.3 Reaction mechanisms

- 1. Elementary steps and molecularity
- 2. Ozone decomposition, rate second-order at high P_{O_2} , first-order at low P_{O_2}

$$2O_3 \longrightarrow 3O_2$$

$$O_3 \xrightarrow{k_1} O_2 + O$$

$$O_2 + O \xrightarrow{k_2} O_3$$

$$O + O_3 \xrightarrow{k_2} 2O_2$$

- 3. Collision theory
 - (a) $A + B \rightarrow products$
 - (b) rate proportional to A/B collision frequency z_{AB} weighted by fraction of collisions with energy $> E_a$

$$r = kC_A C_B, k = \left(\frac{8k_B T}{\pi \mu}\right)^{1/2} \sigma_{AB} N_{av} e^{-E_a/k_B T}$$

(c) upper bound on real rates

3.5.4 Transition state theory (TST)

- 1. Assumptions
 - (a) Existence of reaction coordinate (PES)
 - (b) Existence of dividing surface
 - (c) Equilibrium between reactants and "transition state"
 - (d) Harmonic approximation for transition state
- 2. rate proportional to concentration of "activated complex" over reactants times crossing frequency

$$r = kC_A C_B$$

$$= k^{\ddagger} C_{AB}^{\ddagger}$$

$$= \nu^{\ddagger} K^{\ddagger} C_A C_B$$

$$= \nu^{\ddagger} \frac{k_B T}{h \nu^{\ddagger}} \bar{K}^{\ddagger}(T) C_A C_B$$

$$= \frac{k_B T}{h} \frac{q^{\ddagger}(T)}{q_A(T) q_B(T)} e^{-\Delta E(0)/k_B T} C_A C_B$$

3. application to atom - atom collision

- 4. application to two molecules vinyl alcohol to acetaldehyde
- 5. microscopic reversibility
- 6. equilibrium requirement $K_{eq}(T) = k_f(T)/k_r(T)$

3.5.5 Locating transition states computationally

3.5.6 Thermodynamic connection

1. Relate activated complex equilibrium constant to activation free energy

$$\bar{K}^{\ddagger}(T) = e^{-\Delta G^{\circ\ddagger}(T)/kT} = e^{-\Delta H^{\circ\ddagger}(T)/k_B T} e^{\Delta S^{\circ\ddagger}(T)/k_B}$$

2. Compare to Arrhenius expression

$$E_a = \Delta H^{\circ \ddagger}(T) + kT, A = \frac{k_B T}{h} e^1 e^{\Delta S^{\circ \ddagger}(T)/k_B}$$

None

3.5.7 Application: gas-phase reactions

1. Ethane pyrolysis, $\mathrm{C_2H_6} \longrightarrow \mathrm{C_2H_4} + \mathrm{H_2}, \, \mathrm{doi:} 10.1021/\mathrm{jp206503d}$

3.5.8 Heterogeneous reactions and catalysis

- 1. molecule-surface collisions
- 2. surface reactions
- 3. Ammonia oxidation, $\mathrm{NH_3} + \mathrm{O_2} \longrightarrow \mathrm{NON_2},$ doi:10.1021/acscatal.8b04251
 - ./Images/TS-Ethylene.gif

Table 23: Vinyl alcohol to acetaldehyde

Table 24: DFT PES for ethylene dissociation on Ni2P

Table 25: Equilibrium and Rate Constants

Equilibrium Constants $a A + b B \rightleftharpoons c C + d D$

$$K_{eq}(T) = e^{\Delta S^{\circ}(T)/k_{B}} e^{-\Delta H^{\circ}(T)/k_{B}T}$$

$$K_{c}(T) = \left(\frac{1}{c^{\circ}}\right)^{\nu_{c}+\nu_{d}-\nu_{a}-\nu_{b}} \frac{(q_{c}/V)^{\nu_{c}}(q_{d}/V)^{\nu_{d}}}{(q_{a}/V)^{\nu_{a}}(q_{b}/V)^{\nu_{b}}} e^{-\Delta E(0)\beta}$$

$$K_{p}(T) = \left(\frac{k_{B}T}{P^{\circ}}\right)^{\nu_{c}+\nu_{d}-\nu_{a}-\nu_{b}} \frac{(q_{c}/V)^{\nu_{c}}(q_{d}/V)^{\nu_{d}}}{(q_{a}/V)^{\nu_{a}}(q_{b}/V)^{\nu_{b}}} e^{-\Delta E(0)\beta}$$

Unimolecular Reaction $[A] \rightleftharpoons [A]^{\ddagger} \rightarrow C$

$$k(T) = \nu^{\ddagger} \bar{K}^{\ddagger} = \frac{k_B T}{h} \frac{\bar{q}_{\ddagger}(T)/V}{q_A(T)/V} e^{-\Delta E^{\ddagger}(0)\beta}$$

$$E_a = \Delta H^{\circ \ddagger} + k_B T$$
 $A = e^1 \frac{k_B T}{h} e^{\Delta S^{\circ \ddagger}}$

Bimolecular Reaction $A + B \rightleftharpoons [AB]^{\ddagger} \rightarrow C$

$$k(T) = \nu^{\ddagger} \bar{K}^{\ddagger} = \frac{k_B T}{h} \frac{q_{\ddagger}(T)/V}{(q_A(T)/V)(q_B(T)/V)} \left(\frac{1}{c^{\circ}}\right)^{-1} e^{-\Delta E^{\ddagger}(0)\beta}$$
$$E_a = \Delta H^{\circ\ddagger} + 2k_B T \quad A = e^2 \frac{k_B T}{h} e^{\Delta S^{\circ\ddagger}}$$

3.5.9 Diffusion-controlled reactions

- 1. Intermediate complex
- 2. Steady-state approximation
- 3. Diffusion-controlled limit $(k_D = 4\pi(r_A + r_B)D_{AB})$
- 4. Reaction-controlled limit $(k_{app} = (k_D/k_{-D})k_r)$

3.6 Lecture 22: Conclusion

1. Do you think about the burning lighter any differently now?