TECNOLOGIA

LED

R = (Vcc - Vd) / I (Vd: caida en el LED)

INTENSIDAD LUMINICA: SE MIDE EN CANDELA (Cd)

LED TIPICO: If = 10mA ----> 1mCd

IR = Intensidad Relativa $G^{\circ} = Desplazamiento Angular a partir de la normal$ $\lambda = Longitud de onda$ ER = Emisión relativa

LEDs

Es un dispositivo <u>semiconductor</u> (diodo) que emite luz incoherente de espectro reducido cuando se polariza de forma directa la <u>unión PN</u> del mismo y circula por él una <u>corriente eléctrica</u>. El <u>color</u>, depende del material semiconductor empleado en la construcción del diodo y puede variar desde el <u>ultravioleta</u>, pasando por el visible, hasta el <u>infrarrojo</u>. Los diodos emisores de luz que emiten luz <u>ultravioleta</u> también reciben el nombre de <u>UV LED</u> (*UltraV*iolet Light-Emitting Diode) y los que emiten luz infrarroja se llaman <u>IRED</u> (*Infra-Red Emitting Diode*).

FUNCIONAMIENTO

El funcionamiento físico consiste en que, en los materiales semiconductores, un electrón al pasar de la banda de conducción a la de valencia, pierde energía; esta energía perdida se puede manifestar en forma de un fotón desprendido Indudablemente, la frecuencia de la radiación emitida y, por ende, su color, dependerá de la altura de la banda prohibida (diferencias de energía entre las bandas de conducción y valencia), es decir, de los materiales empleados. Los diodos convencionales, de silicio o germanio, emiten radiación infrarroja muy alejada del espectro visible. Sin embargo, con materiales especiales pueden conseguirse longitudes de onda visibles. Los LED e IRED, además tienen geometrías especiales para evitar que la radiación emitida sea reabsorbida por el material circundante del propio diodo, lo que sucede en los convencionales.

Compuestos empleados en la construcción de LED.

Compuesto	Color	Long. de onda	
Arseniuro de galio (GaAs)	Infrarrojo	940 nm	
Arseniuro de galio y aluminio (AlGaAs)	Rojo e infrarrojo	890 nm	
[[Arseniuro fosfuro de galio (GaAsP)	Rojo, anaranjado y amarillo	630 nm	
Fosfuro de galio (GaP)	Verde	555 nm	
Nitruro de galio (GaN)	Verde	525 nm	
Seleniuro de zinc (ZnSe)	Azul		
Nitruro de galio e indio (InGaN)	Azul	450 nm	
Carburo de silicio (SiC)	Azul	480 nm	
<u>Diamante</u> (C)	Ultravioleta		
Silicio (Si)	En desarrollo		

DIODOS LEDS

Unidades de fotometría del SI

Magnitud	Símbolo	Unidad del SI	Abrev.	Notas
Energía luminosa	Q _v	lumen segundo	lm·s	A veces se usa la denominación talbot, ajena al SI
Flujo luminoso	F	lumen (= cd·sr)	lm	Medida de la potencia luminosa percibida
Intensidad luminosa	ľ	candela (= lm/sr)	cd	Una Unidad básica del SI
Luminancia	L _v	candela por metro cuadrado	cd/m ²	A veces se usa la denominación nit, ajena al SI
lluminancia	E _ν	lux (= lm/m ²)	lx	Usado para medir la incidencia de la luz sobre una superficie
Emitancia luminosa	M _v	lux (= lm/m ²)	lx	Usado para medir la luz emitida por una superficie
Eficacia luminosa		lumen por vatio	Im/W	razón entre flujo luminoso y flujo radiante

http://articulo.mercadolibre.com.ar/MLA-82976815-100-x-led-de-5mm-3mm-8mm-10mm-pirana-bombin-flatJM_

http://es.wikipedia.org/wiki/Diodo_emisor_de_luz

DIODOS COMERCIALES

DIODOS DE 5mm

- Amarillo 6.000mcd (20 grados) [2V @ 20mA]
- Azul 9.000mcd (20 grados) [3,3V @ 20mA]
- Blanco Frio 12.000mcd (20 grados) [3,3V @ 20mA]
- Blanco Calido 23.000mcd (20 grados) [3,3V @ 20mA]
- Cyan 6.000mcd (20 grados) [3,3V @ 20mA]
- Infrarrojo 940nm (60 grados) [2V @ 20mA]
- Rojo 8.000mcd (20 grados) [2V @ 20mA]
- Ultra violeta de 385nm a 395nm (20 grados) [3,3V @ 20mA]
- -Verde 12.000mcd (20 grados) [3,3V @ 20mA]

DIODOS DE 3 mm

- Amarillo 4.000mcd (20 grados) [2V @ 20mA]
- Azul 2.000mcd (30 grados) [2V @ 20mA]
- Blanco Calido 12.000mcd (20 grados) [3,3V @ 20mA]
- Blanco Frio de 6.000mcd (30 grados) [3,3V @ 20mA]
- Rojo 4.000mcd (20 grados) [2V @ 20mA]
- Ultra violeta de 385nm a 395nm (30 grados) [3,3V @ 20mA]
- Verde 9.000mcd (20 grados) [3,3V @ 20mA]

DIRECTIVIDAD

EXCITACION DE LEDS

a) Led encendido, configuración NPN y PNP en saturación

b) Led apagado, transistores cortados

EXCITACIÓN CON CI

DISPLAY DE 7 SEGMENTOS

DECIMAL	ENTRADAS D C B A	a	b	С	d	е	f	g	
0	LLLL	L	L	L	L	L	L	H	
1	LLLH	H	Н	H	Н	L	L	H	a
2	LLHL	L	L	H	L	L	H	L	£ .
3	LLHH	L	L	L	L	H	H	L	1 g b
4	LHLL	H	L	L	H	H	L	L	
5	LHLH	L	H	L	L	H	L	L	e c
6	LHHL	H	H	L	L	L	L	L	
7	LHHH	L	L	L	H	Η	H	H	d
8	HLLL	L	L	L	L	L	L	L	
9	HLLH	L	L	L	H	H	L	L	

Tabla de Verdad del decodificador y distribución de segmentos

DECODIFICADOR CON DRIVER

EXCITACIÓN DE DISPLAY DE 7 SEGMENTOS CON TRANSISTORES

a) Display ánodo común

EXITACION DISPLAY

b) Display cátodo común

DISPLAY MULTIPLEXADO

DISPLAY MULTIPLEXADO

EXCITACIÓN DE DISPLAY MULTIPLEXADO a)Esquema ánodo común

Según sea el valor de Ck estará excitado el display 1 o el display 2

DISPLAY MATRIZ DE PUNTOS

Distribución de un arreglo LED de 4 * 7 direccionable X - Y y representación de algunos caracteres.

PLD - PAL - CPLD

Los PLD (Programmable Logic Devices) fueron introducidos en la decada del 70, son chips de propósitos generales para implementar circuitos lógicos — Un PLD puede usarse como una caja negra que contiene compuertas lógicas y llaves programables, tal como se observa en la Fig. 1

Existen varios tipos de PLDs disponibles comercialmente. El primero de ellos fue un Programmable Logic Array (PLA), cuya estructura se observa en la Fig. 2

Fig. 2

EJEMPLO DE PLA

$$P_1 = x_1 x_2$$
; $P_2 = x_1 x_3$; $P_3 = x_1 x_2 x_3$; $P_4 = x_1 x_3$, por lo que
 $f_1 = P_1 + P_2 + P_3 = x_1 x_2 + x_1 x_3 + x_1 x_2 x_3$

CIRCUITO ESQUEMATICO

Figure 3.27 Customary schematic for the PLA in Figure 3.26.

PAL

Como hemos visto en las PLAs ambos arreglos (planos AND y OR) son programables. Esto tiene dos dificultades para el fabricante. En primer lugar es de fabricación compleja por la cantidad de llaves, por otro lado son poco veloces. Este problema los llevo a mejorar el diseño y desarrollaron un dispositivo de arreglo AND programable y OR fijo.

An example of a PAL. Figure 3.28

CPLD - MACROCELL

En muchas PAL se agregan circuitos extras a cada salida OR, para proveer una mayor flexibilidad. Este circuito adicional a la salida OR se la denomina MACROCELL, se muestra en la siguiente lámina

Figura 5 - MACROCELL

Las PAL y PLA son útiles para implementar una gran variedad de pequeños/medianos circuitos digitales (Entradas mas salidas que no superen el numero de 32). Cuando se requiere mayor cantidad de entradas/salidas se recurre a un CPLD (Complex Programmable Logic Devices)

ESTRUCTURA DE UN CPLD

3.6 PROGRAMMABLE LOGIC DEVICES

Figure 3.32 Structure of a complex programmable logic device (CPLD).

Un CPLD comprende múltiples bloques en un único chip con recursos de cableado interno para conectar los bloques. Cada bloque es similar a una PLA o PAL, por lo que en el esquema de la Fig. 6 nos referimos a cada block como PAL – like block

Figure 3.33

FPGA

Las FPGA (Field-programmable gate array), son dispositivos lógicos programables que soportan la implementación de una gran cantidad de circuitos lógicos (en mayor escala que los PLD y PAL),.

Otra diferencia de las FPGA con respecto a los PLD y PAL, es que su estructura no esta compuesta por compuertas AND/OR , en su lugar contienen blocks lógicos para implementar las funciones requeridas.

Bloque lógico

Llaves de interconexión

LUT 1 ENTRADA

Cada bloque circuital en una FPGA, tipicamente tiene un pequeño numero de entradas y salidas (E/S). El block mas comumente utilizado es un look up table (LUT), el cual contiene *celdas de almacenamiento*, las que se utilizan para implementar simples funciones lógicas. Cada celda es capaz de mantener un simple valor lógico, ya sea un 0 o un 1. Este valor almacenado (0 o 1) es obtenido luego a la salida de la celda de almacenamiento.

En la Fig. 2 se observa la estructura de una LUT.

LUT 2 ENTRADAS

Si se desea implementar una función booleana tal como la dada en la tabla siguiente

X 1	x2	f
0	0	1
0	1	0
1	0	0
1	1	1

$$\mathbf{f} = \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_1 \mathbf{x}_2$$

Entonces debemos programar las celdas de la LUT, tal como se observa en la Fig.

LUT 3 ENTRADAS

En la Fig. 4 observamos una LUT de 3 entradas. En los chips comerciales de FPGA, las LUTs usualmente tienen entre 4 y 5 entradas, lo cual requiere entre 16 y 32 celdas de almacenamiento

CIRCUITOS EXTRAS

Las FPGAs, pueden tener circuitos extras, además de las LUTs, en cada bloque lógico. En la Fig 5 mostramos un como un Flip Flop puede incluirse en un bloque lógico de una FPGA

Flip-Flop

Las celdas de almacenamiento de una LUT son volátiles. Es por ello que una FPGA tiene que ser programada cada vez que se energiza el circuito. A menudo una pequeña memoria (EPROM) mantiene sus datos permanentemente y carga las celdas de almacenamiento cuando se energiza el circuito.

FPGA - PROGRAMADA

