REVIEWS

New insights into the differentiation and function of T follicular helper cells

Cecile King

Abstract | The seminal studies characterizing T follicular helper ($T_{\rm FH}$) cells described a non-polarized CD4+T cell population with a unique ability to home to B cell follicles and to induce antibody production by B cells. In the past few years, the study of $T_{\rm FH}$ cells has enjoyed a renaissance and there has been a surge of research activity aimed at understanding the function and differentiation of these important cells. This Review focuses on the current progress in $T_{\rm FH}$ cell biology and the important questions that remain unanswered. Particular attention is paid to recent studies that support the idea that $T_{\rm FH}$ cells are a separate T cell lineage and those that probe the relationship of $T_{\rm FH}$ cells to other T helper cell subsets.

Somatic hypermutation

A unique mutation mechanism that is targeted to the variable regions of rearranged immunoglobulin gene segments. Combined with the selection for B cells that produce high-affinity antibody, somatic hypermutation leads to affinity maturation of B cells in germinal centres.

Class switch recombination

The process by which proliferating B cells rearrange their DNA to switch from expressing IgM (or another class of immunoglobulin) to expressing a different immunoglobulin heavy-chain constant region, thereby producing antibody with different effector functions.

Department of Immunology, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia. e-mail: c.kina@aarvan.ora.au

doi:10.1038/nri2644

The production of high-affinity, class-switched antibody is important for the clearance of pathogens following infection, for the establishment of long-term humoral immunity and for the efficacy of vaccines. To make highaffinity, class-switched antibody, B cells must receive cognate help from CD4⁺ T cells during a germinal centre reaction1. Germinal centres are discrete structures within the B cell follicles of secondary lymphoid organs in which the processes of somatic hypermutation, class switch recombination and affinity maturation of activated B cells occur accompanied by the production of memory B cells and plasma cells^{2,3}. The CD4⁺ T cells that are responsible for providing help migrate into the germinal centre⁴⁻⁷ where, according to evidence from intravital microscopy, T cell-B cell interactions are weighted towards intense B cell competition for a small number of CD4⁺ T cells⁸. The absence of T cell help during B cell priming leads to B cell apoptosis, rather than differentiation into germinal centre B cells or plasma cells9.

The requirement of T cell help for B cell antibody production was first shown in the $1960s^{10,11}$. However, it took more than three decades before the subset of CD4+ T cells that provided this help was identified in germinal centres. Termed T follicular helper ($T_{\rm FH}$) cells¹²⁻¹⁴, these cells were found to have a unique ability to home to B cell follicles owing to their expression of CXC-chemokine receptor 5 (CXCR5) and to induce antibody production during co-culture with B cells¹²⁻¹⁴. In contrast to other T cell subsets, $T_{\rm FH}$ cells were poor cytokine secretors, which led to their description as a non-polarized subset. However, cytokine production in those early studies was examined in CXCR5+ memory CD4+ T cells from peripheral blood, and the

relationship of these cells to bone fide T_{ff} cells still requires clarification. Several studies have since shown that CXCR5+ T_{FH} cells isolated from secondary lymphoid tissue can produce cytokines^{46,76}. In conjunction with their unique localization in germinal centres, the capacity of T_{ff} cells to provide help to B cells depends on their expression of molecules that influence T and B cell collaboration. T_{ff} cells are defined by high levels of expression of inducible T cell co-stimulator (ICOS), programmed cell death 1 (PD1), the transcriptional repressor B cell lymphoma 6 (BCL-6) and cytokines that influence B cell differentiation and antibody production such as interleukin-21 (IL-21) and IL-4. These features are present in both humans and mice; however, human T_{FH} cells also express <u>IL-10</u> (REFS 14,15), which has an important role in the differentiation of human B cells, and high levels of the chemokine CXCL13 (RFF 16).

In this Review, I discuss our current understanding of $T_{_{\rm FH}}$ cell biology. Particular attention is given to recent studies designed to probe the relationship of $T_{_{\rm FH}}$ cells to other T helper $(T_{_{\rm H}})$ cells and to determine whether $T_{_{\rm FH}}$ cells are a distinct lineage. I also review the definition of the $T_{_{\rm FH}}$ cell phenotype in the context of increasing heterogeneity observed in the $T_{_{\rm FH}}$ cell subset.

Differentiation of T_{FH} cells

The interaction of interdigitating dendritic cells (DCs) bearing peptide–MHC class II complexes and naive CD4 $^{\scriptscriptstyle +}$ T cells bearing T cell receptors (TCRs) with high affinity for antigen $^{\scriptscriptstyle 17}$ initiates the expression of a B cell follicle homing programme that leads to the recruitment of $T_{\scriptscriptstyle FH}$ cell precursors to the T cell–B cell border in

Figure 1 | Three models for the differentiation of T follicular helper cells. T follicular helper ($T_{_{\rm FH}}$) cells and differentiated T helper ($T_{_{\rm H}}$) cell subsets (such as $T_{_{\rm H}}1$ cells, $T_{_{\rm H}}2$ cells, interleukin-9 (IL-9)-producing $T_{_{\rm H}}9$ cells, IL-17-producing $T_{_{\rm H}}17$ cells and inducible regulatory T ($T_{_{\rm Reg}}$) cells) are derived from naive CD4+T cells. **a** | The pre-antigen model suggests that $T_{_{\rm FH}}$ cells and other $T_{_{\rm H}}$ cell subsets arise from distinct naive CD4+T cell precursors. **b** | The pluripotent model suggests that all $T_{_{\rm H}}$ cell subsets arise from a common pluripotent $T_{_{\rm H}}$ cell precursors. **c** | The coordinated model suggests that $T_{_{\rm FH}}$ cells and $T_{_{\rm H}}$ cells arise from distinct cytokine-competent $T_{_{\rm H}}$ cell precursors. In this model, IL-4-producing $T_{_{\rm FH}}$ cells and $T_{_{\rm H}}2$ cells would have a common precursor. APC; antigen-presenting cell.

Asymmetrical cell division

A type of division that produces two daughter cells with different properties. This is in contrast to normal cell divisions, which give rise to equivalent daughter cells. Notably, stem cells can divide asymmetrically to give rise to two distinct daughter cells: one copy of themselves and one cell programmed to differentiate into another cell type.

the white pulp of secondary lymphoid organs. $T_{\rm FH}$ cells migrate into the B cell follicle, where they may continue their differentiation programme ¹⁸. $T_{\rm H}$ cells that complete interactions with antigen-presenting cells or fail to establish interactions with B cells at the T cell–B cell border either leave the secondary lymphoid organ or participate in the stimulation of antibody production by B cells in extrafollicular foci. $T_{\rm FH}$ cell differentiation is influenced by several factors in the local environment, including the interaction with B cells ^{15,19} and the cytokine milieu (which in turn is determined by the pathogen or antigen encountered), and is likely to be finalized within the B cell follicle during the germinal centre reaction.

There are several possible scenarios for the generation of $T_{\rm FH}$ cells: $T_{\rm FH}$ cell fate may be decided at the first encounter of a naive CD4+ T cell with antigen (FIG. 1a), or at increasingly later points during $T_{\rm FH}$ cell differentiation (FIG. 1b, c). However, these models are not mutually exclusive and indeed might overlap, especially in the context of $T_{\rm H}$ cell plasticity²0 and asymmetrical cell division²1. Model 1 suggests that all $T_{\rm H}$ cell subsets (that is, $T_{\rm H}1,T_{\rm H}2,T_{\rm H}17$, inducible regulatory T ($T_{\rm Reg}$) cells and $T_{\rm FH}$ cells) arise independently from distinct naive CD4+ T cells immediately following the initial encounter with peptide–MHC class II complexes. In this model, $T_{\rm FH}$ cells, but not other $T_{\rm H}$ cell subsets, would arise exclusively from naive CD4+

T cells bearing TCRs with the highest affinity for antigen 17 . Model 2 suggests that $T_{\rm FH}$ cells share $T_{\rm H}$ cell precursors with other differentiated $T_{\rm H}$ cell subsets that migrate to non-lymphoid tissue sites. In this model, $T_{\rm H}$ cells and $T_{\rm FH}$ cells would emerge from the same pluripotent activated CD4+ T cell precursor and $T_{\rm FH}$ cells would be subsequently selected from cells with the highest affinity for antigen 17 through preferential interactions with B cells. In model 3, $T_{\rm FH}$ cells and their 'paired' $T_{\rm H}$ cell subset arise in a cytokine-competent manner 22 from cytokine-polarized $T_{\rm H}$ cell precursors that may include the coordinate generation of inducible $T_{\rm Reg}$ cells. However, precisely how $T_{\rm H}$ cell fate is determined remains unknown.

Early events in the T cell zone

Antigen and TCR affinity. Several recent studies have focused on understanding how T_{FH} cells are generated, but the exact timing and context of T_{FH} cell differentiation are subject to ongoing investigation. The initial events in the differentiation of $T_{\mbox{\tiny FH}}$ cells are common to all T₁₁ cell subsets. Naive T cells that express the CD4 co-receptor mature in the thymus and are phenotypically characterized by the absence of T cell activation surface markers. The first division of a naive CD4+ T cell occurs 25-30 hours after TCR recognition of peptide antigen presented in the context of MHC class II molecules on the surface of interdigitating DCs in the T cell zone of secondary lymphoid tissues. The progeny of this initial clonal expansion is temporarily sequestered in the secondary lymphoid organ through the upregulation of expression of the early activation marker CD69 and the transient downregulation of expression of the receptor sphingosine 1-phosphate receptor 1 (S1PR1), which regulates egress of cells from lymphoid tissues23. Subsequently, within 2-3 days following appropriate exposure to differentiation signals, activated T cells then re-express S1PR1, allowing them to migrate out of the secondary lymphoid tissue into the circulation²³. These emigrants include effector T_H cells that are destined for non-lymphoid tissue sites. By contrast, T_H cells that retain cell surface expression of CD69 remain in the lymph node^{12,24}. Among these are CXCR5+ cells with the potential to become T_{fH} cells^{6,7,25}.

A central notion in the differentiation of CD4+ T cells is that the TCR can transmit differing degrees of activating signals to initiate different effector outcomes 26,27 . In an effort to determine the important early events in $\rm T_{FH}$ cell generation, a recent study showed that following the transfer of CD4+ T cells into immunized mice, those T cells expressing TCRs with the highest affinity to peptide–MHC class II complexes and the most restricted TCR diversity were selected into the $\rm T_{FH}$ cell pool17. Thus, $\rm T_{FH}$ cell differentiation requires strong signals through the TCR and/or sustained interactions with antigen-presenting cells.

The acquisition of cytokine competency. A range of antibody isotypes is typically produced in response to infection or immunization, with one or two isotypes predominating. The relative amounts of the different antibody isotypes that are produced are determined by

cytokine signals that control immunoglobulin class switch recombination, which are still not completely understood 28 . Early after activation by antigen, CD4 $^{\scriptscriptstyle +}$ T cells can produce a wide range of cytokines, but this ability is progressively lost as they differentiate into discrete $T_{\rm H}$ cell subsets with specific effector functions.

The interaction between cytokine-competent T₁₁ cell precursors and B cells is crucial for directing their differentiation into various T_H cell subsets and into antibodyproducing cells, respectively. In mice, the production of interferon-γ (IFNγ) and IL-4 is a characteristic, but not exclusive, feature of T_H^1 and T_H^2 cells, respectively. IL-4 induces sequential class switching to IgG1 and then to IgE, whereas IFNy is associated with class switching to IgG2a²⁹ (FIG. 2). Several studies have shown that cytokine competency is initiated through interaction with DCs, but the ability of activated CD4⁺ T cells to produce IL-4 and IFNγ is initiated at the T cell–B cell border of lymphoid tissues^{22,30-32}. The acquisition of cytokine production by T_H cells at this site subsequently begins the process of isotype switching^{31,33}. Additional signals from the microenvironment such as the cytokines IL-6 and IL-21 and the consequent activation of signal transducer and activator of transcription 3 (STAT3) downstream of cytokine receptor signalling enforce the generation of T cells with a helper phenotype that, at this early stage, maintain the ability to engage multiple differentiation programmes^{34–36}. T_{FH} cells, which are distinguished from other T_H cell subsets by their high affinity for antigen and/or sustained interaction with B cells, migrate beyond the T cell-B cell border into the B cell follicle. Some or all of the $T_{_{\rm FH}}$ cells migrate while attached to B cells, as mobile conjugate pairs³⁷, to participate in the germinal centre reaction38.

T_{FH} cell interactions with B cells

Positioning of T_{EH} cells in the B cell follicle. T_{EH} cells are probably best defined by their expression of CXCR5, which, in conjunction with the loss of expression of CC-chemokine receptor 7 (CCR7), allows them to migrate into the CXCL13-rich B cell follicles of secondary lymphoid tissues, where they provide instructive cues for the differentiation of B cells^{6,7,12–14,25,39} (FIG. 3). However, CXCR5 expression is not unique to T_{FH} cells and it has been estimated that ~50% of CD4+ T cells in antigenstimulated lymphoid tissues, such as human tonsils, are CXCR5+, but only a subset of these cells localize to the germinal centre^{12,13,39}. In addition, CXCR5 is expressed by the subset of circulating CD4+ memory T cells mentioned above^{12,13,39}. CXCR5 is expressed only transiently by CD4⁺ T cells during interactions with peptide–MHC complexes on the surface of antigen-presenting cells and is dependent on co-stimulatory signals delivered through CD28, OX40 (also known as TNFSF4) and ICOS^{7,40,41}. By contrast, persistent expression of CXCR5 distinguishes T_{FH} cells from other fully differentiated non-germinal centre CD4+ T cells with B cell helper activity, such as those that participate in the differentiation of B cells to the plasma cells that are responsible for secreting low-affinity antibody in extrafollicular foci or those that express other chemokine receptors and migrate to non-lymphoid tissue sites to carry out their effector functions^{12-14,17,22}.

Figure 2 | **Antibody class switching is directed by cytokines.** A range of cytokines produced by T follicular helper (T_{FH}) cells can direct antibody class switching. The acquisition of T cell cytokine competency begins in the T cell zone and precursor T_{FH} cells have the capacity to induce class switching during their interaction with B cells at the border of the T cell zone and B cell follicle. Interleukin-4 (IL-4) induces the switch to IgG1 production (and then IgE production, not shown), and interferon- γ (IFN γ) induces the switch to IgG2a production. BCR, B cell receptor; CXCL13, CXC-chemokine ligand 13; CXCR5, CXC-chemokine receptor 5; ICOS, inducible T cell co-stimulator; IL-21R, IL-21 receptor; L, ligand; SAP, SLAM-associated protein; SLAM, signalling lymphocytic activation molecule; TCR, T cell receptor.

For example, differentiated CD4⁺ T cells that express CCR6 tend to have a $\rm T_H 17~cell$ phenotype 42 , those that express $\rm \underline{CXCR3}$ are generally $\rm T_H 1$ cells and those with $\rm \underline{CCR4}$ expression are largely $\rm T_H 2~cells^{43}$. Following immunization, antigen-specific T cells show a higher and more homogeneous expression of CXCR5 than do polyclonal T cells 7 , but whether preservation of CXCR5 expression by T $_{\rm FH}$ cells reflects higher TCR affinity for antigen or sustained interaction with B cells remains unknown.

Co-stimulatory molecules. The expression of multiple co-stimulatory molecules is a feature of $T_{\rm FH}$ cells, which may reflect both the sustained multi-signal integration required for their generation and their unique association with B cells^44 (FIG. 3). This association begins at the T cell–B cell border and continues into the B cell follicle, where $T_{\rm FH}$ cells contribute to the germinal centre reaction. However, as numerous $T_{\rm H}$ cell subsets can help B cells produce antibody beyond the confines of the germinal centre, expression of these molecules $per\ se$ does not adequately define a $T_{\rm FH}$ cell. Rather, $T_{\rm FH}$ cells have been shown to express higher levels of these molecules than any other $T_{\rm H}$ cell subsets, which correlates with an enhanced capacity to facilitate antibody production $^{12-14,45,46}$.

Co-stimulatory molecules positively regulate B cell differentiation, as indicated by the defective humoral immune responses in mice and humans with mutations in the genes CD40LG (which encodes CD40 ligand (CD40L)) and $ICOS^{47-50}$. The interaction between CD40 (also known as TNFRSF5) on B cells and CD40L, which is transiently expressed by activated CD4 $^+$ T cells, stimulates B cell proliferation and facilitates cytokine-induced class switching $^{51-53}$. ICOS is expressed at high levels by T $_{\rm FH}$ cells (and T $_{\rm H}2$ cells) and is induced following T cell activation 44 . Once engaged by its ligand (ICOSL) on B cells,

ICOS induces the production of $T_{\rm H}$ cell-type cytokines such as IL-2, IL-4, IL-10 and IL-21 (REFS 44,54,55). Studies showing that ICOS deficiency is associated with a reduction in the germinal centre reaction and fewer $T_{\rm FH}$ cells in mice and humans implicate ICOS signalling in the maintenance and/or generation of $T_{\rm FH}$ cells 41,56 . In addition, the elevated expression of OX40, which is expressed by activated T cells, has been shown to denote $T_{\rm FH}$ cells, but its role in $T_{\rm FH}$ cell function remains unknown 17,57 .

PD1. PD1 is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory molecule that is highly expressed by $T_{\rm FH}$ cells 17,18 . The expression of inhibitory molecules by $T_{\rm FH}$ cells might reflect their role in the germinal centre as they favour strong cognate interactions with B cells 18 . PD1 expression by CD8+ T cells is associated with chronically activated or exhausted cells, but whether this is true for CD4+ T cells is not yet known 58 .

IL-21. As discussed above, the generation of highly differentiated $T_{{}_{\rm IJ}}$ cell subsets depends on the integration of multiple co-stimulatory signals that are received during the interaction of T_H cells with antigen-presenting cells; IL-21 seems to provide one of these signals (FIG. 3). However, the role of IL-21 in T_H cell differentiation remains controversial, which may reflect the fact that the production of IL-21 is common to both recently activated CD4⁺ T cells and differentiated T_H cell subsets^{46,59-65}. It is of interest that IL-21 is expressed most highly by $T_{\text{\tiny FH}}$ cells, and the recent demonstration of greater levels of IL-21 in germinal centre $\rm T_{\rm\scriptscriptstyle FH}$ cells than in $\rm T_{\rm\scriptscriptstyle H}2$ cells located in the lungs supports the idea that high IL-21 expression is a specialized feature of T_{FH} cells^{17,22,46,63}. Analyses of mice in which IL-21–IL-21 receptor (IL-21R) interactions have been disrupted indicate that IL-21 is important for the generation of $T_{\scriptscriptstyle {\rm FH}}$ cells^{34,65}

T_u17 cell

A subset of CD4⁺ T helper cells that produce IL-17 and that are thought to be important in inflammatory and autoimmune diseases. Their generation involves IL-21 and IL-23, as well as the transcription factors RORyt and STAT3.

Figure 3 | The multi-signal pathway for T follicular helper ($T_{\rm FH}$) cell generation. a | In the T cell zone of lymphoid tissues, mature dendritic cells expressing CD80 and CD86 present peptide–MHC class II complexes to the T cell receptor (TCR) of naive CD4*T cells, which constitutively express CD28. b | Activated CD4*T cells produce interleukin-21 (IL-21) and express inducible T cell co-stimulator (ICOS), MAF and signal transducer and activator of transcription 3 (STAT3) and begin their acquisition of cytokine competency (for example, IL-4 or interferon- γ (IFN γ) production) in the T cell zone. c | Sustained signalling of activated CD4*T cells through the TCR, ICOS and IL-21 receptor (IL-21R) at the T cell–B cell border leads to the modulation of cell surface molecules that are important for migration and T cell–B cell interactions, such as increased CXC-chemokine receptor 5 (CXCR5) expression and decreased CC-chemokine receptor 7 (CCR7) expression, and expression of ICOS, CD40 ligand (CD40L), OX40 and signalling lymphocytic activation molecule (SLAM) family members. Follicular dendritic cells bearing antigen interact with maturing B cells in the germinal centre reaction. d | Migration of functional $T_{\rm H}$ cells to B cell follicles and delivery of T cell help to B cells support the selection of activated antibody-secreting plasma cells in germinal centres. APC, antigen-presenting cell; BCL-6, B cell lymphoma 6; BCR, B cell receptor; CXCL13, CXC-chemokine ligand 13; ICOSL, ICOS ligand; SAP, SLAM-associated protein.

Sanroque mice

An autoimmune strain of mouse that has a loss-of-function mutation in the gene roquin (also known as *Rc3h1*). These mice develop a T cell-mediated systemic lupus erythematosus-like syndrome and severe autoimmune diabetes when bred onto a susceptible genetic background.

X-linked lymphoproliferative disease

Individuals with X-linked lymphoproliferative disease have complicated immune dysfunctions, often triggered by infection with Epstein–Barr virus. Many patients develop fatal B cell lymphoproliferation. The gene that encodes SAP is mutated in these patients.

and has a crucial role in $\rm T_H$ cell differentiation before the acquisition of B cell follicle homing capacity by $\rm T_{FH}$ cells 65 . IL-21 also regulates expression of the $\rm T_{FH}$ cell transcription factor BCL-6, but the point at which IL-21 influences $\rm T_{FH}$ cell subset differentiation remains unclear.

IL-21 also has a well-established role in B cell proliferation and differentiation $^{46,66-68}$. However, the observation that efficient IgG1 production by IL-21R-deficient B cells could be restored by IL-21R-sufficient CD4+ T cells indicates that the role of IL-21 in B cell responses has a degree of redundancy, possibly with IL-4 (REF. 65). Similarly, IL-6 may be sufficient for the differentiation of some $\rm T_H$ cell subsets in the absence of IL-21, as IL-6 and IL-21 both have the ability to activate STAT3 (REFS 36,61). In addition to STAT3, IL-21 activates numerous pathways that are common to other co-stimulatory molecules such as ICOS. In the case of sanroque mice, in which a point mutation in a ubiquitin ligase results in the constitutive overexpression of ICOS, IL-21 is not required for the generation of $\rm T_{EH}$ cells 69 .

SLAM-associated protein. Given that multiple proteins contribute to the interactions of CD4+ T cells with DCs and B cells, it has been difficult to determine, at a T cellintrinsic molecular level, which interactions are important for programming $T_{_{\mathrm{FH}}}$ cell differentiation. However, a recent study has revealed that SLAM-associated protein (SAP; also known as SH2D1A) has an important role in the B cell-influenced differentiation of CD4+ T cells into T_H cell subsets¹⁹. SAP is an adaptor molecule that is known to bind to signalling lymphocytic activation molecule (SLAM) and modulate both TCR signalling and T₁₁2 cell differentiation¹⁹. In human X-linked lymphoproliferative disease, which is caused by loss-of-function mutations in the gene encoding SAP (SH2D1A), and in an analogous gene-targeted mouse model there is a profound defect in germinal centre formation⁷⁰. Live imaging of the dynamics of the interaction of CD4⁺ T cells with DCs and B cells following immunization revealed that SAP expression by T cells was important for the stability of antigen-dependent T cell-B cell interactions but

dispensable for T cell–DC interactions¹⁹. Supporting a crucial role for SAP in $T_{\rm FH}$ cell generation, the introduction of a null allele of SAP into sanroque mice led to a reduction in $T_{\rm FH}$ cell numbers and abrogated germinal centre formation and autoantibody formation⁶⁹.

Transcription factors. It remains unknown whether T_{EH} cells are fully differentiated once they migrate into the B cell follicle or whether they complete their differentiation programme during the germinal centre reaction, but recent studies have revealed that, like that of other fully differentiated $\mathbf{T}_{_{\mathrm{H}}}$ cell subsets, lineage commitment of $T_{_{\rm FH}}$ cells is controlled by the expression of transcription factors⁷¹. The discovery of specific transcription factors that act as master controllers of cytokine gene expression to establish lineage-specific transcriptional programmes has greatly advanced our understanding of T_H cell lineage commitment. It is now established that T-bet (also known as TBX21) determines T₁₁1 cell lineage commitment and cytokine production, GATA-binding protein 3 (GATA3) drives T₁₁2-type cytokine production^{72,73}, retinoic acid receptor-related orphan receptor-γt (RORγt) directs the differentiation of the T_H17 cell subset⁷⁴, and the expression of forkhead box P3 (FOXP3) programmes T_{Reg} cell development and function⁷⁵ (FIG. 1). However, many transcription factors are not unique to distinct T₁₁ cell subsets and may function in the generation of multiple T_H cell subsets. For example, the transcription factor MAF, previously shown to be crucial for IL-4 production, has an essential role in generating both T_{FH} cells and T_H17 cells⁷⁶. MAF functions downstream of ICOS76 and has been shown to transactivate IL-21 (REF. 77).

Transcriptional profiles obtained from microarray analysis identified BCL-6 among the transcription factors that were upregulated in $T_{\scriptscriptstyle {
m FH}}$ cells but not other effector T_H cell subsets⁶³, and this finding has been confirmed by recent studies^{17,22}. In BCL-6-deficient mice, T celldependent antibody responses are reduced owing to an absence of germinal centres, an observation that had been attributed to a B cell-intrinsic defect78. Consistent with this interpretation, BCL-6 expression is largely confined to B cells within germinal centres, where it acts as a master regulator of germinal centre lineage commitment, suppressing plasma cell differentiation by the extrafollicular pathway. Recently, however, BCL-6 has also been shown to act as a transcriptional repressor in T_{FH} cells, indicating that BCL-6 expression in both T and B cells is required for germinal centre reactions79-81. Forced expression of BCL-6 in CD4⁺ T cells could suppress both T_u1 and T_H17 cell differentiation pathways while enhancing the development of characteristic features of T_{fr} cells^{79,81}. In an analogous study, the analysis of BCL-6-deficient CD4⁺ T cells and overexpression of BCL-6 in CD4⁺ T cells showed that BCL-6 expression was both necessary and sufficient for in vivo T_{FH} cell differentiation⁸⁰. By contrast, the transcriptional repressor B lymphocyte-induced maturation protein 1 (<u>BLIMP1</u>; also known as PRDM1), which is highly expressed in the T cell zone but not in germinal centre T cells, was shown to inhibit T_{FH} cell generation, indicating reciprocal regulation of these two transcription factors during $T_{\rm FH}$ cell differentiation 17,80 .

Despite the importance of BCL-6 for $T_{\rm FH}$ cell generation, expression of BCL-6 protein has been observed in only 10–15% of CD4 $^{+}$ T cells located in the germinal centres of human tonsils 82 . Whether these BCL-6-positive cells are a functionally distinct population of $T_{\rm FH}$ cells in the B cell follicle or are terminally differentiated $T_{\rm FH}$ cells remains unknown. In this regard, it is possible that BCL-6 is expressed by $T_{\rm FH}$ cells during a defined period of time or in conjunction with antagonistic transcription factors 17 , and the ability of BCL-6 to downregulate the secretion of cytokines such as IL-4 suggests that continuously high expression of BCL-6 in germinal centre T cells might be counterproductive 83 .

The expression of master controller transcription factors is used to define $T_{_{\rm H}}$ cell lineage commitment, but the unique expression of these factors may not be definitive for T_u cell fate. Epigenetic modifications influence the binding of transcription factors to the promoter regions of genes, contributing to the heritability of T_H cell lineage decisions, and evidence is emerging that these decisions remain open to revision. Through the analysis of the chromatin state in resting and effector T cells (including $\rm T_{\rm H}1$ cells, $\rm T_{\rm H}2$ cells, $\rm T_{\rm H}17$ cells cultured in vitro and $\rm T_{\rm Reg}$ cells), a recent study has revealed the retention of both permissive and repressive transcription factor binding (bivalent) marks in T_H cell-specific genes, including those of transcription factors²⁰. Transcription factor genes in a bivalent state have the potential for subsequent activation or silencing, suggesting that T_H cells retain the potential for functional revision20. Interestingly, examination of the *Il21* loci of $T_H 1$, $T_H 2$ and T_{Reg} cells indicated that Il21 transcription is strongly suppressed in these cells²⁰, predicting a heritable distinction with T_{EH} cells that highly express IL-21. Future studies will be needed to determine whether T_H cells differentiated in vivo, including T_{FH} cells, have similar potential for plasticity at the level of epigenetic modifications.

The fate of T_{FH} cells

The fate of $T_{\rm FH}$ cells after resolution of the germinal centre reaction remains an important area of investigation. Live imaging of germinal centre cell dynamics indicates that B cells can move bidirectionally between the B cell follicle and the germinal centre, but there is currently no evidence to support bidirectional movement of $T_{\rm FH}$ cells $^{\rm 54,85}$. Thus, it seems unlikely that $T_{\rm FH}$ cells give rise to the fully differentiated $T_{\rm H}$ cell subsets that migrate to non-lymphoid tissues (or vice versa). One possible outcome is that $T_{\rm FH}$ cells are terminally differentiated and die owing to the presence of high cell surface levels of $\overline{\rm CD95}$ (also known as TNFRSF6) and PD1 expression, which render them susceptible to apoptosis 45,86 . Alternatively, $T_{\rm FH}$ cells may remain in situ, either as bone fide memory T cells or as effector T cells that continue to survive owing to persisting antigen $^{87-89}$.

A recent study showed the existence of a population of CD69+CXCR5+ $T_{\rm FH}$ cells that remained in close proximity to CXCL13+ follicular DCs for an extended period of time²⁴. These cells could be rapidly reactivated to express effector molecules following secondary immunization and thus behave like antigen-specific memory T cells. $T_{\rm FH}$ cells were found in the vicinity of 'depots'

Follicular DCs

Specialized non-haematopoietic stromal cells that reside in the follicles and germinal centres. These cells have long dendrites, but are not related to dendritic cells, and carry intact antigen on their surface.

of peptide-MHC class II complexes in the draining lymph node after resolution of the germinal centre reaction, suggesting that local triggering of the TCR maintains the expression of CXCR5 and CD69 (REF. 24). Using IL-4-reporter mice, T_{EH} cells were also observed to make IL-4 protein more rapidly following secondary challenge with antigen than cells involved in the primary response⁹⁰. Thus, antigen-specific T_{FH} cells can be detected for some time after an immune response and have the potential to interact with B cells to promote antibody production following secondary challenge or have some as yet unknown function. However, several studies indicate that CD4+ T cells are not necessary for the long-term maintenance of memory B cells or IgGproducing plasma cells^{91,92}. Further work will be needed to determine whether T_{ELI} cells meet their demise at the resolution of the germinal centre reaction for which they were purposefully generated or whether the population of memory T_{ff} cells that persist in lymphoid organs after the resolution of the germinal centre reaction can improve the outcome of a reinfection.

The relationship between T_H cell subsets

 $T_{\rm FH}$ cells can produce cytokines, such as IL-4, IL-10 and IL-21, that promote the survival, proliferation and differentiation of B cells ^{12,14,15,22,46}. However, the recent identification of IFNγ-producing $T_{\rm FH}$ cells coupled with evidence of their capacity to produce IL-17 shows that $T_{\rm FH}$ cells may have a more heterogeneous pattern of cytokine production than was previously appreciated ^{14,18,22,24,34}. There are several possible explanations that could reconcile these observations; for example, cytokine expression by $T_{\rm FH}$ cells has typically been measured relative to the abundance of cytokines produced by fully differentiated $T_{\rm H}$ cells or by chronically activated tonsilar tissue following *ex vivo* re-stimulation and may lead to cytokine expression from cells that may or may not express cytokines *in vivo* ^{12,13}.

 $T_{\rm FH}$ cells and $T_{\rm H}2$ cells. $T_{\rm H}2$ cells have long been regarded as the main providers of help for antibody production by B cells. However, the observation that IL-4-deficient mice can generate T cell-dependent antibody responses suggested that IL-4 is not necessary for antibody production $per\ se^{93}$. $T_{\rm FH}$ cells and $T_{\rm H}2$ cells have a degree of commonality in that the targeted deletion of the genes encoding MAF, ICOS and IL-21R impairs the generation of both cell subsets 34,54,56,65,72,76,94,95 . Nevertheless, $T_{\rm FH}$ cells can be clearly distinguished from $T_{\rm H}2$ cells by their high levels of expression of both CXCR5 and BCL-6 and by their reduced levels of expression of BLIMP1 and the $T_{\rm H}2$ cell-associated chemokine receptor CCR4 (REFS 17,22,63,96).

Recently, several groups have analysed the relationship between IL-4-producing CD4+ T cells and $\rm T_{FH}$ cells using IL-4-reporter mice^{22,90,97}. These transgenic mice express either a single reporter gene marking cells that express $\it Il4$ mRNA (IL-4-competent cells) or a dual reporter gene marking both cells that express $\it Il4$ mRNA and those that actually secrete IL-4 protein. The analyses of $\rm T_H$ cell differentiation during infection of IL-4-reporter mice confirm previous reports showing that $\rm T_{FH}$ cells can express IL-4 (REFS 14,18,24,46) and show that most IL-4

production is localized to the B cell follicle^{22,90}. The finding that CXCR5-PD1-IL-4-competent CD4+ T cells from mice immunized with serum schistosome egg antigen (SEA) could upregulate CXCR5 and PD1 on adoptive transfer into naive hosts subsequently immunized with SEA suggests a relationship between T_H^2 and T_{FH} cells 97 . However, whether fully differentiated T_H2 cells can migrate into the B cell follicle and become $T_{\scriptscriptstyle {
m FH}}$ cells requires clarification. Similarly, in contrast to previous studies of cell transcriptional profiles⁶³, elevated levels of mRNA encoding GATA3 were reported in IL-4-competent CD4+ T cells that also expressed PD1 (REF. 97). These findings offer important insights into the relationship between $T_H 2$ cells and T_{FH} cells and support the notion that these cells may derive from a common precursor. However, they also emphasize the current limitations of the phenotypic characterization of $T_{\scriptscriptstyle FH}$ cells on the basis of high expression of common CD4+T cell activation markers.

By contrast, during infection of the dual IL-4 reporter mice with Leishmania major, IL-4-producing T_{ff} cells could be distinguished from IL-4-producing T_H2 cells by their high expression of CXCR5 and IL-21 (REF. 22). The isolation of T cell-B cell conjugates from the lymph node draining the site of L. major inoculation showed that IgG1-producing B cells made contact with IL-4-producing T cells, whereas IgG2a-producing B cells made contact with IFNy-producing T cells²² (FIG. 3). IL-4-producing T cells were found conjugated to germinal centre B cells that expressed high levels of activation-induced cytidine deaminase (AID) and had hallmarks of somatic hypermutation²². These findings indicate that T_{FH} cells can produce cytokines that direct the production of different antibody isotypes and the affinity maturation of antibodies in the responding B cells.

 $T_{_{FH}}$ cells and $T_{_H}1$ cells. $T_{_{\rm FH}}$ cells can be distinguished from $T_{_{\rm H}}1$ cells on the basis of their homing potential and tissue localization, which are largely due to their selective expression of CXCR5 and CXCR3, respectively. In contrast to IL-4, the typical T_H1-type cytokine, IFNγ, only weakly supports B cell survival and proliferation and was not originally detected at high levels in T_{ff} cells⁶³. Recently, however, T_{FH} cells have been shown to express levels of the T_H1 cell-associated transcription factor T-bet that were equivalent to the levels observed in both non-T_{FH} CD4⁺ T cells and effector T cells with non-lymphoid migratory capacity¹⁷. In addition, as noted above, IFNγproducing T_{ff} cells were detected in the germinal centre and found conjugated to IgG2a-producing germinal centre B cells in the draining lymph node following L. major inoculation (FIG. 3). Interestingly, B cells conjugated with IFNγ-producing T_u cells had much lower levels of AID expression than those conjugated with IL-4producing T_{FH} cells, suggesting an enhanced capacity of IL-4-producing T cells to direct antibody class switching22. However, as infection with L. major and other parasites, and also immunization with haptenated proteins in the presence of alum adjuvant, are expected to produce IL-4-dominant responses, additional studies will be required to determine the proportion of IFNγ-producing $T_{\mbox{\tiny FH}}$ cells during an IFN γ -biased humoral response.

IL-4-reporter mice

Genetically engineered knock-in mice in which the gene encoding IL-4 has been replaced by sequences that encode a reporter molecule, such as green fluorescent protein (GFP). When the IL-4 promoter region is activated, GFP is expressed and GFP+ cells can be seen by flow cytometry.

Activation-induced cytidine deaminase

An enzyme that is required for two crucial events in the germinal centre: somatic hypermutation and class switch recombination.

 $T_{\rm FH}$ cells and $T_{\rm H}17$ cells. A key early discovery in the study of the $T_{\rm H}17$ cell subset was the identification of the transcription factor RORγt, which specifies $T_{\rm H}17$ cell lineage commitment. Interestingly, $T_{\rm FH}$ cells can produce IL-17 without expressing RORγt ^{34,65}. Nevertheless, the relationship between $T_{\rm H}17$ cells and $T_{\rm FH}$ cells remains incompletely understood. For example, in autoimmune BXD2 mice, which spontaneously develop glomerulonephritis and erosive arthritis, IL-17-producing $T_{\rm H}$ cells localize in B cell follicles and promote germinal centre reactions ⁹⁸. Production of IL-17 by $T_{\rm FH}$ cells is not restricted to BXD2 mice; for example, it has been detected in ICOShiCXCR5+ $T_{\rm H}$ cells from the spleen and draining lymph nodes in mice with experimental autoimmune encephalomyelitis (EAE)⁷⁶.

 $T_{_{FH}}$ cells and FOXP3+ $T_{_{Reg}}$ cells. New evidence that $T_{_{\rm FH}}$ cells can be generated from $T_{_{\rm Reg}}$ cells challenges the view that T_{FH} and T_{Reg} cells are distinct subsets⁹⁹. Using reporter mice in which FOXP3 expression is marked by expression of enhanced green fluorescent protein (FOXP3 $^{\text{EGFP}}$ mice), preferential generation of $T_{\text{\tiny EH}}$ cells from FOXP3+ T cells rather than FOXP3- T cells was observed in the Peyer's patches when donor cells were adoptively transferred into lymphopenic mice. The resulting T_{EH} cells were efficient at promoting germinal centre reactions and IgA production99. By contrast, FOXP3+ T cells neither differentiated into T_{fH} cells nor supported germinal centre formation in the spleen or lymph nodes under the same experimental conditions, demonstrating a unique microenvironment for the generation of T_{FH} cells from FOXP3+ T_{Reg} cells in the Peyer's patches 99 . Despite the detection of a small number of $T_{\rm FH}$ cells in the germinal centre, the physiological relevance of a population of germinal centre T_{Reg} cells that can suppress B cell responses remains unknown^{100,101}.

Clinical relevance

Understanding the ways in which T_{FH} cells are generated and regulated offers a unique challenge for both the improved design of protein vaccines and the treatment of antibody-mediated autoimmune diseases. Immunological tolerance among T cells is of paramount importance for the control of autoimmune antibody specificities, therefore it is likely that T_{FH} cells provide inappropriate helper signals to self-reactive B cells in cases of antibody-mediated autoimmune diseases. CXCR5+ T cells that express increased levels of PD1 and ICOS can be found in the blood of patients with systemic lupus erythematosus (SLE) and Sjogren's syndrome^{102,103}. Their activated phenotype indicates that they are distinct from circulating CXCR5+T cells that are found in normal subjects, suggesting some 'spill over' of T_{EU} cells from extra-lymphoid tissues in these autoimmune conditions. There are numerous examples of murine models of autoimmunity in which the inhibition of the function of T_{FH} cell-associated molecules, such as CD40L, ICOS, SAP and IL-21, results in reduced autoantibody production^{104–109}. Blocking CD40–CD40L interactions similarly prevents autoantibody production and the aberrant accumulation of germinal centre-like B cells and plasmablasts in the peripheral blood of patients with SLE 110 . Mouse models of SLE are characterized by a $\rm T_{FH}$ cell-like transcriptome in their spleens 111,112 , and in sanroque mice the expansion of $\rm T_{FH}$ cell populations resulting from excessive signalling through ICOS mediates increased autoantibody production and renal pathology 112 .

A better understanding of the biology of T_{EH} cells could also aid our understanding of how to therapeutically target certain T cell lymphomas113. For example, the transcriptome of angioimmunoblastic T cell lymphoma (AITL) shares many similarities with that of $T_{_{\mathrm{EH}}}$ cells, giving some insight into the cell of origin. Malignant AITL cells are CD4+ T cells that express BCL-6 (REFS 82,114,115), CXCR5, CD40L, OX40 and PD1 (REFS 116,117) and produce CXCL13 (REF. 118) and are unique in their expression of CD10 (also known as neprilysin)119. Several studies have proposed that increased production of CXCL13 and constitutive expression of CD40L by malignant T_{EH} cells may lead to increased recruitment of B cells into follicles, their aberrant activation and subsequent hypergammaglobulinaemia116,120. T_{FH} cell markers are also observed in neoplastic cells of cutaneous CD4+ small/medium-sized pleomorphic T cell lymphoma (CSTCL), suggesting that B cell stimulation by T_{ff} cells could also take place in some cutaneous T cell lymphomas¹²¹.

Concluding remarks

Recent studies have advanced our understanding of T_{ELL} cell biology, but several questions remain unanswered. First, is the heterogeneity of cytokine production from T_{EH} cells indicative of their pluripotency or are there distinct T_{FH} cell subsets as part of a broader T_{FH} cell family? Second, with regard to T cell plasticity, it is not known whether T_{EH} cells can differentiate into other T_H cell subsets outside of the germinal centre microenvironment or whether fully differentiated T_H cell subsets can become $T_{_{\mathrm{FH}}}$ cells if given the correct signals. In this regard, it would be of interest to examine epigenetic modifications in T_{EH} cell-specific genes. Third, the ability of BCL-6 to suppress the production of IL-4, IFNy and IL-17 suggests that Bcl6 is either highly regulated and/or acts in conjunction with other, antagonistic transcription factors during T_{EH} cell differentiation, but how Bcl6 expression is coordinated in T_{FH} cells remains unknown. Finally, it will be important to determine whether the $T_{\mbox{\tiny ph}}$ cells that participate in the selection of higher-affinity B cell clones in the germinal centre are the same cells that initiate class switching.

Studies continue to emerge indicating that $CD4^{\scriptscriptstyle +}$ T cells have more functional plasticity than is generally appreciated 99,122,123 . These studies challenge our criteria for differentiated $T_{\rm H}$ cell subsets and question whether irreversible cell differentiation is achieved before cell death. Our Cartesian approach towards the classification of $T_{\rm H}$ cell subsets helps us to understand certain aspects of $T_{\rm H}$ cell differentiation but, unfortunately, this might be at the cost of understanding the remarkably flexible nature of $CD4^{\scriptscriptstyle +}$ T cells, which arises in response to their unique microenvironments.

Experimental autoimmune encephalomyelitis

An experimental model for the human disease multiple sclerosis. Autoimmune disease is induced in experimental animals by immunization with myelin or peptides derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

- MacLennan, I. C. Germinal centers. *Annu. Rev. Immunol.* 12, 117–139 (1994).
- 2. Kelsoe, G. The germinal center reaction. *Immunol. Today* **16**, 324–326 (1995).
- Liu, Y. J. et al. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. *Immunity* 4, 241–250 (1996).
- de Vinuesa, C. G. et al. Germinal centers without T cells. J. Exp. Med. 191, 485–494 (2000).
- Fuller, K. A., Kanagawa, O. & Nahm, M. H. T cells within germinal centers are specific for the immunizing antigen. *J. Immunol.* 151, 4505–4512 (1993)
- Gulbranson-Judge, A. & MacLennan, I. Sequential antigen-specific growth of T cells in the T zones and follicles in response to pigeon cytochrome c. Eur. J. Immunol. 26, 1830–1837 (1996).
- Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. *In vivo*activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. *J. Exp. Med.* 190, 1123–1134 (1999).
- Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).
 Here, evidence from intravital microscopy indicates that T cell–B cell interactions in the germinal centre are weighted towards intense B cell competition for a small number of CD4⁺ T cells.
- MacLennan, I. C., Liu, Y. J. & Johnson, G. D. Maturation and dispersal of B-cell clones during T celldependent antibody responses. *Immunol. Rev.* 126, 143–161 (1992).
- Claman, H. N., Chaperon, E. A. & Triplett, R. F. Thymus-marrow cell combinations. Synergism in antibody production. *Proc. Soc. Exp. Biol. Med.* 122, 1167–1171 (1966).
- Miller, J. F. & Mitchell, G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. *J. Exp. Med.* 128, 801–820 (1968).
- Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).
- Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000). References 12 and 13 are seminal papers
 - characterizing T_{FH} cells.

 Kim, C. H. *et al.* Subspecialization of CXCR5⁺ T cells:
- Kim, C. H. et al. Subspecialization of CXCR5+1 cells: B helper activity is focused in a germinal centerlocalized subset of CXCR5+T cells. J. Exp. Med. 193, 1373–1381 (2001).
- Ebert, L. M., Horn, M. P., Lang, A. B. & Moser, B. B cells alter the phenotype and function of follicular-homing CXCR5+ T cells. Eur. J. Immunol. 34, 3562–3571 (2004).
- Kim, C. H. et al. Unique gene expression program of human germinal center T helper cells. Blood 104, 1952–1960 (2004).
- Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. *Nature Immunol.* 10, 375–384 (2009).
 - This study used tetramer-based detection of endogenous antigen-specific T cells to show that $T_{\rm pr}$ cells have higher antigen binding affinity than other T cell populations.
- Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1 high germinal centerassociated subpopulation. J. Immunol. 179, 5099–5108 (2007).
- Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T–B cell interactions underlie germinal centre formation. *Nature* 455, 764–769 (2008).
 - This study shows that SAP is crucial for stabilizing T cell—B cell interactions but unnecessary for T cell—DC interactions. Without SAP, defective T cell—B cell conjugates resulted in insufficient help to B cells and poor generation of $\rm T_{\rm FH}$ cells.
- Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+T cells. Immunity 30, 155–167 (2009).

- Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. *Science* 315, 1687–1691 (2007).
- Reinhardt, R. L., Liang, H. E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. *Nature Immunol.* 10, 385–393 (2009).
 - This paper shows that after parasite infection both IL-4- and IFNy-expressing T_{FI}, cells are present in the germinal centre, where they drive antibody class switching. Most IL-4 in the lymph node is shown to be produced by T cells in the B cell follicle and germinal centre. Although IL-4 ⁺ T_{FI} cells comprised only 1–5% of the T cells in T cell—B cell conjugates, the interacting B cells had high expression of germinal centre B cell markers and showed evidence of affinity maturation.
- Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006)
- Fazilleau, N. *et al*. Lymphoid reservoirs of antigenspecific memory T helper cells. *Nature Immunol*. 8, 753–761 (2007).
- Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).
- Boyton, R. J. & Altmann, D. M. Is selection for TCR affinity a factor in cytokine polarization? Trends Immunol. 23, 526–529 (2002).
- Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-αβ-transgenic model. *J. Exp. Med.* 182, 1579–1584 (1995).
- Deenick, E. K., Hasbold, J. & Hodgkin, P. D. Decision criteria for resolving isotype switching conflicts by B cells. Fur. J. Immunol. 35, 2949–2955 (2005)
- B cells. Eur. J. Immunol. 35, 2949–2955 (2005).

 29. Abbas, A. K., Urioste, S., Collins, T. L. & Boom, W. H. Heterogeneity of helper/inducer T lymphocytes. IV. Stimulation of resting and activated B cells by Th1 and Th2 clones. J. Immunol. 144, 2031–2037 (1990).
- Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).
- Toeliner, K. M. et al. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J. Exp. Med. 187, 1193–1204 (1998).
- Cunningham, A. F. et al. Th2 activities induced during virgin T cell priming in the absence of IL-4, IL-13, and B cells. J. Immunol. 169, 2900–2906 (2002).
- Toellner, K. M., Gulbranson-Judge, A., Taylor, D. R., Sze, D. M. & MacLennan, I. C. Immunoglobulin switch transcript production *in vivo* related to the site and time of antigen-specific B cell activation. *J. Exp. Med.* 183, 2303–2312 (1996).
- Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. *Immunity* 29, 138–149 (2008).
 - This study shows that IL-21 is important for the differentiation of T_{FH} cells and provides evidence that T_{FU} cells are a distinct T_U cell subset.
- Eddahri, F. et al. Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities. Blood 113, 2426–2433 (2009).
- Zhou, L. et al. IL-6 programs T_H-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunol. 8, 967–974 (2007).
- Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).
- Batista, F. D. & Neuberger, M. S. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. *Immunity* 8, 751–759 (1998).
- Forster, R., Emrich, T., Kremmer, E. & Lipp, M. Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B cells and a subset of Thelper memory cells. *Blood* 84, 830–840 (1994).
- Obermeier, F. et al. OX40/OX40L interaction induces the expression of CXCR5 and contributes to chronic colitis induced by dextran sulfate sodium in mice. Eur. J. Immunol. 33, 3265–74 (2003).

- Akiba, H. et al. The role of ICOS in the CXCR5 follicular B helper T cell maintenance in vivo.
 J. Immunol. 175, 2340–2348 (2005).
- Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human T_H-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunol. 9, 641–649 (2008).
- Rivino, L. et al. Chemokine receptor expression identifies pre-T helper (Th)1, pre-Th2, and nonpolarized cells among human CD4* central memory T cells. J. Exp. Med. 200, 725–735 (2004).
- Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).
- Rasheed, A. U., Rahn, H. P., Sallusto, F., Lipp, M. & Muller, G. Follicular B helper T cell activity is confined to CXCR5^hICOS^h CD4 T cells and is independent of CD57 expression. *Eur. J. Immunol.* 36, 1892–1903 (2006)
- Bryant, V. L. et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol. 179, 8180–8190 (2007).
- Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nature Immunol. 4, 261–268 (2003).
- Aruffo, A. et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72, 291–300 (1993).
- DiSanto, J. P., Bonnefoy, J. Y., Gauchat, J. F., Fischer, A. & de Saint Basile, G. CD40 ligand mutations in X-linked immunodeficiency with hyper-lgM. *Nature* 361, 541–543 (1993).
- Korthauer, U. et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-lgM. Nature 361, 539–541 (1993).
- 51. Banchereau, J. et al. The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881–922 (1994).
- Oxenius, A. et al. CD40-CD40 ligand interactions are critical in T–B cooperation but not for other anti-viral CD4+ T cell functions. J. Exp. Med. 183, 2209–2218 (1996).
- van Kooten, C. & Banchereau, J. Functions of CD40 on B cells, dendritic cells and other cells. *Curr. Opin. Immunol.* 9, 330–337 (1997).
- Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).
- Lohning, M. et al. Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J. Exp. Med. 197, 181–193 (2003).
- Bossaller, L. et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J. Immunol. 177, 4927–4932 (2006).
- Walker, L. S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).
- Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).
- Wurster, A. L. et al. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon γ-producing Th1 cells. J. Exp. Med. 196, 969–977 (2002).
- Pesce, J. et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J. Clin. Invest. 116, 2044–2055 (2006).
- Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).
- Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory T_H17 cells. Nature 448, 484–487 (2007).
- Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).
- Suto, A., Wurster, A. L., Reiner, S. L. & Grusby, M. J. IL-21 inhibits IFN-y production in developing Th1 cells through the repression of eomesodermin expression. *J. Immunol.* 177, 3721–3727 (2006).

REVIEWS

- 65. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008). This study shows that IL-21 has an important role in T_{FI} cell differentiation that precedes the acquisition of the B cell follicle homing programme.
- Ettinger, R. et al. IL-21 induces differentiation of human naive and memory B cells into antibodysecreting plasma cells. J. Immunol. 175, 7867–7879 (2005).
- Good, K. L., Bryant, V. L. & Tangye, S. G. Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J. Immunol. 177, 5236–5247 (2006).
- Avery, D. T., Bryant, V. L., Ma, C. S., de Waal Malefyt, R. & Tangye, S. G. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J. Immunol. 181, 1767–1779 (2008)
- Linterman, M. A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).
- Schwartzberg, P. L., Mueller, K. L., Qi, H. & Cannons, J. L. SLAM receptors and SAP influence lymphocyte interactions, development and function. *Nature Rev. Immunol.* 9, 39–46 (2009).
- Zhou, L., Chong, M. M. & Littman, D. R. Plasticity of CD4⁺ T cell lineage differentiation. *Immunity* 30, 646–655 (2009).
- Kim, J. I., Ho, I. C., Grusby, M. J. & Glimcher, L. H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. *Immunitu* 10, 745–751 (1999).
- Pai, S. Y., Truitt, M. L. & Ho, I. C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. *Proc. Natl Acad. Sci. USA* 101, 1993–1998 (2004).
- Ivanov, I. I. et al. The orphan nuclear receptor RORyt directs the differentiation program of proinflammatory IL-17* T helper cells. Cell 126, 1121–1133 (2006).
- Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4*CD25* regulatory T cells. *Nature Immunol*. 4, 330–336 (2003).
- Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and T_H-17 cells. Nature Immunol. 10, 167–175 (2009).
- Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183, 797–801 (2009).
- Fukuda, T. et al. Disruption of the Bcl6 gene results in an impaired germinal center formation. J. Exp. Med. 186, 439–448 (1997).
- Yu, D. et al. The transcriptional repressor BCL-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).
 This study shows that BCL-6 repressed numerous

microRNAs, which accounted for the characteristic $T_{\rm FH}$ cell expression signature.

- 80. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009). Through studying the effects of overexpression of BCL-6 and its genetic deficiency, this transcriptional repressor is shown to be both sufficient and necessary for T_{FH} cell differentiation.
- Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).
 - This paper shows that BCL-6 is the key transcription factor that controls the expression of T_{EH} cell-associated genes and T_{EH} cell generation.
- 82. Ree, H. J. et al. Bcl-6 expression in reactive follicular hyperplasia, follicular lymphoma, and angioimmunoblastic T-cell lymphoma with hyperplastic germinal centers: heterogeneity of intrafollicular T-cells and their altered distribution in the pathogenesis of angioimmunoblastic T-cell lymphoma. Hum. Pathol. 30, 403–411 (1999).
- Kusam, S., Toney, L. M., Sato, H. & Dent, A. L. Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. *J. Immunol.* 170, 2435–2441 (2003).
- Allen, C. D., Okada, T. & Cyster, J. G. Germinal-center organization and cellular dynamics. *Immunity* 27, 190–202 (2007).

- Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).
- Marinova, E., Han, S. & Zheng, B. Human germinal center T cells are unique T_h cells with high propensity for apoptosis induction. *Int. Immunol.* 18, 1337–1345 (2006).
- Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).
- MacLennan, I. C. et al. The changing preference of T and B cells for partners as T-dependent antibody responses develop. *Immunol. Rev.* 156, 53–66 (1997).
- Zaph, C., Uzonna, J., Beverley, S. M. & Scott, P. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. *Nature Med.* 10, 1104–1110 (2004).
- King, I. L. & Mohrs, M. IL-4-producing CD4* T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206, 1001–1007 (2009)
- Vieira, P. & Rajewsky, K. Persistence of memory B cells in mice deprived of T cell help. *Int. Immunol.* 2, 487–494 (1990).
- Hebeis, B. J. et al. Activation of virus-specific memory B cells in the absence of T cell help. J. Exp. Med. 199 593–602 (2004).
- Kopf, M., Le Gros, G., Coyle, A. J., Kosco-Vilbois, M. δ. Brombacher, F. Immune responses of IL-4, IL-5, IL-6 deficient mice. *Immunol. Rev.* 148, 45–69 (1995).
- Frohlich, A. et al. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo Blood 109, 2023–2031 (2007).
- King, C., Tangye, S. G. & Mackay, C. R. T follicular helper (Γ_{FH}) cells in normal and dysregulated immune responses. *Annu. Rev. Immunol.* 26, 741–766 (2008).
- Cimmino, L. et al. Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression. J. Immunol. 181, 2338–2347 (2008)
- Zaretsky, A. G. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206, 991–999 (2009).
- Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nature Immunol. 9, 166–175 (2008).
- 99. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488–1492 (2009). Tracking of FOXP3^{EGFP} cells indicates that T_{FH} cells in the Peyer's patches are preferentially generated from T_{Reg} cell precursors, whereas those in the spleen and lymph nodes are not. T_{Reg} cells that became T_{FH} cells downregulate FOXP3 expression, suggesting a degree of T_H cell plasticity.
- 100. Lim, H. W., Hillsamer, P. & Kim, C. H. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J. Clin. Invest. 114, 1640–1649 (2004).
- 101. Lim, H. W., Hillsamer, P., Banham, A. H. & Kim, C. H. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. *J. Immunol.* 175, 4180–4183 (2005).
- 102. Hutloff, A. et al. Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum. 50, 3211–3220 (2004).
- 103. Watanabe, T. et al. Striking alteration of some populations of T/B cells in systemic lupus erythematosus: relationship to expression of CD62L or some chemokine receptors. Lupus 17, 26–33 (2008).
- 104. Luzina, I. G. et al. Spontaneous formation of germinal centers in autoimmune mice. J. Leukoc. Biol. 70, 578–584 (2001).
- 105. Herber, D. et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J. Immunol. 178, 3822–30 (2007).
- 06. Young, D. A. et al. Blockade of the interleukin-21/ interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum. 56, 1152–1163 (2007).
- 107. Iwai, H. et al. Involvement of inducible costimulator-B7 homologous protein costimulatory pathway in murine lupus nephritis. J. Immunol. 171, 2848–2854 (2003).

- Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA 106. 1518–1523 (2009).
- 109. Hu, Y. L., Metz, D. P., Chung, J., Siu, G. & Zhang, M. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. *J. Immunol.* 182, 1421–1428 (2009).
- Grammer, A. C. et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J. Clin. Invest. 112, 1506–1520 (2003).
- Subramanian, S. et al. A TIr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).
- 112. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).
 - This study shows that a single recessive mutation in roquin (also known as Rc3h1, which encodes a RING-type ubiquitin ligase) disrupts the regulation of ICOS to expand $T_{\rm FR}$ Cells and germinal centres.
- 113. Rodriguez-Justo, M. et al. Angioimmunoblastic T-cell lymphoma with hyperplastic germinal centres: a neoplasia with origin in the outer zone of the germinal centre? Clinicopathological and immunohistochemical study of 10 cases with follicular T-cell markers. Mod. Pathol. 22, 753–761 (2009).
- 114. de Leval, L., Savilo, E., Longtine, J., Ferry, J. A. & Harris, N. L. Peripheral T-cell lymphoma with follicular involvement and a CD4+/bcl-6+ phenotype. Am. J. Surg. Pathol. 25, 395–400 (2001).
- 115. de Leval, L., Bisig, B., Thielen, C., Boniver, J. & Gaulard, P. Molecular classification of T-cell lymphomas. Crit. Rev. Oncol. Hematol. 23 Feb 2009 (doi:10.1016/j.critrevonc.2009.01.002).
- Krenacs, L., Schaerli, P., Kis, G. & Bagdi, E. Phenotype of neoplastic cells in angioimmunoblastic T-cell lymphoma is consistent with activated follicular B helper T cells. *Blood* 108, 1110–1111 (2006).
- 117. Yu, H., Shahsafaei, A. & Dorfman, D. M. Germinal-center T-helper-cell markers PD-1 and CXCL13 are both expressed by neoplastic cells in angioimmunoblastic T-cell lymphoma. Am. J. Clin. Pathol. 131, 33–41 (2009).
- 118. Grogg, K. L. et al. Expression of CXCL13, a chemokine highly upregulated in germinal center Thelper cells, distinguishes angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified. Mod. Pathol. 19, 1101–1107 (2006).
- 119. Dogan, A., Attygalle, A. D. & Kyriakou, C. Angioimmunoblastic T-cell lymphoma. *Br. J. Haematol.* 121, 681–691 (2003).
- 120. Dorfman, D. M., Brown, J. A., Shahsafaei, A. & Freeman, G. J. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. *Am. J. Surg. Pathol.* 30, 802–810 (2006).
- 121. Rodriguez Pinilla, S. M. et al. Primary cutaneous CD4 * small/medium-sized pleomorphic Tcell lymphoma expresses follicular Tcell markers. Am. J. Surg. Pathol. 33, 81–90 (2009).
- 122. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3- effector T cells. Nature Immunol. 9, 1347–1355 (2008).
- 123. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunol. 9, 1341–1346 (2008).

Acknowledgements

I would like to thank H. McGuire, A. Basten and S. Tangye for their helpful comments on the manuscript.

DATABASES

UniProtKB: http://www.uniprot.org

AID | BCL-6 | CCR4 | CCR7 | CD10 | CD28 | CD40 | CD40 L CD69 | CD95 | CXCR3 | CXCR5 | CXCL13 | FOXP3 | GATA3 | ICOS | ICOSL | IFNy | IL-4 | IL-6 | IL-10 | IL-21 | MAF | OX40 | PD1 | RCRyt | S1PR1 | SAP | SLAM | STAT3 | T-bet

FURTHER INFORMATION

Cecile King's homepage: http://www.garvan.org.au/about-us/our-people/dr-cecile-king

ALL LINKS ARE ACTIVE IN THE ONLINE PDF