60080079 Introduction to Statistical Methods Semester 2 2023-2024 Handout 9

A Brief Introduction to Regression Inferences in SPSS

I. Simple Linear Regression

As before:

- 1. Set up the **hsb.sav** data (i.e., open, cut-and-paste, type).
- 2. From the menu, choose Analyze \rightarrow Regression \rightarrow Linear.
- 3. Click in the appropriate **Dependent** and **Independent** variables. In the example below, we want to investigate whether Science score can be predicted from Math score.
- 4. Click **OK** to run the regression model.

Additional Possibilities: Before Step 4 above.

- a) Confidence intervals for the regression parameter estimates and descriptive statistics for the predictor and response variables.
 - i) Click the **Statistics** button.
 - ii) Check the Confidence Interval option under Regression Coefficients.
 - iii) Check the option Descriptives.
 - iv) Click Continue

Below are some of the results of the requested analysis:

Correlations

		Science score	Math score
Pearson Correlation	Science score	1.000	<mark>.650</mark>
	Math score	<mark>.650</mark>	1.000
Sig. (1-tailed)	Science score		.000
	Math score	.000	
N	Science score	600	600
	Math score	600	600

The **Correlations** table shows that Science and Math scores have a correlation of .650 and the corresponding p-value for testing H_0 : $\rho = 0$ is close to 0 so reject the null hypothesis and conclude that the two scores are correlated.

Model Summary

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	<mark>.650</mark> a	<mark>.422</mark>	.421	7.38616

a. Predictors: (Constant), Math score

The **Model Summary** table shows same correlation, as well as the R^2 – Math score accounts for 42.2% of the variance in the Science score.

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	23807.656	1	23807.656	436.395	d <mark>000.</mark>
	Residual	32624.077	598	54.555		
	Total	56431.733	599			

a. Dependent Variable: Science score

b. Predictors: (Constant), Math score

The **ANOVA** table shows that the regression model, which predicts Science score using Math score, is significant – the computed F is 436.395 and has a p-value of close to zero.

Note: In simple linear regression, the p-values in the **Correlations** and **ANOVA** tables are identical.

Coefficients a

		Unstandardized Coefficients		Standardized Coefficients	
Model		В	Std. Error	Beta	
1	(Constant)	17.044	1.689		
	Math score	.670	.032	.650	

a. Dependent Variable: Science score

		95.0% Confidence Interval for B	
t	Sig.	Lower Bound	Upper Bound
10.090	.000	13.726	20.361
20.890	.000	.607	.733

In addition to the estimates of the regression coefficients, computed *t*-statistics, and p-values, the **Coefficients** table also gives us a 95% confidence interval for the regression coefficients.

Note: The p-value of Math score in the **Coefficients** table is the same p-value above because we are working with a simple linear regression model.

- b) Obtaining predicted values and confidence intervals for the dependent variable
 - i) Click the Save button.
 - ii) For predicted values, check **Unstandardized** and **S.E. of mean predictions** under **Predicted Values**.
 - iii) For confidence intervals of predicted scores, check the Mean and Individual option.
 - iv) Click Continue.

Using the **Save** option will create new variables. In this example, it creates the variables containing the predicted values, standard error of the mean predictions, lower and upper limits of mean predictions, and lower and upper limits of individual predictions.

Students 2 and 3 have the same Math score. Hence, all they have identical values in the new variables.