Homotopy (Wheeled) Props

Kurt Stoeckl supervised by Marcy Robertson

University of Melbourne

Homotopy Theory in Trondheim 2023

Operads Governing Operadic Structures

Let W be the set of strict isomorphism classes of $\mathcal{C}\text{-coloured}$, ordered, directed, wheeled graphs.

The Operad Governing Wheeled Props

Proposition

There exists an operad \mathbb{W} , whose algebras are wheeled props.

- W assembles into a coloured operad in Set.
- For a symmetric monoidal cat \mathcal{E} the free object functor $F: Set \to \mathcal{E}, FX = \coprod_{x \in X} I$ is symmetric monoidal.
- This functor enriches W into \mathbb{W} , a coloured operad in \mathcal{E} .
- ullet Algebras over ${\mathbb W}$ are wheeled props in ${\mathcal E}.$

Koszul Operads

A algebraic operad P is Koszul if, and only if, it has a quadratic model P_{∞} .

- model: $M \xrightarrow{\text{epimorphism}} P$, inducing iso of homology
- quadratic: M = (F(E), d) and $d(E) \rightarrow F(E)^2$
- ullet quadratic models \subseteq minimal models

The point: If algebras over \mathbb{W} are wheeled props, then algebras over \mathbb{W}_{∞} are homotopy associative wheeled props.

Koszul Operads Governing Operadic Structures

The Koszul machine has been used to produce homotopy weakened versions of most operadic structures,

- Operads: [Van der Laan, 2003]
- Modular operads: [Ward, 2019]
- Operadic structures living on connected graphs (e.g. dioperads, properads, wheeled properads,...):
 - [Kaufmann and Ward, 2021] with cubical Feynman categories
 - [Batanin and Markl, 2021] with partial operads in operadic categories

Koszul Operads Governing Operadic Structures

The Koszul machine has been used to produce homotopy weakened versions of most operadic structures,

- Operads: [Van der Laan, 2003]
- Modular operads: [Ward, 2019]
- Operadic structures living on connected graphs (e.g. dioperads, properads, wheeled properads,...):
 - [Kaufmann and Ward, 2021] with cubical Feynman categories
 - [Batanin and Markl, 2021] with partial operads in operadic categories

These techniques don't readily extend to disconnected operadic structures.

Koszul Operads Governing Operadic Structures

The Koszul machine has been used to produce homotopy weakened versions of most operadic structures,

- Operads: [Van der Laan, 2003]
- Modular operads: [Ward, 2019]
- Operadic structures living on connected graphs (e.g. dioperads, properads, wheeled properads,...):
 - [Kaufmann and Ward, 2021] with cubical Feynman categories
 - [Batanin and Markl, 2021] with partial operads in operadic categories

These techniques don't readily extend to disconnected operadic structures.

Construction

We can construct Koszul groupoid coloured operads \mathbb{W} and \mathbb{P} whose algebras govern wheeled props, and props respectively.

Today

- Present a new biased definition of a wheeled prop.
- $oldsymbol{0}$ Induce the definition of \mathbb{W} , which is groupoid coloured and quadratic.
- Outline why W is Koszul
 - Extend Groebner bases for operads to groupoid coloured operads
- Use the Koszul machine to define homotopy wheeled props
- Explore some applications

All steps outlined also work for Props (modulo suffering).

Let $\mathcal C$ be a non-empty set of colours and $\underline c,\underline d$ be sequences from this set.

Definition

Let $\mathcal{P}(\mathcal{C})$ be the category whose

- ullet objects are sequences of colours $\underline{c}=(c_1,...,c_n)$ from $\mathcal C$
- ullet and morphisms are permutations acting from left, i.e. $\sigma \in \mathit{Hom}(\underline{c}, \sigma\underline{c})$
- Then construct $\mathcal{P}(\mathcal{C})^{op} \times \mathcal{P}(\mathcal{C})$.

Definition

For a symmetric monoidal cat \mathcal{E} , a **bimodule** is $P: \mathcal{P}(\mathcal{C})^{op} \times \mathcal{P}(\mathcal{C}) \to \mathcal{E}$

- ullet for all pairs of profiles $\left(rac{d}{c}
 ight)$ have an object $P\left(rac{d}{c}
 ight)\in\mathcal{E}$.
- for all pairs of permutations $\binom{\sigma}{\tau}$ have isomorphisms $P(\frac{d}{\underline{c}}) \xrightarrow{\binom{\sigma}{\tau}} P(\frac{\sigma \underline{d}}{\underline{c}\tau})$

Example: $W = \bigcup_{\binom{d}{c}} W(\frac{d}{c})$ is a bimodule.

Definition (Yau and Johnson Def 11.33)

A C-coloured **wheeled prop** over E consists of

- **1** a bimodule $P: \mathcal{P}(\mathcal{C})^{op} \times \mathcal{P}(\mathcal{C}) \to \mathcal{E}$
- 2 a horizontal composition

$$P\left(\frac{\underline{d}}{\underline{c}}\right) \otimes P\left(\frac{\underline{b}}{\underline{a}}\right) \xrightarrow{\otimes_h} P\left(\frac{\underline{d},\underline{b}}{\underline{c},\underline{a}}\right)$$

a contraction

$$P\left(\frac{\underline{d}}{\underline{c}}\right) \xrightarrow{\varepsilon_j^i} P\left(\frac{\underline{d} \setminus d_i}{\underline{c} \setminus c_j}\right)$$

some units and axioms

Wheeled Props

Definition

An alternate C-coloured wheeled prop consists of

- the same bimodule P.
- 2 an extended horizontal composition

$$P\left(\frac{\underline{d}}{\underline{c}}\right) \otimes P\left(\frac{\underline{b}}{\underline{a}}\right) \xrightarrow{\otimes_h, \binom{\sigma}{\tau}} P\left(\frac{\sigma(\underline{d}, \underline{b})}{(\underline{c}, \underline{a})\tau}\right)$$

where
$$(\otimes_h, \binom{\sigma}{\tau})(\alpha, \beta) := \otimes_h(\alpha, \beta) \cdot \binom{\sigma}{\tau}$$

an extended contraction

$$P\left(\frac{\underline{d}}{\underline{c}}\right) \xrightarrow{(\varepsilon_j^i, \binom{\sigma}{\tau})} P\left(\frac{\sigma(\underline{d} \setminus d_i)}{(\underline{c} \setminus c_j)\tau}\right)$$

where
$$(\varepsilon_i^i, \binom{\sigma}{\tau})(\alpha) := \varepsilon_i^i(\alpha) \cdot \binom{\sigma}{\tau}$$

What does this accomplish?

Operations are right compatible

$$(\otimes_h, \begin{pmatrix} \sigma \\ \tau \end{pmatrix}) \begin{pmatrix} \sigma' \\ \tau' \end{pmatrix} = (\otimes_h, \begin{pmatrix} \sigma'\sigma \\ \tau\tau' \end{pmatrix})$$
$$(\varepsilon_j^i, \begin{pmatrix} \sigma \\ \tau \end{pmatrix}) \begin{pmatrix} \sigma' \\ \tau' \end{pmatrix} = (\varepsilon_j^i, \begin{pmatrix} \sigma'\sigma \\ \tau\tau' \end{pmatrix})$$

left compatible,

$$(\binom{\sigma_1}{\tau_1}, \binom{\sigma_2}{\tau_2})(\otimes_h, \binom{\sigma}{\tau}) = (\otimes_h, \binom{\sigma(\sigma_1 \times \sigma_2)}{(\tau_1 \times \tau_2)\tau})$$

$$\binom{\sigma'}{\tau'} (\varepsilon_{\tau'(j)}^{\sigma'-1(i)}, \binom{\sigma}{\tau}) = (\varepsilon_j^i, \binom{\sigma(\sigma'^{(i)})}{(\tau'^{(j)})\tau})$$

and \otimes_h has a well defined action of \mathbb{S}_2 on it.

Every other (non-unital) axiom is quadratic.

The Groupoid Coloured Approach

Let \mathcal{C} be a non-empty set of colours and $\underline{c},\underline{d}$ be sequences from this set. Let \mathbb{V} be a groupoid, and $\underline{c},\underline{d}$ be sequences of objects from this category.

Definition

Let $\mathcal{P}(\mathcal{C})$ $\mathcal{W}(\mathbb{V})$ be the category whose

- ullet objects are sequences of colours \underline{c} from $\mathcal C$
- ullet objects are sequences of objects \underline{c} from $\mathbb V$
- and morphisms are permutations acting from left, i.e. $\sigma \in \mathit{Hom}(\underline{c}, \sigma\underline{c})$
- \bullet and morphisms are permutations with 'extensions' by morphisms of $\mathbb V$

Formally,
$$\mathcal{W}_k(\mathbb{V}) := \mathbb{V}^k \rtimes \Sigma_k$$
, and $\mathcal{W}(\mathbb{V}) := \coprod_{k \geq 0} \mathcal{W}_k(\mathbb{V})$.

- A bimodule is $P: \mathcal{P}(\mathcal{C})^{op} \times \mathcal{P}(\mathcal{C}) \to \mathcal{E}$
- A groupoid coloured bimodule is $P: \mathcal{W}(\mathbb{V})^{op} \times \mathcal{W}(\mathbb{V}) \to \mathcal{E}$

If V is discrete, then the V-bimodule is a bimodule.

Groupoid Coloured Operads

Definition

A non-unital partial groupoid coloured operad consists of

- a groupoid coloured module P
- partial compositions

$$P\binom{d}{\underline{c}} \otimes P\binom{c_i}{\underline{b}} \xrightarrow{\circ_i} P\binom{d}{\underline{c} \circ_i \underline{b}}$$

It satisfies the standard associativity axioms, and this extended equivariance axiom

$$P\begin{pmatrix} d \\ \underline{c} \end{pmatrix} \otimes P\begin{pmatrix} c_i \\ \underline{b} \end{pmatrix} \xrightarrow{(\sigma, f, g) \otimes (\tau, f', g')} P\begin{pmatrix} d' \\ \underline{c'} \end{pmatrix} \otimes P\begin{pmatrix} c'_{\sigma(i)} \\ \underline{b'} \end{pmatrix}$$

$$\downarrow^{\circ_i} \qquad \qquad \downarrow^{\circ_{\sigma(i)}}$$

$$P\begin{pmatrix} d \\ \underline{c} \circ_i \underline{b} \end{pmatrix} \xrightarrow{(\sigma, f, g) \circ_i (\tau, f', g')} P\begin{pmatrix} d' \\ \underline{c'} \circ_{\sigma(i)} \underline{b'} \end{pmatrix}$$

Understanding Equivariance

$$P\begin{pmatrix} \frac{d}{c} \end{pmatrix} \otimes P\begin{pmatrix} c_{i} \\ \underline{b} \end{pmatrix} \xrightarrow{(id,id,(id,...,f_{i},...,id))\otimes(id,g,\overrightarrow{id})} P\begin{pmatrix} \frac{d}{c_{1},...,c'_{i},...,c_{|\underline{c}|}} \end{pmatrix} \otimes P\begin{pmatrix} c'_{i} \\ \underline{b} \end{pmatrix}$$

$$\downarrow \circ_{i} \qquad \qquad \downarrow \circ_{i}$$

$$P\begin{pmatrix} \frac{d}{c} \\ \underline{c} \circ_{i} \underline{b} \end{pmatrix} \xrightarrow{id = (id,id,\overrightarrow{id})} P\begin{pmatrix} \frac{d}{c} \\ \underline{c} \circ_{i} \underline{b} \end{pmatrix}$$

$$c_{i} \xrightarrow{g} c'_{i} \xrightarrow{f_{i}} c_{i} \in Aut(c_{i})$$

i.e. we have an action of the groupoid on the internal edges of groupoid coloured operads, via the automorphism group of the colour.

The Groupoid Coloured Operad Governing Wheeled Props

The operad governing wheeled props is $\mathbb{W} = F_{\Sigma}(E)/\langle R \rangle$ where

- the groupoid is $\mathcal{P}(\mathcal{C})^{op} \times \mathcal{P}(\mathcal{C})$
- the groupoid coloured module E is given by

$$E(\left(\frac{d}{c}\right); \left(\frac{b}{\underline{a}}\right)) := \{(\varepsilon_j^i, \left(\frac{\sigma}{\tau}\right))(-) : d_i = c_j \land \left(\frac{\sigma(\underline{d} \setminus \{d_i\})}{(\underline{c} \setminus \{c_j\})\tau}\right) = \left(\frac{\underline{b}}{\underline{a}}\right)\}$$

$$E(\left(\frac{\underline{d}}{\underline{c}}\right), \left(\frac{\underline{b}}{\underline{a}}\right); \left(\frac{\underline{f}}{\underline{e}}\right)) := \{(\otimes_h, \left(\frac{\sigma}{\tau}\right))(-, -) : \left(\frac{\sigma(\underline{d}, \underline{b})}{(\underline{c}, \underline{a})\tau}\right) = \left(\frac{\underline{f}}{\underline{e}}\right)\}$$

where the action of the groupoid on these generators is given by right and left compatibility, and the action of \mathbb{S}_2 on \otimes_h .

• the relations R are given by the remaining quadratic axioms

If we have profiles $p_1 = \binom{d_1, d_2}{c_1, c_2, c_3}, p_2 = \binom{c_3}{\emptyset}, p = \binom{d_2, d_1, c_3}{c_2, c_3, c_1}, p_{\gamma} = \binom{d_2, d_1}{c_2, c_1}$ then $(\otimes_h, \binom{213}{231}) \in E\binom{p}{p_1, p_2}$ and $(\varepsilon_2^3, \binom{id}{id}) \in E\binom{p_{\gamma}}{p}$

Where,

- The internal edge of the left tree monomial is $p = \begin{pmatrix} d_2, d_1, c_3 \\ c_2, c_3, c_1 \end{pmatrix}$.
- $id = p \xrightarrow{\binom{213}{231}^{-1}} p' \xrightarrow{\binom{213}{231}} p \in Aut(p)$ where $p' = \binom{d_1, d_2, c_3}{c_1, c_2, c_3}$

The Quadratic Relations of $\mathbb{W} = F_{\Sigma}(E)/\langle R \rangle$

Graphs	Relations
v_1 v_2 v_3	v_1 v_2 v_3 v_3
(v ₁) (v ₂)	$V_1 = V_1 $
(V ₁) (V ₂)	v_1 $v_2 = v_1$ v_2
(v ₁) , (v ₁)	$\bigvee_{1} = \bigvee_{1}$

Showing ₩ is Koszul

We can extend Groebner bases for operads to Groupoid coloured operads!

Theorem

Let $\mathcal{O}=F_{\Sigma}(\mathcal{X})/\langle\mathcal{G}\rangle$ be a \mathbb{V} -coloured operad, where Aut(v) is finite for all $v\in ob(\mathbb{V})$. If $(\mathcal{O}^f)_*$ admits a quadratic Groebner basis then \mathcal{O} is Koszul.

 $(\mathbb{W}^f)_*$ admits a quadratic Groebner basis \Longrightarrow

Theorem

The groupoid coloured operad \mathbb{W} governing wheeled props is Koszul.

What does it mean to have a quadratic Groebner basis?

- Every graph has a unique minimal tree monomial forming it.
- Every non-minimal tree monomial can be rewritten to the minimal tree via the relations of the operad.

Homotopy (Wheeled) Props

Given a groupoid coloured operad O, and cooperad C, let

- ullet O^{i} be the Koszul dual cooperad of O, and
- $\Omega(C)$ be the cobar construction applied to the cooperad C.

As \mathbb{W} and \mathbb{P} are Koszul,

- ullet $\mathbb{W}_{\infty}:=\Omega(\mathbb{W}^{\mathsf{i}})$ is a (quadratic) minimal model for $\mathbb{W}.$
- ullet $\mathbb{P}_{\infty}:=\Omega(\mathbb{P}^{\mathsf{i}})$ is a (quadratic) minimal model for $\mathbb{P}.$

As such we define

- A homotopy wheeled prop is a algebra over \mathbb{W}_{∞} .
- A homotopy prop is a algebra over \mathbb{P}_{∞} .

Homotopy Transfer Theory for Operads

A homotopy retract of chain complexes is of the form,

$$h \stackrel{\frown}{\subset} (A, d_A) \stackrel{p}{\longleftrightarrow} (B, d_B)$$
 , $id_A - ip = d_A h + h d_A$, i is quasi-iso

e.g. the homology of a chain complex is a homotopy (deformation) retract

$$h \stackrel{\frown}{\subset} (A, d_A) \stackrel{p}{\underset{i}{\longleftarrow}} (H(A), 0)$$

If A is an P-algebra, can we transfer the P-algebra structure to B?

- In general no!
- But we can transfer a P_{∞} -algebra structure to B

See for instance Loday and Vallette [2012].

HTT for Groupoid Coloured Operads

A homotopy retract of \mathbb{V} -modules is a family of homotopy retracts, indexed by $ob(\mathbb{V})$, such that h_v, i_v, p_v are Aut(v)-equivariant.

$$h_v \stackrel{\wedge}{\subset} A(v) \xrightarrow[i_v]{\rho_v} B(v)$$

Lemma (2.57 of Ward [2019])

The homology of \mathbb{V} -module, with finite Aut(v) for all $v \in Ob(\mathbb{V})$, over a field of characteristic 0, is a homotopy (deformation) retract.

If A is an P-algebra, can we transfer the P-algebra structure to B?

- In general no!
- But we can transfer a P_{∞} -algebra structure to B See Ward [2019].

Massey Products

HTT applied to homology gives what are known as Massey products.

Theorem (2.58 of Ward [2019])

Let P be a Koszul groupoid coloured operad and A a P_{∞} -algebra.

- The homology of A, H(A) has a P_{∞} -structure.
- This P_{∞} -structure extends the induced P-algebra structure.

Formality

Definition (Section 11.46 Loday and Vallette [2012])

A dg algebra A over a Koszul groupoid coloured operad P is said to be **formal** if there exists a ∞ -quasi-iso of dg P-algebras between it and its homology H(A).

Massey products obstruct formality, furthermore

Proposition

Let P be a Koszul groupoid coloured operad and A a dg P-algebra. If the Massey products on H(A) vanish, then A is formal.

A is formal if, and only if, the Massey products vanish.

(An extension of 11.4.10 Loday and Vallette, using results of Ward)

Massey Products for (Wheeled) Props

Corollary

The homology of a (wheeled) prop admits Massey products.

Corollary

A (wheeled) prop is formal if, and only if, its Massey products vanish.

An Early Instance of Homotopy Transfer Theory

Let $K(H_{fc})$ be the prop governing dg Hopf algebras with commutative products. Let $K(H_{fcc})$ be the prop governing dg Hopf algebras with commutative products and co-commutative co-products.

Theorem (25.1 of Mac Lane [1965])

If U is a $K(H_{fcc})$ algebra, then there is a PACT $P \supset K(H_{fc})$, which acts on the bar construction $B^{\cdot}(U)$ and on the reduced bar construction $\overline{B^{\cdot}}(U)$, and a map $\theta: P \to K(H_{fcc})$ of PACTs such that the induced homology map

$$\theta_*: H(P) \cong H(K(H_{fcc}))$$

is an isomorphism.

[&]quot;This is a covert statement on the existence of higher homotopies."

Summary

- New biased definitions for (wheeled) props.
- lacktriangle \mathbb{W} and \mathbb{P} are Koszul.
- Proven via extending Groebner bases to groupoid coloured operads.
- This defines infinity (wheeled) props.
- Momotopy transfer theory for (wheeled) props can be used to,
 - Obtain Massey products
 - Study formality
 - Study deformation theory

Other models?

- Many models for infinity operadic structures e.g. dendroidal, simplicial, equifibered, topological, Lurie-esque, ...
- Few for props,
 - Simplicial props (Hackney and Robertson)
 - Via symmetric monoidal infinity categories (Haugseng and Kock)
- None for wheeled props (?)

- Can we develop these other models for infinity (wheeled) props?
- Can we relate them via extensions of existing nerves?

Mentioned Sources

- M. Batanin and M. Markl. Koszul duality for operadic categories. *arXiv preprint* arXiv:2105.05198, 2021.
- P. Hackney and M. Robertson. The homotopy theory of simplicial props. *Israel Journal of Mathematics*, 219:835–902, 2017.
- R. Haugseng and J. Kock. Infinity operads as symmetric monoidal infinity-categories. *arXiv preprint arXiv:2106.12975*, 3, 2021.
- R. M. Kaufmann and B. C. Ward. Koszul feynman categories. arXiv preprint arXiv:2108.09251, 2021.
- J.-L. Loday and B. Vallette. *Algebraic operads*, volume 346. Springer Science & Business Media, 2012.
- S. Mac Lane. Categorical algebra. *Bulletin of the American Mathematical Society*, 71(1):40–106, 1965.
- P. Van der Laan. Coloured koszul duality and strongly homotopy operads. *arXiv* preprint math/0312147, 2003.
- B. C. Ward. Massey products for graph homology. *arXiv preprint* arXiv:1903.12055, 2019.
- D. Yau and M. W. Johnson. *A foundation for PROPs, algebras, and modules,* volume 203. American Mathematical Soc., 2015.