PHOTON BEAM COMMISSIONING – MEASUREMENTS

CONTENTS

- Introduction to Photon Beam Commissioning
- Measurements

INTRODUCTION TO PHOTON BEAM COMMISSIONING

BEAM COMMISSIONING

- Commissioning means that all parameters that determine the dose computations in the TPS are thoroughly reviewed and validated by measurements.
- Once the review and validation is performed the machine can be accepted for patient treatments and the final commissioning can be executed.

BEAM COMMISSIONING

- Commissioning means that all parameters that determine the dose computations in the TPS are thoroughly reviewed and validated by measurements.
- Once the review and validation is performed the machine can be accepted for patient treatments and the final commissioning can be executed.

But first....

BEAM COMMISSIONING WORKFLOW

 A similar machine, MLC, 1 Copy a machine manufacturer. Dose curves must be from Remove dose curves (if present) your machine. To LINAC specifications. 3 Change machine geometry and constraints If there are problems -Import measured data contact support. Work on beam model until computed match Manual and automodeling. Requires 5 thinking and knowledge. measured 6 Review by physicist at 6 Commission the machine clinic. 3D-validation of more Machine model available for planning and dose complicated fields computation

MACHINE TREE VIEW

4 categories:

- Commissioned
- Uncommissioned
- Template
- Deprecated
- A machine must be commissioned to be available for treatment planning in RayStation!
- Templates are only suggestions, always verify all properties
- Name maximum 16 characters (DICOM)
- Unique names, unique commissioning date
- Groups (uncommissioned only)
- Each machine must have at least 1 photon beam quality. Electron beam quality optional.

EDIT MODE AND CURVE IMPORT & EXPORT

Changes can only be made to an uncommissioned machine in Edit mode.

- Measured curves can be imported, removed and exported.
- Computed curves can be exported.

MACHINE GEOMETRY AND CONSTRAINTS

- Machine-specific tabs
- Enter values from LINACspecifications.
- Constraints can be hard physical limits, recommended limits in LINAC or R&V (Record and Verify system), or limits with a margin to be sure to have deliverability.
- Some influence dose curve computation (SAD, MLC geometry)
- Some are used to create deliverable plans (motion properties).
- Some properties are per energy level.

COORDINATE SYSTEM INTERDEPENDENCIES

- Beam model parameter coordinate system (exists only in RayPhysics) independent of coordinate system chosen for the machine (IEC-61217 or other)
- Properties in the machine constraints tabs are affected by the choice of coordinate system for the machine

MEASUREMENTS

GENERAL MEASUREMENT INSTRUCTIONS

- Measure open or wedged fields (one wedge orientation)
- With flattening filter or flattening filter free
- Use water tank
- Same SSD for all measurements!

Required data:

- Depth dose curves
- Profiles in x and y
- Absolute dose calibration
- Output factors and wedge output factors

 Details in Beam commissioning data specification and RayPhysics Manual

PROFILES

- Profiles must have corresponding PDD to allow import
- Profiles at several depths, e.g. D_{max} or d_{ref} , 5 cm, 10 cm and 20 cm.
- Cover clinically relevant fields (Reference field size must be included, 10x10 or close, if 10x10 cannot be used.)
- Field requirements for profiles:
 - Rectangular
 - Centered (by < 1 cm)
 - Crossline (x) or Inline (y) (not diagonal!)

Generally [cm]	Elekta Beam Modulator [cm]
2x2	1.6x1.6
3x3	2.4x2.4
5x5	3.2x3.2
5x20	4x4
10x10	4.8x4.8
15x15	7.2x7.2
20x5	10.4x10.4
20x20	16x16
30x30	21x16
40x40	4.8x16
	16x4.8

ABSOLUTE DOSE CALIBRATION

- Measured dose curves give relative doses
- Absolute dose calibration needed for reference field size
- Depth dose curve for reference field size normalized in absolute dose calibration point.
- Depth dose curves for other field sizes normalized using output factors and wedge output factors.
- Profiles normalized with the depth dose curve.
- Recommended to measure absolute dose for calibration below electron contamination (at 5 - 10 cm depth)

OUTPUT FACTORS AND WEDGE OUTPUT FACTORS

- *Output factors*: ratio of measured dose in reference point for reference field (typically 10 x10) and the dose in the same point for any other field sixe.
- Wedge output factors: relative to same size open field OFs
 - → all field sizes in wedge list must have an output factor also for open field even if no open field curves are included.
- Entered at import (can be changed later)
- Not part of the beam model/dose calculation, only used for normalization.
- Recommended to measure OFs and wedge OFs below electron contamination (at 5 - 10 cm depth)

MEASUREMENT CONDITIONS

- Phantom size
- Collimation settings
- Depth offset
- Detector height and width
- Only used in BC dose curve calculation, not for dose calculations in patients.
- Used to make the conditions of the calculated curves mimic the conditions of the dose curve measurements.
- Separate conditions for open and wedged fields.

MEASUREMENT CONDITIONS – PHANTOM SIZE

One value only for the *Phantom size* –
use some kind of average side length if
phantom is a non-square cuboid

MEASUREMENT CONDITIONS – ALLOWED COLLIMATION SETTINGS

MEASUREMENT CONDITIONS – ALLOWED COLLIMATION SETTINGS

MEASUREMENT CONDITIONS – ALLOWED COLLIMATION SETTINGS

MEASUREMENT CONDITIONS IN RAYPHYSICS - MLC ONLY EXTRA CONDITIONS

MEASUREMENT CONDITIONS IN RAYPHYSICS - MLC ONLY EXTRA CONDITIONS

MEASUREMENT CONDITIONS IN RAYPHYSICS - MLC ONLY EXTRA CONDITIONS

MEASUREMENT CONDITIONS – DETECTOR CHOICE

- Ionization chamber resolution effects
- Diode energy sensitive
- Recommended protocol:
 - Ionization chambers for large fields
 - Diodes or pinpoint chambers for small fields (< 4 cm)
 - Use same detector for output factor measurements as for PDDs.

MEASUREMENT CONDITIONS – DEPTH OFFSET

- The center of the detector is not necessarily the effective point of measurement.
- Detector position is thus shifted to the effective point of measurement.
- If measurements were NOT performed by positioning detector in effective point of measurement, a depth offset corresponding to the shift must be entered in RayPhysics.

Field size [cm]	Туре	Depth offset [cm]
2x2	Depth	0.10
2x2	Profile	0.10
3x3	Depth	0.10
3x3	Profile	0.10
5x5	Depth	0.10

See Figure 6 in:

Das *et al.*: TG-106: Accelerator beam data commissioning Med. Phys. 35 (9), September 2008

MEASUREMENT CONDITIONS - CONVOLUTION

- If measured curves were <u>not deconvolved</u>:
 - The *detector width* and *height* should be entered to RayPhysics during import.
 - Computed curves will then be convolved with a square well function to better match the measured curves.
 - The RayPhysics square well convolution will convolve TERMA for photons and depth dose for contamination electrons.
- If measured curves were <u>deconvolved</u> before import:
 - Set detector sizes to 0.
 - No convolution is then applied by RayPhysics.
 - To get a smoother curve in the build-up region, detector height can be set to something small like 0.1 cm.

MEASUREMENT CONDITIONS - DETECTOR HEIGHT

• **Detector height** mainly affects the buildup region of the depth dose curves.

Field size [cm]	Туре	Depth offset [cm]	Detector Height [cm]
2x2	Depth	0.10	0.026
2x2	Profile	0.10	0.026
3x3	Depth	0.10	0.026
3x3	Profile	0.10	0.026
5x5	Depth	0.10	0.026

See Figure 10 in:

Das et al.: TG-106: Accelerator beam data commissioning

Med. Phys. 35 (9), September 2008

MEASUREMENT CONDITIONS – DETECTOR WIDTH

- Detector width affects penumbra steepness.
- Detector orientation determines the effective detector width in scanning direction.
- Be careful to use the same orientation in x and y!

 Detector width also affects the measured output of small fields.

Field size [cm]	Туре	Depth offset [cm]	Detector Height [cm]	Width [cm]
2x2	Depth	0.10	0.026	0.350
2x2	Profile	0.10	0.026	0.350
3x3	Depth	0.10	0.026	0.350

Das et al.: TG-106: Accelerator beam data commissioning Med. Phys. 35 (9), September 2008

SUPPORTED CURVE FORMATS

- All supported formats are simple text files with tags and values:
 - Comma-separated values (.csv)
 - o RFA (.asc)
 - MEPHYSTO (.mcc)
 - SNC (.snctxt)
 - Brainlab MC (.xmcdat)
- For further format requirements see RayPhysics Manual Appendix B.

