Задачи по геометрия

Задача 1 По дадени неколинеарни точки A, B и C да се намери центърът S на описаната около $\triangle ABC$ окръжност.

Отговор:
$$S = \frac{1}{2}(A+B) + \frac{1}{2} \frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{\overrightarrow{CA} \times \overrightarrow{CB}} \overrightarrow{AB}^{\perp}$$
.

<u>Забележки</u>. (1) Знаменателят в горния израз е удвоеното лице на $\triangle ABC$. (2) Дробта е равна на ctg $\triangleleft C$. (3) Резултатът може да се запише и другояче – симетрично относно A, B и C, но в показания вид съдържа по-малко пресмятания.

<u>Упътване</u>. Търсената точка е пресечната на симетралите на AB и AC. Напишете параметрични уравнения на тези две прави, приравнете получените изрази и умножете резултата скаларно например с \overrightarrow{AC} .

Задача 2 По дадени неколинеарни точки A, B и C да се намери центърът I на вписаната около $\triangle ABC$ окръжност.

 $\underline{\bf 3aбележкa}$. Във втората форма резултатът е симетричен относно $A,\ B$ и C, но съдържа повече пресмятания.

<u>Решение</u>. Изразяваме \overrightarrow{AI} като линейна комбинация на \overrightarrow{AB} и \overrightarrow{AC} и в полученото заместваме $\overrightarrow{AB} \times \overrightarrow{AI}$, $\overrightarrow{AI} \times \overrightarrow{AC}$ и $\overrightarrow{AB} \times \overrightarrow{AC}$ с изрази за удвоените лица на $\triangle ABI$, $\triangle AIC$ и $\triangle ABC$, в които участват AB, AC, p и радиусът на вписаната окръжност.

[Задача 3] По дадени точка P, неколинеарни вектори ${\bf u}$ и ${\bf v}$ и r>0 да се намери центърът C на окръжност с радиус r, вписана между лъчите с общо начало P и посоки – тези на ${\bf u}$ и ${\bf v}$, а също допирните точки A и B на окръжността с лъчите.

Отговор: Ако $\mathbf{u} \times \mathbf{v} > 0$, $C = P + \frac{r}{\mathbf{u} \times \mathbf{v}} (|\mathbf{v}|\mathbf{u} + |\mathbf{u}|\mathbf{v})$, $A = C - r \frac{\mathbf{u}^{\perp}}{|\mathbf{u}|}$ и $B = C + r \frac{\mathbf{v}^{\perp}}{|\mathbf{v}|}$. Ако $\mathbf{u} \times \mathbf{v} < 0$ в посочените изрази се разменят местата на \mathbf{u} и \mathbf{v} .

<u>Решение</u>. Изразяваме \overrightarrow{PC} като линейна комбинация на \mathbf{u} и \mathbf{v} и в полученото заместваме $\mathbf{u} \times \overrightarrow{PC}$ и $\overrightarrow{PC} \times \mathbf{v}$ с изрази за удвоените лица на $\triangle PAC$ и $\triangle PCB$, в които участват $|\mathbf{u}|$, $|\mathbf{v}|$ и r. След това намираме \overrightarrow{CA} и \overrightarrow{CB} като колинеарни съответно с \mathbf{u}^{\perp} и с \mathbf{v}^{\perp} и с дължина r.

Задача 4 По дадени точка P, неколинеарни вектори ${\bf u}$ и ${\bf v}$ и точка M да се намери образът P' на P при симетрия по посока ${\bf v}$ относно права през M, успоредна на ${\bf u}$.

Отговор:
$$P' = M + \frac{1}{\mathbf{u} \times \mathbf{v}} ((\overrightarrow{MP} \times \mathbf{v})\mathbf{u} + (\overrightarrow{MP} \times \mathbf{u})\mathbf{v}).$$

<u>Решение</u>. Нека N е такава, че $\overrightarrow{MN} = \overrightarrow{MP} + \overrightarrow{MP'}$ (N е четвъртият връх в успоредника с върхове M, P и P'). Изразяваме \overrightarrow{MN} като линейна комбинация на \mathbf{u} и \mathbf{v} и използваме, че $(\overrightarrow{MP} + \overrightarrow{MP'}) \times \mathbf{u} = \overrightarrow{MN} \times \mathbf{u} = 0$ и $(\overrightarrow{MP'} - \overrightarrow{MP}) \times \mathbf{v} = \overrightarrow{PP'} \times \mathbf{v} = 0$, откъдето изразяваме $\overrightarrow{MP'} \times \mathbf{u}$ чрез $\overrightarrow{MP'} \times \mathbf{u}$ и $\overrightarrow{MP'} \times \mathbf{v}$ чрез $\overrightarrow{MP} \times \mathbf{v}$.

Обща забележка по задачи 2, 3 и 4: използва се общата формула за разлагане на вектор по два други

$$\mathbf{p} = \frac{1}{\mathbf{u} \times \mathbf{v}} ((\mathbf{p} \times \mathbf{v})\mathbf{u} + (\mathbf{u} \times \mathbf{p})\mathbf{v}),$$

изведена на занятието.