Package 'glmmTMB'

January 11, 2019

Title Generalized Linear Mixed Models using Template Model Builder **Version** 0.2.3

Description Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.

```
License AGPL-3

Depends R (>= 3.2.0)

Imports methods, TMB (>= 1.7.13), lme4 (>= 1.1-18.9000), Matrix, nlme

LinkingTo TMB, RcppEigen

Suggests knitr, rmarkdown, testthat, MASS, lattice, ggplot2 (>= 2.2.1), mlmRev, bbmle (>= 1.0.19), pscl, coda, reshape2, car, emmeans, estimability, DHARMa, multcomp, MuMIn, effects, dotwhisker, broom, plyr, png, boot
```

VignetteBuilder knitr

URL https://github.com/glmmTMB

LazyData TRUE

BugReports https://github.com/glmmTMB/glmmTMB/issues

RoxygenNote 6.1.1 **NeedsCompilation** yes

Encoding UTF-8

Author Arni Magnusson [aut] (https://orcid.org/0000-0003-2769-6741),

Hans Skaug [aut],

Anders Nielsen [aut] (https://orcid.org/0000-0001-9683-9262),

Casper Berg [aut] (https://orcid.org/0000-0002-3812-5269),

Kasper Kristensen [aut],

Martin Maechler [aut] (https://orcid.org/0000-0002-8685-9910),

Koen van Bentham [aut],

Nafis Sadat [ctb] (https://orcid.org/0000-0001-5715-616X),

Ben Bolker [aut] (https://orcid.org/0000-0002-2127-0443),
Mollie Brooks [aut, cre] (https://orcid.org/0000-0001-6963-8326)

Maintainer Mollie Brooks <mollieebrooks@gmail.com>

Repository CRAN

Index

Date/Publication 2019-01-11 16:30:03 UTC

R topics documented:

Anova.glmmTMB	3
confint.glmmTMB	4
epil2	5
findReTrmClasses	6
fixef	7
formatVC	7
formula.glmmTMB	8
č	9
getCapabilities	9
getME.glmmTMB	
getReStruc	10
getXReTrms	11
get_cor	11
glmmTMB	
glmmTMBControl	15
isLMM.glmmTMB	
nbinom2	17
numFactor	18
Owls	19
predict.glmmTMB	20
print.VarCorr.glmmTMB	22
profile.glmmTMB	22
ranef.glmmTMB	24
residuals.glmmTMB	26
Salamanders	26
sigma.glmmTMB	27
simulate.glmmTMB	28
tmbroot	29
vcov.glmmTMB	30
6	
	31

Anova.glmmTMB 3

Anova.glmmTMB

Downstream methods for glmmTMB objects

Description

Methods have been written that allow glmmTMB objects to be used with several downstream packages that enable different forms of inference. In particular,

- car::Anova constructs type-II and type-III Anova tables for the fixed effect parameters of the conditional model (this might work with the fixed effects of the zero-inflation or dispersion models, but has not been tested)
- the effects package computes graphical tabular effect displays (again, for the fixed effects of the conditional component)
- the emmeans package computes estimated marginal means (aka least-squares means) for the fixed effects of the conditional component

Usage

```
Anova.glmmTMB(mod, type = c("II", "III", 2, 3),
  test.statistic = c("Chisq", "F"), component = "cond",
  vcov. = vcov(mod)[[component]], singular.ok, ...)

Effect.glmmTMB(focal.predictors, mod, ...)

recover_data.glmmTMB(object, ...)

emm_basis.glmmTMB(object, trms, xlev, grid, component = "cond", ...)
```

Arguments

mod a glmmTMB model type of test, "II", "III", 2, or 3. Roman numerals are equivalent to the corretype sponding Arabic numerals. See Anova for details. test.statistic unused: only valid choice is "Chisq" (i.e., Wald chi-squared test) which component of the model to compute emmeans for (conditional ("cond"), component zero-inflation ("zi"), or dispersion ("disp")) vcov. variance-covariance matrix (usually extracted automatically) OK to do ANOVA with singular models (unused)? singular.ok Additional parameters that may be supported by the method. focal.predictors a character vector of one or more predictors in the model in any order. object a glmmTMB model The terms component of object (typically with the response deleted, e.g. via trms

delete.response

4 confint.glmmTMB

xlev	Named list of factor levels (<i>excluding</i> ones coerced to factors in the model formula)
grid	A data.frame (provided by ref_grid) containing the predictor settings needed in the reference grid

Examples

```
warp.lm <- glmmTMB(breaks ~ wool * tension, data = warpbreaks)
if (require(emmeans)) {
    emmeans (warp.lm, poly ~ tension | wool)
}
if (require(car)) {
    Anova(warp.lm,type="III")
}
if (require(effects)) {
    plot(allEffects(warp.lm))
}</pre>
```

confint.glmmTMB

Calculate confidence intervals

Description

Calculate confidence intervals

Usage

```
## S3 method for class 'glmmTMB'
confint(object, parm, level = 0.95,
  method = c("wald", "Wald", "profile", "uniroot"),
  component = c("all", "cond", "zi", "other"), estimate = TRUE,
  parallel = c("no", "multicore", "snow"),
  ncpus = getOption("profile.ncpus", 1L), cl = NULL, ...)
```

Arguments

object	glmmTMB fitted object.
parm	Specification of a parameter subset <i>after</i> component subset has been applied.
level	Confidence level.
method	'wald', 'profile', or 'uniroot': see Details function)
component	Which of the three components 'cond', 'zi' or 'other' to select. Default is to select 'all'.
estimate	(logical) add a third column with estimate ?
parallel	method (if any) for parallel computation
ncpus	number of CPUs/cores to use for parallel computation
cl	cluster to use for parallel computation
	arguments may be passed to profile.merMod or tmbroot

epil2 5

Details

Available methods are

wald These intervals are based on the standard errors calculated for parameters on the scale of their internal parameterization depending on the family. Derived quantities such as standard deviation parameters and dispersion parameters are backtransformed. It follows that confidence intervals for these derived quantities are asymmetric.

profile This method computes a likelihood profile for the specified parameter(s) using profile.glmmTMB; fits a spline function to each half of the profile; and inverts the function to find the specified confidence interval.

uniroot This method uses the uniroot function to find critical values of one-dimensional profile functions for each specified parameter.

Examples

epil2

Seizure Counts for Epileptics - Extended

Description

Extended version of the epil dataset of the **MASS** package. The three transformed variables Visit, Base, and Age used by Booth et al. (2003) have been added to epil.

Usage

epil2

Format

A data frame with 236 observations on the following 12 variables:

```
y an integer vector.

trt a factor with levels "placebo" and "progabide".

base an integer vector.

age an integer vector.

V4 an integer vector.

subject an integer vector.

period an integer vector.
```

6 findReTrmClasses

```
lbase a numeric vector.
lage a numeric vector.
Visit (rep(1:4,59) - 2.5) / 5.
Base log(base/4).
Age log(age).
```

References

Booth, J.G., G. Casella, H. Friedl, and J.P. Hobert. (2003) Negative binomial loglinear mixed models. *Statistical Modelling* **3**, 179–191.

Examples

findReTrmClasses

list of specials - taken from enum.R

Description

list of specials - taken from enum.R

Usage

findReTrmClasses()

fixef 7

fixef

Extract fixed-effects estimates

Description

Extract the fixed-effects estimates

Usage

```
## S3 method for class 'glmmTMB'
fixef(object, ...)
```

Arguments

object any fitted model object from which fixed effects estimates can be extracted.
... optional additional arguments. Currently none are used in any methods.

Details

Extract the estimates of the fixed-effects parameters from a fitted model.

Value

a named, numeric vector of fixed-effects estimates.

Examples

```
data(sleepstudy, package = "lme4")
fixef(glmmTMB(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy))
```

formatVC

Format the 'VarCorr' Matrix of Random Effects

Description

"format()" the 'VarCorr' matrix of the random effects – for print()ing and show()ing

Usage

```
formatVC(varcor, digits = max(3, getOption("digits") - 2),
  comp = "Std.Dev.", formatter = format, useScale = attr(varcor,
  "useSc"), ...)
```

8 formula.glmmTMB

Arguments

varcor	a VarCorr (-like) matrix with attributes.
digits	the number of significant digits.
comp	character vector of length one or two indicating which columns out of "Variance" and "Std.Dev." should be shown in the formatted output.
formatter	the function to be used for formatting the standard deviations and or variances (but <i>not</i> the correlations which (currently) are always formatted as "0.nnn"
useScale	whether to report a scale parameter (e.g. residual standard deviation)
•••	optional arguments for formatter(*) in addition to the first (numeric vector) and digits.

Value

a character matrix of formatted VarCorr entries from varc.

formula.glmmTMB Extract to	he formula of a glmmTMB object
----------------------------	--------------------------------

Description

Extract the formula of a glmmTMB object

Usage

```
## S3 method for class 'glmmTMB'
formula(x, fixed.only = FALSE, component = c("cond",
   "zi", "disp"), ...)
```

Arguments

X	a glmmTMB object
fixed.only	(logical) drop random effects, returning only the fixed-effect component of the formula?
component	formula for which component of the model to return (conditional, zero-inflation, or dispersion)
	unused, for generic consistency

getCapabilities 9

getCapa			

List model options that glmmTMB knows about

Description

List model options that glmmTMB knows about

Usage

```
getCapabilities(what = "all", check = FALSE)
```

Arguments

what (character) which type of model structure to report on ("all", "family", "link", "covstruct")

check (logical) do brute-force checking to test whether families are really implemented

(only available for what="family")

Value

if check==FALSE, returns a vector of the names (or a list of name vectors) of allowable entries; if check==TRUE, returns a logical vector of working families

Note

these are all the options that are *defined* internally; they have not necessarily all been *implemented* (FIXME!)

getME.glmmTMB

Extract or Get Generalize Components from a Fitted Mixed Effects Model

Description

Extract or Get Generalize Components from a Fitted Mixed Effects Model

Usage

Arguments

object a fitted glmmTMB object

name of the component to be retrieved ... ignored, for method compatibility

10 getReStruc

See Also

getME Get generic and re-export:

getReStruc Calculate random effect structure Calculates number of random ef-

fects, number of parameters, blocksize and number of blocks. Mostly

for internal use.

Description

Calculate random effect structure Calculates number of random effects, number of parameters, blocksize and number of blocks. Mostly for internal use.

Usage

```
getReStruc(reTrms, ss = NULL)
```

Arguments

reTrms random-effects terms list

ss a character string indicating a valid covariance structure. Must be one of names(glmmTMB:::.valid_covs

default is to use an unstructured variance-covariance matrix ("us") for all blocks).

Value

a list

blockNumTheta number of variance covariance parameters per term

blockSize size (dimension) of one block

blockReps number of times the blocks are repeated (levels)

covCode structure code

Examples

getXReTrms 11

getXReTrms	Create X and random effect terms from formula
getXReTrms	Create X and random effect terms from formula

Description

Create X and random effect terms from formula

Usage

```
getXReTrms(formula, mf, fr, ranOK = TRUE, type = "", contrasts)
```

Arguments

formula current formula, containing both fixed & random effects

mf matched call fr full model frame

ran0K random effects allowed here?

type label for model type

contrasts a list of contrasts (see ?glmmTMB)

Value

a list composed of

X design matrix for fixed effects
Z design matrix for random effects
reTrms output from mkReTrms from lme4

offset offset vector, or vector of zeros if offset not specified

get_cor translate vector of correlation parameters to correlation val-

ues, following the definition at http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html: if L is the lower-triangular matrix with I on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as $\Sigma = D^-1/2LL^\top D^-1/2$, where $D = diag(LL^\top)$. For a single correlation parameter θ 0, this works out to $\rho = \theta$ 0/ $\sqrt{1+\theta}$ 0^2.

Description

translate vector of correlation parameters to correlation values, following the definition at http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html: if L is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as $\Sigma = D^{-1/2}LL^{\top}D^{-1/2}$, where $D = \text{diag}(LL^{\top})$. For a single correlation parameter θ_0 , this works out to $\rho = \theta_0/\sqrt{1+\theta_0^2}$.

12 glmmTMB

Usage

```
get_cor(theta)
```

Arguments

theta

vector of internal correlation parameters

Value

a vector of correlation values

Examples

```
th0 <- 0.5
stopifnot(all.equal(get_cor(th0),th0/sqrt(1+th0^2)))
get_cor(c(0.5,0.2,0.5))</pre>
```

glmmTMB

Fit models with TMB

Description

Fit models with TMB

Usage

```
glmmTMB(formula, data = NULL, family = gaussian(), ziformula = ~0,
  dispformula = ~1, weights = NULL, offset = NULL,
  contrasts = NULL, na.action = na.fail, se = TRUE,
  verbose = FALSE, doFit = TRUE, control = glmmTMBControl(),
  REML = FALSE)
```

Arguments

formula combined fixed and random effects formula, following lme4 syntax

data data frame

family a family function, a character string naming a family function, or the result of a

call to a family function family (variance/link function) information; see family for generic discussion of families or family_glmmTMB for details of glmmTMB- $\frac{1}{2}$

specific families.

ziformula a *one-sided* (i.e., no response variable) formula for zero-inflation combining fixed and random effects: the default ~0 specifies no zero-inflation. Specifying

~. sets the zero-inflation formula identical to the right-hand side of formula (i.e., the conditional effects formula); terms can also be added or subtracted. When using ~. as the zero-inflation formula in models where the conditional effects formula contains an offset term, the offset term will automat-

ically be dropped. The zero-inflation model uses a logit link.

glmmTMB 13

dispformula a one-sided formula for dispersion containing only fixed effects: the default ~1 specifies the standard dispersion given any family. The argument is ignored for families that do not have a dispersion parameter. For an explanation of the dispersion parameter for each family, see (sigma). The dispersion model uses a log link. In Gaussian mixed models, dispformula=~0 fixes the parameter to be 0, forcing variance into the random effects. weights weights, as in glm. Not automatically scaled to have sum 1. offset offset for conditional model (only) contrasts an optional list, e.g. list(fac1="contr.sum"). See the contrasts.arg of model.matrix.default. how to handle missing values (see na.action and model.frame); from lm, "The na.action default is set by the na.action setting of options, and is na.fail if that is unset. The 'factory-fresh' default is na.omit." whether to return standard errors se logical indicating if some progress indication should be printed to the console. verbose doFit whether to fit the full model, or (if FALSE) return the preprocessed data and parameter objects, without fitting the model control parameters; see glmmTMBControl. control

Details

REML

• binomial models with more than one trial (i.e., not binary/Bernoulli) can either be specified in the form prob ~ ..., weights = N or in the more typical two-column matrix (cbind(successes, failures)~...) form.

Logical; Use REML estimation rather than maximum likelihood.

- Behavior of REML=TRUE for Gaussian responses matches lme4::lmer. It may also be useful in some cases with non-Gaussian responses (Millar 2011). Simulations should be done first to verify.
- Because the df.residual method for glmmTMB currently counts the dispersion parameter, one would need to multiply by sqrt(nobs(fit)/(1+df.residual(fit))) when comparing with lm ...
- by default, vector-valued random effects are fitted with unstructured (general positive definite) variance-covariance matrices. Structured variance-covariance matrices can be specified in the form struc(terms|group), where struc is one of
 - diag (diagonal, heterogeneous variance)
 - ar1 (autoregressive order-1, homogeneous variance)
 - cs (compound symmetric, heterogeneous variance)
 - ou (* Ornstein-Uhlenbeck, homogeneous variance)
 - exp (* exponential autocorrelation)
 - gau (* Gaussian autocorrelation)
 - mat (* Matérn process correlation)
 - toep (* Toeplitz)

(note structures marked with * are experimental/untested)

14 glmmTMB

• For backward compatibility, the family argument can also be specified as a list comprising the name of the distribution and the link function (e.g. 'list(family="binomial", link="logit")'). However, this alternative is now deprecated (it produces a warning and will be removed at some point in the future). Furthermore, certain capabilities such as Pearson residuals or predictions on the data scale will only be possible if components such as variance and linkfun are present (see family).

References

 Millar, Russell B. Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB. John Wiley & Sons, 2011.

Examples

```
(m1 <- glmmTMB(count~ mined + (1|site),</pre>
  zi=~mined.
  family=poisson, data=Salamanders))
summary(m1)
## Zero-inflated negative binomial model
(m2 <- glmmTMB(count~spp + mined + (1|site),</pre>
  zi=~spp + mined,
  family=nbinom2, Salamanders))
## Hurdle Poisson model
(m3 <- glmmTMB(count~spp + mined + (1|site),</pre>
  zi=~spp + mined,
  family=truncated_poisson, Salamanders))
## Binomial model
data(cbpp, package="lme4")
(tmbm1 <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1 | herd),</pre>
                data=cbpp, family=binomial))
## Dispersion model
sim1=function(nfac=40, nt=100, facsd=.1, tsd=.15, mu=0, residsd=1)
{
  dat=expand.grid(fac=factor(letters[1:nfac]), t= 1:nt)
  n=nrow(dat)
  dat$REfac=rnorm(nfac, sd= facsd)[dat$fac]
  dat$REt=rnorm(nt, sd= tsd)[dat$t]
  dat$x=rnorm(n, mean=mu, sd=residsd) + dat$REfac + dat$REt
  return(dat)
}
set.seed(101)
d1 = sim1(mu=100, residsd = 10)
d2 = sim1(mu=200, residsd = 5)
d1$sd="ten"
d2$sd="five"
dat = rbind(d1, d2)
m0 = glmmTMB(x\sim sd+(1|t), dispformula=\sim sd, dat)
fixef(m0)$disp
```

glmmTMBControl 15

```
c(\log(5^2), \log(10^2) - \log(5^2)) #expected dispersion model coefficients
```

glmmTMBControl	Control parameters for glmmTMB optimization
0	control parameters for Similar optimization

Description

Control parameters for glmmTMB optimization

Usage

```
glmmTMBControl(optCtrl = list(iter.max = 300, eval.max = 400),
    profile = FALSE, collect = FALSE)
```

Arguments

optCtrl	Passed as argument control to nlminb.
profile	Logical; Experimental option to improve speed and robustness when a model has many fixed effects
collect	Logical; Experimental option to improve speed by recognizing duplicated observations.

Details

The general non-linear optimizer nlminb is used by glmmTMB for parameter estimation. It may sometimes be necessary to tweak some tolerances in order to make a model converge. For instance, the warning 'iteration limit reached without convergence' may be fixed by increasing the number of iterations using something like

```
glmmTMBControl(optCtrl=list(iter.max=1e3,eval.max=1e3)).
```

The argument profile allows glmmTMB to use some special properties of the optimization problem in order to speed up estimation in cases with many fixed effects. Enable this option using

```
glmmTMBControl(profile=TRUE).
```

Control parameters may depend on the model specification, because each control component is evaluated inside TMBStruc, the output of mkTMBStruc. To specify that profile should be enabled for more than 5 fixed effects one can use

```
glmmTMBControl(profile=quote(length(parameters$beta)>=5)).
```

16 isLMM.glmmTMB

isLMM.glmmTMB

support methods for parametric bootstrapping

Description

```
see refit and isLMM for details
```

Usage

```
## S3 method for class 'glmmTMB'
isLMM(object)

## S3 method for class 'glmmTMB'
refit(object, newresp, ...)
```

Arguments

object a fitted glmmTMB object newresp a new response vector

... additional arguments (for generic consistency; ignored)

Details

These methods are still somewhat experimental (check your results carefully!), but they should allow parametric bootstrapping. They work by copying and replacing the original response column in the data frame passed to glmmTMB, so they will only work properly if (1) the data frame is still available in the environment and (2) the response variable is specified as a single symbol (e.g. proportion or a two-column matrix constructed on the fly with cbind(). Untested with binomial models where the response is specified as a factor.

Examples

nbinom2

nbinom2

Family functions for glmmTMB

Description

Family functions for glmmTMB

Usage

```
nbinom2(link = "log")
nbinom1(link = "log")
compois(link = "log")
truncated_compois(link = "log")
genpois(link = "log")
truncated_genpois(link = "log")
truncated_poisson(link = "log")
truncated_nbinom2(link = "log")
truncated_nbinom1(link = "log")
beta_family(link = "logit")
betabinomial(link = "logit")
tweedie(link = "log")
```

Arguments

```
link (character) link function for the conditional mean ("log", "logit", "probit", "inverse", "cloglog", or "identity")
```

Details

If specified, the dispersion model uses a log link. Denoting the dispersion parameter as phi=exp(eta) (where eta is the linear predictor from the dispersion model) and the predicted mean as mu:

```
gaussian (from base R): constant variance=phi
Gamma (from base R) phi is the shape parameter, i.e variance=mu*phi
nbinom2 variance increases quadratically with the mean (Hardin & Hilbe 2007), i.e. variance=mu*(1+mu/phi)
nbinom1 variance increases linearly with the mean (Hardin & Hilbe 2007), i.e. variance=mu*(1+phi)
```

18 numFactor

compois is the Conway-Maxwell Poisson parameterized with the exact mean which differs from the COMPoissonReg package (Sellers & Lotze 2015)

genpois is the generalized Poisson distribution

beta follows the parameterization of Ferrari and Cribari-Neto (2004) and the betareg package, i.e. variance=mu*(1-mu)

Value

returns a list with (at least) components

family length-1 character vector giving the family name
link length-1 character vector specifying the link function

variance a function of either 1 (mean) or 2 (mean and dispersion parameter) arguments

giving a value proportional to the predicted variance (scaled by sigma(.))

References

- Ferrari SLP, Cribari-Neto F (2004). "Beta Regression for Modelling Rates and Proportions."
 J. Appl. Stat. 31(7), 799-815.
- Hardin JW & Hilbe JM (2007). "Generalized linear models and extensions." Stata Press.
- Sellers K & Lotze T (2015). "COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson) Regression". R package version 0.3.5. https://CRAN.R-project.org/package=COMPoissonReg

numFactor

Factor with numeric interpretable levels.

Description

Create a factor with numeric interpretable factor levels.

Usage

```
numFactor(x, ...)
parseNumLevels(levels)
```

Arguments

x Vector, matrix or data.frame that constitute the coordinates.

... Additional vectors, matrices or data frames that constitute the coordinates.

levels Character vector to parse into numeric values.

Owls 19

Details

Some glmmTMB covariance structures require extra information, such as temporal or spatial coordinates. numFactor allows to associate such extra information as part of a factor via the factor levels. The original numeric coordinates are recoverable without loss of precision using the function parseNumLevels. Factor levels are sorted coordinate wise from left to right: first coordinate is fastest running.

Value

Factor with specialized coding of levels.

Examples

```
## 1D example
numFactor(sample(1:5,20,TRUE))
## 2D example
coords <- cbind( sample(1:5,20,TRUE), sample(1:5,20,TRUE) )
(f <- numFactor(coords))
parseNumLevels(levels(f)) ## Sorted
## Used as part of a model.matrix
model.matrix( ~f )
## parseNumLevels( colnames(model.matrix( ~f )) )
## Error: 'Failed to parse numeric levels: (Intercept)'
parseNumLevels( colnames(model.matrix( ~ f-1 )) )</pre>
```

Owls

Begging by Owl Nestlings

Description

Begging by owl nestlings

Usage

data(Owls)

Format

The Owls data set is a data frame with 599 observations on the following variables:

```
Nest a factor describing individual nest locations
FoodTreatment (factor) food treatment: Deprived or Satiated
SexParent (factor) sex of provisioning parent: Female or Male
ArrivalTime a numeric vector
SiblingNegotiation a numeric vector
BroodSize brood size
NegPerChick number of negotations per chick
```

20 predict.glmmTMB

Note

Access to data kindly provided by Alain Zuur

Source

Roulin, A. and L. Bersier (2007) Nestling barn owls beg more intensely in the presence of their mother than in the presence of their father. *Animal Behaviour* **74** 1099–1106. http://www.sciencedirect.com/science/article/B6W9W-4PK8B6H-8/2/e43cfbaad4dc0bb2207adfc54a460c89; http://www.highstat.com/Books/Book2/ZuurDataMixedModelling.zip

References

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith (2009) *Mixed Effects Models and Extensions in Ecology with R*; Springer.

Examples

predict.glmmTMB

prediction

Description

prediction

Usage

```
## S3 method for class 'glmmTMB'
predict(object, newdata = NULL, se.fit = FALSE,
  re.form, allow.new.levels = FALSE, type = c("link", "response",
  "conditional", "zprob", "zlink"), zitype = NULL, na.action = na.pass,
  debug = FALSE, ...)
```

predict.glmmTMB 21

Arguments

object	a glmmTMB object
newdata	new data for prediction
se.fit	return the standard errors of the predicted values?
re.form	(not yet implemented) specify which random effects to condition on when predicting. To compute population-level predictions for a given grouping variable (i.e., setting <i>all</i> random effects for that grouping variable to zero), set the group value to NA.
allow.new.leve	ls
	allow previously unobserved levels in random-effects variables? see details.
type	Denoting mu as the mean of the conditional distribution and p as the zero-inflation probability, the possible choices are:
	"link" conditional mean on the scale of the link function, or equivalently the linear predictor of the conditional model
	"response" expected value; this is $mu*(1-p)$ for zero-inflated models and mu otherwise
	"conditional" mean of the conditional response; mu for all models (i.e., synonymous with "response" in the absence of zero-inflation
	"zprob" the probability of a structural zero (gives an error for non-zero-inflated models)
	"zlink" predicted zero-inflation probability on the scale of the logit link function
zitype	deprecated: formerly used to specify type of zero-inflation probability. Now synonymous with type
na.action	how to handle missing values in newdata (see na.action); the default (na.pass) is to predict NA
debug	(logical) return the TMBStruc object that will be used internally for debugging?
• • •	unused - for method compatibility

Details

- Prediction of new random effect levels is possible as long as the model specification (fixed effects and parameters) is kept constant. However, to ensure intentional usage, a warning is triggered if allow.new.levels=FALSE (the default).
- Prediction using "data-dependent bases" (variables whose scaling or transformation depends
 on the original data, e.g. poly, ns, or poly) should work properly; however, users are advised
 to check results extra-carefully when using such variables. Models with different versions of
 the same data-dependent basis type in different components (e.g. formula= y ~ poly(x,3), dispformula= ~poly(x
 will probably not produce correct predictions.

Examples

```
data(sleepstudy,package="lme4")
g0 <- glmmTMB(Reaction~Days+(Days|Subject),sleepstudy)
predict(g0, sleepstudy)</pre>
```

22 profile.glmmTMB

print.VarCorr.glmmTMB Printing The Variance and Correlation Parameters of a glmmTMB

Description

Printing The Variance and Correlation Parameters of a glmmTMB

Usage

```
## S3 method for class 'VarCorr.glmmTMB'
print(x, digits = max(3, getOption("digits") -
2), comp = "Std.Dev.", formatter = format, ...)
```

Arguments

```
x a result of VarCorr(<glmmTMB>).

digits number of significant digits to use.

comp a string specifying the component to format and print.

formatter a function.

optional further arguments, passed the next print method.
```

profile.glmmTMB

Compute likelihood profiles for a fitted model

Description

Compute likelihood profiles for a fitted model

Usage

```
## S3 method for class 'glmmTMB'
profile(fitted, parm = NULL, level_max = 0.99,
    npts = 8, stepfac = 1/4, stderr = NULL, trace = FALSE,
    parallel = c("no", "multicore", "snow"),
    ncpus = getOption("profile.ncpus", 1L), cl = NULL, ...)

## S3 method for class 'profile.glmmTMB'
confint(object, parm = NULL, level = 0.95,
    ...)
```

profile.glmmTMB 23

Arguments

fitted	a fitted glmmTMB object
parm	which parameters to profile, specified
	 by index (position) by name (matching the row/column names of vcov(object, full=TRUE)) as "theta_" (random-effects variance-covariance parameters) or "beta_" (conditional and zero-inflation parameters)
level_max	maximum confidence interval target for profile
npts	target number of points in (each half of) the profile (approximate)
stepfac	initial step factor (fraction of estimated standard deviation)
stderr	standard errors to use as a scaling factor when picking step sizes to compute the profile; by default (if stderr is NULL, or NA for a particular element), uses the estimated (Wald) standard errors of the parameters
trace	print tracing information? If trace=FALSE or 0, no tracing; if trace=1, print names of parameters currently being profiled; if trace>1, turn on tracing for the underlying tmbprofile function
parallel	method (if any) for parallel computation
ncpus	number of CPUs/cores to use for parallel computation
cl	cluster to use for parallel computation
	additional arguments passed to tmbprofile
object	a fitted profile (profile.glmmTMB) object
level	confidence level

Details

Fits natural splines separately to the points from each half of the profile for each specified parameter (i.e., values above and below the MLE), then finds the inverse functions to estimate the endpoints of the confidence interval

Value

An object of class profile.glmmTMB, which is also a data frame, with columns .par (parameter being profiled), .focal (value of focal parameter), value (negative log-likelihood).

Examples

24 ranef.glmmTMB

```
## End(Not run)
salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB"))
if (require("ggplot2")) {
    ggplot(salamander_prof1,aes(.focal,sqrt(value))) +
        geom_point() + geom_line()+
        facet_wrap(~.par,scale="free_x")+
    geom_hline(yintercept=1.96,linetype=2)
}
salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB"))
confint(salamander_prof1)
confint(salamander_prof1,level=0.99)</pre>
```

ranef.glmmTMB

Extract Random Effects

Description

Generic function to extract random effects from glmmTMB models, both for the conditional model and zero inflation.

Usage

```
## S3 method for class 'glmmTMB'
ranef(object, condVar = TRUE, ...)

## S3 method for class 'ranef.glmmTMB'
as.data.frame(x, ...,
    stringsAsFactors = default.stringsAsFactors())

## S3 method for class 'glmmTMB'
coef(object, condVar = FALSE, ...)
```

Arguments

```
object a glmmTMB model.

condVar include conditional variances in result?

... some methods for this generic function require additional arguments.

x a ranef.glmmTMB object (i.e., the result of running ranef on a fitted glmmTMB model)

stringsAsFactors

see data.frame
```

ranef.glmmTMB 25

Value

• For ranef, an object of class ranef.glmmTMB with two components:

cond a list of data frames, containing random effects for the conditional model.

zi a list of data frames, containing random effects for the zero inflation.

If condVar=TRUE, the individual list elements within the cond and zi components (corresponding to individual random effects terms) will have associated condVar attributes giving the conditional variances of the random effects values. These are in the form of three-dimensional arrays: see ranef.merMod for details (the only difference between the packages is that the attributes are called '"postVar"' in **lme4**, vs. '"condVar"' in **glmmTMB**.

- For coef.glmmTMB: a similar list, but containing the overall coefficient value for each level (i.e., the sum of the fixed effect estimate and the random effect value for that level). *Conditional variances are not yet available as an option for* coef.glmmTMB.
- For as.data.frame: a data frame with components

```
component part of the model to which the random effects apply (conditional or zero-inflation)
grpvar grouping variable
term random-effects term (e.g., intercept or slope
grp group, or level of the grouping variable
condval value of the conditional mode
condsd conditional standard deviation
```

Note

When a model has no zero inflation, the the ranef and coef print methods simplify the structure shown, by default. To show the full list structure, use print(ranef(model), simplify=FALSE) (or the analogous code for coef). In all cases, the full list structure is used to access the data frames (see example).

See Also

```
fixef.glmmTMB.
```

Examples

```
if (requireNamespace("lme4")) {
   data(sleepstudy, package="lme4")
   model <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy)
   rr <- ranef(model)
   print(rr, simplify=FALSE)
   ## extract Subject conditional modes for conditional model
   rr$cond$Subject
   as.data.frame(rr)
}</pre>
```

26 Salamanders

residuals.glmmTMB

Compute residuals for a glmmTMB object

Description

Compute residuals for a glmmTMB object

Usage

```
## S3 method for class 'glmmTMB'
residuals(object, type = c("response", "pearson"), ...)
```

Arguments

object a "glmmTMB" object type (character) residual type

... ignored, for method compatibility

Salamanders

Repeated counts of salamanders in streams

Description

A data set containing counts of salamanders with site covariates and sampling covariates. Each of 23 sites was sampled 4 times. When using this data set, please cite Price et al. (2016) as well as the Dryad data package (Price et al. 2015).

Usage

```
data(Salamanders)
```

Format

A data frame with 644 observations on the following 10 variables:

site name of a location where repeated samples were taken

mined factor indicating whether the site was affected by mountain top removal coal mining

cover amount of cover objects in the stream (scaled)

sample repeated sample

DOP Days since precipitation (scaled)

Wtemp water temperature (scaled)

DOY day of year (scaled)

spp abbreviated species name, possibly also life stage

count number of salamanders observed

sigma.glmmTMB 27

References

Price SJ, Muncy BL, Bonner SJ, Drayer AN, Barton CD (2016) Effects of mountaintop removal mining and valley filling on the occupancy and abundance of stream salamanders. *Journal of Applied Ecology* **53** 459–468. http://dx.doi.org/10.1111/1365-2664.12585

Price SJ, Muncy BL, Bonner SJ, Drayer AN, Barton CD (2015) Data from: Effects of mountaintop removal mining and valley filling on the occupancy and abundance of stream salamanders. *Dryad Digital Repository*. http://dx.doi.org/10.5061/dryad.5m8f6

Examples

```
require("glmmTMB")
data(Salamanders)

zipm3 = glmmTMB(count~spp * mined + (1|site), zi=~spp * mined, Salamanders, family="poisson")
```

sigma.glmmTMB

Extract residual standard deviation or dispersion parameter

Description

For Gaussian models, sigma returns the value of the residual standard deviation; for other families, it returns the dispersion parameter, *however it is defined for that particular family*. See details for each family below.

Usage

```
## S3 method for class 'glmmTMB'
sigma(object, ...)
```

Arguments

```
object a "glmmTMB" fitted object
... (ignored; for method compatibility)
```

Details

The value returned varies by family:

gaussian returns the *maximum likelihood* estimate of the standard deviation (i.e., smaller than the results of sigma(lm(...)) by a factor of (n-1)/n)

nbinom1 returns an overdispersion parameter (usually denoted α as in Hardin and Hilbe (2007)): such that the variance equals $\mu(1+\alpha)$.

nbinom2 returns an overdispersion parameter (usually denoted θ or k); in contrast to most other families, larger θ corresponds to a *lower* variance which is $\mu(1 + \mu/\theta)$.

28 simulate.glmmTMB

Gamma Internally, glmmTMB fits Gamma responses by fitting a mean and a shape parameter; sigma is estimated as (1/sqrt(shape)), which will typically be close (but not identical to) that estimated by stats:::sigma.default, which uses sqrt(deviance/df.residual)

beta returns the value of ϕ , where the conditional variance is $\mu(1-\mu)/(1+\phi)$ (i.e., increasing ϕ decreases the variance.) This parameterization follows Ferrari and Cribari-Neto (2004) (and the betareg package):

betabinomial This family uses the same parameterization (governing the Beta distribution that underlies the binomial probabilities) as beta.

genpois returns the value of ϕ , where the variance is $\mu\phi$

compois returns the value of $1/\nu$, When $\nu=1$, compois is equivalent to the Poisson distribution. There is no closed form equation for the variance, but it is approximately undersideersed when $1/\nu<1$ and approximately oversideersed when $1/\nu>1$. In this implementation, μ is excatly the mean, which differs from the COMPoissonReg package (Sellers & Lotze 2015).

The most commonly used GLM families (binomial, poisson) have fixed dispersion parameters which are internally ignored.

References

- Ferrari SLP, Cribari-Neto F (2004). "Beta Regression for Modelling Rates and Proportions." *J. Appl. Stat.* 31(7), 799-815.
- Hardin JW & Hilbe JM (2007). "Generalized linear models and extensions." Stata press.
- Sellers K & Lotze T (2015). "COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson) Regression". R package version 0.3.5. https://CRAN.R-project.org/package=COMPoissonReg

simulate.glmmTMB

Simulate from a glmmTMB fitted model

Description

Simulate from a glmmTMB fitted model

Usage

```
## S3 method for class 'glmmTMB'
simulate(object, nsim = 1, seed = NULL, ...)
```

Arguments

```
object glmmTMB fitted model

nsim number of response lists to simulate. Defaults to 1.

seed random number seed

... extra arguments
```

tmbroot 29

Details

Random effects are also simulated from their estimated distribution. Currently, it is not possible to condition on estimated random effects.

Value

returns a list of vectors. The list has length nsim. Each simulated vector of observations is the same size as the vector of response variables in the original data set. In the binomial family case each simulation is a two-column matrix with success/failure.

tmbroot	Compute likelihood profile confidence intervals of a TMB object by root-finding (generalized from TMB::tmbprofile)
	root family (generalized from 1112moprofile)

Description

Compute likelihood profile confidence intervals of a TMB object by root-finding (generalized from TMB::tmbprofile)

Usage

```
tmbroot(obj, name, target = 0.5 * qchisq(0.95, df = 1), lincomb,
  parm.range = c(NA, NA), sd.range = 7, trace = FALSE,
  continuation = FALSE)
```

Arguments

obj	a fitted glmmTMB object
name	parameter index/name
target	desired deviation from minimum log-likelihood. Default is set to retrieve the 95 if the objective function is a negative log-likelihood function
lincomb	linear combination of parameters
parm.range	lower and upper limits; if NA, a value will be guessed based on the parameter value and sd.range
sd.range	in the absence of explicit parm.range values, the range chosen will be the parameter value plus or minus sd.range. May be specified as a two-element vector for different ranges below and above the parameter value.
trace	report information?
continuation	use continuation method, i.e. set starting parameters for non-focal parameters to solutions from previous fits?

Value

a two-element numeric vector containing the lower and upper limits (or NA if the target is not achieved in the range), with an attribute giving the total number of function iterations used

30 vcov.glmmTMB

VCOV	~1	mm-	TMD
VCOV	01	mm	I MIK

Calculate Variance-Covariance Matrix for a Fitted glmmTMB model

Description

Calculate Variance-Covariance Matrix for a Fitted glmmTMB model

Usage

```
## S3 method for class 'glmmTMB'
vcov(object, full = FALSE, ...)
```

Arguments

```
object a "glmmTMB" fit
```

full return a full variance-covariance matrix?

... ignored, for method compatibility

Value

By default (full==FALSE), a list of separate variance-covariance matrices for each model component (conditional, zero-inflation, dispersion). If full==TRUE, a single square variance-covariance matrix for *all* top-level model parameters (conditional, dispersion, and variance-covariance parameters)

Index

*Topic datasets	get_cor, 11
epil2, 5	getCapabilities, 9
Owls, 19	getME, 10
Salamanders, 26	getME (getME.glmmTMB), 9
*Topic models	getME.glmmTMB, 9
fixef, 7	getReStruc, 10
TIXET, 7	getXReTrms, 11
Anova, <i>3</i>	glmmTMB, 12, 15
Anova.glmmTMB, 3	glmmTMBControl, 13, 15
as.data.frame.ranef.glmmTMB	gimminbeomeror, 13, 13
(ranef.glmmTMB),24	isLMM, <i>16</i>
, , , , , , , , , , , , , , , , , , , ,	isLMM.glmmTMB, 16
beta_family(nbinom2), 17	1321111. g11111111111111111111111111111111
betabinomial (nbinom2), 17	lm, <i>13</i>
	III, 13
<pre>coef.glmmTMB(ranef.glmmTMB), 24</pre>	mkReTrms, 11
compois (nbinom2), 17	model.frame, 13
confint.glmmTMB,4	model.matrix.default, <i>13</i>
confint.profile.glmmTMB	
(profile.glmmTMB), 22	na.action, <i>13</i> , <i>21</i>
	na.fail, <i>13</i>
data.frame, 24	na.omit, <i>13</i>
delete.response, 3	nbinom1 (nbinom2), 17
df.residual, 13	nbinom2, 17
downstream_methods(Anova.glmmTMB), 3	ns, <i>21</i>
Effect almmIND (Angua almmIND) 2	numFactor, 18
Effect.glmmTMB (Anova.glmmTMB), 3	
emm_basis.glmmTMB(Anova.glmmTMB), 3	options, <i>13</i>
epi12, 5	OwlModel (Owls), 19
family, <i>12</i> , <i>14</i>	OwlModel_nb1_bs (Owls), 19
family_glmmTMB, 12	OwlModel_nb1_bs_mcmc (Owls), 19
family_glmmTMB (nbinom2), 17	Owls, 19
findReTrmClasses, 6	,
fixef, 7	parseNumLevels (numFactor), 18
fixef.glmmTMB, 25	poly, 21
formatVC, 7	predict.glmmTMB, 20
formula.glmmTMB, 8	print, 22
function, 8, 22	print.VarCorr.glmmTMB,22
	profile.glmmTMB, 22
genpois (nbinom2), 17	profile.merMod, 4

32 INDEX

```
ranef(ranef.glmmTMB), 24
ranef.glmmTMB, 24
ranef.merMod, 25
recover_data.glmmTMB (Anova.glmmTMB), 3
refit, 16
refit.glmmTMB(isLMM.glmmTMB), 16
residuals.glmmTMB, 26
Salamanders, 26
sigma, 13
sigma(sigma.glmmTMB), 27
sigma.glmmTMB, 27
\verb|simulate.glmmTMB|, 28|
tmbprofile, 23
tmbroot, 4, 29
truncated_compois (nbinom2), 17
truncated_genpois (nbinom2), 17
truncated_nbinom1 (nbinom2), 17
truncated_nbinom2 (nbinom2), 17
truncated_poisson(nbinom2), 17
tweedie (nbinom2), 17
uniroot, 5
VarCorr, 8, 22
vcov.glmmTMB, 30
```