PH-107: Introduction to Quantum Mechanics Tutorial Sheet 5

* marked problems will be solved in the Wednesday tutorial class

Operators and Wave function

- 1. Which of the operators A_i defined in the following are linear operators? Which of these are hermitian? All the functions $\psi(x)$ are well behaved functions vanishing at $\pm \infty$.
 - (a) $\hat{A}_1 \psi(x) = \psi(x)^2$
 - (b) $\hat{A}_2 \psi(x) = \frac{\partial \psi(x)}{\partial x}$
 - (c) $\hat{A}_3\psi(x) = \int_a^x \psi(x') dx'$
 - (d) $\hat{A}_4 \psi(x) = 1/\psi(x)$
 - (e) $\hat{A}_5\psi(x) = -\psi(x+a)$
 - (f) $\hat{A}_6\psi(x) = \sin(\psi(x))$
 - (g) $\hat{A}_7 \psi(x) = \frac{\partial^2 \psi(x)}{\partial x^2}$
- 2. (a) If \hat{A} and \hat{B} are Hermitian and $[\hat{A},\hat{B}]=\hat{A}\hat{B}-\hat{B}\hat{A}=i\hat{C},$ prove that \hat{C} is Hermitian
 - (b) An operator is said to be anti-Hermitian if $\hat{O}^{\dagger} = -\hat{O}$. Prove that $[\hat{A}, \hat{B}]$ is anti-Hermitian.
- 3. * Prove that if \hat{K} is a Hermitian operator, $\exp\left(i\hat{K}\right)$ is an unitary operator, and if \hat{U} is an Unitary operator, then there is an operator K such that $\hat{U} = \exp\left(i\,\hat{K}\right)$, and this \hat{K} is Hermitian.
- 4. If \hat{A} and \hat{B} are operators, prove
 - (a) that $(\hat{A}^{\dagger})^{\dagger} = \hat{A}$
 - (b) that $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$
 - (c) that $\hat{A} + \hat{A}^{\dagger}$, $i(\hat{A} \hat{A}^{\dagger})$, and that $\hat{A}\hat{A}^{\dagger}$ are Hermitian operators.
- 5. An operator is given by

$$\hat{G} = i\hbar \frac{\partial}{\partial x} + Bx$$

where B is a constant. Find the eigen function $\phi(x)$. If this eigen function is subjected to a boundary condition $\phi(a) = \phi(-a)$ find out the eigen values.

6. $\Psi_1(x)$ and $\Psi_2(x)$ are the normalized eigen functions of an operator \hat{P} , with eigen values P_1 and P_2 respectively. If the wave function of a particle is $0.25\Psi_1(x) + 0.75\Psi_2(x)$ at t = 0, find the probability of observing P_1 .

1

- 7. * Consider a large number (N) of identical experimental set-ups. In each of these, a single particle is described by a wave function $\Phi(x) = A \exp(-x^2/b^2)$ at t = 0, where A is the normalization constant and b is another constant with the dimension of length. If a measurement of the position of the particle is carried out at time t = 0 in all these set-ups, it is found that in 100 of these, the particle is found within an infinitesimal interval of x = 2b to 2b + dx. Find out, in how many of the measurements, the particle would have been found in the infinitesimal interval of x = b to b + dx.
- 8. * An observable A is represented by the operator \hat{A} . Two of its normalized eigen functions are given as $\Phi_1(x)$ and $\Phi_2(x)$, corresponding to distinct eigenvalues a_1 and a_2 , respectively. Another observable B is represented by an operator \hat{B} . Two normalized eigen functions of this operator are given as $u_1(x)$ and $u_2(x)$ with distinct eigenvalues b_1 and b_2 , respectively. The eigen functions $\Phi_1(x)$ and $\Phi_2(x)$ are related to $u_1(x)$ and $u_2(x)$ as, $\Phi_1 = D(3u_1 + 4u_2)$; $\Phi_2 = F(4u_1 Pu_2)$ At time t = 0, a particle is in a state given by $\frac{2}{3}\Phi_1 + \frac{1}{3}\Phi_2$.
 - (a) Find the values of D, F and P.
 - (b) If a measurement of A is carried out at t = 0, what are the possible results and what are their probabilities?
 - (c) Assume that the measurement of A mentioned above yielded a value a1. If a measurement of B is carried out immediately after this, what would be the possible outcomes and what would be their probabilities?
 - (d) If instead of following the above path, a measurement of B was carried out initially at t = 0, what would be the possible outcomes and what would be their probabilities?
 - (e) Assume that after performing the measurements described in (c), the outcome was b_2 . What would be the possible outcomes, if A were measured immediately after this and what would be the probabilities?