Information and Coding Theory

University of Chinese Academy of Sciences

Fall 2023

Kewei Lv, Liping Wang

Homework 10

Chenkai GUO

2023.12.4

1. Let $g(x) = 1 + x^4 + x^6 + x^7 + x^8 \in F_2[x]$ be the generator polynomial of a binary [15,7]-cyclic code C. Write down a generator matrix and a parity-check matrix for C. Construct a generator matrix of the form $(I_7|A)$

SOLUTION

Since
$$g(x) = 1 + x^4 + x^6 + x^7 + x^8$$
, thus $g_0 = 1, g_3 = 1, g_5 = 1, g_6 = 1, g_7 = 1$, thus:

then calculate $h(x) = (x^{15} - 1)/g(x)$:

$$x^{7} + x^{6} + x^{4} + 1$$

$$x^{8} + x^{7} + x^{6} + x^{4} + 1$$

$$x^{15} + 1$$

$$x^{15} + x^{14} + x^{13} + x^{11} + x^{7}$$

$$x^{14} + x^{13} + x^{11} + x^{7} + 1$$

$$x^{14} + x^{13} + x^{12} + x^{10} + x^{6}$$

$$x^{12} + x^{11} + x^{10} + x^{7} + x^{6} + 1$$

$$x^{12} + x^{11} + x^{10} + x^{8} + x^{4}$$

$$x^{8} + x^{7} + x^{6} + x^{4} + 1$$

$$x^{8} + x^{7} + x^{6} + x^{4} + 1$$

thus $h(x) = x^7 + x^6 + x^4 + 1$, and then the reciprocal polynomial of h(x) is $h_R(x) = x^7 + x^3 + x + 1$, thus a parity-check matrix for C is as follows:

Transform the generator matrix G above through $r_1 = r_1 + r_5 + r_7$, $r_2 = r_2 + r_6$, $r_3 = r_3 + r_7$, we got the generator matrix with standard form as follows:

2. Let α be a primitive element of F_2^m and let $g(x) \in F_2[x]$ be the minimal polynomial of α with respect to F_2 . Show that the cyclic code of length $2^m - 1$ with g(x) as the generator polynomial is in fact a binary $[2^m - 1, 2^m - 1 - m, 3]$ -Hamming code

SOLUTION

Since α be a primitive element of F_2^m , thus $deg(g(x)) = m = n - k, k = 2^m - 1 - m$ Let $\forall c \in C, c = (c_0, c_1, c_2, \dots, c_{n-1})$ and $f(x) = \pi(c)$

Thus
$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

Since
$$f(x) \in \langle g(x) \rangle, g(\alpha) = 0$$

Thus
$$f(\alpha) = 0$$
, thus $c_0 + c_1 \alpha + c_2 \alpha^2 + \dots + c_{n-1} \alpha^{n-1} = 0$

i.e.
$$\vec{c} \cdot \vec{\alpha} = 0, \vec{c} = (c_0, c_1, c_2, \dots, c_{n-1})^T, \vec{\alpha} = (1, \alpha, \alpha^2, \dots, \alpha^{n-1})^T$$

Then we could use $\vec{\alpha} = (1, \alpha, \alpha^2, \dots, \alpha^{n-1})^T$ to construct the parity-check matrix $H_{(n-k)\times n}$ of C, i.e. $H_{m\times(2^m-1)}$

Since α be a primitive element of F_2^m , thus the columns of $H_{m\times(2^m-1)}$ are exactly all the nonzero vectors of F_2^m , thus C is a $Ham[2^m-1,2]$ hamming codes, and obviously the minimal distance of a 2-ary hamming code is 3

Summarizing: C a binary $[2^m-1,2^m-1-m,3]$ -Hamming code Q.E.D