12 de setembro de 2013

F 429: Experimento II

Sumário

1	Intro	odução	2
	2.1	Instrumentos e Componentes	2 3
Li	sta	de Figuras	
	1 2	Circuito representativo para medida da resistência interna do gerador	

Lista de Tabelas

1 Introdução

Este experimento propõe-se a estudar as experimentalmente e analizar as formas de onda dos circuitos integrador e diferenciador. Neste caso, são do tipo RC e compostos por uma fonte, um resistor e um capacitor ligados em série.

Analisamos também transientes em circuito ressonante série RLC. Os transientes podem ser estudados no laboratório excitando o circuito com uma onda quadrada de período muito maior que a constante de tempo do circuito.

2 Metodologia

2.1 Instrumentos e Componentes

Os instrumentos e componentes utilizados estão listados abaixo com seus respectivos valores nominais.

- Gerador de Funções Tektronix CFG 253.
- Osciloscópio digital Tektronix TDS1000.
- Resistências nominais de 47Ω e 150Ω .
- Resistência de décadas (10Ω a $10K\Omega$).
- Capacitor de 0.22μ F.
- Indutor de 50mH.

2.1.1 Medidas

(a) **Impedância interna do gerador**: Para determinar a impedância interna do gerador de funções, começamos com a aproximação de que esta é puramente resistiva e independe da frequência, modo de onda ou corrente que fornece. Feita essa hipótese, podemos encontrar a resistência interna R_G do gerador montando o circuito como na figura abaixo. Primeiro medimos a tensão de saída do gerador de funções conectando-o di-

Figura 1: Circuito representativo para medida da resistência interna do gerador

retamente ao osciloscópio. Após medir o pico V_0 , colocamos um resistor em paralelo ao circuito, e obtemos um valor para V. Com essas medidas podemos encontrar um valor para R_G , sabendo que temos um divisor

de tensão e juntando a Lei de Ohm
1
. Logo, $R_G = R \cdot (\frac{V_0}{V} - 1)$ e $\Delta R_G = R_G \cdot \sqrt{(\frac{\Delta(\frac{V_0}{V})}{\frac{V_0}{V} - 1})^2 + (\frac{\Delta R}{R})^2}$, onde

 $V = R \cdot I$

²Escala: 5V

³Escala: 2V

⁴Dado obtido no experimento I

- (b) Indutor: No experimento I, calculamos o valor do indutor utilizado nos experimentos. O resultado foi, $L=47,0311mH\pm4,0174mH$.
- (c) Resistência em série do indutor (R_L): O cálculo de R_L foi apresentado no relatório I, resultando em $R_L = 46, 3\Omega \pm 0, 6\Omega$
- (d) Capacitor: No experimento anterior obtivemos $C = 0.2236\mu F \pm 0.0191\mu F$.
- (e) Resistor de 47 Ω : $R_{47}=47,8\Omega\pm0,6\Omega$

2.2 Circuito RC

2.2.1 Integrador

Um circuito integrador é um componente eletrônico contendo elementos, como fonte de tensão[a], resistor[e] e capacitor[d].

Figura 2: Circuito integrador ou Filtro passa-baixa

I **Lei de Kirchoff**: Aplicando a lei de Kirchoff para malhas teremos: $\boxed{arepsilon(t) = R \cdot i(t) + v_c(t)}$

II Integrador: No cálculo acima obtemos: $\boxed{v(t)\approx v_0(t)+\frac{1}{RC}\int_{t_0}^t \varepsilon(t)dt.}$ PAREI AQUIFALTA A DEDUCAO DE UM PASSA-BAIXA