

POLICE CORRUPTION

AN AGENT-BASED MODEL by Isabel, Rick, Fatima, Karolina, Noah and Kostas

Police corruption in developing countries

When cops become criminals...

Why is an ABM appropriate?

Realistic modelling of complex and hidden behaviour

Introduction

What behavior is emerging?

Spread of corruption
Behaviour of citizens and cops

What local interactions are occurring?

Bribing between cops and citizens

What heterogeneity is being presented?

Morality of agents
Likelihood to complain
Social network
Memory

Model Description

MODEL PROCESS

Stage 1

Citizens are stopped by cops

Stage 2

Cop decides whether or not to bribe citizen

Stage 3

Citizen decides to accept or reject bribe

Stage4

Citizen decides to complain or keep silent

P getting caught

p_caught = # teammates in jail / team size

P succesful bribe

memory =
$$[0, 1, 0, 1, 1]$$

$$\begin{cases} m_i = 1 \text{ if bribe was succesful} \\ m_i = 0 \text{ if bribe was unsuccesful} \end{cases}$$

 $p_accept = (\sum memory) / memory size$

Expected payoff

Expected pay off not caught

utility_bribe = (1 - p_caught) * (p_accept * bribe_amount) - prob_caught * jail_cost

Expected pay off caught

- 1. Sampled per cop
- 2. Functions as threshold utility

Decision

$$P_{ij} = rac{\exp(\lambda E U_{ij}(P_{-i}))}{\sum_k \exp(\lambda E U_{ik}(P_{-i}))}$$

ISSUES ENCOUNTERED AND PARAMETER TUNING

Agents were too homogeneous

Memory of citizen: how to model in a realistic way Which parameters are useful

What to do when all cops are in jail

What is the range of parameters we want tested

Sensitivity Analysis

LOCAL	GLOBAL	PAWN*
 OFAT method, varying one parameter at a time. We have 10 potentially interesting parameters Which parameters when nudged will change the model output the most. 	 Variance-based method for SA. Computing and interpreting the First and Total-Order Sobol Indices for 10 parameters. 	 Density-based method for SA. Computationally cheaper than variance-based alternatives. Measures the distance between the conditional and unconditional CDF of the output.

(*) Pianosi, F. and Wagener, T., 2015. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions.

Environmental Modelling & Software, 67, pp.1-11.

Key Findings

OFAT METHOD: EXAMPLE OF INTERESTING MODEL RELATIONS

CURRENT AND FUTURE WORK

Defined, reasoned and checked model

A lot of factors with many dependencies

Which parameters have the biggest effect?

Translate this into policies and advice to combat corruption

Read our report for more...