南京航空航天大学

第 1页 (共 5页)

	<u></u> O-	九~二〇)二〇学	年 第I	学期 【	理工	基础化	之学》	考试记	试题	
	考试日	期: 20	20 年1 月	月日 -	试卷类型	!: A 卷 试卷代号:					
	班号				学号			姓名		I	
题号	_	=	三	四	五	六	七	八	九	+	总分
得分											
	、填雪	空题(1-13	题每约	き1分	, 14-	18 题	每空 2	2分, 5	共 30	分)
1,	状态函	数的多	变化只	决定于	体系的	的	_和	而-	与变化	的途径	全无
j	台。										
2,	在H、	U, G,	S, Q,	w 这g	些物理	!量中7	下是状态	态函数	(的是_	o	
3,	熵减少	的反应	立在低	温下可	自动运	进行,止	北反应	釣△出_		0	
(填:>0,	=0 或《	(0)。								
4,	己知反	应 2NG) +C12	2→2NO	CI 为基	基元反	应, 其	速率方	程式为	与	,
忘	总反应为	是	级反	应应。							
5、	对下列	几种フ	K溶液	,按其	凝固。	点由低	到高的	加序	是	o	
	A:0.1	l mol•	dm-3	С6Н12	206	В	:0.1 n	101 • d	m−3 Na	aC1	
	C:0.1	l mol•	dm-3	CaC12	?	D	:0.1 n	101 • d	m−3 H <i>A</i>	Ac	
6,	稳定状	态下的	勺单质	的标准	摩尔生	生成熵	为	o			
7、	S2-的共	上 轭酸	是	; H2	S 的共	轭碱是	론	0			
8,	对相同]类型的	 的配离	子来说	1,解胃	离常数	Ki 越	小,则	稳定常	常数 Kf	越
	,配	离子起	<u>戈</u>	o							
9、阝	隔离系	统指系	统和环	不境之	间	(埠	真:有或	无)物	质交割	奂,	
(填	:有或	无)能	量交換	免的系统	统。						

10、往氨水中加入少量 NaOH 固体并使其完全溶解,则氨的解离度
(填:增加、降低或不变),溶液的 pH 值(填:增加、降
低或不变)。
11、某电池反应为 2Hg(1)+02(g)+2H2O(1)→2Hg2+(aq)+4OH-(aq),
当电池反应达到平衡时, 电池的 E 必然是(填:>0、=0或<0)
12、某温度时,反应 N ₂ (g)+3H ₂ (g)=2NH ₃ (g)的标准平衡常数为 K θ,
则反应 NH3(g)= 1/2N2(g)+3/2H2(g)的平衡常数是。
13、钢铁发生吸氧腐蚀时,阴极上发生的电极反应是。金属
防腐可采用的阴极保护法,是把被保护金属作为腐蚀电池的极。
14、已知反应
$C(石墨) + O_2(g) \rightarrow CO_2(g)$
C(金刚石) +O ₂ (g) →CO ₂ (g) △Hm θ (298.15K)= -396 kJ·mol-1
则金刚石的ΔHm θ (298.15K)=kJ/mol。
15、某一级反应,在 140℃时的反应速率常数为 5.5×10-7
s-1,185℃时的反应速率常数为9.2×10-6 s-1,则此反应的活化能为
o
16、已知 CaCO3(s) = CaO(s) + CO2(g),
△H θ 298.15K=178.3kJ/mol, △S θ 298.15K =160.4J/ (mol⋅K), 此反
应在标准态下可自发进行的转变温度 Tc 为。
17、反应 3A2+ + 2B=3A+2B3+, 在标准状态下, 电池电动势为 1.8V,
某浓度时,反应的电池电动势为 1.6V,则此时该反应的 1gK θ 值为
0

- 18、在由乙二醇水溶液、冰、水蒸汽、氮气和氧气组成的系统中含有_____相。
- 二、是非题(每题2分)
- ()1、298K 时,稳定态的单质,其标准摩尔熵 Sm θ (B, 298K)=0。
- ()2、1mol 100℃, 101325 Pa 下的水变成同温同压下的水蒸汽, 该过程的△H=0。
- ()3、组成缓冲溶液的是一对共轭酸碱,缓冲对中任一物质的浓度过小都会使溶液丧失缓冲能力。
- ()4、原电池的 E θ 越大, K θ 越大, 所以电池反应的速率越大。
- ()5、反应的级数取决于反应方程式中反应物的计量系数。
- ()6、对反应系统 C(s)+H20(g)= CO(g)+ H2(g),由于化学方程式两边物质的化学计量系数(绝对值)的总和相等,所以增加总压力对平衡无影响。
- ()7、催化剂能加快反应速率,是由于改变了反应历程,降低了活化能。但反前后,催化剂本身的化学性质和数量保持不变。
- ()8、从酸碱质子理论来看,HS-既是酸又是碱。
- ()9、同一物质的熵值与其聚集状态有关, 其规律是 $Sm \theta (g) > Sm \theta (1) > Sm \theta (s)$ 。
- ()10、相同温度下,同一种物质的溶液浓度越大,溶液的渗透压越小。

三、计算题

1、已知汽车无害化反应及其相关热力学数据如下:

R=8.314 J/ $(mo1 \cdot K)$

$$CO(g) + NO(g) \rightarrow CO_2(g) + 1/2 N_2(g)$$

 $\triangle fHm \theta (kJ/mo1)$ -110.5 90.2 -393.5 0

 $S_m \theta (J/(mo1 \cdot K))$ 197. 7 210. 8 213. 7 191. 6

计算该反应在 298K、标准状态下的 \triangle Gm θ 和 K θ , 并判断自发反应的方向。(10分)

- 2、已知 HAc 的解离常数 Ka θ =10-4.76,
- (1) 求 0.1 mol·dm-3 HAc 的 pH。
- (2) HAc 和 NaAc 的浓度均为 0.1 mol·dm-3, 求该混合液的 pH。

(14分)

3、已知某一级反应一定温度时,反应进行 10 分钟后,反应物减少了 1/3, 求反应物减少 3/4 时所需要的时间。(10 分)

- 4、已知两电极的标准电极电势 Φ θ (Cu2+/Cu) =0.342V,
 - Φ θ (Fe3+/Fe2+)=0.771V 用这两个电极组成原电池, 试回答:
- (1)判断标准状态下该电池的正负极,并据此写出电池反应
- (2)写出该电池的图式;
- (3) 计算电池反应的标准平衡常数 K θ (298.15K)和ΔrGm θ
- (298.15K);1F(法拉第)=96485 C mol-1
- (4) 求当 c (Cu2+)=0.1mol dm-3, c (Fe2+)= c (Fe 3+)=1.0mol dm-3
- 时,反应自发进行的方向。(16分)