An optimal plan for air cargo p1 is:

```
Load(C1, P1, SFO)
Load(C2, P2, JFK)
Fly(P1, SFO, JFK)
Fly(P2, JFK, SFO)
Unload(C1, P1, JFK)
Unload(C2, P2, SFO)
```

An optimal plan for air cargo p2 is:

```
Load(C1, P1, SFO)
Load(C2, P2, JFK)
Load(C3, P3, ATL)
Fly(P1, SFO, JFK)
Fly(P2, JFK, SFO)
Fly(P3, ATL, SFO)
Unload(C3, P3, SFO)
Unload(C2, P2, SFO)
Unload(C1, P1, JFK)
```

An optimal plan for air cargo p3 is:

```
Load(C1, P1, SFO)
Load(C2, P2, JFK)
Fly(P1, SFO, ATL)
Load(C3, P1, ATL)
Fly(P2, JFK, ORD)
Load(C4, P2, ORD)
Fly(P2, ORD, SFO)
Fly(P1, ATL, JFK)
Unload(C1, P1, JFK)
Unload(C2, P2, SFO)
Unload(C3, P1, JFK)
Unload(C4, P2, SFO)
```

The performance metrics for three breadth first, depth first and uniform cost search are shown in Table ?? below. Overall, depth first search performs better in terms of the time spent, number of goal tests and number of node expansions, however, since it searches by first executing actions to get to states deeper in the tree, it fails to provide an optimal solution. Uniform cost search and breadth first search both provide optimal solutions, and their performances are similar in terms of number of goal tests. Uniform cost search peforms worse than breadth first search in terms of node expansions. However, as the problems gets more challenging, uniform cost search performs better than breadth first search in terms of time spent. The non-optimality of the solution provided by depth first search and the optimality of the solution privided by breadth first and uniform cost search aligns with what we lerned in the search comparison module of the search chapter in class.

The performance metrics for A* search using the three different heuristic functions are shown

Table 1: Performance metrics of three uninformed search techniques

Problem	Technique	No of node expansions	No of goal tests	Time elapsed in seconds	Optimal Solution Obtained
air cargo p1	Breadth first search	43	56	0.0209	Yes
air cargo p1	Depth first graph search	21	22	0.0096	No
air cargo p1	Uniform cost search	55	57	0.0249	Yes
air cargo p2	Breadth first search	3346	4612	9.0769	Yes
air cargo p2	Depth first graph search	107	108	0.2132	No
air cargo p2	Uniform cost search	4853	4855	7.5028	Yes
air cargo p3	Breadth first search	14663	18098	67.5347	Yes
air cargo p3	Depth first graph search	408	409	1.1598	No
air cargo p3	Uniform cost search	17882	17884	32.0927	Yes

in Table ?? below. We focus on the heuristics h ignore preconditions and h pg level sum. Both heuristics give an optimal solution, but as the problem gets more challenging, h ignore preconditions spends less time that h pg level sum. However, h ignore preconditions performs more node expansions and more goal tests. From the search chapter in class we learned that using an admissible heuristic for A* search always lead to an optimal solution. Sections 10.2.3 and 10.3.1 of the third edition of the AIMA textbook discuss the admissibility of h ignore preconditions and h pg level sum respectively. Therefore as expected we do obtain optimal soultions using them,

Table 2: Performance metrics of the three heuristics using informed search technique A*

				U	1
Problem	Heuristic	No of node expansions	No of goal tests	Time elapsed in seconds	Optimal Solution Obtained
air cargo p1	h1	55	57	0.0251	Yes
air cargo p1	h ignore preconditions	41	43	0.0268	Yes
air cargo p1	h pg levelsum	39	41	0.9640	Yes
air cargo p2	h1	4853	4855	7.3531	Yes
air cargo p2	h ignore preconditions	1450	1452	2.7441	Yes
air cargo p2	h pg levelsum	1129	1131	301.4720	Yes
air cargo p3	h1	17882	17884	31.3946	Yes
air cargo p3	h ignore preconditions	5034	5036	10.6019	Yes
air cargo p3	h pg levelsum	2025	2027	1038.5874	Yes

To compare performance of uninformed search to heuristic search techniques, its perhaps better to focus on the more challenging air cargo p3. In this regard, depth first search is the best technique in terms of time spent, number of node expansions and number of goal tests, however it fails to provide an optimal solution. Among the techniques that give an optimal solution the h ignore precondition heuristic performed best in terms of time spent, however h pg level sum performs best in terms of number of node expansions and number of goal tests. Overall the best heuristic is h ignore preconditions.