TEAM ID	PNT2022TMID27851
STUDENT NAME	MONISHA.D
DOMAIN NAME	HEALTH CARE
PROJECT NAME	EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING
MAXIMUM MARKS	2 MARKS

• LOAD THE DATASET INTO THE DATASET

LOAD DATASET

```
' [1] import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns

' [3] df = pd.read_csv('abalone.csv')
```

PERFORM BELOW VISUALIZATIONS

UNIVARIANT

VISUALIZATIONS

UNIVARIANT ANALYSIS

[4] sns.distplot(df.Length)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated funwarnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f61214aa210>

• BIVARIANT

BIVARIANT ANALYSIS

[5] sns.lineplot(df.Diameter,df.Height)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f6120e37150>

• MULTIVARIANT

MULTIVARIANT ANALYSIS

• PERFORM DESCRIPTIVE STATISTICS ONTHE DATASET

DESCRIPTIVE STATISTICS

✓ [7] df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

[8] df.shape

(4177, 9)

(9] df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

Duca	COTAIIII (COCAT	J COTUMNIS).					
#	Column	Non-Null Count	Dtype				
0	Sex	4177 non-null	object				
1	Length	4177 non-null	float64				
2	Diameter	4177 non-null	float64				
3	Height	4177 non-null	float64				
4	Whole weight	4177 non-null	float64				
5	Shucked weight	4177 non-null	float64				
6	Viscera weight	4177 non-null	float64				
7	Shell weight	4177 non-null	float64				
8	Rings	4177 non-null	int64				
dtypes: float64(7), int64(1), object(1)							
202 0. 10							

memory usage: 293.8+ KB

✓ [11] df.corr()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

• CHECK FOR MISSING VALUES AND DEALWITH THEM

CHECK FOR MISSING VALUES AND DEAL WITH THEM

```
Sex False
Length False
Diameter False
Height False
Whole weight False
Shucked weight False
Viscera weight False
Shell weight False
Rings False
dtype: bool

/ [14] df['Length'].fillna(df['Length'].mean(),inplace=True)
```

• FIND THE OUTLIERS AND REPLACETHEM OUTLIERS

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarn """Entry point for launching an IPython kernel.

0.5450 Length Diameter 0.4250 Height 0.1400 Whole weight 0.7995 Shucked weight 0.3360 Viscera weight 0.1710 Shell weight 0.2340 Rings 9.0000

dtype: float64

4

```
[23] Q1 = df.Length.quantile(0.25)
    Q3 = df.Length.quantile(0.75)
    IQR = Q3 - Q1
    upper_limit = Q3 + 1.5 * IQR
    lower_limit = Q3 - 1.5 * IQR
    df['Length'] = np.where(df['Length'] < lower_limit, 0.5450, df['Length'])
    sns.boxplot(df.Length)</pre>
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a ke FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f6118b5d090>

CHECK FOR CATEGORICAL COLUMNAND PERFORM ENCODING

```
CHECK FOR CATEGORICAL COLUMN AND PERFORM ENCODING

√ [30] from sklearn.preprocessing import LabelEncoder
/ [32] le = LabelEncoder()
        df.Sex = le.fit_transform(df.Sex)
        df.head()
           Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
                0.455
                           0.365
                                  0.095
                                                0.5140
                                                               0.2245
                                                                               0.1010
                                                                                              0.150
                                                                                                       15
                                   0.090
                                                0.2255
                                                               0.0995
                                                                               0.0485
                                                                                              0.070
                                                                                                        7
             2
                 0.545
                           0.265
                 0.530
                           0.420
                                   0.135
                                                0.6770
                                                               0.2565
                                                                               0.1415
                                                                                              0.210
             2
                 0.545
                                                0.5160
                                                               0.2155
                                                                               0.1140
                           0.365
                                   0.125
                                                                                              0.155
                                                                                                       10
                 0.545
                           0.255
                                   0.080
                                                0.2050
                                                                0.0895
                                                                               0.0395
                                                                                              0.055
```

• SPLIT THE DATA INTO DEPENDENT ANDINDEPENDENT VARIABLES

SPLIT THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

Name: Rings, dtype: int64

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150
1	2	0.545	0.265	0.090	0.2255	0.0995	0.0485	0.070
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210
3	2	0.545	0.365	0.125	0.5160	0.2155	0.1140	0.155
4	1	0.545	0.255	0.080	0.2050	0.0895	0.0395	0.055
1.77	= df. head(100						
0 1	15 7							
2	9 10							

• SCALE THE INDEPENDENT VARIABLES

SCALE THE INDEPENDENT VARIABLES √ [38] from sklearn.preprocessing import MinMaxScaler [39] scale = MinMaxScaler() X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns) X_scaled Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight 1.0 0.036364 0.521008 0.084071 0.181335 0.150303 0.132324 0.147982 1.0 0.363636 0.352941 0.079646 0.079157 0.066241 0.063199 0.068261 0.0 0.309091 0.613445 0.119469 0.239065 0.171822 0.185648 0.207773 1.0 0.363636 0.521008 0.110619 0.182044 0.144250 0.149440 0.152965 0.5 0.363636 0.336134 0.070796 0.071897 0.059516 0.051350 0.053313 **4172** 0.0 0.436364 0.663866 0.146018 0.313441 0.248151 0.314022 0.246637 **4173** 1.0 0.527273 0.647059 0.119469 0.341420 0.294553 0.281764 0.258097 **4174** 1.0 0.563636 0.705882 0.181416 0.415796 0.352724 0.377880 0.305431 **4175** 0.0 0.654545 0.722689 0.132743 0.386931 0.356422 0.342989 0.293473 **4176** 1.0 0.963636 0.840336 0.172566 0.689393 0.635171 0.495063 0.491779

• SPLIT THE DATA INTO TRAINING ANDTESTING

4177 rows × 8 columns

BUILD THE MODEL

BUILD THE MODEL

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
```

TRAIN THE MODEL

TRAIN THE MODEL

```
[51] model.fit(X_train,y_train)

LinearRegression()
```

• TEST THE MODEL

TEST THE MODEL

	Accuar	· · carecea	0.
668	13	13.287283	
1580	8	9.927522	
3784	11	10.338571	
463	5	5.422012	
2615	12	10.627746	
1052	12	14.794857	
3439	8	8.409200	
1174	9	8.971563	
2210	18	18.703214	
2408	15	11.648978	

1254 rows × 2 columns

• MEASURE THE PERFORMANCE USINGMETRICS

MEASURE THE PERFORMANCE USING METRICS

55 metrics.r2_score(y_test,y_predict)

0.5202338594368163