DTC	B1413	EVAPORATOR TEMPERATURE SENSOR CIRCUIT	
-----	-------	---------------------------------------	--

CIRCUIT DESCRIPTION

This sensor detects the evaporator temperature and sends the appropriate signals to the A/C amplifier. It is used for frost prevention, temperature and time–lag air flow control.

DTC No.	Detection Item	Trouble Area
B1413		A/C evaporator temperature sensor Harness or connector between A/C evaporator temperature sensor and A/C amplifier A/C amplifier

WIRING DIAGRAM

INSPECTION PROCEDURE

1 | READ[VALUE[ON[INTELLIGENT[TESTER[II

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the ignition switch to the ON position and push the intelligent tester imain switch on.
- (c) Select the tembelow in the DATA LIST, and read the display on the intelligent tester.

DATA LIST AIR CONDITIONER:

Item	Measure∏tem/Display (Range)	Normal@ondition	Diagnostic[N ote
Evaporator[]emperature[sensor (Evap[Temp)	Evaporator[]emperature[§ensor[] min.: -29.7°C (-21.46°E) max.:[\$9.55°C[]139.19°E)	Actual@vaporator@emperature@s displayed	-

OK:

The display is as specified in the normal condition.

Result:

NG	A
OK[[Checking[from[the[PROBLEM[\$YMPTOM[TABLE]	В
OK[[Checking[]rom[]he[]DTC)	С

PROCEED TO NEXT CIRCUIT INSPECTION SHOWN IN PROBLEM SYMPTOMS TABLE (SEE PAGE 05-778)

C REPLACE AIR CONDITIONING AMPLIFIER (SEEPAGE 55-16)

Α

2 | INSPECT_AIR CONDITIONING AMPLIFIER (TE - SG)

- (a) Remove[the]A/C[amplifier]with[connectors[still]connected.
- (b) Turn the ignition witch to the ON position.
- (c) Measure[the[voltage[according[to[the[value(s)[ih[the[table below.

Standard:

Tester@connection	Condition	Specified@ondition
A38-20∏TE) - A38-15∏SG-7)	lgnition[s witch[DN at[0°C[(32°E)	2.0[] o[2 .4[V
A38-20[[TE] - A38-15[[SG-7]	lgnition[s witch[DN at[]5°C[[59°E)	1.4[] [o[]].8[][V

HINT:

As the temperature increases, the voltage decreases.

Result:

NG	Α
OK (Checking@rom@he@PROBLEM@\$YMPTOM@TABLE)	В
OK[[Checking[from[fihe[DTC]	С

В

PROCEED TO NEXT CIRCUIT INSPECTION SHOWN IN PROBLEM SYMPTOMS TABLE (SEE PAGE 5-778)

С

REPLACE AIR CONDITIONING AMPLIFIER (SEE PAGE 55-15)

3 INSPECT A/C EVAPORATOR TEMPERATURE SENSOR

- (a) Remove the A/C evaporator temperature sensor.
- (b) Measure the resistance according to the value(s) in table below.

Standard:

Tester connection	Condition	Specified condition
1 – 2	−10°C (14°F)	7.40 to 9.20 k Ω
1 – 2	−5°C (23°F)	5.65 to 7.00 k Ω
1 – 2	0°C (32°F)	4.35 to 5.40 k Ω
1 – 2	5°C (41°F)	3.40 to 4.20 k Ω
1 – 2	10°C (50°F)	2.68 to 3.30 k Ω
1 – 2	15°C (59°F)	2.10 to 2.60 k Ω
1 – 2	20°C (68°F)	1.66 to 2.10 kΩ
1 – 2	25°C (77°F)	1.32 to 1.66 kΩ
1 – 2	30°C (86°F)	1.05 to 1.35 kΩ

NOTICE:

- Even slightly touching the sensor may change the resistance value. Be sure to hold the connector of the sensor.
- When measuring, the sensor temperature must be the same as the ambient temperature.

HINT:

As the temperature increases, the resistance decrease (see the graph below).

$\begin{array}{l} \textbf{REPLACE} \\ \textbf{A/C} \\ \textbf{EVAPORATOR} \\ \textbf{TEMPERATURE} \\ \textbf{SENSOR} \end{array}$

HINT:

When replacing the evaporator temperature sensor, the attached harness hould per replaced along the sensor.

OK

4∏

CHECK[HARNESS[AND[CONNECTOR(AIR[CONDITIONING[AMPLIFIER -[A/C EVAPORATOR[TEMPERATURE[SENSOR)[[SEE[PAGE[01-44)]

(a) Measure the resistance according to the value (s) in the table below.

Standard:

Tester[connection	Condition	Specified[condition
A38-20[[TE] -[]	Always	Below[] [Ω
A38-15[[SG-7) -[2	Always	Below[] [Ω
A38–20[[TE] – Body[ground	Always	10[k͡᠒[ðr[ħigher
A38–15∏SG–7) – Body[ground	Always	10[k͡ᡌᢩᠪr[higher

NG REPAIR OR REPLACE HARNESS OR CONNECTOR

ОК

REPLACE [AIR [CONDITIONING [AMPLIFIER [SEE [PAGE 55-16])