UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CÂMPUS CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

Notas de aula

CCR: GEX101 - Linguagens formais e autômatos			Criado em: 09/11/20	Alterado em:10/11/20	
Turma : 27365	Turno: Vespertino	Ano/Sem: 2020/1			
Encontro síncrono: 09/11/20		Período Assíncrono : de 10/11/20 a 13/11/20			
Carga horária da semana: 5ha			Professor: Braulio Mello		
Cartaí de Bassassaña satuda (CB AE CLC) Espasaña Bassalana Etanas assa a caratraña de maliadarsa lásicas					

Conteúdo: Recuperação estudos (GR, AF, GLC). Expressões Regulares. Etapas para a construção de analisadores léxicos.

Material de apoio

Recuperação de estudos: revisão/orientação baseada em dúvidas identificadas pelos estudantes sobre a construção de GR e GLC, AF e projeto prático.

S:=tA

A::=hB B::=eC

C::=nD

D::= epsilon

if casa

 $S:=0A \mid 1A$

 $A:= 0A \mid 1A \mid epsilon$

	t	h	e	0	1	n	с	i	s	a	f	z
S	A			K	K		G	Е				
A		В										
В			С									
С						D						
*D												
Е											F	
*F												
G										Н		
Н									I			
I										J		
*J												
*K				K	K							

Conteúdo: construção de expressões regulares para linguagens regulares. Conteúdo disponível nas páginas 14 e 15 da apostila publicada no moodle.

AXIOMA	DESCRIÇÃO
r+s=s+r	+ é comutativo.
r + (s+t) = (r+s) + t	+ é associativo.
(rs)t = r(st)	a concatenação é associativa.
r(s+t) = rs + rt	a concatenação é distibutiva sobre +.
(s+t)r = sr + tr	
$\varepsilon \mathbf{r} = \mathbf{r}$	ε é o elemento neutro (identidade) da
$r\varepsilon = r$	concatenação.
$r = (r + \varepsilon)^*$	relação entre ε e *.
r = r	* é idempotente.

 $(0+1)^+$ (Equivalente à GR usada no exemplo acima do AF)

Exemplos:

- 00 é uma expressão regular que denota a linguagem $\{00\}$.
- A expressão denota todas as cadeias de 0s e 1s. $(0+1)^+$
- denota as cadeias de 0s e 1s com pelo menos dois 0s consecutivos. (0+1)*00(0+1)*
- denota as cadeias de 0s e 1s que começam com 1 e não tem 0s consecutivos. $(1+01)^*$
- denota as cadeias de 0s e 1s que terminam por 001. (0+1)*001

Exercícios:

Para o alfabeto $(0, 1)^*$, construa as seguintes expressões regulares:

- Cadeias que iniciam por 0 e terminam por 0
- Cadeias com pelo menos 2 padrões 000
- Com número par de 1s

Processo de construção de analisadores léxicos (conteúdo nas páginas 27 a 30 na apostila disponível no moodle)

