NATURAL LANGUAGE PROCESSING

LECTURE 13: Neural Machine Translation

Index

- I. Machine Translation
- 2. Supervised Neural Machine Translation
- 3. Unsupervised Neural Machine Translation
- 4. Difficulties
- 5. Multilingual Machine Translation

- Machine translation is the task of translating a sentence x from source language to a sentence y in target language
- Most biggest Research Area
 - ACL 2021 Accepted Papers
 - EMNLP 2021 Accepted Papers

Source Sentence (x) 나는 학교에 간다

Target Sentence (y)
I go to school

- Statistical Machine Translation
 - Learn a probabilistic model from data
 - If we want to find best English sentence y, given Korean sentence x $argmax_{y}P(y|x)$
 - Let's use Bayes Rule to break the expression down.

$$argmax_y P(x|y)P(y)$$

- P(x|y): Translation Model
- P(y): Language Model

- Statistical Machine Translation
 - How to learn a translation model P(x|y) from the parallel corpus?
 - Latent a variable intro the model: P(x, a|y), where a is the alignment
 - Alignment: word-level correspondence between source sentence x and target sentence y
 - But, Some words have no counterpart

- Statistical Machine Translation
 - Extremely complex
 - Systems had many subcomponents
 - Feature engineering
 - Human effort to maintain

Neural Machine Translation

Neural Machine Translation

- 2014 Neurips: Sequence-to-sequence Learning with Neural Networks
- 2015 ICLR: Neural Machine Translation by Jointly Learning to Align and Translate

- How to evaluate Machine Translation?
 - BLEU (Bilingual Evaluation Understudy)
 - Reference: Half of my heart is in Hanana ooh na na
 - Predicted: Half as my heart is in Obama ooh na

$$precision = \frac{number\ of\ correct}{length\ of\ prediction} = \frac{7}{9} = 78\%$$

$$recall = \frac{number\ of\ correct}{length\ of\ reference} = \frac{7}{10} = 70\%$$

$$F-measure = \frac{precision \times recall}{\frac{1}{2}(precision + recall)} = \frac{0.78 \times 0.7}{0.5 \times (0.78 + 0.7)} = 73.78\%$$

How to evaluate Machine Translation?

- BLEU (Bilingual Evaluation Understudy)
 - N-gram overlap between machine translation output and reference sentence
 - Compute precision for n-grams for one to four
 - Add brevity penalty for too short translations

$$BLEU = \min(1, \frac{length\ of\ prediction}{length\ of\ reference})(\prod_{i=1}^{4} precision_i)^{\frac{1}{4}}$$

Predicted (from model I): Half as my heart is in Obama ooh na

Reference: Half of my heart is in Havana ooh na na

Predicted (from model 2): Havana na in heart my is Half ooh of na

Metric	Model I	Model 2	
Precision (I-gram)	7/9	¹⁰ / ₁₀	
Precision (2-gram)	4/8	0/9	
Precision (3-gram)	$^{2}/_{7}$	$^{0}/_{8}$	
Precision (4-gram)	4/6	$^{0}/_{7}$	
Brevity penalty	9/10	¹⁰ / ₁₀	
BLEU	$0.9 \times \sqrt[4]{0.07}$	0	

- Advanced/Other Evaluation Criteria
 - <u>SacreBLEU</u>
 - YiSi
 - ESIM

Neural Machine Translation

- Neural Machine Translation
 - How to train with parallel corpus?
 - Open source parallel corpus: OPUS

- Drawback
 - There are many monoliongual corpus, but few parallel corpus

- <u>Unsupervised neural machine translation</u> with monolingual corpus
 - denoising
 - backtranslation

Denoising

 Optimizes the probability of encoding a noised version of the sentence with the shared encoder and reconstructing it with the decoder

- Backtranslation
 - Retranslating sentence from the target language back to its source language

Backtranslation

 Translate a sentence in inference mode and then optimizes the probability of encoding this translated sentence with the shared encoder and recovering the original sentence with the decoder

- Six Challenges for Neural Machine Translation
 - Domain Mismatch
 - Amount of Traning Data
 - Rare Words
 - Long Sentences
 - Word Alignment
 - Decoding(Beam Search)

Domain Mismatch

- In-domain
- Out-domain

System ↓	Law	Medical	IT	Koran	Subtitles
All Data	30.5 32.8	45.1 42.2	35.3 44.7	17.9 17.9	26.4 20.8
Law	31.1 34.4	12.1 18.2	3.5 6.9	1.3 2.2	2.8 6.0
Medical	3.9 10.2	39.4 43.5	2.0 8.5	0.6 2.0	1.4 5.8
IT	1.9 3.7	6.5 5.3	42.1 39.8	1.8 1.6	3.9 4.7
Koran	0.4 1.8	0.0 2.1	0.0 2.3	15.9 18.8	1.0 5.5
Subtitles	7.0 9.9	9.3 17.8	9.2 13.6	9.0 8.4	25.9 22.1

- Amount of Training Data
 - Outperforms SMT under high-resource conditions

BLEU Scores with Varying Amounts of Training Data

- Rare Words
 - NMT models perform poorly on rare words
 - Solution: Sub-word Embedding(?)

- Long Sentences
 - Early encoder-decoder NMT models poorly translate long sentences
 - Attention is all you need
 - Transformer-XL
 - Train short, test long

BLEU Scores with Varying Sentence Length

- Word Alignment
 - Attention scores do not correspond with out intuition
 - Attention is not Explanation
 - Attention is not not Explanation

Figure 9: Mismatch between attention states and desired word alignments (German–English).

- Beam search
 - Too slow

- Beam search
 - Increasing the beam size does not consistently improve translation quality

Non-autoregressive text generation

Multilingual Neural Machine Translation

Multilingual Denoising Pre-training for Neural Machine Translation

Multilingual Denoising Pre-Training (mBART)

Fine-tuning on Machine Translation