Row Operations & Preservation of Row Spaces

The following are geometric proofs that elementary row operations does not modify the row space of a matrix.

Consider the matrix $M = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. The span of its row space is $span(\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \})$ as shown in Figure 1.

Multiplying A Row By A Non-Zero Constant

Scaling the first row by 2, we get the matrix $M' = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. The span of its row space is $span(\{ \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \})$ as shown in Figure 2.

As can be seen, the span of $\ M$ and $\ M'$ are the same.

Interchanging 2 Rows

Interchanging the 2 rows, we get the matrix $M' = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. The span of its row space is $span(\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \})$ as shown in Figure 3.

As can be seen, the span of $\,M\,$ and $\,M\,'\,$ are the same.

Adding A Multiple Of A Row To Another Row

Adding the first row to the second, we get the matrix $M' = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. The span of its row space is $span(\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \})$ as shown in Figure 4.

Let $v = k \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Since v is a linear combination of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, any vector which can be expressed as $s \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ can also be expressed as $s \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (t \begin{pmatrix} 1 \\ 1 \end{pmatrix} - tk \begin{pmatrix} 1 \\ 0 \end{pmatrix}) = (s - tk) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Thus $span(\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}) = span(\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \})$, and the span of M and M' are the same.