Algebra liniowa 2

dr Joanna Jureczko

Zestaw zadań nr 7

Odwzorowania liniowe Reprezentacja macierzowa odwzorowań liniowych

- 7.1. Przekształcenie liniowe $\varphi\colon\mathbb{R}^n\to\mathbb{R}^m$ dane jest przez poniższe przyporządkowanie. Obliczyć $\varphi([x_1,...,x_m])$
 - a) n = m = 2, $[1, 5] \mapsto [3, 5], [3, 4] \mapsto [5, 6]$,
 - b) n = m = 3, $[3, 1, 1] \mapsto [4, 3, 3], [4, 1, 4] \mapsto [5, 9, 1], [5, 1, 3] \mapsto [6, 7, 3],$
 - c) $n = 2, m = 3, [3, 1] \mapsto [5, 7, 5], [4, 3] \mapsto [0, 1, 5],$
- 7.2. Zbadać czy istnieje przekształcenie liniowe $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ spełniające dane warunki
 - a) $n = 3, m = 2, [2, 4, 3] \mapsto [1, 3], [1, 5, 4] \mapsto [0, 3], [9, 3, 1] \mapsto [7, 6],$
 - b) $n = 3, m = 2, [4, 5, 1] \mapsto [2, 1], [5, 3, 1] \mapsto [1, 3], [1, 11, 1] \mapsto [5, -4],$
 - c) n = m = 3, $[1, 0, 3] \mapsto [4, 5, 6]$, $[4, 3, 1] \mapsto [3, 8, -7]$, $[1, 0, 0] \mapsto [0, 0, 1]$
 - d) n = m = 3, $[5, 4, 3] \mapsto [1, 0, 7], [3, 3, 3] \mapsto [2, 1, 5], [1, 2, 3] \mapsto [4, 2, 4].$
- **7.3.** Przekształcenia liniowe $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ określone są wzorem $\varphi([x_1, ..., x_n])$ Wyznaczyć macierz $M_{\mathcal{BC}}(\varphi)$, jeśli dane są bazy \mathcal{B} i \mathcal{C} .
 - a) n = m = 2, $\varphi([x_1, x_2]) = [4x_1 x_2, 7x_1 3x_2]$, $\mathcal{B} = ([1, 1], [1, 2])$, $\mathcal{C} = ([2, 1], [3, 1])$,
- b) $n = 3, m = 2, \ \varphi([x_1, x_2, x_3]) = [x_1 + x_2, x_1 + 2x_2 x_3], \mathcal{B} = ([3, 1, 1], [5, 1, 6], [4, -1, 2]), \mathcal{C} = ([-1, 1], [1, 0]).$
- 7.4. Przekształcenia liniowe $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$ dane jest przez macierz $M_{\mathcal{BC}}(\varphi)$. Obliczyć $\varphi([x_1,...,x_n])$ jesli dane są bazy \mathcal{B} i \mathcal{C}
 - a) n = m = 2, $\mathcal{B} = ([8, 2], [7, 1]), \mathcal{C} = ([6, 7], [4, 5]), M_{\mathcal{BC}}(\varphi) = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$,
- b) $n=3, m=2, \quad \mathcal{B}=([1,1,0],[1,3,1],[6,5,2]), \mathcal{C}=([1,0],[0,5]), M_{\mathcal{BC}}(\varphi)=\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$
- **7.5.** a) Dana jest baza $\mathcal{B}=([1,1],[3,4])$ przestrzeni wektorowej \mathbb{R}^2 , wzór określający endomorfizm $\varphi([x_1,x_2])=[x_1+4x_2,3x_1-x_2]$ tej przestrzeni oraz macierz $M_{\mathcal{BC}}(\varphi)=\begin{bmatrix} -4&3\\3&1 \end{bmatrix}$. Znalezć bazę \mathcal{C} .
- b) Dana jest baza $\mathcal{C} = ([-2,0],[7,1])$ przestrzeni wektorowej \mathbb{R}^2 , wzór określający endomorfizm $\varphi([x_1,x_2]) = [x_1,3x_1-2x_2]$ tej przestrzeni oraz macierz $M_{\mathcal{BC}}(\varphi) = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$. Znalezć bazę \mathcal{B} .
- **7.6.** a) Przekształcenia liniowe $\varphi \colon M(2,\mathbb{R}) \to \mathbb{R}^3, \psi \colon \mathbb{R}^3 \to \mathbb{R}^2$ określone sa wzorami $\varphi([x_1,x_2]) = [2x_1+x_2,-5x_1-4x_2,4x_1+3x_2], \psi([x_1,x_2,x_3]) = [x_1+x_2+x_3,4x_1+4x_2+5x_3].$ Obliczyć $(\psi \circ \varphi)(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}).$

b) Przekształcenia liniowe $\varphi \colon M(2,\mathbb{R}) \to \mathbb{R}^3, \psi \colon \mathbb{R}^3 \to \mathbb{C}$ określone są wzorami $\varphi(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}) = [x_1 + 2x_2 + 3x_3 + 9x_4, x_1 + x_3 + 8x_4, x_2 + 2x_3 + 8x_4], \psi([x_1, x_2, x_3]) = 4x_1 - x_2 - 3x_3 + (5x_1 + 2x_2 - 7x_3)i$. Obliczyć $(\psi \circ \varphi)(\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix})$.

Odpowiedzi:

7.1. a)
$$[5x_1 + x_2, 6x_1 + 4x_2]$$
, b) $[x_1 + x_2, x_2 + 2x_3, x_1 + x_2 - x_3]$, c) $[3x_1 - 4x_2, 4x_1 - 5x_2, 2x_1 - x_2]$.

7.3. a)
$$\begin{bmatrix} 4 & 1 \\ 7 & -3 \end{bmatrix}$$
, b) $\begin{bmatrix} 4 & 1 & 0 \\ 8 & 7 & 3 \end{bmatrix}$.

7.4. a)
$$[x_1 + x_2, x_1 + 2x_2]$$
, b) $[5x_1 - x_2 - 4x_3, 3x_1 - 4x_2 + x_3]$.

7.5. a)
$$\mathcal{C} = ([4,1],[7,2])$$
, b) $\mathcal{B} = ([1,0],[4,1])$.

7.6. a)
$$[x_1, 8x_1 + 3x_2]$$
, b) $3x_1 + 5x_2 + 5x_3 + 4x_4 + (7x_1 + 3x_2 + 3x_3 + 5x_4)i$.