We claim:

CLAIMS

1	1. A method of estimating a channel in a communication system, the method
2	comprising:
3	receiving a block of "n" transmitted symbols, the symbols including pilot
4	symbols and "d" data symbols;
5	estimating a channel using the pilot symbols to create a channel estimate;
6	choosing a group of "m" strongest symbols from the "d" received data
7	symbols;
8	compensating the group of "m" strongest symbols using the channel estimate to
9	create a group of "m" compensated symbols;
10	re-estimating the channel using the group of "m" compensated symbols and pilot
11	symbols; and either:
12	repeating the steps of choosing the group of "m" strongest symbols,
13	compensating the group of "m" strongest symbols and re-estimating the channel,
14	or
15	using a latest channel estimate to compensate all symbols within the
16	block.
1	2. The method of claim 1, wherein the communication system is an OFDM
2	communication system.
1	3. The method of claim 1, wherein "m" is less than "d".
1	4. The method of claim 1, wherein "m" equals "d".
1	5. The method of claim 1, wherein the communication system is associated with a
2	multi-antenna receiver.

- 1 6. A method of estimating a channel in a communication system, the method
- 2 comprising:
- 3 receiving a block of "n" transmitted symbols, the symbols including pilot
- 4 symbols and "d" data symbols;
- 5 estimating a channel using the pilot symbols to create a channel estimate;
- 6 choosing a group of "m" strongest symbols from the "d" received data
- 7 symbols;
- 8 compensating the group of "m" strongest symbols using the channel estimate to
- 9 create a group of "m" compensated symbols;
- re-estimating the channel using the group of "m" compensated symbols and pilot
- symbols; and either:
- 12 choosing a group of "x" strongest symbols, compensating the group of
- "x" strongest symbols and re-estimating the channel, or
- using a latest channel estimate to compensate all symbols within the
- 15 block.
- 1 7. The method of claim 6, wherein "m" is less than "d".
- 1 8. The method of claim 7, wherein "x" is less than "m".
- 1 9. The method of claim 6, wherein "x" is greater than "m".
- 1 10. The method of claim 6, wherein "d" equals "m" and "m" equals "x".
- 1 11. The method of claim 6, wherein the communication system is associated with an
- 2 OFDM protocol.
- 1 12. The method of claim 6, wherein the communication system is associated with a
- 2 multiple antenna receiver.
- 1 13. A method of estimating a channel in a wireless receiver, the method comprising:
- 2 receiving a block of "n" transmitted symbols, the block including pilot symbols
- 3 and "d" data symbols;

4	estimating a wireless channel using the pilot symbols to create a channel estimate;
5	choosing a group of "m" strongest data symbols from the "d" received data
6	symbols;
7	compensating the group of "m" strongest symbols using the channel estimate to
8	create a group of "m" compensated symbols;
9	re-estimating the wireless channel using the group of "m" compensated symbols
10	and pilot symbols; and
11	either:
12	repeating the steps of choosing the group of "x" strongest symbols,
13	compensating the group of "x" strongest symbols and re-estimating the channel
14	at least once, or
15	using a latest channel estimate to compensate all data symbols within the
16	block.
1	14. The method of claim 13, wherein "m" equals "x".
1	15. The method of claim 13, wherein "x" is less than "m".
1	16. The method of claim 13, wherein "m" equals "d".
1	17. The method of claim 13, wherein if the steps of choosing a group of "x"
2	strongest symbols, compensating the group of "x" strongest symbols and re-estimating
3	the channel at least once are repeated, the steps are repeated a plurality of times.
1	18. A method of estimating a channel in a communication system, the method
2	comprising:
3	receiving a block of symbols;
4	estimating a channel using at least one of the symbols;
5	choosing a group of symbols from the received symbols;
6	compensating the group of symbols using the channel estimate; and

- 7 re-estimating the channel using the group of compensated symbols and the at
- 8 least one of the symbols.
- 1 19. The method of claim 18, further comprising either:
- 2 repeating the steps of choosing a group of symbols, compensating the group of
- 3 symbols and re-estimating the channel, or
- 4 using a latest channel estimate to compensate all symbols within the block.
- 1 20. The method of claim 18, wherein the at least one of the symbols is a pilot
- 2 symbol.
- 1 21. The method of claim 18, wherein the group of symbols chosen is chosen based
- 2 on signal strength.
- 1 22. The method of claim 21, wherein the signal strength of the symbols chosen in
- the group is associated with a predetermined criteria.
- 1 23. A method of estimating a channel in a wireless receiver, the method comprising:
- 2 receiving a block of "n" transmitted symbols, the block including pilot symbols
- 3 and "d" data symbols;
- 4 estimating a wireless channel using the pilot symbols to create a channel estimate;
- 5 choosing a group of "m" strongest data symbols from the "d" received data
- 6 symbols;
- 7 compensating the group of "m" strongest symbols using the channel estimate to
- 8 create a group of "m" compensated symbols;
- 9 re-estimating the wireless channel using the group of "m" compensated symbols
- 10 and pilot symbols;
- determining whether a number of iterations is equal to or greater than T; and
- if the number is less than T:
- choosing "x" strongest symbols;
- compensating the "x" strongest symbols; and

15	repeating the method continuing at the step of re-estimating the channel
16	using the "x" compensated symbols and the pilot symbols; and
17	if the number is equal to or greater than T:
18	using a latest channel estimate to compensate all data symbols within the
19	block.
1	24. A method of estimating a channel in a wireless receiver according to claim 23,
2	further comprising:
3	if "x" is equal to or greater than "m":
4	setting "m" equal to "x"; and
5	repeating the method from the step of choosing a group of "m" strongest
6	symbols from the "d" received data symbols; and
7	if "x" is less than "m", continuing the method at the step of choosing "x"
8	strongest symbols.
1	25. A system for performing channel estimation associated with a wireless
2	communication system, the wireless communication system receiving a block of symbols
3	including pilot symbols and data symbols, the channel estimation system comprising:
4	a symbol selector;
5	an initial channel estimator;
6	a symbol compensator; and
7	a channel estimator, wherein the initial channel estimator produces an initial
8	channel estimate using the pilot symbols and the symbol selector chooses a group of "m"
9	strongest data symbols, and wherein the "m" strongest data symbols are compensated
10	using the initial channel estimate and the channel estimator re-estimates the channel
11	using the compensated symbols and the pilot symbols.
1	26. A method of recovering data symbols from a plurality of data sequences using a
2	symbol selector and a symbol compensator, the method comprising:

3	receiving the plurality of data sequences at the symbol selector;
4	choosing a strongest data sequence from the plurality of data sequences;
5	choosing "m" strongest data symbols from the strongest data sequence;
6	choosing "m" data symbols at the same frequency tone positions in at least one
7	unchosen data sequence of the plurality of data sequences; and
8	recovering original symbols from the plurality of data sequences using the "m"
9	strongest data symbols from the strongest sequence and the "m" data symbols from the
10	at least one unchosen data sequence.
1	27. The method of claim 26, wherein the strongest data sequence is chosen
2	according to a signal strength of each of the plurality of sequences.
1	28. A method of choosing data symbols to transmit to a symbol compensator, the
2	method comprising:
3	receiving a plurality of data sequences at a symbol selector;
4	choosing a strongest data sequence from the plurality of data sequences;
5	choosing "m" strongest data symbols from the strongest data sequence;
6	choosing "m" data symbols at the same frequency tone positions in at least one
7	unchosen data sequence of the plurality of data sequences; and
8	transmitting the "m" strongest data symbols from the strongest data sequence
9	and the "m" data symbols from the at least one unchosen data sequence to the symbol
0	compensator.