Sum of Subspaces

The Sum of two subspaces U and W of a vector space V is defined as

$$U + W = \{u \in U, w \in W\}$$

Definition: Let U, W be subspaces of V. Then V is said to be the direct sum of U and W, and we write $V = U \oplus W$,

if
$$V = U + W$$
 and $U \cap W = \{0\}$.

Let U, W be subspaces of V. Then $V = U \oplus W$ if and only if for every $v \in V$ there exist unique vectors $u \in U$ and $w \in W$ such that v = u + w.

Properties:

- 1. The zero vector '0' of V is in U+W.
- 2. For any $u, w \in U + W$, we have $u + v \in U + W$.
- 3. For any $v \in U + W$ and $\alpha \in R$, we have $\alpha v \in V \in U + W$
- 4. v = u + w must be unique.

Sum of subspaces

Example: Consider
$$U = \{(a, 0, 0) / a \in R \}$$

 $W = \{(0, b, c) / b, c \in R \}$
Thus $V = U + W = \{(a, b, c) / a, b, c \in R \}$

Hence the direct sum of subspaces U and W results into vector space \mathbb{R}^3

