Equivalências Lógicas	Propriedades condicionais	Negação	Equivalências Quantificadas
Elementos Neutros $p \land V \Leftrightarrow p$ $p \lor F \Leftrightarrow p$	$ (p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p) \text{contraposição} $ $ (p \rightarrow q) \Leftrightarrow (\neg p \lor q) \text{implicação} $	Conjunção $\neg (p \land q) = \neg p \lor \neg q$ Disjunção: $\neg (p \lor q) = \neg p \land \neg q$	$\forall x : [P(x) \land Q(x)]$ $\equiv \forall x : P(x) \land \forall x : Q(x)$
Dominação $p \lor V \Leftrightarrow V$ $p \land F \Leftrightarrow F$	$ (p \rightarrow q) \Leftrightarrow \neg (p \land \neg q) \text{implicação} $ $ \neg p \rightarrow q \Leftrightarrow p \lor q $	Condicional: $\neg(p \rightarrow q) = p \land \neg q$ Bicondicional: $\neg(p \longleftrightarrow q) = p \lor q$	$\exists x : [P(x) \lor Q(x)]$ $\equiv \exists x : P(x) \lor \exists x : Q(x)$
Indempotentes $p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$	$\neg (p \rightarrow \neg q) \Leftrightarrow p \land q$ $\neg (p \rightarrow q) \Leftrightarrow p \land \neg q$	$\neg (p \longleftrightarrow q) = (p \land \neg q) \lor (q \land \neg p)$ Regras De Inferência	De Morgan: $\neg \forall x : P(x) \equiv \exists x : \neg P(x)$ $\neg \exists x : P(x) \equiv \forall x : \neg P(x)$
Comutativa $p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$	$(p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow p \rightarrow (q \land r)$ $(p \rightarrow r) \land (q \rightarrow r) \Leftrightarrow (p \lor q) \rightarrow r$ $(p \rightarrow q) \lor (p \rightarrow q) \Leftrightarrow (p \lor q) \rightarrow r$	Adição $p \Rightarrow p \lor q$ Simplificação $p \land q \Rightarrow p$	$\forall x : P(x) \equiv \neg \exists x : \neg P(x)$ $\exists x : P(x) \equiv \neg \forall x : \neg P(x)$
Distributivas $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	$(p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow p \rightarrow (q \lor r)$ $(p \rightarrow r) \lor (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$	$p \land q \Rightarrow q$ Conjunção $p, q \Rightarrow p \land q$	Inferências Quantificadas Instanciação Universal $\forall x : P(x)$
Associativas $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$	Propriedades Bicondicionais $(p \longleftrightarrow q) \Leftrightarrow ((p \to q) \land (q \to p))$	Modus Ponens $p \rightarrow q$, $p \Rightarrow q$ Modus Tollens $p \rightarrow q$, $\neg q \Rightarrow \neg p$	P(c)
Troca de Premissas $(p \rightarrow (q \rightarrow r)) \Leftrightarrow (q \rightarrow (p \rightarrow r))$	$(p \longleftrightarrow q) \Leftrightarrow ((\neg p \lor q) \land (\neg q \lor p))$	Silogismo Disjuntivo $p \lor q$, $\neg p \Rightarrow q$ $p \lor q$, $\neg q \Rightarrow p$	Generalização Universal $\frac{P(c)}{C}$
Dupla Negação $\neg(\neg p) \Leftrightarrow p$ Leis de De Morgan $\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$ $\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$	$(p \longleftrightarrow q) \Leftrightarrow \neg p \longleftrightarrow \neg q$ $(p \longleftrightarrow q) \Leftrightarrow (p \land q) \lor (\neg p \land \neg q)$ $\neg (p \longleftrightarrow q) \Leftrightarrow p \longleftrightarrow \neg q$	Silogismo Hipotético $p \rightarrow q$, $q \rightarrow r \Rightarrow p \rightarrow r$	∴ ∀x:P(x) Instanciação Existencial ∃x:P(x)
Negação $p \lor \neg p \Leftrightarrow V$ $p \land \neg p \Leftrightarrow F$		Dilema Construtivo $p \rightarrow q$, $r \rightarrow s$, $p \lor r \Rightarrow q \lor s$ Dilema Destrutivo	$\overline{P(c)}$ Generalização Existencial
Absorção $p \lor (p \land q) \Leftrightarrow p$ $p \land (p \lor q) \Leftrightarrow p$		Absorção $p \rightarrow q \Rightarrow p \rightarrow (p \land q)$	$P(c)$ $\therefore \exists x : P(x)$ * para um c arbitrário