### Solving Quantitative Model

Xiaofan Li

UIBE

July 2021

### Road Map

- ▶ Model-1: EK model with no intermediate input
  - Eaton and Kortum (2002)
- ▶ Model-2: EK model with intermediate input
  - Eaton and Kortum (2002)
- ► Model-3: EK model & migration
  - Redding(2016)
- Model-4: EK model with Input-Output linkage
  - Caliendo and Parro(2015)

Model-1

### Model-1 Setup

- utility function:  $U_i = \left[\int_0^1 q(j)^{\frac{\sigma-1}{\sigma}} dj\right]^{\frac{\sigma}{\sigma-1}}$
- ▶ production function:  $q_i(j) = z_i(j)L_i(j)$
- ▶ random productivity:  $z_i(j) \sim F_i(z) = e^{-T_i z^{-\theta}}$
- ▶ unit cost of input:  $c_i = w_i$
- ▶ ice-berg cost: *d<sub>ni</sub>*
- trade price:  $p_{ni}(j) = \frac{c_i}{z_i(j)} d_{ni}$

# Model-1 Trade Gravity Equation

▶ trade share

$$\pi_{ni} = \frac{T_i (c_i d_{ni})^{-\theta}}{\sum_{i'} T_{i'} (c_{i'} d_{ni'})^{-\theta}}$$

price index

$$P_n = \Gamma \left[ \sum_i T_i (c_i d_{ni})^{-\theta} \right]^{-\frac{1}{\theta}}$$

where  $c_i = w_i$ 

#### Model-1 Equilibrium Condition

- ightharpoonup consumers maximize utility, producers maximize profit  $(c_i, \pi_{ni})$
- ightharpoonup labor clear condition ( $Y_i$  is total income)

$$Y_i = w_i L_i \tag{1}$$

 $\triangleright$  goods clear condition ( $X_n$  is total expenditure)

$$Y_i = \sum_n X_{ni} = \sum_n \pi_{ni} X_n \tag{2}$$

balance trade condition

$$Y_i = X_i \tag{3}$$

condition(1)(2)(3) implies

$$Y_{i} = w_{i}L_{i} = \sum_{n} \pi_{ni}w_{n}L_{n} = \frac{T_{i}(w_{i}d_{ni})^{-\theta}}{\sum_{i'} T_{i'}(w_{i'}d_{ni'})^{-\theta}}w_{n}L_{n} \quad (4)$$

### Model-1 Solve equilibrium

$$w_{i}L_{i} = \frac{T_{i}(w_{i}d_{ni})^{-\theta}}{\sum_{i'}T_{i'}(w_{i'}d_{ni'})^{-\theta}}w_{n}L_{n}$$

- ▶ Parameters and fundamentals  $\theta$ ,  $\{T_i\}$ ,  $\{L_i\}$ ,  $\{d_{ni}\}$
- ▶ Endogenous variables  $\{w_i\},...$

# Model-1 Solve $\{w_i\}$ in Matlab

$$w_{i}L_{i} = \frac{T_{i}(w_{i}d_{ni})^{-\theta}}{\sum_{i'}T_{i'}(w_{i'}d_{ni'})^{-\theta}}w_{n}L_{n}$$

- 'fsolve' approach  $\Psi(\{\mathbf{w_i}\}) = \mathbf{0}$
- ▶ iteration approach
  - ▶ step-1 initial guess of {w<sub>i</sub>}
  - step-2 calculate the two sides of equation above
  - ▶ step-3 update the guess of  $\{w_i\}$  and return to step-1 until the two sides of equation get closed enough (convergence condtion)

# Model-1 Matlab code for Solving $\{w_i\}$

Model-2

### Model-2 Setup

- utility function:  $U_i = \left[\int_0^1 q(j)^{\frac{\sigma-1}{\sigma}} dj\right]^{\frac{\sigma}{\sigma-1}}$
- ▶ production function:  $q_i(j) = z_i(j) \left(\frac{L_i(j)}{\alpha}\right)^{\alpha} \left(\frac{M_i(j)}{1-\alpha}\right)^{1-\alpha}$
- ▶ random productivity:  $z_i(j) \sim F_i(z) = e^{-T_i z^{-\theta}}$
- unit cost of input:  $c_i = w_i^{\alpha} P_n^{1-\alpha}$
- ▶ ice-berg cost: d<sub>ni</sub>
- ▶ trade price:  $p_{ni}(j) = \frac{c_i}{z_i(j)} d_{ni}$

# Model-2 Trade Gravity Equation

▶ trade share

$$\pi_{ni} = \frac{T_i \left(c_i d_{ni}\right)^{-\theta}}{\sum_{i'} T_{i'} \left(c_{i'} d_{ni'}\right)^{-\theta}}$$

price index

$$P_n = \Gamma \left[ \sum_i T_i (c_i d_{ni})^{-\theta} \right]^{-\frac{1}{\theta}}$$

where  $c_i = w_i^{\alpha} P_n^{1-\alpha}$ 

#### Model-2 Equilibrium condition

- ightharpoonup consumers maximize utility, producers maximize profit  $(c_i, \pi_{ni})$
- ightharpoonup labor clear condition ( $Y_i$  is total income)

$$Y_i = w_i L_i \tag{5}$$

 $\triangleright$  goods clear condition ( $X_i$  is total expenditure)

$$\frac{1}{\alpha}Y_i = \sum_{n} X_{ni} = \sum_{n} \pi_{ni} X_n \tag{6}$$

balance trade condition

$$X_i = Y_i + \frac{1 - \alpha}{\alpha} w_i L_i \tag{7}$$

► condition(5)(6)(7) implies

$$X_{i} = \frac{1}{\alpha} Y_{i} = \sum_{n} \pi_{ni} X_{n} = \sum_{n} \pi_{ni} \frac{1}{\alpha} Y_{n}$$
 (8)

### Model-2 Equilibrium condition

► Equation (8) implies

$$w_{i}L_{i} = \frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\sum_{i'}T_{i'}(c_{i'}d_{ni'})^{-\theta}}w_{n}L_{n}$$

price index

$$P_n = \Gamma \left[ \sum_i T_i (c_i d_{ni})^{-\theta} \right]^{-\frac{1}{\theta}}$$

where  $c_i = w_i^{\alpha} P_n^{1-\alpha}$ 

# Model-2 Solve $\{w_n\}$ , $\{P_n\}$ in Matlab

$$P_{n} = \Gamma \left[ \sum_{i} T_{i} \left( c_{i} d_{ni} \right)^{-\theta} \right]^{-\frac{1}{\theta}}$$
(9)

$$w_{i}L_{i} = \frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\sum_{i'}T_{i'}(c_{i'}d_{ni'})^{-\theta}}w_{n}L_{n}$$
(10)

where  $c_i = w_i^{\alpha} P_n^{1-\alpha}$ 

- ▶ step-1 initial guess of  $\{\mathbf{w_n}\}$  and  $\{\mathbf{P_n}\}$
- ▶ step-2 calculate  $\{c_i\}$  and then new  $\{P_n\}$  using equation (9), update guess of  $\{P_n\}$  until equation (9) converge
- ▶ step-3 calculate the two sides of equation (10)
- ▶ step-4 update the guess of  $\{\mathbf{w_i}\}$  and return to step-1 until equation (10) converge

Model-2 Matlab code for Solving  $\{w_i\}, \{P_i\}$ 

Model-3

#### Model-3 Setup

- consumption and production is the same as model-2
- lacktriangle utility function of individual  $\zeta$  migrating from i to n

$$W_i(\zeta) = U_n(\zeta)\tau_{ni}^{-1}a_n(\zeta)$$

where  $U_n$  is real income in n,  $\tau_{ni}$  is migration cost from i to n

idiosyncratic location taste

$$a_n(\zeta) \sim G_n(a) = e^{-A_n a^{-\epsilon}}$$

migration share

$$\lambda_{ni} = \frac{A_n (U_n \tau_{ni}^{-1})^{\epsilon}}{\sum_n A_{n'} (U_{n'} \tau_{n'i}^{-1})^{\epsilon}}$$

#### Model-3 Equilibrium equation

▶ trade block: given {L<sub>n</sub>} (given labor supply after migration)

$$P_n = \Gamma \left[ \sum_i T_i \left( c_i d_{ni} \right)^{-\theta} \right]^{-\frac{1}{\theta}} \tag{11}$$

$$w_{i}L_{i} = \frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\sum_{i'}T_{i'}(c_{i'}d_{ni'})^{-\theta}}w_{n}L_{n}$$
(12)

migration block (labor market clear condition)

$$L_n = \sum_{i} \lambda_{ni} L_{i0} \tag{13}$$

where  $L_{i0}$  is initial labor distribution and

$$\lambda_{ni} = \frac{A_n (U_n \tau_{ni}^{-1})^{\epsilon}}{\sum_n A_{n'} (U_{n'} \tau_{n'i}^{-1})^{\epsilon}}$$

#### Model-3 Solve Equilibrium

- ▶ step-1: initial guess of any  $\{L_n\}$
- ▶ step-2: take  $\{L_n\}$  as given, solve trade block using (11)(12)
- step-3: calculate the migration share based on real consumption from trade block and then the two sides of equation (13)
- ▶ step-4: update the guess of  $\{L_n\}$  and return to step-1 until equation (13) converge

Model-3 Matlab code for Solving  $\{w_i\}, \{P_i\}, \{L_i\}$ 

Model-4

### Model-4 Setup

- N countries and J sectors
- utility function:  $U_j = \prod_{j=1}^J \left(c_n^j\right)^{\alpha_n^j}$
- unit cost of input:  $c_n^j = w_n^{\gamma_n^j} \prod_{k=1}^J \left( P_n^k \right)^{\gamma_n^{k,j}}$
- ▶ trade share:  $\pi_{ni}^{j} = \frac{T_{i}^{j} [c_{i}^{j} d_{ni}^{j}]^{-\theta j}}{\sum_{i'=1}^{j} T_{i'}^{j} [c_{i'}^{j} d_{ni'}^{j}]^{-\theta j}}$

#### Model-4 Equilibrium condition

solve  $\{P_n\}$ ,  $\{X_n\}$  and  $\{w_n\}$  using the following three equations

$$P_n^j = \Gamma^j \left[ \sum_i T_i^j \left( c_i^j d_{ni}^j \right)^{-\theta^j} \right]^{-\frac{1}{\theta^j}} \tag{14}$$

$$X_i^j = \alpha_i^j w_i L_i + \sum_k \gamma_i^{jk} \sum_n \pi_{ni}^k X_n^k$$
 (15)

$$w_i L_i = \sum_i \gamma_i^j \sum_n \pi_{ni}^j X_n^j \tag{16}$$

where

$$c_n^j = w_n^{\gamma_n^j} \prod_{k=1}^J \left( P_n^k \right)^{\gamma_n^{k,j}}$$

$$\pi_{ni}^j = \frac{T_i^j \left[ c_i^j d_{ni}^j \right]^{-\theta^j}}{\sum_{i'=1} T_{i'}^j \left[ c_{i'}^j d_{ni'}^j \right]^{-\theta^j}}$$

#### Model-4 Solve Equilibrium



Model-4 Matlab code for Solving  $\{w_i\}, \{P_i\}, \{X_i\}$