# Natural Language Processing Week 6

## Agenda

- Project Introduction
- Token Classification
  - POS
  - NER
- Extractive Summarization

# **Token Classification**

#### **Token Classification**

- Token classification is the task of assigning a categorical label for every element in sequence of data
  - Text data, biological sequences, time-series
- For NLP applications, the task is to assign each word  $x_i$  in an input sequence a label  $y_i$  (also called sequence labeling)



#### **Token Classification**

Parts-of-Speech (POS) tagging and Named Entity Recognition (NER) are two
of the most common forms of sequence modeling in NLP



# Parts of Speech

## Parts of Speech

• Parts of speech are formally defined based on their grammatical relationship with neighboring words or the morphological properties of their affixes

|              | Tag          | Description                                                | Example                        |
|--------------|--------------|------------------------------------------------------------|--------------------------------|
|              | ADJ          | Adjective: noun modifiers describing properties            | red, young, awesome            |
| Class        | ADV          | Adverb: verb modifiers of time, place, manner              | very, slowly, home, yesterday  |
| ロ            | NOUN         | words for persons, places, things, etc.                    | algorithm, cat, mango, beauty  |
| Open         | VERB         | words for actions and processes                            | draw, provide, go              |
| O            | <b>PROPN</b> | Proper noun: name of a person, organization, place, etc    | Regina, IBM, Colorado          |
|              | INTJ         | Interjection: exclamation, greeting, yes/no response, etc. | oh, um, yes, hello             |
|              | ADP          | Adposition (Preposition/Postposition): marks a noun's      | in, on, by, under              |
| S            |              | spacial, temporal, or other relation                       |                                |
| Words        | AUX          | Auxiliary: helping verb marking tense, aspect, mood, etc., | can, may, should, are          |
| <b>&gt;</b>  | <b>CCONJ</b> | Coordinating Conjunction: joins two phrases/clauses        | and, or, but                   |
| lass         | DET          | Determiner: marks noun phrase properties                   | a, an, the, this               |
| $\Box$       | NUM          | Numeral                                                    | one, two, 2026, 11:00, hundred |
| Closed Class | PART         | Particle: a function word that must be associated with an- | 's, not, (infinitive) to       |
| []<br>[]     |              | other word                                                 |                                |
|              | <b>PRON</b>  | Pronoun: a shorthand for referring to an entity or event   | she, who, I, others            |
|              | <b>SCONJ</b> | Subordinating Conjunction: joins a main clause with a      | whether, because               |
|              |              | subordinate clause such as a sentential complement         |                                |
| er           | <b>PUNCT</b> | Punctuation                                                | ; , ()                         |
| Other        | SYM          | Symbols like \$ or emoji                                   | \$, %                          |
|              | X            | Other                                                      | asdf, qwfg                     |

## Parts of Speech

- Open class: category of parts of speech that is open to being expanded / updated / changed as language evolves
  - Nouns: bitcoin, iPhone, etc
  - We've updated the Merriam-Webster.com Dictionary with 690 New Words | Merriam-Webster
- Closed class: category of parts of speech that is generally fixed / doesn't evolve
  - Prepositions: of, about, around

# Parts of Speech (Penn Treebank)

| Tag | Description         | Example      | Tag   | Description        | Example    | Tag  | Description        | Example     |
|-----|---------------------|--------------|-------|--------------------|------------|------|--------------------|-------------|
| CC  | coord. conj.        | and, but, or | NNP   | proper noun, sing. | IBM        | TO   | infinitive to      | to          |
| CD  | cardinal number     | one, two     | NNPS  | proper noun, plu.  | Carolinas  | UH   | interjection       | ah, oops    |
| DT  | determiner          | a, the       | NNS   | noun, plural       | llamas     | VB   | verb base          | eat         |
| EX  | existential 'there' | there        | PDT   | predeterminer      | all, both  | VBD  | verb past tense    | ate         |
| FW  | foreign word        | mea culpa    | POS   | possessive ending  | 'S         | VBG  | verb gerund        | eating      |
| IN  | preposition/        | of, in, by   | PRP   | personal pronoun   | I, you, he | VBN  | verb past partici- | eaten       |
|     | subordin-conj       |              |       |                    |            |      | ple                |             |
| JJ  | adjective           | yellow       | PRP\$ | possess. pronoun   | your       | VBP  | verb non-3sg-pr    | eat         |
| JJR | comparative adj     | bigger       | RB    | adverb             | quickly    | VBZ  | verb 3sg pres      | eats        |
| JJS | superlative adj     | wildest      | RBR   | comparative adv    | faster     | WDT  | wh-determ.         | which, that |
| LS  | list item marker    | 1, 2, One    | RBS   | superlatv. adv     | fastest    | WP   | wh-pronoun         | what, who   |
| MD  | modal               | can, should  | RP    | particle           | up, off    | WP\$ | wh-possess.        | whose       |
| NN  | sing or mass noun   | llama        | SYM   | symbol             | +, %, &    | WRB  | wh-adverb          | how, where  |

## **Evolution of POS Tagging**

- Rule-Based Tagging (60s-80s): manual tagging and rule-based systems
  utilizing dictionaries and manually engineering grammatical rules
- **Probabilistic Methods (80s-90s):** Hidden Markov Models (HMMs) tagged sequences based on word occurrence probabilities, leading to better ambiguity resolution than rule-based systems
- Machine Learning Methods (2000s): Conditional Random Fields (CRFs) and other ML algorithms utilized feature context and interactions
- **Deep Learning Methods (2010s):** Bidirectional RNNs and LSTMs enhanced handling of long-range dependencies, minimizing manual feature engineering.
- Transformers (current): Efficiency, multi-language improvements, etc.

#### Task Performance

- Accuracy of part-of-speech tags is very high
- 97% accuracy across 15 languages from Universal Dependency treebank
- Accuracies for other treebanks are 97% no matter the algorithm (Hidden Markov Model, Conditional Random Field, BERT, etc)

## Parts of Speech: How hard is the task?

- Most word types (unique words) are unambiguous (85-86%)
- Ambiguous tokens (instances of words), however, appear very often
- Most-frequent-tag baseline gives 92% accuracy (STOA is 97%)

| Types:      |           | WS      | WSJ          |         | wn           |
|-------------|-----------|---------|--------------|---------|--------------|
| Unambiguous | (1 tag)   | 44,432  | <b>(86%)</b> | 45,799  | <b>(85%)</b> |
| Ambiguous   | (2+ tags) | 7,025   | (14%)        | 8,050   | <b>(15%)</b> |
| Tokens:     |           |         |              |         |              |
| Unambiguous | (1 tag)   | 577,421 | <b>(45%)</b> | 384,349 | (33%)        |
| Ambiguous   | (2+ tags) | 711,780 | (55%)        | 786,646 | <b>(67%)</b> |

earnings growth took a **back/JJ** seat
a small building in the **back/NN**a clear majority of senators **back/VBP** the
bill

Dave began to **back/VB** toward the door enable the country to buy **back/RP** debt I was twenty-one **back/RB** then

## Parts of Speech: Applications

- POS tagging could be used for:
  - NER Models (creating features, used for post-processing)
  - Models for sentence segmentation (features)
  - Sentiment analysis (features)
  - Improving speech recognition
- Currently, neural networks and modern transformer architecture has reduced the need to explicitly engineer features for NLP applications
- However, there may still be places where POS is needed (environments that can't support transformers models)

# Named Entity Recognition

## Named Entity Recognition (NER)

- Named entities are words / phrases in text that refer to proper nouns
- NER is an NLP task in which the goal is to find spans of text that constitute
  proper names and assign the correct entity type to the span
- Most common are people, places, organizations, or geo-political entities
- Does not have to be an entity per se (could be time, or any other short span of text you deem as an entity (such as cost of a contractual agreement)

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

#### **NER Labels**

- For NER, every word in a sequence is labeled
- **BIO/IOB2** label token that begins a span with **B**, tokens that occur inside are labeled with **I**, tokens outside the spans are with **O**
- IO loses indicator for the beginning of a span
- BIOES/IOBES adds indicator for end of a span, and a single-token span

| Words      | IO Label | BIO Label | BIOES Label |
|------------|----------|-----------|-------------|
| Jane       | I-PER    | B-PER     | B-PER       |
| Villanueva | I-PER    | I-PER     | E-PER       |
| of         | 0        | 0         | 0           |
| United     | I-ORG    | B-ORG     | B-ORG       |
| Airlines   | I-ORG    | I-ORG     | I-ORG       |
| Holding    | I-ORG    | I-ORG     | E-ORG       |
| discussed  | 0        | 0         | 0           |
| the        | 0        | 0         | 0           |
| Chicago    | I-LOC    | B-LOC     | S-LOC       |
| route      | 0        | 0         | 0           |
|            | 0        | 0         | 0           |

#### **Evaluation of NER**

- NER is a highly imbalanced, multi-class classification task
- Precision, Recall, F-score as standard evaluation metrics
- NER has two dimensions of correctness: type and span
- A popular library call seqeval penalizes on both dimensions
- Other libraries exist that may not be as strict: nervaluate · PyPI

## **Evaluation of NER**

| tokens    | true  | underspan | overspan | type  |
|-----------|-------|-----------|----------|-------|
| Steve     | B-PER | B-PER     | B-PER    | B-PER |
| Jobs      | I-PER | 0         | I-PER    | I-PER |
| and       | 0     | 0         | 0        | 0     |
| Tim       | B-PER | B-PER     | B-PER    | B-PER |
| Cook      | I-PER | 0         | I-PER    | I-PER |
| both      | 0     | 0         | 0        | 0     |
| led       | 0     | 0         | 0        | 0     |
| Apple     | B-ORG | B-ORG     | B-ORG    | B-LOC |
| ,         | 0     | 0         | I-ORG    | 0     |
| which     | 0     | 0         | I-ORG    | 0     |
| is        | 0     | 0         | 0        | 0     |
| based     | 0     | 0         | 0        | 0     |
| in        | 0     | 0         | 0        | 0     |
| Cupertino | B-LOC | B-LOC     | B-LOC    | B-LOC |
|           | 0     | 0         | 0        | 0     |

|    | Accuracy: 0.  | 87             |              |              |         |
|----|---------------|----------------|--------------|--------------|---------|
|    | l             | precision      | recall       | f1-score     | support |
| U  | LOC           | 1.00           | 1.00         | 1.00         | 1       |
|    | ORG           | 1.00           | 1.00         | 1.00         | 1       |
| N  | PER           | 0.00           | 0.00         | 0.00         | 2       |
| D  |               | 0.50           | 0.50         | 0.50         |         |
|    | micro avg     | 0.50           | 0.50         | 0.50         | 4       |
| Ε  | macro avg     |                | 0.67<br>0.50 | 0.67<br>0.50 | 4<br>4  |
| R  | weighted avg  | 0.50           | 0.50         | 0.50         | 4       |
| •• | A             | 7              |              |              |         |
|    | Accuracy: 0.8 | /<br>precision | recall       | f1-score     | support |
|    |               | precioion      | 1 CCUII      | 11 3001 0    | Suppor  |
|    | LOC           | 1.00           | 1.00         | 1.00         | 1       |
| 0  | ORG           | 0.00           | 0.00         | 0.00         | 1       |
| V  | PER           | 1.00           | 1.00         | 1.00         | 2       |
|    |               |                |              |              |         |
| E  | micro avg     | 0.75           | 0.75         | 0.75         | 4       |
| R  | macro avg     | 0.67           | 0.67         | 0.67         | 4       |
| 11 | weighted avg  | 0.75           | 0.75         | 0.75         | 4       |
|    | Accumosys A   | 02             |              |              |         |
|    | Accuracy: 0.  | precision      | recall       | f1-score     | suppor  |
|    |               | precision      | rccarr       | 11 30010     | зиррог  |
| _  | LOC           | 0.50           | 1.00         | 0.67         |         |
| Т  | ORG           | 0.00           | 0.00         | 0.00         |         |
| Υ  | PER           | 1.00           | 1.00         | 1.00         |         |
|    |               | 0.75           | A 75         | 0.75         |         |
| Р  | micro avg     | •              | 0.75         |              |         |
| Ε  | macro avg     | •              | 0.67         |              |         |
| _  | weighted avg  | 0.62           | 0.75         | 0.67         |         |

# Span-Flexible Evaluation of NER

| tokens    | true  | underspan | overspan | type  |
|-----------|-------|-----------|----------|-------|
| Steve     | B-PER | B-PER     | B-PER    | B-PER |
| Jobs      | I-PER | 0         | I-PER    | I-PER |
| and       | 0     | Ο         | 0        | 0     |
| Tim       | B-PER | B-PER     | B-PER    | B-PER |
| Cook      | I-PER | 0         | I-PER    | I-PER |
| both      | 0     | 0         | 0        | 0     |
| led       | 0     | 0         | 0        | 0     |
| Apple     | B-ORG | B-ORG     | B-ORG    | B-LOC |
| ,         | 0     | 0         | I-ORG    | 0     |
| which     | 0     | 0         | I-ORG    | 0     |
| is        | 0     | 0         | 0        | 0     |
| based     | 0     | 0         | 0        | 0     |
| in        | 0     | 0         | 0        | 0     |
| Cupertino | B-LOC | B-LOC     | B-LOC    | B-LOC |
|           | 0     | 0         | 0        | 0     |

| U |  |
|---|--|
| Ν |  |
| D |  |
| Ε |  |
| R |  |

|     | precision | recall | f1  |
|-----|-----------|--------|-----|
| LOC | 1.0       | 1.0    | 1.0 |
| ORG | 1.0       | 1.0    | 1.0 |
| PER | 1.0       | 1.0    | 1.0 |
|     |           |        |     |

O V E

|     | precision | recall | t1  |
|-----|-----------|--------|-----|
| LOC | 1.0       | 1.0    | 1.0 |
| ORG | 1.0       | 1.0    | 1.0 |
| PER | 1.0       | 1.0    | 1.0 |

Y P F

|     | precision | recall | f1  |
|-----|-----------|--------|-----|
| LOC | 1.0       | 1.0    | 1.0 |
| ORG | 0.0       | 0.0    | 0.0 |
| PER | 1.0       | 1.0    | 1.0 |



# **Extractive Summarization**

#### Summarization

- There are two types of summarization:
  - Extractive: Method wherein key sentences are extracted without modification from the original document.
  - **Abstractive:** Method wherein new sentences are **generated** to represent a summary of the original document.
- Extractive Pro:
  - Faithful to the original text
- Extractive Con:
  - Can lead summaries that are not fluent

## PageRank

- The text rank algorithm is based of the PageRank algorithm
- Given a matrix of transition probabilities for web pages (web pages as nodes, links between them as edges)



Use PageRank algorithm to compute stationary distribution (long-term probabilities)

$$r_{new} = (\alpha P + (1 - \alpha)E) \times r_{old}$$

Higher values in PageRank indicate a webpage is "more important"

#### TextRank

- Instead of a transition matrix of webpages, TextRank relies on similarities
   between sentences (sentences as nodes, similarities as edges)
- Sentences are represented as vectors
  - Embeddings
  - BOW
- The pairwise similarity of those vectors is calculated
  - Cosine Similarity
  - Jaccard
- The core convergence algorithm is still applied
- A sentence is considered important if it is similar to many other sentences

