Thesis Title Cal Poly

Max Varverakis

November 15, 2023

Chapter 1

Background Info

Definition 1.1 (Representations of a Group). If there is a homomorphism from a group G to a group of operators U(G) on a linear vector space V, we say that U(G) forms a representation of G with dimension dim V.

The representation is a map

$$g \in G \xrightarrow{U} U(g) \tag{1.1}$$

in which U(g) is an operator on the vector space V. For a set of basis vectors $\{\hat{e}_i, i = 1, 2, ..., n\}$, we can realize each operator U(g) as an $n \times n$ matrix D(g).

$$U(g)|e_{i}\rangle = \sum_{j=1}^{n} |e_{j}\rangle D(g)^{j}_{i} = |e_{j}\rangle D(g)^{j}_{i},$$
 (1.2)

where the first index j is the row index and the second index i is the column index. We use the Einstein summation convention, so repeated indices are summed over. Note that the operator multiplication is defined as

$$U(g_1)U(g_2) = U(g_1g_2), (1.3)$$

which satisfies the group multiplication rules.

Definition 1.2. If the homomorphism defining the representation is an isomorphism, then the representation is *faithful*. Otherwise, it is *degenerate*.

Example 1.1. Let G be the group of continuous rotations in the xy-plane about the origin. We can write $G = \{R(\phi), 0 \le \phi \le 2\pi\}$ with group operation $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2)$. Consider the 2-dimensional Euclidean vector space V_2 . Then we define a representation of G on V_2 by the familiar rotation operation

$$\hat{e}_1' = U(\phi)\hat{e}_1 = \hat{e}_1 \cdot \cos\phi + \hat{e}_2 \cdot \sin\phi \tag{1.4}$$

$$\hat{e}_2' = U(\phi)\hat{e}_2 = -\hat{e}_1 \cdot \sin \phi + \hat{e}_2 \cdot \cos \phi.$$
 (1.5)

This gives us the matrix representation

$$D(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}. \tag{1.6}$$

To further illustrate this representation, if we consider an arbitrary vector $\hat{e}_i x^i = \vec{x} \in V_2$, then we have

$$\vec{x}' = U(\phi)\vec{x} = \hat{e}_i x^{\prime j},\tag{1.7}$$

where $x'^{j} = D(\phi)^{j}{}_{i}x^{i}$.

Definition 1.3 (Equivalence of Representations). For a group G, two representations are *equivalent* if they are related by a similarity transformation. Equivalent representations form an equivalence class.

To determine whether two representations belong to the same equivalence class, we define

Definition 1.4 (Characters of a Representation). The *character* $\chi(g)$ of an element $g \in G$ in a representation U(g) is defined as $\chi(g) = \text{Tr } D(g)$.

Since trace is independent of basis, the character serves as a class label.

Vector space representations of a group have familiar substructures, which are useful in constructing representations of the group.

Definition 1.5 (Invariant Subspace). Let U(G) be a representation of G on a vector space V, and W a subspace of V such that $U(g)|x\rangle \in W$ for all $\vec{x} \in W$ and $g \in G$. Then W is an *invariant subspace* of V with respect to U(G). An invariant subspace is *minimal* or *proper* if it does not contain any non-trivial invariant subspace with respect to U(G).

The identification of invariant subspaces on vector space representations leads to the following distinction of the representations.

Definition 1.6 (Irreducible Representation). A representation U(G) on V irreducible if there is no non-trivial invariant subspace in V with respect to U(G). Otherwise, it is reducible. If U(G) is reducible and its orthogonal complement to the invariant subspace is also invariant with respect to U(G), then the representation is fully reducible.

The irreducible representation matrices satisfy orthonormality and completeness relations. **Thm. 3.5**?

Example 1.2 (Generator of SO(2)). Consider the rotations of a 2-dimensional Euclidean vector space about the origin. Let \hat{e}_1 and \hat{e}_2 be orthonormal basis vectors of this space. Using geometry, we can determine how a rotation by some angle ϕ , written in operator form as $R(\phi)$, acts on the basis vectors:

$$R(\phi)\hat{e}_1 = \hat{e}_1 \cos \phi + \hat{e}_2 \sin \phi \tag{1.8}$$

$$R(\phi)\hat{e}_2 = -\hat{e}_1 \sin \phi + \hat{e}_2 \cos \phi. \tag{1.9}$$

In matrix form, we can write

$$R(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \tag{1.10}$$

which allows us to write Eqn. 1.8 and Eqn. 1.9 in a condensed form

$$R(\phi)\hat{e}_i = \hat{e}_i R(\phi)^j_{\ i},\tag{1.11}$$

where we are summing over j = 1, 2.

Now, let \vec{x} be an arbitrary vector in the plane. Then \vec{x} has components x^i in the basis $\{\hat{e}_i\}$, where i=1,2. Equivalently, we can write $\vec{x}=\hat{e}_ix^i$. Then under rotations, \vec{x} transforms in accordance to the basis vectors

$$R(\phi)\vec{x} = R(\phi)\hat{e}_{i}x^{i}$$

$$= \hat{e}_{j}R(\phi)^{j}{}_{i}x^{i}$$

$$= (\hat{e}_{1}R(\phi)^{1}{}_{i} + \hat{e}_{2}R(\phi)^{2}{}_{i})x^{i}$$

$$= (\hat{e}_{1}\cos\phi + \hat{e}_{2}\sin\phi)x^{1} + (\hat{e}_{1}(-\sin\phi) + \hat{e}_{2}\cos\phi)x^{2}$$

$$= (x^{1}\cos\phi - x^{2}\sin\phi)\hat{e}_{1} + (x^{1}\sin\phi + x^{2}\cos\phi)\hat{e}_{2}.$$
(1.12)

Observe that $R(\phi)R^{\top}(\phi) = E$ where E is the identity matrix. This is precisely what defines *orthogonal matrices*. For 2-dimensional vectors in the plane, it is clear that these rotations do not change the length of said vectors. This can be verified by using Eqn. 1.12:

$$|R(\phi)\vec{x}|^{2} = |\hat{e}_{j}R(\phi)^{j}{}_{i}x^{i}|^{2}$$

$$= |(x^{1}\cos\phi - x^{2}\sin\phi)\hat{e}_{1} + (x^{1}\sin\phi + x^{2}\cos\phi)\hat{e}_{2}|^{2}$$

$$= (x^{1}\cos\phi - x^{2}\sin\phi)^{2} + (x^{1}\sin\phi + x^{2}\cos\phi)^{2}$$

$$= (\cos^{2}\phi + \sin^{2}\phi)x^{1}x_{1} + (\sin^{2}\phi + \cos^{2}\phi)x^{2}x_{2}$$

$$= x^{1}x_{1} + x^{2}x_{2} = |\vec{x}|^{2}.$$
(1.13)

Similarly, notice that for any continuous rotation by angle ϕ , det $R(\phi) = \cos^2 \phi + \sin^2 \phi = 1$. In general, orthogonal matrices have determinant equal to ± 1 . However, the result of the above determinant of $R(\phi)$ implies that all continuous rotations in the 2-dimensional plane have determinant equal to +1. These are the *special orthogonal matrices of rank 2*. This family of matrices is denoted SO(2). Furthermore, there is a one-to-one correspondence with SO(2) matrices and rotations in a plane.

We define the group of continuous rotations in a plane by letting R(0) = E be the identity element corresponding to no rotation (i.e., a rotation by angle $\phi = 0$), and defining the inverse of a rotation as $R^{-1}(\phi) = R(-\phi) = R(2\pi - \phi)$. This group can be called the SO(2) group. Lastly, we define group multiplication as $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2)$ and note that $R(\phi) = R(\phi \pm 2\pi)$, which can be verified geometrically. Thus, group elements of SO(2) can be labelled by the angle of rotation $\phi \in [0, 2\pi)$.

Now we can find a generator of sotwo by considering an infinitesimal rotation, labelled by some infinitesimal angle $d\phi$. Then this is equivalent to the identity plus some small rotation, which we can write as

$$R(\mathrm{d}\phi) = E - i\mathrm{d}\phi J \tag{1.14}$$

where the scalar quantity -i is introduced for later convenience and J is some quantity independent of the rotation angle. If we consider the rotation

 $R(\phi + d\phi)$, then there are two equivalent ways to interpret this rotation

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(E - id\phi J) = R(\phi) - id\phi R(\phi)J \quad (1.15)$$

$$R(\phi + d\phi) = R(\phi) + dR(\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$$
(1.16)

where the second equation can be thought of as a Taylor expansion of $R(\phi + d\phi)$ about ϕ . Equating the two expressions for $R(\phi + d\phi)$ yields

$$dR(\phi) = -id\phi R(\phi)J. \tag{1.17}$$

Solving this differential equation (with boundary condition R(0) = E) provides us with an equation for any group element involving J:

$$R(\phi) = e^{-i\phi J},\tag{1.18}$$

where J is called the *generator* of the group.