Simple theory のセミナーノート

YasudaYasutomo

2019年12月19日

A Course in Model Theory 7章のセミナーノートです. セミナーで無駄な議論などを指摘してくださった先輩方に感謝します.

1 Forking and Dividing

この章では断りのない限り T は可算完全で無限モデルを持つと仮定して議論する. T の monster model を $\mathfrak C$ を固定する. *1

補題 1.1 (The Standard lemma). A を集合, I を tuple の無限列, J を全順序集合とする. このとき J で順序づけられた A-indiscernible で $\mathrm{EM}(I/A)$ を実現するものが存在する.

 $\mathrm{EM}(I/A)$ というのは L(A)-論理式 φ で

$$\mathfrak{C} \models \varphi(a_{i_1}, \dots, a_{i_n}) \text{ for all } a_{i_1} < \dots < a_{i_n} \in I$$

を満たすもの全体からなるタイプであった.

定義 1.2 (Dividing). $b \in \mathfrak{C}$ とする. *2

- 論理式 $\varphi(x,b)$ が $k \in \omega$ に関して A 上 divide する*3とはある列 $(b_i)_{i \in \omega}$ が存在して次を満たすことをいう.
 - 1. $\operatorname{tp}(b_i/A) = \operatorname{tp}(b/A)$ for all $i \in \omega$
 - 2. $(\varphi(x,b_i))_{i\in\omega}$ is k-inconsistent*4
- 論理式の集合 $\pi(x)$ に対して, $\pi(x)$ が A 上 divide するとはある $b \in \mathfrak{C}$ と論理式 $\varphi(x,y)$ が存在して次 を満たすことをいう.
 - 1. $\pi(x) \models \varphi(x,b)$
 - 2. $\varphi(x,b)$ は A 上 divide する

Dividing の基本的な性質を次で示す.*5

命題 **1.3.** $\varphi(x,a) \models \psi(x,b)$ とし、 $\psi(x,b)$ が $A \perp$ divide すると仮定する.

^{*1} 集合論的な細かいことは気にしない.

 $^{^{*2}}$ b は tuple でも問題ない.

^{*} 3 k が明示されてないときは for some $k \in \omega$ とする.

 $^{^{*4}}$ 思い出しておくと論理式の集合が k-inconsistent とは任意に k 個取り出してくると inconsistent になることだった.

^{*5} 本文中ではあっさり書かれているが重要だと思う.

このとき $\varphi(x,a)$ は A 上 divide する.

証明. $\psi(x,b)$ は A 上 divide することより, $(b_i)_{i\in\omega}$ を witness として取る. 各 $i\in\omega$ について,

$$\operatorname{tp}(a/A) \cup \{ \forall x (\varphi(x,y) \to \psi(x,b_i)) \} \cup T$$

を考える. *6これは有限充足可能である.

実際 $\Delta(y) \subseteq_{\text{fin}} \operatorname{tp}(a/A)$ を取ると、 $\exists y (\bigwedge \Delta(y) \land \forall (\varphi(x,y) \to \psi(x,z)) \in \operatorname{tp}(b/A) = \operatorname{tp}(b_i/A)$ より、 $z = b_i$ に対する witness a_i をそれぞれ取れば良い.

よって各 $i \in \omega$ での実現 $(a_i)_{i \in \omega}$ を取ると構成より $\varphi(x,a)$ が $A \perp$ divide することの witness となる.

系 1.4. φ が A 上 divide することと $\{\varphi\}$ が A 上 divide することは同値.

命題 1.5. $\pi(x)$ を論理式の集合とする.

 $\pi(x)$ が A 上 divide するならば, ある $\Delta \subseteq_{\text{fin}} \pi(x)$ が存在して $\varphi \equiv \bigwedge \Delta$ は A 上 divide する.

論理式の集合が divide しているとき、そこから有限個取ってきて dividing を考えれば良いことは以降よく使う.

命題 **1.6.** $A\subseteq B$ とし、 $\varphi(x,b)$ が A 上 divide すると仮定する.このとき B の A-conjugate \bar{B} が存在して $\varphi(x,b)$ は \bar{B} 上 divide する.

証明. $I=(b_i)_{i\in\omega}$ を witness として取る. The Standard lemma で B-indiscernible $J=(c_i)_{i\in\omega}$ を $\operatorname{tp}(J/A)=\operatorname{tp}(I/A)$ となるように取る. 自己同型 $\sigma\in\operatorname{Aut}(\mathfrak{C}/A)\colon J\mapsto I$ を考えれば良い.

例 1.7. DLO において, $\varphi(x,a,b) \equiv "a < x < b"$ divides over \emptyset w.r.t. 2.

補題 1.8. $\pi(x,b)$ を論理式の集合とする. 次は同値.

- 1. $\pi(x,b)$ は A 上 divide する.
- 2. ある A-indiscernible $(b_i)_{i \in \omega}$ が存在して次を満たす.
 - $\operatorname{tp}(b_0/A) = \operatorname{tp}(b/A)$
 - $\bigcup_{i \in \omega} \pi(x, b_i)$ is inconsistent
- 3. ある A-indiscernible $(b_i)_{i \in \omega}$ が存在して次を満たす.
 - $b_0 = b$
 - $\bigcup_{i\in\omega}\pi(x,b_i)$ is inconsistent

証明. $(1 \to 2)$ $\pi(x,b)$ が $k \in \omega$ に関して A 上 divide すると仮定する. $\pi(x,b)$ から有限個取ってきて $\varphi(x,b)$ が $k \in \omega$ に関して A 上 divide するとして良い.

 $(b_i)_{i \in \omega}$ を dividing の条件を満たすように取る. つまり

- $\operatorname{tp}(b_i/A) = \operatorname{tp}(b/A)$
- $\{\varphi(x,b_i)\mid i\in\omega\}$ is k-inconsistent

を満たすように取る. The Standard lemma より一般性を損なうことなく $(b_i)_{i\in\omega}$ は A-indiscernible として

^{*6} 自由変数は y で揃えている.

良い.

このとき $\bigcup_{i\in\omega}\pi(x,b_i)$ は inconsistent.

 $(2 \to 1)$ A-indiscernible $(b_i)_{i \in \omega}$ を仮定の条件を満たすように取る. $\bigcup_{i \in \omega} \pi(x,b_i)$ は inconsistent より、 $\pi(x,b)$ からその witness を有限個取りそれを $\varphi(x,b)$ とする. 取り方から $\Sigma(x) = \{\varphi(x,b_i) \mid i \in \omega\}$ は inconsistent. indiscernibility と compactness より $\Sigma(x) = \{\varphi(x,b_i) \mid i \in \omega\}$ は k-inconsistent.

 $(3 \rightarrow 2)$ 良い.

 $(2 \rightarrow 3)$ 自己同型 $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$: $b_0 \mapsto b$ を考えれば良い.

系 1.9. 次は同値.

- 1. tp(a/Ab) は $A \perp divide しない$.
- 2. 任意の A-indiscernible I で b を含むものに対して, ある Aa-indiscernible J が存在して $\operatorname{tp}(J/Ab) = \operatorname{tp}(I/Ab)$ を満たす.

- 3. 任意の A-indiscernible I で b を含むものに対して, ある \bar{a} が存在して $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ かつ I は $A\bar{a}$ -indiscernible となる.
- 4. 任意の A-indiscernible I で b を含むものに対して、ある \bar{a} と $A\bar{a}$ -indiscernible J が存在して $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ かつ $\operatorname{tp}(I/Ab) = \operatorname{tp}(J/Ab)$ を満たす.
- 証明・ $(2 \to 3)$ A-indiscernible I で b を含むものを任意に取る.仮定より Aa-indiscernible J で $\operatorname{tp}(J/Ab) = \operatorname{tp}(I/Ab)$ を満たすものを取る.自己同型 $\sigma \in \operatorname{Aut}(\mathfrak{C}/Ab) \colon J \mapsto I$ を取り, $\bar{a} = \sigma(a)$ とする.このとき I は $A\bar{a}$ -indiscernible かつ $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ を満たす.
- $(3 \to 2)$ A-indiscernible I で b を含むものを任意に取る。仮定より \bar{a} を $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ かつ I は $A\bar{a}$ -indiscernible となるように取る。自己同型 $\sigma \in \operatorname{Aut}(\mathfrak{C}/Ab)$: $\bar{a} \mapsto a$ となるように取り, $J = \sigma$ "I とする。このとき J は Aa-indiscernible かつ $\operatorname{tp}(I/Ab) = \operatorname{tp}(J/Ab)$ を満たす.

 $(2,3\rightarrow 4)$ はい.

 $(4 \rightarrow 2,3)$ 今までのように自己同型で移す.

 $(1 \rightarrow 4)$ A-indiscernible I で b を含むものを任意に取る. $b_{i_0} = b$ とする. $p(x,y) = \operatorname{tp}(ab/A)$ とする.

 $\operatorname{tp}(a/Ab)$ は A 上 divide しないことと前補題より $\bigcup_{i\in I} p(x,b_i)$ は consistent. よって \bar{a} をその実現とする.

The Standard lemma を用いて $K=(c_i)_{i\in I}$ を $A\bar{a}$ -indiscernible かつ K は $\mathrm{EM}(I/A\bar{a})$ を実現するように 取る. $\models p(\bar{a},c_{i_0})$ より,自己同型 $\sigma\in\mathrm{Aut}(\mathfrak{C}/A\bar{a})\colon c_{i_0}\mapsto b$ を取る. $J=\sigma$ "K とすると $A\bar{a}$ -indiscernible かつ $\mathrm{tp}(J/Ab)=\mathrm{tp}(I/Ab)$ を満たす.

 $(2 \to 1)$ $\operatorname{tp}(a/Ab)$ が A 上 divide すると仮定して矛盾を導く. $\pi(x,y) = \operatorname{tp}(ab/A)$ とする. 前補題より A-indiscernible $I = (b_i)_{i \in \omega}$ を $b_0 = b$ かつ $\bigcup_{i \in \omega} \pi(x,b_i)$ は inconsistent となるように取る.

仮定よりある \bar{a} が存在して $\operatorname{tp}(\bar{a}/Ab) = \operatorname{tp}(a/Ab)$ かつ I は $A\bar{a}$ -indiscernible となる. $\models \operatorname{tp}(ab/A)[\bar{a},b]$ となり, indiscernibility から $\bigcup_{i\in\omega}\pi(\bar{a},b_i)$ は consistent. Contradiction.

例 1.10. $a \notin acl(A)$ とする. このとき tp(a/Aa) は $A \perp divide$ する.

証明. $a \notin acl(A)$ より $a \cap A$ -conjugate $(a_i)_{i \in \omega}$ を取る.

 $arphi(x,a)\equiv "x=a"$ を考えると $\operatorname{tp}(a/A)=\operatorname{tp}(a_i/A)$ かつ $(arphi(x,a_i))_{i\in\omega}$ は 2-inconsitent となる.

例 1.11. $\pi(x)$ を $\operatorname{acl}(A)$ 上で定義された無矛盾な論理式の集合とする. このとき $\pi(x)$ は A 上 divide しない.

証明. $\pi(x)$ が A 上 divide すると仮定して矛盾を導く. $\pi(x)$ から有限個取ってきて $\varphi(x,b)$ divides over A として良い. このとき仮定より $b \in \operatorname{acl}(A)$ となる.

Dividing の witness を $(b_i)_{i\in\omega}$ を取る. The Standard lemma より $(b_i)_{i\in\omega}$ は A-indiscernible として良い. b は A 上代数的より, $\psi(x)$ を b を実現としてもつ A 上の algebraic formula とする. このとき全ての $i\in\omega$ に対して $\psi(x)\in\operatorname{tp}(b/A)=\operatorname{tp}(b_i/A)$ が成立する. $\psi(x)$ の取り方と indiscernibility から $b=b_i$ for all $i\in\omega$. よって $\varphi(x,b)$ は inconsistent となり, $\pi(x)$ の取り方に矛盾.

命題 **1.12.** $A \subseteq B$ とする. $\operatorname{tp}(a/B)$ が $A \perp$ divide しないとし, $\operatorname{tp}(c/Ba)$ は $Aa \perp$ divide しないと仮定する. このとき $\operatorname{tp}(ac/B)$ は $A \perp$ divide しない.

証明. b を B の元からなる finite tuple とする. I を infinite A-indiscernible で b を含むものとする.

 $\operatorname{tp}(a/B)$ doesn't divide over A より,Aa-indiscernible J で $\operatorname{tp}(J/Ab) = \operatorname{tp}(I/Ab)$ を取る.このとき "x = b" $\in \operatorname{tp}(I/Ab) = \operatorname{tp}(J/Ab)$ より,J はまた b を含む.

また $\operatorname{tp}(c/Ba)$ doesn't divide over Aa より Aac-indiscernible K で $\operatorname{tp}(K/Aab) = \operatorname{tp}(J/Aab)$ を満たすものを取る. よって $\operatorname{tp}(ac/B)$ は A 上 divide しない.

Forking を定義する.

定義 1.13 (Forking). $\pi(x)$ を論理式の集合とする. $\pi(x)$ が A 上 fork するとはある論理式 $\varphi_l(x)$ ($l < d \in \omega$) が存在して次を満たすことをいう.

- $\pi(x) \models \bigvee_{l < d} \varphi_l(x)$
- $\varphi_l(x)$ は A 上 divide する

明らかに Dividing の方が Forking より強い. 逆は一般には成立しない*⁷が, あとで定義される simple theory ではこれらが一致する. *⁸

余談 1.

- Divide は「分かれる」という意味がある.
- Fork は「分岐する」という意味がある.

命題 1.14 (Non-forking is closed). $p \in S(B)$ が $A \perp$ fork すると仮定する.

このときある $\varphi \in p$ が存在して、任意の $q \in S(B)$ に対して $\varphi \in q$ ならば q は A 上 fork する.

証明**・** $p \models \bigvee_{l < d} \varphi_l$ とすると compactness よりある $\pi \subseteq_{\text{fin}} p$ が存在して $\pi \models \bigvee_{l < d} \varphi_l$ が成立する. $\varphi = \bigwedge \pi$ とすれば良い.

系 1.15. $p \in S(B)$ が $A \perp$ fork すると仮定する. このときある $B_0 \subseteq_{\text{fin}} B$ が存在して $p \upharpoonright AB_0$ は $A \perp$ fork する.

補題 1.16. 論理式の集合 π は A で有限充足可能とする. このとき π は A 上 fork しない.

証明.そうではないと仮定して矛盾を導く. $\pi \models \bigvee_{l < d} \varphi_l(x)$ とする.このときある l < d 存在して $\varphi_l(x)$ は A

^{*&}lt;sup>7</sup> 有理数上の cyclic order とか考えるとダメ.

^{*8} いい話.

での実現を持つ. これは $\varphi_l(x)$ が $A \perp$ divide することに矛盾.

補題 **1.17.** $A \subseteq B$ とし, π を B 上の partial type とする. また π は A 上 fork しないと仮定する. このとき π の拡張 $p \in S(B)$ が存在して p は A 上 fork しない.

証明. p を π を含む L(B)-論理式の集合で A 上 fork しないもので極大なものとすれば良い.

2 Simple theory

この章では断りのない限り T は可算完全で無限モデルを持つと仮定して議論する.

定義 2.1 (Simple).

- 論理式 $\varphi(x,y)$ が k-TP*9を持つとはある $(a_s \mid \emptyset \neq in^{<\omega}\omega)$ が存在して次を満たすことをいう.
 - 1. 任意の $s\in{}^{<\omega}\omega$ について, $\{\varphi(x,a_s\hat{\ }_{\langle i\rangle})\mid i\in\omega\}$ は k-inconsitent
 - 2. 任意の $\sigma \in {}^{\omega}\omega$ について, $\{\varphi(x,a_s) \mid \emptyset \neq s \sqsubset \sigma\}$ は consitent
- theory T が simple であるとは TP を持つ論理式が存在しないときのことをいう.

TP を考えるときはパラメタなしの論理式を考えれば十分である. totally transcendental なら simple である.

次の dividing sequence の概念は有用である.

定義 2.2. Δ をパラメタなし論理式の有限集合とする. δ を順序数とする.

このとき $(\varphi_i(x,a_i) \mid i < \delta)$ が $A \perp \omega$ Δ -k-dividing sequence であるとは次を満たすことをいう.

- $\varphi_i(x,y) \in \Delta$
- $\varphi_i(x, a_i)$ は k に関して $A \cup \{a_j \mid j < i\}$ 上 divide する
- $\{\varphi_i(x, a_i) \mid i < \delta\}$ it consistent

 δ を dividing sequence の長さという.

Dividing sequence を使って TP を特徴付けることができる.

補題 2.3.

- 1. φ が k-TP を持つと仮定する. このとき任意の A と δ について, 長さ δ の A 上の φ -k-dividing sequence が存在する.
- 2. 長さが無限の \emptyset 上の Δ -k-dividing sequence が存在すると仮定する. このときある $\varphi \in \Delta$ が存在して, φ は k-TP を持つ.

証明. (1) φ が k-TP を持つとする. δ が極限順序数のときのみ考えれば十分である. * 10 compactness から任意の $\kappa \in \text{ON}$ について, $(a_s \mid \emptyset \neq s \in {}^{<\delta}\kappa)$ が存在して次を満たす.

^{*9} tree property

^{*&}lt;sup>10</sup> 短くすればいい

- 任意の $s \in {}^{<\delta}\kappa$ について, $\{\varphi(x,a_{s^{\hat{}}(i)}) \mid i < \kappa\}$ は k-inconsistent
- 任意の $\sigma \in {}^{\delta}\kappa$ について, $\{\varphi(x, a_s) \mid \emptyset \neq s \sqsubset \sigma\}$ は consitent

正則基数 κ を $\kappa > 2^{\max\{|T|,|A|,\delta\}}$ となるように十分大きく取る. infinite path $\sigma \in {}^{\delta}\kappa$ を全ての $s \sqsubset \sigma$ について, $A \cup \{a_t \mid t \sqsubseteq s\}$ 上の $a_s \hat{}_{(i)}$ のタイプが等しくなるような $i < \kappa$ が無限個存在するように取る.

これは κ が十分大きいことから帰納的に構成すれば良い.

このような σ に対して、構成より $(\varphi(x, a_{\sigma \mid i+1} \mid i < \delta))$ は A 上の φ -k-dividing sequence となる.*11

(2) $(\varphi_i(x,a_i)\mid i\in\omega)$ を \emptyset 上の Δ -k-dividing sequence とする. Δ は有限より $(\varphi(x,a_i)\mid i\in\omega)$ を \emptyset 上の φ -k-dividing sequence として良い. φ が k-TP を持つことを示す.

各 $i \in \omega$ について, $(a_i^n)_{n \in \omega}$ を $\varphi(x, a_i)$ が k に関して $\{a_j \mid j < i\}$ 上 divide することの witness として取り 固定する. つまり各 $i \in \omega$ について次が成立している.

- $\operatorname{tp}(a_i^n / \{a_j \mid j < i\}) = \operatorname{tp}(a_i / \{a_j \mid j < i\})$ for all $n \in \omega$
- $\{\varphi(x, a_i^n \mid n \in \omega\} \ \text{lt } k\text{-inconsistent}$

 $(b_s \mid \emptyset \neq s \in {}^{<\omega}\omega)$ を次のように帰納的に構成する. $s \in {}^{i+1}\omega$ に対して, $\bar{b} = (b_{s \uparrow 1}, \ldots, b_{s \restriction i})$ まで定義したとする. さらに $\operatorname{tp}(a_0, \ldots, a_{i-1}) = \operatorname{tp}(\bar{b})$ を満たすと仮定する. 自己同型 $\sigma \in \operatorname{Aut}(\mathfrak{C}) \colon (a_0, \ldots, a_{i-1}) \mapsto \bar{b}$ を取り, $b_s = \sigma(a_i^{s(i)})$ とする.

構成より $(b_s \mid \emptyset \neq s \in {}^{<\omega}\omega)$ は求めるものとなっている.

命題 **2.4.** T を simple とする. Δ を論理式の有限集合, $k \in \omega$ とする.

このとき Δ -k-dividing sequence の長さは有限の上限を持つ.

証明. そうではないと仮定して矛盾を導く. 長さ無限の \emptyset 上の Δ -k-dividing sequence を構成する. $\Delta = \{\varphi_1, \dots, \varphi_l\}$ とする.

サイズの議論により $f \in {}^{\omega}\Delta$ を任意の $m \in \omega$ について $f \upharpoonright m$ の順で \emptyset 上の Δ -k-dividing sequence が存在するように取る. *12定数記号 $c, a_0, \ldots, a_n, \ldots$ $(n \in \omega), a_n^0, \ldots, a_n^i, \ldots$ $(n \in \omega, i \in \omega)$ を用意する. 次のtheory を考える. *13

- T
- $\{\varphi_{f(n)}(c, a_n) \mid n \in \omega\}$
- $\operatorname{tp}(a_n^i/\{a_0,\ldots,a_{n-1}) = \operatorname{tp}(a_n/\{a_0,\ldots,a_{n-1}) \text{ for each } n \in \omega, i \in \omega$
- $\{\varphi(x, a_n^i) \mid i \in \omega\}$ is k-inconsistent for each $n \in \omega$

これは仮定より有限充足可能.実際有限個取ってきたとき十分長い $f \upharpoonright m$ の順に論理式が並んだ \emptyset 上の Δ -k-dividing sequence を取り解釈をそれに当てれば良い.*¹⁴

よって compactness より欲しいものが得られる.

命題 2.5. T は無限完全で無限モデルを持つ theory とする. 次は同値.

 $^{^{*11}}$ i+1 で切っているところが効いている

 $^{^{*12}}$ compactness を使いたいので dividing sequence に出てくる論理式をあらかじめ決めておく

 $^{^{*13}}$ 長いので箇条書きで書いている

 $^{^{*14}}$ このために f を取った

- 1. T は simple.
- 2. 任意の B と任意の $p \in S_n(B)$ についてある $A \subseteq B$ が存在して, $|A| \leq |T|$ かつ p は A 上 divide しない.
- 3. ある順序数 κ が存在して、任意の $M \models T$ と任意の $p \in S_n(M)$ に対してある $A \in [M]^{\leq \kappa}$ が存在して、p は A 上 divide しない.

証明. $(2 \rightarrow 3)$ 良い.

 $(1 \rightarrow 2)$ まず $p \in S_n(B)$ は $B \perp$ divide しないことより |B| > |T| のときを考えれば十分である.

そうではないと仮定して矛盾を導く. 仮定より B と $p \in S_n(B)$ を取る. 帰納的に列 $(\varphi_i(x,b_i))_{i<|T|^+}$ を次のように構成する.

- 各 φ_i はp に属す論理式
- $\varphi_i(x,b_i)$ は k に関して $\{b_i \mid j < i\}$ 上 divide する
- $b_i \in B$

 $\varphi_i(x,y)$ 全体のサイズは |T| 以下より、 φ -k-dividing sequence $(\varphi(x,b_i))_{i<|T|^+}$ が取れる. これは T が simple であることに矛盾.

 $(3\to 1)$ 対偶を示す. 任意に順序数 κ を取る. T は simple でないから長さ κ^+ の φ -k-dividing sequence $(\varphi(x,b_i))_{i<\kappa^+}$ を取る.

次を満たすようなTのモデルの列を取る.

- $M_0 \prec M_1 \prec \dots$
- 任意の j < i について, $b_j \in M_i$
- $\phi(x,b_i)$ は M_i 上 divide する

これは命題 1.6. を使うことで取れる. $M=\lim M_i \models T$ とする. サイズ κ の部分集合はどこかの M_i で捕まっているのでこれは 3 を満たさない.

命題 **2.6.** T を simple とし, $p \in S(A)$ とする. このとき p は A 上 fork しない.

証明. p は A 上 fork すると仮定する. $p \models \bigvee_{l < d} \varphi_l(x, b)$ とする. $\Delta = \{ \varphi_l(x, y) \mid l < d \}$ とおく.

 $n \in \omega$ の帰納法で長さ n の A 上の Δ -k-dividing sequence を構成する. さらに dividing sequence は p と consistent となるように構成する.

 $(\psi_i(x,a_i))_{i < n}$ まで構成したとする. \bar{b} を b の A-conjugate で $(\psi_i(x,a_i))_{i < n}$ が $A\bar{b}$ 上の dividing sequence となるように取る. このとき $p \models \bigvee_{l < d} \varphi_l(x,\bar{b})$ より, $\varphi_l(x,\bar{b})$ を $p \cup \{\psi_i(x,a_i) \mid i < n\}$ となるように取る.

 $\varphi_l(x,\bar{b}),\psi_0(x,a_0),\ldots,\psi_{n-1}(x,a_{n-1})$ は A 上の Δ -k-dividing sequence で p と consistent となる. *15 これは T % simple であることに矛盾.

定義 2.7. p を A 上のタイプとする. p の拡大 q が A 上 fork しているとき forking extension という.

系 2.8. $A \subseteq B$ とし, T を simple とする. 任意の A 上のタイプは B 上のタイプへの non-forking extension を持つ.

^{*15} 先頭にくっつけるのが大事

定義 2.9. $A \downarrow_C B^{*16}$ とは、任意の $\bar{a} \in [A]^{<\omega}$ について $\operatorname{tp}(\bar{a}/BC)$ は $C \perp \operatorname{fork}$ しないときのことをいう.

定義 **2.10.** I を全順序, $\bar{a} = (a_i)_{i \in I}$ を列とする.

- \bar{a} が A \perp independent とは、全ての $i \in I$ について $a_i \downarrow_A \{a_j \mid j < i\}$ を満たすときのことをいう.
- \bar{a} が $A \pm 0$ Morley sequence とは, \bar{a} が $A \pm$ independent かつ A-indiscernible であることをいう.
- \bar{a} が A 上の Morley sequence in p とは, \bar{a} が A 上の Morley sequence かつ p の実現からなる列であるときをいう.

命題 **2.11.** M をモデルとし, $A \subseteq M$ とする. p を M 上のタイプとする. また M は $|A|^+$ -saturated と仮定する. このとき p が A 上 fork することと A 上 divide することは同値.

証明. p が A 上 fork すると仮定する. このときある $\varphi(x,m) \in p$ が存在して, $\varphi(x,m) \models \bigvee_{l < d} \varphi_l(x,b)$ となる.

 $\operatorname{tp}(b/Am)$ の解を $\bar{b} \in M$ とする. このときある $\varphi_l(x,\bar{b}) \in p$ となり, p は $A \perp \text{divide}$ する.

命題 **2.12.** q を A-invariant global type* *17 とする. このとき q は A 上 fork しない.

証明. q が A 上 fork しないことを示せば良い. $\varphi(x,b) \in q$ を dividing formula とする. $(b_i)_{i \in \omega}$ をその witness とする. q は A-invariant より, 各 $i \in \omega$ について $\varphi(x,b_i) \in q$ となり矛盾. よって q は A 上 divide しない.

例 2.13. q を A-invariant global type とする. 列 $(b_i)_{i \in \omega}$ を各 b_i が $q \upharpoonright A \cup \{b_j \mid j < i\}$ を実現するように取る. このとき $(b_i)_{i \in \omega}$ は A 上の Morley sequence.

証明. 仮定の条件を満たす列を good ということにする. good な列の部分列はまた good となる.

まず indiscernibility を示す. good な列 (a_0,\ldots,a_n) と (b_0,\ldots,b_n) に対して $\operatorname{tp}(a_0,\ldots,a_n/A)=\operatorname{tp}(b_0,\ldots,b_n/A)$ を示せば良い. $n\in\omega$ についての帰納法で示す.

 $\operatorname{tp}(a_0,\ldots,a_{n-1}/A)=\operatorname{tp}(b_0,\ldots,b_{n-1}/A)$ を仮定する。 自己同型 $\sigma\in\operatorname{Aut}(\mathfrak{C}/A)\colon (a_0,\ldots,a_{n-1})\mapsto (b_0,\ldots,b_{n-1})$ を取る。このとき $\sigma(\operatorname{tp}(a_n/A\cup\{a_0,\ldots,a_{n-1}\}))=\operatorname{tp}(b_n/A\cup\{b_0,\ldots,b_{n-1}\})$ が成立することから良い。

次に independence を示す. これは q が A 上 fork しないことから良い.

命題 **2.14.** $(a_i)_{i \in I}$ を A 上 independent な列とする. $J,K \subseteq I$ を J < K を満たすとする. *18このとき $\operatorname{tp}((a_k)_{k \in K}/A \cup \{a_j \mid j \in J\})$ は A 上 divide しない.

証明. K が有限のときに示せば十分である. K のサイズの帰納法で示す.

 $K = \{k_0 < \dots < k_n\}$ とする. $a_{k_0} \downarrow_A \{a_i \mid i < k_0\}$ より、 $\operatorname{tp}(a_{k_0}/A \cup \{a_j \mid j \in J\})$ は $A \perp \operatorname{fork} \cup x$ い、よって $A \perp \operatorname{divide} \cup x$ い、また帰納法の仮定より、 $\operatorname{tp}((a_{k_1}, \dots, a_{k_n})/A \cup \{a_j \mid j \in J\} \cup \{a_{k_0}\})$ は $A \perp \operatorname{divide} \cup x$ い、

よって命題 1.12 より $\operatorname{tp}((a_{k_0},\ldots,a_{k_n})/A \cup \{a_j\mid j\in J\})$ は A 上 divide しない.

^{*16} A is independent form B over C という

 $^{^{*17}}$ $\sigma \in \operatorname{Aut}(\mathfrak{C}/A)$ で不変なもの

^{*} 18 $\forall a \in J \forall b \in K(a < b)$ のこと

定義 2.15. μ を無限基数とする.

$$\beth_{\alpha}(\mu) = \begin{cases} \mu & (\alpha = 0) \\ 2^{\beth_{\beta}(\mu)} & (\alpha = \beta + 1) \\ \sup_{\beta < \alpha} \beth_{\beta}(\mu) & (\alpha : limit) \end{cases}$$

と定義する.

定理 **2.16** (Erdös-Rado). $\beth_n^+(\mu) \to (\mu^+)_{\mu}^{n+1}$

証明. $n \in \omega$ についての帰納法で示す. n = 0 の時は明らかなので良い.

n+1 のときを示す.分割 $f\colon [\beth_{n+1}^+(\mu)]^{n+2} \to \mu$ を任意に取る.十分大きな正則基数 Ξ を

$$\{f, \beth_{n+1}^+(\mu)\} \cup \mu \subseteq H_\Xi$$

となるように取る. $M \prec H_{\Xi}$ を次を満たすように取る.

- $\bullet \ \{f,\beth_{n+1}^+(\mu)\} \cup \mu \subseteq M$
- $[M]^{\leq \beth_n^+(\mu)} \subset M$
- $|M| = \beth_{n+1}(\mu)$

列 $\langle \beta_{\xi} \in \beth_{n+1}^+(\mu) \cap M \mid \xi < \beth_n^+(\mu) \rangle$ を各 $\xi < \beth_n^+$ に対して次を満たすように帰納的に構成する.

- 全ての $\zeta < \xi$ に対して, $\beta_{\zeta} < \beta_{\xi}$
- 全ての $\zeta_0, \ldots, \zeta_n < \xi$ に対して, $f(\beta_{\zeta_0}, \ldots, \beta_{\zeta_n}, \beta_{\varepsilon}) = f(\beta_{\zeta_0}, \ldots, \beta_{\zeta_n}, \alpha)$

 ξ まで構成したとする. $E=\{\beta_\zeta\mid \zeta<\xi\}\subseteq \beth_{n+1}^+(\mu)\cap M$ とする. $g\colon [E]^{n+1}\to \mu$ を $g(x)=f(x\cup\{\alpha\})$ と定義する. このとき $g\in M$ となる. *19

 α の取り方より、

$$H_{\Xi} \models \exists x < \beth_{n+1}^+(\mu) [\forall y \in E(y < x) \land \forall z \in [E]^{n+1}(g(z) = f(z \cup \{x\}))]$$

が成立するので初等性から M での witness を β_{ξ} とすれば良い.

 $Z = \{\beta_{\xi} \mid \xi < \beth_n^+(\mu)\}$ とおく. $h: [Z]^{n+1} \to \mu$ を $h(x) = f(x \cup \{\alpha\})$ と定義する. 帰納法の仮定より $H \in [Z]^{\mu^+}$ を $|h^n[H]^{n+1}| = 1$ を満たすようにとる. 構成より H は分割 f に対して homogeneous となる. \square

命題 2.17. 任意の A に対してある無限基数 λ が存在して、任意のサイズ λ の全順序集合で添字づけられた列 $(a_i)_{i\in I}$ に対して、ある A-indiscernible $(b_i)_{i\in\omega}$ が存在して次を満たす.

任意の $j_1 < \cdots < j_n \in \omega$ に対して、ある $i_1 < \cdots < i_n \in I$ が存在して、

$$\operatorname{tp}((a_{i_1}, \dots, a_{i_n})/A) = \operatorname{tp}((b_{j_1}, \dots, b_{j_n})/A)$$

が成立する.

証明、 $\tau = \sup_{n \in \omega} |S_n(A)|$ とする. $\lambda = \beth_{\tau^+}(\aleph_0)$ とすると Erdös-Rado より次が成立する.

 $^{^{*19}}$ M の closure から明らか

- $cf(\lambda) > \tau$
- 任意の $\kappa < \lambda$ と任意の $n \in \omega$ に対してある $\delta < \lambda$ が存在して, $\delta \to (\kappa)^n$ が成立する

タイプの列 $p_1(x_1) \subseteq p_2(x_1, x_2) \subseteq \ldots$ で次を満たすものを n に関する帰納法で構成する.

- $p_n \in S_n(A)$
- 任意の $\kappa < \lambda$ に対してある $J \in [I]^{\kappa}$ が存在して、任意の $i_1 < \cdots < i_n \in J$ に対して $\operatorname{tp}((a_{i_1},\ldots,a_{i_n})/A) = p_n$ が成立する

 $(b_i)_{i\in\omega}$ を $\bigcup_{n\in\omega} p_n$ の実現として取れば A-indiscernible となり欲しいものとなっている.

 p_{n-1} まで構成したとする. $\kappa < \lambda$ を任意に取る. $\delta < \lambda$ を $\delta \to (\kappa)^n_{\tau}$ を満たすように取る. また構成より $J \in [I]^{\delta}$ を任意の $i_1 < \dots < i_{n-1} \in J$ に対して $\operatorname{tp}((a_{i_1},\dots,a_{i_{n-1}})/A) = p_{n-1}$ が成立するように取る. $\delta \to (\kappa)^n_{\tau}$ を用いて, $K \in [J]^{\kappa}$ と p^{κ}_n を任意の $i_1 < \dots < i_n \in K$ に対して $\operatorname{tp}((a_{i_1},\dots,a_{i_n})/A) = p^{\kappa}_n$ が成立するように取る. このとき $\tau < \operatorname{cf}(\lambda)$ より, ある p が存在して cofinally many な κ について $p = p^{\kappa}_n$ が成立する. この p を p_n として取れば良い.

補題 **2.18.** $p \in S(B)$ は $A \perp$ fork しないと仮定する. このとき長さが無限の $A \perp$ の Morley sequence in p で B-indiscernible となるものが存在する.

特に T が simple のとき任意の $p \in S(A)$ に対して、長さが無限の A 上の Morley sequence in p が存在する.

証明. non-forking extension を取ることによって一般性を損なうことなく $A \subseteq B$ と仮定して良い.

 a_0 を $p_0=p$ の実現として取る, $p_1\in \mathrm{S}(Ba_0)$ を p_0 の non-forking extension とし, p_1 を p_1 の実現として取る. この操作を繰り返すことによって任意の $\lambda\in \mathrm{ON}$ に対して $(a_i)_{i<\lambda}$ を $a_i\downarrow_A B\{a_j\mid j< i\}$ を満たすように取れる. 命題 2.17 より B-indiscernible $(b_j)_{j\in\omega}$ を取る. これは条件を満たすものになっている.

補題 **2.19.** T を simple とする. $\pi(x,y)$ を A 上のタイプとする. $(b_i)_{i\in\omega}$ を A 上の Morley sequence とし、 $\bigcup_{i\in\omega}\pi(x,b_i)$ は consistent と仮定する. このとき $\pi(x,b_0)$ は A 上 divide しない.

証明. the Standard lemma より任意の全順序 I について、A 上の Morley sequence in $\operatorname{tp}(b_0/A)$ で $\Sigma(x) = \bigcup_{i \in I} \pi(x, b_i)$ が consistent となるものが取れる.

I を $|T|^+$ の逆順序として取る. $\Sigma(x)$ の実現を c とする. 命題 2.5 より i_0 を $\operatorname{tp}(c/A \cup \{b_i \mid i \in I)$ が $A \cup \{b_j \mid j > i_0\}$ 上 divide しないように取る. 命題 2.14 より, $\operatorname{tp}(\{b_i \mid i > i_0\}/Ab_{i_0})$ は A 上 divide しない. 命題 1.12 より $\operatorname{tp}(c \cup \{b_i \mid i > i_0\}/Ab_{i_0})$ は A 上 divide しない. よって $\pi(x,b_{i_0})$ は A 上 divide しない. b_{i_0} は $\operatorname{tp}(b_0/A)$ の実現より, $\pi(x,b_0)$ は A 上 divide しない.

以下、Simple theory において良い性質が成り立つことを示す.

命題 **2.20.** T を simple とする. このとき $\pi(x,b)$ が A 上 divide することと A 上 fork することは同値.

証明. $\pi(x,b)$ は A 上 divide しないと仮定する. $\pi(x,b) \models \bigvee_{l < d} \varphi_l(x,b) = \psi(x,b)$ とする.

Simplicity より $(b_i)_{i\in\omega}$ を A 上の Morley sequence in $\operatorname{tp}(b/A)$ とする. $\pi(x,b)$ は A 上 dvide しないことから $\{\psi(x,b_i)\mid i\in\omega\}$ は consistent となる. よってある無限部分集合 $I\subseteq\omega$ が存在して $\{\varphi_l(x,b_i)\mid i\in I\}$ は consistent となる. 補題 2.19 より $\varphi_l(x,b)$ は A 上 divide しない. よって $\pi(x,b)$ は A 上 fork しない.

命題 **2.21** (Symmetry). T を simple とする. このとき $A \downarrow_C B$ と $B \downarrow_C A$ は同値.

証明. $A \downarrow_C B$ を仮定する. 任意の $a \in [A]^{<\omega}$ と $b \in [B]^{<\omega}$ に対して, $b \downarrow_C a$ を示せば十分である. 仮定より $a \downarrow_C b$ が成立し、命題 2.18 より、 $(a_i)_{i \in \omega}$ を C 上の Morley sequence in $\operatorname{tp}(a/bC)$ かつ bC-indiscernible を満たすものとしてとる. $p(x,y) = \operatorname{tp}(ab/C)$ とする. このとき $\bigcup_{i \in \omega} p(a_i,y)$ は consistent. よって補題 2.19 より、p(a,y) は C 上 divide しない.

系 2.22. T を simple とする. $B \subset C \subset D$ とする. このとき

$$A \downarrow_B D \leftrightarrow A \downarrow_B C \land A \downarrow_C D$$

が成立する. *20

証明. (\rightarrow) 定義より明らか、これは T を simple でなくても成立する.

(←) これは命題 1.12 の言い換えである.

系 2.23. 列 $(a_i)_{i\in I}$ が A 上 independent であることは I の順序によらない.

証明. $i \in I$ を任意に取る. $J, K \subseteq I$ を J < K となるように任意に取る.

 $a_J = \{a_j \mid j \in J\}, \ a_K = \{a_j \mid j \in K\}$ とおく. $a_i \downarrow_A a_J a_K$ を示す.

命題 2.14 より $a_K \downarrow_A a_J a_i$ が成立する.特に $a_K \downarrow_A A a_J a_i$ が成立し,Monotonicity より $a_K \downarrow_{A a_J} A a_J a_i$ が成立し $a_K \downarrow_{A a_J} a_i$ が成立する.Symmetry より $a_i \downarrow_{A a_J} a_K$ が成立する.また independence より $a_i \downarrow_A a_J$ が成立し,Transitivity より $a_i \downarrow_A a_J a_K$ が成立する.

補題 2.24. T を simple とする. I を A 上の長さ無限の Morley sequence とする.

このとき I が Ac-indiscernible ならば $c \downarrow_A I$ が成立する.

証明. 一般性を損なうことなく $I=(a_i)_{i\in\omega}$ として良い. $\varphi(x,a_0,\ldots,a_{n-1})\in \operatorname{tp}(c/AI)$ を任意に取る. $b_i=(a_{ni},\ldots,a_{ni-i+1})$ とすると命題 2.14 から $(b_i)_{i\in\omega}$ は A 上の Morley sequence となる. また取り方より $\{\varphi(x,b_i)\mid i\in\omega\}$ は consistent. よって補題 2.19 より $\varphi(x,b_0)$ は A 上 divide しない.

3 The independence theorem

この章では Independence theorem を証明する. また Kim-Pillay による Simple theory の特徴付けを証明する. そのあと Kim-Pillay を用いていくつか Simple theory の具体例を挙げる.

特に断りのない限り T は Simple と仮定する. 任意の theory で成り立つ命題はそのことを明記する.

定義 3.1. A を集合とする. $\operatorname{nc}_A(a,b)$ とはある A-indiscernible $(c_i)_{i\in\omega}$ が存在して $c_0=a,\,c_1=b$ を満たすときのことをいう.

定義 3.2. 論理式 $\varphi(x,y)$ が thick であるとは全ての $i < j \in \omega$ について, $\models \neg \varphi(c_i,c_j)$ を満たすような列 $(c_i)_{i \in \omega}$ が存在しないときのことをいう.

条件に現れる列のことを antichain と呼ぶ. compactness より thick な論理式に対しては antichain の長さには有限の上界があることがわかる. 次の命題より nc は type-definable であることがわかる.

^{*20} \leftarrow & Transitivity, \rightarrow & Monotonicity \geq \vee 5.

命題 3.3 (T は任意). A を集合, a, b を有限 tuple とする. 次は同値.

- 1. $\operatorname{nc}_A(a,b)$
- 2. 任意の thick L(A)-論理式 $\varphi(x,y)$ に対して $\models \varphi(a,b)$ が成立する.

証明・ $p(x,y)=\operatorname{tp}(ab/A)$ とする. the Standard lemma より $\operatorname{nc}_A(a,b)$ はある列 $(c_i)_{i\in\omega}$ が存在して、任意の $i< j\in\omega$ に対して $\models p(c_i,c_j)$ であることは同値である. また compactness よりこれは任意の $\varphi\in p$ に対して、ある列 $(c_i)_{i\in\omega}$ が存在して、任意の $i< j\in\omega$ に対して $\models \varphi(c_i,c_j)$ であることと同値である.

命題 3.4 (T は任意). 任意の thick な論理式 $\varphi(x,y)$ に対して、ある symmetric*21かつ thick な論理式 $\psi(x,y)$ が存在して $\models \forall x \forall y (\psi(x,y) \rightarrow \psi(x,y))$ が成立する.

証明. thick な論理式は \land で閉じていることは定義から明らか. compactness より順序型 ω で列が取れたとき任意の全順序に拡張することができるから ω の逆順序を考えることによって $\varphi(x,y)$ が thick なとき, $\psi(x,y) \equiv \varphi(y,x)$ は thick となる.

よって thick な論理式 $\varphi(x,y)$ に対して, $\theta(x,y) \equiv \varphi(x,y) \wedge \varphi(y,x)$ は求めるものとなる.

命題 3.5 (T は任意). a, b はモデル M 上で同じタイプを持っているとする. このときある c が存在して $\operatorname{nc}_M(a,c)$ かつ $\operatorname{nc}_M(c,b)$ が成立する.

証明. thick なら論理式は \land で閉じていることから compactness より任意の symmetric かつ thick な $\mathrm{L}(M)$ - 論理式 $\varphi(x,y)$ について $\models \exists z (\varphi(a,z) \land \varphi(b,z))$ を示せば良い.

 φ は thick かつ $M \models T$ より maximal antichain a_0, \ldots, a_{n-1} が M の中で取れる. このとき極大性よりある a_i が存在して $\models \varphi(a,a_i)$ を満たす. a,b はモデル M 上で同じタイプを持っていることから $\models \varphi(b,a_i)$ が成立する.

命題 **3.6** (T は任意)**.** $(b_i)_{i\in\omega}$ を A-indiscernible とする. また $(b_i)_{1\leq i\in\omega}$ は Aa_0b_0 -indiscernible であるとする. このときある a_1 が存在して $\operatorname{nc}_A(a_0b_0,a_1b_1,)$ が成立する.

証明.自己同型で移すことで a_i を $\operatorname{tp}(a_0b_0b_1\dots/A)=\operatorname{tp}(a_ib_ib_{i+1}\dots/A)$ を満たすように取る.

the Standard lemma を使って自己同型で移すことで A-indiscernible $(c_ib_i)_{i\in\omega}$ で $(a_ib_i)_{i\in\omega}$ 上の EM-type を実現するものを取る. a_i の取り方と $(b_i)_{1\leq i\in\omega}$ は Aa_0b_0 -indiscernible であることから任意の $i_1<\cdots< i_n\in\omega$ について $\operatorname{tp}(c_{i_1}b_{i_2}\ldots b_{i_n}/A)=\operatorname{tp}(a_0b_0b_1\ldots b_{n-1}/A)$ が成立する.

よって $\operatorname{tp}(c_0b_0b_1\dots/A)\operatorname{tp}(a_0b_0b_1\dots/A)$ が成立する. あとは自己同型で移して a_1 を取れば良い.

補題 3.7. $\mathcal{I}=(a_i)_{i\in I}$ を A-indiscernible とし, $\mathcal{J}=(a_j)_{j\in J}$ を \mathcal{I} の initial segment で最大元を持たないと する. *22 このとき $\mathcal{I}\setminus\mathcal{J}$ は $A\mathcal{J}$ 上の Morley sequence となる.

証明. independence を示せば良い. 任意の $i \in \mathcal{I} \setminus \mathcal{J}$ と任意の $X \in [\mathcal{I} \setminus \mathcal{J}]^{<\omega}$ で X < i を満たすものについて $a_i \downarrow_{A\mathcal{J}} a_X = \{a_k \mid k \in X\}$ を示せば十分. \mathcal{J} は最大限を持たないことより indiscernibility よりずらすことで $\operatorname{tp}(a_X/A\mathcal{J}a_i)$ は $A\mathcal{J}$ で有限充足可能より, $A\mathcal{J}$ 上で fork しない.

命題 3.8. $\varphi(x,a)$ は A 上 fork しないとし, $\operatorname{nc}_A(a,b)$ と仮定する. このとき $\varphi(x,a) \wedge \varphi(x,b)$ は A 上 fork し

 $^{*^{21}}$ $\varphi(a,b)$ と $\varphi(b,a)$ が同値

^{*22} 適宜順序は逆転させてください.

ない.

証明・ $\operatorname{nc}_A(a,b)$ かつ the Standard lemma より A-indiscernible $\mathcal{J}\sqcup\mathcal{I}$ を $a,b\in\mathcal{I}$, a< b かつ \mathcal{J} は最大元を 持たないように取る. $\varphi(x,a)$ の non-forking extension を取ることによって c を $\varphi(x,a)$ の実現で $c \downarrow_A \mathcal{J}a$ を満たすように取る. 系 1.9 より \mathcal{I} は $A\mathcal{J}c$ -indiscernible としても良い. 補題 3.7 より \mathcal{I} は $A\mathcal{J}$ 上の Morley sequence となる. 補題 2.24 より $c \downarrow_{A\mathcal{J}} \mathcal{I}$ が成立する. Transitivity より $c \downarrow_A \mathcal{J} \mathcal{I}$ が成立する. c は $\varphi(x,b)$ の実現でもあるから $\varphi(x,a) \wedge \varphi(x,b)$ は A 上 fork しない.

命題 **3.9.** $\operatorname{nc}_A(b_0,b_1)$ かつ $a_0 \downarrow_{Ab_0} b_1$ と仮定する. このときある a_1 が存在して $\operatorname{nc}_A(a_0b_0,a_1b_1)$ が成立する.

証明. $\operatorname{nc}_A(b_0,b_1)$ より A-indiscernible $(b_i)_{i\in\omega}$ を取る. $\operatorname{tp}(a_0/Ab_0b_1)$ は Ab_0 上 divide しないので系 1.9 より, $(b_i)_{a\leq i\in\omega}$ は Aa_0b_0 -indiscernible としても良い.命題 3.6 より良い.

命題 **3.10.** $\varphi(x,a_0) \wedge \psi(x,b_0)$ は $A \perp$ fork しないとし、 $\operatorname{nc}_A(b_0,b_1)$ かつ $a_0 \downarrow_{Ab_0} b_1$ を仮定する. このとき $\varphi(x,a_0) \wedge \psi(x,b_1)$ は $A \perp$ fork しない.

証明. 命題 3.9 より a_1 を $\operatorname{nc}_A(a_0b_0,a_1b_1)$ を満たすように取る. 命題 3.8 より $\varphi(x,a_0)\wedge\psi(x,b_1)$ は A 上 fork しない.

命題 **3.11.** $\varphi(x,a_0) \wedge \psi(x,b_0)$ は A 上 fork しないとし, $a_0 \downarrow_A b_0 b_1$ かつ b_0 と b_1 はある A を含むモデル M 上で同じタイプを持つと仮定する.このとき $\varphi(x,a_0) \wedge \psi(x,b_1)$ は A 上 fork しない.

命題 3.12. $M \models T$ とし, $\varphi(x,y)$ と $\psi(x,y)$ を $\mathrm{L}(M)$ -論理式とする. 次を仮定する.

- $a_0 \downarrow_M b_0$, $a_1 \downarrow_M a_0$, $b_1 \downarrow_M b_0$
- $\bullet \models \varphi(a_1, a_0) \land \psi(b_1, b_0)$
- $tp(a_1/M) = tp(b_1/M)$

このとき $\varphi(x,a) \wedge \psi(x,b)$ は M 上 fork しない.

証明・自己同型で移し、non-forking extension の実現を取ることによって a_2 を $\operatorname{tp}(a_2a_1/M)=\operatorname{tp}(b_0b_1/M)$ かつ $a_2 \downarrow_M a_0a_1b_0b_1$ を満たすように取る。今 T は Simple より independence は順序によらないことに注意する。 $a_2 \downarrow_M a_0a_1$ かつ $a_1 \downarrow_M a_0$ より $a_1 \downarrow_M a_0a_2$ が成立する。同様に $a_2 \downarrow_M a_0b_0$ かつ $a_0 \downarrow_M b_0$ より $a_0 \downarrow_M a_2b_0$ が成立する。 $\models \psi(b_1,b_0)$ より, $\models \psi(a_1,a_2)$ が成立する。また $\varphi(x,a_0) \wedge \psi(x,a_2) \in \operatorname{tp}(a_1/Ma_0a_2)$ は M 上 fork しない。

よって $\varphi(x,a_0) \wedge \psi(x,a_2)$ は M 上 fork せず, $a_0 \downarrow_M a_2b_0$ かつ $\operatorname{tp}(b_0/M) = \operatorname{tp}(a_2/M)$ が成立することより 命題 3.11 より, $\varphi(x,a) \wedge \psi(x,b)$ は M 上 fork しない.

^{*23} 自己同型で移せば良いので forking は保たれる. このような取り替えは今後もよくやるが, 適切な自己同型で移して forking を保っているので一般性を損なわないことに注意する.

定理 **3.13** (Independence theorem). b, c はモデル M 上で同じタイプを持つとする.

$$B \downarrow_M C, b \downarrow_M B, c \downarrow_M C$$

が成立すると仮定する. このときある d が存在して次が成立する.

- $\operatorname{tp}(d/B) = \operatorname{tp}(b/B)$
- $\operatorname{tp}(d/C) = \operatorname{tp}(c/C)$
- $d \downarrow_M BC$

証明. T は Simple より dividing と forking は同値であるから、命題 3.12 より $\operatorname{tp}(b/MB) \cup \operatorname{tp}(c/MC)$ は M 上 fork しない. non-forking extension $p \in S(MBC)$ を取り、その実現を d とすれば良い.

Simple theory において \downarrow は次の性質を持つことをこれまで示してきた.

- 1. (Monotonicity and Transitivity) $a \downarrow_A BC$ と $a \downarrow_A B$ かつ $a \downarrow_{AB} C$ は同値.
- 2. (Symmetry) $a \downarrow_A b$ と $b \downarrow_A a$ は同値.
- 3. (Finite character) 任意の $b \in [B]^{<\omega}$ について $a \downarrow_A b$ ならば $a \downarrow_A B$ が成立する.
- 4. (Local character) ある無限基数 κ が存在して、任意の a と B に対してある $B_0 \in [B]^{<\kappa}$ が存在して $a \downarrow_{B_0} B$ が成立する.
- 5. (Existence) 任意の a, A, C に対して, ある b が存在して $\operatorname{tp}(a/A) = \operatorname{tp}(b/A)$ かつ $b \downarrow_A C$ が成立する.
- 6. (Independence over models) 任意の $M \models T$ と $\operatorname{tp}(a_1/M) = \operatorname{tp}(b_1/M)$ かつ

$$a_0 \downarrow_M b_0, a_1 \downarrow_M a_0, b_1 \downarrow_M b_0$$

を満たすものに対して、あるcが存在して次を満たす.

- $\operatorname{tp}(c/Ma_0) = \operatorname{tp}(a_1/Ma_0)$
- $\operatorname{tp}(c/Mb_0) = \operatorname{tp}(b_1/Mb_0)$
- $c \downarrow_M a_0 b_0$

実はこれが Simple theory を特徴付ける.

定理 **3.14** (Kim-Pillay). T を完全な理論とする. \downarrow^0 を有限 tuple a と集合 A, B の関係に対して定義された $\mathrm{Aut}(\mathfrak{C})$ で不変かつ, 上の 6 つの性質を満たすものとする. このとき T は Simple かつ $\downarrow^0 = \downarrow$ が成立する.

主張 1. ある $M \models T$ が存在して次を満たす.

- $A \subseteq M$
- $(b_i)_{i \in \omega}$ lt M-indiscernible
- $b_i \downarrow_M^0 \{b_j \mid j < i\}$

proof of claim1. the Standard lemma を使って自己同型で移すことより $(b_i)_{i \in \omega}$ を $(b_i)_{i \leq \kappa}$ に延長する. 次のようなモデルの長さ κ の昇鎖 $A \subseteq M_0 \prec M_1 \prec \ldots$ を構成する.

• 任意の $i < \kappa$ について, $\{b_i \mid j < i\} \subseteq M$ が成立する.

• $(b_i)_{i < j < \kappa}$ lt M_i -indiscernible.

これは the Standard lemma を使い自己同型で移すことで帰納的に構成することができる.

 b_{κ} と $M_{\kappa} = \bigcup_{\xi < \kappa} M_{\xi}$ に対して Local character を用いることで $S \in [M_{\kappa}]^{<\kappa}$ を $b_{\kappa} \downarrow_{S}^{0} M_{\kappa}$ を満たすように取る. $S \subseteq M_{i_0}$ となる最小の i_0 を取る. Monotonicity より, $b_{\kappa} \downarrow_{S}^{0} M_{i_0} \cup \{b_j \mid i_0 \leq j < \kappa\}$ が成立する. 再び Monotonicity より $b_{\kappa} \downarrow_{M_{i_0}}^{0} \{b_j \mid i_0 \leq j < \kappa\}$ が成立する.

このとき任意の $i<\kappa$ について, $b_i\downarrow_{M_{i_0}}^0\{b_j\mid i_0\leq j< i\}$ が成立する.

(∵ 任意に $i<\kappa$ を取る. 任意に $\bar{b}\in[\{b_j\mid i_0\leq j< i\}]^{<\omega}$ を取る. Finite character より $b_i\downarrow_{M_{i_0}}^0$ \bar{b} を言えば良い. Monotonicity より $b_\kappa\downarrow_{M_{i_0}}^0$ \bar{b} が成立する. $(b_j)_{i_0\leq j\leq\kappa}$ は M_{i_0} -indiscernible より $\operatorname{tp}(\bar{b}b_\kappa/M_{i_0})=\operatorname{tp}(\bar{b}b_i/M_{i_0})$ が成立する. 自己同型で移すことで $b_i\downarrow_{M_{i_0}}^0$ \bar{b} が成立する.)

 M_{i_0} と $(b_{i_0+n})_{n\in\omega}$ を考え、自己同型で移せば良い. \dashv claim1

主張 2. $a \downarrow_M^0 b$ と仮定して良い.

proof of claim2. Existence より c を $\operatorname{tp}(c/Ab) = \operatorname{tp}(a/Ab)$ かつ c $\bigcup_{Ab}^0 M$ となるように取る. 自己同型で移して M や $(b_i)_{i\in\omega}$ を取り替えることで a $\bigcup_{Ab}^0 M$ をしても良い. Transitivity より a $\bigcup_A^0 Mb$ が成立し、Monotonicity より a $\bigcup_M^0 b$ が成立する. \dashv claim2

次を満たす $(a_i)_{i \in \omega}$ を構成する.

- $a_0 = a$
- $a_i \downarrow_M^0 \{b_i \mid j \leq i\}$
- $p_i(x) = \operatorname{tp}(a_{i+1}/M\{b_j \mid j \le i\}) = \operatorname{tp}(a_i/M\{b_j \mid j \le i\})$
- $\operatorname{tp}(a_i b_i / M) = \operatorname{tp}(ab / M)$

 a_0, \ldots, a_i まで構成したとき自己同型で移すことで \bar{a} を

$$\operatorname{tp}(\bar{a}b_{i+1}/M) = \operatorname{tp}(ab/M)$$

を満たすように取る. Independence over models を

$$\{b_i \mid j \leq i\} \downarrow_M^0 b_{i+1}, \ \bar{a} \downarrow_M^0 b_{i+1}, \ a_i \downarrow_M^0 \{b_i \mid j \leq i\}$$

に対して使うことで a_{i+1} を取れば良い.

構成より $\bigcup_{i\in\omega} p_i(x)$ は consistent となる. $p(x,y)=\operatorname{tp}(ab/M)$ とすると, $p(x,b_i)\subseteq\bigcup_{i\in\omega} p_i(x)$ より, 補題 1.8 より $\operatorname{tp}(a/Ab)$ は A 上 divide しない.

このことから Local character と命題 2.5 より T は Simple となる.

次に $\operatorname{tp}(a/Ab)$ が A 上 divide しないとき a $\bigcup_A^0 b$ が成立することを示す。 Existence を繰り返し用いること で任意の $\lambda \in \operatorname{ON}$ に対して, $(b_i)_{i \in \lambda}$ を $\bigcup_{i=1}^0$ -independent かつ $\operatorname{tp}(b_i/A) = \operatorname{tp}(b/A)$ を満たすように取れる.十分大きい λ を取り,補題 2.18 と同様の議論をすることによって $(c_i)_{i < \kappa}$ を次を満たすように取れる.

- A-indiscernible
- \bigcup_{A}^{0} -independent
- $c_0 = b$
- $\operatorname{tp}(c_i/A) = \operatorname{tp}(b/A)$

系 1.9 より c を $\operatorname{tp}(c/Ab) = \operatorname{tp}(a/Ab)$ かつ $(c_i)_{i < \kappa}$ が Ac-indiscernible を満たすように取る. Local character より $B \in [A \cup \{c_i \mid i < \kappa\}]^{<\kappa}$ を $c \downarrow_B^0 A \cup \{c_i \mid i < \kappa\}$ を満たすように取る. Monotonicity よりある i_0 が存在して $c \downarrow_{A \cup \{c_i \mid i < i_0\}}^0$ が成立する. $(c_i)_{i < \kappa}$ は \downarrow_A^0 -independent より, $c_{i_0} \downarrow_A^0 \{c_i \mid i < i_0\}$ が成立する. Transitivity より $c_{i_0} \downarrow_A^0 c \cup \{c_i \mid i < i_0\}$ が成立し、Monotonicity より $c_{i_0} \downarrow_A^0 c$ が成立する. $\operatorname{tp}(cc_{i_0}/A) = \operatorname{tp}(cb/A) = \operatorname{tp}(ab/A)$ より示された.

参考文献

[1] Tent, K., and Ziegler, M. (2012). A Course in Model Theory (Lecture Notes in Logic). Cambridge: Cambridge University Press.