VARIANCE AND STANDARD DEVIATION

The **variance** or **standard deviation** of the data values give a measure of the spread of the data.

If a discrete random variable X has k possible values $x_1, x_2, x_3, ..., x_k$ with probabilities $p_1, p_2, p_3, ..., p_k$

then:

- the expected value or mean is $E(X) = \mu = \sum x_i p_i$
- the variance is $Var(X) = \sigma^2 = \sum (x_i \mu)^2 p_i = \mathbb{E}[(X \mu)^2]$
- the standard deviation is $\sigma = \sqrt{\sum (x_i \mu)^2 p_i}$.

Find the standard deviation for this distribution.

x_i	1	2	3	4	5
p_i	0.23	0.38	0.21	0.13	0.05

The mean
$$\mu = \sum x_i p_i = 2.39$$

The standard deviation

$$\sigma = \sqrt{\sum (x_i - \mu)^2 p_i}$$

$$= \sqrt{(1 - 2.39)^2 \times 0.23 + (2 - 2.39)^2 \times 0.38 + \dots + (5 - 2.39)^2 \times 0.05}$$

$$\approx 1.12$$

An alternative formula for the standard deviation is

$$\sigma = \sqrt{\sum x_i^2 p_i - \mu^2}.$$

For example, for the roll of a die:

$$\mu = \sum x_i p_i = 1(\frac{1}{6}) + 2(\frac{1}{6}) + 3(\frac{1}{6}) + 4(\frac{1}{6}) + 5(\frac{1}{6}) + 6(\frac{1}{6}) = 3.5$$
and
$$\sigma = \sqrt{\sum x_i^2 p_i - \mu^2} = \sqrt{1^2(\frac{1}{6}) + 2^2(\frac{1}{6}) + 3^2(\frac{1}{6}) + 4^2(\frac{1}{6}) + 5^2(\frac{1}{6}) + 6^2(\frac{1}{6}) - (3.5)^2}$$

$$\approx 1.708$$

Use $\sigma^2 = \sum (x_i - \mu)^2 p_i$ to show that $\sigma^2 = \sum x_i^2 p_i - \mu^2$.

$$\sigma^{2} = \sum (x_{i} - \mu)^{2} p_{i}$$

$$= (x_{1} - \mu)^{2} p_{1} + (x_{2} - \mu)^{2} p_{2} + \dots + (x_{n} - \mu)^{2} p_{n}$$

$$= (x_{1}^{2} - 2x_{1}\mu + \mu^{2}) p_{1} + (x_{2}^{2} - 2x_{2}\mu + \mu^{2}) p_{2} + \dots + (x_{n}^{2} - 2x_{n}\mu + \mu^{2}) p_{n}$$

$$= (x_{1}^{2} p_{1} + x_{2}^{2} p_{2} + x_{3}^{2} p_{3} + \dots + x_{n}^{2} p_{n}) - 2\mu (x_{1} p_{1} + x_{2} p_{2} + \dots + x_{n} p_{n})$$

$$+ \mu^{2} (p_{1} + p_{2} + p_{3} + \dots + p_{n})$$
Now $p_{1} + p_{2} + p_{3} + \dots + p_{n} = 1$

$$\therefore \sigma^{2} = \sum x_{i}^{2} p_{i} - 2\mu (\sum x_{i} p_{i}) + \mu^{2} (1)$$

$$= \sum x_{i}^{2} p_{i} - 2\mu (\mu) + \mu^{2} \qquad \{\text{since } \sum x_{i} p_{i} = \mu\}$$

$$= \sum x_{i}^{2} p_{i} - \mu^{2} \quad \text{as required}$$

Hence
$$E([X - \mu]^2) = E(X^2) - \mu^2$$
.

The previous slide showed that $Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$

This is the form the Nelson text book uses. Either form can be used.

A die is rolled and X = the square of the score. Calculate the mean, variance and standard deviation of X.

x	1	4	9	16	25	36
P(x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$E(X) = 1 \times \frac{1}{6} + 4 \times \frac{1}{6} + 9 \times \frac{1}{6} + 16 \times \frac{1}{6} + \cdots$$

$$\mu = 15\frac{1}{6}$$

$$E(X^{2}) = 1 \times \frac{1}{6} + 16 \times \frac{1}{6} + 81 \times \frac{1}{6} + \cdots$$

$$= 379 \frac{1}{6}$$

$$Var(X) = E(X^{2}) - \mu^{2}$$

$$= \frac{2275}{6} - \left(\frac{91}{6}\right)^{2}$$

$$= \frac{5369}{36}$$

$$\approx 149.139$$

$$\sigma = \sqrt{\frac{5369}{36}}$$

$$\approx 12.212$$

The mean is $15\frac{1}{6}$, the variance is about 149.1 and the standard deviation is about 12.2.

The number of coins given in change to customers at a fast food restaurant are recorded below.

Coin	5c	10c	20c	50c	\$1	\$2
Number	143	151	215	52	141	98

- **a** Estimate the probability distribution of *X*, the value of coins given in change.
- **b** Estimate the expected value, variance and standard deviation of X.

x	0.05	0.1	0.2	0.5	1	2
P(x)	0.1788	0.1888	0.2688	0.0650	0.1763	0.1225

$$E(X) \approx 0.05 \times 0.1778 + 0.1 \times 0.1888 + \cdots$$

 $\mu \approx 0.5353$

$$SD(X) = \sqrt{Var(X)}$$

$$\approx 0.6395$$

$$E(X^2) \approx (0.05)^2 \times 0.1788 + (0.1)^2 \times 0.1888 + \cdots$$

$$\approx 0.6956$$

$$Var(X) = E(X^{2}) - \mu^{2}$$

$$= 0.6956 - (0.5353)^{2}$$

$$\approx 0.4090$$

The expected value is about 53 cents, the variance is about 0.41 and the standard deviation is about 64 cents.

How to use a calculator to determine the mean and variance of a discrete probability functions.

https://www.youtube.com/watch?v=lpGxDQZuSa4

- 1 For each probability distribution, find:
 - i the mean μ
- ii the variance σ^2
- iii the standard deviation σ .

a

x	1	2	3
P(X=x)	0.3	0.4	0.3

b x 0 1 2 3 P(X = x) 0.2 0.4 0.1 0.3

Check your answers using technology.

1 a i $\mu = \sum x_i p_i = 1(0.3) + 2(0.4) + 3(0.3) = 2$

ii
$$\sigma^2 = \sum (x_i - \mu)^2 p_i$$

= $(1-2)^2 \times 0.3 + (2-2)^2 \times 0.4 + (3-2)^2 \times 0.3$
= 0.6

iii $\sigma = \sqrt{\sum (x_i - \mu)^2 p_i}$ $= \sqrt{0.6}$ ≈ 0.775

b i
$$\mu = \sum x_i p_i = 0(0.2) + 1(0.4) + 2(0.1) + 3(0.3) = 1.5$$

ii
$$\sigma^2 = \sum (x_i - \mu)^2 p_i$$

= $(0 - 1.5)^2 \times 0.2 + (1 - 1.5)^2 \times 0.4 + (2 - 1.5)^2 \times 0.1 + (3 - 1.5)^2 \times 0.3$
= 1.25

iii
$$\sigma = \sqrt{\sum (x_i - \mu)^2 p_i}$$

$$= \sqrt{1.25}$$

$$\approx 1.12$$

2 Consider the probability distribution alongside.

a Find the value of k.

b Find the mode of the distribution.

 \bullet Find the mean μ .

d Find the standard deviation σ .

						4
2	a	Since this	is a	probability	distribution,	$\sum_{i=1} p_i = 1$

$$\therefore k + 0.05 + 0.35 + 3k = 1$$

$$\therefore 4k + 0.4 = 1$$

$$\therefore 4k = 0.6$$

$$k = 0.15$$

$$\mu = \sum x_i p_i$$

$$= 2(0.15) + 4(0.05) + 10(0.35) + 20(0.45)$$

$$= 13$$

b
$$3k = 0.45$$

:. the value 20 has the highest probability of occurring, so this is the mode of the distribution.

d
$$\sigma = \sqrt{\sum (x_i - \mu)^2 p_i}$$

= $\sqrt{(2 - 13)^2 \times 0.15 + (4 - 13)^2 \times 0.05 + (10 - 13)^2 \times 0.35 + (20 - 13)^2 \times 0.45}$
= $\sqrt{47.4}$

A country exports crayfish to overseas markets. The buyers are prepared to pay high prices when the crayfish arrive still alive.

Let X be the number of deaths per dozen crayfish. The probability distribution for X is given by:

x	0	1	2	3	4	5	> 5
P(X = x)	0.54	0.26	0.15	k	0.01	0.01	0.00

- a) Find k
- b) Over a long period, what is the mean number of deaths per dozen crayfish?
- c) Find the standard deviation for the distribution.

a Since this is a probability distribution,
$$\sum p_i = 1$$

$$0.54 + 0.26 + 0.15 + k + 0.01 + 0.01 = 1$$

$$k + 0.97 = 1$$

$$k = 0.03$$

b
$$\mu = \sum x_i p_i$$

= $0(0.54) + 1(0.26) + 2(0.15) + 3(0.03) + 4(0.01) + 5(0.01)$
= $0.26 + 0.30 + 0.09 + 0.04 + 0.05$
= 0.74

So, over a long period the mean number of deaths per dozen crayfish is 0.74.

$$\sigma = \sqrt{\sum (x_i - \mu)^2 p_i}$$

$$= \sqrt{(0 - 0.74)^2 \times 0.54 + (1 - 0.74)^2 \times 0.26 + (2 - 0.74)^2 \times 0.15 + \dots + (5 - 0.74)^2 \times 0.01}$$

$$\approx 0.996$$

5 A die is numbered 1, 1, 2, 3, 3, 3. Let X be the result when the die is rolled once.

a Construct the probability distribution for X.

b Find the mean μ .

• Find the standard deviation for the distribution.

5 a

x	1	2	3
P(X=x)	2 6	$\frac{1}{6}$	<u>3</u> 6

b
$$\mu = \sum x_i p_i$$

$$= 1(\frac{2}{6}) + 2(\frac{1}{6}) + 3(\frac{3}{6})$$

$$= \frac{2}{6} + \frac{2}{6} + \frac{9}{6}$$

$$= \frac{13}{6}$$

$$\approx 2.17$$

$$\sigma = \sqrt{\sum (x_i - \mu)^2 p_i}$$

- 6 A random variable X has the probability distribution function $P(x) = \frac{x^2 + x}{20}$, x = 1, 2, 3. For this distribution, calculate the:
 - a) The μ

b) The σ

6
$$P(x) = \frac{x^2 + x}{20}$$
 for $x = 1, 2, 3$

x	1	2	3
P(x)	$\frac{2}{20} = 0.1$	$\frac{6}{20} = 0.3$	$\frac{12}{20} = 0.6$

$$\mu = \sum x_i p_i$$

= 1(0.1) + 2(0.3) + 3(0.6)
= 2.5

$$\sigma = \sqrt{\sum (x_i - \mu)^2 p_i}$$

$$= \sqrt{(1 - 2.5)^2 \times 0.1 + (2 - 2.5)^2 \times 0.3 + (3 - 2.5)^2 \times 0.6}$$

$$\approx 0.671$$

EXERCISE 2.07 (PAGE 81)

• Question 2, 3, 6, 10, 12, 14, 17