Versuchsbericht zu

W2 - Adiabatenexponent c_p/c_v von Gasen

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 28.05.2018 betreut von Pascal Grenz

Inhaltsverzeichnis

1	Kurzfassung Methoden Ergebnisse und Diskussion				
2					
3					
	3.1	Beoba	chtungen und Datenanalyse	3	
		3.1.1	Unsicherheiten	3	
		3.1.2	Bestimmung von κ nach Rüchardt-Flammersfeld	3	
		3.1.3	Bestimmung von κ nach Clément-Desormes	5	
	3.2	Diskus	ssion	5	
4	Sch	lussfolg	gerung	5	

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

3.1 Beobachtungen und Datenanalyse

3.1.1 Unsicherheiten

Die Unsicherheiten wurden gemäß GUM ermittelt. Außerdem wurde für Unsicherheitsrechnungen die Python Bibliothek "uncertainties" verwendet.

Waage: Die Waage zeigt das Gewicht mit einer Nachkommaselle an, woraus eine Unsicherheit von 0,03 g folgt (rechteckige WDF).

Stoppuhr: Die Zeit wurde in Sekunden mit zwei Nachkommastellen gemessen. Folglich ist die Unsicherheit 0,003 s (rechteckige WDF), jedochat die Reaktionszeit einen größeren Einfluss, wesshalb eine Unsicherheit von 0,1 s angenommen wird.

Messschieber: Die Unsicherheit des Messschiebers wurde auf 0,06 mm abgeschätzt (dreieckige WDF).

Maßstäbe: Ebenfalls eine analoge Messung, wobei die Unsicherheit 0,04 cm beträgt.

Schwingungszählung: Beim Zählen der 100 Schwingungen wird von maximal einer Schwingung zu viel bzw. zu wenig ausgegangen, sodass die Unsicherheit 0,6 beträgt (rechteckige WDF).

Luftdruck: Der Umgebungsdruck wurde mit einer Unsicherheit von 0,4 kPa ermittelt.

Glasflasche: Auf der Glasflasche war keine Unsicherheit angegeben. Außerdem war unklar, ob das Volumen des Stöpfels mit in die Angabe von 5450 cm³ eingegeht oder nicht. Desshalb wurde die Unsicherheit des Volumens mit 30 cm³ abgeschätzt.

3.1.2 Bestimmung von κ nach Rüchardt-Flammersfeld

Es wurden wie in Abschnitt 2 beschrieben die Zeit für 100 Schwingungen bei unterschielichen Abständen der Schellen gemessen. In Abb. 1 sind die Schwingdauern von Luft, Argon und Kohlenstoffdioxid gegen den Abstand der Schellen gemessen. Es wurde ein linearer York-Fit verwendet, da dieser auch die X-Fehler berücksichtigt. Aus den Y-Achsenabschnitten der Fit-Funktionen lassen sich die Schwingdauern für einen auf Null extrapolierten Wert des Schellenabstands bestimmen. Diese sind in Tabelle 1 aufeführt.

Abbildung 1: Gemessene Schwingdauern in Abhängigkeit von dem Abstand der Schellen.

In der Einführung wurde folgende Formel zur Bestimmung es Adiabatenexponenten hergeleitet:

$$\kappa = \frac{4\pi^2 m V_0}{p_0 A^2 T^2} \tag{1}$$

$$u(\kappa) = \kappa \sqrt{\left(\frac{u(m)}{m}\right)^2 + \left(\frac{u(V_0)}{V_0}\right)^2 + \left(\frac{u(p_0)}{p_0}\right)^2 + \left(\frac{2u(T)}{T}\right)^2 + \left(\frac{2u(A)}{A}\right)^2}$$
(2)

Das Volumen V_0 setzt sich zusammen aus dem der Glasflasche $V_F = (5450 \pm 30) \, \mathrm{cm}^3$ und dem Glasrohr mit einem Radius $r = (0.798 \pm 0.003) \, \mathrm{cm}$ und einer Höhe zum Spalt $h = (10.05 \pm 0.06) \, \mathrm{cm}$.

$$V_0 = V_F + r^2 \pi h \tag{3}$$

Somit betragen:

- Voumen $V_0 = (5470 \pm 30) \,\mathrm{cm}^3$.
- Fläche $A = r^2 \pi = (1,998 \pm 0,015) \,\mathrm{cm}^2$
- Masse $m = (7.20 \pm 0.03) \,\mathrm{g} \,\mathrm{(Messung)}$
- Umgebungsdruck $p_L = (101.2 \pm 0.4) \,\mathrm{kPa} \,\,(\mathrm{Messung})$

• Innendruck $p_0 = p_{\rm L} + \frac{m \cdot g}{A} = (101.5 \pm 0.4) \, \text{kPa}$

In Tabelle 1 sind die berechneten Adiabatenkoeffizienten zu den jeweiligen Schwingdauern aufgelistet.

Tabelle 1: Extrapolierte Schwingdauern sowie resultierende Adiabatenkoeffizienten.

	Luft	Argon	Kohlenstoffdioxid
Schwingungsdauer T in s	0.533 ± 0.003	$0,506 \pm 0,003$	0.557 ± 0.003
Adiabatenkoeffizient κ	$1,355 \pm 0,027$	$1,503 \pm 0,031$	$1,240 \pm 0,025$

3.1.3 Bestimmung von κ nach Clément-Desormes

In der Einführung wurde folgende Formel zur Bestimmung es Adiabatenexponenten hergeleitet:

$$\kappa = \frac{h_1}{h_1 - h_3} \tag{4}$$

$$u(\kappa) = \kappa^2 \cdot \sqrt{\left(\frac{h_3}{h_1}\right)^2 + 1} \cdot \frac{u(h)}{h_1} \tag{5}$$

Dabei ist h_1 die Höhe der Flüssigkeitssäule im Manometer nach der Erhöhung des Drucks im Gefäß und dessen folgender Temperaturausgleich mit der Umgebung. h_3 ist die Höhe, die sich ergibt, wenn man den Druck im Gefäß an den der Umgebung anpasst und sich, unter Druckänderung, ein (adiabatischer) Temperaturgleichgewicht einstellt.

In Tabelle 2 sind die Messwerte sowie folgende Adiabatenkoeffizienten aufgeführt. Es folgt ein Mittelwert für κ_{Luft} von 1,355 \pm 0,004.

Tabelle 2: Gemessene Höhe der Flüssigkeitssäule im Manometer und nach Gleichung (4) berechnete Adiabtenexponenten κ_{Luft} von Luft.

h_1 in cm	h_3 in cm	$\kappa_{ m Luft}$
$16,64 \pm 0,06$	$4,35 \pm 0,06$	$1,354 \pm 0,007$
$20,63 \pm 0,06$	$5,52 \pm 0,06$	$1,365 \pm 0,006$
$25,34 \pm 0,06$	$6,72 \pm 0,06$	$1,361 \pm 0,005$
$36,70 \pm 0,06$	$9,41 \pm 0,06$	$1,345 \pm 0,003$
$10,98 \pm 0,06$	$2,84 \pm 0,06$	$1,349 \pm 0,010$

3.2 Diskussion

4 Schlussfolgerung