◆矩估计法 (*****)

◆最大似然估计法(*****)

- ◆知识回顾
- > 辛钦大数定理

设 $X_1, X_2, \dots X_n$ 独立同分布, $E(X_i) = \mu$, 则即对任意 $\varepsilon > 0$:

$$\lim_{n\to\infty} P\left\{\left|\overline{X}-\mu\right|<\varepsilon\right\}=1, \quad \overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$$

即 \overline{X} 依概率收敛于 μ , 记为: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mu$

统计学结论: 样本均值依概率收敛于总体期望, 即

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} E(X)$$

- ◆矩估计法
- ▶ 原理: 大数定理

$$A_{k} = \frac{1}{n} \sum_{1}^{n} X_{i}^{k} \xrightarrow{P} \mu_{k} = E\left(X^{k}\right)$$

 A_k _____ 样本k阶原点矩 μ_k _ 总体k阶原点矩

注: 当k=1时, $\overline{X} \xrightarrow{P} E(X)$

- ◆矩估计法
- ightharpoonup 原理: 大数定理 $A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{P} \mu_k = E\left(X^k\right)$
- > 步骤:
 - |(1) 确定要估计参数的个数: k.
 - (2) 计算 $1 \sim k$ 阶总体原点矩: $\mu_m = E(X^m), m = 1, \dots, k$.
 - (3) 建立k个方程: $A_m = \frac{1}{n} \sum_{i=1}^{n} X_i^m = \mu_m = E(X^m), m = 1, \dots, k.$
 - (4)解方程得未知参数的矩估计量.
 - (5)将估计量中的 X_i 换成 x_i 得矩估计值.

◆矩估计法步骤(只有一个未知参数情形)

- (1) 计算总体期望: E(X). $(2) 建立方程: \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = E(X).$
- (3)解方程得未知参数的矩估计量. (4)将估计量中的X,换成x,得矩估计值.

例:已知X的分布律如下, X_1,X_2,X_3 为一样本,其样本值为: $x_1=1,x_2=2,x_3=1$ 求 θ 的矩估计量和矩估计值.

X	1	2	3
P	θ^2	$2\theta(1- heta)$	$\left(1\!-\!\theta\right)^{\!2}$

- (1) 计算总体期望: E(X). (2) 建立方程: $\overline{X} = E(X)$.
- (3)解方程得未知参数的矩估计量.
- (4)将估计量中的X,换成x,得矩估计值.

例:已知X的分布律如下, X_1,X_2,X_3 为一样本,其样本值为: $x_1=1,x_2=2,x_3=1$ 求 θ 的矩估计量和矩估计值.

X	1	2	3
P	θ^2	$2\theta(1- heta)$	$\left(1\!-\!\theta\right)^{\!2}$

解: 由已知得:
$$E(X) = 1 \times \theta^2 + 2 \times 2\theta (1-\theta) + 3 \times (1-\theta)^2 = 3-2\theta$$

令 $\overline{X} = E(X) \Rightarrow \overline{X} = 3-2\theta$

故 θ 的矩估计量为: $\tilde{\theta} = \frac{3-X}{2}$, 其中 \overline{X} 为样本均值.

 θ 的矩估计值为: $\hat{\theta} = \frac{3-x}{2}$, 其中x为样本均值的观察值.

由已知:
$$x = \frac{1}{3}(1+2+1) = \frac{4}{3}$$
, 从而 θ 的矩估计值为 $\hat{\theta} = \frac{3-x}{2} = \frac{5}{6}$

例: 已知X的密度为: $f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1 \\ 0, & \text{else} \end{cases}$, 其中未知参数 $\alpha > -1$ X_1, X_2, \dots, X_n 为一样本,求 α 的矩估计量和矩估计值.

- (1) 计算总体期望: E(X).
 (2) 建立方程: $\overline{X} = E(X)$.
 (3)解方程得未知参数的矩估计量.
 (4)将估计量中的 X_i 换成 x_i 得矩估计值.

例: 已知X的密度为: $f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1 \\ 0, & \text{else} \end{cases}$, 其中未知参数 $\alpha > -1$ X_1, X_2, \dots, X_n 为一样本,求 α 的矩估计量和矩估计值.

$$(1) 计算总体期望: E(X) = \int_0^1 x(\alpha+1)x^\alpha dx = \frac{\alpha+1}{\alpha+2}.$$

$$(2) 建立方程: \overline{X} = E(X) = \frac{\alpha+1}{\alpha+2}.$$

$$(3)解方程得 \alpha 的矩估计量: \tilde{\alpha} = \frac{2\overline{X}-1}{1-\overline{X}}.$$

$$(4) \alpha 矩估计值: \tilde{\alpha} = \frac{2\overline{X}-1}{1-\overline{X}}.$$

$$(2)$$
 建立方程: $\overline{X} = E(X) = \frac{\alpha+1}{\alpha+2}$

$$ig(3ig)$$
解方程得 eta 的矩估计量: $ilde{lpha}=rac{2X-1}{1-ar{X}}.$

$$(4)lpha$$
矩估计值: $ilde{lpha}=rac{2\overline{x}-1}{1-\overline{x}}$.

例:已知总体X的期望 μ 和方差 σ^2 存在且未知, X_1, X_2, \dots, X_n 为一样本, 求期望 μ 和方差 σ^2 的矩估计量.

- (1) 确定要估计参数的个数: k.

 (2) 计算1~k阶总体原点矩: $\mu_m = E(X^m), m = 1, \cdots, k$.

 (3) 建立k个方程: $A_m = \frac{1}{n} \sum_{i=1}^{n} X_i^m = \mu_m = E(X^m), m = 1, \cdots, k$.

 (4)解方程得未知参数的矩估计量.

 (5)将估计量中的 X_i 换成 x_i 得矩估计值.

- ◆最大似然估计法
- ▶ 原理:

在一次实验中,通常认为概率较大的事件比概率较小的事件容易发生;

故在一次实验中,若某事件发生了,则有理由认为该事件发生的概率较大。

▶ 似然函数: "样本取样本值的概率"

(1) 离散型:
$$L(\theta_1,\dots,\theta_k) = P\{X_1 = x_1,\dots,X_n = x_n\}$$

(2) 连续型
$$L(\theta_1,\dots,\theta_k) = f_{X_1X_2\dots X_n}(x_1,\dots,x_n)$$

- ▶ 似然函数: "样本取样本值的概率"
 - 离散总体似然函数

$$L(\theta_1, \dots, \theta_k) = P\{X_1 = x_1, \dots, X_n = x_n\} = P\{X_1 = x_1\} P\{X_2 = x_2\} \dots P\{X_n = x_n\}$$
$$= P\{X = x_1\} \cdot P\{X = x_2\} \dots P\{X = x_n\} = \prod_{i=1}^{n} P\{X = x_i\}$$

• 连续总体似然函数

$$L(\theta_1, \dots, \theta_k) = f_{X_1 X_2 \dots X_n} (x_1, \dots, x_n) = f_{X_1} (x_1) f_{X_2} (x_2) \dots f_{X_n} (x_n)$$
$$= f_X (x_1) f_X (x_2) \dots f_X (x_n) = \prod_{i=1}^n f_X (x_i)$$

注: 样本 X_1, \ldots, X_n 是独立同分布的并且与总体X同分布。

- 》似然函数: "样本取样本值的概率"
 - 离散总体似然函数

离散型:
$$L(\theta_1,\dots,\theta_k) = P\{X = x_1\} P\{X = x_2\} \dots P\{X = x_n\} = \prod_{i=1}^n P\{X = x_i\}$$

• 连续总体似然函数

连续型:
$$L(\theta_1,\dots,\theta_k) = f_X(x_1) f_X(x_2) \dots f_X(x_n) = \prod_{i=1}^n f_X(x_i)$$

> 最大似然估计法步骤:

(1) 由样本值 x_i 写出似然函数: $L(\theta_1, \dots, \theta_k)$

离散型:
$$L(\theta_1,\dots,\theta_k) = P\{X = x_1\} P\{X = x_2\} \dots P\{X = x_n\}$$

连续型:
$$L(\theta_1,\dots,\theta_k) = f_X(x_1) f_X(x_2) \dots f_X(x_n)$$

- (2) 求似然函数 $L(\theta_1,\dots,\theta_k)$ 的最大值点,得 θ_i 的似然估计值 $\hat{\theta_i}$
- (3) 将估计值中的x,换成X,得似然估计量.

例:已知X的分布律如下, X_1,X_2,X_3 为一样本,其样本值为: $x_1=1,x_2=2,x_3=1$ 求 θ ($0<\theta<1$)的最大似然估计值.

X	1	2	3
P	θ^2	$2\theta(1-\theta)$	$\left(1-\theta\right)^2$

提示:

- (1) 由样本值 x_i 写出似然函数: $L(\theta_1, \dots, \theta_k) = \prod_{i=1}^{n} P\{X = x_i\}$
- (2) 求似然函数 $L(\theta_1, \dots, \theta_k)$ 的最大值点,得 θ_i 的似然估计值 $\hat{\theta}_i$

例:已知X的分布律如下, X_1,X_2,X_3 为一样本,其样本值为: $x_1=1,x_2=2,x_3=1$ 求 θ ($0<\theta<1$)的最大似然估计值.

X	1	2	3
P	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

解: 似然函数
$$L(\theta) = \prod_{i=1}^{3} P\{X = x_i\} = P\{X = x_1\} \cdot P\{X = x_2\} \cdot P\{X = x_3\}$$

= $P\{X = 1\} \cdot P\{X = 2\} \cdot P\{X = 1\}$
= $\theta^2 \times 2\theta(1-\theta) \times \theta^2 = 2\theta^5 - 2\theta^6$

由
$$\frac{dL(\theta)}{d\theta} = 10\theta^4 - 12\theta^5 = 0 \Rightarrow \theta$$
最大似然估计值 $\hat{\theta} = \frac{5}{6}$

例:已知总体 $X \sim \pi(\lambda)$, X_1, X_2, \dots, X_n 为一样本,其样本值为: x_1, x_2, \dots, x_n 记 $\theta = P\{X = 0\}$, 分别求λ和 θ 的最大似然估计值.

提示:

- (1) 由样本值 x_i 写出似然函数: $L(\theta_1, \dots, \theta_k) = \prod_{1}^{n} P\{X = x_i\}$ (2) 求似然函数 $L(\theta_1, \dots, \theta_k)$ 的最大值点,得 θ_i 的似然估计值 $\hat{\theta}_i$

例:已知总体 $X \sim \pi(\lambda)$, X_1, X_2, \dots, X_n 为一样本,其样本值为: x_1, x_2, \dots, x_n 记 $\theta = P\{X = 0\}$,分别求 λ 和 θ 的最大似然估计值.

解:由已知得似然函数:
$$L(\lambda) = \prod_{i=1}^{n} P\{X = x_i\} = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$$

取对数得:
$$\ln L(\lambda) = \left(\sum_{i=1}^{n} x_{i}\right) \ln \lambda - n\lambda - \sum_{i=1}^{n} \ln x_{i}!$$

令
$$\frac{d \ln L(\lambda)}{d \lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n = 0 \Rightarrow \lambda$$
的最大似然估计值为: $\tilde{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$

由
$$\theta = P\{X = 0\}$$
 得 $\theta = e^{-\lambda}$, 故 θ 最大似然估计值 $\tilde{\theta} = e^{-\tilde{\lambda}} = e^{-\bar{x}}$

例:已知总体
$$X$$
的概率密度为 $f(x)=\begin{cases} \frac{1}{\theta}, & 0 \leq x \leq \theta \\ 0, & \text{else} \end{cases}$, X_1, X_2, X_3 为一样本,

其样本值为: $x_1 = 3$, $x_2 = 2$, $x_3 = 1$, 求 θ 的最大似然估计量和估计值.

离散型:
$$L(\theta_1, \dots, \theta_k) = \prod_{i=1}^n P\{X = x_i\} = P\{X = x_1\} P\{X = x_2\} \dots P\{X = x_n\}$$

连续型: $L(\theta_1, \dots, \theta_k) = \prod_{i=1}^n f_X(x_i) = f_X(x_1) f_X(x_2) \dots f_X(x_n)$

连续型:
$$L(\theta_1,\dots,\theta_k) = \prod_{i=1}^n f_X(x_i) = f_X(x_1) f_X(x_2) \dots f_X(x_n)$$

例: 已知总体
$$X$$
的概率密度为 $f(x) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{else} \end{cases}$

其样本值为: $x_1 = 3$, $x_2 = 2$, $x_3 = 1$, 求 θ 的最大似然估计量和估计值.

解:由已知得似然函数:
$$L(\theta) = \prod_{i=1}^{n} f(x_i) = \begin{cases} \left(\frac{1}{\theta}\right)^3, 0 \le x_1, x_2, x_3 \le \theta \\ 0, & \text{else} \end{cases}$$

故
$$\theta$$
最大似然估计值 $\tilde{\theta} = \max\{x_1, x_2, x_3\} = \max\{3, 2, 1\} = 3$

$$\theta$$
的最大似然估计量为: $\hat{\theta} = \max\{X_1, X_2, X_3\}$

◆作业

习题6-2 (Page168): 2,3,5

- 2: 已知总体 $X \sim U(0,\theta)$
 - (1) 求未知参数 θ 的矩估计量;
 - (2) 当样本值为0.3,0.8,0.27,0.35,0.62,0.55时, 求 θ 的矩估计值.

- (1) 计算总体期望: E(X).
 (2) 建立方程: $\overline{X} = E(X)$.
 (3)解方程得未知参数的矩估计量.
 (4)将估计量中的 X_i 换成 x_i 得矩估计值.

- 2: 已知总体 $X \sim U(0,\theta)$
 - (1) 求未知参数 θ 的矩估计量;
 - (2) 当样本值为0.3,0.8,0.27,0.35,0.62,0.55时, 求 θ 的矩估计值.
- (1) 计算总体期望: $E(X) = \frac{\theta}{2}$.
- (2) 建立方程: $\overline{X} = E(X) = \frac{\theta}{2}$.
- (3)解方程得 θ 的矩估计量: $\hat{\theta}=2\overline{X}$.
- $(4)\theta$ 矩估计值: $\tilde{\theta} = 2\bar{x} = 2 \cdot \frac{1}{n} \sum_{i=1}^{n} x_i = 2 \cdot \frac{1}{6} (0.3 + 0.8 + 0.27 + 0.35 + 0.62 + 0.55) = .$

3. 设总体X以等概率 $\frac{1}{\theta}$ 取值 $1,2,\cdots,\theta$,求 θ 的矩估计量和估计值.

(注: X_1, X_2, \dots, X_n 为样本, 其观察值为 X_1, X_2, \dots, X_n)

- (1) 计算总体期望: E(X).
 (2) 建立方程: $\overline{X} = E(X)$.
 (3)解方程得未知参数的矩估计量.
 (4)将估计量中的 X_i 换成 x_i 得矩估计值.

3: 设总体X以等概率 $\frac{1}{\theta}$ 取1,2,…, θ , 求 θ 的矩估计量.

$$(2)$$
 建立方程: $\overline{X} = E(X) = \frac{1+\theta}{2}$.

- |(3)解方程得 θ 的矩估计量: $\hat{\theta} = 2\bar{X} 1$.
- (4)将估计量中的 X_i 换成 x_i 得矩估计值: $\tilde{\theta} = 2\tilde{x} 1$.