DS-6030 Homework Module 5

Tom Lever

06/24/2023

DS 6030 | Spring 2023 | University of Virginia

- 8. In this exercise, we will generate simulated data, and will then use this data to perform best subset selection.
 - (a) Use the rnorm() function to generate a predictor X of length n = 100, as well as a noise vector ϵ of length n = 100.

```
set.seed(2)
X <- rnorm(n = 100, mean = 0, sd = 1)
epsilon <- rnorm(n = 100, mean = 0, sd = 1*10^{-6})
X[1:3]</pre>
```

[1] -0.8969145 0.1848492 1.5878453

```
epsilon[1:3]
```

- # [1] 1.074459e-06 2.605978e-07 -3.142720e-07
- (b) Generate a response vector Y of length n = 100 according to the model $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \epsilon$, where β_0 , β_1 , β_2 , β_3 are constants of your choice.

```
beta_0 <- 1
beta_1 <- 2
beta_2 <- 3
beta_3 <- 4
Y <- beta_0 + beta_1 * X + beta_2 * I(X^2) + beta_3 * I(X^3) + epsilon
Y[1:3]</pre>
```

- # [1] -1.266573 1.497471 27.752887
- (c) Use the regsubsets() function to perform best subset selection in order to choose the best model containing the predictors $X, X^2 \dots, X^{10}$. What is the best model obtained according to Cp, BIC, and adjusted R^2 ? Show some plots to provide evidence for your answer, and report the coefficients of the best model obtained. Note you will need to use the data.frame() function to create a single data set containing both X and Y.

```
data_frame <- data.frame(X = X, Y = Y)
head(data_frame, n = 3)</pre>
```

```
# X Y
# 1 -0.8969145 -1.26657....
# 2 0.1848492 1.497470....
# 3 1.5878453 27.75288....
```

```
library(leaps)
formula \leftarrow Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^5) + I(X^6) + I(X^7) + I(X^8) + I(X^9) + I(X
subset_selection_object <- regsubsets(</pre>
    x = formula,
    data = data_frame
summary_for_subset_selection_object <- summary(object = subset_selection_object)</pre>
Mallows Cp <- summary for subset selection object$cp
index_of_model_with_minimum_Mallows_Cp <- which.min(Mallows_Cp)</pre>
coefficients <- coef(</pre>
    subset_selection_object, index_of_model_with_minimum_Mallows_Cp
)
coefficients
                                 I(X^2)
                                              I(X^3)
# (Intercept)
                         Х
Schwartz_BIC <- summary_for_subset_selection_object$bic</pre>
index_of_model_with_minimum_Schwartz_BIC <- which.min(Schwartz_BIC)</pre>
coefficients <- coef(</pre>
    subset_selection_object, index_of_model_with_minimum_Schwartz_BIC
)
coefficients
                                              I(X^3)
# (Intercept)
                                 I(X^2)
                         X
adjusted_R2 <- summary_for_subset_selection_object$adjr2</pre>
index_of_model_with_maximum_adjusted_R2 <- which.max(adjusted_R2)</pre>
coefficients <- coef(</pre>
    subset_selection_object, index_of_model_with_maximum_adjusted_R2
)
coefficients
# (Intercept)
                                 I(X^2)
                                              I(X^3)
                         Х
plot(Mallows_Cp, xlab = "Number of variables", ylab = "C_p", type = "1")
index_of_minimum_Mallows_Cp <- which.min(Mallows_Cp)</pre>
minimum_Mallows_Cp <- Mallows_Cp[index_of_minimum_Mallows_Cp]</pre>
points(index_of_minimum_Mallows_Cp, minimum_Mallows_Cp, col = "red", cex = 2, pch = 20)
```



```
plot(Schwartz_BIC, xlab = "Number of variables", ylab = "Schwartz BIC", type = "l")
index_of_minimum_Schwartz_BIC <- which.min(Schwartz_BIC)
minimum_Schwartz_BIC <- Schwartz_BIC[index_of_minimum_Schwartz_BIC]
points(index_of_minimum_Schwartz_BIC, minimum_Schwartz_BIC, col = "red", cex = 2, pch = 20)</pre>
```



```
plot(adjusted_R2, xlab = "Number of variables", ylab = "Adjusted R^2", type = "l")
index_of_maximum_adjusted_R2 <- which.max(adjusted_R2)
maximum_adjusted_R2 <- adjusted_R2[index_of_maximum_adjusted_R2]
points(index_of_maximum_adjusted_R2, maximum_adjusted_R2, col = "red", cex = 2, pch = 20)</pre>
```


The best model obtained according to Mallow's C_p , the Schwartz Bayesian Information Criterion, and adjusted \mathbb{R}^2 is

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 = 1 + 2X + 3X^2 + 4X^3$$

(d) Repeat (c), using forward stepwise selection and also using backwards stepwise selection. How does your answer compare to the results in (c)?

The models chosen by forward and backward selection involve the true predictive terms and their coefficients.

```
intercept_only_model <- lm(formula = Y ~ 1, data = data_frame)
full_model <- lm(formula = formula, data = data_frame)
step(
   intercept_only_model,
   scope = list(lower = intercept_only_model, upper = full_model),
   direction = "forward"
)</pre>
```

```
# Start:
          AIC=579.81
 Y ~ 1
            Df Sum of Sq
                            RSS
                                   AIC
 + I(X^3)
                 30043.1
                           2270 316.25
 + X
             1
                 26598.3
                           5715 408.57
 + I(X^5)
                 25920.7
                           6393 419.77
             1
 + I(X^7)
                 20763.0 11550 478.93
             1
 + I(X^9)
             1
                  16058.0 16255 513.10
                  1502.3 30811 577.05
 + I(X^2)
             1
# + I(X^10)
                  1323.5 30990 577.62
                          32313 579.81
# <none>
```

```
# + I(X^8)
           1
                491.1 31822 580.28
# + I(X^4) 1
                  362.9 31950 580.68
                  9.5 32304 581.78
# + I(X^6) 1
# Step: AIC=316.25
# Y ~ I(X^3)
           Df Sum of Sq
                          RSS
                                AIC
# + I(X^2)
            1
                2163.47 106.76 12.54
                2052.55 217.68 83.78
\# + I(X^4)
           1
# + I(X^6)
           1 1814.98 455.25 157.57
            1 1559.91 710.32 202.05
# + I(X^8)
# + I(X^10) 1 1320.67 949.56 231.08
# + I(X^9)
           1 673.67 1596.55 283.04
# + I(X^7)
               660.15 1610.08 283.89
            1
# + I(X^5)
            1
                611.55 1658.68 286.86
# + X
                 380.45 1889.78 299.90
            1
# <none>
                       2270.23 316.25
# Step: AIC=12.54
# Y \sim I(X^3) + I(X^2)
           Df Sum of Sq
                          RSS
                                    ATC
            1 106.756 0.000 -2760.07
# + X
# + I(X^5)
                 60.997 45.760
           1
                                -70.18
# + I(X^7)
           1
                 44.770 61.986
                                 -39.83
# + I(X^9)
                 34.268 72.489
                                 -24.17
            1
# + I(X^10) 1
                 12.885 93.871
                                   1.68
# + I(X^8)
                 11.987 94.769
                                   2.63
           1
# + I(X^6)
           1
                 10.471 96.286
                                   4.21
                 8.383 98.373
# + I(X^4)
            1
                                   6.36
# <none>
                        106.756
                                  12.54
# Step: AIC=-2760.07
# Y \sim I(X^3) + I(X^2) + X
# Warning: attempting model selection on an essentially perfect fit is nonsense
           Df Sum of Sq
                              RSS
# <none>
                         9.5153e-11 -2760.1
# + I(X^5)
           1 6.5881e-13 9.4494e-11 -2758.8
# + I(X^7)
           1 3.8177e-13 9.4771e-11 -2758.5
# + I(X^9) 1 2.1121e-13 9.4942e-11 -2758.3
# + I(X^8) 1 4.9460e-14 9.5104e-11 -2758.1
# + I(X^10) 1 4.6390e-14 9.5107e-11 -2758.1
# + I(X^6) 1 3.9740e-14 9.5113e-11 -2758.1
# + I(X<sup>4</sup>) 1 7.5000e-15 9.5146e-11 -2758.1
# lm(formula = Y \sim I(X^3) + I(X^2) + X, data = data_frame)
# Coefficients:
# (Intercept)
                   I(X^3)
                                I(X^2)
                                                 Х
           1
                                    3
                                                 2
```

```
step(
   full_model,
   scope = list(lower = intercept_only_model, upper = full_model),
   direction = "backward"
)
# Start: AIC=-2751.6
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^5) + I(X^6) + I(X^7) +
     I(X^8) + I(X^9) + I(X^{10})
# Warning: attempting model selection on an essentially perfect fit is nonsense
           Df Sum of Sq
                          RSS
                                   AIC
\# - I(X^5)
           1
                0.0000 0.0000 -2752.51
                 0.0000 0.0000 -2752.03
\# - I(X^7)
           1
\# - I(X^9) 1 0.0000 0.0000 -2751.80
                        0.0000 -2751.60
# <none>
\# - I(X^10) 1
               0.0000 0.0000 -2750.89
\# - I(X^4) 1
                0.0000 0.0000 -2750.86
# - I(X^6) 1
                0.0000 0.0000 -2750.81
# - I(X^8) 1 0.0000 0.0000 -2750.81
# - I(X^2) 1 5.3964 5.3964 -271.94
\# - I(X^3)
          1
                5.6490 5.6490 -267.37
# - X
           1
                8.7567 8.7567 -223.54
# Step: AIC=-2752.51
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6) + I(X^7) + I(X^8) +
     I(X^9) + I(X^10)
# Warning: attempting model selection on an essentially perfect fit is nonsense
           Df Sum of Sq
                          RSS
                                   AIC
\# - I(X^9)
           1
                0.000 0.000 -2753.18
                 0.000 0.000 -2752.89
\# - I(X^7)
           1
\# - I(X^10) 1
                 0.000 0.000 -2752.83
                0.000 0.000 -2752.80
\# - I(X^8) 1
# - I(X^6) 1 0.000 0.000 -2752.78
\# - I(X^4) 1 0.000 0.000 -2752.69
# <none>
                         0.000 -2752.51
                5.761 5.761 -267.40
\# - I(X^2)
            1
# - X
                 24.561 24.561 -122.40
            1
\# - I(X^3)
           1
                 88.788 88.788
                                  6.11
# Step: AIC=-2753.18
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6) + I(X^7) + I(X^8) +
     I(X^10)
# Warning: attempting model selection on an essentially perfect fit is nonsense
           Df Sum of Sq
                          RSS
                                   AIC
\# - I(X^10) 1
                   0.00
                          0.00 - 2754.47
\# - I(X^8)
           1
                   0.00
                          0.00 - 2754.17
# - I(X^7)
           1
                   0.00
                          0.00 -2753.92
# - I(X^6)
                   0.00
                          0.00 -2753.84
           1
\# - I(X^4) 1
                   0.00
                          0.00 - 2753.50
# <none>
                          0.00 -2753.18
```

```
\# - I(X^2) 1
                 5.76 5.76 -269.40
# - X
            1
                 46.49 46.49 -60.60
                 436.02 436.02 163.25
\# - I(X^3) 1
# Step: AIC=-2754.47
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6) + I(X^7) + I(X^8)
# Warning: attempting model selection on an essentially perfect fit is nonsense
          Df Sum of Sq
                         RSS
                                  AIC
                 0.00 0.00 -2755.13
\# - I(X^7) 1
\# - I(X^4) 1
                 0.00 0.00 -2754.81
\# - I(X^6) 1
                 0.00 0.00 -2754.67
\# - I(X^8) 1
                 0.00 0.00 -2754.59
# <none>
                        0.00 -2754.47
\# - I(X^2) 1
             15.02 15.02 -175.59
# - X 1
                46.81 46.81 -61.91
\# - I(X^3) 1
              440.58 440.58 162.29
# Step: AIC=-2755.13
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6) + I(X^8)
# Warning: attempting model selection on an essentially perfect fit is nonsense
          Df Sum of Sq
                          RSS
                                  AIC
\# - I(X^8) 1
                 0.0
                          0.0 - 2756.33
\# - I(X^6) 1
                   0.0
                         0.0 -2756.21
\# - I(X^4) 1
                  0.0
                       0.0 - 2756.13
                         0.0 - 2755.13
# <none>
\# - I(X^2) 1
                 15.5 15.5 -174.54
                 92.4 92.4
           1
                                4.07
\# - I(X^3) 1
                3359.4 3359.4 363.43
# Step: AIC=-2756.33
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6)
# Warning: attempting model selection on an essentially perfect fit is nonsense
          Df Sum of Sq
                         RSS
                                  AIC
\# - I(X^4) 1
               0.0
                          0.0 -2758.11
\# - I(X^6) 1
                   0.0
                         0.0 -2758.08
                          0.0 -2756.33
# <none>
\# - I(X^2) 1
                 45.7 45.7 -68.29
                  95.0 95.0
                                4.90
          1
\# - I(X^3) 1
                3500.3 3500.3 365.54
# Step: AIC=-2758.11
# Y \sim X + I(X^2) + I(X^3) + I(X^6)
# Warning: attempting model selection on an essentially perfect fit is nonsense
          Df Sum of Sq
                          RSS
                                  AIC
\# - I(X^6) 1
                  0.0
                          0.0 -2760.07
# <none>
                          0.0 - 2758.11
# - X
                96.3 96.3
           1
                                 4.21
\# - I(X^2) 1
                417.9 417.9
                              151.01
# - I(X^3) 1 3776.3 3776.3 371.13
```

```
# Step: AIC=-2760.07
# Y \sim X + I(X^2) + I(X^3)
# Warning: attempting model selection on an essentially perfect fit is nonsense
           Df Sum of Sq
                          RSS
                                   AIC
                          0.0 -2760.07
# <none>
# - X
                106.8 106.8
           1
                                12.54
# - I(X^2) 1
                1889.8 1889.8
                                299.90
\# - I(X^3) 1
              4801.2 4801.2 393.14
# Call:
\# lm(formula = Y \sim X + I(X^2) + I(X^3), data = data_frame)
# Coefficients:
# (Intercept)
                        X
                                I(X^2)
                                              I(X^3)
                        2
                                      3
           1
step(
    full_model,
    scope = list(lower = intercept_only_model, upper = full_model),
    direction = "both"
)
# Start: AIC=-2751.6
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^5) + I(X^6) + I(X^7) +
      I(X^8) + I(X^9) + I(X^{10})
# Warning: attempting model selection on an essentially perfect fit is nonsense
           Df Sum of Sq
                           RSS
                                    AIC
# - I(X^5)
                 0.0000 0.0000 -2752.51
           1
\# - I(X^7)
                 0.0000 0.0000 -2752.03
           1
# - I(X^9)
                 0.0000 0.0000 -2751.80
            1
                        0.0000 -2751.60
# <none>
\# - I(X^10) 1
               0.0000 0.0000 -2750.89
\# - I(X^4)
           1
                 0.0000 0.0000 -2750.86
\# - I(X^6)
                 0.0000 0.0000 -2750.81
            1
# - I(X^8)
           1
                 0.0000 0.0000 -2750.81
\# - I(X^2)
           1
                 5.3964 5.3964 -271.94
\# - I(X^3)
            1 5.6490 5.6490 -267.37
# - X
            1
                 8.7567 8.7567 -223.54
# Step: AIC=-2752.51
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6) + I(X^7) + I(X^8) +
     I(X^9) + I(X^10)
# Warning: attempting model selection on an essentially perfect fit is nonsense
# Warning: attempting model selection on an essentially perfect fit is nonsense
           Df Sum of Sq
                           RSS
                                     AIC
\# - I(X^9)
            1
                  0.000 0.000 -2753.18
\# - I(X^7)
                  0.000 0.000 -2752.89
            1
# - I(X^10) 1 0.000 0.000 -2752.83
```

```
\# - I(X^8)
             1
                   0.000 0.000 -2752.80
\# - I(X^6)
                   0.000 0.000 -2752.78
           1
\# - I(X^4)
                   0.000 0.000 -2752.69
# <none>
                          0.000 -2752.51
# + I(X^5)
             1
                   0.000 0.000 -2751.60
                  5.761 5.761 -267.40
\# - I(X^2)
             1
# - X
                  24.561 24.561 -122.40
             1
# - I(X^3)
                  88.788 88.788
             1
                                    6.11
# Step: AIC=-2753.18
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6) + I(X^7) + I(X^8) +
      I(X^10)
# Warning: attempting model selection on an essentially perfect fit is nonsense
# Warning: attempting model selection on an essentially perfect fit is nonsense
            Df Sum of Sq
                            RSS
                                     AIC
# - I(X^10)
                    0.00
                           0.00 -2754.47
            1
\# - I(X^8)
             1
                    0.00
                           0.00 - 2754.17
\# - I(X^7)
                    0.00
                           0.00 -2753.92
             1
\# - I(X^6)
                    0.00
                           0.00 -2753.84
             1
\# - I(X^4)
                    0.00
                           0.00 - 2753.50
             1
                           0.00 -2753.18
# <none>
# + I(X^9)
                    0.00
                           0.00 -2752.51
             1
# + I(X^5)
                    0.00
                           0.00 -2751.80
            1
\# - I(X^2)
             1
                    5.76
                           5.76 -269.40
# - X
                   46.49 46.49 -60.60
             1
# - I(X^3)
                  436.02 436.02
                                  163.25
             1
# Step: AIC=-2754.47
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6) + I(X^7) + I(X^8)
# Warning: attempting model selection on an essentially perfect fit is nonsense
# Warning: attempting model selection on an essentially perfect fit is nonsense
            Df Sum of Sq
                            RSS
                                     AIC
\# - I(X^7)
                    0.00
                           0.00 -2755.13
             1
\# - I(X^4)
                    0.00
                           0.00 - 2754.81
             1
\# - I(X^6)
                    0.00
                           0.00 - 2754.67
             1
# - I(X^8)
                           0.00 - 2754.59
             1
                    0.00
# <none>
                           0.00 - 2754.47
# + I(X^10) 1
                    0.00
                           0.00 - 2753.18
# + I(X^5)
             1
                    0.00
                           0.00 - 2752.89
# + I(X^9)
                    0.00
                           0.00 - 2752.83
             1
\# - I(X^2)
             1
                   15.02 15.02 -175.59
# - X
             1
                   46.81 46.81 -61.91
\# - I(X^3)
             1
                  440.58 440.58
                                  162.29
# Step: AIC=-2755.13
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6) + I(X^8)
# Warning: attempting model selection on an essentially perfect fit is nonsense
# Warning: attempting model selection on an essentially perfect fit is nonsense
```

```
Df Sum of Sq
                            RSS AIC
\# - I(X^8)
                     0.0
                            0.0 - 2756.33
           1
\# - I(X^6)
                     0.0
                            0.0 - 2756.21
\# - I(X^4)
                            0.0 -2756.13
                     0.0
             1
# <none>
                            0.0 - 2755.13
# + I(X^5)
                            0.0 -2754.68
                     0.0
            1
# + I(X^7)
                            0.0 - 2754.47
            1
                     0.0
# + I(X^9)
                            0.0 -2754.27
            1
                    0.0
# + I(X^10) 1
                    0.0
                            0.0 -2753.92
# - I(X^2)
           1
                    15.5
                           15.5 -174.54
# - X
             1
                    92.4
                           92.4
                                    4.07
# - I(X^3)
                  3359.4 3359.4
                                  363.43
             1
# Step: AIC=-2756.33
# Y \sim X + I(X^2) + I(X^3) + I(X^4) + I(X^6)
# Warning: attempting model selection on an essentially perfect fit is nonsense
# Warning: attempting model selection on an essentially perfect fit is nonsense
            Df Sum of Sq
                            RSS
                                     AIC
\# - I(X^4)
                     0.0
                            0.0 - 2758.11
             1
\# - I(X^6)
                     0.0
                            0.0 -2758.08
             1
# <none>
                            0.0 -2756.33
# + I(X^8)
                     0.0
                            0.0 -2755.13
             1
# + I(X^10) 1
                            0.0 -2754.97
                     0.0
# + I(X^5)
           1
                     0.0
                            0.0 - 2754.95
# + I(X^7)
                            0.0 - 2754.59
            1
                    0.0
# + I(X^9)
                    0.0
                            0.0 -2754.37
            1
\# - I(X^2)
            1
                    45.7
                           45.7
                                  -68.29
# - X
                    95.0
                           95.0
                                    4.90
             1
\# - I(X^3)
            1
                  3500.3 3500.3 365.54
# Step: AIC=-2758.11
# Y \sim X + I(X^2) + I(X^3) + I(X^6)
# Warning: attempting model selection on an essentially perfect fit is nonsense
# Warning: attempting model selection on an essentially perfect fit is nonsense
            Df Sum of Sq
                            RSS
\# - I(X^6)
                     0.0
                            0.0 -2760.07
             1
# <none>
                            0.0 - 2758.11
# + I(X^5)
                     0.0
                            0.0 -2756.95
             1
# + I(X^7)
                            0.0 -2756.58
            1
                     0.0
                            0.0 -2756.34
# + I(X^9)
                     0.0
            1
# + I(X^4)
            1
                     0.0
                            0.0 - 2756.33
# + I(X^8)
            1
                     0.0
                            0.0 - 2756.13
# + I(X^10) 1
                    0.0
                            0.0 -2756.12
# - X
                    96.3
                           96.3
                                    4.21
             1
                  417.9 417.9
# - I(X^2)
             1
                                  151.01
\# - I(X^3)
                  3776.3 3776.3 371.13
             1
# Step: AIC=-2760.07
# Y \sim X + I(X^2) + I(X^3)
```

```
# Warning: attempting model selection on an essentially perfect fit is nonsense
```

Warning: attempting model selection on an essentially perfect fit is nonsense

```
Df Sum of Sq
                              RSS
                                        AIC
                              0.0 - 2760.07
 <none>
# + I(X^5)
                      0.0
                              0.0 - 2758.77
              1
 + I(X^7)
                              0.0 -2758.47
              1
                      0.0
 + I(X^9)
                              0.0 -2758.29
              1
                      0.0
 + I(X^8)
              1
                      0.0
                              0.0 - 2758.12
                              0.0 - 2758.12
  + I(X^10)
             1
                      0.0
 + I(X^6)
              1
                              0.0 - 2758.11
                      0.0
# + I(X^4)
                      0.0
                              0.0 - 2758.08
                    106.8
                           106.8
                                      12.54
              1
 - I(X^2)
              1
                   1889.8 1889.8
                                     299.90
\# - I(X^3)
                   4801.2 4801.2
                                    393.14
# Call:
# lm(formula = Y ~ X + I(X^2) + I(X^3), data = data_frame)
# Coefficients:
  (Intercept)
```

- (e) Now fit a lasso model to the simulated data, again using $X, X^2 \dots, X^{10}$ as predictors. Use cross-validation to select the optimal value of λ . Create plots of the cross-validation error as a function of λ . Report the resulting coefficient estimates, and discuss the results obtained.
- (f) Now generate a response vector Y according to the model $Y = \beta_0 + \beta_7 X^7 + \epsilon$, and perform best subset selection and the lasso. Discuss the results obtained.

9. In this exercise, we will predict the number of applications received using the other variables in the College data set.

- (a) Split the data set into a training set and a test set.
- (b) Fit a linear model using least squares on the training set, and report the test error obtained.
- (c) Fit a ridge regression model on the training set, with λ chosen by cross-validation. Report the test error obtained.
- (d) Fit a lasso model on the training set, with λ chosen by cross-validation. Report the test error obtained, along with the number of non-zero coefficient estimates.
- (e) Fit a PCR model on the training set, with M chosen by cross-validation. Report the test error obtained, along with the value of M selected by cross-validation.
- (f) Fit a PLS model on the training set, with M chosen by cross-validation. Report the test error obtained, along with the value of M selected by cross-validation.
- (g) Comment on the results obtained. How accurately can we predict the number of college applications received? Is there much difference among the test errors resulting from these five approaches?