Foundations of Electrical Engineering

Queensland University of Technology

 $Dr\ Jasmin\ Martin$ Semester 2, 2021

Tarang Janawalkar

This work is licensed under Creative "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Commons

Contents

Co	ontents	1			
1	Electrical Circuits 1.1 Fundamental Quantities 1.2 Passive Sign Convention 1.3 Circuits and Sources 1.4 Ground 1.5 Earth 1.6 Connected Sources 1.7 Invalid Circuits 1.8 Resistors	2 2 2 2 3 3 4 4 5			
2	Simple Resistive Circuits 2.1 Ignored Physics	6 6 6 7			
3	Diodes				
4	Mesh Analysis	10			
5	rce Transformation 11				
6	Inductors and Capacitors 12				
7					
8	perational Amplifiers 14				
9	nductors and Capacitors CC and RL Circuits Operational Amplifiers inusoidal Signals 12 13 14 15				
10	Frequency Response	16			
	Filters and Rectifiers	17			
12	12 Zener Diodes and Voltage Regulators				

1 Electrical Circuits

1.1 Fundamental Quantities

Name	Definition	Symbol	Unit
Charge	Electric charge is a fundamental property of matter that governs how particles are affected by an electromagnetic field.	q	Coulomb (C)
Current	$i = \frac{\mathrm{d}q}{\mathrm{d}t} \iff 1\mathrm{A} = 1\mathrm{C}\mathrm{s}^{-1}$	i	Ampere (A)
Voltage	$v = \frac{\mathrm{d}w}{\mathrm{d}q} \iff 1\mathrm{V} = 1\mathrm{J}\mathrm{C}^{-1}$	v	Volt (V)
Power	$p = \frac{\mathrm{d}w}{\mathrm{d}t} \iff 1 \mathrm{W} = 1 \mathrm{J}\mathrm{s}^{-1}$	p	Watt (W)

Charge in an electron. $q = 1.6022 \times 10^{-19} \, \text{C}.$

Electric Power. $p = \frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\mathrm{d}w}{\cancel{p}\cancel{q}} \frac{\cancel{p}\cancel{q}}{\mathrm{d}t} = vi.$

1.2 Passive Sign Convention

 $Figure \ 1: \ Energy \ dissipated.$

Figure 2: Energy produced.

Theorem 1.2.1 (Power Balance).

$$p_{\rm net}=0$$

Theorem 1.2.2 (Energy).

$$w\left(\tau\right) = \int_{0}^{\tau} p\left(t\right) \mathrm{d}t$$

1.3 Circuits and Sources

Definition 1.3.1 (Circuits). A circuit is a mathematical model that approximates a real system. It is built from ideal circuit elements connected by ideal wires.

Definition 1.3.2 (Voltage Source). Produces or dissipates power at a specified voltage with whatever current is required.

Figure 3: Voltage Source – v is specified, i varies depending on circuit element A.

Definition 1.3.3 (Current Source). Produces or dissipates power at a specified current with whatever voltage is required.

Figure 4: Current Source -i is specified, v varies depending on circuit element A.

1.4 Ground

Definition. The zero volt point is referred to as the circuit ground.

Symbol. \bigvee^{\perp}

1.5 Earth

Definition. An earthed ground is literally a connection to the earth.

Symbol. =

1.6 Connected Sources

Figure 5: Example of a connected voltage and current source.

- The voltage source sets v to 10 V, with the upper wire being positive.
- The current source sets i to 1 A, flowing anticlockwise.
- Therefore 10 W of power is produced by the current source and dissipated by the voltage source.
- 1. Two voltage sources must be connected at the same terminals and supply the same voltage.
- 2. Two current sources must flow in the same direction and supply the same current.

1.7 Invalid Circuits

Figure 6: Voltage terminals are incorrect, and voltages are different.

Figure 7: Current flows oppose each other, and currents are different.

1.8 Resistors

Definition 1.8.1 (Resistor). Resistors dissipate power, and the voltage across both terminals is proportional to the current.

Figure 8:

Theorem 1.8.1 (Voltage through a resistor).

$$v=iR$$

$$R = \frac{\rho L}{A}$$

2 Simple Resistive Circuits

2.1 Ignored Physics

- 1. Electrical effects occur instantaneously, so there is no time delay along the wires.
- 2. The net charge on every component is zero. Charge is never lost or gained.
- 3. There is no magnetic coupling between the components.

2.2 Kirchhoff's Laws

Definition 2.2.1 (Kirchhoff's Current Law (KCL)). The sum of all currents into a node equals zero.

$$\sum i_{node} = 0$$

Definition 2.2.2 (Kirchhoff's Voltage Law (KVL)). The sum of all voltages around a loop equals zero.

$$\sum v_{loop}=0$$

2.3 Series and Parallel Circuits

Definition 2.3.1. Elements connected end-to-end are in series. If both ends of an element are connected directly to another element, the two elements are in parallel.

Element	Series	Parallel
Current Source	$i_{eq} = i_1 = i_2 = \dots = i_n$	$i_{eq} = \sum_{k} i_{k}$
Voltage Source	$v_{eq} = \sum_{k=1}^{n} v_k$	$v_{eq}=v_1=v_2=\cdots=v_n$
Resistor	$R_{eq} = \sum_{k=1}^{n-1} R_k$	$\frac{1}{R_{eq}} = \sum_{k=1}^n \frac{1}{R_k}$
Inductor	$L_{eq} = \sum_{k=1}^{n} L_k$	$\frac{1}{L_{eq}} = \sum_{k=1}^{n} \frac{1}{L_k}$
Conductor	$\frac{1}{C_{eq}} = \sum_{k=1}^{n} \frac{1}{C_k}$	$C_{eq} = \sum_{k=1}^{n} C_k$

Table 1: Equivalent values for various components connected in series and parallel.

These equations can be used to simplify a complex circuit.

Proof. Using KVL for voltage sources connected in series

$$\begin{aligned} v_1 + v_2 + \cdots + v_n - iR &= 0 \\ v_1 + v_2 + \cdots + v_n &= iR \end{aligned}$$

Let v_{eq} be the voltage across the resistor so that

$$v_{eq} = iR$$

Therefore

$$v_{eq} = v_1 + v_2 + \dots + v_n$$

As the current through resistors in series remains the same, using KVL we have

$$\begin{aligned} v-iR_1-iR_2-\cdots-iR_n &= 0\\ v &= i\left(R_1+R_2+\cdots+R_n\right)\\ v &= iR_{eq} \end{aligned}$$

Hence the resistance across multiple resistors in series is equivalent to the sum of the resistances. \Box

2.4 Voltage and Current Dividers

Definition 2.4.1 (Voltage Divider). A voltage divider is a circuit that divides a voltage in the proportion of the series resistances.

Figure 9: Resistors connected in series to a voltage source.

Theorem 2.4.1.

$$v_k = v \frac{R_k}{R_{eq}}$$

Proof. The current through any resistor is

$$i = \frac{v}{R_{eq}}$$

Therefore the voltage drop in any resistor is

$$\begin{aligned} v_k &= iR_k \\ v_k &= \frac{v}{R_{eq}}R_k \end{aligned}$$

Definition 2.4.2 (Current Divider). A voltage divider is a circuit that divides a voltage in the proportion of the series resistances.

Theorem 2.4.2.

$$i_k = i \frac{R_{eq}}{R_k}$$

3 Diodes

4 Mesh Analysis

5 Source Transformation

6 Inductors and Capacitors

7 RC and RL Circuits

8 Operational Amplifiers

9 Sinusoidal Signals

10 Frequency Response

11 Filters and Rectifiers

12 Zener Diodes and Voltage Regulators