Introduction to Bayesian statistics with R 4. Priors

Olivier Gimenez

last updated: 2025-03-10

To-do list

To-do list

- add graph with gamma distribution
- check McCarthy paper w/ example ANOVA
- check paper big bad ugly prior
- check tips paper
- add further reading (McCarthy JAE, paper bad and ugly and paper on problem with priors in occupancy)
- check to-do list on github page of stats course
 https://github.com/oliviergimenez/bayesian-stats-with-R?tab=readme-ov-file#to-do-list
- prior elicitation (voir papiers JOSS suggérés par Osvaldo pour papier tips; moment matching, voir aussi https://umr-astre.pages.mia.inra.fr/training/crashbayes/ articles/crashbayes.html#prior-elicitation).

A detour to explore priors

Influence of the prior

Prior Beta(0.5, 0.5) and posterior survival Beta(19.5, 38.5)

Prior Beta(2,2) and posterior survival Beta(21,40)

Prior Beta(20,1) and posterior survival Beta(39,49)

 In biological applications, the prior is a convenient means of incorporating expert opinion or information from previous or related studies that would otherwise need to be ignored. We'll get back to that.

- In biological applications, the prior is a convenient means of incorporating expert opinion or information from previous or related studies that would otherwise need to be ignored. We'll get back to that.
- With sparse data, the role of the prior can be to enable inference on key parameters that would otherwise be impossible.

- In biological applications, the prior is a convenient means of incorporating expert opinion or information from previous or related studies that would otherwise need to be ignored. We'll get back to that.
- With sparse data, the role of the prior can be to enable inference on key parameters that would otherwise be impossible.
- With sufficiently large and informative datasets the prior typically has little effect on the results.

- In biological applications, the prior is a convenient means of incorporating expert opinion or information from previous or related studies that would otherwise need to be ignored. We'll get back to that.
- With sparse data, the role of the prior can be to enable inference on key parameters that would otherwise be impossible.
- With sufficiently large and informative datasets the prior typically has little effect on the results.
- Always perform a sensitivity analysis.

Informative priors vs. no information

• Informative priors aim to reflect information available to the analyst that is gained independently of the data being studied.

Informative priors vs. no information

- Informative priors aim to reflect information available to the analyst that is gained independently of the data being studied.
- In the absence of any prior information on one or more model parameters we wish to ensure that this lack of knowledge is properly reflected in the prior.

Informative priors vs. no information

- Informative priors aim to reflect information available to the analyst that is gained independently of the data being studied.
- In the absence of any prior information on one or more model parameters we wish to ensure that this lack of knowledge is properly reflected in the prior.
- Always perform a sensitivity analysis.

How to incorporate prior

information?

• A bird might captured, missed and recaptured; this is coded 101.

- A bird might captured, missed and recaptured; this is coded 101.
- Simplest model relies on constant survival ϕ and detection p probabilities.

- A bird might captured, missed and recaptured; this is coded 101.
- Simplest model relies on constant survival ϕ and detection p probabilities.
- Likelihood for that particular bird:

$$\Pr(101) = \phi(1-p)\phi p$$

- A bird might captured, missed and recaptured; this is coded 101.
- Simplest model relies on constant survival ϕ and detection p probabilities.
- Likelihood for that particular bird:

$$\Pr(101) = \phi(1-p)\phi p$$

• We assume a vague prior:

$$\phi_{ extit{prior}} \sim \mathsf{Beta}(1,1) = \mathsf{Uniform}(0,1)$$

Notation

- $y_{i,t} = 1$ if individual i detected at occasion t and 0 otherwise
- $z_{i,t} = 1$ if individual i alive between occasions t and t+1 and 0 otherwise

```
y_{i,t} \mid z_{i,t} \sim \mathsf{Bernoulli}(p \ z_{i,t}) [likelihood (observation eq.)] z_{i,t+1} \mid z_{i,t} \sim \mathsf{Bernoulli}(\phi \ z_{i,t}) [likelihood (state eq.)] \phi \sim \mathsf{Beta}(1,1) [prior for \phi] p \sim \mathsf{Beta}(1,1) [prior for p]
```

European dippers in Eastern France (1981-1987)

• If no information, mean posterior survival is $\phi_{posterior} = 0.56$ with credible interval [0.51, 0.61].

- If no information, mean posterior survival is $\phi_{posterior}=0.56$ with credible interval [0.51, 0.61].
- Using information on body mass and annual survival of 27 European passerines, we can predict survival of European dippers using only body mass.

- If no information, mean posterior survival is $\phi_{posterior} = 0.56$ with credible interval [0.51, 0.61].
- Using information on body mass and annual survival of 27 European passerines, we can predict survival of European dippers using only body mass.
- For dippers, body mass is 59.8g, therefore $\phi = 0.57$ with sd = 0.073.

- If no information, mean posterior survival is $\phi_{posterior} = 0.56$ with credible interval [0.51, 0.61].
- Using information on body mass and annual survival of 27 European passerines, we can predict survival of European dippers using only body mass.
- For dippers, body mass is 59.8g, therefore $\phi = 0.57$ with sd = 0.073.
- Assuming an informative prior $\phi_{prior} \sim \text{Normal}(0.57, 0.073^2)$.

- If no information, mean posterior survival is $\phi_{posterior} = 0.56$ with credible interval [0.51, 0.61].
- Using information on body mass and annual survival of 27 European passerines, we can predict survival of European dippers using only body mass.
- For dippers, body mass is 59.8g, therefore $\phi=0.57$ with sd =0.073.
- Assuming an informative prior $\phi_{prior} \sim \text{Normal}(0.57, 0.073^2)$.
- Mean posterior $\phi_{posterior} = 0.56$ with credible interval [0.52, 0.60].

- If no information, mean posterior survival is $\phi_{posterior} = 0.56$ with credible interval [0.51, 0.61].
- Using information on body mass and annual survival of 27 European passerines, we can predict survival of European dippers using only body mass.
- For dippers, body mass is 59.8g, therefore $\phi = 0.57$ with sd = 0.073.
- Assuming an informative prior $\phi_{prior} \sim \text{Normal}(0.57, 0.073^2)$.
- Mean posterior $\phi_{\textit{posterior}} = 0.56$ with credible interval [0.52, 0.60].
- No increase of precision in posterior inference.

Now if you had only the three first years of data, what would have happened?

- Now if you had only the three first years of data, what would have happened?
- Width of credible interval is 0.47 (vague prior) vs. 0.30 (informative prior).

- Now if you had only the three first years of data, what would have happened?
- Width of credible interval is 0.47 (vague prior) vs. 0.30 (informative prior).
- Huge increase of precision in posterior inference (40% gain)!

Compare vague vs. informative prior

Prior elicitation via moment

matching

Remember the Beta distribution

 Recall that the Beta distribution is a continuous distribution with values between 0 and 1. Useful for modelling survival or detection probabilities.

Remember the Beta distribution

- Recall that the Beta distribution is a continuous distribution with values between 0 and 1. Useful for modelling survival or detection probabilities.
- If $X \sim Beta(\alpha, \beta)$, then the first and second moments of X are:

$$\mu = E(X) = \frac{\alpha}{\alpha + \beta}$$

$$\sigma^2 = Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

• In the capture-recapture example, we know a priori that the mean of the probability we're interested in is $\mu = 0.57$ and its variance is $\sigma^2 = 0.073^2$.

- In the capture-recapture example, we know a priori that the mean of the probability we're interested in is $\mu = 0.57$ and its variance is $\sigma^2 = 0.073^2$.
- Parameters μ and σ^2 are seen as the moments of a $Beta(\alpha, \beta)$ distribution.

- In the capture-recapture example, we know a priori that the mean of the probability we're interested in is $\mu = 0.57$ and its variance is $\sigma^2 = 0.073^2$.
- Parameters μ and σ^2 are seen as the moments of a $Beta(\alpha, \beta)$ distribution.
- Now we look for values of α and β that match the observed moments of the Beta distribution (μ and σ^2).

- In the capture-recapture example, we know a priori that the mean of the probability we're interested in is $\mu = 0.57$ and its variance is $\sigma^2 = 0.073^2$.
- Parameters μ and σ^2 are seen as the moments of a $Beta(\alpha, \beta)$ distribution.
- Now we look for values of α and β that match the observed moments of the Beta distribution (μ and σ^2).
- We need another set of equations:

$$\alpha = \left(\frac{1-\mu}{\sigma^2} - \frac{1}{\mu}\right)\mu^2$$
$$\beta = \alpha\left(\frac{1}{\mu} - 1\right)$$

• For our model, that means:

```
(alpha <- ( (1 - 0.57)/(0.073*0.073) - (1/0.57) )*0.57^2)

#> [1] 25.64636
(beta <- alpha * ( (1/0.57) - 1))

#> [1] 19.34726
```

• For our model, that means:

```
(alpha <- ( (1 - 0.57)/(0.073*0.073) - (1/0.57) )*0.57^2)

#> [1] 25.64636
(beta <- alpha * ( (1/0.57) - 1))

#> [1] 19.34726
```

• Now use $\phi_{prior} \sim \text{Beta}(\alpha=25.6,\beta=19.3)$ instead of $\phi_{prior} \sim \text{Normal}(0.57,0.073^2)$

Prior predictive checks

Linear regression

Unreasonable prior $\beta \sim N(0, 1000^2)$

Reasonable prior $\beta \sim N(2, 0.5^2)$

Logistic regression

Unreasonable logit(ϕ) = $\beta \sim N(0, 10^2)$

Reasonable logit(ϕ) = $\beta \sim N(0, 1.5^2)$

