Metodologiczne Inspiracje 2014

Badania ilościowe w naukach społecznych Wyzwania i problemy

Wagi poststratyfikacyjne w Europejskim Sondażu Społecznym:

możliwości i ograniczenia prawidłowego wykorzystania w analizach statystycznych

Tomasz Żółtak Instytut Badań Edukacyjnych, IFiS PAN

Motywacje

- Publikacja oficjalnych wag poststratyfikacyjnych do badania ESS w kwietniu 2014 r.
 - Dosyć uboga dokumentacja.
 - Brak informacji o tym, że zastosowanie poststratyfikacji wpływa na wielkość błędów standardowych.
 - Nie opublikowano danych koniecznych, aby móc uwzględnić wpływ poststratyfikacji na wielkości błędów standardowych.
 - Dane te można uzyskać po zwróceniu się do autorów badania.
 - Podziękowania dla Any Slavec i Vasji Vehovara za udostępnienie danych.
- Publikacja przez IFiS informacji pozwalających uwzględnić złożony dobór polskiej próby ESS przy szacowaniu błędów standardowych we wrześniu 2014 r.

Plan wystąpienia

- Reprezentatywność proceduralna i przedmiotowa
- Różne techniki poststratyfikacji
- Na co wpływa poststratyfikacja?
- Wpływ poststratyfikacji na oszacowania błędów standardowych w badaniu ESS 6
- Wpływ uwzględnienia złożonego schematu doboru próby na oszacowania błędów standardowych w polskiej próbie badania ESS 6
- Podsumowanie

Teoria reprezentatywności proceduralnej:

- Reprezentatywność jako zachowanie pewnych formalne własności przez metodę losowego doboru próby.
- Odchylenia statystyk z próby od wartości populacyjnych są tu niejako naturalne – są konsekwencją randomizacji.
- Stanowi podstawę do zastosowania odpowiednich metod wnioskowania statystycznego.

Teoria reprezentatywności przedmiotowej:

- Reprezentatywność jako zgodność pewnych statystyk (rozkładów) z próby ze znanymi rozkładami populacyjnymi.
- Intuicyjnie zgodna z oczekiwaniami wielu badaczy i odbiorców badań.
- Nie operuje pojęciem błędu pomiaru brak podstaw do prowadzenia wnioskowania statystycznego.

Co do zasady chcemy to połączyć oczekując, że:

- Zachowana będzie zgodność pewnych statystyk (rozkładów) z próby ze znanymi rozkładami populacyjnymi.
- Będziemy mieć podstawy do prowadzenia wnioskowania statystycznego.

Czy to się daje zrobić?

- Na gruncie teorii reprezentatywności proceduralnej możemy znaleźć dwa problemy zbieżne z teorią reprezentatywności przedmiotowej:
 - Wykorzystanie znanych informacji o populacji do zmniejszenia wariancji estymatorów.
 - Korekta ew. obciążenia estymatorów w sytuacji występowania braków danych (niepełnej realizacji próby).

Rozbieżności, o których zwykle nie pamiętamy

Teoria reprezentatywności przedmiotowej

- Zakładamy, że uzgodnienie pewnych statystyk z próby ze znanymi wartościami populacyjnymi automatycznie podnosi jakość całej prób (również innych zmiennych).
- Skupiona na konkretnej próbie (pojedynczej realizacji).

Teoria reprezentatywności proceduralnej

- Wpływ korygowania statystyk z próby jest bardzo lokalny – może być bardzo różny dla różnych zmiennych i nie zawsze jest jednoznacznie pozytywny.
- Skupiona na własnościach estymatorów w ramach zbioru wszystkich możliwych prób.

Jak rozumiemy słowo obciążenie (bias)?

Teoria reprezentatywności przedmiotowej

- Obciążenie jako rozbieżność pomiędzy statystyką z próby i jej wartością populacyjną.
- Obciążenie jako różnica pomiędzy respondentami chętnymi a niechętnymi do współpracy.

(za: Jaak Billiet, Hideko Matsuo, Koen Beullens, Vasja Vehovar. (2009). "Non-Response Bias in Cross-National Surveys: Designs for Detection and Adjustment in the ESS". *ASK Research & Methods Vol. 18*(1): 3–43)

Teoria reprezentatywności proceduralnej

 Obciążenie jako różnica pomiędzy wartością oczekiwaną estymatora (tj. statystyką określoną w zbiorze wszystkich możliwych prób) a wartością statystyki w populacji.

Jak rozumiemy słowo obciążenie (bias)?

Teoria reprezentatywności przedmiotowej

 Obciążenie jako rozbieżność pomiędzy statystyką z próby i jej wartością populacyjną.

Czy wartość statystyki w pojedynczej próbie jest dobrą podstawą do przewidywania wartości oczekiwanej estymatora?

Teoria reprezentatywności proceduralnej

 Obciążenie jako różnica pomiędzy wartością oczekiwaną estymatora (tj. statystyką określoną w zbiorze wszystkich możliwych prób) a wartością statystyki w populacji.

Jak rozumiemy słowo obciążenie (bias)?

Teoria reprezentatywności przedmiotowej

 Obciążenie jako rozbieżność pomiędzy statystyką z próby i jej wartością populacyjną.

Czy wartość statystyki w pojedynczej próbie jest dobrą podstawą do przewidywania wartości oczekiwanej estymatora?

Co jest obciążone/obciążone:
estymator
czy
próba?

Teoria reprezentatywności proceduralnej

 Obciążenie jako różnica pomiędzy wartością oczekiwaną estymatora (tj. statystyką określoną w zbiorze wszystkich możliwych prób) a wartością statystyki w populacji.

Niebciążoność a wariancja estymatora

estymator	obciążenie	wariancja	błąd średniokwadratowy
nieobciążony	0	0,25	0,25
obciążony 1	0,2	0,16	0,20
obciążony 2	0,2	0,25	0,29

Niebciążoność a wariancja estymatora

Spośród dwóch
estymatorów obciążonego
i nieobciążonego ten drugi
jest z pewnością *lepszy* tylko
wtedy, gdy ma nie większą
wariancję, niż estymator
obciążony, z którym jest
porównywany.

(oczywiście zakładając, że dla obu estymatorów działają twierdzenia graniczne)

estymator	obciążenie	wariancja	błąd średniokwadratowy
nieobciążony	0	0,25	0,25
obciążony 1	0,2	0,16	0,20
obciążony 2	0,2	0,25	0,29

Poststratyfikacja i pokrewne techniki

Poststratyfikacja

Przypisz obserwacjom wagi w ten sposób, aby ważony rozkład częstości zmiennej w próbie był taki sam, jak znany rozkład populacyjny (wszystkie wartości, jakie przyjmuje zmienna w populacji powinny pojawić się równieżw próbie).

- Wagi wieńcowe (raking)
- Kalibracja (calibration)

Poststratyfikacja i pokrewne techniki

- Poststratyfikacja
- Wagi wieńcowe (raking)

Procedura poststratyfikacji kolejno ze względu na rozkład brzegowy każdej z kilku zmiennych – "zapętlana" i kontynuowana do osiągnięcia zbieżności (zmian w wagach nie większych niż założony próg).

Pozwala uniknąć problemów z zerowymi liczebnościami w rozkładach łącznych kilku zmiennych w próbie.

Kalibracja (calibration)

Poststratyfikacja i pokrewne techniki

- Poststratyfikacja
- Wagi wieńcowe (raking)
- Kalibracja (calibration)

Przypisz obserwacjom wagi w ten sposób, aby wartość statystyki z próby (ważona) była równa znanej wartości parametru danej zmiennej w populacji, jednocześnie minimalizując funkcję opisującą różnice wag przed i po ważeniu.

Może być postrzegana jako uogólnienie poststratyfikacji.

Różne warianty – w zależności od wyboru funkcji opisującej różnice wag.

Cele poststratyfikacji (i technik pokrewnych)

 Redukcja obciążenia estymatorów związanego z odmowami odpowiedzi.

Osiągana, jeśli zmienna wykorzystywana do poststratyfikacji jest w związku (im silniejszym, tym lepiej):

- z prawdopodobieństwem odmowy odpowiedzi,
- lub ze zmienną, której parametry estymujemy (zwiększenie precyzji – choć stricte formalnie nie jest to redukcja obciążenia).
- Zwiększenie precyzji szacowania (zmniejszenie wariancji estymatorów).

Osiągana, jeśli zmienna wykorzystywana do poststratyfikacji jest w związku (im silniejszym, tym lepiej):

ze zmienną, której parametry estymujemy.

Redukcja obciążenia estymatorów związanego z odmowami odpowiedzi

Łatwo jest:

- Znaleźć zmienne, które pozwalają uzyskać redukcję obciążenia (choć niekoniecznie dużą).
- Uwzględnić ważenie w analizach (wystarczy estymując parametry przypisać jednostkom wyliczone wagi).

Problemy:

- Redukcja obciążenia nie musi iść w parze ze zwiększeniem precyzji szacowania (a czasem może wręcz przyczyniać się do zmniejszenia precyzji).
- W praktyce trudno ocenić, jaka jest skala redukcji obciążenia.

Zwiększenie precyzji szacowania

Pozytywy:

 Można dosyć dokładnie ocenić, jaki jest wpływ ważenia na precyzję szacowania.

Problemy:

- Wpływ ważenia bardzo zróżnicowany w zależności od zmiennej, której parametry są szacowane.
- Ważenie ze względu na zmienne słabo powiązane ze zmienną, której parametry są szacowane może wręcz zmniejszać precyzję szacowania.
- Aby uwzględnić wpływ ważenia na precyzję trzeba zastosować specjalne techniki szacowania błędów standardowych.

Zwiększenie precyzji szacowania

Uwzględnienie wpływu ważenia na precyzję szacowania wymaga:

- Informacji o wartościach wag przed (jeśli zastosowano złożony schemat doboru próby) i po poststratyfikacji.
- Zastosowania odpowiednich technik statystycznych (oprogramowania).

Wpływ poststratyfikacji na oszacowania błędów standardowych w badaniu ESS 6

- Dane z ESS 6 (2012).
- Uwzględniono dwa kraje (Dania, Szwecja), w których próba losowa dobrana została w sposób prosty.
 - Brak problemów z uwzględnieniem złożonego schematu doboru próby.
- Poziom realizacji:

- **Dania:** 49,06%.

- **Szwecja:** 52,44%.

- Oficjalna poststratyfikacja (raking) ESS ze względu na:
 - Dania: łączny rozkład płci, kategorii wieku i edukacji oraz podział na 5 regionów.
 - Szwecja: łączny rozkład płci, kategorii wieku i edukacji oraz podział na 8 regionów.

Wpływ poststratyfikacji na oszacowania błędów standardowych w badaniu ESS 6

Analizowany był wpływ na precyzję oszacowań następujących sposobów analizy:

- bez poststratyfikacji,
- naiwna poststratyfikacja, uwzględniająca wagi przy wyliczaniu wartości estymatorów punktowych, ale nieuwzględniająca wpływu zróżnicowania wag na wariancję estymatorów,
- pełna poststratyfikacja, uwzględniająca również wpływ na wariancję estymatorów (przy użyciu pakietu survey, w programie R).

Wpływ poststratyfikacji na oszacowania błędów standardowych w badaniu ESS 6

zmienna	poststra-		Dania		Szwecja		
	tyfikacja	średnia	bł. std.	(1)	średnia	bł. std.	(1)
wiek	bez	48,70	0,47		47,83	0,44	
	naiwna	50,07	0,47	1,00	46,94	0,44	1,00
	pełna		0,18	0,39		0,15	0,34
lata nauki	bez	13,01	0,128		12,85	0,079	
	naiwna	12,61	0,126	0,98	13,01	0,082	1,05
	pełna		0,114	0,89		0,048	0,62
zaufanie do parlamentu (0-10)	bez	6,10	0,055		5,93	0,054	
	naiwna	6,01	0,055	1,01	5,96	0,054	1,00
	pełna		0,057	1,03		0,053	0,99
samookreślenie na skali lewica- prawica (0-10)	bez	5,34	0,060		5,31	0,053	
	naiwna	5,40	0,060	1,00	5,33	0,053	1,00
	pełna		0,063	1,06		0,055	1,04
głosowanie na socjaldemokrację (0 – nie, 1 -tak)	bez	0,22	0,010		0,25	0,010	
	naiwna	0,23	0,010	1,02	0,23	0,010	0,98
	pełna		0,011	1,10		0,010	0,97

(1) = bł. std.(przy poststratyfikacji) / bł. std. (bez poststratyfikacji)

Wpływ uwzględnienia złożonego schematu doboru próby w polskiej próbie badania ESS 6

Dobór próby ESS w Polsce:

- Warstwowo łącznie 150 warst:
 - Alokacja do warstw proporcjonalna do liczby ludności i odwrotnie proporcjonalna do przewidywanego poziomu realizacji.
 - W 86 warstwach miastach powyżej 50 tys. mieszkańców dobór prosty, bez zwracania.
 - W 64 warstwach wyznaczanych przez przecięcie województwa z rodzajem gminy (miejska, wiejska, część wiejska gminy m-w, część wiejska gminy m-w) dobór dwustopniowy z losowaniem:
 - miejscowości bezzwrtonie z prawdopodobieństwem proporcjonalnym do liczby ludności
 - w ramach miejscowości proste losowanie bez zwracania wiązek czteroosobowych.
- Oszacowany wskaźnik efektywności schematu deffp = 1,02.
- Poziom realizacji: 74,87%.

Wpływ uwzględnienia złożonego schematu doboru próby w polskiej próbie badania ESS 6

-mionno	matada aatumaaii	Polska			
zmienna	metoda estymacji	średnia	bł. std.	(1)	(2)
wiek	jak dla doboru prostego	46,10	0,44		
	z uwzgl. schematu	40,10	0,42	0,96	
	ze schematem i poststrat.	47,29	0,18	0,40	0,42
lata nauki	jak dla doboru prostego	12,23	0,081		
	z uwzgl. schematu	12,23	0,078	0,96	
	ze schematem i poststrat.	12,16	0,075	0,92	0,96
zaufanie do parlamentu (0-10)	jak dla doboru prostego	2,95	0,055		
	z uwzgl. schematu	2,95	0,056	1,03	
	ze schematem i poststrat.	2,95	0,057	1,04	1,01
samookreślenie na skali lewica- prawica (0-10)	jak dla doboru prostego	5,67	0,060		
	z uwzgl. schematu	5,07	0,060	1,01	
	ze schematem i poststrat.	5,67	0,062	1,03	1,03
głosowanie na socjaldemokrację	jak dla doboru prostego	0.04	0,005		
	z uwzgl. schematu	0,04	0,004	0,95	
	ze schematem i poststrat.	0,04	0,004	0,97	1,02

^{(1) =} bł. std.(~) / bł. std. (jak dla doboru prostego)

^{(2) =} bł. std.(z uwzgl. schematu) / bł. std. (z uwzgl. schematu i poststrat.)

Podsumowanie

- Poststratyfikacja nie zawsze pozwala poprawić jakość przewidywania wartości populacyjnych.
- Czasem należy wręcz podejrzewać, że pogarsza (wzrost wariancji estymatorów).
- Ogólnie rzecz biorąc wpływ poststratyfikacji na wyniki analiz danych ESS jest niewielki – zarówno w kategoriach zmiany oszacowań punktowych jak i ich błędów standardowych - jeśli pominąć zmienne bezpośrednio związane ze zmiennymi wykorzystanymi do poststratyfikacji.
 - Czy warto uwzględniać poststratyfikację w analizach ESS?
- Potwierdza się wysoka efektywność polskiego schematu doboru próby do badania ESS.

Dziękuję za uwagę!

t.zoltak@ibe.edu.pl