國立雲林科技大學

電子工程系 碩士班

樹莓派之遠端控制 LED 燈

指導教授:許明華 教授

王斯弘 講師

電子碩二 M10713203 李政聲

電子碩一 M10713245 江閔詳

工管碩一 M10721212 賴淑玲

目錄

第一章	緒論	3
	究背景與動機	
1.2 研 3	究目的	3
第二章	研究方法	4
	驗材料與系統	
2.2 實馬	驗流程	4
第三章	實驗結果	11
	學習心得	
第五章	參考資料	17

第一章 緒論

1.1 研究背景與動機

隨著物聯網的快速發展,使物聯網應用越來越多元,例如智慧工廠、環境 偵測以及智能家庭等。樹莓派是一款基於 Linux 系統的單機版電腦,它的價位 低、體積小、擴充性佳、支援多種語言且應用非常廣泛,許多人運用樹莓派設 計出各種有趣的東西,例如:家電遙控、雲端相機、自動灑水器等,由上述可 知樹莓派是一個可以無限發揮的平台,非常適合進行各式實驗,因此本研究希 望應用樹莓派進行一實際操作。

1.2 研究目的

本實驗利用 Android Studio 作為用戶端的操作系統,結合 Google 旗下的 Firebase 以便遠端操作,透過觸控與語音方式操作造型燈的開關與顏色變化。 藉由本實驗學習到如何將樹莓派、GPIO 控制、Firebase 與 Android Studio 結合以達到遠端操作。

第二章 研究方法

本章主要對於本實驗所使用的材料和系統與實驗流程做介紹。

2.1 實驗材料與系統

此實驗使用的材料為樹莓派 3、RGB LED 燈、杜邦線、麵包板、SD 卡、Android 系統之手機、5V/2A USB 電源轉換器、HDMI 線、USB 鍵盤、滑鼠與螢幕。此實驗使用的系統為 Raspbian Stretch Lite、Win32 Disk Imager、Firebase、Android Studio。主要語言為 Python 與 Java。

樹莓派是一款基於 Linux 系統的單機版電腦實驗材料,它的價位低、體積小、擴充性佳、支援多種語言且應用非常廣泛,樹莓派上包含四個 USB 接口、一個 HDMI、一個 Ethernet、一個 Micro USB 與一組 40 個接腳的 GPIO,可以提供使用者經由程式來控制。

Firebase 為 Google 所提供可同時支援多種開發環境與工具的雲端平台,所提供的功能也眾多,包括 Realtime Database 即時資料庫、Cloud Storage 雲端儲存與 Analytics 數據分析,而使用 Firebase 作為 APP 後端平台的人數不斷成長。

2.2 實驗流程

本實驗分為三部分進行,第一部分為環境與設備之架設,第二部分為 LED 燈控制與雲端連結,第三部分為開發用戶端的操作系統,下圖為實驗流程圖。

第一部分我們使用 Raspbian 這套作業系統,首先下載 Stretch Lite 映像檔,透過 Win32 Disk Imager 程式將該映像檔寫入至 SD 卡中,就成功將該系統安裝 至樹莓派上,將燒錄好的 SD 卡、鍵盤、滑鼠、螢幕與電源接上,即可啟動電源,啟用電源後,可以使用 TERMINAL 進行相關的察看與設定。

圖 2-2 Raspbian Stretch Lite 映像檔下載

圖 2-3 Win32 Disk Imager 程式寫入映像檔

第二部分我們使用樹莓派上之 GPIO 來控制 LED 燈,並連結至 Firebase, 首先在 Firebase 建立一個專案,並更改讀寫權限,接著新增所需的資料欄與變數,以便與樹莓派做連結,接著在樹莓派上寫一個 Python 程式並依照 Firebase 上之變數來控制開關。以下圖 2-4、圖 2-5 與圖 2-6 為新增 Firebase 資料欄與連結 Firebase 並依照變數來控制開關與閃爍方式之控制的程式碼之註解。

- 1. 新增 Firebase 的 led1 與 led2 資料欄。
- 2. import 套件。
- 3. 新增一個變數存放 Firebase 的連結。
- 4. 設定 led 變數, led1 為 17、22、27 腳位, led2 為 14、15、18 腳位。
- 5. 初始化,在開始執行前先將 led 燈全部關閉。
- 6. 新增一個變數,用 get 方式去讀取的網址,並轉成 json 格式,再取得 Firebase 欄位 led1 與 led2 下的資料。
- 7. 取得 led1 的 17、22、27 與 led2 的 14、15、18 腳位的紅綠藍狀態。
- 8. 使用 Flashing 來增加閃爍功能,並用 if else 判斷式來判斷閃爍方式。

圖 2-4 新增 Firebase led1 與 led2 資料欄

```
#coding=utf-8
       from gpiozero import LED
2
       from requests import get
       import json
       import time
3
       #fircbasc 資料庫 url
      Firebase_URL = 'https://raspi-led-example.firebaseio.com/.json'
       1cd1_17 = LED(17) \#LED1_Green
       1cd1_22 = LED(22) #LED1_Bluc
       1cd1_27 = LED(27) #LED1_Rcd
4
       1cd2_14 = LED(14) \#LED2_Green
       1cd2_15 = LED(15) #LED2_Bluc
       1cd2_18 = LED(18) #LED2_Rcd
       #初始化 LED 燈
       1cd1_17.off()
       1cd1_22.off()
5
       1cd1_27.off()
       1cd2_14.off()
       1cd2_15.off()
       1cd2_18.off()
       while True:
           #續取 fircbasc 上資料庫的資料
 6
           Lod1_Data = gct(Fircbasc_URL).json()['lod']
           Lcd2_Data = gct(Fircbasc_URL).json()['1cd2']
           flash = gct(Fircbasc_URL).json()['flash'];
           #燈號顯示
           lcd1_17.valuc = Lcd1_Data['Grccn']
           lcd1_22.valuc = Lcd1_Data['Bluc']
 7
           lcd1_27.valuc = Lcd1_Data['Rcd']
           lcd2_14.valuc = Lcd2_Data['Grccn']
           lcd2_15.valuc = Lcd2_Data['Bluc']
           lcd2_18.valuc = Lcd2_Data['Rcd']
```

圖 2-5 連結 Firebase 並依照變數來控制開關的程式碼

```
8
         網煤功能
         if flash = 1:
            count=0
            for count in range(0,8):
                if count%2=0:
                    led1_17.value=0
                    led2_14.value=0
                    led1_17.value=1
                    led2_14.valu∈1
                 if count<4:
                    led1_22.value=0
                    led2_15.value=0
                 else:
                    led1_22.value=1
                    led2_15.value=1
                 if count==0 or count==1 or count==4 or count==5:
                    led1_27.value=0
                    led2_18.value=0
                 else:
                     led1_27.value=1
                    led2_18.value=1
                 time.sleep(.300)
                 if flash == 0:
                    led1_17. value=0
                    led2_14.value=0
                    led1_22.value=0
                    led2_15.value=0
```

led1_27. value=0 led2_18. value=0

圖 2-6 使用 if else 判斷式來判斷閃爍方式的程式碼

第三部分我們使用 Android Studio 來開發此環境,首先安裝 Android Studio,再建立一新專案再設定手機模擬器並與 Firebase 做連結,接著將所需之元件配置到手機介面上,介面設計完成後撰寫 java 程式,即可透過手機的觸控與語音來控制 LED 燈的開關與顏色變化。以下圖 2-7 至圖 2-10 程式碼之註解。

```
import android.content.Intent;
import android.os.Bundle;
import android.speech.RecognizerIntent;
import android.support.annotation.Nullable;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.AdapterView;
import android.widget.Button;
import android.widget.Spinner;
import com.google.firebase.database.DatabaseReference;
import com.google.firebase.database.FirebaseDatabase;
```

圖 2-7 引用函式庫

```
public class MainActivity extends AppCompatActivity {
   private Spinner sprLED1, sprLED2;
   private Button bSpeech, bFlash;
   private int isFlash = 0;
   FirebaseDatabase fireDB = FirebaseDatabase.getInstance();
   DatabaseReference led1 R, led1 G, led1 B, led2 R, led2 G, led2 B, flash;
   @Override
   protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity main);
       ImplementsIni();
       FireDBSetup();
        // Spinner declaration
       ArrayAdapter adapter = ArrayAdapter.createFromResource(
                                         this,
                                         R.arrav.Colors.
                                         R.layout.support simple spinner dropdown item);
        sprLED1.setAdapter(adapter);
        sprLED2.setAdapter(adapter);
        // LED 1 Spinner onSelected Listener
        sprLED1.setOnItemSelectedListener(new AdapterView.OnItemSelectedListener() {
            public void on Item Selected (Adapter View <?> parent, View view, int position, long id) {
                switch (position) {
                    case 0:
                        led1 R.setValue(0);
                        led1 G.setValue(0);
                        led1 B.setValue(0);
                        break;
                        led1 R.setValue(1);
                        led1_G.setValue(0);
led1_B.setValue(0);
                        break;
                    case 2:
                        led1 R.setValue(0);
                        led1 G.setValue(1);
                        led1 B.setValue(0);
                        break;
                    case 3:
```

圖 2-8 初始設定、下拉式選單之功能設定 (重複部分省略)

```
// Speech Button onClick Listener
public void bSpeechClick(View view) {
   Intent intent = new Intent(RecognizerIntent.ACTION RECOGNIZE SPEECH);
   intent.putExtra(RecognizerIntent.EXTRA LANGUAGE MODEL,
                  RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
   intent.putExtra(RecognizerIntent.EXTRA PROMPT, "Start Speech");
   startActivityForResult(intent, 1);
                                                 ※注意:這邊我們只做一個閃爍用的
                                                 button,原因是我們認為一個 button
// Flash Button onClick Listener
public void onFlashClick(View view) {
                                                 就能完成開關閃爍的功能(即按一下
   isFlash = (isFlash == 0)?1:0;
   flash.setValue(isFlash);
                                                 打開,再按一下關閉),而我們的實
                                                 驗結果也同樣完成了作業所要求的功
// Speech activity
@Override
protected void onActivityResult(int requestCode, int resultCode, @Nullable Intent data) {
   super.onActivityResult(requestCode, resultCode, data);
   final String off = "關";
   final String on = "開";
   if (requestCode == 1 && resultCode == RESULT OK) {
       String firstMatch = data != null
                  ? data.getStringArrayListExtra(RecognizerIntent.EXTRA RESULTS).get(0)
                   : null;
       flash.setValue(0);
       isFlash = 0;
       if(firstMatch.contains(on)){
           led1 R.setValue(1);
           led1_G.setValue(1);
           led1 B.setValue(1);
           led2 R.setValue(1);
           led2 G.setValue(1);
           led2 B.setValue(1);
       }else if(firstMatch.contains(off)){
           led1 R.setValue(0);
           led1_G.setValue(0);
           led1 B.setValue(0);
           led2 R.setValue(0);
           led2 G.setValue(0);
           led2 B.setValue(0);
       }
```

圖 2-9 錄音功能及閃爍按鈕

```
// Implements initialization
private void ImplementsIni(){
   sprLED1 = findViewById(R.id.sprLED1);
   sprLED2 = findViewById(R.id.sprLED2);
   bSpeech = findViewById(R.id.bSpeech);
   bFlash = findViewById(R.id.bFlash);
}
// FireBase Setup
private void FireDBSetup(){
    led1 R = fireDB.getReference().child("led").child("Red");
    led1_G = fireDB.getReference().child("led").child("Green");
    led1 B = fireDB.getReference().child("led").child("Blue");
    led2 R = fireDB.getReference().child("led2").child("Red");
   led2_G = fireDB.getReference().child("led2").child("Green");
   led2_B = fireDB.getReference().child("led2").child("Blue");
   flash = fireDB.getReference().child("flash");
}
```

圖 2-10 物件初始化、FireBase 設定

第三章 實驗結果

在完成上述所有實驗流程後,以下為實驗結果展示。

圖 3-1 硬體

圖 3-2 閃爍結果

圖 3-3 手機介面

圖 3-4 燈號選擇 1

圖 3-5 燈號選擇 2

圖 3-6 錄音功能

第四章 學習心得

李政聲:

本實驗利用樹梅派結合現成的資料庫 firebase 與 Android App 來完成,雖完以前有寫過 Android,但還是學習到了一些與資料庫串接與官方套件(錄音)的應用,另外,我們也學習到了 python 的基本語法,真的收穫豐富,老師上課內容充實且清楚,很高興有機會能修到這門課,且由於往後的課程是有關於 AIoT,這與我的碩士論文也有些關聯,所以接下來的實驗我會更努力學習。

江閔詳:

在這門課中,真的可以接觸及學習到很多東西,要使用多方程式及裝置完成作業,真的是受益良多。在這次課程,接觸到樹莓派、Python、Firebase 及 android,這是我第一次接觸到樹莓派,沒想到這小小板子可以有很多的應用,用 Python 連線至 Firebase 讀取資料,然後控制 LED,在使用第三方裝置手機控制 Firebase 資料,這樣子就完成了聯網,利用這方法,就可以將這簡單的控制應用在生活中,例如電源控制、環境檢測,原來聯網就這麼簡單。謝謝老師的教導,讓我學習到更多得方法。

賴淑玲:

樹莓派的操作容易且攜帶方便,它提供我們一個很大的空間讓我們進行設計,且可以輕易的對硬體進行擴充並連結網路,這次實驗完整操作整個流程,包括從環境架設、設備準備、程式撰寫、資料庫連結與 APP 設計等,因此透過本實驗學習到樹莓派、GPIO 控制、Firebase 與 Android Studio 的結合以達到遠端操作,是一個非常有趣且吸收到非常多知識的實驗。

第五章 參考資料

1. 樹莓派- 維基百科:

https://zh.wikipedia.org/wiki/%E6%A0%91%E8%8E%93%E6%B4%BE

2. Raspberry Pi 台灣樹莓派:

https://www.raspberrypi.com.tw/

3. Raspberry Pi - Teach, Learn, and Make with Raspberry Pi:

https://www.raspberrypi.org/

4. 葉難: Raspberry Pi 安裝中文環境:

http://yehnan.blogspot.tw/2012/08/raspberry-pi.html

5. GPIO: MODELS A+, B+, RASPBERRY PI 2 B AND RASPBERRY PI 3 B:

https://www.raspberrypi.org/documentation/usage/gpio-plus-andraspi2/README.md

6. 透過 Firebase 與 Raspberry Pi 製作簡單的物聯網 iOS 程式:

https://www.appcoda.com.tw/swift-raspberry-pi/

7. Firebase:

https://firebase.google.com/docs/android/setup

8. 使用 Android Studio 2.2.2 開發 Firebase - Database 篇:

https://litotom.com/2016/11/19/as 222 firebase db/

9. gpiozero:

https://gpiozero.readthedocs.io/en/stable/

10. RASPBERRY PI 3 MODEL B 系統安裝指南:

http://hophd.com/raspberry-pi-3-model-b-installation/

11. 啟動 Android 的語音識別(Speech Recognition)功能:

http://androidbiancheng.blogspot.tw/2011/05/android-speech-recognition.html

12. android-studio 安裝教學-從0到1/:

http://learnexp.tw/%E3%80%90android%E3%80%91androidstudio%E5%AE%89%E8%A3%9D%E6%95%99%E5%AD%B8-%E5%BE%9E0%E5%88%B01/