

CIRCULATING FLUIDIZED BED REACTOR

Publication number: RU2104442

Publication date: 1998-02-10

Inventor: ZHAN VIDAL (FR); ZHAN-KSAV E MOREHN (FR);
ZHAN-POL TESS E (FR)

Applicant: STEJN EHNDJUSTRI (FR)

Classification:

- **international:** *B01J8/24; B01J8/28; F22B1/02; F22B29/00;*
F22B31/00; F23C10/04; F23C10/10;
F23C10/12; F23C99/00; B01J8/24; F22B1/00;
F22B29/00; F22B31/00; F23C10/00; F23C99/00; (IPC1-
7); *F23C11/02; B01J8/28*

- **European:** F22B31/00B8; F23C10/10; F23C10/12

Application number: RU19930004641 19930426

Priority number(s): FR1992005165 19920427

Also published as:

EP0568448 (A1)
 JP6094201 (A)
 FR2690512 (A1)
 FI931839 (A)
 CA2094860 (A1)

[more >>](#)

[Report a data error here](#)

Abstract of RU2104442

FIELD: thermoelectric plants. **SUBSTANCE:** the reactor has lower section 3 with fluidizing lattice 11, inlets 12, 13 of primary and secondary air, and fuel feed 10, upper section 2, internal dense fluidized beds 22, 23 above lower section 3 extracting solid material from the flows of reactor internal recirculation and directing it partially to the external heat exchangers with a dense fluidized bed adjoining the reactor walls at the level of internal fluidized beds 22,23. These external heat exchangers after a heat exchange with the external fluid medium discards the solid material into lower section 3. **EFFECT:** enhanced efficiency. 3 cl, 14 dwg ööööö

FIG. 1

Data supplied from the **esp@cenet** database - Worldwide

(19) RU (11) 2 104 442 (13) C1
(51) МПК⁶ F 23 C 11/02, B 01 J 8/28

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 93004641/06, 26.04.1993

(30) Приоритет. 27.04.1992 FR 92 05165

(46) Дата публикации. 10.02.1998

(56) Ссылки: 1. FR, заявка, 2323101, кл. F 23 D 19/00, 1977. 22. FR, заявка, 2353332, кл. B 01 J 8/24, 1978. 3. ЕР, 0444926, кл. F 23 C 11/02, 1991.

(71) Заявитель:
Стейн Эндюстри (FR)

(72) Изобретатель. Жан Видаль[FR],
Жан-Кавье Моран[FR], Жан-Поль Тессье[FR]

(73) Патентообладатель:
Стейн Эндюстри (FR)

(54) РЕАКТОР С ЦИРКУЛИРУЮЩИМ ПСЕВДООЖИЖЕННЫМ СЛОЕМ

(57) Реферат:

Использование: реактор с циркулирующим псевдоожиженным слоем может быть использован в теплозелектростанциях. Сущность: реактор с циркулирующим псевдоожиженным слоем содержит никнюю зону 3 с решеткой 11 псевдоожижения, вводы 12 и 13 первичного и вторичного воздуха и подвод 10 топлива, верхнюю зону 2, внутренние плотные псевдоожиженные слои 22 и 23 вверху никней зоны 3, отбирающие твердый материал от потоков внутренней рециркуляции реактора и направляющие его частично в наружные теплообменные устройства с плотным псевдоожиженным слоем, примыкающие к стенкам реактора на уровне внутренних псевдоожиженных слоев 22 и 23. Эти наружные теплообменные устройства после теплообмена с наружной текучей средой обсыпают твердый материал в никнюю зону 3. 2 з.л. ф.лы. 14 ил.

R U 2 1 0 4 4 4 2 C 1

R U 2 1 0 4 4 4 2 C 1

(19) RU (11) 2 104 442 (13) C1
(51) Int. Cl. 6 F 23 C 11/02, B 01 J 8/28

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 93004641/06, 26.04.1993

(30) Priority: 27.04.1992 FR 92 05165

(46) Date of publication: 10.02.1998

(71) Applicant:
Stejn Ehndjstri (FR)

(72) Inventor: Zhan Vidal[FR],
Zhan-Keav'e Morehn[FR], Zhan-Poi' Tess'e[FR]

(73) Proprietor:
Stejn Ehndjstri (FR)

(54) CIRCULATING FLUIDIZED BED REACTOR

(57) Abstract:

FIELD: thermoelectric plants. SUBSTANCE: the reactor has lower section 3 with fluidizing lattice 11, inlets 12, 13 of primary and secondary air, and fuel feed 10, upper section 2, internal dense fluidized beds 22, 23 above lower section 3 extracting solid material from the flows of reactor internal recirculation and directing it partially to the external heat exchangers with a dense fluidized bed adjoining the reactor walls at the level of internal fluidized beds 22, 23. These external heat exchangers after a heat exchange with the external fluid medium discards the solid material into lower section 3. EFFECT: enhanced efficiency. 3 cl, 14 dwg.

RU 2 104 442 C1

R U 2 1 0 4 4 4 2 C 1

Реактор с циркулирующим псевдоожженным слоем в настоящее время широко используется в теплоэлектростанциях, причем все большей мощности. Наибольшая электрическая мощность такой действующей теплоэлектростанции 150 МВт.

Существуют три типа циркулирующего псевдоожженного (кипящего) слоя, отличающиеся друг от друга регулированием температуры реактора, которая для эффективной дисперсии дымовых газов должна поддерживаться постоянной, близкой к 850°С.

Первый отличается наличием теплообменных изделий, монтируемых в реакторе [1], и использует поддержание на определенном уровне содержания твердого материала путем регулирования расходов первичного и вторичного воздуха либо путем изменения рециркуляционного расхода газообразных продуктов горения. Однако при возрастании мощности установки возникает необходимость продолжить установку теплообменных панелей в реакторе до всех более низких уровней, что соответственно увеличивает риск их эрозии.

Второй тип отличается наличием наружных теплообменных устройств, установленных на пути наружной рециркуляции твердой фазы (твердых материалов), удаляемой на выходе из реактора сепаратором [2]. Эти наружные теплообменные устройства устанавливаются на некотором расстоянии от реактора, что требует установки кожухов, связывающих циклон с наружным теплообменным устройством и наружное теплообменное устройство с реактором, с необходимым уклоном и с соответствующими компенсаторами теплового расширения. При увеличении мощности реактора теплообменная способность его трубчатых стеков обычно не увеличивается пропорционально этому увеличению мощности из-за ограничения стеков по высоте, поэтому мощность наружных теплообменных устройств увеличивается быстрее, как и их количество и размеры. Это еще больше затрудняет или делает невозможным их установку и в настоящее время является фактором, ограничивающим электрическую мощность, которая могла бырабатываться по этой технологии.

Третий тип - тот, который указан фирмой Стейн Эндструп в ее Европейской заявке № 91401041 B, отличается падением скорости псевдоожженного газа непосредственно внутри реактора при прохождении газом плотного псевдоожженного слоя, установленного на промежуточном уровне в реакторе. Это падение скорости происходит благодаря значительному ступенчатому изменению величин сечения реактора (отношение сечений колеблется от 1,2 до 2) и имеет целью улучшить горение за счет увеличения рециркуляции твердого материала в нижней части реактора. Этот третий тип реактора позволяет благодаря наличию теплообменника в этом внутреннем плотном псевдоожженном слое уменьшить теплообменную способность (мощность теплообмена) внутренних панелей по сравнению с реактором с циркулирующим псевдоожженным слоем первого типа или

наружных обменных устройств по сравнению с реактором с циркулирующим псевдоожженным слоем второго типа, но он не позволяет убрать их совсем в установках большой мощности.

- 5 Изобретение касается реактора с циркулирующим псевдоожженным слоем, содержащего нижнюю зону с быстро циркулирующим псевдоожженным слоем, в которой расположена псевдоожженная решетка, средство для вдувания первичного воздуха под решеткой и средство для вдувания вторичного воздуха над решеткой, причем стены реактора, ограничивающие указанную нижнюю зону, снабжены трубами охлаждения, зону, верхнюю по отношению к быстро циркулирующему псевдоожженному слою, окруженному стенками реактора, снабженными трубами охлаждения, средства для введения топлива в нижнюю зону, по меньшей мере одно наружное тепловое обменное устройство, включающее плотный псевдоожженный слой, примыкающее к одной из стенок реактора, причем материал этого псевдоожженного слоя поступает из реактора и сбрасывается за слоем в нижнюю зону после осуществления теплообмена с наружной подогреваемой текучей средой.
- 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
- 15 Изобретение касается реактора с циркулирующим псевдоожженным слоем, содержащего нижнюю зону с быстро циркулирующим псевдоожженным слоем, в которой расположена псевдоожженная решетка, средство для вдувания первичного воздуха под решеткой и средство для вдувания вторичного воздуха над решеткой, причем стены реактора, ограничивающие указанную нижнюю зону, снабжены трубами охлаждения, зону, верхнюю по отношению к быстро циркулирующему псевдоожженному слою, окруженному стенками реактора, снабженными трубами охлаждения, средства для введения топлива в нижнюю зону, по меньшей мере одно наружное тепловое обменное устройство, включающее плотный псевдоожженный слой, примыкающее к одной из стенок реактора, причем материал этого псевдоожженного слоя поступает из реактора и сбрасывается за слоем в нижнюю зону после осуществления теплообмена с наружной подогреваемой текучей средой.
- 20 Расположение теплообменного устройства, примыкающего снаружи к реактору [3], соответствует варианту реактора второго типа.
- 25 В реакторе этого типа наружное теплообменное устройство запитывается материалом через сифон от расположенного перед этим последним циклоном отделяющего твердые материалы, удаляемые из верхней части верхней зоны реактора. Это наружное теплообменное устройство, расположенное ниже циклона и сифона, примыкает к нижней части нижней зоны, что является недостатком, так как мешает вдуванию вторичного воздуха на одной из основных стенок реактора, ограничивая, таким образом, расстояние между передней и задней стенками, а, следовательно, и мощность реактора при данной определенной длине задней стены.
- 30 Реактор согласно изобретению, свободный от этого недостатка, отличается тем, что он содержит по меньшей мере одно внутреннее устройство плотного псевдоожженного слоя, установленное в верхней части нижней зоны, на одной или нескольких сторонах реактора и позволяющее собирать, с одной стороны, материал, подающий вдоль стены верхней зоны, и, с другой стороны, материал, возвращающийся в псевдоожженный слой из-за снижения скорости псевдоожженного газа при прохождении сквозь один или несколько внутренних плотных псевдоожженных слоев, причем отношение поперечного сечения верхней зоны к поперечному сечению нижней зоны на уровне внутренневогоних/ псевдоожженных/ слоев/ находится в пределах значений от 1,05 до 2, и что наружные/ теплообменные/ устройства/ расположаются/ над вдувами вторичного воздуха и твердый материал поступает в них от внутреннего/их/ плотного/ных/ псевдоожженного/ных/ слоев/, при этом твердый материал, переполняющий этот/ти/ внутренний/и/ псевдоожженный/ый/ слой/i, сбрасывается
- 35 40 45 50 55 60 65 70 75 80 85 90 95 100

в нижнюю зону.

Кроме того, реактор по своей конструкции легко может быть выполнен ограниченным по высоте.

На фиг. 1 показан вид спереди предлагаемого реактора, на фиг. 2 - вид сверху реактора, представленного на фиг. 1; на фиг. 3 - реактор по фиг. 1, вид сбоку, на фиг. 4 - разрез IV-IV на фиг. 2, на фиг. 5 - разрез V-V на фиг. 2; на фиг. 6 - разрез VI-VI на фиг. 2, на фиг. 7 - первый вариант выполнения реактора согласно изобретению: а - вид сбоку, б - вид сверху и с - вид спереди; на фиг. 8 - то же, второй вариант: а - вид сбоку, б - вид сверху, с - вид спереди; на фиг. 9 - то же, третий вариант: а - вид сбоку, б - сверху, с - спереди; на фиг. 10 - вариант, вид спереди, реактора согласно изобретению, предназначенного для получения большой мощности и имеющего нижнюю зону, разделенную на две части; на фиг. 11 - то же, вид сверху; на фиг. 12 - то же, вид сбоку; на фиг. 13 - то же, частичный с увеличением вид реактора; на фиг. 14 - паро-водяной контур установки, частью которой является реактор по фиг. 10.

Являющийся предметом изобретениям реактор с циркулирующим псевдоожженным слоем, предназначенный для скрания улеродистого материала, представлен на фиг. 1-6.

Он содержит трубчатый кожух 1, разделенный на две зоны: верхнюю зону 2, где трубы 4 расположены внутри открытого и охлаждаются твердый материал и газы, и нижнюю зону 3, где трубы 4 покрыты огнеупорным материалом 5 для их защиты от эрозии; трубопровод 6, расположенный вверху верхней зоны 2, который направляет газы с содержащимися в них твердым материалом к циклону 7, где происходит отделение твердого материала и затем отобранные твердые материалы возвращаются через сифон 8 и трубопровод 9 в нижнюю зону 3 реактора; один или несколько входов 10 для топлива; псевдоожженную решетку 11, сквозь которую вдувается первичный воздух, вводимый через вход 12; несколько каналов 18, подводящих вторичный воздух на одном или нескольких уровнях в нижнюю часть 3 реактора; рекуперативные теплообменники в кожухе 14, через который проходит твердый материал, через циклон 7, обогреватели 15 воздуха; пылеуловитель 16 и отводную трубу 17.

Отличительным признаком этого реактора является наличие в нем наружных устройств теплообмена, участвующих в охлаждении псевдоожженных твердых материалов, движущихся в газе и работающих в следующих условиях:

а) Твердые материалы, проходящие через эти наружные устройства теплообмена 18 - 21, отбираются из рециркуляционных потоков, образующихся внутри, на промежуточном уровне в реакторе, в верхней части нижней зоны, а не из наружного рециркуляционного потока твердых материалов, улавливаемых сепаратором 7, установленным на выходе из реактора.

б) Для улавливания этих твердых материалов на промежуточном уровне реактора установлены, как показано на фиг. 4, два устройства внутренних плотных

псевдоожженных слоев 22 и 23 вверху нижней зоны 3, разделяя, таким образом, реактор на две части верхнюю зону 1 с поперечным сечением S₁ и нижнюю зону 3 переменного сечения, но максимальное поперечное сечение S₁ которой на уровне двух внутренних плотных псевдоожженных слоев 22 и 23 меньше S₁. Количество собранного твердого материала будет зависеть от двух факторов:

- от длины стенок, у которых установлены внутренние плотные псевдоожженные слои 22 и 23, то есть от длины боковых сторон 24 и 25 в примере, представленном на фиг. 1 - 4;

- от быстрого снижения скорости псевдоожженных газов, соответствующего отношению S₁/S₂ поперечных сечений реактора, при этом скорость псевдоожживающего слоя в этих двух сечениях S₁ и S₂ остаются всегда в диапазоне 2,5-12 м/с, используемой в циркулирующем псевдоожженном слое.

Материал во внутренних плотных псевдоожженных слоях 22 и 23 имеет уровень 26 и 27, регулируемый естественным образом за счет переполнения и образа материала в нижнюю зону 3 реактора по всей длине внутренних стенок 28 и 29 внутренних устройств псевдоожживающего слоя 22 и 23 (фиг. 2). Обычно эти устройства образуются псевдоожживающими решетками 30 и 31 и подводами 32 и 33 псевдоожживающих газов

с) Чтобы получить твердый материал от внутренних устройств плотного псевдоожженного слоя 22 и 23, четыре наружных теплообменных устройства 18 - 21 (фиг. 2), которые также являются устройствами плотного псевдоожживающего слоя, устанавливаются на передней стороне 35 и на задней стороне 36 реактора. Они оборудованы псевдоожживающими решетками 36 и 37 и имеют подводы 38 и 39 воздуха для псевдоожжения. Уровни 40 и 41 твердого материала, движущегося в псевдоожженных сех устройства 18 - 21, также регулируется их переполнением и образом лишнего материала в нижнюю зону 3 реактора, как показано под позициями 42 - 45 на фиг. 2 и 5, вблизи вертикальных плоскостей, разделяющих теплообменные устройства 18 и 19 или наружные теплообменные устройства 20 и 21, эти уровни 40 и 41 регулируются по величине более низкой, чем уровни 26 и 27 внутренних плотных псевдоожженных слоев 22 и 23, чтобы обеспечить циркуляцию твердого материала между внутренними плотными псевдоожженными слоями 22 и 23, наружными теплообменными устройствами 18 - 21, и нижней зоной 3 реактора.

Относительное расположение внутреннего плотного псевдоожженного слоя 22, наружного теплообменного устройства 18 и внутренней полости реактора показано на фиг 5 и 6.

Внутренний плотный псевдоожженный слой 22 сообщается с внутренней полостью реактора своей верхней частью, куда попадает твердый материал, падающий из верхней зоны 2 реактора, и переполняясь, возвращая частично твердый материал в нижнюю зону 3 по всей своей длине через стенку 26 сброса.

Наружное теплообменное устройство 18, установленное в задней стенке 35 реактора, полностью отделено от реактора этой

стенкой, за исключением окна 42, по нижнему уровню 40 которого регулируется высота плотного псевдоожиженного слоя в наружном теплообменном устройстве твердый материал, необходимый для работы теплообменного устройства 18 поступает из внутреннего плотного псевдоожиженного слоя 22 по каналу 46 и возвращается в нижнюю зону 3 реактора за счет переполнения через нижний край окна 42. Сечение окна 42 имеет размеры, обеспечивающие продувку через наружные теплообменные устройства 18. В него погружен трубчатый теплообменник 50 (фиг. 6), обеспечивающий частично охлаждение реактора. Движущая сила, необходимая для циркуляции твердого материала между внутренними плотными псевдоожиженными слоями и наружным теплообменным устройством, обеспечивается разницей в уровнях 22 и 49 двух плотных псевдоожиженных слоев 22 и 18 (фиг. 5 и 6), расход твердого материала, перемещающегося из внутреннего плотного псевдоожиженного слоя 22 к наружному теплообменному устройству 18, пройдет через канал 46 с псевдоожиженным материалом, снабженный механическим регулирующим средством (типа игольчатого клапана) или регулирующим средством с вдуванием воздуха (в этом последнем случае расход материала регулируется количеством вдуваемого воздуха). Этот канал 46 может проходить снаружи указанных обеих плотных псевдоожиженных слоев или через створение в стенке, общее для этих двух плотных псевдоожиженных слоев.

Такое же взаимное расположение должно быть между внутренними плотными псевдоожиженными слоями 22, наружным теплообменным устройством 20 и внутренней полостью реактора или между внутренними плотными псевдоожиженными слоями 23, наружным теплообменным устройством 19 или 21 и внутренней полостью реактора, при этом в наружные теплообменные устройства 19, 20 и 21 материал поступает по каналам 47, 48 и 49 из внутренних плотных псевдоожиженных слоев 22 и 23.

а) Внутренние плотные псевдоожиженные слои 22 и 23 имеют размеры, зависящие от следующих параметров.

Их ширина соответствует выбору отношения S/S_1 двух внутренних сечений реактора, это отношение должно быть принято таким, чтобы расход твердого материала, падающего во внутренние плотные псевдоожиженные слои 22 и 23, был большим, чем расход материала, используемого в наружных теплообменных устройствах 18 - 21. При таких условиях некоторое количество твердого материала всегда будет при переполнении плотных внутренних псевдоожижененных слоев 22 и 23 падать через край стекон 28 и 29 в нижнюю зону 3 реактора. Это отношение S/S_1 реактора согласно изобретению находится в пределах 1,05 - 2.

Их высота рассчитывается в зависимости от расхода твердого материала, необходимого для функционирования наружных примыкающих к реактору теплообменных устройств 18 - 21, а также от разницы в уровнях плотных внутренних псевдоожижененных слоев 22 и 23 и наружных

плотных псевдоожиженных слоев 18 - 21.

Псевдоожижающие газы для внутренних плотных псевдоожиженных слоев 22 и 23 должны быть инертными, так как в этих псевдоожиженных слоях не имеется теплообменников и следует избегать возможного горения углеродистых материалов, способных спекаться, поэтому в качестве газов для псевдоожижания следует использовать газообразные продукты горения, отбираемые на выходе из обессыпывателей 16, эти газы должны по составу соответствовать очень малому количеству обратных (рециркулируемых) газов.

Размеры наружных теплообменных устройств 18 - 21, примыкающих к передней стенке 34 и к задней стенке 35 реактора, определяются теплообменом, который они должны обеспечивать для того, чтобы реактор мог функционировать при заданной температуре, выбираемой обычно разной

20 850 °C, необходимой для наилучшей десульфурации. Поэтому эти наружные теплообменные устройства 18 - 21 имеют ширину и высоту значительно большие, чем ширина и высота внутренних плотных псевдоожиженных слоев 22 и 23.

25 Таким образом, писанный реактор имеет два типа поверхностей охлаждения:

- брызговые стеки верхней зоны 2 реактора, теплообмен в которых определяется содержанием твердого материала, зависящим от оптимизации параметров горения (расход первичного и вторичного воздуха), и не поддается индивидуальному регулированию;

- четыре наружных теплообменных устройства 18 - 21, примыкающие к реактору, теплообмен в которых поддается индивидуальному регулированию путем воздействия на расходы поступающего в них твердого материала через каналы 46 - 49, которые позволяют таким образом регулировать рабочую температуру реактора при любых режимах и при необходимости параллельно осуществлять регулирование теплообмена с одной или несколькими внешними текущими средами.

Расположение внутренних плотных псевдоожиженных слоев 22 и 23 и наружных теплообменных устройств 18 - 21, показанных на фиг. 1-6, может быть изменено. Согласно другим неограничивающим примерам их взаимное расположение может быть таким, как показано на фиг. 7 - 9.

На фиг. 7 внутренние плотные псевдоожиженные слои и наружные теплообменные устройства 18 - 21 расположены на одних и тех же стеках, на фиг. 8 наружные теплообменные устройства 18 и 19 расположены на одной и той же боковой стеке, тогда как внутренние плотные псевдоожиженные слои 22 и 23 остаются расположенным на передней и задней стеках, на фиг. 9 имеется только одно наружное теплообменное устройство 18, установленное на одной из боковых стек, и один внутренний плотный псевдоожиженный слой 22, установленный на передней стеке.

Основное преимущество этого нового реактора с циркулирующим псевдоожиженным слоем состоит в том, что в нем появляется возможность благодаря упрощению подсоединения наружных

R U 2 1 0 4 4 4 2 C 1

теплообменных устройств 18 - 21 устанавливать эти последние на таком уровне, чтобы нижняя зона 3 реактора одновременно избавлялась от этих наружных теплообменных устройств 18 - 21 и от их связи с реактором и могла бы быть применена только для создания и размещения в ней систем, обеспечивающих горение (первичный воздух, вторичный воздух) и возврат твердого вещества из циклонов 7, установленных на выходе из реактора. Этот отличительный признак позволяет расширить область применения реактора в сторону больших мощностей, как показано в нижеизложенном примере.

На фиг. 10 - 13 показан реактор с циркулирующим псевдоожиженным слоем большой мощности (электрической мощности в 300 МВт).

Мощность теплообмена составляет примерно 750 МВт, в том числе 450 МВт - мощность теплообмена на участке внутренних трубчатых стеков реактора (125 МВт) и наружных теплообменных устройств (325 МВт) и 300 МВт - мощность теплообмена в теплообменниках, защищенных в кожухе 14 и подогревателях 15 воздуха.

Нижняя зона 3 разделена на две части ЗА и ЗВ, что позволяет разделить надвое ширину между боковыми стенками 24 и 25. Ширина является ограничивающим фактором для проникновения струй вторичного воздуха 13, необходимых для обеспечения хорошего горения.

Входы 12, 13 и 9 первичного воздуха, вторичного воздуха и возврата твердого материала из циклона 7 соответственно, расположены оптимальным образом вокруг нижних частей ЗА и ЗВ благодаря установке в соответствии с вышеизложенным приемами двух внутренних плотных псевдоожиженных слоев 22 и 23, смонтированных у левой и правой боковых стенок 24 и 25 реактора, и четырех наружных теплообменных устройств 18 - 21, примыкающих к реактору снаружи, к задней и наружной стенкам 35 и 34 и запитываемых твердым материалом по каналам 46 - 49 с псевдоожиженным слоем.

Каждый из четырех теплообменных аппаратов 18 - 21 разделен на две части (18A, 18B и т.д.) средней перегородкой 50 - 53, открытой в своей верхней части для того, чтобы при переполнении этих теплообменных устройств материал мог сбрасываться в следующую за ним часть реактора.

Таким образом, как показано на фиг. 11 и 13, теплообменное устройство 18 разделено на две части 18A и 18B, в часть 18A твердый материал поступает от внутреннего плотного псевдоожиженного слоя 22 по каналу 46, в часть 18B твердый материал поступает при переполнении через вертикальную перегородку 50, верхний уровень которой соответствует 40A (фиг. 13), причем твердый материал падает в нижнюю часть ЗА реактора через окно 42, нижний уровень 42B которого определяет высоту псевдоожиженного слоя части 18B.

Внутренние плотные псевдоожиженные слои 22 и 23 оборудованы псевдоожижающими решетками 30 и 31, сквозь которые средствами 32 и 33 вдуваются инертные псевдоожижающие газы. Наружные теплообменные устройства, например 18A,

18B, 20A и 20B, оборудованы решетками псевдоожижения, например 36A, 36B, 37A и 37B, через которые вдувается псевдоожижающий воздух с помощью, например средств 38A, 38B, 39A и 39B и т.д.

В качестве примера можно предусмотреть применение такого реактора с циркулирующим псевдоожиженным слоем электрической мощности в 300 МВт на тепловой паротурбинной станции с давлением пара ниже критического, водо-паровой контур которой показан на фиг. 14.

Машинный зал содержит трехцилиндровую турбину с тремя цилиндрами высокого давления (НР), среднего давления (МР) и низкого давления (ВР), конденсатор С, получающий пар низкого давления из цилиндра ВР, конденсаторный насос Е, пароподогреватели низкого давления ВП, в которые поступает вода, откаченная насосом Е, дегазатор Д, питающие насосы РА, пароподогреватели высокого давления РНП.

Котел с циркулирующим псевдоожиженным слоем содержит экономайзер 55, вода в который поступает от пароподогревателей высокого давления РНР, два параллельно действующих испарителя 56 и 57, низкотемпературный пароперегреватель 58, среднетемпературный пароперегреватель 59 и высокотемпературный пароперегреватель 60, низкотемпературный вторичный пароперегреватель 61 и высокотемпературный вторичный

пароперегреватель 62. Высокотемпературный пароперегреватель 60 подает пар высокого давления в цилиндр НР. Этот последний направляет пар во вторичные пароперегреватели 61 и 62, которые снабжают паром цилиндр МР среднего давления.

На фиг. 10 показаны положения испарителя 56, образованного трубами 4, расположенного, как показано на фиг. 1, на внутренних стеках реактора, а также высокотемпературного пароперегревателя 60, низкотемпературного вторичного пароперегревателя 61 и экономайзера 55 в кожухе 14.

На фиг. 11 показано расположение аппаратов в наружных теплообменных устройствах 18 - 21, примыкающих на промежуточном уровне к реактору среднетемпературных пароперегревателей 59 и испарителей 57 соответственно в наружных теплообменных устройствах 20A и 21A, 20B и 21B, высокотемпературных вторичных пароперегревателей 62 и низкотемпературных пароперегревателей 58 соответственно в наружных теплообменных устройствах 18A и 19A, 18B и 19B.

Теплообмен между твердым материалом и паром в теплообменных устройствах 18 и 19 позволяет регулировать температуру реактора, поддерживая ее, например, на уровне 850°C.

Теплообмен между твердым материалом и паром в теплообменных устройствах 20 и 21 позволяет регулировать температуру вторичного перегретого пара, поддерживая ее на заданной величине, равной, например, 565 °C.

На фиг. 10 хорошо видно, что вся нижняя зона реактора разделена на две части, каждая из которых может быть оборудована

R U 2 1 0 4 4 4 2 C 1

RU 2104442 C1

совершенно независимо от наружных теплообменных устройств, своими контурами горения, а именно двумя или несколькими уровнями подачи вторичного воздуха на восьми стенах реактора и возвратами от четырех циклонов на боковых стенах.

По существу, каждая нижняя часть ЗА или ЗВ соответствует одному реактору с циркулирующим псевдоожиженным слоем электрической мощностью в 150 МВт.

Вышеприведенный пример соответствует электрической мощности в 300 МВт, но реактор, согласно изобретению, может быть выполнен на большую электрическую мощность, например 600 МВт, путем увеличения длины боковых стенок и поверхности наружных теплообменных устройств на передней и задней стенах.

Формула изобретения:

1. Реактор с циркулирующим псевдоожиженным слоем, содержащий нижнюю зону с быстрым циркулирующим псевдоожиженным слоем, снабженную решеткой псевдоожижения, средствами подачи первичного воздуха под решеткой и средствами вдувания вторичного воздуха над решеткой, причем стены реактора, ограничивающие указанную нижнюю зону, содержат трубы охлаждения, верхнюю зону с быстрым циркулирующим псевдоожиженным слоем, ограниченную стенками реактора, снабженными трубами охлаждения, средства введения топлива в нижнюю зону, по меньшей мере одно наружное теплообменное устройство, включающее плотный псевдоожиженный слой, примыкающее к одной из стенок реактора, причем указанный псевдоожиженный слой подпитывается

твердым материалом из внутренней полости реактора и сбрасывает этот материал в нижнюю зону после теплообмена с подогреваемой наружной текучей средой, отличающейся тем, что он содержит один или несколько внутренних плотных псевдоожиженных слоев, установленных в верхней части нижней зоны на одной или нескольких стенах реактора и позволяющих собирать как твердый материал, падающий вдоль стенок верхней зоны, так и твердый материал, падающий обратно в слой за счет снижения скорости псевдоожижющего газа при прохождении его сквозь один или несколько внутренних плотных псевдоожиженных слоев, при этом отношение S/S_1 поперечного сечения S верхней зоны к сечению S_1 нижней зоны, измеренное на уровне одного или нескольких внутренних псевдоожиженных слоев, составляет 1,05 2,0, и несколько наружных теплообменных устройств расположены над вводами вторичного воздуха и возвратами и выполнены с возможностью подпитки твердым веществом от одного или нескольких внутренних плотных псевдоожиженных слоев, при переполнении их за счет сбрасывания твердого материала в нижнюю зону.

2. Реактор по п. 1, отличающийся тем, что некоторые из наружных теплообменных устройств выполнены с возможностью регулирования рабочей температуры реактора.

3. Реактор по п. 1 или 2, отличающийся тем, что некоторые из наружных теплообменных устройств служат для регулирования температуры вторичного перегретого (перегретых) пара (паров) в котле теплоцентрали.

35

40

45

50

55

60

-7-

R U 2104442 C1

RU 2104442 C1

Фиг.2

R U 2 1 0 4 4 4 2 C 1

RU 2104442 C1

Фиг.3

RU 2104442 C1

Фиг.4

RU 2104442 C1

RU 2104442 C1

Фиг.5

Фиг.6

R U 2 1 0 4 4 4 2 C 1

Фиг.7

Фиг.8

Фиг.9

RU 2104442 C1

RU 2104442 C1

Фиг.10

Фиг.11

RU 2104442 C1

RU 2104442 C1

Фиг. 12

R U 2 1 0 4 4 4 2 C 1

RU 2104442 C1

Фиг. 13

R U 2 1 0 4 4 4 2 C 1

RU 2104442 C1

Фиг.14

RU 2104442 C1