Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Лабораторная работа № 2 по дисциплине "Методы цифровой обработки сигналов" Вариант 12

Выполнил:

Чебыкин И. Б.

Группа: РЗ401

Проверяющий: Тропченко А. А.

Цель работы

Цель работы: определение возможностей применения медианного фильтра для подавления импульсных помех.

Этапы работы:

- Моделирование медианного фильтра при разном окне сканирования, частоте полезного сигнала и количестве импульсных помех;
- Определение зависимостей между этими параметрами и отношением выходного сигнала к шуму;
- Анализ полученных результатов; составление выводов по работе.

Вариант

Частота сигнала 3 Амплитуда сигнала 3 Число импульсных помех 10 - 30 Амплитуда помехи 5

Ход работы

S	N	SNR	S	N	SNR
3	10	4.0717	5	10	5.4428
	12	11.0915		12	5.4142
	14	3.8119		14	5.3932
	16	4.0454		16	5.607
	18	3.2844		18	5.4358
	20	2.3945		20	5.405
	22	2.5548		22	5.3653
	24	2.088		24	5.1562
	26	2.496		26	3.2979
	28	1.835		28	2.0242
	30	2.6139		30	5.2821

S	N	SNR	S	N	SNR
7	10	2.404	9	10	2.9498
	12	3.8974		12	2.9178
	14	3.7337		14	2.7156
	16	3.502		16	2.8836

_					
S	N	SNR	S	N	SNR
	18	3.5427		18	2.8159
	20	3.1373		20	2.8787
	22	3.8943		22	2.7742
	24	3.6673		24	2.6828
	26	3.5126		26	2.8595
	28	3.5269		28	2.7496
	30	2.9853		30	2.8403

S	N	SNR
11	10	2.2707
	12	2.226
	14	2.2105
	16	2.2106
	18	2.2085
	20	2.1828
	22	2.1232
	24	2.2223
	26	2.1964
	28	2.0773
	30	2.2348

Рис. 1: Зависимость SNR от числа импульсных помех для разных размеров окна сканирования

Большие окна дают меньший SNR при малом числе помех, но более устойчивы при большем числе помех.

N	SNR		
10	3.1088		
12	3.1683		
14	2.5975		
16	2.2385		
18	2.572		
20	2.5825		
22	2.2057		
24	2.273		
26	2.1256		
28	2.1704		
30	1.8713		

Рис. 2: Зависимость SNR от числа помех для линейного усредняющего фильтра

Мы наблюдаем, что линейный усредняющий фильтр даёт худший результат, чем медианный с таким же размером окна, при малом числе помех.

N	Fs	SNR	N	Fs	SNR
3	1	35.109	5	1	34.4139
	3	11.3105		3	11.5016
	5	6.62827		5	6.3442
	7	4.8507		7	4.9287
	9	3.7906		9	3.6536
	11	3.1732		11	3.0822
	13	2.5735		13	2.6214
	15	2.3333		15	2.3251
	17	2.0826		17	2.0225
	19	1.8217		19	1.8107

_					
N	Fs	SNR	N	Fs	SNR
	21	1.696		21	1.6674
	23	1.5219		23	1.5154
	25	1.4371		25	1.3789
	27	1.2765		27	1.3118
	30	1.1897		30	1.1895

N	Fs	SNR
15	1	6.1363
	3	5.619
	5	4.7467
	7	3.65
	9	3.3393
	11	2.7751
	13	2.3529
	15	2.138
	17	1.8236
	19	1.73692
	21	1.6383
	23	1.5065
	25	1.2663
	27	1.3004
	30	1.153

Рис. 3: Зависимость SNR от частоты сигнала

При увеличении частоты сигнала способность рассматривать импульсные всплески как помехи теряется в силу того, что сам сигнал тоже обретает импульсный характер.

Функциональная схема устройства

Рис. 4

Вывод

При большем числе помех следует выбирать большее окно для медианного фильтра. При малом числе помех медианный фильтр работает эффективнее, чем линейный усредняющий. При увеличении частоты сигнала эффективность фильтра теряется.