The Recursion Theorem

Professor Cian Dorr

27th September 2022

New York University

Relational structures

Relational structures, intuitively

Often in mathematics (including metalogic), we are interested in bundles comprising a set D together with one or more relations on D (which could be regular binary relations on D, i.e. subsets of $D \times D$, or ternary relations (subsets of $D^3 = (D \times D) \times D \dots$, or...

▶ When we talk of 'n-ary relations' on a set, we include the case of *singulary* (1-ary) relations on a set as a special case: 'singulary relation on A' is just another way of saying 'subset of A'. We'll identify the 'range' of a subset with the subset itself.

The most common way to make sense of such "bundles" is just to look at a tuple where the first co-ordinate is the set A and the remaining co-ordinates are the relations on A that we are interested in.

Example: DXR-bundles

For example, we could consider triples of the form $\langle D, X, R \rangle$ where D is a set, X is a subset of D, and R is a binary relation on D. Let's call such triples "DXR-bundles" as a mnemonic. (We won't use this terminology after today).

We can picture a DXR-bundle as a set where some elements may be are colored green (the ones in X) and where there may be arrows between some elements (the pairs in R).

Some properties of DXR-bundles

Definition

A DXR-bundle $S = \langle D, X, R \rangle$ is algebraic iff (i) X is a singleton and (ii) R is a function.

The DXR-bundle pictured on the left is algebraic, while the ones on the right are not.

Some properties of DXR-bundles

Definition

A DXR-bundle $S = \langle D, X, R \rangle$ has the *Inductive Property* iff D is the closure of X under R.

That is: for every $C \subseteq D$, if $x \in C$ whenever $x \in X$, and $y \in C$ whenever $x \in C$ and Rxy, then C = D.

The DXR-bundle on the left has the Inductive Property; the one on the right doesn't

Some properties of DXR-bundles

Definition

A DXR-bundle $S = \langle D, X, R \rangle$ has the *Injective Property* iff (i) R is injective, and (ii) no element of X is in the range of R.

Homomorphisms of DXR-bundles

Definition

Suppose $S = \langle D, X, R \rangle$ and $S' = \langle D', X', R' \rangle$ are DXR-bundles. Then a homomorphism from S to S' is any function $h : D \to D'$ such that

- (i) whenever $x \in X$, $hx \in X'$
- (ii) whenever Rxy, R'(hx)(hy).

The Recursion Theorem for DXR-bundles

Using the special DXR-bundle terminology introduced on the last few slides, we can state the following theorem. (We won't prove it yet since it'll be more useful to prove a more general theorem of which it's a special case.)

Recursion Theorem for DXR-bundles

Suppose $S = \langle D, X, R \rangle$ is a DXR-bundle with the Inductive and Injective Properties and $S' = \langle D', X', R' \rangle$ is an algebraic DXR-bundles. Then there is a unique homomorphism from S to S'.

The Recursion Theorems for DXR-bundles and Numbers

We can consider the natural numbers as a DXR-bundle $\langle \mathbb{N}, \{0\}, \mathsf{suc} \rangle$. It is algebraic, and has the Inductive and Injective properties. So as a special case of the Recursion Theorem for DXR-bundles, we have that there is a unique homomorphism from $\langle \mathbb{N}, \{0\}, \mathsf{suc} \rangle$ to any algebraic DXR-bundle.

In other words:

Recursion Theorem for Numbers

Suppose D is a set, $z \in D$, and $s : D \to D$. Then there is a unique function $f : \mathbb{N} \to D$ such that f = z and for all $f \in \mathbb{N}$, f(suc f) = s(ff).

The supposition can be restated as ' $\langle D, \{z\}, s \rangle$ is an algebraic DXR-bundle'. And the property singling out f is equivalent to ' $fx \in \{z\}$ whenever $x \in \{0\}$, and whenever $\langle n, m \rangle \in \text{suc}$, $\langle fn, fm \rangle \in s$ ', in other words 'f is a homomorphism from $\langle \mathbb{N}, \{0\}, \text{suc} \rangle$ to $\langle D, \{z\}, s \rangle$ '.

Proving the Recursion Theorem for DXR-bundles

Let's prove the Recursion Theorem for DXR-bundles, since the idea of the proof is exactly the same as that of the more general Recursion Theorem we'll have later.

Proof: Let $X^+ = X \times X'$.

Let R^+ be the binary relation on $D \times D'$ such that $R^+\langle x, x' \rangle \langle y, y' \rangle$ iff Rxy and R'x'y'.

Let F be the closure of X^+ under R^+ .

We will first prove that F is a function from D to D', and then verify that it meets the further conditions required to be a homomorphism from S to S'. Finally we'll show that there is at most one homomorphism from S to S'.

(i) F is serial, i.e. for all $x \in D'$ there exists $x' \in D'$ such that Fxx'. By induction.

Base case: if $x \in X$, then since X' is nonempty, there is some $x' \in D'$ such that $\langle x, x' \rangle \in X^+ \subseteq F$.

Induction step: Suppose Fxx' and Rxy. Since R' is serial, there exists y' such that R'x'y'. But then $R^+\langle x,x'\rangle\langle y,y'\rangle$, so Fyy' since F is closed under R^+ .

(ii) F is functional, i.e. for any $x \in D$, if Fxx' and Fxx'' then x' = x''. By induction.

Base case: suppose $x \in X$. Then since x isn't in the range of R, no ordered pair $\langle x, x' \rangle$ is in the range of any R^+ . So the only way $\langle x, x' \rangle$ and $\langle x, x'' \rangle$ could both be in F is if both are in $X^+ = X \times X'$. But since X' is a singleton, it follows that x' = x''.

Induction step: suppose that x is F-related to a unique x', Rxy, and Fyy' and Fyy''; we will show that y'=y''. Since $y\not\in X$, neither $\langle y,y'\rangle$ nor $\langle y,y''\rangle$ is in X^+ , so both must be in the range of R^+ : i.e. we have $R^+\langle z,z'\rangle\langle y,y'\rangle$ and $R^+\langle u,u'\rangle\langle y,y''\rangle$ for some $\langle z,z'\rangle$ and $\langle u,u'\rangle$ in F. But then Rzy and Ruy, so z=u=x since R is injective. So by the induction hypothesis, z'=u'=x'. Thus we have R'x'y' and R'x'y'', hence y=y'' by the fact that R' is functional.

(iii) F is a homomorphism from S to S'.

Suppose $x \in X$ and Fxx'. Then since x is not in the range of R, $\langle x, x' \rangle$ is not in the range of R^+ , so it must be in X^+ , so $x \in X'$.

Suppose Rxy, Fxx', and Fyy'. Then since y is not in X, $\langle y, y' \rangle$ is not in X^+ , so there must be some $\langle z, z' \rangle \in F$ such that $R^+ \langle z, z' \rangle \langle y, y' \rangle$, i.e. Rzy and R'z'y'. But since R is injective we must have z = x, and thus since F is functional we must have z' = x', so R'x'y'.

(iv) There is at most one homomorphism from S to S'.

Suppose g and h are homomorphisms from S to S': we prove by induction that gx = hx for all $x \in D$.

Base case: $x \in X$. Then gx and hx must both be in X', so gx = hx since X' is a singleton.

Induction step: suppose gx = hx and Rxy. Then R'(gx)(gy) and R'(gx)(hy); but then gy = hy since R' is functional.

Example: DXYRS-bundles

As another example, we could consider quintuples of the form $\langle D, X, Y, R, S \rangle$, where D is a set, X and Y are subsets of D, and R and S are binary relations on D: let's call these 'DXYRS-bundles'.

We can picture a DXYRS-bundle as a set where some elements may be colored green (X) or red (Y) or both, and where any pair of elements may be connected by a red (R) or blue (S) arrow or both:

Example: DXYRS-bundles

All the definitions that we had for DXR-bundles carry over to DXYRS-bundles. For a DXYRS-bundle $B = \langle D, X, Y, R, S \rangle$:

- \triangleright B is algebraic iff X and Y are singletons and R and S are functions.
- ▶ B has the Inductive Property iff D is the closure of $X \cup Y$ under R and S.
- ▶ B has the Injective Property iff R and S are injective and no two of X, Y, range R, and range S overlap.

For two DXYRS bundles $B = \langle D, X, Y, R, S \rangle$ and $B' = \langle D', X', Y', R', S' \rangle$:

A homomorphism from B to B' is a function $h: D \to D'$ such that $hx \in X'$ whenever $x \in X$, $hx \in Y'$ whenever $x \in Y$, R'(hx)(hy) whenever Rxy, and S'(hx)(hy) whenever Sxy.

And we have a Recursion Theorem for DXYRS-bundles too: if B has the Inductive and Injective properties and B' is algebraic, there is a unique homomorphism from B to B'.

Generalizing

We need a flexible way of generalizing these concepts to "bundles" that build in any number of relations of any given "arity". Here's how we'll do it.

Definition

A relational signature Σ is an ordered pair $\langle I_{\Sigma}, a_{\Sigma} \rangle$, where I_{Σ} is a set and a_{Σ} is a function from $I \to \mathbb{N}^+$ such that $a_{\Sigma}(i) \neq 0$ for all $i \in I$.

The idea is that each such Σ will correspond to a particular "type" of relational structure, which contains as many n-ary relations are there are elements of I_{Σ} mapped to the number n by a_{Σ} . The elements of I are just arbitrary labels.

Notation: Sometimes we'll give a function a name like $(a_i)_{i \in I}$ or just (a_i) , where I is the function's domain. When we pick a name like for a function, we get to write ' a_i ' (with a subscript) to denote the value of the function on a particular argument $i \in I$. This makes things easier to read, and is convenient when we are just using the set I as

an arbitrary collection of labels rather than caring about it for its own sake

Relational structures, carefully

So, officially:

Definition

Where $\Sigma = \langle I_{\Sigma}, a_{\Sigma} \rangle$ is a relational signature, a relational structure for Σ is a pair $S = \langle D, (R_i) \rangle$, where for each $i \in I_{\Sigma}$, $R_i \subseteq D^{a_{\Sigma}i}$.

- The elements of I_{Σ} can be anything we like, but it might be helpful to think of them as sets of *colors*. Then we can diagram a relational structure for Σ by a collection of dots where each dot can have one or more of the colors i for which $a_{\Sigma}i=1$; each pair of dots can be connected by an arrow with any of the colors i for which $a_{\Sigma}i=2$; each triple of dots can be connected by a "double tailed arrow" with any of the colors in i for which $a_{\Sigma}i=3$; and so on.
- ▶ It'll often be convenient to use sets of numbers or sets of strings.

DXR-structures and DXYRS-structures as relational structures

If I and J are one-element sets $\{a\}$ and $\{b\}$, there is a natural one-to-one correspondence between relational structures for I, J, \varnothing and DXY-structures: we just set $Q_a = X$ and $S_b = R$.

If I and J are two-element sets $\{a,b\}$ and $\{c,d\}$, we can get a one-to-one correspondence between relational structures for I, J, \varnothing and DXYRS-structures: to get a DXYRS structure out of such a relational structure, we have to pick one element from each of I and J as the 'first', say a and c respectively, and then set $Q_a = X$, $Q_b = Y$, $S_c = R$, $S_d = S$.

Examples

To make any of our examples into an official relational structure, we'll need to pick some arbitrary index sets.

- For the natural numbers with 0 and suc, we could set $I = J = \{0\}$ and $K = \emptyset$, and take $Q_0 = \{0\}$ and $S_0 = \text{suc}$. (Or we could have J be $\{\text{suc}\}$ and $S_{\text{suc}} = \text{suc}$.)
- For the natural numbers with 0, suc, +, \times , we could instead take $K = \{1, 2\}$ and set $t_1 = +$ and $t_2 = \times$.
- ▶ For A^* , we could set $I = \{0\}$, $Q_0 = \{[]\}$, J = A, $S_a = \text{cons}_a$.

Definitions for relational structure

Definition

A relational structure $\langle D, (R_i) \rangle$ for Σ is an algebraic structure for iff R_i is a function whenever $a_{\Sigma}i > 1$ and R_i is a singleton whenever $a_{\Sigma}i = 1$.

- ▶ Why is it natural to group the two parts of the definition together? Well, an n-ary relation R on D is an n-1-ary function iff for all $x_1, \ldots, x_{n-1} \in D$ there is exactly one x_n such that $Rx_1 \ldots x_{n-1}x_n$.
- ▶ In the case of n = 1, 'for all $x_1, ..., x_{n-1} \in D$ ' isn't adding anything; so we can identify *0-ary functions on D* with *singleton subsets of D*.

The Inductive Property

Definition

A relational structure $S = \langle D, (R_i) \rangle$ has the *inductive property* iff D is the only subset of D closed under each (R_i) .

- ▶ When R is an n-ary relation on D, $C \subseteq D$ is closed under R iff whenever $x_1, \ldots, x_{n-1} \in C$ and $Rx_1 \ldots x_{n-1}x_n, x_n \in C$.
- ▶ For n = 1, this just means $R \subseteq C!$
- So, another way to put this definition is: D is the closure of $\bigcup \{R_i \mid a_{\Sigma}i = 1\}$ under all of the R_i for which $a_{\Sigma}i > 1$.

The Inductive Property

Suppose we have a relational structure for Σ , $\langle D, (R_i) \rangle$, that has the Inductive Property, and we want to show that every element of D has a certain property ϕ . Then we can do so by a proof by induction.

In this kind of proof by induction, there is just one step: we consider R_i (where $a_{\Sigma}i=n$) and suppose that $\phi(x_1),\ldots,\phi(x_{n-1})$ and $Rx_1\ldots x_n$. Then we have to prove that $\phi(x_n)$. If we can do this for all i, we can conclude that every element of D is ϕ .

Here we have a 'base case' for every singulary R_i and an 'induction step' for every n-ary R_i where n > 1. But if we're proving something about relational structures, for an arbitrary signature Σ , we won't be listing these separately in our proof.

The Injective Property

Definition

A relational structure $S = \langle D, (R_i) \rangle$ has the Injective Property iff

- (i) R_i is injective whenever $a_{\Sigma}i > 1$.
- (ii) Whenever $i \neq j$, the ranges of R_i and R_j do not overlap.

► We identify the "range" of a set considered as a singulary relation with the set itself.

Homomorphisms of relational structures

A homomorphism from one relational structure to another will be a function from the carrier set of the first to the carrier set of the second that preserves all the relations. That is:

Definition

Suppose $S = \langle D, (R_i) \rangle$ and $S' = \langle D', (R'_i) \rangle$ are two relational structures for Σ . Then a homomorphism from S to S' is a function $h: D \to D'$ such that for each i, whenever $R_i x_1 \ldots x_n$, $R'_i(hx_1) \ldots (hx_n)$.

Homomorphisms of algebraic structures

When the relational structures we are interested in are both algebraic structures, the condition for a homorphism can be restated as follows:

Fact

Suppose $S = \langle D, (f_k) \rangle$ and $S' = \langle D', (f'_k) \rangle$ are two algebraic structures for Σ . Then h is a homomorphism from S to S' iff $h: D \to D'$ and for each i, $h(f_k(x_1, \ldots, x_{n-1})) = f'_k(hx_1, \ldots, hx_{n-1})$.

Examples of homomorphisms

- * length
- * dots
- * naturals to $\{0,1\}$
- * interpretation function

Easy facts about homomorphisms

Fact

If h is a homomorphism from S to S' and g is a homomorphism from S' to S'', $g \circ h$ is a homomorphism from S to S''.

Fact

The identity function on the domain of a structure is a homomorphism from that structure to itself.

One more definition

Definition

h is an isomorphism from S to S' iff h is a homomorphism from S to S', h is a bijection, and h^{-1} is a homomorphism from S' to S.

Fact

When S and S' are algebraic structures, h is an isomorphism from S to S' iff h is a homomorphism from S to S' and h is a bijection.

Proof: Let $S = \langle D, (f_i) \rangle$ and $S' = \langle D', (g_i) \rangle$, and h a bijective homomorphism from S to S' It suffices to show that h^{-1} is a homomorphism from S' to S. Fix i and $y_1, \ldots, y_n \in D'$ (where $n = a_{\Sigma}i$). Since h is a homomorphism we have

$$h(f_k(h^{-1}y_1,\ldots,h^{-1}y_n)) = g_k(h(h^{-1}y_1),\ldots,h(h^{-1}y_n))$$

= $g_k(y_1,\ldots,y_n)$

and hence

$$f_k(h^{-1}y_1,\ldots,h^{-1}y_n)=h^{-1}(g_k(y_1,\ldots,y_n))$$

The Recursion Theorem

The Recursion Theorem

The Recursion Theorem

Suppose that $S = \langle D, (R_i) \rangle$ and $S' = \langle D', (R'_i) \rangle$ are relational structures for Σ such that S has the Injective and Inductive properties and S' is an algebraic structure. Then there is a unique homomorphism from S to S'.

Proof: For each i (where $a_{\Sigma}i = n$), we define R_i^+ to be an n-ary relation on $D \times D'$:

$$R_i^+ := \{ \langle \langle x_1, x_1' \rangle, \dots, \langle x_n, x_n' \rangle \rangle \mid Rx_1 \dots x_n \text{ and } R'x_1' \dots x_n' \}.$$

Let F be the smallest subset of $D \times D'$ closed under each (R_i^+) .

We will first prove that F is a function from D to D', and then verify that it meets the further conditions required to be a homomorphism from S to S', and that it is the only such homomorphism.

(i) F is serial, i.e. for all $x \in D'$ there exists $x' \in D'$ such that Fxx'. By induction (using S's Inductive Property).

Suppose that Fx_1x_1' ... and $Fx_{n-1}x_{n-1}'$ and $R_ix_1...x_n$. Since R_i' is serial, there exists x_n' such that $R_i'x_1'...x_{n-1}'x_n'$. But then $R_i^+\langle x_1,x_1'\rangle...\langle x_n,x_n'\rangle$, so Fyy' since F is closed under R_i^+ .

(ii) F is functional, i.e. for any $x \in D$, if Fxx' and Fxx'' then x' = x''. By induction (using S's Inductive Property). Suppose for induction that x_1 is F-related to a unique x'_1, \ldots, x_n and x_{n-1} is F-related to a unique $x'_{n-1}, Rx_1 \ldots x_n, Fx_nx'_n$, and $Fx_nx''_n$. We will show $x'_n = x''_n$.

By S's Injective Property, x_n isn't in the range of any R_j for $j \neq i$; thus neither $\langle x_n, x_n' \rangle$ nor $\langle x_n, x_n'' \rangle$ is in the range of any R^+j for $j \neq i$. So both are in the range of R_i^+ restricted to F—i.e. there exist $\langle y_1, y_1' \rangle, \ldots, \langle y_{n-1}, y_{n-1}' \rangle, \langle z_1, z_1' \rangle, \ldots, \langle z_{n-1}, z_{n-1}' \rangle \in F$ such that

$$R_i^+\langle y_1,y_1'\rangle\dots\langle y_{n-1},y_{n-1}'\rangle\langle x_n,x_n'\rangle$$
 and $R_i^+\langle z_1,z_1'\rangle\dots\langle z_{n-1},z_{n-1}'\rangle\langle x_n,x_n''\rangle$

But then we have $R_iy_1 \ldots y_{n-1}x_n$ and $R_iz_1 \ldots z_{n-1}x_n$; so by S's Injective Property, each $y_k = z_k = x_k$. But then by the IH, each $y_k' = z_k' = x_k'$. So we have $R_i'x_1' \ldots x_{n-1}'x_n'$ and $R_i'x_1' \ldots x_{n-1}'x_n''$, hence $x_n' = x_n''$ since R_i' is functional.

(iii) F is a homomorphism.

Suppose $Fx_1x_1', \ldots, Fx_nx_n'$, and $R_ix_1 \ldots x_n$. Since x_n isn't in the range of R_j for any $j \neq i$, $\langle x_n, x_n' \rangle$ isn't in the range of R_j^+ for any $j \neq i$, so there must be $\langle y_1, y_1' \rangle, \ldots, \langle y_{n-1}, y_{n-1}' \rangle \in F$ such that

$$R_i^+\langle y_1,y_1'\rangle\ldots\langle y_{n-1},y_{n-1}'\rangle\langle x_n,x_n'\rangle$$

But then $R^i y_1 \dots y_{n-1} x_n$, so each $y_k = x_k$ because R^i is injective, and so each $y'_k = x'_k$ because F is functional. Thus we have

$$R_i^+\langle x_1, x_1'\rangle \ldots \langle x_n, x_n'\rangle$$

and hence

$$R_i'x_1'\ldots x_n'$$
.

(iv) There is at most one homomorphism from S to S'.

Suppose g and h are both homomorphisms from S to S'. Using S's Inductive Property, we'll prove by induction that gx = hx for every $x \in D$.

Suppose for induction that $gx_1 = hx_1,...$, and $gx_{n-1} = hx_{n-1}$, and $Rx_1...x_{n-1}x_n$.

Then $R'(gx_1)...(gx_{n-1})(gx_n)$ and $R'(gx_1)...(gx_{n-1})(hx_n)$ since g and h are homomorphisms.

Since R' is functional, it follows that $gx_n = hx_n$.