Inference Cheat Sheet

Description	Case	df	Test Statistic	Confidence Interval	Other Information
1-Sample	Q	n-1	$t_{TS} = \frac{\overline{x} - \mu_o}{s / \sqrt{n}}$	$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$	
2-Samples Matched-Pairs	CQ	$n_d - 1$	$t_{TS} = \frac{\overline{x} - \mu_o}{\frac{s}{\sqrt{n}}}$ $t_{TS} = \frac{\overline{x}_d}{\frac{s_d}{\sqrt{n_d}}}$ $t_{TS} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2^2}}}$	$\overline{x}_d \pm t_{\alpha/2} \frac{s_d}{\sqrt{n_d}}$	
2-Samples Unequal Variance	CQ	$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}\right)}$	$t_{TS} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	
2-Samples Equal Variances	CQ	$n_1 + n_2 - 2$	$t_{TS} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
1-Proportion	С	8	$z_{TS} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	
2-Proportions	CC	8	$z_{TS} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_c (1 - \hat{p}_c) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	$\hat{p}_c = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{x_1 + x_2}{n_1 + n_2}$
Goodness-of-Fit	С	<i>k</i> – 1	$X_{TS}^2 = \sum \frac{(O - E)^2}{E}$	N/A	$E = np_{i,0}$
Independence	CC	(r-1)(c-1)	$X_{TS}^{2} = \sum \frac{(O - E)^{2}}{E}$ $F = \frac{s_{1}^{2}}{s_{2}^{2}}$	N/A	$E = \frac{Row*Column}{GrandTotal}$
Variances	CQ	$n_1 - 1$ $n_2 - 1$	$F = \frac{s_1^2}{s_2^2}$	N/A	

R Cheat Sheet

Inference for sample means:

One-sample Two-sample	$H_1: \mu < \mu_0$ $H_1: \mu_1 - \mu_2 < 0$	$H_1: \mu > \mu_0$ $H_1: \mu_1 - \mu_2 > 0$	$H_1: \mu \neq \mu_0$ $H_1: \mu_1 - \mu_2 \neq 0$
Critical Value	$qt(\alpha, df)$	$qt(1-\alpha, df)$	$qt(1-\alpha/2, df)$
p-value	pt(t, df)	1-pt(t, df)	2*(pt(t, df)) if t is negative
p verde	ps(0, u1)	1 po(0, 01)	or $2*(1-pt(t, df))$ if t is positive

Inference for sample proportions:

One-proportion	$H_1: p < p_0$	$H_1: p > p_0$	$H_1: p \neq p_0$
Two-proportion	$H_1: p_1 - p_2 < 0$	$H_1: p_1 - p_2 > 0$	$H_1: p_1 - p_2 \neq 0$
Critical Value	$\mathtt{qnorm}(\alpha)$	qnorm(1- α)	qnorm(1- α /2)
p-value	pnorm(z)	1-pnorm(z)	2*(pnorm(z)) if z is negative or $2*(1-pnorm(z))$ if z is positive

Inference for variances:

Two-variances	$H_1: \sigma_1^2 - \sigma_2^2 < 0$	$H_1: \sigma_1^2 - \sigma_2^2 > 0$	$H_1: \sigma_1^2 - \sigma_2^2 \neq 0$
p-value	pf(F, df1, df2)	1-pf(F, df1, df2)	2*(pf(F, df1, df2)) if F < 1 or $2*(1-pf(F, df1, df2)) if F > 1$

Chi-square distribution:

Critical Value	qchisq(1- α , df)
p-value	1-pchisq (X^2, df)