FERTILIZERS RECOMMENDATION SYSTEM FOR DISEASE PREDICTION

Introduction:

Fertilizer Recommentation system for disease Prediction is a simple ML and DL based website which recommends the best crop to grow, fertilizers to use and the diseases caught by your crops.

Problem Statement:

In India, The Agriculture industry is extremely vital and crucial for economic and social development and jobs. In India, the agricultural sector provides a living for almost 48% of the population. As per the 2019-2020 economic survey, an Indian farmer's median wage in 16 states is Rupees 2500. Most of the Indian population depends on agriculture for their livelihood. Agriculture gives an opportunity of employment to the village people to develop a country like India on large scale and give a push in the economic sector. The majority of farmers face the problem of planting an inappropriate crop for their land based on a conventional or non-scientific approach. This is a challenging task for a country like India, where agriculture feeds approximately 42% of the population. And the outcomes for the farmer of choosing the wrong crop for land is moving towards metro city for livelihoods, suicide, quitting the agriculture and give land on lease to industrialist or use for the non-agriculture purpose. The outcome of wrong crop selection is less yield and less profit.

Problem solution:

The solution to the problem is Machine learning, which is one of the applications of Artificial Intelligence, is being used to implement the proposed system. Crop recommendation is going to recommend you the best crop you can grow in your land as per the soil nutrition value and along with as per the climate in that region. And recommending the best fertilizer for every particular crop is also a challenging task. And the other and most important issue is when a plant gets caught by heterogeneous diseases that effect on less amount of agriculture production and

compromises with quality as well. To overcome all these issues this recommendation has been proposed. Nowadays a lot of research and work is being implemented in the smart and modern agriculture domain. Crop recommendation is characterized by a soil database comprised of Nitrogen, Phosphorus, potassium. The ensembles technique is used to build a recommendation model that combines the prediction of multiple machine learning. Models to recommend the right crop based on soil value and the best fertilizer to use.

Proposed solution:

The proposed method uses SVM to classify tree leaves, identify the disease and suggest the fertilizer. The proposed method is compared with the existing CNN based leaf disease prediction. The proposed SVM technique gives a better result when compared to existing CNN.

In this research work introduce a method designed to deal with the obstacles raised by such complex images, for simple and plant leaves. A first segmentation step based on graph-cut approach is first performed and later used to guide the evolution of leaf boundaries, and implement classification algorithm to classify the diseases and recommend the fertilizers to affected leaves.

Block diagram:

Figure.1 Proposed Architecture

Conclus	ision:	
Predicting	ng the fertilizers, Analyzing the disease in a tap makes the life of farmo	ers easy with minimal
	tions would provide an acceptable return for the organization. This acti	
	ompany and the business in society.	