AUGUSTUS Ingo Bulla

Gene Prediction with

Overview on Gene Prediction

with RNA-Seq RGASP Assessment BRAKER1

homology-based

Gene Prediction with AUGUSTUS

Genome annotation: challenges in eukaryotes and consequences for evolutionary genomics, 13 February 2018

Ingo Bulla
Institut für Mathematik und Informatik
Universität Greifswald

Ingo Bulla

Overview on Gene Prediction

with RNA-Seq RGASP Assessment BRAKER1

homology-based

About the speaker

- PhD in mathematics about a non-applied topic, switched to bioinformatics in 2006
- Main research topic: Sequence analysis, phylogeny, evolution, epidemiology and public health of HIV
- Now working with Mario Stanke (developer of AUGUSTUS) on improving the algorithm used by AUGUSTUS
- Limited experience in genomics, has only applied AUGUSTUS once in a research project
 - → Speaker will have a Skype with
 - Mario Stanke or
 - Katharina Hoff (long-time user of AUGUSTUS, implementer of BRAKER)

during the lunch talk if questions come up he cannot answer

 Ingénieur de recherche in Perpignan from 1st of April on, in a wetlab group (Christoph Grunau, Guillaume Mitta)

Overview on Gen Prediction

with RNA-Seq RGASP Assessment BRAKER1

homology-based

1 Overview on Gene Prediction

2 with RNA-Seq RGASP Assessment BRAKER1

3 homology-based

Structural Genome Annotation Problem

Input

- genome assemblie(s)
- extrinsic evidence, e.g. from RNA-Seq, MS/MS, protein database

Output

start- and end positions of genes, CDS, exons and introns (.gff)

Example (12 600 bp from algae Chlamydomonas reinhardtii, with JGI)

Ingo Bulla

Overview on Ge

with RNA-Seq RGASP Assessment BRAKER1

homology-based

Example Application

iBeetle: RNAi screen for the beetle Tribolium castaneum

- predict genes
- 2 design primers based on prediction
- g produce dsRNA for each gene
- 4 knock down each gene in larval and pupal stage
- 6 observe phenotype
- 6 study function for select genes

Major Approaches to Protein-Coding Gene Prediction					
approach	extrinsic evidence used	programs			
ab initio	-	GENEMARK, AUGUSTUS,			
		SNAP, FGENESH			
transcript-	transcript seqs,	BRAKER, Exonerate			
based	e.g. RNA-Seq	Augustus, mGene			
protein	protein sequences	Augustus-Ppx,			
homology		GeneWise, Exonerate			
comparative	additional (unannotated)	Augustus,			
(de novo)	genomes	CONTRAST, N-SCAN			
proteogenomics	peptides from	Augustus			
	mass spectrometry				
combiners/	other gene predictions +	JIGSAW, GLEAN,			
selectors	transcript seqs + proteins +?	Maker2, Pasa			

State of the art usually requires a combination of approaches:

Use for every part of a gene all evidence available for that gene or region.

Single species gene-finding: 1-species graph

Assumptions: no alternative splicing, no gene overlap

- graph represents all candidate gene structures
 - nodes: exon candidates (EC)
 - edges: introns and intergenic regions
- each path from s to t is one gene structure
- single species gene-finding in linear time: longest path algorithm

Gene finder Augustus

- developed since 2002 (PI: Mario Stanke)
- based on conditional random field (generalization of HMM)
- probabilistic model of gene structures given signals, CDS, evidence
- get most likely genes structure or a sample of likely ones

Some genome annotation collobarations using AUGUSTUS					
Aedes aegypti Brugia malayi Tribolium castaneum Schistosoma mansoni Coprinus cinereus Nasonia vitripennis Amphimedon queenslandica Culex pipiens Ricinus communis Chlamydomonas reinhardtii Galdieria sulphuraria Arabidopsis thaliana Heliconius melpomene Apis mellifera	yellow fewer mosquito: dengue fever parasitic worm, causes elephantiasis red flour beetle, pest and model orgal parasite causing bilharziosis fungus wasp sponge common mosquito castor bean green algae red algae plant model organism butterfly honey bee				

Gene Prediction with AUGUSTUS Ingo Bulla

Overview on Gene Prediction

RGASP Assessment

RGASP Assessr Braker1

homology-based

1 Overview on Gene Prediction

2 with RNA-Seq RGASP Assessment BRAKER1

3 homology-based

Three Major Approaches to Gene-Finding with RNA-Seq

A evidence integration into gene finder

(e.g. AUGUSTUS, FGENESH, MGENE, GENEID)

- 1 align reads to genome first
 - integrate evidence from coverage and spliced alignments into gene finder
- B purely alignment-based (e.g. Cufflinks)
 - align reads to genome first
 - 2 construct transcripts from spliced alignments (no gene finding)
- C de novo assembly of reads (e.g. Trinitry, TransDecoder, Velvet + Augustus)
 - assemble transcriptome reads into transcript contigs
 - use contigs for gene finding or just align them

AUGUSTUS using RNA-Seq

Gene Prediction with AUGUSTUS Ingo Bulla

Overview on Gene Prediction

with RNA-Seq

RGASP Assessment

BRAKER1

homology-based

RGASP: RNA-Seq Genome Annotation Assessment Project

Assessment of transcript reconstruction methods for RNA-seq Steijger et al., *Nature Methods*, Nov. 2013

- assessed the progress of automatic gene building using RNAseq
- part of ENCODE project
- 17 participating groups submitted, all on same data

Excerpt of RGASP assessment results on human

65.58%

Calling transcripts and proteins

Transomics high

alling	transcripts and prot		, ,	c	C CI		
	Exon-, transcript- and gene-level performance for CDS reconstruction						
	H. sapiens Exon		Transcript		Gene		
	•	Sensitivity	Precision	Sensitivity	Precision	Sensitivity	Precision
	AUGUSTUS high	66.09%	81.46%	19.50%	49.45%	61.46%	53.23%
	AUGUSTUS no RNA	54.96%	48.88%	5.34%	9.28%	17.61%	9.28%
	Exonerate high	56.04%	89.39%	16.24%	42.65%	54.29%	42.65%
	mGene graph	53.49%	82.44%	16.03%	34.44%	49.33%	46.01%
	NextGeneid	50.47%	85.22%	11.29%	38.01%	40.96%	38.01%

Best results on

48%

Dest	results on
	transcript sensitivity
fly	24%

worm

gene sensitivity 49% 61%

69.73%

(Augustus) (Transomics)

11.10%

23.89%

39.51%

23.89%

Why was the accuracy not better?

Problems: intronic transcription, self-similarity of genome

Reminder: RNA-Seq does not give you the protein sequence

BRAKER1

Collaboration with former competitor

- Maker2 pipeline uses
 GeneMark and Augustus
- Why not throw together
 - GENEMARK-ET that self-trains on RNA-Seq and
 - Augustus that predicts with RNA-Seq

ourselves?

easy to use:

braker.pl [OPTIONS]
-genome=genome fa -bam=rnas

-genome=genome.fa -bam=rnaseq.bam

fast (1 day for fly on 1 CPU)

Mark Borodovsky (GENEMARK)

Gene Prediction with

Ingo Bulla

Overview on Gene Prediction

with RNA-Seq RGASP Assessment

homology-based

GeneMark-ET (2014): unsupervised training of parameters

Nucleic Acids Research, 2014 1 doi: 10.1093/nar/gku557

Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm

Alexandre Lomsadze¹, Paul D. Burns¹ and Mark Borodovsky^{1,2,3,*}

1 Joint Georgia Tech and Emory Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, USA 30332, 2 School of Computational Science and Engineering, Georgia Tech, Atlanta, GA, USA 30332 and ³ Department of Bioinformatics, Moscow Institute of Physics and Technology, Moscow, Russia 141700

GeneMark does not use RNA-Seq for prediction.

Anchors from RNA-Seq for training

Figure 3. Selection of elements of training set in GeneMark-ET for the next iteration. The new training set of protein-coding regions is comprised from exons with at least one 'anchored splice site' as well as long exons predicted ab initio (>800 nt).

Ingo Bulla

Overview on Gene Prediction

with RNA-Seq RGASP Assessment

BRAKER1

homology-based

BRAKER1 Pipeline

Ingo Bulla

Overview on Gene Prediction

with RNA-Seq RGASP Assessment BRAKER1

homology-based

Comparing BRAKER1 to MAKER2 (using RNA-Seq only)

Ingo Bulla

Overview on Gene Prediction

with RNA-Seq RGASP Assessment BRAKER1

homology-based

Accuracy of BRAKER1

Ingo Bulla

Overview on Gene Prediction

with RNA-Seq RGASP Assessment BRAKER1

homology-based

1 Overview on Gene Prediction

2 with RNA-Seq RGASP Assessment BRAKER1

3 homology-based

Homology-Based Gene-Finding Approaches

Example application for comparative gene prediction

Comparative gene prediction problem

Find all genes in all genomes, optionally using existing annotations or evidence for some genomes.

Other potential target clades

- i5k insect clades (e.g. beetles, spiders, bees)
- vertebrate clades from the genome 10K project
- bacterial pan-genomes
- a polyploid genome (e.g. wheat, Verticillium longisporum)

Homology

Conservation of gene structure

some Lamin gene structures from fish, mosquito, sponge, flea, beetle

(example by Martin Kollmar)

Complementary to RNA-Seq: Genome Comparisons

Gbrowse_syn display of syntenic regions from *D. mel.* and *D. pseudoobscura* (50% codon diffs)

How can synteny help annotation?

two red genes not conserved but all splice sites of intron conserved correct split gene