- a) 1
- **Theorem.** $\forall f : \mathbb{R} \to \mathbb{R}$, f can be uniquely written as a sum of one odd function f_o and one even function f_e .
- *Proof.* Suppose such f_o and f_e exist.
- Therefore,

$$f(x) = f_o(x) + f_e(x) \tag{1}$$

$$\Rightarrow \qquad f(-x) \qquad = f_o(-x) + f_e(-x) \tag{2}$$

$$= -f_o(x) + f_e(x) \tag{3}$$

$$\Rightarrow \frac{f(x)+f(-x)}{2} = f_e(x) \tag{4}$$

$$= -f_o(x) + f_e(x)$$

$$\Rightarrow \frac{f(x) + f(-x)}{2} = f_e(x)$$

$$\Rightarrow f_o(x) = \frac{f(x) - f(-x)}{2}$$

$$(3)$$

$$(4)$$

$$(5)$$

- Since f_e and f_o are given in terms of $f \in \mathbb{R}$ and 2^{-1} is unique, f_e and f_o are unique.
- b) Consider the case when $f: \mathbb{F} \to \mathbb{F}$.
- If the characteristic of \mathbb{F} is not equal to 2, there is a unique element corresponding to 2^{-1} and hence f_e and f_o are unique.
- If the characteristic of \mathbb{F} is equal to 2, from the fact that 1+1=0 it follows that x=-x for all $x \in \mathbb{F}$ and hence all such f are both odd and even, and can be written as f = f + 0, but not 11 uniquely.