Federated Learning & securing communication with Solidity

A diabetes dataset case

Created and Presented by : **Abdelatif Mekri**

Table of contents

01

02

03

Introduction

Problematic and Dataset

Federated learning

04

05

Utilising Blockchain

Results and Discussion

Introduction

Federated Learning

a decentralized machine learning approach that enables multiple entities to collaboratively train a model without sharing raw data. Unlike traditional centralized learning methods, where data is aggregated in a single location,

Figure 1. Simple showcase of federated workflow

Horizontal Federated Learning (HFL)

Clients have datasets with the same feature space but different user samples. This setup is common when organizations operate in the same industry and collect similar types of data.

Vertical Federated Learning (VFL)

Clients share common user samples but have different feature spaces. This setup is useful when organizations hold complementary data about the same users.

Advantages of Federated learning (FL)

Privacy Preservation

Data remains on local devices, avoiding direct sharing of raw sensitive information

Enhanced Security

Decentralized data storage limits attack surfaces

Regulatory Compliance

Facilitates adherence to strict data protection laws (e.g., HIPAA) by minimizing data transfer and central storage

Fault Tolerance

Resilient to device dropouts or network issues, as training continues with available participants

Scalability

Enables training across thousands of devices without centralized infrastructure bottlenecks

User Trust and Participation

Increased user willingness to contribute to model training when privacy is assured, enhancing dataset diversity and model quality

Problematic & Dataset

Why choosing Diabetes Dataset?

Diabetes prediction relies on sensitive medical data, making centralized machine learning impractical due to privacy risks and data-sharing restrictions. Federated learning enables decentralized model training without exposing patient data, but it introduces security concerns in communication and participant authentication. To address this, blockchain ensures a secure, transparent, and tamper-proof consent mechanism, enhancing trust and data integrity in the training process.

Dataset

	Age	Gender	Ethnicity	Income	вмі	Blood_Pressure	Cholesterol	Exercise_Hours_Per_Week	Alcohol_Consumption_Per_Week	Smoking_Status	Insulin_Resistance	Heart_Disease_History	Physical_Activity_Level
0	69	Female	Other	39557	38.2	94.6	252.9	3.3	4	Never	5.1	0	Low
1	32	Male	Black	90663	33.6	167.0	282.6	4.6	7	Never	_ 1.7	1	Moderate
2	89	Male	White	116180	39.4	100.6	106.8	6.1	5	Former	4.9	1	Low
3	78	Male	Other	73059	40.6	111.1	169.7	7.4	9	Never	9.8	0	High
4	38	Female	White	35389	29.7	143.3	296.5	2.6	6	Never	_ 1.7	1	Moderate

5 rows × 23 columns

EDA on the Dataset

Federated Learning

Federated Learning allows multiple clients (e.g., hospitals, organizations) to collaboratively train a model without sharing their raw data. I explored two types of federated learning

Horizontal	vertical
<pre>num_clients = 3 # Change as needed client_partitions = partition_dataset(dataset, num_clients)</pre>	<pre>num_features = len(feature_cols) features_A = feature_cols[:num_features // 2] features_B = feature_cols[:num_features // 2:]</pre>

Federated Learning results

```
Horizontal
                                                                      vertical
           --- Round 17 ---
           Global model updated.
           --- Round 18 ---
                                                                             Epoch 46/50, Loss: 0.6932, Accuracy: 0.5018
           Global model updated.
                                                                             Epoch 47/50, Loss: 0.6931, Accuracy: 0.5050
           --- Round 19 ---
                                                                             Epoch 48/50, Loss: 0.6932, Accuracy: 0.4981
           Global model updated.
                                                                             Epoch 49/50, Loss: 0.6932, Accuracy: 0.4974
           --- Round 20 ---
                                                                             Epoch 50/50, Loss: 0.6932, Accuracy: 0.5012
           Global model updated.
           Accuracy on the dataset: 57.56%
```


Utilising Blockchain

Solidity on Remix IDE

Writing contract

This Solidity smart contract, **FLConsent**, is designed to manage participant consent in a federated learning scenario

Compiling contract

-make sure to use the right compiler settings (compiler and EVM version)

Conclusion

Learning How to train models across multiple parties without sharing raw data, preserving privacy while improving model accuracy.

data.

Allows different entities with different features but the same users (e.g., banks and e-commerce platforms) to collaborate.
Learning Secure feature-sharing techniques like homomorphic encryption and privacy-preserving methods to train models on complementary

Blockchain

nsures **trust**, **security**, **and decentralization** in federated learning by maintaining an immutable and transparent ledger.

Learning how blockchain enhances federated learning through secure aggregation, smart contracts for automation, and decentralized consensus mechanisms.