数学入門 A 定期試験問題

2014年7月29日第3時限施行 担当水野将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること.

全問について答えよ. 「答えのみでよい」と書かれていない問題については、証明をつけること.

問題 1.

空でない集合 X, Y に対して, $f: X \rightarrow Y$ とする. 次の問いに答えよ. ただし, (1) から (3) までについては, 答えのみでよい.

- (1) $A \subset X$ に対して, f(A) の定義を答えよ.
- (2) $B \subset Y$ に対して, $f^{-1}(B)$ の定義を答えよ.
- (3) $g: \mathbb{R} \to \mathbb{R}$ を、任意の $x \in \mathbb{R}$ に対して $g(x) := x^2 + 1$ で定める.
 - (a) $g([-1,3]) \cap g([-2,1])$ を求めよ.
 - (b) $g^{-1}((-2,3)) \cup g^{-1}((0,4))$ を求めよ.
- (4) $A_1, A_2 \subset X$ に対して $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ を証明せよ.
- (5) B_1 , $B_2 \subset Y$ に対して $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$ を証明 せよ.

問題 2.

X,Yを空でない集合とする.次の問いに答えよ.ただし、(1)から

- (3) までについては、答えのみでよい.
- (1) $f: X \to Y$ が単射であることの定義を答えよ.
- (2) $f: X \to Y$ が全射であることの定義を答えよ.
- (3) 次の関数 g は「単射だが全射でない」、「全射だが単射でない」、「全単射」、「全射でも単射でもない」のどれになるか?
 - (a) $q: \mathbb{R} \to \mathbb{R}$ を任意の $x \in \mathbb{R}$ に対して, $q(x) := \sin x$ で定める.
 - (b) $g: \mathbb{R} \to \mathbb{R}$ を任意の $x \in \mathbb{R}$ に対して, $g(x) := e^{x+3}$ で定める.
- (4) $f_1:(0,\infty)\to\mathbb{R}$ を任意の $x\in(0,\infty)$ に対して, $f_1(x):=x^2+1$ で定める. f_1 が単射であること, 全射ではないことを示せ.
- (5) $f_2: \mathbb{R} \to [1,\infty)$ を任意の $x \in \mathbb{R}$ に対して, $f_2(x) := x^2 + 1$ で定める. f_2 が全射であること, 単射ではないことを示せ.

問題 3.

次の各問いに答えよ. ただし、(2) は答えのみでよい.

- (1) 命題 p,q,r に対して, $((p \lor q) \to r) \Leftrightarrow (p \to r) \land (q \to r)$ を真理表を用いて示せ.
- (2) $f:[0,1] \to \mathbb{R}$ に対して, f が $x_0 \in [0,1]$ で連続であるとは, 「任意の正の数 $\varepsilon > 0$ に対して, $\delta > 0$ が存在して, すべての $x \in [0,1]$ に対して, $|x-x_0| < \delta$ ならば $|f(x)-f(x_0)| < \varepsilon$ 」が成り立つことをいう.
 - (a) fがxoで連続であることの定義を. 論理記号を用いて表せ.

(b) f が x_0 で連続でないことを、 論理記号を用いて表せ.

以下余白 計算用紙として使ってよい.

問題1の略解.

- $(1) \ f(A) := \{ f(a) \in Y : a \in A \}$
- (2) $f^{-1}(B) := \{x \in X : f(x) \in B\}$
- (3) $g([-1,3]) \cap g([-2,1]) = [1,5],$ $g^{-1}((-2,3)) \cup g^{-1}((0,4)) = (-\sqrt{3},\sqrt{3})$

問題2の略解.

- (1) $\forall x_1, x_2 \in X$ に対して $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$
- (2) $\forall y \in Y$ に対して $\exists x \in X \text{ s.t. } y = f(x)$
- (3) (1) 全射でも単射でもない. (2) 単射だが全射でない.

問題3の略解.

(2) (a) $\forall \varepsilon > 0$ に対して $\exists \delta > 0$ s.t. $\forall x \in [0, 1]$ に対して $|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$. (b) $\exists \varepsilon > 0$ s.t. $\forall \delta > 0$ に対して $\exists x \in [0, 1]$ s.t. $|x - x_0| < \delta \land |f(x) - f(x_0)| \ge \varepsilon$.