Package 'extr'

September 21, 2025		
Title Extinction Risk Estimation		
Version 1.0.0		
Description Estimates extinction risk from population time series under a drifted Wiener process using the w-z method for accurate confidence intervals.		
License BSD_2_clause + file LICENSE		
Encoding UTF-8		
Language en-US		
RoxygenNote 7.3.2		
NeedsCompilation no		
Author Hiroshi Hakoyama [aut, cre, cph] (ORCID: https://orcid.org/0000-0001-7464-0754)		
Maintainer Hiroshi Hakoyama <hiroshi.hakoyama@gmail.com></hiroshi.hakoyama@gmail.com>		
Repository CRAN		
Date/Publication 2025-09-21 13:30:13 UTC		
Contents		
ext_di		
Index 4		
ext_di Extinction Risk Estimation for a Density-Independent Model		

Description

Estimates demographic parameters and extinction probability under a density-independent (drifted Wiener) model. From a time series of population sizes, it computes MLEs of growth rate and environmental variance, then evaluates extinction risk over a horizon t^* . Confidence intervals are constructed by the w-z method, which achieve near-nominal coverage across the full parameter space.

2 ext_di

Usage

```
ext_di(
  dat,
  ne = 1,
  th = 100,
  alpha = 0.05,
  unit = "years",
  qq_plot = FALSE,
  formatted = TRUE,
  digits = getOption("extr.digits", 5L)
)
```

Arguments

dat	Data frame with two numeric columns: time (strictly increasing) and population size. Column names are not restricted.
ne	Numeric. Extinction threshold $n_e \geq 1$. Default is 1.
th	Numeric. Time horizon $t^* > 0$. Default is 100.
alpha	Numeric. Significance level $\alpha \in (0,1)$. Default is 0.05.
unit	Character. Unit of time (e.g., "years", "days", "generations"). Default is "years".
qq_plot	Logical. If TRUE, draws a QQ-plot of standardized increments to check model assumptions. Default is FALSE.
formatted	Logical. If TRUE, returns an "ext_di" object; otherwise returns a raw list. Default is TRUE.
digits	Integer. Preferred significant digits for printing. Affects display only. Default is getOption("extr.digits", 5).

Details

Population dynamics follow

$$dX = \mu \, dt + \sigma \, dW,$$

where $X(t)=\log N(t)$, μ is the growth rate, σ^2 the environmental variance, and W a Wiener process. Extinction risk is

$$G = \Pr[T \le t^* \mid N(0) = n_0, n_e, \mu, \sigma],$$

the probability the population falls below n_e within t^* . Irregular intervals are allowed.

The function:

- 1. estimates μ and σ^2 (Dennis et al., 1991),
- 2. computes extinction probability G(w, z) (Lande and Orzack, 1988),
- 3. constructs confidence intervals for G using the w-z method (Hakoyama, 2025).

Numerical range. Probabilities are evaluated on G, $\log G$, and $\log(1-G)$ scales. The log-scale removes the $\approx 4.94 \times 10^{-324}$ lower bound of linear doubles and extends the safe range down to exp(-DBL_MAX) (kept symbolically), avoiding underflow/cancellation.

ext_di 3

Value

A list (class "ext_di" if formatted=TRUE) with:

- Growth.rate, Variance, Unbiased.variance;
- AIC:
- Extinction.probability with confidence limits;
- data summary (nq, xd, sample.size);
- input parameters (unit, ne, th, alpha).

Author(s)

Hiroshi Hakoyama, <hiroshi.hakoyama@gmail.com>

References

Lande, R. and Orzack, S.H. (1988) Extinction dynamics of age-structured populations in a fluctuating environment. *Proceedings of the National Academy of Sciences*, 85(19), 7418–7421.

Dennis, B., Munholland, P.L., and Scott, J.M. (1991) Estimation of growth and extinction parameters for endangered species. *Ecological Monographs*, 61, 115–143.

Hakoyama, H. (2025) Confidence intervals for extinction risk: validating population viability analysis with limited data. Preprint, doi:10.48550/arXiv.2509.09965

See Also

```
statistics_di, extinction_probability_di, confidence_interval_wz_di, print.ext_di
```

Examples

```
# Example from Dennis et al. (1991), Yellowstone grizzly bears
dat <- data.frame(Time = 1959:1987,
Population = c(44, 47, 46, 44, 46, 45, 46, 40, 39, 39, 42, 44, 41, 40,
33, 36, 34, 39, 35, 34, 38, 36, 37, 41, 39, 51, 47, 57, 47))

# Probability of decline to 1 individual within 100 years
ext_di(dat, th = 100)

# Probability of decline to 10 individuals within 100 years
ext_di(dat, th = 100, ne = 10)

# With QQ-plot
ext_di(dat, th = 100, qq_plot = TRUE)

# Change digits
ext_di(dat, th = 100, ne = 10, digits = 9)</pre>
```

Index

```
* methods
    ext_di, 1
* models
    ext_di, 1
* survival
    ext_di, 1
* time-series
    ext_di, 1
confidence_interval_wz_di, 3
ext_di, 1
extinction_probability_di, 3
print.ext_di, 3
statistics_di, 3
```