Mathematics 555 Homework

1. Continuous functions.

Definition 1. Let $f: E \to E'$ be a function between metric spaces. Then f is **uniformly** continuous if and only if for all $\varepsilon > 0$ there is a $\delta > 0$ such that for all $p, q \in E$,

$$d(p,q) < \delta$$
 implies $d(f(p),f(q)) < \varepsilon$.

Recall that a function $f \colon E \to E'$ between is Lipschitz if and only if there is a constant $C \ge 0$ such that $d(f(p), f(q)) \le Cd(p, q)$ for all $p, q \in E$. Last term we saw several examples of Lipschitz functions.

Problem 1. Show that every Lipschitz function is uniformly continuous. \Box

Proposition 2. Every uniformly continuous function is continuous.

Problem 3. Let $f: \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = x^2$. Show that f is not uniformly continuous. *Hint:* Towards a contradiction assume that f is uniformly continuous. Let $\varepsilon = 1$, then there is a $\delta > 0$ such that for all $x, y \in \mathbb{R}$

$$|x - y| < \delta$$
 implies $|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y| < 1$.

Show this leads to a contradiction.

Problem 4. Let $f:(0,1)\to\mathbb{R}$ be the continuous function

$$f(x) = \frac{1}{x}.$$

Show that f is not uniformly continuous.

Problem 5. On let $f: [0,1] \to \mathbb{R}$ be the functions

$$f(x) = \sqrt{x}.$$

Prove directly from the definition that f is uniformly continuous.

Here is a bit of review in using the triangle inequality in metric spaces. If E is a metric space and $y_0, y_1, y_2 \in E$, then

$$d(y_0, y_2) \le d(y_0, y_1) + d(y_1, y_2).$$

If $y_0, y_1, y_2, y_3 \in E$, then

$$d(y_0, y_3) \le d(y_0, y_2) + d(y_2, y_3) \le d(y_0, y_1) + d(y_1, y_2) + d(y_2, y_3).$$

And by now you may have guessed the pattern which is given by the following:

Proposition 3. Let E be a metric space and $y_0, y_1, \ldots, y_n \in E$. Then

$$d(y_0, y_1) \le d(y_0, y_1) + d(y_1, y_2) + \dots + d(y_{n-1}, y_n)$$
$$= \sum_{j=1}^{n} d(y_j, y_{j-1}).$$

Problem 6. Prove this. *Hint:* Induction.

The following will let us use Proposition 3 to derive some properties of uniformly continuous function.

Definition 4. Let E be a metric space and $\delta > 0$ a positive real number. Then a finite sequence $x_0, x_1, \ldots, x_n \in E$ is a δ -sequence if and only if for each $j \in \{1, 2, \ldots, n\}$ the inequality $d(x_{j-1}, x_j) < \delta$.

Lemma 5. Let $f: E \to E'$ be a map between metric spaces and $\delta, \varepsilon > 0$. Assume that for all $p, q \in E$ that

$$d(p,q) < \delta$$
 implies $d(f(p), f(q))$.

Then for any δ -sequence $x_0, x_1, \ldots, x_n \in E$ in E we have

$$d(f(x_0), f(x_n)) \le n\varepsilon.$$

Problem 7. Prove this. Hint: Letting $y_i = f(x_i)$ in Lemma 3 we have

$$d(f(x_0), f(x_n)) \le \sum_{j=1}^n d(f(x_{j-1}), f(x_j)).$$

For the last lemma to be useful we need to be able to find some δ sequences. In \mathbb{R} , or more generally in \mathbb{R}^n this is easy.

Lemma 6. Let $p, q \in \mathbb{R}^n$ and $\delta > 0$. Let n be the unique positive integer with

$$n - 1 \le \frac{\|p - q\|}{\delta} < n$$

(this is the same as choosing n to be the smallest positive integer with $||p-q||/n < \delta$). For $0 \le j \ne n$ let

$$x_j = p + \frac{j}{n} \left(q - p \right).$$

Then x_0, x_1, \ldots, x_n is a δ -sequence with $x_0 = p$ and $x_n = q$.

Problem 8. In the case of n = 5 and $p, q \in \mathbb{R}^2$ draw the picture of what these points look like. Then prove the result in the general case.

Problem 9. Let $f: \mathbb{R}^n \to \mathbb{R}$ be uniformly continuous. Show there are constants A, B > 0 such that

$$|F(x)| \le A + B||x||$$

for all $x \in \mathbb{R}^n$.

Problem 10. Prove this. *Hint:* Start by letting $\varepsilon = 1$ in the definition of uniform continuity. Then there is a δ such that

$$||p-q|| < \delta$$
 imlies $|f(p)-f(q)| < 1$.

Let $x \in \mathbb{R}^n$. By Lemma 6 there is a δ -sequence $x_0, x_1, \dots, x_n \in \mathbb{R}^n$ with $x_0 = 0$ and $x_n = x$ and

$$n - 1 \le \frac{\|x - 0\|}{\delta} < n.$$

Now use Lemma 5 to show

$$||f(x) - f(0)|| \le n$$

and then use this to show

$$|f(x)| \le |f(0)| + 1 + \frac{||x||}{\delta}$$

and explain why this completes the proof.

Problem 11. Use the previous problem to show that no polynomial of degree greater than 1 is uniformly continuous on \mathbb{R} .