	初始值问题和边界值问题
	Thursday, June 26, 2025 12:09 PM
V	Thursday, June 26, 2025 12:09 PM ①: 本版的通问是 有: m dy + ky(t) = F(t) = Fo Castre
90	$\frac{\dot{y} + \dot{w}^2 y(t) = f_0 \cos wt}{\sqrt{1 + w^2 y(t)}}$
	m TRY = A coswt.
	- (w ² -w ²) oswt = Fooswt
	$\rightarrow A = \frac{t_0}{w_0^2 - w^2} \rightarrow y = \frac{t_0}{w_0^2 - w^2} $ obsut,
	其中 W为激励 频率。
	上式仅为一特解,因而对实际情感需要意通解
	$m \frac{dy}{dt} + ky(t) = 0 \Rightarrow y = A \cos wat$
	-> y= A cos wot+ Fo coswt
	OP 00
	意识对于脉冲函数 F(t)=IoS(t) S(t)={0.t>0*
	$\begin{cases} m \frac{d^2y}{dt^2} + ky(t) = J \cdot \delta(t) \end{cases}$
	$y(0) = 0$ $\dot{y}(0) = 0$
	我们认为给定初始条件
	t→o+ {Y(o)=0 Zapa Asin wtt Bosut,
	1 y(0)= 10 (大利条件
	t > ot { y(o)=0 y(o)= Io HYNSH 有 No = Io — () I y = Io sin wot = Io sin [kt.
	·
	$E = \frac{1}{2} m V_0^2 = \frac{1}{2} \frac{I_0}{m}$
	②这棵值问题

②城值问题 对于压杆稳定问题:设变形义了看成弯曲变形,有: $\frac{dw}{dx^2} = M$ $\frac{dw}{dx^2} = M$ $\frac{d^2w}{dx^2} + \frac{p}{1-r}w = 0 \implies \frac{d^2w}{dx^2} + \lambda w = 0$ 其中; 入 = Pc 为有: $\lambda_n = \left(\frac{n\pi}{l}\right)^2 \text{ Ft}, \left(n = 1, 2, 3, \cdots\right)$ 有: $P_{c}=\lambda EI=EI\frac{m}{l^{2}}\longrightarrow P_{c}=\frac{\pi^{2}EI}{l^{2}}$ 此即为一阶临界应为公式。