Assignment 2

Signalized Intersection Design

(Walkers Line and Mainway, Burlington ON)

Prepared By:	Completed Sections	
Muhammad Rohail Afzal, 400182648	7, 8, 9, 10, 11	
Abdurahman Bade, 400247875	1, 4, 17, 18, 20	
Kate Bain, 400254711	2, 3, 5, 6	
Tevin Wellington, 400235503	12, 13, 14, 15, 16, 20	
Sana Syed, 400170145	Presentation	
Michael Vo, 400233305	19	

Fall 2021

Introduction to Transportation Engineering CIVENG 3K03

Dr. Moataz Mohamed

1. Table of Contents

TABLE OF CONTENTS	1
LIST OF FIGURES	4
LIST OF TABLES	5
Intersection Layout	1
Existing Cycle Length and Phasing Diagram	2
Vehicular Arrival Flow Data	3
Northbound	3
Eastbound	3
Southbound	3
Westbound	4
Pedestrians Arrival Flow Data	4
Tentative Phasing Diagram	4
Saturation Flow Data	5
Left-Northbound	5
Through-Northbound	5
Left-Eastbound	6
Through-Eastbound	6
Left-Southbound	7
Through-Southbound	7
Left-Westbound	8
Through-Westbound	8
Amber intervals	9
Inter-green periods	9
All-red periods	10
Lost time	11
Pedestrians Clearance time	11
	2

Pedestrians minimum Cycle Length	12
Intersection Flow Ratio and Critical Flow	13
Summary of arrival flows	13
Determination of adjusted saturation flows	13
Minimum and Optimum Cycle lengths	14
Minimum cycle time for vehicular flow	14
Optimum cycle time for vehicular flows	14
Cycle time selection	14
Green times	14
Vehicular requirements	14
For phase 1:	14
For phase 2:	14
Green Time check	14
Queue Length Evaluations	15
effective green interval (s)	15
Summary Timetable	15
Final Coloured Phasing Diagram	15
Final Remarks and Recommendations	16
References	16
Section 11-16	16
PCU Conversion	16

2. List of Figures

FIGURE 1. INTERSECTION LAYOUT	1
FIGURE 2. EXISTING PHASING DIAGRAM	2
FIGURE 3. EXISTING TIME PHASING DIAGRAM	2
FIGURE 4. TENTATIVE PHASING DIAGRAM	4
FIGURE 5. FINAL TIME PHASING DIAGRAM	15

3. List of Tables

TABLE 1. NORTHBOUND ARRIVAL FLOW DATA	3
TABLE 2. EASTBOUND ARRIVAL FLOW DATA	3
TABLE 3. SOUTHBOUND ARRIVAL FLOW DATA	3
TABLE 4. WESTBOUND ARRIVAL FLOW DATA	4
TABLE 5. PEDESTRIAN ARRIVAL FLOW DATA	4
TABLE 6. LEFT-NORTHBOUND SATURATION FLOW DATA	5
TABLE 7. THROUGH-NORTHBOUND SATURATION FLOW DATA	5
TABLE 8. LEFT-EASTBOUND SATURATION FLOW DATA	6
TABLE 9. THROUGH-EASTBOUND SATURATION FLOW DATA	6
TABLE 10. LEFT-SOUTHBOUND SATURATION FLOW DATA	7
TABLE 11. THROUGH-SOUTHBOUND SATURATION FLOW DATA	7
TABLE 12. LEFT-WESTBOUND SATURATION FLOW DATA	8
TABLE 13. THROUGH-WESTBOUND SATURATION FLOW DATA	8
TABLE 14. INTER-GREEN PERIODS	10
TABLE 15. ALL-RED PERIODS	10
TABLE 16. LOST TIME	11
TABLE 17. PEDESTRIAN CLEARANCE TIME	12
TABLE 18. PEDESTRIANS MINIMUM CYCLE LENGTH	12
TABLE 19. SUMMARY OF ARRIVAL FLOWS	12
TABLE 20. DETERMINATION OF ADJUSTED SATURATION FLOWS	13
TABLE 21. INTERSECTION FLOW RATIO AND CRITICAL FLOW	13
TABLE 22. QUEUE LENGTH EVALUATION	14
TABLE 23. SUMMARY TIMETABLE	14

1. Intersection Layout

Figure 1. Intersection Layout

2. Existing Cycle Length and Phasing Diagram

Existing cycle length = 130 sec

Figure 2. Existing Phasing Diagram

Figure 3. Existing Time Phasing Diagram

3. Vehicular Arrival Flow Data

3.1.

3.2. Northbound

	q right			q left			q through		q arrival			
Vehicle	# Counted	PCU										
Car	26	26	Car	49	49	Car	236	236	Car	311	311	
Single Unit Truck	1	1.5	Single Unit Truck	3	4.5	Single Unit Truck	1	1.5	Single Unit Truck	5	7.5	
						Bus	1	2	Bus	1	2	

Table 1. Northbound Arrival Flow Data

3.3. Eastbound

	q right			q left			q through		q arrival			
Vehicle	# Counted	PCU										
Car	46	46	Car	35	35	Car	37	37	Car	118	118	
Single Unit Truck	1	1.5	Single Unit Truck	1	1.5	Single Unit Truck	1	1.5	Single Unit Truck	3	4.5	
Bus	1	2							Bus	1	2	

Table 2. Eastbound Arrival Flow Data

3.4. Southbound

	q right			q left			q through		q arrival			
Vehicle	# Counted	PCU	Vehicle	# Counted	PCU	Vehicle	# Counted	PCU	Vehicle	# Counted	PCU	
Car	26	26	Car	10	10	Car	232	232	Car	268	268	
Single Unit Truck	2	3	Motorcycl e	1	0.5	Single Unit Truck	2	3	Single Unit Truck	4	6	
						Bus	3	6	Bus	3	6	
									Motorcycl e	1	0.5	

Table 3. Southbound Arrival Flow Data

3.5. Westbound

	q right			q left			q through		q arrival			
Vehicle	# Counted	PCU	Vehicle	# Counted	PCU	Vehicle	# Counted	PCU	Vehicle	# Counted	PCU	
Car	28	28	Car	59	59	Car	82	82	Car	169	169	
			Single Unit Truck	1	1.5	Single Unit Truck	3	4.5	Single Unit Truck	4	6	
			Bus	1	2				Bus	1	2	

Table 4. Westbound Arrival Flow Data

4. Pedestrians Arrival Flow Data

North Crosswalk	East Crosswalk	South Crosswalk	West Crosswalk
2	0	1	2

Table 5. Pedestrian Arrival Flow Data

5. Tentative Phasing Diagram

Figure 4. Tentative Phasing Diagram

4.

6. Saturation Flow Data

6.1. Left-Northbound

Cycle	Queue at the			PC	CU in time	intervals	(s)			Depart at	Queue at end of
Cycle	start of green	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	amber	amber
1	7	2	1	0						2	1
2	4	2	1	1						0	0
3	4	1	3	0						0	0
4	7	2	3	2						1	0
5	4	1	3	1						0	0
6	8	1	2	2						2	1
7	2	2	0	0						0	0
8	9	1	3	3						3	1.5
Vs		12	16	9							
ns		8	7	5							
Si		1080	1646	1296							
S average	1363										

Table 6. Left-Northbound Saturation Flow Data

6.2. Through-Northbound

0.2.	I III Ough I	101 1110	0 652265											
Queue at the		PCU in time intervals (s)											Depart	Queue at end
Cycle start of green	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	40 to 45	45 to 50	50 to 55	at amher	of amber	
1	13	2	5	4	3	0	1	2	1	4	5	3	2	2
2	16	3	3	6	3	4	0	1	0	0	0	1	2	1
3	16	2	5	4	5.5	2	3	0	0	1	0	0	3	1
4	21	3	5	5	5	5	2	1	0	0	0	0	0	0
5	19	2	4	4	6	3	1	3	0	2	1	0	0	0
6	19	2	6	3	6	3	6	5	3	0	1	0	0	0

7	31.5	2	5.5	4	4	5	3	2	6	3	6	4	4	4
Vs		16	33.5	30	32.5	22	16	14	10	10	13	8		
ns		7	7	7	7	6	6	6	3	4	4	3		
Si		1646	3446	3086	3343	2640	1920	1680	2400	1800	2340	1920		
S average	2881													

 $Table\ 7.\ Through-Northbound\ Saturation\ Flow\ Data$

6.3. Left-Eastbound

	Queue at the	1		PC	CU in time	intervals	(s)			Depart at	Queue
Cycle	start of green	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	amber	at end of amber
1	5	1	2	2						0	1
2	6	1	3	1						2	0
3	4	1	3	1						0	0
4	2	1	1	0						0	0
5	2	1	1	1						0	0
6	3	1	2	0						0	0
7	4	1	2	1						1	0
Vs		7	14	6							
ns		7	7	5							
Si		720	1440	864							
S average	1080										

Table 8. Left-Eastbound Saturation Flow Data

6.4. Through-Eastbound

Cyclo	Queue at the			PC	CU in time	intervals	(s)			Depart at	Queue
Cycle	start of green	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	amber	at end of amber
1	2	1	2	0	0					0	2
2	4	2	3	1	0					1	0
3	6	2	3	1	1					0	0
4	3	2	3	1	0					0	0
5	4	2	2	0	0					1.5	2

6	3	2	1	0	0			0	0
7	6	1	4	0	2			0	0
Vs		12	18	3	3				
ns		7	7	3	2				
Si		1235	1852	720	1080				
S average	1544								

Table 9. Through-Eastbound Saturation Flow Data

a.

6.5. Left-Southbound

Cycle	Queue at the			PC	CU in time	intervals	(s)			Depart at	Queue at end of
Cycle	start of green	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	amber	amber
1	1	1								0	0
2	1	1								0	0
3	1	1								0	0
Vs		3									
ns		3									
Si		720									
S average	720										

Table 10. Left-Southbound Saturation Flow Data

6.6. Through-Southbound

0.0.	m ough bouthbound											
	Queue at the				PCU in	time inte	rvals (s)				Depart	Queue at end
Cycle	start of green	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	40 to 45	at amber	of amber
1	27	3	9	8	6	7	6.5	1	0	0	0	0
2	21.5	5.5	7	4	6	4	3	4	4	2	1	0
3	19	3	4	8	4	2	1	1	4	1	2	1
4	11	3	4	3	0	1	2	3	4.5	3	2	2
5	9	3	7	4	0	1	3	2	2	1	0	1

6	12	4	7	3	0	0	1	2	2	5	2	3
7	19.5	4	5	6.5	5	4	1	3	3	2	1	1
Vs		25.5	43	36.5	21	19	17.5	16	19.5	14		
ns		7	7	7	4	6	7	7	6	6		
Si		2623	4423	3755	3780	2280	1800	1646	2340	1680		
S average	3646											

Table 11. Through-Southbound Saturation Flow Data

b.

6.7. Left-Westbound

0./. I	<u> Left-Westbour</u>	<u>1a</u>									
Cuele	Queue at the			PC	CU in time	intervals	(s)			Depart at	Queue
Cycle	start of green	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	amber	at end of amber
1	3	1	3	0	0					0	1
2	4	2	3	0	0					0	0
3	4	1	3	0	0					0	0
4	2.5	1	1.5	2	0					0	1
5	4	2	2	3	2					0	2
6	11	2	2	3	3					1	2
7	6	2	3	1	0					1	1
Vs		11	17.5	9	5						
ns		7	7	4	3						
Si		1132	1800	1620	1200						
S average	1518										

Table~12.~Left-Westbound~Saturation~Flow~Data

6.8. Through-Westbound

Cycle	Queue at the	PCU in time intervals (s)	Depart at	Queue
-------	--------------	---------------------------	-----------	-------

	start of green	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	30 to 35	35 to 40	amber	at end of amber
1	2	2	1	0	0	0				0	0
2	0	0	0	0	0	0				1	0
3	2.5	1	1.5	0	0	0				0	0
4	2	2	3	4	4	3				1	0
5	15	3	4	3	4	4				3	5.5
6	17.5	3.5	6	5	3	2				2	3
7	9	3	3	1	1	2				2	0
Vs		14.5	18.5	13	12	11					
ns		6	6	4	4	4					
Si		1740	2220	2340	2160	1980					
S average	2115										

Table 13. Through-Westbound Saturation Flow Data

5.

7. Amber intervals

 $A = t_{pr} + v/(2a + 2gG)$

v=14m/s, tpr=1, a=3m/s2

A=1+14/(2(3)+2(0/100))

A=3.33 seconds -> 4 seconds

Amber interval = 4 seconds

8. Inter-green periods

$$I = i + (W_c + L_{veh}) / v_c$$

$$i=A\text{-}1=4\text{-}1=3$$
 ; $L_{veh}=6m$; $v_c=36km/h=10m/s$

Northbound:

$$W_c = 1.3 + 4.6 + 31.5 + 3.3 = 40.7 m$$

$$I = 3 + (40.7 + 6)/10$$

I = 7.67s

Southbound:

$$W_c = 1.4 + 3.3 + 31.5 + 4.6 = 40.8$$

$$I = 3 + (40.8 + 6)/10m$$

$$I = 7.68 \text{ s}$$

Eastbound:

$$W_c = 3.6 + 3.3 + 29.1 + 3.2 = 39.2m$$

$$I = 3 + (39.2 + 6)/10$$

$$I = 7.52 \text{ s}$$

Westbound:

$$W_c = 1.2 + 3.2 + 30.6 + 3.3 = 38.3 m$$

$$I = 3 + (38.3 + 6)/10$$

$$I = 7.43 \text{ s}$$

Approach Lane	Phase	Inter-green periods
Northbound	1	7.67
Southbound	1	7.68
Eastbound	2	7.52
Westbound	2	7.43

Table 14. Inter-green periods

9. All-red periods

$$r_{all} = I - A$$

Northbound:

$$r_{all} = 7.67 - 4 = 3.67 \text{ s}$$

Southbound:

$$r_{all} = 7.68 - 4 = 3.68 \text{ s}$$

Eastbound:

$$r_{all} = 7.52 - 4 = 3.52 \text{ s}$$

Westbound:

$$r_{1} = 7.43 - 4 = 3.43 \text{ s}$$

Approach Lane	Phase	All-red periods
Northbound	1	3.67
Southbound	1	3.68
Eastbound	2	3.52
Westbound	2	3.43

Table 15. All-red periods

10. Lost time

lj = Ij - 1.0

Northbound:

$$lj = 7.67 - 1.0 = 6.67 s$$

Southbound:

$$lj = 7.68 - 1.0 = 6.68 s$$

Eastbound:

$$lj = 7.52 - 1.0 = 6.52 s$$

Westbound:

$$1j = 7.43 - 1.0 = 6.43 \text{ s}$$

Approach Lane	Phase	Lost Time
Northbound	1	6.67
Southbound	1	6.68
Eastbound	2	6.52
Westbound	2	6.43

Table 16. Lost time

11. Pedestrians Clearance time

Walking speed = 1.2m/s

Northbound:

Distance = 30m

Wc = 30/1.2 = 25s

Southbound:

Distance = 34.2 m

Wc = 34.2/1.2 = 28.5s

Eastbound:

Distance = 14.7 + 13.6 = 28.3m

Wc = 28.3/1.2 = 23.6s

Westbound:

Distance = 29m

Wc = 29/1.2 = 24.2s

Crosswalk	Phase	Pedestrians Clearance Time(seconds)
Northbound	1	25
Southbound	1	28.5
Eastbound	2	23.6
Westbound	2	24.2

Table 17. Pedestrian clearance time

12. Pedestrians minimum Cycle Length

Cped min = ∑j max(Wmini + Wcleari)j

Cped min = (10+29)+(10+25)

Cped min = 74 s

Crosswalk	Phase	Walk Interval(s)	Clearance Period (s)
Northbound	1	10	29
Southbound	1	10	29
Westbound	2	10	25
Eastbound	2	10	25

Table 18. Pedestrians minimum Cycle Length

13. Intersection Flow Ratio and Critical Flow

13.1. Summary of arrival flows

Approach lane	Flow of passenger cars per hour	Flow of single unit Truck per hour	Flow of buses per hour	Flow of Motorcycle per hour	Arrival flow (veh/h) (1)	Arrival flow (pcu/h) (2)	Arrival flow (person/h) (3)
NB	311	5	1	0	317	321	497
SB	268	4	3	1	276	282	441
EB	118	3	1	0	122	125	203
WB	169	4	1	0	174	177	272

Table 19. Summary of arrival flows

- 6. (Flow of passenger cars per hour + Flow of Truck per hour + Flow of buses per hour + Flow of Motorcycle per hour)
- 7. Flow of passenger cars per hour + Flow of Truck per hour*1.5 + Flow of buses per hour*2+ Flow of Motorcycle per hour*0.5
- 8. (Flow of passenger cars per hour*1.5 + Flow of Truck per hour*2 + Flow of buses per hour*20+ Flow of Motorcycle per hour)

a.

13.2. Determination of adjusted saturation flows

Approach lane	Basic saturation flow (pcu/h)	Adjusted lane saturation flow (pcu/h)	% cars (1)	% single unit Truck (1)	% Buses (1)	% Motorcycle (1)	Adjusted saturation flow S(veh/h) (2)
NB	1830	1830	98.11	1.58	0.315	0	1810
SB	1830	1830	97.10	1.45	1.09	0.362	1801
ЕВ	1830	1830	96.72	2.46	0.820	0	1794
WB	1830	1830	97.13	2.30	0.575	0	1799

Table 20. determination of adjusted saturation flows

Assume (1830) as basic saturation because intersection is in a low activity area

- 1. Flow of passenger Veh per hour/ Arrival flow * 100%
- 2. S(veh/h)=Spcu/h / (% qcar (1.0 / 100)+% qtruck (1.5 / 100)+% qbus (2.0 / 100)+% qMotorcycle (0.5 / 100))

Lane	Direction	Phase	Adjusted lane arrival flow q (pcu/h)	Adjusted lane saturation flow S (pcu/h)	Lane flow ratio (y = q/S)	Flow ratios for critical lanes ycrit
1	NB	1	321	1830	0.175	0.175
2	SB	1	282	1830	0.154	
3	ЕВ	2	125	1830	0.068	
4	WB	2	177	1830	0.097	0.097

Table 21. Intersection Flow Ratio and Critical Flow

14. Minimum and Optimum Cycle lengths

14.1. Minimum cycle time for vehicular flow

L = 1 phase 1 + 1 phase 2 = 7.0 + 7.0 = 14.0 s

Cmin =
$$L/(1-Y) = 14/(1-0.272) = 19.28$$
 s rounds to 20.0 s

14.2. Optimum cycle time for vehicular flows

Copt =
$$(1.5 L + 5) / (1-Y) = (1.5 x 14.0 + 5) / (1 - 0.272) = 35.71$$
 s rounds to 36 s

14.3. Cycle time selection

Cmin & Copt < Cped min, therefore assume C or Cadj = Cped min

$$Cadj = 74 s$$

9.

15. Green times

15.1. Vehicular requirements

$$\Sigma gj = C - \Sigma Ij = 74.0 - (8.0 + 8.0) = 58.0 s.$$

15.2. For phase 1:

$$g1$$
 = Σ $gj*$ $y1$ / Y = 58 x 0.175 / 0.272 = 37.32 rounds to 37.0 s

15.3. For phase 2:

$$g2 = \Sigma gj* y2 / Y = 58 \times 0.097 / 0.272 = 20.68$$
 rounds to 21.0 s

15.4. Green Time check

Phase
$$1:(37+8) \ge (10+29)$$

Phase
$$2:(21+8) \ge (10+25)$$

g2 does not satisfy the check, therefor g2adj=Cped min for that phase

$$g2adj = 35s$$

using this "g2= Σ gj y2 / Y" equation Σ gj adj can be found

$$\Sigma$$
 gi adj = 99s

using Σ gj adj a new g1 must be found

$$g1adj = \Sigma gj adj * y1 / Y = 99 \times 0.175 / 0.272 = 63.69$$
 round to 64s

Because of the changes to the green times the clearance time needs to be re-estimated

$$Cadj2 = 115s$$

16. Queue Length Evaluations

16.1. effective green interval (s)

$$ge = g + 1 = 64 + 1 = 65$$

Lane	Arrival flow (q) (pcu/h)	Effective green ge (s)	Average queue length at the end of red Qr (pcu) (1)	Average queue length at the end of red Qr (m) (2)
1	321	65	4.46	27
2	282	65	3.92	24
3	125	36	2.74	17
4	177	36	3.88	23

Table 22. Queue Length Evaluation

- 1. Qr(pcu) = q(c ge) / 3600
- 2. Qr(m)=Qr(pcu)*6.0m

17. Summary Timetable

Interval or Period	Notation	Duration(s)
Green (Phase 1)	g ₁	64
Intergreen (Phase 1)	I_1	8
Green (Phase 2)	g ₂	35
Intergreen (Phase 2)	I_2	8
Total Cycle Time	c	115

Table 23. Summary Timetable

18. Final Coloured Phasing Diagram

Figure 5. Final Time Phasing Diagram

19. Final Remarks and Recommendations

In conclusion, after final calculations and adjustments made to the phasing diagram, the completed and final time phasing diagram can be seen in Figure 5. The variations to the existing phasing diagram include changes to the amber intervals, intergreen periods and red periods such as the allocations of the green periods have changed significantly from the existing time phasing diagram. The existing time phasing diagram had 6 different phases while the final time phasing diagram now only has 4 with 2 groups of identical phases. One similarity between the two diagrams are that the NB/SB directions have a greater green period than the EB/WB directions for both phases as well as crosswalks.

The existing time phasing diagram represents the average of all the cycles recorded due to the signals being fully actuated, while the final time phasing diagram represents the signals when not changing which results in the significant differences in the allocations and time lengths. Possible errors that could have affected the final results can include miscalculating the cycle lengths and queue times which could in return affect the final values such as determination of arrival, saturation and vehicular flows.

20. References

20.1. Section 12-17

a. Canadian Capacity Guide [Online].https://avenue.cllmcmaster.ca/d2l/le/content/409695/viewContent/3403019/View [Accessed: 30-Nov-2021].

20.2. PCU Conversion

b. Canadian Capacity Guide [Online].https://avenue.cllmcmaster.ca/d2l/le/content/409695/viewContent/3403019/View [Accessed: 30-Nov-2021].

20.3. Section 1

John Walker. (2021). AutoCAD 2022 - English (Version 24.1) [Desktop App]. Autodesk. https://www.autodesk.ca/en/products/autocad/overview?term=1-YEAR&tab=subscription [Accessed: 30-Nov-2021].