Oblig 3

Thobias Høivik

Jeg antar i oppgave 4.1.2 (a) at det er en skrivefeil, siden når jeg søker opp additivitet i det andre argumentet på nettet får jeg

$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$

Problem: Oppgave 3.5.8

En diagonalmatrise er en matrise $A \in M_{m \times n}(\mathbb{K})$ som har ikke-null elementer kun langs diagonalen: $(A)_{ij} = 0$ for alle $i \neq j$. Vis at

$$||A||_{\mathcal{L}} = \max_{i} |(A_{ij})|$$

Bevis. La $A\in M_{m\times n}(\mathbb{K})$ være en diagonalmatrise. La $d_i=(A)_{i\,i}\ (1\leq i\leq \min\{m,n\}$ for $m\neq n).$

For enhver $x \in \mathbb{K}^n$ har vi da

$$||Ax||_{\ell^{2}}^{2} = \sum_{i} |d_{i}x_{i}|^{2}$$

$$\leq (\max_{i} |d_{i}|^{2}) \sum_{i} |x_{i}|^{2}$$

$$= (\max_{i} |d_{i}|^{2}) ||x||_{\ell^{2}}^{2}$$

men for enhetsvektorer har vi $\|x\|_{\ell^2}^2 = 1$ så

$$||Ax||_{\ell^2} \le \max_i |d_i|$$

og dette gjelder for enhetsvektorer, dermed

$$||A||_{\mathcal{L}} = \sup_{||x||=1} ||Ax||_{\ell^2} \le \max_i |d_i|$$

La k være slik at $|d_k|=\max_i |d_i|.$ Ta basisvektoren e_k med $\|e_k\|_{\ell^2}=1.$ Da har vi

$$||Ae_k||_{\ell^2} = |d_k| ||e_k||_{\ell^2}$$

= $|d_k|$
= $\max_i |d_i|$

så

$$||A||_{\mathcal{L}} \ge \max_{i} |d_{i}|$$

Det følger da at

$$||A||_{\mathscr{L}} = \max_{i} |d_{i}|$$

Problem: Oppgave 4.1.2

Bevis følgende:

- (a) Indreproduktet er additivt i andre argument: $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
- (b) Indreproduktet er konjugert-homogen i andre argument: $\langle u, \alpha v \rangle = \overline{\alpha} \langle u, v \rangle$
- (c) Dersom $\mathbb{K} = \mathbb{R}$, er indreproduktet symmetrisk: $\langle u, v \rangle = \langle v, u \rangle$

Bevis av (a). La V være et indreproduktrom med $u, v, w \in V$.

$$\langle u, v + w \rangle = \overline{\langle v + w, u \rangle}$$

$$= \overline{\langle v, u \rangle + \langle w, u \rangle}$$

$$= \overline{\langle v, u \rangle + \overline{\langle w, u \rangle}}$$

$$= \overline{\langle u, v \rangle + \langle u, w \rangle}$$

Bevis av (b). La V være et indreproduktrom over \mathbb{K} med $u, v \in V$ og $\alpha \in \mathbb{K}$.

$$\langle u, \alpha v \rangle = \overline{\langle \alpha v, u \rangle}$$

$$= \overline{\alpha \langle v, u \rangle}$$

$$= \overline{\alpha} \overline{\langle v, u \rangle}$$

$$= \overline{\alpha} \langle u, v \rangle$$

Bevis av (c). La *V* være et indreproduktrom over \mathbb{R} med $u, v \in \mathbb{R}$.

$$\langle u, v \rangle = \overline{\langle v, u \rangle}$$

Det komplekse konjugatet er

$$\overline{a+bi} = a-bi$$

For reelle tall har vi b = 0 så det komplekse konjugatet gjør ingenting med reelle tall så

$$\overline{\langle v, u \rangle} = \langle v, u \rangle$$

Problem: Oppgave 4.1.3

La $u \in U$ være slik at $\langle u, v \rangle = 0$ for alle $v \in U$. Vis at u = 0. Er det samme sant dersom $\langle v, u \rangle = 0$ for alle $v \in U$?

Hint: Prøv med v = u.

Bevis. La U være et indreproduktrom med $u \in U$ slik som i oppgavebeskrivelsen.

Siden u tilfredsstiller

 $\langle u, v \rangle = 0 \quad \forall v \in U$

så krever vi at

 $\langle u, u \rangle = 0$

siden $u \in U$.

 $\langle u,u\rangle=0$

kun dersom $u = \mathbf{0}$.

Dersom $\langle v, u \rangle = 0, \forall v \in U$ så har vi at

 $\overline{\langle v, u \rangle} = \overline{0} = 0$

så

 $\langle u, v \rangle = 0$

Problem: Oppgave 4.1.5

Vi lar $\mathbb{K} = \mathbb{R}$ eller $\mathbb{K} = \mathbb{C}$. Vis at følgende er indreprodukter.

(a) Det kanoniske indreproduktet i \mathbb{K}^n er prikkproduktet

$$\langle x, y \rangle_{\mathbb{K}^n} := x \cdot y = \sum_{k=1}^n x_k \overline{y_k}$$

(c) La $\ell^2(\mathbb{K}):=\{(a_1,a_2,\dots):\sum_{k\in\mathbb{N}}|a_k|^2<\infty\}$ (se Eksempel 3.1.2). Vi definerer ℓ^2 -indreproduktet som

$$\langle a,b \rangle_{\ell^2} := \sum_{k=1}^{\infty} a_k \overline{b_k}$$

(d) For $f, g \in C([a, b], \mathbb{K})$ (se Oppgave 1.1.5) definerer vi L^2 -indreproduktet

$$\langle f, g \rangle_{L^2} := \int_a^b f(t) \overline{g(t)} dt$$

Bevis av (a). La U være et vektorrom over $\mathbb{K} = \mathbb{R}$ eller $\mathbb{K} = \mathbb{C}$, med $u, v, w \in U$ og $\alpha \in \mathbb{K}$. Da vil $\langle \cdot, \cdot \rangle_{\mathbb{K}^n}$ gi en skalar i \mathbb{K} siden den er definert til å ta summen av skalar-verdier i \mathbb{K} .

(i)

Vi vet at $\langle u,u\rangle \geq 0$ fordi, i tilfellet der $\mathbb{K}=\mathbb{R}$ tar vi summen av kvadraten av hver komponent i vektoren u (i.e. vi tar summen av verdier som er større enn eller lik 0). I tilfellet der $\mathbb{K}=\mathbb{C}$ simplifiseres uttrykket til

$$\sum_{k=1}^{n} a_k^2 + b_k^2$$

hvor $u_k = a_k + b_k i$, $a_k, b_k \in \mathbb{R}$, som er ikke-negativt for samme grunn.

Dersom u = (0,0,...,0) blir summen åpenbart 0. Viss vi antar

$$\sum_{k=1}^{n} x_k \overline{x_k} = 0$$

vet vi at hver $x_k = 0$ siden $x_k \overline{x_k} \ge 0$ så eneste måten summen er 0 er vist alle $x_k = 0$.

(ii)

$$\langle u + v, w \rangle = \sum_{k=1}^{n} (u_k + v_k) \overline{w_k}$$

$$= \sum_{k=1}^{n} u_k \overline{w_k} + v_k \overline{w_k}$$

$$= \sum_{k=1}^{n} u_k \overline{w_k} + \sum_{k=1}^{n} v_k \overline{w_k}$$

$$= \langle u, w \rangle + \langle v, w \rangle$$

(iii)

$$\langle \alpha u, v \rangle = \sum_{k=1}^{n} \alpha u_k \overline{v_k}$$
$$= \alpha \sum_{k=1}^{n} u_k \overline{v_k}$$
$$= \alpha \langle u, v \rangle$$

(iv)

$$\langle u, v \rangle = \sum_{k=1}^{n} u_k \overline{v}_k$$

$$= \sum_{k=1}^{n} \overline{v_k} u_k = \sum_{k=1}^{n} v_k \overline{u_k}$$

$$= \overline{\langle v, u \rangle}$$

Dermed oppfyller $\langle \cdot, \cdot \rangle_{\mathbb{K}^n} : U \times U \to \mathbb{K}$ egenskapene til et indreprodukt.

Bevis av (c). La $a, b \in \ell^2(\mathbb{K})$. Da har vi at

$$\sum_{k=1}^{\infty} |a_k \overline{b_k}| \le \frac{1}{2} \left(\sum_{i=1}^{\infty} |a_i|^2 + \sum_{i=1}^{\infty} |b_i|^2 \right)$$

og de to summene er ved definisjon of $\ell^2(\mathbb{K})$ endelige, så $\langle a,b\rangle$ gir da en endelig verdi.

Videre la også $c \in \ell^2(\mathbb{K})$ og $\delta \in \mathbb{K}$.

i)

$$\langle a, a \rangle = \sum_{k=1}^{\infty} a_k \overline{a_k}$$
$$= \sum_{k=1}^{\infty} \mathbb{R}e(a_K)^2 + \mathbb{I}m(a_k)^2 \ge 0$$

siden hver $\mathbb{R}e(a_k)^2 \ge 0$ og $\mathbb{I}m(a_k)^2 \ge 0$.

Viss $a = \mathbf{0}$ får vi $\sum_{k=1}^{\infty} 0 = 0$. Anta da at $\langle a, a \rangle = 0$.

$$\sum_{k=1}^{\infty} \mathbb{R}e(a_k)^2 + \mathbb{I}m(a_k)^2 = 0$$

Som sagt er $\mathbb{R}e(a_k)^2$ og $\mathbb{I}m(a_k)^2$ ikke-negative reelle tall. Den eneste løsningen for at summen av ikkenegative reelle tall skal være lik 0 er den trivielle løsningen hvor $\mathbb{R}e(a_k) = \mathbb{I}m(a_k) = 0$ for alle k. Med andre ord har vi at hver $a_k = 0$ så $a = \mathbf{0}$.

ii)

$$\langle a+b,c\rangle = \sum_{k=1}^{\infty} (a_k + b_k) \overline{c_k}$$

$$= \sum_{k=1}^{\infty} a_k \overline{c_k} + b_k \overline{c_k}$$

$$= \sum_{k=1}^{\infty} a_k \overline{c_k} + \sum_{k=1}^{\infty} b_k \overline{c_k}$$

$$= \langle a,c\rangle + \langle b,c\rangle$$

iii)

$$\langle \delta a, b \rangle = \sum_{k=1}^{\infty} \delta a_k \overline{b_k}$$
$$= \delta \sum_{k=1}^{\infty} a_k \overline{b_k}$$
$$= \delta \langle a, b \rangle$$

iv)

$$\langle a, b \rangle = \sum_{k=1}^{\infty} a_k \overline{b_k}$$

$$= \sum_{k=1}^{\infty} \overline{b_k} a_k = \overline{\sum_{k=1}^{\infty} b_k \overline{a_k}}$$

$$= \overline{\langle b, a \rangle}$$

Dermed er $\langle \cdot, \cdot \rangle$ et indreprodukt på $\ell^2(\mathbb{K})$.

Bevis av (c). La $f, g, h \in C([a, b], \mathbb{K})$ med $\alpha \in \mathbb{K}$, indreproduktet

$$\langle f, g \rangle_{L^2} = \int_a^b f(t) \overline{g(t)} dt$$

Viss g er kontinuerlig på [a,b] så er \overline{g} også kontinuerlig på dette intervallet. Dermed er integralet over $f(t)\overline{g(t)}$ vell-definert.

i)

$$\langle f, f \rangle = \int_{a}^{b} |f(t)|^{2} dt$$

 $|f(t)|^2 \in [0,\infty)$ for alle $t \in [a,b]$. Siden $|f(t)|^2$ er kontinuerlig og ikke negativ på [a,b] gir inetgralet en ikke-negativ verdi. Siden vi tar integralet over ikke-negative verdier er eneste løsningen hvor hele integralet blir 0 når f(t) = 0 for alle $t \in [a,b]$.

ii)

$$\langle f + g, h \rangle = \int_{a}^{b} (f(t) + g(t)) \overline{h(t)} dt$$

$$= \int_{a}^{b} f(t) \overline{h(t)} + g(t) \overline{h(t)} dt$$

$$= \int_{a}^{b} f(t) \overline{h(t)} dt + \int_{a}^{b} g(t) \overline{h(t)} dt$$

$$= \langle f, h \rangle + \langle g, h \rangle$$

iii)

$$\langle \alpha f, g \rangle = \int_{a}^{b} \alpha f(t) \overline{g(t)} dt$$
$$= \alpha \int_{a}^{b} f(t) \overline{g(t)} dt$$
$$= \alpha \langle f, g \rangle$$

iv)

$$\langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} dt$$

$$= \int_{a}^{b} \overline{g(t)} f(t) dt = \overline{\int_{a}^{b} g(t) \overline{f(t)} dt}$$

$$= \overline{\langle g, f \rangle}$$

 $\langle\cdot,\cdot\rangle_{L^2}$ utgjør et indreprodukt på $C([a,b],\mathbb{K}).$

Problem: Oppgave 4.2.2

Vis at L^2 -normen $\|f\|_{L^2}:=(\int_a^b|f(t)|^2dt)^{1/2}$ (se Eksempel 3.1.2 (d)) er normen indusert av L^2 -indreproduktet $\langle f,g\rangle_{L^2}:=\int_a^bf(t)\overline{g(t)}dt$ (se Oppgave 4.1.5 (d)).

Bevis. Husk at for en f i et indreproduktrom har vi

$$||f||^2 = \langle f, f \rangle$$

så

$$(\langle f, f \rangle)_{L^{2}}^{1/2} = \|f\|_{L^{2}}$$

$$(\langle f, f \rangle)^{1/2} = \left(\int_{a}^{b} f(t) \overline{f(t)} dt \right)^{1/2}$$

$$= \left(\int_{a}^{b} |f(t)|^{2} dt \right)^{1/2}$$

$$= \|f\|_{L^{2}}$$

 L^2 -normen er indusert av L^2 -indreproduktet.

Problem: Oppgave 4.3.2

Vi betrakter \mathbb{R}^2 med standardindreproduktet. Vis at listene

$$\mathcal{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ og } \mathcal{C} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}, \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \end{pmatrix}$$

er ortonormale. Tegn vektorene i hver av listene og forklar hvordan man kan se at de to listene er ortonormale.

Bevis. La $\langle x, y \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ betegne standardindreproduktet $x \cdot y = \sum_{k=1}^2 x_k y_k$.

$$\langle e_1, e_2 \rangle$$

= $1 \cdot 0 + 0 \cdot 1$

siden \mathbb{R}^2 er over \mathbb{R} har vi symmetri og trenger derfor ikke sjekke $\langle e_2, e_1 \rangle$ eksplisitt.

$$\langle e_1, e_1 \rangle = 1 \cdot 1 + 0 \cdot 0$$

= 1
 $\langle e_2, e_2 \rangle = 0 \cdot 0 + 1 \cdot 1$
= 1

Så $\mathcal{B} = (e_1, e_2)$ er ortonormal.

$$\mathscr{C}$$
) La $f_1 = (1/\sqrt{2}, 1/\sqrt{2})$ og $f_2 = (-1/\sqrt{2}, 1/\sqrt{2})$ så $\mathscr{C} = (f_1, f_2)$.

$$\langle f_1, f_2 \rangle = 1/\sqrt{2} \cdot -1/\sqrt{2} + 1/\sqrt{2} \cdot 1/\sqrt{2}$$

= -1/2 + 1/2
= 0

Igjen, vi har symmetri så dette holder for å konkludere at listen er ortogonal.

$$\begin{split} \langle f_1, f_1 \rangle &= 1/\sqrt{2} \cdot 1/\sqrt{2} + 1/\sqrt{2} \cdot 1/\sqrt{2} \\ &= 1/2 + 1/2 \\ &= 1 \\ \langle f_2, f_2 \rangle &= -1/\sqrt{2} \cdot -1/\sqrt{2} + 1/\sqrt{2} \cdot 1/\sqrt{2} \\ &= 1/2 + 1/2 \\ &= 1 \end{split}$$

 \mathscr{C} er ortonormal.

Vi ser at vektorene i $\mathcal B$ og $\mathcal C$ er enhetsvektorer med 90 grader vinkel i mellom seg.

Problem: Oppgave 4.3.3

Vis at en ortogonal liste $(u_1, ..., u_n)$ automatisk er linerært uavhengig.

Bevis. Anta at vi har en liste $U = (u_1, ..., u_n)$ som er ortogonal.

$$\langle u_i, u_j \rangle = 0 \quad \forall i \neq j$$

og ingen av vektorene er 0.

For at en liste skal være lineært uavhengig trenger vi at

$$\sum_{i=1}^{n} \alpha_i u_i = 0$$

kunn har den trivielle løsningen hvor $\alpha_i=0$ for alle $1\leq i\leq n$.

La $u_i \in U$ være en vilkårlig vektor.

$$\sum_{i=1}^{n} a_i u_i = 0$$

$$\left\langle \sum_{i=1}^{n} a_i u_i, u_j \right\rangle = \langle 0, u_j \rangle = 0 \quad \forall u_j \in U$$

$$\left\langle \sum_{i=1}^{n} \alpha_i u_i, u_j \right\rangle = \sum_{i=1}^{n} \alpha_i \langle u_i, u_j \rangle$$

$$= \alpha_1 \langle u_1, u_j \rangle + \dots + \alpha_n \langle u_n, u_j \rangle$$

Siden $\langle u_i, u_j \rangle = 0$ for alle $i \neq j$ sitter vi igjen med

$$\alpha_j\langle u_j, u_j\rangle$$

Siden ingen u_i kan være 0 har vi at $\alpha_j = 0$. u_j var valgt vilkårlig så da har vi at $\alpha_j = 0$ for alle j. Så $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.