Outlines

- Correlation
 - Pearson's correlation
 - Kendall rank correlation
 - Spearman rank correlation
- Regression
 - Types of regression
 - Fitting a function Criterion for best fit
 - Least squares
- Simple regression
- Multiple regression
- Model assessment and validation

CORRELATION

Preliminaries

- *n* observations for x and y, variables (x_i, y_i)
- Sample means \bar{x} and \bar{y}

$$\bar{x} = \frac{\sum x_i}{n}$$
 $\bar{y} = \frac{\sum y_i}{n}$

• Sample variances S_{xx} and S_{yy}

$$S_{xx} = \frac{1}{n} \sum (x_i - \bar{x})^2$$
 $S_{yy} = \frac{1}{n} \sum (y_i - \bar{y})^2$

• Sample covariance S_{xy}

$$S_{xy} = \frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})$$

Correlation

- Correlation: the strength of association between two variables
- Correlation does not imply causation
- Visual representation of correlation: Scatter grams

Pearson's Correlation

- *n* observations for *x* and *y* variables (x_i, y_i)
- Pearson's product-moment correlation coefficient (r_{xv})

$$r_{xy} = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sqrt{(\sum x_i^2 - n\bar{x}^2)} \sqrt{(\sum y_i^2 - n\bar{y}^2)}} = \frac{S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}}$$

- r_{xy} takes a value between -1 (negative correlation) and 1 (positive correlation)
- r_{xy} = 0 means no correlation

Pearson's Correlation (Cont.)

- A measure for the degree of linear dependence between *x* and *y*
- Cannot be applied to ordinal variables
- Sample size: Moderate (20-30) for good estimate
- Robustness: Outliers can lead to misleading values

Pearson's Correlation: Anscombe's data

Pearson's Correlation (Cont.)

- Example: Nonlinear
 - x = 125 equally spaced values between [0, 2π]
 - $\circ y = \cos(x)$
 - $r_{xy} = -0.0536$
- Example: Nonlinear

 - $x = -10:0.5:10; y = x^2; r_{xy} = 0.0$

Spearman Rank Correlation

- Degree of association between two variables
- Linear or nonlinear association
- x increases, y increases or decreases monotonically

Spearman Rank Correlation

Spearman rank correlation computation for n observations:

$$r_s = 1 - \frac{6\Sigma d_i^2}{n(n^2 - 1)}$$

 $r_s=1-\frac{6\Sigma d_i^2}{n(n^2-1)}$ d_i is the difference in the ranks given to the two variables values for each item of the data

• Example:

Number	1	2	3	4	5	6	7	8	9	10
X_1	7	6	4	5	8	7	10	3	9	2
\mathbf{Y}_1	5	4	5	6	10	7	9	2	8	1
Rank X1	6.5	5	3	4	8	6.5	10	2	9	1
Rank Y1	4.5	3	4.5	6	10	7	9	2	8	1
d ²	4	4	2.25	4	4	0.25	1	0	1	0

$$r_{s} = 0.88$$

Spearman Rank Correlation

- r_s takes a value between -1 (negative association) and 1 (positive association)
- $r_s = 0$ means no association
- Monotonically increasing $r_s = 1$
- Monotonically decreasing $r_s = -1$
- Can be used when association is nonlinear
- Can be applied for ordinal variables

Spearman Rank Correlation: Anscombe's data

Kendall rank correlation coefficient

- Correlation coefficient to measure association between two ordinal variables
- Concordant Pair: A pair of observations (x_1, y_1) and (x_2, y_2) that follows the property $x_1 > x_2$ and $y_1 > y_2$ or $x_1 < x_2$ and $y_1 < y_2$
- Discordant Pair: A pair of observations (x_1, y_1) and (x_2, y_2) that follows the property $x_1 > x_2$ and $y_1 < y_2$ or $x_1 < x_2$ and $y_1 > y_2$

Kendall rank correlation coefficient

Example: Two experts ranking on food items

Items	Expert I	Expert 2			
1	1 .	1			
2	2	3			
3	3	6			
4	4	2			
5	5	7			
6	6	4			
7	7	5			

1			H				
2	С						
3	С	С					
4	С	D	D				
5	С	С	С	С			
6	С	С	D	С	D		
7	С	С	D	С	D	С	
	1	2	3	4	5	6	7

$$\tau = \frac{15 - 6}{21} = 0.42857$$

Kendall rank Correlation: Anscombe's data

