Introduction to Artificial Intelligence

Reinforcement Learning

Andres Mendez-Vazquez

April 26, 2019

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 Limitations
 - Limitation

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Solution Method
 Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
 - Dynamic Programming
 - Policy Evaluation
 - Policy Evaluation
 Policy Iteration
 - Policy and Value Improvement
 - Example
 - Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea

 The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
 - Q-learning: Off-Policy TD Control
- The Neural Network Approach
 - Introduction, TD-Gammon
 - TD(λ) by Back-Propagation
 - Conclusions

Outline

Reinforcement Learning

Introduction

- Example
- A K-Armed Bandit Problem
- Exploration vs Exploitation
- The Elements of Reinforcement Learning Limitations

- Introduction
- Markov Process and Markov Decision Process
- Return. Policy and Value function.

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
- A Small Review of Monte Carlo Methods
- The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

Reinforcement Learning is learning what to do

What does Reinforcement Learning want?

• Maximize a numerical reward signal

 A discovery must be performed to obtain the actions that yield the most rewards

Reinforcement Learning is learning what to do

What does Reinforcement Learning want?

Maximize a numerical reward signal

The learner is not told which actions to take

 A discovery must be performed to obtain the actions that yield the most rewards

These ideas come from Dynamical Systems Theory

Specifically

 As the optimal control of incompletely-known Markov Decision Processes (MDP).

 Interact with the environment to learn by using punishments and rewards.

These ideas come from Dynamical Systems Theory

Specifically

 As the optimal control of incompletely-known Markov Decision Processes (MDP).

Thus, the device must do the following

 Interact with the environment to learn by using punishments and rewards.

Outline

Reinforcement Learning

- Introduction
- Example
- A K-Armed Bandit Problem
- Exploration vs Exploitation
- The Elements of Reinforcement Learning

Limitations

- Introduction
- Markov Process and Markov Decision Process
- Return. Policy and Value function.

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
- A Small Review of Monte Carlo Methods
- The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

A mobile robot

decides whether it should enter a new room

- in search of more trash to collect
- or going back to charge its battery

- current charge level of its battery
- how guickly it can arrive to its base

A mobile robot

decides whether it should enter a new room

- in search of more trash to collect
- or going back to charge its battery

It needs to take a decision based on the

- current charge level of its battery
- how quickly it can arrive to its base

Outline

Reinforcement Learning

- Introduction Example
- A K-Armed Bandit Problem
- Exploration vs Exploitation
- The Elements of Reinforcement Learning
- Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- - Introduction, TD-Gammon
 - TD(λ) by Back-Propagation
 - Conclusions

A K-Armed Bandit Problem

Definition

ullet You are faced repeatedly with a choice among k different options, or actions.

A K-Armed Bandit Problem

Definition

ullet You are faced repeatedly with a choice among k different options, or actions.

After each choice you receive a numerical reward chosen

• From an stationary probability distribution depending on the actions.

 A stationary distribution of a Markov chain is a probability distribution that remains unchanged in the Markov chain as time progresses.

A K-Armed Bandit Problem

Definition

ullet You are faced repeatedly with a choice among k different options, or actions.

After each choice you receive a numerical reward chosen

• From an stationary probability distribution depending on the actions.

Definition Stationary Probability

• A stationary distribution of a Markov chain is a probability distribution that remains unchanged in the Markov chain as time progresses.

Example

Therefore

Each of the k actions has an expected value

$$q_*\left(a\right) = E\left[R_t | A_t = a\right]$$

- Something Notab
 - If you knew the value of each action,
 - \blacktriangleright It would be trivial to solve the k-armed bandit problem.

Therefore

Each of the k actions has an expected value

$$q_*\left(a\right) = E\left[R_t | A_t = a\right]$$

Something Notable

- If you knew the value of each action,
 - ▶ It would be trivial to solve the k-armed bandit problem.

What do we want?

To find the estimated value of action a at time t, $Q_{t}\left(a\right)$

 $\left|Q_{t}\left(a\right)-q_{*}\left(a\right)\right|<\epsilon$ with ϵ as small as possible

Outline

Reinforcement Learning

- Introduction
- Example
- A K-Armed Bandit Problem
- Exploration vs Exploitation
- The Elements of Reinforcement Learning

Formalizing Reinforcement Learning

- Introduction
- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Dynamic Frogrammin
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- The Neural Network Approach
 - Introduction, TD-Gammon
 - \bullet TD(λ) by Back-Propagation
 - Conclusions

Greedy Actions

Intuitions

• To choose the greatest $E[R_t|A_t=a]$

This is know as Exploitation

You are exploiting your current knowledge of the values of the actions

Exploration

 When you select the non-gready actions to obtain a better knowledge of the non-gready actions.

Greedy Actions

Intuitions

• To choose the greatest $E[R_t|A_t=a]$

This is know as **Exploitation**

• You are exploiting your current knowledge of the values of the actions.

- Contrasting to Exploration
 - When you select the non-gready actions to obtain a better knowledge of the non-gready actions.

Greedy Actions

Intuitions

• To choose the greatest $E[R_t|A_t=a]$

This is know as **Exploitation**

• You are exploiting your current knowledge of the values of the actions.

Contrasting to **Exploration**

• When you select the non-gready actions to obtain a better knowledge of the non-gready actions.

An Interesting Conundrum

It has been observed that

- Exploitation maximizes the expected reward on the one step,
- Exploration may produce the greater total reward in the long run.

- The value of a state s is the total amount of reward an agent can expect to accumulate over the future, starting from s.
- Thus, Value
 - They indicate the long-term profit of states after taking into account
 The states that follow and their rewards

An Interesting Conundrum

It has been observed that

- Exploitation maximizes the expected reward on the one step,
- Exploration may produce the greater total reward in the long run.

Thus, the idea

• The value of a state s is the total amount of reward an agent can expect to accumulate over the future, starting from s.

Thus, Values

They indicate the long-term profit of states after taking into account
 The states that follow and their rewards

The states that tollow and their tellares.

An Interesting Conundrum

It has been observed that

- Exploitation maximizes the expected reward on the one step,
- Exploration may produce the greater total reward in the long run.

Thus, the idea

• The value of a state s is the total amount of reward an agent can expect to accumulate over the future, starting from s.

Thus, Values

- They indicate the long-term profit of states after taking into account
 - ▶ The states that follow and their rewards.

Outline

Reinforcement Learning

- Introduction
- Example
- A K-Armed Bandit Problem
- Exploration vs Exploitation
- The Elements of Reinforcement Learning Limitations

- Introduction
- Markov Process and Markov Decision Process
- Return. Policy and Value function.

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

A Policy

• It defines the learning agent's way of behaving at a given time.

A Policy

- It defines the learning agent's way of behaving at a given time.
 - ▶ The policy is the core of a reinforcement learning system

A Policy

- It defines the learning agent's way of behaving at a given time.
 - ▶ The policy is the core of a reinforcement learning system
 - ▶ In general, policies may be stochastic

A Policy

- It defines the learning agent's way of behaving at a given time.
 - ▶ The policy is the core of a reinforcement learning system
 - ▶ In general, policies may be stochastic

A Reward Signal

It defines the goal of a reinforcement learning problem.

A Policy

- It defines the learning agent's way of behaving at a given time.
 - ▶ The policy is the core of a reinforcement learning system
 - In general, policies may be stochastic

A Reward Signal

- It defines the goal of a reinforcement learning problem.
 - The system's sole objective is to maximize the total reward over the long run

A Policy

- It defines the learning agent's way of behaving at a given time.
 - ▶ The policy is the core of a reinforcement learning system
 - In general, policies may be stochastic

A Reward Signal

- It defines the goal of a reinforcement learning problem.
 - The system's sole objective is to maximize the total reward over the long run
 - ▶ This encourage Exploitation

A Policy

- It defines the learning agent's way of behaving at a given time.
 - ▶ The policy is the core of a reinforcement learning system
 - In general, policies may be stochastic

A Reward Signal

- It defines the goal of a reinforcement learning problem.
 - The system's sole objective is to maximize the total reward over the long run
 - ► This encourage Exploitation
 - ▶ It is immediate... you might want something with more long term.

A Policy

- It defines the learning agent's way of behaving at a given time.
 - ▶ The policy is the core of a reinforcement learning system
 - In general, policies may be stochastic

A Reward Signal

- It defines the goal of a reinforcement learning problem.
 - The system's sole objective is to maximize the total reward over the long run
 - ▶ This encourage Exploitation
 - ▶ It is immediate... you might want something with more long term.

A Value Function

• It specifies what is good in the long run.

A Policy

- It defines the learning agent's way of behaving at a given time.
 - ▶ The policy is the core of a reinforcement learning system
 - In general, policies may be stochastic

A Reward Signal

- It defines the goal of a reinforcement learning problem.
 - The system's sole objective is to maximize the total reward over the long run
 - ► This encourage Exploitation
 - ▶ It is immediate... you might want something with more long term.

A Value Function

- It specifies what is good in the long run.
 - ► This encourage Exploration

Finally

A Model of the Environment

- This simulates the behavior of the environment
 - ▶ Allowing to make inferences on how the environment can behave

- Models are used for planning
 - Meaning we made decisions before they are executed
 - Thus, Reinforcement Learning Methods using models are called model-based

Finally

A Model of the Environment

- This simulates the behavior of the environment
 - ▶ Allowing to make inferences on how the environment can behave

Something Notable

- Models are used for planning
 - Meaning we made decisions before they are executed
 - Thus, Reinforcement Learning Methods using models are called model-based

Outline

Reinforcement Learning

- Introduction
- Example
- A K-Armed Bandit Problem
- Exploration vs Exploitation
- The Elements of Reinforcement Learning
- Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
- A Small Review of Monte Carlo Methods
- The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference Q-learning: Off-Policy TD Control
- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

Limitations

Given that

• Reinforcement learning relies heavily on the concept of state

 Defining the state to obtain a better representation of the search space.

 As we have seen, solutions in Al really a lot in the creativity of the solution

Limitations

Given that

• Reinforcement learning relies heavily on the concept of state

Therefore, it has the same problem as in Markov Decision Processes

 Defining the state to obtain a better representation of the search space.

Limitations

Given that

• Reinforcement learning relies heavily on the concept of state

Therefore, it has the same problem as in Markov Decision Processes

• Defining the state to obtain a better representation of the search space.

This is where the creative part of the problems come to be

 As we have seen, solutions in Al really a lot in the creativity of the solution...

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning Limitations

Formalizing Reinforcement Learning Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

The System–Environment Interaction

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Formalizing Reinforcement Learning

Markov Process and Markov Decision Process

- Return, Policy and Value function
- Solution Methods
- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
- A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Evaluation
 Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea

 The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- 4 The Neural Network Approach
 - Introduction, TD-Gammon
 - \bullet TD(λ) by Back-Propagation
 - Conclusions

Markov Process and Markov Decision Process

Definition of Markov Process

ullet A sequence of states is Markov if and only if the probability of moving to the next state s_{t+1} depends only on the present state s_t

$$P[s_{t+1}|s_t] = P[s_{t+1}|s_1, ..., s_t]$$

- We always talk about time-homogeneous Markov chain in Reinforcement Learning:
 - \blacktriangleright the probability of the transition is independent of t

 $P[s_{t+1} = s' | s_t = s] = P[s_t = s' | s_{t-1} = s]$

Markov Process and Markov Decision Process

Definition of Markov Process

ullet A sequence of states is Markov if and only if the probability of moving to the next state s_{t+1} depends only on the present state s_t

$$P[s_{t+1}|s_t] = P[s_{t+1}|s_1, ..., s_t]$$

Something Notable

- We always talk about time-homogeneous Markov chain in Reinforcement Learning:
 - lacktriangle the probability of the transition is independent of t

$$P[s_{t+1} = s' | s_t = s] = P[s_t = s' | s_{t-1} = s]$$

Formally

Definition (Markov Process)

- a Markov Process (or Markov Chain) is a tuple (S, P), where
 - $oldsymbol{0}$ \mathcal{S} is a finite set of states
 - ② \mathcal{P} is a state transition probability matrix. $\mathcal{P}_{ss'} = P\left[s_{t+1} = s' | s_t = s\right]$

Formally

Definition (Markov Process)

- ullet a Markov Process (or Markov Chain) is a tuple $(\mathcal{S},\mathcal{P})$, where
 - $oldsymbol{0}$ \mathcal{S} is a finite set of states
 - ② \mathcal{P} is a state transition probability matrix. $\mathcal{P}_{ss'} = P\left[s_{t+1} = s' | s_t = s\right]$

Thus, the dynamic of the Markov process is as follow

$$s_0 \xrightarrow{\mathcal{P}_{s_0s_1}} s_1 \xrightarrow{\mathcal{P}_{s_1s_2}} s_2 \xrightarrow{\mathcal{P}_{s_2s_3}} s_3 \longrightarrow \cdots$$

- MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \alpha \rangle$
- $\bigcirc S$ is a finite set of states
- \bigcirc A is a finite set of actions
- $m{ heta} \; \mathcal{P}$ is a state transition probability matrix.
 - $\mathcal{P}_{ss'} = P\left[s_{t+1} = s' | s_t = s, A_t = e\right]$
- $oldsymbol{\omega} \ lpha \in [0,1]$ is called the discount factor
- $lackbox{}{\odot} \ \mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function

- MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \alpha \rangle$
- $oldsymbol{0}$ \mathcal{S} is a finite set of states

- MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \alpha \rangle$
- $oldsymbol{\circ}$ \mathcal{S} is a finite set of states
- $oldsymbol{2}$ \mathcal{A} is a finite set of actions

- MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \alpha \rangle$
- $oldsymbol{\circ} \mathcal{S}$ is a finite set of states
- $oldsymbol{2}$ \mathcal{A} is a finite set of actions
- $\ \ \ \ \mathcal{P}$ is a state transition probability matrix.

$$\mathcal{P}_{ss'} = P\left[s_{t+1} = s' | s_t = s, A_t = a\right]$$

Definition

- MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \alpha \rangle$
- $oldsymbol{\circ}$ \mathcal{S} is a finite set of states
- $oldsymbol{Q}$ \mathcal{A} is a finite set of actions
- $\ \ \ \ \mathcal{P}$ is a state transition probability matrix.

$$\mathcal{P}_{ss'} = P\left[s_{t+1} = s' | s_t = s, A_t = a\right]$$

 \bullet $\alpha \in [0,1]$ is called the discount factor

- MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \alpha \rangle$
- $oldsymbol{\circ} \mathcal{S}$ is a finite set of states
- $oldsymbol{2}$ \mathcal{A} is a finite set of actions
- $\ \ \ \mathcal{P}$ is a state transition probability matrix.

$$\mathcal{P}_{ss'} = P\left[s_{t+1} = s' | s_t = s, A_t = a\right]$$

- \bullet $\alpha \in [0,1]$ is called the discount factor
- **5** $\mathcal{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a reward function

Definition

- MDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \alpha \rangle$
- \bullet S is a finite set of states
- \bigcirc \mathcal{A} is a finite set of actions
- $\ \ \ \mathcal{P}$ is a state transition probability matrix.

$$\mathcal{P}_{ss'} = P\left[s_{t+1} = s' | s_t = s, A_t = a\right]$$

- \bullet $\alpha \in [0,1]$ is called the discount factor
- $\mathbf{0} \ \mathcal{R}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R} \ \text{is a reward function}$

Thus, the dynamic of the Markov Decision Process is as follow using a probabilty to pick an action

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \longrightarrow \cdots$$

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - lacktriangle A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Formalizing Reinforcement Learning

- Introduction
- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Evaluation
 Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- 4 The Neural Network Approach
 - Introduction, TD-Gammon
 - \bullet TD(λ) by Back-Propagation
 - Conclusions

The Goal of Reinforcement Learning

We want to maximize the expected value of the return

• i.e. To obtain the optimal policy!!!

$$G_t = R_{t+1} + \alpha R_{t+2} + \dots = \sum_{k=0}^{\infty} \alpha^k R_{t+k+1}$$

The Goal of Reinforcement Learning

We want to maximize the expected value of the return

• i.e. To obtain the optimal policy!!!

Thus, as in our previous study of MDP's

$$G_t = R_{t+1} + \alpha R_{t+2} + \dots = \sum_{k=0}^{\infty} \alpha^k R_{t+k+1}$$

Remarks

Interpretation

 The discounted future rewards can be interpreted as the current value of future rewards.

The reward on

- α close to 0 leads to "short-sighted" evaluation... you are only looking for immediate rewards!!!
- ullet α close to 1 leads to "long-sighted" evaluation... you are willing to wait for a better reward!!!

Remarks

Interpretation

 The discounted future rewards can be interpreted as the current value of future rewards.

The reward α

- $oldsymbol{lpha}$ close to 0 leads to "short-sighted" evaluation... you are only looking for immediate rewards!!!
- $oldsymbol{lpha}$ close to 1 leads to "long-sighted" evaluation... you are willing to wait for a better reward!!!

Basically

Discount factor avoids infinite returns in cyclic Markov process given the property of the geometry series.

Basically

- Discount factor avoids infinite returns in cyclic Markov process given the property of the geometry series.
- There is certain uncertainty about the future reward.

Basically

- Discount factor avoids infinite returns in cyclic Markov process given the property of the geometry series.
- There is certain uncertainty about the future reward.
- If the reward is financial, immediate rewards may earn more interest than delayed rewards.

Basically

- Discount factor avoids infinite returns in cyclic Markov process given the property of the geometry series.
- There is certain uncertainty about the future reward.
- If the reward is financial, immediate rewards may earn more interest than delayed rewards.
- Animal/human behavior shows preference for immediate reward.

A Policy

Using our MDP ideas...

ullet A policy π is a distribution over actions given states

$$\pi\left(a|s\right) = P\left[A_t = a|S_t = s\right]$$

- ▶ A policy guides the choice of action at a given state.
- ► And it is time independent

- a State value function
 - State-value function.
 - Action-value function.

A Policy

Using our MDP ideas...

ullet A policy π is a distribution over actions given states

$$\pi\left(a|s\right) = P\left[A_t = a|S_t = s\right]$$

- ► A policy guides the choice of action at a given state.
- And it is time independent

Then, we introduce two value functions

- State-value function.
- Action-value function.

It is defined as

$$v_{\pi}\left(s\right) = E_{\pi}\left[G_{t}|S_{t} = s\right]$$

$$v_{\pi}\left(s\right) = E_{\pi}\left[G_{t}|S_{t} = s\right]$$

It is defined as

$$v_{\pi}\left(s\right) = E_{\pi}\left[G_{t}|S_{t} = s\right]$$

This gives the long-term value of the state \boldsymbol{s}

$$v_{\pi}(s) = E_{\pi} [G_t | S_t = s]$$
$$= E_{\pi} \left[\sum_{k=0}^{\infty} \alpha^k R_{t+k+1} | S_t = s \right]$$

It is defined as

$$v_{\pi}\left(s\right) = E_{\pi}\left[G_{t}|S_{t} = s\right]$$

This gives the long-term value of the state \boldsymbol{s}

$$v_{\pi}(s) = E_{\pi} [G_t | S_t = s]$$

$$= E_{\pi} \left[\sum_{k=0}^{\infty} \alpha^k R_{t+k+1} | S_t = s \right]$$

$$= E_{\pi} [R_{t+1} + \alpha G_{t+1} | S_t = s]$$

 $= E_{\pi}[R_{t+1}|S_t = s] + E_{\pi}[\alpha v_{\pi}(S_{t+1})|I_{t+1}]$

It is defined as

$$v_{\pi}\left(s\right) = E_{\pi}\left[G_{t}|S_{t} = s\right]$$

This gives the long-term value of the state s

$$\begin{split} v_{\pi}\left(s\right) &= E_{\pi}\left[G_{t}|S_{t} = s\right] \\ &= E_{\pi}\left[\sum_{k=0}^{\infty} \alpha^{k} R_{t+k+1}|S_{t} = s\right] \\ &= E_{\pi}\left[R_{t+1} + \alpha G_{t+1}|S_{t} = s\right] \\ &= \underbrace{E_{\pi}\left[R_{t+1}|S_{t} = s\right]}_{\text{Immediate Reward}} + \underbrace{E_{\pi}\left[\alpha v_{\pi}\left(S_{t+1}\right)|S_{t} = s\right]}_{\text{Immediate Reward}} \end{split}$$

The Action-Value Function $q_{\pi}\left(s,a\right)$

It is the expected return starting from state s

 \bullet Starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = E_{\pi}[G_t | S_t = a, A_t = a]$$

 $q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \alpha q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$

The Action-Value Function $q_{\pi}\left(s,a\right)$

It is the expected return starting from state s

 \bullet Starting from state s, taking action a, and then following policy π

$$q_{\pi}\left(s,a\right) = E_{\pi}\left[G_{t}|S_{t} = a, A_{t} = a\right]$$

We can also obtain the following decomposition

$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \alpha q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Now...

To simplify notations, we define

$$\mathcal{R}_s^a = E\left[R_{t+1}|S_t = s, A_t = a\right]$$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s, a)$$

$$\tau(s, a) = \mathcal{R}_{s}^{a} + \alpha \sum_{r=s} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Now...

To simplify notations, we define

$$\mathcal{R}_s^a = E\left[R_{t+1}|S_t = s, A_t = a\right]$$

Then, we have

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s, a)$$
$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \alpha \sum_{s,s'} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Then

Expressing $q_{\pi}\left(s,a\right)$ in terms of $v_{\pi}\left(s\right)$ in the expression of $v_{\pi}\left(s\right)$ - The Bellman Equation

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[\mathcal{R}_{s}^{a} + \alpha \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right]$$

of one state with that of other states

Then

Expressing $q_{\pi}\left(s,a\right)$ in terms of $v_{\pi}\left(s\right)$ in the expression of $v_{\pi}\left(s\right)$ - The Bellman Equation

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[\mathcal{R}_{s}^{a} + \alpha \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right]$$

The Bellman equation relates the state-value function

• of one state with that of other states.

Also

Bellman equation for $q_{\pi}\left(s,a\right)$

$$q_{\pi}\left(s,a\right) = \mathcal{R}_{s}^{a} + \alpha \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a \in \mathcal{A}} \pi\left(a|s\right) q_{\pi}\left(s,a\right)$$

We have the following solutions

Also

Bellman equation for $q_{\pi}\left(s,a\right)$

$$q_{\pi}\left(s,a\right) = \mathcal{R}_{s}^{a} + \alpha \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a \in A} \pi\left(a|s\right) q_{\pi}\left(s,a\right)$$

How do we solve this problem?

• We have the following solutions

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning Limitations

- Introduction
- Markov Process and Markov Decision Process
- Return. Policy and Value function.

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
- A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
- A Small Review of Monte Carlo Methods
- The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

Action-Value Methods

One natural way to estimate this is by averaging the rewards actually received

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i I_{A_i=a}}{\sum_{i=1}^{t-1} I_{A_i=a}}$$

• If the denominator is zero, we define $Q_{t}(a)$ at some default value

$$Q_t(a) \longrightarrow q^*(a)$$

Action-Value Methods

One natural way to estimate this is by averaging the rewards actually received

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i I_{A_i=a}}{\sum_{i=1}^{t-1} I_{A_i=a}}$$

Nevertheless

• If the denominator is zero, we define $Q_{t}\left(a\right)$ at some default value

 $Q_t(a) \longrightarrow q^*(a)$

Action-Value Methods

One natural way to estimate this is by averaging the rewards actually received

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i I_{A_i=a}}{\sum_{i=1}^{t-1} I_{A_i=a}}$$

Nevertheless

ullet If the denominator is zero, we define $Q_{t}\left(a
ight)$ at some default value

Now, as the denominator goes to infinity, by the law of large numbers,

$$Q_t(a) \longrightarrow q^*(a)$$

We call this the sample-average method

• Not the best, but allows to introduce a way to select actions...

We call this the sample-average method

• Not the best, but allows to introduce a way to select actions...

A classic one us the greedy estimate

$$A_t = \arg\max_{a} Q_t\left(a\right)$$

We call this the sample-average method

• Not the best, but allows to introduce a way to select actions...

A classic one us the greedy estimate

$$A_t = \arg\max_{a} Q_t\left(a\right)$$

Therefore

 Greedy action selection always exploits current knowledge to maximize immediate reward.

• it spends no time in inferior actions to see if they might really be

We call this the sample-average method

• Not the best, but allows to introduce a way to select actions...

A classic one us the greedy estimate

$$A_t = \arg\max_{a} Q_t\left(a\right)$$

Therefore

- Greedy action selection always exploits current knowledge to maximize immediate reward.
- it spends no time in inferior actions to see if they might really be better.

And Here a Heuristic

A Simple Alternative is to act greedily most of the time

ullet every once in a while, say with small probability ϵ , select randomly from among all the actions with equal probability.

This is

In the limit to infinity, this method ensures:

 $Q_t(a) \longrightarrow q^*(a)$

And Here a Heuristic

A Simple Alternative is to act greedily most of the time

ullet every once in a while, say with small probability ϵ , select randomly from among all the actions with equal probability.

This is called ϵ -greedy method

• In the limit to infinity, this method ensures:

$$Q_t(a) \longrightarrow q^*(a)$$

It is like the Mean Filter

Example

In the following example

- The $q^*(a)$ were selected according to a Gaussian Distribution with mean 0 and variance 1.
- Then, when an action is selected, the reward R_t was selected from a normal distribution with mean q_* (A_t) and variance 1.

Example

In the following example

- The $q^*(a)$ were selected according to a Gaussian Distribution with mean 0 and variance 1.
- Then, when an action is selected, the reward R_t was selected from a normal distribution with mean q_* (A_t) and variance 1.

Now, as the sampling goes up

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- - Introduction, TD-Gammon
 - TD(λ) by Back-Propagation
 - Conclusions

Imagine the following

Let R_i denotes the reward after the i^{th} of this action

$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

 The Amount of Memory and Computational Power to keep updates the estimates as more reward happens

Imagine the following

Let R_i denotes the reward after the i^{th} of this action

$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

The problem of this technique

 The Amount of Memory and Computational Power to keep updates the estimates as more reward happens

We need something more efficient

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_n$$

We need something more efficient

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_n$$
$$= \frac{1}{n} \left[R_n + \sum_{i=1}^{n} E_i \right]$$

We need something more efficient

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_n$$

$$= \frac{1}{n} \left[R_n + \sum_{i=1}^{n} E_i \right]$$

$$= \frac{1}{n} \left[R_n + (n-1) Q_n \right]$$

We need something more efficient

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_n$$

$$= \frac{1}{n} \left[R_n + \sum_{i=1}^{n} E_i \right]$$

$$= \frac{1}{n} \left[R_n + (n-1) Q_n \right]$$

$$= Q_n + \frac{1}{n} \left[R_n - Q_n \right]$$

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
- General Formula in Reinforcement Learning
- A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
- The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- The Neural Network Approach
 - Introduction, TD-Gammon
 - \bullet TD(λ) by Back-Propagation
 - Conclusions

General Formula in Reinforcement Learning

The Pattern Appears almost all the time in RL

New Estimate = Old Estimate + Step Size [Target - Old Estimate]

$$f(x) = f(a) + f'(a)(x - a) \Longrightarrow f'(a) = \frac{f(x) - f(a)}{x - a}$$

$$x_{n+1} = x_n + \gamma f'(a) = x_n + \gamma \left[\frac{f(x) - f(a)}{x - a} \right] = x_n + \gamma' [f(x) - f(a)]$$

General Formula in Reinforcement Learning

The Pattern Appears almost all the time in RL

New Estimate = Old Estimate + Step Size [Target - Old Estimate]

Looks a lot as a Gradient Descent if we decide Assume a Taylor Series

$$f(x) = f(a) + f'(a)(x - a) \Longrightarrow f'(a) = \frac{f(x) - f(a)}{x - a}$$

$$x_{n+1} = x_n + \gamma f'(a) = x_n + \gamma \left[\frac{f(x) - f(a)}{x - a} \right] = x_n + \gamma' [f(x) - f(a)]$$

General Formula in Reinforcement Learning

The Pattern Appears almost all the time in RL

 ${\sf New \ Estimate} = {\sf Old \ Estimate} + {\sf Step \ Size} \left[{\sf Target} - {\sf Old \ Estimate} \right]$

Looks a lot as a Gradient Descent if we decide Assume a Taylor Series

$$f(x) = f(a) + f'(a)(x - a) \Longrightarrow f'(a) = \frac{f(x) - f(a)}{x - a}$$

Then

$$x_{n+1} = x_n + \gamma f'(a) = x_n + \gamma \left[\frac{f(x) - f(a)}{x - a} \right] = x_n + \gamma' [f(x) - f(a)]$$

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

Solution Methods

Multi-armed Bandits

- Problems of Implementations
- General Formula in Reinforcement Learning
- A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- - Introduction, TD-Gammon
 - TD(λ) by Back-Propagation
 - Conclusions

A Simple Bandit Algorithm

Initialize for a = 1 to k

- $\mathbf{2} \ N\left(a\right) \leftarrow 0$

- $igcap_{A} \leftarrow igg| rg \max_{a} Q\left(a
 ight)$ with probability $1-\epsilon$
 - A random action—with probability ϵ
- \bigcirc $N(A) \leftarrow N(A) + 1$
- $Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R Q(A)]$

A Simple Bandit Algorithm

Initialize for a=1 to k

- $N(a) \leftarrow 0$

Loop until certain threshold γ

- $\mathbf{1} \quad A \leftarrow \begin{cases} \arg \max_{a} Q\left(a\right) & \text{with probability } 1 \epsilon \\ \text{A random action} & \text{with probability } \epsilon \end{cases}$
- **③** $N(A) \leftarrow N(A) + 1$
- $Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R Q(A) \right]$

Remarks

Remember

• This is works well for a stationary problem

"Reinforcement Learning: An Introduction" by Sutton et al. attacher 2.

Remarks

Remember

This is works well for a stationary problem

For more in non-stationary problems

• "Reinforcement Learning: An Introduction" by Sutton et al. at chapter 2.

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

Solution Methods

- - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm

Dynamic Programming

- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
- A Small Review of Monte Carlo Methods
- The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- - Introduction, TD-Gammon
 - TD(λ) by Back-Propagation
 - Conclusions

Dynamic Programming

As in many things in Computer Science

• We love the Divide Et Impera...

 In Reinforcement Learning, Bellman equation gives recursive decompositions, and value function stores and reuses solution

Dynamic Programming

As in many things in Computer Science

• We love the Divide Et Impera...

Then

• In Reinforcement Learning, Bellman equation gives recursive decompositions, and value function stores and reuses solutions.

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 Limitations
 - Limitations

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
 - A Simple Ballon Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea

 The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- The Neural Network Approach
 - Introduction, TD-Gammon
 - \bullet TD(λ) by Back-Propagation
 - Conclusions

Policy Evaluation

For this, we assume as always

• The problem can be solved with the Bellman Equation

Then, we apply Bellman Iteratively

$$v_1 \to v_2 \to \cdots \to v_{\pi}$$

 We update the value functions of the present iteration at the same time based on the that of the previous iteration

Policy Evaluation

For this, we assume as always

The problem can be solved with the Bellman Equation

We start from an initial guess v_1

• Then, we apply Bellman Iteratively

$$v_1 \to v_2 \to \cdots \to v_{\pi}$$

- We update the value functions of the present iteration at the same time based on the that of the previous iteration
- time based on the that of the previous iteration.

Policy Evaluation

For this, we assume as always

The problem can be solved with the Bellman Equation

We start from an initial guess v_1

• Then, we apply Bellman Iteratively

$$v_1 \to v_2 \to \cdots \to v_{\pi}$$

For this, we use synchronous updates

• We update the value functions of the present iteration at the same time based on the that of the previous iteration.

At each iteration k+1, for all states $s \in \mathcal{S}$

• We update v_{k+1} from $v_k(s')$ according to Bellman Equations, where s' is a successor state of s:

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[\mathcal{R}_s^a + \alpha \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right]$$

 The iterative process stops when the maximum difference between value function at the current step and that at the previous step is smaller than some small positive constant.

At each iteration k+1, for all states $s \in \mathcal{S}$

• We update v_{k+1} from $v_k(s')$ according to Bellman Equations, where s' is a successor state of s:

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left[\mathcal{R}_s^a + \alpha \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right]$$

Something Notable

 The iterative process stops when the maximum difference between value function at the current step and that at the previous step is smaller than some small positive constant.

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning Limitations

- Introduction
- Markov Process and Markov Decision Process
- Return. Policy and Value function.

Solution Methods

- - Problems of Implementations
 - General Formula in Reinforcement Learning
- A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation

 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

However

Our ultimate goal is to find the optimal policy

• For this, we can use policy iteration process

- Initialize π randomly
- Repeat until the previous policy and the current policy are the same
 - Evaluate v_{π} by policy evaluation.
 - \bigcirc Using synchronous updates, for each state s, let

$$\pi\left(s\right) = \arg\max_{a \in \mathcal{A}} q\left(s, a\right) = \arg\max_{a \in \mathcal{A}} \ \mathcal{R}_{s}^{a} + \alpha \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}\left(s'\right)$$

However

Our ultimate goal is to find the optimal policy

• For this, we can use policy iteration process

Algorithm

- **1** Initialize π randomly
- Repeat until the previous policy and the current policy are the same.
 - **1** Evaluate v_{π} by policy evaluation.
 - $oldsymbol{0}$ Using synchronous updates, for each state s, let

$$\pi\left(s\right) = \arg\max_{a \in \mathcal{A}} q\left(s, a\right) = \arg\max_{a \in \mathcal{A}} \left[\mathcal{R}_{s}^{a} + \alpha \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}\left(s'\right) \right]$$

Now

Something Notable

• This policy iteration algorithm will improve the policy for each step.

ullet We have a deterministic policy π and after one step we get π'

- $a_{-}(s, \pi'(s)) = \max a_{-}(s, a) \ge a_{-}(s, \pi(s)) = v_{-}(s)$
 - $q_{\pi}\left(s, \pi'\left(s\right)\right) = \max_{a \in \mathcal{A}} q_{\pi}\left(s, a\right) \ge q_{\pi}\left(s, \pi\left(s\right)\right) = v_{\pi}\left(s\right)$

Now

Something Notable

• This policy iteration algorithm will improve the policy for each step.

Assume that

 \bullet We have a deterministic policy π and after one step we get $\pi'.$

 $q_{\pi}\left(s, \pi'\left(s\right)\right) = \max_{\sigma \in A} q_{\pi}\left(s, a\right) \ge q_{\pi}\left(s, \pi\left(s\right)\right) = v_{\pi}\left(s\right)$

Now

Something Notable

• This policy iteration algorithm will improve the policy for each step.

Assume that

• We have a deterministic policy π and after one step we get π' .

We know that the value improves in one step because

$$q_{\pi}\left(s, \pi'\left(s\right)\right) = \max_{a \in \mathcal{A}} q_{\pi}\left(s, a\right) \ge q_{\pi}\left(s, \pi\left(s\right)\right) = v_{\pi}\left(s\right)$$

$$v_{\pi}(s) \le q_{\pi}(s, \pi'(s)) = E_{\pi'}[R_{t+1} + \alpha v_{\pi}(S_{t+1}) | S_t = s]$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = E_{\pi'}[R_{t+1} + \alpha v_{\pi}(S_{t+1}) | S_t = s]$$

$$\leq E_{\pi'}[R_{t+1} + \alpha q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_t = s]$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = E_{\pi'}[R_{t+1} + \alpha v_{\pi}(S_{t+1}) | S_{t} = s]$$

$$\leq E_{\pi'}[R_{t+1} + \alpha q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_{t} = s]$$

$$\leq E_{\pi'}[R_{t+1} + \alpha R_{t+2} + \alpha^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) | S_{t} = s]$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = E_{\pi'}[R_{t+1} + \alpha v_{\pi}(S_{t+1}) | S_{t} = s]$$

$$\leq E_{\pi'}[R_{t+1} + \alpha q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_{t} = s]$$

$$\leq E_{\pi'}[R_{t+1} + \alpha R_{t+2} + \alpha^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) | S_{t} = s]$$

$$\leq E_{\pi'}[R_{t+1} + \alpha R_{t+2} + \cdots | S_{t} = s] = v_{\pi'}(s)$$

If improvements stop

$$q_{\pi}\left(s, \pi'\left(s\right)\right) = \max_{a \in \mathcal{A}} q_{\pi}\left(s, a\right) = q_{\pi}\left(s, \pi\left(s\right)\right) = v_{\pi}\left(s\right)$$

$$v_{\pi}\left(s\right) = \max_{a \in \mathcal{A}} q_{\pi}\left(s, a\right)$$

ullet Therefore, $v_\pi(s) = v_*(s)$ for all $s \in \mathcal{S}$ and π is an optimal policy

If improvements stop

$$q_{\pi}\left(s, \pi'\left(s\right)\right) = \max_{a \in \mathcal{A}} q_{\pi}\left(s, a\right) = q_{\pi}\left(s, \pi\left(s\right)\right) = v_{\pi}\left(s\right)$$

This means that the Bellman equation has been satisfied

$$v_{\pi}\left(s\right) = \max_{a \in A} q_{\pi}\left(s, a\right)$$

• Therefore, $v_{\pi}\left(s\right)=v_{*}\left(s\right)$ for all $s\in\mathcal{S}$ and π is an optimal policy.

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
- The Main Idea

 The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

The Neural Network Approach

- Introduction, TD-Gammon
- \bigcirc TD(λ) by Back-Propagation
- Conclusions

Once the policy has been improved

We can iteratively a sequence of monotonically improving policies and values

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

• with E = evaluation and I = improvement.

Policy Iteration (using iterative policy evaluation)

Step 1. Initialization

- $V\left(s\right)\in\mathbb{R}$ and $\pi\left(s\right)\in\mathcal{A}\left(s\right)$ arbitrarily for all $s\in\mathcal{S}$
- tep 2. Policy E
- \bigcirc $\triangle \leftarrow 0$
- Loop for each $s \in \mathcal{S}$
- $v \leftarrow V(s)$
- $V(s) \leftarrow \sum_{s'} p(s', r|s)$
- $\Delta \leftarrow \max \left(\Delta, |v V(s)|\right)$
- lacktriangle until $\Delta < heta$ (A small threshold for accuracy

Policy Iteration (using iterative policy evaluation)

Step 1. Initialization

• $V\left(s\right)\in\mathbb{R}$ and $\pi\left(s\right)\in\mathcal{A}\left(s\right)$ arbitrarily for all $s\in\mathcal{S}$

Step 2. Policy Evaluation

- Loop:
- $\Delta \leftarrow 0$
- **3** Loop for each $s \in \mathcal{S}$
- $v \leftarrow V(s)$
- $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \alpha V(s')]$
- $\Delta \leftarrow \max\left(\Delta, |v V(s)|\right)$
- o until $\Delta < \theta$ (A small threshold for accuracy)

Further

Step 3. Policy Improvement

- \bullet Policy-stable \leftarrow True
- 2 For each $s \in S$:
- old_action $\leftarrow \pi(s)$
- if old_action $\neq \pi(s)$ then policy-stable \leftarrow False
- **1** If policy-stable then stop and return $V \approx v_*$ and $\pi \approx \pi_*$ else go to 2.

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 Limitations
 - Limitations

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandit
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
- A Small Review of Monte Carlo Methods
- The Main Idea

 The Main Idea
 - The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- 4 The Neural Network Approach
 - Introduction, TD-Gammon
 - \bullet TD(λ) by Back-Propagation
 - Conclusions

Setup

ullet We have a Car's Rental with two places (s_1,s_2) .

Setup

- We have a Car's Rental with two places (s_1, s_2) .
- And each time Jack is available he rents it out and is credited \$10 by the company.

Setup

- We have a Car's Rental with two places (s_1, s_2) .
- And each time Jack is available he rents it out and is credited \$10 by the company.
- If Jack's is out of cars at that location, then the business is lost.

Setup

- We have a Car's Rental with two places (s_1, s_2) .
- And each time Jack is available he rents it out and is credited \$10 by the company.
- If Jack's is out of cars at that location, then the business is lost.
- The cars are available for renting the next day

Setup

- We have a Car's Rental with two places (s_1, s_2) .
- And each time Jack is available he rents it out and is credited \$10 by the company.
- If Jack's is out of cars at that location, then the business is lost.
- The cars are available for renting the next day

Jack's has options

• It can move them between the two locations overnight, at a cost of \$2 dollars and only 5 of them can be moved.

We choose a probability for modeling requests and returns

Additionally, renting at each location has a Poisson distribution

$$P(n|\lambda) = \frac{\lambda^n}{n!}e^{-\lambda}$$

• Basically, any other car generated by the return simply disappear!!!

We choose a probability for modeling requests and returns

Additionally, renting at each location has a Poisson distribution

$$P(n|\lambda) = \frac{\lambda^n}{n!}e^{-\lambda}$$

We simplify the problem by having an upper-bound n=20

• Basically, any other car generated by the return simply disappear!!!

Finally

We have the following $\lambda's$ for request and returns

- Request s_1 we have $\lambda_{r_1} = 3$
- \bullet Return s_1 we have $\lambda_{r_1} = 3$
- Return s_2 we have $\lambda_r = 2$
- Return s_2 we have $\lambda_{r_1} = 2$

Finally

We have the following $\lambda's$ for request and returns

- Request s_1 we have $\lambda_{r_1} = 3$
- 2 Request s_2 we have $\lambda_{r_2} = 4$

Finally

We have the following $\lambda's$ for request and returns

- Request s_1 we have $\lambda_{r_1} = 3$
- 2 Request s_2 we have $\lambda_{r_2} = 4$
- **3** Return s_1 we have $\lambda_{r_1} = 3$

Finally

We have the following $\lambda's$ for request and returns

- Request s_1 we have $\lambda_{r_1} = 3$
- 2 Request s_2 we have $\lambda_{r_2} = 4$
- Return s_2 we have $\lambda_{r_1}=2$

Finally

We have the following $\lambda's$ for request and returns

- Request s_1 we have $\lambda_{r_1} = 3$
- 2 Request s_2 we have $\lambda_{r_2} = 4$
- **3** Return s_1 we have $\lambda_{r_1} = 3$
- Return s_2 we have $\lambda_{r_1} = 2$

Actually, it defines how many cars are requested or returned in a time interval (One day)

Thus, we have the following running

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - lacktriangle A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 Limitations

Limitation

- Formalizing Reinforcement Learning
 Introduction
- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandit
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- 4 The Neural Network Approach
 - Introduction, TD-Gammon
 - \bullet TD(λ) by Back-Propagation
 - Conclusions

History

There is an original earlier work

 By Arthur Samuel and it was used by Sutton to invent Temporal Difference-Lambda

- To build TD-Gammor
 - A program that learned to play backgammon at the level of expert human players

History

There is an original earlier work

 By Arthur Samuel and it was used by Sutton to invent Temporal Difference-Lambda

It was famously applied by Gerald Tesauro

- To build TD-Gammon
 - A program that learned to play backgammon at the level of expert human players

Temporal-Difference (TD) Learning

Something Notable

• Possibly the central and novel idea of reinforcement learning,

has similarity with Monte Carlo Met

 They use experience to solve the prediction problem (For More look at Sutton's Book)

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \gamma\left[G_{t} - V\left(S_{t}\right)\right] \text{ and } G_{t} = \sum_{k=0}^{\infty} \alpha^{k} R_{t+k+1}$$

Let us call this method constant-\(\alpha\) Monte Carlo

Temporal-Difference (TD) Learning

Something Notable

Possibly the central and novel idea of reinforcement learning,

It has similarity with Monte Carlo Methods

 They use experience to solve the prediction problem (For More look at Sutton's Book)

 $V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \gamma\left[G_{t} - V\left(S_{t}\right)\right]$ and $G_{t} = \sum_{k} \alpha^{k} R_{t+k+1}$

Let us call this method constant-or Monte Carlo

Temporal-Difference (TD) Learning

Something Notable

Possibly the central and novel idea of reinforcement learning,

It has similarity with Monte Carlo Methods

• They use experience to solve the prediction problem (For More look at Sutton's Book)

Monte Carlo methods wait until G_t is known

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \gamma\left[G_{t} - V\left(S_{t}\right)\right] \text{ and } G_{t} = \sum_{k=0}^{\infty} \alpha^{k} R_{t+k+1}$$

• Let us call this method constant- α Monte Carlo.

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - lacktriangle A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandit
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
- The Main Idea

 The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- The Neural Network Approach
- Introduction, TD-Gammon
- \bullet TD(λ) by Back-Propagation
- Conclusions

Cumulative Distribution Function

 With every random variable, we associate a function called Cumulative Distribution Function (CDF) which is defined as follows:

$$F_X(x) = P(f(X) \le x)$$

Cumulative Distribution Function

 With every random variable, we associate a function called Cumulative Distribution Function (CDF) which is defined as follows:

$$F_X(x) = P(f(X) \le x)$$

- With properties:
 - ▶ $F_X(x) \ge 0$

Cumulative Distribution Function

 With every random variable, we associate a function called Cumulative Distribution Function (CDF) which is defined as follows:

$$F_X(x) = P(f(X) \le x)$$

- With properties:
 - $F_X(x) \geq 0$
 - $F_X(x)$ in a non-decreasing function of X.

Graphically

Graphically

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

Solution Methods

- - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
 - Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement

 - Example

Temporal-Difference Learning

- A Small Review of Monte Carlo Methods
- The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

Theorem

Simulating

$$X \sim f(x)$$

nt to simulating

$$(X, U) \sim U((x, u) | 0 < u < f(x))$$

Theorem

Simulating

$$X \sim f(x)$$

It is equivalent to simulating

$$(X, U) \sim U((x, u) | 0 < u < f(x))$$

Geometrically

We have that $f\left(x
ight)=\int_{0}^{f\left(x
ight)}du$ the marginal pdf of $\left(X,U
ight)$

Geometrically

Proof

We have that $f\left(x\right)=\int_{0}^{f\left(x\right)}du$ the marginal pdf of (X,U).

One thing that is made clear by this theorem is that we can generate \boldsymbol{X} in three ways

• First generate $X \sim f$, and then $U|X = x \sim U\left\{u|u \leq f\left(x\right)\right\}$, but this is useless because we already have X and do not need X.

One thing that is made clear by this theorem is that we can generate \boldsymbol{X} in three ways

- First generate $X \sim f$, and then $U|X = x \sim U\{u|u \leq f(x)\}$, but this is useless because we already have X and do not need X.
- ② First generate U, and then $X|U=u\sim U\left\{x|u\leq f\left(x\right)\right\}$.

One thing that is made clear by this theorem is that we can generate \boldsymbol{X} in three ways

- First generate $X \sim f$, and then $U|X = x \sim U\{u|u \leq f(x)\}$, but this is useless because we already have X and do not need X.
- ② First generate U, and then $X|U=u\sim U\left\{x|u\leq f\left(x\right)\right\}$.
- **3** Generate (X, U) jointly, a smart idea.

One thing that is made clear by this theorem is that we can generate \boldsymbol{X} in three ways

- First generate $X \sim f$, and then $U|X = x \sim U\{u|u \leq f(x)\}$, but this is useless because we already have X and do not need X.
- ② First generate U, and then $X|U=u\sim U\left\{x|u\leq f\left(x\right)\right\}$.
- **3** Generate (X, U) jointly, a smart idea.
 - it allows us to generate data on a larger set were simulation is easier.
 - Not as simple as it looks.

The random process $X_t \in S$ for t = 1, 2, ..., T has a Markov property iif

$$p(X_T|X_{T-1}, X_{T-2}, ..., X_1) = p(X_T|X_{T-1})$$

It can be completly specified by the transition matrix

The random process $X_t \in S$ for t = 1, 2, ..., T has a Markov property iif

$$p(X_T|X_{T-1}, X_{T-2}, ..., X_1) = p(X_T|X_{T-1})$$

Finite-state Discrete Time Markov Chains $|S| < \infty$

- It can be completly specified by the transition matrix.
 - $P = [p_{ij}] \text{ with } p_{ij} = \mathbb{P}\left[X_t = j | X_{t-1} = i\right]$

The random process $X_t \in S$ for t = 1, 2, ..., T has a Markov property iif

$$p(X_T|X_{T-1}, X_{T-2}, ..., X_1) = p(X_T|X_{T-1})$$

Finite-state Discrete Time Markov Chains $|S| < \infty$

- It can be completly specified by the transition matrix.
 - $P = [p_{ij}] \text{ with } p_{ij} = \mathbb{P}\left[X_t = j | X_{t-1} = i\right]$
- For Irreducible chains, the stationary distribution π is long-term proportion of time that the chain spends in each state.

The random process $X_t \in S$ for t = 1, 2, ..., T has a Markov property iif

$$p(X_T|X_{T-1}, X_{T-2}, ..., X_1) = p(X_T|X_{T-1})$$

Finite-state Discrete Time Markov Chains $|S| < \infty$

- It can be completly specified by the transition matrix.
 - $P = [p_{ij}] \text{ with } p_{ij} = \mathbb{P}\left[X_t = j | X_{t-1} = i\right]$
- For Irreducible chains, the stationary distribution π is long-term proportion of time that the chain spends in each state.
 - Computed by $\pi = \pi P$.

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

Solution Methods

- - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement

 - Example

Temporal-Difference Learning

- A Small Review of Monte Carlo Methods
- The Main Idea

The Monte Carlo Principle

- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

The Idea

Draw an i.i.d. set of samples $\left\{oldsymbol{x}^{(i)}
ight\}_{i=1}^{N}$

From a target density $p\left(\boldsymbol{x}\right)$ on a high-dimensional $\mathcal{X}.$

The Idea

Draw an i.i.d. set of samples $\left\{oldsymbol{x}^{(i)} ight\}_{i=1}^{N}$

From a target density $p\left({{oldsymbol x}} \right)$ on a high-dimensional ${\mathcal X}.$

• The set of possible configurations of a system.

The Idea

Draw an i.i.d. set of samples $\overline{\left\{oldsymbol{x}^{(i)} ight\}_{i=1}^N}$

From a target density p(x) on a high-dimensional \mathcal{X} .

• The set of possible configurations of a system.

Thus, we can use those samples to approximate the target density

$$p_{N}\left(oldsymbol{x}
ight)=rac{1}{N}\sum_{i=1}^{N}\delta_{oldsymbol{x}^{\left(i
ight)}}\left(oldsymbol{x}
ight)$$

where $\delta_{x^{(i)}}(x)$ denotes the Dirac Delta mass located at $x^{(i)}$.

Thus

Given, the Dirac Delta

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases}$$

with

$$\int_{t_1}^{t_2} \delta(t)dt = 1$$

$$\delta\left(t\right) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}}$$

Thus

Given, the Dirac Delta

$$\delta(t) = \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases}$$

with

$$\int_{t_1}^{t_2} \delta(t)dt = 1$$

Therefore

$$\delta(t) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}}$$

Consequently

Approximate the integrals

$$I_{N}\left(f\right) = \frac{1}{N} \sum_{i=1}^{N} f\left(\boldsymbol{x}^{\left(i\right)}\right) \xrightarrow[N \to \infty]{a.s.} I\left(f\right) = \int_{\mathcal{X}} f\left(\boldsymbol{x}\right) p\left(\boldsymbol{x}\right) d\boldsymbol{x}$$

$$\sigma_{f}^{2} = \mathbb{E}_{p(x)} \left[f^{2}\left(x\right) \right] - I^{2}\left(f\right) < \infty$$

$$E_{I_{N}\left(f\right)}=var\left(I_{N}\left(f
ight)
ight)=rac{\sigma_{f}^{2}}{N}$$

Consequently

Approximate the integrals

$$I_{N}\left(f\right) = \frac{1}{N} \sum_{i=1}^{N} f\left(\boldsymbol{x}^{\left(i\right)}\right) \xrightarrow[N \to \infty]{a.s.} I\left(f\right) = \int_{\mathcal{X}} f\left(\boldsymbol{x}\right) p\left(\boldsymbol{x}\right) d\boldsymbol{x}$$

Where Variance of f(x)

$$\sigma_f^2 = \mathbb{E}_{p(\boldsymbol{x})} \left[f^2(\boldsymbol{x}) \right] - I^2(f) < \infty$$

$$E_{I_{N}\left(f\right)}=var\left(I_{N}\left(f\right)\right)=rac{\sigma_{f}^{2}}{N}$$

Consequently

Approximate the integrals

$$I_{N}\left(f\right) = \frac{1}{N} \sum_{i=1}^{N} f\left(\boldsymbol{x}^{\left(i\right)}\right) \xrightarrow[N \to \infty]{a.s.} I\left(f\right) = \int_{\mathcal{X}} f\left(\boldsymbol{x}\right) p\left(\boldsymbol{x}\right) d\boldsymbol{x}$$

Where Variance of f(x)

$$\sigma_f^2 = \mathbb{E}_{p(\boldsymbol{x})} \left[f^2(\boldsymbol{x}) \right] - I^2(f) < \infty$$

Therefore the variance of the estimator $I_N(f)$

$$E_{I_{N}\left(f\right)}=var\left(I_{N}\left(f\right)\right)=rac{\sigma_{f}^{2}}{N}$$

Then

By Robert & Casella 1999, Section 3.2

$$\sqrt{N}\left(I_{N}\left(f\right)-I\left(f\right)\right)\underset{N\longrightarrow\infty}{\Longrightarrow}\mathcal{N}\left(0,\sigma_{f}^{2}\right)$$

Then

By Robert & Casella 1999, Section 3.2

$$\sqrt{N}\left(I_{N}\left(f\right)-I\left(f\right)\right)\underset{N\longrightarrow\infty}{\Longrightarrow}\mathcal{N}\left(0,\sigma_{f}^{2}\right)$$

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

Solution Methods

- - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

What if we do not wait for G_t

TD methods need to wait only until the next time step

• At time t+1, it uses the observed reward R_{t+1} and the estimate $V\left(S_{t+1}\right)$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \gamma\left[R_{t+1} + \alpha V\left(S_{t+1}\right) - V\left(S_{t}\right)\right]$$

ullet Immediately on transition to S_{t+1} and receiving R_{t+1}

What if we do not wait for G_t

TD methods need to wait only until the next time step

• At time t+1, it uses the observed reward R_{t+1} and the estimate $V\left(S_{t+1}\right)$

The simplest TD method

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \gamma\left[R_{t+1} + \alpha V\left(S_{t+1}\right) - V\left(S_{t}\right)\right]$$

• Immediately on transition to S_{t+1} and receiving R_{t+1} .

This method is called TD(0) or one-step TD

Actually

• There are TD with *n*-step TD methods

- ullet In Monte Carlo update, the target is G_t
- In TD update, the target is $R_t + \alpha V\left(S_{t+1}\right)$

This method is called TD(0) or one-step TD

Actually

• There are TD with *n*-step TD methods

Differences with the Monte Carlo Methods

- ullet In Monte Carlo update, the target is G_t
- In TD update, the target is $R_t + \alpha V(S_{t+1})$

TD as a Bootstrapping Method

Quite similar to Dynamic

Additionally, we know that

$$v_{\pi}(s) = E_{\pi}[G_{t}|S_{t}]$$

$$= E_{\pi}[R_{t+1} + \alpha G_{t+1}|S_{t}]$$

$$= E_{\pi}[R_{t+1} + \alpha v_{\pi}(S_{t+1})|S_{t}]$$

Instead, Dynamic Programming methods use an estimate of $v_{\pi}(s) = E_{\pi}[R_{t+1} + \alpha v_{\pi}(S_{t+1}) | S_t].$

TD as a Bootstrapping Method

Quite similar to Dynamic

Additionally, we know that

$$v_{\pi}(s) = E_{\pi}[G_{t}|S_{t}]$$

$$= E_{\pi}[R_{t+1} + \alpha G_{t+1}|S_{t}]$$

$$= E_{\pi}[R_{t+1} + \alpha v_{\pi}(S_{t+1})|S_{t}]$$

Monte Carlo methods use an estimate of $v_{\pi}\left(s\right)=E_{\pi}\left[G_{t}|S_{t}\right]$

• Instead, Dynamic Programming methods use an estimate of $v_{\pi}(s) = E_{\pi} [R_{t+1} + \alpha v_{\pi}(S_{t+1}) | S_t].$

The Monte Carlo target is an estimate

• because the expected value in (6.3) is not known, but a sample is used instead

The DP to

• because $v_{\pi}(St+1)$ is not known and the current estimate, $V(S_{t+1})$, is used instead.

 It combines the sampling of Monte Carlo with the bootstrapping of DP

The Monte Carlo target is an estimate

• because the expected value in (6.3) is not known, but a sample is used instead

The DP target is an estimate

• because $v_{\pi}(St+1)$ is not known and the current estimate, $V(S_{t+1})$, is used instead.

 It combines the sampling of Monte Carlo with the bootstrapping of DP

The Monte Carlo target is an estimate

• because the expected value in (6.3) is not known, but a sample is used instead

The DP target is an estimate

• because $v_{\pi}(St+1)$ is not known and the current estimate, $V(S_{t+1})$, is used instead.

Here TD goes beyond and combines both ideas

 It combines the sampling of Monte Carlo with the bootstrapping of DP.

As in many methods there is an error

And it is used to improve the policy

$$\delta_t = R_{t+1} + \alpha V \left(S_{t+1} \right) - V \left(S_t \right)$$

- occause the LE
- It is not actually available until one time step later
- δ_t is the error in V
- At time t+1

As in many methods there is an error

And it is used to improve the policy

$$\delta_t = R_{t+1} + \alpha V \left(S_{t+1} \right) - V \left(S_t \right)$$

Because the TD error depends on the next state and next reward

- It is not actually available until one time step later.
- δ_ℓ is the error in V (
 - At time t+1

As in many methods there is an error

And it is used to improve the policy

$$\delta_{t} = R_{t+1} + \alpha V \left(S_{t+1} \right) - V \left(S_{t} \right)$$

Because the TD error depends on the next state and next reward

• It is not actually available until one time step later.

δ_t is the error in $V\left(S_t\right)$

• At time t+1

Finally

If the array V does not change during the episode,

• The Monte Carlo Error can be written as a sum of TD errors

$$\epsilon = G_{t} - V(S_{t}) = R_{t+1} + \alpha G_{t+1} - V(S_{t}) + \alpha V(S_{t+1}) - \alpha V(S_{t+1})$$

$$= \delta_{t} + \alpha (G_{t+1} - V(S_{t+1}))$$

$$= \delta_{t} + \alpha \delta_{t+1} + \alpha^{2} (G_{t+2} - V(S_{t+2}))$$

$$= \sum_{t=0}^{T-1} \alpha^{k-t} \delta_{t}$$

Optimality of TD(0)

Under batch updating

- TD(0) converges deterministically to a single answer independent
 - lacktriangle as long as γ is chosen to be sufficiently small.

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \gamma\left[G_{t} - V\left(S_{t}\right)\right]$$
 and

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - lacktriangle A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandit
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
 - Policy Evaluation
 - Policy Iteration
 - Policy and Value Improvement
 - Example
- Temporal-Difference Learning
- A Small Review of Monte Carlo Methods
- The Main Idea
- The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- The Neural Network Approach
- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

Q-learning: Off-Policy TD Control

One of the early breakthroughs in reinforcement learning

 The development of an off-policy TD control algorithm, Q-learning (Watkind, 1989)

 $Q\left(S_{t}, A_{t}\right) \leftarrow Q\left(S_{t}, A_{t}\right) + \gamma \left[R_{t+1} + \alpha \max_{a} Q\left(S_{t+1}, a\right) - Q\left(S_{t}, A_{t}\right)\right]$

- The learned action-value function, Q, directly approximates q_* the optimal action-value function
 - ▶ independent of the policy being followed *q*.

Q-learning: Off-Policy TD Control

One of the early breakthroughs in reinforcement learning

 The development of an off-policy TD control algorithm, Q-learning (Watkind, 1989)

It is defined as

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \gamma \left[R_{t+1} + \alpha \max_{a} Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \right]$$

- The learned action-value function, Q, directly approximates q, the optimal action-value function
 - independent of the policy being followed q.

Q-learning: Off-Policy TD Control

One of the early breakthroughs in reinforcement learning

 The development of an off-policy TD control algorithm, Q-learning (Watkind, 1989)

It is defined as

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \gamma \left[R_{t+1} + \alpha \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Here

- \bullet The learned action-value function, Q, directly approximates q_* the optimal action-value function
 - ▶ independent of the policy being followed q.

The policy still has an effect

• to determine which state-action pairs are visited and updated.

 All that is required for correct convergence is that all pairs continue to be updated

under this assumption and a variant of the usual stochast

ullet Q has been shown to converge with probability 1 to q_*

The policy still has an effect

• to determine which state-action pairs are visited and updated.

Therefore

 All that is required for correct convergence is that all pairs continue to be updated

• Q has been shown to converge with probability 1 to q_*

The policy still has an effect

• to determine which state-action pairs are visited and updated.

Therefore

 All that is required for correct convergence is that all pairs continue to be updated

Under this assumption and a variant of the usual stochastic approximation conditions

ullet Q has been shown to converge with probability 1 to q_*

Q-learning (Off-Policy TD control) for estimating $\pi pprox \pi_*$

Algorithm parameters

 $\bullet \ \alpha \in (0,1] \ \text{and small} \ \epsilon > 0$

• Initialize Q(s,a), for all $s \in S^+$, $a \in A$, arbitrarily except that O(terminal.) = 0

Q-learning (Off-Policy TD control) for estimating $\pi pprox \pi_*$

Algorithm parameters

 \bullet $\alpha \in (0,1]$ and small $\epsilon > 0$

Initialize

• Initialize Q(s,a), for all $s\in\mathcal{S}^+$, $a\in\mathcal{A}$, arbitrarily except that $Q\left(terminal,\cdot\right)=0$

Then

Loop for each episode

- lacksquare Initialize S
- 2 Loop for each step of episode:
- $\qquad \qquad \text{Choose A from S using policy derived from \mathbf{Q} (for example ϵ-greedy) }$
- Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \gamma \left[R + \alpha \max_{a} Q(S', a) - Q(S, A)\right]$$

- $S \leftarrow S'$

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Dyllallic Flogramiii
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

The Neural Network Approach

- \bullet TD(λ) by Back-Propagation
- Conclusions

One of the earliest successes

Backgammon is a major game

• with numerous tournaments and regular world championship matches.

One of the earliest successes

Backgammon is a major game

• with numerous tournaments and regular world championship matches.

It is a stochastic game with a full description of the world

What do they used?

TD-Gammon used a nonlinear form of $TD(\lambda)$

• An estimated value $\hat{v}\left(s, \boldsymbol{w}\right)$ is used to estimate the probability of winning from state s.

 To achieve this, rewards were defined as zero for all time steps except those on which the game is won.

What do they used?

TD-Gammon used a nonlinear form of $TD(\lambda)$

 \bullet An estimated value $\hat{v}\left(s, \boldsymbol{w}\right)$ is used to estimate the probability of winning from state s.

Then

• To achieve this, rewards were defined as zero for all time steps except those on which the game is won.

Implementation of the value function in TD-Gammon

They took the decision to use a standard multilayer ANN

The interesting part

Tesauro's representation

- For each point on the backgammon board
 - ▶ Four units indicate the number of white pieces on the point

- If no white pieces, all four units took zero values,
- if there was one white piece, the first unit takes a one value
- And so on...
- Therefore, given four white pieces and another four black pieces and the 24 points
 - We have 4*24+4*24=192 units

The interesting part

Tesauro's representation

- For each point on the backgammon board
 - ▶ Four units indicate the number of white pieces on the point

Basically

- If no white pieces, all four units took zero values,
- if there was one white piece, the first unit takes a one value
- And so on...

• We have 4*24+4*24=192 units

The interesting part

Tesauro's representation

- For each point on the backgammon board
 - ▶ Four units indicate the number of white pieces on the point

Basically

- If no white pieces, all four units took zero values,
- if there was one white piece, the first unit takes a one value
- And so on...

Therefore, given four white pieces and another four black pieces at each of the 24 points

• We have 4*24+4*24=192 units

Then

We have that

- Two additional units encoded the number of white and black pieces on the bar (Each took the value n/2 with n the number on the bar)
- Two other represent the number of black and white pieces already (these took the value n/15)
- two units indicated in a binary fashion the white or black turn.

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Introduction

- Markov Process and Markov Decision Process
- Return. Policy and Value function.

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
 - Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control
- The Neural Network Approach
 - Introduction, TD-Gammon
 - TD(λ) by Back-Propagation
 - Conclusions

$\mathsf{TD}(\lambda)$ by Back-Propagation

TD-Gammon uses a semi-gradient of the $TD\left(\lambda\right)$

• $TD(\lambda)$ has the following general update rule:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \gamma \left[R_{t+1} + \alpha \hat{v} \left(S_{t+1}, \boldsymbol{w}_t \right) - \hat{v} \left(S_t, \boldsymbol{w}_t \right) \right] \boldsymbol{z}_t$$

lacktriangle with $oldsymbol{w}_t$ is the vector of all modifiable parameters

- t is a V
- Eligibility traces unify and generalize TD and Monte Carlo methods
- It works as Long-Short Term Memory

ullet z_t is bumped out and then begins to fade away.

$\mathsf{TD}(\lambda)$ by Back-Propagation

TD-Gammon uses a semi-gradient of the $TD(\lambda)$

• $TD(\lambda)$ has the following general update rule:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \gamma \left[R_{t+1} + \alpha \hat{v} \left(S_{t+1}, \boldsymbol{w}_t \right) - \hat{v} \left(S_t, \boldsymbol{w}_t \right) \right] \boldsymbol{z}_t$$

lacktriangle with $oldsymbol{w}_t$ is the vector of all modifiable parameters

$oldsymbol{z}_t$ is a vector of eligibility traces

- Eligibility traces unify and generalize TD and Monte Carlo methods.
- It works as Long-Short Term Memory

ullet z_t is bumped out and then begins to fade away.

$\mathsf{TD}(\lambda)$ by Back-Propagation

TD-Gammon uses a semi-gradient of the $TD\left(\lambda\right)$

• $TD(\lambda)$ has the following general update rule:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \gamma \left[R_{t+1} + \alpha \hat{v} \left(S_{t+1}, \boldsymbol{w}_t \right) - \hat{v} \left(S_t, \boldsymbol{w}_t \right) \right] \boldsymbol{z}_t$$

lacktriangle with $oldsymbol{w}_t$ is the vector of all modifiable parameters

$oldsymbol{z}_t$ is a vector of eligibility traces

- Eligibility traces unify and generalize TD and Monte Carlo methods.
- It works as Long-Short Term Memory

The rough idea is that when a component of $oldsymbol{w}_t$ produces an estimate

ullet z_t is bumped out and then begins to fade away.

How this is done?

Update Rule

$$z_t = \alpha \lambda z_{t-1} + \nabla \hat{v} \left(S_t, \boldsymbol{w}_t \right) \text{ with } \boldsymbol{z}_0 = 0$$

- Something Not
 - The gradient in this equation can be computed efficiently by the back-propagagation procedure

$$\hat{v}\left(S_{t+1}, \boldsymbol{w}_{t}\right) - \hat{v}\left(S_{t}, \boldsymbol{w}_{t}\right)$$

How this is done?

Update Rule

$$z_t = \alpha \lambda z_{t-1} + \nabla \hat{v}(S_t, \boldsymbol{w}_t)$$
 with $z_0 = 0$

Something Notable

• The gradient in this equation can be computed efficiently by the back-propapagation procedure

$$\hat{v}\left(S_{t+1}, \boldsymbol{w}_{t}\right) - \hat{v}\left(S_{t}, \boldsymbol{w}_{t}\right)$$

How this is done?

Update Rule

$$z_t = \alpha \lambda z_{t-1} + \nabla \hat{v} \left(S_t, \boldsymbol{w}_t \right) \text{ with } \boldsymbol{z}_0 = 0$$

Something Notable

• The gradient in this equation can be computed efficiently by the back-propapagation procedure

For this, we set the error in the ANN

$$\hat{v}\left(S_{t+1}, \boldsymbol{w}_{t}\right) - \hat{v}\left(S_{t}, \boldsymbol{w}_{t}\right)$$

Outline

- Reinforcement Learning
 - Introduction
 - Example
 - lacktriangle A K-Armed Bandit Problem
 - Exploration vs Exploitation
 - The Elements of Reinforcement Learning
 - Limitations

Formalizing Reinforcement Learning

- Markov Process and Markov Decision Process
- Return, Policy and Value function

Solution Methods

- Multi-armed Bandits
 - Problems of Implementations
 - General Formula in Reinforcement Learning
 - A Simple Bandit Algorithm
- Dynamic Programming
- Dyllanic Frobation
- Policy Evaluation
- Policy Iteration
- Policy and Value Improvement
- Example
- Temporal-Difference Learning
 - A Small Review of Monte Carlo Methods
 - The Main Idea
 - The Monte Carlo Principle
- Going Back to Temporal Difference
- Q-learning: Off-Policy TD Control

The Neural Network Approach

- Introduction, TD-Gammon
- TD(λ) by Back-Propagation
- Conclusions

Conclusions

With this new tools as Reinforcement Learning

• The New Artificial Intelligence has a lot to do in the world

Thanks to be in this clas

As they say we have a lot to do.

Conclusions

With this new tools as Reinforcement Learning

• The New Artificial Intelligence has a lot to do in the world

Thanks to be in this class

• As they say we have a lot to do...