Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica Trabajo Final de Graduación

Proyecto: Método basado en aprendizaje reforzado para el control automático de una planta no lineal.

Estudiante: Oscar Andrés Rojas Fonseca

I Semestre 2024 Firma del asesor

Bitácora de trabajo

Fecha	Actividad	Anotaciones	Horas
			dedicadas
08/04/2024	1. Prueba de adaptación del código CartPoleDQN.ipynb para manejo de variables continuas.	a) Se buscaron opciones para la sustitución de la función torch.gather() utilizada en el código original.	4 horas
09/04/2024	${\bf 2}.$ Pruebas de implementación $CUDA$ en Windows.	 a) Reinstalación de paquetería CUDA 12.1 y librería PyTorch 2.2.2. b) La implementación CUDA fue exitosa, reduciendo importantemente los tiempos de entrenamiento. 	4 horas
09/04/2024	${f 3}.$ Pruebas de entrenamiento del modelo $Pendulum\ DQN.$	 a) Se implementó una primera versión de la adaptación del código original para el manejo de variables continuas. b) Entrenamiento de modelo controlador de hasta 600 episodios. 	4 horas
10/04/2024	4. Reunión de seguimiento con el asesor del proyecto.	 a) Revisión de avance en el código y errores de forma. b) Se acordó realizar entrenamientos con diferentes formatos de indicación del target_angle. 	2 horas

11/04/2024	5. Corrección de potenciales errores en el código $PendulumDQN$ señalados por asesor.	 a) Replanteo de función de recompensa calculate_reward() para evitar salto. b) Adición de lógica para guardado de checkpoints al entrenamiento y corrección del guardado del modelo. 	8 horas
12/04/2024	6. Continuación de corrección de errores potenciales en el código.	a) Replanteo de función select_action(); cambio de acción aleatoria en exploración a adición de ruido a la opción elegida.	4 horas
12/04/2024	7. Estudio de conceptos $MDP [1] y DQN [2]$.	 a) Revisión de aplicación mediante MDP dada la mensión en una fuente en línea donde se utiliza [3]. b) Estudio de teoría DQN para mejor comprensión de la lógica de la función optimize_model() del código original [4] y su adaptación a Pendulum. 	4 horas
12/04/2024	8. Pruebas de entrenamiento de modelos CartPole y Pendulum.	a) Se crearon los cuadernos ctrlCartPoleDQN.ipynb y ctrlPendulumDQN.ipynb para pruebas de carga de modelos. b) Entrenamiento del modelo Pendulum_1000eps.pth. c) Se descubrió un error grave en select_action(), corrección en proceso.	6 horas
		Total de horas de trabajo:	36 horas

Contenidos de actividades

Primeros entrenamientos con PendulumDQN

La primera versión de la adaptación del código a variable continua permitió los primeros entrenamientos del modelo controlador de Pendulum, donde la implementación del procesamiento con CUDA permitió la disminución del tiempo de entrenamiento a aproximadamente a la mitad del tiempo de procesamiento con CPU, permitiendo los entrenamientos de hasta 600 episodios en 20 minutos y posteriores 1000 episodios en aproximadamente 40 minutos.

Los modelos anteriormente mencionados, a pesar de las comparaciones con el modelo exitoso entrenado de *CartPole* a 600 episodios, no presenta mejoría en las pruebas realizadas, por lo que se procede a plantear una nueva forma de la adaptación al manejo de valores continuos en la función *optimize_model()*.

Estudio de MDP y DQN

Se requirió una revisión de la teoría que sustenta al método DQN en [2] para comprender a mayor profundidad el proceso que realiza la función $optimize_model()$, de manera que la base de la técnica de Q-learning también fue estudiada.

Además, la presencia del proceso de decisión de Markov (MDP) en algunas de las revisiones de las opciones de implementación de variable continua al método DQN [3], requirió un análisis respectico del algoritmo, por lo que se estudió en [1], también a manera de contextualización al tema del Q-learning.

Referencias

- [1] J. P. A. Moya, "EL5857 Lección 25: Aprendizaje Reforzado (1/4): MDP," 2021, [Vídeo de YouTube]. [Online]. Available: https://www.youtube.com/watch?v=FBaoss_Pb5Q
- [2] —, "EL5857 Lección 27: Aprendizaje Reforzado (3/4): DQN y Q-Learning," 2021, [Vídeo de YouTube]. [Online]. Available: https://www.youtube.com/watch?v=oXnNRSCe5T4
- [3] S. Israilov, L. Fu, J. Sánchez-Rodríguez, F. Fusco, G. Allibert, C. Raufaste, and M. Argentina, "Reinforcement learning approach to control an inverted pendulum: A general framework for educational purposes," *PLoS ONE*, 2023.
- [4] A. Paszke and M. Towers, "Reinforcement learning (dqn) tutorial," PyTorch.