Adaboost

模型: 加法模型		Gir)		
THE WOOD AND THE				
里次15米路 Carnon 50	1	——————————————————————————————————————		
最終演奏器· G(x)= sign[fan]=		fix)		
				- 4fa>
	<u> </u>		// b la	(Lly, fan) = e-yfan
	一一方英	门题,使用书	的教护失函数	
· 损失函数: 指数损失函数	X			f(x) 与y 下多 <u>L(y, f(x)) <1</u> G(x) 労業措置
		多作训练数据	的权值	funfy年3 L/yfixx>1
	Vomi =	e-yifm-1(Mi)		7474 7413 219131221
				分类正3角 一loss小
	對棒本	损失函数:		分类错误 一loss大
	, , , , ,	$(n + f_{n}(x)) = P$	Ifm(x)	
		$(y, fm(x)) = e^{-x}$	y Exm GIM(X)	
			y[fm=1(x0) + &m6	1m(x)]
		= e	<u> </u>	
	1	22.122164	N [-y]-	fm-1(Xi) + & 67(Mi)]
	总体预生	连数 (包含門有	种产) 言已、	
	\		A/	
		(12m, 81m(X))	= aramin 😤	[-yofm-1/xi) + & B(Ui)]
			1 ×167 29	-und five
[优化方法]:前何炒算法	第m部 1	,	= arg min &	e - yithm(Ki) - yid Guri)
			- ara min S	Wmi · e /
			- VII 3 - 5-1	
				2种取值了8
		同多		{G(xi)= yi
		^		61 (Xi) = yi
= aramī	n(S	mi e +	& Thire	43
0	y=01(xi)	mi e +	yı ≠61001)	Α.
= arg m	in (&	Wmj. e-a +	E Wmi e	,)
0	y1=576			- 4- Famil(Xi)
= arg mir	1 (e-x 5	Wmi + ex S	·Whi)其电	, $\overline{W_{mi}} = e^{-y_i f_{m-i}(x_i)}$

第m轮前解: 1. Hill Gim(x) = 使得 Gim(x) 的方类误差量小 以前(x) = arg min 等(wm) I (y; +の(x);) => argmin (e & mi + e & mi + e & mi - e & mi)

yi=G(xi) yi+G(xi) yi+G(xi) yi+G(xi) => $argmin(e^{-dm_{ij}^{N}}\overline{w}_{mi} + (e^{-dm}e^{-dm}) \leq \overline{w}_{mi})$ $\overrightarrow{\uparrow}(1)$ 巴北龙仙岩野。 の式のカスの起手 注: 式117中,只有人心为多量,其余均为定值 $\partial \left(e^{-\alpha m} \sum_{j=1}^{N} \overline{W_{m_i}} + \left(e^{\alpha m} - e^{-\alpha m} \right) \sum_{\substack{y_i \neq \beta \in \alpha_i \\ y_i \neq \beta \in \alpha_i }} \overline{W_{m_i}} \right)$ 2dm $= -e^{-\alpha m} \frac{\sqrt{W_{mi}} + e^{-\alpha m}}{\sqrt{W_{mi}} + e^{-\alpha m}} + e^{-\alpha m} \frac{\sqrt{W_{mi}}}{\sqrt{W_{mi}} + e^{-\alpha m}} = -e^{-\alpha m} \frac$

$$= -e^{-i\lambda m} \underbrace{\overline{W}_{m_i} + e^{i\lambda m}}_{y_i = 6_{ii}(x_i)} \underbrace{\overline{W}_{m_i} + e^{i\lambda m}}_{y_i = 6_{ii}(x_i)} \underbrace{\overline{W}_{m_i}}_{x_i = 6_{ii}(x_i)} \underbrace{\overline{W}_{m_i}}_{x_i = 6_{ii}(x_i)}$$

②导数为口

$$\frac{1}{2} \chi(z) = 0$$

$$-e^{-\alpha n} = \overline{W_{n_i}} + e^{-\alpha n} = 0$$

$$= \sum_{i=0}^{\infty} \overline{W_{n_i}} = 0$$

$$= \sum_{i=0}^{\infty} \overline{W_{n_i}} = 0$$

$$=> e^{\lambda m} \underbrace{\sum_{y_i \neq \beta_i | \mathcal{U}_i)} W_{m_i}} = e^{-\lambda m} \underbrace{\sum_{y_i = \beta_i | \mathcal{U}_i)} W_{m_i}}$$

$$2$$
加同时取对数
 $ln(e^{\alpha m}) = ln(e^{-\alpha m})$ $\overline{Um_i}$

$$2 \times m = ln \left(\underbrace{\mathbb{E}_{y_i = b_i \mid X_i}}_{y_i = b_i \mid X_i} \right) - ln \left(\underbrace{\mathbb{E}_{y_i \neq b_i \mid X_i}}_{y_i \neq b_i \mid X_i} \right)$$

③ 转换

$$\begin{array}{c}
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}} \\
\sum_{j=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}}
\end{array}$$

$$\begin{array}{c}
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}} \\
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}}
\end{array}$$

$$\begin{array}{c}
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}} \\
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}}
\end{array}$$

$$\begin{array}{c}
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}} \\
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}}
\end{array}$$

$$\begin{array}{c}
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}} \\
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}}
\end{array}$$

$$\begin{array}{c}
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}} \\
\sum_{i=1}^{N} W_{mi} - \sum_{j=1}^{N} \overline{W_{mi}}
\end{array}$$

二最终得到 dm= zlog Ten (em为分类误差率, em越小, dm越大) 由损失函数确定 3.前何更新fm(x) fm(x)=fm-1(x)+ Xm Gm(x) 4.更新训练数据权值 Wathi (m+1年) Whi = e-yifm(xi) $(\text{$\frac{1}{2}$ thus \overline{W}_{m_i}} = \begin{cases} \frac{1}{N} & m=1\\ \hline{W}_{m_i} = \frac{1}{N} & \text{otherwise} \end{cases}$ = e-yifm-(di) e-yidmom(xi) = Wmiz. e-yidm 61m(Xi)