Exercise/Problem Guide for $Nature\ of$ Computation by Moore and Mertens

Muthu Chidambaram

Last Updated: June 20, 2019

Contents

1		pendix																				
	1.1	The Story of O																				
		1.1.1	Exercise A.1																			
			Exercise A.2																			
		1.1.3	Exercise A.3	3.																		
		1.1.4	Exercise A.4	ŀ.																		
		1.1.5	Exercise A.5	j.																		
		1.1.6	Exercise A.6	; .																		
		1.1.7	Exercise A.7	· .																		
		1.1.8	Exercise A.8	3.																		
		1.1.9	Exercise A.9) .																		

About

"Computer science is no more about computers than astronomy is about telescopes." - Edsger Dijkstra (Maybe)

These notes contain my solutions to some exercises and problems from the book $Nature\ of\ Computation$ by Christopher Moore and Stephan Mertens.

1 Appendix

1.1 The Story of O

1.1.1 Exercise A.1

We can choose $n_3 = max(n_1, n_2)$ such that $f_1(n) + f_2(n) \le (C_1 + C_2)g$ whenever $n > n_3$.

1.1.2 Exercise A.2

Similar to the first exercise, but now we have C_1C_2h instead.

1.1.3 Exercise A.3

Logarithms of different bases differ by a constant.

1.1.4 Exercise A.4

The argument treats k as a constant, when in reality k = O(n). The answer should be $O(n^3)$, which can be checked by looking at the closed form of the sum.

1.1.5 Exercise A.5

 $2^{O(n)}$ and $O(2^n)$ are not the same, since $\limsup_{n\to\infty} \frac{2^{C_1 n}}{C_2 2^n}$ only converges to a nonzero constant when $C_1=1$.

1.1.6 Exercise A.6

 $n^k \neq \Theta(2^n)$, $e^{-n} \neq \Theta(n^{-c})$, and $n! \neq \Theta(n^n)$, as all limits go to 0.

1.1.7 Exercise A.7

Take f = n and g = 2n.

1.1.8 Exercise A.8

- 1. We can pull out the exponents as constants, so $f = \Theta(g)$.
- 2. $3 < 2^2$ so f = o(g).
- 3. $n = \omega(\log^2 n)$ so $f = \omega(g)$.
- 4. $2^{\log n} \to \infty$ so $f = \omega(g)$.

1.1.9 Exercise A.9

One example is $n^{\log n}$.