Урок 84 Реактивний рух. Фізичні основи ракетної техніки. Досягнення космонавтики

Мета уроку: сформувати знання учнів про реактивний рух, фізичні основи ракетної техніки.

Очікувані результати: учні повинні давати означення реактивного руху, наводити приклади цього руху, знати, на якому принципі базується рух ракети.

Тип уроку: урок засвоєння нових знань.

Наочність і обладнання: навчальна презентація, комп'ютер, підручник, повітряна кулька.

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Завдяки чому можуть рухатися люди, автомобілі, тварини?

Чому літають планери, птахи, метелики?

Чому плавають риби, катери, підводні човни?

Відповідь ϵ простою: всі перелічені тіла від чогось відштовхуються: людина, тварина, автомобіль — від поверхні Землі; планери, птахи, метелики — від повітря; риби та катери — від води.

Як пояснити рух космічного літального апарата, адже він не має можливості від чогось відштовхнутися? (Проте космічні кораблі літають у відкритому космосі, виконують маневри, повертаються на Землю)

Від чого ж вони відштовхуються?

ІІІ. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Реактивний рух

Проведемо дослід

Надуємо повітряну кульку і, не стягаючи її отвір ниткою, відпустимо. Кулька почне рухатись, і рухатиметься доти, поки з отвору виривається повітря.

Проблемне питання

• Яка причина руху повітряної кульки у даному досліді?

Якщо отвір кульки закритий, вона перебуває в спокої й імпульс системи «кулька – повітря» дорівнює нулю.

Якщо отвір відкрити, то повітря почне вириватися назовні з досить великою швидкістю, тобто набуде певного імпульсу: $\vec{p}_{\Pi} = m_{\Pi} \vec{v}_{\Pi}$.

Сама кулька теж набуде імпульсу: $\vec{p}_{\rm K} = m_{\rm K} \vec{v}_{\rm K}$, напрямленого в бік, протилежний імпульсу повітря.

Реактивний рух — це рух, що виникає внаслідок відділення з деякою швидкістю від тіла якоїсь його частини.

Уявімо, що система «кулька – повітря» є замкненою. Тоді відповідно до закону збереження імпульсу загальний імпульс системи «кулька – повітря» залишається незмінним і дорівнює нулю:

$$m_{_{\Pi}}\vec{v}_{_{\Pi}}+m_{_{\mathrm{K}}}\vec{v}_{_{\mathrm{K}}}=0 \qquad \qquad => \qquad \vec{v}_{_{\mathrm{K}}}=-rac{m_{_{\Pi}}\vec{v}_{_{\Pi}}}{m_{_{\mathrm{K}}}}$$

Знак «—» свідчить про те, що кулька рухається в напрямку, протилежному напрямку руху повітря.

Проблемне питання

• Де зустрічається реактивний рух у нашому житті?

Віддача автомата

Сила \vec{F} , яка діє на кулі, дорівнює швидкості зміни імпульсу куль:

$$\vec{F} = n \cdot m_{\kappa} \vec{v}$$

n – кількість пострілів за секунду

 m_{κ} – маса однієї кулі

 \vec{v} – швидкість у момент вильоту з дула

Реактивний рух ракети

Ракета — літальний апарат, який переміщується в просторі завдяки реактивній тязі, що виникає внаслідок відкидання ракетою частини власної маси.

Проблемне питання

• Що ϵ відокремлюваною частиною ракети?

Відокремлюваною частиною ракети є струмінь гарячого газу, який утворюється в ході згоряння палива. Коли газовий струмінь із величезною швидкістю викидається із сопла ракети, то оболонка ракети одержує потужний імпульс, напрямлений у бік, протилежний швидкості руху струменя.

Уявімо неймовірний варіант: y момент старту все паливо ракети згоряє відразу.

Оскільки до старту ракета перебуває у спокої, то закон збереження імпульсу після згоряння палива виглядав би так:

$$0 = m_{\text{of}} \vec{v}_{\text{of}} + m_{\text{rasy}} \vec{v}_{\text{rasy}}$$

Спроектуємо векторне рівняння на цю вісь OY:

$$0 = m_{06} v_{06} - m_{\text{rasy}} v_{\text{rasy}} = > v_{06} = \frac{m_{\text{rasy}} v_{\text{rasy}}}{m_{06}}$$

Проблемне питання

• Чи може одноступенева ракета покинути Землю?

Якби паливо ракети згоряло миттєво, а руху ракети нічого не заважало б, то швидкість, набрана ракетою, була б достатньою для того, щоб вивести ракету на орбіту Землі.

Однак у реальності паливо згоряє поступово, а на рух ракети помітно впливає опір повітря. Розрахунки показують, що для досягнення необхідної швидкості маса палива має у 200 разів перевищувати масу оболонки, а це нереально реалізувати технічно.

• Як технічно вирішити дану проблему?

Це можливо тільки за допомогою багатоступеневих ракет: у таких ракетах ступені зі спорожнілими паливними резервуарами відкидаються в польоті (потім вони згоряють в атмосфері через тертя об повітря).

При цьому маса ракети зменшується, відповідно збільшується швидкість її руху. Зазначимо, що всі ракетиносії космічних апаратів, як найперші, так і ті, що використовуються зараз, ϵ багатоступеневими.

12 квітня 1961 р. ракета-носій «Восток» вивела на орбіту космічний корабель «Восток», на борту якого був перший у світі космонавт Ю. О. Гагарін

Цей політ був здійснений за ініціативою та під керівництвом видатного конструктора С. П. Корольова (1907–1966), уродженця м. Житомира.

IV. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

1. Під час запуску моделі ракети масою 250 г з неї вийшло майже миттєво 50 г стиснутого повітря зі швидкістю 2 м/с. Визначте швидкість, з якою рухатиметься ракета.

Дано:
$$m_{\text{рак.}} = 250 \, \Gamma$$

 $= 0,25 \, \text{кг}$
 $m_{\text{газу}} = 50 \, \Gamma$
 $= 0,05 \, \text{кг}$
 $v_{\text{газу}} = 2 \frac{\text{M}}{\text{C}}$ Запишемо закон збереження імпульсу у векторному вигляді:
 $0 = m_{\text{рак.}} \vec{v}_{\text{рак.}} + m_{\text{газу}} \vec{v}_{\text{газу}}$
Скориставшись рисунком, спроектуємо одержане рівняння на вісь OY :
 $0 = m_{\text{рак.}} v_{\text{рак.}} - m_{\text{газу}} v_{\text{газу}}$
 $m_{\text{рак.}} = m_{\text{газу}} v_{\text{газу}}$
 $v_{\text{рак.}} = \frac{m_{\text{газу}} v_{\text{газу}}}{m_{\text{рак.}}}$ $[v_{\text{рак.}}] = \frac{\text{KF} \cdot \frac{\text{M}}{\text{C}}}{\text{K\Gamma}} = \frac{\text{M}}{\text{C}}$
 $v_{\text{рак.}} = \frac{0,05 \cdot 2}{0,25} = 0,4 \, \left(\frac{\text{M}}{\text{C}}\right)$ Відповідь: $v_{\text{рак.}} = 0,4 \, \frac{\text{M}}{\text{C}}$

2. Маса реактивного набою на установці типу «Град» дорівнює 42,6 кг, а швидкість його вильоту 355 м/с. Вважаючи, що порох згорає миттєво, а швидкість витікання продуктів згоряння дорівнює 2 км/с, визначте масу порохового заряду.

3. Визначте середню силу тиску на долоню під час стрільби з пістолета Макарова, якщо темп стрільби становить 30 пострілів за хвилину, маса кулі дорівнює 8 г, а швидкість, з якою вона вилітає зі стволу, — 315 м/с.

Дано:
$$N = 30$$

 $t = 1 \text{ xb} = 60 \text{ c}$
 $m_{\text{k}} = 8 \text{ г}$
 $= 0,008 \text{ kg}$
 $v = 315 \frac{\text{M}}{\text{c}}$ $F = n \cdot m_{\text{k}} v$; $n = \frac{N}{t}$
 $F = \frac{N}{t} \cdot m_{\text{k}} v$ $[F] = \frac{1}{c} \cdot \text{kg} \cdot \frac{\text{M}}{c} = \text{kg} \cdot \frac{\text{M}}{c^2} = \text{H}$
 $F = \frac{30}{60} \cdot 0,008 \cdot 315 = 1,26 \text{ (H)}$ Bidnoside: $F = 1,26 \text{ H}$.

4. З якою швидкістю рухатиметься ракета, якщо середня швидкість витікання продуктів згорання дорівнює 1 км/с, а маса палива, що згоріло, складає 80% усієї маси ракети?

$$v_{
m pak.} = rac{m_{
m rasy} v_{
m rasy}}{m_{
m pak.}} = rac{0.8 \cdot m \cdot v_{
m rasy}}{0.2 \cdot m} = 4 \cdot v_{
m rasy}$$
 $v_{
m pak.} = 4 \cdot 10^3 rac{
m M}{
m c}$

V. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Дайте означення реактивного руху.
- 2. Опишіть досліди зі спостереження реактивного руху.
- 3. Запишіть закон збереження імпульсу для руху ракети, припустивши, що все її паливо згоряє миттєво в момент старту.
- 4. Чому для запускання космічних кораблів з поверхні Землі використовують багатоступеневі ракети?
- 5. Назвіть ім'я першого в історії людства космонавта та ім'я конструктора, під керівництвом якого було здійснено перший політ у космос.

VI. ДОМАШНЄ ЗАВДАННЯ

Опрацювати § 37, Вправа № 37 (1, 2)

Д/з надішліть на human, або на електрону адресу kmitevich.alex@gmail.com