Approximation Algorithms

Lecture 4

11/02/10

Problem: Metric *k***-Center.**

Let G=(V,E) be a complete graph with edge costs $c:E\to \mathbb{Q}^+$ satisfying the triangle inequality, k a positive integer. For any set $S\subseteq V$ and vertex $v\in V$ let c(v,S) be the cost of the cheapest edge from v to a vertex in S. The k-Center Problem asks for a set $S\subseteq V$, |S|=k, minimizing $\max_{v\in V}c(v,S)$.

Problem: Metric *k***-Center.**

Let G=(V,E) be a complete graph with edge costs $c:E\to \mathbb{Q}^+$ satisfying the triangle inequality, k a positive integer. For any set $S\subseteq V$ and vertex $v\in V$ let c(v,S) be the cost of the cheapest edge from v to a vertex in S. The k-Center Problem asks for a set $S\subseteq V$, |S|=k, minimizing $\max_{v\in V}c(v,S)$.

Let $E = \{e_1, \ldots, e_m\}$, such that $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$.

Define $E_i = \{e_1 \dots, e_i\}$ and pruned graphs $G_i = (V, E_i)$.

A dominating set in an undirected graph G=(V,E) is a subset of vertices $S\subseteq V$, such that every vertex in $V\setminus S$ is adjacent to a vertex in S. Let $\mathrm{dom}(G)$ denote the size of the smallest dominating set in G.

The k-Center Problem is equivalent to finding the smallest index i^* , such that G_{i^*} has a dominating set of size k.

Let $E = \{e_1, \ldots, e_m\}$, such that $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$.

Define $E_i = \{e_1 \dots, e_i\}$ and pruned graphs $G_i = (V, E_i)$.

A dominating set in an undirected graph G=(V,E) is a subset of vertices $S\subseteq V$, such that every vertex in $V\setminus S$ is adjacent to a vertex in S. Let $\mathrm{dom}(G)$ denote the size of the smallest dominating set in G.

The k-Center Problem is equivalent to finding the smallest index i^* , such that G_{i^*} has a dominating set of size k.

Let $E = \{e_1, \ldots, e_m\}$, such that $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$.

Define $E_i = \{e_1 \dots, e_i\}$ and pruned graphs $G_i = (V, E_i)$.

A dominating set in an undirected graph G=(V,E) is a subset of vertices $S\subseteq V$, such that every vertex in $V\setminus S$ is adjacent to a vertex in S. Let $\mathrm{dom}(G)$ denote the size of the smallest dominating set in G.

The k-Center Problem is equivalent to finding the smallest index i^* , such that G_{i^*} has a dominating set of size k.

For a graph G=(V,E) define $G^2=(V,E^2)$, where

$$E^2 = \{\{u, v\} \mid \exists \text{ a path of length} \leq 2 \text{ between } u \neq v \text{ in } G \}.$$

The cost of an edge in G^2 is equal to the length of the path in G.

Lemma 4

Given a graph G, let I be an independent set in G^2 . Then $|I| \leq \text{dom}(G)$.

Algorithm 7: Metric k-Center.

- I. Construct $G_1^2, G_2^2, \dots, G_m^2$.
- 2. Compute a maximal independent set, M_i , in each G_i^2 .
- 3. Find the smallest index i, such that $|M_i| \leq k$, say j.
- 4. Return M_i .

Minimum k-Cut

Lemma 5

For j as defined in the k-Center algorithm, $c(e_j) \leq \text{opt.}$

Theorem 7

Algorithm 7 is a factor 2 approximation algorithm for the metric k-Center Problem.

By Lemma 5, a dominating set of size k in G_j would correspond to an optimal k-center in G. What's left to prove is that an independent set in G_j^2 gives "almost" as good a k-center in G.

Multiway Cut

A tight example:

Theorem 8

There is no poly-time factor $2-\varepsilon$ approximation algorithm for the metric k-Center Problem for any $\varepsilon>0$, unless P=NP.

Problem: Metric Weighted k-Center.

Let G=(V,E) be a complete graph with edge costs $c:E\to \mathbb{Q}^+$ satisfying the triangle inequality, $w:V\to \mathbb{Q}^+$ a weight function on vertices and $W\in \mathbb{Q}^+$ a weight bound. The Weighted k-Center Problem asks for a set $S\subseteq V$,

$$\sum_{v \in S} w(v) \le W,$$

minimizing $\max_{v \in V} c(v, S)$.

Problem: Metric Weighted k-Center.

Let G=(V,E) be a complete graph with edge costs $c:E\to \mathbb{Q}^+$ satisfying the triangle inequality, $w:V\to \mathbb{Q}^+$ a weight function on vertices and $W\in \mathbb{Q}^+$ a weight bound. The Weighted k-Center Problem asks for a set $S\subseteq V$,

$$\sum_{v \in S} w(v) \le W,$$

minimizing $\max_{v \in V} c(v, S)$.

For a vertex weighted graph G=(V,E) we let wdom(G) denote the weight of a minimum weight dominating set in G.

Lemma 6

Given a vertex weighted graph G, let I be an independent set in G^2 . For each $v \in I$, let s(v) denote a lightest neighbor of v in G (including v), and define $S = \{s(v) \mid v \in I\}$. Then

$$w(S) \leq \operatorname{wdom}(G)$$
.

For a vertex weighted graph G=(V,E) we let wdom(G) denote the weight of a minimum weight dominating set in G.

Lemma 6

Given a vertex weighted graph G, let I be an independent set in G^2 . For each $v \in I$, let s(v) denote a lightest neighbor of v in G (including v), and define $S = \{s(v) \mid v \in I\}$. Then

$$w(S) \leq \operatorname{wdom}(G)$$
.

Let $E = \{e_1, \ldots, e_m\}$, such that $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$. Define $G_i = (V, E_i)$ as in the unweighted case and let $s_i(v)$ denote a lightest neighbor of $v \in V$ (including itself) in G_i .

Algorithm 8: Metric Weighted k-Center.

- I. Construct $G_1^2, G_2^2, \dots, G_m^2$.
- 2. Compute a maximal independent set, M_i , in each G_i^2 .
- 3. Compute $S_i = \{s_i(v) | v \in M_i\}$.
- 4. Find the smallest index i, such that $w(S_i) \leq W$, say j.
- 5. Return S_j .

Theorem 9

Algorithm 8 is a factor 3 approximation algorithm for the Metric Weighted k-Center Problem.

Multiway Cut

A tight example:

The *k*-center $\{a,c\}$ has cost $1 + \varepsilon$.

We have $w(S_i) = \infty$ for i < n+3.

In G_{n+3}^2 , Algorithm 8 might pick $M_{n+3}=\{b\}$, thus $S_{n+3}=\{a\}$.