

ASEN 5090

Courtesy He Lin, University of Colorado

Signal Structure

Outline

- L1 and L2 carriers
- PRN Codes, CDMA, BPSK
- Navigation Message
- Correlation properties
- Spectrum
- Signal power

Reading Assignment

- Ch 2, problems 2-1 and 2-2 (See assignment page)
- Questions to think about
 - What features of GPS are enabled by the codes?
 - Why 2 frequencies?
 - Would there be an advantage to substantially increasing the GPS signal power? Any downsides?

SIGNAL COMPONENTS

- Base frequency is $f_0 = 10.23 \text{ MHz} = 10,230,000 \text{ Hz}$ (cycles/sec)
- L1 = 154 f_0 = 1575.42 MHz
- $L2 = 120 f_0 = 1227.6 MHz$
- C/A code chip rate = f_0 /10 = 1.023 Mcps (MHz), 1 ms long
- P code chip rate = f_0 = 10.23 Mcps (MHz), 37 weeks long, each satellite gets a 1 week segment
- Navigation Data rate = 50 bps, 20ms per bit, 6 s per frame, 30 s for individual satellite data, 12.5 min for all

PROPERTIES OF CODES

- Protect against interference
- Reduce noise effects
- Permit many signals to be transmitted at the same frequency without interfering (known as: code division multiple access - CDMA)
- Permit high resolution ranging
- Enable communications security (known as: low probability of detection LPD)
- Key characteristics of codes are their type, length, chip rate.

PRN CODES (pseudo random noise codes)

- In GPS, a pseudo random noise code used to modulate a carrier tone
- Types of modulation: amplitude (AM), frequency (FM), phase (PM)

PRN CODES (pseudo random noise codes)

- GPS uses BPSK (Biphase phase-shift keying) sequence of "1's" and 0's" that specify when phase of carrier should be reversed (1) or left alone (0).
- Can consider as a sequence of 0's and 1's or 1 and -1's
 - In terms of phase-shift keying, 0 corresponds to "don't shift" and 1 corresponds to "shift"
 - In terms of digital amplitude modulation, multiplying by a "1" leaves the carrier alone (i.e don't shift) and multiplying by a "-1" inverts it (i.e. shifts it by 180 deg).
- These codes enable a GPS receiver to measure the transit time of a signal from a GPS satellite to the receiver antenna.
- Reference Spread Spectrum Systems, Robert C. Dixon, Wiley 1984.

CORRELATION FUNCTION $Rxy(\tau)$

- Correspondence between a code and a phase-shifted replica of another code
- Cross correlation correspondence between different codes: Rxy(τ)
- Autocorrelation correspondence of code w/phase shifted version of itself $Rx(\tau)$
- Simple idea: Compare shifted code replica with the original reference. Number of bits which agree minus the number of bits which disagree is the correlation.

$$R^{j,k}(n) = \sum_{i=1}^{1023} x^{j}(i)x^{k}(i+n), \text{ for good cross-correlation } \approx 0, j \neq k$$

$$R(n) = \sum_{i=1}^{1023} x^{j}(i) x^{j}(i+n), \text{ for good auto-correlation } \approx 0, n \neq 0$$

CORRELATION CALCULATION - EXAMPLES

1001111011101000100110111111111101

00001000101001110000111001001001

Every time the numbers agree, add 1.

Every time the numbers disagree, subtract 1.

This example: codes for 2 different satellites

14 agree

19 disagree

Total score: -5 Perfect agreement would be 33

This example: same satellite codes, but shifted

Not so good - score of -3.

But if you recognize they are shifted by 1:

Agreement is perfect

CALCULATING AUTOCORRELATION(τ)

SHIFT	CODE	AGREE	DISAGREE	AUTOCORRELATION
REF	1110010	1	1	-
0	1110010	7	0	7
1	0111001			
2				
3				
4				
5				
6				
7				

CALCULATING AUTOCORRELATION(τ)

SHIFT	CODE	AGREE	DISAGREE	AUTOCORRELATION
REF	1110010	-	-	-
0	1110010	7	0	7
1	0111001	3	4	
2	1011100	3	4	
3	0101110	3	4	
4	0010111	3	4	
5	1001011			
6	1100101			
7	1110010			

GENERATING PRN CODES

- Tapped feedback shift register
- Epoch state

XOR Logic Table

<u>A</u>	<u>B</u>	<u>Y</u>
0	0	
1	0	
0	1	
1	1	

An n stage shift register PRN generator tapped at [3,n].

GENERATING A CODE

• Example: Generate the PRN code for a 3 stage shift register tapped at [3,2] starting from an all ones state. (The PRN Code is made up of the third stage

bit values.)

Shift	Stage			Code
T	1	2	3	
0	1	1	1	
1				
2				
3				
4				
5				
6				
7				

GENERATING A CODE

• Example: Generate the PRN code for a 3 stage shift register tapped at [3,2] starting from an all ones state. (The PRN Code is made up of the third stage

bit values.)

Shift	Stage			Code
T	1	2	3	
0	1	1	1	
1	0	1	1	1
2	0	0	1	1
3	1	0	0	1
4	0	1	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	

MAXIMAL LENGTH CODES

- Maximal length codes are the longest codes that can be generated by a given number of shift register stages. For an n-stage shift register, the longest code is 2^n 1 chips (i.e. 1's or 0's). Maximal length codes have many interesting properties, especially their autocorrelation function.
- For a maximal length code, the autocorrelation function for a phase shift other than 0 or $(2^n 1)$ is -1. For any code, the autocorrelation for a 0 shift is equal to the number of chips in the code.

Why is maximal length code 2ⁿ -1?

GPS C/A CODES (From Misra & Enge, Problem 2.1)

PRN 5 CODE SEQUENCE

Autocorrelation of PRN 5 C/A Code

Computing a cyclic correlation

Cross correlation between shifted PRN5 & reference PRN 5

```
yshifted = [y(101:1023) y(1:100)];
P = cyc_corr(yshifted,y);
```


IMPACT OF CORRELATION PROPERTIES

- What makes a useful code?
 - For ranging:
 - For CDMA:
 - For acquisition:

NAVIGATION MESSAGE (from Misra & Enge)

SIGNAL SPECTRUM

What frequencies are present in the signal

LEGACY GPS SPECTRUM

- PRN codes have a sinc² spectrum
- Main lobe is 2x chipping rate
- Side lobes are 1x chipping rate
- Power density is very low

SIGNAL POWER

dB

- GPS Satellites transmit 27W toward the earth
- GPS Signal level on the ground:
 - L1 C/A: -158.5 dBW ~10⁻¹⁶ Watts
 - L1 P(Y): -161.5 dBW
 - L2 P(Y): -164.5 dBW
- Spread spectrum signal is "sub-thermal" or below the noise floor
- After correlation in the receiver the recovered or despread carrier is above the noise (typical SNR's 6-15 dB).
- Processing gain for spread spectrum is signal BW/ data BW

DECIBELS

• RdB = $10 \log 10 (R)$

GPS LEGACY SIGNAL GENERATION

