Компьютерные методы небесной механики Методы Адамса

Павел Соболев

21 октября 2021

Линейные многошаговые методы

Рассмотрим задачу с начальными данными в форме

$$y' = f(t, y), \quad y(t_0) = y_0.$$
 (1)

Результат аппроксимации решения y(t):

$$y_i pprox y(t_i)$$
, где $t_i = t_0 + ih$. (2)

Линейный многошаговый метод:

$$\begin{split} y_{n+s} + a_{s-1} \cdot y_{n+s-1} + a_{s-2} \cdot y_{n+s-2} + \cdots + a_0 \cdot y_n &= \\ &= h \cdot (b_s \cdot f(t_{n+s}, y_{n+s}) + b_{s-1} \cdot f(t_{n+s-1}, y_{n+s-1})) + \\ &\quad + \cdots + b_0 \cdot f(t_n, y_n)). \end{split} \tag{3}$$

Примеры явных методов

Метод Эйлера (s=1, $a_{s-1}=-1$, $b_s=0$):

$$y_{n+1} = y_n + hf(t_n, y_n);$$
 (4)

Двухшаговый метод Адамса–Башфорта

$$(s=2, a_{s-1}=-1, b_s=0)$$
:

$$y_{n+2} = y_{n+1} + \frac{3}{2}hf(t_{n+1}, y_{n+1}) - \frac{1}{2}hf(t_n, y_n); \tag{5}$$

Трёхшаговый метод Адамса-Башфорта

$$(s=3, a_{s-1}=-1, b_s=0)$$
:

$$y_{n+3} = y_{n+2} + \frac{23}{12}hf(t_{n+2}, y_{n+2}) - \frac{16}{12}hf(t_{n+1}, y_{n+1}) + \frac{5}{12}hf(t_n, y_n).$$
(6)

Коэффициенты методов Адамса-Башфорта

Используя полиномиальную интерполяцию, находим многочлен p степени s-1, такой что

$$p(t_{n+i}) = f(t_{n+i}, y_{n+i}), \quad i = 0, \dots, s-1. \tag{7}$$

Интерполяционный многочлен Лагранжа:

$$p(t) = \sum_{j=0}^{s-1} \frac{(-1)^{s-j-1} f(t_{n+j}, y_{n+j})}{j! (s-j-1)! h^{s-1}} \prod_{\substack{i=0\\i\neq j}}^{s-1} (t-t_{n+i}). \tag{8}$$

Решение уравнения y'=p(t) — интеграл от p, а значит,

$$y_{n+s} = y_{n+s-1} + \int_{t_{n+s-1}}^{t_{n+s}} p(t) dt.$$
 (9)

Точность явных методов

Подставляя p в (9), получаем

$$b_{s-j-1} = \frac{(-1)^j}{j! (s-j-1)!} \int_0^1 \prod_{\substack{i=0\\i\neq j}}^{s-1} (u+i) du,$$

$$i = 0, \dots, s-1.$$
(10)

Замена f(t,y) на интерполяционный многочлен p даёт ошибку порядка h^s . Таким образом, s-шаговый явный метод Адамса–Башфорта имеет глобальную ошибку $O(h^s)$.

Примеры неявных методов

Обратный метод Эйлера (s=0, $a_{s-1}=-1$, $b_s \neq 0$):

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}); (11)$$

Метод трапеций (s=1, $a_{s-1}=-1$, $b_s \neq 0$):

$$y_{n+1} = y_n + \frac{1}{2}hf(t_{n+1}, y_{n+1}) + \frac{1}{2}hf(t_n, y_n); \tag{12}$$

Двухшаговый метод Адамса-Мультона

$$(s = 2, a_{s-1} = -1, b_s \neq 0)$$
:

$$y_{n+2} = y_{n+1} + \frac{5}{12}hf(t_{n+2}, y_{n+2}) + \frac{8}{12}hf(t_{n+1}, y_{n+1} - \frac{1}{12}hf(t_n, y_n)).$$
(13)

Точность неявных методов

Метод получения коэффициентов неявных методов аналогичен тому, что был у явных. Однако теперь в процессе интерполяции участвует и точка t_n :

$$b_{s-j} = \frac{(-1)^j}{j! (s-j)!} \int_0^1 \prod_{\substack{i=0\\i\neq j}}^s (u+i-1) du,$$
(14)

$$j=0,\ldots,s.$$

Добавление этой точки повышает точность метода до $O(h^{s+1})$.

Интегрирование уравнений движения

Уравнения движения

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}, \quad \frac{d\mathbf{v}}{dt} = \varkappa \frac{\mathbf{r}}{r^3}$$
 (15)

интегрируются двухшаговым методом Адамса-Башфорта как

$$r_{i+2} = r_{i+1} + \frac{3}{2}hv_{i+1} - \frac{1}{2}hv_i; {16}$$

$$v_{i+2} = v_{i+1} + \frac{3}{2}h\varkappa \frac{r_{i+1}}{r^3} - \frac{1}{2}h\varkappa \frac{r_i}{r^3}.$$
 (17)

Листинг 1: Реализация двухшагового метода Адамса-Башфорта

```
# < . . . >
# Define a couple of independent coefficients
k_1 = 3 / 2 * h
k_2 = -1 / 2 * h
# Compute the rest in two steps
for _ in 2:n
    a_1 = k_1 * x * r / norm(r)^3
    a_2 = k_2 * x * r_0 / norm(r_0)^3
    r_0 = r
    r += k_1 * v + k_2 * v_0
    V_0 = V
    V += a_1 + a_2
end
# < . . . >
```

Результаты интегрирования положений

Начальные данные:

$$\mathbf{r} = (1.0, 0.0), \quad \mathbf{v} = (0.0, 0.5).$$
 (18)

Таблица 1: Сравнение результатов интегрирования положений

h	n	$r_{ab2}[1]$	$r_{ab2}[2]$
10^{-2}	10^{2}	0.43212174639418	0.37815749277595
10^{-3}	10^{3}	0.43186067271258	0.37796026535278
10^{-4}	10^{4}	0.43185802276115	0.37795824197534
10^{-5}	10^{5}	0.43185799622476	0.37795822169228
10^{-6}	10^{6}	0.43185799595940	0.37795822148942
10^{-7}	10^{7}	0.43185799595677	0.37795822148731

Результаты интегрирования скоростей

Таблица 2: Сравнение результатов интегрирования скоростей

h	n	$v_{ab2}[1]$	$v_{ab2}[2]$
10^{-2}	10^{2}	-1.31650650043105	0.00568983216741
10^{-3}	10^{3}	-1.31716521943929	0.00501794516417
10^{-4}	10^{4}	-1.31717192826571	0.00501101126551
10^{-5}	10^{5}	-1.31717199546502	0.00501094171753
10^{-6}	10^{6}	-1.31717199613709	0.00501094102189
10^{-7}	10^{7}	-1.31717199614383	0.00501094101492

Результаты интегрирования положений за цикл

Таблица 3: Сравнение результатов интегрирования положений за цикл

h	n	$r_{ab2}[1]$	$r_{ab2}[2]$
10^{-2}	271	1.05097190486096	-0.16457519920592
10^{-3}	2714	1.00007676034443	-0.00124383331363
10^{-4}	27141	1.00000008204579	-0.00000190353812
10^{-5}	271408	1.00000000012666	-0.00000058425521
10^{-6}	2714081	1.000000000000089	0.00000002832152
10^{-7}	27140809	0.9999999999971	-0.00000002055261

Результаты интегрирования скоростей за цикл

Таблица 4: Сравнение результатов интегрирования скоростей за цикл

h	n	$v_{ab2}[1]$	$v_{ab2}[2]$
10^{-2}	271	0.15737122990461	0.45300615550211
10^{-3}	2714	0.00076998949004	0.49996341808806
10^{-4}	27141	-0.00001339288816	0.49999996625940
10^{-5}	271408	0.00000099650822	0.4999999998835
10^{-6}	2714081	-0.00000005836344	0.500000000000010
10^{-7}	27140809	0.00000004108792	0.500000000000004

Результаты вычисления интеграла энергии

Интеграл энергии вычисляется как

$$\frac{1}{2}v^2 - \frac{\varkappa^2}{r} = E = const. \tag{19}$$

Для указанных начальных данных E = -0.875.

Таблица 5: Сравнение результатов вычисления интеграла энергии

h	n	E	ΔE
10^{-2}	10^{2}	-0.87487220737073	0.00012779262927
10^{-3}	10^{3}	-0.87499868818745	0.00000131181255
10^{-4}	10^{4}	-0.87499998684409	0.00000001315591
10^{-5}	10^{5}	-0.87499999986837	0.00000000013163
10^{-6}	10^{6}	-0.87499999999856	0.00000000000144
10^{-7}	10^{7}	-0.87499999999999	0.000000000000006

Результаты вычисления интеграла энергии за цикл

Таблица 6: Сравнение результатов вычисления интеграла энергии за цикл

h	n	E	ΔE
10^{-2}	271	-0.82505424709950	0.04994575290050
10^{-3}	2714	-0.87494046601056	0.00005953398944
10^{-4}	27141	-0.87499993473302	0.00000006526698
10^{-5}	271408	-0.87499999987850	0.00000000012150
10^{-6}	2714081	-0.87499999999906	0.000000000000094
10^{-7}	27140809	-0.87500000000027	0.000000000000027

Рис. 1: Визуализация орбиты при $h=10^{-2}$, $n=10^2$

Рис. 2: Визуализация орбиты при $h=10^{-3}$, $n=10^3$

Рис. 3: Визуализация орбиты при $h=10^{-4}$, $n=10^4$

Рис. 4: Визуализация орбиты при $h=10^{-5}$, $n=10^{5}$