Using Evaluation Metrics in Model Selection

We have discussed many evaluation methods in detail, and how to apply them given the ground truth and a model. However, we often want to use metrics like AUC in model selection using GridSearchCV or cross val score. Luckily scikit-learn provides a very simple way to achieve this, via the scoring argument that can be used in both GridSearchCV and cross_val_score. You can simply provide a string describing the evaluation metric you want to use. Say, for example, we want to evaluate the SVM classifier on the "nine vs. rest" task on the digits dataset, using the AUC score. Changing the score from the default (accuracy) to AUC can be done by providing "roc_auc" as the scoring parameter:

In[67]:

```
# default scoring for classification is accuracy
    print("Default scoring: {}".format(
        cross_val_score(SVC(), digits.data, digits.target == 9)))
    # providing scoring="accuracy" doesn't change the results
    explicit_accuracy = cross_val_score(SVC(), digits.data, digits.target == 9,
                                         scoring="accuracy")
    print("Explicit accuracy scoring: {}".format(explicit_accuracy))
    roc_auc = cross_val_score(SVC(), digits.data, digits.target == 9,
                              scoring="roc_auc")
    print("AUC scoring: {}".format(roc_auc))
Out[67]:
    Default scoring: [ 0.9 0.9 0.9]
    Explicit accuracy scoring: [ 0.9 0.9 0.9]
    AUC scoring: [ 0.994 0.99 0.996]
```

Similarly, we can change the metric used to pick the best parameters in Grid SearchCV:

In[68]:

```
X_train, X_test, y_train, y_test = train_test_split(
    digits.data, digits.target == 9, random state=0)
# we provide a somewhat bad grid to illustrate the point:
param grid = {'gamma': [0.0001, 0.01, 0.1, 1, 10]}
# using the default scoring of accuracy:
grid = GridSearchCV(SVC(), param_grid=param_grid)
grid.fit(X_train, y_train)
print("Grid-Search with accuracy")
print("Best parameters:", grid.best_params_)
print("Best cross-validation score (accuracy)): {:.3f}".format(grid.best_score_))
print("Test set AUC: {:.3f}".format(
    roc_auc_score(y_test, grid.decision_function(X_test))))
print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))
```

Out[68]:

```
Grid-Search with accuracy
    Best parameters: {'qamma': 0.0001}
    Best cross-validation score (accuracy)): 0.970
    Test set AUC: 0.992
    Test set accuracy: 0.973
In[69]:
    # using AUC scoring instead:
    grid = GridSearchCV(SVC(), param grid=param grid, scoring="roc auc")
    grid.fit(X train, y train)
    print("\nGrid-Search with AUC")
    print("Best parameters:", grid.best_params_)
    print("Best cross-validation score (AUC): {:.3f}".format(grid.best_score_))
    print("Test set AUC: {:.3f}".format(
        roc auc score(y test, grid.decision function(X test))))
    print("Test set accuracy: {:.3f}".format(grid.score(X_test, y_test)))
Out[691:
    Grid-Search with AUC
    Best parameters: {'qamma': 0.01}
    Best cross-validation score (AUC): 0.997
    Test set AUC: 1.000
    Test set accuracy: 1.000
```

When using accuracy, the parameter gamma=0.0001 is selected, while gamma=0.01 is selected when using AUC. The cross-validation accuracy is consistent with the test set accuracy in both cases. However, using AUC found a better parameter setting in terms of AUC and even in terms of accuracy.⁶

The most important values for the scoring parameter for classification are accuracy (the default); roc_auc for the area under the ROC curve; average_precision for the area under the precision-recall curve; f1, f1_macro, f1_micro, and f1_weighted for the binary f_1 -score and the different weighted variants. For regression, the most commonly used values are r2 for the R^2 score, mean_squared_error for mean squared error, and mean_absolute_error for mean absolute error. You can find a full list of supported arguments in the documentation or by looking at the SCORER dictionary defined in the metrics.scorer module:

⁶ Finding a higher-accuracy solution using AUC is likely a consequence of accuracy being a bad measure of model performance on imbalanced data.

```
In[70]:
```

```
from sklearn.metrics.scorer import SCORERS
    print("Available scorers:\n{}".format(sorted(SCORERS.keys())))
Out[70]:
   Available scorers:
    ['accuracy', 'adjusted_rand_score', 'average_precision', 'f1', 'f1_macro',
     'f1_micro', 'f1_samples', 'f1_weighted', 'log_loss', 'mean_absolute_error',
     'mean_squared_error', 'median_absolute_error', 'precision', 'precision_macro',
     'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'recall',
     'recall macro', 'recall micro', 'recall samples', 'recall weighted', 'roc auc']
```

Summary and Outlook

In this chapter we discussed cross-validation, grid search, and evaluation metrics, the cornerstones of evaluating and improving machine learning algorithms. The tools described in this chapter, together with the algorithms described in Chapters 2 and 3, are the bread and butter of every machine learning practitioner.

There are two particular points that we made in this chapter that warrant repeating, because they are often overlooked by new practitioners. The first has to do with cross-validation. Cross-validation or the use of a test set allow us to evaluate a machine learning model as it will perform in the future. However, if we use the test set or cross-validation to select a model or select model parameters, we "use up" the test data, and using the same data to evaluate how well our model will do in the future will lead to overly optimistic estimates. We therefore need to resort to a split into training data for model building, validation data for model and parameter selection, and test data for model evaluation. Instead of a simple split, we can replace each of these splits with cross-validation. The most commonly used form (as described earlier) is a training/test split for evaluation, and using cross-validation on the training set for model and parameter selection.

The second point has to do with the importance of the evaluation metric or scoring function used for model selection and model evaluation. The theory of how to make business decisions from the predictions of a machine learning model is somewhat beyond the scope of this book.7 However, it is rarely the case that the end goal of a machine learning task is building a model with a high accuracy. Make sure that the metric you choose to evaluate and select a model for is a good stand-in for what the model will actually be used for. In reality, classification problems rarely have balanced classes, and often false positives and false negatives have very different consequences.

⁷ We highly recommend Foster Provost and Tom Fawcett's book Data Science for Business (O'Reilly) for more information on this topic.