FIG. 1

CFO (Electronic Conductive Phase)

(Electronic Conductive Phase)

FIG. 2

Grain Boundavy Phase

FIG. 3

FIG. 4

FIG. 5

 $\mathsf{GDC}\mathsf{-x}$ vol% Oxygen Permeability of CFO Composite

Composition	mperatureThickness Gas		ss C	j_{O_2}	Ref
	$({\mathbb C})$	(mm)	Gas	$(\mu \text{mol} \cdot \text{cm}^{-2} \cdot \text{s}^{-1})$	
31CFO	1000	1.38	He	0.107	This work
24CFO-Ni	1000	1.05	He	0.204	This work
24CFO-Ru	1000	1.04	He	0.208	This work
24CFO-Ru	1000	0.86	$Ar-H_2$	1.260	This work
25GCC	1000	1.50	He	0.083	(1)
25LSM	950	1.00	He	0.067	(2)

⁽¹⁾ U. Niggeet et. al. Solid State Ionics 146 (2002) 163.

⁽²⁾ V.V. Kharton et. al. J. Eur. Ceram. Soc. 21 (2001) 1763.

FIG. 6

FIG. 7

FIG. 8

Air Side

FIG. 9

