CARLOS EDUARDO FERREIRA SALA 108C TEL.: 3091 6079 E-MAIL cef@ime.usp.br PAE Thiago Oliveira E-MAIL thilio@ime.usp.br

MAC 323 – Algoritmos e Estruturas de Dados II Primeiro semestre de 2022

Pentaminós – Entrega: 19 de abril

Desde crianças jogamos dominós, mas poucos sabem que há diversos quebra-cabeças que envolvem aquelas peças e tabuleiros. Um exemplo é o seguinte: considere um tabuleiro de xadrez em que a casa do canto superior esquerdo e a do canto inferior direito foram cortadas (restando 62 casas). É possível cobrir as casas com 31 peças de dominós?¹

É possível imaginar vários jogos de quebra-cabeça do mesmo tipo, em que temos um tabuleiro com algum formato que deve ser coberto por peças do mesmo tipo. Por exemplo, o famoso jogo de Tetris é baseado nos 5 tetraminós (dominós formados por 4 peças). Se cada uma das peças tivesse um determinado preço (a peça I a mais cara, por exemplo), qual o jeito mais barato de preencher um retângulo $m \times n$ com tetraminós?

Neste exercício-programa vamos utilizar a técnica backtrack, **implementada usando uma pilha**, para resolver o problema de preencher tabuleiros com pentaminós.

Existem 12 tipos diferentes de pentaminós²:

¹Se você pensar um pouquinho vai ver que não é possível

²Figura extraída da Wikipedia (http://en.wikipedia.org/wiki/Pentomino)

Se pensarmos que cada um tem área 5, podemos tentar imaginar quais figuras de área 60 é possível cobrir com os 12 pentaminós. Por exemplo, retângulos 3×20 , 4×15 , 5×12 e 6×10 .

A entrada deste EP será dada por uma matriz $A_{m\times n}$ representando o tabuleiro que deverá ser coberta de pentaminós, tal que $a_{ij}=0$ se a figura deverá ser coberta e $a_{ij}=1$ caso contrário. A saída deverá indicar se é possível colocar os 12 pentaminós para cobrir o tabuleiro e, nesse caso, onde colocar cada um dos elementos.

Veja abaixo um exemplo:

Entrada:

A saída pode ser (há várias soluções):

U U X P P P L L L L F T T T W W Z V V V U X X X P P L N N F F F T W W Y Z Z Z V U U X I I I I I N N N F T W Y Y Y Y Z V

Teste algumas matrizes mais divertidas, como por exemplo o tabuleiro de xadrez com um buraco (que pode ser impresso na saída com "*"):

Não esqueça que alguns pentaminós como o P no exemplo acima pode ser colocado de várias formas na matriz:

Observações:

- Você deve implementar a estrutura de dados PILHA usando uma linguagem orientada a objetos, de forma genérica, e usar a estrutura implementada em seu EP;
- Junto com seu EP você deverá entregar um relatório, descrevendo sua implementação, que testes realizou, etc. O relatório vai ser considerado na nota do EP.
- Este exercício é individual. Você pode discutir com seus colegas, mas nunca compartilhe código.