Appunti di Chimica: Per ingegneria

Nicola Ferru

Indice

1	Intr	roduzione	9					
	1.1	Gli stati della materia	9					
	1.2	Proprietà fisiche	10					
	1.3	Trasformazioni della materia	10					
		1.3.1 Trasformazioni Fisiche	10					
		1.3.2 Trasformazioni Chimiche	10					
	1.4	Sostanza pure	10					
	1.5	Miscela	10					
2	Stee	chiometria	13					
3	Mo	delli atomici	15					
4	Pro	prietà periodiche	17					
5	Solu	ızioni	19					
6	Leg	Legame chimico						
	6.1	Introduzione	21					
		6.1.1 Teorema di Lewis	21					
		6.1.2 Struttura di Lewis	21					
		6.1.3 Elettronegatività x	21					
		6.1.4 Elettronegatività di Pauling	22					
		6.1.5 Momento dipolare e polarità Molecole biatomiche	22					
	6.2	Momento dipolare	22					
		6.2.1 Momento dipolare e polarità in CO_2 e H_2O	23					

4 INDICE

Elenco delle tabelle

1.1	Sostanza pura suddivisione	1
6.1	Comparazione tra elettroni core ed elettroni di valenza	2

Elenco delle figure

1.1	suddivisione tra energia e materia	(
1.2	Sostanza pura suddivisione	1(

Introduzione

La chimica è la scienza che studia la composizione, la struttura e le trasformazioni della MATERIA La Materia

- 1. Composizione (analisi qualitativa e qualitativa)
- 2. Struttura-proprietà (es. diamante-grafite)
- 3. Modellizzazione e progettazione

Le trasformazione della Materia

- 1. Corrosione (es. ferro-ruggine)
- 2. Combustione (es. sorgenti di energia)
- 3. Sintesi (es. farmaci, pigmenti, nanomateriali, polimeri...)

Figura 1.1: suddivisione tra energia e materia

Un sistema è una porzione delimitata di spazio che rappresenta l'oggetto dello studio mentre l'ambiente è tutto ciò che sta attorno al sistema: l'insieme di sistema e ambiente costituisce l'Universo.

1.1 Gli stati della materia

La materia possiede sostanzialmente tre stati:

- 1. Solida ha una forma definita e un volume proprio;
- 2. Liquido ha un volume ma non possiede una forma propria;
- 3. Gas non ha né forma, né un volume proprio, si espande in modo da riempire il contenitore che lo contiene.

1.2 Proprietà fisiche

Definitione 1. Proprietà che possono essere osservate e misurate SENZA alterare la composizione della sostanza

- 1. colore;
- 2. punto di fusione e di ebollizione;
- 3. indice di rifrazione;
- 4. densità.

1.3 Trasformazioni della materia

1.3.1 Trasformazioni Fisiche

Definizione 1. Trasformazioni che avvengono senza alterare la composizione della sostanza

Esempi di trasformazione fisiche:

- a) ebollizione di un liquido;
- b) fusione di un solido;
- c) sciogliere un solido in un liquido per ottenere una miscela omogenea (ovvero una soluzione)

1.3.2 Trasformazioni Chimiche

Definizione 1. Trasformazioni che avvengono alterando la natura delle sostanze coinvolte e portando alla formazione di nuovi composti.

Un esempio di questo tipo di trasformazione: La combustione del metano. Si parte dal metano e dal ossigeno e si arriva a biossido di carbonio e acqua:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Al termine della trasformazione abbiamo una sostanza differente da quella di partenza, in alcuni casi la procedura non è reversibile.

1.4 Sostanza pure

Definizione 1. Una mataria che ha una composizione omogenea non può essere scomposto tramite una trasformazione fisica in materiali differenti. In quanto non è possibile scomporre ulteriormente la materia

Può essere scomposta Chimicamente in sostanze più semplici?

Figura 1.2: Sostanza pura suddivisione

- 1. Composto sostanza formato da almeno due tipi di atomi;
- 2. Elemento tutti gli atomi la costituiscono sono dello stesso tipo.

1.5 Miscela

Composti di Due o più sostanze pure

1.5. MISCELA

Composti	Elemento
Acqua H_2O	Ossigeno O_2
Anidride carbonica CO_2	Diamante C
Cloruro di sodio $NaCl$	
Benzene C_6H_6	
Etanolo C_2H_5OH	

Tabella 1.1: Sostanza pura suddivisione

Stechiometria

Stechiometria 1. La stechiometria è la branca della chimica che studia i rapporti quantitativi (rapporti ponderali) delle sostanze chimiche nelle reazioni chimiche.

By Wikipedia

Da questa definizione è chiaro che questo sistema verrà utilizzato per una serie di esercizi potenzialmente presenti all'esame.

Modelli atomici

Proprietà periodiche

Soluzioni

Legame chimico

6.1 Introduzione

In natura le soluzioni costituite da atomi isolati sono rare, di solito, gli atomi si trovano combinati fra loro per formare dei Composti. Questi possono essere di tre tipi;

• Molecolare - si basa sulla condivisione degli elettroni di valenza (quelli più esterni) da parte degli che danno origine al legamene. La forza che tiene uniti degli atomi deriva dall'attrazione che entrambi i nuclei esercitano sugli elettroni condivisi.

Esempio: H_2 , O_2 e N_2 dove gli atomi mettono in condivisione, rispettivamente, 1, 2 e 3 elettroni di valenza ciascuno.

- Ionico è dovuto alle forze di attrazione elettrostatica che si esercitano tra ioni di carica opposta. Esempio: NaCl che è formato da cationi Na^+ e di anioni Cl^- .
- Metallico gli atomi sono tenuti uniti dagli elettroni di valenza che sono liberi di muoversi tra i cationi.

Esempio: Sodio (Na), Oro (Au), Titanio (Ti), ...

6.1.1 Teorema di Lewis

La reattività degli elementi è correlata alla tendenza di raggiungere la configurazione elettronica del gas nobile più vicino (otteziale o doppietto per He). Questa tendenza è nota come Regola dell'Ottetto.

- 1. Gli elettroni di valenza giocano un ruolo fondamentale nel formare legame chimico;
- 2. La condivisione di una o più coppie di elettroni porta alla formazione di legami covalenti;
- 3. Il trasferimento elettronico da un atomo A ad uno B porta al legame ionico.

$$2Na_{(s)} + Cl_{2(g)} \to 2Na^{+} + 2Cl$$
 (6.1)

Rappresenta il simbolo di elemento circondato da un numero di punti pari al numero degli elettroni di valenza.

6.1.2 Struttura di Lewis

·B·→ Simbolo di Lewis

6.1.3 Elettronegatività x

Misura empirica della tendenza di un atomo in una molecola ad attrarre gli elettroni di legame. Secondo Mulliken è media dell'affinità elettronica (tendenza ad attrarre un e^- addizionale) e del **potenziale**

	Elettroni del core	Elettroni di valenza
Boro	• B •	$1s^22s^22p^1$
Bromine	· <u>;</u> ;	Core = [He] valenza = $2s^2 2p^1$ $1s^22s^2 2p^63s^2 3d^{10}4s^24p^5$ core = $[Ar]3d^{10}$ valenza = $4s^24p^5$

Tabella 6.1: Comparazione tra elettroni core ed elettroni di valenza

di ionizzazione (tendenza a mantenere l' e^-)

$$x = \frac{(-\mathbf{AE} + \mathbf{EI})}{2} \tag{6.2}$$

Si può prevedere se un legame chimico è ionico o covalente sulla base della differenza di elettronegatività.

6.1.4Elettronegatività di Pauling

In una molecola AB la differenza di elettronegatività tra due atomi A e B viene determinata sperimentalmente da misure di energia di legame, facendo riferimento a un valore arbitrario di elettronegatività assegnato al Fluoro (4).

- a) Legame ionico (totale trasferimento e^+) $x_A b$) Legame covalente a carattere ionico (distribu $x_B > 2,0 [Na]^+ [:\ddot{C}:]$
 - zione carica non simmetrica, molecola polare) $0, 4 \le x_A - x_B \le 2, 0 \text{ [H - \ddot{0}:]}$
- c) Legame covalente (condivisione di e^-) x_A $x_B < 0.4 \text{ H} - - \text{H}$

6.1.5Momento dipolare e polarità Molecole biatomiche

a) Le molecole biatomiche (H — H, Cl — Cl, b) Molecole polari Nelle molecole etero-nucleari ...) omo-nucleari, ove il baricentro della carica positiva e negativa coincide.

Esempi: $H_2, O_2, N_2, ...$

la differente elettro-negatività degli atomi produce una separazione di carica e quindi un dipolo

Esempio: In HCl, Cl ha una frazione di carica negativa $(\delta -)$ e H ha una frazione di carica $(\delta+)$

6.2Momento dipolare

Si definisce Momento dipolare il prodotto della frazione di carica δ per la distanza tra le cariche. Il momento dipolare è una grandezza è una grandezza vettoriale caratterizzata da direzione e verso.

$$\vec{\mu} = \delta * d \tag{6.3}$$

H---Ö:

Momento dipolare e polarità in molecole poliatomiche Il momento dipolare è dato dalla somma dei momenti dipolari dei singoli legami, considerando inoltre l'effetto delle coppie solitarie. Una molecola sarà polare se: i legami sono polari e la molecola NON è "Simmetrica".

(6.5)

a) Momento dipolare nullo

b) Momento dipolare

 $\vec{\mu} = 0 \tag{6.4}$

 $\vec{\mu} \neq 0$

6.2.1 Momento dipolare e polarità in CO_2 e H_2O