

Tracking learning

Ariel Rokem

Senior Data Scientist, University of Washington

Learning curves: training

Learning curves: validation

Learning curves: overfitting

Plotting training curves

Storing the optimal parameters

Loading stored parameters

```
model.load_weights('weights.hdf5')
model.predict_classes(test_data)
array([2, 2, 1, 2, 0, 1, 0, 1, 2, 0])
```


Let's practice!

Neural network regularization

Ariel Rokem

Senior Data Scientist, University of Washington

Dropout

In each learning step:

- Select a subset of the units
- Ignore it in the forward pass
- And in the back-propagation of error

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Dropout in Keras

Batch normalization

Rescale the outputs

Batch Normalization in Keras

Be careful when using them together!

The disharmony between dropout and batch normalization

Let's practice!

Interpreting the model

Ariel Rokem

Senior Data Scientist, University of Washington

Selecting layers

Getting model weights

```
conv1 = model.layers[0]
weights1 = conv1.get_weights()
len(weights1)
2
kernels1 = weights1[0]
kernels1.shape
(3, 3, 1, 5)
kernel1_1 = kernels1[:, :, 0, 0]
kernell_1.shape
(3, 3)
```

Visualizing the kernel

plt.imshow(kernel1_1)


```
test_image = test_data[3, :, :, 0]
plt.imshow(test_image)
```



```
filtered_image = convolution(test_image, kernel1_1)
plt.imshow(filtered_image)
```



```
test_image = test_data[4, :, :, 1]
plt.imshow(test_image)
```



```
filtered_image = convolution(test_image, kernel1_1)
plt.imshow(filtered_img)
```



```
kernel1_2 = kernels[:, :, 0, 1]
filtered_image = convolution(test_image, kernel1_2)
plt.imshow(filtered_img)
```


Let's practice!

Wrapping up

Ariel Rokem

Senior Data Scientist, University of Washington

What did we learn?

- Image classification
- Convolutions
- Reducing the number of parameters
 - Tweaking your convolutions
 - Adding pooling layers
- Improving your network
 - Regularization
- Understanding your network
 - Monitoring learning
 - Interpreting the parameters

Model interpretation

https://distill.pub/2017/feature-visualization/

Feature visualization answers questions about what a network — or parts of a network — are looking for by generating examples.

Attribution ¹ studies what part of an example is responsible for the network activating a particular way.

What next?

- Even deeper networks
- Residual networks

Residual networks

What next?

- Even deeper networks
- Residual networks
- Transfer learning
- Fully convolutional networks

Fully convolutional networks

Generative adversarial networks

What next?

- Even deeper networks
- Residual networks
- Transfer learning
- Fully convolutional networks
- Generative adversarial networks
- ...

Good luck!