Measure and Integration I (MAA5616), Fall 2020 Homework 9, due Thursday, Nov. 12

- **1.** If $f_n \geq 0$ and $f_n \to f$ in measure, then $\int f \leq \liminf_n \int f_n$. Prove it.
- **2.** If $f_n \to f$ almost uniformly, then $f_n \to f$ a.e. and in measure. Prove it.
- **3.** Suppose $f \in L^1(\mu)$.
 - Given an $\epsilon > 0$, find a simple function $\phi = \sum_i a_i 1_{E_i}$, such that

$$\int |f - \phi| < \epsilon.$$

This shows, simple functions are dense in L^1 with the usual L^1 distance.

- For $\mu = \lambda$, show that it can be assumed $E_j = (a_j, b_j)$, a collection of open intervals.
- For $\mu = \lambda$ and an $\epsilon > 0$, construct a continuous function g with compact support, such that

$$\int |f - g| \, d\lambda < \epsilon.$$

4. (Luzin's theorem) For a Lebesgue-measurable $f:[a,b]\to\mathbb{R}$ and any given $\epsilon>0$, there exists a compact $E\subset [a,b]$ with $\lambda(E)>b-a-\epsilon$, such that $f|_E$ is continuous.

Use Yegorov's theorem together with a sequence of continuous functions g_n , constructed as in the previous problem, corresponding to $\epsilon_n \downarrow 0$.

This result extends to general topological spaces X, if the measure μ on X is finite and satisfies regularity conditions: $\mu(E) = \sup\{\mu(F) : F \subset E, F \text{ compact}\}\$ and $\mu(E) = \inf\{\mu(G) : G \supset E, G \text{ open}\}.$

5. (Strong Luzin's theorem) For f, ϵ as above, there exists a compact $E \subset [a,b]$ with $\lambda(E) > b - a - \epsilon$ and a continuous $g: [a,b] \to \mathbb{R}$, such that $f|_E = g|_E$.

This statement also holds for the general functions $f: X \to Y$ with X as above, possibly assuming that Y is a connected metric space. You should think about what breaks when the space X is connected, but Y is not; consider $Y = [a, b] \cup [c, d]$ with b < c for instance.