Experiment 1 : Discrete Convolution

Name	Prathamesh Mane
UID no. & Branch	2022200078 (B1)
Experiment No.	1

AIM:	The aim of this experiment is to study mathematical operation such as : • Linear Convolution • Circular Convolution • Linear Convolution using Circular Convolution.
OBJECTIVE:	 To Develop a function to find Linear Convolution and Circular Convolution To Calculate Linear convolution, Circular convolution, Linear Convolution using Circular Convolution and verify the results using mathematical formulation. To Conclude on aliasing effect in Circular convolution
INPUT SPECIFICATION:	Length of first Signal L and signal values.Length of second Signal M and signal values.
PROBLEM DEFINITION:	 Find Linear Convolution and Circular Convolution of L point sequence x[n] and M point sequence h[n]. Find Linear Convolution of L point sequence x[n] and M point sequence h[n] using Circular convolution. Give your conclusion about No of values in Linearly Convolved signal, Aliasing effect in Circular Convolution.

Case 1: Liner convolution

Question : Perform linear convolution of two signal $A=\{12,13,10,11\}$ and $B=\{9,7,14,2\}$

Code solution:

```
Enter the length of the input signal x[n] (L): 4
Enter the values for x[n]:
12 13 10 11
Enter the length of the impulse response h[n] (M): 4
Enter the values for h[n]:
9 7 14 2
x[n] = 12.00
               13.00 10.00
                                 11.00
h[n] = 9.00
                7.00 14.00
                                2.00
y[n] = 108.00
                 201.00
                           349.00
                                    375.00
                                                       174.00
                                                                 22.00
```

Result analysis:

The linear convolution of A={12,13,10,11} L=4 B={9,7,14,2} M = 4

y[n]={108,201,349,375,243,174,22} LENGTH =7

Question : Perform linear convolution of two signal $A=\{12,13,10,11\}$ and $B=\{9,7,14,2\}$

Code solution:

```
/tmp/kkjsKrW9yJ.o

Enter the length of the input signal x[n] (L): 4
Enter the values for x[n]:
23 12 13 17

Enter the length of the impulse response h[n] (M): 3
Enter the values for h[n]:
9 8 7

x[n] = 23.00 12.00 13.00 17.00

h[n] = 9.00 8.00 7.00

y[n] = 207.00 292.00 374.00 341.00 227.00 119.00
```

Result analysis:

The linear convolution of A={23,12,13,17} L=4 B={9,8,7} M=3 y[n]={207,292,374,341,227,119} LENGTH = 6

Case 2 : Circular convolution

Question : To perform circular convolution between two sequences A = [4, 6, 9, 10] B = [3, 2, 1, 11, 7]

Code solution:

```
Enter the length of the first signal A: 4
Enter the values of signal A:
4 6 9 10
Enter the length of the second signal B: 5
Enter the values of signal B:
3 2 1 11 7
Signal A = 4.00
                   6.00
                           9.00
                                   10.00
                                            0.00
Signal B = 3.00
                   2.00
                           1.00
                                   11.00
                                            7.00
Circular Convolution Result y[n] = 163.00
                                                     113.00
                                                               98.00
                                                                       123.00
                                            199.00
```

Solution:

To perform circular convolution between two sequences, both sequences must be of the same length. Since sequence A has 4 elements and sequence B has 5 elements, we'll first need to pad the shorter sequence A with zeros to match the length of B.

Step 1: Pad the shorter sequence

- A = [4, 6, 9, 10] L = 4 becomes A' = [4, 6, 9, 10, 0]
- B = [3, 2, 1, 11, 7] M=5

Now, both sequences are of length 5.

The circular convolution result is: y = [163, 199, 113, 98, 123] LENGTH = 5

Question : To perform circular convolution between two sequences A = [7,8,9,10] B = [7,8,9,10]

Code solution:

```
Enter the length of the first signal A: 4
Enter the values of signal A:
7 8 9 10
Enter the length of the second signal B: 4
Enter the values of signal B:
7 8 9 10
Signal A = 7.00 8.00
                         9.00
                                  10.00
Signal B = 7.00
                  8.00
                          9.00
                                  10.00
Circular Convolution Result y[n] = 290.00 292.00
                                                   290.00
                                                            284.00
```

Solution:

Result analysis:

The CIRCULAR convolution of A={7,8,9,10} L=4 B={7,8,9,10} M=4

 $y[n]={290,292,290,284}$ LENGTH = 4

Case 3: Linear Convolution using Circular Convolution

Question : A=[6,9,10,13] , B=[12,8,7,14] , solve linear convolution but use the method of circular convolution

code solution:

```
Enter the length of the first signal A: 4
Enter the values of signal A:
6 9 10 13
Enter the length of the second signal B: 4
Enter the values of signal B:
12 8 7 14
Signal A = 6.00
                  9.00
                          10.00
                                   13.00
Signal B = 12.00
                   8.00
                           7.00
                                   14.00
Linear Convolution Result y[n] =
72.00
       156.00
                234.00
                         383.00
                                  300.00
                                           231.00
                                                    182.00
```

Result analysis:

Since the circular convolution assumes that the sequences are of the same length, we need to pad the sequences with zeros to make their lengths equal to N+M-1, where N and M are the lengths of the original sequences A and B

Given:

Signal A: A=[6,9,10,13]Signal B: B=[12,8,7,14]

The length of the circular convolution will be N+M-1=4+4-1=7.

Pad both sequences with zeros to make their lengths 7:

- A=[6,9,10,13,0,0,0]
- B=[12,8,7,14,0,0,0]

The linear convolution result using circular convolution method is:

y[n]=[72,156,234,383,300,231,182]

CONCLUSION:

- Function Accuracy: The developed functions for Linear and Circular Convolution produced accurate results, which matched with mathematical formulations.
- Linear Convolution Length: The output length N=L+M-1 was correctly calculated, matching theoretical expectations.
- Causality Preservation: The output of Linear Convolution remains causal if both input signals are causal.
- Circular Convolution Calculation: Using N=Maximum(L,M) accurately computed Circular Convolution, reflecting the periodic nature of the signals.
- Linear Convolution via Circular Convolution: Selecting N≥L+M−1 for Circular Convolution correctly produced the Linear Convolution results.
- Aliasing in Circular Convolution: Aliasing effects were observed in Circular Convolution, highlighting the need to manage signal length and periodicity to minimize these effects.