

JANNAF

Liquid Propulsion Subcommittee and Advanced Materials Panel Additive Manufacturing for Propulsion Applications Technical Interchange Meeting

Additive Manufacturing Design Considerations for Liquid Engine Components

September 4, 2014

Andy Hissam/Darron Rice/Kevin Baker/David Whitten

MARSHALL SPACE FLIGHT CENTER

ENGINEERING DIRECTORATE
PROPULSION SYSTEMS DEPARTMENT
PROPULSION COMPONENT DESIGN & DEVELOPMENT DIVISION
PROPULSION DETAILED DESIGN BRANCH

- Introduction
- Part Selection
- Part Geometry
- Other Considerations: Build Orientation, Tolerances, Surface Finish, Material Allowances
- Benefits/Drawbacks
- Conclusions

- Pump Housings
- Valve Bodies
- Rotating Machinery
- Ducts
- Combustion Devices

When Does Additive Manufacturing Make the Most Sense?

- Components with large part count
 - Eliminate need for joining: e.g., fasteners and welding. Reduce tooling.
 - Reduce number of sealed joints
- Parts with Complex Geometry
 - Eliminate costly machining
 - Allows routing of complex internal passages
 - Allows variable passages and wall thickness
 - Coolant channels
 - Flow paths
 - Build parts that cannot be made with traditional machining
- Assess cost savings in terms of individual parts but also at a system level

Components with Large Part Count

INJECTOR,
CONVENTIONAL DESIGN

162 pieces

INJECTOR,
ADDITIVE MANUFACURING DESIGN

2 pieces

Parts with Complex Geometry

INTEGRAL SHAFT AND TURBINE

IMPELLER

Some parts can be manufactured cheaper using traditional methods

INJECTOR LOX STEM

- Vendor A (conventional machining) \$2155
- Vendor B (3D printed) \$3539 + final machining
- Vendor C (3D printed) \$7560 + final machining

Some Parts Limited by Build Box

- Build Box Varies Between Machines
 - EOS 270 9.5" x 9.5" x 7.5" w/1" thick build plate
 - EOS 280 9.5" x 9.5" x 11" w/1" thick build plate

Concept Laser M2 – 9.5" x 9.5" x 11" w/1" thick build plate

Printed Part

Test Samples

Build Plate

Others

New machines with larger build boxes are becoming available

Larger parts can be made in several pieces then joined

Part Geometry

- Flat Ceilings and Overhangs
 - Require structural support
 - Accessible for post machining
- Angles / Rounds
 - Greater than 45 degrees
 - Optimize round/fillets to minimize material

- A "burn" can occur in holes in vertical plane
- Consider ovals/teardrops in vertical planes
- May require support in vertical plane
- Internal passages
 - Powder removal access
 - Support structure removal if required

Part Geometry – Flat Ceilings and Overhangs

- External flat ceilings are allowed in the design only if supports are used.
- For internal (enclosed) geometry, angles greater than 45 deg. are necessary.
- Arched ceilings also work well.

Angles can be used where support structure will be difficult to remove.

Support structure will be required, requiring post machining for removal.

Part Geometry – Angles/Rounds

Smaller rounds can be used at floors (stress permitting)

Larger rounds should be used at ceilings

Part Geometry - Holes

Burn (or pill) will occur at top of hole Burn Holes in vertical plane will require structural support (when greater than ~ 1")

Vertical elliptical holes will reduce burn at top of hole

Elliptical holes in vertical plane may eliminate need for structural support

Part Geometry – Internal Passages

Minimum achievable hole diameter 0.020-0.030 inch

PUMP CROSS-OVER

PUMP DISCHARGE HOUSING

Internal passage for pressure measurement in labyrinth seal

Other Considerations – Build Orientation

- Ideally, there is a continuous path of solidified metal extending down to the build table
- Features that require build supports should be easily accessible from the outside of the part for removal
- Minimize supported areas. More support structure requires more post processing time.
- Some parts build better in certain orientations

VALVE BODY FOR TURBINE BY-PASS

POGO BAFFLE ASSEMBLY

Other Considerations - Tolerances

The achievable part tolerance drops as the part grows, that is, in the build direction.

Other Considerations - Tolerances

The achievable part tolerance drops moving radially outward.

Deviations taken 4.6 inches from build plate

Other Considerations – Surface Finish

- A surface finish of 250-350 μin Ra can be generally achieved directly from the machine.
- Typically, a part can be shot-peened or sand blasted for a smoother finish (100-200 μin).
- This cannot be done to internal passages.
- Post machining may be required to achieve better surface finish (e.g. sealing surface).

Traditional Machining

Additive Manufacturing

Other Considerations – Material Allowances

Excess material may also be needed for part handling (for machining operations)

Other Considerations

- Use external rounds and small internal fillets where design will allow.
 - Decreased build time means less cost.
- Vertical wall thicknesses should be greater than .020".
 - If a thin wall is required, then extra material is needed.
- Threaded features, O-ring grooves, and tight fits require post machining.
- FOD prevention during post machining.
- Hot Isostatic Pressing (HIP) process may alter part geometry.
- Cannot always inspect internal passages (must ask: is this acceptable?)

Benefits of AM

- Decreased part count
- Complex parts created for less cost
- Increased design space
- In some cases, schedule benefits
- Increased reliability
- Increased performance (e.g. optimized flow passage geometry)
- Leverages model-based design and analysis

Drawbacks of AM

- Still requires conventional machining of critical surfaces (sealing surfaces, tight fits)
- Some design features require special accommodation (e.g. overhangs)
- Cannot fully inspect internal passages
- Removing powder from small internal passages
- Limits on size
- Lack of material characterization

40 Element Injector Test

40 Element Injector Faceplate

- AM technologies have come a long way in a short time, but are still developing at a rapid pace.
- Many factors must be considered when deciding whether to make a part using AM.
- Many design features must be carefully evaluated when designing for AM (e.g., overhangs, holes, wall thickness).
- Currently, all the parts that we have developed required some final machining. This will likely change in the future.
- As AM technologies continue to evolve and mature, so will our AM design practices.