Прикладные модели исследования операций.

Лекции.

ЧЕРНОВИК

Лектор: Чернов В.П. Автор конспекта: Курмазов $\Phi.A.^*$

20 февраля 2021 г.

Содержание

1	Лек	иция 1.	2
	1.1	Модель оптимизации цен.	2
	1.2	Возможность привлечения кредитных средств	
	1.3	Задача построения портфеля проектов.	9
2	д Лекция 2.		4
	2.1	Сложный портфель	4
	2.2	Анализ эффективности инвестиционного портфеля	4

^{*}f.kurmazov.b@gmail.com

1 Лекция 1.

1.1 Модель оптимизации цен.

Дана торговая (или продуктовая) компания. Компания закупает в различных местах товары, затем привозит в некоторую точку для продажи. Себестоимость товаров различная, а также для каждого товара задан спрос в единицу времени. Требуется найти управление закупками и ценами на товары максимизирующее прибыль компании.

Далее, чуть более формально, для мат. модели. Задан набор доступных продуктов $[n]^1$. Для каждого вида товаров задана функция спроса Q_k . В частном случае, спрос представлен монотонно убывающей функцией, в еще более частном случае, который мы и рассмотрим — линейной.

$$Q_k = a_k \cdot p_k + b_k \ \forall \ k \in [n]$$

Где $a \in \mathbb{R}^n_-$ скорость убывания спроса при росте цены, $b \in \mathbb{R}^n_+$ — базовый спрос на товар при соответствующей нулевой цене, а $p \in \mathbb{R}_+^n$ — стоимость продажи единицы товара — переменная задачи.²

Исходя из этого, выручку можно считать по формуле:

$$R = \sum_{k=1}^{n} Q_k \cdot p_k$$

В рассматриваемой модели (простой) учитываются переменные (V) и постоянные (F) затраты, сумма которых составляет все затраты компании C:

$$C = F + V$$

 Γ де постоянные затраты F заданы (для данной простой модели), а переменные затраты V рассчитываются по формуле:

$$V = \sum_{k=1}^{n} Q_k \cdot v_k$$

Где v_k — удельные переменные затраты на единицу товара.

Требуется максимизировать прибыль $\pi \in \mathbb{R}$, изменяя стоимости продажи товаров p:

$$\pi = R - C \to \max$$

Так как введенная форма спроса допускает отрицательные значения, для математической модели задачи потребуется введение ограничений на неотрицательность спроса:

$$Q_k \ge 0 \ \forall \ k \in [n]$$

Дополнительно можно учитывать ограничение по затратам (бюджет) $B \in \mathbb{R}$:

$$\sum_{k=1}^{n} Q_k \cdot v_k \le B$$

Замечание. Множители Лагранжа в решении нелинейной задачи играют роль похожую на роль теневых цен в решении линейной задачи. В частности, они показывают изменение ЦФ задачи при изменении ограничения на 1 (предельную полезность ресурса).

 $^{^{1}}$ Редко встречающееся, но красивое обозначение для первых n натуральных чисел $[n]=\{1,2,3,...,n\}$ без 0.

 $^{^{2}\}Gamma$ де R_{+} — неотрицательные вещественные числа, а R_{-} — неположительные.

1.2 Возможность привлечения кредитных средств.

Помимо прочего, в модели также можно учитывать взятие денег в кредит.

Замечание. Множитель Лагранжа при бюджетном ограничении можно интерпретировать как максимальную допустимую кредитную ставку, при взятии кредита на время операции (закупки - продажи).

Введение возможности взятия кредита можно ввести с помощью добавления к бюджетному ограничению объема кредита, т.е. замены:

$$B_{new} = B + K$$

 Γ де $K \in \mathbb{R}_+$ — величина кредита.

А также с помощью добавления к издержкам процентов по кредиту:

$$C_{new} = C + K \cdot percent$$

Где $percent \in \mathbb{R}_+$ — процентная ставка по кредиту.

Замечание. При решении нелинейной задачи средствами Excell стоит обратить внимание на настройку параметров (точность решения и множественные начальные точки) чтобы избежать высокой вероятности попадания в локальный минимум. При этом, похоже, что Excell использует разновидность градиентного спуска.

1.3 Задача построения портфеля проектов.

Замечание. Это модифицированная задача о рюкзаке.

Простой вариант задачи — однопериодный. Он и описан ниже.

Задано множество объектов (проектов) [n], где каждый проект имеет свою стоимость $c \in \mathbb{R}_+^n$ и прибыльность $\pi \in \mathbb{R}_+^n$. Проект k может быть взят $(y_k = 1)$ или не взят $(y_k = 0)$, т.е. $y \in \{0,1\}^n$. Также задан бюджет $B \in \mathbb{R}_+$ — максимальная допустимая суммарная стоимость итогового набора проектов. Таким образом имеем задачу целочисленного программирования, в которой требуется максимизировать прибыль путем выбора наилу чшего набора проектов среди всех допустимых (по бюджету), т.е. максимизировать величину:

$$\sum_{k=1}^{n} \pi_k \cdot y_k \to \max$$

При условии:

$$\sum_{k=1}^{n} c_k \cdot y_k \le B$$

2 Лекция 2.

2.1 Сложный портфель.

Развитием задачи формирования портфеля (рюкзака) является расширение задачи на несколько периодов, с соответствующими изменениями во входных данных.

Задано множество объектов (проектов) [n], и множество периодов $T = \{1, 2, ..., m\}$. Для каждого периода времени $t \in T$ задан вектор доходности проектов $c^t \in \mathbb{R}^n$. Также задан объем инвестиций (бюджет) в каждый период времени $B \in \mathbb{R}^m$ Требуется выбрать такой набор проектов, что итоговая прибыль максимальна, и при этом ни в один период времени t бюджет B^t не превышается. Т.е. выполняется условие:

$$\langle c^t, y \rangle + B^t \ge 0 \ \forall \ t \in T$$

Также возможен вариант с накоплением неиспользованных инвестиций.

$$\sum_{k=1}^{t} (\langle c^k, y \rangle + B^k) \ge 0 \ \forall \ t \in T$$

Замечание. В модели с переносом средств между периодами стоит учитывать дисконтирование.

2.2 Анализ эффективности инвестиционного портфеля.

Расчет различных показателей эффективности.

Исходные данные по проекту:

- Даты срезов $T = \{t_1, t_2, ...t_m\}$.
- ullet Поток вложений $K \in \mathbb{R}^m$ на даты T.
- Поток доходов $D \in \mathbb{R}^m$ на даты T.
- Ставка дисконтирования $i \in \mathbb{R}^m$.

Расчитываемые показатели:

- Итоговый финансовый поток: $R_t = D_t K_t$ на даты T.
- Дисконтный множитель: $v_k = (1+i_k)^{(-\frac{t_k-t_{k-1}}{365})} \; \forall k>1.$
- Нарастающий дисконтный множитель: $V_k = \prod_{l=1}^k v_l$.
- Дисконтированный поток вложений: $Kd_k = V_k \cdot K_k$.
- Дисконтированный поток доходов: $Dd_k = V_k \cdot D_k$.
- Чистый дисконтированный доход $NPV_k = \sum_{l=1}^k V_l \cdot R_l = \sum_{l=1}^k (V_l \cdot D_l V_l \cdot K_l) = \sum_{l=1}^k (Dd_l Kd_l).$
- Индекс доходности $PI_k = \sum\limits_{l=1}^k rac{Dd_l}{Kd_l}$

 $^{^3}$ Обозначим $\langle \cdot, \cdot \rangle$ — скалярное произведение.