\$\psi\$ +1 (352) 514 3965 mtoneva@mpi-sws.org http://mtoneva.com

Mariya Toneva

Positions Held

Max Planck Institute for Software Systems Tenure-track Faculty (W2) Visiting Researcher	starting Sept 2022 July 2021–Sept 2022		
Princeton University Postdoctoral Researcher Advisors: Ken Norman, Uri Hasson	August 2021–Sept 2022		
Education			
Carnegie Mellon University Ph.D. in Machine Learning and Neural Computation Thesis title: Bridging Language in Machines with Language in the Brain Advisors: Tom Mitchell, Leila Wehbe	2014–2021		
Carnegie Mellon University Masters of Science in Machine Learning	2018		
Yale University Bachelor of Science in Computer Science, Cognitive Science	2014		
Publications in Journals and Conference Proceedings			
 Combining Computational Controls with Natural Text Reveals New Aspect Meaning Composition M. Toneva, T. Mitchell, and L. Wehbe Nature Computational Science (Accepted) [pdf] 	ets of 2022		
 Same Cause; Different Effects in the Brain M. Toneva*, and J. Williams*, A. Bollu, C. Dann, and L. Wehbe (CLeaR 2022) Causal Learning and Reasoning [pdf] 	2022		
 Single-trial MEG Data Can Be Denoised Through Cross-Subject Predictiv S. Ravishankar, M. Toneva, and L. Wehbe Frontiers in Computational Neuroscience 2021 [pdf] 	e Modeling 2021		
 Modeling Task Effects on Meaning Representation in the Brain via Zero-Shot MEG Prediction M. Toneva*, O. Stretcu*, B. Poczos, L. Wehbe, and T. Mitchell (NeurIPS 2020) Neural Information Processing Systems [pdf] 	2020		

5.	Interpreting and Improving Natural-Language Processing (in Machines) with Natural Language-Processing (in the Brain) M. Toneva and L. Wehbe (NeurIPS 2019) Neural Information Processing Systems [pdf]	2019
6.	Inducing Brain-relevant Bias in Natural Language Processing Models D. Schwartz, M. Toneva , and L. Wehbe (NeurIPS 2019) Neural Information Processing Systems [pdf]	2019
7.	An Empirical Study of Example Forgetting during Deep Neural Network Learning M. Toneva*, A. Sordoni*, R. Tachet des Combes*, A. Trischler, Y. Bengio, and G. Gordon (ICLR 2019) International Conference on Learning Representations [pdf]	2019
8.	Applying Artificial Vision Models to Human Scene Understanding E. M. Aminoff, M. Toneva , A. Shrivastava, X. Chen, I. Misra, A. Gupta, and M. J. Tarr Frontiers in Computational Neuroscience 2015 [pdf]	2015
9.	Exploration of Social Grouping: Effects of Behavioral Mimicry, Appearance, and Eye Gaze A. Nawroj, M. Toneva , H. Admoni, B. Scassellati (CogSci 2014) <i>Conference of the Cognitive Science Society</i> [with Oral presentation] [pdf]	2014
10.	The Physical Presence of a Robot Tutor Increases Cognitive Learning Gains D. Leyzberg, S. Spaulding, M. Toneva , and B. Scassellati (CogSci 2012) <i>Conference of the Cognitive Science Society</i> [pdf]	2012
11.	Robot Gaze Does Not Reflexively Cue Human Attention H. Admoni, C. Bank, J. Tan, M. Toneva , and B. Scassellati (CogSci 2011) Conference of the Cognitive Science Society [pdf]	2011
Pr	eprints and Non-Proceeding Publications	
	Memory for long narratives M. Toneva, V. Vo, J. Turek, S. Jain, S. Michelmann, M. Capotă, A. Huth, U. Hasson, and K. Norman (CEMS 2022) Context and Episodic Memory Symposium	2022
	The Courtois Neuromod project: a deep, multi-domain fMRI dataset to build individual brain models J. Boyle*, B. Pinsard*, V. Borghesani, M. Saint-Laurent, F. Lespinasse, F. Paugam, P. Sainath, S. Rastegarnia, A. Boré, J. Chen, A. Cyr, E. Dessureault, E. DuPre, Y. Harel, M. Toneva, S. Belleville, S. Brambati, J. Cohen-Adad, A. Fuente, M. Hebart, K. Jerbi, P. Rainville, L. Wehbe, and P. Bellec (HBM 2022) Human Brain Mapping [with Oral presentation]	2022
	A roadmap to reverse engineering real-world generalization by combining naturalistic paradigms, deep sampling, and predictive computational models P. Herholz, E. Fortier, M. Toneva , N. Farrugia, L. Wehbe, V. Borghesani (arXiv 2022) [pdf]	2022

with Brain Recordings?	nto Language Models Lead to Better Alignment	2021
M. Abdou, A.V. González, M. Tone (arXiv 2021) [pdf]	va, D. Hersncovich, and A. Søgaard	
 Investigating Different Alignment Me for Language Processing A. Bollu, M. Toneva, and L. Wehbe (SNL 2020) Society for the Neurobio 		ks 2020
 Investigating Task Effects on Brain A M. Toneva*, O.Stretcu*, B. Poczos (HBM 2019) Human Brain Mapping 		2019
 Word Length Processing in Left Late an MEG Study M. Toneva, and T. Mitchell (HBM 2018) Human Brain Mapping 	raloccipital through Region-to-Region Connectivity:	2018
 MEG Representational Similarity Analin Sentence Processing N. Rafidi*, D. Schwartz*, M. Tonev (HBM 2018) Human Brain Mapping 	alysis Implicates Hierarchical Integration a* , S. Jat, and T. Mitchell	2018
 Scene-Space Encoding within the Function E. M. Aminoff, M. Toneva, A. Gupt (VSS 2015) Vision Sciences Society 		2015
 Towards a Model for Mid-level Featu M. Toneva, E. M. Aminoff, A. Gupt (VSS 2014) Vision Sciences Society 	•	2014
Grants and Fellowships		
DFG Research Unit 5368 KI-FOR Ab Bridging Levels of Abstraction in Brains and	ostract Representations in Neural Architectures Natural Language Processing Machines	2023-2027
National Institutes of Health T32 Translated one year of postdoctoral research in	aining Grant Quantitative and Computational Neuroscience	2021-2022
C.V. Starr Fellowship Funded one year of postdoctoral research in	computational neuroscience at Princeton University	2021-2022
National Science Foundation Gradua Funded three years of interdisciplinary gradu	te Research Fellowship late research in machine learning and neuroscience	2016–2019
Grace Hopper Celebration Scholarshi Funded attendance at the 2014 Grace Hopp	•	2014
Mellon Forum Undergraduate Resear Funded submission and attendance at the 20		2014
Robin Berlin Fellowship Funded neural modeling research at Laborat	ory of Computational Neuroscience, EPFL	2013

Awards

Ph.D. Dissertation Award, Honorable Mention Society for the Neurobiology of Language	2021
Machine Learning Student Leadership Award Awarded for exemplary efforts and their significant impact on life in the Machine Learning Department	nent 2020
Top Reviewer NeurIPS 2022, ICLR 2022, ICML 2022, NeurIPS 2018	2018-2022
Citadel Datathon Runner-up Analyzed a genomics dataset to predict age-related differences in disease-related gene expression	2017
Machine Learning Teaching Assistant Award Awarded for outstanding performance as a TA in 10-725 Convex Optimization	2017
BrainHub Neurohackathon Winner Reduced need for human supervision by classifying diffusion MRI tracks into anatomical bundles	2016
Conference and Invited Talks	
 Bridging Language in Machines with Language in the Brain CMMRS Summer School, MPI for Software Systems 	2022
 NLP Systems as Model Organisms for Human Language Comprehension IMPRS NeuroCom Summer School at the MPI for Human Cognitive and Brain Science 	2022 es
 Deep Neural Networks as Model Organisms for Human Language Comprehension ML, Abstract Thought, and the Expanding Reach of Al: Ethical and Conceptual Frontic 	
 Same Cause; Different Effects in the Brain MIT, Host: Evelina Fedorenko 	2022
 Bridging Language in Machines with Language in the Brain Distinguished Speakers in Language Science Colloquium, Saarland University 	2022
 NLP Systems as Model Organisms for Human Language Comprehension Computational Neuroscience Symposium 	2021
■ Data-Driven Transfer of Insight between Brains and AI Systems MIT Yale University Boston University University of Southern California University of Utah Max Planck Institute for Software Systems Aarhus University Toyota Technological Institute at Chicago IST Austria University of Chicago University of Notre Dame University of North Florida University of Liverpool	2021

•	NLP Systems as Model Organisms for Human Language Comprehension Courtois NeuroMod Group, Host: Pierre Bellec	2021
•	Modeling Context-Dependent Meaning Composition During Language Comprehension Princeton Neuroscience Institute, Hosts: Ken Norman and Uri Hasson	2021
•	Data-Driven Direct Transfer of Insight between Brains and AI Systems SFB-TRR 161 Lecture Series (University of Stuttgart, University of Konstanz, Ulm University, and the LMU Munich), Host: Lewis Chuang	2020
-	Modeling Task Effects on Meaning Representation in the Brain Traditional Talk, Neuromatch Conference	2020
•	Nonlinear Models for Scientific Discovery about Language in the Brain Invited speaker and panelist, Cognitive Computational Neuroscience (CCN) workshop Is it that simple? The use of linear models in cognitive neuroscience	2020
•	Modeling Task Effects on Meaning Representation in the Brain Carnegie Mellon University, brAIn seminar	2020
•	Composition of Context- and Task-dependent Meaning UT Austin, Host: Alexander Huth	2020
•	Towards a Model for Mid-level Feature Representation of Scenes Oral presentation, Women in Machine Learning (WiML) workshop at NeurIPS	2014
•	Exploration of Social Grouping: Effects of Behavioral Mimicry, Appearance, and Eye Gaze Oral presentation, Conference of the Cognitive Science Society (CogSci)	2014

Industry Internships

Microsoft Research, Montreal

Research Intern 2018

Investigated the learning dynamics of neural networks as they train on single classification tasks, finding that certain examples are forgotten with high frequency, and some not at all, and that, based on these forgetting dynamics, a significant fraction of examples can be omitted from the training data set while still maintaining state-of-the-art generalization performance

Cognitive Computing Center, Thomson Reuters

Research Intern 2017

Investigated the use of a recurrent neural network encoder for unsupervised word-order sensitive hashing as a step towards improving ranking results

Research Visits

Carnegie Mellon University

Research Assistant; Advisor: Michael Tarr 2013–2014

Investigated mid-level scene representation in humans using computer vision techniques

École Polytechnique Fédérale de Lausanne (EPFL)

Summer Intern; Advisor: Wulfram Gerstner 2013

Worked towards improving the state-of-the-art calcium-based model of spike-timing dependent plasticity

Massachusetts Institute of Technology

Technical Trainee: Advisor: John Gabrieli

Examined links between working memory capacity and various brain metrics through the analysis of resting state functional connectivity fMRI data Mentorship and Supervision **Anand Bollu** Masters at Department of Computer Science, CMU 2019-2021 Sydney Zheng Undergraduate at Department of Computer Science, CMU 2019 Aditri Bhagirath 2019 Undergraduate at Department of Computer Science, CMU Tara Pirnia MD/PhD candidate, CMU and University of Pittsburgh 2015 Teaching 3370 Mathematical Neuroscience, University of Pittsburgh Teaching Assistant 2018 10-725 Convex Optimization, CMU 2016 Teaching Assistant Awarded Machine Learning TA award Machine Learning for Neuroscience, Multimodal Neuroimaging Training Program Instructor 2016 Created curriculum and instructed 4-week course; video recordings can be found on personal webpage

Service

Organizer

Memory in Artificial and Real Intelligence Workshop, NeurIPS Deep Learning for Brain Encoding and Decoding Tutorial, Cognitive Sciences Society What can NLP systems teach us about language in the brain? Symposium, Society for the Neurobiology of Language How can findings about the brain improve AI systems? 2021 Workshop, ICLR

2012

Reviewer

ML: NeurIPS 2016, 2018(Top 30% Reviewer)-2022; ICML 2019,2021,2022(Top 10% Reviewer);

AAAI 2020-2021, CoLLa 2022, ICLR 2022-2023 (Highlighted Reviewer)

NLP: ACL 2019-2021; NAACL 2019-2021; EMNLP 2020-2021; CoNLL 2020-2021; AACL-IJCNLP 2020;

EACL 2021

Neuro: Nature Communications; Frontiers in Computational Neuroscience;

Society for the Neurobiology of Language 2022; Organization for Human Brain Mapping 2018

Other venues: CogSci 2021

ML@CMU Blog

Chief Editor and Co-founder 2018–2020

Oversaw more than 30 research posts featuring recent ML research across 6 departments in the School of Computer Science as well as other CMU schools and departments, and more than 10 educational posts

University Leadership Student Advisory Council

Member 2015–2017

Advising senior leadership at Carnegie Mellon University on the strategic priorities of the university

Graduate Student Assembly

Representative for the Program of Neural Computation

2015-2018

Advocating for the needs of graduate students

Yale Review of Undergraduate Research in Psychology

Chief Editor 2013–2014

Reviewed 50 submissions from 31 universities, and edited 9 submissions for publication

Personal

Languages Bulgarian (Native), English (Fluent), German (Intermediate)

Citizenship United States, Bulgaria
Github profile http://github.com/mtoneva

Google Scholar profile https://scholar.google.com/citations?user=a61sk-4AAAAJ