

<u>Sample Question Format</u> (For all courses having end semester Full Mark=50)

KIIT Deemed to be University Online End Semester Examination(Spring Semester-2021)

<u>Subject Name & Code:</u> Artificial Intelligence & CS 3011 <u>Applicable to Courses: B. Tech IT</u>

Full Marks=50 Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

Time:30 Minutes

(7×2=14 Marks)

Question	Questi	Question	<u>CO</u>	<u>Answer</u>
<u>No</u>	on_		<u>Mappi</u>	Key MCO
	Type (MCQ/		<u>ng</u>	(For MCQ Questions
	SAT)			only)
Q.No:1	SAT	What are four approaches of Artificial	CO1	<u>OHIJ</u>
<u> </u>	<u> </u>	Intelligence (AI)? Which one of these	001	
		approaches is preferred most and why?		
	SAT	Out of four approaches of AI, why is	CO1	
		Rational agent approach more justifiable		
		than remaining three approaches?		
	<u>SAT</u>	What is the other name of Turing Test	CO1	
		approach? Which six capabilities should be		
		possessed by a system to qualify for Turing		
		Test?		
	<u>SAT</u>	State at least five state of the art	CO ₁	
		applications of AI.		
<u>Q.No:2</u>	<u>SAT</u>	State briefly about agent function, agent	CO ₂	
		program, rational agent and performance		
	~ 4 ==	measure.	~~	
	<u>SAT</u>	Differentiate between rationality and	CO ₂	
		omniscience. Which additional factors		
		should be associated with a basic novice		
		agent to become an autonomous rational		
	SAT	agent? Differentiate between a competitive	CO ₂	
	SAI	multiagent and a cooperative multiagent	CO2	
		through a suitable example.		
	SAT	Distinguish between environment class	CO ₂	
	<u> </u>	and environment generator.	002	
Q.No:3	SAT	Differentiate between two types of search:	CO ₃	
211013	<u> </u>	uninformed search and informed search.	CO 3	
		Mention the names of at least three search		
		strategies for each type of search.		

	CAT	TATE of one the fire common and of muchlons	COs	
	<u>SAT</u>	What are the five components of problem	CO3	
		formulation? What are the input and		
		output of any problem-solving agent		
	~	algorithm, in general?		
	<u>SAT</u>	Distinguish between:	CO3	
		i) State space and search tree		
		ii) State and node.		
	<u>SAT</u>	Indicate both heuristic values (h1 = no. of	CO3	
		misplaced tiles and h2 = Manhattan		
		distance) given the following initial state		
		and final state of 8-puzzle problem: (Only		
		give the values. No calculation needs to be		
		shown.)		
		2 8 3 1 2 3		
		1 6 4 8 4		
		7 5 7 6 5		
		Initial State Final State		
Q.No:4	SAT	State three issues of Hill Climbing local	CO ₄	
		search. Suggest briefly the solution to		
		tackle each of these issues.		
	SAT	What is local search? Name four	CO4	
		algorithms (including optimization) under		
		local search.		
	SAT	If an 8-queens problem is to be solved	CO ₄	
		using GA, then the corresponding fitness		
		function to be maximized is "No. of		
		nonattacking queen pairs". When the final		
		solution will be achieved, this fitness		
		function will have the maximum value.		
		Then what is this maximum value? (Only		
		write the answer. No calculation needs to		
		be shown.)		
	SAT	Name at least three variants of Hill	CO ₄	
	<u>SAI</u>	climbing approach?	CO4	
Q.No:5	MCQ	Which of the followings is an example of	CO ₅	В
<u>Q.110.5</u>	MCQ		CO ₅	Б
		global constraint?		
		A. k-consistent		
		B. Alldiff		
		C. x<0		
		D. $x+y >=5$		
	MCQ	Adversarial search problems use	CO ₅	A
	11100	A. Competitive Environment	000	11
		B. Cooperative Environment		
		C. Neither Competitive nor Cooperative		
		Environment		
		D. Both Competitive and Cooperative		
		Environment		
	MCQ	In alpha-beta pruning, alpha is the	CO ₅	D
	MICQ		COS	ט
		A. the root node		
		B. minimum value found so far		
		C. leaf node		
	•			

		D. maximum value found so far		
	MCQ	Consider a problem of job-shop scheduling	CO ₅	С
		in a car manufacturing factory. What type	Ü	
		of problem is this?		
		A. Search Problem		
		B. Backtrack Problem		
		C. CSP		
		D. Planning Problem		
Q.No:6	MCQ	Wumpus World is a best example of	CO6	В
<u>Q.110.0</u>	MOQ	A. Adversarial search	000	Б
		B. Reasoning with knowledge		
		C. Constraint satisfaction problem		
		D. Searching problem		
	MCQ	Which algorithm will work backward from	CO6	В
		the goal to solve a problem?		
		A. Forward chaining		
		B. Backward chaining C. Depth First Search		
		D. None of the mentioned		
	MCQ	What is used in backward chaining	CO6	С
		algorithm?		
		A. Conjuncts		
		B. Substitution		
		C. Composition of substitution		
	7.00	D. None of the mentioned		
	MCQ	What will backward chaining algorithm return?	CO6	С
		A. Additional statements		
		B. Logical statement		
		C. Substitutes matching the query		
		D. All of the mentioned		
Q.No:7	MCQ	Knowledge and reasoning play a crucial	CO6	В
		role in dealing with		
		environment.		
		A. Completely Observable B. Partially Observable		
		C. Neither Completely nor Partially		
		Observable		
		D. Both Completely and Partially		
		Observable		
	MCQ	Uncertainty arises in the Wumpus world	CO6	C
		because the agent's sensors give only		
		A. Full & Global information		
		B. Partial & Global		
		Information		
		C. Partial & local		
		Information		
		D. Full & local information		
	MCQ	I) Knowledge base (KB) consists of set of	CO6	A
		sentences.		

	II) Inference algorithm derives a new		
	sentence from the KB.		
	Choose the correct option:		
	A. I is true, II is true		
	B. I is false, II is false		
	C. I is true, II is false		
	D. I is false, II is true		
MCQ	Inference algorithm is complete only if	CO6	В
	a) It can derive any sentence.		
	b) It can derive any sentence that is		
	entailed.		
	c) It derives only entailed sentences.		
	d) It can derive some entailed sentences		

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

Time: 1 Hour and 30 Minutes (3×12=36 Marks)

Questio n No	<u>Question</u>	CO Mappin g (Each questio n should be from
		<u>the</u> same
		CO(s)
Q.No:8	What are task environment and PEAS description? Specify the task environments in a tabular manner for the following agents through their respective PEAS descriptions: i) Automated taxi driver ii) Medical diagnosis system iii) Part-picking robot iv) Satellite image analysis system Explain briefly six types of properties of task environments. State these properties of task environments in a tabular manner for the following agents: i) Chess with a clock ii) Refinery controller iii) Interactive English tutor iv) Mars rover Why is the table-driven approach to agent construction a failure? State four popular design types of agent architecture. Draw the schematic diagram and briefly explain each of these	CO2

design types.

Draw the schematic diagram of a learning agent indicating its four conceptual components.

Explain the difference between a goal-based agent and a utility-based agent through examples and schematic diagrams. Draw the block schematic diagram of a learning agent and explain its four conceptual components through suitable examples.

Q.No:9

In A* search, define the admissible heuristic and consistent heuristic. How do these two heuristics are associated with the optimality of A* search?

Consider the search problem below with start state A and goal state I. The transition costs (or step costs) are next to the edges, and the heuristic values are indicated within round brackets very close to the states. Apply A* search to expand the nodes systematically by drawing the corresponding tree diagrams. Find the order of expansion of nodes from start state to goal state.

Under which condition, Depth first search fails? Explain how Depth limited search (DLS) takes care of this issue of DFS. What is the major drawback of DLS? Finally explain how Iterative deepening search (IDS) solves the issues of DFS and DLS and also combines the benefits of both DFS and Breadth first search (BFS)?

Show in a tabular manner the comparative performance measures of six uninformed search strategies, such as, BFS, UCS, DFS, DLS, IDS and BDS.

Justify why the time & space complexities of Bidirectional search (BDS) being implemented from both ends using BFS are considerably less than those of Breadth first search (BFS) being implemented only from initial end, for the given initial state and goal state.

Find the order of expansion of nodes for the following search graph using

- i) Uniform cost search (UCS)
- ii) Greedy best first search

Assume start node to be S and goal node to be G. The values indicated along the connecting lines represent step costs or transition costs and values indicated inside the nodes represent heuristic values.

CO₃

Explain the knowledge-based agent for a partially observable environment. How is it different from a problem-solving agent? Explain entailment and inference with examples. What do you understand by soundness and completeness in inference mechanism?

Explain propositional logic and first order logic with

Explain propositional logic and first order logic with respective syntax and semantics. Compare and contrast both representations with examples. Mention the components of a Planning Domain Definition Language (PDDL) with examples.