Specifiche software

Per eseguire l'homework ho usato il seguente software:

- Terrier 4.4 per l'indicizzazione e l'interrogazione;
- trec_eval 9.0 per la valutazione;
- Script *Matlab* per l'analisi.

Descrizione del lavoro

Per l'homework ho eseguito quattro run usando *Terrier*, indicizzando e interrogando la collezione opportunemente seguendo le specifiche date, ovvero:

- BM25 SL PS: Stoplist, Porter stemmer, BM25
- TFIDF SL PS: Stoplist, Porter stemmer, TF*IDF
- BM25 PS: No stoplist, Porter Stemmer, BM25
- **TFIDF**: No stoplist, No stemmer, TF*IDF

Per le query ho considerato entrambi i campi "title" e "desc" dei TREC Topic ignorando valori con IDF troppo basso a favore di un miglioramento considerevole delle prestazioni nella run BM25 PS. (Vedi tabelle in basso)

In seguito ho valutato i risultati delle run eseguite con *Terrier* usando *trec_eval*. Per l'analisi del sistema ho usato i seguenti script e file *Matlab*.

- textEvalToData.m converte in due file .mat i valori quali MAP, precision at recall base e precision at 10 dai risultati della valutazione di trec eval.
- evalData.mat e evalAllData.mat sono file dati risultanti da textEvalToData.m e contengono rispettivamente i valori per ogni singolo topic e i valori calcolati per l'intera run.
- display Table.m stampa una tabella per confrontare i valori tra le quattro diverse run. Utilizza il file dati eval All Data. mat.
- *ir_anova_map.m*, *ir_anova_rprec.m* e *ir_anova_p_10.m* servono per condurre il test *ANOVA 1-way* sulle varie misure. Utilizza il file dati *evalData.mat*.

Preciso che ho eseguito il test *ANOVA 1-way* per verificare l'equivalenza dei sistemi solo per le run che ignoravano termini con valori bassi di IDF. Boxplot e tabella con i dati del test *ANOVA 1-way* sottostante si riferiscono quindi solamente a queste.

Risultati sperimentali & Test ANOVA

Run name	MAP	Rprec	P_10
BM25_SL_PS	0.2126	0.2705	0.4840
TFIDF_SL_PS	0.2120	0.2725	0.4800
$BM25_PS$	0.2108	0.2740	0.4740
TFIDF	0.1875	0.2460	0.4300

Tabella 1: Risultati ottenuti ignorando termini con basso IDF

Run name	MAP	Rprec	P_10	
BM25_SL_PS	0.2125	0.2705	0.4820	
TFIDF_SL_PS	0.2123	0.2725	0.4780	
BM25 PS	0.1245	0.1701	0.3020	
TFIDF	0.1876	0.2485	0.4260	

Tabella 2: Risultati ottenuti non ignorando termini con basso IDF

Figura 1: Boxplots

ANOVA	MAP	Rprec	P_10
F	0.2698	0.3508	0.3578
p value	0.8471	0.7886	0.7836

Figura 2: ANOVA 1-way

Considerazioni sui risultati: ANOVA 1-way

A seguito del test $ANOVA\ 1$ -way possiamo dire che le run sono statisticamente equivalenti. Si nota infatti che tutti i $p\ value$ sono maggiori di 0.05, verificando quindi la $null\ hypotesis\ H0$. Eseguendo il test HSD di Tukey (script matlab per la versione interattiva presente nella repository) si può provare che tutte le run appartengono al top-group.

Considerazioni aggiuntive sui risultati: ignorare termini con basso IDF?

Ignorare o meno i termini con valore basso di IDF generalmente non cambia in modo rilevante la performance del sistema per le run di questo homework. L'unica eccezione si ha per la run $BM25_PS$ dove le prestazioni per la MAP ad esempio cambiano da 0.21 a 0.12. Il risultato è coerente con quanto studiato nella teoria: in una run per cui in fase indicizzazione non ho filtrato *stop words* sarà più probabile recuperare documenti non rilevanti che contengono quelle parole solo perchè di uso comune.