Zadanie 19. *(1 pkt)*

Odległość między środkami okręgów o równaniach $(x+1)^2 + (y-2)^2 = 9$ oraz $x^2 + y^2 = 10$ jest równa

A.
$$\sqrt{5}$$

B.
$$\sqrt{10} - 3$$
 C. 3

Zadanie 20. *(1 pkt)*

Liczba wszystkich krawędzi graniastosłupa jest o 10 większa od liczby wszystkich jego ścian bocznych. Stąd wynika, że podstawą tego graniastosłupa jest

Zadanie 21. *(1 pkt)*

Pole powierzchni bocznej stożka o wysokości 4 i promieniu podstawy 3 jest równe

A.
$$9\pi$$

B.
$$12\pi$$

C.
$$15\pi$$

D.
$$16\pi$$

Zadanie 22. *(1 pkt)*

Rzucamy dwa razy symetryczną sześcienną kostką do gry. Niech p oznacza prawdopodobieństwo zdarzenia, że iloczyn liczb wyrzuconych oczek jest równy 5. Wtedy

A.
$$p = \frac{1}{36}$$

B.
$$p = \frac{1}{18}$$

B.
$$p = \frac{1}{18}$$
 C. $p = \frac{1}{12}$ **D.** $p = \frac{1}{9}$

D.
$$p = \frac{1}{9}$$

Zadanie 23. (1 pkt)

Liczba $\frac{\sqrt{50} - \sqrt{18}}{\sqrt{2}}$ jest równa

A.
$$2\sqrt{2}$$

D.
$$\sqrt{10} - \sqrt{6}$$

Zadanie 24. *(1 pkt)*

Mediana uporządkowanego niemalejąco zestawu sześciu liczb: 1, 2, 3, x, 5, 8 jest równa 4. Wtedy

A.
$$x = 2$$

B.
$$x = 3$$

C.
$$x = 4$$

D.
$$x = 5$$

Zadanie 25. (1 pkt)

Objętość graniastosłupa prawidłowego trójkątnego o wysokości 7 jest równa $28\sqrt{3}$. Długość krawędzi podstawy tego graniastosłupa jest równa