

Computer Architecture

A Quantitative Approach, Sixth Edition

Chapter 7

Domain-Specific Architectures

Introduction

- Moore's Law enabled:
 - Deep memory hierarchy
 - Wide SIMD units
 - Deep pipelines
 - Branch prediction
 - Out-of-order execution
 - Speculative prefetching
 - Multithreading
 - Multiprocessing
- Objective:
 - Extract performance from software that is oblivious to architecture

Introduction

- Need factor of 100 improvements in number of operations per instruction
 - Requires domain specific architectures
 - For ASICs, NRE cannot be amoratized over large volumes
 - FPGAs are less efficient than ASICs

Guidelines for DSAs

- Use dedicated memories to minimize data movement
- Invest resources into more arithmetic units or bigger memories
- Use the easiest form of parallelism that matches the domain
- Reduce data size and type to the simplest needed for the domain
- Use a domain-specific programming language

Guidelines for DSAs						
Guideline	TPU	Catapult	Crest	Pixel Visual Core	DSAs	
Design target	Data center ASIC	Data center FPGA	Data center ASIC	PMD ASIC/SOC IP	. 0,	
Dedicated memories	24 MiB Unified Buffer, 4 MiB Accumulators	Varies	N.A.	Per core: 128 KiB line buffer, 64 KiB P.E. memory		
Larger arithmetic unit	65,536 Multiply- accumulators	Varies	N.A.	Per core: 256 Multiply- accumulators (512 ALUs)		
Easy parallelism	Single-threaded, SIMD, in-order	SIMD, MISD	N.A.	MPMD, SIMD, VLIW		
Smaller data size	8-Bit, 16-bit integer	8-Bit, 16-bit integer 32-bit Fl. Pt.	21-bit Fl. Pt.	8-bit, 16-bit, 32-bit integer		
	and the same of th					

TensorFlow

Verilog

5. Domain-

specific lang.

TensorFlow

Halide/TensorFlow

Example: Deep Neural Networks

- Inpired by neuron of the brain
- Computes non-linear "activiation" function of the weighted sum of input values
- Neurons arranged in layers

Name	DNN layers	Weights	Operations/Weight 200	
MLP0	5	20M		
MLP1	4	5M	168	
LSTM0	58	52M	64	
LSTM1	56	34M	96	
CNN0	16	8M	2888	
CNNI	89	100M	1750	

Example: Deep Neural Networks

- Most practioners will choose an existing design
 - Topology
 - Data type
- Training (learning):
 - Calculate weights using backpropagation algorithm
 - Supervised learning: stocastic graduate descent

Type of data	Problem area	Size of benchmark's training set	DNN architecture	Hardware	Training time
text [1]	Word prediction (word2vec)	100 billion words (Wikipedia)	2-layer skip gram	1 NVIDIA Titan X GPU	6.2 hours
audio [2]	Speech recognition	2000 hours (Fisher Corpus)	11-layer RNN	1 NVIDIA K1200 GPU	3.5 days
images [3]	Image classification	1 million images (ImageNet)	22-layer CNN	1 NVIDIA K20 GPU	3 weeks
video [4]	activity recognition	1 million videos (Sports-1M)	8-layer CNN	10 NVIDIA GPUs	1 month

Inferrence: use neural network for classification

Multi-Layer Perceptrons

- Parameters:
 - Dim[i]: number of neurons
 - Dim[i-1]: dimension of input vector
 - Number of weights: Dim[i-1] x Dim[i]
 - Operations: 2 x Dim[i-1] x Dim[i]
 - Operations/weight: 2

Convolutional Neural Network

- Computer vision
- Each layer raises the level of abstraction
 - First layer recognizes horizontal and vertical lines
 - Second layer recognizes corners
 - Third layer recognizes shapes
 - Fourth layer recognizes features, such as ears of a dog
 - Higher layers recognizes different breeds of dogs

Convolutional Neural Network

Parameters:

- DimFM[i-1]: Dimension of the (square) input Feature Map
- DimFM[i]: Dimension of the (square) output Feature Map
- DimSten[i]: Dimension of the (square) stencil
- NumFM[i-1]: Number of input Feature Maps
- NumFM[i]: Number of output Feature Maps
- Number of neurons: NumFM[i] x DimFM[i]²
- Number of weights per output Feature Map: NumFM[i-1] x DimSten[i]²
- Total number of weights per layer: NumFM[i] x
 Number of weights per output Feature Map
- Number of operations per output Feature Map: 2 x DimFM[i]²x Number of weights per output Feature Map
- Total number of operations per layer: NumFM[i] x Number of operations per output Feature Map = 2 x DimFM[i]² x NumFM[i] x Number of weights per output Feature Map = 2 x DimFM[i]² x Total number of weights per layer
- Operations/Weight: 2 x DimFM[i]²

Recurrent Neural Network

- Speech recognition and language translation
- Long short-term memory (LSTM) network

Recurrent Neural Network

Parameters:

- Number of weights per cell: 3 x (3 x Dim x Dim)+(2 x Dim x Dim) + (1 x Dim x Dim) = 12 x Dim²
- Number of operations for the 5 vector-matrix multiplies per cell: 2 x
 Number of weights per cell
 24 x Dim²
- Number of operations for the 3 element-wise multiplies and 1 addition (vectors are all the size of the output): 4 x Dim
- Total number of operations per cell (5 vector-matrix multiplies and the 4 element-wise operations): 24 x Dim² + 4 x Dim
- Operations/Weight: ~2

Convolutional Neural Network

Batches:

- Reuse weights once fetched from memory across multiple inputs
- Increases operational intensity
- Quantization
 - Use 8- or 16-bit fixed point
- Summary:
 - Need the following kernels:
 - Matrix-vector multiply
 - Matrix-matrix multiply
 - Stencil
 - ReLU
 - Sigmoid
 - Hyperbolic tangeant

Tensor Processing Unit

- Google's DNN ASIC
- 256 x 256 8-bit matrix multiply unit
- Large software-managed scratchpad
- Coprocessor on the PCIe bus

Tensor Processing Unit

- Read_Host_Memory
 - Reads memory from the CPU memory into the unified buffer
- Read_Weights
 - Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
- MatrixMatrixMultiply/Convolve
 - Perform a matrix-matrix multiply, a vector-matrix multiply, an elementwise matrix multiply, an element-wise vector multiply, or a convolution from the Unified Buffer into the accumulators
 - takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces a B*256 output, taking B pipelined cycles to complete
- Activate
 - Computes activation function
- Write_Host_Memory
 - Writes data from unified buffer into host memory

- Read_Host_Memory
 - Reads memory from the CPU memory into the unified buffer
- Read_Weights
 - Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
- MatrixMatrixMultiply/Convolve
 - Perform a matrix-matrix multiply, a vector-matrix multiply, an elementwise matrix multiply, an element-wise vector multiply, or a convolution from the Unified Buffer into the accumulators
 - takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces a B*256 output, taking B pipelined cycles to complete
- Activate
 - Computes activation function
- Write_Host_Memory
 - Writes data from unified buffer into host memory

Improving the TPU

The TPU and the Guidelines

- Use dedicated memories
 - 24 MiB dedicated buffer, 4 MiB accumulator buffers
- Invest resources in arithmetic units and dedicated memories
 - 60% of the memory and 250X the arithmetic units of a server-class CPU
- Use the easiest form of parallelism that matches the domain
 - Exploits 2D SIMD parallelism
- Reduce the data size and type needed for the domain
 - Primarily uses 8-bit integers
- Use a domain-specific programming language
 - Uses TensorFlow

Microsoft Catapult

- Needed to be general purpose and power efficient
 - Uses FPGA PCIe board with dedicated 20 Gbps network in 6 x 8 torus
 - Each of the 48 servers in half the rack has a Catapult board
 - Limited to 25 watts
 - 32 MiB Flash memory
 - Two banks of DDR3-1600 (11 GB/s) and 8 GiB DRAM
 - FPGA (unconfigured) has 3962
 18-bit ALUs and 5 MiB of on-chip memory
 - Programmed in Verilog RTL
 - Shell is 23% of the FPGA

Microsoft Catapult: CNN

CNN accelerator, mapped across multiple FPGAs

Microsoft Catapult: CNN

Microsoft Catapult: Search Ranking

- Feature extraction (1 FPGA)
 - Extracts 4500 features for every document-query pair, e.g. frequency in which the query appears in the page
 - Systolic array of FSMs
- Free-form expressions (2 FPGAs)
 - Calculates feature combinations
- Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate score)
 - Uses results of previous two stages to calculate floating-point score
- One FPGA allocated as a hot-spare

Microsoft Catapult: Search Ranking

- Free-form expression evaluation
 - 60 core processor
 - Pipelined cores
 - Each core supports four threads that can hide each other's latency
 - Threads are statically prioritized according to thread latency

Microsoft Catapult: Search Ranking

- Version 2 of Catapult
 - Placed the FPGA between the CPU and NIC
 - Increased network from 10 Gb/s to 40 Gb/s
 - Also performs network acceleration
 - Shell now consumes 44% of the FPGA
 - Now FPGA performs only feature extraction

Catapult and the Guidelines

- Use dedicated memories
 - 5 MiB dedicated memory
- Invest resources in arithmetic units and dedicated memories
 - 3926 ALUs
- Use the easiest form of parallelism that matches the domain
 - 2D SIMD for CNN, MISD parallelism for search scoring
- Reduce the data size and type needed for the domain
 - Uses mixture of 8-bit integers and 64-bit floating-point
- Use a domain-specific programming language
 - Uses Verilog RTL; Microsoft did not follow this guideline

Intel Crest

- DNN training
- 16-bit fixed point
- Operates on blocks of 32x32 matrices
- SRAM + HBM2

- Image Processing Unit
- Performs stencil operations
- Decended from Image Signal processor

- Software written in Halide, a DSL
 - Compiled to virtual ISA
 - vISA is lowered to physical ISA using application-specific parameters
 - pISA is VLSI
- Optimized for energy
 - Power Budget is 6 to 8 W for bursts of 10-20 seconds, dropping to tens of milliwatts when not in use
 - 8-bit DRAM access equivalent energy as 12,500 8-bit integer operations or 7 to 100 8-bit SRAM accesses
 - IEEE 754 operations require 22X to 150X of the cost of 8-bit integer operations
- Optimized for 2D access
 - 2D SIMD unit
 - On-chip SRAM structured using a square geometry

5 x 5 stencil

Visual Core and the Guidelines

- Use dedicated memories
 - 128 + 64 MiB dedicated memory per core
- Invest resources in arithmetic units and dedicated memories
 - 16x16 2D array of processing elements per core and 2D shifting network per core
- Use the easiest form of parallelism that matches the domain
 - 2D SIMD and VLIW
- Reduce the data size and type needed for the domain
 - Uses mixture of 8-bit and 16-bit integers
- Use a domain-specific programming language
 - Halide for image processing and TensorFlow for CNNs

Fallacies and Pitfalls

- It costs \$100 million to design a custom chip
- Performance counters added as an afterthought
- Architects are tackling the right DNN tasks
- For DNN hardware, inferences per second (IPS) is a fair summary performance metric
- Being ignorant of architecture history when designing an DSA

