4 ZAPIS INFORMACIJE IN ARITMETIKA

BRANKO ŠTER

PO KNJIGI - DUŠAN KODEK: ARHITEKTURA IN ORGANIZACIJA RAČUNALNIŠKIH SISTEMOV

Informacija

- > Informacija v računalniku
 - Ukazi
 - Operandi
 - Numerični
 - Fiksna vejica
 - Predznačena
 - Nepredznačena
 - Plavajoča vejica
 - Enojna natančnost
 - Dvojna natančnost
 - Nenumerični
 - Logične spremenljivke
 - Znaki

Zapis nenumeričnih operandov

- Pri prvih rač. so bili operandi samo numerični
 - danes je veliko nenumeričnih
- Običajno so nenumerični operandi znaki oz. nizi znakov (strings)
- Vsak znak (character) je predstavljen z neko abecedo

Abeceda ASCII

- ASCII American Standard Code for Information Interchange (1968)
- > 7-bitna (128 znakov)
- od tega 95 natisljivih znakov in 33 kontrolnih znakov
 - A ... 1000001 (65), B ... 1000010 (66), ...
 - a ... 1100001 (97), b ... 1100010 (98), ...
 - **0** ... 0110000 (48), 1 ... 0110001 (49), ...
 - ! ... 0100001 (33), " ... 0100010 (34), ...
- kontrolni znaki za rač. komunikacije in krmiljenje V/I naprav

Razširjena 'ASCII'

- 8-bitna
 - dodatnih 128 znakov
- ISO/IEC 8859
 - ISO 8859-1 (Latin-1), zahodnoevropske črke
 - ISO 8859-2 (Latin-2), vzhodnoevropske črke

Koda BCD

- Spodnji 4 biti znakov za desetiške cifre v abecedah BCDIC, EBCDIC in ASCII ustrezajo njihovi dvojiški numerični vrednosti
 - to je koda BCD (Binary Coded Decimal), 4-bitna binarna predstavitev desetiških cifer

Unicode

Unicode

- neprofitni konzorcij, 1991
- abecede UTF-8, UTF-16, UTF-32 (Unicode transformation format)
- UTF-8
 - posamezen znak zavzame od 1 do 4 bajtov
 - kodiranje spremenljive dolžine variable length encoding
 - prvih 128 znakov isto kot ASCII (kompatibilnost)

Število bajtov	Št. bitov kode	Prva koda	Zadnja koda	Bajt 1	Bajt 2	Bajt 3	Bajt 4
1	7	00	7F	0xxxxxxx			
2	11	0800	07FF	110xxxxx	10xxxxxx		
3	16	0800	FFFF	1110xxxx	10xxxxxx	10xxxxxx	
4	21	10000	10FFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

Zapis numeričnih operandov v fiksni vejici

- Števila
- Pozicijska notacija
 - vsaka pozicija ima svojo težo
 - $192,73 = 1 \times 10^{2} + 9 \times 10^{1} + 2 \times 10^{0} + 7 \times 10^{-1} + 3 \times 10^{-2}$

Pozicijska notacija

- Ta zapis lahko posplošimo na uteži oblike *r i*, kjer je *r* **baza** ali **radix** številskega sistema
 - $b_{n-1} \dots b_2 b_1 b_0$, $b_{-1} b_{-2} \dots b_{-m}$

Vrednost:
$$V(b) = \sum_{i=-m}^{n-1} b_i r^i$$

- $215,36_7 = 2 \times 7^2 + 1 \times 7^1 + 5 \times 7^0 + 3 \times 7^{-1} + 6 \times 7^{-2}$
- \triangleright V računalnikih se uporablja baza r=2
 - nekdaj se je tudi baza r = 10
 - BCD-kodiranje

Dvojiški zapis števil v fiksni vejici

- Dvojiški (binarni) zapis: baza r = 2
 - $b_{n-1} \dots b_2 b_1 b_0$, $b_{-1} b_{-2} \dots b_{-m}$ $b_i = 0$ ali 1

Vrednost:
$$V(b) = \sum_{i=-m}^{n-1} b_i 2^i$$

- Zapis v fiksni vejici ima bite razdeljene na celi del in ulomek (Qn.m)
 - Npr. Q8.8, Q10.6, Q4.4, Q3.5, Q2.2
 - Q3.5: $b_2b_1b_0$, $b_{-1}b_{-2}$... b_{-5} (n = 3, m = 5)
- Primer: pretvori 110101,101₂ v desetiško število.
 - $110101,101_2 = 2^5 + 2^4 + 2^2 + 2^0 + 2^{-1} + 2^{-2} + 2^{-3} = 53,625_{10}$

Pretvorba desetiških števil v bazo r

> Algoritem:

- 1. $N: r = Q_1 + b_0$
- 2. Ponavljaj 1. za Q_i : $r = Q_{i+1} + b_i$ za i = 1, 2, 3, ...
- 3. Končaj, ko $Q_i = 0$
- Primer: pretvorba 98₁₀ v bazo r=8
 - 98₁₀ = 142₈
- Posebno nas zanima pretvorba v bazo r=2 (pretvorba desetiškega števila v dvojiško)
 - $27_{10} = 11011_2$

Pretvorba ulomkov v bazo r

- > Algoritem:
 - 1. $N * r = b_{-1} + F_1$
 - 2. Ponavljaj 1. za $F_i * r = b_{-(i+1)} + F_{i+1}$ za i = 1, 2, ...
 - 3. Končaj, ko $F_i = 0$
- \triangleright Primer: pretvorba 0,375₁₀ v bazo r = 2
 - **0,011**₂

Napaka pri rezanju decimalk

- Kadar število N odrežemo na m mest desno od vejice, dobimo približek N'
 - napaka N' N, absolutna vrednost napake | N' N |
 - $|N'-N| \leq r^{-m}$
- \triangleright Če želimo, da napaka po abs. vrednosti ne preseže E_{max} :

$$r^{-m} \leq E_{\text{max}}$$

Potrebujemo m mest

$$m \ge \log_r (1/E_{max})$$

$$m = \lceil \log_{r}(1/E_{max}) \rceil$$

- Pri r = 2 imamo kar dvojiški logaritem (lb) $k = \lceil \log_2(1/E_{\text{max}}) \rceil$
- Primer: 0.8_{10} v bazo 2, $E_{\text{max}} = 0.01$ 0.8 = 0, $1100 \ 1100 \ \dots \ _2$ k = 7: $0.8 = 0.1100110_2$ (N' = 0.796875, E = -0.003125)

Pretvorba med poljubnima bazama

- Pretvorba r' v r:
 - r' v 10
 - 10 v *r*

- > Npr. 26,5₈ v *r*=3
 - **211,12 12** ... ₃
- Kadar sta bazi sorodni (oba večkratnika istega števila), je pretvorba lažja
 - npr. pretvorbe med bazami nabora 2, 4, 8, 16

Osmiška in šestnajstiška baza

- Poleg dvojiške se v računalništvu pogosto uporabljata tudi osmiška (oktalna) in še posebno šestnajstiška (heksadecimalna) baza
 - v 16-iški bazi so poleg 0 .. 9 še dodatne cifre:
 - A (10), B (11), C (12), D (13), E (14), F (15)
 - Primer:
 - $3C7_{16} = 3*16^2 + 12*16^1 + 7*16^0 = 768 + 192 + 7 = 967_{10}$
 - Različni načini zapisa:
 - $3C7_{16} = 3C7_{H} = 0x3C7 = $3C7$

Sorodne baze

- Ker sta ti bazi sorodni bazi 2, je pretvorba enostavna
 - Pri osmiški bazi ena cifra predstavlja 3 bite (dvojiške baze)
 - 1110010101₂ = 1 110 010 101₂ = 1625₈,
 - 327₈ = 011 010 111₂
 - Pri šestnajstiški bazi ena cifra predstavlja 4 bite (dvojiške baze)
 - $1110010101_2 = 11\ 1001\ 0101_2 = 395_{16}$ oz. 0x395
 - A15₁₆ = 1010 0001 0101₂

Nepredznačena števila

$$V(b) = \sum_{i=0}^{n-1} b_i 2^i$$

- ∠ Z n biti lahko zapišemo nepredznačena števila od 0 do 2ⁿ−1 (z n biti lahko v kateremkoli formatu zapišemo 2ⁿ števil!)
 - npr. n = 3, števila od 0 (000) do 7 (111)
 - npr. n = 10, števila od 0 (000...) do 1023 (111...)
- Kadar rezultat neke operacije preseže obseg števil, se pojavi prenos (carry)
 - rezultat na podanem številu števk (cifer) ni pravilen

$$101 + 100 = (1)001$$

Primeri aritmetičnih operacij z nepredznačenimi števili v različnih bazah

- \triangleright 0234₈ + 1525₈ = 1761₈
- \triangleright 2103₄ + 2313₄ = (1)1022₄, pojavi se prenos
- \rightarrow 11001₂ + 01011₂ = (1)00100₂, pojavi se prenos
- \rightarrow 3306₈ 0615₈ = 2471₈
- \rightarrow A089₁₆ 5CED₁₆ = 439C₁₆
- \rightarrow 10110₂ 01101₂ = 01001₂
- \rightarrow 325₈ * 026₈ = 12016₈
- > 1101₂ * 0101₂ = 01000001₂

Zapisi predznačenih števil

- Predznačeno število lahko zapišemo na več načinov
- V vseh primerih imamo nbitno število: $b_{n-1} \dots b_2 b_1 b_0$,
 njegova vrednost pa se v
 različnih načinih zapisa
 razlikuje
- Primer: Zapisi 3-bitnih predznačenih števil

b_2	<i>b</i> ₁	b_0	PV	РО	1'K	2′K
0	0	0	+0	-4	+0	0
0	0	1	1	-3	1	1
0	1	0	2	-2	2	2
0	1	1	3	-1	3	3
1	0	0	-0	0	-3	-4
1	0	1	-1	1	-2	-3
1	1	0	-2	2	-1	-2
1	1	1	-3	3	-0	-1

1 Predznak-veličinski zapis (PV)

$$V(b) = (-1)^{b_{n-1}} \sum_{i=0}^{n-2} b_i 2^i$$

- prvi bit (b_{n-1}) predstavlja predznak, ostali velikost
- Hibe:
 - predznak je treba obravnavati posebej
 - ima dve ničli: -0 in +0
- PV zapis ni primeren za seštevanje/odštevanje
- Primeren za množenje/deljenje (ki pa sta manj pogosti operaciji)

2 Zapis (predstavitev) z odmikom (PO)

$$V(b) = \sum_{i=0}^{n-1} b_i 2^i - 2^{n-1}$$

- odmik je (običajno) 2ⁿ⁻¹
- nekoč priljubljen zapis
- Hibe:
 - pri seštevanju je treba odmik odšteti
 - pri odštevanju je treba odmik prišteti

3 Eniški komplement (1'K)

$$V(b) = \sum_{i=0}^{n-1} b_i 2^i - b_{n-1} (2^n - 1)$$

- b_{n-1} je predznak
- pozitivna števila ($b_{n-1}=0$) enako kot pri PV
- negativno število dobimo iz pozitivnega z invertiranjem vseh bitov
 - ekvivalentno odštevanju od 2ⁿ 1 (same enice)
- predznaka ni treba obravnavati posebej! ©
- hibe: ⊗
 - 2 ničli (-0, +0)
 - pri prenosu z najvišjega mesta je treba na najnižjem mestu prišteti 1 (End Around Carry - EAC)

4 Dvojiški komplement (2'K)

$$V(b) = \sum_{i=0}^{n-1} b_i 2^i - b_{n-1} 2^n$$

- Tudi tu se pozitivna števila začnejo z 0:
 - 0000 (0), 0001 (1), ..., 0110 (6), 0111 (7)=max
- Negativna števila se začnejo z 1:
 - 1000 (-8), 1001 (-7), ..., 1110 (-2), 1111 (-1)
 - ni pa takoj razvidno, za katero število gre ☺ (torej V)

- Negativno število (zapis b pri podani vrednosti V) dobimo
 - tako, da vrednosti V prištejemo 2ⁿ
 - Npr.: -2 + 16 = 14, torej tak zapis kot za nepredznačeno 14
 - lahko pa tudi tako, da invertiramo vse bite pozitivnega števila (eniški komplement) in prištejemo 1 (to je ekvivalentno odštevanju od 2ⁿ)
 - o npr.

- Tudi obratno, če želimo ugotoviti, za katero negativno število gre:
 - nepredznačenemu zapisu odštejemo 2ⁿ
 - \circ Npr., 1101: 13 16 = -3
 - spet naredimo 2'K (1'K in prištevanje enice):
 - 1101: 1'K: 0010, +1 = 0011 (=3)

- Potrebno je razlikovati med pojmoma
 - zapis v 2′K in
 - 2'K nekega števila!

Bit prenosa pri 2'K ignoriramo!

```
011

+110

---

(1)001

a-b = a+(-b) = a+(2^n-b) = a-b + 2^n(to je bit prenosa)

011 (3)

+110 (-2)

---

(1)001
```

- 2'K je najpogosteje uporabljan zapis
 - primeren za seštevanje/odštevanje
 - nima EAC
 - le ena predstavitev za ničlo
 - predznaka ni treba obravnavati posebej

- Pri razširitvi števila na več bitov je potrebno razširiti predznak:
 - $0101 \rightarrow 00000101$
 - **1**100 → **11111**100
 - $010111 \rightarrow 00010111$
 - **1**00011 → **111**00011

Primer

- Zapiši -28 kot predznačeno 6-bitno število v PV, PO, 1'K in 2'K
 - PV: 111100
 - PO: 0
 - 1'K: 1
 - 2'K: 1

Osnovna aritmetika v 2'K

Obseg števil v n-bitnem 2'K:

$$-2^{n-1} \le x \le 2^{n-1} - 1$$

- E če je (pravi) rezultat operacije izven tega območja: **preliv** (**overflow**)
 - rezultat je napačen
 - preliv se da detektirati
- Preliv ni isto kot prenos (carry) z najvišjega mesta!
 - le-ta se nanaša na operacije z *nepredznačenim*i števili
 - območje $0 \le x \le 2^n 1$
 - pri 2'K se prenos ignorira

Preliv

- Kdaj pride do preliva (Overflow)?
 - potreben pogoj je, da imata števili enak predznak
 - zadosten pogoj pa je, da ima vsota drugačen predznak kot števili
- Pogoj za preliv (OF) lahko zapišemo kot

$$OF = x_{n-1} y_{n-1} \overline{s_{n-1}} \vee \overline{x_{n-1}} \overline{y_{n-1}} s_{n-1}$$

 ker pa je pri prvem produktu c_{n-1}=0 in c_n=0, pri drugem pa obratno, ga lahko zapišemo tudi kot

$$\mathsf{OF} = \mathsf{c}_{\mathsf{n-1}} \oplus \mathsf{c}_{\mathsf{n}}$$

Primeri operacij v 4-bitnem 2'K:

0100 (4) 0101 (5) 1100 (-4) 1010 (-6)
+
$$0011$$
 (3) + 0100 (4) + 0101 (5) + 1011 (-5)
0111 (7) 1000 (-8) 1 0001 (1) 1 0101 (5)

> Seštej 21 in -7 v 6-bitnem 2'K:

$$010101 \\ + 111001 \\ (1)001110$$

ARITMETIČNA VEZJA

Polovični seštevalnik

- Polovični seštevalnik (Half Adder, HA)
 - sešteva 2 bita, izračuna vsoto (s, sum) in (izhodni) prenos (c, carry)

	•	
0	1	0
1	0	0
1	1	1

0

$s = a \ \overline{b}$	$\vee \overline{a} b = a \nabla b (= a \oplus$	b
c = a b	(=a & b)	

Polni seštevalnik

- Polni seštevalnik (Full Adder, FA)
 - sešteva 3 bite, izračuna vsoto in (izhodni) prenos

$$s = a \nabla b \nabla c \ (= \overline{a} \ \overline{b} \ c \ \lor \overline{a} \ b \ \overline{c} \ \lor a \ \overline{b} \ \overline{c} \lor a \ b \ c)$$
$$c_{out} = a \ b \ \lor a \ c \ \lor b \ c$$

Večbitni seštevalnik

Večbitni seštevalnik

- Seštevalnik z razširjanjem prenosa (Ripple Carry Adder, RCA)
 - zaporedna vezava 1-bitnih FA
 - izhodni prenos nižjega vezan na enega od vhodov višjega
 - običajno se en vhod imenuje kar vhodni prenos (c_{in})

$$s = a \nabla b \nabla c_{in}$$

$$c_{out} = a b \vee a c_{in} \vee b c_{in}$$

- hiba: zakasnitev
 - Dejanska zakasnitev je odvisna od operandov
 - Maksimalna zakasnitev pa narašča praktično linearno

Večbitni seštevalnik

- Seštevalnik z vnaprejšnjim prenosom (Carry-Lookahead Adder, CLA)
 - hiter izračun vseh prenosov
 - le na osnovi vhodov a, b in c₀
 - dodatna logika
 - sprememba večnivojske oblike v dvonivojsko

Seštevalnik / odštevalnik

Seštevanje in odštevanje predznačenih števil v 2'K z enim vezjem

- signal M (Add'/Sub) določa operacijo 0: +, 1: –
- odštevanje kot prištevanje 2'K
 - a b = a + b' + 1
 - –b kot dvojiški komplement b
 - $b' = (b_{n-1}' \dots b_1' b_0') \dots 1'K$
 - \circ $b_i \oplus M$
 - XOR dela kot krmiljen negator $(x \oplus 0 = x, x \oplus 1 = x')$
 - +1: M vežemo na c₀

Binarno množenje

- Binarno množenje
 - tvorba delnih (parcialnih) produktov (n*n konjunkcij)
 - seštevanje delnih produktov

 Delni produkt je enak množencu, če je ustrezni bit množitelja enak 1, sicer je enak 0

Načini množenja

- 2 vrsti metod:
 - pomikanje in seštevanje
 - 1 bit / cikel ure
 - poceni, a ne prav hitro
 - registri
 - kombinacijski množilniki
 - brez ure
 - o dragi, a hitri

Množenje s pomiki in seštevanjem (shift-and-add multiplication)

- Postopek iz n korakov:
 - Če je najnižji bit množitelja B enak 1, prištej množenec A registru P (na začetku 0)
 - sicer prištej 0
 - Pomik desno registrov P in B (kaskadno vezanih v en register) leva tabela
 - ali pa desni pomik B in levi pomik A (v tem primeru P ne pomikamo) desna tabela

Primer množenja dveh 4-bitnih števil A(=5) in B(=6):

	Р	В	
1	0000	0110	$P \leftarrow P + 0$
	0000	0011	P,B >> 1
2	0101	0011	$P \leftarrow P + A$
	0010	1001	P,B >> 1
3	0111	100 <mark>1</mark>	$P \leftarrow P + A$
	0011	1100	P,B >> 1
4	0011	1100	$P \leftarrow P + 0$
	0001	1110	P,B >> 1

	A	В	P	
1	00000101	0110	00000000	P ← P + 0
	00001010	0011		B >> 1, A << 1
2			00001010	$P \leftarrow P + A$
	00010100	0001		B >> 1, A << 1
3			00011110	$P \leftarrow P + A$
	00101000	0000		B >> 1, A << 1
4			00011110	P ← P + 0
	01010000	0000		B >> 1, A << 1

Matrični množilnik

na primeru 3x3

Nekateri FA so odveč:

- Zakasnitev ~ linearna
 - $(3n-2)*\Delta FA$
 - $(3n-4)*\Delta FA$
- Obstajajo tudi metode za hitro seštevanje več sumandov, t.i. paralelni števniki (parallel counters)
 - Wallace, Dadda, ...
 - glavna aplikacija je množenje

- Množenje v 2'K
 - Booth-ov algoritem

- Binarno deljenje
 - 2 osnovna načina:
 - zaporedje odštevanj in pomikov
 - matrični delilnik
 - enobitni odštevalniki

Problemi pri vključitvi aritmetike v računalniški sistem

- > Preliv
 - 2 rešitvi:
 - postavitev posebnega bita
 - sprožitev pasti (nek bit lahko določa, ali se sproži, ali pa se ignorira)
- Dolžina produkta
 - produkt dveh števil je shranjen v spremenljivki enake velikosti kot števili
- Izvajanje operacij v eni urini periodi
 - množenje in deljenje sta zahtevnejši operaciji
 - 2 rešitvi:
 - ukazi korak-množenja
 - množenje izvaja posebna enota
 - lahko FPU (floating point unit)
 - CPE čaka na izračun

Zapis števil v plavajoči vejici

- Obseg števil v fiksni vejici je za določene probleme premajhen
 - potrebovali bi tudi zelo velika ali zelo majhna števila
- Znanstvena notacija omogoča krajši zapis
 - npr. 1×10¹⁸ namesto 1 000 000 000 000 000
- \triangleright Število lahko zapišemo kot $m \times r^e$
 - m je mantisa, r je baza (običajno 2), e je eksponent
 - s spreminjanjem eksponenta vejica plava vzdolž mantise levo in desno (odtod ime plavajoča vejica)

- V plavajoči vejici lahko zapišemo bistveno večja, pa tudi bistveno manjša (po absolutni vrednosti) števila kot v fiksni
 - kljub temu pa je možnih števil enako mnogo (2ⁿ)

- Vsako število lahko v plavajoči vejici zapišemo na več načinov:
 - npr. $1 \times 10^{18} = 10 \times 10^{17} = 0.1 \times 10^{19}$...
 - npr. $1 \times 2^3 = 10 \times 2^2 = 0, 1 \times 2^4 \dots$
 - zato mantiso normiramo:
 - prvi bit je 1 (normalni bit), implicitno predstavljen
 - npr.: mantisa 01001... pomeni 1,01001...
 - zelo majhnih števil pa ni mogoče predstaviti v normirani obliki
 - denormirana števila
 - podliv (underflow)
- Eksponent je predstavljen v predstavitvi z odmikom

48

- Nekdaj je vsak proizvajalec je uporabljal svoj format zapisa v plavajoči vejici
 - isti program je lahko na različnih računalnikih dajal različne rezultate

- > Standard IEEE 754 (1985, 2008, 2019)
 - IEEE: Institute of Electrical and Electronics Engineers
 - 2 osnovna formata:
 - enojna natančnost (single precision), 32 bitov
 - dvojna natančnost (double precision), 64 bitov
 - Dodatni:
 - polovična (half), 16 bitov
 - 4-kratna (quadruple), 128 bitov
 - 8-kratna, 256 bitov
 - desetiški zapis, 32, 64, 128 bitov

Enojna natančnost

Enojna natančnost (single precision), 32 bitov

31 30 23 22 0 S E m

- predznak S (0: +, 1: -)
- 8-bitni eksponent e z odmikom 127 (e = E 127)
- 23-bitna mantisa m (7-mestna desetiška natančnost)
- normirana vrednost je $(-1)^{s} \cdot 1, m \cdot 2^{E-127}, E = 1, 2, ..., 254$
- obseg: $\pm 1,18*10^{-38}$, $\pm 3,40*10^{38}$ (v norm. obliki)

Dvojna natančnost

Dvojna natančnost (double precision), 64 bitov

63 62 52 51 0 S E m

- predznak S (0: +, 1: –)
- 11-bitni eksponent *e* z odmikom 1023 (*e* = *E* 1023)
- 52-bitna mantisa m (16-mestna desetiška natančnost)
- normirana vrednost je $(-1)^{S} \cdot 1, m \cdot 2^{E-1023}, E = 1, 2, ..., 2046$
- obseg: $\pm 2,22*10^{-308}$, $\pm 1,80*10^{308}$ (v norm. obliki)

Primer: število 2

 $2 = +1.0*2^{1}$

S = 0, m = 0, e = 1

enojna: E = e + 127 = 128 = 10000000

31	30 23	22 0
0	10000000	000000000000000000000000000000000000000

dvojna: E = e + 1023 = 1024 = 10000000000

63	62 52	51 0	
0	1000000000	000000000000000000000000000000000000000	

> Primer: število -8.25

 $-8.25 = -1000.01 = -1.00001*2^3$

S = 1, m = 0000100 ..., e = 3

enojna: e = 3, E = e + 127 = 130 = 10000010

31	30 23	22 0
1	10000010	00001000000000000000000

dvojna: e = 3, E = e + 1023 = 1026 = 1000000010

63	62 52	51 0
1	1000000010	000010000000000000000000000000000000000

Denormirana števila

- > Denormirana števila (zelo majhna števila)
 - E=0
 - implicitni normalni bit je enak 0
 - vrednost v 32-bitnem formatu je (-1)^S· 0,m · 2⁻¹²⁶
 - eksponent je -126 namesto -127, ker imamo (0,m) namesto (1,m)
 - vrednost v 64-bitnem formatu je $(-1)^S \cdot 0, m \cdot 2^{-1022}$,
 - eksponent je -1022 namesto -1023, ker imamo (0,m) namesto (1,m)
 - tudi 0 je denormirano število, ki ima mantiso enako 0

Neskončnosti in NaN

Še dve posebni vrsti števil:

Neskončnosti

- E = 255 (v 32-bitnem formatu) oz. E = 2047 (v 64-bitnem formatu), vsi biti E so 1
- če m=0, imamo $+\infty$ in $-\infty$
- pojavijo se, kadar je rezultat prevelik (npr. 1/0 da $+\infty$)

NaN

- ravno tako E = 255 oz. 2047
- m≠0
- pojavijo se kot rezultat nedefiniranih operacij
 - npr. $0 \times \infty$, 0/0, ∞ ∞ , kvadratni koren negativnega števila, ...
- rezultat operacije, ki vsebuje operand NaN, je tudi NaN

Aritmetika v plavajoči vejici

- Aritmetika v plavajoči vejici se obravnava in realizira ločeno od aritmetike v fiksni vejici
 - bolj zapletena

Zaokroževanje

- zaokrožujemo od matematično natančne vrednosti k najbližjemu še predstavljivemu številu
- kadar je vrednost enako oddaljena od dveh najbližjih števil, se zaokroži k sodemu številu
 - standard IEEE 754 sicer dovoljuje tudi drugačne načine zaokroževanja, vendar so redkeje uporabljani
- pri računanju mantiso podaljšamo za 3 dodatne bite
 - varovalni bit (guard bit)
 - zaokroževalni bit (round bit)
 - lepljivi bit (sticky bit)

Dodatni biti

- Varovalni bit je potreben, ker je vsota lahko za eno mesto daljša od operandov
- Zaokroževalni bit omogoča bolj natančno zaokroževanje
- Lepljivi bit se uporablja zato, da se iz izpadlih bitov vidi, ali je bil kak različen od 0 (zaradi zaokroževanja k sodemu številu)
 - v tem primeru je treba zaokrožiti navzgor (ne navzdol zaradi morebitnega najbližjega sodega števila)
 - izračuna se kot funkcija ALI izpadlih bitov

Seštevanje v plavajoči vejici

- Seštevanje (in odštevanje) v plavajoči vejici
 - Prvo število naj bo tisto z večjim eksponentom (začasni eksponent)
 - Pomik mantise drugega števila (če izpadejo kake enice, se shranijo v lepljivem bitu)
 - Seštevanje (odštevanje) mantis
 - Če se pojavi prenos naprej, zmanjšaj mantiso (pomik za eno mesto) in povečaj začasni eksponent za 1
 - Zaokrožitev mantise
 - če grs=100 (točno polovica zadnjega mesta), zaokrožimo k sodemu številu (če je zadnji bit mantise 0, ga pustimo; če je 1, zaokrožimo navzgor)

Primer 1. Seštej binarno 3,25 + 30, če je mantisa 3-bitna, imamo pa dodatne bite g, r in s.

Primer 2. Odštej binarno 30 - 4,125, če je mantisa 3-bitna, imamo pa dodatne bite g, r in s.

$$30_{10} = 11110,0*2^{0} = 1,11100*2^{4}$$
 $4,125_{10} = 100,001*2^{0} = 1,00001*2^{2}$
(to število ima manjši eksponent (2²), zato ga povečamo na 2⁴, zaradi česar se pomakne mantisa za 2 mesti)
 $1,00001*2^{2} = 0,010 |0001*2^{4} = 0,010 |001*2^{4}$
grs, $s=0V1=1$ grs
 $1,111 |000*2^{4}$
 $0,010 |001*2^{4}$
 $1,100 |111*2^{4} = 1,101*2^{4} = 26_{10}$
grs

Pravilen rezultat bi bil 25,875 (napaka 0,125 nastane zaradi pomikanja mantise manjšega števila v desno)

Množenje v plavajoči vejici

- Množenje v plavajoči vejici
 - eksponenta seštejemo (dobimo začasni eksponent)
 - mantisi zmnožimo z množilnikom (v fiksni vejici)
 - množilnik v bistvu sploh ne ve, da je nekje vmes vejica ...
 - po potrebi normiramo rezultat
 - predznak produkta je XOR obeh predznakov
- Deljenje v plavajoči vejici
 - odštevanje eksponentov, deljenje mantis

- ightharpoonup Primer 1: A · B, A = 1,01 · 2², B = 1,11 · 2⁰
 - začasni eksponent = 2 + 0 = 2 (ker je $2^{2*}2^{0} = 2^{2}$)
 - množimo mantisi (PAZI: Poleg mantis števili sestavljata tudi implicitni enici!)

Kako vemo, kje je vejica?

- Produkt je 6-biten (3+3), za vejico pa morajo biti 4 mesta (4 = 2+2)
 - Vsak od obeh faktorjev ima 2 mesti desno od vejice

$$10,0011 \cdot 2^2$$
 normiramo: $1,00011 \cdot 2^3$

predznak: 0 ⊕ 0 = 0, tj. +

$$A \cdot B = +1,00011 \cdot 2^3$$

Pretvorite A, B in produkt v desetiško obliko in preverite pravilnost rezultata

Primer2: Zmnožimo $C = A \cdot B$ v enojni natančnosti (A = 0x326C8000, B = 0xBF200000). Zapišimo produkt C tudi v 16-iški obliki.

$$0 \times 326 C8000 = 0011 \ 0010 \ 0110 \ 1100 \ 1000 \ 0000 \ 0000 \ 0000$$

$$E = 01100100 = 2^6 + 2^5 + 2^2 = 100$$

$$e = E - 127 = -27 \ (dejanski eksponent)$$

$$A = +1,11011001 \times 2^{-27}$$

$$0 \times BF200000 = 1011 \ 1111 \ 0010 \ 0000 \ 0000 \ 0000 \ 0000$$

$$E = 01111110 = 128 - 2 = 126$$

$$e = E - 127 = -1 \ (dejanski eksponent)$$

$$B = -1,01 \times 2^{-1}$$

Zmnožimo mantisi (skupaj z normalnima enicama!):

```
1,11011001 * 1,01 (A: 9 mest, 8 za vejico, B: 3 mesta, 2 za vejico)
   111011001
     00000000
      111011001
  10, 0100111101 (9+3=12 mest skupno, za vejico jih mora biti 8+2=10)
Predznak: 0 xor 1 = 1, torej minus
C = -10,0100111101 \times 2^{-28}
                               (potrebno še normirati)
C = -1,00100111101 *2^{-27}
                               (PAZI: Povečanje eksponenta za 1: -28 + 1 = -27)
 E = e + 127 = 100
Združujemo v skupine po 4:
C = 1 \ 011 \ | \ 0010 \ | \ 001 \ | \ 0011 \ | \ 1101 \ | \ 0000 \ | \ 0000 \ | \ 0000 \ |
C = B213D000_{16} \text{ (oz. 0xB213D000)}
```

- > Primer: plavajoča vejica v formatu *minifloat* (8-bitni)
 - predznak: 1 bit, eksponent: 4 biti, mantisa: 3 biti
 - $-(-1)^{S*}1,m*2^{E-7},$
 - max: $1,111*2^7 = 240$
 - min abs. norm. (razen 0): 1,000*2¹⁻⁷ = 0,015625
 - min. abs. denorm.: 0,001*2-6 = 0.001953125

celoten obseg števil:

del obsega:

	Zapis	Vrednost v fiksni vejici	Vrednost v plavajoči vejici	
0	0 0000 000	0,0	0,0	
Min. poz. (razen 0)	0 0000 001	0,001 = 0,125	$0.001*2^{-6} = 2^{-9} \approx 0.0020$	
	0 0000 010	0,010 = 0,250	$0.010*2^{-6} = 2^{-8} \approx 0.0039$	Denormirana števila
	0 0000 111	0,111 = 0,875	$0,111*2^{-6} = 3*2^{-4} \approx 0,014$	
	0 0001 000	1,000	$1,000*2^{1-7} = 2^{-6} \approx 0,016$	
	0 0001 001	1,001 = 1,125	$1,001*2^{1-7} = 9*2^{-9} \approx 0,018$	
	0 0001 010	1,010 = 1,25	$1,010*2^{1-7} = 10*2^{-9} \approx 0,020$	
	0 0001 111	1,111 = 1,875	$1,111*2^{1-7} = 15*2^{-9} \approx 0,029$	
	0 0111 000	111,000 = 7,0	1,000*2 ⁷⁻⁷ = 1,000*2 ⁰ = 1,000	
	0 0111 111	111,111 = 7,875	1,111*2 ⁷⁻⁷ = 1,111*2 ⁰ = 1,875	Normirana števila
	0 1110 111	1110,111 = 14,875	1,111*2 ¹⁴⁻⁷ = 15*2 ⁴ = 240	
	0 1110 000	1110,00 = 14,000	1,000*2 ¹⁴⁻⁷ = 1,000*2 ⁷ = 128	
Max	0 1110 111	1110,111 = 14,875	1,111*2 ¹⁴⁻⁷ = 1,111*2 ⁷ = 240	

Primer: težave, v katerih se lahko znajdemo pri naivni uporabi plavajoče vejice

Izračun variance

$$var = \frac{\sum_{i=1}^{N} x_i^2 - \frac{\left(\sum_{i=1}^{N} x_i\right)^2}{N}}{N-1}$$

v enojni natančnosti plavajoče vejice

- Naj bosta zaradi enostavnosti samo 2 števili (BIAS=8192, BIAS+offset=8196):
 - $x_1 = 8192 = 1,0*2^{13}$
 - $x_2 = 8196 = 1,00000000001*2^{13} = 2^{13} + 2^2 = (1,0 + 2^{-11})*2^{13}$
- Predpostavimo, da pristopimo k izračunu na 'naiven' način. Kaj se dogaja v računalniku?

$$x_1^2 = (2^{13})^2 = 2^{26}$$

 $x_2^2 = (2^{13}+2^2)^2 = 2^{26}+2*2^{15}+2^4 = (1+2^{-10}+2^{-22})*2^{26}$
 $x_1+x_2=2^{13}+2^{13}+2^2=2*2^{13}+2^2=2^{14}+2^2$

$$(x_1+x_2)^2 = 2^{28} + 2^2^{16} + 2^4 = (1 + 2^{-11} + 2^{-24})^2^{28}$$

Mantisa je 23-bitna, na poziciji z utežjo -11, pa tudi na mestu varovalnega bita (utež -24) najdemo enico:

Po standardu IEEE-754 mora računalnik zaokrožiti k sodemu številu – torej navzdol. Zato enica odpade in nam ostane samo

$$(1+2^{-11})*2^{28} = 1,00000000001*2^{28} = 268 566 544$$

$$var = \frac{\sum_{i=1}^{N} x_i^2 - \frac{\left(\sum_{i=1}^{N} x_i\right)^2}{2}}{2-1} = \frac{x_1^2 + x_2^2 - \frac{(x_1 + x_2)^2}{2}}{1}$$

$$= 134283280 - \frac{(16388)^2}{2}$$

- Za 16388² dobimo 268566528 (namesto 268566544)
- Namesto pravega rezultata (var=8) dobimo 16 (var_f v kodi)
 - Če vzamemo števili 16384 in 16388, pa je var_f = 0 (kakor tudi za nadaljnje poskuse v tej smeri) težava je v tem, da smo s kvadriranjem izgubili natančnost
 - Zakaj pa naenkrat 0 ... ?! "(/#%\$!)^*9?! \
 - V dvojni natančnosti dobivamo še prave rezultate
 - Tudi tam pa se pojavijo podobne težave, če BIAS povečamo nekje na 109
- Za take stvari je potrebno uporabiti nek 'ne-naiven' algoritem (npr. Welfordov, ...)
 - S tam sa sicar ukvariaja pri numarični matamatiki

Koda v jeziku C (cc var.c -o var && ./var)

```
#include <stdio.h>
#define N 2
#define BIAS 8192
#define offset 4
void main()
{
    int d[N];
    float a f[N];
    float sum f = 0.0;
   float sumsq f = 0.0, var f;
    double a d[N];
    double sum d = 0.0;
    double sumsq d = 0.0, var d;
    for ( int i=0; i<N; i++) {
       d[i] = offset*i; //d0 = 0, d1 = 4
       a_f[i] = BIAS + d[i]; //8192, 8196
       sum_f += a_f[i];
       sumsq f += a f[i] *a f[i];
       a_d[i] = BIAS + d[i];
       sum d += a d[i];
```

sumsq_d += a_d[i] *a_d[i];