Работа 2.4. Определение вязкости воздуха по скорости течения через тонкие трубки.

Зотов Алексей, 497

23 сентября 2016 г.

Цель работы:

- 1. Экспериментально выявить участки ламинарного и турбулентного течения.
- 2. Определить число Рейнольдса.
- 3. Определить вязкость воздуха.
- 4. Экспериментально определить зависимость расхода воздуха в трубках от радиуса.

В работе используются: металлические трубки, укрепленные на горизонтальной подставке; газовый счетчик; микроманометр типа ММН; стеклянная U-образная трубка; секундомер.

Теоретическое введение. Если два соприкасающихся слоя газа текут с разной скоростью, то между ними возникает сила вязкого трения. Та же сила может действовать на твёрдые тела (по касательной к поверхности), помещённые в поток жидкости или газа. Причина возникновения этой силы заключается в следующем. Скорость частиц в текучей среде складывается из средней скорости потока и хаотической — тепловой — составляющей. Следовательно, частицы могут перескакивать случайным образом из слоя в слой, перенося вместе с собой часть импульса потока из того слоя, откуда совершен скачок. Перенос же импульса от слоя к слою, согласно 2-му закону Ньютона, эквивалентен силовому взаимодействию между ними. Эта сила направлена по касательной к слоям, поскольку переносится компонента импульса, направленная вдоль среднего потока. Для количественного описания вязкого трения рассмотрим взаимодействие слоёв газа, текущего вдоль оси x, скорость потока которого изменяется в поперечном направлении $v_x = v_y(y)$ (см. рис. 1).

Пусть концентрация всюду одинакова и равна n, а средняя тепловая скорость хаотичного движения молекул равна v_T . Также для дальнейшего рассмотрения нам понадобится понятие длины свободного пробега λ — среднего расстояния, которое пролетает молекула между столкновениями с другими молекулами.

Рассмотрим плоскость y=0. Предположим, что через неё сверху вниз пролетают только молекулы, вылетевшие из слоя $0 < y < +\lambda$ (слой 2) и снизу вверх — вылетевшие из слоя $-\lambda < y < 0$ (слой 1). Данное предположение вполне разумно для качественной оценки явления, поскольку молекулы из более дальних слоёв имеют значительно меньшую вероятность добраться до y=0, поскольку по пути они скорее всего столкнутся с другими молекулами.

Количество молекул, перелетающих из слоя 1 в слой 2 за единицу времени через единичную площадку (плотность потока), равно:

$$j = \frac{dN}{S \cdot dt} = \frac{1}{4}nv_t. \tag{1}$$

Каждая из этих молекул массой m_0 обладает, помимо хаотично распределённой тепловой составляющей (в среднем v_T), дополнительной горизонтальной скоростью, связанной с движением в потоке $v_{1x} = v_x(-\lambda)$, и горизонтальным импульсом $p_{1x} = m_0 v_{1x}$. И наоборот, из слоя 2 в слой 1 поступает такое же количество молекул, но их средний горизонтальный импульс равен $p_{2x} = m_0 c_{2x}$. Горизонтальный импульс, который они переносят в сумме в единицу времени, и есть касательная сила вязкого трения: $F_x = (\frac{dP_x}{dt})_{2\to 1} - (\frac{dP_x}{dt})_{1\to 2} = jS(p_{2x}-p_{1x}) = S \cdot \frac{1}{4}m_0nv_T \cdot (v_{2x}-v_{1x}).$ Считая λ достаточно малой, раскладываем по Тэйлору $v_{2x}-v_{1x} = v_x(\lambda)-v_x(-\lambda)$, из чего получим

$$F_x = \left(\frac{dP_x}{dt}\right)_{2\to 1} - \left(\frac{dP_x}{dt}\right)_{1\to 2} = jS(p_{2x} - p_{1x}) = S \cdot \frac{1}{4}m_0nv_T \cdot (v_{2x} - v_{1x}).$$

окончательное выражение для силы вязкого трения. В общем виде оно выглядит следующим образом:

$$F_x = S\eta \frac{dv_x}{dy},\tag{2}$$

где η — коэффициент вязкости (сокращенно вязкость), y — направление, перпендикулярное потоку, S — площадь поверхности, для которой рассчитывается приложенная сила. В общих чертах механизм возникновения вязких сил трения во всех текучих средах (жидкостях и газах) одинаков, и формула (2) представляет собой определение коэффициента вязкости. Для идеального газа, как следует из приведенных выше выкладок, вязкость можно оценить по порядку величины:

$$\eta \sim \frac{1}{2}m_0 n v_T \lambda = \frac{1}{2}\rho v_t \lambda,\tag{3}$$

Более детальное рассмотрение даёт значение вязкости, отли- чающееся от полученного на множитель $\frac{2}{3}$. Хотя такое отличие не существенно для оценки по порядку величины, этот ответ является общепринятым для оценки η :

$$\eta_{\sim} \frac{1}{3} \rho v_t \lambda,$$
 (4)

Течение вязкой жидкости.

Имеется два существенно различных класса течений. Ламинарное течение — течение, происходящее без перемешивания и пульсаций, в параллельных слоях жидкости; турбулентное течение, в котором образуются вихри и пульсации, а слои беспорядочно перемешиваются.

То, каким будет данное конкретное течение, зависит от соотношения физических параметров и от геометрических характеристик системы. Если у системы есть характерный размер r (радиус трубки при течении по трубе, радиус шарика при обтекании его внешним потоком и т. п.), то из r, плотности, вязкости η и характерной скорости потока v можно составить безразмерное соотношение:

$$Re = \frac{\rho vr}{\eta} \tag{5}$$

называемое числом Рейнольдса. Безразмерные параметры отражают связь между физическими явлениями, происходящими на разных масштабах, и часто используются при описании сложных физических явлений, для которых нет точных решений. Величины v, ρ, r, η могут меняться в широком диапазоне (например, течение воздуха в аэродинамической трубе диаметром в десятки метров и течение воды в капилляре), но если число Re для этих случаев будет одинаково, то эти течения будут подобны друг другу. Такие зависимости в физике называют законами подобия.

Число Рейнольдса характеризует (по порядку величины) отношение кинетической энергии элемента жидкости к работе сил вязкого трения, совершаемой над ним. Действительно, кинетическая энергия в кубике со стороной r равна $k\sim \frac{\rho r^3v^2}{2}$, сила трения $F\sim \frac{r^2\eta v}{r}$ и её работа $A_F\sim Fr\sim \eta v r^2$, откуда

$$Re \sim \frac{K}{A_E}$$
.

Вязкие силы стремятся стабилизировать течение, тогда как избыток кинетической энергии может приводить к переходу её части в вихревое движение. Таким образом, можно заключить, что большие числа Рейнольдса благоприятствуют рождению турбулентных течений, а при малых Re течение будет, скорее всего, ламинарным.

Эксперимент подтверждает эти рассуждения: для заданной геометрии течения существует критическое значение числа Рейнольдса $Re_{\rm kp}$, так что при $Re>Re_{\rm kp}$ ламинарное течение оказывается неустойчивым и рождается турбулентность. Для течения по трубе эксперимент даёт $Re_{\rm kp} \sim 10^3$.

Течение по трубе. Рассмотрим стационарное течение вязкой жидкости или газа по трубке круглого сечения радиуса *R*. Закон такого движения описывается формулами Пуазейля:

$$v = \frac{P_1 - P_2}{L} \frac{1}{4\eta} (R^2 - r^2), \tag{6}$$

$$Q = \frac{\pi R^4}{8\eta L} (P_1 - P_2) \tag{7}$$

где P_2 и P_1 — давления на концах трубы, а L — длина трубы.

Ход работы:

1. Будем снимать зависимость разности давлений $\triangle P$ на некотором участке трубы от расхода воздуха $\triangle Q = \frac{\triangle V}{\triangle t}$, при этом $\triangle V$ измеряется газовым счетчиком, а $\triangle t-$ секундомером. Измерения будем проводить на участке с установившимся потоком (для трубки с диаметром 3.9 и 5.9мм возьмём участок длиной 50 см). Множитель на стойке микроманометра установим равным 0.2. Постепенно увеличим расход, начиная с маленьких перепадов давления.

Найдем $k=\frac{\Delta P}{Q}$ как коэффициент наклона прямой $\Delta P(Q)$ на участке, соответствующему ламинарному течения.

Получим η из формулы Пуазейля(10):

$$\eta = \frac{\pi R^4 \Delta P}{8QL} = k \frac{\pi R^4}{8L} \tag{8}$$

Оценку Re получим из следующих соотношений:

$$Re = \frac{\rho vr}{\eta} = \frac{\rho lrS}{\eta tS} = \frac{\rho Q}{\eta \pi r} \tag{9}$$

Относительную погрешность σ_{η} определим из формулы:

$$\varepsilon_{\eta}^2 = 4^2 \varepsilon_r^2 + \varepsilon_k^2 + \varepsilon_L^2 \tag{10}$$

$$\varepsilon_k = \frac{1}{\sqrt{m-1}} \varepsilon_{k_i} = \frac{1}{\sqrt{m-1}} \sqrt{\varepsilon_{\Delta P}^2 + \varepsilon_Q^2}$$
, где m - количество точек на участке ламинарного течения (11)

Погрешности измерения:

 $\sigma_d = 0.05 \text{ mm}$

 $\sigma_V = 0.01$ дм³

 $\sigma_T = 0.5c$

 $\Delta P(Q)$, d = 3.9 mm

					(• /						
	$\Delta T, c$	67.9	41.1	22.2	39.1	18.9	25.4	21.2	19.4	17.5	14.7
	$\Delta V, m^3 * 10^{-3}$	0.3	1.0	1.0	2.5	1.5	2.5	2.5	2.5	2.5	2.5
4	$2, m^3/s * 10^{-5}$	0.442	2.433	4.513	6.395	7.949	9.839	11.815	12.92	14.286	17.053
	$\Delta P, \Pi a$	7.845	33.343	60.801	84.337	107.873	154.945	245.166	302.045	360.885	519.752

Рис. 1: График зависимости разности давлений от расхода в трубке 1 (d=3.9мм).

$\Delta P(Q) \;, d=5.9$ mm								
$\Delta T, c$	42.2	27.3	16.7	13.8	19.7	17.3		
$\Delta V, m^3 * 10^{-3}$	1.0	2.5	3.0	3.0	5.0	5.0		
$Q, m^3/s * 10^{-5}$	2.367	9.154	17.986	21.708	25.355	28.868		
$\Delta P, \Pi a$	7.845	29.42	94.144	137.293	182.404	229.476		

Рис. 2: График зависимости разности давлений от расхода в трубке 2(d=5.9 мм).

Для d=3.9мм: m=5 - как видно из графика, 6-я точка уже немного отклоняется от на начальной прямой. Можно предположить, что нарушение ламинарного течения происходит между 5 и 6 точкой.

$$k = 13.41 * 10^{-5} \frac{\Pi \text{a} \cdot c}{\text{M}^3} , \varepsilon_k = 0.037$$

 $\varepsilon_{\eta} = 0.063$

$$\eta = (1.52 \pm 0.1) * 10^{-5} \text{ }\Pi\text{a*c}$$

 $Re_{ ext{kp}} \sim 930$ (взяв расход $Q = (Q_5 + Q_6)/2)$

Для d = 5.9мм:

m=2 - уже первые 3 точки не лежат на прямой, можно сделать предположение что на участке от 1 до 2 течение ламинарное, а между 2 и 3 ламинарность нарушается.

$$k = 3.18 * 10^{-5} \frac{\Pi a \cdot c}{M^3}$$
, $\varepsilon_k = 0.10$

$$\varepsilon_{\eta} = 0.11$$

$$\eta = (1.89 \pm 0.21) * 10^{-5} \text{ } \Pi \text{a*c}$$

 $Re_{\rm kp} \sim 937$ (взяв расход $Q = (Q_2 + Q_3)/2$), получили значение близкое к полученному для тонкой трубки, что может говорить о правильности предположения длины участка ламинарного течения.

2. Теоретическая вязкость при $\lambda \sim 10^{-5}$ см:

$$\eta_{th} = \frac{1}{3}\rho v_T \lambda = \frac{1}{3}\rho \lambda \sqrt{\frac{3RT}{m_{mol}}} \approx 2.02 \cdot 10^{-5} \Pi a \text{ c}$$
(12)

где $m_{mol} \approx 28.98$ г/моль - молярная масса воздуха

Также в таблицах можно найти значение вязкости воздуха для $T\sim 15-20^{o}C$:

$$\eta_{table} = 1.86 \cdot 10^{-5} \Pi a c$$

Полученные оптным путем и теретические значения совпадают в пределах погрешности.

3. Найдем зависимость P от длины для трубок диаметром 3.9см и 5.9см при малом давлении

$$d = 3.9$$
мм , $Q = 0.042$ дм $^3/{\rm c}$

х, м	0.105	0.405	0.805	1.305	
$P(x), \Pi a$	27.5	66.7	107.9	164.8	

Рис. 3: График распределения давления от координаты x.

Как видно из графика, коэффициент наклона на участке [0.1:0.4] отличается от коэффициента наклона на последующих участках: $L_{\text{установления}} \in (0.1, 0.4)$ м

$$d = 5.9$$
мм, $Q = 0.084$ дм $^3/$ с

x, M	0.105	0.405	0.805	1.305
$P(x), \Pi a$	23.5	39.2	60.8	88.3

Рис. 4: График распределения давления координаты x. График линеен на измеренном участке, значит $L_{\text{установления}} \leq 0.1$ м.