Nomenclatura química de los compuestos inorgánicos

La <u>Unión Internacional de Química Pura y Aplicada</u> (IUPAC) ha recomendado una serie de reglas aplicables a la **nomenclatura química de los compuestos inorgánicos**; estas se conocen comúnmente como *El libro rojo.* Idealmente, cualquier <u>compuesto</u> debería tener un nombre del cual se pueda extraer una fórmula química sin ambigüedad ya sea diferente manera para su forma química del desarrollo. En castellano puede consultarse el "Resumen de las nomas IUPAC 2005 de nomenclatura de química inorgánica para su uso en enseñanza secundaria y recomendaciones didácicas (http://rseq.org/material-didactico/item/download/7 26_9800417a74e2eb80a65f816e89e0dc10)" de la RSEQ (Real Sociedad Española de Química).

También existe una nomenclatura IUPAC para la química orgánica. Los <u>compuestos orgánicos</u> son los que contienen <u>carbono</u>, comúnmente enlazados con <u>hidrógeno</u>, <u>oxígeno</u>, <u>nitrógeno</u>, <u>azufre</u>, boro, fósforo y algunos <u>halógenos</u>. El resto de los compuestos se clasifican como compuestos inorgánicos, los más comunes son los minerales. Estos se nombran según las reglas establecidas por la IUPAC.

Los compuestos inorgánicos se clasifican según la <u>función química</u> que contengan y por el número de <u>elementos químicos</u> que los forman, con reglas de nomenclatura particulares para cada grupo. Una función química es la tendencia de una sustancia a reaccionar de manera semejante en presencia de otra. Por ejemplo, los compuestos <u>ácidos</u> tienen <u>propiedades químicas</u> características de la <u>función ácido</u>, debido a que todos ellos tienen el <u>ion hidrógeno</u> y que dona H⁺; y las <u>bases</u> tienen propiedades características de este grupo debido al <u>ion</u> <u>OH</u>-¹ presente en estas moléculas y que recibe electrones. Las principales funciones químicas son: óxidos, bases, ácidos y sales.

Véase también: pH

Índice

Nomenclaturas de compuestos inorgánicos

Nomenclatura sistemática, con prefijos / atomicidad Nomenclatura stock con números romanos Nomenclatura tradicional, clásica o antigua Otras reglas y conceptos generales Tabla de números de valencia

Óxidos (compuestos binarios con oxígeno)

Tipos de óxidos

Óxidos básicos (metálicos)

Óxidos ácidos o anhídridos (no metálicos)

Óxidos dobles

Peróxidos

Superóxidos

Ozónidos

Hidruros (compuestos binarios con hidrógeno)

Hidruros metálicos

Hidrácidos o hidruros no metálicos

Hidruros con los nitrogenoides

Boranos

Silanos

Germanos

Oxácidos (compuestos ternarios ácidos)

Clasificación

Ácidos

Hidróxidos o bases (compuestos ternarios básicos)

Sales

Sales neutras

Sales ácidas

Sales básicas

Sales mixtas

Poliácidos

Peroxoácidos

Tioácidos

Iones

Cationes mono y poliatómicos

Véase también

Enlaces

Referencias

Nomenclaturas de compuestos inorgánicos

Se aceptan tres tipos de nomenclaturas para nombrar compuestos químicos inorgánicos:

- 1. Nomenclatura de sustitución.
- 2. Nomenclatura de adición.
- 3. Nomenclatura de hidrógeno.

Nomenclatura sistemática, con prefijos / atomicidad

También llamada nomenclatura por atomicidad , <u>estequiométrica</u> o de <u>IUPAC</u>. Se basa en nombrar a las sustancias usando <u>prefijos</u> numéricos griegos que indican la <u>atomicidad</u> de cada uno de los <u>elementos</u> presentes en cada <u>molécula</u>. La atomicidad indica el número de átomos de un mismo elemento en una molécula, como por ejemplo el agua con fórmula H₂O, que significa que hay un átomo de oxígeno y dos átomos de hidrógeno presentes en cada molécula de este compuesto, aunque de manera más práctica, la atomicidad en una fórmula química también se refiere a la proporción de cada elemento en una cantidad determinada de sustancia. En este estudio sobre nomenclatura química es más conveniente considerar a la atomicidad como el número de átomos de un elemento en una sola molécula.

La forma de nombrar los compuestos en este sistema es: prefijo-nombre genérico + prefijo-nombre específico

(Véase en la sección **otras reglas** nombre genérico y específico).

Los prefijos son palabras que se anteponen al prefijo nombre del compuesto y representan el número de átomos que hay en la <u>molécula</u> del <u>elemento</u>. Existen diferentes prefijos los cuales provienen del griego y a continuación se presenta el número de átomos al que hace referencia el prefijo.²

(Generalmente solo se utiliza hasta el prefijo hepta-)

Prefijos griegos	Número de átomos
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
non-, nona-, eneá-	9
deca-	10

El prefijo mono- normalmente se elude salvo que haya posibilidad de confusión.

Por ejemplo, CrBr₃: tribromuro de cromo; CO: monóxido de carbono

En casos en los que en vez de átomos se trate de grupos de átomos como compuestos tales como sales dobles y triples, oxisales y similares, se pueden emplear los prefijos bis-, tris-, tetraquis, pentaquis, hexaquis, etc.

Por ejemplo la fluorapatita Ca_5F (PO_4)₃: fluoruro tris(fosfato) de calcio, ya que si se usara el término trifosfato se estaría hablando del anión trifosfato $[P_3O_{10}]^{5-}$, en cuyo caso sería:

 $Ca_5F (P_3O_{10})_3$

Nomenclatura stock con números romanos

Este sistema de nomenclatura se basa en nombrar a los <u>compuestos</u> escribiendo al final del nombre con <u>números romanos</u>, el estado de oxidación del elemento con "nombre específico". Si solamente tiene un estado de oxidación, éste no se escribe.

La <u>valencia</u> (o mejor dicho el <u>estado de oxidación</u>) es la que indica el número de <u>electrones</u> que un átomo pone en juego en un <u>enlace químico</u>; un número positivo cuando tiende a ceder los electrones, y un número negativo cuando tiende a ganar electrones. De forma general, bajo este sistema de nomenclatura, los compuestos se nombran de esta manera: **nombre genérico** + "de" + **nombre del elemento específico** + **el estado de oxidación**.

Normalmente, a menos que se haya simplificado la fórmula, la <u>valencia</u> no puede verse en el subíndice del otro elemento (en compuestos binarios y ternarios). Los números de valencia normalmente se colocan como superíndices del átomo (elemento) en una fórmula molecular.

Ejemplo: Fe₂S₃, Fe₂⁺³S₃⁻², sulfuro de hierro (III)

Ejemplo: SO₃, S⁺⁶O₃⁻², óxido de azufre (VI)

Alternancia de valencias.

La suma de las cargas es 2(+3) + 3(-2) = 0. Así, la fórmula del óxido de aluminio es Al-O₃.

Nomenclatura tradicional, clásica o antigua

En este sistema de nomenclatura se indica la valencia del elemento de nombre específico con una serie de prefijos y sufijos. De manera general las reglas son:

 Cuando el elemento solo tiene una valencia, simplemente se coloca el nombre del elemento precedido de la sílaba "de" o bien se termina el nombre del elemento con el sufijo -ico.

K2O, óxido de potasio u óxido potásico

Cuando tiene dos valencias diferentes se usan los sufijos -oso e -ico.

```
...O^{-2}, hierro con la valencia 2, (estado de oxidación +2), óxido ferroso ... -ico cuando el elemento usa la valencia mayor: Fe_2O_3, Fe_2^{+3}O_3^{-2}, hierro con valencia 3, (estado de oxidación +3), óxido férrico\frac{3}{2}
```

Cuando tiene tres distintas valencias se usan los prefijos y sufijos.

```
hipo- ... -oso (para la menor valencia): P_2O, P_2^{+1}O^{-2}, fósforo con la valencia 1, (estado de oxidación +1), óxido hipofosforoso ... -oso (para la valencia intermedia): P_2O_3, P_2^{+3}O_3^{-2}, fósforo con valencia 3, (estado de oxidación +3), óxido fosforoso ... -ico (para la mayor valencia): P_2O_5, P_2^{+5}O_5^{-2}, fósforo con valencia 5, (estado de oxidación +5), óxido fosfórico
```

Cuando tiene cuatro valencias diferentes se usan los prefijos y sufijos

```
hipo- ... -oso (para la valencia más pequeña)
... -oso (para la valencia pequeña)
... -ico (para la valencia grande)
per- ... -ico (para la valencia más grande)
```

Cuando tiene cinco valencias diferentes se usan los prefijos y sufijos:

```
hipo- ... -oso (para la valencia más pequeña) ... -oso (para la valencia media-menor) ... -ico (para la media) per- ... -ico (para la valencia media-mayor) hiper- ... -ico (para la valencia mayor)
```

Hoy esta nomenclatura está en desuso. Sin embargo aún se usa mucho en el comercio y la industria.

Otras reglas y conceptos generales

Los compuestos (binarios y ternarios) en su nomenclatura están compuestos por dos nombres: el genérico y el específico. El nombre genérico o general es el que indica a qué grupo de compuestos pertenece la molécula o su función química, por ejemplo si es un **óxido metálico**/básico, un **óxido no metálico**/ácido, un **peróxido**, un **hidruro**, un **hidrácido**, un **oxácido**, una **sal haloidea**, etc. Y el nombre específico es el que diferencia a las moléculas dentro de un mismo grupo de compuestos. Por lo general en los tres sistemas de nomenclatura se escribe primero el nombre genérico seguido del específico. Por ejemplo: óxido ferroso y óxido férrico, estos dos compuestos pertenecen al grupo de los óxidos y por eso su nombre genérico es óxido y a la vez los nombres específicos ferroso y férrico hacen referencia a dos compuestos diferentes **FeO** y **Fe₂ O₃**, respectivamente.

En general, en una <u>fórmula molecular</u> de un compuesto se coloca a la izquierda el elemento con <u>estado de oxidación</u> positivo (elemento más electropositivo) y a la derecha el que tenga el estado de oxidación negativo (elemento más <u>electronegativo</u>). Y por el contrario, en nomenclatura se coloca primero el nombre genérico, que es el que designa al elemento de la derecha (el más electronegativo), y el nombre específico en segundo lugar, que es el que designa al elemento de la izquierda (el más electropositivo).

Por ejemplo en el óxido de sodio, Na_2O , $Na^{+1}{}_2O^{-2}$, el nombre genérico óxido hace referencia al segundo elemento de la fórmula que es el "oxígeno", el más electronegativo, y el nombre específico "sodio" hace referencia al primer elemento de la fórmula que es el sodio y el menos electronegativo o más electropositivo.

¿Cómo se trabajan los estados de oxidación para poder nombrar correctamente un compuesto inorgánico? Se puede trabajar con más de un estado de oxidación, hasta el estado de oxidación +7 en los elementos representativos (Nota: recordar que aquí estamos mostrando el estado de oxidación como superíndice de cada elemento en la fórmula del compuesto). Con las mismas fórmulas moleculares se puede determinar con qué estado de oxidación actúan los átomos de la sustancia aunque en su fórmula no se observen. Esto se logra con el hecho que en la fórmula de una sustancia la suma de los estados de oxidación de todos los átomos de la sustancia debe ser igual a cero, lo que significa que la molécula será neutra, sin carga.

En el caso de los <u>iones</u>, es decir cuando en la fórmula se indique una carga positiva o negativa para el conjunto, la suma de los estados de oxidación de todos los átomos de la sustancia debe ser igual a la carga del ion.

Véase como ejemplo la imagen del "ácido nítrico" al final de la sección $\underline{oxácidos}$, del lado derecho de la imagen se encuentran el ion nitrato y el ion hidrógeno con cargas -1 y +1, respectivamente).

Como ejemplo para trabajar con valencias: **FeO**, este compuesto es un óxido y el oxígeno en los óxidos actúa con un estado de oxidación -2, así que para que la molécula sea neutra el hierro debe sumar el número de estados de oxidación suficientes para que la suma de los estados de oxidación sea cero. Los estado de oxidación con los que puede trabajar el hierro son +2 y +3, así que, en esta molécula el hierro va a utilizar el estado de oxidación +2. Como solo hay un átomo de hierro y la valencia es +2, el átomo de hierro en esa molécula tiene estado de oxidación +2 y de igual manera como solo hay un átomo de oxígeno y trabaja con el estado de oxidación -2, la suma de todos los estados de oxidación del oxígeno es -2. Y ahora la suma de todos los estados de oxidación de los átomos es igual a cero, pues la molécula es neutra, no tiene carga (+2) + (-2) = 0. La fórmula con estados de oxidación para este compuesto sería Fe^2O^{-2} .

En otro ejemplo, en el compuesto $\mathbf{Fe_2O_3}$ se busca también un cero en la suma de los estado de oxidación de todos los átomos, para que la molécula sea neutra, así que como hay 3 átomos de oxígeno y este trabaja con el estado de oxidación -2, la suma de los estados de oxidación para los oxígenos en la molécula "son el número de átomos del elemento multiplicado por el estado de oxidación con el que este trabaja", que en total sería -6. De esta manera los átomos de hierro deben de sumar estados de oxidación para que la suma total dé cero, pues la molécula es neutra. Como hay 2 átomos de hierro, este va a trabajar con el estado de oxidación +3 para hacer un total de +6, que sumados con los -6 de los oxígenos sería igual a cero, que significa una carga cero para la molécula. Los números de átomos y estado de oxidación en la molécula son:

Número de átomos de hierro = (2) Estados de oxidación para cada uno de los átomos de hierro = (+3) Número de átomos de oxígeno = (3) Estados de oxidación para cada uno de los átomos de oxígeno = (-2)

La operatoria completa se vería así: [2(+3)] + [3(-2)] = 0. La fórmula con estados de oxidación sería $\mathbf{Fe_2}^3\mathbf{O_3}^{-2}$. Como ya se había explicado anteriormente el estado de oxidación indica los electrones que intervienen en un enlace, y en este último compuesto, $\mathbf{Fe_2}^3\mathbf{O_3}^{-2}$, cada uno de los dos átomos de hierro está cediendo 3 electrones a los átomos de oxígeno y a la vez cada uno de los tres átomos de oxígeno está ganando 2 electrones; dos de los tres átomos de oxígeno reciben 2 electrones de los dos átomos de hierro, y el tercer de oxígeno recibe 2 electrones, 1 electrón sobrante de cada uno de los dos átomos de hierro.

Estructura de Lewis de la molécula binaria, óxido férrico o trióxido de dihierro u óxido de hierro (III).

Tabla de números de valencia

En la siguiente tabla se presentan los elementos que generalmente se usan para formar compuestos. Los estados de oxidación están en valor absoluto, es decir, son valencias.

Elemento	Símbolo	Estado de oxidación	Elemento	Símbolo	Estado de oxidación
Aluminio	Al	3	Antimonio	Sb	3 y 5
Arsénico	As	3 y 5	Ástato	At	1, 3, 5 y 7
Azufre	S	2, 4 y 6	Bario	Ва	2
Berilio	Ве	2	Bismuto	Bi	3 y 5
Boro	В	3	Bromo	Br	1 y 5
Cadmio	Cd	2	Calcio	Ca	2
Carbono	С	2 y 4	Cesio	Cs	1
Cinc	Zn	2	Circonio	Zr	4
Cloro	Cl	1, 3, 5 y 7	Cobalto	Со	2 y 3
Cobre	Cu	2 y 1	Cromo	Cr	2, 3, 4, 5 y 6
Escandio	Sc	3	Estaño	Sn	2 y 4
Estroncio	Sr	2	Flúor	F	1
Fósforo	Р	3,4 y 5	Galio	Ga	3
Germanio	Ge	2,4 y -4	Hafnio	Hf	4
Hidrógeno	Н	1 y -1	Hierro	Fe	2 y 3
Iridio	Ir	2, 3, 4 y 6	Itrio	Y	3
Lantano	La	3	Litio	Li	1
Magnesio	Mg	2	Manganeso	Mn	2, 3, 4, 6, 7
Mercurio	Hg	1 y 2	Molibdeno	Мо	2, 3, 4, 5 y 6
Niobio	Nb	3	Níquel	Ni	2 y 3
Nitrógeno	N	2, 3, 4 y 5	Oro	Au	1 y 3
Osmio	Os	2, 3, 4 y 6	Oxígeno	0	-2
Plata	Ag	1	Platino	Pt	2 y 4
Plomo	Pb	2 y 4	Potasio	K	1
Renio	Re	1, 2, 4, 6 y 7	Rodio	Rh	2, 3 y 4
Rubidio	Rb	1	Rutenio	Ru	2, 3, 4, 6 y 8
Selenio	Se	2, 4 y 6	Silicio	Si	4
Sodio	Na	1	Talio	TI	1 y 3
Tántalo	Ta	5	Tecnecio	Tc	7
Telurio	Те	2, 4 y 6	Titanio	Ti	3 y 4
Vanadio	V	2, 3, 4 y 5	Yodo	I	+/-1,3, 5 y 7

Véase también: Estructura de Lewis

Óxidos (compuestos binarios con oxígeno)

Los <u>óxidos</u> son compuestos químicos inorgánicos binarios formados por la unión del oxígeno con otro elemento diferente. Según si este elemento es <u>metal</u> o <u>no metal</u> serán óxidos básicos u óxidos ácidos. El oxígeno en los óxidos siempre tiene <u>estado de oxidación</u> -2, salvo excepciones que se ven más adelante.

Los óxidos se pueden nombrar en cualquiera de los tres sistemas de nomenclatura; si se utiliza la nomenclatura sistemática estequiométrica con números romanos (antigua de Stock), el número romano es igual a la valencia del elemento diferente del oxígeno; si se utiliza el sistema tradicional los sufijos y prefijos se asignan de acuerdo a las valencias de cada elemento y si se utiliza la nomenclatura sistemática con prefijos no se tienen en cuenta las valencias, sino que se escriben los prefijos en cada elemento de acuerdo a sus atomicidades en la fórmula molecular. Hay excepciones que se ven más adelante.

Tipos de óxidos

Según la estequiometria del compuesto:

- Óxidos binarios, formados por oxígeno y otro elemento.
- Óxidos mixtos, formados por dos elementos distintos y oxígeno como son las espinelas.

Atendiendo al comportamiento químico hay tres tipos de óxidos: óxidos <u>básicos</u>, <u>ácidos</u> y óxidos anfóteros, aunque no muy comunes en la naturaleza.

Óxidos básicos (metálicos)

Son aquellos óxidos que se producen entre el oxígeno y un metal cuando el oxígeno actúa con un <u>estado de oxidación</u> -2. Su <u>fórmula general</u> es: <u>metal</u> <u>más oxígeno</u>. En la nomenclatura estequiométrica con números romanos (antigua de Stock) los compuestos se nombran con las reglas generales anteponiendo como nombre genérico la palabra óxido seguido por el nombre del metal y su estado de oxidación en números romanos y sin signo. En la nomenclatura tradicional se nombran con los sufijos -oso e -ico dependiendo de la menor o mayor valencia del metal que acompaña al oxígeno. Y en la nomenclatura sistemática con prefijos se utilizan las reglas generales con la palabra óxido como nombre genérico y los prefijos correspondientes a cada elemento según el número de átomos de este en la fórmula.. En la nomenclatura antigua o tradicional o no, ya en desuso, se les llaman también **anhídridos o anhidridos básicos**; ya que al agregar <u>agua</u>, pueden formar <u>hidróxidos</u> básicos. En la nomenclatura tradicional para los óxidos que se enlazan con metales que tienen más de dos estados de oxidación se utilizan las siguientes reglas: metales con estados de oxidación hasta el +3 se nombran con las reglas de los óxidos y los metales con estados de oxidación mayores o iguales a 4 se nombran con las reglas de los <u>anhídridos</u>. Ejemplos: V₂+³O₃-² se nombra como óxido vanadoso; V₂+⁵O₅-² se nombra como óxido vanádico.

Metal + Oxígeno → Óxido básico

$$\mathbf{4Fe} + \mathbf{3O_2} \rightarrow \mathbf{2Fe_2O_3}$$

Compuesto	Nomenclatura sistemática con prefijos	Nomenclatura sistemática con números romanos	Nomenclatura tradicional
K ₂ O	óxido de dipotasio ⁴ o monóxido de dipotasio	óxido de potasio4	óxido potásico u óxido de potasio
Fe ₂ O ₃	trióxido de dihierro	óxido de hierro(III)	óxido férrico
FeO	monóxido de hierro	óxido de hierro(II)	óxido ferroso
SnO ₂	dióxido de estaño	óxido de estaño(IV)	óxido estánico

Cuando el nitrógeno, que es un no metal, actúa con los estados de oxidación +4 y +2, al enlazarse con el oxígeno, forma óxidos básicos similares a los de los metales (ver la sección de anhídridos, penúltimo párrafo).

Para nombrar a los óxidos básicos, se deben observar los estados de oxidación, o valencias, de cada elemento. Hay tres tipos de nomenclatura: tradicional, sistemática con prefijos y sistemática con números romanos (antigua de Stock).

- 1. **Cuando un elemento tiene un solo <u>número de oxidación</u>**, por ejemplo el <u>galio</u>), estado de oxidación +3, el óxido **Ga₂O₃** se nombra así:
 - Tradicional: óxido de galio.
 - Sistemática con prefijos: Se nombra según la cantidad de átomos que tenga cada elemento en la molécula. En este caso, es trióxido de digalio (ya que la molécula del óxido queda Ga₂O₃).
 - Sistemática con números romanos: Es igual a la nomenclatura tradicional, pero añadiendo el estado de oxidación en números romanos entre paréntesis. Recordemos que si el elemento sólo tiene un estado de oxidación, éste no se escribe: óxido de galio.
- 2. **Cuando un elemento tiene dos números de oxidación**, por ejemplo el <u>Plomo</u>), +2 y +4, los óxidos **PbO** y **PbO**₂ se nombran así:
 - Tradicional: PbO óxido plumboso (cuando el estado de oxidación utilizado es el menor), y PbO₂ óxido plúmbico (cuando es el mayor).

Ejemplos:

Óxido cuproso: Cu₂ O Óxido cúprico: CuO Óxido ferroso: FeO Óxido férrico: Fe₂O₃

Sistemática con prefijos:

Este tipo de nomenclatura necesita de los siguientes prefijos:

Prefijo	Número de átomos
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Cuando el prefijo termina con las letras a u o, se eliminan antes de la palabra: Ej.: mono: Mon-oxido. Quedaría de tal manera: Monóxido. Estaría mal escrito; Monoóxido Hepta: Hept-óxido. Quedaría de tal manera heptóxido. Estaría mal escrito heptaóxido. Ej.: la escritura va de derecha a izquierda

- P₂O₃
- trióxido de difósforo
- Numeral de Stock: en esta nomenclatura solo se necesita saber el número de valencia del metal, para escribirlo al final de la fórmula en números romanos entre paréntesis.

Ej.: P₂O₃ óxido de fósforo(III)

3. **Cuando un elemento tiene más de dos números de oxidación** (puede llegar a tener hasta cinco, Ej:El magnaneso, 2,3,4,6,7) se los denomina de la siguiente manera.

- Tradicional:
- cuando el elemento tiene una sola valencia se añade la terminación -ico, o simplemente se escribe la palabra óxido seguido de la preposición "de" y enseguida el nombre del elemento.
- cuando el elemento tiene dos valencias se añade la terminación -oso a la más pequeña y la terminación -ico a la más grande
- cuando el elemento tiene tres valencias se añade a la más pequeña hipo-oso con el elemento entre medias, a la intermedia se le añade la terminación -oso y a la más grande la terminación -ico
- cuando el elemento tiene cuatro valencias se añade a la más pequeña hipo-oso, a la siguiente -oso, a la siguiente -ico y por último a la más grande per-ico
 - Atomicidad: es igual que en los casos anteriores. Por ejemplo, si la molécula es de uranio y queda formada como U₂O₃, su nomenclatura es "Trióxido de diuranio".
 - Numeral de Stock: Exactamente igual que en los casos anteriores, se escribe el óxido normalmente y se le agrega el número de oxidación entre paréntesis.

Óxidos ácidos o anhídridos (no metálicos)

Son aquellos formados por la combinación del oxígeno con un <u>no metal</u>. Su fórmula general es **no metal** + **O**. En este caso, la nomenclatura tradicional emplea la palabra anhídrido en lugar de óxido, a excepción de algunos óxidos de nitrógeno y fósforo. La nomenclatura sistemática y la Stock nombran a los compuestos con las mismas reglas que en los óxidos metálicos. En la nomenclatura tradicional se nombran con los siguientes sufijos y prefijos.

# de Valencia	Prefijo	Raíz	Elemento	Sufijo
1	única		elemento	ico
2	mayor		elemento	ico
2	menor		elemento	0S0
3	mayor		elemento	ico
3	intermedia		elemento	0S0
3	menor	hipo	elemento	0S0
4	máxima	per	elemento	ico
4	mayor		elemento	ico
4	menor		elemento	080
4	mínima	hipo	elemento	0S0

No metal + Oxígeno
$$\rightarrow$$
 Anhídrido $2S + 3O_2 \rightarrow 2SO_3$

Compuesto	Nomenc. sistem.	Nomenc. Stock	Nomenc. tradicional
Cl ₂ O	óxido de dicloro o monóxido de dicloro	óxido de cloro (I)	anhídrido hipocloroso
SO ₃	trióxido de azufre	óxido de azufre (VI)	anhídrido persulfúrico
Cl ₂ O ₇	heptóxido de dicloro	óxido de cloro (VII)	anhídrido perclórico

Cuando el <u>flúor</u> reacciona con el oxígeno se crea un compuesto diferente a un óxido ácido ya que el oxígeno deja de ser el elemento más electronegativo, distinto a como pasa con todos los óxidos donde el oxígeno es el elemento más electronegativo. El único elemento más electronegativo que el oxígeno es el flúor con 4.0 mientras el oxígeno tiene 3.5. Así que el compuesto deja de llamarse óxido y se nombra como <u>fluoruro</u> de oxígeno para el sistema tradicional, fluoruro de oxígeno (II) para el sistema Stock y difluoruro de oxígeno para el sistemático. La fórmula es $\mathbf{O}^2\mathbf{F}_2^{-1}$.

Los <u>óxidos de nitrógeno</u>, al igual que los óxidos del azufre, son importantes por su participación en la <u>lluvia ácida</u>. Con el término **óxido de nitrógeno** se hace alusión a cualquiera de los siguientes:

- Óxido nítrico u Óxido de nitrógeno (II), de fórmula NO.
- Dióxido de nitrógeno, de fórmula NO₂.
- Óxido nitroso o Monóxido de dinitrógeno, de fórmula N₂O.
- Trióxido de dinitrógeno, de fórmula N₂O₃.
- Tetróxido de dinitrógeno, de fórmula N₂O₄.
- Pentóxido de dinitrógeno, de fórmula N₂O₅.

Entre las excepciones a las reglas de anhídridos para la nomenclatura tradicional están los óxidos de nitrógeno y óxidos de fósforo. Estos compuestos se nombran así:

- N₂¹O⁻² Anhídrido hiponitroso
- N²O⁻² Óxido hiponitroso
- N₂³O₃⁻² Anhídrido nitroso
- N₂⁴O₄⁻² Óxido nitroso
- N⁴O₂-2 Óxido nitroso
- N₂⁵O₅-2 Anhídrido nítrico
- P₂³O₃⁻² Anhídrido fosforoso
- P⁴O₂-2 Óxido fosforoso
- P₂⁵O₅-2 Anhídrido fosfórico

Cuando los metales, con más de dos números de valencia y que trabajan con los números de valencia iguales o mayores a 4, se enlazan con el oxígeno, forman anhídridos (ver la sección de óxidos básicos, segundo párrafo).

Óxidos dobles

Resultan de escribir en una sola forma las fórmulas de los óxidos terminados en OSO e ICO. Se les nombra con la palabra ÓXIDO de yo seguida de los "nombres iónicos" de los metales.

- FeO+Fe₂O₃=Fe₃O₄ óxido ferroso férrico
- 2SnO+SnO=Sn₃O₄ óxido estañoso estánico
- 2PbO+Pb₂O₃=Pb₃O₄ óxido plumboso plúmbico
- MnO+Mn₂O₃=Mn₃O₄ óxido manganoso mangánico

Peróxidos

Los <u>peróxidos</u> se obtienen por reacción de un óxido con <u>oxígeno monoatómico</u> y se caracterizan por llevar el <u>grupo peróxido</u> o unión peroxídica (-o-o-). Son compuestos diatómicos en donde participan el grupo peróxido y un metal. La fórmula general de los peróxidos es <u>metal</u> + $(O^{-1})_2^{-2}$. En el sistema tradicional se utiliza el nombre peróxido en lugar de óxido y se agrega el nombre

del metal con las reglas generales para los óxidos en esta nomenclatura. En las nomenclaturas Stock y sistemática se nombran los compuestos con las mismas reglas generales para los óxidos.

No todos los metales forman peróxidos y habitualmente lo hacen los del grupo **1A** y **2A** de la <u>tabla periódica</u> (<u>alcalinos</u> y alcalinotérreos).

Metal + Grupo peróxido
$$\rightarrow$$
 Peróxido
 $2\text{Li}^{+1} + (O)_2^{-2} \rightarrow \text{Li}_2(O)_2$

Compuesto	Nomenc. sistemática	Nomenc. Stock	Nomenc. tradicional
H ₂ O ₂	peróxido de dihidrógeno	peróxido de hidrógeno	peróxido hidrogénico
CaO ₂	peróxido de calcio	peróxido de calcio	peróxido cálcico
ZnO ₂	peróxido de zinc	peróxido de zinc (II)	peróxido zínquico

Superóxidos

Los <u>superóxidos</u>, también llamados hiperóxidos, son compuestos binarios que contienen el grupo o anión superóxido, la fórmula general es <u>metal</u> + (O ₂)⁻¹ Aparentemente, el oxígeno tiene valencia -1/2. Generalmente el grupo superóxido reacciona con los elementos alcalinos y alcalinotérreos.

Se nombran como los peróxidos tan solo cambiando peróxido por superóxido o hiperóxido.

$$\begin{array}{c} Metal + Grupo \ super\'oxido \ \rightarrow \ Super\'oxido \\ Li^{+1} + (O_2)^{\underline{-1}} \ \rightarrow \ LiO_2 \end{array}$$

Compuesto	Nomenclatura
KO ₂	superóxido o hiperóxido de potasio
CaO ₄ o Ca (O ₂) ₂	superóxido de calcio
CdO ₄	superóxido de cadmio

Ozónidos

Son compuestos binarios formados por el grupo ozónido, que son 3 oxígenos enlazados con una valencia total de -1. La fórmula general para los ozónidos es $\underline{\text{metal}}$ + $(O_3)^{-1}$. Los ozónidos se nombran de forma análoga a los peróxidos con la diferencia que en estos compuestos se utiliza el nombre ozónido en lugar de peróxido.

Compuesto	sto Nomenclatura	
KO ₃	ozónido de potasio	
RbO ₃	ozónido de rubidio	
CsO ₃	ozónido de cesio	

Hidruros (compuestos binarios con hidrógeno)

Los hidruros son compuestos binarios formados por hidrógeno y otro elemento.

Hidruros metálicos

Son compuestos binarios o diatómicos formados por hidrógeno y un metal. En estos compuestos, el hidrógeno siempre tiene valencia -1. Se nombran con la palabra hidruro. Su fórmula general es **Metal** + **H**. Para nombrar estos compuestos en el sistema tradicional se utiliza la palabra hidruro y se agrega el nombre del metal con los sufijos -oso o -ico con las reglas generales para esta nomenclatura. Para las nomenclaturas Stock y sistemática se utilizan las reglas generales con la palabra hidruro como nombre genérico.

$$\begin{array}{c} Metal + Hidrógeno \rightarrow Hidruro \ metálico \\ 2K + H_2 \rightarrow 2KH \end{array}$$

Compuesto	Nomenc. sistemática	Nomenc. Stock	Nomenc. tradicional
KH	monohidruro de potasio	hidruro de potasio4	hidruro potásico o hidruro de potasio
NiH ₃	trihidruro de níquel	hidruro de níquel (III)	hidruro niquélico
PbH ₄	tetrahidruro de plomo	hidruro de plomo (IV)	hidruro plúmbico

Hidrácidos o hidruros no metálicos

Los <u>hidrácidos</u> (compuestos binarios ácidos) o hidruros no metálicos son compuestos formados entre el hidrógeno y un no metal de las familias VIA y VIIA (<u>anfígenos</u> y <u>halógenos</u> respectivamente). Los elementos de estas dos familias que pueden formar hidrácidos e hidruros no metálicos son: <u>S</u>, <u>Se</u>, <u>Te</u>, <u>F</u>, <u>Cl</u>, <u>I</u> y <u>Br</u>, que por lo general trabajan con el menor número de oxidación, -2 para los anfígenos y -1 para los halógenos. Estos compuestos se nombran en el sistema tradicional y de forma diferente según si están disueltos (estado acuoso) o en estado puro (estado gaseoso). Los hidrácidos pertenecen al grupo de los ácidos, *Ver la sección oxácidos*.

Los **hidruros no metálicos** son los que se encuentran en estado gaseoso o estado puro y se nombran agregando al no metal el sufijo -uro y la palabra hidrógeno precedido de la sílaba "de". En este caso el <u>nombre genérico</u> es para el elemento más electropositivo que sería el del hidrógeno y el nombre específico es para el elemento más electronegativo que sería el del no metal, por ejemplo H⁺¹ Br⁻¹ (g) bromuro de hidrógeno, bromuro como nombre específico e hidrógeno como nombre genérico.

No metal + Hidrógeno
$$\rightarrow$$
 Hidruro no metálico $Cl_2 + H_2 \rightarrow 2HCl_{(g)}$

Los **hidrácidos** provienen de disolver en agua a los hidruros no metálicos y por esa misma razón son estos los que se encuentran en estado acuoso. Se nombran con la palabra ácido, como nombre genérico, y como nombre específico se escribe el nombre del no metal y se le agrega el sufijo –hídrico. Al igual que en estado gaseoso el nombre genérico es nombrado por el elemento más electropositivo.

Hidruro No metálico + Agua
$$\rightarrow$$
 Hidrácido $HCl_{(g)} + H_2O \rightarrow H^{+1} + Cl^{-1}$

Compuesto	en estado puro	en disolución
HCI	cloruro de hidrógeno	ácido clorhídrico
HF	fluoruro de hidrógeno	ácido fluorhídrico
HBr	bromuro de hidrógeno	ácido bromhídrico
Н	yoduro de hidrógeno	ácido yodhídrico
H ₂ S	sulfuro de hidrógeno	ácido sulfhídrico
H ₂ Se	seleniuro de hidrógeno	ácido selenhídrico
H ₂ Te	teluluro de hidrógeno	ácido telurhídrico

Hidruros con los nitrogenoides

Estos **hidrácidos o hidruros no metálicos** son compuestos binarios de hidrógeno y un elemento de la familia (V) (<u>nitrogenoides</u>) que se enlazan siguiendo la fórmula **No Metal** + **H**₃. A estos compuestos se les llama por sus nombres comunes, aunque muy raramente se les nombra con las reglas de nomenclatura de los hidruros (metálicos). En estos hidruros no metálicos el hidrógeno es el elemento más electronegativo en el compuesto.

No metal + Hidrógeno
$$\rightarrow$$
 Hidruro no metálico $N_2 + 3H_2 \rightarrow 2NH_3$

Compuesto	Nombre
NH ₃	amoniaco o trihidruro de nitrógeno
PH ₃	fosfano o trihidruro de fósforo
AsH ₃	arsano o trihidruro de arsénico
SbH ₃	estibano o trihidruro de antimonio
BiH ₃	bismutano o trihidruro de bismuto
BH ₃	borano o trihidruro de boro
B ₂ H ₆	diborano o hexahidruro de boro
CH ₄	metano o tetrahidruro de carbono
SiH ₄	silano o tetrahidruro de silicio
GeH ₄	germano o tetrahidruro de germanio

Boranos

Los <u>boranos</u> son compuestos binarios entre el hidrógeno y el boro que generalmente se enlazan siguiendo la fórmula B_nH_{n+4} . Estos compuestos no se nombran en un sistema de nomenclatura específico ya que las reglas para nombrarlos son especiales. Se utiliza la palabra borano con un prefijo numérico griego <u>(tabla de prefijos)</u> que depende del número de átomos de borano presentes en la molécula.

Compuesto	Nombre
BH ₃	monborano o borano
B ₂ H ₆	diborano
B ₃ H ₇	triborano
B ₄ H ₈	tetraborano
B ₁₀ H ₁₄	decaborano

Silanos

Los <u>silanos</u> son compuestos binarios de hidrógeno y silicio que se enlazan generalmente siguiendo la fórmula Si_nH_{2n+2} . Los silanos al igual que los boranos no tienen un sistema de nomenclatura específico para ser nombrados y utilizan las mismas reglas de nomenclatura, con la palabra silano como base.

Compuesto	Nombre	
SiH ₄	monosilano, silano o tetrahidruro de silano	
Si ₂ H ₆	disilano	
Si ₃ H ₈	trisilano	
Si ₄ H ₁₀	tetrasilano	
Si ₁₀ H ₂₂	decasilano	

Germanos

Los <u>germanos</u> son compuestos binarios de hidrógeno y germanio que se enlazan generalmente siguiendo la misma fórmula que los silanos Ge_nH_{2n+2} . Los germanos al igual que los boranos y silanos no tienen un sistema de nomenclatura específico para ser nombrados y utilizan las mismas reglas de nomenclatura que los silanos, con la palabra germano como base.

Compuesto	Nombre	
GeH ₄	monogermano, germano o tetrahidruro de germano	
Ge ₂ H ₆	digermano	
Ge ₃ H ₈	trigermano	
Ge ₄ H ₁₀	tetragermano	
Ge ₁₀ H ₂₂	decagermano	

Oxácidos (compuestos ternarios ácidos)

Los <u>oxácidos</u>, también llamados **oxoácidos** y **oxiácidos**, son compuestos ternarios ácidos originados de la combinación del agua con un anhídrido u óxido ácido. La fórmula general para los oxácidos es **H** + **NoMetal** + **O**. En el sistema tradicional se les nombra con las reglas generales para los anhídridos sustituyendo la palabra anhídrido por ácido (ya que de los anhídridos se originan). Para el sistema Stock se nombra al no metal con el sufijo —ato, luego el número de valencia del no metal y por último se agrega "de hidrógeno". Y para la nomenclatura sistemática se indica el número de átomos de oxígeno con el prefijo correspondiente (según reglas generales para este sistema) seguido de la partícula "oxo" unida al nombre del no metal y el sufijo —ato, por último se agrega al nombre las palabras "de hidrógeno".

Anhídrido + Agua \rightarrow oxácido $SO_3 + H_2O \rightarrow H_2SO_4$

Compuesto	Nomenclatura sistemática	Nom. Stock	Nom. tradicional
H ₂ SO ₄	tetraoxosulfato de hidrógeno	sulfato (VI) de hidrógeno ⁴	ácido sulfúrico
HCIO ₄	tetraoxoclorato de hidrógeno	clorato (VII) de hidrógeno4	ácido perclórico
H ₂ SO ₂	dioxosulfato de hidrógeno	sulfato (II) de hidrógeno ⁴	ácido hiposulfuroso

Como se indica en la sección de los <u>anhídridos</u>, el nitrógeno y el fósforo no forman anhídridos cuando se enlazan con el oxígeno, mientras estos trabajan con los números de valencia 4 y 2, si no que forman óxidos y por esta razón el nitrógeno y el fósforo no pueden formar oxácidos con estos números de valencia.

Ya que para nombrar a los compuestos se necesita saber con qué números de valencia trabajan los elementos, una manera muy fácil para determinar los números, según la fórmula molecular, es sumando los números de valencia del oxígeno y el hidrógeno planteando una ecuación para la valencia del no metal, ya que la suma de cargas o valencias debe ser cero para que la molécula sea neutra (ver <u>la sección *reglas generales*</u>). Como se describe anteriormente la fórmula general para estos compuestos es \mathbf{H} + **NoMetal** + \mathbf{O} , donde el oxígeno es el elemento más electronegativo y el hidrógeno y el no metal son los elementos más electropositivos. El hidrógeno trabaja con la valencia +1 y el oxígeno con la valencia -2, *siempre en estos compuestos*. Por ejemplo: H_2SO_4 , como hay 4 átomos de oxígeno y este trabaja con -2, en total para los oxígenos la carga seria de -8. De la misma manera, como hay 2 hidrógenos y este trabaja con valencia +1 la carga para este elemento es de +2. Como la suma de las cargas debe ser igual a cero, entonces el azufre trabajara con la valencia +6. Los elementos con valencias y la operatoria serían: H_2^{+1} + S^{+6} + O_4^{-2} => (+1)2 + (+6) + (-2)4 = 0. Como el azufre trabaja con +6 su terminación o sufijo sería –ico y el compuesto se nombraría "ácido sulfúr**ico**".

Por otra parte, ciertos anhídridos pueden formar hasta tres oxácidos distintos dependiendo de cuantas moléculas de agua se agreguen por molécula de anhídrido. En otras palabras, en ciertos oxácidos especiales, un solo "no metal" con una sola valencia puede formar hasta tres oxácidos. Estos elementos son el yodo, fósforo, silicio, boro y teluro. Para diferenciar a estos oxácidos en el sistema tradicional se utilizan tres prefijos dependiendo de cuantas moléculas de agua se agregan por cada una molécula de anhídrido. Estos son:

meta-... (1 molécula de agua) piro-... (2 moléculas de agua)

orto-... (3 moléculas de aqua) este prefijo se puede omitir

El silicio y el yodo también pueden formar oxácidos con más de una molécula de agua, en dos casos especiales.

Compuesto	Nom. sistemática	Nom. Stock	Nom. tradicional
$P_2O_5 + H_2O \rightarrow 2HPO_3$	ácido trioxofosfórico	trioxofosfato (V) de hidrógeno	ácido metafosfórico
$P_2O_5 + 2H_2O \rightarrow H_4P_2O_7$	ácido heptaoxodifosfórico	heptaoxodifosfato (V) de hidrógeno	ácido pirofosfórico
P ₂ O ₅ + 3H ₂ O → 2H ₃ PO ₄	ácido tetraoxofosfórico	tetraoxofosfato (V) de hidrógeno	ácido ortofosfórico o ácido fosfórico
I ₂ O ₇ + 5H ₂ O → 2H ₅ IO ₆	ácido hexaoxoyódico	hexaoxoyodato (VII) de hidrógeno	ácido ortoperyódico
$SiO_2 + 2H_2O \rightarrow H_4SiO_4$	ácido tetraoxosilícico	tetraoxosilicato (IV) de hidrógeno	ácido ortosilícico (excepción solo 2 moléculas de agua)

Como se describe previamente los oxácidos están formados por un anhídrido (no metal + oxígeno) y el hidrógeno, pero como se indica en la secciones de anhídridos y <u>óxidos básicos</u> algunos metales, también pueden formar anhídridos, y por esta razón, también pueden formar oxácidos.

Compuesto	Nomenclatura sistemática	Nom. Stock	Nom. tradicional
H ₂ CrO ₄	ácido tetraoxocrómico	cromato (VI) de hidrógeno ⁴	ácido crómico
H ₂ MnO ₃	ácido trioxomangánico	manganato (IV) de hidrógeno ⁴	ácido manganoso
H ₂ MnO ₄	ácido tetraoxomangánico	manganato (VI) de hidrógeno ⁴	ácido mangánico
HMnO ₄	ácido tetraoxomangánico	manganato (VII) de hidrógeno4	ácido permangánico
HVO ₃	ácido trioxovanádico	vanadato (V) de hidrógeno ⁴	ácido vanádico

Los oxiácidos son compuestos que presentan <u>uniones covalentes</u>, pero cuando se disuelven en agua ceden fácilmente <u>iones</u> H^{+1} (protones). Esto se debe a que el agua, por la naturaleza polar de sus moléculas, tiene tendencia a romper las uniones covalentes polares de los ácidos, con formación de iones H^{+1} y del <u>anión</u> ácido correspondiente. Por ejemplo, el ácido nítrico que se disuelve en agua da lugar a un anión nitrato y un catión hidrógeno.

$$HNO_3 \rightarrow \rightarrow \rightarrow \rightarrow NO_3^{-1} + H^{+1}$$

La ionización de un oxácido al disolverse en agua es un ejemplo de proceso que se cumple en ambos sentidos, es decir que, al mismo tiempo que se forman iones a partir del ácido, este se regenera constantemente por la unión de aniones y cationes. Los procesos de esta naturaleza se denominan reversibles.

Estructura de Lewis que sobre el proceso de ionización reversible para el hidróxido, ácido nítrico. Esta imagen esta mejor explicada en la sección 6 del artículo.

Clasificación

Polibidratados

Su fórmula general es: Un óxido no metálico más "n" moléculas de agua (H₂O).

Ácidos

Los ácidos son compuestos que se originan por combinación del agua con un anhídrido u óxido ácido, o bien por disolución de ciertos hidruros no metálicos en agua. En el primer caso se denominan **oxácidos** y en el segundo, **hidrácidos**. Ácido, también es toda sustancia que en solución acuosa se ioniza, liberando cationes de hidrógeno.

Hidróxidos o bases (compuestos ternarios básicos)

Los <u>hidróxidos</u> son compuestos ternarios básicos formados por la unión de un óxido básico con agua. Se caracterizan por tener en solución acuosa el radical o grupo oxhidrilo o <u>hidroxilo</u> OH^{-1} . Para nombrarlos se escribe con la palabra genérica hidróxido, seguida del nombre del metal electropositivo terminado en -oso o -ico según las reglas generales para el sistema tradicional. La fórmula general es **Metal** + $(OH)^{-1}_{x}$. En la nomenclatura Stock y sistemática se nombran genéricamente como hidróxido y las respectivas reglas generales.

Compuesto	Nomenclatura sistemática	Nomenclatura Stock	Nomenclatura tradicional
Li (OH)	hidróxido de litio	hidróxido de litio (I)	hidróxido de litio
Pb (OH) ₂	dihidróxido de plomo	hidróxido de plomo (II)	hidróxido plumboso
AI (OH) ₃	trihidróxido de aluminio	hidróxido de aluminio (III)	hidróxido de aluminio

Los hidróxidos cuando se disuelven en agua se ionizan formando cationes metal e iones hidroxilo u oxhidrilo. Este proceso de ionización es reversible, es decir que así como se forma los cationes metal e iones hidroxilo a partir de un hidróxido, inversamente, también se pueden formar hidróxidos a partir de los cationes e iones ya mencionados.

$$Na(OH) \rightarrow \rightarrow \rightarrow \rightarrow Na^{+1} + (OH)^{-1}$$

$$\cdots \cdots (Agua)$$

$$Na^{+1} + (OH)^{-1} \rightarrow \rightarrow \rightarrow Na(OH)$$

Un caso especial lo constituye el hidróxido de amonio. El amoniaco es un gas muy soluble en agua, su fórmula es **NH**₃. Al disolverse reacciona con el agua formando el compuesto hidróxido de amonio. Este proceso es reversible.

$$\begin{array}{c} \cdots\cdots(\text{Agua}) \\ \text{NH}_3 + \text{H}_2\text{O} \rightarrow \rightarrow \rightarrow \rightarrow \text{NH}_4(\text{OH}) \\ \text{(Agua)} \cdots\cdots\cdots \\ \text{NH}_4(\text{OH}) \rightarrow \rightarrow \rightarrow \rightarrow \text{NH}_3 + \text{H}_2\text{O} \end{array}$$

Sales

Las <u>sales</u> son compuestos que resultan de la combinación de sustancias ácidas con sustancias básicas. Las sales comprenden tanto compuestos binarios o diatómicos, como ternarios. Y hay distintos tipos o formas de clasificarlas que son: sales neutras, sales ácidas, sales básicas y sales mixtas.

Sales neutras

Las sales neutras son compuestos formados por la reacción de un ácido con un hidróxido (compuesto ternario básico) formando también agua. Entre las sales neutras se encuentran las binarias y las ternarias, que se diferencian entre sí por el ácido con el que reaccionan, siendo estos un hidrácido o un oxácido.

Cuando reacciona un ácido con un hidróxido para formar una sal neutra se combinan todos los cationes hidronio (H^{+1}) con todos los aniones hidroxilo (OH^{-1}) . Los cationes H^{+1} son los que dan la propiedad de ácido a los hidrácidos y oxácidos, y los aniones

OH⁻¹ son los que dan propiedad de base a los hidróxidos, y cuando estos ácidos y bases reaccionan dan lugar a una **ización**, que es la formación de agua, mientras que los iones restantes de la reacción forman una sal. Es por esta razón que estas sales reciben el nombre de "neutras". *Ver las ecuaciones abajo mostradas*.

Las **sales neutras binarias** o **sales haloideas** son compuestos formados por un hidrácido y un hidróxido. Para nombrarlos en el sistema tradicional, stock y sistemático se aplican las reglas generales usando el nombre del no metal con el sufijo —uro como nombre genérico y el nombre del metal como nombre específico.

En las dos primeras ecuaciones se presenta el proceso completo para la formación de una sal neutra binaria y en las últimas dos se ejemplifica por separado la neutralización y la formación de la sal neutra.

Hidrácido + Hidróxido → Agua + Sal neutra

$$HCl + Na(OH) \rightarrow H_2O + NaCl$$

 $H^{+1} + Cl^{-1} + Na^{+1} + (OH)^{-1} \rightarrow H^2O + NaCl$
 $H^{+1} + (OH)^{-1} \rightarrow H^2O$
 $Cl^{-1} + Na^{+1} \rightarrow NaCl$

Compuesto	Nomenclatura sistemática	Nomenclatura Stock	Nomenclatura Tradicional
NaCl	cloruro de sodio	cloruro de sodio (I)	cloruro sódico o cloruro de sodio
CaF ₂	difluoruro de calcio	fluoruro de calcio (II)	fluoruro cálcico
FeCl ₃	tricloruro de hierro	cloruro de hierro (III)	cloruro férrico
CoS	monosulfuro de cobalto	sulfuro de cobalto (II)	sulfuro cobaltoso

Nota: para el correcto nombramiento de estos compuestos hacer énfasis en que los no metales de los hidrácidos trabajan con la menor valencia (1 y 2), y como son los hidrácidos que reaccionan con los hidróxidos para formar las sales neutras binarias. Es por esta razón que en el caso del FeCl₃ el hierro oficia con la valencia +3 y el "no metal" cloro con -1, aunque éste posea las valencias 1, 3, 5 y 7.

Las **sales neutras ternarias** son compuestos formados por un hidróxido y un oxácido. La denominación que reciben las sales provienen del nombre del ácido, oxácido, que las origina. Para nombrar una sal cuando deriva de un ácido cuyo nombre específico termina en -oso, se reemplaza dicha terminación por -ito. Análogamente cuando el nombre específico del ácido termina en -ico, se reemplaza por -ato. Por ejemplo: el Hidróxido de sodio (Na(OH)) reacciona con el ácido ortofósforico o ácido fosfórico (H_3PO_4) para formar la sal fosf**ato** de sodio u ortofosfato de sodio (Na_3PO_4).

Otra manera para saber cuándo utilizar los sufijos –ito o –ato, en lugar de determinar de qué ácido proviene la sal neutra, para así nombrar el compuesto; se determina el número de valencia con el que figura el no metal *diferente de oxígeno* en el compuesto. El procedimiento es similar al utilizado en los oxácidos (sección oxácidos, tercer párrafo). Los puntos que hay que tener en cuenta son:

- El elemento más electronegativo es el oxígeno y los elementos más electropositivos son el metal y el no metal.
- En la fórmula molecular el metal va a la izquierda, el no metal va al centro y el oxígeno va a la derecha.
- El oxígeno trabaja con el número de valencia -2.
- Los elementos que formaran el radical u <u>oxoanión</u> son el no metal y el oxígeno, razón que obliga a que la suma de valencias o cargas entre estos dos elementos sea negativa.
- La suma de cargas entre los tres elementos o entre el metal y el radical será igual a cero, lo que significa que la molécula será neutra.

Por ejemplo: $Ca(ClO_3)_2$. En resumen el procedimiento se basa en determinar la carga de uno de los dos radicales, que será negativo, y con esto se puede establecer el número con el que debe trabajar el metal, para que la suma entre este y los dos radicales sea igual a cero. Como primer paso hay que determinar la carga del radical; como hay 3 oxígenos en el radical y cada

oxígeno trabaja con -2 la carga total de los oxígenos en un radical es de -6; como hay 1 cloro en el radical y la suma de valencias entre el oxígeno y el cloro dentro del radical debe ser negativo, el cloro trabajara con +5 de valencia. Para probar que el cloro debe trabajar con +5 únicamente, en este compuesto, se hace la operatoria con cada número de valencia del cloro; si el cloro trabajara con +1, la sumatoria con la carga -6 de los oxígenos seria igual a -5, esta carga de -5 seria de un solo radical y como hay dos, los radicales tendrían una carga de -10, así que el calcio para sumar una carga neta de cero para la molécula debería trabajar con un número de valencia +10, el cual no existe, entonces el cloro no puede trabajar con -1 en el radical; si el cloro trabajara con el +3 ocurriría lo mismo, al final el calcio para equilibrar la

molécula debería trabajar con la valencia +6, valencia con la que no cuenta el cloro; y si el cloro trabajara con +6 la sumatoria de valencias entre el cloro y los oxígenos dentro del radical seria igual a cero, lo cual no es correcto ya que el radical debe tener una carga negativa. Ya que el cloro trabaja con +5 la carga sumada de los dos radicales es de -2, así que el calcio tendría que usar la valencia +2 para hacer cero la carga neta de la molécula. Cuando en una molécula hay solamente un radical se omiten los paréntesis de la fórmula

Diagrama sobre la distribución de valencias en un compuesto ternario. Esta imagen es explicada en la sección 7.1 del artículo .

En el sistema tradicional se utiliza como nombre genérico el nombre del no metal con el sufijo y prefijo correspondiente a su número de valencia y como nombre específico el nombre del metal, elemento proporcionado por el hidróxido. Según el número de valencia del no metal en la sal (o del no metal en el oxácido que da origen a la sal) los sufijos son:

hipooso	(para números de valencia 1 y 2)	hipoito
0S0	(para números de valencia 3 y 4)	ito
ico	(para números de valencia 5 y 6)	ato
perico	(para el número de valencia 7)	perato

En el ejemplo anterior, Ca(ClO₃)₂, como el cloro trabaja con la valencia +5, el compuesto se nombra Clorato de calcio.

En la nomenclatura sistemática se utiliza como nombre genérico, el nombre del no metal con el prefijo correspondiente al número de oxígenos presentes por radical en el compuesto (según la tabla de prefijos griegos), seguido de la partícula "oxo", más el nombre del no metal con el sufijo ato seguido de la valencia del no metal en números romanos, y como nombre específico se utiliza el nombre del metal seguido de la valencia del metal en números romanos.

En el sistema Stock, se utiliza como nombre genérico el nombre de no metal seguido de la valencia del no metal en números romanos, y como nombre específico se utiliza el nombre del metal.

H ₃ PO ₄	+ 3Na(OH)	\rightarrow 3H ₂ O ·	+ Na ₃ PO ₄
.) - 4	(-)	- 2 -) - 4

Compuesto	Nom. Sistemática	Nom. Stock	Nom. tradicional
Na ₃ PO ₄	tetraoxofosfato (V) de sodio	fosfato (V) de sodio ⁴	fosfato de sodio u ortofosfato de sodio
CaSO ₄	tetraoxosulfato (VI) de calcio	sulfato (VI) de calcio4	sulfato de calcio
NaClO ₄	tetraoxoclorato (VII) de sodio	clorato (VII) de sodio <u>4</u>	perclorato de sodio
Mg(BrO) ₂	oxobromato (I) de magnesio	bromato (I) de magnesio ⁴	hipobromito de magnesio
Sn(NO ₂) ₄	dioxonitrato (III) de estaño (IV)	nitrito de estaño (IV) ⁴	nitrito estáñico

Sales ácidas

Las sales ácidas son compuestos cuaternarios que resultan del reemplazo parcial de los hidrógenos de un ácido por átomos metálicos. Los ácidos deben presentar dos o más hidrógenos en su molécula para formar estas sales. Para nombrarlos en el sistema tradicional se siguen las reglas de las sales neutras ternarias agregando la palabra "ácido" antes del nombre del metal. Y para nombrarlos en el sistema Stock y sistemático se usan las reglas generales para las sales neutras ternarias, en estos dos sistemas, agregando la palabra "hidrógeno" antes del nombre del no metal. Para poder encontrar la valencia del no metal para así poder nombrar correctamente la sal se puede usar el método utilizado en los compuestos de sales neutras ternarias, teniendo en cuenta: que el oxígeno trabaja con valencia -2; el hidrógeno trabaja con valencia +1; estos compuestos siguen la fórmula general *Metal + Hidrógeno + No Metal + Oxígeno*; los elementos con valencias positivas son el metal, el hidrógeno y los elementos con valencias negativas son el no metal y el oxígeno.

Ácido + Hidróxido
$$\rightarrow$$
 Agua + Sal ácida $H_2SO_4 + Na(OH) \rightarrow H_2O + NaHSO_4$

Compuesto	Nom. Stock y sistemática	Nom. tradicional
NaHSO ₄	hidrógenosulfato (VI) de sodio4	sulfato ácido de sodio ⁴
KHCO ₃	hidrógenocarbonato de Potasio ⁴	carbonato ácido de Potasio4

Sales básicas

Estas sales son compuestos que resultan de reemplazar parcialmente los oxhidrilos de un hidróxido por los aniones de un ácido. Para nombrarlos en el sistema tradicional depende de si el ácido es binario o ternario, es decir que si se trata de un hidrácido o un oxácido. Cuando el ácido es un hidrácido se utiliza el nombre del no metal con su sufijo uro y se le antepone el prefijo "hidroxi" para el nombre general y como nombre específico el nombre del metal. Y cuando el ácido es un oxacido, como nombre general, se utiliza el nombre del no metal con el prefijo "hidroxi" y su correspondiente sufijo según su valencia (como se indica en la sección de las sales neutras ternarias), y como nombre específico el nombre del metal.

Ácido + Hidróxido
$$\rightarrow$$
 Agua + Sal básica
 $HNO_3 + Ca(OH)_2 \rightarrow H_2O + CaNO_3(OH)$

Compuesto	Nomenclatura tradicional
MgCl(OH)	hidroxicloruro de magnesio
CaNO ₃ (OH)	hidroxinitrato de calcio

Sales mixtas

Las sales mixtas son compuestos que resultan al sustituir los hidrógenos de un ácido por átomos metálicos de distintos hidróxidos. Las reglas para nombrar las sales mixtas en el sistema tradicional son análogas a las sales ácidas.

Ácido + Hidróxido¹ + Hidróxido²
$$\rightarrow$$
 Agua + Sal mixta H_2SO_4 + Na(OH) + K(OH) \rightarrow 2 H_2O + NaKSO₄

Compuesto	Nomenclatura tradicional
NaKSO ₄	tetraoxosulfato de sodio y potasio
CaNaPO ₄	ortofosfato de calcio y sodio

Poliácidos

Se trata de aquellos oxiácidos que resultan de la unión de 2 o 3 moléculas de oxiácidos con la pérdida de una molécula de agua por cada unión que se realice. Es como si fuesen dímeros o trímeros.

Se nombran indicando el número de moléculas de ácido que se han unido con un prefijo (Nomenclatura tradicional) o indicando con prefijos el número de átomos del no metal o metal en los pocos casos en que ocurre (demás nomenclaturas).

Ejemplo	Nom. Stock	Nom. sistemática	Nom. tradicional
H ₂ S ₂ O ₇	ácido heptaoxodisulfúrico (VI)	heptaoxodisulfato (VI) de hidrógeno	ácido disulfúrico
H ₂ Cr ₂ O ₇	ácido heptaoxodicrómico (VI)	heptaoxodicromato (VI) de hidrógeno	ácido dicrómico
H ₅ P ₃ O ₁₀	ácido decaoxotrifosfórico (V)	decaoxotrifosfato (V) de hidrógeno	ácido trifosfórico

Las sales de los poliácidos se nombran de forma análoga a las oxisales.

Ejemplo	Nomenclatura sistemática y funcional	Nomenclatura tradicional
CaCr ₂ O ₇	heptaoxodicromato (VI) de calcio	dicromato cálcico o de calcio
Mg ₂ P ₂ O ₇	heptaoxodifosfato (V) de magnesio	difosfato magnesico
Na ₂ S ₂ O ₇	heptaoxodisulfato (VI) de sodio	disulfato sódico

Peroxoácidos

Son aquellos oxoácidos que han sustituido un oxígeno por un grupo peroxo O_2^{2-} . Su fórmula no se simplifica.

En la nomenclatura tradicional (la más frecuente) se añade peroxo-, y en las restantes se indica con -peroxo- el oxígeno sustituido. Si a la hora de formular pudiera haber confusión con otro oxoácido, se indica el grupo peroxo entre paréntesis.

Ejemplo	Nomenclatura sistemática	Nomenclatura Stock	Nomenclatura tradicional
H ₂ SO ₅	ácido trioxoperoxosulfúrico (VI)	trioxoperoxosulfato (VI) de hidrógeno	ácido peroxosulfúrico
HOONO 6 HNO (O ₂)	ácido monoxoperoxonítrico (V)	monoxoperoxonitrato (V) de hidrógeno	ácido peroxonítrico
H ₃ BO ₄	ácido dioxoperoxobórico (III)	dioxoperoxoborato (III) de hidrógeno	ácido peroxobórico

Las peroxisales se nombran de forma análoga a las oxisales.

Ejemplo	Nomenclatura sistemática y Stock	Nomenclatura tradicional
K ₂ S ₂ O ₈	hexaoxoperoxodisulfato (VI) de potasio	peroxodisulfato de potasio
Ba[NO (O ₂)] ₂	oxoperoxonitrato (III) de bario	peroxonitrito de bario o bárico
CaSO ₅	trioxoperoxosulfato (VI) de calcio	peroxosulfato de calcio

Tioácidos

Son aquellos oxoácidos que resultan de la sustitución de uno o varios oxígenos por azufres. Se nombran con el prefijo tioseguido por el ácido de origen (nomenclatura tradicional) o -tio- en la sistemática y de Stock, indicando con un prefijo el número de oxígenos restantes. Si se escribe tio sin prefijo numérico en la nomenclatura tradicional, se está indicando que se han sustituido todos los O por S, excepto en el caso de los tioácidos del azufre (aquí tio=monotio).

Fórmula General:
R.CO.SH o R.CS.OH

Ejemplo	Nomenclatura sistemática	Nomenclatura Stock	Nomenclatura tradicional
H ₂ S ₂ O ₃	ácido trioxotiosulfúrico (VI)	trioxotiosulfato (VI) de hidrógeno	ácido tiosulfúrico
HNSO ₂	ácido dioxotionítrico (V)	dioxotionitrato (V) de hidrógeno	ácido tionítrico
H ₃ PS ₂ O ₂	ácido dioxoditiofosfórico (V)	dioxoditiofosfato (V) de hidrógeno	ácido ditiofosfórico

Las tiosales se nombran de forma análoga a las oxisales.

Ejemplo	Nomenclatura sistemática y stock	Nomenclatura tradicional
FeS ₂ O ₃	trioxotiosulfato (VI) de hierro (II)	tiosulfato ferroso
Al ₂ (HPS ₄) ₃	hidrógenotetratiofosfato (V) de aluminio	hidrógenotiofosfato de aluminio
Na ₃ PS ₃ O	oxotritiofosfato (V) de sodio	tritiofosfato de sodio

Iones

Los <u>iones</u> son aquellos átomos o moléculas cargados eléctricamente. Pueden ser de carga positiva (cationes) o de carga negativa (aniones).

Cationes mono y poliatómicos

Son iones con carga positiva. Si son monoatómicos, se nombran simplemente nombrando el elemento después de la palabra catión. Por ejemplo, Li⁺ catión litio. Si el elemento tiene varios estados de oxidación (valencias) se usan números romanos (Stock) o los afijos hipo--oso, -oso, -ico, per--ico (tradicional).

Ejemplo	Nomenclatura Stock	Nomenclatura tradicional
Fe ³⁺	catión hierro (III)	catión férrico
Cu ⁺	catión cobre (I)	catión cuproso

Cuando se trata de cationes poliatómicos, se distinguen dos casos:

a) Si proceden de oxoácidos se añade el sufijo -ilo al nombre del oxoácido correspondiente en nomenclaturas tradicional (éste puede indicar la valencia en números romanos), también se puede nombrar en la Stock. Es como el oxoácido sin moléculas de agua.

Ejemplo	Nomenclatura tradicional	Nomenclatura Stock
NO ₂ ⁺	catión nitroilo	catión dioxonitrógeno (V)
NO ⁺	catión nitrosilo	catión monoxonitrógeno (III)
SO ²⁺	catión sulfinilo o <u>tionilo</u>	catión monoxoazufre (IV)
SO ₂ ²⁺	catión sulfonilo o sulfurilo	catión dioxoazufre (VI)
UO ₂ +	catión uranilo (V)	catión dioxouranio (V)
UO ₂ ²⁺	catión uranilo (VI)	catión dioxouranio (VI)
VO ³⁺	catión vanadilo (V)	catión monoxovanadio (V)
VO ₂ ⁺	catión vanadilo (IV)	catión dioxovanadio (IV)

b) Si proceden de hidruros, lleva el sufijo -onio.

Ejemplo	Nombre
H ₃ O ⁺	hidronio u oxonio
NH ₄ ⁺	amonio
PH ₄ ⁺	fosfonio
SbH ₄ ⁺	estibonio
AsH ₄ ⁺	arsonio
BiH ₄ ⁺	bismutonio
H ₃ S ⁺	sulfonio
H ₂ Cl ⁺	cloronio

Véase también

- Química
- Química orgánica
- Química inorgánica
- Nomenclatura (química)
- Nomenclatura química de los compuestos orgánicos
- PitolinPro

Enlaces

- Wikilibros alberga un libro o manual sobre Formulación inorgánica.
- Tutoriales y ejercicios sobre nomenclatura (http://www.eis.uva.es/~qgintro/nomen/nomen.html)

Referencias

- 1. Recomendaciones de la IUPAC para la nomenclatura de compuestos inorgánicos 2005 (http://old.iupac.org/publi cations/books/rbook/Red_Book_2005.pdf) Texto completo (inglés) (PDF)
 2004 Versión con capítulos separados: Recomendaciones provisionales de la IUPAC para la nomenclatura en Química inorgánica (2004) (https://web.archive.org/web/20080219122415/http://www.iupac.org/reports/provi sional/abstract04/connelly_310804.html)
- 2. Chang, Raymond (1999). Química. McGraw-Hill.
- 3. <u>Baldor, F. A.</u> (1965). *Nomenclatura Química Inorgánica*. Nueva York: Minerva Books,LTD. p. 48. <u>ISBN</u> <u>968 403 131</u> 9.
- 4. Angelini M., Baumgartner E., Benítez C., Brudnick G., Crubellati R., Di Risio C., Guerrien D., Landau L., Lastres L., Roverano M., Servant R., Sileo M., Torres N., Vázquez I. (2005). «Uniones químicas. Los compuestos químicos». *Química: material de estudio y ejercitación*. CCC Educando. pp. 39-45. ISBN 987-9419-39-1.

Obtenido de «https://es.wikipedia.org/w/index.php? title=Nomenclatura_química_de_los_compuestos_inorgánicos&oldid=118850904»

Esta página se editó por última vez el 2 sep 2019 a las 19:32.

El texto está disponible bajo la <u>Licencia Creative Commons Atribución Compartir Igual 3.0</u>; pueden aplicarse cláusulas adicionales. Al usar este sitio, usted acepta nuestros <u>términos de uso</u> y nuestra <u>política de privacidad</u>. Wikipedia® es una marca registrada de la Fundación Wikimedia, Inc., una organización sin ánimo de lucro.