Homework 1 Solution

Professor Yong Liu EL9343 - Data Structure and Algorithm

October 13, 2016

Exercise 1. Prove the *Transitivity* property of $\Theta(.)$, i.e., $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

Proof.

From
$$f(n) = \Theta(g(n))$$
, we can get

$$\exists c_1 > 0, c_2 > 0 \text{ and } n_0 > 0, \forall n \ge n_0, c_1 g(n) \le f(n) \le c_2 g(n)$$

From $g(n) = \Theta(h(n))$, we can get

$$\exists c_3 > 0, c_4 > 0 \text{ and } n_1 > 0, \forall n \ge n_1, c_3 h(n) \le g(n) \le c_4 h(n)$$

With $c_1g(n) \leq f(n)$ and $c_3h(n) \leq g(n)$, we could conclude that, $\exists c_1c_3 > 0$, $c_2c_4 > 0$ and $n_3 \geq \max(n_0, n_1)$, where $\forall n \geq n_3, c_1c_3h(n) \leq f(n) \leq c_2c_4h(n) \Rightarrow f(n) = \Theta(h(n))$

Exercise 2. Problem 3-1 in CLRS Text Book.

a. If
$$k \ge d$$
, $p(n) = \sum_{i=0}^d a_i n^i \le \sum_{i=0}^d a_i n^i \le \sum_{i=0}^d a_i n^k$, $c = \sum_{i=0}^d \Rightarrow p(n) = O(n^k)$

b. If
$$k \leq d, p(n) = \sum_{i=0}^{d} a_i n^i = \sum_{i=0}^{k} a_i n^i + \sum_{i=k+1}^{d} a_i^i \geq a_k n^k, c = a_k \Rightarrow p(n) = \Omega(n^k)$$

c. Same as (a) and (b), choose $c_1 = \sum_{i=0}^k \ and \ c_2 = a_k$, we get $c_1 n_k \le n_k \le c_2 n_k \Rightarrow p(n) = \Theta(n^k)$

d. If
$$k > d$$
, $p(n) = \sum_{i=0}^{d} a_i n^i < \sum_{i=0}^{d} a_i n^d < \sum_{i=0}^{d} a_i n^k$, $c = \sum_{i=0}^{d} \Rightarrow p(n) = o(n^k)$

e. If
$$k < d, p(n) = \sum_{i=0}^{d} a_i n^i = \sum_{i=0}^{k} a_i n^i + \sum_{i=k+1}^{d} a_i^i > a_k n^k, c = a_k \Rightarrow p(n) = \omega(n^k)$$

Exercise 3. Problem 3-2 in CLRS Text Book.

A	В	Ο	О	Ω	ω	Θ
$lg^k n$	n^{ϵ}	Yes	Yes	No	No	No
n^k	c^n	Yes	Yes	No	No	No
\sqrt{n}	$n^{\sin n}$	No	No	No	No	No
2^n	$2^{n/2}$	No	No	Yes	Yes	No
n^{lgc}	c^{lgn}	Yes	No	Yes	No	Yes
lg(n!)	$lg(n^n)$	Yes	No	Yes	No	Yes

Exercise 4. Problem 3-4 (a) (b) (g), (h) in CLRS Text Book.

Either Give examples which negate the proposition or prove it using Equations

- a. False, for instance, f(n) = n and $g(n) = n^2$
- b. False, for instance, f(n) = n and $g(n) = n^2$, min(f(n), g(n)) = n while f(n) + g(n) > n, violates $f(n) + g(n) = \Theta(n)$
 - g. False, If $f(n) = \Theta(f(n/2))$, $f(n) = O(f(\frac{n}{2})) \le cf(\frac{n}{2})$, $n \ge n_0 \ge 0$. Take $f(n) = 2^n$, $c \ge 2^{\frac{n}{2}}$, which is not a constant satisfying the proposition.

h.∃ c and $n_0, \forall n >= n_0, f(n)$) < cf(n), f(n) + o(f(n)) <= $(c+1)f(n) \Rightarrow f(n) + o(f(n)) = O(f(n)),$ and f(n) + o(f(n)) >= f(n) + b, as f(n) is positive, so we can conclude $f(n) + o(f(n)) = \Theta(f(n))$

Exercise 5. Use the substitution method to show that the solution to $T(n) = T(\alpha n) + T((1-\alpha)n) + 10$, with $0 < \alpha < 1$, is $\Theta(n)$, then use the substitution method to prove that.

Suppose
$$T(n) = \Theta(n)$$
 is True, $T(n) = \Omega(n) \Rightarrow T(n) \ge c_1 n$, then
$$T(n+1) = T(\alpha(n+1)) + T((1-\alpha)(n+1)) + 10$$

$$\ge c_1 \alpha(n+1) + c_1 (1-\alpha)(n+1) + 10$$

$$\ge c_1 (n+1) + 10$$

$$= \Omega(n+1)$$

It is proved that $T(n) = \Omega(n)$ is True.

If
$$T(n) = O(n) \Rightarrow \exists c_2 \ge 0, \forall n > n_2, T(n) \le c_2 n$$
, then
$$T(n+1) \le c_2 \alpha(n+1) + c_2 (1-\alpha)(n+1) + 10$$

$$\le c_2 \alpha(n+1) + c_2 (n+1) - c_2 \alpha(n+1) + 10$$

$$\le c_2 (n+1) + 10$$

$$= O(n+1)$$

It is also proved that $T(n) = O(n) \Rightarrow T(n) = \Theta(n)$

Exercise 6. First use the iteration method to solve the recurrence, then use the substitution method to verify your solution.

$$T(n) = T(\frac{n}{4}) + T(\frac{3n}{4}) + n$$

Assume $T(n) \le c * n * log n + b, \forall n < n_0$

$$T(k) = T(\frac{3k}{4}) + T(\frac{k}{4}) + k$$

$$\leq c\frac{k}{4}log\frac{k}{4} + c\frac{3k}{4}log\frac{3k}{4} + k$$

$$= (c\frac{k}{4} + c\frac{3k}{4})log_k + c\frac{3k}{4}log_3 - (c\frac{k}{4} + c\frac{3k}{4})log_4 + k$$

$$= ck(log_k + \frac{3}{4}log_3 - log_4 + c)$$

$$\leq cklog_k$$

So $T(n) = O(nlog_n)$

Exercise 7.

7. Recursion Tree:

Height

O

$$T(\frac{n}{b})^{2} = \frac{5n^{2}}{3b} = \frac{5n^{2}}{3b$$

Exercise 8. Solving the recurrence:

$$T(n) = 9T(n^{\frac{1}{3}}) + \log^2(n)$$

Substitute $n = 3^m$ and $S(m) = T(n) = T(3^m)$, we could get

$$S(m) = 9S(\frac{m}{3}) + \log^{2}(3^{m})$$
$$S(m) = 9S(\frac{m}{3}) + m^{2}\log^{2}3$$

With Master theory, $m^{\log_3 9} = m^2$, so $S(m) = \Theta(m^2 \log_m)$,

$$S(m) = T(3^m) = \Theta(m^2 \log_m)$$

= $\Theta(\log_3(3^m)^2 log(log(3^m)))$

As
$$n = 3^m$$
, $T(n) = log^2 n log(log n)$

Exercise 9. Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Make the bounds as tight as possible, and justify your answers.

a.
$$T(n) = 2T(\frac{n}{3}) + n^{\frac{1}{2}}logn$$

Using Master's theory, $T(n) = aT(\frac{n}{b}) + f(n)$, where a = 2, b = 3 and $f(n) = n^{\frac{1}{2}}log_n$, $T(n) = \Theta(n^{log_32})$

$$\frac{f(n)}{n^{log_ba+\epsilon}} = \frac{n^{\frac{1}{2}}log(n)}{n^{log_32+\epsilon}}$$
$$= \frac{log(n)}{n^{log_32-0.5+\epsilon}}$$
$$= \frac{log(n)}{n^{0.13+\epsilon}}$$

For any $\epsilon + 0.13 > 1$, according to L'Hospital's Rule,

$$\lim_{n \to \infty} \frac{f(n)}{n^{\log_b a + \epsilon}} = \lim_{n \to \infty} \frac{\log(n)}{n^{\epsilon + 0.13}}$$
$$= 0$$

So
$$T(n) = \Theta(n^{\log_3 2})$$

b.
$$T(n) = 25T(\frac{n}{5}) + n^2$$

Using Master's theory, $T(n)=aT(\frac{n}{b})+f(n)$, where a = 25, b = 5 and f(n) = n^2 , $n^{\log_a b}=n^2$, therefore, $T(n)=\Theta(n^2 log n)$

c.
$$T(n) = 4T(\frac{n}{2}) + n2\sqrt{n}$$

Using Master's theory, $T(n)=aT(\frac{n}{b})+f(n)$, where a = 4, b = 2 and f(n) = $n^{2.5}$, $n^{\log_a b}=n^2$, therefore, $T(n)=\Theta(n^{2.5})$

d.
$$T(n) = T(n-2) + \frac{1}{n}$$

$$T(n) = T(n-2) + \frac{1}{n}$$

$$= T(n-4) + \frac{1}{n-2} + \frac{1}{n}$$

$$= T(n-6) + \frac{1}{n-4} + \frac{1}{n-2} + \frac{1}{n}$$

$$= T(0) + \sum_{i=1}^{n} \frac{1}{2i}$$

$$= \Theta(\ln(n))$$