OLLSCOIL NA hÉIREANN, GAILLIMH

NATIONAL UNIVERSITY OF IRELAND, GALWAY

SUMMER EXAMINATIONS 2008 - HONOURS

B.A. and B.Sc EXAMINATIONS HIGHER DIPLOMA IN MATHEMATICS

MATHEMATICS

MA416 [RING THEORY] and MA491 [FIELD THEORY]

Professor D. Armitage Professor J. Hinde Professor T. Hurley Dr R. Quinlan Dr J. Ward

Those seeking credit for one semester should answer *three* questions. Those seeking credit for both semesters should answer *five* questions. Please use separate answer books for each section.

Time Allowed: Three hours

Section A – Ring Theory (MA416)

A1. (a) Give an example of

- i. A ring;
- ii. A non-commutative ring;
- iii. A non-commutative ring having a finite number of elements;
- iv. A non-commutative ring having an uncountable number of elements;
- v. A non-commutative ring that does not have an identity element for multiplication.
- (b) Explain why each of the following is *not* a ring.
 - i. The set of non-negative integers, with the usual addition and multiplication.
 - ii. The set of 2×2 matrices, with real entries, whose determinant is zero (with the usual addition and multiplication of 2×2 matrices).
 - iii. The set of vectors in \mathbb{R}^2 , with addition given by the usual vector addition and with multiplication given by the scalar product in \mathbb{R}^2 .
- (c) Let R be a commutative ring with an identity element for multiplication. What is meant by a zero-divisor in R?
 - What are the zero-divisors in the ring of diagonal 3×3 matrices with entries in the field \mathbb{Q} of rational numbers?
- (d) Let R be a commutative ring with an identity element for multiplication. What is meant by a *unit* in R? If r and s are units in R, show that their product rs is also a unit in R.

A2. (a) Let F be a field. What is meant by an *irreducible* polynomial in the ring F[x] of polynomials with coefficients in F?

State the division algorithm for polynomials in F[x].

Hence or otherwise show that if a polynomial f(x) of degree at least 2 in F[x] has a root in F, then f(x) is reducible in F[x].

Give an example of a polynomial in $\mathbb{Q}[x]$ that is not irreducible in $\mathbb{Q}[x]$ but has no root in \mathbb{Q} .

- (b) Answer *true* or *false* to each of the following statements. Give a line or two of explanation for your answer in each case.
 - i. If a polynomial in $\mathbb{Q}[x]$ has no root in \mathbb{Q} , then it is irreducible in $\mathbb{Q}[x]$.
 - ii. If a polynomial with integer coefficients is irreducible in $\mathbb{Z}[x]$, then it is also irreducible in $\mathbb{Q}[x]$.
 - iii. For every positive integer n, $\mathbb{Q}[x]$ contains irreducible polynomials of degree n.
 - iv. If f(x) is a polynomial of odd degree in $\mathbb{Q}[x]$, then f(x) is reducible in $\mathbb{Q}[x]$.
- (c) What is meant by a *primitive* polynomial in $\mathbb{Z}[x]$? Show that the product of two primitive polynomials is again primitive.
- (d) Determine, with explanation, whether each of the following polynomials is irreducible in the indicated ring.
 - i. $5x^4 15x^3 + 12x^2 15x + 6$, in $\mathbb{Q}[x]$
 - ii. $x^4 4x^3 + 6x^2 5x 12$, in $\mathbb{Z}[x]$
 - iii. $3x^3 + 2x^2 + 1$, in $\mathbb{F}_5[x]$ (here \mathbb{F}_5 denotes the field $\mathbb{Z}/5\mathbb{Z}$ of integers modulo 5).
 - iv. $2x^2 + 5x + 5$, in $\mathbb{R}[x]$.
- **A3.** (a) Let R and S be rings. What is meant by a ring homomorphism $\phi: R \longrightarrow S$? Define a function $f: M_2(\mathbb{Q}) \longrightarrow \mathbb{Q}$ by $f(A) = \det(A)$, for $A \in M_2(\mathbb{Q})$. Is f a ring homomorphism? Explain your answer.
 - (b) What is meant by a (two-sided) ideal of a ring R?

If $\phi: R \longrightarrow S$ is a ring homomorphism, define the *kernel* of ϕ and prove that it is a two-sided ideal of R.

Must the *image* of ϕ be an ideal of S?

- (c) What is meant by a *principal ideal* in a commutative ring with identity? What is meant by a *principal ideal domain (PID)*? If F is a field, prove that the polynomial ring F[x] is a PID. Give an example, with explanation, of an integral domain that is *not* a PID.
- **A4.** (a) What is meant by a maximal ideal in a commutative ring with identity? What is meant by a prime ideal in a commutative ring with identity? Give an example (with explanation) of
 - i. A prime ideal of \mathbb{Z} .
 - ii. An ideal of \mathbb{Z} that is not prime.
 - iii. An ideal that is prime but not maximal, in some commutative ring with identity.
 - (b) Let R be a commutative ring with an identity element for multiplication. What does it mean to say that the *ascending chain condition* holds in R?

Let $C(\mathbb{R})$ denote the ring of continuous functions from \mathbb{R} to \mathbb{R} , with addition (+) and multiplication (×) defined by

$$(f+g)(x) = f(x) + g(x), \quad (f \times g)(x) = f(x)g(x), \text{ for } f, g \in C(\mathbb{R}), x \in \mathbb{R}.$$

Show that the ascending chain condition does not hold in $C(\mathbb{R})$.

(c) Give an example, with explanation, of an integral domain that is not a unique factorization domain.

Section B - Field Theory (MA 491)

- **B1.** (a) Explain how a field \mathbb{K} may be viewed as a vector space over a sub-field \mathbb{F} and hence define the **degree** $[\mathbb{K} : \mathbb{F}]$.
 - (b) **Prove** that if $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{L}$ are fields such that $[\mathbb{L} : \mathbb{K}]$ and $[\mathbb{K} : \mathbb{F}]$ are finite, then $[\mathbb{L} : \mathbb{F}]$ is finite.
 - (c) Define the term **splitting field** of a polynomial. Show that $\frac{\sqrt{3}+i}{2}$ (where $i=\sqrt{-1}$) is a root of x^4-x^2+1 . Hence or otherwise find all the roots of this polynomial, and calculate the degree of its splitting field \mathbb{K} over \mathbb{Q} .
 - (d) Find the minimum polynomial of $i + \sqrt{3}$ over $\mathbb{Q}(i)$. Show that $x^4 x^2 + 1$ is reducible over $\mathbb{Q}(i)$, but does not split over $\mathbb{Q}(i)$.
 - (e) Deduce that $\mathbb{K} = \mathbb{Q}(i + \sqrt{3})$ is the splitting field of $x^4 x^2 + 1$ over \mathbb{Q} .
- **B2.** (a) What is meant by a "straight-edge and compass construction"?
 - (b) State a necessary condition for an algebraic number α to be constructible using straight–edge and compass. Is this condition also sufficient?
 - (c) State Gauss' Theorem concerning the values of n for which the regular n-gon can be constructed by straight edge and compass. Deduce that the angle 18° is constructible.
 - (d) Using the identity $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$, or otherwise, **prove** that the angle 10° is not constructible.
 - (e) Show that $\cos^{-1}\left(\frac{23}{27}\right)$ can be trisected using straight-edge and compass.
- **B3.** (a) Verify that $\Phi_8(x)$ (= $x^4 + 1$) factorises (reduces) in $\mathbb{Q}(\sqrt{2})$, and hence construct a splitting field for $x^4 + 1$ over \mathbb{Q} . If θ denotes a root of $\Phi_8(x)$, show that the other three roots are $\theta^{-1}, -\theta, -\theta^{-1}$.
 - (b) Consider an automorphism of $\mathbb{Q}(\theta)$, α say, such that

$$\alpha: \theta \mapsto \theta^{-1}$$
.

How does α act on the other three roots? If β is the automorphism defined by

$$\beta:\theta\mapsto -\theta$$

find the images under β of the other three roots. Show that $\alpha\beta = \beta\alpha$ and that the group of automorphisms $\langle \alpha, \beta \rangle$ is isomorphic with the Klein 4-group.

(c) Check that $\mathbb{Q}(\sqrt{2})$ is fixed by α . Find the fields which are fixed by the automorphism β and $\alpha\beta$ respectively, and show that $x^4 + 1$ is reducible, but does not split, over each of these intermediate fields.

- **B4.** (a) Let \mathbb{F}_q be a finite field of order $q \ (= p^n, \ p \ \text{a prime}, \ n \ge 1)$. State the main properties of \mathbb{F}_q .
 - (b) Let f(x) be a monic irreducible polynomial of degree m over \mathbb{F}_p . Prove that f(x) divides $x^{p^n} x \iff m|n$. Hence or otherwise deduce that

$$p^n = \sum_{d|n} dN_p(d)$$

where $N_p(d)$ is the number of monic irreducible polynomials of degree d over \mathbb{F}_p .

(c) Using the Möbius Inversion Formula, or otherwise, prove Gauss' formula

$$N_p(d) = \frac{1}{d} \sum_{k|d} \mu\left(\frac{d}{k}\right) p^k$$

where $N_p(d)$ is the number of monic irreducible polynomials of degree d over \mathbb{F}_p .

(d) Calculate $N_2(1)$, $N_2(2)$, $N_2(4)$ and hence, or otherwise, factorise $x^{16} - x$ into irreducible factors over \mathbb{F}_2 .

.