Human-Machine Calibration

Using Conformal Prediction for Trustworthy Evaluation

July 5, 2025

Human-Machine Calibration

Outline

- Introduction to Human-Machine Calibration
- Why Calibration Matters
- Conformal Prediction Framework
- Mon-Conformity Scores and Implementation
- 5 Active Learning Integration
- 6 Safety Mechanisms and Model Operation
- Practical Applications and Benefits
- 8 Conclusion

What is Human-Machine Calibration?

Core Definition

Human-Machine Calibration bridges the gap between **machine metrics** and **human judgment** using statistical frameworks to provide trustworthy, interpretable evaluation.

Key Components:

- Uncertainty Quantification: Measure prediction reliability
- Statistical Guarantees: Provide mathematical confidence bounds
- Conformal Prediction: Framework for prediction sets with coverage guarantees
- Active Learning: Minimize human labeling effort through smart sampling

Why It Matters

In regulated domains and high-stakes applications, we need reliable ways to know when to trust machine predictions and when to seek human oversight.

The Calibration Challenge

The Problem: Machine metrics may not align with human judgment, especially in:

- Subjective evaluation tasks
- Complex reasoning scenarios
- Domain-specific nuances
- High-stakes decisions

Why Calibration Matters?

Key Challenges:

Machine metrics \neq Human judgment

Automated systems may score differently from domain experts, leading to misaligned outcomes.

Need for trustworthy evaluation

Stakeholders require confidence in Al system decisions, especially in regulated or high-risk scenarios.

Importance in regulated domains

Financial services, healthcare, and legal applications demand rigorous uncertainty quantification.

Critical Issues:

- Subjectivity in evaluation
- Cost of human labeling
- Need for uncertainty quantification
- Regulatory compliance requirements
- Risk management needs

Solution Requirements:

- Statistical rigor
- Computational efficiency
- Practical interpretability
- Scalable implementation

Conformal Prediction Overview

Core Concept

Conformal Prediction is a **statistical framework** for creating prediction sets with **guaranteed coverage probabilities** and rigorous **uncertainty quantification**.

Key Properties:

- Statistical Guarantees: Coverage probability $P(Y \in C(X)) \ge 1 \alpha$
- Distribution Free: No assumptions about data distribution
- Finite Sample Validity: Works with limited training data
- Exchangeability: Assumes data points are exchangeable

Two Main Approaches

Transductive (Full) Conformal Prediction

- Retrains model with each new prediction
- Higher accuracy and tighter bounds
- More computationally expensive
- Suitable for small datasets

Split Conformal Prediction

- Uses separate calibration dataset
- More computationally efficient
- Slightly less accurate bounds
- Suitable for large-scale applications

Choice Criteria

Use **Transductive** for highest accuracy with small datasets. Use **Split** for computational efficiency with large-scale production systems.

Non-Conformity Scores

Purpose

Non-conformity scores measure how **unusual** or **unexpected** a prediction is compared to the training data patterns.

Two Main Types:

1. Negative Logit Score

$$\alpha = -\log\left(\frac{p(y)}{1 - p(y)}\right)$$

Properties:

- Based on prediction confidence
- Distance from decision boundary
- Best when confidence matters
- Captures model uncertainty

2. Residual Score

(1)
$$\alpha = |y_{\text{true}} - p_{\text{predicted}}|$$
 (2)

Properties:

- Direct error measurement
- Absolute prediction difference
- Best for error quantification
- Simple and interpretable

Implementation Steps

Training

Prediction

- 1 Pick metrics to calibrate
- 2 Train model on human-labeled dataset
- 3 Calculate non-conformity scores for each data point
- 4 Determine quantile threshold: Set confidence level 1- (e.g., 95%)
- 5 Assign hypothetical labels to new unlabeled observation
- 6 Compare non-conformity scores to quantile threshold
- 7 Classify new observation: $\{0\}$, $\{1\}$, $\{0,1\}$, $\{\}$

Mathematical Foundation:

$$\hat{q} = \text{Quantile}\left(\{S_1, \dots, S_n\}, \frac{\lceil (n+1)(1-\alpha)\rceil}{n}\right)$$
 (3)

Human-Machine Calibration

July 5, 2025

Prediction Set Construction

Conformal Prediction Results

The output is a **prediction set** that contains the true label with probability 1-.

Possible Outcomes:

- {**0**}: Confident prediction of class 0
- {1}: Confident prediction of class 1
- {0,1}: Uncertain prediction both classes possible
- {}: Empty set very unusual observation (rare)

Coverage Guarantee:

$$P(Y \in C(X)) \ge 1 - \alpha$$

Active Learning with Conformal Prediction

Objective

Minimize human labeling effort by strategically selecting the most **uncertain** examples for manual annotation.

Uncertainty Measurement:

$$U(x) = \text{size}(C(x))$$
 and $x_{\text{select}} = \arg \max_{x} U(x)$ (4)

Benefits:

Reduces human labeling costs by 50-80% and focuses expert attention on difficult cases, improving model performance efficiently

Active Learning Process Details

Model Update Workflow:

- Update Training Set: Add newly labeled examples
- Retrain Model: Improve predictions with new data (if necessary)
- Recalibrate Conformal Predictor: Update uncertainty estimates

Selection Strategies:

- Largest Prediction Sets: Select samples with |C(x)| = 2
- **Highest Uncertainty**: Use prediction set size as uncertainty measure
- Diversity Sampling: Ensure coverage across different data regions
- Balanced Selection: Mix uncertain and representative samples

Stopping Criteria: Continue active learning until

- Desired performance level achieved
- Human labeling budget exhausted
- Uncertainty levels stabilize
- Model convergence detected

Safety Mechanisms in Model Operation

1. Fallback Mechanisms

- Set confidence bounds using prediction intervals
- Trigger safe responses when predictions fall outside thresholds
- Default to human review or simplified responses

2. Decision Gating

- Route uncertain predictions to human reviewers
- Apply stricter thresholds for high-stakes scenarios
- Escalate complex queries automatically

3. Real-Time Monitoring

- Continuously validate using calibrated metrics
- Detect concept drift through prediction patterns
- Monitor coverage probability maintenance

4. Context-Aware Alerts

- Configure alerts based on conformal scores
- Adapt thresholds to different query types
- Implement escalation hierarchies

Production Deployment Framework

Decision Logic:

- High Confidence (small prediction sets): Automated response
- Low Confidence (large sets): Fallback, human review, escalation

Implementation Best Practices

Getting Started:

- **Output** Choose Appropriate Method: Split conformal for scale, transductive for accuracy
- Select Right Scores: Negative logit for confidence, residual for error measurement
- Set Conservative Thresholds: Start with 95% confidence, adjust based on domain
- Validate on Historical Data: Test coverage guarantees before production
- Implement Safety Mechanisms: Always have fallback options

Common Pitfalls to Avoid:

- Ignoring exchangeability assumptions
- Using inadequate calibration data
- Setting thresholds without domain validation
- Neglecting concept drift monitoring
- Over-relying on automation without human oversight

Success Factors:

- Strong statistical foundation
- Domain expert involvement
- Continuous monitoring and updating
- Clear escalation procedures
- Regular recalibration schedules

Key Takeaways

- Calibration is Essential for Trustworthy AI
 - Machine metrics often differ from human judgment
 - Statistical frameworks provide reliability guarantees
 - Uncertainty quantification enables safe automation
- 2 Conformal Prediction Provides Rigorous Foundation
 - Mathematical guarantees on coverage probability
 - Distribution-free and finite-sample valid
 - Practical implementation with clear steps
- Active Learning Maximizes Efficiency
 - Strategic sampling reduces labeling costs
 - Uncertainty-guided selection improves models
 - Iterative improvement maintains quality
- Safety Mechanisms Enable Production Deployment
 - Fallback strategies handle edge cases
 - Real-time monitoring detects issues
 - Context-aware alerts prevent failures

