

Table 14.2-22: SAR Values (LTE Band17 - Body)

			Ambient 7	Temperatu	re: 22.9°C	2.9 °C Liquid Temperature: 22.5 °C					
Frequ	ency	Mode/	Test	Figure	Conduct ed	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Headset	Position	No./Not e	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23780	709	1RB_Low	Front	/	22.9	23.5	0.145	0.17	0.183	0.21	-0.12
23780	709	1RB_Low	Rear	/	22.9	23.5	0.125	0.14	0.175	0.20	-0.02
23780	709	1RB_Low	Left	/	22.9	23.5	0.032	0.04	0.052	0.06	0.03
23780	709	1RB_Low	Right	/	22.9	23.5	0.126	0.14	0.160	0.18	0.01
23780	709	1RB_Low	Bottom	/	22.9	23.5	0.121	0.14	0.166	0.19	-0.02
23780	709	25RB_High	Front	/	21.9	22.5	0.077	0.09	0.108	0.12	0.08
23780	709	25RB_High	Rear	/	21.9	22.5	0.137	0.16	0.191	0.22	-0.06
23780	709	25RB_High	Left	/	21.9	22.5	0.135	0.16	0.189	0.22	0.00
23780	709	25RB_High	Right	Fig.22	21.9	22.5	0.155	0.18	0.219	0.25	-0.03
23780	709	25RB_High	Bottom	/	21.9	22.5	0.041	0.05	0.066	0.08	0.05
23780	709	25RB_High	Right	B1	21.9	22.5	0.062	0.07	0.087	0.10	-0.06
23780	709	25RB_High	Right	S1	21.9	22.5	0.146	0.17	0.204	0.23	-0.05

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial test</u> <u>position</u> procedure.

Head Evaluation

Table 14.3-1: SAR Values (WLAN - Head) – 802.11b 5.5Mbps (Fast SAR)

	Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C														
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power				
		Side		No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift				
MHz	Ch.		Position	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)				
2437	6	Left	Touch	/	19.92	20	0.038	0.04	0.068	0.07	0.12				
2437	6	Left	Tilt	/	19.92	20	0.037	0.04	0.069	0.07	0.02				
2437	6	Right	Touch	/	19.92	20	0.0565	0.06	0.109	0.11	0.06				
2437	6	Right	Tilt	/	19.92	20	0.049	0.05	0.106	0.11	-0.01				

As shown above table, the <u>initial test position</u> for head is "Right Cheek". So the head SAR of WLAN is presented as below:

Table 14.3-2: SAR Values (WLAN - Head) – 802.11b 5.5Mbps (Full SAR)

			Amb	ient Ten	nperature: 2	2.9°C L	iquid Tempe	rature: 22.	5°C		
Frequ	ency	•	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2437	6	Right	Touch	Fig.23	19.92	20	0.0552	0.06	0.12	0.12	0.13

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-3: SAR Values (WLAN - Head) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambier	nt Temperat	ure: 22.9°C	Liquid Temperature: 22.5 °C				
Freque	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported SAR		
MHz	Ch.	0.00	Position	factor	duty factor	(1g) (W/kg)	(1g) (W/kg)		
2437 6		Right	Touch	98.25%	100%	0.12	0.12		

SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.

Body Evaluation

Table 14.3-4: SAR Values (WLAN - Body) - 802.11b 5.5Mbps (Fast SAR)

		Aı	mbient T	emperature:	22.9 °C	Liquid Tem	perature: 2	22.5 °C		
Freque	encv	Test	Figure	Conducted	May tune-un	Measured	Reported	Measured	Reported	Power
	- i est l'igu		No.	Power			SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	INO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2437	6	Front	/	19.92	20	0.0247	0.03	0.044	0.04	0.14
2437	6	Rear	/	19.92	20	0.121	0.12	0.266	0.27	-0.05
2437	6	Left	/	19.92	20	0.0546	0.06	0.112	0.11	0.15
2437	6	Тор	/	19.92	20	0.0475	0.05	0.0982	0.10	-0.12

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.3-5: SAR Values (WLAN - Body) - 802.11b 5.5Mbps (Full SAR)

			Aı	mbient T	emperature:	22.9 °C	Liquid Tem	perature: 2	22.5 °C		
Ī	Freque	encv	Test	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
ļ				Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
	MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
	2437	6	Rear	Fig.24	19.92	20	0.134	0.14	0.283	0.29	-0.05

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.3-6: SAR Values (WLAN - Body) – 802.11b 1Mbps (Scaled Reported SAR)

		Ambient Ter	nperature: 22.9	°C Liquid	d Temperature: 22	.5°C
Freque	ency	Test	Actual duty	maximum duty	Reported SAR	Scaled reported SAR
MHz	Ch.	Position	factor	factor	(1g) (W/kg)	(1g) (W/kg)
2437	6	Rear	98.25%	100%	0.29	0.30

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Picture 14.1 Duty factor plot

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body WCDMA1700 (1g)

					<u>, , , , , , , , , , , , , , , , , , , </u>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Frequency		Test	Spacing	Original	First	The	Second
Ch.	MHz	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1637	1732.4	Bottom	10	1.15	1.12	1.03	/

Table 15.2: SAR Measurement Variability for Body WCDMA1900 (1g)

Frequ	uency	Test	Spacing	Original	First	The	Second
Ch.	MHz	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
9800	1880	Bottom	10	1.15	1.13	1.02	1

Table 15.3: SAR Measurement Variability for Body LTE Band2 (1g)

Frequ	ency	Test	Spacing	Original	First	The	Second
Ch.	MHz	Position	Spacing (mm)	SAR (W/kg)		Ratio	Repeated SAR (W/kg)
19100	1900	Rear	10	1.11	1.09	1.02	1

Table 15.4: SAR Measurement Variability for Body LTE Band4 (1g)

Fre	quency	Test	Spacing	Original	First	The	Second	
Ch	. MHz	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)	
2005	0 1720	Bottom	10	0.933	0.929	1.00	1	

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)											
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedo	
										m	
Mea	surement system										
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞	
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
			Test	sample related	1	I	I	I	I		
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8	
			Phan	tom and set-u	p						
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8	
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43	
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8	
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521	

(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257				
_	nded uncertainty idence interval of	ι	$u_e = 2u_c$					19.1	18.9					
16.	2 Measurement Ui	ncerta	inty for No	rmal SAR	Tests	(3~60	GHz)							
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree				
			value	Distribution		1g	10g	Unc.	Unc.	of				
								(1g)	(10g)	freedo				
										m				
Mea	Measurement system													
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞				
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8				
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8				
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8				
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8				
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8				
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8				
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8				
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8				
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8				
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8				
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8				
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8				
			Test	sample related	l									
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71				
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5				
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8				
			Phan	tom and set-uj	p									
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞				
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8				
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43				

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	anded uncertainty fidence interval of	ı	$u_e = 2u_c$					21.4	21.1	

	3 Measurement U		1	l				T -	I	
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system	ı	T	I	1	1	1	1	1	
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
		•	Test	sample related	l				•	
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8

	Phantom and set-up												
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8			
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8			
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43			
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8			
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521			
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257			
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					20.8	20.6				

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree			
			value	Distribution		1g	10g	Unc.	Unc.	of			
								(1g)	(10g)	freedo			
										m			
Meas	Measurement system												
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞			
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞			
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞			
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞			
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞			
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞			
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞			
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞			
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8			
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8			
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞			
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞			
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞			
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞			

©Copyright. All rights reserved by CTTL.

	Test sample related												
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71			
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5			
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞			
	Phantom and set-up												
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞			
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞			
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43			
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞			
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521			
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257			
(conf	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					27.0	26.8				

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 26, 2016	One year
02	Power meter	NRVD	102196	March 03, 2016	One year
03	Power sensor	NRV-Z5	100596	Watch 05, 2016	One year
04	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year
05	Amplifier	60S1G4	0331848	No Calibration R	equested
06	BTS	E5515C	MY50263375	January 30, 2016	One year
07	BTS	CMW500	129942	March 03, 2016	One year
08	E-field Probe	SPEAG EX3DV4	3617	August 26, 2015	One year
09	DAE	SPEAG DAE4	777	August 26, 2015	One year
10	Dipole Validation Kit	SPEAG D750V3	1017	July 23, 2015	One year
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 23, 2015	One year
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 16, 2015	One year
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 23, 2015	One year
14	Dipole Validation Kit	SPEAG D2450V2	853	July 24, 2015	One year
15	Dipole Validation Kit	SPEAG D2600V2	1012	July 24, 2015	One year

END OF REPORT BODY

ANNEX A Graph Results

850 Left Cheek Low

Date: 2016-6-21

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.917$ mho/m; $\epsilon r = 42.98$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.192 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.600 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.211 W/kg

SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.136 W/kg

Maximum value of SAR (measured) = 0.180 W/kg

Fig.1 850MHz

Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2016-6-21

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.001$ mho/m; $\epsilon r = 53.21$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:8

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.236 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.13 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.215 W/kg; SAR(10 g) = 0.168 W/kg

Maximum value of SAR (measured) = 0.224 W/kg

Fig.2 850 MHz

Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Left Cheek Low

Date: 2016-6-23

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.391 \text{ mho/m}$; $\epsilon r = 40.716$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (71x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.103 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.734 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.052 W/kgMaximum value of SAR (measured) = 0.0989 W/kg

Fig.3 1900 MHz

Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Bottom Low

Date: 2016-6-23

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.564 \text{ mho/m}$; $\epsilon r = 52.74$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:8

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.722 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.30 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.582 W/kg; SAR(10 g) = 0.309 W/kg

Fig.4 1900 MHz

Fig. 4-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Right Cheek High

Date: 2016-6-21

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.937$ mho/m; $\epsilon r = 42.68$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.232 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.946 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.257 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.166 W/kg

Maximum value of SAR (measured) = 0.220 W/kg

Fig.5 WCDMA 850

Fig. 5-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Rear High

Date: 2016-6-21

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.999$ mho/m; $\epsilon r = 57.25$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.503 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.74 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.566 W/kg

SAR(1 g) = 0.463 W/kg; SAR(10 g) = 0.361 W/kg

Maximum value of SAR (measured) = 0.484 W/kg

Fig.6 WCDMA 850

Fig. 6-1 Z-Scan at power reference point (WCDMA850)