Определение эффективности инфракрасной камеры при работе в спектроскопическом режиме

(Н.А. МИТИЧКИН, И.А. ОРЛОВ) РУКОВОДИТЕЛЬ: А.М. ТАТАРНИКОВ

Общий вид камеры-спектрографа

Фильтр	$_{\mathrm{CWL}}$	FWHM	T_{avg}	T_{max}
	[нм]	[HM]	[%]	[%]
Широкополосные фотометрические фильтры				
J	1249	166	88	91
Н	1635	291	96	97
Ks	2143	303	89	92
K	2191	316	92	94
Узкополосные фотометрические фильтры				
CH ₄ Off	1581	57.2	85.5	83
[FeII]	1642	26.1	97.6	96
CH ₄ On	1651	64.7	99.2	96
$H_2 v=1-0 (S1)$	2129	46.2	94.7	92
${ m Br}_{\gamma}$	2165	21.2	93.4	90
Kcont	2270	39.3	91.4	90
CO	2282	30.2	93.1	90
Фильтры рабочих порядков спектра				
Ysort	1109	178	83	88
Jsort	1342	271	94	96
YJsort	1263	467	87	95
HKsort	1984	957	91	95
Vala	·			

Характеристики фильтров

Спектры звезды с использованием спектральной щели SLIT6

Спектры звезды с использованием спектральной щели SLIT7

Спектры звезды с использованием спектральной щели SLIT7 (с атмосферными полосами)

Спектры звезды с использованием спектральной щели SLIT7 (без атмосферных полос)

Потоки от звезды αLyr (Вега) в различных Значения звёздной величины звезды фильтрах:

фильтр Y:
$$5,81 \times 10^{-2} \frac{\text{эрг}}{\text{см}^2 \times \text{с} \times \text{см}}$$

фильтр J:
$$3,14 \times 10^{-2} \frac{\text{эрг}}{\text{см}^2 \times \text{с} \times \text{см}}$$

фильтр H:
$$_{1,20 \times 10^{-2}} \frac{_{\rm эрг}}{_{\rm cm}^2 \times c \times cm}$$

фильтр К:
$$4,12 \times 10^{-3} \frac{\text{эрг}}{\text{см}^2 \times \text{с} \times \text{см}}$$

HIP85382 в различных фильтрах:

Число фотонов, падающих на границу атмосферы, площадью S, за время экспозиции t, на единичный интервал длин волн:

wave length, cm

Формула Погсона для Веги и звезды HIP85382:

$$m_{HIP85382_i} - m_{\alpha Lyr_i} = -2, 5lg \frac{E_{HIP85382_i}}{E_{\alpha Lyr_i}}$$

Спектральная щель SLIT6

Спектральная щель SLIT7

transmission

transmission

фильтр JOS

Спектральная щель SLIT6

Спектральная щель SLIT7

transmission

transmission

transmission

фильтр К

Спектральная щель SLIT6

Спектральная щель SLIT7

ИТОГИ РАБОТЫ:

В результате обработки спектров были получены зависимости величины эффективности (или пропускания) системы "атмосфера+телескоп+камера", в зависимости от длины волны для различных фильтров YOS, JOS, H, K, и для спектральных щелей SLIT6 и SLIT7 соответственно. Также имеем следующие численные оценки для верхних границ:

```
при использовании спектральной щели SLIT6: T_Y \approx 1,6\%, T_J \approx 2,5\%, T_H \approx 4\%, T_K \approx 5,3\%,
```

при использовании спектральной щели $SLIT7: T_Y \approx 0.62\%,$ $T_J \approx 0.89\%,$ $T_H \approx 1.1\%,$ $T_K \approx 1.02\%.$