2.7 Réactions chimiques

Objectifs

- Reconnaitre une transformation chimique d'une transformation physique ou nucléaire;
- Modéliser une transformation chimique par une équation (reconnaitre les réactifs, les produits et les conditions de la réaction);
- Équilibrer une équation chimique;
- Lire et Interpréter une équation chimique;
- Calculs stœchiométriques (effectuer correctement des calculs de quantité de matière);

Introduction

Si lors d'une transformation chimique, les substances réagissant forment de nouvelles substances, de compositions et propriétés différentes;

- Gaz d'échappement
- Chaleur;
- Vapeur d'eau

General chemistry: Principles & Modern Application

- Dégagement du NO₂
- Cuivre de penny dans HNO₃

- Disparition de la couleur jaune des ions chromates
- Apparition d'un solide rouge-brun (précipitation du chromate d'argent)

Alors il s'agit d'une transformation chimique

Réaction chimique: Mise en évidence

- Disparition ou apparition de substances;
- Changement de couleurs;
- Formation d'un gaz (bulles);
- Formation d'un solide (précipitation);
- Chaleur (flamme) produite ou absorbée;

Une dissolution est - elle une transformation chimique?

Transformations: Physique - Chimique - Nucléaire

- Lors d'une transformation physique, la substance garde son identité chimique;
- Une transformation nucléaire implique des changements au niveau du noyau des atomes(changement total de l'identité de l'atome);

Transformations physiques	Transformations chimiques	
De l'eau qui bout	Une grille de fer qui rouille en présence de l'eau liquide	
Un glaçon qui fond	Bruller une allumette	
Un soda qui pétille lorsqu'on y plonge un morceau de sucre	Cuire une pomme de terre à tel point qu'elle est calcinée en surface	
Faire fondre de sel de cuisine dans l'eau	respirer	

Transformations: Physique - Chimique et Nucléaire

COMPARAISON ENTRE LES DIFFÉRENTES TRANSFORMATIONS DE LA MATIÈRE

changement de phase	les substances pures ne sont pas modifiées	échange d'énergie
		faible
réaction	les substances pures sont modifiées ;	échange
chimique	les noyaux des atomes constituants	d'énergie
	les substances restent intacts	modéré
transformation	les noyaux des atomes sont modifiés ;	échange
nucléaire	il peut y avoir destruction/apparition	d'énergie
	d'éléments différents des éléments	élevé
	de départ	

Réaction Chimique

Dans une réaction chimique :

- Des liaisons de départs sont rompues et de nouvelles liaisons sont formées;
- Les atomes de départ se réarrangent pour former de nouvelles substances;

Atomes réactifs = atomes produits

Équation chimique

- L'équation chimique est un modèle qui nous permet d'écrire correctement une réaction chimique;
- Elle donne les formules chimiques des réactifs à gauche de la flèche et les produits à droite de la flèche;

Principe de conservation de masse

Au cours d'une réaction chimique:

- La masse des réactifs initialement mis en présence est conservée est égale à la masse des produits finaux;
- Les charges électriques peuvent se déplacer d'un élément à un autre mais elle ne peuvent ni être crées ni être détruites

Antoine Lavoisier (1743-1794)

Équation chimique

☐ Symboles utilisés dans une équation chimique

```
+ Séparer les formules chimiques
→ Réagit pour former les produits
Δ Chauffage
(s) Solide
(l) Liquide
(g) Gazeux (vapeur)
(aq) Aqueux
```

Modéliser une réaction chimique

☐ Combustion du carbone en présence de l'oxygène:

Modéliser une réaction chimique

☐ Combustion du méthane en présence de l'oxygène:

☐ Équation de réaction :

$$CH_4 + 2 O_2 \xrightarrow{\Delta} CO_2 + 2 H_2O$$

Lire une réaction chimique

La réaction ci-dessous se lit comme suit:

$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

deux moles de monoxyde d'azote réagissent avec une mole du gaz oxygène pour former deux moles de dioxyde d'azote

Équilibrer une réaction chimique

 L'équilibrage d'une équation chimique consiste à déterminer les coefficients stœchiométriques des réactifs et produits d'une réaction chimique.

Méthode directe (équations simples)

Soit la réaction de thermite non équilibrée :

$$Fe_2O_3 + AI \rightarrow Fe + AI_2O_3$$

Les étapes à suivre sont

- On place le 1 devant une substance : 1 Fe₂O₃ + Al → Fe + Al₂O₃
- On peut choisir « Fe » ou « O » dans Fe₃O₂; on choisit Fe et on vérifie que cet atome ne se retrouve que dans un seul autre produit ou réactif; on place le coefficient devant le produit

Fe:
$$\mathbf{1} \text{ Fe}_2\text{O}_3 + \text{Al} \rightarrow : \mathbf{2} \text{ Fe} + \text{Al}_2\text{O}_3$$

3. On reprend l'étape 2 avec « O », ce qui donne le coefficient devant Al₂O₃ :

1 Fe₂O₃ + Al
$$\rightarrow$$
 : 2 Fe + 1 Al₂O₃

On équilibre les atomes d'aluminium de la droite vers la gauche :

1 Fe₂O₃ + 2 Al
$$\rightarrow$$
 : 2 Fe + 1 Al₂O₃

On écrit l'équation selon les règles :

$$Fe_2O_3 + 2 Al \rightarrow 2 Fe + Al_2O_3$$

Exemple d'application 1:

Soit la réaction de décomposition (violonte) de la nitroglécyrine:

$$C_3H_5N_3O_9 \rightarrow N_2 + CO_2 + H_2O + O_2$$

- On place le 1 devant une substance : 1 C₃H₅N₃O₉ → N₂ + CO₂ + H₂O + O₂
- On choisit le C (il n'est pas possible d'équilibrer immédiatement les atomes de O, car on les retrouve dans 4 substances pour lesquelles le coefficient est encore inconnu):
 1 C₃H₅N₃O₉ → N₂ + 3 CO₂ + H₂O + O₂
- 3. On reprend l'étape 2 avec le H : $1 C_3H_5N_3O_9 \rightarrow N_2 + 3 CO_2 + 5/2 H_2O + O_2$
- 4. Il n'est toujours pas possible d'équilibrer l'oxygène; on choisit le N : $1 C_3H_5N_3O_9 \rightarrow 3/2 N_2 + 3 CO_2 + 5/2 H_2O + O_2$
- 5. On équilibre finalement le $O: 1 C_3H_5N_3O_9 \rightarrow 3/2 N_2 + 3 CO_2 + 5/2 H_2O + 1/4 O_2$
- Pour écrire l'équation équilibrée selon les règles, on multiplie tous les coefficients par 4 :

$$4 C_3H_5N_3O_9 \rightarrow 6 N_2 + 12 CO_2 + 10 H_2O + O_2$$

Exercice # 01

Balancez les équations chimiques suivantes :

a)
$$C_6H_{14}O_4 + O_2 \rightarrow CO_2 + H_2O$$

$$C_6H_{14}O_4 + \frac{15}{2}O_2 \rightarrow 6CO_2 + 7H_2O$$

$$2 C_6H_{14}O_4 + 15 O_2 \rightarrow 12 CO_2 + 14 H_2O$$

b)
$$Fe_2O_3(s) + C(s) \longrightarrow Fe(s) + CO_2(g)$$

 $2Fe_2O_3(s) + 3C(s) \longrightarrow 4Fe(s) + 3CO_2(g)$

c)
$$Pb(NO_3)_{2(aq)} + KI_{(aq)} \longrightarrow PbI_{2(s)} + KNO_{3(aq)}$$

$$Pb(NO_3)_{2(aq)} + 2KI_{(aq)} \longrightarrow PbI_{2(s)} + 2KNO_{3(aq)}$$

Méthodes du système d'équations (Équations plus complexes)

- Dans certains cas, il ne sera pas facile, de trouver un atome qui n'apparaît que dans une seule substance sans coefficient.
- Dans ce cas, il faudra alors utiliser une autre méthode qui consiste à construire un système d'équations pour équilibrer simultanément tous les atomes.

Exemple: Oxydation du cuivre dans une solution diluée d'acide nitrique

$$Cu(s) + HNO_3 \rightarrow Cu(NO_3)_2 + NO + H_2O$$

Méthodes du système d'équations (équations plus complexes)

Exemple: Oxydation du cuivre dans une solution diluée d'acide nitrique

$$Cu(s) + HNO_3 \rightarrow Cu(NO_3)_2 + NO + H_2O$$

On place un coefficient "1" devant une substance :

$$Cu_{(s)} + HNO_3 \rightarrow 1 Cu(NO_3) + NO + H_2O$$

- On équilibre le Cu de droite à gauche : 1 Cu (s) + HNO₃ → 1 Cu(NO₃) + NO + H₂O
- 3. Pour choisir l'atome suivant à équilibrer, on doit partir d'une substance dont le coefficient est connu : N ou O, mais on retrouve ces deux atomes dans plus d'une substance dont le coefficient est inconnu : on ne peut plus continuer de cette façon!
- On remplace chaque coefficient inconnu par une lettre :

1 Cu (s) +a HNO₃
$$\rightarrow$$
 1 Cu(NO₃)₂ + b NO + c H₂O

 On écrit une équation pour chaque atome à équilibrer : nombre d'atomes à gauche = nombre d'atomes à droite :

Méthodes du système d'équations (équations plus complexes)

On aboutit aux système d'équations suivant:

Avec la Ti on obtient:

$$H: a = 2 \times c$$

$$N: a = 2 + b$$

$$0: 3 \times a = 6 + b + c$$

$$a=\frac{8}{3}; b=\frac{2}{3}; c=\frac{4}{3}$$

L'équation chimique est donc : 1 Cu (s)
$$+\frac{8}{3}$$
 HNO₃ \rightarrow 1 Cu(NO₃)₂ $+\frac{2}{3}$ NO $+\frac{4}{3}$ H₂O

Pour écrire l'équation équilibrée selon les règles, on multiplie tous les coefficients par 3 :

$$3 \text{ Cu}_{(s)} + 8 \text{ HNO}_3 \rightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 2 \text{ NO} + 4 \text{ H}_2\text{O}$$

Exercice # 02

Équilibrez les équations suivantes en utilisant la méthode du système d'équations ?

1)
$$C_6H_4(OH)_2 + Fe_2O_3 \rightarrow Fe_3O_4 + C_6H_4O_2 + H_2O_3$$

2) NaOH + Ca(OH)₂ + Cl₂
$$\rightarrow$$
 Ca(ClO)₂ + NaCl + H₂O

Calculs Stœchiométriques:

Exercice # 03

- Soit la réaction non équilibrée suivante :

$$C + PbO \longrightarrow Pb + CO_2$$

- 1. Equilibrer cette équation?
- 2. Calculez la masse de carbone nécessaire pour obtenir 150g de plomb (Pb)?
- 3. Sachant que la masse de PbO utilisée est de 50g, calculer le nombre de moles de CO₂ dégagé?

Données:

$$M_C = 12.01 \text{ (g. mol}^{-1}); \qquad M_O = 15.99 \text{ (g. mol}^{-1}); \qquad M_{Pb} = 207.2 \text{ (g. mol}^{-1}).$$