Chapter 31 Familles de vecteurs

Exercice 1 (31.1)

On considère le sous-espace vectoriel de \mathbb{R}^3

$$V = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ -6 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 2 (31.1)

*

*

*

On considère le sous-espace vectoriel de \mathbb{R}^3

$$V = \text{Vect}\left\{ \begin{pmatrix} 1\\2\\-6 \end{pmatrix}, \begin{pmatrix} -2\\-4\\12 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 3 (31.1)

On considère le sous-espace vectoriel de \mathbb{R}^2

$$V = \text{Vect}\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix}, \begin{pmatrix} -6 \\ 12 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 4 (31.1)

On considère le sous-espace vectoriel de \mathbb{R}^4

$$V = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ -2 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 5 (31.1)

Dans $\mathcal{M}_3(\mathbb{R})$, trouver une famille génératrice de $\mathcal{S}_3(\mathbb{R})$ et une famille génératrice de $\mathcal{A}_3(\mathbb{R})$.

Exercice 6 (31.1)

Soit $n \in \mathbb{N}$. Montrer que les familles

$$(x \mapsto \cos(kx))_{0 \le k \le n}$$
 et $(x \mapsto \cos^k(x))_{0 \le k \le n}$

engendrent le même sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 7 (31.2)

Montrer que les vecteur x_1, x_2, x_3 ci-dessous sont linéairement indépendant:

$$x_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \qquad x_2 = \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}, \qquad x_3 = \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix},$$

Exprimer le vecteur

$$v = \begin{pmatrix} -5\\7\\-2 \end{pmatrix}$$

comme combinaison linéaire de x_1, x_2, x_3 .

Exercice 8 (31.2)

Soit

$$x_1 = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}, \qquad \qquad x_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \qquad \qquad v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Déterminer une condition nécessaire et suffisante sur a, b, c pour que la famille (x_1, x_2, v) soit liée.

Exhiber un vecteur x_3 tel que la famille (x_1, x_2, x_3) soit libre.

Exercice 9 (31.2)

Montrer que les vecteurs ci dessous forment une famille liée en déterminant un relation de dépendance linéaire non triviale.

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ -1 \\ 3 \\ 4 \end{pmatrix}, \qquad \begin{pmatrix} 4 \\ -11 \\ 5 \\ -1 \end{pmatrix}, \qquad \begin{pmatrix} 9 \\ 2 \\ 1 \\ -3 \end{pmatrix}$$

Exercice 10 (31.2)

Montrer que si n > m, alors toute famille de n vecteurs de \mathbb{R}^m est liée.

Exercice 11 (31.2)

Soit
$$\sigma = (X^2 + 1, 2X^2 - X + 1, -X^2 + X).$$

- **1.** La famille σ est-elle libre dans $\mathbb{R}_2[X]$?
- **2.** La famille σ est-elle génératrice de $\mathbb{R}_2[X]$?

Exercice 12 (31.2)

Montrer de deux manières que les trois fonctions

$$f: x \mapsto e^x$$
 $g: x \mapsto x^2$ $h: x \mapsto \ln(x)$

forment une famille libre dans l'espace vectoriel des applications de $]0,+\infty[$ dans $\mathbb R$:

- 1. une fois, en donnant des valeurs particulières à la variable x;
- 2. une autre fois, en utilisant les croissances comparées des trois fonctions en $+\infty$.

Exercice 13 (31.2)

Soit

**

$$f_1: x \mapsto x;$$
 $f_2: x \mapsto \ln x;$ $f_3: x \mapsto \exp(x).$

Montrer que la famille (f_1, f_2, f_3) est libre dans $\mathscr{C}^0(\mathbb{R}_+^{\star}, \mathbb{R})$.

Exercice 14 (31.2)

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} et à valeurs réelles. Pour tout $x \in \mathbb{R}$, on

$$f_1(x) = e^{x+1},$$
 $f_2(x) = e^{x+2},$ $f_3(x) = e^{x+3}.$

La famille (f_1, f_2, f_3) est-elle libre dans E ?

Exercice 15 (31.2)

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} et à valeurs réelles. Pour tout $x \in \mathbb{R}$, on pose

$$g_1(x) = |x - 1|,$$
 $g_2(x) = |x - 2|,$ $g_3(x) = |x - 3|.$

La famille (g_1, g_2, g_3) est-elle libre dans E?

Exercice 16 (31.2)

**

**

**

**

Soit $n \in \mathbb{N}^*$ et a_1, a_2, \dots, a_n des réels tels que $a_1 < a_2 < \dots < a_n$. Montrer que la famille (f_1, f_2, \dots, f_n) où

$$f_k: x \mapsto e^{a_k x}$$

est libre dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 17 (31.2)

Soit $n \in \mathbb{N}$. Montrer que la famille (f_1, f_2, \dots, f_n) où

$$f_k: x \mapsto \sin(kx)$$

est libre dans $\mathcal{F}(\mathbb{R},\mathbb{R})$.

Exercice 18 (31.2)

On considère une famille de 4 vecteurs linéairement indépendants $(\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4})$. Les familles suivantes sontelles libres?

1.
$$(\vec{e_1}, 2\vec{e_2}, \vec{e_3})$$
.

4.
$$(3\vec{e_1} + \vec{e_3}, \vec{e_3}, \vec{e_2} + \vec{e_3})$$

2.
$$(\vec{e_1}, \vec{e_3})$$
.

3.
$$(\vec{e_1}, 2\vec{e_1} + \vec{e_4}, \vec{e_4})$$
.

4.
$$(3\vec{e_1} + \vec{e_3}, \vec{e_3}, \vec{e_2} + \vec{e_3})$$
.
5. $(2\vec{e_1} + \vec{e_2}, \vec{e_1} - 3\vec{e_2}, \vec{e_4}, \vec{e_2} - \vec{e_1})$.

Exercice 19 (31.2)

En utilisant la définition de famille libre. Montrer que tout sous famille (non vide) d'une famille libre est une famille libre.

Exercice 20 (31.2)

Soit A un matrice quelconque. On suppose qu'il existe deux vecteurs non nuls, v_1 et v_2 , tels que $Av_1 = 2v_1$ et $Av_2 = 5v_2$.

Montrer que les vecteurs v_1 et v_2 sont linéairement indépendants.

Pouvez-vous généraliser ce résultat ?

Exercice 21 (31.2)

On suppose que $v_1, v_2, v_3, \dots, v_n$ sont des vecteurs linéairement indépendants.

- 1. Les vecteurs $v_1 v_2$, $v_2 v_3$, $v_3 v_4$, ..., $v_n v_1$ sont-ils linéairement indépendants ?
- **2.** Les vecteurs $v_1 + v_2, v_2 + v_3, v_3 + v_4, \dots, v_n + v_1$ sont-ils linéairement indépendants ?

3. Les vecteurs $v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_2 + v_3 + v_4, \dots, v_1 + v_2 + \dots + v_n$ sont-ils linéairement indépendants ?

Exercice 22 (31.3)

Donner une base du plan (0xz) de \mathbb{R}^3 .

Exercice 23 (31.3)

Dans $E = \mathbb{R}^4$, on considère les sous-espaces vectoriels

$$V = \left\{ (x, y, z, t)^T \in \mathbb{R}^4 \mid x - y + z - t = 0 \right\}$$
 et $W = \left\{ (x, y, z, t)^T \in \mathbb{R}^4 \mid x - y - z = y + t = 0 \right\}.$

- **1.** Préciser une base et la dimension de V. Déterminer les coordonnées dans cette base de $a = (3, 1, 2, 4)^T$.
- **2.** Préciser une base et la dimension de W. Déterminer les coordonnées dans cette base de $b = (4, 1, 3, -1)^T$.
- **3.** Préciser une base et la dimension de $V \cap W$.

Exercice 24 (31.3)

Dans \mathbb{R}^4 , on considère

$$a = \begin{pmatrix} 1 \\ -2 \\ 4 \\ -1 \end{pmatrix}; \qquad b = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 2 \end{pmatrix}; \qquad c = \begin{pmatrix} -2 \\ 4 \\ 0 \\ 1 \end{pmatrix}; \qquad d = \begin{pmatrix} -7 \\ 7 \\ 9 \\ -1 \end{pmatrix}; \qquad e = \begin{pmatrix} 9 \\ -4 \\ -6 \\ 3 \end{pmatrix}.$$

Déterminer le rang de (a, b, c, d, e), préciser des relations de dépendance linéaire entre a, b, c, d, e et donner une base de Vect (a, b, c, d, e).

Exercice 25 (31.3)

Montrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathbb{R}[X]$ et en déterminer une base.

1.
$$F_1 = \mathbb{R}_2[X]$$
.

2.
$$F_2 = \{ P \in \mathbb{R}_3[X] \mid P(1) = 0 \}.$$

3.
$$F_3 = \{ P' \mid P \in \mathbb{R}_n[X] \} \text{ où } n \in \mathbb{N}.$$

4.
$$F_4 = \left\{ a(X^3 - 1) + b(X^2 - 2) + c(X + 4) \mid (a, b, c) \in \mathbb{R}^3 \right\}.$$

5.
$$F_5 = \{ P \in \mathbb{R}_4[X] \mid P(1) = P(2) = 0 \}.$$

6.
$$F_6 = \{ P \in \mathbb{R}_2[X] \mid P' = 0 \}.$$

7.
$$F_7 = \{ P \in \mathbb{R}_3[X] \mid P'' = 0 \}.$$

8.
$$F_8 = \left\{ P \in \mathbb{R}_2[X] \mid \int_0^1 P(t) \, \mathrm{d}t = 0 \right\}.$$

Exercice 26 (31.3)

Soient a et b deux nombres complexes distincts. Montrer que l'ensemble des polynômes de degré inférieur ou égal à 4 admettant a et b comme racines est un sous-espace vectoriel de l'espace vectoriel $\mathbb{C}_4[X]$. Trouver une base de cet espace.

Problème 27 (31.3) Polynômes interpolateurs de Lagrange

Soit n un entier naturel non nul et (a_1, \ldots, a_n) n nombres réels deux à deux distincts. On leur associe les polynômes L_1, \ldots, L_n définis, pour tout j de $\{1, \ldots, n\}$, par

$$L_j = \prod_{\substack{k=1\\k\neq j}}^n \frac{X - a_k}{a_j - a_k}.\tag{1}$$

Par exemple, si n = 3, on a

$$L_1 = \frac{(X - a_2)(X - a_3)}{(a_1 - a_2)(a_1 - a_3)}, \qquad L_2 = \frac{(X - a_1)(X - a_3)}{(a_2 - a_1)(a_2 - a_3)}, \qquad L_3 = \frac{(X - a_1)(X - a_2)}{(a_3 - a_1)(a_3 - a_2)}.$$
(2)

Dans la suite, *n est quelconque*.

- **1.** Pour tout entier j de $\{1, ..., n\}$, déterminer le degré de L_i .
- **2.** Pour tout entier j de $\{1, ..., n\}$, déterminer les racines de L_i .
- **3.** Pour tout entier j de $\{1, \ldots, n\}$, calculer $L_i(a_i)$.
- **4.** Montrer que (L_1, \ldots, L_n) est une famille libre de $\mathbb{R}_{n-1}[X]$.
- **5.** Soit *P* un polynôme de $\mathbb{R}_{n-1}[X]$. On pose

$$Q = \sum_{j=1}^{n} P(a_j) L_j. \tag{3}$$

- (a) Pour tout entier k de $\{1, ..., n\}$, calculer $Q(a_k)$.
- (b) Montrer alors que P = Q.
- **6.** En déduire que $(L_1, ..., L_n)$ est une base de $\mathbb{R}_{n-1}[X]$. On l'appelle base de Lagrange. Que représente donc $P(a_i)$ pour le polynôme P dans la base de Lagrange ?
- 7. Montrer que le reste de la division euclidienne de X^q par $Q = (X a_1) \dots (X a_n)$ est

$$\sum_{j=1}^{n} a_j^q L_j.$$

8. Soient a et b deux réels distincts tels que $\forall k \in \{1, ..., n\}, a_k \in [a, b]$. Soit aussi une fonction $f \in \mathcal{F}([a, b], \mathbb{R})$. Déduire de la question **5.** qu'il existe un unique polynôme P_n de $\mathbb{R}_{n-1}[X]$ tel que

$$\forall k \in \{1, \dots, n\} \quad P_n(a_k) = f(a_k).$$

Ce polynôme s'appelle polynôme d'interpolation de Lagrange de f sur [a,b] relativement aux points $\{a_1,\ldots,a_n\}$: c'est donc l'unique polynôme de degré $\leq n-1$ prenant les mêmes valeurs que f aux points (a_1,\ldots,a_n) .

Exercice 28 (31.3)

Soient F et G les sous-ensembles de $\mathcal{M}_3(\mathbb{R})$ définis par

$$F = \left\{ \begin{pmatrix} a+b & 0 & c \\ 0 & b+c & 0 \\ c+a & 0 & a+b \end{pmatrix} \middle| a,b,c \in \mathbb{R} \right\}$$
 et $G = \left\{ \begin{pmatrix} a+b+d & a & c \\ 0 & b+d & 0 \\ a+c+d & 0 & a+c \end{pmatrix} \middle| a,b,c,d \in \mathbb{R} \right\}.$

Montrer que ce sont des sous espaces vectoriels de $\mathcal{M}_3(\mathbb{R})$ dont on déterminera des bases.

Exercice 29 (31.3)

**

Soit $E = \mathcal{M}_n(\mathbb{R})$, soit $A \in E$ fixé et

$$F = \{ M \in E \mid AM = MA \}.$$

- **1.** Montrer que F est un sous-espace vectoriel de E.
- **2.** Dans cette question, n = 2 et $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. Déterminer une base de F.

Exercice 30 (31.3)

Notons, pour tout $k \in \mathbb{N}$, $u^{(k)}$ la suite de réels dont le terme d'indice n est $u_n^{(k)} = n^k$. Démontrer que la famille $(u^{(k)})_{k \in \mathbb{N}}$ est une famille libre de \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{N}}$.

Exercice 31 (31.3)

Soit V un \mathbb{K} -espace vectoriel et $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de V. Montrer que pour tous vecteurs $u, w \in V$, on a

$$Coord_{\mathcal{B}}(\alpha u + \beta w) = \alpha Coord_{\mathcal{B}}(u) + \beta Coord_{\mathcal{B}}(w).$$

où Coord_B(u) désigne la matrice des coordonnées de u relativement à la base B.

Exercice 32 (31.3)

On suppose que E est un \mathbb{K} -espace vectoriel qui admet (e_1, e_2) comme base.

À chaque fois, on donnera les relations entre coordonnées d'un même vecteur dans les deux bases en question.

- 1. λ et μ étant des scalaires différents de 0, montrer que $(\lambda e_1, \mu e_2)$ est encore une base de E.
- **2.** Montrer que $(e_1 + e_2, e_1 e_2)$ est encore une base de E.
- **3.** En déduire que si λ et μ sont deux scalaires différents de 0, $(\lambda(e_1 + e_2), \mu(e_1 e_2))$ est une base de E.

Exercice 33 (31.3)

Soit E un \mathbb{K} -espace vectoriel et $\mathfrak{F}=(v_1,\ldots,v_p)$ une famille de vecteurs. Nous pouvons lui associer les familles suivantes :

• $\mathfrak{F}' = (v'_1, \dots, v'_n)$ obtenue en multipliant un des vecteurs de \mathfrak{F} par un scalaire différent de 0, c'est-à-dire

$$\begin{cases} v'_k = v_k & \text{si } k \neq j \\ v'_j = \lambda v_j. \end{cases}$$

On code cette opération $v_i \leftarrow \lambda v_i$.

• $\mathfrak{F}'=(v_1',\ldots,v_p')$ obtenue en ajoutant à un vecteur de \mathfrak{F} un multiple d'un des autres vecteurs de \mathfrak{F} , c'est-à-dire

$$\begin{cases} v'_k = v_k & \text{si } k \neq j \\ v'_j = v_j + \lambda v_i & \text{où } i \neq j. \end{cases}$$

On code cette opération $v_j \leftarrow v_j + \lambda v_i$.

• $\mathfrak{F}' = (v'_1, \dots, v'_p)$ obtenue en échangeant les vecteurs v_i et v_j . On code cette opération $v_i \leftrightarrow v_j$.

Ces opération sont appelée **opérations élémentaires** sur une famille de vecteurs. On suppose que l'on passe de la famille \mathfrak{F} à la famille \mathfrak{F}' par un enchainement d'opération élémentaires.

- 1. Montrer que la famille \mathfrak{F}' est libre si, et seulement si \mathfrak{F} est libre.
- 2. Montrer que la famille \mathfrak{F}' est liée si, et seulement si \mathfrak{F} est liée.
- 3. Montrer que $Vect(v'_1, \dots, v'_p) = Vect(v_1, \dots, v_p)$.
- **4.** Montrer que la famille \mathfrak{F}' est une base de E si, et seulement si \mathfrak{F} est une base de E.