The concept of vector potential

Pushing the parallel between <u>Electrostatic</u> and <u>Magnetostatic</u> to the ultimate limit

The question that brings to the concept of vector potential

Giving the following equations

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

Can we solve them without requiring any special symmetry or intuitive guessing?

In electrostatic we have:

Divergence

,

Curl

 $\vec{\nabla} \times \vec{E} = \vec{0}$

Gradient

 $\vec{E}(\vec{r}) = -\vec{\nabla}V(\vec{r})$

Electric potential

 $\rho(\vec{r})$ source of the field

If we know the charge distribution $\rho(\vec{r})$

With symmetry

Gauss law

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho(r)}{\varepsilon_0}$$

Without refereeing to symmetry

$$\mathbf{V}(\vec{r}) = \frac{1}{4\mu\varepsilon_0} \int \frac{\rho(\vec{r} - \vec{r}')}{\vec{r} - \vec{r}'} d\mathcal{V}'$$

$$\vec{E}(\vec{r}) = -\vec{\nabla}V(\vec{r})$$

In magnetostatic:

By analogy

Divergence

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{B} = \underbrace{\mu_0 \vec{J}(\vec{r})}$$

Gradient

??? "Magnetic potential"

 $\vec{J}(\vec{r})$ is for magnetostatic what $\rho(\vec{r})$ is for electrostatic: Source of the field

Is there any equivalent way to solving magnetostatic problems if we know $\vec{J}(\vec{r})$?

The difference with electrostatic comes from these two sides

Concept of Magnetic Potential

Stokes theorem

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{encl}$$

Differential form

Integral form

BUT

Can we define a potential for magnetic field ... as we have a potential for an electric field?

Electrostatic

Electric field \vec{E}

$$\vec{\nabla} \times \vec{E} = \vec{0}$$

Scalar potential $V, \overrightarrow{E} = -\overrightarrow{\nabla}V$

B_Lecture 4&7_Coordinate system_Scalar versus Vector fields_Operators

Magnetostatic

Magnetic field \vec{B}

 $\vec{\nabla} \times \vec{B}$ is not <u>always</u> zero

NOT ALWAYS POSSIBLE

$$\vec{\nabla} \cdot \vec{B} = 0$$
 ALWAYS

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

 \overrightarrow{A} = <u>Vector</u> potential

Slide #62 B_Lecture 4&7_Coordinate system_Scalar versus Vector fields_Operators

Mathematics $\Rightarrow \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$

The parallel with electrostatic

In magnetostatic if we know the current density $\vec{J}(\vec{r})$ \Rightarrow $\vec{A}(\vec{r})$ \Rightarrow $\vec{B}(\vec{r}) = \vec{\nabla} \times \vec{A}(\vec{r})$

$$B_{x} = (\vec{\nabla} \times \vec{A})_{x} = \frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z}$$

$$B_{y} = (\vec{\nabla} \times \vec{A})_{y} = \frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x}$$

$$B_z = (\vec{\nabla} \times \vec{A})_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}$$

By analogy

In electrostatic

For electrostatic Poisson equation

$$\nabla^2 V(\vec{r}) = -\frac{\rho(\vec{r})}{\varepsilon_0}$$

For Magnetostatic ...

$$\vec{A}(\vec{r})$$
 ? $\vec{J}(\vec{r})$

Neither of the quantities $V(\vec{r})$ and $\vec{A}(\vec{r})$ is unique!

Vector potential \vec{A} exists: Physical interpretation

$$\vec{B} = \vec{\nabla} \times \vec{A}$$
 Dimension Equation $A = [B] \cdot [L]$

Lorentz force
$$F = qvB$$

$$[B] = \frac{\lfloor F \rfloor}{\lceil qv \rceil}$$

$$[qA] = [Momentum]$$

Although the vector potential result from mathematical considerations it does have a physical meaning

Non uniqueness of Vector potential \overrightarrow{A} in magnetostatic

The vector potential \vec{A} is **NOT** unique

A lot of different \vec{A} 's give the same \vec{B}

We can measure locally \overrightarrow{B} **BUT NOT** \overrightarrow{A}

In electrostatic

$$V' = V + C$$

C does not give rise to \vec{E}

$$V(\infty)=0$$

V is always defined within a constant C

Non uniqueness of Vector potential \overrightarrow{A} in magnetostatic

Infinite number of configurations in which $\overrightarrow{B} \perp \overrightarrow{A}$

... Among infinite possibilities

Proof that the vector potential \vec{A} is **NOT** unique

$$\vec{B} = \vec{B}_z = B_z \vec{k} = \mathbf{b}\vec{k}$$

$$\vec{B}_y = 0$$

$$\vec{B}_x = 0$$

What is \vec{A} ?

$$B_z = (\vec{\nabla} \times \vec{A})_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = \mathbf{b}$$

Possibility 1

Any of the blue vectors \vec{A} is okay: an infinity

Proof that the vector potential \vec{A} is **NOT** unique

What is \vec{A} ?

$$B_z = (\vec{\nabla} \times \vec{A})_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = \mathbf{b}$$

Possibility 2

Any of the black vectors \vec{A} is okay: an infinity

Proof that the vector potential \vec{A} is **NOT** unique

$$\vec{B} = \vec{B}_z = B_z \vec{k} = \mathbf{b} \vec{k}$$

$$\vec{B}_y = 0$$

$$\vec{B}_x = 0$$

What is \vec{A} ?

Any combination of the previous ones

$$\vec{B} = \vec{B}_z = (\alpha + \beta)b\vec{k}$$
$$(\alpha + \beta) = 1$$

Infinity of combinations

Possibility 3

$$B_z = (\vec{\nabla} \times \vec{A})_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = (\alpha + \beta)b$$

Any BLUE vectors \vec{A} is okay: an infinite number

In electrostatic

Solution is not unique for V **BUT** must be unique for \vec{E}

$$\vec{\nabla} \times \vec{E} = \vec{0}$$
 $\vec{E} = -\vec{\nabla}V$ $V' = V + C$

$$\vec{E} = -\vec{\nabla}V$$

$$V' = V + C$$

Unique \vec{E} for any arbitrary C

Useful condition for V' = V + C that does not affect \vec{E}

$$\vec{\nabla} \cdot C = \vec{0}$$

$$V(\infty) = 0$$

Likewise Solution is not unique for \vec{A} **BUT** must be unique for \vec{B}

Using Curl

$$\vec{B} = \vec{\nabla} \times \vec{A'} = \vec{\nabla} \times \vec{A}$$

$$\vec{B} = \vec{\nabla} \times \vec{A'} = \vec{\nabla} \times \vec{A} \qquad \qquad \vec{\nabla} \times \vec{A'} - \vec{\nabla} \times \vec{A} = \vec{\nabla} \times (\vec{A'} - \vec{A}) = \vec{0}$$

Looks like

$$\vec{F} = -\vec{\nabla}$$

Two possible solutions

 \overrightarrow{A}' and \overrightarrow{A} have the same curl

$$(\overrightarrow{A'} - \overrightarrow{A}) = \overrightarrow{\nabla} \psi$$

$$\vec{\nabla} \times (\vec{\nabla} \psi) = \vec{0}$$

 $ec{
abla}\psi$ does not give rise to $ec{B}$

Slide #74 B_Lecture 4&7_Coordinate system_Scalar versus Vector fields_Operators

$$\overrightarrow{A'} = \overrightarrow{A} + \overrightarrow{\nabla} \psi$$

Unique \vec{B} for any arbitrary ψ

Electrostatic

$$V' = V + C$$

Example for $\overrightarrow{A'} - \overrightarrow{A} = \overrightarrow{\nabla} \psi$

Possibility 3

$\vec{A} = -\alpha b y \vec{\imath} + \beta b x \vec{\jmath}$

Possibility 2

$$\vec{A}_{1} - \vec{A}_{2} = by(1 - \alpha)\vec{i} + \beta bx\vec{j} = \vec{\nabla} \left(\frac{bxy}{2} [1 - \alpha + \beta] \right) = \vec{\nabla} (bxy[1 - \alpha]) = \vec{\nabla} b\beta xy$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$($$

Ve230: A. Mesli AMU-CNRS (FRANCE) Fall 2018 (UM-SJTU)

 $\overrightarrow{A'}$ and \overrightarrow{A} have the same **Curl** $\Rightarrow \overrightarrow{B}$ is unique

BUT

Using Div

$$\overrightarrow{A'} = \overrightarrow{A} + \overrightarrow{\nabla}\psi$$

$$\vec{\nabla}.\vec{A'} = \vec{\nabla}.\vec{A} + \nabla^2\psi$$

 $\vec{\nabla} \cdot \vec{A'} = \nabla^2 \psi$

 \overrightarrow{A}' and \overrightarrow{A} do not need to have the same **Divergence**

In magnetostatic, the greatest mathematical convenience requires

$$\vec{\nabla} \cdot \vec{A} = 0$$

$$\vec{\nabla} \times \vec{A} = \vec{B}$$

Final step: From Mathematics to Physics

Miracle of analogy

$$\nabla^2 \vec{A} = -\mu_0 \vec{j}$$

$$\nabla^2 A_z = -\mu_0 j_z$$

For electrostatic Poisson equation

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$$

$$(A_x, A_y, A_z)$$

$$(B_x, B_y, B_z)$$

Electrostatic
$$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$$

P can be inside \mathcal{V}

Potential

$$V(P) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(x, y, z) dV}{r}$$

Magnetostatic

$$\nabla^2 \vec{A} = -\mu_0 \vec{J}$$

Steady current $\Rightarrow \overrightarrow{\pmb{r}}.\overrightarrow{\pmb{j}} = \pmb{0}$

$$A_{\chi}(P) = \frac{\mu_0}{4\pi} \int \frac{J_{\chi}(x, y, z) \, a \, \nu}{r}$$

Imaginary "electrostatic" problem
$$A_x(P) = \frac{\mu_0}{4\pi} \int \frac{j_x(x,y,z) \ d\mathcal{V}}{r}$$

$$A_y(P) = \frac{\mu_0}{4\pi} \int \frac{j_y(x,y,z) \ d\mathcal{V}}{r}$$

$$A_z(P) = \frac{\mu_0}{4\pi} \int \frac{j_z(x,y,z) \ d\mathcal{V}}{r}$$

$$A_z(P) = \frac{\mu_0}{4\pi} \int \frac{j_z(x, y, z) dV}{r}$$

Knowing $A_x(P)$ $A_y(P)$ $A_z(P)$

$$\vec{B}(P) = \vec{\nabla} \times \vec{A}(P) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \vec{i} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) \vec{j} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \vec{k}$$

$$B_x(P) \qquad B_y(P) \qquad B_z(P)$$

Stoke's theorem: Power of analogy

Surface = S instead of A (to avoid giving the same label to the area and vector potential)

$$\oint \vec{A} \cdot d\vec{l} = \text{Flux of } \vec{B}$$

$$= \int (\vec{\nabla} \times \vec{A}) d\vec{S}$$

$$= \int \vec{B} d\vec{S}$$

Thomb = direction of the flux of \vec{B}

2 examples

Vector potential for a solenoid

Vector potential for a current carrying wire

$$n=N/l$$
 # turns/length

Analogy

Wire carrying current

 $\oint_{\Gamma} \vec{A} \cdot d\vec{l} = \text{flux passing through the loop } \Gamma$

$$r > R$$

$$A_{\theta} 2\pi r = B\pi R^2 = \mu_0 n I\pi R^2$$

$$\vec{A} = \frac{\mu_0 n I R^2}{2r} \vec{e}_{\theta}$$

$$r < R$$

$$A_{\theta} 2\pi r = B\pi r^2 = \mu_0 n I\pi r^2$$

$$\vec{A} = \frac{\mu_0 nIr}{2} \vec{e}_{\theta}$$

$$r = R \Leftrightarrow continuity$$

Check:
$$\vec{\nabla} \times \vec{A} \big|_{z} = \frac{1}{r} \Big(\frac{\partial r A_{\theta}}{\partial r} - \frac{\partial A_{r}}{\partial \theta} \Big)$$

$$r < R$$

$$\vec{B} = \mu_{0} n I \vec{k}$$

$$r > R$$

$$\vec{B} = \vec{0}$$

The vector potential \vec{A} exists in a region where there is no magnetic field

$$\vec{\nabla} \times \vec{A} = \vec{B}$$

The existence of \overrightarrow{A} has been proven by quantum mechanics and a beautiful experiment: **Bohm and Aharanov 1956**

Direction of \vec{A} is known before any calculation

$$\vec{B} = \frac{\mu_0 I}{2\pi r} \vec{e}_{\theta}$$

$$A(r)l = l \int_{r}^{\infty} \frac{\mu_0 I}{2\pi r'} dr' = \frac{l\mu_0 I}{2\pi} Lnr' \bigg|_{r}^{\infty} = -\frac{l\mu_0 I}{2\pi} Lnr$$

Disregarding infinity

$$A(r) = -\frac{\mu_0 I}{2\pi} Lnr$$

Applications of the Vector potential

- Wire carrying current
- Magnetic dipole

$$\nabla^2 \vec{A} = -\mu_0 \vec{J}$$

Ampere's law
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{I}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

Steady current
$$\Rightarrow \overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{J}} = \boldsymbol{0}$$

Imaginary electrostatic problem

$$A_{x}(P) = \frac{\mu_0}{4\pi} \int \frac{j_{x}(x, y, z) dV}{r}$$

$$A_x(P) = \frac{\mu_0}{4\pi} \int \frac{j_x(x, y, z) dV}{r}$$

$$A_y(P) = \frac{\mu_0}{4\pi} \int \frac{j_y(x, y, z) dV}{r}$$

$$A_z(P) = \frac{\mu_0}{4\pi} \int \frac{j_z(x, y, z) dV}{r}$$

$$A_z(P) = \frac{\mu_0}{4\pi} \int \frac{j_z(x, y, z) \, dV}{r}$$

Electrostatic versus magnetostatics: Analogy

A straight wire

 $-\infty$

Electrostatic

Volume charge density ←

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0} \qquad \qquad V(r) = \frac{\lambda}{2\pi\varepsilon_0} Ln \frac{R}{r}$$

Slide #59 E_Lectures 8&9 Gauss law in Electrostatics

$$\vec{E} = -\vec{\nabla}V$$

$$\vec{E} = E_{x}\vec{\imath} + E_{y}\vec{\jmath}$$

$$E_z = 0$$

Electrostatic versus magnetostatics: Analogy

A straight wire

Magnetostatic

$$j_{\chi} = 0 \qquad \qquad \vec{A}_{\chi}(P) = 0$$

$$j_{y} = 0 \qquad \qquad \vec{A}_{y}(P) = 0$$

Electrostatic V

$$V = -\frac{\lambda}{2\pi\varepsilon_0} Lnr + LnR$$

By analogy

$$j_z = \frac{I}{\pi a^2}$$
 $\vec{A}_z(P) = -\frac{\mu_0 j_z \pi a^2}{2\pi} Lnr$

Constant to

be dropped

Knowing $A_x(P)$ $A_y(P)$ $A_z(P)$

$$\vec{B}(P) = \vec{\nabla} \times \vec{A}(P) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \vec{i} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) \vec{j} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \vec{k}$$

$$\vec{B}_x(P) \qquad \vec{B}_y(P) \qquad \vec{B}_z(P)$$

$$B_x = -\frac{\mu_0 I}{2\pi} \frac{y}{r^2}$$
 $B_y = +\frac{\mu_0 I}{2\pi} \frac{x}{r^2}$ $B_z = 0$

$$B = \sqrt{(\vec{B}_x)^2 + (\vec{B}_y)^2 + (\vec{B}_z)^2} = \frac{\mu_0 I}{2\pi r}$$

Of course more complicated than via simple Ampere's law!

Current loop: Magnetic dipole

Current loop: Magnetic dipole

 \boldsymbol{a}

Electrostatic equivalent

$$\vec{p} = -(\lambda ab)\vec{j}$$

$$V(P) = -\frac{1}{4\pi\varepsilon_0} \frac{\lambda ab}{r^2} \frac{y}{r}$$

$$\vec{p} = (\lambda ab)\vec{\imath}$$

$$V(P) = \frac{1}{4\pi\varepsilon_0} \frac{\lambda ab}{r^2} \left(\frac{x}{r}\right)$$

$$V(P) = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \vec{e}_r}{r^2}$$

There is a $cos(\theta)$ here

$$\vec{p} \cdot \vec{e}_r = \lambda a b \vec{j} \cdot \vec{e}_r$$

$$\vec{j} \cdot \vec{e}_r = cos(\theta)$$

$$\vec{p} / \vec{r}$$

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\pi - \theta$$

$$cos(\theta) = \frac{y}{r}$$

Current loop: From electrostatic to equivalent magnetostatic

$$V(P) = -\frac{\lambda ab}{4\pi\varepsilon_0} \frac{y}{r^3}$$

$$A_x(P) = -\frac{\mu_0 Iab}{4\pi} \frac{y}{r^3}$$

$$V(P) = \frac{\lambda ab}{4\pi\varepsilon_0} \frac{x}{r^3}$$

$$A_{\mathcal{Y}}(P) = \frac{\mu_0 Iab}{4\pi} \frac{x}{r^3}$$

$$A_z(P) = 0 \text{ as } j_z(x, y, z) = 0$$

Current loop: Magnetic dipole

$$A_z(P) = 0 \text{ as } j_y(x, y, z) = 0$$

$$A_{x}(P) = -\frac{\mu_0 Iab}{4\pi} \frac{y}{r^3}$$

$$A_{y}(P) = \frac{\mu_0 Iab}{4\pi} \frac{x}{r^3}$$

$$\mu = Iab$$
 \longrightarrow Vector $\vec{\mu}$ along the z-axis

$$\vec{\mu} = 0\vec{i} + 0\vec{j} + \mu \vec{k}$$

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

The vector potential has a real physical meaning

$$\overrightarrow{A}(P) = \frac{\mu_0}{4\pi} \frac{\overrightarrow{\mu} \times \overrightarrow{r}}{r^3}$$

Magnetic dipole

$$B_{\chi} = \left(\vec{\nabla} \times \vec{A}\right)_{\chi}$$

$$B_{x} = \frac{\mu_0 \mu}{4\pi} \frac{3xz}{r^5}$$

$B_y = \left(\vec{\nabla} \times \vec{A}\right)_y$

$$B_Z = \left(\vec{\nabla} \times \vec{A}\right)_Z$$

$$B_y = \frac{\mu_0 \mu}{4\pi} \frac{3yz}{r^5}$$

$$B_z = -\frac{\mu_0 \mu}{4\pi} \left(\frac{1}{r^3} - \frac{3z^2}{r^5} \right)$$

 $\vec{\mu} = I\vec{A}$ magnetic dipole moment

Electric dipole

$$E_x = \frac{p}{4\pi\varepsilon_0} \frac{3xz}{r^5}$$

$$E_y = \frac{p}{4\pi\varepsilon_0} \frac{3yz}{r^5}$$

$$E_z = -\frac{p}{4\pi\varepsilon_0} \left(\frac{1}{r^3} - \frac{3z^2}{r^5} \right)$$

 $\vec{p}=q\vec{d}$ electric dipole moment

Electrostatic

Magnetostatic

$$\vec{\nabla}.\vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

Starting with <u>completely different laws</u> and ending up with the <u>same kind of field</u>

Some important remarks

In the case of dipoles

Electric
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

Magnetic
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

Completely different laws

Lead to the same kind of fields

Why?

Because the dipole fields appear only when we are far from the charges and currents

Through most of the relevant space there are no charges nor currents

$$\vec{\nabla} \cdot \vec{E} = 0$$

$$\vec{\nabla} \times \vec{E} = 0$$

Both give the same solutions

$$\vec{\nabla}.\vec{B}=0$$

$$\vec{\nabla} \times \vec{B} = 0$$

 \vec{E} and \vec{B} identical

What do we observe far away?

Far away we see only dipole moments \uparrow or \uparrow

What is the advantage of the vector potential?

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

Integrals of \overrightarrow{B} are very complicated

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

Derivatives of \vec{A} much simpler Integrals of \vec{A} are those of electrostatics (known)

Static Maxwell's equations in vacuum

electrostatic

Magnetostatic

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \times \vec{E} = \vec{0}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

What is true only in a static world and what is true always?

<u>Electric</u> and <u>Magnetic</u> phenomena are no longer two distinct subjects in a **DYNAMIC** world: Maxwell

What is true and what is wrong in what we have learned so far?

Wrong in general (true only for static)

Coulomb's law
$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \vec{e}_r$$

$$\vec{\nabla}\times\vec{E}=\vec{0}$$

$$\vec{E} = -\vec{\nabla}V$$

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r})\vec{e}_r}{r^2} dV$$

For conductor, E = 0, V = constant. Q = CV

True always

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$
 Lorentz force

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
 Gauss' law

$$\vec{V} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{E} = -\vec{\nabla}V - \frac{\partial \vec{A}}{\partial t}$$

In conductor, E makes currents

What is true and what is wrong in what we have learned so far?

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$
 Ampere's law

Wrong in general (true only for static)
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} \qquad \text{Ampere's law} \qquad \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \qquad \text{Maxwell's law}$$

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}) \times \vec{e}_r}{r^2} dV \qquad \text{Biot & Savart's law} \qquad \vec{\nabla} \cdot \vec{B} = 0 \qquad \text{No magnetic charges}$$

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$
 Maxwell's law

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

What is true and what is wrong in what we have learned so far?

Wrong in general (true only for static)

$$abla^2 V = -rac{
ho}{arepsilon_0}$$
 Poisson's law

$$abla^2 \vec{A} = -\mu_0 \vec{J}$$
 With

$$\vec{\nabla} \cdot \vec{A} = \vec{0}$$

True always

$$\nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\varepsilon_0} \qquad \text{And} \qquad$$

$$\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = 0$$

End of static world