Reinforcement Learning Fundamentals

Lecture 7: Multi-armed Bandit

Dr Sandeep Manjanna Assistant Professor, Plaksha University sandeep.manjanna@plaksha.edu.in

In today's class...

- Performance metrics
 - Correctness
 - Convergence
 - Sample Efficiency
- Solution methods
 - SoftMax
 - Upper Confidence Bound

Multi-armed Bandit

- n-arm bandit problem is to learn to preferentially select a particular action (arm) from a set of n actions $(1, 2, 3, \ldots, n)$
- Each selection results in Rewards derived from the respective probability distribution
- Arm i has a reward distribution with mean μ_i and

$$\mu^* = \max\{\mu_i\}$$

- Asymptotic Correctness Identify the correct arm eventually
 - Gives a guarantee that eventually the algorithm will be selecting an arm that has the highest pay-off.
 - As T tends to infinity.

- Regret Optimality
 - "disappointed over (something that one has done or failed to do)" –
 definition of regret from Oxford Dictionary

- PAC Optimality (Probably Approximately Correct)
 - Approximately right in Bandit setup:
 - The arm suggested has expected payoff close to the expected payoff of the best arm.
 - Probably It is either approximately correct or not!
 - (ε, δ) PAC framework
 - Identification of an ε-optimal arm with probability
 - 1δ
 - $-\epsilon$ -Optimal: Mean of the selected arm satisfies $\mu > \mu^* - \varepsilon$

$$\{P(g_*(a) \geq (q_*(a_*) - \varepsilon))\} \geq (1 - \delta)$$

• Asymptotic Correctness \rightarrow measures **Correctness** of the solution

• Regret Optimality \rightarrow measures the rate of **Convergence** of the solution

 PAC Optimality (Probably Approximately Correct) → Sample efficiency: want to minimize the sample size. Not very much used for practically implementable algorithm.

Solution Approaches

Exploration methods:

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i = a}}$$

- **Epsilon Greedy:** Select an arm $A_t \doteq \operatorname*{argmax} Q_t(a)$ with probability (1- ε) and select any arbitrary arm with probability ε .
 - Some problems:

Even if we know that for a certain a_i , $Q_t(a_i) \ll Q_t(a_*)$, we still sample a_i with a fixed probability.

- Wasted trials
- Affects the regret / increased regret

Solution Approaches

Exploration methods:

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i = a}}$$

- **Epsilon Greedy:** Select an arm $A_t \doteq \underset{a}{\operatorname{argmax}} Q_t(a)$ with probability (1- ε) and select any arbitrary arm with probability ε .
- SoftMax:
 - Converts a set of values into probability distribution.
 - Select arms with probability proportional to the current value estimates.

$$\pi_t(a_i) = \frac{\exp(Q_t(a_i)/ au)}{\sum_j \exp(Q_t(a_j)/ au)}$$
 Temperature parameter au

Asymptotic convergence guarantees

Other Approaches

- Median Elimination (Even-Dar et at., 2006)
- Upper Confidence Bound (UCB by Auer et al., 1998)
- Thompson Sampling (Chappelle & Li, 2001)

Incremental Value-function

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i = a}}$$

For a given action,
$$Q_n \doteq \frac{R_1 + R_2 + \cdots + R_{n-1}}{n-1}$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_i$$

$$= \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right)$$

$$= \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$$

$$= \frac{1}{n} \left(R_n + (n-1)Q_n \right)$$

$$= \frac{1}{n} \left(R_n + nQ_n - Q_n \right)$$

 $= Q_n + \frac{1}{n} \left[R_n - Q_n \right],$

Simple ε-greedy,

```
Initialize, for a = 1 to k:
                                                                        Loop forever:
= \frac{1}{n} \left( R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)  Boop forever.

A \leftarrow \left\{ \underset{\text{a random action with probability } 1 - \varepsilon \text{ (breaking ties randomly)} \right.
                                                                         R \leftarrow bandit(A)
                                                               N(A) \leftarrow N(A) + 1
Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]
```

$$NewEstimate \leftarrow OldEstimate + StepSize \left[Target - OldEstimate \right]_{11}$$

Upper Confidence Bound Action Selection

- **SoftMax** will still allocate probability to a_2 and a_3 as the values are close to a_1 . Even after convergence of value function.
- The **confidence interval** is the range of values that you expect your estimate to fall between a certain percentage of the time if you run your experiment again or re-sample the population in the same way.
- The **confidence level** is the percentage of times you expect to reproduce an estimate between the upper and lower bounds of the confidence interval.
- **UCB suggests**: Be greedy with respect to the upper confidence bound.

Upper Confidence Bound Action Selection

(UCB by Auer et al., 1998)

This term is a measure of the **uncertainty** or **variance** in the estimate of a's value.

$$A_t \doteq \operatorname*{arg\,max}_a \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

- In t denotes the natural logarithm of t
- N_t(a) denotes the number of times that action a has been selected prior to time t
- The number c > 0 controls the degree of exploration