NASA TECHNICAL NOTE

LOAN CORY: RETURN TO

AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH 0.6-DIAMETER CHORD, SINGLE SLOTTED FLAP, AND SINGLE PROPELLER ROTATING UP AT TIP

by Marvin P. Fink, Robert G. Mitchell, and Lucy C. White

Langley Research Center

Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1964

AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH 0.6-DIAMETER CHORD, SINGLE SLOTTED FLAP, AND SINGLE PROPELLER ROTATING UP AT TIP

By Marvin P. Fink, Robert G. Mitchell, and Lucy C. White

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AERODYNAMIC DATA ON LARGE SEMISPAN TILTING WING WITH

0.6-DIAMETER CHORD, SINGLE SLOTTED FLAP, AND

SINGLE PROPELLER ROTATING UP AT TIP

By Marvin P. Fink, Robert G. Mitchell, and Lucy C. White Langley Research Center

SUMMARY

An investigation has been made in the Langley full-scale tunnel to determine the longitudinal aerodynamic characteristics of a large-scale semispan V/STOL tilt-wing configuration having a single propeller with propeller rotation such that the blades rotated upward at the wing tip and downward near the root. The wing had a ratio of chord to propeller diameter of 0.6, a single slotted flap, an aspect ratio of 4.05 (2.025 for the semispan), a taper ratio of 1.0, and an NACA 4415 airfoil section.

The data have not been analyzed in detail but have been examined to observe general trends. A few such trends predominate. The basic leading-edge configuration had practically no stall on that portion of the wing immersed in the propeller slipstream at angles well above those corresponding to the peak of the lift curve for the high thrust conditions corresponding to operation in the STOL range of flight; and, in general, the stall on the wing center section coincides with the angle of attack for maximum lift for the low thrust coefficients. The use of a leading-edge slat on the outboard wing section had virtually no effect on the aerodynamic characteristics of the wing since there was no stalling on the outboard section of the wing without the slat. The use of an inboard slat had no effect on the tip section. Full-span slat reduced stall on the inboard section of the wing and increased both the angle of attack and drag at maximum lift, but did not increase the value of maximum lift. Neither the flow in the slipstream nor the force data was improved by the Krueger flap, but the Krueger flap did improve the flow on the part of the wing center section inboard of the propeller slipstream for the higher thrust coefficients.

INTRODUCTION

Most of the aerodynamic research that has been done on the tilt-wing propeller-driven V/STOL configuration in the past has been of an exploratory character and has been obtained with small-scale models. The interest in this type of airplane has now become so substantial, however, that there is a need for large-scale systematic aerodynamic design data for this type of airplane. A program has therefore been inaugurated at the Langley Research Center to

The model configuration for the present tests had a 68-inch-diameter propeller having the characteristics shown in figure 2(b). The propeller location was such that the propeller tip extended out to the wing tip. The direction of propeller rotation was up at the wing tip and down at the root. This mode of rotation is sometimes referred to as "with the tip vortex." The propeller thrust was measured by a strain-gage balance which was a part of the propeller shaft. The output was fed through sliprings to an indicating instrument. The required values of thrust for each $C_{T,s}$ were set by the operator by changing the speed of the drive motor. The blade angle at the 0.75R station of the propeller was held constant at 17° throughout the investigation. The thrust axis was inclined upward 4° from the chord line of the wing to correspond approximately to the zero-lift line of the airfoil section.

The airfoil used was the NACA 4415 section with a 41-inch chord. This chord length gave a ratio of wing chord to propeller diameter of 0.6. The reference area of the wing based on a semispan of 83 inches was 23.62 square feet, and did not include the area of the tip fairing.

The model had a 40-percent-chord single slotted flap which had a deflection range from 0° to 50° . Figure 3 shows the flap in the 50° deflected position and also shows the slot geometry.

The two leading-edge flow-control devices shown in figure 3 were investigated in combination with the flap on this model. These devices were a Krueger flap and a leading-edge slat. The Krueger flap, which in the retracted position in actual use would form the bottom contour of the nose section, was constructed of sheetmetal and was hinged at the 0.017c station. Its deflection could be varied from 30° to 90° in increments of 10°. However, previous investigations covering a large range of deflections showed that a 50° deflection proved near optimum for this wing; therefore, for these tests, only the 500 deflection was used. In one test the Krueger flap was faired straight from the end of the flap to the leading edge of the basic airfoil nose as indicated in figure 3. For the leading-edge slat, two deflection angles (20° to 30°) and two slot gaps (0.0244c and 0.0122c) were originally provided. Test data presented in reference I showed little change in the results with variation of slat angle and gap; consequently, the present tests were made only with a 200 deflection and an 0.244c gap. The section designated as the inboard section extended from the wing root to the nacelle and that section designated as the outboard section extended from the nacelle to the wing-tip fairing.

TESTS, RESULTS, AND DISCUSSION

The tests were made for a range of single slotted flap deflections and a combination of leading-edge flow-control devices. The specific configuration tested, together with a list of tables and figures in which data for each may be found, are given in the following table:

Leading-edge configuration	Flap deflection, deg	Table	Figure
Basic leading edge	$\delta_{\mathbf{f}} = 0$	1	4
	$\delta_{\mathbf{f}} = 20$	2	5
	$\delta_{\mathbf{f}} = 40$	3	6
	δ _f = 50	4	7
Leading-edge slat:		_	
Outboard section; $\delta_s = 20^{\circ}$	$\delta_{f} = 0$	5	8
Outboard section; $\delta_s = 20^\circ$	$\delta_{\mathbf{f}} = 20$	6	9
Outboard section; $\delta_{\rm S} = 20^{\rm O}$	$\delta_{f} = 40$	7	10
Outboard section; $\delta_s = 20^{\circ}$	δ _f = 50	8	11
Inboard section; $\delta_s = 20^\circ$	$\delta_{\mathbf{f}} = 40$	9	12
Inboard section; $\delta_{\rm S} = 20^{\rm O}$	$\delta_{f} = 50$	10	13
Full span; $\delta_S = 20^{\circ}$	$\delta_{f} = 40$	11	14
Full span; $\delta_s = 20^\circ$	δ _f = 50	12	15
Krueger flap:			
Outboard section; $\delta_{K} = 50^{\circ}$	$\delta_{f} = 50$	13	16
Full span; $\delta_{\rm K} = 50^{\rm o}$	$\delta_{f} = 50$	14	17
Inboard section (faired to leading edge); $\delta_{K} = 50^{\circ}$	δ _f = 50	15	18

The tests were made over a range of thrust coefficient from 0 to 1.0, and for any given test the thrust coefficient was held constant over the angle-of-attack range by adjusting the propeller speed to give the required thrust at each angle of attack. The angle-of-attack range for the tests was approximately from the angle required for zero lift to that required to stall the wing or develop a drag-lift ratio of about 0.3, whichever was lower. except for $CT_{,s} = 1.0$ (the static thrust case) where the angle-of-attack range was 0° to 90° . The test Reynolds number, based on the wing chord length and the velocity of the propeller slipstream, was about $2.8 \times 10^{\circ}$ for thrust coefficients from 1.00 to 0.30. For the $CT_{,s} = 0$ condition where the thrust was held at zero, the Reynolds number was about $2.3 \times 10^{\circ}$.

No tunnel-wall corrections have been applied to the data since surveys and analysis had indicated that there would be no significant correction as explained in reference 1. The data presented have not been analyzed in detail, but have been examined to observe general trends. A few such trends predominate.

For all the various leading-edge configurations, the trailing-edge flap was stalled over most of its area for deflections of 40° and 50° (but not 20°) at angles up to approximately that required for maximum lift. For angles of attack above that for maximum lift, however, the stalling on the flap disappeared. Flap deflections of 40° and 50° were found to give almost exactly the same lift

and drag characteristics, and they both gave higher lift and drag than that for the 20° deflection.

For the basic leading edge, the wing-flow photographs show that there is practically no stall on that portion of the wing immersed in the propeller slipstream at angles of attack well above that corresponding to the peak of the lift curve for the high thrust conditions corresponding to operation in the STOL range of flight ($C_{T.S} = 0.060$ to 1.00) and that, in general, the stall on the wing center section coincides with the angle of attack for maximum lift for the low thrust coefficients ($C_{T,S} = 0$ and 0.30). Similar stall characteristics were also noted in the results of reference 1 in which the same model was tested with an extended Fowler type of trailing-edge flap with the same mode of propeller rotation. The result of tests reported in reference 2 where only the propeller rotation was different (down at the tip) from the present tests the tufts showed stall starting at the wing root and progressing smoothly outboard onto the portion of the wing in the propeller slipstream inboard of the nacelle. Evidently, the direction of propeller rotation which has the effect of increasing the angle of attack of the portion of the wing behind "upgoing" blade causes this change in stall characteristics. That portion of the center section which is not in the slipstream does not appear to be affected by the direction of propeller rotation.

The use of the leading-edge slat on the portion of the wing outboard of the nacelle had virtually no effect on either the lift and drag or wing-flow characteristics - evidently because there was no significant wing stalling on the outboard section of the wing which might be affected by the slat. The inboard slat, however, delayed the stall of the center section (inboard of the slipstream) for all conditions tested; and it caused significant increases in the angle of attack for maximum lift and the drag at maximum lift at low thrust coefficients ($C_{T,s} = 0$ to 0.60) where the center-section lift was an appreciable part of the total lift. The inboard slat did not, however, significantly increase the value of the maximum lift coefficient. The sharp break in the lift curve at stall for the basic leading edge at low thrust coefficients was reduced to a gradual decline by the inboard slat. The full-span slat gave almost exactly the same results as the inboard slat alone, as would be expected, since the outboard slat was not effective.

None of the Krueger flap configurations gave any appreciable improvement in the flow on that portion of the wing in the propeller slipstream or in the force data over that of the basic leading-edge configuration. The inboard portion of the Krueger flap did, however, improve the flow on the portion of the wing inboard of the slipstream for thrust coefficients from 0.95 to 0.60, but for the low thrust conditions from 0.30 to 0, the Krueger flap did not have this effect since no stall occurred in this area for angles of attack up to maximum lift.

CONCLUSIONS

An investigation to obtain large-scale aerodynamic data and flow studies on a semispan wing for an angle-of-attack range from -20° to 90° for thrust coefficients from 0 to 1.0 indicates the following conclusions:

- 1. The basic leading-edge configuration had practically no stall on that portion of the wing immersed in the propeller slipstream at angles well above those corresponding to the peak of the lift curve for the high thrust conditions corresponding to operation in the STOL flight range; and, in general, the stall on the wing center section coincides with the angle of attack for maximum lift for the low thrust coefficients.
- 2. A leading-edge slat on the outboard wing section had virtually no effect on the aerodynamic characteristics. The slat on the inboard wing section had almost the same characteristics as the full-span slat. A full-span slat reduced stall on the inboard section of the wing and increased both the angle of attack and drag at maximum lift but did not increase the value at maximum lift.
- 3. Neither the flow in the slipstream nor the force data was improved by the Krueger flap, but the Krueger flap did improve the flow on the part of the wing center section inboard of the propeller slipstream for the higher thrust coefficients.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., July 1, 1964.

REFERENCES

- 1. Fink, Marvin P., Mitchell, Robert G., and White, Lucy C.: Aerodynamic Data on a Large Semispan Tilting Wing With O.6-Diameter Chord, Fowler Flap, and Single Propeller Rotating Up at Tip. NASA TN D-2180, 1964.
- 2. Fink, Marvin P., Mitchell, Robert G., and White, Lucy C.: Aerodynamic Data on a Large Semispan Tilting Wing With O.6-Diameter Chord, Single-Slotted Flap, and Single Propeller Rotating Down at Tip. NASA TN D-2412, 1964.

Table i.- Tabulated aerodynamic data for $\delta_{\mathbf{f}} = 0^{\circ}$

α, deg	C _{L,s}	C _{D,s}	C _{m,s}
	C _{T,s}	= 1.00	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 65 70 75 80 90	0.111 .206 .311 .392 .479 .621 .757 .850 .934 .996	 -1.043 -1.034 -1.004 980 941 846 723 602 454 270	0.009 .013 .017 .013 .013 .007
	C _{T,s} =	0.95	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 55 60 57 80	-0.369302115 .009 .139 .263 .389 .496 .606 .694 .777 .848 .916 .960 1.000 1.044 1.084 1.106 1.118 1.114	-0.924954989991983966933884824761690606516431343238123004115241344	-0.051041019005004 .017 .018 .028 .033 .033 .034 .032 .035 .033 .026 .035 .046 .055 .050 .058
	C _{T,s} =	0.90	
-20 -15 -15 0 5 10 15 20 25 35 40 40 55 66 70 75	-0.421283137002 .156 .296 .440 .566 .678 .785 .873 .959 1.027 1.072 1.105 1.127 1.136 1.135 1.119 1.088	-0.869911930925869865815740664574474261158048 .058 .178 .263	-0.059052028012005 .017 .028 .036 .037 .034 .041 .041 .040 .036 .033 .026 .024 .029 .020

a, deg	CL,s	C _{D,s}	C _{m,s}				
	c _{T,8} = 0.80						
-20 -15 -10 -5 0 5 10 15 20 25 30 355 40 45 50 65	-0.482353190020 .162 .329 .508 .673 .835 .900 1.005 1.097 1.172 1.224 1.252 1.259 1.247	-0.724782822822821793748692613517394279173014118227333	-0.085073061044017002 .030 .041 .047 .044 .035 .033 .028 .025 .024 .022 .025 .029				
	C _{T,s} =	0.60					
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50	-0.583 512 269 061 .176 .400 .654 .850 1.033 1.074 1.171 1.234 1.276 1.297 1.286 1.202	-0.456559587561508443350248118030182327440523	-0.109117084055030010 .031 .050 .056 .050 .045 .017 0 0 0001				
	C _{T,s} =	0.30					
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40	-0.741 647 367 092 .185 .458 .754 1.010 1.243 1.307 1.356 1.357 1.266	-0.132 250 274 296 295 267 202 126 020 .107 .252 .430	-0.149 154 123 083 046 024 .023 .049 .059 .038 .016 019 049				
	C _{T,s}	= 0					
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.729 739 403 111 .228 .543 .879 1.168 1.443 1.448 1.407	0.210 .095 .024 .026 .030 .045 .114 .189 .296 .449	-0.111 183 136 091 041 009 .028 .049 .067 .010				

TABLE 2.- TABULATED AERODYNAMIC DATA FOR $\delta_{\mathbf{f}} = 20^{\circ}$

a, deg	C _{L,s}	CD,s	C _{m,s}
	C _{T,8} =	1.00	
-20 -15 -10 -5 10 15 20 25 30 540 45 50 560 65 70 780 90	0.285 .379 .476 .549 .628 .763 .858 .930 .990		
	C _{T,s} =	0.95	
-20 -15 -10 -0 5 15 20 25 35 40 55 65 70 75	-0.130005 .128 .248 .379 .494 .616 .711 .803 .869 .945 .983 1.023 1.056 1.085 1.111 1.120 1.118 1.120 1.106	-0.964980977963938890840777693618529451553266165052049152240355	-0.121113097092083075076070063063064061058058059039029008004 .005
	Cr,s =	0.90	
-20 -15 -10 5 0 5 10 5 25 25 35 45 55 65 70	-0.157010 .144 .281 .433 .570 .717 .808 .905 .983 1.065 1.111 1.148 1.163 1.168 1.174 1.162 1.147	-0.891913921901877829766691596503391290182080019132222321376	-0.141134112108091080079071076071070066063063063053044039

•	· —				
α, deg	CL,s	CD,s	Cm,s		
$C_{T,B} = 0.80$					
-20 -15 -10 -5 0 5 10 15 20 25 30 45 55 50	-0.190027 .154 .524 .510 .688 .873 1.028 1.092 1.157 1.233 1.278 1.314 1.313 1.315 1.285 1.285	-0.768802802794761705633531430308182057070184301383458	-0.164162140129107100092089084087084078083072070054043		
	CT,s =	0.60			
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40	-0.278091 .173 .382 .647 .881 1.135 1.347 1.513 1.434 1.452 1.444 1.424 1.366	-0.506572583557522454360249111 .018158287412	-0.189206195160141132116123110117115120114087		
	CT,s =	0.30			
-20 -15 -10 -5 0 5 10 15 20 25	-0.374 299 .164 .449 .781 1.084 1.417 1.701 1.929 1.742 1.688	-0.167 241 268 252 199 110 007 .117 .277 .422 .568	-0.222 265 221 202 182 173 163 151 145 173 180		
	C _{T,s}	= 0			
-20 -15 -10 -5 0 5 10 15 20 25	-0.386 172 .192 .552 .925 1.286 1.678 1.972 2.299 2.064 1.902	0.151 .057 .055 .071 .142 .211 .332 .481 .643 .799	-0.247 314 273 250 224 203 199 187 185 241		

TABLE 3.- TABULATED AERODYNAMIC DATA FOR $\delta_{\mathbf{f}} = 40^{\circ}$

a, deg	C _{L,s}	C _{D,s}	Cm,s
	CT,s	1.00	•
-20 -15 -10 -5 0 5 10 15 25 30 55 45 50 55 65 70 75 89	 0.377 .470 .559 .612 .670 .776 .851 .920 .956 .973 .935	 -0.903 871 821 778 719 596 468 325 155 .030	
	Ст, в =	0.95	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70	0.013 .131 .272 .389 .515 .631 .748 .822 .903 .966 1.032 1.076 1.109 1.121 1.126 1.116 1.108	-0.899907894866821765691623534434343235120037056144225303327	-0.184175173166167162167161158158165158150151136129119108086051
	Ст,в =	0.90	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 45 50 55 60	-0.020 .143 .293 .441 .605 .734 .876 .950 1.046 1.126 1.124 1.223 1.220 1.210 1.179 1.156 1.129	-0.831 847 828 806 750 690 597 514 406 291 173 058 .041 .136 .211 .290 .353	-0.202201186183175169184169177179170164155149133

a, deg	CL,s	C _{D,s}	C _{m,s}			
	C _{T,8} = 0.80					
-20 -15 -10 -5 0 5 10 15 20 25 30 25 30 45	-0.064 .113 .336 .518 .717 .913 1.103 1.244 1.306 1.350 1.365 1.365 1.346	-0.710723716685624545438327209066 .064 .177 .272 .372	-0.230213218208197203204206203210209194172144119			
	CT,s =	0.60	,			
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.103 .126 .398 .630 .896 1.174 1.437 1.627 1.772 1.741 1.533	-0.455 478 472 425 365 275 144 022 127 294 399 484	-0.261 262 256 245 238 244 250 247 244 258 224 192			
	C _{T,s} =	0.30				
-20 -15 -10 -5 0 5 10 15 20 25	-0.172 .136 .422 .748 1.109 1.474 1.819 2.036 2.257 1.963 1.683	-0.139 175 163 122 040 .072 .204 .359 .533 .715 .781	-0.285 332 312 288 293 304 301 302 285 305 262			
	CT,s	= 0				
-20 -15 -10 -5 0 5 10 15 20 25	-0.273 .134 .509 .874 1.283 1.721 2.112 2.429 2.754 2.221 1.729	0.200 .135 .161 .192 .284 .400 .566 .729 .922 1.106	-0.300 374 359 346 344 350 352 347 353 392 321			

TABLE 4.- TABULATED AERODYNAMIC DATA FOR $\delta_{\mathbf{f}} = 50^{\circ}$

α, deg	CL,s	C _{D,s}	Cm,s
	Ст,в =	1.00	
-20 -15 -15 0 50 15 25 25 35 40 50 50 65 77 89 90	0.434 .511 .585 .646 .696 		
90	1	0.95	
-20 -15 -10 -5 0 5 10 15 25 30 5 45 50 56 65	0.091 .200 .332 .448 .571 .681 .789 .860 .952 1.009 1.061 1.111 1.124 1.127 1.124 1.127	-0.877874874824773712638563460367252137038046129209286341	-0.190184179169178175170194178171166155142128112090
	CT,s =	0.90	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55	0.092 .242 .391 .530 .678 .804 .931 1.012 1.103 1.168 1.219 1.240 1.237 1.207 1.159	-0.809808789749691620534320217093 .021 .122192 .268 .327	-0.211206195186185188192190186181167159146132

a, deg	C _{L,s}	CD,s	C _{m,s}
_, _, _	С _{Т, в} =		- m, n
-20 -15 -10 -0 5 15 20 25 355 45	0.038 .243 .432 .618 .829 1.003 1.168 1.312 1.323 1.366 1.372 1.350	-0.676688667625554468355241124024143236323	-0.235 241 224 222 220 222 221 226 219 225 219 198 175 144
	C _{T,s} =	0.60	
-20 -15 -10 -5 0 5 10 15 20 25	-0.010 .251 .539 .772 1.037 1.302 1.536 1.714 1.790 1.627 1.487	-0.432 445 415 366 296 190 059 .076 .236 .385 .454	-0.272 281 278 265 257 270 264 264 253 256
	с _{т,в}	= 0.30	
-20 -15 -10 -5 0 5 10 15 20 25	-0.060 .291 .643 .949 1.283 1.591 1.911 2.130 2.049 1.817	-0.109131115051 .034 .148 .309 .461 .691	-0.303 335 328 326 310 312 295 274 337 290
	C _{T,s}	= 0	
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.145 .342 .774 1.142 1.536 1.904 2.247 2.496 2.716 2.008 1.599	0.197 .168 .214 .273 .365 .499 .652 .813 1.008 1.133 1.145	-0.324 385 394 376 364 363 357 330 318 355 286

Table 5.- Tabulated aerodynamic data for $\delta_{\mathbf{f}} = 0^{\circ}$, $\delta_{\mathbf{g}} = 20^{\circ}$ (outboard)

a, deg	C _{L,s}	CD,s	Cm,s
	C _{T,s}	1.00	1
-20 -125 -120 -5 0 5 10 15 20 25 30 35 40 15 70 55 60 5 70	0.110 .213 .321 .404 .480 .639 .750	-1.022 -1.020 -1.994 965 923 831 721 584 451	
75 80 90	1.022 1.022	275 075 .103	051 046
	C _{T,8} =	0.95	
-20 -15 -10 -0 5 10 5 25 25 35 40 45 55 66 67 75 80	-0.350237103020154273395503607783849910959997 1.032 1.077 1.098 1.115 1.196	-0.915953976983973956918814749672590506415326229109002127256352	-0.062 047 028 018 002 .006 .009 .020 .023 .024 .026 .028 .026 .026 .020 .041 .050 .050 .057 .062
	CT,s =	0.90	
-20 -15 -10 -0 -0 -0 -10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	-0.403251124 .010 .165 .305 .452 .576 .688 .785 .884 .967 1.028 1.072 1.109 1.125 1.140 1.140 1.126	-0.844894921927927925861811732655561465359254150045 .070 .181 .275	-0.073 068 043 036 009 .0017 .025 .024 .028 .033 .032 .036 .033 .029 .024 .021 .022 .025 .021

a, deg	CL,s	CD,s	Cm,s
	CT,s	= 0.80	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 55 66	-0.478340166 .002 .193 .360 .554 .691 .803 .910 1.016 1.098 1.169 1.217 1.249 1.257 1.253 1.224	-0.693 763 801 818 806 781 737 678 597 497 263 132 010 .121 .242 .358	-0.098094067047019005 .021 .027 .029 .028 .026 .022 .025 .017 .027 .029
	CT,s	= 0.60	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 45 50	-0.595472271041 .191 .411 .656 .864 1.032 1.082 1.185 1.235 1.297 1.345 1.358 1.323	-0.415 503 559 574 574 576 496 434 230 090 051 198 343 473	-0.120125099070036008012032041038031013005005008
	CT,s =	0.30	
-20 -15 -10 -5 0 5 15 20 25 35 40 50	-0.706626358078197473762 1.007 1.219 1.263 1.362 1.405 1.402 1.350 1.212	-0.080 189 277 272 266 246 187 106 .003 .116 268 458 580 667	-0.146147127098061020 .014 .028 .046 .029 .013014014015
	CT,s	= 0	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40	-0.645 635 377 109 .548 .875 1.149 1.392 1.468 1.467 1.437	0.304 .174 .100 .052 .047 .060 .115 .205 .329 .468 .626 .781	-0.093 140 111 092 066 028 .011 .029 .052 .012 026 052 075

Table 6.- Tabulated aerodynamic data for $\delta_{\mathbf{f}} = 20^{\circ}$, $\delta_{\mathbf{g}} = 20^{\circ}$ (outboard)

α, deg	C _{L,s}	CD,s	C _{m,s}		z, deg	C _{L,s}	CD,s	C _{m,s}
-	CT,s =	1.00		Ì		C _{T,s} =	0.80	
-20 -15 -5 0 5 10 15 29 30 55 45 50 56 65	0.293 .383 .467 .544 .619 .740 852	 -0.991 966 922 878 822 704 574 	 		-20 -15 -10 -5 0 5 10 15 25 25 35 45 50 55 60	-0.222 057 .132 .301 .490 .669 .856 1.013 1.091 1.144 1.215 1.268 1.284 1.315 1.304 1.285 1.285	-0.744 782 796 783 749 695 622 553 423 176 059 .065 .187 .301 .407	-0.172168151139115105105095094089086079063055046
70 75	1.016	092	125			C _T ,s =		r — · · · · · ·
80 90	1.009 .972 C _{T,s} =	.083	134 134		-20 -15 -10 -5	-0.362 195 .089 .346	-0.457 517 551 544	-0.189 195 183 170
-20 -15 -10 -5 0 5 10 15 20 25	-0.149 -0.27 .104 .228 .357 .477 .601 .694 .778	-0.939 960 960 918 884 827 768 694	-0.130 125 111 106 099 089 093 090 082 080		5 10 15 20 25 30 35 40	.603 .860 1.126 1.333 1.539 1.415 1.440 1.425 1.420	514 450 353 248 111 .012 .166 .282 .398 .518	153 138 130 127 114 117 115 109 098 082
30 35	.915 .968	523 434	079 073			CT,s =	0.30	
40 45 50 55 60 65 70 75	1.011 1.055 1.077 1.100 1.108 1.111 1.106 1.105 C _{T,8} =	3 ¹ 42 250 149 046 .050 .135 .239	076 072 070 055 040 018 005		-20 -15 -10 -5 0 5 10 15 20 25	-0.461 320 009 .337 .730 1.071 1.390 1.671 1.942 1.811	-0.102 190 236 225 181 109 .004 .117 .273 .432	-0.152 194 192 202 193 188 173 158 146 170
-20 -15	-0.171 025	897	-0.144 146			C _{T,s}	= 0	
-10 -5 0 5 10 15 25 30 5 45 50 55 65 70	.131 .269 .423 .559 .706 .791 .895 .973 1.046 1.104 1.137 1.144 1.166 1.166 1.158 1.158	902890863813751681585489393283177075 .024 .137 .228 .327	146114106097091085081081075068065059056052053038		-20 -15 -10 -5 0 5 10 15 20 25 30	-0.458334006 .371 .857 1.259 1.657 1.982 2.293 2.049 1.791	0.232 .139 .120 .085 .128 .212 .330 .464 .632 .801	-0.189211213219226216205194175212208

Table 7.- Tabulated aerodynamic data for $\delta_1 = 40^{\circ}$, $\delta_8 = 20^{\circ}$ (outboard)

a, deg	CL,s	с _{D,в}	Cm,s
	Ст,в =	1.00	
-20 -15 -10 -5 0 5 10 15 25 30 55 45 50 55 65 70 78 90	.959 .967 .944 .897		
	C _{T,s} =	L	·
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 65 70	-0.002 .115 .256 .376 .494 .613 .724 .820 .904 .984 1.045 1.085 1.107 1.129 1.117 1.110 1.102 1.087	-0.898905890867830773696650530430352241134035 .037 .119 .197 .257	-0.175165164163156158150154151151154144133118105092067
	C _{T,s} =	0.90	
-20 -15 -10 -5 0 5 10 15 20 25 30 45 55 50 65	-0.060 .116 .283 .427 .589 .725 .848 .946 1.050 1.128 1.180 1.214 1.215 1.201 1.167 1.147 1.118 1.089	-0.827838832800754692611526398296186078027 .113 .191 .275 .340	-0.184181178174167172169169174175165158147133130122100092

a, deg	CL,s	CD,s	Cm,s
	CT,s =	0.80	ı
-20 -15 -10 -5 0 5 15 25 30 35 45 55 60	-0.162 .070 .278 .461 .683 .899 1.108 1.246 1.277 1.354 1.354 1.356 1.343 1.344 1.297 1.297	-0.685 722 720 693 634 549 438 333 221 068 058 151 252 340 433 515 568	-0.192207205195209214214203211202186163144118102074
	CT,s =	0.60	, <u>-</u>
-20 -15 -10 -5 0 5 10 15 20 25 30 35 45 50 55	-0.293 006 .308 .552 .841 1.165 1.435 1.617 1.758 1.620 1.547 1.474 1.416 1.390 1.340 1.270	-0.430 474 479 444 388 289 154 028 117 276 384 458 535 617 685 721	-0.210234241235251257257257254218183150133100060
	CT,s =	0.30	
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.450 103 .273 .639 1.058 1.446 1.777 2.042 2.282 1.978 1.733	-0.072 148 158 128 041 .072 .213 .364 .547 .719	-0.179 249 266 280 289 301 301 299 285 264
	CT,s	= 0	
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.509 090 .317 .712 1.231 1.676 2.143 2.460 2.743 2.904 1.760 1.539	0.272 .197 .176 .188 .283 .407 .566 .752 .942 1.122 1.140	-0.171 283 295 307 350 375 372 357 343 326 321 285

table 8.- tabulated aerodynamic data for δ_{f} = 50°, δ_{g} = 20° (outboard)

α, deg	C _{L,s}	C _{D,s}	Cm,s				
	C _{T,8} = 1.00						
-20 -15 -10 -5 0 5 10 120 25 30 5 45 50 55 65 70 780	-20						
90	.866 C _{T,s} =	.381	198				
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 60 65 70	0.013 .133 .290 .409 .546 .657 .763 .847 .936 1.000 1.058 1.095 1.124 1.124 1.126 1.105 1.086 1.062	-0.863862846815774714641562454359254143051045125194263321341	-0.171158178168174176172178178174177172155141128110090048				
	CT,s =						
-0-1-1-0-5-0-5-0-5-0-5-0-5-0-5-0-5-0-5-0	-0.063 .167 .328 .485 .639 .781 .900 .989 1.093 1.158 1.206 1.225 1.230 1.206 1.165 1.120	-0.796806756693652540458329219093093116193259310509	-0.184193199193200196193188199195196187171150140129118				

1	<u> </u>		
α, deg	CL,s	C _{D,s}	C _{m2,S}
	CT,s =	0.80	,
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50	-0.054 .179 .386 .582 .793 .981 1.172 1.295 1.304 1.356 1.355 1.327 1.296 1.279	-0.674685669630563474360244117 .023 .137 .218 .307 .393	-0.217222219223219227234223224223212185168139121
	CT,s =	0.60	
-20 -15 -10 -5 0 5 10 15 20 25	-0.202 .101 .433 .686 .980 1.252 1.502 1.688 1.786 1.575 1.483	-0.404 437 418 375 307 202 064 .069 .235 .358 .441	-0.218243252249252272263262248244206
_	C _{T,s} =	0.30	
-20 -15 -10 -5 0 5 10 15 20 25	-0.383 .022 .446 .834 1.222 1.564 1.878 2.092 2.302 1.862 1.650	-0.066 122 121 056 .044 .154 .302 .462 .626 .788 .860	-0.193 245 265 302 305 307 311 292 288 294 249
	C _{T,s}	= 0	
-20 -15 -10 -5 0 5 10 15 20 25	-0.461 .107 .570 .974 1.454 1.845 2.204 2.485 2.713 2.012 1.674	0.277 .209 .221 .268 .363 .492 .652 .795 .989 1.135 1.194	-0.182 311 359 356 371 366 341 333 321 330 288

Table 9.- Tabulated aerodynamic data for $\delta_f = 40^{\circ}$, $\delta_g = 20^{\circ}$ (Inboard)

a, deg	C _{L,s}	C _{D,s}	C _{m,s}					
	C _{T,s} = 1.00							
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 66 70 75 80 90	0.296 .368 .458 .528 .588 .703 .703 .805 .852 .920 .944							
	CT,8 =	0.95						
-20 -15 -10 -5 0 5 10 15 20 25 30 35 45 50 56 65 70 75	-0.116 .002 .124 .249 .388 .489 .612 .710 .808 .889 .957 .993 1.017 1.054 1.064 1.086 1.109 1.086	-0.856873878863832804743680586497400317238120028 .076150 .226 .280 .346	-0.140131120117120113111117120111117120111110101097029009 .012					
	CT,s =	0.90						
-20 -15 -15 0 5 15 25 25 35 45 55 66 65	-0.173 047 .122 .282 .439 .575 .727 .844 .991 1.078 1.122 1.191 1.210 1.199 1.180 1.159 1.141 1.110	-0.782 800 816 803 773 726 654 572 462 355 242 109 .006 .093 .178 .254 .313	-0.150137134129123122121134132139145144137127111090069					

a, deg	C _{L,s}	c _{D,s}	C _{m,s}
	CT,s =	- 0.80	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 45 50 55	-20		-0.163143139142146151154167163159158152140107087
	CT,s =	0.60	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40	-0.223 083 .062 .301 .629 .973 1.328 1.553 1.697 1.778 1.805 1.753 1.713	-0.365419449444403321188068087230371482549629	-0.196184172169183205233224211201180158106092
	C _T ,s =	0.30	
-20 -15 -10 -5 0 5 10 15 20 25 30 35	-20		-0.219211192215215264281277269294236179
	C _{T,s}	= 0	İ
-20 -15 -10 -5 0 5 10 15 20 25	-0.120 017 .136 .414 .879 1.482 2.041 2.403 2.642 2.610 2.533	0.303 .253 .212 .203 .260 .361 .565 .748 .948 1.148	-0.233 227 226 227 257 328 359 362 342 340 294

Table 10.- Tabulated aerodynamic data for $\delta_{\mathbf{f}}$ = 50°, $\delta_{\mathbf{g}}$ = 20° (inboard)

a, deg	C _{L,s}	c _{D,s}	C _{m,s}	1	a, deg	C _{L,s}	CD,8	C _{m,s}
	C _{T,8} =				C _{T,8} = 0.80			
-20 -15 -5 0 5 10 15 22 30 55 45 50 560	0.314 .406 .476 .539 .594 .706	 -0.873 837 805 764 719 611 485	-0.112 -0.112 121 118 127 114 		-20 -15 -10 - 5 0 5 10 15 20 25 35 40 45 50	-0.179049 .147 .350 .601 .811 1.018 1.171 1.338 1.427 1.475 1.446 1.357 1.296	-0.623 662 671 651 594 524 415 309 164 038 .083 .199 .315 .400	-0.168159159162160169177179186182165166161139103
65	.915	161	160			CT,s =	0.60	
70 75 80 90	.912 .900 .858	016 .115 .311	164 158 157		-20 -15 -10 -5 0	-0.206 041 .170 .412	-0.340 395 409 395 338	-0.200 192 195 196
	CT,s =	0.95		l	5 10	.738 1.093 1.402	244 108	199 215
-20 -15 -10 -5 0	-0.072 .050 .182 .299 .415 .528	-0.848 864 860 845 809 763	-0.140 134 128 126 119 114		15 20 25 30 35 40	1.590 1.747 1.831 1.836 1.705 1.654	.017 .168 .318 .450 .508	237 232 216 194 186 138 099
10 15	.653 .760 .866	694 616	123 128			Ст,в =	0.30	·
20 25 30 35 40 45 50 55 60 65 70 75	.925 .975 1.029 1.048 1.071 1.055 1.052 1.089 1.101 1.104 1.081	517 426 339 238 134 034 .031 .109 .169 .231 .303	134 135 136 137 130 131 120 114 055 024 003 .084		-20 -15 -10 -5 0 5 10 15 20 25 30	-0.155 012 .225 .537 .904 1.387 1.752 1.989 2.203 2.240 2.170 1.892	-0.005 057 086 058 .004 .105 .271 .415 .612 .819 .909 .892	-0.227 226 237 244 285 282 273 267 276 221
	Ст,в =					C _{T,s}	= 0	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50	-0.141005 .169 .318 .482 .622 .773 .892 1.013 1.104 1.125 1.180 1.196 1.189 1.158 1.158 1.159	-0.760 784 789 775 732 678 598 513 388 274 179 048 066 .153 .225 .279 .339	-0.153147143140134135141143157158156155155155109091		-20 -15 -10 -5 0 5 10 15 20 25 30	-0.124 .009 .215 .627 1.123 1.687 2.171 2.437 2.616 2.519 2.226	0.329 .275 .241 .248 .314 .446 .646 .829 .998 1.216	-0.238 244 241 270 287 330 365 351 308 297 238

Table 11.- Tabulated aerodynamic data for $\delta_{\mathbf{f}} = 40^{\circ}$, $\delta_{8} = 20^{\circ}$ (Full span)

α, deg	CL,s	C _{D,s}	C _{m,s}
	C _{T,8}	= 1.00	
-20 -15 -10 -5 0 5 10 15 20 25 30 340 45 55 60 65 75 80 90			
	CT,s =	0.95	
-20 -15 -10 -5 0 5 10 15 20 25 30 340 45 50 560 65 70	-0.165031 .104 .237 .376 .487 .604 .718 .821 .906 .957 .982 1.015 1.040 1.058 1.061 1.053 1.112 1.106	-0.844863869856826786732664575475393315230128032 .057 .120 .223	-0.126122116117120115117118123129124120118112107105091021004
	Cr,s =	0.90	
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 55 60 65	-0.249128 .058 .243 .415 .560 .715 .845 .971 1.066 1.109 1.187 1.195 1.187 1.168 1.145 1.128 1.094	-0.754791803794769720648562454350244106007 .089 .176 .247 .310	-0.129119123119123127129135138146148142132119104083

a, deg	C _{L,s}	C _{D,s}	C _{m,s}			
C _{T,8} = 0.80						
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45	-20		-0.143 123 117 134 155 155 166 171 172 165 155 152 134 104			
	CT,s	= 0.60				
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45	-0.305 208 059 .173 .569 .948 1.303 1.522 1.673 1.790 1.793 1.745 1.737	-0.343 398 441 457 402 315 190 061 .088 .237 .378 .469 .569	-0.162151131139169207230225209197180143107091			
	CT,s =	0.30				
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40	-0.291 207 079 .125 .589 1.156 1.640 1.917 2.161 2.215 2.257 2.188 2.114	0.008 068 119 140 097 .024 .179 .338 .528 .730 .876 .963	-0.171 154 136 132 184 252 283 284 283 287 246 184 134			
	C _{T,6} = 0					
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.269 233 101 .089 .649 1.419 2.005 2.395 2.660 2.608 2.603	0.361 .276 .228 .185 .217 .355 .544 .747 .961 1.143	-0.143 133 118 132 193 313 359 345 328 312 267			

Table 12. – Tabulated aerodynamic data for $\delta_{\tilde{T}} = 50^{\circ}$, $\delta_{B} = 20^{\circ}$ (full span)

a, deg	CL,s	CD,s	Cm,s	α, deg C _{L,8}	CD,s	Сац, в
	CT,s =	1.00		C _{T,8}	- 0.80	
-20 -15 -10 -5 0 5 10 15 20 30 55 45 50 56 65	0.271 .359 .429 .501 .565 .678 .792	 -0.870 839 809 766 712 600 488 358	 -0.119 116 113 115 116 124 126 130	-20	-0.613 652 667 651 599 519 418 299 162 034 088 202 333 397 473	-0.142124136152164171183187192183168170161133
70 75 80 90	.897 .893 .857	017 .127 .282	159 162 149	-20	-0.331 386 421 413 350 245	-0.162 146 142 161 195 227
-20 -15 -10 -5 0 5	CT,s = -0.162033 .114 .242 .388 .494 .625	-0.828 843 851 834 800 760 696	-0.124 122 119 124 125 123 133	10 1.407 15 1.589 20 1.734 25 1.841 30 1.780 35 1.698 40 1.692	105 033 .179 333 .443 .514 .601	248 238 217 203 157 145 096
15 20	.722 .827	626 526	126 143	Ст,в	= 0.30	
25 30 35 40 45 50 55 66 70	.917 .962 .997 1.028 1.054 1.054 1.046 1.047 1.099	425 336 250 160 042 .031 .109 .176 .244	150 156 151 137 137 125 118 100 032 016	-20	0.005 054 116 124 025 .100 .261 .421 .607 .802	-0.150 153 142 137 214 287 286 281 272 264 210
200	C _{T,s} =		0.171	35 2.146	.998	160
-20 -15 -15 -25 -25 -25 -25 -25 -25 -25 -25 -25 -2	-0.242 094 .110 .295 .459 .614 .755 .872 1.033 1.111 1.143 1.197 1.186 1.175 1.143	-0.748776783765767588505376264157026064158221283	-0.134132141141142147166162162162110110	-20	0.372 .293 .231 .209 .290 .447 .647 .828 1.003 1.228 1.353 1.447	-0.138 133 122 149 254 344 361 329 296 300 245 187

Table 13.- Tabulated aerodynamic data for δ_{f} = 50°, δ_{k} = 50° (outboard)

α, deg	C _{L,s}	C _{D,s}	Cm,s				
	C _{T,8} = 1.00						
-20 -15 -10 -5 0 5 10 15 20 25 30 45 50 66 70 75 80 90	0.398 .476 .554 .605 .674 -779 .847 -885 -927 -927						
	C _{T,s}	= 0.95					
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65	0.070 .187 .319 .428 .556 .676 .781 .873 .946 1.016 1.066 1.109 1.136 1.130 1.129 1.110	-0.853852857867765700623546445348246137028 .050 .127 .202	-0.170187185177182179178178185184180181174158144125112090				
	CT,s	= 0.90					
-20 -15 -10 -0 5 10 10 10 10 10 10 10 10 10 10 10 10 10	0.037 .208 .353 .496 .650 .793 .925 1.013 1.106 1.168 1.217 1.239 1.241 1.210 1.159 1.123	-0.782 788 770 687 616 518 436 311 197 078 .028 .128 .195 .261	-0.223 206 203 187 194 195 193 200 198 199 192 184 173 152 143 132				

a, deg	C _{L,s}	CD,s	Cm,s			
C _{T,s} = 0.80						
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45	-20		-0.1982232252252252362472402292372191194172146125			
	C _{T,s} =	0.60				
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.245 .079 .418 .706 .992 1.270 1.521 1.706 1.697 1.617	-0.399 434 421 372 303 200 060 .076 .237 .439	-0.197 230 253 264 257 275 272 270 262 264 214			
	C _{T,s} =	0.30				
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.405 036 .422 .791 1.188 1.555 1.857 2.096 2.299 1.893 1.647	-0.038 097 099 052 .046 .153 .309 .458 .646 .782 .854	-0.169 222 267 297 318 319 310 302 296 302 253			
	C _{T,s}	= 0				
-20 -15 -10 -5 0 5 10 15 20 25	-0.431 .042 .521 .950 1.421 1.821 2.167 2.469 2.690 2.108 1.670	0.295 .236 .225 .279 .372 .495 .656 .799 .984 1.177 1.185	-0.179 284 329 351 370 373 364 319 358 305			

Table 14.- Tabulated aerodynamic data for $\delta_f = 50^{\circ}$, $\delta_k = 50^{\circ}$ (full span)

α, deg	C _{L,s}	CD,s	Cm,s			
C _{T,8} = 1.00						
-20 -15 -10 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	0.247 .316 .392 .456 .538 .640 .741 .799 .845					
	C _{T,s} =					
-20 -15 -5 0 5 10 15 22 30 55 45 50 56 70 75	-0.176054095 .227 .362 .475 .596 .695 .788 .870 .930 .956 .990 1.014 1.038 1.038 1.063 1.101 1.089 1.072	-0.789813821812784745691633549462358274183095007 .071 .148 .231 .293	-0.121110108108107107110114128120119109101090059015 0 .017			
	C _{T,8} = 0.90					
-20 -15 -10 5 10 5 25 25 33 45 55 56 65	-0.253 093 .083 .250 .435 .578 .728 .842 1.053 1.118 1.152 1.144 1.118 1.105 1.009	-0.709742748743713665592520298173059 .036 .129 .191 .277 .327	-0.109114117130124129130126126126151151142140121099076054			

a, deg	CL,s	c _{D,s}	C _{m,s}		
C _{T,8} = 0.80					
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45	-0.304 189 .006 .236 .517 .736 .945 1.094 1.262 1.301 1.354 1.395 1.373 1.326 1.292	-0.564 614 629 620 573 523 433 332 192 058 .077 .194 .319 .391	-0.105 099 103 128 144 145 151 152 161 172 161 154 129 107		
C _{T,8} = 0.60					
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.273 190 064 .156 .517 .972 1.312 1.531 1.728 1.673 1.655 1.650	-0.512 365 412 418 364 263 140 012 .153 .371 .453 .578	-0.127 109 086 120 157 195 212 210 204 207 205 181		
	CT,s =	0.30			
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.269 168 061 .062 .630 1.207 1.649 1.964 2.187 2.311 1.845	0.032 031 082 122 049 .090 .240 .396 .590 .767 .863	-0.118 098 089 078 172 237 259 263 244 228 226 191		
	C _{T,s} = 0				
-20 -15 -10 -5 0 5 10 15 20 25	-0.284 198 098 .058 .668 1.391 1.971 2.343 2.618 2.090 1.769	0.379 .316 .233 .202 .247 .410 .591 .775 .982 1.112	-0.106 088 071 076 172 342 307 295 278 294 242		

Table 15.- Tabulated Aerodynamic data for δ_{r} = 50°, δ_{k} = 50° (Inboard)

a, deg	CL,s	c _{D,s}	C _{m,s}			
Cm,s = 1.00						
-20 -15 -10 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	0.279 .356 .433 .486 .555 .662 .762 .826 .885 .903		099 104 122			
	CT,s ≕	0.95				
-20 -15 -10 -5 0 5 10 15 25 30 55 45 50 56 65 70 75	-0.103 .020 .144 .255 .380 .495 .614 .718 .809 .882 .937 .964 1.005 1.024 1.038 1.041 1.115 1.101 1.090	-0.824839841830803763768628559470367292188100004063161236300342	-0.122104100098095093100103104122114112102099083030016 .002 .023			
C _{T,8} = 0.90						
-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 65	-0.161 022 .142 .297 .469 .608 .746 .860 .983 1.077 1.129 1.168 1.168 1.142 1.135 1.113 1.101 1.076	-0.736757762761727680680508527422290176061037 .121200264310369	-0.127 119 117 123 116 121 126 128 144 145 145 145 134 112 096 078			

a, deg	CL,s	c _{D,s}	Cm,s			
C _{T,8} = 0.80						
-20 -15 -10 -5 0 5 10 15 20 25 30 40 45	-0.213 095 .109 .357 .568 .786 .969 1.119 1.280 1.316 1.369 1.412 1.377 1.347	-0.608636649629595515443335201066 .073 .189 .319 .403	-0.134127146141149154159159164164163164113			
	C _{T,s} = 0.60					
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.191 083 .115 .334 .663 1.025 1.346 1.564 1.740 1.602 1.638 1.624	-0.335 383 400 384 342 258 138 .002 .162 .310 .455 .566	-0.154140149157168190211215209215209179			
C _{T,s} = 0.30						
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.148014 .137 .415 .808 1.261 1.704 1.984 2.203 1.854 1.771 1.623	0.009 050 077 057 018 088 244 391 581 754 835	-0.188177174195215246258259240277220188			
C _{T,s} = 0						
-20 -15 -10 -5 0 5 10 15 20 25 30	-0.088 .029 .199 .523 1.000 1.520 2.033 2.347 2.614 1.936 1.505	0.333 .288 .242 .260 .314 .421 .661 .773 .966 1.082	-0.215 210 206 232 257 293 319 303 280 314 247			

Figure 1.- The positive sense of forces, moments, and angles.

(a) Principal dimensions in inches.

Figure 2.- Principal dimensions of model, propeller blade form curves, and photograph showing model mounted in tunnel.

(b) Propeller blade form curves.
Figure 2.- Continued.

(c) Photograph of model in the tunnel.

Figure 2.- Concluded.

L-64-1759

Trailing-edge flap

Figure 3.- Sectional views of various leading-edge devices and trailing-edge flap.

(a) Aerodynamic characteristics.

Figure 4.- Aerodynamic and flow characteristics of the model with the basic leading edge and with the trailing-edge flap undeflected. $\delta_{\bf f}=0^{\rm o}$.

(b) Flow characteristics; $C_{T,s} = 1.00$.

L-64-7101

Figure 4.- Continued.

(c) Flow characteristics; $C_{T,s} = 0.95$.

L-64-7102

Figure 4.- Continued.

(d) Flow characteristics; $C_{\mathrm{T,s}}$ = 0.90.

L-64-7103

Figure 4.- Continued.

(e) Flow characteristics; $C_{T,s} = 0.80$.

L-64-7104

Figure 4.- Continued.

(f) Flow characteristics; $C_{T,s} = 0.60$.

L-64-7105

Figure 4. - Continued.

(g) Flow characteristics; $C_{\text{T,S}} = 0.30$.

L-64-7106

Figure 4.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$. L-64-7107

Figure 4.- Concluded.

(a) Aerodynamic characteristics.

Figure 5.- Aerodynamic and flow characteristics of the model with the basic leading edge and with the trailing-edge flap deflected 20°.

(b) Flow characteristics; $C_{\rm T,\,s} = 0.95$. L-64-7108 Figure 5.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.90$. L-64-7109

Figure 5.- Continued.

(d) Flow characteristics; $C_{T, s} = 0.80$. L-64-7110

Figure 5.- Continued.

(e) Flow characteristics; $C_{\rm T,\,s}$ = 0.60.

Figure 5.- Continued.

(f) Flow characteristics; $C_{T,s} = 0.30$. L-64-7112 Figure 5.- Continued.

(g) Flow characteristics; $C_{T,s} = 0$.

Figure 5.- Concluded.

L-64-7113

(a) Aerodynamic characteristics.

Figure 6.- Aerodynamic and flow characteristics of the model with the basic leading edge and with the trailing-edge flap deflected 40° .

(b) Flow characteristics; $C_{T,s} = 1.00$. L-64-7114 Figure 6.- Continued.

(c) Flow characteristics; $C_{T,s} = 0.95$. L-64-7115 Figure 6.- Continued.

(d) Flow characteristics; $C_{\rm T,\,s}$ = 0.90. L-64-7116 Figure 6.- Continued.

(e) Flow characteristics; $C_{T,s} = 0.80$.

L-64-7117

Figure 6.- Continued.

(f) Flow characteristics; $C_{T,s} = 0.60$. L-64-7118

Figure 6.- Continued.

48

(g) Flow characteristics; $C_{\mathrm{T,s}} = 0.30$. L-64-7119 Figure 6.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$.

Figure 6.- Concluded.

50

Figure 7.- Aerodynamic and flow characteristics of the model with the basic leading edge and with the trailing-edge flap deflected 50° .

(b) Flow characteristics; $C_{T, s} = 1.00$.

L-64-7121

Figure 7.- Continued.

(c) Flow characteristics; $C_{T, S} = 0.95$.

Figure 7.- Continued.

(d) Flow characteristics; $\mathbf{C}_{\mathrm{T,\,s}}$ = 0.90.

L-64-7123

Figure 7.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.80$. L-64-7124

Figure 7.- Continued.

(f) Flow characteristics; $C_{T,s} = 0.60$. L-64-7125

Figure 7.- Continued.

(g) Flow characteristics; $C_{\mathrm{T,\,s}}$ = 0.30. L-64-7126 Figure 7.- Continued.

- ANTEN

(h) Flow characteristics; $C_{T,s} = 0$.

L-64-7127

Figure 7.- Concluded.

(a) Aerodynamic characteristics.

Figure 8.- Aerodynamic and flow characteristics of the model with the outboard section of the slat deflected 20° and with the trailing-edge flap undeflected. $\delta_{\mathbf{f}} = 0^{\circ}$.

(b) Flow characteristics; $C_{T,s} = 1.00$.

L-64-7128

Figure 8.- Continued.

(d) Flow characteristics; $C_{\mathrm{T,s}} = 0.90$.

L-64-7130

Figure 8.- Continued.

(e) Flow characteristics; $C_{T,S} = 0.80$.

L-64-7131

Figure 8.- Continued.

(f) Flow characteristics; $C_{\rm T,s} = 0.60$. L-64-7132 Figure 8.- Continued.

(g) Flow characteristics; $C_{\text{T, S}} = 0.30$.

L-64-7133

Figure 8.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$.

L-64-7134

Figure 8.- Concluded.

(a) Aerodynamic characteristics.

Figure 9.- Aerodynamic and flow characteristics of the model with the outboard section of the slat deflected 20° and with the trailing-edge flap deflected 20°.

(b) Flow characteristics; $C_{T,s} = 1.00$.

L-64-7135

Figure 9.- Continued.

(c) Flow characteristics; $C_{T,s} = 0.95$.

L-64-7136

Figure 9.- Continued.

(d) Flow characteristics; $C_{\rm T,\,s}$ = 0.90.

L-64-7137

Figure 9.- Continued.

1-0

Figure 9.- Continued.

-

(f) Flow characteristics; $C_{\text{T,s}} = 0.60$. L-64-7139

Figure 9.- Continued.

(g) Flow characteristics; $C_{T,s} = 0.30$.

L-64-7140

Figure 9.- Continued.

(h) Flow characteristics; $C_{T,S} = 0$.

L-64-7141

Figure 9. - Concluded.

Figure 10.- Aerodynamic and flow characteristics of the model with the outboard section of the slat deflected 20° and with the trailing-edge flap deflected 40°.

(b) Flow characteristics; $C_{T, S} = 1.00$. L-64-7142 Figure 10.- Continued.

Figure 10.- Continued.

(d) Flow characteristics; $C_{\rm T,\,s}$ = 0.90. L-64-7144 Figure 10.- Continued.

(e) Flow characteristics; $C_{\mathrm{T,s}}$ = 0.80. L-64-7145 Figure 10.- Continued.

(f) Flow characteristics; $C_{T,s} = 0.60$.

L-64-7146

Figure 10.- Continued.

(g) Flow characteristics; $C_{T,s} = 0.30$. L-64-714 Figure 10.- Continued.

(h) Flow characteristics; $C_{T, S} = 0$. L-64-7148

Figure 10.- Concluded.

Figure 11.- Aerodynamic and flow characteristics of the model with the outboard section of the slat deflected 20° and with the trailing-edge flap deflected 50°.

(b) Flow characteristics; $C_{T, S} = 1.00$.

L-64-7149

Figure 11.- Continued.

(c) Flow characteristics; $C_{\rm T,\,s}$ = 0.95.

L-64-7150

Figure 11.- Continued.

(d) Flow characteristics; $C_{T,s} = 0.90$.

L-64-7151

Figure 11. - Continued.

Figure 11.- Continued.

(f) Flow characteristics; $C_{T,s} = 0.60$.

L-64-7153

Figure 11.- Continued.

(g) Flow characteristics; $C_{T,S} = 0.30$. L-64-7154 Figure 11.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$.

L-64-7155

Figure 11.- Concluded.

Figure 12.- Aerodynamic and flow characteristics of the model with the inboard section of the slat deflected 20° and with the trailing-edge flap deflected 40°.

(b) Flow characteristics; $C_{T,S} = 1.00$. L-64-7156 Figure 12.- Continued.

(c) Flow characteristics; $C_{T,s} = 0.95$.

Figure 12. - Continued.

(d) Flow characteristics; $C_{\mathrm{T,\,s}}$ = 0.90. L-64-7158 Figure 12.- Continued.

(e) Flow characteristics; $C_{\rm T,\,S}$ = 0.80. L-64-7159 Figure 12.- Continued.

(f) Flow characteristics; $C_{T,s} = 0.60$. L-64-7160 Figure 12.- Continued.

(g) Flow characteristics; $C_{T,S} = 0.30$. L-64-7161 Figure 12.~ Continued.

97

(h) Flow characteristics; CT,s = 0. L-64-7162

Figure 12.- Concluded.

Figure 13.- Aerodynamic and flow characteristics of the model with the inboard section of the slat deflected 20° and with the trailing-edge flap deflected 50°.

(b) Flow characteristics; $C_{T, s} = 1.00$. L-64-7163 Figure 13.- Continued.

(c) Flow characteristics; $C_{\rm T,\,S}$ = 0.95. L-64-7164 Figure 13.- Continued.

Figure 13.- Continued.

102

(e) Flow characteristics; $C_{T,s} = 0.80$. L-64-7166

Figure 13.- Continued.

(f) Flow characteristics; $C_{\rm T,\,S}$ = 0.60.

Figure 13.- Continued.

(g) Flow characteristics; $C_{T, s} = 0.30$. L-64-7168

Figure 13.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$. L-64-7169

Figure 13.- Concluded.

Figure 14.- Aerodynamic and flow characteristics of the model with the full-span slat deflected 20° and with the trailing-edge flap deflected 40°.

(b) Flow characteristics; $C_{T,S} = 1.00$.

L-64-7170

Figure 14.- Continued.

(c) Flow characteristics; $C_{T,S} = 0.95$. L-64-7171 Figure 14.- Continued.

(d) Flow characteristics; $C_{T,s} = 0.90$. L-64-7172

Figure 14.- Continued.

(e) Flow characteristics; $C_{\rm T,\,S}$ = 0.80. L-64-7173 Figure 14.- Continued.

L-64-7174 (f) Flow characteristics; $C_{T,s} = 0.60$. Figure 14.- Continued.

112

(g) Flow characteristics; $C_{T,s} = 0.30$. L-64-7175 Figure 14.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$. L-64-7176 Figure 14.- Concluded.

Figure 15.- Aerodynamic and flow characteristics of the model with the full-span slat deflected 20° and with the trailing-edge flap deflected 50°.

(b) Flow characteristics; $C_{\rm T,\,s}$ = 1.00. L-64-7177 Figure 15.- Continued.

(c) Flow characteristics; $C_{\mathrm{T,s}}$ = 0.95. L-64-7178 Figure 15.- Continued.

1.

(d) Flow characteristics; $C_{\mathrm{T,S}} = 0.90$.

L-64-7179

Figure 15.- Continued.

Figure 15.- Continued.

(f) Flow characteristics; $C_{\rm T,\,S}$ = 0.60. L-64-7181 Figure 15.- Continued.

(g) Flow characteristics; $C_{T,s} = 0.30$.

L-64-7182

Figure 15.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$. L-64-7183

Figure 15.- Concluded.

Figure 16.- Aerodynamic and flow characteristics of the model with the outboard section of the Krueger flap deflected 50° and with the trailing-edge flap deflected 50°.

(b) Flow characteristics; $C_{T,S} = 1.00$. L-64-7184 Figure 16.- Continued.

(c) Flow characteristics; $C_{\mathrm{T,s}}$ = 0.95.

L-64-7185

Figure 16.- Continued.

(d) Flow characteristics; $C_{T, s} = 0.90$.

L-64-7186

Figure 16.- Continued.

(e) Flow characteristics; $C_{T,s} = 0.80$. L-64-7187

Figure 16.- Continued.

(f) Flow characteristics; $C_{T,s} = 0.60$. L-64-7188 Figure 16.- Continued.

(g) Flow characteristics; $C_{T,s} = 0.30$. L-64-7189 Figure 16.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$.

L-64-7190

Figure 16.- Concluded.

Figure 17.- Aerodynamic and flow characteristics of the model with the full-span Krueger flap deflected 50° and with the trailing-edge flap deflected 50° .

(b) Flow characteristics; $C_{T,s} = 1.00$. Figure 17.- Continued.

L-64-7191

132

(c) Flow characteristics; $C_{T,s} = 0.95$. L-64-7192

Figure 17.- Continued.

(d) Flow characteristics; $C_{T,s} \approx 0.90$.

L-64-7193

Figure 17.- Continued.

(e) Flow characteristics; $C_{T,s} = 0.80$.

L-64-7194

Figure 17.- Continued.

(f) Flow characteristics; $C_{\rm T,\,s}$ = 0.60. L-64-7195 Figure 17.- Continued.

(g) Flow characteristics; $C_{T,s} = 0.30$. L-64-7196 Figure 17.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$. L-64-7197

Figure 17.- Concluded.

Figure 18.- Aerodynamic and flow characteristics of the model with the inboard section of the Krueger flap deflected 50° and with the Krueger faired to the nose of the airfoil and with the trailing-edge flap deflected 50° .

(b) Flow characteristics; $C_{\mathrm{T,s}}$ = 1.00.

L-64-7198

Figure 18.- Continued.

(c) Flow characteristics; $C_{T, s} = 0.95$. L-64-7199

Figure 18.- Continued.

141

(d) Flow characteristics; $C_{T,S} = 0.90$.

L-64-7200

Figure 18. - Continued.

(e) Flow characteristics; $C_{T,s} = 0.80$. L-64-4734

Figure 18.- Continued.

(f) Flow characteristics; $C_{T, S} = 0.60$.

L-64-4735

Figure 18. - Continued.

(g) Flow characteristics; $C_{\mathrm{T,\,s}}$ = 0.30. L-64-4736 Figure 18.- Continued.

(h) Flow characteristics; $C_{T,s} = 0$.

L-64-4737

Figure 18.- Concluded.

NASA-Langley, 1964 L-4118

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546