Matemáticas discretas II

Melissa Forero Narváez

01 de mayo de 2023

Subgrupos de un homomorfismo

1. Si $\theta:G\to H$ es un homomorfismo

$$Ker(\theta) : \{g \in G: \theta g = 1\}$$

$$\operatorname{Img}(\theta) : \{ h \in H : \theta g = h \ \forall g \in G \}$$

Mostrar que el $ker(\theta)$ y $Img(\theta)$ son subgrupos.

Demostración

Para mostrar que los subconjuntos del kernel y la imagen son subgrupos, hay que verificar:

- Cerradura bajo la operación del grupo
- Identidad
- Inversos

Para el kernel

Cerradura:

$$g1, g2 \in \text{Kernel}(\theta) \Rightarrow g1g2 \in \text{Kernel}(\theta)$$

 $\theta(g1g2) = \theta(g1)\theta(g2)$ porque θ es un homomorfismo
 $\theta(g1) = 1 \text{ y } \theta(g2) = 1$ porque $g1 \text{ y } g2$ estan en el kernel
 $\theta(g1g2) = 1 \cdot 1 = 1$

Entonces g1g2 pertenece al Kernel(θ)

Identidad

El elemento neutro de G pertenece al Kernel(θ) ya que θ es un homomorfismo y preserva la operacion binaria. Sabemos que $\theta(1_G) = 1_H$, es decir, la imagen de la identidad de G es la identidad de H. Entonces, podemos decir que 1_G está en el kernel de θ :

$$\theta(1_G) = 1_H \Rightarrow 1_G \in \ker(\theta)$$

Inversos:

$$g \in \text{Kernel}(\theta) \Rightarrow g^{-1} \in \text{Kernel}(\theta)$$

Utilizando la propiedad de los homomorfismos donde la imagen de un inverso es el inverso de la imagen, debemos mostrar que $\theta\left(g^{-1}\right)=1_{H}$. Sabemos que g esta en el Kernel $\Rightarrow \theta\left(g\right)=1_{H}$, entonces:

$$\theta\left(g^{-1}\right) = \left[\theta\left(g\right)\right]^{-1} = 1_H^{-1} = 1_H$$

Para la imagen

Cerradura:

$$h1, h2 \in Img(\theta) \Rightarrow h1h2 \in Img(\theta)$$

Si $h1 = \theta(g1)$ y $h2 = \theta(g2)$, entonces:

$$h1h2 = \theta(q1) \theta(q2) = \theta(q1q2)$$

Entonces h1h2 pertenece a la imagen de θ ya que es la imagen de algún elemento g1g2 en G.

Identidad:

La identidad de H esta en la imagen de θ porque θ mapea la identidad de G a la identidad de H.

$$\theta(1_G) = 1_H$$

Entonces 1_H pertenece a la imagen de θ , ya que es la imagen de la identidad de G.

Inversos:

$$h \in \text{Imagen}(\theta) \Rightarrow h^{-1} \in \text{Imagen}(\theta)$$

Si tenemos un $g \in G$, $h = \theta(g) \Rightarrow h^{-1} = \theta(g^{-1})$. Entonces h^{-1} pertenece a la imagen de θ ya que es la imagen de algún elemento g^{-1} en G.

Subgrupo generado por un subconjunto

2. Sea X un subconjunto de un grupo G. Entonces existe un subgrupo mínimo de G que contiene a X.

Demostración

Empezamos definiendo H como una colección de todos los subgrupos de G que contienen al subconjunto X

$$H = \{t \mid t \text{ es subgrupo de G y } X \subseteq t\}$$

Ahora, sabemos que la intersección de subgrupos es también un subgrupo de G.

$$K = \bigcap \{t \mid t \text{ es subgrupo de G y } X \subseteq t\}$$

Por lo que K es subgrupo de G y como X esta en cada uno de estos subgrupos t entonces $X \subseteq K$. Es decir, K es el subgrupo formado por los elementos que pertenecen a todos los subgrupos de G que contienen a X.

Si consideramos $X \subseteq S \subseteq G \Rightarrow S \in H \Rightarrow K \subseteq S$. Tenemos que, si un subgrupo S de G contiene a X, entonces todos los elementos de K, que es la intersección de todos los subgrupos de G que contienen a X, también están en S.

Por lo tanto, K es el subgrupo mínimo de G que contiene a X, ya que no hay otro subgrupo que contenga a X que sea más pequeño que K.