Frank Dellaert, Fall 07

Particle Filtering

for Tracking and Localization

Bayesian Inference

World Knowledge

Recap: Bayes Law

$$P(x|z) \sim L(x;z)P(x)$$

data = z

model L(x;z)

Belief before = P(x)

Prior Distribution of x

Likelihood of x given Z

Posterior Distribution of x given Z

Example: 1D Robot Localization

Problem: Large Open Spaces

- Walls and obstacles out of range
- Sonar and laser have problems
- Horizontally mounted sensors have problems

Problem: Large Crowds

Solution: Ceiling Camera

- Upward looking camera
- Model of the world = Ceiling Mosaic

Tutorial: Monte Carlo N

October '07

Global Alignment (other talk)

Vision based Sensor

Under Light

Next to Light

Elsewhere

Various Density Representations

- Gaussian centered around mean x,y
- Mixture of Gaussians
- Finite element i.e. histogram
- Does not scale to large state spaces encountered in computer vision & robotics

Hidden Markov Models

Kalman Filter = Very Easy

- Think adding quadratics
- Then Minimize
- Dynamics = Enlarge Quadratic

Kalman Filter

- Very powerful
- Gaussian, unimodal

Example: 2D Robot Location

p(x)

 \mathbf{X}_2

State space = 2D, infinite #states

 \mathbf{X}_1

Markov Localization

• Fine discretization over {x,y,theta}

Dynamic Markov Localization

- Burgard et al., IROS 98
- Idea: use Oct-trees

Sampling as Representation

Sampling Advantages

- Arbitrary densities
- Memory = O(#samples)
- Only in "Typical Set"
- Great visualization tool!
- minus: Approximate

Mean and Variance of a Sample

Mean

$$\mu = \int_x x P(x) dx$$

$$\mu \approx \frac{1}{R} \sum_{r=1}^{R} x^{(r)}$$

Variance (1D)

$$\sigma^2 = \int_x (x - \mu)^2 P(x) dx$$

$$\sigma^2 \approx \frac{1}{R} \sum_{r=1}^{R} (x^{(r)} - \hat{\mu})^2$$

Inference = Monte Carlo Estimates

• Estimate expectation of any function f:

$$E_{P(x)}[f(x)] = \int_{x} f(x)P(x)d^{N}x$$

$$E_{P(x)}[f(x)] \approx \frac{1}{R} \sum_{r=1}^{R} f(x^{(r)})$$

Monte Carlo Expected Value

How to Sample?

- Target Density $\pi(x)$
- Assumption: we can evaluate $\pi(x)$ up to an arbitrary multiplicative constant

• Why can't we just sample from $\pi(x)$??

How to Sample?

- Numerical Recipes in C, Chapter 7
- Transformation method: Gaussians etc...
- Rejection sampling
- Importance sampling

Rejection Sampling

- Target Density $\pi(x)$
- Proposal Density q(x)
- π and q need only be known up to a factor

Image by MacKay

The Good...

9% Rejection Rate Frank Dellaert

Tutorial : Monte Carlo Methods Frank Dellaert

...the Bad...

50% Rejection Rate Frank Dellaert

Tutorial: Monte Carlo Methods

... and the Ugly.

70% Rejection Rate Frank Dellaert

Inference by Rejection Sampling

Importance Sampling

- Good Proposal Density would be: prior!
- Problem:
 - No guaranteed c s.t. c P(x) > = P(x|z) for all x
- Idea:
 - sample from P(x)
 - give each sample $x^{(r)}$ a importance weight equal to $P(Z|x^{(r)})$

Example Importance Sampling

Importance Sampling

- Sample $x^{(r)}$ from q(x)
 - $w_r = \pi(x^{(r)})/q(x^{(r)})$

Image by MacKay

1D Importance Sampling

Tutoria

Example 1

- Learn Color Model
- Implement Rejection Sampling
- Implement Importance Sampling
- Add a spatial prior

A Simple Color Model

Likelihood

References

- Isard & Blake 98, Condensation -- conditional density propagation for visual tracking
- Dellaert, Fox, Burgard & Thrun 99, Monte Carlo Methods Localization for Mobile Robots
- Khan, Balch & Dellaert 04 A Rao-Blackwellized Particle Filter for EigenTracking

Example: 1D Robot Localization

1D Importance Sampling

Tutoria

Particle Filter Tracking

Monte Carlo Approximation of Posterior:

$$P(X_{t-1}|Z^{t-1}) \longleftrightarrow \{X_{t-1}^{(i)}, \pi_{t-1}^{(i)}\}_{i=1}^{N}$$

Bayes Filter and Particle Filter

Recursive Bayes Filter Equation:

$$P(X_t|Z^t) = kP(Z_t|X_t) \int_{X_{t-1}} P(X_t|X_{t-1}) P(X_{t-1}|Z^{t-1})$$

Monte Carlo Approximation:

Predictive Density

$$P(X_t|Z^t) \approx kP(Z_t|X_t) \sum_{r} \pi_{t-1}^{(r)} P(X_t|X_{t-1}^{(r)})$$

Particle Filter

Empirical predictive density = Mixture Model

$$\pi_t^{(s)} = P(Z_t | X_t^{(s)})$$

First appeared in 70's, re-discovered by Kitagawa, Isard, ...

Monte Carlo Localization

Tutorial: Monte Carlo Methods Frank Dellaert October '07

3D Particle filter for robot pose: Monte Carlo Localization

Dellaert, Fox, Burgard & Thrun ICRA 99

Tutorial: Monte Carlo Methods Frank Dellaert October '07

Resampling

- Importance Sampling => weighted
- To get back a fair sample:
 - Resample from the weighted samples according to the importance weights
 - efficient O(N) algorithms exist

Condensation Algorithm

- Sequential Estimation
- Iterates over:
 - Prediction with motion model
 - Importance Sampling for Inference
 - Resampling

1. Prediction Phase

2. Measurement Phase

3. Resampling Step

Example 1

- Start from Importance Sampling w Prior
- Implement Sample Mean
- Try increasing nrSamples
- Implement Resampling Step
- Implement Particle Motion Model

A Simple Color Model

Likelihood

