Alessandro Valerani 758717

a.valerani@campus.unimib.it

Relazione Matrice3D

Files	2
Mat3D.h	2
Mat2D.h	2
Main.cpp	2
Scelte pratiche	2
Struttura sottostante	2
Considerazioni	3
Iteratori	3
Operator()	3
Conversione	3

Files

Mat3D.h

File contente l'interfaccia e l'implementazione della Matrice3D

Mat2D.h

File contente l'interfaccia e l'implementazione della Matrice2D

Main.cpp

File contente i vari test per i metodi implementati

Scelte pratiche

Struttura sottostante

L'implementazione consiste di un oggetto Matrice che contiene un array flat (monodimensionale) di grandezza 1_z * 1_y * 1_x .

Iteratori

Gli iteratori sono bidirectional, riflettendo quindi la natura bidimensionale della struttura dati (array flat) usata per costruire le matrici.

Operator()

L'unico metodo per interfacciarsi con i singoli valori delle matrici è tramite l'operatore (int z, int y, int x) Che permette sia la modifica che la lettura.

Conversione

La conversione da un tipo ad un altro (tipi compatibili) è fatta creando un nuovo array di tipo T2 che andrà poi a chiamara il costruttore di firma $Matrice3D(T2* arr, int il_x, int il_y, int il_z$

Discorso simile per il metodo trasforma che si appoggia allo stesso metodo

Considerazioni

Sono convinto che sarebbe stato possibile utilizzare l'ereditarietà per effettuare un lavoro più pulito.