TEMA 1

Distribución de Frecuencias: Variables discretas

Mod.	F. Abs.	F. Rel.	F. Abs. Acum.	F. Rel. Acum
C	n_i	f_i	N_i	F_i
c_1	n_1	$f_1 = n_1/n$	$N_1 = n_1$	$F_1 = N_1/n = f_1$
• • •	• • •	• • •	•••	
c_j	n_j	$f_j = n_j/n$	$N_j = n_1 + \ldots + n_j$	$F_j = N_j/n = f_1 + \ldots + f_j$
		• • •	• • • •	• • •
c_k	n_k	$f_k = n_k/n$	$N_k = n$	$F_k = 1$
	n	1		

Distribución de Frecuencias: Variables continuas

	M. clase	F. Abs.	F. Rel.	F. Abs. Ac.	F. Rel. Ac.
	C	n_i	f_i	N_i	F_i
$l_0 - l_1$	c_1	n_1	$f_1 = n_1/n$	$N_1 = n_1$	$F_1 = f_1$
$l_{j-1}-l_j$	c_{j}	n_j	$f_j = n_j/n$	$N_j = N_{j-1} + n_j$	$F_j = F_{j-1} + f_j$
$l_{k-1}-l_k$	c_k	n_k	$f_k = n_k/n$	$N_k = n$	$F_k = 1$
		n	1		

Notación: $l_{j-1} - l_j \stackrel{def}{\equiv} (l_{j-1}, l_j]$

 \blacksquare Número de intervalos $k \approx \left\{ \begin{array}{ll} \sqrt{n} & \text{si } n \text{ no es muy grande} \\ \\ 1+3,22\log(n) & \text{en otro caso} \end{array} \right.$

 \bullet Amplitud total $A=l_k-l_0$ donde $l_0=x_{min}, l_1=l_0+a, \ldots, l_k=x_{max}=l_0+ka,$ y

- Amplitud de cada intervalo: $a_i = a = A/k$

• Marca de clase: $c_i = \frac{l_i + l_{i-1}}{2}$.

Media

• Si los datos no están ordenados en una tabla,

$$\overline{x} = \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

• Si los datos son discretos y están ordenados en una tabla,

$$\overline{x} = \frac{1}{n} (x_1 n_1 + \dots + x_k n_k) = \frac{1}{n} \sum_{i=1}^k x_i n_i = \sum_{i=1}^k x_i f_i$$

1

• Si los datos son continuos y están ordenados en una tabla,

$$\overline{x} = \frac{1}{n} (c_1 n_1 + \dots + c_k n_k) = \frac{1}{n} \sum_{i=1}^k c_i n_i = \sum_{i=1}^k c_i f_i$$

- Linealidad de la media Si Y = a + bX entonces la media de Y es $\overline{y} = a + b\overline{x}$,
- lacktriangle Mediana Med, es la observación que queda en el centro de todas las observaciones (cuando éstas han sido ordenadas de menor a mayor), si n es el número de observaciones, la mediana corresponderá
 - a la observación que ocupa la posición [n/2]+1 (donde $[\cdot]$ es la parte entera de un número), si el número de datos es impar, y
 - a la semisuma de los valores que ocupan las posiciones n/2 y n/2+1, si el número de datos es par.
 - si los datos se presentan agrupados en una tabla, será el será el valor cuya frecuencia acumulada sea igual a n/2 si existe, o el primer x_i cuya frecuencia acumulada supere el valor n/2.
- Moda Es el valor de la variable que se repite con mayor frecuencia.
- Percentil de orden p es el valor de los datos que deja a su izquierda el $100 \cdot p\%$ de los datos y a su derecha el $100 \cdot (1-p)\%$.
- Cuartiles: Primer Cuartil: $Q_1 = P_{25}$. Tercer Cuartil: $Q_3 = P_{75}$.
- Rango $R = max\{x_1, ..., x_n\} min\{x_1, ..., x_n\}$
- Desviación media $D_m = \frac{1}{n} \sum_{i=1}^n |x_i \overline{x}|$.
- Recorrido Intercuartílico $IQR = Q_3 Q_1$
- Varianza $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i \overline{x})^2$.

Notación $E(X^2) = \frac{1}{n} \sum_{i=1}^n x_i^2$.

Observación $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \overline{x}^2 = E(X^2) - \overline{x}^2$.

- Desviación Típica $s = +\sqrt{s^2}$
- **Tipificación** Es el proceso de restar la media y dividir entre su desviación típica a una variable $X, z = \frac{X \overline{x}}{s}$.
- Coeficiente de Variación $CV = \frac{\sigma}{\overline{x}} \cdot 100$.
- Coeficiente de asimetría $\gamma_1 = \frac{m_3}{m_2\sqrt{m_2}} = \frac{\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^3}{\sigma^3}$ donde $\mu_p = \frac{1}{n}\sum_{i=1}^n x_i^p$, es el momento de orden p y $m_p = \frac{1}{n}\sum_{i=1}^n (x_i \overline{x})^p$, es el momento central de orden p.
- Coeficiente de curtosis o apuntamiento $\gamma_2 = \frac{m_4}{\sigma^4} 3$, donde m_4 es el momento central de cuarto orden.

TEMA 2

- Frecuencia Total n, es el número total de individuos observados.
- Frecuencia absoluta del par (x_i, y_j) , n_{ij} , número de observaciones que poseen la modalidad x_i de X e y_j de Y al mismo tiempo.
- Frecuencia relativa del par $(x_i, y_j), f_{ij} = \frac{n_{ij}}{n}$

Distribución Conjunta de Frecuencias de dos variables X e Y

$X \setminus Y$	y_1	y_2		y_l	
x_1	n_{11}	n_{12}		n_{1l}	$n_{1.}$
x_2	n_{21}	n_{22}		n_{2l}	$n_{2.}$
:	:	:	·	:	:
x_k	n_{k1}	n_{k2}		n_{kl}	$n_{k.}$
	$n_{,1}$	$n_{,2}$		$n_{.l}$	n

- Frecuencias Absolutas Marginales de $X = x_i$ y de $Y = y_j$ $n_{i.} = n_{i1} + n_{i2} + \ldots + n_{il} = \sum_{j=1}^{l} n_{ij}$ y $n_{.j} = n_{1j} + n_{2j} + \ldots + n_{kj} = \sum_{i=1}^{k} n_{ij}$ respectivamente.
- Observación Las frecuencias absolutas marginales corresponden a los valores suma de las distintas filas $(n_{i.})$ y columnas $(n_{.j})$ en la tabla de doble entrada.
- Frecuencias Relativas Marginales de $X=x_i$ e $Y=y_j$ $f_{i.}=\frac{n_i}{n}$ y $f_{.j}=\frac{n_{.j}}{n}$ respectivamente.
- Observación

$$\sum_{i=1}^{k} n_{i.} = \sum_{j=1}^{l} n_{.j} = \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij} = n$$

$$\sum_{i=1}^{k} f_{i.} = \sum_{j=1}^{l} f_{.j} = \sum_{i=1}^{k} \sum_{j=1}^{l} f_{ij} = 1$$

lacktriangle Distribuciones Marginales de X y de Y

$$\begin{array}{c|cccc} X & n_{i.} & f_{i.} \\ \hline x_1 & n_{1.} & f_{1.} \\ x_2 & n_{2.} & f_{2.} \\ \vdots & \vdots & \vdots \\ x_k & n_{k.} & f_{k.} \\ \hline & n & 1 \\ \hline \end{array}$$

3

Distribuciones Condicionadas

$$\begin{array}{c|cc} X|Y = y_j & n_{ij} \\ \hline x_1 & n_{1j} \\ x_2 & n_{2j} \\ \vdots & \vdots \\ x_k & n_{kj} \\ \hline & n_{.j} \\ \hline \end{array}$$

- lacktriangle Observación Dos variables X e Y son estadísticamente independientes si y solo si $f_{ij}=f_{i.}f_{.j}$
- Covarianza $s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})$
- Observación $s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i \bar{y} \bar{x}$
- Vector de Medias (\bar{x}, \bar{y})
- Matriz de Covarianzas $S = \begin{pmatrix} s_x^2 & s_{xy} \\ s_{xy} & s_y^2 \end{pmatrix}$
- Coeficiente de Correlación Lineal $r_{xy} = \frac{s_{xy}}{s_x s_y}$
- Residuos o Errores $\epsilon_i = y_i (a + bx_i)$
- \bullet Ajuste de la recta Y=a+bX por Mínimos Cuadrados

$$b = \frac{s_{xy}}{s_x^2}$$
$$a = \bar{y} - b\bar{x}$$

4

- Observación $\bar{\epsilon} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i = 0$
- \bullet Varianza Residual $s_{\epsilon}^2=\frac{1}{n}\sum_{i=1}^n \epsilon_i^2=\frac{1}{n}\sum_{i=1}^n \left(y_i-(a+bx_i)\right)^2$
- Observación $s_{\epsilon}^2 = s_y^2 (1 r_{xy}^2)$
- Coeficiente de Determinación $R^2=r_{xy}^2$.
- Observación $b = \frac{s_y}{s_x} r_{xy}$

Dos rectas de regresión

- Y = a + bX con $b = \frac{s_{xy}}{s_x^2}$ y $a = \bar{y} b\bar{x}$.
- $\quad \blacksquare \ X = c + dY \ \mathrm{con} \ d = \frac{s_{xy}}{s_u^2}, \ c = \bar{x} d\bar{y}.$

TEMA 3

Leyes de DeMorgan $\overline{A \cup B} = \overline{A} \cap \overline{B}$ y $\overline{A \cap B} = \overline{A} \cup \overline{B}$ Definición de Probabilidad

- **Axioma 1** Dado $A \subset E$, se cumple que $0 \le P(A) \le 1$
- **Axioma 2** P(E) = 1
- Axioma 3

$$A_1, \dots, A_n, \dots \in \mathcal{A}$$

$$A_i \cap A_j = \emptyset$$

$$A_i \cap A_j = \emptyset$$

$$A_i \cap A_j = \emptyset$$

• Interpretación clásica de la probabilidad Regla de Laplace:

$$P(A) = \frac{\text{número de casos favorables a } A}{\text{número de casos posibles}}.$$

• Interpretación frecuentista de la probabilidad Supongamos que un suceso A ocurre A_n veces en n repeticiones del experimento:

$$P(A) = \lim_{n \to \infty} \frac{A_n}{n}.$$

- Probabilidades como grado de confianza Medida del grado de creencia que tiene una persona dada en un momento dado sobre la ocurrencia del suceso.
- Probabilidad condicionada $P(A|B) = \frac{P(A \cap B)}{P(B)}$.
- Sucesos Independientes: A es independiente de B si y solo si P(A) = P(A|B).
- Observación: A es independiente de $B \iff P(A \cap B) = P(A)P(B)$.
- Proposición
 - $\bullet \ P(A \cup B) = P(A) + P(B) P(A \cap B).$
 - $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$.
 - $P(A^c) = 1 P(A)$.
 - $P(A^c|B) = 1 P(A|B)$.
- Teorema de la Probabilidad Compuesta

$$P(A_1A_2...A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2...A_{n-1}).$$

5

- Teorema de la Probabilidad total $P(B) = \sum_{i=1}^{n} P(B|A_i) P(A_i)$.
- Teorema de Bayes $P(A_j|B) = \frac{P(B|A_j) \cdot P(A_j)}{\sum_{i=1}^n P(B|A_i) \cdot P(A_i)}$.

TEMA 4

• F. de masa de Probabilidad de una v.a. discreta.

$$f: \mathbb{N} \longrightarrow [0, 1]$$

 $x_i \longrightarrow f(x_i) = P(X = x_i) = P(\{e, \text{ tal que } X(e) = x_i\})$

Propiedades:

1. $f(x_i) \ge 0 \ \forall i = 1, ..., k$

2.

$$\sum_{i=1}^{k} f(x_i) = \sum_{i=1}^{k} P(X = x_i) = 1$$

• F. de Distribución de una v.a. discreta.

$$F: N \longrightarrow [0,1]$$

 $x_i \longrightarrow F(x_i) = P(X \le x_i) = P(\{e, \text{ tal que } X(e) \le x_i\})$

- F. de densidad de una v.a. continua. Es una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ que verifica
 - $f(x) \geq 0$
 - $\int_{-\infty}^{+\infty} f(x)dx = 1$
 - Dados a < b, $P(a \le X \le b) = \int_a^b f(x) dx$.
 - F. de distribución de una v.a. continua,

$$F(\mathbf{x}) = P(X \le \mathbf{x}) = \int_{-\infty}^{x} f(t)dt.$$

Mismas propiedades que en el caso discreto, además de que f(x) = F'(x)

• Momentos:

$$E(X) = \mu = \begin{cases} \sum_{x} x f(x) & \text{si } X \text{ es discreta} \\ \int_{-\infty}^{\infty} x f(x) dx & \text{si } X \text{ es continua} \end{cases}$$

$$Var(X) = \sigma^2 = \begin{cases} \sum_x (x - \mu)^2 f(x) & \text{si } X \text{ es discreta} \\ \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx & \text{si } X \text{ es continua} \end{cases}$$

Observación: $Var(X) = \sigma^2 = E(X^2) - \mu^2$

Desviación Típica= $\sigma = +\sqrt{\sigma^2}$

• Desigualdad de Chebychev X v.a. con media μ y desviación típica σ entonces:

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

o equivalentemente

$$P(|X - \mu| < k\sigma) > 1 - \frac{1}{k^2}.$$

• Transformación de una variable aleatoria Dada una v.a. X se puede definir la transformación g(X) y calcular su esperanza definida mediante

$$E\left[g\left(X\right)\right] = \begin{cases} \int_{-\infty}^{\infty} g\left(x\right) f\left(x\right) dx & \text{en el caso continuo} \\ \sum_{i} g\left(x_{i}\right) f\left(x_{i}\right) & \text{en el caso discreto} \end{cases}$$

Análogamente, se define

$$Var\left[g\left(X\right)\right] = E\left[\left\{g\left(X\right) - E\left[g\left(X\right)\right]\right\}^{2}\right]$$

• Transformación de varias variables: Las definiciones anteriores se extienden al caso bivariante. Así para $Y = g(X_1, X_2)$ se tiene que

$$E\left[Y\right] = \left\{ \begin{array}{l} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) dx_{2} dx_{1}, & \text{en el caso continuo} \\ \sum_{x_{1}} \sum_{x_{2}} g\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right), & \text{en el caso discreto} \end{array} \right.$$

• Covarianza Es una medida de la relación de crecimiento conjunto de dos variables y se define como la esperanza de la transformación

$$g(x_1, x_2) = (x_1 - \mu_1)(x_2 - \mu_2)$$

es decir.

$$Cov(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)]$$

• Observación: En el caso de independencia se tiene

$$Cov(X_1, X_2) = 0.$$

• Observación:

$$E(a_1X_1 + a_2X_2) = a_1E(X_1) + a_2E(X_2)$$

$$Var(a_1X_1 + a_2X_2) = a_1^2Var(X_1) + a_2^2Var(X_2) + 2a_1a_2Cov(X_1, X_2).$$

• Observación: Cuando X_1, X_2 son independientes resulta

$$Var(a_1X_1 + a_2X_2) = a_1^2 Var(X_1) + a_2^2 Var(X_2),$$

resultado que se extienden facilmente al caso de n variables aleatorias.

• Observación: Sean X_1, \ldots, X_n v.a. independientes con media μ y varianza σ^2 . Si definimos

$$\overline{X} = \frac{1}{n} \left(X_1 + \dots + X_n \right)$$

entonces

$$E(\overline{X}) = E\left(\frac{1}{n}\sum_{i}X_{i}\right) = \frac{1}{n}\sum_{i}E(X_{i}) = \frac{1}{n}\sum_{i}\mu = \mu$$

$$Var(\overline{X}) = Var\left(\frac{1}{n}\sum_{i}X_{i}\right) = \frac{1}{n^{2}}\sum_{i}Var(X_{i}) = \frac{\sigma^{2}}{n}$$

• Cálculo Probabilidades Normales a partir de la Tabla de la N(0,1):

Para valores negativos:

$$\Phi(-z) = 1 - \Phi(z)$$

Para v.a. normales no estándar, usamos que si $X \sim N\left(\mu,\sigma\right)$, entonces $Z = \frac{X-\mu}{\sigma} \sim N\left(0,1\right)$

Suma de Variables Normales

Sean X_1, X_2, \ldots, X_n , v.a. normales e independientes, t.q. $E(X_i) = \mu_i$ y $Var(X_i) = \sigma_i^2$, $i = 1, \ldots, n$, Definimos

$$Y = a_1 X_1 + \ldots + a_n X_n$$

donde a_1, \ldots, a_n son constantes. Entonces Y es una variable aleatoria normal con

$$E(Y) = a_1 \mu_1 + \ldots + a_n \mu_n$$

у

$$Var(Y) = a_1^2 \sigma_1^2 + \ldots + a_n^2 \sigma_n^2$$

■ Teorema Central del Límite

Sean X_1, X_2, \ldots, X_n , variables independientes, con medias y varianzas $E(X_i) = \mu_i$ y $Var(X_i) = \sigma_i^2$, $i = 1, \ldots, n$, respectivamente. Entonces cuando n crece, la distribución de la variable

$$Y = X_1 + \ldots + X_n$$

es aproximadamente normal $N(\sum \mu_i, \sum \sigma_i^2)$. O equivalentemente, la distribución de

$$\frac{Y - \sum \mu_i}{\sqrt{\sum \sigma_i^2}}$$

es aproximadamente N(0,1).

Ver tablas adjuntas

Dist.	f(x)	F(x)	E(X)	Var(X)
Bernoulli $Ber(p)$	P(X = 1) = p P(X = 0) = 1 - p	$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - p & \text{si } 0 \le x < 1 \\ 1 & \text{si } x \ge 1 \end{cases}$	d	p(1-p)
Binomial $Bin(n,p)$	$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}, x = 1, 2,, n$	_	du	np(1-p)
Geométrica $Ge(p)$	$P(X = x) = p(1 - p)^{x - 1}, x = 1, 2,, \infty$	Í	$\frac{1}{p}$	$\frac{1}{p^2}$
Poisson $Poiss(\lambda)$	$P(X = x) = \frac{e^{-\lambda \lambda x}}{x!}, x = 0, 1, 2,, \infty$		~	~
Uniforme $U(a,b)$	$f(x) = \frac{1}{b-a}, a < x < b$	$F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Beta $Be(lpha,eta)$	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, 0 < x < 1$ donde $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$	_	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Exponencial $Exp(\alpha)$	$f(x) = \alpha e^{-\alpha x}, x > 0$	$F(x) = \begin{cases} 0 & x \le 0\\ 1 - e^{-\alpha x} & \text{para } x > 0 \end{cases}$	α -1	$\frac{1}{lpha^2}$
Normal $N(\mu, \sigma)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$	I	η	σ^2

	Caso	Intervalo de Confianza	Contraste de Hipótesis	Estadístico del Contraste	Región de rechazo
	(,),,	ν	$H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$		$\left\{ \left Z_{c} \right > Z_{\alpha/2} \right\}$
—	Para μ de $N(\mu, \sigma^2)$,	$\overline{x} \pm z_{\alpha/2} \frac{\overline{z}}{\sqrt{z}}$	$H_0: \mu \leq \mu_0; H_1: \mu > \mu_0$	$z_c = \frac{x - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\left\{ z_{c}>z_{\alpha}\right\}$
	Collocida	VII.	$H_0: \mu \geq \mu_0; H_1: \mu < \mu_0$		$\left\{ z_{c}<-z_{\alpha}\right\}$
		č	$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$	ı	$\left\{ \left t_{c} \right > t_{n-1,\alpha/2} \right\}$
7	Para μ de $N(\mu, \sigma^2)$,	$\overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$	$H_0: \mu \leq \mu_0; H_1: \mu > \mu_0$	$t_c = \frac{x - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$	$\left\{t_c > t_{n-1,\alpha}\right\}$
	o desconocida	VI	$H_0: \mu \ge \mu_0; H_1: \mu < \mu_0$		$\left\{t_{c}<-t_{n-1,\alpha}\right\}$
			$H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$		$\left\{ \left z_{c} \right > z_{\alpha/2} \right\}$
8	Para μ caso general, n grande	$\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$	$H_0: \mu \leq \mu_0; H_1: \mu > \mu_0$	$z_{_{c}}=rac{\overline{x}-\mu_{_{0}}}{s/\sqrt{n}}\sim N\left(0,1 ight)$	$\left\{ z_{c}>z_{\alpha}\right\}$
			$H_0: \mu \geq \mu_0; H_1: \mu < \mu_0$		$\left\{ z_{c}<-z_{\alpha}\right\}$
	1 Pæra una proporción,	(\$ D\$	$H_0: p=p_0; H_1: p \neq p_0$	$(\hat{n}-n)$	$\left\{ \left z_{c} \right > z_{\alpha/2} \right\}$
4	p, caso general	$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$	$H_0: p \le p_0; H_1: p > p_0$	$Z_c = \frac{\binom{P-P_0}{\sqrt{\hat{D}\hat{Q}/n}}}{\sqrt{\hat{D}\hat{Q}/n}} \sim N(0,1)$	$\left\{ z_{c}>z_{\alpha}\right\}$
	(" grande)	V 11	$H_0: p \ge p_0; H_1: p < p_0$	V 7 3/	$\left\{ z_{c}<-z_{\alpha}\right\}$
		$((n-1)c^2(n-1)c^2)$	$H_0: \sigma^2 = \sigma_0^2; H_1: \sigma^2 \neq \sigma_0^2$, , ,	$\left\{\boldsymbol{\mathcal{X}}_{c}^{2} \notin \left[\boldsymbol{\mathcal{X}}_{n-1,1-\alpha/2}^{2} \ {}_{3}\boldsymbol{\mathcal{X}}_{n-1,\alpha/2}^{2} \ \right]\right\}$
ν	Para σ^2 de $N(\mu, \sigma^2)$	$\frac{(n-1)^3}{\chi^2}, \frac{(n-1)^3}{\chi^2}$	$H_0: \sigma^2 \le \sigma_0^2; H_1: \sigma^2 > \sigma_0^2$	$\chi_c^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$	$\left\{\chi_c^2 > \chi_{n-1,\alpha}^2\right\}$
		\ \(\mathbf{v}_n - 1, \alpha \) \(\mathbf{v}_n - 1, 1 - \alpha \) \(\mathbf{v}_n - 1, 1 - \alpha \) \(\mathbf{v}_n - 1,	$H_0: \sigma^2 \ge \sigma_0^2; H_1: \sigma^2 < \sigma_0^2$	9	$\left\{\mathcal{X}_{c}^{2} < \mathcal{X}_{n-1,1-\alpha}^{2}\right\}$

Nota:
$$s_{p}^{2} = \frac{\left(n_{1} - 1\right)s_{1}^{2} + \left(n_{2} - 1\right)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

$$f = \frac{\left(s_{1}^{2} / n_{1}\right)^{2} / \left(n_{1} - 1\right) + \left(s_{2}^{2} / n_{2}\right)^{2} / \left(n_{2} - 1\right)}{\left(s_{1}^{2} / n_{1}\right)^{2} / \left(n_{1} - 1\right) + \left(s_{2}^{2} / n_{2}\right)^{2} / \left(n_{2} - 1\right)}$$
 Se elige el entero más próximo a esta cantidad.

	Caso	Intervalo de Confianza	Contraste de Hipótesis	Estadístico del Contraste	Región de rechazo
	Para $\mu_1 - \mu_2$ de $N(\mu, \sigma^2)$ y		$H_0: \mu_1 - \mu_2 = d_0; H_1: \mu_1 - \mu_2 \neq d_0$	$p-(\underline{x}-\underline{x})$	$\left\{ \left z_{c} \right > z_{a/2} \right\}$
9	$N(\mu_1,\sigma_1^2)^2$	$(\overline{x} - \overline{y}) \pm z_{\alpha/2} \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}$	$H_0: \mu_1 - \mu_2 \le d_0; H_1: \mu_1 - \mu_2 > d_0$	$z_c = \frac{\left(\frac{\sqrt{1}}{2} - \frac{2}{\sqrt{2}}\right) \frac{\omega_0}{n_1 + \sigma_2^2/n_2} \sim N(0,1)$	$\left\{ Z_{c} > Z_{a} \right\}$
	conocidas		$H_0: \mu_1 - \mu_2 \ge d_0; H_1: \mu_1 - \mu_2 < d_0$		$\left\{ z_{c}<-z_{\alpha}\right\}$
	Para $\mu_1 - \mu_2$ de		$H_0: \mu_1 - \mu_2 = d_0; H_1: \mu_1 - \mu_2 \neq d_0$		$\left\{ \left t_c \right > t_{n_1 + n_2 - 2, \alpha/2} \right\}$
7	$N(\mu_{\scriptscriptstyle \rm I},\sigma_{\scriptscriptstyle \rm I}^{\scriptscriptstyle m z})^{ m y} \ N(\mu_{\scriptscriptstyle \scriptscriptstyle \rm J},\sigma_{\scriptscriptstyle \scriptscriptstyle \rm Z}^{\scriptscriptstyle m z})^{,\sigma_{\scriptscriptstyle \rm I}^{\scriptscriptstyle m z},\sigma_{\scriptscriptstyle \scriptscriptstyle \rm Z}^{\scriptscriptstyle m z}}$	$\left(\overline{x} - \overline{y}\right) \pm t_{\left(n_1 + n_2 - 2\right)\alpha/2} S_p \sqrt{1/n_1 + 1/n_2}$	$H_0: \mu_1 - \mu_2 \le d_0; H_1: \mu_1 - \mu_2 > d_0$	$t_c = \frac{(\overline{x}_1 - \overline{x}_2) - d_0}{c + \frac{1}{n + n_2 - 2}} \sim t_{n_1 + n_2 - 2}$	$\left\{t_c > t_{n_1+n_2-2,\alpha}\right\}$
	desconocidas, $\sigma_1^2 = \sigma_2^2$		$H_0: \mu_1 - \mu_2 \ge d_0: H_1: \mu_1 - \mu_2 < d_0$	op V7''1''7''2	$\left\{ I_c < -I_{n_1 + n_2 - 2, \alpha} \right\}$
	Para $\mu_1 - \mu_2$ de		$H_0: \mu_1 - \mu_2 = d_0; H_1: \mu_1 - \mu_2 \neq d_0$		$\left\{ \left t_{c} \right > t_{f,\alpha/2} \right\}$
2,7	$\begin{cases} N(\mu_1, \sigma_1^2)^{y} \\ N(\mu_1, \sigma_2^2), \sigma_2^2, \sigma_2^2 \end{cases}$	$\left(\overline{X} - \overline{y}\right) \pm t_{f,\alpha/2} \sqrt{s_1^2 / n_1 + s_2^2 / n_2}$	$H_0: \mu_1 - \mu_2 \le d_0; H_1: \mu_1 - \mu_2 > d_0$	$t_c = \frac{\left(\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2\right) - d_0}{\left(\frac{\mathbf{x}}{2} - \frac{\mathbf{x}}{2}\right) - \frac{\mathbf{x}}{2}} \sim t_f$	$\left\{t_c > t_{f,\alpha}\right\}$
	desconocidas, $\sigma_1^2 \neq \sigma_2^2$		$H_0: \mu_1 - \mu_2 \ge d_0; H_1: \mu_1 - \mu_2 < d_0$	$\sqrt{s_1/n_1 + s_2/n_2}$	$\left\{t_c < -t_{f\alpha}\right\}$
	Para u – u caso		$H_0: \mu_1 - \mu_2 = d_0; H_1: \mu_1 - \mu_2 \neq d_0$	P - (± - ±)	$\left\{ \left Z_{c} \right > Z_{cl/2} \right\}$
6	general $(n_1 \text{ y } n_2)$	$(\overline{x} - \overline{y}) \pm z_{\alpha/2} \sqrt{s_1^2 / n_1 + s_2^2 / n_2}$	$H_0: \mu_1 - \mu_2 \le d_0; H_1: \mu_1 - \mu_2 > d_0$	$z_c = \frac{(x_1 - x_2) - a_0}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \sim N(0, 1)$	$\left\{ Z_{c} > Z_{\alpha} \right\}$
	grandes)		$H_0: \mu_1 - \mu_2 \ge d_0; H_1: \mu_1 - \mu_2 < d_0$	7 17 1 1	$\left\{ z_{c}<-z_{\alpha}\right\}$
	Para $p_1 - p_2$ caso		$H_0: p_1 - p_2 = p_0; H_1: p_1 - p_2 \neq p_0$	$(\hat{p}_{\cdot} - \hat{p}_{\cdot}) - p_{\cdot}$	$\left\{ \left Z_{c} \right > Z_{\alpha/2} \right\}$
10	general $(n_1 y n_2)$	$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\hat{p}_1 \hat{q}_1 / n_1 + \hat{p}_2 \hat{q}_2 / n_2}$	$H_0: p_1 - p_2 \le p_0; H_1: p_1 - p_2 > p_0$	$z_c = \frac{(F_1 - F_2) - F_0}{\sqrt{\hat{p}_1 \hat{q}_1 / n_1 + \hat{p}_2 \hat{q}_2 / n_2}} \sim N(0,1)$	$\left\{ z_{c}>z_{\alpha}\right\}$
	granues)		$H_0: p_1 - p_2 \ge p_0; H_1: p_1 - p_2 < p_0$	7 17-7 1 11-1-1	$\left\{ z_{c}<-z_{\alpha}\right\}$
	Para σ_1^2/σ_2^2	(~2 / ~2)	$H_0: \sigma_1^2 = \sigma_2^2; H_1: \sigma_1^2 \neq \sigma_2^2$	2,7	$\left\{\mathbf{F}_{c} \notin \left[F_{n_{1}-1,n_{2}-1,1-cq/2},F_{n_{1}-1,n_{2}-1,cq/2}\right]\right\}$
11	$\operatorname{de} Nig(\mu_{_{\! 1}},\sigma_{_{\! 1}}^2ig)$ y	$\frac{3_1 / 3_2}{F}, \frac{3_1}{s^2} F_{n_2-1,n_1-1,\alpha/2}$	$H_0: \sigma_1^2 \le \sigma_2^2; H_1: \sigma_1^2 > \sigma_2^2$	$F_c = \frac{s_1}{c^2} \sim F_{n_1 - 1, n_2 - 1}$	$\left\{F_c > F_{n_1-1,n_2-1,\alpha}\right\}$
	$Nig(\mu_2,\sigma_2^2ig)$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_0: \sigma_1^2 \ge \sigma_2^2; H_1: \sigma_1^2 < \sigma_2^2$	22	$\left\{F_c < F_{n_1-1,n_2-1,1-\alpha}\right\}$