## Siddhardhan

# Support Vector Machine (SVM) Classifier

- intuition



### Support Vector Machine

#### **About Support Vector Machine model:**

- 1. Supervised Learning Model
- 2. Both Classification & Regression
- 3. Hyperplane
- 4. Support Vectors









SVM in 2 dimensions



SVM in 3 dimensions

#### Hyperplane:

Hyperplane is a line (in 2d space) or a plane that separate the data points into 2 classes.

#### Support Vectors:

Support Vectors are the data points which lie nearest to the hyperplane. If theses data points changes, the position of the hyperplane changes.



#### Hyperplane:

Hyperplane is a line (in 2d space) or a plane that separate the data points into 2 classes.

#### Support Vectors:

Support Vectors are the data points which lie nearest to the hyperplane. If theses data points changes, the position of the hyperplane changes.



#### Advantages:

- 1. Works well with smaller datasets
- 2. Works efficiently when there is a clear margin of separation
- 3. Works well with high dimensional data

#### Disadvantages:

- 1. Not suitable for large datasets as the training time is higher
- 2. Not suitable for noisier datasets with overlapping classes





#### Siddhardhan

# Math behind Support Vector Machine (SVM) Classifier







SVM in 3 dimensions

 $\bullet$  P<sub>1</sub>(-3, 0)

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = \begin{bmatrix} -1\\0 \end{bmatrix} \begin{bmatrix} -3 & 0 \end{bmatrix}$$

$$W^T x = 3$$

( Positive )





Let slope, m = -1

Intercept, c = 0

w --> parameters of the line 
$$(m, c) = (-1, 0)$$

$$P_2(3, 3)$$

$$w^Tx = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} 3 & 3 \end{bmatrix}$$

$$w^Tx = -3 \qquad \text{Siddhardhan}$$
(Negative)

Inference: For all the points which lie in the right side of the hyperplane, w<sup>T</sup>x value will be Negative





# Which is the best Hyperplane?



# Which is the best Hyperplane?





#### **Optimization for Maximum margin:**



$$w^{T}x_{1} + b = 1$$

$$(-) w^{T}x_{2} + b = 1$$

$$w^{T}(x_{1} - x_{2}) = 2$$

$$w^{T}(x_{1} - x_{2}) = \frac{2}{||w||}$$

$$||w||$$
Divide by ||w|| hardhan (magnitude of the vector)

 $(x_1 - x_2) = \frac{2}{\| \cdot \cdot \cdot \|}$  (margin)

#### **Optimization for Maximum margin:**



 $\mathbf{w}^{\mathsf{T}}\mathbf{x}_1 + \mathbf{b} = \mathbf{1}$ 

$$y_i = \begin{cases} -1, & w^T x_1 + b \le -1 \\ 1, & w^T x_1 + b \ge 1 \end{cases}$$
 (Label)

$$(x_1 - x_2) = \frac{2}{||w||}$$
 (margin)

$$w^T x_2 + b = -1$$
 max  $\left(\frac{2}{||w||}\right)$  Such that,

$$y_i = \begin{cases} -1, & w^T x_1 + b \le -1 \\ 1, & w^T x_1 + b \ge 1 \end{cases}$$



#### Maximum margin without overfitting:



$$\max \left( \frac{2}{||w||} \right) \quad \text{Such that,}$$

$$y_i = \begin{cases} -1, & w^T x_1 + b \le -1 \\ 1_0 & w^T x_1 + b \ge 1 \end{cases}$$
 Siddhardhan

$$\min \left(\frac{||w||}{2}\right) + c * \Sigma \epsilon_i$$

c --> Number of errors

 $\varepsilon_i$  --> Error magnitude

# SVM Kernel

#### **SVM Kernel:**

Kernel Function generally transforms the training set of data so that a non-linear decision surface can be transformed to a linear equation in a higher number of dimension spaces. It returns the inner product between two points in a standard feature dimension.



## **SVM Kernels**

#### Types of SVM Kernels:

- 1. Linear
- 2. Polynomial
- 3. Radial Basis Function (rbf)
- 4. Sigmoid



# **SVM Kernels**



Class 1

Class 2
 Siddhardhan



# **SVM Kernels**

| Feature (x)    | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4  | 5  | 6  |
|----------------|----|----|----|----|----|----|---|---|---|---|----|----|----|
| x <sup>2</sup> | 36 | 25 | 16 | 9  | 4  | 1  | 0 | 1 | 4 | 9 | 16 | 25 | 36 |



## Types of SVM Kernels

#### 1. Linear Kernel:

$$K(x_1, x_2) = x_1^T x_2$$

#### 2. Polynomial Kernel:

$$K(x_1, x_2) = (x_1^T x_2 + r)^d$$

Siddhardhan

# 3. Radial Basis Function (rbf) Kernel:

$$K(x_1, x_2) = \exp(-\gamma \cdot ||x_1 - x_2||^2)$$

#### 4. Sigmoid Kernel:

$$K(x_1, x_2) = tanh(\gamma . x_1^T x_2 + r)$$

#### Siddhardhan

# Loss Function for Support Vector Machine Classifier



#### **Loss Function**

Loss function measures how far an estimated value is from its true value.

It is helpful to determine which model performs better & which parameters are better.



Siddhardhan

Loss = 
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

For Support Vector Machine Classifier "Hinge Loss" is used as the Loss Function.



#### Hinge Loss

Hinge Loss is one of the types of Loss Function, mainly used for maximum margin classification models.

Hinge Loss incorporates a margin or distance from the classification boundary into the loss calculation. Even if new observations are classified correctly, they can incur a penalty if the margin from the decision boundary is not large enough.

$$L = max (0, 1 - y_i (w^T x_i + b))$$

- 0 for correct classification
- 1 for wrong classification



#### Hinge Loss

Hinge Loss is one of the types of Loss Function, mainly used for maximum margin classification models.

Hinge Loss incorporates a margin or distance from the classification boundary into the loss calculation. Even if new observations are classified correctly, they can incur a penalty if the margin from the decision boundary is not large enough.

Siddhardhan

$$L = max (0, 1 - y_i (w^T x_i + b))$$

0 - for correct classification

1 - for wrong classification



#### Hinge Loss

#### Misclassification:

$$y_i = 1 \hat{y}_i = -1$$

$$L = (1 - (1)(-1)$$

$$L = (1+1)$$

#### Correct classification:

$$y_i = 1 \hat{y}_i = 1$$

$$L = (0 - (1)(1)$$

$$L = (0-1)$$

$$L = -1$$
 (Low loss Value)

$$y_i = -1 \hat{y}_i = 1$$

$$L = (1 - (-1)(1)$$

$$L = (1+1)$$

$$y_i = -1 \ \hat{y}_i = -1$$

$$L = (0 - (-1)(-1))$$

$$L = (0-1)$$

$$L = -1$$
 (Low loss Value)

$$L = max (0, 1 - y_i (w^T x_i + Sib)) ardhan$$

0 - for correct classification

1 - for wrong classification

### Siddhardhan

# Gradient Descent for Support Vector Machine Classifier











Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

Siddhardhan

w --> weight

b --> bias

L --> Learning Rate

 $\frac{dJ}{dw}$  --> Partial Derivative of cost function with respect to w

 $\frac{db}{db}$  --> Partial Derivative of cost function with respect to b

#### **Gradients for SVM Classifier**

if 
$$(y_i \cdot (w.x + b) \ge 1)$$
:

$$\frac{dJ}{dw} = 2\lambda w$$

$$\frac{dJ}{db} = 0$$

else 
$$(y_i \cdot (w.x + b) < 1)$$
:

$$\frac{dJ}{dw} = 2\lambda w - y_i \cdot x_i$$

$$\frac{dJ}{db} = y_i$$

$$W_2 = W_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$