α) Η συνθήκη ισορροπίας εκφράζεται από την διανυσματική ισότητα: $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$.

β) Από το α) ερώτημα έχουμε $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$, οπότε $\overrightarrow{F_1} + \overrightarrow{F_2} = -\overrightarrow{F_3}$. Άρα, τα διανύσματα $\overrightarrow{F_1} + \overrightarrow{F_2}$ και $\overrightarrow{F_3}$ είναι αντίθετα.

γ)

i. Από το β) ερώτημα, τα σημεία Γ , 0, Δ είναι συνευθειακά. Οπότε, οι γωνίες $\widehat{A0\Delta}$ και $\widehat{B0\Delta}$ είναι $60^{\rm o}$, ως παραπληρωματικές των γωνιών $\widehat{A0\Gamma}$, $\widehat{B0\Gamma}$, αντίστοιχα, που εξ υποθέσεως είναι ίσες με $120^{\rm o}$ η κάθε μία.

ii. Από τη γεωμετρική ερμηνεία του αθροίσματος δύο διανυσμάτων, το τετράπλευρο $OA\Delta B$ είναι παραλληλόγραμμο, άρα οι γωνίες $\widehat{AO\Delta}$ και $\widehat{O\Delta B}$ είναι ίσες, ως εντός εναλλάξ και άρα, από το γι ερώτημα, έχουμε $\widehat{O\Delta B} = 60^{\circ}$.

δ) Από το ερώτημα γ), έπεται ότι το τρίγωνο $OB\Delta$ είναι ισόπλευρο, καθώς $\widehat{BO\Delta} = \widehat{O\Delta B} = 60^{\rm o}$, οπότε και η τρίτη του γωνία $\widehat{OB\Delta}$ αναγκαστικά θα είναι $60^{\rm o}$ (μια και το άθροισμα των γωνιών κάθε τριγώνου είναι ίσο με $180^{\rm o}$). Συνεπώς, $|\overrightarrow{OB}| = |\overrightarrow{B\Delta}| = |\overrightarrow{O\Delta}|$, δηλαδή $|\overrightarrow{F_2}| = |\overrightarrow{F_1}| = |\overrightarrow{F_1}| + |\overrightarrow{F_2}|$. Όμως, από το β) ερώτημα, $|\overrightarrow{F_1}| + |\overrightarrow{F_2}| = |\overrightarrow{F_3}|$. Επομένως, $|\overrightarrow{F_1}| = |\overrightarrow{F_2}| = |\overrightarrow{F_3}|$, ή ισοδύναμα $|\overrightarrow{F_1}| = |\overrightarrow{F_2}| = |\overrightarrow{F_3}|$.