Συμπερασμός στη Λογική Πρώτης Τάξης

Συμπερασμός στη Λογική Πρώτης Τάξης

Σε οποιαδήποτε λογική, ο συμπερασμός (inference) ή η συλλογιστική (reasoning) είναι η διαδικασία της μηχανικής εξαγωγής συμπερασμάτων από δοσμένες υποθέσεις.

Οι υποθέσεις μπορεί να είναι η βάση γνώσεων που έχουμε δημιουργήσει για μια εφαρμογή και το συμπέρασμα ένας τύπος που θέλουμε να ελέγξουμε αν έπεται λογικά από τη γνώση που έχουμε.

Ο συμπερασμός είναι συνήθως μια διαδικασία με ένα ή περισσότερα βήματα. Κάθε βήμα αυτής της διαδικασίας περιλαμβάνει την εφαρμογή ενός κανόνα συμπερασμού (inference rule).

Κανόνες Συμπερασμού

Ένας **κανόνας συμπερασμού** (inference rule) είναι μια έκφραση της μορφής

$$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\beta}$$

όπου $\alpha_1, \alpha_2, \ldots, \alpha_n$ είναι τύποι της λογικής πρώτης τάξης οι οποίοι ονομάζονται υποθέσεις και β είναι ένας τύπος που ονομάζεται συμπέρασμα.

Ένας κανόνας συμπερασμού **εφαρμόζεται** ως εξής: οποτεδήποτε έχουμε ένα σύνολο τύπων που ταιριάζουν με τις υποθέσεις του κανόνα, μπορούμε να εξάγουμε το συμπέρασμα.

Επειδή ο συμπερασμός είναι μια μηχανική διαδικασία, μπορεί να κωδικοποιηθεί από ένα αλγόριθμο και να χρησιμοποιηθεί για την υλοποίηση ευφυών πρακτόρων.

Η Έννοια της Παραγωγής ή Απόδειξης

Έστω μια μέθοδος συμπερασμού της λογικής πρώτης τάξης και KB ένα σύνολο υποθέσεων.

Θα λέμε ότι ένα συμπέρασμα ϕ παράγεται από το σύνολο των υποθέσεων KB ανν

- ullet ϕ είναι ένα στοιχείο του συνόλου KB
- ϕ είναι το αποτέλεσμα της εφαρμογής ενός κανόνα συμπερασμού σε ένα σύνολο προτάσεων που παράγονται από το σύνολο KB.

Η Έννοια της Παραγωγής ή Απόδειξης

Μια παραγωγή (derivation) ή απόδειξη (proof) ενός συμπεράσματος ϕ από ένα σύνολο υποθέσεων KB είναι μια ακολουθία τύπων στην οποία κάθε τύπος είναι στοιχείο της KB ή προκύπτει από την εφαρμογή ενός κανόνα συμπερασμού σε προηγούμενα στοιχεία της ακολουθίας.

Συμβολισμός: Όταν υπάρχει μια απόδειξη του τύπου ϕ από την KB, τότε γράφουμε $KB \vdash \phi$.

Όρθές και Πλήρεις Μέθοδοι Συμπερασμού

Θέλουμε να βρούμε μια μέθοδο συμπερασμού για τη λογική πρώτης τάξης που να είναι **ορθή και πλήρης**, δηλαδή να ισχύει

$$KB \models \alpha \text{ ann } KB \vdash \alpha$$

για κάθε σύνολο τύπων KB και κάθε τύπο α .

Κανόνες Συμπερασμού

Οι παρακάτω κανόνες συμπερασμού της προτασιακής λογικής ισχύουν και για την λογική πρώτης τάξης:

- Τρόπος του θέτειν (modus ponens): $\frac{\alpha, \alpha \Rightarrow \beta}{\beta}$
- Απαλοιφή σύζευξης: $\frac{\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n}{\alpha_i}$
- Εισαγωγή σύζευξης: $\frac{\alpha_1,\alpha_2,...,\alpha_n}{\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n}$
- Εισαγωγή διάζευξης: $\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee ... \vee \alpha_n}$
- Απαλοιφή διπλής άρνησης: $\frac{\neg \neg \alpha}{\alpha}$
- Μοναδιαία ανάλυση : $\frac{\alpha \lor \beta, \ \neg \beta}{\alpha}$
- Ανάλυση: $\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$

Κανόνες Συμπερασμού (συνέχεια)

Υπάρχουν επίσης κανόνες συμπερασμού που είναι ειδικά για την λογική πρώτης τάξης.

 Γ ια να τους παρουσιάσουμε, ϑ α χρειαστεί πρώτα να ορίσουμε μεριχές νέες έννοιες.

Η Έννοια της Αντικατάστασης

Ορισμός. Μια αντικατάσταση (substitution) θ είναι ένα πεπερασμένο σύνολο της μορφής $\{v_1/t_1,\ldots,v_n/t_n\}$ όπου

- κάθε v_i είναι μια μεταβλητή και κάθε t_i είναι ένας όρος διαφορετικός από την v_i ,
- ullet οι μεταβλητές v_1,\ldots,v_n είναι διαφορετικές μεταξύ τους, και
- καμιά μεταβλητή v_i δεν υπάρχει σε κάποιο από τους όρους t_i .

Κάθε στοιχείο t_i λέγεται δέσμευση (binding) για την v_i . Οι μεταβλητές που έχουν δεσμεύσεις λέγονται δεσμευμένες (bound).

Η **κενή αντικατάσταση (empty substitution)** θα συμβολίζεται με {}.

Η Έννοια της Βασικής Αντικατάστασης

Ορισμός. Μια αντικατάσταση λέγεται **βασική** (ground) αν οι όροι t_i δεν περιέχουν μεταβλητές (δηλαδή, είναι **βασικοί** όροι - ground terms).

Παραδείγματα

Τα σύνολα

 $\{x/John, y/Mary\}$ xx. $\{x/John, y/MotherOf(z)\}$

είναι αντικαταστάσεις. Η πρώτη είναι βασική.

Τα σύνολα

$$\{x/F(x)\}$$
 and $\{x/G(y),y/F(x)\}$

δεν είναι αντικαταστάσεις.

Εφαρμογή μιας Αντικατάστασης σ΄ ένα Τύπο

Όρισμός. Έστω $\theta = \{v_1/t_1, \ldots, v_n/t_n\}$ μια αντικατάσταση και α μια έκφραση (όρος ή τύπος) της λογικής πρώτης τάξης χωρίς ποσοδείκτες. Θα συμβολίζουμε με

$$SUBST(\theta, \alpha)$$

την έκφραση που προκύπτει από την α όταν εφαρμόσουμε την αντικατάσταση θ , δηλαδή όταν αντικαταστήσουμε κάθε μεταβλητή v_i με τον όρο t_i $(i=1,\ldots,n)$.

Παραδείγματα

 $SUBST(\{x/John, y/Mary\}, Loves(x, y)) = Loves(John, Mary)$ $SUBST(\{x/John, y/HouseOf(z)\}, Likes(x, y)) = Likes(John, HouseOf(z))$

Παρατήρηση: $SUBST(\{\},\alpha)=\alpha$ για κάθε έκφραση της λογικής πρώτης τάξης α .

Δύο Νέοι Κανόνες Συμπερασμού

Θα δώσουμε δύο νέους κανόνες συμπερασμού για τη λογική πρώτης τάξης που αφορούν τους ποσοδείκτες:

• Καθολικός Προσδιορισμός (universal instantiation): Για κάθε τύπο α, μεταβλητή v και βασικό όρο t:

$$\frac{(\forall v)\alpha}{SUBST(\{v/t\},\alpha)}$$

Παραδείγματα

- Από τον τύπο $(\forall x) Likes(x, IceCream)$ μπορούμε να συμπεράνουμε Likes(Ben, IceCream) χρησιμοποιώντας την αντικατάσταση $\{x/Ben\}$.
- Από τον τύπο $(\forall x)(\exists z)Hates(x,z)$ μπορούμε να συμπεράνουμε $(\exists z)Hates(MotherOf(Ben),z)$ χρησιμοποιώντας την αντικατάσταση $\{x/MotherOf(Ben)\}$.

Προσοχή: Ο κανόνας του καθολικού προσδιορισμού ισχύει και για μη βασικούς όρους t, όμως πρέπει να είμαστε προσεκτικοί με τις μεταβλητές που εμφανίζονται στα α και t. Δείτε το βιβλίο λογικής του Enderton για τον ακριβή ορισμό του κανόνα σ΄ αυτή την περίπτωση.

Δύο Νέοι Κανόνες Συμπερασμού

• Υπαρξιακός Προσδιορισμός (existential instantiation): Για κάθε τύπο α και μεταβλητή v:

$$\frac{(\exists v)\alpha}{SUBST(\{v/K\},\alpha)}$$

όπου K είναι ένα **νέο** σύμβολο σταθεράς.

Παράδειγμα: Από $(\exists x) Likes(x, IceCream)$, μπορούμε να συμπεράνουμε Likes(Somebody, IceCream) εφόσον το Somebody είναι ένα νέο σύμβολο σταθεράς που δεν έχει χρησιμοποιηθεί ενωρίτερα.

Παράδειγμα Απόδειξης

Ας θεωρήσουμε το παρακάτω κείμενο:

Ο νόμος λέει ότι είναι έγκλημα για έναν Αμερικανό να πουλάει όπλα σε εχθρικά κράτη. Το κράτος Νοηο, που είναι εχθρός της Αμερικής, έχει πυραύλους. Όλους αυτούς τους πυραύλους τους έχει πουλήσει στο Νοηο ο συνταγματάρχης West, ο οποίος είναι Αμερικανός.

Πως μπορούμε να 'μεταφράσουμε' αυτό το κείμενο σε λογική πρώτης τάξης, και να χρησιμοποιήσουμε τους κανόνες συμπερασμού που δώσαμε παραπάνω, για να αποδείξουμε ότι ο West είναι εγκληματίας;

 είναι έγκλημα για έναν Αμερικανό να πουλάει όπλα σε εχθρικά κράτη.

$$(\forall x, y, z) \; (American(x) \land Weapon(y) \land Nation(z) \land Hostile(z) \land Sells(x, z, y) \Rightarrow Criminal(x))$$

• Το κράτος Nono ...

• ... που είναι εχθρός της Αμερικής ...

• ... έχει πυραύλους.

$$(\exists x) \ (Owns(Nono, x) \land Missile(x))$$

• Όλους αυτούς τους πυραύλους τους έχει πουλήσει στο Nono ο συνταγματάρχης West.

 $(\forall x) \ (Owns(Nono, x) \land Missile(x) \Rightarrow Sells(West, Nono, x))$

Παρατήρηση: Δεν κατραγράψαμε τον στρατιωτικό βαθμό του West επειδή δεν θα μας χρειαστεί για να βγάλουμε το συμπέρασμα μας.

• ... ο οποίος είναι Αμερικανός.

American(West)

Θα χρειαστούμε επίσης τις παρακάτω προτάσεις που δεν υπάρχουν στο κείμενο που μας δόθηκε. Οι προτάσεις αυτές κωδικοποιούν γνώση που έχουμε ήδη σχετικά με το πεδίο εφαρμογής και μπορούμε να την χρησιμοποιήσουμε.

• Η Αμερική είναι κράτος.

• Οι πύραυλοι είναι όπλα.

$$(\forall x) \ (Missile(x) \Rightarrow Weapon(x))$$

Στο παραπάνω κείμενο 'εχθρός της Αμερικής ' σημαίνει 'εχθρικό κράτος '.

$$(\forall x) \ (Enemy(x, America) \Rightarrow Hostile(x))$$

Παρατήρηση: Θα μπορούσαμε να έχουμε διπλή συνεπαγωγή. Η απλή συνεπαγωγή είναι αρχετή για να βγάλουμε το συμπέρασμα μας.

• Από τον τύπο $(\exists x) \; (Owns(Nono, x) \land Missile(x))$ και τον κανόνα του υπαρξιακού προσδιορισμού έχουμε:

 $Owns(Nono, M1) \wedge Missile(M1)$

• Από τον τύπο $Owns(Nono, M1) \wedge Missile(M1)$ και τον κανόνα απαλοιφής της σύζευξης έχουμε:

Owns(Nono, M1), Missile(M1)

• Από τον τύπο $(\forall x)$ $(Missile(x) \Rightarrow Weapon(x))$ και τον κανόνα του καθολικού προσδιορισμού έχουμε:

 $Missile(M1) \Rightarrow Weapon(M1)$

• Από τούς τύπους $Missile(M1), Missile(M1) \Rightarrow Weapon(M1)$ και τον κανόνα Modus Ponens έχουμε:

• Από τον τύπο

$$(\forall x) \ (Owns(Nono, x) \land Missile(x) \Rightarrow Sells(West, Nono, x))$$

και τον κανόνα του καθολικού προσδιορισμού έχουμε:

 $Owns(Nono, M1) \land Missile(M1) \Rightarrow Sells(West, Nono, M1)$

• Από τούς τύπους $Owns(Nono, M1) \wedge Missile(M1)$,

 $Owns(Nono, M1) \land Missile(M1) \Rightarrow Sells(West, Nono, M1)$

και τον κανόνα Modus Ponens έχουμε:

Sells(West, Nono, M1)

 $American(West) \wedge Weapon(M1) \wedge Nation(Nono) \wedge$

 $Hostile(Nono) \land Sells(West, Nono, M1) \Rightarrow Criminal(West)$

• Από τον τύπο $(\forall x)$ $(Enemy(x, America) \Rightarrow Hostile(x))$ και τον κανόνα του καθολικού προσδιορισμού έχουμε:

 $Enemy(Nono, America) \Rightarrow Hostile(Nono)$

• Από τους τύπους Enemy(Nono, America),

 $Enemy(Nono, America) \Rightarrow Hostile(Nono)$

και τον κανόνα Modus Ponens έχουμε:

Hostile(Nono)

• Από τους τύπους

American(West), Weapon(M1), Nation(Nono),

 $Hostile(Nono),\ Sells(West,Nono,M1)$

και τον κανόνα εισαγωγής σύζευξης έχουμε:

 $American(West) \wedge Weapon(M1) \wedge Nation(Nono) \wedge$

 $Hostile(Nono) \land Sells(West, Nono, M1)$

• Από τους τύπους

 $American(West) \land Weapon(M1) \land Nation(Nono) \land$

 $Hostile(Nono) \land Sells(West, Nono, M1),$

 $American(West) \land Weapon(M1) \land Nation(Nono) \land$

 $Hostile(Nono) \land Sells(West, Nono, M1) \Rightarrow Criminal(West)$

και τον κανόνα Modus Ponens έχουμε το συμπέρασμα μας:

Criminal(West)

Η Εύρεση Απόδειξης ως Πρόβλημα Αναζήτησης

Η εύρεση απόδειξης μπορεί να διατυπωθεί σαν πρόβλημα αναζήτησης:

- Αρχική κατάσταση: η δοσμένη βάση γνώσης KB.
- Ενέργειες: οι εφαρμόσιμοι κανόνες συμπερασμού
- Έλεγχος στόχου: Η βάση γνώσης KB περιέχει την πρόταση που προσπαθούμε να αποδείξουμε.

Έτσι κάθε αλγόριθμος αναζήτησης που γνωρίζουμε θα μπορούσε να χρησιμοποιηθεί για να βρεθεί μια απόδειξη. Δυστυχώς όμως το πεδίο αναζήτησης είναι άπειρο!

Αναγωγή σε Προτασιακή Λογική

Παρατήρηση: Στο προηγούμενο παράδειγμα είδαμε ότι η χρήση του καθολικού προσδιορισμού και του υπαρξιακού προσδιορισμού, μας οδηγούσε σε τύπους χωρίς μεταβλητές που είναι ουσιαστικά ισοδύναμοι με τύπους της προτασιακής λογικής.

Ερώτηση: Μήπως θα μπορούσαμε να μετατρέψουμε οποιοδήποτε σύνολο τύπων της λογικής πρώτης τάξης KB σε ένα σύνολο τύπων της προτασιακής λογικής KB_p εφαρμόζοντας υπαρξιακό προσδιορισμό όπου αυτός είναι απαραίτητος και καθολικό προσδιορισμό για όλες τις δυνατές περιπτώσεις όρων;

Αναγωγή σε Προτασιακή Λογική

Αν η KB δεν περιέχει σύμβολα συναρτήσεων, τότε η KB_p είναι πεπερασμένη και μπορούμε να εφαρμόσουμε ορθούς και πλήρεις κανόνες συμπερασμού της προτασιακής λογικής (ή πίνακες αληθείας) για να αποφασίσουμε σχετικά με ικανοποιησιμότητα, λογική κάλυψη, λογική ισοδυναμία ή εγκυρότητα.

Στην πράξη θα χρησιμοποιούσαμε κάποιο αποδοτικό αλγόριθμο για το πρόβλημα της ικανοποιησιμότητας.

Αναγωγή σε Προτασιακή Λογική

Αν όμως υπάρχουν σύμβολα συναρτήσεων στην KB, τότε η KB_p μπορεί να είναι άπειρη: μπορούμε να εφαρμόσουμε καθολικό προσδιορισμό για όλους τους (άπειρους) όρους που μπορούν να δημιουργηθούν με τα σύμβολα σταθερών και μεταβλητών της KB.

Σ΄ αυτή την περίπτωση οι κανόνες συμπερασμού της προτασιακής λογικής δεν μπορούν να βοηθήσουν. Ευτυχώς για μας, υπάρχει το **θεώρημα του Herbrand** το οποίο μπορούμε να χρησιμοποιήσουμε σ΄ αυτή την περίπτωση.

Θεώρημα του Herbrand

Το θεώρημα του Herbrand μας λέει το εξής (χωρίς να δίνουμε όλες τις λεπτομέρειες):

Αν $KB \models \phi$ τότε υπάρχει ένα πεπερασμένο υποσύνολο S της KB_p ώστε $S \models \phi$.

Ερώτηση: Και τι γίνεται αν $KB \not\models \phi$; Μπορούμε να το ξέρουμε;

Ημιαποφασιμότητα της Λογικής Κάλυψης

Η απάντηση δυστυχώς είναι όχι. Το πρόβλημα της λογικής κάλυψης για την λογική πρώτης τάξης είναι ημιαποφασίσιμο (semi-decidable) όπως απέδειξαν οι Alan Turing και Alonzo Church (το ίδιο ισχύει και για το πρόβλημα της ικανοποιησιμότητας, της λογικής ισοδυναμίας και της εγκυρότητας).

Δηλαδή, για κάθε αλγόριθμο για το πρόβλημα της λογικής κάλυψης (π.χ., ανάλυση) ισχύει το εξής: Καθώς ο αλγόριθμος τρέχει, δεν μπορούμε να γνωρίζουμε ότι έχει πέσει σε ατέρμονα βρόγχο ή ότι η απόδειξη θα εμφανιστεί την επόμενη χρονική στιγμή.

Υπάρχουν διάφορες αποδείξεις στη βιβλιογραφία σχετικά με την ημιαποφασισιμότητα του προβλήματος της λογικής κάλυψης για τη λογική πρώτης τάξης.

Αυτό που αξίζει να παρατηρήσουμε είναι ότι χρειαζόμαστε ελάχιστη από την εκφραστική ικανότητα της λογικής πρώτης τάξης για να φτάσουμε σε ημιαποφασισιμότητα π.χ., μόνο ένα διμελές κατηγόρημα και καθόλου σύμβολα συναρτήσεων.

Το αποτέλεσμα αυτό είναι από ένα άρθρο των Kalmar and Suranyi στο Journal of Symbolic Logic, Vol. 15, 1950, pp. 161-173.

Αποδοτικές Μέθοδοι Συμπερασμού

Θα προχωρήσουμε τώρα την παρουσίαση μας και θα παρουσιάσουμε μεθόδους συμπερασμού που μας επιτρέπουν να κάνουμε αποδείξεις με **αποδοτικότερο** τρόπο απ΄ ότι κάναμε μέχρι τώρα.

Πριν προχωρήσουμε θα χρειαστούμε μερικές νέες έννοιες.

Σύνθεση Αντικαταστάσεων

Ορισμός. Έστω οι αντικαταστάσεις $\theta_1 = \{u_1/s_1, \ldots, u_m/s_m\}$ και $\theta_2 = \{v_1/t_1, \ldots, v_n/t_n\}$ που είναι τέτοιες ώστε καμιά μεταβλητή που είναι δεσμευμένη στη θ_1 να μην εμφανίζεται στην θ_2 . Η σύνθεση (composition) της θ_1 με την θ_2 συμβολίζεται με $COMPOSE(\theta_1, \theta_2)$ και είναι η αντικατάσταση

 $\{u_1/SUBST(\theta_2, s_1), \ldots, u_m/SUBST(\theta_2, s_m), v_1/t_1, \ldots, v_n/t_n\}.$

Διαισθητικά: Για να υπολογίσουμε τη σύνθεση $COMPOSE(\theta_1,\theta_2)$, εφαρμόζουμε τη θ_2 στους όρους της θ_1 και μετά προσθέτουμε τα ζεύγη της θ_2 .

Συμβολισμός: Άλλοι συγγραφείς συμβολίζουν τη σύνθεση της θ_1 με την θ_2 ως εξής: $\theta_1\theta_2$

Παραδείγματα Σύνθεσης

- Έστω $\theta_1=\{x/y,z/G(w)\}$ και $\theta_2=\{y/A,w/D\}$. Τότε $COMPOSE(\theta_1,\theta_2)=\{x/A,z/G(D),y/A,w/D\}.$
- Έστω $\theta_1 = \{x/y, z/G(w,y)\}$ και $\theta_2 = \{y/v, w/D\}$. Τότε $COMPOSE(\theta_1, \theta_2) = \{x/v, z/G(D,v), y/v, w/D\}.$
- Έστω $\theta_1 = \{x/y, z/G(w)\}$ και $\theta_2 = \{y/x\}$. Η σύνθεση δεν ορίζεται σε αυτή την περίπτωση επειδή το x είναι δεσμευμένη μεταβλητή στην θ_1 και υπάρχει στην θ_2 .
- Έστω $\theta_1 = \{x/F(y), z/y, w/D\}$ και $\theta_2 = \{y/A, v/E\}$. Τότε $COMPOSE(\theta_1, \theta_2) = \{x/F(A), z/A, w/D, y/A, v/E\}.$

Ιδιότητες της Σύνθεσης

Θεώρημα. Έστω οι αντικαταστάσεις θ_1, θ_2 και θ_3 και η έκφραση της λογικής πρώτης τάξης ϕ . Τότε

- 1. $COMPOSE(\theta_1, \{\}) = COMPOSE(\{\}, \theta_1) = \theta_1$
- 2. $SUBST(\theta_2, SUBST(\theta_1, \phi)) = SUBST(COMPOSE(\theta_1, \theta_2), \phi)$ οποτεδήποτε ορίζεται η σύνθεση.
- 3. $COMPOSE(COMPOSE(\theta_1, \theta_2), \theta_3) = COMPOSE(\theta_1, COMPOSE(\theta_2, \theta_3))$ οποτεδήποτε ορίζεται η σύνθεση.

Η Έννοια της Ενοποίησης (Unification)

Ορισμός. Ένα σύνολο εκφράσεων $\{\phi_1,\ldots,\phi_n\}$ είναι ενοποιήσιμο (unifiable) αν και μόνο αν υπάρχει μια αντικατάσταση θ που όταν εφαρμοστεί στις εκφράσεις ϕ_1,\ldots,ϕ_n τις κάνει ίδιες συντακτικά, δηλαδή

$$SUBST(\theta, \phi_1) = \cdots = SUBST(\theta, \phi_n).$$

Σε αυτή την περίπτωση, η θ λέγεται ενοποιητής (unifier) των εκφράσεων.

Παραδείγματα Ενοποίησης

- Το σύνολο εκφράσεων $\{P(A,y,z),\ P(x,B,z)\}$ είναι ενοποιήσιμο. Η αντικατάσταση $\{x/A,y/B,z/C\}$ είναι ένας ενοποιητής. Υπάρχουν άλλοι ενοποιητές όπως $\{x/A,y/B,z/F(w)\},\ \{x/A,y/B\}$ κτλ.
- Το σύνολο εκφράσεων $\{P(F(x),A),\ P(y,F(w))\}$ δεν είναι ενοποιήσιμο.

Πιο Γενιχοί Ενοποιητές (Most General Unifiers)

Ορισμός. Ένας πιο γενικός ενοποιητής (most general unifier ή mgu) ενός συνόλου εκφράσεων S είναι ένας ενοποιητής γ με την ακόλουθη ιδιότητα. Για κάθε ενοποιητή σ του S, υπάρχει μια αντικατάσταση θ τέτοια ώστε $\sigma = COMPOSE(\gamma, \theta)$.

Παραδείγματα:

• Ένας mgu του συνόλου $\{P(A,y,z),\ P(x,B,z)\}$ είναι ο $\{x/A,y/B\}$.

Άλλοι ενοποιητές προκύπτουν από τον mgu. Για παράδειγμα: $\{x/A,y/B,z/F(w)\}=COMPOSE(\{x/A,y/B\},\{z/F(w)\}).$

• Ένας mgu του συνόλου $\{P(F(x),z),\ P(y,A)\}$ είναι $\{y/F(x),z/A\}.$

Πιο Γενικοί Ενοποιητές

Παράδειγμα: Ένας mgu των εκφράσεων P(x) και P(y) είναι ο $\{x/y\}$. Ένας άλλος mgu είναι ο $\{y/x\}$.

Ένας πιο γενικός ενοποιητής είναι μοναδικός αν δεν λάβουμε υπόψη μας τις πιθανές μετονομασίες μεταβλητών. Γι αυτό συνήθως μιλάμε για τον τον πιο γενικό ενοποιητή ενός συνόλου εκφράσεων.

Τώρα θα παρουσιάσουμε τον αλγόριθμο ενοποίησης UNIFY ο οποίος βρίσκει τον πιο γενικό ενοποιητή δύο εκφράσεων της λογικής πρώτης τάξης.

Ένας Αλγόριθμος Ενοποίησης

```
function Unify(x,y) returns the mgu of x and y
   if x = y then return \{\}
   if Variable(x) then return Unify-Var(x,y)
   if Variable(y) then return Unify-Var(y, x)
   if CONSTANT(x) or CONSTANT(y) then return failure
   if not(Length(x) = Length(y)) then return failure
   i \leftarrow 0; \gamma \leftarrow \{\}
   tag if i = LENGTH(x) + 1 then return \gamma
          \sigma \leftarrow \text{Unify}(\text{Part}(x, i), \text{Part}(y, i))
          if \sigma = \text{failure then return failure}
          \gamma \leftarrow COMPOSE(\gamma, \sigma)
          x \leftarrow SUBST(\gamma, x)
          y \leftarrow SUBST(\gamma, y)
          i \leftarrow i + 1
          goto tag
```

Ένας Αλγόριθμος Ενοποίησης

function Unify-Var(x,y) returns a substitution if x occurs in y then return failure return $\{x/y\}$

Σχόλια για τον Unify

- Ο αλγόριθμος UNIFY παρουσιάστηκε πρώτη φορά από τον Robinson το 1965.
- Μπορείτε να χρησιμοποιείτε αυτό τον αλγόριθμο για να υπολογίζετε τον mgu όταν οι δοσμένες εκφράσεις είναι πολύπλοκες.
- Οι είσοδοι του αλγορίθμου UNIFY μπορεί να είναι σταθερές, μεταβλητές, όροι ή ατομικές προτάσεις.
- Το μήχος (length) ενός όρου ή μιας ατομικής πρότασης είναι ο αριθμός των ορισμάτων της.

Σχόλια για τον Unify

- Το i-οστό μέρος ενός όρου ή μιας ατομικής πρότασης x υπολογίζεται από την συνάρτηση PART(x,i).
- Για ένα όρο $F(t_1, ..., t_n)$, το μηδενικό μέρος του όρου είναι το σύμβολο συνάρτησης F και τα ορίσματα $t_1, ..., t_n$ είναι τα υπόλοιπα μέρη (πρώτο, δεύτερο, ... n-οστό).
- Για ένα ατομικό τύπο $P(t_1, \ldots, t_n)$, το μηδενικό μέρος του τύπου είναι το σύμβολο κατηγορήματος P και τα ορίσματα t_1, \ldots, t_n είναι τα υπόλοιπα μέρη (πρώτο, δεύτερο, ... n-οστό).
- Η συνθήκη της εντολής if στη συνάρτηση UNIFY-VAR λέγεται έλεγχος ύπαρξης (occurs-check). Αυτός ο έλεγχος επιβεβαιώνει ότι όροι όπως ο z και ο F(z) δεν ενοποιούνται.

Πολυπλοκότητα του Unify

Η πολυπλοκότητα χειρίστης περίπτωσης του αλγόριθμου UNIFY είναι **εκθετική** ως προς το μήκος των εκφράσεων εισόδου.

Παράδειγμα: Αν ενοποιήσουμε τους παρακάτω δύο όρους

$$H(x_1, x_2, \dots, x_n, F(y_0, y_0), \dots, F(y_{n-1}, y_{n-1}), y_n)$$

$$H(F(x_0,x_0),F(x_1,x_1),\ldots,F(x_{n-1},x_{n-1}),y_1,\ldots,y_n,x_n)$$

κάθε μεταβλητή x_i και y_i θα είναι δεσμευμένη σε έναν όρο με $2^{i+1}-1$ σύμβολα.

Το πρόβλημα εδώ είναι ότι ο πιο γενικός ενοποιητής των παραπάνω όρων περιέχει τους ίδιους υποόρους πολλές φορές.

Πολυπλοκότητα του Unify

Υπάρχουν καλύτεροι αλγόριθμοι ενοποίησης στη βιβλιογραφία (πολυωνυμικού χρόνου).

Η βασική ιδέα σε αυτούς τους αλγορίθμους είναι η χρήση κατάλληλων δομών δεδομένων (π.χ., γράφων) για την αναπαράσταση των εκφράσεων της λογικής πρώτης τάξης και η εφαρμογή των αντικαταστάσεων με προσοχή ώστε να αποφεύγονται προβλήματα όπως αυτά του προηγούμενου παραδείγματος.

Γενικευμένος Τρόπος του Θέτειν

Ο κανόνας συμπερασμού γενικευμένος τρόπος του θέτειν (Generalized Modus Ponens, GMP) είναι ο εξής.

Αν οι τύποι $p_1,\ldots,p_n,p_1',\ldots,p_n',q$ είναι ατομικοί και υπάρχει μια αντικατάσταση θ τέτοια ώστε για κάθε $1\leq i\leq n,$ $SUBST(\theta,p_i')=SUBST(\theta,p_i)$ τότε:

$$\frac{p'_1, p'_2, \dots, p'_n, (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{SUBST(\theta, q)}$$

Από τους τύπους

 $Missile(M1), \ Owns(Nono, M1)$

και

 $Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, Nono, x)$

μπορούμε να συμπεράνουμε με GMP

Sells(West, Nono, M1).

Η αντικατάσταση θ σε αυτήν την περίπτωση είναι $\{x/M1\}$.

Γενικευμένος Τρόπος του Θέτειν

Σχόλια:

- Ο γενικευμένος τρόπος του θέτειν κάνει σε ένα βήμα ό,τι θα έκαναν σε δύο βήματα οι εξής κανόνες συμπερασμού: εισαγωγή σύζευξης και τρόπος του θέτειν.
- Ο γενικευμένος τρόπος του θέτειν είναι μια ανυψωμένη (lifted) μορφή του τρόπου του θέτειν: ανυψώνει τον κανόνα αυτό από την προτασιακή λογική στην λογική πρώτης τάξης.
- Ο γενικευμένος τρόπος του θέτειν εφαρμόζεται σε φράσεις Horn (Horn clauses).

Οι φράσεις Horn αποτελούν ένα πολύ ενδιαφέρον υποσύνολο της λογικής πρώτης τάξης που θα ορίσουμε λεπτομερώς παρακάτω.

Ορθότητα του GMP

Ένας κανόνας συμπερασμού λέγεται **ορθός** (sound) αν οδηγεί μόνο σε προτάσεις που καλύπτονται λογικά. Δηλαδή, αν $KB \vdash \alpha$ τότε $KB \models \alpha$.

Θεώρημα. Ο GMP είναι ένας **ορθός** κανόνας συμπερασμού για βάσεις γνώσεων που αποτελούνται από φράσεις Horn.

Λεκτικά (Literals)

Ορισμός. Ένα **λεκτικό** (literal) είναι ένας ατομικός τύπος ή η άρνηση ενός ατομικού τύπου. Στην πρώτη περίπτωση έχουμε ένα **θετικό** λεκτικό και στη δεύτερη περίπτωση ένα **αρνητικό** λεκτικό.

Παραδείγματα:

 $Drives(John, BMW), \neg Drives(John, BMW), Drives(x, BMW),$

 $Loves(Mary, FatherOf(Mary)), \neg P(x, F(G(x)))$

Φράσεις Horn (Horn Clauses)

Ορισμός. Μια φράση (clause) είναι μια διάζευξη λεκτικών. Μια φράση **Horn** είναι μια διάζευξη λεκτικών από τα οποία το πολύ ένα είναι θετικό.

Δηλαδή, μια φράση Horn απαντάται στις εξής μορφές:

q

$$\neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n \lor q \quad (\acute{\eta} \quad p_1 \land p_2 \land \dots \land p_n \Rightarrow q)$$

$$\neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n$$

όπου p_1, \ldots, p_n, q είναι ατομικοί τύποι.

Συμβολισμός: Σε μια φράση Horn, θεωρούμε ότι οι (ελεύθερες) μεταβλητές των τύπων p_1, \ldots, p_n, q εισάγονται από αντίστοιχους καθολικούς ποσοδείκτες που εμφανίζονται στην αρχή του τύπου.

Όρολογία

Η ελληνική μετάφραση του βιβλίου AIMA που χρησιμοποιούμε χρησιμοποιεί τον όρο πρόταση Horn μεταφράζοντας την Αγγλική λέξη clause με την Ελληνική λέξη 'πρόταση'.

Προτίμησα να χρησιμοποιήσω τον όρο φράση Horn επειδή χρησιμοποιώ τον όρο πρόταση για να αναφέρομαι στους τύπους της λογικής πρώτης τάξης που δεν έχουν ελεύθερες μεταβλητές.

Παραδείγματα

Οι τύποι

Drives(John, BMW)

Drives(x, BMW)

 $Person(x) \Rightarrow Animal(x)$

 $Person(x) \land Knows(John, x) \Rightarrow Loves(John, x)$

 $\neg Person(x) \lor \neg Knows(John, x)$

είναι φράσεις Horn.

Ο τύπος

 $Drives(John, BMW) \lor Drives(John, Porsche)$

δεν είναι φράση Horn.

Παραδείγματα

Οι προηγούμενες φράσεις Horn είναι ισοδύναμες με τους ακόλουθους τύπους της λογικής πρώτης τάξης:

Drives(John, BMW) $(\forall x) Drives(x, BMW)$

 $(\forall x)(Person(x) \Rightarrow Animal(x))$

 $(\forall x)(Person(x) \land Knows(John, x) \Rightarrow Loves(John, x))$

 $(\forall x)(\neg Person(x) \vee \neg Knows(John,x))$

Γεγονότα

Οι φράσεις Horn που αποτελούνται από ένα ατομικό τύπο λέγονται **γεγονότα (facts)**.

Παραδείγματα:

Drives(John, BMW)

Drives(x, BMW)

Κανόνες

Οι φράσεις Horn της μορφής

$$p_1 \wedge p_2 \wedge \ldots \wedge p_n \Rightarrow q$$

λέγονται κανόνες (rules).

Στον παραπάνω κανόνα, ο ατομικός τύπος q λέγεται **κεφαλή** (head) του κανόνα και η σύζευξη $p_1 \wedge p_2 \wedge \ldots \wedge p_n$ λέγεται σώμα (body) του κανόνα.

Η ορολογία αυτή χρησιμοποιείται στη γλώσσα λογικού προγραμματισμού Prolog.

Παραδείγματα Κανόνων

 $Person(x) \Rightarrow Animal(x)$

 $Person(x) \land Knows(John, x) \Rightarrow Loves(John, x)$

Ερωτήσεις ή Περιορισμοί Αχεραιότητας

Οι φράσεις Horn της μορφής

$$\neg p_1 \lor \neg p_2 \lor \ldots \lor \neg p_n$$

προχύπτουν από ερωτήσεις (queries) ή περιορισμούς αχεραιότητας (integrity constraints) σε συστήματα λογιχού προγραμματισμού.

Παράδειγμα: $\neg Person(x) \lor \neg Knows(John, x)$

Οριστικές Φράσεις Horn

Αν μια φράση Horn έχει ακριβώς ένα θετικό λεκτικό, τότε λέγεται **οριστική (definite)**. Δηλαδή, τα γεγονότα και οι κανόνες είναι οι οριστικές φράσεις Horn.

Παραδείγματα:

Drives(John, BMW)

Drives(x, BMW)

 $Person(x) \Rightarrow Animal(x)$

 $Person(x) \land Knows(John, x) \Rightarrow Loves(John, x)$

Datalog

Άν μια βάσης γνώσης αποτελείται από οριστικές φράσεις Horn και δεν περιέχει σύμβολα συναρτήσεων τότε θα λέγεται βάση **Datalog**.

Η Datalog ορίστηκε αρχικά σαν γλώσσα επερωτήσεων για σχεσιακές βάσεις δεδομένων εμπνευσμένη από το λογικό προγραμματισμό.

Ας δώσουμε τώρα μερικά παραδείγματα συνηθισμένων βάσεων γνώσεων με φράσεις Horn.

Παράδειγμα Datalog: Οικογενειακές Σχέσεις

 $Parent(Pam, Bob) \ Parent(Tom, Bob) \ Parent(Tom, Liz)$

 $Parent(Bob, Ann) \ Parent(Bob, Pat) \ Parent(Pat, Jim)$

 $Male(Tom) \ Male(Bob) \ Male(Jim)$

 $Female(Liz)\ Female(Ann)\ Female(Pam)\ Female(Pat)$

Παράδειγμα Datalog

 $Parent(x,y) \Rightarrow Offspring(y,x)$

 $Parent(x,y) \land Female(x) \Rightarrow Mother(x,y)$

 $Parent(x,y) \land Parent(y,z) \Rightarrow Grandparent(x,z)$

Παράδειγμα Datalog: Μονοπάτια σε ένα Γράφο

$$Arc(x,y) \Rightarrow Path(x,y)$$

$$Path(x,y) \wedge Arc(y,z) \Rightarrow Path(x,z)$$

$$Arc(A, B) \ Arc(B, C) \ Arc(C, D) \ Arc(B, E)$$

Παράδειγμα: Λίστες

Ας θεωρήσουμε το παρακάτω λεξιλόγιο:

- Το σύμβολο σταθεράς Empty που συμβολίζει την κενή λίστα.
- Το σύμβολο δυαδικής συνάρτησης Cons (από την αγγλική λέξη construct).
 - Ο όρος Cons(h,t) συμβολίζει τη λίστα που έχει πρώτο στοιχείο το h και τα υπόλοιπα στοιχεία της απαρτίζουν τη λίστα t.
- Το σύμβολο κατηγορήματος Member.
 - Το γεγονός Member(e,l) δηλώνει ότι το e είναι στοιχείο της λίστας l.

Παράδειγμα: Λίστες

Οι ακόλουθες φράσεις Horn εκφράζουν ιδιότητες του Member:

Member(e, Cons(e, t))

 $Member(e, t) \Rightarrow Member(e, Cons(h, t))$

Οι παραπάνω κανόνες είναι οριστικοί αλλά όχι Datalog επειδή περιέχουν το σύμβολο συνάρτησης Cons.

Μια Εφαρμογή του GMP

Μπορούμε να λύσουμε το πρόβλημα με τον Συνταγματάρχη West χρησιμοποιώντας GMP; Ναι, αν είναι δυνατόν να γράψουμε την βάση γνώσης μας με φράσεις Horn. Ας το δοχιμάσουμε!

Στην επόμενη ενότητα του μαθήματος, θα δώσουμε έναν γενικό αλγόριθμο που μπορεί να χρησιμοποιηθεί για να μετατρέψει ένα τυχαίο τύπο της λογικής πρώτης τάξης σε ένα ισοδύναμο σύνολο φράσεων Horn (όταν υπάρχει τέτοιο ισοδύναμο σύνολο).

 πείναι έγκλημα για έναν Αμερικανό να πουλάει όπλα σε εχθρικά κράτη.

 $American(x) \wedge Weapon(y) \wedge Nation(z) \wedge$

 $Hostile(z) \land Sells(x, z, y) \Rightarrow Criminal(x)$

• Το κράτος Nono ...

Nation(Nono)

• ... που είναι εχθρός της Αμερικής ...

Enemy(Nono, America)

• ... έχει πυραύλους.

Owns(Nono, M1), Missile(M1)

Παρατήρηση: Επειδή οι φράσεις Horn δεν επιτρέπουν τη χρήση υπαρξιακού ποσοδείκτη, χρησιμοποιήσαμε την σταθερά M1 για τον ένα τουλάχιστον πύραυλο για τον οποίο μας λέει η παραπάνω πρόταση.

• Όλους αυτούς τους πυραύλους τους έχει πουλήσει στο Nono ο συνταγματάρχης West

 $Owns(Nono, x) \land Missile(x) \Rightarrow Sells(West, Nono, x)$

• ... ο οποίος είναι Αμερικανός.

American(West)

Παράδειγμα

• Η Αμερική είναι κράτος.

Nation(America)

• Οι πύραυλοι είναι όπλα.

$$Missile(x) \Rightarrow Weapon(x)$$

• 'Έχθρός της Αμερικής ' σημαίνει 'εχθρικό κράτος '.

 $Enemy(x, America) \Rightarrow Hostile(x)$

Απόδειξη

• Από Missile(M1) και $Missile(x) \Rightarrow Weapon(x)$, χρησιμοποιώντας GMP:

Weapon(M1)

• Από $Enemy(x, America) \Rightarrow Hostile(x)$ και Enemy(Nono, America), χρησιμοποιώντας GMP:

Hostile(Nono)

• Aπό Owns(Nono, M1), Missile(M1) και

 $Owns(Nono, x) \land Missile(x) \Rightarrow Sells(West, Nono, x)$

χρησιμοποιώντας GMP:

Sells(West, Nono, M1)

Απόδειξη

• Από

 $American(West), Weapon(M1), Nation(Nono), Hostile(Nono), \\ Sells(West, Nono, M1)$ xxx

 $American(x) \wedge Weapon(y) \wedge Nation(z) \wedge$

 $Hostile(z) \land Sells(x, z, y) \Rightarrow Criminal(x),$

χρησιμοποιώντας GMP:

Criminal(West)

Αλγόριθμοι Συμπερασμού με Χρήση του GMP

Η παραπάνω απόδειξη μας δείχνει ότι ο συμπερασμός με χρήση του GMP είναι φυσικός και εύκολος στο να τον ακολουθήσει κανείς.

Θα παρουσιάσουμε τώρα δύο σημαντικούς αλγόριθμους συμπερασμού για τη λογική πρώτης τάξης που βασίζονται σε GMP:

- Προς τα εμπρός αλυσίδα εκτέλεσης (forward chaining).
- Προς τα πίσω αλυσίδα εκτέλεσης (backward chaining).

Οι αλγόριθμοι αυτοί θα παρουσιαστούν μόνο για την περίπτωση βάσεων γνώσης που αποτελούνται από **οριστικές φράσεις Horn**.

Πριν προχωρήσουμε όμως χρειαζόμαστε ένα τεχνικό ορισμό ακόμα.

Παράδειγμα

Θεωρήστε την παρακάτω βάση γνώσης KB:

Likes(x, Mary)

 $Likes(John, x) \Rightarrow GreetsCheerfully(John, x)$

Θα περιμέναμε να ακολουθεί λογικά από την KB ο τύπος:

GreetsCheerfully(John, Mary)

Όμως ο GMP δε μπορεί να χρησιμοποιηθεί για να συμπεράνουμε αυτό τον τύπο γιατί οι ατομικοί τύποι Likes(x, Mary) και Likes(John, x) δεν ενοποιούνται!

Προτυποποίηση Μεταβλητών

Το προηγούμενο πρόβλημα μπορεί να επιλυθεί με προτυποποίηση των μεταβλητών:

- 1. Καμία μεταβλητή δεν πρέπει να υπάρχει σε περισσότερους από μια φράσεις Horn στην αρχική βάση γνώσης.
- 2. Οποτεδήποτε έχουμε να εφαρμόσουμε τον GMP, πρώτα μετονομάζουμε τις μεταβλητές των φράσεων Horn που θα χρησιμοποιήσουμε. Τα νέα ονόματα μεταβλητών δεν πρέπει να έχουν χρησιμοποιηθεί ενωρίτερα.

Προς τα Εμπρός Αλυσίδα Εκτέλεσης

Ο αλγόριθμος προς τα εμπρός αλυσίδα εκτέλεσης (forward chaining) ξεκινάει με τις φράσεις στη βάση γνώσης και παράγει συμπεράσματα χρησιμοποιώντας τον GMP. Αυτά τα συμπεράσματα με τη σειρά τους οδηγούν σε περισσότερα συμπεράσματα που μπορούν να εξαχθούν από τη βάση γνώσης κ.ο.κ.

Όταν εφαρμόζουμε τον αλγόριθμο δεν πρέπει να ξεχνάμε την προτυποποίηση των μεταβλητών όπως συζητήσαμε προηγουμένως.

Forward Chaining

Ο αλγόριθμος forward chaining μπορεί να χρησιμοποιηθεί ως εξής:

Ως μια οδηγούμενη από τα δεδομένα (data-driven)
 διαδικασία. Όταν ένα γεγονός προστίθεται στη βάση γνώσης, ο αλγόριθμος εκτελείται για να συμπεράνουμε νέα γεγονότα. Τα γεγονότα αυτά προστίθενται επίσης στη βάση γνώσης, και η διαδικασία συνεχίζεται.

Forward Chaining

• Ω ς μια διαδικασία απάντησης ερωτημάτων (query answering). Όταν θέλουμε να μάθουμε αν ένας ατομικός τύπος α (πιθανά με ελεύθερες μεταβλητές x_1, \ldots, x_n) ακολουθεί λογικά από μια βάση γνώσης, μπορούμε να εφαρμόσουμε forward chaining για να παράγουμε νέα συμπεράσματα, μέχρι να παραχθεί ένας ατομικός τύπος που ενοποιείται με τον α . Έτσι δουλεύει η συνάρτηση FOL-FC-Ask που παρουσιάζουμε στην επόμενη διαφάνεια. Η αντικατάσταση σ μας δίνει την πρώτη απάντηση στο ερώτημα α : η απάντηση ορίζεται από το σύνολο των δεσμεύσεων των μεταβλητών x_1, \ldots, x_n της α .

Μπορούμε να συνεχίσουμε να εφαρμόζουμε forward chaining για να πάρουμε περισσότερες απαντήσεις.

Forward Chaining

function FOL-FC-Ask (KB, α) returns a substitution or false **inputs:** KB, the knowledge base, a set of first-order definite clauses α , the query, an atomic sentence **local variables:** new, the new sentences inferred on each iteration repeat until new is empty $new \leftarrow \{\}$ for each clause r in KB do Standardize the variables of r to transform it into $p_1 \wedge \ldots \wedge p_n \Rightarrow q$ for each θ such that $SUBST(\theta, p_1 \wedge \ldots \wedge p_n) = SUBST(\theta, p'_1 \wedge \ldots \wedge p'_n)$ for some p'_1, \ldots, p'_n in KB do $q' \leftarrow SUBST(\theta, q)$ if q' is not a renaming of some sentence already in KB or new then do add q' to new $\sigma \leftarrow \text{Unify}(q', \alpha)$ if σ is not failure then return σ

add new to KBreturn false

Έστω η ΚΒ

Missile(M1)

 $Owns(Nono, x) \land Missile(x) \Rightarrow Sells(West, Nono, x).$

Αν η πρόταση Owns(Nono, M1) εισαχθεί στην KB, τότε μπορούμε να εφαρμόσουμε τον αλγόριθμο forward chaining για να συμπεράνουμε τον τύπο

Sells(West, Nono, M1)

και να τον προσθέσουμε στην KB. Κανένας άλλος συμπερασμός δεν μπορεί να πραγματοποιηθεί στη συνέχεια, άρα ο αλγόριθμος σταματάει.

Έστω η ΚΒ

 $Missile(M1),\ Owns(Nono,M1),$

 $Missile(M2),\ Owns(Nono,M2),$

 $Owns(Nono, x) \land Missile(x) \Rightarrow Sells(West, Nono, x).$

Έστω ότι θέλουμε να μάθουμε αν από την KB έπεται λογικά ότι υπάρχει κάποιος που έχει πουλήσει κάποιο όπλο στο κράτος Nono. Αυτό το **ερώτημα** μπορεί να αναπαρασταθεί από τον τύπο

Sells(z, Nono, w)

με ελεύθερες μεταβλητές z και w.

Η συνάρτηση FOL-FC-Ask μπορεί να εφαρμοστεί για να δείξουμε ότι το γεγονός

Sells(West, Nono, M1)

ακολουθεί λογικά από την KB. Αυτό το νέο γεγονός ενοποιείται με τον τύπο

Sells(z, Nono, w)

με αντικατάσταση

 $\{z/West, w/M1\}$

και δίνει μια απάντηση στο ερώτημα.

Ο αλγόριθμος μπορεί να εφαρμοστεί ξανά για να δείξουμε ότι το γεγονός

ακολουθεί λογικά από την KB. Αυτό το νέο γεγονός ενοποιείται με τον τύπο

Sells(z, Nono, w)

με αντικατάσταση

$$\{z/West, w/M2\}$$

και δίνει μια νέα απάντηση στο ερώτημα.

Οι δυο αντικαταστάσεις που υπολογίστηκαν παραπάνω είναι το σύνολο απαντήσεων στο ερώτημα:

 $\{z/West, w/M1\}, \{z/West, w/M2\}$

Έστω η ΚΒ

$$Q(x) \Rightarrow Q(F(x))$$

και το γεγονός Q(A) εισάγεται στην KB.

Τότε ο αλγόριθμος forward chaining μπορεί να εφαρμοστεί για να προστεθεί το γεγονός Q(F(A)) στην KB.

Αλλά τώρα το Q(F(A)) ενοποιείται με την υπόθεση του κανόνα

$$Q(x) \Rightarrow Q(F(x))$$

και ο GMP μπορεί να εφαρμοστεί ξανά.

Σε αυτό το σημείο ο αλγόριθμος forward chaining πέφτει σε **ατέρμονα βρόγχο** προσθέτοντας στη βάση γνώσης τα ακόλουθα γεγονότα:

$$Q(F(F(A))), Q(F(F(F(A)))), \dots$$

Ορθότητα και Πληρότητα του Forward Chaining

Η συνάρτηση FOL-FC-Ask είναι **ορθή** επειδή σε κάθε βήμα συμπερασμού απλά εφαρμόζει τον GMP και ο GMP είναι ορθός.

Η συνάρτηση FOL-FC-Ask είναι πλήρης για βάσεις γνώσεων που είναι σε μορφή Datalog, δηλαδή μπορεί να χρησιμοποιηθεί για να βρεθούν όλες οι απαντήσεις μιας ερώτησης.

Αν η βάση γνώσεων αποτελείται από οριστικές φράσεις Horn που έχουν σύμβολα συνάρτησης, τότε ο αλγόριθμος forward chaining μπορεί να πέσει σε ατέρμονα βρόγχο όπως είδαμε παραπάνω.

Το Πρόβλημα της Λογικής Κάλυψης

Έστω KB ένα σύνολο φράσεων Horn και ϕ ένας ατομικός τύπος.

Το πρόβλημα της λογικής κάλυψης (δηλ. η ερώτηση $KB \models \phi$;) για οριστικές φράσεις Horn είναι **ημιαποφασίσιμο** όπως και για την γενική περίπτωση της λογικής πρώτης τάξης.

Το πρόβλημα της λογικής κάλυψης (δηλ. η ερώτηση $KB \models \phi$;) όταν η KB είναι βάση Datalog μπορεί να λυθεί σε πολυωνυμικό χρόνο χρησιμοποιώντας τον αλγόριθμο forward chaining.

Θέματα Υλοποίησης και Απόδοσης

Για να υλοποιηθεί ο αλγόριθμος forward chaining, πρέπει να απαντήσουμε στις εξής ερωτήσεις:

- Ποιο κανόνα να χρησιμοποιήσουμε πρώτο στην περίπτωση που έχουμε περισσότερους του ενός κανόνες;
- Αφού διαλέξουμε κανόνα, με ποιά σειρά να εξετάσουμε τους
 τύπους του σώματος του κανόνα για να βρούμε αν το σώμα του κανόνα ενοποιείται με γεγονότα της βάσης;
- Ποιο γεγονός να χρησιμοποιήσουμε πρώτο σε περίπτωση που έχουμε περισσότερα του ενός κατάλληλα γεγονότα;

Η σωστή απάντηση των παραπάνω ερωτήσεων μπορεί να κάνει τη διαφορά στην απόδοση του αλγόριθμου.

Άλλα Θέματα Απόδοσης

Ο αλγόριθμος forward chaining μπορεί να εφαρμοστεί πολύ αποδοτικά αν έχουμε καλές τεχνικές για τα εξής:

- Αποφυγή της επανεξέτασης κάθε κανόνα σε κάθε επανάληψη (αφού μόνο μερικά γεγονότα προστίθενται στη βάση γνώσης σε κάθε επανάληψη).
- Αποφυγή δημιουργίας γεγονότων που είναι άσχετα με το ερώτημα (όταν η προς τα εμπρός αλυσίδα εκτέλεσης χρησιμοποιείται ως αλγόριθμος απάντησης ερωτημάτων).

Θέματα Υλοποίησης και Απόδοσης

Aυτά τα θέματα έχουν μελετηθεί διεξοδικά στις εξής περιοχές της Τεχνητής Nοημοσύνης και των Bάσεων Δ εδομένων:

- Συστήματα παραγωγών (production systems).
- Συστήματα ενεργών βάσεων δεδομένων (active databases).
- Συστήματα επαγωγικών βάσεων δεδομένων (deductive databases).
- Συστήματα κανόνων σε υπάρχοντα σχεσιακά συστήματα βάσεων δεδομένων (π.χ., στην Oracle).

Προς τα Πίσω Αλυσίδα Εκτέλεσης

Ο αλγόριθμος της προς τα πίσω αλυσίδας εκτέλεσης (backward chaining) ξεκινάει με ένα γεγονός που θέλουμε να αποδείξουμε, βρίσκει ένα κανόνα που μας επιτρέπει να το συμπεράνουμε, και προσπαθεί να αποδείξει ότι ισχύει το σώμα αυτού του κανόνα.

Προς τα Πίσω Αλυσίδα Εκτέλεσης

```
function FOL-BC-Ask(KB, goals, \theta) returns a set of substitutions
   inputs: KB, a knowledge base
              goals, a list of conjuncts forming a query (\theta already applied)
              \theta the current substitution, initially the empty substitution
   local variables: answers, a set of substitutions, initially empty
   if goals is empty then return \{\theta\}
   q' \leftarrow \text{SUBST}(\theta, \text{FIRST}(goals))
   for each formula r in KB which after standardization of variables becomes
   p_1 \wedge \ldots \wedge p_n \Rightarrow q \text{ and } \theta' \leftarrow \text{UNIFY}(q',q) \text{ succeeds } \mathbf{do}
       new\_goals \leftarrow [p_1, \dots, p_n | \text{Rest}(goals)]
       answers \leftarrow FOL\text{-BC-Ask}(KB, new\_goals, Compose(\theta, \theta')) \cup answers
   return answers
```

Σχόλια

Ο αλγόριθμος FOL-BC-Ask μπορεί να χρησιμοποιηθεί για να βρούμε το σύνολο των αντικαταστάσεων σ που είναι τέτοιες ώστε $KB \models SUBST(\sigma, \phi)$ όπου ϕ είναι η σύζευξη που αντιστοχεί στην λίστα goals.

Με άλλα λόγια, ο αλγόριθμος FOL-BC-Ask μπορεί να χρησιμοποιηθεί για να βρούμε όλες τις απαντήσεις σε ένα ερώτημα ϕ που τίθεται στη βάση γνώσης KB.

Η απάντηση στο ερώτημα ϕ είναι ένα σύνολο αντικαταστάσεων που αποτελούνται από τις δεσμεύσεις για τις μεταβλητές του ερωτήματος ϕ .

Σχόλια

Ο αλγόριθμος της προς τα πίσω αλυσίδας εκτέλεσης απαιτεί προτυποποίηση των μεταβλητών όπως περιγράψαμε νωρίτερα για τον GMP.

Ο αλγόριθμος FOL-BC-Ask είναι ένας αλγόριθμος αναζήτησης πρώτα κατά βάθος (depth-first search) οπότε έχει όλα τα καλά και κακά χαρακτηριστικά αυτών των αλγορίθμων.

Για την υλοποίηση και την αποδοτικότητα του FOL-BC-Ask εγείρονται παρόμοια θέματα με αυτά που συζητήσαμε στην περίπτωση του αλγόριθμου forward chaining.

Λογικός Προγραμματισμός

Όλες οι γλώσσες λογικού προγραμματισμού (π.χ., Prolog) και τα συστήματα παραγωγικών βάσεων δεδομένων (deductive databases) βασίζονται σε κατάλληλες υλοποιήσεις του αλγόριθμου backward chaining.

Έστω η βάση γνώσης ΚΒ

και το ερώτημα Q(x).

Η συνάρτηση FOL-BC-Ask $(KB,[Q(x)],\{\})$ επιστρέφει το σύνολο αντικαταστάσεων

$$\{\{x/A\}, \{x/B\}\}.$$

 Σ' αυτό το παράδειγμα, ο αλγόριθμος FOL-BC-Ask λειτουργεί ως εξής.

Στο σώμα της εντολής **for each** γίνονται οι αναδρομικές κλήσεις FOL-BC-Ask $(KB,[],\{x/A\})$ και FOL-BC-Ask $(KB,[],\{x/B\})$ που επιστρέφουν τα σύνολα αντικαταστάσεων $\{\{x/A\}\}$ και $\{\{x/B\}\}\}$ αντίστοιχα. Οι κλήσεις αυτές αντιστοιχούν στους τύπους Q(A) και Q(B) που υπάρχουν στην KB.

Το τελικό αποτέλεσμα δημιουργείται από την ένωση των παραπάνω συνόλων στην προτελευταία γραμμή του αλγόριθμου.

Έστω η βάση γνώσης ΚΒ

και το ερώτημα $Q(x) \wedge R(x,y)$.

Η συνάρτηση FOL-BC-Ask $(KB,[Q(x),R(x,y)],\{\})$ επιστρέφει $\{\{x/A,y/C\},\{x/B,y/D\}\}.$

Σ΄ αυτό το παράδειγμα, ο αλγόριθμος FOL-BC-Ask λειτουργεί ως εξής.

Αρχικά η θ είναι ίση με $\{\}$ και το q' γίνεται Q(x). Μετά εκτελείται το σώμα της εντολής for each για r=Q(A) και $\theta'=\{x/A\}$ και γίνεται η αναδρομική κλήση FOL-BC-Ask $(KB,[R(x,y)],\{x/A\})$ μια που

$$COMPOSE(\{\}, \{x/A\}) = \{x/A\}.$$

Ας δούμε τώρα τι συμβαίνει σ' αυτή την αναδρομική κλήση. Η θ είναι ίση με $\{x/A\}$ και το q' γίνεται R(A,y). Μετά εκτελείται το σώμα της εντολής for each για r=R(A,C) και $\theta'=\{y/C\}$ και γίνεται η αναδρομική κλήση FOL-BC-Ask $(KB,[],\{y/C\})$ μια που

$$COMPOSE(\{x/A\}, \{y/C\}) = \{x/A, y/C\}.$$

Η κλήση αυτή επιστρέφει $\{\{x/A,y/C\}\}$.

Άρα η κλήση FOL-BC-Ask $(KB,[R(x,y)],\{x/A\})$ επιστρέφει το ίδιο σύνολο αντικαταστάσεων και αυτό αποθηκεύεται στη μεταβλητή answers.

Μετά ακολουθεί η εκτέλεση της for each για r=Q(B) και με ομοιο τρόπο δημιουργείται το σύνολο αντικαταστάσεων $\{\{x/A,y/D\}\}$ το οποίο προστίθεται στο σύνολο answers.

Έτσι έχουμε το τελικό αποτέλεσμα.

Έστω η βάση γνώσης ΚΒ

 $Missile(M1),\ Owns(Nono,M1),$

 $Owns(Nono,x) \wedge Missile(x) \Rightarrow Sells(West,Nono,x)$ και το ερώτημα Sells(West,Nono,y).

Η συνάρτηση FOL-BC-Ask $(KB,[Sells(West,Nono,y)],\{\})$ επιστρέφει

$$\{\{y/M1\}\}.$$

Μπορείτε να εξηγήσετε γιατί προσομοιώνοντας την εκτέλεση της συνάρτησης FOL-BC-Ask;

Έστω η βάση γνώσης KB

$$P(3) \Rightarrow P(3)$$

και το ερώτημα P(x) ή το ερώτημα P(3).

Οι κλήσεις FOL-BC-Ask $(KB, [P(x)], \{\})$ και FOL-BC-Ask $(KB, [P(3)], \{\})$ πέφτουν σε ατέρμονα βρόγχο.

Προσέξτε ότι αυτή η βάση γνώσης δεν έχει συναρτησιακά σύμβολα! Είμαστε στην περίπτωση της Datalog και μπορούμε να υπολογίσουμε όλα τα γεγονότα που ακολουθούν λογικά από μια βάση γνώσης (π.χ., χρησιμοποιώντας forward chaining). Οπότε η ανεπιθύμητη συμπεριφορά οφείλεται στη δοσμένη βάση γνώσης, και στο ότι η συνάρτηση FOL-BC-Ask δουλεύει με πρώτα κατά βάθος τρόπο.

American(West)

Enemy(Nono, America)

 $Owns(Nono, M1), \ Missile(M1)$

 $Enemy(x, America) \Rightarrow Hostile(x)$

 $Missile(x) \Rightarrow Weapon(x)$

 $Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$

 $American(x) \wedge Weapon(y) \wedge$

 $Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$

Προσοχή: Στην προηγούμενη βάση γνώσης το κατηγόρημα Sells(z,w,v) παριστάνει ότι ο z πουλάει το w στον v (δηλαδή, σε σχέση με τα προηγούμενα παραδείγματα που αφορούσαν τον West, έχουμε εναλλάξει τα δύο τελευταία ορίσματα του Sells).

Θα παρουσιάσουμε τώρα το δένδρο απόδειξης που αποδειχνύει το γεγονός Criminal(West). Τα δένδρα απόδειξης είναι ένας δημοφιλής γραφιχός τρόπος να εξηγήσουμε την λειτουργία του αλγόριθμου backward chaining.

Μελέτη

- ΑΙΜΑ, Κεφάλαιο 9.
- M. Genesereth, N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1987.

Παράγραφος 4.2.

Ο αλγόριθμος ενοποίησης που δώσαμε προέρχεται από αυτό το βιβλίο.