Lecture 8

- Markov Chain
- Description on how a MCMC algorithm works
- diagnostic of a MCMC
- exercises

Markov Chain

Markov property, (or memory less property):

$$P(X_t < c | X_1, X_2, \dots, X_{t-1}) = P(X_t < c | X_{t-1})$$

example: AR(1)

$$X_t = aX_{t-1} + \epsilon_t$$

For well behaved Markov chains if one takes a large T then the sequence

$$X_T, X_{2T}, X_{3T}, \dots$$

are almost independent, and have density equal to the stationary distribution of the Markov chain.

$$a = 0.1$$

T=10

$$a = 0.99$$

 $T = 1000$

Series X[index]

Series X

An example of a MCMC algorithm (7.2.1 in Book)

Target unnormalized density

$$\pi(\theta = 1) = 0$$
 $\pi(\theta = 2) = 1$
 $\pi(\theta = 3) = 2$
 $\pi(\theta = 4) = 3$
 $\pi(\theta = 5) = 4$
 $\pi(\theta = 6) = 5$
 $\pi(\theta = 7) = 6$
 $\pi(\theta = 8) = 7$
 $\pi(\theta = 9) = 0$

in the book
they use p
for all densities
here use pi for
the target density
p_j for the density
of j:th iteration
of the algorithm

Proposal:

$$q(\theta_{new}|\theta_t) = \begin{cases} \theta + 1 & \text{with probability } 0.5\\ \theta - 1 & \text{with probability } 0.5 \end{cases}$$

acceptance step:

$$U \sim U[0,1] \text{ (Beta(1,1))}$$

if
$$U \leq \frac{p(\theta_{new})}{p(\theta_t)}$$

$$\theta_{t+1} = \theta_{new}$$
else

$$\theta_{t+1} = \theta_t$$

Lets examine the distribution of θ_{T+1} Given that $\theta_1 = 4$ for T = 1

target

Lets examine the distribution of θ_{T+1} Given that $\theta_1 = 4$ for T = 2

Lets examine the distribution of θ_{T+1} Given that $\theta_1 = 4$ for T = 10

Lets examine the distribution of θ_{T+1} Given that $\theta_1 = 4$ for T = 100

MC vs MCMC

When the density is continuous on need to use a continuous proposal like:

7.3.1 in book

$$q(\theta^{new}|\theta) = N(\theta^{new}, \theta, \sigma^2)$$

Diagnostics

Since the MCMC samples are dependent one must check so that chain has converged and that one uses enough samples

clear burnin:

remove first part:

In stan:

$$N_{eff} = \frac{N}{1 + \sum_{k=1}^{\infty} ACF(k)}$$

ACF for theta

A good practice is to run multiple chains and see that they converge towards the same thing:

