# The Transformer: Code

We will examine a notebook that builds a miniature version of GPT: <u>tutorial view</u> (<u>https://keras.io/examples/generative/text\_generation\_with\_miniature\_gpt/</u>)

 Colab notebook (https://colab.research.google.com/github/keras-team/kerasio/blob/master/examples/generative/ipynb/text\_generation\_with\_miniature\_gpt.ipy

For an excellent tutorial on all the concepts, along with code, <u>see</u> (<u>https://www.tensorflow.org/text/tutorials/transformer</u>)

## GPT-3 is a Decoder style Transformer

• autoregressive

Recall from our introduction to the Transformer (Encoder-Decoder)

# Transformer Layer (Encoder/Decoder) Encoder Decoder $ar{\mathbf{h}}_{(t)}$ $\mathbf{y}_{(t)}$ Feed Forward Feed Forward Network Network Multi-head Encoder-Decoder Attention Multi-head Self-Attention Multi-head **Masked Self-Attention** $\mathbf{x}_{(1..T)}$

The Decoder is the RHS of the image.

<u>Here (https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/text\_generation\_with\_miniature\_gpt.ipynb#scr</u> we can see the Decoder

#### We first see a definition of the constants:

```
vocab_size = 20000 # Only consider the top 20k words
maxlen = 80 # Max sequence size
embed_dim = 256 # Embedding size for each token
num_heads = 2 # Number of attention heads
feed_forward_dim = 256 # Hidden layer size in feed forward network inside tran
sformer
```

## Relating the variable names to our notation

| Notation       | variable   | value  |  |
|----------------|------------|--------|--|
| $d_{ m model}$ | embed_dim  | 256    |  |
| T              | max_len    | 80     |  |
| $n_{ m heads}$ | num_heads  | 2      |  |
|                | vocab_size | 20,000 |  |

#### And the Decoder model:

```
def create_model():
    inputs = layers.Input(shape=(maxlen,), dtype=tf.int32)
    embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
    x = embedding_layer(inputs)
    transformer_block = TransformerBlock(embed_dim, num_heads, feed_forward_di

m)
    x = transformer_block(x)
    outputs = layers.Dense(vocab_size)(x)
    model = keras.Model(inputs=inputs, outputs=[outputs, x])
    loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    model.compile(
        "adam", loss=[loss_fn, None],
    ) # No loss and optimization based on word embeddings from transformer blo
ck
    return model
```

## Here is the plot:



## Examining each layer

- Input
  - lacksquare sequence (length T=80) of integers (index of a character within vocabulary)  $\mathbf{y}_{(1:T)}$
- TokenAndPositionEmbedding
  - lacktriangle maps sequence (length T=80) of integers (index of character)
  - ullet into sequence (length T=80) of  $d_{
    m model}=256$  size representations
- TransformerBlock
  - lacktriangledown maps sequence (length T=80) into sequence of latents  ${f h}_{(1:T)}$ 
    - o one latent per position in input

- Dense
  - Classifier layer
  - maps sequence of latents
  - to sequence of probability vectors
    - $^{\circ}\,$  each position is a probability vector of length <code>vocab\_size</code> =20000
    - $\circ$  position i: probability that output is element i of vocabulary
    - sum across positions in each vector is 100%

# Loss function

The create\_model method also defines the Loss Function

loss\_fn = tf.keras.losses.SparseCategoricalCrossentropy(from\_logits=True)

as Cross Entropy, as is common for a Classifier

Notice that the SparseCategoricalCrossentropy takes a vector (of length vocab\_size) of **logits** rather than **probabilities**.

# **TransformerBlock**

Let's examine the <u>TransformerBlock (https://colab.research.google.com/github/kerasteam/keras-</u>

<u>io/blob/master/examples/generative/ipynb/text\_generation\_with\_miniature\_gpt.ipynb#scr\_b)</u> in more detail

```
In [ ]:
             class TransformerBlock(layers.Layer):
                 def init (self, embed dim, num heads, ff dim, rate=0.1):
                     \overline{\text{super}}(\overline{)}. init ()
                     self.att = layers.MultiHeadAttention(num heads, embed dim)
                     self.ffn = keras.Sequential(
                          [layers.Dense(ff dim, activation="relu"), layers.Dense(embed di
        m),]
                     self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
                     self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
                     self.dropout1 = layers.Dropout(rate)
                     self.dropout2 = layers.Dropout(rate)
                 def call(self, inputs):
                     input shape = tf.shape(inputs)
                     batch size = input shape[0]
                     seq len = input shape[1]
                     causal mask = causal attention mask(batch size, seg len, seg len, t
         f.bool)
                     attention output = self.att(inputs, inputs, attention mask=causal ma
         sk)
                     attention output = self.dropout1(attention output)
                     out1 = self.layernorm1(inputs + attention output)
                     ffn output = self.ffn(out1)
                     ffn output = self.dropout2(ffn output)
                     return self.layernorm2(out1 + ffn output)
```

We can see that the TransformerBlock is implemented as a Layer (layers.Layer)

so it will translate its input into output via a call method

The class \_\_init\_\_ method defines the components of the Transformer

- stores them in instance variables:
  - Attention: self.att
  - Feed Forward Network FFN: self.ffn
  - Other: Layer Norms, Dropouts

#### The call method does the actual work

- Masked self-attention to  $\mathbf{y}_{(1:T)}$ 
  - Creates casual mask causal\_mask to prevent peeking ahead at notyet-generated output
    - $\circ$  seq\_len is current length t of  $\mathbf{y}_{1:t)}$
  - Attention block self.att applied to causally-masked input attention\_output = self.att(inputs, inputs, attention mask=causal mask)
- Dropout self.dropout1 and LayerNorm layernorm1 applied to attention output
- Result passed through Feed Forward Network self.ffn

# **TokenAndPositionEmbedding**

Let's examine the <u>TokenAndPositionEmbedding</u> (<a href="https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/text\_generation\_with\_miniature\_gpt.ipynb#scr\_c">https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/text\_generation\_with\_miniature\_gpt.ipynb#scr\_c</a>

```
class TokenAndPositionEmbedding(layers.Layer):
    def __init__(self, maxlen, vocab_size, embed_dim):
        super().__init__()
        self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)

        self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

def call(self, x):
    maxlen = tf.shape(x)[-1]
    positions = tf.range(start=0, limit=maxlen, delta=1)
    positions = self.pos_emb(positions)
    x = self.token_emb(x)
    return x + positions
```

We can see that it too is implemented as a Layer.

#### The call method

- translates the input sequence
  - each position in the sequence is an integer index within the vocabulary
- into a sequence of pairs
  - first element: token embedding

```
x = self.token_emb(x)
```

second element: position embedding

```
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
```

As explained <u>in a prior module (Transformer\_PositionalEmbedding.ipynb#Representing-the-combined-token-and-positional-encoding)</u>

- The output is not actually a sequence of *pairs* 
  - it is a sequence of numbers
  - the token and positional emeddings are added not concatenated
    - concatenation would double the length
    - $\circ$  all layers in Transformer preserve output length equal input length =  $d_{
      m model}$
- See the module's explanation as to why addition works

# **Dense (Feed Forward Network)**

We can see that the Feed Forward Network are two Dense layers

We may have been expecting the final layer of TransformerBlock to be outputting a probability vector (over the Vocabulary)

- a vector of length vocab\_size
  - lacktriangledown position i is probability that output is element i of the Vocabulary
- using a softmax activation
  - to make sure sum (across the vocab\_size elements of the vector) of probabilities is `00%

But we see that the output is

- a singleton (not a vector)
- ullet of size equal to embed\_dim =  $d_{
  m model}$

#### That is:

• the Dense component of the TransformerBlock is outputing the embedding of  $\hat{\mathbf{y}}_{(t)}$  rather than a probability vector

## As we will see

- there is a layer in the Model *after* the TransformerBlock
- that produces the probability vector

# Skip connections

Here is a more detailed view of the Transformer

Transformer (Encoder/Decoder)



In particular, please focus on the arrows into the "Add & Norm" layers.

These are *skip connections* that bypass the Attention layers.

• Residual Networks

Where is this reflected in the code?

It is a little subtle and easy to miss.

With the call method of the TransformerBlock please notice the statement

out1 = self.layernorm1(inputs + attention\_output)

• inputs is the input to the Attention layer

attention\_output = self.att(inputs, inputs, attention\_mask=causal\_mask)

## So the addition

```
inputs + attention_output
```

is joining (via addition)

- the output of the Attetnion layer
- the input of the Attention layer

This is the skip connection!

## Similar code appears

```
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output)
return self.layernorm2(out1 + ffn_output)
```

#### where

- the input to the FFN (i.e., out 1)
- is joined (via addition) to the output of the FFN (i.e., ffn\_output)

```
out1 + ffn_output
```

# Model

By examining the create\_model function, we see that the output of the TransformerBlock

- is fed into a Dense layer
- which outputs a vector of length vocab\_size (the correct length of a probability vector)
- and the output of this Dense layer is the output of the model
  - not the output of the TransformerBlock

```
outputs = layers.Dense(vocab_size)(x)
model = keras.Model(inputs=inputs, outputs=[outputs, x])
```

• Technically: the output vector is of *un-normalized logits* rather than probabilities

# - the logit vector can be turned into a probability vector via a softmax

Thus, the Model outputs a vector of logits.

## We can see how a token is sampled

- by converting the logit vector into a probability vector
- with the sample\_from method of the TextGenerator callback def sample\_from(self, logits):

```
logits, indices = tf.math.top_k(logits, k=self.k, sorted=True)
indices = np.asarray(indices).astype("int32")
preds = keras.activations.softmax(tf.expand_dims(logits, 0))[0]
preds = np.asarray(preds).astype("float32")
return np.random.choice(indices, p=preds)
```

## Rather than outputting a probability vector

- which would require the user choosing one element from the vector (a word in the vocabulary)
- what is output is the embedding of the chosen word in the vocabulary

Since this output is compared against the correct label (i.e,  $\mathbf{y}_{(t+1)}$  for position t)

• we should also see that the *labels* used are embeddings

# **Training**

A <u>TextGenerator</u> (https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/text\_generation with miniature gpt.ipynb#scr <u>f</u>) call-back is used during training

- at the end every self.print\_every epochs
- a sample of  $\hat{\mathbf{y}}_{(1:T)}$  will be drawn
- to illustrate what the model output would be up to that point in training

#### The heart of the call-back

```
while num_tokens_generated <= self.max_tokens:
    ...
    y, _ = self.model.predict(x)
    sample_token = self.sample_from(y[0][sample_index])
    ...</pre>
```

- ullet is a loop over positions t
- that extends a fixed input (prefix of text) start\_tokens
- ullet to full length T
- ullet by sampling a token from the output for position t

#### This is useful

- to see whether our model is learning as epochs advance
- to confirm the shape and type of the model output is a vector of logits
  - the model output for position t: y, \_ = self.model.predict(x)
  - is passed to sample\_from
  - which samples from the probability distribution derived from the logits (model output)

```
In [2]: print("Done")
```

Done