Assignment 1 – SENG3500

- a. No. of packets = Amount of data generated / packet size / seconds per minute = 10*10⁶ / (2000-20)*8 / 60 = 10.522... = 10
 b. L_{delay} = (x / L_{link}) + (P_{bits} / L_{trans}) 0.004 = (x / 20*10⁶) + (2000*8/(10*10⁶/60)) 0.004 = (x / 20*10⁶) + 0.096
 c. 10*(20*8) = 1600 bps
 2. a. R_A = Total bits + packets
- 2. a. R_A = Total bits + packets R_A = (200000*8) + ((200000/1560) * 40 * 8) = **1.641 Mbps** R_B = (145000*8) + ((145000/1560) * 40 * 8) = **1.19 Mbps**
 - b. P_{router} = ((1.6 + 1.16 * 1000000)) / (3960 * 8) = 88.41... = **88 packets**
 - c. $T_{link3} = 88 * (4000 * 8)$ = **2.816 Mbps**
- 3. a. $N_{circ} = R_{link} / R_{user}$ = 4 Mbps / 0.2Mbps = **20** users max.
 - b. P_{prob} (x=4) = prob. of 4 current users, n_{pop} = total pop., k_{curr} = current pop., p_{prob} = trans. prob.

Add the probabilities that there are 1, 2, 3 and 4 users active.

```
\begin{split} \mathsf{P}_{\mathsf{prob}} &= \binom{20}{4} * 0.15^4 * (1\text{-}0.15)^{20\text{-}4} + \\ \binom{20}{3} * 0.15^3 * (1\text{-}0.15)^{20\text{-}3} + \\ \binom{20}{2} * 0.15^2 * (1\text{-}0.15)^{20\text{-}2} + \\ \binom{20}{1} * 0.15^1 * (1\text{-}0.15)^{20\text{-}1} \end{split}
&= (4845 * 0.00051 * 0.07425) + \\ (1140 * 0.00338 * 0.06311) + \\ (190 * 0.0225 * 0.05365) + \\ (20 * 0.15 * 0.04560) \end{split}
&= 0.18347 + 0.24317 + 0.22935 + 0.1368
&= 0.79279
&= \textbf{79.28\%}
```

```
4.
        R_{bits/sec} = 2048*8/0.04*2
   a.
               = 819200
               = 0.8192 Mbps
```

b.

 D_{trans} = 2000 B / 0.8192 Mbps c. = 19.531 ms $D_{prop} = 50 \text{ km} / 3*10^8 \text{ m/s}$ = 0.167 ms $D_{total} = D_{trans} + D_{prop}$ = 19.698 ms

 $A_{bits/sample} = 16$, $S_{samples/sec} = 44000$ $T_{bit rate} = 16 * 44000 * 2$ = 1408 kbps

b.

T_{data size} = data transmitted in 500 ms in bytes c. $T_{data \, size} = ((1408 / 8) * 1000) / 2$ = 88000 bytes $T_{packets} = 88000 / (800 - 8 - 20 - 18)$ = 116.711... = 117 packets

d. $T_{trans} = (T_{data \, size} * 8) / T_{bit \, rate} * 1000)$ $T_{trans} = 88000*8 / (1408*1000)$ = 0.5 $T_{prop} = D_{distance} = S_{speed}$

 $T_{prop} = 100*1000 / 3*10^8$ = 0.00033...

 $T_{delay} = 0.5 + 0.00033$ = 0.50033 ms

Polar NRZ 6. a. b. Bipolar Manchester c. d. Differential Manchester

7. a. N_{home} = 200, t_{int} = 200, length = 2500 $\lambda_{\text{sec}} = 1 / (200*10^{-6}) = 5000$ $\lambda_{hour} = 5000 * 3600 = 18*10^6$

b. $\lambda_{\text{bits/sec}} = 5000 * (2500*8) = 10*10^7 =$ **0.1 Gb/s**

```
c. p = \lambda / \mu   \lambda = 5000 \text{ packets/sec}   \mu = R_{Link}/L_{packet \text{ bits}}   \mu = 2*10^9 / 2500 * 8   p = 5000 / 100000   = 100000 \text{ packets/sec}   = 0.05
```

d.
$$D = [p / (1-p)] (1 / \mu) + (1 / \mu)$$

 $= [0.05 / 0.95] 1/100000 + 1/100000$
 $= 0.05263 / 100000 + 1*10^5$
 $= 1.053*10^{-5} + 1*10^{-5}$
 $= 2.053*10^{-5}$
 $= 20.53 \mu s$