

A G D SOLUTIONS

Andrei

David

Anul III IS

Anul III IS

Introductiv

Stiti momentul ala cand conduceti linistiti pe un drum...cam prea linistiti?

Si fix atunci apare masina aceea care incurca tot. Prea incet pentru limita de viteza, prea rapid pentru a o depasi legal.

Adaptive Cruise Control

Bucurati-va de liniste fiindca noi aducem solutia!

Folosind functia de ACC, noi va garantam ca:

- Calatoriile lungi o sa devina mai putin epuizante
- Stresul adus de ceilalti participanti la trafic o sa dispara
- Siguranta dumneavoastra este pe primul loc

Etapele proiectarii

- A. Determinarea partii fixate formate din clapeta de admisie si miscarea longitudinala a vehiculului
- B. Proiectarea unei metode de control pentru viteza de croaziera
- C. Proiectarea unei metode de control pentru distanta dintre autovehicule
- D. Simularea unui scenariu real
- E. Analiza rezultatelor

A.1. Modelul matematic al clapetei de admisie

Conform analizei diagramei Bode, am observat prezenta a patru elemente de intarziere de ordin 1. Astfel am obtinut prima functie de transfer.

A.2. Modelul matematic al miscarii longitudinale

Cu ajutorul documentatiei, am putut obtine modelul miscarii, in functie de fortele care actioneaza asupra vehiculului si a legii a doua a miscarii.

Continuous-time transfer function.

Modelul vehiculului pentru mișcarea longitudinală

➤ Newton – legea a doua a mișcării

$$m\dot{v} = F_x - F_{brake} - F_{airdrag}(v) - F_{roll}(\alpha) - F_{gravity}(\alpha)$$

B. Proiectarea unei metode de control pentru viteza de croaziera

Prin metoda de reactie liniara dupa stare am creat un controller pentru partea fixata a masinii.

Calculand vectorii K si M, am obtinut procesul reglat sub forma unui sistem intrare-stare-iesire.

$$\begin{cases} \dot{x} = (\mathbf{A} - \mathbf{B}\mathbf{K})x + \mathbf{B}\mathbf{M}v \\ y = (\mathbf{C} - \mathbf{D}\mathbf{K})x + \mathbf{D}\mathbf{M}v \end{cases}$$

Acesta va fi utilizat pentru a simula masina de test si masina pe care trebuie sa o urmeze.

C. Proiectarea unei metode de control pentru distanta dintre autovehicule

Pentru aceasta etapa, am ales sa implementam un regulator PID prin metoda Ziegler Nichols. Pasii pe care i-am urmat:

- 1. Am gasit un Kp pentru care iesirea procesului are oscilatii intretinute
- 2. Am calculat Ki si Kd conform tabelului
- 3. Am ajustat empiric coeficientii incat sa obtinem cel mai optim raspuns

C. Proiectarea unei metode de control pentru distanta dintre autovehicule

Al doilea regulator pentru partea de ACC a fost implementat prin principiul Luenberger, a estimatorului de stare.

Modelul intrare - stare - ieşire al sistemului automat se obține:

$$\begin{bmatrix}
\dot{x} \\
\dot{\hat{e}}
\end{bmatrix} = \begin{bmatrix}
\mathbf{A} - \mathbf{B}\mathbf{K} & \mathbf{B}\mathbf{K} \\
0 & \mathbf{A} - \mathbf{L}\mathbf{C}
\end{bmatrix} \begin{bmatrix} x \\
\hat{e}
\end{bmatrix} + \begin{bmatrix} \mathbf{B}\mathbf{M} \\
0
\end{bmatrix}$$

$$y = \begin{bmatrix} \mathbf{C} & 0 \\ \hat{e} \end{bmatrix}$$

C.1. Proiectarea unei metode de control pentru viteza de croaziera

Pentru a putea avea o adaptibilitate la viteza masinii pe care o intalnim, am introdus un subsistem unde avem o structura decizionala pentru a limita aceasta distanta dintre masina in care ne aflam si cea pe care o urmarim.

D. Simularea unui scenariu real

Am creat un model de masina care isi va incepe deplasarea in avansul masinii de test, dar cu o viteza mai mica.

Astfel, intr-o perioada de timp rezonabila, masina de test o va ajunge astfel incat sa putem activa algoritmul de ACC.

D. Simularea unui scenariu real

E. Analiza rezultatelor

Interesul nostru a fost sa oferim clientilor facilitati care au performante bune. Ca sa le analizam, trebuie sa cunoastem o parte matematica inainte.

- Suprareglarea
- $\sigma = (ymax yst) / yst * 100\%$

- 2. Timp de raspuns
- 3. Timp de crestere
- 4. Eroare stationara

E. Analiza regulatorului de CC

 $\sigma = 4.3\%$

Tr = 5.7s

est = 0

Tcr = 2s

E. Analiza regulatorului 1 de ACC

 σ = 6.35%

Tr = 36.6s

est = 0

Tcr = 28s

E. Analiza regulatorului 2 de ACC

 $\sigma = 13\%$ est = 50%

Tr = 5.7sTcr = 1.86s

Va multumim pentru atentie!