

- ✓ Cosa è una rete neurale
- ✓ Neurone
- ✓ Percettrone
- ✓ Reti Neurali Artificiali
- ✓ Deep Learning

COSA È UNA RETE NEURALE

Reti Neurali

Le **Reti Neurali Artificiali** (**Artificial Neural Network, ANN**) sono strutture di calcolo *liberamente* ispirate dalla rete neurale biologica che costituisce il cervello degli animali.

- ✓ Le reti neurali sono state ideate negli anni 50'
- ✓ Sono diventate lo standard solo negli ultimi anni a causa dell'avanzamento tecnologico e dalla grande quantità di dati disponibili

PERCETTRONE

Percettroni

Il **Percettrone**, (o **Perceptron**) è una modellizzazione matematica dei neuroni.

Un percettrone:

- \checkmark Riceve input (o segnali) x da altri neuroni (attivi)
- ✓ Ogni segnale viene **moltiplicato** per un peso *w*
- Le informazioni vengono aggregate da una funzione di trasferimento (o transfer function)
- ✓ Il risultato dell'aggregazione viene filtrato da una funzione di attivazione che decide se propagare il segnale o meno
- ✓ Se attivato, il precettrone **propaga il segnale**.

PERCETTRONE

Transfer function

Tipicamente l'aggrergazione delle informazioni in input consiste nei seguenti passaggi :

- Moltiplichiamo tutti i segnali in input per i rispettivi pesi
- ✓ Sommiamo i risultati.

Possiamo rappresentare questa operazione come un **prodotto scalare** (o **prodotto interno**) di due vettori $w \in x$

$$\boldsymbol{w} \cdot \boldsymbol{x}^T = \begin{bmatrix} 0.5 & 0.5 & -0.3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$1 \cdot 0.5 + 0 \cdot 0.5 + 1 \cdot (-0.3) = 0.2$$

PERCETTRONE

Activation function

La funzione di attivazione o (activation function) ha il compito di decidere se il percettrone può o meno propagare l'informazione

- ✓ Imita la funzione degli **action potential**, pulsazioni di attività elettrica che servono al neurone per scambiarsi informazioni
- Nella sua forma più semplice, l'informazione è binaria e viene scambiata quando supera un certo threshold θ
- Causa non-linearità nel comportamento del percettrone

Dal percettrone alla rete

Unendo più percettroni definiamo una **rete neurale artificiale**.

La rete neurale è divisa in **layer.** In base alla loro posizione distinguiamo tre categorie di layer:

- ✓ **Input layer**: primo layer dedicato agli input iniziali
- Output layer: ultimo layer destinato all'ouptu finale
- ✓ Hidden layers: tutti i layer intermedi

Il numero dei percettroni per layer e il numero di layer definisce **l'archittettura** (o **topologia**) della rete neurale

Cerchio: percettrone In entrata: input del percettrone In uscita: propagazione dell'ouptut

RETI NEURALI ARTIFICIALI

Addestrare una ANN

Una rete neurale si addestra in quattro fasi:

- ✓ Si assegnano valori iniziali ai pesi
- ✓ **Forward propagation:** si calcolano gli output a partire da input e pesi assegnati.
- Si confrontano i risultati ottenuti con gli output corretti
- ✓ Backward propagation: i pesi vengono modificati con l'obbiettivo di minimizzare la differenza fra risultato ottenuto e desiderato.

Keyword:

- ✓ Ottimizzazione Non-Lineare
- ✓ Gradient Descent

Deep learning

Una ANN con molteplici hidden layer prende il nome di rete neurale artificiale profonda o Deep Neural Network (DNN).

Il **Deep Learning** è una tecnica di ML che prevede l'utilizzo di DNN nella fase di modellizzazione del problema.

Aumentare il numero di layer intermedi permette di utilizzare più informazioni dal training set.

Simple Neural Network

Deep Learning Neural Network

DEEP LEARNING

Benefici della profondità

La sequenza di layer estrae progressivamente una maggior quantità di informazioni dai dati in input

In figura abbiamo un esempio di **classification network**.

- ✓ Al crescere del numero di hidden layer la performance del classificatore migliora.
- ✓ Utilizzando un numero eccessivo di hidden layer possiamo cadere in overfitting

GRAZIE

Via Dante, 6, 21052 Busto Arsizio VA Tel.: +39.0331.357.400 Fax: +39.0331.622.869

