Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 6 - 29 Ottobre 2010

Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 1.

Sia G gruppo allora:

- se $a^2b^2 = (ab)^2 \Rightarrow ab = ba$
- se $a^nb^n=(ab)^n$ per tre interi successivi $(n,n+1,n+2)\Rightarrow ab=ba$
- $o(ab) = o(ba) \forall a, b \in G$

Esercizio 2. (Equazione delle classi)

Sia (G, \cdot) gruppo, \sim_{γ} la relazione così definita: $g \sim_{\gamma} h \Leftrightarrow g = x^{-1}hx \; \exists x \in G$. Sia $cl(x) := \{y | y \sim_{\gamma} x\}$ la classe di coniugio di x e $U := \{x \in G | \forall x, y \in U \; y \not\sim_{\gamma} x\}$ massimale (nessun altro insieme con queste propietà lo contiene propriamente). Dimostrare che:

- U contiente uno e un solo elemento per ogni classe di coniugio
- α : { classi laterali di $C_G(x)$ } $\rightarrow cl(x)$ definita da $\alpha(gC_G(x)) = gxg^{-1}$ è ben definita e iniettiva ($C_G(x)$:={ $g \in G|xg = gx$ } il centralizzante di x in G)
- $|cl(x)| = [G: C_G(x)]$ (sugg: dimostrare che α è anche suriettiva)
- $z \in Z(G) \Leftrightarrow cl(z) = \{z\}$
- $|G| = \sum_{x_i \in U} |cl(x_i)|$. (sugg: $G = \bigcup_{x \in G} cl(x)$)
- $|G| = |Z(G)| + \sum_{x \in U \setminus Z(G)} |cl(x)| = |Z(G)| + \sum_{x_i} [G : C_G(x_i)]$ dove x_i rappresentante di una classe di coniugio non banale $(cl(x_i) \neq \{x_i\} \forall i)$

Esercizio 3.

Sia G p-gruppo allora:

- Z(G) è non banale
- $|G| = p^2 \Rightarrow G$ è commutativo

(sugg: usare l'equazione delle classi)

Esercizio 4.

Sia $Hom(\mathbb{Z}_n, \mathbb{Z}_m)$. Dimostrare che:

- $\forall a \in Z \ o([a]_m) = mcm(a, m).$
- $o(\frac{m}{MCD(m,n)})|n$
- $\forall k = 1, \dots, d-1, \ \varphi_k : \mathbb{Z}_n \to \mathbb{Z}_m \ \text{t.c.} \ \varphi([1]_n) = [\frac{km}{d}]_m \ \text{è un omomorfismo}$
- $Hom(\mathbb{Z}_n, \mathbb{Z}_m) = \{\varphi_k | k = 1, \dots, d-1\}$