

	Session de Contrôle: Communications Numériques	2018/2019
GCR 2	Responsable ; M. Abdelhakim KHLIFI	Durée : 2H

Exercice 1:

Soit la séquence S= 010010 10 1.

- 1. Donnez les codages suivants :
 - NRZ bipolaire
 - Manchester
 - Manchester différentiel
- Déterminer l'expression de la densité spectrale de puissance du codage NRZ unipolnir ».
 Conclure

Exercice 2:

Soit un signal NRZ unipolaire transmis à travers un canal BBAG.

- 1. Donnez l'expression de la probabilité d'erreur P_e en fonction de p_0, p_1, p_{01} et p_{10}
- 2. Donnez l'expression de seuil de décision optimal qui minimise la probabilité d'erreur.
- 3. Sachant que « 1 » et « 0 » sont équiprobables, vérifiez que $\lambda_{opt} = A/2$.
- 4. Déterminer dans ce cas l'expression de la probabilité d'erreur P_e
- 5. On considère une transmission NRZ unipolaire à travers un canal BBAG dont le rapport signal sur bruit $\frac{s_0}{N_0} = 10 \text{ dB}$. Calculer la probabilité d'erreur P_e .
- i. On suppose que la densité spectrale de puissance du bruit $\frac{N_0}{2} = 0.5 \cdot 10^{-10}$ W/Hz at l'amplitude A = 1mV. Calculer la rapidité de modulation R.

- 7. On suppose que R = 10 Kbauds. Le signal est maintenant modulé en M-PSK transmis à travers un canal de bande passante B = 5 KHz.
 - a. Vérifier si ce système respecte le critère de Nyquist
 - b. Montrer que la probabilité d'erreur du symbole M-PSK est donnée par :

$$P_s \approx erfc\left(\sqrt{\frac{E_s}{N_0}}.sin\left(\frac{\pi}{M}\right)\right)$$

- 8. On suppose que le signal est en 8-PSK et 16-PSK
 - a. Calculer dans les deux cas le débit binaire
 - b. Calculer dans les deux cas la probabilité d'erreur e
- 9. En gardant la valeur de M=16, chercher la nouvelle de $\frac{E_1}{N_0}$ (en dB) permettant d'avoir $P_B \leq 10^{-5}$.
- a. En déduire la nouvelle valeur du débit binaire
- b. Vérifier si ce système respecte encore le critère de Nyquist
- c. Sinon, quelle solution proposez-vous?

Bonne chance @