Introdução à Teoria dos Grafos

teoria dos grafos, árvores e algoritmos de busca

Grafos

Grafos

Grafo não-direcionado

Grafo Simples, onde existe uma única Aresta entre um par de Vértices

Grafo Conexo, onde todos Vértices estão ligados por Arestas

Multigrafo

Grafo não-direcionado

Multigrafo, permite existir arestas paralelas entre o mesmo par de Vértices

Grafo desconexo, quando um ou mais Vértices não podem ser alcançados

Dígrafo

Dígrafo, cada Aresta é um par ordenado de Vértices (u,v)

Grau, é medido pelas Arestas que entram e saem de um Vértice

Multigrafo, permite existir arestas paralelas entre o mesmo par de Vértices

$$E^{+}(A) = \{ (A, B), (A, D) \}$$

 $E^{-}(A) = \{ (B, A) \}$

Grafos com Pesos (custos)

Pesos (custos) de cada aresta entre um par de Vértices

Grafo Cíclico

_aula 5 (aedii)

Grafo em Arrays

_aula 5 (aedii)

Grafo Ordem n

Grafo Ordem n

Grafo K-partido

Grafo K-partido

k-partido, podemos dividir todos os seus Vértices em 'k' conjuntos distintos, de tal forma que não existam Arestas ligando Vértices que estão no mesmo conjunto

Caso Famoso: Grafo Bipartido (k=2), candidatos vs vagas

Hora de colocar em prática exercício

Vamos começar por algoritmos hipotéticos

Introdução à Teoria dos Grafos

parte 1