Segmentation

- & split may into sub-parts:
 - 1) Based on color
 - y Base on spatial Location
 - 3 Based on features
 - 4) Based on Schantics

Problem statement

- Separate object(s) from background
 - find contours of objects
 - Semantic may segmentation: label each pixel in the image with class label

Color segmentation

Intensity hastogram

frequency (count)

intensity

background

fireglound

-			
•			
-			
-			
-			
-			
-			
-			

Color segmentation

- Break image into black, - Find threshold in lach

block

- interpolate threshold Values to create segmentation surface

- At each pixel location compare image intensity to segmentation surtach.

Spatial context

Applomerative segmentation:

* start with each pixel in a separate cluster

* Nerge dusters with small distance

x Repeat while clusters are not satistactory

Divisive seguntation

* Start with all pitals in on dusta

* speit clusters to produce large distance between them

x Repeat while clusters are not satistactory

Feature based segmentation

* Detin frature wellow at each pixel x:

* Apply dusterny

<i>,</i> ,	LIOTOR	2
	lusteri	

- Each	pixel	ίZ	assigner a	teature	vector	(conjuted)
--------	-------	----	------------	---------	--------	-----------	---

- To before a duster group privals with similar feature vectors.
- The similarity in each cluster should be high compare to the similarity between dusters.

Clustering

Fundamental problem:

- * Need to compute cluster parameters and assign items to clusters
- * Just estimation is difficult.

Issues:

- x what it the number of clusters?
- * How to compute similarly within clusters and distance between clusters ?
- * what features to use ?

Clustering

¥	A/	Lyor	-(1	hm	S	•
---	----	------	-----	----	---	---

- · k-muns
- Mxhar of Gaussians
- Mean shift
- Expectation maximization
- Graph cuts
- spectral clusteray

Classification tasks

A In	
Semantic Classification Object Instance Segmentation Classification + Localization Detection Segmentation	
GRASS, CAT, CAT CAT DOG, DOG, CAT DOG, DOG, CAT	
No objects, just pixels Single object Single Object Multiple Object	
•	
Object recognition	
, ,	
* sunantic gap (pixel ve labels):	
* marine gap c process	
- pixels value, as descriptors are sensitive to	
· · · · · · · · · · · · · · · · · · ·	
small variations	
* Object recognition needs to be invariant	
· pose (rotation, translation)	
· illumination	

· deformation (eg. articulated objects)	
· occhision	
· background	
· Natural variability (e.y. cars)	
a halmor dealarred (Sall Cons)	
Object veces milities	
Object recognition	
¥ 1.165. \$ a	
* Want:	
- generalization Chivariana)	
- Rytand to other problems	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · ·	
* NUK	
-flature extraction (invariance)	
- Unssitication algorithm	
J	
•	

Object recognition

- 1) extract teatures (e.g. SZFT, Hot) and train a classifier.
- 2) Bay- ut words! extract patches and cluster them to form a "code book".

 Describe image wing similarity to coole words (with on without count).
- 3) Eight facts: map images to a lower dimensional space where his ensitivity to variations and clissity in this domain
- 4) Convolutioned Neural Networks (CNN): harn feature extraction and classification.

Object recognition

- * Eigenfaces approach:
- map ivnage (e.g. 100×100) to lower divunsiand Vectors (ex. 64) USmy PCA
- masure smilerity to templates in Lower dimensional space (loss sensitive to smull vous atoms)

Object recognition

- * Bay-of-words:
 - extract peatures (eg SIFT or How)
 - cluster features to create a code book (dictionury)
 - Compute a distribution of cude words in lack class
 - classify using distribution of (adu worth)

_	
_	
Ī	
_	
_	
_	
_	
_	
_	
_	
Ī	
_	
_	
_	
Ī	
-	
-	
-	
-	
-	

Convolutional neural networks

- * Convolutioned Neural Networks (CNN): barn feature extraction and classification.
- * Learn from examples instead of coding algorithms
- * Architecture for our class can work for others
 by changing data -> class generalization

Convolutional neural networks

- learn fictions instead of specifying than using data (eg. instead of edg. detection)
- Combin features at multiph scales (multiph scale analysis)
- Produce decisions based on lower level features.

Data-driven recognition

& training and interence:

Data-driven recognition

- Train/test on different collection (eg. K-fold) cross validation)
- Performance based on testing evon (yourselifation us. over fitting)
- Large models have move capacity but reguline mure deta (exponentially) and many overtit.
- parameters:
 - · Learn model parameters (training).
 - · Hyper-parameters are specified parameters

_			
_			
_			
_			
-			
-			
-			
-			
-			
-			
-			