

## WHAT IS CLAIMED:

|          | 1  | Claim 1. A propytene polymer composition which is the product obtained by the                                                            |
|----------|----|------------------------------------------------------------------------------------------------------------------------------------------|
|          | 2  | steps comprising:                                                                                                                        |
|          | 3  | polymerizing propylene in the presence of an olefin polymerization catalyst                                                              |
|          | 4  | comprising                                                                                                                               |
|          | 5  | (i) (a) a zirconocene compound represented by the following formula                                                                      |
|          | 6  | $R^1R^2R^3R^4Zr$                                                                                                                         |
|          | 7  | wherein two of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> and R <sup>4</sup> are each a substituted indenyl group substituted with |
|          | 8  | aryl group, and linked together through a dimethylsilylene; and remaining two of R <sup>1</sup> , R <sup>2</sup> ,                       |
|          | 9  | R <sup>3</sup> and R <sup>4</sup> are each a halogen atom, and                                                                           |
|          | 10 | (ii) at least one organoaluminum oxy-compound,                                                                                           |
| U        | 11 | to prepare a propylene polymer (A1) having a melt flow rate (MFR), as measured                                                           |
|          | 12 | according to ASTM D-1238, at 230°C under a load of 2.16 kg, of 0.01 to 30 g/10 min.;                                                     |
| u<br>lah | 13 | and a molecular weight distribution (Mw/Mn), as measured by gel permeation                                                               |
|          | 14 | chromatography (GPC), of 2 to 3;                                                                                                         |
|          | 15 | polymerizing propylene in the presence of an olefin polymerization catalyst                                                              |
|          | 16 | comprising                                                                                                                               |
|          | 17 | (i) (a) a zirconocene compound represented by the following formula                                                                      |
|          | 18 | $R^1R^2R^3R^4Zr$                                                                                                                         |
|          | 19 | wherein two of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> and R <sup>4</sup> are each a substituted indenyl group substituted with |
|          | 20 | aryl group, and linked together through a dimethylsilylene; and the remaining two of R <sup>1</sup> ,                                    |
|          | 21 | R <sup>2</sup> , R <sup>3</sup> and R <sup>4</sup> are each a halogen atom, and                                                          |
|          | 22 | (ii) at least one organoaluminum oxy-compound,                                                                                           |
|          | 23 | to prepare a propylene polymer (A2) having a melt flow rate (MFR), as measured                                                           |
|          | 24 | according to ASTM D-1238, at 230°C under a load of 2.16 kg, of 30 to 1000 g/10 min.;                                                     |
|          | 25 | and a molecular weight distribution (Mw/Mn), as measured by gel permeation                                                               |
|          | 26 | chromatography (GPC), of 2 to 4; wherein the ratio ((A2)/(A1)) of the MFR of said                                                        |
|          |    |                                                                                                                                          |





| propylene polymer (A2) to the MFR of said propylene polymer (A1) is not less than 30;                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------|
| and                                                                                                                                      |
| mixing 10 to 90% by weight of the propylene polymer (A1) and 10 to 90% by                                                                |
| weight of the propylene polymer (A2).                                                                                                    |
| Claim 2. A propylene polymer composition which is the product obtained by a                                                              |
| multi-stage polymerization method comprising the steps of:                                                                               |
| polymerizing propylene in the presence of an olefin polymerization catalyst                                                              |
| comprising                                                                                                                               |
| (i) (a) a zirconocene compound represented by the following formula                                                                      |
| $R^1R^2R^3R^4Zr$                                                                                                                         |
| wherein two of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> and R <sup>4</sup> are each a substituted indenyl group substituted with |
| aryl group, and linked together through dimethylsilylene; and the remaining two of R <sup>1</sup> ,                                      |
| R <sup>2</sup> , R <sup>3</sup> and R <sup>4</sup> are each a halogen atom, and                                                          |
| (ii) at least one organoaluminum oxy-compound,                                                                                           |
| to prepare a propylene polymer (A1) having a melt flow rate (MFR), as measured                                                           |
| according to ASTM D-1238, at 230°C under a load of 2.16 kg, of 0.01 to 30 g/10 min.;                                                     |
| and a molecular weight distribution (Mw/Mn), as measured by gel permeation                                                               |
| chromatography (GPC), of 2 to 3;                                                                                                         |
| polymerizing propylene in the presence of an olefin polymerization catalyst                                                              |
| comprising                                                                                                                               |
| (i) (a) a zirconocene compound represented by the following formula                                                                      |
| $R^1R^2R^3R^4Zr$                                                                                                                         |
| wherein two of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> and R <sup>4</sup> are each a substituted indenyl group substituted with |
| aryl group, and linked together through dimethylsilylene; and the remaining two of R1,                                                   |
| R <sup>2</sup> , R <sup>3</sup> and R <sup>4</sup> are each a halogen atom, and                                                          |
|                                                                                                                                          |





| 24 | (ii) at least one organoaluminum oxy-compound,                                                                                           |
|----|------------------------------------------------------------------------------------------------------------------------------------------|
| 25 | to prepare a propylene polymer (A2) having a melt flow rate (MFR), as measured                                                           |
| 26 | according to ASTM D-1238, at 230°C under a load of 2.16 kg, of 30 to 1000 g/10 min.;                                                     |
| 27 | and a molecular weight distribution (Mw/Mn), as measured by gel permeation                                                               |
| 28 | chromatography (GPC), of 2 to 4; wherein the ratio ((A2)/(A1)) of the MFR of said                                                        |
| 29 | propylene polymer (A2) to the MFR of said propylene polymer (A1) is not less than 30;                                                    |
| 30 | and                                                                                                                                      |
| 31 | wherein the steps of preparing the propylene polymers (A1) and (A2) are                                                                  |
| 32 | conducted in an arbitrary order; and the amount of the propylene polymer (A1) is 10 to                                                   |
| 33 | 90% by weight, the amount of the propylene polymer (A2) is 10 to 90% by weight.                                                          |
| 1  | Claim 3. A propylene polymer composition which is the product obtained by the                                                            |
| 2  | steps comprising:                                                                                                                        |
| 3  | polymerizing propylene in the presence of an olefin polymerization catalyst                                                              |
| 4  | comprising                                                                                                                               |
| 5  | (d) a solid titanium catalyst compound, and                                                                                              |
| 6  | (e) an organoaluminum compound catalyst component,                                                                                       |
| 7  | to prepare a propylene polymer (A3) having a melt flow rate (MFR), as measured                                                           |
| 8  | according to ASTM D-1238, at 230°C under a load of 2.16 kg, of 0.01 to 30 g/10 min.;                                                     |
| 9  | and a molecular weight distribution (Mw/Mn), as measured by gel permeation                                                               |
| 10 | chromatography (GPC), of 4 to 15;                                                                                                        |
| 11 | polymerizing propylene in the presence of an olefin polymerization catalyst                                                              |
| 12 | comprising                                                                                                                               |
| 13 | (i) (a) a zirconocene compound represented by the following formula                                                                      |
| 14 | $R^1R^2R^3R^4Zr$                                                                                                                         |
| 15 | wherein two of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> and R <sup>4</sup> are each a substituted indenyl group substituted with |
| 16 | aryl group, and linked together through dimethylsilylene and the remaining two of R <sup>1</sup> , R <sup>2</sup>                        |
| 17 | R <sup>3</sup> and R <sup>4</sup> are each a halogen atom, and                                                                           |





(ii) at least one organoaluminum oxy-compound,

to prepare a propylene polymer (A2) having a melt flow rate (MFR), as measured according to ASTM D-1238, at 230°C under a load of 2.16 kg, of 30 to 1000 g/10 min.; and a molecular weight distribution (Mw/Mn), as measured by gel permeation chromatography (GPC), of 2 to 4; and

mixing 10 to 90% by weight of a propylene polymer (A3) and 10 to 90% by weight of the propylene polymer (A2).

Claim 4. The propylene polymer composition as claimed in claim 1 or 2, which further comprises, blended therewith, 3 to 30 parts by weight, based on 100 parts by weight of total amount of propylene polymers (A1) and (A2), of a soft polymer (B) which is a (co)polymer of ethylene or an α-olefin of 3 to 20 carbon atoms, and having MFR, as measured at 190°C under a load of 2.16 kg, of 0.01 to 100 g/10 min., and a crystallinity, as measured by x-ray diffractometry, of less than 30%.

Claim 5. The propylene polymer composition as claimed in claim 3, which further comprises, blended therewith, 3 to 30 parts by weight, based on 100 parts by weight of total amount of propylene polymers (A3) and (A2), of a soft polymer (B) which is a (co)polymer of ethylene or an α-olefin of 3 to 20 carbon atoms, and having MFR, as measured at 190°C under a load of 2.16 kg, of 0.01 to 100 g/10 min., and a crystallinity, as measured by x-ray diffractometry, of less than 30%.

Claim 6. The propylene polymer composition according to claim 1 wherein the zirconocene compound (i)(a) used to prepare propylene polymer (A1) and propylene polymer (A2) is a compound represented by the formula (I):







| 9                                       | wherein M represents a zirconium atom;                                           |
|-----------------------------------------|----------------------------------------------------------------------------------|
| 10                                      | $X^1$ and $X^2$ each represent a halogen atom;                                   |
| 11                                      | R <sup>1</sup> represents an alkyl group of from 2 to 6 carbon atoms;            |
| 12                                      | R <sup>2</sup> represents an aryl group having from 6 to 16 carbon atoms; and    |
| 13                                      | Y represents dimethylsilylene.                                                   |
| 1                                       | Claim 7. The propylene polymer composition according to claim 2 wherein the      |
| 2                                       | zirconocene compound (i)(a) used to prepare propylene polymer (A1) and propylene |
| 3                                       | polymer (A2) is a compound represented by the formula (I):                       |
| 4                                       | re! re?                                                                          |
| <b>5</b>                                | X X X                                                                            |
| 7 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | $\mathbb{R}^2$                                                                   |
| <u>j</u> 7                              | $R^1$ $R^1$                                                                      |
| 8                                       | $R^1$ $R^2$                                                                      |
| 9                                       | Y (I)                                                                            |
| 10                                      |                                                                                  |
| ± 11                                    | wherein M represents a zirconium atom;                                           |
| 12                                      | X <sup>1</sup> and X <sup>2</sup> each represent a halogen atom;                 |
| 13                                      | R <sup>1</sup> represents an alkyl group of from 2 to 6 carbon atoms;            |
| 14                                      | R <sup>2</sup> represents an aryl group having from 6 to 16 carbon atoms; and    |

Y represents dimethylsilylene.

1 Claim 8. The propylene polymer composition according to claim 3 wherein the 2 zirconocene compound (i)(a) is a compound represented by the formula (I): 3 4 5 6  $R^1$ 7 8 (I) 9 10 11 12 13 10 wherein M represents a zirconium atom; X<sup>1</sup> and X<sup>2</sup> each represent a halogen atom; R1 represents an alkyl group of from 2 to 6 carbon atoms; R<sup>2</sup> represents an aryl group having from 6 to 16 carbon atoms; and 14 Y represents dimethylsilylene. Claim 9. The propylene polymer composition according to claim 1 wherein the 1 2 zirconocene compound (i)(a) used to prepare propylene polymer (A1) and propylene 3 polymer (A2) is rac-dimethylsilyl-bis(2-ethyl-4-phenylindenyl)zirconium dichloride. 1 Claim 10. The propylene polymer composition according to claim 2 wherein the zirconocene compound (i)(a) used to prepare propylene polymer (A1) and propylene 2 polymer (A2) is rac-dimethylsilyl-bis(2-ethyl-4-phenylindenyl)zirconium dichloride. 3 Claim 11. The propylene polymer composition according to claim 3 wherein the 1 zirconocene compound (i)(a) is rac-dimethylsilyl-bis(2-ethyl-4-phenylindenyl)zirconium 2

3

dichloride.

| 1                 | Claim 12. A propylene polymer composition comprising a physical or chemical                             |
|-------------------|---------------------------------------------------------------------------------------------------------|
| 2                 | blended mixture of from 10 to 90% by weight of first propylene polymer (A1) and from                    |
| 3                 | 10 to 90% by weight of second propylene polymer (A2),                                                   |
| 4                 | wherein polymer (A1) has a melt flow rate (MFR), measured according to ASTM                             |
| 5                 | D-1238, at 230°C, under a load of 2.16 kg, of 0.01 to 30 g/10 min; and a molecular                      |
| 6                 | weight distribution (Mw/Mn), measured by gel permeation chromatography (GPC), of 2                      |
| 7                 | to 3; and                                                                                               |
| 8                 | wherein propylene polymer (A2) has a melt flow rate (MFR), measured according                           |
| 9                 | to ASTM D-1238, at 230°C, under a load of 2.16 kg, of 30 to 1000 g/10min; and a                         |
| ] 10<br>G<br>G 11 | molecular weight distribution (Mw/Mn), measured by gel permeation chromatography                        |
| Ö 11              | (GPC), of 2 to 4; and                                                                                   |
| J 12              | wherein propylene polymer (A1) and propylene polymer (A2) are each obtained                             |
| 12<br>13          | by polymerizing propylene in the presence of an olefin polymerization catalyst                          |
| 14                | comprising                                                                                              |
| 15                | (i)(a) a zirconocene compound represented by the formula                                                |
| 16<br>17          | $R^1R^2R^3R^4Zr$                                                                                        |
| 17                | wherein R <sup>1</sup> and R <sup>2</sup> each represent indenyl substituted with an alkyl group and an |
| 18                | aryl group;                                                                                             |
| 19                | R <sup>3</sup> and R <sup>4</sup> each represent a halogen atom;                                        |
| 20                | and wherein the two substituted indenyl groups are linked to each other through                         |
| 21                | dimethylsilylene; and                                                                                   |
| 22                | (ii) at least one organoaluminum oxy-compound; and                                                      |
| 23                | wherein the ratio of the MFR of propylene polymer (A2) to the MFR of propylene                          |
| 24                | polymer (A1) is not less than 30.                                                                       |

