TISE $\frac{1}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x) \Psi = E_{R} \Psi$ $V(x) \qquad \frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{2m} \frac{\partial^2 \Psi}{\partial x^2} + \frac{1}{2m} \frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{2m} \frac{\partial^2 \Psi}{\partial x^2} + \frac{1}{2m} \frac{\partial^2 \Psi}{\partial x^2$

Two-point BNP Neorples 1st order DDEs IVP N JONXI [t,t] [n, Bcs att,
n, Bcs att, n,+nz=N \vec{y}) $\vec{J} = 0$ $\vec{J} = 1, ..., n_1$ $\vec{J} = 1, ..., n_2$ $\vec{J} = 1, ..., n_2$

 $\frac{d^2}{dt} = \omega(t_1 = 0) = 0 \text{ rad/s}$ HW4 pendulum L=1.5m g=9.80m/s $O(t_2 = \frac{T}{4} = 0.6255) = 0 \text{ final}$ T = 2.55.Guess do (0/t,=0) $\Delta O = O(t_2) - O(t_2)$ $\theta_0 = 60$ Δw_{rk}

B) $w(t_1 = -\infty) = 0$ Br $\theta(t_2 = T_4) = 0$ T = 2 - 5sGr $\theta(t_1 = 0) = \theta_1$ Gr $w(t_2 = T_4) = w_2 = -\sqrt{\frac{29}{4}(1 - \omega_1 \theta_1)}$ $\Delta \theta$ $\Delta \theta$ $\Delta \omega$

y. (ti) V1, V2, ..., Vn2) n specified values n2 = N-n, free parameters. $F_{n_2 \times 1} = B_{2k}(t_2, \vec{y})$ $F_{n_2 \times 1} = Y \text{ old } + (f \vec{y})$ 2=1. ..., n2