Socito d' Avalis' 2 - CdS AIDA

Ad a finale of he she
$$Bu(x) = \frac{hx^2}{h \cdot x^2} = \frac{hx^2}{h(n+\frac{x^2}{n})}$$
 per $h \to \infty$

b) Convergenza uniforme ou
$$R$$

Shuurama $|E_{N(z)} - E_{(x)}| = \left| \frac{N \times 2}{N + \times 2} - \times^{2} \right| = \left| \frac{N \times 2 - N \times 2 - \times 4}{N + \times 2} \right| = \frac{X4}{N + X2}$

Dunque En non converge aniform od 6.

1. La Bunzone é d'elana Ca(1R2) dunque gli eventuali punti d' estrema (libera) relativo sono dei punti escitici.

I punh exitici cono (0,0); (0,2) (±12,0) (±12,0)

Collections la matrice Herriana

$$\frac{\partial^2 f}{\partial x^2} = 12 \times 2 - 8 \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 0 \qquad \frac{\partial^2 f}{\partial y^2} = 6y - 6$$

$$HP(\pm \sqrt{2},2) = \begin{pmatrix} 16 & 0 \\ 0 & 6 \end{pmatrix}$$
 del $HP(\pm \sqrt{2},2) = 0$ ($\pm \sqrt{2},2$) punhà de nunimo Docde

Paiche la gurzione gla, w) = (4 o f)(a, y) con colti e et strellom. Crexente, allora i punhi dicettemo di franco tutti e sei i punhi di estemo di g.

3. Gradeziamo $C(x) = e^{x} = P(x)e^{2x} cos(\beta x)$ x = 1, $\beta = 0$ P(x) polinomia $S = x + i \beta = 1$ non e soluzione

dell'equa zione raza Herrishra ossociata $\lambda^{2} + \lambda - 3 = 0$ Allara (sione nal 1000 n) cerra soluzione del hipo $y = a \cdot e^{x}$ e Lizavo $y = a \cdot e^{x}$ $y = a \cdot e^{x}$ Imponendo $a \cdot e^{x} + a \cdot e^{x} - 3a \cdot e^{x} = e^{x}$ Triavo a = -4. Dunque la soluzione generale $a \cdot e^{x} + a \cdot e^{x} - 3a \cdot e^{x} = e^{x}$ $y = y(x) + y(x) = -e^{x} + c_{1}e^{x} - \frac{1 + \sqrt{12}}{2} + c_{2}e^{x} - \frac{1 + \sqrt{13}}{2}$ $x = \frac{1 + \sqrt{13}}{2}$ $x = \frac{1 + \sqrt{13}}{2}$

Impoliamo le condizioni iniziali

$$S(0) = -2$$
 $-4 + C_1 + C_2 = -4$ $C_1 = -C_2$
 $S(x) = -e^x + C_1 \left(-\frac{1+\sqrt{13}}{2}\right) = \frac{1-\sqrt{13}}{2} + C_2 \left(-\frac{1-\sqrt{13}}{2}\right) = \frac{1-\sqrt{13}}{2} \times \frac{1-\sqrt{13}}{2} = \frac{1-\sqrt{13}}{2} = \frac{1-\sqrt{13}}{2} \times \frac{1-\sqrt{13}}{2} = \frac{1-\sqrt{13}}{2}$

4. $\int_{E} (y+2x) dx dy$ $E = \begin{cases} (n/3) : 2^{2} - 2y + y^{2} = 0 \end{cases}$ Lo $(x-a)^{2} + (y-1)^{2} = 1$ $\begin{cases} x = y + x = 0 \end{cases}$ $\begin{cases} x = x = 0 \end{cases}$ $\begin{cases} x = y + x = 0 \end{cases}$ $\begin{cases} x = x = 0 \end{cases}$ \begin{cases}