CS270-B Advanced Digital Image Processing

Lecture 1-2 Image Denoising

Yuyao Zhang PhD

zhangyy8@shanghaitech.edu.cn

SIST Building-3 420

Model of Image Degradation

In Spatial domain: $g(x,y) = h(x,y) \star f(x,y) + \eta(x,y)$

In Frequency domain: G(u, v) = H(u, v)F(u, v) + N(u, v)

H is a linear, position-invariant process

g(x,y): a degraded image f(x,y): input image

h(x,y): degradation function $\eta(x,y)$: additive noise term

Task for restoration: objective methods for undoing corruption.

When only noise

For easier case: when *H* is identity (no blur). Degraded image contain only additive noise.

$$g(x, y) = f(x, y) + \eta(x, y) \text{ or } G(x, y) = F(x, y) + N(x, y)$$

- Noise is often described by Probability Density Function (PDF).
- Noise may be due to :
 - Non-ideal sensor elements.
 - Environmental conditions (light level, temperature…).
 - Corruption during transmission/ compression.

Denoising Outline

- Gaussian Filter
- Bilateral Filter
- Guided Filter
- Non Local Means
- Wavelet Denoising

- Block Matching and 3D
 Filtering (BM3D)
- Anisotropic diffusion
- Markov Random Field
- New Deep Learning
 Approaches, still emerging

Lecture 1 Outline

- Gaussian Filter
- Bilateral Filter
- Guided Filter

Gausssian Filter

Gaussian Filter

Bilateral Filter

Reference:

[1] Tomasi, C; Manduchi, R (1998). <u>Bilateral filtering for gray and color images</u>. Sixth International Conference on Computer Vision. Bombay. pp. 839–846.

doi:10.1109/ICCV.1998.710815.

[2] Kornprobst, Pierre (2007). "Limitations? - A Gentle Introduction Bilateral Filteringand its Applications".

Bilateral Filter

The kernel shape depends on the image content.

Bilateral Filter: Result

Bilateral Filter: Advantage

Obtain cartoon-like pictures

Guided Filter

reference:

- [1] K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV, pages 1–14. 2010.
- [2] K. He, J. Sun, and X. Tang. Guided image filtering. TPAMI, 35(6):1397–1409, 2013
- [3] He K, Sun J. Fast Guided Filter[J]. Computer Science, 2015.

Take home massage

- Image denoising is to recover signals hidden in a noisy background. Since noise is a statistical fluctuation governed by quantum mechanics, denoising is generally achieved by an mean/averaging operation.
- The key idea behind early denoising methods is to avoid smoothing on image edges.

