

Investigating The Variability of Urban Tree Phenology Using Volunteer-hosted Phenocams

Presented by Maya Hall

Advisor: Dr. Michael Alonzo

Committee Members: Dr. Valentina Aquila and Dr. Sauleh Siddiqui

Background

Phenology: the study of cyclic and seasonal natural phenomena in the lives of plants and animals

Drivers Of Phenology

Urban Heat Island (UHI) Effect

Advance in spring events

Delay in autumn events

Extension of growing season

Washington, D.C. (A) aerial imagery with major waterbodies masked; (B) morning UHI; (C) afternoon UHI; (D) evening UHI. (Shandas et al. 2019)

Motivation – Importance of Urban Phenology

- Ecosystem services
- Phenology as an indicator
- Proxy for future responses

Methods of Phenological Data Collection

Landsat 8

- Ground-based Observations
- Satellite Remote Sensing

Satellite	Spatial Resolution	Temporal Resolution
MODIS	250m – 1000m	1-2 days
Landsat	30m	16 days
Harmonized Landsat Sentinel-2 (HLS)	30m	2-3 days

Washington, D.C. NASA/USGS Landsat 2005. 30mx30m

Background

Phenocams

StarDot NetCam

Brinno Digital Camera

- Near-continuous
- Accessible and flexible
- Near-surface

Top: HoS EOS 2022; Bottom: Delaware Ave. SOS 2022

Aim 1: Test the extent to which phenocam imagery can track urban phenology changes influenced by regional air temperature and precipitation

Aim 2: Explore the variability of urban tree phenological responses across phenocam site and genera

Aim 3: Examine the suitability of phenocams as reliable and practical tools for urban phenology studies and explore the implementation of volunteers as phenocam hosts

Study Site: Washington, D.C

- Humid subtropical climate
- 38% canopy cover
- 39% impervious surface cover

Phenocam locations based on Casey Trees volunteers

Washington, D.C. study site with district borders outlined in orange and each phenocam location symbolized as a bright blue circle

Phenocam Installation and Data Collection

Above: raw video from phenocam; Right: Examples of phenocam set-ups

10

Methods

Daily Images and xROI

Left: Example of an ROI in xROI GUI; Right: Example of drawn and labeled ROIs.

Spline Interpolation and Phenometrics

Example of spline interpolation

Interannual Differences in Phenometrics

Analysis of Variance (ANOVA)

- Start of season (SOS)
- End of season (EOS)
- Growing season length (GSL)

Tukey's Honest Significant Difference (HSD)

• Significant phenometrics

Visualize as Boxplots

All phenometrics

Statistical Analyses

Aims 1 & 2 – Climate, Site, and Genus

- Hierarchical Mixed Effects modeling
- Ordinary Least Squares modeling
- Visualization of genera differences

Key Model Evaluation Steps

- MAD and R²
- BIC minimization

Model Variables

	Variable Name	Short Name	Description
Regional Variables	Temperature	TEMP	Monthly and daily minimums, maximums, and averages from NOAA
	Precipitation	PRECIP	Monthly averages and totals from NOAA
	Impervious surface	IMP	Impervious surface from City of D.C. planimetric data
Site Variables	Tree canopy	TCF	1 m tree canopy map derived from 2018 City of D.C. lidar data
	Elevation	ELEV	City of D.C. lidar Digital Terrain Model (2018)
	Year	Year	2020 – 2022
Random Effects	Phenocam	Phenocam	Individual phenocams
	Genus	Genus	Street tree identities provided by D.C.'s Urban Forestry Division (UFD)

Method Evaluation

Aim 3 – Volunteer-hosted Phenocams

- Assess benefits and complexities of phenocams
- Evaluate influence of volunteerbased sites
- Provide recommendations

Interannual Variation

Growing Season Length

Interannual Variation

Interannual Variation

Hierarchical Mixed Effects Models

$$SOS = \%IMP + \%TCF + ELEV + TEMP + (1|Phenocam)$$

$$R^2 = 0.38$$
 MAD = 5.03

$$EOS = \%IMP + \%TCF + ELEV + TEMP + PRECIP + (1|Phenocam)$$

$$R^2 = 0.36$$

MAD = 10.26

Hierarchical Mixed Effects Model: SOS

	IMP	TCF	ELEV	TEMP
Coefficient	33.12	13.64	-0.06	25.72
Std. Error	60.23	63.82	0.16	9.01
t-value	0.55	0.21	-0.34	2.85
p-value	0.60	0.84	0.71	4.86e-3*

^{*}statistical significance at the 99% level

Ordinary Least Squares Models

$$SOS = \%IMP + \%TCF + ELEV + TEMP$$

$$R^2 = 0.14$$
 MAD = 5.19

$$EOS = \%IMP + \%TCF + ELEV + TEMP + PRECIP$$

$$R^2 = 0.04$$
 MAD = 13.58

Ordinary Least Squares Model: SOS

	IMP	TEMP	TCF	DTM
Coefficient	-14.94	17.73	9.89	-0.03
Std. Error	12.13	3.97	13.90	0.03
t-value	-1.23	4.47	0.71	-1.10
p-value	0.22	1.45e-05*	0.48	0.28

^{*}statistical significance at 99% level

Ordinary Least Squares Model: EOS

	IMP	TEMP	TCF	DTM	PRECIP
Coefficient	58.75	-2.43	5.03	-0.03	0.35
Std. Error	24.90	5.97	25.71	0.05	0.44
t-value	2.36	-0.41	0.20	-0.66	0.76
p-value	0.02*	0.68	0.85	0.51	0.43

^{*}statistical significance at 95% level

Ordinary Least Squares Model: EOS & Impervious Surface Cover

Phenometric Differences in Genera

Phenometric Differences in Genera

Interannual Genera Differences

Median phenometric values for each genera plotted across three years. A) SOS, B) EOS (Alonzo et al. accepted).

Interannual Genera Differences

Assessing Phenocams

Phenocam	SOS 2020	EOS 2020	SOS 2021	EOS 2021	SOS 2022	EOS 2022
Trinidad Ave	Active	Active	Active	Active	Active	Active
17th St.	Active	Active	Active	Active	Inactive	Inactive
First St.	Active	Active	Active	Active	Active	Active
Lang Pl.	Active	Active	Active	Active	Active	Active
A 10th St.	Active	Active	Inactive	Inactive	Inactive	Inactive
A 4th St.	Active	Inactive	Inactive	Inactive	Inactive	Inactive
B 10th St.	Active	Active	Active	Active	Active	Active
B 4th St.	Active	Inactive	Inactive	Inactive	Inactive	Inactive
Delaware Ave		Active	Active	Active	Active	Active
13th St.		Active	Active	Active	Active	Active

Phenocam SOS 20)20 EOS 2020	SOS 2021	EOS 2021	SOS 2022	EOS 2022
California St.	Active	Active	Active	Active	Active
Emerald St.	Active	Active	Active	Active	Active
Q St.	Active	Active	Active	Active	Active
7th St.	Active	Active	Active	Active	Active
F St.	Active	Active	Active	Active	Active
Pershing Dr.	Active	Active	Active	Active	Active
HoS North	Active	Active	Active	Active	Active
HoS South	Active	Active	Active	Active	Active
Kalmia Rd.	Active	Active	Active	Active	Active

Discussion and Conclusion

Aim 1:

- Significant SOS differences between years
- SOS delayed by ~ 1.8 to 2.6 days as temperature increases

Aim 2:

- Significant phenometric differences across genera
- EOS delayed by ~ **5.9** days for every 10% increase in impervious surface cover

Aim 3:

- Urban locations add complexity to phenocam set-ups
- Type of phenocam matters
- Volunteers as phenocam hosts increase educational reach of project, but site variation adds noise

Discussion and Conclusion

Recommendations

- Continuous power source
- Prioritize high installation
- High selectivity of phenocam model and mount type

Thank You!

Dr. Michael Alonzo, for expertise and mentorship throughout the duration of this project

Dr. Valentina Aquila and Dr. Sauleh Siddiqui, for serving on my committee and providing guidance

Dr. Thu Ya Kyaw, for encouragement and statistical support

Volunteers, for hosting phenocams and great discussions

Family and **Friends**, for bringing me endless love and laughs these past two years

Funding Sources:

American University Graduate Assistantship National Science Foundation (Grant No. 1951647)

Any Questions?

References

Aasen, H., Kirchgessner, N., Walter, A., & Liebisch, F. (2020). PhenoCams for Field Phenotyping: Using Very High Temporal Resolution Digital Repeated Photography to Investigate Interactions of Growth, Phenology, and Harvest Traits. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00593

Alonzo, M., Baker, M. E., Gao, Y., & Shandas, V. (2021). Spatial configuration and time of day impact the magnitude of urban tree canopy cooling. Environmental Research Letters, 16(8). https://doi.org/10.1088/1748-9326/ac12f2

Basler, David, Körner, Christian. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. 2014. 10.1093/treephys/tpu021. Tree Physiology. Vol 34. 4. 377. 388. 0829-318X. 7/14/2022. https://doi.org/10.1093/treephys/tpu021

Bolton, D, K., Gray, J.M, Melaas, E.K., Moon, M., Eklundh, L. and M.A. Friedl (2020). Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sensing of Environment, 240, https://doi.org/10.1016/j.rse.2020.111685.

Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change. In Trends in Ecology and Evolution (Vol. 22, Issue 7, pp. 357–365). https://doi.org/10.1016/i.tree.2007.04.003

Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504-513. https://doi.org/10.1016/j.rse.2009.10.008

Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray, J. M., Johnston, M. R., Keenan, T. F., Klosterman, S. T., Kosmala, M., Melaas, E. K., Friedl, M. A., & Frolking, S. (2018). Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.28

Shandas, V., Voelkel, J., Williams, J., & Hoffman, J. (2019). Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat. Climate, 7(1), 5. MDPI AG. Retrieved from http://dx.doi.org/10.3390/cli7010005

Song, Peng, Sexton, Joseph O., Huang, Chengquan, Channan, Saurabh, Townshend, John R., Characterizing the magnitude, timing and duration of urban growth from time series of Landsatbased estimates of impervious cover, Remote Sensing of Environment, Volume 175, 2016, Pages 1-13, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2015.12.027.

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M., Braswell, B. H., Milliman, T., O'Keefe, J., & Richardson, A. D. (2012). Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology, 152(1), 159-177. https://doi.org/10.1016/j.agrformet.2011.09.009

Zipper, S. C., Schatz, J., Singh, A., Kucharik, C. J., Townsend, P. A., & Loheide, S. P. (2016). Urban heat island impacts on plant phenology: Intra-urban variability and response to land cover. Environmental Research Letters, 11(5). https://doi.org/10.1088/1748-9326/11/5/054023