Heroes Of Pymoli Data Analysis

- Observed Trend 1: There are significantly more male players than females.
- Observed Trend 2: More than half of the players are under age 24.
- Observed Trend 3: Players above age 35 spent more per person as indicated in normalized average.

In [1]:

```
import pandas as pd
import os
hop_data = os.path.join('purchase_data2.json')
hop_data_df = pd.read_json(hop_data, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False)
hop_data_df.head()
```

Out[1]:

	Age	Gender	Item ID	Item Name	Price	SN
0	20	Male	93	Apocalyptic Battlescythe	4.49	Iloni35
1	21	Male	12	Dawne	3.36	Aidaira26
2	17	Male	5	Putrid Fan	2.63	Irim47
3	17	Male	123	Twilight's Carver	2.55	Irith83
4	22	Male	154	Feral Katana	4.11	Philodil43

Player Count

In [2]:

```
total_players = hop_data_df["SN"].nunique()
# print(unique_player)
# print(f" Total Players: {total_players}")
totalplayers = pd.DataFrame({"Total Players":[total_players]})
totalplayers
```

Out[2]:

	Total Players
0	74

Purchasing Analysis (Total)

In [3]:

```
unique item = hop data df["Item ID"].nunique()
# print(unique item)
average price = round(hop data df["Price"].mean(), 2)
# print(average price)
number_purchase = hop_data_df["Item ID"].count()
# print(number purchase)
total_revenue = round(hop_data_df["Price"].sum(), 2)
# print(total revenue)
purchasing analysis = pd.DataFrame({"Number of Unique Items":[unique item],
                                     "Average Price": [average price],
                                     "Number of Purchases": [number purchase],
                                     "Total Revenue": [total revenue]})
purchasing analysis["Average Price"] = purchasing analysis["Average Price"].map(
'${:,.2f}'.format)
purchasing analysis["Total Revenue"] = purchasing analysis["Total Revenue"].map(
'${:,.2f}'.format)
purchasing analysis
```

Out[3]:

		Average Price	Number of Purchases	Number of Unique Items	Total Revenue
(0	\$2.92	78	64	\$228.10

Gender Demographics

In [4]:

```
gender_df = hop_data_df.iloc[:,[1,5]]
unique_df = gender_df.drop_duplicates()
total_gender = unique_df.groupby("Gender")
count = total_gender["Gender"].count()
percentage = round(count/count.sum()*100, 2)
gender_demo = pd.concat([percentage, count], axis=1)
gender_demo.columns = ["Percentage of Players", "Total Count"]
gender_demo
```

Out[4]:

	Percentage of Players	Total Count
Gender		
Female	17.57	13
Male	81.08	60
Other / Non-Disclosed	1.35	1

Purchasing Analysis (Gender)

In [5]:

```
total purchase = hop data df.groupby("Gender")
gender purchase = total purchase["Gender"].count()
gender average = round(total_purchase["Price"].mean(), 2)
gender revenue = round(total purchase["Price"].sum(), 2)
normalized = round((gender revenue / count), 2)
gender buy analysis = pd.concat([gender purchase, gender average, gender revenue
, normalized], axis=1)
gender buy analysis.columns = ["Purchase Count", "Average Purchase Price", "Tota
l Revenue", "Normalized Average"]
gender_buy_analysis["Average Purchase Price"] = gender_buy_analysis["Average Pur
chase Price"].map('${:,.2f}'.format)
gender_buy_analysis["Total Revenue"] = gender_buy_analysis["Total Revenue"].map(
'${:,.2f}'.format)
gender_buy_analysis["Normalized Average"] = gender buy analysis["Normalized Aver
age"].map('${:,.2f}'.format)
gender buy analysis
```

Out[5]:

	Purchase Count	Average Purchase Price	Total Revenue	Normalized Average
Gender				
Female	13	\$3.18	\$41.38	\$3.18
Male	64	\$2.88	\$184.60	\$3.08
Other / Non- Disclosed	1	\$2.12	\$2.12	\$2.12

Age Demographics

In [6]:

```
# print(hop_data_df["Age"].max())
# print(hop_data_df["Age"].min())
bins = [0,9,14,19,24,29,34,39,50]
age_label = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40+"]
pd.cut(hop_data_df["Age"], bins, labels = age_label)
hop_data_df["Age Group"] = pd.cut(hop_data_df["Age"], bins, labels = age_label)
age_df = hop_data_df.iloc[:,[5,6]]
unique_player_df = age_df.drop_duplicates()
age_group = unique_player_df.groupby("Age Group")
# HOW TO sort to put age < 10 atop?
age_count = age_group["Age Group"].count()
age_percentage = round(age_count/age_count.sum()*100, 2)
age_demo = pd.concat([age_percentage, age_count], axis=1)
age_demo.columns = ["Percentage of Players", "Total Count"]
age_demo</pre>
```

Out[6]:

	Percentage of Players	Total Count
Age Group		
10-14	4.05	3
15-19	14.86	11
20-24	45.95	34
25-29	10.81	8
30-34	8.11	6
35-39	8.11	6
40+	1.35	1
<10	6.76	5

Purchasing Analysis (Age)

In [7]:

```
age analysis df = hop data df.groupby("Age Group")
age purchase = age analysis df["Age Group"].count()
age_average = round(age_analysis_df["Price"].mean(), 2)
age revenue = round(age analysis df["Price"].sum(), 2)
age normalized = round(age revenue/age count, 2)
age_buy_analysis = pd.concat([age_purchase, age_average, age_revenue, age normal
ized], axis=1)
age buy analysis.columns = ["Purchase Count", "Average Purchase Price", "Total Re
venue", "Normalized Average"]
age_buy_analysis["Average Purchase Price"] = age_buy_analysis["Average Purchase
Price"].map('${:,.2f}'.format)
age_buy_analysis["Total Revenue"] = age_buy_analysis["Total Revenue"].map('${:,.
2f}'.format)
age buy analysis["Normalized Average"] = age buy analysis["Normalized Average"].
map('${:,.2f}'.format)
age buy analysis
```

Out[7]:

	Purchase Count	Average Purchase Price	Total Revenue	Normalized Average
Age Group				
10-14	3	\$2.99	\$8.96	\$2.99
15-19	11	\$2.76	\$30.41	\$2.76
20-24	36	\$3.02	\$108.89	\$3.20
25-29	9	\$2.90	\$26.11	\$3.26
30-34	7	\$1.98	\$13.89	\$2.32
35-39	6	\$3.56	\$21.37	\$3.56
40+	1	\$4.65	\$4.65	\$4.65
<10	5	\$2.76	\$13.82	\$2.76

Top Spenders

In [8]:

```
top_spenders = hop_data_df.groupby("SN")
top_spender_total = top_spenders["Price"].sum()
top_spender_count = top_spenders["Item ID"].count()
top_spender_average = round(top_spender_total/top_spender_count, 2)
top5spenders = pd.concat([top_spender_count, top_spender_average,top_spender_total], axis=1).nlargest(5,"Price")
top5spenders.columns = ["Purchase Count", "Average Purchase Price", "Total Purchase Value"]
top5spenders["Average Purchase Price"] = top5spenders["Average Purchase Price"].
map('${:,.2f}'.format)
top5spenders["Total Purchase Value"] = top5spenders["Total Purchase Value"].map(
'${:,.2f}'.format)
top5spenders
```

Out[8]:

	Purchase Count	Average Purchase Price	Total Purchase Value
SN			
Sundaky74	2	\$3.70	\$7.41
Aidaira26	2	\$2.56	\$5.13
Eusty71	1	\$4.81	\$4.81
Chanirra64	1	\$4.78	\$4.78
Alarap40	1	\$4.71	\$4.71

Most Popular Items

In [9]:

Out[9]:

	Item Price	Purchase Count	Total Purchase Value
Item Name			
Mourning Blade	\$3.64	3	\$10.92
Apocalyptic Battlescythe	\$4.49	2	\$8.98
Betrayer	\$4.12	2	\$8.24
Crucifer	\$2.64	2	\$5.29
Deadline, Voice Of Subtlety	\$1.29	2	\$2.58

Most Profitable Items

In [10]:

Out[10]:

	Item Price	Purchase Count	Total Purchase Value
Item Name			
Mourning Blade	\$3.64	3	\$10.92
Heartstriker, Legacy of the Light	\$4.71	2	\$9.42
Apocalyptic Battlescythe	\$4.49	2	\$8.98
Betrayer	\$4.12	2	\$8.24
Feral Katana	\$4.11	2	\$8.22

In []: