Robotics 1 Exercise Solver

January 4, 2024

Contents

1	\mathbf{DC}	motors	3			
	1.1	Electrical and mechanical balance	3			
	1.2	Reduction ratio	3			
		1.2.1 Harmonic drives	3			
		1.2.2 Standard gears	4			
	1.3	Optimal reduction ratio	4			
	1.4	Optimal torque	4			
2	Encoders 4					
	2.1	Absolute encoders	4			
	2.2	Incremental encoders	4			
	2.3	Multi-turn encoders	5			
3	Rotation Matrices 5					
	3.1	Check if R is a rotation matrix	5			
	3.2	General Rotation	5			
	3.3	Rotation direct problem	5			
	3.4	Rotation inverse problem	6			
		3.4.1 singularity (hence $\sin(\theta) = 0$)	6			
		3.4.2 not singularity	6			
4	Eul	er	6			
	4.1	Euler direct problem	6			
	4.2	Inverse Problem	7			
		4.2.1 singularity (hence $R_{13}^2 + R_{23}^2 = 0$)	7			
	4.3	not singularity	7			

5	Roll Pitch Yawn					
	5.1	RPY direct problem	7			
			7			
6	DH	frames	8			
	6.1	Assign axis	8			
	6.2	DH table	8			
	6.3	Transformation matrix from DH parameters	8			
	6.4	DH parameters from transformation matrix	8			
7	Workspace 9					
	7.1	2-DOF robot	9			
			9			
8	Inv	erse Kinematic	9			
	8.1	Trigonometry	9			
	8.2	algebraic transformation	9			
	8.3	algebraic solution				

1 DC motors

1.1 Electrical and mechanical balance

$$V_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + v_{emf}(t)$$
(1)

$$v_{emf}(t) = k_v \omega(t) \tag{2}$$

in control domain:

$$V_a = (R_a + sL_a)I_a + V_{emf} \tag{3}$$

$$V_{emf} = k_v \omega \tag{4}$$

where V_a is the voltage applied to the motor, R_a is the armature resistance, L_a is the armature inductance, i_a is the armature current, v_{emf} is the back emf, k_v is the back emf constant and ω is the angular velocity of the motor.

$$\tau_m(t) = I_m(t) \frac{d\omega(t)}{dt} + F_m\omega(t) + \tau_{load}(t)$$
 (5)

$$\tau_m(t) = k_t i_a(t) \tag{6}$$

in control domain:

$$T_m = (sI_m + F_m)\omega + T_{load} \tag{7}$$

$$T_m = k_t I_a \tag{8}$$

where τ_m is the motor torque, I_m is the motor inertia, F_m is the motor friction, τ_{load} is the load torque and k_t is the torque constant. Note: $k_v = k_t$ numerically!

1.2 Reduction ratio

The reduction ratio of a the ransmission chain is the product of the reduction ratios of the single elements of the chain:

$$\eta = \sum_{i=1}^{n} \eta_i \tag{9}$$

1.2.1 Harmonic drives

$$\eta = \frac{\#theet_{FS}}{\#theet_{CS} - \#theet_{FS}} = \frac{\#theet_{FS}}{2}$$
 (10)

$$#theet_{FS} = #theet_{CS} - 2 \tag{11}$$

1.2.2 Standard gears

Given two gears of radius r_1 and r_2 the reduction ratio is:

$$\eta = \frac{r_2}{r_1} \tag{12}$$

1.3 Optimal reduction ratio

$$\eta_{opt} = \sqrt{\frac{J_{load}}{J_{motor}}} \tag{13}$$

1.4 Optimal torque

We impose the relation between the angular acceleration of the load and the motor:

$$\dot{\theta_m} = \eta \dot{\theta_l} \tag{14}$$

$$\tau_m = J_m * \dot{\theta_m} + \frac{1}{\eta} (J_l * \dot{\dot{\theta_l}}) \tag{15}$$

2 Encoders

2.1 Absolute encoders

The resolution of an absolute encoder is given by:

$$res = \frac{2\pi}{2^{N_t}} \tag{16}$$

where N_t is the number of bits of the encoder. Note: the resolution changes from base to link end!

$$res_{base} = res_{link}/L$$
 (17)

where L is the length of the link.

2.2 Incremental encoders

The resolution of an incremental encoder is given by:

$$rse = \frac{2\pi}{2^{N_t}} \tag{18}$$

The number of bit of the encoder is given by:

$$N_t = \log_2(N_p) \tag{19}$$

where N_p is the number of pulses per turn of the encoder.

2.3 Multi-turn encoders

The number of bits to count the turns in a multi-turn encoder is given by:

$$N_t = \log_2(N_{turns}) \tag{20}$$

where N_{turns} is the number of turns of the encoder. The number of turns of the encoder is given by:

$$N_{turns} = \frac{\Delta\theta_{max} * n_r}{2\pi} \tag{21}$$

where $\delta\theta_{max}$ is the maximum angle of the encoder and n_r is the reduction ratio.

3 Rotation Matrices

3.1 Check if R is a rotation matrix

To check if R is a rotation matrix we have to check:

- $\det(\mathbf{R}) = 1$
- Orthogonality: $R^T R = I$
- Normality: for each column R_i of R, $||R_i|| = 1$

3.2 General Rotation

$${}^{A}R_{B} = \begin{bmatrix} x_{A}x_{B} & y_{A}x_{B} & z_{A}x_{B} \\ x_{A}y_{B} & y_{A}y_{B} & z_{A}y_{B} \\ x_{A}z_{B} & y_{A}z_{B} & z_{A}z_{B} \end{bmatrix}$$
(22)

3.3 Rotation direct problem

To find R from θ and **r** we use the Rodrigues' rotation formula:

$$R(\theta, r) = rr^{T} + (I - rr^{T})\cos(\theta) + (S(r))\sin(\theta)$$
(23)

where S(r) is the skew-symmetric matrix of **r**:

$$S(r) = \begin{bmatrix} 0 & -r_3 & r_2 \\ r_3 & 0 & -r_1 \\ -r_2 & r_1 & 0 \end{bmatrix}$$
 (24)

3.4 Rotation inverse problem

To find θ and **r** from R we first check if there is a singularity:

$$\sin(\theta) = \frac{1}{2} \left(\sqrt{(R_{23} - R_{32})^2 + (R_{13} - R_{31})^2 + (R_{12} - R_{21})^2} \right)$$
 (25)

3.4.1 singularity (hence $sin(\theta) = 0$)

If it is a singularity we can find \mathbf{r} and θ : if θ is 0: there is no solution for r. if θ is $\pm \pi$:

we set $sin(\theta) = 0$, $cos(\theta) = -1$ and we find **r**:

$$\mathbf{r} = \begin{bmatrix} \pm \sqrt{\frac{R_{11}+1}{2}} \\ \pm \sqrt{\frac{R_{22}+1}{2}} \\ \pm \sqrt{\frac{R_{33}+1}{2}} \end{bmatrix}$$
 (26)

To decide the signs of the elements of \mathbf{r} we can use the following criteria:

- $r_x r_y = R_{12}/2$
- $r_x r_z = R_{13}/2$
- $r_y r_z = R_{23}/2$

3.4.2 not singularity

If the singularity is not present we can find theta and **r**:

Note: we obtain two solutions for θ and cosequently r

$$\cos(\theta) = (R_{11} + R_{22} + R_{33} - 1) \tag{27}$$

$$\sin(\theta) = \pm \sqrt{(R_{32} - R_{23})^2 + (R_{13} - R_{31})^2 + (R_{21} - R_{12})^2}$$
 (28)

$$\theta = \operatorname{atan2}\left(\sin\theta, \cos\theta\right) \in (-\pi, \pi] \tag{29}$$

$$\mathbf{r} = \frac{1}{2\sin(\theta)} \begin{bmatrix} R_{32} - R_{23} \\ R_{13} - R_{31} \\ R_{21} - R_{12} \end{bmatrix}$$
(30)

4 Euler

4.1 Euler direct problem

To find R from ϕ , θ and ψ around axis X,Y,Z we use the following formula:

$$R(\phi, \theta, \psi) = R_x(\phi)R_y(\theta)R_z(\psi) \tag{31}$$

4.2 Inverse Problem

Given a rotation matrix R we can find ϕ , θ and ψ : First check if there is a singularity (if $\theta = 0$ or $\pm \pi$).

4.2.1 singularity (hence $R_{13}^2 + R_{23}^2 = 0$)

If it is a singularity we can find $\phi + \psi$ and $\phi - \psi$

4.3 not singularity

If it is not a singularity we can find ϕ , θ and ψ :

$$\theta = \operatorname{atan2}\left(\pm\sqrt{R_{13}^2 + R_{23}^2}, R_{33}\right) \tag{32}$$

$$\phi = \operatorname{atan2}\left(R_{13}/\sin(\theta), -R_{23}/\sin(\theta)\right) \tag{33}$$

$$\psi = \operatorname{atan2}(R_{31}/\sin(\theta), R_{32}/\sin(\theta)) \tag{34}$$

5 Roll Pitch Yawn

5.1 RPY direct problem

To find R from ψ , θ and ϕ we use the following formula:

$$R(\psi, \theta, \phi) = R_z(\phi)R_y(\theta)R_x(\psi) \tag{35}$$

Note: the order of the angle is reversed!

5.2 Inverse Problem

Given a rotation matrix R we can find angles of rotation ψ , θ and ϕ : First we check if there is a singularity (if $R_{32}^2 + R_{33}^2 = 0$), we then have two cases:

 No Singularity — We can find all three parameters of the rotational matrix R

$$\theta = \operatorname{atan2}\left(-R_{31}, \pm \sqrt{R_{32}^2 + R_{33}^2}\right) \tag{36}$$

$$\phi = \operatorname{atan2}(R_{21}/\cos(\theta), R_{11}/\cos(\theta)) \tag{37}$$

$$\psi = \operatorname{atan2}(R_{32}/\cos(\theta), R_{33}/\cos(\theta)) \tag{38}$$

• **Singularity** — We cannot find all three angles, only θ and a combination of ϕ and ψ , the formula for these combinations is:

$$\begin{cases} \phi - \psi = \operatorname{atan2} \{ R_{2,3}, R_{1,3} \} & \text{if } \theta = \frac{\pi}{2} \\ \phi + \psi = \operatorname{atan2} \{ -R_{2,3}, R_{2,2} \} & \text{if } \theta = -\frac{\pi}{2} \end{cases}$$
(39)

6 DH frames

6.1 Assign axis

- z_i along the direction of joint i+1.
- x_i along the common normal between z_i and z_{i-1} .
- y_i completes the right-handed coordinate system.

6.2 DH table

- θ_i angle between x_{i-1} and x_i measured about z_{i-1} .
- d_i distance between x_{i-1} and x_i measured along z_{i-1} .
- a_i distance between z_{i-1} and z_i measured along x_i .
- α_i angle between z_{i-1} and z_i measured about x_i .

6.3 Transformation matrix from DH parameters

$$^{i-1}A_i = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\ 0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(40)

6.4 DH parameters from transformation matrix

First we have to check that the first three by three submatrix is a rotation matrix (see section 3.1).

Then we can find the parameters:

$$\theta_i = \text{atan2}(R_{12}, R_{11}) \tag{41}$$

$$\alpha_i = \text{atan2}(R_{32}, R_{33})$$
 (42)

$$d_i = R_{34} \tag{43}$$

$$a_i = R_{14}\cos(\theta_i) + R_{24}\sin(\theta_i) \tag{44}$$

7 Workspace

7.1 2-DOF robot

The primary workspace is defined by two concentric circles of radius r_1 and r_2 where:

$$r_1 = |l_1 - l_2| \tag{45}$$

$$r_2 = l_1 + l_2 \tag{46}$$

7.2 3-DOF robot

The primary workspace is defined by two concentric spheres of radius r_{in} and r_{out} where:

$$r_{out} = l_{min} + l_{med} + l_{max} (47)$$

$$r_{in} = \max(0, l_{max} - l_{med} - l_{min}) \tag{48}$$

where:

- l_{min} is the length of the shortest link
- l_{med} is the length of the medium link
- l_{max} is the length of the longest link

8 Inverse Kinematic

8.1 Trigonometry

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) \tag{49}$$

$$\sin(\theta + \phi) = \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi) \tag{50}$$

8.2 algebraic transformation

if we have a system of the form:

$$a\cos(\theta) + b\sin(\theta) = c \tag{51}$$

we can transform it in a system of the form:

$$u_{12} = \frac{a \pm \sqrt{a^2 + b^2 - c^2}}{b + c} \tag{52}$$

$$\theta_{12} = \operatorname{atan2}(u_{12}) \tag{53}$$

Note: we have to check that $a^2 + b^2 - c^2 \ge 0$

algebraic solution

Rewrite a system of equations in the form:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c_1 \\ s_1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
 (54)

and obtain the solution:

$$det = (a_{11}a_{22} - a_{12}a_{21}) (55)$$

$$c_1 = \frac{a_{11}b_1 + a_{21}b_2}{\det} \tag{56}$$

$$c_{1} = \frac{a_{11}b_{1} + a_{21}b_{2}}{\det}$$

$$s_{1} = \frac{a_{12}b_{1} + a_{22}b_{2}}{\det}$$

$$(56)$$

Note: we have to check that $det \neq 0$