Teorema de Ceva

1. Pruebe que las medianas de un triángulo son concurrentes

Tenemos el trángulo **ABC** y las rectas medianas que concurren en el punto **O**. Por el teorema de Ceva tenemos que tres cenevas **AD**, **BH** y **CG** que son las medianas son concurrentes en un punto **O** si y solo si.

$$\frac{AG}{GB} \cdot \frac{BD}{DC} \cdot \frac{CH}{HA} = 1$$

Demostración

Trazamos una paralela al segmento ${\bf BC}$ que pase por el punto ${\bf A}.$

Sea I, J las intersecciones de CG y BH, respectivamente.

Se tiene que:

El triángulo BOD y el triángulo AOJ son semejantes ya que las rectas
BC y IJ son paralelas cortadas por la transversal AD por lo tanto

$$\frac{BD}{DO} = \frac{JA}{AO}(1)$$

- De igual manera el triángulo ${f COD}$ y el triángulo ${f AOI}$ son semejantes por lo tanto

$$\frac{OD}{CD} = \frac{OA}{AI}(2)$$

El triángulo CHB y el triángulo AHJ son semejantes ya que las rectas
BC y IJ son paralelas cortadas por la transversal AC por lo tanto

$$\frac{CH}{HA} = \frac{BC}{JA}(3)$$

• El triángulo \mathbf{BGC} y el triángulo \mathbf{AGI} son semejantes ya que las rectas \mathbf{BC} y \mathbf{IJ} son paralelas cortadas por la transversal \mathbf{AB} por lo tanto

$$\frac{AG}{GB} = \frac{AI}{BC}(4)$$

Multiplicando (1), (2), (3) y (4)

$$\begin{split} \frac{BD}{DO} \cdot \frac{OD}{CD} \cdot \frac{CH}{HA} \cdot \frac{AG}{GB} &= \frac{JA}{AO} \cdot \frac{OA}{AI} \cdot \frac{BC}{JA} \cdot \frac{AI}{BC} = 1 \\ \frac{BD}{CD} \cdot \frac{CH}{HA} \cdot \frac{AG}{GB} &= 1 \end{split}$$

Como los puntos $\bf D$. $\bf G$ y $\bf H$ son los puntos medios de los segmentos $\bf BC$, $\bf AB$ y $\bf AC$, respectivamente tenemos que $\bf BD=CD$, $\bf CD=HA$ y $\bf AG=GB$

Por lo tanto las medianas ${\bf AD},\,{\bf BH}$ y ${\bf CG}$ del triángulo ${\bf ABC}$ concurren en el punto ${\bf O}.$

Pruebe que las alturas de un triángulo son concurrentes.

Tenemos el siguiente triángulo \mathbf{ABC} y las alturas $\mathbf{AF},\,\mathbf{BG}$ y \mathbf{CE} que concurren en el punto $\mathbf{O}.$

Demostración

Los triángulos \mathbf{BGC} y \mathbf{AFC} son semejantes por ángulo-ángulo-ángulo, por lo tanto

 $\frac{CG}{FC} = \frac{BC}{AC}(1)$

Los triángulos \mathbf{BEC} y \mathbf{BAF} son semejantes por ángulo-ángulo-ángulo, por lo tanto

 $\frac{BF}{EB} = \frac{AB}{BC}(2)$

Los triángulos \mathbf{ABG} y \mathbf{AEC} son semejantes por ángulo-ángulo-ángulo, por lo tanto

 $\frac{AE}{AG} = \frac{CA}{AB}(3)$

Multiplicando (1), (2), (3) tenemos

$$\frac{CG}{FC} \cdot \frac{BF}{EB} \cdot \frac{AE}{AG} = \frac{BC}{AC} \cdot \frac{AB}{BC} \cdot \frac{CA}{AB} = 1(4)$$

Además por el teorema de Ceva aplicado a el triángulo ${\bf ABC}$

$$\frac{AE}{EB} \cdot \frac{BF}{FC} \cdot \frac{CG}{GA} = 1(5)$$

Por (4) y (5), tenemos que

$$\frac{CG}{FC} \cdot \frac{BF}{EB} \cdot \frac{AE}{AG} = \frac{AE}{EB} \cdot \frac{BF}{FC} \cdot \frac{CG}{GA} = 1$$

Por lo tanto, las alturas AF, BG y CE son concurrentes.