This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FΙ

(11)特許出願公告番号

特公平7-21433

(24) (44)公告日 平成7年(1995) 3月8日

(51) Int.Cl.⁶

識別記号

庁内整理番号

技術表示箇所

G01L 3/10 B62D 5/04 F

9034-3D

請求項の数1(全 6 頁)

(21)出願番号	特顧昭63-72269	(71)出願人	99999999
			光洋精工株式会社
(22)出願日	昭和63年(1988) 3月25日		大阪府大阪市中央区南船場3丁目5番8号
		(72)発明者	谷口 学
(65)公開番号	特開平1-244322		大阪府大阪市南区設谷西之町2番地 光洋
(43)公開日	平成1年(1989)9月28日		精工株式会社内
		(72)発明者	永野 英信
			大阪府大阪市南区緩谷西之町2番地 光洋
			精工株式会社内
		(72)発明者	大道 俊彦
			大阪府大阪市南区量谷西之町2番地 光洋
			精工株式会社内
		(74)代理人	弁理士 河野 登夫
	,	審査官	治田 義孝
		(74)代理人	精工株式会社内 大道 俊彦 大阪府大阪市南区擬谷西之町2番地 光洋 精工株式会社内 弁理士 河野 登夫

最終頁に続く

(54) 【発明の名称】 トルクセンサ

1

【特許請求の範囲】

【請求項1】トーションバーを介して連結された2つの軸の一方に固設され、磁気抵抗の状態を不変にしている磁性体製の第1,第2の円筒と、前記軸の他方に固設され前記両軸の相対的回転により前記第2の円筒と磁気抵抗の状態を可変にしている磁性体製の第3の円筒と、前記第1,第2の円筒と磁気回路を構成すべく配置され、その内周に形成された周設溝に第1のコイルを巻回した磁性体製の第1の筒体と、前記第2,第3の円筒と磁気回路を構成すべく配置され、その内周に形成された周設溝に第102のコイルを巻回した磁性体製の第2の筒体とを備え、前記第2,第3天々の円筒の対向する軸端縁に多数の切欠部を設けて歯部を周方向に形成しているトルクセンサであって、

前記歯部の歯幅を切欠部の幅より狭くしており、前記ト

2

ーションバーにトルクが作用していない場合は、両円筒の歯部の歯幅の略1/2の部分が互いに対向し、前記軸は、両円筒の歯部が完全に対向、非対向となる状態を含まない回転範囲に規制してあることを特徴とするトルクセンサ。

【発明の詳細な説明】

〔産業上の利用分野〕

本発明はトルクセンサに関し、更に詳述すればトルクを 高感度に検出できるトルクセンサを提案するものであ る

[従来の技術]

自動車の操舵輪を操作する力を補助するパワーステアリング装置として電動式のものが開発されつつある。これは操舵輪に加えられたトルクを検出し、その検出トルクに応じて、操舵機構に設けている電動機を駆動して操舵

3

機構を駆動する力を補助する構造となっている。

第7図は歯部の対向面積の変化に基づきトルクを検出するトルクセンサの構造を示す半截断面図である。入力軸1は、図示しない操舵輪を取付けている上部軸laと、操舵機構が取付けられている下部軸lcとをトーションバーlbを介して同軸的に連結しており、上部軸laは車体に取付ける筒状のケース2に軸受3を介して回転自在に支持されている。上部軸laの下端部(図面左側)には非磁性体の第1スリーブ4aを外嵌固着し、その外周に磁性体の第1,第2の円筒5,6を軸方向に適長離隔して外嵌固着してある。

第1の円筒5は上下端縁が入力軸1の軸心に垂直な平面となっている。第2の円筒6は第1の円筒5と対向する上端縁が円筒5の下端縁と平行して対向しており、下端縁には短形状の多数の歯部6a,6a…を等ピッチで周方向に形成している。

この歯部6aの歯幅寸法は、歯部6a,6a間の切欠部6bの幅寸法に略等しく選定されている。

下部軸lcの上端部(図面右側)には非磁性体の第2スリーブ4bを外嵌固着し、その外周に磁性体の第3の円筒7を外嵌固着してある。この円筒7の上端縁には、円筒6に形成した歯部6aと同一幅、同一形状、同ピッチとした多数の歯部7a,7a…を形成している。そしてこれらの円筒6,7の歯部6a,7aは、トーションバー1bにトルクが作用していない場合には、歯幅の適宜長さ部分で対向している。

ケース2の内側には断面コ字状をしており内フランジを有する磁性体の簡体8A,8Bを内嵌固着してある。この簡体8Aは前記円筒5,6に跨がる長さ寸法を有し、その軸長方向中央部を円筒5,6の対向位置とし、また筒体8Bは前記筒体6,7に跨がる長さ寸法を有し、その軸長方向中央部を円筒6,7の対向位置として配設されている。筒体8A,8Bにはその周方向に沿って夫々温度補償コイル21、磁気結合検出コイル23を巻回している。これらの温度補償コイル21、磁気結合検出コイル23は図示しない発振器に接続することにより筒体8Aは円筒5,6と、筒体8Bは円筒6,7と夫々磁気回路を構成する。

そして、磁気結合検出コイル23には円筒6の歯部6aと円筒7の歯部7aとの対向面積、つまり磁気結合状態に相応する電圧を誘起する。そのため、上部軸laを回転させて 40トーションバー1bが捩じれると、円筒6の歯部6aと円筒7の歯部7aとの対向面積が変化して、磁気結合検出コイル23に誘起した電圧からトーションバー1bに作用したトルクを検出することになる。

圧は V_R となり更に、歯部6aと7aとが完全に対向している相対回転角度Tにおいて誘起する電圧は V_T で最大となる。また相対回転角度Q, Sにおいて誘起する夫々の電圧は前記電圧 V_P の大きさより若干大きい V_O と V_T の大きさより若干小さい V_S となる。このように円筒の相対回転角度に対応して、磁気結合検出コイル23に誘起する電圧の大きさが正弦波状に変化して、相対回転角度により電圧の変化率が異なる。

4 .

[発明が解決しようとする課題]

前述したように従来のトルクセンサは、円筒6,7の相対 回転角度に関連して磁気結合検出コイル23に誘起する電 圧によりトルクが検出される。

しかし、磁気結合検出コイル23に誘起する電圧は、円筒 6の歯部6aと円筒7の歯部7aとが対向しない状態又は完 全に対向した状態になる近傍の相対回転角度において は、第8図に示すように磁気結合検出コイル23の誘起電 圧特性が湾曲していて磁気結合検出コイル23に誘起する 電圧の変化率が少なく、かつ直線性が悪くなる。したが・ って、トルクセンサを構成した場合に、その個々につい て円筒6の歯部6aと円筒7の歯部7aとの対向状態が異な ると、同じ相対回転角度であっても磁気結合検出コイル 23に誘起する電圧の変化率がトルクセンサ個々について 異なり検出感度がばらつく。また、相対回転角度により 磁気結合検出コイル23に誘起する電圧の変化率が異なっ てトルクを常に高感度に検出できず、かつ左右差が大き くなり操舵フィーリングが悪くなるという問題がある。 本発明は前述した問題に鑑み、磁気結合検出コイルに誘 起する電圧の変化率が大きくしかも安定して得られ、ト ルクが高感度に検出でき、かつ左右差がなく操舵フィー リングの良いトルクセンサを提供することを目的とす る。

[課題を解決するための手段]

30

本発明に係るトルクセンサは、トーションバーを介して 連結された2つの軸の一方に固設され、磁気抵抗の状態 を不変にしている磁性体製の第1,第2の円筒と、前記軸 他方に固設され前記両軸の相対的回転により前記第2の 円筒と磁気抵抗の状態を可変にしている磁性体製の第3 の円筒と、前記第1,第2の円筒と磁気回路を構成すべく 配置され、その内周に形成された周設溝に第1のコイル を巻回した磁性体製の第1の筒体と、前記第2,第3の円 筒と磁気回路を構成すべく配置され、その内周に形成さ れた周設溝に第2のコイルを巻回した磁性体製の第2の 筒体とを備え、前記第2,第3夫々の円筒の対向する軸端 縁に多数の切欠部を設けて歯部を周方向に形成している トルクセンサであって、前記歯部の歯幅を切欠部の幅よ り狭くしており、前記トーションバーにトルクが作用し ていない場合は、両円筒の歯部の歯幅の略1/2の部分が 互いに対向し、前記軸は、両円筒の歯部が完全に対向、 非対向となる状態を含まない回転範囲に規制してあるこ

〔作用〕

夫々の軸に固設されて対向している円筒の歯部は、トー ションバーにトルクが作用していない場合、歯幅の略1/ 2の部分で相互に対向する。円筒を取付けている軸は、 両円筒の歯部が完全に対向、非対向となる状態を含まな い回転範囲で回転する。また、磁気抵抗の状態が不変の 第1,第2の円筒で構成される磁気回略に設けている第1 のコイルの出力により、検出トルクを温度補償する。 これにより、磁気結合検出コイルに誘起する電圧の変化 率を常に大きく、かつ左右差なく出力できる。また、検 10 出トルクを温度補償してトルクを高精度に検出できる。 [実施例]

以下本発明をその実施例を示す図面によって詳述する。 第1図は本発明に係るトルクセンサの構造を示す半截断 面図である。入力軸1は図示しない操舵輪を取付けてい る上部軸laと、図示しない操舵機構が取付けられている 下部軸lcとをトーションバーlbを介して同軸的に連結し ており、上部軸1aは車体に取付ける筒状のケース2に軸 受3を介して回転自在に支持されている。上部軸laの下 端部(図面左側)には非磁性体の第1スリーブ4aを外嵌 20 固着し、その外周に磁性体からなる第1,第2の円筒5,6 を軸方向に適長離隔して外嵌固着してある。

第1の円筒5は上下端縁が入力軸1の軸心に垂直な平面 となっている。第2の円筒6は第1の円筒5と対向する 上端縁が円筒5の下端縁と平行して対向しており、下端 縁には矩形で同一高さの多数の歯部6a, 6a…を周方向に 等ピッチで形成している。この歯部6aの歯幅寸法は歯部 6a, 6a間の切欠部6bの幅寸法より僅かに狭く選定されて いる。

下部軸1cの上端部 (図面右側) には非磁性体の第2スリ ーブ4bを外嵌固着し、その外周に磁性体の第3の円筒7 を外嵌固着してある。この円筒7の上端縁には、円筒6 に形成した歯部6aと同一幅、同一形状であり、同一ピッ チで多数の歯部7a,7a…を形成している。そして、これ らの円筒6,7は、トーションバー1bにトルクが作用して いない状態では、円筒6の歯部6aと円筒7の歯部7aと が、第2図(b)に示す如く歯幅寸法Wの略1/2の長さW /2部分で対向すべく円筒6,7の夫々の周方向位置を定め ている。

また、上部軸laの下端から上端側へ適長離隔した位置の 40 外周面に、幅の狭い直方体状のストッパ9を、その長さ 方向を上部軸laに平行させて突設させている。一方、下 部軸lcの上端側内周面には、前記ストッパ9を係入でき る深さを有し周方向に切欠いた弧状のストッパ案内溝10 を形成している。このストッパ案内溝10の周方向長さ は、円筒6又は7の歯部6a又は7aの歯幅寸法の半分の長 さだけ上、下部軸1a,1cが相対回転可能に選定されてい

そしてストッパ9はストッパ案内溝10に係入されてお

6 . 接すると、上部軸laと下部軸lcとの相対回転が阻止され るようになっている。

このように構成したトルクセンサは、トーションバー1b にトルクが作用していない場合には、第2図(b)に示 すように、円筒6の歯部6aと円筒7の歯部7aとが、その 歯幅Wの半分の長さW/2部分で互いに対向している。そ して、その状態において磁気結合検出コイル23に誘起す る電圧は第8図に示す相対回転角度Rにおける電圧VRと なりトルクを検出しない。

さて、上部軸laを第1図に示す実線矢符方向に回転させ てストッパ9をストッパ案内溝10の周方向一側終端位置 まで移動させた場合は、第2図(a)に示す如く歯部6a が矢符方向に移動して、歯部6aと7aとがその歯幅寸法W の1/4の長さ寸法〒/4の部分で対向することになる。そし て、この状態において磁気結合検出コイル23に誘起する 電圧は第8図の相対回転角度Qにおける電圧Voとなる。 一方、上部軸laを第1図に示す破線矢符方向に回転させ てストッパ9をストッパ案内溝10の周方向他側終端位置 まで移動させた場合は、第2図(c)に示す如く歯部6a が矢符方向に移動して、歯部6aと7aとがその歯幅寸法W の3/4の長さ寸法3W/4部分で対向することになる。そし て、この状態において磁気結合検出コイル23に誘起する 電圧は第8図の相対回転角度Sにおける電圧Vsとなる。 したがって、相対回転角度QからSまでの回転角度範 囲、つまり歯部6a,7aの歯幅の一部分が互いに対向して いる状態での回転角度範囲においては、相対回転角度に 対して磁気結合検出コイル23の誘起電圧が略直線的に変 化し、電圧の変化率が大きく略一定となり高感度にトル クを検出できることになる。また、トーションバー1bに トルクが作用していない場合に、円筒6,7の歯部6a,7aを その歯幅寸法Wの略1/2の長さ部分で対向させてトルク センサを構成するから、個々のトルクセンサは同一の相 対回転角度に対して、磁気結合検出コイルに誘起する電 圧の大きさが同じになり、トルクの検出感度に差が生じ ないことになる。

第3図及び第4図はトルクセンサの他の実施例を示す要 部略示図及びその電気回路図である。図示しない上部軸 に外嵌固着している磁性体の円筒5,6に跨がる寸法とな ている磁性体の筒体8A内には、温度補償コイル21を巻回 している。また磁性体の円筒6,7に跨がる寸法となって いる磁性体の筒体8B内の外周側には第1の磁気結合検出 コイル23aを、内周側には第2の磁気結合検出コイル23b を夫々巻回している。他の構造部分については第1図に 示したトルクセンサと同様である。

一端を接地している発振器の他端は第1、第2の差動増幅 器12,13の夫々の負入力端子-及び夫々の正入力端子+ と接続され、また第1,第2の差動増幅器12,13の負入力 端子-は第1,第2の磁気結合検出コイル23a,23bを介し て接地されている。また第1、第2の差動増幅器12、13の り、ストッパ9がストッパ案内溝10の周方向終端部に当 50 正入力端子!は温度補償コイル21を介して接地されてい

る。

差動増幅器12,13の出力端子12a,13aは、第3の差動増幅器14の正、負入力端子+、一と各接続されている。差動増幅器14の出力端子は比較器15の一入力端子及び比較器16の他入力端子と接続されている。比較器15の他入力端子には正常動作範囲を定める基準電圧-V₁を入力しており、比較器16の一入力端子には正常動作範囲を定める基準電圧V₂を入力している。比較器15,16の各出力端子はオア回路17の一、他入力端子と各接続されている。

次にこのトルクセンサの動作を説明する。発振器11の発 10 振動作により温度補償コイル21及び第1,第2の磁気結合 検出コイル23a,23bに発生した磁束は円筒5,6及び6,7に 鎖交する。

ここで図示しない操舵輪を一側回転方向/又は他側回転方向へ回転させると、図示しないトーションバーが捩じれて円筒6が円筒7に対して相対的に回転し、円筒6の歯部6aと円筒7の歯部7aとの対向面積が増加/又は減少する。その結果、円筒6と7との磁気結合が大/又は小となり、第1,第2の磁気結合検出コイル23a,23bに誘起する電圧が大きく/又は小さくなる。これに対して円筒205と6との磁気結合は不変であるから、温度補償コイル21に誘起する電圧は一定となる。また差動増幅器13,12の出力端子13a,12aの出力X,Y、即ちセンサ出力は同一入力トルクに対して大きさが等しく、第5図に示すように、零点を通り相対回転角度、つまり入力トルクに相応して右上り又は右下りの直線L1,L2となる。なお、温度上昇により円筒5,6及び円筒6,7の磁気結合が変化した場合は温度補償コイル21に誘起する電圧により補償される。

前記入力トルクは、操舵輪によって加えた回転トルクに 30 よって定まるから、結局は差動増幅器13,12の夫々の出 力によりトルクを二重に検出できて、トルクセンサの信 頼性を高め得る。

そしてこれらの差動増幅器13,12の大きさが等しい出力は、差動増幅器14に入力されるから差動増幅器14の出力は零となり、その出力が比較器15,16に入力される。比較器15,16には基準電圧 $-V_1$, V_2 が入力されているから、比較器15,16の出力は $-V_1$, V_2 となり、オア回路17の出力たる監視電圧MVは第6図に示す基準電圧 V_1 , V_2 との範囲

内(斜線域外)となり、トルクセンサの故障を検知しない。

しかるに、磁気結合検出コイル23a,23b又は温度補償コイル21のいずれかが例えば断線した場合には、差動増幅器12,13の出力に大きな差が生じ、差動増幅器14の出力が零であった状態から大きい値に変化して、比較器15又は16の出力が大きくなり、オア回路17の監視電圧MVが第6図に示す斜線域に達して故障を検知することになり、これによってもトルクセンサの信頼性を高め得る。

したがって、このトルクセンサはトルクを二重に検出し、いずれか一方の磁気結合検出コイル23a,23bが故障してもトルクを検出し得、またその故障を検出できて極めて信頼性が高いトルクセンサを提供できる。

なお、円筒6,7の切欠部6b,7bは矩形に限らず対称形であれば任意の形状とすることができる。

[発明の効果]

以上詳述したように本発明によれば、簡単な構造により 磁気結合検出コイルに誘起する電圧を大きい変化率で安 定に得ることができて、トルクを高感度に検出でき、か つ左右差がなく操舵フィーリングを良好になし得る。ま た磁気抵抗の状態が不変の磁気回路に設けている第1の コイルの出力により、検出トルクを温度補償できて、ト ルクを高精度に検出できるトルクセンサを提供できる優 れた効果を奏する。

【図面の簡単な説明】

第1図は本発明に係るトルクセンサの半截断面図、第2 図は歯部の対向状態を示す説明図、第3図は本発明の他の実施例を示す要部略示図、第4図はそのトルクセンサの電気回路の回路図、第5図は入力トルクとセンサ出力との関係を示す特性図、第6図は入力トルクと監視電圧との関係を示す特性図、第7図は歯部の対向面積の変化に基づきトルクを検出するトルクセンサの半截断面図、第8図は相対回転角度と磁気結合検出コイルの誘起電圧との関係を示す特性図である。

1a……上部軸、1b……トーションバー、1c……下部軸、5,6,7……円筒、6a,7a……歯部、6b,7b……切欠部、8A,8B……筒体、21……温度補償コイル、23……磁気結合検出コイル

【第2図】

【第3図】

【第5図】 【第1図】 【第4図】 【第8図】 【第6図】 歴代籍合教出コイルの訪記電圧

【第7図】

フロントページの続き

(72)発明者 倉元 勇雄

大阪府大阪市南区鰻谷西之町2番地 光洋 (56)参考文献 特開 昭59-46526 (JP, A) 精工株式会社内

特開 昭57-19024 (JP, A)

実開 平1-55435 (JP, U)