BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-324083

(43) Date of publication of application: 08.11.2002

(51)Int.CI.

G06F 17/50

(21)Application number : 2002-037035

(71)Applicant: CANON INC

(22)Date of filing:

14.02.2002

(72)Inventor: TAKARADA HIROSHI

SHIMIZU KAZUMA

MATORI YOSHIYUKI MORIOKA MASAYA

YANAGISAWA RYOZO SASAKO ETSUICHI

(30)Priority

Priority number: 2001044145

Priority date: 20.02.2001

Priority country: JP

(54) APPARATUS AND METHOD FOR INFORMATION PROCESSING

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an apparatus for information processing capable of viewing easily both of a 3D model and attribute information and using the information effectively despite of adding the information such as dimensions and dimension tolerances to the 3D model created by using a CAD apparatus.

SOLUTION: In the apparatus, it becomes possible to show the information and create a 3D drawing in more wide variety of manners by storing the information by associating it with at least not less then one attribute-placing plane (or a sight line direction).

LEGAL STATUS

[Date of request for examination]

27.01.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本IMP部 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-324083 (P2002-324083A)

(43)公開日 平成14年11月8日(2002.11.8)

(51) Int.Cl. ⁷		酸別記号	FΙ	テーマコート ゙(参考)
G06F 1	17/50	606	C 0 6 F 17/50	606F 5B046
		624		624E

審査請求 未請求 請求項の数10 OL (全 28 頁)

(21)出願番号	特願2002-37035(P2002-37035)	(71)出願人	000001007
(22) 出願日	平成14年2月14日(2002.2.14)		キヤノン株式会社 東京都大田区下丸子3 『目30番2号
		(72)発明者	宝田 浩志
(31)優先権主張番号	特願2001-44145 (P2001-44145)		東京都大田区下丸子3 「目30番2号キヤノ
(32)優先日	平成13年2月20日(2001.2.20)		ン株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	清水 和磨
			東京都大田区下丸子3 「目30番2号キヤノ
			ン株式会社内
		(74)代理人	100090538
			弁理士 西山 恵三 (外1名)
			最終質に続く

(54) 【発明の名称】 情報処理装置、及び方法

(57)【要約】

【課題】 CAD装置を用いて作成される3Dモデル に、寸法、寸法公差などの属性情報を付加しても、3D モデルおよび属性情報が共に見やすく属性情報を有効に 活用できる情報処理装置を実現する。

【解決手段】 属性情報を、少なくとも1つ以上の属性 配置平面(又は視線方向)に関連付けて記憶することに より、より多彩な属性情報の見せ方や3D図面の作成が 可能となる。

!(2) 002-324083 (P2002-324083A)

【特許請求の範囲】

【請求項1】 3Dモデルに対する属性情報を入力する 属性入力手段と、

該属性情報が関連付けられる仮想的な平面を設定する属性配置平面設定手段と、

前記属性情報を、少なくとも1つ以上の該仮想的な平面 に関連付けて記憶する記憶手段とを有することを特徴と する情報処理装置。

【請求項2】 前記記憶手段は、前記属性情報をいずれか1つの前記仮想的な平面に関連付けて記憶することを 特徴とする請求項1に記載の情報処理装置。

【請求項3】 3Dモデルに対する属性情報を入力する 属性入力工程と、

該属性情報が関連付けられる仮想的な平面を設定する属 性配置平面設定工程と、

前記属性情報を、少なくとも1つ以上の該仮想的な平面 に関連付けて記憶する記憶工程とを有することを特徴と する情報処理方法。

【請求項4】 前記記憶工程では、前記属性情報をいずれか1つの前記仮想的な平面に関連付けて記憶することを特徴とする請求項3に記載の情報処理方法。

【請求項5】 3Dモデルに対する属性情報を入力する 属性入力手段と、

該属性情報が関連付けられる仮想的な平面を設定する属性配置平面設定手段と、

前記属性情報を、少なくとも1つ以上の該仮想的な平面 に関連付けて記憶する記憶手段とを有することを特徴と する情報処理プログラム。

【請求項6】 3Dモデルに対する属性情報を入力する 属性入力手段と、

該属性情報が関連付けられる任意の視線方向を設定する 視線方向設定手段と、

前記属性情報を、少なくとも1つ以上の該視線方向に関連付けて記憶する記憶手段とを有することを特徴とする 情報処理装置。

【請求項7】 前記記憶手段は、前記属性情報をいずれか1つの視線方向に関連付けて記憶することを特徴とする請求項6に記載の情報処理装置。

【請求項8】 3Dモデルに対する属性情報を入力する 属性入力工程と、

該属性情報が関連付けられる任意の視線方向を設定する 視線方向設定工程と、

前記属性情報を、少なくとも1つ以上の該視線方向に関連付けて記憶する記憶工程とを有することを特徴とする 情報処理方法。

【請求項9】 前記記憶工程では、前記属性情報をいずれか1つの視線方向に関連付けて記憶することを特徴とする請求項8に記載の情報処理方法。

【請求項10】 3Dモデルに対する属性情報を入力する属性入力手段と、

該属性情報が関連付けられる任意の視線方向を設定する 視線方向設定手段と、

前記属性情報を、少なくとも1つ以上の該視線方向に関連付けて記憶する記憶手段とを有することを特徴とする情報処理プログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は情報処理装置及び方法に関し、特に、3D-CADを用いて作成した3Dモデル(3D形状)を利用した情報処理装置及び方法に関する。

[0002]

【従来の技術】従来、CAD装置(特に、3D-CAD装置)を用いて、商品や製品を構成する部品等の3次元の形状を有する物品(以下、単に部品という)の設計を行っていた。

【0003】また、この設計に基づき、部品を作製する ための金型の製作をおこなっていた。

【0004】CAD装置により作成された設計情報を利用するにあたり、3Dモデル(3D形状)に、寸法、寸法公差、幾何公差、注記、記号などの属性情報を入力していた。

【0005】3Dモデルに属性情報を入力するためには、3Dモデルの面、稜線、中心線、あるいは頂点等を指示選択することにより行われる。例えば図24に示されるような3Dモデル(この3Dモデルの正面図、平面図、側面図を図25に示す)には、例えば図26に示されるように属性情報が入力される。ここで、属性情報とは、距離(長さ、幅、厚さ等)、角度、穴径、半径、面取り等の寸法、および、該寸法に付随する寸法公差面、稜線等に寸法の入力なしで付加される幾何公差および寸法公差部品、ユニット、製品を加工、製作するにあたり伝えるべき、指示すべき情報である注記表面租さ等のあらかじめ約束事として決められている記号などである。【0006】3Dモデルに属性情報を付ける方法は、大別すると次の2種類がある。

(1) 寸法、寸法公差、幾何公差、注記、記号を付与す る場合

寸法、寸法公差を記入するために寸法線および寸法補助 線が必要

幾何公差、注記、記号を記入するために引き出し線が必要

(2) 寸法は付けず、寸法公差、幾何公差、注記、記号 を付与する場合

寸法線および寸法補助線は不要

寸法公差、幾何公差、注記、記号を記入するために引き 出し線が必要

また、3Dモデルを利用して、金型の製作を行っていた。この場合、製作した金型、および該金型により成形された成形品が、設計した通りに出来上がっているか、

!(3) 002-324083 (P2002-324083A)

検査する必要があった。

[0007]

【発明が解決しようとする課題】上記従来例の如き、3 Dモデルに属性情報を付ける方法においては、以下の問題点がある。

【0008】上記(1)の場合は、寸法と寸法公差、およびそれらを記入するための寸法線および寸法補助線が煩雑になり、3Dモデルの形状および属性情報が見難くなってしまう。

【0009】図24のように、比較的簡単な形状で、属性情報の個数が数十個程度であればなんとか見ることもできるが、複雑な形状あるいは大型の形状の場合、必要に応じ数百~数千の属性情報が3Dモデルに付与されるため、「属性情報同士が重なる」、「属性情報と寸法線、寸法補助線、あるいは引き出し線とが重なる」、

「寸法線、寸法補助線、あるいは引き出し線の引き出し 位置が分かりづらい」等のために、属性情報読み取りは 極めて困難になってしまう(図26の角部の階段形状で すら多少見づらい)。

【0010】上記のような場合は、属性情報を入力するオペレータ自身が入力情報を見ることが困難であり、入力内容の確認もできず、すなわち属性情報の入力そのものが困難になってしまう。

【0011】また、関係する属性情報の読み取りも極めて困難になってしまう。また、3Dモデルに対し属性情報が占有する空間が大きくなってしまい、限られた大きさの表示画面上では、3Dモデルの形状と属性情報を同時に見ることができなくなってしまう。

【0012】さらに、いわゆる断面図等で指示すべき属性情報(例えば図24のザグリ穴の深さ12±0.1)は、3Dモデルの指示場所が見えず、分かりづらい。

【0013】上記(2)の場合は、寸法線および寸法補助線は不要であるが、引き出し線を使用するため、上記(1)と同様に、引き出し線が煩雑になり、3Dモデルの形状および属性情報が見難くなってしまう。また、複雑な形状あるいは大型の形状の場合、必要に応じ数百から数千の属性情報が3Dモデルに付与されるため、属性情報読み取りは極めて困難になってしまう。

【0014】また、金型製作し、出来上がった金型、および該金型により成形された成形品を検査するとき等に、寸法等を測る必要が生じる。そのため、寸法値を読み取るために3Dモデル形状を計測機能による計測操作が強要される。

【0015】この場合、読み取りたい面、稜線等の箇所に対し、寸法の基準となる箇所を指示選択する必要があり、複数の箇所の寸法を読み取る場合には、多くの操作回数および長い操作時間がかかってしまうものである。また、操作ミスによる誤読の可能性は避けられない。さらには全ての箇所の寸法を読み取る場合には、きわめて膨大な労力を強いるものである。

【0016】そもそも、3Dモデルおよび属性情報は、部品、ユニット、製品を加工、製作するための情報であり、入力するオペレータ=設計者から、見るオペレータ=加工、製造、検査等の技術者に、情報が分かりやすく、効率的に、間違うことなく、伝達されるものでなくてはならない。上記従来技術においては、これらがまったく満足されておらず、工業的に有効に利用できる形態ではない。

【0017】そのために本発明は、CAD装置などで作成した3Dデータに、効率良く、かつ分かりやすく確実に情報が伝達できる属性情報を付加することを目的とする。また、データに、操作性を高めるための属性を付加することを目的とする。また本発明は、付加した属性を効率よく利用することを目的とする。

【0018】また、本発明は、CAD装置などで作成したデータを活用した部品作成を効率良く行うことを目的とする。

【0019】また、CAD装置などで作成したデータを 用いて、検査工程を効率良く行うことを目的とする。 【0020】

【課題を解決するための手段】上記の課題を解決するために本発明の情報処理装置は、3Dモデルに対する属性情報を入力する属性入力手段と、該属性情報が関連付けられる仮想的な平面を設定する属性配置平面設定手段と、前記属性情報を、少なくとも1つ以上の該仮想的な平面に関連付けて記憶する記憶手段とを有することを特徴とする。

【0021】また、本発明の情報処理方法は、3Dモデルに対する属性情報を入力する属性入力工程と、該属性情報が関連付けられる仮想的な平面を設定する属性配置平面設定工程と、前記属性情報を、少なくとも1つ以上の該仮想的な平面に関連付けて記憶する記憶工程とを有することを特徴とする。

【0022】また、本発明の情報処理プログラムは、3 Dモデルに対する属性情報を入力する属性入力手段と、 該属性情報が関連付けられる仮想的な平面を設定する属 性配置平面設定手段と、前記属性情報を、少なくとも1 つ以上の該仮想的な平面に関連付けて記憶する記憶手段 とを有することを特徴とする。

【0023】また、本発明の情報処理装置は、3Dモデルに対する属性情報を入力する属性入力手段と、該属性情報が関連付けられる任意の視線方向を設定する視線方向設定手段と、前記属性情報を、少なくとも1つ以上の該視線方向に関連付けて記憶する記憶手段とを有することを特徴とする。

【0024】また、本発明の情報処理方法は、3Dモデルに対する属性情報を入力する属性入力工程と、該属性情報が関連付けられる任意の視線方向を設定する視線方向設定工程と、前記属性情報を、少なくとも1つ以上の該視線方向に関連付けて記憶する記憶工程とを有するこ

!(4) 002-324083 (P2002-324083A)

とを特徴とする。

【0025】更に、本発明の情報処理プログラムは、3 Dモデルに対する属性情報を入力する属性入力手段と、 該属性情報が関連付けられる任意の視線方向を設定する 視線方向設定手段と、前記属性情報を、少なくとも1つ 以上の該視線方向に関連付けて記憶する記憶手段とを有 することを特徴とする。

[0026]

【発明の実施の形態】本発明の一実施の形態を、図面を 用いて詳細に説明する。

【0027】(モールド金型生産の全体の流れ)図1は、本発明をモールド部品金型生産に適用した場合の全体の流れを示す図である。

【0028】図において、ステップS101で、製品の設計を行い、個々の部品の設計図面を作成する。部品の設計図面には、部品製作に必要な情報、制約情報などが含まれている。部品の設計図面は2D-CADまたは3D-CADで作成され、3D-CADで作成された図面(3D図面)は、形状及び寸法公差などの属性情報からなる。寸法公差は形状(面、稜線、点)と関連付けることができ、寸法公差は成形品の検査指示、金型精度指示などに利用される。

【0029】ステップS102において、製品の組立てや成形などの製造性の検討を行い、部品毎の工程図を作成する。部品の工程図には、部品製作に必要な情報に加えて、詳細な検査指示が含まれる。部品の工程図は2D-CADまたは3D-CADで作成される。

【0030】ここで、詳細な検査指示の例として、 測定項目(寸法あるいは寸法公差)の番号付け 測定項目に対して測定ボイントや測定方法の指示、など がある。

【0031】詳細な検査指示情報はCAD上で寸法公差と関連付けることができる。

【0032】ステップS103において、ステップS102で作成した部品の工程図(工程図面、金型仕様書)を基に金型設計を行い、金型図面を作成する。金型図面には金型製作に必要な情報、制約条件が含まれる。金型図面は、2D-CADまたは3D-CADで作成され、3D-CADで作成された金型図面(3D図面)は、形状及び寸法公差などの属性情報からなる。

【0033】ステップS104において、ステップS103で作成した金型図面を基に金型の製作工程を検討し、金型工程図を作成する。金型加工工程は、NC加工及び汎用加工からなる。NC加工(数値制御による自動加工)を行う工程に対しては、NCプログラムの作成指示を行う。汎用加工(手動による加工)工程には、汎用加工を行うための指示を行う。

【0034】ステップS105において、金型図面を基に、NCプログラムを作成する。

【0035】ステップS106において、工作機械など

で金型部品を製作する。

【0036】ステップS107において、製作された金型部品を、ステップS103で作成した情報に基づき検査する。

【0037】ステップS108において、金型部品を組立て、成形する。

【0038】ステップS109において、成形されたモールド部品をステップS101、ステップS102で作成した情報に基づき検査し、OKであれば終了する。

【0039】ステップS110において、ステップS109の検査の結果に基づき成形品の精度不足の個所の金型を修正する。

【0040】(製品の設計)次に、製品の設計を行い、個々の部品の設計図面の作成について説明する。部品の設計図面は、2D-CAD装置または3D-CAD装置により作成される。

【0041】ここで、図2に示す情報処理装置、例えば CAD装置を用いて、部品の設計について説明する。

【0042】図2は、CAD装置のブロック図である。 図において、201は内部記憶装置、202は外部記憶 装置であり、CADデータやCADプログラムを保管するRAM等の半導体記憶装置、磁気記憶装置等からなる。

【0043】203はCPU装置であり、CADプログラムの命令に沿って処理を実行する。

【0044】204は表示装置であり、CPU装置20 3の命令に沿って形状などを表示する。

【0045】205はCADプログラムに対して指示等を与えるマウス、キーボードなどの入力装置である。

【0046】206はCPU装置203の命令に沿って 紙図面などを出力するプリンタなどの出力装置である。 【0047】207は外部接続装置であり、本CAD装置と外部の装置とを接続し、本装置からのデータを外部 装置へ供給したり、外部の装置から本装置を制御したりする。

【0048】図3は、図2に示したCAD装置の処理動作を示すフローチャートである。

【0049】まず、オペレータが入力装置205により、CADプログラムの起動を指示すると、外部記憶装置202に格納されているCADプログラムが内部記憶装置201に読み込まれ、CADプログラムがCPU装置203上で実行される(ステップS301)。

【0050】オペレータが入力装置205により対話的に指示することにより、内部記憶装置201上に形状モデルを生成し、表示装置204上に画像として表示する(ステップS302)。この形状モデルについては、後述する。なお、オペレータが入力装置205によりファイル名などを指定することにより、既に外部記憶装置201にで取り扱えるように、内部記憶装置201に読み込む

!(5) 002-324083 (P2002-324083A)

こともできる。

【0051】オペレータが入力装置205により、形状モデルを作成した3次元空間内に、属性情報を配置、関連付ける仮想的平面である属性配置平面を作成する(ステップS303)。

【0052】この属性配置平面の位置が判別しやすいように、フレーム(2重枠、枠内塗りつぶし)などの画像情報として表示装置に表示する。また、属性配置平面の設定情報は形状モデルに関連付けられて内部記憶装置201に保管される。

【0053】また、必要に応じて作成した属性配置平面に名称をつけることが望ましい。

【0054】オペレータが入力装置205により形状モデルに対して、寸法公差などを属性情報として付加する(ステップS304)。付加された属性情報は、ラベルなどの画像情報として表示装置に表示することができる。付加された属性情報は、形状モデルに関連付けられて内部記憶装置201に保管される。

【0055】オペレータが入力装置205により、属性情報を属性配置平面に対して関連付ける。(ステップS305)

「関連付け」は、以下のように実現される。各属性情報にはそれぞれ固有の識別子が、一方で各属性配置平面にはそれぞれ固有の識別子が割り当てられる。その属性情報の識別子と属性配置平面の識別子とを対応付け、属性情報と属性配置平面の関連情報を生成することにより「関連付け」が実現される。

【0056】属性情報と属性配置平面の関連情報は、内部記憶装置201に保管される。

【0057】オペレータがあらかじめ属性配置平面を指定して、属性配置平面との関連付けを行いながら属性情報の関連付けを行うようにしても良い。また、オペレータが入力装置205により、属性情報の属性配置平面への関連付けを設定・解除することができる。

【0058】次に、オペレータは入力装置205により、属性配置平面を指定することによって属性配置平面、およびその属性配置平面に関連付けられた寸法公差などの属性情報の表示・非表示、あるいは色付けなどの表示制御を行う(ステップS306)。

【0059】また、オペレータが入力装置205により 属性配置平面を作成する際に、属性配置平面に関する表 示情報である視点の位置、視線方向、倍率を設定する。 これらについての詳細は後述する。この属性配置平面の 表示情報を設定し、この属性配置平面を指定すること で、直前の表示状態に関わらず、設定された視点の位 置、視線方向、倍率で形状モデルを表示することが出来 る。またこの属性配置平面と属性情報は関連付けられて いるので、指定された属性配置平面に関係付けられてい る属性情報を選択的に表示することができる。属性配置 平面の表示情報は内部記憶装置に保管される。 【0060】オペレータの指示により、属性情報を外部記憶装置202などに保管することができる(ステップS307)。

【0061】この識別子は属性情報を他の属性情報と区別するために付加される属性値である。複数のプログラム間での属性情報に関するデータをやり取りする場合、属性情報にユニークとなる識別子を付加することで、やり取りする属性情報に関するデータを属性情報に関連付けて取扱うことができる。

【0062】一例として、寸法等の属性情報に測定機などから出力された測定結果を関連付ける場合、寸法に付加された識別子と同じ識別子に、対応する測定結果を付加することで、測定結果を寸法に関連付けて読み込むことができる。

【0063】属性情報に識別子を付加することができ、この識別子を付加して外部記憶装置202に保管することが出来る。この識別子を利用して他のデータと属性情報を関連付けることが出来る。

【0064】外部記憶装置202上の属性情報に情報を 追加したものを内部記憶装置201に読み込んで、属性 情報を更新することができる。

【0065】オペレータが入力装置205により、形状モデルに属性配置平面の位置情報、属性配置平面の表示情報、および属性情報を付加したCAD属性モデルを外部記憶装置202に保管する(ステップS308)。

【0066】ここで、形状モデルとCAD属性モデルについて説明する。

【0067】図4は形状モデルの例を示す図であり、図5は形状モデルを構成する各部の関連を示す概念図である。

【0068】図4は、形状モデルの代表例として、SolidModelである。図に示すように、SolidModelは部品などの形状をCAD上の3次元空間上に定義する表現方法で、位相情報(Topology)と幾何情報(Geometory)からなる。SolidModelの位相情報は、図5に示すように、内部記憶装置201上で階層的に記憶され、1つ以上のShellと、1つShellに対して1つ以上のFaceと、1つのFaceに対して1つ以上のLoopと、1つのLoopに対して1つ以上のEdgeと、1つのEdgeに対して2個のVertexと、からなる。

【0069】また、Faceに対して平面や円筒面といったFace形状を表現するSurface情報が内部記憶装置201上で関連付けられて保管される。Edgeに対して直線や円弧といったEdgeの形状を表現するCurve情報が内部記憶装置201上で関連付けられて保管される。Vertlexに対して三次元空間上の座標値を内部記憶装置201上で関連付けられて保管される

[0070] Shell, Face, Loop, Ver

!(6) 002-324083 (P2002-324083A)

texの各位相要素には、夫々属性情報が内部記憶装置 201上で関連付けられて保管されている。

【0071】ここで、Face情報を例に、内部記憶装置201上での保管方法の一例を説明する。

【0072】図6は、内部記憶装置201上でのFace情報の保管方法を示す概念図である。

【0073】図に示すように、Face情報はFace ID、Faceを構成するLoopListへのポイン 夕、Face形状を表すSurfaceデータへのポインタ及び属性情報へのポインタからなる。

【0074】LoopListは、Faceを構成する全てのLoopのIDをリスト形式で保管したものである。Surface情報は、SurfaceTypeとSurfaceTypeに応じたSurfaceParameterから構成される。属性情報は、属性タイプ及び属性タイプに応じた属性値から構成される。属性値には、Faceへのポインタや属性が所属する属性配置平面へのポインタなども含まれる。

【0075】(3Dモデルへの属性情報の入力と表示) 更に、3Dモデルへの属性情報の入力と属性配置平面の 作成方法および属性情報が付加された3Dモデルの表示 について、詳細に説明する。

【0076】図7~図11は、3Dモデル、属性情報、および属性配置平面を示す図であり、図12~図14は3Dモデルに属性配置平面および属性情報を付加するときの処理動作を示すフローチャートである。

【0077】図12のステップS121で、図7に示す 3Dモデル1を作成し、ステップS122で必要な属性 配置平面を設定する。

【0078】○属性配置平面

ここで、属性配置平面は、3Dモデル1、および3Dモデル1に付加された属性情報の表示に関わる要件を規定するものである。本発明では、属性配置平面を(仮想的な)三次元空間上の一点(視点、以下視点とする)の位置、作成する平面の法線方向(視線方向)で定義し、更に3Dモデル1、および3Dモデル1に付加された属性情報の表示倍率(以下単に倍率)の情報も有するものとする。ここで視線位置とは、該位置から視線方向の3Dモデル1が見える、すなわち表示される位置を定めるものとする。例えば属性配置平面212は3Dモデル1の正面図の正面201の外形から60mmの位置に設定される(図7)。

【0079】ただし、ここで、いわゆる三角法による投 影図(正面図、平面図、左右の側面図、下面図、背面 図)については、視線位置が3Dモデル1の外部に位置 していれば、いずれの位置でも表示内容には関係しな い。

【0080】また、該視点の位置は、3Dモデル1、および3Dモデル1に付加された属性情報を表示する際の表示装置204の表示中心と直前の表示状態に関わら

ず、一致する点である。

【0081】次に、属性配置平面の法線方向は該視点位置から、3Dモデル1、および3Dモデル1に付加された属性情報を表示する際の視線方向と一致させる。

【0082】また、倍率とは(仮想的な)三次元空間上の3Dモデル形状を表示装置204上で表示する際の拡大する倍率とする。

【0083】属性配置平面のパラメータである、視点の位置、視線方向、倍率は随時変更可能とする。

【0084】例えば、図7においては、図25に示した 平面図の面201aに直交しなおかつ、3Dモデルの外 から内部へ向かう向きが視線方向となる属性配置平面2 11が定められる。視点位置と倍率は、3Dモデル1の 形状と付与する属性情報の概ね全てが表示装置204の 表示画面に表示できるように定められる。例えば、本実 施の形態では倍率は1倍で、視点位置201fは平面図 の面201aのほぼ中心に定められる。(図7において 2点鎖線201dは正面図のおおよその輪郭線を属性配置 平面211に投影した状態を示す)同様に、正面図の 面201cに直交する視線方向の属性配置平面212、 側面図の面201bに直交する視線方向の属性配置平面 213も設定される。

【0085】各属性配置平面の位置を明示するために、 属性配置平面を枠取りした四角い枠で表現してある。こ の属性配置平面の位置を明示する手段として本実施例で は枠を用いて表現したがこれに限られるものではなく、 形状としては、四角以外の多角形、あるいは円形であっ ても良い。(属性配置平面211は3Dモデル1の上面 201aと平行であり、属性配置平面212は3Dモデ ル1の正面201bと平行であり、属性配置平面213 は3Dモデル1の側面201cと平行の位置関係とな る。)

【0086】次に、ステップS123で設定された各属性配置平面に関連付けて、属性情報を入力する。この時、属性情報は属性配置平面上に正対して配置される。図8、図10の(a)、図11の(a)は各々の属性配置平面211、212、213に関連付けて3Dモデルに属性情報を付与した状態を示す図である。図9、図10の(b)、図11の(b)は各々の属性配置平面211、212、213の視点位置、視線方向、倍率で表示した3Dモデル1および属性情報である。属性配置平面に関連付けられた属性情報の大きさ(文字やシンボルの高さ)を、属性配置平面の倍率に応じて変更する。属性情報の大きさ(mm)とは、3Dモデルが存在する仮想的3次元空間における大きさと定義する。(表示装置204において表示された際の大きさではない。)

【0087】また、属性配置平面と属性情報の関連付けは、属性情報の入力後でもよい。たとえば図13に示すフローチャートのように、3Dモデルを作成し(ステップS131)、ステップS132にて属性を入力後、ス

!(7) 002-324083 (P2002-324083A)

テップS133にて所望の属性配置平面に属性情報を関連付けるものである。また、必要に応じ、属性配置平面に対し関連付けられる属性情報の追加、削除等の修正がなされるものである。

【0088】属性情報が別の属性配置平面に関連付けられた場合、変更先の属性配置平面の倍率に応じて属性情報の大きさを変更する。

【0089】属性情報の入力は、各々の属性配置平面で 定義される視線方向から表示させ二次元的に3Dモデル 1を表示させた状態で入力してもよい。該入力はいわゆ る2D-CADで二次元図面を作成する工程と何ら変わ ることなく実現できるものである。また必要に応じ、三 次元的に表示させながら入力してもよい。該入力は、三 次元的に3Dモデル1を見ながら入力することができる ので、より効率的かつミスなく実現できるものである。 【0090】次に、3Dモデル1の属性情報を見る場合 の説明を行う。図14のステップS141において所望 の属性配置平面を選択することで、ステップS142に おいて選択された属性配置平面の視点位置、視線方向。 および倍率に基づき3Dモデル1の形状と該属性配置平 面に関連付けて付与されている属性情報が正対表示され るものである。例えば属性配置平面211、あるいは属 性配置平面212、あるいは属性配置平面213が選択 されると、直前の表示状態に関わらず、属性配置平面が 画面に正対するようにそれぞれ図9、あるいは図10の (b)、あるいは図11の(b)が表示される。このと き、属性情報は各属性配置平面の視線方向、すなわち画 面に正対して配置、表示されるのである。これによって 表示画面上では二次元的に極めて容易に分かりやすく見 ることができる。

【0091】次に、属性配置平面を容易に選択可能とするための例を紹介する。まず、選択可能な3Dモデルの属性配置平面の枠を表示させ、オペレータが、マウスなどのポインティングデバイス等の入力装置を使用して、属性配置平面を選択する方法が考えられる。(図7)次に、選択可能な属性配置平面の名称をリスト形式で表示して、その中から選択する方法も考えられる。(不図示)

さらには、属性配置平面の視線方向から見た状態(図9、あるいは図10の(a)、あるいは図11の

(b))の画像をサムネイル画像としてアイコン表示して、選択する方法も考えられる。(図27)

【0092】(属性情報の他の入力方法)図11~図14を用いて説明した上述の属性情報の入力においては、各属性配置平面に属性情報を関連付けたが、関連付ける手段は上記に限定されるものではなく、例えば属性情報をグループ化し、該グループと属性配置平面を関連付けてもよい。

【0093】図15、図16に示すフローチャートに基づき、説明する。

【0094】あらかじめ入力された属性情報を選択的に、あるいは検索結果に基づきグループ化し、該グループと任意の属性配置平面関連付けすることで上記と同様の結果および効果が得られる。また、属性情報のグループへの追加、削除等の修正がなされることにより、属性配置平面に関連付けられる属性情報を操作することができる。

【0095】即ち、3Dモデルを生成し(ステップS151)、属性情報を入力し(ステップS152)、3Dモデルに対し属性配置平面の視点位置、視線方向、および倍率を設定する(ステップS153)。そして、ステップS152で入力され属性情報をグループ化し、設定した属性配置平面とグループ化した属性情報とを関連付けて設定するものである(ステップS154)。

【0096】また、表示を行うときは、図16に示すように、属性配置平面選択し(ステップS161)、選択された属性配置平面に関連付けられている属性情報を属性配置平面の視点位置、視線方向、および倍率の情報に従って表示装置204で正対表示する(ステップS162)ものである。

【0097】(複数の属性配置平面の設定)次に、同一の視線方向に対し、複数の属性配置平面を設定する場合について説明する。(複数の属性配置平面同士は互いに平行となる)

図17は、同一の視線方向に対して、複数の属性配置平面を設定する場合の処理動作を示すフローチャートであり、図18の(a)は、同一の視線方向に対して複数の属性配置平面を設定する場合の3Dモデルを示す図である。

【0098】図7で示した3Dモデル1において、正面図の投影方向と視線方向が一致するように複数の属性配置平面を設定する場合について説明する。

【0099】前述のように3Dモデル1を作成し(ステップS171)、ステップS172において、第1の属性配置平面である属性配置平面212(視点位置、視線方向、倍率)を設定する。この属性配置平面212の視線方向は正面図の平面201bと直交し、倍率は例えば1倍、視点位置は正面図の外形から30mmの位置であり、概ね正面図の面201bの中心である。

【0100】そして、ステップS173において、上記属性配置平面212に関連付けて、図10の(a)で示すような属性情報が入力され、属性配置平面212の視線方向から見ると、図10の(b)のように、二次元的に極めて容易に分かりやすく見ることができる。

【0101】次に、ステップ174において第2の属性配置平面である、属性配置平面214(視点位置、視線方向、倍率)を設定する。この属性配置平面214の視線方向は正面図の平面201bと平行、倍率は例えば1倍、視点位置は属性配置平面3Dモデルの穴の中心軸を含むように設定する。

!(8) 002-324083 (P2002-324083A)

【0102】なお、属性配置平面214は四角の塗りつぶし形状で表現した。

【0103】このとき、属性配置平面214から見る3 Dモデル1は図19の(b)のように、仮想的平面21 4でカットされた3Dモデル1の断面形状となる。

【0104】該属性配置平面214に関連付けて属性情報(例えば図19の(b)の穴の寸法12±0.1)が入力される。また、該属性配置平面214を選択時には、3Dモデル1の断面形状および、この属性配置平面に関連付けられた属性情報を正対表示する。図19(b)

また、3Dモデル1を移動、回転等すれば図19の (a)のように三次元的表示ができるように構成される。

【0105】つまり、属性配置平面214選択されると、属性配置平面214の視線方向に存在する3Dモデルと同視線方向領域に存在する属性配置平面に関連付けられた属性情報を表示し、反視線方向(図18の(b)参照)領域の3Dモデル形状および属性情報は非表示とする。

【0106】本実施の形態によれば、外形形状に係る属性情報だけでなく、同一視線方向の方向の断面形状に係る属性情報を取り扱うことができる。それによって断面形状を見ながら属性情報を入力、表示できるために、属性情報の指示箇所が容易にかつ即座に分かるものである。

【0107】また、3Dモデル1の形状が同一に見える属性配置平面を複数有する構成としてもよい。図20に同一の視線方向、を有する属性配置平面215と属性配置平面216示す。この例では属性配置平面215と属性配置平面216は3Dモデル1の平面図に向いている。各々の属性配置平面に属性情報を例えばグループ化し関連付けることで、より見やすい属性情報を実現できる。例えば図21は3Dモデル1の平面図において、外形寸法に関わる属性情報をグループ化したもの。図22は、上記において穴位置および穴形状に関わる属性情報をグループ化したものである。グループ化された属性情報を、それぞれ属性配置平面215、属性配置平面216、に関連付けることになる。このように関係する属性情報をグループ化して属性配置平面に割り当てることにより、関連する属性情報がより見やすくなる。

【0108】〇属性情報の位置

3Dモデルと該3Dモデルに付加する属性情報を2次元な図面として極めてわかりやすく表示画面上で表現するため、オペレータは表現したい3Dモデルの部位の複数の属性情報を適宜選択もしくはグループ化して属性配置平面に関連付ける。2次元的な図面の表現方法であれば、属性情報の位置は関連する属性配置平面の視線方向の領域に配置すればよいが、3Dモデルに属性情報を付加し図面とするいわゆる「3D図面」においては、3D

モデルのメリットを十分生かすため工夫が必要となる。 【0109】3Dモデルのメリットの一つは、表示画面上で実物に近い形で立体的に表現できるため、モデルを作成するオペレータあるいはそのモデルを用いる次工程のオペレータ(工程設計者、金型設計・製作者、測定者等)にとって、2次元図を扱う際に必要となる2次元から3次元への変換作業(これは主にオペレータの頭の中で行われていた)が省ける点である。この変換作業はオペレータの力量によるところが多く、いきおいこの変換作業において誤変換による誤造や変換時間のロスが発生することがある。

【0110】3D図面において、3Dモデルのメリットである立体的に表現できる点を損なわないために、立体表示した際の属性情報の表示(属性情報の位置)に工夫をする必要がある。

【0111】その工夫する点について、図28を用いて 説明を行う。

【0112】図28の(a)は説明に使用する3Dモデル2の斜視図、図28の(b)は3Dモデル2の平面図、図28の(c)は3Dモデル2に工夫しないで属性情報を付加した状態を説明する斜視図、図28の(d)は属性情報の配置を工夫して行った斜視図である。

【0113】まず、3Dモデル2に対して、2次元的な 平面図を作成するため属性配置平面218の作成および 属性情報の入力を行う。この属性配置平面218の視点 から表示した状態が図28の(b)である。

【0114】該属性情報の入力に関して、図28の

(c)の様に複数の属性情報の配置面を互い違いにすると、属性情報が重なりあい属性情報の内容が判別し難くなる。図28の(c)のように属性情報が少なくても見にくいので、より複雑な形状であれば、もはや属性情報は有益な情報ではなくなり、斜視状態では図面として成り立たなくなることは容易に想像できる。

【0115】ところが、図28の(d)の様に属性情報を同一平面内に配置することで属性情報どうしが重なり合うことはなく、2次元的な図面の表現(図28の

(b))と同等に属性情報の判別は容易にできる。

【0116】こうすることで、3Dモデルに属性情報を付加する図面形態(3次元図面)において2次元的な図面の表現だけでなく、3Dモデルのメリットである立体的に3Dモデルを表現しながら、属性情報の判別が容易にできるので、立体図面(3D図面)として利用することが可能となる。

【0117】また、属性情報の配置面は属性配置平面と同一面にすることが望ましい。

【0118】この例では単純な形状の3Dモデルであったが実際のより複雑な形状を有する3Dモデルを扱う際には、同一視線方向に複数の属性配置平面を設定する必要がある。

【0119】そして複数の属性配置平面およびそれに関

!(9) 002-324083 (P2002-324083A)

連付けられている属性情報を同時に表示してから、所望 の属性配置平面の選択、もしくは属性情報の選択を行う 場合が考えられる。

【0120】この際に、属性情報の配置面と属性配置平面の位置が離れていると属性情報と属性配置平面の関連がわかりにくくなるため間違って選択を行うケースが考えられる。それを避けるため視覚的に関連付けをわかりやすくするために、属性情報を属性配置平面は同一面上に配置するのが良い。

【0121】さらに、図20を用いて説明を行った同一視線方向の属性配置平面を作成する際には、同一の視線方向の複数の属性配置平面は離して配置するのが良い。この複数の属性配置平面およびそれに関連付けられている属性情報を同時に表示する際、属性配置平面を同一面に作成した場合属性情報の配置面も同一面になるので、視線方向はもとより視線方向をずらして斜めから見ても属性情報同士が重なり見にくくなる。そもそも同一方向からみて属性情報が多いために複数の属性配置平面に分けており、同時に属性情報を表示する際には属性情報が重なってしまうことは避けられない。

【0122】視線方向からの見にくいのは救えないとしても、斜視状態で属性情報を判別し易くするために手段として、同一視線方向の属性配置平面は離して配置するのが有効である。

【0123】(倍率)また、属性配置平面の倍率を所望の倍率とすることで、複雑な形状あるいは詳細な形状をより見やすくできる。

【0124】図23は、3Dモデル1の一部を拡大して表示した状態を示す図である。例えば、図23(a)のように、3Dモデル1に対し、視線方向を平面図に向け、視点位置を角部近傍とし、倍率を例えば5倍とする属性配置平面217を設定することで、階段状の形状および属性情報が極めて分かりやすく表示できる。図23(b)

【0125】本実施の形態においては、3D-CAD装置を構成するハードウェア、あるいは3D形状モデルの構成方法によらず3D-CAD全般、更には2D-CADに対し有効である。

【0126】〇倍率と属性情報の大きさ

属性配置平面に関連付けられた属性情報の大きさ(文字 やシンボルの高さ)は、属性配置平面の倍率に応じて変 更するものとする。図23(b)

属性情報の大きさ(mm)とは、3Dモデルが存在する 仮想的3次元空間における大きさと定義する。(表示装 置204において表示された際の大きさではない。)

【0127】例えば、属性配置平面211(倍率1)において属性情報の大きさを3mmとする。属性配置平面217(倍率5)で同じように文字高さを3mmとして表示した例を図23(c)で示す。

【0128】属性配置平面217に関連付けられた属性

情報は5倍の表示倍率で表示されるのでその大きさは1 5mmとなる。

【0129】図23の(b)、(c)において四角線は表示装置204での表示可能範囲を示す。

【0130】属性情報が重ならないように配置すると、3Dモデルと属性情報の位置が離れてしまうので形状とそれに関係する属性情報の関わりがわかりにくく、誤読する可能性も発生する。また表示したい属性情報が多いと全ての属性情報を表示装置204で表示しきれなくなり、表示可能範囲外の属性情報を見るために表示範囲を変更しなくてはならない煩わしさを伴う。

【0131】また、縮小して表示したい場合(倍率は1 未満)に文字の大きさを変更しないと、縮小図表示状態 で属性情報の表示装置204上の表示大きさが小さくな り、属性情報の内容が判別できなくなる。

【0132】そこで、属性情報が表示される時のことを 考慮して、属性情報の情報の大きさ倍率によって変更す るのが望ましい。

【0133】そのため、倍率と属性情報の大きさをおおよそ反比例の関係にすると良い。一例として前述の属性配置平面211の倍率を1、属性情報の大きさを3とした時、この属性配置平面217に関係付けられた属性情報の大きさを0.6mmとする。

【0134】○属性配置平面の複数選択

上述の実施例において、属性配置平面に関連付けられた 属性情報を表示する場合、選択対象の属性配置平面の数 はただ一つとしていたが、本発明の目的を鑑みると、複 数の属性配置平面を選択した場合について説明する。

【0135】属性配置平面の単一選択を行う場合は、視点の位置、視線方向が唯一つなので、表示装置上での表示方法は一つになるが、複数選択した場合は表示方法が複数になるので工夫をしなければならない。たとえば、複数選択を行った場合、選択された属性配置平面に関連付けられた属性情報をすべて表示し、視点の位置、視線方向についてはどの属性配置平面の設定を採用するか選択できるようにすることが考えられる。

【0136】また、属性情報の表示は関連する属性配置 平面毎に色を変えるなどして、グループがわかりやすく 判別できるように工夫を行う。

【0137】○属性配置平面の水平もしくは、鉛直方向の設定

本発明において、属性配置平面に設定するのは視点の位置、視線方向、倍率のみで、属性配置平面の水平方向あるいは鉛直方向の設定については触れてこなかった。

【0138】2次元図面では、図25に示すように各視線方向から見える図(平面図、正面図、側面図)の配置については、ルールを設けている。これは、実物の立体形状を2次元平面に表現するため、各視線方向からの位置関係を理解しやすいようにするための工夫である。

【0139】一方、3Dモデルに属性情報を付与して図

(10)102-324083 (P2002-324083A)

面とする 3 D図面形態においては、 3 Dモデルの外形面に直交する方向から見る 2 次元的な表現(図 9 、図 1 0 の(b)、図 1 1 の(b))はもとより、この状態から 3 Dモデルを回転させ、斜め方向から見た立体的な表現(図 1 0 の(a)、図 1 1 の(a))も可能となる。

【0140】よって、3D図面の形態においては、平面図、正面図、側面図を表示する際に、属性配置平面の水平方向、あるいは鉛直方向(この水平方向あるいは鉛直方向は表示画面の各方向と一致するとして)については別段定める必要はない。3Dモデルとそれに付与された属性情報が正しく表現できているならば図29に示す

(a)、(b)、(c)、(d)、(e)のうちどれも正しい表現であるといえる。さらに、少し3Dモデルを回転させれば、3Dモデルが立体的に表現でき、今見ていた部位が3Dモデル全体のどこにあたるか、また他の視線方向から見た平面図、側面図の場所も容易に理解できるので、属性配置平面の水平方向あるいは、鉛直方向について各視線方向の位置関係を気にせずに表示しても特に問題にはならないからである。

【0141】しかし、3Dモデルに属性情報を付与した3D図面形態において、3D図面を扱うすべてのオペレータが3Dモデルを自由に回転させて表示できる環境にあるとは限らない。3D図面に修正を加えることなく、各属性配置平面によって表示される2次元的な画像情報電子データ形式で保存しそれを見ることで用が足りる職場などがあるからである、また旧来の紙図面でないと対応できない職場などもある。

【0142】このようなことを想定すると、各視線方向から見た表示は2次元図面のようなルールを適用しなくてはならない。

【0143】そこで、属性配置平面を作成する時に、表示装置204で表示される際の水平方向あるいは鉛直方向を設定する必要がある。図30にその処理のフローチャートを示す。

【0144】まず、3Dモデルを作成する (ステップS 301)。

【0145】次に、3Dモデルに対して視点の位置、視線方向、倍率を設定し、属性配置平面を作成する(ステップS302)。

【0146】そして、この属性配置平面の水平方向(あるいは鉛直方向)を指定する。(ステップS303)水平方向(あるいは鉛直方向)を指定するには、(仮想的な)3D空間上に存在する3軸の方向(X,Y,Z)を選択するのでも良いし、3Dモデルの稜線の方向や面の鉛直方向を選択するのでも良い。

【0147】属性配置平面の水平方向(あるいは鉛直方向)を指定することによって、該属性配置平面を選択して表示される3Dモデルおよび属性情報の表示位置は一意に決定される。

【0148】他の属性配置平面を作成するときは、すで

に作成した属性配置平面の視線方向との関係を守りながら水平方向(あるいは鉛直方向)を指定すればよい。 【0149】〇属性情報の表示方法

上記実施例では、3Dモデル対して入力された属性情報を選択的に表示する順序として、まず最初に属性配置平面の選択を行い、次に該属性配置平面に関連付けられた属性情報を適宜表示する、この順番で説明を行ったが、この方法に限定されるものではなく、属性情報を選択し、その次に、その属性情報が関連付けられている属性配置平面の視点の位置、視線方向、倍率で、3Dモデルおよび該属性情報を表示する手法も有効である。

【0150】図31は、この一連の処理動作を示すフローチャートである。

【0151】図8の様に3Dモデルと属性情報が表示された状態で、穴径φ12±0.2を選択する(ステップ311)。

【0152】この属性情報は関連付けられている属性配置平面211に設定されている視点の位置、視線方向、倍率に基づいて、3Dおよび、属性配置平面211に関連付けられている属性情報を表示する。ステップ312.この場合図9で示す如く正面図が正対表示される。【0153】これによって、選択された属性情報と3Dモデルとの関係が、2次元的に表示されるので、より認識しやすくなる。

【0154】·面選択方式

上記従来例では、3Dモデル対して入力された属性情報を選択的に表示する順序として、まず最初に属性配置平面の選択もしくは属性情報の選択を行い、次に該属性配置平面や属性情報に関連付けられた属性配置平面に関連付けられた属性情報を適宜表示する方法の説明を行ったが、この方法に限定されるものではなく、3Dモデルの幾何情報(Geometory)を選択し、その幾何情報に関連付けられている属性情報の表示、さらには該属性情報が関連付けられている属性情報の表示、さらには該属性情報が関連付けられている属性配置平面の視点の位置、視線方向、倍率で、3Dモデルおよび該属性情報を表示する手法も有効である。

【0155】図32(属性情報選択から表示)は、この一連の処理動作を示すフローチャートである。

【0156】3Dモデルの幾何情報 (稜線、面、頂点) を選択する (ステップ321)。

【0157】選択した幾何情報に関連付けられている、 属性情報を表示(ステップ322)。

【0158】関連付けられている、属性情報が複数存在するならば、それらをすべて表示しても良い。また、属性情報が関連付けられている属性配置平面に属する属性情報すべてを表示してもよい。

【0159】次に、表示した属性情報に関連する属性配置平面の視点の位置、視線方向、倍率(属性配置平面の水平方向)に基づいて3Dモデルおよび属性情報を表示

(11)102-324083 (P2002-324083A)

する。この際、複数の属性配置平面が候補となった場合 には、オペレータに表示する対象を選択させる。

【0160】このように、3Dモデルの幾何形状から、 関連する属性情報の検索および、表示が出来るのでとて も使いやすい。

【0161】(表示と利用)ここで、上述のように作成した属性情報が付加された3Dモデルを表示、利用する場合について述べる。

【0162】図2に示した情報処理装置で作成した属性情報が付加された3Dモデルは、作成した装置自身、或いは、外部接続装置を介して作成した3Dモデルのデータを転送することにより、他の同様な情報処理装置を用いて、図1に示した各工程で表示し、利用することができる。

【0163】まず、3Dモデルを作成した、製品/ユニット・部品の設計技術者あるいはデザイン設計者であるオペレータ自身が、自ら作成した3Dモデルを、図9、図10の(b)、図11の(b)に示すように正対表示を行うことで、あたかも二次元の図面を作成するごとく3Dモデルに新たな属性情報を付加することができるものである。また、例えば、形状が複雑な場合に、必要に応じて3Dモデルを3次元表示と二次元的正対表示とを交互に、或いは、同一画面に表示することにより、効率良くかつ正確に所望の属性情報を入力していくことができる。

【0164】また、作成された3Dモデルをチェック/承認する立場にあるオペレータが、作成した3Dモデルを図9、図10の(b)、図11の(b)に示す表示を、同一画面或いは切替えて表示することにより、チェックを行い、チェック済み、OK、NG、保留、要検討などを意味するマーク、記号、或いは色つけなどの属性情報が付加される。必要に応じて、複数の製品/ユニット/部品を比較、参照しながらチェックが行われるのは言うまでもない。

【0165】また、作成された3Dモデルの作成者以外の設計技術者あるいはデザイン設計者が、作成された3Dモデルを参照して、他の製品/ユニット/部品を設計する場合に利用することができる。この3Dモデルを参照することにより、容易に作成者の意図、あるいは設計手法を理解できるものである。

【0166】また、3Dモデルを製作、製造するに当たり、そのために必要な情報を3Dモデルあるいは属性情報に付与するオペレータが利用することができる。この場合、オペレータは製品/ユニット/部品の製作工程を設定する技術者である。オペレータは、例えば加工工程の種類、使用する工具等の指示、あるいは3Dモデルへ加工上必要な稜線部、角部、隅部等へのコーナR、面取りを付加する。あるいは寸法、寸法公差等に対する測定方法の指示、測定点の3Dモデルへの付加、測定上注意すべき情報等を入力する。これらは、図9、図10の

(b)、図11の(b)のように見やすく配置作成された表示を見ながら、また必要に応じ三次元的に形状を確認しながら、効率良く確実に行われる。

【0167】また、3Dモデルを製作、製造するに当た り、所望の準備をするために必要な情報を3Dモデルあ るいは属性情報から得るオペレータが利用することがで きる。この場合、オペレータは製作、製造に必要な金 型、治工具、各種装置等を設計する設計技術者である。 オペレータは3Dモデルを三次元状態で見ながら形状を 理解、把握しつつ、必要な属性情報を図9、図10の (b)、図11の(b)のように見やすく配置作成され た表示でチェック、抽出していく。それらの属性情報を 元に、オペレータは金型、治工具、各種装置等を設計す る。例えば、オペレータが金型の設計技術者である場合 は、オペレータは3Dモデルおよび属性情報から、金型 の構成、構造等を検討しつつ設計する。また、必要に応 じ、金型製作上必要な稜線部、角部、隅部等へのコーナ R、面取りを付加する。また、金型が樹脂の射出成形用 金型の場合には、オペレータは、例えば3Dモデルに成 形上必要な抜き勾配等を付加する。

【0168】また、製品/ユニット/部品を製作、製造するオペレータが利用することができる。この場合、オペレータは製品/ユニット/部品の加工技術者、組立て技術者である。オペレータは3Dモデルを三次元状態で見ながら加工すべき形状、あるいは組み立てるべき形状を容易に理解、把握しつつ、図9、図10の(b)、図11の(b)のように見やすく配置作成された表示を見て加工、組立てを行う。そして必要に応じ、オペレータは加工部、組立て部の形状等をチェックする。また、加工済み、加工が困難、あるいは加工結果等を属性情報として3Dモデルあるいはすでに付加されている属性情報に付加し、該情報を設計技術者等にフィードバックしてもよい。

【0169】また、製作、製造された製品/ユニット/ 部品を検査、測定、評価するオペレータが利用すること ができる。この場合、オペレータは製品/ユニット/部 品の検査、測定、評価する技術者である。オペレータ は、上記の寸法、寸法公差等に対する測定方法、測定 点、測定上注意すべき情報を、図9、図10の(b)、 図11の(b)のように見やすく配置作成された表示を 見ながら、また必要に応じ三次元的に形状を確認しなが ら、効率良く確実に得て、検査、測定、評価を実行す る。そして、オペレータは必要に応じ、検査、測定、評 価を属性情報として、3Dモデルに付与することができ る。例えば、寸法に対応する測定結果を付与する。ま た、寸法公差外、キズ等の不具合箇所の属性情報あるい は3Dモデルにマークあるいは記号等を付与する。ま た、上記チェック結果と同様に、検査、測定、評価済み のマーク、記号、あるいは色付け等がなされてもよい。 【0170】また、製品/ユニット/部品の製作、製造

(12) 102-324083 (P2002-324083A)

に関係する各種の部門、役割のオペレータが利用することができる。この場合、オペレータは例えば、製作、製造コストを分析する担当者、あるいは製品/ユニット/部品自体、関連する各種部品等を発注する担当者、製品/ユニット/部品のマニュアル、梱包材等を作成する担当者、等である。この場合もオペレータは3Dモデルを三次元状態で見ながら製品/ユニット/部品の形状を容易に理解、把握しつつ、図9、図10の(b)、図11の(b)のように見やすく配置作成された表示を見て効率的に各種業務を遂行する。

【0171】(検査指示の入力)次に、検査指示に関して述べる。

【0172】出来上がった金型や、部品などを検査する ためには、予め、3Dモデルに寸法などを割り当てて表 示することは上述した通りである。

【0173】ここでは、設定された属性配置平面に対して、検査する位置が明確となる表示となるように属性情報を入力する。

【0174】即ち、3Dモデルを構成する、面、線、稜線などに対して、検査する順番、検査位置、検査項目などを入力する。そして、その順番に検査することにより、検査工数を軽減するものである。

【0175】まず、検査する項目と位置を入力することにより、全体が入力される。次に、所定の方法により、検査の順番を割り振り、それぞれの項目に順番を割り当てる。そして、実際に検査を行う場合は、順番を指示することにより、属性配置平面が選択され、表示されている属性配置平面において、検査すべき位置の面などが、他と異なった形態(色などが異なる)で表示され、検査位置が明確になる。

【0176】そして、指示された検査項目毎に、検査した結果を入力し、再成形が必要か否かが判断されるものである。

【0177】以上説明のように本発明の実施の形態によれば、設定された属性配置平面と属性情報により、簡単な操作で見やすい画面を得ることができる。また、視線方向と属性情報の関係も一覧してわかるものである。さらには、あらかじめ寸法値などが入力されていることにより、オペレータによる操作ミスによる誤読が軽減される。

【0178】また、視線方向に関連付けられた情報のみを見ることができ、必要とする情報を容易に知ることができる。

【0179】また、同一視線方向の大量の属性情報を、 複数の属性配置平面に割り当てることにより、見やすい 画面を得ることができ、必要な情報を容易に知ることが できる。

【0180】また、3Dモデルの内部、即ち、断面形状に属性配置平面を設定することにより、属性情報をわかりやすく表示することができる。また、属性配置平面の

表示倍率にしたがって、属性情報の大きさを変更するので、わかりやすくそして、適切に表現できる。また、属性情報を属性配置平面上に配置することで、3Dモデルを斜めから見た立体的な表現を行っても、属性情報を読み取ることが出来る。

【0181】また、属性情報から、属性配置平面の検索 および、該属性配置平面に関連付けられた情報のみを見 ることができ、必要とする情報を容易に知ることができ る。

【0182】また、幾何情報から、属性情報および属性配置平面の検索さらには、該属性配置平面に関連付けられた情報のみを見ることができ、必要とする情報を容易に知ることができる。

【0183】(他の関連付け)図33は、属性情報である寸法aをビューに関連付けた時の図である。図で示すように、属性情報はビューの視線方向(紙面に垂直方向)に正対表示される。

【0184】図34は、属性情報である寸法bを属性配置平面に関連付けた時の図である。図で示すように属性情報である寸法bは、属性配置平面の法線方向矢印Aの方向に正対配置される。

【0185】図35は、ビューに関連付けられた属性情 報が表示される様子を示した図である。一つのビューを 選択すると、そのビューに関連付けられている属性情報 502~505が載った一覧表501が表示される。-覧表501には、各属性情報を示すアイコンが表示され ている。ここでアイコンは、図形情報(例えば、寸法を 表す丸印に通し番号がふってある図形) であってもよい し、寸法等の文字情報(例えば、 12 ± 0.05 や ϕ 2. 4等) であってもよい。ビュー選択コマンドよりビ ューを選択した時は、そのビューに関連付けられている 属性情報502~505が全て、ハイライト表示される (図A)。その一覧表501の各属性情報にポインタ5 06を載せていくと、載せられた属性情報503だけが ハイライト表示される(図B)。この時の画面の状態 は、属性情報502~505が関連付けられたビューの 状態でも、他のビューの状態でも良い。

【0186】図36は、属性配置平面に関連付けられた属性情報が表示される様子を示した図である。図36の図Aは、属性配置平面選択コマンドを選択すると表示される、属性配置平面の一覧表より、1つの属性配置平面511についている属性間報の一覧表512が表示された時の様子である。属性配置平面511を選択した時は、一覧表512が表示されると同時に、その属性配置平面511に関連付けられている属性情報507~510全てと選択された属性配置平面511の枠が、ハイライト表示される。次に図36のB図は、その一覧表512の中のある一つの属性情報508の名前の上に、ポインタ513を持ってくると、画面上でその属性情報508だけが、ハイラ

(13)102-324083 (P2002-324083A)

イト表示される様子を表した図である。

【0187】図37は属性情報を作成し、ビューに関連付けるまでの一連の流れを表したフローチャートである。まず始めにビューを作成する(ステップ401)。次にそのビューの向きと位置を記憶手段により記憶する(ステップ402)。次に属性情報を作成する(ステップ403)。その属性情報を上記ビューに関連付ける(ステップ404)。属性情報の向きが関連付けられたビューの正対位置にくる(ステップ405)。その属性情報と関連付けられたビューの組み合わせと属性情報の向きを記憶手段によって記憶し、表示する(ステップ406)。

【0188】ここで、一度関連付けするビューを設定したら、次に設定を変えるまで、属性情報を作成すると全て、上記ビューに関連付けされるものとする。

【0189】ビューへの関連付けは、一つのビューにだけという限定はなく、複数のビューに関連付けて、表示することができる(図44)。

【0190】また、ビューへの関連付けは、今現在、画面に表示されているビューに限定されず、好きなビューに関連付けることができる。図45を例にとると、今現在、ビュー531を表示しているが、この表示画面で属性情報をビュー523に関連付けることができるということである。

【0191】図38は、属性情報を作成して、すぐにビューに関連付けせずに、フリーの状態にしておいて、後から、いつでも好きな時に、いずれかのビューに関連付けするという一連の流れを表したフローチャートである。まず始めに、属性情報を作る(ステップ411)。属性情報をどこに関連付けるかの選択で、フリーを選ぶ(ステップ412)。他の操作等をして時間をおいたのち、先ほど作成した属性情報を、いずれかのビューに関連付けるため、ビュー選択コマンドを選択(ステップ413)。属性情報コマンド内のビュー設定コマンドの中から、属性情報の関連付けのコマンドを選択した際に表示される、ビューの一覧表の中から、上記属性情報を関連付けたいビューを選択(ステップ414)。属性情報と、上記ビューの関連付けが記憶手段によって記憶され、表示される(ステップ415)。

【0192】ここで、フリーの状態にした属性情報は、必ずフリーの属性情報専用の属性配置平面に関連付けされて一時保存される。ただし、フリーの属性情報専用の属性配置平面にフリーの属性情報が関連付けられている場合には、必要に応じ警告が表示されて所望の属性配置平面への関連付けを則すものである。

【0193】これは、警告実施コマンドを選択すると、フリーの属性情報がある時は、保存を実行するたびにフリーの属性情報が存在しているという警告が表示される機能が働くというものである。このコマンドを選択しないと、警告は表示されずに、フリーの属性情報はフリー

の属性情報専用の属性配置平面に関連付けられたままとなる。属性情報をフリーの属性情報専用の属性配置平面へ一時的に関連付けておくと、属性情報作成時には、視覚的に、関連付けする一番良い属性配置平面がわからなくても、全体の構成(モデルや属性配置平面の位置)が決まった後で、視覚的に一番良い属性配置平面に関連付けすることができるというメリットがある。

【0194】図39と図41は、属性情報の関連付けさ れているビューを他のビューに変える時の、一連の処理 を示したフローチャートと、その様子を図示したもので ある。まず始めに、属性情報コマンド内のビュー設定コ マンドを選択する(ステップ421)。ビューの一覧表 520と、全てのビューの名前付き視線方向矢印 b が画 面上に表示される(図A)。一覧表520には、各ビュ ーを示すアイコンが表示されている。ここでアイコン (以下、「ビュー名称」)は、図形情報であってもよい し、寸法等の文字情報であってもよい。視線矢印方向も には、この時、ポインタ522を画面上の一覧表520 内のビュー名称523~532上もしくは、ビューの名 前付き視線方向矢印bの523上に載せると、載せられ たビューに関連付けられている属性情報533~542 と、載せられたビュー523に対応する、ビューの名前 付き視線方向矢印bの523の矢印がハイライト表示さ れる(ステップ422)(図B、図C)。次に、ビュー を選択(ステップ423)。この時、ビューの選択は、 一覧表520からでも良いし、名前付き視線方向矢印b から選択しても良い(図B、図C)。選択されたビュー 523に関連付けられている属性情報533~542の 一覧表543が画面に表示される。この時、表543内 の属性情報名称533~542の上にポインタ522を 載せると、載せられた属性情報534が画面上にハイラ イト表示される(ステップ424)(図D)。関連付け されているビューを変えたい、属性情報534を選択す る、この選択は、複数の属性情報を選択してもよい(ス テップ425)。ビューの一覧表520と全てのビュー の名前付き視線方向矢印bが画面上に表示される(ステ ップ426)。この時も、一覧表520のビューの名称 523~532上もしくは、ビューの視線方向矢印6上 の矢印527にポインタ522を載せると、そのビュー 527に関連付けられている属性情報544~546 が、画面上にハイライト表示される(図E)。ポインタ 522を名称上もしくは矢印から、離すと非表示の状態 になる。属性情報534を関連付けたい、移動先のビュ ーを一覧表520もしくは、ビューの名前付き視線方向 矢印bから一つ選択 (ステップ427) する。また、こ の選択において、複数のビューを選択し、属性情報を複 数のビューへ、一度に関連付けすることもできる。新た に関連付けられたビューの視線方向を示すビューの名前 付き矢印bの527とビューを変えた属性情報534が ハイライト表示される(ステップ428)。関連付けを

(14) 102-324083 (P2002-324083A)

複数した場合、関連付けられたビューの、名前付き視線 方向矢印が全て表示される。Yes/Noの選択でYesを選択して決定(ステップ429)(図G)する。 【0195】なお、ビューの視線方向を示す、名前付き 視線方向矢印は、図41、図42に表記している矢印に 限定されるものでなく、ビューの視線方向が、理解され やすいように表示されれば、ビューの視線方向がモデル 近傍から引き出される等、いかなる方法でもよい。

【0196】図40と図42は、関連付けられているビ ューを変更する他の方法と、フリーで存在する属性情報 を、いずれかのビューに関連付ける一連の処理を示した フローチャートと、その様子を図示したものである。画 面上の関連付けされているビューを変えたい属性情報5 47、もしくはフリーの属性情報547を選択 (ステッ プ431) (図A) する。メニュー548の中からビュ 一の変更を選択(ステップ432)する。ビューの一覧 表549と全てのビューの名前付き視線方向矢印 c が表 示される。この時、ポインタ566を一覧表549中の 一つのビューの名称558もしくは名前付き視線方向矢 印cの558の矢印に載せると、そのビュー558に関 連付けられている全ての属性情報561~565がハイ ライト表示される(ステップ433)(図B、図C)。 一覧表549、もしくは名前付き視線方向矢印 cのどち らかより、一つのビュー558を選択(ステップ43 4) (図B、図C) する。また、この選択において、複 数のビュー551~560を選択し、属性情報547を 複数のビューへ、一度に関連付けすることもできる。次 に、新たに関連付けられたビューの視線方向を示す名前 付き矢印 c の 5 5 8 の 矢印と ビューを変えた 属性情報 5 47がハイライト表示される(ステップ435)。関連 付けを複数にした場合、関連付けられたビューの、名前 付き視線方向矢印が全てハイライト表示される。Yes /Noの選択でYesを選択して決定(ステップ43 6)(図D)。

【0197】ここで、フリーの状態にした属性情報は、必ずフリーの属性情報専用のビューに関連付けされて一時保存される。ただし、フリーの属性情報専用のビューにフリーの属性情報が関連付けられている場合には、必要に応じ警告が表示されて所望のビューへの関連付けを則すものである。

【0198】これは、警告実施コマンドを選択すると、フリーの属性情報がある時は、保存を実行するたびにフリーの属性情報が存在しているという警告が表示される機能が働くというものである。このコマンドを選択しないと、警告は表示されずに、フリーの属性情報はフリーの属性情報専用のビューに関連付けられたままとなる。属性情報をフリーの属性情報専用のビューへ一時的に関連付けておくと、属性情報作成時には、視覚的に、関連付けする一番良いビューがわからなくても、全体の構成(モデルやビューの位置)が決まった後で、視覚的に一

番良いビューに関連付けすることができるというメリッ トがある。

【0199】図43は、ある属性配置平面に関連付けら れた属性情報を、他の複数の属性配置平面へも関連付け する時と、フリーの状態で存在する属性情報を、いずれ かの属性配置平面に関連付けする時の一連の流れを表し たフローチャートである。まず始めに、属性情報を選択 する(ステップ441)。属性配置平面一覧表が画面に 表示される(ステップ442)。次に、その一覧表の中 から、属性配置平面を選択する(ステップ443)。こ のとき、ポインタを一覧表の属性配置平面名称上に載せ ると、属性配置平面が表示状態の時は、載せられた属性 配置平面と、その属性配置平面に関連付けられている属 性情報全てが、ハイライト表示され、ポインタを離すと ハイライト表示がとかれる。属性配置平面が非表示状態 の時は、ポインタを一覧表の属性配置平面名称の上に載 せると、載せられた属性配置平面とその属性配置平面に 関連付けされている属性情報がハイライト表示され、ポ インタを離すと非表示状態になる。また、この選択にお いて、複数の属性配置平面を選択し、属性情報を複数の 属性配置平面へ、一度に関連付けすることもできる。最 後に、選択された属性配置平面全てと、関連付けする属 性情報が、ハイライト表示されている状態で、YES/ NOのうち、YESを選択して、関連付けが終了する (ステップ444).

【0200】図46は属性情報を作成し、属性配置平面に関連付けるまでの一連の流れを表したフローチャートである。まず始めに属性配置平面を作成する(ステップ451)。次にその属性配置平面の法線方向の向きと位置を記憶手段により記憶する(ステップ452)。次に属性情報を作成する(ステップ453)。その属性情報を上記属性配置平面に関連付ける(ステップ454)。属性情報の向きが、関連付けられた属性配置平面の正対位置にくる(ステップ455)。その属性情報と関連付けられた属性配置平面の組み合わせと属性情報の向きを記憶手段によって記憶し、表示する(ステップ456)。

【0201】ここで、一度関連付けする属性配置平面を 設定したら、次に設定を変えるまで、属性情報を作成す ると全て、上記属性配置平面に関連付けされるものとす る。

【0202】属性配置平面への関連付けは、一つの属性配置平面にだけという限定はなく、複数の属性配置平面に関連付けて、記憶、表示することができる(図47)。

【0203】また、属性配置平面への関連付けは、今現在、画面に表示されている属性配置平面に限定されず、好きな属性配置平面に関連付けることができる。図48を例にとると、今現在、属性配置平面550を表示しているが、この表示画面の属性配置平面に関係なく属性情

(15)102-324083 (P2002-324083A)

報553を、どの属性配置平面550~552へも関連付けることができるということである。

【0204】図49は、属性情報を作成して、すぐに属 性配置平面に関連付けせずに、フリーの状態にしておい て、後から、いつでも好きな時に、いずれかの属性配置 平面に関連付けするという一連の流れを表したフローチ ャートである。まず始めに、属性情報を作る(ステップ 461)。属性情報をどこに関連付けるかの選択で、フ リーを選ぶ(ステップ462)。他の操作等をして時間 をおいたのち、先ほど作成した属性情報を、いずれかの 属性配置平面に関連付けるため、属性配置平面選択コマ ンドを選択(ステップ463)。属性情報の関連付けの コマンドを選択した際に表示される、属性配置平面の一 覧表の中から、上記属性情報を関連付けたい属性配置平 面を選択(ステップ464)。この時、複数を選んでも 良い。属性情報と、上記属性配置平面の関連付けが記憶 手段によって記憶され、表示される (ステップ46 5)。

【0205】図50と図51は、属性情報の関連付けさ れている属性配置平面を他の属性配置平面に変える時 の、一連の処理を示したフローチャートと、その様子を 図示したものである。まず始めに、属性情報コマンド内 の属性配置平面設定コマンドを選択する(ステップ47 1)。属性配置平面の一覧表558と作成済みの属性配 置平面全て554~556が画面上に、ハイライト表示 される(図A)。この時、ポインタ557を画面上の表 558内の属性配置平面554の名称上に載せると、載 せられた属性配置平面554と、属性配置平面554に 関連付けられている属性情報559~562が、ハイラ イト表示される(ステップ472)(図B)。次に、属 性配置平面を選択(ステップ473)。選択された属性 配置平面554に関連付けられている属性情報の一覧表 565が画面に表示される。この時、表内の属性情報名 称559の上にポインタ557を載せると、載せられた 属性情報559だけが画面上にハイライト表示される (ステップ474)(図C)。また、選択された属性配 置平面554は、ハイライト表示されたままである。関 連付けされている属性配置平面を変えたい属性情報55 9を選択する(ステップ475)。属性配置平面の一覧 表558が画面上に表示される(ステップ476)。こ の時も、一覧表の属性配置平面555の名称上にポイン タ557を載せると、属性配置平面555と、その属性 配置平面に関連付けられている属性情報563~564 が、画面上にハイライト表示される。ポインタ557を 離すと非表示の状態になる(図D)。属性情報559を 関連付けたい、移動先の属性配置平面555を一覧表5 58から選択(ステップ477)。この時、複数の属性 配置平面554~556を選択しても良い。新たに関連 付ける属性配置平面を変えた属性情報559がハイライ ト表示される (ステップ478)。 Yes/Noの選択

でYesを選択して決定(ステップ479)(図E)。【0206】図52は、自動化を選択した際の表示されるメニューについて示した図である。属性情報の関連付けの自動化において、どのビューに関連付けるかの選択チェック欄に、「現在表示しているビュー」というチェック欄がある。このチェック欄をチェックしておくと、それ以後、作成もしくは変更、追加する属性情報は、画面表示のビューを変えたら、変えた先の画面の向きに、新たなビューを作り、そのビューに関連付けられるというものである。さらに、ビューが作成されるたびに、チェック欄で、選択できるビューが増えていくというものである。

【0207】この機能があることで、属性情報を作成するたびに、ビューに関連付けるという操作が無くなるので、図面作成期間の短縮につながる。

【0208】図53は、自動化を選択した際の表示されるメニューについて示した図である。属性情報の関連付けの自動化において、どの属性配置平面に関連付けるかの選択チェック欄に、「現在、アクティブ化されている属性配置平面」というチェック欄がある。このチェック欄をチェックしておくと、それ以後、作成もしくは変更、追加する属性情報は、画面表示に関係なく、属性情報を作成した段階で、アクティブになっている属性配置平面に、関連付けられるというものである。また、属性配置平面が作成されるたびに、チェック欄で、選択できる属性配置平面が増えていくというものである。

【0209】この機能があることで、属性情報を作成するたびに、属性配置平面に関連付けるという操作が無くなるので、図面作成期間の短縮につながる。

【0210】(フリーの属性情報の関連付けについての他の実施例)フリーの属性情報があると、属性情報を見る場合に、全ての属性配置平面あるいはビューを順次見ていくだけでは不十分となり見逃してしまう。その為に、別にフリーの属性情報を検索する、あるいは探し出す必要が生じる。これは、各種業務の効率を著しく低下させることになる。この為、本発明のごとく全ての属性情報はいずれかの属性配置平面あるいはビューに関連付けることが好ましい。上記関連付けは、上記実施例に限定されるものではなく以下の構成でも良い。

【0211】これは、フリーの属性情報を残したままで 図面作成を行うことを防ぐというものである。流れとし て、属性情報を作成するとその場で、どの属性配置平面 に関連付けるかの選択を行うというものである。関連付 ける属性配置平面を決めないと、属性情報の作成を続け ることができないという構成である。

【0212】(フリーの属性情報を記憶する他の実施例)この実施例は、フリーの属性情報専用の属性配置平面が、存在しない場合の実施例である。

【0213】すなわち、属性情報がフリーの属性情報として一時的に存在することを許す実施形態である。

(116)102-324083 (P2002-324083A)

【0214】属性情報を作成する時に、関連付けする属性配置平面を選択しないと、警告が出たのちにいずれの属性配置平面にも関連付けられていない、フリーな属性情報として記憶される。ここでのフリーな属性情報の扱いは、先に挙げた実施例とは違い、フリーの属性情報専用の属性配置平面に関連付けられて記憶されるというのではなく、個別の属性情報として記憶される。

【0215】ただし、フリーの属性情報があると作成途中では保存はできるが、そのたびに警告が出る。そして、ユーザーが図面の作成を終了したと判断し、保存をしようとしても、システムが、属性配置平面に関連付けられていないフリーの属性情報を捻出し、図面が未完成と認識する手段を有することで、図面完成としての保存ができない。そして、次の工程(加工、図面の承認等)に進むのを拒否する手段を持つものである。そのため、図面を完成するために、フリーにしている属性情報が全て、モデルに関連付けられた属性配置平面に関連付けられるものである。

【0216】上記は、ビューに関しても同様な構成をとれるのは言うまでもない。

[0217]

【発明の効果】以上説明したように本発明によれば、属性情報を、少なくとも1つ以上の仮想的な平面に関連付けることにより、より多彩な属性情報の見せ方や3D図面の作成が可能となる。

【0218】また、属性情報をいずれか1つの仮想的な 平面に関連付けることにより、属性情報をもれなく仮想 的な平面に配置することが可能となる。

【図面の簡単な説明】

【図1】モールド部品金型生産の全体の流れを示す図である。

【図2】CAD装置のブロック図である。

【図3】図2に示したCAD装置の処理動作を示すフローチャートである。

【図4】形状モデルの例を示す図である。

【図5】形状モデルを構成する各部の関連を示す概念図である。

【図6】内部記憶装置201上でのFace情報の保管 方法を示す概念図である。

【図7】3Dモデルおよび属性配置平面を示す図である。

【図8】3Dモデルおよび属性情報を示す図である。

【図9】3Dモデルおよび属性情報を示す図である。

【図10】3Dモデルおよび属性情報を示す図である。

【図11】3Dモデルおよび属性情報を示す図である。

【図12】3Dモデルに属性情報を付加するときの処理動作を示すフローチャートである。

【図13】3Dモデルに属性情報を付加するときの処理 動作を示すフローチャートである。

【図14】3Dモデルに属性情報を付加するときの処理

動作を示すフローチャートである。

【図15】3Dモデルに属性情報を付加するときの処理 動作を示すフローチャートである。

【図16】属性情報を付加された3Dモデルの表示を行うときのフローチャートである。

【図17】3Dモデルに複数の属性配置平面を設定するときの処理動作を示すフローチャートである。

【図18】3Dモデルに複数の属性配置平面を設定した 状態の図である。

【図19】図19の属性配置平面214から見た3Dモデルを示す図である。

【図20】3Dモデルと複数の属性配置平面を設定した 状態の図である。

【図21】図20に示した属性配置平面215から見た3Dモデルを示す図である。

【図22】図20に示した属性配置平面216から見た3Dモデルを示す図である。

【図23】3Dモデルの一部に属性配置平面を割り当てた場合を示す図である。

【図24】3Dモデルの一例を示す図である。

【図25】図24に示した3Dモデルの正面図、平面図、及び側面図である。

【図26】図24に示した3Dモデルに属性情報を付与した状態の図である。

【図27】各属性配置平面から見た表示内容をアイコン 化した状態を説明する図である。

【図28】3Dモデルの一例を示す図である。

【図29】3Dモデルおよび属性情報を2次元的に表現した状態を説明する図である。

【図30】属性配置平面の表示方向の設定の処理動作を 示すフローチャートである。

【図31】属性情報から3Dモデルと属性情報の表示を 行うときのフローチャートである。

【図32】幾何情報から3Dモデルと属性情報の表示を 行うときのフローチャートである。

【図33】属性情報をビューに関連付けた時の表示の様子を表した図である。

【図34】属性情報を属性配置平面に、関連付けた時の表示の様子を表した図である。

【図35】属性情報を、ビューに関連付けする様子を示した図である。

【図36】属性情報を属性配置平面に関連付けする様子を示した図である。

【図37】新しくビューを作成し、属性情報を作成した ビューに関連付けられるという一連の流れを表したフロ ーチャートである。

【図38】属性情報を作成すると自動的に、作成時のビューに属性情報が関連付けられるという一連の流れを表したフローチャートである。

【図39】属性情報の関連付けを、他のビューに変える

(打7))02-324083 (P2002-324083A)

ときの一連の流れを表したフローチャートである。

【図40】属性情報の関連付けを、別の方法で他のビューに変えるときの一連の流れを表したフローチャートである。

【図41】図39のフローチャートの流れを、図示したものである。

【図42】図40のフローチャートの流れを、図示したものである。

【図43】属性情報を複数の属性配置平面に関連付ける時と、フリーの状態で存在する属性情報をいずれかの属性配置平面に関連付けする一連の流れを表すフローチャートである。

【図44】属性情報を複数のビューに関連付けた時の、 表示の様子を表した図である。

【図45】ビューへの関連付けにおいて、現在画面に表示してあるビューだけでなく、好きなビューに関連付けることができることを表した図である。

【図46】属性情報を作成し、属性配置平面に関連付ける一連の流れを表したフローチャートである。

【図47】属性情報を複数の属性配置平面に関連付けて、表示される様子を表した図である。

【図48】属性情報をアクティブ化していない属性配置 平面にも、関連付けできる様子を示した図である。

【図49】属性情報を作成後、いつでも好きな時に、いずれかの属性配置平面に関連付けする一連の流れを表し

たフローチャートである。

【図50】属性情報の、関連付けされている属性配置平面を変える、もしくは追加する時の、一連の流れを表したフローチャートである。

【図51】属性情報の、関連付けされている属性配置平面を変える、もしくは追加する時の様子を表した図である。

【図52】属性情報を作成すると自動的に、あらかじめ 設定しておいたビューに関連付けられるようにするため の、メニューの図である。

【図53】属性情報を作成すると自動的に、あらかじめ 設定しておいた属性配置平面に関連付けられるようにす るための、メニューの図である。

【符号の説明】

- 1 3Dモデル
- 2 3Dモデル
- 201 内部記憶装置
- 202 外部記憶装置
- 203 CPU装置
- 204 表示装置
- 205 入力装置
- 206 出力装置207 外部接続装置
- 211、212、213、214、215、216 属性配置平面

(118) 102-324083 (P2002-324083A)

(19)102-324083 (P2002-324083A)

(20))02-324083 (P2002-324083A)

(21))02-324083 (P2002-324083A)

(\$2))02-324083 (P2002-324083A)

(₹3))02-324083 (P2002-324083A)

【図28】

(24)102-324083 (P2002-324083A)

(25)102-324083 (P2002-324083A)

【図53】

	現在、アクティブ化されている異性配置平面
	其性配置平面 A
u	其性配置平面 B

(26))02-324083 (P2002-324083A)

(₹7))02-324083 (P2002-324083A)

(28) 102-324083 (P2002-324083A)

【図51】

フロントページの続き

(72)発明者 馬鳥 至之

東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内

(72) 発明者 森岡 昌也

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72)発明者 柳澤 亮三

東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内

(72)発明者 笹子 悦一

東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内

Fターム(参考) 5B046 AA05 DA09 DA10 FA09 GA01 **HA05**

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	refects in the images include but are not limited to the items checked:
	M BLACK BORDERS
	\square image cut off at top, bottom or sides
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

......

[Detailed Description of the Invention]

[0001]

[Field of the Invention]This invention relates to the information processor and method of having used 3D model (3D shape) especially created using 3D-CAD about an information processor and a method.

[0002]

[Description of the Prior Art]Conventionally, the article (only henceforth parts) which has three-dimensional shape, such as parts which constitute goods and a product, was designed using the CAD device (especially 3D-CAD device).

[0003]The metallic mold for producing parts was manufactured based on this design. [0004]In using the design information created by the CAD device, attribution information, such as a size, a dimensional tolerance, geometric tolerance, notes, and a sign, was inputted into 3D model (3D shape).

[0005]In order to input attribution information into 3D model, it is carried out by making directions selection of the field of 3D model, a ridgeline, a center line, or the peak. For example, attribution information is inputted into 3D model (the front view of this 3D model, a top view, and a side view are shown in drawing 25) as shown in drawing 24 as shown, for example in drawing 26. With attribution information here Distance (length, width, thickness, etc.), an angle, a bore diameter, a radius, The geometric tolerance and the dimensional tolerance parts which are added without the input of a size to a dimensional tolerance side, a ridgeline, etc. which accompany a size and these sizes, such as camfering, They are signs etc. which should tell in processing and manufacturing a unit and a product and which are beforehand decided as predefined significance, such as notes surface roughness which is the information which should be directed.

[0006]When the method of attaching attribution information to 3D model is divided roughly, it has the following two kinds.

When giving a size, a dimensional tolerance, geometric tolerance, notes, and a sign, (1) A size, A dimension line and an extension line in order to fill in a dimensional tolerance Required geometric tolerance, In order to fill in notes and a sign, when a leading line did not attach a necessity (2) size but gave a dimensional tolerance, geometric tolerance, notes, and a sign, in order that a dimension line and an extension line might fill in an unnecessary dimensional tolerance, geometric tolerance, notes, and a sign, the leading line was manufacturing the metallic mold using necessity and 3D model. In this case, the mold goods fabricated by the manufactured metallic mold and this metallic mold are done as they designed, or it needed to inspect.

[0007]

[Problem(s) to be Solved by the Invention]There are the following problems in the method of attaching attribution information to 3D model like the above-mentioned conventional example.

[0008]In the above (1), the dimension line and extension line for filling a size, a dimensional tolerance, and them in will become complicated, and the shape and attribution information of 3D model will become hard to see.

[0009]Like <u>drawing 24</u>, in comparatively easy shape, if the number of attribution information is about tens of pieces, can also see somehow, but. Since hundreds - thousands of attribution information are given to 3D model if needed in the case of complicated shape or large-sized shape, For "attribution information laps", "attribution information, a dimension line, an extension line, or a leading line lapping", "the drawer position of a dimension line, an extension line, or a leading line being incomprehensible", etc., Attribution information reading becomes very difficult (it is hard to see some even with the staircase shape of the corner of <u>drawing 26</u>).

[0010]When above, it is difficult for the operator itself which inputs attribution information to look at input, and the check of an entry content will not be able to be performed, either, namely, the input of attribution information itself will become difficult.

[0011]Related reading of attribution information will also become very difficult. The space which attribution information occupies to 3D model will become large, and it will become impossible to see the shape and attribution information of 3D model simultaneously on the display screen of the limited size.

[0012]The attribution information (for example, depth 12**0.1 of the Zagury hole of drawing 24) which should be directed with what is called a sectional view etc. cannot have a seen directions place of 3D model, and is incomprehensible.

[0013]In the above (2), a dimension line and an extension line are unnecessary, but in order to use a leading line, like the above (1), a leading line will become complicated and the shape and attribution information of 3D model will become hard to see. Since thousands of [hundreds to] attribution information is given to 3D model if needed in the case of complicated shape or large-sized shape, attribution information reading will become very difficult.

[0014]When inspecting the mold goods which carried out metallic mold manufacture and were fabricated by the done metallic mold and this metallic mold, it will be necessary to measure a size etc. Therefore, in order to read a dimension value, it is forced the measuring operation according 3D model geometry to a measuring function.
[0015]In this case, in making directions selection of the part used as the standard of a size to the part of a field to read, a ridgeline, etc. and reading the size of two or more parts, much operation frequency and long operate time start. The possibility of misreading by a failure is not avoided. In reading the size of all the parts furthermore, it forces it a very huge labor.

[0016]First of all, 3D model and attribution information process parts, a unit, and a product, You must be transmitted without information being intelligible for engineers who see, such as operator = processing, manufacture, and an inspection, and being wrong efficiently to them from the operator = designer who is the information for manufacturing and inputs. In the above-mentioned conventional technology, it is not a gestalt which these are not satisfied at all but can use effectively industrially.

[0017]Therefore, an object of this invention is to add the attribution information which can transmit information to 3D data created with the CAD device etc. certainly efficiently and intelligibly. It aims at adding the attribute for improving operativity to data. An object of this invention is to use the added attribute efficiently.

[0018]An object of this invention is to perform efficiently part creation which utilized the data created with the CAD device etc.

[0019]It aims at performing an inspection process efficiently using the data created with the CAD device etc.

[0020]

[Means for Solving the Problem] This invention is characterized by an information processor comprising the following, in order to solve the above-mentioned technical problem.

An attribute input means which inputs attribution information over 3D model.

An attribute arrangement flat-surface setting-out means to set up a virtual flat surface where this attribution information is associated.

said attribution information -- at least one or more -- this -- a memory measure which is related with a virtual flat surface and memorized.

[0021] This invention is characterized by an information processing method comprising the following.

An attribute input process which inputs attribution information over 3D model.

An attribute arrangement flat-surface setting-out process of setting up a virtual flat surface where this attribution information is associated.

said attribution information -- at least one or more -- this -- a memory process which is related with a virtual flat surface and memorized.

[0022] This invention is characterized by an information processing program comprising the following.

An attribute input means which inputs attribution information over 3D model.

An attribute arrangement flat-surface setting-out means to set up a virtual flat surface where this attribution information is associated.

said attribution information -- at least one or more -- this -- a memory measure which is related with a virtual flat surface and memorized.

[0023] This invention is characterized by an information processor comprising the following.

An attribute input means which inputs attribution information over 3D model.

A sight line direction setting-out means to set up arbitrary sight line directions where this attribution information is associated.

A memory measure which relates said attribution information with these at least one or more sight line directions, and memorizes it.

[0024] This invention is characterized by an information processing method comprising the following.

An attribute input process which inputs attribution information over 3D model.

A sight line direction setting-out process of setting up arbitrary sight line directions

where this attribution information is associated.

A memory process of relating said attribution information with these at least one or more sight line directions, and memorizing it.

[0025] This invention is characterized by an information processing program comprising the following.

An attribute input means which inputs attribution information over 3D model.

A sight line direction setting-out means to set up arbitrary sight line directions where this attribution information is associated.

A memory measure which relates said attribution information with these at least one or more sight line directions, and memorizes it.

[0026]

[Embodiment of the Invention]The 1 embodiment of this invention is described in detail using a drawing.

[0027](Flow of the whole metal mold production) <u>Drawing 1</u> is a figure showing the flow at the time of [whole] applying this invention to mold part article metallic mold production.

[0028]In a figure, at Step S101, a product is designed and the engineering-drawing side of each parts is created. In the engineering-drawing side of parts, information required for parts manufacturing, constraint information, etc. are included. The drawing (3D drawing) which the engineering-drawing side of parts was created by 2D-CAD or 3D-CAD, and was created by 3D-CAD consists of attribution information, such as shape and a dimensional tolerance. A dimensional tolerance can be related with shape (a field, a ridgeline, a point), and a dimensional tolerance is used for the inspection instruction indication of mold goods, metallic mold accuracy directions, etc.

[0029]In Step S102, the manufacturability of an assembly of a product, shaping, etc. is examined and process drawing for every parts is created. It adds to information required for parts manufacturing, and detailed inspection instruction indication is included in process drawing of parts. Process drawing of parts is created by 2D-CAD or 3D-CAD. [0030]Here, there are a measure point, directions of a measuring method, etc. to the numbering parameter of a parameter (a size or a dimensional tolerance) as an example of detailed inspection instruction indication.

[0031]Detailed inspection instruction information can be related with a dimensional tolerance on CAD.

[0032]In Step S103, a metallic mold design is performed based on process drawing (a process-drawing side, metallic mold specifications) of the parts created at Step S102, and a metallic mold drawing is created. Information required for metallic mold manufacture and constraints are included in a metallic mold drawing. The metallic mold drawing (3D drawing) which the metallic mold drawing was created by 2D-CAD or 3D-CAD, and was created by 3D-CAD consists of attribution information, such as shape and a dimensional tolerance.

[0033]In Step S104, the manufacturing process of a metallic mold is examined based on the metallic mold drawing created at Step S103, and a figure is created as a die builder. A metallic mold work process consists of NC machining and general-purpose processing. Creation directions of NC program are performed to the process of performing NC

machining (automatic processing by numerical control). The directions for performing general-purpose processing are carried out to a general-purpose processing (processing by hand control) process.

[0034]In Step S105, NC program is created based on a metallic mold drawing.

[0035]In Step S106, a mold part article is manufactured with a machine tool etc.

[0036]In Step S107, the manufactured mold part article is inspected based on the information created at Step S103.

[0037]A mold part article is assembled and fabricated in Step S108.

[0038]In Step S109, the fabricated mold part article is inspected based on the information created at Step S101 and Step S102, and if it is O.K., it will end.

[0039]In Step S110, the metallic mold of the part where the accuracy of mold goods is insufficient is corrected based on the result of an inspection of Step S109.

[0040](A design of a product), next the design of a product are performed, and creation of the engineering-drawing side of each parts is explained. The engineering-drawing side of parts is created by 2D-CAD device or 3D-CAD device.

[0041]Here, the design of parts is explained using the information processor shown in <u>drawing 2</u>, for example, a CAD device.

[0042]Drawing 2 is a block diagram of a CAD device. In a figure, 201 is internal storage, 202 is an external storage, and it consists of semiconductor memory devices, such as RAM which keeps CAD data and a CAD program, a magnetic storage device, etc.

[0043]203 is a CPU device and performs processing along with the command of a CAD program.

[0044]204 is a display and displays shape etc. along with the command of CPU device 203.

[0045]205 is input devices which give directions etc. to a CAD program, such as a mouse and a keyboard.

[0046]206 is output units, such as a printer which outputs a paper drawing etc. along with the command of CPU device 203.

[0047]207 is an external connection device, and this CAD device and an external device are connected, the data from this device is supplied to an external device, or it controls this device from an external device.

[0048]<u>Drawing 3</u> is a flow chart which shows the processing operation of the CAD device shown in drawing 2.

[0049]First, if an operator directs starting of a CAD program with the input device 205, the CAD program stored in the external storage 202 will be read into the internal storage 201, and a CAD program will be executed on CPU device 203 (Step S301).

[0050]By directing interactively with the input device 205, an operator generates a geometric model on the internal storage 201, and displays as a picture on the display 204 (Step S302). This geometric model is mentioned later. When an operator specifies a file name etc. with the input device 205, it can also read into the internal storage 201 so that the geometric model already created on the external storage 202 can be dealt with on a CAD program.

[0051]An operator creates the attribute arrangement flat surface which is a virtual flat surface which arranges and associates attribution information with the input device 205 in the three-dimensional space which created the geometric model (Step S303).

[0052]It displays on a display as picture information, such as a frame (double frame and

within the limit continuous tone), so that it may be easy to distinguish the position of this attribute arrangement flat surface. The setup information of an attribute arrangement flat surface is related with a geometric model, and is kept by the internal storage 201. [0053]It is desirable to attach a name to the attribute arrangement flat surface created if needed.

[0054]An operator adds a dimensional tolerance etc. as attribution information to a geometric model with the input device 205 (Step S304). The added attribution information can be displayed on a display as picture information, such as a label. The added attribution information is related with a geometric model, and is kept by the internal storage 201.

[0055]With the input device 205, an operator associates attribution information to an attribute arrangement flat surface. (Step S305)

"Correlation" is realized as follows. The identifier in which a respectively peculiar identifier is peculiar to each attribute arrangement flat surface respectively at one side is assigned to each attribution information. The identifier of the attribution information and the identifier of an attribute arrangement flat surface are matched, and "correlation" is realized by generating attribution information and the pertinent information on an attribute arrangement flat surface.

[0056]Attribution information and the pertinent information on an attribute arrangement flat surface are kept by the internal storage 201.

[0057]While an operator specifies an attribute arrangement flat surface beforehand and performs correlation with an attribute arrangement flat surface, it may be made to associate attribution information. An operator can set up and cancel correlation with the attribute arrangement flat surface of attribution information with the input device 205. [0058]Next, an operator performs display control, such as a display and non-display one of attribution information, such as a dimensional tolerance related with an attribute arrangement flat surface and its attribute arrangement flat surface, or staining, by specifying an attribute arrangement flat surface with the input device 205 (Step S306). [0059] When an operator creates an attribute arrangement flat surface with the input device 205, the position of the viewpoint which is the display information about an attribute arrangement flat surface, a sight line direction, and magnification are set up. The details about these are mentioned later. The display information on this attribute arrangement flat surface is set up, it cannot be concerned with the last displaying condition by specifying this attribute arrangement flat surface, but a geometric model can be expressed as the position of the set-up viewpoint, a sight line direction, and magnification. Since this attribute arrangement flat surface and attribution information are associated, the attribution information connected with the specified attribute arrangement flat surface can be displayed selectively. The display information on an attribute arrangement flat surface is kept by internal storage.

[0060]With directions of an operator, attribution information can be kept to the external storage 202 etc. (Step S307).

[0061]This identifier is an attribute value added in order to distinguish attribution information from other attribution information. When exchanging the data about the attribution information during two or more programs, by adding the identifier which becomes unique to attribution information, the data about the attribution information to exchange can be related with attribution information, and can be dealt with.

[0062]When it associates as an example the measurement result outputted to attribution information, such as a size, from measuring apparatus etc., by adding the measurement result corresponding to the same identifier as the identifier added to the size, a measurement result can be related with a size and can be read.

[0063]An identifier can be added to attribution information, this identifier can be added, and it can be kept to the external storage 202. Other data and attribution information can be associated using this identifier.

[0064]What added information to the attribution information on the external storage 202 can be read into the internal storage 201, and attribution information can be updated. [0065]With the input device 205, an operator keeps the CAD attribute model which added the position information on an attribute arrangement flat surface, the display information on an attribute arrangement flat surface, and attribution information to the geometric model to the external storage 202 (Step S308).

[0066]Here, a geometric model and a CAD attribute model are explained.

[0067] <u>Drawing 4</u> is a figure showing the example of a geometric model, and <u>drawing 5</u> is a key map showing the relation of each part which constitutes a geometric model. [0068] <u>Drawing 4</u> is SolidModel as an example of representation of a geometric model.

As shown in a figure, SolidModel is a mode of expression which defines shape, such as parts, on the three-dimensional space on CAD, and consists of topology (Topology) and geometrical information (Geometory). As shown in <u>drawing 5</u>, on the internal storage 201, the topology of SolidModel is memorized hierarchical and One or more Shell(s), They are two Vertex and **, ** and others, to one or more Edge(s) and one Edge to one or more Loop(s) and one Loop to one or more Face(s) and one Face to 1Shell.

[0069]The Surface information which expresses Face shape, such as a flat surface and a cylinder side, to Face is associated and kept on the internal storage 201. The Curve information which expresses the shape of Edge(s), such as a straight line and a circle, to Edge is associated and kept on the internal storage 201. The coordinate value on three dimensional space is related and kept on the internal storage 201 to Vertlex.

[0070]Attribution information is associated and kept by the Gentlemen phase element of Shell, Face, Loop, and Vertex on the internal storage 201, respectively.

[0071]Here, an example of the storing method on the internal storage 201 is explained to an example for Face information.

[0072]<u>Drawing 6</u> is a key map showing the storing method of the Face information on the internal storage 201.

[0073]As shown in a figure, Face information consists of the pointer to LoopList which constitutes FaceID and Face, a pointer to the Surface data showing Face shape, and a pointer to attribution information.

[0074]LoopList keeps ID of all the Loop(s) which constitute Face by list form. Surface information comprises SurfaceParameter according to SurfaceType and SurfaceType. Attribution information comprises an attribute value according to an attribute type and an attribute type. The pointer to the attribute arrangement flat surface to which the pointer and attribute to Face belong, etc. are contained in an attribute value.

[0075](The input and display of attribution information to 3D model) The display of 3D model in which the input of the attribution information to 3D model, the preparation method of an attribute arrangement flat surface, and attribution information were added is explained further in detail.

[0076] <u>Drawing 7 - drawing 11</u> are 3D model, attribution information, and a figure showing an attribute arrangement flat surface, and <u>drawing 12 - drawing 14</u> are flow charts which show processing operation when adding an attribute arrangement flat surface and attribution information to 3D model.

[0077]At Step S121 of <u>drawing 12</u>, the 3D model 1 shown in <u>drawing 7</u> is created, and a required attribute arrangement flat surface is set up by Step S122.

[0078]O an attribute arrangement flat surface -- here, an attribute arrangement flat surface specifies the requirements in connection with presenting of the attribution information added to the 3D model 1 and the 3D model 1. In this invention, the normal line direction (sight line direction) of the position of one point (it is considered as a viewpoint and a following viewpoint) on three dimensional space (it is virtual) and the flat surface to create shall define an attribute arrangement flat surface, and also it shall also have the information on the display magnification (following only magnification) of the attribution information added to the 3D model 1 and the 3D model 1. The 3D model 1 of a sight line direction shall appear from this position, namely, the position displayed shall be determined as a line of sight position here. For example, the attribute arrangement flat surface 212 is set as a 60-mm position from the outside of the transverse plane 201 of the front view of the 3D model 1 (drawing 7).

[0079]However, if the line of sight position is located in the exterior of the 3D model 1 here about the projection (a front view, a top view, a side view on either side, a bottom view, a rear elevation) what is called by trigonometry, it is related to display information in neither of the positions.

[0080]The position of this viewpoint is a point which is not concerned with the display center of the display 204 at the time of displaying the attribution information added to the 3D model 1 and the 3D model 1, and the last displaying condition, but is in agreement. [0081]Next, the normal line direction of an attribute arrangement flat surface is coincided with the sight line direction at the time of displaying the attribution information added to the 3D model 1 and the 3D model 1 from this view position.

[0082]It is considered as the magnification expanded at the time of displaying magnification and 3D model geometry on three dimensional space (it is virtual) on the display 204.

[0083]The position of a viewpoint which is a parameter of an attribute arrangement flat surface, a sight line direction, and magnification make a change possible at any time. [0084]For example, in drawing 7, it intersects perpendicularly with the field 201a of the top view shown in drawing 25, and the attribute arrangement flat surface 211 where the direction which goes to an inside moreover turns into a sight line direction from from outside 3D model is defined, the attribution information which gives a view position and magnification with the shape of the 3D model 1 -- it is determined that all can display on the display screen of the display 204 in general, for example, in this embodiment, the magnification is one -- the view position of 201 f -- the field 201a of a top view -- it is mostly provided in a center. (In drawing 7, 201 d of two-dot chain lines show the state where the near border line of the front view was projected on the attribute arrangement flat surface 211) The attribute arrangement flat surface 212 of the sight line direction which intersects perpendicularly with the field 201c of a front view, and the attribute arrangement flat surface 213 of the sight line direction which intersects perpendicularly with the field 201b of a side view are set up similarly.

[0085]Since the position of each attribute arrangement flat surface is specified, it has expressed by the square frame which carried out framing of the attribute arrangement flat surface. Although it expresses using a frame at this example as a means to specify the position of this attribute arrangement flat surface, it may not be restricted to this, and as shape, they may be polygons other than a rectangular head, or a round shape. (The attribute arrangement flat surface 211 is parallel to the upper surface 201a of the 3D model 1, the attribute arrangement flat surface 212 is parallel to the transverse plane 201b of the 3D model 1, and the attribute arrangement flat surface 213 serves as physical relationship parallel to the side 201c of the 3D model 1.)

[0086]Next, it relates with each attribute arrangement flat surface set up at Step S123, and attribution information is inputted. At this time, attribution information is carried out for right on an attribute arrangement flat surface, and is arranged. (a) of drawing 8 and drawing 10 and (a) of drawing 11 are the figures showing the state where related with each attribute arrangement flat surfaces 211, 212, and 213, and attribution information was given to 3D model. (b) of drawing 9 and drawing 10 and (b) of drawing 11 are the 3D models 1 and attribution information which were displayed for the view position of each attribute arrangement flat surfaces 211, 212, and 213, a sight line direction, and magnification. The size (height of a character or a symbol) of the attribution information related with the attribute arrangement flat surface is changed according to the magnification of an attribute arrangement flat surface. With the size (mm) of attribution information, it is defined as the size in the virtual three-dimensional space where 3D model exists. (It is not a size at the time of being displayed in the display 204.) [0087]Correlation of an attribute arrangement flat surface and attribution information may be after the input of attribution information. For example, like the flow chart shown in drawing 13, 3D model is created (Step S131) and attribution information is related with a desired attribute arrangement flat surface by Step S133 after inputting an attribute at Step S132. Correction of the addition of the attribution information associated to an attribute arrangement flat surface, deletion, etc. is made if needed.

[0088]When attribution information is related with another attribute arrangement flat surface, the size of attribution information is changed according to the magnification of the attribute arrangement flat surface of change time.

[0089]The input of attribution information may be inputted, where it made it display from the sight line direction defined by each attribute arrangement flat surface and the 3D model 1 is displayed in two dimensions. This input can be realized without changing in any way with the process of creating a topographic contour plot side by what is called 2D-CAD. It may input if needed, making it display in three dimensions. Since it can input looking at the 3D model 1 in three dimensions, this input is [more efficiently and that there is no mistake] realizable.

[0090]Next, explanation in the case of seeing the attribution information of the 3D model 1 is given. By choosing a desired attribute arrangement flat surface in Step S141 of drawing 14. The view position of the attribute arrangement flat surface selected in Step S142, a sight line direction, and the attribution information given to the shape of the 3D model 1 and this attribute arrangement flat surface by relating based on magnification are right-opposite-displayed. For example, if the attribute arrangement flat surface 211, the attribute arrangement flat surface 212, or the attribute arrangement flat surface 213 is chosen, it will not be concerned with the last displaying condition, but (b) of drawing 9 or

drawing 10 or (b) of drawing 11 will be displayed, respectively so that an attribute arrangement flat surface may carry out a right opposite to a screen. At this time, attribution information is made into the sight line direction of each attribute arrangement flat surface, i.e., a screen, for right, and is arranged and displayed on it. On a display screen, it can see intelligibly two-dimensional very easily by this.

[0091]Next, the example for making an attribute arrangement flat surface selectable easily is introduced. First, the frame of the attribute arrangement flat surface of selectable 3D model is displayed, an operator uses input devices, such as pointing devices, such as a mouse, and how to choose an attribute arrangement flat surface can be considered. (Drawing 7)

Next, the name of a selectable attribute arrangement flat surface is displayed by list form, and how to choose from them is also considered. (Un-illustrating)

How to carry out an icon display by using as a thumbnail image the picture in the state ((a) of <u>drawing 9</u> or <u>drawing 10</u> or (b) of <u>drawing 11</u>) where it saw from the sight line direction of an attribute arrangement flat surface, and choose is also considered. (<u>Drawing 27</u>)

[0092](Other input methods of attribution information) In the input of the above-mentioned attribution information explained using <u>drawing 11</u> - <u>drawing 14</u>, although attribution information was related with each attribute arrangement flat surface, the means to associate is not limited above, may carry out grouping of the attribution information, for example, and may associate this group and an attribute arrangement flat surface.

[0093]It explains based on the flow chart shown in <u>drawing 15</u> and <u>drawing 16</u>. [0094]Based on search results, grouping of the attribution information inputted beforehand is carried out selectively, and the same result and effect as the above are acquired by this group and the arbitrary things to do for attribute arrangement flat-surface correlation. The attribution information related with an attribute arrangement flat surface can be operated by making correction of an addition in the group of attribution information, deletion, etc.

[0095]That is, 3D model is generated (Step S151), attribution information is inputted (Step S152), and the view position of an attribute arrangement flat surface, a sight line direction, and magnification are set up to 3D model (Step S153). And it is inputted at Step S152, and the attribution information which carried out grouping to the attribute arrangement flat surface which carried out grouping of the attribution information and set it up is associated and set up (Step S154).

[0096]When displaying, as shown in <u>drawing 16</u>, attribute arrangement flat-surface selection is made (Step S161), The attribution information related with the selected attribute arrangement flat surface is right-opposite-displayed with the display 204 according to the view position of an attribute arrangement flat surface, a sight line direction, and the information on magnification (Step S162).

[0097]The case where two or more attribute arrangement flat surfaces are set up is explained to (setting out of two or more attribute arrangement flat surfaces), next the same sight line direction. (Two or more attribute arrangement flat surfaces become parallel mutually)

<u>Drawing 17</u> is a flow chart which shows the processing operation in the case of setting up two or more attribute arrangement flat surfaces to the same sight line direction, and (a) of

<u>drawing 18</u> is a figure showing 3D model in the case of setting up two or more attribute arrangement flat surfaces to the same sight line direction.

[0098]In the 3D model 1 shown by <u>drawing 7</u>, the case where two or more attribute arrangement flat surfaces are set up so that the projection direction and sight line direction of a front view may be in agreement is explained.

[0099]The 3D model 1 is created as mentioned above (Step S171), and the attribute arrangement flat surface 212 (a view position, a sight line direction, magnification) which is the 1st attribute arrangement flat surface is set up in Step S172. The flat surface 201b of a front view and the sight line direction of this attribute arrangement flat surface 212 cross at right angles, and the magnification is one, a view position is a 30-mm position from the outside of a front view, and it is the center of the field 201b of a front view in general.

[0100]And in Step S173, if it relates with the above-mentioned attribute arrangement flat surface 212, attribution information as shown by (a) of <u>drawing 10</u> is inputted and it sees from the sight line direction of the attribute arrangement flat surface 212, as shown in (b) of <u>drawing 10</u>, it can see intelligibly two-dimensional very easily.

[0101]Next, in Step 174, the attribute arrangement flat surface 214 (a view position, a sight line direction, magnification) which is the 2nd attribute arrangement flat surface is set up. In the sight line direction of this attribute arrangement flat surface 214, the flat surface 201b of a front view, parallel, and magnification set up 1 time and a view position so that the medial axis of the hole of an attribute arrangement flat-surface 3D model may be included.

[0102]The attribute arrangement flat surface 214 was expressed in the continuous tone shape of the rectangular head.

[0103]At this time, the 3D model 1 seen from the attribute arrangement flat surface 214 serves as sectional shape of the 3D model 1 cut at the virtual flat surface 214, as shown in (b) of drawing 19.

[0104]It relates with this attribute arrangement flat surface 214, and attribution information (for example, size 12**0.1 of the hole of (b) of <u>drawing 19</u>) is inputted. The attribution information related with the sectional shape and this attribute arrangement flat surface of the 3D model 1 in this attribute arrangement flat surface 214 at the time of selection is right-opposite-displayed. <u>Drawing 19</u> (b)

If it moves and the 3D model 1 is rotated, it is constituted so that a three-dimensional display can be performed, as shown in (a) of <u>drawing 19</u>.

[0105]That is, if chosen attribute arrangement flat-surface 214, the attribution information related with the attribute arrangement flat surface which exists in 3D model which exists in the sight line direction of the attribute arrangement flat surface 214, and an isopia line direction field will be displayed, and 3D model geometry and attribution information of a reverse-sight line direction (refer to (b) of <u>drawing 18</u>) field will presuppose that it is non-display.

[0106]According to this embodiment, the attribution information concerning the sectional shape of the direction not only of the attribution information concerning contour shape but the same sight line direction can be dealt with. Since attribution information can be inputted and displayed, looking at sectional shape by it, the directions part of attribution information is known easily and immediately.

[0107]The shape of the 3D model 1 is good also as composition which carries out two or

more owners of the attribute arrangement flat surface which looks the same. It is indicated in drawing 20 as the attribute arrangement flat surface 215 which has the same sight line direction attribute arrangement flat-surface 216. In this example, it has turned [flat surface / 216 / the attribute arrangement flat surface 215 and / attribute arrangement] to the top view of the 3D model 1. By carrying out grouping of the attribution information to each attribute arrangement flat surface, for example, and relating it with it, more legible attribution information is realizable. For example, the thing to which drawing 21 carried out grouping of the attribution information in connection with an outside dimension in the top view of the 3D model 1. Drawing 22 carries out grouping of the attribution information in connection with a hole position and hole shape in the above. The attribution information by which grouping was carried out will be associated, respectively, without the attribute arrangement flat surface 215 and the attribute arrangement flat surface 216. By carrying out grouping of the attribution information which is related in this way, and assigning an attribute arrangement flat surface, related attribution information becomes more legible.

[0108]O two or more attribution information of the part of 3D model which wants to express an operator in order to express very intelligibly as a two dimensions drawing the attribution information added to the position 3D model and this 3D model of attribution information on a display screen -- suitably -- selection -- or carry out grouping and relate with an attribute arrangement flat surface. Although what is necessary is just to arrange the position of attribution information to the field of the sight line direction of a related attribute arrangement flat surface if it is a mode of expression of a two-dimensional drawing, attribution information is added to 3D model, and in order to employ the merit of 3D model efficiently enough, in what is called a drawing and a "3D drawing" to carry out, a device is needed.

[0109]Since one of the merits of 3D model can be expressed in three dimensions in the form near thing on a display screen, For the operator which creates a model, or the operators (a process-planning person, a metallic mold design and a maker, an operating personnel, etc.) of a next process using the model, it is the point that the converting operation (this was mainly performed in the head of an operator) to a three dimension [two dimensions / which are needed when treating a two-dimensional figure] can be excluded. This converting operation may have many places depended on the ability of an operator, and the loss of good incorrect ** according [in / take and / this converting operation] to wrong conversion or a conversion time may generate it.

[0110]In 3D drawing, in order not to spoil the point which is a merit of 3D model and which can be expressed in three dimensions, it is necessary to devise to presenting (position of attribution information) of the attribution information at the time of carrying out a three dimentional display.

[0111]The point to devise is explained using drawing 28.

[0112] They are a perspective view explaining the state where attribution information was added without (b) of the perspective view of the 3D model 2 which uses (a) of <u>drawing 28</u> for explanation, and <u>drawing 28</u> devising (c) of the top view of the 3D model 2, and <u>drawing 28</u> to the 3D model 2, and the perspective view performed by (d) of <u>drawing 28</u> devising arrangement of attribution information.

[0113] First, to the 3D model 2, in order to create a two-dimensional top view, creation of the attribute arrangement flat surface 218 and the input of attribution information are

performed. The state where it displayed from the viewpoint of this attribute arrangement flat surface 218 is (b) of <u>drawing 28</u>.

- [0114]If the arrangement surface of two or more attribution information is made alternate about the input of this attribution information as shown in (c) of <u>drawing 28</u>, attribution information will overlap and it will become difficult to distinguish the contents of attribution information. Since attribution information is hard to see at least as shown in (c) of <u>drawing 28</u>, if it is more complicated shape, attribution information is no longer useful information, and it can imagine easily stopping realizing as a drawing in the state of strabism.
- [0115]However, attribution information does not overlap by arranging attribution information in the same flat surface, as shown in (d) of <u>drawing 28</u>, and distinction of attribution information can be easily performed on a par with expression ((b) of <u>drawing 28</u>) of a two-dimensional drawing.
- [0116]in the drawing gestalt (three-dimensional drawing) which adds attribution information to 3D model by carrying out like this, it is a merit of not only expression of a two-dimensional drawing but 3D model, since distinction of attribution information can be performed easily, expressing 3D model in three dimensions, It becomes possible to use as a pictorial drawing side (3D drawing).
- [0117]As for the arrangement surface of attribution information, it is desirable to use the same field as an attribute arrangement flat surface.
- [0118]In this example, although it was simple-shaped 3D model, when treating 3D model which has actual more complicated shape, it is necessary to set two or more attribute arrangement flat surfaces as the same sight line direction.
- [0119]And after displaying simultaneously the attribution information related with two or more attribute arrangement flat surfaces and it, the case where selection of a desired attribute arrangement flat surface or selection of attribution information is performed can be considered.
- [0120]In this case, the case which is wrong and chooses since the relation of attribution information and an attribute arrangement flat surface will become unclear if the position of the arrangement surface of attribution information and an attribute arrangement flat surface is separated can be considered. In order to avoid it and to relate intelligibly visually, it is good for an attribute arrangement flat surface to arrange attribution information on the same side.
- [0121]When creating the attribute arrangement flat surface of the same sight line direction that explained using drawing 20, two or more attribute arrangement flat surfaces of the same sight line direction are good to detach and arrange. Since the arrangement surface of attribution information also turns into the same field when an attribute arrangement flat surface is created in the same field when displaying simultaneously the attribution information related with this two or more attribute arrangement flat surfaces and it, even if not only a sight line direction but also a sight line direction is shifted and it sees from across, attribution information laps and it becomes hard to see. First of all, since there is much attribution information seen from a uniform direction, when dividing into two or more attribute arrangement flat surfaces and displaying attribution information simultaneously, it is not avoided that attribution information laps.

 [0122]As for the attribute arrangement flat surface of the same sight line direction, though the thing hard to see from a sight line direction cannot be saved, in order to make

attribution information easy to distinguish in the state of strabism, detaching and arranging is effective as a means.

[0123](Magnification) Complicated shape or detailed shape can be made more legible again by considering it as the magnification of a request of the magnification of an attribute arrangement flat surface.

[0124] Drawing 23 is a figure showing the state where some 3D models 1 were expanded and displayed. For example, like drawing 23 (a), a sight line direction is turned to a top view, a view position is carried out near the corner to the 3D model 1, and stair-like shape and attribution information can display magnification very intelligibly by setting up the attribute arrangement flat surface 217 made into 5 times. Drawing 23 (b) [0125] In this embodiment, it is not based on the constitution method of the hardware which constitutes 3D-CAD device, or 3D geometric model, but is effective to 3D-CAD at large and also and 2D-CAD.

[0126]O The size (height of a character or a symbol) of the attribution information related with the size attribute arrangement flat surface of magnification and attribution information shall be changed according to the magnification of an attribute arrangement flat surface. <u>Drawing 23</u> (b)

With the size (mm) of attribution information, it is defined as the size in the virtual three-dimensional space where 3D model exists. (It is not a size at the time of being displayed in the display 204.)

[0127]For example, in the attribute arrangement flat surface 211 (magnification 1), the size of attribution information shall be 3 mm. <u>Drawing 23</u> (c) shows the example which displayed character height as 3 mm similarly at the attribute arrangement flat surface 217 (magnification 5).

[0128]Since the attribution information related with the attribute arrangement flat surface 217 is displayed by one 5 times the display magnification of this, the size is set to 15 mm. [0129]In (b) of <u>drawing 23</u>, and (c), a square line shows the range of the display 204 which can be displayed.

[0130]If it arranges so that attribution information may not lap, since the position of 3D model and attribution information will separate, shape and the relation of attribution information related to it are unclear, and a possibility of misreading is also generated. In order for it to become impossible to be unable to display no attribution information that there is much attribution information to display with the display 204 and to see the attribution information besides [which can be displayed] the range, it is accompanied by the troublesomeness which must change a display rectangle.

[0131]If the size of a character is not changed to reduce and display (magnification is less than one), the display size on the display 204 of attribution information becomes small by a reduction figure displaying condition, and it becomes impossible to distinguish the contents of attribution information.

[0132]Then, it is desirable to change with the size magnification of the information on attribution information in consideration of a thing in case attribution information is displayed.

[0133]Therefore, it is good to make magnification and the size of attribution information the relation of reverse proportion about. The size of the attribution information connected with this attribute arrangement flat surface 217 in the magnification of the abovementioned attribute arrangement flat surface 211 as an example when the size of 1 and

attribution information was set to 3 shall be 0.6 mm.

[0134]O In the multiple selection above-mentioned example of an attribute arrangement flat surface, when the attribution information related with the attribute arrangement flat surface was displayed, the number of the attribute arrangement flat surfaces of a selection object was set only to one, but if an example is taken in the purpose of this invention, the case where two or more attribute arrangement flat surfaces are chosen will be explained. [0135]When performing the single selection of an attribute arrangement flat surface, the position of a viewpoint and only a sight line direction are those of a rope, and the method of presentation on a display is set to one, but since the method of presentation becomes plurality when multiple selection is made, it must devise. For example, when multiple selection is performed, all the attribution information related with the selected attribute arrangement flat surface is displayed, and it is possible about the position of a viewpoint, and a sight line direction to enable it of which attribute arrangement flat surface to adopt setting out, and to choose.

[0136]Presenting of attribution information changes a color for every related attribute arrangement flat surface, and it devises so that a group can distinguish intelligibly. [0137]O The attribute arrangement flat surface was level, or in setting-out this invention of the perpendicular direction, it is only a position of a viewpoint, a sight line direction, and the magnification that are set as an attribute arrangement flat surface, and it did not touch on setting out of the horizontal direction of an attribute arrangement flat surface, or the perpendicular direction.

[0138]In the two-dimensional drawing, the rule is established about arrangement of the figure (a top view, a front view, a side view) which seems to be shown in <u>drawing 25</u> from each sight line direction. This is a device for being easy to understand the physical relationship from each sight line direction in order to express the cubic shape of thing at a two-dimensional flat surface.

[0139]In 3D drawing gestalt which gives attribution information to 3D model and is used as a drawing on the other hand, Not only a two-dimensional expression ((b) of <u>drawing 9</u> and <u>drawing 10</u>, (b) of <u>drawing 11</u>) seen from the direction which intersects perpendicularly with the external surface of 3D model but also 3D model is rotated from this state, and a three-dimensional expression ((a) of <u>drawing 10</u>, (a) of <u>drawing 11</u>) seen from the oblique direction is also attained.

[0140]Therefore, in the gestalt of 3D drawing, when displaying a top view, a front view, and a side view, it is not necessary to set specially about the horizontal direction of an attribute arrangement flat surface, or the perpendicular direction (noting that this horizontal direction or perpendicular direction is in agreement with those of a display screen for all directions). If 3D model and the attribution information given to it can be expressing correctly, it can be said that each is right expression among (a) shown in drawing 29, (b), (c), (d), and (e). Since he can also understand easily the place of the top view and side view which 3D model could express in three dimensions, and the part which was being seen now hit where of the whole 3D model, or were seen from other sight line directions if 3D model is rotated for a while, It is because it does not become a problem especially even if it displays without caring about the physical relationship of each sight line direction about the horizontal direction or the perpendicular direction of an attribute arrangement flat surface.

[0141]However, it is not necessarily in the environment where all the operators treating

- 3D drawing make it rotate freely, and can display 3D model, in 3D drawing gestalt which gave attribution information to 3D model. There are a place of work etc. which cannot respond without adding correction to 3D drawing unless it is the conventional paper drawing moreover it is because there are a place of work etc. where saving by the two-dimensional picture information electronic data format displayed by each attribute arrangement flat surface, and seeing it serves the purpose.
- [0142]If such a thing is assumed, the display seen from each sight line direction must apply a rule like a two-dimensional drawing.
- [0143]Then, when creating an attribute arrangement flat surface, it is necessary to set up the horizontal direction or the perpendicular direction of [at the time of being displayed with the display 204]. The flow chart of the processing is shown in <u>drawing 30</u>. [0144]First, 3D model is created (Step S301).
- [0145]Next, the position of a viewpoint, a sight line direction, and magnification are set up to 3D model, and an attribute arrangement flat surface is created (Step S302).
- [0146]And the horizontal direction (or the perpendicular direction) of this attribute arrangement flat surface is specified. (Step S303) In order to specify horizontally (or the perpendicular direction), what may choose 3 shaft orientation (X, Y, Z) which exists on 3D (it is virtual) space, and chooses the direction of the ridgeline of 3D model and the perpendicular direction of a field may be sufficient.
- [0147]By specifying the horizontal direction (or the perpendicular direction) of an attribute arrangement flat surface, the display position of 3D model which chooses this attribute arrangement flat surface and is displayed, and attribution information is determined as a meaning.
- [0148]What is necessary is just to specify horizontally (or the perpendicular direction), protecting a relation with the sight line direction of the already created attribute arrangement flat surface, when creating other attribute arrangement flat surfaces. [0149]O Although this turn that chooses an attribute arrangement flat surface first and displays suitably the attribution information related with this attribute arrangement flat surface next as an order which displays selectively the attribution information inputted by carrying out 3D model pair explained in the method-of-presentation above-mentioned example of attribution information, It is a position of the viewpoint of an attribute arrangement flat surface that choose not the thing limited to this method but attribution information, and that attribution information is related with that next, a sight line direction, and magnification, and the technique of displaying 3D model and this attribution information is also effective.
- [0150]<u>Drawing 31</u> is a flow chart which shows this processing operation of a series of. [0151]Where 3D model and attribution information are displayed like <u>drawing 8</u>, bore-diameter phi12**0.2 is chosen (Step 311).
- [0152]This attribution information displays 3D and the attribution information related with the attribute arrangement flat surface 211 based on the position of the viewpoint set as the attribute arrangement flat surface 211 associated, a sight line direction, and magnification. Step 312. In this case, a front view is right-opposite-displayed as <u>drawing</u> 9 shows.
- [0153]Since the relation of the selected attribution information and 3D model is displayed in two dimensions by this, it becomes easier to recognize.
- [0154]- As an order which displays selectively the attribution information inputted by

carrying out 3D model pair in the field alternative form above-mentioned conventional example, Although selection of an attribute arrangement flat surface or selection of attribution information was performed first and the method of displaying suitably the attribution information related with these attribute arrangement flat surface was explained based on setting out of the attribute arrangement flat surface related with this attribute arrangement flat surface or attribution information next, The geometrical information (Geometory) of 3D model instead of what is limited to this method is chosen, It is presenting of the attribution information related with the geometrical information, a position of the viewpoint of an attribute arrangement flat surface that this attribution information is associated further, a sight line direction, and magnification, and the technique of displaying 3D model and this attribution information is also effective.

[0155]Drawing 32 (from attribution information selection to a display) is a flow chart which shows this processing operation of a series of.

[0156]The geometrical information (a ridgeline, a field, the peak) of 3D model is chosen (Step 321).

[0157]The attribution information related with the selected geometrical information is displayed (Step 322).

[0158]If two or more attribution information associated exists, they may all be displayed. All the attribution information belonging to the attribute arrangement flat surface at which attribution information is associated may be displayed.

[0159]Next, 3D model and attribution information are displayed based on the position of the viewpoint of the attribute arrangement flat surface relevant to the displayed attribution information, a sight line direction, and magnification (horizontal direction of an attribute arrangement flat surface). Under the present circumstances, when two or more attribute arrangement flat surfaces become a candidate, the object displayed on an operator is made to choose.

[0160] Thus, since search and a display of related attribution information can be performed from the geometrical form of 3D model, it is very easy to use. [0161](A display and use) Here, the case where 3D model in which the attribution information created as mentioned above was added is displayed and used is described. [0162]3D model in which the attribution information created with the information processor shown in drawing 2 was added can be displayed and used at each process shown in drawing 1 using other same information processors by transmitting the data of the created device itself or 3D model created via the external connection device. [0163]3D model which the operator itself which is the engineering person or design designer of a product/unit part who created 3D model created itself by first, the thing for which a right opposite display is performed as shown in (b) of drawing 9 and drawing 10, and (b) of drawing 11. New attribution information can be added to 3D model so that a two-dimensional drawing may be created, moreover -- accepting necessity for example, when shape is complicated -- 3D model -- a three-dimensional display and a twodimensional right opposite display -- alternation -- or desired attribution information can be inputted efficiently and correctly by displaying on the same screen. [0164] The operator in the position of checking / recognizing created 3D model the display which shows created 3D model to (b) of drawing 9 and drawing 10, and (b) of drawing 11 the same screen or by changing and displaying, It checks and attribution

information meaning ending with a check, O.K., NG, suspension, an examination

required, etc., such as a mark, a sign, or browning, is added. It cannot be overemphasized that a check is performed accepting necessity, and comparing and referring to two or more product / unit / parts.

[0165]It can use, when engineering persons or design designers other than the maker of created 3D model design other product / unit / parts with reference to created 3D model. By referring to this 3D model, he can understand a maker's intention or a designing method easily.

[0166] The operator which is in charge of manufacturing and manufacturing 3D model, therefore gives required information to 3D model or attribution information can be used. In this case, an operator is an engineer who sets up the manufacturing process of a product / unit / parts. An operator adds the corner R to a required ridgeline part, a corner, a corner, etc., and camfering, for example to directions of the kind of work process, the tool to be used, etc., or 3D model on processing. Or the information etc. which it should be careful of on directions of the measuring method for a size, a dimensional tolerance, etc., addition to 3D model of the point of measurement, and measurement are inputted. These are performed [while looking at the display by which arrangement creation was carried out legible as shown in (b) of drawing 9 and drawing 10, and (b) of drawing 11, and] certainly efficiently, checking shape in three dimensions if needed. [0167]In manufacturing and manufacturing 3D model, the operator which acquires information required in order to prepare a request from 3D model or attribution information can be used. In this case, an operator is an engineering person who designs a metallic mold required for manufacture and manufacture, a tool, a various device, etc. Understanding and grasping shape looking at 3D model in the state of three dimensions, by the display by which arrangement creation was carried out legible as shown in (b) of drawing 9 and drawing 10, and (b) of drawing 11, it is checked and the operator extracts required attribution information. Based on those attribution information, an operator designs a metallic mold, a tool, a various device, etc. For example, when an operator is an engineering person of a metallic mold, it is designed from 3D model and attribution information, an operator examining the composition of a metallic mold, structure, etc. The corner R to a required ridgeline part, a corner, a corner, etc. and camfering are added on metallic mold manufacture if needed. When a metallic mold is an injection die of resin, an operator adds the required draft etc., for example to 3D model on shaping. [0168] The operator which manufactures a product / unit / parts and is manufactured can be used. In this case, operators are a processing engineer of a product / unit / parts, and an assembly engineer. An operator assembles by seeing and processing the display by which arrangement creation was carried out legible as shown in (b) of drawing 9 and drawing 10, and (b) of drawing 11, understanding and grasping easily the shape which should be processed while looking at 3D model in the state of three dimensions, or the shape which should be assembled. And an operator checks the shape of a processing section and an assembly part, etc. if needed. Ending with processing and processing may add to 3D model or the already added attribution information by making difficulty or a working result into attribution information, and may feed back this information to an engineering person etc.

[0169] The operator which is measured [which measures and inspects the product / unit / parts which were manufactured and manufactured], and is evaluated can be used. In this case, operators are the inspection of a product / unit / parts, and an engineer who

measures and evaluates. An operator, looking at the display by which arrangement creation was carried out legible in the measuring method for the above-mentioned size, a dimensional tolerance, etc., the point of measurement, and the information which it should be careful of on measurement as shown in (b) of drawing 9 and drawing 10, and (b) of drawing 11. Checking shape in three dimensions if needed, it obtains certainly efficiently and inspection, measurement, and evaluation are performed. And an operator can be given to 3D model by making inspection, measurement, and evaluation into attribution information if needed. For example, the measurement result corresponding to a size is given. Dimensional tolerance outside gives a mark or a sign to the attribution information or 3D models of a fault part, such as a crack. An inspection, measurement, an evaluated mark, a sign, or staining may be made like the above-mentioned checked result. [0170] Various kinds of sections related to manufacture of a product / unit / parts and manufacture and the operator of a role can be used. In this case, an operator is a person in charge etc. who create a manual of a person in charge, and a product / unit / parts, a packing material, etc. which place an order for the person in charge who manufactures and analyzes a manufacturing cost or the product / unit / the parts itself, several kinds of related parts, etc. Understanding and grasping the shape of a product / unit / parts easily, while an operator looks at 3D model in the state of three dimensions also in this case, the display by which arrangement creation was carried out legible as shown in (b) of drawing 9 and drawing 10 and (b) of drawing 11 is seen, and various operation is carried out efficiently.

- [0171](The input of inspection instruction indication), next inspection instruction indication are described.
- [0172]In order to inspect the done metallic mold, parts, etc., it is as having mentioned above beforehand to assign and display a size etc. on 3D model.
- [0173]Here, attribution information is inputted so that the position to inspect may serve as a display which will be clear to the set-up attribute arrangement flat surface.
- [0174]That is, turn, an inspection position, an inspection item, etc. to inspect are inputted to a field, a line, a ridgeline, etc. which constitute 3D model. And the number of inspection men is reduced by inspecting in the turn.
- [0175]First, the whole is inputted by inputting the item and position to inspect. Next, by a predetermined method, the turn of an inspection is assigned and turn is assigned to each item. And when actually inspecting, by directing turn, an attribute arrangement flat surface is chosen, in the attribute arrangement flat surface currently displayed, the field etc. of the position which should be inspected are expressed as a different gestalt (colors etc. differ) from others, and an inspection position becomes clear.
- [0176]And the inspected result is inputted for every directed inspection item, and it is judged whether remolding is required.
- [0177]According to the embodiment of the invention, a legible screen can be obtained by easy operation like explanation above by the attribute arrangement flat surface and attribution information which were set up. It looks through and the relation between a sight line direction and attribution information is also known. Misreading by the failure by an operator is reduced by inputting the dimension value etc. beforehand.
- [0178]Only the information related with the sight line direction can be seen, and the information to need can be known easily.
- [0179]By assigning a lot of attribution information of the same sight line direction to two

or more attribute arrangement flat surfaces, a legible screen can be obtained and required information can be known easily.

[0180]Attribution information can be intelligibly displayed by setting an attribute arrangement flat surface to the inside of 3D model, i.e., sectional shape. Since the size of attribution information is changed according to the display magnification of an attribute arrangement flat surface, it can express intelligibly and appropriately. By arranging attribution information on an attribute arrangement flat surface, even if it performs three-dimensional expression which looked at 3D model from across, attribution information can be read.

[0181]From attribution information, only search of an attribute arrangement flat surface and the information related with this attribute arrangement flat surface can be seen, and the information to need can be known easily.

[0182]From geometrical information, only search of attribution information and an attribute arrangement flat surface and also the information related with this attribute arrangement flat surface can be seen, and the information to need can be known easily. [0183](Other correlation) <u>Drawing 33</u> is a figure when the size a which is attribution information is related with a view. As shown by a diagram, attribution information is right-opposite-displayed on the sight line direction (it is perpendicularly to space) of a view.

[0184] Drawing 34 is a figure when the size b which is attribution information is related with an attribute arrangement flat surface. The size b which is attribution information as shown by a diagram is right-opposite-arranged in the direction of the normal line direction arrow A of an attribute arrangement flat surface.

[0185]Drawing 35 is a figure showing signs that the attribution information related with the view is displayed. Selection of one view will display the table 501 in which the attribution information 502-505 related with the view appeared. The icon which shows each attribution information is displayed on the table 501. An icon may be graphic information (for example, figure with which it has waved to the round mark showing a size), and may be text (for example, 12**0.05 and phi2.4 grade), such as a size, here. When a view is chosen from a view select command, highlighting of the attribution information 502-505 related with the view is carried out altogether (Drawing A). If the pointer 506 is put on each attribution information of the table 501, highlighting only of the carried attribution information 503 will be carried out (Drawing B). Also where [of a view] the attribution information 502-505 is associated, in the state of other views may be sufficient as the state of the screen at this time.

[0186]Drawing 36 is a figure showing signs that the attribution information related with the attribute arrangement flat surface is displayed. When the one attribute arrangement flat surface displayed that Drawing A of drawing 36 chooses an attribute arrangement flat-surface select command, it is a situation when the table 512 of the attribution information currently attached to the attribute arrangement flat surface 511 is displayed, the attribution information 507-510 related with the attribute arrangement flat surface 511 at the same time the table 512 is displayed, when the attribute arrangement flat surface 511 is chosen -- highlighting of the frame of the selected attribute arrangement flat surface 511 is carried out to all. Next, B figure of drawing 36 is a figure which expressed on the screen signs that highlighting only of the attribution information 508 was carried out,

when the pointer 513 is brought on the name of one certain attribution information 508 in the table 512.

[0187] Drawing 37 is a flow chart showing a series of flows until it creates attribution information and relates with a view. A view is created first (Step 401). Next, direction of the view and a position are memorized by a memory measure (Step 402). Next, attribution information is created (Step 403). The attribution information is related with the above-mentioned view (Step 404). It comes to the right opposite position of the view with which direction of attribution information was associated (Step 405). The combination of a view and the direction of attribution information which were related with the attribution information are memorized and displayed by a memory measure (Step 406).

[0188]Here, if attribution information is created, all shall be related with the above-mentioned view until it will change setting out next, if the view associated once is set up. [0189]Limitation called only one view does not have the correlation with a view, and it can be associated and displayed on two or more views (drawing 44).

[0190]Now, the correlation with a view is not limited to the view currently displayed on the screen, but can be related with a favorite view. Now, when <u>drawing 45</u> is taken for an example, although the view 531 is displayed, by this display screen, I hear that attribution information can be related with the view 523, and it is.

[0191]Drawing 38 creates attribution information, changes it into the free state, without relating and making it a view immediately, and later, when you like always, it is a flow chart showing a series of flows of relating with one of views. First, attribution information is made (Step 411). A freelancer is chosen by selection of where to associate attribution information (Step 412). Since the attribution information which created the point is related with one of views after carrying out other operations and setting time, a view select command is chosen (Step 413). The view which wants to associate the abovementioned attribution information is chosen from the tables of a view displayed out of the view setting command within an attribution information command when the command of correlation of attribution information is chosen (Step 414). Correlation of the abovementioned view is memorized and displayed as attribution information by the memory measure (Step 415).

[0192]Here, attribution information changed into the free state is certainly related with the attribute arrangement flat surface only for free attribution information, and is saved temporarily. However, when free attribution information is related with the attribute arrangement flat surface only for free attribution information, warning is displayed if needed and it is a **** thing about correlation with a desired attribute arrangement flat surface.

[0193]When a warning implementation command is chosen and there is free attribution information, the function of this in which warning that attribution information free whenever it performs preservation exists is displayed works. If this command is not chosen, warning will become [that free attribution information is related with as by the attribute arrangement flat surface only for free attribution information, and], without being displayed. When attribution information is temporarily related with the attribute arrangement flat surface only for free attribution information, at the time of attribution information creation. Even if the attribute arrangement flat surface with sufficient No. 1 to associate is not known visually, after the whole composition (position of a model or an

attribute arrangement flat surface) is decided, there is a merit that it can relate with the visual best attribute arrangement flat surface.

[0194]Drawing 39 and drawing 41 illustrate the flow chart which showed a series of processings when changing into other views the view with which attribution information is associated, and its situation. First, the view setting command within an attribution information command is chosen (Step 421). The table 520 of a view and the sight line direction arrow b with a name of all the views are displayed on a screen (Drawing A). The icon which shows each view is displayed on the table 520. An icon (the following, "view name") may be graphic information, and may be text, such as a size, here, the look arrow direction b -- this time -- the pointer 522 -- the view name 523-532 top in the table 520 on a screen -- or, If it carries on 523 of the sight line direction arrow b with a name of a view, highlighting of the arrow of 523 of the sight line direction arrow b with a name of a view corresponding to the carried view 523 will be carried out to the attribution information 533-542 related with the carried view (Drawing B, Drawing C). (Step 422) Next, a view is chosen (Step 423). At this time, selection of a view is good even from the table 520, and may be chosen from the sight line direction arrow b with a name (Drawing B, Drawing C). The table 543 of the attribution information 533-542 related with the selected view 523 is displayed on a screen. If the pointer 522 is carried on the attribution information names 533-542 in Table 543 at this time, highlighting of the carried attribution information 534 will be carried out on a screen (Drawing D). (Step 424) This selection that chooses the attribution information 534 to change the view associated into may choose two or more attribution information (Step 425). The sight line direction arrow b with a name of the table 520 of a view and all the views is displayed on a screen (Step 426). If the pointer 522 is put on the arrow 527 on the name 523-532 of the view of the table 520, or the sight line direction arrow b of a view also at this time, highlighting of the attribution information 544-546 related with that view 527 will be carried out on a screen (Drawing E). If the pointer 522 is separated from a name top or an arrow, it will be in a non-display state. One selection (Step 427) of the view of a movement destination which wants to associate the attribution information 534 is made from the table 520 or the sight line direction arrow b with a name of a view. In this selection, two or more views can be chosen and attribution information can also be related with two or more views at once. Highlighting of the attribution information 534 which changed 527 and the view of the arrow b with a name of the view in which the sight line direction of the newly associated view is shown is carried out (Step 428). When more than one are associated, all the sight line direction arrows with a name of the associated view are displayed. Yes is chosen and determined by selection of Yes/No (Drawing G). (Step 429) [0195]What kind of methods -- are not limited to the arrow written to drawing 41 and drawing 42, and if the sight line direction of a view is displayed so that it may be easy to be understood, the sight line direction of a view will be pulled out from near the model -may be sufficient as the sight line direction arrow with a name which shows the sight line direction of a view.

[0196] <u>Drawing 40</u> and <u>drawing 42</u> illustrate other methods of changing the view associated, the flow chart which showed a series of processings which relate with one of views the attribution information which is free and exists, and its situation. The attribution information 547 to change the view on a screen associated into or the free attribution information 547 is chosen (Drawing A). (Step 431) Change of a view is

chosen from the menus 548 (Step 432). The sight line direction arrow c with a name of the table 549 of a view and all the views is displayed. If the pointer 566 is put on the name 558 of one view in the table 549, or the arrow of 558 of the sight line direction arrow c with a name at this time, highlighting of all the attribution information 561-565 related with that view 558 will be carried out (Drawing B, Drawing C). (Step 433) The one view 558 is chosen from either the table 549 or the sight line direction arrow c with a name (Drawing B, Drawing C). (Step 434) In this selection, two or more views 551-560 can be chosen, and attribution information 547 can also be related with two or more views at once. Next, highlighting of the attribution information 547 which changed the arrow and view of 558 of the arrow c with a name which shows the sight line direction of the newly associated view is carried out (Step 435). When correlation is made into plurality, highlighting of all the sight line direction arrows with a name of the associated view is carried out. Yes is chosen and determined by selection of Yes/No (Drawing D). (Step 436)

[0197]Here, attribution information changed into the free state is certainly related with the view only for free attribution information, and is saved temporarily. However, when free attribution information is related with the view only for free attribution information, warning is displayed if needed and it is a **** thing about correlation with a desired view.

[0198]When a warning implementation command is chosen and there is free attribution information, the function of this in which warning that attribution information free whenever it performs preservation exists is displayed works. If this command is not chosen, warning will become [that free attribution information is related with as by the view only for free attribution information, and], without being displayed. When attribution information is temporarily related with the view only for free attribution information, at the time of attribution information creation. Even if the view with sufficient No. 1 to associate is not known visually, after the whole composition (position of a model or a view) is decided, there is a merit that it can relate with the visual best view.

[0199]Drawing 43 is a flow chart showing a series of flows the time of relating with two or more of other attribute arrangement flat surfaces attribution information related with a certain attribute arrangement flat surface, and when attribution information which exists in the free state is related with one of attribute arrangement flat surfaces. First, attribution information is chosen (Step 441). An attribute arrangement flat-surface table is displayed on a screen (Step 442). Next, an attribute arrangement flat surface is chosen from the tables (Step 443). When a pointer is carried on the attribute arrangement flat-surface name of a table at this time and an attribute arrangement flat surface is a displaying condition, highlighting of all the attribution information related with the carried attribute arrangement flat surface and its attribute arrangement flat surface is carried out, and highlighting will be solved if a pointer is detached. Highlighting of the attribution information related with the carried attribute arrangement flat surface and its attribute arrangement flat surface if a pointer is carried on the attribute arrangement flat-surface name of a table when an attribute arrangement flat surface is in a non-display state is carried out, and if a pointer is detached, it will be in a non-display state. In this selection, two or more attribute arrangement flat surfaces can be chosen, and attribution information can also be related with two or more attribute arrangement flat surfaces at

once. In the state where highlighting of the attribution information related with all the selected attribute arrangement flat surfaces at the end is carried out, YES is chosen among YES/NO and correlation is completed (Step 444).

[0200]Drawing 46 is a flow chart showing a series of flows until it creates attribution information and relates with an attribute arrangement flat surface. An attribute arrangement flat surface is created first (Step 451). Next, direction of the normal line direction of the attribute arrangement flat surface and a position are memorized by a memory measure (Step 452). Next, attribution information is created (Step 453). The attribution information is related with the above-mentioned attribute arrangement flat surface (Step 454). Direction of attribution information comes to the right opposite position of the associated attribute arrangement flat surface (Step 455). The combination of an attribute arrangement flat surface and the direction of attribution information which were related with the attribution information are memorized and displayed by a memory measure (Step 456).

[0201]Here, if attribution information is created, all shall be related with the abovementioned attribute arrangement flat surface until it will change setting out next, if the attribute arrangement flat surface associated once is set up.

[0202]Limitation called only one attribute arrangement flat surface does not have the correlation with an attribute arrangement flat surface, and it can be related and displayed [memorize and] on two or more attribute arrangement flat surfaces (drawing 47). [0203]Now, the correlation with an attribute arrangement flat surface is not limited to the attribute arrangement flat surface currently displayed on the screen, but can be related with a favorite attribute arrangement flat surface. Now, when drawing 48 is taken for an example, although the attribute arrangement flat surface 550 is displayed, I hear that the attribution information 553 cannot be related with every attribute arrangement flat surface 550-552 regardless of the attribute arrangement flat surface of this display screen, and it is.

[0204] Drawing 49 creates attribution information, changes it into the free state, without relating with an attribute arrangement flat surface immediately, and carrying out, and later, when you like always, it is a flow chart showing a series of flows of relating with one of attribute arrangement flat surfaces. First, attribution information is made (Step 461). A freelancer is chosen by selection of where to associate attribution information (Step 462). Since the attribution information which created the point is related with one of attribute arrangement flat surfaces after carrying out other operations and setting time, an attribute arrangement flat-surface select command is chosen (Step 463). The attribute arrangement flat surface which wants to associate the above-mentioned attribution information is chosen from the tables of the attribute arrangement flat surface displayed when the command of correlation of attribution information is chosen (Step 464). Plurality may also be chosen at this time. Correlation of the above-mentioned attribute arrangement flat surface is memorized and displayed as attribution information by the memory measure (Step 465).

[0205] <u>Drawing 50</u> and <u>drawing 51</u> illustrate the flow chart which showed a series of processings when changing into other attribute arrangement flat surfaces the attribute arrangement flat surface where attribution information is associated, and its situation. First, the attribute arrangement flat-surface setting command within an attribution information command is chosen (Step 471). Highlighting of the table 558 of an attribute

arrangement flat surface and all the created attribute arrangement flat surfaces 554-556 is carried out on a screen (Drawing A). If the pointer 557 is carried on the name of the attribute arrangement flat surface 554 in Table 558 on a screen at this time, highlighting of the attribution information 559-562 related with the carried attribute arrangement flat surface 554 and the attribute arrangement flat surface 554 will be carried out (Drawing B). (Step 472) Next, an attribute arrangement flat surface is chosen (Step 473). The table 565 of the attribution information related with the selected attribute arrangement flat surface 554 is displayed on a screen. If the pointer 557 is carried on the attribution information name 559 in a table at this time, highlighting only of the carried attribution information 559 will be carried out on a screen (Drawing C). (Step 474) Highlighting of the selected attribute arrangement flat surface 554 is carried out. The attribution information 559 to change the attribute arrangement flat surface associated into is chosen (Step 475). The table 558 of an attribute arrangement flat surface is displayed on a screen (Step 476). If the pointer 557 is carried on the name of the attribute arrangement flat surface 555 of a table also at this time, highlighting of the attribution information 563-564 related with the attribute arrangement flat surface 555 and its attribute arrangement flat surface will be carried out on a screen. If the pointer 557 is detached, it will be in a non-display state (Drawing D). The attribute arrangement flat surface 555 of a movement destination which wants to associate the attribution information 559 is chosen from the table 558 (Step 477). At this time, two or more attribute arrangement flat surfaces 554-556 may be chosen. Highlighting of the attribution information 559 which changed the newly associated attribute arrangement flat surface is carried out (Step 478). Yes is chosen and determined by selection of Yes/No (Drawing E). (Step 479) [0206]Drawing 52 is a figure showing the menu at the time of choosing automation displayed. In automation of correlation of attribution information, the check section "the view displayed now" is one of the selection check sections of with which view to relate. After it, if this check section is checked, if the view of a screen display is changed, that view makes a new view to direction of the changed previous screen, and it is related with it by the attribution information created, or changed and added. The views which are check sections whenever a view is created, and can be chosen increase in number. [0207] Since operation of relating with a view whenever it creates attribution information because there is this function is lost, it leads to shortening of a drawing preparation

[0208]Drawing 53 is a figure showing the menu at the time of choosing automation displayed. In automation of correlation of attribution information, the check section "the attribute arrangement flat surface made active now" is one of the selection check sections of with which attribute arrangement flat surface to relate. If this check section is checked, after it, the attribution information created, or changed and added is the stage which created attribution information regardless of a screen display, and it is related with the attribute arrangement flat surface which is active. The attribute arrangement flat surfaces which are check sections whenever an attribute arrangement flat surface is created, and can be chosen increase in number.

[0209]Since operation of relating with an attribute arrangement flat surface whenever it creates attribution information because there is this function is lost, it leads to shortening of a drawing preparation period.

[0210](Other examples about correlation of free attribution information) If there is free

attribution information, when seeing attribution information, it will become insufficient [just seeing one by one], and all the attribute arrangement flat surfaces or views will be overlooked. Therefore, it will be necessary to search or discover free attribution information independently. This makes the efficiency of various operation fall remarkably. As for all the attribution information, for this reason, it is preferred like this invention to relate with one of attribute arrangement flat surfaces or views. The abovementioned correlation may not be limited to the above-mentioned example, and the following composition may be sufficient as it.

[0211]This prevents performing drawing preparation, with free attribution information left. As a flow, when attribution information is created, it is the spot, and it is chosen with which attribute arrangement flat surface it relates. If the attribute arrangement flat surface to associate is not decided, it is the composition that creation of attribution information cannot be continued.

[0212](Other examples which memorize free attribution information) This example is an example in case the attribute arrangement flat surface only for free attribution information does not exist.

[0213] That is, attribution information is an embodiment which allows existing temporarily as free attribution information.

[0214]If the attribute arrangement flat surface to associate is not chosen when creating attribution information, after warning comes out, it will memorize as free attribution information related with neither of the attribute arrangement flat surfaces. The treatment of free attribution information here is not referred to as unlike the previously quoted example, being related with the attribute arrangement flat surface only for free attribution information, and memorizing, but is memorized as individual attribution information. [0215]However, if there is free attribution information, in the middle of creation, preservation will be possible, but warning comes out at every time. And even if a user is going to save by judging that creation of the drawing was ended, a system squeezes out the free attribution information which is not related with the attribute arrangement flat surface, and preservation as drawing completion cannot be performed by having a means to recognize it as a drawing being incomplete. And it has a means to refuse to progress to the following processes (processing, recognition of a drawing, etc.). Therefore, in order to complete a drawing, all the attribution information made free is related with the attribute arrangement flat surface related with the model.

[0216]It cannot be overemphasized that the above can take the same composition also about a view.

[0217]

[Effect of the Invention] As explained above, according to this invention, creation of how to show more variegated attribution information for attribution information by relating with at least one or more virtual flat surfaces or 3D drawing is attained.

[0218]It becomes possible by relating attribution information with any one virtual flat surface not to leak and to arrange attribution information at a virtual flat surface.