Project Competition

Advisor: 葉廷仁 教授

TAs: 董祐華 林容緣 張弘豫 陳仕昕

Date: 2024/05/22

Outline

- 1. Schedule
- 2. Simulation Contest
- 3. Real Arm Contest
- 4. Appendix

1. Schedule

	民國113年 公曆2024年六月 農曆甲辰年 [龍年]						
	星期日	星期一	星期二	星期三	星期四	星期五	星期六
	^{+九} 26	=+ 27	^{#-} 28	== 29	#≅ 30	^{#m} 31	西 1
	[₩] 2	#t 3	[₩] / 4	世九 5	五月 6初一	^{初二} 7	初三 8
	初四 9	初五 10 □ 端午節	初六 11	Simulation Competition In R402	初八 13	^{初九} 14	[₹] 15
期末考週	+- 16	+= 17	+= 18	-Real Arm Competition In R402	^{+±} 20	至 21	+t 22
	^{+/} 23	^{+九} 24	⁼⁺ 25	26	== 27	^{#Ξ} 28	^{+□} 29
	[#] 30	#六 1	#t 2	±/\ 3	^{₩ħ} 4	≡+ 5	小暑 6

• 競賽內容:

6/12(三)上課時間,會在R402進行模擬競賽,內容如下兩頁影片所示,先在Rviz中生成河內塔與障礙物,整合Lab4的IK程式讓手臂端末到達指定的位置與姿態,並抓起河內塔(變紫色)放到指定位置,重複直到堆疊完成。

•影片1---無障礙物

https://www.youtube.com/watch?v=jG8LxCkJqKE

•影片2---有障礙物

https://www.youtube.com/watch?v=x0SRCvkXIbY

• 競賽規則:

規則1:(起始,最終)河內塔的位置,在各組出場前由助教隨機決定

規則2: 怕萬一實體競賽沒分數,有個備案,才舉行模擬競賽,不 計分。必須加入障礙物,形狀可自由發揮。

- Setup
 - 1. Download the *mesh* folder (from elearn) into /catkin_ws/src/myplan
 - 2. Download the *0_hanoi_planner.py* and *0_hanoi_spawn_objects.py* files into /myplan/src
- Tutorial of how to spawn Hanoi towers in Rviz
 - 1. >>roslaunch myplan 0_demo.launch
 - 2. >>rosrun myplan 0_hanoi_spawn_objects.py

Flow Chart

- Modify the sample code(/myplan/src/0_hanoi_planner.py)
- You should add some parts of $0_hanoi_spawn_objects.py$ into $0_hanoi_planner.py$.

• Implementation:

- (1) >>roslaunch myplan 0_demo.launch
- (2) >>rosrun myplan 0_hanoi_planner.py

• 競賽內容:

6/19(三)上課時間,會在R402舉行實體競賽,內容如下頁影片 所示,並加上障礙物。各組手臂<u>鎖在自己的木板上</u>比賽,出場順 序當場抽籤。

• Demo

https://youtu.be/qwChLCVZasA?si=9at6OJDTt-mp8WjW&t=5191

Hardware Setup

- 1. Connect electromagnet to driver board (ElecMag + -).
- 2. Stick two sheets of graph paper onto the wooden board.
- 3. Secure the robot arm to the board.
- 4. Secure the hanoi-base to the board.
- 5. Manage the wires to ensure stability.

- Firmware Setup
 - 6. Download new "Robotics_ST" from elearn and paste into main.cpp
 - 7. Modify the parameters.

```
main.cpp × Release Notes
z_lab_calibrate > @ main.cpp > ...
      #include "mbed.h"
      #include <math.h>
      #define MODE 1
      *0: without end-effector
      *1: with end-effector
      //Your PID controller
      #define KP 0.0f
     #define KI 0.0f
      #define KD 0.0f
    // How many radian does Joint
     #define J1_CALI 0.89f
 15 #define J2_CALI 0.0f
 #define J3_CALI 2.2f
 1/ // You can tune the min_voit if the robot got stuck
     #define max_volt1 12.0f
     #define min_volt1 4.0f
 20 #define max_volt2 12.0f
 21 #define min_volt2 4.0f
      #define max_volt3 12.0f
      #define min_volt3 4.0f
```


- Firmware Setup
 - 8. Download 0_magnet_moveit_real_arm_interface.py into /myrobot_control/src
 - 9. Download 0_magnet _serial_with_ST.py into /myrobot_control/src
 - 10. Modify your_keyboard_control in Lab3 to confirm every part works well.

```
Original (Lab3):

Joint_angle.data = [pi/2, 0, -pi/2, 0]

New (Lab5):

Joint_angle.data = [pi/2, 0, -pi/2, 0, eef_state]

yourKeyboardControl.py
yourKeyboardControl.cpp

/real_robot_arm_joint
(Float64MultiArray)
```

Flow Chart

- Implementation:
 - (1) Make sure the real robot in Home Position(as graph).
 - Calibrate first (hold blue and click black)
 - (2) >>roslaunch myplan 0_demo.launch
 - (3) >> rosrun myrobot_control 0_magnet_moveit_real_arm_interface.py
 - (4) >> rosrun myrobot_control 0_magnet_serial_with_ST.py
 - (5) Set up power supply, 12V parallel 3A 3A

(Keep a finger on the power button)

(6) >>rosrun myplan 0_hanoi_planner.py

Home Position

To be released...

- •模擬競賽詳細規則與細節(如:時間表)
- •實體競賽詳細規則與細節(如: 晉級規定、障礙物形狀等)

• 競賽規則:

規則1:(起始,最終)河內塔的位置,會在各組出場前由助教抽籤決定

這個範例中,起始河內塔在A位置,最終要搬到B位置,縮寫成(A,B)

• 競賽規則:

規則2:計分方式

Mission Completed: +70 —10 for each "successful stacking" \times 7 steps

(You can rescue the tower from falling down instantly,

but the 10 points will be taken off.)

 \leq 65 sec + 5

 $\leq 60 \ sec + 5$

 \leq 55 sec + 5

 $\leq 50 sec + 5$

 \leq 45 sec + 5

 $\leq 40 \ sec + 5$

To goal within 45 secs, some extra works should be done.

• 競賽規則:

規則3:計時方式

Leave the home position (Time start)

Stack the towers (Time runs)

Mission complete and go back to home position (Time stop)

• 競賽規則:

規則4: 若兩組分數相同, 耗時較少者勝出。

舊賽程表參考

- 賽程表如下頁,以下為文字說明:
- 1. 各組會被分到A(4組), B(3組), C(3組)進行第一輪競賽
- 2. ABC組內,積分最高者,直接晉級最後一輪
- 3. A組(第二三名)、BC組(第二名)進行四搶一復賽
- 4. ABC組內,積分最後者.....淘汰QQ
- 5. 最後一輪,從4組中取冠軍、亞軍、季軍

舊賽程表參考

	First Round		Second Round	Final Round		
A	第_組 第_組 第_組 第_組	(A組第一) (A組第二) (A組第三) (A組第四)	第_組	(A組第一) 第 <u></u> 組		
В	第_組 第_組 第_組	(B組第一) (B組第二) (B組第三)	(A組第二) (A組第三) (B組第二) (C組第二) (C組第二) 第一組 第一組 第一組 第一組	(B組第一) (C組第一) (復一) 第一組 第一組 第一組 第一組		
С	第_組 第_組 第_組	(C組第一) (C組第二) (C組第三)				

4. Appendix

• Some issues:

- 由於TX2(CPU)算力較不足,且實驗河內塔的形狀不規則,在模 擬環境做碰撞偵測、閉障、路徑規劃要算很久。若無法升級硬體, 實體手臂競賽時,可以考慮把規畫好的路徑存取出來。
- Sample code內有河內塔幾何參數,若不清楚可直接到R402量測