SAMB for "BCT"

Generated on 2023-05-24 23:10 by MultiPie 1.1.1

- Generation condition
 - model type: tight_binding
 - time-reversal type: electric
 - irrep: [A1g]
 - spinful
- Unit cell:

$$a = 1.0, b = 1.0, c = 2.32, \alpha = 90.0, \beta = 90.0, \gamma = 90.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{a}_2 = \begin{pmatrix} 0 & 1.0 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 2.32 \end{pmatrix}$$

• Plus sets:

$$+\begin{pmatrix}0&0&0\end{pmatrix}$$

$$+\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position		
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$		

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
1	(s,\uparrow) @A ₁	2	(s,\downarrow) @A ₁	3	(p_x,\uparrow) @A ₁	4	(p_x,\downarrow) @A ₁	5	(p_y,\uparrow) @A ₁
6	(p_y,\downarrow) @A ₁								

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1	A_1	$ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} $	[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

	bond	tail	head	n	#	b@c	mapping
B_1	b_1	A_1	A_1	1	1	$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	[1,-2,3,-4,-9,10,-11,12]
	b_2	A_1	A_1	1	1	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{2} & 0 \end{pmatrix}$	[5,-6,7,-8,-13,14,-15,16]
$_{ m B_2}$	b_3	A_1	A_1	2	1	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} @ \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$	[1,-6,-9,14]
	b_4	A_1	A_1	2	1	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} @ \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{3}{4} \end{pmatrix}$	[-2,5,10,-13]
	b_5	A_1	A_1	2	1	$\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} @ \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$	[-3,7,11,-15]
	b_6	A_1	A_1	2	1	$\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} @ \begin{pmatrix} \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \end{pmatrix}$	[-4,8,12,-16]
B_3	b ₇	A_1	A_1	7	1		[1,2,-3,-4,-5,-6,7,8,-9,-10,11,12,13,14,-15,-16]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

$$\hat{\mathbb{Z}}_2(\boldsymbol{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_4[\mathbb{Q}_0^{(a, A_{1g})}(1, 1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s, A_{1g})}]$$

$$\hat{\mathbb{Z}}_{3}(\boldsymbol{k}) = \mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}]$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_4(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 5
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{5} = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{0}^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_5(\boldsymbol{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{6}(\textbf{\textit{k}}) = \mathbb{X}_{4}[\mathbb{Q}_{0}^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_5[\mathbb{Q}_2^{(a,B_{1g})}] \otimes \mathbb{Y}_3[\mathbb{Q}_2^{(b,B_{1g})}]$$

$$\hat{\mathbb{Z}}_7(\boldsymbol{k}) = \mathbb{X}_5[\mathbb{Q}_2^{(a,B_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_2[\mathbb{Q}_2^{(k,B_{1g})}]$$

No. 8
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_8(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_3[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 9
$$\hat{\mathbb{Q}}_2^{(A_{1g})}(1,-1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_9 = \mathbb{X}_2[\mathbb{M}_2^{(a,B_{1u})}(1,-1)] \otimes \mathbb{Y}_8[\mathbb{T}_3^{(b,B_{1u})}]$$

$$\hat{\mathbb{Z}}_{9}(\mathbf{k}) = \mathbb{X}_{2}[\mathbb{M}_{2}^{(a,B_{1u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{3}^{(k,B_{1u})}]$$

No. 10
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{10} = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{10}(\boldsymbol{k}) = \mathbb{X}_{3}[\mathbb{Q}_{0}^{(a,A_{1g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{0}^{(k,A_{1g})}]$$

No. 11
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{11} = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{11}(\pmb{k}) = \mathbb{X}_4[\mathbb{Q}_0^{(a,A_{1g})}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_3[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 12
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{12} = \mathbb{X}_{6}[\mathbb{Q}_{2}^{(a,B_{2g})}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{2}^{(b,B_{2g})}]$$

$$\hat{\mathbb{Z}}_{12}(\mathbf{k}) = \mathbb{X}_6[\mathbb{Q}_2^{(a,B_{2g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_4[\mathbb{Q}_2^{(k,B_{2g})}]$$

No. 13
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{13} = \frac{\sqrt{2}\mathbb{X}_7[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_6[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_8[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_7[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{13}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1g})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(k,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(k,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{2,1}^{(k,E_g)}$$

No. 14
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{14} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{14}(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_8[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 15
$$\hat{\mathbb{Q}}_0^{(A_{1g})}$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{15} = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b,A_{1g})}]$$

$$\hat{\mathbb{Z}}_{15}(\mathbf{k}) = \mathbb{X}_3[\mathbb{Q}_0^{(a,A_{1g})}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_{1g})}] \otimes \mathbb{F}_8[\mathbb{Q}_0^{(k,A_{1g})}]$$

No. 16
$$\hat{\mathbb{Q}}_0^{(A_{1g})}(1,1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{16} = \mathbb{X}_4[\mathbb{Q}_0^{(a, A_{1g})}(1, 1)] \otimes \mathbb{Y}_9[\mathbb{Q}_0^{(b, A_{1g})}]$$

$$\hat{\mathbb{Z}}_{16}(\mathbf{k}) = \mathbb{X}_4[\mathbb{Q}_0^{(a, A_{1g})}(1, 1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s, A_{1g})}] \otimes \mathbb{F}_8[\mathbb{Q}_0^{(k, A_{1g})}]$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$
M_2	$(s,\uparrow),(s,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow)$

 $continued\ \dots$

Table 5

group	bra	ket
M_3	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_{1g})}$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_{2}^{(a,B_{1u})}(1,-1)$	M_2	$ \begin{pmatrix} 0 & \frac{1}{2} & 0 & \frac{i}{2} \\ \frac{1}{2} & 0 & -\frac{i}{2} & 0 \end{pmatrix} $
\mathbb{X}_3	$\mathbb{Q}_0^{(a,A_{1g})}$	M_3	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix} $
\mathbb{X}_4	$\mathbb{Q}_0^{(a,A_{1g})}(1,1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & \frac{i}{2} \\ \frac{i}{2} & 0 & 0 & 0 \\ 0 & -\frac{i}{2} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{5}	$\mathbb{Q}_2^{(a,B_{1g})}$	$ m M_3$	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} \end{pmatrix} $
\mathbb{X}_6	$\mathbb{Q}_2^{(a,B_{2g})}$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \end{pmatrix} $
\mathbb{X}_7	$\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & 0 \end{pmatrix} $

 $continued\ \dots$

Table 6

symbol	type	group	form
₩8	$\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)$	M_3	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{i}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 \end{pmatrix} $

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	(1)
\mathbb{Y}_2	$\mathbb{Q}_0^{(b,A_{1g})}$	B_1	$\left(\begin{array}{cc} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{array}\right)$
\mathbb{Y}_3	$\mathbb{Q}_2^{(b,B_{1g})}$	B_1	$\left(\begin{array}{cc} \sqrt{2} & -\sqrt{2} \\ 2 & \end{array}\right)$
\mathbb{Y}_4	$\mathbb{Q}_0^{(b,A_{1g})}$	B_2	$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$
\mathbb{Y}_5	$\mathbb{Q}_2^{(b,B_{2g})}$	B_2	$ \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{array} \right) $
\mathbb{Y}_6	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_2	
\mathbb{Y}_7	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_2	$\left(\begin{array}{cccc} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{array}\right)$
\mathbb{Y}_8	$\mathbb{T}_3^{(b,B_{1u})}$	B_2	$\left(\begin{array}{cccc} \dot{\underline{i}} & -\underline{i} & -\underline{i} & -\dot{\underline{i}} & -\dot{\underline{i}} \end{array}\right)$
\mathbb{Y}_9	$\mathbb{Q}_0^{(b,A_{1g})}$	В3	(1)
	<u> </u>		<u> </u>

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_{1g})}$	S_1	(1)

Table 9: Structure SAMB.

symbol	type	cluster	form
\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_{1g})}$	B_1	$c_{001} + c_{002}$
\mathbb{F}_2	$\mathbb{Q}_2^{(k,B_{1g})}$	B_1	$c_{001} - c_{002}$
\mathbb{F}_3	$\mathbb{Q}_0^{(k,A_{1g})}$	B_2	$\frac{\sqrt{2}c_{003}}{2} + \frac{\sqrt{2}c_{004}}{2} + \frac{\sqrt{2}c_{005}}{2} + \frac{\sqrt{2}c_{006}}{2}$
\mathbb{F}_4	$\mathbb{Q}_2^{(k,B_{2g})}$	B_2	$\frac{\sqrt{2}c_{003}}{2} + \frac{\sqrt{2}c_{004}}{2} - \frac{\sqrt{2}c_{005}}{2} - \frac{\sqrt{2}c_{006}}{2}$
\mathbb{F}_5	$\mathbb{Q}_{2,0}^{(k,E_g)}$	B_2	$\frac{\sqrt{2}c_{003}}{2} - \frac{\sqrt{2}c_{004}}{2} + \frac{\sqrt{2}c_{005}}{2} - \frac{\sqrt{2}c_{006}}{2}$
\mathbb{F}_6	$\mathbb{Q}_{2,1}^{(k,E_g)}$	B_2	$\frac{\sqrt{2}c_{003}}{2} - \frac{\sqrt{2}c_{004}}{2} - \frac{\sqrt{2}c_{005}}{2} + \frac{\sqrt{2}c_{006}}{2}$
\mathbb{F}_7	$\mathbb{T}_3^{(k,B_{1u})}$	B_2	$\frac{\sqrt{2}s_{003}}{2} - \frac{\sqrt{2}s_{004}}{2} - \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{006}}{2}$
\mathbb{F}_8	$\mathbb{Q}_0^{(k,A_{1g})}$	B_3	$\sqrt{2}c_{007}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_{1g})}$	0	A_{1g}	_	_	1
2	$\mathbb{Q}_2^{(B_{1g})}$	2	B_{1g}	_	_	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
3	$\mathbb{Q}_2^{(B_{2g})}$	2	B_{2g}	_	_	$\sqrt{3}xy$
4	$\mathbb{Q}_{2,0}^{(E_g)}$	2	E_g	_	0	$\sqrt{3}yz$
5	$\mathbb{Q}_{2,1}^{(E_g)}$	2	E_g	_	1	$\sqrt{3}xz$
6	$\mathbb{Q}_3^{(B_{1u})}$	3	B_{1u}	_	_	$\sqrt{15}xyz$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_2^{(B_{1u})}$	2	B_{1u}	_	_	$\frac{\sqrt{3}(X-Y)(X+Y)}{2}$

 \bullet Group info.: Generator = {2001|0}, {4 $^{+}_{001}|0},$ {2010|0}, {-1|0}

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
$\{1 0\}$	{1 0}
$\{2_{001} 0\}$	$\{2_{001} 0\}$
$\{2_{100} 0\}$	$\{2_{100} 0\},\ \{2_{010} 0\}$
$\{2_{110} 0\}$	$\{2_{110} 0\}, \{2_{1-10} 0\}$
$\{4^{+}_{001} 0\}$	$\{4^{+}_{001} 0\}, \ \{4^{-}_{001} 0\}$
$\{-1 0\}$	$\{-1 0\}$
$\{m_{001} 0\}$	$\{m_{001} 0\}$
$\{m_{100} 0\}$	$\{m_{100} 0\}, \{m_{010} 0\}$
$\{m_{110} 0\}$	$\{m_{110} 0\}, \{m_{1-10} 0\}$
$\{-4^{+}_{001} 0\}$	$\{-4^{+}_{001} 0\}, \{-4^{-}_{001} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{001} 0\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{2_{110} 0\}$
6	$\{2_{1-10} 0\}$	7	$\{4^{+}_{001} 0\}$	8	$\{4^{-}_{001} 0\}$	9	$\{-1 0\}$	10	$\{m_{001} 0\}$
11	$\{m_{100} 0\}$	12	$\{m_{010} 0\}$	13	$\{m_{110} 0\}$	14	$\{m_{1-10} 0\}$	15	$\{-4^{+}_{001} 0\}$
16	$\{-4^{-}_{001} 0\}$								

Table 14: Character table (point-group part).

	1	2001	2_{100}	2_{110}	4^{+}_{001}	-1	m_{001}	m ₁₀₀	m ₁₁₀	-4^{+}_{001}
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	-1	1
B_{1g}	1	1	1	-1	-1	1	1	1	-1	-1
B_{2g}	1	1	-1	1	-1	1	1	-1	1	-1
E_g	2	-2	0	0	0	2	-2	0	0	0
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	-1	-1	1	1	-1
B_{1u}	1	1	1	-1	-1	-1	-1	-1	1	1
B_{2u}	1	1	-1	1	-1	-1	-1	1	-1	1
E_u	2	-2	0	0	0	-2	2	0	0	0

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_{1g} (A_{1u})$	B_{1g} (B_{1u})	$E_g (E_u)$	$A_{2g} (A_{2u})$	$B_{2g} (B_{2u})$
$A_{1u} (A_{1g})$	B_{1u} (B_{1g})	$E_u (E_g)$	$A_{2u} (A_{2g})$	B_{2u} (B_{2g})

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
A_{1g}	A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
A_{2g}		A_{1g}	B_{2g}	B_{1g}	E_{g}	A_{2u}	A_{1u}	B_{2u}	B_{1u}	E_u
B_{1g}			A_{1g}	A_{2g}	E_g	B_{1u}	B_{2u}	A_{1u}	A_{2u}	E_u
B_{2g}				A_{1g}	E_g	B_{2u}	B_{1u}	A_{2u}	A_{1u}	E_u
E_g					$A_{1g} + B_{1g} + B_{2g}$	E_u	E_u	E_u	E_u	$A_{1u} + A_{2u} + B_{1u} + B_{2u}$
A_{1u}						A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g
A_{2u}							A_{1g}	B_{2g}	B_{1g}	E_g
B_{1u}								A_{1g}	A_{2g}	E_g
B_{2u}									A_{1g}	E_g
E_u										$A_{1g} + B_{1g} + B_{2g}$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_{-}$.

A_{1g}	A_{2g}	B_{1g}	B_{2g}	E_g	A_{1u}	A_{2u}	B_{1u}	B_{2u}	E_u
_	_	_	_	A_{2g}	_	_	_	_	A_{2g}

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$	2	$\begin{pmatrix} -2 & -1 & 1 \end{pmatrix}$	3	$\begin{pmatrix} 2 & -1 & -1 \end{pmatrix}$	4	$\begin{pmatrix} -2 & 1 & -1 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 2 & -1 \end{pmatrix}$	6	$\begin{pmatrix} -1 & -2 & -1 \end{pmatrix}$	7	$\begin{pmatrix} -1 & 2 & 1 \end{pmatrix}$	8	$\begin{pmatrix} 1 & -2 & 1 \end{pmatrix}$
9	$\begin{pmatrix} -2 & -1 & -1 \end{pmatrix}$	10	$\begin{pmatrix} 2 & 1 & -1 \end{pmatrix}$	11	$\begin{pmatrix} -2 & 1 & 1 \end{pmatrix}$	12	$\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$
13	$\begin{pmatrix} -1 & -2 & 1 \end{pmatrix}$	14	$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$	15	$\begin{pmatrix} 1 & -2 & -1 \end{pmatrix}$	16	$\begin{pmatrix} -1 & 2 & -1 \end{pmatrix}$

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_{1g})}$	$\frac{1}{4}$	$\frac{1}{4}$								
	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_1^{(A_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				
$\mathbb{Q}_{1,0}^{(E_u)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_{1,1}^{(E_u)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_2^{(B_{1g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				

 $continued\ \dots$

Table 19

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_2^{(B_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				
$\mathbb{Q}_{2,0}^{(E_g)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{2,1}^{(E_g)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_3^{(B_{1u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_3^{(B_{2u})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$
	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_{3,0}^{(E_u,1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{3,1}^{(E_u,1)}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_4^{(A_{2g})}$	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$				
$\mathbb{Q}_{4,0}^{(E_g,1)}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$
	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$				
$\mathbb{Q}_{4,1}^{(E_g,1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$				
$\mathbb{Q}_{5}^{(A_{1u})}$	$\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$							
	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				