Haussmann GLM

Ken Field

Note that I loaded quite a few new packages. These packages, like performance and interactions are useful for advanced model selection and might be worth exploring on your own. The jtools package provides plot_summs(), a better way to vizulize the coefficients of a model. The skimr package is a great tool for peeking at your data during exploration. The package MASS is essential for glm.nb(). The package foreign is needed to read in the .dta file.

Background

TRF is dependent. All the rest are independent factors.

Data Loading and Wrangling

Load in the data and then convert the appropriate columns to factors.

Wing	Band	No.	Family	Pen	CC	IRT	TRF	age	TR	lΓ
50	:	4	A:24	1:24	Min.	:0.040	Min.	:1.00	Min.	:17.1
88	:	4	B:24	2:24	1st Qu.	:1.113	1st Qu.	:1.75	1st Qu.	:18.6
90	:	4	C:24	3:24	Median	:2.015	Median	:2.50	Median	:19.1
91	:	4	D:24	4:24	Mean	:2.502	Mean	:2.50	Mean	:19.1
92	:	4	E:24	5:24	3rd Qu.	:3.183	3rd Qu.	:3.25	3rd Qu.	:19.7
94	:	4	F:24	6:24	Max.	:7.700	Max.	:4.00	Max.	:20.9

(Other):120 NA's :78 NA's :42

glimpse(dat)

skim(dat)

Table 1: Data summary

Name	dat
Number of rows	144
Number of columns	6
Column type frequency:	
factor	3
numeric	3
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
Wing Band	0	1	FALSE	36	50: 4, 88: 4, 90: 4, 91: 4
No.	0	-	DALCE	0	A 04 D 04 C 04 D 04
Family	0	1	FALSE	6	A: 24, B: 24, C: 24, D: 24
Pen	0	1	FALSE	6	1: 24, 2: 24, 3: 24, 4: 24

Variable type: numeric

skim_variablen_missing complete_ratemean sd p0 p25 p50 p75 p100 h									hist	
CORT	78	0.46	2.5	1.94	0.04	1.11	2.02	3.18	7.7	
TRF age	0	1.00	2.5	1.12	1.00	1.75	2.50	3.25	4.0	
TRF	42	0.71	19.1	0.85	17.10	18.60	19.10	19.70	20.9	

Data Exploration

Generate histograms.

```
ggplot(dat, aes(TRF, fill = Family)) +
  geom_histogram(binwidth = 1) +
  facet_grid(Family ~ ., margins = TRUE, scales = "free") +
  theme_minimal_grid()
```

Warning: Removed 84 rows containing non-finite values (`stat_bin()`).


```
ggplot(dat, aes(TRF, fill = Pen)) +
  geom_histogram(binwidth = 1) +
  facet_grid(Pen ~ ., margins = TRUE, scales = "free") +
```

```
theme_minimal_grid()
```

Warning: Removed 84 rows containing non-finite values (`stat_bin()`).


```
ggplot(dat, aes(TRF, fill = `TRF age`)) +
  geom_histogram(binwidth = 1) +
  facet_grid(`TRF age` ~ ., margins = TRUE, scales = "free") +
  theme_minimal_grid()
```

Warning: Removed 84 rows containing non-finite values (`stat_bin()`).

Possible statistical models

Below is a list of some analysis methods you may have encountered. Some of the methods listed are quite reasonable, while others have either fallen out of favor or have limitations.

- Negative binomial regression -Negative binomial regression can be used for over-dispersed
 count data, that is when the conditional variance exceeds the conditional mean. It can be
 considered as a generalization of Poisson regression since it has the same mean structure
 as Poisson regression and it has an extra parameter to model the over-dispersion. If
 the conditional distribution of the outcome variable is over-dispersed, the confidence
 intervals for the Negative binomial regression are likely to be wider as compared to those
 from a Poisson regression model.
- Poisson regression Poisson regression is often used for modeling count data. Poisson regression has a number of extensions useful for count models.
- Zero-inflated regression model Zero-inflated models attempt to account for excess zeros. In other words, two kinds of zeros are thought to exist in the data, "true zeros" and "excess zeros". Zero-inflated models estimate two equations simultaneously, one for the count model and one for the excess zeros.
- OLS regression Count outcome variables are sometimes log-transformed and analyzed using OLS regression. Many issues arise with this approach, including loss of data due to undefined values generated by taking the log of zero (which is undefined), as well as the lack of capacity to model the dispersion.

GLM

```
Make a glm and check its summary() and performance()
```

```
m1 <- glm(TRF ~ ., data = dat)</pre>
  summary(m1)
Call:
glm(formula = TRF ~ ., data = dat)
Deviance Residuals:
     Min
                1Q
                      Median
                                     3Q
                                              Max
                     0.00000
                                0.09014
-0.47000 -0.11177
                                          0.47000
Coefficients: (10 not defined because of singularities)
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   20.42042
                                0.32280 63.260 < 2e-16 ***
`Wing Band No.`88
                    1.03986
                                0.26801
                                          3.880 0.000758 ***
`Wing Band No.`92 -0.33889
                                0.36085
                                         -0.939 0.357415
`Wing Band No.`95
                   -1.23136
                                0.27716
                                        -4.443 0.000187 ***
`Wing Band No.`99
                    0.22466
                                0.28828
                                          0.779 0.443749
`Wing Band No.`276 -0.81391
                                0.28509
                                         -2.855 0.008961 **
`Wing Band No.`277 -0.26178
                                0.26655
                                         -0.982 0.336281
`Wing Band No.`281 0.70120
                                0.27108
                                          2.587 0.016493 *
`Wing Band No.`290 -1.30201
                                0.37897
                                         -3.436 0.002255 **
`Wing Band No.`327 -0.17365
                                0.27555
                                         -0.630 0.534773
`Wing Band No.`354 -1.26126
                                         -3.439 0.002235 **
                                0.36671
`Wing Band No.`395 -0.25553
                                0.27184
                                         -0.940 0.356989
`Wing Band No.`412 -0.26416
                                0.28516
                                         -0.926 0.363875
`Wing Band No.`413 -0.91088
                                0.26792
                                         -3.400 0.002460 **
`Wing Band No.`418 -0.09774
                                0.33984
                                         -0.288 0.776223
`Wing Band No.`420 -1.59647
                                0.26975
                                         -5.918 4.94e-06 ***
`Wing Band No.`422 -0.24607
                                0.27065
                                         -0.909 0.372693
`Wing Band No.`424 -1.20541
                                0.29763
                                         -4.050 0.000497 ***
`Wing Band No.`429 -1.85709
                                0.34897
                                         -5.322 2.11e-05 ***
`Wing Band No.`431 0.75020
                                0.24942
                                          3.008 0.006274 **
`Wing Band No.`433 -0.83740
                                0.36048
                                        -2.323 0.029379 *
`Wing Band No.`438 -2.28213
                                0.37275
                                         -6.122 3.03e-06 ***
`Wing Band No.`439 -0.44248
                                0.25646
                                         -1.725 0.097880 .
`Wing Band No.`440 -1.63144
                                         -4.544 0.000145 ***
                                0.35904
`Wing Band No.`441 -0.01148
                                0.27322
                                        -0.042 0.966858
```

```
`Wing Band No.`445 0.17997
                                0.26466
                                          0.680 0.503289
`Wing Band No.`492 0.51049
                                0.29252
                                           1.745 0.094305 .
`Wing Band No.`494 -0.40944
                                0.28390
                                         -1.442 0.162724
`Wing Band No.`499 0.43808
                                0.28455
                                           1.540 0.137324
FamilyB
                          NA
                                     NA
                                              NA
                                                       NA
FamilyC
                          NA
                                     NA
                                              NA
                                                       NA
FamilyD
                          NA
                                     NA
                                              NA
                                                       NA
FamilyE
                          NA
                                     NA
                                              NA
                                                       NA
FamilyF
                          NA
                                     NA
                                              NA
                                                       NA
Pen2
                          NA
                                     NA
                                              NA
                                                       NA
Pen3
                          NA
                                     NA
                                              NA
                                                       NA
Pen4
                          NA
                                     NA
                                              NA
                                                       NA
Pen5
                          NA
                                     NA
                                              NA
                                                       NA
Pen6
                          NA
                                     NA
                                              NA
                                                       NΑ
                                         -1.375 0.182333
CORT
                    -0.04970
                                0.03614
`TRF age`
                   -0.50821
                                0.07083 -7.175 2.63e-07 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.08255374)

Null deviance: 33.1683 on 53 degrees of freedom Residual deviance: 1.8987 on 23 degrees of freedom

(90 observations deleted due to missingness)

AIC: 36.464

Number of Fisher Scoring iterations: 2

```
performance(m1)
```

Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : prediction from a rank-deficient fit may be misleading

Indices of model performance

Another approach would be to use model selection to confirm the minimal model. The stepAIC() function will take a model and iteratively perform model selection in either the backward or forward direction.

stepAIC(m1, direction = "backward") Start: AIC=36.46 TRF ~ `Wing Band No.` + Family + Pen + CORT + `TRF age` Step: AIC=36.46 TRF ~ `Wing Band No.` + Family + CORT + `TRF age` Step: AIC=36.46 TRF ~ `Wing Band No.` + CORT + `TRF age` Df Deviance AIC <none> 1.899 36.464 - CORT 1 2.055 38.731 - `TRF age` 6.148 97.914 - `Wing Band No.` 28 31.646 132.389 Call: glm(formula = TRF ~ `Wing Band No.` + CORT + `TRF age`, data = dat) Coefficients: (Intercept) `Wing Band No.`88 `Wing Band No.`92 `Wing Band No.`95 20.42042 1.03986 -0.33889 -1.23136`Wing Band No.`99 `Wing Band No.`276 `Wing Band No.`277 `Wing Band No.`281 0.22466 -0.81391 -0.261780.70120 `Wing Band No.`290 `Wing Band No.`327 `Wing Band No.`354 `Wing Band No.`395 -1.30201 -0.17365-1.26126-0.25553`Wing Band No.`412 `Wing Band No.`413 `Wing Band No.`418 `Wing Band No.`420 -0.26416-0.91088-0.09774-1.59647`Wing Band No.`422 `Wing Band No.`424 `Wing Band No.`429 `Wing Band No.`431 -0.24607-1.20541-1.857090.75020 `Wing Band No.`433 `Wing Band No.`438 `Wing Band No.`439 `Wing Band No.`440 -0.83740 -2.28213 -0.44248-1.63144`Wing Band No.`441 `Wing Band No.`445 `Wing Band No.`492 `Wing Band No.`494 -0.40944 -0.01148 0.17997 0.51049 `Wing Band No.`499 CORT `TRF age` 0.43808 -0.04970-0.50821

Degrees of Freedom: 53 Total (i.e. Null); 23 Residual

```
(90 observations deleted due to missingness)
Null Deviance:
                    33.17
Residual Deviance: 1.899
                            AIC: 36.46
Selected model: TRF \sim Wing Band No. + CORT + TRF age
  m2 <- glm(TRF ~ `Wing Band No.` + CORT + `TRF age`, data = dat)</pre>
  summary(m2)
Call:
glm(formula = TRF ~ `Wing Band No.` + CORT + `TRF age`, data = dat)
Deviance Residuals:
     Min
                1Q
                      Median
                                    3Q
                                             Max
-0.47000 -0.11177
                     0.00000
                               0.09014
                                         0.47000
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   20.42042
                               0.32280 63.260 < 2e-16 ***
`Wing Band No.`88
                    1.03986
                               0.26801
                                         3.880 0.000758 ***
`Wing Band No.`92 -0.33889
                               0.36085
                                       -0.939 0.357415
`Wing Band No.`95
                  -1.23136
                               0.27716
                                       -4.443 0.000187 ***
`Wing Band No.`99
                               0.28828
                                        0.779 0.443749
                    0.22466
`Wing Band No.`276 -0.81391
                               0.28509
                                       -2.855 0.008961 **
`Wing Band No.`277 -0.26178
                               0.26655
                                       -0.982 0.336281
`Wing Band No.`281 0.70120
                               0.27108
                                        2.587 0.016493 *
`Wing Band No.`290 -1.30201
                               0.37897
                                        -3.436 0.002255 **
`Wing Band No.`327 -0.17365
                               0.27555
                                       -0.630 0.534773
`Wing Band No.`354 -1.26126
                               0.36671
                                        -3.439 0.002235 **
`Wing Band No.`395 -0.25553
                               0.27184
                                       -0.940 0.356989
`Wing Band No.`412 -0.26416
                               0.28516
                                        -0.926 0.363875
`Wing Band No.`413 -0.91088
                               0.26792
                                       -3.400 0.002460 **
`Wing Band No.`418 -0.09774
                               0.33984
                                       -0.288 0.776223
`Wing Band No.`420 -1.59647
                               0.26975 -5.918 4.94e-06 ***
`Wing Band No.`422 -0.24607
                               0.27065 -0.909 0.372693
`Wing Band No.`424 -1.20541
                               0.29763
                                       -4.050 0.000497 ***
`Wing Band No.`429 -1.85709
                               0.34897 -5.322 2.11e-05 ***
`Wing Band No.`431 0.75020
                               0.24942
                                        3.008 0.006274 **
`Wing Band No.`433 -0.83740
                               0.36048 -2.323 0.029379 *
`Wing Band No.`438 -2.28213
                               0.37275 -6.122 3.03e-06 ***
```

0.25646 -1.725 0.097880 .

`Wing Band No.`439 -0.44248

```
`Wing Band No.`440 -1.63144
                              0.35904 -4.544 0.000145 ***
`Wing Band No.`441 -0.01148
                              0.27322 -0.042 0.966858
`Wing Band No.`445 0.17997
                              0.26466
                                      0.680 0.503289
`Wing Band No.`492 0.51049
                              0.29252
                                      1.745 0.094305 .
`Wing Band No.`494 -0.40944
                              0.28390 -1.442 0.162724
`Wing Band No.`499 0.43808
                              0.28455
                                       1.540 0.137324
CORT
                  -0.04970
                              0.03614 -1.375 0.182333
`TRF age`
                  -0.50821
                              0.07083 -7.175 2.63e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 0.08255374)
    Null deviance: 33.1683 on 53 degrees of freedom
Residual deviance: 1.8987
                           on 23 degrees of freedom
  (90 observations deleted due to missingness)
AIC: 36.464
Number of Fisher Scoring iterations: 2
  performance(m2)
# Indices of model performance
AIC
           AICc |
                      BIC |
                               R2 | RMSE | Sigma
36.464 | 137.036 | 100.112 | 0.943 | 0.188 | 0.287
  plot_summs(m2)
```


anova(m1, m2)

Analysis of Deviance Table

```
Model 1: TRF ~ `Wing Band No.` + Family + Pen + CORT + `TRF age`
Model 2: TRF ~ `Wing Band No.` + CORT + `TRF age`
Resid. Df Resid. Dev Df Deviance

1 23 1.8987
2 23 1.8987 0 0
```

anova(m2, m1)

Analysis of Deviance Table

```
Model 1: TRF ~ `Wing Band No.` + CORT + `TRF age`
Model 2: TRF ~ `Wing Band No.` + Family + Pen + CORT + `TRF age`
Resid. Df Resid. Dev Df Deviance

1 23 1.8987
2 23 1.8987 0 0
```

Those results indicate that there is essentially no difference in the models (presumably because Family and Pen are fully nested with Wing Band.

We can visualize the effect sizes and confidence intervals using the plot_summs() function from jtools.

```
plot_summs(m1, m2)
```

Warning in base\$statistic[!is.na(base\$statistic)] <- x\$coeftable[, stat_col]: number of items to replace is not a multiple of replacement length

Warning in base[["p.value"]][!is.na(base\$statistic)] <- x\$coeftable[, "p"]: number of items to replace is not a multiple of replacement length

Check for interactions

```
m4 <- glm(TRF ~ `Wing Band No.` * CORT * `TRF age`, data = dat)
compare_performance(m1, m4)</pre>
```

```
Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
prediction from a rank-deficient fit may be misleading
Warning: Model has zero degrees of freedom!
Warning in logLik.glm(x, ...): extra arguments discarded
Warning: Model has zero degrees of freedom!
Warning in logLik.glm(x, ...): extra arguments discarded
Warning: Model has zero degrees of freedom!
Warning in logLik.glm(x, ...): extra arguments discarded
Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
prediction from a rank-deficient fit may be misleading
# Comparison of Model Performance Indices
Name | Model | AIC (weights) | AICc (weights) | BIC (weights) | R2 |
                                                                                RMSE | Sign
                 36.5 (<.001) | 137.0 (<.001) | 100.1 (<.001) | 0.943 |
     | glm |
                                                                               0.188 | 0.28
     | glm | -3164.4 (>.999) | -6244.4 (>.999) | -3055.0 (>.999) | 1.000 | 1.647e-14 |
  stepAIC(m4, direction = "backward")
Start: AIC=-3164.35
TRF ~ `Wing Band No.` * CORT * `TRF age`
Step: AIC=-3164.35
TRF ~ `Wing Band No.` + CORT + `TRF age` + `Wing Band No.`:CORT +
    `Wing Band No.`:`TRF age` + CORT:`TRF age`
Step: AIC=-3164.35
TRF ~ `Wing Band No.` + CORT + `TRF age` + `Wing Band No.`:CORT +
    `Wing Band No.`:`TRF age`
```

I:

Call: glm(formula = TRF ~ `Wing Band No.` + CORT + `TRF age` + `Wing Band No.`:CORT +
 `Wing Band No.`:`TRF age`, data = dat)

Coefficients:

(Intercept)	`Wing Band No.`88
19.24901	1.73987
`Wing Band No.`92	`Wing Band No.`95
0.16245	-3.82831
`Wing Band No.`99	`Wing Band No.`276
0.84060	-0.58069
`Wing Band No.`277	`Wing Band No.`281
-1.12734	-0.77668
`Wing Band No.`290	`Wing Band No.`327
-0.72082	0.29126
`Wing Band No.`354	`Wing Band No.`395
-0.73162	0.80099
`Wing Band No.`412	`Wing Band No.`413
3.09851	0.50482
`Wing Band No.`418	`Wing Band No.`420
0.22503	-1.62700
`Wing Band No.`422	`Wing Band No.`424
0.92478	0.22471
`Wing Band No.`429	`Wing Band No.`431
-1.71225	0.65391
`Wing Band No.`433	`Wing Band No.`438
-0.33794	-1.72609
`Wing Band No.`439	`Wing Band No.`440
-0.08357	-1.13953
`Wing Band No.`441	`Wing Band No.`445
-0.93943	1.27495
`Wing Band No.`492	`Wing Band No.`494
2.48363	-0.20968
`Wing Band No.`499	CORT
-0.88501	0.01318
`TRF age`	`Wing Band No.`88:CORT

-0.21436 `Wing Band No.`92:CORT	-0.10803 `Wing Band No.`95:CORT
NA	1.20913
`Wing Band No.`99:CORT	`Wing Band No.`276:CORT
-0.18232	0.05479
`Wing Band No.`277:CORT	`Wing Band No.`281:CORT
0.28121	0.56695
`Wing Band No.`290:CORT	`Wing Band No.`327:CORT
NA `Wing Band No.`354:CORT	-0.07395 Wing Band No. `395:CORT
Wing Band No. 334.Com	-0.84651
`Wing Band No.`412:CORT	`Wing Band No.`413:CORT
-1.75904	-0.23122
`Wing Band No.`418:CORT	`Wing Band No.`420:CORT
NA	0.01367
`Wing Band No.`422:CORT	`Wing Band No.`424:CORT
-0.30005	-1.17275
`Wing Band No.`429:CORT	`Wing Band No.`431:CORT
NA	0.01929
`Wing Band No.`433:CORT	`Wing Band No.`438:CORT
NA	NA
`Wing Band No.`439:CORT -0.03935	`Wing Band No.`440:CORT NA
`Wing Band No.`441:CORT	`Wing Band No.`445:CORT
0.42715	-0.20519
`Wing Band No.`492:CORT	`Wing Band No.`494:CORT
-1.32736	0.06736
`Wing Band No.`499:CORT	`Wing Band No.`88:`TRF age`
0.93140	NA
`Wing Band No.`92:`TRF age`	`Wing Band No.`95:`TRF age`
NA	NA
`Wing Band No.`99:`TRF age`	`Wing Band No.`276:`TRF age`
NA	NA
`Wing Band No.`277:`TRF age`	· · · · · · · · · · · · · · · · · · ·
NA `Wing Band No.`290:`TRF age`	NA `Wing Band No.`327:`TRF age`
Wing Bana No. 250. Ita age	NA
`Wing Band No.`354:`TRF age`	`Wing Band No.`395:`TRF age`
NA	-0.04397
`Wing Band No.`412:`TRF age`	`Wing Band No.`413:`TRF age`
NA `Wing Band No.`418:`TRF age`	NA
wing band No. 410: itr age	`Wing Band No.`420:`TRF age` NA
IVA	IVA

```
`Wing Band No.`422:`TRF age`
                               `Wing Band No.`424:`TRF age`
'Wing Band No. '429: TRF age'
                                `Wing Band No.`431:`TRF age`
                                                     0.06663
`Wing Band No.`433:`TRF age`
                                `Wing Band No.`438:`TRF age`
'Wing Band No. '439: TRF age'
                                `Wing Band No.`440:`TRF age`
                     -0.03669
`Wing Band No. `441: `TRF age`
                                `Wing Band No.`445:`TRF age`
'Wing Band No. '492: TRF age'
                                `Wing Band No.`494:`TRF age`
                                                           NA
`Wing Band No.`499:`TRF age`
```

Degrees of Freedom: 53 Total (i.e. Null); O Residual

(90 observations deleted due to missingness)

Null Deviance: 33.17

Residual Deviance: 1.465e-26 AIC: -3164

Some of the interactions are kept, although many of the individual factors don't seem to have any statistical power (NA in the coefficient table)

 $TRF \sim Wing Band No. + CORT + TRF age + Wing Band No.:CORT + Wing Band No.:TRF age$

```
m5 <- lm(TRF ~ `Wing Band No.` + CORT + `TRF age` + `Wing Band No.`:CORT + `Wing Band No.` summary(m5)
```

Call:

```
lm(formula = TRF ~ `Wing Band No.` + CORT + `TRF age` + `Wing Band No.`:CORT +
    `Wing Band No.`:`TRF age`, data = dat)
```

Residuals:

ALL 54 residuals are 0: no residual degrees of freedom!

Coefficients: (33 not defined because of singularities)

	Estimate Std.	Error t	value	Pr(> t)
(Intercept)	19.24901	NaN	NaN	NaN
`Wing Band No.`88	1.73987	NaN	NaN	NaN
`Wing Band No.`92	0.16245	NaN	NaN	NaN

`Wing Band	No.`95	-3.82831	NaN	NaN	NaN
`Wing Band	No.`99	0.84060	NaN	NaN	NaN
`Wing Band	No.`276	-0.58069	NaN	NaN	NaN
`Wing Band	No.`277	-1.12734	NaN	NaN	NaN
`Wing Band	No.`281	-0.77668	NaN	NaN	NaN
`Wing Band	No.`290	-0.72082	NaN	NaN	NaN
`Wing Band	No.`327	0.29126	NaN	NaN	NaN
`Wing Band	No.`354	-0.73162	NaN	NaN	NaN
`Wing Band	No.`395	0.80099	NaN	NaN	NaN
`Wing Band	No.`412	3.09851	NaN	NaN	NaN
`Wing Band	No.`413	0.50482	NaN	NaN	NaN
`Wing Band	No.`418	0.22503	NaN	NaN	NaN
`Wing Band	No.~420	-1.62700	NaN	NaN	NaN
`Wing Band	No.`422	0.92478	NaN	NaN	NaN
`Wing Band	No.`424	0.22471	NaN	NaN	NaN
`Wing Band		-1.71225	NaN	NaN	NaN
`Wing Band		0.65391	NaN	NaN	NaN
`Wing Band		-0.33794	NaN	NaN	NaN
`Wing Band		-1.72609	NaN	NaN	NaN
`Wing Band		-0.08357	NaN	NaN	NaN
`Wing Band		-1.13953	NaN	NaN	NaN
`Wing Band		-0.93943	NaN	NaN	NaN
`Wing Band		1.27495	NaN	NaN	NaN
`Wing Band		2.48363	NaN	NaN	NaN
`Wing Band		-0.20968	NaN	NaN	NaN
`Wing Band		-0.88501	NaN	NaN	NaN
CORT		0.01318	NaN	NaN	NaN
`TRF age`		-0.21436	NaN	NaN	NaN
_	No.`88:CORT	-0.10803	NaN	NaN	NaN
•	No.`92:CORT	NA	NA	NA	NA
_	No.`95:CORT	1.20913	NaN	NaN	NaN
_	No.`99:CORT	-0.18232	NaN	NaN	NaN
-	No.`276:CORT	0.05479	NaN	NaN	NaN
_	No.`277:CORT	0.28121	NaN	NaN	NaN
•	No. 281:CORT	0.56695	NaN	NaN	NaN
•	No. `290:CORT	NA	NA	NA	NA
•	No. `327:CORT	-0.07395	NaN	NaN	NaN
•	No. `354:CORT	NA	NA	NA	NA
•	No. `395:CORT	-0.84651	NaN	NaN	NaN
_	No. `412:CORT	-1.75904	NaN	NaN	NaN
_	No. `413:CORT	-0.23122	NaN	NaN	NaN
•	No.`418:CORT	NA	NA	NA	NA
0	No. `420:CORT	0.01367	NaN	NaN	NaN
"THE Dana	120.00101	3.01001	IVAIV	IVAIV	wan

`Wing Band	No. 422: CORT	-0.30005	NaN	NaN	NaN
_	No. 424:CORT	-1.17275	NaN	NaN	NaN
•	No.~429:CORT	NA	NA	NA	NA
_	No.`431:CORT	0.01929	NaN	NaN	NaN
•	No.`433:CORT	NA	NA	NA	NA
_	No.~438:CORT	NA	NA	NA	NA
•	No.`439:CORT	-0.03935	NaN	NaN	NaN
•	No. `440:CORT	NA	NA	NA	NA
•	No.`441:CORT	0.42715	NaN	NaN	NaN
`Wing Band	No.~445:CORT	-0.20519	NaN	NaN	NaN
`Wing Band	No.~492:CORT	-1.32736	NaN	NaN	NaN
`Wing Band	No.`494:CORT	0.06736	NaN	NaN	NaN
`Wing Band	No.`499:CORT	0.93140	NaN	NaN	NaN
`Wing Band	No.`88:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`92:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`95:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`99:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`276:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`277:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`281:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`290:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`327:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`354:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`395:`TRF age`	-0.04397	NaN	NaN	NaN
`Wing Band	No.`412:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`413:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`418:`TRF age`	NA	NA	NA	NA
`Wing Band	No.`420:`TRF age`	NA	NA	NA	NA
`Wing Band	No. `422: `TRF age`	NA	NA	NA	NA
`Wing Band	No. `424: `TRF age`	NA	NA	NA	NA
-	No. `429: `TRF age`	NA	NA	NA	NA
_	No.`431:`TRF age`	0.06663	NaN	NaN	NaN
`Wing Band	No.`433:`TRF age`	NA	NA	NA	NA
-	No. `438: `TRF age`	NA	NA	NA	NA
-	No. `439: `TRF age`	-0.03669	NaN	NaN	NaN
0	No.`440:`TRF age`	NA	NA	NA	NA
_	No.`441:`TRF age`	NA	NA	NA	NA
•	No.`445:`TRF age`	NA	NA	NA	NA
•	No.`492:`TRF age`	NA	NA	NA	NA
_	No. `494: `TRF age`	NA	NA	NA	NA
Wing Band	No.`499:`TRF age`	NA	NA	NA	NA

Residual standard error: NaN on O degrees of freedom

```
(90 observations deleted due to missingness)
Multiple R-squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 53 and 0 DF, p-value: NA
```

There is not enough data in the dataset to test all these interactions.

I am going to use m2 moving forward, but it might be worth looking at the interactions further.

Check model assumptions

First use the plot function to see if this model seems to be a reasonable fit to the data. Let's use a better function than just plot(), try out the check_model() function of performance

```
\# check_model(m2) Does not work: Error in data.frame(x = fitted_, y = res_) : arguments in check_autocorrelation(m2)
```

OK: Residuals appear to be independent and not autocorrelated (p = 0.560).

```
check_collinearity(m2)
```

Check for Multicollinearity

Low Correlation

```
Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI Wing Band No. 4.59 [3.82, 5.56] 2.14 0.22 [0.18, 0.26] CORT 3.53 [2.97, 4.26] 1.88 0.28 [0.23, 0.34] TRF age 1.30 [1.17, 1.53] 1.14 0.77 [0.65, 0.85]
```

```
check_outliers(m2)
```

OK: No outliers detected.

- Based on the following method and threshold: cook (1.01).
- For variable: (Whole model)

plot_summs(m2)

plot(m2)

Warning: not plotting observations with leverage one: 4, 6, 9, 11, 12, 16, 18, 21

I'm not sure why check_model() isn't working. But the data look pretty good with plot(m2). Although note that 8 observations are being identified as having excessive leverage (but they

are not identified as outliers using Cook's).

Interaction Plots

Warning: CORT and TRF age are not included in an interaction with one another in the model.

Warning: 1.90122043351102 is outside the observed range of TRF age

Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type = if (type == : prediction from a rank-deficient fit may be misleading

Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type = if (type == : prediction from a rank-deficient fit may be misleading

Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type = if (type == : prediction from a rank-deficient fit may be misleading

Warning: CORT and TRF age are not included in an interaction with one another in the model.

Warning: 1.90122043351102 is outside the observed range of TRF age

Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type = if (type == : prediction from a rank-deficient fit may be misleading

Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type = if (type == : prediction from a rank-deficient fit may be misleading

Warning in predict.lm(object, newdata, se.fit, scale = residual.scale, type = if (type == : prediction from a rank-deficient fit may be misleading

Just for fun, I decided to try taking out the ID and using family and pen instead:

```
m6 <- lm(TRF ~ Family + Pen + CORT + `TRF age`, data = dat)
  summary(m6)
Call:
lm(formula = TRF ~ Family + Pen + CORT + `TRF age`, data = dat)
Residuals:
     Min
              1Q
                   Median
                                3Q
                                        Max
-1.09973 -0.27708 0.05947 0.33680
                                   0.87430
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.26842
                       0.39508 48.771 < 2e-16 ***
FamilyB
            0.49712
                       0.26609
                                1.868 0.068892 .
FamilyC
            0.41414
                       0.26945
                                 1.537 0.131974
FamilyD
           -0.98278
                       0.25840 -3.803 0.000467 ***
FamilyE
            0.40386
                       0.23846
                                1.694 0.097924 .
FamilyF
            0.90513
                       0.27366 3.308 0.001965 **
Pen2
           -0.19425 0.33513 -0.580 0.565336
Pen3
           -0.13194
                      0.24668 -0.535 0.595632
Pen4
           -0.31270 0.26801 -1.167 0.250052
           -0.03397 0.23688 -0.143 0.886680
Pen5
Pen6
            0.11300
                       0.22273
                                 0.507 0.614644
CORT
            0.03542
                       0.04072
                                 0.870 0.389439
`TRF age`
           -0.31064
                       0.12069 -2.574 0.013770 *
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Residual standard error: 0.539 on 41 degrees of freedom

(90 observations deleted due to missingness)
Multiple R-squared: 0.6409, Adjusted R-squared: 0.5357
F-statistic: 6.097 on 12 and 41 DF, p-value: 5.593e-06

Interesting. The effect size is a little smaller and the p value is much higher. ID definitely looks like a more important confounder than pen and family together.