Implicit functions

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

January 21, 2021

Implicit functions

partial derivatives and total differentials

Taylor's theorem 1 Implicit functions

2 Higher order partial derivatives and total differentials

1 Implicit functions

2 Higher order partial derivatives and total differentials

Implicit function y = y(x) given by f(x, y) = 0

- Given $x^2 + y^2 1 = 0$, we solve for $y(x) = \pm \sqrt{1 x^2}$.
- Given the equation $x^3 + y^3 3xy = 0$.

For all $x \in [0, \sqrt[3]{2}]$, the equation determines three y such that f(x, y) = 0. Hence, the equation f(x, y) = 0 determines one or more implicit functions y = y(x).

Implicit functions

Higher order partial derivatives and total differentials

Derivative of the function y = y(x) given by f(x, y) = 0

Implicit functions

Higher order partial derivatives and total differentials

Taylor's theorem

Theorem (Existence)

Let f(x,y): $D \subset \mathbb{R}^2 \to \mathbb{R}$ have continuous partial derivatives in a neighborhood of $M_0(x_0,y_0)$, $f(M_0)=0$ and $f_y'(M_0)\neq 0$. Then, the equation f(x,y)=0 determines in a neighborhood of x_0 a continuously differentiable implicit function y=y(x) that $y(x_0)=y_0$. Moreover,

$$y'(x) = -\frac{f_x'(x,y)}{f_y'(x,y)}.$$

It holds $f(x, y) = 0 \Leftrightarrow y = y(x)$, or f(x, y(x)) = 0.

Implicit function z = z(x, y) determined by f(x, y, z) = 0

Implicit functions

Higher order partial derivatives and total differentials

Taylor's theorem

Theorem (Existence)

Let $f(x,y,z) \colon D \subset \mathbb{R}^3 \to \mathbb{R}$ have continuous partial derivatives in a neighborhood of $M_0(x_0,y_0,z_0)$, $f(M_0)=0$ and $f_z'(M_0) \neq 0$. Then, the equation f(x,y,z)=0 determines in a neighborhood of (x_0,y_0) an implicit function z=z(x,y) such that $z(x_0,y_0)=z_0$ and z has continuous partial derivatives. Moreover,

$$z'_x(x,y) = -\frac{f'_x(M)}{f'_z(M)}, \qquad z'_y(x,y) = -\frac{f'_y(M)}{f'_z(M)}.$$

Example

Implicit functions

Higher order partial derivatives and total differentials

differentials Taylor's

- Assume that the function y = y(x) is given by the equation $xe^y + x^3 + 2x^2y 2 = 0$. Compute y'(1).
- Let z = z(x, y) be determined by the equation $2x^3y x^2 + xe^z + 2xyz = 2$. Compute z(1; 1), $z'_v(1; 1)$, $z'_v(1; 1)$.
- Let y = y(x) be determined by the equation $xe^y + 2x^3 2x^2y + 3 = 0$. Approximate y(-1,01).
- 4 Let z = z(x, y) be determined by the equation $z^3 + x^2y + xy^2 = 3xyz$.
 - a) Compute z(1;-1), $z'_x(1;-1)$, $z'_y(1;-1)$.
 - b) Approximate z(0, 99; -1, 01).

Taylor's theorem

Theorem

Let $f(M_0) = g(M_0) = 0$, where f, g have continuous partial derivatives near $M_0(x_0, y_0, z_0, u_0, v_0)$ and

$$\frac{D(f,g)}{D(u,v)}(M_0) = \begin{vmatrix} f_u' & f_v' \\ g_u' & g_v' \end{vmatrix} (M_0) \neq 0.$$

Then, the system $\begin{cases} f(x,y,z,u,v) = 0 \\ g(x,y,z,u,v) = 0 \end{cases} \text{ determines two} \\ \text{implicit functions } u = u(x,y,z), \ v = v(x,y,z) \ \text{near} \ (x_0,y_0,z_0) \\ \text{such that} \ u(x_0,y_0,z_0) = u_0, \ v(x_0,y_0,z_0) = v_0. \ \text{The functions} \\ u,v \ \text{have continuous partial derivatives.} \end{cases}$

Implicit functions

partial derivatives and total differentials

Taylor's theorem Differentiating w.r.t. x both sides of the equations of the system

$$\begin{cases} f'_x + f'_u.u'_x + f'_v.v'_x = 0 \\ g'_x + g'_u.u'_x + g'_v.v'_x = 0 \end{cases}$$

We obtain

$$u_x' = -\frac{\frac{D(f,g)}{D(x,v)}}{\frac{D(f,g)}{D(u,v)}}, \qquad v_x' = -\frac{\frac{D(f,g)}{D(u,x)}}{\frac{D(f,g)}{D(u,v)}}.$$

Similarly, we can compute u_y', u_z', v_y', v_z' .

1 Implicit functions

2 Higher order partial derivatives and total differentials

Implicit function

Higher order partial derivatives and total differentials

Taylor's theorem

Definition

Second order partial derivatives of f(x, y) are:

$$f''_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \qquad f''_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$
$$f''_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \qquad f''_{yx} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

Taylor's

Example

- Compute all the second order partial derivatives of the function $z = \arctan(x^2y)$.
- 2 Compute the second order partial derivatives at (0,0) of $(x^2 y^2)$

the function
$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Schwarz theorem

Implicit functions

Higher order partial derivatives and total differentials

Taylor's theorem

Theorem

Assume that z(x,y) has partial derivatives f''_{xy} và f''_{yx} near $M_0(x_0,y_0)$ which are continuous at M_0 . Then,

$$f_{xy}''(M_0) = f_{yx}''(M_0).$$

Higher order total differentials

Implicit functions

Higher order partial derivatives and total differentials

Taylor's

Definition

Higher order total differential of z = f(x, y):

$$d^nz=d(d^{n-1}z), n\geq 2.$$

If x, y are independent variables, then $d^n z = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right)^n f$

Example

Second order total differential

$$d^2z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^2 f = \frac{\partial^2 f}{\partial x^2}(dx)^2 + 2\frac{\partial^2 f}{\partial x \partial y}dxdy + \frac{\partial^2 f}{\partial y^2}(dy)^2.$$

Note: Higher order total differentials do not fulfill the invariance property.

Implicit functions

Higher order partial derivatives and total differentials

Taylor's theorem

Example

- I Given $z = 2^x \sin y$. Compute the second order differential d^2z and $d^2z(0,\pi)$.
- 2 Given $z = \arctan(xy)$. Compute the second order differential d^2z and $d^2z(1,-1)$.

1 Implicit functions

2 Higher order partial derivatives and total differentials

Taylor theorem for multivariable functions

Theorem

Let f(x, y) have continuous partial derivatives up to order n+1in an open set $U \subset \mathbb{R}^2$, $M_0(x_0, y_0)$, $M(x_0 + \Delta x, y + \Delta y) \in U$. There exists $0 < \theta < 1$ such that

 $f(x_0+\Delta x,y+\Delta y)-f(x_0,y_0)=df(x_0,y_0)+\frac{1}{2!}d^2f(x_0,y_0)+\dots$

$$f(x_0 + \Delta x, y + \Delta y) - f(x_0, y_0) = df(x_0, y_0) + \frac{1}{2!} d^2 f(x_0, y_0) + \dots + \frac{1}{n!} d^n f(x_0, y_0) + \frac{1}{(n+1)!} d^{n+1} f(x_0 + \theta \Delta x, y + \theta \Delta y).$$

Example

Compute the second degree Taylor polynomial of the function $f(x,y) = e^{xy}$ at (0,1).