Embedding graphs in \mathbb{R}^3 without self-intersections

Chan Bae

Oxford University

February 9, 2016

Introduction

Figure: The Utility graph

• Can we move the vertices so that edges don't intersect?

Kuratowski's theorem

Theorem (Kuratowski)

A finite graph is planar if and only if it does not contain a Kuratowski subgraph.

• Having no four points on a single plane is sufficient.

- Having no four points on a single plane is sufficient.
- Consider the curve $C = \{(t, t^2, t^3) : t \in \mathbb{R}\}$

Lemma

No four points of C lie on a plane.

- Having no four points on a single plane is sufficient.
- Consider the curve $C = \{(t, t^2, t^3) : t \in \mathbb{R}\}$

• Lemma

No four points of C lie on a plane.

Proof.

Suppose for a contradiction that four distinct points of C lay on the plane ax + by + cz = d. Then the cubic equation $at + at^2 + at^3 = d$ would have four roots.

- Having no four points on a single plane is sufficient.
- Consider the curve $C = \{(t, t^2, t^3) : t \in \mathbb{R}\}$

Lemma

No four points of C lie on a plane.

Proof.

Suppose for a contradiction that four distinct points of C lay on the plane ax + by + cz = d. Then the cubic equation $at + at^2 + at^3 = d$ would have four roots.

• TOO EASY! Not very interesting.

Definitions

• We define a graph G = (V, E), where V is a set of points we call the **vertices** and E is a set of **edges** $(v_1, v_2) \equiv$ line segment between v_1 and v_2 .

Definitions

- We define a graph G = (V, E), where V is a set of points we call the vertices and E is a set of edges (v₁, v₂) ≡ line segment between v₁ and v₂.
- More restrictive than usual definition.

A constraint

- Let's consider graphs that are only slight distortions of the original graph.
- ullet We'll move each vertex by distance at most ϵ
- Can we eliminate all self-intersections?

Baire spaces

• A **Baire space** is a topological space in which any countable union of closed sets, each with empty interior, also has empty interior.

Theorem (Baire Category Theorem)

Every complete metric space is a Baire space. In particular, \mathbb{R}^3 is a Baire space.

Corollary

Any countable union of planes in \mathbb{R}^3 has empty interior.

Theorem

For any subset V of \mathbb{R}^3 , and for any $\epsilon > 0$, there exists a bijective map $f: V \to X \subset \mathbb{R}^3$ such that $|p - f(p)| < \epsilon$ for all $p \in V$ and no four points of X lie on the same plane. In particular, no distinct lines between points intersect.

Theorem

For any subset V of \mathbb{R}^3 , and for any $\epsilon > 0$, there exists a bijective map $f: V \to X \subset \mathbb{R}^3$ such that $|p - f(p)| < \epsilon$ for all $p \in V$ and no four points of X lie on the same plane. In particular, no distinct lines between points intersect.

Proof.

We will inductively build up X. Let $V = \{v_1, v_2, \cdots, v_n\}$. First, we place v_1, v_2, v_3 so that they are not collinear. For each $m \in \{1, \cdots, n\}$, suppose we have found for each k < m a set X_k such that:

- Every plane passing through three points of X_k intersects X_k at only those points.
- If I < k, then $X_I \subset X_k$

Proof (continued).

Let P_k be the set of planes passing through three points of X_k . Since each plane is closed with empty interior, $\bigcup_{k < m} P_k$ has empty interior for all m. We can therefore find a point p in a ϵ -neighbourhood of v_m that isn't on $\bigcup_{k < m} P_k$.

Define $f(v_m) = p$ and $X_m = \bigcup_{k < m} X_k \cup \{p\}$. By construction, X_m satisfies the inductive hypotheses. Letting $X = X_n$ completes the proof.

10 of 17

A detour: Transfinite induction

Transfinite induction is induction generalized from $\mathbb N$ to **Ordinal** numbers.

Ordinal numbers have the following properties.

- 0 is an ordinal and there is no smaller ordinal.
- Given any ordinal α , the set $\{\beta:\beta<\alpha\}$ is a well-ordered set.
- For every set there exists a well-ordering of the elements of X
- Given any well-ordered set X, there is exactly one ordinal such that X is order-isomorphic to $\{\beta:\beta<\alpha\}$

A detour: Transfinite induction

Given any set Y, there exists an ordinal α with the same cardinality as Y. And since $\{\beta:\beta<\alpha\}$ is well-ordered, there is a least such ordinal. Therefore, every set Y can be well-ordered in such a way that the set of predecessors of any element of Y has strictly smaller cardinality than the cardinality of Y itself.

Theorem (Transfinite Induction)

Suppose we have a set X in one-to-one correspondence with an ordinal θ . For each $\alpha < \theta$, write x_{α} for the element of X corresponding to α . Let P be a statement about elements of X. If $P(x_0)$ is true, and $P(x_{\alpha})$ is true whenever $P(x_{\beta})$ is true for every $\beta < \alpha$, then P(x) is true for every $x \in X$

The Continuum Hypothesis

Continuum Hypothesis.

There is no set with cardinality strictly between that of the natural numbers and the real numbers

Independent of ZFC!

Theorem

For any subset V of \mathbb{R}^3 , and for any $\epsilon > 0$, there exists a bijective map $f: V \to X \subset \mathbb{R}^3$ such that $|p - f(p)| < \epsilon$ for all $p \in V$ and no four points of X lie on the same plane. In particular, no distinct lines between points intersect.

Proof.

We start by well-ordering V. Let v_{α} be the point associated with the ordinal α . We may assume that each element has strictly less than c predecessors in the well ordering.

As last time, we place v_1, v_2, v_3 so that they are not collinear.

Proof (continued).

Suppose for each $\beta < \alpha$, we have found a set X_{β} such that:

- Every plane passing through three points of X_{β} intersects X_{β} at only those points.
- If $\gamma < \beta$, then $X_{\gamma} \subset X_{\beta}$

Let P_{β} be the set of planes passing through three points of X_{β} . By the continuum hypothesis, $\bigcup_{\beta<\alpha}P_{\beta}$ is a countable union of planes! Since each plane is closed with empty interior, $\bigcup_{\beta<\alpha}P_{\beta}$ has empty interior for all α . We can therefore find a point p in a ϵ -neighbourhood of v_{α} that isn't on $\bigcup_{\beta<\alpha}P_{\beta}$.

Proof (continued).

Define $f(v_{\alpha}) = p$ and $X_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta} \cup \{p\}$. By construction, X_{α} satisfies the inductive hypotheses. Letting $X = X_c$ completes the proof.

We have proved:

Theorem

For any subset V of \mathbb{R}^3 , and for any $\epsilon > 0$, there exists a bijective map $f: V \to X \subset \mathbb{R}^3$ such that $|p - f(p)| < \epsilon$ for all $p \in V$ and no four points of X lie on the same plane. In particular, no distinct lines between points intersect.

References

- The idea of using the curve (t, t^2, t^3) , and the proof of the finite case of the main theorem is from **Topology** by James Munkres.
- The treatment of transfinite induction follows the one at the Tricki (http://www.tricki.org/article/Transfinite_induction)