Identifying Fake News

Team Fake News

Research Question

By looking at the text of an article/tweet/blog post, can you determine a statistical method that will determine whether or not it is fake news?

Background

- Information age
- The internet is ever-growing
 - o 3.4 billion users
 - o 1.6 billion domains
- Everyone is a news source
 - o 6,000 tweets per second
- Everyone is looking for information
 - o 40,000 google queries per second

Dataset

- Fake News Corpus
 - o 29.3 GB
 - More than 9 million rows
 - Key variables: content, type
 - Content: text content of the article
 - Type: rumor, hate, unreliable, conspiracy, clickbait, satire, fake, reliable, bias, political, junksci, unknown, blank
 - Categorized pre-existing types into "real" and "fake"

Methodology

- Group different types of news into fake and real news
- Use classification model to predict
- Represent results as confusion matrix
- Evaluation statistic: accuracy %

Methodology

- Naive Bayes Model
 - Probabilistic classifier
 - Assigns every word a probability (real or fake)
 - Looks at combinations of words
- SVM
 - Non-probabilistic
 - o Envisions articles as points in n-dimensional space
 - Splits points between real and fake

Methodology

- Technical Limitations
 - Space
 - o 29.3 GB dataset
 - SVM is computationally expensive
 - Solution:
 - Load first n lines of dataset
 - Subsampling
 - Repeatedly sample dataset
 - Train model on sample
 - Aggregate results of cross-validation

Results

- Naive Bayes Model
 - Accuracy: ~70%
 - Better at isolating real news

```
type
prediction fake real
fake 7099 241
real 5115 5545
```

SVM Model

- Accuracy: ~83%
- Better at isolating fake news

```
type
prediction fake real
fake 10821 1664
real 1393 4122
```

Influencing Factors

- Space Limitations
 - Limited amount of data to load
 - o SVM computationally expensive, limits sample size
- Time Limitations
 - How many subsets to take?
 - Diminishing returns
- Distribution of real and fake news in dataset
 - More fake news than real news
- Article categorization

Further Improvements

- Eliminate limitations
 - More computationally able computer
 - Load entire dataset
 - Larger sample sizes
 - Experiment with changing influencing factors
- Other classification methods
 - Linear/Quadratic Discriminant Analysis
 - Random Forest Classification
 - Logistic Regression: domain
- Semantic Analysis

Conclusion

- SVM best classification model
 - Computationally expensive, but more accurate
 - Not as good at determining real news, but low error % for fake news predictions
 - 83% accuracy rating
- Naive Bayes model deficient
 - Computationally efficient
 - o "Baseline" model
 - Inaccurate in comparison to SVM