BEGINNER'S BOX-3 Isotope, Average Molecular mass, E.F. and M.F.

A use atomicity =1

(D) none

A compounds was found to contain 5.37% nitrogen. What is the minimum molecular wt. of compound: (C) 260.7

(B) 2.607

(A) 26.07 g

(A) 10%

cu63

/N = Atomic massxatomicity x100

Molecular mass

5.37 = 14x1 x100, molecular mass = 1400 5.37

The atomic weight of Cu is 63.546. There are only two naturally occurring isotopes of copper ⁶³Cu and ⁶⁵Cu. The natural abundance of the ⁶³Cu isotope must be approximately: (B) 30%

(C) 50%

6354-6 = 6500 -2×

63.546 = 63.x + 65(100-x)

12170%

2x = 145.4 => 2= 72.71.

3. A certain alkaloid has 70.8% carbon, 6.2% hydrogen, 4.1% nitrogen and the rest oxygen. What is its empirical formula:

$$(A)C_{20}H_{21}NO_{20}$$

(B)
$$C_{20}H_{20}NO_4$$

$$(C) C_{21}H_{20}NO_3$$

(D)
$$C_{20}H_{19}NO_3$$

E	mass	molc	S·R	
C	70.8	70.8 = 5.9	11 12 13 14 15 16 17	
н	6.2	$\frac{6.2}{1} = 6.2$	$\frac{6.2}{0.29} = 21$	
7	4.1	$\frac{4\cdot 1}{14}=0\cdot 29$	$\frac{0.29}{0.29} = 1$	
0	18.9	189 = 1.18	1-18 = 4	

C20 H21 NO4

The total number of neutrons in dipositive zinc ions with mass number 70 is (A) 34 (C)36

4.

$$Z_{n}^{+2}$$
 Z_{n}^{+2} $Z_{$

Number of gm-atoms of sulphur present in SO₂ gas which occupy 22.7 ml at S.T.P. (A) 0.001 (B) 0.01(C) 1 (D) 10 gram atom means mole of atom Maoles of $50_2 = \frac{22.7 \times 10^3}{22.7} = \frac{10^3}{10^3}$ moles afsatoms = moles of so2 x atomicity of s = 15^3 x·I = 0-001 In an organic compound of molar mass greater than 100 containing only C, H and N, the percentage of C is 6 times the percentage of H while the sum of the percentages of C and H is 1.5 times the percentage of N. What is the least molar mass:

(A) 175

(B) 140

(C) 105

(D) 210

6*.

$$\frac{1}{100}$$
 $\frac{1}{100}$ $\frac{1}$

$$51.43$$
 8.57 40 $\chi = \frac{150}{17.5} = 8.51$ $(4.0 + 4.4) = 1.5(4.8)$

$$(4.c + 4.H) = 1.5(4.N)$$

 $(6x + x) = 1.5(100-7x)$
 $7x = 150 - 10.5 x$

17.5x = 150

C
$$51.43$$
 $\frac{51.43}{12} = 4.29$ $\frac{4.29}{2.80} = 1.5$ $\times 2 = 3$

H 8.57 $\frac{8.57}{1} = 8.57$ $\frac{8.57}{2.80} = 3 \times 2 = 6$

N 40 $\frac{40}{14} = 2.86$ $\frac{3.60}{2.80} = 1 \times 2 = 2$
 $EF = C_3 + 16N_2$, $MF = 91$ ($(3+6N_2)$)

 $Mwt = 91$ (70) $\Rightarrow 70$ 140 260

SIR

mole

EI

mass

7. The simplest formula of a compound containing 50% of element X (atomic mass = 10) and 50% of the element Y (atomic mass = 20) by weight is: (A) XY $(C) XY_2$ (D) $X_{2}Y_{3}$

 $mass = \frac{12 \times 21}{69.98} \times 100 = 360.19 \text{mi}$

Sample I has higher O^{18}/O^{16} ratio of atoms are compared to Sample II. The average mass of oxygen in Sample **9***. I isthat of Sample II: (C) less than (B) greater than (D) None of these (A) equal to

10. Calculate the change in percentage of C (by weight) when all H-atoms are replaced by 'T' in CH₁ molecule. (Given atomic weight - C : 12, H : 1, T : 3)

CHY
$$CT_{4}$$

$$Y.C = \frac{12}{16} \times 100$$

$$Y.C = \frac{12}{24} \times 100 - 504.$$

$$y.c = \frac{12}{24} \times 100 - 507.$$
 16
 $y.c = 75.$

Change in y. of $c = 257.$