Resolução do Exame de Recurso de AUC

2021/2022

Nota Preliminar

Não há qualquer garantia de que as resoluções estejam totalmente corretas.

Em todo este teste:

- \mathcal{N} denota o c. p. o. (\mathcal{N}, \leq) , onde \leq é a ordem usual nos naturais;
- M_3 e N_5 denotam o conjunto $\{0, a, b, c, 1\}$; e
- $\mathcal{M}_3 = (M_3; \wedge, \vee)$ e $\mathcal{N}_5 = (N_5; \wedge', \vee')$ são os reticulados dados respectivamente pelos dois diagramas seguintes.

Grupo I - Perguntas de V/F

1. a) Toda a congruência numa álgebra \mathcal{A} é núcleo de um homomorfismo com domínio igual a \mathcal{A} .

Resposta: A afirmação é **verdadeira**. Dada uma congruência θ numa álgebra \mathcal{A} , ela é núcleo do homomorfismo natural $\pi_{\theta} : \mathcal{A} \to \mathcal{A}/\theta$ dado por $a \mapsto [a]_{\theta}$.

b) A aplicação $\alpha: M_3 \to N_5$ tal que $\alpha(x) = x$ é um isomorfismo de reticulados.

Resposta: A afirmação é **falsa**. Se α fosse um isomorfismo, então seria, em particular, um homomorfismo. Assim, as condições

$$\begin{cases} \forall x, y \in M_3 & \alpha(x \land y) = \alpha(x) \land' \alpha(y) \\ \forall x, y \in M_3 & \alpha(x \lor y) = \alpha(x) \lor' \alpha(y) \end{cases}$$

teriam de se verificar. No entanto, tem-se que, por exemplo,

$$\alpha(a \wedge b) = \alpha(0) = 0$$

mas

$$\alpha(a) \wedge' \alpha(b) = a \wedge' b = a.$$

Logo α não é um homomorfismo e, portanto, não é um isomorfismo.

c) Se (θ, θ') é um par de congruências-factor de \mathcal{N}_5 , então $\theta = \Delta_{N_5}$ ou $\theta' = \Delta_{N_5}$.

Resposta: A afirmação é verdadeira. Como N_5 possui 5 elementos e 5 é um número primo, a álgebra \mathcal{N}_5 é diretamente indecomponível. Como tal, o único par de congruências-fator é $(\Delta_{N_5}, \nabla_{N_5})$. Logo, uma das congruências θ ou θ' tem de coincidir com Δ_{N_5} .

d) Toda a álgebra diretamente indecomponível é subdiretamente irredutível.

Resposta: A afirmação é falsa. Vimos nas aulas que uma cadeia com 3 elementos é diretamente indecomponível (pelo facto de 3 ser um número primo) e, no entanto, não é subdiretamente irredutível.

e) Existe um homomorfismo $\alpha: \mathcal{N}_5 \to \mathcal{M}_3$ tal que $\ker(\alpha) = \nabla_{N_5}$.

Resposta: A afirmação é **verdadeira**. Por exemplo, o homomorfismo constante dado por $\alpha(x) = 0$ para todo o $x \in N_5$ satisfaz a condição. De facto, para esse α , tem-se

$$\ker(\alpha) = \{(x, y) \in N_5 \times N_5 \mid \alpha(x) = \alpha(y)\}$$

$$= \{(x, y) \in N_5 \times N_5 \mid 0 = 0\}$$

$$= N_5 \times N_5$$

$$= \nabla_{N_5}.$$

(Obs.: é fácil verificar que este α é um homomorfismo de reticulados.)

f) Num c.p.o, visto como categoria, todos os morfismos são monomorfismos.

Resposta: A afirmação é **verdadeira**. Dado um c.p.o. $\mathcal{P} = (P, \leq)$, a categoria que lhe está associada é $\mathcal{C}_{\mathcal{P}} = (P, \text{hom}, \text{id}, \circ)$ onde:

- $hom(x, y) = \begin{cases} (x, y) & \text{se } x \leq y; \\ \emptyset & \text{caso contrário.} \end{cases}$
- $id_x = (x, x)$.
- Dados $x \le y \le z$, a composição é dada por $(y, z) \circ (x, y) = (x, z)$.

Deste modo, um morfismo (y, z) é monomorfismo se

$$(y,z)\circ(x,y)=(y,z)\circ(x',y)\Rightarrow(x,y)=(x',y).$$

Esta condição é efetivamente verificada, uma vez que

$$(y, z) \circ (x, y) = (y, z) \circ (x', y)$$

 $\Leftrightarrow (x, z) = (x', z)$
 $\Leftrightarrow x = x'$.

Logo, se x = x', também (x, y) = (x', y).

Grupo II - Justificar se é verdade

Diga, justificando, se cada uma das seguintes afirmações é verdadeira.

2. Seja $\theta = \Theta(a, b) \in \text{Con}(\mathcal{M}_3)$. A álgebra \mathcal{M}_3/θ é trivial.

Resolução: A afirmação é **falsa**. A álgebra \mathcal{M}_3/θ é trivial se e só se $\theta = \nabla_{M_3}$, isto é, se e só se $x \theta y$ para todos os $x, y \in M_3$. Temos então de determinar $\Theta(a, b)$.

Por definição, $\Theta(a,b)$ é a menor congruência em \mathcal{M}_3 que contém $\{(a,b)\}$. Além disso, $\Theta(a,b)$ é uma relação de equivalência (é reflexiva, simétrica e transitiva) e satisfaz a propriedade de substituição: para quaisquer $x, y, z, w \in \mathcal{M}_3$, se $x \theta y$ e $z \theta w$, então:

$$\begin{cases} (x \wedge' z) \ \theta \ (y \wedge' w) \\ (x \vee' z) \ \theta \ (y \vee' w). \end{cases}$$

Uma vez que θ é reflexiva, temos que $\Delta_{M_3} \subseteq \theta$. Como $(a,b) \in \theta$ e θ é simétrica, também temos $(b,a) \in \theta$. Agora, por muito que queiramos produzir mais pares, recorrendo às leis da simetria, transitividade e substituição, não conseguimos obter mais nada! De facto,

$$\theta = \Delta_{M_3} \cup \{(a, b), (b, a)\}$$

= \{(0, 0), (a, a), (b, b), (c, c), (1, 1), (a, b), (b, a)\}

é a menor congruência contendo (a,b) (i.e. a congruência gerada por (a,b)). Para o provar, basta verificar que θ é uma congruência. Vamos fazê-lo usando 4 critérios que o professor mencionou numa aula prática:

- 1. Em primeiro lugar, θ é uma relação de equivalência porque é reflexiva, simétrica e transitiva.
- 2. Além disso, observe-se que $M_3/\theta = \{\{0\}, \{a,b\}, \{c\}, \{1\}\}$ e, portanto, cada classe de equivalência é um sub-reticulado de M_3 .
- 3. Dados $x, y, z \in M_3$, é fácil ver que se $x \theta z$ e $x \le y \le z$ então $x \theta y$. De facto, em \mathcal{M}_3 , se $x \theta z$ e $x \le y \le z$, a única hipótese é ter x = y ou y = z, e em qualquer desses casos $x \theta y$.
- 4. É satisfeita a propriedade do quadrilátero: se x, y, z, w são distintos, x < y, z < w e $(x \lor w = y)$ e $x \land w = z$ ou $(y \lor z = w)$ e $y \land z = a$, então $x \theta y$ se e só se $y \theta z$.

Concluímos então que $\theta = \Theta(a,b) = \{(0,0), (a,a), (b,b), (c,c), (1,1), (a,b), (b,a)\}$ não é a relação universal, i.e., $\theta \neq \nabla_{M_3}$. Por isso, a álgebra \mathcal{M}_3/θ não é trivial.

3. A álgebra $(\mathbb{Z}; +)$ é finitamente gerada.

Resolução:

A afirmação é **verdadeira**. De facto, a álgebra (\mathbb{Z} ; +) admite como geradores os números 1 e -1, uma vez que:

- 0 = 1 + (-1);
- se n > 0, então n = 1 + ... + 1 (n parcelas);
- se n < 0, então n = (-1) + ... + (-1) (n parcelas).

 $^{^{1}}$ Não sei se o professor requer uma verificação concreta disto, mas eu não o vou fazer porque tenho amor à vida.

4. Existe mergulho subdirecto de $\mathbf{3}$ em $\mathbf{2} \times \mathbf{2}$, onde $\mathbf{2}$ e $\mathbf{3}$ são as cadeias com $\mathbf{2}$ e $\mathbf{3}$ elementos, respectivamente.

Resolução: A afirmação é **verdadeira**. Para o provar, temos de apresentar uma aplicação $\alpha \colon \mathbf{3} \to \mathbf{2} \times \mathbf{2}$ que satisfaça as seguintes condições:

- α é um monomorfismo;
- $\alpha(3)$ é um produto subdireto de $\mathbf{2} \times \mathbf{2}$, isto é, $\alpha(3)$ é uma subálgebra de $\mathbf{2} \times \mathbf{2}$; $p_1 \circ \alpha(3) = \mathbf{2}$; e $p_2 \circ \alpha(3) = \mathbf{2}$.

Vamos considerar as seguintes representações das cadeias em questão (3, 2 e 2, da esquerda para a direita):

Então, o reticulado $\mathbf{2} \times \mathbf{2}$ é representado pelo diagrama:

Considere-se agora a aplicação $\alpha \colon \mathbf{3} \to \mathbf{2} \times \mathbf{2}$ dada por

$$\alpha(x) = (a, c); \quad \alpha(y) = (b, c); \quad \alpha(z) = (b, d).$$

Esta aplicação é injetiva e é um homomorfismo, uma vez que a cadeia x-y-z está a ser enviada na cadeia (a,c)-(b,c)-(b,d). Ou seja, α é um monomorfismo.

Resta mostrar que $\alpha(3)$ é um produto subdireto de 2×2 . Em primeiro lugar, note-se que $\alpha(3)$ é uma cadeia, e uma cadeia é sempre uma subálgebra (porque ao fazer ínfimos e supremos com elementos da cadeia, necessariamente obtemos elementos da cadeia).

Além disso,

$$p_{1} \circ \alpha (\mathbf{3}) = p_{1} \circ \alpha (\{x, y, z\})$$

$$= p_{1}(\alpha(\{x, y, z\}))$$

$$= p_{1}(\{(a, c), (b, c), (b, d)\})$$

$$= \{a, b\}$$

$$= \mathbf{2}$$

E analogamente se verifica que $p_2 \circ \alpha(3) = 2$. Logo, α é um mergulho subdireto de 3 em 2×2 .

 $^{^2}$ Talvez no exame seja conveniente justificar melhor, mostrando que α preserva ínfimos e supremos.

5. Seja \mathcal{C} a categoria definida pelo diagrama seguinte:

Na categoria \mathcal{C} existem 4 monomorfismos distintos.

Resolução: A afirmação é **falsa**. Em primeiro lugar, note-se que id_A , id_B e id_C são monomorfismos distintos (de facto, as identidades são sempre monomorfismos e epimorfismos). Há que averiguar agora o seguinte:

ullet Será f um monomorfismo? A única função que pode ser composta à direita com f é id $_A$, pelo que

$$f \circ g' = f \circ h' \Rightarrow g' = h' = \mathrm{id}_A.$$

Logo, f é de facto um monomorfismo.

• Será h um monomorfismo? Sim e a justificação é análoga ao ponto anterior.

Já nem precisamos de averiguar se g é um monomorfismo (embora também seja), porque já encontramos 5 monomorfismos distintos, o que faz com que a afirmação seja falsa.

Grupo III - Demonstrações

Demonstre as seguintes afirmações.

6. Se \mathcal{A} e \mathcal{B} são álgebras do mesmo tipo e $\alpha, \beta : \mathcal{A} \to \mathcal{B}$ são homomorfismos, então o conjunto $E = \{a \in A : \alpha(a) = \beta(a)\}$ é um subuniverso de \mathcal{A} .

Resolução:

7. Sejam $\mathcal{A} = (A, F)$ e $\theta_1, \theta_2 \in \text{Con}(\mathcal{A})$ tais que $\theta_1 \cap \theta_2 = \Delta_A$. Existe mergulho subdirecto $\alpha : \mathcal{A} \to \mathcal{A}/\theta_1 \times \mathcal{A}/\theta_2$.

Resolução:

8. Numa categoria \mathcal{C} , se um morfismo $f:A\to B$ é invertível à esquerda, então f é um monomorfismo. Resolução: