1)
i)
$$f(n) = n^2 + 200$$
 $g(n) = n^2 - 150$
 $f = O(n^2)$ $g = O(n^2)$
 $f = g$, $f = \Theta(g)$

ii)
$$f(n) = \log_{10} n$$
 $f = O(\log_{10} n)$
 $g = O(\log_{10} n)$
 $f = g$
 $f = \Theta(g)$

iii) By property: For every
$$r>1$$
 & $d>0$, $n^d=O(r^n)$

$$\begin{array}{ccc} & g(n) = & n^{\sqrt{3}} = O(f(n) = 10^{n}) \\ & g = O(f) \\ & \therefore & f = \Omega(g) \end{array}$$

iv)
$$f(n) = 7n \log(n)$$
 $g(n) = n^{1.25}$
 $f = 0 (n \log n)$ $g = 0(n \cdot n^{\gamma 4})$

Compare log $n \approx n^{1/4}$ By Big D property, $\log_b(n) = O(n^x)$

3y Big D property,
$$\log_b(n) = O(n^x)$$
 b>1, x > 0
: $f = O(g)$

V)
$$f(n) = n 2^n$$
 $g(n) = 3^n$
 $need (N so that $n 2^n \le c 3^n$ for $n \ge N$
 $n (\frac{2}{3})^n \le c$
 $c = s, N = s \Rightarrow s (\frac{2}{3})^s \le s$
 $n (\frac{2}{3})^n \Rightarrow 0$ as $n \Rightarrow \infty$
 $f = O(g)$

Vi) $f(n) = n$
 $f = O(n)$
 $g(n) = n + los n$
 $g = O(n^2)$, $g = \Omega(1)$

Due to oscillation, there is no tight bounds.$

: None of the answers match.

Vii)
$$f(n) = \log_2(n)$$
 $g(n) = \log_{16}(n)$ $g = O(\log_2 n)$

$$f = g : f = \Theta(g)$$

Viii) $f_{(n)}=2^n$ $g_{(n)}=2^{n+1}=2\cdot 2^n$ $g_{(n)}=D(2^n)$ $g_{(n)}=D(2^n)$

2)
$$F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 1, 2, 3, 34$

For $F_{n} = 0, 1, 2, 3, 34$

For $F_{n} = 0$

iii) using part ii, C < log 2 0 C< 0.6942....

$$x = qN+r$$

 $x = qN+r$

i)
$$x = qN+r$$
 $x = qN+r$
 $y = pN+r'$
 $y = pN+r'$
 $y = pN+y'$
 $y = pN+y'$

ii)
$$3^{k}$$
 mod $2 = (3 \cdot 3 \cdot 3 \cdot 2) (\text{mod } 2) = [(3 \text{mod } 2) \cdot (3 \text{ mod } 2) \cdot (3 \text{$

iii) 4^{500} (ma) 17) = $4^{4.125}$ (ma) 17) = $(4^4)^{125}$ (ma) 17) = 256^{125} (ma) 17) = $(256^{125}$ ma) 17) $(256^{125}$ = $(1)^{125}$ = $(1)^{125}$

```
return fib1(n-2) + fib1(n-1)

def fib2(n):
    """An efficient implementation of computing the n-th Fibonacci number"""
if n == 0:
```

return 0 fib = [0] * (n+1) fib[0] = 0 fib[1] = 1

return fib[n]

40

for i in range(2,n+1):

fib[i] = fib[i-2] + fib[i-1]

```
5)
```

```
# student info
    # WatIAM username: r6sarkar
    # Student number: 20894095
    # part (i) for modular exponentiation -- fill in the code below
    def modexp(x, y, N):
        if y == 0:
           return 1
        z = modexp(x, math.floor(y/2), N)
        if y % 2 == 0: # y is even
           return (z * z) % N
        else: # y is odd
           return (x * z * z) % N
    # part (ii) for extended Euclid -- fill in the code below
    def extended_euclid(a, b):
        if b == 0:
           return (1, 0, a)
        (x_a, y_a, d) = extended_euclid(b, a % b)
        return (y_a, x_a-(math.floor(a/b)*y_a), d)
39
```