Vom avoa deci urmatoorale dava (posibile) riduatii:

In a cost cas now adange un non deposit fictie (** D*mn) care va contine cantite tea (fictive) de mante (** a mon a probleme no fre echili brate (** a) a contine cantite (** a) a) adres :

is or costraige afterente a compari gabasit liquis allege on sous (cmin)=0 !]= [in)

P) \(\sigma \) (oftenda > conected)

In a cest cas vous citrodala un vou centre de de facere fictio (to the) care va soli 2ta contideta (fectiva) de marfa (to but) a.s. vous probleme ma fie echilibre to (Z'a; = Z'b;), adica:

C

Theorema Fie o FTM n' PTE corespondatione (alapata) a curbeia. Atuna solutia (-il) optima (e) a FTE pren (-il) optima (e) a FTE pren eliminarea componentelor corespondationa dapati tului (fictiv) sau centre-lui de desfacere (fictiv) introdus pentru a eduilibra problema.

Xophima => Xophima depositului fictio prin aliminarea componentedor correspondatoare Controlli fictiv.

Obs: deci ptr. a resolva o P.T. N procedan conform sobonei de mai jos

III.9) Metoda perturbarii

In chaple aplicati algoritmului de resolvare a unei FTE pitem obline S.B. A dege--mate (poate fi chiar solulia initale Xo sau o solulia intervaciare Xx) (X este SBA degenerate (=) are al putin o componente basice =0 (=)(3) mai putin de mon-1 component ,> 0, F. In accoste viduatie est foate posibil se apara asamunitul "Levomen de ciclaj".

Pertus a esita aparita acustai fanomer de ciclaj, vom aplica metada perturbani
cone conste un aplicarea a urmatarilor 4 pari toate rimpli:

1) vom adauga (aduna) la fiscare contidate, a; , i= 1, m, aflata en depositul , De, o nova cantitate (f.f. mica 20) notata au "E>O , adica vom "posturba" problema: (33) a: - = a;+E ; i=1,m (obs : ann problema sa "dezechildorat")

2) vom "re-ochilibra problema, actangând la corerca "bu, a ultimului centru de desfacere " contitatea "M.E", adice:

3m+ng -- ng (1.8)

" resolvam & PTE pardurbate obfinite ou algide resolvane a F.T.E. M' obfinem

4) forem 8=0 in soluția optimă a PTE perturbate vi vom apriva soluția optima a problemei voparturbate, adica

Xoptima 2=0 - Xinifiala

T	C ₁	CS _		C	1Cus
2	<u>Qu</u>	Czz			(FEW)
	1	1	-		
-	Crist.	Gin.			Sun
- N	bi	ps		1) M

T	61	Cz		Cu	
DI	IQ.	(St.		Cm	1,4
ps	-		1	Cen	2+
	1	i	1		
1	Cont	Cug	1	1	
Day		1		Emp	
	DI	25		pN+M	AE

```
II) Elemente de analité matematica
```

```
IV. 1) Notioni introductive: wainatati in moun in R.
```

Fig Rodel RxRx x IR = {X=(x=xx, ..., xn)/x; ETR; i= Till } + vector " Rivie"

Ferance element (veder) din Te" i non arosia un "quest" dintrun apatin (afin fundual) n-dimensional, advice: { X=(x1, 2/2, ..., xn) - P(x2, 2/2, ..., xn) comptimile bin, X, coordinated punctulai "?"

[X= (Ander An) - O(Ander ...) An) Deft Namin distante (endidione) entre pundele X, YER", numeral real rengalia (30):

(3.2) 9(x'x) of 1(x-7)3+ (x5-25+++++(x"-7)3 = 9(3.0) f= 15/2 (x-7)3)

 E_{x} : Daca arom princtelle $\{P(s_1, r_1, s_1, s_1, s_2, s_3) \in \mathbb{R}^5 \ , \text{ attence "dishorbs" distribute all sets exact as:$ 9(3'0) = 1 (5*1) + (-1-1) + (0-5) + (9-5) + (1+3) = 1 3 + 5 + 5 + 2 + 4 = 128 = 7400

Obs: noticinea de distanto el debinete pe un spetin afin (pundual), enzobastrad an infinira de "produs scalar (de vectori)" ostfel: (d. VxV -R+ care verifice urma toard scouldit (d(u,0) = 4 >0 0 d(4,4)=0 c= xe4

il d (4,4) = d(4,4) languages ! (iii)d (v, w) ≤ d(v, v) + d(v, w) + inequalibeta trimyliiului

interpretare geometrice

a) N=1 (=1 15, = 15,

Fig XXER (DE) g(XXX) = V(XXX = 1X-7) (x)

Que: Vas = lal

[PT indulus on garagines of ([PD]) = (Ex)

P) N=5 (=) B, = B,

He (x = (x, x) -) (x + x) = P2 / (35) 4(x) = V(x - 3/2 + (x2 - 3/2 + (20)) (xx) Ja= (2, 1,70) → O(3,1,70)

Fie (X=(00,14,12) -0 P(x1,21,21) ED3 |=> d(x,Y)= \(\tau_1,-x_1\frac{1}{2}+(21-25)\frac{1}{2}+(21-25)\frac{1}{2}+(21-25)\frac{1}{2}

(a) 1x;-y; 12 = (x;-y;)2; i=1,3 (b) d = Va3452+c2 a long inea oliogonali atrun paraleoliojonali atrunglus c oliojonali atrunglus c

0/20:

- c) in ale scarni de mai sus ne geste observa ca definifia "algebrica" a distante: (95) coincide an definifia "geometrica" a distante in anume. "langimea negmentalui de dreapta determinat de printele ? in Q;
- ii) de acea putem spure ca formula algebrica a dictortei (9.5) ne da lungimos segmentalui "n-dimencional" P.Q.I., adica:

(95) d(x, Y) = &([PQ]); [PQ]; we were not were sound on R.

Atama", of (11.10):

Del3: Munim stera deschisa de autra xo e R m raza " c>0", multimea:

interpretane geometrico

sfora "1-dinousionale" = sogneat desclis, contrat in *

- o fera desdise "3-dinensionalo" = interioral o ferei a cartael m, xo, ni rozo, r.

Def 4 Munica vecinatate (deschira) a purchulai "Xo=(x,0,x2,-,x0) ell, o most multime V(x0) CR" on proprietatea ca exista a spera deschira centre to in "Xo" inclusa in accesta.

+ V(xo) + vecintate a lui xoei?" (=) (=) (=) an. S(xo,r) CV(xo) +

*Vox) (include o sifera desclisa ou entrel in "xo")

ternoual general al juntai

Motam or: (Xn) nest: X1X11X21--1Xn1Xn+1-- The Xo

 $X'' = (3x_{1}^{1}, 3x_{2}^{2}, -3x_{1}^{R})$ $X' = (3x_{1}^{1}, 3x_{2}^{2}, -3x_{1}^{R}) \quad \text{CLS}_{R}$ $A'' = (3x_{1}^{1}, 3x_{2}^{2}, -3x_{1}^{R}) \quad \text{CLS}_{R}$ $A'' = (3x_{1}^{1}, 3x_{2}^{2}, -3x_{1}^{R})$

 $\stackrel{=}{\boxtimes} UX^{N} = \left(\frac{1}{n^{2}} \right) \stackrel{=}{\boxtimes} \frac{1}{n^{2}} \left(\frac{1}{n^{2}} \right) \in \mathbb{R}_{5} \quad 5 \mid X^{N} = \left(\frac{1}{n^{2}} \right) \times \left(\frac{1}{n^{2}} \right) = \left(\frac{1}{n^{2}} \right) \cdot \left(\frac{1$

befo: Fie mind (Xn) well CDK. Spanew co mined converge la Xo EDK, dance

(9.9) Xn px Xo (=) (418 >> ,(3) No EM as II Xn - Xo II < E, (4) No No

not: Que Xn = Xo EDK

= d(Xn, Xo)

Teorema (de caracterisare a consegutos vivarbe din RE)

Fig Mad (Xn) new = (20, 20, -, 20) CRK in Xo=(20, 72, -, 70) CRK. Atoma:

XV SER XO (=) (11.11) { SER SER

Connotanto anni de gor Br (=) connatante a " K" de en la connatante

$$\overline{\mathbb{R}}_{1,1} \times^{N} = \left(\frac{N_{5}+1}{2N} + \frac{3N+5}{3N+5}\right) \xrightarrow{\mathcal{B}_{5}} \underline{X}^{0} = \left(0^{\frac{2}{3}}\right)$$
 (6)