UI I2C Firmware Update Process

1. Read first 32 bytes of FW bin file and send with I2C command 0xA0.

Address(W)	Command		Byte 0	Byte 1	•••	Byte 31	
Write[0x16]	0xA0		FW data	FW data	•••	FW data	
I2C_CLK I2C-SCL	♥ +£						
I2C_DAT	₽ +£	M	0x16] 0xA0	0x55 0x49 0x49	0x5F 0x35	0x53 0x32	

BMS will verify the information and jump to bootloader if this is valid FW bin file.

2. Delay around 100ms

3. Read 1 byte which indicates status

Address(R) Data

Addicas(it)	Data	
Read[0x17]	Status byte	
I2C_CLK I2C-SCL	♥ +£	
I2C_DAT I2C-SDA	♥ +£	Read [0x17] 0x01 + NAK

0x01: BMS already jumped to BSL, ready for next step

0x00: Command not received.

0xE0: Incorrect bin file.0xE1: Incorrect MCU type.

4. Read next 32 bytes of bin file and send with command 0xA1 and packet number, start from 0x01.

Address(W)	CMD	Packet Number (high byte)	Packet Number (Low byte)	Byte 0		Byte 31	CRC Byte	
Write[0x16]	0xA1	0x00	0x01	FW data		FW data	CRC8	
I2C_CLK I2C - SCL	♦ +£							

Packet number: from 0x01 ~ 0x180

CRC8: Calculate from address byte to FW byte 31, total 36 bytes

(CRC initial value: 0x00, poly: 0x07)

5. Read status

Address(R)	Data		
Read[0x17]	Status byte		

0x06: ACK, continue next packet.

0xE2: CRC error

0xE3: Packet number out of range, packet number should be 0x01 to 0x180.

OxE4: Wrong packet number, packet number must be transmitted in order.

☆ If BMS does not return ACK, need to re-start update process from packet 1.

6. Continue to send remaining FW data as step 4 and 5 until end of bin file, last packet number should be 0x180.

7. Send finish command 0xA2 with data 0x00.

Address(W)	Command	Data
Write[0x16]	0xA2	0x00
I2C_CLK I2C-SCL	* +£	
I2C_DAT I2C - SDA	♥ +£	Write [0x16]

8. BMS will jump to main code after receiving last packet and 0xA2 command, can use command 0x80 to read BMS FW version to confirm it's already running in main code:

Address(W)	Command	Address(R)	Byte 0	Byte 1	Byte 2	Byte 3	CRC
Write[0x16]	0x80	Read[0x17]	0x4D	0x00	0x01	0x00	0x98

Byte 0: 0x4D('M') indicates in main code, 0x42('B') indicates in BSL code.

Byte 1: Major version Byte 2: Minor version Byte 3: Test version

CRC byte: Calculate from address(w) byte to byte 3.