Mathematical Foundations for Finance and Insurance

Kristian Boroz

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Introduction — 1-1

Quiz 19

Prove Theorem 52 as an application of Theorem 38, instead of using Lemma 51.

Introduction — 1-2

Outline

- 1 Motivation ✓
- 2. Theorems
- 3. Proof

Theorems —

Theorem 38

Theorem (Dvoretzky, Kiefer, and Wolfowitz)

Let F be defined on \mathbb{R} , $\exists C > 0$ (not depending on F) such that

$$P(D_n > d) < Cexp(-2nd^2), \quad d > 0$$

 $\forall n=1,2,...$

Theorem 52

Theorem (52)

Let $0 . Suppose that <math>\xi_p$ is the unique solution x of $F(x-) \le p \le F(x)$. Then for every $\epsilon > 0$

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2\exp(-2n\delta_{\epsilon}^2), \forall n$$

where
$$\delta_{\epsilon} = min(F(\xi_p + \epsilon) - p, p - F(\xi_p + \epsilon))$$

Theorem (52)

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2\exp(-2n\delta_{\epsilon}^2)$$

$$P(D_n > d) < Cexp(-2nd^2)$$

Theorem (52)

$$P(\mid \widehat{\xi_{pn}} - \xi_p \mid > \epsilon) \le 2exp(-2n\delta_{\epsilon}^2)$$

$$P(D_n > d) < Cexp(-2nd^2)$$

$$D_n = KS - Distance = \sup |F_n(x) - F(x)|$$

Theorem (52)

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2\exp(-2n\delta_{\epsilon}^2)$$

$$P(\sup|F_n(x) - F(x)| > d) < Cexp(-2nd^2)$$

Theorem (52)

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2\exp(-2n\delta_{\epsilon}^2)$$

$$P(|F_n(x) - F(x)| > d) \le Cexp(-2nd^2)$$

Theorem (52)

$$P(\mid \widehat{\xi_{pn}} - \xi_p \mid > \epsilon) \le 2exp(-2n\delta_{\epsilon}^2)$$

Theorem (38)

$$P(|F_n(x) - F(x)| > d) \le Cexp(-2nd^2)$$

Using the Strong Consistency property and the following definition: Given a sample $X_1, ..., X_n$ of observations on F, the sample pth quantile $\widehat{\xi_{pn}}$ or $\widehat{\xi_p}$, is defined as the pth quantile of the sample distribution function F_n

Theorem (52)

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2\exp(-2n\delta_{\epsilon}^2)$$

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le Cexp(-2nd^2)$$

Theorem (52)

$$P(\,|\,\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2\exp(-2n\delta_\epsilon^2)$$

Theorem (38)

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le Cexp(-2nd^2)$$

Using the following notation: $\delta_\epsilon = F(\zeta_p + \epsilon) - p o \delta_\epsilon \sim \epsilon$

Theorem (52)

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2exp(-2n\delta_{\epsilon}^2)$$

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le Cexp(-2n\delta_{\epsilon}^2)$$

Proof — 3-9

Proof

For any integer n and any λ not less than $\sqrt{\log(2)/2}$ and $\gamma n^{-1/6}$ where $\gamma=1.0841$, we have:

$$P(D_n > n) \le exp(-2\lambda^2)$$

Proof.

First Step:

where $n \geq 39$ and $\lambda \leq \frac{\sqrt{n}}{2}$: C = 3.61

Second Step:

where $n \leq 38$ and $\lambda > \frac{\sqrt{n}}{2}$: C = 2

Theorem (52)

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2exp(-2n\delta_{\epsilon}^2)$$

$$P(|\widehat{\xi_{pn}} - \xi_p| > \epsilon) \le 2exp(-2n\delta_{\epsilon}^2)$$

Further Information

Massart

The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality

The Annals of Probability, Vol 18, No.3, 1269-1283 (1990)

Nudley 🗨

Uniform Central Limit Theorems

Cambridge University Press, 2. Ed. (2014)

