Bayesian Methods

David S. Rosenberg

New York University

February 27, 2018

Contents

- Classical Statistics
- 2 Bayesian Statistics: Introduction
- Bayesian Decision Theory
- Summary

Classical Statistics

Parametric Family of Densities

• A parametric family of densities is a set

$$\{p(y \mid \theta) : \theta \in \Theta\},\$$

- where $p(y \mid \theta)$ is a density on a **sample space** \mathcal{Y} , and
- θ is a parameter in a [finite dimensional] parameter space Θ .
- This is the common starting point for a treatment of classical or Bayesian statistics.

Density vs Mass Functions

- In this lecture, whenever we say "density", we could replace it with "mass function."
- Corresponding integrals would be replaced by summations.
- (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t. different base measures.)

Frequentist or "Classical" Statistics

Parametric family of densities

$$\{p(y \mid \theta) \mid \theta \in \Theta\}.$$

- Assume that $p(y \mid \theta)$ governs the world we are observing, for some $\theta \in \Theta$.
- If we knew the right $\theta \in \Theta$, there would be no need for statistics.
- Instead of θ , we have data \mathcal{D} : y_1, \dots, y_n sampled i.i.d. $p(y \mid \theta)$.
- Statistics is about how to get by with \mathcal{D} in place of θ .

Point Estimation

- One type of statistical problem is **point estimation**.
- A statistic $s = s(\mathcal{D})$ is any function of the data.
- A statistic $\hat{\theta} = \hat{\theta}(\mathcal{D})$ taking values in Θ is a **point estimator of** θ .
- A good point estimator will have $\hat{\theta} \approx \theta$.

Desirable Properties of Point Estimators

- Desirable statistical properties of point estimators:
 - Consistency: As data size $n \to \infty$, we get $\hat{\theta}_n \to \theta$.
 - **Efficiency:** (Roughly speaking) $\hat{\theta}_n$ is as accurate as we can get from a sample of size n.
- Maximum likelihood estimators are consistent and efficient under reasonable conditions.

The Likelihood Function

- Consider parametric family $\{p(y \mid \theta) : \theta \in \Theta\}$ and i.i.d. sample $\mathcal{D} = (y_1, \dots, y_n)$.
- The density for sample $\mathfrak D$ for $\theta \in \Theta$ is

$$p(\mathfrak{D} \mid \theta) = \prod_{i=1}^{n} p(y_i \mid \theta).$$

- $p(\mathcal{D} \mid \theta)$ is a function of \mathcal{D} and θ .
- For fixed θ , $p(\mathcal{D} \mid \theta)$ is a density function on \mathcal{Y}^n .
- For fixed \mathcal{D} , the function $\theta \mapsto p(\mathcal{D} \mid \theta)$ is called the **likelihood function**:

$$L_{\mathcal{D}}(\theta) := p(\mathcal{D} \mid \theta).$$

Maximum Likelihood Estimation

Definition

The maximum likelihood estimator (MLE) for θ in the model $\{p(y,\theta) \mid \theta \in \Theta\}$ is

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\theta \in \Theta}{\mathsf{arg}\,\mathsf{max}}\, L_{\mathcal{D}}(\theta).$$

- Maximum likelihood is just one approach to getting a point estimator for θ .
- Method of moments is another general approach one learns about in statistics.
- Later we'll talk about MAP and posterior mean as approaches to point estimation.
 - These arise naturally in Bayesian settings.

Coin Flipping: Setup

• Parametric family of mass functions:

$$p(\text{Heads} \mid \theta) = \theta$$
,

for
$$\theta \in \Theta = (0, 1)$$
.

• Note that every $\theta \in \Theta$ gives us a different probability model for a coin.

Coin Flipping: Likelihood function

- Data $\mathfrak{D} = (H, H, T, T, T, T, T, H, ..., T)$
 - n_h : number of heads
 - n_t : number of tails
- Assume these were i.i.d. flips.
- **Likelihood function** for data D:

$$L_{\mathcal{D}}(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• This is the probability of getting the flips in the order they were received.

Coin Flipping: MLE

• As usual, easier to maximize the log-likelihood function:

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &= \underset{\theta \in \Theta}{\arg\max} \log L_{\mathcal{D}}(\theta) \\ &= \underset{\theta \in \Theta}{\arg\max} \left[n_h \log \theta + n_t \log (1 - \theta) \right] \end{split}$$

First order condition:

$$\frac{n_h}{\theta} - \frac{n_t}{1 - \theta} = 0$$

$$\iff \theta = \frac{n_h}{n_h + n_t}.$$

• So $\hat{\theta}_{MLE}$ is the empirical fraction of heads.

Bayesian Statistics: Introduction

Bayesian Statistics

- Introduces a new ingredient: the prior distribution.
- A prior distribution $p(\theta)$ is a distribution on parameter space Θ .
- A prior reflects our belief about θ , before seeing any data...

A Bayesian Model

- A [parametric] Bayesian model consists of two pieces:
 - A parametric family of densities

$$\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$$

- **2** A **prior distribution** $p(\theta)$ on parameter space Θ .
- Putting pieces together, we get a joint density on θ and \mathfrak{D} :

$$p(\mathcal{D}, \theta) = p(\mathcal{D} \mid \theta)p(\theta).$$

The Posterior Distribution

- The **posterior distribution** for θ is $p(\theta \mid \mathcal{D})$.
- Prior represents belief about θ before observing data \mathfrak{D} .
- Posterior represents the rationally "updated" belief about θ , after seeing \mathfrak{D} .

Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

- Let's consider both sides as functions of θ , for fixed \mathcal{D} .
- Then both sides are densities on Θ and we can write

$$\underbrace{p(\theta \mid \mathcal{D})}_{\text{posterior}} \propto \underbrace{p(\mathcal{D} \mid \theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}.$$

• Where \propto means we've dropped factors independent of θ .

Coin Flipping: Bayesian Model

• Parametric family of mass functions:

$$p(\text{Heads} \mid \theta) = \theta$$
,

for
$$\theta \in \Theta = (0, 1)$$
.

- Need a prior distribution $p(\theta)$ on $\Theta = (0,1)$.
- A distribution from the Beta family will do the trick...

Coin Flipping: Beta Prior

• Prior:

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.

Coin Flipping: Beta Prior

Prior:

$$\begin{array}{ccc} \theta & \sim & \mathrm{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

• Mode of Beta distribution:

$$\arg\max_{\theta} p(\theta) = \frac{h-1}{h+t-2}$$

for h, t > 1.

Coin Flipping: Posterior

Prior:

$$\theta \sim \operatorname{Beta}(h,t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$

Likelihood function

$$L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• Posterior density:

$$\begin{array}{ll} \rho(\theta \mid \mathcal{D}) & \propto & \rho(\theta)\rho(\mathcal{D} \mid \theta) \\ & \propto & \theta^{h-1}(1-\theta)^{t-1} \times \theta^{n_h}(1-\theta)^{n_t} \\ & = & \theta^{h-1+n_h}(1-\theta)^{t-1+n_t} \end{array}$$

Posterior is Beta

Prior:

$$\theta \sim \operatorname{Beta}(h, t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$

Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

Posterior is in the beta family:

$$\theta \mid \mathcal{D} \sim \text{Beta}(h+n_h, t+n_t)$$

- Interpretation:
 - Prior initializes our counts with *h* heads and *t* tails.
 - Posterior increments counts by observed n_h and n_t .

Sidebar: Conjugate Priors

- Interesting that posterior is in same distribution family as prior.
- Let π be a family of prior distributions on Θ .
- Let P parametric family of distributions with parameter space Θ .

Definition

A family of distributions π is conjugate to parametric model P if for any prior in π , the posterior is always in π .

- The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.
- The family of all probability distributions is conjugate to any parametric model. [Trvially]

Example: Coin Flipping - Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

$$p(\mathsf{Heads} \mid \theta) = \theta.$$

- Parameter space $\theta \in \Theta = [0, 1]$.
- Prior distribution: $\theta \sim \text{Beta}(2,2)$.

Example: Coin Flipping

• Next, we gather some data $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$:

• Heads: 75 Tails: 60

• $\hat{\theta}_{\text{MLE}} = \frac{75}{75+60} \approx 0.556$

• Posterior distribution: $\theta \mid \mathcal{D} \sim \text{Beta}(77, 62)$:

Bayesian Point Estimates

- So we have posterior $\theta \mid \mathcal{D}...$
- But we want a point estimate $\hat{\theta}$ for θ .
- Common options:
 - posterior mean $\hat{\theta} = \mathbb{E}[\theta \mid \mathcal{D}]$
 - maximum a posteriori (MAP) estimate $\hat{\theta} = \arg \max_{\theta} p(\theta \mid D)$
 - Note: this is the **mode** of the posterior distribution

What else can we do with a posterior?

- Look at it.
- Extract "credible set" for θ (a Bayesian confidence interval).
 - e.g. Interval [a, b] is a 95% credible set if

$$\mathbb{P}(\theta \in [a, b] \mid \mathcal{D}) \geqslant 0.95$$

- The most "Bayesian" approach is Bayesian decision theory:
 - Choose a loss function.
 - Find action minimizing expected risk w.r.t. posterior

Bayesian Decision Theory

Bayesian Decision Theory

- Ingredients:
 - Parameter space Θ .
 - **Prior**: Distribution $p(\theta)$ on Θ .
 - Action space A.
 - Loss function: $\ell: \mathcal{A} \times \Theta \to \mathbf{R}$.
- The **posterior risk** of an action $a \in A$ is

$$r(a) := \mathbb{E}[\ell(\theta, a) \mid \mathcal{D}]$$

= $\int \ell(\theta, a) p(\theta \mid \mathcal{D}) d\theta$.

- It's the expected loss under the posterior.
- A Bayes action a^* is an action that minimizes posterior risk:

$$r(a^*) = \min_{a \in \mathcal{A}} r(a)$$

Bayesian Point Estimation

- General Setup:
 - Data \mathcal{D} generated by $p(y \mid \theta)$, for unknown $\theta \in \Theta$.
 - Want to produce a **point estimate** for θ .
- Choose the following:
 - Prior $p(\theta)$ on $\Theta = \mathbf{R}$.
 - Loss $\ell(\hat{\theta}, \theta) = \left(\theta \hat{\theta}\right)^2$
- Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[\left(\theta - \hat{\theta}\right)^2 \mid \mathcal{D}\right]$$

= $\left[\left(\theta - \hat{\theta}\right)^2 p(\theta \mid \mathcal{D}) d\theta\right]$

Bayesian Point Estimation: Square Loss

• Find action $\hat{\theta} \in \Theta$ that minimizes posterior risk

$$r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta \mid \mathcal{D}) d\theta.$$

Differentiate:

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2(\theta - \hat{\theta}) p(\theta \mid \mathcal{D}) d\theta$$

$$= -2 \int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta} \underbrace{\int p(\theta \mid \mathcal{D}) d\theta}_{=1}$$

$$= -2 \int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta}$$

Bayesian Point Estimation: Square Loss

Derivative of posterior risk is

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta}.$$

• First order condition $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$ gives

$$\hat{\theta} = \int \theta p(\theta \mid \mathcal{D}) d\theta$$
$$= \mathbb{E}[\theta \mid \mathcal{D}]$$

• Bayes action for square loss is the posterior mean.

Bayesian Point Estimation: Absolute Loss

- Loss: $\ell(\theta, \hat{\theta}) = \left| \theta \hat{\theta} \right|$
- Bayes action for absolute loss is the posterior median.
 - That is, the median of the distribution $p(\theta \mid \mathcal{D})$.
 - Show with approach similar to what was used in Homework #1.

Bayesian Point Estimation: Zero-One Loss

- Suppose Θ is discrete (e.g. $\Theta = \{\text{english}, \text{french}\}\)$
- Zero-one loss: $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta})$
- Posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[1(\theta \neq \hat{\theta}) \mid \mathcal{D}\right]$$
$$= \mathbb{P}\left(\theta \neq \hat{\theta} \mid \mathcal{D}\right)$$
$$= 1 - \mathbb{P}\left(\theta = \hat{\theta} \mid \mathcal{D}\right)$$
$$= 1 - \rho(\hat{\theta} \mid \mathcal{D})$$

• Bayes action is

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\theta \mid \mathcal{D})$$

- This $\hat{\theta}$ is called the maximum a posteriori (MAP) estimate.
- The MAP estimate is the **mode** of the posterior distribution.

Summary

Recap and Interpretation

- Prior represents belief about θ before observing data \mathfrak{D} .
- Posterior represents the rationally "updated" beliefs after seeing D.
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
 - No issue of "choosing a procedure" or justifying an estimator.
 - Only choices are
 - family of distributions, indexed by Θ , and the
 - prior distribution on Θ
 - For decision making, need a loss function.
 - Everything after that is **computation**.

The Bayesian Method

- Define the model:
 - Choose a parametric family of densities:

$$\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$$

- Choose a distribution $p(\theta)$ on Θ , called the **prior distribution**.
- **2** After observing \mathcal{D} , compute the **posterior distribution** $p(\theta \mid \mathcal{D})$.
- **3** Choose **action** based on $p(\theta \mid \mathcal{D})$.