

Where can we start!?

- Definition:
 - A database is a collection of structured data stored on persistent storage.
- Environment and Contextual
 - Available to a large number of end users.
 - . As in "Access my data when I need it ..."
 - No delay, no access denial, no loss of data
 - Correctness.
 - As in "What's my balance?" gets the same value until it is changed.
- What's different from, say, programming?
 - Data persistence;
 - Data sharing;
 - Data independence.

Joseph Vella - Introduction to databases

3

Introduction

3

Example Database Instance (From *Elmasri*)

- A lot of databases are built with a particular data modelling language called relational.
- This is an example of a relational database:
 - It is built by set of relations (e.g., tables).
 - A group of tables are sometimes grouped in a schema
- There are two aspects immediately visible:
 - Structures;
 - Data (fitting the given structure).

Joseph Vella - Introduction to databases

STUDENT				
Name	Student_number	Class	Major	
Smith	17	1	CS	
Brown	8	2	CS	

Course_name Course_number Credit_hours Department Intro to Computer Science C\$1310 4 C\$ Data Structures C\$3320 4 C\$ Discrete Mathematics MATH2410 3 MATH Database C\$3380 3 C\$

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT				
Student_number	Section_identifier	Grade		
17	112	В		
17	119	С		
8	85	Α		
8	92	Α		
8	102	В		
8	135	Α		

PREREQUISITE	
Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
/ _{CS3320}	CS1310

Introduction

6

Example Database Structure and Data (From *Elmasri*)

STUDENT

Name	Name Student_number		Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

- Note:
 - Table structure composition (e.g., attribute name and data type (assumed));
 - Table's data;
 - Are there any other rules which the data must follow?
 - Primary key, limiting possible values in a data type, foreign key, etc.

Joseph Vella - Introduction to databases

7

Introduction

7

For what do we use a database? How do we use a database?

- Typical *operations* over a database are:
 - accepting structured data (ADD, AMEND and PURGE/DELETE).
- How do we use databases?
 - computing functions on the present data;
 - sorting the structured data; and
 - providing responses to questions (querying).

Joseph Vella - Introduction to databases

Q

Introduction

How is usage managed and controlled?

- A Database Management System (DBMS)
 - Is a computer-based application tool set for: defining, creating, manipulating, controlling, and managing databases.
- DBMS Requirements:

End users, developers, administrators demand efficiency in terms of allocation of computational resources and storage space.

- **Reliability** (e.g., if the system falls, can it relive itself)
- Openness (e.g., in term of data connectivity)
- Scalability (e.g., storage and throughput)

Joseph Vella - Introduction to databases

9

Introduction

9

DBMS Functionality

- DBMS also facilitate and insulates data access by system's end users (including "computer" naive end users).
- Three important functionalities include:
 - Query Processing
 - Transaction Management
 - In some context TP subsumes QP
 - Storage management
- Two main areas of concern:
 - Consistency (e.g., returns the same results under invariant states), and
 - Efficiency (e.g., computational time and space) of DBMS activities.

Joseph Vella - Introduction to databases

10

Introduction

Query Processing & Optimisation

- We now briefly describe the structure and functionality of a query processor -a process that transforms and executes a user-defined query against a
 database state and returns those instances that satisfy the query.
- A declarative query is a data access expression that indicates the structure and the property of the result (e.g. what you want). In contrast to a procedural query that specifies structure, property and an exact computational program(e.g. how to get).
 - Efficiency of a declarative relational query processor (for languages such as SQL) is a major project.
 - Query optimisation is the tuning of queries and storage structures to favour the performance of some frequently used query.
- What is a data access path?
 - A procedure to traverse and access required data items through the use of available look-up methods associated to the data file organisation.

Joseph Vella - Introduction to databases

13

Introduction

13

18

22

24

25

26

29

33

35

37

41

45

47

Data Independence:

Motivation & Definitions

- The separation of physical data items (e.g. files), logical data items (relational database), and application programs that interact with the database minimises their inter dependence.
 - The concept of data independence conveys our wish to make artefact changes without unduly having to re-map (or recompile) all the higher artefacts that depend on the artefact.
 - Lowest is the physical level, middle is the logical and higher is the AP.

Logical data independence

 changes to the schema do not necessitate changes in the application programs. For example: adding new data types programmed access should still be consistent.

Physical data independence

 changes to the physical schema are insulated from conceptual and application programs that use the database. Typical physical changes include: index re-structuring; records re-ordering in a data file.

Joseph Vella - Introduction to databases

7.8

Introduction

48

Data Independence: ANSI-SPARC Architecture (3 level)

The classic representation of a database and DBMS data architecture is the ANSI/X3/SPARC proposal (1978). This architecture comprises three levels of abstraction.

- Internal Schema
 - This is the physical storage model containing information such as devices, file locations, structures, indexing systems and access methods.
- Conceptual Schema
 - A single and consistent model of the database of interest.
- External Schemas
 - A view of the conceptual model applicable users or processes.
 - There are usually many of these and view overlapping is allowed.

Joseph Vella - Introduction to databases

49

Introduction

49

51

53

