合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017年全国硕士研究生入学统一考试

数 学(一)

(科目代码:304)

(模拟试卷1)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号.
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效.
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔.
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回.

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017 年全国硕士研究生入学统一考试

数学一(模拟一)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时.

一、选择题: 1~8 小题,每小题 4 分,共 32 分.下面每小题给出的四个选项中,只有一个选项符合要求,将所 选项前的字母填在答题纸指点位置上.

- (1) 设 $x \to 0$ 时 $e^{x^2} e^{\sin^2 x}$ 与 x^m 是同阶无穷小,则m = (A) 3 (B) 4 (C) 5
- (2) 设函数 f(x) 在 x=0 的某个邻域内可导, g(x) 在 x=0 的某个邻域内连续,且 $\lim_{x\to 0} \frac{g(x)}{x} = 0$,又

 $f(x) = \ln(1+x^2) + \int_0^x g(x-t) dt$, $\mathbb{M}($

- (A) x = 0 是 f(x) 的极小值点
- (B) x = 0 是 f(x) 的极大值点
- (C)点(0, f(0))是曲线y = f(x)的拐点
- (D) x = 0 不是 f(x) 的极值点,点 (0, f(0)) 也不是曲线 y = f(x) 的拐点
- (3) 若二阶常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为 $y = (c_1 \cos x + c_2 \sin x)e^{-x}$, 则非齐次 方程 $y'' + ay' + by = e^{-x} \sin x$ 的特解形式为()
 - (A) $y^* = x(A\cos x + B\sin x)e^{-x}$. (B) $y^* = (A\cos x + B\sin x)e^{-x}$.
 - (C) $y^* = Axe^{-x}\sin x$.
- (D) $y^* = Axe^{-x}\cos x$.
- (4) 设函数 f(x) 在 x=0 的某邻域内二阶导数连续,且 $\lim_{x\to 0} \frac{f(x)}{x^2} = 1$,则下列结论正确的是(
 - (A) $\sum_{n=1}^{\infty} f(\frac{(-1)^n}{n})$ 条件收敛. (B) $\sum_{n=1}^{\infty} f(\frac{(-1)^n}{n})$ 绝对收敛

 - (C) $\sum_{n=0}^{\infty} f(\frac{(-1)^n}{n})$.发散 (D) $\sum_{n=0}^{\infty} f(\frac{(-1)^n}{n})$ 敛散不定

(5) 已知 5×4 矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,若 $\eta_1 = (3 \ 1 \ -2 \ 1)^T$, $\eta_2 = (0 \ 1 \ 0 \ 1)^T$ 是齐次线性方 程组Ax=0的基础解系,那么下列命题正确的个数为(

- $(1)\alpha_1,\alpha_3$ 线性无关;
- $(2)\alpha_1$ 可由 α_2,α_3 线性表出;
- (3) α_3 , α_4 线性无关; (4) 秩 $r(\alpha_1, \alpha_1, +\alpha_2, \alpha_3 \alpha_4) = 3$ 中正确的是 (A) (1)(3); (B) (2)(4); (C) (2)(3); (D) (1)(4)

(6) 设 A,B 都是 3 阶矩阵,将 A 中的第一行的 2 倍加至第 2 行的得到矩阵, A_1 ,将 B 中的第 3 列乘以 $-\frac{1}{2}$

得到矩阵 B_1 ,如果 $A_1B_1=\begin{pmatrix}1&2&-1\\3&5&-2\\0&1&2\end{pmatrix}$,则 AB=() $(A)\begin{pmatrix}-3&2&-1\\-7&5&-2\\6&-3&-6\end{pmatrix} \qquad (B)\begin{pmatrix}1&2&3\\1&1&0\\0&1&-6\end{pmatrix} \qquad (C)\begin{pmatrix}1&2&-3\\1&1&0\\0&1&6\end{pmatrix} \qquad (D)\begin{pmatrix}1&2&3\\5&9&12\\0&1&6\end{pmatrix}$

(A)
$$\begin{pmatrix} -3 & 2 & -1 \\ -7 & 5 & -2 \\ 6 & -3 & -6 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 0 \\ 0 & 1 & -6 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & 2 & -3 \\ 1 & 1 & 0 \\ 0 & 1 & 6 \end{pmatrix}$$

$$(D) \begin{pmatrix} 1 & 2 & 3 \\ 5 & 9 & 12 \\ 0 & 1 & 6 \end{pmatrix}$$

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551—62905018

- (7) 设 $X \sim N(\mu, \sigma^2)$,且有 $P\{X \le \sigma\} > P\{X > \sigma\}$,则有比值 $\frac{\mu}{\sigma}$ () (A) 大于 1 (B) 等于 1 (C) 小于 1 (D) 不能判别

- (8) 设随机变量 $X \sim B(3, p)$, 且矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -X & 1/4 \\ 1 & -1 & 0 \end{pmatrix}$ 的特征值全为实数的概率为 7/8,则

二、填空题: 9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指点位置上.

(9)
$$\lim_{x\to 0} \left(\frac{x}{\ln(1+x)}\right)^{\frac{1}{e^x-1}} = \underline{\hspace{1cm}}.$$

- (10). 已知 $f(x) = x^2 \ln(1+x)$, 当 n 为大于 2 的正整数时,则 $f^{(n)}(0) =$ ______.
- (11). 设 $\varphi(u)$ 可导,且 $\varphi(0)=1$,二元函数 $z=\varphi(x+y)e^{xy}$ 满足 $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$,则 $\varphi(u)=$ _______
- (12). 设 L由 $x^2 + y^2 \le 1, 0 \le y \le x$ 所确定的区域的边界,则积分 $\int_{L} \cos \sqrt{x^2 + y^2} ds =$ ______

(13).设
$$A = \begin{pmatrix} 1 & 1 & 0 & -3 \\ 1 & -1 & 2 & -1 \\ 1 & 0 & 1 & -2 \end{pmatrix}$$
,则方程组 $Ax = 0$ 解空间的一组规范正交基为______.

(14).设X与Y相互独立,且 $X \sim P(\lambda)$,(Poisson 分布),Y 服从指数分布,对应概率密度函数为

$$f(y) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, 则 方差 D(XY) = \underline{\qquad}.$$

- 三、解答题: 15~23 小题, 共94 分.解答应写出文字说明、证明过程或演算步骤.
- (15) (本小题满分 10 分)

设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t - \lambda \sin t, \\ y = 1 - \lambda \cos t \end{cases}$$
 确定,其中 $\lambda \in (0,1), t \in (0,2\pi).$

- (1)求函数 y(x) 的极值; (2)求曲线 y = y(x) 的拐点.
- (16) (本小题满分 10 分)

计算二重积分
$$I = \iint_D f(x, y) dxdy$$
 其中 $f(x, y) = \begin{cases} xe^{-y}, & x + y \le 1 \\ x^2 + y^2, & x + y > 1 \end{cases}$ 且积分区域 $D = \{(x, y) | x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$

(17) (本小题满分 10 分)

求幂级数
$$\sum_{n=0}^{\infty} (-1)^n \frac{n+1}{(2n+1)!} x^{2n+1}$$
 的收敛域与和函数 $S(x)$.

(18) (本小题满分 10 分)

设函数 f(x), g(x) 在区间 [a,b] 上连续且为严格单调递增的函数,证明:

$$\int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx < (b-a) \int_{a}^{b} f(x)g(x) dx.$$

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551—62905018

(19) (本小题满分 10 分)

设点 $M(\xi,\eta,\zeta)$ 是椭球面 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ 上在第一卦限的点, Σ 是该椭球面在点 M 处的切平面被三个坐标面截得的三角形,其法向量与 z 轴正向成锐角,问 ξ,η,ζ 取何值时,曲面积分 $I=\iint_{\Sigma}xdydz+ydzdx+zdxdy$ 取最小值?并求最小值.

(20) (本小题满分 11 分)

设 A 是 3 阶实对称矩阵, R(A) = 1, $\lambda_1 = 2$ 是 A 的一个特征值.对应的一个特征向量 $\xi_1 = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix}^T$, (1)求 Ax = 0 通解,(2)求矩阵 A.

(21) (本小题满分 11 分)

设二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2x_1x_3 + 2bx_2x_3$ 的秩为 1,且 $(0,1,-1)^T$ 为二次型的矩阵 A 的特征向量.

(1)求常数 a,b; (2)用正交变换 X = QY,化二次型 X^TAX 为标准形.

(22) (本小题满分 11 分)

设X与Y相互独立,且服从[0,a]上服从均匀分布(其中a > 0),

试求: (1)方程 $t^2 + Xt + Y = 0$ 有实根的概率: (2)a = 1时, Z = 2X - Y的概率密度函数.

(23) (本小题满分 11 分)

设 X_1, \dots, X_n 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 分别是样本均值与样本方差,令 $Y_i = X_i - \bar{X}, i = 1, 2, \dots, n$,

试求:(1) $\sum_{i=1}^{n} Cov(X_i, Y_i)$;(2)方差 $D(S^2)$;(3)若 $\theta = \sum_{i=1}^{n} Y_i^2$,考察 θ^2 是否为 $n^2 \sigma^4$ 的无偏估计.

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017年全国硕士研究生入学统一考试

数 学(一)

(科目代码:304)

(模拟试卷 2)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

第1页共4页

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017 年全国硕士研究生入学统一考试

数学—(模拟二)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

- ,	选择题:	1~8	小题,	每小题	4分,共	32 分	. 下面每小	N题给 Ł	出的四个	个选项中	,只有一	个选项	符合要求
将原	所选项前的)字母	填在答	·题纸指	点位置上	.•							

- (1) 函数 $f(x) = \frac{(x+1)\ln|x^2-1|}{x^2}e^{-\frac{1}{x^2}}$ 的可去间断点个数为 ().
- (2). 设f(x)在 $(-\infty, +\infty)$ 内是有界连续的奇函数,则 $F(x) = \int_0^x t e^{-|t|} f(t) dt$ 在 $(-\infty, +\infty)$ 内().
 - (A) 必为有界的奇函数
- (B) 必为有界的偶函数
- (C) 为奇函数但未必有界
- (D) 为偶函数但未必有界
- (3) 若 $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 0, & -1 \le x < 0 \end{cases}$ 的对应傅里叶级数 $\sum_{n=0}^{\infty} a_n \cos n\pi x + b_n \sin n\pi x$ 在

x=5处收敛于 ().

- (A) $\frac{1}{2}$ (B) 1 (C) $\frac{1}{4}$

- (4) 若f(x,y)在点 (x_0,y_0) 处的偏导数 $f'_x(x_0,y_0), f'_y(x_0,y_0)$ 均存在,则()。
- (B) f(x,y) 在点 (x_0,y_0) 处可微
- (A) f(x, y) 在点 (x_0, y_0) 处连续(C) $\lim_{x \to x_0} f(x, y)$ 存在 (C) $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 存在
- (D) $\lim_{x \to x_0} f(x, y_0)$, $\lim_{y \to y_0} f(x_0, y)$ 均存在
- (5). 设 A 是三阶矩阵, $\boldsymbol{\xi}_1 = (1,2,-2)^T$, $\boldsymbol{\xi}_2 = (2,1,-1)^T$, $\boldsymbol{\xi}_3 = (1,1,t)^T$ 是线性非齐次方程组的 Ax = b 解向量, 其中 $b = (1,3,-2)^T$, 则()

 - (A) t = -1, 必有 r(A) = 1 (B) t = -1, 必有 r(A) = 2 (C) $t \neq -1$, 必有 r(A) = 1 (D) $t \neq -1$, 必有 r(A) = 2
- (6). 设A 为可逆的实对称矩阵,则二次型 X^TAX 与 $X^TA^{-1}X$ ()

 - A. 规范形与标准形都不一定相同 B. 规范形相同但标准形不一定相同
 - C. 标准形相同但规范形不一定相同 D. 规范形与标准形都相同
- (7) 设 A = B 为随机事件,且 P(A) = 0.3,条件概率 P(B|A) = 0.5,则概率 $P(A \cup B) = 0.5$
 - (A) 1
- (B) 0.8
- (C) 0.5
- (8) 在n次独立试验中,每次试验成功的概率为p,第3次试验时第2次成功的概率为()

 - (A) $3p^2(1-p)$ (B) $2p^2(1-p)$ (C) $p^2(1-p)$ (D) $2p(1-p)^2$

二、填空题: 9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指点位置上.

(9). 设
$$y = y(x)$$
 由 $x - \int_{1}^{2x+y} e^{-u^2} du = 0$ 确定,则曲线 $y = y(x)$ 在点 (0,1) 处的法线方程为

(10). 已知 $f(1+\ln x)$ 有一个原函数为 $\frac{e}{2}x^2+x\ln x+5$,那么由曲线 y=f(x) 与直线 x=1 以及两个 坐标轴围成的图形面积为

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

- (11) 微分方程 $2yy' xy^2 = x$ 满足条件 y(0) = 0 的解为______.
- (12) 设 $D: 0 \le x \le 1, 0 \le y \le 1, 则 \iint_{D} (x-y) \operatorname{sgn}(x-y) d\sigma = _____.$

(13) 设矩阵
$$\mathbf{B} = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$
, 矩阵 \mathbf{A} 满足 $\mathbf{B}^{-1} = \mathbf{B}^* \mathbf{A} + \mathbf{A}$, 则 $\mathbf{A} = \underline{}$.

三、解答题: 15~23 小题, 共 94 分。解答应写出文字说明、证明过程或演算步骤。

(15). (本小题满分 10 分)

设 f(x) 为连续函数,且 $\lim_{x\to 0} \frac{f(x)+1-\sin x}{e^x-1} = 1$, $F(x) = \int_0^x t f(t) dt$,若 $x\to 0$ 时, F(x) 与 kx^m 是等价无穷小,求常数 m,k 的值.

(16). (本小题满分10分)

设函数 f(x, y, z) 对任何 t(t>0),满足方程

$$f(tx, ty) \neq x^n t(f, x)$$

- (I) 试确定 $S = x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z}$;
- (II) 若 $f(x,y,z) = x^2y^2z^2$ 时, 试求在第一卦限内平面 2x+3y+z=3上S 的最大值。
- **(17) (本小题满分 10 分)** (I)求函数 $f(x) = x \arctan x \ln \sqrt{2 + x^2}$ 的麦克劳林级数展开式并指出展开式成立的范围;(II)求级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n2^{n+1} 2n + 1}{n(2n-1)2^{n+1}}$ 的和.

(18) (本小题满分10分)

设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 $\int_0^{\frac{2}{\pi}} e^{f(x)} \arcsin x \, \mathrm{d} x = 1$,f(1) = 0.求证: $\exists \xi \in (0,1)$ 使得 $\sqrt{(1-\xi^2)} f'(\xi) \arcsin \xi = -1$.

(19)(本小题满分 10 分)

计算曲面积分 $\iint_{\Sigma} xzdydz - 2yzdzdx + dxdy$,其中 Σ 是 yoz 面上曲线 $z = e^y$ ($0 \le y \le 1$) 绕 z 轴旋转一周所得曲面的下侧。

(20)(本小题满分11分)

设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta$ 为4维列向量组,且 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$

已知线性方程组 $Ax = \beta$ 的通解为: $\xi_0 + k\xi_1 = (-1,1,0,2)^T + k(1,-1,2,0)^T$, (I) 考察 β 是否可由

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

 $\alpha_1, \alpha_2, \alpha_3$ 线性表出?可以时,写出表达式;不可以时,写出理由;(II)求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta$ 的一个极大无关组。

(21) (本小题满分 11 分)

设A 是n 阶矩阵,A 的第i 行,j 列元素 $a_{ij} = i \cdot j$

(I) 求 r(A); (II) 求 A 的特征值,特征向量,并问 A 能否相似于对角阵,若能,求出相似对角阵,若不能,则说明理由.

(22) (本小题满分 11 分) 设 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < -1 \\ \frac{(x+1)^2}{2}, & -1 \le x < 0 \\ \frac{x+2}{4}, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

试求: (I) 概率 $P\{|X| > 5X - 2\}$; (II) E(2|X| - 1); (III) 函数 $Y = X^2$ 的概率密度.

(23) (本小题满分 11 分)

设总体 X 的概率密度函数为 $f(x) = \begin{cases} C\theta^x \ln \theta, & x \ge 0 \\ 0, & x < 0 \end{cases}$, 其中 θ $(0 < \theta < 1)$ 为未知参数,且

 X_1, \dots, X_n 为 X 的简单随机样本。(I)求常数 C ; (II)求 θ 的最大似然估计 $\hat{\theta}_L$; (III)判断 $\ln(\hat{\theta}_L)^{-1}$ 是否为 $\ln(\theta)^{-1}$ 的无偏估计。

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017年全国硕士研究生入学统一考试

数 学(一)

(科目代码:304)

(模拟试卷3)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

第1页共4页

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017 年全国硕士研究生入学统一考试

数学一(模拟 3)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

一、选择题: 1~8 小题,每小题 4 分,共 32 分.下面每小题给出的四个选项中,只有一个选项符合要求, 将所选项前的字母填在答题纸指点位置上。

(1). 设
$$f(x) = \lim_{n \to \infty} \frac{\sqrt[n]{1 + x^{2n}}}{1 + x^n} \sin \pi x$$
,则 $f(x)$ 在 $(-\infty, +\infty)$ 内 ()。

- (C) 有两个点处不可导

- (3) 下列结论中正确的是()。
 - (A) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,且 $\lim_{n\to\infty} \frac{v_n}{u_n} = 1$,则级数 $\sum_{n=1}^{\infty} v_n$ 必收敛
 - (B) 若正项级数 $\sum_{n=1}^{\infty} u_n$ 满足 $\lim_{n\to\infty} \frac{u_{2n+2}}{u_{2n+1}} = 2017$,则级数 $\sum_{n=1}^{\infty} u_n$ 必发散
 - (C) 若 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 均为条件收敛级数,则 $\sum_{n=1}^{\infty} (u_n + v_n)$ 必为条件收敛级数
 - (D) 若级数 $\sum_{i=1}^{\infty} (u_{2n-1} + u_{2n})$ 发散,则级数 $\sum_{i=1}^{\infty} u_{n}$ 必发散
- (4) 设区域 D 由 $y \le 4 x^2$, $y \ge -3x$, $x \le 1$,则积分 $\iint x[\ln(y + \sqrt{1 + y^2}) + 1]dxdy = ($

$$(A) \frac{2}{5}$$

$$\alpha = \frac{2}{3}$$

$$D(-\frac{1}{2})$$

$$|A_{n\times n}| = \begin{vmatrix} 0 & 0 & \cdots & 0 & -1 \\ -1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \end{vmatrix}, \quad A_{ij}$$
为元素 a_{ij} 的代数余子式,则 $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$ 等于()

- (A) -n (B) n (C) $-n^2$ (D) n^2

(6) 设
$$\alpha_1 = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$, 则三个平面 $a_1x + b_1y + c_1z + d_1 = 0$,

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

 $a_{2}x+b_{3}y+c_{3}z+d_{2}=0$, $a_{3}x+b_{3}y+c_{3}z+d_{3}=0$ 两两相交成三条平行直线的充分必要条件是(

(A)秩
$$r(\alpha_1,\alpha_2,\alpha_3)=1$$
; 秩 $r(\alpha_1,\alpha_2,\alpha_3,\alpha_4)=2$;

- (B) $\Re r(\alpha_1, \alpha_2, \alpha_3) = 2$; $\Re r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3$;
- (C) $\alpha_1, \alpha_2, \alpha_3$ 中任两个向量均线性无关,且 α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出;
- (D) $\alpha_1, \alpha_2, \alpha_3$ 中任两个向量均线性无关,且 α_4 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出。
- (7) 设X与Y 为随机变量且 $P{X \le c} = P{Y \le c} = 0.4$, $P{\max{X,Y} > c} = 0.5$,则概率 $P\{\min\{X,Y\} \le c\} = ().$
- (A) 0.1 (B) 0.3 (C) 0.5 (D) 0.9(8) 设二维随机变量 $(X,Y) \sim N(1,0; 1,1; 0)$,则方差D(XY-X) = (
 - (A) 1 (B) 0
- (C) 2
- (D) 3

二、填空题: 9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指点位置上.

(9)
$$\lim_{n\to\infty} \left(\cos\frac{1}{e} + \cos\frac{2}{e^2} + \dots + \cos\frac{n}{e^n}\right)^{\frac{1}{n}} = \underline{\qquad}$$

(10). 设 f(x) 在[0,2] 有定义,且对任给的 $x \in (0,2)$ 以及 $x + \Delta x \in (0,2)$,均有

$$f(x+\Delta x)-f(x)=\frac{1-x}{\sqrt{2x-x^2}}\Delta x+o(\Delta x)$$
, $\mathbb{H} f(0)=0$, $\mathbb{M} \int_0^2 f(x) dx = \underline{\qquad}$.

(11)、微分方程
$$y'' + \frac{{y'}^2}{1-y} = 0$$
, $y(0) = 0$, $y'(0) = -1$ 的特解 $y = \underline{\hspace{1cm}}$.

(12) 设
$$f(x) = 5 \arctan \frac{1+x}{1-x} + \frac{x}{1+x^2}$$
, 则 $f^{(5)}(0) =$ _____.

- (13).设3阶实对称矩阵 A 满足 $A^2+A-2E=0$ 且 R(A-E)=1,则|A-E|=______。
- (14) 设 $X_1, ..., X_n$ 来自 Pisson 分布 $P(\lambda)$ 的独立同分布样本,由大数定律可知, $Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ 依概率 收敛于
- 三、解答题: 15~23 小题, 共94 分。解答应写出文字说明、证明过程或演算步骤。

(15). (本小题满分10分)

选择常数 a,b,c 的值,使得当 $x \to 0$ 时函数 $a+bx-(1+c\sin x)e^x$ 是 x^3 的高阶无穷小.

(16). (本小题满分10分)

求函数 f(x, y) = x(y-1) 在 $D = \{(x, y) | x^2 + y^2 \le 3, y - x \ge 0\}$ 上的最大值与最小值。

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(17) (本小题满分 10 分)

设幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{4n-3}{n(2n-1)} x^{2n}$$
 , 试求: (I) 收敛半径与收敛域; (II) 和函数 $S(x)$ 。

(18) (本小题满分 10 分)

设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导, f(a) = a,且 $\int_a^b f(x) dx = \frac{1}{2} (b^2 - a^2)$ 。证明: (I) $\exists \xi \in (a,b)$ 内,使 $\xi = f(\xi)$;(II) 在 (a,b) 内存在与(I) 中的 ξ 相异的点 η 使得 $f'(\eta) = f(\eta) - \eta + 1$

(19) (本小题满分 10 分)

计算曲面积分 $\iint_{\Sigma} 2x dy dz + (z+3-y) dx dy$ 其中曲面 Σ 是由 yox 面上 $z=y^2+1$ 绕 z 轴旋转一周,再沿 y 轴平移一个单位后所成曲面被平面 2y+z=3 截得部分的上侧。

(20) (本小题满分 11 分)

设 A 是三阶矩阵, $b = (9,18,-18)^T$,方程组 Ax = b 有通解 $k_1(-2,1,0)^T + k_2(2,0,1)^T + (1,2,-2)^T$,其中 k_1,k_2 是任意常数。(1)求 A。 (2)求 A^{100} 。

(21) (本小题满分11分)

已知三元二次型 $x^T A x$ 的平方项系数均为 0,设 $a = (1, 2, -1)^T$ 且满足A a = 2a.

- (I) 求该二次型表达式; (II) 求正交变换x = Qy化二次形为标准型,并写出所用坐标变换;
- (III) 若 A + kE 正定,求 k 的取值。

(22) (本小题满分 11 分)

设随机变量 (ξ,η) 的联合分布律右图,

$$\Rightarrow X = \min\{\xi, \eta\}, Y = \max\{\xi, \eta\}$$

试求: (I) (X,Y) 联合分布律; (II) Y=1时, X 的条件分布律: (III) 协方差 COV(X,X+2Y)

ξ	-1	0	1	
-1	0.1	0.2	0.1	
1	0.4	0.1	0.1	

(23)(本小题满分11分)

设 X_1,\ldots,X_n 是来自总体X的简单随机样本,且 $Y=\ln X$,而Y的概率密度函数为

$$f(y) = \begin{cases} \lambda y e^{-\lambda y}, & y \ge 0 \\ 0, & y < 0 \end{cases}, \quad (\text{\sharp} \text{\sharp} \lambda > 1)$$

试求: (I) 均值 E(X): (II) λ 的最大似然估计: (III) b = E(X) 的最大似然估计

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017年全国硕士研究生入学统一考试

数 学(一)

(科目代码:304)

(模拟试卷 4)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017 年全国硕士研究生入学统一考试

数学一(模拟四)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

- 一、选择题: 1~8 小题、每小题 4 分、共 32 分. 下面每小题给出的四个选项中, 只有一个选项符合要求, 将所选项前的字母填在答题纸指点位置上.
- (1) 设 f(u) 为可导函数,曲线 $y = f(1+x^2)$ 过点 (1,4),且它在点 (1,4) 处的切线过点 (0,0),那么 函数 f(u) 在 u = 2 处当 u 取得增量 $\Delta u = 0.01$ 时相应的函数值增量的线性主部是().
- (B) 0.02
- (C) -0.04
- (2) 设积分 $I = \int_0^{+\infty} \frac{1}{(1+x^a)\ln(1+x^b)} dx$, 其中 a > 0, b > 0, 若该积分收敛,则必有 ().
 - (A) a > 1, b > 1
- (B) a < 1, b > 1 (C) a > 1, b < 1 (D) a < 1, b < 1
- (3) 设函数 f(x) > 0, 区域 $D = \{(x, y) | x^2 + y^2 \le x + y \}$, 则积分 $\iint_D \frac{af(x) + bf(y)}{f(x) + f(y)} dx dy = \underline{\qquad}$

 - (A) $\frac{a+b}{2}$ (B) $\frac{\pi}{8}(a+b)$ (C) $\frac{\pi}{2}(a+b)$ (D) $\frac{\pi}{4}(a+b)$
- (4) 设 f(x,y) = g(x,y)|x-y|, g(x,y) 在 点 (0, 的 某 邻 域 内 连 续 ,则 g(0,0) = 0 是 $f'_{\mathbf{r}}(0,0), f'_{\mathbf{r}}(0,0)$ 存在的 () 条件。

- (A) 充分必要 (B) 必要非充分 (C) 充分非必要 (D) 非充分且非必要
- (5) 设三阶矩阵 A 的特征值为 0,2,-2,则下列结论中正确的个数为 ().
 - ① *A* 不可逆;

- ② A 的主对角线元素之和为0;
- ③ A 的特征值 2, -2 所对应的特征向量正交; ④ Ax = 0 的基础解系中含有一个解向量.

- (**B**) 2
- (C) 3
- (D) 4
- (6) 设矩阵 $A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{pmatrix}$,则下列矩阵中与矩阵 A等阶、合同但不相似的是

 $P(AB \mid A \cup B) = ($

- (A) 0.25
- (B) 0.44 (C) 0.50 (D) 0.16
- (8) 设 X_1, \ldots, X_n 为相互独立同分布随机变量序列,且f(x), F(x)是概率密度函数与分布函数,且f(x)连续,则随机变量 $Z = \min\{X_1, \dots, X_n\}$ 的密度函数 $f_z(z) = 0$
 - (A) $n[1-F(z)]^{n-1}f(z)$
- (B) $n[1-F(z)]^n f(z)$
- (C) $n[1-f(z)]^{n-1}F(z)$
- (D) $n[1-f(z)]^{n-1}f(z)$

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

二、填空题: 9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指点位置上.

- (10).设f(x)在[0,+∞)上为连续函数,且对于x>0满足等式

$$\int_0^{x^2+2x} f(u) du = \lim_{t \to x} \frac{e^{-t^2} \ln(1+t-x)}{\sin(x-t)},$$

则 f(3) =______.

- (11) 设方程 $F(t^2-x^2,t^2-y^2,t^2-z^2)=0$ 确定了 t 为 x,y,z 的非零函数,其中 F 为可微函数,且 $F_1'+F_2'+F_3'\neq 0$,则当 $xyz\neq 0$ 时, $\frac{t}{x}\frac{\partial t}{\partial x}+\frac{t}{y}\frac{\partial t}{\partial y}+\frac{t}{z}\frac{\partial t}{\partial z}=$ ______.
- (12) 微分方程 $\frac{2x}{y^3} dx + \frac{y^2 3x^2}{y^4} dy = 0$ 的通解为______.
- (13) 已知 A、B 为三阶相似矩阵, λ_1 =1, λ_2 =2 为 A 的两个特征值, |B| = 2,则 $\begin{vmatrix} (A+E)^{-1} & 0 \\ 0 & (2B)* \end{vmatrix}$ = ____
- 三、解答题: 15~23 小题, 共94分。解答应写出文字说明、证明过程或演算步骤。

(15). (本小题满分10分)

过点(1,5)作曲线 $C: y = x^3$ 的切线,设切线为l.(I)求l的方程;(II)求l与曲线C所围成的图形D的面积;(III)求图形D位于y轴右侧部分绕y轴旋转一周所形成的旋转体的体积。

(16). (本小题满分 10 分)

已知 F(x) 是 f(x) 的一个原函数,而 F(x) 是微分方程 $xy' + y = e^x$ 满足初始条件 $\lim_{x \to 0} y(x) = 1$ 的解,试将 f(x) 展开成 x 的幂级数,并求 $\sum_{n=1}^{n} \frac{n}{(n+1)!}$ 和。

(17) (本小题满分 10 分)

设有 Γ : $\begin{cases} x^2 + y^2 + z^2 = 3x \\ 2x^2 - 3y^2 + 5z^2 = 4 \end{cases}$ 。(I) 求 Γ 在P(1,1,1)处的切线方程;(II) 求常数a,b的值,使该切线在平面x + ay + bz + 3 = 0上。

(18) (本小题满分10分)

设
$$0 < a < b < 2$$
, 证明: $be^{-b} - ae^{-a} > \frac{1}{e^2}(a - b)$.

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(19) (本小题满分 10 分)

计算曲面积分
$$I = \iint_{\Sigma} \frac{x^2 dy dz + (1-y^3) dz dx + (2y^2z-z^2) dx dy}{y-x^2-z^2}$$
, 其中: Σ为曲线
$$\begin{cases} z = \sqrt{y+1} \\ x = 0 \end{cases}$$

介于 y = -1, y = 1 部分绕 y 轴旋转形成的曲面,其法向量正向与 y 轴夹角大于 $\frac{\pi}{2}$.

(20) (本小题满分 11 分)

己知线性方程组

(I)
$$\begin{cases} x_1 - x_2 + 3x_3 - 2x_4 = 0 \\ x_1 + x_2 - x_3 - 6x_4 = 0 \end{cases}$$
 与 (II)
$$\begin{cases} 3x_1 + ax_2 + x_3 - 2x_4 = 0 \\ 2x_2 - 5x_3 + (a - 1)x_4 = 0 \text{ 有非零公共解, (1) 求常数} \ a \circ (2) \ \vec{x} \\ x_1 - x_2 + 2x_3 = 0 \end{cases}$$

所有非0公共解。

(21) (本小题满分 11 分)

已知矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$$
 与对角矩阵相似。

(1) 求坐标变换 X = CY, 化二次型 $f = X^T A X$ 为标准形; (2) 指出 $X^T A X = 0$ 表示什么曲面。

(22) (本小题满分11分)

设随机变量
$$X \sim e(\lambda)$$
 ($\lambda=1$ 的指数分布),且 $Y=\begin{cases} X, & |X|\leq 1\\ -X, & |X|>1 \end{cases}$,试求:(I)概率 $P\{Y\leq \frac{1}{2}\}$

(II) Y 的分布函数 $F_v(y)$; (III) 数学期望 E(XY)

(23)(本小题满分11分)

设正态总体 $X \sim N(\mu_0, \sigma^2)$,其中 μ_0 为已知常数, X_1, \cdots, X_n 是 X 的简单随机样本,而 $\Phi(x)$ 是标准正态分布的分布函数,试求(I) 参数 σ^2 的最大似然估计 $\hat{\sigma}^2$;(II) $\theta = P\{X - \mu_0 \le 1\}$ 最大似然估计;(III)方差 $D(\hat{\sigma}^2)$

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2017年全国硕士研究生入学统一考试

(科目代码:304)

数 学(一)

(模拟试卷 5)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

第1页共4页

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

2017 年全国硕士研究生入学统一考试

数学一(模拟 5)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

一、选	选择题:	1~8 小题	, 每小题 4	分,共32分.	下面每小	题给出的四个	个选项中,	只有一个	选项符合	; 要求,
将所说	选项前的]字母填在答	\$题纸指点	位置上.						

- (1). 设有曲线 $y = \ln x$ 与 $y = kx^2$, 当 $k > \frac{1}{2a}$ 时,它们之间 ().
 - (A) 没有交点
- (B) 仅有一个交点 (C) 有两个交点 (D) 有三个交点
- (2). 积分 $I = \int_{a}^{a+2\pi} \ln(1+e^{\cos x})\cos x \, dx$ 的值()。
 - (A) 是与 a 无关的正常数
- (B) 是与 a 无关的负常数

(C) 恒为零

- (D) 不为常数
- (3) 设正项数列 $\{a_n\}$ 单增有界,则下列结论正确的是(
 - (A) $\sum_{n=1}^{\infty} (1 \frac{a_n}{a_{n+1}})$ 收敛. (B) $\sum_{n=1}^{\infty} (\frac{a_{n+1}}{a_n} 1)$ 发散. (C) $\sum_{n=1}^{\infty} \frac{a_n}{a_{n+1}}$ 收敛 (D) $\sum_{n=1}^{\infty} (a_n a_{n+1})$ 发散.

- (4) 设 $f_x(x_0,y_0)=0$, $f_y(x_0,y_0)=0$, 则 ().
 - (A) $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y)$ 存在
 - (B) $f(x, y_0)$ 在 x_0 连续, $f(x_0, y)$ 在 y_0 连续
 - (C) $df(x, y)|_{(x_0, y_0)} = 0$
- (D) f(x, y) 在 (x_0, y_0) 沿任意方向的方向导数为 0
- (5) 已知 $\alpha_1, \alpha_2, \alpha_3$ 为3维列向量, $A = (\alpha_1 \quad \alpha_2 \quad \alpha_3)$,且|A| = -1

 $B = (\alpha_1 + \alpha_2 + \alpha_3, \quad \alpha_1 + 3\alpha_2 + 9\alpha_3 \quad \alpha_1 + 4\alpha_2 + 16\alpha_3), \quad \emptyset |B| = (\alpha_1 + \alpha_2 + \alpha_3), \quad \emptyset |B| = (\alpha_1 + \alpha_3), \quad \emptyset |B| = (\alpha_1$ (A)3(D) -6

(6) .设 A 是三阶方阵, $\lambda_1=1,\lambda_2=-2,\lambda_3=-1$ 为其三个特征值,对应的特征向量依次为 a_1 , a_2 , a_3 令 $P = (3a_2, 2a_3, -a_1), \text{ } p^{-1}(A^* + E)P = ()$

$$\text{(A)} \begin{pmatrix} 0 & & \\ & -1 & \\ & & 3 \end{pmatrix} \quad \text{(B)} \begin{pmatrix} 3 & & \\ & 0 & \\ & & -1 \end{pmatrix} \quad \text{(C)} \begin{pmatrix} 1 & & \\ & 2 & \\ & & -1 \end{pmatrix} \quad \text{(D)} \begin{pmatrix} -2 & & \\ & -1 & \\ & & 1 \end{pmatrix}$$

(7)设口袋中有10个球,其中有3个红球其它均为白球,先任取一个球后,在剩下的球中任取两个均 为自球,则先取的为红球的概率为().

- (B) $\frac{7}{12}$
- (C) $\frac{3}{10}$ (D) $\frac{5}{12}$

(8) 已知随机变量X与Y独立,其分布函数分别是

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

$$F_{1}(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1 \end{cases} \qquad F_{2}(y) = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{\frac{y^{2}}{2}} dy - \infty < \text{ such that } y + \infty,$$

$$1, \quad x \ge 1$$

则Z = X + Y的分布函数 $F_z(x) = ($

- (A) $F_1(x) + F_2(x)$, (B) $\frac{1}{2}F_1(x) + \frac{1}{2}F_2(x)$, (C) $\frac{1}{2}F_1(x) + \frac{1}{2}F_2(x-1)$, (D) $\frac{1}{2}F_2(x) + \frac{1}{2}F_1(x-1)$,

二、填空题: 9~14 小题,每小题 4 分,共 24 分。请将答案写在答题纸指点位置上.

- (9) $\lim_{x\to 0} \frac{e^{\sin x} e^{\tan x}}{x(\sec x \cos x)} = \underline{\qquad}$
- (10) $\therefore \ \ \, \forall f'(e^x) = \begin{cases} x+1, & x \in (-\infty,0], \\ 1, & x \in (0,+\infty), \end{cases} \ \ \, \not T(1) = 0, \ \ \, \not \square f(x) = \underline{\qquad} \ \, .$
- (11) 微分方程 $x^2y'' + 3xy' + y = 0$ 有极值 y(1) = 2 的特解为 _____
- (12) 将直角坐标系下的二次积分 $I = \int_0^1 dy \int_{-\sqrt{y}}^{\sqrt{y}} f(x,y) dx + \int_1^{+\infty} dy \int_{-y}^{y} f(x,y) dx$ 化为极坐标系下的二 次积分为
- (13) 已知三阶方阵 A, B满足关系式 E + B = AB, A的三个特征值分别为 3, -3, 0, 则 $\left| B^{-1} + 2E \right| = \underline{\qquad \qquad }.$
- (14) 设正态总体 $X \sim N(\mu, 1)$, 且对一简单随机样本值 x_1, \dots, x_n , 经计算知样本均值 $\overline{x} = 20$, 设置信 水平 $1-\alpha=0.95$ 时,已知参数 μ 的双侧置信区间的下限为 19.59,则样本容量 n= _______ (其中 α =0.05时,上侧分位点 $u_{\alpha/2}$ =1.64)。
- 三、解答题: 15~23 小题, 共 94 分。解答应写出文字说明、证明过程或演算步骤。
- (15)(本小题满分 10 分)

设
$$f(x) = \begin{cases} ax + x^c \sin \frac{1}{x}, & x > 0, \\ \lim_{n \to \infty} (\frac{n+2x}{n-x})^n + b, & x \le 0, \end{cases}$$
 , 若 $f(x)$ 在 $(-\infty, +\infty)$ 内可导,试确定常数 a, b, c 的取值情况.

(16) (本小题满分 10 分)

设函数 f(u,v) 具有二阶连续偏导数,若函数 z=z(x,y) 由方程 $z-f(x^2+y^2,z)=xy$ 决定,且 $f_{v}'(u,v) \neq 1$ 时,(I)求全微分 dz;(II) 若函数 z = z(x,y)在(1,1)处取得极值,求 $\frac{\partial^{2} z}{\partial x \partial v}$.

(17) (本小题满分 10 分)

设 f(x) 在 $(-\infty, +\infty)$ 连续,且满足 $f(x) = \sin x + \int_0^x t f(x-t) dt$.求证(I)级数 $\sum_{t=0}^{\infty} (-1)^t f(\frac{1}{t})$ 收 敛; (II) 级数 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 发散。

2017 数学考研模拟试卷

合肥工业大学(共创)考研辅导中心

Tel: 0551-62905018

(18) (本小题满分 10 分)

设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0) f(1) > 0, f(0) $f(\frac{1}{2}) < 0$,证明:

(I)在(0,1)内存在两个不同的点 ξ , η 使得 $f(\xi) = f(\eta) = 0$;(II) $\exists \zeta \in (0,1)$ 使得 $f'(\xi) + \xi f(\xi) = 0$.

(19) (本小题满分10分)

设 x>0 时 f(x) 有连续的导数,且 $f'(0^+)=0$,如果对于半空间 x>0 内的任意光滑封闭曲面 Σ 均 有 $\iint (xf(x)-xy)dydz+(yf(x)+y^2z)dzdx+(yz-yz^2-x^2z)dxdy=0$,

(I) 求 f(x) 的表达式; (II) 若 Σ 为曲面 $z=1+\sqrt{1-x^2-y^2}$ 的上侧,求该积分的值。

(20) (本小题满分 11 分)

已知齐次方程组 Ax=0为 $\begin{cases} x_1+a_2x_2+a_3x_3+a_4x_4=0\\ a_1x_1+4x_2+a_2x_3+a_3x_4=0\\ 2x_1+7x_2+5x_3+3x_4=0 \end{cases}$, 有矩阵 B 是 2×4 矩阵, Bx=0的基础解

系为 $a_1 = (1 -2 3 -1)^T$, $a_2 = (0 1 -2 1)^T$;

(I) 求矩阵 B; (II) 若 Ax = 0 与 Bx = 0 同解,求 a_1, a_2, a_3, a_4 的值; III) 求方程组 Ax = 0 满足 $x_3 = -x_4$ 所有解。

(21) (本小题满分 11 分)

已知二次型 $f(x_1 x_2 x_3) = x^T A x$ 通过正交变换 x = U y 化为标准形: $2y_1^2 + 2y_2^2$,且线性方程组 A x = 0 有解 $\xi_3 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$ (I) 求所作的正交变换; (II) 求该二次型

(22) (本小题满分 11 分)

设二维随机变量 (X,Y) 的联合密度函数为 f(x,y)= $\begin{cases} Cy,\ x^2 < y < x \\ 0, \quad others \end{cases}$,试求:(I)边缘密度函数 $f_X(x)$;(II)X=X-Y的密度函数 $f_Z(z)$;

(23)(本小题满分11分)

设总体 X 的概率密度函数为 $f(x; \theta) = \begin{cases} 2e^{-2(x-\theta)}, & x \ge \theta \\ 0, & x < \theta \end{cases}$, 且 X_1, \dots, X_n 是 X 的简单随机样本,

试求: (I) 参数 θ 的矩估计; (II) θ 的最大似然估计 $\hat{\theta}_i$; (III) 概率 $P\{\hat{\theta}_i \leq 2\theta\}$