Maestría en Inteligencia Artificial y Ciencia de Datos

García Muñoz, Marko D; Herrera Rivera, Jorge A; Torres Polanco, Cristhian A

Informe Técnico – Proyecto ETL y Análisis Exploratorio de Datos de Dengue

Repositorio GitHub: https://github.com/cristhianalextorres/etl_project.git

Descripción del Proyecto

El proyecto desarrolla un proceso ETL (Extract, Transform, Load) orientado a la gestión y análisis de información epidemiológica sobre casos de dengue en Colombia. El flujo se implementa en Python utilizando SQLite como motor de base de datos local, garantizando trazabilidad, modularidad y reproducibilidad.

El propósito general es automatizar la integración, limpieza y almacenamiento de datos provenientes de fuentes estructuradas, para posteriormente habilitar su análisis exploratorio y visualización en etapas analíticas posteriores.

La arquitectura del proyecto incluye los siguientes componentes principales:

- Módulo de extracción (Extract): lectura de los archivos de origen, validación de estructura y conteo de registros.
- **Módulo de transformación (Transform):** estandarización de campos, normalización de tipos de datos y depuración de registros inconsistentes o nulos.
- **Módulo de carga (Load):** inserción controlada de los datos validados en la base dbProject.db, dentro de la tabla datos_dengue.
- **Módulos complementarios:** manejo de logging, monitoreo de ejecución y verificación de métricas de calidad del proceso.

En conjunto, el flujo ETL asegura que los datos almacenados sean limpios, consistentes y auditables, permitiendo su posterior uso en análisis descriptivos y modelos de aprendizaje automático.

1. Estructura del Proyecto

a. consultas/

Contiene los scripts SQL necesarios para la creación de tablas y estructuras de la base de datos:

datos_dengue.sql \rightarrow define la estructura de la tabla principal con los campos del evento dengue.

```
CREATE TABLE IF NOT EXISTS datos_dengue (
    consecutive INTEGER,
    cod_eve INTEGER,
    fec_not TEXT,
    semana INTEGER,
    ano INTEGER,
```

etl_monitor.sql → define la tabla encargada de registrar las métricas y monitoreo del proceso ETL.

b. data/

La carpeta data la encuentra en el enlace porque es muy pesado. Este directorio donde se almacenan los archivos de datos y la base de datos generada:

https://drive.google.com/drive/folders/1yXFmbg-YAtsJxkfk29I1 0KQDHAcgtmZ?usp=sharing

Datos_Dengue.csv → archivo fuente con la información bruta del evento dengue.

dbProject.db \rightarrow base de datos SQLite resultante del proceso ETL, donde se cargan las tablas procesadas.

c. logs/

Carpeta destinada a registrar la trazabilidad del proceso:

etl. $\log \rightarrow$ archivo de registro donde se almacenan eventos, errores y resultados de cada ejecución del ETL.

d. src/

Contiene el código fuente modular del proyecto. Cada archivo implementa una parte del flujo ETL:

extract.py → lee los datos desde el archivo CSV y valida su estructura.

transform.py → limpia, estandariza y transforma los datos para su correcta carga.

```
class Transformer:

return None

def normalize_df(self, df: pd.DataFrame) -> pd.DataFrame:

# Renombrar por allas

rename map = {c: ALIASES[c] for c in df.columns if c in ALIASES}

df = df.rename(columns=rename_map)

# Solo columnas esperadas y agregar faltantes

keep = [c for c in EXPECTED_COLS if c in df.columns]

df = df[keep].copy()

for c in EXPECTED_COLS:

if c not in df.columns:

df[c] = None

df = df[EXPECTED_COLS]

# Normalizar fechas y booleanos

for c in DATE_COLS:

df[c] = df[c].map(self.to_iso_date)

for c in BOOLEAN_COLS:

df[c] = df[c].map(self.to_bool_int)

for c in TXT:

if c in df.columns:

df[c] = df[c].astype("string").str.strip()

return df
```

load.py → inserta los datos transformados en la base de datos SQLite.

logger.py → gestiona el registro de eventos y errores durante la ejecución.

monitor.py \rightarrow almacenas métricas de rendimiento y resultados en la tabla etl_monitor.

schema.py \rightarrow define la estructura de las tablas en la base de datos.

```
schema.py > ...
EXPECTED_COLS = [
    "consecutive", "cod_eve", "fec_not", "semana", "ano", "cod_pre", "cod_sub", "edad", "uni_med",
    "nacionalidad", "nombre_nacionalidad", "sexo", "cod_pais_o", "cod_dpto_o", "cod_mun_o", "area",
    "ocupacion", "tip_ss", "cod_ase", "per_etn", "gru_pob", "nom_grupo", "estrato", "gp_discapa",
    "gp_desplaz", "gp_migrant", "gp_carcela", "gp_gestan", "sem_ges", "gp_indigen", "gp_pobicfb",
    "gp_mad_com", "gp_desmovi", "gp_pseaton", "sem_ges", "gp_indigen", "gp_pobicfb",
    "gp_mad_com", "gp_desmovi", "gp_pseaton", "sem_ges", "per_toros", "fuente", "cod_pais_r",
    "cod_dpto_r", "cod_mun_r", "cod_mun_n", "fec_con", "ini_sin", "tip_cas", "pac_hos",
    "fec_hos", "con_fin", "fec_def", "jecha_nto", "cer_def", "comter_", "fec_aiu",
    "fm_fuerza", "fm_unidad", "fm_grado", "confirmados", "consecutive_origen", "v_sispro",
    "estado_final_de_caso", "nom_est_f_caso", "nom_upgd", "pais_ocurrencia", "nombre_evento",
    "departamento_ocurrencia", "municipio_ocurrencia", "pais_residencia", "departamento_residencia",
    "municipio_residencia", "departamento_notificacion", "municipio_notificacion"
]

DATE_COLS = {
    "fec_not", "fec_con", "ini_sin", "fec_hos", "fec_def",
    "fecha_nto", "fec_arc_xl", "fec_aju"
}
```

main.py \Rightarrow orquesta la ejecución completa del proceso ETL (extract, transform, load).

	consecuti# -⇔	cod_eve #-t¤	fec_not -⇔	semana #-⇔	ano #-t¤	cod_pre #-t¤	cod_sub #-₽	edad
	Filte ■⊘①	Filts ■⊘①	Filts ■Ø①	Filts ■⊘①	Filts 🗏 🗸 🛈	Filts 🗏 🗸 🛈	Filte ■⊘①	Filt
1	3076019	210	2010-05-27		2010	7689504656		
2	3076135	210	2010-06-16		2010	6827602278		
3	3076147	210	2010-12-14		2010	800103117		
4	3076156	210	2010-01-20		2010	6800101666		
5	3076182	210	2010-12-03	48	2010	7600103956		
6	3076186	210	2010-05-07		2010	507904806		
7	3076189	210	2010-09-07		2010	500102120		
8	3067261	210	2010-03-12	10	2010	8541000080		
9	3076331	210	2010-03-29		2010	500102178		
10	3067315	210	2010-03-29		2010	5400100603		
11	3067336	210	2010-07-23		2010	6800100431		
12	3067367	210	2010-04-14		2010	1343000056		
13	3067391	210	2010-02-10		2010	5400100603		
14	3067439	210	2010-03-28		2010	7300100956		
15	3067495	210	2010-06-24		2010	842100144		
2	3067516	210	2010-02-19	7	2010	5000100635	1	

test.py \rightarrow contiene pruebas básicas para verificar el correcto funcionamiento de los módulos.

2. EDA_Dengue.ipynb

Notebook de análisis exploratorio de datos (EDA). Permite revisar y visualizar los resultados del proceso ETL mediante gráficos y análisis descriptivos.

3. .env

Archivo que almacena variables de entorno, como rutas o configuraciones de conexión, para mantener la seguridad y portabilidad del proyecto.

4. .gitignore

Lista de archivos y carpetas que no deben ser rastreados por Git (por ejemplo, entornos, logs o bases de datos temporales).