Линейная алгебра

2024 — 2025

Содержание

1	Лекция 2.12.2024
	1.1 Ранг матрицы
	Лекция 9.12.2024 2.1 Различные базисы
	Лекция 16.12.2024 3.1 Линейные отображения - в слайдах

1 Лекция 2.12.2024

1.1 Ранг матрицы

 ${\cal V}$ - векторное пространство над ${\cal F}$

Определение 1. Ранг Матрицы $rk(S) = \max\{|S|, S' \subseteq S, S - \text{линейно независимо}\}$

- 1. Столбцовый Ранг
- 2. Строковый Ранг

Утверждение 1.1. Ранг матрицы равен размерности подпространства

Лемма 1.2. При элементраных преобразованиях строк сохраняются все линейные зависимости между стобцами. rk(A) не меняется при элементарных преобразованиях строк.

$$A \to B: \langle A^{(1)}, \dots, A^{(n)} \rangle = \langle B^{(1)}, \dots, B^{(n)} \rangle$$

Доказательство.

- 1. $B^{(i)} \in \langle A^{(1)}, \dots, A^{(n)} \rangle$
- 2. Так как все элементарные преобразования обратимы, то включение ваерно и в обратную сторону
- 3. Ранг матрицы не меняется при элементарных преобразованиях столбцов
- 4. Строковый ранг матрицы не менчяется при элементарных преобразованиях строк и столбцов

Лемма 1.3 $(rkA = rkA^T)$. Если A имеет улучшенный ступенчатый вид, то $rkA = rkA^T$, причем оба числа равны количеству ненулвеых строк в A

 $oldsymbol{\mathcal{L}}$ оказательство. $\hspace{1.5cm} 1. \hspace{1.5cm}$ Пусть r - число ненулевых строк в A

2. Тогда:

$$e_1, \dots, e_r \subseteq \{A^{(1)}, \dots, A^{(n)}\}, \quad r = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
 $\langle e_1, \dots, e_r \rangle \subset \langle A^{(1)}, \dots, A^{(n)} \rangle$

3. С другой стороны $\forall i : A^{(i)} \in < e_1, \dots, e_r$

$$\Rightarrow < A^{(1)}, \dots, A^{(n)} > \subseteq < e_1, \dots, e_r >$$

4. Получаем:

$$< A^{(1)}, \dots, A^{(n)} > = < e_1, \dots, e_r > \Rightarrow rkA = dim < e_1, \dots, e_r > = r$$

5. Покажем, что $rkA^T=r$. Достаточно доказать, что строки $A^{(i)}$ линейно независимы. Пусть $1\leqslant i_1\leqslant\ldots\leqslant n$ - номера ведущих элементов строк в A и пусть $\alpha_1A_{(1)}+\cdots+\alpha_nA_{(n)}=\vec{0}$ для некоторых $\alpha_i\in F.$ i_k строка координата в левой части равна $\alpha_k\Rightarrow\alpha_k=0$.

Лемма 1.4. rkA равно rkA^T , что также равно количеству ненулевых строк в ступенчатом виде.

Пусть $A \in Mat_n(F)$.

Лемма 1.5. $rkA = n \Leftrightarrow \det A \neq 0$ и $rkA < n \Leftrightarrow \det A = 0$

Доказательство. 1. При приведении A к ступенчатому виду при помощи элементарных преобразованиях строк, rkA не меняется, ведь условие равенства определителя 0 не меняется

- 2. В случае ступенчатого вида $rkA < n \Rightarrow \exists i : A_{(i)} = \vec{0} \Rightarrow \det A = 0$
- 3. В случае ступенчатого вида $rkA = n \Rightarrow$ Матрица является верхнетреугольной $\Rightarrow \det A \neq 0$ (так как элементы на диагонали не равны 0)

Определение 2. *Подматрица матрицы* A - любая матрица, полученная из исходной вычеркиванием каких-то строк и/или столбцов

Лемма 1.6. Ранг подматрицы не больше ранга матрицы

Определение 3. *Минор матрицы* A - определитель произвольной квадратной матрицы, являющейся подматрицей в A

Определение 4. Базисные миноры - Ненулевые миноры в A

Теорема 1.7.

 $\forall A \in Mat_{m \times n}$

Следующие 3 числа равны:

- 1. rkA
- 2. rkA^T
- $\it 3. \,\,$ Наибольший порядок ненулевого минора в $\it A$

Доказательство.

- $1.\,\,$ Мы знаем, что I=II
- 2. Пусть S квадратная подматрица в A, размера r и $\det S \neq 0$. Тогда $r = rkS \leqslant rkA \Rightarrow III \leqslant I$
- 3. Обратно пусть rkA = r. Тогда в A есть r столбцов, которые линейно независимые. Пусть B подмножество в A, составленная из этих столбцов. Тогда $rkB = r \Rightarrow B$ B есть r линейно независимых строк.
- 4. Пусть S подматрица размера r imes r, составленная из этих строк. Тогда $rkS = r \Rightarrow \det S \neq 0 \Rightarrow III \geqslant I$
- 5. III = I

1.2 Применения ранга матрицы к СЛУ

Рассмотрим $Ax = b, A \in Mat_{m \times n}(F), x \in F^n, b \in F^m$

Теорема 1.8 (Теорема Кронекера-Копели). *СЛУ совместна тогда и только тогда* rkA = rk(A|b)

Доказательство.

- 1. множество решений сохранится
- $2. \ rkA$ и rk(A|b) не меняется
- 3. Система случаем, когда (A|b) имеет ступенчатый вид.
- 4. А такая система будет иметь равный ранг, если не будет строк вида $0,\dots,0,b\neq 0$

Теорема 1.9. Пусть СЛУ совместна. Система имеет единственное решение тогда и только тогда rkA = n (n - число независимых)

Доказательство. Снова все сводится к ситуации, когда (A|b) имеет ступенчатый вид; В таком случае решение единственное тогда и только тогда, когда нет свободных переменных, а значит главных переменных ровно n, а значит число ненулевых строк равно $n \Leftrightarrow rkA = n$

Лемма 1.10. Система имеет единственное решение тогда и только тогда, когда определитель не равен 0

Доказательство.

- 1. Единственность решения $\Rightarrow rkA \Rightarrow rkA = rk(A|b) = n$
- 2. $\det A \neq 0 \Rightarrow rkA \Rightarrow rk(A|b) = rkA = n \Rightarrow \mathsf{СЛУ}$ совместна и имеет одно решение

Пусть теперь СЛУ: Ax=0. Пусть $S\subseteq F^n$ - множество ее решений

Лемма 1.11. dimS = n - rkA

2 Лекция 9.12.2024

Предложение.

$$b_1,\ldots,b_p\in F^n$$

$$B = (b_1, \ldots, b_p) \in Mat_{n \times p}(F)$$

Пусть a_1,\ldots,a_q - ФСР для ОСЛУ $B^Tx=0$

$$A = (a_1, \dots, a_q) \in Mat_{n \times q}$$

Тогда (b_1,\ldots,b_p) - множество решений ОСЛУ $A^Tx=0$

Доказательство

- 1. Пусть $S = \{x \in F^n | A^T x = 0\}$
- 2. $\forall i$ имеем $B^T a_i = 0 \Rightarrow B^T A = 0 \Rightarrow A^T B = 0 \Rightarrow \forall j : A^T b_j = 0 \Rightarrow b_1, \dots, b_p \in S \Rightarrow \langle b_1, \dots, b_p \rangle \subseteq S$
- 3. Пусть $r = rk\{b_1, \dots, b_p\} = \dim \langle b_1, \dots, b_p \rangle = rkB = rkB^T$
- 4. При этом rkA = q = n r (Из прошлой лекции)
- 5. Тогда $\dim S = n q = n (n r) = r \Rightarrow \dim S = \dim \langle b_1, \dots, b_p \rangle \rightarrow S = \langle b_1, \dots, b_p \rangle$

Следствие. Всякое подпространство в F^n является множеством решений некоторой ОСЛУ.

2.1 Различные базисы

Пусть V - некоторое векторное пространство над F, пусть $\dim V = n$ Фиксируем некоторый базис (Отныне базисы считаем последовательностью, а не множеством):

$$(e_1 \ldots e_n)$$

Знаем, что $\forall v \in V \exists ! (x_1, \dots, x_n) : x_1 \cdot e_1 + \dots + x_n \cdot e_n = v$

Определение 5. Координатами вектора v называется последовательность скаляров (x_1, \dots, x_n) в базисе (e_1, \dots, e_n)

 Π ример. $V=F^n,v=egin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}\in F^n$, тогда x_1,\ldots,x_n - координаты вектора v в стандартном базисе

Предложение. Пусть $e_1', \dots e_n'$ - какой-то набор векторов из n векторов:

$$e_i' = c_{1i}e_1 + \dots + c_{ni}e_n$$

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C, C = (c_{ij})$$

 (e_1',\ldots,e_n') - базис в V тогда и только тогда $\det C
eq 0$

Доказательство.

- $1. \ (e'_1,\ldots,e'_n)$ базис в V, тогда $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)\cdot C$ для некоторой $C'\in M_n$
- 2. $(e_1, \ldots, e_n) = (e_1, \ldots, e_n) \cdot C \cdot C'$
- 3. Так как векторы e_1, \dots, e_n линейно независимы, то j столбец будет равен столбцу, у которого стоит единственный ненулевой элемент, равный единице на j позиции. Следовательно $C \cdot C' = E \Rightarrow \det C \neq 0$
- 4. Докажем, что e_1', \dots, e_n' линейно независимы (и тогда раз их n штук они образуют базис в V)
- 5. Пусть $\alpha_1 \cdot e_1' + \cdots + \alpha_n \cdot e_n' = 0$, тогда:

$$(e'_1, \dots, e'_n) \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = 0 \Rightarrow (e_1, \dots, e_n) \cdot C \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = 0$$

6. так как
$$e_1,\dots,e_n$$
 линейно независимы, то $C\cdot\begin{pmatrix}\alpha_1\\\vdots\\\alpha_n\end{pmatrix}=0$. Так как $\det C\neq 0$, то $\exists C^{-1}\Rightarrow$, умножая на C^{-1} слева, полученная $\begin{pmatrix}\alpha_1\\\vdots\\\alpha_n\end{pmatrix}=\begin{pmatrix}0\\\vdots\\0\end{pmatrix}$ линейно независимы, то это базис

Определение 6. Пусть (e_1,\ldots,e_n) и (e'_1,\ldots,e'_n) - два базиса в V. $(e_1,\ldots,e_n)=(e'_1,\ldots,e'_n)\cdot C,\ C\in M_n(F),\det C\neq 0$ *Матрицей перехода* от базиса (e_1,\ldots,e_n) к базису (e'_1,\ldots,e'_n) называется матрица C В столбце $C^{(j)}$ записаны координаты вектора e'_i в базисе (e_1,\ldots,e_n) .

Замечание. Из свойства следует, что $(e_1,\dots,e_n)=(e'_1,\dots,e'_n)\cdot C^{-1}$

Предложение.

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$$

Доказательство.

1.
$$v = (e_1 \dots e_n) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (e'_1 \dots e'_n) \cdot \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} = (e_1 \dots e_n) \cdot \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

2. Так как
$$e_1,\dots,e_n$$
 - линейно независимы, то $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$

Предложение. $U,W\subseteq V$ - два подпространства. Тогда $U\cap W$ - тоже подпространство

Определение 7. Суммой двух подпространств называется $U + W = \{u + w | u \in U, w \in W\}$

Замечание. Так как $U \cap W \subseteq U = U + \{0\} \subseteq U + W$, то $\dim U \cap W \leqslant \dim U \leqslant \dim U + W$

Теорема 2.1. $\dim U \cap W + \dim U + W = \dim U + \dim W$ Пример.

- 1. $V = \mathbb{R}^3$, следовательно две любые плоскости содержат общую прямую:
- 2. $\dim U = 2$, $\dim V = 2$, $\dim U + W \leq 3 \Rightarrow \dim U \cap W \geqslant 2 + 2 3 = 1$

Доказательство.

- 1. Пусть $\dim U \cap W = p, \dim U = q, \dim W = r$. Пусть $a = \{a_1, \dots, a_p\}$ базис в $U \cap W$
- 2. Дополним его векторами $b = \{b_1, \dots, b_{q-p}\}$ до базиса в U
- 3. Дополним его векторами $c = \{c_1, \dots, c_{k-p}\}$ до базиса в W
- 4. Докажем, что $a \cup b \cup c$ базис в U+W

(a)
$$U+W=< a\cup b\cup c>$$
. Имеем, что $< a\cup b\cup c>\subseteq U+W$

- (b) $v \in U + W \Rightarrow v = u + w, u \in U, w \in W, u \in U = \langle a \cup b \rangle \subseteq \langle a \cup b \cup c \rangle, w \in W = \langle a \cup b \cup c \rangle \cong \langle a \cup b \cup c \rangle \Rightarrow v = u + w \in \langle a \cup b \cup c \rangle \Rightarrow U + W \subseteq \langle a \cup b \cup c \rangle \Rightarrow v = \langle a \cup b \cup c$
- (c) $a \cup b \cup c$ линейно независимы
- 5. Пусть для некоторых $\alpha_i, \beta_j, \gamma_k \in F$

$$\alpha_1 a_1 + \dots + \gamma_{r-p} c_{r-p} = \vec{0}$$

- 6. $z=-x-y\in U$. Так как $z\in W$, то $z\in U\cap W\Rightarrow z=\lambda_1a_1+\cdots+\lambda_pa_p; \lambda_j\in F\Rightarrow \lambda_1a_1+\cdots+\lambda_pa_p-\gamma_1c_1-\cdots-\gamma_{r-p}c_{r-p}=0$
- 7. Так как $a\cup c$ линейно независимы (базис c в W), то $\lambda_1=\dots=\gamma_{r-p}=0$ и z=0, следовательно $\alpha_1a_1+\dots+\gamma_{r-p}c_{r-p}=0$, так как $A\cup b$ линейно независимы (базис в U), то $\alpha_1=\dots=\beta_{q-p}=0$
- 8. $a\cup b\cup c$ базис в U+W, следовательно $\dim U+W=|a|+|b|+|c|=p+q-p+r-p=\dim U\cap W$

6

3 Лекция 16.12.2024

Лемма 3.1.

V - векторное пространство над полем $F,\dim V<\infty$ $U,W\subseteq V$ - подпространства Новые пространства:

1. $U \cap W$

2.
$$U + W = \{u + w \mid u \in U, w \in W\}$$

Замечание.

$$\dim(U \cap W) + \dim(U + W) = \dim U + \dim W$$

Определение 8.

Пусть U_1, \ldots, U_m - набор подпространтсв Сумма подпространтсв $U_1, dots, U_m$ - это

$$U_1 + \cdots + U_m = \{u_1 + \cdots + u_2 \mid u_1 \in U_1, \dots u_m \in U_m\}$$

Замечание. Сумма подпространств является подпространством.

$$\dim(U_1 + \dots + U_m) \leqslant \dim U_1 + \dots + \dim U_m$$

Определение 9.

Подпространста U_1,\dots,U_k называются линейно независимыми, если $\forall u_1\in U_1,\dots,u_k\in U_k$ из условия $u_1+\dots+u_k=\vec{0}$ следует $u_1=\dots=u_k=\vec{0}$

Пример. $\dim U_i = 1, \ \forall i, U_i = < e_i >$ следует U_1, \dots, U_k линейно независимые, что равносильно линейной независимости e_i

Теорема 3.2.

Слудующие условия эквиваленты:

1. U_1, \ldots, U_k линейно независимые

2. $\forall u \in U_1 + \dots + U_k$: $\exists u_i \in U_i$, такие что $u = u_1 + \dots + u_k$

3. если e_i - базис в U_i , то $e_1 \cup \dots \cup e_k$ - базис в $U_1 + \dots + U_k$

4. $\dim(U_1 + \dots + U_k) = \dim U_1 + \dots + \dim U_k$

5. $\forall i: U_i \cap (\sqcup_{j\neq i} U_j = \{\vec{0}\})$ (Объединение мультимножеств: \sqcup)

Доказательство. $1 \rightarrow 2$

1. Пусть $u \in U_1 + \cdots + U_k$ и существуют 2 представления $u = u_1 + \cdots + u_k = u_1' + \cdots + u_k'$

2. Вычтем: $(u_1 - u_1') + \cdots + (u_k - u_k') = \vec{0} \Rightarrow u_i = u_i'$

Доказательство. $2 \to 3$

1. Пусть $u \in U_1 + \cdots + U_k$ в силу условия 2 $u = u_1 + \cdots + u_k$ (однозначно представлен)

2. Так как e_i - базис в U_i , то всякий u_i - единственным образом представим в виде линейной комбинации векторов из e_i

3. Знаем, что u - однозначно представим в виде линейной комбинации векторов из $\sqcup_i e_i$, следовательно $\sqcup_i e_i$ - базис в сумме

Доказательство. 3 o 4

$$\dim(U_1 + \dots + U_m) = |\sqcup e_i| = |e_1| + \dots + |e_m| = \dim U_1 + \dots + \dim U_k$$

Доказательство. $4 \rightarrow 5$

1.
$$\overline{U_i} = U_1 + \dots + U_{i-1} + U_{i+1} + U_k$$

2.
$$\dim(U_i \cap \overline{U_i}) = \dim U_i + \dim \overline{U_i} - \dim(U_i + \overline{U_i}) \leq \dim U_i + \dim U_1 + \ldots \dim U_k - \dim U_1 - \cdots - \ldots \dim U_k = 0$$

3.
$$\dim(U_i \cap \overline{U_i}) \leq 0$$

Доказательство. $5 \to 1$

1. Пусть $u_1 \in U_1, \dots, u_k \in U_k$, таковы, что $u_1 + u_k = \vec{0}$. Тогда для любого номера $u_i = -u_1 - \dots u_{i-1} - u_{i+1} - \dots u_k \in U_i \cap \overline{U_i} = \vec{0}$

Следствие. Подпространста $U,W\subseteq V$ линейно независимы, что равносильно $U\cap W=\{\vec{0}\}$

Определение 10. Разложение в прямую сумму

Говорят, что векторы разлагаются в прямую сумму своих подпространств U_1, \dots, U_k , если:

$$U_1,\ldots,U_k$$

и обозначают: $U_1\oplus\cdots\oplus U_k$

 Π ример. e_1,\ldots,e_n - базис в V , то $V=< e_1>\oplus\cdots\oplus < e_n>$

Замечание. 1. При k=2

2.
$$V = U_1 \oplus U_2 \Leftrightarrow \begin{cases} V = U_1 + U_2 \\ U_1 \cap U_2 = \vec{0} \end{cases} \Leftrightarrow \begin{cases} \dim V = \dim U_1 + \dim U_2 \\ U_1 \cap U_2 = \{\vec{0}\} \end{cases}$$

3.
$$V = U_1 \oplus U_2 \Rightarrow \forall v \in V : \exists ! u_1 \in U_1, u_2 \in U_2 : V = U_1 + U_2$$

Определение 11. В этой ситуации u_1 проекцией вектора v на подпространтсво U_1 вдоль подпространства U_2

3.1 Линейные отображения - в слайдах