

IIT Madras ONLINE DEGREE

Statistics for Data Science -1

Lecture 4.6: Association between two numerical variables-Covariance

Usha Mohan

Indian Institute of Technology Madras

Measures of association

How do we measure the strength of association between two variables?

- 1. Covariance
- 2. Correlation

Covariance

Covariance quantifies the strength of the linear association between two numerical variables.

Covariance: Example 1

Recall, the association between age and height of a person.

Measuring association: Covariance

Covariance: Example 1

Recall, the association between age and height of a person.

Age (years)	Height (cms)	Deviation of x	Deviation of y
X	у	$(x_i-\bar{x})$	$(y_i - \bar{y})$
1	75		
2	85		
3	94		
4	101		
5	108		
3	92.6		

Age (years)	Height (cms)	Deviation of x	Deviation of y
X	у	$(x_i-\bar{x})$	$(y_i - \bar{y})$
1	75	-2	-17.6
2	85	-1	-7.6
3	94	0	1.4
4	101	1	8.4
5	108	2	15.4

☐ Measuring asssociation: Covariance

Covariance: Example 2

Variables: Age of a car and price of a car

Age (years)	Price (INR lakhs)	Deviation of x	Deviation of <i>y</i>
X	y	$(x_i - \bar{x})$	$(y_i - \bar{y})$
1	6		
2	5		
3	4		
4	3		
5	2		
3	4		

Measuring association: Covariance

Covariance: Example 2

Variables: Age of a car and price of a car

Age (years)	Price (INR lakhs)	Deviation of x	Deviation of y
X	y	$(x_i-\bar{x})$	$(y_i - \bar{y})$
1	6	-2	2
2	5	-1	1
3	4	0	0
4	3	1	-1
5	2	2	-1
3	4		

Association between numerical variables

Measuring association: Covariance

Age	Height	Deviation of x	Deviation of y	
X	y	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i-\bar{x})(y_i-\bar{y})$
1	75	-2	-17.6	
2	85	-1	-7.6	
3	94	0	1.4	
4	101	1	8.4	
5	108	2	15.4	

Association between numerical variables

Measuring asssociation: Covariance

Age	Height	Deviation of x	Deviation of y	
X	у	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i-\bar{x})(y_i-\bar{y})$
1	75	-2	-17.6	35.2
2	85	-1	-7.6	7.6
3	94	0	1.4	0
4	101	1	8.4	8.4
5	108	2	15.4	30.8

Measuring association: Covariance

Age	Price	Deviation of x	Deviation of y	
X	у	$(x_i-\bar{x})$	$(y_i - \bar{y})$	$(x_i-\bar{x})(y_i-\bar{y})$
1	6	-2	2	-4
2	5	-1	1	-1
3	4	0	0	0
4	3	1	-1	-1
5	2	2	-2	-4

Measuring asssociation: Covariance

Key observation

- When large (small) values of x tend to be associated with large (small) values of y- the signs of the deviations, $(x_i \bar{x})$ and $(y_i \bar{y})$ will also tend to be same.
- When large (small) values of x tend to be associated with small (large) values of y- the signs of the deviations, $(x_i \bar{x})$ and $(y_i \bar{y})$ will also tend to be different.

Covariance

Definition

Let x_i denote the i^{th} observation of variable x_i and y_i denote the i^{th} observation of variable y. Let (x_i, y_i) be the i^{th} paired observation of a population (sample) dataset having N(n)observations. The Covariance between the variables x and y is given by

Population covariance:
$$Cov(x, y) = \frac{\displaystyle\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{N}$$

$$\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})$$

Sample covariance: $Cov(x, y) = \frac{i=1}{x}$

Covariance: Example 1

Age	Height	Deviation of x	Deviation of y	
X	y	$(x_i-\bar{x})$	$(y_i - \bar{y})$	$(x_i-\bar{x})(y_i-\bar{y})$
1	75	-2	-17.6	35.2
2	85	-1	-7.6	7.6
3	94	0	1.4	0
4	101	1	8.4	8.4
5	108	2	15.4	30.8
				82

Population covariance: $\frac{82}{5} = 16.4$

Sample covariance: $\frac{82}{4} = 20.5$

Measuring asssociation: Covariance

Covariance: Example 2

Age	Price	Deviation of x	Deviation of y	
X	y	$(x_i-\bar{x})$	$(y_i - \bar{y})$	$(x_i-\bar{x})(y_i-\bar{y})$
1	6	-2	2	-4
2	5	-1	1	-1
3	4	0	0	0
4	3	1	-1	-1
5	2	2	-2	-4
				-10

Population covariance: $\frac{-10}{5} = -2$

► Sample covariance: $\frac{-10}{4} = -2.5$

Association between numerical variables

Units of Covariance

► The size of the covariance, however, is difficult to interpret because the covariance has units.

Units of Covariance

- ► The size of the covariance, however, is difficult to interpret because the covariance has units.
- ► The units of the covariance are those of the *x*-variable times those of the *y*-variable.

Section summary

- 1. Introduced the measure of covariance
- 2. How to interpret the covariance measure