DM1: Optique — corrigé

Problème 1: Réfractomètres

1 Questions préliminaires

- 1. homogène: Milieu identique en tout point.
 - **isotrope** : Toutes les directions sont équivalentes.
 - indice : Dans un milieu d'indice n, la célérité de la lumière est $v = \frac{c}{n}$
- 2. **réflexion**: Le rayon réfléchi est dans le plan d'incidence et i = r (angle d'incidence=angle réflechi)
 - **réfraction**: Le rayon réfracté est dans le plan d'incidence et $n_1 \sin(i_1) = n_2 \sin(i_2)$ (faire un petit schéma pour indiquer ce que sont i_1 , i_2 , n_1 et n_2)

2 Le réfractomètre de Pulfrich

- 1. $n\sin(\pi/2) = N\sin(r)$ donc $r = \arcsin\left(\frac{n}{N}\right)$
- 2. $r' + r = \pi/2$
- 3. La seconde loi de Snell-Descartes donne $\sin(\theta) = N\sin(r') = N\sin(\pi/2 r) = N\cos(r)$. En utilisant $\cos(r) = \sqrt{1 \sin^2(r)}$, on obtient $\sin(\theta) = N\sqrt{1 \frac{n^2}{N^2}}$. Et finalement $\sin(\theta) = \sqrt{N^2 n^2}$
- 4. On trouve $\theta = 62.80^{\circ}$
- 5. Les valeurs extrêmes de l'indice sont celles pour lesquelles $\theta=0$ ou $\theta=\pi/2$. Pour $\theta=0$ On a $n_{\max}=N$ et pour $\theta=\pi/2$ on a $n_{\min}=\sqrt{N^2-1}=1.25$

3 Le réfractomètre d'Abbe

- 1. La somme des angles du triangle de sommet A vaut π . Donc $\pi/2-r_0+\pi/2-r_0'+\theta=\pi$ d'où $r_0+r_0'=\theta$
- 2. La seconde loi de Descartes donne : $n \sin(\pi/2) = N \sin(r_0)$ donc $\sin(r_0) = \frac{n}{N}$.
- 3. $\sin(i'_0) = N \sin(r'_0)$ donc $r'_0 = \arcsin(\sin(i'_0)/N)$. Or

$$n = N\sin(r_0) = N\sin(\theta - r'_0) = N\sin(\theta - \arcsin(\sin(i'_0/N)))$$

4. A.N.: n = 1.238