Introduction to PyTorch

2020 - 2021

Ando Ki, Ph.D. adki@future-ds.com

Table of contents

- What is PyTorch
- PyTorch components
- PyTorch is imperative program
- Three levels of abstraction
- PyTorch tensor v.s. NumPy ndarray
- PyTorch functions, dimensionality
- Building netowrk
- An example of model
- Defining an optimizer
- Save/load models

Copyright (c) Ando Ki

What is PyTorch

- PyTorch is a machine learning Python library, developed by the Facebook Al research group.
 - Based on Torch library
 - Torch is an open-source machine learning library, a scientific computing framework, and a script language based on the Lua programming language.[3] It provides a wide range of algorithms for deep learning, and uses the scripting language LuaJIT, and an underlying C implementation.
- PyTorch is a Python-based scientific computing package targeted at two sets of audiences:
 - A replacement for NumPy to use the power of GPUs → tensor
 - a deep learning research platform that provides maximum flexibility and speed

Copyright (c) Ando K

3

Installing PyTorch

- Visit: https://pytorch.org/get-started/locally/
- Select your preferences and run the install command.
- Run the command

Copyright (c) Ando Ki

▶ note 'conda' is required.

PyTorch components

Component	Description	Package	Description
torch	a Tensor library like NumPy, with strong GPU support	torch The top-level PyTorch package and tensor library.	
torch.autograd	a tape-based automatic differentiation library that supports all differentiable Tensor operations in torch	torch.nn	A subpackage that contains modules and extensible classes for building neural networks.
torch.jit	a compilation stack (TorchScript) to create serializable and optimizable models from PyTorch code	torch.autograd	A subpackage that supports all the differentiable Tensor operations in PyTorch.
torch.nn	a neural networks library deeply integrated with autograd designed for maximum flexibility	torch.nn.functional	A functional interface that contains typical operations used for building neural networks like loss functions, activation functions, and convolution operations.
torch.multiprocessing	Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training DataLoader and other utility functions for convenience	torch.optim	A subpackage that contains standard optimization operations like SGD and Adam.
torch.utils		torch.utils	A subpackage that contains utility classes like data sets and data loaders that make data preprocessing easier.
		torchvision	A package that provides access to popular datasets, model architectures, and image transformations for computer vision.

Copyright (c) Ando Ki

.

PyTorch is imperative program

- Imperative program
 - ► E.g., NumPy, PyTorch
 - ► When the line 'c=b*a' is executed, it actually runs a computation.

import numpy as np a = np.ones(10) b = np.ones(10) * 2 c = b * a d = c + 1

- Symbolic program
 - ► E.g, MXNET, TensorFlow
 - ► When the line 'C=B*A' is executed, no computation occurs.
 - Instead, it generates a computation graph (i.e., a symbolic graph) that represents the computation.
 - It should be compiled and then run it.

Copyright (c) Ando Ki

Levels of abstraction

Tensor

- imperative ndarray can run on GPU/CPU (just like numpy array, but can run on GPU)
 - x = torch.tensor([[1,2,3],[4,5,6]])
- Variable (it is merged to 'Tensor')
 - a wrapper around PyTorch tensor, and represents a computational graph and stores data and gradient
 - class: "torch.autograde.Variable"
 - x = torch.autograd.Variable(x, required_grad=False)

Module

a neural network layer and can store state or learnable weights

Copyright (c) Ando K

- 7

PyTorch tensor v.s. NumPy ndarray

PyTorch 's tensors are very similar to NumPy's ndarrays, but they have a device, 'cpu', 'cuda',

```
>>> t = torch.tensor([1,2,3], device='cpu',
... requires_grad=False,dtype=torch.float32)
>>> print(t.dtype)
torch.float32
>>> print(t.device)
cpu

>>> a = numpy.ones((3,4))
>>> t = torch.from_numpy(a) # get tensor

>>> b = torch.tensor([3,4])
>>> n = b.numpy() # get numpy

>>> c = torch.ones((3,4))
NumPy
```

Copyright (c) Ando Ki

Torch data types

Data Type	T.dtype	T.dtype alias	T.tensor() CPU alias	T.tensor() GPU alias
16-bit floating point	T.float16	T.half	T.HalfTensor()	T.cuda.HalfTensor()
32-bit floating point	T.float32	T.float	T.FloatTensor()	T.cuda.FloatTensor()
64-bit floating point	T.float64	T.double	T.DoubleTensor()	T.cuda.DoubleTensor()
8-bit unsigned integer	T.unint8		T.ByteTensor()	T.cuda.ByteTensor()
8-bit signed integer	T.int8		T.CharTensor()	T.cuda.CharTensor()
16-bit signed integer	T.int16	T.short	T.ShortTensor()	T.cuda.ShortTensor()
32-bit signed integer	T.int32	T.int	T.IntTensor()	T.cuda.IntTensor()
64-bit signed integer	T.int64	T.long	T.LongTensor()	T.cuda.LongTensor()
Boolean	T.bool		T.BoolTensor()	T.cuda.BoolTensor()

Default data type: torch.FloatTensor

Copyright (c) Ando K

q

PyTorch functions, dimensionality

- x.size() #* return tuple-like object of dimensions, old codes
- x.shape # return tuple-like object of dimensions, numpy style
- x.ndim # number of dimensions, also known as .dim()
- x.view(a,b,...) #* reshapes x into size (a,b,...)
- x.view(-1,a) #* reshapes x into size (b,a) for some b
- x.reshape(a,b,...) # equivalent with .view()
- x.transpose(a,b) # swaps dimensions a and b; only two dimenstions
- x.permute(*dims) # permutes dimensions; missing in numpy; more than two dim.
- x.unsqueeze(dim) # tensor with added axis; missing in numpy
- x.unsqueeze(dim=2) # (a,b,c) tensor -> (a,b,1,c) tensor; missing in numpy

Copyright (c) Ando Ki

Tips for Torch

- >>> T = torch.zeros(3,2) # all zeroes >>> X = T.view(2,3) # transpose style >>> T.fill_(1) # in-place tensor([[1,1],[1,1],[1,1]]) >>> X tensor([[1,1,1],[1,1,1]])

 T: Meta data Storage

 X: Meta
- view() returns a new shape of tensor with the same memory.
 - mutable
 - working for contiguous storage
- reshape() returns a copy or a view of the original tensor.
 - working for contiguous or non-contiguous tensor.
 - use clone() if a copy is required.
 - use view() if the same storage.

Convright (c) Ando K

data

Building network (2/3): using Variable

Two-layer net using PyTorch Variable import torch from torch.autograd import Variable H, D out = 64, 1000, 100, 10 create random variables for data and weights x = Variable(torch.randn(N, D_in), requires_grad=False) y = Variable(torch.randn(N, D_out), requires_grad=False) w1 = Variable(torch.randn(D_in, H), requires_grad=True) w2 = Variable(torch.randn(H, D_out), requires_grad=True) learning_rate = 1e-6 for t in range(500): ReLU. y_pred = x.mm(w1).clamp(min=0).mm(w2) Forward pass loss = (y_pred - y).pow(2).sum() SSE compute predictions and loss if w1.grad: w1.grad.data.zero_() Backward pass if w2.grad: w2.grad.data.zero_() manually compute gradients loss.backward() wl.data -= learning rate * wl.grad.data w2.data -= learning rate * w2.grad.data Gradient descent step on weights

Building network (3/3): using Variable Building network using Variable with user defined Autograd function N, D_in, H, D_out = 64, 1000, 100, 10 x = Variable(torch.randn(N, D_in), requires_grad=False) Define own autograd function by writing y = Variable(torch.randn(N, D_out), requires_grad=False) forward and backward for Tensors. w1 = Variable(torch.randn(D_in, H), requires_grad=True) w2 = Variable(torch.randn(H, D_out), requires_grad=True) learning_rate = 1e-6 for t in range(500): relu = ReLU() y_pred = relu(x.mm(w1)).mm(w2) loss = (y_pred - y).pow(2).sum() class ReLU(torch.autograd.Function): def forward(self, x): if w1.grad: w1.grad.data.zero_() self.save_for_backward(x) if w2.grad: w2.grad.data.zero_() return x.clamp(min=0) loss.backward() def backward(self, grad v): w1.data -= learning_rate * w1.grad.data x, = self.saved tensors w2.data -= learning_rate * w2.grad.data grad_input = grad_y.clone() grad_input[x < 0]</pre> return grad_input Copyright (c) Ando Ki

Building network: creating the model using nn (1/2)

- A **model** is of a *nn.Module class* type. A model can contain other models.
 - ▶ The nn.Module's weights as called "Parameters".
 - A nn.Module consists of an initialization of the Parameters and a forward function.

```
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        # structure definition and initialization
    def forward(self, x):
        # actual forward propagation
        result = processing(x)
        return result
```

You don't need to define a backward function!

- Autograded variable will take care of it.

Forward is called many times, expensive objects should not be recreated.

Copyright (c) Ando k

17

Building network: creating the model using nn (2/2)

- Neural networks can be constructed using the torch.nn package.
- Forward
 - An nn.Module contains layers, and a method forward(input) that returns the output
 - ► You can use any of the Tensor operations in the forward function
- Backward
 - nn depends on autograd to define models and differentiate them
 - You just have to define the forward function, and the backward function (where gradients are computed) is automatically defined for you using autograd

Copyright (c) Ando Ki

An example of model


```
import torch
from torch import nn
import torch.nn.functional as F
class Net(nn.Module):
   def __init__(self):
      super(Net, self).__init__()
      self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
      self.conv2 = nn.Conv2d(10, 20, kernel size=5)
      self.mp = nn.MaxPool2d(2)
      self.fc = nn.Linear(320, 10)
   def forward(self, x):
      in_size = x.size(0)
      x = F.relu(self.mp(self.conv1(x)))
      x = F.relu(self.mp(self.conv2(x)))
      x = x.view(in size, -1) # flatten
      x = self.fc(x)
      return F.log_softmax(x)
```

Copyright (c) Ando K

11

Defining an optimizer

```
import torch
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
...
for sample in dataloader:
   input = sample['input'].to(device)
   target = sample['target'].to(device)
   prediction = model(input)
   loss = loss_fn(prediction, target) # target means expected
   optimizer.zero_grad() # clears the gradients
   loss.backward()
   optimizer.step() # performs the optimization
```

Copyright (c) Ando Ki

Save/load models

- Saving and loading can easily be don using "torch.save" and "torch.load"
- PyTorch uses "pickling" to serialize the data.

```
>>> model = Model()
>>> optimizer = optim.SGD(model_parameters(), lr=0.01)
>>> checkpoint = torch.load('state.pth')
>>> model.load_state_dict(checkpoint['model_state'])
>>> optimizer.load_state_dict(checkpoint['optimizer_state'])
```

Copyright (c) Ando H

٠.

Save/load models

- First approach
 - #save only the model parameters
 - torch.save(the_model.sate_dict(), PATH)
 - #load only the model parameters
 - the_model = TheModelCalss(*args, **kwargs)
 - the_model.load_state_dic(torch.load(PATH))
- Second approach
 - #save the entire model
 - torch.save(the_model, PATH)
 - ▶ # load the entire model
 - the_model = torch.load(PATH)

Copyright (c) Ando Ki