DOTE 6635: Artificial Intelligence for Business Research

Final Words

Renyu (Philip) Zhang

1

Session	Date	Topic	Key Words	What Happened in
1	1.14	AI/ML in a Nutshell	Course Intro, Prediction in Biz Research	the Past 3 Months?
2	1.21	Intro to DL	ML Model Evaluations, DL Intro, Neural Nets	
3	2.04	LLM (I)	DL Computations, Attention Mechanism	
4	2.11	LLM (II)	Transformer, ViT, DiT	A lot of Large Language Models.
5	2.18	LLM (III)	BERT, GPT	
6	2.25	LLM (IV)	LLM Pre-training, DL Computations	
7	3.04	LLM (V)	Post-training, Fine-tuning, RLHF, Test-Time Scaling, Inference, Quantization	Decent amount of AI-Powered Causal Inference.
8	3.11	LLM (VI)	Agentic Al, Al as Human Simulators, Applications in Business Research	
9	3.18	Causal (I)	Causal Inference Intro, RCT	Decent amount of their applications in biz/econ research.
10	3.25	Causal (II)	IPW, AIPW	
11	4.01	Causal (III)	Partial Linear Models, Double Machine Learning	
12	4.08	Causal (IV)	Double Machine Learning, Neyman Orthogonality	
13	4.15	Causal (V)	Heterogeneous Treatment Effect, Causal Tree, Causal Forest, Course Wrap-up	
13+	Summer	Course Remake	Synthetic Control, Matrix Completion, LLM x Causal Inference, Interference, etc.	2

Our Goal

- 1. Have a basic understanding of the fundamental concepts/methods in machine learning (ML) and artificial intelligence (AI) that are used (or potentially useful) in business research.
- 2. Understand how business researchers have utilized ML/AI and what managerial questions have been addressed by ML/AI in the recent decade.
- 3. Nurture a taste of what the state-of-the-art AI/ML technologies can do in the ML/AI community and, potentially, in your own research field.

4

Course Takeaways

- The necessary knowledge of AI/ML that could help you:
 - Keep up with the literature development in the relevant domains in both CS and business;
 - Develop the necessary sense to do rigorous business research using the relevant methods;
 - Identify important and interesting questions in your own field where AI technologies are useful;
 - Invent new applied methods (most likely without any theoretical guarantee) in your own research.

Impact of a CS Paper = Problem Importance * Technical Novelty * Performance Improvement

Impact of a Business Paper = Problem Importance * Identification Rigor * Insight Novelty

- · Academic research is a kind of craft: You can only learn by doing it on your own.
 - So, take your final projects seriously!

5

When Will Things Go Wrong?

· Most AI applications are only useful if actionable insights can be derived:

$$\frac{d\pi(X_0, Y)}{dX_0} = \frac{\partial \pi}{\partial X_0} \underbrace{(Y)}_{\text{prediction}} + \frac{\partial \pi}{\partial Y} \underbrace{\frac{\partial Y}{\partial X_0}}_{\text{causation}}.$$

Your prediction of Y is not accurate.

Your causal identification is not clean.

- You should be able to judge whether you should seek for accurate prediction and/or clean identification.
- Empirical model: $Y = a + b \cdot D + g(X) + \epsilon$
 - Key parameter of interest: b
 - If D is predicted by a ML model, the prediction error is likely to be correlated with ϵ , giving rise to the bias to estimate b.
 - If g(X) is predicted by a ML model, you may leverage the DML framework to remove the regularization bias and overfitting bias.

The Bitter Lesson

- References: https://www.youtube.com/watch?v=vbVfAqPI8nq
- The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin.
- Leveraging domain knowledge (short-term & specific) vs. Leveraging computation (long-term & general).

Prof. Richard Sutton

7

What to Expect Next Year?

- · This course will be offered again in the next AY.
- What to expect in Spring 2026:
 - · Reinforcement Learning
 - Agentic AI
- Reading group in Fall 2025:
 - AI Economics, Ethics, Safety, etc.
- · Stay tuned and hope to see you all again!

8

8

Keep in Touch

- · Stay in contact and keep me posted of your academic and career successes.
- Feel free to send me an email/WeChat message. I am always happy to discuss topics related to AI technology, business research, and business.
 - We may work on something interesting together \odot
- Let me know if you need a job referral from me to comment on your academic/career potential.

9

9

Finally

Thank You & All the Best!

Renyu (Philip) Zhang 张任宇

谢谢! 祝前程似锦! Hope to see you all again!