Accelerated Packet Processing Based on Nyidia Bluefield DPU

Day Final - Team 6 NTHU_LSALAB

Team Name

Team 6 NTHU_LSALAB

Mentors

- Kevin Chen
- SungTa Tsai

Members

Dr. Jerry (Chi-Yuan) Chou, NTHU

(Large-scale System Lab)

Ivan Ou, Realtek

Aiden Huang, NTHU (Speaker)

Samuel Ke, CHTTL

Can we accelerate inference server?

Problem the team is trying to solve.

Can we accelerate the inference process?

CPU Packet Processing

Packet processing refers to the operations performed by a processing unit to handle network packets, including tasks such as packet forwarding, classification, inspection, and transformation based on specific protocols or rules.

- The most commonly used processing unit for network tasks is the CPU
- Which works in conjunction with the network subsystem.

The limitations of CPU

Process a packet is a heavy task.

The era of 100Gbps is coming.

Packet Processing on the GPU

Since GPU are strong in processing, the throughput are willing to be raised.

CPU-GPU Based Processing

The devil is in the experiments.

Source:https://www.cs.cmu.edu/~bvavala/misc/project740/15-740_Project_files/Report.pdf

Although it spends less time processing, it has to copy packets to the GPU for processing and copy the results back.

What if, we can transfer packets without CPU?

Data Process Unit

What was your initial strategy?

- Data Processing Unit (DPU) is a pivotal component in the realm of advanced computing architectures.
- A new class of programmable processor and will join CPUs and GPUs as one of the three pillars of computing.

- An enhanced SmartNIC for Network Processing.
- A bridge between NIC to CPU/GPU.

DPU System Architecture

- DPU utilized the same subsystem from existing kernel.
- The best part of DPU is programmable.

Before: CPU-Centric

After: GPU-Centric

The devil is in the experiments again.

What was your initial strategy?

Problem: Web Server consumes CPU resource on inferencing.

Easy, DPU handles everything?

DPU gives you only the possibility.

The devil is in the experiments again.

How did this strategy change?

- 1. Make GPU receive TCP/UDP based packets.
- Conduct a model function on GPU
- 3. Transfer the TCP payload to the GPU and measure its processing efficiency

Build from Scratch

What were you able to accomplish?

device without Dynamic Parallelism

Accelerated Results

Did you achieve a speed up?

GPU Packets processing ability

GPUNetIO reaches the highest throughput with 8 packets. (no optimization)

Packet Processing Results

With 4 queues, speed up to ~23%

Accelerated Results

Did you achieve new scientific goals?

CPU Usage (from interrupt rate)

- GPUNetIO triggers interrupts during the middle of the processing flow, whereas the CPU triggers them at the beginning.
- GPUNetIO-based packet processing occupies a CPU core for DPDK, which seems to consume more resources.
- However, we can clearly observe that the throughput is lower compared to CPU-based packet processing.
- The context switch rate also observed higher CPU, in our estimation, we save 110w generally.

Conclusion

- Due to environmental factors, this experiment primarily used DPU BlueField-2 and DOCA 2.5. However, BlueField-3 is already available on the market, and GPU Direct transfer technology has become more mature and diverse.
- Although there are still some overheads in the Hackathon results, it is undoubtedly an architecture worth focusing on in the foreseeable future.
- Shout out to Kevin and Sungta for their amazing support and guidance!
- Thank you to Nvidia for providing this opportunity to communicate and discuss with frontline professionals.

Thank You OpenACC More Science, Less Programming