Autómatas y Lenguajes formales 2019-2 Ejercicio Semanal 1

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

1 de febrero del 2019

- 1. Demuestre las siguientes propiedades de las operaciones sobre cadenas vistas en clase
 - Identidad $v\epsilon = \epsilon v = v$.

Por como está definida la concatenación, se tiene que $v\epsilon = v$.

Entonces sólo falta verificar que $\epsilon v = v$.

Por inducción sobre v.

- Casp base $v = \epsilon$

Entonces $\epsilon v = \epsilon \epsilon$

Y por la definición de concatenación, $\epsilon \epsilon = \epsilon = v$.

Por lo tanto $\epsilon v = v$

– Paso inductivo, con hipótesis $\epsilon v = v$.

Hay que demostrar que $\epsilon(va) = va$, con a un símbolo del alfabeto de v.

Por la definición de la concatenación, tenemos que $\epsilon(va) = (\epsilon v)a$.

Y usando la hipótesis, = va.

Por lo que $\epsilon(va) = va$

Por lo tanto, $v\epsilon = v = \epsilon v$

• Longitud |vw| = |v| + |w|.

Por inducción sobre w.

– Caso base $w = \epsilon$

Entonces $vw = v\epsilon = v$

Y por la definición de longitud

$$|vw| = |v| = |v| + 0 = |v| + |\epsilon| = |v| + |w|$$

– Paso inductivo, con hipótesis |vw| = |v| + |w|.

Hay que demostrar que |v(wa)| = |v| + |wa|, con a un símbolo del alfabeto de v.

Como la concatenación asocia (demostrado en clase), tenemos que v(wa) = (vw)a.

Y por la definición longitud, tenemos que |(vw)a| = |vw| + 1.

Y usando la hipótesis |vw| + 1 = |v| + |w| + 1.

Luego, notemos que |wa| = |w| + 1, por la definición de longitud.

Por lo que |v(wa)| = |v| + |w| + 1 = |v| + |wa|.

Por lo tanto, se cumple que |vw| = |v| + |w|.

• Reversa $(v^R)^R = v$

Por inducción sobre v

– Caso base $v = \epsilon$.

Entonces $(v^R)^R = (\epsilon^R)^R = \epsilon^R = \epsilon = v$, por la definición de reversa.

– Paso inductivo, con hipótesis $(v^R)^R = v$.

Hay que demostrar que $((va)^R)^R = va$, con a un símbolo del alfabeto de v.

Por definición de reversa, $(va)^R = av^R$.

Luego, utilizando la propiedad de $(uw)^R = w^R u^R$ (demostrada en clase), $(av^R)^R = (v^R)^R a^R$.

Y usando la hipótesis, $(v^R)^R a^R = va^R$.

Luego, notemos que $a = \epsilon a$, por la propiedad de identidad.

Por lo que $a^R = (\epsilon a)^R = a\epsilon^R = a\epsilon = a$.

Entonces $va^R = va$, por lo que $((va)^R)^R = va$.

Por lo tanto, siempre se cumple que $(v^R)^R = v$.

- 2. Da todos los prefijos de las siguientes cadenas
 - 1001

Los prefijos son

- -1001, pues $1001 = 1001 \cdot \epsilon$
- -100, pues $1001 = 100 \cdot 1$
- -10, pues $1001 = 10 \cdot 01$
- -1, pues $1001 = 1 \cdot 001$
- $-\epsilon$, pues $1001 = \epsilon \cdot 1001$
- aaabbb

Los prefijos son

- aaabbb, pues aaabbb ϵ
- -aaabb, pues aaabbb = aaabb \cdot b
- aaab, pues aaabbb = aaab \cdot bb
- aaa, pues aaabbb = aaa \cdot bbb
- aa, pues aaabbb = aa \cdot abbb
- -a, pues aaabbb $=a \cdot aabbb$
- $-\epsilon$, pues aaabbb $=\epsilon \cdot aaabbb$
- 3. Da todos los sufijos de las siguientes cadenas
 - 1010

Los sufijos son

- -1010, pues $1010 = \epsilon \cdot 1010$
- -010, pues $1010 = 1 \cdot 010$
- -10, pues $1010 = 10 \cdot 10$
- -0, pues $1010 = 101 \cdot 0$
- $-\epsilon$, pues $1010 = 1010 \cdot \epsilon$
- abbabba

Los sufijos son

- abbabba, pues abbabba = $\epsilon \cdot$ abbabba
- -bbabba, pues abbabba = a \cdot bbabba
- -babba, pues abbabba = ab \cdot babba
- abba, pues abbabba = abb \cdot abba
- bba, pues abbabba = abba \cdot bba
- ba, pues abbabba = abbab · ba
- a, pues abbabba = abbabb · a
- $\epsilon,$ pues abbabba = abbabba $\cdot\epsilon$
- 4. ¿Porqué ϵ es subcadena de cualquier cadena?

Sea \boldsymbol{v} aquella subcadena cualquiera.

Toda subcadena w de v cumple que $v=x_1wx_2$ para algunas $x_1,x_2\in\Sigma^*$.

Así que con $x_1 = v, x_2 = \epsilon$, tenemos que $v = v\epsilon = v\epsilon\epsilon = x_1\epsilon x_2$, por la propiedad de identidad de ϵ .

Por lo tanto, ϵ es subcadena de cualquier cadena.