Linear regression analysis

- The linear trend lines of the annual and monsoon rainfall showed a downward trend for Srikakulam, Andhra Pradesh.
- The R-square statistic showed a poor relationship between the rainfall and respective year.
- The result analysis shows a decreasing trend in the Monsoon and fall season for Srikakulam district but in rest of the season there is no trend.
- Linear Regression Analysis showing mean absolute error is 10%.
- The Regression Model Score is 93.34%.

Standardized rainfall (mm) and lowness trend during 1901 and 2002 of Srikakulam, Andhra Pradesh

Mann-Kendall and Sen's slope Estimator Test

- A Mann-Kendall Trend Test is used to determine whether or not a trend exists in time series data. It is a non-parametric test, meaning there is no underlying assumption made about the normality of the data.
- The hypotheses for the test are as follows:
- i. H0 (null hypothesis): There is no trend present in the data.
- ii. HA (alternative hypothesis): A trend is present in the data. (This could be a positive or negative trend)
- If the p-value of the test is lower than some significance level (common choices are 0.10, 0.05, and 0.01), then there is statistically significant evidence that a trend is present in the time series data.
- The usual method for estimating the slope of a regression line that fits a set of (x, y) data elements is based on a least squares estimate. This approach is not valid when the data elements don't fit a straight line; it is also sensitive to outliers.

Mann-Kendall Test (Summer)

Trend = No trend

H = False

P = 0.9740356

Z = 0.032547

Tau = 0.005208333

S=2.0

 $var_s = 944$

Slope = 0.181458

Intercept = 75.33786

Sen's slope Estimator Test

Slope = 0.09325

Intercept = 71.3921274

The P value is 0.97403 which is not less than 0.05. Thus there is no significant trend in the time series data.

Mann-Kendall Test (Monsoon)

Trend = No trend

H = False

P = 0.31299187

Z = 1.0089640

Tau = 0.083333

S = 32.0

var_s =944

Slope = 5.1517

Intercept=576.667

Sen's slope Estimator Test

Slope = 0.22228813

Intercept = 587.122449

The P value is 0.312991 which is not less than 0.05. Thus there is no significant trend in the time series data.

Mann-Kendall Test (Fall)

Trend = No trend

H = False

P = 0.769579

Z = 0.29292

Tau = 0.0260416

S = 10.0

 $var_s = 944$

Slope = 1.686125

Intercept = 234.133223

Sen's slope Estimator Test

Slope = 0.4359999Intercept = 219.210999

The P value is 0.769579 which is not less than 0.05. Thus there is no significant trend in the time series data.

Mann-Kendall Test (Winter)

Trend = No Trend

H = False

P = 0.09632

Z = -1.65990

Tau = -0.13541

S = -52.0,

 $var_s = 944$

Slope = -0.99091

Intercept = 16.0231

Sen's slope Estimator Test

Slope = -0.0565

Intercept = 14.70625

The P value is 0.09632 which is not less than 0.05. Thus there is no significant trend in the time series data.

Q2.

- The following research paper has used 5 different models for the time series analysis of rainfall.
- The models are as follows:
- a) Auto-correlation
- b) Homogeneity test
- c) Linear regression test
- d) Mann–Kendall (MK) test
- e) Sen's slope estimator test

• Linear Regression Analysis

- > The linear trend lines of the annual and monsoon rainfall showed a downward trend for all study stations.
- ➤ The result shows a downward trend in the post-monsoon rainfall for the stations of Damoh, Jabalpur, Katni, and Narsinghpur, and the rest of the stations recorded upward trend in the rainfall data.
- ➤ In the pre-monsoon season, five stations showed a downward trend and the rest of the stations showed an upward trend, whereas in winter season, only three stations (Narsinghpur, Raisen, and Sagar) showed upward trend and remaining stations showed a downward trend.

Mann–Kendall test

- ➤ The Mann-Kendall Trend Test is used to analyze time series data for consistently increasing or decreasing trends.
- ➤ It is a non-parametric test, which means it works for all distributions (i.e. data doesn't have to meet the assumption of normality), but data should have no serial correlation. If the data has a serial correlation, it could affect in significant level (p-value).
- This test shows the values of the Z-statistics of annual and pre-monsoon, monsoon and post monsoon time scale rainfall derived from the MK test.
- ➤ The annual, monsoon, and winter seasons showing a negative trend at all study stations. However, the pre-monsoon and post-monsoon seasons in eight and seven stations, respectively, out of the 12 stations, have a non-significant increasing trend.
- ➤ In the annual time scale, it was found that three out of 12 stations had a decreasing trend at the 10% significance level, and only one station (i.e., Mahoba, U.P.) had a negative trend at the 5% level.
- ➤ In a monsoon case, a total of seven out of 12 stations showed a declining trend at the 10% significance level, and only one station (i.e., Mahoba, in U.P.) showed a statistically decreasing trend at the 5% significance level.

Raifall Variation of Srikakulam (1901 - 2002)

Average Rainfall(Various Phases of the Year)

Statistics of Srikakulam District

Annual			
Mean	Standard Deviation	Skewness	Kurtosis
79.32	14.376	0.485	0.416
Summer			
84.07	52.02	1.083	1.525
Monsoon			
60.26	78.37	0.735	2.821
Fall			
24.71	47.13	0.267	-0.496
Winter			
18.04	17.98	1.138	0.502

Q4.

- For the climate change analysis, we could show a relationship between temperature and rainfall data for the time series analysis.
- This approaches can have useful implications for the water resource planning and local policy making in respect to sustainable water utilization in the current and future changing climate.
- Rainfall trend and forecasting estimation.
- Runoff estimation.