Matière : Physique

Cycle: 1 ere du Bacc internationale

Prof : krim abdelaziz

TRAVAIL PUISSANCE

T-Le travail d'une force constante

Le travail d'une force constante F, pour un déplacement rectiligne de son point d'application d'un point A vers un point B est le produit scalaire du vecteur force F par le vecteur AB

Le travail de la force constante en joules [J] F La norme du vecteur force en newtons [N]
AB Le déplacement rectiligne du vecteur force en mètres [m]

AB Si le trajet AB fait un angle a avec la droite d'action de la force F

Le travail de la force constante en joules [J]

W_{AB}(F) = F.AB.cosα

F La norme du vecteur force en newtons [N]

AB Le déplacement rectiligne du vecteur force en mètres [m]

α L'angle entre le vecteur force et le déplacement

Le travail de la force + ne depend pas du trajet suivi par cette torce, elle ne resulte que du point de départ et du point d'arrivée, on dit que cette force est conservative.

II- Le travail pour un couple de moment constant

a- Le moment d'une force par rapport à un axe

L'effet de rotation que produit une force F sur un solide mobile autour d'un axe Δ est le moment de la force F par rapport à cet axe, si d est la distance entre la droite d'action de la force et l'axe A, il est noté

- Le moment de la force en newtons mètres [Nm]
- La norme du vecteur force en newtons [N]
- d La distance entre la force et l'axe en mètres [m]

Exercice d'application

Un solide de masse m, égale à 500 g, est suspendu à une tige de 60 cm de masse négligeable comme l'indique la figure ci-dessous. Le ressort permet d'équilibrer le système en position horizontale. Calculer la tension du ressort.

Matière : Physique Prof : krim abdelaziz

Cycle: 1 ere du Bacc internationale

b- Le Couple de forces

Considérons le couple de forces $\vec{F_1}$ et $\vec{F_2}$ qui provoque la rotation d'un corps représenté cidessous. Les deux forces $\vec{F_1}$ et $\vec{F_2}$ présentent les propriétés suivantes

- > Droites d'action parallèles
- Sens opposés
- Même intensité

- L'ensemble des deux forces F

 1 et F

 2 de même intensité, opposées, de droites d'action parallèles constitue un couple de forces C.
- Le moment du couple de forces ci-dessus est égal au produit de l'intensité F de l'une des deux forces, par la distance (d) qui sépare des deux droites d'action.

мё. = F.d

M Le moment du couple de forces en newtons mètres [Nm]

F La norme des vecteurs forces en newtons [N]

d La distance entre les forces en mètres [m]

Exercice d'application

Pour monter une charge, un opérateur agit sur deux manivelles comme l'indique la figure cidessous.

Echelle 1/10

Nous négligeons toutes les forces autres que celles indiquées sur la figure. Les forces $\vec{F_1}$ et $\vec{F_2}$ sont parallèles et de même intensité égale à 100 N.

- Calculer le moment du couple (F

 1; F

 2).
- 2. Le système étant en équilibre, donner l'intensité de la force F .

III- L'énergie mécanique

Les deux grandes familles qui composent l'énergie mécanique sont l'énergie cinétique et l'énergie potentielle. L'énergie cinétique d'un corps est liée à la vitesse de son déplacement. L'énergie potentielle dépend de la position d'un corps par rapport à sa position la plus stable. La vitesse d'un objet, ou sa positon, est naturellement repérée par les coordonnées de l'objet, elles mêmes sont définies par rapport à un référentiel précis.

Matière : Physique

Cycle: 1 in du Bacc internationale

Prof : krim abdelaziz

IV- L'énergie potentielle

a- L'énergie potentielle de pesanteur

1. Définition

Lorsqu'un solide de masse m se déplace d'une hauteur h_1 à une hauteur h_2 , son poids $\vec{P} = m.\vec{g}$ fournit un travail W de la forme :

 $W^{\tilde{p}} = P.h$ $W^{\tilde{p}} = M.g.h$ $W^$

L'energié pesanteur à un objet ést l'energie associée à sa position par rapport à la surface de la terre, si l'on considère que c'est sa position la plus stable, autrement dit qu'il ne peut pas tamber plus bas.

2. Chute libre

Un solide de masse m tombe d'une hauteur h, <u>l'énergie potentielle qu'il possède lorsqu'il est</u> dans sa position haute, correspond au travail de la force qu'il faut exercer sur ce solide pour <u>le faire passer de l'état bas à l'état haut</u>. Dans le cas présent

Ep = m.g.h

Ep L'énergie potentielle du corps en Joules [J]

m La masse du solide en kilogrammes [kg]

q La valeur de l'intensité de la pesanteur q = 9,81 N.kg⁻¹

h h = h1 - h2 la hauteur da la chute du solide en mètres [m]

b- L'énergie potentielle élastique

Il existe d'autres formes d'énergie potentielle que celle de la pesanteur, notamment <u>l'énergie</u> potentielle élastique, elle correspond par exemple à l'énergie restituée par la déformation d'un ressort. Lorsque l'on relâche un ressort comprimé, il reprend sa forme originale. Pendant la compression on effectue un travail sur le ressort qui emmagasine de l'énergie potentielle élastique, il restitue cette énergie lorsqu'il est relâché. Il en est de même lorsque le ressort est étiré.

V- L'énergie cinétique

a- En translation

L'énergie cinétique d'un corps de masse m se déplaçant à la vitesse v s'exprime par la relation

Cycle: 1 ere du Bacc internationale

Prof : krim abdelaziz

$$Ec = \frac{1}{2} \text{ m.v}$$

L'énergie cinétique du corps en Joules [J]

m La masse du solide en kilogrammes [kg] v² La valeur de la vitesse² du corps en mouvement [m.s-1]²

h = h1 - h2 la hauteur da la chute du solide en mètres [m]

L'énergie cinétique est toujours positive, sa valeur croît soit avec sa masse, soit avec le carré de sa vitesse.

Un solide de masse m se

déplace en translation sous unique et constante.

La variation de son énergie cinétique est égale à la somme des travaux des forces extérieures s'exerçant sur le solide, si v1 et v2 sont les vitesses du solide, alors

$$\vec{W}\vec{F} = \frac{1}{2} m_1 v_1^2 - \frac{1}{2} m_1 v_2^2$$

WF Le travail des forces sur le corps en Joules [J]

- Un solide de masse m = 900g se déplace à la vitesse de 4,3 km.h⁻¹,
 - Calculer son énergie cinétique.
- Une pierre est jetée vers le haut avec une vitesse vo = 10 m.s., on néglige toutes les forces autres que le poids de la pierre.
 - Calculer la hauteur h1, où se trouvera la pierre lorsque sa vitesse sera de 6 m.s⁻¹.
 - Quelle sera la hauteur maximale atteinte par la pierre?
- Etude d'un plan incliné, un corps de masse m = 500 q est abandonné sans vitesse initiale sur un plan incliné faisant un angle de 30 ° par rapport à l'horizontal, sans vitesse initiale.
 - Quelle distance doit parcourir le solide pour que sa vitesse soit de 2 m.s⁻¹?
 - Quelle est sa vitesse lorsqu'il a parcouru 80 cm?
- Etude d'un choc à l'intérieur d'un véhicule, une personne de 80 kg se trouve dans un véhicule circulant à 90 km.h-1.
 - Calculer son énergie cinétique.

Au cours d'un choc, une distance de 4 mètres est nécessaire pour que le véhicule s'immobilise, si nous considérons que la vitesse du passager est diminuée uniquement par l'effet de la ceinture de sécurité,

Calculer la force qui s'exerce sur le conducteur.

b- En rotation

Un solide 5 tourne autour d'un axe D, l'énergie cinétique se calcule à partir de la relation :

$$\mathsf{E}_{\mathrm{s}/\Delta} = \frac{1}{2} \, \mathsf{J}_{\Delta} \cdot \Omega^2$$

 $E_{s/\Delta} = \frac{1}{2} J_{\Delta} \Omega^2$ $E_{s/\Delta} = \frac{1}{2} J_{\Delta} \Omega^2$ $Le moment d'inertie du solide en kilogrammes/mètre² [kg.m⁻²]
<math display="block">\Omega$ La vitesse angulaire du solide en radians/seconde [rad. s⁻¹]

 Le moment d'inertie dépend de la masse du solide et de ses dimensions par rapport à son axe de rotation

Cycle: 1 ere du Bacc internationale

Prof : krim abdelaziz

Dans le cas d'un cylindre de rayon R et de masse m tournant autour de son axe central

$$J_{\Delta} = \frac{1}{2} \, \text{m.R}^2$$

- J_A Le moment d'inertie du cylindre en kilogrammes/mètre² [kg.m⁻²]
 - La masse du cylindre en kilogrammes [kg]
- R Le rayon du cylindre en mètres [m]

Exercice d'application

On considère le volant d'inertie d'un moteur électrique assimilé à un cylindre de rayon R = 10 cm, de fréquence de rotation n = 5000 tr.min⁻¹, et de masse m = 2 kg.

- Calculer son moment d'inertie par rapport à son axe de rotation.
- > Calculer l'énergie cinétique de rotation du volant
- VI- Conservation de l'énergie mécanique

L'éne pir mecanique rordie à a un système est la somme de son energie étherique et de son

Pour un système isolé, dans lequel il n'y a ni frottements ni réactions chimiques, c'est-à-dire que toutes les forces appliquées au système à l'exception de son poids, effectuent un travail nul, l'énergie mécanique est constante.

Exemples d'utilisation

1- Un solide (5) de masse m, glisse sans frottements sur un plan incliné à coussins d'air. En A sa vitesse est $V_A = 1.43 \text{ m.s}^{-1}$, elle passe en B à $V_B = 2 \text{ m.s}^{-1}$.

La différence d'altitude entre les deux points A et B est de 10 cm.

Calcul de l'énergie cinétique au point A puis B

$$Ec_A = \frac{1}{2} \cdot mV_A^2 \qquad Ec_B = \frac{1}{2} \cdot mV_B^2$$

La différence est

$$E_{CAB} = \frac{1}{2} \cdot m \cdot (V_B^2 - V_A^2)$$

Calcul de l'énergie potentielle lorsque le solide passe de A à B,

Durant le déplacement, l'énergie mécanique totale se conserve, donc

Important:

$$Ec_{AB} = \frac{1}{2} \cdot m \cdot (V_B^2 - V_A^2) = Ep_{AB} = mgh$$

2- Une charge immobile (5) de masse m est suspendue à une hauteur h du sol.

La charge en A, en équilibre à une hauteur h, possède

Prof : krim abdelaziz

Matière : Physique Cycle: 1 ere du Bacc internationale

Une énergie potentielle :

 $Ep_A = mgh$ Une énergie cinétique nulle (vitesse est nulle) : Ec, = 0 J

Une énergie totale : La charge en B, au niveau du sol, possède :

Une énergie potent $Ep_B = OJ$ $Ec_B = \frac{1}{2} \cdot mV_B^2$ Une énergie cinétique

Une énergie totale

Es = Eps + Ecs = 1 mVs2

 $E_A = Ep_A + Ec_A = mgh$

L'énergie mécanique du système reste constante si l'on <u>néalige toutes les forces autres que le</u> poids, nous pouvons donc écrire

$$E_A = E_B = mgh = \frac{1}{2}.mV_B^2$$

3- Un pendule est constitué d'une bille de masse m fixée à l'extrémité d'un fil de masse négligeable et de longueur l. La bille est écartée de sa position d'équilibre, le fil fait un angle a avec la verticale, il est alors lâché sans vitesse initiale. Les seules forces retenues dans l'étude de ce pendule sont le poids et la tension du fil. A chaque instant, les déplacements de la bille sont perpendiculaires à la droite d'action de la force de tension du fil.

Si l'on considère que l'énergie potentielle est comptée à partir du point 0, c'est-à-dire la position la plus stable de la bille.

⇒ La bille en A, en équilibre, possède :

 Une énergie potentielle EpA = mgh Eca = OJ Une énergie cinétique nulle (vitesse est nulle)

 Une énergie totale $E_A = Ep_A + Ec_A = mgh$

La grandeur h peut s'exprimer en fonction de la longueur du fil par la relation

Donc

$E_A = mql(1 - cosa)$

La charge en 0, passage du fil par la verticale, possède

 Une énergie potentielle nulle (hauteur nulle) Une énergie cinétique

 $Ep_0 = 0 J$ $Ec_0 = \frac{1}{2}.mV_0^2$ $E_0 = Ep_0 + Ec_0 = \frac{1}{2}.mV_0^2$ Une énergie totale

L'énergie mécanique du système reste constante si l'on néglige toutes les forces autres que le poids et la tension du fil. Le travail de la tension du fil est nul car cette force est perpendiculaire aux déplacements de la bille, nous pouvons donc écrire

$$E_A = E_0 = mgl(1 - cosa) = \frac{1}{2} mV_0^2$$

Exercice d'application

Matière : Physique Cycle : 1^{ère} du Bacc internationale

Prof : krim abdelaziz

Une bille de masse m = 200 g est lancée d'une hauteur h_o de 1m50 verticalement vers le haut, avec une vitesse initiale v_o = 5 m.s⁻¹.

- Calculer l'énergie potentielle Ep, de la bille au départ du lancer.
- A quelle altitude sa vitesse est-elle la moitié de sa vitesse initiale?
- Quelle est l'altitude maximale atteinte par la bille ?
- Quelle est sa vitesse, lorsqu'elle retombe sur le sol ?

Facebook : krim abdelazi Travail - Puissance - Cours - 7/7