Name :	····	*******	 •••••
Roll No. :			
Invigilator's Signature : .			

2010-11 DISTRIBUTED DATABASE

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) In a heterogeneous distributed DBMS
 - a) Two different sites can use two different DBMS products, but data model must be the same.
 - b) Two different sites can use two different data model, but DBMS product must be the same.
 - c) Two different sites can both different DBMS products and data models.
 - d) Two different sites can use both different DBMS products, but database languages must be the same.

7401 [Turn over

- ii) Preservation of functional dependency is ensured by which of the correctness rule of the fragmentation?
 - a) Disjointness
 - b) Reconstruction
 - c) Completeness
 - d) All of these.
- iii) Which of the following statement is true?
 - a) Horizontal fragmentation is subset of tuples.
 - b) Vertical fragmentation is subset of attributes.
 - c) Mixed fragmentation is subset of a combination of tuples and attributes.
 - d) All of these.
 - e) None of these.
- iv) If a distributed system has n sites, the total number of message transfer in distributed 2PL is
 - a) 2n + 3

b) 5n

c) n*n

d) n*(n+1)/2.

7401

v)	Α	global	(distributed)	schedul	e of	·a	DDBMS	is
				7				
	7	serial	izable if				,	

- a) it is the union of local schedules
- b) the execution order at each site is serializable
- c) the execution order at each site is serializable and local serialization orders are identical.
- d) none of these.
- vi) Replication of attributes violates which of the following conditions of fragmentation?
 - a) completeness
 - b) reconstruction
 - c) disjointness
 - d) both (b) and (c).
- vii) Two-phase commitment protocol is used for
 - a) concurrency control
 - b) integrity control
 - c) recovery
 - d) redundancy.

7401 [Turn over

viii) Transaction restart overhead is removed in

- a) Basic TO algorithm
- b) Conservative TO algorithm
- c) Both (a) and (b)
- d) None of these.
- ix) Changes made in a database are called
 - a) Transaction
 - b) Commit
 - c) Replication
 - d) Fragmentation
- x) Shared memory is
 - a) Loosely coupled architecture
 - b) Tightly coupled architecture
 - c) Both (a) and (b)
 - d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. What are the advantages and disadvantages of database replication? What is false deadlock? 3+2

7401

3.	What is primary copy and	I majority locking protocal?	3 + 2
	F	process	_ · _

- 4. Give an example to prove that Distributed 2PL is more restrictive compared to distributed serializability. 5
- 5. Explain with example, the difference between semijoin and natural join operation. What are the rules which must be followed when defining fragmentation?
 2+3
- In which situation derived horizontal fragmentation of a global relation is needed and how is it defined? Explain your answer.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- Discuss horizontal, vertical and mixed fragmentations with examples.
- Write down the 2-phase commitment protocol with diagram.Discuss the behavior of the 2-phase commitment protocol in presence of different kinds of failures.
- 9. a) Explain how the reliability of a distributed database is maintained both from the angles of data redundancy and data transmission.

7401 5 [Turn over

	ינט	what is laise deadlock? How is it overcome?
	c)	Differentiate between distributed database and paralle
		database.
10.	a)	Consider the following Global schema, Fragmentation
		schema, Allocation schema :
		Global schema:
		Guest (G_ID, name, block_ID, room_no)
		Fragmentation schema:
	,	F1: $\sigma_{block_id = "North"}$ (Guest) F2: $\sigma_{block_id = "South"}$ (Guest)
		Allocation schema: F1 at site 2 and F2 at site 1
		Write a query that accepts G_ID from user and output
		the name at level 1, 2 and 3 of transparency.
· ·	b)	Explain distributed deadlock detection. What is the
		difference between centralized and distributed deadlock
		detection? 5 + 2
	c)	What is hierarchical deadlock detector?
11.	a)	Write down the algorithm for basic timestamp method. 5
	b)	Consider the following schemas: 10
		BRANCH (Branch No., Street, Postcode)
		PROPERTY (PNO., Rent Amount, Owner No. Type,
		Branch No.)

Consider the following fragments:

P1 : $\sigma_{Branch_no="B003" \land type = "House"}$ (PROPERTY)

P2 : $\sigma_{Branch_no="B003" \land type = "Flat"}$ (PROPERTY)

 $P3:\sigma_{Branch_nol="B003"}\text{(PROPERTY)}$

 $B1:\sigma_{Branch_no="B003"}$ (BRANCH)

 $B2:\sigma_{Branch_no!="B003"}$ (BRANCH)

Optimize the following query.

SELECT *

FROM BRANCH b, PROPERTY p

WHERE b.Branch No. = p.Branch No.

AND p.type = "Flat";