Control d'Estadística Enginyeria Edificació. Abril 2010

Problema 1 Un promotor immobiliari sap que només un 5% de la gent que crida per interesar-se per un pis l'acaba comprant. Durant la darrera setmana ha rebut 20 cridades de persones interessades en una promoció de pisos.

- a) Quina és la probabilitat que més de 2 d'aquestes persones acabin comprant un pis?
- b) Quina és la probabilitat que cap d'aquestes persones acabi comprant un pis?
- c) Quin és el nombre esperat de persones que comprarà un pis?
- d) Repetiu els càlculs anteriors per al cas que s'hagin rebut 100 cridades.

Problema 2 Un professor d'Estadística analitza les notes dels seus alumnes i observa que un 10 % té nota superior a 9 i un 40 % nota inferior a 4. Si suposam que la distribució de les notes és Gaussiana, responeu a les següents qüestions:

- a) Calculau la mitjana i la desviació típica de la distribució.
- b) A partir de quina nota hauria d'aprovar els seus alumnes per tenir un 70% d'aprovats?

Nota: Utilitzau una notació clara i precisa i definiu els successos i/o variables aleatòries rellevants dels problemes

Variables aleatòries usuals

V.A. (X)	$f_X(x)$		E(X)	Var(X)	Altres propietats
Binomial $B(n, p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$si x \in \Omega_X$	np	np(1-p)	
$\Omega_X = \{0, 1, \cdots, n\}$	0	si $x \notin \Omega_X$			
Poisson $Po(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	si $x \in \Omega_X$	λ	λ	
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			
Uniforme $\mathcal{U}(a,b)$	$\frac{1}{b-a}$	si $x \in [a, b]$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$F_X(x) = \begin{cases} \frac{x-a}{b-a} & x \in [a,b] \\ 0 & x < a \\ 1 & x > b \end{cases}$
$\Omega_X = [a, b]$	0	si $x \notin [a, b]$			`
Gaussiana $X(\mu, \sigma^2)$			μ	σ^2	$Z \sim N(0,1)$ normal estándar
$\Omega_X = \mathbb{R}$					$F_Z(-z) = 1 - F_Z(z)$
					$F_X(x) = F_Z(\frac{x-\mu}{\sigma})$