Number Theory (D)

Proof

prove:

Prove that $m =_{(n)} p$ if and only if m%n = p%n.

proof

I will prove that $m = \binom{n}{n} p$ if and only if m%n = p%n, by showing that

- (a) if $m =_{(n)} p$, then m%n = p%n,
- (b) if m%n = p%n, then $m =_{(n)} p$.

proof of (a)

Because $m=_{(n)}p$, therefore p< n. Assume $p\%n\neq m\%n$, so $p\%n\neq p$, therefore $p\geq n$. contradiction! Therefore, if $m=_{(n)}p$, then m%n=p%n.

proof of (b)

```
Let m\%n = p\%n = p',
so m = k_1 * n + p' and p = k_2 * n + p'.
so m - p = (k_1 - k_2) * n
so m = (k_1 - k_2) * n + p
Let k_1 - k_2 = k,so m = k * n + p
Therefore, m = \binom{n}{2} p.
```

Therefore, $m = \binom{n}{p}$ if and only if m%n = p%n.