

Airbnb - Users

Accommodation provider

Features selection

Cleaning and preprocessing

WGS84 coordinates: latitude & longitude

UTM coordinates

Describe positions as plane coordinates

Allow visualization of geographical structure of accomodations

Small loss in accuracy

Random sampling: 5000 accommodations out of the 48'895 in the original dataset

Removing outliers: Outliers not appreciated when using ML models

Keep the accommodations with a price below the 0.95 quartile of the distribution

New York Airbnbs after sampling (5000 points)

Exploration - Graph construction

- 1) RBF Kernel to compute the adjacency matrix
 - a) $\sigma = k^* \text{ mean}$
 - b) ε chosen to sparsify the matrix

Graph obtained with RBF Kernel

Goal: have a connected graph and a sparse matrix

Exploration

- 2) kNN to compute the adjacency matrix
 - a) Compute with k=50, k=200 and k=400

Exploration - Spectral components

Spectral decomposition of the graph's laplacians (normalized laplacians)

Difference of smoothness: the first eigenvector is smoother than the 100th eigenvector

Exploitation

Process we followed to obtain the **price prediction**:

Signal filtering

Main idea: Filter the features signals to gives less weight to large eigenvalues

Assumption : Airbnbs that are geographically close should be close in price too

We used the Tikhonov regularization filter seen in course (but slightly different):

$$tk(e) = 1/(1 + \alpha * e)$$
 with $\alpha = c * 0.99 * e_max$ (large c gives less weight to high eigenvalues)

Why use both ridge regression on top of Tikhonov regularization?

- Needed to use the same models with and without filtering
- > Tikhonov regularization allows *larger kind* of regularization
- Tikhonov uses the structure of the graph and the location of the accommodation (where our simple ridge regression model doesn't)

Groundtruth

Ridge regression only

MSE: 2950.83

Using graph structure

kNN 200 MSE: 2686.21

Comparison

Model	MSE	MSE using graph structure	Improvement
RBF kernel	2950.83	2864.68	2.92%
KNN-50	2950.83	2801.92	5.05%
KNN-200	2950.83	2686.21	8.97%
KNN-400	2950.83	2705.95	8.30%
KNN-200 (20'000 s.)	2950.90	2806.96	4.88%

Improvements

- Difficult to predict the price with our set of features
- User interface to enter your flat's data
- Predict price range instead of exact price (gives more freedom to the user)
- Applicable to other cities