Amendments to the claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Original): A compound of formula (I)

wherein

A is a bivalent radical selected from -C(O)-, -C(O)NH-, -NHC(O)-, -N(R⁷)-CH₂-, -CH₂-N(R⁷)-, -CH(NR⁸R⁹)- and -C(=NR¹⁰)-;

 R^{1} is $-O(CH_{2})_{d}XR^{11}$;

R² is hydrogen or a hydroxyl protecting group;

 R^3 is hydrogen, C_{1-4} alkyl, or C_{3-6} alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl;

 R^4 is hydroxy, C_{3-6} alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl, or C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy or - $O(CH_2)_eNR^7R^{12}$,

R⁵ is hydroxy, or

 R^4 and R^5 taken together with the intervening atoms form a cyclic group having the following structure:

$$O = \begin{pmatrix} Y_{11} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

wherein Y is a bivalent radical selected from -CH₂-, -CH(CN)-, -O-, -N(R¹³)- and -CH(SR¹³)-;

R⁶ is hydrogen or fluorine;

R⁷ is hydrogen or C₁₋₆alkyl;

 $\rm R^8$ and $\rm R^9$ are each independently hydrogen, C $_{1\text{-}6}$ alkyl, -C (=NR 10)NR 14 R 15 or - C(O)R 14 , or

 R^8 and R^9 together form =CH(CR¹⁴R¹⁵)_faryl, =CH(CR¹⁴R¹⁵)_fheterocyclyl, =CR¹⁴R¹⁵ or =C(R¹⁴)C(O)OR¹⁴, wherein the alkyl, aryl and heterocyclyl groups are optionally substituted by up to three groups independently selected from R¹⁶; R^{10} is -OR¹⁷, C_{1-6} alkyl, -(CH₂)_garyl, -(CH₂)_gheterocyclyl or -(CH₂)_hO(CH₂)_iOR⁷, wherein each R^{10} group is optionally substituted by up to three groups independently selected from R^{16} ;

R¹¹ is a heterocyclic group having the following structure:

or

 R^{12} is hydrogen or C_{1-6} alkyl;

 R^{13} is hydrogen or $C_{1\text{-}4}$ alkyl optionally substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl; R^{14} and R^{15} are each independently hydrogen or $C_{1\text{-}6}$ alkyl; R^{16} is halogen, cyano, nitro, trifluoromethyl, azido, $-C(O)R^{21}$, $-C(O)OR^{21}$, $-OC(O)OR^{21}$, $-NR^{22}C(O)R^{23}$, $-C(O)NR^{22}R^{23}$, $-NR^{22}R^{23}$, hydroxy,

 C_{1-6} alkyl, $-S(O)_k C_{1-6}$ alkyl, C_{1-6} alkoxy, $-(CH_2)_m$ aryl or $-(CH_2)_m$ heteroaryl, wherein the alkoxy group is optionally substituted by up to three groups independently selected from $-NR^{14}R^{15}$, halogen and $-OR^{14}$, and the aryl and heteroaryl groups are optionally substituted by up to five groups independently selected from halogen, cyano, nitro, trifluoromethyl, azido, $-C(O)R^{24}$, $-C(O)OR^{24}$, $-OC(O)OR^{24}$, $-NR^{25}C(O)R^{26}$, $-C(O)NR^{25}R^{26}$, $-NR^{25}R^{26}$, hydroxy, C_{1-6} alkyl and C_{1-6} alkoxy;

 R^{17} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}6}$ alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heteroaryl, $-OR^{27}$, $-S(O)_nR^{27}$, $-NR^{27}R^{28}$, $-CONR^{27}R^{28}$, halogen and cyano;

 R^{18} is hydrogen, -C(O)OR²⁹, -C(O)NHR²⁹, -C(O)CH₂NO₂ or -C(O)CH₂SO₂R⁷; R^{19} is hydrogen, $C_{1\text{-}4}$ alkyl optionally substituted by hydroxy or $C_{1\text{-}4}$ alkoxy, $C_{3\text{-}7}$ reycloalkyl, or optionally substituted phenyl or benzyl;

 R^{20} is halogen, C_{1-4} alkyl, C_{1-4} thioalkyl, C_{1-4} alkoxy, -NH2, -NH(C_{1-4} alkyl) or -N(C_{1-4} alkyl)₂;

 R^{21} is hydrogen, C_{1-10} alkyl, -(CH₂)_paryl or -(CH₂)_pheteroaryl;

 R^{22} and R^{23} are each independently hydrogen, -OR 14 , $C_{1\text{-}6}$ alkyl, -(CH2)q aryl or - (CH2)q heterocyclyl;

 R^{24} is hydrogen, C_{1-10} alkyl, - $(CH_2)_r$ aryl or - $(CH_2)_r$ heteroaryl;

 $\rm R^{25}$ and $\rm R^{26}$ are each independently hydrogen, -OR 14 , C $_{1\text{-}6}$ alkyl, -(CH $_2$) $_s$ aryl or - (CH $_2$) $_s$ heterocyclyl;

 R^{27} and R^{28} are each independently hydrogen, $C_{1\text{-}4}$ alkyl or $C_{1\text{-}4}$ alkoxy $C_{1\text{-}4}$ alkyl; R^{29} is hydrogen,

 C_{1-6} alkyl optionally substituted by up to three groups independently selected from halogen, cyano, C_{1-4} alkoxy optionally substituted by phenyl or C_{1-4}

4alkoxy, -C(O)C $_{1-6}$ alkyl, -C(O)OC $_{1-6}$ alkyl, -OC(O)C $_{1-6}$ alkyl, -OC(O)OC $_{1-6}$ alkyl, -C(O)NR 32 R 33 , -NR 32 R 33 and phenyl optionally substituted by nitro or -C(O)OC $_{1-6}$ alkyl,

-(CH₂)_wC₃₋₇cycloalkyl,

-(CH₂)_wheterocyclyl,

-(CH₂)_wheteroaryl,

-(CH₂)_waryl,

C₃₋₆alkenyl, or

C₃₋₆alkynyl;

 R^{30} is hydrogen, C_{1-4} alkyl, C_{3-7} cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzoyl;

 R^{31} is hydrogen or R^{20} , or R^{31} and R^{19} are linked to form the bivalent radical - $O(CH_2)_2$ - or - $(CH_2)_t$ -;

 R^{32} and R^{33} are each independently hydrogen or $C_{1\text{-}6}$ alkyl optionally substituted by phenyl or -C(O)OC₁₋₆alkyl, or

R³² and R³³, together with the nitrogen atom to which they are bound, form a 5 or 6 membered heterocyclic group optionally containing one additional heteroatom selected from oxygen, nitrogen and sulfur;

X is $-U(CH_2)_vB_-$, $-U(CH_2)_v$ - or a group selected from:

and

U and B are independently a divalent radical selected from -N(R³⁰)-, -O-, -S(O)_Z-, -N(R³⁰)C(O)-, -C(O)N(R³⁰)- and -N[C(O)R³⁰]-;

W is $-C(R^{31})$ - or a nitrogen atom;

d is an integer from 2 to 6;

e is an integer from 2 to 4;

f, g, h, m, p, q, r, s and w are each independently integers from 0 to 4;

i is an integer from 1 to 6;

j, k, n and z are each independently integers from 0 to 2;

t is 2 or 3;

v is an integer from 1 to 8;

or a pharmaceutically acceptable derivative thereof.

- 2. (Original): A compound according to claim 1 wherein A is -C(O)- or $N(R^7)$ -CH₂-.
- 3. (Currently amended): A compound according to claim 1 or claim 2 wherein X is $-U(CH_2)_VB$ or $-U(CH_2)_V$.
- 4. (Currently amended): A compound according to <u>claim 1</u> any one of the <u>preceding claims</u> wherein d is 2 or 3.
- 5. (Currently amended): A compound according to any one of the preceding claims claim 1 wherein R^{11} is a heterocyclic group of the following formula:

or

wherein the heterocyclic is linked in the 6 or 7 position and j, R^{18} , R^{19} and R^{20} are as defined in claim 1;

a heterocyclic group of the following formula:

wherein the heterocylic is linked in the (ii) or (iii) position, W is -C(R³¹)- and R³¹ and R¹⁹ are linked to form the bivalent radical -(CH₂)_t- as defined in claim 1, and j, R¹⁸, R¹⁹ and R²⁰ are as defined in claim 1; or a heterocyclic group of the following formula:

wherein the heterocyclic is linked in the 7 or 8 position and j, R^{18} , R^{19} and R^{20} are as defined in claim 1.

- 6. (Original): A compound according to claim 1 as defined in any one of Examples 1 to 42, or a pharmaceutically acceptable derivative thereof.
 - 7. (Original): A compound selected from:

 $4''-O-(2-\{[2-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinolin-7$ ylamino)-ethyl]-methylamino}-ethyl)-6-O-methyl-erythromycin A 11,12-carbonate; 4"-O-(3-{[2-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinolin-7ylamino)ethyl]-methylamino}-propyl)-6-O-methyl-erythromycin A 11,12-carbonate; $4"-O-\{3-[2-(2-carboxy-1-oxo-6,7-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-9-yloxy\}$ ethylamino]-propyl}-6-O-methyl-erythromycin A 11,12-carbonate; $4"-O-(3-\{[3-(3-carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)propyl]$ methylamino}-propyl)-6-O-methyl-erythromycin A 11,12-carbonate; 4"-O-(3-{[2-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-[1,8]naphthyridin-7ylamino)ethyl]-methylamino}-propyl)-6-O-methyl-erythromycin A 11,12-carbonate; 4"-O-{2-[2-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-[1,8]naphthyridin-7ylamino)ethyl]-methylamino}-ethyl }-6-O-methyl-erythromycin A; 4"-*O*-{3-[[3-(3-carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propyl]methylamino]-propyl}-6-O-methyl-11-desoxy-11-(R)-amino-erythromycin A 11,12carbamate; 4"-O-{3-[[2-(3-carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-ylsulfanyl)-ethyl]methylamino]-propyl}-6-O-methyl-11-desoxy-11-(R)-amino-erythromycin A 11,12carbamate; 4"-O-{3-[2-(3-carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6ylamino)-ethylcarbamoyl]-propyl}-azithromycin; 4"-O-{2-[2-(3-carboxy-6-fluoro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-7ylamino)-ethylamino]-ethyl}-azithromycin 11,12-cyclic carbonate; 4"-O-{2-[2-(3-carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6ylamino)-ethylamino]-ethyl}-azithromycin; and 4"-O-{2-[2-(3-carboxy-6-fluoro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-7ylamino)-ethylamino]-ethyl}-azithromycin;

- 8. (Original): A process for the preparation of a compound as claimed in claim 1 which comprises:
- a) reacting a compound of formula (II)

or a pharmaceutically acceptable derivative thereof.

$$HN(R^{30})(CH_2)_vB^aR^{11a}$$
 $HN(R^{30})(CH_2)_vR^{11a}$ (IIIb)

with a suitable amine (IIIa) or (IIIb), wherein B^a and R^{11a} are B and R^{11} as defined in claim 1 or groups convertible to B and R^{11} ;

b) reacting a compound of formula (V)

with a compound of formula X^aR^{11a} (IV), wherein R^{11a} is R^{11} as defined in claim 1 or a group convertible to R^{11} and X^a is $-U(CH_2)_V$ - or $-U(CH_2)_V$ B-, or a group convertible to $-U(CH_2)_V$ - or $-U(CH_2)_V$ B-, in which U is a group selected from - $N(R^{30})$ - and -S-, and L is suitable leaving group, to produce a compound of formula (I) wherein U is a group selected from - $N(R^{30})$ - and -S-;

- a) converting one compound of formula (I) into another compound of formula (I);
- d) where U is -O-, reacting a compound of formula (VII)

with a suitable compound of formula X^aR^{11a} in the presence of a catalyst; or

e) where U is -C(O)N(R 30)-, reacting a compound of formula (VIII)

with a suitable amine compound,

and thereafter, if required, subjecting the resulting compound to one or more of the following operations:

- i) removal of the protecting group R²,
- ii) conversion of XaR^{11a} to XR¹¹,
- iii) conversion of BaR11a to R11,
- iv) conversion of R^{11a} to R¹¹,

and

- v) conversion of the resultant compound of formula (I) into a pharmaceutically acceptable derivative thereof.
- 9. (Currently amended): A compound as claimed in <u>claim 1</u> any one of claims 1-to 7 for use in therapy.

Claims 10 and 11 (Cancelled).

12. (Currently amended): A method for the treatment of the human or non-human animal body to combat microbial infection comprising administration to a body in need of such treatment of an effective amount of a compound as claimed in claim 1 any one of claims 1 to 7.

13. (Currently amended): A pharmaceutical composition comprising at least one compound as claimed in <u>claim1</u> any one of claims 1 to 7 in association with a pharmaceutically acceptable excipient, diluent and/or carrier.

14. (Original): A compound of formula (IA)

wherein

A is a bivalent radical selected from -C(O)-, -C(O)NH-, -NHC(O)-, -N(R⁷)-CH₂-, -CH₂-N(R⁷)-, -CH(NR⁸R⁹)- and -C(=NR¹⁰)-;

 R^1 is $-O(CH_2)_dXR^{11}$;

R² is hydrogen or a hydroxyl protecting group;

 R^3 is hydrogen, C_{1-4} alkyl, or C_{3-6} alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl;

 R^4 is hydroxy, C_{3-6} alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl, or C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy or - $O(CH_2)_eNR^7R^{12}$,

R⁵ is hydroxy, or

 R^4 and R^5 taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from -CH₂-, -CH(CN)-, -O-, -N(R¹³)- and -CH(SR¹³)-;

R⁶ is hydrogen or fluorine;

 R^7 is hydrogen or C_{1-6} alkyl;

 $\rm R^8$ and $\rm R^9$ are each independently hydrogen, C $_{1\text{-}6}$ alkyl, -C (=NR 10)NR 14 R 15 or - C(O)R 14 , or

 R^8 and R^9 together form =CH(CR¹⁴R¹⁵)_faryl, =CH(CR¹⁴R¹⁵)_fheterocyclyl, =CR¹⁴R¹⁵ or =C(R¹⁴)C(O)OR¹⁴, wherein the alkyl, aryl and heterocyclyl groups are optionally substituted by up to three groups independently selected from R¹⁶; R^{10} is -OR¹⁷, $C_{1\text{-}6}$ alkyl, -(CH₂)_garyl, -(CH₂)_gheterocyclyl or -(CH₂)_hO(CH₂)_iOR⁷, wherein each R^{10} group is optionally substituted by up to three groups independently selected from R^{16} ;

R¹¹ is a heterocyclic group having the following structure:

or

 R^{12} is hydrogen or C_{1-6} alkyl;

 R^{13} is hydrogen or $C_{1\text{-}4}$ alkyl substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl;

 R^{14} and R^{15} are each independently hydrogen or $C_{1\text{-}6}$ alkyl;

 R^{16} is halogen, cyano, nitro, trifluoromethyl, azido, $-C(O)R^{21}$, $-C(O)OR^{21}$, $-C(O)OR^{21}$, $-OC(O)OR^{21}$, $-NR^{22}C(O)R^{23}$, $-C(O)NR^{22}R^{23}$, $-NR^{22}R^{23}$, hydroxy,

 C_{1-6} alkyl, $-S(O)_k C_{1-6}$ alkyl, C_{1-6} alkoxy, $-(CH_2)_m$ aryl or $-(CH_2)_m$ heteroaryl, wherein the alkoxy group is optionally substituted by up to three groups independently selected from $-NR^{14}R^{15}$, halogen and $-OR^{14}$, and the aryl and heteroaryl groups are optionally substituted by up to five groups independently selected from halogen, cyano, nitro, trifluoromethyl, azido, $-C(O)R^{24}$, $-C(O)OR^{24}$, $-OC(O)OR^{24}$, -

 $NR^{25}C(O)R^{26}$, - $C(O)NR^{25}R^{26}$, - $NR^{25}R^{26}$, hydroxy, $C_{1\text{-}6}$ alkyl and $C_{1\text{-}6}$ alkoxy;

 R^{17} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}6}$ alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heteroaryl, $-OR^{27}$, $-S(O)_nR^{27}$, $-NR^{27}R^{28}$, $-CONR^{27}R^{28}$, halogen and cyano;

 R^{18} is hydrogen, -C(O)OR²⁹, -C(O)NHR²⁹ or -C(O)CH₂NO₂;

 R^{19} is hydrogen, $C_{1\text{-}4}$ alkyl optionally substituted by hydroxy or $C_{1\text{-}4}$ alkoxy, $C_{3\text{-}7}$ regularity, or optionally substituted phenyl or benzyl;

 R^{20} is halogen, C_{1-4} alkyl, C_{1-4} thioalkyl, C_{1-4} alkoxy, -NH2, -NH(C_{1-4} alkyl) or -N(C_{1-4} alkyl)₂;

 R^{21} is hydrogen, C_{1-10} alkyl, -(CH_2) $_p$ aryl or -(CH_2) $_p$ heteroaryl;

 $\rm R^{22}$ and $\rm R^{23}$ are each independently hydrogen, -OR 14 , C $_{1\text{-}6}$ alkyl, -(CH $_2$) $_q$ aryl or - (CH $_2$) $_q$ heterocyclyl;

 R^{24} is hydrogen, C_{1-10} alkyl, - $(CH_2)_r$ aryl or - $(CH_2)_r$ heteroaryl;

 R^{25} and R^{26} are each independently hydrogen, -OR 14 , $C_{1\text{-}6}$ alkyl, -(CH₂)_s aryl or - (CH₂)_s heterocyclyl;

 R^{27} and R^{28} are each independently hydrogen, $C_{1\text{-}4}$ alkyl or $C_{1\text{-}4}$ alkoxy $C_{1\text{-}4}$ alkyl; R^{29} is hydrogen or $C_{1\text{-}6}$ alkyl optionally substituted by up to three groups independently selected from halogen, $C_{1\text{-}4}$ alkoxy, $-OC(O)C_{1\text{-}6}$ alkyl and $-OC(O)OC_{1\text{-}6}$ alkyl;

 R^{30} is hydrogen, C_{1-4} alkyl, C_{3-7} cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzoyl;

 R^{31} is hydrogen or R^{20} , or R^{31} and R^{19} are linked to form the bivalent radical - $O(CH_2)_2$ - or - $(CH_2)_t$ -;

X is $-U(CH_2)_VB$ -, $-U(CH_2)_V$ - or a group selected from:

and

U and B are independently a divalent radical selected from -N(R^{30})-, -O-, -S(O)_Z-, -

 $N(R^{30})C(O)$ -, $-C(O)N(R^{30})$ - and $-N[C(O)R^{30}]$ -;

W is $-C(R^{31})$ - or a nitrogen atom;

d is an integer from 2 to 6;

e is an integer from 2 to 4;

f, g, h, m, p, q, r and s are each independently integers from 0 to 4;

i is an integer from 1 to 6;

j, k, n and z are each independently integers from 0 to 2;

t is 2 or 3;

v is an integer from 2 to 8;

or a pharmaceutically acceptable derivative thereof.