Trees Cheat Sheet (Theory Only)

1. Basic Tree Terminologies

Tree: A hierarchical data structure consisting of nodes connected by edges.

Root: The **topmost node** in a tree.

Parent & Child Nodes: A node directly connected to another node is called a parent, and the connected node is a child.

Sibling Nodes: Nodes sharing the same parent.

Leaf Node: A node with no children.

Height of Tree: The **longest path** from the root to a leaf node. **Depth of Node:** The **distance** from the root to a given node.

Subtree: A tree within another tree.

Degree of Node: The number of children a node has.

2. Types of Trees

(A) Binary Tree

Each node has at most two children \rightarrow left and right.

Types of Binary Trees:

- Full Binary Tree: Every node has 0 or 2 children.
- Complete Binary Tree: All levels are completely filled, except possibly the last level.
- Perfect Binary Tree: All internal nodes have 2 children, and all leaf nodes are at the same level.
- Balanced Binary Tree: The difference in height between left and right subtrees is at most 1.

(B) Threaded Binary Tree

Uses special pointers to make in-order traversal faster.

Instead of NULL pointers, unused pointers store references to in-order successor/predecessor.

Types:

- **Single Threaded** → Only one type of thread (either left or right).
- **Double Threaded** → Threads for both in-order successor and predecessor.

(C) Binary Search Tree (BST)

A binary tree with an ordering property:

- Left subtree contains values smaller than the root.
- Right subtree contains values greater than the root.

Operations in BST:

- **Insertion:** Insert elements following BST rules.
- Searching: Compare elements with root recursively.
- **Deletion:** Remove a node while maintaining BST structure.

Example of BST Structure:

Example of Searching in BST:

class Node:

```
def __init__(self, key):
    self.key = key
    self.left = self.right = None

def search(root, key):
    if not root or root.key == key:
        return root
    if key < root.key:
        return search(root.left, key)
    return search(root.right, key)

# Example Usage
root = Node(50)
root.left = Node(30)
root.right = Node(70)
print(search(root, 30)) # Output: Node with key 30</pre>
```

3. Binary Tree Traversals

Traversals define the way to visit all nodes in a tree. Types of Tree Traversals:

(A) Depth-First Search (DFS) Traversals

```
1st Inorder (Left \rightarrow Root \rightarrow Right)
      Example: (20, 30, 40, 50, 60, 70, 80)
      Used in Binary Search Trees (BSTs).
   def inorder(root):
        if root:
             inorder(root.left)
             print(root.key, end=" ")
             inorder(root.right)
2nd
3rdPreorder (Root \rightarrow Left \rightarrow Right)
      Example: (50, 30, 20, 40, 70, 60, 80)
      Used in tree cloning, expression trees.
   def preorder(root):
        if root:
             print(root.key, end=" ")
             preorder(root.left)
             preorder(root.right)
5th Postorder (Left \rightarrow Right \rightarrow Root)
      Example: (20, 40, 30, 60, 80, 70, 50)
      Used in deleting trees.
   def postorder(root):
        if root:
             postorder(root.left)
             postorder(root.right)
             print(root.key, end=" ")
```

(B) Breadth-First Search (BFS) – Level Order Traversal

Visits nodes level by level.
 Implemented using a queue.
 Example for Level Order Traversal:
from collections import deque

def level_order(root):
 if not root:
 return
 queue = deque([root])
 while queue:
 node = queue.popleft()
 print(node.key, end=" ")
 if node.left:
 queue.append(node.left)
 if node.right:
 queue.append(node.right)

4. AVL Tree (Self-Balancing Binary Search Tree)

Automatically balances itself after insertion & deletion.

For every node, the difference in height of left & right subtrees is at most 1.

Rotations are used to balance the tree:

- Right Rotation (LL Rotation)
- Left Rotation (RR Rotation)
- Left-Right Rotation (LR Rotation)
- Right-Left Rotation (RL Rotation)

Example of AVL Tree Rotations:

```
Before Rotation:

30

20

10

After Right Rotation:

20

10

30
```

5. Red-Black Tree

A self-balancing BST with extra rules.

Each node has a color: Red or Black.

Rules for Red-Black Trees:

- Every node is either **Red or Black**.
- Root is always Black.
- Red nodes cannot have Red children (No two consecutive Red nodes).
- Every path from root to leaf must have the same number of Black nodes.
- Newly inserted nodes are always Red.

Operations in Red-Black Tree:

- Insertion & Deletion involve rotations to maintain balance.
- Faster than AVL in insertion and deletion.

Example Structure of a Red-Black Tree:

6. Comparison of Trees

Tree Type	Balanced?	Time Complexity (Search, Insert, Delete)	Special Features
Binary Search Tree (BST)	No	O(n) (worst case), O(log n) (avg case)	Simple but unbalanced
AVL Tree	Yes	O(log n)	Strictly balanced
Red-Black Tree	Yes	O(log n)	Less strict balancing
Threaded Binary Tree	No	O(n) (for traversal)	Faster inorder traversal

Key Takeaways

Binary Tree → Basic hierarchical structure.

Binary Search Tree (BST) \rightarrow Sorted structure for fast searching.

Threaded Binary Tree \rightarrow Uses extra pointers for traversal.

AVL Tree → Self-balancing tree using rotations.

Red-Black Tree → Self-balancing BST with color rules.

Tree Traversals:

- DFS (Inorder, Preorder, Postorder)
- BFS (Level Order)

This Tree Data Structure Cheat Sheet covers basic terminologies, types of trees, traversal algorithms, AVL trees, and Red-Black trees. Let me know if you need further explanations!