

相关知识点总结与解题思路分析、探索参见公众号《公共基础课》在线课堂,或公众号回复"在线课堂"

2016 年第八届全国大学生数学竞赛初赛(非数学类)试卷

一、填空题(满分30分,每小题5分)

1. 若
$$f(x)$$
在点 $x=a$ 处可导,且 $f(a)
eq 0$,则 $\lim_{n o +\infty} \left| rac{fig(a+1/nig)}{fig(aig)}
ight|^n =$ _______.

2.若
$$fig(1ig)=0, f'ig(1ig)$$
存在,则极限 $I=\lim_{x o 0}rac{fig(\sin^2x+\cos xig) an 3x}{\Big(e^{x^2}-1\Big)\sin x}=$ ______

考研竞赛数学(xwmath)

参考答案参见微信公众号:**考研竞赛数学(ID: xwmath)**菜单"**竞赛实验**"下的"**竞赛试题与通知**"相关知识点总结与解题思路分析、探索参见公众号**《公共基础课》在线课堂**,或公众号回复"**在线课堂**"

4. 设
$$f(x) = e^x \sin 2x$$
,则 $f^{\left(4\right)}(0) =$ _______.

5. 曲面
$$z=rac{x^2}{2}+y^2$$
 平行于平面 $2x+2y-z=0$ 的切平面方程为______

第二题: (14 分)设 f(x) 在 [0,1] 上可导,f(0)=0,且当 $x\in (0,1)$,0< f'(x)<1. 试证:当 $a\in (0,1)$ 时,有 $\left(\int_0^a f(x)\mathrm{d}\,x\right)^2>\int_0^a f^3\left(x\right)\mathrm{d}\,x$.

相关知识点总结与解题思路分析、探索参见公众号《公共基础课》在线课堂,或公众号回复"在线课堂"

第三题: (14 分) 某物体所在的空间区域为 $\Omega: x^2+y^2+2z^2 \leq x+y+2z$, 密度函数为 $x^2+y^2+z^2$, 求质量 $M=\iiint_{\Omega} \left(x^2+y^2+z^2\right) \mathrm{d}\,x\,\mathrm{d}\,y\,\mathrm{d}\,z$.

考研竞赛数学(xwmath)

第四题: (14 分)设函数 f(x) 在闭区间 $\left[0,1\right]$ 上具有连续导数, $f\left(0\right)=0,f\left(1\right)=1.$ 证明:

$$\lim_{n\to\infty} n \Biggl(\int_0^1 f\Bigl(x\Bigr) \mathrm{d}\,x - \frac{1}{n} \sum_{k=1}^n f\biggl(\frac{k}{n}\biggr) \Biggr] = -\frac{1}{2}.$$

第五题: (14 分)设函数 f(x)在区间 $\left[0,1\right]$ 上连续,且 $I=\int_0^1 f(x) \mathrm{d}\, x \neq 0$. 证明:在 $\left(0,1\right)$ 内存在不同的两点 x_1,x_2 ,使得 $\frac{1}{f(x_1)}+\frac{1}{f(x_2)}=\frac{2}{I}$.

考研竞赛数学(xwmath)

参考答案参见微信公众号:**考研竞赛数学(ID: xwmath)**菜单"**竞赛实验**"下的"**竞赛试题与通知**"相关知识点总结与解题思路分析、探索参见公众号**《公共基础课》在线课堂**,或公众号回复"**在线课堂**"

第六题: (14 分) 设 $f\left(x\right)$ 在 $\left(-\infty,+\infty\right)$ 上可导,且 $f\left(x\right)=f\left(x+2\right)=f\left(x+\sqrt{3}\right)$,用傅里叶(Fourier) 级数理论证明 $f\left(x\right)$ 为常数。

考研竞赛数学(xwmath)