

Devoir surveillé nº 1

13 mars 2025

Consignes:

• Écrire son nom et son numéro d'étudiant sur la copie.

- Les réponses doivent être rédigées soigneusement et les calculs suffisamment détaillés.
- La calculatrice n'est pas autorisée.

Durée: 1 heure (tiers temps: 1 heure 20 minutes).

Barème: 20 points.

Exercice 1 (4 pts). *Questions de cours.* Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- 1. Donner la définition de « A est une partie ouverte de E ».
- **2.** Écrire la définition de « x est adhérent à A ».

Exercice 2 (4 pts).

- **1.** Dans \mathbb{R} , donner l'intérieur et l'adhérence de $A := \left\{-\frac{1}{n} : n \in \mathbb{N}^*\right\} \cup [0,1[$ (aucune justification n'est attendue).
- **2.** Dans \mathbb{R}^2 , démontrer que l'ensemble $B := \{(x, y) \in \mathbb{R}^2 \mid xy > 1 \text{ ou } \sin(x y) < 0\}$ est ouvert.

Exercice 3 (6 pts). Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux espaces vectoriels normés. On dit qu'une fonction $f: E \to F$ est Lipschitzienne s'il existe K > 0 tel que $\forall x, y \in E$, $\|f(x) - f(y)\|_F \le K \|x - y\|_E$.

- **1.** Démontrer que si $f: E \rightarrow F$ est Lipschitzienne, alors f est continue.
- **2.** On suppose à présent que $f: E \to F$ est linéaire et continue. On va démontrer que f est nécessairement Lipschitzienne.
 - **a.** Écrire la définition de « f est continue en 0_E ».
 - **b.** En déduire qu'il existe $\delta > 0$ tel que pour tout $u \in E$, $||u||_E \le \delta \implies ||f(u)||_F \le 1$.
 - **c.** En déduire que pour tout $x \in E$, $||f(x)||_F \le \frac{1}{\delta} ||x||_E$. Indication: $si \ x \ne 0_E$, on pourra considérer le vecteur $u = \delta \frac{x}{||x||_E}$.
 - **d.** Démontrer que f est Lipschitzienne.

Exercice 4 (6 pts). L'objectif de cet exercice est de démontrer que les seules parties à la fois ouvertes et fermées de \mathbb{R} sont \emptyset et \mathbb{R} .

- **1.** Soit *A* une partie de \mathbb{R} . Montrer que si *A* est ouverte et fermée, alors $\partial A = \emptyset$.
- **2.** Soit *A* une partie de \mathbb{R} telle que *A* et A^c soient non vides. Soient $a \in A$ et $b \in A^c$. Sans perte de généralité, on suppose que a < b. On pose $s := \sup\{A \cap [a, b]\}$.
 - **a.** Montrer que $s \in \overline{A}$.
 - **b.** Montrer que $s \in \overline{A^c}$ (on distinguera les cas s = b et s < b).
 - **c.** En déduire que $\partial A \neq \emptyset$.
- **3.** Soit *A* une partie de \mathbb{R} . Démontrer que si *A* est ouverte et fermée, alors $A = \mathbb{R}$ ou $A = \emptyset$.