SESA2024 Astronautics

Chapter 5: Mission Analysis Workshop 1

Professor Hugh Lewis

Workshops - overview

- Orbital elements demonstration
- Solar Orbiter worked example:
 - Ellipse equation
- Space tourism worked examples:
 - Sub-orbital flight, Blue Origin NS-18 (William Shatner)
 - SpaceX Crew-4 (Freedom) re-entry
 - SpaceX first Starship orbital flight
- DART worked example:
 - Characterising the effects of the DART impact on Dimorphos
- Space debris mitigation example:
 - FCC's new 5-year de-orbit rule
- Quick quizzes
 - Check your understanding of orbits, ground tracks, and ACS
- If we are unable to complete everything in the workshop sessions, you can
 use the worked examples for self-study, revision, etc.

Orbital elements

Ellipse equation

- Solar Orbiter
 - Perihelion: 0.28 AU
 - Aphelion: 0.93 AU
- Calculate:
 - Semi-major axis
 - Eccentricity
 - Altitude at perihelion
 - (Speed at perihelion)

 $\mu_S = 1.3271244 \times 10^{11} \text{ km}^3 \text{s}^{-2}$ 1 AU = 149,597,870.7 km $R_S = 696,342 \text{ km}$

https://www.esa.int/Science_Exploration/Space_Science/Solar_Orbiter_Solar_Orbiter_factsheet

· Semi-major axis:

$$a = \frac{1}{2}(r_p + r_a)$$

$$= \frac{1}{2}(0.28 + 0.93)$$

$$= 0.605 \text{ AU} = 90,506,711.75 \text{ km}$$

• Eccentricity:

$$e = 1 - \frac{r_p}{a}$$
$$= 1 - \frac{0.28}{0.605} = 0.53719$$

· Altitude:

$$h_p = r_p - R_S$$

= 41,191,061.8 km

Speed at perihelion:

$$\frac{V_p^2}{2} - \frac{\mu_S}{r_p} = -\frac{\mu_S}{2a}$$

$$V = \sqrt{\mu_S \left(\frac{2}{r_p} - \frac{1}{a}\right)}$$

$$V = \sqrt{1.3 \times 10^{11} \left(\frac{2}{4.2 \times 10^7} - \frac{1}{9.1 \times 10^7} \right)}$$

= 69.79 km/s

Astronautics - Chapter 5 Mission Analysis

Ellipse equation

- If the Earth-Sun line and the spacecraft-Sun line are aligned when Solar Orbiter is at a true anomaly of $\theta = 210^{\circ}$ calculate:
 - The radius of the Solar Orbiter orbit at this point
 - The Earth-Spacecraft distance (assuming Earth's orbit is circular)

Astronautics - Chapter 5 Mission Analysis

Ellipse equation

Use the ellipse equation:

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

Use Astronomical Units (for simplicity)

$$r = \frac{0.605(1 - 0.53719^2)}{1 + 0.53719\cos 210^\circ}$$

 $= 0.8048 \, AU$

= 120,402,656.8 km

Ellipse equation

• Earth-spacecraft distance:

$$d = r_E - r$$

= 1 - 0.8048 AU
= 0.1952 AU
= 29,195,213.9 km

- NAVSTAR GPS
- **HST**
- · SENTINEL 1B
- ISS

Hubble Space Telescope (HST)

Variable	Symbol	Value	Units
Semi-major axis	a	6914.5	km
Eccentricity	е	0.00024	
Inclination	i	28.4712	deg.
Right ascension of ascending node	Ω	10.3389	deg.
Argument of perigee	ω	241.637	deg.
Perigee altitude	h _p	534.8	km
Apogee altitude	h _a	538.2	km

- NAVSTAR GPS
- **HST**
- SENTINEL 1B
- ISS

SENTINEL 1B

Variable	Symbol	Value	Units
Semi-major axis	а	7073.5	km
Eccentricity	е	0.00012	
Inclination	i	98.1814	deg.
Right ascension of ascending node	Ω	292.077	deg.
Argument of perigee	ω	81.0855	deg.
Perigee altitude	hp	694.6	km
Apogee altitude	h _a	696.4	km

- NAVSTAR GPS
- **HST**
- SENTINEL 1B
- ISS

NAVSTAR GPS

Variable	Symbol	Value	Units
Semi-major axis	а	27717	km
Eccentricity	е	0.00187	
Inclination	i	98.1814	deg.
Right ascension of ascending node	Ω	292.077	deg.
Argument of perigee	ω	81.0855	deg.
Perigee altitude	h _p	21287.1	km
Apogee altitude	h _a	21390.9	km

- NAVSTAR GPS
- HST
- · SENTINEL 1B
- · ISS

International Space Station (ISS)

Variable	Symbol	Value	Units
Semi-major axis	а	6798	km
Eccentricity	е	0.00042	
Inclination	i	51.6404	deg.
Right ascension of ascending node	Ω	117.399	deg.
Argument of perigee	ω	104.259	deg.
Perigee altitude	hp	417.1	km
Apogee altitude	h _a	422.9	km

Activity

- The orbital motion (Celestial Mechanics) topic is covered in chapter 4 of Fortescue, Stark & Swinerd:
 - Read this chapter (up to an including the "Specifying the Orbit" section; there is no need to go further) in preparation for the next few lectures & to support your learning of this topic
 - Access to the e-book is available via the Library website:
 - https://onlinelibrary.wiley.com/doi/book/10.10 02/9781119971009

