Contents

1	Chem 30324, Spring 2018, Homework 3 Solution Problem 1. Blackbody Radiators	2 2
	Stefan estimated that the power per unit area radiated	∠
	from the surface of the sun was 43.5 times greater than	
	that of a metal bar heated to 1950 deg C. What is the	
	temperature of the sun?	2
	Based on this temperature, what wavelength λ of light	
	does the sun emit most intensely, in nm? What fre-	
	quency of light, in s^-1? What color does this corre-	
	spond to?	
	What is the ultraviolet catastrophe, and what	
	Planck have to assume to circumvent it?	
	Problem 2. Photoelectric effect.	3
	You set up an experiment in which you shine light of	
	varying intensity and constant frequency at a metal	
	surface and measure the maximum kinetic energy of	
	the emitted electrons. As an accomplished student of	
	classical physics, you know that the energy contained	
	in a wave is proportional to the square of its intensity.	
	Based on this knowledge, sketch how you <i>expect</i> the kinetic energy of the electrons to vary in the experi-	
	ment. Briefly justify your answer.	0
	Not finding a result that you like, you set up another	<u>3</u>
	experiment in which you vary the frequency of light at	
	constant intensity. Not finding a result that you like,	
	you set up another experiment in which you vary the	
	frequency of light at constant intensity	1
	What is the metal? <i>Hint</i> : It is a coinage metal.	
	Problem 3. Diffraction	
	The spacing between atoms in a Ag crystal is appro	
		by
	scattering photons of a comparable wavelength off	
	crystal. What is the energy (in eV) of a photon	of
	wavelength 2.9 Å? What part of the electromagne	
	spectrum does this correspond to?	
	Suppose you have a device that produces these pho-	J
	tons at a power of 1 μ W. How many photons/s does	
	this correspond to?	6

The Ag spacing can also be measured by scattering *electrons* off a crystal. To what speed (in m/s) would an electron need to be accelerated to have the nec- essary de Broglie wavelength? What fraction of the speed of light is this?

speed of light is this?	6
Problem 4. The Bohr Atom	
Calculate the energies of an electron in the $n = 1$ and	
<i>n</i> = 2 orbits, in eV	6
Would light need to be absorbed or emitted to cause an	
electron to jump from the $n = 1$ to the $n = 2$ orbit?	
What wavelength of light does this correspond to?	6
What is the circumference of the $n = 2$ orbit? What is the de	
Broglie wavelength of an electron in the $n =$	
2 orbit? How do these compare?	6

1 Chem 30324, Spring 2018, Homework 3 Solution

Problem 1. Blackbody Radiators

Stefan estimated that the power per unit area radiated from the surface of the sun was 43.5 times greater than that of a metal bar heated to 1950 deg C. What is the temperature of the sun?

Temperature of Metal = T_m = 1950 deg.C = 2223 K Power of Metal by Stefan-Boltzmann Law is :

$$P = \sigma T_m^4$$

Power of Sun = 43.5 times Power of Metal. Hence

$$\sigma T_s^4 = 43.5 \sigma T_m^4$$

$$T_s = (43.5T_m^4)^{0.25} = 5709.023K$$

Based on this temperature, what wavelength λ of light does the sun emit most intensely, in nm? What frequency of light, in s $^-1$? What color does this correspond to?

Wien's Constant W = 2897768 nm*K By Wien's Displacement Law, $\lambda_{max}T_s=W$

$$\lambda_{max} = W/T_s = 507.577nm$$

The frequency μ is given by:

$$v = \frac{c}{\lambda_{max}} = 5.906 * 10^{14} s^{-1}$$

This corresponds to green light.

What is the ultraviolet catastrophe, and what did Planck have to assume to circumvent it?

Answer given in Python Notebook

Problem 2. Photoelectric effect

You set up an experiment in which you shine light of varying intensity and constant frequency at a metal surface and measure the maximum kinetic energy of the emitted electrons. As an accomplished student of classical physics, you know that the energy contained in a wave is proportional to the square of its intensity. Based on this knowledge, sketch how you *expect* the kinetic energy of the electrons to vary in the experiment. Briefly justify your answer.

The intensity I varies with kinetic energy, K as

$$I = K^2$$

The plot should look like:

Not finding a result that you like, you set up another experiment in which you vary the frequency of light at constant intensity. Not finding a result that you like, you set up another experiment in which you vary the frequency of light at constant intensity.

From the given table, by fitting the data, you get:

The negative intercept gives the Work Function. The slope gives the value of Planck's constant. W = 4.598 eV, Planck's contant = $4.127*10^{-15} \text{ eV*s}$

What is the metal? Hint: It is a coinage metal.

The metal can be copper or silver (For a detailed explanation, see the Python Notebook)

Problem 3. Diffraction

The spacing between atoms in a Ag crystal is approximately 2.9 Å, a distance that can be measured by scattering photons of a comparable wavelength off the crystal. What is the energy (in eV) of a photon of wavelength 2.9 Å? What part of the electromagnetic spectrum does this correspond to?

Given $\lambda = 2.9 \text{ Å}$

$$E = \frac{hc}{\lambda} = 4275.86eV$$

This wavelength corresponds to X-rays.

Suppose you have a device that produces these photons at a power of 1 μ W. How many photons/s does this correspond to?

Given Power,P = 1 μ W = 6.2415*10¹² eV/s

$$n = P/E = 1.4597 * 10^9 photons/s$$

The Ag spacing can also be measured by scattering *electrons* off a crystal. To what speed (in m/s) would an electron need to be accelerated to have the necessary de Broglie wavelength? What fraction of the speed of light is this?

Mass of electron, m_e = 9.109*10⁻³¹ kg Momentum of photon, $p = h/\lambda = 2.284*10^{-24}$ kg m/s Speed of photon, $v = p/m_e = 2.508*10^6$ m/s It is 0.00837 of the speed of light.

Problem 4. The Bohr Atom

Calculate the energies of an electron in the n = 1 and n = 2 orbits, in eV.

Given $n_1 = 1$, $n_2 = 2$ By Bohr's formula, $E_1 = -13.606/(n_1)^2 = -13.606 \text{ eV}$ $E_2 = -13.606/(n_2)^2 = -3.401 \text{ eV}$

Would light need to be absorbed or emitted to cause an electron to jump from the n = 1 to the n = 2 orbit? What wavelength of light does this correspond to?

 Δ E = E2 - E2 = 10.205 eV $\lambda = hc/\Delta$ E = 121.515 nm Light would need to be absorbed for the electron to jump

What is the circumference of the n=2 orbit? What is the de Broglie wavelength of an electron in the n=2 orbit? How do these compare?

Bohr constant for Radius, a0 = 0.529 Å

Radius for n(n=2) orbital= $a_0 * n^2$

Circumference of n = 2 orbit is given by:

$$C_2 = 2 \pi^* a_0 * n^2 = 1.329 * 10^{-9} m$$

From the course outline, the electron momentum is:

$$p_n = e^2 m_e 2\pi/(4\pi s_0 hn) = 9.963 * 10^{-25} kgm/s$$

The electron wavelength is given by:

$$\lambda = h/p_n = 6.6501 * 10^{-10} m$$

By comparing both values, it is clear that $C_2=2*\lambda$