ЭЛЕКТРОНИКА

Контрольное индивидуальное задание

Задача 2

Вторая задача посвящена расчету простейших усилительных каскадов на биполярном и полевом транзисторах графическим и аналитическим методами. Задача имеет три варианта задания (по существу три различных задачи). Каждый студент решает одну из трех задач в зависимости от номера его варианта.

Задача 2.1

Дано: Схема усилительного каскада на биполярном транзисторе, включенном по схеме ОЭ, приведена на рис.1, а. Значения элементов схемы, параметры входного сигнала и нагрузки, а также масштабные коэффициенты N и M приведены в таблице исходных данных. Внутреннее сопротивление генератора и масштабный коэффициент L для всех вариантов равны R_{Γ} =10 кОм и L = 4. Статические характеристики транзистора приведены на рис. 2 и 3.

Требуется: Провести графический расчет усилительного каскада и определить его основные параметры.

Методические указания

- 1. Изучить материал, посвященный графическому расчету усилительного каскада на биполярном транзисторе [1], Ч. 1, п. 3.8.
- 2. Нарисовать схему усилительного каскада и пояснить назначение ее элементов.

Рис. 1. Схемы усилительных каскадов

Исходные данные к заданию 1

Nº Bap		Элем	иенты сх	Масштабные коэффициен ты		Номера решаемых		
	<i>Ек</i> В	<i>Rк</i> кОм	<i>R</i> ₅ кОм	<i>R_H</i> кОм	<i>Егм</i> В	N	М	задач
1	15	1,5	125,0	0,5	0,60	2	30	2.1
3	17	1,0	106,3	0,4	0,80	3	40	2.2
4	18	2,0	112,5	0,6	0,40	2	40	2.1
6	20	1,0	111,1	0,4	0,90	4	45	2.2
7	15	1,0	75,0	0,4	0,50	3	50	2.1
9	17	2,0	106,3	0,6	0,40	2	40	2.2
10	18	1,0	100,0	0,4	0,45	4	45	2.1
12	20	2,0	166,7	0,6	0,60	2	30	2.2
13	15	1,5	107,1	0,5	0,70	2	35	2.1
15	17	1,5	94,4	0,5	0,45	2	45	2.2
17	19	1,0	105,6	0,4	0,90	4	45	2.1
18	20	1,5	125,0	0,5	0,80	3	40	2.2
20	16	1,5	114,3	0,5	0,70	2	35	2.1
22	17	1,5	94,4	0,5	0,90	2	45	2.2
23	18	1,0	90,0	0,4	0,50	4	50	2.1
24	20	2,0	166,7	0,6	0,90	2	30	2.2

Nº Bap		Элем	иенты с	хемы	Параметры			
	<i>E</i> _c B	<i>R</i> c кОм	<i>R</i> и кОм	<i>R</i> н кОм	<i>Егм</i> В	управляющ ей характерист ики		Номер решаемой задачи
						<i>U</i> пор В	Ic макс мА	
2	17	11	0,7	4,0	0,30	-1,2	1,4	2.3
5	20	12	0,6	4,0	0,20	-1,0	1,1	2.3
8	18	10	0,7	4,0	0,25	-1,3	1,4	2.3
11	16	11	0,6	4,0	0,20	-1,0	1,0	2.3
14	19	12	0,6	4,0	0,25	-1,3	1,3	2.3
16	16	10	0,7	3,5	0,20	-1,0	1,3	2.3
19	19	11	0,7	3,5	0,30	-1,4	1,6	2.3
21	16	11	0,7	3,5	0,30	-1,5	1,5	2.3
25	18	11	0,6	3,5	0,20	-1,1	1,3	2.3

Рис. 2. Входные характеристики биполярного транзистора

Рис. 3. Выходные характеристики биполярного транзистора

- 3. Перенести на миллиметровку семейство выходных характеристик и входную характеристику, соответствующую активному режиму работы транзистора ($U_{K9} = 5$ B), указав масштаб по осям с учетом заданных масштабных коэффициентов.
- 4. На графике семейства выходных характеристик построить нагрузочную линию и определить положение рабочей точки транзистора по постоянному току. Определить постоянные составляющие напряжения и тока в коллекторной цепи $U_{K\Im}(0)$ и $I_K(0)$ и мощность, потребляемую каскадом от источника питания $P_O = I_K(0)$ E_K .

Указать положение рабочей точки по постоянному току на входной характеристике и определить постоянную составляющую напряжения на базе $U_{E\ni}(0)$.

5. На графике семейства выходных характеристик построить нагрузочные треугольники и определить амплитуды переменных

составляющих напряжения и тока в коллекторной цепи U_{KM} и I_{KM} . В том случае, если размеры нагрузочных треугольников заметно различаются, в качестве U_{KM} и I_{KM} следует взять полу-суммы значений, полученных из разных треугольников.

- С помощью входной характеристики определить амплитуду переменной составляющей напряжения на базе U_{EM} . В том случае, если амплитуды положительной и отрицательной полуволн напряжения U_{E3} заметно различаются, в качестве U_{EM} следует взять их полу-сумму.
- 6. Рассчитать основные параметры усилительного каскада: коэффициенты усиления по току K_l , по напряжению K_U и по мощности K_P , коэффициент полезного действия η , входное сопротивление каскада R_{BX} .

Задача 2.2

Дано: Схема усилительного каскада на биполярном транзисторе, включенном по схеме ОЭ, приведена на рис. 1, а. Значения элементов схемы, параметры входного сигнала и нагрузки, а также масштабные коэффициенты N и M приведены в таблице исходных данных. Внутреннее сопротивление генератора и масштабный коэффициент L для всех вариантов равны R_{Γ} =10 кОм и L=4. Статические характеристики транзистора приведены на рис. 2 и 3.

Требуется: Провести аналитический расчет усилительного каскада на основе малосигнальной схемы замещения транзистора и определить его основные параметры.

Методические указания

- 1. Изучить материал, посвященный аналитическому расчету усилительного каскада на биполярном транзисторе [1], Ч. 1, п. 3.8, 3.9.
- 2. Нарисовать схему усилительного каскада и пояснить назначение ее элементов.
- 3. Перенести на миллиметровку семейство выходных характеристик и входную характеристику, соответствующую активному режиму работы транзистора ($U_{K9} = 5$ B), указав масштаб по осям с учетом заданных масштабных коэффициентов.
- 4. На графике семейства выходных характеристик построить нагрузочную линию и определить положение рабочей точки транзистора по постоянному току. Определить постоянные составляющие напряжения и тока в коллекторной цепи $U_{K9}(0)$ и $I_{K}(0)$ и мощность, потребляемую каскадом от источника питания $P_{O} = I_{K}(0) E_{K}$.

Указать положение рабочей точки по постоянному току на входной характеристике и определить постоянную составляющую напряжения на базе $U_{59}(0)$.

- 5. С помощью статических характеристик транзистора в рабочей точке по постоянному току рассчитать значения h-параметров транзистора. При этом, учитывая тот факт, что влияние напряжения $U_{K\mathfrak{I}}$ на входную характеристику в активном режиме выражено очень слабо, и все характеристики практически сливаются, положить $h_{12\mathfrak{I}} = 0$.
- 6. Нарисовать малосигнальную схему замещения биполярного транзистора на основе *h*–параметров и пояснить физический смысл ее элементов. Используя схему замещения, нарисовать эквивалентную схему усилительного каскада по переменному току.
- 7. Рассчитать основные параметры усилительного каскада: коэффициенты усиления по току K_I , по напряжению K_U и по мощности K_P , коэффициент полезного действия η , входное сопротивление каскада R_{BX} . С учетом того, что знак минус в выражении для коэффициента усиления по напряжению K_U отражает противофазность входного и выходного напряжений, при расчете коэффициента усиления по мощности K_P использовать абсолютное значение K_U .

Задача 2.3

Дано: Схема усилительного каскада на полевом транзисторе с управляющим p-n-переходом, включенном по схеме OИ, приведена на рис. 1, б. Значения элементов схемы, параметры входного сигнала и нагрузки,а также основные параметры управляющей характеристики транзистора приведены в таблице исходных данных. Внутреннее сопротивление генератора и сопротивление в цепи затвора для всех вариантов равны R_{Γ} =10 кОм и R_{3} =1 МОм.

Требуется: Провести аналитический расчет усилительного каскада и определить его основные параметры.

Методические указания

- 1. Изучить материал, посвященный аналитическому расчету усилительного каскада на полевом транзисторе [1], Ч.2, п. 4.4.1, 4.4.2.
- 2. Нарисовать схему усилительного каскада и пояснить назначение ее элементов.
- 3. Аналитически определить параметры режима работь транзистора по постоянному току (режима покоя) $U_{3иO}$, I_{CO} , U_{CuO} .
- 4. Используя аппроксимацию [1], Ч.2 (4.37), построить на миллиметровке управляющую характеристику транзистора, указать на ней рабочую точку по постоянному току и определить в этой точке крутизну транзистора S.

- 5. Нарисовать малосигнальную низкочастотную эквивалентную схему транзистора и пояснить физический смысл ее элементов. Используя эквивалентную схему транзистора, нарисовать эквивалентную схему каскада по переменному току.
- 6. Рассчитать основные параметры усилительного каскада: коэффициент усиления по напряжению K_U и входное сопротивление R_{BX} . Определить выходное напряжение U_{BbIX} . Оценить величину коэффициента усиления по току K_I и пояснить полученную оценку.