

Alexander Neuwirth

20 Resonanz

ZO-Resonanz
Aircarder Travactor

wissen.leben

2018-11-2

Z0 Resonanz

-Gliederung

└─Gliederung

Gliederung Historischer Überblick

Gliederung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Zusammenfassung

2018-11-2

Z0 Resonanz -Historischer Überblick

Historischer Überblick

Historischer Überblick

ZO Resonanz
Historischer Überblick

Historischer Überblick

Historischer Überblick

ZO Resonanz
Historischer Überblick
Historischer Überblick

Historischer Überblick

ZO Resonanz
—Historischer Überblick
—Historischer Überblick

Historischer Überblick

ZO Resonanz
Historischer Überblick

Historischer Überblick

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Zerfallsbreite

ZO Resonanz —Theorie

Einordnung im Standardmodell der Elementarteilchen

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[5]

Alexander Neuwirth 5

Z0 Resonanz
—Theorie
—Einordnung im Standardmodell der
Elementarteilchen
—Einordnung im Standardmodell der

- Fichboson und Flementarteilchen
- schwache WW
- eigenes Antiteilchen
- W+- => elek. Teilchen WW (beta Zerfall)
- Z0 => auch neutral Teilchen WW (Neutrino)

Elektroschwache Vereinheitlichung

Steven Weinberg, Sheldon Glashow und Abdus Salam[4]

► more

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Zusammenfassung schwache + elektrom. WW
- Steven Weinberg, Sheldon Glashow und Abdus Salam
- 1979 Nobelpreis

Elektroschwache Vereinheitlichung Austauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung
 ▶ W,Z-Boson → schwache Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung
- ► Gluon → starke Wechselwirkung

Z0 Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung
 ▶ W.Z-Boson → schwache Wechselwirkung
 ▶ Gluon → starke Wechselwirkung

- 1. Kräfte durch Austauschteilchen
- 2. Higgs
- 3. experimentelle Bestimmung

Alexander Neuwirth

ZO Resonanz

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts		
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$ ${\rm e_R}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$ μ_{R}	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{L}$ τ_{R}
Quarks	$ \begin{pmatrix} u \\ d' \end{pmatrix}_L $ $ u_R $	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\begin{pmatrix} t \\ b' \end{pmatrix}_L$
	d_{R}	\mathbf{s}_{R}	b_{R}

Schwacher Isospin[1]

spin[1]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	
Leptonen	$\left(egin{array}{c} u_{ m e} \\ e \end{array} ight)_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	
Que	$u_{\rm R}$	c_{R}	t_{R}	0	
	d_{R}	s_{R}	b_{R}	0	

Schwacher Isospin[1]

Alexander Neuwirth 8

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	
Leptonen	$\left(\begin{array}{c} \nu_{\mathrm{e}} \\ \mathrm{e} \end{array} \right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	$^{+1/2}_{-1/2}$	
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	
Quarks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	
Que	u_{R}	c_{R}	t_{R}	0	0	
	d_{R}	\mathbf{s}_{R}	$b_{\rm R}$	0	0	

Schwacher Isospin[1]

Alexander Neuwirth 8

Z0 Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\left(\begin{array}{c} u_{\mathrm{e}} \\ \mathrm{e} \end{array} \right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{ au} \\ au \end{array} ight)_{ ext{L}}$	1/2	$^{+1/2}_{-1/2}$	$0 \\ -1$
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
Quarks	$\left(\begin{array}{c} u \\ d' \end{array}\right)_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c}t\\b'\end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
Qua	u_{R}	c_{R}	t_{R}	0	0	+2/3
	d_{R}	\mathbf{s}_{R}	$b_{\rm R}$	0	0	-1/3

Schwacher Isospin[1]

Alexander Neuwirth 8

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Chiralität (l/r), Spinor Symmetrie
- analogon zu starkem Isospin
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt

Elektroschwache VereinheitlichungAustauschteilchen

 β -Zerfall[2]

Alexander Neuwirth

Elektroschwache Vereinheitlichung Austauschteilchen

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

 β -Zerfall[2]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

► T₃ soll erhalten bleiben

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

 $W^-: T_3 = -1$

 β -Zerfall[2]

ZO Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung
Austauschteilchen

> T₃ soll erhalten bleiben
> W: T₅ = -1

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung Austauschteilchen

 T_3 soll erhalten bleiben

$$W^-: T_3 = -1$$

$$W^+: T_3 = 1$$

 β -Zerfall[2]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

T₂ soll erhalten bleiben
 W⁻: T₂ = −1
 W⁺: T₂ = 1

- 1. Bekannt aus schwacher WW
- 2. Wieso T=13. B⁰ postuliert
- ·

Elektroschwache Vereinheitlichung

Austauschteilchen

- T_3 soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$
- W^0 : $(T=1, T_3=0)$
- B^0 : $(T = 0, T_3 = 0)$

 β -Zerfall[2]

ZO Resonanz -Theorie -Elektroschwache Vereinheitlichung -Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

- T. soll erhalten bleiben W⁻: T₂ = −1 $W^+: T_2 = 1$
- V^0 : $(T = 1, T_1 = 0)$ $B^0: (T = 0, T_1 = 0)$

- 1. Bekannt aus schwacher WW
- 2. Wieso T=1
- 3. B^0 postuliert

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\rm W}|B^0\rangle + \sin\theta_{\rm W}|W^0\rangle$$

 $|Z^0\rangle = -\sin\theta_{\rm W}|B^0\rangle + \cos\theta_{\rm W}|W^0\rangle$

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

troschwache Vereinheitlichung $\begin{aligned} |\gamma\rangle &= +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle \\ |Z^0\rangle &= -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle \end{aligned}$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung
- 4. Kopplungskonstanten relevant?

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m 7}} pprox 0.88$$

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

oschwache Vereinheitlichun

 $|\gamma\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

 $\cos\theta_W = \frac{M_W}{M_Z} \approx 0.88$

- Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung
- 4. Kopplungskonstanten relevant?

Elektroschwache Vereinheitlichung

$$\begin{aligned} \left|\gamma\right\rangle &= +\cos\theta_{\mathrm{W}}\left|B^{0}\right\rangle + \sin\theta_{\mathrm{W}}\left|W^{0}\right\rangle \\ \left|Z^{0}\right\rangle &= -\sin\theta_{\mathrm{W}}\left|B^{0}\right\rangle + \cos\theta_{\mathrm{W}}\left|W^{0}\right\rangle \end{aligned}$$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m 7}} pprox 0.88$$

$$e = g \cdot sin\theta_{w}$$

ZO Resonanz

-Elektroschwache Vereinheitlichung Elektroschwache Vereinheitlichung $Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

 $\cos \theta_W = \frac{M_W}{M_{\star}} \approx 0.88$ $e = q \cdot \sin\theta_w$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. orthogonal + linear Kombination
- 3. experimentelle Bestimmung
- 4. Kopplungskonstanten relevant?

Historischer Überblich

Theorie

Experimentelle Untersuchung

Erzeugung

Nachweis Eigenschaften

Neutrinogenerationen

Zusammenfassun

2018-11-25

Z₀ Resonanz

Experimentelle Untersuchung

Historischer Überblick

Theorie

Experimentelle Untersuchung

Erzougung

Nachweis

experimentelle Untersuchung
Erzeugung
Nachwels
Elgenschaften
Neutrinogenerationen

Erzeugung

- Allg. W/Z-Boson durch Anti+Lepton/Anti-Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- bei passender Energie approx M_Z dominiert Z^0 , aus QFT+Feynmanregeln

Erzeugung

Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_Z c^2 \approx 91.6 \, \text{GeV}$

Erzeugung

Schwerpunktsenerele $\sqrt{s} = 2E. > M_{eC}^2 \approx 91.6 \, \text{GeV}$

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

13

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \text{ GeV}$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600$ GeV pro Proton

ZO Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_{\theta} \ge M_2 c^2 \approx 91.6 \, \text{GeV}$ ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \, \text{GeV}$ pro Proton

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \,\text{GeV}$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600$ GeV pro Proton
- $ightharpoonup e^+ + e^-
 ightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2 M_{
 m W} c^2 pprox 160.8 \,{
 m GeV}$

ZO Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_g \ge M_2 c^2 \approx 91.6 \, \text{GeV}$ ▶ ρp -Kollition: $u + \overline{v} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \, \text{GeV}$ pro Proton

▶ $e^+ + e^- \rightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2M_W c^2 \approx 160.8 \, \text{GeV}$

- 1. 1989 am Stanford Linear Collider
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d)
- 3. 1996 am LEP, $50 \rightarrow 86 \rightarrow 104,6\,\text{GeV}$

Nachweis 1983 am CERN

 $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^- [1]$

Alexander Neuwirth 14

ZO Resonanz
—Experimentelle Untersuchung
—Nachweis
—Nachweis

- Energie Summe = Masse Z⁰ (exakt?)
- Woher sicher, dass Z⁰ Zerfall?

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, \text{GeV/c}^2$
 - $\Gamma_Z = 2,495(2) \text{ GeV}$

ZO Resonanz
Experimentelle Untersuchung
Eigenschaften
Eigenschaften

Experimentelle Bestimmung

Messung:

M₂ = 91,188(2) GeV/c²

F₂ = 2,405(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- Anti+Neutrino schwer detektierbar => % über Γ_{tot}
 totale Breite = alle Zerfälle Anti+Fermion???

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \text{ GeV/c}^2$
 - $\Gamma_7 = 2,495(2) \text{ GeV}$
- > Zerfall:

$$Z^0 \rightarrow e^+ + e^-$$
 3,363(4) %
 $\mu^+ + \mu^-$ 3,366(7) %
 $\tau^+ + \tau^-$ 3,370(8) %
 $v_{e,\mu,\tau}^+ + \overline{v}_{e,\mu,\tau}^-$ 20,0(6) %
Hadronen 69,91(6) %

ZO Resonanz

Experimentelle Untersuchung

Eigenschaften

Eigenschaften

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 4. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}
- 5. totale Breite = alle Zerfälle Anti+Fermion???

Neutrinogenerationen

Wirkungsquerschnitt

$$\sigma_f = \sigma_0 \cdot \frac{s\Gamma_Z^2}{(s - M_Z^2)^2 + M_Z^2\Gamma_Z^2}$$

mit

$$\sigma_0 = \frac{12\pi}{M_Z^2} \cdot \frac{\Gamma_{i=e}\Gamma_f}{\Gamma_Z^2}$$

ZO Resonanz

2018-1

Neutrinogenerationen Wirkungsquerschnitt

$$\begin{split} \sigma_f &= \sigma_0 \cdot \frac{s\Gamma_2^3}{(s-M_2^2)^2 + M_2^3\Gamma_2^2} \\ \text{mit} \\ \sigma_0 &= \frac{12\pi}{M_2^3} \cdot \frac{\Gamma_{l-\sigma}\Gamma_f}{\Gamma_2^2} \end{split}$$

- 1. Formel für σ Breit-Wigner
- 2. Abhängig von ...
- 3. y unterdrückt

Neutrinogenerationen

Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z \to f\bar{f}}$$

Alexander Neuwirth 17

ZO Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

Neutrinogenerationen

1.
$$\Gamma_f = \frac{G_f M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. G_F Fermikonstante

3. Q_f Ladung des Fermions

4. Lép:
$$e^{\pm}$$
, μ^{\pm} , τ^{\pm}

5. Had:
$$u,c=2/3$$
; $d,s,b=-1/3$

6. Neutrinos

7. kein top-Quark weil nicht genug Energie ($\approx 175\,\text{GeV}$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\Gamma_{Z} = \sum_{f} \Gamma_{Z
ightarrow f ar{f}}$$

$$= \Gamma_{Had} + \Gamma_{Lep} + \Gamma_{v}$$

Z0 Resonanz

Experimentelle Untersuchung Neutrinogenerationen ─Neutrinogenerationen

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. G_F Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c = 2/3; d,s,b = -1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie ($\approx 175 \, \text{GeV}$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \end{split}$$

ZO Resonanz

Experimentelle Untersuchung

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. *G_F* Fermikonstante

3. Q_f Ladung des Fermions

4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}

5. Had: u,c = 2/3; d,s,b = -1/3

6. Neutrinos

7. kein top-Quark weil nicht genug Energie ($\approx 175 \, \text{GeV}$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \rightarrow f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{\text{V}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{\text{V}} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \end{split}$$

ZO Resonanz

Experimentelle Untersuchung
Neutrinogenerationen
Neutrinogenerationen

utrinogenerationen fallsbreite

> $\Gamma_{Z\rightarrow ff}$ + Γ_{Lep} + Γ_{ν} 2 · Γ_{c} + N_{c} · 3 · Γ_{c} + 3 · Γ_{c} + 3 · Γ_{c}

2 · 94,9 MeV + 3 · 3 · 122,4 MeV + 3 · 83,3 MeV + 3 · 165,81

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. *G_F* Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c= 2/3; d,s,b=-1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie (\approx 175 GeV)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} & \Gamma_{\!Z} = \sum_f \Gamma_{\!Z \to \!f\bar{f}} \\ & = \Gamma_{\!\mathsf{Had}} + \Gamma_{\!\mathsf{Lep}} + \Gamma_{\!v} \\ & = N_{\!C} \cdot 2 \cdot \Gamma_{\!u} + N_{\!C} \cdot 3 \cdot \Gamma_{\!d} + 3 \cdot \Gamma_{\!e} + 3 \cdot \Gamma_{\!v} \\ & = 3 \cdot 2 \cdot 94,9 \, \mathsf{MeV} + 3 \cdot 3 \cdot 122,4 \, \mathsf{MeV} + 3 \cdot 83,3 \, \mathsf{MeV} + 3 \cdot 165,8 \, \mathsf{MeV} \\ & = 2,42 \, \mathsf{GeV} \end{split}$$

Z0 Resonanz

Experimentelle Untersuchung
Neutrinogenerationen
Neutrinogenerationen

utrinogenerationen fallsbreite

 $\Gamma_Z = \sum_f \Gamma_{Z \rightarrow f \bar{f}}$ = $\Gamma_{--} + \Gamma_{--} +$

 $t_{ad} + \Gamma_{Lep} + \Gamma_{\nu}$ $c \cdot 2 \cdot \Gamma_{al} + N_{c} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{\nu}$ $\cdot 2 \cdot 94,9 \text{ MeV} + 3 \cdot 3 \cdot 122,4 \text{ MeV} + 3 \cdot 83,3 \text{ MeV} + 3 \cdot 165,8 \text{ MeV}$

1.
$$\Gamma_f = \frac{G_f M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. G_F Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c= 2/3; d,s,b=-1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie ($\approx 175 \, \text{GeV}$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} &\Gamma_{Z} = \sum_{f} \Gamma_{Z \rightarrow f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{\text{v}} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{\text{v}} \\ &= 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \, \text{MeV} \\ &= 2,42 \, \text{GeV} \\ &\xrightarrow{\text{Strahlungs-}} 2,497 \, \text{GeV} \end{split}$$

Z0 Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

Neutrinogenerationen

utrinogenerationen fallsbreite

 $\Gamma_Z = \sum_f \Gamma_{Z \rightarrow ff}$ = $\Gamma_{tree} + \Gamma_{tree} +$

$$\begin{split} \Gamma_{\text{lug}} + \Gamma_{\text{Lep}} + \Gamma_{\nu} \\ N_{\nu} \cdot 2 \cdot \Gamma_{\mu} + N_{\nu} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{d} \\ + 3 \cdot \Gamma_{d} + N_{\nu} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{d} \\ 3 \cdot 2 \cdot 94,9 \, \text{MeV} + 3 \cdot 3 \cdot 122,4 \, \text{MeV} + 3 \cdot 83,3 \, \text{MeV} + 3 \cdot 165,8 \\ 2,42 \, \text{GeV} \end{split}$$

1.
$$\Gamma_f = \frac{G_f M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. G_F Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c = 2/3; d,s,b = -1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie ($\approx 175\,\text{GeV}$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Alexander Neuwirth 17

Neutrinogenerationen

Wirkungsquerschnitt $e^+e^- \rightarrow Hadronen$ [1]

Alexander Neuwirth 18

Z0 Resonanz

Experimentelle Untersuchung

- 1. Cern Experiment
- 2. Schwerpunkt energie gegen Wirkungsquerschnitt
- 3. Ähnlich der breit wigner funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven
- 5. 3 Neutrinogenerationen 3 Leptonen 3 Quarks Generationen

19

Z0 Resonanz -Zusammenfassung 2018-11-2

Zusammenfassung

Alexander Neuwirth

Neutrinogenerationen

- \blacktriangleright Weinbergwinkel $\cos \theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_7 \approx 2,4 \, \text{GeV}$
- ▶ 3 Neutrinogeneration

ZO Resonanz 2018-13

-Zusammenfassung

Weinbergwinkel cos θ_W ≈ 0.88 ➤ Zerfallsbreite Γ₂ ≈ 2.4 GeV 3 Neutrinogeneration

Neutrinogenerationen

└─Neutrinogenerationen

1. Weinbergwinkel Massenverhältniss W,Z Boson

Quellen I

Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.

Beta-Decay. URL: https://de.wikipedia.org/wiki/Betastrahlung (besucht am 12.11.2018).

Donald h. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.

Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225putting-the-puzzle-together (besucht am 12.11.2018).

Z0 Resonanz Zusammenfassung 2018--Quellen

Ouellen I

Poyh et al. Tellchen und Kerne, Springer Spektrum, 2014, Kap. 12 Beta-Decay, urt:

Donald h. Perkins, Introduction to High Energy Physics, Cambrid

Sheldon Glashow, Abdus Salam and Steven Weinberg, upp.

Quellen II

Quetten

Standardmodell. URL:

https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).

ZO Resonanz
—Zusammenfassung
—Quellen

Quellen II

Standardmodell.um: https://de.wikipedia.org/wiki/Standardmodell (besucht a 12.11.2018).

-

Folien-Überschrift

Hier kommt Text!

Ein "normaler" Block

Inhalt hier.

itemize und enumerate:

- **Ein Punkt**
 - ► Ein Unterpunkt
- Noch ein Punkt
- 1. Ein Punkt
- 1.1 Ein Unterpunkt
- 2. Noch ein Punkt

ZO Resonanz -Zusammenfassung 2018-13 └─Folien-Überschrift

Folien-Überschrift Hier kommt Text!

itemize und enumerate Ein Punkt ► Ein Unterpunkt

Noch ein Punkt 1. Ein Punkt

2. Noch ein Punkt

Ein Alert-Block

Achtung!

Hier kommt Rot ins Spiel!

Ein Folien-Untertitel

ZO Resonanz —Zusammenfassung 2018-11-2 └─Ein Alert-Block

Ein Alert-Block Ein Folien-Untertitel

Hier kommt Rot ins Spiel!

24

Z0 Resonanz -Zusammenfassung 2018-11-2

└─Ein Example-Block

Ein Example-Block

Hier kommt Grün ins Spiel!

Ein Example-Block

Hier kommt Grün ins Spiel!

Z0 Resonanz -Zusammenfassung

https://www.uni-muenster.de/Physik.PSPHYS

Vielen Dank für eure Aufmerksamkeit!

Habt ihr noch Fragen?

https://www.uni-muenster.de/Physik.FSPHYS

26