Лабораторне заняття 2, 28.09.2021

Симплекс-метод розв'язання задачі лінійного програмування

Алгоритм симплекс-метода

<u>**1 етап.**</u> Приводимо задачу лінійного програмування (ЛП) до канонічної форми.

2 етап.

2.1. Приводимо систему обмежень до канонічного вигляду.

$$\begin{cases} x_{1} = \beta_{1} - (\alpha_{1,m+1}x_{m+1} + \dots + \alpha_{1n}x_{n}), \\ \dots \\ x_{m} = \beta_{m} - (\alpha_{m,m+1}x_{m+1} + \dots + \alpha_{mn}x_{n}). \end{cases}$$

Тут $x_1,...,x_m$ – базисні змінні, а $x_{m+1},...,x_n$ – небазисних змінні.

2.2. Виключаємо базисні змінні $x_1, ..., x_m$ з цільової функції:

$$z = c'_{m+1}x_{m+1} + ... + c'_nx_n + Q.$$

3 етап. Складаємо симплекс-таблицю:

Fannari arriveri	Небазисні змінні				Вільні	
Базисні змінні	$-x_{m+1}$	•••	$-x_r$	•••	$-x_n$	члени
x_1	$\alpha_{1,m+1}$	•••	$lpha_{\scriptscriptstyle 1,r}$	•••	$lpha_{\scriptscriptstyle 1,n}$	$oldsymbol{eta}_{\!\scriptscriptstyle 1}$
:	•	•	•	:	:	: :
\mathcal{X}_{s}	$\alpha_{s,m+1}$	•••	$\alpha_{s,r}$	•••	$\alpha_{s,n}$	$oldsymbol{eta}_{s}$
:	•	•	•	:	:	•
\mathcal{X}_m	$\alpha_{m,m+1}$	•••	${\cal \alpha}_{m,r}$	•••	$\alpha_{\scriptscriptstyle m,n}$	$oldsymbol{eta}_{\scriptscriptstyle m}$
Коефіцієнти цільової функції	$-c'_{m+1}$	•••	$-c'_r$		$-c'_n$	Q

4 етап. Знаходження початкового базисного розв'язку.

Якщо всі $\beta_i \ge 0$, $i=1,\ldots,m$, то за початковий опорний розв'язок вибираємо точку $x^{(0)}=\left(\beta_1,\ldots,\beta_m,0,\ldots,0\right),\ f\left(x^{(0)}\right)=Q$. Переходимо на 5 етап.

Якщо серед β_i , ϵ від'ємні, то проводимо *крок модифікованих* Жорданових виключень.

Для переходу в іншу точку допустимої області D необхідно в системі обмежень (в симплекс-таблиці) поміняти місцями базисну і небазисну змінні.

Нехай серед β_i ϵ від'ємні. Виберемо будь-який з них. На практиці вибирають або максимальний за модулем або перший за порядком. Нехай для визначеності, наприклад, $\beta_s < 0$.

Якщо всі коефіцієнти $\alpha_{sj} \ge 0$ (серед коефіцієнтів α_{sj} немає від'ємних), то задача не має розв'язків через несумісність системи обмежень. Цей випадок означає, що

$$x_s + \alpha_{sm+1} x_{m+1} + ... + \alpha_{sn} x_n = \beta_s < 0, \ \alpha_{sj} \ge 0, j = \overline{m+1, n}.$$

Щоб рівність виконувалося, необхідно щоб $x_j < 0$, а це суперечить умові невід'ємності: $x_j \ge 0$, $j = \overline{1,n}$.

Нехай серед α_{sj} є від'ємні. Вибираємо в рядку будь-яке з них. На практиці вибирають або максимальне за модулем або перше за порядком.

Нехай r — номер стовпчика, в якому знаходиться вибраний елемент. Стовпець з номером r називається **розв'язувальним стовпцем**. Тим самим ми визначили індекс змінної, яка буде вводитися в базис. Номер **розв'язувального рядка** s вибираємо з умови:

$$\frac{\beta_s}{\alpha_{sr}} = \min_{i: \frac{\beta_i}{\alpha_s} \ge 0} \frac{\beta_i}{\alpha_{ir}}.$$

Змінна з індексом s буде виводитися з базису.

Елемент α_{sr} , який стоїть на перетині розв'язувального рядка і розв'язувального стовпця, називається *розв'язувальним елементом* (ведучим елементом).

Далі виконуємо *крок модифікованих Жорданових виключень*, який полягає в наступному:

- 1) У новій симплекс-таблиці на місце розв'язувального елемента ставимо число 1
- 2) Решту елементів розв'язувального рядка перенесемо в нову симплекс-таблицю без змін.
- 3) Решту елементів розв'язувального стовпця перенесемо в нову симплекс-таблицю з протилежним знаком.
- 4) Решту елементів нової симплекс-таблиці знаходимо за правилом прямокутника (правилом обчислення визначника другого порядку). Причому розв'язувальний елемент завжди вважається таким, що стоїть на головній діагоналі.
- 5) Всі елементи нової симплекс-таблиці ділимо на розв'язувальний елемент.

Виконуючи 4 етап скінченне число раз, отримаємо або початковий опорний розв'язок, або встановимо несумісність системи обмежень.

<u>5 етап.</u> Знаходження оптимального розв'язку

Нехай є поточний базисний розв'язок $x^{(k)}$.

Якщо всі коефіцієнти в рядку коефіцієнтів цільової функції симплекстаблиці невід'ємні, то $x^* = x^{(k)}$ (отримано оптимальний розв'язок задачі).

Якщо серед коефіцієнтів в рядку коефіцієнтів цільової функції симплекс-таблиці є від'ємні, то можливі два випадки:

- 1) Нехай $c_r' < 0$. Якщо всі інші коефіцієнти цього стовпця $\alpha_{ir} \le 0$ (серед коефіцієнтів стовпця немає додатних), то задача не має розв'язку в силу необмеженості цільової функції на допустимій множині.
- 2) Нехай не виявлено необмеженість цільової функції на допустимій множині. Тоді ми переходимо від цього базисного розв'язку до наступного. За розв'язувальний стовпець візьмемо будь-який стовпець з коефіцієнтом $c_j^{'} < 0$. На практиці вибирають або максимальний за модулем або перший за порядком.

Нехай для визначеності $c_{r}^{'} < 0$ і серед коефіцієнтів α_{ir} є додатні. Номер розв'язувального рядка визначимо з умови:

$$\frac{\beta_s}{\alpha_{sr}} = \min_{i:\alpha_{ir}>0} \frac{\beta_i}{\alpha_{ir}}.$$

Далі виконуємо *крок модифікованих Жорданових виключень* і переходимо до нового базисного розв'язку $x^{(k+1)}$.

За скінченне число кроків (скінченне число раз виконуючи 5 етап) або буде знайдено оптимальний розв'язок задачі ЛП, або встановлено факт необмеженості цільової функції на допустимій множині.

Приклад. Знайти оптимальний розв'язок задачі ЛП у канонічній формі симплекс-методом.

Варіант №59.
$$c = (5, 5, 1, 2, -1), b = (26, 2, 12), A = \begin{pmatrix} 6 & 3 & 1 & 1 & 1 \\ -1 & 2 & 0 & 1 & 0 \\ 3 & 4 & 0 & 0 & 1 \end{pmatrix}.$$

$$f\left(x_1, x_2, x_3, x_4, x_5\right) = 5x_1 + 5x_2 + x_3 + 2x_4 - x_5 \rightarrow max$$

$$\begin{cases} 6x_1 + 3x_2 + x_3 + x_4 + x_5 = 26, \\ -x_1 + 2x_2 + x_4 = 2, \\ 3x_1 + 4x_2 + x_5 = 12, \end{cases}$$

$$x_i \ge 0, \ j = \overline{1,5}.$$

Приводимо систему обмежень до канонічного вигляду.

Це зручно зробити записавши розширену матрицю системи обмежень задачі і потім застосувавши до неї елементарні перетворення рядків матриці. Елементарними перетвореннями над рядками матриці є:

- множення рядка на ненульове число;
- додавання до одного рядка матриці іншого її рядка, помноженого на деяке ненульове число.
- перестановка двох рядків. Розширена матриця для прикладу має вигляд:

$$\overline{A} = \begin{pmatrix} 6 & 3 & 1 & 1 & 1 & 26 \\ -1 & 2 & 0 & 1 & 0 & 2 \\ 3 & 4 & 0 & 0 & 1 & 12 \end{pmatrix}.$$

Виберемо за базисні змінні x_3 , x_4 , x_5 . Стовпець матриці обмежень

$$A_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 має потрібний вигляд. Тому елементарними перетвореннями рядків

матриці
$$\overline{A}$$
 отримаємо щоб $A_4=\begin{pmatrix} 0\\1\\0 \end{pmatrix},\ A_5=\begin{pmatrix} 0\\0\\1 \end{pmatrix}$. Тоді вектори A_3 , A_4 , A_5 будуть

складати лінійно незалежну систему векторів-умов.

Від першого рядка матриці \overline{A} віднімемо другий рядок і запишемо результат як перший рядок, отримуємо еквівалентну матрицю:

$$\overline{A} = \begin{pmatrix} 7 & 1 & 1 & 0 & 1 & 24 \\ -1 & 2 & 0 & 1 & 0 & 2 \\ 3 & 4 & 0 & 0 & 1 & 12 \end{pmatrix}.$$

Від першого рядка матриці \overline{A} віднімемо третій рядок і запишемо результат як перший рядок:

$$\overline{A} = \begin{pmatrix} 4 & -3 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 \\ 3 & 4 & 0 & 0 & 1 \end{pmatrix} \begin{vmatrix} 12 \\ 2 \\ 12 \end{vmatrix}.$$

Виразимо базисні змінні x_3, x_4, x_5, x_6 через небазисні змінні x_1, x_2 .

$$\begin{cases} x_3 = 12 - (4x_1 - 3x_2), \\ x_4 = 2 - (-x_1 + 2x_2), \\ x_5 = 12 - (3x_1 + 4x_2). \end{cases}$$

Запишемо цільову функцію через небазисні змінні:

$$f(x_1, x_2, x_3, x_4, x_5) = 5x_1 + 5x_2 + 12 - (4x_1 - 3x_2) + 4 - 2(-x_1 + 2x_2) - 12 + (3x_1 + 4x_2) = 6x_1 + 8x_2 + 12 + 4 \rightarrow max.$$

Для заданої задачі ϵ можливість розв'язати її графічно.

Побудуємо область допустимих розв'язків, градієнт і лінії рівня цільової функції (рис. 1). Координати вершин допустимої області такі: A(3,0), B(3.36,0.48), C(1.6,1.8), D(0,1). Вектор-градієнт $grad\ f=(6,8)$. Оптимальними розв'язками є точки B та C, а, отже, увесь відрізок, що їх з'єднує. $x^*=\lambda(1.6,1.8)+(1-\lambda)(3.36,0.48)$, $\lambda\in[0,1]$, $f(x^*)=28$.

Продовжимо розв'язання задачі симплекс-методом. Складаємо симплекс таблицю:

	$-x_1$	$-x_2$	
x_3	4	-3	12
x_4	-1	2	2
x_5	3	4	12
	-6	-8	4

Так як всі вільні члени невід'ємні, то маємо початковий базисний розв'язок $x^{(0)} = (0,0,12,2,12), f\left(x^{(0)}\right) = 4$. Геометрично, початковий базисний розв'язок – це вершина допустимої області O(0,0).

Переходимо на етап знаходження оптимального розв'язку задачі ЛП.

У рядку коефіцієнтів цільової функції симплекс-таблиці ϵ від'ємні коефіцієнти.

Перевіряємо випадок необмеженості цільової функції на допустимій множині. Так як серед коефіцієнтів кожного стовпчика з від'ємним коефіцієнтом цільової функції є додатні коефіцієнти, то необмеженості цільової функції на допустимій множині не виявлено.

За розв'язувальний стовпець виберемо другий стовпець (так як в ньому знаходиться максимальний за модулем від'ємний коефіцієнт цільової функції). Номер розв'язувального рядка визначимо з умови:

$$\frac{\beta_s}{\alpha_{sr}} = \min_{i:\alpha_{ir}>0} \frac{\beta_i}{\alpha_{ir}}.$$

В даному випадку $\min_{i:\alpha_{ir}>0} \frac{\beta_i}{\alpha_{ir}} = \min_{i:\alpha_{ir}>0} \{1,3\} = 1$. Відзначимо, що відношення 12/(-3) не враховувалося.

Далі виконуємо крок модифікованих Жорданових виключень і переходимо до нового базисного розв'язку.

	$-x_1$	$-x_4$	
x_3	5/2	3/2	15
x_2	-1/2	1/2	1
<i>x</i> ₅	5	-2	8
	-10	4	12

Базисний розв'язок $x^{(1)} = (0,1,15,0,8)$, $f(x^{(1)}) = 12$. Точка $x^{(1)}$ — це вершина допустимої області D(0,1).

У рядку коефіцієнтів цільової функції симплекс-таблиці є від'ємний коефіцієнт.

Перевіряємо випадок необмеженості цільової функції на допустимій множині. Так як серед коефіцієнтів стовпця з від'ємним коефіцієнтом цільової функції є додатні коефіцієнти, то необмеженості цільової функції на допустимій множині не виявлено.

За розв'язувальний стовпець виберемо перший стовпець. Розв'язувальним рядком буде третій рядок, так як

$$\min_{i:\alpha_{ir}>0} \frac{\beta_i}{\alpha_{ir}} = \min_{i:\alpha_{ir}>0} \left\{ \frac{15\cdot 2}{5}, \frac{8}{5} \right\} = \frac{8}{5}.$$

Виконуємо крок модифікованих Жорданових винятків і переходимо до нового базисного розв'язку.

	$-x_5$	$-x_4$	
x_3	-1/2	5/2	11
x_2	1/10	3/10	9/5
x_1	1/5	-2/5	8/5
	2	0	28

Всі коефіцієнти в рядку коефіцієнтів цільової функції симплекс-таблиці невід'ємні. Базисний розв'язок $x^{(2)} = \left(\frac{8}{5}, \frac{9}{5}, 11, 0, 0\right), \ f\left(x^{(2)}\right) = 28 \ \varepsilon$ оптимальним розв'язком $x^* = x^{(2)} = (1.6, 1.8, 11, 0, 0)$.

Базисний розв'язок $x^{(2)}$ – це вершина допустимої області C(1.6, 1.8).

За розв'язувальний стовпець можна вибрати першгий стовпець (так як в ньому знаходиться перший за порядком від'ємний коефіцієнт цільової функції).

	$-x_1$	$-x_2$	
x_3	4	-3	12
x_4	-1	2	2
x_5	3	4	12
	-6	-8	4

Номер розв'язувального рядка визначимо з умови:

$$\frac{\beta_s}{\alpha_{sr}} = \min_{i:\alpha_{ir}>0} \frac{\beta_i}{\alpha_{ir}}.$$

В даному випадку $\min_{i:\alpha_{ir}>0} \frac{\beta_i}{\alpha_{ir}} = \min_{i:\alpha_{ir}>0} \{3,4\} = 3$. Відзначимо, що відношення 2/(-1) не враховувалося.

Далі виконуємо крок модифікованих Жорданових виключень і переходимо до нового базисного розв'язку.

	$-x_3$	$-x_2$	
x_1	1/4	-3/4	3
X_4	1/4	5/4	5
x_5	-3/4	25/4	3
	6/4	-50/4	22

Базисний розв'язок $x^{(1)}=(3,0,0,5,3), f\left(x^{(1)}\right)=22$. Точка $x^{(1)}$ — це вершина допустимої області A(3,0).

У рядку коефіцієнтів цільової функції симплекс-таблиці є від'ємний коефіцієнт.

Перевіряємо випадок необмеженості цільової функції на допустимій множині. Так як серед коефіцієнтів стовпця з від'ємним коефіцієнтом цільової функції є додатні коефіцієнти, то необмеженості цільової функції на допустимій множині не виявлено.

За розв'язувальний стовпець виберемо другий стовпець. Розв'язувальним рядком буде третій рядок, так як

$$\min_{i:\alpha_{ir}>0} \frac{\beta_{i}}{\alpha_{ir}} = \min_{i:\alpha_{ir}>0} \left\{ \frac{5\cdot 4}{5}, \frac{3\cdot 4}{25} \right\} = \frac{12}{25}.$$

Виконуємо крок модифікованих Жорданових винятків і переходимо до нового базисного розв'язку.

<u> </u>			
	$-x_3$	$-x_5$	
x_1	4/25	3/25	84/25
x_4	2/5	-1/5	22/5
x_2	-3/25	4/25	12/25
	0	2	28

Всі коефіцієнти в рядку коефіцієнтів цільової функції симплекс-таблиці невід'ємні. Базисний розв'язок $x^{(2)} = \left(\frac{84}{25}, \frac{22}{5}, 0, \frac{12}{25}, 0\right), f\left(x^{(2)}\right) = 28$ є оптимальним розв'язком $x^* = x^{(2)} = \left(3.36, 0.48, 0, 4.4, 0\right)$.

Базисний розв'язок $x^{(2)}$ – це вершина допустимої області B(3.36, 0.48).