

Wydział Mechaniczny Energetyki i Lotnictwa **Politechnika Warszawska**

Wprowadzenie do PTC Creo

mgr inż. Grzegorz Kamiński

30 września 2024

Wprowadzenie do Mechanizmów

Mechanism Design Extension (MDX) umożliwia:

- * tworzenie par kinematycznych między komponentami,
- * analizę ruchu po wprowadzeniu napędów,
- pomiar położenia, prędkości, przyśpieszenia wybranych punktów,
- wykrywanie kolizji podczas ruchu,
- * generowanie trajektorii ruchu i przestrzeni roboczej.

Proces tworzenia mechanizmu

Kolejne kroki projektowania:

- * stworzenie modelu złożenia,
- * weryfikacja mechanizmu,
- * dodanie napędu,
- * definicja analizy,
- * ocen<mark>a w</mark>yników,
- * wdroże<mark>nie</mark> wynik<mark>ów</mark>.

Stworzenie modelu złożenia

- * stworzenie połączeń między komponentami.
- * definicj<mark>a o</mark>granic<mark>zeń</mark> ruchowych.

Weryfikacja mechanizmu

- * pole<mark>cen</mark>ie Reconnect,
- * polecenie Drag Component and Bodies.

Dodanie napędu

Definicja napędu poprzez wybranie:

- * osi ruchu (ang. Motion axes),
- * geometrii komponentu.

Przygotowanie analizy

- * defin<mark>icj</mark>a położ<mark>en</mark>ia początkowego,
- * definicj<mark>a p</mark>unktów <mark>p</mark>omiaro<mark>wy</mark>ch.

Pomiar:

- * położen<mark>ia</mark>,
 - * pręd<mark>ko</mark>ści,
 - * przyspi<mark>esz</mark>enia.

Definicja analizy

- * analiza położeń (ang. Position analysis),
- * analiza kinematyczna (ang. Kinematics analysis).

Definicja danych:

- * parametrów analizy (np. czasu),
- * blok<mark>ada</mark> ruchu komponentów,
- * wybór napędów.

Ocena wyników analizy

- Definicja napędu poprzez wybranie:
 - * playback,
 - * szuk<mark>ani</mark>e kolizji<mark>,</mark>
 - * analiza punktów pomiarowych,
 - * tworzenie trajektorii,
 - * tworzenie przestrzeni ruchu komponentu.

Definicja połączeń

- * elementy połączone na sztywno tworzą człon sztywny,
- * pary kinematyczne (Pin, Slider, ect.) rozdzielają człony,
- * podg<mark>lą</mark>d istniej<mark>ąc</mark>ych poł<mark>ąc</mark>zeń (Za<mark>kł</mark>adka mechanizm Mechanizm tree).

Definicja osi obrotu

Można wprowadzić:

- * Regen Value wartość położenia członu w chwili regeneracji złożenia, którą można stosować np. w family table, relacjach,
- * Zero position ustawienie aktualnego położenia jako zerowego,
- * Minimum and Maximum Limits,
- * Dynamic Properties ustawienie współczynnika tarcia i odbicia (analizy dynamiczne).

Połączenie Rigid

Można wprowadzić:

- * brak możliwości ruchu komponentu względem wcześniejszych komponentów,
- nie należy stosować więzu do łączenia wielu członów podzłożenia (utrata ruchomości),
- ruchome podzłożenie traci możliwość ruchu przy wstawieniu do zlożenia głównego za pomocą tego więzu.

Połączenie Pin

- * axis a<mark>lignment definicja osi obrotu</mark>,
- coincident definicja blokady przesuwu,
- * rotation axis opcje osi obrotu.

Połączenie Slider

- * axis a<mark>lignment definicja os</mark>i prze<mark>suw</mark>u,
- * coincident definicja blokady obrotu,
- * translation axis -- opcje osi przesuwu.

Połączenie Cylinder

- * axis alignment definicja osi obrotu i przesuwu,
- * rotation axis opcje osi obrotu,
- * trans<mark>lat</mark>ion axi<mark>s -- opcje os</mark>i przes<mark>uw</mark>u.

Połączenie Planar

- * planar definicja płaszczyzny ruchu,
- * trans<mark>lat</mark>ion axis 1 opcj<mark>e o</mark>si prze<mark>su</mark>wu 1,
- * translation axis 2 opcje osi przesuwu 2,
- * rotati<mark>on</mark> axis <mark>o</mark>pcje osi <mark>ob</mark>rotu.

Połączenie Ball

- * point coincident –– Zgodność punktów,
 - * brak opcji wprow<mark>ad</mark>zenia ograniczeń <mark>os</mark>i obrotu.

Połączenie Weld

- * związek między układami współrzędnych elementu wstawianego i złożenia docelowego.
- * odebranie wszystkich stopni swobody,
- * zachowanie ruchomości podzłożenia w złożeniu głównym.

Połączenie Bearing

- * poin<mark>t a</mark>lignmen<mark>t –</mark>– punk<mark>t n</mark>a linii,
- translation axis definicja położenia względem bazy.

Połączenie General

- * najbardziej ogólny typ połączenia,
- * jedno albo dwa ograniczenia na ruch,
- * liczba opcji definiujących osie ruchu zależy od wprowadzonych ograniczeń,
- * nie można stosować styczności, związku punkt na krzywej, związku punkt na powierzchnia krzywoliniowa.

Połączenie Slot

- * point <mark>al</mark>ignment punkt na linii,
- slot axis opcje krzywej ruchu (definicja punktu startowego i końcowego).

Połączenie krzywkowe

- * dostępne z zakładki Mechanizmy,
- * tworzone pomiędzy elementami, które mają już zdefiniowane połączenia (dodatkowy więz),
- * definicja Cam1 and Cam2 (pracujące profile),
- * depth display settings (przy wyborze powierzchni płaskiej),
- * properties (enable liftoff możliwość odblokowania połączenia w czasie ruchu; współczynnik tarcia).

Połączenie krzywkowe

Uwagi:

- * ruch może być nierzeczywisty (np. tipping),
- można połączyć z tylko jedną krzywką (duplikacja połączenia przy wielokrotnym, różnym zastosowaniu),
- unikać połączenia podążania płaszczyzny po linii.

Połączenie 3D Contact

- bazuje na właściwościach materiałowych elementów kontaktujących się ze sobą,
- * definicja tarcia statycznego i kinematycznego.

Połączenie Gear

Definicja przełożenia:

- * średnice podziałowe,
- * niezależna definicja.

Parametry koła zębatego:

- * pitch diameter,
- * pressur<mark>e a</mark>ngle (k<mark>ąt przyporu),</mark>
- * helix <mark>an</mark>gle ("sk<mark>rę</mark>cenie" k<mark>oł</mark>a),
- * bevel angle,
- screw angle.

Połączenie Belt

- P<mark>oł</mark>ączenie <mark>dl</mark>a obrac<mark>aj</mark>ących się kół
 - * definicja ścieżki obiegania,
 - * definicja długości paska,
 - * elastyczność paska,
- K<mark>orz</mark>ystając <mark>z</mark> polece<mark>nia</mark> "Creat<mark>e a</mark> part" m<mark>oż</mark>na stworzyć fizyczną reprezentację (detal).

Połączenie Belt

- * belt direction kierunek ruchu,
- * pulley diameter,
- * number of Wraps liczba oplotów,
- * belt length,
- belt plane wybór płaszczyzny definiującej symetrię,
- * flexibility iloczyn Modułu Younga i pola przekroju,
- body definition definicja członu zawierającego koło napędowe.

Drag and Snapshot

- * point drag,
- * body drag,
- * snapshots,
- * constraints dodawanie i odejmowanie więzów,
- * advanced drag options zaawansowane opcje (definicja wartości przesunięcia obrotu) dostępna z trybu Mechanism.

Dziękuję za uwagę

grzegorz.kaminski@pw.edu.pl