Segundo Parcial

Análisis 1 (07-2020)

1 Primer ejercicio

Demostrar que una sucesión real $\{a_n\}_{n\in\mathbb{N}}$ es convergente aa un valor L real si, y sólo si, toda sub-sucesión dea a $\{a_n\}$ es convergente al valor L.

1.1 Solución

Sea $\{a_{n_k}\}$ una subsucesión de $\{a_n\}$ supongamos que $\{a_n\}$ converge a L. Entonces, dado $\epsilon>0$, existe un $N\in\mathbb{N}$ tal que

(1)
$$|a_n - L| < \epsilon$$

para todo n > N.

Como $\{a_{n_k}\}$ es una subsucesión de $\{a_n\}$ se tiene que los índices n_k son un subcojunto de los índices n. Por lo tanto, para todo $n_k > N$, debe cumplirse que

$$|a_{n_k} - L| < \epsilon$$

pues de lo contrario estos índices n_k serían ciertos naturales n>N para los cuales no se cumpliría 1. Se tiene entonces que $\{a_{n_k}\}$ converge a L como se buscaba.

Supongamos ahora que toda subsucesión $\{a_{n_k}\}$ de $\{a_n\}$ converge a L. Entonces el resultado se sigue de forma casi inmediata puesto que $\{a_n\}$ es una subsucesión de ella misma. Mas explícitamente, $\{a_n\}$ es la subsucesión que se obtiene al tomar todos los índices n en el mismo orden que aparecían originalmente, entonces nuestra hipótesis nos da que a_n converge.

2 Segundo ejercicio

Demostrar que $a \in A'$ si, y sólo si, existe una sucesión $\{x_n\}_{n \in \mathbb{N}}$ en A tal que $\lim_{n \to \infty} \{x_n\} = a$.

Jhonny Lanzuisi, 15 10759

Índice

Primer ejercicio 1
Solución 1
Segundo ejercicio 1
Solución 2
Cuarto Ejercicio 3
Solución 3
Quinto Ejercicio 3
Solución 4
Sexto Ejercicio 4
Solución 4
Séptimo ejercicio 5
Solución 5
Referencias 6

Ejemplo de una sucesión convergente $(a_n = 1/n)$ y una subsucesión (solo los n pares) convergente al mismo límite (0).

2.1 Solución

Supongamos que existe una sucesión $\{x_n\}$ en A que converge a a. Entonces, dado $\epsilon > 0$, existe un $N_{\epsilon} \in \mathbb{N}$ tal que

$$|x_n - a| < \epsilon$$

para $n > N_{\epsilon}$.

Es decir, para todo $n>N_\epsilon$ todos los puntos de la sucesión $\{x_n\}$ están contenidos en la bola de radio ϵ y centrada en a. Como la convergencia de $\{x_n\}$ asegura que lo anterior se cumple para cualquier ϵ dado, se tiene que todo entorno del punto a (toda bola de radio ϵ) contiene infinitos puntos de A (los puntos de la sucesión) y, por lo tanto, a es un punto de acumulación de A^1 .

Supongamos ahora que a es un punto de acumulación. Queremos ver que existe una sucesión $\{x_n\}$ que converge a a, esto lo haremos construyendo dicha sucesión

Tomemos números reales positivos r_1, r_2, \ldots tales que $r_1 > r_2 > \ldots$ Y consideremos las bolas $B_{r_i}(a)$ con $i = 1, 2, \ldots$ De esta manera se obtienen entornos de a que son cada vez más pequeños.

Puesto que a es un punto de acumulación todas las bolas $B_{r_i}(a)$ contienen al menos un punto de A distinto de a, llamemos a este punto $x_i x_j$. De esta manera se obtiene una sucesión $x_n = x_1, x_2, \ldots$ en A. Queda por ver que esta sucesión converge a a.

Sea $\epsilon > 0$ un número real dado. Entonces podemos considerar dos casos:

 $\epsilon \geq r_1$ En este caso la bola $B_{\epsilon}(a)$ contiene a $B_{r_1}(a)$. Y, por la construcción anterior, todos los puntos de la sucesión $\{x_n\}$ pertenecen a la bola de radio ϵ . Es decir, para todo n>1

$$|x_n - a| < \epsilon$$

y se tiene que $\{x_n\}$ converge a a.

 $\epsilon \leq r_1$ En este caso la bola $B_{\epsilon}(a)$ esta contenida en la bola de radio r_1 . Como los r se elegieron de manera descendente, tomemos el primer r_k tal que $\epsilon > r_k$ (Este r_k existe pues, de lo contrario, $\epsilon \neq 0$ sería un mínimo del intervalo $(0, r_1)$ lo cual es imposible). Entonces $B_{r_k}(a) \subset B_{\epsilon}(a)$ y, por la forma en la que se contruyó la sucesión $\{x_n\}$, todos los puntos de la sucesión tales que n > k están en la bola de radio ϵ . Dicho de otra forma, para todo n > k

$$|x_n - a| < \epsilon,$$

y $\{x_n\}$ converge a a.

En el Apostol[1], pag.
 Teorema 3.17

3 Cuarto Ejercicio

Sea $\sum_{n=1}^{\infty} a_n$ una series de términos positivos y sea

$$L = \lim_{n \to \infty} \frac{\log(1/a_n)}{\log(n)}.$$

Demuestre que la serie converge si L > 1 y que diverge si L < 1.

3.1 Solución

Supongamos que L < 1. Entonces, cuando $n \to \infty$ se tiene que,

$$\frac{\log(1/a_n)}{\log(n)} < 1$$

esto implica, multiplicando por log(n),

$$\log\left(\frac{1}{a_n}\right) < \log(n)$$

y como el logaritmo es una función continua y creciente, esto a su vez implica que

$$\frac{1}{a_n} < n$$

y, finalmente,

$$a_n > \frac{1}{n}$$

y la divergencia de la serie armónica implica la divergencia de a_n . Supongamos ahora que L>1 pero que $L<\infty$, digamos que es

igual a un valor C . Entonces, cuando $n \to \infty$,

$$\frac{\log(1/a_n)}{\log(n)} = C,$$

de donde se deduce, al igual que antes, que

$$a_n = \frac{1}{nC}$$

puesto que $C \log(n) = \log(n^C)$.

Como C > 1 la serie de $1/n^{\hat{C}}$ converge y por lo tanto a_n también converge.

4 Quinto Ejercicio

Dada la serie

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \quad (\alpha > 0)$$

Determine los casos para los cuales la serie converge o diverge.

Análisis 1 4

4.1 Solución

Consideremos la función $f(x) = 1/x^{\alpha}$ donde x, α son reales tales que $\alpha > 0$ y x > 1. Como x > 1 es claro que la función decrece a cero. Por lo tanto, podemos utilizar el criterio de la integral para determinar la convergencia de la serie.

Veamos entonces la sucesión t_n dada por

$$t_n = \int_1^n x^{-\alpha} dx = \begin{cases} \frac{n^{1-\alpha} - 1}{1 - \alpha} & \text{si } \alpha \neq 1\\ \log(n) & \text{si } \alpha = 1. \end{cases}$$

Si $\alpha > 1$ entonces el término $n^{1-\alpha}$ tiende a cero cuando $n \to \infty$. Por lo cual la sucesión t_n converge y el criterio integral nos da como resultado que nuestra serie original también converge.

Si $\alpha < 1$ entonces $n^{1-\alpha}$ tiende a infinito cuando $n \to \infty$. Por lo que la sucesión t_n diverge y el criterio integral asegura que nuestra serie original también diverge.

Si $\alpha=1$ se obtiene la serie armónica que diverge. Para ver la divergencia de la serie armónica notemos que la sucesión $t_n=\log(n)$ diverge al no estar acotada.

5 Sexto Ejercicio

Demostrar que si la serie $\sum_{n=1}^{\infty} a_n$ es convergente, entonces

$$\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$$

también converge.

5.1 Solución

Notemos que

$$\frac{\sqrt{a_n}}{n} = \sqrt{\frac{a_n}{n^2}} = \sqrt{a_n \left(\frac{1}{n^2}\right)}$$

Entonces, la desigualdad entre la media aritmética y la geométrica² nos da que

$$\sqrt{a_n\left(\frac{1}{n^2}\right)} \le \frac{a_n}{2} + \frac{1}{2n^2}.$$

donde la serie de $a_n/2$ converge dado que a_n converge y la serie de $1/2n^2$ converge por el ejercicio anterior.

Se tiene entonces que la serie de $\sqrt{a_n}/n$ esta acotada por la suma de dos series convergentes, y por lo tanto converge.

Ejemplo de los valores $\alpha = 1/2$ (morada) y $\alpha = 2$ (azul). La primera serie es divergente y la segunda converge a $\pi^2/6^1$ (línea azul).

2. Ver [2]. Capítulo 1, ejercicio 7, p.28

Una prueba de ocmo se ve la fuente en los amrgenes hay que escribir tonteri a aqui un rato pa probar

¹Este hecho lo demostro Euler en 1735

6 Séptimo ejercicio

Sea $\{x_n\}$ una sucesión convergente a un valor L. Demuestre que

$$\lim_{n\to\infty}\frac{x_1+x_2+\cdots+x_n}{n}$$

converge también a L. Determine si es cierto o no el recíproco.

6.1 Solución

Como $\{x_n\}$ converge a L sabemos que, dado $\epsilon > 0$, existe un $N \in \mathbb{N}$ tal que

(2)
$$|x_n - L| < \epsilon$$

cuando n > N.

Llamemos s_n a

$$\frac{x_1+x_2+\cdots+x_n}{n}.$$

Entonces queremos demostrar que existe algun $M \in \mathbb{N}$ para el cual se cumple que

$$|s_n - L| < \epsilon \quad (n > M).$$

Notemos que, si tomamos un entero m > N,

$$|s_m - L| = \left| \frac{1}{m} \sum_{k=1}^m x_k - L \right|$$

Ahora, separamos la suma de la derecha en dos partes: una parte será una suma finita que *no depende* de m y la otra una suma que si depende m y que involucra a los enteros mayores que N, es decir, justamente a esos enteros para los que se cumple 2.

$$(*) = \left| \frac{1}{m} \sum_{k=1}^{N-1} x_k - L + \sum_{k=1}^{m} x_k - L \right|$$

y, por la desigualdad triangular,

$$\leq \left| \frac{1}{m} \sum_{k=1}^{N-1} x_k - L \right| + \left| \frac{1}{m} \sum_{k=N}^{m} x_k - L \right|$$

$$= \frac{1}{m} \sum_{k=1}^{N-1} |x_k - L| + \frac{1}{m} \sum_{k=N}^{m} |x_k - L|$$

Ahora, la suma de la izquierda es finita y por lo tanto esta acotada, digamos que por una constante C. La suma de la derecha es una

suma donde cada uno de los m-N términos están acotados por ϵ (debido a 2). Se tiene entonces que lo anterior es

$$\leq \frac{C}{m} + \frac{1}{m}(m-N)\epsilon = \frac{C}{m} + \epsilon - \frac{N}{m}\epsilon.$$

Y, dejando C,N fijos, podemos hacer que $m\to\infty$ para conseguir que el lado derecho de la igualdad anterior tienda a ϵ .

El recíproco *no es cierto*. Para un contraejemplo, consideremos la sucesión $\{a_n\} = (-1)^n$. Esta sucesión no converge, sin embargo,

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{(-1)^k}{k}$$

converge por criterio de Liebniz. Más aún, converge a $\log(2)$ por ser un caso de la serie logarítmica³ .

Ba sucesión $(-1)^n$ (negro) y la serie de $(-1)^n/n$ Wego: [apostol cal tales (1398)]. Sactión verge la serie.

Referencias

- [1] T. M. Apostol. *Mathematical analysis*. Addison-Wesley series in mathematics. Addison-Wesley, Reading, Mass., 2nd ed edición, 1974. ISBN: 978-0-201-00288-1 (véase página 2).
- [2] M. Spivak. *Calculus*. Publish or Perish, Houston, Tex., 2008. URL: https://archive.org/details/calculus4thediti00mich (visitado 17-02-2020) (véase página 4).