Example

Consider $L = \{0^i 1^i 2^i \mid i \ge 1\}$, and let n be the pumping lemma constant associated with L. We choose $z = 0^n 1^n 2^n$

For any factorization of z into uvwxy, with $|vwx| \le n$ and v and x not both empty, we have that vwx cannot contain both 0 and 2, because the rightmost 0 and the leftmost 2 are n+1 places away one from the other

We therefore have the following cases:

- vwx does not contain 2; then vx has only 0 and 1; then uwy, which should be in L, has n occurrences of 2 but less than n occurrences of 0 or 1
- vwx does not contain 0; a similar reasoning as in the first case applies

Consequences of the pumping lemma

A CFL cannot generate crossing pairs

Example:
$$L = \{0^i 1^j 2^i 3^j \mid i, j \ge 1\}$$

Given n, we choose $z = 0^n 1^n 2^n 3^n$. Then vwx covers occurrences of at most two alphabet symbols. In all possible fatorizations, the strings generated by iteration do not belong to L

Consequences of the pumping lemma

A CFL cannot generate string copies

Example:
$$L = \{ ww \mid w \in \{0, 1\}^* \}$$

Given n, we choose $z = 0^n 1^n 0^n 1^n$. In all possible fatorizations, the strings generated by iteration do not belong to L

Exercise

Using the pumping lemma, prove that the language

$$L = \{a^i b^j c^k \mid i, j \geqslant 0, \ k = \max\{i, j\}\}$$

is not context-free

Exercise

Solution Let us assume that L is a CFL; we will establish a contradiction. Let n be the pumping lemma constant associated with L

We choose $z=a^nb^nc^n\in L$ and analyze all possible factorizations z=uvwxy with $|vwx|\leqslant n$ and $vx\neq \epsilon$, looking for a factorization that satisfies the pumping lemma

Exercise

$$z = \underbrace{a \cdot \cdots \cdot a}_{a \text{ block}} \underbrace{b \text{ block}}_{c \text{ block}} \underbrace{c \text{ block}}_{c \text{ block}}$$

We distinguish the following cases

- vwx is placed into the a block or into the b block
- vwx is placed into the c block
- vwx is placed across the a and b blocks, or else across the b
 and c blocks
 - v or x contain both a and b, or both b and c
 - v is placed into the a block and x is placed into the b block
 - v is placed into the b block and x is placed into the c block

Exercise

vwx is placed into the a block : consider the new string uv^kwx^ky with k>1, which must belong to L

 $\#_a$ (the number of a's) increases (> n), since $vx \neq \epsilon$, while $\#_c$ remains unchanged (= n) and equal to $\#_b$, that is, the minimum between $\#_a$ and $\#_b$

We therefore conclude that $uv^k wx^k y \notin L$ for k > 1

A similar reasoning applies to the case where vwx is placed into the b block

Exercise

vwx is placed into the *c* block : consider the new string uv^kwx^ky with k=0, which must belong to L

 $\#_c$ decreases (< n), since $vx \neq \epsilon$, and is no longer equal to the maximum between $\#_a \#_b$, which is n, since the a block and the b block both remain unchanged

We therefore conclude that $uv^k wx^k y \notin L$ for k = 0

Exercise

vwx is placed across the a and b blocks or else across the b and c blocks

- v or x include both a and b: choosing k = 2, we break the structure $a^*b^*c^*$ and the new string doesn't belong to L
- v or x include both b and c : we use the same argument of the previous point
- v is placed into the a block and x is placed into the b block : choosing k=2, increases $\#_a$ and/or $\#_b$ (> n), while $\#_c$ remains unchanged (= n) and therefore will not be equal to the maximum required; therefore the new string does not belong to L

Exercise

vwx is placed across the a and b blocks or else across the b and c blocks (continued)

- v is placed into the b block and x is placed into the c block
 - if $x \neq \epsilon$ we choose k = 0; $\#_c$ becomes smaller (and so does $\#_b$ if $v \neq \epsilon$) but $\#_a$ does not change, and provides the maximum value; therefore $uv^k wx^k y \notin L$ for k = 0
 - if $x = \epsilon$ we choose k > 1 so that $\#_b$ gets larger than $\#_a$, and $\#_c$ does not change; therefore $uv^k wx^k y \notin L$ for some appropriate k

Exercise

In none of the possible cases we have been able to satisfy the pumping lemma: we have established a contradiction

We then conclude that language L is not CFL

Assume two (finite) alphabets Σ and Δ , and a function

$$s: \Sigma \to 2^{\Delta^*}$$
 one when of Δ^*

Let $w \in \Sigma^*$, with $w = a_1 a_2 \cdots a_n$, $a_i \in \Sigma$. We define

$$s(w) = s(a_1).s(a_2).\cdots.s(a_n)$$

and, for $L \subseteq \Sigma^*$, we define

$$s(L) = \bigcup_{w \in L} s(w)$$

Function s is called a substitution

Example

Let
$$s(0) = \{a^n b^n \mid n \ge 1\}$$
 and $s(1) = \{aa, bb\}$

Then s(01) is a language whose strings have the form a^nb^naa or a^nb^{n+2} , with $n \ge 1$

Let $L = L(\mathbf{0}^*)$. Then s(L) is a language whose strings have the form

$$a^{n_1}b^{n_1}a^{n_2}b^{n_2}\cdots a^{n_k}b^{n_k},$$

with $k \ge 0$ and with n_1, n_2, \ldots, n_k positive integers

Next theorem is used later to prove several closure properties for CFL in a unified way and through very simple proofs

Theorem Let L be a CFL defined over Σ and let s be a substitution defined on Σ such that, for each $a \in \Sigma$, s(a) is a CFL. Then s(L) is a CFL

Proof Let $G = (V, \Sigma, P, S)$ be a CFG generating L and, for each $a \in \Sigma$, let $G_a = (V_a, T_a, P_a, S_a)$ be a CFG generating s(a)

We construct a CFG G' = (V', T', P', S) with

$$V' = (\bigcup_{a \in \Sigma} V_a) \cup V$$
 $T' = \bigcup_{a \in \Sigma} T_a$
 $P' = (\bigcup_{a \in \Sigma} P_a) \cup P_R$

where P_R is obtained from P by replacing each occurrence of a in any right-hand side with symbol S_a

We prove
$$L(G') = s(L)$$

(Part \supseteq) Let $w \in s(L)$. Then there exists a string $x \in L$ such that

$$x = a_1 a_2 \cdots a_n$$

Furthermore, there exist strings $x_i \in s(a_i)$, such that

$$w = x_1 x_2 \cdots x_n$$

The associated parse tree for G' must have the form

We can then generate $S_{a_1}S_{a_2}\cdots S_{a_n}$ in G', and then generate $x_1x_2\cdots x_n=w$. Therefore $w\in L(G')$

(Part \subseteq) Let $w \in L(G')$. Then the parse tree for w must have the form

We can remove the subtrees at the bottom, and get a parse tree with yield

$$S_{a_1}S_{a_2}\cdots S_{a_n}$$

corresponding to a string $a_1 a_2 \cdots a_n \in L(G)$

We must also have $w \in s(a_1 a_2 \cdots a_n)$, and thus $w \in s(L)$

Applications of the substitution theorem

Theorem The CFLs are closed under the following operations

- union
- concatenation
- Kleene closure (*) and positive closure (+)
- homomorphism

Proof For each of the operators above, we define a specific substitution and we apply the previous theorem

Union: Given two CFLs L_1 and L_2 , consider the CFL $L = \{1, 2\}$. and define $s(1) = L_1$, $s(2) = L_2$. We have $L_1 \cup L_2 = s(L)$, which still is a CFL

Applications of the substitution theorem

```
Concatenation: Given two CFLs L_1 and L_2, consider the CFL L=\{1.2\} and define s(1)=L_1, s(2)=L_2. We thus have L_1.L_2=s(L), which still is a CFL
```

```
* and + closures : Given a CFL L_1, consider the CFL L = \{1\}^* and define s(1) = L_1. We have L_1^* = s(L), which still is a CFL. A similar argument holds for +
```

```
Homomorphism : Assume a CFL L and a homomorphism h, both over \Sigma. We define s(a) = \{h(a)\} for each a \in \Sigma. We then have h(L) = s(L), which still is a CFL
```