Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Optimización en ML, aprendizaje supervisado

Optimización en ML

NOTA: No se puede optimizar algo que no sea campo escalar

Convención: Todos los casos van a asumirse de minimización, sin pérdida de generalidad ya que maximizar f equivale a minimizar f'=-f.

Optimización en general: buscamos minimizar $J(\theta)$, tenemos toda la información necesaria disponible.

Optimización en ML: buscamos minimizar $J(\theta)$, sólo disponemos de un $\hat{J}(\theta)$ basado en el dataset disponible.

Conclusión: no son el mismo problema.

• info parcial

El modelo B es mejor porque en test dio mejor

Aprendizaje supervisado: esquema

Dada una observación (x,y) fija, entonces la predicción $\hat{y} = h_{\theta}(x)$ depende puramente de los parámetros θ del modelo, y por lo tanto también la pérdida/error.

Para un dataset $(x_1, y_1), \ldots, (x_n, y_n)$ fijo, definimos entonces una función de costo $J(\theta)$ que sólo depende de los parámetros del modelo, y queremos minimizarla.

J(b) J(tita) generalmente es la perdida promedio

Proxy target/surrogate loss

Importante: Definida una función de pérdida por observación $\mathcal{L}(\hat{y}, y)$, la función de costo típicamente se define como (\boldsymbol{x})

de donde

Denominamos proxy o surrogate a una función f' que queremos minimizar como medio para minimizar otra función f que es la que verdaderamente nos interesa.

El esquema entonces resulta:

- aprendemos vía train set o necesitamos minimizar $J_{train}(heta)$
- ullet predecimos vía test set o queremos minimizar $J_{test}(heta)$

En el train se puede minimizar con algo totalmente diferente que en el test

Ejemplo

$$y \in \{0,1\}$$
 $y \in \{0,1\}$

Supongamos un caso de clasificación binaria donde definimos la función de pérdida como el accuracy, definido como

$$\int_{\mathsf{TEST}} \mathcal{L}(\hat{y}, y) = 1\{\hat{y} \neq y\} = \begin{cases} 1 & \text{in earth} \\ 0 & \text{in artists} \end{cases}$$

Como podemos ver, esta función de pérdida es muy mala para minimizar.

Planteamos entonces entrenar sobre la cross-entropy loss

Jerain
$$\mathcal{L}_{train}(\hat{y}, y) = -y \cdot log(\hat{y}) - (1 - y) \cdot log(1 - \hat{y})$$

The specific value has solve trabajar con $\hat{y} \in \{0, 1\}$ sine tode of range

que nos permite ya no sólo trabajar con $\hat{y} \in \{0,1\}$ sino todo el rango continuo [0, 1] de probabilidades, además de, especialmente, ser derivable respecto de \hat{y} .

NOTA: lo importante es que la funcion de perdida sea derivable respecto de la prediccion

5/6

Taxonomía

Ahora que nuestro problema es minimizar $J_{train}(\theta)$, podemos separarlo en varios casos:

