Stat 230: Probability

Lecture 28

Jeremy VanderDoes

University of Waterloo

Wednesday, July 13th

Review

Example

Suppose X and Y have joint probability function given by the following table:

Compute Cov(2X, Y).

Review

Last time we talked about:

- (1) Functions of joint variables
- (2) Expectation Functions of joint variables
- (3) Covariance
- (4) Correlation

For today:

- (1) Correlation
- (2) Linear combinations of random variables
- (3) Indicator random variables

Review

- Monday: Quiz 6
- Exam

Correlation

Definition

The **correlation** of X and Y is denoted corr(X, Y), and is defined by

$$corr(X, Y) = \rho = \frac{Cov(X, Y)}{SD(X)SD(Y)}$$

It follows from the Cauchy-Schwarz inequality that $-1 \le corr(X, Y) \le 1$, and if |corr(X, Y)| = 1, X = aY + b.

Correlation

Definition

We say that X and Y are uncorrelated if Cov(X, Y) = 0 (or corr(X, Y) = 0).

Remark

If X and Y are independent, then X and Y are uncorrelated.

Remark

$$Cov(X,X) = Var(X)$$

Correlation

Example

Suppose X and Y have joint probability function given by the following table:

Compute Corr(X, Y).

Definition

Suppose that $X_1, ..., X_n$ are jointly distributed RVs with joint probability function $f(x_1, ..., x_n)$. A **linear combination** of the RVs $X_1, ..., X_n$ is any random variable of the form

$$\sum_{i=1}^{n} a_i X_i$$

where $a_1,...,a_n \in \mathbb{R}$. If $\mathbf{X} = (X_1,...,X_n)^{\top}$, $\mathbf{a} = (a_1,...,a_n)^{\top}$, then a linear combination is

$$\mathbf{X}^{ op}\mathbf{a}$$

Remark

Some "famous" linear combinations (ones you will see in Stat 231) are

(1) The total

$$T = \sum_{i=1}^{n} X_i \qquad 1 \le i \le n \qquad (a_i = 1)$$

(2) The sample mean

$$\bar{X} = \sum_{i=1}^{n} \frac{1}{n} X_i$$
 $1 \le i \le n$ $\left(a_i = \frac{1}{n}\right)$

Remark

Expected Value of a Linear Combination:

$$E\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i E(X_i)$$

Follows directly from the linearity property of the expected value.

Example

Suppose $X \sim N(1,1)$ and $Y \sim U(0,1)$. Compute E(2X-4Y).

Remark

Variance of a Linear Combination:

$$Var(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 Var(X_i) + \sum_{1 \le i \ne j \le n} a_i a_j Cov(X_i, X_j). \tag{1}$$

$$=\sum_{i=1}^{n}a_{i}^{2}Var(X_{i})+2\sum_{1\leq i< j\leq n}a_{i}a_{j}Cov(X_{i},X_{j}) \qquad (2)$$

If $X_1, X_2, ..., X_n$ are mutually uncorrelated $(Cov(X_i, X_j) = 0, \text{ for } i \neq j)$,

$$Var(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} a_i^2 Var(X_i)$$

An important case where this holds is when $X_1, X_2, ..., X_n$ are independent.

Example

Suppose $X \sim N(3,4)$, and $Y \sim U(0,1)$, and Cov(X,Y) = -0.1, compute Var(2X - Y).

Indicator

Definition

Let $A \subset S$ be an event. We say that $\mathbb{1}_A$ is the **indicator** random variable of the event A. $\mathbb{1}_A$ is defined by:

$$\mathbb{1}_{A}(\omega) = \begin{cases} 1 & \omega \in A, \\ 0 & \omega \in \bar{A} \end{cases}$$

Such variables are often termed Bernoulli Random Variables.