2 'סמסטר חורף תשס"ג - תרגיל מס'

הוכיחו בשתי דרכים (חשבונית וקומבינטורית), כי:

$$\sum_{j=0}^{n} {m \choose j} {m-j \choose n-j} = {m \choose n} 2^{n}$$

 $\{(A,B):A,B\subset [m],\ A\cap B=\phi,\ |A|+|B|=n\}$ מנו בשני אופנים את גודל האוסף:

2 'תרגיל מס

(0,0) - מסלול על השריג השלם (כלומר, עובר רק בנקודות עם קואורדינטות שלמות) מa,b יהיו ל- (a,b) נקרא חיובי אם בכל צעד נעים ימינה או למעלה.

- (a,b) ל(0,0) מהו מספר המסלולים החיוביים מ
- ב. יהא $0 \le k \le b$ ויהא $0 \le j \le a$. הראו כי מספר המסלולים החיוביים מ $0 \le k \le b$, הכוללים :את הצלע: (k,j) o (k+1,j) הוא

$$\binom{k+j}{j} \binom{a-k-1+b-j}{b-j}$$

ג. הוכיתו כי:

$$\sum_{j=0}^{n} \binom{n-j}{m-j} \binom{r+j}{j} = \binom{n+r+1}{m}$$

x < y עם: (x,y) עם: מספר המסלולים החיוביים מ(0,0) ל(0,0) ל :הוא

$$\frac{1}{n+1} \binom{2n}{n}$$

3 'תרגיל מס

הראינו בכיתה כי:

$$\sum_{k=1}^{n} \binom{k}{r} = \binom{n+1}{r+1}$$

- $\sum_{k=1}^{n} k$:א. תשבו את
- $\sum_{k=1}^n k^2$ את: את: $k^2 = 2 {k \choose 2} + {k \choose 1}$ את: ב. העזרו בנוסחה:
- $\sum_{k=1}^n k^3$:את ואת (1), כדי לחשב את: א $k^3=ainom{k}{3}+binom{k}{2}+cinom{k}{1}$ שנים, כך ש: a,b,c ונצלו זאת ואת משיים, כך ש

 $\frac{4}{n}$ מס' א ביים: $l \leq n$ עניים, מתקיים: הוכיחו, כי עבור

$$\sum_{k=l}^{n} \binom{k}{l} \binom{n}{k} = \binom{n}{l} 2^{n-l}$$

5 'תרגיל מס

:א. הוכיחו כי עבור כל n טבעי, מתקיים

$$\binom{n}{0} \le \binom{n}{1} \le \dots \le \binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lceil \frac{n}{2} \rceil} \ge \dots \ge \binom{n}{n-1} \ge \binom{n}{n}$$

ב. הוכיתו כי:

$$\frac{1}{n+1} \cdot 2^n \le \binom{n}{\lfloor \frac{n}{2} \rfloor} \le 2^n$$

6 'תרגיל מס'

- $(x+y+z+w)^{11}$:א. מהו מספר האיברים בפיתוח
 - $(x+y+z+w)^{13}$:ב. מהו סכום מקדמי הפיתוח
- $z(x+y+z+w)^{14}$: בפיתנות של $z^5y^3z^3w^3$ בפיתנות של
 - $x^{18}: (1+x^3+x^5+x^7)^{100}:$ ד. מהו המקדם של: $x^{18}: x^{18}$ בפיתוח
- $(1+x+x^2+\cdots+x^{10})^3$ בפיתוח של: x^8 בפיתוח במקדם אל:

 $\frac{7}{n}$ תרגיל מס' $\frac{7}{n}$ יהא $\frac{1}{n}$ מספר ראשוני.

- $\binom{p}{k} \equiv 0 \; (mod \; p)$ מתקיים: $1 \leq k \leq p-1$ א. הוכיחו, כי לכל
- $(a+b)^p \equiv a^p + b^p \pmod p$: ב. הוכיחו, כי לכל a,b שלמים מתקיים

חשבו בעזרת נוסחת הבינום או בכל דרך אחרת (כלומר, מצאו ביטוי "סגור" לסכום), את תוצאת:

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$$

יהא p ראשוני. בכמה אופנים אפשר לסדר p כדורים במעגל, אם הכדורים נלקחים ממאגר בלתי מוגבל יהים: - אותו הצבע באותו של הכדורים של $1,2,\ldots,n$ בצבעים: של כדורים של כדורים הצבעים: $n+rac{n^p-n}{n}$ הוכיתו כי התשובה היא:

10 'תרגיל מס

- א. מהו מספר הסדרות ב: $\{0,1\}^n$ (כלומר, סדרות של אפסים ואחדים באורך $\{0,1\}^n$, המכילות מספר זוגי של
 - ב. מהו מספר הסדרות ב: $\{0,1,2\}^n$, המכילות מספר זוגי של אפסים!
 - ג. מהו מספר הסדרות ב: $\{0,1,\ldots,m-1\}^n$, המכילות מספר זוגי של אפסים!