

Algebraic Expressions and Identities Ex 6.5 Q16

Answer:

To multiply, we will use distributive law as follows:

$$(2xy + 3y^{2}) (3y^{2} - 2)$$

$$= 2xy(3y^{2} - 2) + 3y^{2} (3y^{2} - 2)$$

$$= 6xy^{3} - 4xy + 9y^{4} - 6y^{2}$$

$$= 9y^{4} + 6xy^{3} - 6y^{2} - 4xy$$

Thus, the answer is $9y^4 + 6xy^3 - 6y^2 - 4xy$.

Algebraic Expressions and Identities Ex 6.5 Q17

Answer:

To multiply, we will use distributive law as follows:

$$(3x - 5y)(x + y)$$
= $3x(x + y) - 5y(x + y)$
= $3x^2 + 3xy - 5xy - 5y^2$
= $3x^2 - 2xy - 5y^2$

$$\therefore (3x - 5y)(x + y) = 3x^2 - 2xy - 5y^2.$$

Now, we put x = -1 and y = -2 on both sides to verify the result.

LHS =
$$(3x - 5y)(x + y)$$

= $\{3(-1) - 5(-2)\}\{-1 + (-2)\}$
= $(-3 + 10)(-3)$
= $(7)(-3)$
= -21

RHS =
$$3x^2 - 2xy - 5y^2$$

= $3(-1)^2 - 2(-1)(-2) - 5(-2)^2$
= $3 \times 1 - 4 - 5 \times 4$
= $3 - 4 - 20$
= -21

Because LHS is equal to RHS, the result is verified.

Thus, the answer is $3x^2 - 2xy - 5y^2$.

Algebraic Expressions and Identities Ex 6.5 Q18 **Answer:**

To multiply, we will use distributive law as follows:

$$(x^{2}y - 1) (3 - 2x^{2}y)$$

$$= x^{2}y(3 - 2x^{2}y) - 1 \times (3 - 2x^{2}y)$$

$$= 3x^{2}y - 2x^{4}y^{2} - 3 + 2x^{2}y$$

$$= 5x^{2}y - 2x^{4}y^{2} - 3$$

$$\therefore (x^2y - 1)(3 - 2x^2y) = 5x^2y - 2x^4y^2 - 3$$

Now, we put x = -1 and y = -2 on both sides to verify the result.

LHS =
$$(x^2y - 1)(3 - 2x^2y)$$

= $[(-1)^2(-2) - 1][3 - 2(-1)^2(-2)]$
= $[1 \times (-2) - 1][3 - 2 \times 1 \times (-2)]$
= $(-2 - 1)(3 + 4)$
= -3×7
= -21

RHS =
$$5x^2y - 2x^4y^2 - 3$$

= $5(-1)^2(-2) - 2(-1)^4(-2)^2 - 3$
= $[5 \times 1 \times (-2)] - [2 \times 1 \times 4] - 3$
= $-10 - 8 - 3$
= -21

Because LHS is equal to RHS, the result is verified.

Thus, the answer is $5x^2y - 2x^4y^2 - 3$.

********* FND *******