Graphen

 $\mathbf{G}{=}(\mathbf{V}{,}\mathbf{E})$ V:Menge der Knoten des Graphen G

E:Menge der Kanten des Graphen G, $\mathbf{E}{\subseteq}\binom{V}{2}$
 $\binom{V}{2}$: Menge aller 2-elementigen Teilmengen der Knotenmenge V. $|\binom{V}{2}|=\binom{|V|}{2}$

 K_n : Clique mit n Elementen, Clique: Graph mit $E=\binom{V}{2}$

 I_n : Unabhängige Menge (Stabile Menge): Eine Menge mit $E=\varnothing$

Sei G ein Graph, dann schreibt man \bar{G} für das Komplement von G. Das heißt jede existierende Kante in G hat in \bar{G} keinen Bestand, aber für jede kantenlose Knotenkombination in G wird in \bar{G} eine Kante erzeugt. Formal heißt das: $\bar{G} = (V, \binom{V}{2}) \setminus E$

 C_n = Zyklischer Graph, Kreisstruktur erkennbar durch die Verteilung der Kanten, jeder Knoten ist Teil genau zweier Kanten mit "Nachbarknoten". Formal: $(\mathbb{Z}_n, (x, y)|x = y + 1 \mod n)$

G=(V,E) Graph

induzierter Subgraph: S(V',E'), mit V' \subseteq V, E'=E $\cap \binom{V'}{2}$ (schwacher) Subgraph: S(V',E'), mit V' \subseteq V, E' \subseteq E $\cap \binom{V'}{2}$

Definition Streckenzug: Ein Streckenzug ist eine Folge von Knoten in G, sodass zwischen 2 aufeinanderfolgenden Knoten immer eine Kante ist. Beispiel: $u_1, u_2, ..., u_l, \{u_i, u_{i+1}, \} \in E$ für alle i von 1 bis (l-1)

Definition Weg: Ein Weg ist ein Streckenzug ohne doppelt vorkommende Knoten.

Definition zusammenhängend: Ein Graph heißt zusammenhängend, falls für alle $u,v \in V(G)$ ein Weg $u = u_0, ..., u_n = v$ existiert. Also: Alle Knoten in irgendeiner Form (über andere Knoten) miteinander verbunden sind.

Definition: Seien G,H zwei Graphen mit $V(G) \cap V(H) \neq \emptyset$ Definiere G \uplus H als $(V(G) \cup V(H), E(G) \cup E(H))$

Lemma: Ein Graph G ist zusammenhängend, genau dann, wenn er sich nicht schreiben lässt als $H_1 \uplus H_2$ mit $V(H_1) \neq \emptyset$ und $V(H_2) \neq \emptyset$

Sei G ein Graph

Dann heißt $k\subseteq V(G)$ Zusammenhangskomponente, falls $(k,E(G)\cap \binom{k}{2})$ zusammenhängend

und k größtmöglich gewählt ist. (Jede weitere Maximierung der Knotenmenge k
, also den gebildeten Graphen unzusammenhängend machen würde) Dabei ist (k,
E(G) $\cap \binom{k}{2}$) ein induzierter Subgraph von G.

Seien $H_1,...H_l$ die von den Zusammenhangskomponenten induzierten Subgraphen von G.

Dann lässt sich G schreiben als:

 $H_1 \uplus H_2 \uplus H_3 \uplus \dots \uplus H_l$