Espaces vectoriels

Dans ce chapitre $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

I. Définitions

Définition. Un \mathbb{K} -espace vectoriel est un ensemble, E, muni d'une loi de composition interne + et d'une loi de composition externe $\mathbb{K} \times E \to E$, $(\lambda, x) \mapsto \lambda \cdot x$ telles que

- -(E,+) est un groupe commutatif
- $-\forall (\lambda, \mu) \in \mathbb{K}^2, \ \forall x \in E, \quad (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x,$
- $-\forall (\lambda,\mu) \in \mathbb{K}^2, \ \forall x \in E, \quad (\lambda\mu) \cdot x = \lambda \cdot (\mu \cdot x),$
- $-\forall \lambda \in \mathbb{K}, \ \forall (x,y) \in E^2, \quad \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y,$
- $\ \forall x \in E, \quad 1_{\mathbb{K}} \cdot x = x.$

Les éléments de \mathbb{K} sont appelés scalaires, ceux de E sont appelés vecteurs.

L'élément neutre de la loi + est appelé vecteur nul.

Étant donné un vecteur x, son inverse pour la loi + est appelé opposé de x et noté -x.

Exemple. \mathbb{R} , \mathbb{R}^3 et $\mathbb{R}^{\mathbb{R}}$ sont des \mathbb{R} -espaces vectoriels pour les lois usuelles.

 \mathbb{C} est un \mathbb{C} -espace vectoriel et un \mathbb{R} -espace vectoriel.

 $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} est un \mathbb{K} -espace vectoriel.

Proposition. (*) Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $(\lambda, x) \in \mathbb{K} \times E$. On a alors:

$$\begin{array}{ll} - \lambda \cdot 0_E = 0_E, & - (-\lambda) \cdot x = -\lambda \cdot x = \lambda \cdot (-x), \\ - 0_{\mathbb{K}} \cdot x = 0_E, & - \lambda \cdot x = 0_E \Rightarrow \lambda = 0_K \ ou \ x = 0_E. \end{array}$$

II. Deux cas importants

Proposition. (*) Soient $(E_1, +_1, \cdot_1)$ et $(E_2, +_2, \cdot_2)$ deux \mathbb{K} -espaces vectoriels. Alors $E_1 \times E_2$ munies des lois + et \cdot définies par :

$$\forall ((x_1, x_2), (y_1, y_2)) \in (E_1 \times E_2)^2, \quad (x_1, x_2) + (y_1, y_2) = (x_1 +_1 y_1, x_2 +_2 y_2)$$
$$\forall (x_1, x_2) E_1 \times E_2, \ \forall \lambda \in \mathbb{K}, \quad \lambda \cdot (x_1, x_2) = (\lambda \cdot_1 x_1, \lambda \cdot_2 x_2)$$

est un \mathbb{K} -espace vectoriel, appelé espace vectoriel produit

Exemple. pour tout $n \in \mathbb{N}^*$, \mathbb{K}^n est un \mathbb{K} espace vectoriel pour l'addition et la multiplication usuelles définie par

$$\forall ((a_1,...,a_n),(b_1,...,b_n)) \in (\mathbb{K}^n)^2, \quad (a_1,...,a_n) + (b_1,...,b_n) = (a_1+b_1,...,a_n+b_n)$$

et de la multiplication externe usuelle · définie par

$$\forall (a_1,...,a_n)\mathbb{K}^n, \ \forall \lambda \in \mathbb{K}, \quad \lambda \cdot (a_1,...,a_n) = (\lambda a_1,...,\lambda a_n)$$

est un K espace vectoriel.

Proposition. (*) Si E est un \mathbb{K} ev et X une partie quelconque, alors $\mathcal{F}(X, E)$ est un \mathbb{K} -ev pour les lois usuelles

Exemple. $\mathbb{K}^{\mathbb{N}}$ l'ensemble des suites à valeurs dans \mathbb{K} et, plus généralement, $\mathcal{F}(D,\mathbb{K})$ sont des \mathbb{K} -espaces vectoriels.

III. Sous-espaces vectoriels

Définition. Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et F une partie de E.

On dit que F est un sous-espace vectoriel de E si F est stable par les lois + et \cdot et si F est un espace vectoriel pour les lois induites.

Proposition. (*) Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et F une partie de E alors F est un sous-espace vectoriel de E si et seulement si

- $-0_E \in F$,
- $\forall (x,y) \in F^2, \quad x + y \in F,$
- $-\forall \lambda \in \mathbb{K}, \ \forall x \in F, \quad \lambda \cdot x \in F.$

Remarque: L'hypothèse $0_E \in F$ peut être remplacée par F non vide.

Proposition. (*) Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et F une partie de E alors F est un sous-espace vectoriel de E si et seulement si

- $-0_E \in F$,
- $-\forall (x,y) \in F^2, \forall \lambda \in \mathbb{K}, \quad \lambda \cdot x + y \in F.$

Exemple. (*)

 $\mathbb{K}_n[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} de degré inférieur ou égal à n est un \mathbb{K} -espace vectoriel.

 $C^n(D, \mathbb{K})$ et $\mathcal{D}^n(D, \mathbb{K})$ sont des \mathbb{K} -espaces vectoriels.

 $\left\{f \in \mathbb{R}_{-}^{\mathbb{R}} \ paire \right\} \ et \ \left\{f \in \mathbb{R}^{\mathbb{R}} \ impaire \right\} \ est \ un \ \mathbb{R} \ espace-vectoriel.$

 $\left\{f\in\mathbb{R}^{\mathbb{R}}\; extit{p\'eriodique}\; de\; extit{p\'eriode}\; rationnelle}
ight\}\; est\; un\; \mathbb{R}\; espace-vectoriel.$

 $\left\{f \in \mathbb{R}^{\mathbb{R}} \text{ s'annulant en } \pi\right\}$ est un \mathbb{R} espace-vectoriel.

 $\begin{cases} f \in \mathcal{D}^2(\mathbb{R}, \mathbb{K}) : f''' + 5f' - \sqrt{2}f = 0 \end{cases} \text{ est un } \mathbb{K} \text{ espace-vectoriel.} \\ \{ u \in \mathbb{K}^{\mathbb{N}} : \forall n \in \mathbb{N}, u_{n+2} + u_n = 0 \} \text{ est un } \mathbb{K} \text{ espace-vectoriel.} \end{cases}$

Définition. Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $x_1, ..., x_r, r$ vecteurs de E. On appelle combinaison linéaire des vecteurs $x_1, ..., x_r$ tout vecteur de la forme

$$\sum_{i=1}^{r} \lambda_i x_i \quad avec \quad (\lambda_1, ..., \lambda_r) \in \mathbb{K}^r.$$

Définition. Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $(x_i)_{i \in I}$ une famille quelconque de vecteurs de E. On appelle combinaison linéaire des vecteurs $(x_i)_{i\in I}$ tout vecteur de la forme $\sum_{i=1}^{n} \lambda_i x_i$ où

la famille $(\lambda_i)_{i\in I}$ n'a qu'un nombre fini de termes non nuls. On dit que la famille $(\lambda_i)_{i\in I}$ est presque nulle.

On note $\mathbb{K}^{(I)}$ les suites de scalaires presque nulles. Les combinaisons linéaires des vecteurs $(x_i)_{i\in I}$ sont donc les vecteurs de la forme $\sum_{l \in I} \lambda_k x_k$ avec $(\lambda_i)_{i \in I} \in \mathbb{K}^{(I)}$.

IV. Intersection de sous-espaces vectoriels

Proposition. (*) Intersections d'espaces vectoriels

 $Soit(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $(F_i)_{i \in I}$ une famille de sous-espaces vectoriels de E alors $\bigcap F_i$ est un sous-espace vectoriel de E.

Remarque: En particulier, l'intersection de deux sous-espaces vectoriels est un sous-espace vectoriel. L'union de deux sous-espaces vectoriels E_1 et E_2 est un sous-espace vectoriel si, et seulement si, $E_1 \subset E_2$ ou $E_2 \subset E_1$.

Corollaire. (*) Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et A une partie de E alors il existe un plus petit sous-espace vectoriel de E au sens de l'inclusion contenant A.

Il est appelé sous-espace vectoriel de E engendré par A et noté Vect(A).

Proposition. Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $x \in E$.

Le sous-espace vectoriel $\text{Vect}(\{x\})$ est égal à $\{\lambda \cdot x, \lambda \in \mathbb{K}\}$. Il est noté Vect(x) ou $\mathbb{K}x$.

Remarque: Lorsque $x \neq 0_E$, $\mathbb{K}x$ est appelée la droite engendrée par x.

Proposition. (*) Soient $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $x_1, ..., x_r, r$ vecteurs de E.

Le sous-espace vectoriel $\operatorname{Vect}(\{x_1,...,x_r\}\ est\ égal\ à \left\{\sum_{k=1}^r \lambda_k x_k,\ (\lambda_1,...,\lambda_r) \in \mathbb{K}^r\right\}.$

Il est noté $Vect(x_1,...,x_r)$.

Exemple. Si $E = \mathbb{C}$ et $\mathbb{K} = \mathbb{R}$ alors $\text{Vect}(2) = \mathbb{R}$.

 $Si E = \mathbb{C} \ et \mathbb{K} = \mathbb{C} \ alors \operatorname{Vect}(2) = \mathbb{C}.$

Si $E = \mathbb{R}^3$ et $\mathbb{K} = \mathbb{R}$ alors $\text{Vect}((1,0,0),(0,1,0)) = \{(x,y,0), (x,y) \in \mathbb{R}^2\}.$

Proposition. (*) Soit $(E, +, \cdot)$ un \mathbb{K} -ev et $(x_i)_{i \in I}$ une famille quelconque de vecteurs de E.

Le sous-espace vectoriel
$$\operatorname{Vect}(\{x_i, i \in I\})$$
 est égal à $\left\{\sum_{k \in I} \lambda_k x_k, (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)}\right\}$.

Corollaire. $Soit(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et A une partie de E alors Vect(A) est l'ensemble des combinaison linéaires des vecteurs de A.

Exemple. $\mathbb{K}[X] = \text{Vect}(X^n, n \in \mathbb{N}).$

V. Somme de deux sous-espaces vectoriels

Définition. Somme d'espaces vectoriels

Soient F_1 et F_2 deux sous-espaces vectoriels d'un même \mathbb{K} -espace vectoriel $(E,+,\cdot)$.

On appelle somme des sous-espaces vectoriels F_1 et F_2 l'ensemble

$$F_1 + F_2 = \{x_1 + x_2, (x_1, x_2) \in F_1 \times F_2\}$$

Remarque : Soient x et y deux vecteurs, on a $\mathbb{K}x + \mathbb{K}y = \operatorname{Vect}(x, y)$.

Plus généralement, étant donnés n vecteurs $(x_1,...,x_n)$, pour tout $r \in [1,n-1]$, on a :

$$Vect(x_1, ..., x_n) = Vect(x_1, ..., x_r) + Vect(x_{r+1}, ..., x_n).$$

Proposition. (*) La somme de deux sous-espaces vectoriels d'un même \mathbb{K} -espace vectoriel E est un sous-espace vectoriel de E. C'est le plus petit sev de E contenant F_1 et F_2 .

Corollaire. (*) Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel et $(A, B) \in \mathcal{P}(E)^2$ alors

$$Vect(A \cup B) = VectA + VectB$$

En particulier, $\forall (x,y) \in E^2$, $Vect(x,y) = \mathbb{K}x + \mathbb{K}y$

Corollaire. Soient F_1 et F_2 deux sous-espaces vectoriels d'un même \mathbb{K} -espace vectoriel E alors $F_1 + F_2 = E$ si et seulement si $\forall x \in E, \ \exists (x_1, x_2) \in F_1 \times F_2 : x = x_1 + x_2$ c'est-à-dire si, et seulement si, l'application $F_1 \times F_2 \to E, \ (x_1, x_2) \mapsto x_1 + x_2$ est surjective

Définition. Soient F_1 et F_2 deux sous-espaces vectoriels d'un même \mathbb{K} -espace vectoriel E. On dit que les sous-espaces vectoriels F_1 et F_2 sont en somme directe si

$$\forall x \in F_1 + F_2, \ \exists !(x_1, x_2) \in F_1 \times F_2 : \ x = x_1 + x_2$$

c'est-à-dire si si et seulement si l'application $F_1 \times F_2 \to E$, $(x_1, x_2) \mapsto x_1 + x_2$ est injective. Dans ce cas, $F_1 + F_2$ est noté $F_1 \bigoplus F_2$.

Proposition. (*) Soient F_1 et F_2 deux sous-espaces vectoriels d'un même \mathbb{K} -espace vectoriel E. Les sous-espaces vectoriels F_1 et F_2 sont en somme directe si et seulement si $F_1 \cap F_2 = \{0_E\}$.

Définition. Soient F_1 et F_2 deux sous-espaces vectoriels d'un même \mathbb{K} -espace vectoriel E. On dit que les sous-espaces vectoriels F_1 et F_2 sont supplémentaires s'ils sont en somme directe et si $F_1 \bigoplus F_2 = E$ c'est-à-dire si $\forall x \in E$, $\exists ! (x_1, x_2) \in F_1 \times F_2 : x = x_1 + x_2$ c'est-à-dire si l'application $F_1 \times F_2 \to E$, $(x_1, x_2) \mapsto x_1 + x_2$ est bijective. c'est-à-dire si tout vecteur de E se décompose de façon unique comme la somme d'un vecteur de F_1 et d'un vecteur de F_2 .

VI. Compléments : Somme de sous-espaces vectoriels

Définition. Soit $(F_i)_{i \in [\![1,r]\!]}$ une famille de sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. On appelle somme des sous-espaces vectoriels F_1, \ldots, F_r l'ensemble

$$\sum_{i=1}^{r} F_i = \left\{ \sum_{i=1}^{r} x_i, \ (x_i)_{i \in [1,r]} \in F_1 \times \dots \times F_r \right\}$$

Proposition. Soit $(F_i)_{i \in [\![1,r]\!]}$ une famille de sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E, alors $\sum_{i=1}^r F_i$ est un \mathbb{K} -espace vectoriel. C'est le plus petit sev de E contenant les F_i .

Définition. Soit $(F_i)_{i \in \llbracket 1,r \rrbracket}$ une famille de sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. La somme $\sum_{i=1}^r F_i$ est dite directe si l'application $F_1... \times F_r \to E$, $(x_i)_{i \in \llbracket 1,r \rrbracket} \mapsto \sum_{i=1}^r x_i$ est injective, c'est-à-dire si

$$\forall x \in \sum_{i=1}^{r} F_i, \ \exists ! (x_1, ..., x_r) \in F_1 \times ... \times F_r : x = \sum_{i=1}^{r} x_i$$

On note alors $\sum_{i=1}^r F_i = \bigoplus_{i=1}^r F_i$.

Proposition. La somme $\sum_{i=1}^{r} F_i$ est directe si, et seulement si,

$$\forall (x_1, ..., x_n) \in F_1 \times ... \times F_n, \quad \sum_{i=1}^r x_i = 0 \Rightarrow x_1 = ... = x_n = 0$$

Remarque: Si la somme $\sum_{i=1}^{r} F_i$ est directe, alors, pour tout $(i,j) \in [1,r]^2$ tel que $i \neq j$, les sev F_i et F_j sont en somme directe mais il n'y a pas de réciproque. Par exemple, les droite $D_1 = \mathbb{K}(1,0,0), D_2 = \mathbb{K}(0,1,0)$ et $D_3 = \mathbb{K}(1,1,0)$ sont en somme directe

Par exemple, les droite $D_1 = \mathbb{K}(1,0,0)$, $D_2 = \mathbb{K}(0,1,0)$ et $D_3 = \mathbb{K}(1,1,0)$ sont en somme directe deux à deux mais la somme $D_1 + D_2 + D_3$ n'est pas directe

Remarque: Pour que la somme $F_1 + F_2 + F_3$ soit directe il est nécessaire et suffisant que les sommes $F_1 + F_2$ et $(F_1 \bigoplus F_2) + F_3$ soit directes.

Cela prouve ainsi que les égalités $\bigoplus_{i=1}^{3} F_i = \left(F_1 \bigoplus F_2\right) \bigoplus F_3 = F_1 \bigoplus \left(F_2 \bigoplus F_3\right)$ ont un sens

et justifie que lorsque la somme $F_1 + F_2 + F_3$ est directe, alors on écrive $\bigoplus_{i=1}^3 F_i = F_1 \bigoplus F_2 \bigoplus F_3$

Les exercices suivants donnent des CNS pour qu'une somme soit directe.

Exercice. Soit $(F_i)_{i \in [1,r]}$ une famille de sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E.

• La somme
$$\sum_{i=1}^r F_i$$
 est directe si et seulement si $\forall i \in [2, r], \quad F_i \cap \left(\sum_{j=1}^{i-1} F_j\right) = \{0_E\}.$

• La somme
$$\sum_{i=1}^r F_i$$
 est directe si et seulement si $\forall i \in [1, r], \quad F_i \cap \left(\sum_{j \in [1, r], j \neq i} F_j\right) = \{0_E\}.$