

MATLAB CodeCount™ Counting Standard

University of Southern California

Center for Systems and Software Engineering

December , 2016

Revision Sheet

Date	Version	Revision Description	Author
5/26/2016	1.0	Original Release	Matthew Swartz
7/12/2016	1.1	Updated complexity table	Matthew Swartz

Table of Contents

No.			Contents	Page No.
1.0	Definitions			4
	1.1	SLOC		4
	1.2	<u>Physi</u>	cal SLOC	4
	1.3	Logic	al SLOC	4
	1.4	<u>Data</u>	declaration line	4
	1.5	Comp	piler directive	4
	1.6	Blank	<u>: line</u>	4
	1.7	Comr	ment line	4
	1.8	Execu	utable line of code	4
2.0	O Checklist for source statement counts		6	
3.0	Examples of logical SLOC counting		7	
	3.1	Execu	table Lines	7
		3.1.1	Selection Statements	7
		3.1.2	<u>Iteration Statements</u>	8
		3.1.3	Jump Statements	8
		3.1.4	Expression Statements	8
	3.2	Comp	oiler directives	9
4.0	Complexity	L		9

1. Definitions

- SLOC Source Lines of Code is a unit used to measure the size of software program. SLOC counts the 1.1. program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is also used to calculate productivity and other measurements.
- 1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment line.
- 1.3. Logical SLOC – Lines of code intended to measure "statements", which normally terminate by a semicolon (C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style conventions, but they are language-dependent.
- 1.4. Data declaration line or data line - A line that contains declaration of data and used by an assembler or compiler to interpret other elements of the program. Matlab uses implicitly defined types so that there are no data declaration statements.
- 1.5. Compiler Directives - A statement that tells the compiler how to compile a program, but not what to compile.

The following table lists the Matlab keywords that denote compiler directive lines:

Table 1 Compiler Directives

- 1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs, form feed, carriage return, line feed, or their derivatives).
- 1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific comment delimiter.
 - Matlab single line comment delimiter is "%". Anything included between "%{" and "%}" is considered part of a block comment. A whole comment line may span one line and does not contain any compilable source code. An embedded comment can co-exist with compliable source code on the same physical line. Banners and empty comments are treated as types of comments.
- 1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.
 - An executable line of code may contain the following program control statements:
 - Selection statements (if, ? operator, switch)
 - Iteration statements (for, while, do-while)
 - Empty statements (one or more ";")

- Jump statements (return, goto, break, continue, exit function)
- Expression statements (function calls, assignment statements, operations, etc.)
- **Block statements**
- An executable line of code may not contain the following statements:
 - Compiler directives
 - Data declaration (data) lines
 - Whole line comments, including empty comments and banners
 - Blank lines

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES			
MEASUREMENT UNIT	ORDER OF PRECEDENCE	PHYSICAL SLOC	COMMENTS
Executable Lines	1	One per line	Defined in 1.8
Non-executable Lines			
Declaration (Data) Lines	2	One per line	Defined in 1.4
Compiler Directives	3	One per line	Defined in 1.5
Comments			Defined in 1.7
On their own lines	4	Not Included	
Embedded	5	Not Included	
Banners	6	Not included	
Empty comments	7	Not included	
Blank lines	8	Not Included	Defined in 1.6

	LOGICAL SLOC COUNTING RULES				
NO.	STRUCTURE	ORDER OF PRECEDENCE	LOGICAL SLOC RULES	COMMENTS	
R01	"for", "while", "parfor", or "if" statement	1	Count once	Loops and conditionals are independent statements	
R02	Statements ending by a semicolon or comma	2	Count once	Semicolons and commas within matrix assignments are not counted	
R03	Line terminated by a new line character and last symbol is not ellipsis ""	3	Count once	End of command	
R04	Compiler Directive	4	Count once per directive		

3. Examples

EXECUTABLE LINES

SELECTION Statements

ESS1 – if-else if-else and nested if statements

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
if <boolean expression=""></boolean>	if rem(4, 2) == 0	1
<statements></statements>	disp('4 is even')	1
end	end	0
if <boolean expression=""></boolean>	if x > 0	1
<statements></statements>	disp ('x is positive')	1
else	else	0
<statements></statements>	disp ('x is zero')	1
end	end	0
if <boolean expression=""></boolean>	if x > 0	1
<statements></statements>	disp ('x is positive')	1
elseif boolean expression>	elseif $x < 0$	1
<statements></statements>	disp ('x is negative')	1
	else	0
	disp ('x is zero')	1
	end	0
else		
<statements></statements>	if $x != 0 && x > 0$	1
end	disp ('x')	1
	end	0
NOTE: complexity is not		
considered, i.e. multiple "&&" or " "		
as part of the expression.		

ESS2 – switch and nested switch statements

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
switch <expression></expression>	switch input_num	1
case <constant 1=""></constant>	case -1	0
<statements></statements>	disp ('negative one');	1
case <constant 2=""></constant>	case 0	0
<statements></statements>	disp ('zero');	1
case <constant 3=""></constant>	case 1:	0
<statements></statements>	disp ('positive one');	1
otherwise	otherwise	0
<statements></statements>	disp ('other value');	1
end	end	0

ESS3 - try catch blocks

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
try	try	1
<statements></statements>	fid = fopen('abc', 'r');	1
catch <exception-declaration></exception-declaration>	d_in = fread(fid);	1

<statements></statements>	catch exception	1	
end	rethrow(exceptioin)	1	
	end	0	
		<u> </u>	

ITERATION Statements

EIS1 - For Loop

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
for <index> =</index>	for k = 1:2:24	1
<start>:<increment>:<end></end></increment></start>	$C\{k\} = k * 2;$	1
<statements></statements>	end	0
end		
	for $x = 1:10$	1
	X	1
	end	0

EIS2 - While Loop

•		
GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
while <boolean expression=""></boolean>	n = 1;	1
<statements></statements>	while prod(1:n) < 1e100	1
end	n = n + 1;	1
	end	0

EIS3 – Parfor Loop

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
parfor <index> = <start>:<end></end></start></index>	parfor i = 1:length(A)	1
<statements></statements>	B(i) = f(A(i));	1
end	end	0

JUMP Statements

(are counted as they invoke action-pass to the next statement)

EJS1 - return

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
return	if i == 0	1
	return;	1
	end	0

EJS2 – break statements

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
break	if i > 10	1
	break;	1
	end	0

EJS3 – continue statements

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
continue	if i < 5	1
	continue;	1
	end	0

EXPRESSION Statements

EES1 – function and procedure call

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT	
<function_name> (<parameters>)</parameters></function_name>	surf(peaks)	1	

EES2 – assignment statement

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
<name> = <value></value></name>	X = [1 2 3 4];	1
	Y = X;	1

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE	SPECIFIC EXAMPLE	SLOC COUNT
import <package></package>	import packagename.ClassName	1

4. Complexity

Complexity measures the occurrences of different keywords in code baseline. Below table identifies the categories and their respective keywords that are counted as part of the complexity metrics.

Math Functions	TRIG	Log	CALCULATIONS	Conditionals	Logic	Pre- Processor	Assignment
polyfit	arcsin	reallog	.*	elseif	==	IMPORT	=
polyval	arccos	log10	.^	switch	~=		
interp1	arctan	log1p	./	while	<=		
interp2	arcsec	logm	.\	case	>=		
polyder	arccsc	log2	+	else	~		
median	arctan	log	-	for	<		
deconv	cos		*	if	>		
spline	sin		۸		&		
unmkpp	tan		/				
fzeros	sec		١				
ode113	csc						
ode23s	cot						
ode23t							
ode23b							
ode15s							
odeset							
floor							
round							

randn			
roots			
fmins			
quad1			
trapz			
ode23			
ode45			
ceil			
sign			
rand			
mean			
conv			
poly			
fmin			
quad			
diff			
ехр			
sum			