Claims

What is claimed is:

- 1. A natriuretic compound conjugate comprising:
- 5 (a) a biologically active natriuretic compound comprising:
 - (i) a natriuretic molecule NPR-A binding site; and
 - (ii) at least one modifying moiety conjugation site; and
 - (b) at least one modifying moiety attached to said modifying moiety conjugation site;
- wherein said natriuretic compound conjugate exhibits one or more advantages selected from the group consisting of increased resistance to enzymatic degradation relative to a corresponding unconjugated natriuretic compound, increased circulating half life, increased bioavailability, and prolonged duration of effect.
- 15 2. The natriuretic compound conjugate of claim 1 further defined as retaining a therapeutically significant percentage of cGMP stimulating activity relative to the corresponding unconjugated natriuretic compound.
 - 3. The natriuretic compound conjugate of claim 1 further defined as retaining at least 30% of the cGMP stimulating activity of the corresponding unconjugated natriuretic compound.
 - 4. The natriuretic compound conjugate of claim 1 further defined as retaining at least 50% of the cGMP stimulating activity of the corresponding unconjugated natriuretic compound.
- 5. The natriuretic compound conjugate of claim 1 further defined as retaining at least 70% of the cGMP stimulating activity of the corresponding unconjugated natriuretic compound.
 - 6. The natriuretic compound conjugate of claim 1 further defined as retaining at least 90% of the cGMP stimulating activity of the corresponding unconjugated natriuretic compound.

- 7. The natriuretic compound conjugate of claim 1 further defined as more hydrophilic than a corresponding unconjugated natriuretic compound.
- 8. The natriuretic compound conjugate of claim 1 further defined as more amphiphilic than a corresponding unconjugated natriuretic compound.
- 5 9. The natriuretic compound conjugate of claim 1 further defined as more lipophilic than a corresponding unconjugated natriuretic compound.
 - 10. The natriuretic compound conjugate of claim 9 wherein the modifying moiety does not consist of an alkyl moiety.
- 11. The natriuretic compound conjugate of claim 1 further defined as more resistant to protease degradation than a corresponding unconjugated natriuretic compound.
 - 12. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a sequence:

A¹PX¹MVQGSGCFGRX²MDRISSSSGLGCX³VLR (SEQ ID NO. __).

15 wherein

A1 is an amino acid or series of amino acids native to a natriuretic peptide,

 X^1 , X^2 and X^3 are independently selected from the group consisting of Lys, Arg and Gly, and at least one of X^1 , X^2 and X^3 is a Lys.

- The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a peptide or a biologically active peptide segment of brain natriuretic peptide, atrial natriuretic peptide, C-type natriuretic peptide, or dendroaspis natriuretic peptide.
 - 14. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises:
- 25 (a) an amino acid sequence

 $X^1 - C^1FGRX^2MDRISSSSGLGC^2 - X^3$ (SEQ ID NO:)

wherein

X1 is optionally present and when present is an amino acid sequence having from 1-10 amino acids; X² is Gly, Arg, or Lys; and \boldsymbol{X}^{3} is optionally present and when present is an amino acid sequence having from 1-10 amino acids. a disulfide bond between C1 and C2 to form a loop. The natriuretic compound conjugate of claim 14 wherein X1 is Arg or Gly. The natriuretic compound conjugate of claim 14 wherein X¹ is selected from the group consisting of: Lys; Gly; Arg; SG- (SEQ ID NO. __), GSG- (SEQ ID NO. __), QGSG- (SEQ ID NO. __), VQGSG- (SEQ ID NO. __), MVQGSG- (SEQ ID NO. __), PKMVQGSG- (SEQ ID NO. __), and SPKMVQGSG- (SEQ ID NO. __); hBNP segments of (d) comprising a substitution selected from the group consisting of Lys-to-Gly and Lys-to-Arg; hBNP segments of (d) comprising a substitution selected from the group consisting of Gly-to-Lys and Arg-to-Lys; hBNP segments of (d) comprising an inserted Lys; N-terminal tails and C-terminal segments of N-terminal tails of

25

5

10

15

20

15.

16.

(b)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

natriuretic peptides;

Lys-to-Arg;

N-terminal tails and C-terminal segments of (h) comprising a

substitution selected from the group consisting of Lys-to-Gly and

(j)

substitution selected from the group consisting of Gly-to-Lys and Arg-to-Lys; (k) N-terminal tails and C-terminal segments of (h) comprising an 5 inserted Lys. 17. The natriuretic compound conjugate of claim 14 wherein X³ is selected from the group consisting of: (a) Lys; (b) Gly; 10 (c) Arg; hBNP segments KV(SEQ ID NO. __), KVL (SEQ ID NO. __), (d) KVLR (SEQ ID NO. __), KVLRR (SEQ ID NO. __), and KVLRRH (SEQ ID NO.); and (e) hBNP segments of (d) comprising a substitution selected from the 15 group consisting of Lys-to-Gly and Lys-to-Arg; (f) hBNP segments of (d) comprising a substitution selected from the group consisting of Gly-to-Lys and Arg-to-Lys; (g) hBNP segments of (d) comprising an inserted Lys; C-terminal tails and N-terminal segments of C-terminal tails of (h) 20 natriuretic peptides; (i) C-terminal tails and N-terminal segments of C-terminal tails of (h) comprising a substitution selected from the group consisting of Lysto-Gly and Lys-to-Arg; (j) C-terminal tails and N-terminal segments of C-terminal tails of (h) 25 comprising a substitution selected from the group consisting of Glyto-Lys and Arg-to-Lys; (k) C-terminal tails and N-terminal segments of C-terminal tails of (h) comprising an inserted Lys.

N-terminal tails and C-terminal segments of (h) comprising a

5

10

15

20

25

26.

18.	The natriuretic compound conjugate of claim 14 wherein the natriuretic compound comprises a sequence selected from the group consisting of:
	(a) SPKMVQGSGCFGRKMDRISSSSGLGCKVL (SEQ ID NO);
	(b) SPKMVQGSGCFGRKMDRISSSSGLGC (SEQ ID NO); and
	(c) segments (a) or (b) comprising a substitution selected from the group consisting of Lys-to-Gly and Lys-to-Arg.
19.	The natriuretic compound conjugate of claim 14 wherein X ¹ comprises a 1-9 amino acid residue sequence from the N-terminus of hBNP.
20.	The natriuretic compound conjugate of claim 14 wherein X^1 comprises SPX ³ MVQGSG (SEQ ID NO:), and wherein X^2 comprises a modifying moiety conjugation site.
21.	The natriuretic compound conjugate of claim 14 wherein X ³ comprises a 1-6 amino acid residue sequence from the C-terminus of hBNP.
22.	The natriuretic compound conjugate of claim 14 wherein X³ comprises KVLRRH (SEQ. ID. NO:), KVLRR (), KVLR (), KVLR (KV or K.
23.	The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a native hBNP sequence (SEQ ID NO) having one or more mutations selected from the group consisting of Lys3Arg, Lys14Arg, Arg30Lys, Lys27Arg, and Arg31Lys.
24.	The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a native hBNP sequence (SEQ ID NO), having one or more insertions or deletions.
25.	The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a native hBNP amino acid sequence (SEQ ID NO) and a N-terminal or C-terminal Lys.

The natriuretic compound conjugate of claim 1 further defined as:

(a) comprising a multipeptide comprising two or more amino acid sequences encoding a natriuretic compound;

- (b) optionally comprising a spacer sequence between each set or adjacent natriuretic compound encoding sequences;
- (c) optionally comprising an extension at either or both ends of the multipeptide, the extension comprising one or more amino acids.
- 5 27. The natriuretic compound conjugate of claim 26 wherein the natriuretic peptide units each comprise hBNP (SEQ ID NO. __) or a biologically active analog, segment or segment analog thereof.
 - 28. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound consists of a native BNP.
- 10 29. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound consists of a native hBNP.
 - 30. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound consists of a native ANP.
- The natriuretic compound conjugate of claim 1 wherein the natriuretic compound consists of a canine BNP.
 - 32. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound consists of urodilatin.
 - 33. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound consists of DNP.
- 20 34. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises an amino acid sequence:

25

X¹MVQGSGCFGRX²MDRISSSSGLGCX³ (SEQ ID NO. __),

wherein X^1 , X^2 and X^3 are each independently selected from the group consisting of Lys, Gly and Arg, with the proviso that at least one of X^1 , X^2 and X^3 is Arg or Gly.

35. The natriuretic compound conjugate of claim 34 wherein the sequence comprises:

5

20

- (a) N-terminal to X^1 , an extension selected from the group consisting of: SPK, PK and K; and/or
- (b) C-terminal to X^3 , an extension selected from the group consisting of VLRRH (SEQ ID NO:), -VLRR (SEQ ID NO:), -VLR, -VL, and -V.
- 36. The natriuretic compound conjugate of claim 34 wherein X¹ is Lys, X² is Arg and X³ is Arg.
- 37. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises an amino acid sequence:

10 CFGRX¹MDRISSSSGLGCX² (SEQ ID NO:),

wherein X^1 and/or X^2 comprises a modifying moiety conjugation site coupled to the modifying moiety.

- 38. The natriuretic compound conjugate of claim 37 wherein X¹ comprises Lys coupled to the modifying moiety.
- The natriuretic compound conjugate of claim 37 wherein X^2 comprises Lys coupled to the modifying moiety.
 - 40. The natriuretic compound conjugate of claim 1 wherein the modifying moiety conjugation site comprises a moiety selected from the group consisting of natural or non-natural amino acid side chains, an N-terminus of the natriuretic compound, and a C-terminus of the natriuretic compound.
 - 41. The natriuretic compound conjugate of claim 40 wherein the modifying moiety conjugation site is a Lys side chain.
 - 42. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound conjugate includes only one modifying moiety.
- 25 43. The natriuretic compound conjugate of claim 1 wherein:
 - (a) the natriuretic compound comprises a Lys³ to Cys²6 segment of hBNP and a disulfide bond coupling Cys¹0 of the segment to the Cys²6 (SEQ ID NO. __);

5

15

- (b) a single modifying moiety coupled to the natriuretic compound at the Lys³ (SEQ ID NO. __).
- 44. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a Cys¹⁰ to Cys²⁶ segment of hBNP and a disulfide bond coupling the Cys¹⁰ to the Cys²⁶, wherein said natriuretic compound is a monoconjugate including a single modifying moiety coupled thereto at Lys¹⁴ of the segment.
- 45. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a Cys¹⁰ to Lys²⁷ segment of hBNP (SEQ ID NO. __), wherein said natriuretic compound is a monoconjugate including a single modifying moiety coupled thereto at Lys²⁷ of the segment.
 - 46. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a Cys¹⁰ to His³² segment of hBNP and a disulfide bond coupling the Cys¹⁰ to Cys²⁶ of the segment, wherein said natriuretic compound is a monoconjugate including a single modifying moiety coupled thereto at Lys²⁷ of the segment.
 - 47. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound comprises a Cys¹⁰ to Cys²⁶ segment of hBNP and a disulfide bond coupling the Cys¹⁰ to the Cys²⁶; wherein the natriuretic compound is a monoconjugate including a single modifying moiety coupled thereto at the N-terminus of the natriuretic compound.
 - 48. The natriuretic compound conjugate of claim 1 wherein:
 - (a) the natriuretic compound consists of the hBNP amino acid sequence; and
- 25 (b) the natriuretic compound conjugate is a diconjugate comprising:
 - (i) a modifying moiety coupled to the natriuretic peptide at Lys³ of the hBNP amino acid sequence; and
 - (ii) a modifying moiety coupled to the natriuretic peptide at Lys¹⁴ of the hBNP amino acid sequence.
- 30 49. The natriuretic compound conjugate of claim 1 wherein:

- (a) the natriuretic compound is hBNP; and
- (b) the natriuretic compound conjugate is a diconjugate comprising:
 - (i) a modifying moiety coupled to the natriuretic peptide at Lys³ of the hBNP amino acid sequence; and

(ii) a modifying moiety coupled to the natriuretic peptide at Lys²⁷ of the hBNP amino acid sequence.

- 50. The natriuretic compound conjugate of claim 1 wherein the natriuretic compound sequence comprises an N-terminal tail and the modifying moiety is coupled to an amino acid which is positioned in the N-terminal tail.
- The natriuretic compound conjugate of claim 50 wherein the N-terminal tail consists of a native sequence of an N-terminal tail of a natriuretic peptide or a C-terminal segment of an N-terminal tail of a natriuretic peptide.
 - 52. The natriuretic compound conjugate of claim 1 wherein the modifying moiety has a formula:

15

20

5

wherein

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety.

- 53. The natriuretic compound conjugate of claim 52 wherein m is from 1 to 18.
- 54. The natriuretic compound conjugate of claim 52 wherein m is from 1 to 16.

- 55. The natriuretic compound conjugate of claim 52 wherein n is from 2 to 20.
- 56. The natriuretic compound conjugate of claim 52 wherein n is from 2 to 15.
- 57. The natriuretic compound conjugate of claim 52 wherein n is from 2 to 10.
- 58. The natriuretic compound conjugate of claim 52 wherein each X is independently selected from the group consisting of -C-, -O-, -C(O)-, -NH-, -NHC(O)-, and -C(O)NH-.
 - 59. The natriuretic compound conjugate of claim 52 wherein the modifying moiety renders the natriuretic compound more lipophilic than a corresponding unconjugated natriuretic compound.
- 10 60. The natriuretic compound conjugate of claim 52 wherein the modifying moiety renders the natriuretic compound more hydrophilic than a corresponding unconjugated natriuretic compound.
 - 61. The natriuretic compound conjugate of claim 52 wherein the modifying moiety renders the natriuretic compound more amphiphilic than a corresponding unconjugated natriuretic compound.
 - 62. The natriuretic compound conjugate of claim 1 wherein the modifying moiety has a formula:

PAG is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

20 X is O or N; and

15

each o is independently selected and is from 1 to 15.

- 63. The natriuretic compound conjugate of claim 62 wherein n is from 2 to 20.
- 64. The natriuretic compound conjugate of claim 62 wherein n is from 2 to 15.
- 65. The natriuretic compound conjugate of claim 62 wherein n is from 2 to 10.

- 66. The natriuretic compound conjugate of claim 62 wherein each o is independently selected and is from 1 to 13.
- 67. The natriuretic compound conjugate of claim 62 wherein each o is independently selected and is from 1 to 9.
- 5 68. The natriuretic compound conjugate of claim 62 wherein each o is independently selected and is from 1 to 6.
 - 69. The natriuretic compound conjugate of claim 62 wherein each X is -O-.
- 70. The natriuretic compound conjugate of claim 62 wherein the modifying moiety renders the natriuretic compound more lipophilic than a corresponding unconjugated natriuretic compound.
 - 71. The natriuretic compound conjugate of claim 62 wherein the modifying moiety renders the natriuretic compound more hydrophilic than a corresponding unconjugated natriuretic compound.
- 72. The natriuretic compound conjugate of claim 62 wherein the modifying moiety renders the natriuretic compound more amphiphilic than a corresponding unconjugated natriuretic compound.
 - 73. The natriuretic compound conjugate of claim 1 wherein the modifying moiety has a formula:

$$C_m$$
-X-PAG_n PAG_n-X-C_m (Formula III)

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety.

o is from 1 to 15.

- 74. The natriuretic compound conjugate of claim 73 wherein m is from 1 to 18.
- 75. The natriuretic compound conjugate of claim 73 wherein m is from 1 to 16.
- 76. The natriuretic compound conjugate of claim 73 wherein n is from 2 to 20.
- 5 77. The natriuretic compound conjugate of claim 73 wherein n is from 2 to 15.
 - 78. The natriuretic compound conjugate of claim 73 wherein n is from 2 to 10.
 - 79. The natriuretic compound conjugate of claim 73 wherein 0 is from 1 to 13.
 - 80. The natriuretic compound conjugate of claim 73 wherein 0 is from 1 to 9.
 - 81. The natriuretic compound conjugate of claim 73 wherein 0 is from 1 to 6.
- The natriuretic compound conjugate of claim 73 wherein each X is independently selected from the group consisting of -C-, -O-, -C(O)-, -NH-, -NHC(O)-, and -C(O)NH-.
 - 83. The natriuretic compound conjugate of claim 73 wherein the modifying moiety renders the natriuretic compound more lipophilic than a corresponding unconjugated natriuretic compound.
 - 84. The natriuretic compound conjugate of claim 73 wherein the modifying moiety renders the natriuretic compound more hydrophilic than a corresponding unconjugated natriuretic compound.
- The natriuretic compound conjugate of claim 73 wherein the modifying moiety renders the natriuretic compound more amphiphilic than a corresponding unconjugated natriuretic compound.
 - 86. The natriuretic compound conjugate of claim 1 wherein the modifying moiety comprises a linear or branched polyalkylene glycol moiety.
- The natriuretic compound conjugate of claim 1 wherein the modifying moiety comprises a sugar moiety coupled to an alkyl moiety.
 - 88. The natriuretic conjugate of claim 87 wherein the modifying moiety further comprises a sugar moiety.

- 89. The natriuretic compound conjugate of claim 86 wherein the polyalkylene glycol moiety comprises a polyethylene glycol moiety.
- 90. The natriuretic compound conjugate of claim 86 wherein the polyalkylene glycol moiety has from 2 to 25 polyalkylene glycol subunits.
- 5 91. The natriuretic compound conjugate of claim 86 wherein the polyalkylene glycol moiety has from 2 to 20 polyalkylene glycol subunits.
 - 92. The natriuretic compound conjugate of claim 86 wherein the polyalkylene glycol moiety has from 2 to 15 polyalkylene glycol subunits.
- 93. The natriuretic compound conjugate of claim 86 wherein the polyalkylene glycol moiety has from 2 to 10 polyalkylene glycol subunits.
 - 94. The natriuretic compound conjugate of claim 86 wherein the modifying moiety further comprises a linear or branched alkyl moiety.
 - 95. The natriuretic compound conjugate of claim 94 wherein the modifying moiety further comprises a sugar moiety.
- 15 96. The natriuretic compound conjugate of claim 94 wherein the alkyl moiety has from 1 to 20 carbons.
 - 97. The natriuretic compound conjugate of claim 94 wherein the alkyl moiety has from 1 to 18 carbons.
- 98. The natriuretic compound conjugate of claim 94 wherein the alkyl moiety has from 1 to 16 carbons.
 - 99. The natriuretic compound conjugate of claim 94 wherein the alkyl moiety is separated from the polyalkylene glycol moiety by a linker selected from the group consisting of -C-, -O-, -C(O)-, -NH-, -NHC(O)-, and -C(O)NH-.
- The natriuretic compound conjugate of claim 94 wherein the modifying moiety renders the natriuretic compound conjugate more lipophilic than a corresponding unconjugated natriuretic compound.
 - 101. The natriuretic compound conjugate of claim 94 wherein the modifying moiety comprises a bond coupling the polyalkalene glycol moiety to the alkyl moiety which bond is hydrolysable *in vivo*.

- 102. The natriuretic compound conjugate of claim 1 wherein the modifying moiety comprises a linear or branched polyalkylene glycol moiety coupled to the natriuretic compound and a linear or branched alkyl moiety coupled to the polyalkalene glycol moiety at a site which is distal relative to the natriuretic compound.
- 103. The natriuretic compound conjugate of claim 1 wherein the modifying moiety comprises a linear or branched alkyl moiety coupled to the natriuretic compound and a polyalkylene glycol moiety coupled to the alkyl moiety at a site which is distal relative to the natriuretic compound.
- 10 104. The natriuretic compound conjugate of claim 1 wherein the modifying moiety is selected from the group consisting of the oligomeric moieties of **Table 1**.
 - 105. The natriuretic compound conjugate of claim 1 wherein the modifying moiety is coupled to the natriuretic compound by a bond that is hydrolysable *in vivo*.
- 106. The natriuretic compound conjugate of claim 1 wherein the modifying moiety is coupled to the natriuretic compound by a bond that is hydrolysable in the bloodstream.
 - 107. The natriuretic compound conjugate of claim 1 wherein the modifying moiety is coupled to the natriuretic compound by a bond that is not hydrolysable *in vivo*.
- 20 108. The natriuretic compound conjugate of claim 1 wherein the modifying moiety is coupled to the natriuretic compound by a bond that is not hydrolysable in the bloodstream.
- The natriuretic compound conjugate of claim 1 wherein the modifying moiety is coupled to the natriuretic compound by a bond selected from the group consisting of ester, carbonate, carbamate, amide, ether, and amine.
 - 110. The natriuretic compound conjugate of claim 1 wherein the modifying moiety is hydrolysable *in vivo* to yield a pegylated natriuretic compound.
- The natriuretic compound conjugate of claim 110 wherein the modifying moiety is hydrolysable *in vivo* to yield a pegylated natriuretic compound comprising one or more PEG moieties having from 1 to 6 PEG units.

- 112. A pharmaceutical formulation comprising the natriuretic compound conjugate of claim 1.
- 113. The pharmaceutical formulation of claim 112 formulated for a route of delivery selected from the group consisting of enteral, perenteral, oral, subcutaneous, sublingual, buccal, nasal, intravenous and intramuscular.
- 114. A method of treating a condition characterized by an excessive level of extracellular fluid, the method comprising administering to a subject in need thereof a pharmaceutically acceptable amount of a natriuretic compound conjugate of claim 1.
- 10 115. The method of claim 114 wherein the condition comprises congestive heart failure.
 - 116. The method of claim 114 wherein the condition comprises chronic congestive heart failure.
- 117. The method of claim 114 wherein the condition comprises acute congestive heart failure.
 - 118. The method of claim 114 wherein the natriuretic compound conjugate is self-administered.
 - 119. The method of claim 114 wherein the natriuretic compound conjugate is orally administered.
- 20 120. The method of claim 114 wherein the natriuretic compound conjugate is administered via a route of administration selected from the group consisting of enteral, perenteral, oral, subcutaneous, sublingual, buccal, nasal, intravenous and intramuscular.
 - 121. The method of claim 114 wherein the condition is hypertension.
- 25 122. A method of making the natriuretic compound conjugate of claim 1, the method comprising:
 - (a) conjugating a natriuretic peptide multipeptide comprising two or more natriuretic compound units;

- (b) cleaving the natriuretic peptide multipeptide to yield natriuretic compound conjugate;
- (c) oxidizing the cleaved natriuretic compound conjugate to form one or more disulfide bonds in the natriuretic compound conjugate.
- 5 123. The method of claim 122 wherein the natriuretic compound comprises Cys¹⁰ to Cys²⁶ of hBNP (SEQ ID NO. __) and step 122(c) yields a disulfide bond between the Cys¹⁰ and Cys²⁶.
 - 124. A method of making the natriuretic compound conjugate of claim 1, the method comprising:
- 10 (a) making a multi-peptide natriuretic compound comprising two or more natriuretic compound units;
 - (b) cleaving the natriuretic peptide multipeptide to yield natriuretic peptide compound;
- (c) conjugating the natriuretic compound to yield natriuretic compound conjugate;
 - (d) oxidizing the cleaved natriuretic compound conjugate to form one or more disulfide bonds in the natriuretic compound conjugate.
- 125. The method of claim 124 wherein the natriuretic compound comprises Cys¹⁰ to Cys²⁶ of hBNP (SEQ ID NO. __) and step 122(c) yields a disulfide bond between the Cys¹⁰ and Cys²⁶.
 - 126. A method of making the natriuretic compound conjugate of claim 1, the method comprising:
 - (a) making a multi-peptide natriuretic compound comprising two or more natriuretic compound units;
- 25 (b) cleaving the natriuretic peptide multipeptide to yield natriuretic compound;
 - (c) oxidizing the cleaved natriuretic compound to form one or more disulfide bonds in the natriuretic compound; and

- (d) conjugating the natriuretic compound.
- 127. A modified pro-polynatriuretic peptide conjugate comprising:
 - (a) at least one natureteic peptide unit having a modifying moiety conjugation site and an NPR-A binding site;
- 5 (b) at least one modifying moeity attached to the modifying moiety conjugation site of at least one of the natriuretic peptide units;
 - (c) a leader sequence; and
 - (d) an enzymatically cleavable spacer coupling the leader sequence to a first natriuretic peptide conjugate.
- 10 128. A natriuretic peptide a nalog c omprising an a mino a cid s equence having a t least one modifying moiety conjugation site, an NPR-A binding region and at least one substituted Lys residue therein as compared to a native natriuretic peptide amino acid sequence, wherein said substituted Lys residue is not the amino acid modifying moiety conjugation site.
- 15 129. The natriuretic peptide analog of claim 128 wherein the one or more substituted Lys residues comprise a substitution selected from the group consisting of: Lys3Gly, Lys3Arg, Lys14Gly, Lys14Arg, Lys27Gly, or Lys27Arg.
 - 130. The natriuretic peptide analog of claim 128 comprising a structure:
- 20 SPKMVQGSGCFGRX¹MDRISSSSGLGCX²VLRRH (SEQ ID NO:)

wherein X^1 is Lys and X^2 is other than Lys, or X^1 is Lys and X^2 is other than Lys, or X^1 and X^2 are other than Lys.

- 131. The natriuretic peptide analog of claim 130 wherein X¹ is Lys and X² is Arg or Gly, or X¹ is Lys and X² is Arg or Gly, or X¹ and X² are independently selected and are Arg or Gly.
 - 132. A natriuretic peptide analog comprising a structure:

25

CFGRX¹MDRISSSSGX²GC (SEQ ID NO:)

wherein X^1 is an amino acid that does not comprise a conjugation site, and X^2 is an amino acid that comprises a modifying moiety conjugation site.

- 133. The natriuretic peptide analog of claim 132 wherein X^1 is Arg and X^2 is Lys.
- 134. A natriuretic peptide analog having a structure:

5 X¹-CFGRX³MDRISSSSGLGC-X² (SEQ ID No.)

wherein X^1 is an amino acid sequence having from 1 to 10 amino acids, X^2 is an amino acid sequence having from 1 to 10 amino acids, and X^3 is other than Lys.

- 135. The natriuretic peptide analog of claim 134 wherein X³ is Arg or Gly.
- 10 136. The natriuretic peptide analog of claim 134 wherein X¹ is SPY¹MVQGSG (SEQ ID NO:), wherein Y¹ comprises a modifying moiety conjugation site.
 - 137. The natriuretic peptide analog of claim 134 wherein X¹ is selected from the group consisting of:
- 15 (a) N-terminal tails and C-terminal segments of N-terminal tails of natriuretic peptides;
 - (b) N-terminal tails and C-terminal segments of (a) comprising a substitution selected from the group consisting of Lys-to-Gly and Lys-to-Arg;
- 20 (c) N-terminal tails and C-terminal segments of (a) comprising a substitution selected from the group consisting of Gly-to-Lys and Arg-to-Lys;
 - (d) N-terminal tails and C-terminal segments of (a) comprising an inserted Lys.
- 25 138. The natriuretic peptide analog of claim 134 wherein X^2 is Y^2VLRRH (SEQ. ID. NO:), wherein Y^2 is other than Lys.
 - 139. The natriuretic peptide analog of claim 138 wherein Y² is Arg.

10

20

- 140. The natriuretic peptide analog of claim 134 wherein X^2 is selected from the group consisting of:
 - (a) C-terminal tails and N-terminal segments of C-terminal tails of natriuretic peptides;
- 5 (b) C-terminal tails and N-terminal segments of C-terminal tails of 137(a) comprising a substitution selected from the group consisting of Lys-to-Gly and Lys-to-Arg;
 - (c) C-terminal tails and N-terminal segments of C-terminal tails of 137(a) comprising a substitution selected from the group consisting of Gly-to-Lys and Arg-to-Lys;
 - (d) C-terminal tails and N-terminal segments of C-terminal tails of 137(a) comprising an inserted Lys.
 - 141. A natriuretic peptide analog having a structure:

X1-CFGRX3MDRIGLGC-X2 (SEQ ID No.)

- wherein X^1 is a peptide of from 1 to 9 amino acids, X^2 is a peptide of from 1 to 6 amino acids, and X^3 is other than Lys.
 - 142. The natriuretic peptide analog of claim 140 wherein X³ is Arg or Gly.
 - 143. The natriuretic peptide analog of claim 142 wherein X¹ is SPY¹MVQGSG (SEQ ID NO:), wherein Y¹ comprises a modifying moiety conjugation site.
 - 144. The natriuretic peptide analog of claim 142 wherein X^2 is Y^2VLRRH (SEQ. ID. NO:), wherein Y^2 is other than Lys.
 - 145. The natriuretic peptide analog of claim 144 wherein Y² is Arg.
- The natriuretic peptide analog of claim 144 wherein X³ is Arg, X¹ is a sequence SPKMVQGSG (SEQ ID NO:) and X² is a sequence RVL.
 - 147. A natriuretic peptide analog having a structure X¹-CFGRX³MDRIX⁴GLGC-X² wherein
 - (a) X^{1} is an amino acid sequence of from 1 to 10 amino acids,

- X² is an amino acid sequence of from 1 to 10 amino acids, (b) X4 is an amino acid sequence of from 1 to 4 amino acids; and (c) X³ is other than Lys. (d) The natriuretic peptide analog of claim 147 wherein neither X¹ nor X² is a 148. 5 sequence native to a natriuretic peptide. 149. The natriuretic peptide of claim 147 where X³ is Arg or Gly. The natriuretic peptide of claim 147 where X¹ is SPY¹MVQGSG (SEQ ID 150. NO: _____) wherein Y¹ comprises a modifying moiety conjugation site. The natriuretic peptide analog of claim 147 wherein X² is Y²VLRRH (SEQ. 151. 10), wherein Y² is other than Lys. ID. NO: The natriuretic peptide analog of claim 151 wherein Y² is Arg. 152. An hBNP analog comprising a substitution of Lys14Arg or Lys14Gly. 153. An hBNP analog comprising a substitution of Lys27Arg or Lys27Gly. 154. An hBNP analog comprising a substitution of Lys3Arg or Lys3Gly. 155. 15 156. A natriuretic compound conjugate comprising: (a) a natriuretic compound comprising: (i) a natriuretic molecule NPR-A binding site; and at least one modifying moiety conjugation site; and (ii) at least one modifying moiety attached to said modifying moiety (b) 20 conjugation site: wherein said natriuretic compound retains a therapeutically significant percentage of cGMP stimulating activity relative to a corresponding unconjugated natriuretic compound. 157. A natriuretic compound conjugate comprising:
 - 109

a natriuretic compound comprising:

25

(a)

(i)

a natriuretic molecule NPR-A binding site; and at least one modifying moiety conjugation site; and (ii) at least one modifying moiety attached to said modifying moiety (b) conjugation site; wherein said natriuretic compound conjugate retains at least 50% of the 5 cGMP stimulating activity of a corresponding unconjugated natriuretic compound. 158. A natriuretic compound conjugate comprising: (a) a natriuretic compound comprising: 10 (i) a natriuretic molecule NPR-A binding site; and (ii) at least one modifying moiety conjugation site; and at least one modifying moiety attached to said modifying moiety (b) conjugation site; wherein said natriuretic compound conjugate is more hydrophilic than a 15 corresponding unconjugated natriuretic compound. 159. A natriuretic compound conjugate comprising: (a) a natriuretic compound comprising: (i) a natriuretic molecule NPR-A binding site; and at least one modifying moiety conjugation site; and (ii) 20 at least one modifying moiety attached to said modifying moiety (b) conjugation site; wherein said natriuretic compound conjugate is more amphiphilic than a corresponding unconjugated natriuretic compound. A natriuretic compound conjugate comprising: 160. 25 (a) a natriuretic compound comprising:

- (i) a natriuretic molecule NPR-A binding site; and
- (ii) at least one modifying moiety conjugation site; and
- (b) at least one modifying moiety attached to said modifying moiety conjugation site;
- wherein the natriuretic compound conjugate is more lipophilic than a corresponding unconjugated natriuretic compound, wherein at least one modifying moiety does not consist of an alkyl moiety.
 - 161. A compound having a formula:

$$C_m$$
-X-PAG_n PAG_n-X-C_m (Formula IV)

10 wherein

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

- each X is independently selected and is a linking moiety.
 - 162. A compound having a formula:

$$C_m$$
-X-PAG_n PAG_n-X-C_m O (Formula V)

wherein

20

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety.

163. A compound having a formula:

PAG is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

X is O or N; and

5

10

each o is independently selected and is from 1 to 15.

164. A compound having a formula:

PAG is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

X is O or N; and

each o is independently selected and is from 1 to 15.

165. A compound having a formula:

$$C_m$$
-X-PAG_n PAG_n-X- C_m (Formula VIII)

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety.

o is from 1 to 15.

5

166. A compound having a formula:

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyal kylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety;

o is from 1 to 15.

167. A method of making a compound of the formula:

wherein

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety;

the method comprising:

5

10

15

(a) reacting a compound of formula:

with a compound of formula:

$$X^2$$

where X^2 is a halide, and wherein the reaction is carried out in the presence of a base and a solvent to yield:

$$C_m$$
-X-PAG_n-O ; and

(b) reacting the product of (a) with a compound of formula:

in the presense of a Lewis acid and a solvent to yield:

- 168. The method of claim 167 wherein the base is NaH and the solvent is tetrahydrofuran.
- 169. The method of claim 167 wherein the Lewis acid is BF₃OEt₂.
- 170. A method of making a compound of the formula:

$$C_m$$
-X-PAG_n PAG_n-X-C_m (Formula V)

wherein

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety;

the method comprising reacting the product of claim 0 with paranitrochloroformate or disuccimidyl carbonate.

171. A method of making a compound of the formula:

15

5

10

wherein

PAG is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

X is O or N; and

each o is independently selected and is from 1 to 15;

the method comprising:

reacting a compound of formula:

wherein o is as defined above, with a compound of formula:

where X is -NH or -OH;

in solvent, to yield a compound of formula:

10 172. A method of making a compound of the formula:

wherein

PAG is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

15

X is O or N; and

each o is independently selected and is from 1 to 15;

the method comprising activating a product of claim 170 using an activating agent selected from the group consisting of disuccinimidyl carbonate, paranitrochloroformate, phosgene and N-hydroxysuccinimide.

173. A method of making a compound of the formula:

$$C_m$$
-X-PAG_n PAG_n-X-C_m (Formula VIII)

wherein

5

10

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety.

o is from 1 to 15;

the method comprising:

reacting the product of claim 0 with a compound of formula:

$$H_2N$$
 OH

in the presence of a base in a solvent.

174. The method of claim 173 wherein the base is K_2CO_3 and the solvent is an aqueous and/or organic solvent.

175. A method of making a compound of the formula:

wherein

5

10

20

each C is independently selected and is an alkyl moiety having m carbons and m is from 1 to 20; and

each PAG is independently selected and is a polyalkylene glycol moiety having n subunits and n is from 2 to 25;

each X is independently selected and is a linking moiety;

o is from 1 to 15;

the method comprising reacting a compound produced according to the method of claim 1 with N-hydroxysuccinimide.

176. A natriuretic peptide analog comprising a structure:

SPX¹MMHX²SGCFGRRLDRIGSLSGLGCNVLRX³Y

wherein X¹ is Lys, Arg or His, X² is Lys, Arg, His, and X³ is Arg or His.

- 15 177. The natriuretic peptide analog of claim 176 comprising a modifying moiety conjugated at the S residue.
 - 178. A natriuretic peptide analog comprising a structure:

SPZ¹MVQGSG-CFGRZ²MDRISSSSX¹X²X³C

wherein Z^1 is Arg or an amino acid other than Lys, and wherein Z^2 is Arg or an amino acid other than Lys, wherein X^1 is Gly, Met, Leu, Phe, Ile or a conservative substitution thereof, wherein X^2 is Leu, Trp, Tyr, Phe or a

conservative substitution thereof, and wherein X^3 is Gly and Arg, or a conservative substitution thereof.

- 179. The natriuretic peptide analog of claim 178 where Z^1 is Lys and Z^2 is other than Lys.
- 5 180. A natriuretic peptide analog comprising a structure:

K CFKGKNDRX¹ KX² QSGLX³ C-NSFKY

wherein X¹ is T, a, R, H, P, T, E;

wherein X² is K, N-methyl, Arg, S, D,P;

wherein X³ is Arg, K, Y, F, S, P, Orn, Har, Har, p-amidinophenyl Ala, I, any other amino acid that has a positive charge other than Gly, or Try.

181. The natriuretic peptide of claim 178 or 180 further defined as comprising a natriuretic peptide conjugate, comprising a modifying moiety conjugated to one or more of the Lys residues therein.