소프트웨어사용가이드

Neuro-R 기본 개념 및 활용 방법 설명

NEUROCLE

Deep Learning Vision Software

딥러닝 모델 학습용 소프트웨어

NEURO-T

GUI 기반의 No-Code 소프트웨어

- 누구나 고성능의 딥러닝 모델을 손쉽게 생성할 수 있는
 오토 딥러닝 알고리즘 제공
- 이미지 편집부터 모델 학습까지 모든 것이 가능한올인원 플랫폼

런타임 라이브러리

NEURO-R

Neuro-T에서 생성한 모델을 활용하기 위해 필요한 런타임 API

- 폭넓은 프로그래밍 언어 지원 (C++, C#, Python)
- 임베디드 장비부터 PC까지 다양한 환경을 지원
- 목표 검사 속도 달성이 가능한 빠른 검사 속도

비전검사 워크플로우

목차

- 1. 개념 설명
- 2. 적용 및 활용
- 3. 샘플 코드 분석

01. 개념 설명

Neuro-R 변경사항

Neuro-R 워크플로우

개요

Input

데이터 추가 방법에 따른 API 사용법

*NDBuffer란?

OpenCV의 Mat, 혹은 NumPy의 ndarray와 같이 데이터의 모양 및 유형을 포함하고 있는 이미지 매트릭스 제어 클래스입니다.

Processing

Predictor 입력 매개변수

- 1. 모델 경로
- 2. 모델 I/O Flag
- MODELIO_DEFAULT
- MODELIO_OUT_PRED
- MODELIO_OUT_PROB
- MODELIO_OUT_CAM

+

Result

추론 결과를 리스트 형태로 출력합니다.

개요

Outputs

Classification과 Anomaly Classification의 결과입니다.

Class & Probability(Anomaly Score)

Image				
Class (Prediction)	0 (Good)	0 (Good)	1 (Bad)	
Probability (Anomlay Score)	0.9887	0.8830	0.0001	
	0.0012	0.1170	0.9999	

CAM

Outputs

Segmentation과 Anomaly Segmentation의 결과입니다.

모델 추론 단위 및 출력 방식

픽셀 단위로 Class 출력 후 같은 클래스를 Blob으로 그룹화

0	0	0	0	1	1	1	1
0	0	0	0	0	1	1	1
0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	2	0	0	0	0	0	0
2	2	0	0	0	0	0	0
2	2	0	0	0	0	0	0

☐ Background

Dog

Blob 정보 출력

샘플 코드 분석

Blob의 Contour, Class, 좌표, 면적, Probability 등 출력 가능

Class: Cat, x: 80, y: 240, Area: 7590

모델 추론 단위 및 출력 방식

Bounding Box에 담긴 정보 값들

BCYXHW

B: Batch_idx

Y, X: Center Y, X

C : Class

H, W: Height, Width

В	С	Υ	Х	Н	W
	•••	••	•••	•••	•••

Bbox 출력

Outputs

Rotation의 결과입니다.

Rotation 전

모델 예측 결과 89도 회전 적용

02. 적용 및 활용

Neuro-R 활용 예시

NEUROCLE 개요 개념 설명 적용 방법 샘플 코드 분석

Flowchart

- Inference Center에서 Flowchart 생성
- Predictor 클래스 대신 Flowchart 클래스 사용

Threshold

- Threshold_flag = true 적용 시 자동 적용
- Unknown 방식과 차선 클래스 출력 방식 → Neuro-T 에서 생성
- Neuro-R 4.0에서 Threshold를 직접 만들 경우 → 출력부에서 조건문 작성

Probability Threshold

```
float prob = res.probs.get(i, cla.idx);
float threshold = 0.8;

if (prob >= threshold)
{
// 코드작성
}
```

Size Threshold

```
nrt::Blob blob = res.blobs.get(i);

if (blob.rect.width >= 100 && blob.rect.width >= 100)
{
// 코드 작성
}
```

ROI/ Mask

- ROI/ Mask는 Flag 없이 자동 적용
- ROI는 원본 이미지 크기에 대한 ROI 좌표 정보가 저장되기 때문에, 추론 시에도 이미지 크기와 객체 위치를 고려해야 함.

MASK

NEUROCLE 개요 개념 설명 작용 방법 샘플 코드 분석

Patch Mode (for Segmentation)

- 다른 모델 유형과 다르게, Segmentation 모델은 이미지를 분할하여 학습에 사용
- Patch Mode에서 Predictor가 이미지 한 장을 한 번에 인퍼런스 하기 위해서는 패치로 분할된 이미지 수를 한 번에 추론해야 함.

EX) 1024X1024 이미지를 512X512 크기의 패치로 자를 경우 9장의 패치가 생성되며 이 9장을 한 번에 추론한다.

01. 이미지 분할 크기 선택

02. 분할된 이미지 Inference

03. 샘플 코드 분석

NEUROCLE 개요 개념 설명 작용 방법 샘플 코드 분석

1. 경로 설정(사용자 환경에 따라 변경 필요)

Predictor_path의 경우 파일 생성 위치로 작성해주시면 됩니다.

2. Predictor 생성 및 불러오기

```
device idx = 0
 If you have used the Predictor in the same Device and Model environment and saved the Predictor as a file(.nrpd)
  you can reduce the optimization time by loading that file for use.
  device_idx >= 0 and os.path.isfile(predictor_path):
   print("Load the Predictor using the previously optimized Predictor file.")
   predictor = nrt.Predictor(device idx, predictor path)
   print(
        "Optimizing the Predictor for the Model and Device... It may take a few minutes."
   # If you want more diverse options, you can use it as shown in the comment below.
   predictor = nrt.Predictor(
       model path,
       nrt.Model.MODELIO_OUT_CAM,
       device idx.
       batch size,
       fp16_flag,
       threshold_flag,
   # Save the predictor information optimized for this device,
   if device idx >= 0:
        print("Save the information of the optimized Prediuctor to a file(.nrpd)")
       status = predictor.save_predictor(predictor_path)
       if status != nrt.STATUS SUCCESS:
                "Prediuctor initialization failed. : " + nrt.get_last_error_msg()
  predictor.get_status() != nrt.STATUS_SUCCESS:
   raise Exception(
        "Predictor initialization failed. : " + nrt.get_last_error_msg()
print("Predictor initialization complete...\n")
```

NEUROCLE 개요 개념 설명 작용 방법 샘플 코드 분석

3. 이미지를 모델 내 Input 및 추론 시작

```
inputs = nrt.Input()
img files = glob.glob(f"{image_dir}/*.jpg")
img files.extend(glob.glob(f"{image dir}/*.png"))
batch size = predictor.get batch size()
cur batch = 0
is last = False
for i, img in enumerate(img files):
    is last = i == (len(img files) - 1)
    status = inputs.extend(img) → 0|□|X|Input
    inf files.append(img)
    if status != nrt.STATUS SUCCESS:
        raise Exception("Extend the input failed. : " + nrt.get last error msg())
    cur batch += 1
    if (cur_batch == batch_size) or is_last:
        print("Acquired input for the batch size. Now starting the prediction.")
        start = time.time()
        results = predictor.predict(inputs) → 모델 추론 및 결과 데이터를 results 변수에 저장
        end = time.time()
        if results.get status() != nrt.STATUS SUCCESS:
           raise Exception("Predict failed. : " + nrt.get last error msg())
        print(
            f"duration per batch ({cur batch} images) : {round((end - start) * 1000, 2)} ms"
        print_cla_output(results, predictor) → 결과 데이터 시각화 함수
        inputs.clear()
        inf_files.clear()
        cur_batch = 0
```

4. 결과 출력 함수

```
def print cla output(results: nrt.Result, predictor: nrt.Predictor):
   print(results.classes)
   for i in range(results.classes.get count()):
       cla = results.classes.get(i)
       prob = results.probs.get(i, cla.idx) → 확률값(Probability)
       print(f"File name : {inf_files[i]} ", end="")
       print(f"- Class : {predictor.get class name(cla.idx)}, Prob : {prob}")
                          → 클래스 이름(class_name)
       if not results.cams.empty():
           originImg = cv2.imread(inf files[i])
           cam = results.cams.get(i)
           mat cam = cam.cam to numpy()
           mat cam = mat cam.reshape([cam.get height(), cam.get width(), 3])
           mat cam = cv2.applyColorMap(mat cam, cv2.COLORMAP JET)
           cv2.addWeighted(originImg, 0.4, mat cam, 0.6, 0, mat cam)
           cv2.waitKey(0)
           cv2.destroyAllWindows()
```


Q&A

감사합니다.