ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Επεισόδιο 28

Διάλεξη: 16 Δεκεμβρίου 2020

Προηγούμενα επεισόδια: Προβλήματα Sturm-Liouville $a \le x \le b$ $\Delta E: F(x)y'' + F'(x)y' + q(x)y + \sum p(x)y = 0$ Συνθήμες: Kiy(a) + K2 y'(a) = 0 l, y(b) + l2 y'(b) = 1 Mn μnθ ενιμές λύσεις μόνο για λ=λη: yn (x)
1810 τιμές ιδιοσυνα ρτήσευ - Opgorniotata i Sioouraptrioeur: Sp. (x) y, (x) y, (x)=0 nxm Σταθ. συντελεστές, Legendre, Bessel, κ)n -> S-L Δ Es 0. Lioses tous (sin/cos, Pn(x1, Jn(x), xln) kala ou ori mata ou vre tarhévuv.

Tapa Seigha:
$$y''$$
- $Ky=0$ $y(0)=0$ $y(1)=0$ $\rightarrow \lambda=\pm\sqrt{k}$

Fia $K>0 \rightarrow \varepsilon u^2$ $\in Tiud$

Fia $K=0 \rightarrow \varepsilon u^2$ $\in Tiud$

Let $\mu \cap opour$ va $n \in pal = out$ $\in Sio ope = out of a$

Let $\mu \cap opour$ va $n \in pal = out of a$

Fia $K=-q^2 \neq 0$ $\in X = out \in Sio ope = out of a$

($\lambda=b+i\omega \rightarrow y(x)=A e^{bx}(os(\omega x)+Be^{bx}sio(\omega x))$
 $y(x)=A cos(qx)+Bsin(qx)$
 $y(0)=0 \Rightarrow A=0 \rightarrow y(x)=Bsin(qx)$
 $y(1)=0=0$ $\Rightarrow Bsin(q)=0 \Rightarrow 0=0$ $\Rightarrow 0=0$

Sin(q)=0 $\Rightarrow 0=0$ $\Rightarrow 0=0$
 $y(1)=0=0$ $\Rightarrow 0=0$ $\Rightarrow 0=0$
 $y(1)=0=0$ $\Rightarrow 0=0$ $\Rightarrow 0$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1$

Opgopuniotu Ta: $\int_{0}^{L} \sin(n\pi x) \sin(n\pi x) dx = 0$ $\forall n \neq m$ $\exists \sin(132\pi x) \sin(754\pi x) dx = \emptyset$

$$\left[a(x)y'' + b(x)y' + \left[c(x) + \frac{\lambda}{2} d(x) \right] y = 0 \right]$$

Γενιμά
$$b(x) = \alpha'(x)$$
. Σχεδόν πάντα μπορούμε να των μετατρ έψουμε σε $S-L$. Πολ/σμός επι μ(x). $\alpha(x)\mu(x)y''+b(x)\mu(x)y'+[\mu(x)c(x)+\lambda\mu(x)dx]y=0$

Λύση:
$$\mu(x) = Q \frac{1}{q(x)} \exp \left[S \frac{b(x)}{q(x)} dx \right]$$
 Bajouhe $Q = 1$

METATPONIA
$$\alpha(x)y'' + b(x)y' + [c(x) + \lambda d(x)]y = 0$$
 or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y' = 0$ or popoid S-L

 $\Gamma(x) + \lambda d(x)y'$

Παράδειγμα: Μετατροπή τως ΔΕ του Hermite $y'-2xy'+\lambda y=0$ σε μορφή S-L (Κβαντ. Πολυώνημα του Hermite $\rightarrow \Sigma$ ερές \rightarrow Heo, He., -) $\alpha(x)=1 \ b(x)=-2x \qquad \mu(x)=\frac{1}{2}\exp\left[\int_{0}^{\pi}(-2x)dx\right]=e^{-2\frac{\pi^{2}}{2}}=e^{-x^{2}}$

 $e^{-x}y''-2xe\ddot{y}+e^{-x}\lambda y=0$ Moponi.

Eρώτηση: Γιατί; Ορθοχωνιότιτα ρ(x)=e-x

8.2 Dia stripata pa tur oplogwood to ta Feriva ta aib 520 Jb ... dx tus oplogwood to tass èpxortai ano tis ourlines

E = AIPE ΣΗ: O Tav To F (x) μη δενίζε το δύο φορες Snhash + $(a^*)=0$ nou + $(b^*)=0$ Tote ser bXpea jorzar or saunture nou to bioistry parta Rapa δειχμα 1: ΔE Lependre (1-x)y"-2xy tr(vtl)y=0 $f(x)=1-x^{2}$ $\int_{-1}^{1/2} P_{11}(x) P_{11}(x) = 0$ uar to f(-1)=0 a'pa $\int_{-1}^{1} P_{11}(x) P_{11}(x) dx = 0$ $4 \neq 10$

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ – ΤΕΣΤ 7 16 Δεκεμβρίου 2020

ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

(α) (10 μονάδες) Να βρεθούν οι ιδιοτιμές και οι ιδιοσυναρτήσεις του προβλήματος:

$$\frac{d^2y}{dx^2} + ky = 0 \text{ gia } 0 \le x \le L$$
 $\mu \epsilon y'(0) = 0 \text{ kai } y(L) = 0.$

(β) (5 μονάδες) Βρείτε την σχέση ορθογωνιότητας για τις ιδιοσυναρτήσεις του προβλήματος.