杭州电子科技大学学生考试卷(A)卷

考试课程	计算机组成原理 (甲)		考试日期	式日期 2016年6月25日			
课程号	A0507030 教师号			任课者	炒师姓名		
考生姓名		学号 (8 位)		年级		专业	

题号	_	=	Ξ	四	五	附加题	总分
分数	24	5	15	26	30	12	112
得分							

所有试题均做在答题纸上, 否则不计分!

答题纸

一、单项选择题(共24分,每小题1.5分)

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16

二、判断题(5分,每空1分,对的打√,错的打×)

17	18	19	20	21

三、简答题(15分,每题5分)

22、

23、

24、

四、 计算题(26 分)

25、(8分)

(3分)		
(3分)		
4 分)		
	31、 or 32、(18 分+12 分,请注明选作哪一题)	
(a (\)		
(8分)		
、综合设计题(30 分)		
	表 3 指令格式与控制信号表(选作 32 题时填写)	
综合设计题(30 分)	表 3 指令格式与控制信号表(选作 32 题时填写) 指令 w_r_s imm_s rt_imm_s wr_data_s ALU_OP Write_Reg Mem_Write	PC_s 指令
综合设计题(30 分)		PC_s 指名格式
综合设计题(30 分)	指令 w_r_s imm_s rt_imm_s wr_data_s ALU_OP Write_Reg Mem_Write	PC_s 指 ² 格j
综合设计题(30 分)	指令 w_r_s imm_s rt_imm_s wr_data_s ALU_OP Write_Reg Mem_Write nor sllv andi	PC_s 指名格式
综合设计题(30 分)	指令 w_r_s imm_s rt_imm_s wr_data_s ALU_OP Write_Reg Mem_Write nor sllv andi beq	PC_s 指名格式
综合设计题(30 分)	指令 w_r_s imm_s rt_imm_s wr_data_s ALU_OP Write_Reg Mem_Write nor sllv andi	PC_s 指名格式

座位号:

试题	11、若存储周期 100ns,每次读出一个字节,则该存储器的数据传输率为()。
一、选择题(24 分,每空 1. 5 分)	A. 32×10 ⁶ 位/秒 B. 8×10 ⁶ 位/秒 C. 80MB/秒 D.80×10 ⁶ 位/秒
、 超升感(27 分, 革土 1. 0 分)	12、多体交叉技术的目的是()
1、计算机系统的层次结构从内到外依次为 ()。	A. 增加主存容量 B. 增加数据线宽度
A. 系统软件、应用软件、硬件系统 B. 系统软件、硬件系统、应用软件	C. 降低控制的复杂度 D. 提高数据带宽
C. 硬件系统、系统软件、应用软件 D. 硬件系统、应用软件、系统软件	13、选择 Cache 替换算法的主要依据是()
2、要最大限度地提高计机的并行处理速度,应采用()结构。	A. 采用何种地址映象方式 B. 采用何种写入方法
A. SISD B. SIMD C. MISD D. MIMD	C. Cache 使用的器件 D. Cache 的访问命中率
3、机器字长指的是()。	14、乘法器的硬件结构通常采用()。
A. CPU 地址线的位数 B. CPU 数据线的位数	A. 并行加法器和串行右移 B. 并行加法器和串行左移
C. CPU 一次能处理数据的位数 D. CPU 一次能输出地址的位数	C. 串行加法器和串行右移 D. 串行加法器和串行移位器
4、当浮点机器数运算结果出现()时,则认为是机器零。	15、在定点数运算中产生溢出的原因是()。
A. 阶码正溢出 B. 阶码负溢出 C. 尾数正溢出 D. 尾数负溢出	A. 运算过程中最高位产生了进位或借位
5、在 CPU 中,用于记录存放运算结果的状态部件是 ()。	B. 参加运算的操作数超出了机器的表示范围
A. PSW B. AR C. IR D. DR	C. 运算的结果的操作数超出了机器的表示范围
6、若某数的真值是-0.0110,在计算机中该数表示为1.1010,则该数所用的编码方法为()。	D. 寄存器的位数太少,不得不舍弃最低有效位
A. 原码 B. 反码 C. 补码 D. 移码	16、一个指令周期通常由()组成。
7、冯•诺依曼计算机中指令和数据均以二进制形式存放在同一个存储器中,CPU 区分它们的依据是	A. 若干个机器周期 B. 若干个时钟周期
()	C. 若干个工作脉冲 D. 若干个节拍
A. 指令操作码的译码结果 B. 指令和数据的寻址方式	
C. 指令周期的不同阶段 D. 指令和数据所在的存储单元	二、判断题(5 分,每空 1 分,对的打√,错的打×)
8、下列寄存器中,程序员可见的是()。	17、计算机的算术/逻辑单元、控制单元及主存储器统称为主机。 ()
A. 存储器地址寄存器(MAR) B. 存储器数据寄存器(MDR)	18、设置 Cache 后增加了主存的容量,提高了管理难度。 ()
C. 指令寄存器(IR) D. 通用寄存器	19、若浮点数数的尾数用补码表示,则规格化浮点数的尾数必须是 1.1××或 0.0××的形式 ()
9、CPU 从主存取指令时,()。	20、程序是指令的有序集合,而指令是微程序的有序集合。 ()
A. 总是根据程序计数器 PC 得到主存地址。	21、量子计算机采用的是冯•诺依曼计算机系结构。 ()
B. 有时根据 PC 得到主存地址,有时根据转移指令得到主存地址。	
C. 总是根据指令寄存器得到主存地址。	三、简答题(15 分,每题 5 分)
D. 有时根据 PC 得到主存地址,有时根据指令寄存器得到主存地址。	22、Intel 的微处理器占据了 PC 市场的 80%份额,有人说 RISC 不敌 CISC,谈谈你的看法。
10、静态半导体存储器 SRAM 指()。	23、按照存储介质、存取方式、信息的可保存性及其在计算机中系统中的作用进行分类,内存和硬盘分
A. 在工作过程中,存储内容保持不变 B. 在断电后信息仍能维持不变	别归入哪类?
C. 不需动态刷新 D. 芯片内部有自动刷新逻辑	24、微程序控制器和硬布线控制器是如何划分的?说说它们各自的优点。

四、计算题(26分)

25、(8分)设浮点数的格式为:阶码5位,尾数6位,阶码在前,尾数(含符号)在后,均用补码表示。 计算X+Y(阶码和尾数均用补码计算)

$$X = -1.125$$
, $Y = 4.75$

- 26、(3分)某计算机主频为50MHz,执行一条指令平均需要访问内存2次,指令周期平均含3个机器周期,每个机器周期包含2个节拍周期。若每次访问内存需要插入1个等待节拍周期,则计算机的执行速度为多少MIPS?
- 27、(3分) 假设存储系统包括 Cache 和主存两级, Cache 的访问时间是 10ns, 主存的访问时间是 100ns, Cache 的命中率是 90%, 计算存储系统的平均访问时间和访问效率。
- 28、(4分) 对于具有组相联映射 Cache 的主存系统中,主存地址一般被划分为什么哪几个字段?假设主存 8GB,按字节编址; Cache 是 16KB,4 路组相联;字块大小 16B,请写出主存地址各字段的位数。
- 29、(8分)设某8位计算机指令格式如下:

Opcode (4位)	M (2位)	Rd (2位)			
A (8位)					

其中,各部分的含义如下:

Opcode=	源操作数的寻址方式 M =	Rd=
0000——ADD	00——直接寻址	00R0
0001——MOV	01——立即数寻址	01——R1
0010——JMP	10——变址寻址(变址寄存器为 R3)	10——R2
	11——相对寻址	11——R3
1111——HALT		

主存部分单元的内容如下表。假设当前(PC)=00H;变址寄存器(R3)=10H;这时CPU启动程序运行,写出CPU所执行前两条指令的功能、寻址方式与执行结果。

地址:	内容	地址:	内容	地址:	内容
00H:	11H	04H:	F0H	30H:	F0H
01H:	06H	05H:	00H	31H:	00H
02H:	05H	06H:	11H	32H:	30H
03H:	07H	07H:	33H	33H:	35H

五、综合题(30分+12分)

30、(12 分)设 CPU 有 16 根地址线,8 根数据线,并用 MREQ#作访存控制信号(低电平有效),R/W#用作读/写控制信号(高电平为读,低电平为写)。现有下列存储芯片:1K×4 位 RAM;4K×8 位 RAM;8K×8 位 RAM;2K×8 位 ROM;4K×8 位 ROM;8K×8 位 ROM 及 74LS138 译码器和各种门电路,3-8 译码器如图 1 所示。要求主存地址空间分配:

6000H~67FFH 为系统程序区; 6800H~6BFFH 为用户程序区。

- (1) 合理选用上述存储芯片,说明各选几片? (2分)
- (2) 画出 CPU 与存储器的连接图,包括芯片的地址译码电路(10分)

图 1 3-8 译码器结构图

以下 31、32 两题 2 选 1:

31、(18分+12分)某8位模型机采用微程序控制器,结构如图2所示。

其中 MEM 为主存,R0~R3 是通用寄存器。各部件的控制信号均已标出,控制信号的命名准则是: '→'符号前的是数据发送方部件,'→'符号后的是数据接收方部件,并且控制信号中的 B 表示总线; J1 控制指令译码,其他读写信号具有普通意义。例如:B→DA1 表示总线上的数据送入 DA1 暂存器; 表示 ALU 运算的结果送到总线上(低电平有效)。RD 表示目的寄存器,RS 表示源寄存器,S3~S0、M、Ci 用于选择控制 ALU 和移位器的功能。

- (1) 图 2 中共有 25 个微操作控制信号,其中 J1~J3 三个信号是用于微指令转移的判别测试条件。如果微指令中,控制字段采用直接控制法,判别测试字段采用译码法编码,下址字段 7 位,则微指令字长多少位?该模型机的控存容量是多少? (3分)
- (2) 写出 MEM→IR 微指令必须发送的微操作控制信号。(3分)
- (3)模型机的某条指令的微程序流程图如图 3 所示,请问该指令有几个字节?每个字节的含义是什么?写出该条指令的功能和操作数的寻址方式。(5 分)
- (4) 根据图 2 所示的数据通路,写出 ADD RD, [ADDR]指令的微程序流程图。该指令功能为(RD) + (ADDR)→RD, 即寄存器 RD 的内容与内存单元 ADDR 的内容相加,结果送回 RD 寄存器, ADDR 位于指令第二字。(7 分)
- (5)(附加题)按照上题微指令格式,设计具体的微指令编码方案。(3分)
- (6)(附加题)按照你所设计的微指令格式及编码方案,写出图3所示的各条微指令的编码。(9分)

图 3 微程序流程图

32、(18 分+12 分) 一个 MIPS32 架构的 CPU 如图 4 所示,其三种指令格式如表 1 所示, ALU 的操作码 ALU OP 及 func 编码如表 2 所示,其核心指令含 7 条,如下:

nor rd,rs,rt ; 位或非: ~(rs||rt)→rd

sllv rd,rs,rt ; 逻辑左移: (rt << rs)→rd

andi rt,rs,imm ; 位与: (rs)&imm→rt

beq rs, rt, label ; 相等转移: if (rs=rt) then PC+4+offset×4→PC

lw rt, offset(rs) ; 取数: mem(rs +offset)→rt sw rt, offset(rs) ; 存数: rt →mem(rs +offset)

j addr ; 无条件跳转: {(PC+4)高 4 位,addr,0,0}→PC

图 4 MIPS CPU 的结构图

表 1 MIPS 指令格式

R =	淽	字段	OP	rs	rt	rd	shamt	func	
指令		位数	6	5	5	5	5	6	
I型	广兰	字段	OP	rs	rt	offset			
指令	\$	位数	6	5	5	16			
J型	덴	字段	OP	address					
指令	\$	位数	6	26					

请回答问题:

- (1) 该 MIPS CPU 是单周期还是多周期 CPU? 为什么? (2分)
- (2) 为何要使用两个存储器?说出这种结构的名称。(2分)
- (3) 写出核心指令集各条指令的格式类型填入表 3; (3分)
- (4) 选择下面任意 2条指令,写出其 16进制编码;(4分)

① nor \$7,\$8,\$9 ; OP=000000, func=100111

2 andi \$7,\$8,0x000f
 3 lw \$7, 0x1000(\$8)
 4 j 0x556677
 5 OP=000110
 6 OP=000010

(5) 选择任意两条指令,将其数据通路对应的控制信号之值填入表 3; (4分)

- (6) 选择任意一条指令,描述其指令执行过程;(3分)
- (7) (附加题)考虑新增如下一条指令,请分析:是否能实现?如果不能,则需要添加什么部件或者功能才能实现?(+4分)

sltu rd,rs,rt ; 无符号数小于则置位: if (rs < rt) then rd=1 else rd=0

(8) (附加题)考虑新增如下一条指令,请分析:是否能实现?如果不能,则需要添加什么部件或者功能才能实现?(+8分)

sll rd,rt,shamt ; 逻辑左移: (rt <<shamt)→rd, shamt 为 R 指令字段

表 2 ALU_OP 编码及 func 编码

ALU_OP	操作
000	算术加
001	算术减
010	位与
011	位或非
100	逻辑左移

表 3 指令格式与控制信号表

指令	w_r_s	imm_s	rt_imm_s	wr_data_s	ALU_OP	Write_Reg	Mem_Write	PC_s	指令 格式
nor									
sllv									
andi									
beq									
lw									
sw									
j									