

Backward

$$d(x^{f}|x^{f\cdot 1}) = N(h^{1} \Sigma)$$

$$\max_{\theta} - KL(q(x_1,...,x_{r-1},x_{o}) || P(x_0,x_1,...,x_{r-1}))$$

man -
$$\mathbb{E}\left[\log P(x_T) + \sum_{t\geq 1} \log \frac{q(x_t|x_{t-1})}{P_{\theta}(x_{t-1}|x_{t})}\right]$$

min
$$\sum_{t=1}^{T} E[\|\mu_{\theta}(x_{t}) - \tilde{\mu}\|_{2}^{2}]$$

$$\lim_{\theta \to \pm 1} \mathbb{E} \left[\| \mu_{\theta}(x_{t}) - \widehat{\mu} \|_{2}^{2} \right]$$

min
$$\sum_{t=1}^{T} \mathcal{E}\left[\|\mathcal{E}_{\theta}^{t}(\mathbf{x}_{t}) - \mathcal{E}_{t}\|_{2}^{2}\right]$$

$$\chi_{a}$$

· < < < !

$$\gamma_{12} \sqrt{\alpha_{1}} \chi_{0} + \sqrt{1-\alpha_{1}} \in \mathbb{R}$$

$$\chi_{2} = \sqrt{\alpha_{2}} \chi_{1} + \sqrt{1-\alpha_{2}} \in \mathbb{R}$$

$$\xi_{1} \sim \mathcal{N}(0, \mathbb{L})$$

$$Var(X+Y) = Var(X) + Var(Y)$$

$$Var(X_i) = \alpha_i Var(X_i) + (1-\alpha_i) = 1$$

$$\chi_{1} = \sqrt{\alpha_{1}} \chi_{0} + \sqrt{1-\alpha_{1}} \xi_{1}$$

$$\chi_{2} = \sqrt{\alpha_{2}} \chi_{1} + \sqrt{1-\alpha_{2}} \xi_{2} = \sqrt{\alpha_{2}} (\sqrt{\alpha_{1}} \chi_{0} + \sqrt{1-\alpha_{1}} \xi_{1}) + \sqrt{1-\alpha_{2}} \xi_{2}$$

$$= \sqrt{\alpha_{1}\alpha_{2}} \chi_{0} + \sqrt{\alpha_{2}} (1-\alpha_{1}) \xi_{1} + \sqrt{1-\alpha_{2}} \xi_{2}$$

$$= \sqrt{\alpha_1 \alpha_2} \times_0 + \sqrt{1-\alpha_1 \alpha_2} \mathcal{E}$$

$$\alpha_{2}(1-\alpha_{1}) + 1-\alpha_{2} = 1 - \alpha_{1} \alpha_{2}$$

$$\mathcal{X}_{\xi} = \sqrt{\bar{\alpha}_{\xi}} \chi_{s} + \sqrt{1-\bar{\alpha}_{\xi}} (\varepsilon) \longrightarrow \chi_{T} = \varepsilon$$

$$\bar{\alpha}_t \rightarrow 0$$

α = α, α 2 ··· α €

$$\chi_t = \sqrt{\bar{\alpha}_t} \chi_0 + \sqrt{1-\bar{\alpha}_t} \epsilon$$

$$\frac{1}{1-\overline{\alpha}_{k}} \in \emptyset$$

$$\chi_{t} = \sqrt{\alpha_{t-1}} \chi_{t-1} + \sqrt{1-\alpha_{t-1}} \in$$

DDIM: Densising Diffusion Implicit Model 50k 32x32 GAN Invinute DDPM 20 hours

 N_0 N_{T-2} N_{T-1} N_T

X10 Spred up

 $\sum_{t=1}^{T} KL(9(n_{t-1}|n_{s},n_{t})|P_{\theta}(n_{t-1}|n_{t}))$ $N(\tilde{\mu}, \tilde{\Sigma})$

DDPM:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I}), \tag{6}$$

where
$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}\mathbf{x}_t$$
 and $\tilde{\beta}_t \coloneqq \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t$ (7)

$$\boldsymbol{x}_t = \sqrt{\alpha_t} \boldsymbol{x}_0 + \sqrt{1 - \alpha_t} \epsilon$$
, where $\epsilon \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$.

prediction of x_0 given x_t :

$$\mathbf{X}_{\mathbf{o}} = f_{\theta}^{(t)}(\mathbf{x}_t) := (\mathbf{x}_t - \sqrt{1 - \overline{\alpha}_t} \cdot \underline{\epsilon_{\theta}^{(t)}(\mathbf{x}_t)}) / \sqrt{\overline{\alpha}_t}$$

We can then define the generative process with a fixed prior $p_{\theta}(x_T) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ and

$$p_{\theta}^{(t)}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = \begin{cases} \mathcal{N}(f_{\theta}^{(1)}(\boldsymbol{x}_1), \sigma_1^2 \boldsymbol{I}) & \text{if } t = 1\\ q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, f_{\theta}^{(t)}(\boldsymbol{x}_t)) & \text{otherwise,} \end{cases}$$

DD PM:

mage Cobrization

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \underbrace{\left(\frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{(t)}(\boldsymbol{x}_t)}{\sqrt{\alpha_t}} \right)}_{\text{"predicted } \boldsymbol{x}_0"} + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{(t)}(\boldsymbol{x}_t)}_{\text{"direction pointing to } \boldsymbol{x}_t"} + \underbrace{\sigma_t \boldsymbol{\epsilon}_t}_{\text{random noise}}$$

Sigma modulates the stochasticity of the process:

If
$$\sigma_t = \sqrt{(1-\alpha_{t-1})/(1-\alpha_t)}\sqrt{1-\alpha_t/\alpha_{t-1}}$$
 Definition of the original DDPM

If
$$\sigma_t = 0$$

The forward process becomes deterministic

No

Table 1: CIFAR10 and CelebA image generation measured in FID. $\eta = 1.0$ and $\hat{\sigma}$ are cases of DDPM (although Ho et al. (2020) only considered T=1000 steps, and S < T can be seen as simulating DDPMs trained with S steps), and $\eta = 0.0$ indicates DDIM.

		CIFA	AR10 (32×32)			$CelebA (64 \times 64)$						
S	10	20	50	100	(1000)	10	20	50	100	1000	. 10	. 1
(0.0)	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51		< \
0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64	· ()	
$^{\eta}$) 0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28		
1.0	41.07	18.36	8.01	5.78	(4.73)	33.12	26.03	18.48	13.93	5.98		
$\hat{\sigma}$	367.43	133.37	32.72	9.99	(3.17)	299.71	183.83	71.71	45.20	3.26		06
											MZO	りり
$dim(\tau) = 10$			$\underline{\hspace{1cm}}dim(\tau)=100$			dim(τ) = 10		$dim(\tau) =$	100		
0.0	19 79 9	Was a	0.0	30	0.	0	r of t	0.0	() () () () () ()			

 C_{0} lob $A_{1}(GA \times GA)$

Figure 3: CIFAR10 and CelebA samples with $\dim(\tau) = 10$ and $\dim(\tau) = 100$.

DDPM

Comparison

- Sample Quality and Efficiency
- Sample Consistency
- Interpolation in deterministic generative process
- Reconstruction from latent space

